中華民國專利公報 [19] [12]

[11]公告編號: 517488

01月11日 [44]中華民國 92年 (2003)

發明

全13頁

[51] Int.Cl 07: H04M1/66

稱: 用於無線通訊之傳輸安全 [54]名

[22]申請日期:中華民國 90年 (2001) 11月05日 [21]申請案號: 090127391

[30]優 先 權: [31]09/710,614 [33]美國 [32]2000/11/09

[72]發明人:

詹姆斯 A. 克勞佛 美國

[71]申請人:

馬吉斯網路公司 美國

[74]代理人: 林鎰珠 先生

1

[57]申請專利範圍:

1.一種於通訊系統之傳輸階層安全方 法,包含:

形成(108)複數個數位訊號,其代表 欲傳送於一通訊媒體(142)之一符號 (210),其中該複數個數位訊號之各 別者係根據一多載波調變模式所調 變於複數個子載波(304,306,308)之各 別者;及

引入(116,1204,1206)一群延遲失真於 複數個子載波(304,306,308)之一或多 者,其中該群延遲失真之一峰對峰 變化係大於對應於符號(210)的一防 護時間區間(212), 俾使該複數個子 載波之一或多者的部分者係將在一 接收器(104)所接收為對應於符號 15. 2

(210)的一時窗(302)之外側。

- 2.如申請專利範圍第1項之方法,其中 該引入步驟包含將該複數個子載波 之一或多者以一或多個時間分散式 全通濾波器(1204,1206)所濾波。
- 3.如申請專利範圍第1項之方法,其中 該形成步驟包含形成代表該符號之 複數個數位訊號,其中該複數個數 位訊號之各別者係根據正交分頻多 工(OFDM)調變(1202)所調變於該複 數個子載波之各別者。
- 4.如申請專利範圍第3項之方法,其中 該引入步驟包含引入(116,1204,1206) 該群延遲失真於該複數個子載波之 一或多者,其中該群延遲失真係足

5.

10.

夠以引起於接收器中之一傅立葉變 換的頻率格相鄰干擾。

- 5.如申請專利範圍第3項之方法,其中該引入步驟包含引入(116,1204,1206)該群延遲失真於該複數個子載波之一或多者,其中該群延遲失真係干擾其含有該符號之一資訊段(200)的一前文(202)之偵測。
- 6.如申請專利範圍第5項之方法,其中該引入步驟包含引入(116,1204,1206)該群延遲失真於該複數個子載波之一或多者,其中該群延遲失真之峰對峰變化係大於前文(202)之一短符號部分(206)的一半者。
- 7.如申請專利範圍第1項之方法,更包含傳送(122)該複數個子載波至接收器。
- 8.如申請專利範圍第7項之方法,更包 含在該傳送步驟之前而轉換(120)該 複數個子載波為射頻。
- 9.如申請專利範圍第1項之方法,其中 該群延遲失真係虛擬隨機(1210)所選 自複數個預定群延遲失真。
- 10.一種於通訊系統之傳輸階層安全方法,包含: 形成(108)效值深於一類型棋體(142)

形成(108)欲傳送於一通訊媒體(142) 之一訊號;及

引入(116,1204,1206)一群延遲失真於該訊號(210),其中該群延遲失真將引起足夠的訊號能量為在一對應的接收器以時間分散在對應於該訊號之一訊號特徵(210)的一標稱時窗(302)之外側,其中頻率格相鄰干擾係將發生於接收器(104)之一傅立葉變換(136)。

11.如申請專利範圍第10項之方法,其中該欲分散之足夠的訊號能量發生在當該群延遲失真之一延遲展開 σ ,係大於對應於訊號特徵(210)之標稱時窗(302)的一持續時間之至少10%

時,其中該延遲展開係定義為:

$$\sigma_{r} = \sqrt{\frac{\int_{0}^{\infty} S(f)[\tau(f) - \tau_{ave}]^{2} df}{\int_{0}^{\infty} S(f) df}}$$

其中S(f)係該訊號之功率頻譜密度, $\tau(f)$ 係於頻率f之群延遲失真, τ_{ave} 係一平均的群延遲失真。

10. 12.如申請專利範圍第11項之方法,其 中該平均的群延遲失真係定義為:

$$\tau_{ave} = \frac{\int\limits_{0}^{\infty} S(f)\tau(f)df}{\int\limits_{0}^{\infty} S(f)df}$$

