From Conformant into Classical Planning: Efficient Translations That May Be Complete Too

Héctor Palacios Héctor Geffner

Department de Tecnología Universitat Pompeu Fabra Barcelona

ICAPS - 2007

Classical Planning

- A classical planner is a solver over the class of models given by:
 - a state space S
 - a known initial state $s_0 \in S$
 - a set $S_G \subseteq S$ of goal states
 - actions $A(s) \subseteq A$ applicable in each $s \in S$
 - a deterministic transition function s' = f(a, s) for $a \in A(s)$
 - uniform action costs c(a, s) = 1
- These models are represented in compact form through languages such as Strips, ADL, PDDL, ...
- Their solutions (plans) are sequences of applicable actions that map s_0 into S_G

- The good news: classical planning works
 - Large problems solved very fast (non-optimally)
- Not so good: limitations
 - No Uncertainty (no probabilities)
 - No **Incomplete Information** (no sensing)

Beyond Classical Planning: Two Strategies

- Top-down: Develop solver for more general class of models; e.g., MDPs and POMDPs
 - +: generality
 - -: complexity
- Bottom-up: Extend the scope of current 'classical' solvers
 - +: efficiency
 - -: generality

We follow 2: we want to use classical planning algorithms for solving problems that involve incomplete information (conformant planning)

Conformant Planning: the Trouble with Incomplete Info

Problem: A robot must move from an **uncertain** I into G with **certainty**, one cell at a time, in a grid $n \times n$

- Conformant and classical planning look similar except for uncertain I (assuming actions are deterministic).
- Yet plans can be quite different: best conformant plan must move robot to a corner first! (in order to localize)

Look-n-grab 8x8

- Actions: move, look-and-grab, putdown
- Init: object can be anywhere.
- Goal: object at Trash
- Obj get lost when pickup with handfull, so have to visit Trash after each pickup

Model for Conformant Planning

- a **set** $b_0 \subseteq S$ of possible initial states
- a set of possible goals $b_F \subseteq S$
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic state transition function F s.t.
 F(a, s) is the set of next states

- call a set of possible states, a belief state
- actions then map a belief state b into a belief state b_a

$$b_a \stackrel{\mathsf{def}}{=} \{ s' \mid s' \in F(a,s) \ \& \ s \in b \}$$

 task becomes finding action sequence that maps b₀ into target b_F

Who care about Conformant Planning?

- What we really want is observations, probabilities, time, resources, etc
- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND do both: conformant and contingent
- Claim: Finding sequence of actions between belief states is a key point in planning under observations, probabilities, etc.

Who care about Conformant Planning?

- What we really want is observations, probabilities, time, resources, etc
- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND do both: conformant and contingent
- Claim: Finding sequence of actions between belief states is a key point in planning under observations, probabilities, etc.

Who care about Conformant Planning?

- What we really want is observations, probabilities, time, resources, etc
- Better Conformant Planning leads to better Planning with Observations (contingent)
 - Contingent-FF uses Conformant-FF's heuristic
 - POND do both: conformant and contingent
- Claim: Finding sequence of actions between belief states is a key point in planning under observations, probabilities, etc.

Search in belief space

- GPT, MBP, POND do conformant planning by heuristic search in belief space. Issues:
 - which heuristic?
 - explicit representation of belief states
- Alternatives
 - Conformant-FF use different representation
 - Use propositional logic, SATPLAN-like
 - Model counting for search over possible plans
 - Construct a CNF with all possible plans, and call once a SAT solver

Search in belief space

- GPT, MBP, POND do conformant planning by heuristic **search** in belief space. Issues:
 - which heuristic?
 - explicit representation of belief states
- Alternatives
 - Conformant-FF use different representation
 - Use propositional logic, SATPLAN-like
 - **Model counting** for search over possible plans
 - Construct a CNF with all possible plans, and call once a SAT solver

Complexity: Classical vs. Conformant Planning

- Complexity: conformant planning harder than classical planning
 - because verification of a conformant plan intractable in worst case
- Idea: focus on computation of conformant plans that are easy to verify (e.g., in linear time in the plan length)
 - computation of such plans no more complex than classical planning

