History							
Type	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balrai Singh and Jun Chen	NDS 172, 1 (2021)	31-Jan-2021				

 $Q(\beta^-)$ =6396 8; S(n)=5533 14; S(p)=9466 13; $Q(\alpha)$ =-3886 10 2017Wa10 S(2n)=12415 9, S(2p)=22081 11 (2017Wa10).

Mass measurement by Penning-trap method: Mass excess $(g.s.)=-79802\ 20$; mass excess $(2.99-s\ isomer)=-79488\ 10$ (2007Ri01,2007Ha32,2006Jo14).

In (t,³He) (1979Aj03), many states are suggested by the observation of 23 groups, several of which are unresolved structures. Measured Q value=-6690 30 for the energy group labeled as '0', and assigned to the g.s. by 1979Aj03. Based on mass values in 2017Wa10, this Q value agrees better with the first level populated in (t,³He) identified with the 2.99-s, (5+) isomer, whose energy is measured as 314 23 (2007Ri01,2007Ha32).

A $0.3-\mu$ s isomer is indicated by x(t) measurements (1970Gr38,1972ClZN) of fission fragments from 235 U(n,F) (1970Gr38) and 252 Cf(SF) (1972ClZN), but the mass assignment is not certain. 1970Gr38 assign this isomer to A=100, whereas 1972ClZN assign it to A=102.

A 3-min activity reported by 1960Or02 and 1971Ca18 from 235 U fission and by 1966Gu05 from 100 Mo(n,p) reaction most likely corresponds to 99 Nb β^- decay ($T_{1/2}$ =2.6-min) and not to 100 Nb. No such activity has been seen in any of the later studies on the decay of 100 Nb.

A 12-min activity assigned to 100 Nb by 1961 Ta08 from 100 Mo(n,p) reaction has not been confirmed in any other 100 Nb study. This activity probably corresponds to the decay of 101 Mo ($T_{1/2}$ =14.6 min) formed by neutron capture in 100 Mo.

The following transitions were tentatively assigned to 100 Nb from a study of prompt conversion electrons from 235 U(n,F) by 1973Kh05: 84.0, 119.1, 126.4, 159.0, 172.0 and 212.0. None of these were assigned to levels in 100 Nb.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for six primary references dealing with decay half-lives, β shape factors, and other beta-decay characteristics.

2000Lh01: theoretical calculation of level energies and spin-parities of ¹⁰⁰Nb using the Interacting Boson-Fermion-Fermion model.

100Nb Levels

Cross Reference (XREF) Flags

Α	100 Zr β^{-} decay (7.1 s)
В	100 Nb IT decay (12.4 μ s)
C	²⁵² Cf SF decay
D	100 Mo(t, 3 He)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	1+	1.4 s 2	A C	$\%\beta^-$ =100 J ^π : log f t=4.6 (allowed β transition) from 0 ⁺ parent. Probable configuration= π g _{9/2} νg _{7/2} . T _{1/2} : weighted average of 1.5 s 2 (1976Ah06) and 1.3 s 2 (1972Tr08). Other: ≈1.0 s (1970Ei02). 1969WiZX report 1.7 s 4 from 600.0γ(t), but this 600γ is seen mostly from β decay of the 2.99-s isomer. In 1972Tr08 and 1970Ei02, the half-life was incorrectly assigned to ¹⁰⁰ Zr decay.
67.4 <mark>&</mark> 8	$(2^+)^{\ddagger}$		C	
159.1 <mark>a</mark> 8	$(3^+)^{\ddagger}$		C	
261.3 ^{&} 10	$(4^+)^{\ddagger}$		C	
314 23	$(5)^{+}$	2.99 s 11	B D	$\%\beta^{-}=100$

XREF: D(?). Additional information 2.

It is assumed by the evaluators that the lowest levels populated in the decay of the

Adopted Levels, Gammas (continued)

