Medida e Integração (Segunda Edição)

Pedro J. Fernandez

1976

Contents

Prefácio

O presente livro vem tentar preencher a necessidade cada vez mais imperiosa de proporcionar, num programa de Mestrado em Matemática ou Estatística Matemática, uma versão da Teoria da Medida que permita "uma aplicação mais ou menos imediata a outras áreas, como por exemplo Teoria "das Probabilidades, Estatística Matemática e suas ramificações, Física Matemática, etc.

Com esse objetivo em mente, apresentamos uma versão abstrata da Teoria da Medida com abundantes referências ao caso da medida de Lebesgue em \mathbb{R}^n e outros exemplos importantes. Creio que, com o mesmo esforço e muito menos tempo, é possível estudar e compreender direta- mente uma versão abstrata da Teoria da Medida não passando pelo estudo da medida de Lebesgue em \mathbb{R}^1 ou \mathbb{R}^n , Porém se recomenda fortemente ao leitor, interpretar, sempre que possível, cada definição ou resultado em termos da medida de Lebesgue em \mathbb{R}^1 ou \mathbb{R}^n , Este é o exemplo que em "primeira aproximação" deve dominar a mente do leitor. O leitor é também fortemente encorajado a consultar outras obras de Teoria da Medida como as citadas em ?, ?, ?, ?, ?, ? e ?, das Referências.

Como acontece frequentemente em todas as ciências, a aplicação de uma teoria em outra área do conhecimento produz um "feedback". No caso particular da utilização da Teoria da Medida para formalizar as noções básicas de Probabilidades, a resposta foi tremenda. A quantidade de novos problemas e técnicas introduzidas superou rapidamente em volume a Teoria original. Não é objetivo desta obra entrar em Teoria das Probabilidades, mas o leitor que queira desfrutar da utilização das técnicas desenvolvidas neste livro numa apaixonante aplicação, é aconselhado a fazer um curso nessa disciplina ao nível de, por exemplo ?, ? ou ?. Este livro está preparado para que se entre diretamente no assunto, evitando perda de tempo com transições nem sempre bem sucedidas.

O material deste livro foi testado em diversas oportunidades no curso de Integração do IMPA. Em quatro dessas ocasiões o manuscrito foi lido cuidadosamente pelos Professores Manfredo Perdigão do Carmo, Jaime Lesmes e Carlos Isnard do IMPA, e pelo Professor Ernst Eberlein agora na Universidade de Bonn. Suas observações e comentários foram incorporados nesta obra, A eles, meu agradecimento muito especial. Desejo agradecer também a todos os alunos que participaram desses cursos (especialmente ao Flávio C. Bartmann) e que

colaboraram indiretamente, através de perguntas, sugestões e dúvidas, para dar forma final a esta obra. Desejo finalmente agradecer a todos os meus colegas do IMPA por proporcionar, como sempre, o incentivo e o ambiente de camaradagem e dedicação permanente ao trabalho científico, tão necessários para escrever obras como esta.

Rio de Janeiro, março de 1976

Pedro J. Fernandez

Introdução

Para a leitura deste livro é essencial que o leitor tenha realizado anteriormente um curso de Cálculo Diferencial em várias variáveis reais e outro de Funções Reais. Seria conveniente que conhecesse os temas mais importantes de um curso de Análise no \mathbb{R}^n , noções gerais de espaços topológicos, e algumas definições e propriedades básicas de Espaços de Banach. Porém o requisito talvez mais importante é o de ter um pouco de maturidade matemática. Por essa razão é aconselhável que um curso baseado neste livro seja deixado para a segunda metade de um programa de mestrado. A notação usada é a usual em outros livros e textos gerais de matemática. Alguns símbolos que achamos que não sejam frequentemente usados, são indicados a seguir.

O supremo e ínfimo de dois números reais a e b, serão indicados por $a \lor b$ e $a \land b$, respectivamente verifica-se facilmente que:

$$a\vee b=\frac{1}{2}(a+b+|a-b|)$$

 \mathbf{e}

$$a\wedge b=\frac{1}{2}(a+b-|a-b|)$$

Se a e b são números reais, teremos sempre:

$$|a+b| < |a| + |b|$$
 e $||a| - |b|| < |a-b|$.

