Non-trophic interactions: consequences on secondary extinctions

Alexandre Génin

April 7, 2015

1 The trophic model

Figure 1
The fixed trophic topology: 4 basal producers, 2 grazers and 2 consumers. Species consume everyone on the lower trophic level. x-axis has no meaning.

The node dynamics model is inspired from [1]. It is given by its main equation that describes the dynamics of one species' biomass:

$$\frac{dB_i}{dt} = \underbrace{rB_i(1 - \frac{B_i}{K_i})}_{logistic\ growth} + \underbrace{\sum_{k=1}^{N} B_i w_{ik} F_{ik}}_{i\ eats} - \underbrace{\sum_{j=1}^{N} B_j w_{ji} F_{ji} / e_{ji}}_{i\ gets\ eaten} \underbrace{-x_i B_i}_{mortality}$$
(1)

where F_{ij} describes a generic functional response in which species i feeds on j as followed:

$$F_{ij} = \frac{a_{ij}w_{ij}B_j^{q+1}}{1 + h_i w_{ij} \sum_k a_{ik}B_k^{q+1}}$$
 (2)

Parameters are described in Table 1. In the functional response, q is a coefficient taken randomly in the [0,1] range (a value of 0 yields a type-II functional and 1 a type-III functional response).

Many of these parameters can be chosen using metabolic scaling rules resulting in a plausible food web with few free parameters. Details on the default parameter values can be found in Table 1. The trophic topology (values for which $a_{ij} > 0$) is held constant.

1.1 Results

1.1.1 Example output

The simulation process is as follow:

- Species initial biomasses are chosen randomly in the range $]0; K_i]$, q is chosen randomly between 0 and 1.
- The simulation is run until t = 3000 is reached, when one or more species are removed. The run lasts until t = 5000 is reached.

Figure 2 100 replicates. sp1-4 are producers, sp5-6 are intermediate consumers and sp7-8 are top predators. In this simulation, species 5 (grazer) is removed at time t = 3000. Mind the non-linear vertical scale

2 Generalization of NTIs

The introduction of a *generic* non-trophic interaction can be done by adding a term to the equation of a node (Eq. 1).

$$\frac{dB_i}{dt} = rB_i(1 - \frac{B_i}{K_i}) + \sum_{k=1}^{N} B_i w_{ik} F_{ik} - \sum_{j=1}^{N} B_j w_{ji} F_{ji} / e_{ji} - x_i B_i + \sum_{j=1}^{N} N_{ij}^t B_j$$
(3)

Note that the non-trophic interaction is constrained to be always below the "mortality" rate $(-x_iB_i)$ so that there is no creation of biomass from non-trophic interactions.

References

[1] U Brose, RJ Williams, and ND Martinez. "Allometric scaling enhances stability in complex food webs". In: *Ecology Letters* (2006), pp. 1228–1236.

Param.	Param. Comment	Value
r_i	r_i Reproductive rate of species i	1 for producers, 0 otherwise
K_i	The carrying capacity of species i	1 for all producers
w_{ij}	The consumption rate of species j by species i	equal between all preys (e.g. 0.25 for grazers (4 preys))
F_{ij}	The functional response of species i on j	
b	The "hill" coefficient in the functional response	random between 0 and 1
e_{ji}	The conversion efficiency of species i into j	0.85 for all i and j
b_i	Body mass of species i	producers: 1, grazers: 3 predators: 6
x_i		scaling rule with body size $x_i = 0.223b_i^{25}$
a_{ij}	The attack rate of species i on j	for species <i>i</i> attacking <i>j</i> : $27.24 * x_i * exp(0.01 * b_i/b_j)$
h_i	$\left h_i \right $ The handling time of species i	$1/(8^*x_i)$

Table 1 Default parameters and values used in the model. Some of them (e.g. x_i use metabolic scaling relationships).