¹⁰⁰Nb Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments		
				13− <i>μ</i> s isomer, and in (t,³He) correspond to this long-lived isomer. E(level): from measured masses of g.s. and isomer (2007Ri01). 2017Au03 give 313 keV 8, apparently deduced from cyclotron frequency ratios for the g.s. and isomeric activities with respect to ⁹⁷ Zr standard cited by 2007Ha32 from measurements in their 2007Ri01 paper. It does not appear that 2007Ha32 made an independent measurement of the frequencies for ¹⁰⁰ Nb g.s. and the isomer. The 2007Ri01 paper, on the other hand, on page 5 give measured frequencies for the g.s. and the isomer, not the ratios with respect to the ⁹⁷ Zr standard, together with the energy of the isomer with an uncertainty of 23 keV. It is not clear to the evaluators whether frequency ratios listed in the 2007Ha32 carry correct uncertainties. Evaluators sent a query email Dec 5, 2020 to one of the main authors of both the papers for clarification of the assigned uncertainty. There has been no reply as of Jan 10, 2021. Evaluators prefer to assign 23 keV uncertainty as given in the 2017Ri01 paper. J ^π : allowed log ft value to 2103, 4+ state in ¹⁰⁰ Mo; log ft to 1847,6+ state is direct and possibly allowed (2001Su11). Theoretical structure calculations (2000Lh01) predict 5+ in a spherical basis with configuration= <i>v</i> s _{1/2} ⊗πg9/2. T _{1/2} : from γ(t) in 1987Me06. Others: 3.1 s 3 (1976Ah06), 2.4 s (1967Hu09), 2.4 s 3 (1972He37). 1969WiZX report 3.0 s 7 from γ(t) of a 246.2γ from ¹⁰⁰ Nb β- decay, but this γ was not seen in other studies.		
348 23	(4 ⁻ ,5 ⁻ ,6 ⁻)	0.41 μs 6	В	%IT=100 J ^{π} : (E1) 34.3 γ to (5) ^{$+$} ; 185 γ (M1)-173 γ (M1) cascade from 707,(6 ^{$-$}) level. Absence of γ transitions to 261, (4 ^{$+$}) and 159, (3 ^{$+$}) favors 6 $^{-}$. T _{1/2} : weighted average of 0.4 μ s 1 (2013RuZX, $\gamma\gamma$ (t)); 0.46 μ s 6 (1986LhZX, $\gamma\gamma$ (t)); 0.32 μ s 8 (1970Gr38, x-ray(t)). See also ¹⁰⁰ Nb IT decay.		
368.2 ^a 11	$(5^+)^{\ddagger}$		С	·		
400.52 6	1+	90 ps <i>30</i>	A	J ^π : log ft =4.8 (allowed β transition) from 0 ⁺ . Also theoretical prediction (2000Lh01). T _{1/2} : from $\gamma\gamma$ (t) in ¹⁰⁰ Zr β ⁻ decay (2013RuZX). Other: 0.19 ns 23		
				(1989Lh01).		
471.39 <i>7</i> 492.6 <i>15</i>	(1+)		A C	J^{π} : log ft =5.8 (probable allowed β transition) from 0^+ parent.		
498.08 25	$(0 \text{ to } 3^+)^{\#}$		A	J^{π} : 498.1 γ to 1 ⁺ ; 0 ⁻ from theoretical predictions (2000Lh01).		
504.30 <i>5</i> 521 <i>23</i>	(5-,6-,7-)	207 ps 14	A B	J^{π} : log ft =4.5 from 0 ⁺ ; also theoretical prediction (2000Lh01). J^{π} : M1 185.4 γ from (6 ⁻). Absence of γ transition to 261, (4 ⁺) favors 6 ⁻ or 7 ⁻ .		
				$T_{1/2}$: $\gamma \gamma(t)$ in IT decay (2013RuZX). Other: <1 ns (1986LhZX).		
542.4 <mark>&</mark> <i>12</i>	$(6^+)^{\ddagger}$		C			
653.92 12	$(0 \text{ to } 3^+)^\#$		Α	J^{π} : 253.4 γ to 1 ⁺ .		
703.72 <i>11</i> 706 <i>23</i>	$(0 \text{ to } 3^+)^{\#}$ (6^-)		A B	J^{π} : 303.2 γ to 1 ⁺ . J^{π} : (E2) 28 γ from (8 ⁻); 392.3 γ to 5 ⁺ .		
734 23	(8-)	12.4 μ s 3	В	%IT=100		
				 J^π: possible πg_{9/2}⊗vh_{11/2} configuration from systematics of N=57 and 59 isotones (1999Ge01). But theoretical calculations (2000Lh01) predict 8⁺ with πg_{9/2}⊗vg_{7/2} configuration. T_{1/2}: from 2013RuZX (γ(t) in IT decay, for 173-, 185- and 359-keV γ rays). 		
				Others: 13.0 μ s 10 (1999Ge01), 12 μ s (1980MoZJ).		
771.9 ^a 13 835.7 18	$(7^+)^{\ddagger}$		C C			

Adopted Levels, Gammas (continued)

¹⁰⁰Nb Levels (continued)

E(level) [†]	${ m J}^{\pi}$	XREF	Comments						
1058.8 ^{&} 14 1235.3 18 1525.9 21	(8 ⁺) [‡]	C C							
0+x		D	E(level): the ground state in Table I of 1979Aj03, with Q ₀ =-6690 <i>30</i> in (t, ³ He) seems to corresponds to 314 keV <i>23</i> , which is the energy of the 2.99-s, (5 ⁺) isomer measured by 2007Ri01 and 2007Ha32 in precise mass measurements of g.s. and isomer of ¹⁰⁰ Nb, although it is not clear why a high-spin would be preferentially populated in a charge-exchange reaction such as ¹⁰⁰ Mo(t, ³ He) instead of the 1 ⁺ ground state or other known 1 ⁺ states by e.g. Gamow-Teller transition. If x=314, then 314, 348, 521, and 735 populated in 12.4-μs isomer decay match with 0+x, 25+x, 210+x and 410+x levels from (t, ³ He), respectively, as noted by 1999Ge01.						
25+x 10		D	E(level): this level may correspond to 348.3 level.						
131+x 10		D	E(I I) d' l l l						
210+x? <i>15</i> 348+x <i>15</i>		D D	E(level): this level may correspond to 521.4 level.						
346+x 13 410+x 15		ע D	E(level): this level may correspond to 706.7 level.						
$450+x^{@}20$			E(level): this level may correspond to 734.7 level.						
$430+x^{\circ} 20$ $520+x^{\circ} 20$		D	E(level): this level may correspond to 734.7 level.						
520+x 20 565+x 10		D D							
595+x? [@] 20		_							
595+x? 20 680+x 20		D D							
720+x? 20		D D							
784+x 20		D							
820+x 20		D							
865+x [@] 20		D							
893+x 20		D							
945+x [@] 20		D							
1040+x [@] 20		D							
$1075 + x^{\textcircled{@}} 20$		D							
1136+x 20		D							
1180+x 25		D							
1260+x <i>30</i>		D							
1300+x <i>30</i>		D							