Se f e g são funções reais, definimos a função máximo (supremo) de f e g ($f \lor g$) e mínimo (ínfimo) de f e g ($f \land g$) pelas fórmulas:

$$(f \vee g)(x) = f(x) \vee g(x)$$
 e $(f \wedge g)(x) = f(x) \wedge g(x)$.

Caso g=0, escrevemos f^+ em lugar de $f\vee 0,$ e f^- em lugar de $-(f\wedge 0).$ Resulta então que, $|f|=f^++f^-,$ e $f=f^+-f^-.$

Se $\{x_n\}_{n=1,2,...}$ é uma sucessão de números reais, definimos o limite superior e o limite inferior de tal sucessão, de acordo com as fórmulas:

$$\lim_n \sup x_n = \inf_n \sup \{x_k : k \geq n\},$$

$$\lim_{n} \inf x_{n} = \sup_{n} \inf \{x_{k} : k \ge n\}.$$

Temos que $-\infty \le \lim_n \inf x_n \le \lim_n \sup x_n \le +\infty$.

Por outro lado, sendo $\{f_n\}_{n=1,2,\dots}$ uma sucessão de funções, podemos naturalmente definir $\lim_n \sup f_n$ e $\lim_n \inf f_n$ como as funções:

$$(\lim_{n} \sup f_{n})(x) = \lim_{n} \sup f_{n}(x).$$
$$(\lim_{n} \inf f_{n})(x) = \lim_{n} \inf f_{n}(x).$$

Se uma série converge de modo absoluto (série absolutamente convergente), será por vezes indicada com a notação $\sum_{n=1}^{\infty} |x_n| < \infty$.

Se $\{x_n\}_{n=1,2,\dots}$ converge a x escreveremos $x_n \to x$. Se $\{x_n\}_{n=1,2,\dots}$ é crescente (decrescente) e converge a x escreveremos $x_n \uparrow x$ $(x_n \downarrow x)$. O maior inteiro menor ou igual ao número real x será denotado por [x] (parte inteira de x). A menos de mencionado o contrário a letra $\mathbb N$ indicará o conjunto $\mathbb N = \{1,2,\dots\}$. $\mathbb R^1$ denotará o conjunto dos números reais e $\mathbb R^n = \mathbb R^1 \times \mathbb R^1 \times \dots \times \mathbb R^1$ o produto cartesiano de $\mathbb R^1$ n vezes.

Vamos agora fazer uma descrição geral do conteúdo, motivações e objetivos desta obra.

No Cap. 0 o leitor vai encontrar uma revisão rápida das noções básicas da Teoria dos Conjuntos. O propósito do capítulo é relembrar ao leitor certas propriedades, definições e teoremas básicos, e fundamentalmente fixar uma notação que será utilizada constantemente nos capítulos seguintes. A obra de P. R. Halmos mencionada na referência [16] pode ser consultada para maiores detalhes.

Consideremos, para fixar as ideias, a família de retângulos no plano real \mathbb{R}^2 .

$$S = \{D_1 \times D_2 : D_i \text{ \'e intervalo de } \mathbb{R}^1, i = 1, 2\}$$

Por intervalo entendemos qualquer intervalo finito, aberto, fechado ou semiaberto de \mathbb{R}^1 .

Definimos sobre S a seguinte função de conjunto:

$$\lambda(D_1\times D_2)=(b_1-a_1)(b_2-a_2)$$

onde $a_1 \leq b_1$ são os extremos de D_1 e $a_2 \leq b_2$ são os extremos de D_2 . λ é a medida (a área) de $D_1 \times D_2$.

Um dos problemas básicos da Teoria da Medida é a de "aumentar" (estender) a classe dos conjuntos que sejamos capazes de medir (para os quais possamos definir um número que será a sua área) de forma tal que a área de um retângulo seja o produto dos comprimentos dos lados e de maneira que essa medida tenha propriedades "razoáveis" e matematicamente interessantes.

Como acontece frequentemente em matemática depois de um certo tempo, foram isoladas às propriedades possuídas pela classe dos retângulos e a função de conjunto-área, que tornavam possível uma extensão.

