Aufgabe 1. Sei die Matrix $A=\begin{pmatrix}\lambda&1\\0&\lambda\end{pmatrix}\in M_2(\mathbb{C})$ mit $\lambda\neq 0$ gegeben. Man zeige, daß A^k für alle $k\in\mathbb{N}$ die Jordan'sche Normalform $\begin{pmatrix}\lambda^k&1\\0&\lambda^k\end{pmatrix}$ hat.

Proof. Zunächst sei erwähnt, daß die Jordan'sche Normalform für A existiert, da \mathbb{C} algebraisch abgeschlossen ist. Mit Induktion nach k zeigt man leicht, daß

$$A^k = \left(\begin{array}{cc} \lambda^k & k\lambda^{k-1} \\ 0 & \lambda^k \end{array}\right).$$

Daraus folgt für das charakteristische Polynom von A^k

$$\chi_{A^k} = (X - \lambda^k)^2.$$

Die algebraische Vielfachheit ist 2. Da das Minimalpolynom einer Matrix das charakteristische Polynom teilt, gibt es für das Minimalpolynom von A^k die beiden Möglichkeiten

$$\mu_{A^k} = X - \lambda^k$$
 oder $\mu_{A^k} = (X - \lambda^k)^2$.

Im ersten Fall ergäbe sich die Jordan Normalform $\begin{pmatrix} \lambda^k & 0 \\ 0 & \lambda^k \end{pmatrix}$. Im zweiten Fall ergäbe sich die Jordan Normalform $\begin{pmatrix} \lambda^k & 1 \\ 0 & \lambda^k \end{pmatrix}$.

Wir werden nun die geometrische Vielfachheit von A^k berechnen, um aus den obigen Möglichkeiten die richtige auszuwählen. Diese ist gegeben durch die Dimensionsformel:

$$\dim(\ker(A^k - \lambda^k E_2)) = \dim V - \operatorname{rank}(A^k - \lambda^k E_2) = 2 - 1 = 1.$$

Insbesondere ist die geometrische Vielfachheit echt kleiner als die algebraische Vielfachheit. Da die geometrische Vielfachheit die Anzahl der Jordanblöcke angibt, wissen wir somit, daß die zweite Möglichkeit zutrifft und A^k die Jordan Normalform $\begin{pmatrix} \lambda^k & 1 \\ 0 & \lambda^k \end{pmatrix}$ hat.

Aufgabe 2. Sei K ein Körper, V ein endlich dimensionaler K-Vektorraum der Dimension n, und $\phi:V\to V$ ein Endomorphismus so daß das charackteristische Polynom in Linearfaktoren zerfällt. Man zeige, daß die folgenden Aussagen äquivalent sind:

- (a) Alle Eigenräume von ϕ sind eindimensional.
- (b) Zu jedem Eigenwert von ϕ existiert in der Jordan'schen Normalform genau ein Jordanblock.
- (c) Das Minimalpolynom und das chrakteristische Polynom von ϕ stimme überein.

Proof. Wir stellen zunächst fest, daß die Jordan Normalform von ϕ existiert, da das charakteristiche Polynom von ϕ vollständig in Linearfaktoren zerfällt. Sei $\chi_{\phi} = \prod_{i=1}^{r} (X - \alpha_i)^{k_i}$, wobei die α_i paarweise verschieden sind und k_i die algebraische Vielfachheit von α_i ist und $\sum_{i=1}^{r} k_i = n$. Dann sind die α_i die Eigenwerte von ϕ .

(a) \Rightarrow (b): Für α_i ist der Eigenraum gegeben durch

$$E(\alpha_i) = \ker(\phi - \alpha_i \operatorname{id}_V).$$

Angenommen dim $E(\alpha_i) = 1$, dann ist

$$1 = \dim E(\alpha_i) = \dim v - \dim(\operatorname{im}(\phi - \alpha_i \operatorname{id})) = \dim V - \operatorname{rank}(\phi - \alpha_i \operatorname{id})$$

