ADVANCE STATISTICS GROUP ASSIGNMENT

Karpagam Sivaprakasam

Nikhil Kumar

Sahil Mattoo

Manoharan A

Question 1

Problem Statement - 1

As part of a study of consumer consideration of ready-to-eat cereals sponsored by Kellogg Australia, Roberts and Lattin (1991) surveyed consumers regarding their perceptions of their favorite brands of cereals. Each respondent was asked to evaluate three preferred brands on each of 25 different attributes. Respondents used a five point likert scale to indicate the extent to which each brand possessed the given attribute.

For the purpose of this assignment, a subset of the data collected by Roberts and Lattin reflecting the evaluations of the 12 most frequently cirted cereal brands in the somple (in the original study, a total of 40 different brands were evaluated by 121 respondents, but the majority of brands were rated by only a small number of consumers). The 25 cattributes and 12 brands are listed below

Cereal Brand Attributes 1-12 Attributes 13-25

All Bran Filling Family
Cerola Muesli Natural Calories
Just Right Fibre Plain

Kellogg's corn falkes Sweet Crisp

Komplete Easy Regular Nutrigrain Salt Sugar Purina Muesli Satisfying

Purina Muesli Satisfying Fruit Rice Bubbles Energy Process

Special K Fun Quality

Sustain Kids Treat

Vitabrit Soggy Boring

Weetbix Economical Nutritious

Health

In total 116 respondents provided 235 observations of the 12 selected brands. How do you characterize the consideration behavior of the 12 selected brands? Analyze and interpret your results using factor analysis.

Approach

Interpretation of the Problem Statement

Kelloggs wants to study the cereal market in order to understand how different attributes are behaving and which attributes are similar in nature.

Approach

- 1. Exploratory data analysis
- 2. Study correlation among the variables to confirm if correlation exists
- 3. Perform dimension reduction technique using Principal Component Analysis to prioritize number of components
- 4. Categorize and name the components based on the their from geneity
- 5. Perform Factor Analysis with the prioritized components
- 6. Derive scores and interpret the results

1. Exploratory Data Analysis

> summary(cereal						/
Cereals		Natural	Fibre	Sweet		Salt
CornFlakes :27	Min. :1.000	Min. :1.000			Min. :1.000	Min. :1.000
Weetabix :27	1st Qu.:3.000	1st Qu.:3.000			1st Qu.:4.000	1st Qu.:1.000
Vitabrit :25	Median :4.000	Median :4.000	Median :4.000) Median :2.000	Median :5.000	Median :2.000
NutriGrain :24	Mean :3.881	Mean :3.783			Mean :4.532	Mean :1.991
SpecialK :23	3rd Qu.:4.500	3rd Qu.:4.000	3rd Qu.:4.000	3rd Qu.:3.000	3rd Qu.:5. <u>00</u> 0	3rd Qu.:3.000
RiceBubbles:21	Max. :5.000	Max. :5.000	Max. :5.000	Max. :5.000	Max. :6.000	Max. :4.000
(Other) :88						
Satisfying	Energy	Fun	Kids	Soggy	Economical	Health
Min. :2.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:3.000	1st Qu.:3.000	1st Qu.:2.000	1st Qu.:3.000	1st Qu.:1.000	1st Qu.:3.000	1st Qu.:3.000
Median :4.000	Median :4.000	Median :2.000	Median :4.000	Median :2.000	Median :3.000	Median :4.000
Mean :4.004	Mean :3.643	Mean :2.617	Mean :3.843	Mean :2.255	Mean :3.217	Mean :3.809
3rd Qu.:5.000	3rd Qu.:4.000	3rd Qu.:3.000	3rd Qu.:5.000	3rd Qu.:3.000	3rd Qu.:4.000	3rd Qu.:4.000
Max. :6.000	Max. :5.000	Max. :5.000	Max. : 6.000	Max. :5.000	Max. :5.000	Max. :5.000
	Calories	Plain	Crisp	Regular	Sugar	Fruit
Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:3.000	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:1.000
Median :4.000	Median :3.000	Median :2.000	Median :3.000	Median :3.000	Median :2.000	Median :1.000
Mean :3.877	Mean :2.702	Mean :2.268	Mean :3.204	Mean :3.072	Mean :2.145	Mean :1.694
3rd Qu.: <mark>5.000</mark>	3rd Qu.:3.000	3rd Qu.:3.000	3rd Qu.: <u>4.000</u>	3rd Qu.:4.000	3rd Qu.:3.000	3rd Qu.:3.000
Max. : 6.000	Max. :5.000	Max. :5.000	Max. : <mark>6.000</mark>	Max. :5.000	Max. :5.000	Max. :5.000
	Quality					
Min. :1.000	Min. :1.000	Min. :1.00	Min. :1.00	Min. :1.000		
1st Qu.:2.000	1st Qu.:3.000	1st Qu.:2.00	1st Qu.:1.00	1st Qu.:3.000		
Median :3.000	Median :4.000	Median :3.00	Median :2.00	Median :4.000		
Mean :2.936	Mean :3.694	Mean :2.63	Mean :1.83	Mean :3.664		
3rd Qu.:4.000	3rd Qu.:4.000	3rd Qu.: 3.00	3rd Qu.:2.00	3rd Qu.:4.000		
Max. : <mark>6.000</mark>	Max. :5.000	Max. : 6.00	Max. :5.00	Max. :5.000		

