Протокол обмена информацией между контроллерами СИКОН и ЭВМ. Канальный уровень.

СОДЕРЖАНИЕ.

		стр
1. E	Введение.	3
	Описание протокола обмена.	
2.1.	. Интерфейс обмена	4
2.2.		
2.3.	. Структура сообщения	4
2.4.	. Маршрут (РАТН)	5
2.5.	. Номер макета и номер пакета	5
2.6.	. Номер контроллера	5
2.7.	Упакованные данные	<i>6</i>
2.8.	. Контрольная сумма	
2.9.	Сообщения об ошибках канального уровня	8

1. Введение.

Настоящее описание протокола распространяется на универсальный аппаратнопрограммный комплекс приема-передачи данных «ПИРАМИДА» и предназначено для согласования логических интерфейсов ЭВМ и контроллеров СИКОН С1 версии 2, СИКОН С10 версии 2.

2. Описание протокола обмена.

2.1. Интерфейс обмена.

Обмен информацией с ЭВМ осуществляется по стыку 'C2' в соответствии с требованиями ГОСТ 18145-81.

Тип обмена информацией - последовательный.

Способ обмена - асинхронный, стартстопный, дуплексный с контролем на четность.

Состав информационного символа (8Е2):

1	2 9	10	11	12
Стар бит	Передаваемые данные 8 бит	Бит паритета	Стоп бит	Стоп бит

2.2. Порядок обмена информацией между ЭВМ и контроллером.

Инициатором обмена является ЭВМ – т.е. верхний уровень.

Правильный прием каждого пакета из канала связи должен сопровождаться выдачей квитанции (код 06).

Пакет ответа считается правильным, если:

- у пакета ответа корректная контрольная сумма;
- номер макета совпадает с номером макета в запросе;
- у пакета ответа верный обратный маршрут (РАТН).

Время ожидания квитанции – обычно 5 секунд (но зависит от канала связи).

В случае отсутствия квитанции, ЭВМ или контроллер, повторяет передачу пакета 5 раз.

2.3. Структура сообщения.

Любой пакет должен начинаться символом HT (код 02) и заканчиваться символом KT (код 03). Размер каждого пакета не более 39 байт (включая HT и KT). А внутри пакета не должны встречаться специальные символы -02, 03, 06.

Сообщение, посылаемое в канал связи на контроллер (<u>запрос</u>), имеет пакетную структуру, т.е. запрос может состоять из нескольких пакетов, формат одного пакета:

НТ	PA	TH	MC	MP	NUM	<упакованные данные>	СН	SM	КТ
02	путь (старший байт)	путь (младший байт)	номер макета	номер пакета	Номер контрол- лера		сгс (младший байт)	сгс (старший байт)	03

Ответное сообщение, посылаемое контроллером (<u>ответ</u>), также имеет пакетную структуру, каждый пакет имеет формат, показанный ниже, но не содержит поле **NUM**:

HT	PA	TH	MC	MP	<упакованные данные>	СН	SM	КТ
02	путь (старший байт)	путь (младший байт)	номер макета	номер пакета		сгс (младший байт)	сгс (старший байт)	03

Здесь: **PATH** – это обратный маршрут (перевернутый – **HTAP**), необходимый для обратной маршрутизации ответа.

2.4. Маршрут (РАТН).

Маршрут **PATH** — номера каналов устройств связи или идентификатор контроллера в ИКМ. Маршрут определяет путь, по которому можно обратиться к нужному устройству. PATH представляется четырьмя полубайтами (4 полубайта = 2 байта): в каждом полубайте возможно число от 1 до 15 (от 01 до 0Fh). По умолчанию и для совместимости с оборудованием связи (КППД) путь равен: 0AAAAh. Обратный маршрут — это маршрут, считанный справа налево. Обратный маршрут формируется контроллером в ответном сообщении.

Например, в запросе ЭВМ РАТН = 43A1h (PA = 43h, TH = A1h).

И в ответе ЭВМ получит PATH = 1A34h (PA = 1Ah, TH = 34h).

Во время приема ответа, ЭВМ обязана проверять путь, откуда пришел ответ.

