முமுப் பதிப்புரிமையுடையது / All Rights Reserved

MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2016 | Tamil Stadinsts, Faculty of Engineering University of Moratuwa | MORA E-TAMILS 2016 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa | Moratuwa |

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

பௌதிகவியல் I Physics I 01 T I

இரண்டு மணித்தியாலம் Two hours

கவனிக்க

- 💠 இவ்வினாத்தாள் 12 பக்கங்களில் 50 வினாக்களைக் கொண்டுள்ளது.
- 💠 எல்லா வினாக்களுக்கும் விடை எழுதுக.
- ❖ விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக.
- 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1), (2), (3), (4), (5) என இலக்கமிடப்பட்ட விடைகளி **சரியான** அல்லது **மிகப் பொருத்தமான** விடையைத்தெரிந்தெடுத்து,**அதனைவிடைத்தாளில் உள்ள அநிவுறுத்தல்களு அமையப் புள்ளடி (X) இட்டுக் காட்டுக.**

கணிப்பானைப் பயன்படுத்தக்கூடாது. $(g=10\ N\ kg^{-1})$

- 01. r ஆரையுடைய உருக்கு கோளமானது திரவமொன்றினுள் கதி v இல் நகரும் போது அதில் தாக்கும் பாகுமை உராய்வு விசை F ஆனது F=krv இனால் தரப்படுகின்றது. மாறிலி k இன் பரிமாணம்
 - (1) $M^0L^{-1}T^{-1}$
- (2) $ML^{-1}T^{-1}$
- (3) $ML^{-2}T^{-1}$
- (4) $ML^{-1}T^{-2}$
- (5) $M^2L^{-1}T^{-1}$

- 02. துணிக்கை ஒன்றினது இயக்கசக்தியானது
 - (A) துணிக்கையின் மீது விளையுள் விசை தாக்கின் மாறுபடும்
 - (B) ஓர் எண்ணிக்கணியம்
 - (C) இத்துணிக்கையின் திணிவில் தங்கும்

மேலுள்ள கூற்றுக்களில்

- (1) (A) மாத்திரமே உண்மையானது
- (2) (B) மாத்திரமே உண்மையானது
- (3) (C) மாத்திரமே உண்மையானது
- (4) (B),(C) மாத்திரமே உண்மையானவை
- (5) (A),(B),(C) உண்மையானவை
- P,Q எனும் இரு இடங்களிலுள்ள ஒலிச்செறிவு மட்டங்கள் முறையே 50 dB, 40 dB ஆயின் P இல் உள்ள ஒலிச்செறிவிற்கும் Q விலுள்ள ஒலிச்செறிவிற்கும் உள்ள விகிதம்.
 - $(1)\ 10:1$
- (2) 20:1
- (3) 1:20
- (4) 100:1
- (5) 1000:1
- 04. தகவல் தொடர்பாடல்களுக்கு தற்போது ஒளியியல் நார்கள் பயன்படுத்தப்படுகின்றன. அவ் ஒளியியல் நார்களினூடு லேசர் கதிர்த் துடிப்புக்களை செலுத்துவதன் மூலமே தொடர்பாடல் மேற்கொள்ளப்படுகிறது. இவ்வாறான 600nm அலைநீளமுடைய லேசர் கதிர்த் துடிப்பு ஒன்று கீழே காட்டப்பட்டுள்ளது.

 ΔT நேரத்தில் அவதானிக்கப்பட்ட துடிப்பின் வலு $500 \mathrm{mW}$ ஆகும். $\Delta T = 30 \mathrm{ms}$ இல் துடிப்பிலுள்ள சக்திச்சொட்டுகளின் (photon களின்) எண்ணிக்கை யாது? (பிளாங்கின் மாறிலி $h = 6 \mathrm{x} 10^{-34} \ \mathrm{Js}$, வளியில் ஒளியின் வேகம் $3 \mathrm{x} 10^8 \ \mathrm{ms}^{-1}$)

- $(1) 5x10^{14}$
- $(2) 3x10^{15}$
- $(3) 5x10^{16}$
- $(4) 6x10^{16}$
- $(5) 8x10^{16}$

05.	கார்	ஒன்றின்	கதி	108 km h ⁻¹	ஆக	உள்ள	போது	$0.400\ \mathrm{m}$ விட்டமுள்ள	அக்	கார்ச்சில்லின்	கோணக்கதி	யாது
	(சில்	லானது த	தரையி	ில் வழுக்க	ഖിல்ത	ல எனக்	கோள்	ர க)				

- (1) 75 rads⁻¹
- (2) 150 rads⁻¹
- (3) 270 rads⁻¹
- (4) 540 rads⁻¹
- (5) 1080 rads⁻¹

நவீன X கதிர் குழாய் ஒன்றிலிருந்து வெளியேறும் கதிர்ப்பின் மொத்தசக்தி தங்கியிருப்பது 06.

- (A) குழாயினூடாகப் பாயும் மின்னோட்டம்
- (B) இலக்கிலுள்ள உலோகத்தின் அணு எண்
- (C) கதோட்டுக்கும் அனோட்டுக்கும் இடையிலான அழுத்த வேறுபாடு
- (D) கதோட்டுக்கும் அனோட்டுக்கும் இடைப்பட்ட தூரம்
- (1) (A) . (B) , (C) மட்டும்

(2) (A), (C) மட்டும்

(3) (B), (D) மட்டும்

(4) (D) மட்டும்

- (5) மேற்கூறிய எதுவுமில்லை
- 07. சுரமானிக்கம்பியொன்று குறித்த அதிர்வெண்ணில் ஒலியை உருவாக்குகிறது. பின்வரும் எம்மாற்றம் தாழ் அதிர்வெண் உடைய ஒலியை உருவாக்கும்.
 - (1) இழையின் நீளத்தை அரைப்பங்காக்கி இழுவையை இருமடங்காக்கல்
 - (2) இழையின் நீளத்தை அரைப்பங்காக்கி இழுவையை மாறாது பேணல்
 - (3) இழையின் நீளத்தை மாநாது பேணி இழுவையை இருமடங்காக்கல்
 - (4) இழையின் நீளத்தை இருமடங்காக்கி இழுவையை அரைமடங்காக்கல்
 - (5) இழையின் நீளத்தை இருமடங்காக்கி இழுவையை மாநாது பேணல்
- பரிவுக் குழாய்ப்பரிசோதனையொன்றில் குறித்த இசைக்கவைக்கு 1ம், 2ம் பரிவு நிலைகள் 17cm, 53cm இல் 08. பெறப்பட்டன. இக்குழாயின் முனைவு வழு,
 - (1) 0.2cm
- (2) 0.5cm
- (3) 0.7cm
- (4) 1cm
- (5) 1.2cm
- 09. முடிய பாத்திரத்தினுள் சமதிணிவுகளுடைய O_2 வாயுவும் H_2 வாயுவும் உள்ளன. பாத்திரத்தினுள் ${
 m O}_2$ வாயுவின் பகுதியமுக்கம் பாத்திரத்தினுள் மொத்த அமுக்கத்தின்
 - $(1)\frac{1}{2}$ 山地街
- $(2)\frac{1}{4}$ பங்கு
- $(3)\frac{1}{8}$ பங்கு $(4)\frac{1}{16}$ பங்கு

X

 $(5)\frac{1}{17}$ 山地街

XY ஐ முதலச்சாகக் கொண்டு L இல் வைக்கப்பட்ட f 10. குவியத்தூரம் உள்ள ഖിல்லையில் ஒளிக்கதிர்பட்டு முறிவடைவதை உரு காட்டுகிறது. இக் படத்தைக்கொண்டு தரப்பட்டிருக்கும் பின்வரும் கூற்றுகளுள்

தவநானது

- (1) குறித்தவில்லை ஓர் ஒருக்குவில்லை ஆகும்
- (2) நீளம் LP < f ஆகும்
- (3) Q வில் உள்ள மாயப்பொருளிற்கு P இல் மெய்விம்பம் உண்டாகும்
- (4) P யில் உள்ள மாயப்பொருளிற்கு Q இல் மெய்விம்பம் உண்டாகும்
- (5) P யில் உள்ள மெய்ப்பொருளிற்கு Q இல் மாயவிம்பம் உண்டாகும்
- 11. ஏற்றப்படாத $4.7\mathrm{nF}$ கொள்ளளவமுடைய கொள்ளளவி ஒன்று $1.5\mathrm{V}$ வலுவழங்கி ஒன்றுடன் இணைக்கப்பட்டு ஏந்நப்படுகின்நது. இவ் ஏந்நல் செயன்முறையின்போது கொள்ளளவியின் (முழுமையாக மரைத்தட்டிற்கு இடமாற்றப்பட்ட இலத்திரன்களின் எண்ணிக்கை (இலத்திரனின் ஏற்றம் $\mathbf{e} = -1.6 \mathrm{x} 10^{-19}$)
 - $(1) 2.2 \times 10^{10}$
- (2) 3.3×10^{10}
- (3) 4.4×10^{10}
- (4) 8.8×10^{10} (5) 9.9×10^{10}

12. ஒரு இலிதியம் கரு ஒரு புரோத்திரனுடன் இணைந்து உறுதியற்ற கருவாகி கருத்தாக்கத்திலீடுபட்டு இரு கீலியம் கருக்களை விளைவிக்கின்றது. இத்தாக்கத்தை பின்வருமாறு எடுத்துரைக்கலாம்.

$${}_{3}^{7}Li+{}_{1}^{1}P \rightarrow 2\left[{}_{2}^{4}He\right]+$$
 சக்தி

இலிதியம் கரு புரோத்திரன் என்பவற்றின் ஆரம்ப இயக்கசக்தி புறக்கணிக்கத்தக்கது. இக்கருத்தாக்கத்தில் திணிவு அழிவு ஹ எனில் கருத்தாக்கத்தில் விடுவிக்கப்படும் கீலியம் கருக்களின் உயர் இயக்கசக்தி யாது (வளியில் ஒளியின் வேகம் C)

- $(1)2\Delta mC^2$
- $(2)\Delta mC^2$
- $(3)\frac{1}{2}\Delta mC^2$ $(4)\frac{1}{4}\Delta mC^2$ $(5)\frac{1}{8}\Delta mC^2$

யங்கின் மட்டு $5 \times 10^{10} \mathrm{Nm}^{-2}$ உடைய கம்பியொன்று $5 \times 10^{8} \mathrm{Nm}^{-2}$ இழுவைத்தகைப்புற்றுள்ளது. இக்கம்பியில் நெட்டாங்கு அலையின் வேகத்திற்கும் குறுக்கலையின் வேகத்திற்கும் இடையிலான விகிதம்

- (1) 2
- (2) 5
- (3) 10
- (4) 50
- $(5)\ 100$

14. 12V 60W இல் வீதங்குறிக்கப்பட்ட மின்குமிழ் ஒன்று ஒரு படிகுறை நிலைமாற்றியின் துணைச்சுற்றுக்கு இணைக்கப்பட்ட போது முமுமையான பிரகாசத்துடன் ஒளிர்கிறது முதற்சுற்று 230V வலுவழங்கலுக்கு இணைக்கப்பட்டது. குறித்த நிலைமாற்றியானது 75% திறன் கொண்டது எனின் முதற்சுற்றில் மின்னோட்டம்

- (1) 0.25 A
- (2) 0.35 A
- (3) 3.75 A
- (4) 5.0 A
- (5) 5.5 A
- 15. சூப்பர்சோனிக் ஜெட்விமானம் மக்எண் (Mach Number) k பறக்கையில் அடுத்துள்ள அலைமுகங்களை மேலுள்ள படம் காட்டுகிறது. தரையிலிருக்கும் மனிதன் அதிர்வொலியைக் (sonic boom') கேட்கும் போது மனிதனையும் விமானத்தையும் இணைக்கும் கோடு கிடையுடன் அமைக்கும் கோணம்

- $(1)Sin^{-1}(k)$
- $(2)Sin^{-1}(\frac{1}{1})$
- $(3)Cos^{-1}(k)$
- $(4)Cos^{-1}(\frac{1}{t})$
- $(5)Tan^{-1}(k)$

A , B எனும் இரு சர்வசமனான திணிவுகள் இலேசான விற்சுருள் ஒன்றில் இணைக்கப்பட்டு 16. இழை ஒன்றின் உதவியுடன் கூரையிலிருந்து தொங்கவிடப்பட்டுள்ளன. இழை அறுக்கப்பட்டவுடன் திணிவுகள் A ,B மற்றும் தொகுதி என்பவற்றின் ஈர்ப்புமைய ஆர்முடுகல்கள் முறையே g_{A} , g_{B} , gs ஆயின் அவற்றுக்கிடையிலான சரியான தொடர்பைக் குறிப்பது (g – புவியீர்ப்பு ஆர்முடுகல்)

- (1) $g_A > g_S > g_B > g$
- (2) $g_A > g_S = g > g_B$
- (3) $g_A = g_B = g_S = g$
- (4) $g_A = g_B = g_S = g$
- (5) $g_B > g_S = g > g_A$
- 17. ${f P}$ வலுவுடைய வெப்பமாக்கும் மூலகம் அறைவெப்பநிலை $30^{
 m o}{f C}$ சூழலிலுள்ள நீரைக்கொண்டுள்ள பாத்திரத்தில் வைக்கப்பட்டு ஆளியிடப்பட நீரின் வெப்பநிலை கொதிநிலையை அடைந்து 5gs⁻¹ என்னும் வீதத்தில் நீர் ஆவியாகியது. வெப்பமாக்கும் மூலகத்தின்வலு 2P ஆகமாற்றப்பட உறுதிநிலையில் $15 \mathrm{gs}^{-1}$ என்னும் வீதத்தில் நீர் ஆவியாகியது. இவ் நீரைக்கொண்ட பாத்திரத்தில் ஆரம்பத்தில் P/4 வலுவுடைய வெப்பமாக்கும் மூலகம் வைக்கப்பட்டிருப்பின் உறுதிநிலையில்,(வெப்ப இழப்பு நியூட்டனின் குளிரல் விதிக்கமையவே நடைபெறுகின்றது)
 - (1) 45⁰C இல் மாறது இருக்கும்
 - (2) 65⁰C இல் மாநது இருக்கும்
 - (3) 100⁰C இல் மாறது இருக்கும்
 - (4) கொதிநிலையில் $1 \mathrm{g s}^{-1}$ என்னும் வீதத்தில் நீர் ஆவியாகும்
 - (5) கொதிநிலையில் $3 {
 m g s}^{-1}$ என்னும் வீதத்தில் நீர் ஆவியாகும்

R ஆரையுடைய p அடர்த்தியும் கொண்ட சீரான கோளவடிவ கிரகம் ஒன்றின் மேற்பரப்பிலிருந்து R உயரத்தில் உள்ள வட்ட ஒழுக்கு ஒன்றில் m திணிவுள்ள செய்மதி ஒன்று உள்ளது. செய்மதிக்கும் கிரகத்திற்கும் இடையிலுள்ள ஈர்ப்புக்கவர்ச்சி விசை யாது

$$(1)\frac{\pi\rho GmF}{3}$$

$$(2)\frac{2\pi\rho GmR}{3}$$

$$(3)\frac{\pi\rho GmR^2}{3}$$

$$(4)\frac{2\pi\rho GmR^2}{3}$$

(2) $\frac{2\pi\rho GmR}{3}$ (3) $\frac{\pi\rho GmR^2}{3}$ (4) $\frac{2\pi\rho GmR^2}{3}$ (5) $\frac{4\pi\rho GmR^2}{3}$

