See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244418975

A New Method For the Construction of .alpha.Diazo ketones

ARTICLE in THE JOURNAL OF ORGANIC CHEMISTRY · APRIL 1995

Impact Factor: 4.72 · DOI: 10.1021/jo00112a064

CITATIONS	READS
34	16

5 AUTHORS, INCLUDING:

Mark Gleave

Epoch BioSciences

18 PUBLICATIONS 270 CITATIONS

SEE PROFILE

R Jason Herr

AMRI

38 PUBLICATIONS 1,050 CITATIONS

SEE PROFILE

A New Method for the Construction of α-Diazoketones

Douglass F. Taber,* D. Mark Gleave, R. Jason Herr, Kimberly Moody, and Michael J. Hennessy

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Received December 6, 1994

α-Diazoketones 3 undergo a variety of useful reactions, making them valuable synthetic intermediates.^{1,2} Unsymmetrical a-diazoketones have been prepared3ab by condensing the requisite acid chloride with a diazoalkane. As diazoalkanes are difficult to prepare and to purify, we have now developed an alternative method for the regioselective construction of α -diazoketones, based on the alkylation of benzoylacetone 1 (R = H). We now report the key observation that diazo transfer^{3,4} to a diketone 2 proceeds with selective debenzoylation⁵ to provide the desired unsymmetrical α-diazoketone 3 (eq 1).

Ph
$$R^1$$
 $\frac{1) \text{ K}_2\text{CO}_3, n\text{Bu}_4\text{NBr}}{\text{PhCH}_3, \text{ reflux}}$ Ph R^1 R^1 R^2 R^1 R^2 R^3 R^4 R^2 R^4 R^4 R^2 R^4 R^4 R^2 R^4 R^4

α-Alkylation of benzoylacetone (1a) using potassium carbonate in the presence of tetra-n-butylammonium bromide in toluene⁶ produced a variety of α-substituted diketones 2, as shown in Table 1. Alternatively, ben-

(1) For general reviews on the use of α -diazoesters and α -diazoketones in synthesis, see: (a) Doyle, M. P. In Homogeneous Transition Metal Catalysts in Organic Synthesis; Moser, W. R., Slocum, D. W., Eds., ACS Advanced Chemistry Series 230, American Chemistry Society, Washington, D.C., 1992; Ch. 30. (b) Taber, D. F.; Askani, R. In Comprehensive Organic Synthesis; Pergamon Press: Oxford, 1991; Vol. 6, p 103.

(2) For some synthetic applications of α -diazoketones see: (a) Wolff Rearrangement/Arndt-Eistert synthesis: Tsuji, T.; Nishida, S. J. Am. Chem. Soc. 1988, 110, 2157. (b) Insertion reactions involving cleavage Chem. Soc. 1888, 110, 2157. (b) Insertion reactions involving cleavage of heteroatom-H bonds: (i) Bodurow, C. C.; Boyer, B. D.; Brennan, J.; Runnell, C. A.; Burks, J. E.; Carr, M. A.; Doeke, C. W.; Eckrich, T. M.; Fisher, J. W.; Gardener, J. P.; Graves, B. J.; Hines, P.; Hoying, R. C.; Jackson, B. G.; Kinnick, M. D.; Kochert, C. D.; Lewis, J. S.; Luke, W. D.; Moore, L. L.; Morin, J. M., Jr.; Nist, R. L.; Prather, D. E.; Sparks, D. L.; Vladuchick, W. C. Tetrahedron Lett. 1989, 30, 2321. (ii) Moody, C. J.: Taylor, R. J. J. Chem. Soc. Perkin Trans. 1 1989, 721. (iii) D. L., Vladuchick, W. C. *Tetrahearon Lett.* **1989**, *50*, 2521. (II) Moody, C. J.; Taylor, R. J. *J. Chem. Soc.*, *Perkin Trans.* **1 1989**, *721*. (iii) Bagheri, V.; Doyle, M. P.; Taunton, J.; Claxton, E. E. *J. Org. Chem.* **1988**, *53*, 6158. (c) Ylide formation: Padwa, A.; Carter, S. P.; Nimmesgern, H.; Stull, P. D. *J. Am. Chem. Soc.* **1988**, *110*, 2894. (d) Elimination/enone formation: Duggleby, P. McC.; Holt, G.; Hope, M. A.; Lewis, A. J. Chem. Soc., Perkin Trans. 1 1972, 3020. (e) Enolate formation: Masamune, S.; Mori, S.; Van Horn, D.; Brookes, D. W. Tetrahedron Lett. 1979, 19, 665. (f) Reaction of acetylenes with α,β unsaturated a-diazoketones: Danheiser, R. L.; Brisbois, R. G.; Kowalczyk, J. K.; Miller, R. F. J. Am. Chem. Soc. 1990, 112, 3093. (g) Formation of dialkyl phosphonates: Polozov, A. M.; Polezhoeva, N. A.; Mustaphin, A. H.; Khotinen, A. V.; Arbuzov, B. A. Synthesis 1990, 515. (h) Formation of tertiary α-aminoketones: West, F. G.; Glaeske, K. W.; Naidu, B. N. Synthesis 1993, 10, 977.

