

第3章 词法分析

基础知识: PASCAL、C语言、正规表达式 正规文法、有限自动机

知识点:词法分析器的作用、地位

记号、模式

词法分析器的状态转换图

教学目标与要求

- 掌握单词符号的形式化描述和识别;
- ■掌握词法分析程序的设计方法。
- ■理解并分析词法分析的需求,能够基于自动机设计 词法分析程序,并能对输入符号串进行词法分析。

本章内容

简介

- 3.1 词法分析程序与语法分析程序的关系
- 3.2 词法分析程序的输入与输出
- 3.3 记号的描述和识别
- 3.4 词法分析程序的设计与实现
- 3.5 软件工具 LEX (*) 小结

简介

- ■词法分析任务由词法分析程序完成
- 本章内容安排

讨论手工设计并实现词法分析程序的方法和步骤

- □词法分析程序的作用
- □词法分析程序的地位
- □源程序的输入与词法分析程序的输出
- □单词符号的描述及识别
- □词法分析程序的设计与实现

词法分析程序的作用

- 词法分析程序的作用:
 - □扫描源程序字符流
 - □ 按照源语言的<mark>词法规则</mark>识别出各类单词符号
 - □产生用于语法分析的记号序列
 - □词法检查
 - □与用户接口的一些任务:
 - >跳过源程序中的注释和空白
 - >把错误信息和源程序联系起来
 - □创建符号表 (需要的话) 把识别出来的标识符插入符号表中

3.1 词法分析程序与语法分析程序的关系

- 三种关系:
 - □词法分析程序作为独立的一遍
 - □词法分析程序作为语法分析程序的子程序
 - □词法分析程序与语法分析程序作为协同程序

词法分析程序作为独立的一遍

■ 输出放入一个中间文件 磁盘文件 内存文件

词法分析程序作为语法分析程序的子程序

- 避免了中间文件
- ■省去了取送符号的工作
- 有利于提高编译程序的效率

wenshli@bupt.ea

词法分析程序与语法分析程序作为协同程序

■ 协同程序:

如果两个或两个以上的程 序,它们之间交叉地执行, 这些程序称为协同程序。

词法分析程序与语法 分析程序在同一遍中, 以生产者和消费者的 关系同步运行。

分离词法分析程序的好处

- 可以简化设计
 - □ 词法程序很容易识别并去除空格、注释,使语法分析程序 致力于语法分析,结构清晰,易于实现。
- ■可以改进编译程序的效率
 - □利用专门的读字符和处理记号的技术构造更有效的词法分析程序。
- ■可以加强编译程序的可移植性
 - □在词法分析程序中处理特殊的或非标准的符号。

3.2 词法分析程序的输入与输出

- 一、词法分析程序的实现方法
- 二、设置缓冲区的必要性
- 三、配对缓冲区
- 四、词法分析程序的输出

一、词法分析程序的实现方法

- 利用词法分析程序自动生成器
 - □从基于正规表达式的规范说明自动生成词法分析程序。
 - □生成器提供用于源程序字符流读入和缓冲的若干子程序
- 利用传统的系统程序设计语言来编写
 - □利用该语言所具有的输入/输出能力来处理读入操作
- 利用汇编语言来编写
 - □直接管理源程序字符流的读入

二、设置缓冲区的必要性

- 为了得到某一个单词符号的确切性质,需要超前扫描若干个字符。
- 有合法的FORTRAN语句:

- 为了区别这两个语句,必须超前扫描到等号后的第一个分界符处。
- Pascal语言中: do99、:=、(*
- C语言中: ==、/*、//、++、for_loop

三、配对缓冲区

■ 把一个缓冲器分为大小相同的两半,每半各含N个字符, 一般N=1KB或4KB。

开始指针

向前指针

■ 测试过程:

```
IF (向前指针在左半区的终点) { 读入字符串,填充右半区; 向前指针前移一个位置;
```

单缓冲区是否可行?

```
ELSE IF (向前指针在右半区的终点) {
    读入字符串,填充左半区;
    向前指针移到缓冲区的开始位置;
```

ELSE 向前指针前移一个位置;

