Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс

«Технологии машинного обучения»

Отчет по лабораторной работе №6

«Разведочный анализ данных. Исследование и визуализация данных.»

Выполнил: студент группы ИУ5-63Б Воронова О. А. Проверил: преподаватель каф. ИУ5 Гапанюк Ю.Е.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split, KFold,
cross_val_score
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_absolute_error,
median_absolute_error, r2_score
data = pd.read_csv("Train.csv")
data.head()
```

	ID	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rating	Cos
0	1	D	Flight	4	2	177
1	2	F	Flight	4	5	216
2	3	A	Flight	2	2	183
3	4	В	Flight	3	3	176
4	5	С	Flight	2	2	184

```
data.shape
(10999, 12)
data.dtypes
TD
                         int64
Warehouse block
                        object
Mode_of_Shipment
                        object
Customer_care_calls
                         int64
Customer_rating
                         int64
Cost of the Product
                         int64
Prior_purchases
                         int64
Product importance
                        object
Gender
                        object
Discount_offered
                         int64
Weight in gms
                         int64
Reached.on.Time Y.N
                         int64
dtype: object
LE = LabelEncoder()
for col in data.columns:
    if data[col].dtype == "object":
        data[col] = LE.fit transform(data[col])
fig, ax = plt.subplots(figsize=(15,9))
sns.heatmap(data.corr(method="pearson"), ax=ax,annot=True,
fmt=".2f")
```

<AxesSubplot:>


```
target = "Customer_care_calls"
data[target] = data[target].astype("float")
xArray = data.drop(target, axis=1)
yArray = data[target]
trainX, testX, trainY, testY = train_test_split(xArray, yArray, test_size=0.2, random_state=1)
trainX
```

	ID	Warehouse_block	Mode_of_Shipment	Customer_rating	Cost_of_the_Produ
8854	8855	2	2	1	138
887	888	4	2	3	150
2477	2478	4	0	2	209
89	90	4	2	1	186
3956	3957	0	1	1	157
•••					

	ID	Warehouse_block	Mode_of_Shipment	Customer_rating	Cost_of_the_Produ
7813	7814	4	0	1	240
10955	10956	4	0	5	125
905	906	4	2	4	147
5192	5193	0	1	4	233
235	236	4	2	2	134

$8799 \text{ rows} \times 11 \text{ columns}$

```
KNN = KNeighborsRegressor(n neighbors=10)
KNN.fit(trainX, trainY)
KNeighborsRegressor(n_neighbors=10)
testY.shape
(2200,)
KNN.predict(testX).shape
(2200,)
kf = KFold(n splits=10)
scores = cross val score(KNeighborsRegressor(n neighbors=5),
xArray, yArray, scoring='r2', cv=6)
scores
array([-0.19649137, -0.24845836, 0.19951572, 0.1790049,
0.20675991,
       -0.04392033])
plt.plot(range(len(scores)), scores)
plt.title("Гиперпараметр при KFold()")
Text(0.5, 1.0, 'Гиперпараметр при KFold()')
```


Результаты(метрики)

Гиперпараметры

Модель