A classe dos retângulos tem exatamente as propriedades que definem um semianel (Definição 1.1) e a função λ satisfaz as condições

i)
$$\lambda(\emptyset) = 0, \lambda > 0$$

ii)
$$\lambda\left(\sum\limits_{i=1}^{\infty}C_i\right)=\sum\limits_{i=1}^{\infty}\lambda(C_i)$$
 se $C_i;i=1,2,\dots$ e $\sum\limits_{i=1}^{\infty}C_i$ pertencem a $\mathbb{S}.$

Uma função de conjunto com as propriedades i) e ii) é chamada de medida (neste caso uma medida sobre um semi-anel).

O problema então pode ser formulado da seguinte maneira. Dado um semi-anel \mathbb{S} de subconjuntos de um conjunto fixo Ω e uma medida μ sobre um semi-anel, estender esta função a uma classe de conjuntos Λ , a maior possível, de maneira tal que essa extensão conserve as propriedades i) e ii) que definem uma medida.

O resultado mais importante é o seguinte:

Theorem 0.1 (Teorema de extensão). Dada uma medida μ sobre um semi-anel \mathbb{S} , existem um σ -anel $\Lambda, \Lambda \supseteq \mathbb{S}$, e uma medida completa μ sobre Λ que é uma extensão de μ . Se μ é σ -finita sobre \mathbb{S} então a extensão é única.

O Cap. 1 estuda diferentes classes de conjuntos sobre as quais as funções de conjunto introduzidas no Cap. 2 vão ser definidas. O teorema enunciado acima está contido no Cap. 2 e é obtido depois de uma série de resultados técnicos muitos deles com interesse independente. O procedimento de extensão é trabalhoso e vai requerer do leitor atenção, concentração e força de vontade para ler os detalhes até o fim. Na minha opinião vale a pena fazer o esforço logo no início pela familiaridade que se obtém na manipulação de conjuntos mensuráveis, facilitando dessa forma a leitura dos capítulos seguintes.

Estando já de posse da noção de espaço de medida e de numerosos exemplos construídos e estudados no Cap. 2, o Cap. 3 passa a estudar funções reais definidas nestes espaços. Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida e f uma função simples, i. e. $f = \sum_{i=1}^n a_i I_{A_i}$ onde $A_i \in \mathcal{A}$ e $a_i \in \mathbb{R}^1$. Em outras palavras f toma um número finito de valores cada um deles sobre um conjunto mensurável (veja a figura seguinte).

Para uma função simples é natural definir a sua integral (área abaixo da função) como

$$\int_{\Omega}fd\mu=\sum_{i=1}^na_i\mu(A_i).$$

Seja f uma função real definida sobre Ω . Se f tem a seguinte propriedade: $\forall a,b$ reais $a \leq b, \quad f^{-1}((a,b)) \in \mathcal{A}$, então f é um limite pontual de funções simples e reciprocamente. Para estas funções (chamadas funções mensuráveis) é natural definir a sua integral como o limite das integrais de uma seqüência de funções simples que convergem a ela. Ou seja, se g é uma função mensurável e $f_n \to g$ onde $\forall n, f_n$ é uma função simples, definimos:

$$\int g d\mu = \lim_{n} \int f_n d\mu.$$

A menos de detalhes técnicos esta definição funciona e proporciona uma integral para a qual a fórmula

$$\int_{\Omega} (\lim_n f_n) d\mu = \lim_n \int_{\Omega} f_n d\mu$$

que intercambia integral e limite é válida sob certas condições de regularidade não muito restritivas [Teorema 4.1.1 (Fatou-Lebesgue)].* O Cap. 4 é concluído com diversas aplicações da Integral de Lebesgue e com um estudo de dualidade entre espaços L_n , estes últimos importante exemplo de espaços de Banach.

*Resulta também que toda função integrável Riemann é integrável Lebesgue, e as integrais coincidem.