- As per the survey, the scale used is Likert scale of 1-5, however there were responses with a rating of 6.
- Considered the rating of 6 as 5 in our study /

Exploratory Data Analysis After Data Cleaning

> summary(dat												
			Natu									
CornFlakes				:1.000	Min.			:1.0	00 Mir	1. :1.	000 Min.	:1,000
		Qu.:3.00	0 1st Qu.	:3.000	1st Qu.	:3.00	0 1st	Qu.:2.0	00 1st	Qu. :4.	000 1st	Qu.:1.000
vitabrit :	:25 Med	an :4.00	0 Median	:4.000	Median	:4.00	0 Medi	an :2.0	00 Med	fian :5.	000 Medi	an :2.000
NutriGrain :	:24 Mear	:3.88	1 Mean	:3.783	Mean	:3.52	8 Mean	:2.5	06 Mea	in :4.	528 Mear	:1,991
Specialk :	:23 3rd	Qu.:4.50	0 3rd Qu.	:4.000	3rd Qu.	:4.00	00 3rd	Qu.:3.0	00 3rd	d qu. :5.	000 3rd	Qu.:3.000
RiceBubbles	:21 Max.	:5.00	0 Max.	:5.000	Max.	:5.00	o Max.	:5.0	00 Max	. :5.	000 Max.	:4.000
(Other)	:88											
Satisfying	2 Ener	gv	Fun		Kids		5000	ev.	Econo	omical	неа	th
Min. :2	Min.	1.000	Min. :1.0	00 Min	. :1.0	000	Min.					1.000
1st Qu.:3			1st Qu.:2.0		Qu.:3.0		1st Qu. :		1st Qu.		1st Qu.	
Median :4	Median :		Median :2.0		fian :4.0		Median :		Median		Median :	the second second
Mean :4			Mean :2.6					2.255		:3.217	Mean	
3rd Qu. :5			3rd Qu.:3.0		qu.:5.0		3rd Qu. :			:4.000	3rd Qu.	
Max. :5	Max.		Max. :5.0		. :5.0		Max.		мах.		Max.	
Family	C:	lories	Plai	n	cris	sp.	Regu	lar	51	igar	Fri	rit
Min. :1.00	oo Min.	:1.000	Min. :	1.000	Min.	:1.0	Min.	:1.000	Min.	:1.000	Min.	:1.000
1st Qu.:3.00	00 1st 0	u.:2.000	1st Qu. :	1.000	1st Qu.	2.0	1st Qu.	:2.000	1st Qu	.:1.000	1st Qu.	:1.000
Median :4.00		in :3.000			Median :		Median	:3.000	Median	:2.000	Median	:1.000
Mean :3.8	72 Mean	:2.702	Mean :	2.268	Mean :	:3.2	Mean	:3.072	Mean	:2.145	Mean	:1.694
3rd Qu.:5.00	00 3rd 0	u.:3.000	3rd Qu.:	3.000	3rd Qu.	:4.0	3rd Qu.	:4.000	3rd Qu	.:3.000	3rd qu.	:3.000
Max. :5.00	00 Max.	:5.000	Max. :		Max.		мах.	:5.000	Max.	:5.000	мах.	:5.000
Process	- 0	ality	Trea	t-	Bort	ina	Nutr	itious				
Min. :1.0		:1,000			Min.			:1.000	G.			
1st Qu. :2.00		u.:3.000			1st Qu.			.:3.000				
Median :3.00		in :4.000			Median :			:4,000				
Mean :2.9						1.83		:3.664				
3rd Qu. :4.00		u. :4.000			3rd Qu.			. :4.000				
Max. :5.00		:5.000			Max.			:5.000				
12:30	ou max.		mean.	3.000	make.	12.00	Proting					

2. Correlation Matrix

- Correlation matrix is done to check the correlation among the variables.
- We see medium and strong correlation among few variables

Examples

- Filling has medium correlation with Natural and Fibre while strong correlation Satisfying and Energy
- Health has medium correlation with Filling and Health while strong correlation Quality and Nutritious
- Since there is medium and strong correlation among the variables, there is a scope to reduce the number variables by performing Principal Component Analysis (PCA)

3. Principal Component Analysis

- As per the Scree Plot, 4 components are sufficient to describe the data set, but as per Kaiser rule, 5th component is also a qualifier.
- However if cumulative variance is considered to be greater than 75%, then 9 components need to be evaluated.
- The number of factors that can best describe the data can be concluded post PCA & FA

PCA Code and Output

PCA

```
PCAval <- princomp(~PCAmat, scores = TRUE, cor=TRUE) summary(PCAval) loadings(PCAval) Factors <- loadings(PCAval) Factors
With Rotation
Rot_var <- varimax(loadings(PCAval))
Rot_Pro <- promax(loadings(PCAval))
```

- PCA analysis without rotation doesn't provide any satisfactory results which can help us in making the inference.
- Rotation Varimax and Promax too results in the similar kind of output.
- Based upon the results of PCA, we would run FA with component value ranging 4 to fall