Translation-based approach to Conformant Planning

- Exploiting translation-idea, effective but incomplete translation scheme proposed in AAAI-06
 - Plans for Conformant P obtained from plans for Classical K(P)
- Conformant Planner KP = K(P)+ FF did very well in IPC-2006
- Another Planner $T0 = K_1(P) + FF$ even better (1st place)
- Translation K₁(P) and more general K_{T,M}(P) presented in this paper

Outline

- Basic Translation Scheme $K_0(P)$
- General Translation Scheme K_{T,M}(P)
- Complete Instances
- Conformant Width of P
- **Poly** translation K_i that is complete if width < i
- Experiments: Width Analysis, Performance of T0 $= K_1(P) + FF$

- F stands for the fluents in P
- O for the operators with effects C → L
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                            Classical K_0(P)
       \langle F, I, O, G \rangle
                                            \langle F', I', O', G' \rangle
                                \Rightarrow
```

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                          Classical K_0(P)
      \langle F, I, O, G \rangle
                                          \langle F', I', O', G' \rangle
                               \Rightarrow
          Fluent L
                                             KL, K \neg L (two fluents)
                               \Rightarrow
```

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                                Classical K_0(P)
            \langle F, I, O, G \rangle
                                                \langle F', I', O', G' \rangle
                                    \Rightarrow
               Fluent L
                                                  KL, K \neg L (two fluents)
                                    \Rightarrow
            known lit L
                                                  KL \wedge \neg K \neg L
Init:
                                    \Rightarrow
        unknown lit L
                                                \neg KL \land \neg K \neg L (both false)
                                    \Rightarrow
```

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                                Classical K_0(P)
            \langle F, I, O, G \rangle
                                                \langle F', I', O', G' \rangle
                                    \Rightarrow
               Fluent L
                                                  KL, K \neg L (two fluents)
                                    \Rightarrow
            known lit L
                                                  KL \wedge \neg K \neg L
Init:
                                    \Rightarrow
        unknown lit L
                                    \Rightarrow
                                                \neg KL \land \neg K \neg L (both false)
                  Goal L
                                               KL
                                    \Rightarrow
```

- F stands for the fluents in P
- O for the operators with effects C → L
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                                    Classical K_0(P)
                  \langle F, I, O, G \rangle
                                                    \langle F', I', O', G' \rangle
                                         \Rightarrow
                     Fluent L
                                                       KL, K \neg L (two fluents)
                                          \Rightarrow
                  known lit L
                                                       KL \wedge \neg K \neg L
      Init:
                                          \Rightarrow
              unknown lit L
                                         \Rightarrow
                                                    \neg KL \land \neg K \neg L (both false)
                        Goal L
                                                    KL
                                          \Rightarrow
Operator a has prec L
                                                    a has prec KL
                                          \Rightarrow
```

- F stands for the fluents in P
- O for the operators with effects C → L
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                                Classical K_0(P)
                \langle F, I, O, G \rangle \Rightarrow
                                                \langle F', I', O', G' \rangle
                   Fluent L
                                                  KL, K \neg L (two fluents)
                                      \Rightarrow
                known lit L
                                                  KL \wedge \neg K \neg L
      Init:
                                      \Rightarrow
             unknown lit L
                                      \Rightarrow
                                                \neg KL \land \neg K \neg L (both false)
                      Goal L
                                               KL
                                      \Rightarrow
Operator a has prec L
                                      \Rightarrow
                                                a has prec KL
    Operator a: C \rightarrow L
```

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (clauses over F-literals)
- G for the goal situation (set of F-literals)

```
Conformant P
                                                     Classical K_0(P)
                  \langle F, I, O, G \rangle \Rightarrow
                                                     \langle F', I', O', G' \rangle
                     Fluent L
                                                       KL, K \neg L (two fluents)
                                          \Rightarrow
                  known lit L
                                                       KL \wedge \neg K \neg L
       Init:
                                          \Rightarrow
              unknown lit L
                                          \Rightarrow
                                                    \neg KL \land \neg K \neg L (both false)
                        Goal L
                                          \Rightarrow KL
Operator a has prec L
                                          \Rightarrow
                                                     a has prec KL
                                                          a: KC \rightarrow KL
a: K \neg C \rightarrow \emptyset
a: \neg K \neg C \rightarrow \neg K \neg L
    Operator a: C \rightarrow L
```