No Cap. 5 é estudado o problema da construção de um espaço de medida utilizando outros espaços de medida (espaços-fatores). Consideremos para fixar idéias que temos dois espaços de medida $(\Omega_1,\mathcal{A}_1,\mu_1)$ e $(\Omega_2,\mathcal{A}_2,\mu_2)$. Sobre o conjunto produto $\Omega=\Omega_1\times\Omega_2$, seja \mathcal{A} a σ -álgebra gerada pelos conjuntos da forma $A_1\times A_2$ onde $A_1\in\mathcal{A}_1$ e $A_2\in\mathcal{A}_2$ (esta σ -álgebra é chamada σ -álgebra-produto). Sob certas condições de regularidade é provada a existência de uma única medida ν sobre \mathcal{A} tal que:

$$\forall A_1 \in \mathcal{A}_1, \forall A_2 \in \mathcal{A}_2, \quad \nu(A_1 \times A_2) = \mu_1(A_1) \times \mu_2(A_2),$$

 ν é chamada medida-produto.

Se f é uma função \mathcal{A} -mensurável e ν -integrável, a seguinte fórmula é válida:

$$\begin{split} \int_{\Omega} f d\nu &= \int_{\Omega_1} \left[\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(d\omega_2) \right] \mu_1(d\omega_1) \\ &= \int_{\Omega_2} \left[\int_{\Omega_1} f(\omega_1, \omega_2) \mu_1(d\omega_1) \right] \mu_2(d\omega_2), \end{split}$$

ou seja, a integral dupla coincide com as integrais iteradas (Teoremas de Tonelli e Fubini).

O Cap. 5 finaliza apresentando os produtos de um número infinito de espaços de medida, básicos na Teoria das Probabilidades e na modelagem de experimentos estatísticos.

Estuda-se no Cap. 6 as medidas que podem tomar valores positivos e negativos (medidas com sinal). Um exemplo importante é obtido da seguinte forma. Seja $(\Omega, \mathcal{A}, \mu)$ um espaço de medida e f uma função integrável com relação a μ . A função de conjunto:

$$\nu(A) = \int_A f d\mu, \quad A \in \mathcal{A}$$

é uma medida com sinal.

Note que neste exemplo " ν é pequena se μ é pequena". Basicamente esta condição é suficiente para que $\nu(A)$ seja obtida integrando uma função fixa f com relação a μ sobre o conjunto A. (Teorema de Radon-Nikodym).

Outro resultado muito importante contido no Cap. 6, é o que estabelece que toda medida com sinal é a diferença de duas medidas positivas (Decomposição de Jordan).

No Cap. 7 são estudadas as relações entre derivação e integração: em que sentido e sob quais condições derivar e integrar são operações inversas?

Seja f uma função definida em \mathbb{R}^1 e integrável Lebesgue. Quando

$$\frac{d}{dx} \int_{a}^{x} f(y) dy = f(x)?$$

Se x é um ponto de continuidade de f, é bem conhecido pela teoria de integral de Riemann, que a igualdade é válida. Vai ser provado neste capítulo um resultado muito mais profundo: o de que a igualdade é válida em quase todo ponto. (Teorema de Diferenciação de Lebesgue).

Outra pergunta natural e importante é a seguinte: quando

$$\int_{a}^{b} f'(y)dy = f(b) - f(a)?$$

Nesse capítulo vamos caracterizar a classe das funções para as quais esta igualdade é válida (funções absolutamente contínuas).

Não é possível, usando a integral de Lebesgue, reconstruir uma função conhecendo a sua derivada. Dá-se exemplos de funções com derivada finita em todo ponto de um intervalo mas não integráveis. Se a derivada é integrável e finita temos um resultado positivo: o Teor. 7.5.1 prova que a função é integral indefinida de sua derivada.

O capítulo contém vários resultados clássicos muito importantes como o *Teorema de Lebesgue* sobre diferenciação de funções monótonas (toda função monótona é derivável em quase todo ponto) e um teorema sobre mudança de variáveis na Integral de Lebesgue.

Diversas funções que devem figurar na bagagem de todo matemático são construídas. Por exemplo, uma função contínua, estritamente crescente e com derivada nula em quase todo ponto.

Chapter 1

Conjuntos

1.1 Conjuntos

Neste livro, toda vez que usamos a palavra conjunto queremos significar um subconjunto de um conjunto fixo, que em geral designaremos por Ω .

 Ω é chamado espaço, e seus elementos, pontos. Se A é um subconjunto de $\Omega,$ a notação $\omega \in A$ significa que ω é um elemento de A. O fato de ω não pertencer a A será indicado com a notação $\omega \notin A.$ Se A e B são subconjuntos de $\Omega,$ a notação $A \subseteq B$ indicará que todo elemento de A também pertence a B. A notação $A \subset B$ indicará que $A \subseteq B,$ porém existe algum ponto de B que não é elemento de A.

