

**ANTIBODY TO HUMAN PARATHYROID HORMONE-RELATED PEPTIDE****Publication number:** JP11092500 (A)**Also published as:****Publication date:** 1999-04-06

JP3416035 (B2)

**Inventor(s):** SATO ISAO; WAKAHARA YUJI; YABUTA HISAHIRO**Applicant(s):** CHUGAI PHARMACEUTICAL CO LTD**Classification:**

- **international:** C12N15/02; A61K38/00; A61K39/395; A61P3/00; A61P3/14;  
A61P35/00; C07H21/04; C07K16/18; C07K16/26; C07K16/46;  
C12N1/21; C12N5/00; C12N5/10; C12N15/09; C12P21/08;  
C12R1/19; C12R1/91; C12N15/02; A61K38/00; A61K39/395;  
A61P3/00; A61P35/00; C07H21/00; C07K16/18; C07K16/46;  
C12N1/21; C12N5/00; C12N5/10; C12N15/09; C12P21/08;  
A61K38/00; (IPC1-7): A61K38/00; C07K16/46; A61K39/395;  
C07H21/04; C07K16/18; C07K16/26; C12N1/21; C12N5/10;  
C12N15/02; C12N15/09; C12P21/08; C12N1/21; C12R1/19;  
C12N5/10; C12R1/91; C12P21/08; C12R1/91

- **European:**

**Application number:** JP19970258739 19970924**Priority number(s):** JP19970258739 19970924; JP19960255196 19960926;  
JP19970214168 19970724**Abstract of JP 11092500 (A)**

**PROBLEM TO BE SOLVED:** To obtain the subject new antibody having a chimera L-strand including a human antibody L-strand C-domain and a mouse anti-human parathyroid hormone-related peptide monoclonal antibody L-strand V-domain, low in antigenicity, and useful for e.g. hypercalcemia and hypophosphatemia. **SOLUTION:** This new antibody is composed of a chimera L-strand including a human antibody L-strand C-domain and a mouse monoclonal antibody L-strand V-domain to human parathyroid hormone related peptide, and a chimera H-strand including a human antibody H-strand C-domain and a mouse monoclonal antibody H-strand V-domain to the human parathyroid hormone-related peptide. This new antibody is low in antigenicity in humans, and useful as, e.g. an inhibitor for hypercalcemia involved in malignant tumors or an improver for hypophosphatemia such as hypophosphatemic rickets.; This new antibody is obtained by ligating a cloned mouse V-domain sequence with a human antibody C-domain sequence integrated into an expression vector followed by transferring the ligation product into host cells and then expressing it.

---

Data supplied from the **esp@cenet** database — Worldwide

(19)日本国特許庁 (J P)

## (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-92500

(43)公開日 平成11年(1999)4月6日

(51)Int.Cl.<sup>®</sup>C 07 K 16/46  
A 61 K 39/395  
C 07 H 21/04  
C 07 K 16/18  
16/26

識別記号

ADU

P I

C 07 K 16/46  
A 61 K 39/395  
C 07 H 21/04  
C 07 K 16/18  
16/26

ADUN

B

審査請求 未謝求 請求項の数84 O L (全 73 頁) 最終頁に続く

(21)出願番号

特願平9-258739

(71)出願人 000003311

中外製薬株式会社

東京都北区浮間5丁目5番1号

(72)発明者 佐藤 功

静岡県御殿場市駒門1丁目135番地 中外  
製薬株式会社内

(72)発明者 若原 裕二

静岡県御殿場市駒門1丁目135番地 中外  
製薬株式会社内

(72)発明者 蔡田 尚弘

静岡県御殿場市駒門1丁目135番地 中外  
製薬株式会社内

(74)代理人 弁理士 平木 祐輔 (外1名)

(31)優先権主張番号 特願平8-255196  
 (32)優先日 平8(1996)9月26日  
 (33)優先権主張国 日本 (J P)  
 (31)優先権主張番号 特願平9-214168  
 (32)優先日 平9(1997)7月24日  
 (33)優先権主張国 日本 (J P)

(54)【発明の名称】ヒト副甲状腺ホルモン関連ペプチドに対する抗体

(57)【要約】

【課題】ヒト副甲状腺ホルモン関連ペプチドに対する抗体の提供。

【解決手段】ヒト副甲状腺ホルモン関連ペプチドに対する抗体、該抗体をコードするDNA、該DNAを含む組換えベクター、該組換えベクターにより形質転換された形質転換体、該抗体の製造方法、及び該抗体の用途。

### 【特許請求の範囲】

【請求項 1】 ヒト抗体の L 鎮 C 領域、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の L 鎮 V 領域を含むキメラ L 鎮。

【請求項 2】 L 鎮 V 領域が配列番号 45 で表されるアミノ酸配列を含むものである請求項 1 記載のキメラ L 鎮。

【請求項 3】 C 領域が C 1 領域である請求項 1 記載のキメラ L 鎮。

【請求項 4】 ヒト抗体の H 鎮 C 領域、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の H 鎮 V 領域を含むキメラ H 鎮。

【請求項 5】 H 鎮 V 領域が配列番号 46 で表されるアミノ酸配列を含むものである請求項 4 記載のキメラ H 鎮。

【請求項 6】 C 領域が C 2 V 領域である請求項 4 記載のキメラ H 鎮。

【請求項 7】 請求項 1 ~ 3 のいずれか 1 項に記載のキメラ L 鎮、及び請求項 4 ~ 6 のいずれか 1 項に記載のキメラ H 鎮を含む、ヒト副甲状腺ホルモン関連ペプチドに対するキメラモノクローナル抗体。

【請求項 8】 ヒト抗体の L 鎮 V 領域のフレームワーク領域 1 ~ 4、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の L 鎮 V 領域の相補性決定領域 1 ~ 3 を含む、ヒト型化抗体の L 鎮 V 領域を含むポリペプチド。

【請求項 9】 相補性決定領域 1 ~ 3 がそれぞれ配列番号 59 ~ 61 で表されるアミノ酸配列を含むものである、請求項 8 記載のポリペプチド。

【請求項 10】 フレームワーク領域 1 ~ 3 がそれぞれヒト抗体 HSU03868 のフレームワーク領域 1 ~ 3 由来のものであり、かつ、フレームワーク領域 4 がヒト抗体 S25755 のフレームワーク 4 由来のものである、請求項 8 記載のポリペプチド。

【請求項 11】 フレームワーク領域 1 ~ 3 がそれぞれヒト抗体 HSU03868 のフレームワーク領域 1 ~ 3 と実質的に同一のものであり、かつ、フレームワーク領域 4 がヒト抗体 S25755 のフレームワーク領域 4 と実質的に同一のものである、請求項 8 記載のポリペプチド。

【請求項 12】 フレームワーク領域中の Kabat の規定による第 36 番目のアミノ酸がチロシンであり、かつ、同第 49 番目のアミノ酸がアスパラギンである、請求項 8 記載のポリペプチド。

【請求項 13】 配列番号 48 ~ 51 で表されるいのちかのアミノ酸配列を含む、請求項 12 記載のポリペプチド。

【請求項 14】 フレームワーク領域中の Kabat の規定による第 45 番目のアミノ酸がリジンであり、かつ、同第 87 番目のアミノ酸がイソロイシンである、請求項 8 記載のポリペプチド。

【請求項 15】 配列番号 52 ~ 55 で表されるいのちかのアミノ酸配列を含む、請求項 14 記載のポリペプチド。

【請求項 16】 ヒト抗体の H 鎮 V 領域のフレームワー-

ク領域 1 ~ 4、及びヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の H 鎮 V 領域の相補性決定領域 1 ~ 3 を含む、ヒト型化抗体の H 鎮 V 領域を含むポリペプチド。

【請求項 17】 相補性決定領域 1 ~ 3 が、それぞれ配列番号 62 ~ 64 で表されるアミノ酸配列を含むものである、請求項 16 記載のポリペプチド。

【請求項 18】 フレームワーク領域 1 ~ 4 がヒトサブグループ III のヒト抗体のフレームワーク領域 1 ~ 4 に由来するものである、請求項 16 記載のポリペプチド。

【請求項 19】 フレームワーク領域 1 ~ 4 がそれぞれヒト抗体 S31679 のフレームワーク領域 1 ~ 4 に由来するものである、請求項 16 記載のポリペプチド。

【請求項 20】 フレームワーク領域 1 ~ 4 がそれぞれヒト抗体 S31679 のフレームワーク領域 1 ~ 4 と実質的に同一のものである、請求項 16 記載のポリペプチド。

【請求項 21】 配列番号 56 で表されるアミノ酸配列を含む、ヒト型化抗体の H 鎮 V 領域を含むポリペプチド。

【請求項 22】 ヒト抗体の L 鎮 C 領域を含むポリペプチド、及び請求項 8 ~ 15 のいずれか 1 項に記載のポリペプチドを含む、ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体の L 鎮。

【請求項 23】 C 領域が C 1 領域であり、フレームワーク領域 1 ~ 3 がそれぞれヒト抗体 HSU03868 のフレームワーク領域 1 ~ 3 と実質的に同一のものであり、フレームワーク領域 4 がヒト抗体 S25755 のフレームワーク領域 4 と実質的に同一のものであり、及び相補性決定領域 1 ~ 3 のアミノ酸配列がそれぞれ配列番号 59 ~ 61 で表されるものである、請求項 22 記載のヒト型化抗体の L 鎮。

【請求項 24】 ヒト抗体の H 鎮 C 領域を含むポリペプチド、及び請求項 16 ~ 21 のいずれか 1 項に記載のポリペプチドを含む、ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体の H 鎮。

【請求項 25】 C 領域が C 1 領域であり、フレームワーク領域 1 ~ 4 がそれぞれヒト抗体 HSGIII のフレームワーク領域 1 ~ 4 由来のものであり、及び相補性決定領域 1 ~ 3 がそれぞれ配列番号 62 ~ 64 で表されるアミノ酸配列を含むものである、請求項 24 記載のヒト型化抗体の H 鎮。

【請求項 26】 請求項 22 又は 23 記載のヒト型化抗体の L 鎮、及び請求項 24 又は 25 記載のヒト型化抗体の H 鎮を含む、ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体。

【請求項 27】  $1.86 \times 10^{-7}$  [M] 以下の解離定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項 28】  $1.22 \times 10^{-1}$  [1/Sec] 以下の解離速度定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項 29】  $6.55 \times 10^9$  [l/M.Sec] 以上の結合速度定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対

する抗体。

【請求項30】  $1.22 \times 10^{-1}$  [1/Sec]以下の解離速度定数及び $6.55 \times 10^4$  [1/M. Sec]以上の結合速度定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項31】 解離定数が、表面プラズモン共鳴センサーにより測定されるものである請求項27記載の抗体。

【請求項32】 解離速度定数が、表面プラズモン共鳴センサーにより測定されるものである請求項28又は30記載の抗体。

【請求項33】 結合速度定数が、表面プラズモン共鳴センサーにより測定されるものである請求項29又は30記載の抗体。

【請求項34】 解離定数が $1.02 \times 10^{-11} \sim 1.86 \times 10^{-7}$  [M]である請求項27記載の抗体。

【請求項35】 解離定数が $1.02 \times 10^{-10} \sim 1.86 \times 10^{-8}$  [M]である請求項27記載の抗体。

【請求項36】 解離定数が $1.34 \times 10^{-10} \sim 3.58 \times 10^{-10}$  [M]である請求項27記載の抗体。

【請求項37】 解離速度定数が $7.38 \times 10^{-6} \sim 1.22 \times 10^{-1}$  [1/Sec]である請求項28記載の抗体。

【請求項38】 解離速度定数が $7.38 \times 10^{-6} \sim 1.22 \times 10^{-2}$  [1/Sec]である請求項28記載の抗体。

【請求項39】 解離速度定数が $1.66 \times 10^{-4} \sim 3.16 \times 10^{-4}$  [1/Sec]である請求項28記載の抗体。

【請求項40】 解離速度定数が $2.32 \times 10^{-4}$  [1/Sec]である請求項28記載の抗体。

【請求項41】 結合速度定数が $6.55 \times 10^4 \sim 1.24 \times 10^7$  [1/M. Sec]である請求項29記載の抗体。

【請求項42】 結合速度定数が $6.55 \times 10^6 \sim 1.24 \times 10^6$  [1/M. Sec]である請求項29記載の抗体。

【請求項43】 結合速度定数が $7.23 \times 10^5 \sim 1.03 \times 10^6$  [1/M. Sec]である請求項29記載の抗体。

【請求項44】 結合速度定数が $1.03 \times 10^6$  [1/M. Sec]である請求項29記載の抗体。

【請求項45】  $2.32 \times 10^{-4} \sim 3.16 \times 10^{-4}$  [1/Sec]の解離速度定数及び $0.883 \times 10^6 \sim 1.03 \times 10^6$  [1/M. Sec]の結合速度定数を有する、ヒト副甲状腺ホルモン関連ペプチドに対する抗体。

【請求項46】 抗体が、ヒト抗体、ヒト型化抗体、キメラ抗体又はプライマタイズド抗体である請求項27～45のいずれか1項に記載の抗体。

【請求項47】 ヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体のL鎖V領域をコードする塩基配列を含むDNA。

【請求項48】 L鎖V領域が配列番号45で表されるアミノ酸配列を含むものである請求項47記載のDNA。

【請求項49】 L鎖領域をコードする塩基配列が配列番号65で表されるものである請求項47記載のDNA A。

【請求項50】 ヒト副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体のH鎖V領域をコードする塩基配列を含むDNA。

【請求項51】 H鎖V領域が配列番号46で表されるアミノ酸配列を含むものである請求項50記載のDNA。

【請求項52】 H鎖V領域をコードする塩基配列が配列番号57で表されるものである請求項50記載のDNA A。

【請求項53】 請求項1～3のいずれか1項に記載のキメラL鎖をコードするDNA。

【請求項54】 キメラL鎖をコードするDNAが配列番号65で表される塩基配列を含むものである請求項53記載のDNA。

【請求項55】 請求項4～6のいずれか1項に記載のキメラH鎖をコードするDNA。

【請求項56】 キメラH鎖をコードするDNAが配列番号57で表される塩基配列を含むものである請求項55記載のDNA。

【請求項57】 請求項8～15のいずれか1項に記載のポリペプチドをコードする塩基配列を含むDNA。

【請求項58】 配列番号66～74で表されるいずれかの塩基配列を含む、請求項57記載のDNA。

【請求項59】 請求項16～21のいずれか1項に記載のポリペプチドをコードする塩基配列を含むDNA。

【請求項60】 配列番号68で表される塩基配列を含む、請求項59記載のDNA。

【請求項61】 請求項22又は23記載のヒト型化抗体のL鎖をコードするDNA。

【請求項62】 配列番号47～55で表されるいずれかのアミノ酸配列をコードする塩基配列を含む、ヒト型化抗体のL鎖DNA。

【請求項63】 ヒト型化抗体のL鎖DNAが、配列番号66～74で表されるいずれかの塩基配列を含むものである請求項62記載のDNA。

【請求項64】 請求項24又は25記載のヒト型化抗体のH鎖をコードするDNA。

【請求項65】 配列番号66で表されるアミノ酸配列をコードする塩基配列を含む、ヒト型化抗体のH鎖DNA。

【請求項66】 ヒト型化抗体のH鎖DNAが、配列番号68で表される塩基配列を含むものである請求項65記載のDNA。

【請求項67】 請求項47～66のいずれか1項に記載のDNAを含む組換えベクター。

【請求項68】 請求項67記載の組換えベクターにより形質転換された形質転換体。

【請求項69】 請求項47～49及び53～54のいずれか1項に記載のDNAを含む発現ベクター、並びに請求項50～52及び55～56のいずれか1項に記載のDNAを含む発現ベクターにより形質転換された形質

胚換体を培養し、得られる培養物からヒト副甲状腺関連ペプチドに対するキメラ抗体を探取することを特徴とするヒト副甲状腺関連ペプチドに対するキメラ抗体の製造方法。

【請求項 7 0】 請求項 5 7～5 8 及び 6 1～6 3 のいずれか 1 項に記載の DNA を含む発現ベクター、並びに請求項 5 9～6 0 及び 6 4～6 5 のいずれか 1 項に記載の DNA を含む発現ベクターにより形質転換された形質転換体を培養し、得られる培養物からヒト副甲状腺関連ペプチドに対するヒト型化抗体を探取することを特徴とするヒト副甲状腺関連ペプチドに対するヒト型化抗体の製造方法。

【請求項 7 1】 ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体を有効成分として含む医薬組成物。

【請求項 7 2】 ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体を有効成分として含む高カルシウム血症抑制剤。

【請求項 7 3】 ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体を有効成分として含む、悪性腫瘍に伴う高カルシウム血症抑制剤。

【請求項 7 4】 悪性腫瘍が、膵臓癌、肺癌、咽頭癌、喉頭癌、舌癌、歯肉癌、食道癌、胃癌、胆管癌、乳癌、腎癌、膀胱癌、子宫癌、前立腺癌及び悪性リンパ腫からなる群から選ばれる少なくとも一つである請求項 7 3 記載の高カルシウム血症抑制剤。

【請求項 7 5】 請求項 2 7～4 6 のいずれか 1 項に記載の抗体を有効成分として含む医薬組成物。

【請求項 7 6】 請求項 2 7～4 6 のいずれか 1 項に記載の抗体を有効成分として含む高カルシウム血症抑制剤。

【請求項 7 7】 請求項 2 7～4 6 のいずれか 1 項に記載の抗体を有効成分として含む、悪性腫瘍に伴う高カルシウム血症抑制剤。

【請求項 7 8】 悪性腫瘍が、膵臓癌、肺癌、咽頭癌、喉頭癌、舌癌、歯肉癌、食道癌、胃癌、胆管癌、乳癌、腎癌、膀胱癌、子宫癌、前立腺癌及び悪性リンパ腫からなる群から選ばれる少なくとも一つである請求項 7 7 記載の高カルシウム血症抑制剤。

【請求項 7 9】 ヒト副甲状腺ホルモン関連ペプチドに対するヒト型化抗体を有効成分として含む低リン血症改善剤。

【請求項 8 0】 低リン血症が低リン血性くる病である請求項 7 9 記載の低リン血症改善剤。

【請求項 8 1】 低リン血症が低リン血性ビタミン D 抵抗性くる病である請求項 7 9 記載の低リン血症改善剤。

【請求項 8 2】 請求項 2 7～4 6 のいずれか 1 項に記載の抗体を有効成分として含む低リン血症改善剤。

【請求項 8 3】 低リン血症が低リン血性くる病である請求項 8 2 記載の低リン血症改善剤。

【請求項 8 4】 低リン血状が低リン血性ビタミン D 抵

抗性くる病である請求項 8 2 記載の低リン血症改善剤。

#### 【発明の詳細な説明】

##### 【0 0 0 1】

【発明の属する技術分野】本発明は、副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の可変領域（V領域）とヒト抗体の定常領域（C領域）からなるヒト／マウスキメラ抗体、副甲状腺ホルモン関連ペプチドに対するマウスモノクローナル抗体の軽鎖（L鎖）V領域及び重鎖（H鎖）V領域の相補性決定領域がヒト抗体に移植されているヒト型化（humanized）抗体、該抗体のL鎖及びH鎖、並びに該抗体のL鎖又はH鎖を構成するV領域を含むポリペプチドに関する。

【0 0 0 2】 本発明はさらに、上記の抗体、特にそのV領域をコードする塩基配列を含むDNA、及びV領域を含むL鎖又はH鎖をコードするDNAに関する。本発明はさらに、該DNAを含む組換えベクター、及び該ベクターにより形質転換された宿主に関する。

【0 0 0 3】 本発明はさらに、副甲状腺ホルモン関連ペプチドに対するキメラ抗体及びヒト型化抗体の製造方法に関する。本発明はさらに、副甲状腺ホルモン関連ペプチドに対する抗体を有効成分として含む医薬組成物並びに高カルシウム血症抑制剤及び低リン血症改善剤に関する。

##### 【0 0 0 4】

【從来の技術】悪性腫瘍に伴う高カルシウム血症は、全悪性腫瘍患者の5～20%にみられる重篤な合併症であり、放置すれば確実に死に至るため悪性腫瘍の末期の症状であると考えられている。高カルシウム血症のコントロールは患者の治療予後とQOL（Quality of Life）に大きく影響することから、臨床的に重要な役割を持つ。

【0 0 0 5】 悪性腫瘍患者における高カルシウム血症は、一般に、腫瘍産生性の体液性骨吸収因子によるHBM（Humoral hypercalcemia of malignancy）と、骨に転移又は浸潤した腫瘍の局所的な作用によるLOH（Local osteolytic hypercalcemia）とに大別される。HBMでは骨吸収又は骨破壊の亢進によりカルシウムの流出が増加し、腎のカルシウム排泄能の低下とあいまって高カルシウム血症を生ずると考えられている（和田誠基及び永田直一、内科69、644-648）。

【0 0 0 6】 高カルシウム血症は、血清カルシウム値が12mg/dlを超えるとその症状が現れると考えられ、その症状として、初期に食思不振、恶心、嘔吐が悪性腫瘍患者において非特異的に認められる。高カルシウム血症が悪化すると、腎遠位尿細管の障害で水分の濃縮力が低下するため多尿となり、また、恶心、嘔吐により水分が十分に摂取されないため脱水を伴う。

【0 0 0 7】 悪性腫瘍に伴う高カルシウム血症のうちHBMを起こす液性因子として、PTH（副甲状腺ホルモン；Parathyroid Hormone）様の物質である副甲状腺ホルモン関連ペプチド（Parathyroid Hormone related Peptid

e、以下「PThrP」という)がMoseley, J. M.らにより見いだされた(Proc. Natl. Acad. Sci. USA (1987) 84, 5048-5052)。

【0008】その後、PThrPをコードする遺伝子が単離され(Suva, L. J. et al., Science (1987) 237, 893)その解析から、ヒトPThrPは遺伝子の選択的スプライシングに基づく139、141及び173個のアミノ酸からなる三種が存在すること、並びに血中では全構造を有するPThrP(1-139)の限界分解に基づく様々なフラグメントが存在することが明らかになった(Baba, H. Clinical Calcium (1995) 5, 229-223)。PThrPは、N末端側第1位から第19位のアミノ酸13個のうち8個がPTHと同一である他、第14位から第34位アミノ酸部位においてもPTHと類似の立体構造を呈するものと推定され、少なくともN末端側においてはPTHと共にPTHRP受容体に結合する(Jueppner, H. et al., Science (1991) 254, 1024-1026; Abou-Samra, A-B. et al., Proc. Natl. Acad. Sci. USA (1992) 89, 2732-2736)。

【0009】PThrPは様々な腫瘍組織から産生されることが報告されているが、腫瘍のみならず、皮膚、中枢神経、子宮、胎盤、授乳中の乳腺、甲状腺、副甲状腺、副腎、肝、腎、膀胱をはじめとする、胎児から成人に至るまでの種々の正常な組織により産生されることが明らかになった(Burtis, W. J. Clin. Chem. (1992) 38, 217-2183; Stewart, A. F. & Brodus, A. E. J. Clin. Endocrinol. (1991) 71, 1410-1414)。また、PThrPは、胎児期から新生児期にかけて母体より高く保たれるカルシウム代謝筋に重要な役割を演じていると考えられている。

【0010】PTH/PThrP受容体は主に骨と腎に存在し(滋野長平、Clinical Calcium (1995) 5, 355-359)、PThrPが受容体に結合することにより複数の細胞内シグナル伝達系が活性化されることが知られている。その一つは、アデニルシクラーゼであり、もう一つはfosfoprotein kinase Cである。アデニルシクラーゼの活性化により、細胞内cAMP濃度が上昇しプロテインキナーゼAが活性化される。また、fosfoprotein kinase Cはfosfoprotein kinase Cとfosfoprotein kinase Cを分解してinositol 4, 5-bisphosphateをジアシルグリセロールを生じさせる。これらのシグナル伝達系にはG蛋白質が関与する(Coleman, D. T. et al., Biochemical mechanisms of parathyroid hormone action. In: "Theparathyroids" (Bilezikian, J. P. et al.), Raven press, New York, (1994) page 239)。

【0011】PThrPは、これらのシグナル伝達系を介して、HBMに観察される高カルシウム血症、低リン血症、腎リン再吸収能の低下、腎性cAMP排泄の増加などを引き起こす。このように、PThrPは悪性腫瘍に伴う高カルシウム血症に密接に関連していることが明らかになっていく。悪性腫瘍に伴う高カルシウム血症の治療には補液を

行う他、カルシトニン、ステロイド剤、インドメタシン、無機リン酸塩、ビスフォスフォネート等が使用される。しかしながら、これらの薬剤は連続使用により効果が低減すること、強い副作用が発現すること、又は薬効発現が遅いことなどから、より治療効果が高く副作用の少ない薬剤の使用が期待されている。

【0012】一方、悪性腫瘍に伴う高カルシウム血症治療の新しい試みとして、Kukreja, S. C.らは、ヒト肺ガン細胞又はヒト喉頭ガン細胞を移植して高カルシウム血症を生じた無胸腺マウスにPThrPに対する中和抗体を投与すると、血中カルシウム濃度及び尿cAMPレベルが減少したことを報告している(J. Clin. Invest. (1988) 82, 1798-1802)。佐藤幹二らは、PThrP産生ヒト腫瘍を移植したヌードマウスにPThrP(1-34)に対する抗体を投与すると、高カルシウム血症を低減させ、マウスの生存時間を大幅に延長させたことを報告している(J. bone & Mine. Res. (1993) 8, 849-860)。また、特開平4-28089号には、ヒトPThrP(1-34)に対するマウス/ヒトキメラ抗体が開示されている。

【0013】マウスのモノクローナル抗体はヒトにおいて高度に免疫原性(「抗原性」という場合もある)を有し、このため、ヒトにおけるマウスモノクローナル抗体の医学療法的価値は制限されている。例えば、マウス抗体をヒトに投与すると異物として代謝されうるので、ヒトにおけるマウス抗体の半減期は比較的短く、期待された効果を充分に発揮できない。さらに、投与したマウス抗体に対して発生するヒト抗マウス抗体(HAMA)は、血清病又は他のアレルギー反応など、患者にとって不都合で危険な免疫応答を惹起する。したがって、マウスモノクローナル抗体をヒトに継回投与することはできない。

【0014】これらの問題を解決するため、非ヒト由来の抗体、例えばマウス由来のモノクローナル抗体の免疫原性を低減させる方法が開発された。その一つが、抗体の可変領域(V領域)はもとのマウスモノクローナル抗体に由来し、定常領域(C領域)は適当なヒト抗体に由来するキメラ抗体を作製する方法である。

【0015】得られるキメラ抗体はもとのマウス抗体の可変領域を完全な形で含有するので、もとのマウス抗体と同一の特異性をもって抗原に結合することが期待できる。さらに、キメラ抗体ではヒト以外に由来するアミノ酸配列の比率が実質的に減少しており、それ故にもとのマウス抗体に比べて免疫原性が低いと予想される。キメラ抗体はもとのマウスモノクローナル抗体と同等に抗原に結合し、かつ免疫原性が低いが、それでもなおマウス可変領域に対する免疫応答が生ずる可能性がある(Lobutto, A. F. et al., Proc. Natl. Acad. Sci. USA, 86, 4220-4224, 1989)。

【0016】マウス抗体の免疫原性を低減させるための第二の方法は一層複雑であるが、しかしマウス抗体の潜在的な免疫原性をさらに大幅に低下させることが期待さ

れる。この方法においては、マウス抗体の可変領域から相補性決定領域 (complementarity determining region ; CDR) のみをヒト可変領域に移植して「再構成」 (reshaped) ヒト可変領域を作製する。ただし、必要によっては、再構成ヒト可変領域の CDR の構造をより一層もとのマウス抗体の構造に近づけるために、CDR を支持しているフレームワーク領域 (FR) の一部のアミノ酸配列をマウス抗体の可変領域からヒト可変領域に移植する場合がある。

【0017】次に、これらのヒト型化された再構成ヒト可変領域をヒト定常領域に連結する。最終的に再構成されたヒト型化抗体のヒト以外のアミノ酸配列に由来する部分は、CDR 及び極く一部の FR のみである。CDR は超可変アミノ酸配列により構成されており、これらは種特異的配列を示さない。そのため、マウス CDR を担持するヒト型化抗体は、もはやヒト CDR を含有する天然ヒト抗体より強い免疫原性を有しないはずである。

【0018】ヒト型化抗体については、さらに、Riechmann, L. et al., Nature, 332, 323-327, 1988; Verhoeven, M. et al., Science, 239, 1534-1536, 1988; Kettleborough, C.A. et al., Protein Engng., 4, 773-783, 1991; Maeda, H. et al., Human Antibodies and Hybridsoma, 2, 124-134, 1991; Gorman, S.D. et al., Proc. Natl. Acad. Sci. USA, 88, 4181-4185, 1991; Tempest, P.R. et al., Bio/Technology, 9, 266-271, 1991; Co, M.S. et al., Proc. Natl. Acad. Sci. USA, 88, 2869-2873, 1991; Carter, P. et al., Proc. Natl. Acad. Sci. USA, 89, 4285-4289, 1992; Co, M. S. et al., J. Immunol., 148, 1149-1154, 1992; 及び Sato, K. et al., Cancer Res., 53, 851-856, 1993 を参照のこと。

