MACHINE DESIGN

1976 ANNUAL INDEX

Volume 48 — January to December

Including 23 regular issues of MACHINE DESIGN plus five special issues—The Materials Reference Issue, Electric Motors & Controls Reference Issue, Mechanical Drives, Bearings & Seals Reference Issue, Fluid Power Reference Issue, Fastening & Joining Reference Issue. Only articles and editorial items one-half page or larger are indexed.

AUTHOR INDEX

Δ

Agrawal, G. K. —"Minimum Length Springs," May 20, p. 128
Ahrens, Robert H.—"Brainstorming Your Way To New Ideas," Apr. 8, p. 66
Aleks, Edmud J.—"Instant Replay In The Product Development Lab," Oct. 21, p. 120
Amir, Boaz—"Eddy-Current Braking Improves Step Motor Response," May 20, p. 124
Ander, Robert O.—"Dynamic Braking; Making A Motor Stop Ibself," May 6, p. 86
Archibald, Frank R.—"Easy Way To Find Bearing Curvature," Sept. 23, p. 126
Arkles, Barry and John E. Theberge—"Stronger Thermoplastic Elastomers," Feb. 12, p. 113
Arons, Irving J., John W. Rafferty and Richard S. Lindstrom—"Radiation-Cured Coatings," May 6, p. 97
Aronson, Robert B.
"Amtrak Begins To Roll," Jan. 22, p. 18
"Heat Pictures Tell the Inside Story," Feb. 12, p. 99
"The Heat Pipe: Hot New Way to Save Energy," Mar. 11, p. 52
"Pipe Lines for Electricity," Mar. 25, p. 26
"Great Lakes Super Carriers," Apr. 22, p. 18
"How To Market Your Own Invention," May 6, p. 82
"Wear Particles Predict Machine Malfunctions," June 24, p. 84
"Engineering Students "Modernize" The Coal Industry," July 8, p. 18
"Credit-Cards' Are Keys In Modern Access Control," Aug. 26, p. 20
"Hot Isostatic Pressing," Sept. 23, p. 118
"Lower Cost Protection for RR Crossings," Oct. 7, p. 30
"A Short Course in Carpet Climbing," Oct. 7, p. 35
"Coming Soon—The VW Diesel," Nov. 25, p. 20
"The Promise of Quick-Quench Materials," Dec. 9, p. 20
"The Vortex Tube: Cooling With Compressed Air," Dec. 9, p. 140

-

Barnich, Richard G.—"The 'Hidden' Costs in Designing With Microcomputers," June 24, p. 80
Becker, Ronald J. and Stanley J. Skaistis—"Muffling Hydraulic Systems," Oct. 21, p. 124
Beercheck, Richard C.

"The nth Root Revisited," Jan. 8, p. 93
"How To Choose An Automatic Lube System," June 24, p. 90
"Tradeoffs In Clutch Actuation," Sept. 9, p. 120
"Listening For The Sounds of Bearing Trouble," Nov. 25, p. 82
Bentley, William A.—"Taking Accurate Noise-Level Readings," June 10, p. 110
Bittence, John C.
"Engineering Adhesives," June 10, p. 92
"Waging War on Rust—Part 1," Oct. 7, p. 108
"Waging War on Rust—Part 2," Nov. 11, p. 146
Black, Theodore W.
"Something In The Wind? ERDA Thinks So," May 20, p. 18
"Advanced Turbine Designs Boost Wind-Power Potential," June 10, p. 26
"Pedal Power: Muscling In On The Energy Crisis," Sept. 23, p. 30
Blair, L. J. and J. Modrey—"Simplified Hertz Stress Calculations," Dec. 9, p. 152
Blake, Alexander
"A Practical Approach to Spherical Shell Design," Feb. 26, p. 82
"Gimbal Ring Design," Apr. 8, p. 92
"A New Look At Burst Pressure," Aug. 12, p. 97

Bonzon, Mark and Karl Schneider—"How To Compare Microprocessors," Sept. 23, p. 104 Breeden, Robert H. and Denis L. Royston—"Controlling Valves From a Distance," Dec. 9, p. 144 Brokaw, A. Paul—"Flexible Tuning For Square-Wave Oscillators," Apr. 22, p. 77 Brown, David E.—"Designing Axial-Motion Valves," Nov. 25, p. 92 Buchanan, Earl H.—"Upgunning U.S. and NATO Tank Forces," Jan. 8, p. 20

C

Carter, W. Merle—"Sizing Planetary Reduction Gears," June 10, p. 108
Chepulis, Henry and Rush B. Gunther—"Mastering The Art of Isometric Sketching,"
July 8, p. 78
Cobb, Gary S.—"Sea-Bottom Plow Buries Transoceanic Cable," Aug. 12, p. 26
Comella, Thomas M.
"What's Coming in Big Computers," Apr. 22, p. 66
"Colonizing Free Space," May 6, p. 26
"BIORHYTHM—Personal Science or Parlor Game?" Oct. 21, p. 104
"Purchasing: Where Does The Engineer Fit In?" Dec. 9, p. 120
Corlew, Gordon T. and Fred Oakland—"Monte Carlo Simulation—for setting dimensional tolerances," May 6, p. 91

D

Dalal, Harish M.—"Taking a Close Look at Bearing Wear," Jan. 8, p. 82
Dalton, Charles and Marie Dalton—"Personal Communications: The Space Factor,"
Sept. 23, p. 94
Dalton, Marie and Charles Dalton—"Personal Communications: The Space Factor,"
Sept. 23, p. 94
Dann, Richard T.—"Predicting Hydraulic Filter Life," Nov. 25, p. 77
Davies, Irving W.—"Plastic Fittings Fight Corrosion and High Cost," Apr. 8, p. 69
Delembo, William M.—"Take the Guesswork Out of Project Time Estimates," Aug. 26, p. 66
Drago, Raymond J.—"Rating the Load Capacity of Involute Splines," Feb. 12, p. 104
Dransfield, Peter and Roger LaBrody—"Hydraulic Systems With Precision Reflexes,"
May 20, p. 106
Dreger, Donald R.
"Reinforced Plastic Parts from Low-Pressure Molds," Jan. 8, p. 75
"Coming Soon: Low-Cost Production Aluminum Plating," Mar. 11, p. 81
"Plastics From Forest and Field," Mar. 25, p. 181
"Vacuum Lowers Cost of Investment Castings," Apr. 22, p. 62
"Resin Injection Molding," May 20, p. 103
"The Latest in Structural Plastic Panels," June 10, p. 105
"Forgings By The Thousands," July 8, p. 57
"Strong, Low-Cost Forgings From Sprayed-Metal Preforms," Aug. 12, p. 86
"Machining By Wire" Sept. 9, p. 126
"Alloys That Are Only Skin Deep," Sept. 23, p. 123
"Stampable Plastics Challenge Sheet Steel," Dec. 9, p. 134
Drew, John—"Electron Beams Tackle Tough Machining Jobs," Feb. 26, p. 94

E

Ebert, Lynn J.—"Materials In Sports," Aug. 12, p. 18
Erisman, Ralph J.—"Reducing Metric Conversion Errors," June 24, p. 95

Felstein, Milton—"Finding the 'Right' Pictorial View," Feb. 12, p. 117 Ference, Thomas P., James F. Stoner and E. Kirby Warren—"Career Stalled?" Mar. 25, p. 130 Filichowski, Wayne J.—"Photoelectric Systems: Industry's Electronic Eyes," Oct. 7, p.

102
Fleming, David P. and Bernard J. Hamrock—"Stabilizing Herringbone-Grooved Journal Bearings," Feb. 26, p. 101
Fox, Fay—"Minorities In Engineering: Any Progress?" Nov. 25, p. 66
Frostholm, Robert C.—"ICs That Regulate Voltage," Apr. 8, p. 85
Fuller, Don

ıller, Don "Decision Making: A Little Technique Goes A Long Way," July 22, p. 64 "Motivation Is More Than Gimmicks," Nov. 11, p. 116

G

Ganapathy, V.—"Thermal Stresses in Cylinders," Jan. 8, p. 91 Genneken, George—"Cale Program Finds Moments of Inertia," Oct. 7, p. 138 Glasgow, D. A. and H. D. Nelson—"Rotor Whirl," Oct. 7, p. 124 Graham, James A.—"Structural Adhesive Bonding," Oct. 7, p. 118 Gross, T. A. O.

Gross, T. A. O.
"Automatic Braking of Three-Phase Motors," Jan. 8, p. 92
"Soft Braking Capacitor-Start Motors," Sept. 23, p. 127
"Eliminating Nuisance Tripping in GFIs," Nov. 11, p. 154
Gunther, Rush B. and Henry Chepulis—"Mastering The Art of Isometric Sketching,"
July 8, p. 78
Guthrie, Elwin A. and Daniel W. Luks—"Improved Ceramic Seals," Mar. 25, p. 140

H

Halasz, Sandor T.—"Beam Deflections For Complex Loads," Sept. 23, p. 128
Hamrock, Bernard J. and David P. Fleming—"Stabilizing Herringbone-Grooved Journal
Bearings," Feb. 26, p. 101
Harrison, Howard L. and Jose J. Rodriguez—"Safer 'Software' For Programmable Controllers," Aug. 12, p. 76
Hart, James L.—"Technological Forecasting," Feb. 12, p. 90
Hauer, Daniel and Richard Koury—"High-Density CMOS," Dec. 9, p. 130
Henke, Russ
"A New Approach to Selecting High-Torque Hydraulic Motors," Jan. 8, p. 70
"Another Way To Look at Hydraulic Systems," July 22, p. 90
"Hydraulic Systems That Conserve Energy," Aug. 12, p. 81
Hinderaker, Philip D.—"Flexible Magnets Shed Hardware Image," Feb. 12, p. 94
Hobbs, Donn R.—"A New Breed of Miniature Lamps," July 22, p. 72
Hou, Sterling and Howard A. Raphael—"Test Equipment For Microcomputers," Aug. 26, p. 78

p. 78 Hupp, Joseph W.—"When The Trade-Offs Favor Aluminum Wiring." Nov. 25, p. 94

Imberman, Woodruff-"What Bugs Engineers?" Sept. 9, p. 104

Joyal, Thomas J.-"Electric Controls For Hydrostatic Drives," Oct. 7, p. 114

Karger, Delmar W.—"Patents: Who Needs Them!" Jan. 22, p. 76
Karger, Delmar W. and Robert G. Murdick—"Planning: The Key To Increased Engineering Productivity," May 20, p. 100
Keller, Joseph R.—"Choosing a Rod End Bearing," Feb. 26, p. 90
Kempert, John E. and Paul H. Wirsching
"A Fresh Look at Fatigue," May 20, p. 120
"Models That Predict Fatigue, Failure," July 8, p. 65
"Fatigue Failure In The Real World," Aug. 26, p. 86
"Design Codes That Fight Fatigue," Sept. 23, p. 108
Khol. Ronald
"Machine Tools Embrace New Technology," Aug. 26, p. 70
"A Mechanical Visua (C. Platerius)" A Mechanical Visua (C. Platerius)" A Mechanical Visua (C. Platerius)

Khol, Ronald

"Machine Tools Embrace New Technology," Aug. 26, p. 70

"A Mechanical View Of Electronic Logic," Sept. 9, p. 129

Kivenson, Gilbert.—"Promising Newcomers for Tough Flow Measurements," Jan. 8, p. 78

Kleven, Peter S.—"Curing Slider Hang-Ups," June 24, p. 105

Kock, Ronald W.—"Infinite Life Torsion Springs," Feb. 12, p. 119

Koury, Richard and Daniel Hauer—"High-Density CMOS," Dec. 9, p. 130

Kruszona, E. G.—"Simplified Joint Design For Formed-In-Place Gaskets," Oct. 21, p. 109

Kruszona, E. George—"Fatigue Failure In Springs," May 6, p. 106

Kute, Bernard and Milton Schwartz—"Anatomy of a Microcomputer," Mar. 11, p. 60

LaBrody, Roger and Peter Dransfield—"Hydraulic Systems With Precision Reflexes," May 20, p. 106
Lamond, L. and R. Shanley—"Thermoplastic Gears," Dec. 9, p. 125
Lance, J. R.—"Will That New Product Make It?" Feb. 26, p. 72
Lang, George F.—"The 'Hidden Message' In Mechanical Vibration," June 10, p. 86
Lansky, Z. J.—"Leak-Free Hydraulics," July 8, p. 60
Leonard, Milton G.—"An Introduction to Microcomputer Software," Nov. 25, p. 70
Leslie, Richard L.—"Why Hydraulic Fluids Aren't Perfect," Mar. 11, p. 72
Lin, Y.J. and H.D. Tabakman—"Stresses In Circular Plates," July 22, p. 84
Lindstrom, Richard S., Irving J. Arons and John W. Rafferty—"Radiation-Cured Coatings," May 6, p. 97
Lochmoeller, Stephen A.—"Power Screw or Ball Screw?" Mar. 11, p. 76
Logan, E. and R. W. Robbins—"Coming: Quieter Pumps," Sept. 9, p. 116
Logan, E. and R. W. Robbins—"Coming: Quieter Pumps," Sept. 9, p. 116
Logan, E. and R. W. Robbins—"Coming: Quieter Pumps," Sept. 9, p. 116
Logan, Earl, Jr. and Taddele Mekuria—"Minicalcs Find Supersonic Boundary-Layer Thickness," Feb. 12, p. 118
Lowery, R. D. and A. W. Mehrbroott—"How To Do More With Wrapped-Spring Clutches,"
July 22, p. 78
Luks, Daniel W. and Elwin A. Guthrie—"Improved Ceramic Seals," Mar. 25, p. 140
Lundin, Robert S.—"New Muscle For Timing Motors," Nov. 11, p. 121
Lutz, F. Norman—"Digital Logic From Sheet Metal to Software," Nov. 11, p. 127
Lyons, Jerry L.—"Pressure Switches That Don't Stick," Apr. 8, p. 90

Marsh, Richard J.—"Overcoming The Habits That Block Creativity," July 8, p. 52
Martinec, Emil L.—"Getting the Most From Your Education Dollar," Apr. 22, p. 52
Martinelli, J. A.—"Stress Analysis of Pressurized Panels," Dec. 9, p. 149
Matheson, Robert—"Why Glass Parts Fail," Jan. 22, p. 79
Matthew, G. K. and D. Tesar—"Dynamic Distortion in Cam Systems," Mar. 25, p. 186
McCall, James C.—"Renewal Theory—Predicting Product Failure and Replacement,"
Mar. 25, p. 149
McCormick, Gedney J.—"Wrenching Systems For Easy Assembly," July 22, p. 95
McDonald, Dwight J.—"Human Factors—The Forgotten Element In Design," Sept. 9,
p. 108 p. 108

McNaughton, L.S.—"Faster Servodrives Through Pulse-Width Modulation," Apr. 22, p. 57 Mehrbrodt, A. W. and R. D. Lowery—"How To Do More With Wrapped-Spring Clutches," Mehroroda, A. w. and K. D. Lowery— How 10 Do More with Wrapped-Spring Clutches, July 22, p. 78 Mekuria, Taddele and Earl Logan, Jr.—"Minicalcs Find Supersonic Boundary-Layer Thickness," Feb. 12, p. 118 Miller, William S. and Clare E. Wise—"Six-Wheeler May See Grand-Prix Action," Feb. Miller, William S. and Clare E. Wise.—Six. Wheeler May See Grand-PTIX Action, Feb. 12, p. 20
Millheiser, Mellvin.—"Which Standards for Metric Retaining Rings?" Feb. 26, p. 86
Modrey, J. and L. J. Blair.—"Simplified Hertz Stress Calculations," Dec. 9, p. 152
Morris, Robert.—"Variable-Speed Belt Drives," Aug. 12, p. 88
Murdick, Robert G. and Delmar W. Karger.—"Planning: The Key To Increased Engineering Productivity," May 20, p. 100
Murray, Bruce D.—"Keeping Bolts Tight With Anaerobics," Mar. 25, p. 135
Myers, Lyndall L. and Bradley A. Pritts.—"Large-Diameter Bearings," Oct. 21, p. 129

Nelson, H. D. and D. A. Glasgow—"Rotor Whirl," Oct. 7, p. 124 Neugebauer, George H. "Bending Stress in Curved Beams," Jan. 22, p. 104 "Stresses In Curved Beams," May 6, p. 111

O

Oakland, Fred and Gordon T. Corlew—"Monte Carlo Simulation—for setting dimensional tolerances," May 6, p. 91