Com o objetivo de facilitar a notação, usaremos um conjunto que não contenha nenhum elemento, ao qual chamaremos conjunto vazio, e denotaremos por \emptyset .

Usaremos as palavras classe ou família, para um conjunto de conjuntos. A classe de todos os subconjuntos de um conjunto A será indicada por $\mathbb{P}(A)$ (partes de A).

Para indicar um conjunto, também usaremos a notação $\{\omega:p(\omega)\}$, onde $p(\omega)$ é uma proposição concernente a ω , e o conjunto consiste de todos os elementos para os quais $p(\omega)$ é verdadeira. Por exemplo, $\{\omega:\omega=2k;k=1,2,...\}$ é o conjunto de todos os inteiros positivos pares.

Conjuntos finitos serão por vezes indicados pela designação de seus elementos. Assim, o conjunto que consiste nos números 0, 2 e 4 será indicado $\{0,2,4\}$.

É importante distinguir entre o ponto ω e o conjunto $\{\omega\}$, cujo único elemento é ω .

1.2 Operações com conjuntos

Seja Γ um certo conjunto de índices e, para cada $\gamma \in \Gamma$, consideremos A_{γ} , um subconjunto de Ω . Chamaremos de união da família $\{A_{\gamma}: \gamma \in \Gamma\}$ o conjunto de todos os pontos que pertencem a pelo menos um dos conjuntos A_{γ} . Esse conjunto será simbolizado por:

$$\bigcup_{\gamma \in \Gamma} A_{\gamma} = \{\omega: \exists \gamma \in \Gamma, \text{ tal que } \omega \in A_{\gamma}\}.$$

Se o conjunto Γ for enumerável, pode-se dizer que a família $\{A_\gamma:\gamma\in\Gamma\}$ é uma sucessão $\{A_n\}_{n=1,2,\dots}$.

Indicaremos, neste caso, a união por $\bigcup\limits_{n=1}^{\infty}A_{n}.$

Se $\Gamma=\{1,2,...,k\},$ a união será indicada por $\bigcup\limits_{n=1}^{k}A_{n}.$

A união de dois conjuntos A e B, será indicada por $A \cup B.$

Se
$$\Gamma = \emptyset$$
, $\bigcup_{\gamma \in \Gamma} A_{\gamma} = \emptyset$ por convenção.

Se $\{A_\gamma:\gamma\in\Gamma\}$ é uma família de conjuntos, o conjunto de todos os elementos que pertencem a todos os A_γ será chamado interseção da família, e simbolizado por:

$$\bigcap_{\gamma \in \Gamma} A_{\gamma} = \{\omega : \forall \gamma, \omega \in A_{\gamma}\}.$$

Se $\Gamma = \emptyset$, estabelecemos por convenção que $\bigcap_{\gamma \in \Gamma} A_{\gamma} = \Omega$.

Como no caso da união de conjuntos, conforme Γ seja enumerável, finito, ou conste de dois elementos, usaremos as notações:

$$\bigcap_{n=1}^{\infty} A_n, \bigcap_{n=1}^k A_n, A \cap B.$$

Quando falarmos de interseção finita ficará subentendido que $\Gamma \neq \emptyset$.

Dois conjuntos são ditos disjuntos, se $A \cap B = \emptyset$. Uma família $\{A_{\gamma} : \gamma \in \Gamma\}$ se diz disjunta, se para todo par de elementos $\gamma, \gamma' \in \Gamma$, com $\gamma \neq \gamma'$, $A_{\gamma} \cap A_{\gamma'} = \emptyset$.

Neste caso, usaremos a notação $\sum\limits_{\gamma\in\Gamma}A_{\gamma}$, em lugar de $\bigcup\limits_{\gamma\in\Gamma}A_{\gamma}$, para indicar a união da família.

Dado $A \subseteq \Omega, A^c$ denotará o conjunto dos pontos que não pertencem a A. Em símbolos, $A^c = \{\omega : \omega \notin A\}$. A^c é chamado complemento de A.