XV. Espaces vectoriels préhilbertiens et euclidiens

27 janvier 2025

la	able	des matières	
1	Proc 1.1 1.2	luit scalaire et norme associée Produit scalaire	3 3
2	Orth 2.1 2.2	Premières définitions	5 5
3	Algo	rithme d'orthonormalisation de Gram-Schmidt	6
4	Base	es orthonormales	7
5	Sous	s-espaces vectoriels orthogonaux	8
6	Forn 6.1 6.2	nes linéaires et hyperplans d'un espace euclidien. Rappels de première année : hyperplans en dimension finie Théorème de représentation et hyperplans dans un espace euclidien	9 10
7	Sym 7.1 7.2	étries et projecteurs orthogonaux Rappels de première année sur les projecteurs et les symétries Symétries et projecteurs orthogonaux	12 12 14

8	Dist	ance à un sous ev	1
	8.1	Distance et projection sur un hyperplan	1
9	Exe	rcices classiques	1
	9.1	Inégalité de Cauchy-Schwarz et application (banque CCINP	
		MP)	1
	9.2	Polynômes de Legendre	1
	9.3	Une projection orthogonale (banque CCINP MP)	1
	9.4	Une distance (banque CCINP MP)	1
	9.5	Une autre distance	1

Programme officiel

Espaces préhilbertiens réels, espaces euclidiens

A - Espaces préhilbertiens réels

L'objectif majeur est le théorème de projection orthogonale et l'existence de la meilleure approximation quadratique. On s'appuie sur des exemples de géométrie du plan et de l'espace pour illustrer les différentes notions.

CONTENUS	CAPACITES & COMMENTAIRES
a) Produit scalaire et norme associée	
Produit scalaire. Espace préhilbertien réel, espace euclidien. Exemples de référence :	Notations $\langle x, y \rangle$, $(x y)$, $x \cdot y$.
produit scalaire euclidien canonique sur \mathbb{R}^n , produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$, produit scalaire défini par une intégrale sur $\mathscr{C}^0([a,b],\mathbb{R})$. Inégalité de Cauchy-Schwarz, cas d'égalité.	Expression $X^{T}Y$. Expression $\operatorname{tr}(A^{T}B)$.
Norme associée au produit scalaire.	Cas d'égalité dans l'inégalité triangulaire. Les étudiants doivent savoir manipuler les identités remarquables sur les normes (développement de $\ u\pm v\ ^2$, identité de polarisation).
b) Orthogonalité	
Vecteurs orthogonaux, sous-espaces orthogonaux, orthogonal d 'un sous-espace vectoriel F , d 'une partie X . Famille orthogonale, orthonormée (ou orthonormale). Toute famille orthogonale de vecteurs non nuls est libre. Théorème de Pythagore. Algorithme d'orthonormalisation de Gram-Schmidt.	Notation $F^{\perp}.$ L'orthogonal d'une partie est un sous-espace vectoriel.
c) Bases orthonormées d'un espace euclidien	
Existence de bases orthonormées dans un espace euclidien. Théorème de la base orthonormée incomplète. Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormée.	
d) Projection orthogonale sur un cous-senace de dimension finie	on finio

d) Projection orthogonale sur un sous-espace de dimension finie

Les étudiants doivent savoir déterminer $p_F(x)$ en calculant son expression dans une base orthonormée de ${\cal F}$ ou Dimension de F^{\perp} en dimension finie. Supplémentaire orthogonal d'un sous-espace de dimen-Projection orthogonale p_F sur un sous-espace vectoriel F

de dimension finie.

en résolvant un système linéaire traduisant l'orthogonalité de $x - p_F(x)$ aux vecteurs d'une famille génératrice

Distance d'un vecteur à un sous-espace. Le projeté orthogonal de x sur F est l'unique élément de F qui réalise la distance de x à F.

Notation d(x, F).

Projeté orthogonal d'un vecteur sur l'hyperplan Vect $(u)^{\perp}$; distance entre x et $Vect(u)^{\perp}$

Application géométrique à des calculs de distances.

e) Formes linéaires sur un espace euclidien

Représentation d'une forme linéaire à l'aide d'un produit scalaire.

Vecteur normal à un hyperplan.

Le corps de base est \mathbb{R} . n, p, q, r et s désignent des entiers naturels non nuls. E désigne un espace vectoriel.

1 Produit scalaire et norme associée

1.1 Produit scalaire

Définition 1.1.1 (Produit scalaire).

On appelle **produit scalaire sur** E toute application $\varphi: E \times E \to \mathbb{R}$ bilinéaire symétrique et telle que pour tout $x \in E$, on ait d'une part $\varphi(x,x) \geqslant 0$ et d'autre part $\varphi(x,x) = 0$ si et seulement si x = 0. Un espace vectoriel réel muni d'un produit scalaire est dit **préhilbertien**. Si de plus il est de dimension finie, il est dit **euclidien**.

Remarque 1.1.2.

- 1. Différentes notations sont utilisées couramment pour le produit scalaire de x et y : $(x \mid y), \langle x \mid y \rangle, (x, y), \langle x, y \rangle, x \cdot y$.
- 2. Par bilinéarité, si x ou $y=0, \, \langle x\mid y\rangle=0.$
- 3. La symétrie et la linéarité par rapport à une variable suffisent à montrer la bilinéarité.

Exemple 1.1.3.

- 1. Les produits scalaires usuels sur \mathbb{R}^2 et \mathbb{R}^3 sont bien évidemment des produits scalaires.
- 2. Il existe de nombreux produits scalaires sur \mathbb{R}^2 ; par exemple $((x_1,y_1),(x_2,y_2))\mapsto x_1x_2-y_1x_2+2y_1y_2-x_1y_2.$
- 3. Il existe également sur \mathbb{R}^n un produit scalaire canonique ; $(x_1,\ldots,x_n).(y_1,\ldots,y_n)=\sum_{k=1}^n x_iy_i.$
- 4. Par extension, tout \mathbb{R} -ev de dimension n, étant isomorphe à \mathbb{R}^n , est muni d'un produit scalaire.

Ainsi, sur $\mathbb{R}_n[X]$ le produit scalaire usuel est

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

$$\left(\sum_{k=0}^{n} a_k X^k\right) \cdot \left(\sum_{k=0}^{n} b_k X^k\right) = \left(\sum_{k=0}^{n} a_k b_k\right).$$
De même, le produit scalaire usuel sur $\mathcal{M}_{np}(\mathbb{R})$ est
$$(a_{ij})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \cdot (b_{ij})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{ij} b_{ij}.$$

On se reportera à l'exercice « Norme d'algèbre sur les matrices » du chapitre sur les espaces vectoriels normés pour se rappeler que pour ce produit scalaire, $\langle A, B \rangle = \operatorname{tr} A^{\top} B$.

5. Soit a et b deux réels avec a < b. Sur $\mathscr{C}([a,b],\mathbb{R})$, l'application $(f,g)\mapsto \int_a^b fg$ est un produit scalaire (attention : cet espace est de dimension infinie, donc n'est pas euclidien, mais préhilbertien réel).

Exercice 1.1.4.

