# PRONÓSTICO DE VENTAS MENSUALES EN TIENDAS ROSSMANN

### DESDE EXPLORACIÓN DE DATOS HASTA MODELOS DE MACHINE LEARNING.

## UN ANÁLISIS PREDICTIVO BASADO EN DATOS REALES DE VENTAS

# **ARITZEL MURRAY**

PROF: JUAN MARCOS CASTILLO, PHD



El objetivo es desarrollar un modelo predictivo basado en datos reales para estimar las ventas mensuales de las tiendas Rossmann en los próximos meses. Esto ayudará a identificar patrones clave, evaluar el impacto de factores como promociones y estacionalidad, y proporcionar una herramienta práctica para planificar recursos y aumentar la competitividad.

#### Insights valiosos: Seleccionando data







\*Los días festivos y las promociones generan un impacto en las ventas.



\*Las ventas aumentan los días laborables, especialmente los lunes, mientras que los domingos registran una caída notable debido al cierre de la mayoría de las tiendas. Las tiendas **tipo b,** al abrir todos los días, logran incrementar sus ventas promedio los domingos frente a otros tipos de tienda.

Identificación de Variables Relevantes para el Análisis Predictivo"



Con este heatmap de correlación se identifico que **Customers** y seguido de **Promo** tienen una relación más fuertes con **Sales.** 

Con estas variables identificadas como las más relevantes, se procedió a construir modelos predictivos, empezando por regresiones lineales y múltiples para explorar su capacidad de estimar **Sales** a partir de los patrones encontrados.

# PRONÓSTICO DE VENTAS MENSUALES EN TIENDAS ROSSMANN

#### USOS DE DIFERENTES MODELOS PREDICTIVOS

| REGRES<br>LINE/ |        |    |          |  |  |  |
|-----------------|--------|----|----------|--|--|--|
| R2              | RMS    | E  | MAE      |  |  |  |
| 0.680           | 1,758. | 59 | 1,271.24 |  |  |  |
|                 |        |    |          |  |  |  |

| Utilizando únicamente                  |
|----------------------------------------|
| Customers como variable independiente. |

| regres<br>Múltif | -       |   |          |   |
|------------------|---------|---|----------|---|
| R2               | RMSE    |   | MAE      |   |
| 0.727            | 1,620.1 | 4 | 1,155.38 |   |
|                  |         |   |          | • |

Utilizando **Customers y Promo** como variables independientes.

Dada la precisión relativamente baja obtenida con los modelos de regresión lineal y múltiple, se decidió utilizar varios algoritmo, de cual se escogió **XGBRegressor** 

| F | XGB<br>REGRESSOR             |        |        |        |       |  |
|---|------------------------------|--------|--------|--------|-------|--|
|   | Conjunto                     | R2     | RMSE   | MAE    | MAPE  |  |
|   | Prueba                       | 0.9546 | 661.92 | 455.33 | 6.77% |  |
|   | Entrenamiento                | 0.9580 | 637.37 | 441.77 | 6.60% |  |
|   | Julio 2015 (No<br>Entrenado) | 0.9374 | 734.70 | 527.63 | 7.40% |  |
| , |                              |        |        |        |       |  |

se agregaron algunas variables adicionales como: **DayOfWeek,, StoreType, Assortment, StateHoliday, CompetitionDistance** como variablse independientes.

### Valores reales vs Predicción



Estos resultados reflejan la solidez del modelo XGBRegressor para predecir ventas en tiendas Rossmann. La combinación de una precisión alta y errores bajos, incluso en datos no entrenados, valida su utilidad como herramienta para decisiones estratégicas basadas en datos.

Aprendizajes: identificar patrones clave y a seleccionar las variables más relevantes como Customers y Promo, utilizando herramientas como heatmaps de correlación. Esto me permitió construir modelos predictivos progresivamente, desde regresiones lineales y múltiples hasta XGBRegressor, optimizado con GridSearchCV.

Validé el modelo en datos no entrenados, como julio de 2015, asegurando su capacidad de generalización.

Este proceso me enseñó a conectar análisis descriptivo y predictivo para resolver problemas reales de forma efectiva.