В практической работе исследуется сходимость различных методов в зависимости от n - числа точек разбиения.

Рассматривается интеграл вида
$$I = \int_{a}^{b} \frac{x+L}{x^2+x+K} dx$$
, где

$$a = (K - L)/2, b = K + L$$
, значения K , L даны в табл. 3, $n = 4,6,8$.

Точное значение интеграла равно:

$$I = \left[\frac{1}{2}\ln(x^2 + x + K) + \frac{L - \frac{1}{2}}{\sqrt{K - \frac{1}{4}}}arctg\frac{x + \frac{1}{2}}{\sqrt{K - \frac{1}{4}}}\right]_a^b.$$

Сравнить его со значениями, полученными методом трапеций, методом парабол, методом Гаусса, коэффициенты этого метода приведены в табл. 1

	_	1
I a	элина	a I

	i	t_i	A_i
	1,4	∓0,861136	0,347854
n=4	2,3	∓0,339981	0,652145
	1,6	∓0,932464	0,171324
n=6	2,5	∓0,661209	0,360761
	3,4	∓0,238619	0,467913
	1,8	∓0,960289	0,101228
n=8	2,7	∓0,796666	0,222381
	3,6	∓0,525532	0,313706
	4,5	∓0,183434	0,362683

Результаты расчетов свести в табл. 2:

Таблица 2

n	4	6	8		
I_{tr}	•••	•••	•••		
I_{par}	•••	•••	•••		
I_g	•••	•••	• • •		

Построить график зависимости величины интегралов от n, на который нанести результаты расчетов и точное значение интеграла. Оценить качественно скорость сходимости различных методов.

Таблица 3

_	Гаолица З								
	$N_{\underline{0}}$	1	2	3	4	5	6	7	8
	K	3,2	3,4	3,6	3,8	4,0	2,2	2,4	2,6
	L	1,6	1,8	2,0	2,2	2,4	1,2	1,4	1,6
	№	9	10	11	12	13	14	15	16
	K	2,8	3,0	1,2	1,4	1,6	1,8	4,2	4,4
	\overline{L}	1,8	2,2	0,8	1,0	1,2	1,4	3,2	3,4