Homework 6

Kevin Guillen MATH 200 — Algebra I — Fall 2021

Can I please have my 9.1 graded, thank you.

Problem 3.3 Let G be a group. Show that Z(G) and G' are characteristic subgroups of G.

Proof. (a) Showing the center of G is characteristic subgroup of G. First let $\varphi \in \text{Aut}(G)$. We need to show $\varphi(Z(G)) = Z(G)$. Let $z \in Z(G)$, and $x \in G$. Then we know there exists some $y \in G$ such that $x = \varphi(y)$. This gives us the following,

$$\varphi(z)x = \varphi(z)\varphi(y)$$

$$= \varphi(zy)$$

$$= \varphi(yz)$$

$$= \varphi(y)\varphi(z) = x\varphi(z)$$

We can see then that $\varphi(z)$ commutes with all elements of G. Therefore $\varphi(Z(G)) \subset Z(G)$. Applying the same reasoning to φ^{-1} we get that $\varphi^{-1}(Z(G)) = \subset Z(G)$ which gives us that $Z(G) \subset \varphi(Z(G))$ and thus $Z(G) = \varphi(Z(G))$ as desired.

(b) Show the commutator subgroup of G is characteristic. Consider any $\phi \in \text{Aut}(G)$. We want to show that $\phi(G') = G'$. Let x be a commutator then $x = a^{-1}b^{-1}ab$. We have then the following,

$$\begin{split} \phi(x) &= \phi(\alpha^{-1}b^{-1}\alpha b) \\ &= \phi(\alpha^{-1})\phi(b^{-1})\phi(\alpha)\phi(b) \\ &= \phi(\alpha)^{-1}\phi(b)^{-1}\phi(\alpha)\phi(b) \end{split}$$

that $\varphi(x)$ is indeed a commutator as well. Now let $g \in G'$ then we know for some commutators x_i for $1 \le i \le n$ that $g = x_1 \dots x_n$. Now with the following,

$$\phi(g) = \phi(x_1 \dots x_n)$$
$$= \phi(x_1) \dots \phi(x_n)$$

we see that $\phi(g)$ must be in G' because every $\phi(x_i)$ is in G', and G' is a subgroup. Therefore $\phi(G') = G'$ meaning G' is characteristic.

Problem 9.1 (a) Determine the unit group of the ring $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, the ring of Gaussian integers.

- (b) Show that the ring $\mathbb{Z}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid a,b \in \mathbb{Z} \right\}$ has infintely many units and find all units of finite order.
- (a) *Proof.* If $x \in \mathbb{Z}[i]$ is a unit that means there exists $y \in \mathbb{Z}[i]$ such that xy = 1. We know that the Guassian integers are a subring of \mathbb{C} . Meaning we have consider the norm squared of these values. Where the norm of is defined as the following,

$$N(a+bi) = \sqrt{(a+bi)(a-bi)} = \sqrt{a^2+b^2}$$

When two values are equal we know their norm will be equal. Therfore we have, $N(xy)^2 = N(1)^2 = 1$. Recall though both x and y are of the form a + bi and c + di respectively. This gives us the following,

$$N(xy)^2=1 \qquad \qquad \text{Norm is multiplicative}$$

$$N(x)^2N(y)^2=1$$

$$N(a+bi)^2N(c+di)^2=1$$

$$(a^2+b^2)(c^2+d^2)=1$$

Thus (a^2+b^2) and (c^2+d^2) must both be non negative integers and must be equal to 1. In other words if $a^2+b^2=1$ then a^2 and b^2 must be less than or equal to 1. This gvies us the following solutions as $\pm 1+0i$ and $0\pm 1i$. Thus the only units in the Guassian integers are

$$\{1, i, -1, -i\}$$

(b) *Proof.* If $x \in \mathbb{Z}[\sqrt{2}]$ is a unit that means there exists a $y \in \mathbb{Z}[\sqrt{2}]$ such that xy = 1. From 111b we know the norm of this ring is simply,

$$\begin{aligned} N: \mathbb{Z}[\sqrt{2}] &\to \mathbb{N} \\ a + b\sqrt{2} &\mapsto a^2 - 2b^2 \end{aligned}$$

Next we will use the fact that N(x) = 1 if and only if x is unit. The reasoning for this is simple in that if x is a unit there exists a y such that xy = 1. Taking the norm then implies that N(xy) = N(x)N(y) = 1 which is only possible if N(x) = 1 and N(y). Then if N(x) = 1 that means $x \cdot \bar{x} = 1$ (where \bar{x} is the conjugate of x). Using this to our advantage we can see that $3 + 2\sqrt{2}$ must be a unit because $9 - 2 \cdot 4 = 1$. Let us consider the power of $(3 + 2\sqrt{2})$ now though. We see through the following,

$$N((3+2\sqrt{2})^n)=?$$

$$N(\underbrace{(3+2\sqrt{2})\cdots(3+2\sqrt{(2)})}_{n \text{ times}})=$$

$$Norm is multiplicative$$

$$N(3+2\sqrt{2})\cdots N(3+2\sqrt{2})=$$

$$n \text{ times}$$

Thus we have all powers of $(3+2\sqrt{2})$ are units. From here we must take a look at the order of $(3+2\sqrt{2})$. It is obvious it does not have a finite order since $1<(3+2\sqrt{2})$ and when taking powers of $(3+2\sqrt{2})$ we are simply multiplying and adding positive numbers which means it will only be increasing and can never decrease to be 1. As a result the order of $(3+2\sqrt{2})$ is infinite, and we showed every power of it is a unit, meaning there is an infinite number of units in $\mathbb{Z}[\sqrt{2}]$. Therefore the only units of finite order must be -1 and 1.