【0019】前記のごとく、ヒト型化抗体は療法目的のために有用であると予想されるが、PTHRPに対するヒト型化抗体は知られておらず、前記文献にはその示唆もなされていない。また、ヒト型化抗体の製造方法において任意の抗体に普遍的に適用し得る画一的な方法は存在せず、特定の抗原に対して十分な結合活性・中和活性を示すヒト型化抗体を作製するためには種々の工夫が必要である（例えは、Sato, K. et al., Cancer Res., 53, 851-856, 1993 を参照のこと）。

#### 【0020】

【発明が解決しようとする課題】本発明は、PTHRPに対するマウスモノクローナル抗体の可変領域 (V領域) とヒト抗体の定常領域 (C領域) とからなるヒト/マウスキメラ抗体、PTHRPに対するマウスモノクローナル抗体の軽鎖 (L鎖) V領域及び重鎖 (H鎖) V領域の相補性決定領域がヒト抗体に移植されているヒト型化 (humanized) 抗体、該抗体の L鎖及び H鎖、並びに該抗体の L鎖又は H鎖を構成する V領域を含むポリペプチドを提供することを目的とする。

【0021】本発明はさらに、上記の抗体、特にその V

領域をコードする塩基配列を含む DNA、及び V領域を含むポリペプチドを含む L鎖又は H鎖をコードする DNA を提供することを目的とする。本発明はさらに、該 DNA を含む組換えベクター、及び該ベクターにより形質転換された宿主を提供することを目的とする。本発明はさらに、PTHRPに対するキメラ抗体及びヒト型化抗体の製造方法を提供することを目的とする。本発明はさらに、中和活性が高い PTHRPに対する抗体を提供することを目的とする。本発明はさらに、PTHRPに対する抗体又はヒト型化抗体を有効成分として含む医薬組成物及び高カルシウム血症抑制剤、低リン血症改善剤及びアルカロース改善剤を提供することを目的とする。

#### 【0022】

【課題を解決するための手段】本発明者らは、上記課題に基づいて説明研究を行った結果、PTHRPに対するマウスモノクローナル抗体のヒトにおける免疫原性が低減されている抗体を得ることに成功し、本発明を完成するに至った。すなわち、本発明は、ヒト抗体の L鎖 C領域、及び PTHRPに対するマウスモノクローナル抗体の L鎖 V領域を含むキメラ L鎖である。L鎖 V領域としては、配列番号 45で表されるアミノ酸配列を含むものが挙げられ、L鎖 C領域としては C領域のものが挙げられる。

【0023】さらに、本発明は、ヒト抗体の H鎖 C領域、及び PTHRPに対するマウスモノクローナル抗体の H鎖 V領域を含むキメラ H鎖である。H鎖 V領域としては、配列番号 46で表されるアミノ酸配列を含むものが挙げられ、C領域としては Cγ 1領域のものが挙げられる。さらに、本発明は、前記キメラ L鎖及びキメラ H鎖を含む、PTHRPに対するキメラモノクローナル抗体である。

【0024】さらに、本発明は、ヒト抗体の L鎖 V領域のフレームワーク領域 1～4、及び UTHRPに対するマウスモノクローナル抗体の L鎖 V領域の相補性決定領域 1～3を含む、ヒト型化抗体の L鎖 V領域を含むポリペプチドである。相補性決定領域 1～3としては、それぞれ配列番号 59～61で表されるアミノ酸配列を含むものが挙げられる。フレームワーク領域 1～3としてはそれぞれヒト抗体 HSU03868のフレームワーク領域 1～3由来のもの、かつ、フレームワーク領域 4としてはヒト抗体 S25755のフレームワーク 4由来のものが挙げられる。あるいは、フレームワーク領域 1～3としてはそれぞれヒト抗体 HSU03868のフレームワーク領域 1～3と実質的に同一のもの、かつ、フレームワーク領域 4としてはヒト抗体 S25755のフレームワーク領域 4と実質的に同一のものが挙げられる。

【0025】ここで、「実質的に同一」とは、ヒト型化抗体において使用されるヒト抗体のフレームワーク領域において、ヒト型化抗体がマウスモノクローナル抗体と同等の活性を有するように、マウスモノクローナル抗体の相補性決定領域を形成するために必要なアミノ酸の欠

失、置換、付加等を生じてもよいことを意味する。

【0026】さらに、本発明は、フレームワーク領域中のKabatの規定(Kabat, E.A. et al., US Dept. Health and Human Services, US Government Printing Offices, 1991)による第36番目のアミノ酸がチロシンであり、かつ、同第49番目のアミノ酸がアスパラギン酸である、ヒト型化抗体のL鎖V領域を含むポリペプチドである。

【0027】さらに、本発明は、配列番号48～51で表されるいすれかのアミノ酸配列を含む、ヒト型化抗体のL鎖V領域を含むポリペプチドである。さらに、本発明は、フレームワーク領域中のKabatの規定による第45番目のアミノ酸がジリンであり、かつ、同第87番目のアミノ酸がイソロイシンである、ヒト型化抗体のL鎖V領域を含むポリペプチドである。さらに、本発明は、配列番号52～55で表されるいすれかのアミノ酸配列を含む、ヒト型化抗体のL鎖V領域を含むポリペプチドである。

【0028】さらに、本発明は、ヒト抗体のH鎖V領域のフレームワーク領域1～4、及びヒトPTHrPに対するマウスモノクローナル抗体のH鎖V領域の相補性決定領域1～3を含む、ヒト型化抗体のH鎖V領域を含むポリペプチドである。相補性決定領域1～3としては、それぞれ配列番号62～64で表されるアミノ酸配列を含むものが挙げられ、フレームワーク領域1～4としては、ヒトサブグループIII(Human Subgroup III(HSG III), Kabat, E.A. et al., US Dept. Health and Human Services, US Government Printing Offices, 1991)に属するヒト抗体のフレームワーク領域1～4由来のもの、より詳しくはそれぞれヒト抗体S31679のフレームワーク領域1～4由来のものが挙げられ、あるいはヒト抗体S31679のフレームワーク領域1～4と実質的に同一のものが挙げられる。

【0029】さらに、本発明は、配列番号56で表されるアミノ酸配列を含む、ヒト型化抗体のH鎖V領域を含むポリペプチドである。さらに、本発明は、前記ヒト型化抗体のL鎖V領域を含むポリペプチド及びヒト抗体のL鎖V領域を含むポリペプチドを含む、ヒトPTHrPに対するヒト型化抗体のL鎖である。ここで、C領域としてはCγ1領域、フレームワーク領域1～3としてはそれぞれヒト抗体HSU03868のフレームワーク領域1～3と実質的に同一のもの、フレームワーク領域4としてはヒト抗体S25755のフレームワーク領域4と実質的に同一のもの、そして相補性決定領域1～3のアミノ酸配列としてはそれぞれ配列番号59～61で表されるものが挙げられる。

【0030】さらに、本発明は、前記ヒト抗体のH鎖C領域を含むポリペプチド及びH鎖V領域を含むポリペプチドを含む、ヒトPTHrPに対するヒト型化抗体のH鎖である。C領域としてはCγ1領域、フレームワーク領域1～4としてはHSGIIIに属するヒト抗体由来のフレームワーク領域1～4由来のもの、そして相補性決定領域1～3としてはそれぞれ配列番号62～64で表されるアミノ

酸配列を含むものが挙げられる。

【0031】さらに、本発明は、抗原性が弱く、中和活性が高い抗PTHrP抗体に関する。該PTHrP抗体はヒトの疾患の治療に供することが可能な、ヒト抗体、ヒト型化抗体、キメラ抗体、プライマタイズド抗体などを含む。また、該抗体は低い解離定数を有するものである。さらに、本発明の抗体は解離定数が小さいため中和活性が高く、ヒトの疾患の治療に供することができる。

【0032】本発明の抗体は、 $1.86 \times 10^{-7}$ [M]以下の解離定数、 $1.22 \times 10^{-1}$ [1/Sec]以下の解離速度定数、そして $6.55 \times 10^4$ [1/M Sec]以上の結合速度定数を有するものである。また、これらの定数は、RI標識されたリガンドを用いたスキッチャード解析や表面プラズモン共鳴センサー等により測定することができる。

【0033】さらに、本発明は、ヒトPTHrPに対するマウスモノクローナル抗体のL鎖V領域をコードする塩基配列を含むDNA又はH鎖V領域をコードする塩基配列を含むDNAである。L鎖V領域及びH鎖V領域としては、それぞれ配列番号45、46で表されるアミノ酸配列を含むものが挙げられ、L鎖V領域をコードする塩基配列を含むDNAとしては例えば配列番号65で表されるものが挙げられ、H鎖V領域をコードする塩基配列を含むDNAとしては配列番号57で表されるものが挙げられる。

【0034】さらに、本発明は、前記キメラL鎖又はキメラH鎖をコードするDNAである。該L鎖をコードするDNAとしては例えば配列番号65で表される塩基配列を含むものが挙げられ、該H鎖をコードするDNAとしては配列番号57で表される塩基配列を含むものが挙げられる。

【0035】さらに、本発明は、前記ヒト型化抗体のL鎖V領域コードする塩基配列を含むDNA又はH鎖V領域をコードする塩基配列を含むDNAである。L鎖V領域をコードする塩基配列を含むDNAとしては配列番号66～74で表されるいすれかの塩基配列を含むものが挙げられ、H鎖V領域をコードする塩基配列を含むDNAとしては配列番号58で表されるものが挙げられる。

【0036】さらに、本発明は、配列番号47～55で表されるいすれかのアミノ酸配列をコードする塩基配列を含む、ヒト型化抗体のL鎖V領域のDNAである。該DNAとしては、配列番号66～74で表されるいすれかの塩基配列を含むものが挙げられる。さらに、本発明は、配列番号56で表されるアミノ酸配列をコードする、ヒト型化抗体のH鎖V領域のDNAである。該DNAとしては配列番号58で表される塩基配列を含むものが挙げられる。

【0037】さらに、本発明は、前記いすれかのDNAを含む組換えベクターである。さらに、本発明は、前記組換えベクターにより形質転換された形質転換体である。さらに、本発明は、前記形質転換体を培養し、得られる培養物からヒト副甲状腺腫瘍ベクチドに対するキメラ抗体又はヒト型化抗体を採取することを特徴とするヒ

ト副甲状腺関連ペプチドに対するキメラ抗体又はヒト型化抗体の製造方法である。

【0038】さらに、本発明は、前記抗体を有効成分として含む医薬組成物並びに高カルシウム血症抑制剤及び低リン血症改善剤である。該カルシウム血症は悪性腫瘍に起因するものであり、また、悪性腫瘍関連性高カルシウム血症患者においてはしばしば低リン血症が認められる。従って、本発明の抗体は、上記悪性腫瘍に対する治療又は高カルシウム血症若しくは低リン血症状状の軽減をするために使用することができる。なお、悪性腫瘍としては、例えば肺臓癌、肺癌、咽頭癌、喉頭癌、舌癌、歯肉癌、食道癌、胃癌、胆管癌、乳癌、腎癌、膀胱癌、子宮癌、前立腺癌及び悪性リンパ腫からなる群から選ばれる少なくとも一つが挙げられるが、これらの癌に限定されるものではなく、高カルシウム血症をもたらす悪性腫瘍はすべて本発明の高カルシウム血症抑制剤の適用の対象とすることができる。以下、本発明を詳細に説明する。

#### 【0039】

##### 【発明の実施の形態】

##### 1. ヒトPTHrPに対するマウスモノクローナル抗体の作製

PTHrPに対するマウスモノクローナル抗体は、抗原で免疫した動物から得られる抗体産生細胞と、ミエローマ細胞との細胞融合によりハイブリドーマを調製し、得られるハイブリドーマからPTHrP活性を特異的に阻害する抗体を產生するクローンを選択することにより調製することができる。

##### 【0040】(1) 抗原の調製

動物の免疫に用いるPTHrPとしては、組換えDNA法又は化学合成により調製したPTHrPのアミノ酸配列の全部若しくは一部のペプチド、又は高カルシウム血症を惹起する癌細胞の培養上清液由來のPTHrPなどが挙げられる。例えば、公知のPTHrP (Kemp, B.E. et al., Science (1987) 238, 1568-1570) の第1～34番目のアミノ酸からなるペプチド (PTHrP (1-34)) を抗原として用いることができる。なお、トPTHrP (1-34) は、配列番号75で表されるアミノ酸配列を有するものである。

【0041】得られたPTHrPをキャリアータンパク質 (例えばサイログロブリン) に結合させた後、アジュバントを添加する。アジュバントとしては、フロイント完全アジュバント、フロイントの不完全アジュバント等が挙げられ、これらの何れのものも混合してもよい。

##### 【0042】(2) 免疫及び抗体産生細胞の採取

上記のようにして得られた抗原を哺乳動物、例えばマウス、ラット、ウサ、サル、ウサギ、ヤギ、ヒツジなどの哺乳動物に投与する。免疫は、既存の方法であれば何れの方法をも用いることができるが、主として静脈内注射、皮下注射、腹腔内注射などにより行う。また、免疫の間隔は特に限定されず、数日から数週間間隔で、好ま

しくは4～21日間間隔で免疫する。

【0043】最終の免疫日から2～3日後に抗体産生細胞を採集する。抗体産生細胞としては、脾臓細胞、リンパ節細胞、末梢血細胞が挙げられるが、一般に脾臓細胞が用いられる。抗原の免疫量は1回にマウス1匹当たり、100 μg用いられる。

##### 【0044】(3) 抗体価の測定

免疫した動物の免疫応答レベルを確認し、また、細胞融合処理後の細胞から目的とするハイブリドーマを選択するため、免疫した動物の血中抗体価、又は抗体産生細胞の培養上清中の抗体価を測定する。抗体検出の方法としては、公知技術、例えばELA (エンジイムノアッセイ)、RIA (ラジオイムノアッセイ)、ELISA (酵素連続イムノソルベントアッセイ) 等が挙げられる。

##### 【0045】(4) 細胞融合

抗体産生細胞と融合させるミエローマ (骨髄腫) 細胞として、マウス、ラット、ヒトなど種々の動物に由来し、当業者が一般に入手可能な株化細胞を使用する。使用する細胞株としては、薬剤抵抗性を有し、未融合の状態では遷移培地 (例えばHAT培地) で生存できず、融合した状態でのみ生存できる性質を有するものが用いられる。一般的に8-A-ザガニアニン耐性株が用いられる。この細胞株は、ヒボキサンチンーアニンホスホリポシルトランスクフェラーゼを欠損し、ヒボキサンチン・アミノブテリン・チミジン (HAT) 培地に生育できないものである。

【0046】ミエローマ細胞は、既に公知の種々の細胞株、例えば、P3 (P3x63Ag8.653) (J. Immunol. (1979) 123:1548-1550)、P3x63Ag8U.1 (Current Topics in Microbiology and Immunology (1978) 81:1-7)、NS-1 (Kohler, G. and Milstein, C., Eur. J. Immunol. (1976) 6:511-519)、MPC-11 (Margulies, D.H. et al., Cell (1976) 8:405-415)、SP2/0 (Shulman, M. et al., Nature (1978) 276:269-270)、F0 (de St. Groth, S.F. et al., J. Immunol. Methods (1980) 35:1-21)、S194 (Trowbridge, I.S., J. Exp. Med. (1978) 148:313-323)、R210 (Galfre, G. et al. in, Nature (1979) 277:131-133) 等が好適に使用される。

【0047】抗体産生細胞は、脾臓細胞、リンパ節細胞などから得られる。すなわち、前記各種動物から脾臓、リンパ節等を摘出又は採取し、これら組織を破碎する。得られる破碎物をPBS、DMEM、RPMI1640等の培地又は緩衝液に懸濁し、ステンレスメッシュ等で濾過後、遠心分離を行うことにより目的とする抗体産生細胞を調製する。

【0048】次に、上記ミエローマ細胞と抗体産生細胞とを細胞融合させる。細胞融合は、MEM、DMEM、RPMI-1640 培地などの動物細胞培養用培地中で、ミエローマ細胞と抗体産生細胞とを、混合比 1 : 1 ~ 10:1で融合促進剤の存在下、30~37°Cで1~15分間接触させることに

よって行われる。細胞融合を促進させるためには、平均分子量1,000~6,000のポリエチレングリコール、ポリビニルアルコール又はセンダイウイルスなどの融合促進剤や融合ウイルスを使用することができる。また、電気刺激（例えばエレクトロボレーション）を利用した市販の細胞融合装置を用いて抗体産生細胞とミエローマ細胞とを融合させることもできる。

#### 【0049】(5) ハイブリドーマの選択及びクローニング

細胞融合処理後の細胞から目的とするハイブリドーマを選別する。その方法として、選択培地における細胞の選択的増殖を利用する方法等が挙げられる。すなわち、細胞懸濁液を適切な培地で希釈後、マイクロタイタープレート上にまき、各ウェルに選択培地（HAT培地など）を加え、以後適当に選択培地を交換して培養を行う。その結果、生育していく細胞をハイブリドーマとして得ることができる。ハイブリドーマのスクリーニングは、限界希釈法、蛍光励起セルソーター法等により行い、最終的にモノクローナル抗体産生ハイブリドーマを取得する。

#### 【0050】(6) モノクローナル抗体の採取

取得したハイブリドーマからモノクローナル抗体を採取する方法としては、通常の細胞培養法や腹水形成法等が挙げられる。細胞培養法においては、ハイブリドーマを10~20%ウシ胎児血清含有 RPMI-1640培地、MEM 培地、又は無血清培地等の動物細胞培養培地中で、通常の培養条件（例えば37°C、5%CO<sub>2</sub>濃度）で2~14日間培養し、その培養上清から抗体を取得する。

【0051】腹水形成法においては、ミエローマ細胞由来の哺乳動物と同種の動物の腹腔内にハイブリドーマを投与し、ハイブリドーマを大量に増殖させる。そして、1~4週間後に腹水又は血清を採取する。上記抗体の採取方法において、抗体の精製が必要となる場合は、確安塩析法、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどの公知の方法を適宜に選択して、又はこれらを組み合わせることにより精製する。

#### 【0052】2. キメラ抗体の構築

(1) ヒトPTHRPに対するマウスモノクローナル抗体のV領域をコードする塩基配列を含むDNAのクローニング

##### (i) mRNAの調製

ヒトPTHRPに対するマウスモノクローナル抗体のV領域をコードする塩基配列を含むDNAのクローニングを行うため、回収されたハイブリドーマから公知の方法、例えばガニアジン-超速心法 (Chirgwin, J.M. ら、*Biochemistry* (1979), 18, 5294-5299)、AGPC法 (Chomczynski, P. ら、*Analytical Biochemistry* (1987), 162, 156-159) 等により全RNAを調製し、mRNA Purification Kit (Pharmacia 社製) に添付されたOligo(dT)-セルローススパンカラム等によりmRNAを調製する。また、Quick Prep mRNA Purification Kit

(Pharmacia 社製) を用いることにより、全RNAの抽出操作を経ずに、mRNAの調製を行うこともできる。

##### 【0053】(ii) c DNAの調製及び增幅

上記(i)で得たmRNAから、逆転写酵素を用いてL鎖及びH鎖のV領域におけるc DNAをそれぞれ合成する。c DNAの合成は、Oligo-dTプライマー又はL鎖C領域若しくはH鎖C領域とハイブリダイズする適当なプライマー（例えば配列番号1で表される塩基配列を有するMHC 2プライマー）を用いることが出来る。c DNA合成反応は、前記mRNAとプライマーとを混合し、逆転写酵素の存在下で例えば52°Cで30分の反応を行う。

【0054】c DNAの増幅は、L鎖及びH鎖とともに5'-Ampli FINDER RACE kit (CLONTECH社) を用いた5'-RACE法 (Frohman, M. A. ら、*Proc. Natl. Acad. Sci. USA* 85, 8998-9002, 1988; Belyavsky, A. ら、*Nucleic Acids Res.* 17, 2919-2932, 1989)に基づくPCR（ポリメラーゼ連鎖反応）にて行うことが出来る。すなわち、上記で合成したc DNAの5'末端にAmpli FINDER Anchor（配列番号42）を連結し、L鎖V領域及びH鎖V領域をコードする塩基配列を含むDNA（以下、L鎖V領域をコードする塩基配列を含むDNAを「L鎖V領域のDNA」又は「L鎖V領域をコードするDNA」と略記することもある（H鎖V領域、C領域等についても同様））についてPCRを行う。

【0055】L鎖V領域のDNAを増幅するためのプライマーとして、例えばAnchorageプライマー（配列番号2）及びマウス抗体のL鎖V領域常領域（C鎖領域）の保存配列から設計したプライマー（例えば配列番号4で表される塩基配列を有するML Cプライマー）を用いることが出来る。また、H鎖V領域のDNAを増幅するためのプライマーとして、例えばAnchorageプライマー（配列番号2）及びMHC-G 1プライマー（配列番号3）(S.T. Jones ら、*Biotechnology*, 9, 88, 1991) を用いることが出来る。

【0056】(iii) DNAの精製及び塩基配列の決定

PCR産物について、公知手法に従ってアガロースゲル電気泳動を行い、目的とするDNA断片を切り出した後、DNAの回収及び精製を行い、ベクターDNAに連結する。DNAの精製は、市販のキット（例えばQGENELENA II; BI0101）を用いて行われる。DNA断片を保持するためのベクターDNAには公知のもの（例えばpUC19、Bluescript等）を用いることができる。

【0057】前記DNAと上記ベクターDNAとを、公知のライゲーションキット（宝酒造製）を用いて連結させ、組換えベクターを得る。次に、得られた組換えベクターを大腸菌JM109等に導入した後アンブリシン耐性コロニーを選び、公知方法に基づいてベクターDNAを調製する (J. Sambrook, et al., *Molecular Cloning*, Cold Spring Harbor Laboratory Press, 1989)。目的と

するDNAの塩基配列は、上記ベクター-DNAを制限酵素で消化した後、公知方法（例えばジオキシ法）により決定する（J. Sambrook, et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 1989）。本発明では、自動塩基配列決定装置（DNA Sequencer 373A; ABI 社）を用いることができる。

#### 【0058】(iv) 相補性決定領域

H鎖V領域及びL鎖V領域は、抗原結合部位を形成し、その全般の構造は互いに類似性を有している。すなわち、それぞれ4つのフレームワーク領域（FR）部分が、3つの超可変領域、すなわち相補性決定領域（CDR）により連結されている。FRのアミノ酸配列は比較的よく保存されているが、一方、CDR領域のアミノ酸配列の変異性は極めて高い（Kabat, E.A. ら、「Sequence of Proteins of Immunological Interest」 US Dept. of Health and Human Services, 1983）。

【0059】前記4個のFRの多くの部分は、 $\beta$ -シート構造をとり、その結果3個のCDRはループを形成する。CDRは、ある場合には $\beta$ -シート構造の一部を形成することもある。従って、3個のCDRはFRによって相互に立体的に非常に近い位置に保持され、そしてFR対をなす領域の3個のCDRと共に抗原結合部位を形成する。

【0060】このような事実に基づき、ヒトPTHrPに対するマウスモノクローナル抗体の可変領域のアミノ酸配列をKa b a t により作成された抗体のアミノ酸配列のデータベース（「Sequence of Proteins of Immunological Interest」 US Dept. of Health and Human Services, 1983）にあてはめて、相同性を調べることによりCDR領域を見い出しが出来る。

【0061】(2) キメラ抗体の発現ベクターの作製  
マウスモノクローナル抗体のマウスL鎖（以下、抗体のL鎖又はH鎖を表す場合は、マウスについては「マウスL鎖」、ヒト抗体のH鎖については「ヒトH鎖」のように略記することもある。）及びH鎖V領域をコードするDNA断片がクローニングされれば、これらのマウスV領域をコードするDNAを、ヒト抗体定常領域をコードするDNAと連結して発現させることによってキメラ抗体ヒトPTHrP抗体が得られる。

【0062】キメラ抗体を作製するための基本的な方法は、クローニングされたcDNAに存在するマウスリーダー配列及びV領域配列を、哺乳類細胞の発現ベクター中にすでに存在するヒト抗体C領域をコードする配列に連結することを含んでなる。あるいは、クローニングされたcDNAに存在するマウスリーダー配列及びV領域の配列をヒト抗体C領域をコードする配列に連結した後、哺乳類細胞発現ベクターに連結することを含んでなる。

【0063】ヒト抗体C領域を含むボリペプチドは、任意のヒト抗体のH鎖C領域及びヒト抗体のL鎖C領域のものと/orすることができ、例えばヒトH鎖のものについて

はC $\gamma$ 1、C $\gamma$ 2、C $\gamma$ 3又はC $\gamma$ 4、及びL鎖のものについてはC $\kappa$ 又はC $\mu$ を各々挙げることができる。

【0064】キメラ抗体の製造のためには、まず、2種類の発現ベクター、すなわちエンハンサー／プロモーター系のごとき発現制御領域による制御のもとでマウスL鎖V領域をコードするDNA及びヒトL鎖C領域をコードするDNAを含む発現ベクターを作製する。次に、これらの発現ベクターにより哺乳類細胞のごとき宿主細胞を同時に形質転換し、そして形質転換された細胞をインビットロ又はインビビオで培養してキメラ抗体を製造する（例ええば、WO 91/16928参照）。

【0065】あるいは、クローニングされたcDNAに存在するマウスリーダー配列並びにマウスL鎖V領域をコードするDNA及びヒトL鎖C領域をコードするDNAと、マウスリーダー配列並びにマウスH鎖V領域をコードするDNAとを単一の発現ベクター（例えば、WO 94/11523参照）に導入し、そして該ベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインビビオ又はインビットロで培養して目的とするキメラ抗体を生産させる。

#### 【0066】(i) キメラ抗体H鎖の構築

キメラ抗体のH鎖発現ベクターは、マウスのH鎖V領域をコードする塩基配列を含むcDNA（以下、「H鎖V領域のcDNA」ともいいう）を、ヒト抗体のH鎖C領域をコードする塩基配列を含むゲノムDNA（以下、「H鎖C領域のゲノムDNA」ともいいう）又は当該領域をコードするcDNA（以下、「H鎖C領域のcDNA」ともいいう）を含む適当な発現ベクターに導入することにより得ることが出来る。H鎖C領域としては、例えばC $\gamma$ 1、C $\gamma$ 2、C $\gamma$ 3又はC $\gamma$ 4領域が挙げられる。

【0067】(i-a) H鎖C領域をコードするゲノムDNAを含むキメラH鎖発現ベクターの構築  
H鎖C領域をコードするゲノムDNAを有する発現ベクターとしては、C $\gamma$ 1領域をコードするものについては、例えばHE F-P M h-g $\gamma$ 1（WO 92/19759参照）又はDH F R-△E-R V h-P M 1-f（WO 92/19759参照）が挙げられる。

【0068】ここで、マウスH鎖V領域をコードするcDNAをこれらの発現ベクターに挿入するにあたり、PCR法により該cDNAに適当な塩基配列を導入することが出来る。例えば、該cDNAの5'末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするため該cDNAの開始コドン直前にKozakコンセンサス配列を有するように設計したPCRプライマー、及び、該cDNAの3'末端に適当な制限酵素の認識配列を有するように、そしてゲノムDNAの一次

転写産物が正しくスプライスされmRNAとなるためのスプライスドナー部位を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を発現ベクターに導入することができる。

【0069】こうして構築したマウスH鎖V領域をコードするcDNAを適当な制限酵素で処理した後、上記発現ベクターに挿入して、H鎖C領域(Cγ1領域)をコードするゲノムDNAを含むキメラH鎖発現ベクターを構築する。

【0070】(i-b) H鎖をコードする塩基配列を含むcDNAを含むキメラH鎖発現ベクターの構築  
H鎖C領域(例えばCγ1領域)をコードするcDNAを有する発現ベクターは、以下のようにして構築することができる。すなわち、ヒト型化PM1抗体のH鎖V領域及びヒト抗体H鎖C領域Cγ1のゲノムDNA(N.Takahashi, et al., Cell 29, 671-679 1982)をコードするDNAを含む発現ベクターDHF-R-E-RvH-PM1-f(WO92/19759参照)と、ヒト型化PM1抗体H鎖V領域のゲノムDNA及びヒト抗体H鎖C領域のゲノムDNAをコードするDNAを含む発現ベクターRV1-PM1a(WO92/19759参照)とを導入したCHO細胞からmRNAを調製し、RT-PCR法により、ヒト型化PM1抗体H鎖V領域コードするcDNA及びヒト抗体H鎖C領域(Cγ1)をコードするcDNAをクローニングし、該cDNAを適当な制限酵素処理を行った動物細胞発現用ベクターに連結することにより、目的とする発現ベクターが構築される。

【0071】ここで、マウスH鎖V領域をコードするcDNAを、ヒト抗体H鎖C領域Cγ1をコードするcDNAと直接連結するにあたり、H鎖V領域をコードするcDNAを含む断片に、PCR法により適当な塩基配列を導入することが出来る。例えば、該cDNAの5'一末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするために該cDNAの開始コドン直前にKozakコンセンサス配列を有するように設計したPCRプライマー、及び、該cDNAの3'一末端にH鎖C領域Cγ1のDNAと直接連結するための適当な制限酵素の認識配列を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を該cDNAに導入する。

