Heap Sort

- Baseia-se na estratégia para projeto de Algoritmo:
 Transformar & Conquistar
- Esta técnica compreende dois estágios:
 - a. No estágio de transformação a instância do problema é modificada para ser, por uma razão ou outra, mais fácil para encontrar uma solução
 - b. No segundo estágio a instância "transformada" é resolvida

Transformar e Conquistar

- Existem três variações principais desta idéia, que se diferem no que se transforma uma dada instância:
 - Transformação para uma instância mais simples ou mais conveniente do mesmo problema (simplificação da instância)
 - Ex: Eliminação Gaussiana, pré-ordenação, etc
 - Transformação para uma representação diferente da mesma instância (mudança da representação)
 - Ex: Árvores de busca balanceadas, *Heap e HeapSort*, etc
 - Transformação para uma instância de um problema diferente para o qual já existe um algoritmo eficaz (redução do problema)
 - Reduções a problemas de grafos, Programação linear, etc

Heaps e HeapSort

- Heap é uma estrutura de dados parcialmente ordenada que é adequada para a implementação de filas de prioridade
 - Fila de prioridade: conjunto de itens com uma característica ordenável chamada prioridade de um item, a partir das seguintes operações:
 - Encontrar um elemento com a prioridade mais elevada
 - Apagar um item com a mais alta prioridade
 - Adicionar um novo item ao conjunto
 - Usados em: S.O.s, Sistemas de gerência de memória, etc

Heap Definição

Heap é uma estrutura de dados em forma de árvore binária balanceada onde o nó pai é sempre maior que o nó filho

Heap with 10 items

Heap Propriedades

- 1. Existe exatamente uma árvore binária essencialmente completa com n nós. Sua altura é igual a $lg_{,n}$
- 2. A raiz do *heap* sempre contém o maior ou menor elemento
 - Heap Máximo: $A[pai[i]] \ge A[i]$
 - Heap Mínimo: $A[pai[i]] \le A[i]$
- 3. Um nó de um *heap* com todos seus descendentes é também um *heap*
- 4. Um heap pode ser implementado como um arranjo, gravando seus elementos de maneira cima—baixo (*top–down*) e esquerda—direita (*left–to–right*)

Heap Propriedades (II)

- No *Heap* para o arranjo H[1..n] tem-se que:
 - As chaves pais estarão nas n/2 primeiras posições do arranjo. As chaves folhas ocuparão as últimas n/2 posições
 - $\blacksquare H[i] \ge max \{H[2i], H[2i+1]\} para i = 1,..., n/2$
 - O filho de uma chave na posição pai "i" ($1 \le i \le n/2$) estará nas posições 2i e 2i+1
 - Esquerda(i): return 2i
 - \blacksquare Direita(i): return 2i+1
 - Consequentemente, o pai de uma chave na posição "i" $(2 \le i \le n)$ estará na posição i/2
 - *Pai(i)*: return i/2

Heap Representação por array

FIGURE 6.10 Heap and its array representation

Heap Exemplo de construção

FIGURE 6.11 Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8

Manutenção da propriedade de um Heap

```
MAX-HEAPIFY (A, i)
 1) l \leftarrow left(i) //2*i
2) r \leftarrow right(i) //2*i+1
3) if ((1 \le lenght[A]) and (A[1] > A[i])
   max ← l
5) else max \leftarrow i
6) if ((r \leq lenght[A]) and (A[r] > A[max])
7) \max \leftarrow r
8) if (max≠i) {
9)
         swap(A[i], A[max])
10)
    MAX-HEAPIFY(A, max) }
```

Exemplo de uso do MAX-HEAPIFY

- (a) A[2] viola propriedade
- (b) troca de A[2] por A[4],
 mas A[4] viola a
 propriedade
- (c) troca de *A[4]* por *A[9]*
 - Chamadas recursivas a MAX-HEAPIFY

Construção de um Heap

BUILD-MAX-HEAP (A)

- 1) n←lenght[A]
- 2) for $i \leftarrow n/2$ downto 1
- 3) MAX-HEAPIFY(A, i)

- Usa-se o procedimento
 MAX-HEAPIFY de baixo para cima
 - Converte A[1..n] em um heap máximo
 - Cada nó *i*+1, *i*+2, ..., *n* é a raiz de um *heap* máximo

Exemplo de uso de BUILD-MAX-HEAP

- (a) arranjo original
 - Laço em *i* se refere ao nó 5 inicialmente.
- (b) Resultado
 - Laço i no nó 4
- (c)-(e) iterações subsequentes
- (f) resultado final

HeapSort Algoritmo

- Aplicar a operação de apagamento da raiz *n*−*1* vezes sobre o *heap* resultante, ou seja:
 - 1. Remover raiz trocar com a última folha (mais a direita)
 - 2. Arrumar o *heap* (excluindo a última folha)
 - 3. Repetir o passo 1 até que o heap contenha somente um nó

HEAP-EXTRACT-MAX Algoritmo

```
HEAP-EXTRACT-MAX (A)
1)
      if (lenght[A]<1)
2)
          error("Underflow")
3)
      max \leftarrow A[1]
4)
      last \leftarrow lenght[A]
5)
    A[1] \leftarrow A[last]
6)
      lenght[A] --
7)
      max-HEAPFY(A, 1)
   return max
```

Algoritmo HeapSort

```
HEAPSORT (A)
1) BUILD-MAX-HEAP (A)
2)
  n \leftarrow lenght[A]
3)
  int V[n] //Vetor saida
4)
   While (n>0) do
5)
           V[n] \leftarrow HEAP-EXTRACT-MAX(A)
           n--;
```

HeapSort - Exemplo

Análise do Heap Sort

- BUILD-MAX-HEAP tem complexidade $\Theta(n)$
- MAX-HEAPIFY
 - \circ É executado n-1 vezes
 - \circ MAX-HEAPIFY tem complexidade $\Theta(\log n)$ no pior caso
 - Executa no máximo uma vez a cada nível
 - A cada nível, executa um número constante de operações
- Então, o *Heapsort*, no pior caso, tem complexidade de:

$$(n-1)\Theta(\log n) + \Theta(n) = \Theta(n \log n)$$

Resumo dos métodos

Para um vetor de tamanho *n*:

	Melhor caso	Pior caso	Caso Médio
BubleSort	O(n ²)	• Ω(n²)	● Θ(n²)
SelectionSort	$O(n^2)$	• Ω(n²)	 Θ(n²)
MergeSort	O(n lg n)	 Ω(n lg n) 	 ⊖(n lg n)
QuickSort	• O(n lg n)	• $\Omega(n^2)$	 Θ(n lg n)

- QuickSort possui notável eficiência na média
 - Tempos relativos aos fatores ocultos (constante de custo por chamada) na implementação bastante curtos
 - Apesar de ter $\Omega(n^2)$ no pior caso e ser recursivo
- Pode-se combinar o uso dos métodos
- Todos métodos de ordenação até aqui fazem comparações