Deep Convolutional Neural Network

Jerry Xing 2023/04/19

Today's Lecture in Ten Seconds

GO DEEPER LARGER **SMARTER**

Today's Lecture in One Minute

- Deep neural network = great approximator
 - Complex and efficient
- Fully connected network (FCN)
 - A simple neural network structure
 - Stack of perceptrons
- Convolutional neural network (CNN)
 - Stack of "local perceptrons"
 - More suited for images
- Other common neural network components
 - Pooling

The Content of This Lecture is Like

Models we'll study today

Models in real world

Different Power Shared Design

Computation: Input -> Output

Computation: Input -> f_T -> Output

Getting f_T : coding or searching

• How to we get the desired function f_T ?

Manual coding

Automatic Searching

Searching for f_T

- Searching range H_T : $f_T \in H_T$
 - E.g., f should have the form $f_T(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ and H_T the set of all polynomials
- Badness metric L
 - If $L(f_{T1}) < L(f_{T2})$, then we know f_1 is better
- Task: find the $f_T^* \in H_T$ that gives us the minimal L

Approximated instead of exact f_T

- But wait, how do we know H_T ?
- f_T can have an extremely complex form when the task is hard!
- We search for the approximation $f pprox f_T$ instead!
- Often, all we need is a powerful model, and we don't care whether f is really the "ground truth" f_T
- Example: polynomial approximation

Approximated instead of exact f_T

- But wait, how do we know H_T ?
- f_T can have an extremely complex form when the task is hard!
- We search for the approximation $f pprox f_T$ instead!
- Often, all we need is a powerful model, and we don't care whether f is really the $f_{\it T}$
- Example: polynomial approximation

All models are wrong, but some are useful

——George Box

Approximated instead of exact f_T

- But wait, how do we know H_T ?
- f_T can have an extremely complex form when the task is hard!
- We search for the approximation $f \approx f_T$ instead!
- Often, all we need is a powerful model, and we don't care whether f is really the $f_{\it T}$
- Example: polynomial approximation

if it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck

What makes a good H?

- Let the approximation $f \in H$
- What makes a good *H*?
 - Complexity
 - $f \in H$ should be complex enough to approximate f_T
 - Efficiency
 - f* can be found (learned) efficiently
- Current most popular choice: $H = \{ \text{Deep nerual networks} \}$
- Why?

Recap: perceptron = linear transformation + activation function

$$f(x) = \varphi\left(b + \sum_{i=1}^{m} w_i \cdot x_i\right)$$

- Recap: multi-layer perceptron = composition of two perceptrons
 - Solve the problem that a single perceptron cannot solve
 - Idea: composition -> complexity?

$$f(x) = f_2 \circ f_1(x)$$
$$= f_2(f_1(x))$$

where f_1 and f_2 are two perceptrons

- Inspiration: build a more complex and powerful function by composing simple functions
- And we can continue composing!

$$f(x) = \cdots \circ f_{100} \circ \cdots \circ f_2 \circ f_1(x)$$

- Inspiration: build a more complex and powerful function by composing simple functions
- And we can continue composing!

$$f(x) = \cdots \circ f_{100} \circ \cdots \circ f_2 \circ f_1(x)$$

Example: ResNet

(a shallow version that has only 34 layers)

- Inspiration: build a more complex and powerful function by composing simple functions
- And we can continue composing!

$$f(x) = \cdots \circ f_{100} \circ \cdots \circ f_2 \circ f_1(x)$$

- Example: ResNet
- Analogy: telephone game

Backpropagation: train NN efficiently

- In general, computing the gradient for such giant model is nothing easy!
- Backpropagation gives us an efficient way
- So widely used that it's hard to realize its importance

Quick recap: deep neural network

- Solving problem by searching for a good approximator
- Deep neural network = great approximator
 - Complex enough
 - Efficient training by backpropagation
- Fully connected network (FCN)
 - A simple neural network structure
 - Stack of perceptrons

FCN for images? Probably no

- FCN does NOT care the order of input features
- Reasonable for some tasks
 - E.g., in the house price prediction task, organizing data like (area, location, age) or (area, age, location) doesn't make any difference
- Not true for image-related tasks!
 - The pixel neighbor information matters!

Swap the pixels

Content: cat and mouse

Content: ???

