Pertemuan 5

RELASI REKURENSI

MATERI PERKULIAHAN MATEMATIKA DISKRIT

(Dipersiapkan oleh Bp. Hartana, Rm. Kun)

AGENDA: PENYELESAIAN RELASI REKURENSI

- I. Penyelesaian dengan iterasi
- 2. Penyelesaian menggunakan persamaan karakteristik

I. Penyelesaian dengan iterasi

- a. Cara penyelesaian paling mendasar
- b. Menghitung suku barisan secara berurut (urut naik, atau urut turun) hingga memperoleh pola tertentu
- c. Berdasar pola yang ditemukan, dicari rumus eksplisit (rumus suku barisan yang hanya melibatkan unsur n atau indeks suku barisan, sebagai variable)

3

Beberapa deret yang sering digunakan untuk menyelesaikan relasi rekurensi antara lain:

a.
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

b.
$$I^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

c. 1.2 + 2.3 + 3.4 + ... +
$$n(n+1) = \frac{n(n+1)(n+2)}{3}$$

d.
$$| + r + r^2 + ... + r^n = \frac{(r^{n+1}-1)}{r-1}$$
 untuk $r > 1$ (deret Geometri)

ļ

Contoh

Misalkan a_0 , a_1 , a_2 , ... adalah barisan yang didefinisikan secara rekursif sebagai berikut:

Untuk semua bilangan bulat k≥1

$$a_0 = I$$
 (kondisi awal)

$$a_k = a_{k-1} + 2$$
 (relasi rekurensi)

Temukan rumus eksplisit barisan tersebut dengan metode iterasi

5

Penyelesaian

Iterasi menurun:

$$a_k = a_{k-1} + 2$$

 $= (a_{k-2} + 2) + 2 = a_{k-2} + (2 + 2) = a_{k-2} + (1 + 1)2 = a_{k-2} + 2^*2$
 $= (a_{k-3} + 2) + 2^*2 = a_{k-3} + 3^*2$
 $= (a_{k-4} + 2) + 3^*2 = a_{k-4} + 4^*2$
 $= (a_{k-5} + 2) + 4^*2 = a_{k-5} + 5^*2$

Pola yang bisa diamati:

$$a_k = a_{k-k} + k^2 = a_0 + 2^k$$

Karena a0 = 1 maka penyelesaian persamaan rekursif adalah:

$$a_k = 1 + 2*k$$

Penyelesaian

Iterasi menaik:

$$a_1 = a_0 + 2$$

 $a_2 = a_1 + 2 = (a_0 + 2) + 2 = a_0 + 2 + 2 = a_0 + 2*2$
 $a_3 = a_2 + 2 = a_0 + 2 + 2 + 2 = a_0 + 3*2$
 $a_4 = a_3 + 2 = a_0 + 2 + 2 + 2 + 2 = a_0 + 4*2$ dst
sehingga
 $a_k = a_0 + k*2 = 1 + 2k$

7

2. Penyelesaian dengan persaman karakteristik

Penyelesaian relasi rekurensi dengan iterasi memiliki keuntungan:

- o tidak memerlukan rumus khusus.
- Yang diperlukan: menghitung beberapa suku relasi rekurensi dan menemukan pola.
 Masalahnya:
- O Tidak mudah menemukan pola
- Penyelesaian yang diturunkan dari pola, hanya merupakan perkiraan, dan perlu dibuktikan dengan induksi matematika

Oleh karena itu diperlukan cara penyelesaian untuk menemukan rumus eksplisit melalui persamaan karakteristik.

a. Relasi rekurensi linear dengan koefisien konstan

Misalkan n dan k bilangan-bilangan bulat positip dengan n≥k. Relasi rekurensi linear <u>derajad k</u> adalah relasi berbentuk:

Jika $c_0(n)$, $c_1(n)$ $c_k(n)$ semuanya konstanta, maka relasi rekurensi disebut <u>relasi rekurensi linear dengan koefisien konstan</u>. Apabila f(n) = 0, maka relasi tersebut adalah <u>relasi rekurensi homogen linear dengan koefisien konstan</u>.

9

Contoh

Tentukan apakah persamaan berikut merupakan relasi rekurensi linear; linear dengan koefisien konstan atau homogeny linear demgam koefisien konstan. Jika demikian, tentukan berapa derajadnya.