L'espérance munit-elle l'ensemble des variables aléatoires réelles sur un espace probabilisé fini d'un produit scalaire (via $\langle X,Y\rangle=\mathrm{E}(XY)$) ?

Proposer une solution à ce « problème ».

1.2 Norme associée à un produit scalaire

Définition 1.2.1 (Norme associée à un produit scalaire). Soit $(E, \langle \cdot \mid \cdot \rangle)$ un espace préhilbertien. On appelle *norme associée au produit scalaire* $\langle \cdot \mid \cdot \rangle$ l'application $x \mapsto \sqrt{\langle x \mid x \rangle}$.

Remarque 1.2.2.

- 1. Il est clair, par positivité du produit scalaire, que cette application est bien définie. La racine carrée étant à valeurs dans \mathbb{R}^+ , elle est de plus à valeurs dans \mathbb{R}^+ . Il reste à voir si cette application est bien une norme.
- 2. La norme associée à un produit scalaire dépend évidemment du produit scalaire. Par exemple sur \mathbb{R}^2 , les normes associées respectivement au produit scalaire usuel et au produit scalaire $((x,y),(x',y')) \mapsto \frac{1}{2}xx' + 2yy'$ sont différentes (regarder par exemple les valeurs pour les vecteurs (1,0) et (0,1)).

3. On a directement que pour une famille (x_1, \ldots, x_n) de vecteurs,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{1 \leq i, j \leq n} \langle x_i \mid x_j \rangle$$
$$= \sum_{i=1}^{n} \|x_i\|^2 + 2 \sum_{1 \leq i < j \leq n} \langle x_i \mid x_j \rangle.$$

Pour deux vecteurs, on retrouve $||x \pm y||^2 = ||x||^2 \pm 2 \langle x \mid y \rangle + ||y||^2$.

Dans tout ce qui suit, sauf mention expresse du contraire, $(E, \langle \cdot \mid \cdot \rangle)$ désigne un espace vectoriel préhilbertien, et $\|.\|$ la norme associée à son produit scalaire.

Proposition 1.2.3.

Soit $(E, \langle \cdot \mid \cdot \rangle)$ un espace préhilbertien et $\|.\|$ la norme associée. On a

- 1. $\forall x \in E \quad ||x|| = 0 \iff x = 0$;
- 2. $\forall \lambda \in \mathbb{R} \quad \forall x \in E \qquad \|\lambda x\| = |\lambda| \cdot \|x\|$.

Démonstration. 1. Soit $x \in E$. On a $||x|| = 0 \iff \langle x | x \rangle = 0$. $\langle \cdot | \cdot \rangle$ étant un produit scalaire, on a donc $||x|| = 0 \iff x = 0$.

2. Soit
$$\lambda \in \mathbb{R}$$
 et $x \in E$. On a $\|\lambda x\| = \sqrt{\langle \lambda x \mid \lambda x \rangle} = \sqrt{\lambda^2 \langle x \mid x \rangle} = |\lambda| \sqrt{\langle x \mid x \rangle}$.

Avec ce qui précède, il suffit maintenant de démontrer que ||.|| vérifie l'inégalité triangulaire pour démontrer qu'il s'agit bien d'une norme. Pour cela, on démontre tout d'abord le théorème suivant :

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Théorème 1.2.4 (Inégalité de Cauchy-Schwarz).

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien et $\|.\|$ la norme associée. Alors pour tout $(x, y) \in E^2$, on a

$$|\langle x, y \rangle| \leqslant ||x|| \cdot ||y||.$$

L'égalité a lieu si et seulement si x et y sont colinéaires.

Démonstration.

Soient $x,y\in E.$ Pour y=0 le résultat est évident. Sinon, on peut donner deux démonstrations

Géométrique Posons $u = \frac{1}{\|y\|}y$. On vérifie aisément $\|u\| = 1$. Posons alors $x' = \langle x \mid u \rangle u$ et x'' = x - x' (faire un dessin). On a alors

$$\langle x' \mid x'' \rangle = \langle x' \mid x \rangle - \langle x' \mid x' \rangle = \langle x \mid u \rangle^2 - \langle x \mid u \rangle^2 = 0.$$

On en déduit

$$||x||^{2} = ||x'||^{2} + 2\langle x' | x'' \rangle + ||x''||^{2}$$

$$= ||x'||^{2} + ||x''||^{2}$$

$$\geq ||x'||^{2}.$$

On en déduit $||x|| . ||y|| \ge ||x'|| . ||y||$. Or on a :

$$||x'|| \cdot ||y|| = |\langle x \mid u \rangle| \cdot ||y||$$
$$= |\langle x \mid y \rangle|.$$

D'où le résultat.

Algébrique pour tout $t \in \mathbb{R}$, on a : $||x + ty||^2 = ||x||^2 + 2t \langle x | y \rangle + t^2 ||y||^2$. C'est un polynôme toujours positif, donc son discriminant est négatif ou nul.

Il y a égalité dans l'inégalité de Cauchy-Schwarz si et seulement si ce discriminant est nul, donc si et seulement si ce polynôme a une racine réelle, donc si et seulement si il existe t tel que [à vous de l'écrire], donc si et seulement si x et y sont colinéaires.

Une idée calculatoire astucieuse Si x=0 ou y=0, le résultat est évident. Sinon, on remarque que $\left\|\frac{x}{\|x\|}\right\|=1$ et l'on écrit (\pm signifie qu'on le fait pour + puis pour -):

$$0 \leqslant \left\| \frac{x}{\|x\|} \pm \frac{y}{\|y\|} \right\|^2 = \left\| \frac{x}{\|x\|} \right\|^2 + \left\| \frac{y}{\|y\|} \right\|^2 \pm 2 \frac{\langle x \mid y \rangle}{\|x\| \|y\|}$$

$$0 \leqslant 1 \pm \frac{\langle x \mid y \rangle}{\|x\| \|y\|}$$

et c'est fini!

Proposition 1.2.5 (Inégalité triangulaire).

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien, $x, y \in E$. Alors,

$$||x + y|| \le ||x|| + ||y||$$
.

De plus, on a l'égalité si et seulement si x et y sont colinéaires et de même sens.

Démonstration.

On a
$$||x+y||^2 = \langle x+y \mid x+y \rangle = ||x||^2 + 2 \langle x \mid y \rangle + ||y||^2 .$$
 Or
$$(||x|| + ||y||)^2 = ||x||^2 + 2 ||x|| . ||y|| + ||y||^2$$
 et
$$\langle x \mid y \rangle \leqslant ||x|| . ||y||,$$

et
$$\langle x \mid y \rangle \leqslant ||x|| \cdot ||y||$$
,

donc
$$||x+y||^2 \le (||x|| + ||y||)^2$$
.

||x+y|| et ||x|| + ||y|| étant positifs, on en déduit le résultat.

L'égalité a lieu si et seulement si $\langle x \mid y \rangle = ||x|| \cdot ||y||$.

Pour cela, il est nécessaire d'avoir $\langle x \mid y \rangle \ge 0$ (car le produit de deux normes est positif ou nul) et x et y colinéaires (cas d'égalité de Cauchy-Schwarz), donc il est nécessaire que x et y soient colinéaires — l'un s'écrit comme produit de l'autre par un scalaire et de même sens — ce scalaire est positif ou nul.