每半区带有结束标记的缓冲器

IF (向前指针在左半区的终点) {

ELSE 终止词法分析;

读入字符串,填充右半区;

向前指针前移一个位置;

ELSE IF (向前指针在右半区的终点) {

读入字符串,填充左半区;

向前指针指向缓冲区的开始位置;

wenshli@bupt.edu.c

};

};

四、词法分析程序的输出:记号

- 记号、模式和单词
 - □记号:某一类单词符号的类别编码,如标识符的记号为id, 常数的记号为num等。
 - □模式:某一类单词符号的构词规则,如标识符的模式是 "由字母开头的字母数字串"。
 - □单词:某一类单词符号的一个特例,如position是标识符。
- ■记号的属性

理解:模式是限制记号的,指定记号的组成成份

单词就是某一类记号中的一个例子

记号的属性

- □ 词法分析程序在识别出一个记号后,要把与之有关的信息作为它的属性保留下来。
- 记号影响语法分析的决策,属性影响记号的翻译。
- 在词法分析阶段,对记号只能确定一种属性
 - □标识符:单词在符号表中的入口指针
 - □常数:它所表示的值
 - □关键字: (一符一种、或一类一种)
 - □运算符: (一符一种、或一类一种)
 - □分界符: (一符一种、或一类一种)

理解:属性是用来区分一类记号中每一个单词的东西列如,num指代常数类记号,而属性值规定了该num类记号的值,即指代num的值, 再例如,有常数4和5,均为num类,而属性值分别为4

17

total:=total+rate*4 的词法分析结果

```
<id, 指向标识符total在符号表中的入口的指针>
<assign op, ->
```

- <id, 指向标识符total在符号表中的入口的指针>
- <plus op, ->
- <id, 指向标识符rate在符号表中的入口的指针>
- <mul op, ->
- <num,整数值4>

wenshli@bupt.edu.cn

3.3 记号的描述和识别

- 识别单词是按照<u>记号的模式</u>进行的,一种记号的模 式匹配一类单词的集合。
 - □为设计词法程序, 对模式要给出规范、系统的描述。
- 正规表达式和正规文法是描述模式的重要工具。
 - □同等表达能力
 - □表达式:清晰、简洁
 - □文法:便于识别
 - 一、词法与正规文法
 - 二、记号的文法 理解:记号的描述
 - 三、状态转换图与记号的识别 理解:记号的识别

一、词法与正规文法

■把源语言的文法G分解为若干子文法:°°

- 词法: 描述语言的标识符、常数、运算符和标点符号等记号的文法 —— _{正规文法}
- 语法:借助于记号来描述语言的结构的文法
 - —— 上下文无关文法

二、记号的文法

- 标识符
- ■常数
 - □整数
 - □无符号数
- 运算符
- 分界符
- 关键字

理解:所谓记号的文法,应该就是指记号的模式

标识符

- ■假设标识符定义为"由字母打头的、由字母或数字组成的符号串"
- 描述标识符集合的正规表达式: 。 ○

letter (letter | digit)*

■表示标识符集合的正规定义式:

```
letter \rightarrow A | B |...| Z | a | b |...| z
digit \rightarrow 0 | 1 |...| 9
id \rightarrow letter ( letter | digit )*
```

正规表达式?

把正规定义式转换为相应的正规文法

```
( letter | digit )*
= \varepsilon \mid (\text{letter} \mid \text{digit})^+
= \varepsilon | (letter | digit) (letter | digit)*
= ε | letter ( letter | digit )* | digit ( letter | digit )*
= \varepsilon | (A|...|Z|a|...|z) (letter | digit)^*
     |(0|...|9)( letter | digit )^*
= \varepsilon | A (letter | digit)^* | ... | Z (letter | digit)^*
     | a ( letter | digit )* | ... | z ( letter | digit )*
     | 0 ( letter | digit )* | ... | 9 ( letter | digit )*
```

标识符的正规文法

```
id \rightarrow A \ rid \mid ... \mid Z \ rid \mid a \ rid \mid ... \mid z \ rid
rid \rightarrow \varepsilon \mid A \ rid \mid B \ rid \mid ... \mid Z \ rid
\mid a \ rid \mid b \ rid \mid ... \mid z \ rid
\mid 0 \ rid \mid 1 \ rid \mid ... \mid 9 \ rid
```

