PARADIGMAS DE PROJETO DE ALGORITMOS

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

1º SEMESTRE DE 2008

Antonio Alfredo Ferreira Loureiro

loureiro@dcc.ufmg.br

http://www.dcc.ufmg.br/~loureiro

Paradigmas de projeto de algoritmos

- Indução
- Recursividade
- Tentativa e erro
- Divisão e conquista
- Balanceamento
- Programação dinâmica
- Algoritmos gulosos
- Algoritmos aproximados

Princípio da indução matemática (fraca)

Seja P(n) um predicado definido para os inteiros n, e seja n_0 um inteiro fixo. Suponha que as duas afirmações abaixo sejam verdadeiras:

- 1. $P(n_0)$ é V.
- 2. Para todos inteiros $k \ge n_0$, se P(k) é V então P(k+1) é V.
- → Logo, a afirmação para todos inteiros n ≥ n₀, P(n) é V.

Princípio da indução matemática

- Técnica aparece pela primeira vez no trabalho do italiano Francesco Maurolico em 1575.
- No século XVII, Pierre de Fermat e Blaise Pascal usam essa técnica em seus trabalhos. Fermat dá o nome de "método do descendente infinito."
- Em 1883, Augustus De Morgan descreve o processo cuidadosamente e dá o nome de indução matemática.
- → Técnica extremamente importante para a Ciência da Computação.

Para visualizar a idéia da indução matemática, imagine uma coleção de dominós colocados numa seqüência (formação) de tal forma que a queda do primeiro dominó força a queda do segundo, que força a queda do terceiro, e assim sucessivamente, até todos os dominós caírem.

Princípio da indução matemática (fraca)

- A prova de uma afirmação por indução matemática é feita em dois passos:
 - 1. Passo base: é provado que $P(n_0)$ é V para um dado n_0 específico.
 - 2. Passo indutivo: é provado que para todos inteiros $k \ge n_0$, se P(k) é V então P(k+1) é V.

O passo indutivo pode ser escrito formalmente como:

$$\forall$$
 inteiros $k \geq n_0$, se $P(k)$ então $P(k+1)$

- Para provar o passo indutivo deve-se:
 - supor que P(k) é V, onde k é um elemento específico mas escolhido arbitrariamente de tal forma que seja maior ou igual a n_0 .
 - provar que P(k+1) é V.

Princípio da indução matemática (fraca)

Este princípio pode ser expresso pela seguinte regra de inferência:

$$[P(n_0) \land \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall nP(n).$$

Numa prova por indução matemática não e assumido que P(k) é verdadeiro para todos os inteiros! É mostrado que se for assumido que P(k) é verdadeiro, então P(k+1) também é verdadeiro.

Os próximos 10 exemplos ilustram o uso do Princípio da Indução Matemática e estão apresentados aqui para estudo e referência.

Prove que para todos inteiros $n \geq 1$,

$$1+2+\ldots+n=\frac{n(n+1)}{2}$$

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(1)$: Para $n_0 = 1$, $1 = \frac{1(1+1)}{2} = 1$ e a fórmula é verdadeira para $n_0 = 1$.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.
 - Suponha que a fórmula seja verdadeira para n = k, i.e.,

$$P(k): 1+2+\ldots+k = \frac{k(k+1)}{2}$$

para algum inteiro $k \geq 1$. [hipótese indutiva]

Deve-se mostrar que

$$P(k+1): 1+2+\ldots+(k+1) = \frac{(k+1)(k+2)}{2}$$

Sabe-se que

$$1+2+\ldots+k+(k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

[Isto era o que devia ser provado.]

Prove que para todos inteiros $n \geq 0$,

$$0+1+2+\ldots+n=\frac{n(n+2)}{2}$$
 ERRADO!

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(0)$: Para $n_0 = 0$, $0 = \frac{0(0+2)}{2} = 0$ e a fórmula é verdadeira para $n_0 = 0$.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.
 - Suponha que a fórmula seja verdadeira para n = k, i.e.,

$$P(k): 0+1+2+\ldots+k=\frac{k(k+2)}{2}=\frac{k^2+2k}{2}$$

para algum inteiro $k \geq 0$. [hipótese indutiva]

Deve-se mostrar que

$$P(k+1): 0+1+2+\ldots+(k+1)=\frac{(k+1)(k+3)}{2}=\frac{k^2+4k+3}{2}$$

Sabe-se que

$$0+1+2+\ldots+k+(k+1) = \frac{k^2+2k}{2}+(k+1)$$

$$= \frac{k^2+2k+2(k+1)}{2}$$

$$= \frac{k^2+4k+2}{2}$$

[Assim, não foi possível derivar a conclusão a partir da hipótese. Isto significa que o predicado original é falso.]

Prove que

$$P(n): \sum_{i=0}^{n} r^{i} = \frac{r^{n+1}-1}{r-1}$$

para todos inteiros $n \geq 0$ e para todos números reais $r, r \neq 1$.

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(0)$: Para $n_0 = 0$, $r^0 = 1 = \frac{r^{0+1}-1}{r-1} = \frac{r-1}{r-1} = 1$ e a fórmula é verdadeira para $n_0 = 0$.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- $-P(k): \sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1}$, para $k \ge 0$. [hipótese indutiva]
- Deve-se mostrar que P(k+1) : $\sum_{i=0}^{k+1} r^i = \frac{r^{k+2}-1}{r-1}$

$$\sum_{i=0}^{k+1} r^{i} = \sum_{i=0}^{k} r^{i} + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}$$

$$= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1}$$

$$= \frac{r^{k+2} - 1}{r - 1}$$

Prove que

$$P(n): 2^{2n}-1$$
 é divisível por 3,

para $n \geq 1$.

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(1)$: Para $n_0 = 1$, $2^{2 \cdot 1} 1 = 3$ que é divisível por 3.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- P(k): $2^{2k} 1$ é divisível por 3. [hipótese indutiva]
- Deve-se mostrar que P(k+1): $2^{2(k+1)} 1$ é divisível por 3.

$$2^{2(k+1)} - 1 = 2^{2k+2} - 1$$

$$= 2^{2k} \cdot 2^2 - 1$$

$$= 2^{2k} \cdot 4 - 1$$

$$= 2^{2k} \cdot (3+1) - 1$$

$$= 2^{2k} \cdot 3 + (2^{2k} - 1)$$

que é divisível por 3.

Prove que

$$P(n): 2^{0} + 2^{1} + 2^{2} + ... + 2^{n} = 2^{n+1} - 1,$$

para $n \geq 0$.

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(0)$: Para $n_0 = 2^0 = 1$, $2^1 1 = 1$.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

$$-P(k): 2^0 + 2^1 + 2^2 + \ldots + 2^k = 2^{k+1} - 1$$
, para $k \ge 0$. [hipótese indutiva]

- Deve-se mostrar que P(k+1) : $2^0 + 2^1 + 2^2 + ... + 2^{k+1} = 2^{k+2} - 1$

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{k} + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$$

= $2 \cdot 2^{k+1} - 1$
= $2^{k+2} - 1$

Prove que

$$P(n): H_{2^n} \geq 1 + \frac{n}{2},$$

para $n \geq 0$, onde H_j representa o número harmônico, que é definido por:

$$H_j = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{j}.$$

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(0)$: Para $n_0 = 0$, temos $H_{2^0} = H_1 = 1 \ge 1 + \frac{0}{2}$.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- P(k): $H_{2^k} \ge 1 + \frac{k}{2}$, para $k \ge 0$. [hipótese indutiva]
- Deve-se mostrar que $P(k+1): H_{2^{k+1}} \ge 1 + \frac{k+1}{2}$

$$H_{2^{k+1}} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^k} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \ldots + \frac{1}{2^{k+1}}$$
[Definição de número harmônico.]

$$= H_{2^k} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \ldots + \frac{1}{2^{k+1}}$$

[Definição de número harmônico.]

$$\geq \left(1+\frac{k}{2}\right)+2^k\cdot\frac{1}{2^{k+1}}$$

[Hipótese indutiva e existem 2^k termos, cada um pelo menos $1/2^{k+1}$.]

$$\geq \left(1+\frac{k}{2}\right)+\frac{1}{2}$$

$$\geq 1 + \frac{k+1}{2}$$
.

Seja a seqüência a_1, a_2, a_3, \ldots definida como

$$a_1 = 2$$
 $a_k = 5a_{k-1}, k \ge 2$

Prove que

$$a_n = 2 \cdot 5^{n-1}$$

para $n \geq 1$.

Prova (por indução matemática):

- 1. Passo base: $P(n_0) = P(1)$: Para $n_0 = 1$, $2 \cdot 5^{1-1} = 2$ e $a_1 = 2$. Logo, a fórmula é válida para n = 1.
- 2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- -P(k): $a_k = 2 \cdot 5^{k-1}$. [hipótese indutiva]
- Deve-se mostrar que P(k+1) : $a_{k+1} = 2 \cdot 5^{(k+1)-1} = 2 \cdot 5^k$.

$$a_{k+1} = 5 \cdot a_{(k+1)-1}$$

= $5 \cdot a_k$
= $5 \cdot (2 \cdot 5^{k-1})$
= $2 \cdot (5 \cdot 5^k)$
= $2 \cdot 5^k$

Prove que para todos os inteiros $n \geq 3$

$$P(n)$$
: $2n + 1 < 2^n$

Prova (por indução matemática):

1. Passo base: $P(n_0) = P(3)$. Para $n_0 = 3$,

$$2 \cdot 3 + 1 < 2^3$$
.

Logo, a fórmula é válida para $n_0 = 3$.

2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- P(k): $2k + 1 < 2^k$, para $k \ge 3$. [hipótese indutiva]
- Deve-se mostrar que P(k+1): $2(k+1)+1<2^{k+1}$.

$$2k + 2 + 1 =$$
 $(2k + 1) + 2 =$
 $(2k + 1) + 2 < 2^{k} + 2$
 $2(k + 1) + 1 < 2^{k} + 2 \stackrel{?}{<} 2^{k+1}$

Se puder ser mostrado que $2^k + 2 < 2^{k+1}$ então o predicado P(k+1) é verdadeiro.

$$2^{k} + 2 \stackrel{?}{<} 2^{k+1}$$
 $2 \stackrel{?}{<} 2^{k+1} - 2^{k}$
 $2 \stackrel{?}{<} 2^{k}(2-1)$
 $2 \stackrel{?}{<} 2^{k}$
 $1 < 2^{k-1}$, que é verdade para $k > 2$.

