Propositional Inference by Resolution – Blood Types and Tests

Problem Statement

There are four blood types, A, B, AB, and O. Every person has one of those blood types. There are two blood tests – S and T. (Only) types A and AB blood test positive with the S test. (Only) types B and AB test positive with the T test. Show that if a person's blood tests negative both with S and T, they must have type O blood.

Propositions and Their Meanings

- A the person has type A blood
- B the person has type B blood
- AB the person has type AB blood
- 0 the person has type O blood
- S the person's blood tests positive using test S
- T the person's blood tests positive using test T

Axioms

- 1. Everybody has one of the four blood types: A V B V AB V O
- 2. (Only) types A and AB blood test positive with the S test: S <=> (A V AB)
- 3. (Only) types B and AB blood test positive with the T test: $T \iff (B \lor AB)$

Goal Statement

4. If a person tests negative for both S and T, then they have type O blood: $\neg S \land \neg T \Rightarrow 0$

Converting to CNF

Identify the clauses that will be used in the resolution proof. The clauses are identified with a label like C1: and set in bold face

(Axiom 1) : A V B V AB V O

C1: A V B V AB V O -- This formula is already in CNF

```
(S \Rightarrow (A \lor AB)) \land ((A \lor AB) \Rightarrow S) -- Convert \iff to two \Rightarrow
          Note now we have two conjuncts so we can handle them separately
             (S => (A V AB)) -- First conjunct
C2:
             ¬S V A V AB
                                    -- Definition of =>; this is a disjunction
             (A V AB) \Rightarrow S -- Second conjunct -- (A V AB) V S -- Definition of \Rightarrow
             (¬A ^ ¬AB) V S -- Move negation to propositions
             (¬A V S) ^ (¬AB V S) -- Distribute V over ^; have two conjuncts
C3:
             ¬A V S
             ¬AB V S
C4:
(Axiom 3): T <=> (B V AB) -- almost identical to (2)
             (T \Rightarrow (B \lor AB)) \land ((B \lor AB) \Rightarrow T) -- Convert \iff to two \Rightarrow
          Note now we have two conjuncts so we can handle them separately
             (T \Rightarrow (B \lor AB))
                                   -- First conjunct
C5:
             ¬T V B V AB
                                    -- Definition of =>; this is a disjunction
                                   -- Second conjunct
             (B V AB) => T
             - (B V AB) V T -- Definition of => (-B ^ -AB) V T -- Move negation to propositions
             (¬B V T) ^ (¬AB V T) -- Distribute V over ^; have two conjuncts
C6:
             ¬B V T
             ¬AB V T
C7:
(4 Goal): (\neg S ^ \neg T) => 0
             \neg((\neg S \land \neg T) \Rightarrow 0) -- Negate the goal
             ¬(¬ (¬S ^ ¬T) V 0)
                                        -- Definition of =>
             (¬S ^ ¬T) ^ ¬0
                                        -- Move outer negation in;
                                         -- we now have three conjuncts, done
NG1:
             ٦S
NG2:
             ¬Τ
NG3:
             ¬0
```

(Axiom 2): $S \iff (A \lor AB)$

Resolution Proof

Clause #	Clause	Derivation
C1	A V B V AB V O	
C2	¬S V A V AB	
C3	¬A V S	
C4	¬AB V S	
C5	¬T V B V AB	
C6	¬B V T	
C7	¬AB V T	
NG1	¬S	
NG2	¬T	
NG3	¬0	
1	A V B V AB	C1 + NG3
2	S V B V AB	1 + C3
3	B V AB	2 + NG1
4	T V AB	3 + C6
5	AB	4 + NG2
6	S	5 + C4
7	Ø	6 + NG1

Therefore we can say that the axioms plus the negated goal is unsatisfiable, and therefore the goal formula $(\neg S ^ \neg T) => 0$ follows from axioms (1) - (3)