```
In [71]:
           import numpy as np
           import pandas as pd
           import sklearn as sk
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn import preprocessing
           from sklearn.model_selection import train_test_split
           data = pd.read_csv('household_power_consumption.txt', sep=";", header=None, na_values="?", skiprows=1)
           data.columns = ['Date','Time','Global active power','Global reactive power','Voltage','Global intensity',
                               'Sub_metering_1','Sub_metering_2','Sub_metering_3']
           data
                                 Time Global_active_power Global_reactive_power
                         Date
                                                                                Voltage
                                                                                        Global_intensity Sub_metering_1 Sub_metering_2 Si
Out[71]:
                 0 16/12/2006 17:24:00
                                                     4.216
                                                                                 234.84
                                                                                                                    0.0
                                                                          0.418
                                                                                                   18.4
                                                                                                                                    1.0
                   16/12/2006
                             17:25:00
                                                     5.360
                                                                          0.436
                                                                                 233.63
                                                                                                   23.0
                                                                                                                    0.0
                                                                                                                                    1.0
                                                                                                   23.0
                  16/12/2006 17:26:00
                                                     5.374
                                                                          0.498
                                                                                 233 29
                                                                                                                    0.0
                                                                                                                                    20
                             17:27:00
                   16/12/2006
                                                     5.388
                                                                          0.502
                                                                                 233.74
                                                                                                   23.0
                                                                                                                    0.0
                                                                                                                                    1.0
                   16/12/2006 17:28:00
                                                     3.666
                                                                          0.528
                                                                                 235.68
                                                                                                   15.8
                                                                                                                    0.0
                                                                                                                                    1.0
           2075254 26/11/2010 20:58:00
                                                     0.946
                                                                          0.000
                                                                                 240.43
                                                                                                    4.0
                                                                                                                    0.0
                                                                                                                                    0.0
           2075255 26/11/2010 20:59:00
                                                     0.944
                                                                          0.000
                                                                                 240.00
                                                                                                    4.0
                                                                                                                    0.0
                                                                                                                                    0.0
           2075256
                  26/11/2010 21:00:00
                                                     0.938
                                                                          0.000
                                                                                 239.82
                                                                                                    3.8
                                                                                                                    0.0
                                                                                                                                    0.0
           2075257 26/11/2010 21:01:00
                                                     0.934
                                                                          0.000
                                                                                 239.70
                                                                                                    3.8
                                                                                                                    0.0
                                                                                                                                    0.0
           2075258 26/11/2010 21:02:00
                                                     0.932
                                                                                 239.55
                                                                          0.000
                                                                                                    3.8
                                                                                                                    0.0
                                                                                                                                    0.0
          2075259 rows × 9 columns
In [72]:
           # Tipo de los atributos
           data.dtypes
Out[72]: Date
                                         object
                                         object
           Time
           Global_active_power
                                        float64
           Global_reactive_power
                                        float64
                                        float64
           Voltage
           Global_intensity
                                        float64
           Sub_metering_1
                                        float64
           Sub_metering_2
                                        float64
           Sub_metering_3
                                        float64
           dtype: object
In [73]:
           # Medidas de centralidad para atributos numéricos
           data.describe()
                  Global_active_power Global_reactive_power
                                                                Voltage Global_intensity
                                                                                        Sub_metering_1 Sub_metering_2 Sub_metering_3
Out[73]:
           count
                        2.049280e+06
                                             2.049280e+06 2.049280e+06
                                                                          2.049280e+06
                                                                                          2.049280e+06
                                                                                                          2.049280e+06
                                                                                                                          2.049280e+06
                        1.091615e+00
                                              1.237145e-01 2.408399e+02
                                                                           4.627759e+00
                                                                                          1.121923e+00
                                                                                                          1.298520e+00
                                                                                                                          6.458447e+00
           mean
             std
                        1.057294e+00
                                              1.127220e-01 3.239987e+00
                                                                           4.444396e+00
                                                                                          6.153031e+00
                                                                                                          5.822026e+00
                                                                                                                          8.437154e+00
            min
                        7.600000e-02
                                             0.000000e+00 2.232000e+02
                                                                           2.000000e-01
                                                                                          0.000000e+00
                                                                                                          0.000000e+00
                                                                                                                          0.000000e+00
            25%
                        3.080000e-01
                                              4.800000e-02 2.389900e+02
                                                                           1.400000e+00
                                                                                          0.000000e+00
                                                                                                          0.000000e+00
                                                                                                                          0.000000e+00
            50%
                        6.020000e-01
                                              1.000000e-01 2.410100e+02
                                                                           2.600000e+00
                                                                                          0.000000e+00
                                                                                                          0.000000e+00
                                                                                                                          1.000000e+00
            75%
                        1.528000e+00
                                              1 940000e-01 2 428900e+02
                                                                           6 400000e+00
                                                                                          0.000000e+00
                                                                                                          1 000000e+00
                                                                                                                          1 700000e+01
                        1.112200e+01
                                             1.390000e+00 2.541500e+02
                                                                           4.840000e+01
                                                                                          8.800000e+01
                                                                                                          8.000000e+01
                                                                                                                          3.100000e+01
            max
In [74]:
           data.mode()
                             Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_metering_2 Sub_m
Out[74]:
                     Date
                 1/1/2007 17:24:00
                                                 0.218
                                                                             241.18
                                                                                                1.0
                                                                                                                0.0
                                                                                                                                0.0
```