■ 一般写作:

id → letter ridrid → ϵ | letter rid | digit rid

常数——整数

■ 描述整数结构的正规表达式为: (digit)+

■对此正规表达式进行等价变换:

 $(digit)^+ = digit(digit)^*$ $(digit)^* = \varepsilon \mid digit(digit)^*$

■ 整数的正规文法:

 $digits \rightarrow digit \ remainder$ $remainder \rightarrow \epsilon \mid digit \ remainder$

理解: (di gi t)*的变换 方式

wenshli@bupt.edi

常数——无符号数

■ 无符号数的正规表达式为: (digit)+ (.(digit)+)? (E(+|-)?(digit)+)?

■ 正规定义式为

digit → 0 | 1 | ... | 9

digits → digit+

optional_fraction → (.digits)?

optional_exponent → (E(+|-)?digits)?

num → digits optional_fraction optional_exponent

把正规定义式转换为正规文法

```
( digit )+ (. ( digit )+)? ( E(+ | - )? ( digit )+)?

=( digit )+ (. ( digit )+ |ε ) ( E(+ | - |ε) ( digit )+ |ε )

=digit (digit)* (. digit ( digit )*|ε) ( E (+ | - |ε) digit ( digit )* |ε )
```

num1 表示无符号数的第一个数字之后的部分 num2 表示小数点以后的部分 num3 表示小数点后第一个数字以后的部分 num4 表示E之后的部分 num5 表示(digit)* digits 表示(digit)+

无符号数分析图

num5 表示(digit)*
digits 表示(digit)+

digits → **digit** num5 num5 → **digit** num5 | ϵ

无符号数的正规文法

```
num \rightarrow digit num1
num1 \rightarrow digit num1 \mid . num2 \mid E num4 \mid \varepsilon
num2 \rightarrow digit num3
num3 \rightarrow digit num3 \mid E num4 \mid \varepsilon
num4 \rightarrow + digits \mid - digits \mid digit num5
digits \rightarrow digit num5
num5 \rightarrow digit num5 \mid \epsilon
```

无符号数 4.6E-8 的分析树

运算符

■ 关系运算符的正规表达式为:

■ 正规定义式:

■ 关系运算符的正规文法:

$$relop \rightarrow < | < equal | = | < greater | > | > equal$$
 $greater \rightarrow >$
 $equal \rightarrow =$

三、状态转换图与记号的识别

- 状态转换图
- 利用状态转换图识别记号
- 为线性文法构造相应的状态转换图
 - □状态集合的构成
 - □状态之间边的形成

状态转换图

- ■状态转换图是一张有限的方向图
 - □图中结点代表状态,用圆圈表示。
 - □状态之间用有向边连接。
 - □边上的标记代表在射出结状态下,可能出现的输入符号或字符类。

□标识符的文法产生式:

id → letter ridrid → ϵ | letter rid | digit rid

- □标识符的状态转换图:
- 利用状态转换图识别记号
 - □ 语句DO99K=1.10 中标识符 DO99K

wenshli@bupt.edu.cn

为线性文法构造相应的状态转换图

- ■状态集合的构成
 - □对文法G的每一个非终结符号设置一个对应的状态
 - □文法的开始符号对应的状态称为初态
 - □增加一个新的状态,称为终态。

- ■状态之间边的形成
 - □对产生式A→aB,从A状态到B状态画一条标记为a的边
 - □对产生式A→a,从A状态到终态画一条标记为a的边
 - □对产生式A→ε,从A状态到终态画一条标记为ε的边

无符号数的右线性文法的状态转换图

```
num \rightarrow digit num1 | . num2 | E num4 | \epsilon num2 \rightarrow digit num3 | E num4 | \epsilon num3 \rightarrow digit num3 | E num4 | \epsilon num4 \rightarrow + digits | - digits | digit num5 digits \rightarrow digit num5 | \epsilon
```


