Concept check

- √ Complex number
 - O Cartesian form and polar form
 - Cartesian form: z = a + jb, Re(z) = a, Im(z) = b
 - Exponential/Polar form: $re^{j\phi}$, $r \angle \phi$
 - o Magnitude and phase
 - Magnitude: $|z| = r = \sqrt{a^2 + b^2}$
 - Phase: $arg(z) = \phi = tan^{-1} \frac{b}{a}$
 - Range $(-\pi, \pi)$
 - o Important formula
 - Euler formula: $z = re^{j\phi} = r(\cos\phi + j\sin\phi)$
 - De Moivre's formula: $e^{jn\phi} = (\cos\phi + j\sin\phi)^n = \cos(n\phi) + j\sin(n\phi)$

z = a + jb

Ŕe

- o Operations
 - Conjugation (in Cartesian form and polar form)
 - Addition / subtraction (in Cartesian form)
 - Multiplication / division (in Cartesian form and polar form)
- √ Linearity
 - $\circ \ \mathcal{H}\{a_1x_1[n] + a_2x_2[n]\} = a_1\mathcal{H}\{x_1[n]\} + a_2\mathcal{H}\{x_2[n]\}$
- $\sqrt{}$ Time invariance / Shift invariance
 - $\circ \quad y[n] = \mathcal{H}\{x[n]\} \Rightarrow y[n-n_0] = \mathcal{H}\{x[n-n_0]\}$

Exercise

1. Simplify the following complex expressions:

b.
$$\frac{e^{-\frac{j\pi}{6}}}{1-j}$$

2. Plot the magnitude and phase of the following functions:

a.
$$Y(\omega) = 3jcos(\omega)$$

b.
$$Y(\omega) = \frac{e^{j\omega/2} - e^{-j3\omega/2}}{2j}$$

3. Determine if the following systems are: 1) linear, 2) time-invariant. Justify your statements.

a.
$$y[n] = \max(0, x[n])$$

b.
$$y[n] = x[|n| - n]$$

c.
$$y[n] = nx[n]$$