Loadings:	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10	Comp.11
PCAmatEasy	Comp. I	comp.z	comp.s	comp. 4	Comp.5		-0.49238	comp.o	Comp. y	COMP. IO	Comp.II
PCAmatCalories						-0101000	-0113230				
PCAmatEnergy											
PCAmatFibre											
PCAmatHealth											
PCAmatFilling											
PCAmatNatural											
PCAmatSweet											
PCAmatSalt											
PCAmatSatisfying	r										
PCAmatFun											
PCAmatKids			-0.49248								
PCAmatSoggy				0.44218	0.48808						
PCAmatEconomical							0.43902				
PCAmatFamily			-0.45527								
PCAmatPlain											0.45643
PCAmatCrisp					-0.40022						
PCAmatRegular											
PCAmatSugar											
PCAmatFruit											
PCAmatProcess						0.42457			-0.47243		
PCAmatQuality											
PCAmatTreat											
PCAmatBoring											
PCAmatNutritious											

4. Factor Analysis – Without Rotation

FAmat <- as.matrix(cerealdata[, 2:26])
FAmat
FAFactor <- factanal(~FAmat, 5, rotation="none")
FAFactor

Jniquenesses:							
FAmatFilling	FAmatNatural	FAmatFibre	FAmatSweet	FAmatEasy	FAmatSalt	FAmatSatisfying	
0.283	0.389	0.311	0.361	0.838	0.513	0.373	
FAmatEnergy	FAmatFun	FAmatKids	FAmatSoggy	FAmatEconomical	FAmatHealth	FAmatFamily	
0.432	0.523	0.240	0.775	0.705	0.213	0.348	
FAmatCalories	FAmatPlain	FAmatCrisp	FAmatRegular	FAmatSugar	FAmatFruit	FAmatProcess	
0.578	0.547	0.638	0.552	0.203	0.561	0.759	
FAmatQuality	FAmatTreat	FAmatBoring	FAmatNutritious				
0.389	0.386	0.674	0.242				

Loadings:					
	Factorl	Factor2	Factor3	Factor4	Factor5
FAmatFilling	0.720	0.234		0.143	-0.344
FAmatNatural	0.763	-0.123			
FAmatFibre	0.756	-0.127	-0.281	0.137	
FAmatSweet		0.749	-0.265		
FAmatEasy	0.292	0.205	0.168		
FAmatSalt	-0.253	0.495	-0.222	0.345	
FAmatSatisfying	0.687	0.305	0.129		-0.188
FAmatEnergy	0.683	0.229			-0.206
FAmatFun	0.291	0.537	0.179	-0.267	
FAmatKids	0.168	0.390	0.749	0.133	
FAmatSoggy		-0.173	0.148	0.412	
FAmatEconomical	0.182	-0.160	0.449	0.142	0.118
FAmatHealth		-0.185	-0.105		0.112
FAmatFamily	0.263	0.334	0.685		
FAmatCalories	-0.233	0.533	-0.220	0.133	-0.132
FAmatPlain	-0.233	-0.344	0.200	0.481	
FAmatCrisp	0.201	0.462	0.164	-0.228	0.171
FAmatRegular	0.605		-0.194		0.192
FAmatSugar	-0.350	0.709	-0.341	0.185	0.145
FAmatFruit	0.326	0.243	-0.455	-0.246	
FAmatProcess	-0.327	0.241		0.200	0.185
FAmatQuality	0.747				0.211
FAmatTreat	0.371	0.595		-0.322	0.127
FAmatBoring	-0.314	-0.281	-0.102	0.371	
FAmatNutritious	0.833		-0.138		0.169

Factor 1 - Filling, Natural, Fibre, Satisfying, Energy, Health, regular, quality and Nutritious

Factor 2 - sweet, salt, fun, calories, crisp, sugar, treat/

Factor 3 - Kids, family, economical, fruit

Factor 4 - Soggy, plain

Since we don't find from ogeneity within the groups to come but with a common label, we need to perform Factor Analysis with rotation using Varimax

4. Factor Analysis – With Rotation using Varimax

VARIMAX

VANIMAA						
Loadings:						
		Factor2				
FAmatFillin <u>g</u>	0.647		0.190	0.144	0.487	
FAmatNatural	0.731	-0.215			0.153	
FAmatFibre	0.816					
FAmatSweet		0.696		0.351	0.166	
FAmatEasy	0.230		0.307			
FAmatSalt		0.689				
FAmatSatisfying	0.570		0.387	0.199	0.333	
FAmatEnergy	0.611		0.168	0.225	0.339	
FAmatFun	0.125	0.155	0.377	0.538		
FAmatKids			0.867			
FAmatSoggy			0.130	-0.454		
FAmatEconomical		-0.258	0.409	-0.197	-0.110	
FAmatHealth	0.840	-0.271				
FAmatFamily			0.794	0.122	0 4 = 0	
FAmatCalories	-0.155	0.592		0.122	0.179	
FAmatPlain	-0.115			-0.638	-0.150	
FAmatCrisp		0.157	0.335	0.459		
FAmatRegular	0.657					
FAmatSugar	-0.177	0.852		0.170	0 4 5 0	
FAmatFruit	0.341	0.161	-0.284	0.439	0.152	
FAmatProcess	-0.214	0.387		-0.101	-0.184	
FAmatQuality	0.681	-0.222	0.200	0.218	-0.102	
FAmatTreat	0.234	0.216	0.299	0.650		
FAmatBoring .	-0.150		-0.198	-0.508		
FAmatNutritious	0.849	-0.154				