3.4 词法分析程序的设计与实现

- 一、文法及状态转换图
 - 1. 语言说明
 - 2. 记号的正规文法
 - 3. 状态转换图
- 二、词法分析程序的构造
- 三、词法分析程序的实现
 - 1. 输出形式
 - 2. 设计全局变量和过程
 - 3. 编制词法分析程序

wenshli@bupt.edu.cn

一、文法及状态转换图

■语言说明

标识符:以字母开头的、后跟字母或数字组成的符号串。

保留字: 标识符的子集。

无符号数:同PASCAL语言中的无符号数。

关系运算符: <、<=、=、<>、>=、>。

标点符号: +、-、*、/、(、)、:、'、; 等。

赋值号: :=

注释标记:以'/*'开始,以'*/'结束。

单词符号间的分隔符: 空格

记号的正规文法

- 标识符的文法

 id → letter rid

 rid → ε | letter rid | digit rid
- 无符号整数的文法

 digits → digit remainder

 remainder → ε | digit remainder

记号的正规文法

■ 无符号数的文法

```
num \rightarrow digit \ num1

num1 \rightarrow digit \ num1 \mid . \ num2 \mid E \ num4 \mid \varepsilon

num2 \rightarrow digit \ num3

num3 \rightarrow digit \ num3 \mid E \ num4 \mid \varepsilon

num4 \rightarrow + digits \mid - digits \mid digit \ num5

digits \rightarrow digit \ num5

num5 \rightarrow digit \ num5 \mid \varepsilon
```

■关系运算符的文法

```
relop \rightarrow < |<equal | = |<greater |>|>equal |
greater \rightarrow >
equal \rightarrow =
```

记号的正规文法

■ 赋值号的文法

assign_op → :equal

equal → =

- 标点符号的文法single →+|-|*|/|(|)|:|'|;
- 注释头符号的文法
 note → / star
 star → *

状态转换图

wenshli@bupt.edu.cn

识别注释的DFA

习题3.1:

设某程序设计语言规定,其程序中的注释是由"/*"和"*/"括起来的字符串,注释中不能出现"*/",除非它们出现在双引号中(假设双引号必须配对使用),请给出识别该语言注释结构的DFAD。

wenshli@bupt.edu.

解答:

■ 识别形如/*....."....*/....*/的注释的DFA

二、词法分析程序的构造

- 把语义动作添加到状态转换图中,使每一个状态都对应一小 段程序,就可以构造出相应的词法分析程序。
- 如果某一状态有若干条射出边,则程序段:读一个字符,根据读到的字符,选择标记与之匹配的边到达下一个状态,即程序控制转去执行下一个状态对应的语句序列。
- 在状态0,首先要读进一个字符。若读入的字符是一个空格 (包括blank、tab、enter)就跳过它,继续读字符,直到读 进一个非空字符为止。接下来的工作就是根据所读进的非空 字符转相应的程序段进行处理。
- 在标识符状态,识别并组合出一个标识符之后,还必须加入一些动作,如查关键字表,以确定识别出的单词符号是关键字还是用户自定义标识符,并输出相应的记号。
- 在 "<" 状态,若读进的下一个字符是 "=",则输出关系运算符 "<=";若读进的下一个字符是 ">",则输出关系运算符 "<"。

三、词法分析程序的实现

- ■輸出形式
- ■设计全局变量和过程
- 编制词法分析程序

输出形式

- 利用翻译表,将识别出的单词的记号以二元式的形式加以输出
- 二元式的形式:

〈记号, 属性〉

■翻译表:

翻译表

正规表达式	记号	属性
if	if	<u> </u>
then	then	120
e1se	e1se	121
id	id	符号表入口指针
num	num	常数表入口指针 / va1
<	relop	LT
<=	relop	LE
=1	relop	EQ
\Diamond	relop	NE
>	relop	GT
>=	relop	GE
EE	assign-op	, (10)
+	+	
- F	- F	
*	a k	
1	1	8 <u>22</u> 9
((8 <u>44</u> 8
))	9 <u>00</u> 1
*	,	Policy Control of the
i	:	
	:	

