Yuval Wigderson (Stanford)

Joint with Jacob Fox and Xiaoyu He

March 4, 2021

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Rédei's theorem \iff $\vec{r}(P_n) = n$, where $P_n =$ directed n-vertex path.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n , $2^{n/2} < r(K_n) < 2^{2n}$.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n , $2^{n/2} \le r(K_n) \le 2^{2n}$.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n , $2^{n/2} < \overrightarrow{r}(\overrightarrow{T}_n) < 2^n$.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \le r(K_n) \le 2^{2n}.$$

The upper bound implies that r(H) exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \le \vec{r}(\overrightarrow{T_n}) \le 2^n.$$

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leq r(K_n) \leq 2^{2n}.$$

The upper bound implies that r(H) exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \le \vec{r}(\overrightarrow{T_n}) \le 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leq r(K_n) \leq 2^{2n}.$$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then

$$r(H) \geq 2^{\varepsilon n}$$
.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \le \vec{r}(\overrightarrow{T_n}) \le 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leq r(K_n) \leq 2^{2n}.$$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then

$$r(H) \geq 2^{\varepsilon n}$$
.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \le \vec{r}(\overrightarrow{T_n}) \le 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. If H has εn^2 edges, then

$$\vec{r}(H) \geq 2^{\varepsilon n}$$
.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leq r(K_n) \leq 2^{2n}.$$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then

$$r(H) \geq 2^{\varepsilon n}$$
.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \le \vec{r}(\overrightarrow{T_n}) \le 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. If H has εn^2 edges, then

$$\vec{r}(H) \geq 2^{\varepsilon n}$$
.

So the Ramsey number is exponential if *H* is dense. For the rest of the talk, we'll focus on sparse (di)graphs.

If *H* is a tree or cycle, then r(H) = O(n).

```
If H is a tree or cycle, then r(H) = O(n).
Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?
```

If H is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

If *H* is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H}(\text{minimum degree of }H').$

If *H* is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H}(\text{minimum degree of }H').$

If H is d-degenerate, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

If *H* is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H}(\text{minimum degree of }H').$

If H is d-degenerate, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975)

If H is d-degenerate, then $r(H) = O_d(n)$.

If *H* is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H}(\text{minimum degree of }H').$

If H is d-degenerate, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)

If H is d-degenerate, then $r(H) = O_d(n)$.

If *H* is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H}(\text{minimum degree of }H').$

If H is d-degenerate, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)

If H is d-degenerate, then $r(H) = O_d(n)$.

Upshots: H has linear Ramsey number "if and only if" H is sparse. Qualitatively, n and d control r(H).

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020)

If H has bandwidth k, then $\vec{r}(H) = O_k(n)$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020)

If H has bandwidth k, (i.e. there is an edge $v_i \rightarrow v_j$ only if $1 \le j - i \le k$) then $\vec{r}(H) = O_k(n)$.

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? **No!**

Theorem (Fox-He-W. 2021)

For all C > 0 and $n \ge n_0$, there is a bounded-degree n-vertex acyclic digraph H with

$$\vec{r}(H) > n^C$$
.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? **No!**

Theorem (Fox-He-W. 2021)

For all C>0 and $n\geq n_0$, there is a bounded-degree ($\Delta\leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

$$\vec{r}(H) > n^C$$
.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? **No!**

Theorem (Fox-He-W. 2021)

For all C>0 and $n\geq n_0$, there is a bounded-degree ($\Delta\leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

$$\vec{r}(H) > n^C$$
.

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? **No!**

Theorem (Fox-He-W. 2021)

For all C>0 and $n\geq n_0$, there is a bounded-degree ($\Delta\leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

$$\vec{r}(H) > n^C$$
.

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

• $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? **No!**

Theorem (Fox-He-W. 2021)

For all C>0 and $n\geq n_0$, there is a bounded-degree ($\Delta\leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

$$\vec{r}(H) > n^C$$
.

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H has height h, then $\vec{r}(H) \leq n \cdot h^{O_{\Delta}(\log h)} = O_{\Delta,h}(n)$.

Height (aka depth) = length of longest directed path

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? **No!**

Theorem (Fox-He-W. 2021)

For all C>0 and $n\geq n_0$, there is a bounded-degree ($\Delta\leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

$$\vec{r}(H) > n^C$$
.

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H has height h, then $\vec{r}(H) \leq n \cdot h^{O_{\Delta}(\log h)} = O_{\Delta,h}(n)$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$ w.h.p.

Height (aka depth) = length of longest directed path

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting? If H is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If *H* is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Given such an ordering, the *length* of an edge $v_i \rightarrow v_j$ is j - i.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If H is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Given such an ordering, the *length* of an edge $v_i \rightarrow v_j$ is j - i.

"Definition"

If H has "many" edges of length in $[2^t, 2^{t+1})$ for "most" $0 \le t \le \log n$, then H has high multiscale complexity. If not, H has low multiscale complexity.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If H is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Given such an ordering, the *length* of an edge $v_i \rightarrow v_j$ is j - i.