 $^{^{\}dagger}$ From least-squares fit to E γ data for levels with γ -ray emission. Others are from (t, 3 He). ‡ Proposed in 252 Cf SF decay based on band structure.

[#] 2^+ , 3^+ less likely from log ft=6.0-6.8 from 0^+ , but β feeding is quite weak which could be affected by weak unobserved γ -ray feeding from higher levels.

[©] Unresolved structure. & Band(A): $K\pi=1^+$, $\pi g_{9/2} \otimes \nu g_{7/2}$, $\alpha=0$. ^a Band(a): $K\pi=1^+$ $\pi g_{9/2} \otimes \nu g_{7/2}$, $\alpha=1$.

Adopted Levels, Gammas (continued)

$\gamma(^{100}\text{Nb})$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α [§]	Comments
67.4 159.1	(2 ⁺) (3 ⁺)	67.4 91.6 159.1	100 100 10.8	0.0 67.4 0.0	1 ⁺ (2 ⁺) 1 ⁺			
261.3	(4+)	102.1 194.0	100 5.3	159.1 67.4	(3^+) (2^+)			
348	(4 ⁻ ,5 ⁻ ,6 ⁻)	34.3	100	314	(5)+	(E1)	2.55	B(E1)(W.u.)= $5.3\times10^{-6} + 12-9$ Mult.: proposed by 1999Ge01 from ce spectrum and also based on the $28\gamma(E2)-185\gamma(M1)-173\gamma(M1)$ cascade from 735,(8 ⁻) level. But M1 from $\alpha(K)\exp=4.75$ in 1986LhZX.
368.2	(5 ⁺)	106.9 209.1	100 12.9	261.3 159.1	(4 ⁺) (3 ⁺)			
400.52	1+	400.50 6	100	0.0	1+	[M1]		B(M1)(W.u.)=0.0038 +19-10
471.39	(1^+)	471.48 9	100	0.0	1+	. ,		()()
492.6	,	124.4	100	368.2	(5^+)			
498.08	$(0 \text{ to } 3^+)$	498.08 25	100	0.0	1+			
504.30	1+	33.01 <i>10</i>	0.88 16	471.39	(1+)	(M1)	5.46	Mult.: from $\alpha(K)$ exp=3.1 8 (2007Ri01) in 100 Zr β^- decay.
		103.73 <i>10</i> 504.29 <i>5</i>	2.6 <i>4</i> 100 <i>13</i>	400.52 0.0	1 ⁺ 1 ⁺	[M1]	0.204	
521	$(5^-,6^-,7^-)$	173.3 2	100	348	$(4^-,5^-,6^-)$	M1	0.0505	B(M1)(W.u.)=0.0195 13
542.4	(6^+)	174.1	100	368.2	(5^{+})			
		281.2	18.2	261.3	(4^{+})			
653.92	$(0 \text{ to } 3^+)$	253.4 <i>1</i>	100	400.52				
703.72	$(0 \text{ to } 3^+)$	303.2 1	55 8	400.52				
		703.7 4	100 19	0.0	1+			
706	(6-)	185.4 2	100	521	$(5^-,6^-,7^-)$	M1	0.0422	
		358.6 2	88	348	$(4^-,5^-,6^-)$			
70.4	(0-)	392.3 2	60	314	(5) ⁺	(E2)	110	D/E2\/W_\ 0.07.1/
734	(8^{-})	28	100	706 542.4	(6^{-})	(E2)	110	B(E2)(W.u.)=0.87 16
771.9	(7^{+})	229.7 403.6	100	542.4 368.2	(6^+)			
835.7		343.1	26 100	492.6	(5^{+})			
1058.8	(8 ⁺)	286.9	100	771.9	(7 ⁺)			
1020.0	(0)	516.4	27	542.4	(7) (6 ⁺)			
1235.3		742.6	100	492.6	(0)			
1525.9		290.6	100	1235.3				

[†] From β^- decay, IT decay or 252 Cf SF decay, where a level is populated. All the excited states are populated uniquely in each of

the datasets.

‡ From ce data in ¹⁰⁰Nb IT decay, unless otherwise noted.

§ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): $K\pi=1^+$, $\pi g_{9/2} \otimes v g_{7/2}$, $\alpha=0$

