

Diese Formelsammlung enthält eine Auswahl der wichtigsten Berechnungsgleichungen meiner Strömungslehre-Vorlesung und bezieht sich bei den Gleichungsnummern auf "Bohl/Elmendorf, Technische Strömungslehre, 15. Auflage, 2014".

Die Formelsammlung erhebt keinen Anspruch auf Vollständigkeit. Zu beachten sind die in der Vorlesung vorgestellten und im Buch dokumentierten Voraussetzungen und Definitionen für die jeweils angegebenen Gleichungen. Entscheidend für die Prüfung sind die Inhalte der Vorlesung!

gez. Prof. Dr.-Ing. W. Elmendorf

Heilbronn, 03.09.2014

Formel	Inhalt	Glnr.
$\rho = \frac{p}{R_i \cdot T}$ $a = \sqrt{\kappa \cdot R_i \cdot T}$	Ideale Gasgleichung	1.7
$a = \sqrt{\kappa \cdot R_i \cdot T}$	Schallgeschwindigkeit eines idealen Gases	1.12
$v = \frac{\eta}{\rho}$	Dynamische und kinematische Viskosität	1.15
$R_i = c_p - c_v = (\kappa - 1) \cdot c_v = \frac{\kappa - 1}{\kappa} \cdot c_p$	Ideales Gas	1.31
$\sigma = \frac{F}{2 \cdot l}$	Oberflächenspannung	1.34
$\sigma = \frac{F}{2 \cdot l}$ $\Delta p_k = \sigma_{12} \cdot \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ $z = \frac{\omega^2 \cdot r^2}{2 \cdot g} + z_{\min}$	Grenzflächendruck	1.36
$z = \frac{\omega^2 \cdot r^2}{2 \cdot g} + z_{\min}$	Freie Oberfläche bei Rotation	2.4
$p = \rho \cdot g \cdot h$	Hydrostatischer Schweredruck	2.14
$p_0 + \rho \cdot g \cdot h = konst$	Hydrostatische Grundgleichung	2.15
$F = \rho \cdot g \cdot z_s \cdot A$	Seitendruckkraft	2.22
$e = w_d - w_s = \frac{I_s}{A \cdot w_s}$	Abstand zwischen Schwerpunkt und Druckmittelpunkt	2.24
$F_A = \rho \cdot g \cdot V$	Auftriebskraft	2.36
$z = \frac{p_0}{\rho_0 \cdot g} \ln \frac{p_0}{p}$	Isotherme atmosphärische Schichtung	3.1
$z = \frac{p_0}{\rho_0 \cdot g} \cdot \frac{\kappa}{\kappa - 1} \cdot \left[1 - \left(\frac{p}{p_0} \right)^{\frac{\kappa - 1}{\kappa}} \right]$	Isentrope atmosphärische Schichtung	3.5
$\dot{V} = w \cdot A$	Kontinuitätsgleichung (inkompressibel)	4.8
$p + \rho \cdot g \cdot z + \frac{\rho}{2} \cdot w^2 = konst$ $\sum_{i=1}^{n} \rho_i \cdot \dot{V}_i \cdot \vec{w}_i = \sum_{i=1}^{n} \vec{F}$	Bernoulli-Gleichung (reibungsfrei)	4.19
$\sum_{i=1}^{n} \rho_{i} \cdot \dot{V_{i}} \cdot \vec{w}_{i} = \sum \vec{F}$	Impulssatz	4.42