(3) For reviews of diazoketone preparation, see: (a) Regitz, M.; Mass, G. In Diazo Compounds: Properties and Synthesis, Academic Press. New York, 1986. (b) Taber, D. F. Comprehensive Organic Synthesis; Pattenden, G., Ed., Pergamon Press: Oxford, 1991; Vol. 3, p 1045. For more recent reagents for diazo transfer, see: (c) Ghosh, S.; Datta, I. Synth. Commun. 1991, 21, 191. (d) McGuiness, M.; Shechter, H. Tetrahedron Lett. 1990, 31, 4987. (e) Kumar, S. M. Synth. Commun. 1991, 21, 2121.

zoylacetone may be γ -alkylated as its dianion⁷ to provide diketone 1b, which is then α-alkylated to provide a new unsymmetrical diketone 2e (eq 2).

Various methods of debenzoylation/diazo transfer were then attempted, including the often-successful combination of NaH and methanesulfonyl azide3b in a variety of solvents, but with mediocre results. The use of pnitrobenzenesulfonyl azide (p-NBSA)8 and DBU,9 however, produced a-diazoketones 3 in much higher yields (cf. Table 1).10 In summary, we have developed a new method for the regioselective construction of unsymmetrical α-diazoketones using the inexpensive benzoylacetone as a precursor. This opens the way for the exploration of synthetic applications of these versatile intermediates.

Experimental Section¹¹

Preparation of 1-Benzoyl-2-undecanone (1b). To a solution of 4.4 mmol of LDA [prepared from 0.62 mL (4.4 mmol) of diisopropylamine and 1.93 mL (4.4 mmol, 2.28 M solution in hexanes) of n-BuLi] in 4 mL of anhydrous THF at -78 °C under nitrogen was added dropwise a solution of 0.386 g (2.4 mmol) of benzoylacetone in 2 mL of anhydrous THF. The mixture was then warmed to -20 °C and stirred for 3 h, after which 0.38 mL (2.2 mmol) of *n*-bromooctane was added dropwise over 10 min, and the mixture was then slowly warmed to rt and stirred for 12 h. The mixture was then diluted with 20 mL of saturated aqueous NH₄Cl and extracted twice with 8 mL portions of ethyl acetate. The combined organic extracts were then washed with 15 mL of brine solution, dried over Na₂SO₄, and concentrated in vacuo. The crude residue was then chromatographed to produce 1b as a colorless, partially enolic oil (0.462 g, 84%). TLC R_f (10% ethyl acetate/petroleum ether) = 0.50; ¹H NMR (250 MHz, CDCl₃) δ 7.88 (d, 2H, J = 7.0 Hz), 7.60-7.40 (m, 3H), 6.17 (s, 0.92H), 4.08 (s, 0.16H), 2.58 (t, 0.08H, J = 7.3 Hz), 2.42 (t, 0.92H, J = 7.3 Hz, 1.75-1.60 (m, 2H), 1.45-1.05 (m, 2H), 0.88(t, 3H, J = 6.3 Hz); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 196.9, 183.3, 135.0, 39.1, 31.8, 29.4, 29.3, 29.2 (2), 25.7, 22.6; down: 132.1, 128.4, 126.9, 95.9, 14.0; IR (film) 3058, 2836, 1614, 1574, 1264, 1080, 762, 689 cm⁻¹; EI MS m/z (rel intensity) 274 (M⁺) 1), 162 (41), 161 (17), 147 (38), 120 (12), 105 (100), 77 (26), 69 (61), 55 (14); HRMS (calcd for $C_{18}H_{26}O_2$) 274.1933, found