19. திணிவு m ஐ உடைய ஒரு துணிக்கை தரையிலிருந்து வெவ்வேறு உயரமுள்ள (h) புள்ளிகளிலிருந்து மெதுவாக விடுவிக்கப்பட அது வளித்தடைக்கு எதிராக இயங்கித் தரையை அடையும் போது அதன் இயக்கசக்தி E ஆயின் ${f h}$ உடன் ${f E}$ மாறுபடுவதை காட்டும் வரைபுகளில் சாத்தியமானது (வளியின் அடர்த்தியும் ஈர்ப்பு ஆர்முடுகலும் மாரவில்லை எனக் கொள்க)

- 20. X,Y என்பன ஒரே பதார்த்தத்தினாலான சம குறுக்கு வெட்டுப்பரப்புள்ள இரு இழைகள் ஆகும். ஆனால் X என்னும் இழையின் நீளத்திலும் Y என்னும் இழையின் நீளம் சிறிதளவு குறைவானது. இரு இழைகளினதும் சுயாதீன முடிவிடங்களில் ஒன்று கூரையுடன் ஒருமிக்க இணைக்கப்பட்டு மறு சுயாதீன முடிவிடங்கள் ஒன்றாக இருக்குமாறு பிடிக்கப்படுகிறது. (இந்நிலையில் X இன் இழுவிசை புறக்கணிக்கத்தக்கது. Y இற்கு குறித்த இழுவிசை உண்டு.) இம்முனையில் சேர்த்தி இழைக்கான இழுவை படிப்படியாக அதிகரிக்கப்படின் X,Y இழைகளிலுள்ள இழுவை எங்ஙனம் நடந்து கொள்ளும் என்பதை பண்பறி முறையாக விளக்குவது பின்வருவனவற்றுள்
 - X முதலில் விகிதசம எல்லையை அடையும். இதன் பின்னர் விசையின் பெரும்பகுதி Y இல் தொழிற்படும்.
 - Y முதலில் விகிதசம எல்லையை அடையும். இதன் பின்னர் விசையின் பெரும்பகுதி X இல் தொழிற்படும்.
 - X முதலில் விகிதசம எல்லையை அடையும். இதன் பின்னர் விசையின் பெரும்பகுதி X இல் தொழிற்படும்
 - Y முதலில் விகிதசம எல்லையை அடையும். இதன் பின்னர் விசையின் பெரும்பகுதி Y இல் தொழிந்படும். (4)
 - (5) X முதலில் விகிதசம எல்லையை அடையும். இதன் பின்னர் பிரயோகிக்கப்படும் விசை இரு இழைகளிற்கும் சமமாகப்பங்கிடப்படும்
- 21. இலேசான விறைப்பான இழையின் ஒரு முனையின் m திணிவு இணைக்கப்பட்டு இழையின் மற்றைய சுயாதீன முனை கூரையுடன் தொடுக்கப்படுகின்றது. இழை கிடையாக இருக்கும் வகையில் துணிக்கையானது பிடிக்கப்பட்டு இயங்க அனுமதிக்கப்படுகிறது. துணிக்கையின் முழு இயக்கத்திலும் இழை அநாது இருப்பதற்கு இழை தாங்க வேண்டிய இழிவு இழுவிசை
 - (1) mg

(2) 2mg

(3) 3mg

(4) 4mg

- (5) இழையின் நீளத்தில் தங்கும்
- 22. சீரற்ற மெல்லிய உருளைக்கோல் XY ஆனது ஒப்பமான முனை ஒன்றில் தொட்டுக்கொண்டிருக்க இலேசான இமை ஒன்றினால் கூரையுடன் இணைக்கப்பட்டு சமநிலைப்படுத்தப்படுகிறது. கோலின் ஈர்ப்புமையம் இருக்ககூடிய இடம்.

(2) B

(3) C

(4) D

(5) E

- 23. நேரோட்ட மின்னோட்டத்தைக்காவும் நேரிய கடத்திக்கு அண்மையில் உள்ள காந்தவிசைக் கோடுகள்
 - (1) சுருள் வடிவில் இருக்கும்.
 - (2) கடத்திக்கு சமாந்தரமான தளத்தில் உள்ள வட்டங்களாக இருக்கும்.
 - (3) கம்பிக்கு சமாந்தரமான நேர்கோடுகளாக இருக்கும்.
 - (4) கம்பிக்குச் செங்குத்தான நேர்கோடுகளாக இருக்கும்.
 - (5) கம்பிக்குச் செங்குத்தான தளத்தில் உள்ள வட்டங்களாக இருக்கும்.
- 24. ஒரு திரவத்தின் வெப்பக் கொள்ளளவு S.I அலகுகளில் K ஆகும். K இன் சார்பில் இத்திரவத்தின் ஆவியாதலின் தன்மநைவெப்பம் 100K . $30^{0}C$ வெப்பநிலையிலுள்ள S.I அலகுகளில் m திணிவுடைய திரவத்தை அதன் கொதிநிலையான $230^{0}C$ இல் முற்றுமுழுதாக ஆவியாக்குவதற்கு தேவையான வெப்பக்கணியம்
 - (1) 300K
- (2) 100K
- (3) 300mK
- (4) 200mK
- $(5)\ 100K(m+2)$
- 25. a,2a ஆரைகளையுடைய இரு ஒரேமையவட்டத்தடங்கள் ஒரேதளத்தில் எதிர் எதிர் சுழிகளில் ஒரே மின்னோட்டம் I ஐக் காவுகின்றன. அப்போது பொதுமையத்தில் காந்தப்பாய அடர்த்தி $2x10^{-5}T$ ஆகும். சிறிய தடத்தினூடான மின்னோட்டம் நிறுத்தப்படின் தற்போது பொதுமையத்தில் காந்தப்பாய அடர்த்தி.
 - $(1) 1x10^{-5}T$
- $(2) 2x10^{-5}T$
- $(3) 4 \times 10^{-5} \text{T}$
- $(4) 6x10^{-5}T$
- $(5) 8x10^{-5}T$
- 26. வானியல் தொலைகாட்டி ஒன்று இயல்பான செப்பஞ்செய்கையில் உள்ள போது அதன் பொருள் வில்லை மீது L நீளமுள்ள நேர்கோடு ஒன்று வரையப்பட்டது. பார்வைத்துண்டினால் உருவாக்கப்படும் இக்கோட்டின் விம்பத்தின் நீளம் x எனின் இத் தொலைகாட்டியின் கோண உருப்பெருக்கம்
 - $(1)\frac{L}{x}$
- $(2)\frac{L}{r}+1$
- $(3)\frac{L}{r}-1$
- $(4)\frac{L+x}{L-x}$
- $(5)\frac{x}{L}$
- 27. காட்டப்பட்ட மின்சுற்றில் கலம் மாறா மின்னியக்க விசையுடையதும் அகத்தடை புறக்கணிக்கத்தக்கதும் ஆகும். காட்டப்பட்ட நிலையில் ஆளியிடப்பட்டால் சந்தர்ப்பம் X உம், தடையின் தடை R இரட்டிக்கப்பட்டு ஆளியிடப்பட்டால் சந்தர்ப்பம் Y உம், கொள்ளளவியின் கொள்ளளவு C இரட்டிக்கப்பட்டு ஆளியிடப்படல் சந்தர்ப்பம் Z உம் ஆயின். சந்தர்ப்பங்கள் பற்றிய பின்வரும் கூற்றுக்களுள் சரியானது / சரியானவை (ஒவ்வொரு சந்தர்ப்பத்திலும் ஆளியிடப்படமுன் கொள்ளளவி ஏற்றம் எதனையும் கொண்டிருக்கவில்லை எனவும் ஒவ்வொரு சந்தர்ப்பத்திலும் கொள்ளளவி முழுமையாக மின்னேற்றப்படுகிறது எனவும் கொள்க).

- (A) சந்தர்ப்பம் X இலும் பார்க்க சந்தர்ப்பம் Y இல் கொள்ளளவியின் மின்னேற்றத்துக்கான நேரம் அதிகம்
- (B) சந்தர்ப்பம் X இலும் சந்தர்ப்பம் Y இலும் கொள்ளளவியில் சேர்க்கப்பட்ட ஏற்றம் சமம்
- (C) சந்தாப்பம் X இல் கலம் இழக்கும் சக்தியின் நான்கு மடங்கு சக்தியை சந்தாப்பம் Z இல் கலம் இழக்கும்
- (1) (A) மட்டும்

- (2) (B) மட்டும்
- (3) (A) யும் (B) யும் மட்டும்

- (4) (A) யும் (C) யும் மட்டும்
- (5) (A) (B) (C) எல்லாம்
- 28. கிடைத்தரையின் குறித்த நிலையில் இருந்து A, B எனும் இரு துணிக்கைகள் ஒரே நேரத்தில் எறியப்படுவதை உரு காட்டுகின்றது. எறியப்படும் போது A நிலைக்குத்தாக மேல்நோக்கி U வேகத்தைக் கொண்டிருப்பதுடன் B நிலைக்குத்தாக U வேகத்தையும் கிடையாக V வேகத்தையும் கொண்டுள்ளது. தரையை வந்து அடைவதற்கு முன்னரான அவற்றின் இயக்கத்தில் A சார்பான

B இயக்கப்பாதையாக அமைவது

- 29. M திணிவுடைய துணிக்கையானது a ஆரையுடைய வட்டப்பாதையில் மாறாக்கதியில் வட்ட இயக்கத்தை ஆற்றுகிறது. வட்டப்பாதையின் மையத்தினூடான அச்சுப்பற்றி துணிக்கையின் கோண உந்தம் L எனில் துணிக்கையின் இயக்கசக்தி
 - $(1)\frac{L^2}{am}$
- $(2)\frac{L^2}{2am}$
- $(3)\frac{L^2}{2a^2m}$
- $(4)\frac{L^2}{a^2m}$
- $(5)\frac{L}{2am}$
- 30. மூடிய கொள்கலன் ஒன்றின் வெப்பநிலை மாறாதிருக்க அதன் கனவளவு மாற்றப்பட அதனுள் உள்ள தனிஈரப்பதன் (AH) வரைபில் காட்டியவாறு மாறுபடுகிறது. கொல்கலத்தின் கனவளவு 3m³ ஆகவுள்ள போது அதனுள் உள்ள சார்ஈரப்பதன் அண்ணளவாக

- (1) 25%
- (2) 33%
- (3) 42%

- (4) 67%
- (5) 73%

படத்தில் காட்டிய கூட்டு நுணுக்குக்காட்டியின் பொருளியின் முன் தனித்தனியே O_1,O_2 நிலைகளில் பொருள்வைக்கப்பட்டு இயல்பான செப்பம் செய்கையில் அவதானிக்கப்படுகிறது. பொருள் O_1 இல் உள்ள போது வில்லைகளிற்கு இடையிலான வேறாக்கம் d_1 நுணுக்குக்காட்டியின் கோண உருப்பெருக்கம் M_1 ஆகவும் பொருள் O_2 இல் உள்ள போது வில்லைகளிற்கு இடையிலான வேறாக்கம் d_2 நுணுக்குக்காட்டியின் கோண உருப்பெருக்கம் M_2 ஆகவும் உள்ளது. d_1 d_2 விற்கும் M_1 , M_2 விற்கும் இடையிலான பின்வரும் தொடர்புகளில் சரியானது

- (1) $d_1 > d_2$, $M_1 = M_2$
- (2) $d_1 > d_2$, $M_1 > M_2$
- $(3) \qquad d_1 > \ d_2 \ , \ M_1 \! < \! M_2$
- (4) $d_1 < d_2, M_1 > M_2$
- (5) $d_1 < d_2$, $M_1 < M_2$
- 32. காட்டப்பட்டுள்ள மின்சுற்றில் கலம் E இன் மின்னியக்கவிசை 6V அதன் அகத்தடை புறக்கணிக்கத்தக்கது. வோல்ற்றுமானியின் அகத்தடை R_v இதன் வாசிப்பு 4V ஆகும். இச்சுற்றிலுள்ள கணியங்களுடனான பின்வரும் தொடர்புகளுள் சரியாக அமையத்தக்கது / அமையக்த்தக்கவை E

- (B) $R > R_0$
- (C) $\frac{1}{R_0} > \frac{1}{R_V} + \frac{1}{R}$

- (2) (B) மாத்திரம்
- (3) (A),(C) மாத்திரம்
- (4) (B),(C) மாத்திரம்
- (5) (A),(B),(C) ஆகிய எல்லாம்

33.

காட்டப்பட்ட சுற்றில் Q உம் நியமத் 0.1Ω உம் தமக்குள் தடை தடை இடமாற்றப்படும் போது, சமநிலைப்புள்ளியானது X இலிருந்து $60\mathrm{cm}$ இற்குப் பதிலாக X இலிருந்து $50\mathrm{cm}$ ஆக வருகிறது. தடை Q இன் பெறுமானம் Ω இல்

7

- (1) 0.067
- (2) 0.083
- (3) 0.100
- (4) 0.120
- (5) 0.150
- 34. திருசியமானியில் அரியத்தின் இழிவு விலகல் காணும் பரிசோதனையில் தொலைகாட்டியின் குறுக்குக்கம்பி மீது இழிவு விலகல் கோணத்தின் நிலையை இனங்கண்டு தொலைகாட்டியை இடை நிறுத்தியதும் அதனை மீண்டும் உறுதிப்படுத்துவதற்கு பிளவின் விம்பத்தை தொடர்ச்சியாக அவதானிக்கும் அதேவேளை அரிய மேசையை சிறிய தொடர்ந்து அதனை இழிவு விலகல் நிலையினூடாகச் செல்லும் வரைக்கும் சுற்றுமாறு கேட்கப்பட்டுள்ளீர் இச் சுழற்சியின் போது பிளவின் விம்பம் அவதானிக்கத்தக்க இடமிருந்து வலமாக ஐந்து அடுத்துவரும் நிலைகளில் பொருத்தமானது

- 35. கலங்களையும் இருவாயிகளையும் தடையையும் கொண்டு அமைக்கப்பட்டுள்ள காட்டிய சுற்றில் A , B என்பன Y பெய்ப்பும் பயப்பும் ஆகும். இச்சுற்றினால் குறிக்கப்பட்டுள்ள படலையானது
 - (1) OR
 - (2) AND
 - (3) NAND
 - (4) NOR
 - (5) NOT

8

36.

