WYZNACZANIE GĘSTOŚCI WALCA

T. Fas

4 maja 2017

STRESZCZENIE

Celem doświadczenia było wyznaczenie gęstości ciała w kształcie walca. Wykorzystano trzy różne metody wyznaczania gęstości, mierząc masę i objętość ciała. Otrzymano trzy wyniki: $\rho_A = (7,8462 \pm 0,0043) \text{ g/cm}^3$, $\rho_B = (7,85 \pm 0,36) \text{ g/cm}^3$ i $\rho_C = (7,8564 \pm 0,0071) \text{ g/cm}^3$.

WSTEP

Dla ciała o masie m i o jednorodnym rozkładzie masy gęstość ρ jest dana wzorem:

$$\rho = \frac{m}{V},\tag{1}$$

gdzie V jest objętością ciała [1]. Celem doświadczenia było wyznaczenie gęstości ciała przy pomocy trzech różnych metod. Objętość ciała wyznaczono dwoma różnymi sposobami, z kolei trzecia metoda opierała się na wykorzystaniu prawa Archimedesa. Masę ciała wyznaczono jednym sposobem, przy pomocy wagi, i wykorzystano ją w każdej analizie danych. Pierwsza z metod polegała na wyznaczeniu objętości poprzez pomiar jego wysokości H i średnicy D. Objętość walca dana jest wzorem:

$$V = \pi R^2 H = \frac{\pi D^2 H}{4},\tag{2}$$

gdzie R jest promieniem walca, D=2R. Podstawiając Równanie (2) do Równania (1) otrzymano:

$$\rho_A = \frac{4m}{\pi d^2 H} \tag{3}$$

Druga metoda polegała na wyznaczeniu objętości ciała z różnicy poziomu cieczy w menzurce. Odczytywano poziom cieczy V_1 w menzurce, następnie całkowicie zanurzano w niej walec i odczytywano nowy poziom V_2 . Z różnicy poziomów znajdowano objętość ciała. Szukana objętość dana jest wzorem:

$$V = V_2 - V_1 \tag{4}$$

Po podstawieniu Równania (4) do Równania (1) otrzymano:

$$\rho_B = \frac{m}{V_2 - V_1} \tag{5}$$

Trzecia metoda wykorzystywała prawo Archimedesa. Rozważmy ciało zanurzone całkowicie w zlewce. Ciało to nie dotyka dna zlewki. W związku z tym siła wyporu działająca na ciało jest równa ciężarowi ciała. Z prawa Archimedesa wiadomo, że ciężar ciała jest równy ciężarowi wypartej cieczy, czyli:

$$F_{wyp.} = \rho gV; \tag{6}$$

gdzie g jest przyśpieszeniem ziemskim, ρ jest gęstością cieczy, a V objętością wypartej cieczy [2]. Jeśli wyznaczono masę zlewki z wodą przed wprowadzeniem ciała do zlewki i po, to korzystając z Równania (6) i Równania (1) można wyznaczyć gęstość ciała:

$$\rho_C = \frac{\rho_w m}{m_{zwp} - m_{zw}},\tag{7}$$

gdzie ρ_w jest gęstością wody, m_{zwp} jest masą zlewki z wodą i ciałem, a m_{zw} masą zlewki z wodą.

UKŁAD DOŚWIADCZALNY

Ciało, którego gęstość wyznaczano, miało kształt walca. Z góry założono, że jest to walec o jednorodnym rozkładzie masy. Do jednego z denek walca była przyczepiona cienka nić. Pomiaru masy m walca dokonano przy pomocy wypoziomowanej i wytarowanej wagi pozwalającej na pomiar z dokładnością $\Delta_m=0,01$ g. Do pomiarów tych wielkości skorzystano z suwmiarki o dokładności $\Delta_s=0,01$ mm. Wysokość, jak i średnicę, zmierzono w różnych miejscach walca. Daje to pewność co do tego, czy obiekt badany jest rzeczywiście walcem. W drugiej metodzie wykorzystano menzurkę z wodą oraz statyw. Działka odczytu menzurki wynosiła $\Delta_V=1$ cm³. Najpierw odczytywano poziom wody w menzurce, który oznaczono jako V_1 , a następnie wprowadzano do menzurki walec zawieszony na statywie tak, aby był on całkowicie zanurzony. Odczytywano nowy poziom wody, oznaczony jako V_2 i wyznaczano ich różnicę. W niektórych sytuacjach, gdy poziom wody nie pokrywał się z działką odczytu za wynik przyjmowano najbliższą działkę odczytu. W trzeciej metodzie wykorzystano wagę, zlewkę z wodą destylowaną oraz termometr. W pierwszej kolejności mierzono temperaturę wodzy oraz ważono zlewkę z wodą. Masę tego układu oznaczono jako m_{zw} . Następnie wprowadzano do zlewki walec zawieszony na statywie tak, aby był on całkowicie zanurzony, ale nie dotykał dna i odczytywano nową masę układu, oznaczoną przez m_{zwp} . Pomiędzy kolejnymi pomiarami wykonywanymi metodami drugą i trzecią oczyszczano walec z wody.