Pensabene, Saverio F.—"The Truth About Ni-Cd Cell Reversal," June 10, p. 97 Plesser, Bernard A.—"What's Behind The UL Label?" Nov. 25, p. 87 Pollock, Adrian A.—"Acoustic Emission," Apr. 8, p. 72 Pritts, Bradley A. and Lyndall L. Myers—"Large-Diameter Bearings," Oct. 21, p. 129

Rafferty, John W., Richard S. Lindstrom and Irving J. Arons—"Radiation-Cured Coatings," May 6, p. 97
Ram, P. J. Mohan—"Latch and Trip Mechanisms," Feb. 26, p. 99
Rao, A. C.—"Four-Bars For Limited Space," June 24, p. 110
Raphael, Howard A. and Sterling Hou—"Test Equipment For Microcomputers," Aug. 26, Rado, A. C.—Four-Daris For Limited opace, June 24, p. 110
Raphael, Howard A. and Sterling Hou.—Test Equipment For Microcomputers," Aug. 26, p. 78
Rashidi, Abdul S.—"Better Motors With Rare-Earth Magnets," July 8, p. 70
Rashidi, Abdul S.—"Better Motors With Rare-Earth Magnets," July 8, p. 70
Rashidi, Abdul S.—"Better Motors With Rare-Earth Magnets," July 8, p. 70
Rashidi, Abdul S.—"When and How to Delegate," Jan. 8, p. 66
Reimann, Herbert—"Computing Temperature Losses," Nov. 11, p. 153
Reynolds, Charles P.—"Cale Programs Find Involutes," Mar. 11, p. 82
Rice, E. E.—"Safer Tightening For Bolted Joints," June 24, p. 100
Rice, Leslie R.—"Preventing Thyristor Burn-Out," Sept. 23, p. 114
Rice, Stephen L.—"3D Linkages Simplify Complex Mechanisms," June 10, p. 100
Rice, Reville F.—"Computer Programs for Analyzing Rotor Systems," Jan. 22, p. 89
Riggio, Carl A.—"Taking The Tossup Out Of New-Product Development," June 10, p. 82
Ritmanich, Willard J.—"How To Linearize A Thermocouple Output," Oct. 7, p. 136
Rodriguez, Jose J. and Howard L. Harrison—"Safer Software For Programmable Controllers," Aug. 12, p. 76
Rodriguez, Jose J. and Howard L. Harrison—"Safer Software For Programmable Controllers," Aug. 12, p. 76
Rondeau, Herbert F.—"You Can Predict Creep in Plastic Parts," Mar. 11, p. 67
Royston, Denis L. and Robert H. Breeden—"Controlling Valves From a Distance," Dec. 9, p. 144 Schneider, Karl and Mark Bonzon—"How To Compare Microprocessors," Sept. 23, p. 104
Schumacher, W. J.—"Metals for Nonlubricated Wear," Mar. 11, p. 57
Schwartz, Milton and Bernard Kute—"Anatomy of a Microcomputer," Mar. 11, p. 60
Shanley, R. and L. Lamond—"Thermoplastic Gears," Dec. 9, p. 125
Seltzinger, Ronald C.—"Coatings That Cut Friction," Oct. 21, p. 114
Sethi, Prab S.—"Defining Precision in a Control System," Apr. 8, p. 78
Schaisha, Nissim—"Cams That Cushion Cylinders," Apr. 22, p. 76
Shasha, Nissim—"Cams That Cushion Cylinders," Apr. 22, p. 76
Shen, Fred A.—"Power Flow in a Differential," Apr. 8, p. 77
Skaistis, Stanley J. and Ronald J. Becker—"Muffling Hydraulic Systems," Oct. 21, p. 124
Spotts, M.F.
"Simple Guide to TP Dimensioning," Jan. 8, p. 86
"Simple Guide to TP Dimensioning," Jan. 22, p. 84
Steinberg, David S.
"Avoiding Vibration In Odd-Shaped Printed-Circuit Boards," May 20, p. 116
"Preventing Vibration Damage in Electronic Assemblies," July 8, p. 74
Steinnetz, Lawrence L.—"The Over-Motivated Engineer," Oct. 7, p. 98
Stoner, James F., E. Kirby Warren and Thomas P. Ference—"Career Stalled?" Mar. 25, p. 130

p. 130
Strasser, Federico
"Ten Tips For Better Weldments," Apr. 22, p. 72
"Inserts That Stay Put," Nov. 11, p. 142
"Recipe For Well-Done Staking," Dec. 9, p. 154
Stupak, Joseph, Jr.—"Optimizing Pneumatic Conveyers," May 20, p. 125
Swick, Robert H.—"Designing the Leakproof Gasket," Jan. 22, p. 100

T

Tabakman, H. D. and Y. J. Lin.—"Stresses In Circular Plates," July 22, p. 84
Tallian, Tibor E.—"Changes and Challenges in Bearing Design," Nov. 11, p. 18
Tesar, D. and G. K. Matthew.—"Dynamic Distortion In Cam Systems," Mar. 25, p. 186
Theberge, John E. and Barry Arkles.—"Stronger Thermoplastic Elastomers," Feb. 12, p. 113

Thoen, Richard L.—"A New Way to Compute Friction Loss in Small Journal Bearings," Aug. 26, p. 82
Timmerman, Leon B.—"Avoiding The Perils of Cavitation," Sept. 23, p. 99
Trilling, Jack.—"How Special Fasteners Improve A Product," May 6, p. 102
Trumble, Kenneth—"Using Fiber Optics to "Wire' Machines," Jan. 22, p. 96

U

Uhls, Dennis L.—"Troubleshooting PC Armatures," Aug. 12, p. 96 Ullman, A. W.—"Set and Relaxation in Flat Springs," Nov. 11, p. 131

VanPatten, John R.-"Remote Sensing With Selsyns," Oct. 7, p. 131

Warren, E. Kirby, Thomas P. Ference and James F. Stoner—"Career Stalled?" Mar. 25, p. 130
Weiner, M. J.—"Laser Marking," Nov. 25, p. 95
Weiss, R. L.—"Trim Machining Costs By Designing With Shims," July 22, p. 69
Weit, James G.—"Field Control Techniques For DC Motors," July 22, p. 96
Weit, James G.—"Saving Revolution In The Teat Lab," Mar. 25, p. 144
Wilson, James J.—"Saving Energy With Electromagnetic Clutches and Brakes," Nov. 11, p. 136
Wirsching, Paul H., and John E. Kempert
"A Fresh Look at Fatigue." May 20, p. 120
"Models That Predict Fatigue Failure," July 8, p. 65
"Fatigue Failure In The Real World," Aug. 26, p. 86
"Design Codes That Fight Fatigue," Sept. 23, p. 108
Wise, Clare E.
"Voluntary Metric Law Passed in "75," Feb. 26, p. 24
"Indy's George Bignotti: Master of the 'Unfair' Advantage," May 6, p. 18
"Weight Reduction, Fuel Economy Highlight Auto Industry's 'Interim' Year," Sept. 9, p. 86 "Weight Reduction, Fuel Economy Angeling."
p. 18
"Electronics Paces 1977 Engine Redesign," Oct. 7, p. 20
"Engineering in Sports—Football Helmets," Nov. 25, p. 26
Wise, Clare E. and William S. Miller—"Six-Wheeler May See Grand-Prix Action," Feb. 12, p. 20
Witte, Dwight C.—"Predicting Bearing Temperature," May 20, p. 110
Widciechowski, Felix—"Properties of Plane Cross Sections," Jan. 22, p. 105
Wood, William A.—"Statistics From The Tail Of The Curve," Aug. 12, p. 93

Z

Zahid, Zeke—" 'Springs' That Don't Fatigue," Feb. 12, p. 110
Zanker, Adam—"Thick-Wall Cylinders Under External Pressure," Mar. 11, p. 80
Zimmerman, Mark D.—"Big Unions Make Their Pitch," Feb. 12, p. 26
"Engineer Salaries: Where Do We Stand?" Feb. 26, p. 18
"Souped-Up Tractors Invade Nation's Sports Arenas," Mar. 11, p. 18
"Army Tests Rapid-Fire Mine Layer," Mar. 25, p. 20
"Mechanizing America's Backyard," Apr. 8, p. 18
"Strain Gages Zero-In Big Gun Quickly," May 20, p. 36
"U.S. Technology Reaches Mars," June 24, p. 18
"Inflation Out-Paces Engineers' Psychecks, Aug. 12, p. 72
"Tankers Set Fuzes After Firing Shells," Aug. 26, p. 10
"Countdown For The Orbital Express," Sept. 23, p. 20
"Enterprise' Rollout," Oct. 21, p. 18
"Ten Key Factors Affecting Your Job," Oct. 21, p. 20
"Shootout Over The Next Main Battle Tank," Dec. 9, p. 28

SUBJECT INDEX

Numbers preceding subject classifications refer to the MACHINE DESIGN SUBJECT CLASSIFICATION SYSTEM (page 12).

Editorial material in this SUBJECT INDEX is referenced as follows:

Colu	mns——			
(1)	(2)	(3)	(4)	(5)
Better Motors With Rare-Earth Magnets	Rashidi	7/8	70	(4.0)

- (1) Title.
- (2) Author's last name (see AUTHOR INDEX for full name). Departments in regular issues are denoted by the codes:

N/T		 		 		 																				News/Trends	
DI.					 		 													D	e	S	ig	gr	1	International	
Scan	1				 		 							S	c	ar	11	ni	n	g	1	tł	16	e	F	ield for Ideas	

Articles in MACHINE DESIGN Reference Issues are identified by the entry: Chapter (Ref. Issue code).

Reference Issues are coded as follows:

M	Materials
EM&C	. Electric Motors & Controls
MD	
FP	Fluid Power
F&J	Fastening & Joining

- (3) Date of regular or Reference issue.
- (4) Page number.
- (5) Number of pages in article or item.

ELECTRICAL & ELECTRONIC

11. Motors

Motor Selection	Chapter EM&C	4/29	8	(4.0
Better Motors With Rare-Earth Magnets	Rashidi	7/8	70	(4.0
Superconducting Motors To Spin Navy Props	N/T	8/12	12	(0.7
AC Motors	Chapter EM&C	4/29	12	(3.7
AC Motors-Polyphase Motors	Chapter EM&C	4/29	20	(1.2
Energy-Saving Motor Ready for Work	N/T	7/8	8	(1.0
DC Motors	Chapter EM&C	4/29	21	(3.6
Definite and Special-Purpose Motors	Chapter EM&C	4/29	25	(12.0)
DC Motor Controls	Chapter EM&C	4/29	105	(1.3
Field Control Techniques For DC Motors	Weit	7/22	96	(1.6
Troubleshooting PC Armatures	Uhls	8/12	96	(1.6
Universal Motors	Chapter EM&C	4/29	18	(2.2
Motor Delivers Full Rated Torque at	onapio Dinac		10	(=:=
Any Speed	Scan	2/26	39	(0.6
Power Boosted for Bolt Tightener	N/T	5/6	6	(0.6
Field Control Techniques For DC Motors	Weit	7/22	96	(1.6
Precision Motor Wins for Model Locomotive	N/T	9/9	12	(0.6
Motor Protection	Chapter EM&C	4/29	106	(2.2
	9			

12. Power Supplies

The Truth About NI/CD Cell Reversal	Pensabene	6/10	97	(3.0
New Approach to Developing Electric Car		9/23	10	(0.7
Exerciser Monitors Rider's Heart	N/T	10/21	4	(0.6
High-Energy Storage Battery Readied				
for Utilities	N/T	10/21	4	(0.9)
Simple Wire Grid Reduces Graphics To				
Digital Form	Scan	1/8	38	(0.6
Periodic Reference Signal Keeps A/D				
Converter Accurate	Scan	1/22	38	(0.6
ICs That Regulate Voltage	Frostholm	4/8	85	(5.0
Three-Winding Transformer Counteracts Line				
Voltage Changes	Scan	4/22	39	(1.0
Fixed Mirrors To Power City	N/T	10/7	6	(0.6
Install Solar Panels On Your Roof?	N/T	10/7	6	(0.6
'Earth' To Store Utility's Night-		20.1	-	(000
Generated Electricity	N/T	11/11	10	(0.7
Radar Eye Looks Everywhere Without	447.4		20	(0.1
Moving	N/T	9/23	8	(0.5
		-1	-	

13. Switches & Relays

Switching Fundamentals	Chapter EM&C	4/29	112	(2.5)
Meter-Relays	Chapter EM&C	4/29	151	(1.2)
Manual Switches	Chapter EM&C	4/29	114	(4.5)
'Dead' Contacts Prolong Rotary Switch Life	Scan	9/9	56	(0.5)
Temperature Switches	Chapter EM&C	4/29	128	(3.0)
Pressure Switches That Don't Stick	Lyons	4/8	90	(2.4)
Pressure Switches	Chapter EM&C	4/29	124	(3.3)
Precision Snap-Acting Switches	Chapter EM&C	4/29	119	(4.0)
Proximity Switches	Chapter EM&C	4/29	122	(1.9)
Photoelectric Systems: Industry's Electronic	Chapter Line	1.20		(210)
Eyes	Filichowski	10/7	102	(6.0)
Web Loop Control Runs on Reflected Light	Scan	11/11	46	(0.6)
Stepping Switches	Chapter EM&C	4/29	147	(2.2)
Circuit Breakers	Chapter EM&C	4/29	133	(4.2)
Contactors	Chapter EM&C	4/29	146	(1.3)
AC Motor Controls	Chapter EM&C	4/29	102	(3.0)
Soft Braking Capacitor-Start Motors	Gross	9/23	127	(1.0)
Rotary Speed Switches	Chapter EM&C	4/29	131	(1.9)
Reed Switching Devices	Chapter EM&C	4/29	138	(4.0)
Adjustable Switch Hides in Door Hinge	Scan	10/7	50	(0.5)

14. Instruments & Controls

Gamma Rays Find the Weapon	N/T	4/22	10	(1.3)
Control	Aronson	8/26	20	(6.0)
Position-Sensing Photodiode Measures Angular Position	Scan	10/7	50	(0.5)
How To Linearize A Thermocouple Output	Ritmanich	10/7	136	(2.0)
Using Fiber Optics to 'Wire' Machines	Trumble	1/22	96	(4.0)
Cam Profile Cushions Rotary Solenoid Double-Stroke Solenoid Boosts Stepping	Scan	7/22	44	(0.5)
Switch Torque		8/12	38	(0.7)
Tradeoffs In Clutch Actuation	Beercheck	9/9	120	(6.0)
Oscilloscopes Learn to Tell Time	Scan	3/25	48	(1.0)
New Muscle For Timing Motors	Lundin	11/11	121	(6.0)