【0072】こうして構築したマウスH鎖V領域をコードするcDNAを適当な制限酵素で処理して、上記H鎖C領域Cγ1をコードするcDNAと連結して、pCOS1又はpCHO1のごとき発現ベクターに挿入することにより、キメラH鎖をコードするcDNAを含む発現ベクターを構築することが出来る。

【0073】(ii)キメラ抗体H鎖の構築

キメラ抗体のH鎖発現ベクターは、マウスH鎖V領域をコードするcDNAと、ヒト抗体のH鎖C領域をコード

するゲノムDNA又はcDNAとを連結し、適当な発現ベクターに導入することにより得ることが出来る。L鎖C領域としては、例えばκ鎖又はλ鎖が挙げられる。

【0074】(ii-a) キメラL鎖H鎖をコードするcDNAを含む発現ベクターの構築

マウスL鎖V領域をコードするcDNAを含む発現ベクターを構築するにあたり、PCR法により適当な塩基配列を該発現ベクターに導入することが出来る。例えば、該cDNAの5'一末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするためにKozakコンセンサス配列を有するように設計したPCRプライマー、及び、3'一末端に適当な制限酵素の認識配列を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を該cDNAに導入する。

【0075】ヒトL鎖H鎖C領域をコードするcDNAは、全塩基配列をcDNA合成機で合成し、PCR法により構築することが出来る。ヒトL鎖H鎖C領域は、アイソタイプの違いにより少なくとも4種類の存在が知られ、いずれのアイソタイプも発現ベクターの構築に用いることが可能である。例えば、クローニングしたマウスマモノクローナル抗体H鎖L鎖C領域断片のアイソタイプとしてMcg+Ke+Oz-(accession No. X57819)(P.Dariavachら, Proc. Natl. Acad. Sci. USA, 84, 9074-9078, 1987)のものをを選択して発現ベクターの構築に用いることが出来る。公知のヒトL鎖H鎖C領域、例えばMcg+Ke+Oz-のcDNAを構築するためには、例えば配列番号11から14に示す4本の下記プライマーに分ける。プライマーMBC1HGP1(配列番号1)及びMBC1HGP3(配列番号13)はセンスDNA配列を有し、MBC1HGP2(配列番号12)及びMBC1HGP4(配列番号14)はアンチセンスDNA配列を有し、それぞれのプライマーの両端に20から23bpの相補的配列を有する様に設計する。

【0076】MBC1HGPS(配列番号1)及びMBC1HGP1(配列番号16)は外部プライマーと呼ばれ、MBC1HGP1、MBC1HGP4とそれぞれ相同な配列を有しており、それぞれ適当な制限酵素の認識配列をそれぞれ含んでいる。PCR法を用いて、4本のプライマーをアセンブリさせ、完全長のcDNA合成し、さらに外部プライマーを加え、cDNAの増幅を行う。PCR法によるアセンブリとは、MBC1HGP1とMBC1HGP2、又はMBC1HGP3とMBC1HGP4とがその相補的配列によりアーリングし、MBC1HGP1-MBC1HGP2断片とMBC1HGP3-MBC1HGP4断片が合成され、さらに、各断片の相補的配列によりアーリングして、完全長のヒトL鎖H鎖C領域をコードするcDNAが合成されることを指す。

【0077】このようにして構築したヒトL鎖／鎖C領域をコードするcDNAと、上記のようにして構築したマウスL鎖V領域をコードするcDNAとを、適当な制限酵素部位間で連結し、さらにはpCOS1又はpCHO1のごとき発現ベクターに挿入することにより、キメラ抗体のL鎖／鎖をコードするcDNAを含む発現ベクターを構築することが出来る。

【0078】(ii-b)キメラL鎖／鎖をコードするcDNAを含む発現ベクターの構築

マウスL鎖V領域をコードするcDNAを含む発現ベクターを構築するにあたり、PCR法により、該cDNAに適当な塩基配列を導入することが出来る。例えば、該cDNAの5'一末端に適当な制限酵素の認識配列を有するように、そして転写効率をよくするためのKozakコンセンサス配列を有するように設計したPCRプライマー、及び、3'一末端に適当な制限酵素の認識配列を有するように設計したPCRプライマーを用いてPCRを行うことで、これら適当な塩基配列を該cDNAに導入する。

【0079】マウスL鎖V領域をコードするDNAと連結させるためのヒトL鎖／鎖C領域をコードするDNAは、例えばゲノムDNAを含むHEF-PML-gk(WO92/19759参照)から構築することが出来る。PCR法により、L鎖／鎖C領域をコードするDNAの5'一末端及び3'一末端に適当な制限酵素の認識配列を導入し、上記のようして構築したマウスL鎖V領域をコードするDNAとL鎖／鎖C領域をコードするDNAとを連結し、pCOS1又はpCHO1のごとき発現ベクターに挿入することにより、キメラ抗体のL鎖／鎖をコードするcDNAを含む発現ベクターを構築することが出来る。

【0080】3. ヒト型化抗体の作製

(1) ヒト抗体との相同性検索

マウスマクローナル抗体のCDRがヒト抗体に移植されているヒト型化抗体を作製するためには、マウスマクローナル抗体のFRとヒト抗体のFRとの間に高い相同性が存在することが望ましい。従って、マウス抗ヒトPTHrPモノクローナル抗体のH鎖及びL鎖のV領域を、プロテイン・データ・バンクを用いて構造が解明されているすべての既知抗体のV領域と比較する。また、同時にKabatらにより、抗体のFRの長さ、アミノ酸の相同性等によって分類されたヒト抗体のサブグループ(HSG: Human subgroup)(Kabat, E.A. ら, US Department of Health and Human Services, US Government Printing Offices, 1991)との比較を行う。

【0081】ヒトH鎖V領域の場合は、KabatによるHSG分類により、HSG I～IIIに分類することが出来、マウス抗ヒトPTHrPモノクローナル抗体H鎖V領域は、HSG IIIのコンセンサス配列と82.7%のホモジニーを有する。一方、ヒトL鎖／鎖V領域は、K

a b a t r aによるHSG分類により、HSG I～VIに分類することが出来、マウス抗ヒトPTHrPモノクローナル抗体L鎖／鎖V領域は、いずれのサブグループに属するヒトL鎖／鎖V領域のコンセンサス配列とも高いホモジニーを有しない。

【0082】従って、マウス抗ヒトPTHrPモノクローナル抗体をヒト型化する際には、ヒトH鎖V領域としてHSG IIIに属し、最も相同性の高いヒトH鎖V領域、又はカノニカルストラクチャー(Chothia C, et al., J. Mol. Biol. 196, 901-917, 1987)の一一致するFRの構造を有するヒトH鎖V領域をヒト型化抗体の構築に使用することが望ましい。また、ヒトL鎖／鎖V領域のサブグループには相同性の高いコンセンサス配列がないことより、プロテイン・データ・バンクに登録されている最も高い相同性を有するヒト抗体L鎖／鎖V領域をヒト型化抗体の構築に使用することが望ましい。

【0083】(2) ヒト型化抗体V領域をコードするDNAの設計

ヒト型化抗体V領域をコードするDNAの設計における第一段階は、設計の基礎となるヒト抗体V領域を選択することである。本発明においては、マウス抗体V領域のFRと80%以上ホモジニーを有するヒト抗体V領域のFRを、ヒト型化抗体に用いることができる。ここで、H鎖V領域のFRとしては、サブグループIIIに属するもの、例えばS31679(NBRI-PDB, Cuisinier A.M. ら, Eur. J. Immunol. 23, 110-118, 1993)由来のFRを実質的に同一FRの断片として挙げることができる。また、L鎖V領域のFRとしては、例えばヒト抗体HSU03868(GEN-BANK, Deftos M. ら, Scand. J. Immunol. 39, 96-103, 1994)由来のFR1, FR2及びFR3と、ヒト抗体S25755(NBRI-PDB)由来のFR4とを実質的に同一FRの断片として挙げができる。なお、ヒト抗体S31679は、ヒト胎兒肝臓のcDNAライブラリーよりクローニングされた抗体であり、ヒト抗体HSU03868は新規ヒトL鎖／鎖V領域の遺伝子としてクローニングされた抗体である。

【0084】(3) ヒト型化抗体V領域を含むポリペプチドの作製

本発明のヒト型化抗体は、該抗体のC領域、及びV領域のフレームワーク(FR)領域がヒト由来のものであり、V領域の相補決定領域(CDR)がマウス由来のものである(図1)。本発明のヒト型化抗体のV領域を含むポリペプチドは、鉛型となるヒト抗体のDNA断片が入手可能ならば、PCR法によるCDRーグラフィングと呼ばれる手法により作製することができる。「CDRグラフィング」とは、マウス由来のCDRをコードするDNA断片を作製し、これを鉛型となるヒト抗体のCDRと入れ換える手法をいう。

【0085】また、鉛型となるヒト抗体のDNA断片が入手できない場合は、データベースに登録されている塩

基配列をDNA合成機で合成し、PCR法によりヒト型化抗体V領域のDNAを作製することができる。さらに、アミノ酸配列のみデータベースに登録されている場合は、そのアミノ酸配列を基に、Kabat, E. A.らの報告(US Dep. Health and Human Services, US Government Printing Offices, 1991)している抗体のコドン使用頻度に基づいて、全塩基配列を類推することができる。この塩基配列をDNA合成機で合成し、PCR法によりヒト型化抗体V領域のDNAを作製し、これを適当な宿主に導入して発現させることにより、目的のポリペプチドを作製することができる。以下に、鈎型となるヒト抗体のDNA断片が入手できる場合の、PCR法によるCDR-グラフティングの一般的な概要を示す。

#### 【0086】(i) CDR-グラフティング

図2に示すように、V領域をコードするDNAがFR1、CDR1、FR2、CDR2、FR3、CDR3及びFR4をコードするDNAの順に連結されているものとする。

【0087】まず、それぞれのCDRに対応するマウス由来のDNA断片を合成する。CDR1～3は、先にクローニングしたマウスH鎖V領域及びL鎖V領域の塩基配列を基に合成されたDNAである。グラフティングプライマーBは、センス方向のマウスCDR1ヒト抗体のFR2にハイブリダイズする配列を有し、グラフティングプライマーEは、アンチセンス方向のCDR1ヒト抗体のFR1にハイブリダイズする配列を有するように合成する(グラフティングプライマーCとF、グラフティングプライマーDとGについても同様)(図2(1))。また、FR1の上流の領域及びFR4の下流の領域にハイブリダイズすることができる適当なプライマー(外部プライマーという;図2(1)のA及びH)も合成する。なお、グラフティングプライマーの分離、抽出は、公知の手法により行うことができる(Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989)。

【0088】次に、グラフティングプライマー-Eと外部プライマー-A、グラフティングプライマー-BとF、グラフティングプライマー-CとG、グラフティングプライマー-Dと外部プライマー-Hとを用いて第一PCRを行う。その結果、それぞれ断片A-E、断片B-F、断片C-G及び断片D-Hが得られる(図2(2))。

【0089】前記の通り、グラフティングプライマー-Bの上流とグラフティングプライマー-Eの下流の一部の領域とが重複するように設計されているので(グラフティングプライマー-CとF、DとGについても同様)、これらの断片は、適当な温度条件下で反応させることにより、それぞれの相補的配列にアニーリングし、PCRを行うことによりAからHまでの長さを有するDNAにアセンブリーすることが可能である。そして、V領域をコードする1本のDNA断片が得られたところで外部プライマ

-AとHを加え、第二PCRを行うことにより、FR1～4はヒト由来のものであるがCDR1～3はマウス由来のものとなったヒト型化抗体V領域をコードするDNAを得る。そして、これを適当な宿主に導入して発現させることにより、目的のポリペプチドを得ることができる(図2(3))。

#### 【0090】(ii)ヒト型化H鎖V領域をコードするDNA及び発現ベクターの構築

本発明では、ヒト型化抗体の鈎型となるヒト抗体のH鎖V領域をコードするDNAを天然から入手することができないため、当該DNAはH鎖V領域をコードするDNAの全塩基配列をDNA合成機で合成し、PCR法により構築することが出来る。

【0091】マウス抗ヒトPTHrPモノクローナル抗体H鎖V領域は、ヒトサブグループIIIに属するS316-79と高い相同意を有する。このヒト抗体を鈎型としてヒト型化H鎖V領域をコードするDNAを構築するために、例えば配列番号23から26に示す4本のプライマーに分けて使用する。プライマー-MBC1HGP1(配列番号23)及びMBC1HGP3(配列番号24)はセンスDNA配列を有し、MBC1HGP2(配列番号25)及びMBC1HGP4(配列番号26)はアンチセンスDNA配列を有し、それぞれのプライマーの両端に15から21bpの相補的配列を有する様に設計する。

【0092】外部プライマー-MBC1HVSI(配列番号27)、MBC1HVR1(配列番号28)はMBC1HGP1、MBC1HGP4とそれぞれ相同的な配列を有しており、それぞれ適当な制限酵素の認識配列をそれぞれ含んでいる。PCR法を用いて、4本のプライマーをアセンブリさせ完全長のcDNA合成し、さらに外部プライマーを加えDNAの増幅を行う。PCR法によるアセンブリとは、MBC1HGP1とMBC1HGP2、又はMBC1HGP3とMBC1HGP4とがその相補的配列によりアニーリングし、MBC1HGP1-MBC1HGP3断片とMBC1HGP2-MBC1HGP4断片が合成され、さらに、各断片の相補的配列によりアニーリングして、完全長のヒト型化H鎖V領域のDNAが合成されることを指す。

【0093】ヒト抗体H鎖C領域は任意のヒトH鎖C領域であることができ、例えばヒトH鎖C $\gamma$ 1、C $\gamma$ 2、C $\gamma$ 3又はC $\gamma$ 4を挙げることができる。前記のようにして構築したヒト型化抗体H鎖V領域のDNAは、任意のヒト抗体H鎖C領域、例えばヒトH鎖C領域C $\gamma$ 1領域のDNAと連結することができる。キメラ抗体H鎖の構築で述べたように、適当な制限酵素にて処理した後、エンハンサー／プロモーター系のごとき発現制御領域のもとでヒトH鎖C領域をコードするDNAと連結し、ヒト型化H鎖V領域及びヒトH鎖C領域のDNAを含む発現ベクターを作製する。

【0094】(iii) ヒト型化L鎖V領域をコードするDNA及び発現ベクターの構築

本発明では、H鎖V領域をコードするDNAの場合と同様、鈴型となるヒト抗体のL鎖V領域のDNAを天然から入手することができないため、L鎖V領域をコードするDNAの全塩基配列をDNA合成機で合成し、PCR法により構築することが出来る。

【0095】マウス抗ヒトPTHRPモノクローナル抗体L鎖V領域と最も相同性を有するヒト抗体HSU03868を鈴型としてヒト型化L鎖V領域のDNAを構築するために、例えば配列番号29から32に示す4本のプライマーに分けて使用する。プライマーMBC1LGP1(配列番号29)及びMBC1LGP3(配列番号30)はセンスDNA配列を有し、MBC1LGP2(配列番号31)及びMBC1LGP4(配列番号32)はアンチセンスDNA配列を有し、それぞれのプライマーの両端に15から21bpの相補的配列を有する様に設計する。

【0096】外部プライマーMBC1LVS1(配列番号33)、MBC1LVR1(配列番号34)はMBC1LGP1、MBC1LGP4とそれぞれ相同な配列を有しており、それぞれ適当な限制酵素の認識配列をそれぞれ含んでいる。PCR法を用いて、4本のプライマーをアセンブリさせ完全長のDNA合成し、さらに外部プライマーを加えDNAの増幅を行う。PCR法によるアセンブリとは、MBC1LGP1とMBC1LGP3、又はMBC1LGP2とMBC1LGP4との相補的配列によりアーニーリングし、MBC1LGP1-MBC1LGP3断片とMBC1LGP2-MBC1LGP4断片が合成され、さらに、各断片の相補的配列によりアーニーリングして、完全長のヒト型化H鎖V領域をコードするDNAが合成されることを指す。

【0097】ヒト抗体L鎖C領域は任意のヒトL鎖C領域であることができ、例えばヒトL鎖C $\alpha$ やC $\kappa$ を挙げることができる。前記のようにして構築したヒト型化抗体L鎖V領域のDNAは、任意のヒト抗体L鎖C領域、例えばヒトL鎖C $\alpha$ 領域のもとを連結することができる。適当な限制酵素で処理した後、エンハンサー/プロモーター系のごとき発現制御領域のもとでヒトL鎖C領域をコードするDNAと連結し、ヒト型化L鎖V領域及びヒトL鎖C領域をコードするDNAを含む発現ベクターを作製する。

【0098】前記のようにして、ヒト型化抗体のV領域を含むポリペプチドが作製されても、該ポリペプチドが抗体としての活性(抗原に対する結合活性、中和活性等)を有するか否かは必ずしも明らかではない。特にL鎖の場合は、マウス抗ヒトPTHRPモノクローナル抗体L鎖V領域が、非常に希なV $\lambda$ 遺伝子由来であるため、ヒト型化H鎖との組み合わせによりCOS-7のごとき動物細胞で発現させ、活性の有無を検討する必要が

ある。

【0099】ヒト型化抗体V領域のどのFRが、ヒト型化抗体の結合活性及び中和活性に寄与するのかを明らかにする方法として、ハイブリッドV領域を構築し(Ohtomo, T. et al. Molecular Immunology, 32, 407-416, 1995)、確認するのが効である。本発明のヒト型化抗体L鎖V領域において、どのアミノ酸を変異させれば活性を有するものが得られるかを調べるために、ヒト型化抗体のFR領域の断片をマウス由來のFR領域の断片と組換えたものをコードするDNAを構築し、ヒト型化のための各領域の評価を行う。

【0100】図3に示すように、FR1及びFR2はヒト抗体由来であるがFR3及びFR4をマウス抗体由来に組み換えたV領域を含むポリペプチドを有する抗体(このような組み換えた断片を有する抗体を「ハイブリッド抗体」という)、FR1のみをヒトのものに組み換えたハイブリッド抗体、FR2のみをヒトのものに組み換えたハイブリッド抗体を作製する。そして、これらのハイブリッド抗体をコードするDNAを発現ベクターに組み込み、ヒト型化抗体を一過性に発現させ、抗体の活性の有無を調べる。

【0101】本発明者は、この方法を用いてL鎖V領域を含むポリペプチドの抗原結合活性及び中和活性について検討した結果、FR2及びFR3に、置換すべきアミノ酸が存在することが判明した。本発明者は、FR2及びFR3領域に活性に寄与するアミノ酸が存在することが判明し、Kabat, E. A. (US Dep. Health and Human Services, US Government Printing Offices, 1991)により決定された抗体のアミノ酸番号の第36、45及び49番目のアミノ酸(FR2領域に存在する)、並びに第87番目のアミノ酸(FR3領域に存在する)が活性に寄与するアミノ酸であることを明らかにした。

【0102】そこで、本発明では、これらのアミノ酸を変異(例えば置換)させたV領域を含むポリペプチドを作製する。まず、前記CDRーグラフトティングにより、アミノ酸の変異を導入させるための基本となるアミノ酸配列を有するV領域を含むポリペプチドを調製する。この基本となるポリペプチドは、配列番号47で表されるアミノ酸配列を含むものであり、「バージョンa」とする(表1のa)。

【0103】次に、このバージョンaを基準として、FRのいくつかのアミノ酸を変異させた種々の変異型断片を作製する。変異の導入は、目的の変異を導入しようとするアミノ酸をコードするオリゴスクレオチドプライマー(変異原プライマー)を設計し、該プライマーを用いたPCRにより行うことができる。このようにして、FR2及びFR3の特定のアミノ酸を変異させたV領域を含むポリペプチド(バージョンb~t)が作製される(表1のb~t)。

【0104】

【表1】

【0105】前記のようにして構築したヒト型化抗体L鎖V領域各バージョンをコードするDNAは、任意のヒト抗体L鎖C領域、例えばヒトL鎖C1領域のDNAと連結することができる。適当な連絡酵素で処理した後、エンハンサー／プロモーター系のごとき発現制御領域のもとでヒトL鎖V鎖C領域をコードするDNAと連結し、ヒト型化L鎖V領域各バージョンをコードするDNAと、ヒト型化L鎖V鎖C領域をコードするDNAとを含む発現ベクターを作製する。

【0106】また、前記のようにして構築したヒト型化

抗体H鎖V領域及びヒトH鎖C領域をコードするDNAと、ヒト型化L鎖V領域及びヒトL鎖C領域をコードするDNAとを、単一の発現ベクター（例えば、WO 94/11523 参照）に導入し、そして該ベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインビーポラス又はインビットロで培養して目的とするヒト型抗体を生産させる。

### [9.1.9.3] 4. きめ細胞体及びヒト型抗体の製造

キメラ抗体又はヒト型化抗体を製造するためには、前記のようなそれぞれ2種類の発現ベクターを作製する。す

なわち、キメラ抗体については、エンハンサー／プロモーター系のごとき発現制御領域による制御のもとでマウスH鎖V領域及びヒトH鎖C領域をコードするDNAを含む発現ベクター、並びにエンハンサー／プロモーター系のごとき発現制御領域のもとでマウスL鎖V領域及びヒトL鎖C領域をコードするDNAを含む発現ベクターを作製し、ヒト型化抗体については、エンハンサー／プロモーター系のごとき発現制御領域による制御のもとでヒト型化H鎖V領域及びヒトH鎖C領域をコードするDNAを含む発現ベクター、並びにエンハンサー／プロモーター系のごとき発現制御領域のもとでヒト型化L鎖V領域及びヒトL鎖C領域をコードするDNAを含む発現ベクターを作製する。

【0108】次に、これらの発現ベクターにより哺乳類細胞のごとき宿主細胞を同時に形質転換し、そして形質転換された細胞をインビットロ又はインビーピトで培養してキメラ抗体又はヒト型化抗体を製造する（例えば、WO 91/16928参照）。

【0109】また、H鎖V領域及びH鎖C領域をコードするDNA、並びにL鎖V領域及びL鎖C領域をコードするDNAを單一ベクターに連結し、適当な宿主細胞を形質転換し、抗体を生産することができる。すなわち、キメラ抗体の発現には、クローニングされたcDNAに存在するマウスリーダー配列並びにマウスH鎖V領域及びヒトH鎖C領域をコードするDNAと、マウスリーダー配列並びにマウスL鎖V領域及びヒトL鎖C領域をコードするDNAを單一の発現ベクター（例えば、WO 94/11523参照）に導入する。ヒト型化抗体の発現には、ヒト型化H鎖V領域及びヒトH鎖C領域をコードするDNAと、ヒト型化L鎖V領域及びヒトL鎖C領域をコードするDNAとを單一の発現ベクター（例えば、WO 94/11523参照）に導入する。そして、これらのベクターを用いて宿主細胞を形質転換し、次にこの形質転換された宿主をインビットロ又はインビットロで培養して目的とするキメラ抗体又はヒト型化抗体を生産させる。

【0110】以上のようにして目的とするキメラ抗体又はヒト型化抗体をコードするDNAで形質転換した形質転換体を培養し、產生したキメラ抗体又はヒト型化抗体は、細胞内又は細胞外から分離し均一にまで精製することができる。なお、本発明の目的蛋白質であるキメラ抗体又はヒト型化抗体の分離・精製を、プロテインAアガロースカラムを用いて行うことができる。また、その他に、通常の蛋白質で用いられる分離・精製方法を使用すればよく、何ら限定されるものではない。例えば各種クロマトグラフィー、限外濾過、塩析、透析等を適宜選択、組合せれば、キメラ抗体又はヒト型化抗体を分離・精製することができる。

【0111】ヒトPTHrPに対する本発明のキメラ抗体又はヒト型化抗体を製造するために、任意の発現系を

使用することができる。例えば、真核細胞を用いる場合は動物細胞（例えば樹立された哺乳類細胞系）、真核状細胞又は酵母細胞などが挙げられ、原核細胞を用いる場合は細菌細胞（例えば大腸菌細胞等）などを使用することができる。好ましくは、本発明のキメラ抗体又はヒト型化抗体は哺乳類細胞、例えばCOS細胞又はCHO細胞中で発現される。

【0112】これらの場合、哺乳類細胞での発現のために有用な常用のプロモーターを用いることができる。例えば、ヒト・サイトメガロウィルス前期（human cytomegalovirus immediate early; HCMV）プロモーターを使用するのが好ましい。HCMVプロモーターを含有する発現ベクターの例には、HCMV-VH-HCγ1, HC MV-VL-HCK等であって、pSV2neoに由来するもの（WO 92-19759）が含まれる。

【0113】また、その他に、本発明のために用いることのできる哺乳動物細胞における遺伝子発現のプロモーターとしては、レトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス40（SV40）などのウイルスプロモーターやト・ボリペチド・チーン・エングレーリン・ファクター1α（HEF-1α）などの哺乳動物細胞由來のプロモーターを用いればよい。例えばSV40のプロモーターを使用する場合は、Mulliganらの方法（Nature 277, 108, 1979）、また、HEF-1αプロモーターを使用する場合は、Mizushima, S. らの方法（Nucleic Acids Research, 18, 5322, 1990）に従えば容易に実施することができる。

【0114】複型起原としては、SV40、ポリオーマウイルス、アデノウイルス、牛パピローマウイルス（BPV）等の由来のものを用いることができ、さらには宿主細胞系中の遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、ホスホトランスフェラーゼAP H（3'）II又はI（neo）遺伝子、チミジンキナーゼ（TK）遺伝子、大腸菌キサンチンギアニンホスホリボシルトランスフェラーゼ（ECogpt）遺伝子、ジヒドロ葉酸還元酵素（DHFR）遺伝子等を含むことができる。

#### 【0115】5. キメラ抗体及びヒト型化抗体の抗原結合活性及び中和活性の評価

##### (1) 抗体の濃度測定

得られた精製抗体の濃度の測定は、ELISAにより行うことができる。抗体濃度測定のためのELISAプレートを次のようにして調製する。ELISA用96穴プレート（例えばMaxisorp, NUNC）の各穴を、例えば1μg/mlの濃度に調製したヤギ抗ヒトIgG抗体100μlで固相化する。200μlの希釈バッファー（例えば50mM Tris-HCl, 1 mM MgCl<sub>2</sub>, 0.1M NaCl, 0.05% Tween20, 0.02% Na<sub>3</sub>、1%牛血清アルブミン（BSA）、pH7.2）でプロッキングの後、キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を発現させたCOS-7細胞若

しくはCHO細胞の培養上清、又は精製キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を段階希釈して各穴に加え、次にアルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体100 μlを加え、1mg/mlの基質溶液(Sigma 104、p-ニトロフェニルリン酸、SIGMA)を加え、次に405nmでの吸光度をマイクロプレートリーダー(Bio Rad)で測定する。濃度測定のスタンダードとして、Hu IgG1& Purified (The Binding Site)を用いることができる。

#### 【0116】(2) 抗原結合能の測定

抗原結合測定のためのELISAプレートでは、次のようにして調製する。ELISA用96穴プレートの各穴を1μg/mlの濃度で調製したヒトPTHrP(1-34)100 μlで固相化する。200 μlの希釈バッファーでプロセッキングの後、キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を発現させたCOS-7細胞若しくはCHO細胞の培養上清、又は精製キメラ抗体、ハイブリッド抗体若しくはヒト型化抗体を段階希釈して各穴に加え、次にアルカリフォスファターゼ結合ヤギ抗ヒトIgG抗体100 μlを加え、1mg/mlの基質溶液(Sigma 104、p-ニトロフェニルリン酸、SIGMA)を加え、次に405nmでの吸光度をマイクロプレートリーダー(BioRad)で測定する。

#### 【0117】(3) 中和活性の測定

マウス抗体、キメラ抗体及びヒト型化抗体の中和活性の測定は、例えばラット骨肉腫細胞株ROS 17/2.8-5細胞(Sato, K. et al., Acta Endocrinology 116, 113-120, 1987)を用いて行なうことができる。すなわち、ROS 17/2.8-5細胞を、4mMのヒドロコルチゾンで刺激し、PTH/PTHrPレセプターを誘導する。1mMのイソブチル-1-メチルキサンチン(I BMX、S1 GMA)でcAMPの分解酵素を阻害し、中和活性を測定するマウス抗体、キメラ抗体又はヒト型化抗体をPTHrP(1-34)と等量混合し、各抗体とPTHrP(1-34)の混合液を各穴に添加する。PTHrPの刺激により、ラット骨肉腫細胞株ROS 17/2.8-5細胞が産生するcAMPの量を測定することにより、マウス抗体、キメラ抗体又はヒト型化抗体の中和能を評価することができる。

#### 【0118】(4) PTHrPと抗PTHrP抗体との相互作用における速度論的解析

本発明では、PTHrPと抗PTHrP抗体との相互作用における速度論を、様々な手法を用いて解析することができる。具体的には、スキャッチャード解析やBIACOREと呼ばれる表面プラズモン共鳴センサー(ファルマシアバイオテク社により開発・実用化された)により解離定数、解離速度定数、結合速度定数を測定することが可能であるが、本発明では、その一例として、BIACOREと呼ばれる表面プラズモン共鳴センサーにより解析する場合を説明する。

【0119】BIACOREの基本構造は、光源とプリズム、ディテクターとマイクロ流路から成っている。実際には、カセット式のセンサーチップ上にリガンドを固定化し、そこにアノライトをインジケーションする。両者に親和性があれば、その結合量が光学的に検出される。

