МГТУ им. Н.Э. Баумана

Отчёт по лабораторной работе №1 по курсу «Электротехника»

Тема: Схема тока. Вариант 11.

> Руководитель Белодедов М.В. 16.09.2022

студент группы ИУ5-33Б Пермяков Дмитрий 16.09.2022

Полученное задание:

Введём обозначения, тогда исходная цепь примет вид:

Схема представляет собой:

Два источника тока J_1 и J_2 , три резистора R_1, R_2, R_3 , один источник напряжения и амперметр.

Два источника J_1 и J_2 , причём положительная клемма источника J_1 соединена с отрицательной клеммой источника напряжения ${\rm E};$

Положительная клемма источника ${\rm E}$ соединена с резистором R_3 , причём свободная клемма резистора R_3 соединена с отрицательной клеммой J_1 .

Между соединение положительного клемма источника J_1 с отрицательной клеммой источника напряжения E подключён резистор R_1 , причём свободная клемма резистора R_1 соединена с положительной клеммой источника J_2 .

Отрицательная клемма источника J_2 подключена к соединению резистора R_3 с отрицательной клеммой источника J_1 .

Кроме того, резистор R_2 подключён к соединению положительной клемма источника ${\rm E}$ с резистором R_3 .

<u>Требуется определить</u> силу тока между соединением резистора R_1 с положительной клеммой источника J_2 и свободной клеммой резистора R_2 .

Теоретическое вычисление:

Вариант Применения законов Кирхгофа и Ома:

Введём обозначения неизвестных потоков и контуров.

Первый закон

Киргофа для узла А:

$$J_1 = i_1 + I$$

Для узла В:

$$J_2 + i_1 = i_2$$

$$i_2 + I + i_3 = 0$$

Для узла D:
$$0 = J_2 + J_1 + i_3$$

Применим второй закон Киргофа:

Для первого контура:

$$J_2 r_2 + i_2 (R_A + R_2) - i_3 R_3 = 0$$

Для второго контура:

$$J_1 r_1 + i_1 R_1 - J_2 r_2 = 0$$

Для третьего контура:

$$I - i_2(R_2 + R_A) - i_1R_1 = E$$

Итак, выходит система:

$$\begin{cases} J_1 = I + i_1 \\ J_2 + i_1 = i_2 \\ i_2 + I + i_3 = 0 \\ 0 = J_2 + J_1 + i_3 \\ J_1 r_1 + i_1 R_1 - J_2 r_2 = 0 \\ J_2 r_2 + i_2 (R_A + R_2) - i_3 R_3 = 0 \\ I - i_2 (R_2 + R_A) - i_1 R_1 = E \end{cases}$$

В результате которой получаем, что $i_2 \approx -0.0018738$ А. Или же $i_2 \approx -1.875$ мА.

Относительная погрешность измерений:

$$\Delta_0 = |\, \varepsilon I\,| = 0.0018738A \times 25 \times 10^{-6} = 46845 * 10^{-12}A = 46845pA$$

Процедура измерения.

Схема была собрана в программесимуляторе MultiSim.

Для измерения использовался амперметр постоянного тока с внутренним сопротивлением $0.2~\Omega$. В процессе измерения он подключался к соединению резистора R_1 с положительной клеммой источника J_2 и свободной клеммой резистора R_2 .

Показания амперметра: -1.875 mA.

Заметим, что теоретически рассчитанное значение отличается от показания амперметра в Multisim. Для повышения точности измерения параллельно с амперметром был включен источник тока с силой тока 0.0018738A.

Измерения показали расхождение рассчитанного и измеренного значений 1.2uA, что не превосходит теоретически допустимую погрешность.