Cette condition est clairement suffisante.

Théorème 1.2.6.

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien, $x, y \in E$.

1. Identité du parallélogramme :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

2. Identité de polarisation:

$$\langle x \mid y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

= $\frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$

Démonstration.

Il suffit de développer les normes.

Remarque 1.2.7.

Ces identités permettent de retrouver l'expression du produit scalaire quand on ne connaît que la norme.

Exemple 1.2.8.

Existe-t-il un produit scalaire donnant la norme $||(x,y)||^2 = (x+y)^2 + x^2$?

2 Orthogonalité

Soit $(E, \langle \cdot | \cdot \rangle)$ un ev préhilbertien et $\| \cdot \|$ la norme associée.

2.1 Premières définitions.

Définition 2.1.1.

Soient $x, y \in E$. On dit que x est **unitaire** (ou **normé**) si ||x|| = 1. On dit que x et y sont **orthogonaux** et l'on note $x \perp y$ si $\langle x \mid y \rangle = 0$.

Remarque 2.1.2.

Si $x \neq 0_E$, il y a exactement deux vecteurs unitaires colinéaires à $x : \frac{x}{\|x\|}$ et $-\frac{x}{\|x\|}$.

Exemple 2.1.3.

1. Tout vecteur est toujours orthogonal au vecteur nul.

2.2 Familles orthogonales.

Définition 2.2.1.

gonaux.

Une famille de vecteurs est dite *orthogonale* si ses vecteurs sont deux à deux orthogonaux. Si les vecteurs sont de plus unitaires, la famille est dite orthonormale (ou orthonormée).

Exemple 2.2.2.

Les $f_n: x \mapsto \cos(nx), n \in \mathbb{N}$, forment une famille orthogonale pour le produit scalaire usuel de $\mathscr{C}([0, 2\pi], \mathbb{R})$.

Théorème 2.2.3 (Pythagore).

Soit (v_1, \ldots, v_n) une famille orthogonale de n vecteurs. Alors $\left\| \sum_{k=1}^{n} v_k \right\|^2 =$ $\sum_{k=1}^n \|v_k\|^2.$

Démonstration.

On développe le produit scalaire : $\left\| \sum_{i=1}^{n} v_k \right\|^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle v_i \mid v_j \rangle$.

Exemple 2.2.4.

Dans \mathbb{R}^3 muni du produit scalaire usuel, on pose $v_1 = (1,2,3), v_2 =$ (-5,1,1) et $v_3=(-1,-16,11)$. Vérifier que la famille (v_1,v_2,v_3) est orthogonale et s'assurer que l'égalité donnée par le théorème de Pythagore est vérifiée.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Théorème 2.2.5.

Toute famille orthogonale ne comportant aucun vecteur nul est libre.

Démonstration.

Soient λ_k tels que $\sum_{k=1}^n \lambda_k v_k = 0$. Alors pour tout i, $\left\langle \sum_{k=1}^n \lambda_k v_k \mid v_i \right\rangle = 0$ or quand on développe la somme on a $\lambda_i \langle v_i \mid v_i \rangle$

Remarque 2.2.6.

Toute famille orthonormale est en particulier une famille orthogonale ne comportant aucun vecteur nul.

Corollaire 2.2.7.

Toute famille orthogonale ne comportant aucun vecteur nul et de cardinal $\dim E$ est une base $\dim E$.

 $\begin{pmatrix} 0\\1\\2 \end{pmatrix}$, $\begin{pmatrix} 1\\-2\\1 \end{pmatrix}$ et $\begin{pmatrix} 5\\2\\-1 \end{pmatrix}$ forment une famille orthogonale, et donc une base

3 Algorithme d'orthonormalisation de Gram-Schmidt

Théorème 3.0.1 (orthonormalisation de Gram-Schmidt).

On suppose E euclidien de dim n. Soit (u_1, \ldots, u_n) une base de E. Alors il existe une base (v_1, \ldots, v_n) de E telle que :

- 1. (v_1, \ldots, v_n) est orthonormale;
- 2. pour tout $k \in [1, n]$,

$$\operatorname{Vect}(u_1, \dots u_k) = \operatorname{Vect}(v_1, \dots v_k).$$

Les
$$v_k$$
 sont uniques au signe près et on peut choisir : $v_k = u_k - \sum_{i=1}^{k-1} \langle u_k \mid v_i \rangle v_i$
$$\frac{1}{\left\|u_k - \sum_{i=1}^{k-1} \langle u_k \mid v_i \rangle v_i\right\|}.$$

Démonstration.

Explication pour le choix de v_1 .

 \bullet Analyse $\,$: on suppose la famille construite jusqu'au rang k. Construisons le $k+1^{\rm e}$ vecteur

Il faut choisir
$$v_{k+1}$$
 dans $\operatorname{Vect}(u_1, \dots, u_k, u_{k+1}) = \operatorname{Vect}(v_1, \dots, v_k, u_{k+1}) : v_{k+1} = \lambda_1 v_1 + \dots \lambda_k v_k + \mu u_{k+1}. \langle v_{k+1} \mid v_j \rangle = 0$ donne $\lambda_j + \mu \langle u_{k+1} \mid v_j \rangle = 0$, donc $v_{k+1} = \mu \left(-\sum_{i=1}^k \langle u_{k+1} \mid v_i \rangle v_i + u_{k+1} \right)$. Reste à choisir μ pour avoir $||v_{k+1}|| = 1$ (2 choix possibles).

 \bullet Synthèse : on a vu unicité au signe près. On vérifie que les vecteurs trouvés conviennent bien. $\hfill\Box$

Exemple 3.0.2.

Orthonormaliser $(1, X, X^2)$ pour le produit scalaire de $\mathbb{R}_2[X]$, $\langle P \mid Q \rangle = \int_0^1 P(t)Q(t) dt$. On trouve (P_1, P_2, P_3) , où

$$P_1 = 1,$$

$$P_2 = \frac{X - 1/2}{1/(2\sqrt{3})} = \sqrt{3}(2X - 1),$$

$$P_2 = \frac{X^2 - X + 1/6}{\| \dots \|} = \sqrt{5}(6X^2 - 6X + 1).$$

Corollaire 3.0.3.

Tout espace euclidien a une base orthonormale. Toute famille orthonormale peut être complétée en une base orthonormale.

Démonstration.

Pour l'existence, il suffit d'orthonormaliser une base quelconque.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Soit (e_1, \ldots, e_p) une famille orthonormale de E. On peut la compléter en base de $E: (e_1, \ldots, e_p, e'_{p+1}, \ldots, e'_n)$.

On orthonormalise ensuite cette base : pour les p premiers vecteurs, on a à chaque fois le choix entre e_i et $-e_i$, on choisit bien entendu e_i .

On obtient donc une base orthonormée de E dont les p premiers vecteurs sont e_1, \ldots, e_p .

4 Bases orthonormales

Proposition 4.0.1 (Coordonnées dans une base orthonormale). Soit E euclidien, (v_1, \ldots, v_n) base orthonormale de E. Alors, pour tout $x \in E$, $x = \sum_{k=1}^{n} \langle x \mid v_k \rangle v_k$.

Démonstration.