Em particular, a inequação (1 $< 2^{k-1}$) é válida para $k \ge 3$. Assim, P(k+1) é V.

Prove que para todos os inteiros $n \geq 1$

$$P(n)$$
: $n^3 - n$ é divisível por 3.

Prova (por indução matemática):

1. Passo base: $P(n_0) = P(1)$. Para $n_0 = 1$,

$$1^3 - 1 = 0$$
 é divisível por 3.

Logo, a fórmula é válida para $n_0 = 3$.

2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- P(k): $k^3 k$ é divisível por 3, para $k \ge 1$. [hipótese indutiva]
- Deve-se mostrar que P(k+1): $(k+1)^3 (k+1)$ é divisível por 3, para $k \ge 1$.

$$(k+1)^3 - (k+1) =$$

$$(k^3 + 3k^2 + 3k + 1) - (k+1) =$$

$$(k^3 - k) + 3(k^2 + k)$$

O primeiro termo é divisível por 3 (hipótese indutiva) e o segundo também. Como a soma de dois números divisíveis por 3 é um número divisível por 3, então o predicado P(k+1) é V.

Seja o inteiro $n \ge 1$. Mostre que qualquer região quadrada de tamanho $2^n \times 2^n$, com um quadrado removido, a região restante pode ser preenchida com peças no formato L, como mostrado abaixo.

Nota: A peça no formato L é constituída por três quadrados de tamanho 1×1 .

Prove que para todos os inteiros $n \geq 1$, P(n): Qualquer região quadrada de tamanho $2^n \times 2^n$, com um quadrado removido, a região restante pode ser preenchida com peças no formato L.

Prova (por indução matemática):

1. Passo base: $P(n_0) = P(1)$. P(1) é V já que uma região quadrada de tamanho 2×2 , com um quadrado removido, a região restante pode se preenchida com peças no formato L, como mostrado abaixo.

2. Passo indutivo: se a fórmula é verdadeira para n=k então deve ser verdadeira para n=k+1, i.e., $P(k) \rightarrow P(k+1)$.

- P(k): Qualquer região quadrada de tamanho $2^k \times 2^k$, com um quadrado removido, a região restante pode ser preenchida com peças no formato L. [hipótese indutiva]
- Deve-se mostrar P(k+1): Qualquer região quadrada de tamanho $2^{k+1} \times 2^{k+1}$, com um quadrado removido, a região restante pode ser preenchida com peças no formato L.

Considere uma região quadrada de tamanho $2^{k+1} \times 2^{k+1}$, com um quadrado removido. Divida essa região em quatro regiões de tamanho $2^k \times 2^k$ como mostrado abaixo.

Temos três regiões $2^k \times 2^k$ com nenhum quadrado removido e uma região $2^k \times 2^k$ com um quadrado removido. Ou seja, a região $2^{k+1} \times 2^{k+1}$ possui apenas um quadrado removido.

Pela hipótese indutiva, a região $2^k \times 2^k$, com um quadrado removido, pode ser preenchida com peças no formato L. O problema passa a ser como a mesma hipótese indutiva pode ser aplicada às outras três regiões.

Temporariamente remova um quadrado de cada região $2^k \times 2^k$ que está "completa" como mostrado na figura abaixo à esquerda.

Pela hipótese indutiva cada uma dessas três regiões $2^k \times 2^k$ pode ser preenchida com peças no formato L. No entanto, para resolvermos o problema da peça removida em cada uma dessas três regiões basta colocarmos uma peça L exatamente sobre esses três "buracos" como mostrado na figura abaixo à direita.

Assim, uma região quadrada de tamanho $2^{k+1} \times 2^{k+1}$, com um quadrado removido, a região restante pode ser preenchida com peças no formato L, como mostrado na figura abaixo.

Princípio da indução matemática (forte)

Seja P(n) um predicado que é definido para inteiros n, e seja a e b inteiros fixos, sendo $a \le b$. Suponha que as duas afirmações seguintes sejam verdadeiras:

- 1. $P(a), P(a+1), \ldots, P(b)$ são V. (Passo base)
- 2. Para qualquer inteiro $k \ge b$, se P(i) é V para $a \le i < k$ então P(k) é V.
 - → Logo, a afirmação para todos inteiros $n \ge a$, P(n) é V.

(A suposição que P(i) é V para $a \le i < k$ é chamada de hipótese indutiva.)

Princípio da indução matemática (forte): Exemplo 11

• Seja a seqüência a_1, a_2, a_3, \ldots definida como

$$a_1 = 0$$
 $a_2 = 2$
 $a_k = 3 \cdot a_{|k/2|} + 2, k \ge 3$

Prove que a_n é par, para $n \geq 1$.

Prova (por indução matemática):

- 1. Passo base: Para n=1 e n=2 a propriedade é válida já que $a_1=0$ e $a_2=2$.
- 2. Passo indutivo: Vamos supor que a_i é par para todos inteiros i, $0 \le i < k$. [hipótese indutiva]

Princípio da indução matemática (forte): Exemplo 11

Se a propriedade é válida para $0 \le i < k$, então é válida para k, ou seja, a_k é par [o que deve ser mostrado].

Pela definição de a_1, a_2, a_3, \dots

$$a_k = 3 \cdot a_{|k/2|} + 2, \ k \ge 3$$

O termo $a_{\lfloor k/2 \rfloor}$ é par pela hipótese indutiva já que k>2 e $0 \leq \lfloor k/2 \rfloor < k$. Desta forma, $3 \cdot a_{\lfloor k/2 \rfloor}$ é par e $3 \cdot a_{\lfloor k/2 \rfloor} + 2$ também é par, o que mostra que a_k é par.

Indução matemática e algoritmos

- É útil para provar asserções sobre a correção e a eficiência de algoritmos.
- Consiste em inferir uma lei geral a partir de instâncias particulares.
- Seja T um teorema que tenha como parâmetro um número natural n. Para provar que T é válido para todos os valores de n, provamos que:
 - 1. T é válido para n = 1;

[Passo base]

2. Para todo n > 1, se T é válido para n, então T é válido para n + 1.

[PASSO INDUTIVO]

- Provar a condição 2 é geralmente mais fácil que provar o teorema diretamente (podemos usar a asserção de que T é válido para n).
- As condições 1 e 2 implicam T válido para n=2, o que junto com a condição 2 implica T também válido para n=3, e assim por diante.

Limite superior de equações de recorrência

- A solução de uma equação de recorrência pode ser difícil de ser obtida.
- Nesses casos, pode ser mais fácil tentar advinhar a solução ou obter um limite superior para a ordem de complexidade.
- Advinhar a solução funciona bem quando estamos interessados apenas em um limite superior, ao invés da solução exata.
 - → Mostrar que um certo limite existe é mais fácil do que obter o limite.
- Por exemplo:

$$T(2n) \le 2T(n) + 2n - 1,$$

 $T(2) = 1,$

definida para valores de n que são potências de 2.

→ O objetivo é encontrar um limite superior na notação O, onde o lado direito da desigualdade representa o pior caso.

Indução matemática para resolver equação de recorrência

$$T(2) = 1,$$

 $T(2n) \le 2T(n) + 2n - 1,$

definida para valores de n que são potências de 2.

- Procuramos f(n) tal que T(n) = O(f(n)), mas fazendo com que f(n) seja o mais próximo possível da solução real para T(n) (limite assintótico firme).
- Vamos considerar o palpite $f(n) = n^2$.
- Queremos provar que

$$T(n) \le f(n) = O(f(n))$$

utilizando indução matemática em n.

Indução matemática para resolver equação de recorrência

Prove que $T(n) \le f(n) = O(f(n))$, para $f(n) = n^2$, sendo

$$T(2) = 1,$$

 $T(2n) \le 2T(n) + 2n - 1,$

definida para valores de n que são potências de 2.

Prova (por indução matemática):

1. Passo base:

$$\overline{T(n_0)} = T(2)$$
: Para $n_0 = 2$, $T(2) = 1 \le f(2) = 4$, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$ (lembre-se que n é uma potência de 2; conseqüentemente o "número seguinte" a n é 2n).

Reescrevendo o passo indutivo temos:

$$\operatorname{Predicado}(n) \rightarrow \operatorname{Predicado}(2n)$$

 $(T(n) \leq f(n)) \rightarrow (T(2n) \leq f(2n))$

$$T(2n) \leq 2T(n) + 2n - 1$$
 [Definição da recorrência]
 $\leq 2n^2 + 2n - 1$ [Pela hipótese indutiva podemos substituir $T(n)$]
 $\leq 2n^2 + 2n - 1 \stackrel{?}{<} (2n)^2$ [A conclusão é verdadeira?]
 $\leq 2n^2 + 2n - 1 < 4n^2$ [Sim!]

Essa última inequação é o que queremos provar. Logo, $T(n) = O(n^2)$.

- Vamos tentar um palpite menor, f(n) = cn, para alguma constante c.
- Queremos provar que

$$T(n) \le f(n) = cn = O(f(n))$$

utilizando indução matemática em n.

Prove que $T(n) \leq f(n) = O(f(n))$, para f(n) = cn, sendo T(2) = 1, $T(2n) \leq 2T(n) + 2n - 1,$

definida para valores de n que são potências de 2.

Prova (por indução matemática):

1. Passo base:

$$\overline{T(n_0)} = T(2)$$
: Para $n_0 = 2$, $T(2) = 1 \le f(2) = 2c$, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$.

