Implementation

Saturday, November 19, 2022

12:09 PM

Simulation

- System Architect:
 - o Load: Load Profile (load can account for additional EV, EV not registered) + EVs
 - o Uncontrollable Assets: PV
 - Controllable Assets: Grid + EVs + (Genset) + (Battery)
- Tariff:
 - o Energy
 - o Power
 - o Self-consumption

Convention:

• If power is drawn (leaving) from the element, then it assumes positive value. Hence,

$$\mathbf{P}_{PV} \geq 0$$

 $\mathbf{P}_{EV} \leq 0$ (assuming unidirectional)
 $\mathbf{P}^{G} \geq 0$ (assuming no selling back)

• Decision variables are in bold

Constraints

• Power Balance

$$P_{t}^{G} + \sum_{v=1}^{V} P_{t,v}^{EV} + P_{t}^{BESS} + P_{t}^{PV} + P_{t}^{Load} = 0$$

• Grid Power Separation

$$P_{t}^{G} = P_{t}^{G+} - P_{t}^{G-}$$
 $P_{t}^{G+} \ge 0$
 $P_{t}^{G-} \ge 0$

• Demand Peak (relaxed to the objective function)

$$P_t^G \leq P^{Peak}$$
 Or
$$P_t^{SurPeak+} - P_t^{SurPeak-} = P^{Peak} - P_t^G$$
 $P_t^{SurPeak+} \geq 0, P_t^{SurPeak-} \geq 0$

No Charging before arrival time

$$\mathbf{y}_{t}^{v} = 0 \text{ if } t < TA_{v}, \quad \forall v \in V$$

• Charging Activation:

$$y_t^v = \begin{cases} 1, & \text{if } v \text{ is charged at time } t \\ 0 \end{cases}$$

• If variable charging power is the case:

 $M \times y_t^{\nu} \ge -P_t^{EV}$ (complementary required in the objective function)

$$P_{nom}^{v} \ge -P_{t,v}^{EV}, \quad \forall v \in V$$

• If fixed charging power:

$$P^v_{nom} imes m{y}^v_t = -m{P}^{EV}_{t,v}$$
 with P^v_{nom} is the nominal charing power of the vehicle v

• Maximum EV Charged < = number of sockets

$$\sum_{v=1}^{V} y_t^v \leq N_s$$
, with $N_s =$ number of sockets

• EV's State of Charge: soc_{t+1}^{v} is the state of charge of vehicle v at the beginning of the interval [t, t+1]

$$soc_{t+1}^{v} = \eta^{v} \times \frac{-P_{t,v}^{EV}}{CEV^{v}} \times \Delta t + soc_{t}^{v}, \quad \forall t \in [1, T-1], \ \Delta t = Timestep/3600$$

$$soc_1^v = soc_{init}^v$$
, $t = 0$

$$soc_t^v \ge socMin$$

 $soc_t^v \le socMax$

$$soc_t^v \leq socMax$$

Max is 1

- Departure Constraints:
 - \circ Hard Constraint: SoC must be at the desired level at departure time (TD^{ν}) . This hard constraint will be a problem if we have a fixed charging power level.

$$soc_t^v \ge soc_{desired}^v$$
, $if \ \forall t \ge TD^v$, $\forall v \in V$

Notice that the equality constraint ($soc^v_t \geq soc^v_{desired}$) make the solver take a lot longer to solve (even exceed time limit)

$$P_{t,v}^{EV} = 0, \qquad \forall \ t \ge TD^v$$

Tardiness is no longer required in the objective function

Soft Constraints

$$tard_{v} = soc_{desired}^{v} - soc_{t}^{v}, \quad if \ t = TD^{v}$$

- Tardiness (with respect to the desired SoC)
- Socket Engagement: stop charging after tDeparture or desired SoC is satisfied

Objective Function

objFunc = Energy + Demand + Soft Constraint

$$Energy = \cdots$$

$$Demand = \sum_{t=1}^{T} Pr_t^{DCM} \times P_t^{SurPeak-}$$

- o Cost Energy
- o Cost Power
- o Tardiness
- Unmet service
- Socket Engagement

Remarks

- The coefficients for the tardiness and cost for demand peak may be a determining factor for the solvability (& solving time), thus choosing the suitable cost for tardiness is genuinely important.
 - -> One more reason to separate into a peak problem with a sub problem for scheduling

Testing Scenarii

- With or without Demand Constraint
- Surplus PV
- Deficit PV