Soit $x \in E$, soit $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que $x = \sum_{k=1}^n \lambda_k v_k$. Si $1 \le k \le n$, on a par bilinéarité du produit scalaire

$$\langle x \mid v_k \rangle = \sum_{i=1}^n \lambda_i \langle v_k \mid v_i \rangle$$
$$= \sum_{i=1}^n \lambda_i \delta_{i,k}$$
$$= \lambda_k.$$

Exemple 4.0.2.

Trouver les coordonnées de (1, -3) dans la base $\left(\frac{1}{\sqrt{2}}(1, 1), \frac{1}{\sqrt{2}}(1, -1)\right)$ (pour le produit scalaire usuel).

Exercice 4.0.3.

Exprimer la formule de la proposition 4.0.1 dans le cas où (v_1, \ldots, v_n) base orthogonale de E.

Proposition 4.0.4 (Expression du produit scalaire dans une base orthonormale).

Soit E euclidien, (v_1, \ldots, v_n) une base orthonormale de E. x et y de coordonnées (x_i) et (y_i) dans la base (v_1, \ldots, v_n) . Alors $\langle x \mid y \rangle = \sum_{k=1}^n x_k y_k$.

Corollaire 4.0.5.

Avec les mêmes notations,

$$||x||^2 = \sum_{i=1}^n x_i^2.$$

Remarque 4.0.6.

Tous les produits scalaires ont la même expression «usuelle» à condition de se placer dans une base orthonormale pour ce produit scalaire.

Remarque 4.0.7.

Ces formules d'adaptent encore dans le cas de bases orthogonales.

5 Sous-espaces vectoriels orthogonaux

Définition 5.0.1.

Soit F et G deux sous-espaces vectoriels de E. On dit que F et G sont des **sous-espaces orthogonaux** et on écrit $F \perp G$ si

$$\forall x \in F, \quad \forall y \in G, \qquad x \perp y.$$

Exemple 5.0.2.

Dans \mathbb{R}^3 avec le produit scalaire usuel, $\operatorname{Vect}(1,-1,0)$ \bot $\operatorname{Vect}((1,1,0),(0,0,1))$.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Remarque 5.0.3.

Si F et G sont orthogonaux, alors ils sont en somme directe. En effet, soit $x \in F \cap G$. On a alors $x \perp x$, donc $\langle x \mid x \rangle = 0$, donc x = 0. Donc $F \cap G \subset \{0\}$, d'où on déduit le résultat.

Théorème 5.0.4.

Soient F et G deux sev de dimension finies de E. On note (f_1, \ldots, f_q) une famille génératrice de F et (g_1, \ldots, g_p) une famille génératrice de G. Alors $F \perp G$ si et seulement si pour tout $i \in [\![1,q]\!]$ et $j \in [\![1,p]\!]$ on a $\langle f_i \mid g_j \rangle = 0$.

Démonstration.

- (\Rightarrow) par définition de $F \perp G$.
- (\Leftarrow) soient $f = \sum \lambda_i f_i$ et $g = \sum \mu_j g_j$. Alors $\langle f \mid g \rangle = \sum_i \sum_j \lambda_i \mu_j \langle f_i \mid g_j \rangle = 0$. \square

Définition 5.0.5.

Soit X une partie (quelconque) de E. On appelle **orthogonal** de X et on noté X^{\perp} (ou X^{o}) l'ensemble $\{y \in E \mid \forall x \in X \ \langle x \mid y \rangle = 0 \}$.

Proposition 5.0.6.

Soit X une partie de E. Alors

- 1. X^{\perp} est un sev de E:
- 2. Pour toute partie Y de E telle que $X \subset Y$, on a $Y^{\perp} \subset X^{\perp}$;
- 3. $X \subset (X^{\perp})^{\perp}$.

Démonstration. 1. On a $0 \in X^{\perp}$ car 0 est orthogonal à tout vecteur, donc à tout vecteur de X; de plus toute combinaison linéaire de vecteurs orthogonaux à tout vecteur de X est orthogonale à tout vecteur de X.

Sinon, il suffit de voir que

$$X^{\perp} = \bigcap_{x \in X} \operatorname{Ker} \langle x \mid \cdot \rangle.$$

3. Soit x un vecteur de X. Tout vecteur de X^{\perp} est orthogonal à tout vecteur de X, donc en particulier à x. Donc x est orthogonal à tout vecteur de X^{\perp} , donc appartient à $(X^{\perp})^{\perp}$.

Remarque 5.0.7.

Il n'y a pas forcément égalité dans le dernier point. Par exemple, avec $X = \emptyset, (X^{\perp})^{\perp} = \{0\}.$

Théorème 5.0.8.

Soit F un sev de E. Alors F^{\perp} est le plus grand sous-espace vectoriel orthogonal à F (et F et F^{\perp} sont de plus en somme directe).

Si de plus F est de dimension finie, alors $E = F \oplus F^{\perp}$ et F^{\perp} est l'unique sous-espace vectoriel G vérifiant $E = F \oplus G$ et $F \perp G$. C'est pourquoi on appelle F^{\perp} le supplémentaire orthogonal de F dans E.

(HP): Enfin, si F est de dimension finie, alors $F = (F^{\perp})^{\perp}$.

Démonstration.

On sait déjà que F^{\perp} est un sous-espace vectoriel. F et F^{\perp} sont clairement orthogonaux (donc en somme directe) et de plus pour tout sous-espace vectoriel G tel que F et G sont orthogonaux, tout élément x de G est orthogonal à tout élément de F, donc appartient à F^{\perp} , donc $G \subset F^{\perp}$.

Supposons de plus que le sous-espace vectoriel F est de dimension finie. Alors F est aussi un espace vectoriel euclidien, donc possède une base orthonormale (f_1, \ldots, f_q) .

Soit $x \in E$. Posons $y = \sum_{i=1}^{q} \langle x \mid f_i \rangle f_i$ et z = x - y, alors x = y + z et $y \in F$. Par ailleurs, si $1 \le k \le q$, par bilinéarité du produit scalaire

$$\langle z \mid f_k \rangle = \langle x \mid f_k \rangle - \langle y \mid f_k \rangle$$

$$= \langle x \mid f_k \rangle - \sum_{i=1}^{q} \langle x \mid f_i \rangle \, \delta_{i,k}$$

$$= 0.$$

Par conséquent, $z \in F^{\perp}$. Cela assure que $E = F \oplus F^{\perp}$.

Démontrons l'unicité : soit G un sev de E vérifiant $E=F\oplus G$ et $F\perp G$. Alors $G \subset F^{\perp}$.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Par ailleurs, soit $x \in F^{\perp}$. Il existe $(f,g) \in F \times G$ tel que x = f + g, et comme $x \in F^{\perp}$, $\langle x \mid f \rangle = 0$. Or $\langle x \mid f \rangle = \langle f \mid f \rangle + \langle g \mid f \rangle = \langle f \mid f \rangle$, donc f = 0 et $x \in G$. On en déduit que $G = F^{\perp}$.

(HP) : Enfin, F est un sev de E vérifiant $E = F^{\perp} \oplus F$ et $F^{\perp} \perp F$. Comme l'unicité ne fait pas intervenir l'hypothèse sur la dimension finie, on peut en déduire que $F = (F^{\perp})^{\perp}$.