【0120】その検出原理は表面プラズモン共鳴と呼ばれる現象である。すなわち、ガラスと金属薄膜との界面に全反射するように入射した光のうち、ある角度の入射光は表面プラズモンの励起に使われ減衰してしまう。その角度が金属薄膜(センサー)に接している溶媒の濃度変化に依存して変動する。BIACOREはこの変動を検出するというものである。

【0121】BIACOREではこの変化を共鳴シグナル(SPR signal)と呼び、0.1度の変化を1000RU(resonance units)としている。1000RUは表面積 $\text{mm}^2$ の薄金センサー上に約1ngの蛋白質が結合した場合の変化量であり、蛋白質であれば500RU(50pg)程度の変化を十分検出することができる。検出されたシグナルは、BIACOREに付属しているコンピューターがセンサーグラムと呼ばれる結合曲線に変換し、リアルタイムにコンピューターディスプレイ上に描き出される(夏目徹他、(1995)実験医学、13, p563-569。)(Karlsson, R. et al., (1991) J. Immunol. Methods 145, p229-240.)。

【0122】上記BIACOREによって本発明の抗PTHrP抗体のカインティクスパラメーター、すなわち解離定数(KD)、解離速度定数(Kdiss)および結合速度定数(Kass)を測定することができる。本発明の抗PTHrP抗体は、解離定数(KD値)が小さい値であるほど中和活性を有する点で好ましい。本発明の抗PTHrP抗体において、KD値は $1.86 \times 10^{-7}$ 以下であることが好ましく、 $1.86 \times 10^{-8}$ 以下であることがより好ましく、 $3.58 \times 10^{-10}$ 以下のものが最も好ましい。

【0123】また、KD値は解離速度定数(Kdiss)および結合速度定数(Kass)の2つのパラメーターから決定される( $KD = Kdiss / Kass$ )。したがって、Kdissの値が小さく、Kassの値が大きければKD値が小さくなることは明らかである。具体的には、本発明の抗PTHrP抗体の場合、Kdissの値が $1.22 \times 10^{-1}$  [1/Sec]以下であればよい。好ましくは、Kdissの値が $1.22 \times 10^{-2}$ 以下であり、より好ましくは $3.16 \times 10^{-4}$ 以下であり、最も好ましくは $2.32 \times 10^{-4}$  [1/Sec]以下である。

【0124】一方、Kassの値は $6.55 \times 10^4$  [1/M. Sec]以上であればよい。好ましくはKassの値は $6.55 \times 10^5$ 以上であり、より好ましくは $0.883 \times 10^6$ 以上であり、最も好ましくは $1.03 \times 10^6$  [1/M. Sec]以上である。さらに、Kdissの値が $1.22 \times 10^{-1}$  [1/Sec]以下であり、かつ、Kassの値が $6.55 \times 10^4$  [1/M. Sec]以上の抗PTHrP抗体も好ましい。

【0125】さらに具体的には、本発明の抗PTHrP抗体は、KD値がKD値は $1.02 \times 10^{-11}$ ~ $1.86 \times 10^{-7}$  [M]の

範囲であり、 $1.02 \times 10^{-10} \sim 1.86 \times 10^{-8}$ [M]のものが好ましく、 $1.34 \times 10^{-10} \sim 3.58 \times 10^{-10}$ [M]のものがより好ましく、 $2.25 \times 10^{-10} \sim 3.58 \times 10^{-10}$ [M]のものが最も好ましい。また、Kdiss値は $7.38 \times 10^{-6} \sim 1.22 \times 10^{-1}$ [1/S ec]の範囲であり、 $7.38 \times 10^{-5} \sim 1.22 \times 10^{-2}$ [1/Sec]のものが好ましく、 $1.66 \times 10^{-4} \sim 3.16 \times 10^{-4}$ [1/Sec]のものがより好ましく、 $1.66 \times 10^{-4} \sim 2.32 \times 10^{-4}$ [1/Sec]のものが最も好ましい。

【0126】そしてKass値は、 $6.55 \times 10^{-4} \sim 1.24 \times 10^{-7}$ [1/M.S ec]の範囲であり、 $6.55 \times 10^{-5} \sim 1.24 \times 10^{-6}$ [1/M.S ec]のものが好ましく、 $7.23 \times 10^{-5} \sim 1.03 \times 10^{-6}$ [1/M.S ec]のものがより好ましく、 $0.883 \times 10^{-6} \sim 1.03 \times 10^{-6}$ [1/M.S ec]のものが最も好ましい。これらのKD値、Kdiss値およびKass値はスキヤッチャード解析、あるいはBIACOREなどの表面プラズモン共鳴センサー等により得ることができるが、BIACOREを用いて得ることが好ましい。

【0127】6. 抗PThrP抗体又はヒト型化抗体を有効成分として含む医薬組成物及び高カルシウム血症抑制剤PThrPに対する抗体又はヒト型化抗体の治療効果を確認するには、PThrPに対する抗体又はヒト型化抗体と、高カルシウム血症を呈した動物に投与し、高カルシウム血症の指標を測定することによりその治療効果を確認することができる。また、高カルシウム血症を呈した動物及び高カルシウム血症患者においては、しばしば低リン血症が認められるが、本発明の抗体は、この低リン血症を改善するために用いることができる。

【0128】本発明で使用される抗体は、前記解離定数、解離速度定数及び結合速度定数を有する抗PThrP抗体（ヒト抗体、キメラ抗体、プライマタイト抗体を含む）、あるいはPThrPに対するヒト型化された抗体である。この抗体は、PThrPに結合することにより、PThrPの活性を中和する抗体であり、特に、好ましくはヒト型化された#23-57-137-1抗体が挙げられる。ヒト型化#23-57-137-1抗体の作製方法は、実施例1～3に記載されている。

【0129】本発明で使用される抗体は、塩析法、HPLC等を用いたゲル濃過法、プロテインAカラム等を用いたアフィニティーカロマトグラフィー法等の通常の精製手段を組み合わせて高純度に精製することができる。このように精製された抗体は、放射免疫測定法(RIA)、酵素免疫測定法(BIA、ELISA)、あるいは蛍光抗体法(Immunofluorescence Analysis)等の通常の免疫学的手段により、高精度にPThrPを認識することを確認できる。

【0130】高カルシウム血症を呈する動物には、PThrPを產生する腫瘍細胞を免疫機能が低下又は欠失した実験動物に移植することにより作製したモデル動物を使用することができます。移植される腫瘍細胞としては、ヒト由来の腫瘍細胞が好ましく、例えば、ヒト肺腺癌PAN-7が挙げられる。また、腫瘍細胞を移植される免疫機能が

低下又は欠失した動物としてはヌードマウス、SCIDマウスが挙げられる。高カルシウム血症の抑制の評価は、血中カルシウム濃度、体重減少、あるいは運動量の低下を経時観察し、その改善の程度を評価することによって行われる。

【0131】本発明のPThrPに対する抗体又はヒト型化抗体を有効成分として含む医薬組成物及び高カルシウム血症抑制剤は、非經口的に全身又は局所的に投与することができる。例えば、点滴などの静脈内注射、筋肉内注射、腹腔内注射、皮下注射を選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。有効投与量は、一回につき体重1kgあたり0.01mgから1000mgの範囲で選ばれる。あるいは、患者あたり5～10000 mg/body、好ましくは50～1000mg/bodyの投与量を選ぶことができる。

【0132】本発明のPThrPに対する抗体又はヒト型化抗体を有効成分として含む医薬組成物及び高カルシウム血症抑制剤は、投与経路次第で医薬的に許容される担体や添加物を共に含むものであってもよい。このような担体及び添加物の例として、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロドリン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ベクチン、メチルセルロース、エチセルロース、キサンタンガム、アラビゴム、カゼイン、ゼラチン、寒天、ジグリセリン、グリセリン、プロビレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤などが挙げられる。使用される添加物は、本発明の形態に応じて上記の中から適宜又は組み合わせて選択されるが、これらに限定されるものではない。

【0133】なお、本発明の抗体は、種々の癌（悪性腫瘍）によって誘発される高カルシウム血症に広く使用することができる。これらの癌種は特に限定されるものではなく、単一の癌のみならず複数の癌が併発したものも含まれる。癌種としては、例えば脾臓癌、肺癌、咽頭癌、喉頭癌、舌癌、膚内癌、食道癌、胃癌、胆管癌、乳癌、膀胱癌、子宫癌、前立腺癌又は悪性リンパ腫などが挙げられる。

#### 【0134】

【実施例】以下、参考例および実施例により本発明をさらに具体的に説明する。但し、本発明は、これら実施例等にその技術的範囲を限定するものではない。

#### 【参考例1】

抗PThrP（1-34）マウスモノクローナル抗体产生ハイブリドーマの作製

ヒトPTHrP (1-34)に対するモノクローナル抗体産生ハイブリドーマ#23-57-154および#23-57-137-1の作製は、佐藤幹二らによって行われた(Sato, K. et al., J. Bone Miner. Res. 8, 849-860, 1993)。

【0135】免疫原として使用するために、PTHrP (1-34) (Peninsula製)とキャリアータンパクであるサイログロブリンをカルボジイミド(Dejmim)を用いて結合した。サイログロブリンと結合したPTHrP (1-34)を透析し、タンパク濃度として $2\mu\text{g}/\text{ml}$ となるように調製した後、フロイントアジュバント(Difco)と1:1で混合し、エマルジョン作製後、16匹の雌性BALB/cマウスの背部皮下又は腹腔内に動物あたり $100\mu\text{g}$ を11回免疫した。初回免疫は、フロイント完全アジュバントを用い、二回目以降の追加免疫にはフロイント不完全アジュバントを使用した。

【0136】免疫したマウスの血清中の抗体価の測定は、以下の方法で行った。すなわち、マウス尾静脈より採血し、血清分離後RIAパッファーで希釈した抗血清と $^{125}\text{I}$ 標識PTHrP (1-34)を混合し、結合活性を測定した。抗体価の上昇したマウスの腹腔に、キャリアータンパクを結合していないPTHrP (1-34)を動物あたり $50\mu\text{g}$ を最終免疫した。

【0137】最終免疫3日目にマウスを屠殺し、脾臓を摘出後、脾臓細胞とマウスミニローマ細胞株P3x63Ag8U.1を、50%ポリエチレンギリコール4000を用いる常法にしたがって細胞融合した。細胞融合した細胞を $2\times10^4$ /ウェルの細胞数で85枚の96孔プレートに蒔き込んだ。ハイブリドーマの選別はHAT培地を用いて行った。

【0138】ハイブリドーマのスクリーニングは、HAT培地中で生育の認められた穴の培養上清を固相化RIA法にてPTHrP認識抗体の有無を測定し選択することにより行った。抗体との結合能の認められた穴からハイブリドーマを回収し、15%FCSを含むRPMI-1640培地にOPI-supplement(Sigma)を添加した培地に懸滴し、限界希釈法にてハイブリドーマの単一化を実施した。PTHrP (1-34)との結合能の強いクローニング#23-57-154および#23-57-137-1を得た。

【0139】なお、ハイブリドーマクローニング#23-57-137-1は、mouse-mouse hybridoma #23-57-137-1として、工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に、平成8年8月15日に、FERM BP-5631としてブダペスト条約に基づき国際寄託されている。

【0140】【実施例1】ヒトPTHrP (1-34)に対するマウスモノクローナル抗体のV領域をコードするDNAのクローニング

ヒトPTHrP (1-34)に対するマウスモノクローナル抗体#23-57-137-1の可変領域をコードするDNAを次の様にしてクローニングした。

#### (1) mRNAの調製

ハイブリドーマ#23-57-137-1からのmRNAをQuick Prep mRNA Purification Kit(Pharmacia Biotech社)を用いて調製した。ハイブリドーマ#23-57-137-1の細胞を抽出バッファーで完全にホモジナイズし、キット添付の処方に従い、オリゴ(dT)-セルローススパンカラム(Oligo(dT)-Cellulose Spun Column)にてmRNAを精製し、エタノール沈殿をおこなった。mRNA沈殿物を溶出バッファーに溶解した。

【0141】(2)マウスH鎖V領域をコードする遺伝子のcDNAの作製および増幅  
(i) #23-57-137-1 抗体H鎖V領域cDNAのクローニング

ヒトPTHrPに対するマウスモノクローナル抗体のH鎖V領域をコードするDNAのクローニングは、5'-RACE法(Frohman, M.A. et al., Proc. Natl. Acad. Sci. U.SA, 85, 8998-9002, 1988; Belyavsky, A. et al., Nuclic Acids Res. 17, 2919-2932, 1989)により行った。5'-RACE法には5'-Ampli FINDER RACE kit(CLONETECH社)を用い、操作はキット添付の処方にしたがって行った。cDNA合成に使用するプライマーは、マウスH鎖定常領域(C領域)とハイブリダイズするMHC 2プライマー(配列番号1)を用いた。前記のようにして調製したmRNA約 $2\mu\text{g}$ を酵型としてMHC 2プライマー10pmoleを加え、逆転写酵素と52°C、30分間反応させることによりcDNAへの逆転写を行った。

【0142】6N NaOHでRNAを加水分解(65°C、30分間)した後、エタノール沈殿によりcDNAを精製した。T4 RNAリガーゼで37°Cで6時間、室温で16時間反応することにより、合成したcDNAの5'末端にAmpli FINDER Anchor(配列番号2)を連結した。これを酵型としてPCRにより増幅するためのプライマーとしてAnchorプライマー(配列番号2)およびMHC-G 1プライマー(配列番号3)(S.T.Jones, et al., Biotechnology, 9, 88, 1991)を使用した。

【0143】PCR溶液は、その $50\mu\text{l}$ 中に10mM Tris-HCl(pH8.3)、50mM KCl、0.25mM dNTPs(dATP, dGTP, dCTP, dTTP)、1.5 mM MgCl<sub>2</sub>、2.5ニットのTakara Taq(宝酒造)、10pmoleのAnchorプライマー、並びにMH C-G 1プライマー及びAmpliFINDER Anchorを連結したcDNAの反応混合物 $1\mu\text{l}$ を含有する。この溶液に $50\mu\text{l}$ の油を上層した。PCRはThermal Cycler Model 480J(Perkin Elmer)を用い、94°Cにて45秒間、60°Cにて45秒間、72°Cにて2分間の温度サイクルで30回行った。

【0144】(ii) #23-57-137-1 抗体L鎖V領域のcDNAのクローニング

ヒトPTHrPに対するマウスモノクローナル抗体のL鎖V領域をコードするDNAのクローニングは、5'-RACE法(Frohman, M.A. et al., Proc. Natl. Acad. Sci. U.SA 85, 8998-9002, 1988; Belyavsky, A. et al., Nucl

eic Acids Res. 17, 2919-2932, 1989)により行った。5'-RACE 法には 5'-Ampli Finder RACE Kit(Clonetech)を用い、操作は添付の処方に従った。c DNA 合成に使用するプライマーは、oligo-dT プライマーを用いた。前記のように調製した mRNA 約 2 μg を錐型として oligo-dT プライマーを加え、逆転写酵素と 52°C、30 分間反応させることにより c DNA への逆転写を行った。6 N NaOH で RNA を加水分解 (65°C、30 分間) した後、エタノール沈殿により c DNA を精製した。合成した c DNA の 5' 末端に前記 Ampli FINDER Anchor を T 4 RNA リガーゼで 37°C で 6 時間、室温で 16 時間反応させることにより連続した。

【0145】マウス L 鎮 V 領域常領域の保存配列から PCR プライマー-MLC (配列番号 4) を設計し、394 DN A/RNA シンセサイザー(ABI 社)を用いて合成した。PCR 液は、その 100 μl 中に 10 mM Tris-HCl (pH 8.3)、50 mM KCl、0.25 mM dNTPs (dATP, dGTP, dC TP, dTTP)、1.5 mM MgCl<sub>2</sub>、2.5 ユニットの AmpliTaq (PERKIN ELMER)、50 pmole の Anchor プライマー (配列番号 2)、並びに MLC (配列番号 4) より Ampli FINDER Anchor を連結した c DNA の反応混合物 1 μl を含有する。この溶液に 50 μl の油を上層した。PCR は Thermal Cycler Model 480J (Perkin Elmer) を用い、94°C にて 45 秒間、60°C にて 45 秒間、72°C にて 2 分間の温度サイクルで 35 回行った。

【0146】(3) PCR 生成物の精製および断片化  
前記のようにして PCR 法により増幅した DNA 断片を 3% NuSieve GTG Agarose (FMC Bio. Products) を用いたアガロースゲル電気泳動により分離した。H 鎮 V 領域として約 550 bp 長、L 鎮 V 領域として約 550 bp 長の DNA 断片を含有するアガロース片を切り取り、GENE CLEAN II Kit(BIOL01)を用い、キット添付の処方に従い DNA 断片を精製した。精製した DNA をエタノールで沈殿させた後、10 mM Tris-HCl (pH 7.4)、1 mM EDTA 液 20 μl に溶解した。得られた DNA 液 1 μl を制限酵素 Xma I (New England Biolabs) により 37°C で 1 時間消化し、次いで制限酵素 EcoRI (宝酒造) により 37°C で 1 時間消化した。この消化混合物をフェノール及びクロホルムで抽出し、エタノール沈殿により DNA を回収した。こうして、5' 一末端に EcoRI 認識配列を有し、3' 一末端に Xma I 認識配列を有するマウス H 鎮 V 領域をコードする DNA および L 鎮 V 領域をコードする DNAを得た。

【0147】上記のようにして調製したマウス H 鎮 V 領域をコードする DNA および L 鎮 V 領域をコードする DNA を含む EcoRI-Xma I DNA 断片と、EcoRI 及び Xma I で消化することにより調製した pUC19 ベクターとを、DNA ライゲーションキット ver. 2 (宝酒造) を用い、添付の処方に従い 16°C で 1 時間反応させ連結した。次に 10 μl の上記連結混合物を大腸菌 JM109 コンビテント細

胞 (ニッポンジーン) 100 μl に加え、この細胞を水上で 15 分間、42°C にて 1 分間、さらに水上で 1 分間静置した。次いで 300 μl の S O C 培地 (Molecular Cloning: A Laboratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989) を加えて 37°C にて 30 分間インキュベートした後、100 μg/ml 又は 50 μg/ml のアンピシリン、0.1 mM の IPTG、20 μg/ml の X-gal を含む LB 寒天培地または 2 x YT 寒天培地 (Molecular Cloning: A Laboratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989) にこの大腸菌をまき、37°C にて一夜インキュベートして大腸菌形質転換体を得た。

【0148】この形質転換体を 100 μg/ml 又は 50 μg/ml のアンピシリンを含有する LB 培地または 2 x YT 培地 2 ml で 37°C にて一夜培養し、菌体画分からプラスミド抽出機 PI-100 Σ (クラボウ) 又は QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミド DNA を調製し、塩基配列の決定を行った。

【0149】(4) マウス抗体 V 領域をコードする DNA の塩基配列決定  
前記プラスミド中の c DNA コード領域の塩基配列を、ダイターマニーターサイクルシークエンシングキット(Dye Terminator Cycle Sequencing kit (Perkin-Elmer)) を用い、DNA シークエンサー 373A (ABI 社/Perkin-Elmer) により決定した。配列決定用プライマーとして M13 Primer M4 (宝酒造) (配列番号 5) 及び M13 Primer R V (宝酒造) (配列番号 6) を用い、両方向の塩基配列を確認することにより配列を決定した。

【0150】こうして得られたハイブリドーマ #23-57-137-1 に由来するマウス H 鎮 V 領域をコードする DNA を含有するプラスミドを MBC1H04 、 L 鎮 V 領域をコードする DNA を含有するプラスミドを MBC1L24 と命名した。プラスミド MBC1H04 および MBC1L24 に含まれるマウス #23-57-137-1 抗体の H 鎮 V 領域および L 鎮 V 領域をコードする DNA の塩基配列 (対応するアミノ酸配列を含む) をそれぞれ配列番号 57、65 に示す。H 鎮 V 領域を含むボリペプチド及び L 鎮 V 領域を含むボリペプチドは、いずれも、それぞれ配列番号 57、65 で表される塩基配列の第 58 番目 (グルタミンをコードする) から開始されている。これらのアミノ酸配列を、H 鎮 V 領域含むボリペプチドについては配列番号 46、L 鎮 V 領域含むボリペプチドについては配列番号 45 に示す。

【0151】なお、前記プラスミド MBC1H04 や MBC1L24 を有する大腸菌は、Escherichia coli JM109 (MBC1H04) および Escherichia coli JM109 (MBC1L24) として、工業技術院生産工学工業技術研究所 (茨城県つくば市東 1 丁目 1 番 3 号) に、平成 8 年 8 月 15 日に、Escherichia coli JM109 (MBC1H04) については FERM BP-5628、Escherichia coli JM109 (MBC1L24) については FERM BP-5627 としてプラベスト条約に基づき国際寄託されて

いる。

【0152】(5) ヒトPTHrPに対するマウスモノクローナル抗体#23-57-137-1のCDRの決定  
H鎖V領域およびL鎖V領域の全般の構造は、互いに類似性を有しており、それぞれ4つのフレームワーク部分が3つの可変領域、すなわち相補性決定領域(CDR)により連結されている。フレームワークのアミノ酸配列は、比較的よく保存されているが、一方、CDR領域のアミノ酸配列の変異性は極めて高い(Kabat, E.A. et al., "Sequence of Proteins of Immunological Interest" US Dept. Health and Human Services, 1983)。

【0153】このような事実に基づき、ヒトPTHrPに対するマウスモノクローナル抗体の可変領域のアミノ酸配列をKabatらにより作成された抗体のアミノ酸配列のデータベースにあてはめて、相同性を調べることによりCDR領域を表2に示すごとく決定した。なお、L鎖V領域のCDR1~3のアミノ酸配列についてはそれぞれ配列番号59~61に示し、H鎖V領域のCDR1~3のアミノ酸配列についてはそれぞれ配列番号62~64に示した。

### 【0154】

#### 【表2】

| V領域   | 配列番号 | CDR1  | CDR2  | CDR3   |
|-------|------|-------|-------|--------|
| H鎖V領域 | 57   | 31-35 | 50-66 | 89-107 |
| L鎖V領域 | 65   | 23-34 | 50-60 | 93-105 |

### 【0155】【実施例2】キメラ抗体の構築

#### (1) キメラ抗体H鎖の構築

##### (i) H鎖V領域の構築

ヒトH鎖C領域Cγ1のゲノムDNAを含む発現ベクターに連結するため、クローニングしたマウスH鎖V領域をコードするDNAをPCR法により修飾した。後方プライマー-MBC1-S1(配列番号7)はV領域のリーダー配列の5'一側をコードするDNAにハイブリダイズし且つKozakコンセンサス配列(Kozak, M. et al., J. Mol. Biol., 196, 947-950, 1987)及び制限酵素HindIIIの認識配列を有するように設計した。前方プライマー-MBC1-a(配列番号8)はJ領域の3'一側をコードするDNA配列にハイブリダイズし、且つ、スプライスドナー配列及び制限酵素BamHIの認識配列を有するように設計した。PCRは、Takara Ex Taq(宝酒造)を用い、50μlの反応混合液に鈍型DNAとして0.7μgのプラスミドMBC1H04、プライマーとしてMBC1-aおよびMBC1-S1をそれぞれ50pmole、2.5UのTakara Ex Taq、0.25mMのdNTP含む条件で添付緩衝液を使用して50μlの鈍油を上層し、94℃にて1分間、55℃にて1分間、72℃にて2分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を3%NuSieve GTGアガロース(FMC Bio. Products)を用いたアガロースゲル電気泳動により分離した。

【0156】437bp長のDNA断片を含有するアガロース片を切り取り、GENECLEAN II Kit(BI0101)を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエクノール沈殿で回収した後、10mM Tris-HCl(pH7.4)、1mM EDTA溶液20μlに溶解した。得られたDNA溶液1μlを制限酵素BamHI、HindIII(宝酒造)により37℃1時間消化した。この消化混合物をフェノール及びピロロホルムで抽出し、エタノール沈殿によりDNAを回収した。

【0157】上記のようにして調製したマウスH鎖V領域をコードするDNAを含むHindIII-BamHIDNA断片

をHindIIIおよびBamHIで消化することにより調製したpUC19ベクターにサブクローニングした。このプラスミドの塩基配列を確認するためプライマー-M13 Primer M4およびM13 Primer R4をプライマーとして、ダイターミネーターサイクルシークエンシングキット(Perkin-Elmer)を用い、DNAシークエンサー-373A(Perkin-Elmer)により塩基配列を決定した。正しい塩基配列を有するハイブリドマー#23-57-137-1由来するマウスH鎖V領域をコードするDNAを含有し、5'一側にHindIII認識配列及びKozak配列、3'一側にBamHI認識配列を持つプラスミドをMBC1H/pUC19と命名した。

### 【0158】(ii) cDNAタイプのマウスヒトキメラH鎖を作製するためのH鎖V領域の構築

ヒトH鎖C領域Cγ1のcDNAと連結するため、上記のようにして構築したマウスH鎖V領域をコードするDNAをPCR法により修飾した。H鎖V領域を修飾するための後方プライマー-MBC1HVS2(配列番号9)はV領域のリーダー配列の最初をコードする配列の2番のアスパラギンをグリシンに変換し、且つKozakコンセンサス配列(Kozak, M. et al., J. Mol. Biol., 196, 947-950, 1987)並びにHindIIIおよびEcoRI認識配列を有するように設計した。H鎖V領域を修飾するための前方プライマー-MBC1HVR2(配列番号10)はJ領域の3'一側をコードするDNA配列にハイブリダイズし、且つ、C領域の5'一側の配列をコードしApaIおよびSmaI認識配列を有するように設計した。

【0159】PCRはTakara Ex Taq(宝酒造)を用い、50μlの反応混合液に鈍型DNAとして0.6μgのプラスミドMBC1H/pUC19、プライマーとしてMBC1HVS2およびMBC1HVR2をそれぞれ50pmole、Takara Ex Taqを2.5U、0.25mMのdNTP含む条件で、添付の緩衝液を使用して、50μlの鈍油を上層して94℃1分間、55℃1分間、72℃1分間の温度サイクルで30回行った。PCR法により増幅したDNA断片を1%Sea Kem GTGアガロース(FMC Bio. Products)を用いたアガロースゲル電気泳

動により分離した。456bp 長のDNA断片を含有するアガロース片を切り取り、GENE CLEAN II Kit (BI0101) を用い、キット添付の処方に従いDNA断片を精製した。精製したDNAをエタノール沈殿させた後、10mM Tris-HCl (pH7.4)、1 mM EDTA 液溶液20μl に溶解した。

【0 1 6 0】得られたDNA溶液1μl を制限酵素EcoRI およびSmaI (宝酒造) により37°Cで1時間消化した。この消化混合物をフェノール及びクロロホルムで抽出し、エタノール沈殿によりDNAを回収した。上記のようにして調製したマウスH鎖V領域をコードするDNAを含むEcoRI-SmaIDNA断片を、EcoRI およびSmaIで消化することにより調製したpUC19ベクターにサブクローニングした。このプラスミドの塩基配列を確認するため、プライマー-M13 Primer M4 及びM13 Primer RVをプライマーとして、ダイヤマニーターサイクリックエンシングキット(Perkin-Elmer)を用い、DNAシークエンサー-373A (Perkin-Elmer)により塩基配列を決定した。正しい塩基配列を有するハイブリドマー#23-57-137-1に由来するマウスH鎖V領域をコードするDNAを含有し、5'一側にEcoRI およびHind III認識配列及びKozak配列、3'一側にApa I およびSmaI認識配列を持つプラスミドをMBC1Hv/pUC19と命名した。

【0 1 6 1】(iii) キメラ抗体H鎖の発現ベクターの構築

ヒト抗体H鎖C領域Cγ1を含むcDNAは、以下のようにして調製した。すなわち、ヒト型化PM1抗体H鎖V領域およびヒト抗体H鎖C領域Ig G1のゲノムDNA (N. Takahashi, et al., Cell 29, 671-679 1982) をコードする発現ベクターDHR-△E-Rvh-PM1-f (W092/19759参照) と、ヒト型化PM1抗体H鎖V領域のDNAおよびヒト抗体H鎖C領域のゲノムDNAをコードする発現ベクターRV1-Pmla (W092/19759参照) とを導入したCHO細胞よりmRNAを調製し、RT-T PCR法でヒト型化PM1抗体H鎖V領域およびヒト抗体C領域Cγ1を含むcDNAをクローニングし、pUC19の Hind IIIとBamHI部位にサブクローニングした。塩基配列を確認した後、正しい配列を持つプラスミドをpRvh-PM1-f-cDNAと命名した。

【0 1 6 2】DHR-△E-Rvh-PM1-f上のSV40プロモーターとDHR遺伝子との間にあるHind III部位、およびE F-1 αプロモーターとヒト型化PM1抗体H鎖V領域との間にあるEcoRI 部位を欠失した発現ベクターを作製し、ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域Cγ1を含むcDNAの発現ベクターの構築のために使用した。

【0 1 6 3】pRvh-PM1f-cDNAをBamHIで消化した後、Klenowフラグメントで平滑化し、さらにHind IIIで消化し、Hind III-BamHI平滑化断片を、上記のHind III部位およびEcoRI 部位が欠失したDHR-△E-Rvh-PM1-fをHind III

およびSmaIで消化することにより調製した発現ベクターに連結し、ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域Cγ1をコードするcDNAを含む発現ベクター-Rvh-PM1f-cDNAを構築した。