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_n
1	1/1/2008	17:25:00	NaN	NaN	NaN	NaN	NaN	NaN	
2	1/1/2009	17:26:00	NaN	NaN	NaN	NaN	NaN	NaN	
3	1/1/2010	17:27:00	NaN	NaN	NaN	NaN	NaN	NaN	
4	1/10/2007	17:28:00	NaN	NaN	NaN	NaN	NaN	NaN	
1435	9/8/2010	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1436	9/9/2007	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1437	9/9/2008	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1438	9/9/2009	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1439	9/9/2010	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

```
In [75]: # Correlación entre los datos
sns.heatmap(data.corr(), square=True, annot=True)
```

Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7e3f8bc048>


```
In [76]: # Existen datos atípicos?
          fig1, bp1 = plt.subplots()
          bpl.set_title('Global_active_power')
          bpl.boxplot(data['Global_active_power'].dropna())
          fig1, bp1 = plt.subplots()
          bpl.set_title('Global_reactive_power')
          bp1.boxplot(data['Global_reactive_power'].dropna())
          fig1, bp1 = plt.subplots()
          bp1.set_title('Voltage')
          bp1.boxplot(data['Voltage'].dropna())
          fig1, bp1 = plt.subplots()
          bpl.set_title('Global_intensity')
          bp1.boxplot(data['Global_intensity'].dropna())
          fig1, bp1 = plt.subplots()
          bpl.set_title('Sub_metering_1')
          bpl.boxplot(data['Sub_metering_1'].dropna())
          fig1, bp1 = plt.subplots()
          bpl.set title('Sub metering 2')
          bp1.boxplot(data['Sub_metering_2'].dropna())
          fig1, bp1 = plt.subplots()
bp1.set_title('Sub_metering_3')
          bpl.boxplot(data['Sub_metering_3'].dropna())
```


Plan para ajustar los datos

- 1. Eliminar los 25979 registros que tienen los 7 atributos faltantes.
- 2. Concatenar las columnas 'Date' y 'Time' en 'DateTime'
- 3. Transformar los atributo 'DateTime' al dtype datetime.
- 4. Eliminar los atributos 'Date' y 'Time'.
- 5. Extraer la información numérica de cada fecha y hora (año, mes, día de la semana, hora, etc) y asignar cada una a una columna nueva para cada registro.
- 6. Eliminar columna 'DateTime'.

```
In [80]: # 1. Eliminar los 25979 registros que tienen los 7 atributos faltantes.
data = data.dropna()
```

```
In [81]: # 2. Concatenar las columnas 'Date' y 'Time' en 'DateTime'
data['DateTime'] = data[['Date', 'Time']].agg('-'.join, axis=1)
```

