Response to Non-Final Office Action Inventor(s): N. Takamori, et al. U.S.S.N. 10/002,949
Page 2 of 7

Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

- 1-9. (Cancelled).
- 10. (Previously presented) An optical data recording medium comprising a transparent substrate, a thin film layer formed on the transparent substrate and a protective film which is mainly comprised of a resin and formed on the thin film layer for protecting the thin film layer, wherein the thin film layer is a single layered or multilayered film including at least any one of a dielectric film, a recording film and a reflective film, and at least either one of a linear expansion coefficient and a Young's modulus of the protective film is greater than that of the transparent substrate, and the linear expansion coefficient of the protective film is greater than 9.5×10^{-5} (1/°C) and smaller than 5.0×10^{-4} (1/°C).
- 11. (Previously presented) An optical data recording medium according to claim 10, wherein an expansion coefficient under humidity (ratio of expansion (1/%) where a difference of relative humidity (vapor content/ saturated vapor amount at 25°C) is increased by 1%) of the protective film is $1.7 \times 10^{-4} (1/\%)$ or smaller.
- 12. (Previously Presented) An optical data recording medium according to claim 10, wherein the Young's modulus of the transparent substrate is smaller than 10.0×10^9 (Pa).
- 13. (Previously Presented) An optical data recording medium according to claim 11, wherein the Young's modulus of the transparent substrate is smaller than 10.0×10^9 (Pa).

Response to Non-Final Office Action Inventor(s): N. Takamori, et al. U.S.S.N. 10/002,949 Page 3 of 7

- 14. (Previously presented) An optical data recording medium, comprising a transparent substrate, a thin film layer formed on the transparent substrate and a protective film which is mainly comprised of a resin and formed on the thin film layer for protecting the thin film layer, wherein a Young's modulus of the transparent substrate is smaller than 10.0×10^9 (Pa), and the thin film layer is a single layered or multilayered film, and wherein at least either one of a linear expansion coefficient and a Young's modulus of the protective film is greater than that of the transparent substrate, and the linear expansion coefficient of the protective film is greater than 9.5×10^{-5} (I/°C) and smaller than 5.0×10^{-4} (1/°C), and an expansion coefficient under humidity of the protective film is 1.7×10^{-4} (1/%) or smaller.
- 15. (Previously Presented) An optical data recording medium according to any one of claims 10 to 14, wherein a thickness of the protective film is 5 μ m or more to 20 μ m or less.
- 16. (Previously Presented) An optical data recording medium according to any one of claims 10 to 14, wherein the protective film is made of an ultraviolet light curing resin.
- 17. (Previously presented) An optical data recording medium according to any one of claims 10 to 14, wherein the transparent substrate is made of a polycarbonate or a polyclefin and a thickness thereof is about 0.5 mm.
- 18. (Currently amended) A method of selecting a protective film in an optical data recording medium, the optical data recording medium comprising a transparent substrate, a thin film layer formed on the transparent substrate and a protective film which is mainly comprised of a resin and formed on the thin film layer for protecting the thin film layer, wherein the transparent substrate has a Young's modulus smaller than 10.0×10^9 (Pa), and wherein on condition that the thin film layer is a single layered or multilayered film including at least any one of a dielectric film, a recording film and a reflective film and the transparent

Response to Non-Final Office Action Inventor(s): N. Takamori, et al. U.S.S.N. 10/002,949 Page 4 of 7

substrate is made of a polycarbonate or a polyolofin with a thickness of 0.5 mm, the method comprising the steps of:

determining the linear expansion coefficient of a material for making the protective film; and

solecting the material for making the protective film is solected such that at least either one of a linear expansion coefficient and a Young's modulus of the protective film is greater than that of the transparent substrate and the linear expansion coefficient of the protective film is greater than 9.5×10^{-5} (1/°C) and smaller than 5.0×10^{-4} (1/°C).

- 19. (Previously Presented) A method of selecting a protective film in an optical data recording medium according to claim 18, wherein the protective film is selected such that the Young's modulus of the protective film is greater than 2.0×10^9 (Pa) and smaller than 1.0×10^{10} (Pa).
- 20. (Previously Presented) A method of selecting a protective film in an optical data recording medium according to claim 18, wherein the protective film is selected such that an expansion coefficient under humidity thereof (ratio of expansion (1/%) where a difference of relative humidity (vapor content/saturated vapor amount at 25°C) is increased by 1%) of the protective film is $1.7 \times 10^{-4} (1/\%)$ or smaller.
- 21. (Previously Presented) A method of selecting a protective film in an optical data recording medium according to claim 19, wherein the protective film is selected such that an expansion coefficient under humidity thereof (ratio of expansion (1/%) where a difference of relative humidity (vapor content/saturated vapor amount at 25°C) is increased by 1%) of the protective film is $1.7 \times 10^{-4} (1/\%)$ or smaller.
- 22. (Previously presented) An optical data recording medium provided with a protective film for protecting a thin film layer selected by the method of any one of claims 18 to 21.