(5) The use of a benzoyl activating group in the synthesis of α-diazoketones is precedented: Metcalf, B. W.; Jund, K.; Burkhart, J. P. Tetrahedron Lett. 1980, 21, 15.

(6) Choudhary, A.; Baumstark, A. L. Synthesis 1989, 688.
(7) Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082.

(8) Reagan, M. T.; Nickon, A. J. Am. Chem. Soc. 1968, 90, 4096.
(9) For the use of DBU to promote diazo transfer, see: Koteswar Rao, Y.; Nagarajan, M. J. Org. Chem. 1989, 54, 5678.
(10) In some cases the use of MsN₃ instead of p-NBSA is advantageous due to the ease of removal of MsN₃ and MsNH₂ versus p-NBSA and p-nitrobenzenesulfonamide from the crude reaction mixture (see ref 3b).

(11) For a summary of general experimental procedures see: Taber, D. F.; Houze, J. B. J. Org. Chem. 1994, 59, 4004.

⁽⁴⁾ Formylation is the most common method for α -methylene activation: (a) Hendrickson, J. B.; Wolf, W. A. J. Org. Chem. 1968, 33, 3610.
(b) Taber, D. F.; Ruckle, R. E.; Hennessy, M. J. J. Org. Chem. 1986, 51, 4077. (c) For the use of trifluoracetylation, see Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959.

Table 1. a-Alkylation and Diazo Transfer of Diketones 1

Entry	Diketone	Alkylation Product	Yield (%)	Diazoketone	Yield (%)
1	Ph 1a	Ph Me	77	N ₂ O	72
2	1a	Ph	59 ^a	N ₂ O N	70
3	1 a	Ph 2c MeO ₂ C	90	N ₂ 3c MeO ₂ C	83
4	1a	Ph O	72	N ₂ O	63
5	Ph	Ph Me	nC ₈ H ₁₇ 61	N ₂	l ₁₇ 70

^a This reaction was performed using 10 mol % nBu₄NI.

274.1925. Anal. Calcd for $C_{18}H_{26}O_2$: C, 78.79%; H, 9.55%. Found: C, 78.80%; H, 9.84%.

3-Benzoyl-2-butanone (2a). A mixture of 8.88 g (64.3 mmol) of anhydrous, powdered K2CO3, 0.052 g (0.16 mmol) of n-Bu4-NBr and 2.34 g (14.4 mmol) of benzoylacetone in 30 mL of anhydrous toluene under nitrogen was heated at reflux for 3.5 The mixture was then cooled to 40 °C for the dropwise addition of 1.00 mL (16.1 mmol) of iodomethane. The mixture was then stirred at 40 °C for an additional 18 h. The mixture was cooled to 0 °C and filtered, and the residue was washed twice with 100 mL portions of petroleum ether. The combined filtrate was concentrated, and the residue was chromatographed to produce **2a** as a yellow oil (1.96 g, 77%). TLC R_f (5% ethyl acetate/petroleum ether) 0.32; bp 80 °C/1 mmHg; ¹H NMR (250 MHz, CDCl₃) δ 7.97 (d, 2H, J = 7.0 Hz), 7.65–7.35 (m, 3H), 4.49 (q, 1H, J = 6.9 Hz), 2.15 (s, 3H), 1.45 (d, 3H, J = 6.8 Hz); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 133.1, 128.4, 128.1, 55.6, 27.7, 13.0; down: 204.3, 197.0, 135.5; IR (film) 3063, 2987, 1722, 1674, 1596, 1449 cm⁻¹; EI MS m/z (rel intensity) 176 (M⁺, 1), 134 (9), 133 (15), 105 (100), 77 (53), 51 (21); HRMS (calcd for C₁₁H₁₂O₂) 176.0837, found 176.0833.