						4.			
Synchronous Motors	Chapter EM&C	4/29	15	(3.0)	Better Motors With Rare-Earth	Dashidi	7/8	70	(4.0)
Digital Form	Scan	. 1/8	38	(0.6)	Magnets Electromagnet Puts Welding Arc in Its	Rasnidi			
Digital Form Logic Analyzer Looks Back In Time Digital Revolution in the Test Lab Counters	Wentz Chapter FM&C	1/8 3/25 4/29		(1.0) (5.0) (2.6)	Place Magnetic "Cam" Remembers Without Power Extruded Ribs Form Warp-Free Aluminum	Scan Scan	9/9 9/9	54 58	(0.5)
		0/10	110	(1.0)	Panels Bucking Magnets Control Keyboard	Scan	4/8	39	(0.7)
What's New in Memories? Reflected Beta Rays Reveal Coating	Article	7/8	80	(1.0)	Bucking Magnets Control Keyboard "Touch"	Scan	6/24	44	(0.5)
Thickness Oscilloscopes Learn to Tell Time	Scan	1/22 3/25	37 48	(0.5) (1.0)	Parts Encapsulated in Single-Liquid Process		6/10	6	(0.5)
Flexible Tuning For Square-Wave Oscillators	Brokaw	4/22	77	(1.2) (1.2)	Using Fiber Ontics to 'Wire' Machines	Trumble	1/22	96	(4.0)
Meter-Relays Current Probe Pinpoints Logic Faults	Scan	4/29 9/23		(0.6)	'Get the Sun Out of the Office' A New Breed of Miniature Lamps	N/T N/T	7/22 7/22	10 72	(0.8 (6.0
Faster Servodrives Through Pulse-Width Modulation		4/22	57	(5.0)	'Ma Bell' Tests Lasers "Falking"		8/12	6	(1.0
Remote Sensing With Selsyns New Telescope Called a Bargain	VanPatten	10/7	131	(5.0)	into Fibers Fiber Optics Monitor Oil-Tank Levels	Scan	10/21	44	(0.6
New Telescope Called a Bargain	N/T	11/25	18	(0.6)	Selecting Fiber-Optic Cables Saturated Vapor Solders Complex Parts	Article Scan	12/9 3/25	156 52	(1.0
					Automatic Braking of Three-Phase Motors Dynamic Braking: Making a Motor Stop	Gross	1/8	92	(1.2
					Itself Eddy-Current Braking Improves Step Motor	Ander	5/6	86	(5.0
15, 16. Circuit Components, (Connectors	s &	Wiri	na	Eddy-Current Braking Improves Step Motor Response	Amir	5/20	124	(1.5
,		_		•	Clutches and Brakes	Chapter MD	6/3 8/26	27 38	(6.7
Continuity Checker Frees Operator's Hands	Scan	2/12	43	(0.5)	Magnetic Switch Stops Speeding Motors Ferroresonance Improves Motor Braking	Gross	8/26	91	(1.8
When ICs Go Bad ICs That Regulate Voltage Switching Transistors	Dicken Frostholm	2/26 4/8	78 85	(4.0) (5.0)	Saving Energy With Electromagnetic Clutches and Brakes		11/11	136	(6.0
Switching Transistors	Chapter EM&C	4/29	180 182	(2.6) (3.3)	Electronics Paces 1977 Engine Redesign		10/7	20	(6.0
Thyristors Digital Control Modules	Chapter EM&C	4/29	186	(5.8)	Redesign	Wise	10/7	20	(0.0
Switching Modules Schottky Diodes Bid for Power Jobs	Chapter EM&C	4/29 5/6	192	(5.0) (0.5)					
Logic Circuit Speeds Up Transistor		8/26	36	(0.7)	19. Systems & Assemblies				
A Mechanical View of Electronic Logic	Khol	9/9	129	(8.0)	13. Oystellis & Asselliblies				
Testing A Testing A Testing Preventing Thyristor Burn-Out Photoelectric Systems: Industry's Electronic	Rice	9/23	114	(4.0)	Computer Programs For Analyzing Rotor				
Eyes	Filichowski	10/7	102	(6.0)	Systems New RPV Impressive on First Flights	Rieger	1/22 2/12	89	(7.0
Software	Lutz	11/11	127	(4.0)	Flexible Tuning For Square-Wave				
Laser Marking Two Tough Production Jobs Prove Easy		11/25	95	(1.7)	Oscillators	Brokaw Chapter EM&C	4/22 4/29	200	(5.0
for Lasers	N/T Hauer &	2/26	8	(0.8)	Integrated Circuit Gives Green Light to Minibikes		6/10	42	(1.0
Troubleshooting PC Armatures		12/9 8/12	130 96	(4.0)	Electronic Tape Measure Monitors Machine				
rress-rit Shait Lubed into Laminated				(1.6)	Tool Motion	Scan	6/10	46	(0.7
Rotor	N/T Chapter EM&C	10/7 4/29	10 255	(0.7) (4.2)	Controllers	Rodriguez & Harrison	8/12	76	(5.0
Avoiding Vibration In Odd-Shaped Printed- Circuit Boards		5/20	116	(4.0)	'Credit-Cards' Are Keys in Modern Access		8/26	20	(6.0
Armature Relays	Chapter EM&C		141	(4.3)	Control Machine Tools Embrace New Technology	Article	8/26	70	(8.0
Heavy-Wire Connector Lowers Cost by Biting Through Insulation	N/T	1/22	10	(0.7)	Electromagnet Puts Welding Arc in Its	Scan	9/9	54	(1.0
Barebones Connector Tolerates PC		6/10	48	(0.5)	Place Magnetic "Cam" Remembers Without Power	Scan	9/9 9/23	58 32	(0.5
Imperfections Pipe Lines for Electricity Test Switch Opens Ribbon Cable Lines	Article	3/25		(5.0)	NC Inspires New Machine Configurations Electric Controls For Hydrostatic Drives	Joyal	10/7	114	(2.5
One At a Time Wiring	Scan	3/25	54	(0.5)	Upgrading Older Machine Tools Pinpoint Control Refines Rotary Blow	Article	10/21	136	(1.0
Wiring Sea-Bottom Plow Buries Transoceanic	Chapter EM&C	4/29	252	(3.4)	Molding An Introduction to Microcomputer	Scan	11/25	44	(1.0
Cable	Cobb	8/12	26	(3.0)	Software	Leonard	11/25	70	(7.0
Optical Waveguides Carry TV into Homes	N/T	9/9	10	(0.8)	Pencil Marks Program Events Controller Graphic Input Terminal Uses Wireless		12/9	48	(0.6
Homes Eliminating Nuisance Tripping in GFIs When the Trade-Offs Favor Aluminum	Gross	11/11	154	(1.3)	Stylus What's Coming in Big Computers The 'Hidden' Costs in Designing With	Scan	4/22 4/22	36 66	(6.0
Wiring	Hupp	11/25	94	(1.3)	The 'Hidden' Costs in Designing With	Domena			
'Dead' Contacts Prolong Rotary Switch Life	Scan	9/9	56	(0.5)	Microcomputers Test Equipment for Microcomputers	Raphael	6/24	80	(4.0
High-Density CMOS	Hauer & Koury	12/9	130	(4.0)	Computer Replaces Camshaft in Experimental	& Hou	8/26	78	(4.0
Superconducting Motors To Spin Navy	-				Engine	Scan	12/9	42	(1.0
Props		8/12	12	(0.7)		& Kute	3/11	60	(7.0
Electronic Eyes	Filichowski	10/7	102	(6.0)	ELECTRIC MOTORS AND CONTROLS 1976	Chapter EM&C Chapter EM&C	4/29 4/29	207	(6.0
					Electronic Controllers	Chapter EM&C	4/29	208	(1.2
					Microcomputer Terminology Power-Control Modules	Chapter EM&C	4/29 4/29	210 212	(2.0
17. Miscellaneous Componer	nts				How To Compare Microprocessors	Bonzon & Schneider	9/23	104	(4.0
					Minney Co., 1	Seminerati	0140	104	14.0

17. Miscellaneous Components

Flexible Magnets Shed Hardware Image Flying Magnets Coat Complex Parts		2/12	94 36	(5.0) (0.6)
Bucking Magnets Control Keyboard	- Count	0,11	-	(0.0)
"Touch"	Scan	6/24	44	(0.5)

FLUID POWER

21, 22, 23. Fluids, Fluid Conditioners, Fluid Conductors

Unsung Heroes of Fluid Power Why Hydraulic Fluids Aren't Perfect Fluids, Conductors, and Conditioners Bearing Temperature Controlled by	Leslie	10/21 3/11 9/30	146 72 110	(2.0) (4.0) (16.0)
Evaporating Lubricant Lubricants	N/T Chapter MD	9/23 6/3	6 188	(0.8) (2.7)

Bearing Temperature Controlled by Evaporating Lubricant Carbon Dioxide Propels Fragrant Aerosol	N/T N/T	9/23 1/8	6 12	(0.8) (1.0)
A Practical Approach to Spherical Shell	D1 1	0.00		(4.0)
Design	Blake	2/26	82	(4.0)
Anaerobic Solves Weld-Porosity Problem	N/T	4/22	6	(0.8)
A New Look at Burst Pressure	Blake	8/22	97	(1.4)
Huge Pressure Vessel To Test Navy's				
Deep-Diving Gear	N/T	12/9	6	(0.5)
Sliding Strainer Shifts Position For				
Cleaning	Scan	3/11	37	(0.6)
Predicting Hudraulic Filter Life	Donn	11/95	77	(E ())

Microprocessor Synchronizes Complicated
Machine Functions
An Introduction to Microcomputer
Software
Leonard
DC Motor Controls
Chapter EM&C
Using Fiber Optics to 'Wire' Machines
Trumble

11/25 38

11/25 70 4/29 105 1/22 96

(0.6)

(7.0) (1.3) (4.0)

					1 11 m n 1 00 1 1	-	0.000		
Superfrozen Permafrost Anchors Alaskan Pipeline	NET	1/22	4	(0.5)	Avoiding The Perils of Cavitation	Timmerman Chanter FP	9/23 9/30	99	(5.0)
Spiral Tubing Soaks Up Sun's Rays The Heat Pipe: Hot New Way to	Scan	1/22	36	(0.7)	Fluid Handling Components Cam-Driven Valves Help	Chapter FP	9/30	260	(8.0)
Save Energy Rigid Foam Makes Low-Cost Heat	Aronson	3/11	52	(5.0)	High-Altitude Pump Selecting High-Torque Hydraulic	Scan	11/25	40	(0.7)
Collector	Scan	4/8	36	(0.5)	Motors	Henke	1/8	70	(5.0)
The Heat Pipe: Hot New Way to Save Energy	Aronson	3/11	52	(5.0)	Without Seals	Scan	2/12	42	(1.0)
The Vortex Tube: Cooling With Compressed Air				(4.0)	Teeter-Totter Valve Takes Its Cue From Cams	Scan	7/22	40	(1.0)
Fuei Spinner Produces Hot Flame Rotating Electrode Doesn't Contaminate	N/T	1/8	36	(0.5)	Power Actuators and Shock Absorbers Controlling Valves From a Distance	Chapter FP	9/30	164	(12.0)
Alloy Melts	Scan	1/22	37	(0.5)		& Royston	12/9	144	(5.0)
Radiation-Cured Coatings	Arons &								
Double-Plunger Dispenser Cleans Up	Rafferty	5/6	96	(6.0)	26. Seals				
Epoxy Bonding	Scan	4/8	36	(0.5)	26. Seals				
Crisscross Hole Pattern Mixes and Remixes Plastic	Scan	5/6	45	(0.5)					
Leak-Free Hydraulics	Lansky	7/8	60	(5.0)	Fluid Seals and Packings Face Seals		9/30 6/3	212 252	(6.0)
Plastic Fittings Fight Corrosion And High Cost	Davies	4/8	69	(3.0)	Radial Lip Seals	Chapter MD	6/3		(2.9)
Couplings	Chapter MD	6/3	33	(3.3)	Clearance Seals	Chapter MD	6/3	261	(1.7)
Couplings Simplified Joint Design For Formed-					Designing the Leakproof Gasket	Swick	1/22	$\frac{100}{271}$	(4.0)
In-Place Gaskets Muffling Hydraulic Systems		10/21	109	(5.0)	Nonmetallic Gaskets Metallic Gaskets	Chapter MD	6/3	276	(2.2)
	& Becker	10/21	124	(5.0)	Simplified Joint Design For Formed-		-		
Double-Plunger Dispenser Cleans Up	S	4/0	36	(0 E)	In-Place Gaskets Exclusion Devices	Chapter MD	10/21 6/3		(5.0) (2.3)
Epoxy Bonding	Scan	4/8	36	(0.5)	Split Ring Seals		6/3	262	(1.0)
Spray, or Dry Mist	N/T	7/8	12	(0.8)	Compression Packings	Chapter MD	6/3	263	(1.7)
Centrifugal Force Blends No-Lump Mixtures	0	12/9	46	(0.6)	Lip Packings		6/3		(1.7) (2.0)
Mixtures	Scan	12/5	40	(0.0)	Keeping Seals Tight	Barbarin	8/26	92	(1.2)
24. Linear Devices					Two-Ring Seal Won't Extrude Urethane Foam from a Pressurized Can	Scan	10/7 10/21	52 28	(0.5)
24. Linear Devices					Diaphragm Seals	Chapter MD	6/3		(0.8)
Slotted Cylinder Cuts Mounting Space									
in Half	Scan	2/26 4/22	42 76	(0.5) (1.8)					
Cams That Cushion Cylinders How To Get 600 hp Out of a		6/10	44	(0.7)	27. Valves				
3½-in. Cylinder Curing Slider Hang-Ups	Kleven		105	(5.0)					
"Springs" That Don't Fatigue	Zahid		110	(3.0)	Fluid Handling Components Power Modulation and Control Devices	Chapter FP Chapter FP	9/30 9/30	260 46	(8.0) (13.0)
Derricks "Springs" That Don't Fatigue	Scan	8/12	110	(1.0) (3.0)	Slide-Action Valves in Fluid Lines	Scan	12/9	45	(0.5)
Tradeoffs In Clutch Actuation	Beercheck	9/9		(6.0)	Buckled Plates Control Fluid Flow	Scan	5/6	42	(0.7)
Power Actuators and Shock Absorbers Controlling Valves From a Distance	Chapter FP Breeden		164	(12.0)	Spinning Ball Senses Fuel Flow Rate Floating Flowmeter Needs	Scan	10/7	49	(1.0)
Git- GIbb- G-i	& Royston	12/9	144	(5.0)	No Bearings Designing Axial-Motion Valves	Scan	11/11 11/25	48 92	(0.5)
Composite Speedbrake Going on F-15s	N/T	3/11	12	(0.5)	"Springs" That Don't Fatigue	Zahid	2/12		(3.0)
				(4)	Minicales Find Supersonic Boundary- Layer Thickness				(4.4)
					Dayer Interness	Mekuria	2/12	118	(1.3)
25. Rotary Devices					Do-It-Yourself Hovercraft Double Valve Combines Series &	N/T	3/11	25	(1.0)
Lo. Hotaly Devices					Parallel Flow	Scan	10/21	38	(1.0)
Holey Plate Squelches Noisy Pumps		6/24	44	(0.5)	Injection System The Vortex Tube: Cooling With	Scan	11/11	42	(1.0)
Coming: Quieter Pumps	Robbins & Logan	9/9	116	(4.0)	Compressed Air	Aronson	9/12	140	(4.0)
	a Logan	9/9	110	(4.0)		.,		0	(1.0)

MECHANICAL

28. Instruments & Controls					Optimizing Pneumatic Conveyors	Dreger Stupak Chapter MD	4/22 5/20 6/3	62 125 196	(4.0) (2.5) (3.0)
Promising Newcomers for Tough Flow						Chapter MD	6/3	270	(1.0)
Measurements	Kivenson	1/8	78	(4.0)		Beercheck	6/24	90	(5.0)
Floats on Pulleys Keep Track of Tank	***********			(4.4)	Lubricating Disc Impresses a Trucker	N/T	7/8	6	(0.7)
Levels	Scan	2/12	46	(0.6)	Changes and Challenges in Bearing				
Hanging Chain Senses Bin Levels	Scan	5/20	52	(1.0)		Tallian	11/11	18	(6.0)
Fiber Optics Monitor Oil-Tank Levels	Scan	10/21	44	(0.6)	Optical Computer Takes the 'Ouch' Out of				
Intake Air Regulates Fuel-Injection					Hypodermics	Scan	5/6	38	(1.0)
System	Scan	11/11	42	(1.0)					
Fluid Logic and Controls Chapter Digital Logic From Sheet Metal To	Chapter FP	9/30	282	(5.0)					
Software	Lutz	11/11	127	(4.0)	04 Dames Carrage				
Superfrozen Permafrost Anchors Alaskan					31. Power Sources				
Pipeline	N/T	1/22	4	(0.5)					
Inserts That Stay Put	Strasser	11/11	142	(4.0)					
						N/T	1/22	8	(0.8)
					EPA Wants Tougher Evaporative Standard	AT CD	2/26	12	(0.5)
29. Systems & Assemblies					for Autos	N/T N/T	5/20	12	(2.0)
23. Oystellis a Asselliblies							6/3	43	(2.0)
						Chapter MD	0/0	40	(2.0)
Hydraulic Systems With Precision					Biggest Rotary Developed for Industrial	N/T	6/24	10	(1.3)
Reflexes	Dransfield					Wise	10/7	20	(6.0)
Meticaes	& Labrody	5/20	106	(4.0)	Dual-Displacement Engine Boosts Fuel	WISE	10/3	20	(0.0)
Another Way To Look At Hydraulic Systems	Henke	7/22	90	(5.0)	Economy	N/T	10/21	10	(2.0)
Hydraulic Systems That Conserve Energy	Henke	8/12	81	(5.0)	Variable Piston Stroke Boosts Engine MPG	N/T	11/11	30	(2.0)
Electric Controls For Hydrostatic				,,	Coming Soon—The VW Diesel		11/25	20	(3.0)
Drives	Joval	10/7	114	(4.0)	Two Major Fusion Advances Reported	1 22 01200/11	5/6	12	(0.5)