Basic Properties and Extensions

- Translation $K_0(P)$ is **sound**:
 - If π is a **classical plan** that solves $K_0(P)$, then π is a **conformant plan** for P.
- But way too incomplete
 - often $K_0(P)$ will have no solution while P does
 - works when uncertainty is irrelevant
- Extension K(P) in AAAI-06 is more powerful (more problems solvable) but still basically incomplete
- Extension K_{T,M}(P) we present now can be both complete and polynomial

Basic Properties and Extensions

- Translation $K_0(P)$ is **sound**:
 - If π is a **classical plan** that solves $K_0(P)$, then π is a **conformant plan** for P.
- But way too incomplete
 - often $K_0(P)$ will have no solution while P does
 - works when uncertainty is irrelevant
- Extension K(P) in AAAI-06 is more powerful (more problems solvable) but still basically incomplete
- Extension K_{T,M}(P) we present now can be both complete and polynomial

- Given literal L and tag t, atom KL/t means
 - $K(t_0 \supset L)$: KL true if t is true initially

- Classical Problem $K_{T,M}(P)$:
 - Init: Kx_1/x_1 , Kx_2/x_2 , $K\neg g$, $\neg Kg$, $\neg Kx_1$, $\neg K\neg x_1$, ...
 - After a_1 : Kg/x_1 , Kx_1/x_1 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - New action $merge_a$: $Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$
 - After $merge_a$: Kg, Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, ...
 - Goal satisfied: Ka

- Given literal L and tag t, atom KL/t means
 - $K(t_0 \supset L)$: KL true if t is true initially

Example

- Conformant Problem P:
 - Init: $x_1 \vee x_2, \neg g$
 - Goal: g
 - Actions: $a_1: x_1 \rightarrow g, a_2: x_2 \rightarrow g$

- Given literal L and tag t, atom KL/t means
 - $K(t_0 \supset L)$: KL true if t is true initially

Example

- Conformant Problem P:
 - Init: $x_1 \vee x_2, \neg g$
 - Goal: g
 - Actions: $a_1: x_1 \rightarrow g, a_2: x_2 \rightarrow g$
- Classical Problem $K_{T,M}(P)$:
 - Init: Kx_1/x_1 , Kx_2/x_2 , $K \neg g$, $\neg Kg$, $\neg Kx_1$, $\neg K \neg x_1$, ...
 - After a_1 : Kg/x_1 , Kx_1/x_1 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...

- Given literal L and tag t, atom KL/t means
 - $K(t_0 \supset L)$: KL true if t is true initially

Example

- Conformant Problem P:
 - Init: $x_1 \vee x_2, \neg g$
 - Goal: g
 - Actions: $a_1: x_1 \rightarrow g, a_2: x_2 \rightarrow g$
- Classical Problem $K_{T,M}(P)$:
 - Init: $Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \dots$
 - After a_1 : Kg/x_1 , Kx_1/x_1 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - New action $merge_q: Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$

- Given literal L and tag t, atom KL/t means
 - $K(t_0 \supset L)$: KL true if t is true initially

Example

- Conformant Problem P:
 - Init: $x_1 \vee x_2, \neg g$
 - Goal: g
 - Actions: $a_1: x_1 \rightarrow g, a_2: x_2 \rightarrow g$
- Classical Problem K_{T,M}(P):
 - Init: $Kx_1/x_1, Kx_2/x_2, K\neg g, \neg Kg, \neg Kx_1, \neg K\neg x_1, \dots$
 - After a_1 : Kg/x_1 , Kx_1/x_1 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - After a_2 : Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, $\neg Kg$, ...
 - New action $merge_a$: $Kg/x_1 \wedge Kg/x_2 \rightarrow Kg$
 - After $merge_q$: Kg, Kg/x_2 , Kg/x_1 , Kx_1/x_2 , Kx_2/x_2 , $\neg K \neg g$, ...
 - Goal satisfied: Ka

 a set T of tags t: consistent set of assumptions (literals) about the initial situation /

$$I \not\models \neg t$$

• a set M of merges m: valid subsets of tags

$$I \models \bigvee_{L \in m} L$$

Key elements in Translation $K_{T,M}(P)$

 a set T of tags t: consistent set of assumptions (literals) about the initial situation /

$$I \not\models \neg t$$

a set M of merges m: valid subsets of tags

$$I \models \bigvee_{L \in m} L$$

 Literals KL/t meaning that L is true given that initially t; i.e. $K(t_0 \supset L)$