3-Benzoyl-2-undecanone (2b): TLC R_f (20% ethyl acetate/petroleum ether) = 0.64; bp 120 °C/1 mmHg; ¹H NMR (250 MHz, CDCl₃) δ 7.92 (d, 2H, J = 7.1 Hz), 7.51-7.37 (m, 3H), 4.39 (t, 0.9 Hz, J = 7.0 Hz), 3.88 (t, 0.1 Hz, J = 7.0 Hz), 2.36 (s, 0.3H), 2.07 (s, 2.7H), 2.00-1.82 (m, 2H), 1.30-1.05 (m, 12H), 0.79 (t, 3H, J = 6.9 Hz); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 133.4, 128.6, 128.4, 63.2, 27.6, 13.8; down: 204.1, 196.3, 136.4, 31.6, 29.3, 29.1, 29.0, 28.9, 27.5, 22.4; IR (film) 3063, 2925, 1723, 1678, 1597, 1448, 1357 cm⁻¹; EI MS m/z (rel intensity) 162 (M⁺, 21), 133 (13), 105 (100), 77 (30), 55 (10); HRMS (calcd for $C_{18}H_{26}O_2$) 274.1933, found 274.1845.

Methyl (Z)-8-Benzoyl-9-oxo-5-decenoate (2c): TLC R_f (20% ethyl acetate/petroleum ether) = 0.35; bp 150 °C/1 mmHg; ¹H NMR (250 MHz, CDCl₃) δ 7.98 (d, 2H, J = 5.1 Hz), 7.65 – 7.35 (m, 3H), 5.45 – 5.25 (m, 2H), 4.47 (t, 1H, J = 7.2 Hz), 3.66 (s, 3H), 2.73 (t, 2H, J = 6.9 Hz), 2.30 (t, 2H, J = 7.4 Hz), 2.15 (s, 3H), 2.11 (m, 2H), 1.67 (m, 2H); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 203.1, 195.7, 173.4, 136.0, 32.8, 26.4, 26.0, 24.1; down: 133.3, 131.0, 128.4, 128.2, 125.7, 62.0, 50.9, 28.0; IR (film) 3008, 2951, 1732, 1676, 1596, 1448 cm⁻¹; EI MS m/z (rel intensity) 302 (M⁺,

1), 259 (5), 227 (5), 161 (13), 140 (34), 105 (100), 77 (52); HRMS (calcd for $C_{18}H_{22}O_4$) 302.1516, found 302.1518. Anal. Calcd for $C_{18}H_{22}O_4$: C, 71.50%; H, 7.33%. Found: C, 71.24%; H, 7.29%.

(E)-3-Benzoyl-6,10-dimethylundeca-5,9-dien-2-one (2d): TLC R_f (5% ethyl acetate/petroleum ether) = 0.18; bp 150 °C/1 mmHg; ¹H NMR (250 MHz, CDCl₃) δ 7.97 (d, 2H, J = 7.0 Hz), 7.65-7.40 (m, 3H), 5.10-4.95 (m, 2H), 4.46 (t, 1H, J = 7.2 Hz), 2.70 (t, 2H, J = 7.2 Hz), 2.15 (s, 3H), 2.05-1.85 (m, 4H), 1.62 (s, 3H), 1.61 (s, 3H), 1.55 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 203.9, 196.2, 138.0, 136.4, 131.2, 39.4, 27.6, 26.2; down: 133.4, 128.6, 128.5, 123.8, 119.8, 62.9, 28.0, 25.4, 17.5, 15.9; IR (film) 3061, 2922, 1722, 1681, 1597, 1448 cm⁻¹; EI MS m/z (rel intensity) 298 (M⁺, 2), 255 (6), 161 (9), 105 (100), 77 (36), 69 (31); HRMS (calcd for $C_{20}H_{26}O_{2}$) 298.1933, found 298.1943.

2-Benzoyl-3-dodecanone (2e): TLC R_f (10% ethyl acetate/petroleum ether) = 0.38; ¹H NMR (250 MHz, CDCl₃) δ 7.97 (d, 2H, J = 7.3 Hz), 7.65–7.40 (m, 3H), 4.49 (q, 1H, J = 7.1 Hz), 2.55–2.30 (m, 2H), 1.52 (m, 2H), 1.44 (d, 3H, J = 6.9 Hz), 1.30–1.05 (m, 12H), 0.86 (t, 3H, J = 6.3 Hz); ¹³C (62.9 MHz, CDCl₃) δ up: 133.5, 128.8, 128.6, 56.2, 14.0, 13.5; down: 207.1, 197.3, 136.1, 40.6, 31.8, 29.3, 29.2 (2), 28.9, 23.5, 22.6; IR (film) 2926, 1712, 1678, 1596, 1450 cm⁻¹; EI MS m/z (rel intensity) 288 (M⁺, 1), 134 (81), 133 (16), 105 (100), 77 (40), 71 (16), 57 (22); HRMS (calcd for C₁₉H₂₈O₂) 288.2089, found 288.2094. Anal. Calcd for C₁₉H₂₈O₂: C, 79.12%; H, 9.78%. Found: C, 78.85%; H, 9.81%. **3-Diazobutan-2-one (3a)**. To a solution of 1.82 g (10.3)

3-Diazobutan-2-one (**3a**). To a solution of 1.82 g (10.3 mmol) of diketone **2a** in 40 mL of anhydrous CH₂Cl₂ at 0 °C under nitrogen was added 3.09 mL (20.7 mmol) of DBU, followed by the dropwise addition of a solution of 4.71 g (20.7 mmol) of p-NBSA in 10 mL of anhydrous CH₂Cl₂. The mixture was warmed to rt and stirred for 1 h, after which the solvent was removed *in vacuo*. The product was isolated by fractional distillation (87–89 °C/90 mmHg) to produce **3a** as a yellow oil (0.73 g, 72%). The spectral data of **3a** were identical to the known compound: ¹² ¹H NMR (250 MHz, CDCl₃) δ 1.96 (s, 3H), 2.25 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 24.5, 7.4; down: 190.8; IR (film) 2929, 2072, 1638, 1328, 1296 cm⁻¹.

^{(12) (}a) Regitz, M.; Menz, F. Chem. Ber. 1961, 101, 2622. (b) Diels, O.; Pflaumer, K. Ber. Dtsch. Chem. Ges. 1915, 58, 223.

3-Diazoundecan-2-one (3b). TLC R_f (20% ethyl acetate/petroleum ether) = 0.55; $^1\mathrm{H}$ NMR (250 MHz, CDCl₃) δ 2.32 (t, 2H, J=7.6 Hz), 2.23 (s, 3H), 1.46 (m, 2H), 1.40–1.15 (m, 10H), 0.88 (t, 3H, J=6.9 Hz); $^{13}\mathrm{C}$ NMR (62.9 MHz, CDCl₃) δ up: 191.1, 67.3, 31.7, 29.1, 29.0, 28.7, 27.0, 22.5, 22.2; down: 25.3, 14.0; IR (film) 2926, 2066, 1644, 1367, 1330 cm $^{-1}$; EI MS m/z (rel intensity) 168 (M $^+-N_2$, 3), 125 (6), 112 (21), 97 (65), 84 (21), 71 (28), 69 (100), 55 (93); HRMS (calcd for $\mathrm{C}_{11}\mathrm{H}_{20}\mathrm{O}$) 168.1512, found 168.1514.