1.
$$a_n - 7a_{n-1} + 10a_{n-2} = 0$$

2.
$$b_k = b_{k-1} + b_{k-2} + b_{k-3}$$

3.
$$d_k = d_{k-1}^2 + d_{k-2}$$

4.
$$f_k = f_{k-1} f_{k-2}$$

b. Penyelesaian rekurensi homogen linear dengan koefisien konstan

Misal ada relasi rekurensi homogen linear dengan koefisien konstan:

Persamaan karakteristik yang sesuai dengan relasi rekurensi ini:

$$t^{k} + c_{1}t^{k-1} + \dots + c_{k} = 0$$
 (3)

1

b. Penyelesaian rekurensi homogen linear dengan koefisien konstan

Persamaan karakteristik yang sesuai dengan relasi rekurensi (2) ini:

$$t^{k} + c_{1}t^{k-1} + \ldots + c_{k} = 0$$
 (3)

Misalkan $\alpha_1, \alpha_2 \dots \alpha_k$ adalah akar persamaan karakteristik (3). Ada beberapa kemungkinan: (a) semua akar memiliki nilai berbeda, atau (b) ada beberapa akar yang memiliki nilai sama.

Untuk <u>nilai akar yang berbeda</u>, penyelesaian persamaan (2) adalah sebagai berikut:

$$a_n = c_1 \alpha_1^n + c_2 \alpha_2^n + \dots + c_k \alpha_k^n$$
 (4)

dengan c₁, c₂ yang besarnya ditentukan sesuai nilai kondisi awal

1

Jika beberapa akar memiliki nilai yang sama misalnya $\alpha_1 = \alpha_2 \dots = \alpha_p$, $\alpha_{p+1} \dots \alpha_k$ maka penyelesaian persamaan (2) adalah

$$a_n = (c_1 + c_2 n + ... + c_p n^{p-1}) \alpha_1^n + c_{p+1} \alpha_{p+1}^n + ... + c_k \alpha_k^n$$
(5)

dengan c₁, c₂ yang besarnya ditentukan sesuai nilai kondisi awal

Contoh soal

Selesaikan relasi rekurensi berikut melalui persamaan karakteristiknya: $a_n = 3a_{n-1} + 4a_{n-2}$ untuk $n \ge 2$; dengan kondisi awal $a_0 = 1$ dan $a_1 = 3$.

Penyelesaian:

$$a_n = 3a_{n-1} + 4a_{n-2}$$

 $a_n - 3a_{n-1} - 4a_{n-2} = 0$

Persamaan karakteristik yang sesuai:

$$t^2-3t-4 = 0$$

(t-4)(t+1)=0 dengan akar karakteristiknya $\alpha_1=4$ dan $\alpha_2=-1$

15

Akar karakteristik α_1 =4 dan α_2 =-1 berbeda satu sama lain. Oleh karena itu penyelesain relasi rekurensi adalah:

$$a_n = c_1 \alpha_1^n + c_2 \alpha_2^n$$

 $a_n = c_1 (4)^n + c_2 (-1)^n$

Untuk menentukan c₁ dan c₂, gunakan kondisi awal a₀ dan a₁

$$a_0 = I$$
 sehingga $I = c_1(4)^0 + c_2(-I)^0$
 $I = c_1 + c_2$
 $I = c_1(4)^0 + c_2(-I)^0$
 $I = c_1(4)^0 + c_2(-I)^0$
 $I = c_1 + c_2$
 $I = c_1(4)^0 + c_2(-I)^0$
 $I = c_1 + c_2$

Diperoleh sistem persamaan linear

$$c_1 + c_2 = 1$$

 $4c_1 - c_2 = 3$

Yang memiliki penyelesaian $c_1 = 4/5$ dan $c_2 = 1/5$

Oleh karena itu penyelesaian relasi rekurensi $a_n - 3a_{n-1} - 4a_{n-2} = 0$ adalah

$$a_n = c_1 \alpha_1^n + c_2 \alpha_2^n$$

 $a_n = c_1 (4)^n + c_2 (-1)^n$

$$a_n = c_1(4)^n + c_2(-1)^n$$

$$a_n = (4/5)(4)^n + (1/5)(-1)^n$$

Contoh soal

Selesaikan relasi rekurensi berikut melalui persamaan karakteristiknya:

- I. $a_n = 2a_{n-1} a_{n-2}$ untuk $n \ge 2$; dengan kondisi awal $a_0 = 1$ dan $a_1 = 2$
- 2. Relasi Fibonacci $f_n = f_{n-1} f_{n-2}$ untuk $n \ge 2$; dengan kondisi awal $f_0 = 1$ dan $f_1 = I$
- 3. a_n $3a_{n-1}$ + $3a_{n-2}$ a_{n-3} = 0 untuk n \geq 3; dengan kondisi awal a_0 =1 dan $a_1=2$ dan $a_2=4$
- 4. a_n $7a_{n-1}$ + $16a_{n-2}$ $12a_{n-3}$ = 0 untuk n≥3; dengan kondisi awal a_0 =1 dan $a_1 = 2 \text{ dan } a_2 = 8$