காட்டப்பட்டுள்ள மின்சுற்றுக்களிலுள்ள கலங்கள் யாவும் அகத்தடை புறக்கணிக்கத்தக்க மாறா மின்னியக்கவிசையுடைய சர்வசமனானவையாயிருப்பதுடன் ஒவ்வொரு சுற்றிலுமுள்ள அனைத்து மின்குமிழ்களும் சர்வசமனானவையாகவும் உள்ளன எனின் எச்சுற்றுக்களில் உள்ள மின்குமிழ்கள் ஒரே பிரகாசத்துடன் ஒளிரும்

- (1) (A) யிலும் (C) யிலும் மட்டும்
- (2) (B) யிலும் (D) யிலும் மட்டும்
- (3) (A) யிலும் (C) யிலும் (D) யிலும் மட்டும்
- (4) (A) யிலும் (D) யிலும் மட்டும்
- (5) (A), (B), (C), (D) எல்லாவற்றிலும்
- 37. காட்டப்பட்டுள்ள மின் சுற்றில் XY இற்கிடையில் 1V மின்னியக்க விசையுடைய கலம், நேர்முனை Y யுடன் இருக்க இணைக்கப்படும்போது 16V கலத்தினூடான மின்னோட்டம் I இல் ஏற்படும் மாற்றம் யாது

- (1) 0.1A
- (2) 0.5A
- (3) 1A
- (4) 2A
- (5) பூச்சியம்
- 38. குறித்த திணிவு இலட்சிய வாயுவென்றின் அமுக்கம் (P) தனிவெப்பநிலை (T) யுடன் மாறுவதை அருகிலுள்ள படம் காட்டுகின்றது. இது பற்றிய பின்ரும் கூற்றுக்களில் சரியானது / சரியானவை

- (A) B → A பாதை வழியே நகர்த்தப்படுகையில். வாயுவின் அடர்த்தி மாறுவதில்லை.
- (B) B → A பாதை வழியே நகர்த்தப்படுகையில் வாயுமீது வேலை செய்யப்படும்.
- (C) C → B பாதை வழியே நகர்த்தப்படுகையில் வாயுமீது வேலைசெய்யப்படும்
- (1) (A) மட்டும்
- (2) (A),(B) மட்டும்
- (3) (A),(C) மட்டும்
- (4) (B),(C) மட்டும்
- (5) (A),(B),(C) ஆகிய எல்லாம்
- 39. காட்டப்பட்டுள்ள இலட்சிய இருவாயி, தடை வலை வேலைப்பாட்டில் சந்தி A ஆனது +15V அழுத்தம் பேணப்படின் சந்தி B யின் அழுத்தம்

$$(2) + 5 V$$

$$(3) - 5V$$

$$(4) + 7.5 \text{ V}$$

$$(5) + 10V$$

40.

அறைவெப்பநிலை $heta_R$ உள்ள மாறா வெப்பச்சூழலில் A , B எனும் சமபரிமாணங்களையுடைய இருகோல்கள் காவற்கட்டிடப்பட்ட நிலையில் படத்தில் காட்டியவாறு வைக்கப்பட்டுள்ளன. மாறா வலு P இல் வெப்பத்தைப் பிறப்பிக்கும் வெப்பமாக்கும் சுருள் H காட்டியவாறு கோல்களின் ஒவ்வொரு முனைகளுடன் தொடுகையிலிருக்குமாறு வைக்கப்பட்டுள்ளது. உறுதி நிலையில் ஒவ்வொருகோல்களினதும் வெப்பமாக்கும் சுருளுடன் தொடுகையிலிருக்கும் முனைகளிலிருந்தான தூரம் x வழியே அவற்றின் வெப்பநிலை ($heta^0C$) மாறுவதை வரைபு காட்டுகிறது. இரு கோல்களினதும் மேற்பரப்பிற்கான குளிரல் ஒருமை ஒரேயளவாயின் பின்வரும் கூற்றுக்களை கருதுக

- கோல் A ஆக்கப்பட்ட திரவியத்திலும் பார்க்க கோல் B ஆக்கப்பட்ட திரவியத்தின் வெப்பக்கடத்தாறு குறைவு (A)
- (B) கோல் B யிலும் பார்க்க கோல் A யினூடு வெப்ப பாய்ச்சல் வீதம் உயர்வு
- (C) கோல்களின் நீளத்தை மாற்றாது அவற்றின் குறுக்குவெட்டுப்பரப்பு குறைக்கப்படின் உறுதிநிலையில் ஒவ்வொரு கோலினதும் இரு முனைகளிலும் உள்ள வெப்பநிலை அதிகரிக்கும் மேற்குறித்த கூற்றுகளில்,
- (1) (A) மாத்திரம் உண்மையானது
- (2) (A),(B) மாத்திரம் உண்மையானது
- (3) (A),(C) மாத்திரம் உண்மையானவை
- (4) (B),(C) மாத்திரம் உண்மையானவை
- (5) (A),(B),(C) ஆகிய எல்லாம் உண்மையானவை.
- 41. தரையிலிருந்து ஓர் துணிக்கை P மேல் நோக்கி t=0 எனும் நேரத்தில் ஆரம்பவேகம் V உடன் எறியப்படும் அதேவேளை அப்புள்ளிக்கு நேர்மேலே h உயரமான புள்ளியிலிருந்து இன்னோர் துணிக்கை ${f Q}$ ஒன்று மெதுவாக விடுவிக்கப்படுவதை உரு ${f (a)}$ காட்டுகிறது. தொடரும் இயக்கத்தில் இடையில் இரண்டும் ஒன்றை சந்திக்கின்றன. இத்துணிக்கைகள் ஆரம்பத்திலிருந்து சந்திக்கும் வரை அவற்றின் இயக்கத்திற்கான வேகம் (V) நேரத்து டன் (t) மாறுபடுவதை அருகிலுள்ள வரைபு காட்டுகின்றது. இவ்வரைபில் Δ ABC , Δ CDE , Δ ADF பரப்புக்கள் முறையே ${
 m A_1}\,,\,\,{
 m A_2}\,,\,\,{
 m A_3}$ ஆயின் பின்வருவனவற்றுள் ${
 m h}$ இற்கு சரியான தொடர்பு

(1) $h = A_1 + A_2 + A_3$

(2) $h = A_1 + A_3$

(3) $h = A_1 + A_3 - A_2$

(4) $h = A_1 + 2 A_2 + A_3$

 $(5) h = A_1 + A_2$

42. a பக்கமுடைய சதுரவடிவான கடத்தித் தட்டுக்களை d இடைத்துரத்தில் வளிக்கொள்ளளவி படத்தில் பேணுவதன் மூலம் அமைக்கப்பட்டுள்ளது. காட்டியுள்ளது போல் K சார்பு அனுமதித்திறனுடைய மின்னுழையப்பாளம் பகுதியாக செலுத்தப்பட்டுள்ளதை படம் காட்டுகின்றது. கருதிய நிலையிலுள்ள மின்னுழையப்பாளம் மேலும் t தூரத்தினூடு கொள்ளளவத்தினுள் செலுத்தப்படின்

XY இந்கு இடையில் கொள்ளளவம்.

- (1) $\frac{at \mathcal{E}_0}{}$ இனால் அதிகரிக்கும்
- (2) $\frac{at \varepsilon_0}{d}$ இனால் குறையும் (3) $\frac{at \varepsilon_0 (K-1)}{d}$ இனால் குறையும்
- $\frac{atarepsilon_0(K-1)}{d}$ இனால் அதிகரிக்கும் (5) $\frac{atarepsilon_0K}{d}$ இனால் அதிகரிக்கும்

AL/2017/01/T-1

43. உய்த்தன் பாலச்சுற்று ஒன்றைப் படம் காட்டுகின்றது. இக்கட்டமைப்பு பற்றி சரியான கூற்று பின்வருவனவற்றுள் எது / எவை

(A) தடை P சிறிது அதிகரிக்கப்படின் கல்வனேமானி G யினூடு C இலிருந்து A யிற்கு மின்னோட்டம் பாயும்

(B) கலம் E யும் கல்வனோமானி G யும் தமக்குள் இடமாற்றப்படினும் G பூச்சியத்திரும்பலையே காட்டும்

(C) அகத்தடை புறக்கணிக்கத்தக்க கலம் E இன் மின்னியக்கவிசை 3V ஆல் அதிகரிக்கப்படின் தடை P யிற்கு குறுக்கேயான அழுத்தவேறுபாடு 2V அதிகரிக்கும்

- (1) (A) மட்டும்
- (2) (A) யும் (B) யும் மட்டும்
- (3) (B) யும் (C) யும் மட்டும்
- (4) (A) யும் (C) யும் மட்டும் (5) (A) (B) (C) எல்லாம்

44. ஆரையுடைய தூய கண்ணாடி மயிர்த்துளைக்குழாய் X நீரினுள் நிலைக்குத்தாக வைக்கப்பட குழாயினுள் 2h உயரத்திற்கு உள்ள சமநிலையில் நிரல் இருப்பதை நீர் காட்டகிறது. r , 2r , $\frac{r}{2}$ ஆரைகளையுடைய தூய மயிர்த்துளைக்குழாய்களான சேர்மானக்குழாய்கள் (C) , (D) நீரில் நிலைக்குத்தாக (A) , (B) வைக்கப்பட்டுள்ள போது காட்டிய அளவுகளில் உள்ள நீர் நிரல்கள் சமநிலையில் இருப்பதற்கு சாத்தியமானது அல்லது சாத்தியமானவை

- (1) (A) மட்டும்
- (2) (A), (B) மட்டும்
- (3) (A), (B), (C) மட்டும்
- (4) (B), (C), (D) மட்டும்
- (5) (A), (B), (C), (D) எல்லாம்

45. ஓப்பமான உராய்வற்ற கிடை மேசை ஒன்றின் மீது சீரான ${f M}$ திணிவும் 2L நீளமும் கொண்ட படத்தில் பலகை ஒன்று காட்டியவாறு வைக்கப்பட்டுள்ளது. பலகையின் ஈர்ப்பு மையம் மேசையின் விளிம்பிலிருந்து X தூரத்தில் இருப்பதுடன் பலகையின் ஒரு முனையின் m திணிவுள்ள சிறிய குற்றி ஒன்றும் காட்டியவாறு வைக்கப்பட்டு பலகையின் நீளத்தின் வழியே குற்றிக்கு u வேகம் கொடுக்கப்படுகிறது. பலகைக்கும் குற்றிக்கும் இடையிலான இயக்கவியல் உராய்வுக்குணகம்

μ ஆயின் குற்றிக்கு வேகம் கொடுக்கப்பட்டதிலிருந்து பலகை மேசையிலிருந்து கவிழ்வதற்கு எடுக்கும் இழிவு நேரம் யாது? (கவிழும் வரை பலகையிலிருந்து குற்றி வெளியேவரவில்லை எனக் கொள்க)

$$(1)\frac{Lm + (M+m)X}{mU}$$

$$(2)\sqrt{\frac{2(l+X)m}{\mu g(M+m)}}$$

$$(3)\frac{L+X}{U}$$

$$(4)\frac{U^2}{2\mu g}$$

$$(5)\frac{(L+X)m}{(M+m)U}$$

46. கலம் ஒன்றுடன் சமாந்தரத்தட்டு ஒடுக்கி, இருவாயி, தடை என்பன சமாந்தரநிலையில் இணைக்கப்பட்டள்ளதை உரு காட்டுகின்றது. காட்டிய நிலையில் ஆளி S மூடப்பட்டும் உள்ளது. படத்தில் காட்டியவாறு கொள்ளளவித்தட்டுகளிற்கிடையில் நடுப்பகுதியில் தட்டுகளிற்கு சமாந்தரமாகவும்,இருவாயி , தடை என்பவற்றின் நடுப்பகுதியில் அவற்றிற்கு செங்குத்தாகவும் தளப்பரப்புகள் முறையே X, Y, Z என்பவற்றைக் கருதுக. ஆளி முதலில்மூடப்பட்டிருக்கும் இந்நிலை A எனவும் பின் ஆளி திறக்கப்பட்டிருக்கும் நிலை B எனவும் கொள்க. X, Y, Z தளப்பரப்புக்களினூடாக மின் பாயம் உள்ள நிலை √ எனவும், இல்லாத நிலையில் × எனவும் குறிக்கப்படின் பின்வருவனவற்றுள் சரியானது

		X		Y		Z
	A	В	A	В	A	В
(1)	V	V	√	×	×	×
(2)	V	√	\checkmark	√	×	×
(3)	√	√	√	V	×	×
(4)	V	×	√	×	√	×
(5)	V	×	√	V	V	×

47. உருளை வடிவ தாங்கி ஒன்றினுள் படத்திலுள்ள வடிவத்திலான இரும்புத்திண்மம் ஒன்று அதன் அடிப்பகுதி நனையாதவாறு வைக்கப்பட்டுள்ளது. இப்போது தாங்கியில் மெதுவாக ஊற்றப்படுகின்றது. அடித்தளத்தினால் திண்மத்திற்குக் கொடுக்கப்படும் மறுதாக்கம் (R) நீர் ஏறும் உயரம் X உடன் மாறுபடுவதைக்காட்டும் வரைபு

48. காட்டப்பட்டுள்ள எழுவீழ் சுற்றில் (flipflop) S R என்பன ஆரம்பத்தில் முறையே துவித 1, 0 கொண்டிருந்தது பின் S R ஆனது தொடர்ச்சியாக பின்வரும் மாற்றங்களுக்கு உள்ளானது $(0,0) \to (0,1) \to (0,0) \to (1,1)$ ஆயின் இதற்குரிய Q , Q^1 ஐ சரியாக தரும் உண்மை அட்டவணையாக அமைவ

s	R	Q	Q1	
		<u> </u>		
1	U	1	0	
0	0	1	0	
0	1	0	1	
0	0	0	1	
1	1	1	1	
	(1)			

S	R	Q		
<u> </u>	К	Q	Q1	
1	0	1	0	
0	0	1	0	
0 0	1	0	1	
0	0	0 0	1	
1	1	0	0	
(2)				

ĺ				
	S	R	Q	Q1
	1	0	1	1
	0	0	0	1
	0	1	0	1
	0	0	1	0
	1	1	1	0
			(3)	

s	R	Q	Q1
1	0	0	0
0	0	0	1
0	1	1	0
0	0	1	1
1	1	1	1_
		(4)	

S	R	Q	Q1
1	0	0	1
0	0	0	0
0 0	1	1	0
0	0	0	0
1	1	1	1
		(5)	

இடைத்தூரம் $10 \, \mathrm{cm}$ இல் உள்ளனவும் புறக்கணிக்கத்தக்க தடையை உடையனவுமான இரு ஒப்பமான சமாந்தூக் கிடைக் கடத்தும் தண்டவாளங்களின் மீது திணிவு $10 \, \mathrm{g}$ ஐயும் தடை $2 \, \Omega$ ஐயும் உடைய ஒரு சட்டம் PQ வைக் கொண்ட ஒழுங்கமைப்பை படம் காட்டுகிறது. இரு தண்டவாளங்களினதும் தளத்திற்குச் செங்குத்தூக (தூளுக்குள்ளே) பாய அடர்த்தி $0.1 \, \mathrm{T}$ யை உடைய ஒரு சீர்க் காந்தப்புலம் இரு தண்டவாளங்களுக்குமிடையே உள்ள முழுப் பிரதேசத்திற்கும் பிரயோகிக்கப்படுகின்றது. இரு தண்டவாளங்களுடனும் இணைக்கப்பட்டுள்ள கலத்தின் மி.இ.வி $2 \, \mathrm{V}$. ஆளி S_2 ஐத் திறந்து வைத்துக்கொண்டு ஆளி S_1 மூடப்படுகின்றது. சட்டம் தனது இயக்கத்தில் உச்சக்கதியை எடுத்தபின் ஆளி S_1 ஐத் திறந்து வைத்துக்கொண்டு ஆளி S_2 மூடப்பட்ட உடன் சட்டத்தின் அமர்முடுகல் யாது

(1) 1ms⁻²

(2) 2ms⁻²

 $(3) 4ms^{-2}$

 $(4) 5 \text{ms}^{-2}$

(5) 10ms⁻²

50.

