Bank Marketing Analysis

By: Andrew Stephens

Overview

- The likelihood that someone will take a loan in their lifetime is almost a guarantee in today's society.
- What are the chances, that a customer will subscribe to a loan?

Background

• Obrigado Bank is a Portuguese banking institution, with locations all over Portugal and Europe.

 Term deposits allow banks to hold onto a deposit for a specific amount of time, banks can invest in higher gain financial products to make a profit.

 Banks hold better chances to persuade term deposit clients into buying other products to increase their revenues.

Goals

- Create and implement a machine learning model that will classify customers that are more likely to subscribe to a loan.
- The model will have an AUC score higher than 90% and an FP score less than 10%.
- Find features any feature that may be significant with regards to the outcome of the model and the campaign.

Dataset

Data comes from UCI Machine Learning Repository

• Instances: 45211

Attributes/Features: 17

Dataset explored

Attribute Information:

Output variable (desired target):

21 - y - has the client subscribed a term deposit? (binary: 'yes','no')

Input variables: # bank client data: 1 - age (numeric) 2 - job : type of job (categorical: 'admin.'.'blue-collar'.'entrepreneur'.'housemaid'.'management'.'retired'.'self-employed'.'services'.'student'.'technician'.'unemployed'.'unknown') 3 - marital: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed) 4 - education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown') 5 - default: has credit in default? (categorical: 'no', 'yes', 'unknown') 6 - housing: has housing loan? (categorical: 'no'.'ves'.'unknown') 7 - loan: has personal loan? (categorical: 'no', 'yes', 'unknown') # related with the last contact of the current campaign: 8 - contact: contact communication type (categorical: 'cellular'.'telephone') 9 - month; last contact month of year (categorical: 'ian', 'feb', 'mar', 'nov', 'dec') 10 - day of week: last contact day of the week (categorical: 'mon', 'tue', 'wed', 'thu', 'fri') 11 - duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model. # other attributes: 12 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact) 13 - pdays; number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted) 14 - previous: number of contacts performed before this campaign and for this client (numeric) 15 - poutcome: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success') # social and economic context attributes 16 - emp.var.rate: employment variation rate - quarterly indicator (numeric) 17 - cons.price.idx; consumer price index - monthly indicator (numeric) 18 - cons.conf.idx: consumer confidence index - monthly indicator (numeric) 19 - euribor3m: euribor 3 month rate - daily indicator (numeric) 20 - nr.employed: number of employees - guarterly indicator (numeric)

Mostly categorical attributes/features with about 6 or 7 numerical features.

Data Wrangling

• The data came clean so there was no data wrangling needed.

Exploratory Data Analysis

Does being married play a factor in whether a person has a loan or not?

 Does having a specific profession or career factor in whether someone has a loan?

Does age play a big factor in who will take a loan?

Occupation

Continued

Campaign Performance

Continued

Heatmap

Feature Engineering

• First, we removed any features with correlation > 80%

Next we transformed our categorical data using Onehotencoding

Continued

Taking care of imbalanced data

Before

After

```
Before oversampling: Counter({'no': 36548, 'yes': 4640})
After oversampling: Counter({'no': 36548, 'yes': 36548})
```

Machine Learning

Models we are using are:

- KNN
- SVM
- Logistic Regression
- Random Forest
- XGBoost

KNN

Code snippet

gs_knn_scores = cross_val_score(qs_knn, X=X_train, y=y_train, cv=5,scoring='accuracy', n_jobs=-1)

In [15]: # grid searh to choose the best (combination of) hyperparameters

SVM

Code snippet

```
# grid searh to choose the best (combination of) hyperparameters
r=[0.1,1]
pg_svm=[ {'svc__C':r, 'svc__gamma':r}]
gs_svm=GridSearchCV(estimator= pipe_svm,
               param_grid= pg_svm,
               scoring='accuracy',
               cv=3)
# nested cross validation combining grid search (inner loop) and k-fold cv (outter loop)
gs_svm_scores = cross_val_score(gs_svm, X=X_train, y=y_train, cv=3,scoring='accuracy', n_jobs=-1)
# fit, and fit with best estimator
gs_svm.fit(X_train, y_train)
gs_svm_best=gs_svm.best_estimator_
gs svm best fit(X train, y train)
```

Logistic Regression

Code snippet

```
In [24]: test_accuracy = accuracy_score(y_test,preds)
    print(test_accuracy)
```

0.9379616963064296

Random Forest

Code snippet

XGboost

fit, and fit with best estimator

gs_xb_best=gs_xb.best_estimator_
gs_xb_best.fit(X_train, y_train)

gs_xb.fit(X_train, y_train)

```
Code snippet
# estimator
xb= xgb.XGBClassifier(random_state=1)
# grid searh to choose the best (combination of) hyperparameters
pg xb={'n estimators':[150,200,400], 'max depth':[5,10,20,30], 'min child weight':[.25,.5,.75]}
gs xb=GridSearchCV(estimator= xb,
               param grid= pg xb,
               scoring='accuracy',
               cv=5)
# nested cross validation combining grid search (inner loop) and k-fold cv (outter loop)
gs_xb_scores = cross_val_score(gs_xb, X=X_train, y=y_train, cv=5,scoring='accuracy', n_jobs=-1)
```

Oversampling vs Undersampling Comparison

Oversampling

Undersampling

Model	FP%	FN%	AUC%
KNN	7.9	7.3	96
LR	11	<mark>1.9</mark>	97
SVM	11	2.3	97
RF	7.1	5.2	98
XGBoost	9.2	2.9	97

Model	FP%	FN%	AUC%
KNN	37	21	75
LR	38	14	80
SVM	29	32	74
RF	37	13	80
XGBoost	36	18	78

Random Forest Confusion Matrix

LR ROC

Feature Importance

Recommendations

- Focus on calling customers Tues, Wed, Thur
- Drop any customer that hasn't subscribed in at least 15 days or 8 call attempts.
- Keep employees working and happy, any drop in workforce affects the campaign.
- Segment customers by age and incorporate lifestyle segmentation
- Focus on targeting entrepreneurs. Target the management occupation to help drive volume.

Takeaways

- April-August produces the highest results for the campaign.
- Age is a factor as we can see from the feature importances chart and heatmap
- Any chance of success will happen within 10 days of direct marketing to a customer; after 10 days there were no successful attempts.
- Employees carry high significance, with regards to the feature importances chart, with how many employees are there to make the calls

Future work

Include time

 Include more personal data such as loan balance, account balance, debt to income ratio

Include geographic location

Thank You