/home/jozdashh/.local/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html #returning-a-view-versus-a-copy

```
In [82]: # 3. Transformar los atributo 'DateTime' al dtype datetime.
data['DateTime'] = pd.to_datetime(data['DateTime'], format='%d/%m/%Y-%H:%M:%S')
```

/home/jozdashh/.local/lib/python3.6/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html #returning-a-view-versus-a-copy

In [83]:	data								
Out[83]:		Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2 Si
	0	16/12/2006	17:24:00	4.216	0.418	234.84	18.4	0.0	1.0
	1	16/12/2006	17:25:00	5.360	0.436	233.63	23.0	0.0	1.0
	2	16/12/2006	17:26:00	5.374	0.498	233.29	23.0	0.0	2.0
	3	16/12/2006	17:27:00	5.388	0.502	233.74	23.0	0.0	1.0
	4	16/12/2006	17:28:00	3.666	0.528	235.68	15.8	0.0	1.0
	2075254	26/11/2010	20:58:00	0.946	0.000	240.43	4.0	0.0	0.0
	2075255	26/11/2010	20:59:00	0.944	0.000	240.00	4.0	0.0	0.0
	2075256	26/11/2010	21:00:00	0.938	0.000	239.82	3.8	0.0	0.0
	2075257	26/11/2010	21:01:00	0.934	0.000	239.70	3.8	0.0	0.0
	2075258	26/11/2010	21:02:00	0.932	0.000	239.55	3.8	0.0	0.0
:	2049280	rows × 10 c	olumns						

In [84]: # 4. Eliminar los atributos 'Date' y 'Time'.
 data = data.drop(['Date'], axis=1)
 data = data.drop(['Time'], axis=1)

```
In [85]: # 5. Extraer la información numérica de cada fecha y hora
    data['Year'] = data['DateTime'].dt.year
    data['Month'] = data['DateTime'].dt.month
    data['Week'] = data['DateTime'].dt.week
    data['DayofWeek'] = data['DateTime'].dt.dayofweek
    data['Hour'] = data['DateTime'].dt.hour
```

In [86]: # 6. Eliminar columna 'DateTime'.
 data = data.drop(['DateTime'], axis=1)

In [87]: data = data.reset_index(drop=True)

In [88]: data

Out[88]:		Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3	Year
_	0	4.216	0.418	234.84	18.4	0.0	1.0	17.0	2006
	1	5.360	0.436	233.63	23.0	0.0	1.0	16.0	2006
	2	5.374	0.498	233.29	23.0	0.0	2.0	17.0	2006
	3	5.388	0.502	233.74	23.0	0.0	1.0	17.0	2006
	4	3.666	0.528	235.68	15.8	0.0	1.0	17.0	2006
	2049275	0.946	0.000	240.43	4.0	0.0	0.0	0.0	2010
	2049276	0.944	0.000	240.00	4.0	0.0	0.0	0.0	2010
	2049277	0.938	0.000	239.82	3.8	0.0	0.0	0.0	2010
	2049278	0.934	0.000	239.70	3.8	0.0	0.0	0.0	2010
	2049279	0.932	0.000	239.55	3.8	0.0	0.0	0.0	2010

2049280 rows x 12 columns

```
# Se reduce el tamaño del conjunto de datos. De lo contrario las metricas de desempeño toman muchas horas-
In [120...
          # -cada una en poder ser calculadas. Sin mencionar que con más de 20'000 registros, el método jerarquico
          # se desborda en reserva de memoria en la maquina en la que estoy trabajando (trata de alocar 60+GB de RAM)
          # y en el DBSCAN, se genera un sólo conglomerado gigante de los datos (también con 20'000 registros o más).
          train, test = train_test_split(data, train_size=0.001, random_state=42)
          train.shape
```