 $\begin{array}{c|cccc} & & & & & & & \\ & & & & & & \\ V_i & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$

உரு (a) இல் காட்டப்பட்டுள்ள வோல்ற்றளவுச் சைகை உரு (b) இன் பெய்ப்பிற்குத் தொடர்ச்சியாக வழங்கப்பட்டுக்கொண்டுள்ளது. உரு (b) இன் பயப்பிற்கு குறுக்கேயுள்ள அழுத்த அலை வடிவத்தைக் காட்டுவதில் பொருத்தமானது

(1)

V_m
0
T 2|T 3|T 4|T t

(5)

[(மழுப்பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa | MORA E-TAMILS 2019 | Tamil Students, Faculty of Engineering, University of Moratuwa பெறும் நிலை மலக்கைக்கு பெற்ற நடர்கள் பிறிய பிறிய முறிய முறி

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

பௌதிகவியல் II Physics II

01	Т	II
----	---	----

மூன்று மணித்தியாலம் Three hours

சுட்டெண்	:		•••
----------	---	--	-----

அறிவுறுத்தல்கள் :-

- இவ்வினாத்தாள் 22 பக்கங்களைக் கொண்டுள்ளது.
- இவ்வினாத்தாள் A, B என்னும் இரு பகுதிகளைக் கொண்டுள்ளது. இரு பகுதிகளுக்கும் ஒதுக்கப்பட்ட நேரம் மூன்று மணித்தியாலங்கள் ஆகும்.
- கணிப்பானை பயன்படுத்தக்கூடாது.

💠 பகுதி A – அமைப்புக்கட்டுரை (பக்கங்கள் 2 – 9)

- எல்லா வினாக்களுக்கும் விடைகளை இவ் வினாத்தாளிலேயே எழுதுக.
- ஓவ்வொரு வினாவுக்கும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக.
- கொடுக்கப்பட்டுள்ள இடம் உமது விடைகளுக்குப் போதுமானது என்பதையும் விரிவான விடைகள் அவசியமில்லை என்பதையும் கவனிக்க.

💠 பகுதி B கட்டுரை (பக்கங்கள் 11 - 22)

- இப் பகுதி ஆறு வினாக்களைக் கொண்டுள்ளது.
 அவற்றில் நான்கு வினாக்களுக்கு மாத்திரம்
 விடை எழுதுக. உமக்கு வழங்கப்படும்
 தாள்களை இதற்கு பயன்படுத்துக.
- இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேரமுடிவில் பகுதி A மேலே இருக்கும்படியாக A, B ஆகிய இரண்டு பகுதியையும் ஒன்றாகச் சேர்த்துக் கட்டிய பின்னர் பரீட்சை மேற்பார்வைளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

பகுதி	வினா இல.	புள்ளிகள்
	1	
A	2	
A	3	
	4	
	5	
	6	
В	7	
ь	8	
	9(A)	
	9(B)	
	10(A)	
	10(B)	
6	மாத்தம்	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

பகுதி $-\mathbf{A}$ அமைப்புக் கட்டுரை நான்கு வினாக்களுக்கும் விடைகளை **இத்தாளிலேயே** எழுதுக. ($g=10~N~kg^{-1}$)

இந்நிரலில் எதனையும் எழுதுதல் ஆகாது.

01. காவலி இழைகளினால் கட்டித்தொங்கவிடப்பட்ட காட்டியமட்டம் வரை சூடான நீரைக்கொண்ட சிறிய உலோகப்பாத்திரத்தைக் கொண்டு நியூட்டனின் குளிரல்விதி வாய்ப்புப் பார்க்க வேண்டி உள்ளது.

(a)	இப்பரிசோதனையையைச் செய்யத் தேவைப்படும் மேலதிக உபகரணங்கள் யாவை ?
(b)	பாத்திரத்தை மேசைமீது வைக்காது இழைகளினால் கட்டித்தொங்கவிடப்பட்டிருப்பதன் நோக்கம் யாது?
(c)	குளிரல் வளையி வரைவதற்கு வெவ்வேறு நேரங்களில் மேற்பரப்பு வெப்பநிலை தெரிதல் வேண்டும்.
	வெப்பமானி வாசிப்பு பாத்திரத்தின் மேற்பரப்பின் வெப்பநிலைக்கு சமன் என உறுதிப்படுத்துவதற்கு மாணவன் பின்பற்ற வேண்டிய பரிசோதனைப் படிமுறை யாது?

(d) எதிர்பார்கக்ப்படும் குளிரல் வளையியினை கீழுள்ள அச்சுக்களில் வரைக (அச்சுக்களில் சூழல் வெப்பநிலை θ_R இனை குறிக்க)

(e)	சமகனவளவு உடையதும் மேற்பரப்பு கூடியதும் ஒத்த சுவர்த் தடிப்பைக் கொண்டதுமான அதேபதார்தத்தினாலான உலோகப்பாத்திரத்தினுள் அதேகனவளவு சூடான நீர் எடுக்கப்பட்டு குளிரவிடப்பட்டு அதற்கொத்த குளிரல்வளையியை மேலுள்ள வளையியுடன் ஒப்பிட்டு வரைந்த அதனை X எனப் பெயரிடுக. (பாத்திரத்தின் திணிவு மாற்றத்தை நீரின் திணிவுடன் ஒப்பிடும் போது புறக்கணிக்குக)
(f)	வரைந்த வளையியிலிருந்து நீர் எடுக்கும் கணியம் யாது?
(g)	மேற்கூறிய பாத்திரத்தினுள் அறைவெப்பநிலையிலுள்ள நீர் எடுக்கப்பட்டு அதனுள் வெப்பமாக்கும் சுருள் அமிழ்த்தப்பட்டு நீண்ட நேரம் தொழிற்பட்ட பின்னும் நீரின் வெப்பநிலை கொதிநிலையை அடையவில்லை.
i.	வெப்பமாக்கி தொழிற்பட ஆரம்பித்ததிலிருந்து வெப்பநிலை (θ) நேரம்(t) யுடன் மாறுபடும் வரைபை வரைக θ ♠
	0 t
ii.	வெப்பமாக்கி தொழிற்படுகையிலும் நீரின் வெப்பநிலை குறித்த பெறுமதியில் மாறாது இருப்பதற்கான காரணம் யாது?
iii.	வெப்பநிலை θ இல் முகவையிலிருந்து வெப்பம் விரயமாகும் வீதம் R (வாற்றில்) ஆனத R=10(θ - θ _R) இனால் தரப்படுகின்றதென பிறிதொரு குளிரல் பரிசோதனையிலிருந்து காணப்பட்டுள்ளது. இங்கு θ _R ஆனது அறை வெப்பநிலையாகும். வெப்பமாக்கும் சுருள் 500W இல் தொழிற்படுகையில் அடையும் உறுதிவெப்பநிலை யாது? (அறைவெப்பநிலை 30 ^{0C})

02. மேல் முனை ஒரு விறைத்த ஆதாரத்தில் உறுதியாகப் பிடியியினால் பொருத்தப்பட்டுள்ளதும் கீழ் இலேசான முனையில் காட்டி இணைக்கப்பட்டுள்ளதுமான நிறை புறக்கணிக்கத்தக்கதான வில் ஒன்று உருவில் காணப்படுகின்றது. (a) வில்லின் கீழ்முனையில் நியமத்திணிவு இணைக்கப்பட்டு நீட்சி (e) ஐ அளப்பதற்கு மீற்றர்க் கோல் வைக்கப்பட வேண்டிய சரியான தானத்தை உருவில் வரைந்து காட்டுக. ஒரு சுமை ${f M}$ இணைக்கப்பட்டுள்ள இவ் வில்லின் நீட்சி ${f e}$ என அளக்கப்பட்டது. வில்லின் (b) ഖിசെமாறிலி யாது? (c) இங்கு ஏற்படும் நீட்சி சிறிது என்பதால் அளவீட்டு வழுவீதம் அதிகம். எனவே வில்லின் ஆரம்ப இறுதி நீளங்களை அளந்து நீட்சி கணிக்கப்படலாம் என மாணவன் கருதினான். வில்லின் நீளத்தினை மீற்றர் கோலினால் அளக்கும் முறையினை தருக (d) இவ்வில்லின் கீழ்முனையுடன் சர்வசமனான இன்னொரு வில்லை முனைக்கு முனை இணைத்து சேர்த்திவில் ஆக்கப்படுகிறது. இச்சோத்திவில்லின் கீழ்முனையுடன் சுமை M இணைக்கப்பட சோத்தி வில்லின் நீட்சியாது? ii. சேர்த்தி வில்லின் விசைமாறிலி யாது? சுமை ${f M}$ இணைக்கப்பட்டுள்ள இலேசான வில்லிற்கு ஒரு சிறிய இடப்பெயர்ச்சியைக் (e) ஒரு கொடுப்பதன் மூலம் அது நிலைக்குத்தாக அலையச் செய்யப்படுகின்றது. அலைவுகளின் ஆவர்த்தன காலம் (T) ஆனது $T=2\pi\sqrt{\frac{M}{K}}$ இனால் தரப்படுகின்றது. விசைமாநிலி K துணிவதற்குரிய ஒரு வரைபை வரைவதற்கு மேற்குறித்த கோவையை மிகவும் உகந்த விதத்தில் மீள ஒழுங்குபடுத்துக.

இந்நிரலில் எதனையும்

் எழுதுதல் ஆகாது.

03.

AL/2017	7/01/T-II(A) - 5 -
	இப்பரிசோதனையில் வாசிப்புகளைப் பெறுவதற்கு உமக்குத் தேவைப்படும் மேலதிக உபகரணம் வாது?
iii. K	Հ துணிவதற்கு நீர் வரைபிலிருந்து பிரித்தெடுக்கும் கணியங்கள் யாவை?
G	ெயின் அளவீட்டு சதவீத வழுவை 1% ஆக்குவதற்கு நீர் எவ்வளவு அலைவுகளைப் பெற வேண்டியிருக்கும்? (நேர அளவீட்டிலான இழிவெண்ணிக்கை 0.1s ஆகும். T = 2s எனக் கொள்க)
ஒழுங்க உருவ புள்ளி	வனொருவன் வில்லைகளைப் பயன்படுத்தி ஆய்வுகூடத்தில் பரிசோதனை ஒன்றை கமைக்கின்றான் இப்பரிசோதனையில் முதலில் PQ ஜ முதலச்சாகக் கொண்ட வில்லையினால் ாக்கப்படும் OX எனும் பொருளின் விம்பம் IY பெறப்படுகிறது. இங்கு பொருளின் குறித்த ஒரு X இலிருந்து விம்பத்தின் குறித்த புள்ளி Y இந்கு வில்லையினூடு மூன்று ஒளிக்கதிர்கள் டைவதை மேலுள்ள உரு காட்டுகிறது. (XZ, TY என்பன PQ இந்கு சமாந்தரமானவை)
	h_0 A B Q
	T Y
-	றித்த விம்பத்தை நோக்குவதற்கு மாணவன் கண்ணை வைக்க வேண்டிய இடத்தை மேலுள்ள _ருவில் E எனக் குறிக்க?
ii. ഖി	ல்லையின் இரு குவியங்களின் நிலைகளும் எவை?

iii. த	நூங்கள் $\mathrm{AO}=\mathrm{x,\ BI}=\mathrm{y}$ ஆகவும் விம்ப உயரம், பொருள் உயரம் முறையே $\mathrm{h_{i},\ h_{o}}$ ஆகவும்
ഖ്	பில்லையின் குவிய நீளம் f ஆகவும் இருப்பின் மேலுள்ள உருவில் இயல்பொத்த
(J	ழக்கோணிகளைக் கருத்தில் கொண்டு
X	$y=f^2$ ஐ பெறுக.
••	
iv. G	பொருட்தூரம், விம்பத்தூரம் முறையே ${f u},{f v}$ சார்பிலும் குவிய நீளம் f சார்பிலும் x,y இந்கு
பி	ரிரதியிடுவதன் மூலம் வினா (iii) இல் பெறப்பட்ட கோவையை மீள ஒழுங்குபடுத்துக.
	ாணவன் மாயவிம்பம் ஒன்றைப் பெறவிரும்பின் பொருளினை எப்பகுதிக்கு மாற்றவேண்டி இருக்கும்?
82	துருக்கும்:
••	
••	
vi. ഖ്	பினா (u) இல் கூறப்பட்ட பகுதிக்கு பொருள் OX ஆனது O முதலச்சில் இருக்கவும் OX
பு	ழதலச்சிற்கு செங்குத்தாக இருக்கவும் நகர்த்தப்படும் போது விம்பத்தின் உச்சி $ m Y$ நகரும்
Ш	ாதையைத் தருக.
vii 10	
vii. ഥ പ്പ	ாணவன் மெய்ப்பொருளின் வெவ்வேறு நிலைகளிற்கும், மாயப்பொருளின் வெவ்வேறு லெலகளிற்கும் உரிய பொருட்தூரம் u, விம்பத்தூரம் v என்பவற்றை அறிந்து u விற்கு எதிராக v

N U

1. வினா (iv) இல் பெற்ற கோவையைப் பயன்படுத்தி M,N புள்ளிகளின் ஆள்கூறுகளைத் தருக.

M :-

N :-

2. குறித்த வரைபுபடுத்தலின் போது பொருட்தூரம் (u) விம்பத்தூரம் (v) இந்கு மாணவனால் கருத்தில் கொள்ளப்பட்டுள்ள குறிவழக்கைத் தெளிவாகக் குறிப்பிடுக.

.....

viii. குழிவு வில்லை ஒன்றை மேற்குறித்த குவிவு வில்லையுடன் மாணவன் ஒரச்சாகத் தொடுகையில் வைக்கின்றான். மேலே குறித்த ஆரம்ப நிலையில் உள்ள பொருள் OX இற்கு மீண்டும் ஒர் மெய்விம்பம் மாணவனால் பெறப்படுகிறது.

1. சேர்மான வில்லையின், பொருளின் பக்கமாக உள்ள குவியம் மேலுள்ளகதிர்ப்பட உருவில் எப்பகுதியில் அமையும்?

.....

 மாணவனால் தற்போது பெறப்பட்ட விம்பத்தின் உருபெருக்கத்தை அவன் முதல் பெற்ற விம்ப உருப்பெருக்கத்துடன் ஒப்பிடுக.

(உதவி : வினா (viii)(1) இல் குவியத்தின் நிலை, வினா (3) இல் உள்ள கோவை என்பவற்றைக் கருத்தில் கொள்க)

.....

04. மின் பிறப்பிக்கக்கூடிய திருக்கை மீன் வகைகளில் ஒன்றை படம் காட்டுகிறது இவ்வகை மீன்கள் இரைகளைத் அருகிலுள்ள மூலம் கைப்பற்றிக் கொள்வதற்கும் தாக்குதல் நடாத்துவதன் எதிரிகளிடமிருந்து தம்மைப் பாதுகாத்துக் கொள்வதற்கும் மின்னைப் பிறப்பிக்கக்கூடியனவாக சிறப்படைந்துள்ளன.