Factor 1 - Filling, Natural, Fibre, Satisfying, Energy, Health, regular, quality and Nutritious

Factor 2 - sweet, salt, calories, sugar

Factor 3 - Kids, economical, family,

Factor 4 – Fun, Soggy, plain, crisp, Fruit, Treat, Boring

 Since we don't find homogeneity within the factors to come out with a common label, we need to perform Factor Analysis with rotation using Promax

4. Factor Analysis – With Rotation using Promax

Loadings:					
	Factorl	Factor2	Factor3	Factor4	Factor5
FAmatFilling	0.647		0.190	0.144	0.487
FAmatNatural	0.731	-0.215			0.153
FAmatFibre	0.816				
FAmatSweet		0.696		0.351	0.166
FAmatEasy	0.230		0.307		
FAmatSalt		0.689			
FAmatSatisfying	0.570		0.387	0.199	0.333
FAmatEnergy	0.611		0.168	0.225	0.339
FAmatFun	0.125	0.155	0.377	0.538	
FAmatKids			0.867		
FAmatSoggy			0.130	-0.454	
FAmatEconomical		-0.258	0.409	-0.197	-0.110
FAmatHealth	0.840	-0.271			
FAmatFamily			0.794	0.122	
FAmatCalories	-0.155	0.592		0.122	0.179
FAmatPlain	-0.115			-0.638	-0.150
FAmatCrisp		0.157	0.335	0.459	
FAmatRegular	0.657				
FAmatSugar	-0.177	0.852		0.170	
FAmatFruit	0.341	0.161	-0.284	0.439	0.152
FAmatProcess	-0.214	0.387		-0.101	-0.184
FAmatQuality	0.681	-0.222	0.200	0.218	-0.102
FAmatTreat	0.234	0.216	0.299	0.650	
FAmatBoring	-0.150		-0.198	-0.508	
FAmatNutritious	0.849	-0.154			

Factor 1 - Filling, Natural, Fibre, Satisfying, Energy, Health, regular, quality and Nurritious

Factor 2 - sweet, salt, calories, sugar, process

Factor 3 - Kids, economical, family,

Factor 4 – Fun, Soggy, plain, crisp, Fruit, Treat, Boring

We see homogeneity within the factorss after running FA with rotation using Promax

Labelling of the factor

Factor 1 – Nutrition Volue

Factor 2 – Taste/

Factor 3 – User Type

Factor 4 - Excitement

4. Factor Analysis – With Rotation using Promax (with cut-off 0.4)

Loadings:					
	Factorl	Factor2	Factor3	Factor4	Factor5
FAmatNatural	0.653439				
FAmatFibre	0.837381				
FAmatHealth	0.838064				
FAmatRegular	0.733334				
FAmatQuality	0.680093				
FAmatNutritious	0.886926				
FAmatFun		0.552021			
FAmatSoggy		-0.541388			
FAmatPlain		-0.682207			
FAmatCrisp		0.502230			
FAmatTreat		0.674285			
FAmatBoring		-0.560899			
FAmatSweet			0.626955		
FAmatSalt			0.741083		
FAmatCalories			0.507131		
FAmatSugar			0.869987		
FAmatKids				0.881979	
FAmatFamily				0.788466	
FAmatFilling	0.400957				0.625343
FAmatEasy					
FAmatSatisfying					0.434479
FAmatEnergy	0.416390				0.429693
FAmatEconomical				0.422162	
FAmatFruit		0.405592			
FAmatProcess			0.450030		

FA Analysis - Cut off

print(FAFactor3, digits=6, cutoff= .4 , sort= TRUE)

Factor 1 - Filling, Natural, Fibre, Satisfying, Energy, Health, regular, quality and Nutritious