Reescrevendo o passo indutivo temos:

$$egin{array}{lll} {\sf Predicado}(n) &
ightarrow & {\sf Predicado}(2n) \ (T(n) \leq f(n)) &
ightarrow & (T(2n) \leq f(2n)) \ (T(n) \leq cn)) &
ightarrow & (T(2n) \leq 2cn) \end{array}$$

$$\begin{array}{ll} T(2n) & \leq & 2T(n)+2n-1 \\ & \leq & 2cn+2n-1 \\ & \leq & 2cn+(2n-1) \\ & \leq & 2cn+2n-1 > 2cn \end{array} \quad \begin{array}{ll} \hbox{[Definição da recorrência]} \\ \hbox{[Pela hipótese indutiva podemos substituir } T(n) \\ & \leq & 2cn+(2n-1) \\ & \leq & 2cn+2n-1 > 2cn \end{array} \quad \begin{array}{ll} \hbox{[A conclusão } (T(2n) \leq 2cn) \text{ não \'e v\'alida]} \end{array}$$

Logo:

- a função f(n) = cn cresce mais lentamente que T(n);
- T(n) está entre cn e n^2 , mais especifamente;

$$e T(n) \not\leq f(n) = cn.$$

- Vamos tentar uma função entre n e n^2 , como, por exemplo, $f(n) = n \log n$.
- Queremos provar que

$$T(n) \le f(n) = n \log n = O(f(n))$$

utilizando indução matemática em n.

Prove que
$$T(n) \leq f(n) = O(f(n))$$
, para $f(n) = n \log n$, sendo
$$T(2) = 1,$$

$$T(2n) \leq 2T(n) + 2n - 1,$$

definida para valores de n que são potências de 2.

Prova (por indução matemática):

1. Passo base:

$$\overline{T(n_0)} = T(2)$$
: Para $n_0 = 2$, $T(2) = 1 \le f(2) = 2 \log 2$, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$.

Reescrevendo o passo indutivo temos:

- Para o valor de $f(n) = n \log n$, a diferença entre as fórmulas é de apenas 1.
- De fato, $T(n) = n \log n n + 1$ é a solução exata de

$$T(n) = 2T(\frac{n}{2}) + n - 1$$
$$T(1) = 0$$

que descreve o comportamento do algoritmo de ordenação *Mergesort*.

Indução matemática e algoritmos Comentários finais

- Indução é uma das técnicas mais poderosas da Matemática que pode ser aplicada para provar asserções sobre a correção e a eficiência de algoritmos.
- No caso de correção de algoritmos, é comum tentarmos identificar invariantes para laços.
- Indução pode ser usada para derivar um limite superior para uma equação de recorrência.

Recursividade

- Um procedimento que chama a si mesmo, direta ou indiretamente, é dito ser recursivo.
- Recursividade permite descrever algoritmos de forma mais clara e concisa, especialmente problemas recursivos por natureza ou que utilizam estruturas recursivas.
- Por exemplo, árvore binária de pesquisa:
 - Todos os registros com chaves menores estão na sub-árvore esquerda;
 - Todos os registros com chaves maiores estão na sub-árvore direita.

Recursividade

- Algoritmo para percorrer todos os registros em ordem de caminhamento central:
 - 1. Caminha na sub-árvore esquerda na ordem central;
 - 2. Visita a raiz;
 - 3. Caminha na sub-árvore direita na ordem central.
- No caminhamento central, os nós são visitados em ordem lexicográfica das chaves.

```
\begin{array}{ll} \mathsf{CENTRAL}(p) \\ \mathbf{1} & \mathsf{if} \ p \neq \mathsf{nil} \\ \mathbf{2} & \mathsf{then} \ \mathsf{CENTRAL}(p \uparrow. esq) \\ \mathbf{3} & \mathsf{Visita} \ \mathsf{no} & \rhd \ \mathsf{Faz} \ \mathsf{algum} \ \mathsf{processamento} \\ \mathbf{4} & \mathsf{CENTRAL}(p \uparrow. \mathit{dir}) \end{array}
```


Implementação de recursividade

- Usa-se uma pilha para armazenar os dados usados em cada chamada de um procedimento que ainda não terminou.
- Todos os dados não globais vão para a pilha, registrando o estado corrente da computação.
- Quando uma ativação anterior prossegue, os dados da pilha são recuperados.
- No caso do caminhamento central:
 - Para cada chamada recursiva, o valor de p e o endereço de retorno da chamada recursiva são armazenados na pilha.
 - Quando encontra p=nil o procedimento retorna para quem chamou utilizando o endereço de retorno que está no topo da pilha.

Problema de terminação em procedimentos recursivos

- Procedimentos recursivos introduzem a possibilidade de iterações que podem não terminar:
 - → Existe a necessidade de considerar o problema de terminação.
- É fundamental que a chamada recursiva a um procedimento P esteja sujeita a uma condição B, a qual se torna não-satisfeita em algum momento da computação.
- Esquema para procedimentos recursivos: composição $\mathcal C$ de comandos S_i e P.

$$P \equiv \text{if } B \text{ then } \mathcal{C}[S_i, P]$$

- Para demonstrar que uma repetição termina, define-se uma função f(x), sendo x o conjunto de variáveis do programa, tal que:
 - 1. $f(x) \leq 0$ implica na condição de terminação;
 - 2. f(x) é decrementada a cada iteração.

Problema de terminação em procedimentos recursivos

- Uma forma simples de garantir terminação é associar um parâmetro n para P (no caso **por valor**) e chamar P recursivamente com n-1.
- A substituição da condição B por n > 0 garante terminação.

$$P \equiv \text{if } n > 0 \text{ then } \mathcal{P}[S_i, P(n-1)]$$

• É necessário mostrar que o nível mais profundo de recursão é finito, e também possa ser mantido pequeno, pois cada ativação recursiva usa uma parcela de memória para acomodar as variáveis.

Quando não usar recursividade

- Nem todo problema de natureza recursiva deve ser resolvido com um algoritmo recursivo.
- Estes podem ser caracterizados pelo esquema $P \equiv \text{if } B \text{ then } (S, P)$.
- Tais programas são facilmente transformáveis em uma versão não recursiva $P \equiv (x := x_0; \text{ while } B \text{ do } S).$

Exemplo de quando não usar recursividade

Cálculo dos números de Fibonacci

$$f_0 = 0,$$

 $f_1 = 1,$
 $f_n = f_{n-1} + f_{n-2}, \quad \forall n \ge 2.$

Solução:

$$f_n = \frac{1}{\sqrt{5}} [\Phi^n - (-\Phi)^{-n}],$$

onde $\Phi = \frac{\sqrt{5}+1}{2} \approx 1,618$ é a razão de ouro.

 O procedimento recursivo (FIBONACCI_REC) obtido diretamente da equação é o seguinte:

$\mathsf{Fibonacci}_\mathsf{Rec}(n)$

- 1 if n < 2
- 2 then FIBONACCI_REC $\leftarrow n$
- 3 else Fibonacci_Rec \leftarrow Fibonacci_Rec(n-1) + Fibonacci_Rec(n-2)

Exemplo de quando não usar recursividade

- O programa é extremamente ineficiente porque recalcula o mesmo valor várias vezes.
- A complexidade de espaço para calcular $f_n \in O(\Phi^n)$.
- A complexidade de tempo para calcular f_n , considerando como medida de complexidade o número de adições, é também $O(\Phi^n)$.

Versão iterativa do cálculo de Fibonacci

```
FIBONACCI_ITER(n)

\triangleright Variáveis auxiliares: k, Fant, F

1 Fant \leftarrow 0

2 F \leftarrow 1

3 \mathbf{for}\ k \leftarrow 2\ \mathbf{to}\ n

4 \mathbf{do}\ F \leftarrow F + Fant

5 Fant \leftarrow F

6 FIBONACCI_ITER \leftarrow F
```

- O programa tem complexidades de tempo O(n) e de espaço O(1).
- Deve-se evitar recursividade quando existe uma solução iterativa.
- Comparação das versões recursiva e iterativa:

n	20	30	50	100
Recursiva	1 s	2 min	21 dias	10 ⁹ anos
Iterativa	1/3 ms	1/2 ms	3/4 ms	1,5 ms

Recursividade na modelagem de problemas Strings com uma certa propriedade (1)

Seja $\Sigma = \{0, 1\}$. Determine quantos strings existem em $\Sigma^0 \dots \Sigma^3$ que não contém o padrão 11.

Nota: Σ^i é o conjunto de todos os strings de tamanho i sobre Σ .

Logo, temos que:

Tamanho	Strings		
0	ε		
1	0, 1		
2	00,01,10		
3	$egin{array}{c} 0,1 \ 00,01,10 \ 000,001,010,100,101 \end{array}$		

Tamanho	# Strings		
0	1		
1	2		
2	3		
3	5		

Recursividade na modelagem de problemas Strings com uma certa propriedade (2)

Quantos elementos existem em Σ^k ?

Idéia:

- Suponha que o número de strings $\leq k$ que não contém o padrão 11 seja conhecido.
- Use esse fato para determinar o número de strings de tamanho k que não contém 11 em função de strings menores que não contém 11.

Recursividade na modelagem de problemas Strings com uma certa propriedade (3)

- Dois casos a considerar em função do símbolo mais à esquerda no string:
 - 0: os k-1 símbolos podem ser qualquer seqüência sobre Σ onde 11 não aparece;
 - 1: os dois símbolos mais à esquerda não podem ser 11 e sim 10.
 - → Logo, os k-2 símbolos podem ser qualquer seqüência sobre Σ onde 11 não aparece.
- Os dois casos geram dois subconjuntos mutuamente disjuntos, representados pela primeira equação de recorrência abaixo:

(1)
$$s_k = s_{k-1} + s_{k-2}$$
 Equação de recorrência
(2)
$$\begin{cases} s_0 = 1 \\ s_1 = 2 \end{cases}$$
 Condições iniciais

Termos da Série de Fibonacci!

Função definida recursivamente (1)

- Uma função é dita ser definida recursivamente se ela refere-se a si mesma.
- Funções recursivas têm um papel fundamental em teoria da computação.
- Exemplo: Função 91 de McCarthy.

$$M(n) = \begin{cases} n-10 & \text{se } n > 100 \\ M(M(n+11)) & \text{se } n \le 100 \end{cases}$$
 $M(99) = M(M(110))$
 $= M(100)$
 $= M(M(111))$
 $= M(101)$
 $= 91$

A função 91 de McCarthy é uma função recursiva que retorna 91 para todos os in-

teiros $n \leq 100$ e retorna n-10 para n>100. Essa função foi proposta pelo cientista da computação John McCarthy, ganhador do *ACM Turing Award* de 1971, responsável por cunhar o termo Inteligência Artificial.