இவற்றில் காணப்படும் "Electric organs" எனப்படும் விசேட உடல் பகுதியில் பல மின் கலங்களை ஒத்த அமைப்புக்கள் காணப்படும். இவை தேவைக்கேற்ப தொடராகவோ அல்லது சமாந்தரமாகவோ ஒழுங்குபடுத்தப்படக் கூடிய வகையில் அமையப்பெற்றுள்ளமை குறிப்பிடத்தக்க ஒரு விடயமாகும்.

(a) திருக்கை மீனில் காணப்படும் மின் கலங்களை ஒத்த அமைப்புக்களின் ஒழுங்குபடுத்தல் பற்றி சமாந்தரமாகவும் விளங்கிக் கொள்வதற்காக 5 மின்கலங்களை தொடராகவும் இணைத்து சுற்றுக்களைப் படம் காட்டுகிறது. உருவாக்கப்பட்ட ஒவ்வொரு சுற்றுக்கும் குறுக்கே சுமைத்தடை இணைக்கப்பட்டதுடன் அவற்றினூடான மின்னோட்டம், முனைவு அழுத்த வேறுபாடுகள் அளவிடப்பட்டு கீழே காட்டப்பட்டவாறு அட்டவணைப்படுத்தப்பட்டன. A,V மானிகள் இலட்சியமானவை.

சுமைத்தடை (Ω)	தொடர் ஒருங்கில் மின்னோட்டம்	சமாந்தர ஒழுங்கில்
	(A)	மின்னோட்டம் (A)
0.1	2.7	7.2
1	2.0	1.3
10	0.55	0.14

i.	நன்னீரானது கடல் நீரை விட உயர் தடைத்திறனைக் கொண்டது. ஆயின் இவ்வகை மீன் நன்னீர்,
	கடல்நீரில் வாழும் போது அவற்றின் கலங்களின் ஒழுங்கமைப்பு (தொடர்/ சமாந்தரம்) பற்றி யாது
	கூறுவீர் (உயர்வான மின்னோட்டத்தைப் பிறப்பித்தலே மீனின் சிறப்பான சூழலுக்கேற்ற
	இசைவாக்கமாக இருக்கும்)
	நன்னீரில்

கடல் நீரில் -

ii.	உமது	ഖിഥെധെ	மேலே	உள்ள	அட்டவணையில்	பெறப்பட்ட	முடிவுகளின்	அடிப்படையில்
	நியாயப்ப	படுத்துக.						

iii. ஜந்து கலங்கள் தொடர் நிலையில் உள்ள போது மொத்த மின்னியக்க விசை 6.9V ஆக இருப்பின் கீழே தரப்பட்ட அட்டவணையில் உள்ள தரவுகளைப் பயன்படுத்தி கலம் ஒன்றின் அகத்தடையைக் காண்க.

.....

சுமைத்தடை (Ω)	முனைவு அழுத்தம் (V)	மின்னோட்டம் (A)
2.2	3.3	1.5

.....

(b) கடல் நீரின் தடைத்திறனை துணிவதற்கான பரிசோதனை ஒன்றிற்காக, பிளாஸ்திக் கொள்கலன் ஒன்று கடல் நீரால் முற்றாக நிரப்பப்பட்டது. உலோகத் தகட்டுத் துண்டுகள் இரண்டு கொள்கலனின் முனைவுகள் X,Y என்பவற்றை மூடியிருக்குமாறு கலனின் உள்ளே வைக்கப்பட்டுள்ளது.

இந்நிரலில்
எதனையும்
எழுதுதல்
அகாகு

i.	உலோகத் தகட்டுத் துண்டுகளுக்கு தடைமானி ஒன்று இணைக்கப்பட்டு X,Y இற்கு இடையிலான கடல் நிரின் தடை அளக்கப்பட்டது. (கடல் நீரின் தடை = $1.2~\mathrm{k}\Omega$) கடல் நீரின் தடைத்திறனைக் கணிக்க.
ii.	மாணவன் ஒருவனால் குறித்த பரிசோதனையில் கடல் நீரிற்குப் பதிலாக நன்னீர் எடுக்கப்பட்டு அதனுள் உப்பு சிறிது சிறிதாக சேர்த்து கலக்கப்படுகிறது. இதன் போது சேர்க்கப்படும் உப்பின் திணிவு m உடன் தடைமானியின் வாசிப்பு R இற்கான வரைபு ஒன்றை மாணவன் வரைகிறன் மாணவனால் வரையப்பட்டிருக்கக்கூடிய வரைபின் பருமட்டான வரைபை வரைந்து காட்டுக. (அச்சுகளைத் தெளிவாகக் குறிப்பிடுக.
(c)	i. ஒரு திருக்கை மீனானது தனது இரையைத் தாக்கும் போது 45V அழுத்த வேறுபாட்டையும் 0.12A மின்னோட்டத்தையும் 5ms இற்கான ஒரு அடிப்பில் உற்பத்தி செய்கின்றது. குறித்த ஒரு தாக்குதலிற்கான அடிப்புக்கள் 400 ஆயின் இத் தாக்குதலில் இம் மீனினால் இடமாற்றப்பட்ட சக்தியைக் கணிக்க.
	ii. இவ்வகைத் தாக்குதலின் போது திருக்கை மீனின் உடற்பகுதிகள் பாதிப்படையாமல் இருப்பதற்கு அதன் உடற்பாகத்தின் தடைத்திறன் எவ்வாறு இருத்தல் வேண்டும் காரணம் தருக.
	iii. திருக்கை மீனினால் நிகழ்த்தப்படும் இவ்வகைத் தாக்குதலால் இரை மீது ஏற்படும் பாதிப்பு குறித்த ஒரு துரர எல்லைக்கு உட்பட்டதாக இருப்பதற்கான காரணம் யாது?

[(முழுப்பதிப்புரிமையுடையது / All Rights Reserved]

MORA E-TAMILS 2019 Tamil Students, Faculty of Engineering, University of Moratuwa MORA E-TAMILS 2013 | Tamil Students, Faculty of Engineering University of Moratuwa Longic Beam வல்கலைக்கு மொழுட்டு கூடிய மானவர்கள் பெற்ற பிட குழ் மானவர்கள் பிட குழ் மானவர்கள் பெற்ற பிட குழ் மானவர்கள் பிடி குழ் மானவர்கள் பிட குழ் மானவர்கள் பிட குழ் மானவர்கள் பிடி குழ் மானவர்கள் பிடி குழ் மானவர்கள் பிடி கிழ் மானவர்கள் பிடி கிழ் மானவர்கள் பிட குழ் மானவர்கள் பிடி கிழ் மானவர்கள் பிடிய பிட குழ் மானவர்கள் பிடிய பிட குழ் மானவர்கள் பிடிய பிட குழ் மானவர்கள் பிடிய பிட கிழ் மானவர்கள் பிடிய பிடி

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2017 General Certificate of Education (Adv.Level) Pilot Examination - 2017

> பௌதிகவியல் II Physics II

01 T II

பகுதி B - கட்டுரை

நான்கு வினாக்களுக்கு மாத்திரம் விடையளிக்குக.

 $(g = 10 \text{ N kg}^{-1})$

5.

(a) கிடையான ஓடுபாதை ஒன்றில் மேலெழுவதற்காக ஓடுவதற்குத் தயாரான நிலையில் ஓய்வில் உள்ள ஜெற் விமானம் ஒன்றைப் படம் காட்டுகிறது. விமானத்தின் குறித்த இந்நிலையில் அதன் இயந்திரம் இயங்கிக் கொண்டுள்ள போதும் தடுப்புக்கள் பிரயோகிக்கப்பட்டிருப்பதனால் ஓடுபாதை வழியேயான விமானத்தின் இயக்கம் தடுக்கப்பட்டுள்ளது.

ஓடுபாதை /

இங்கு தரப்பட்டிருக்கும் படத்திற்கு ஒப்பான வரிப்படம் ஒன்றை உமது விடைத்தாளில் வரைந்து குறித்த ஜெற் விமானம் மீது தாக்கும் பின்வரும் விசைகள் ஒவ்வொன்றையும் ஒவ்வொரு அம்புக்குறிகள் மூலம் வரைந்து காட்டுக.

- i. ஜெந் விமானத்தின் நிறை (W)
- ii. இயந்திரத்தினால் உஞற்றப்படும் விசை (T)
- iii. ஓடு பாதையினால் ஜெற் விமானத்தின் மீது வழங்கப்படும் மொத்த விசை (F)
- (b) தடுப்புக்கள் விடுவிக்கப்பட்டன. இயந்திரத்தினால் உஞந்நப்படும் அதியுயர் விசை $30 \mathrm{kN}$ ஜெந் விமானத்தின் மேலெழும்பல் கதி $50 \mathrm{ms}^{-1}$ ஜெந் விமானத்தின் திணிவு $6000 \mathrm{kg}$.
 - i. ஜெந் விமானம் ஆனது ஒய்விலிருந்து அதன் மேலெழும்பல் புள்ளிக்கு பயணித்த மிகக்குறுகிய தூரத்தைக் கணிக்க.
 - வினா i இல் கணிக்கப்பட்ட தூரத்தை விட ஓடுபாதையின் தூரம் பெரிதாக இருக்க வேண்டியதற்கான காரணத்தை விளக்குக.
- (c) குறித்த ஜெற் விமானம் ஆகாய விமானச் சாகசக் காட்சிப்படுத்தல் ஒன்றில் பயன்படுத்தப்படும் போது r ஆரையுடைய கிடை வட்டப்பாதையில் 80ms⁻¹ மாநாக்கதியில் இதனை பறக்கச் செய்ய வேண்டிய தேவையை விமானி கொண்டிருந்தார். விமானத்தின் இறக்கைகள் கிடைக்கு 30⁰ சாய்வில் இருக்குமாறு பறப்பதன் மூலம் இத்தேவையை நிறைவு அடையச் செய்யக் கூடியதாக இருந்தது. ஜெற் விமானம் இந்நிலையில் பறந்து கொண்டுள்ள போது அதன் மீது தாக்கும் இரு விசைகள் உயர்த்தும் விசை L மற்றும் நிறை W படத்தில் காட்டப்பட்டுள்ளன. ஜெற்விமானத்தின் இவ் இயக்கத்தில் வளித்தடை விளைவுகள் புறக்கணிக்கப்படக்கூடியது

- i. உயர்த்தும் விசை L இன் பெறுமானத்தைக் கணிக்க.
- ii. ஆரை r ஜக் கணிக்க.
- iii. மேலே கணிக்கப்பட்ட ஆரையிலும் குறைவான ஆரையுடைய கிடைவட்டப் பாதையில் குறித்த ஜெந் விமானத்தைப் பறக்கச் செய்வதற்கு விமானத்தின் கதி V, கிடையுடனான சாய்வுக்கோணம் θ என்பவற்றை முன்னைய கதி $(80~{
 m ms}^{-1})$, சாய்வுக்கோணம் (30^0) என்பவற்றுடன் ஒப்பிடுக.
- (d) விமானச் சாகசக் காட்சிப்படுத்தல் நிகழ்வின் இன்னொரு பகுதியாக விமானி உருவில் காட்டியவாறான நிலைக்குத்து வட்டப்பாதையில் ஒரு மாறாக் கதியுடன் விமானத்தைப் பறக்கச் செய்கிறார்

- i. குறித்த ஒரு கதியில் உருவில் காட்டப்பட்ட வட்டப்பாதை வழியேயான குறித்த ஒரு புள்ளியில் விமானியால் நிறையற்ற தன்மை உணரப்படுகிறது.
 - 1. வட்டப்பாதையை விடைத்தாளில் பிரதி செய்து, விமானியால் நிறையற்ற தன்மை உணரப்படும் புள்ளி A ஜ புள்ளடி மூலம் குறித்துக் காட்டுக.
 - 2. குறித்த பாதையின் ஆரை r, விமானத்தின் கதி V, புவியீர்ப்பு ஆர்முடுகல் g என்பவற்றிற்கிடையிலான தொடர்பு யாது?
- ii. இவ் இயக்கத்தில் ஜெற் விமானத்தின் இயக்கத்தை இரு விசைகள் மாறா நிறை W மற்றும் மாறும் விசை P என்பவற்றை அடிப்படையாகக் கொண்டு விளக்குவது வசதியாக அமையும். இங்கு P இயந்திரத்தால் உஞற்றப்படும் விசை, இறக்கைகளினால் உயர்த்தும் விசை மற்றும் வளித்தடை என்பவற்றின் விளையுளாக அமையும். படத்தில் புள்ளி B இல் ஜெற் விமானம் நிலைக்குத்தாக மேல் நோக்கி பறக்கிறது. இங்கு விசை P வட்டப்பாதையின் மையத்தை நோக்கி திசைப்படுத்தப்படாதிருப்பதற்கான காரணம் யாது? விளக்குக.
- 6. பறக்கும் பாலூட்டிகளான வௌவால்கள் எதிரொலிகளைப் பயன்ப்படுத்துவதன் மூலம் இரவு நடமாட்டத்தின் போது குழலைப் பற்றியும் தமது பாதையில் உள்ள தடைகளையும் அறிந்துகொள்வதுடன் தமக்கான உணவுகளின் இருப்பிடத்தை அறிந்து அவற்றைக் கைப்பற்றக்கூடிய வகையிலும் இசைவாக்கம் பெற்ற புலனுணர்வு அமைப்புக்களைக் கொண்டவையாக விளங்குகின்றன. பெரும்பாலும் பூச்சி உண்ணி வகையைச்சார்ந்த இவற்றில் சில பழங்களை உண்பவையாகவும் சில பூக்களிலுள்ள தேன், இரத்தம் என்பவற்றைக் குடிப்பவையாகவும் பல்வேறு இனங்களாக வகைப்படுத்தப்பட்டுள்ளன.

வௌவால்களினால் பிறப்பிக்கப்படும் கழி ஒலிகள் (20-200kHz) ஒவ்வொரு இனத்திற்கும் அதாவது குறித்த ஒரு இனத்தின் சூழல், அதற்கான இரை என்பவற்றின் அடிப்படையில் வேறுபட்டுக் காணப்படும். அத்துடன் இவை தாம் எழுப்பும் ஒலிகளின் எதிரொலிகள், உணரப்பட எடுக்கும் நேரம் மூலம் குறித்த பொருள் அதாவது இரை அமைந்துள்ள தூரத்தையும் (அண்மையில்/ சேய்மையில்) உணரப்படும் பகுதி (காதின் வெளி/ உட்பகுதிகள், வலதுகாது/ இடதுகாது) மூலம் இரையின் அமைவிடத்தையும் (மேல்/ கீழ் / வலது/ இடது), செறிவு மூலம் பொருளின் அளவையும் (பெரிது/ சிறிது), சுருதி மூலம் அதன் அசைவையும் (நோக்கி/ விலத்தி) [Dappler Effect] பற்றி நமது கண்ணால்

குறித்த பொருளைப் பார்த்து பெற்றுக்கொள்ளப்படும் தகவல்களுக்கு நிகரான தகவல்களைப் பெற்றுக்கொள்கின்றன. வெளவால்கள் எந்தவொரு சந்தர்ப்பத்திலும் தாம் பிறப்பிக்கும் ஒலிகளை விட செறிவு குறைவான எதிரொலிகளையே உணரக்கூடியதாக இருக்கின்றன. ஒலி வெளியேறும் போதும் திரும்பி வரும் போதும் ஏற்படும் பரவல் இழப்புக்கள், இருவழிப்பயணத்தின் போதும் நிகழும் ஊடகத்தினாலான உறிஞ்சல், எதிரொலியைப் பிறப்பிக்கும் மேற்பரப்பின் உறிஞ்சல் போன்றவையே இதற்குரிய காரணங்களாகக் கருதப்படுகின்றன.

