exercise 1:

Let X be a set and f and g two functions from X to $\overline{\mathbb{R}}$ such that f(x) + g(x) is well defined for all x in X. Show that for any t in \mathbb{R}

$$\{x \in X : f(x) + g(x) < t\} = \bigcup_{q \in \mathbb{Q}} \{x \in X : f(x) < t - q\} \cap \{x \in X : g(x) < q\}$$

Infer that if (X, \mathcal{A}, μ) is a measure space and f and g are measurable functions from X to $\overline{\mathbb{R}}$ such that f(x) + g(x) is well defined for all x in X, then f + g is measurable.

exercise 2:

Let u_n be a sequence valued in $\overline{\mathbb{R}}$. Using the definition of \liminf and of \limsup given in class, show that $\liminf u_n \leq \limsup u_n$. Show that u_n converges in $\overline{\mathbb{R}}$ if and only if $\liminf u_n \geq \limsup u_n$.

exercise 3:

- (i). Let f be a simple function from the measure space (X, \mathcal{A}, μ) to $[0, \infty]$. Define $\nu(A) = \int_A f$, for all A in \mathcal{A} . Show (by direct calculations) that ν is a measure on (X, \mathcal{A}) .
- (ii). Using the M.C.T. show that the result is still true if f is measurable and valued in $[0,\infty]$.

exercise 4:

- (i). Compute $\int \liminf f_n$ and $\liminf \int f_n$ for the sequence of functions from \mathbb{R} to \mathbb{R} $f_n = 1_{[n,n+1]}$.
- (ii). Find a sequence of measurable functions f_n from [0,1] to $[0,\infty]$ such that

$$\int \liminf f_n \neq \liminf \int f_n$$

(iii). Find a sequence of measurable functions f_n from \mathbb{R} to $[0,\infty]$ such that f_n converges uniformly to zero and

$$\int \liminf f_n \neq \liminf \int f_n$$

exercise 5:

3.1.1.