Chapter 01 /Part 02: From Conceptual to Relational Model

Dr. Djakhdjakha L.

February 2025

From Conceptual to Logical

From an entity-relationship/UML schema to a relational schema.

Entity/Class Transformation

- Rule 1:
- Each entity becomes a relation.
- The entity identifier becomes the primary key of the relation.
- Each class in the UML diagram becomes a relation.

- Select an attribute of the class to act as an identifier.
- If no attribute is suitable, add one to ensure the relation has a primary key.

Association Transformation

- Transformation rules depend on the cardinality/multiplicity of associations:
- One-to-Many, Many-to-Many, Class-Associations, N-ary, One-to-One.

One-to-Many Associations

- Rule 2:
- Add a foreign key attribute in the child relation of the association.
- The attribute takes the name of the primary key of the parent relation of the association.

Many-to-Many and N-ary Associations

Rule 3:

- The association (class-association) becomes a relation.
- The primary key is formed by concatenating the identifiers of the entities (classes) connected to the association.
- Attributes of the association should be added to the new relation but are neither primary nor foreign keys.

Many-to-Many and N-ary Associations

One-to-One Associations

Rule 4:

- To avoid NULL values in the database, add a foreign key attribute in the relation derived from the entity with a minimum cardinality of zero.
- If both minimum cardinalities are zero, a choice is made between the two relations.
- If both are one, merging the two entities (classes) is recommended.

Recursive Associations

Recursive Associations One-to-Many

Recursive Associations

Recursive Associations Many-to-Many

Inheritance Transformation

- Decomposition by Distinction
- Push-down Decomposition
- Push-up Decomposition

Decomposition by Distinction

- Transform the superclass into a relation.
- Transform each subclass into a relation.
- The primary key of the superclass migrates into the subclass relation(s) and becomes both a primary and foreign key.

Push-down Decomposition

- If a totality or partition constraint exists, the superclass relation may not be translated.
- All attributes migrate into the subclass relation(s).

Push-up Decomposition

 Remove subclass relations and migrate their attributes into the superclass relation.

Multiple Inheritance

Multiple Inheritance

Transformation of multiple inheritance associations.

Composition Transformation

 The primary key of the relations derived from component classes must contain the identifier of the composite class, regardless of multiplicities.