Função definida recursivamente (2) Função de Ackermann

$$A(0,n) = n+1$$

 $A(m,0) = A(m-1,1)$
 $A(m,n) = A(m-1,A(m,n-1))$

$$A(1,2) = A(0, A(1,1))$$

 $= A(0, A(0, A(1,0)))$
 $= A(0, A(0, A(0,1)))$
 $= A(0, A(0,2))$
 $= A(0,3)$
 $= 4$

Matemático e lógico alemão (1896–1962), principal formulador do desenvolvimento do sistema lógico conhecido como o cálculo de epsilon, originalmente devido a David Hilbert

(1862–1943), que se tornaria a base da lógica de Bourbaki e da teoria dos jogos.

Função definida recursivamente (3) Função de Ackermann

Essa função possui uma taxa de crescimento impressionante:

$$A(4,3) = A(3,2^{65536} - 3)$$

Função importante em Ciência da Computação que está relacionada com computabilidade.

Função definida recursivamente (4) Função de Ackermann

A função de Ackermann pode ser representada por uma tabela infinita.

(m,n)	0	1	2	3	4	A(m,n)
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n+2
2	3	5	7	9	11	2n + 3
3	5	13	29	61	125	$8 \cdot 2^{n} - 3$
4	13	65533	$2^{65536} - 3$	$A(3,2^{65536}-3)$	A(3, A(4,3))	
5	65533	A(4,65533)	A(4, A(5, 1))	A(4, A(5, 2))	A(4, A(5,3))	
6	A(5,1)	A(5, A(5, 1))	A(5, A(6, 1))	A(5, A(6, 2))	A(5, A(6,3))	

Os valores da função de Ackermann crescem muito rapidamente:

- -A(4,2) é maior que o número de partículas do universo elevado a potência 200.
- -A(5,2) não pode ser escrito como uma expansão decimal no universo físico.
- Além da linha 4 e coluna 1, os valores só podem ser expressos usando a própria notação da função.

Função recursiva que não é bem definida

Seja a função $G: \mathbf{Z}^+ \to \mathbf{Z}$. Para todos inteiros $n \geq 1$:

$$G(n) = \begin{cases} 1 & \text{se } n = 1, \\ 1 + G(\frac{n}{2}) & \text{se } n \text{ \'e par,} \\ G(3n - 1) & \text{se } n \text{ \'e impar e } n > 1. \end{cases}$$

A função G é bem definida? Não!

$$G(1) = 1$$

 $G(2) = 1 + G(1) = 1 + 1 = 2$
 $G(3) = G(8) = 1 + G(4) = 1 + (1 + G(2))$
 $= 1 + (1 + 2) = 4$
 $G(4) = 1 + G(2) = 1 + 2 = 3$
 $G(5) = G(14) = 1 + G(7) = 1 + G(20)$
 $= 1 + (1 + G(10))$
 $= 1 + (1 + (1 + G(5))) = 3 + G(5)$

Função recursiva que não sabe se é bem definida

Seja a função $H: \mathbf{Z}^+ \to \mathbf{Z}$. Para todos inteiros $n \geq 1$:

$$H(n) = \begin{cases} 1 & \text{se } n = 1, \\ 1 + H(\frac{n}{2}) & \text{se } n \text{ \'e par,} \\ H(3n+1) & \text{se } n \text{ \'e impar e } n > 1. \end{cases}$$

A função H é bem definida? Não se sabe!

A função é computável para todos inteiros n, $1 \le n < 10^9$.

Recursividade Comentários finais

- Técnica bastante adequada para expressar algoritmos que são definidos recursivamente.
- No entanto, deve ser usada com muito cuidado.
- Na maior parte dos casos funciona como uma técnica conceitual do que uma técnica computacional.
- Algoritmos recursivos são normalmente modelados por uma equação de recorrência.
- Ao se fazer a análise de um algoritmo recursivo, deve-se também analisar o crescimento da pilha.

Algoritmos tentativa e erro (*Backtracking*)

- Tentativa e erro: decompor o processo em um número finito de sub-tarefas parciais que devem ser exploradas exaustivamente.
- O processo de tentativa gradualmente constrói e percorre uma árvore de sub-tarefas.
- Algoritmos tentativa e erro não seguem uma regra fixa de computação:
 - Passos em direção à solução final são tentados e registrados.
 - Caso esses passos tomados não levem à solução final, eles podem ser retirados e apagados do registro.

Algoritmos tentativa e erro (*Backtracking*)

 Quando a pesquisa na árvore de soluções cresce rapidamente é necessário usar algoritmos aproximados ou heurísticas que não garantem a solução ótima mas são rápidas.

Algoritmos aproximados:

- Algoritmos usados normalmente para resolver problemas para os quais não se conhece uma solução polinomial.
- Devem executar em tempo polinomial dentro de limites "prováveis" de qualidade absoluta ou assintótica.

Heurística:

- Algoritmo que tem como objetivo fornecer soluções sem um limite formal de qualidade, em geral avaliado empiricamente em termos de complexidade (média) e qualidade das soluções.
- É projetada para obter ganho computacional ou simplicidade conceitual, possivelmente ao custo de precisão.

Tentativa e erro: Passeio do cavalo

- Tabuleiro com $n \times n$ posições: cavalo se movimenta segundo regras do xadrez.
- Problema: partindo da posição (x_0, y_0) , encontrar, se existir, um passeio do cavalo que visita todos os pontos do tabuleiro uma única vez.

Tenta um próximo movimento:

```
TENTA
    Inicializa seleção de movimentos
    repeat
 3
       Seleciona próximo candidato ao movimento
       if aceitável
 4
 5
         then Registra movimento
              if tabuleiro não está cheio
 6
 7
                then Tenta novo movimento
                     if não é bem sucedido
8
9
                       then Apaga registro anterior
10
   until (movimento bem sucedido) \vee (acabaram-se candidatos ao movimento)
```

Tentativa e erro: Passeio do cavalo

- O tabuleiro pode ser representado por uma matriz $n \times n$.
- A situação de cada posição pode ser representada por um inteiro para recordar o histórico das ocupações:
 - -t[x,y]=0, campo $\langle x,y\rangle$ não visitado;
 - -t[x,y]=i, campo $\langle x,y\rangle$ visitado no *i*-ésimo movimento, $1\leq i\leq n^2$.

Tentativa e erro: Passeio do cavalo Regras do xadrez para o movimento do cavalo

2Dir e 1Cima

1Dir e 2Cima

1Esq e 2Cima

2Esq e 1Cima

2Esq e 1Baixo

1Esq e 2Baixo

1Dir e 2Baixo

2Dir e 1Baixo

Implementação do passeio do cavalo

```
\mathsf{PasseioDoCavalo}(n)
    > Parâmetro: n (tamanho do lado do tabuleiro)
    > Variáveis auxiliares:
                                                       > Contadores
      i, j
      t[1..n, 1..n]
                                                       \triangleright Tabuleiro de n \times n
                                                       ⊳ Indica se achou uma solução
                                                       > Existem oito movimentos possíveis
      h[1..8], v[1..8]
 1 s \leftarrow \{1, 2, 3, 4, 5, 6, 7, 8\}
                                                       > Conjunto de movimentos
 2 h[1..8] \leftarrow [2, 1, -1, -2, -2, -1, 1, 2]
                                                       > Movimentos na horizontal
 3 v[1..8] \leftarrow [1,2,2,1,-1,-2,-2,-1]
                                                       > Movimentos na vertical
   for i \leftarrow 1 to n
                                                       ⊳ Inicializa tabuleiro
 5
       do for j \leftarrow 1 to n
              do t[i, j] \leftarrow 0
   t[1,1] \leftarrow 1
                                                       > Escolhe uma casa inicial do tabuleiro
   TENTA(2, 1, 1, q)
                                                       > Tenta o passeio usando backtracking
                                                       9
   if q
10
     then print Solução
11
      else print Não há solução
```

Implementação do passeio do cavalo

```
|\mathsf{TENTA}(i, x, y, q)|
     \triangleright Parâmetros: i (i-ésima casa); x, y (posição no tabuleiro); q (achou solução?)
     \triangleright Variáveis auxiliares: xn, yn, m, q1
     m \leftarrow 0
     repeat
 3
     m \leftarrow m + 1
     q1 \leftarrow \mathsf{false}
 5
     xn \leftarrow x + h[m]
     yn \leftarrow y + v[m]
        if (xn \in s) \land (yn \in s)
 8
            then if t[xn, yn] = 0
                      then t[xn, yn] \leftarrow i
 9
                             if i < n^2
10
                                then TENTA(i+1, xn, yn, q1)
11
12
                                       if \neg q 1
13
                                         then t[xn, yn] \leftarrow 0
14
                               else q1 \leftarrow \text{true}
     until q1 \lor (m = 8)
|16 \quad q \leftarrow q1|
```

Algoritmos tentativa e erro (*Backtracking*) Comentários finais

- Técnica usada quando não se sabe exatamente que caminho seguir para encontrar uma solução.
- Não garante a solução ótima.
- Essa técnica pode ser vista ainda como uma variante da recursividade
- Ao se fazer a análise de um algoritmo que usa backtracking, deve-se também analisar o crescimento do espaço de soluções.

Divisão e conquista (1)

- Consiste em dividir o problema em partes menores, encontrar soluções para essas partes (supostamente mais fácil), e combiná-las em uma solução global.
 - → Geralmente leva a soluções eficientes e elegantes, principalmente se forem recursivas.
- Basicamente essa técnica consiste das seguintes fases (executadas nesta ordem):
 - 1. Divisão (particionamento) do problema original em sub-problemas similares ao original mas que são menores em tamanho;
 - Resolução de cada sub-problema sucessivamente e independentemente (em geral de forma recursiva);
 - 3. Combinação das soluções individuais em uma solução global para todo o problema.

