Q.1 Consider the following dataset with 4 records.

[4+2 = 6 Marks]

Input X	Output Y
1	exp(2)
2	exp(4)
3	exp(6.3)
4	exp(9.2)

Assume output $y=e^{(\alpha * x)}$. Using linear regression,

- (a) Find the best value of α .
- (b) Find the optimal total sum of square error.

Solution:

The Later of the L	Camlin Page
-	Date / /
1	Solution:
	a) Find the best value of as
5	$ln(y_i) = \infty x_i$
	$J(\alpha) = (\alpha - 2)^2 + (2\alpha - 1)^2 + (3\alpha + 13)^2$
10	Taking derivative of J(x) w.r.t & and equating to 0.
	(x)-2)+2(2a-4)+3(3a-63)+4(4a-92)=0
8627	Ø = 65.7/30
15	= 2.2.
	b) find the optimal total sum of square error.
30	(exp(2.2) - exp(2))2+(exp(44)-exp(4))2
	+ (esup(6.8))2 +(exp(88) - exp(92))2
25	

Q.2 Consider inputs x_i which are real valued attributes and the outputs y_i which are real valued of the form $y_i = f(x_i) + e_i$, where $f(x_i)$ is the true function and e_i is a random variable representing laplacian noise with PDF given by

$$f(y_i/\theta) = \frac{1}{2\theta} * e^{\frac{-|y_i-\mu|}{\theta}}$$

Implementing a linear regression model of the form $h(x_i) = \sum_{i=0}^{n} \theta_i x_i$, and $\mu = h(x_i)$, find the maximum likelihood estimator of (. Comment on the loss function. [4+1 Marks]

Comment on Loss function: Instead of MSE, MAE is the maximum likelihood hypothesis. So MAE is appropriate for the loss function.

- Q.3 Consider a result prediction system where student's efforts are encoded as percent of time a student has spent studying out of total available time.
 - The input X is having just one feature representing the student's efforts having only four discrete values (25%, 50%, 75%, and 100%)
 - The output Y is having 3 classes (First class, Second class, Fail)
 - The priors for each class are: P(Y = First Class) = 0.5, P(Y = Second class) = 0.3, and P(Y = Fail) = 0.2.
 - Based on the past data, the estimated the class-conditional probability P(X|Y) are shown in the following table.

Student's efforts	p(x y=fail)	p(x y=second class)	p(x y=first class)
25	0.7	0.4	0.1
50	0.2	0.3	0.1
75	0.1	0.2	0.3
100	0	0.1	0.7

Consider a following loss function $l(\hat{y}, y)$ where $\hat{y} = predicted$ class label and y is true class label:

$$\iota(\hat{y}, y) = \begin{cases} 0 & \hat{y} = y \\ 1 & \hat{y} = Fail \ and \ \hat{y} \neq y \\ 2 & \hat{y} = \text{Sec ond class and } \hat{y} \neq y \\ 4 & \hat{y} = First \ class \ and \ \hat{y} \neq y \end{cases}$$

Consider modified Naïve Bayes hypothesis function:

$$\hat{Y} \leftarrow \underset{y_k}{\operatorname{argmax}} l(y, \hat{y}) P(Y = y_k) \Pi_i P(X_i | Y = y_k)$$

Use this modified hypothesis function to classify each of the examples in the given table. [5 Marks]
Solution:

	p(y x)		
	Fail	second class	first class
25	0.35	0.12	0.02
50	0.1	0.09	0.02
75	0.05	0.06	0.06
100	0	0.03	0.14

	L(y-hat,y) *p(y/x)	L(y-hat,y) *p(y/x)	L(y-hat,y) *p(y/x)		
				Highest	
	Fail	second class	first class	value	
25	0.35	0.24	0.08	0.35	fail
					second
50	0.1	0.18	0.08	0.18	class
75	0.05	0.12	0.24	0.24	first class

10					
0	0	0.06	0.56	0.56	first class

Q.4 If we modify the loss function of the linear regression model as follows:

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} w^{(i)} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

Where $w^{(i)}$ is the weight assigned to each training example. Derive the equation to find the value of \setminus with this modified loss function. Suppose, we estimate the value of $w^{(i)}$ inversely proportional to the variance of the residuals, comment in **no more than 20 words** when you prefer to use this kind of modified loss function. [3+2=5 Marks]

Solution:

Comment: Robust against outliers. Outliers will have higher variance of the residuals resulting into lower weight.

Q.5 Fit a logistic regression. Find the updated weights after the 3 iterations of modified Gradient Descent algorithm where gradient update happens after every training example using a learning rate of 0.5 and initial weights $(W_0, W_1, W_2) = (1, 1, 1)$ for the

following data with the logistic regression output given by

$$\frac{1}{1+e^{\left(-W_0+W_1X_1^2-W_2X_2\right)}}$$

Assume the results obtained after 3 iterations is the final weights. Using this construct

[4+2=6

the confusion matrix for given below training data.

Marks]

Input	Input	Output
X1	X2	Label
2	0	0
0	2	0
0	-2	0
-2	0	0
0	1	1
0	-1	1

Solution:

	Wi-LR*[Y-Pred – Y]* Xi								
			Y-Pred =						
X1	X2	У	h(X)	W0	w1	w2			
2	0	0	0.0	5 0.975	0.95	1			
0	2	0	0.9	5 0.5	0.95	0.05			
0	-2	0	0.2	7 <mark>0.365</mark>	<mark>0.95</mark>	0.32			
-2	0	0	0.0	5					

w0	w1	w2						
0.365	0.95	0.32					True	Class
			Y- Pred =		Confusion	n Matrix	Y=0	Y=1
X1	X2	У	h(X)	Υ				
2	0	0	0.03	0	Predicted	Y=0	3	0
0	2	0	0.73	1	Class	Y=1	1	2
0	-2	0	0.43	0				
-2	0	0	0.03	0				
0	1	1	0.66	1				
0	1	4	0.51	1				

Q.6 Consider the following set of training examples:

Instance	Classification	A_1	A_2
1	+	T	Т
2	+	T	T
3	-	T	F
4	+	F	F
5	-	F	T
6	-	F	T

What is the information gain of A₂ relative to these training examples? Provide the equation for calculating the information gain as well as intermediate results. [3 Marks]

	Date / /
Ь.	Solution:
	Entropy E(s) = E([3+,3-7)
	$= -(316)\log_{2}(316) - (316)\log_{2}(316)$
	Entropy E(S)= 1
	bain $(S, Q_2) = E(S) - (4/6) E(T) - (2/6) E(F)$
10	$= 1 - (+16) - (2/6) \approx 0$ $= ((2+,2-1)) = 1$
	E(P) = E([1+, 1-]) = 1