CANINE:

Pre-training an Efficient Tokenization-Free Encoder

Jon Clark, Dan Garrette, Iulia Turc, John Wieting

Deep neural models have replaced NLP pipelines... except for tokenization.

But language is complex, and tokenizers are brittle.

Morphological inflection, spelling variation, typos, newly coined terms, domain shift, transliteration, use of digits or punctuation to stand in for letters, languages that don't use whitespace, etc. etc...

Our solution: Let the model operate directly on characters! No tokenizer, no vocab!

Model	Input	MLM	Examples /sec	Params	TyDi QA: Passage F1	TyDi QA: MinSpan F1
mBERT (retrained)	Subwords	Subwords	9000	179M	63.2	51.2
	Chars	Single chars	925	127M	59.5 (-3.7)	43.7 (-7.5)
	Chars	Subwords	900	127M	63.8 (+0.6)	50.2 (-1.0)
CANINE-S	Chars	Subwords	6400	127M	66.0 (+2.8)	52.5 (+1.3)
CANINE-C	Chars	Autoregressive chars	6000	127M	65.7 (+2.5)	53.0 (+1.8)
CANINE-C + n-grams	Chars	Autoregressive chars	5600	167M	68.1 (+4.9)	57.0 (+5.7)