

WHAT WE CLAIM IS:

1 1. A method of scheduling packets for delivery to one of mobile stations and a
2 corresponding base station in a wireless packet network comprising the iterative steps of
3 calculating channel efficiency for a mobile station and
4 scheduling packets for delivery to said mobile station or said base station by determining
5 a value of relative weight of said mobile station by a weighting equation, responsive to the
6 calculated channel efficiency.

1 2. A method as recited in claim 1 further comprising the initial step of measuring channel
2 quality for said mobile station.

1 3. A method as recited in claim 2 wherein said measured signal quality is determined by
2 calculating effective serving rate.

1 4. A method as recited in claim 2 wherein said measured signal quality is determined by
2 calculating channel usage.

1 5. A method as recited in claim 2 wherein said measured signal quality is determined based
2 on measurements of one of power of desired signal, channel noise and channel interference.

1 6. A method as recited in claim 1 wherein said channel efficiency is determined by the
2 equation:

$$\text{efficiency} = \frac{\text{Actual Amount of data delivered}}{\text{Maximum Amount of Data That can be delivered with the same channel resource.}}$$

1 7. A method as recited in claim 1 wherein said weighting equation is given by:

$$W_i = \text{efficiency}_i^{\text{exponent}}.$$

1 8. A method as recited in claim 7 wherein the value of weight given said mobile station may
2 be multiplied by a multiplier.

1 9. A method as recited in claim 7 wherein the value of weight given said mobile station may
2 vary by a value given said exponent.

1 10. A method as recited in claim 9 wherein the value given said exponent is adjustable by an
2 operator of said base station.

1 11. A method as recited in claim 1 wherein users with higher channel efficiency receive a
2 higher weight than users with a lower channel efficiency.

12 12. A method as recited in claim 1 wherein users with higher channel efficiency receive a
lower weight than users with a lower channel efficiency.

13. A method as recited in claim 1 wherein said wireless packet network comprises an EDGE
system.

14. A method as recited in claim 1 wherein said packet scheduling step comprises the step of
determining a choice of system modulation scheme among a high and low packet delivery rate.

15. A method as recited in claim 1 wherin said method is responsive to the step of receiving
2 a request for a download of data from said mobile station.

1 16. A method as recited in claim 9 wherein a weight for said base station is determined
2 according selecting a value of said exponent along a horizontal axis of values from a minimum
3 of minus two to a maximum positive value.

1 17. A method as recited in claim 16 where the minimum value of exponent is set at minus
2 one.

1 18. A method as recited in claim 1 wherein packets are delivered via time frames, each time
2 frame comprising a plurality of time slots, said time slots being allocated to said station for
3 packet delivery in accordance with a selection of a packet delivery scheme.

1 19. The method of claim 1 applied to both downlink, said base station to said mobile station,
2 and uplink, said mobile station to said base station, operations.

1 20. Base station apparatus for use in a wireless packet network comprising a processor for
2 calculating channel efficiency for a mobile station and scheduling packets for delivery to said
3 mobile station by periodically determining a value of relative weight of said mobile station by a
4 weighting equation, responsive to the calculated channel efficiency.

1 21. Base station apparatus according to claim 20 wherein said mobile station is provided with
a packet queue and associated with said packet queue is a timer for timing packet delivery.

1 22. Base station apparatus according to claim 20 wherein channel efficiency is determined by
the equation:

efficiency =
$$\frac{\text{Actual Amount of data delivered}}{\text{Maximum Amount of Data That can be delivered with the same channel resource.}}$$

1 23. Base station apparatus according to claim 20 wherein said weight is determined by the
2 equation:

3
$$W_i = \text{efficiency}_i^{\text{exponent}}.$$

1 24. Base station apparatus according to claim 20 wherein said apparatus is for use in an
2 EDGE system.

1 25. Base station apparatus according to claim 20 wherein said base station is adapted to
2 receive packets for delivery to mobile stations from a plurality of servers via the Internet.

1 26. Base station apparatus as recited in claim 23 wherein a weight for said base station is
2 determined according to selecting a value of said exponent along a horizontal axis of values from
3 a minimum of minus two to a maximum positive value.

P00000000000000000000000000000000