வெளவால்கள் தமது தேவைக்கு ஏற்ப மாறா அதிர்வெண் (Constant Frequency) கொண்ட ஒலிகளை, அதிர்வெண் வேறுபாடு கொண்ட (Frequency Modulated) ஒலிகளை, இரண்டும் இணைந்த நிலை ஒலிகளைப் பிறப்பிக்கின்றன. அது மட்டுமன்றி சந்தர்ப்பத்திற்கு ஏற்ற வகையில் உயர், தாழ் அதிர்வெண் (High, Low Frequency) ஒலிகளையும் பிறப்பிக்கின்றன.

வெளவால் இனங்களால் ஒலி எழுப்பப்படும் வடிவம் பிரதானமாக இரண்டு வகையாக பிரிக்கப்படுகிறது.

- குறுகிய அழைப்பு எதிரொலி காலஇடைவெளி கொண்ட அழைப்புக்கள்
 (ஒலி எழும்பலின் போது நடுக்காதுத்தசைகள் சுருங்கும் தன்மையுள்ள வெளவால் இனங்கள்)
 - மிகக் குறுகிய நேர அழைப்பொலிகள் (எதிரொலிகள் வந்தடைவதற்கு முன் முடிவடையும் அழைப்புக்கள்) எழுப்பப்படும். ஒலி எழுப்பலுக்கும் எதிரொலி கேட்டலுக்கும் இடைப்பட்ட காலப்பகுதியில் காதுத் தசைகள் தளர்வடைவதனால் எதிரொலிகளைத் தெளிவாகக் கேட்கமுடியும். எதிரொலி கேட்பதில் நிகழும் தாமதம் வெளவால் தனது இரையின் அமைவிடத்திற்கான வீச்சைக் கணிப்பதற்குரிய வசதியை வழங்குகிறது.
- ii. தொடர் அழைப்பு எதிரொலி காலஇடைவெளி அற்ற அழைப்புக்கள்(குறித்த அதிர்வெண் வீச்சை மட்டும் உணரக்கூடிய காதுள்ள வெளவால் இனங்கள்)

வெளவாலின் காது இசைவாக்கம் அடைந்துள்ள அதிர்வெண் வீச்சிற்கு உட்படாத அதிர்வெண் உடைய தொடர்ச்சியான அழைப்பொலிகள் எழுப்பப்படும்.தமது பறக்கும் வேகங்களை மாற்றுவதன் மூலம் எதிரொலிகளைத் தம்மால் உணரக்கூடிய அதிர்வெண் வீச்சிற்குள் இருக்குமாறு மாற்றுகின்றன. (Doppler Effect) கேட்கப்படும் எதிரொலிகள் வெளவாலின் இரையின் அசைவு, அமைவிடம் பற்றிய தகவல்களை வழங்குகின்றன.

ஆகவே வௌவால்கள் பற்றிய ஆய்வில் ஈடுபடும் ஒரு ஆராய்ச்சியாளர் வௌவால் ஒன்றினால் எழுப்பப்படும் ஒலியின் தன்மை, அது பிறப்பிக்கப்படும் வடிவம் என்பவற்றைக் கூர்ந்து அவதானிப்பாராயின் குறித்த வௌவாலின் இனத்தை அடையாளம் காண்பதுடன் அதன் சந்தர்ப்பத்திற்கேற்றவாறான தேவைகளையும் இலகுவில் விளங்கிக்கொள்ள முடியும்.

(உமது கணிப்பிற்கு வளியில் ஒலியின் வேகம் $340 \,\mathrm{ms}^{-1}$)

(a)

i.

- 1. வெளவால்கள் எதிரொலிகளைப் பயன்படுத்தும் சந்தாப்பங்கள் 3 தருக?
- 2. வெளவால்கள் தமது இரை உள்ள தூரம், அதன் அமைவிடம், அதன் அளவு, அதன் இயக்கம் என்பவற்றை அறிந்துகொள்ள எதிரொலிகளை எவ்வாறு பயன்படுத்துகின்றன?

ii.

- பிறப்பிக்கும் ஒலியின் செறிவிலும் பார்க்க உணரப்படும் எதிரொலியின் செறிவு எந்தவொரு சந்தர்ப்பத்திலும் குறைவாகவே இருக்கும். இதற்கு ஏதுவாக இருக்கக் கூடிய காரணங்கள் 3 தருக?
- 2. உணரப்படும் எதிரொலியின் செறிவை தீர்மானிக்கும் காரணிகள் 3 தருக?
- iii. வெளவால்கள் பொருட்களை அண்ணளவாக உணர்வதற்கு தாழ் அதிர்வெண்ணுடைய கழி ஒலியை பயன்படுத்துகின்ற போதும் துல்லியமாக உணர்வதற்கு உயர் அதிர்வெண்ணுடைய கழி ஒலியையே பயன்படுத்துகின்றன. இதற்கான காரணம் யாது?

(b)

- i. குகை ஒன்றினுள் இருக்கும் வெளவால் ஒலியைப்பிறப்பித்து தொடர் எதிர் ஒலிகைளை அவதானிக்கிறது. கேட்க ஆரம்பிக்கும் எதிர்ஒலி ஒலி பிறப்பிக்கப்பட்டு 0.1s இல் அவதானிக்கப்படுகிறது. வெளவாலிற்கும் குகையின் சுவருக்கும் இடையிலான குறுகிய தூரம் யாது?
- ஒய்விலுள்ள நிலையான பூச்சி ஒன்றை நோக்கி வெளவாலானது 10ms⁻¹ மாறாக்கதியில் ஒலியை பிறப்பித்த வண்ணம் பறக்கிறது. இவ்வியக்கத்தில் 70kHz அதிர்வெண்ணுடைய எதிர் ஒலியைக் கேட்கிறது.
 - 1. வெளவால் பிறப்பிக்கும் ஒலியின் அதிர்வெண் யாது?
 - கேட்ட எதிர் தற்போது எதிர் ஒலியின் அதிர்வெண் ஆரம்பத்தில் அவதானித்த லைியின் அதிர்வெண்ணிலும் 5kHz இனால் மாறுவதாக உணர்வதுடன் வெளவாலை பூச்சி விலத்தி இயங்குவதாகவும் உணர்கின்றது. எனின் பூச்சியின் வேகத்தினைக் காண்க?
 - 3. பூச்சியைப் பின் தொடரும் வெளவால் தற்போது எதிரொலியை முதற்தடவையாக அதன் இரு காதுகளில், முதலில் வலக்காதினால் உணரும் எனின் வெளவாலிற்கு பூச்சி தற்போது எப்பக்கத்தில் உள்ளது.
- 7. திரவமூலக்கூறுகள் இரண்டிற்கிடையிலான பிணைப்பை உடைக்கத் தேவையான சக்தி அவற்றின் பினைப்பு சக்தி (E₀) எனப்படுகிறது. இச்சக்தி அவ்விரு மூலக்கூறுகளையும் தனிமைப்படுத்தப்பயன்படுகிறது. அதாவது அவற்றிற்கிடையிலான அழுத்தசக்தியைப் பூச்சியமாக்குகிறது. ஒரு திரவத்தினுள் உள்ள ஒவ்வொரு மூலக்கூறும் n எண்ணிக்கையான அடுத்துள்ள அயல் மூலக்கூறுகளால் சூழப்பட்டிருக்கும். ஆகவே திரவத்தினுள் உள்ள மூலக்கூறு ஒன்றை அதன் அடுத்துள்ள மூலக்கூறுகளின் பிணைப்பில் இருந்து உடைப்பதற்குத் தேவையான சக்தி nE₀

திரவ மேற்பரப்பு ஒன்று புதிதாக உருவாக்கப்படும் போது திரவத்தின் உள்ளிருந்து மேற்பரப்பிற்கு வரும் மூலக்கூறைக்கருதின் அவை n/2 எண்ணிக்கையான மூலக்கூறுகளின் பிணைப்பில் இருந்து விடுவிக்கப்பட்டவையாக இருக்கும் (படத்தைப் பார்க்க). ஆகவே இதன் போது ஒரு மூலக்கூறிற்கு வழங்கப்படும் சக்தி $\frac{1}{2}nE_0$ புதிய மேற்பரப்பு N எண்ணிக்கையான மூலக்கூறுகளை ஓரலகு பரப்பில் கொண்டிருப்பின் அங்கு N/2 எண்ணிக்கையான சோடி மூலக்கூறுகள் காணப்படும். ஆகவே ஓரலகு பரப்புடைய புதிய மேற்பரப்பு ஒன்றை உருவாக்கத் தேவையான சக்தி.

 $T= {}^{1}\!\!/_{\!2}\;N\;x\;{}^{1}\!\!/_{\!2}\;nE_0$

 $= \frac{1}{4} \text{NnE}_0$

இவ்வாறு மேற்பரப்பு ஒன்றின் உருவாக்கத்திற்கு வழங்கப்படும் சக்தியே அம்மேற்பரப்பின் மேற்பரப்பு சக்தி எனப்படும். வெப்பநிலை மாநாதுள்ளபோது திரவம் ஒன்றின் மேற்பரப்பை ஓரலகினால் அதிகரிப்பதற்குத் தேவையான சக்தி அத்திரவத்தின் மேற்பரப்பு இழுவிசை எனப்படும். திரவமேற்பரப்பு ஒன்றை மாநா வெப்பநிலையில் அதிகரிக்கச் செய்தல் ஓர் சமவெப்பச் செயல்முறை ஆகும்

- (a)
- i. மூலக்கூறுகளிற்கிடையிலான பிணைப்பு சக்தி என்றால் என்ன?
- ii. பிணைப்புசக்தி E_0 ஆக உள்ள இரு மூலக்கூறுகளின் அழுத்த சக்தி யாது?

- iii. திரவத்தினுள் உள்ள மூலக்கூறு திரவமேற்பரப்பிற்கு போது வரும் எத்தனை முலக்கூறுகளின் பிணைப்பிலிருந்து விடுவிக்கப்படுகின்றது என்பதை போது அது திரவத்தினுள் உ ள்ள அயல் முலக்கூறுகளின் எண்ணிக்கையில் தருக.
- iv. மேலுள்ள தரவுகளிலிருந்து A மேற்பரப்பளவுள்ள திரவ மேற்பரப்பின் மேற்பரப்பு சக்தி யாது?
- (b) திரவங்கள் கொதித்து ஆவியாதலின் போது திரவங்களினுள் உள்ள மூலக்கூறுகளின் பிணைப்பு உடைக்கப்படுகிறது. இவ்வாறு L மூலக்கூறுகள் உடைவதற்குத் தேவையான சக்தி ½LnE₀
 - i. $1 {
 m kg}$ நீர் கொதித்து ஆவியாகும் செயற்பாட்டின் போது நீர் மூலக்கூறு ஆவிமூலக்கூறாக உடைக்கப்படுவதற்கு $2.3~{
 m x}~10^6 {
 m J}$ சக்தி தேவைப்படுகிறது. ஒரு மூல் நீர் மூலக்கூறுகளின் திணிவு $0.018 {
 m Kg}$. அவகாதரோ எண் $6~{
 m x}10^{23} {
 m mol}^{-1}$ நீரிற்கு ${
 m n}~=10$ ஆயின் நீர்மூலக்கூறுகளிற்கிடையிலான பிணைப்பு சக்தியைக் காண்க.
 - ii. நீரின் அலகு மேற்பரப்பில் உள்ள மூலக்கூறுகளின் எண்ணிக்கை $N=2x10^{18} m^{-2}$ ஆகவும், குறித்த வெப்பநிலையில் நீர் மூலக்கூறுகளின் பிணைப்பு உடைவுக்கான சக்தி வினா (b)(i) இல் கணிக்கப்பட்ட சக்திக்கு சமன் எனவும் கொண்டு மேற்பரப்பிழுவையின் வரைவிலக்கணத்திற்கமைவாக நீரின் மேற்பரப்பு இழுவையைக் கணிக்க.
 - iii. சில சிறிய பூச்சிகள் நீரின் பரப்பிழுவை காரணமாக நீர்ப்பரப்பைக் கீழே தள்ளிக்கொண்டு நீர்ப்பரப்புகளில் நடந்து செல்லத்தக்கன பூச்சிகளின் அடிகள் அண்ணளவாகக் கோளமானவையாகக் கருதப்படலாம். இவ்வாறான 6 கால்களைக் கொண்ட ஒரு பூச்சியின் கால் ஒன்றின் திரவ மேற்பரப்பில் தொடுகையுறும் வட்டக்குறுக்குவெட்டின் ஆரை $3x10^{-5}m$ ஆயின் மேற்குறிப்பிட்ட நீரில் அது உள்ள போது பாதத்தை தொடும் திரவமேற்பரப்பு நிலைக்குத்தாக அமைக்கும் கோணம் θ ஆகும். $\cos\theta=0.8$ ஆயின் பூச்சியின் திணிவை $\log 2$ 00 தருக. ($\alpha=0.3$ 1 என்க)
 - iv. மேலே கூறப்பட்ட பூச்சி வேறோர் திரவத்தில் விடப்படுகின்றது. அத்திரவம் நீரின் மேற்பரப்பிழுவையிலும் கூடிய மேற்பரப்பிழுவையை கொண்டுள்ள போதும் இத்திரவத்தில் பூச்சி அமிழ்வதாக காணப்படுகிறது. இதற்கான காரணம் யாது?

8.

- (a) i. பூமியின் மத்தியிலிருந்து r தூரத்திலுள்ள m திணிவொன்றின் ஈர்ப்பு அழுத்த சக்திக்கான கோவையைத் தருக. பூமியின் திணிவு $M_{\rm E}$, ஆரை $R_{\rm E}$ ஆகும் (இங்கு $r > R_{\rm E}$)
 - ii. கோள் ஒன்றிற்கான "தப்பு வேகம் (Ve)" என்பதிலிருந்து யாது விளங்குகிறீர்?
 - $V_0 = V_0$ (V_0) வேகத்துடன் எறியப்படும் துணிக்கையின் முடிவுவேகம் $V_0 = V_0^2 + V_0^2$ எனக்காட்டுக
 - iv. வினா (iii) இல் எறியப்படும் துணிக்கையின் இயக்கத்திற்கான வேக (V)- நேர(t) வரைபினை வரைக
 - v. கோள் ஒன்றின் தப்பு வேகம் 3000ms⁻¹ எனின், கோளின் மேற்பரப்பிலிருந்து 5000ms⁻¹ வேகத்தில் எறியப்படும் துணிக்கை கொண்டுள்ள முடிவு வேகம் யாது?

