字符串从入门到入门

Shan Lunjia Jian

上海交通大学

2024-07-30

说在前面

据说很多同学没有什么字符串水平,所以今天的课会比较入门,希望大家都能入门,谢谢朋友们!!!

Outline

最小表示

manacher

dfa

dfa 是什么 笛卡尔积 dfa 最小化

kmp

kmp

acam

最小表示最小表示

给串 s, 找到它所有循环移位中字典序最小的那个。

最小表示 Algorithm

爆力比较。如果 i 开头比 j 开头更优,且在第 k 位才更优,那么对于 $t \le k$,i+t 开头也比 j+t 开头更优。

最小表示 Algorithm

爆力比较。如果 i 开头比 j 开头更优,且在第 k 位才更优,那么对于 $t \le k$,i+t 开头也比 j+t 开头更优。跳过不优的即可。复杂度 O(n)。

manacher

manacher

给串 s, 求出所有回文半径。

manacher Algorithm

维护覆盖了当前位置且右端点最右的回文串,寻找和当前位置对 称的点。

manacher Algorithm

维护覆盖了当前位置且右端点最右的回文串,寻找和当前位置对 称的点。 如果信息不够,爆力向右扩展。

manacher Algorithm

维护覆盖了当前位置且右端点最右的回文串,寻找和当前位置对 称的点。

如果信息不够,爆力向右扩展。

每次扩展,这个右端点最右的回文串的右端点都会向右一步,所以最多扩展 O(n) 次。

dfa dfa 是什么??

dfa 是什么???

dfa dfa 是什么??

> dfa 是什么??? dfa 是一个有向图,用来识别字符串,dfa 的点被称为状态,每 条边上有一个字符,一开始你在状态 Ø,从左往右扫字符串,对 于每个字符沿着对应的边走,然后有一组接受状态,如果最后到 达了一个接受状态,那么这个串就在这个 dfa 识别的串的集合 中,否则不在。

dfa dfa 是什么??

dfa 是什么???

dfa 是一个有向图,用来识别字符串,dfa 的点被称为状态,每条边上有一个字符,一开始你在状态 Ø,从左往右扫字符串,对于每个字符沿着对应的边走,然后有一组接受状态,如果最后到达了一个接受状态,那么这个串就在这个 dfa 识别的串的集合中,否则不在。

dfa 的最大的好处是一个串前面的所有信息都可以被一个结点编号概括。比如我们很容易将 dfa 的一个状态作为 dp 的一维。

Example

(我来) 构造一个识别有奇数个 1 的 01 串的 dfa。

Example

(我来) 构造一个识别有奇数个 1 的 01 串的 dfa。

试看看! 例题 1.7

你来构造一个识别不含 1 的串的 dfa。

Example

(我来)构造一个识别有奇数个 1 的 01 串的 dfa。

试看看! 例题 1.7

你来构造一个识别不含 1 的串的 dfa。 你来构造一个识别含子序列 114514 的 dfa。 dfa 笛卡尔积

构造识别有奇数个 1 且含子序列 114514 的串的 dfa??

dfa 笛卡尔积

构造识别有奇数个 1 且含子序列 114514 的串的 dfa?? 如果有两个 dfa, 我们可以构造一个状态集合为两个 dfa 状态集合笛卡尔积的 dfa, 它的每个状态表示" 在两个 dfa 上分别在某个状态",转移则分别在两个 dfa 上转移。

dfa 笛卡尔积

构造识别有奇数个 1 且含子序列 114514 的串的 dfa?? 如果有两个 dfa, 我们可以构造一个状态集合为两个 dfa 状态集合笛卡尔积的 dfa, 它的每个状态表示" 在两个 dfa 上分别在某个状态", 转移则分别在两个 dfa 上转移。

nfa 是可以有多条字符相同的出边的 dfa, 也就是说走到这里时会分成多个分支同时走。最后只要一个分支到达接受状态,这个串就是被接受的。

构造识别有奇数个 1 且含子序列 114514 的串的 dfa?? 如果有两个 dfa, 我们可以构造一个状态集合为两个 dfa 状态集合笛卡尔积的 dfa, 它的每个状态表示" 在两个 dfa 上分别在某个状态", 转移则分别在两个 dfa 上转移。

nfa 是可以有多条字符相同的出边的 dfa, 也就是说走到这里时会分成多个分支同时走。最后只要一个分支到达接受状态,这个串就是被接受的。

如果给定 nfa,构造一个等价的 dfa,我们只需要,对于每个状态记录是否有一个分支位于这个状态,来作为这个 dfa 的状态。这样得到一个 2^n 个状态的 dfa,虽然很大但确实是有限的。

