Equations of Lines and Planes 1

t is the parameter of the equation.

Reiterate: $\vec{r} = \vec{r_0} + ti\vec{P}$

Let
$$\vec{v} = \langle a, b, c \rangle$$

then $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$

$$< x, y, z > = < x_0 + ta, y_0 + tb, z_0 + tc >$$

So the parametric equations for a line are as follows:

- $\bullet \ x = x_0 + ta$
- $\bullet \ \ y = y_0 + tb$
- $z = z_0 + tc$

When you solve for t, you get the symmetric equations.

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
If $b = 0$, then you get:
$$\frac{x - x_0}{a} = \frac{z - z_0}{c}, y = y_0$$

$$\frac{x-x_0}{a} = \frac{z-z_0}{c}, y = y_0$$

Lines in a 3D space can be parallel, intersecting, or skew.

The figure above demonstrates $\vec{v_1}$ which travels from I(x,y,z) to P(x,y,z)

Previously, we know $\vec{r} = \vec{r_0} + t\vec{v}$

Substitute $\vec{v} = \vec{r_1} - \vec{r_0}$

We get $\vec{r} = \vec{r_0} + t(\vec{r_1} - \vec{r_0})$

 $\vec{r} = (1 - t)\vec{r_0} + t\vec{r_1}$

 $0 \le t \le 1$, since the parameter t limits the points to between I and P

1.1 Do the lines L_1 and L_2 intersect, are they parallel, or are they skew?

$$L_1: x = 2 + 5, \ y = -1 + 3t, \ z = 5 - t$$

 $L_2: x = 1 + 2u, \ y = 4 + u, \ z = -2 + 4u$
 $\vec{v_1} = <1, 3, -1>$
 $\vec{v_2} = <2, 1, 4>$

incomplete do later

Ex. Find where line L intersects plane 5x - 2y + 4z = 18

 $L: x = -4t, \ y = 5 + t, \ z = 2 + 3t$

$$5(-4t) - 2(5+t) + 4(2+3t) = 18$$
 (1)

$$-20t - 10 - 2t + 8 + 12t = 18 \tag{2}$$

$$-10t = 20\tag{3}$$

$$t = -2 \tag{4}$$

1. Two planes are parallel if their normal vectors are parallel.

2. Two planes that are not parallel intersect along a line

3. The angle between intersecting planes is the angle between their normal vectors

Ex.: Consider planes x + y + z = 1 and 3x + y - 2z = 1

a) Find the angle between the planes

1.2 Continued

$$\vec{n_1} = <1, 1, 1>, \vec{n_2} = <3, 1, -2>$$
 (1)

$$\vec{n_1} \cdot \vec{n_2} = |\vec{n_1}| |\vec{n_2}| \cos \theta \tag{2}$$

Use the equations of two planes to describe a line

Distance from a point to a plane

$$P_1(x_1, y_1, z_1)$$

 $ax + by + cz + d = 0$

EX: Find the distance between the parallel planes

1.3 E

x: Find the distance between the lines L_1 and L_2

The distance between L_1 and L_2 is teh same as teh distance between the two parallel planes that contain these lines.

The normal vector \vec{n} for these two planes must be orthogonal to $\vec{v_1}$ and $\vec{v_2}$