Divisão e conquista (2)

• Um algoritmo de "divisão e conquista" é normalmente relacionado a uma equação de recorrência que contém termos referentes ao próprio problema.

$$T(n) = aT(\frac{n}{b}) + f(n),$$

onde a indica o número de sub-problemas gerados, b o tamanho de cada um deles e f(n) o custo para fazer a divisão.

- Paradigma bastante usado em Ciência da Computação em problemas como:
 - Ordenação: Mergesort, Quicksort (Tecnicamente falando, o Quicksort poderia ser chamado de um algoritmo conquista e divisão);
 - Pesquisa: Pesquisa Binária;
 - Algoritmos aritméticos: multiplicação de inteiros, multiplicação de matrizes,
 FFT (Fast Fourier Transform);
 - Algoritmos geométricos: Convex Hull, Par mais próximo;

– ...

Divisão e conquista: Exemplo 1

• Seja A um vetor de inteiros, $A[1..n], n \ge 1$ que não está ordenado.

Pede-se:

- Determine o maior e o menor elementos desse vetor usando divisão e conquista;
- Determine o custo (número de comparações) para achar esses dois elementos supondo que A possui n elementos.

Divisão e conquista: Exemplo 1

Cada chamada de MaxMin4 atribui às variáveis Max e Min o maior e o menor elementos em A[Linf]..A[Lsup].

```
MAXMIN4(Linf, Lsup, Max, Min)
    if (Lsup - Linf) < 1
                                                            Condição da parada recursiva
 2
     then if A[Linf] < A[Lsup]
 3
             then Max \leftarrow A[Lsup]
                  Min \leftarrow A[Linf]
4
 5
             else Max \leftarrow A[Linf]
6
                  Min \leftarrow A[Lsup]
     else Meio \leftarrow |\frac{Linf+Lsup}{2}|
 7
                                        > Acha o menor e maior elementos de cada partição
8
           MAXMIN4(Linf, Meio, Max1, Min1)
9
           MAXMIN4(Meio+1, Lsup, Max2, Min2)
10
           if Max1 > Max2
             then Max \leftarrow Max1
11
12
             else Max \leftarrow Max2
13
           if Min1 < Min2
             then Min ← Min1
14
             else Min ← Min2
15
```

Divisão e conquista: Exemplo 1 (Análise)

Seja f(n) o número de comparações entre os elementos de A, que possui n elementos.

$$f(n) = 1,$$
 para $n \le 2,$ $f(n) = f(|n/2|) + f(\lceil n/2 \rceil) + 2,$ para $n > 2.$

Quando $n = 2^i$ para algum inteiro positivo i, temos que:

$$f(n) = 2f(\frac{n}{2}) + 2$$

Divisão e conquista: Exemplo 1 (Análise)

Resolvendo esta equação de recorrência (em função de n e i), temos:

Fazendo a expansão desta equação temos:

$$2^{i-2}f(2^2) = 2^{i-1} + 2^{i-1}$$

$$2^{i-3}f(2^3) = 2^{i-1} + 2^{i-1} + 2^{i-2}$$

$$\vdots$$

$$2^2f(2^{i-2}) + 2^2 = 2^{i-1} + 2^{i-1} + 2^{i-2} + \dots + 2^3$$

$$2f(2^{i-1}) + 2 = 2^{i-1} + 2^{i-1} + 2^{i-2} + \dots + 2^3 + 2^2$$

$$f(2^i) = 2^{i-1} + 2^{i-1} + 2^{i-2} + \dots + 2^3 + 2^2 + 2$$

$$= 2^{i-1} + \sum_{k=1}^{i-1} 2^k = 2^{i-1} + 2^i - 2$$

$$f(n) = \frac{n}{2} + n - 2 = \frac{3n}{2} - 2.$$

Logo, f(n) = 3n/2 - 2 para o melhor caso, pior caso e caso médio.

Divisão e conquista: Exemplo 1 (Análise)

- Conforme mostrado anteriormente, o algoritmo apresentado neste exemplo é ótimo.
- Entretanto, ele pode ser pior do que os já apresentados, pois, a cada chamada recursiva, salva *Linf*, *Lsup*, *Max* e *Min*, além do endereço de retorno da chamada para o procedimento.
- Além disso, uma comparação adicional é necessária a cada chamada recursiva para verificar se $Lsup Linf \le 1$ (condição de parada).
- O valor de n+1 deve ser menor do que a metade do maior inteiro que pode ser representado pelo compilador, para não provocar *overflow* na operação Linf + Lsup.

Divisão e conquista: Exemplo 2

Motivação:

 Uma das partes mais importantes da unidade aritmética de um computador é o circuito que soma dois números.

Pede-se:

 - "Projete" um circuito para somar dois números sem sinal usando divisão e conquista

Divisão e conquista: Exemplo 2 Possível solução

- Estratégia para construir um somador de n bits:
 - Usar n somadores de 1-bit.
 - Nesse caso, o atraso (medido pelo caminho mais longo entre a entrada e saída em termos do número de portas lógicas) é 3n se for usado o Ripplecarry Adder.
 - Exemplo: $n = 32 \Rightarrow \text{Atraso} = 96$.
- Usando a estratégia de divisão e conquista o atraso pode ser menor.

Divisão e conquista: Exemplo 2 Verificando a viabilidade da estratégia DeC

- Dividir os n bits em dois grupos: metade da esquerda e metade da direita.
- Somar cada metade usando circuitos somadores idênticos da metade do tamanho do problema original.
- Questão: A adição da metade da esquerda pode começar antes de terminar a adição da metade da direita?
 - Nessa estratégia não.

Divisão e conquista: Exemplo 2 Verificando a viabilidade da estratégia DeC

 Como começar a computação da esquerda sem conhecer o bit de "vai um" da metade da direita?

Estratégia:

- Compute duas somas para a metade da esquerda:
 - (a) uma considerando que "vem um" da metade da direita;
 - (b) e a outra considerando que não.
- Uma vez finalizada as somas das duas metades, é possível dizer qual das duas somas da metade da esquerda deve ser utilizada.

Divisão e conquista: Exemplo 2 Estratégia

Sejam as seguintes variáveis para um somador de n bits:

- $-x_1, x_2, \ldots, x_n$ e y_1, y_2, \ldots, y_n as entradas representando os dois números de n bits a serem somados.
- $-s_1, s_2, \ldots, s_n$ a soma de n bits (excluindo o bit de "vai um" mais à esquerda) e considerando que não "veio um" para o bit mais à direita.
- $-t_1, t_2, \ldots, t_n$ a soma de n bits (excluindo o bit de "vai um" mais à esquerda) e considerando que "veio um" para o bit mais à direita.
- -p, bit propagação de "vai um", que é um 1 se o resultado da soma gera um "vai um" mais à esquerda, assumindo que "veio um" no bit mais à direita.
- -g, bit gera "vai um", que é 1 se "vai um" mais à esquerda considerando apenas a soma dos n bits, ou seja, independente se "veio um" no bit mais à direita.

Observe que:

- $-g \rightarrow p$, ou seja, se g=1 então p=1.
- No entanto, se g=0 então ainda podemos ter p=1.

Divisão e conquista: Exemplo 2 Calculando os valores desses bits

Duas somas são computadas para a metade da esquerda:

Divisão e conquista: Exemplo 2 Examinando os valores desses bits quando n=1

x	y	s	t	p	g
0	0	0	1	0	0
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	1	1	1

- x e y: entradas a serem somados.
- s: soma de um bit p/ o caso de não "veio um".
- t: soma de um bit p/ o caso de "veio um".
- p: bit de propagação de "vai um", que é um 1 se o resultado da soma gera um "vai um", p/ o caso de "veio um".
- $-\ g$: bit de "vai um", que é 1 se "vai um" considerando apenas a soma dos n bits.

Expressões correspondentes:

- \bullet $\dot{s} = x\overline{y} + \overline{x}y$
 - A soma s só é 1 quando apenas uma das entradas é 1.
- $\bullet \ t = xy + \overline{x}\,\overline{y}$
 - Assumindo que vem 1, a soma t só será 1 quando as duas entradas forem idênticas.
- p = x + y
 - Assumindo que veio 1, também irá 1 quando uma das entradas ou ambas forem 1.
- \bullet q = xy
 - O bit de vai 1 só será 1 quando as duas entradas forem 1.

Divisão e conquista: Exemplo 2 Somador para o caso n=1

Modelagem:

• Atraso: D(1) = 3

• Portas: G(1) = 9

Divisão e conquista: Exemplo 2 Idéia para aplicar DeC

- Idéia:
 - Construir um somador de 2n
 bits usando dois somadores de n bits.
- Computar os bits:
 - propagação de "vai um" (p), e
 - gera "vai um" (g) para o somador de 2n bits.
- Ajustar a metade da esquerda dos bits s e t para levar em consideração se há um "vai um" para a metade da esquerda vindo da metade da direita.

Circuito que implementa a idéia:

Divisão e conquista: Exemplo 2 Cálculo de p

Suponha que <u>há</u> um "veio um" para o circuito de 2n bits (extrema direita). <u>Haverá</u> um "vai um" (extrema esquerda), representado pelo bit de propagação p = 1, se:

- A metade da esquerda gera um "vai um", ou seja, g^L , já que $g^L o p^L$.
- As duas metades do somador propagam o "vai um", ou seja, p^Lp^R . Esta expressão inclui o caso tcblue p^Lg^R . Como $g^R \to p^R$, temos que $(p^Lp^R + p^Lg^R) \equiv p^Lp^R$.
- → A expressão para p, bit de propagação de "vai um", é:

$$p = g^L + p^L p^R$$

Divisão e conquista: Exemplo 2 Cálculo de g

Suponha que $\underline{não}$ há um "veio um" para o circuito de 2n bits (extrema direita). Haverá um "vai um" (extrema esquerda), ou seja, o bit de gera "vai um" g vale 1 se:

- A metade da esquerda gera um "vai um", ou seja, g^L .
- A metade da direita gera um "vai um" e a metade da esquerda propaga esse bit, ou seja, p^Lg^R .
- \rightarrow A expressão para g, bit gera "vai um", é:

$$g = g^L + p^L g^R$$

Divisão e conquista: Exemplo 2 Cálculo dos bits s e t da direita

Calculando os bits

e
$$t_{n+1}, t_{n+2}, \dots, t_{2n}$$
 $t_{n+1}, t_{n+2}, \dots, t_{2n}$

Bits da direita não são modificados. Assim,

$$s_{n+i} = s_i^R$$
$$t_{n+i} = t_i^R$$

para i = 1, 2, ..., n.