- 13.如申請專利範圍第11項之方法,其中該群延遲失真之延遲展開 σ_{τ} 係大於對應於訊號特徵(210)之標稱時窗(302)的持續時間之至少20%。
- 20. 14.如申請專利範圍第11項之方法,其中該群延遲失真之延遲展開 σ_{τ} 係大於對應於訊號特徵(210)之標稱時窗(302)的持續時間之至少50%。
- 15.如申請專利範圍第10項之方法,其 中該訊號包含其代表一符號之複數 個子載波(304,306,308),其中該引入 步驟包含引入(116,1204,1206)該群延 遲失真於該複數個子載波之一或多 者,其中該群延遲失真之一峰對峰 發化係大於關於符號(210)的一防護 時間區間(212)。
 - 16.如申請專利範圍第15項之方法,其中該符號(210)係一正交分頻多工(OFDM)符號。
- 35. 17.如中請專利範圍第10項之方法,其 中該引入步驟包含將該訊號以一時 間分散式全通濾波器(1204,1206)所濾 波。
- 18.如申請專利範圍第10項之方法,更40. 包含:

5.

5

傳送(122)該訊號至一接收器(104); 及

移除(130,1218,1220)該群延遲失真, 俾使訊號能量將適合於對應於訊號 (210)的標稱時窗(302)之內。

- 19.如申請專利範圍第10項之方法,其中該訊號特徵包含一符號(210)。
- 20.如中請專利範圍第10項之方法,其 中該訊號特徵包含該訊號之一前文 (202)的至少一部份。
- 21.一種用於通訊系統之傳輸階層安全 系統,包含:

供形成(108)複數個數位訊號之機構,該複數個數位訊號代表欲傳送於一通訊媒體(142)之一符號(210), 其中該複數個數位訊號之各別者係根據一多載波調變模式所調變於複數個子載波(304,306,308)之各別者;及

供引人(116,1204,1206)一群延遲失真於複數個子載波(304,306,308)之一或多者的機構,其中該群延遲失真之一峰對峰變化係大於對應於符號(210)的一防護時間區間(212),俾使該複數個子載波之一或多者的部分者係將在一接收器(104)所接收為對應於符號(210)的一時窗(302)之外側。

- 22.如申請專利範圍第21項之系統,其中該供引入之機構包含供時間分散式濾波(1204,1206)該複數個子載波之一或多者的機構。
- 23.如申請專利範圍第21項之系統,其中該供引入之機構包含供引入(116,1204,1206)該群延遲失真於該複數個子載波之一或多者的機構,其中該群延遲失真係足夠以引起於接收器中之一傅立葉變換的頻率格相鄰干擾。
- 24.如申請專利範圍第21項之系統,其

6

中該供引入之機構包含供引入(116, 1204,1206)該群延遲失真於該複數個 子載波之一或多者的機構,其中該 群延遲失真係干擾其含有該符號 (210)之一資訊段(200)的一前文(202) 之偵測。

25.一種用於通訊系統之傳輸階層安全方法,包含:

接收(124)一訊號,其包含複數個子 10. 載波(304,306,308),其代表一符號 (210)且係已經根據一多載波調變模 式所傳送,其中複數個子載波(304, 306,308)之各別的一或多者係已經進 行一預定的群延遲失真,其中該預 定的群延遲失真之延遲的一峰對峰 變化係大於對應於符號(210)之一防 護時間(212),俾使複數個子載波 (304,306,308)之一或多者的部分者係 將落在關於符號(210)的一時窗(302) 20. 之外側;及

從該複數個子載波之一或多者而移 除(130,1218,1220)該預定的群延遲失 真,俾使複數個子載波(304,306,308) 係均適合於關於符號(210)的時窗 25. (302)之內。

- 26.如申請專利範圍第25項之方法,其中該預定的群延遲失真係藉著一或多個時間分散式全通濾波器(1204,1206)而引入至複數個子載波(304,30.306,308)之一或多者,其中該移除步驟包含藉著應用(1218,1220)其為該一或多個時間分散式全通濾波器各別者的反者之對應的一或多個時間分散式全通濾波器而移除該預定的群延遲失真。
 - 27.如申請專利範圍第26項之方法,其中該複數個子載波(304,306,308)係已 經根據正交分頻多工(OFDM)調變所 調變,其中該移除步驟係造成該複數個子載波為正交於彼此。

40.