XIX Open Cup, GP of Gomel, J. Ten Ranges

XIX Open Cup, GP of Gomel, J. Ten Ranges 数 n 以内有多少个数的十进制表示不包含 2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 中任何一个作为子序列。 $n < 10^{18}$ 。

刚才我们已经说明了如何建立"子序列自动机"。

刚才我们已经说明了如何建立"子序列自动机"。 现在我们对每个串建立子序列自动机,然后全部笛卡尔积起来。

刚才我们已经说明了如何建立"子序列自动机"。 现在我们对每个串建立子序列自动机,然后全部笛卡尔积起来。 dfs 找到所有可能可达的状态,发现只有约 1.5×10^4 个,数位 dp,可以通过。

> 如果两个状态的所有出边都相同,那么走到它俩是完全等价的。 我们可以只保留一个,让另一个的人边改为指向这一个。

> 如果两个状态的所有出边都相同,那么走到它俩是完全等价的。我们可以只保留一个,让另一个的人边改为指向这一个。 爆力做法就是直接每个状态对所有出边 hash 一下然后合并,直到不能再合并。这显然是 $O(n^2\Sigma)$ 的。

> 如果两个状态的所有出边都相同,那么走到它俩是完全等价的。我们可以只保留一个,让另一个的人边改为指向这一个。 爆力做法就是直接每个状态对所有出边 hash 一下然后合并,直到不能再合并。这显然是 $O(n^2\Sigma)$ 的。 我们有一个一般更快的做法。一开始让接受状态都合并成一个,拒绝状态都合并成一个,然后分裂若干轮,每次枚举一个等价类,找到它的人边是哪些原 dfa 中的结点贡献的,那么如果一个等价类里面指向这个等价类的情况不相同,就要分裂。直到这一轮 dfa 的状态数没有增大,就停止。这称为 moore 算法。

> 如果两个状态的所有出边都相同,那么走到它俩是完全等价的。我们可以只保留一个,让另一个的入边改为指向这一个。 爆力做法就是直接每个状态对所有出边 hash 一下然后合并,直到不能再合并。这显然是 $O(n^2\Sigma)$ 的。 我们有一个一般更快的做法。一开始让接受状态都合并成一个,拒绝状态都合并成一个,然后分裂若干轮,每次枚举一个等价类,找到它的入边是哪些原 dfa 中的结点贡献的,那么如果一个等价类里面指向这个等价类的情况不相同,就要分裂。直到这一轮 dfa 的状态数没有增大,就停止。这称为 moore 算法。 moore 算法期望是 $O(n(\Sigma + \log n))$ 的,但可以卡到 $O(n^2\Sigma)$ 。

另有一个 hopcroft 算法是最坏 $O(n\Sigma \log n)$ 的。

> 另有一个 hopcroft 算法是最坏 $O(n\Sigma\log n)$ 的。 正如 spfa 对 bellman-ford 的优化,我们不进行若干轮,而是每次分裂之后都把分裂出的等价类放进一个队列里,每次取出第一个处理。

> 另有一个 hopcroft 算法是最坏 $O(n\Sigma\log n)$ 的。 正如 spfa 对 bellman-ford 的优化,我们不进行若干轮,而是每次分裂之后都把分裂出的等价类放进一个队列里,每次取出第一个处理。

关键的优化是,我们把一个等价类 x 分裂成两个 y,z 时,如果已经用 x 尝试分裂过了,那么只需要把 y,z 中较小的那个放进队列。

> 另有一个 hopcroft 算法是最坏 $O(n\Sigma\log n)$ 的。 正如 spfa 对 bellman-ford 的优化,我们不进行若干轮,而是每次分裂之后都把分裂出的等价类放进一个队列里,每次取出第一个处理。

关键的优化是,我们把一个等价类 x 分裂成两个 y,z 时,如果已经用 x 尝试分裂过了,那么只需要把 y,z 中较小的那个放进队列。

这是因为现有的等价类肯定不会被 x 分裂了,每个等价类到 x 的转移情况是相同的,区别就是每个点转移到 y 还是 z,所以只需要加入 y,z 中任何一个。

> 另有一个 hopcroft 算法是最坏 $O(n\Sigma\log n)$ 的。 正如 spfa 对 bellman-ford 的优化,我们不进行若干轮,而是每次分裂之后都把分裂出的等价类放进一个队列里,每次取出第一个处理。