Methyl (Z)-8-Diazo-9-oxo-5-decenoate (3c): TLC R_f (20% ethyl acetate/petroleum ether) = 0.21; ¹H NMR (250 MHz, CDCl₃) δ 5.60 (m, 1H), 5.43 (m, 1H), 4.13 (q, 2H, J = 7.1 Hz), 3.08 (d, 2H, J = 7.4 Hz), 2.28 (t, 2H, J = 2.8 Hz), 2.25 (s, 3H), 2.12 (m, 2H), 1.70 (m, 2H), 1.26 (t, 3H, J = 7.1 Hz); ¹³C NMR (62.9 MHz, CDCl₃) δ up: 190.0, 173.4, 66.7, 32.9, 26.1, 24.3, 19.7; down: 132.5, 123.4, 51.1, 25.1; IR (film) 2951, 2071, 1736, 1639, 1330 cm⁻¹; EI MS m/z (rel intensity) 196 (M⁺ – N2, 3), 164 (6), 122 (33), 107 (25), 95 (100), 85 (21), 79 (44), 55 (23); HRMS (calcd for C₁₁H₁₆O₃) 196.1094, found 196.1099.

(*E*)-2-Diazo-6,10-dimethylundeca-5,9-dien-2-one (3d): TLC R_f (5% ethyl acetate/petroleum ether) = 0.12; 1 H NMR (250 MHz, CDCl₃) δ 5.20-5.00 (m, 2H), 3.05 (d, 2H, J = 7.5 Hz), 2.24 (s, 3H), 2.05 (m, 4H), 1.68 (s, 3H), 1.64 (s, 3H), 1.60 (s, 3H); 13 C NMR (62.9 MHz, CDCl₃) δ up: 190.5, 140.1, 131.6, 67.4, 39.4, 26.3, 20.4; down: 123.6, 117.2, 25.5 (2), 17.5, 15.9; IR (film) 2923,

2069, 1642, 1366, 1326 cm $^{-1};$ EI MS m/z (rel intensity) 192 (M $^+$ - $N_2,\ 3),\ 149$ (4), 124 (27), 109 (42), 81 (57), 69 (100); HRMS (calcd for $C_{13}H_{20}O)$ 192.1509, found 192.1514.

2-Diazo-3-dodecanone (3e): TLC R_f (10% ethyl acetate/petroleum ether) = 0.57; $^1\mathrm{H}$ NMR (250 MHz, CDCl₃) δ 2.46 (t, 2H, J=7.3 Hz), 1.95 (s, 3H), 1.63 (m, 2H), 1.40–1.10 (m, 12H), 0.88 (t, 3H, J=6.9 Hz); $^{13}\mathrm{C}$ NMR (62.9 MHz, CDCl₃) δ up: 194.8, 62.0, 37.7, 31.8, 29.6, 29.3 (2), 29.2 (2), 24.8, 22.6; down: 14.0, 8.0; IR (film) 2925, 2067, 1644, 1463, 1283 cm⁻¹; EI MS m/z (rel intensity) 182 (M⁺ - N₂, 2), 112 (35), 97 (38), 84 (18), 69 (100), 55 (63); HRMS (calcd for $\mathrm{C_{12}H_{22}O}$) 182.1672, found 182.1671.

Acknowledgment. We thank the National Institutes of Health (GM 42056) for support for this work.

Supplementary Material Available: ¹H and ¹³C spectra for compounds **1b**, **2a-e**, and **3b-e** (20 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS. Ordering information is given on any current masthead page.

JO942059S