Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (currently amended): A compound of Formula (I)

$$\begin{array}{c}
R_1 \oplus \\
R_2 \longrightarrow Y_1 - C(R_7 R_{7'}) - (A) \longrightarrow C(R_8 R_{8'}) \longrightarrow Y_2 \longrightarrow R_5 \\
R_3 & R_6
\end{array}$$
(I)

wherein:

 Y_1 and Y_2 may be the same or different and are independently selected from N and P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

 R_7 , R_7 , R_8 and $R_{8'}$ may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted phenyl, optionally substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, NO_2 , $C(O)R_{10}$, OR_{11} , CH_2OR_{11} , $CH_2NR_{12}R_{13}$,

 SR_{11} , $NR_{12}R_{13}$, $CONR_{12}R_{13}$, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and when $Y_1 = Y_2 = N$, A comprises one or more groups selected from substituted alkylene, substituted alkenylene, substituted alkynylene, substituted phenyl, substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C_4 - C_6 alkyl, C_{4-6} alkenyl, C_{4-6} alkynyl, hydroxyl, halogen, NO_2 , $C(O)R_{10}$, OR_{11} , CH_2OR_{11} , $CH_2NR_{12}R_{13}$, SR_{11} , $NR_{12}R_{13}$, $CONR_{12}R_{13}$, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from $C_{1.4}$ alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and when $Y_1 = Y_2 = P$, A comprises one or more groups selected from substituted alkylene, substituted alkenylene, substituted alkynylene, substituted phenyl, substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, NO_2 , $C(O)R_{10}$, OR_{11} , CH_2OR_{11} , $CH_2NR_{12}R_{13}$, SR_{11} , $NR_{12}R_{13}$, $CONR_{12}R_{13}$, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and when A is $-CH_2$ -C(O)Ph CH_2 C H_2 -Ph-C(O)- CH_2 -, and R_1 and R_4 are hydroxy substituted ethyl, then one of R_2 , R_3 , R_5 and R_6 is different;

and salts thereof;

or:

(2) Y₁ and Y₂ may be the same or different and are independently selected from N and P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl,

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

R₇, R₇, R₈ and R₈ may be the same or different and are independently selected from F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently

selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; and salts thereof,

or:

(3) Y_1 and Y_2 are both nitrogen;

 R_7 , R_7 , R_8 and R_8 may be the same or different and are independently selected from hydrogen, F and Cl;

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl,

wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10, 11 or 12 alkylene groups and when R_1 , R_2 and Y_1 form a heterocycloalkyl group and when R_4 , R_5 and Y_2 form a heterocycloalkyl group, then R_3 and R_6 are different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 9, 10 or 12 alkylene groups and R_1 , R_2 , R_3 and Y_1 form a bicyclic group, then R_1 , R_2 , R_3 and Y_1 together are different to R_4 , R_5 , R_6 and Y_2 when taken together;

and salts thereof,

or:

(4) Y₁ and Y₂ are both nitrogen;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, halogen, $O(C_{1-6}$ alkyl), $O(O)O(C_{1-6}$ alkyl), $O(O)O(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6})$

alkyl), $C(O)O(C_{1-6} \text{ alkyl})$, $OC(O)(C_{1-6} \text{ alkyl})$, NO_2 , amino, hydroxy $C_{1-6} \text{ alkyl}$, aryl, OC(O)Ph, and $=C(Ph)_2$;

R₇, R₇, R₈ and R₈ may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, conr₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 12 alkylene groups, one of R_1 to R_6 is different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 10 alkylene groups and four of R_1 to R_6 are C_{1-3} alkyl, the remaining two of R_1 to R_6 are different; and

wherein when $-C(R_7R_7)$ -(A)- (CR_8R_8) - is 9, 10, 11 or 12 alkylene groups and when R_1 , R_2 and Y_1 form a heterocycloalkyl group and when R_4 , R_5 and Y_2 form a heterocycloalkyl group, then R_3 and R_6 are different; and

wherein when $-C(R_7R_{7'})$ -(A)- (CR_8R_8') - is 9, 10 or 12 alkylene groups and R_1 , R_2 , R_3 and Y_1 form a bicyclic group, then R_1 , R_2 , R_3 and Y_1 together are different to R_4 , R_5 , R_6 and Y_2 when taken together;

and salts thereof

or:

(5) Y_1 and Y_2 are both nitrogen;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{4-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups is substituted with one or more groups selected from C_{4-6} alkyl, C_{4-6} alkenyl, C_{4-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), OC

 R_7 , R_7 , R_8 and R_8 may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl,

wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

and salts thereof,

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 12 alkylene groups, one of R_1 to R_6 is different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ - is 10 alkylene groups and four of R_1 to R_6 are C_{1-3} alkyl, the remaining two of R_1 to R_6 are different; and

wherein when $-C(R_7R_{7'})$ -(A)- $(CR_8R_{8'})$ — is 9, 10 or 12 alkylene groups and R_1 , R_2 , R_3 and Y_1 form a bicyclic group, then R_1 , R_2 , R_3 and Y_1 together are different to R_4 , R_5 , R_6 and Y_2 when taken together;

or:

(6) Y_1 and Y_2 are both P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alkyl), $OC(O)(C_{1$

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6

 R_7 , R_8 and R_8 may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted alkynylene, optionally substituted phenyl, optionally substituted C₅₋₇ cycloalkyl, and -C(O)-, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

R₁₀ is selected from OH, OR₁₁, C₁₋₆ alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, and optionally substituted aralkyl, wherein said optional substituents are independently selected from C_{1-4} alkyl, hydroxyl and halogen;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aralkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-4} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$;

provided that the compound of formula (I) is not selected from the following:

R1 = R2 = R3 = R4 = R5 = R6 = Me, Et R1 = R2 = R4 = R5 = Me, R3 = R6 = pentyl

```
R1 = R2 = R4 = R5 = Me, R3 = R6 = Bu, Et, heptyl, nonyl,
 R1 = R2 = R4 = R5 = allyl, R3 = R6 = Me, Et
 R1 = R2 = R4 = R5 = hexyl, R3 = R6 = Me
  R1 = R4 = Me, R2 = R5 = Et, R3 = R6 = Pr
R1 = R2 = R3 = R4 = R5 = R6 = Me, Et, Bu
      R1 = R2 = R3 = R4 = R5 = R6 = Me, Et, Pr, allyl
      R1 = R2 = R4 = R5 = Me, R3 = R6 = Et
      R1 = R2 = R4 = R5 = Et, R3 = R6 = Me
      R1 = R4 = Me, R2 = R5 = Et, R3 = R6 = Pr
   R1 = R2 = R3 = R4 = R5 = R6 = Me, Et
   R1 = R4 = Me, R2 = R5 = Et, R3 = R6 = Pr
     R1 = R2 = R3 = R4 = R5 = R6 = Me, Et
     R1 = R2 = R4 = R5 = Et, R3 = R6 = Me
     R1 = R4 = Me, R2 = R5 = Et, R3 = R6 = Pr
```

$$\begin{array}{c} Me \\ N \\ N \\ R \end{array}$$

$$R = H, CH2OH$$

$$\bigcap_{N \oplus}^{Me} \bigcap_{Me} \bigcap$$

- 2. (previously presented): A compound according to claim 1, wherein Y_1 and Y_2 are each N.
- 3. (currently amended): A compound according to claim 1, wherein R_7 , R_7 , R_8 , $\underline{Y_1}$ and R_8 : $\underline{Y_2}$ are each hydrogen different.

4. (previously presented): A compound according to claim 1, wherein R_1 to R_6 are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{1-10} alkylene, optionally substituted aryl, and optionally substituted heterocycloalkyl, or

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached form a heterocycloalkyl group; wherein said optional substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_2 . alkynyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $OC(O)(C_{1-6}$ alk

- 5. (previously presented): A compound according to claim 1, wherein A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, and -C(O)-, wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, hydroxyl, halogen, NO₂, C(O)R₁₀, OR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, SR₁₁, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl.
- 6. (previously presented): A compound according to claim 1, wherein the length of A is from 5 to 9 carbon atoms.

7. (previously presented): A compound according to claim 1, of Formula (Ia):

wherein

Y₁ and Y₂ may be the same or different and are independently selected from N and P;

 R_1 to R_6 may be the same or different and are independently selected from the group consisting of optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), $O(C_{1-6}$ alkyl), $O(C_{1-6}$

 R_1 and R_2 together with the Y_1 group to which they are attached may optionally form a heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, $O(C_{1-6}$ alkyl), $C(O)O(C_{1-6}$ alkyl), amino, hydroxy C_{1-6} alkyl, and aryl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, and optionally substituted phenyl, wherein the length of A is from 5 to 18 carbon atoms, and wherein the substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, halogen, C(O)R₁₀, OR₁₁, SR₁₁, CH₂OR₁₁, CH₂NR₁₂R₁₃, NR₁₂R₁₃, CONR₁₂R₁₃, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR_{11} , C_{1-6} alkyl;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, and optionally substituted C_{3-10} cycloalkyl, wherein said optional substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, aryl, and hydroxyl;

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted C_{3-10} cycloalkyl, optionally substituted alkylheteroaryl, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, aryl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$, and salts thereof.

8. (previously presented): A compound according to claim 1, selected from 1,11-bis-(tributylammonium)undecane, 1,16-bis-(tributylammonium)hexadecane, 1,12-bis-(tripentylammonium)dodecane, 1,12-bis-(trihexylammonium)dodecane, 1,12-bis-(triisobutylammonium)dodecane, 1,12-bis-(triisopentylammonium)dodecane, and 1,12-bis-(1-butylpyrrolidinium)dodecane, and salts thereof.

9. (previously presented): A method for one or more of treating, inhibiting, and preventing a bacterial or fungal infection in a vertebrate, said method comprising administering to said vertebrate an effective amount of at least one compound of Formula (II):

$$\begin{array}{c}
R_1 \oplus \\
R_2 \longrightarrow Y_1 - C(R_7 R_{7'}) - (A) \longrightarrow C(R_8 R_{8'}) \longrightarrow Y_2 \longrightarrow R_5 \\
R_3 & R_6
\end{array}$$
(II)

wherein

Y₁ and Y₂ may be the same or different and are independently selected from N and P; R₁ to R₆ may be the same or different and are independently selected from the group consisting of optionally substituted C₁₋₁₀ alkyl, optionally substituted C₂₋₁₀ alkenyl, optionally substituted C₂₋₁₀ alkynyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heterocycloalkyl, wherein said substituents are independently selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, hydroxyl, halogen, O(C₁₋₆ alkyl), C(O)O(C₁₋₆ alkyl), NO₂, amino, hydroxy C₁₋₆ alkyl, aryl, OC(O)Ph, and =C(Ph)₂; or

 R_1 and R_2 together with the Y_1 group to which they are attached, or R_1 , R_2 and R_3 together with the Y_1 group to which they are attached may optionally form an heterocycloalkyl group; and R_4 and R_5 together with the Y_2 group to which they are attached, or R_4 , R_5 and R_6 together with the Y_2 group to which they are attached may optionally form a heterocycloalkyl group; wherein each of said heterocycloalkyl groups may be optionally substituted with one or more groups selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, hydroxyl, and halogen, $O(C_{1-6}$ alkyl), $O(O)O(C_{1-6}$ alkyl), O(O)O(

 R_7 , $R_{7'}$, R_8 and $R_{8'}$ may be the same or different and are independently selected from hydrogen, F and Cl;

A comprises one or more groups selected from optionally substituted alkylene, optionally substituted alkenylene, optionally substituted phenyl, optionally substituted C_{5-7} cycloalkyl, and -C(O)-, wherein the length of A is from 4 to 18 carbon atoms, wherein the substituents are independently selected from C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl, halogen, nitro, $C(O)R_{10}$, OR_{11} , CH_2OR_{11} , $CH_2NR_{12}R_{13}$, SR_{11} , $NR_{12}R_{13}$, $CONR_{12}R_{13}$, amino acids, dipeptidyl, tripeptidyl, tetrapeptidyl and pentapeptidyl;

 R_{10} is selected from OH, OR₁₁, C_{1-6} alkyl, optionally substituted amino- C_{1-6} -alkylsulfonate, optionally substituted amino- C_{1-6} -alkyl-guanidinyl, and optionally substituted amino- C_{1-6} -alkyl-tri(C_{1-6} -alkyl)ammonium;

 R_{11} is selected from the group consisting of hydrogen, optionally substituted $C_{1\text{-}10}$ alkyl, optionally substituted $C_{2\text{-}10}$ alkenyl, optionally substituted $C_{2\text{-}10}$ alkynyl, optionally substituted $C_{3\text{-}10}$ cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted amino- $C_{1\text{-}6}$ -alkylsulfonate, optionally substituted amino- $C_{1\text{-}6}$ -alkylphophonate, optionally substituted amino- $C_{1\text{-}6}$ -alkyl-guanidinyl, and optionally substituted amino- $C_{1\text{-}6}$ -alkyl-tri($C_{1\text{-}6}$ -alkyl)ammonium, wherein said optional substituents are independently selected from $C_{1\text{-}4}$ alkyl, hydroxyl and halogen

 R_{12} and R_{13} are independently selected from the group consisting of hydrogen, optionally substituted C_{1-10} alkyl, optionally substituted C_{2-10} alkenyl, optionally substituted C_{2-10} alkynyl, optionally substituted arylalkyl, optionally substituted arylalkyl, optionally substituted alkylheteroaryl, optionally substituted amino- C_{1-6} - alkylsulfonate, optionally substituted amino- C_{1-6} -alkylphophonate, optionally substituted amino- C_{1-6} -alkylguanidinyl, and optionally substituted amino- C_{1-6} -alkyl-tri(C_{1-6} - alkyl)ammonium, wherein said substituents are independently selected from C_{1-3} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$; or

 R_{12} and R_{13} , together with the nitrogen atom to which they are attached may form an optionally substituted heterocycloalkyl group, wherein said substituents are independently selected from C_{1-3} alkyl, hydroxyl, halogen, amino, and $C(O)OR_{11}$.

- 10. (previously presented): The method according to claim 9, wherein said compound is a compound of Formula (I) as defined in claim 1.
- 11. (previously presented): The method according to claim 9, wherein the infection is a fungal infection.
- 12. (previously presented): The method according to claim 9, wherein the infection is a bacterial infection.
- 13. (previously presented): A method of inhibiting phospholipase in an organism comprising contacting said organism with an effective amount of at least one compound of Formula (I) or at least one compound of Formula (II).
- 14. (previously presented): The method according to claim 13, wherein the organism is selected from bacteria, fungi, virus, and parasite.

- 15. (previously presented): The method according to claim 13, wherein the phospholipase is Phospholipase B.
- 16. (previously presented): The method according to claim 13, wherein the organism is selected from the group consisting of: bacteria, fungi and virus.
- 17. (previously presented): A method for identifying an antimicrobial agent comprising contacting microbial cells with a compound of Formula (I) or Formula (II) suspected of having antimicrobial properties, determining whether said compound inhibits a microbial phospholipase enzyme, wherein inhibition of said phospholipase enzyme indicates antimicrobial activity, and thereby identifying an antimicrobial agent.
 - 18. (cancelled)
 - 19. (cancelled)