Out[120... (2049, 12)

1. Clustering por K-means

```
In [121... from sklearn.cluster import KMeans
          # Se realizan 15 conglomerados y se grafica el error cuadrático
          sse = {}
          for k in range(1, 15):
              kmeans = KMeans(n_clusters=k, random_state=42, n_jobs=-1).fit(train)
              sse[k] = kmeans.inertia_ # Inertia: Sum of distances of samples to their closest cluster center
          plt.figure()
          plt.plot(list(sse.keys()), list(sse.values()))
          plt.xlabel("Number of cluster")
          plt.ylabel("SSE")
          plt.show()
```



```
In [122...
          # Se escoge K = 7 para el número de conglomerados
          # Se muestran las coordenadas de cada centroide de los 7 grupos
          kmeans = KMeans(n clusters=7, random state=42, n jobs=-1).fit(train)
          cc = pd.DataFrame(kmeans.cluster_centers_)
          cc.columns = ['Global_active_power','Global_reactive_power','Voltage','Global_intensity',
                           'Sub_metering_1','Sub_metering_2','Sub_metering_3', 'Year', 'Month',
                        'Week', 'DayofWeek', 'Hour']
          cc
```

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3	Y€
0	1.798329	0.115944	239.791616	7.502507	0.161560	0.849582	17.969359	2008.4846
1	0.575707	0.110026	242.206992	2.475578	0.028278	0.455013	0.344473	2008.3341
2	0.409464	0.136912	240.492434	1.835174	0.055215	0.519427	0.883436	2008.4928
3	4.153581	0.227839	237.546613	17.551613	37.129032	3.919355	10.677419	2008.2741
4	3.846632	0.199368	237.482632	16.384211	0.315789	35.842105	11.921053	2007.9210
5	1.875188	0.134973	239.718046	7.835249	0.337165	0.704981	18.065134	2008.2873

2. Clustering por Método jerárquico

```
In [123... from sklearn.cluster import AgglomerativeClustering
agglo = AgglomerativeClustering(n_clusters=7, linkage='average').fit(train)
```

3. Clustering por DBSCAN

```
In [124... from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN

nbrs = NearestNeighbors(n_neighbors=7, algorithm='ball_tree').fit(train)

In [125... # Se realiza el gráfico para determinar los parametros del radio de la circunferencia (eps) y el umbral
distances, indices = nbrs.kneighbors(train)
distances = [np.linalg.norm(e) for e in distances]
distances.sort()

plt.figure()
plt.plot(distances, 'b.', markersize=0.3)
plt.xlabel("Datos")
plt.ylabel("Umbral")
plt.show()
```



```
In [126... distances[1500]
Out[126... 10.851322500045786
In [128... # Se escoge entonces eps (radio de la circunferencia) como distances[1500] y min_samples (umbral) como 7 dbscan = DBSCAN(eps=distances[1500], min_samples=7).fit(train)
```