FCN for images? Probably no

- FCN is computationally expensive
- lots of weight parameters to train
- Extremely unfriendly for high-dimensional data like images

of weight parameters:

$$D_i \times D_{i+1}$$

For two 256x256 images:

$$D_i \times D_{i+1}$$

= 256² × 256² = 4.295 × 10⁹

"local" FCN

- Idea: let each neuron only look at few neurons
- Force the network to respect pixel neighbor relationship
- Dramatically decrease # of weight parameters

of weight parameters:

$$k \times D_{i+1}$$

For two 256x256 images, when k = 3:

$$k \times D_{i+1}$$

= $3 \times 256^2 = 1.966 \times 10^5$

Before:

$$D_i \times D_{i+1}$$
= 256² × 256² = 4.295 × 10⁹

"local" FCN

- Idea: let each neuron only look at few neurons
- Force the network to respect pixel neighbor relationship
- Dramatically decrease # of weight parameters

"local" FCN

- Idea: let each neuron only look at few neurons
- Force the network to respect pixel neighbor relationship
- Dramatically decrease # of weight parameters
- Deeper layers look at larger regions (receptive fields)
 - Capture information in all scales

"local" FCN with shared weights

- Share the weights to further reduce weight amount
- Can thinks this group of weights as "local feature extractor" that slides over the whole input image
- This is also called convolution!

of weight parameters:

k

For two 256x256 images, when k=3:

$$k = 3$$

Before:

$$k \times D_{i+1}$$

= $3 \times 256^2 = 1.966 \times 10^5$

Convolutional Neural Network

- Recall: convolution with filter kernel for image processing
 - Use manually designed filters to process each patch of the image
- Examples
 - Average filter for image denoising $(h_1 = h_2 = \cdots = \frac{1}{9})$
 - Edge detector for edge extraction

Noisy Image

Denoised Image

Convolutional Neural Network

- Convolutional neural network:
 N * [convolutional layer + activation function]
- Learn kernel values from data

Convolutional Neural Network

- Many different useful feature for prediction
 - Animal classification example: clues of color, shape, pattern, etc.
- One kernel cannot capture them all
- Solution: using multiple kernels parallelly

Multi-channel Convolutional Network

• We use multiple kernels for each layer, and call each layer a feature "channel"

Use Fully Connected Layers for Classification

• The final output for classification task is usually a low-dimensional vector

Use Fully Connected Layers for Classification

- The final output for classification task is usually a low-dimensional vector
- Common practice: Vectorization ("flatten") + fully connected layers

Quick Recap: Convolutional Neural Network

- Fully connected network: not suitable for image data
 - Discards pixel neighbor information
 - Too many parameters for high-dimensional data
 - low training efficiency
- Convolutional neural network
 - Allow only local connection between layers
 - Preserves pixel neighbor information
 - Enables the network to capture information at all scales
 - Much lower parameter size => higher training efficiency
- Next: two more common components in deep neural networks
 - Pooling

Reduce Data Dimension by Subsampling

- Straight-forward subsampling reduces data dimension
- too much information are untouched and wasted

Pooling Layers

- "Wisely" subsample the data
 - Average pooling: take the average value in local region

1	-1	0.5	0.7			
0.2	-0.3	1.5	-0.7		-0.025	0.5
1.5	1.6	0.12	1.3		0.6	0.455
-0.8	0.1	0.3	0.2			
				$\frac{0.12 + 1.3 + 0.3 + 0.3}{4}$	<u>- 0.2</u> ≅	0.455

Pooling Layers

- "Wisely" subsample the data
 - Average pooling: take the average value in local region
 - Max pooling: keep only the largest value in local region

1	-1	0.5	0.7
0.2	-0.3	1.5	-0.7
1.5	1.6	0.12	1.3
-0.9	0.01	0.3	0.2

Pooling Layers

- "Wisely" subsample the activation maps
 - Average pooling: take the average value in local region
 - Max pooling: keep only the largest value in local region
- Efficiently activation map size
- Avoid overfitting
- Additional nonlinearity

Combining All Pieces Together

• Example: AlexNet

Conclusion

- Solving problem by searching a good approximator
- Deep neural network = great approximator
 - Complex enough
 - Efficient training by backpropagation
- Fully connected network (FCN)
 - A simple neural network structure
 - Stack of perceptrons
 - Discards pixel neighbor information
 - Too many parameters for high-dimensional data
 - low training efficiency
- Convolutional neural network (CNN)
 - Allow only local connection between layers
 - Preserves pixel neighbor information
 - Enables the network to capture information at all scales
 - Much lower parameter size => higher training efficiency
- Pooling