2.5. Номер макета и номер пакета.

Номер макета, МС – один байт, представляющий собой маркер текущего запроса к контроллеру. Номер макета используется при идентификации получаемых ответов. Номера макета в запросе и ответе обязаны совпадать.

Значение MC находится в диапазоне [81h ... FFh]. Все пакеты, образующие макет, имеют одинаковые значения MC. Два последовательных запроса должны иметь различные значения номеров макета.

Номер пакета, РС – это номер пакета в запросе и ответе.

PC рассчитывается исходя из порядкового номера пакета, **Np**. Первый пакет имеет номер Np = 1, второй 2 и т.д. Порядковый номер пакета **Np**, находится в диапазоне [01..79h]. Если Np достигает максимума, то нумерация начинается заново, с 1. Номера пакетов в пределах одного макета должны идти последовательно.

РС рассчитывается по следующей формуле:

$$\mathbf{PC} = \begin{cases} \mathbf{PC} = \mathbf{Np} + 06, \text{ если очередной пакет;} \\ \mathbf{PC} = \mathbf{Np} + 80\text{h, если последний пакет, где } \mathbf{Np} \ni [01...79\text{h}]. \end{cases}$$

Например, в макете, всего 5 пакетов. Np = 1, 2, 3, 4, 5. PC = 07, 08, 09, 0Ah, 85h.

2.6. Номер контроллера.

Номер контроллера в запросе, **NUM** – это «сетевой номер контроллера» + 80h. **NUM** должно быть в пределах [80h..FEh]. Сам сетевой номер контроллера изменяется от 0 до 126.

2.7. Упакованные данные.

Упаковка и распаковка данных – преобразование по приведенному ниже правилу:

ИСХОДНЫЕ ДАННЫЕ:

БАЙТО БАЙТІ БАЙТ2 БАЙТ3 БАЙТ4 БАЙТ5 БАЙТ6

В старшие биты (D7) всех исходных байтов данных записывается единица. После каждых семи байтов данных вставляется байт, содержащий старшие биты предыдущих байтов. Если число байтов в исходной последовательности не кратно семи, оставшиеся биты в контрольном байте заполняются нулями.

2.8. Контрольная сумма.

Контрольная сумма – два байта (CH SM) вычисленные по алгоритму:

```
//pасчет CRC 16
function CRC16(var Buffer; Len: Cardinal): Word;
 Temp: array [1 .. MaxInt] of Byte absolute Buffer;
 CRC, b: Word;
 i, j: Cardinal;
begin
 CRC := 0;
 for i := 1 to Len do
 begin
  b := Temp[i];
  CRC := CRC \text{ xor (b shl 8)};
  for j := 1 to 8 do
   if (CRC and $8000) <> 0 then
   begin
     CRC := CRC \text{ shl } 1;
     CRC := CRC \text{ xor } 1021;
     else CRC := CRC \text{ shl } 1;
 end:
 Result := CRC or $8080;
end;
```

Контрольная сумма защищает (включает в себя) поля:

- r · · · · · ·	/ 1 1	()	
MC	MP	NUM	<упакованные данные>
номер макета	номер пакета	Номер контроллера	
nomep manera	помер накета	(если есть)	

Пример 1, запрос от ЭВМ к контроллеру на чтение даты и времени:

Пример 2, ответ от контроллера к ЭВМ, результат чтения даты и времени:

На рисунках серым цветом выделены байты упаковки.

2.9. Сообщения об ошибках канального уровня.

Вид ответного сообщения (НЕХ формат)	Значение
02_PA_TH_MC_E1_C0_CH_SM_03	не хватает памяти для выполнения запроса
02_PA_TH_MC_E2_C0_CH_SM_03	ошибка контрольной суммы в запросе
02_PA_TH_MC_E3_C0_CH_SM_03	недопустимый запрос к контроллеру
02_PA_TH_MC_E5_C0_CH_SM_03	ошибка номера пакета
02 PA TH MC E8 C0 CH SM 03	контроллер обрабатывает другой запрос

Е1, Е2, Е3, Е5, Е8 – это номера ошибок,

С0 – это число (десятичное 192), байт упаковки.