wenshli@bupt.edu.cn

设计全局变量和过程

- (1) state: 整型变量, 当前状态指示。
- (2) C: 字符变量, 存放当前读入的字符。
- (3) token: 字符数组, 存放当前正在识别的单词字符串。
- (4) buffer:字符数组,输入缓冲区。
- (5) forward:字符指针,向前指针。
- (6) lexemebegin:字符指针,指向buffer中当前单词的开始位置。
- (7) get_char: 过程,每调用一次,根据forward的指示从buffer中读一个字符,并把它放入变量C中,然后,移动forward,使之指向下一个字符。
- (8) get_nbc: 过程,检查C中的字符是否为空格,若是,则反复调用过程get char,直到C中进入一个非空字符为止。
- (9) cat: 过程,把C中的字符连接在token中的字符串后面。
- (10) iskey:整型变量,值为-1,表示识别出的单词是用户自定义标识符,否则,表示识别出的单词是关键字,其值为关键字的记号。

设计全局变量和过程

- (11) letter:布尔函数,判断C中的字符是否为字母,若是则返回true,否则返回false。
- (12) digit: 布尔函数,判断C中的字符是否为数字,若是则返回true,否则返回false。
- (13) retract: 过程,向前指针forward后退一个字符。
- (14) reserve:函数,根据token中的单词查关键字表,若token中的单词是关键字,则返回值该关键字的记号,否则,返回值"-1"。
- (15) SToI: 过程,将token中的字符串转换成整数。
- (16) SToF: 过程,将token中的字符串转换成浮点数。
- (17) table_insert: 函数,将识别出来的标识符(即token中的单词)插入符号表,返回该单词在符号表中的位置指针。
- (18) error:过程,对发现的错误进行相应的处理。
- (19) return: 过程,将识别出来的单词的记号返回给调用程序。

词法分析程序(类C语言描述)

```
state=0;
DO {
SWITCH (state) {
 CASE 0: // 初始状态
   token=' '; get_char(); get_nbc();
   SWITCH (C) {
     CASE 'a': CASE 'b': ... CASE 'z': state=1; break; //设置标识符状态
     CASE '0': CASE '1': ... CASE '9': state=2; break; //设置常数状态
     CASE '<': state=8; break; //设置 '<' 状态
     CASE '>': state=9; break; //设置 '>' 状态
     CASE ':': state=10; break; //设置 ': ' 状态
     CASE '/': state=11; break; //设置 '/' 状态
     CASE '=': state=0; return(relop, EQ); break;
                                              //返回'='的记号
                                               //返回'+'的记号
     CASE '+': state=0; return('+', -); break;
                                               //返回'-'的记号
     CASE '-': state=0; return('-', -); break;
                                               //返回'*'的记号
     CASE '*': state=0; return('*', -); break;
                                               //返回'('的记号
     CASE '(': state=0; return('(', -); break;
                                               //返回')'的记号
     CASE ')': state=0; return(')', -); break;
                                               //返回';'的记号
     CASE ';': state=0; return('; ', -); break;
                                               //返回'"的记号
     CASE '\'': state=0; return('\'', -); break;
     default: state=13; break; //设置错误状态
    };
   break;
```

词法分析程序

```
letter / digit
CASE 1: // 标识符状态
                                                letter
                                                               other*
 cat();
 get_char();
 IF ( letter() || digit() ) state=1;
 ELSE {
   retract();
   state=0;
   iskey=reserve(); // 查关键字表
   IF (iskey!=-1) return (iskey, -); // 识别出的是关键字
   ELSE { // 识别出的是用户自定义标识符
      identry=table_insert(); // 返回该标识符在符号表的入口指针
      return(ID, identry);
    };
  };
 break;
```

词法分析程序

```
CASE 2:
          // 常数状态
                                 digit
 cat();
                              digit
 get_char();
 SWITCH (C) {
   CASE '0':
   CASE '1':
   CASE '9': state=2; break;
   CASE '.': state=3; break;
   CASE 'E': state=5; break;
   DEFAULT: // 识别出整常数
   retract();
   state=0;
   return(NUM, SToI(token)); // 返回整数
   break;
 };
 break;
```