Remarque 5.0.9.

Le résultat ne se généralise pas à des sev F qui ne sont pas de dimension finie. Dans ce cas, on peut trouver des sous-espaces vectoriels F tels que F et F^{\perp} ne soient pas supplémentaires et tels que $(F^{\perp})^{\perp} \neq F$ (on peut même trouver F tel que $F \neq E$ et $F^{\perp} = \{0\}$). On verra ce résultat en exercice dans le cas de $\mathbb{R}[X]$.

Exemple 5.0.10.

On pose, pour tout couple (P,Q) d'éléments de $\mathbb{R}_2[X]$, $\langle P \mid Q \rangle =$ P'(1)Q'(1) + P(-1)Q(-1) + P(0)Q(0). Vérifier qu'il s'agit d'un produit scalaire et trouver $\mathbb{R}_1[X]^{\perp}$ dans $\mathbb{R}_2[X]$.

Exercice 5.0.11.

On considère dans $\mathbb{R}[X]$ le sev $F = \text{Vect}(1 + X, 1 + X^2, \dots, 1 + X^n, \dots)$. On rappelle qu'un hyperplan est un sev admettant un supplémentaire de dimension 1.

On munit $\mathbb{R}[X]$ du produit scalaire $\left(\sum_{k=0}^{+\infty} a_k X^k, \sum_{k=0}^{+\infty} b_k X^k\right) = \sum_{k=0}^{+\infty} a_k b_k$.

- 1. Montrer que F est un hyperplan de $\mathbb{R}[X]$.
- 2. Déterminer F^{\perp} pour le produit scalaire usuel de $\mathbb{R}[X]$.
- 3. Quel résultat vrai en dimension finie est ici mis en défaut ?

6 Formes linéaires et hyperplans d'un espace euclidien.

Dans toute cette partie, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace euclidien de dimension n.

Proposition 6.1.1 (Expression d'une forme linéaire en dimension finie.). Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit φ une forme linéaire sur E.

Soit alors $\mathscr{E} = (e_1, \ldots, e_n)$ une base de E.

Pour $j \in [1, n]$, notons $a_j = \varphi(e_j)$.

Soit $u \in E$. Notons x_1, \ldots, x_n ses coordonnées dans la base \mathscr{E} .

Alors on a

$$\varphi(u) = \sum_{j=1}^{n} a_j x_j.$$

Démonstration.

On a:

$$\varphi(u) = \varphi\left(\sum_{j=1}^{p} x_j e_j\right) = \sum_{j=1}^{p} x_j \varphi(e_j) = \sum_{j=1}^{p} x_j a_j.$$

Définition 6.1.2.

Soit E un \mathbb{K} -espace vectoriel. On appelle hyperplan de E tout sev qui est le noyau d'une forme linéaire non nulle sur E.

Remarque 6.1.3.

Une forme linéaire non nulle est nécessairement de rang 1. Ainsi, dans un ev E de dimension finie n, un hyperplan est un sev de dimension n-1. Nous allons voir plus loin que la réciproque est vraie.

Proposition 6.1.4.

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soit (e_1, \ldots, e_n) une base de E.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Soit H un hyperplan de E. Alors les éléments de H sont les points dont les coordonnées (x_1, \ldots, x_n) sont les solutions d'une équation de la forme $a_1x_1 + \ldots + a_nx_n = 0$, où a_1, \ldots, a_n sont des scalaires fixés non tous nuls. Réciproquement, toute équation de cette forme est celle d'un hyperplan.

Démonstration.

Soit H un hyperplan de E. Alors par définition il existe une application linéaire φ dont H est le noyau. Or d'après 6.1.1, pour tout élément $x \in E$, la valeur de $\varphi(x)$ (qui est la coordonnée de $\varphi(x)$ dans la base canonique de \mathbb{K}) s'exprime sous la forme $a_1x_1 + \ldots + a_nx_n$. Ker φ est donc l'ensemble des points dont les coordonnées vérifient $a_1x_1 + \ldots a_nx_n = 0$.

Réciproquement, pour tout n-uplet de scalaires (a_1, \ldots, a_n) non tous nuls, l'application φ qui à tout vecteur de E de coordonnées (x_1, \ldots, x_n) associe $a_1x_1 + \ldots + a_nx_n$ est une forme linéaire, à l'évidence non nulle (considérer le vecteur de E dont toutes les coordonnées sont nulles, exceptées la i^e , où $i \in [1, n]$ est tel que $a_i \neq 0$), les points dont les coordonnées sont solutions de l'équation $a_1x_1 + \ldots + a_nx_n = 0$ sont donc les éléments du noyau de $\operatorname{Ker} \varphi$, qui est un hyperplan.

Proposition 6.1.5.

Soit E un \mathbb{K} -espace vectoriel et H un hyperplan de E. Alors toute droite vectorielle D non contenue dans H est supplémentaire de H dans E.

Démonstration.

Soit D une droite vectorielle non contenue dans H, et φ une forme linéaire non nulle dont le noyau est H.

Alors $D \cap H$ est strictement inclus dans D, donc dim $D \cap H < \dim D = 1$, donc $D \cap H = \{0\}$, et ainsi D et H sont en somme directe.

Enfin, soit $x \in E$. Notons $\lambda = \varphi(x)$. Soit également e un vecteur directeur de D, et $\alpha = \varphi(e)$. Alors $\alpha \neq 0$ car $e \notin H$. Posons alors $h = x - \frac{\lambda}{\alpha}e$. Alors $x = h + \frac{\lambda}{\alpha}e$, $\frac{\lambda}{\alpha}e \in D$, et $\varphi(h) = \lambda - \frac{\lambda}{\alpha}a = 0$, donc $h \in H$. Ceci assure que E = H + D, et donc avec le premier point, H et D sont supplémenatires.

Étudions la réciproque:

Proposition 6.1.6.

Soit E un \mathbb{K} -ev et H un sev admettant une droite D comme supplémentaire. Alors H est un hyperplan de E.

Démonstration.

Soit e un vecteur directeur de D. Tout élément de x de E s'écrit donc de façon unique sous la forme $h+\lambda e$, où $h\in H$ et $\lambda\in \mathbb{K}$.

Notons u(x) ce scalaire λ . Alors nous pouvons montrer que u est une application linéaire de E dans \mathbb{K} . Elle est non nulle car $u(e) \neq 0$.

De plus, pour tout $x \in E$, on a $x \in \operatorname{Ker} u$ si et seulement si x s'écrit sous la forme h + 0.e, où $h \in H$. Donc $\operatorname{Ker} u = H$.

Remarque 6.1.7.

Ce dernier résultat assure donc la réciproque de 6.1.3: dans un ev de dimension finie n, les hyperplans sont exactement les sev de dimension n-1.

Exemple 6.1.8.

- Les droites vectorielles sont les hyperplans de \mathbb{R}^2 .
- Les plans vectoriels sont les hyperplans de \mathbb{R}^3 .
- L'espace est un hyperplan de l'espace-temps.
- $\mathbb{K}_n[X]$ est un hyperplan de $\mathbb{K}_{n+1}[X]$.
- \mathbb{K}^n peut être vu comme un hyperplan de \mathbb{K}^{n+1} , si l'on considère que \mathbb{K}^n est isomorphe à $\mathbb{K}^n \times \{0\}$, qui est un hyperplan de \mathbb{K}^{n+1} .

Lemme 6.1.9 (HP).

Soit H un hyperplan d'un espace vectoriel E et soit e un vecteur non nul n'appartenant pas à H. Alors pour toute forme linéaire u de noyau H, on a $u=\lambda\varphi$, où $\lambda=u(e)$ et φ est l'application associant α à tout vecteur de la forme $h+\alpha e$.

Démonstration.

Posons $D = \mathrm{Vect}(e)$. L'application φ est bien définie car $E = H \oplus D$ et elle est linéaire. Soit $u \in \mathcal{L}(E, \mathbb{K})$ vérifiant $\mathrm{Ker}\, u = H$. Alors soit $x \in E$. x s'écrit sous la forme $h + \alpha e$ et on a $u(x) = u(h) + \alpha u(e) = 0 + \alpha \lambda = \lambda \varphi(x)$.

Donc $\forall x \in Eu(x) = \lambda \varphi(x)$. Donc $u = \lambda \varphi$. De plus, $\lambda \neq 0$ (sinon $\ker u = E \neq H$). \square

Proposition 6.1.10 (HP).

Deux formes linéaires de même noyau sont proportionnelles.

Démonstration.

Direct d'après le lemme précédent.

Ce résultat implique le suivant :

Proposition 6.1.11. — Soit H un hyperplan, noyau d'une forme linéaire non nulle u. Alors les formes linéaires de noyau H sont exactement les $\lambda.u$, $\lambda \in \mathbb{K}$.

П

— Soit H un hyperplan en dimension finie, d'équation $a_1x_1+\ldots+a_nx_n=0$. Alors les équations de H sont exactement les équations de la forme $\lambda.a_1x_1+\ldots+\lambda.a_nx_n=0,\ \lambda\in\mathbb{K}$.

6.2 Théorème de représentation et hyperplans dans un espace euclidien

Théorème 6.2.1 (Théorème de représentation de Riesz-Fréchet). Soit $(E, \langle \cdot | \cdot \rangle)$ euclidien. Soit $f \in \mathcal{L}(E, \mathbb{R})$. Alors il existe un unique $v_f \in E$ vérifiant $\forall x \in E$ $f(x) = \langle v_f | x \rangle$ ou encore $f = \langle v_f | \cdot \rangle$.

On donne trois preuves de ce résultats.

Démonstration (Preuve géométrique.).

La forme linéaire f est définie par son noyau (hyperplan H) et la valeur prise sur un vecteur qui n'est pas dans le noyau.

De même, $(\operatorname{Vect} v_f)^{\perp}$ est de dimension n-1, donc c'est un hyperplan. Si l'on choisit v_f vecteur normal à H, alors f et $\langle v_f \mid \cdot \rangle$ sont des formes linéaires de même noyau, donc sont proportionnelles. La norme de v_f est alors choisie de sorte qu'elle corresponde avec la valeur précédente de f sur un vecteur qui n'est pas dans le noyau.

Démonstration (Preuve algébrique.).

On considère l'application

$$\varphi: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathcal{L}(E, \mathbb{R}) \\ v & \longmapsto & (x \mapsto \langle v \mid x \rangle) \end{array} \right.$$

Par bilinéarité du produit scalaire, φ est linéaire. De plus, avec $v_1, v_2 \in E$, si $\varphi(v_1) = \varphi(v_2)$, alors pour tout $x \in E$, $\langle v_1 \mid x \rangle = \langle v_2 \mid x \rangle$, *i.e.* pour tout $x \in E$, $\langle v_1 - v_2 \mid x \rangle = 0$, donc $v_1 - v_2 \in E^{\perp}$.

Or $E^{\perp} = \{ 0 \}$ car pour tout $x \in E^{\perp}$, $\langle x \mid x \rangle = 0$. Donc $v_1 = v_2$ et φ est injective. Mais comme dim $E = \dim \mathcal{L}(E, \mathbb{R})$, alors φ est un isomorphisme. D'où le résultat.

Démonstration (Preuve matricielle.).

Soit \mathcal{B} une base orthonormée de E. Notons

$$\operatorname{Mat}_{\mathscr{B},1}(f) = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}.$$

Posons

$$a = \sum_{i=1}^{n} a_i e_i.$$

Si $x \in E$ est de coordonnées (x_1, \ldots, x_n) dans \mathscr{B} , alors

$$f(x) = \sum_{i=1}^{n} a_i x_i = \langle a \mid x \rangle.$$

L'unicité se déduit immédiatement de la représentation matricielle.

Définition 6.2.2.

Soit H un hyperplan d'un espace euclidien, alors H^{\perp} est une droite vectorielle appelée droite $\operatorname{normale}$ à H.

Tout vecteur v vérifiant $H^{\perp} = \text{Vect}(v)$ est appelé **vecteur normal** $\hat{\boldsymbol{a}}$ H.

Remarque 6.2.3.

Soit $a=(a_1,\ldots,a_n)$ un vecteur non nul et H l'hyperplan d'équation $a_1x_1+\ldots+a_nx_n=0$. Alors si $x=(x_1,\ldots,x_n)$ est un vecteur, $x\in H$ si et seulement si $\langle a,x\rangle=0$ si et seulement si $a\perp x$. Ainsi a est un vecteur normal à H.

Proposition 6.2.4.

Soit H un hyperplan d'un espace euclidien E, soit $v \in E$. Alors v est un vecteur normal à H si et seulement si $v \neq 0_E$ et $v \in H^{\perp}$.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Démonstration.

Immédiat.

Remarque 6.2.5 (Écriture matricielle du produit scalaire).

Soit $e = (e_1, ..., e_n)$ base orthonormale de E, x et y des vecteurs de matrices (dans e) X et Y. Alors $\langle x | y \rangle = X^{\top}Y$.

Si $\mathscr{B} = (b_1, \ldots, b_n)$ est une autre base, notons $M = (\langle b_i, b_j \rangle)_{1 \leq i, j \leq n}$. Si \tilde{X} et \tilde{Y} sont les matrices de x et y dans la base \mathscr{B} , alors $\langle x, y \rangle = \tilde{X}^\top M \tilde{Y}$.

7 Symétries et projecteurs orthogonaux

7.1 Rappels de première année sur les projecteurs et les symétries

Dans toute cette sous-section, on suppose que F et G sont deux sev supplémentaires, i.e. $E = F \oplus G$.

Définition 7.1.1.

On appelle **projection** sur F parallèlement à G l'endomorphisme $p_{F\parallel G}$ de $\mathscr{L}(E)$ défini par :

$$\forall y \in F, \ \forall z \in G \quad p_{F \parallel G}(y+z) = y. \tag{1}$$

Remarque 7.1.2.

Voir le dessin sur la figure 1. Exemple dans \mathbb{R}^3 avec $F = \{x = 0\}$ et $G = \{x + y = 0, y + z = 0\}$.

Théorème 7.1.3.

 $p_{F||G} \in \mathcal{L}(E)$, $\operatorname{Ker} p_{F||G} = G$, $\operatorname{Im}(p_{F||G}) = F$.

Démonstration.

- Linéarité : élémentaire.
- Soit $x=y+z\in E,\,y\in F,\,z\in G,$ donc $x\in \operatorname{Ker} p_{F\parallel G}$ si et seulement si y=0 si et

FIGURE 1 – Représentation de la projection et de la symétrie sur F, parallèlement à G.

seulement si x=z si et seulement si $x\in G$. $x\in \operatorname{Im} p_{F\parallel G}$ si et seulement si il existe x'=y'+z' tel que x=y' si et seulement si $x\in F$. \square

Remarque 7.1.4.

- Cas particuliers : $F = \{0_E\}$ et G = E : $p_{F||G} = 0_{\mathscr{L}(E)}$.
- $G = \{0_E\}$ et $F = E : p_{F||G} = \text{Id}$. Hormis ce dernier cas, une projection n'est jamais injective, ni surjective.
- $p_{F||G} + p_{G||F} = \text{Id}, p_{F||G||G} = 0, p_{F||G||F} = \text{Id}_F.$

Définition 7.1.5.

On appelle **projecteur** tout endomorphisme f tel que $f \circ f = f$.

Théorème 7.1.6.

Toute projection est un projecteur.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Démonstration.

Il s'agit essentiellement d'utiliser que si x=y+z $p_{F\parallel G}(p_{F\parallel G}(x))=p_{F\parallel G}(y)=p_{F\parallel G}(y+0_E)=y.$

Théorème 7.1.7 (Réciproque).

Soit f un projecteur. Alors $\operatorname{Ker} f \oplus \operatorname{Im} f = E$, et f est la projection sur $\operatorname{Im} f$ parallèlement à $\operatorname{Ker} f$.

Démonstration.

Soit $x \in \text{Ker } f \cap \text{Im } f$. Alors il existe y tel que x = f(y). Or f(x) = 0 mais f(x) = f(f(y)) = f(y) = x, donc x = 0. Ker f et Im f sont donc en somme directe. Montrons que E = Ker f + Im f.

Analyse: soient $y \in \text{Im } f$ et $z \in \text{Ker } f$ tels que x = y + z. Alors il existe u tel que y = f(u). Donc f(x) = f(f(u)) + f(z) = f(f(u)) = f(u) = y. Donc on a y = f(x) et donc z = x - f(x).

Synthèse : on pose y=f(x) et z=x-f(x). Alors on a bien x=y+z. de plus f(y)=f(f(x))=f(x)=y, donc $y\in {\rm Im}\, f$, et f(z)=f(x-f(x))=f(x)-f(f(x))=f(x)-f(x)=0, et ainsi $z\in {\rm Ker}\, f$. On a bien le résultat voulu.

Mais si l'on note x = y + z la décomposition associée à $\operatorname{Ker} f \oplus \operatorname{Im} f = E$, alors $\forall x$, f(x) = y, donc f est bien la projection sur $\operatorname{Im} f$ parallèlement à $\operatorname{Ker} f$.

Remarque 7.1.8.

- 1. Si f est un projecteur, alors $\operatorname{Im} f = \operatorname{Ker}(f \operatorname{Id})$: on utilise que $x \in \operatorname{Im} f$ si et seulement si f(x) = x si et seulement si $f(x) x = 0_E$ si et seulement si $(f \operatorname{Id})(x) = 0_E$.
- 2. Si $E = F \oplus G$, alors

$$p_{F\parallel G} + p_{G\parallel F} = \operatorname{Id}$$

$$p_{F\parallel G} \circ p_{G\parallel F} = p_{G\parallel F} \circ p_{F\parallel G} = 0_{\mathscr{L}(E)}$$

Exercice 7.1.9.

Montrer que l'ensemble des fonctions paires et celui des fonctions impaires sont supplémentaires dans $\mathbb{R}^{\mathbb{R}}$. Donner l'expression des projections sur l'un de ces deux ensembles parallèlement au second.

Définition 7.1.10.

On appelle symétrie par rapport à F et parallèlement à G l'endomorphisme $s_{F||G}$ de $\mathcal{L}(E)$ défini par :

$$\forall y \in F, \ \forall z \in G \quad s_{F \parallel G}(y+z) = y - z. \tag{2}$$

Remarque 7.1.11.

Voir le dessin sur la figure 1. Même exemple que pour la projection.

Théorème 7.1.12.

 $s_{F\parallel G}\in\mathscr{GL}(E),\,\text{et on a}\,\,s_{F\parallel G}^2=\mathrm{Id}_E,\,i.e.\,\,s_{F\parallel G}=s_{F\parallel G}^{-1}.$

Remarque 7.1.13.

On dit que $s_{F||G}$ est une *involution linéaire*.

Démonstration.

On a déjà observé la linéarité.

Soit $x \in E$, soit $y \in F$ et $z \in G$ vérifiant x = f + g. Alors

$$s_{F||G}(s_{F||G}(x)) = s_{F||G}(y-z) = y+z = x.$$

Théorème 7.1.14 (Réciproque).

Toute involution linéaire est une symétrie, plus précisément, si f est une involution linéaire, on a $\,:\,$

- 1. $\operatorname{Ker}(f \operatorname{Id}) \oplus \operatorname{Ker}(f + \operatorname{Id}) = E$.
- 2. f est la symétrie par rapport à Ker(f-Id) parallèlement à Ker(f+Id).

Démonstration.

- - Synthèse.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

2. On vient de voir que si la décomposition de x dans $\operatorname{Ker}(f - \operatorname{Id}) \oplus \operatorname{Ker}(f + \operatorname{Id})$ x = y + z, alors f(x) = y - z. CQFD.

П

Remarque 7.1.15.

On peut aussi montrer que

$$\begin{split} \operatorname{Ker}(s_{F \parallel G} - \operatorname{Id}) &= \operatorname{Im}(s_{F \parallel G} + \operatorname{Id}) \\ \operatorname{Ker}(s_{F \parallel G} + \operatorname{Id}) &= \operatorname{Im}(s_{F \parallel G} - \operatorname{Id}) \\ s_{G \parallel F} + s_{F \parallel G} &= 0_{\mathscr{L}(E)} \\ s_{F \parallel G} \circ s_{G \parallel F} &= -\operatorname{Id} = s_{G \parallel F} \circ s_{F \parallel G} \\ p_{F \parallel G} &= \frac{1}{2}(s_{F \parallel G} + \operatorname{Id}) \\ s_{F \parallel G} &= 2p_{F \parallel G} - \operatorname{Id}. \end{split}$$

7.2 Symétries et projecteurs orthogonaux

Définition 7.2.1.

Soit F sev de dimension finie d'un espace préhilbertien E. On appelle **projection orthogonale** (resp. **symétrie orthogonale**) toute projection (resp. symétrie) sur (resp. par rapport à) F parallèlement à F^{\perp} .

Proposition 7.2.2.

Un projecteur p est orthogonal si et seulement si $\operatorname{Im} p \perp \operatorname{Ker} p$. Une symétrie s est orthogonale si et seulement si $\operatorname{Ker}(s-\operatorname{Id}) \perp \operatorname{Ker}(s+\operatorname{Id})$.