WYNIKI POMIARÓW

Masę walca zmierzono pięciokrotnie, a jego wymiary dziesięciokrotnie. W pozostałych metodach wykonano pięć serii pomiarowych. W Tabeli 1 przedstawiono wyniki pomiarów masy m walca, objętości V_1 i V_2 wyznaczanych menzurką, ich różnicę ΔV oraz wyniki pomiarów m_{zw} i m_{zwp} .

Tabela 1: Wyniki pomiarów

m [g]	$V_1 [\mathrm{cm}^3]$	$V_2 [\mathrm{cm}^3]$	$\Delta V [\text{cm}^3]$	m_{zw} [g]	m_{zwp} [g]
141,21	48	62	14	333,40	351,35
141,22	49	67	18	333,13	351,07
141,20	48	61	13	332,56	350,55
141,22	50	68	18	332,12	350,04
141,21	53	71	18	331,93	349,84

W Tabeli 2 Przedstawiono wyniki pomiarów średnicy D i wysokości H walca.

Tabela 2: Wyniki pomiarów średnicy D i wysokości H walca

D [mm]	23,96	23,95	23,97	23,95	23,95	23,96	23,95	23,95	23,96	23,95
H [mm]	39,91	39,93	39,92	39,93	39,92	39,95	39,96	39,93	39,95	39,93

Dodatkowo, przy wykonywaniu pomiarów metodą numer 3 zmierzono temperaturę, która wynosiła 20,6 °C. Wartość gęstości wody dla tej temperatury wynosi $\rho_w = 0,998 \text{ g/cm}^3$. Dodatkowo założono, że wielkość nie jest obarczona błędem pomiarowym [3].

ANALIZA DANYCH

Niepewności pomiarowe wielkości mierzonych bezpośrednio wyznaczono korzystając z zależności:

$$u^2 = s_{\bar{x}}^2 + \frac{\Delta^2}{3},\tag{8}$$

gdzie $s_{\bar{x}}$ jest odchyleniem standardowym średniej wielkości x, a Δ jest dopuszczalnym, maksymalnym błędem pomiaru [4]. Korzystając z rozwinięcia $s_{\bar{x}}$, Równanie (8) można zapisać jako:

$$u^{2} = \frac{1}{N(N-1)} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2} + \frac{\Delta^{2}}{3},$$
(9)

gdzie N jest liczbą wykonanych pomiarów danej wielkości, a \bar{x} jest średnią danej wielkości. Aby uczynić analizę bardziej kompletną obliczono też wartość niepewności pojedynczego pomiaru, która dana jest wzorem:

$$s_x^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{x})^2 \quad [5]. \tag{10}$$

Na podstawie Równania (9) i Równania (10) stworzono Tabelę 3, w której znajdują się średnie mierzonych wielkości, ich niepewności pojedynczego pomiaru i niepewności średniej oraz maksymalne błędy pomiaru.

Tabela 3: Tabela niepewności pomiarów

Wielkość	m [g]	D [cm]	H [cm]
Średnia	141,2120	2,39550	3,99330
Niepewność pojedynczego pomiaru	0,0084	0,00071	0,00157
Niepewność średniej	0,0037	0,00022	0,00050
Dopuszczalny błąd pomiaru Δ	0,01	0,001	0,001
$\Delta/\sqrt{3}$	0,0058	0,00058	0,00058
u	0,0069	0,00062	0,00076

Korzystając z wartości średnich znajdujących się w Tabeli 3 i wartości $\pi=3,141592653$ wyliczono gęstość ciała z Równania (3), $\rho_A=7,8462$ g/cm³. Jako, że niepewność tego wyniku jest niepewnością złożoną to skorzystano z metody propagacji małych błędów, która pozwala na przenoszenie niepewności pomiarowych. Jeśli szukana wielkość wielkość jest funkcją zależną od innych wielkości fizycznych, to jej niepewność dana jest wzorem:

$$u_f^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} u_i\right)^2,\tag{11}$$

gdzie u_f jest niepewnością szukanej wielkości zależnej od x_i , a u_i jest niepewnością x_i [6]. Stosując Równanie (11) do Równania (3) otrzymano:

$$u_{\rho_A}^2 = \rho_A^2 \left[\left(\frac{u_m}{\bar{m}} \right)^2 + \left(\frac{u_H}{\bar{H}} \right)^2 + \left(\frac{2u_D}{\bar{D}} \right)^2 \right], \tag{12}$$

gdzie u_m , u_H , u_D są kolejno niepewnościami masy ciała, jego wysokości i średnicy. Obliczona wartość u_{ρ_A} wynosi 0,0043 g/cm³. Ostateczny wynik można zapisać jako: $\rho_A = (7,8462 \pm 0,0043)$ g/cm³. Tabela 4 jest analogiczna do Tabeli 3, jednak tym razem wyznaczono niepewności dla objętości mierzonych przy pomocy menzurki.