本章小结

- 词法分析器的作用
- 与语法分析器的关系
 - □ 独立、子程序、协同程序
- 配对缓冲区
 - □ 必要性、算法
- 记号
 - □ 记号、模式、单词
 - □ 属性
 - □ 二元式形式 :〈记号,属性〉
 - □ 描述: 正规表达式、正规文法
 - □ 识别: 状态转换图

- 词法分析器的设计与实现
 - □ 各类单词符号的正规表达式
 - □ 各类单词符号的正规文法
 - □ 构造与文法相应的状态转换图
 - □ 合并为词法分析器的状态转换图
 - □ 增加语义动作,构造词法分析器 的程序框图
 - □ 确定输出形式、设计翻译表
 - □定义变量和过程
 - □ 编码实现

作业

- **3.2** (1) (4)
- **3.4**
- **3.8**
- **3.10**

wenshli@bupt.edu.cn

程序设计1

- 题目: C语言词法分析程序的设计与实现
- 实验内容及要求:
 - 1. 可以识别出用C语言编写的源程序中的每个单词符号,并以记号的 形式输出每个单词符号。
 - 2. 可以识别并跳过源程序中的注释。
 - 3. 可以统计源程序中的语句行数、各类单词的个数、以及字符总数, 并输出统计结果。
 - 4. 检查源程序中存在的词法错误,并报告错误所在的位置。
 - 5. 对源程序中出现的错误进行适当的恢复,使词法分析可以继续进行,对源程序进行一次扫描,即可检查并报告源程序中存在的所有词法错误。
- 💶 实现方法要求:分别用以下两种方法实现。

方法1:采用C/C++作为实现语言,手工编写词法分析程序。(必做)

方法2:编写LEX源程序,利用LEX编译程序自动生成词法分析程序。

实验报告要求

- 内容:
 - □实验题目、要求
 - □程序设计说明
 - □源程序
 - □可执行程序
 - □测试报告:输入、运行结果、分析说明
- 提交:
 - □个人资料打包
 - □命名规则:班级-学号-姓名
- QQ群作业线上提交。

补充: 文法及其形式定义

- 文法: 所谓文法就是描述语言的语法结构的形式规则。
- 任何一个文法都可以表示为一个四元组 $G=(V_T, V_N, S, \varphi)$ V_T 是一个非空的有限集合,它的每个元素称为终结符号。 V_N 是一个非空的有限集合,它的每个元素称为非终结符号。

$$V_T \cap V_N = \Phi$$

S是一个特殊的非终结符号, 称为文法的开始符号。

φ是一个非空的有限集合,它的每个元素称为产生式。

产生式的形式为: $\alpha \rightarrow \beta$

"→" 表示 "定义为" (或"由.....组成")

 α , $\beta \in (V_T \cup V_N)^*$, $\alpha \neq \epsilon$

左部相同的产生式 $\alpha \rightarrow \beta_1$ 、 $\alpha \rightarrow \beta_2$ 、.....、 $\alpha \rightarrow \beta_n$ 可以缩写 $\alpha \rightarrow \beta_1 |\beta_2|$ $|\beta_n|$

""表示"或",每个 β_i (i=1,2,...,n)称为 α 的一个候选式

文法的分类

根据对产生式施加的限制不同,定义了四类文法和相应的四种形式语言类。

文法类型	产生	三式形式的限制	文法产生的语言	类
0型文法	α→β 其中 α α ≠0	$\alpha, \beta \in (V_T \cup V_N)^*$	0型语言	
1型文法,	$\mathfrak{P} \qquad \alpha \rightarrow \beta$		1型语言,即	
上下文有关	美文法 其中	$\alpha, \beta \in (V_T \cup V_N)^*$	上下文有关语	言
	α ≤ β	<u> </u>		
2型文法,	P A→β		2型语言,即	
上下文无关	长文法 其中 』	$A \in V_N, \beta \in (V_T \cup V_N)^*$	上下文无关语	言
3型文法,	P A→a	或A→aB(右线性),	或 3型语言, 即	
正规文法	A→a ³	或A→Ba(左线性)	正规语言	
(线性文》	去) 其中 A	$A, B \in V_N, a \in V_T \cup \{\epsilon\}$		