Observação: num somador de 2n bits, as saídas são identificadas pelos índices $1, 2, \ldots, 2n$ numerados a partir da esquerda. Logo, os índices $n+1, n+2, \ldots, 2n$ correspondem à metade da direita.

Divisão e conquista: Exemplo 2 Cálculo dos bits s da esquerda

- Suponha que <u>não há</u> um "veio um" (extrema direita) para o circuito de 2n bits.
- Neste caso, o "vai um" para a metade da esquerda, se existir, foi gerado pela metade da direita. Assim, se:

$$-g^{R} = 1 \Rightarrow s_{i} = t_{i}^{L}$$

$$-g^{R} = 0 \Rightarrow s_{i} = s_{i}^{L}$$

A expressão para s_i é:

$$s_i = s_i^L \overline{g}^R + t_i^L g^R$$

para i = 1, 2, ..., n.

Divisão e conquista: Exemplo 2 Cálculo dos bits t da esquerda

- Suponha que <u>há</u> um "veio um" (extrema direita) para o circuito de 2n bits.
- Neste caso, devemos analisar o bit de propagação p. Assim, se:

$$- p^R = 1 \Rightarrow t_i = t_i^L$$

$$- p^R = 0 \Rightarrow t_i = s_i^L$$

A expressão para t_i é:

$$t_i = s_i^L \overline{p}^R + t_i^L p^R$$

para i = 1, 2, ..., n.

Divisão e conquista: Exemplo 2 Expressões a serem calculadas pelo FIX

O módulo FIX deve calcular as seguintes expressões:

$$p = g^{L} + p^{L}p^{R}$$

$$g = g^{L} + p^{L}g^{R}$$

$$s_{i} = s_{i}^{L} \overline{g}^{R} + t_{i}^{L} g^{R}, \quad i = 1, 2, ..., n$$

$$t_{i} = s_{i}^{L} \overline{p}^{R} + t_{i}^{L} p^{R}, \quad i = 1, 2, ..., n$$

Essas expressões podem ser calculadas por circuitos de no máximo três níveis. O exemplo abaixo é para t_i :

Divisão e conquista: Exemplo 2 Somador para n = 4 (Caso genérico)

Divisão e conquista: Exemplo 2 Somador para n=4 (Caso específico)

Divisão e conquista: Exemplo 2 Cálculo do atraso usando DeC

Atraso:
$$\begin{cases} D(1) &= 3\\ D(2n) &= D(n) + 3\\ D(n) &= 3(1 + \log n) = O(\log n) \end{cases}$$

Para um somador de 32 bits:

- Divisão e conquista: $3(1 + \log n) = 3(1 + \log 32) = 18$
- Ripple-carry: 3n = 96

Divisão e conquista: Exemplo 2 Comentários sobre este exemplo

Solução usando divisão e conquista (DeC):

- Atraso: $O(\log n)$

- $N^{\underline{o}}$ de portas: $O(n \log n)$

Solução Ripple-Carry Adder:

- Atraso: O(n)

- $N^{\underline{o}}$ de portas: O(n)

- A solução DeC apresenta um exemplo onde o aumento do espaço (neste caso portas) possibilita uma diminuição no atraso (tempo, neste caso), ou seja, existe um compromisso TEMPO × ESPAÇO.
- A solução apresentada é um exemplo "não tradicional" da técnica DeC já que o sub-problema da esquerda deve gerar duas soluções, uma vez que seu valor depende da solução do sub-problema da direita, ou seja, os subproblemas não são independentes.

Divisão-e-conquista: Alguns comentários

- Este paradigma não é aplicado apenas a problemas recursivos.
- Existem pelo menos três cenários onde divisão e conquista é aplicado:
 - 1. Processar independentemente partes do conjunto de dados.
 - Exemplo: Mergesort.
 - 2. Eliminar partes do conjunto de dados a serem examinados.
 - Exemplo: Pesquisa binária.
 - 3. Processar separadamente partes do conjunto de dados mas onde a solução de uma parte influencia no resultado da outra.
 - Exemplo: Somador apresentado.

Balanceamento

- No projeto de algoritmos, é importante procurar sempre manter o balanceamento na sub-divisão de um problema em partes menores.
- Divisão e conquista não é a única técnica em que balanceamento é útil.
- Considere o seguinte exemplo de ordenação:

```
{\sf Exemplo\_De\_Ordenaç\~AO}(n)
```

- 1 for i = 1..n 1 do
- Selecione o menor elemento de A[i..n] e troque-o com o elemento A[i].
 - Inicialmente o menor elemento de A[1..n] é trocado com o elemento A[1].
 - O processo é repetido para as seqüências n-1, n-2, ..., 2, com os n-1, n-2, ..., 2 elementos, respectivamente, sendo que em cada passo o menor elemento é trocado com o elemento A[i].

Balanceamento: Análise do exemplo

O algoritmo leva à equação de recorrência:

$$T(n) = T(n-1) + n - 1$$

 $T(1) = 0$

para o número de comparações entre elementos.

Substituindo:

$$T(n) = T(n-1) + n - 1$$
 $T(n-1) = T(n-2) + n - 2$
 \vdots
 $T(2) = T(1) + 1$

e adicionando lado a lado, obtemos:

$$T(n) = T(1) + 1 + 2 + \dots + n - 1 = \frac{n(n-1)}{2}$$
.

Logo, o algoritmo é $O(n^2)$.

Balanceamento: Análise do exemplo

- Embora o algoritmo possa ser visto como uma aplicação recursiva de divisão e conquista, ele não é eficiente para valores grandes de n.
- Para obter eficiência assintótica é necessário fazer um balanceamento:
 - Dividir o problema original em dois sub-problemas de tamanhos aproximadamente iguais, ao invés de um de tamanho 1 e o outro de tamanho n-1.

Comentário:

- A análise da equação de recorrência nos mostra a razão do comportamento quadrático desse algoritmo.
- É essa equação também que "sugere" como o algoritmo pode ter um desempenho bem melhor, se um balanceamento for usado.

Exemplo de balanceamento: Mergesort

Intercalação:

- Unir dois arquivos ordenados gerando um terceiro arquivo ordenado (merge).
- Colocar no terceiro arquivo o menor elemento entre os menores dos dois arquivos iniciais, desconsiderando este mesmo elemento nos passos posteriores.
- Este processo deve ser repetido até que todos os elementos dos arquivos de entrada sejam escolhidos.

Algoritmo de ordenação: Mergesort

- 1. Divida recursivamente o vetor a ser ordenado em dois, até obter n vetores de um único elemento.
- Aplique a intercalação tendo como entrada dois vetores de um elemento, formando um vetor ordenado de dois elementos.
- 3. Repita este processo formando vetores ordenados cada vez maiores até que todo o vetor esteja ordenado.

Exemplo de balanceamento: Implementação do Mergesort

Considere n como sendo uma potência de 2.

Merge(A, i, m, j) recebe duas sequências ordenadas A[i..m] e A[(m + 1)..j] e produz uma outra sequência ordenada dos elementos de A[i..m] e A[m + 1..j].

Como A[i..m] e A[m+1..j] estão ordenados, *Merge* requer no máximo n-1 comparações.

Merge seleciona repetidamente o menor dentre os menores elementos restantes em A[i..m] e A[m+1..j]. Caso empate, retira de qualquer uma delas.

Análise do Mergesort

Na contagem de comparações, o comportamento do Mergesort pode ser representado por:

$$T(n) = 2T(\frac{n}{2}) + n - 1,$$

 $T(1) = 0.$

No caso dessa equação de recorrência sabemos que o custo é (veja a resolução desta equação na parte de indução ou usando o Teorema Mestre):

$$T(n) = n \log n - n + 1.$$

Logo, o algoritmo é $O(n \log n)$.

Balanceamento: Alguns comentários

- Para o problema de ordenação, o balanceamento levou a um resultado muito superior:
 - O custo passou de $O(n^2)$ para $O(n \log n)$.
- Balanceamento é uma técnica presente em diferentes aspectos algorítmicos de Ciência da Computação como Sistemas Operacionais.
- Também é uma técnica importante quando o modelo computacional usado é o PRAM (Parallel Random Access Machine).

Programação dinâmica

- Programação não está relacionado com um programa de computador.
 - A palavra está relacionada com um método de solução baseado em tabela.
- Programação dinâmica (PD) × Divisão-e-conquista (DeC):
 - DeC quebra o problema em sub-problemas menores.
 - PD resolve todos os sub-problemas menores mas somente reusa as soluções ótimas.

Programação dinâmica

Quando

$$\sum$$
 Tamanhos dos sub-problemas $= O(n)$

é provável que o algoritmo recursivo tenha complexidade polinomial.

Quando a divisão de um problema de tamanho n resulta em

n Sub-problemas imes Tamanho n-1 cada um

é provável que o algoritmo recursivo tenha complexidade exponencial.

- Nesse caso, a técnica de programação dinâmica pode levar a um algoritmo mais eficiente.
- A programação dinâmica calcula a solução para todos os sub-problemas, partindo dos sub-problemas menores para os maiores, armazenando os resultados em uma tabela.
- A vantagem é que uma vez que um sub-problema é resolvido, a resposta é armazenada em uma tabela e nunca mais é recalculado.

Programação dinâmica: Produto de *n* matrizes

Seja

$$M = M_1 \times M_2 \times \cdots \times M_n,$$

onde M_i é uma matriz com d_{i-1} linhas e d_i colunas, $2 \le i \le n$.