Factor 2 - sweet, salt, calories, sugar, process

Factor 3 - Kids, economical, family,

Factor 4 – Fun, Soggy, plain, crisp, Fruit, Treat, Boring

Labelling

Factor 1 - Nutrition/Value

Factor 2 – Tast

Factor 3 – User Type

Factor 4 - Excitement

4. Factors (Components) with Scoring

Scoring without Factor Labels

	Factorl	Factor2	Factor3	Factor4
FAmatFilling	0.71981240	0.23418809	-0.06925688	0.14282066
FAmatNatural	0.76265744	-0.12325892	-0.07813895	0.07535841
FAmatFibre	0.75594968	-0.12722622	-0.28133342	0.13694656
FAmatSweet	-0.02266113	0.74922663	-0.26543144	0.05403151
FAmatEasy	0.29153976	0.20508282	0.16767988	0.08293966
FAmatSalt	-0.25305078	0.49502325	-0.22223829	0.34471033
FAmatSatisfying	0.68715120	0.30523634	0.12893705	0.09743554
FAmatEnergy	0.68289915	0.22908256	-0.07414822	0.04243887
FAmatFun	0.29123276	0.53717677	0.17856122	-0.26673581
FAmatKids	0.16760434	0.38984611	0.74881743	0.13303639
FAmatSoggy	-0.03960017	-0.17305840	0.14840864	0.41190659
FAmatEconomical	0.18234491	-0.16032096	0.44891677	0.14231222
FAmatHealth	0.85293568	-0.18482783	-0.10474494	0.04226010
FAmatFamily	0.26281173	0.33378109	0.68509738	0.04228800
FAmatCalories	-0.23270198	0.53341273	-0.21991628	0.13297924
FAmatPlain	-0.23346424	-0.34437612	0.20027545	0.48122621
FAmatCrisp	0.20093500	0.46183879	0.16444451	-0.22822149
FAmatRegular	0.60531739	-0.03368073	-0.19411175	0.07885232
FAmatSugar	-0.34962693	0.70899751	-0.34115233	0.18514336
FAmatFruit	0.32588885	0.24276458	-0.45507355	-0.24575519
FAmatProcess	-0.32688542	0.24071983	-0.04045862	0.20001976
FAmatQuality	0.74721539	-0.02648325	0.04173641	-0.07177571
FAmatTreat	0.37146753	0.59479704	0.04589608	-0.32228519
FAmatBoring	-0.31441606	-0.28091509	-0.10186355	0.37071395
FAmatNutritious	0.83338818	-0.09031295	-0.13772235	0.08883345

Scoring with Factor Labels

	Nutrition Valu	ie Taste	User Type	Excitment
FAmatFilling	0.71981240	0.23418809	-0.06925688	0.14282066
FAmatNatural	0.76265744	-0.12325892	-0.07813895	0.07535841
FAmatFibre	0.75594968	-0.12722622	-0.28133342	0.13694656
FAmatSweet	-0.02266113	0.74922663	-0.26543144	0.05403151
FAmatEasy	0.29153976	0.20508282	0.16767988	0.08293966
FAmatSalt	-0.25305078	0.49502325	-0.22223829	0.34471033
FAmatSatisfying	g 0.68715120	0.30523634	0.12893705	0.09743554
FAmatEnergy	0.68289915	0.22908256	-0.07414822	0.04243887
FAmatFun	0.29123276	0.53717677	0.17856122	-0.26673581
FAmatKids	0.16760434	0.38984611	0.74881743	0.13303639
FAmatSoggy	-0.03960017	-0.17305840	0.14840864	0.41190659
FAmatEconomical	l 0.18234491	-0.16032096	0.44891677	0.14231222
FAmatHealth	0.85293568	-0.18482783	-0.10474494	0.04226010
FAmatFamily	0.26281173	0.33378109	0.68509738	0.04228800
FAmatCalories	-0.23270198	0.53341273	-0.21991628	0.13297924
FAmatPlain	-0.23346424	-0.34437612	0.20027545	0.48122621
FAmatCrisp	0.20093500	0.46183879	0.16444451	-0.22822149
FAmatRegular	0.60531739	-0.03368073	-0.19411175	0.07885232
FAmatSugar	-0.34962693	0.70899751	-0.34115233	0.18514336
FAmatFruit	0.32588885	0.24276458	-0.45507355	-0.24575519
FAmatProcess	-0.32688542	0.24071983	-0.04045862	0.20001976
FAmatQuality	0.74721539	-0.02648325	0.04173641	-0.07177571
FAmatTreat	0.37146753	0.59479704	0.04589608	-0.32228519
FAmatBoring	-0.31441606	-0.28091509	-0.10186355	0.37071395
FAmatNutritious	0.83338818 -	0.09031295 -0	.13772235 0.	08883345

Question 2

Problem Statement - 2

Leslie Salt Data Set

In 1968, the city of Mountain View, California, began the necessary legal proceedings to acquire a parcel of land owned by the Leslie Sal Company. The Leslie property contained 246.8 acres and was located right on the San Francisco Bay. The land had been used for salt evaporation and had an elevation of exactly sea level. However, the property was diked so that the waters from the bay park were kept out. The city of Mountain View intended to fill the property and use it for a city park.

Ultimately, it fell into the courts to determine a fair market value for the property. Appraisers were hired, but what made the processes difficult was that there were few sales of byland property and none of them corresponded exactly to the characteristics of the Leslie property. The experts involved decided to build a regression model to better understand the factors that might influence market valuation. They collected data on 31 byland properties that were sold during the previous 10 years. In addition to the transaction price for each property, they collected data oing large number of other factors, including size, time of sale, elevation, location, and access to sewers. A listing of these data, including only those variables deemed relevant for this exercise. A description of the variables is provided below.

Problem Statement – 2 Contd.

Variable name Description

Price Sales price in \$000 per acre
County San Mateo=0, Santa Clara =1
Size Size of the property in acres

Elevation Average Elevation in foot above sea level Sewer Distance (in feet) to nearest sewer connection

Date Date of sale counting backward from current time (in months)

Flood Subject to flooding by tidal action =1; otherwise =0

Distance Distance in miles from Leslie Property (in almost all cases, this is toward San

Francisco

Discuss and Answer the following questions:

- 1. What is the nature of each of the variables? Which variable is dependent variable and what are the independent variables in the model?
- 2. Check whether the variables require any transformation individually
- 3. Set up a regression equation, run the model and discuss your results

1. What is the nature of each of the variables? Which variable is dependent variable and what are the independent variables in the model?