上下文无关文法及相应的语言

- 所定义的语法单位(或称语法实体)完全独立于这种 语法单位可能出现的上下文环境。
- 现有程序设计语言中, 许多语法单位的结构可以用 上下文无关文法来描述。

例: 描述算术表达式的文法G:

 $G=(\{i,+,-,*,/,(,)\},\{\langle 表达式\rangle,\langle 项\rangle,\langle 因子\rangle\},\langle 表达式\rangle,\phi)$ 其中φ:

〈表达式〉→〈表达式〉+〈项〉│〈表达式〉-〈项〉│〈项〉 〈项>→〈项>*〈因子〉 | 〈项>/〈因子〉 | 〈因子〉 〈因子〉→(〈表达式〉) | i

■ 语言L(G)是所有包括加、减、乘、除四则运算的算 术表达式的集合。 0(0|1)*0

0*10*10*10*

文法书写约定

- ■终结符号
 - □次序靠前的小写字母,如:a、b、c
 - □运算符号,如:+、-、*、/
 - □各种标点符号,如:括号、逗号、冒号、等于号
 - □数字1、2、...、9
 - □黑体字符串,如:id、begin、if、then
- ■非终结符号
 - □次序靠前的大写字母,如:A、B、C
 - □大写字母S常用作文法的开始符号
 - □小写的斜体符号串,如:expr、term、factor、stmt

文法书写约定

- ■文法符号
 - □次序靠后的大写字母,如:X、Y、Z
- ■终结符号串
 - □次序靠后的小写字母,如: u、v、...、z
- ■文法符号串
 - □ 小写的希腊字母, 如: α 、 β 、 γ 、 δ
- 可以直接用产生式的集合代替四元组来描述文法, 第一个产生式的左部符号是文法的开始符号。

补充: 正规表达式

■ 用正规表达式可以精确地定义集合,如某语言的标识符,由字母开头、由字母或数字组成的符号串,正规表达式: letter(letter|digit)*

定义:字母表Σ上的正规表达式

- (1) E是正规表达式,它表示的语言是{E}
- (2) 如果a∈ Σ ,则a是正规表达式,它表示的语言是{a}
- (3) 如果r和s都是正规表达式,分别表示语言L(r)和L(s),则:
 - 1) (r)|(s) 是正规表达式,表示的语言是L(r)UL(s)
 - 2) (r)(s) 是正规表达式,表示的语言是L(r)L(s)
 - 3) (r)* 是正规表达式,表示的语言是(L(r))*
 - 4) (r) 是正规表达式,表示的语言是L(r)
- 正规表达式表示的语言叫做正规集。

正规表达式的书写约定

- 一元闭包 '*' 具有最高优先级,并且遵从左结合
- 连接运算的优先级次之, 遵从左结合
- 并运算'|'的优先级最低, 遵从左结合

例:如果 Σ ={a, b},则有:

正规表达式 a|b 表示集合 $\{a, b\}$

(a|b)(a|b) 表示: {aa, ab, ba, bb}

a*表示:由0个或多个a组成的所有符号串的集合

a|a*b 表示: a和0个或多个a后跟一个b的所有符号串的集合

(a|b)*表示:由a和b构成的所有符号串的集合

 $(\mathbf{a}^*|\mathbf{b}^*)^*$

■如果两个正规表达式r和s表示同样的语言,即L(r)=L(s),则称r和s等价,写作r=s。

如: (a|b)=(b|a)

wenshli@bupt.edu.cn

正规表达式遵从的代数定律

定律	说明
r s=s r	"并"运算是可交换的
r (s t)=(r s) t	"并"运算是可结合的
(rs)t=r(st)	连接运算是可结合的
r(s t)=rs rt	
(s t)r=sr tr	连接运算对并运算的分配
εr=r, rε=r	对连接运算而言, ε是单位元素
$r^*=(r \epsilon)^*$	*和ε之间的关系
r**=r*	*是等幂的
$r^*=r^+ \epsilon, r^+=rr^*$	+和*之间的关系

正规定义式

```
定义: 令 \sum是字母表, 正规定义式是如下形式的定义序列:
```

```
d_1 \rightarrow r_1
d_2 \rightarrow r_2
```