	NUT	9/23	36	(6.5)	Predicting Bearing Temperature	Witte Chapter MD		110 150	(6.0)
Coming					Rolling-Element Bearings	Chapter MD Chapter MD	6/3	165 176	(10.8
Use Industry Industry	N/I	6/24	10	(1.3)	Easy Way To Find Bearing Curvature	Archibald Pritts &		126	(1.7)
ato Fuel: 2 Parts Water, 1 Part Liquid	1110110011	7/8	18	(4.0)	Large-Diameter Bearings	Myers	10/21	129	(7.0
Hydrocarbonectrolysis Separates Oil from Waste		10/7	8	(0.7)	Changes and Challenges in Bearing Design Hub Unit Bearings Toughen Off-Road Racer	Tallian N/T	11/11 11/25	18	(6.0
Water	Scan	11/11 1/22	12 36	(0.7) (0.7)	Stadium Floats Into Position For Any Sport Choosing a Rod End Bearing Stabilizing Herringbone-Grooved Journal	N/T Keller	1/8 2/26	10 90	(4.0
System's Loadigid Foam Makes Low-Cost Heat	Scan	2/12	43	(0.5)	Bearings	Fleming & Hamrock	2/26	101	(2.0
Collectoromething In The Wind? ERDA Thinks Sodvanced Turbine Designs Boost Wind-Power	Scan Black	4/8 5/20	36 18	(0.5) (7.0)	Metals for Nonlubricated Wear Woven Fabric Shapes Exotic Bearings Bearings	Schumacher Scan Chapter MD	3/11 5/20 6/3	57 46 150	(3.0 (1.0 (4.0
Potential	Black	6/10	26	(6.0)	Plain Bearings Sliding-Bearing Materials Swinging Pad Bearing Floats on Water Friction Loss in Small Journal Bearings	Chapter MD	6/3 6/3	154 160	(6.2)
avy Builds an Energy-Test House	N/T	7/22	8	(0.8)	Swinging Pad Rearing Floats on Water	Chapter MD Scan	7/8	32	(1.0
xed Mirrors To Power City	N/T	9/9	6	(0.7) (0.6)	Friction Loss in Small Journal Bearings	Thoen	8/26	82	(4.
stall Solar Panels On Your Roof?	N/T	10/7	6	(0.6)	Couplings	Chapter MD	6/3	33	(3.
nd Energy + Water + Air = Food	N/T	11/25	4	(1.0)	Universal Joints	Chapter MD	6/3	37	(2.
nd Energy + Water + Air = Foodothermal Research Encouraging	N/T	12/9	6	(0.5)	Auxiliary Components	Chapter MD	6/3	39	(4
w Solar Energy Is Useddal Power: Muscling In On The Energy	N/T	12/9	12	(0.5)	Clutches and Brakes Rating the Load Capacity of Involute	Chapter MD	6/3	27	(6
Crisis	Black	9/23	30	(2.0)	Splines Wrenching Systems For Easy Assembly Toggles Keep Tabs on Torque	Drago McCormick Scan	2/12 7/22 11/11	104 95 44	(6. (1. (0.
					Computer Replaces Camshaft in Experimental Engine	Scan	12/9	42	(1.
2, 33, 34. Drives, Transmiss	ions, Driv	е			Eccentric Transmission Shifts Speeds Without Gears	Scan	2/26	38	(1.
Components					Clutches and Brakes Rubber Hose Makes Simple Clutch How To Do More With Wrapped-Spring	Chapter MD Scan	6/3 6/10	27 48	(6
echanical Drives: More From Less	Article	10/21	138	(2.0)	Clutches	Lowery &			
nainsind-Up Tensioner Keeps Chain Drive in	Chapter MD	6/3	20	(1.9)	New Bus Stresses Comfort and	Mehrbrodt	7/22	78	(6
the Running	Scan	7/22	46	(0.6)	Convenience	NT	7/8	4	(0
oating Shuttle Simplifies High-Speed Tape Drive		8/12	42	(0.5)	Specialty Bearings New Materials for Flywheels	Chapter MD Article	6/3 9/9	178 140	(10
lensor" Gears Preserve Constant Velocity		1/9			, , , , , , , , , , , , , , , , , , , ,	VII (1010			
Ratio For Angled Shafts zing Planetary Reduction Gears ocused' Piston Tunes Out Vibrator Dead	Carter	6/10	$\frac{34}{108}$	(1.0) (1.4)					
Spots	Scan	8/26	42	(0.5)	36, 37. Mechanisms, Controls				
finstable-Speed Drives	Chapter MD	6/3	8	(5.4)	,				
		10/21	138 20	(2.0) (1.9)	Descrip Distortion in Com Section				
echanical Drives: More From Less	Chapter MD					Tesar &			(€
echanical Drives: More From Less	Chapter MD	6/3			Dynamic Distortion in Cam Systems	Matthew	3/25	186	
echanical Drives: More From Less nains ckpedaling Transmission Shifts Bicycle Gears	Scan	6/3 7/22	42	(0.7)	Cams That Cushion Cylinders	Matthew Shasha	4/22	76	(1
echanical Drives: More From Less nains lains ckpedaling Transmission Shifts Bicycle Gears	Scan	6/3 7/22 8/12	42 88	(0.7) (5.0)	Cams That Cushion Cylinders	Matthew Shasha Rice	4/22 6/10	76 100	(1
schanical Drives: More From Less ains ckpedaling Transmission Shifts Bicycle Gears uriable-Speed Belt Drives wer Flow in a Differential	Scan	6/3 7/22	42	(0.7)	Cams That Cushion Cylinders	Matthew Shasha Rice	4/22	76	()
schanical Drives: More From Less ains ckpedaling Transmission Shifts Bicycle Gears triable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without	Morris Shen	6/3 7/22 8/12	42 88	(0.7) (5.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision in A Control	Matthew Shasha Rice Rao Scan	4/22 6/10 6/24 9/23	76 100 110 50	(
schanical Drives: More From Less ains ckpedaling Transmission Shifts Bicycle Gears triable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears echanical Drives: More From Less	Morris Shen Scan	6/3 7/22 8/12 4/8	42 88 77	(0.7) (5.0) (3.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision' In A Control System Gentle Squeeze Puts the Brakes on	Matthew Shasha Rice Rao Scan Sethi	4/22 6/10 6/24	76 100 110	()
chanical Drives: More From Less ains ckpedaling Transmission Shifts Bicycle Gears	Morris Shen Scan Article	6/3 7/22 8/12 4/8 2/26	42 88 77 38	(0.7) (5.0) (3.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts	Matthew Shasha Rice Rao Scan Sethi	4/22 6/10 6/24 9/23	76 100 110 50	000
echanical Drives: More From Less ains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears cehanical Drives: More From Less oxy Plug Forms Tenactous Cable Terminal gging Trims Wheels on All-Terrain	Morris Shen Scan Article Scan	6/3 7/22 8/12 4/8 2/26 10/21 9/9	42 88 77 38 138	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision in A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex	Matthew Shasha Rice Rao Scan Sethi Scan	4/22 6/10 6/24 9/23 4/8	76 100 110 50	
echanical Drives: More From Less ains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears echanical Drives: More From Less oxy Plug Forms Tenacious Cable Terminal gging Trims Wheels on All-Terrain Vehicle	Morris Shen Scan Article Scan Scan	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25	42 88 77 38 138 56 42	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining 'Precision' In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Serew or Ball Screw?	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller	4/22 6/10 6/24 9/23 4/8 7/8	76 100 110 50 80 36 100 76	
schanical Drives: More From Less ains ackpedaling Transmission Shifts Bicycle Gears Gears uriable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears cehanical Drives: More From Less oxy Plug Forms Tenacious Cable Terminal gging Trims Wheels on All-Terrain Vehicle	Morris Shen Scan Article Scan Scan Chapter MD	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25 6/3	42 88 77 38 138 56 42 22	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5) (0.5) (4.5)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller Beercheck	4/22 6/10 6/24 9/23 4/8 7/8 6/10 3/11 9/9	76 100 110 50 80 36 100 76 120	
echanical Drives: More From Less ains ains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears Gears echanical Drives: More From Less oxy Plug Forms Tenacious Cable Terminal gging Trims Wheels on All-Terrain Vehicle elt Drives wer Flow in a Differential ears and Gear Drives ears and Gear Drives erroplastic Gears—Part I: Material	Scan Article Scan Scan Chapter MD Shen Chapter MD	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25	42 88 77 38 138 56 42	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation Two-Speed Control Positions Machine Tools Frequency Control Fine Tunes Feeder	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller Beercheck Scan	4/22 6/10 6/24 9/23 4/8 7/8 6/10 3/11 9/9 9/23	76 100 110 50 80 36 100 76 120 54	
echanical Drives: More From Less nains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears	Scan Article Scan Scan Chapter MD Shen Chapter MD	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25 6/3 4/8	42 88 77 38 138 56 42 22 77	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5) (0.5) (4.5) (3.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision' In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation Two-Speed Control Positions Machine Tools Frequency Control Fine Tunes Feeder Performance Tool Shop Open to Ocean Depths	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller Beercheck Scan	4/22 6/10 6/24 9/23 4/8 7/8 6/10 3/11 9/9	76 100 110 50 80 36 100 76 120	
cchanical Drives: More From Less ains ains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears cehanical Drives: More From Less oxy Plug Forms Tenacious Cable Terminal gging Trims Wheels on All-Terrain Vehicle tly Drives wer Flow in a Differential aers and Gear Drives nermoplastic Gears—Part 1: Material Properties rive Sprocket Molded from Super-Tough	Scan Scan Chapter MD Shen Chapter MD Shen Chapter MD Shen Chapter MD	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25 6/3 4/8 6/3	42 88 77 38 138 56 42 22 77 13	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5) (4.5) (3.0) (7.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Frection' In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation Two-Speed Control Positions Machine Tools Frequency Control Fine Tunes Feeder Performance Tool Shop Open to Ocean Depths Centrifugal Force Blends No-Lump	Matthew Shasha Rice Rao Sean Sethi Scan Rice Lochmoeller Beercheck Scan Scan N/T	4/22 6/10 6/24 9/23 4/8 6/10 3/11 9/9 9/23 7/8 11/25	76 100 110 50 80 36 100 76 120 54 38 12	
echanical Drives: More From Less nains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears echanical Drives: More From Less oxy Plug Forms Tenacious Cable Terminal agging Trims Wheels on All-Terrain Vehicle elt Drives ower Flow in a Differential ears and Gear Drives nermoplastic Gears—Part 1: Material Properties rive Sprocket Molded from Super-Tough Nylon igging Trims Wheels on All-Terrain	Scan Scan Chapter MD Shanley & Lamond N/T	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25 6/3 4/8 6/3 12/9 8/26	42 88 77 38 138 56 42 222 77 13	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5) (0.5) (4.5) (3.0) (7.0) (5.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision' In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation Two-Speed Control Positions Machine Tools Frequency Control Fine Tunes Feeder Performance Tool Shop Open to Ocean Depths Centrifugal Force Blends No-Lump Mixtures C-Clamp Forms Simple Pressure Transducer	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller Beercheck Scan N/T Scan Scan	4/22 6/10 6/24 9/23 4/8 6/10 3/11 9/9 9/23 7/8 11/25	76 100 110 50 80 36 100 76 120 54 38 12 46 49	(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
echanical Drives: More From Less nains ackpedaling Transmission Shifts Bicycle Gears ariable-Speed Belt Drives wer Flow in a Differential centric Transmission Shifts Speeds Without Gears oxy Plug Forms Tenacious Cable Terminal igging Trims Wheels on All-Terrain eth Drives wer Flow in a Differential ears and Gear Drives hermoplastic Gears—Part 1: Material Properties rive Sprocket Molded from Super-Tough Nylon igging Trims Wheels on All-Terrain ethics errors graph of the Sprocket Molded from Super-Tough Nylon igging Trims Wheels on All-Terrain Vehicle	Scan Scan Chapter MD Shanley & Lamond N/T	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25 6/3 4/8 6/3	42 88 77 38 138 56 42 22 77 13	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5) (4.5) (3.0) (7.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Frection' In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation Two-Speed Control Positions Machine Tools Frequency Control Fine Tunes Feeder Performance Tool Shop Open to Ocean Depths Centrifugal Force Blends No-Lump	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller Beercheck Scan N/T Scan Scan	4/22 6/10 6/24 9/23 4/8 7/8 6/10 3/11 9/9 9/23 7/8 11/25	76 100 110 50 80 36 100 76 120 54 38 12	
iechanical Drives: More From Less hains ackpedaling Transmission Shifts Bicycle Gears	Scan Scan Chapter MD Shanley & Lamond N/T	6/3 7/22 8/12 4/8 2/26 10/21 9/9 11/25 6/3 4/8 6/3 12/9 8/26	42 88 77 38 138 56 42 222 77 13	(0.7) (5.0) (3.0) (1.0) (2.0) (0.5) (0.5) (4.5) (3.0) (7.0) (5.0)	Cams That Cushion Cylinders 3-D Linkages Simplify Complex Mechanisms Four-Bars For Limited Space Positioning Fixture Saves Setup Time Defining Precision' In A Control System Gentle Squeeze Puts the Brakes on Speeding Parts 3-D Linkages Simplify Complex Mechanisms Power Screw or Ball Screw? Tradeoffs In Clutch Actuation Two-Speed Control Positions Machine Tools Frequency Control Fine Tunes Feeder Performance Tool Shop Open to Ocean Depths Centrifugal Force Blends No-Lump Mixtures C-Clamp Forms Simple Pressure Transducer	Matthew Shasha Rice Rao Scan Sethi Scan Rice Lochmoeller Beercheck Scan N/T Scan Scan	4/22 6/10 6/24 9/23 4/8 7/8 6/10 3/11 9/9 9/23 7/8 11/25	76 100 110 50 80 36 100 76 120 54 38 12 46 49	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

ASSEMBLY COMPONENTS

41, 42, 43. Fasteners, Springs	& Isola	tion			Retaining Rings		11/18 11/18	81 76	(3.4) (4.0)
Devices, Misc.					Optimum Bolt Head Design	Article	6/10	109	(0.6)
Devices, misc.					Safer Tightening For Bolted Joints	Rice	6/24	100	(5.0)
					Wrenching Systems For Easy Assembly Repositioned Threads Give Fastener Wide	McCormick	7/22	95	(1.4)
New Coater and New Coatings Developed			-		Tolerance Range	Scan	10/7	52	(0.5)
for Fasteners	N/T	3/11	6	(0.5)	Bolts, Screws, and Studs	Chapter	11/18	5	(7.7)
How Special Fasteners Improve a Product	Trilling	5/6	102	(4.0)	Washers	Chapter FJ	11/18	90	(1.0)
Fasteners and Adhesives/76	Chapter FJ	11/18	2	(3.0)	Gage Ring Indicates Fastener Tension At a	Chapter 19	11,10	00	(210)
Plastic Fasteners	Chapter FJ	11/18	119	(2.3)	Touch	Scan	1/22	40	(0.5)
Breakaway Insert Speeds Installation	Scan	10/7	54	(0.7)	Clamping Fixture Squares Wood Frames		4/22	34	(0.7)
Inserts That Stay Put	Strasser	11/11	142	(4.0)	Tapered Tapes Make Tough Joints	Scan	5/6	40	(0.7)
	Chapter FJ	11/18	13	(7.3)	Pipe Clamp Plugs Leaky Joints Without	Scan	8/6	40	(0.1)
Tolerant Threads Mate With Standard	onapier 10	22120	-		Shutdown	Scan	9/9	58	(0.5)
Fasteners	Scan	12/9	44	(0.5)	Formed Metal Fasteners	Chapter FJ	11/18	118	(1.7)
Non-Threaded Fasteners	Chapter FJ	11/18	80	(1.6)	Fatigue Failure In Springs		5/6	106	(5.0)
Latch and Trip Mechanisms		2/26	99	(2.0)	Stamped Spring Steel Fasteners		11/18	122	(2.5)
	Chapter FJ	11/18	126	(2.6)	"Springs" That Don't Fatigue		2/12	110	(3.0)
Which Standards for Metric Retaining	Chapter 10				Infinite Life Torsion Springs		2/12	119	(1.5)
Rings?	Millheiser	2/26	86	(4.0)	Minimum Length Springs		5/20	128	(1.0)

