1. Algorithms

Name	Worst	Average	Hidden constants	In place
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$	small	yes
Merge sort	$\Theta(n*logn)$	$\Theta(n*logn)$	large	no
Heap sort	O(n*logn)	-	small	yes
Quicksort	$\Theta(n^2)$	$\Theta(n*logn)$ expected	small	yes
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$	large	no
Radix sort	$\Theta(d*(k+n))$	$\Theta(d*(k+n))$	large	no
Bucket sort	$\Theta(n^2)$	$\Theta(n)$	large	no

Key: k - constant, d - constant

2. Sum

Name	Formula	
Arithmetic	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} $	
Arithmetic	$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$	
Arithmetic	$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} $	
Geometric	\$ \sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} \$	
Geometric	$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} $, where x < 1	
Harmonic	\$ \sum_{k=1}^{n} 1/k = ln(n) \$	
Integrating	$\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2} $, where x < 1	

3. Logs

Ехр			Equiv	
	\$ \log(\prod_{k=1}^{n} a_k) \$	=	\$ \sum_{k=1}^{n} log(a_k) \$	
	\$ \log_b a \$	=	\$ \frac{\log_c a}{\log_c b} \$	

4. Finance

$$C(S_t,t) = N(d_1) * S_t - N(d_2) * Ke^{-r(T-t)}$$