Example of T, M

Example

Given $I = \{p \lor q, v \lor \neg w\}$, T and M can be:

$$T = \{\{\}, p, q, v, \neg w\}$$
 $T' = \{\{\}, \{p, v\}, \{q, v\}, \ldots\}$
 $M = \{\{p, q\}, \{v, \neg w\}\}$ $M' = \ldots$

For Conformant $P = \langle F, I, O, G \rangle$, $K_{T,M}(P)$ is $\langle F', I', O', G' \rangle$

- **F**': KL/t for every lit L in F and t in T
- I': KL/t if $I \models (t \supset L)$
- G': KL for $L \in G$
- For every effect t in T and $a: L_1 \wedge \cdots \wedge L_n \rightarrow L$ in O, add to O'
 - a: $KL_1/t \wedge \cdots \wedge KL_n/t \rightarrow KL/t$
 - $a: \neg K \neg L_1/t \wedge \cdots \wedge \neg K \neg L_n/t \rightarrow \neg K \neg L/t$
- prec $L \Rightarrow$ prec KL
- **Merge** actions in O': for each lit L and merge $m \in M$ with $m = \{t_1, \ldots, t_n\}$

 $merge_{L,m}: KL/t_1 \wedge \ldots \wedge KL/t_n \rightarrow KL$

Properties of Translation K_{TM}

- If T contains only the empty tag, $K_{T,M}(P)$ reduces to $K_0(P)$
- K_{T,M}(P) is always sound

We will see that...

- For suitable choices of T,M translation is complete
- ...and sometimes polynomial as well

Intuition of soundness

Idea:

- if sequence of actions π makes KL/t true in $K_{T,M}(P)$
- π makes L true in P over all trajectories starting at initial states satisfying t

Intuition of soundness

- Idea:
 - if sequence of actions π makes KL/t true in $K_{TM}(P)$
 - π makes L true in P over all trajectories starting at initial states satisfying t

Theorem (Soundness $K_{T,M}(P)$)

If π is a **plan that solves the classical** planning problem $K_{T,M}(P)$, then the action sequence π' that results from π by dropping the merge actions is a plan that solves the conformant planning problem P.

A complete but exponential instance of $K_{T,M}(P)$: K_{s0}

If possible initial states are s_0^1, \ldots, s_0^n , scheme K_{s_0} is the instance of $K_{T,M}(P)$ with

- $T = \{ \{ \}, s_0^1, \dots, s_0^n \}$
- $M = \{ \{s_0^1, \dots, s_0^n\} \}$ i.e., only **one merge** for the disjunction of possible initial states

A complete but exponential instance of $K_{T,M}(P)$: K_{s0}

If possible initial states are s_0^1, \ldots, s_0^n , scheme K_{s_0} is the instance of $K_{T,M}(P)$ with

- $T = \{ \{ \}, s_0^1, \dots, s_0^n \}$
- $M = \{ \{s_0^1, \dots, s_0^n\} \}$ i.e., only **one merge** for the disjunction of possible initial states
- **Intuition**: applying actions in K_{s0} keeps track of each fluent for each possible initial states

A complete but exponential instance of $K_{T,M}(P)$: K_{s0}

If possible initial states are s_0^1, \ldots, s_0^n , scheme K_{s0} is the instance of $K_{T.M}(P)$ with

- $T = \{ \{ \}, s_0^1, \dots, s_0^n \}$
- $M = \{ \{s_0^1, \dots, s_0^n\} \}$ i.e., only **one merge** for the disjunction of possible initial states
- **Intuition**: applying actions in K_{s0} keeps track of each fluent for each possible initial states
- This instance is complete, but exponential is the number of fluents
 - ... although not a bad conformant planner

Performance of K_{s0} + FF

		Planners exec time (s)				
Problem	$\#S_0$	K _{s0}	KP	POND	CFF	
Bomb-10-1	1k	648,9	0	1	0	
Bomb-10-5	1k	2795,4	0,1	3	0	
Bomb-10-10	1k	5568,4	0,1	8	0	
Bomb-20-1	1M	> 1.8 <i>G</i>	0,1	4139	0	
Sqr-4-16	4	0,3	fail	1131	13,1	
Sqr-4-24	4	1,6	fail	> 2h	321	
Sqr-4-48	4	57,5	fail	> 2h	> 2h	
Sortnet-6	64	2,2	fail	2,1	fail	
Sortnet-7	128	27,9	fail	17,98	fail	
Sortnet-8	256	> 1.8 <i>G</i>	fail	907,1	fail	

Translation time included in all tables.

