

Combinatorics of <u>lattices</u> _ ★ ↓ ↓ of subcategories of a module category

Haruhisa Enomoto (Osaka Metropolitan University) 2 September 2022, The 67th Algebra Symposium

Table of contents

Introduction

Torsion classes and wide subcategories

Main result

Introduction

Overview

For a ring Λ ,

```
\{C \mid C \text{ is a collection of } \Lambda\text{-modules satisfying (*)}\}
```

is a poset by inclusion for a given condition (*).

 \leadsto obtain various posets by changing (*).

Question

How these posets are combinatorially related?

Some important posets in combinatorics can be realized in this way.

→ Applications in combinatorics!

Example

k: a field (only consider f.d. modules).

Consider collections C of k-modules which is

• closed under direct sums and direct summands $(X,Y\in\mathcal{C}\Leftrightarrow X\oplus Y\in\mathcal{C})$

Such C: only 0 and mod k (all k-modules).

 \rightsquigarrow poset: 0 < mod k.

Example

 $k^2 = k \times k$: a product of field (only consider f.d. modules).

Consider collections C of k^2 -modules satisfying:

closed under direct sums and direct summands

Every k^2 -module M is decomposed as

$$M=S_1^a\oplus S_2^b$$

for unique $a, b \in \mathbb{N}$, where $S_1 := k \oplus 0$ and $S_2 := 0 \oplus k$.

Such $\mathcal{C} \leftrightarrow$ choosing S_1 and S_2

Example

 k^n : a product of field (only consider f.d. modules).

Consider collections C of k^n -modules satisfying:

closed under direct sums and direct summands

Every k^n -module M is decomposed uniquely as

$$M = S_1^{a_1} \oplus S_2^{a_2} \oplus \cdots \oplus S_n^{a_n}$$
 where $S_i := 0 \oplus \cdots \oplus 0 \oplus k \oplus 0 \oplus \cdots \oplus 0$. Such $\mathcal{C} \leftrightarrow$ subset of $\{S_1, \ldots, S_n\}$!
Thus the poset \cong powerset $2^{\{1,\ldots,n\}}$ of $\{1,\ldots,n\}$.

6

Today's talk

Today: Two class of collections of Λ -modules.

- 1. Torsion class \rightsquigarrow the poset tors \land
- 2. Wide subcategory \rightsquigarrow the poset wide Λ

Then construct wide Λ from tors Λ combinatorially!

Torsion classes and wide subcategories

Subcategories of the module category

- ∴ a finite-dimensional k-algebra over a field k.
- mod Λ: the category of f.g. Λ-modules.

Collections of Λ -modules = Subcategories of mod Λ

Theorem (Krull-Schmidt)

Every $M \in \text{mod } \Lambda$ is decomposed uniquely as

$$M = M_1 \oplus M_2 \oplus \cdots \oplus M_n$$

such that each M_i is indecomposable.

Subcategories (closed under direct sums & summands)

= Sets of indecomposable Λ -modules.

Torsion classes

Definition (Dickson 1966)

A subcategory $\mathcal T$ of mod Λ is a torsion class $:\Leftrightarrow$ closed under extensions and quotients: for any

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0,$$

$$L, N \in \mathcal{T} \Rightarrow M \in \mathcal{T}$$
, and $M \in \mathcal{T} \Rightarrow N \in \mathcal{T}$.
tors Λ : the poset of torsion classes (by inclusion)

By Krull-Schmidt, we only have to consider *indecomposable* modules in a torsion class.

- tors $k = \{0, \mod k\}$.
- Λ: semisimple ⇒ torsion class = subcat closed under direct sum & summands, tors Λ is the powerset of the set of indecomposable (=simple) modules.

Torsion classes: Working example

torsion class = closed under ext & quotients

Consider
$$\Lambda := \begin{bmatrix} k & k \\ 0 & k \end{bmatrix} = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in k \}.$$

Then \exists 3 indec. \land -modules A, B, C with exact seq

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0.$$

tors Λ :

Torsion classes: Remarks

- · A torsion class is a part of a torsion pair:
- A torsion pair (T, F) is a pair of subcats of mod Λ which divides mod Λ into two parts:
 torsion part T and torsion-free part F.
 Classicaly: torsion groups and torsion-free groups.
- Naturally appears when considering the derived category and t-structures.

Torsion classes: Combinatorial properties

In the rest, we assume tors Λ is finite.

tors Λ has the following properties:

- A complete lattice: for any family T_i of torsion classes, ∃
 ∨ T_i and ∧ T_i(= ∩ T_i) in tors Λ.
- The Hasse diagram is an n-regular graph
 (n is the number of simple Λ-modules).
- $\#\{T \mid T \text{ covers } i \text{ elements}\}\$ = $\#\{T \mid T \text{ is covered by } i \text{ elements}\}\$
- · Semiditributive.

Torsion classes: Rank 3 Example

tors $k(1 \xrightarrow{a} 2 \xrightarrow{b} 3)/(ab)$, calculated by Geuenich's String Applet

There is an algebra Λ such that tors Λ is:

Tamari lattice Tam: the poset of order of binary operation:

- Dynkin variants of Tamari lattice (Cambrian lattice).
- Finite Coxeter groups with weak order.

Wide subcategories (module cat inside module cat!)

Definition (Hovey 2001)

A subcategory \mathcal{W} of mod Λ is wide if

- closed under kernels and cokernels: for every $f: W_1 \to W_2$ with $W_i \in \mathcal{W}$, we have Ker f, Coker $f \in \mathcal{W}$.
- · closed under extensions.

wide Λ : the poset of wide subcategories of mod Λ .