【0 1 6 4】ヒト型化PM1抗体H鎖V領域およびヒト抗体C領域Cγ1をコードするcDNAを含む発現ベクター-Rvh-PM1f-cDNAをApalおよびBamHIで消化した後、H鎖C領域を含むDNA断片を回収し、ApalおよびBamHIで消化することにより調製したMBC1Hv/pUC19に導入した。こうして作製したプラスミドをMBC1HcDNA/pUC19と命名した。このプラスミドはマウス抗体のH鎖V領域およびヒト抗体C領域Cγ1をコードするcDNAを含み、5'-末端にEcoRI およびHind III認識配列、3'-末端にBamHI認識配列を持つ。

【0 1 6 5】プラスミドMBC1HcDNA/pUC19をEcoRI およびBamHIで消化し、得られたキメラ抗体のH鎖をコードする塩基配列を含むDNA断片を、EcoRI およびBamHIで消化することにより調製した発現ベクター-pCOS1に導入した。こうして得られたキメラ抗体の発現プラスミドをMBC1HcDNA/pCOS1と命名した。なお、発現ベクター-pCOS1は、HEF-Pmh-gγ1 (W092/19759参照) から、EcoRI およびSmaI消化により抗体遺伝子を削除し、EcoRI-NotI-BamHI Adaptor (宝酒造) を連結することにより構築した。

【0 1 6 6】さらにはCHO細胞での発現に用いるためのプラスミドを作製するため、プラスミドMBC1HcDNA/pUC19をEcoRI およびBamHIで消化し、得られたキメラ抗体H鎖配列を含むDNA断片を、EcoRI およびBamHIで消化することにより調製した発現プラスミドpCHO1に導入した。こうして得られたキメラ抗体の発現プラスミドをMBC1HcDNA/pCHO1と命名した。なお、発現ベクター pCHO1は、DHR-△E-rvh-PM1-f (W092/19759参照) から、EcoRI およびSmaI消化により抗体遺伝子を削除し、EcoRI-NotI-BamHI Adaptor (宝酒造) を連結することにより構築した。

【0 1 6 7】(2) ヒト鎖定常領域の構築

(i) クローニングベクターの作製  
ヒト鎖定常領域を含むpUC19ベクターを構築するためには、Hind III部位欠失pUC19ベクターを作製した。pUC19ベクター2μgを20mM Tris-HCl (pH8.5)、10mM MgCl<sub>2</sub>、1 mM DTT、100 mM KCl、8 UのHind III (宝酒造) を含有する反応混合液20μl 中で37°Cにて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿により回収した。

【0 1 6 8】回収したDNAを50mM Tris-HCl (pH7.5)、10mM MgCl<sub>2</sub>、1 mM DTT、100mM NaCl、0.5mM dNTP、6 UのKlenowフラグメント (GIBCO BRL) を含有する50μl の反応混合液中で室温にて20分間反応させ、末端を平滑化させた。反応混合液をフェノールおよびクロロホルムで抽出し、ベクターDNAをエタノール沈殿により回

収した。

【0169】回収したベクターDNAを50mM Tris-HCl (pH7.6)、10mM MgCl<sub>2</sub>、1mM ATP、1mM DTT、5% (v/v) ポリエチレングリコール-8000、0.5 UのT4 DNAリガーゼ (GIBCO BRL) を含有する反応混合液10μl 中で16℃で2時間反応させ、自己連結させた。反応混合液5μl を大腸菌JM109 コンビティント細胞 (ニッポンジーン) 100 μl に加え、氷上で30分間静置した後、42℃にて1分間、さらに氷上で1分間静置した。SOC培地500 μl を加えて、37℃で1時間インキュベーションした後、X-galとIPTGを表面に塗布した2×YT寒天培地 (50 μg/ml アンブシリシン含有) (Molecular Cloning: A Laboratory Manual, Sambrook, et al., Cold Spring Harbor Laboratory Press, 1989) にまき、37℃で一夜培養して形質転換体を得た。

【0170】形質転換体を、50 μg/ml アンブシリシンを含有する2×YT培地2mlで37℃一夜培養し、菌体画分からPlasmid Mini Kit (QIAGEN) を用いて、添付の処方に従ってプラスミドDNAを精製した。精製したプラスミドをHind IIIで消化し、HindIII部位が欠失していることを確認したプラスミドをpUC19 Δ Hind IIIと命名した。

【0171】(ii)ヒトL鎖<sub>1</sub>鎖<sub>2</sub>鎖C領域をコードするDNAの構築  
ヒト抗体L鎖<sub>1</sub>鎖C領域は、Mc g + Ke + Oz - 、Mc g - Ke - Oz - 、Mc g - Ke + Oz - の少なくとも4種類のアイソタイプが知られている (P. Darliavach, et al., Proc. Natl. Acad. Sci. USA, 84, 9074-9078, 1987)。#23-5 7-137-1 マウスL鎖<sub>1</sub>鎖C領域と相同性を有するヒト抗体L鎖<sub>1</sub>鎖C領域をEMBLデータベースで検索した結果、アイソタイプがMc g + Ke + Oz - (accession No. X57819) (P. Darliavach, et al., Proc. Natl. Acad. Sci. USA, 84, 9074-9078, 1987) のヒト抗体L鎖<sub>1</sub>鎖が最も高い相同性を示し、#23-57-137-1 マウスL鎖<sub>1</sub>鎖C領域との相同性はアミノ酸配列で64.4%、塩基配列で73.4%であった。

【0172】そこで、このヒト抗体L鎖<sub>1</sub>鎖C領域をコードするDNAの構築を、PCR法を用いて行った。各プライマーの合成は、394 DNA/RNA シンセサイザ (ABI社) を用いて行った。HLAMB1 (配列番号11) およびHLAMB3 (配列番号13) はセンスDNA配列を有し、HLAMB2 (配列番号12) およびHLAMB4 (配列番号14) はアンチセンスDNA配列を有し、それぞれのプライマーの両端に20から23bpの相補的配列を有する。

【0173】外部プライマーHLAMBS (配列番号15)、HLAMBR (配列番号16) はHLAMB1、HLAMB1とそれぞれ相同な配列を有しており、またHLAMBSはEcoRI、Hind III、BlnI認識配列を、HLAMBRはEcoRI 認識配列をそれぞれ含んでいる。第一PCRでHLAMB1-HLAMB2 とHLAMB3-HLAMB4

の反応を行った。反応後、それらを等量混合し、第二PCRでアセンブリを行った。さらに外部プライマーHLAMBSおよびHLAMBRを添加し、第三PCRにより全長DNAを増幅させた。

【0174】PCRはTaKaRa Ex Taq (宝酒造) を使い、添付の処方に従って行った。第一PCRでは、5 pmoleのHLAMB1および0.5pmoleのHLAMB2と5 UのTaKaRa Ex Taq (宝酒造) を含有する100 μl の反応混合液、あるいは10.5pmoleのHLAMB3および5pmoleのHLAMB4と5 UのTaKaRa Ex Taq (宝酒造) を含有する100 μl の反応混合液を用い、50 μl の鈴油を上層して94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで5回行った。第二PCRは、反応液を50 μl ずつ混合し、50 μl の鈴油を上層して94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで3回行った。第三PCRは、反応液に外部プライマーHLAMBSおよびHLAMBRを各5pmole ずつ添加し、94℃にて1分間、60℃にて1分間、72℃にて1分間の温度サイクルで30回行った。

【0175】第三PCR産物のDNA断片を3%低融点アガロースゲル (NuSieve GTG Agarose, FMC) で電気泳動した後、GENECLEANII Kit (RIO101) を用い、添付の処方に従ってゲルから回収、精製した。得られたDNA断片を50mM Tris-HCl (pH7.5)、10mM MgCl<sub>2</sub>、1mM DTT、100mM NaCl、8 UのEcoRI (宝酒造) を含有する20 μl の反応混合液中で37℃にて1時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNAをエタノール沈殿で回収した後、10mM Tris-HCl (pH7.4)、1 mM EDTA 液溶液8 μl に溶解した。

【0176】プラスミドpUC19 ΔHind III 0.8 μg を同様にEcoRIで消化し、フェノールおよびクロロホルムで抽出し、エタノール沈殿により回収した。消化したプラスミドpUC19 ΔHind IIIを50 μl Tris-HCl (pH9.0)、1 mM MgCl<sub>2</sub>、アルカリホスファターゼ (E.coli C75, 宝酒造) を含有する反応混合液50 μl 中で37℃、30分間反応させ脱リン酸処理 (BAP処理) した。反応液をフェノールおよびクロロホルムで抽出、DNAをエタノール沈殿により回収した後、10mM Tris-HCl (pH7.4)、1 mM EDTA 液溶液10 μl に溶解した。

【0177】上記のBAP処理したプラスミドpUC19 ΔHind III 1 μl と先のPCR産物4 μl とを、DNA Ligation Kit Ver.2 (宝酒造) を用いて連結し、大腸菌JM109 コンビティント細胞に形質転換した。得られた形質転換体を50 μg/ml アンブシリシンを含有する2×YT培地2 mlで一夜培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。

【0178】上記プラスミドについて、クローニングされたDNAの塩基配列の確認を行った。塩基配列の決定には373A DNAシーケンサー (ABI社) を用い、プライマリーにはM13 プライマー M4 およびM13 プライマー RV (宝

酒造)を用いた。その結果、クローニングされたDNAの内部に12bpの欠失があることが判明した。このDNAを含むプラスミドをC<sub>λ</sub>Δ/pUC19と命名した。そこで、その部分を補うためのプライマー-HCLMS(配列番号17)、HCLMR(配列番号18)を新たに合成し、PCRで再度正しいDNAの構築を行った。

【0179】第一PCRで欠失DNAを含むプラスミドC<sub>λ</sub>Δ/pUC19を鉄型とし、プライマー-HLAMBSとHCLMR、HCLMSとHLAMB4で反応を行った。PCR産物をそれぞれ精製し、第二PCRでアセンブリを行った。さらに外部プライマー-HLAMBSおよびHLAMB4を添加し、第三PCRにより全长DNAを増幅させた。

【0180】第一PCRでは、鉄型としてC<sub>λ</sub>Δ/pUC19 0.1 μg、プライマー-HLAMBSおよびHCLMR 各50pmole、あるいはHCLMS およびHLAMB4各50pmole、5 UのTaKaRa Ex Taq (宝酒造) を含有する100 μl の反応混合液を用い、50 μl のDNAを上層して94°Cにて1分間、60°Cにて1分間、72°Cにて1分間の温度サイクルで30回行った。

【0181】PCR産物HLAMBS-HCLMR(236bp)、HCLMS-HLAMB4(147bp)をそれぞれ3%低融点アガロースゲルで電気泳動した後、GENE CLEANII Kit(BI0101)を用いてゲルから收回、精製した。第二PCRでは精製DNA断片各40ng、1 UのTaKaRa Ex Taq (宝酒造) を含有する20 μl の反応混合液を用い、25 μl のDNAを上層して94°Cにて1分間、60°Cにて1分間、72°Cにて1分間の温度サイクルを5回行った。

【0182】第三PCRでは、第二PCR反応液2 μl、外部プライマー-HLAMBS、HLAMB4各50pmole、5 UのTaKaRa Ex Taq (宝酒造) を含有する100 μl の反応混合液を用い、50 μl のDNAを上層した。PCRは、94°Cにて1分間、60°Cにて1分間、72°Cにて1分間の温度サイクルで30回行った。第三PCR産物である357bpのDNA断片を3%低融点アガロースゲルで電気泳動した後、GENE CLEANII Kit(BI0101)を用いてゲルから收回、精製した。

【0183】得られたDNA断片0.1 μgをEcoRIで消化した後、BAP処理したプラスミド pUC19ΔHind IIIにサブクローニングした。大腸菌JM109コントラインテント細胞に形質転換し、50 μg/ml アンビシリンを含有する2×YT培地2 mlで一夜培養し、菌体画分からQIAprep Spin Plasmid Kit(QIAGEN)を用いてプラスミドを精製した。精製したプラスミドの塩基配列をM13 プライマー M4、M13 プライマー RV (宝酒造) を用い、373A DNAシーカエンサー(ABI社)にて決定した。正しい塩基配列を有していることが確認されたプラスミドをC<sub>λ</sub>/pUC19とした。

【0184】(iii)ヒトL鎖κ鎖定常領域をコードするDNAの構築

プラスミドHEF-PM1k-gk (W092/19759) からL鎖κ鎖C

領域をコードするDNA断片を、PCR法を用いてクローニングした。394 DNA/RNA シンセサイザー(ABI社)を用いて合成した前方プライマー-HKAPS (配列番号19)はEcoRI、Hind III、BlnI認識配列を、後方プライマー-HKAPA (配列番号20)はEcoRI 認識配列を有するように設計した。

【0185】鉄型となるプラスミドHEF-PM1k-gk 0.1 μg、プライマー-HKAPS、HKAPA 各50pmole、5 UのTaKaRa Ex Taq (宝酒造) を含有する100 μl の反応混合液を用い、50 μl のDNAを上層した。94°Cにて1分間、60°Cにて1分間、72°Cにて1分間の反応を30サイクル行つた。360bp のPCR産物を3%低融点アガロースゲルで電気泳動した後、GENE CLEANII Kit(BI0101)を用いてゲルから收回、精製した。

【0186】得られたDNA断片をEcoRIで消化した後、BAP処理したプラスミド pUC19ΔHind IIIにクローニングした。大腸菌JM109コントラインテント細胞に形質転換し、50 μg/ml アンビシリンを含有する2×YT培地2 mlで一夜培養し、菌体画分からQIAprep Spin Plasmid Kit(QIAGEN)を用いてプラスミドを精製した。精製したプラスミドの塩基配列をM13 プライマー M4、M13 プライマー RV (宝酒造) を用い、373A DNAシーカエンサー(ABI社)にて決定した。正しい塩基配列を有していることが確認されたプラスミドをC<sub>λ</sub>/pUC19とした。

【0187】(3)キメラ抗体L鎖発現ベクターの構築  
キメラ#23-57-137-1 抗体L鎖発現ベクターを構築した。プラスミドC<sub>λ</sub>/pUC19、C<sub>λ</sub>/pUC19のヒト抗体定常領域の直前にあるHind III、BlnI部位に、#23-57-137-1 L鎖V領域をコードするDNAを連結することによって、それぞれキメラ#23-57-137-1 抗体L鎖V領域およびL鎖鎖まではL鎖κ鎖定常領域をコードするDNAを含むpUC19ベクターを作製した。EcoRI消化によってキメラ抗体L鎖をコードするDNAを取り出し、H E F 発現ベクターへサブクローニングを行った。

【0188】すなわち、プラスミドMCBL24から#23-57-137-1 抗体L鎖V領域をコードするDNAを、PCR法を用いてクローニングした。各プライマーの合成は、394DNA/RNA シンセサイザー(ABI社)を用いて行った。後方プライマー-MBCBL1 (配列番号21) はHind III認識配列とKozak配列(Kozak, M. et al., J. Mol. Biol. 196, 947-950, 1987)を、前方プライマー-MBCBL3 (配列番号22) はBglII、EcoRI認識配列を有するように設計した。

【0189】PCRは、10mM Tris-HCl(pH8.3)、50mM KCl、1.5mM MgCl<sub>2</sub>、0.2mM dNTP、0.1 μgのMCBL24、プライマーとしてMBCBL1およびMBCBL3を各50pmole、1 μl のAmpliTaq(PERKIN ELMER)を含有する100 μl の反応混合液を用い、50 μl のDNAを上層して94°Cにて45秒間、60°Cにて45秒間、72°Cにて2分間の温度サイクルで30回行った。

【0190】444bp の PCR 産物を 3 % 低融点アガロースゲルで電気泳動した後、GENECLEAN II kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 20  $\mu$  l に溶解した。PCR 産物 1  $\mu$  l をそれぞれ 10mM Tris-HCl (pH7.5) 、10mM MgCl<sub>2</sub> 、1 mM DTT 、50mM NaCl 、8 U の Hind III (宝酒造) より 8 U 的 EcoRI (宝酒造) を含有する反応混合液 20  $\mu$  l 中で 37°C にて 1 時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNA をエタノール沈殿で回収し、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 8  $\mu$  l に溶解した。

【0191】プラスミド pUC19 1  $\mu$  g を同様に Hind III より EcoRI で消化し、フェノールおよびクロロホルムで抽出し、エタノール沈殿により回収し、アルカリホスファターゼ (E. coli C75 , 宝酒造) で BAP 处理した。反応液をフェノールおよびクロロホルムで抽出し、DNA をエタノール沈殿で回収した後、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 10  $\mu$  l に溶解した。

【0192】BAP 处理したプラスミド pUC19 1  $\mu$  l と先の PCR 産物 4 1 を DNA Ligation Kit Ver. 2 (宝酒造) を用いて連結し、大腸菌 JM109 コンビテント細胞 (ニッポンジーン) に前述と同様に形質転換した。これを、50  $\mu$  g / ml アンピシリンを含有する 2 × YT 培地にまき、37°C で一夜培養した。得られた形質転換体を、50  $\mu$  g / ml アンピシリンを含有する 2 × YT 培地 2 ml で 37°C で一夜培養した。菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。塩基配列を決定後、正しい塩基配列を有するプラスミドを CHL/pUC19 とした。

【0193】プラスミド C  $\lambda$  / pUC19 、C  $\kappa$  / pUC19 各 1  $\mu$  g をそれぞれ 20mM Tris-HCl (pH8.5) 、10mM MgCl<sub>2</sub> 、1 mM DTT 、100mM KCl 、8 U の Hind III (宝酒造) より 2 U の BlnI (宝酒造) を含有する反応混合液 20  $\mu$  l 中で 37°C にて 1 時間消化した。消化混合液をフェノールおよびクロロホルムで抽出し、DNA をエタノール沈殿で回収した後、37°C で 30 分間 BAP 处理を行った。反応液をフェノールおよびクロロホルムで抽出し、DNA をエタノール沈殿で回収し、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 10  $\mu$  l に溶解した。

【0194】#23-57-137-1 L 鎖 V 領域をコードする DNA を含むプラスミド CHL/pUC19 から 8  $\mu$  g を同様に Hind III より BlnI で消化した。得られた 409bp の DNA 断片を 3 % 低融点アガロースゲルで電気泳動した後、GENECLEANII Kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 10  $\mu$  l に溶解した。

【0195】この L 鎖 V 領域 DNA 4  $\mu$  l を、BAP 处理したプラスミド C  $\lambda$  / pUC19 もしくは C  $\kappa$  / pUC19 各 1  $\mu$  l にサブクローニングし、大腸菌 JM109 コンビテント細胞に形質転換した。50  $\mu$  g / ml アンピシリンを含

有する 2 × YT 培地 3 ml で一夜培養し、菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。これらをそれぞれプラスミド MBC1L ( $\lambda$ ) / pUC19 、MBC1L ( $\kappa$ ) / pUC19 とした。プラスミド MBC1L ( $\lambda$ ) / pUC19 より MBC1L ( $\kappa$ ) / pUC19 をそれぞれ EcoRI で消化し、3 % 低融点アガロースゲルで電気泳動した後、743 bp の DNA 断片を GENECLEANII Kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 10  $\mu$  l に溶解した。

【0196】発現ベクターとしてプラスミド HEF-PMKgk 2.7  $\mu$  g を EcoRI で消化し、フェノールおよびクロロホルムで抽出し、DNA をエタノール沈殿で回収した。回収した DNA 断片を BAP 处理した後、1 % 低融点アガロースゲルで電気泳動し、6561bp の DNA 断片を GENECLEANII Kit (BI0101) を用いてゲルから回収、精製し、10mM Tris-HCl (pH7.4) 、1 mM EDTA 液液 10  $\mu$  l に溶解した。

【0197】BAP 处理した HE F ベクター 2  $\mu$  l を上記プラスミド MBC1L ( $\lambda$ ) または MBC1L ( $\kappa$ ) EcoRI 断片各 3  $\mu$  l と連結し、大腸菌 JM109 コンビテント細胞に形質転換した。50  $\mu$  g / ml アンピシリンを含有する 2 × YT 培地 2 ml で培養し、菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。

【0198】精製したプラスミドを、20mM Tris-HCl (pH8.5) 、10mM MgCl<sub>2</sub> 、1 mM DTT 、100mM KCl 、8 U の Hind III (宝酒造) より 2 U の PvuI (宝酒造) を含有する反応混合液 20  $\mu$  l 中で 37°C にて 1 時間消化した。断片が正しい方向に挿入されていれば 5104/2195bp 、逆方向に挿入されていれば 4378/2926bp の消化断片が生じることより、正しい方向に挿入されていたプラスミドをそれぞれ MBC1L ( $\lambda$ ) / neo 、MBC1L ( $\kappa$ ) / neo とした。

【0199】(4) COS - 7 細胞のトランスクレクション

キメラ抗体の抗原結合活性および中和活性を評価するため、前記発現プラスミドを COS - 7 細胞で一過性に発現させた。すなわちキメラ抗体の一過性発現は、プラスミド MBC1L cDNA / pCOS1 と MBC1L ( $\lambda$ ) / neo 、または MBC1L cDNA / pCOS1 と MBC1L ( $\kappa$ ) / neo との組み合わせで Gene Pulser 装置 (Bio Rad) を用いてエレクトロポレーションにより COS - 7 細胞に同時形質導入した。PBS (-) 中に 1 × 10<sup>7</sup> 細胞 / ml の細胞濃度で懸滴されている COS - 7 細胞 0.8ml に、各プラスミド DNA 10  $\mu$  g を加え、1,500 V 、25  $\mu$  F の静電容量にてパルスを与えた。室温にて 10 分間の回復期間の後、エレクトロポレーション処理された細胞を 2 % の Ultra Low IgG ウシ胎児血清 (GIBCO) を含有する DME M 培地 (GIBCO) に懸滴し、10 cm 培養皿を用いて CO<sub>2</sub> インキュベーターにて培養した。72 時間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、ELISA の試料に供した。ま

た、COS-7細胞の培養上清からのキメラ抗体の精製は、AffiGel Protein A MAPSIIキット(BioRad)を用いてキット添付の処方に従って行った。

#### 【0200】(5) ELISA

##### (i) 抗体濃度の測定

抗体濃度測定のためのELISAプレートを次のようにして調製した。ELISA用96穴プレート(Maxisorp, NUNC)の各穴を、固相化バッファー(0.1M NaHCO<sub>3</sub>、0.02% NaN<sub>3</sub>)で1μg/mlの濃度に調製したヤギ抗ヒトIgG抗体(TAGO)100μlで固相化し、200μlの希釈バッファー(50mM Tris-HCl、1mM MgCl<sub>2</sub>、0.1MNaCl、0.05% Tween20、0.02% NaN<sub>3</sub>、1%牛血清アルブミン(BSA)、pH7.2)でブロッキングの後、キメラ抗体を発現させたCOS細胞の培養上清あるいは精製キメラ抗体を段階希釈して各穴に加えた。1時間室温にてインキュベートし、PBS-Tween20で洗浄後、アルカリフェオフスファターゼ結合ヤギ抗ヒトIgG抗体(TAGO)100μlを加えた。1時間室温にてインキュベートし、PBS-Tween20で洗浄の後、1mg/mlの基質溶液(Sigma104、p-ニトロフェニルリン酸、SIGMA)を加え、次に405nmでの吸光度をマイクロプレートリーダー(Bio Rad)で測定した。濃度測定のスタンダードとして、Hu IgG1 Purified(The BindingSite)を用いた。

##### 【0201】(ii)抗原結合能の測定

抗原結合測定のためのE L I S A用96穴プレートでは、次のようにして調製した。E L I S A用96穴プレートの各穴を、固相化バッファーで1μg/mlの濃度に調製したヒトPTHrP(1-34)(ペプチド研究所)100μlで固相化した。200μlの希釈バッファーでブロッキングの後、キメラ抗体を発現させたCOS細胞の培養上清あるいは精製キメラ抗体を段階希釈して各穴に加えた。室温にてインキュベートし、PBS-Tween20で洗浄後、アルカリフェオフスファターゼ結合ヤギ抗ヒトIgG抗体(TAGO)100μlを加えた。室温にてインキュベートし、PBS-Tween20で洗浄の後、1mg/mlの基質溶液(Sigma104、p-ニトロフェニルリン酸、SIGMA)を加え、次に405nmでの吸光度をマイクロプレートリーダー(Bio Rad)で測定した。

【0202】その結果、キメラ抗体は、ヒトPTHrP(1-34)に対する結合能を有しており、クローニングしたマウス抗体V領域の正しい構造を有することが示された(図4)。また、キメラ抗体においてL鎖C領域がん鎖あるいはN鎖のいずれであっても抗体のPTHrP(1-34)に対する結合能は変化しないことから、ヒト型化抗体のL鎖C領域は、ヒト型化抗体L鎖N鎖を用いて構築した。

#### 【0203】(6) CHO安定産生細胞株の樹立

キメラ抗体の安定産生細胞株を樹立するため、前記発現プラスミドをCHO細胞(DXB11)に導入した。すなわちキメラ抗体の安定産生細胞株樹立は、CHO細胞

用発現プラスミドMBC1HcDNA/pCHO1とMBC1L(λ)/neo、またはMBC1HcDNA/pCHO1とMBC1L(κ)/neoとの組み合せで、Gene Pulser装置(Bio Rad)を用いてエレクトロポレーションによりCHO細胞に同時形質導入した。それぞれの発現ベクターを制限酵素Pvu IIで切断して直鎖DNAにし、フェノールおよびクロロホルム抽出後、エタノール沈殿でDNAを回収してエレクトロポレーションに用いた。PBS(-)中に1×10<sup>6</sup>細胞/1の細胞濃度で懸濁されているCHO細胞0.8mlに、各プラスミドDNA 10μgを加え、1,500V、25μFの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を10%ウシ胎児血清(GIBCO)を添加したMEM-α培地(GIBCO)に懸濁し、3枚の96穴プレート(Falcon)を用いてCO<sub>2</sub>インキュベーターにて培養した。培養開始翌日に、10%ウシ胎児血清(GIBCO)および500mg/mlのGENETICIN(G418Sulfate、GIBCO)添加、リポヌクレオシドおよびデオキリボヌクレオシド不含MEM-α培地(GIBCO)の選択培地を交換し、抗体遺伝子の導入された細胞を選択した。選択培地交換後、2週間前後に顕微鏡下で細胞を観察し、順調な細胞増殖が認められた後に、上記抗体濃度測定ELISAにて抗体産生量を測定し、抗体産生量の多い細胞を選別した。

【0204】樹立した抗体の安定産生細胞株の培養を拡大し、ローラーポトルにて2%のUltra Lab IgGウシ胎児血清添加、リポヌクレオシドおよびデオキリボヌクレオシド不含MEM培地を用いて、大量培養を行った。培養3ないし4日目に培養上清を回収し、0.2μmのフィルター(Millipore)により細胞破片を除去した。CHO細胞の培養上清からのキメラ抗体の精製は、POROUSプロテインAカラム(PerSeptive Biosystems)を用いて、ConSep LC100(Millipore)にて添付の処方に従って行い、中和活性の測定および高カルシウム血症モデル動物での薬効試験に供した。得られた精製キメラ抗体の濃度および抗原結合活性は、上記ELISA系にて測定した。

#### 【0205】[実施例3]ヒト型化抗体の構築

##### (i) ヒト型化抗体H鎖の構築

##### (ii) ヒト型化H鎖V領域の構築

ヒト型化#23-57-137-1抗体H鎖を、PCR法によるCDR-グラフティングにより作製した。ヒト抗体S31679(NBFR-PDB,Cuisinier A. M. ら, Eur. J. Immunol. 1, 23, 110-118, 1993)由來のFRを有するヒト型化#23-57-137-1抗体H鎖(バージョン“a”)の作製のために6個のPCRプライマーを使用した。CDR-グラフティングプライマー-MBC1HGP1(配列番号23)及びMBC1HGP3(配列番号24)はセンスDNA配列を有し、そしてCDRグラフティングプライマー-MBC1HGP2(配列番号25)及びMBC

1 HGP 4 (配列番号 2 6) はアンチセンスDNA配列を有し、そしてそれぞれプライマーの両端に 15 から 2 1 bp の相補的配列を有する。外部プライマー-MBC 1 HVS 1 (配列番号 2 7) 及び MBC 1 HVR 1 (配列番号 2 8) は CDR グラフティングプライマー-MBC 1 HGP 1 及び MBC 1 HGP 4 をホモジマーを有する。  
【0206】 CDR グラフティングプライマー-MBC 1 HGP 1、MBC 1 HGP 2、MBC 1 HGP 3 および MBC 1 HGP 4 は尿素変性ポリアクリルアミドゲルを用いて分離し (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989)、ゲルからの抽出に crush and soak 法 (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989) にて行った。

