

Bike Sharing Demand Prediction

Project Deliverable 2

Team members: Tobias Hanl (th2999), Shuyu He (sh4330), Jingyi Feng (jf3495), Mendel Branover (mb4869), Zixiang Yin (zy2444)

Data Exploration - Variables

- A total of 10,866 observations with 12 features
- Five categorical features: datetime, season, holiday, workingday, and weather
- No missing values in the dataset
- Highly Skewed targets (casual, registered, count)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 12 columns):

#	Column	Non-Nu	ill Count	Dtype
0	datetime	10886	non-null	object
1	season	10886	non-null	int64
2	holiday	10886	non-null	int64
3	workingday	10886	non-null	int64
4	weather	10886	non-null	int64
5	temp	10886	non-null	float64
6	atemp	10886	non-null	float64
7	humidity	10886	non-null	int64
8	windspeed	10886	non-null	float64
9	casual	10886	non-null	int64
10	registered	10886	non-null	int64
11	count	10886	non-null	int64

Data Preprocessing - Variables

- Rename count to total to avoid conflict with built-in functions
- Log transform the targets
- Enrich the dataset by parsing the datetime
 into year, month, day, hour, and dayofweek

```
df = df.rename({'count': 'total'}, axis=1)
df.head(5)
```

```
df['year'] = pd.DatetimeIndex(df.datetime).year
df['month'] = pd.DatetimeIndex(df.datetime).month
df['day'] = pd.DatetimeIndex(df.datetime).day
df['hour'] = pd.DatetimeIndex(df.datetime).hour
df['dayofweek'] = pd.DatetimeIndex(df.datetime).dayofweek
df = df.drop("datetime", axis=1)
df.head()
```


Data Exploration - Correlation Analysis

- temp and atemp have almost perfect correlation, so one can be dropped
- month and season have an almost perfect correlation, so season could potentially be dropped
- temp has a positive correlation with total (+0.37) and registered (0.33), and especially casual (+0.53)
- hour has positive correlation with total (+0.57),
 registered (+0.57) and a bit less with casual (+0.42)
- humidity has a negative correlation with total
- dayofweek and workingday have a positive and negative correlation with casual respectively, but do not influence registered much
- season has some positive correlation with all targets
- humidity has negative correlation with all targets
- windspeed, year and month have slight positive correlation with all targets
- holiday and day have little correlation with any target
- workingday can also be dropped since it is just a combination of dayofweek and holiday.

Correlation heatmap between 16 features

Data Visualization - Boxplots

Total against year, workingday, holiday, day, season, month, dayofweek, hour, weather

Data Visualization - Pointplot

Total against hour, categorized by season, casual/registered, dayofweek

Observations:

- We can see a clear bimodal trend in both the second and the third plot:
 - During weekdays, the peak of bike rental time is around 8 am and around 5 pm to 6 pm (rush hours)
 - The peak of bike rental time for registered riders is also around 8 am and around 5 pm to 6 pm (rush hours)
- 2. During weekends, the plot is unimodal: the peak of bike rental time is around 11 am to 4 pm

Data Visualization - Line Plots

Total against humidity, windspeed, temp, month, month by year

Observations:

- Higher humidity, lower bike rentals in general, but if humidity is under 20, we can see a significant drop
- Windspeed generally does not influence bike rentals, but we can see a huge drop occur when windspeed is around 50
- Higher temperature, higher bike rentals in total
- The peak of bike rentals starts in June and ends in October
- More bike rentals in 2012 than in 2011

Weather seems to influence bike rentals a lot (higher rentals if the weather is good, i.e., humidity around 20 and temperature around 30 to 35 °C).

Data Visualization - Histogram

Distribution of rentals by weather and season

Observations:

- There appear to be more rentals in the Fall season and fewer in Spring.
- The rentals appear to generally decrease as wind speed and humidity increase
- The rentals appear to increase as atemp increases until around 35 degrees
- It appears that most rentals are on clear sky days

Methodology & Feature Engineering

Big Picture:

- Build two types of models for predicting the targets: Regression v.s. Time Series
- Predict total directly v.s. registered + casual to get total

Feature Engineering for regression on *total* directly (current progress):

- Drop features: datetime, day, temp, season, workingday
- Ordinal encoding year
- One-hot encoding weather
- Target encoding month, dayofweek, hour
- Normalize the transformed features

Preliminary ML Model Training & Results:

- We selected 6 regression models Elastic Net, KNN, Linear SVM, Decision Tree, Random Forest, and HistGradient Boosting
 and trained them on both original (first row) and transformed features (second row)
- R square is used as the metric during cross-validation for comparing model performance and doing model selection as shown below
- Before feature engineering, no model achieves a score higher than 0.2.
- After feature engineering, the lowest score of 0.7258 was achieved by KNN
- Among all models. HistGradient Boosting Regression reached the best performance score of 0.8929.
 Model Selection using R2

1.10