SI231b: Matrix Computations

Lecture 9: QR Factorization

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology

ShanghaiTech University

Oct. 13, 2020

MIT Lab, Yue Qiu

Recap: Orthogonal Projection

Suppose $A \in \mathbb{R}^{m \times n} (m > n)$ has full rank, to perform the orthogonal projection onto the column space of A, i.e., $\mathcal{R}(A)$, the orthogonal projector P

• when $\{q_1, q_2, \cdots, q_n\}$ form an orthonormal basis of $\mathcal{R}(A)$,

$$P = QQ^T$$

where $Q = [q_1, q_2, \cdots, q_n]$ (already introduced in the last lecture)

• for arbitrary basis $\{a_1, a_2, \dots, a_n\}$ of $\mathcal{R}(A)$,

$$\mathsf{P} = \mathsf{A}(\mathsf{A}^T\mathsf{A})^{-1}\mathsf{A}^T,$$

where $A = [a_1, a_2, \dots, a_n]$ (you are supposed to work it out independently)

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech Oct. 13, 2020

Outline

- ▶ QR Factorization
- ▶ QR Factorization by Gram-Schmidt Orthogonalization
- ▶ QR Factorization through Householder Reflection

Reduced QR Factorization

Given a basis $\{a_1, a_2, \cdots, a_n\}$ of a subspace S, we want to compute its orthonormal basis $\{q_1, q_2, \cdots, q_n\}$

Key: through iterative process and using the fact that

- ightharpoonup span $\{a_1, a_2, \dots, a_k\} = \text{span}\{q_1, q_2, \dots, q_k\}, k = 1, 2, \dots, n$
- ▶ $span\{a_1, a_2, \dots, a_k\} \subset span\{a_1, a_2, \dots, a_k, a_{k+1}\}$

This gives

$$\underbrace{\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & & \vdots \\ & & \ddots & \\ & & & r_{nn} \end{bmatrix}}_{P}$$

with $r_{kk} \neq 0$. This is called the *reduced QR factorization* of A.

MIT Lab. Yue Qiu

Full QR Factorization

Extending the reduced QR factorization by adding m-n columns to Q so that

$$ilde{Q} = egin{bmatrix} q_1 & q_2 & \cdots & q_n & q_{n+1} & \cdots & q_m \end{bmatrix}$$

is an orthogonal matrix ($ilde{Q} \in \mathbb{R}^{m imes m}$)

• orthogonal matrix: a square matrix with orthogonormal columns, i.e., $\tilde{Q}^T \tilde{Q} = I_m$

Then
$$A = \tilde{Q}\tilde{R}$$
 with $\tilde{R} = \begin{bmatrix} R \\ 0 \end{bmatrix}$

Figure 1: Reduced QR Factorization

Figure 2: Full QR Factorization

Gram-Schmidt Orthogonalization

How to compute the orthonormal basis?

Orthogonal projection of vector a onto vector b

$$\mathsf{proj}_{\mathsf{b}}(\mathsf{a}) = \frac{<\mathsf{a},\mathsf{b}>}{<\mathsf{b},\mathsf{b}>}\mathsf{b},$$

where <> represents the inner product of two vectors.

$$egin{align*} q_1 &= rac{a_1}{\|a_1\|} \ & ilde{q}_2 = a_2 - (q_1^T a_2) q_1 \ & ilde{q}_2 = rac{ ilde{q}_2}{\| ilde{q}_2\|} \ & ilde{arphi} \ & ilde{q}_k = a_k - (q_1^T a_k) q_1 - (q_2^T a_k) q_2 - \cdots - (q_{k-1}^T a_k) q_{k-1} \ & ilde{q}_k = rac{ ilde{q}_k}{\| ilde{q}_k\|} \ & ilde{q}_k = rac{ ilde{q}_k}{\| ilde{q}_k\|} \end{aligned}$$

Can you also explain in the context of projection onto subspaces?

QR Factorization via Gram-Schmidt Orthogonalization

Algorithm: Gram-Schmidt Orthogonalization (numerically unstable)

input: a collection of linearly independent vectors a_1, \ldots, a_n

$$\tilde{\mathsf{q}}_1=\mathsf{a}_1,\,\mathsf{q}_1=\tilde{\mathsf{q}}_1/\|\tilde{\mathsf{q}}_1\|_2$$

for
$$i = 2, \ldots, n$$

$$\tilde{\mathsf{q}}_i = \mathsf{a}_i - \sum_{i=1}^{i-1} (\mathsf{q}_i^T \mathsf{a}_i) \mathsf{q}_i$$

$$q_i = \tilde{q}_i / \|\tilde{q}_i\|_2$$

end

output: q_1, \ldots, q_n

- ▶ let $r_{ii} = \|\tilde{q}_i\|_2$, $r_{ij} = q_i^T a_i$ for j = 1, ..., i 1
- we see that $a_i = \sum_{j=1}^i r_{ij} q_i$ for all i, or, equivalently,

$$A = Q_1R_1$$

where $Q = [q_1, ..., q_n]$; R is upper triangular with $[R]_{ij} = r_{ij}$ for $j \le i$

