What is Claimed:

1. A process for synthesizing a compound of formula I

comprising contacting a compound of formula i

with a compound of formula xx

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$ or $(CH_2)_r(heterocycle)$, wherein r is 0, 1, 2, 3, or 4;

 R^1, R^2, R^3, R^6, R^7 , and R^8 are, independently, H or $C_1\text{-}C_{10}$ alkyl;

R⁴ and R⁹ are, independently, H or an acid labile hydroxyl protecting group;

R¹⁰ is hydrogen or C₁-C₆ alkyl;

R²⁵ is hydrogen or an oxidation labile hydroxyl protecting group;

X1 and X2 is, independently, a halogen, triflate, tosylate, or mesylate; and

J is

$$R^{15}O = R^{14}O = R^{1$$

 R^{11} , R^{12} and R^{13} are each independently H or C_1 - C_{10} alkyl; and R^{14} and R^{15} are, independently, H or an acid labile hydroxyl protecting group.

2. The process of claim 1, further comprising

; wherein

subjecting the process to a catalytically effective amount of a cross-coupling metal catalyst.

- 3. The process of claim 2, wherein the cross-coupling metal catalyst comprises nickel or palladium.
- 4. The process of claim 2, wherein the cross-coupling metal catalyst is Pd(0).
- 5. The process of claim 2, further comprising contacting the compound of formula i with a metallating agent, wherein the metallating agent is a compound containing boron, zinc, tin, magnesium, or aluminum, or a combination thereof.
- 6. The process of claim 5, wherein the metallating agent is a compound containing boron.
- 7. The process of claim 5, wherein the metallating agent is MeO-9-BBN.
- 8. The process of claim 5, wherein the metallating agent is a compound containing zinc.
- 9. The process of claim 5, wherein the metallating agent is ZnCl₂.
- 10. The process of claim 1, wherein at least one of X^1 and X^2 are iodo.
- 11. The process of claim 1, wherein R⁰ is ethylenyl.
- 12. The process of claim 1, wherein R¹, R², R³, R⁶, R⁷, and R⁸ are, independently, H or C₁-C₃ alkyl.
- 13. The process of claim 1, wherein R¹, R², R³, R⁶, R⁷, and R⁸ are CH₃.
- 14. The process of claim 1, wherein R⁴ and R⁹, independently, are *tert*-butyldimethylsi1yl, triethylsilyl, methoxymethyl, methylthiomethyl, 2-methoxymethyl, acetyl, benzyloxymethyl, 2-(trimethylsilyl)ethoxymethyl or allyl.
- 15. The process of claim 1, wherein R⁴ is tert-butyldimethylsilyl.
- 16. The process of claim 1, wherein R⁹ is methoxymethyl.
- 17. The process of claim 1, wherein R^{10} is CH_3 .
- 18. The process of claim 1, wherein R^{11} , R^{12} and R^{13} are CH_3 .

19. The process of claim 1, wherein R¹⁴ and R¹⁵ are, independently, *tert*-butyldimethylsilyl, triethylsilyl, methoxymethyl, methylthiomethyl, 2-methoxymethyl, acetyl, benzyloxymethyl, 2-(trimethylsilyl)ethoxymethyl or allyl.

- 20. The process of claim 1, wherein R¹⁴ and R¹⁵ are, independently, *tert*-butyldimethylsilyl or methoxymethyl.
- 21. The process of claim 1, wherein R^{25} is para-methoxybenzyl.
- 22. The process of claim 1, wherein J is

23. The process of claim 1, wherein J is

$$R^{14}O$$
 $R^{14}O$
 R^{11}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{14}
 R^{14}
 R^{15}
 R^{15}
 R^{12}
 R^{12}
 R^{12}
 R^{13}
 R^{14}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

24. The process of claim 1, wherein J is

25. The process of claim 1, wherein J is

26. The process of claim 1, further comprising a step of synthesizing a compound of formula Π

contacting the compound of formula I with an oxidizing agent to form a

deprotected compound, and

contacting the deprotected compound with Cl₃CCONCO in the presence of a hydrolyzing agent.

27. The process of claim 26, wherein the oxidizing agent is 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

- 28. The process of claim 26, wherein the hydrolyzing agent is Al₂O₃.
- 29. A process for synthesizing a compound of formula III

Ш

comprising contacting a diene of formula xi

with a lactone of formula xxi

wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^{11} , and R^{12} are, independently, H or C_1 - C_{10} alkyl;

R⁴, R⁹, R¹⁴, and R¹⁵ are, independently, an acid labile hydroxyl protecting group;

R¹⁰ is hydrogen or C₁-C₆ alkyl;

 R^{25} is hydrogen or an oxidation stable hydroxyl protecting group; and X^1 and X^2 are, independently, a halogen, triflate, tosylate, or mesylate.