சந்திரனின் மேற்பரப்பிற்கும் பூமியின் மேற்பரப்பிற்கும் இடையிலான ஈர்ப்பு அழுத்தம் மையங்களை இணைக்கும் கோடு வழியே மாறுபடுவதை மேலுள்ள படம் காட்டுகிறது. புள்ளி P யில் ஈர்ப்பு அழுத்தம் அதியுயர்வாகும். பின்வரும் வினாக்கள் செய்கையில் புவிசார்பாக சந்திரன் ஓய்விலுள்ளதாக கருதுக

- i. Q என்னும் புள்ளியில் திணிவு வைக்கப்படின் அத்திணிவில் தாக்கும் விளையுள் ஈர்ப்புவிசை எத்திசையில் அமையும்
- ii. P யிலுள்ள துணிக்கை மெதுவாக புவியை நோக்கி இயங்க ஆரம்பிப்பின் இத்துணிக்கை புவியை அடைகையில் அத்துணிக்கையின் கதி யாது?
- iii. புவிமேற்பரப்பிலிருந்து சந்திரனை நோக்கி எநியப்படும் துணிக்கை சந்திரனின் மேற்பரப்பை அடைவதற்கு எநியப்பட வேண்டிய இழிவு கதி யாது?
- iv. புவிசார்பாக சந்திரன் சுற்றுதல் கருதப்படும் போது வினா (b)iii கணிக்கப்பட்ட கதியுடன் எறியப்படும் துணிக்கை ஒன்று சந்திரன் மேற்பரப்பை அடையமுடியுமா? உமது விடையை விளக்குக.

9. பகுதி (A) இற்கு அல்லது பகுதி (B) இற்கு மாத்திரம் விடை எழுதுக.

- (A) தற்போது மீள்நிரப்பு மின்கலங்களைக் கொண்டு மின் மோட்டார்களை இயக்குவதன் மூலம் மின்சக்தியில் இயங்கும் வாகனங்கள் பாவனைக்கு வந்துள்ளன. மின் மோட்டார்களினால் கார்களின் சில்லுகளுக்கு கணப்பொழுதில் உடனடியாக வழங்கப்படும் முறுக்கமானது அவற்றின் உறுதியானதும் சீரானதுமான ஆர்முடுகல் உருவாக்கத்திற்கு உதவுகின்றது. உட்புற எரிப்பு இயந்திரங்களினால் இயங்கும் கார்களை விட (எரிபொருளில் இயங்கும் கார்கள்) மின்சார கார்கள் அண்ணளவாக 3 மடங்கு திறன் வாய்ந்தவையாகவும் விளங்குகின்றன. மின்சார கார்களின் பயன்பாடு 19ம் நூற்றாண்டின் நடுப்பகுதியில் ஆரம்பிக்கப்பட்டு இன்று மிகவும் பிரபலமடைந்து வருகின்றன. எரிபொருட்கள் மற்றும் எண்ணெய் (Oil) என்பவற்றில் அதன் இயக்கம் தங்கியிருக்காத தன்மை வளி மற்றும் ஒலி மாசடைதல் தவிர்க்கப்படல், மீள மின்னேற்றிப் பயன்படுத்தக் கூடிய கலங்கள் காணப்படல் போன்ற சில காரணங்களே இதன் பிரபல்யத்தன்மைக்கான காரணங்களாகும். அத்துடன் இதன் இயக்கத்திற்கான, பராமரிப்பிற்கான செலவுகள் குறைவாகவும் இலகுவாகவும் இருத்தலும் மக்களிற்கு இதன் மேல் ஈர்ப்பை ஏற்படுத்தியுள்ளன. எனினும் இவற்றின் கொள்வனவு விலை அதிகமாக இருத்தல், கலத்தின் மீள் மின்னேற்றத்திற்கு கூடிய நேரம் எடுத்தல், குறுகிய தூர பயணத்திற்கு பின் கலங்கள் மின்னேற்றப்படவேண்டிய தேவை போன்ற சில விடயங்களுடன் வீதியில் பயணிக்கும் ஏந்படல் ஏனைபோருக்கும் இதன் பயன்பாடு சில சமயங்களில் இடையூறாக இருப்பதாகவும் கூறப்படும் கருத்துக்கள் பாவனையாளர்களையும் சாரதிகளையும் ஒரு குழப்பமான நிலைக்குத் தள்ளியள்ளன. ஆயினும் கார் உற்பத்தி நிறுவனங்கள் கலங்களின் பாவனைக் காலத்தை அதிகரித்தல், மின்னேற்றத்தை விரைவுபடுத்தல், கொள்வனவுப் பெறுமதியைக் குறைத்தல் போன்றவற்றிற்கு சில முயற்சிகளை மேற்கொள்வதுடன் வளர்ச்சியடைந்த நாடுகளில் மின்னேற்றல் நிலையங்களை தேவையான இடங்களில் நிறுவுதல், வாகனத் தரிப்பிடங்களில் மின்னேற்றலுக்கான வசதிகளை ஏற்படுத்தல் போன்ற நடவடிக்கைகள் மூலம் மின்சார கார்களின் பாவனையை அதிகரிக்கச் செய்ய வழியமைத்து வருகின்றன.
 - (a) எரிபொருள்களில் இயங்கும் கார்களுடன் ஒப்பிடுகையில் மின்கார்களின் பாவனையில் உள்ள இரு நன்மைகளும் இரு தீமைகளும் தருக.
 - (b) மின்சார கார் ஒன்றில் மின்கலத்தின் மின்னியக்க ഖിசെ 24V. உள்ள இது முழுமையாக மணித்தியாலங்களிற்கு மின்னோட்டத்தை மின்னேற்றப்பட்ட நிலையில் 4.0 மோட்டரிற்கு 200A வழங்கக்கூடியது.
 - i. கலம் ஒன்றின் மின்னியக்க விசை என்பதிலிருந்து யாது விளங்கிக்கொள்கிறீர் என்பதை சக்தியின் அடிப்படையில் விளக்குக.
 - ii. கலத்தினால் வழங்கப்படக்கூடிய மொத்த ஏற்றம் Q ஐக் காண்க.
 - iii. 24V மாறா மின்னியக்க விசையில் கலத்தினால் வழங்கப்படக்கூடிய மொத்த சக்தி E ஜக் கணிக்க.

(c) கலத்திற்கான மின்னேற்றியானது (charger) எந்தவொரு வழங்கல் மின்னோட்டத்திற்கும் (I) 30V பயப்பைக் கொண்டுள்ளது என்க. சுற்றின் மாற்றப்படக்கூடிய தடையுடன் சேர்ந்த மொத்ததடையும் உருவில் ஒரு தடை R இனால் சுட்டிக்காட்டப்பட்டுள்ளது. XY இற்கிடையில் மின்னேற்றப்பட வேண்டிய கலம் இணைக்கப்பட்டு அது மின்னேற்றப்படும். (கலத்தின் அகத்தடை புறக்கணிக்கத்தக்கது)

- i. வினா (b) இல் குறிப்பிடப்பட்டுள்ள மின்கலமானது மின்னேற்றப்படுவதற்கு மேலே காட்டப்படும்
 சுற்றில் இணைக்கப்படும் விதத்தை முனைவுத்தன்மையை தெளிவாகக் குறிப்பிட்டு உமது விடைத்தாளில் வரைந்து காட்டுக.
- ii. மின்னேற்றியினால் 120A மின்னோட்டம் மாநாது வழங்கப்படும் போது கலத்திற்குக் குறுக்கேயான அழுத்த வேறுபாடு 24V இல் மாநாது பேணப்படுகிறது. குறித்த சந்தர்ப்பத்தில் தடை R இன் பெறுமானம் யாது?
- iii. கலம் மின்னேற்றப்படும் போது தடை R இல் விரயமாகும் வலுவைக் கணிக்குக.
- iv. கலத்தின் முழுமையான மின்னேற்றச் செயன்முறைக்கு எடுக்கும் நேரம் யாது?
- (d) இவ்வாறான மின்னேற்றல் செயற்பாடு ஒன்று இலங்கையில் உள்ள ஒரு வீட்டில் நிகழ்த்தப்படவேண்டி உள்ளது. அவ்வீட்டிற்கான மின்வழங்கல் கம்பியில் பெறக்கூடிய அதியுயர் மின்னோட்டம் 40A வீட்டிற்கான மின்வழங்கல் 240V இல் மாறாது பேணப்படுகிறது. குறித்த வினா (c) இல் கூறப்பட்ட கலத்தை மின்னேற்றுவதற்காக 30V dc வழங்கலை வழங்குவதற்கு இங்கு படிகுறை நிலைமாற்றியுடன் சேர்ந்த சீராக்கல் சுற்று ஒன்று பயன்படுத்தப்படுகின்றது.
 - i. இலட்சிய படிகுறை நிலைமாற்றியில் உள்ள பெய்ப்பு, பயப்பு சுற்றுகளிலுள்ள முறுக்குகளின் எண்ணிக்கைக்கிடையிலான விகிதம் யாது?
 - ii. வினா (c)(ii) இல் கூறப்பட்டவாறு 120A மின்னோட்டத்தில் கலத்திற்கு மின்னேற்றச் செயற்பாடு நிகழும் போது நிலைமாற்றியின் பெய்ப்புச் சுற்றில் உள்ள மின்னோட்டம் யாது?
 - iii. குறித்த வீட்டில் மேற்கூறிய மின்னேற்றல் செயன்முறை நிகழ்ந்து கொண்டிருக்கும் சந்தர்ப்பத்தில் மின்வழங்கல் கம்பி பாதிப்புக்கு உள்ளாகாதவாறு அதாவது பிரதான மின் உருகி உருகலிற்கு உட்படாதவாறு 240V அழுத்தவேறுபாட்டில் செயற்படக்கூடிய உபகரணங்களுக்கு இருக்கக்கூடிய மொத்த உயர்வலு யாது?
- (B) (a) எளிய அழுத்த விரியலாக்கி சுற்றில் உள்ள சிலிக்கன் மூவாயி ஒன்று, ஆடலோட்ட பெய்ப்பில் அழுத்த சைகை இல்லாத போது சேகரிப்பான் மின்னோட்டம் 3mA இல் திருப்திகரமாகச் (திட்டச் சிறப்பியல்பிற்கமைய) செயற்படுத்தப்படுவதைப் படம் காட்டுகிறது. வழங்கல் அழுத்தம் (V_{CC}) 6V ஆகவும் குறித்த சிலிக்கன் மூவாயியின் கோடல் நிலையில் அடிகாலி அழுத்தவேறுவாடு (V_{BE}) 0.6V ஆகவும் உள்ளது.

மூவாயிகளின் மின்னோட்ட நயம் (β) என்பது காலி மின்னோட்டம் $(I_{\rm C})$ இற்கும் அடி மின்னோட்டம் $(I_{\rm B})$ இற்கும் இடையிலுள்ள விகிதமாகும். இது மூவாயிகளின் வகைக்கமைய 10 இலிருந்து 1000 வரை இருக்கும். சுற்றிலுள்ள (படம்) மூவாயிக்கு β =100 ஆகும். விரியலாக்கியின் அழுத்த நயம் என்பது பெய்ப்பில் ஏற்படும் அழுத்த மாற்றம் (ΔV_i) இற்கு பயப்பில் ஏற்படும் அழுத்தமாற்றம் (ΔV_0) ஆயின் $\frac{\Delta V_0}{\Delta V_i}$

ஆல் தரப்படும். குநித்த எளிய பொதுக் காலி விரியலாக்கச் சுற்றில் பெய்ப்புத் தடை என்பது பெய்ப்பு அழுத்தத்தில் ஏற்படும் மாற்றம் (ΔV_i) இற்கும் அதனால் அடி மின்னோட்டத்தில் ஏற்படும் மாற்றம் (ΔI_B) இற்கும் இடையிலுள்ள விகிதமாகும். மேலே தரப்பட்ட சுற்றிலுள்ள மூவாயியின் பெய்ப்புத்தடை $2k\Omega$ ஆகும் ஆகவே குறித்த விரியலாக்கச் சுற்றில் பயப்பில் ஏற்படும் அழுத்தமாற்றம் ΔV_0 பின்வருமாறு தரப்படும்.

$$\Delta V_0 = \Delta I_C \times R_L$$

$$= \beta \Delta I_B \times R_L$$

$$= \beta \times \frac{\Delta V_i}{2 \times 10^3} \times R_L$$

- i. திட்டச் சிறப்பியல்பிற்கமைய சேகரிப்பான் அழுத்தம் $V_{
 m c}$ யாது?
- ii. சுமைத்தடை (R_L) ஜக் காண்க.
- iii. கோடல் அடித்தடை (R_B) ஜக் காண்க.
- iv. முழுமையான விரியலாக்கத்தைப் பெறக்கூடியவாறு குறித்த விரியலாக்கியின் பெய்ப்புடன் பொருத்தச் செய்யக் கூடிய ஆடலோட்ட அழுத்தத்தின் உச்சப்பெறுமானம் யாது?
- v. குறித்த விரியலாக்க சுற்றின் அழுத்த நயம் யாது?
- (b) ஷம்பூ (Shampoo) போத்தல்கள் உருவாக்கும் இயந்திரத் தொகுதி ஒன்றில் போத்தல்கள், கொண்டு செல்லும் பட்டியினூடு திரவ நிரல்களை உணரும் உணரி ஒன்றைக் கடந்து செல்கின்றன. இங்கு மிகையாக அல்லது குறைவாக நிரப்பப்பட்ட போத்தல்கள் நிராகரிக்கப்பட்டு ஏற்றுக் கொள்ளக்கூடிய மட்டத்திற்கு நிரப்பப்பட்ட போத்தல்கள் பொதி செய்யப்படும் இடத்திற்குப் பட்டியினூடு தொடர்ந்து கடத்தப்படுகின்றுக

திரவ நிரல் உணரியானது ஒளிமுதல் (Lamp) ஒன்றையும் இரு ஒத்த ஒளி உணரிகளையும் (Light ஒளி படம் sensors) கொண்டுள்ளது. உணரிகளின் அடைவிடங்களைக் கீழுள்ள காட்டுகிறது. ஒளிமுதலிலிருந்து வரும் ஒளியானது ஒளிமுதலுக்கும் உணரிக்கும் இடையில் ஷம்பூ இல்லாத சந்தர்ப்பத்தில் மட்டுமே உணரியை அடையக்கூடியதாக இருக்கும்.

திரவ நிரல் உணரியின் தர்க்கச் சுற்றின் பகுதி ஒன்று கீழுள்ள படத்தில் காட்டப்பட்டுள்ளது.

ஒளி உணரியின் பெய்ப்பிற்கும் பயப்பிற்குமான தர்க்கத் தொடர்பை அட்டவணை காட்டுகிறது.

உணரியில் ஒளி மட்டம் (பெய்ப்பு)	பயப்பு தர்க்க மட்டம்(பயப்பு)
போத்தல்கள் ஒளியைக் குறுக்கிடும் போது	0
ஒளி படும் போது	1

- i. படலை x ஜப் பெயரிடுக.
- உமது விடைத்தாளில் பின்வரும் அட்டவணையைப் பிரதி செய்து, வெவ்வேறு மட்டங்களில் நிரப்பப்ட்ட போத்தல்கள் ஒளியைக் குறுக்கிடும் போது P, Q, R இன் பயப்பு தர்க்க மட்டங்களை அதில் பூர்த்தி செய்க.