Check The Body Radius For High Stress How To Do More With Wrapped-Spring	Article	6/24	110	(1.2)
Clutches	Lowery &			
Clutches	Mehrbrodt	7/22	78	(6.0)
Sizing Helical Springs	Ganapathy	9/9	139	(1.5)
Set and Relaxation in Flat Springs	Ullman	11/11	131	(5.0)
Snap-In Stud Soaks Up Shock, Pushes Panels	Scan	11/25	42	(0.5)
Cylinder Spear Softens Shock Step by Step	Scan	1/22	40	(0.5)
Snap-In Stud Soaks Up Shock, Pushes Panels	Scan	11/25	42	(0.5)
'Credit-Cards' Are Keys in Modern Access				
Control	Aronson	8/26	20	(6.0)
Laser Marking	Weiner	11/25	95	(1.7)
Trim Machining Costs By Designing With	Wellier	11/20	00	(4.0)
	117-1	7/22	69	(3.0)
Shims	Weiss			
Six-Wheeler May See Grand-Prix Action	Article	2/12	20	(3.0)
Gimbal Ring Design	Blake	4/8	92	(1.6)
Curing Slider Hang-Ups	Kleven	6/24	105	(5.0)
Adjustable Switch Hides in Door Hinge	Scan	10/7	50	(0.5)
Adjustable Switch findes in Door finige	Scan	10/1	00	(0.0)

44. Mechanical Measurement Equipment

Machine Tool Checks Up on Itself	Scan	4/22	33	(1.0)
Double Vision Takes the Boredom Out of Bore Measurements	Scan	3/25	54	(0.5)
No Touch Alignment System Works Without Gages	Scan	4/8	35	(1.0)
Machine Tool Checks Up on Itself	Scan	4/22	33	(1.0)
Strain Gages Zero-In Big Gun Quickly	Zimmerman	5/20	36	(2.0)
Floating Rollers Weigh Fabric on the Fly	Scan	6/24	42	(1.0)
Bending-Beam Scale Gives Honest Weight	Scan	7/22	44	(0.5)
Weighing System Puts Load on a Pedestal	Scan	8/12	42	(0.5)
Simple Indicator Measures Surface Angle	Scan	11/11	48	(0.5)
Predicting Bearing Temperature		5/20	110	(6.0)

MATERIALS

51, 52.	Ferrous,	Nonferrous	Metals
---------	----------	-------------------	--------

			(6.0)
			(5.0)
			(2.0)
			(3.2)
Chapter M	3/4	8	(1.8)
			(0.5)
			(2.5)
			(2.0)
			(2.8)
			(1.7)
Schumacher			(3.0)
Chapter M			(1.8)
			(1.5
			(1.0)
			(0.8)
			(0.8)
			(0.8)
Chapter M			(2.1)
Chapter M	3/4	53	(2.9)
Dreger	3/11	81	(1.1)
N/T	3/25	12	(0.7
Scan	4/8	39	(0.7)
	8/12	8	(0.8)
N/T	11/25	18	(0.6
Hupp	11/25	94	(1.3
Chapter M	3/4	56	(1.1
Chapter M	3/4		(2.0
Chapter M	3/4		(0.7
Chapter M	3/4	63	(2.0
Chapter M	3/4	70	(1.0
Chapter M	3/4	73	(1.4
Chapter M	3/4	68	(0.8
Chapter M	3/4	216	(0.6
Chapter M	3/4	66	(1.1
Chapter M	3/4	68	(0.7
	Chapter M Chapter M NT NT NT NT Onapter M Chapter M	Ebert	Ebert

53, 54. Plastics, Rubber & Elastomer

Introduction to Polymer Chemistry	Chapter M	3/4	120	(4.0
Designing With Plastics	Chapter M	3/4	124	(3.0
You Can Predict Creep in Plastic Parts	Rondeau	3/11	67	(5.0
Plastic Fittings Fight Corrosion And High	***************************************	0.22		(010)
Cost	Davies	4/8	69	(3.0)
Plastic Fasteners	Chapter FJ	11/18	119	(2.3
Plastic Joining	Chapter FJ	11/18	163	(3.0
Plastic Joining New Nylon Resin: 'A Toughness Previously				(4.0)
Unknown to Engineering Plastics'	N/T	1/22	6	(0.7)
Stronger Thermoplastic Elastomers	Theberge			
	& Arkles	2/12	113	(4.0)
ABS	Chapter M	3/4	127	(1.0)
Acetal	Chapter M	3/4	128	(1.3)
Acrylic	Chapter M	3/4	129	(1.3)
Cellulosics	Chapter M	3/4	133	(1.1)
Fluoroplastics	Chapter M	3/4	136	(2.4)
Nylon	Chapter M	3/4	138	(1.2)
Phenylene Oxide	Chapter M	3/4	141	(0.9)
Polycarbonate	Chapter M	3/4	142	(1.0
Polyimide	Chapter M	3/4	145	(1.0)
Polyolefins	Chapter M	3/4	146	(2.8)
Polyphenylene Sulfide	Chapter M	3/4	151	(0.7
Polysulfone	Chapter M	3/4	151	(0.7)
Polystyrene	Chapter M	3/4	152	(0.9)
Polyvinyl Chloride	Chapter M	3/4	154	(1.0
Reinforced Thermoplastics	Chapter M	3/4	156	(1.3
Thermoplastic Elastomers	Chapter M	3/4	199	(1.2
Kevlar Looks Good as Parachute Material	N/T	4/8	12	(0.6
The Latest in Structural Plastic Panels	Dreger	6/10	105	(3.0
Plastic Converts Van into Armored Truck	N/T	6/24	6	(0.8
Drive Sprocket Molded from Super-Tough				
Nylon	N/T	8/26	8	(0.5
				,0.0

Thermoplastic Gears-Part 1: Material	a			
Properties	Shanley & Lamond	1 12/	9 125	(5.0)
Stampable Plastics Challenge Sheet Steel	Dreger	12/		(6.0)
Alkyd	Chapter M	3/-		(0.8)
Allylic	Chapter M	3/		(1.2)
Amino	Chapter M	3/		(1.0)
	Chapter M	3/		(1.0)
Epoxy		3/		(1.2)
Phenolic	Chapter M	3/		(1.7)
Polyester	Chapter M			
Polyimide	Chapter M	3/		(1.0)
Silicone	Chapter M	3/		(1.0)
Reinforced Thermosets	Chapter M	3/		(1.5)
Thermoset Elastomers	Chapter M	3/		(3.8)
Plastic Parts Produced by Spin-Casting	N/T	9/	9 10	(0.6)
Reinforced Plastic Parts from Low-Pressure				
Molds	Dreger	1/		(3.0)
Reinforced Thermoplastics	Chapter M	3/	4 156	(1.3)
Reinforced Thermosets	Chapter M	3/		(1.5)
High-Temperature Plastics	Chapter M	3/		(2.2)
Plastics From Forest and Field	Dreger	3/2	5 181	(5.0)
Flexible Magnets Shed Hardware Image	Hinderaker	2/1	2 94	(5.0)
Stronger Thermoplastic Elastomers	Theberge			
	& Arkles	2/1	2 113	(4.0)
Polyurethane	Chapter M	3/	4 153	(1.1)
Thermoset Elastomers	Chapter M	3/	4 196	(3.8)
Thermoplastic Elastomers	Chapter M	3/		(1.2)
Urethane Foam from a Pressurized Can	N/T	10/2	1 28	(0.8)

55, 56. Joining Materials, Other Nonmetals

New Coater and New Coatings Developed for	N/T	3/11	6	(0.5)
Fasteners	N/T	3/25	10	(0.7)
Coming: 21 Casting Sealing Centers		3/25	135	(5.0)
Keeping Bolts Tight With Anaerobics	Murray	3/20	199	(0.0)
Double-Plunger Dispenser Cleans Up Epoxy		4/0	ne.	(A E)
Bonding	Scan	4/8	36	(0.5)
Anaerobic Solves Weld-Porosity Problem	N/T	4/22	6	(0.8)
Sealants	Chapter MD	6/3	280	(2.3)
Engineering Adhesives	Bittence	6/10	92	(5.0)
Structural Adhesive Bonding	Graham	10/7	118	(6.0)
Self-Sealing Fasteners	Chapter FJ	11/18	124	(1.0)
Adhesives	Chapter FJ	11/18	155	(6.0)
Carbon	Chapter M	3/4	212	(1.0)
Why Glass Parts Fail	Matheson	1/22	79	(5.0)
Ceramics	Chapter M	3/4	213	(1.0)
Glass	Chapter M	3/4	215	(1.0)
Improved Ceramic Seals	Guthrie & Luks		140	(4.0)
'Ma Bell' Tests Lasers 'Talking' into	Guantite de Liune	0.20		(40.07
Fibers	N/T	8/12	6	(1.0)
Fibers	Chapter M	3/4	214	(0.8)
Keylar Looks Good as Parachute Material	N/T	4/8	12	(0.6)
'Ma Bell' Tests Lasers 'Talking' into	14/1	400	12	(0.0)
Fibers	N/T	8/12	6	(1.0)
The Promise of Quick-Quench Materials	Aronson	12/9	20	(4.0)
	Skaistis	12/3	20	(4.0)
Muffling Hydraulic Systems		10/01	124	(5.0)
ED 1 III C E E C E	& Becker	10/21	124	(0.0)
Fiberboard Houses: for Emergencies? For	AT CD	1.00	10	(0.7)
Underdeveloped Nations?	N/T	1/8	18	(0.7)

57. Finishes, Coatings, Lubricants

Reflected Beta Rays Reveal Coating				
Thickness	Scan	1/22	37	(0.5)
Flying Magnets Coat Complex Parts	Scan	3/11	37 36	(0.6)
Alloys That Are Only Skin Deep	Dreger	9/23	123	(3.0)
Chrome Deeply Diffused into Mild Steel	N/T	11/11	6	(0.6)
New Coater and New Coatings Developed for				
Fasteners	N/T	3/11	6	(0.5)
Material Assembled Atomic Layer by		-1	-	,,
Atomic Layer	N/T	10/21	8	(0.7)
Microcapsules Give Early Warning of Fatigue				
Cracks	Scan	à1/8	36	(0.5)
Low-Friction Coating Proves Its Worth in				
Truck Engine	N/T	2/12	12	(0.7)

Low-Friction Coating Proves Its Worth in Truck Engine	N/T	2/12	12	(0.7)
Coatings That Cut Friction	Seitzinger	10/21	114	(6.0)
Chrome Deeply Diffused into Mild Steel	N/T	11/11	6	(0.6)
Waging War on Rust: Part 2—Resisting				
Rust	Bittence	11/11	146	(7.0)

58. Prefabricated Forms

The Latest in Structural Plastic Panels		6/10	105	(3.0)
Plastic Converts Van into Armored Truck Material Assembled Atomic Layer by	N/T	6/24	6	(0.8)
Atomic Layer	N/T	10/21	8	(0.7)
Composite Wing Scheduled for Testing On Twelve Aircraft	N/T	3/11	6	(0.5)
Reinforced Plastic Parts from Low-Pressure	Decem	1/0	77.8	(9.0)
Molds Structural Foam		1/8 3/4	75 164	(3.0)
Smooth Finish Molded Into Structural				
Foam Parts Urethane Foam from a Pressurized Can	N/T	3/25 10/21	8 28	(0.7)
Oregiane roam from a Pressurized Can	IN/ I	10/21	26	(0.8)

MANUFACTURING PROCESSES

61, 62, 63. Metals Casting, Shaping, Forming

Coming: 21 Casting Sealing Centers	N/T	3/25	10	(0.7)
Vacuum Lowers Cost of Investment Castings	Dreger	4/22	62	(4.0)
The Promise of Quick-Quench Materials Hot Isostatic Pressing To Save Air Force	Aronson	12/9	20	(4.0)
Dollars	N/T	5/6	10	(0.8)
Forgings By The Thousands	Dreger	7/8	57	(3.0)
Strong, Low-Cost Forgings From Sprayed-	Decem	9/19	86	(2.0)
Metal Preforms	Dreger	8/12		
Hot Isostatic Pressing	Aronson	9/23	118	(5.0)
Extruded Ribs Form Warp-Free Aluminum Panels	Scan	4/8	39	(0.7)
Recipe For Well-Done Staking	Strasser	12/9	154	(2.0)
Pore Profiles Leading to Improved Materials	N/T	2/26	10	(0.7)
7 x Boost in Wear Resistance for Aluminum				
P/M Parts	N/T	8/12	8	(0.8)
The Promise of Quick-Quench Materials	Aronson	12/9	20	(4.0)
Sheet-Metal Seams	Strasser	9/9	137	(2.0)
Photoelastic Method Evaluates Metal Stampings	N/T	4/8	8	(0.8)
Resonance Reveals Drawability Data	Scan	6/24	48	(1.0)
Formability of Steel Sheets Improved by				
Temperature Control	N/T	11/11	32	(0.5)
Stampable Plastics Challenge Sheet Steel	Dreger	12/9	134	(6.0)

64, 65. Metal Joining, Removal

Plastic Joining	Chapter FJ	11/18	163	(3.0)
Electromagnet Puts Welding Arc in Its Place	Scan	9/9	54	(1.0)
Welding Processes	Chapter FJ	11/18	146	(3.4)
Anaerobic Solves Weld-Porosity Problem	N/T	4/22	6	(0.8)
Ten Tips For Better Weldments	Strasser	4/22	72	(4.0)
HSLA I-Beams Welded Together	N/T	7/22	12	(0.8)
Welded Fasteners	Chapter FM	11/18	24	(3.0)
Electron Beams Tackle Tough Machining Jobs .	Drew	2/26	94	(5.0)
Ultrasonic Joining Wins New Jobs	N/T	3/25	34	(0.8)
Brazing Processes	Chapter FJ	11/18	149	(3.1)
Saturated Vapor Solders Complex Parts Hot Air Blasts Excess Solder From PC	Scan	3/25	52	(0.6)
Boards	Scan	5/6	45	(0.5)
Moving Probe Pinpoints Plated Through Hole Quality	Scan	6/24	46	(0.6)

Groovy Iron Aids IC Extraction	Scan	10/21	42	(0.5)
Soldering Processes	Chapter FJ	11/18	152	(2.5)
New Metalworking Processes Tried on Jet-				
Engine Fairing	N/T	10/7	18	(0.5)
Structural Adhesive Bonding	Graham	10/7	118	(6.0)
Crawler Drill Takes to the Sea	N/T	2/12	10	(1.3)
Machine Tool Checks Up on Itself	Scan	4/22	33	(1.0)
A 'Jigsaw' for Hardened Alloys	Scan	10/21	43 -	(0.5)
Electron Beams Tackle Tough Machining Jobs .	Drew	2/26	94	(5.0)
Machining By Wire	Dreger	9/9	126	(3.0)

67, 68. Finishing, Plastics & Rubber Processes

Coming Soon: Low-Cost Product Aluminum				
Plating	Dreger	3/11	81	(1.1)
Electroplating With a Pen	Scan	8/26	42	(0.5)
Electron Beams Tackle Tough Machining Jobs .	Drew	2/26	94	(5.0)
Strong, Low-Cost Forgings From Sprayed-				
Metal Preforms	Dreger	8/12	86	(2.0)
Flame Spraying To Solve Metal Wear	N/T	12/9	8	(0.5)
Resin Injection Molding	Dreger	5/20	103	(3.0)
Pinpoint Control Refines Rotary Blow Molding .	Scan	11/25	44	(1.0)
Twin Screws Speed Up Plastic Extrusion				
Process	Scan	2/12	44	(0.6)
New Metalworking Processes Tried on Jet-				
Engine Fairing	N/T	10/7	18	(0.5)
Reinforced Plastic Parts from Low-Pressure				
Molds	Dreger	1/8	75	(3.0)
Laminated Plastics	Chapter M	3/4	164	(1.9)
Plastic Parts Produced by Spin-Casting	N/T	9/9	10	(0.6)
Woven Fabric Shapes Exotic Bearings	Scan	5/20	46	(1.0)

69. General

	'Finite-Element' Truck		7/22	4	
Automatic Assembly		Chapter FJ	11/18	28	(2.5)

DESIGN THEORY & TECHNIQUES

71, 72, 73. Mechanics, Strength of Materials and Parts

Properties of Plane Cross Sections	Wojciechowski	1/22	105	(1.6)
Calc Program Finds Moments of Inertia	Genneken	10/7	138	(1.0)
Dynamic Distortion in Cam Systems	Tesar &			
Dynamic Distortion in Cam Cystems	Matthew	3/25	186	(6.0)
Avoiding Vibration In Odd-Shaped Printed-			-	
Circuit Boards	Steinberg	5/20	116	(4.0)
The 'Hidden Message' In Mechanical Vibration .	Lang	6/10	86	(6.0)
Preventing Vibration Damage in Electronic	Lang	0/10	00	(0,0)
Assemblies	Steinberg	7/8	74	(4.0)
Assemblies Applies Deter	Stermberg	1/0	1.4	(4.0)
A Quick, Graphical Way to Analyze Rotor	Nelson &			
Whirl		10/7	104	(7.0)
	Glasgow	10/7	124	(7.0)
Listening For The Sounds of Bearing Trouble	Beercheck	11/25	82	(5.0)
Dynamic Distortion in Cam Systems	Tesar &			
	Matthew	3/25	186	(6.0)
Noise Standards Set for Locomotives,				
Portable Air Compressors	N/T	3/11	8	(0.5)
Taking Accurate Noise-Level Readings	Bentley	6/10	110	(1.0)
Holey Plate Squelches Noisy Pumps	Scan	6/24	44	(0.5)
Coming Original Design Pullips		0/24	44	(0.0)
Coming: Quieter Pumps		9/9	116	(4.0)
	& Logan	9/9	110	(4.0)