- 30. The process of claim 29, further comprising subjecting the process to the presence of a catalytically effective amount of a cross-coupling metal catalyst.
- 31. The process of claim 29, wherein the cross-coupling metal catalyst comprises nickel or palladium.
- 32. The process of claim 29, wherein the cross-coupling metal catalyst is Pd(0).
- 33. The process of claim 29, further comprising contacting the compound of formula xi with a metallating agent, wherein the metallating agent is a compound containing boron, zinc, tin or magnesium or aluminum.
- 34. The process of claim 33, wherein the metallating agent is a compound containing boron.
- 35. The process of claim 33, wherein the metallating agent is MeO-9-BBN.
- 36. The process of claim 36, wherein the metallating agent is a compound containing zinc.
- 37. The process of claim 33, wherein the metallating agent is ZnCl₂.
- 38. The process of claim 29, wherein at least one of X^1 and X^2 are iodine.
- 39. The process of claim 29, wherein R^1 , R^2 , R^3 , R^6 , R^7 , R^8 , R^{11} , and R^{12} are methyl.
- 40. The process of claim 29, wherein R⁴, R⁹, R¹⁴, and R¹⁵ are, independently, tert-butyldimethylsilyl or methoxymethyl.
- 41. The process of claim 29, wherein R¹⁰ is hydrogen.
- 42. The process of claim 29, wherein R²⁵ is para-methoxy benzyl.
- 43. A process for synthesizing a halogenated alkylene of formula i

comprising:

contacting an alkenyl of formula ii

$$R^0$$
 R^1 R^2 R^3 OR^{10a} with a mild acid; and

adding to the process $(X^1)_2$ in the presence of $P(R^{18})_3$; wherein:

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$ or $(CH_2)_r(heterocycle)$, wherein r is 0, 1, 2, 3, or 4;

 R^1 , R^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group;

 R^{18} is C_6 - C_{14} aryl;

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group; and

X¹ is a halogen, triflate, to sylate, or mesylate.

- 44. The process of claim 43 wherein \mathbb{R}^0 is ethylene.
- 45. The process of claim 43 wherein \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 are each methyl.
- 46. The process of claim 43 wherein \mathbb{R}^4 is para-methoxybenzyl.
- 47. The process of claim 43 wherein R¹⁸ is phenyl.
- 48. The process of claim 43 wherein \mathbb{R}^{25} is *tert*-butyldimethylsilyl.
- 49. The process of claim 43 wherein X^1 is iodo.
- 50. The process of claim 43, wherein R^{10a} is trityl.
- 51. A process of synthesizing a compound of formula ii

comprising:

contacting an aldehyde of formula iii

$$OR^{\frac{1}{2}} OR^{\frac{10a}{10a}}$$
with $R^{0}CH = P(R^{18})_{3}$;

wherein

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(C_{3-6}$ alkyl) or $(CH_2)_r(C_{3-6}$ alkyl), $(CH_2)_r(C_{3-6}$ alkyl), (C

 $R^1,\,R^2$, and R^3 are, independently, H or $C_1\text{-}C_{10}$ alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group;

 R^{18} is R^{18} is C_6 - C_{14} aryl; and

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group.

- 52. The process of claim 51 wherein R⁰ is ethylene.
- 53. The process of claim 51 wherein R^1 , R^2 and R^3 are each methyl.
- 54. The process of claim 51 wherein R⁴ is para-methoxybenzyl.
- 55. The process of claim 51 wherein R¹⁸ is phenyl.
- 56. The process of claim 51 wherein R²⁵ is tert-butyldimethylsilyl.
- 57. The process of claim 51, wherein R^{10a} is trityl.
- 58. The process of claim 52, wherein the compound of formula iii is contacted with allyldiphenylphosphine instead of $R^0CH = P(R^{18})_3$.
- 59. A process of synthesizing a compound of formula iv

$$\stackrel{R^1}{=} \stackrel{R^2}{\stackrel{R^3}{=}} OR^{10a}$$
 iv $OR^{25} OR^4$, comprising

contacting a compound of formula vi

formula v

$$\begin{array}{c|cccc}
& R^1 & R^2 & R^3 \\
\hline
& OH & OR^4 & , and
\end{array}$$

reacting a compound of formula v with R²⁵ O CCl₃; wherein

 R^1 , \mathbf{R}^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group; and

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group.

- 60. The process of claim 59 wherein R^1 , R^2 and R^3 are each methyl.
- 61. The process of claim 59 wherein R⁴ is para-methoxybenzyl.
- 62. The process of claim 59 wherein R²⁵ is tert-butyldimethylsilyl.
- 63. The process of claim 59, wherein R^{10a} is trityl.
- 64. A process of forming a compound of formula viii

contacting a compound of formula x

$$R^{3}$$
 OR R^{10a} V^{1} N^{2} to form a compound of formula R^{0} R^{2} R^{3} R^{0} , and

converting the compound of formula ix to a compound of formula vi

$$R^2$$
 R^3 OR^{10a} VI O OR^4 ; wherein

 \mathbb{R}^0 is $\mathbb{C}_{1\text{-}6}$ alkyl, $\mathbb{C}_{2\text{-}6}$ alkenyl, $\mathbb{C}_{2\text{-}6}$ alkynyl, $(\mathbb{C}H_2)_r(\mathbb{C}_{3\text{-}6}$ cycloalkyl),

(CH₂)_r(aryl) or (CH₂)_r(heterocycle), wherein r is 0, 1, 2, 3, or 4;

R² and R³ are, independently, H or C₁-C₁₀ alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group; and

Y¹ and Y² are, independently, O or S.