$Re = \frac{w \cdot d}{v} ; Re = \frac{w_{\infty} \cdot l}{v}$	Reynolds-Zahl	4.110 4.112
$Re = \frac{w \cdot d}{v} ; Re = \frac{w_{\infty} \cdot l}{v}$ $Fr = \frac{w}{\sqrt{L \cdot g}}$	Froude-Zahl	4.114
$p_1 + \rho \cdot g \cdot z_1 + \frac{\rho}{2} \cdot w_1^2 =$ $p_2 + \rho \cdot g \cdot z_2 + \frac{\rho}{2} \cdot w_2^2 + \Delta p_v$	Bernoulli-Gleichung (reibungsbehaftet)	4.119
$\Delta p_{v} = \lambda \cdot \frac{l}{d} \cdot \frac{\rho}{2} \cdot w^{2}$	Druckverlust im Rohr durch Reibung mit λ nach Gl. 4.130 (laminar) oder nach Tab. 4.14 (turbulent)	4.137a
$d_h = \frac{4 \cdot A}{U}$	Hydraulischer Durchmesser	4.154
$\Delta p_{v} = \zeta \cdot \frac{\rho}{2} \cdot w^{2}$ $w_{a} = \varphi \cdot w_{a}'$	Druckverlust von Rohrleitungselementen	4.157
$w_a = \varphi \cdot w_a$	Geschwindigkeitsbeiwert φ	4.234
$\psi = \frac{A_e}{A_a}$ $\mu = \psi \cdot \varphi$	Kontraktionszahl ψ	4.235
$\mu = \psi \cdot \varphi$	Ausflusszahl μ	4.236
$Sr = \frac{f \cdot L}{w_{\infty}}$	Strouhal-Zahl	4.257
$F_{\scriptscriptstyle W} = F_{\scriptscriptstyle WD} + F_{\scriptscriptstyle WR}$	Widerstandskraft	4.282
$F_{w} = c_{w} \cdot \frac{\rho}{2} \cdot w_{\infty}^{2} \cdot A$	Widerstandskraft (Definition der Bezugsfläche A beachten!)	4.283 4.290 4.299
$F_A = c_A \cdot \frac{\rho}{2} \cdot w_{\infty}^2 \cdot A$	Auftriebskraft (Definition der Bezugsfläche A beachten!)	4.292 4.298
$\tan \gamma = \varepsilon = \frac{c_w}{c_a}$	Gleitwinkel γ, Gleitzahl ε	
$M = \frac{w}{a}$	Mach-Zahl	5.2
$\sin \alpha = \frac{1}{M}$	Mach´scher Winkel	5.3
$\frac{M}{\dot{m} = \rho \cdot \dot{V} = \rho \cdot w \cdot A = \text{konst}}$	Kontinuitätsgleichung (kompressibel)	5.4
$h_{t} = h + \frac{w^2}{2} = \text{konst}$	Energieerhaltung	5.10
$h_1 - h_2 = c_p \cdot \left(T_1 - T_2\right)$	Energieerhaltung für das ideale Gas	5.13
$\frac{T_t}{T} = 1 + \frac{\kappa - 1}{2} \cdot M^2$	Totaltemperatur / statische Temperatur für das ideale Gas	5.15
$p \cdot v^{\kappa} = \frac{p}{\rho^{\kappa}} = \text{konst}$	Isentrope	5.16

$\frac{T_{2,s}}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$	Isentrope	5.18
$\frac{p_t}{p} = \left(\frac{T_t}{T}\right)^{\frac{\kappa}{\kappa - 1}} = \left(1 + \frac{\kappa - 1}{2} \cdot M^2\right)^{\frac{\kappa}{\kappa - 1}}$	Isentrope	5.28
$p \cdot v^n = \frac{p}{\rho^n} = \text{konst}$	Polytrope	5.20
$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}}$	Polytrope	5.22
$n = \frac{\ln\left(\frac{p_2}{p_1}\right)}{\ln\left(\frac{v_1}{v_2}\right)} = \frac{\ln\left(\frac{p_2}{p_1}\right)}{\ln\left(\frac{p_2}{p_1}\right) - \ln\left(\frac{T_2}{T_1}\right)}$	Polytropenexponent	5.23
$\frac{n-1}{n} = \frac{\ln\left[1 - \eta_{Expansion} \cdot \left(1 - \frac{T_{2,s}}{T_1}\right)\right]}{\ln\left[\left(\frac{T_{2,s}}{T_1}\right)^{\frac{\kappa}{\kappa-1}}\right]}$	Polytrope Expansion	5.24
$\frac{n-1}{n} = \frac{\ln\left[1 - \frac{1}{\eta_{Kompression}} \cdot \left(1 - \frac{T_{2,s}}{T_1}\right)\right]}{\ln\left[\left(\frac{T_{2,s}}{T_1}\right)^{\frac{\kappa}{\kappa-1}}\right]}$	Polytrope Kompression	5.26
$h_1 = h_2 = \text{konst}$	Adiabate Drosselung	5.43
$\eta_{Expansion} = \frac{w_a^2}{w_{a,s}^2} = \varphi^2$	Ausströmvorgänge	5.46
$w_a = \varphi \cdot w_{a,s} = \varphi \cdot \sqrt{2 \cdot \Delta h_s} = \sqrt{2 \cdot \Delta h}$	Ausströmvorgänge	5.47
$w_{a,s} = \sqrt{2 \cdot \frac{\kappa}{\kappa - 1} \cdot \frac{p_{t1}}{\rho_{t1}} \cdot \left[1 - \left(\frac{p_a}{p_{t1}}\right)^{\frac{\kappa - 1}{\kappa}}\right]}$	Gleichung von Saint-Venant und Wantzel	5.49d
$\Psi_{s} = \sqrt{\frac{\kappa}{\kappa - 1} \cdot \left[\left(\frac{p_{a}}{p_{t1}} \right)^{\frac{2}{\kappa}} - \left(\frac{p_{a}}{p_{t1}} \right)^{\frac{\kappa + 1}{\kappa}} \right]}$	Isentrope Ausflussfunktion	5.52
$\dot{m}_{th} = A_a \cdot \Psi_s \cdot \sqrt{2 \cdot p_{t1} \cdot \rho_{t1}}$	Theoretisch austretender Massenstrom	5.53
$\dot{m}_{N\ddot{a}herung} = \mu \cdot \dot{m}_{th} = \mu \cdot A_a \cdot \Psi_s \cdot \sqrt{2 \cdot p_{t1} \cdot \rho_{t1}}$	Angenähert austretender Massenstrom	5.55
$\dot{m} = K_{\dot{m}} \cdot \dot{m}_{N\ddot{a}herung}$	Tatsächlich austretender Massenstrom	5.74