- Isto server para dizer apenas que a matriz M_i possui uma quantidade de linhas igual a quantidade de colunas de M_{i-1} (d_{i-1}) e uma quantidade de colunas dada por d_i .
- A ordem da multiplicação pode ter um efeito enorme no número total de operações de adição e multiplicação necessárias para obter M.
- Considere o produto de uma matriz $p \times q$ por outra matriz $q \times r$ cujo algoritmo requer O(pqr) operações.
- Considere o produto

$$M = M_1[10, 20] \times M_2[20, 50] \times M_3[50, 1] \times M_4[1, 100],$$

onde as dimensões de cada matriz aparecem entre colchetes.

Programação dinâmica: Produto de *n* matrizes

Sejam duas possíveis ordens de avaliação dessa multiplicação:

$$M = M_1[10, 20] \times M_2[20, 50] \times M_3[50, 1] \times M_4[1, 100],$$

$$M = M_1 \times (M_2 \times (M_3 \times M_4)) \qquad \qquad M = (M_1 \times (M_2 \times M_3)) \times M_4$$

$$20 \times 50 \times 1 = 1\,000 \text{ operações}$$

$$M = M_1 \times (M_2 \times M_a), \text{ sendo } M_a [50, 100] \qquad \qquad M = (M_1 \times M_a) \times M_4, \text{ sendo } M_a [20, 1]$$

$$20 \times 50 \times 100 = 100\,000 \text{ operações}$$

$$M = M_1 \times M_b, \text{ sendo } M_b [20, 100] \qquad \qquad M = M_b \times M_4, \text{ sendo } M_b [10, 1]$$

$$10 \times 20 \times 100 = 20\,000 \text{ operações}$$

$$M = M_b \times M_4, \text{ sendo } M_b [10, 1]$$

$$10 \times 1 \times 100 = 1\,000 \text{ operações}$$

$$\text{Total} = 125\,000 \text{ operações}$$

$$\text{Total} = 2\,200 \text{ operações}$$

- Tentar todas as ordens possíveis para minimizar o número de operações f(n) é exponencial em n, onde $f(n) \ge 2^{n-2}$.
- Usando programação dinâmica é possível obter um algoritmo $O(n^3)$.

Programação dinâmica: Produto de *n* matrizes

Seja m_{ij} o menor custo para computar

$$M_i \times M_{i+1} \times \cdots \times M_j$$
, para $1 \le i \le j \le n$.

Neste caso,

$$m_{ij} = \begin{cases} 0, & \text{se } i = j, \\ \min_{i \le k < j} (m_{ik} + m_{k+1,j} + d_{i-1}d_kd_j), & \text{se } j > i. \end{cases}$$

- m_{ik} representa o custo mínimo para calcular $M' = M_i \times M_{i+1} \times \cdots \times M_k$.
- $m_{k+1,j}$ representa o custo mínimo para calcular $M'' = M_{k+1} \times M_{k+2} \times \cdots \times M_j$.
- $d_{i-1}d_kd_j$ representa o custo de multiplicar $M'[d_{i-1},d_k]$ por $M''[d_k,d_j]$.
- m_{ij} , j > i representa o custo mínimo de todos os valores possíveis de k entre i e j-1, da soma dos três termos.

Programação dinâmica: Exemplo

- A solução usando programação dinâmica calcula os valores de m_{ij} na ordem crescente das diferenças nos subscritos.
- O cálculo inicia com m_{ii} para todo i, depois $m_{i,i+1}$ para todo i, depois $m_{i,i+2}$, e assim sucessivamente.
- Desta forma, os valores m_{ik} e $m_{k+1,j}$ estarão disponíveis no momento de calcular m_{ij} .
- Isto acontece porque j-i tem que ser estritamente maior do que ambos os valores de k-i e j-(k+1) se k estiver no intervalo $i \le k < j$.

Programação dinâmica: Implementação

```
AVALIAMULTMATRIZES(n, d[0..n])
     \triangleright Parâmetro: n (n<sup>0</sup> de matrizes); d[0..n] (dimensões das matrizes)
     > Constante e variáveis auxiliares:
        MaxInt = major inteiro
        i, j, k, h, n, temp
        m[1..n, 1..n]
    for i \leftarrow 1 to n
         do m[i,i] \leftarrow 0
 2
    for h \leftarrow 1 to n-1
         do for i \leftarrow 1 to n-h
 4
 5
             do i \leftarrow i + h
 6
                 m[i,j] \leftarrow MaxInt
 7
                 for k \leftarrow i to j-1 do
                     temp \leftarrow m[i, k] + m[k + 1, j] + d[i - 1] \times d[k] \times d[j]
 8
 9
                     if temp < m[i, j]
10
                       then m[i, j] \leftarrow temp
     print m
```

→ A execução de AVALIAMULTMATRIZES obtém o custo mínimo para multiplicar as n matrizes, assumindo que são necessárias pqr operações para multiplicar uma matriz $p \times q$ por outra matriz $q \times r$.

Programação dinâmica: Implementação

A multiplicação de

$$M = M_1[10, 20] \times M_2[20, 50] \times M_3[50, 1] \times M_4[1, 100],$$

sendo

produz como resultado

$m_{11} = 0$	$m_{22} = 0$	$m_{33} = 0$	$m_{44} = 0$
$m_{12} = 10.000$	$m_{23} = 1.000$	$m_{34} = 5.000$	
$M_1 imes M_2$	$M_2 \times M_3$	$M_3 imes M_4$	
$m_{13} = 1.200$	$m_{24} = 3.000$		
$M_1 imes (M_2 imes M_3)$	$(M_2 \times M_3) \times M_4$		
$m_{14} = 2.200$			
$(M_1 \times (M_2 \times M_3)) \times M_4$			

Programação dinâmica: Princípio da otimalidade

- A ordem de multiplicação pode ser obtida registrando o valor de k para cada entrada da tabela que resultou no mínimo.
- Essa solução eficiente está baseada no princípio da otimalidade:
 - Em uma seqüência ótima de escolhas ou de decisões cada sub-seqüência deve também ser ótima.
- Cada sub-seqüência representa o custo mínimo, assim como $m_{ij},\,j>i.$
- Assim, todos os valores da tabela representam escolhas ótimas.

Aplicação do princípio da otimalidade

- O princípio da otimalidade não pode ser aplicado indiscriminadamente.
- Se o princípio não se aplica é provável que não se possa resolver o problema com sucesso por meio de programação dinâmica.
- Quando, por exemplo, o problema utiliza recursos limitados e o total de recursos usados nas sub-instâncias é maior do que os recursos disponíveis.
- Exemplo do princípio da otimalidade: suponha que o caminho mais curto entre Belo Horizonte e Curitiba passa por Campinas. Logo,
 - o caminho entre BH e Campinas também é o mais curto possível;
 - como também é o caminho entre Campinas e Curitiba;
 - → Logo, o princípio da otimalidade se aplica.

Não aplicação do princípio da otimalidade

Seja o problema de encontrar o caminho mais longo entre duas cidades. Temos que:

- Um caminho simples nunca visita uma mesma cidade duas vezes.
- Se o caminho mais longo entre Belo Horizonte e Curitiba passa por Campinas, isso não significa que o caminho possa ser obtido tomando o caminho simples mais longo entre Belo Horizonte e Campinas e depois o caminho simples mais longo entre Campinas e Curitiba.
 - → Observe que o caminho simples mais longo entre BH e Campinas pode passar por Curitiba!
- Quando os dois caminhos simples são agrupados não existe uma garantia que o caminho resultante também seja simples.
- Logo, o princípio da otimalidade não se aplica.

Quando aplicar PD?

- Problema computacional deve ter uma formulação recursiva.
- Não deve haver ciclos na formulação (usualmente o problema deve ser reduzido a problemas menores).
- Número total de instâncias do problema a ser resolvido deve ser pequeno (n).
- Tempo de execução é $O(n) \times$ tempo para resolver a recursão.
- PD apresenta sub-estrutura ótima:
 - Solução ótima para o problema contém soluções ótimas para os subproblemas.
- Sobreposição de sub-problemas:
 - Número total de sub-problemas distintos é pequeno comparado com o tempo de execução recursivo.

Algoritmos gulosos

- Aplicado a problemas de otimização.
- Seja o algoritmo para encontrar o caminho mais curto entre dois vértices de um grafo:
 - Escolhe a aresta que parece mais promissora em qualquer instante.
- Assim,
 - → independente do que possa acontecer mais tarde, nunca reconsidera a decisão.
 - → não necessita avaliar alternativas, ou usar procedimentos sofisticados para desfazer decisões tomadas previamente.

Características dos algoritmos gulosos Problema geral

- Dado um conjunto C, determine um sub-conjunto $S \subseteq C$ tal que:
 - S satisfaz uma dada propriedade P, e
 - S é mínimo (ou máximo) em relação a algum critério α .
- O algoritmo guloso para resolver o problema geral consiste em um processo iterativo em que S é construído adicionando-se ao mesmo elementos de C um a um.

Características dos algoritmos gulosos

- Para construir a solução ótima existe um conjunto ou lista de candidatos.
- São acumulados um conjunto de candidatos considerados e escolhidos, e o outro de candidatos considerados e rejeitados.
- Existe uma função que verifica se um conjunto particular de candidatos produz uma solução (sem considerar otimalidade no momento).
- Outra função verifica se um conjunto de candidatos é viável (também sem preocupar com a otimalidade).
- Uma função de seleção indica a qualquer momento quais dos candidatos restantes é o mais promissor.
- Uma função objetivo fornece o valor da solução encontrada, como o comprimento do caminho construído (não aparece de forma explicita no algoritmo guloso).