7

28.如申請專利範圍第25項之方法,其 中該移除步驟包含藉著對於所接收 後繼資料符號而跳耀介於複數個時 間分散式全通濾波器(1218,1220)各別 者之間以移除(130,1218,1220)該預定 的群延遲失真,其中該複數個時間 分散式全通濾波器各別者係在一傳 送器之複數個時間分散式全通濾波 器(1204,1206)各別者之反者。

- 29.如申請專利範圍第25項之方法,更 包含在該移除步驟之前而轉換(126, 1206)該複數個子載波為數位基頻
- 30.一種用於時窗通訊系統之傳輸階層 安全方法,包含:

接收(124)一訊號,其中該訊號係已 經進行一預定的群延遲失真(116, 1204,1206), 其中該預定的群延遲失 真係俾使足夠的訊號能量將在對應 於該訊號之一訊號特徵(210)的一標 稱時窗(302)之外側所接收,使得將 引起於一傅立葉變換(136)的頻率格 相鄰干擾;及

從該訊號而移除(130,1218,1220)該群 延遲失真,俾使訊號適合於標稱時 窗(302)之內。

31.如申請專利節圍第30項之方法,其 中該欲分散之足夠的訊號能量發生 在當該群延遲失真之一延遲展開σ, 係大於對應於訊號特徵(210)之標稱 時窗(302)的一持續時間之至少10% 時,其中該延遲展開係定義為:

$$\sigma_{\tau} = \sqrt{\frac{\int\limits_{0}^{\infty} S(f) [\tau(f) - \tau_{ave}]^{2} df}{\int\limits_{0}^{\infty} S(f) df}}$$

其中S(f)係該訊號之功率頻譜密度, τ (f)係於頻率f之群延遲失真, τ_{ave} 係一平均的群延遲失真。

8 中該平均的群延遲失真係定義為:

$$\tau_{avx} = \frac{\int_{0}^{\infty} S(f)\tau(f)df}{\int_{0}^{\infty} S(f)df} \qquad \circ$$

33.如申請專利範圍第31項之方法,其 中該群延遲失真之延遲展開 σ_{-} 係大 於對應於訊號特徵(210)之標稱時窗 (302)的持續時間之至少 20%。

10. 34.如申請專利範圍第31項之方法,其 中該群延遲失真之延遲展開 σ ,係大 於對應於訊號特徵(210)之標稱時窗 (302)的持續時間之至少50%。

35.如申請專利範圍第30項之方法,其 15. 中該訊號包含其代表一符號(210)之 複數個子載波(304,306,308), 其中該 引入步驟包含引入(116,1204,1206)該 群延遲失真於該複數個子載波之一 或多者,其中該群延遲失真之一峰 20. 對峰變化係大於關於符號(210)的一 防護時間區間(212)。

> 36.如申請專利範圍第35項之方法,其 中該符號係一正交分頻多工(OFDM) 符號(210)。

25. 37.如中請專利範圍第30項之方法,其 中該移除步驟包含將該訊號以一第 一個時間分散式全通濾波器(1218)所 濾波。

38.如申請專利範圍第37項之方法,其 30. 中該第一個時間分散式全通濾波器 (1218)係一第二個時間分散式全通濾 波器(1204)之一反者,其中該第二個 時間分散式全通濾波器係運用以引 入預定的群延遲失真於該訊號。

35. 39.如中請專利範圍第30項之方法,其 中該訊號特徵(210)包含一符號。

> 40.如申請專利範圍第30項之方法,其 中該訊號特徵包含該訊號之一前文 (202)的至少一部份。

32.如申請專利範圍第31項之方法,其 40. 41.一種傳輸器(102),其實施用於無線

5.

15.

20.

25.

通訊之傳輸階層安全,包含:

一基頻帶調變器(108,1202),產生數位基頻帶訊號,其代表資料符號(210),且係調變於複數個子載波(304,306,308);及

一時間分散式全通濾波器(1204,1206),係耦接至該基頻帶調變器,以供施加一群延遲失真於該複數個子載波之各別的一或多者,其中該群延遲失真之一峰對峰變化係人於對應於資料符號(210)各者的一時窗(302)之一防護時間(212),其中一接收器(104)將接收該複數個子載波(304,306,308)之一或多者在時窗(302)外側的部分。

- 42.如申請專利範圍第41項之傳輸器, 其中該時間分散式全通濾波器(1204, 1206)包含一串級(400)之時間分散式 全通濾波器的一者。
- 43.如申請專利範圍第41項之傳輸器, 其中該基頻帶調變器包含一正交分 頻多工(OFDM)基頻帶調變器 (1202)。
- 44.如申請專利範圍第41項之傳輸器, 更包含一射頻調變器及升頻轉換器 (1214),其係耦接至該時間分散式全 通濾波器。
- 45.一種於通訊系統之傳輸階層安全方 法,包含:

形成(108)—正交分頻多工(OFDM)符號(210),其包含欲傳送於一通訊媒體(142)之複數個子載波(304,306,308);

引入(116)一群延遲失真於該複數個子載波之一或多者,藉著將符號(210)通過一或多個時間分散式全通濾波器(1204,1206),其中該群延遲失真之一峰對峰變化係大於對應於符號(210)的一防護時間區間(212),俾使該複數個子載波之一或多者的部

分者係將移動在對應於符號(210)的 一標稱時窗(302)之外側,破壞介於 複數個子載波(304,306,308)各別者之 間的正交性,藉此一接收器欲恢復 來白該符號之資訊位元的能力係受 損;

調變(118)該符號:

轉換(120)該符號為射頻;

傳送(122)該符號;

10. 接收(124)該符號;

轉換(126)該符號為基頻帶;

解調變(128)該符號;及

移除(130)於複數個子載波(304,306,308)之一或多者的群延遲失真,藉著將符號(210)通過其他的一或多個時間分散式全通濾波器(1218,1220),其中該其他的一或多個時間分散式全通濾波器(1218,1220)係該一或多個時間分散式全通濾波器(1204,1206)之反者,俾使複數個子載波(304,306,308)之各者係將適合於對應於符號(210)的標稱時窗(302)之內,且該複數個子載波之各者係正交於彼此。

圖式簡單說明:

第1圖係一種正交分頻多工(OFDM) 通訊系統的功能方塊圖,其結合如同 根據本發明一個實施例之一種傳輸階 層安全技術的一群延遲失真加密;

第2圖係對於運用在正交分頻多 30. 工(OFDM)通訊的IEEE802.11a標準之 PHY層資訊段結構圖;

> 第3A圖係一傳送符號在加密前之 正交分頻多工(OFDM)波形的圖形表 示,於其之所有載波係妥當容納於適 當時窗內;

第 3B 圖係第 3A 圖之傳送符號在 加密後之正交分頻多工(OFDM)波形的 圖形表示,加密係藉著引入其大於一 半的防護時間區間之一群延遲失真至 40. 某些載波,俾使失真的載波係被強制

35.

5.

20.

在適當時窗之外側,藉以產生於一習 用 OFDM 接收器中之正交性的重大喪 失;

第4圖係第1圖之訊號加密的功能 方塊圖,其係根據本發明另一個實施 例所實行為一串級之全通數位濾波 器:

第5A圖係說明於一傅立葉變換之 頻率格相鄰干擾的圖形表示,當一正 交分頻多工(OFDM)子載波係延遲(或 前進)超過一防護時間區間之10%時;

第5B圖係說明於一傅立葉變換之 頻率格相鄰干擾的圖形表示,當一正 交分頻多工(OFDM)子載波係延遲(或 前進)超過一防護時間區間之30%時;

第6圖係對於第4圖之分散濾波器 的一個實施例之重疊群延遲特性的圖 形表示;

第7圖係一種最佳化全通濾波器 設計的圖形表示,其中當一接收器選 擇錯的反濾波器以修正被引入在傳送 器之群延遲失真時,重大的群延遲失 真係仍將存在; 第8圖係一種自動相關技術當不存在雜訊所執行之一理想輸出的圖形表示,例如於第1圖之接收器的前文 值測,並無第1圖之傳輸階層加密;

第9圖係根據本發明之另一個實施例而由第1圖之OFDM通訊系統的傳送器所施加之一群延遲失真的圖形表示;

第 10 圖係運用於第 1 圖之前文值 10. 測的該種自動相關演算法之輸出的圖 形表示,其係給定根據第 9 圖之一群 延遲失真;

第 11 圖係運用於第 1 圖之前文值 測的該種自動相關演算法之輸出的圖 15. 形表示,其中一群延遲失真係已經引 入,其將干擾資料接收而不干擾前文 偵測與取得;及

> 第12圖係一種正交分類多工 (OFDM)通訊系統的功能方塊圖,其結 合如同根據本發明另一個實施例之一 種傳輸階層安全技術的一群延遲失真 加密。

第1圖

第2圖

- 5136 **-**

第4圖

第 5A 圖

第 5B 圖

第6圖

- 5139 **-**

第10圖

第11圖

第12圖

- 5141 -