Road to Complete but Compact Translations

Theorem

Scheme $K_{T,M}$ is **complete** if for every precondition and goal literal L in P, there is a merge $m = t_1, \ldots, t_n$ that **covers** L

A merge m covers L if for all t_i in m, t_i hits* $C_l(L)$, the set of clauses in L relevant to L

Observation: When such merges can be generated in poly-time, then can have a poly-size instance of $K_{T,M}$ that is complete

Hitting & Hitting*

• t hits a set of clauses S if for each clause c in S, there is a literal $L' \in c$ such that

$$L' \in t$$

• t hits* a set of clauses S if for each clause c in S, there is a literal $L' \in c$ such that

$$I \models t \supset L'$$

- $L \longrightarrow L'$ in P. read as 'L is relevant to L''
 - \bigcirc L \longrightarrow L
 - 2 $L \longrightarrow L'$ if $a: C \to L'$ in P with $L \in C$

 - \blacktriangle $L \longrightarrow L'$ if $L \longrightarrow \neg L''$ and $L'' \longrightarrow \neg L'$
- $L \longrightarrow L'$: uncertainty in L affects L'

Conformant Width

- Clause C is relevant to L if all literals in C are relevant to L
- $C_I(L)$ = set of clauses in I relevant to L, with tautologies $L' \vee \neg L'$ when both relevant to L

Definition

 $width(L) = \min \text{ number of clauses in } C_l(L) \text{ such that any } t$ hitting those clauses, hits* **all** $C_l(L)$

Definition

 $width(P) = \max width(L)$ over **all** preconds and goals L

Conformant Width: intuitions

- For each L, goal or prec, we want to achieve KL
- It is **not** necessary to deal with all relevant clauses $C_l(L)$
 - some of them are enough for deciding the others
- How many? width(L)

Some consequences:

- width(P) remains the same if we copy the same problem and put all together
 - so, we can deal with a group of simple-and-decoupled subproblems
- Width is worst-case: sometimes the problem is easier

Conformant Width and Tractability

- If width(L) $\leq i$ for fixed i, a merge that **covers** L generated in poly-time
- If width(P) < i for fixed i, a poly-size and complete translation follows from theorem above

Conformant Width and Tractability

- If width(L) $\leq i$ for fixed i, a merge that **covers** L generated in poly-time
- If width(P) < i for fixed i, a poly-size and complete translation follows from theorem above
- In paper, translation K_i formulated that is poly for fixed i, and **complete** if $width(P) \le i$

Conformant Width and Tractability

- If width(L) $\leq i$ for fixed i, a merge that **covers** L generated in poly-time
- If width(P) < i for fixed i, a poly-size and complete translation follows from theorem above
- In paper, translation K_i formulated that is poly for fixed i, and **complete** if width(P) < i
- Current conformant benchmarks have conformant width 1. except: blocks, sortnet, adder
- Conformant Planner $T0 = K_1(P) + FF$ best at IPC-2006

- Non-uniform tags: tags for L are only literals in $C_l(L)$
- Remove from PDDL KL/t and cond-effects that does not affect merge results
- For invariant oneof(x_1, \ldots, x_n): keep Kx_i updated. Example:

$$K \neg x_1 \wedge \ldots \wedge K \neg x_{n-1} \rightarrow Kx_n$$

- Thanks FF for
 - accepting big grounded PDDLs
 - dealing with lots of conditional effects

Translating P into $K_1(P)$

	Р		Translation	$K_1(P)$	
Problem	#Fluents	#Effects	time (secs)	#Fluents	#Effects
Bomb-100-100	402	40200	1,36	1304	151700
Sqr-64-ctr	130	504	2,34	16644	58980
Sqr-120-ctr	242	952	12,32	58084	204692
Logistics-4-10-10	872	7640	1,44	1904	16740
1-Dispose-8-3	486	1984	26,72	76236	339410
Look-n-Grab-8-1-1	356	2220	4,03	9160	151630

- Actually, after some simplifications made for T0 to the PDDL
- Translation is not the bottleneck

Total time of $K_1(P)$ + FF (translation + search)