An wide subcategory is an abelian subcategory.

Example

 $\Lambda \twoheadrightarrow \Gamma\text{: a }\textit{nice } ring \; surj \Rightarrow \mathsf{mod} \; \Gamma \hookrightarrow \mathsf{mod} \; \Lambda\text{: wide subcat}.$

Indeed, wide $\Lambda \cong \{\Lambda \to \Gamma \mid \text{a nice ring epi}\}.$

Wide subcategories: Example

- Λ : semisimple \rightsquigarrow wide $\Lambda = \text{tors } \Lambda \cong \text{powerset}$.
- Working example: $\Lambda := \left[\begin{smallmatrix} k & k \\ 0 & k \end{smallmatrix} \right] = \left\{ \left[\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix} \right] \mid a, b, c \in k \right\}$. 3 indec. modules A, B, C with exact seq

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0.$$

 $\mathsf{wide}\, \Lambda$

Wide subcategories: Combinatorial properties

wide Λ has the following properties:

- · A complete lattice.
- · Ranked (graded).
- · Rank-symmetric:

$$a_i := \#\{\mathcal{W} \mid \mathcal{W} \text{ is rank } i\} = \#\{\mathcal{W} \mid \mathcal{W} \text{ is rank } n-i\}.$$

• Rank-unimodal $(a_0 \le a_1 \le \cdots \le a_{n/2} \ge \cdots \ge a_{n-1} \ge a_n)$ [Aoki-Higashitani-Iyama-Kase-Mizuno 2022]

Wide subcategories: Rank 3 Example

wide $k(1 \xrightarrow{a} 2 \xrightarrow{b} 3)/(ab)$

There is an algebra Λ such that wide Λ is:

Non-crossiong partition lattice NC:

- · Dynkin variants of NC.
- The shard intersection order, a lattice structure on a finite Coxeter group defined recently [Reading 2011], using combinatorics of hyperplane arrangement

Main result

Main result: Overview

For a given algebra Λ , we have two posets:

- tors Λ, the poset of torsion classes.
- wide Λ , the poset of wide subcategories.

We will construct wide Λ from tors Λ purely combinatorially!

Λ: an upper-triangular matrix algebra, then

- tors $\Lambda \cong \mathsf{Tam}$: Tamari lattice
- wide $\Lambda \cong NC$: non-crossing partition lattice

→ Non-trivial relation between them!

Working Example

Non-isomorphic posets, but the number is same!

Marks-Šťovíček's bijection

Theorem (Marks-Šťovíček 2017)

We have a bijection

T: wide
$$\Lambda \xrightarrow{\simeq} tors \Lambda$$

where T(W) is the smallest torsion class containing W.

Problem

T: wide $\Lambda \to tors \Lambda$ is order-preserving, but not a poset isom.

Strategy

Give a new poset str \leq_{κ} on tors Λ such that

T: wide
$$\Lambda \cong (\text{tors } \Lambda, \leq_{\kappa})$$
.

Setting

We are given tors Λ just as an abstract lattice.

Working Example

 $\Lambda := \begin{bmatrix} k & k \\ 0 & k \end{bmatrix}$. The Hasse quiver of tors Λ :

Hasse quiver: $a \rightarrow b$ if a > b and $\not\exists c$ with a > c > b.

The join-irreducible labeling

Definition

For each Hasse arrow $a \rightarrow b$ in tors Λ , we label its arrow by

$$\min\{x \in \operatorname{tors} \Lambda \mid b \lor x = a\}.$$

This is well-defined and called the join-irreducible label.

Kappa map κ

[Barnard-Todorov-Zhu 2021] introduced κ : tors $\Lambda \xrightarrow{\sim}$ tors Λ :

Definition

For each $x \in \text{tors } \Lambda$, there's unique $\kappa(x) \in \text{tors } \Lambda$ satisfying

{labels of Hasse arrows starting at x}

={labels of Hasse arrows ending at $\kappa(x)$ }

(well-defined for semidistributive lattices.)

Red: the orbit of κ .

labels from a =labels into $\kappa(a)$

Red: the orbit of κ .

labels from
$$a$$
 = labels into $\kappa(a)$

Red: the orbit of κ .

labels from a = labels into $\kappa(a)$

Red: the orbit of κ .

labels from
$$a$$
 = labels into $\kappa(a)$

Red: the orbit of κ .

labels from a = labels into $\kappa(a)$

The kappa order and Main Theorem

Definition (The kappa order)

For $x, y \in \text{tors } \Lambda$, define

$$x \leq_{\kappa} y : \iff x \leq y \text{ and } \kappa(x) \geq \kappa(y).$$

Theorem (E)

T: wide $\Lambda \to tors \Lambda$ induces a poset isomorphism:

wide
$$\Lambda \cong (\mathsf{tors}\,\Lambda, \leq_{\kappa})$$

Working Example

 $\Lambda := \begin{bmatrix} k & k \\ 0 & k \end{bmatrix}$

A sketch of proof

 κ has a natural representation-theoretic meaning! (Υ , \mp)

We can dually consider torsion-free class (torf).

(*) is poset anti-isom.

Then for $W_1, W_2 \in \text{wide } \Lambda$, we have

Combinatorial applications

```
[ O K
By applying wide \Lambda\cong(\mathsf{tors}\,\Lambda,\leq_\kappa), we obtain:
     Non-crossing partition lattice \cong Tamari lattice with <_{\kappa}.

    Dynkin variants of the above.

    The shard intersection order on a Coxeter group W

     coincide with \leq_{\kappa} w.r.t. the weak order.
```