Démonstration.

Direct.

Théorème 7.2.3 (expression d'un projecteur orthogonal dans une base orthonormée).

Soit F sev de dimension finie d'un espace préhilbertien E. Soit (f_1, \ldots, f_p)

une base orthonormale de F. Soit $x \in E$. Le projeté orthogonal de x sur F est $p(x) = \sum_{i=1}^{p} \langle x \mid f_i \rangle f_i$.

Démonstration.

Démontré dans 5.0.8

Exemple 7.2.4.

Déterminer la projection orthogonale (et la symétrie orthogonale) de (2,1) sur Vect(-1,2), ainsi que sur son supplémentaire orthogonal, pour le produit scalaire

$$((x_1, y_1) \mid (x_2, y_2)) = 5x_1x_2 + 2y_1x_2 + 2x_1y_2 + y_1y_2.$$

Remarque 7.2.5.

On peut ré-écrire le procédé d'orthonormalisation de Gram-Schmidt comme suit.

Avec $F_k = \text{Vect}(e_1, \dots, e_k)$, en notant p_k le projeté de e_{k+1} sur F_k , on procède comme suit.

- On renormalise e_1 pour obtenir v_1 .
- Pour chaque $1 \leq k \leq p-1$, on remarque que $e_{k+1} p_k \in F_k^{\perp}$. On renormalise donc $e_k p_k$ pour obtenir v_{k+1} .

8 Distance à un sous ev

Définition 8.0.1 (distance d'un point à une partie d'un espace préhilbertien).

Soit A une partie non vide de E et $x \in E$. On appelle distance de x à A et on note d(x, A) le réel $\inf_{a \in A} d(x, a)$.

Théorème 8.0.2.

Soit F un sev de dimension finie de E. Alors la distance de x à F est atteinte en un seul point, qui est la projection orthogonale de x. De plus : $d(x,F)^2 = ||x-p(x)||^2$. En particulier d(x,F) = 0 si et seulement si $x \in F$.

Démonstration.

Soit $f \in F$. On a la décomposition dans $F^{\perp} \oplus F : x - f = x - p(x) + p(x) - f$. On conclut en appliquant le théorème de Pythagore.

Exemple 8.0.3.

Le minimum de la fonction

$$f: \begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (a,b) & \mapsto \int_0^1 (-a - bx + x^2)^2 \, \mathrm{d}x \end{cases}$$

est atteint pour a = -1/6 et b = 1 et vaut 1/180.

8.1 Distance et projection sur un hyperplan

Dans toute cette partie, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace euclidien, H un hyperplan de E et u un vecteur normal à H.

Notamment, $H = \text{Vect}(u)^{\perp}$.

Proposition 8.1.1 (voir figure 2).

Soit $x \in E$, le projeté orthogonal de x sur H est

$$p(x) = x - \frac{\langle x, u \rangle}{\|u\|^2} u.$$

La distance de x à H est

$$d(x,H) = \frac{|\langle x, u \rangle|}{\|u\|}.$$

Figure 2 – Projection orthogonale sur un hyperplan H.

XV - ESPACES VECTORIELS PRÉHILBERTIENS ET EUCLIDIENS

Démonstration.

Il suffit d'observer que

$$x = x - \frac{\langle x, u \rangle}{\|u\|^2} u + \frac{\langle x, u \rangle}{\|u\|^2} u$$

et que

$$\langle x - \frac{\langle x, u \rangle}{\|u\|^2} u, u \rangle = \langle x, u \rangle - \langle x, u \rangle = 0,$$

donc que

$$x - \frac{\langle x, u \rangle}{\|u\|^2} u \in H.$$

On peut aussi observer que $\frac{u}{\|u\|}$ est une b.o.n. de H^{\perp} , et donc que $\frac{\langle x,u\rangle}{\|u\|^2}u$ est le projeté orthogonal de x sur $\mathrm{Vect}(u)$. Ainsi, $x-\frac{\langle x,u\rangle}{\|u\|^2}u$ est le projeté orthogonal de x sur $\mathrm{Vect}(u)^{\perp}$.

Corollaire 8.1.2.

Soit (e_1, \ldots, e_n) une b.o.n. de E, dans laquelle on écrit

$$u = u_1 e_1 + \dots + u_n e_n,$$

$$x = x_1 e_1 + \dots + x_n e_n.$$

Alors, la distance de x à H est

$$\frac{|x_1u_1+\cdots+x_nu_n|}{\sqrt{u_1^2+\cdots+u_n^2}}.$$

Démonstration.

Immédiat.

9 Exercices classiques

9.1 Inégalité de Cauchy-Schwarz et application (banque CCINP MP)

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|). On pose $\forall x \in E, ||x|| = \sqrt{(x|x)}$.

- 1. a) Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
 - b) Dans quel cas a-t-on égalité? Le démontrer.
- 2. Soit $E = \{ f \in \mathcal{C}([a,b], \mathbb{R}), \forall x \in [a,b] \ f(x) > 0 \}.$ Prouver que l'ensemble $\left\{ \int_a^b f(t) dt \times \int_a^b \frac{1}{f(t)} dt, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m.

9.2 Polynômes de Legendre

On note $E = \mathbb{R}_n[X]$, où $n \ge 1$.

1. Vérifier que :

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)dx$$

définit un produit scalaire sur E. On note (e_0, e_1, \ldots, e_n) la base obtenue par orthonormalisation de la base $(1, X, \ldots, X^n)$.

2. Pour tout entier $k \in \{1, ..., n\}$, on définit :

$$f_k(X) = \frac{\mathrm{d}^k}{\mathrm{d}X^k} \left(\left(X^2 - 1 \right)^k \right)$$

- a) Déterminer le degré de f_k .
- b) Calculer $\langle X^i, f_k \rangle$ pour $k \in \{1, \dots, n\}$ et $i \in \{0, \dots, k-1\}$.
- c) En déduire que pour tout $k \in \{1, ..., n\}$, il existe un λ_k tel que $f_k = \lambda_k e_k$.

9.3 Une projection orthogonale (banque CCINP MP)

Soit P le plan d'équation x+y+z=0 et D la droite d'équation $x=\frac{y}{2}=\frac{z}{3}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D. Soit $u=(x,y,z)\in\mathbb{R}^3$. Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .
- 3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

9.4 Une distance (banque CCINP MP)

On définit dans $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$ l'application φ par : $\varphi(A,A') = \operatorname{tr}(A^TA')$, où $\operatorname{tr}(A^TA')$ désigne la trace du produit de la matrice A^T par la matrice A'.

On admet que φ est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.

On note
$$\mathscr{F} = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right), \ (a,b) \in \mathbb{R}^2 \right\}.$$

- 1. Démontrer que \mathscr{F} est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$.
- 2. Déterminer une base de \mathscr{F}^{\perp} .
- 3. Déterminer le projeté orthogonal de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur \mathcal{F}^{\perp} .
- 4. Calculer la distance de J à \mathcal{F} .

9.5 Une autre distance

Pour $k \in \mathbb{N} \setminus \{0, 1\}$, calculer :

$$m_k = \inf_{a,b \in \mathbb{R}} \int_0^{+\infty} (t^k - at - b)^2 e^{-t} dt.$$