• • •

 $d_n \rightarrow r_n$

其中 d_i 是不同的名字, r_i 是 $\sum \bigcup \{d_1,d_2,...,d_{i-1}\}$ 上的正规表达式。

例: Pascal语言的无符号数可用如下的正规表达式来描述:

 $digit^{+}(.digit^{+}|\epsilon)(E(+|-|\epsilon)digit^{+}|\epsilon)$

正规定义式:

```
digit \rightarrow 0|1|...|9
digits \rightarrow digit digit*
optional_fraction \rightarrow .digits|\epsilon
optional_exponent \rightarrow (E(+|-|\epsilon)digits)| \epsilon
num \rightarrow digits optional_fraction optional_exponent
```

表示的缩写

- ■引入正闭包运算符'+'
 - $r^*=r^+|\epsilon, r^+=rr^*$
 - \Box digits \rightarrow digit⁺
- ■引入可选运算符'?'
 - □ r?=r|ε
 - \square optional fraction \rightarrow (.digits)?
 - \square optional_exponent \rightarrow (E(+|-)?digits)?
- 引入表示'[...]'
 - □字符组[abc],表示正规表达式a|b|c
 - \square digit \rightarrow [0-9]
 - □ 标识符的正规表达式: [A-Za-z][A-Za-z0-9]*

正规文法的产生式和正规定义式中的正规定义

- 两个不同的概念,具有不同的含义。
- ■产生式:
 - □左部是一个非终结符号,右部是一个符合特定形式的文法 符号串α
 - □α中的非终结符号可以与该产生式左部的非终结符号相同, 即允许非终结符号的递归出现。

■ 正规定义:

- □左部是一个名字,右部是一个正规表达式
- □表达式中出现的名字是有限制的,即只能是此定义之前已 经定义过的名字。

- 自动机 M 的状态转换矩阵如下所示, 其中初态是S, 终态是C。
 - (1) 画出相应的状态转换图;
 - (2) 写出与之等价的右线性文法。
- 解答:

$$\begin{array}{ccc}
a & b \\
S & A & S \\
A & B & B \\
C & C & C
\end{array}$$

S
$$\rightarrow$$
aA | bS
A \rightarrow aC | bB
B \rightarrow aB | bC
C \rightarrow aC | bC | ϵ

- 自动机 M 的状态转换图如下所示。
 - (1) 该自动机识别的语言是什么?
 - (2) 给出与之等价的右线性文法。

解答:

- (1) 根据自动机知其产生的语言是: L={ambnci| m, n, i≥1}
- (2) 与之等价的右线性文法是:

$$S \rightarrow aA$$
 $A \rightarrow aA \mid bB$
 $B \rightarrow bB \mid cF$
 $F \rightarrow cF \mid \epsilon$

- 已知正则表达式: (a*|b)*(c|d),判断下面哪几个正则表达式与 其等价,请简述理由。
 - $(1) a^*(c|d)|b(c|d)$
 - (2) $a^*(c|d)^*|b(c|d)^*$
 - (3) $a^*(c|d)|b^*(c|d)$
 - $(4) (a|b)^*c|(a|b)^*d$
 - $(5) (a^*|b)^*c|(a^*|b)^*d$
- 解答:

- (1)、(2)、(3)与所给正则表达式不等价;
- (4)和(5)与所给正则表达式等价。

■ 有限自动机M:

$$\mathbf{M} = (\{a,b\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, S_0, \{S_1, S_4, S_5\}, \delta)$$

δ由如右的状态转移矩阵给出。

(1) 试画出该自动机的状态转换	图;	•
------------------	----	---

 S_1

$$S_1$$
 S_3 S_1

 S_2

So

$$S_3 \mid S_0 \mid S_3$$

课堂练习4参考答案

(1) 状态转换图:

	a	b
So	S_2	S_1
S_1	S_3	S_1
S ₂	S_0	S 4
S ₃	S_0	S ₃
S 4	S 5	S 4
S ₅	S ₄	S_0

(2) 经历所有状态的最短串:

baaaba

(3) 经历所有边的最短串:

aaabbaaab bbabab

wenshli@bupt.edu.cn