Muffling Hydraulic Systems	Skaistis			
manning riyaraunc Systems	& Becker	10/21	124	(5.0)
Listening For The Sounds of Bearing Trouble		11/25	82	(5.0)
Thick-Wall Cylinders Under External Pressure .	Zanker	3/11	80	(1.0)
Why Glass Parts Fail	Matheson	1/22	79	(5.0)
Rating the Load Capacity of Involute Splines	Drago	2/12	104	(6.0)
When ICs Go Bad	Dicken	2/26	78	(4.0)
A New Look at Burst Pressure	Blake	8/22	97	(1.4)
Microcapsules Give Early Warning of Fatigue		8/22	91	(1.4)
Cracks	Scan	1/8	36	(0.5)
A Fresh Look At Fatigue	Wirsching			
	& Kempert	5/20	120	(4.0)
Models That Predict Fatigue Failure	Wirsching			
	& Kempert	7/8	65	(5.0)
Fatigue Failure in the Real World	Wirsching			
	& Kempert	8/26	86	(5.0)
Design Codes That Fight Fatigue	Wirsching			
	& Kempert	9/23	108	(6.0)
Designing the Leakproof Gasket	Swick	1/22	100	(4.0)
You Can Predict Creep in Plastic Parts	Rondeau	3/11	67	(5.0)
Thermal Stresses in Cylinders	Ganapathy	1/8	91	(1.3)
Taking a Close Look at Bearing Wear	Dalal	1/8	82	(4.0)
Spring Loading Extends Range of Friction				
Tester	Scan	3/11	40	(0.6)
Wear Particles Predict Machine Malfunctions	Aronson	6/24	84	(6.0)
Curing Slider Hang-Ups		6/24	105	(5.0)

7 x Boost in Wear Resistance for Aluminum P/M Parts	N/T	8/12	8	(0.8)	Hydraulic Systems With Precision Reflexes	Dransfield & Labrody	5/20	106	(4.0)
Friction Loss in Small Journal Bearings A New Look At Burst Pressure	Thoen	8/26 8/22	82 97	(4.0) (1.4)	Machine Tools Embrace New Technology Renewal Theory—predicting product failure	Article	8/26	70	(8.0)
Simplified Hertz Stress Calculations	Modrey	10/0	170	(0.0)	and replacement	McCall Sethi		149 80	(6.0) (5.0)
Ronding Stress in Curved Reams	& Blair		152 104	(2.0) (1.8)	Simple Guide to TP Dimensioning Simple Guide to TP Dimensioning Simple Guide to TP Dimensioning	Spotts	4/8 1/8	86	(5.0)
Fatigue Failure In Springs	Kurasz	5/6	106	(5.0)	Simple Guide to TP Dimensioning	Spotts Spotts	1/22	84	(5.0)
Bending Stress in Curved Beams Fatigue Failure In Springs Stresses In Curved Beams	Neugebauer	5/6	111	(2.0)		Can	4/8	35	(1.0)
Ream Deflections for Complex Loads	Halasz	9/23	128	(1.3)	Gages Monte Carlo Simulation for Setting	Scan	4/8	33	(1.0)
Infinite Life Torsion Springs Safer Tightening For Bolted Joints Check The Body Radius For High Stress Toggles Keep Tabs on Torque	Rice		119 100	(1.5) (5.0)	Dimensional Tolerances	Corlew &			
Check The Body Radius For High Stress	Article		110	(1.2)		Oakland	5/6	91	(5.0)
Toggles Keep Tabs on Torque	Scan	11/11	44	(0.6)					
Stresses In Circular Plates	Tabakman & Lin	7/22	84	(6.0)					
Stress Analysis of Pressurized Panels			149	(3.0)	76. Basic Sciences & Fields				
Thermal Stresses in Cylinders	Ganapathy	1/8	91	(1.3)					
Thick-Wall Cylinders Under External	Zamban	9/11	80	(1.0)	Poid-one of New (Old) Florente Book				
Pressure Curing Slider Hang-Ups A Quick, Graphical Way to Analyze Rotor Whirl	Zanker	3/11 6/24	105	(5.0)	Evidence of New (Old) Elements Rock Physicists	N/T	7/22	22	(0.6)
A Quick, Graphical Way to Analyze Rotor	meren	0.24	100	(0.0)	Heat Pictures Tell the Inside Story	Aronson	2/12	99	(5.0)
Whirl	Nelson &				Pipe Lines for Electricity	Article	3/25	26	(5.0)
		10/7 12/9		(7.0)	Fireplace Damper Moved Away from the	MATE	8/26	18	(0.6)
Stress Analysis of Pressurized Panels	Martinein	12/9	149	(3.0)	Firebox	Reimann		153	(1.7)
					Gamma Rays Find the Weapon	N/T	4/22	10	(1.3)
					Radiation-Cured Coatings	Lindstrom,			
74. Human-Factors Engineeri	na					Arons & Rafferty	5/6	96	(6.0)
	9				Newly Designed Knee Lets Many Burn Their	namerty	5/0	90	(0.0)
Colonining Proc Proce	Comollo	5/6	26	(5.0)	Crutches	N/T	4/8	10	(0.7)
Colonizing Free Space Human Factors—The Forgotten Element in	Сотена	3/6	20	(0.0)	Colonizing Free Space	Comella	5/6	26	(5.0
Dogian	McDonald	9/9	108	(8.0)	Exerciser Monitors Rider's Heart Optical Waveguides Carry TV into Homes	N/T	10/21 9/9	10	(0.6)
Safety Car Built of Clay Crushable Panels Would Save Lives Ready-Made Space Suits and Rescue Balls	N/T	2/26	12	(0.5)	Photoelectric Systems: Industry's Electronic	14/1	3/3	10	(0.0)
Crushable Panels Would Save Lives	N/T	4/22 5/6	4	(0.8) (0.7)	Eves	Filichowski	10/7	102	(6.0
Restraint Protects the 'Codriver'	N/T	6/10	4	(0.8)	Instant Replay in the Product Development	41.1	10/01	100	44.0
Restraint Protects the 'Codriver' Lower Cost Protection for RR Crossings	Article	10/7	30	(2.0)	Screen Cuts Fuel Consumption by 15%	Aleks N/T	10/21 6/10	120 10	(4.0
Exerciser Monitors Rider's Heart	N/T	10/21	4	(0.6)	Sailplane and Model Teamed in New Research .	N/T	12/9	4	(0.7
Double Valve Combines Series & Parallel Flow	Scan	10/21	38	(1.0)					
Engineering In Sports: Football Helmets	Wise	11/25	26	(3.0)					
What's Behind The UL Label?	Plesser	11/25	87	(5.0)					
Student Designers Specialize in Devices for the Handicapped	N/T	10/21	6	(0.5)	77. Experimental Design				
Newly Designed Knee Lets Many Burn Their	14/ 1	10/21							
Crutches	N/T	4/8	10	(0.7)	Photoelastic Method Evaluates Metal				
					Stampings	N/T	4/8	8	(0.8
					Stresses In Circular Plates	Tabakman			
75 Deales Assistate A October	!-				Fracture-Mechanics Analysis Checks Out	& Lin	7/22	84	(6.0
75. Design Analysis & Synthe	esis				Alaska Pipeline Stress Analysis of Pressurized Panels	N/T	12/9 12/9	10 149	(0.6
					C. A. I. C.D I.D I.			1.40	(9.0
					Stress Analysis of Pressurized Panels	Martinelli	12/9	149	(0.0
The nth Root Revisited	Beercheck	1/8		(0.5)	Stress Analysis of Pressurized Panels	Martinelli	12/9	149	(5.0)
The nth Root Revisited				(0.5) (0.5)	Stress Analysis of Pressurized Panels	Martinelli	12/9	149	(3.0
I ² L—The Coming Logic	Article					Martinelli	12/9	149	(3.0
I ² L—The Coming Logic	Article Logan &	1/22	109	(0.5)	78. Environmental Design	Martinelli	12/9	149	(3.0
I ² L—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness	Article Logan & & Mekuria	1/22	109			Martinelli	12/9	149	(3.0)
I ² L—The Coming Logic	Article Logan & & Mekuria Sethi Wirsching	1/22 2/12 4/8	109 118 80	(1.3) (5.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding				
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure	Article Logan & & Mekuria Sethi	2/12	109 118 80	(0.5)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust			108	(6.0
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic	Article Logan & & Mekuria Sethi Wirsching & Kempert	1/22 2/12 4/8 7/8	109 118 80 65	(0.5) (1.3) (5.0) (5.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting	Bittence	10/7	108	(6.0
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg	2/12 4/8 7/8 7/8 8/12	118 80 65 74 93	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Rendy-Made Space Suits and Rescue Balls	Bittence Bittence N/T		108 146 4	(6.0 (7.0 (0.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg	2/12 4/8 7/8 7/8 8/12 10/7	118 80 65 74 93 138	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Rendy-Made Space Suits and Rescue Balls	Bittence Bittence N/T	10/7 11/11 5/6 5/6	108 146 4 26	(6.0 (7.1 (0.1 (5.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg	2/12 4/8 7/8 7/8 8/12 10/7 2/12	118 80 65 74 93 138 117	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0) (1.1)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem	Bittence Bittence N/T Comella N/T	10/7 11/11 5/6 5/6 6/24	108 146 4 26 4	(6.0 (7.1 (0.1 (5.1 (0.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the 'Right' Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan	1/22 2/12 4/8 7/8 8/12 10/7 2/12 4/22	118 80 65 74 93 138 117 36	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0) (1.1) (0.7)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars	Bittence Bittence N/T Comella N/T	10/7 11/11 5/6 5/6	108 146 4 26 4 18	(6.0 (7.1 (0.1 (5.4 (0.1 (8.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the "Right' Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Instant Replay in the Product Development	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken	1/22 2/12 4/8 7/8 7/8 8/12 10/7 2/12 4/22 10/7	118 80 65 74 93 138 117 36 138	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.1) (0.7) (1.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars	Bittence Bittence N/T Comella N/T	10/7 11/11 5/6 5/6 6/24 6/24 8/12 9/23	108 146 4 26 4 18 10 20	(6.0 (7.1 (0.1 (5.1 (0.1 (8.1) (6.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the "Right" Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Finding the "Right" Pictorial View Instant Replay in the Product Development Lab	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken	1/22 2/12 4/8 7/8 8/12 10/7 2/12 4/22	118 80 65 74 93 138 117 36 138	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0) (1.1) (0.7)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars	Bittence Bittence N/T Comella N/T	10/7 11/11 5/6 5/6 6/24 6/24 8/12 9/23 10/21	108 146 4 26 4 18 10 20 18	(6.0 (7.1 (0.7 (5.4 (0.1 (0.7 (6.1)
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the "Right" Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Instant Replay in the Product Development Lab Computer Programs For Analyzing Rotor	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken Aleks	1/22 2/12 4/8 7/8 8/12 10/7 2/12 4/22 10/7	118 80 65 74 93 138 117 36 138	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0) (1.1) (0.7) (1.0) (4.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars NASA Recruits Space-Shuttle Astronauts Countdown For The Orbital Express Enterprise Rollout Crawler Drill Takes to the Sea	Bittence Bittence N/T Comella N/T Zimmerman N/T Zimmerman N/T N/T	10/7 11/11 5/6 5/24 6/24 8/12 9/23 10/21 2/12	108 146 4 26 4 18 10 20 18	(6.0 (7.1 (0.7 (5.1 (0.1 (8.1 (0.7 (6.1 (1.1)
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Minicales Find Supersonic Boundary-Layer Thickness	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken Aleks Reiger	1/22 2/12 4/8 7/8 7/8 8/12 10/7 2/12 4/22 10/7 10/21	109 118 80 65 74 93 138 117 36 138 120 89	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0) (1.1) (0.7) (1.0) (4.0) (4.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars NASA Recruits Space-Shuttle Astronauts Countdown For The Orbital Express Enterprise Rollout Crawler Drill Takes to the Sea Sea-Bottom Plow Buries Transoceanic Cable	Bittence Bittence N/T Comella N/T Zimmerman N/T Zimmerman N/T N/T Cobb	10/7 11/11 5/6 5/6 6/24 6/24 8/12 9/23 10/21 2/12 8/12	108 146 4 26 4 18 10 20 18 10 26	(6.0 (7.0 (0.1 (0.1 (8.0 (6.1 (1.1 (1.1 (3.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the "Right' Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Instant Replay in the Product Development Lab Computer Programs For Analyzing Rotor Systems Shuttle Model Confirms Heating Problem	Article Logan & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken Aleks Reiger N/T Wirsching	1/22 2/12 4/8 7/8 8/12 10/7 2/12 4/22 10/7 10/21 1/22 6/24	109 118 80 65 74 93 138 117 36 138 120 89 4	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.1) (0.7) (1.0) (4.0) (7.0) (0.8)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars NASA Recruits Space-Shuttle Astronauts Countdown For The Orbital Express Enterprise Rollout Crawler Drill Takes to the Sea Sea-Bottom Plow Buries Transoceanic Cable Tool Shop Open to Ocean Depths Huge Pressure Vessel To Test Navy's Deep-	Bittence Bittence N/T Comella N/T Zimmerman N/T Zimmerman N/T N/T Cobb N/T	10/7 11/11 5/6 5/6 6/24 8/12 9/23 10/21 2/12 8/12 11/25	108 146 4 266 4 18 10 20 18 10 26	(6.0 (7.1 (0.1 (5.1 (8.1 (6.1 (1.1 (3.3 (0.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the "Right' Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Instant Replay in the Product Development Lab Computer Programs For Analyzing Rotor Systems Shuttle Model Confirms Heating Problem Models That Predict Fatigue Failure	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken Aleks Reiger N.T	1/22 2/12 4/8 7/8 7/8 8/12 10/7 2/12 4/22 10/7 10/21	109 118 80 65 74 93 138 117 36 138 120 89 4	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.0) (1.1) (0.7) (1.0) (4.0) (4.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars NASA Recruits Space-Shuttle Astronauts Countdown For The Orbital Express Enterprise Rollout Crawler Drill Takes to the Sea Sea-Bottom Plow Buries Transoceanic Cable Tool Shop Open to Ocean Depths Huge Pressure Vessel To Test Navy's Deep- Diving Gear	Bittence Bittence N/T Comella N/T Zimmerman N/T Zimmerman N/T N/T Cobb N/T	10/7 11/11 5/6 5/6 6/24 6/24 8/12 9/23 10/21 2/12 8/12	108 146 4 266 4 18 10 20 18 10 26	(6.0 (7.0 (0.1 (0.1 (8.0 (6.1 (1.1 (1.1 (3.1
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the 'Right' Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Instant Replay in the Product Development Lab Computer Programs For Analyzing Rotor Systems Shuttle Model Confirms Heating Problem Models That Predict Fatigue Failure Computer Programs For Analyzing Rotor	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Sean Genneken Aleks Reiger N.T Wirsching & Kempert	1/22 2/12 4/8 7/8 8/12 10/7 2/12 4/22 10/7 10/21 1/22 6/24 7/8	118 80 65 74 93 138 117 36 138 120 89 4	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.1) (0.7) (1.0) (4.0) (7.0) (0.8) (5.0)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars NASA Recruits Space-Shuttle Astronauts Countdown For The Orbital Express Enterprise Rollout Crawler Drill Takes to the Sea Sea-Bottom Plow Buries Transoceanic Cable Tool Shop Open to Ocean Depths Huge Pressure Vessel To Test Navy's Deep- Diving Gear EPA Wants Tougher Evaporative Standard	Bittence Bittence N/T Comella N/T Zimmerman N/T Zimmerman N/T N/T N/T N/T N/T N/T N/T N/T N/T	10/7 11/11 5/6 5/6 6/24 8/12 9/23 10/21 2/12 8/12 11/25	108 146 4 26 4 18 10 20 18 10 26 12	(6.0 (7.0 (0.1 (6.1 (6.1 (1.1 (3.1 (0.1 (0.1)
PI_—The Coming Logic Minicales Find Supersonic Boundary-Layer Thickness Defining 'Precision' In A Control System Models That Predict Fatigue Failure Preventing Vibration Damage in Electronic Assemblies Statistics From The Tail of the Curve Calc Program Finds Moments of Inertia Finding the "Right" Pictorial View Graphic Input Terminal Uses Wireless Stylus Calc Program Finds Moments of Inertia Instant Replay in the Product Development Lab Computer Programs For Analyzing Rotor Systems Shuttle Model Confirms Heating Problem Models That Predict Fatigue Failure	Article Logan & & Mekuria Sethi Wirsching & Kempert Steinberg Wood Genneken Felstein Scan Genneken Aleks Reiger N/T Wirsching & Kempert	1/22 2/12 4/8 7/8 8/12 10/7 2/12 4/22 10/7 10/21 1/22 6/24	118 80 65 74 93 138 117 36 138 120 89 4 8 65	(0.5) (1.3) (5.0) (5.0) (4.0) (3.0) (1.1) (0.7) (1.0) (4.0) (7.0) (0.8)	78. Environmental Design Waging War on Rust: Part 1—Understanding Rust Waging War on Rust: Part 2—Resisting Rust Ready-Made Space Suits and Rescue Balls Colonizing Free Space Shuttle Model Confirms Heating Problem U.S. Technology Reaches Mars NASA Recruits Space-Shuttle Astronauts Countdown For The Orbital Express Enterprise Rollout Crawler Drill Takes to the Sea Sea-Bottom Plow Buries Transoceanic Cable Tool Shop Open to Ocean Depths Huge Pressure Vessel To Test Navy's Deep- Diving Gear	Bittence Bittence N/T Comella N/T Zimmerman N/T Zimmerman N/T N/T N/T N/T N/T N/T N/T Schumacher	10/7 11/11 5/6 5/6 6/24 8/12 9/23 10/21 2/12 8/12 11/25	108 146 4 26 4 18 10 20 18 10 26 12	(6.0 (7.1 (0.1 (5.1 (0.1 (6.1 (1.1 (3.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (0

ENGINEERING MANAGEMENT & OPERATION

81. Engineering Department	Operation	ns			Take the Guesswork Out of Project Time Estimates NASA Recruits Space-Shuttle Astronauts	Delembo N/T	8/26 8/12	66 10	(4.0) (0.7)
When and How to Delegate	Raudsepp	1/8	66	(4.0)	Ten Key Factors Affecting Your Job	Zimmerman	10/21	20	(6.0)
What Bugs Engineers?	Imberman	9/9		(4.0)	Career Stalled?	Ference,			
Motivation Is More Than Gimmicks	Fuller	11/11	116	(5.0)		Stoner &			
Take the Guesswork Out of Project Time						Warren	3/25	130	(5.0)
Estimates	Delembo	8/26	66	(4.0)	Enginee: Salaries: Where Do We Stand?	Zimmerman	2/26	18	(4.0)
Technological Forecasting	Hart	2/12	90	(4.0)	More About Money	Zimmerman	5/20	31	(1.2)
Planning: The Key To Increased Engineering	Tier c	20 12	00	(4.0)	EMC Gives 5th Report on Technician Salaries	Zimmerman	5/20	33	(0.8)
Productivity	Murdick				Inflation Out-Paces Engineers' Paychecks	Zimmerman	8/12	72	(4.0)
	& Karger	5/20	100	(3.0)	Personal Communications: The Space Factor	Dalton &			
Decision Making: A Little Technique Goes	or italger	0/20	100	(0.0)	Totalian communications and opinion and opinion and	Dalton	9/23	94	(5.0)
A Long Way	Fuller	7/22	64	(5.0)	Purchasing: Where Does The Engineer Fit In?	Comella	12/9	120	(5.0)

82, 83. New Product Development, Drafting & Reproduction

Will That New Product Make It?	Lance	2/26	72	(6.0)	
Brainstorming Your Way To New Ideas Taking The Tossup Out of New-Product	Ahrens	4/8	66	(3.0)	
Development	Riggio	6/10	82	(4.0)	
Instant Replay in the Product Development Lab	Aleks	10/21	120	(4.0)	
Geothermal Research Encouraging	N/T	12/9	6	(0.5)	
Mastering the Art of Isometric Sketching	Gunther & Chepulis	7/8	78	(2.0)	
Elliptical Compass Ends Drafting Drudgery	Scan	7/8	34	(0.7)	

84. Laboratory & Testing

When ICs Go Bad	Dicken	2/26	78	(4.0)
Composite Wing Scheduled for Testing On				
Twelve Aircraft	N/T	3/11	6	(0.5)
Souped-Up Tractors Invade Nation's Sports				
Arenas	Zimmerman	3/11	18	(3.0)
Materials Test System Saves Power	Scan	3/11	38	(0.5)
Spring Loading Extends Range of Friction				
Tester	Scan	3/11	40	(0.6)
Test Switch Opens Ribbon Cable Lines				
One At a Time	Scan	3/25	54	(0.5)
Digital Revolution in the Test Lab	Wentz	3/25	144	(5.0)
Shuttle Model Confirms Heating Problem	N/T	6/24	4	(0.8)
Wear Particles Predict Machine Malfunctions	Aronson	6/24	84	(6.0)
Navy Builds an Energy-Test House	N/T	7/22	8	(0.8)
Troubleshooting PC Armatures	Uhls	8/12	96	(1.6)
Logic Circuit Speeds Up Transistor Testing	Scan	8/26	36	(0.7)
Test Equipment For Microcomputers	Raphael			
	& Hou	8/26	78	(4.0)
Current Probe Pinpoints Logic Faults	Scan	9/23	52	(0.6)
Water Tunnel Tests Sub-Launched Missiles,				
Bids for Wind-Tunnel Jobs	N/T	11/11	4	(1.0)
What's Behind The UL Label?	Plesser	11/25	87	(5.0)
Sailplane and Model Teamed in New Research .	N/T	12/9	4	(0.7)
ban plant and resource a second in the second in				

Huge Pressure Vessel To Test Navy's Deep-				
Diving Gear	N/T	12/9	6	(0.5)
Listening For The Sounds of Bearing Trouble	Beercheck	11/25	82	(5.0)
The 'Hidden Message' In Mechanical Vibration .	Lang	6/10	86	(6.0)
Acoustic Emission	Pollock	4/8	72	(5.0)

85. Technical Information

'Voluntary' Metric Law Passed in '75	Wise	2/26	24	(2.0
Which Standards for Metric Retaining Rings?		2/26	86	(4.0
Noise Standards Set for Locomotives.				
Portable Air Compressors	N/T	3/11	8	(0.5)
Reducing Metric Conversion Errors	Erisman	6/24	95	(5.0
Metric Standard Approved by ANSI	N/T	9/23	8	(0.5)
Microcomputer Terminology	Chapter EM&C	4/29	210	(2.0)

86, 87. Patents & Patent Law, Personnel & Professional

Patents: Who Needs Them!	Karger	1/22	76	(3.0)
How To Market Your Own Invention	Aronson	5/6	82	(4.0)
Career Stalled?	Ference.			
	Stoner &			
	Warren	3/25	130	(5.0)
What Down Famineous?	Imberman	9/9	98	(4.0)
What Bugs Engineers?				
The Over-Motivated Engineer	Steinmetz	10/7	98	(4.0)
Biorhythm: Personal Science or Parlor				
Game?	Comella	10/21	104	(5.0)
Brainstorming Your Way To New Ideas	Ahrens	4/8	66	(3.0)
Overcoming The Habits That Block Creativity .	Marsh	7/8	52	(5.0)
A Short Course in Carpet Climbing	Article	10/7	35	(2.0)
WESCON: It's 25 and Healthy Again	N/T	9/9	36	(3.5)
Cleveland Hosts Triple Engineering Shows				
And Conferences	Article	10/21	137	(1.0)
Big Unions Make Their Pitch	Zimmerman	2/12	26	(5.0)
Getting the Most From Your Education Dollar .	Martinec	4/22	52	(5.0)
Minorities In Engineering: Any Progress?		11/25	66	(4.0)

COMPLETE MACHINES

911. Ordnance

Upgunning U. S. and NATO Tank Forces	Buchanan	1/8	20	(3.0)
Two To Joust for XM1 Job	N/T	2/26	4	(1.0)
Army Tests Rapid-Fire Mine 'Layer'	Zimmerman	3/25	20	(2.0)
Strain Gages Zero-In Big Gun Quickly	Zimmerman	5/20	36	(2.0)
100+ mph; Ship Sets Speed Record	N/T	8/12	4	(0.6)
Tankers Set Fuzes After Firing Shells	Zimmerman	8/26	10	(2.0)
Coming: The 100-mph Warship	N/T	9/9	4	(0.6)
Mobile Patriot Hardware Rolled Out	N/T	9/23	4	(0.7)
Water Tunnel Tests Sub-Launched Missiles,				
Bids for Wind-Tunnel Jobs	N/T	11/11	4	(1.0)
Shootout Over The Next Main Battle Tank	Zimmerman	12/9	28	(4.0)

912. Machinery

N/T	1/22	8	(0.5)
Zimmerman	3/11	18	(3.0)
NPT	3/25	32	(0.7)
N/T	4/8	18	(5.0)
Scan	8/26	40	(0.5)
Scan	8/26	40	(0.5)
Article	8/26	70	(8.0)
Khol	9/23	32	(2.5)
Article	10/21	136	(1.0)
	Zimmerman NPT N/T Scan Scan Article Khol	Zimmerman 3/11 NPT 3/25 N/T 4/8 Scan 8/26 Scan 8/26 Article 8/26 Khol 9/23	Zimmerman 3/11 18 NPT 3/25 32 N/T 4/8 18 Scan 8/26 40 Article 8/26 70 Khol 9/23 32

913. Electrical Machinery

New RPV Impressive on First Flights	N/T	2/12	4	(1.0)
Satellite To Track Car in Around-the-				
World Auto Race	N/T	4/8	4	(0.8)
U. S. Technology Reaches Mars	Zimmerman	6/24	18	(8.0)
Ambulance Contacts Hospital Via Satellite	N/T	7/8	10	(0.6)
'Ma Bell' Tests Lasers 'Talking' into				
Fibers	N/T	8/12	6	(1.0)
Sea-Bottom Plow Buries Transoceanic Cable	Cobb	8/12	26	(3.0)
Tankers Set Fuzes After Firing Shells	Zimmerman	8/26	10	(2.0)
Optical Waveguides Carry TV into Homes	N/T	9/9	10	(0.8)
Radar Eye Looks Everywhere Without Moving .	N/T	9/23	8	(0.5)
Instant Replay in the Product Development				
Lab	Aleks	10/21	120	(4.0)

914. Transportation

Amtrak Begins To Roll	Aronson	1/22	18	(6.0)
New RPV Impressive on First Flights	N/T	2/12	4	(1.0)
Six-Wheeler May See Grand-Prix Action	Article	2/12	20	(3.0)
Safety Car Built of Clay	N/T	2/26	12	(0.5)
Do-It-Yourself Hovercraft	N/T	3/11	25	(1.0)
Idea Car for Lady Shoppers	N/T	3/25	4	(0.7)
Small Crew Handles Huge Aluminum Sailing				
Vessel	N/T	3/25	12	(0.7)
Satellite To Track Car in Around-the-				
World Auto Race	N/T	4/8	4	(0.8)
Great Lakes Super Carriers	Aronson	4/22	18	(5.0)
Indy's George Bignotti	Article	5/6	18	(6.0)
Museum Tackles a 'Transit' Problem	Wise	6/10	18	(4.0)
U. S. Technology Reaches Mars	Zimmerman	6/24	18	(8.0)
New Bus Stresses Comfort and Convenience	N/T	7/8	4	(0.7)
GMC's General: First 'Finite-Element' Truck	N/T	7/22	4	(1.7)
100+ mph: Ship Sets Speed Record	N/T	8/12	4	(0.6)
New Rule Won't Scuttle New Bus	N/T	8/26	6	(1.0)
Weight Reduction, Fuel Economy Highlight	14/ 1	0.20		(410)
Auto Industry's 'Interim' Year	Wise	9/9	18	(11.0)
New Approach to Developing Electric Car	N/T	9/23	10	(0.7)
Countdown For The Orbital Express	Zimmerman	9/23	20	(6.0)
	Wise	10/7	20	(6.0)
Electronics Paces 1977 Engine Redesign		10/21	18	(1.0)
'Enterprise' Rollout			20	
Coming Soon—The VW Diesel	Aronson	11/25		(3.0)
Rigging Trims Wheels on All-Terrain Vehicle	Scan	11/25	42	(0.5)
Sailplane and Model Teamed in New Research .	N/T	12/9	4	(0.7)

916. Fabricated Metal Products

Mechanical Booster Puts the Squeeze on Vise Jaws	Scan	2/26	40	(0.5)
Toothed Ratchet Wrench Takes The Bite Out of Metric Conversion		3/11	38	(0.5)
Toggles Keep Tabs on Torque		11/11	44	(0.6)

917. Leisure and Hobby

aterials In Sports	 Ebert	8/12	18	(5.0)

CLASSIFICATION SYSTEM

The classification system provides nine major (one-digit) 2 classifications, each of which has up to nine (two-digit) subclassifications. These, in turn, are divided into ten (threedigit) indexing classifications.

Indexing classifications ending in 0 (General) are used to index material concerning several or all indexing classifications ending in 1 through 8. Classifications ending in 9 (Other) are used for material falling within the sub-classification but not within any of the items 1 through 8.

1-ELECTRICAL AND ELECTRONIC

11	
	General Fractional (less than 1 hp)
112	Ac integral horsepower, induction
113	Dc integral horsepower
114	Universal (dc or ac)
115	Multispeed
118	Gearmotor
117	Torque
118	Definite and special purpose, pancake
119	Other: Linear, motor protectors
12	Power Supplies
	General
121	Batteries, battery chargers, battery holders
122	Dc generators, motor-generators
123	Ac generators, motor-generators, after-
	nators
124	Converters, inverters
125	Transformers, voltage regulators
126	Fuel cells, solar cells, photo cells
	Thermoelectric supplies Antennas
	Other

13	Switches and Relays
130	
131	Mechanical: Pushbutton, toggle, rotary, ac-
120	celeration
132	
133	Pressure operated
134	Limit, snap-action
135	Proximity, photoelectric, magnetic, Hall ef-
	fect
136	Stepping
137	
138	Motor starters, motor controls, contactors,
	starting reactors
139	Other: Reed, mercury-wetted
14	Instruments and Controls
140	General
141	Sensing devices, transducers, ther-
	mocouples
142	Solenoids, electric actuators
143	Timers, timing motors, delays
144	Synchros
143	Instrument motors, synchronous Data recorders, readouts, indicators, dis-
140	plays, memories
147	Meters, gages
148	Servo motors, stepping motors
	Other: Motor silencers
15	Circuit Components

158	Lasers, masers Other
16	Connectors and Wiring
	General
	Rings, brushes, commutators, rotors
162	Terminals, binding posts, terminal boards
163	Contacts, button
164	Plugs, receptacles, connectors, sockets
	Wiring, cable, cord, harness, bus bars, coaxial, circuits, grounding
	Printed circuits, stitched circuits
	Superconductors
168	
169	Other: Lenses, mirrors, reticles, reflectors, prisms, photosensors
17	Miscellaneous Components
170	General
171	Magnets, electromagnets
172	Chassis, control panels, keyboards
173	Insulation, encapsulation, shielding, jacket-
	ing, conduit
174	Cooling elements
	Lamps, lighting elements, fiber optics, strobes
176	Heaters, heating elements, ovens
177	Electric clutches, electric brakes
178	Ignition systems
179	Other
19	Systems & Assemblies
190	General
191	Amplifiers, preamps
192	Control systems: Regulators, numerical con- trol, digital controllers
	Electronic computers, calculators, peripheral equipment
194	Microprocessors
195	Adjustable-speed drives
196	Servomechanisms
197	
198	Packaging (electrical/electronic)
199	Other

150 General 151 Resistors, varistors, rheostats, poten

_FLUID	POWER	(continued)