Comparación y análisis de las técnicas

```
In [129... aux_train = train.copy()

In [132... # Calcular la distancia entre dos vectores de coordenadas o registros
def proximidad(x, y):
    return np.linalg.norm(x-y)

# Calcular la cohesion entre todos los elementos de un conglomerado
def cohesion(Ci_list, dt):
    ans = 0
    for i in Ci_list:
        x = dt.iloc[i].to_numpy()
        for j in Ci_list:
```

```
ans += proximidad(x, dt.iloc[j].to numpy())
               return ans
          # Calcular la separacion entre dos conglomerados
          def separacion(Ci_list, Cj_list, dt):
               ans = 0
               for i in Ci list:
                   x = dt.\overline{i}loc[i].to_numpy()
                   for j in Cj_list:
                       ans += proximidad(x, dt.iloc[j].to_numpy())
               return ans
In [133...
          # Calculamos cohesion y separacion para K-means
          aux_train['labels'] = kmeans.labels_
          aux = aux_train.groupby('labels')
          ans1, ans\overline{2} = 0, \overline{0}
          for k in range(7):
               Ci_list = aux.groups[k].to_numpy()
               ans1 += cohesion(Ci_list, data)
          print("Cohesion:", ans1)
          kmeans_coh = ans1
          for k in range(7):
               Ci_list = aux.groups[k].to_numpy()
               for l in range(7):
                   if k != l:
                       Cj_list = aux.groups[l].to_numpy()
                       ans2 += separacion(Ci_list, Cj_list, data)
          print("Separacion:", ans2)
          kmeans_sep = ans2
          Cohesion: 10873021.243005335
          Separacion: 105970991.90599936
          # Calculamos cohesion y separacion para Método jerárquico
In [134...
          aux_train['labels'] = agglo.labels_
          aux = aux_train.groupby('labels')
          ans1, ans\overline{2} = 0, \overline{0}
          for k in range(7):
               Ci_list = aux.groups[k].to_numpy()
               ans1 += cohesion(Ci_list, data)
          print("Cohesion:", ans1)
          jerarq coh = ans1
          for k in range(7):
               Ci_list = aux.groups[k].to_numpy()
               for l in range(7):
                   if k!= l:
                       Cj_list = aux.groups[l].to_numpy()
                       ans2 += separacion(Ci_list, Cj_list, data)
          print("Separacion:", ans2)
          jerarq_sep = ans2
          Cohesion: 94411591.70587394
          Separacion: 22432421.443128563
 In []: # Cantidad de conglomerados generada por DBSCAN (6, con indices 0..5)
          max(dbscan.labels )
          # Calculamos cohesion y separacion para DBSCAN
In [141...
          aux train['labels'] = dbscan.labels_
          aux = aux train.groupby('labels')
          ans1, ans\overline{2} = 0, \overline{0}
          for k in range(6):
               Ci_list = aux.groups[k].to_numpy()
               ans1 += cohesion(Ci list, data)
          print("Cohesion:", ans1)
          dbscan\_coh = ans1
          for k in range(6):
               Ci_list = aux.groups[k].to_numpy()
               for l in range(6):
                   if k!= l:
                       Cj_list = aux.groups[l].to_numpy()
                       ans2 += separacion(Ci list, Cj list, data)
          print("Separacion:", ans2)
          dbscan\_sep = ans2
```

Cohesion: 92718755.41716066 Separacion: 7904087.41821493

In [146...

Qué método tuvo la mejor cohesión en cada conglomerado? min(kmeans_coh, jerarq_coh, dbscan_coh)

Out[146... 10873021.243005335

In [147...

Qué método tuvo el mayor separación entre conglomerados? max(kmeans_sep, jerarq_sep, dbscan_sep)

Out[147... 105970991.90599936

El modelo de K-means, por ser más eficiente computacionalmente, pudo haberse entrenado con el conjunto de datos completo (a diferencia del jerarquico que se desbordaba por memoria, y de que el DBSCAN sólo creara un sólo conglomerado). Pero, el hacer esto no hace justa la comparacion entre los tres métodos.

El método que tuvo mejor cohesión fue K-means, y el que tuvo mejor separación, también, fue el método de K-means. Obviamente se destaca el hecho de que no se está trabajando con el conjunto entero de datos, las métricas usadas no son del todo precisas y de que posiblemente otras métricas de desempeño pudieron ser usadas para comparar los tres métodos de tal forma que se pudiera apreciar mejor las fortalezas y debilidades de cáda uno.

Sin embargo, bajo las condiciones de poder cómputo en las que se desarrolló el taller y las métricas usadas, el método de conglomerados que mejor desempeño tuvo fue el de K-means, ya que este pudo formar grupos cuyos puntos estuvieran más cerca los unos a los otros (lo cual sugiere que pudo identificar los patrones de cada grupo en el conjunto de datos de forma correcta), y a su vez, estos grupos se encontraban más alejados o aislados entre sí que en cualquiera de los otros métodos.

In []: