第六次機率與統計作業

F74094017 資訊 113 李昆翰

一、手寫部分:


```
F74094017
```

李昆彰的

(6.20) u=8(kg), 0=0.9(kg)

(a) the transfermation $Z = \frac{9.5 \cdot 8}{0.9} = \frac{15}{9} = \frac{5}{3} = 1.67$

: by normal distribution

P(X79.5) = P(7,71.69) = 1-P(7(1.24) = 1-0.9525 = 0.0475 (in weights)

(b) the transformation $Z = \frac{8.6-8}{0.9} = \frac{0.6}{0.9} = \frac{2}{3} = 0.67$ The promal distribution, $P(X \leq 8.6) = P(Z \leq 0.67) = 0.7486 \text{ (in weights)} \text{ fl}$

the transformation Z, for X=9.3: $\frac{7.3-8}{0.9}=\frac{-0.6}{0.9}\pm-0.69$ the transformation Z₂ for X=9.1: $\frac{9.1-8}{0.9}\pm\frac{11}{9}=1.22$ iby normal distribution,

P(2.3 < X < 9.1) = P(-0.67 < Z < 1.22) = P(2 < 1.22) - P(2 < -0.67)= 0.8888 - 0.2514 = 0.6374 (in weights) #

[6.28]

N= 1000, p=72%=0.72, n=100

(a.)

By the property of binomial distribution, we can get smean $M = 100 \times 0.72 = 72$

Listandard diviation 0 = \$100x0.72x(1-0.72) = \$100.0.72.0.28 = 4.49

Since N is large, we apply normal approximation to the binomial for 100 students of 1000 such that transformation $Z_1 = \frac{80-72}{4.49} = 1.18$

2. by normal distribution (with approximation to the binomial), $P(X \ge 80) = 1 - \sum_{x=0}^{80} b(x); (100, 0.172) = P(Z \ge 1.78) = 1 - P(X < 1.78) = 1 - 0.9625 = 0.0375$

(b.) Since N is large, we apply normal approximation to the binomial for 100 students of 1000 such that transformation $Z = \frac{68-72}{4.49} = -0.89$

. by normal distribution (with approximation to the biromial), $P(X \le 68) = \sum_{n=0}^{68} b(x), 100, 0.72) = P(Z < -0.89) = 0.1869 + 0.1869$

二、matlab 部分:

HW6_1a:

HW6_1b:

以上 4 張圖主要都在是因應 ρ = [0, 0.3, 0.8, -0.8]而形成的結果。由 4 張結果圖可以發現,當 $|\rho|$ 越大時,圖中的形狀會更像一個橢圓形,且若 ρ 是正的,它原本的長軸是會偏向由左下到右上的形式,也就是斜率為正;同理和上圖數據也可得,若 ρ 是負的,則相反。當 $|\rho|$ 越小或為 0,則整體會趨近於一個圓形,且 ρ 為 0 時,長軸和短軸是相等的。

HW6_2a:

HW6_2b:

在圖中的 case 1 和 case 2 中,由於他們的 Distribution 1 的 σ x 的不同(一個是 30、另一個是 20),除了造成兩邊的 distribution 1 plot 出來的圖大小不一樣以外,也造成了他們的 decision boundary 的不同。在 case 1 中,由於 Distribution 1 和 2 的 σ x 一樣,所以 plot 出來的 decision boundary

是切了個趨近於一半的範圍;在 case 2 中,由於 Distribution 1 的 σ_x 比 Distribution 2 大,所以造成了切出來的空間右邊明顯比左邊要大得多。

HW6_3a: 選擇的是第一張影像。

HW6_3b:(取 200 個 bins)

HW6_3c:

由反覆測試的結果,我設定 4 個 intensity range 為: background -> 200~400, tissue1 -> 200~550, tissue 2 -> 550~1000; tissue 3 -> 1000~1308

(為了 tissue1 的精度,所以我選擇讓 tissue 1 和 backgraound 的 range 重疊起來,也因此造成 tissue 1 的背景反白)

HW6_3d:

由 HW6_3d 的結果圖樣貌和 HW6_3b 的真實情況的比對結果可知,兩者的形狀蠻相像的。我推測原因可能為我把 background 的範圍含進了 tissue1 的範圍中,因此兩邊的高峰結構才會這麼的相像。除此之外,

HW6_3b 的 histogram 是由 14 張 MRI 影像圖得出來的結果,因此對於結果 會和常態分佈有點像我覺得是蠻合理的一件事(儘管中間高峰的結構有點 明顯的左陡右緩)。