	Seals General		Instruments & Controls General
241	Material seals (O-ring)		Test stands
	Mechanical seals		Control panels
	Gaskets		Meters, gages: Manometers, flow meters
	Wiper rings, piston rings	200	rotameters, anemometers
	Packings Parkings	29.4	Switches, liquid level
	Labyrinths		Transducers (to hydraulic)
267	Labyrinins		Regulators
	Bellows, protective covers		Fluid logic, fluidics, moving-part logic
		288	ribid logic, fibidics, moving-part logic
209	Other: Diaphragms, rolling diaphragms, clo- sures, plugs		Other: Floats, anchors
	Valves	29	Systems & Assemblies
	General		General
271	Directional control		Industrial hydraulic & pneumatic systems
272	Flow control, faucets, flow dividers		Mobile, gircraft, marine
273	Pressure control, relief vacuum		Hydrodynamic drives
	breakers		Hydrostatic drives
	Servo valves	295	Vacuum
	Valve blocks, manifolds		Lubrication
	Nozzles, venturies, orifices, poppets		Hydraulic, pneumatic computers
277	Proportional flow or pressure		Power units
278			Other: Servo systems
279	Other	2,,,	omer: ocryo systems

1:	1) Resistors, varistors, rheostats, poten- tiometers 20 Capacitors 31 Inductors 4 Solid-state devices: Diodes, transistors, thyristors, SCR's, rectifiers, semiconduc- tors, optical couplers, integrated circuits	3—MECHANICAL	
	55 Tubes, cathode ray tubes		
	6 Saturable reactors, magnetic amplifiers		
	7 Fuses, fuse panels, protectors	31 Power Sources	348
	8 Lasers, masers	310 General, energy	349 Other
- 1	59 Other	311 Jet engines	35 Rotational Components
1	Connectors and Wiring	312 Internal combustion engines	350 General
	50 General	313 Turbines, turbofans, turbojets	351 Antifriction bearings: Ball, roller, needle
1	1 Rings, brushes, commutators, rotors	314 Atomic, nuclear power	linear, thrust, pillow blocks
1	2 Terminals, binding posts, terminal boards	315 Exotic fuel engines, rockets	352 Sleeve bearings: Gas, solid-lubricant, bush
	3 Contacts, button	316 Fuels, propellants, explosives, coal, natural	ings, rod ends, ball joints
	4 Plugs, receptacles, connectors, sockets	gas, hydrogen, fuel oil	353 Flexible couplings, universal joints, flexible
	55 Wiring, cable, cord, harness, bus bars,	317 Steam	shafts
	coaxial, circuits, grounding	318 Geothermal, wind, water, solar, tidal	354 Torque converters, fluid couplings
1	66 Printed circuits, stitched circuits	319 Other	355 Shafts, axles, splines, crankshafts, spindles
	57 Superconductors	32 Constant-Speed Drives & Transmissions	356 Clutches, brakes, power absorbers, torqu
1	58	320 General: Speed reducers	limiters
1	59 Other: Lenses, mirrors, reticles, reflectors,	321 Chain	357 Fans, blowers, propellers (see 257)
	prisms, photosensors	322 Beit	358 Reels, winches, hoists
		323 Friction: Ball, disc, wheel, cone	359 Other: Flywheels
	Miscellaneous Components	324 Gear	04 44-4
	70 General	325	36 Mechanisms
	1 Magnets, electromagnets	326	360 General
	2 Chassis, control panels, keyboards	327	361 Cams, cam followers 362 Linkages, cranks
-	73 Insulation, encapsulation, shielding, jacket-	328	363 Intermittent-motion, periodic-motion, index
1	ing, conduit	329 Other: Reversing	ing, gyratory-motion, mechanical es
	4 Cooling elements		capements, ratchets
	75 Lamps, lighting elements, fiber optics,	33 Adjustable-Speed Drives & Transmissions	364 Three-dimensional
11	strobes	330 General: Speed reducers	365 Motion converters, leadscrews, jacks, ac
	6 Heaters, heating elements, ovens	331 Chain	tuators
	77 Electric clutches, electric brakes	332 Belt	366 Spring motors
1	'8 Ignition systems '9 Other	333 Friction: Ball, disc, wheel, cone	367 Telescoping members, collapsing member.
	7 Office	334 Gear	368 Manipulators, vibrators, robots, separator
1	Systems & Assemblies	335	369 Other
1	O General	336	7.51
1	1 Amplifiers, preamps	337	37 Controls
- 1	22 Control systems: Regulators, numerical con-	338	370 General
	trol, digital controllers	339 Other: Reversing	371 Push-pull
1	3 Electronic computers, calculators,	34 Drive Components	372 Transducers (to mechanical)
	peripheral equipment	340 General	373 Gyros, gyroscopes
1	4 Microprocessors	341 Transmission chain, cable, cable fittings,	374 Mechanical counters 375 Safety devices, audible warning devices
1	5 Adjustable-speed drives	cable splices, shackles	
1	6 Servomechanisms	342 Belts, belting	376 377
	27	343 Gears, gearing, racks, pinions	378
1	8 Packaging (electrical/electronic)	344 Sprockets	379 Other
1	9 Other	345 Pulleys, sheaves, idlers, tensioners	3/7 Unier
		346 Conveyor chain, conveyor belts	39 Systems
		347 Conveyor screws, roller conveyors	390 General

2-FLUID POWER

	Fluids General Hydraulic fluids	236	Joints, couplings, unions, flanges, adapters Mufflers Hydrofoils
212 213	Coolants, refrigerants Cleaners, solvents (see 577) Lubricants (see 576)	238	Other: Applicators, dispensers, reversers
215 216 217	Lubicums (see 37 a)		Linear Devices General Cylinders, pistons, cylinder mounts
218	Aerosols, pressurized liquids Other	242 243	Accumulators Intensifiers, boosters, rams
	Fluid Conditioners General	245 246	Actuators, bellows, diaphragms Pumps Motors
222	Fluid storage, pressure vessels, reservoirs Filters, strainers, screens, baffles Renovators (Note, 223 = 222 + 286 +		Compensators Other: Impellers, air guns
	296) Heat exchangers Coolers, radiators, heat pipes	25	Rotary Devices General
226 227 228	Heaters, burners Driers, evaporators Humidifiers, mixers, carburetors Other	251 252	Pumps, rotary, centrifugal Fluid motors, brakes, high-torque low-speed Air motors
23	Fluid Conductors	254	Compressors
231 232 233	General Tubing (pressure) (see 587) Hose, ducts, bellows Pipe Fittings	256 257 258	Rotary actuators Winches Propellers (see 357) Centrifuges Other

4_4	SSEMBLY	COMP	ONENTS
4-	POSEMBLI	CUMP	OIAEIA 12

41	Fasteners	426	Mechanical damping devices
410	General	427	Spring-loaded devices
411	Inserts	428	
412	Nuts, locknuts	429	Other: Belleville, constant force
413	Pins, dowels, staples		*** *
	Quick operating panel-type, latches	43	
	Retaining rings, keys, collars, frictional		General
	shaft connectors, shaft-hub connectors.		Locks
	tolerance rings		Nameplates, labels, wire markers, signs
416	Rivets, blind rivets		Dials, knobs, handles, drawer pulls
	Screws, bolts, studs, shear bolts		Shims
	Washers, grommets, eyelets, spacers, bush-		Enclosures, housings, cabinets, cases
	ings, stand-offs	436	Wheels, tires, rollers, casters, ball transfers
419	Other: Spring clips, clamps, zippers, wire		rings
	ties, belt splicing, captive panel hardware,	437	Slides, ways
	captive fasteners	438	Hinges, brackets
		439	Other: Razor blades, brushes, bells, knives
42	Springs and Isolation Devices		buzzers, chimes, bases, boots, bellows
420	General		way protectors
421	Fluid & air springs		
422	Helical wire springs	44	
423	Leaf springs, cantilever		General
424	Vibration isolators, mounts		Inspection tools and fixtures
	Hydraulic-damping devices, shock absorb-		Gage blocks, micrometer heads
	ers, snubbers	443	Meters, gages

		663 4 16	73	u	761	Mash-masi-alat-da-d-si-si
	Ferrous Metals	551 Adhesives, sealants, encapsulants, caulking, grout		Mechanics General	752	Mathematical methods, statistics Graphical techniques
	General	552 Welding rods		statics (at rest)	753	Analogs, models, simulators
511	Cast iron, malleable iron, cast carbon, alloy	553 Brazing, soldering alloys		Dynamics (force to create motion)		Computer techniques
	steels	554 Srazing, soldering alloys	712 6	Ginematics (motion in abstract)	755	Reliability, quality control
512	Wrought carbon, alloy steels			fibration, natural frequency	754	Dimensioning, tolerances
513 1	Free-machining steels	555				Maintenance
514	Stainless steels, high alloys, high tempera-	556	715 5			
	ture steels	557		Noise, sound, music		Value analysis
	Specialty steels (tool, die, electrical)	558		Viscosity	124	Other
516		559 Other		Strain and stress	76	Basic Sciences & Fields
517	High-strength low-alloys		719 (Other		
	Magnetic alloys	er out Normatala	70	Strength of Material		General
519	Other	56 Other Nonmetals				Physics
		560 General		General	762	Chemistry
	Nonferrous Metals	561 Carbon, graphite, diamonds		Elastic theory	763	Thermal, thermodynamics, cryogenics,
	General	562 Glass, ceramics, quartz		Plastic theory		heat transfer, combustion
	Aluminum	563 Refractory materials, mica		Fatigue, endurance		Radiation
522	Copper, brass, bronze, beryllium copper	564 Carbides, cermets		Creep		Biosciences
	Magnesium	565 Mineral and synthetic fibers, felt, fabrics		Impact stress	766	Optics, photography, holography, photo-
	Nickel	566 Insulating materials (thermal, sound)	726	Thermal stress		elasticity
	Titanium	567 Wood, cark, composition board, paper	727	Friction, wear	767	Ultrasonics
526		568 Chemicals, phosphors, inks		Fracture		Aerodynamics
	Refractory metals: Tungsten, tantalum, molybdenum, columbium	569 Other: Abrasives, friction materials, syn- thetic crystals, heat-sensitive liquid crys	729	Other: Hardness		Other: Economics, metrology
528	Precious metals	tols	73	Strength of Parts	77	Experimental Design
	Other: Tin, lead, chromium, vanadium			General		General
		57 Finishes, Coatings & Lubricants		Tension, compression		Prototypes, breadboards
53	Plastics	570 General		Bending		Testing, stress analysis
530	General	571 Metallic coatings	722	Shear, torsion	773	
531	Thermoplastic plastics (nylon, Teflon)	572 Chemical coatings, electrochemical coat-	733	Surface contact stress	774	
532	Thermosetting plastics (epoxy, phenolic,	ings, photosensitive	200		775	
502	filled silicones, rigid urethanes)	573 Organic finishes: Lacquers, synthetic		Plates		
533	Laminated plastics, vulcanized fiber	enamels, paints, varnishes	/30	Cylinders, columns	776	
	Reinforced, filled plastics	574 Porcelain enamels, vitreous coatings	737	Rotating discs, rotors	777	
		575 Plastic coatings, plastic powders		Critical speed, critical flow	778	
	Porous plastics	576 Lubricating materials (see 214)	739	Other	779	Other
	Colors for plastics		74	Human-Factors Engineering	78	Faulta amountal Buston
	Plastic trims	577 Cleaners, solvents (see 213)				Environmental Design
538		578 Mechanical surface finishes		General		General
539	Other: Degradable	579 Other: Corrosion inhibitors		Styling		Corrosion, rust
	B. LL	58 Prefubricated Forms		Color		? Mold, fungus
	Rubber and Elastomer	36 Prevaoncarea Forms		Safety, comfort, protective clothing	783	Outer space
	General	580 General		Illumination	784	Under sea
	Natural rubber	581 Film, tape, sheet, foil, plate		Human limitations		Pollution
	Synthetic rubber	582 Wire, wire cloth, knitted wire mesh, win	e 746	Spare/replacement parts		Waste treatment, reclamation, salvage, res
543	Elastomeric plastics: Flexible silicones and	rope, cable	747			toration, conservation, recycling
	urethanes	583 Patterned, perforated, expanded metals	748		787	7
544	Hard rubber	textured, prefinished		Other: Tactile graphics		High temperature, low temperature
545		584 Laminates	/	omer. Toome grapmes		Other
546		585 Composite materials	75	Design Analysis & Synthesis	/89	Omer
547		586 Structures: Honeycomb, foam, sandwich	750	General		
548		isogrids, geodesic	, , , , ,			
	Other	587 Structural shapes: Tubing, channels				
549	Other					
55	Joining Materials	588 Balls, beads				
	General	589 Other				

6-MANUFACTURING PROCESSES

8-ENGINEERING MANAGEMENT & OPERATION

			_			
610 611 612 613 614 615 616 617 618 619 62 620 621 622 623 624 625	Metal Casting General Sand Shell mold Permanent mold, gravity, low-pressure Centrifugal Investment Die Plaster mold Continuous Other Metal Shaping General Forging, cold forging Extrusion, impact extrusion Heading, upsetting, cold forming Thread, form rolling Powder metallurgy, porous metals, fiber metals	654 Drilling, boring, tapping 655 Grinding, obrasive machining 656 Honing, lapping, polishing, burnishing 657 High-energy machining: Spark, laser, water iet 658 659 Other 66 Metal Treating 660 General 661 Heat Treating 662 Surface treating. Carburizing, nitriding 663 Shot peening, surface working 664 Chemical milling, etching, photochemical 665 666 667 668 669 Other	811 812 813 814 815 816 817 818 819 82 83 830 831 832 833	General Structure, organization Costs, budgets Programming, planning Personnel policies Recruiting, evaluation, training Managerial tolent Compensation, pensions Communication Other New Product Development General Drafting & Reproduction General Management, control systems Drafting practices, techniques Technical illustration	853 854 855 856 857 858 860 87 870 871 872 873 874 875 876	Security, protection Other Patents & Patent Law General Personal & Professional General Creativity, inventiveness Meetings, shows Contests, awards Societies Professional licensing, certification Unions
626		67 Finishing	835	Drafting equipment Reproduction equipment, systems	878	Education, curriculums, seminars, career plan Product litigation, expert witness
628 629	Hot isostatic pressing Other	670 General 671 Chemical, solvent cleaning 672 Mechanical finishing, tumbling	837	Furniture, drawing files	88	Other: Women Outside Services
630	Metal Forming General	673 Conversion coating, anodizing, electro- polishing	839	Other		Engineering design services
632	Sheet forming, plate forming Stamping, drawing, blanking, embossing, coining High-velocity forming, explosive forming	674 Electroplating, vacuum metallizing 675 Metal spraying, flame spraying, hard fac- ing, plasma spray, plasma arc, electro- static	841	Laboratory & Testing General Nondestructive testing Dynamic analysis	882 883 884 885	Consulting to government
634	Spinning Roll forming	676 Painting 677 Hot stamping: Branding	85	Technical Information	886 887	
637	Tube forming Wire forming	678 679 Other		Engineering libraries, files, books, museums	888 889	Other
638	Stretch and compression forming Other: Magnetic forming	68 Plastics & Rubber Processes 680 General				
	Metal Joining General Arc welding	681 Molding, injection molding, forging, rota- tional molding				
642	Gas welding	682 Extrusion, pultrusion 683 Sheet forming				
643	Resistance welding High-energy welding: Plasma, electron beam, explosive bonding, ultrasonic,	684 Laminating 685 Casting 686 Stamping, machining, fabricating, forming,		-MISCELLANEOUS		
	magnetic, solid state Flame cutting	forging 687 Calendering, coating, plating		Complete Machines	915	Instruments: Medical, dental, photographic,
646	Brazing Soldering, desoldering	688 Encapsulating		General Ordnance: Tanks, missiles, rockets, ammu-	916	watches (SIC 38) Fabricated metal products: Hand tools (SIC
648	Adhesive joining, bonding	689 Other: Filament winding, welding		nition (SIC 19)		34)
649	Other: Interlocking, keylock, dove-tail, sew- ing, bolted joints, riveting	69 Miscellaneous 690 General	912	Machinery: Agricultural, construction, machine tools, office machines, materials handling (SIC 35)	917	Toys, playground equipment, sports equip- ment, recreational equipment
	Metal Removal	691 Assembly, automatic assembly, micro-as- sembly	913	Electrical machinery: Communication, radio,		Other
650	General Planing, broaching	692 Packaging, storage, shipping	014	radar, TV, appliances, X-ray (SIC 36)	99	Unclassified
652	Lathe turning, screw machining Milling, hobbing, gear shaping, sawing	693 Balancing rotating machines	914	Transportation: Automotive, aircraft, ships, railroad, spacecraft, undersea craft (SIC 37)		General