MIT Lab, Yue Qiu

Modified Gram-Schmidt Orthogonalization

The (classic) Gram-Schmidt (CGS)

- ightharpoonup gives orthogonal \tilde{q}_i in exact arithmetic
- ightharpoonup is numerical unstable due to round off error accumulation on modern computers (returns non-orthogonal \tilde{q}_i)

Modified Gram-Schmidt (MGS)

Instead of computing $\tilde{q}_k=a_k-(q_1^Ta_k)q_1-(q_2^Ta_k)q_2-\cdots-(q_{k-1}^Ta_k)q_{k-1}$, but

$$ilde{q}_{k}^{(1)} = a_{k} - (q_{1}^{T} a_{k}) q_{1} \\ ilde{q}_{k}^{(2)} = ilde{q}_{k}^{(1)} - (q_{2}^{T} ilde{q}_{k}^{(1)}) q_{2} \\ o \vdots \\ ilde{q}_{k}^{(j)} = ilde{q}_{k}^{(j-1)} - (q_{j}^{T} ilde{q}_{k}^{(j-1)}) q_{j} \\ o \vdots \\ o q_{k}^{(j)} = ilde{q}_{k}^{(j-1)} - (q_{j}^{T} ilde{q}_{k}^{(j-1)}) q_{j} \\ o \vdots$$

Both CGS and MGS take $\mathcal{O}(2mn^2)$ flops

Reflection Matrices

ightharpoonup a matrix $H \in \mathbb{R}^{m \times m}$ is called a reflection matrix if

$$H = I - 2P$$

where P is an orthogonal projector.

▶ interpretation: denote $P^{\perp} = I - P$, and observe

$$x = Px + P^{\perp}x, \qquad Hx = -Px + P^{\perp}x.$$

The vector Hx is a reflected version of x, with $\mathcal{R}(\mathsf{P})$ being the "mirror"

a reflection matrix is orthogonal:

$$H^TH = (I - 2P)(I - 2P) = I - 4P + 4P^2 = I - 4P + 4P = I$$

MIT Lab, Yue Qiu

Householder Reflection

▶ Problem: given $x \in \mathbb{R}^m$, find an orthogonal $H \in \mathbb{R}^{m \times m}$ such that

$$\mathsf{Hx} = egin{bmatrix} eta \ 0 \end{bmatrix} = eta \mathsf{e}_1, \qquad \mathsf{for some} \ eta \in \mathbb{R}.$$

Figure 3: Householder reflection

Householder Reflection

▶ Householder reflection: let $v \in \mathbb{R}^m$, $v \neq 0$. Let

$$H = I - \frac{2}{\|v\|_2^2} v v^T,$$

which is a reflection matrix with $P = vv^T/\|v\|_2^2$

▶ it can be verified that (try)

$$v = x \mp ||x||_2 e_1 \implies Hx = \pm ||x||_2 e_1;$$

the sign above may be determined to be the one that maximizes $\|v\|_2$, for the sake of numerical stability

Householder QR

▶ let $H_1 \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. a_1 . Transform A as

$$A^{(1)} = H_1 A = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

▶ let $\tilde{H}_2 \in \mathbb{R}^{(m-1)\times (m-1)}$ be the Householder reflection w.r.t. $A_{2:m,2}^{(1)}$ (marked red above). Transform $A^{(1)}$ as

$$A^{(2)} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & \tilde{H}_2 \end{bmatrix}}_{=H_2} A^{(1)} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \tilde{H}_2 A^{(1)}_{2:m,2:n} \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots & \times \\ 0 & \times & \times & \dots & \times \\ \vdots & 0 & \times & \dots & \times \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

by repeatedly applying the trick above, we can transform A as the desired R

Householder QR

end

$$\mathsf{A}^{(0)} = \mathsf{A}$$
 for $k=1,\ldots,n-1$
$$\mathsf{A}^{(k)} = \mathsf{H}_k \mathsf{A}^{(k-1)} \text{, where}$$

$$\mathsf{H}_k = \begin{bmatrix} \mathsf{I}_{k-1} & \mathsf{0} \\ \mathsf{0} & \tilde{\mathsf{H}}_k \end{bmatrix},$$

 I_k is the $k \times k$ identity matrix; \tilde{H}_k is the Householder reflection of $A_{k:m,k}^{(k-1)}$

- ► H_k introduces zeros under the diagonal of the k-th column
- ▶ the above procedure results in

$$A^{(n-1)} = H_{n-1} \cdots H_2 H_1 A$$
, $A^{(n-1)}$ taking an upper triangular form

- ightharpoonup by letting $R = A^{(n-1)}$, $Q = (H_{n-1} \cdots H_2 H_1)^T$, we obtain the full QR
- ▶ a popularly used method for QR decomposition

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013.

Chapter 5.1 - 5.3