C. Edgy Trees

https://codeforces.com/problemset/problem/1139/C

time limit per test: 2 seconds

memory limit per test: 256 megabytes

input: standard input output: standard output

You are given a tree (a connected undirected graph without cycles) of n vertices. Each of the n - 1 edges of the tree is colored in either black or red.

You are also given an integer k. Consider sequences of k vertices. Let's call a sequence $[a_1, a_2, ..., a_k]$ good if it satisfies the following criterion:

- We will walk a path (possibly visiting same edge/vertex multiple times) on the tree, starting from a₁ and ending at a_k.
- Start at a₁, then go to a₂ using the shortest path between a₁ and a₂, then go to a₃ in a similar way, and so on, until you travel the shortest path between a_{k-1} and a_k
- If you walked over at least one black edge during this process, then the sequence is good.

Consider the tree on the picture. If k = 3 then the following sequences are good: [1, 4, 7], [5, 5, 3] and [2, 3, 7]. The following sequences are not good: [1, 4, 6], [5, 5, 5], [3, 7, 3].

There are n^k sequences of vertices, count how many of them are good. Since this number can be quite large, print it modulo $10^9 + 7$.

Input

The first line contains two integers n and k ($2 \le n \le 10^5$, $2 \le k \le 100$), the size of the tree and the length of the vertex sequence.

Each of the next n-1 lines contains three integers u_i , v_i and x_i ($1 \le u_i$, $v_i \le n$, $x_i \in \{0, 1\}$, where u_i and v_i denote the endpoints of the corresponding edge and x_i is the color of this edge (0 denotes red edge and 1 denotes black edge).

Output

Print the number of good sequences modulo 10^9 .

Examples

Input	Output
4 4 1 2 1 2 3 1 3 4 1	252
46 120 130 140	0
35 121 230	210

Note

In the first example, all sequences (4⁴) of length 4 **except** the following are good:

- [1, 1, 1, 1] [2, 2, 2, 2] [3, 3, 3, 3] [4, 4, 4, 4]

In the second example, all edges are red, hence there aren't any good sequences.