Zeigen Sie, dass die linear unabhängige Eigenvektoren einer normalen Matrix orthogonal sind:

Eine Matrix ist normal $\Leftrightarrow A^TA = AA^T \Leftrightarrow \text{TODO}$: Not sure if i can say this Sie ist invertierbar

Sei $A \in \mathbb{R}^{n \times n}$ eine normale Matrix. Erstmall zeigen wir, dass die Kerne von A und A^T gleich sind:

$$B = A^T A = AA^T$$

$$Kern B = k$$

$$Bk = 0$$

Was auch als

$$(A^TA)k = Bk = 0$$
 $\Big((A^T)^{-1}A^TA\Big)k = (A^T)^{-1}0$ $Ak = 0$

und

$$(AA^T)k = Bk = 0$$
$$A^Tk = 0$$

geschrieben werden kann.

Deswegen sind die Kerne gleich:

$$Ak = A^T k = 0$$

Kern $A = \text{Kern } A^T$

Dank der Fundamentalsatz der Linearen Algebra, dürfen wir sagen dass:

Kern
$$A^T \perp$$
 Bild $A :$ Kern $A \perp$ Bild A

Jetzt wollen wir zeigen, dass die Eigenvektoren verschiedener Eigenwerten von \boldsymbol{A} orthogonal zueinander sind. Nehmen wir an, dass es zumindest zwei nicht-null Eigenwerten λ_1 und λ_2 mit dazugehörige Eigenvektoren $\boldsymbol{v_1}$ und $\boldsymbol{v_2}$ von \boldsymbol{A} gibt. Es folgt:

$$egin{aligned} Av_1 &= \lambda_1 v_1 \in \operatorname{Bild} A \ Av_2 &= \lambda_2 v_2 \in \operatorname{Bild} A \ &\therefore v_1, v_2 \perp \operatorname{Kern} A \end{aligned}$$

Es gibt ein λ_k so dass $\|v_k\| = 1$ Da A invertierbar ist (todo ist es?), das Kern ist einfach nur das null vektor $\mathbf{0}$.

$$\langle v_1, v_2 \rangle = 0$$
?