关键的优化是,我们把一个等价类 x 分裂成两个 y,z 时,如果已经用 x 尝试分裂过了,那么只需要把 y,z 中较小的那个放进队列。

这是因为现有的等价类肯定不会被 x 分裂了,每个等价类到 x 的转移情况是相同的,区别就是每个点转移到 y 还是 z,所以只需要加入 y,z 中任何一个。

每条边最多被处理 \log 次。复杂度 $O(n\Sigma \log n)$ 。不会比 moore 算法表现更差。

Review

现在我们对每个串建立子序列自动机,然后全部笛卡尔积起来。 dfs 找到所有可能可达的状态,发现只有约 1.5×10^4 个,数位 dp,可以通过。

Review

现在我们对每个串建立子序列自动机,然后全部笛卡尔积起来。 dfs 找到所有可能可达的状态,发现只有约 1.5×10^4 个,数位 dp,可以通过。

对 dfa 使用最小化吧!!!

Review

现在我们对每个串建立子序列自动机,然后全部笛卡尔积起来。 dfs 找到所有可能可达的状态,发现只有约 1.5×10^4 个,数位 dp,可以通过。

对 dfa 使用最小化吧!!!

最小化之后只剩下 19 个状态,可以跑 $n \le 10^{10^5}$ 。

dfa Median Replace Hard

XX Open Cup, GP of Tokyo, J. Median Replace Hard 对于一个长奇数的 01 串,称它是好的,当且仅当可以每次选择相邻三个字符按照给定的规则替换成一个(规则是所有 8 种长 3 的串到 01 的映射),使得最后剩下一个 1。给一个长奇数含 01?的串,求把? 替换成 0/1 的所有方案中,有多少串是好的。 $n < 3 \times 10^5$ 。

dfa Median Replace Hard

XX Open Cup, GP of Tokyo, J. Median Replace Hard 对于一个长奇数的 01 串,称它是好的,当且仅当可以每次选择相邻三个字符按照给定的规则替换成一个(规则是所有 8 种长 3 的串到 01 的映射),使得最后剩下一个 1。给一个长奇数含 01?的串,求把?替换成 0/1 的所有方案中,有多少串是好的。 $n \leq 3 \times 10^5$ 。以下称能使得最后剩下一个 0 的是反好串。

像这种题就肯定是要建一个 dfa 并在上面 dp 了。

> 像这种题就肯定是要建一个 dfa 并在上面 dp 了。 我们假设已经建出了一个 dfa 识别长度 $\leq k$ 的好串,那么如何 识别长度 $\leq k+2$ 的好串?

像这种题就肯定是要建一个 dfa 并在上面 dp 了。 我们假设已经建出了一个 dfa 识别长度 $\leq k$ 的好串,那么如何 识别长度 $\leq k+2$ 的好串? 枚举最后一次操作的三个操作数,以及三个数分别从哪个区间上 来,把所有可能的情况笛卡尔积求并,一边求一边最小化。

像这种题就肯定是要建一个 dfa 并在上面 dp 了。 我们假设已经建出了一个 dfa 识别长度 $\leq k$ 的好串,那么如何 识别长度 $\leq k+2$ 的好串? 枚举最后一次操作的三个操作数,以及三个数分别从哪个区间上 来,把所有可能的情况笛卡尔积求并,一边求一边最小化。(这 个需要我们同时构建识别一个串是不是反好串的 dfa)

> 像这种题就肯定是要建一个 dfa 并在上面 dp 了。 我们假设已经建出了一个 dfa 识别长度 $\leq k$ 的好串,那么如何 识别长度 $\leq k+2$ 的好串? 枚举最后一次操作的三个操作数,以及三个数分别从哪个区间上 来,把所有可能的情况笛卡尔积求并,一边求一边最小化。(这 个需要我们同时构建识别一个串是不是反好串的 dfa) 直到 k,k+2 对应的 dfa 相同就停止。

给定串 s, 构造 dfa 识别以 s 为后缀的串 t。

给定串 s,构造 dfa 识别以 s 为后缀的串 t。 注意到 dfa 识别 t 的过程,其实识别了 t 的每个前缀,所以通过 这个 dfa 我们可以找到 t 中 s 的所有出现位置。

给定串 s,构造 dfa 识别以 s 为后缀的串 t。 注意到 dfa 识别 t 的过程,其实识别了 t 的每个前缀,所以通过 这个 dfa 我们可以找到 t 中 s 的所有出现位置。

一个简单的想法是记录当前长 |s| 的后缀作为 dfa 的状态,转移是显然的。

给定串 s,构造 dfa 识别以 s 为后缀的串 t。 注意到 dfa 识别 t 的过程,其实识别了 t 的每个前缀,所以通过 这个 dfa 我们可以找到 t 中 s 的所有出现位置。