Tabela 4: Tabela niepewności pomiarów

rasera il rasera mepe il moser permare il			
Wielkość	$V_1 [\mathrm{cm}^3]$	$V_2 [\mathrm{cm}^3]$	
Średnia	49,6	65,8	
Niepewność pojedynczego pomiaru	2,07364	4,20714	
Niepewność średniej	0,92736	1,88149	
Dopuszczalny błąd pomiaru Δ	1	1	
$\Delta/\sqrt{3}$	0,57735	0,57735	
u	0,57735	0,57735	

Podstawiając wartości średnie do Równania (5) otrzymano wynik: $\rho_B = 8,72 \text{ g/cm}^3$. Niepewność tego wyniku otrzymano podstawiając Równanie (5) do Równania (11) jako funkcję f. Otrzymano następujący wzór:

$$u_{\rho_B}^2 = \rho_B^2 \left[\left(\frac{u_m}{\bar{m}} \right)^2 + \left(\frac{u_{\bar{V}}}{\bar{V}} \right)^2 \right], \tag{13}$$

gdzie \bar{V} jest średnią różnicą V_1 i V_2 , a $u_{\bar{V}}$ jest jej niepewnością daną wzorem:

$$u_{\bar{V}}^2 = u_{V_1}^2 + u_{V_2}^2 + s_V^2, \tag{14}$$

gdzie u_{V_1} i u_{V_1} są niepewnościami V_1 i V_2 , w tym przypadku są to niepewności pomiarowe przyrządu, z kolei s_V jest niepewnością statystyczną średniej różnicy, która jest dana wzorem:

$$s_V^2 = s_{V_1}^2 + s_{V_2}^2 - 2\sum_{i=1}^5 (V_{1_i} - \bar{V}_1)(V_{2_i} - \bar{V}_2).$$

Wzór (14) wyznaczono metodą propagacji małych błędów. Na tej podstawie obliczono wartość $u_{\rho_B}=0,74$ g/cm³. Ostateczny wynik zapisano jako: $\rho_B=(8,72\pm0,74)$ g/cm³. Jak widać, wynik ten jest obarczony dużą niepewnością w porównaniu do metody A, jak i odbiega on znacznie od wartości ρ_A . Analiza wyników pomiarów zapisanych w Tabeli 1 ujawnia źródło tej rozbieżności: dwa z pięciu pomiarów dają znacznie mniejszy wkład do średniej objętości próbki. w związku z tym postanowiono odrzucić te pomiary i wykorzystać tylko te, których $\Delta V=18~{\rm cm}^3$. Na ich podstawie stworzono Tabelę 5.

Tabela 5: Tabela niepewności pomiarów

Wielkość	$V_1 [\mathrm{cm}^3]$	$V_2 [\mathrm{cm}^3]$
Średnia	50,6667	68,6667
Niepewność pojedynczego pomiaru	2,08167	2,08167
Niepewność średniej	1,20185	1,20185
Dopuszczalny błąd pomiaru Δ	1	1
$\Delta/\sqrt{3}$	0,57735	0,57735
u	0,57735	0,57735

Po podstawieniu tych wartości do Równania (5) i Równania (13) oraz Równania (14) otrzymano ostateczny wynik: $\rho_B = (7, 85 \pm 0, 36) \, \text{g/cm}^3$. Otrzymany wynik pokrywa się z ρ_A , a jego niepewność jest znacznie mniejsza. Tabela 6 przedstawia niepewności pomiaru masy zlewki z wodą, m_{zw} , oraz zlewki z wodą i zanurzonym walcem, m_{zwp} .