Nature of Variable and classification into dependent and independent

Variable Name	Description	Nature of Variable	Dependent / Independent
Price	Sales price in \$000 per acre	Continuous	Dependent
Country	San Mateo=0, Santa Clara =1	Categorical	Independent
Size	Size of the property in acres	Continuous	Independent
Elevation	Average Elevation in foot above sea level	Continuous	Independent
Sewer	Distance (in feet) to nearest sewer connection	Continuous	Independent
Date	Date of sale counting backward from current time (in months)	Continuous	Independent
Flood	Subject to flooding by tidal action =1; otherwise =0	Categorical	Independent
Distance	Distance in miles from Leslie Property (in almost all cases, this is toward San Francisco	Continuous	Independent

Assumptions for Linear regression

#	Assumption	Validation stage	Method used
1	There must be a linear relationship between the outcome variable and the independent variables.	Before running regression	Scatter plot /correlation co- efficient
2	Multivariate Normality –Multiple regression assumes that the residuals are normally distributed.	After running regression as data on residual available only after running regression	Q-Q plot / Shapiro test
3	No Multicollinearity —Multiple regression assumes that the independent variables are not highly correlated with each other.	After running regression	Using Variance Inflation Factor (VIF)
4	Homoscedasticity –This assumption states that the variance of error terms are similar across the values of the independent variables	After running regression	Standardized residuals Vs Predicted values Plot

The above assumptions will be validated at the appropriate stages of the regression exercise as we progress

2. Check whether the variables require any transformation individually

Testing Normality of Variables using Shapiro Wilks test

Shapiro Wilks test is done to check the normality of both dependent and independent variables

shapiro.test(saltdata\$Price) data: saltdata\$Price W = 0.90607, p-value = **0.01025** shapiro.test(saltdata\$Size) data: saltdata\$Size W = 0.40531, p-value = **4.108e-10**

shapiro.test(saltdata\$Elevation) data: saltdata\$Elevation W = 0.85914, p-value = 0,000798

shapiro.test(saltdata\$Sewer) data: saltdata\$Sewer W = 0.80027, p-value = **5.221e-05** shapiro.test(saltdata\$Date) data: saltdata\$Date W = 0.91472, p-value = **0.01714** shapiro.test(saltdata\$Distance) data. saltdata\$Distance W=0.87773, p-value = 0.002096

As the p value is < 0.05, none of the above variables follow normal distribution.

Checking for presence of outliers

boxplot(saltdata\$Price, range boxplot(saltdata\$Size, range = 1.5) boxplot(saltdata\$Elevation, range

- Box plot shows all the continuous data variables are having many outliers, which are very far away from min/max points
- One of the ways to remediate non-normal data is to remove outliers. However, removing outliers will make

Check for linear relationship

15

One of the assumptions for linear regression: There must be a linear relationship between the outcome variable and the independent variables. Checked the correlation between each independent variable with the dependent variable

0.59) while all other variables have very weak correlation

Summary of normality and linearity tests

- Shapiro Wilks test shows that both dependent and independent variables do not follow normal distribution
- Box plot shows all the continuous data variables are having many outliers, which are very far away from min/max points
- Correlation plots show the independent variables do not shown relationship with the dependent variable

Hence there is a need to transform the data.

Both Dependent and Independent variables need to transformed.

3. Set up a regression equation, run the model and discuss your results

Regression without transforming the data

Regression is done considering all the independent variables without transforming the data, just to understand the outcome as to compare the outcome after transforming the data

Residuals:

Min 1Q Median 3Q Max -5.169 -2.957 -0.256 2.070 13.031

Coefficients:

	Estimate	Std. Error	t value	Pr(> †) _
(Intercept)	2.364e+01	3.829e+00	6.174	2.68e-06 ***
saltdata\$County	-8.789e+00	3.652e+00	-2.407	0.024532 *
saltdata\$Size	-6.043e-03	3.501e-03	-1.726	0.097702.
saltdata\$Elevation	5.193e-01	2.386e-01	2.177	0.040030 *
saltdata\$Sewer	-9.573e-04	4.169e-04	-2.296	0.031126 *
saltdata\$Date	8.508e-02	4.865e-02	1.749	0.093646 .
saltdata\$Flood	-1.202e+01	2.989e+00	-4.020	0.000536 ***
saltdata\$Distance	1.858e-01	3.395e-01	0.547	0.589386 -

Rsqr is 74.7% while Rsqf adjusted is 67%. The huge difference between the Rsqr and Rsqr adjusted shows that the Rsqr is inflated by multicolinearity among the independent variables

Intercept, County, Elevation, Sewer and Flood are the significant variables

Residual standard error: 4.431 on 23 degrees of freedom Multiple R-squared: 0.747, Adjusted R-squared: 0.67 F-statistic: 9.703 on 7 and 23 DF, p-value: 1.351e-05