	<i>T</i> 0		KP		CFF	
problem	time (sec)	len	time (sec)	len	time (sec)	len
Bomb-100-60	5,6	140	4,54	140	9,38	140
Bomb-50-50	1,11	50	0,96	50	0,1	50
Sqr-8-ctr	0,07	26	0,05	0	70,63	50
Sqr-12-ctr	0,1	32	0,07	32	> 2h	
Sqr-64-ctr	10,68	188	1,66	188	> 2h	
Sqr-120-ctr	> 1.80	G	13,23 356		> 1.8 <i>G</i>	
Sqr-4-16-ctr	0,2	86	fail		13,13	140
Sqr-4-20-ctr	0,51	128	fail		73,73	214
Sqr-4-64-ctr	267,3	1118	fail		> 2h	
Log-3-10-10	3,42	109	2,67	109	4,67	108
Log-4-10-10	6,52	125	3,07	125	4,36	121
Comm-24	0,7	418	fail		37,52	359
Comm-25	0,84	453	fail		56,13	389

T0: new domains

	<i>T</i> 0		KP	
problem	time	len	time	len
Push-to-4-1*	0,16	64	> 1.8 <i>G</i>	
Push-to-4-2*	0,3	67	0,16	69
Push-to-4-3*	0,48	83	0,22	71
Push-to-8-3	1153,16	395	10,12	291
Push-to-12-1	> 2h		> 1.8 <i>G</i>	
1-Dispose-8-1	124,5	1268	fail	
1-Dispose-8-2	699,11	1268	fail	
1-Dispose-8-3	1296,02	1268	fail	
1-Dispose-12-1	> 2h		fail	
Look-n-Grab-8-1-1	45,27	.7 212 fail		I
Look-n-Grab-8-1-2	84,04	88	fail	

- * = problems solved by CFF
- Push-to: goal is hold object. Pick-up at two of corners
- 1-Dispose: object to trash, but hand has capacity one.

- Actions: move, look-and-grab, putdown
- Init: object can be anywhere.
- Goal: object at Trash
- Obj get lost when pickup with handfull, so have to visit Trash after each pickup
- Plan len: 212 acts
- Time: 46s

• Sqr-center. Init = oneof(x_1, \ldots, x_n), oneof(y_1, \ldots, y_n). Goal = x_{center} , y_{center}

- Has width 1 because x_i not relevant to y_i
- Blocks, with a magic action to achieve the goal
 - Trivial (solved by K_0) but width high

Summary

- A general K_{T,M} translation scheme for mapping from conformant P into classical P'
- A number of interesting **instances**: K_0 , K_{s0} , K_i
- A notion of conformant width that distinguishes hard from simple conformant problems
- Translation scheme K_i that is always polynomial and complete if conformant width ≤ i
- Planner **T0** = $K_1(P)$ + FF
- On going work: as a base for an action selection mechanism for Contingent Planning

Mapping to Propositional Logic (1)

Let T_P , a **satplan**-like propositional theory for the conformant problem P with fixed horizon n

- T_P encodes all the executions starting at some possible initial state
- Thus, SAT call would give a plan for one initial state: optimistic plan, not what we want

Mapping to Propositional Logic (2)

Two ideas for Conformant Optimal Planning

• Search over plans space (ICAPS-05), checking

plan
$$\pi$$
 is conformant $\Leftrightarrow \#Models(T_P | \pi) = \#init \text{ states of } P$

• Create **new formula** T_P' encoding all possible plans and call a SAT solver **once** upon T_P' (CAEPIA-05)

$$T'_P = \bigwedge_{s_0 \in Init} project[T_P | s_0; Actions]$$

How?

- Knowledge Compilation to d-DNNF allowed us to do model counting and projection feasible
- *d-DNNF* is a normal form related to **OBDD**

Mapping to Propositional Logic (2)

Two ideas for Conformant **Optimal** Planning

• Search over plans space (ICAPS-05), checking

plan
$$\pi$$
 is conformant $\Leftrightarrow \#Models(T_P | \pi) = \#init \text{ states of } P$

• Create **new formula** T_P' encoding all possible plans and call a SAT solver **once** upon T_P' (CAEPIA-05)

$$T'_P = \bigwedge_{s_0 \in Init} project[T_P | s_0; Actions]$$

How?

- Knowledge Compilation to d-DNNF allowed us to do model counting and projection feasible
- d-DNNF is a normal form related to OBDD