Estratégia do algoritmo guloso

```
\mathsf{Guloso}(C)
                                            \triangleright C é o conjunto de candidatos
1 S \leftarrow \emptyset
                                            \triangleright S contém conjunto solução, inicialmente vazio
                                            while (C \neq \emptyset \land \neg Solução(S))
   do x \leftarrow Seleciona(C)
                                            > Seleciona o próximo candidato
   C \leftarrow C - x
                                            \triangleright Remove esse candidato do conjunto C
   if Viável(S+x)
                                            then S \leftarrow S + x:
6
                                            Sim, incorpora o candidato à solução
   if Solução(S)
                                            then return(S)
8

⇒ Sim, retorna a solução

     else return(∅)
9
                                            ⊳ Não!
```

- Inicialmente, o conjunto S de candidatos escolhidos está vazio (linha 1).
- A cada passo, testa se o aumento de S constitui uma solução e ainda existem candidatos a serem avaliados (condição linha 2).
- O melhor candidato restante ainda não tentado é considerado e removido de C (linhas 3 e 4). O critério de escolha é ditado pela função de seleção (linha 3).
- Se o conjunto aumentado de candidatos se torna viável, o candidato é adicionado ao conjunto
 S de candidatos escolhidos. Caso contrário ;e rejeitado (linhas 5 e 6).
- Ao final do processo, testa se há uma solução (linha 7) que é retornada (linha 8) ou não (linha 9).

Características da implementação de algoritmos gulosos

- Quando funciona corretamente, a primeira solução encontrada é sempre ótima.
- A função de seleção é geralmente relacionada com a função objetivo.
- Se o objetivo é:
 - Maximizar

 provavelmente escolherá o candidato restante que proporcione o maior ganho individual.
 - Minimizar ⇒ então será escolhido o candidato restante de menor custo.
- O algoritmo nunca muda de idéia:
 - Um candidato escolhido e adicionado à solução passa a fazer parte dessa solução permanentemente.
 - Um candidato excluído do conjunto solução, não é mais reconsiderado.

Árvore geradora mínima

- Definição: Uma árvore geradora de um grafo G = (V, E) é um subgrafo de G que é uma árvore e contém todos os vértices de G. Num grafo com pesos, o peso de um subgrafo é a soma dos pesos das arestas deste subgrafo. Uma árvore geradora mínima para um grafo com pesos é uma árvore geradora com peso mínimo.
- Problema: Determinar a árvore geradora mínima (em inglês, minimum spanning tree), de um grafo com pesos.
- Aplicações: Determinar a maneira mais barata de se conectar um conjunto de terminais, sejam eles cidades, terminais elétricos, computadores, ou fábricas, usando-se, por exemplo, estradas, fios, ou linhas de comunicação

Árvore geradora mínima: Soluções

O exemplo abaixo mostra que um grafo pode ter mais de uma árvore geradora mínima.

Grafo conexo

• Um grafo é *conexo* se, para cada par de vértices v e w, existir um caminho de v para w.

Observações:

- Se G não for conexo ele não possui nenhuma árvore geradora, muito menos uma que seja mínima.
- Neste caso ele teria uma floresta geradora.
- Para simplificar a apresentação do algoritmo para árvore geradora mínima, vamos assumir que G é conexo. É fácil estender o algoritmo (e sua justificativa) para determinar uma floresta de árvores geradoras mínimas.

Árvore geradora mínima Algoritmo de Dijkstra-Prim (1959/57)

O algoritmo de Dijkstra-Prim começa selecionando um vértice arbitrário, e depois "aumenta" a árvore construída até então escolhendo um novo vértice (e um nova aresta) a cada iteração. Durante a execução do algoritmo, podemos imaginar os vértices divididos em três categorias:

- Vértices da árvore: aqueles que fazem parte da árvore construída até então;
- 2. Vértices da borda: não estão na árvore, mas são adjacentes a algum vértice da árvore;
- 3. *Vértices não-vistos*: todos os outros.

Árvore geradora mínima Algoritmo de Dijkstra-Prim

O principal passo do algoritmo é a seleção de um vértice da borda e de uma aresta incidente a este vértice. O algoritmo de Dijkstra—Prim sempre escolhe uma aresta entre um vértice da árvore e um vértice da borda que tenha peso mínimo. A estrutura geral do algoritmo pode ser descrita do seguinte modo:

DIJKSTRA-PRIM(*Grafo*)

- 1 Seleciona um vértice arbitrário para inicializar a árvore;
- 2 while existem vértices da borda
- do Seleciona uma aresta de peso mínimo entre um vértice da árvore e um vértice da borda;
- 4 Adiciona a aresta selecionada e o vértice da borda à árvore;

Algoritmo de Dijkstra-Prim

Idéia básica:

- Tomando como vértice inicial A, crie uma fila de prioridades classificada pelos pesos das arestas conectando A.
- Repita o processo até que todos os vértices tenham sido visitados.

Princípio da técnica de algoritmos gulosos

- A cada passo faça a melhor escolha:
 - Escolha local é ótima.
- Objetivo:
 - → A solução final ser ótima também.
- Sempre funciona?
 - Não. Por exemplo, 0−1 Knapsack Problem.
- Propriedades de problemas que, em geral, levam ao uso da estratégia gulosa:
 - Propriedade da escolha gulosa.
 - Sub-estrutura ótima.

Propriedade da escolha gulosa

- Solução global ótima pode ser obtida a partir de escolhas locais ótimas.
- Estratégia diferente de programação dinâmica (PD).
- Uma vez feita a escolha, resolve o problema a partir do "estado" em que se encontra.
- Escolha na técnica gulosa depende só do que foi feito e não do que será feito no futuro.
- Progride na forma *top-down*:
 - Através de iterações vai "transformando" uma instância do problema em uma outra menor.

Propriedade da escolha gulosa

- Estratégia da prova que a escolha gulosa leva a uma solução global ótima:
 - Examine a solução global ótima.
 - Mostre que a solução pode ser modificada de tal forma que uma escolha gulosa pode ser aplicada como primeiro passo.
 - Mostre que essa escolha reduz o problema a um similar mas menor.
 - Aplique indução para mostrar que uma escolha gulosa pode ser aplicada a cada passo.

Sub-estrutura ótima

- Um problema exibe sub-estrutura ótima se uma solução ótima para o problema é formada por soluções ótimas para os sub-problemas.
- Técnicas de escolha gulosa e programação dinâmica possuem essa característica.

Técnica gulosa vs. Programação dinâmica

- Possuem sub-estrutura ótima.
- Programação dinâmica:
 - Faz uma escolha a cada passo.
 - Escolha depende das soluções dos sub-problemas.
 - Resolve os problemas bottom-up.
- Técnica gulosa:
 - Trabalha na forma top-down.

Diferenças das duas técnicas através de um exemplo

- Problema da Mochila (enunciado):
 - Um ladrão acha n itens numa loja.
 - Item i vale v_i unidades (dinheiro, e.g., R\$, US\$, etc).
 - Item i pesa w_i unidades (kg, etc).
 - $-v_i$ e w_i são inteiros.
 - Consegue carregar W unidades no máximo.
 - Deseja carregar a "carga" mais valiosa.

Versões do Problema da Mochila

- Problema da Mochila 0 –1 ou (0 –1 Knapsack Problem):
 - O item i é levado integralmente ou é deixado.
- Problema da Mochila Fracionário:
 - Fração do item i pode ser levada.

Considerações sobre as duas versões

Possuem a propriedade de sub-estrutura ótima.

Problema inteiro:

- Considere uma carga que pesa no máximo W com n itens.
- Remova o item j da carga (específico mas genérico).
- Carga restante deve ser a mais valiosa pesando no máximo $W-w_j$ com n-1 itens.

Problema fracionário:

- Considere uma carga que pesa no máximo W com n itens.
- Remova um peso w do item j da carga (específico mas genérico).
- Carga restante deve ser a mais valiosa pesando no máximo W-w com n-1 itens mais o peso w_j-w do item j.

Considerações sobre as duas versões

- Problema inteiro:
 - → Não é resolvido usando a técnica gulosa.
- Problema fracionário:
 - → É resolvido usando a técnica gulosa.
- Estratégia para resolver o problema fracionário:
 - Calcule o valor por unidade de peso $\frac{v_i}{w_i}$ para cada item.
 - Estratégia gulosa é levar tanto quanto possível do item de maior valor por unidade de peso.
 - Repita o processo para o próximo item com esta propriedade até alcançar a carga máxima.
- Complexidade para resolver o problema fracionário:
 - Ordene os itens i ($i=1\ldots n$), pelas frações $\frac{v_i}{w_i}$.
 - $\rightarrow O(n \log n)$.

Exemplo: Situação inicial Problema 0-1

Item	Peso	Valor	V/P
1	10	60	6
2	20	100	5
3	30	120	4

Carga máxima da mochila: 50

Exemplo: Estratégia gulosa Problema 0-1

Soluções possíveis:

#	Item (Valor)		
1	2 + 3 = 100 + 120 = 220		
2	1 + 2 = 60 + 100 = 160		
3	1 + 3 = 60 + 120 = 180		

→ Solução 2 é a gulosa.

Exemplo: Estratégia gulosa Problema 0 –1

Considerações:

- Levar o item 1 faz com que a mochila fique com espaço vazio
- Espaço vazio diminui o valor efetivo da relação $\frac{v}{w}$
- Neste caso deve-se comparar a solução do sub-problema quando:
 Item é incluído na solução × Item é excluído da solução
- Passam a existir vários sub-problemas
- Programação dinâmica passa a ser a técnica adequada

Exemplo: Estratégia gulosa Problema Fracionário

Item	Peso	Valor	Fração
1	10	60	1
2	20	100	1
3	30	80	2/3

- → Total = 240.
- → Solução ótima!

Algoritmos aproximados

- Problemas que somente possuem algoritmos exponenciais para resolvê-los são considerados "difíceis".
- Problemas considerados intratáveis ou difíceis são muito comuns, tais como:
 - Problema do caixeiro viajante cuja complexidade de tempo é O(n!).
- Diante de um problema difícil é comum remover a exigência de que o algoritmo tenha sempre que obter a solução ótima.
- Neste caso procuramos por algoritmos eficientes que não garantem obter a solução ótima, mas uma que seja a mais próxima possível da solução ótima.

Tipos de algoritmos aproximados

- **Heurística**: é um algoritmo que pode produzir um bom resultado, ou até mesmo obter a solução ótima, mas pode também não produzir solução alguma ou uma solução que está distante da solução ótima.
- Algoritmo aproximado: é um algoritmo que gera soluções aproximadas dentro de um limite para a razão entre a solução ótima e a produzida pelo algoritmo aproximado (comportamento monitorado sob o ponto de vista da qualidade dos resultados).