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Regression without transforming the data Validation of Assumptions – Residual Plots

Residual Plots

Variance Inflation Factor(VIF)

```
vif(mlr_wo_t)
saltdata$County saltdata$Size saltdata$Elevation
saltdata$Sewer
4.995597 2.003925 1.649759
1.635122
saltdata$Date saltdata$Flood altdata$Distance
2.174889 1.907942 3.623612
```

- From correlation plots, it was found that there is **no linear relationship** between the outcome variable and the independent variables.
- The ON Plot shows many outliers indicating that the esiduals are **not normally** estributed.
- recommended VIF is <10, the recommended VIF is <5. We see County has VIF about 5. So, there is **multicolinearity** among the independent variables
- The residuals Vs Fitted line shows a pattern.
 So, it **fails** to meet the **Homoscedasticity** rule

All assumptions of linier regression have failed when we used the data without transformation

Box Cox Transformation – Identifying optimal λ for transformation

Formula for Box Cox Transformation

$$y(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0; \\ \log y, & \text{if } \lambda = 0. \end{cases}$$

Generally used & Values

λ	Transformation
2	$W_i = Y_i^2$
0.5	$W_i = \sqrt{Y_i}$
0	$W_i = Ln(Y_i)$
-0.5	$W_i \frac{1}{\sqrt{Y_i}}$
-1	$W_i = \frac{1}{Y_i}$

Box cox transformation is done for the regression model to find out the optimal λ value

The optimal X value is almost zero. Hence using natural log will give the best transformation

Regression after transforming the data

Regression is done considering all the independent variables after transforming the data using log

Residuals:

Min 1Q Median 3Q Max -0.27871 -0.10032 0.01879 0.10793 0.22147

Coefficients:

	Estimate	Std. Error	t value	Pr(> †)
(Intercept)	1.55687	0.21500	7.241	2.27e-07 ***
log10(saltdata\$County + 1)	-0.19052	0.42519	-0.448	0.658294
log10(saltdata\$Size)	-0.06631	0.05509	-1.204	0.240921
log10(saltdata\$Elevation + 1	0.32144	0.09573	3.358	0.002723 **
log10(saltdata\$Sewer + 1)	-0.03041	0.02350	-1.294	0.208534
log10(saltdata\$Date * (-1))	-0.42491	0.10426	-4.075	0.000466 ***
log10(saltdata\$Flood + 1)	-1.22814	0.29417	-4.175	0.000364 ***
log10(saltdata\$Distance + 1)	0.33442	0.11963	2.795	0.010279 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1449 on 23 degrees of freedom Multiple R-squared: 0.8339, Adjusted R-squared: 0.7834

F-statistic: 16.5 on 7 and 23 DF, p-value: 1.369e-07

- Rsqr is 83.4% while Rsqr adjusted is 78.3%. The huge difference between the Rsqr and Rsqr adjusted shows that the Rsqr is inflated by multi-coliniarity among the independent variables
- Intercept, Elevation, Date, Flood and Distance are the significant variables

Regression after transforming the data Validation of Assumptions – Residual Plots

Residual Plots

Variance Inflation Factor(VIF)

- The Q-Q Plot shows many outliers indicating that the residuals are **not normally** distributed.
- Though acceptable VIF is <10, the recommended VIF is <5. We see County has VIF about 6. So, there is multicollinearity among the independent variables
- The residuals Vs Fitted line shows a pattern. So, it fails to meet the Homoscedasticity rule

All assumptions of linear regression have failed even after transforming the data

Regression after transforming the data and addressing VIF

Regression is done considering all the independent variables, except County (due to high VIF) after transforming the data using log

Residuals:

Min 1Q Median 3Q Max -0.27360 -0.10591 0.02420 0.09881 0.25062

Coefficients:

```
Estimate Std. Error t value Pr(>|1|)
(Intercept)
                                 1.52212
                                          0.19716
                                                             5.89e-08 ***
                                         0.05366
                                                            0.252141
log10(saltdata$Size)
                               -0.06297
                                                   -1.173
                                                    3.393
log10(saltdata$Elevation + 1)
                               0.31283
                                         0.09221
                                                            0.002400 **
log10(saltdata$Sewer + 1)
                                         0.01878
                                                   -1.293
                                                            0.208438
                              -0.02427
log10(saltdata$Date * (-1))
                                         0.08866
                                                   -5.057
                              -0.44836
                                                             3.60e-05 ***
log10(saltdata$Flood + 1)
                              -1.19633
                                         0.28068
                                                   -4.262
                                                             0.000271 ***
log10(saltdata$Distance + 1)
                                0.37404 0.07923
                                                    4.721
                                                             8.44e-05 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1425 on 24 degrees of freedom Multiple R-squared: 0.8325, Adjusted R-squared: 0.7906

F-statistic: 19.88 on 6 and 24 DF, p-value: 3.179e-08

- Rsqr is 83.4% white Rsqr adjusted is 79.1%. The low difference between the Rsqr and Rsqr adjusted shows that the there is **no multicollinearity** among the independent variables.
- Intercept, Elevation, Date, Flood and Distance are the significant variables

Validation of Assumptions – Residual Plots

Residual Plots

Variance Inflation Factor(VIF)