一个简单的想法是记录当前长 |s| 的后缀作为 dfa 的状态,转移是显然的。这一算法复杂度是指数级的,但对于给定的 s,它构造的确实是一个 dfa。

我们希望尽可能简洁地记录当前 t 的末尾的情况。

我们希望尽可能简洁地记录当前 t 的末尾的情况。

Lemma

注意到如果两个 t 的" 最长的串 p 满足它是 t 的后缀,也是 s 的前缀" 这个信息 p 相同,那么它们的后续转移同构。

我们希望尽可能简洁地记录当前 t 的末尾的情况。

Lemma

注意到如果两个 t 的" 最长的串 p 满足它是 t 的后缀, 也是 s 的前缀" 这个信息 p 相同, 那么它们的后续转移同构。

Proof

若 p 之前的字符有影响,说明后面有匹配匹配到了 p 之前的字符,说明 p 不是最长的。

我们希望尽可能简洁地记录当前 t 的末尾的情况。

Lemma

注意到如果两个 t 的" 最长的串 p 满足它是 t 的后缀, 也是 s 的前缀" 这个信息 p 相同, 那么它们的后续转移同构。

Proof

若 p 之前的字符有影响,说明后面有匹配匹配到了 p 之前的字符,说明 p 不是最长的。

p 是 s 的前缀,所以只剩下 n+1 种状态。

Review

p 是最长的串,满足它是 t 的后缀,也是 s 的前缀。加入一个字符 c 时,考虑 p 如何变化。

Review

p 是最长的串,满足它是 t 的后缀,也是 s 的前缀。 加入一个字符 c 时,考虑 p 如何变化。 如果 pc 是 s 的前缀最好,否则寻找 qc 既是 t 的后缀,也是 s 的前缀。

Review

p 是最长的串,满足它是 t 的后缀,也是 s 的前缀。加入一个字符 c 时,考虑 p 如何变化。如果 pc 是 s 的前缀最好,否则寻找 qc 既是 t 的后缀,也是 s 的前缀。

那么 qc 是 pc 的后缀, 也是 p 的前缀。

Review

p 是最长的串,满足它是 t 的后缀,也是 s 的前缀。

加入一个字符 c 时, 考虑 p 如何变化。

如果 pc 是 s 的前缀最好,否则寻找 qc 既是 t 的后缀,也是 s 的前缀。

那么 qc 是 pc 的后缀, 也是 p 的前缀。那么 q 是 p 的后缀, 也 是 p 的前缀。

$\underset{Algorithm}{kmp}$

Review

p 是最长的串,满足它是 t 的后缀,也是 s 的前缀。

加入一个字符 c 时, 考虑 p 如何变化。

如果 pc 是 s 的前缀最好,否则寻找 qc 既是 t 的后缀,也是 s 的前缀。

那么 qc 是 pc 的后缀, 也是 p 的前缀。那么 q 是 p 的后缀, 也 是 p 的前缀。

我们称 q 是 p 的 border。显然 border 具有传递性。

$\underset{\mathrm{Algorithm}}{kmp}$

Review

p 是最长的串,满足它是 t 的后缀,也是 s 的前缀。

加入一个字符 c 时, 考虑 p 如何变化。

如果 pc 是 s 的前缀最好,否则寻找 qc 既是 t 的后缀,也是 s 的前缀。

那么 qc 是 pc 的后缀, 也是 p 的前缀。那么 q 是 p 的后缀, 也 是 p 的前缀。

我们称 q 是 p 的 border。显然 border 具有传递性。

只需求出 s 的每个前缀的最长真 border,就可以从 p 出发枚举 p 的所有 border q,并判断是否有 qc 是 pc 的 border。

 $\underset{\mathrm{Algorithm}}{kmp}$

现在问题是如何求每个前缀的最长真 border。

> 现在问题是如何求每个前缀的最长真 border。 与上面一样,我们向 s 后加入一个字符 c 时,枚举 s 的最长真 border q 的所有 border q,并判断是否有 qc 是 sc 的 border。

> 现在问题是如何求每个前缀的最长真 border。 与上面一样,我们向 s 后加入一个字符 c 时,枚举 s 的最长真 border q 的所有 border q,并判断是否有 qc 是 sc 的 border。 两个算法中每一步的 p 的长度最后会增加最多 1,而每次枚举的 border 变短都会让 p 的长度减小,因此枚举总共不超过 n 次。 复杂度 O(n)。

acam

给定 trie, trie 上有一些关键点,构造 dfa 识别以 trie 上某个关键点为后缀的串 t。

acam Algorithm

类似于 kmp,求出当前 trie 上最深的点满足它是 t 的后缀。