"Definition"

If H has "many" edges of length in $[2^t, 2^{t+1})$ for "most" $0 \le t \le \log n$, then H has high multiscale complexity. If not, H has low multiscale complexity.

"Theorem"

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

• If *H* has bandwidth *k*, then every edge in *H* has length $\leq k$.

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

- If *H* has bandwidth *k*, then every edge in *H* has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

- If *H* has bandwidth *k*, then every edge in *H* has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n.

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n. Then

$$\mathbb{E}[\#(\text{edges of length} \leq \ell)] \leq p(n\ell) = c\ell.$$

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n. Then

$$\mathbb{E}[\#(\text{edges of length} \leq \ell)] \leq p(n\ell) = c\ell.$$

So a o(1) fraction of H's edges have length o(n).

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n. Then

$$\mathbb{E}[\#(\text{edges of length} \leq \ell)] \leq p(n\ell) = c\ell.$$

So a o(1) fraction of H's edges have length o(n).

• Our construction of a bounded-degree H with $\vec{r}(H) > n^C$ has many edges at every dyadic scale ("interval mesh").

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let *T* be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part.

Ensure that the induced subgraph on this subinterval has the same property, so we can iterate. At each step, |T| drops by a factor of 3, but |H| drops by a factor of 2.01.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49n$ for some i.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49n$ for some i. Greedy algorithm yields an interval mesh with max degree ≤ 1000 .

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

The multiscale complexity of *H* controls the number of iterations.

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

With more colors, the upper bound is closer to the truth.

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

With more colors, the upper bound is closer to the truth.

$$\overrightarrow{r_k}(H) = \min \left\{ N \, \middle| \, \begin{array}{c} \text{any k-edge-colored N-vertex tournament} \\ \text{contains a monochromatic copy of H} \end{array} \right\}.$$

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

With more colors, the upper bound is closer to the truth.

$$\overrightarrow{r_k}(H) = \min \left\{ N \, \middle| \, \begin{array}{c} \text{any } k\text{-edge-colored } N\text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

$$\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$$

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

With more colors, the upper bound is closer to the truth.

$$\overrightarrow{r_k}(H) = \min \left\{ N \, \middle| \, \begin{array}{c} \text{any } k\text{-edge-colored } N\text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

$$\overrightarrow{r_k}(H) \leq n^{\mathcal{O}_{\Delta}(\log^{\mathcal{O}_k(1)} n)}.$$

For $k \ge 2$, there exists H of maximum degree 3 and

$$\overrightarrow{r_k}(H) \ge n^{\Omega(\log n/\log\log n)}$$
.

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

With more colors, the upper bound is closer to the truth.

$$\overrightarrow{r_k}(H) = \min \left\{ N \, \middle| \, \begin{array}{c} \text{any } k\text{-edge-colored } N\text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

$$\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$$

For $k \ge 2$, there exists H of maximum degree 3 and

$$\overrightarrow{r_k}(H) \ge n^{\Omega(\log n/\log\log n)}$$
.

Proof uses a connection to ordered Ramsey numbers.

Summary: If H has n vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) \geq n^C$ is possible.

With more colors, the upper bound is closer to the truth.

$$\overrightarrow{r_k}(H) = \min \left\{ N \, \middle| \, \begin{array}{c} \text{any } k\text{-edge-colored } N\text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

$$\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$$

For $k \ge 2$, there exists H of maximum degree 3 and

$$\overrightarrow{r_k}(H) \ge n^{\Omega(\log n/\log\log n)}$$
.

Proof uses a connection to ordered Ramsey numbers. Conlon-Fox-Lee-Sudakov and Balko-Cibulka-Král-Kynčl proved that random ordered matchings have super-polynomial ordered Ramsey numbers.

Let H have n vertices and maximum degree Δ .

• There is a gap between the n^C lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.

We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for *T* works?

- There is a gap between the n^C lower bound and $n^{O_\Delta(\log n)}$ upper bound on $\vec{r}(H)$.

 We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H) = O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$. This boils down to improving one technical lemma.

- There is a gap between the n^C lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.

 We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H) = O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.

- There is a gap between the n^C lower bound and $n^{O_\Delta(\log n)}$ upper bound on $\vec{r}(H)$.

 We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H) = O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
 - Can one formalize this?

- There is a gap between the n^C lower bound and $n^{O_\Delta(\log n)}$ upper bound on $\vec{r}(H)$.

 We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H) = O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
 - Can one formalize this?
 - Which other digraph parameters are relevant?

- There is a gap between the n^C lower bound and $n^{O_\Delta(\log n)}$ upper bound on $\vec{r}(H)$.

 We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H) = O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
 - Can one formalize this?
 - Which other digraph parameters are relevant?
- Can one combine greedy embedding with existing techniques (e.g. median ordering)?