Also ist $\operatorname{rank}(\phi - \alpha_i \operatorname{id}) = n - 1$. Es gilt andererseits, daß $\operatorname{rank}(\phi - \alpha_i \operatorname{id}) = n - Anzahl der Jordankästchen . (Um dies zu sehen betrachten wir ein einzelnes Jordankästchen zum Eigenwert <math>\alpha_i$ und nehmen an, dass es von der Größe $s \times s$ is. Dann hat die Matrix $J_i - \alpha_i E_s$, wobei E_s die Einhaltsmatrix der Größe $s \times S$ is, den Rang s - 1, denn sie hat 0en auf der Diagonalen und s - 1 1en auf der Nebendiagonalen. Das heißt für jeden existierenden Jordanblock reduziert sich der Rang von $\phi - \alpha_i$ id um eins.) Es gibt also genau ein

Aufgaben 1

Jordan Kästchen zu α_i . Kürzer könnte man sagen, daß die geometrische Vielfachheit dim $E(\alpha_i)$ genau die Anzahl der Jordan Kästchen angibt.

(b) \Rightarrow (c): Angenommen es existiert zu jedem Eigenwert α_i genau ein Jordan-Block. Um zu zeigen, daß das Minimalpolynom μ_{ϕ} und das charakteristische Polynom χ_{μ} übereinstimmen, erinnern wir uns zunächst daran, daß das Minimalpolynom das charakteristische Polynom in jedem Fall teilt, d.h. $\mu_{\phi}=$ $\prod_{i=1}^{r} (X - \alpha_i)^{l_i}$ mit $l_i \leq k_i$, wobei für $i \in \{1, \dots, r\}$ der Exponent l_i die Spaltenzahl (oder Zeilenzahl) des größten Jordan-Blocks zum Eigenwert α_i angibt, und der Exponent k_i die Gesamtspaltenzahl (oder Gesamtzeilenzahl) aller Jordan-Blöcke zum Eigenwert α_i angibt. Da es zu α_i genau einen Jordan-Block gibt, muß also $l_i = k_i$ sein. Es folgt $\mu_{\phi} = \chi_{\phi}$.

(c) \Rightarrow (a): Angenommen, das Minimalpolynom und das charakteristische Polynom von ϕ stimmen überein, mit obigen Bezeichnungen

$$\mu_{\phi} = \prod_{i=1}^{r} (X - \alpha_i)^{l_i} = \prod_{i=1}^{r} (X - \alpha_i)^{k_i} = \chi_{\phi},$$

also ist $l_i = k_i$ für alle $i \in \{1, ..., r\}$. Da l_i die Spaltenzahl des größten Jordan-Blocks zu α_i ist, und k_i die Gesamtspaltenzahl aller Jordan-Blöcke zu α_i , gibt es zu jedem α_i genau einen Jordan-Block. Also ist die geomerische VIelfachheit und damit die Dimension des Eigenraumes von α_i gleich eins.

Aufgabe 3. Man gebe alle Lösungen X der Gleichung $X^7 = E_5$ in $\mathbf{GL}_5(\mathbb{Q})$ an.

Proof. Wir betrachten das Polynom $X^7 - 1$ über \mathbb{Q} . Dieses hat die Zerlegung in irreduzible Faktoren

$$X^7 - 1 = (X - 1)(X^6 + X^5 + X^4 + X^3 + X^2 + X + 1),$$

wobei der erste Faktor trivialerweise irreduzibel ist, denn er ist normiert und linear. Der zweite Faktor ist irreduzibel modulo 2, also irreduzibel in \mathbb{Z} und damit auch irreduzibel in \mathbb{Q} .

Sei $A \in \mathbf{GL}_5(\mathbb{Q})$ mit $A^7 = E_5$, also $A^7 - E_5 = 0$. Nach Definition teilt das Minimalpolynom μ_A von Adas Polynom X^7-1 . Da das Minimalpolynom einer Matrix aus $\mathbf{GL}_5(\mathbb{Q})$ höchstens Grad 5 hat, gilt also $\mu_A = X - 1$ und es folgt $A = E_5$.

Aufgabe 4. Sei K ein Körper, $n \in \mathbb{N}$ und $K^{n \times n}$ der K-Vektorraum der $n \times n$ -Matrizen. Ferner sei $\mathbf{GL}_n(K)$ die Gruppe der invertierbaren Matrizen aus $K^{n\times n}$.