திரவமட்டம்	P	Q	R	F
மிகை நிரப்பல்				
ஏற்றுக் கொள்ளப்படக்கூடிய அளவு				
குநைரப்பல்				

- iii. நிராகரிக்கும் சுற்றின் இயக்கத்திற்கு பயப்பு தர்க்க மட்டம் '1' தேவைப்படுகிறது. போத்தல் ஏற்றுக்கொள்ளக்கூடிய அளவு நிரப்பப்படாத போது மட்டும் Y யின் பயப்பு 1 ஐ தரவேண்டும் எனின்,
 - 1. அட்டவணையில் Y இன் பயப்பு F ஐ பூர்த்தி செய்க

 - Y இனுள் இருக்கவேண்டிய படலை சுற்றை NAND படலைகளை மட்டும் கொண்டு தயாரிக்க.

10. பகுதி (A) இந்கு அல்லது பகுதி (B) இந்கு மாத்திரம் விடை எழுதுக.

(A)

(b)

(a) போயிலின் விதியைக் கூறுக.

 10cm
 20cm
 M

 Y
 X

 கொள்கலன் (A)
 கொள்கலன் (B)

மேலே விறைப்பான கொள்கலன்கள் A,B ஆகியன முறையே L,M எனும் கொள்கலன்கள் வழியே உராய்வின்றி வழுக்கக் கூடிய வளியிறுக்கமான முசலங்களைக் கொண்டுள்ளன. இவை காட்டியவாறு இலேசான நீளா இழையினால் இணைக்கப்பட்டு கொள்கலன்களினுள் வாயுவைச் சிறைப்பிடித்து உள்ள நிலை படத்தில் காட்டப்பட்டுள்ளது. L,M எனும் முசலங்களினது குறுக்குவெட்டுப்பரப்புகள் முறையே $1x10^{-3}m^2,\ 2x10^{-3}m^2$ ஆகும். காட்டிய சந்தர்ப்பத்தில் தொகுதியில் அடைக்கப்பட்ட வாயுவின் மொத்தக் கனவளவு $6 \times 10^{-4}m^3$ ஆகவும் அமுக்கம் $2x10^5 Pa$ ஆகவும் உள்ளது வளிமண்டல அமுக்கம் $1x10^5 Pa$ ஆகும்.

- i. கொள்கலன்கள் நிலையாகப்பிடிக்கப்பட்டு x இல் ஒர் விசையைப் பிரயோகிப்பதன் மூலம் தொகுதி சமநிலையில் பேணப்பட்டுள்ளது.
 - 1. X இல் பிரயோகிக்கப்படும் விசையும் அதன் திசையும் யாது?
 - 2. இழையில் உள்ள இழுவை யாது?
- ii. தொகுதி ஒப்பமான தரை ஒன்றில் வைக்கப்பட்ட பின் X இல் பிரயோகிக்கப்பட்ட விசை அகற்றப்படுவதுடன் முசலமும் விடுவிக்கப்படின் தொகுதியின் இயக்கம் பற்றி யாது கூறுவீர்?

கீழுள்ள வினாக்களிற்கு விடையளிக்கும் போது கொள்கலன், முசலங்களின் திணிவுகளைப் புறக்கணிக்குக.

- iii. தொடரும் இயக்கதில் கொள்கலன் A இல் உள்ள வாயு முழுவதும் அகற்றப்பட்ட நிலையில்,
 - 1. சிறைப்பிடிக்கப்பட்ட வாயுவின் கனவளவு மாற்றம் யாது?
 - 2. சிறைப்பிடிக்கப்பட்ட வளியின் வெப்பநிலை மாறவில்லையெனில் இவ்வாயுவின் அமுக்கம் யாது?
 - இதிலிருந்து சமநிலைக்கு வரும் போது கொள்கலன் (A) இல் உள்ள வாயு முழுவதும் அகற்றப்பட்டிருக்கும் என்பதனை நியாயப்படுத்துக (தொகுதி இறுதியாக சமநிலை அடையும் போது வாயு ஆரம்ப வெப்பநிலைக்கு மீள்கிறது).
- iv. வினா (iii)(3) இல் இறுதிச்சமநிலை அடையும் போது சிறைப்பிடிக்கப்பட்ட வாயுவால் செய்யப்பட்ட வேலை யாது? (சாடை: வளிமண்டல அமுக்கத்திற்கு எதிராகவே வேலை செய்யப்படும்)
- v. விசைகள் அகற்றப்பட்டு மீண்டும் உறுதி அடையும் வரையான காலப்பகுதியில் தொகுதி பெற்ற வெப்பம் யாது?
- vi. "வெப்பப் பரிமாற்றம் நிகழ்வதற்கு தொகுதிகளிற்கிடையில் வெப்பநிலை வித்தியாசம் இருத்தல் வேண்டும். இக் கருத்துண்மைக்கமைய மேலுள்ள வினா (v) இல் குறித்த வெப்பப் பரிமாற்றத்தை விளக்குக.
- vii. தொகுதிவிடுவிக்கப்பட்டதில் இருந்து மீண்டும் சமநிலை அடைந்து வாயு மீண்டும் அறை வெப்பநிலை அடையும் வரையான காலப்பகுதியில் சிறைப்பிடிக்கப்பட்ட வாயுவின் சராசரி வெப்பநிலை நேரத்துடன் மாறுபடுவதை காட்டும் பருமட்டான வரைபை அச்சுகளைக் குறித்து வரைக.
- (B) இயற்கையாகக் காணப்படும் உறுதித்தன்மையற்ற கதிரியக்க சமதானிகளின் கருக்களைப் போன்ற கருக்கள் மருத்துவத் தேவைகளுக்காகவும் பௌதிகவியல் ஆய்வுகளுக்காகவும் செயற்கையாக உருவாக்கப்படுகின்றன. இச்செயற்பாடு கரு ஒன்றை உயர் இயக்கசக்தி கொண்ட அயன் ஒன்றினால் மோதச் செய்வதன் மூலம் நிகழ்த்தப்படுகிறது.
 - ¹⁸F என்பது மருத்துவத்துறையில் PET scan செய்வதற்காகப் பயன்படுத்தப்படும் மிக முக்கியமான ஒரு சமதானியாகும். குறுகிய ஆயுள் கொண்ட பொசித்திரன்களைக் காலுகின்ற இத்தகைய கருக்கள் "Cyclotrons" எனும் அமைப்பினை உபயோகித்து உற்பத்தி செய்யப்படுகின்றன இவ் அமைப்பானது பிரதானமாக இரு பகுதிகளைக் கொண்டது.
 - 1. அயனை ஆர்முடுக்கும் பகுதி
 - 2. இலக்கை மோதும் பகுதி.

பகுதியினுள் இவ் அமைப்பானது (ழழுமையாக வெற்றிடமாக்கப்பட்ட அமைந்திருக்கும் ஏற்றப்பட்ட துணிக்கைகள் (அயன்கள்) மட்டுமே ஒரு Cyclotron இல் ஆர்முடுக்கப்படக்கூடியனவாகவும் இவற்றை ஆர்முடுக்க மின்புலம் ஒன்றும் இங்கு பயன்படுத்தப்படுகின்றது. cyclotron இன் மையப் பகுதியில் அயன் முதல் அமைந்திருக்கும் DEE என அழைக்கப்படும் இரு அரைவட்டப்பகுதிகளான A,B என்பவற்றிற்கு அயன் இடையிலுள்ள இடைவெளிப்பகுதியில் நேர் ஒன்று ஆர்முடுக்கப்படுவது மேலுள்ள உருவில் இந்கிடையில் காட்டப்பட்டுள்ளது. இச்செயற்பாட்டிற்காக X,Y மாநா அழுத்தவேறுபாடு ஒரு வேறுபாடானது பிரயோகிக்கப்படுவதுடன் அவ் அழுத்த நேர் மறை அழுத்தங்களாகக் குறித்த இடைவெளியில் மாறிக்கொண்டும் இருக்கக் கூடிய வகையில் அமைப்பானது ஒழுங்குபடுத்தப்பட்டிருக்கின்றது. Cyclotron இன் மத்தியில் உள்ள அயன் முதலில் இருந்து விடுவிக்கப்படும் நேர் அயனானது (புரோத்திரன்) அண்ணளவாக ஒய்விலிருந்து DEE ஒன்றின் ஒரு விளிம்பில் இருந்து வெளியேற்றப்படுகிறது. வலிமையானதும் திசையில் உள்ளதுமான காந்தப்புலத்தினால் குறித்த நேர் ஏற்றத்துணிக்கை மேலே துணிக்கை தாக்கும்விசை காரணமாக உருவில் காட்டியுள்ளவாறான இயக்கப் பாதையில் இயக்கப்படுகிறது.

இவ்வாறு ஆர்முடுக்கப்பட்டு உயர் இயக்கசக்தியைபெற்ற ஒரு புரோத்திரன் $^{18}_{8}O$ சமதானிக் கருவுடன் மோதுகை அடைந்து இணைவதுடன் நியூத்திரன் ஒன்றை விடுவித்து ^{18}F ஆக மாற்றப்படுகிறது. இங்கு உருவாகும். ^{18}F இன் தொழிற்பாட்டு அளவு (A) பின்வருமாறு அளவிடப்படுகிறது.

$$A = I \, n \, \sigma \left(1 - e^{-\lambda t} \right)$$

இங்கு

- I- ஒரலகு நேரத்தில் (s) $^{18}_{8}O$ ஜக் கொண்ட இலக்கின் ஒரலகு பரப்பில் (cm 2) மோதுகையை நிகழ்த்தும் புரோத்திரன்களின் எண்ணிக்கை.
- n இலக்கிலுள்ள $^{18}_{8}O$ அணுக்களின் எண்ணிக்கை
- λ கதிரியக்க தேய்வு மாறிலி
- σ மோதுகை நிகழ்த்தப்படும் இலக்கின் பரப்பு (cm^2)
- t மோதுகைக்கு உட்படும் நேரம் (s)

இலக்கில் 0.3barn பரப்பில் மோதுகை நிகழ்த்தப்படுவதாகவும் இன் அரைவாழ்வுக் காலம் $(T_{1/2})$ 110 நிமிடங்கள் எனவும் குறிப்பிடப்பட்டுள்ளது (1barn= 10^{-24} cm²) Scan செய்ய வேண்டிய நோயாளியின் தேவையான உடற் பகுதியினுள் செலுத்தப்படும் ^{18}F இனால் காலப்படும் பொசித்திரன் குறித்த தூரம் பயணித்து Scan செய்யப்படும் குறிப்பிட்ட பகுதியில் உள்ள இலத்திரன் ஒன்றுடன் இணைவதன் மூலம் அழிவடைவதுடன் இரு போட்டோன்கள் $(\gamma -$ கதிர்கள்) வெளியேற்றப்படுவதைக் கீழுள்ள உரு காட்டுகிறது. இவை உடலுக்கு வெளியில் உள்ள கருவி ஒன்றினால் உணரப்படுவதன் மூலம் PET விம்பம் உருவாக்கப்படுகிறது.

(a)

- i. குறித்த அமைப்பில் நேர் அயன் ஒன்று ஆர்முடுக்கப்படும் போது மேலிருந்து பார்க்கையில் உருவில் காட்டியவாறு அவ் அயனின் இயக்கப்பாதை அவதானிக்கப்படின் குறித்த இடத்தில் காணப்படும் காந்தப்புலத்தின் திசை யாது?
- நேர் அயன் x இலிருந்து y இற்கு இயங்கும் குறித்த சந்தர்ப்பம் ஒன்றில் இருக்கவேண்டிய x சார்பான y இன் அழுத்தக் குறியைக் குறிப்பிடுக.
- iii. குறித்த பகுதியில் பிரயோகிக்கப்படும் காந்தப்பாய அடர்த்தி B எனவும் அழுத்த வேறுபாடு $V_{
 m o}$ எனவும் கொள்க அத்துடன் அயனின் திணிவு m, அதன் ஏற்றம் e உம் ஆயின்,
 - 1. X,Y இன் இரு பக்கமும் (இரு DEE க்கள் A,B என்பவற்றில்) ஏற்றத்தின் இயக்கத்தின் போது காந்தப்புலத்தினால் அவ் ஏற்றம் மீது வேலை எதுவும் செய்யப்படவில்லை என்பதற்கான காரணம் யாது?
 - X,Y இற்குக் குறுக்காக குறித்த ஏற்றமானது n தடவைகள் பயணித்த நிலையில் அவ் ஏற்றம் பெற்ற இயக்க சக்தி யாது?
 - 3. x இலிருந்து y இந்குள் நுழையும் சந்தர்ப்பம் ஒன்றில் v வேகத்தைக் கொண்டிருக்கும் இவ் அயன் அரைவட்டப் பகுதியில் இயங்கி மீண்டும் y ஜ அடையும் வரையான இயக்கத்திற்குரிய அதன் இயக்கப் பாதையின் ஆரை யாது?
 - 4. மேலே வினா (3) இல் கூறப்பட்ட அயனின் இயக்கத்திற்கு எடுக்கும் நேரம் t யாது?

(b)

- i. $^{18}_{8}O$ கருவுடன் புரோத்திரன் மோதுகை அடையும் போது உருவாகும் விளைவுக்கான கருத்தாக்கச் சமன்பாட்டைத் தருக.
- ii. $30\mu A/cm^2s$ இல் உள்ள புரோத்திரன்களின் எண்ணிக்கையை கணிக்க. (புரோத்திரனின் ஏற்றம் $e=1.6~x10^{-19}C$)
- iii. உருவாக்கப்பட்ட ^{18}F இன் தேய்வு மாறிலி λ ஐக் கணிக்க (${
 m s}^{ ext{-}1}$ இல் தருக) $\lambda=rac{0.7}{T_{1/2}}$
- iv. $1 \mathrm{g} \ H_2^{-18}O$ ஆனது $30 \mu \mathrm{A/cm}^2$ புரோத்திரன் கற்றை ஒன்றினால் 1 மணித்தியாலத்திற்கு மோதுகைக்கு உட்படுத்தப்படும் போது உருவாகும் இன் தொழிற்பாட்டு அளவைக் கணிக்க. (n=2.17 x 10^{23} , $\mathrm{e}^{-0.378}=0.6852$)
- m v. குறித்த செயன்முறையில் தயாரிக்கப்பட்ட ^{18}F இன் குறிப்பிட்ட அளவு $10^8{
 m Bq}$ தொழிற்பாடு கொண்டிருக்கையில் நோயாளியின் உடலிலுள்ள செலுத்தப்படுகிறது. செலுத்தப்பட்டு 110 நிமிடங்களில் m PET விம்பம் பெறப்படுகிறது. இக்கணத்தில் உடலினுள் $m \gamma$ போட்டோன்கள் உருவாக்கப்படும் வீதத்தினை $m s^{-1}$ இல் தருக.

 $(^{18}F$.இலிருந்து காலலாக்கப்படும் γ ஜ உருவாக்கக் கூடிய அனைத்து பொசித்திரன்களும் உடற் பகுதியிலுள்ள இலத்திரன்களுடன் இணைகின்றது எனக்கொள்க.)

- vi. PET விம்ப உருவாக்கத்திற்கு இச்செயன்முறையில் உடலினுள் உருவாகும் γ கதிர்கள் பயன்படுத்தப்படக்கூடியதாக இருப்பதற்கான காரணம் யாது?
- vii. பொசித்திரன் இலத்திரனுடன் இணைவதன் மூலம் அழிவடையும் செயன்முறையில் உருவாகும் இரு γ கதிர்களும் எதிரெதிர்த்திசைகளில் காலப்படுவதற்கான காரணம் யாது?