Problem Set 1

ENGRD 2700

Cort Breuer 09/08/19

Question 1

```
quartet <- read.csv("Data/Quartet.csv")</pre>
```

Part A

```
X1 Sample Mean = \frac{10+8+13+9+11+14+6+4+12+7+5}{11} = 9
X1 Sample Median = 4,5,6,7,8,9,10,11,12,13,14=9
X1 Sample Standard Deviation = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2} = \sqrt{\frac{1}{10}}[(4-9)^2+(5-9)^2+...(13-9)^2+(14-9)^2] = \sqrt{11} = 3.32
\text{colNames} <-\text{c("X1", "X2", "X3", "X4", "Y1", "Y2", "Y3", "Y4")}
\text{quartetMean} <-\text{apply}(\text{quartet, 2, mean})
\text{quartetMedian} <-\text{apply}(\text{quartet, 2, median})
\text{quartetSD} <-\text{apply}(\text{quartet, 2, sd})
\text{summaryTable} <-\text{tibble}(\text{colNames, quartetMean, quartetMedian, quartetSD}) %% rename(Column = \text{colNames, "which is the property of the prop
```

Column	Sample Mean	Sample Median	Sample Standard Deviation
X1	9.0	9.00	3.32
X2	7.5	7.58	2.03
X3	9.0	9.00	3.32
X4	7.5	8.14	2.03
Y1	9.0	9.00	3.32
Y2	7.5	7.11	2.03
Y3	9.0	8.00	3.32
Y4	7.5	7.04	2.03

Part B

Part C

```
par(mfrow=c(2,2))

plot(quartet$x1, quartet$y1)
plot(quartet$x2, quartet$y2)
plot(quartet$x3, quartet$y3)
plot(quartet$x4, quartet$y4)
```


Part D

Part E

Question 2

```
countyData <- read.csv("Data/CountyData.csv")
countyData <- as_tibble(countyData)</pre>
```

Part A

```
ggplot(data = countyData) + geom_histogram(mapping = aes(foreign_spoken_at_home), binwidth = 5) + labs(
```


Part B

```
median(countyData$fed_spending, na.rm = TRUE)
## [1] 214994
```

Part C

```
theme_set(theme_bw())
ggplot(data = countyData) + geom_point(mapping = aes(x = bachelors, y = poverty)) + xlim(0, 80) + ylim(
```

Poverty vs. Bachelors


```
par(pty = "s")
plot(countyData$pachelors, countyData$poverty, xlim = c(0, 80), ylim = c(0, 80), main = "Poverty vs. Ba
```

Poverty vs. Bachelors

Percent of County with Bachelors Degrees

Part D

Question 3

Part A

Part B

Part C

Question 4

Part A

Part B

$$z_i = \frac{x_i - \overline{x}}{s_x}$$