【0207】 すなわち、それぞれ 1 nmole の CDR グラフティングプライマーを 6% 変性ポリアクリルアミドゲルで分離し、目的の大さきの DNA 断片の同定をシリカゲル薄層板上で紫外線を照射して行い、crush and soak 法にてゲルから回収し 20 μl の 10 mM Tris-HCl (pH 7.4), 1 mM EDTA 液溶液に溶解した。PCR は、Takara Ex Taq (宝酒造) を用い、1000 μl の反応混合液に上記の様に調製した CDR グラフティングプライマー-MBC 1 HGP 1、MB 1 HGP 2、MBC 1 HGP 3 および MBC 1 HGP 4 をそれぞれ 1 μl、0.2 5 mM の dNTP 並びに 2.5 U の Takara Ex Taq を含む条件で、添付緩衝液を使用して 94°C にて 1 分間、55°C にて 1 分間、72°C にて 1 分間の温度サイクルで 5 回行った。さらに 50 pmole の外部プライマー-MBC 1 HVS 1 及び MBC 1 HVR 1 を加え、同じ温度サイクルを 30 回行った。PCR 法により増幅した DNA 断片を 4% Nu Sieve GTG アガロース (FMC Bio Products) を用いたアガロースゲル電気泳動により分離した。

【0208】 421 bp 長の DNA 断片を含有するアガロース片を切り取り、GENE CLEAN I KIT (B I O 1 0 1) を用い、キット添付の処方に従い DNA 断片を精製した。精製した DNA をエタノールで沈殿させた後、10 mM Tris-HCl (pH 7.4), 1 mM EDTA 液溶液 20 μl に溶解した。得られた PCR 反応混合物を、BamHI および Hind III で消化することで調製した pUC 19 にサブクローニングし、塩基配列を決定した。こうして得られたハイブリドマー # 2 3-57-137-1 に由来するマウス H 鎮 V 領域をコードする DNA を有し、5' 一側に EcoRI および Hind III 認識配列及び K z a K 配列、3' 一側に ApaI および SmaI 認識配列を持つプラスミドを hMBC 1 Hv/pUC 19 と命名した。

【0209】 (ii) ヒト型化 H 鎮 cDNA のための H 鎮 V 領域の構築

ヒト H 鎮 C 領域 Cγ 1 の cDNA と連結するために、上記のようにして構築したヒト型化 H 鎮 V 領域の DNA を PCR 法により修飾した。後方プライマー-MBC 1 HV S 2 は V 領域のリーダー配列の 5' 一側をコードする配

列とハイブリダイズし、且つ Kozak, M. ら, J. Mol. Biol. 196, 947-950, 1987)、 Hind III および EcoRI 認識配列を有するように設計した。H 鎮 V 領域の DNA を修飾するための前方プライマー-MBC 1 HVR 2 は、J 領域の 3' 一側をコードする DNA 配列にハイブリダイズし、且つ C 領域の 5' 一側の配列をコードし ApaI および SmaI 認識配列を有するように設計した。

【0210】 PCR は Takara Ex Taq (宝酒造) を用い、錠型 DNA として 0.4 μg の hMBC 1 Hv/pUC 19 を用い、プライマーとして MBC 1 HV S 2 および MBC 1 HVR 2 をそれぞれ 5.0 pmole、2.5 U の Takara Ex Taq、0.25 mM の dNTP を含む条件で添付緩衝液を使用し、94°C にて 1 分間、55°C にて 1 分間、72°C にて 1 分間の温度サイクルで 30 回行った。PCR 法により増幅した DNA 断片を 3% Nu Sieve GTG アガロース (FMC Bio Products) を用いたアガロースゲル電気泳動により分離した。

【0211】 456 bp 長の DNA 断片を含有するアガロース片を切り取り、GENE CLEAN I KIT (B I O 1 0 1) を用い、キット添付の処方に従い DNA 断片を精製した。精製した DNA をエタノールで沈殿させた後、10 mM Tris-HCl (pH 7.4), 1 mM EDTA 液溶液 20 μl に溶解した。得られた PCR 反応混合物を、EcoRI および SmaI で消化することで調製した pUC 19 にサブクローニングし、塩基配列を決定した。こうして得られたハイブリドマー # 2 3-57-137-1 に由来するマウス H 鎮 V 領域をコードする DNA を有し、5' 一側に EcoRI および Hind III 認識配列及び K z a K 配列、3' 一側に ApaI および SmaI 認識配列を持つプラスミドを hMBC 1 Hv/pUC 19 と命名した。

【0212】 (2) ヒト型化抗体 H 鎮の発現ベクターの構築

hPM1 抗体 H 鎮 cDNA の配列を含むプラスミド RV h-PM1 f-cDNA を ApaI および BamHI にて消化し、H 鎮 C 領域をコードする塩基配列を含む DNA 断片を回収し、ApaI および BamHI で消化することにより調製した hMBC 1 Hv/pUC 19 に導入した。こうして作製したプラスミドを hMBC 1 HCD NA/pUC 19 と命名した。このプラスミドはヒト型化 # 2 3-57-137-1 抗体の H 鎮 V 領域及びヒト H 鎮 C 領域 Cγ 1 をコードする DNA を含み、5' 末端に EcoRI および Hind III 認識配列、3' 末端に BamHI 認識配列を持つ。プラスミド hMBC 1 HCD NA/pUC 19 に含まれるヒト型化 H 鎮 ベージョン "a" の塩基配列および対応するアミノ酸配列を配列番号 5 8 に示す。また、ベージョン a のアミノ酸配列を配列番号 5 6 に示す。

【0213】*hMBC1LcDNA/pUC19*を*EcoRI*および*BamHI*で消化し、得られたL鎖配列を含むDNA断片を、*EcoRI*および*BamHI*で消化することにより調製した発現プラスミド*pCOS1*に導入した。こうして得られたヒト型化抗体の発現プラスミドを*hMBC1LcDNA/pCOS1*と命名した。

【0214】さらにCHO細胞での発現に用いるためのプラスミドを作製するため*hMBC1LcDNA/pUC19*を*EcoRI*および*BamHI*で消化し、得られたL鎖配列を含むDNA断片を、*EcoRI*および*BamHI*で消化することにより調製した発現プラスミド*pCHO1*に導入した。こうして得られたヒト型化抗体の発現プラスミドを*hMBC1LcDNA/pCHO1*と命名した。

【0215】(3) L鎖ハイブリッド可変領域の構築 (i) FR1, 2/FR3, 4ハイブリッド抗体の作製 ヒト型化抗体とマウス(キメラ)抗体のFR領域を組み換えたL鎖をコードするDNAを構築し、ヒト型化のための各領域の評価を行った。CDR2内にある制限酵素*AfI1I*切断部位を利用することによって、FR1及び2はヒト抗体由来、FR3及び4はマウス抗体由来とするハイブリッド抗体を作製した。

【0216】プラスミド*MBC1L(λ)/neo*及び*hMBC1L(λ)/neo*各10μgを、10mMTris-HCl(pH7.5), 10mMMgCl<sub>2</sub>, 1mMDTT, 50mMNaCl, 0.01% (w/v) BSA, AfI1I(宝酒造) 10Uを含有する反応混合液100μl中で37℃にて1時間消化した。反応液を2%低融点アガロースグルで電気泳動し、プラスミド*MBC1L(λ)/neo*から6282bpの断片(c1とする)および1022bpの断片(c2とする)、プラスミド*hMBC1L(λ)/neo*から6282bpの断片(c1とする)および1022bpの断片(h2とする)を、GENE CLEAN II Kit (BIO101)を用いてゲルから回収、精製した。

【0217】BAP処理したc1及びh1断片1μlをそれぞれh2、c2断片4μlに連結し(4℃、一夜)、大腸菌JM109コンビテント細胞に形質転換した。50μg/mlアンビシリンを含有する2×YT培地2mlで培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN)を用いてプラスミドを精製した。

【0218】精製したプラスミドを、10mMTris-HCl(pH7.5), 10mMMgCl<sub>2</sub>及び1mMDTT並びに*Apal*I(宝酒造)2U、*BamHI*(宝酒造)8U又は*HindIII*(宝酒造)8Uを含

有する反応混合液20μl中で37℃、1時間消化した。c1-h2が正しく連結されていれば、*Apal*Iで5560/1246/498bp、*BamHI*/HindIIIで7134/269bpの消化断片が生じることにより、プラスミドの確認を行った。

【0219】ヒトFR1, 2/マウスFR3, 4ハイブリッド抗体L鎖をコードする発現ベクターを*hMMBC1L(λ)/neo*とした。一方、h1-c2のクローンが得られなかつたので、pUCベクター上で組換えてからHEFベクターにクローニングした。その際、アミノ酸置換のないヒト型化抗体L鎖V領域をコードするDNAを含むプラスミド*hMBC1Ldλ/pUC19*、及びFR3内の91位(Ka b a tの規定によるアミノ酸番号87位)のチロシンをイソロイシンに置換したヒト型化抗体L鎖V領域をコードするDNAを含むプラスミド*hMBC1Ldλ/pUC19*を鉢型として用いた。

【0220】プラスミド*MBC1L(λ)/pUC19*、*hMBC1Laλ/pUC19*及び*hMBC1Ldλ/pUC19*の各10μgを、10mMTris-HCl(pH7.5), 10mMMgCl<sub>2</sub>, 1mMDTT, 50mMNaCl, 0.01% (w/v) BSA, HindIII(宝酒造)16U, AfI1I(宝酒造)10Uを含有する反応混合液30μl中で37℃、1時間消化した。反応液を2%低融点アガロースグルで電気泳動し、プラスミド*BC1L(λ)/pUC19*から215bp(c2')、プラスミド*hMBC1Laλ/pUC19*および*hMBC1Ldλ/pUC19*からそれぞれ3218bp(ha1', hd1')のDNA断片をGENE CLEAN II Kit (BIO101)を用いてゲルから回収、精製した。

【0221】ha1'、hd1'断片をそれぞれc2'断片に連結し、大腸菌JM109コンビテント細胞に形質転換した。50μg/mlアンビシリンを含有する2×YT培地2mlで培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN)を用いてプラスミドを精製した。ha1'、hd1'断片を含むプラスミドを、それぞれプラスミド*m/hMBC1Laλ/pUC19*、*m/hMBC1Ldλ/pUC19*とした。

【0222】得られたプラスミド*m/hMBC1Laλ/pUC19*、*m/hMBC1Ldλ/pUC19*を*EcoRI*で消化した。それぞれ743bpのDNA断片を2%低融点アガロースグルで電気泳動した後、GENE CLEAN II Kit (BIO101)を用いてゲルから回収、精製し、10mM Tris-HCl(pH7.4), 1mM EDTA溶液20μlに溶解した。

【0223】各DNA断片4μlを前述のBAP処理したHEFベクター1μlに連結し、大腸菌JM109コ

ンピテント細胞に形質転換した。50 μg/mlアンビシンを含有する2×YT培地2mlで培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。

【0224】精製した各プラスミドを、20mM Tris-HCl (pH 8.5), 10 mM MgCl<sub>2</sub>, 1 mM DTT, 100 mM KCl, Hind III (宝酒造) 8U, Pvu II (宝酒造) 2Uを含有する反応混合液20μl中で37℃にて1時間消化した。断片が正しい方向に挿入されていれば5104→2195 bp、逆方向に挿入されれば4378→2926 bpの消化断片が生じることより、プラスミドの確認を行った。これらを、それぞれマウスFR1, 2/ヒトFR3, 4ハイブリッド抗体L鎖をコードする発現ベクター-m/hMBCL1λ/neo、m/hMBCL1dλ/neoとした。

#### 【0225】(ii) FR1/FR2ハイブリッド抗体の作製

CDR1内にあるSnaBI切断部位を利用することによって、同様にFR1とFR2のハイブリッド抗体を作製した。プラスミドMBCL1(λ)/neo及びh/mBCL1(λ)/neoの各10μgを10 mM Tris-HCl (pH 7.9), 10 mM MgCl<sub>2</sub>, 1 mM DTT, 50 mM NaCl, 0.01% (w/v) BSA, SnaBI (宝酒造) 6Uを含有する反応混合液20μl中で、37℃にて1時間消化した。次に20mM Tris-HCl (pH 8.5), 10 mM MgCl<sub>2</sub>, 1 mM DTT, 100 mM KCl, 0.01% (w/v) BSA, Pvu II 6Uを含有する反応混合液50μl中で37℃にて1時間消化した。

【0226】反応液を1.5%低融点アガロースゲルで電気泳動した後、プラスミドMBCL1(λ)/neoから4955 bp (m1) および2349 bp (m2)、プラスミドh/mBCL1(λ)/neoから4955 bp (h1) および2349 bp (hm2)の各DNA断片を、GENE CLEAN II Kit (BIO101) を用いてゲルから回収、精製し、10 mM Tris-HCl (pH 7.4), 1 mM EDTA溶液40μlに溶解した。

【0227】m1, hm1断片1μlをそれぞれhm2, m2断片4μlに連結し、大腸菌JM109コンピテント細胞に形質転換した。50 μg/mlアンビシンを含有する2×YT培地2mlで培養し、菌体画分からQIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミドを精製した。精製した各プラスミドを、10 mM Tris-HCl (pH 7.5), 10 mM MgCl<sub>2</sub>, 1 mM DTT及びApal I (宝酒造) 8UまたはApal I (宝酒造) 2Uを含有する反応混合液20μl中で37℃にて1時間消化し

た。

【0228】各断片が正しく連結されていれば、Apal Iで7304 bp、Apal Iで5560/1246/498 bp (m1-hm2)、Apal Iで6538/766 bp、Apal Iで3535/2025/1246/498 bp (hm1-m2) の消化断片が生じることにより、プラスミドの確認を行った。ヒトFR1/マウスFR2, 3, 4ハイブリッド抗体L鎖をコードする発現ベクターをhmBCL1λ (λ)/neo、マウスFR1/ヒトFR2/マウスFR3, 4ハイブリッド抗体L鎖をコードする発現ベクターをhmBCL1λ (λ)/neoとした。

#### 【0229】(4) ヒト型化抗体L鎖の構築

ヒト型化#23-57-137-1抗体L鎖を、PCR法によるCDR-グラフトティングにより作製した。ヒト抗体HSU03868 (GEN-BANK, Deftofs M, Scand. J. Immunol., 39, 95-103, 1994) 由来のFR1、FR2およびFR3、並びにヒト抗体S25755 (NBRF-PDB) 由来のFR4を有するヒト型化#23-57-137-1抗体L鎖（「ページョン”a”）の作製のために6個のPCRプライマーを使用した。

【0230】CDR-グラフトティングプライマー-MBC1LGP1 (配列番号29) 及びMBC1LGP3 (配列番号30) はセンスDNA配列を有し、そしてCDRグラフトティングプライマー-MBC1LGP2 (配列番号31) 及びMBC1LGP4 (配列番号32) はアンチセンスDNA配列を有し、そしてそれぞれプライマーの両端に15から21 bpの相補的配列を有する。外部プライマー-MBC1LVS1 (配列番号33) 及びMBC1LVR1 (配列番号34) はCDR-グラフトティングプライマー-MBC1LGP1及びMBC1LGP4とホモロジーを有する。

【0231】CDR-グラフトティングプライマー-MBC1LGP1、MBC1LGP2、MBC1LGP3およびMBC1LGP4は尿素変性ポリアクリルアミドゲルを用いて分離し (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989)、ゲルからの抽出はcrush and soak法 (Molecular Cloning: A Laboratory Manual, Sambrookら, Cold Spring Harbor Laboratory Press, 1989)にて行った。

【0232】すなわち、それぞれ1 nmoleのCDR-グラフトティングプライマーを6%変性ポリアクリルアミドゲルで分離し、目的の大きさのDNA断片の同定をシリカゲル薄層板上で紫外線を照射して行い、crush and soak法にてゲルから回収し、20μlの10 mM Tris-HCl (pH 7.4), 1 mM EDTA溶液に溶解した。

【0233】PCRは、Takara Ex Taq (宝酒造) を用い、100 μlの反応混合液に上記の様に調製したCDR-グラフトティングプライマー-MBC1

LGP1、MBC1LGP2、MBC1LGP3およびMBC1LGP4をそれぞれ1μl、0.25mMのdNTP並びに2.5UのTakara Ex Taqを含む条件で、添付緩衝液を使用して94℃にて1分間、55℃にて1分間、72℃にて1分間の温度サイクルで5回行い、この反応混合液に50pmoleの外部プライマーMBC1LVS1及びMBC1LVR1を加え、さらに同じ温度サイクルで30回反応させた。PCR法により増幅したDNA断片を3%Nu Sieve GTGアガロース（FMC Bio. Products）を用いたアガロースゲル電気泳動により分離した。

【0234】421bp長のDNA断片を含有するアガロース片を切り取り、GENE CLEAN II Kit (BIO101) を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物を BamHI および Hind III で消化することにより調製したpUC19にサブクローニングし、塩基配列を決定した。こうして得られたプラスミドを hMBC1/pUC19と命名した。しかしながら CDR4 の 104 位 (Kabat の規定によるアミノ酸番号 96 位) のアミノ酸がアルギニンになっていたため、これをチロシンに修正するための修正プライマー MBC1LGP10R (配列番号 35) を設計し、合成した。PCR は Takara Taq (宝酒造) を用い、100 μl の反応混合液に酵母DNAとして0.6 μg のプラスミド hMBC1/pUC19、プライマーとして MBC1LVS1 及び MBC1LGP10R をそれぞれ 50 pmole、2.5 U の Takara Ex Taq (宝酒造) 0.25mM の dNTP を含む条件で添付の緩衝液を使用して 50 μl の試料を上層して 94℃にて 1 分間、55℃にて 1 分間、72℃にて 1 分間の温度サイクルで 30 回行った。PCR 法により増幅した DNA 断片を 3%Nu Sieve GTG アガロース (FMC Bio. Products) を用いたアガロースゲル電気泳動により分離した。

【0235】421bp長のDNA断片を含有するアガロース片を切り取り、GENE CLEAN II Kit (BIO101) を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物を BamHI および Hind III で消化することにより調製したpUC19にサブクローニングした。

【0236】M13 Primer M4 プライマー及び M13 Primer RV プライマーを用いて塩基配列を決定した結果、正しい配列を得ることができたので、このプラスミドを Hind III および BlnI で消化し、416 bp の断片を 1%アガロースゲル電気泳動により分離した。GENE CLEAN II Kit (BIO101) を用い、キット添付の処方に従いDNA断片を精製した。得られたPCR反応混合物を、 Hind III および BlnI で消化することにより調製し

たプラスミド Cλ/pUC19に導入し、プラスミド hMBC1Lλ/pUC19と命名した。このプラスミドを Eco RI 消化し、ヒト型化 L 鎮をコードする DNA A をプラスミド pCOS1 に導入し、EF1αプロモーターの下流にヒト型化 L 鎮の開始コドンが位置するようにした。こうして得られたプラスミドを hMBC1Lλ/pCOS1 と命名した。ヒト型化 L 鎮バージョン a の塩基配列 (対応するアミノ酸を含む) を配列番号 64 に示す。また、バージョン a のアミノ酸配列を配列番号 47 に示す。

【0237】バージョン b を PCR 法による変異導入を用いて作製した。バージョン b では 43 位 (Kabat の規定によるアミノ酸番号 43 位) のグリシンをプロリンに、49 位 (Kabat の規定によるアミノ酸番号 49 位) のリジンをアスパラギン酸に変更するように設計した。変異原プライマー MBC1LGP5R (配列番号 36) とプライマー MBC1LVS1 により、プラスミド hMBC1Lλ/pUC19 を錠型として PCR を行い、得られた DNA 断片を BamHI および Hind III で消化し、pUC19 の BamHI および Hind III 部位にサブクローニングした。塩基配列決定後、制限酵素 Hind III および Af I III で消化し、Hind III および Af I III で消化した hMBC1Lλ/pUC19 と連結した。

【0238】こうして得られたプラスミドを hMBC1Lbλ/pUC19 とし、このプラスミドを Eco RI で消化し、ヒト型化 L 鎮をコードする DNA を含む断片をプラスミド pCOS1 に導入し、EF1αプロモーターの下流にヒト型化 L 鎮の開始コドンが位置するようにした。こうして得られたプラスミドを hMBC1Lbλ/pCOS1 と命名した。

【0239】バージョン c を PCR 法による変異導入を用いて作製した。バージョン c では 84 位 (Kabat の規定によるアミノ酸番号 80 位) のセリンをプロリンに変更するように設計した。変異原プライマー MBC1LGP6S (配列番号 37) とプライマー M13 Primer RV によりプラスミド hMBC1Lcλ/pUC19 を錠型として PCR を行い、得られた DNA 断片を BamHI および Hind III で消化し、BamHI および Hind III で消化することにより調製した pUC19 にサブクローニングした。塩基配列決定後、制限酵素 Bst XI および Aor 5'1 HI で消化し、Bst XI および Aor 5'1 HI で消化した hMBC1Lcλ/pUC19 と連結した。こうして得られたプラスミドを hMBC1Lcλ/pUC19 とし、このプラスミドを制限酵素 Eco RI 消化し、ヒト型化 L 鎮をコードする配列を含む配列をプラスミド pCOS1 の Eco RI 部位に導入し、EF1αプロモーターの下流にヒト型化 L 鎮の開始コドンが位置するようにした。こうして得られたプラスミドを hMBC1Lcλ/pC

OS 1と命名した。

【0240】バージョン“d”、“e”及び“f”をPCR法による変異導入を用いて作製した。各バージョンとも順に“a”、“b”、“c”バージョンの91位(Kabatの規定によるアミノ酸番号87位)のチロシンをイソロイシンに変更するように設計した。変異原プライマー-MBC1LGP11R(配列番号3.8)とプライマーモルヒー-M-S-1(配列番号4.4)によりそれぞれhMBC1Laλ/pCOS1、hMBC1Lbλ/pCOS1、hMBC1Lcλ/pCOS1を鈎型としてPCRを行い、得られたDNA断片をBamHIおよびHindIIIで消化し、BamHIおよびHindIIIで消化することにより調製したpUC19にサブクローニングした。塩基配列決定後、HindIIIおよびBlnIで消化し、HindIIIおよびBlnIで消化することにより調製したCλ/pUC19と連結した。

【0241】こうして得られたプラスミドを順にhMBC1Ldλ/pUC19、hMBC1Leλ/pUC19、hMBC1Lfλ/pUC19とした。これらのプラスミドをEcoRI消化し、ヒト型化L鎖をコードする配列を含む配列をプラスミドpCOS1のEcoRI部位に導入し、EFLαプロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをそれぞれ順にhMBC1Ldλ/pCOS1、hMBC1Leλ/pCOS1、hMBC1Lfλ/pCOS1と命名した。

【0242】バージョン“g”及び“h”をPCR法による変異導入を用いて作製した。各バージョンとも順に“a”、“d”バージョンの36位(Kabatの規定によるアミノ酸番号36位)のヒスチジンをチロシンに変更するように設計した。変異原プライマー-MBC1LGP9R(配列番号3.9)およびM13PrimerRVをプライマーとして用いて、hMBC1Laλ/pUC19を鈎型としてPCRを行った。得られたDNA断片をHindIIIおよびBlnIで消化し、HindIIIおよびBlnIで消化することで調製したプラスミドCλ/pUC19にサブクローニングした。このプラスミドを鈎型として、プライマーモルヒー-MBC1LGP13R(配列番号4.0)とMBC1LVS1をプライマーとしたPCRを行った。得られたPCR断片をApaIおよびHindIIIで消化し、ApaIおよびHindIIIで消化したプラスミドhMBC1Laλ/pUC19およびhMBC1Ldλ/pUC19に導入した。塩基配列を決定し、正しい配列を含むプラスミドを順にhMBC1Lgλ/pUC19およびhMBC1Lhλ/pUC19とし、これらのプラスミドを制限酵素EcoRI消化し、ヒト型化L鎖をコードする配列を含む配列をプラ

スミドpCOS1のEcoRI部位に導入し、EFLαプロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをそれぞれ順にhMBC1Lgλ/pCOS1およびhMBC1Lhλ/pCOS1と命名した。

【0243】バージョン“i”、“j”、“k”、“l”、“m”、“n”および“o”をPCR法による変異導入を用いて作製した。変異原プライマー-MBC1LGP14S(配列番号4.1)とプライマーモルヒー-V1RV(λ)(配列番号4.3)によりプラスミドhMBC1Lλ/pUC19を鈎型としてPCRを行い、得られたDNA断片をApaIおよびBlnIで消化し、ApaIおよびBlnIで消化することにより調製したプラスミドhMBC1Lxλ/pUC19にサブクローニングした。塩基配列決定を行い、それぞれのバージョンに対応した変異が導入されたクローナーを選択した。こうして得られたプラスミドをhMBC1Lxλ/pUC19(x=i,j,k,l,m,n,o)とし、このプラスミドをEcoRI消化し、ヒト型化L鎖をコードする配列を含む配列をプラスミドpCOS1のEcoRI部位に導入し、EFLαプロモーターの下流にヒト型化L鎖の開始コドンが位置するようにした。こうして得られたプラスミドをhMBC1Lxλ/pCOS1(x=i,j,k,l,m,n,o)と命名した。バージョン“j”、“l”、“m”および“o”的塩基配列(対応するアミノ酸を含む)をそれぞれ配列番号67、68、69、70に示す。また、これらの各バージョンのアミノ酸配列をそれぞれ配列番号48、49、50、51に示す。

【0244】バージョン“p”、“q”、“r”、“s”および“t”は、バージョン“i”、“j”、“m”、“l”または“o”的アミノ酸配列の87位のチロシンをイソロイシンに置換したバージョンであり、FR3内にある制限酵素Aor51MI切断部位を利用して、バージョン“h”を、各バージョン“i”、“j”、“m”、“l”または“o”とつなぎ換えることにより作製したものである。すなわち、発現プラスミドhMBC1Lxλ/pCOS1(x=i,j,m,l,o)中、CDR3並びにFR3の一部及びFR4を含むAor51MI断片514bpを除き、ここに発現プラスミドhMBC1Lhλ/pCOS1中、CDR3並びにFR3の一部及びFR4を含むAor51MI断片514bpをつなぐことにより91位(Kabatの規定によるアミノ酸番号87位)のチロシンがイソロイシンとなるようにした。塩基配列決定を行い、各バージョン“i”、“j”、“m”、“l”および“o”的91位(Kabatの規定によるアミノ酸番号87位)のチロシンがイソロイシンに置換されたクローナーを選択し、対応するバージョンをそれぞれ“p”、“q”、“s”、“r”および“t”とし、得られたプラスミドをhMBC1Lxλ/pCOS1(x=p,q,s,r,t)と命名した。バージョン“q”、“

"r"、"s"および"t"の塩基配列(対応するアミノ酸を含む)をそれぞれ配列番号71、72、73、74に示す。また、これらの各バージョンのアミノ酸配列をそれぞれ配列番号52、53、54、55に示す。

【0245】プラスミドhMBC1Lqλ/pCOS1をHindIIIおよびEcoRIで消化し、Hind

IIIおよびEcoRIで消化したプラスミドpUC19にサブクローニングし、プラスミドhMBC1Lqλ/pUC19と命名した。ヒト型化L鎖の各バージョンにおける置換アミノ酸の位置を表3に示す。

【0246】

【表3】

| バージョン | 配列表における置換アミノ酸の位置<br>(Kabatの規定によるアミノ酸番号) |    |    |    |    |    |    |
|-------|-----------------------------------------|----|----|----|----|----|----|
|       | 36                                      | 43 | 45 | 47 | 49 | 80 | 87 |
| a     |                                         |    |    |    | D  |    |    |
| b     |                                         | P  |    |    |    | P  |    |
| c     |                                         |    |    |    |    |    | I  |
| d     |                                         |    |    |    | D  |    | I  |
| e     |                                         |    | P  |    |    | p  | I  |
| f     |                                         |    |    |    |    |    | I  |
| g     |                                         |    |    |    |    |    | I  |
| h     |                                         |    |    |    |    |    |    |
| i     |                                         |    |    |    |    |    |    |
| j     |                                         |    |    |    |    |    |    |
| k     |                                         |    |    |    | V  |    |    |
| l     |                                         |    |    | K  | V  | D  |    |
| m     |                                         |    |    | K  | V  | D  |    |
| n     |                                         |    |    |    | V  | D  |    |
| o     |                                         |    |    |    | V  | D  |    |
| p     |                                         |    |    | K  |    | D  |    |
| q     |                                         |    |    | K  |    | D  |    |
| r     |                                         |    |    |    | V  | D  |    |
| s     |                                         |    |    | K  | V  | D  |    |
| t     |                                         |    |    |    | V  | D  | I  |

【0247】表中、Yはチロシン、Pはプロリン、Kはリジン、Vはバリン、Dはアスパラギン酸、Iはイソロイシンを示す。

【0248】なお、前記プラスミドhMBC1HcDNA A/pUC19およびhMBC1Lqλ/pUC19を有する大腸菌は、それぞれEscherichia coli JM109(hMBC1HcDNA/pUC19)およびEscherichia coli JM109(hMBC1Lqλ/pUC19)として、工業技術院生命工学技術研究所(茨城県つくば市東1丁目1番3号)に、平成8年8月15日に、Escherichia coli JM109(hMBC1HcDNA/pUC19)についてはFERM BP-5629、Escherichia coli JM109(hMBC1Lqλ/pUC19)についてはFERM BP-5630としてダベスト条約に基づき国際寄託されている。

【0249】(5) COS-7細胞へのトランسفエクション

ハイブリッド抗体およびヒト型化#23-57-137-1抗体の抗原結合活性および中和活性を評価するため、前記発現プラスミドをCOS-7細胞で一過性に発現させた。すなわちL鎖ハイブリッド抗体の一過性発現では、プラスミドhMBC1HcDNA/pCOS1とh/mMBC1L(λ)/neo、hMBC1HcDNA A/pCOS1とm/hMBC1Lqλ/neo、hMBC1HcDNA/pCOS1とm/hMBC1Ldλ/neo、hMBC1HcDNA/pCOS1とhmm