- 65. The process of claim 64 wherein R⁰ is benzyl.
- 66. The process of claim 64 wherein R^2 and R^3 are each methyl.
- 67. The process of claim 64 wherein R⁴ is para-methoxybenzyl.
- 68. The process of claim 64 wherein R^{10a} is trityl.
- 69. A process for synthesizing a halogenated alkylene of formula i

$$\begin{array}{c|c}
R^0 & R^1 & R^2 & R^3 \\
\hline
i & OR^{25} & OR^4
\end{array}$$

comprising,

contacting an alcohol of formula iia

iia
$$R^0$$
 R^1 R^2 R^3 OH with $(X^1)_2$ in the presence of $P(R^{18})_3$;

yielding the compound of formula iia by contacting an alkylene of formula ii

ii
$$R^0$$
 R^1 R^2 R^3 R^3 R^4 with a mild acid; R^0 R^0 R^1 R^2 R^3 R

forming the compound of formula ii by contacting an aldehyde of formula iii

producing the compound of formula iii by subjecting a compound of formula iv

resulting in the compound of formula iv by contacting a compound of formula v

$$\begin{array}{c|c} R^1 & R^2 & R^3 \\ \hline \vdots & & & \\ OH & OR^4 & \text{with} \end{array} \begin{array}{c} NH \\ R^{25} & OCCl_{a_3} \end{array}$$

synthesizing the compound of formula v by contacting a compound of formula vi

producing the compound of formula vi by contacting a compound of formula vii

HO
$$R^2$$
 R^3 OR^{10a} with an oxidizing agent;

forming the compound of formula vii by contacting a compound of formula viii

$$V_{111}$$
 V_{1} V_{1} V_{2} V_{1} V_{2} V_{3} V_{4} V_{5} $V_$

synthesizing the compounds of formula viii and by protecting a hydroxyl moiety of a compound of formula ix

$$R^0$$
 R^2
 R^3
 R^{10a}
 R^2
 R^3
 R^3

yielding the compounds of formula ix and ix' by contacting a compound of formula x

 R^0 is $\mathrm{C}_{1\text{-}6}$ alkyl, $\mathrm{C}_{2\text{-}6}$ alkenyl, $\mathrm{C}_{2\text{-}6}$ alkynyl, $(\mathrm{CH}_2)_r(\mathrm{C}_{3\text{-}6}$ cycloalkyl), $(\mathrm{CH}_2)_r(\mathrm{aryl})$ or

(CH₂)_r(heterocycle), wherein r is 0, 1, 2, 3, or 4;

 R^1 , R^2 , and R^3 are, independently, H or C_1 - C_{10} alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

R^{10a} is a hydroxyl protecting group;

 R^{18} is C_6 - C_{14} aryl;

R²⁵ is hydrogen or an oxidatively labile hydroxyl protecting group;

X1 is a halogen, triflate, tosylate, or mesylate; and

 Y^1 and Y^2 are, independently, S or O.

- 70. The process of claim 69 wherein R^0 is benzyl.
- 71. The process of claim 69 wherein R^1 , R^2 and R^3 are each methyl.
- 72. The process of claim 69 wherein R⁴ is para-methoxybenzyl.
- 73. The process of claim 69 wherein R¹⁸ is phenyl.
- 74. The process of claim 69 wherein R²⁵ is tert-butyldimethylsilyl.
- 75. The process of claim 69 wherein X^1 is iodo.
- 76. The process of claim 69, wherein R^{10a} is trityl.
- 77. A compound of formula viii

$$viii \qquad \begin{array}{c} R^0 \\ R^2 \\ Q \\ O \\ O \\ R^4 \end{array} \qquad \begin{array}{c} R^{10a} \\ R^{10$$

wherein

 R^0 is C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, $(CH_2)_r(C_{3-6}$ cycloalkyl), $(CH_2)_r(aryl)$ or $(CH_2)_r(aryl)_r(cH_2)_r$

R² and R³ are, independently, H or C₁-C₁₀ alkyl;

R⁴ is H or an acid labile hydroxyl protecting group;

 R^{10a} is a hydroxyl protecting group; and

 Y^1 and Y^2 are, independently, S or O.

- 78. The compound of claim 77 wherein R^0 is benzyl.
- 79. The compound of claim 77 wherein R^2 and R^3 are each methyl.
- 80. The compound of claim 77 wherein R⁴ is para-methoxybenzyl.
- 81. The compound of claim 77 wherein R^{10a} is trityl.
- 82. The compound of claim 77 wherein at least one of Y^1 and Y^2 is S.
- 83. The compound of claim 77 wherein at least one of Y^1 and Y^2 is O.