```
vif(mlr_t2)
log10(saltdata$Size) log10(saltdata$Elevation + 1)
log10(saltdata$Sewer + 1)
1.279203
1.668075
log10(saltdata$Date * (-1)) log10(saltdata$Flood + 1)
log10(saltdata$Distance + 1)
1.194569
1.478211
1.518253
```

- The Q-Q Plot shows many outliers indicating that the residuals are **not normally** distributed.
- VIF is less than 5. So, there is **no multicollinearity** among the
 independent variables
- The residuals Vs Fitted line shows a pattern, it **fails** for the **Homoscedasticity**

The assumptions normality and homoscedacity have failed even after transforming the data and addressing multicollinearity

Regression – Final outcome and Conclusion

- Intercept, Elevation, Date, Flood and Distance are the significant variables with p value < 18
- Strong model with Rsqr is 83.4% while Rsqr adjusted is 79.1%.
- Regression Equation is

```
Log (Price) = 1.52 + 0.31 * Log (Elevation) – 0.45 * log (Date*(-1)) – 1.2 * log (Flood+1) + 0.4 * log (Distance +1)
```

- The **model can be used** with large set of samples (observations) and removing outliers so that the normality and homoscedascity are taken care

Question 3

Problem Statement - 3

- All Greens Franchise Explain the importance of X2, X3, X4, X5, X6 on Annual Net Sales,
- The data (X1, X2, X3, X4, X5, X6) are for each franchise store.
- X1 = annual net sales/\$1000
- X2 = number sq. ft./1000
- X3 = inventory/\$1000
- X4 = amount spent on advertising/\$1000
- X5 = size of sales district/1000 families X6 = number of competing stores in district

Check for linear relationship

- X2 to X5 have strong positive correlation with X1
- X6 has strong negative correlation with X1
- There appears strong correlation among all the independent variables. Will be validated later by checking VIF

Regression Model

Call:

Residuals:

```
Min 1Q Median 3Q Max -26.338 -9.699 -4.496 4.040 41.139
```

Coefficients:

	Estimate	Std. Erro	r tvalu	e Pr(> †)
(Intercept)	-18.85941	30.15023	-0.626	0.538372
franchisedata\$X2	16.20157	3.54444	4.571	0.000166 ***
franchisedata\$X3	0.17464	0.05761	3.032	0.006347 **
franchisedata\$X4	11.52627	2.53210	4.552	0.000174 ***
franchisedata\$X5	13.58031	1.77046	7.671	1.61e-07 ***
franchisedata\$X6	-5.31097	1.70543	-3.114	0.005249 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.65 on 21 degrees of freedom Multiple R-squared: 0.9932, Adjusted R-squared: 0.9916 F-statistic: 611.6 on 5 and 21 DF, p-value: < 2.2e-16 X1 = annual net sales/\$1000

X2 = number sq. ft./1000

X3 = inventory/\$1000

X4 = amount spent on advertising/\$1000

X5 = size of sales district/1000 families

X6 = number of competing stores in district

- VIF for Inventory (XXX) is >10
- If we consider intentory depends on the sq.ft area, considering any one of these variables will be good enough
- Since VIF for inventory (X3) is >10, remove inventory from the model

Validating Assumptions – Residual Plots

There are many outliers – 6th, 16th, 17thand 27th observations. Running a model after removing outliers may give better results

Regression Model after addressing VIF and removing outliers

Call:

Im(formula = franchisedata2\$X1 ~ franchisedata2\$X2 + franchisedata2\$X4 + franchisedata2\$X5 + franchisedata2\$X6)

Residuals:

```
Min 1Q Median 3Q Max -31.354 -11.314 -0.733 11.137 33.870
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   -70.078
                             32.400
                                              0.0443 *
franchisedata2$X2 25.380
                            9.987
                                              0.0205 *
franchisedata2$X4 17.228
                            3.250
                                             4.87e-05 ***
franchisedata2$X5 15.268
                            2.248
                                              2.32e-06 ***
franchisedata2$X6 -2.327
                            1.787
                                     -1.302 0.2092
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 17.5 on 18 degrees of freedom Multiple R-squared: 0.9936, Adjusted R-squared: 0.9921

F-statistic: 693.7 on 4 and 18 DF, p-value: < 2.2e-16

- Rsqr is 99.4% while Rsqr adjusted is 99.2%, and p value <0.05, indicating that the model is significant
- Intercept, Sq ft (X2), advertising spend (X4) and Size of Sques district (X5) are the significant factors

Regression Model after addressing VIF and removing outliers

There are many outliers – 6th, 16th, 17thand 27th observations. Running a model after removing outliers may give better results

Regression – Final outcome and Conclusion

- Intercept, Sq ft (X2), advertising spend (X4) and Size of Sales district (X5) are the significant factors
- Strong model with Rsqr is 99.4% while Rsqr adjusted is 99.2%.
- Regression Equation is

Annual net sales (X1) = -70 + 25.4 * Sq ft (X2) +17.2 * advertising spend (X4X + 15.3*Size of Sales district (X5)

- The **model can be used** with large set of samples (observations) and removing outliers so that the normality and homoscedascity are taken care

Thank You