$\Psi_p = \sqrt{\frac{\kappa}{\kappa - 1} \cdot \left[\left(\frac{p_a}{p_{t1}} \right)^{\frac{2}{n}} - \left(\frac{p_a}{p_{t1}} \right)^{\frac{n+1}{n}} \right]}$	Polytrope Ausflussfunktion	5.64
$\dot{m} = \psi \cdot A_a \cdot \Psi_p \cdot \sqrt{2 \cdot p_{t1} \cdot \rho_{t1}}$	Tatsächlich austretender Massenstrom	5.65
$\frac{A_{x}}{A_{krit}} = \frac{\left(\frac{2}{\kappa+1}\right)^{\frac{1}{\kappa-1}} \cdot \sqrt{\frac{\kappa-1}{\kappa+1}}}{\sqrt{\left[\left(\frac{p_{x,s}}{p_{t1}}\right)^{\frac{2}{\kappa}} - \left(\frac{p_{x,s}}{p_{t1}}\right)^{\frac{\kappa+1}{\kappa}}\right]}}$	Flächenverhältnis Lavaldüse	5.87
$\frac{A_{x}}{A_{krit}} = \frac{1}{M_{x,s}} \cdot \left[\frac{2}{\kappa + 1} \cdot \left(1 + \frac{\kappa - 1}{2} \cdot M_{x,s}^{2} \right) \right]^{\frac{\kappa + 1}{2 \cdot (\kappa - 1)}}$	Flächenverhältnis Lavaldüse	5.92
$\frac{p_2}{p_1} = 1 + \frac{2 \cdot \kappa}{\kappa + 1} \cdot \left(M_1^2 - 1\right)$	Senkrechter Verdichtungsstoß	5.97
$\frac{p_{t1}}{p_{t2}} = \left(1 + \frac{2 \cdot \kappa}{\kappa + 1} \left(M_1^2 - 1\right)\right)^{\frac{1}{\kappa - 1}} \cdot \left(\frac{\left(\kappa + 1\right) \cdot M_1^2}{\left(\kappa - 1\right) \cdot M_1^2 + 2}\right)^{\frac{\kappa}{1 - \kappa}}$	Senkrechter Verdichtungsstoß	5.99
$M_{2} = \sqrt{\frac{1 + \frac{\kappa - 1}{2} \cdot M_{1}^{2}}{\kappa \cdot M_{1}^{2} - \frac{\kappa - 1}{2}}} < 1$	Senkrechter Verdichtungsstoß	5.101
$\frac{p_2}{p_1} = 1 + \frac{2 \cdot \kappa}{\kappa + 1} \cdot \left(M_1^2 \cdot \sin^2 \sigma - 1 \right)$	SchrägerVerdichtungsstoß	5.105
$\frac{p_{t1}}{p_{t2}} = \left(1 + \frac{2 \cdot \kappa}{\kappa + 1} \left(M_1^2 \cdot \sin^2 \sigma - 1\right)\right)^{\frac{1}{\kappa - 1}} \cdot \left(\frac{\left(\kappa + 1\right) \cdot M_1^2 \cdot \sin^2 \sigma}{\left(\kappa - 1\right) \cdot M_1^2 \cdot \sin^2 \sigma + 2}\right)^{\frac{\kappa}{1 - \kappa}}$	SchrägerVerdichtungsstoß	5.107
$M_2^2 \cdot \sin^2(\sigma - \beta) = \frac{1 + \frac{\kappa - 1}{2} \cdot M_1^2 \cdot \sin^2 \sigma}{\kappa \cdot M_1^2 \cdot \sin^2 \sigma - \frac{\kappa - 1}{2}}$	SchrägerVerdichtungsstoß	5.109
$T_{a} = \frac{T_{1} \cdot \left[\left(\frac{p_{a}}{p_{1}} \right)^{\frac{\kappa-1}{\kappa}} - 1 + \eta_{Diff} \right]}{\eta_{Diff}}$	Diffusorströmung	5.113