MBC1L(λ)/neo、またはhMBC1HcDNA A/pCOS1とmhmMBC1L(λ)/neoとの組み合わせを、GenePulser装置(Biorad)を用いてエレクトロポレーションによりCOS-7細胞に同時に質導入した。PBS(-)中に $1 \times 10^7$ 細胞/mlの細胞濃度で懸濁されているCOS-7細胞0.8mlに、各プラスミドDNA $10\mu\text{g}$ を加え、1,500V, 25μFの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を2%のUltralow IgGウシ胎児血清(GIBCO)を含有するDMEM培養液(GIBCO)に懸濁し、10cm培養皿を用いてCO<sub>2</sub>インキュベーターにて培養した。72時間の培養の後、培養上清を集め、遠心分離により細胞破片を除去し、ELISAの試料に供した。

【0250】ヒト型化#23-57-137-1抗体の一過性発現では、プラスミドhMBC1HcDNA/pCOS1とhMBC1Lxλ/pCOS1(x=a~t)のいずれかの組み合わせをGenePulser装置(Biorad)を用いて、前記ハイブリッド抗体の場合と同様の方法によりCOS-7細胞にトランسفエクションし、得られた培養上清をELISAに供した。また、COS-7細胞の培養上清からのハイブリッド抗体またはヒト型化抗体の精製は、Affigel Protein A MAPS IIキット(Biorad)を用いて、キット添付の処方に従って行った。

【0251】(6) ELISA

(i) 抗体濃度の測定

抗体濃度測定のためのELISAプレートを次のようにして調製した。ELISA用96穴プレート（Maxisorp, NUNC）の各穴を固相化バッファー（0.1M NaHCO<sub>3</sub>, 0.02% Na<sub>3</sub>N）で1μg/mlの濃度に調製したヤギ抗ヒトIgG抗体（TAG O）100μlで固相化し、200μlの希釈バッファー（50mM Tris-HCl, 1mM MgCl<sub>2</sub>、0.1M NaCl、0.05% Tween 20、0.02% Na<sub>3</sub>N、1% 牛血清アルブミン（BSA）、pH 7.2）でブロッキングの後、ハイブリッド抗体またはヒト型化抗体を発現させたCOS-7細胞の培養上清あるいは精製ハイブリッド抗体またはヒト型化抗体を段階希釈して各穴に加えた。1時間室温にてインキュベートしPBS-Tween 20で洗浄後、アルカリフェオスマーカーを結合させたヤギ抗ヒトIgG抗体（TAG O）100μlを加えた。1時間室温にてインキュベートしPBS-Tween 20で洗浄の後、1mg/mlの基質溶液（Sigma 104, p-ニトロフェニルリン酸、SIGMA）を加え、次に405nmでの吸光度をマイクロプレートリーダー（BioRad）で測定した。濃度測定のスタンダードとして、Hu IgG1λ Purified (The Binding Site) を用いた。

#### 【0252】(ii) 抗原結合能の測定

抗原結合測定のためのELISAプレートを、次のようにして調製した。ELISA用96穴プレートの各穴を固相化バッファーで1μg/mlの濃度に調製したヒトPTHrP（1-34）100μlで固相化した。200μlの希釈バッファーでブロッキングの後、ハイブリッド抗体またはヒト型化抗体を発現させたCOS-7細胞の培養上清あるいは精製ハイブリッド抗体またはヒト型化抗体を段階希釈して各穴に加えた。室温にてインキュベートしPBS-Tween 20で洗浄後、アルカリフェオスマーカーを結合させたヤギ抗ヒトIgG抗体（TAG O）100μlを加えた。室温にてインキュベートしPBS-Tween 20で洗浄の後、1mg/mlの基質溶液（Sigma 104, p-ニトロフェニルリン酸、SIGMA）を加え、次に405nmでの吸光度をマイクロプレートリーダー（BioRad）で測定した。

#### 【0253】(7) 活性確認

##### (i) ヒト型化H鎖の評価

ヒト型化H鎖バージョン“a”とキメラL鎖を組み合わせた抗体は、キメラ抗体とPTHrP結合能が同等であった（図5）。この結果は、H鎖V領域のヒト型化はバージョン“a”で十分なことを示す。以下、ヒト型化H鎖バージョン“a”をヒト型化抗体のH鎖として供した。

##### 【0254】(ii) ハイブリッド抗体の活性

(ii-a) FR1, 2/FR3, 4ハイブリッド抗体 L鎖がh/mMBC1L（λ）の場合、活性は全く認められなかったが、m/hMBC1Laあるいはm/h

MBC1Ldλの場合はいずれもキメラ#23-57-137-1抗体と同等の結合活性を示した（図6）。これらの結果は、FR3, 4はヒト型化抗体として問題ないが、FR1, 2内に置換すべきアミノ酸残基が存在することを示唆する。

【0255】(ii-b) FR1/FR2ハイブリッド抗体 L鎖がhmMBC1L（λ）の場合、活性は全く認められなかったが、hmmMBC1L（λ）の場合はキメラ#23-57-137-1抗体と同等の結合活性を示した（図7）。これらの結果は、FR1, 2のうちFR1はヒト型化抗体として問題ないが、FR2内に置換すべきアミノ酸残基が存在することを示唆する。

【0256】(iii) ヒト型化抗体の活性 L鎖としてバージョン“a”から“t”的各々一つを用いたヒト型化抗体について、抗原結合活性を測定した。その結果、L鎖バージョン“j”、“l”、“m”、“o”、“q”、“r”、“s”、“t”を有するヒト型化抗体はキメラ抗体と同等のPTHrP結合能を示した（図8～11）。

【0257】(8) CHO安定産生細胞株の樹立 ヒト型化抗体の安定産生細胞株を樹立するため、前記発現プラズミドをCHO細胞（DXB11）に導入した。すなわちヒト型化抗体の安定産生細胞株樹立は、CHO細胞用発現プラズミドhMBC1HeDNA/pCHO1とhMBC1Lmλ/pCOS1、またはhMBC1HeDNA/pCHO1とhMBC1Lqλ/pCOS1、あるいはhMBC1HeDNA/pCHO1とhMBC1Lrλ/pCOS1との組み合わせで、Gene Pulser装置（BioRad）を用いてエレクトロポレーションによりCHO細胞に同時形質導入した。それぞれの発現ベクターを制限酵素Pvu Iで切断して直鎖DNAにし、フェノールおよびクロロホルム抽出後、エタノール沈殿でDNAを回収し、エレクトロポレーションに用いた。PBS（-）中に1x10<sup>7</sup>細胞/mlの細胞濃度で懸滴されているCHO細胞0.8mlに、各プラズミドCNA10μgを加え、1, 500V, 2.5μFの静電容量にてパルスを与えた。室温にて10分間の回復期間の後、エレクトロポレーション処理された細胞を、10%ウシ胎児血清（GIBCO）を添加したMEM-α培地（GIBCO）に懸滴し、96穴プレート（Falcon）を用いてCO<sub>2</sub>インキュベーターにて培養した。培養開始翌日に、10%ウシ胎児血清（GIBCO）および500mg/mlのGENETICIN（G418 Sul fate, GIBCO）添加、リボヌクレオシドおよびデオキリボヌクレオシド不含のMEM-α選択培地（GIBCO）に交換し、抗体遺伝子の導入された細胞を選択した。選択培地交換後、2週間前後に顕微鏡下で細胞を観察し、順調な細胞増殖が認められた後に、上記抗体濃度測定ELISAにて抗体産生量を測定し、抗体産生能の高い細胞を選別した。

**【0258】**樹立した抗体の安定産生細胞株の培養を拡大し、ローラーボトルにて2%のUltralow IgGウシ胎児血清添加、リボヌクレオシドおよびデオキリボヌクレオシド不含のMEM- $\alpha$ 選択培地を用いて、大量培養を行った。培養3ないし4日目に培養上清を回収し、0.2μmのフィルター(Millipore)により細胞破片を除去した。CHO細胞の培養上清からのヒト型化抗体の精製は、POROSプロテインカラム(PerSeptive Biosystems)を用いて、ConSep LC100(Millipore)にて添付の処方に従って行い、中和活性の測定および高カルシウム血症モデル動物での薬効試験に供した。得られた精製ヒト型化抗体の濃度および抗原結合活性は、上記ELISA系にて測定した。

**【0259】**【実施例4】中和活性の測定

マウス抗体、キメラ抗体およびヒト型化抗体の中和活性の測定は、ラット骨肉腫細胞ROS17/2.8-5細胞を用いて行った。すなわち、ROS17/2.8-5細胞を、10%牛胎児血清(GIBCO)を含むHam's SF-12培地(GIBCO)中にて、CO<sub>2</sub>インキュベーターで培養した。ROS17/2.8-5細胞を9.6穴プレートに10<sup>4</sup>細胞/100μl/穴で蒔込み、1日間培養し、4mMヒドロコルチゾンと10%牛胎児血清を含むHam's SF-12培地(GIBCO)に交換する。さらに3ないし4日間培養した後、260μlのHam's SF-12培地(GIBCO)にて洗浄し、1mMのイソブチル-1-メチルキサンチン(IBM-X、SIGMA)および10%の牛胎児血清と10mMのHEPESを含む80μlのHam's F-12を加え、30分間37℃でインキュベートした。

**【0260】**中和活性を測定するマウス抗体、キメラ抗体またはヒト型化抗体を、あらかじめ10μg/ml、3.3μg/ml、1.1μg/mlおよび0.37μg/mlの群、10μg/ml、2μg/ml、0.5μg/mlおよび0.01μg/mlの群、または10μg/ml、5μg/ml、1.25μg/ml、0.63μg/mlおよび0.31μg/mlの群に段階希釈し、4ng/mlに調製したPTHrP(1-34)と等量混合し、各抗体とPTHrP(1-34)との混合液80μlを各穴に添加した。各抗体の最終濃度は、上記抗体濃度の4分の1になり、PTHrP(1-34)の濃度は、1ng/mlになる。10分間室温にて処理した後、培養上清を捨て、PBSにて3回洗浄した後、100μlの0.3%塩酸95%エタノールにて細胞内のcAMPを抽出する。水溶アスピレーターにて塩酸エタノールを蒸発させ、cAMP EIA kit(CAYMANCHEMICAL'S)付属のEIAバッファー120μlを添加してcAMPを抽出後、cAMP EIA kit(CAYMANCHEMICAL'S)添付の処方に従ってcAMPを測定した。その

結果、キメラ抗体と同等の抗原結合を有するL鎖バージョンのうち、91位のチロシンをイソロイシンに置換したバージョン“q”、“r”、“s”、“t”を有するヒト型化抗体がキメラ抗体に近い中和能を示し、その中でも、バージョン“q”がもっとも強い中和能を示した(図12~14)。

**【0261】**【実施例5】高カルシウム血症モデル動物での薬効試験(1)

ヒト腫瘍マウス移植系の高カルシウム血症モデル動物を用いて、PTHrPに対するキメラ抗体およびL鎖バージョン“m”、“r”および“q”を有するヒト型化抗体について高カルシウム血症に対する治療効果を検討した。

**【0262】**高カルシウム血症モデル動物としてヒト脾臓癌PAN-7(財)実験動物中央研究所より購入)移植ヌードマウスを用いた。ヒト脾臓癌PAN-7を移植されたヌードマウスは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体重減少や運動量の低下などの高カルシウム血症を発症する。高カルシウム血症に対する治療効果の検討は、キメラ抗体およびヒト型化抗体が、ヒト脾臓癌PAN-7によって引き起こされる高カルシウム血症を改善することを、体重および血中カルシウム濃度を指標にして評価した。

**【0263】**ヒト脾臓癌PAN-7の継代は、BALB/c-nu/nuヌードマウス(日本チャールズリバーパー)を用いてin vivoで行った。薬効評価には、5週齢雄性BALB/c-nu/nuヌードマウス(日本チャールズリバーパー)を購入し、1週間の飼育の後、6週齢の動物を使用した。高カルシウム血症モデル動物の作製および群分けは、以下のようにして行った。すなわち、雌代しているヒト脾臓癌PAN-7を摘出し、3m角ブロックに細かく刻んだ腫瘍塊をマウスの腹膜皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、2ないし3週間に腫瘍体積が十分に大きくなったを確認した後、腫瘍体積、血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、高カルシウム血症モデル動物とした。

**【0264】**高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製、群分けした高カルシウム血症モデル動物に、マウス1匹あたり10μgまたは30μgのPTHrPに対するキメラ抗体またはL鎖バージョンm、“r”を有するヒト型化抗体を尾静脈内に単回投与した。L鎖バージョン“q”を有するヒト型化抗体は、マウス1匹あたり20μgまたは60μgを尾静脈内に単回投与した。キメラ抗体およびヒト型化抗体投与後、1日、4日、7日、11日目に血中カルシウム濃度および体重を測定し、各抗体の薬効評価を行った。腫瘍体積は、腫瘍の長径(a mm)および短径(b mm)を測定し、ギャランの計算式a<sup>2</sup>/2により腫瘍体積として算出した。血中カルシウム濃

度は、眼窩よりヘマトクリット管で採血し、643自動Ca<sup>++</sup>/pHアナライザ（CIBA-CORNING）を用いて全血イオン化カルシウム濃度として測定した。

【0265】その結果、キメラ抗体およびL鎖バージョン“m”、“r”および“q”を有するヒト型化抗体を投与することにより、体重および血中カルシウム濃度の速やかな改善および持続性が認められた。このことから、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症治療薬としての有用性が示された（図15～16）。

【0266】〔実施例6〕高カルシウム血症モデル動物での薬効試験(2)

ヒト腫瘍ヌードマウス移植系の高カルシウム血症モデル動物を用いて、PTHrPに対するキメラ抗体およびL鎖バージョン“q”を有するヒト型化抗体について、高カルシウム血症に対する治療効果を検討した。高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製・群分けした高カルシウム血症モデル動物に、マウス1匹あたり10μgまたは30μgのPTHrPに対するキメラ抗体またはL鎖バージョン“q”を有するヒト型化抗体を尾静脈内に単回投与した。キメラ抗体およびヒト型化抗体投与後、1日、3日、7日、10日目に血中カルシウム濃度および体重を測定し、各抗体の薬効評価を行った。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動Ca<sup>++</sup>/pHアナライザ（CIBA-CORNING）を用いて全血イオン化カルシウム濃度として測定した。

【0267】その結果、ヒト腫瘍PAN-7移植高カルシウム血症モデルにおいて、キメラ抗体およびL鎖バージョン“q”を有するヒト型化抗体を投与することにより、体重および血中カルシウム濃度の速やかな改善および持続性が認められた。このことから、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症治療薬としての有用性が示された（図17）。

【0268】〔実施例7〕高カルシウム血症モデル動物での薬効試験(3)

ヒト腫瘍ヌードマウス移植系の高カルシウム血症モデル動物（ヒト肺癌LC-6移植高カルシウム血症モデル）を用いて、PTHrPに対するキメラ抗体およびL鎖バージョン“q”を有するヒト型化抗体について高カルシウム血症に対する治療効果を検討した。高カルシウム血症モデル動物としてヒト肺癌LC-6（財）実験動物中央研究所より購入）移植ヌードマウスを用いた。ヒト肺癌LC-6を移植されたヌードマウスは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体重減少や運動量の低下などの高カルシウム血症を発症する。

【0269】高カルシウム血症に対する治療効果の検討は、キメラ抗体およびヒト型化抗体が、ヒト肺癌LC-6によって引き起こされる高カルシウム血症を改善すること

を、体重および血中カルシウム濃度を指標にして評価した。ヒト肺癌LC-6の維代は、BALB/c- nu/nuヌードマウス（日本チャールズリバー）を用いてin vivoで行った。薬効評価には、5週齢雄性BALB/c- nu/nuヌードマウス（日本チャールズリバー）を購入し、1週間の割離の後、6週齢の動物を使用した。

【0270】高カルシウム血症モデル動物の作製および群分けは、以下のようにして行った。すなわち、維代しているヒト肺癌LC-6を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をマウスの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、2ないし3週間して腫瘍体積が十分に大きくなったを確認した後、腫瘍体積、血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、高カルシウム血症モデル動物とした。

【0271】高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製・群分けした高カルシウム血症モデル動物に、マウス1匹あたり10μgまたは30μgのPTHrPに対するキメラ抗体またはL鎖バージョン“q”を有するヒト型化抗体を尾静脈内に単回投与した。キメラ抗体およびヒト型化抗体投与後、1日、3日、6日、10日目に血中カルシウム濃度および体重を測定し、各抗体の薬効評価を行った。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動Ca<sup>++</sup>/pHアナライザ（CIBA-CORNING）を用いて全血イオン化カルシウム濃度として測定した。

【0272】その結果、ヒト肺癌LC-6移植高カルシウム血症モデルにおいて、キメラ抗体およびL鎖バージョン“q”を有するヒト型化抗体を投与することにより、体重および血中カルシウム濃度の速やかな改善および持続性が認められた。このことから、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症治療薬としての有用性が示された（図18）。

【0273】〔実施例8〕BIACOREを用いたPTHrPと抗P

THrP抗体の相互作用における速度論的解析  
BIACOREを用いて、抗原抗体反応の速度論的解析を行った。抗原としてPTHrP(1-34+Cys)を用い、C末端部位特異的にセンサーチップ上に固定化し、種々の濃度に調製した精製抗体をアナライツとした。得られたセンサーグラムから、カイネティクスパラメーター（結合速度定数k<sub>on</sub>及び解離速度定数k<sub>diss</sub>）を算出した。速度論的解析に関して、文献「Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system J」(Karlsson, R. et al., (1991) J. Immunol. Methods 145, p229-240.)を参考にした。

【0274】(1) センサーチップへのPTHrP(1-34+C)の固定化

センサーチップ CM5(Pharmacia)へPTHrP(1-34+C)を固定化する。ランニングバッファーとしてHBS(10mM HEPES pH7.4, 0.15M NaCl, 3.4mM EDTA, 0.005% Surfacta

nt P20) を用い、流速は  $5 \mu\text{l}/\text{分}$  とした。センサーーチップ CM5 上のカルボキシメチルデキストランのカルボキシル基を  $100 \mu\text{l}$  の  $0.05\text{M}$  N-ヒドロキシコハク酸イミド(NHS)/ $0.2\text{M}$  塩酸-N-エチルグリコジメチルアミノプロピル)-カルボジイミド(EDC)のインジェクトおよび  $100 \mu\text{l}$  の  $80\text{mM}$  塩酸-2-(2-ビリジニルジオ)エタンアミン(PDEA)/ $0.1\text{M}$  ホウ酸緩衝液 pH8.5 のインジェクトにより活性化した。引き続き、 $10 \mu\text{l}$  の  $5 \mu\text{g}/\text{ml}$  PTHrP(1-34+C)/ $10\text{mM}$  塩酸ナトリウム緩衝液 pH5.0 をインジェクトし、PThrP(1-34+C)の末端のCys残基特異的に固定化した。さらに、 $100 \mu\text{l}$  の  $50\text{mM}$  L-システイン/ $1\text{M NaCl}$ / $0.1\text{M}$  塩酸ナトリウム緩衝液 pH4.3 をインジェクトすることにより、過剰の活性基をブロックした。さらに、 $10 \mu\text{l}$  の  $0.1\text{M}$  グリシン-塩酸緩衝液 pH2.5 および  $10 \mu\text{l}$  の  $1\text{mM}$  塩酸をインジェクトすることにより、非共有結合をしている物質を洗浄した。このときの PThrp(1-34+C)の固定量は、 $226.4 \text{ RU}$  (resonance units) であった(図 1-9)。

#### 【0275】(2) 固定化 PThrp(1-34+C) とマウス抗 PThrp 精製抗体との相互作用

ランニングバッファーとして HBS を用い、流速は  $20 \mu\text{l}/\text{分}$  とした。抗体は、ハイブリドーマ細胞を B1B/c マウスに腹水化し、採取した腹水をプロテイン A カラムを用いて精製した。精製した #23-57-137-1 抗体を MBC、精製した 3F5 抗体を 3F5 と表記した。これらの抗体を、HBS を用いて  $1.25$ 、 $2.5$ 、 $5$ 、 $10$ 、 $20 \mu\text{g}/\text{ml}$  の濃度で調製した。分析は、抗体溶液の  $40 \mu\text{l}$  をインジェクトする 2 分間を結合相とし、その後 HBS に切り替え、2 分間の解離相とした。解離相終了後、 $10 \mu\text{l}$  の  $10\text{mM}$  塩酸をインジェクトすることにより、センサーチップを再生した。この結合・解離・再生を分析の 1 サイクルとし、各種抗体溶液をインジェクトし、センサーーグラムを得た。

・解離・再生を分析の 1 サイクルとし、各種抗体溶液をインジェクトし、センサーーグラムを得た。

#### 【0276】(3) 固定化 PThrp(1-34+C) とヒト型化抗 PThrp 精製抗体との相互作用

ランニングバッファーとして HBS を用い、流速は  $20 \mu\text{l}/\text{分}$  とした。抗体は、CHO 細胞に產生させ、プロテイン A カラムを用いて精製した。精製したキメラ抗体を chMBC、精製したヒト型化抗体バージョン m を hMBCm、バージョン q を hMBCq と表記した。これらの抗体を、HBS を用いて  $1.25$ 、 $2.5$ 、 $5$ 、 $10$ 、 $20 \mu\text{g}/\text{ml}$  の濃度で調製した。分析は、抗体溶液の  $40 \mu\text{l}$  をインジェクトする 2 分間を結合相とし、その後 HBS に切り替え、2 分間の解離相とした。解離相終了後、 $10 \mu\text{l}$  の  $10\text{mM}$  HCl をインジェクトすることにより、センサーチップを再生した。この結合・解離・再生を分析の 1 サイクルとし、各種抗体溶液をインジェクトし、センサーーグラムを得た。

#### 【0277】(4) 相互作用の速度論的解析

目的のデータファイルを読み込み、目的の反応領域について重ね書きによる反応パターンの比較を行った(図 2-0 ~ 2-4)。さらに、カーブフィッティングによるカイネティクスパラメーター(結合速度定数  $k_{diss}$  および解離速度定数  $k_{ass}$ )の算定を行う BIACORE 専用の解析ソフトウェアである「BIAlEvaluation 2.1」(Pharmacia)を用いて、相互作用の速度論的解析を行った(表 4-5)。なお、図 2-0 ~ 2-4において、各曲線は、図の上方から下方に向かってそれぞれ  $1.25$ 、 $2.5$ 、 $5$ 、 $10$ 、 $20 \mu\text{g}/\text{ml}$  の抗体濃度のものである。

#### 【0278】

【表 4】

MBC および 3F5 のカイネティクスパラメーター

|                                    | MBC                    | 3F5                   |
|------------------------------------|------------------------|-----------------------|
| $k_{diss}$ [ $\text{l}/\text{s}$ ] | $7.38 \times 10^{-5}$  | $1.22 \times 10^{-2}$ |
| $k_{ass}$ [ $\text{l}/\text{Ms}$ ] | $7.23 \times 10^5$     | $6.55 \times 10^5$    |
| $KD$ [ $\text{nM}$ ]               | $1.02 \times 10^{-10}$ | $1.86 \times 10^{-8}$ |

【表 5】

キメラ抗体およびヒト型化抗体のカイネティクスパラメーター

|                                                         | chMBC-chA | hMBCm | hMBCq |
|---------------------------------------------------------|-----------|-------|-------|
| $k_{diss}$ [ $\text{l}/\text{s}$ ] ( $\times 10^{-4}$ ) | 1.66      | 3.16  | 2.32  |
| $k_{ass}$ [ $\text{l}/\text{Ms}$ ] ( $\times 10^6$ )    | 1.24      | 0.883 | 1.03  |
| $KD$ [ $\text{nM}$ ] ( $\times 10^{-10}$ )              | 1.34      | 3.58  | 2.25  |

#### 【0279】

【0280】なお、結合速度定数を求める際に、解析モデルタイプ 4 を用いた(BIAlevaluation 2.1 Software Handbook, A1 ~ A5)。

【0281】(実施例 9) 悪性腫瘍細胞性高カルシウムモデルでのリン排泄抑制作用

悪性腫瘍細胞性高カルシウム血症(HBM)は腫瘍が産生する PThrp がその原因物質であり、PThrp は骨吸収および

腎尿管でのカルシウム再吸収を亢進し、高カルシウム血症を惹起することが知られている。一方、リンに関する PThrp は腎尿管において再吸収を抑制する結果、排泄促進作用を示し、臨床用患者においてしばしば低リン血症が認められる。そこで、ラット悪性腫瘍細胞性高カルシウム血症モデルを用いて、ヒト型化抗 PThrp 抗体の腎におけるリン排泄に対する効果を検討した。

【0282】モデル動物としてヒト肺癌株LC-6（（財）実験動物中央研究所より購入）を移植したヌードラットを用いた。ヒト肺癌株LC-6を皮下移植されたヌードラットは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体重減少や運動量の低下などの高カルシウム血症症状を呈する。本モデルを用い、腎クリアランス法にてヒト型化抗PTHrP抗体の腎におけるリン排泄に対する効果をリン排泄率（後述）を指標に評価した。ヒト肺癌株LC-6の雌代は、BALB/c-nu/muヌードマウス（日本クレア）を用いてin vivoで行った。薬効評価には、5週齢雄性F344/N Jcl-rnuヌードラット（日本クレア）を購入し、1週間の馴化の後、6週齢の動物を使用した。

【0283】悪性腫瘍臓器性高カルシウム血症モデルの作製は、以下のようにして行った。すなわち、雌代しているヒト肺癌株LC-6腫瘍を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をラットの脇腹皮下に1回あたり1個ずつ移植した。腫瘍塊移植後、30日前日に腫瘍体積が十分に大きくなつた（3000mm<sup>3</sup>）のを確認した後、血中カルシウム濃度、体重を指標として悪性腫瘍臓器性高カルシウム血症モデル動物とした。腎クリアランス法によるリン排泄の検討は、以下のようにして行った。

#### 【0284】(1) 腎クリアランス法

悪性腫瘍臓器性高カルシウム血症モデル動物をペントバルビタール（ネンバーテール、大日本製薬（株））で麻酔し、37℃の保温マット上に背位固定し、採尿用に膀胱カニューレ（ポリエチレンチューブ、PE150、日本ベクトンディッキンソン）を挿入した。次に大頭静脈にインフュージョン用にカニューレ（ポリエチレンチューブ、PE10、日本ベクトンディッキンソン）を挿入し、インフュージョン溶液（組成：0.7% イヌリン、5% マンニトール、0.2% ペントバルビタール、0.9% 塩化ナトリウム）をインフュージョンポンプ（テルフュージョンシリジングポンプ、STC-525、テルモ）にて流速2 ml/hrでインフュージョンした。50分間の平衡化の後、20分間隔で5回（ビリオド-1からビリオド-5まで）の採尿を膀胱カニューレより行い、尿サンプルとした。また各採尿の中間点において、右頸静脈より血液サンプルをヘパリン処理した注射筒にて約0.25ml採取した。

#### 【0285】(2) 抗体の投与

上記したクリアランス実験のビリオド-2の採尿開始時点で、ヒト型化抗PTHrP抗体を1mg/ml/kg 静脈内投与した。

#### (3) 尿中および血中イヌリンおよびリン濃度測定

ビリオド-1からビリオド-5より得られた尿サンプルは尿量を測定後、イヌリンおよびリン濃度を測定した。また同様に得られた血液サンプルは冷却遠心分離後、血漿サンプルとしてイヌリンおよびリン濃度を測定した。イヌリン濃度はアンソロン-硫酸法（Roe, J.H.ら、J Biol Chem 178, 839-845, 1949）にて測定した。リン濃度は日立自動分析装置7170型にて無機リン測定用試薬、オート

セラIP（第一化学薬品）を用いて、測定のマニュアル通りに測定した（フィスケ・サバロー法）。

【0286】(4) イヌリンクリアランス、リンクリアランストおよびリン排泄率の算出  
イヌリンクリアランスト（inulin clearance, Cin）、リンクリアランスト（phosphate clearance, Cp）およびリン排泄率（fractional excretion of phosphate, FEP）は以下の式により算出した。

【0287】イヌリンクリアランスト（inulin clearance, Cin）の算出  
 $Cin = Uin V / Pin$

Cinはイヌリンクリアランスト（ml/kg/min）を表す。Uinは尿中イヌリン濃度（mg/ml）を表す。Vは単位時間当たりの尿量（ml/kg/min）を表す。Pinは血中イヌリン濃度（mg/ml）を表す。

#### 【0288】

リンクリアランスト（phosphate clearance, Cp）の算出  
 $Cp = Up V / Pp$

Cpはリンクリアランスト（ml/kg/min）を表す。Upは尿中リン濃度（mg/ml）を表す。Vは単位時間当たりの尿量（ml/kg/min）を表す。Ppは血中リン濃度（mg/ml）を表す。

【0289】リン排泄率（fractional excretion of phosphate, FEP）の算出  
 $FEP = Cp / Cin$

FEPはリン排泄率を表す。Cinはイヌリンクリアランスト（ml/kg/min）を表す。Cpはリンクリアランスト（ml/kg/min）を表す。実験は4匹の動物を用いて行った。結果はその平均値±標準誤差で示す。