- (a) Sei $A \in K^{n \times n}$, und V der von den Matrizen A^0, A^1, A^2, \ldots erzeugte Untervektorraum von $K^{n \times n}$. Man zeige, daß dim $v \leq n$ gilt. Hinweis: Satz von Cayley-Hamilton.
- (b) Sei K ein endlicher Körper. Man zeige, daß jedes Element aus $GL_n(K)$ höchstens die Ordnung $|K|^n - 1$ hat.

Hinweis: Für $A \in \mathbf{GL}_n(K)$ vergleiche man die von A erzeugte Untergruppe von $\mathbf{GL}_n(K)$ mt V.

Proof. (a) Wir zeigen, daß der Vektorraum V von $\{A^0, A^1, \dots, A^{n-1}\}$ aufgespannt wird. Damit hat er ein Erzeugendensystem der Länge n und dim $V \geqslant n$ wie gewünscht. Sei U der von $\{A^0, A^1, \ldots, A^{n-1}\}$ erzeugte Unterraum von V. Wir zeigen nun durch Induktion nach k, daß für $k \in \mathbb{N}_0$ alle $A^k \in U$ enthalten sind. Daraus folgt, daß $V \subset U$, also insbesondere V = U.

Der Induktionsanfang, daß $A^i \in U$ für $0 \le i \le n-1$, ist klar nach der Definition von U. Wir nehmen daher (Induktionsannahme) an, daß für ein $k \ge n$, für alle $0 \le l < k$ gilt $A^l \in U$. Sei $\chi_A = x^n +$ $a_{n-1}x^{n-1}+\ldots+a_0\in Kx$ das charakteristische Polynom von A. Nach dem Satz von Cayley-Hamilton ist A eine Nullstelle ihres charakteristischen Polynoms, d.h.

$$0 = \chi_A(A) = A^n + \ldots + a_0$$

umgestellet

$$A^{n} = -a_{n-1}A^{n-1} - \dots - a_1A^{1} - a_0A^{0}$$

Da $k \ge n$ ist, können wir mit A^{k-n} multiplizieren und erhalten

$$A^{k} = -a_{n-1}A^{k-1} - \dots - a_1A^{k-n+1} - a_0A^{k-n}$$

Nach Induktionsannahme liegen die A^{k-1}, \ldots, A^{k-n} bereits in U. Daher gilt das gleiche für A^k und wir sind fertig.

(b) Sei $A \in \mathbf{GL}_n(K)$ und $G = \langle A \rangle$ die von A erzeugte Untergruppe (multiplikativ gesehen) und V der Vektorraum aus (a). Da K endlich ist, ist auch die allgemeine lineare Gruppe $\mathbf{GL}_n(K)$, und somit auch die Untergruppe G endlich. Da sie zyklisch ist gilt $m = |G| = \operatorname{ord}(A)$. Die Elemente von G sind also von der Form A^k mit $0 \leq k < m$ und damit $G \subseteq V \setminus \{0\}$. (Die A^k sind alle invertierbar, aalso $\neq 0$. Da V wie oben gesehen ein Vektorraum der Dimension $\leq n$ über dem endlichen Körper K ist, hat V höchstens $|K|^n$ Elemente. Also

$$\operatorname{ord}(A) \leqslant |V \setminus \{0\}| \leqslant |K|^n - 1.$$

Aufgabe 5. Man zeige, daß die irrationalen Zahlen $\ln(p)$, p prim, linear unabhängig über dem Körper \mathbb{Q} sind.

Proof. Wir müssen zeigen, daß jede endliche Teilmenge $\{p_1, \dots, p_n\}$ verschiedener Primzahlen linear unabhängig sind. Sei

$$\sum_{i=0}^{n} \lambda_i \ln p_i = 0$$

wobei $\lambda_i \in \mathbb{Q}$. OBdA nehmen wir (nach Erweiterung) an, daß die λ_i ganz sind. Wir müssen zeigen, daß sie = 0 sind. SIe obige Glecihung kann umgeformt werden zu

$$\prod_{i=0}^{n} p_i^{\lambda_i} = 1.$$

Nach der eindeutigkeit der Primfaktorzerlegung folgt also, daß alle $\lambda_i = 0$.