Tabela 6: Tabela niepewności pomiarów

Tabela 0. Tabela inepewilose	pomaro	vv
Wielkość	m_{zw} [g]	m_{zwp} [g]
Średnia	332,63	$350,\!57$
Niepewność pojedynczego pomiaru	0,63204	0,64665
Niepewność średniej	0,28266	0,28919
Dopuszczalny błąd pomiaru Δ	0,01	0,01
$\Delta/\sqrt{3}$	0,00577	0,00577
u	0,28271	0,28925

Gęstość ρ_C obliczono z Równania (7), gdzie podstawiono średnie wartości m_{zw} i m_{zwp} oznaczone jako \bar{m}_{zw} i \bar{m}_{zwp} . Za gęstość wody, ρ_w podstawiono wartość 0,99821 g/cm³. Dodatkowo gęstość wody potraktowano jako wartość nieobarczoną błędem pomiarowym. Otrzymano wartość $\rho_C = 7,85638$ g/cm³. Niepewność tego pomiaru wyznaczono korzystając z Równania (7) i Równania (11). Otrzymano wzór:

$$u_{\rho_C}^2 = \rho_C^2 \left[\left(\frac{u_m}{\bar{m}} \right)^2 + \left(\frac{u_{m_{ww}}}{\bar{m}_{ww}} \right)^2 \right], \tag{15}$$

gdzie \bar{m}_{ww} jest średnią różnicą m_{zw} i m_{zwp} , a $u_{m_{ww}}$ jest jej niepewnością daną wzorem:

$$u_{m_{ww}}^2 = s_{mww}^2 + \frac{2\Delta_m^2}{3},\tag{16}$$

gdzie Δ_m jest dopuszczalnym błędem granicznym wagi, a s_{mww} jest odchyleniem standardowym średniej różnicy masy, które jest dane wzorem:

$$s_{mww}^2 = s_{m_{zw}}^2 + s_{m_{zwp}}^2 - 2\sum_{i=1}^5 (m_{zw_i} - \bar{m}_{zw})(m_{zwp_i} - \bar{m}_{zwp}).$$
(17)

Podstawiając dane z Tabeli 6 do Równania (15) otrzymano $u_{\rho C} = 0,0071 \text{ g/cm}^3$. Ostateczny wynik to $\rho_C = (7,8564\pm0,0071) \text{ g/cm}^3$. W Tabeli 7 przedstawiono wszystkie otrzymane gęstości wraz z ich niepewnościami oraz procentową niepewność wyniku, to znaczy, stosunek niepewności do końcowego wyniku. Ilość cyfr znaczących wybrano na podstawie najdokładniejszego wyniku.

Tabela 7: Tabela otrzymanych gęstości

Metoda	A	В	С
Gęstość [g/cm ³]	7,8462	7,8451	7,8564
Niepewność [g/cm ³]	0,0043	0,3559	0,0071
Niepewność względna [%]	0,055	4,54	0,090

DYSKUSJA WYNIKÓW I WNIOSKI

Wyniki zebrane w Tabeli 7 pozwalają sądzić, iż walec był wykonany ze stali nierdzewnej. Gęstość stali nierdzewnej wynosi $\rho_s=7,8~{\rm g/cm^3~w}~20~{\rm ^{\circ}C}$ [7]. Widać wyraźnie wysoką zgodność wyników oraz ich precyzję. Niezwykle precyzyjna okazała się metoda A, której niepewność względna wynosi 0,0043%. Najmniej dokładna okazała się metoda B, z dokładnością 4,54%. Wynika to z niskiej rozdzielczości działki menzurki, która byłą tylko o rząd wielkości mniejsza od mierzonej wielkości. W przypadku metody A działka przyrządu była aż o 4 rzędy wielkości mniejsza od mierzonej wielkości. W przypadku metody B był to znacznie większy wkład niż w przypadku metody A. Dodatkowo w przypadku metody B na wynik pomiaru wpływał też kąt patrzenia obserwatora oraz powstawanie menisku. Gdyby udało się wyeliminować zjawisko menisku, powstawanie pęcherzyków powietrza jak i zastosować działkę o większej rozdzielczości, to metoda wykorzystująca menzurkę byłaby dokładniejsza. Bardzo wysoką dokładność posiada również metoda C, o niepewności względnej 0,09%. Dodatkowo metoda ta jest uniwersalna, ponieważ nie zależy od kształtu badanego ciała. Pomimo tych wszystkich niepewności otrzymane wyniki są bardzo bliskie sobie oraz bliskie gęstości stali podanej w tablicach.

Literatura

- [1] D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, Tom 2, PWN, Warszawa, 2003, s. 62.
- [2] D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, Tom 2, PWN, Warszawa, 2003, s. 73.
- [3] Praca zbiorowa, Tablice fizyczno-astronomiczne, Wydawnictwo Adamantan, Warszawa, 2002
- [4] J. R. Taylor, Wstęp do analizy blędu pomiarowego, PWN, Warszawa, 1995, s. 71.
- [5] J. R. Taylor, Wstep do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 101.
- [6] J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 87.
- [7] Praca zbiorowa, Stainless Steel: Tables of Technical Properties, Euro Inox, Luxemburg, 2007, s. 18.