【0290】リン排泄率および血中リン濃度の結果を図25および図26に示す。図25はクリアランストの各ビリオド（1ビリオドは20分間）と、腎からのリン排泄率（=リンクリアランスト/イヌリンクリアランスト）との関係を示すグラフである。なお、ヒト型化抗PTHrP抗体、1mg/kg（i.v.）はビリオド-2のはじめに投与した。

【0291】図26はクリアランストの各ビリオド（1ビリオドは20分間）と、血漿中のリン濃度との関係を示すグラフである。ヒト型化抗PTHrP抗体、1mg/kg（i.v.）はビリオド-2のはじめに投与した。以上の結果より、抗体投与前のリン排泄率（ビリオド-1）に対して、抗体投与後のリン排泄率（ビリオド-2からビリオド-5）は明らかに抑制を示した。すなわち、中和抗体を投与することで、リン排泄亢進（FEP>0.2）により低リン血症状態を呈する病態に対してリン再吸収を正常化レベル（リン再吸収率=1-FEP>0.8%）付近まで回復させ、その結果、血中リン濃度が正常化する傾向が示された。このように、PTHrPが原因で起るリン排泄亢進や低リン血症などの治療薬として本抗体の有用性が示された。

【0292】PTHrPは悪性腫瘍臓器性高カルシウム血症の原因物質であるため、PTHrPによるリン排泄の増加や

組織中高エネルギー有機リン酸濃度の低下が予想される。従って、低リン血症を伴う疾患、例えば低リン血性くる病、低リン血性ビタミンD抵抗性くる病などでは尿中へのリン排泄増加が主たる病因であり、本抗体にはこれら疾患の治療薬として有用である。

#### 【0293】〔実施例10〕悪性腫瘍隨伴性高カルシウム血症の臨床諸症状の改善

悪性腫瘍隨伴性高カルシウム血症は腫瘍が產生するPTHrPがその原因物質であり、PTHrPは骨吸収および腎尿管でのカルシウム再吸收を亢進し、高カルシウム血症を惹起することが知られている。また、悪性腫瘍に伴う高カルシウム血症では、Performance statusの悪化、意識障害、全身倦怠感、口渴感や恶心・嘔吐（食欲不振）などの臨床症状の悪化が認められる。これら臨床症状に対する抗PTHrP抗体の効果をヒト腫瘍マウスマウス移植系およびヒト腫瘍マウスドラット移植系の高カルシウム血症モデル動物を用いて検討した。

【0294】高カルシウム血症モデル動物としてヒト肺癌LC-6（（財）実験動物中央研究所より購入）移植マウスマウスおよびマウスドラットを用いた。ヒト肺癌LC-6を移植されたマウスマウスおよびマウスドラットは、腫瘍の増加に伴い血中カルシウム濃度が上昇し、体温低下、体重減少や運動量の低下などの高カルシウム血症症状を発症する。

【0295】悪性腫瘍隨伴性高カルシウム血症の一般臨床症状に対するマウスマウス抗PTHrP抗体の改善効果を、ヒト肺癌LC-6マウスマウス移植系を用いて写真で示した。また、運動量の改善、体温改善並びに摂食量低下の改善効果は、ヒト肺癌LC-6マウスドラット移植系を用いて評価した。

#### 【0296】1. 高カルシウム血症に伴う外観上の臨床症状の改善

ヒト肺癌LC-6の縦代は、BALB/c-nu/nuヌードマウス（日本クレア）を用いてin vivoで行った。薬効評価には、5週齢雄性BALB/c-nu/nuヌードマウス（日本クレア）を購入し、1週間の馴化の後、6週齢の動物を使用した。

【0297】高カルシウム血症モデル動物の作製および群分けは、以下のようにして行った。すなわち、縦代しているヒト肺癌LC-6を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をマウスの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、27日目して腫瘍体積が十分に大きくなったのを確認した後、腫瘍体積、血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、高カルシウム血症モデル動物とした。

【0298】腫瘍体積は、腫瘍の長径（a mm）および短径（b mm）を測定し、ギャランの計算式 $a^2 b / 2$ により腫瘍体積として算出した。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動C

$\text{a}++/\text{pHアライザー (CIBA-CORNING)}$ を用いて全血イオン化カルシウム濃度として測定した。

【0299】高カルシウム血症に対する治療効果の検討は、以下のようにして行った。すなわち、上記で作製、群分けした高カルシウム血症モデル動物に、マウス1匹あたり1000μgのPTHrPに対するマウス抗体を、腫瘍移植後、27、30、34、37日に尾静脈内に投与した。対照群には、リン酸緩衝食食塩水を同様に尾静脈内に投与した。抗体投与群並びに対照群の中から典型的な1匹をそれぞれ選び、正常動物とともに、腫瘍移植4日目に写真撮影を行った。

【0300】その結果、ヒト肺癌LC-6移植高カルシウム血症モデルにおいて、抗体投与動物（図27の中央及び図28の中央）は、対照動物（図27の右及び図28の右）と同程度の腫瘍塊を保持するにも関わらず正常動物（図27の左及び図28の左）と同等の外見を呈し、抗PTHrP抗体投与により外見上の臨床症状の改善が認められた（図27及び28）。

#### 【0301】2. 高カルシウム血症に伴う運動量低下の改善

ヒト肺癌株LC-6の縦代は、BALB/c-nu/nuヌードマウス（日本クレア）を用いてin vivoで行った。薬効評価には、5週齢雄性F344/NJcl-rnuヌードラット（日本クレア）を購入し、1週間の馴化の後、6週齢の動物を使用した。

【0302】悪性腫瘍隨伴性高カルシウム血症モデルの作製は、以下のようにして行った。すなわち、縦代しているヒト肺癌株LC-6を摘出し、3mm角ブロックに細かく刻んだ腫瘍塊をラットの脇腹皮下に1匹あたり1個ずつ移植した。腫瘍塊移植後、30日前後に腫瘍体積が十分に大きくなったのを確認した後、血中カルシウム濃度、体重を指標として悪性腫瘍隨伴性高カルシウム血症モデル動物とした。血中カルシウム濃度は、眼窩よりヘマトクリット管で採血し、643自動Ca++/pHアライザー（CIBA-CORNING）を用いて全血イオン化カルシウム濃度として測定した。

#### 【0303】(1) 自発運動量測定法

自発運動量の測定は自発運動量測定装置アニメックス（ANIMEX activity meter type SL, FARAD Electronics, Sweden）を用いて、個体毎に個別飼育しているボリ製ケージ（給水、給糞下）を装置の所定の位置に置き行った。この装置はラットの運動量を計測するもので、一定時間当たりのカウントとして記録される。測定は午後7時から翌日午前8時までの13時間行い、測定結果は1時間当たりのカウント数とした。

#### 【0304】(2) 抗体の投与

上記したように高カルシウム血症を発症したラット用い、ヒト型抗PTHrP抗体を5mg/0.5ml/kg尾静脈内投与した。また、対照には、生理食塩水を

同様に尾静脈内に投与した。測定は抗体投与個体と対照個体を交互に測定した。測定日は抗体投与個体は抗体投与0（投与前日）、2、4、7、14日目に、また対照個体は1、3、5、8、15日目に行った。その結果、対照個体の自発運動量は実験期間中変化がないかまたは減少傾向を示すに対して、抗体投与個体は4日目以降自発運動量の増加が認められた（図29）。

### 【0305】3. 高カルシウム血症に伴う体温低下の改善

ヒト肺癌株LC-6の継代および悪性腫瘍隨伴性高カルシウム血症モデルの作製は、上記2で示した方法と同様に実施した。

#### (1) 体温測定法

体温の測定はデジタル温度計を用い、個体はペントバルビタール（ネンブタール、大日本製薬（株））で麻酔し、温度センサープローブを直腸に挿入して行った。

#### 【0306】(2) 抗体の投与

上記したように高カルシウム血症を発症したラットを用い、ヒト型化抗PTHrP抗体を1mg/ml/kg尾静脈内投与した。また、対照には、生理食塩水を同様に尾静脈内に投与した。さらに、正常ラット（無投与）の体温についても同時に測定した。体温測定は抗体投与個体、対照個体および正常ラットいずれも、投与0（投与当日）、1、2、3日目に行った。

【0307】その結果、正常ラットの体温は実験期間中34.2~34.4°Cとほとんど変化なく推移した。悪性腫瘍隨伴性高カルシウム血症ラットでは、正常ラットに比べ、約2°Cの体温の低下が認められた。このモデルにヒト型化抗PTHrP抗体を投与すると、投与3日目で正常ラットの体温まで回復することが確認された。このように、ヒト型化抗PTHrP抗体は悪性腫瘍隨伴性高カルシウム血症モデルでの体温低下に対して改善する作用を有することが示された（図30）。

### 【0308】4. 高カルシウム血症に伴う摂食量低下の改善

#### 摂食量に及ぼす影響

| 動物     | 個体番号 | 投与 <sup>(a)</sup> | 個別摂食量(g) |       |       |       |
|--------|------|-------------------|----------|-------|-------|-------|
|        |      |                   | 投与前日     | 1日目   | 3日目   | 5日目   |
| 正常ラット  | 個体1  | 生理食塩水             | 13.7     | 16.7  | 18.53 | 18.71 |
|        | 個体2  | 生理食塩水             | 14.27    | 15.3  | 19.55 | 19.39 |
|        | 個体3  | 生理食塩水             | 9.83     | 15.5  | 20.72 | 19.88 |
|        | 個体4  | 生理食塩水             | 10.42    | 15.04 | 20.28 | 22.03 |
| HBMラット | 個体5  | 生理食塩水             | 10.77    | 14.24 | 12.66 | 11.82 |
|        | 個体6  | 生理食塩水             | 6.99     | 8.92  | 2.59  | 14.8  |
| HEMラット | 個体7  | 抗FTHrP抗体          | 7.46     | 17.65 | 22.52 | 17.99 |
|        | 個体8  | 抗FTHrP抗体          | 12       | 12.38 | 20.94 | 23.1  |
|        | 個体9  | 抗FTHrP抗体          | 3.35     | 16.55 | 20.36 | 21.69 |

注：生理食塩水投与量は0.5ml/kg 尾静脈投与  
抗体投与量は5mg/0.5ml/kg 尾静脈投与

ヒト肺癌株LC-6の継代および悪性腫瘍隨伴性高カルシウム血症モデルの作製は、上記2で示した方法と同様に実施した。作製したモデルは血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、以下の実験に使用した。

#### (1) 摂食量測定法

ラットは実験期間中、個別飼育用の代謝ケージに入れ、給水、給餌下で飼育した。摂食量は当日午前9時から翌日午前9時までの24時間摂食量とし、給餌器の重量を測定し、予め測定した重量（風袋重量）との差をその個体の摂食量（g）とした。

#### 【0309】(2) 抗体の投与

上記したように高カルシウム血症を発症したラット（HBMラット）を用い、ヒト型化抗PTHrP抗体を5mg/0.5ml/kg尾静脈内投与した。また、対照群には、生理食塩水を同様に尾静脈内に投与した。さらに、正常ラットについても生理食塩水を同様に尾静脈内に投与した。摂食量測定は、抗体投与群、対照群および正常ラット群のいずれも、投与0（投与前日から当日）、1（投与当日から翌日）、3（投与3日目から翌日）、5日目（投与5日目から翌日）に行った。

【0310】その結果、投与前値の摂食量は高カルシウム血症ラット（個体5から9）では平均8.11gであり、正常ラットは平均12.06gであった。このように明らかに高カルシウム血症ラットでは摂食量の低下が認められた。このモデルにヒト型化抗PTHrP抗体を投与すると、対照群ではあまり摂食量に変化がないのに比べ、抗体投与群では投与1日目以降正常ラットの摂食量まで回復することが確認された。このように、ヒト型化抗PTHrP抗体は悪性腫瘍隨伴性高カルシウム血症モデルでの摂食量低下に対して改善する作用があることが示された（表6）。

#### 【0311】

#### 【表6】

【0312】以上の結果より、本発明のキメラ抗体およびヒト型化抗体の悪性腫瘍に伴う高カルシウム血症の臨床諸症状の改善薬としての有用性が示された。

5. 高カルシウム血症に伴う血液pHの改善  
ヒト肺癌株L C - 6 の雌代および悪性腫瘍隨伴性高カルシウム血症モデルの作成は、上記2で示した方法と同様に実施した。作製したモデルは血中カルシウム濃度および体重を指標として各指標が平均化するように群分けし、以下の実験に使用した。

#### (1) 血液pH測定法

血液pHは、ヘパリン処理した注射筒を用い、心臓採血法にて血液を採取し、643自動C a++ / pHアナライザ(CIBA-CORNING)を用いて血液pHを測定した。

#### 【0313】(2) 抗体の投与

上記したように高カルシウム血症を発症したラット(H HMラット)を用い、ヒト型化抗PTH r P抗体を5mg / g、0.5ml / kg尾静脈内投与した(n = 3)。また、対照群には、生理食塩水を同様に静脈内に投与した(n = 2)。血液pH測定は、抗体投与群および対照群のいずれも、投与0(投与当日)、1、7日目に行った。結果は各群とともにその平均値で示した。

【0314】その結果、高カルシウム血症ラットの抗体投与前の血液pHは約7.49であり(正常ラットの血液pHはpH7.40±0.02)、本モデルは明らかに代謝性アルカローシスの病態を示していた。このモデルにヒト型化抗PTH r P抗体を投与すると、対照群ではほとんど血

配列：

AAATAGCCCT TGACCAGGCCA

20

#### 【0317】配列番号：2

配列の長さ：38

配列の型：核酸

配列：

CTGGTTCCGC CCACCTCTGA AGGTTCCAGA ATCGATAG

38

#### 【0318】配列番号：3

配列の長さ：28

配列の型：核酸

配列：

GGATCCCCGG CCAGTGGATA GACAGATG

28

#### 【0319】配列番号：4

配列の長さ：29

配列の型：核酸

配列：

GGATCCCCGG TCAGRGGAAG GTGGRACAA

29

#### 【0320】配列番号：5

配列の長さ：17

配列の型：核酸

配列：

GTTCCTCCAG TCAOGAC

17

#### 【0321】配列番号：6

配列の長さ：17

液pHの変化はないのに比べ、抗体投与群では投与7日目には正常ラットの血液pHに近い値まで改善していることが確認された。悪性腫瘍隨伴性高カルシウム血症(H HM)における臨床諸症状の一つに腎臓での重炭酸イオン( $\text{HCO}_3^-$ )の排泄阻害に基づく代謝性アルカローシスが報告されている。ヒト型化抗PTH r P抗体の投与は本モデルで血液pHを正常化したことから、H HMで見られる代謝性アルカローシスを改善する作用を有することが示された(図3)。以上の結果より、本発明のキメラ抗体及びヒト型化抗体は、悪性腫瘍に伴う高カルシウム血症の臨床諸症状を改善するための改善薬として有用であることが示された。

#### 【0315】

【発明の効果】本発明により、PTH r Pに対する抗体、キメラ抗体およびヒト型化抗体が提供される。これらの抗体は、ヒトにおける抗原性が低いことから、高カルシウム血症、低リン血症等の治療薬として有用である。

#### 【0316】

##### 【配列表】

配列番号：1

配列の長さ：20

配列の型：核酸

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

20

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

38

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

28

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

29

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

17

配列の型：核酸

鎖の数：一本鎖

|                                                                  |                   |
|------------------------------------------------------------------|-------------------|
| トポロジー：直鎖状                                                        | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| CAGGAACAG CTATGAC                                                | 17                |
| 【0322】配列番号：7                                                     | 鎖の数：一本鎖           |
| 配列の長さ：31                                                         | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| GTCTAAGCTT CCACCATGAA ACTTGGGGCT C                               | 31                |
| 【0323】配列番号：8                                                     | 鎖の数：一本鎖           |
| 配列の長さ：30                                                         | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| TGTTGGATCC CTGGAGAGAC AGTGACCAGA                                 | 30                |
| 【0324】配列番号：9                                                     | 鎖の数：一本鎖           |
| 配列の長さ：36                                                         | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| GTCTGAATT AAGCTTCCAC CATGGGGTTT GGCGCT                           | 36                |
| 【0325】配列番号：10                                                    | 鎖の数：一本鎖           |
| 配列の長さ：41                                                         | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| TTTCCCCGGGC CCTTGGTGGGA GGCTGAGGAG ACG                           |                   |
| GTGACCA G                                                        | 41                |
| 【0326】配列番号：11                                                    | 鎖の数：一本鎖           |
| 配列の長さ：109                                                        | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| GTCTGAATT AAGCTTAGTA CTGGCAGC CCAAGGCCA CCCAACGGTC ACCCTGTTC     | 60                |
| CGCCCTCTC TGAGGAGCTC CAAGCCAACA AGGCCAACT AGTGTGTC               | 109               |
| 【0327】配列番号：12                                                    | 鎖の数：一本鎖           |
| 配列の長さ：110                                                        | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| GTTTGGTGG TCTOCACTCC CGCCTTGACG GGCTGOCAT CTGCCTTICCA GCGCACTGTC | 60                |
| ACAGCTCCG GTTAGAAGTC ATGATCAGA CACACTATG TGCCCTITGT              | 110               |
| O                                                                |                   |
| 【0328】配列番号：13                                                    | 鎖の数：一本鎖           |
| 配列の長さ：98                                                         | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| GGAGTGGAGA CCACCAAACCC CTCCAAACAG AGC                            |                   |
| AACAAACA AGTACGCGGC CAGCAGCTAC                                   | 60                |
| CTGAGCTGA CGCCGAGCA GTGGAAGTCC CACAGAG                           | 98                |
| 【0329】配列番号：14                                                    | 鎖の数：一本鎖           |
| 配列の長さ：106                                                        | トポロジー：直鎖状         |
| 配列の型：核酸                                                          | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                              |                   |
| TGTTGAATT TTACTATGAA CATTCTGTAG GGCCACTGT CTTCCTCAGG GTGCTCCCTT  | 60                |
| CATGCGTGAC CTGGCAGCTG TAGCTTCTGT GGAGCTCCA CTGCTC                | 106               |

|               |           |         |         |                                                                                                                                                 |                                                 |
|---------------|-----------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 【0330】配列番号：15 | 配列の長さ：43  | 配列の型：核酸 | 配列：     | GTCCTGAATTC AAGCTTGTAA CTTGGCCAGC CCAAGGCCAA CCC                                                                                                | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0331】配列番号：16 | 配列の長さ：20  | 配列の型：核酸 | 配列：     | TGTTGAATTCTTACTATGAA                                                                                                                            | 20<br>鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA） |
| 【0332】配列番号：17 | 配列の長さ：39  | 配列の型：核酸 | 配列：     | CACAAAGTAC GCGGCCAGCA CCTAACCTGAG CCTGAGGCC                                                                                                     | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0333】配列番号：18 | 配列の長さ：39  | 配列の型：核酸 | 配列：     | GTAGCTGCTG GCGCGTACT TGTGTGCTG CTGTTGGA                                                                                                         | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0334】配列番号：19 | 配列の長さ：46  | 配列の型：核酸 | 配列：     | GTCCTGAATTC AAGCTTGTCT TAGGTGCAA CTGTGCTGC ACCATC                                                                                               | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0335】配列番号：20 | 配列の長さ：34  | 配列の型：核酸 | 配列：     | TGTTGAATTC TTACTAACAC TCTCCCTGT TGAA                                                                                                            | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0336】配列番号：21 | 配列の長さ：35  | 配列の型：核酸 | 配列：     | GTCCTAAGCTT CCACCATGGC CTGGACTCT CTCTT                                                                                                          | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0337】配列番号：22 | 配列の長さ：48  | 配列の型：核酸 | 配列：     | TGTTGAATTC AGATCTAACT ACTTACCTAG GACAGTGACC TTGGTCCC                                                                                            | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0338】配列番号：23 | 配列の長さ：128 | 配列の型：核酸 | 配列：     | GTCCTAAGCTT CCACCATGGG GTTGGGCTG AGCTGGTTT TCCTCGTTC TCTTTTAAGA<br>GGTGTCACTG GTCAGGTGCA GCTGGTGGAG TCTGGGGAG GCGTGGTCCA GCGTGGGAGG<br>TCCCTGAG | 鎖の数：一本鎖<br>トポロジー：直鎖状<br>配列の種類：他の核酸（合成DNA）       |
| 【0339】配列番号：24 | 配列の長さ：125 |         | 配列の型：核酸 |                                                                                                                                                 | 配列の種類：他の核酸（合成DNA）                               |

|                                                                                                                                                          |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| トポロジー：直鎖状                                                                                                                                                | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| ACCATAGTA GTGGTGGTAG TTACACCTAC TATCCAGACA GTGTGAAGGG GCGATTCAACC<br>ATCTCCAGAG ACAATTCCA GAACACGCTG TATCTGAAAGA TGAAACAGCTT GAGAGCTGAG<br>GACAC         | 60<br>120<br>125  |
| 【0340】配列番号：25                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：132                                                                                                                                                | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| CTTACCAAC TACTAATGGT TGCCACCCAC TCCAGCCCCCT TGCGCTGGAGC CTGGCGGACC<br>CAAGACATGC CATAGCTACT GAAGGTGAAT CCAGAGGCTG CACAGGAGAG TCTCAGGGAC<br>CTCCCAGGCT GG | 60<br>120<br>132  |
| 【0341】配列番号：26                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：110                                                                                                                                                | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| TGTTGGATCC CTGAGGGAGAC GGTGACCGAGG GTTCCCTGGC CCCAGTAAGC AAAGTAAGTC<br>ATAGTAGTCT GTCTCGACAA GTAATAACACAA GCGGTGCTC CAGCTCTCAG                           | 60<br>110         |
| 【0342】配列番号：27                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：30                                                                                                                                                 | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| GTCTAACGTT CCACCATGGG GTTTGGGCTG                                                                                                                         | 30                |
| 【0343】配列番号：28                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：30                                                                                                                                                 | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| TGTTGGATCC CTGAGGGAGAC GGTGACCCAGG                                                                                                                       | 30                |
| 【0344】配列番号：29                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：133                                                                                                                                                | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| ACAAAGCTTC CACCATGGCC TGGACTCTC TCTTCTCTT CTITGCTCTT CATTGCTCAG<br>GTTCTTCTC CCAGCTTGTC CTGACTCAAT CGCCCTCTGC CTCTGCCCTC CTGGGGAGCCT<br>CGGTCAAGCTT CAC  | 60<br>120<br>133  |
| 【0345】配列番号：30                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：118                                                                                                                                                | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| ACCAAGATGG AAGCCACAGC ACAGGTGATG GGATTCCTGA TCGCTTCTCA GGCTCCAGCT                                                                                        | 60                |
| CTGGGGCTGA GGGCTACCTC ACCATCTCCA GCCTCCAGTC TGAGGATGAG GCTGACTA                                                                                          | 118               |
| 【0346】配列番号：31                                                                                                                                            | 鎖の数：一本鎖           |
| 配列の長さ：128                                                                                                                                                | トポロジー：直鎖状         |
| 配列の型：核酸                                                                                                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                                                                                                      |                   |
| CTGTGGCTTC CATCTTGCTT AAGTTTCATC AAGTACGGAG GGCCCTTCTC TGCGCTGCTGC<br>TGATGCCATT CAATGGTGTA CCTACTGTGTC TGACTACTCA AGGTGCCAGGT GAGCTTGACC                | 60<br>120         |

【0347】配列番号：32

配列の長さ：114

配列の型：核酸

配列：

CTTGGATCCG GGCTGACCTA GGACGGTCAG TTTGGTCCCT CGCGCGAACAA CCCTCACAAA 60  
TGTGTCCTTA ATTGTATCAC CCACACCACA GATAATGTCGA GCCTCATCTT CAGA 114

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

【0348】配列番号：33

配列の長さ：17

配列の型：核酸

配列：

ACAAAGCTTC CACCATG 17

【0349】配列番号：34

配列の長さ：19

配列の型：核酸

配列：

CTTGGATCCG GGCTGACCT 19

【0350】配列番号：35

配列の長さ：75

配列の型：核酸

配列：

CTTGGATCCG GGCTGACCTA GGACGGTCAG TTTGGTCCCT CGCGCGAACAA CGTACACAAA 60  
TGTGTCCTTA ATTGT 75

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

【0351】配列番号：36

配列の長さ：43

配列の型：核酸

配列：

AAACGATCCT TAAGATCCAT CAAGTACCGA GGGGGCTCTT CTG 43

【0352】配列番号：37

配列の長さ：46

配列の型：核酸

配列：

ACAAAGCTTA GCGCTACCTC ACCATCTCCA GCCTCAGGA TGAGGA 46

【0353】配列番号：38

配列の長さ：111

配列の型：核酸

配列：

CTTGGATCCG GGCTGACCTA GGACGGTCAG TTTGGTCCCT CGCGCGAACAA CGTACACAAA 60  
TGTGTCCTTA ATTGTATCAC CCACACCACA GATAATGTCGA GCCTCATCTT C 111

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

【0354】配列番号：39

配列の長さ：42

配列の型：核酸

配列：

CTTCTCTGGC TGCTGCTGAT ACCATTCAAT GGTGTAGGTA CT 42

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

【0355】配列番号：40

配列の長さ：26

配列の型：核酸

配列：

CGAGGGCCCC TCTCTGGCTG CTGCTG

鎖の数：一本鎖

トポロジー：直鎖状

配列の種類：他の核酸（合成DNA）

|                                                                          |                   |
|--------------------------------------------------------------------------|-------------------|
| 【0356】配列番号：41                                                            | 鎖の数：一本鎖           |
| 配列の長さ：35                                                                 | トポロジー：直鎖状         |
| 配列の型：核酸                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                      |                   |
| GAGAAGGGCC CTARGTACST GATGRAWCTT AAGCA                                   | 35                |
| 【0357】配列番号：42                                                            | 鎖の数：一本鎖           |
| 配列の長さ：35                                                                 | トポロジー：直鎖状         |
| 配列の型：核酸                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                      |                   |
| CACGAATTCA CTATCGATTG TGGAACCTTC AGAGG                                   | 35                |
| 【0358】配列番号：43                                                            | 鎖の数：一本鎖           |
| 配列の長さ：18                                                                 | トポロジー：直鎖状         |
| 配列の型：核酸                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                      |                   |
| GGCTTGGAGC TCCTCAGA                                                      | 18                |
| 【0359】配列番号：44                                                            | 鎖の数：一本鎖           |
| 配列の長さ：20                                                                 | トポロジー：直鎖状         |
| 配列の型：核酸                                                                  | 配列の種類：他の核酸（合成DNA） |
| 配列：                                                                      |                   |
| GACAGTGTTT CAAAGTTTT                                                     | 20                |
| 【0360】配列番号：45                                                            | トポロジー：直鎖状         |
| 配列の長さ：118                                                                | 配列の種類：タンパク質       |
| 配列の型：アミノ酸                                                                |                   |
| 配列：                                                                      |                   |
| Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser Phe Ser Leu Gly<br>1 5 10 15 |                   |
| Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr<br>20 25 30  |                   |
| Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Leu Lys Pro Pro Lys<br>35 40 45  |                   |
| Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp<br>50 55 60  |                   |
| Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Gly Ala Asp Arg<br>65 70 75      |                   |
| Tyr Leu Ser Ile Ser Asn Ile Gln Pro Glu Asp Glu Ala Met Tyr<br>80 85 90  |                   |
| Ile Cys Gly Val Gly Asp Thr Ile Lys Gln Phe Val Tyr Val<br>95 100 105    |                   |
| Phe Gly Gly Gly Thr Lys Val Thr Val Leu Gly Gln Pro<br>110 115           |                   |
| 【0361】配列番号：46                                                            | トポロジー：直鎖状         |
| 配列の長さ：118                                                                | 配列の種類：タンパク質       |
| 配列の型：アミノ酸                                                                |                   |
| 配列：                                                                      |                   |
| Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu Val Lys Pro Gly<br>1 5 10 15 |                   |
| Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser<br>20 25 30  |                   |
| Ser Tyr Gly Met Ser Trp Ile Arg Gln Thr Pro Asp Lys Arg Leu<br>35 40 45  |                   |

Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr  
                   50                  55                  60  
 Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala  
                   65                  70                  75  
 Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp  
                   80                  85                  90  
 Thr Ala Met Phe Tyr Cys Ala Arg Gln Thr Thr Met Thr Tyr Phe  
                   95                  100                105  
 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala  
                   110                  115

【0362】配列番号：47

配列の長さ：116

配列の型：アミノ酸

配列：

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly  
   1                  5                  10                  15  
 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr  
   20                  25                  30  
 Tyr Thr Ile Glu Trp His Gln Gln Gln Pro Glu Lys Gly Pro Arg  
   35                  40                  45  
 Tyr Leu Met Lys Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp  
   50                  55                  60  
 Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg  
   65                  70                  75  
 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr  
   80                  85                  90  
 Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val  
   95                  100                105  
 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly  
                   110                  115

トポロジー：直鎖状

配列の種類：タンパク質

【0363】配列番号：48

配列の長さ：118

配列の型：アミノ酸

配列：

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly  
   1                  5                  10                  15  
 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr  
   20                  25                  30  
 Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys  
   35                  40                  45  
 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp  
   50                  55                  60  
 Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg  
   65                  70                  75  
 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr  
   80                  85                  90  
 Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val  
   95                  100                105  
 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro  
                   110                  115

トポロジー：直鎖状

配列の種類：タンパク質

【0364】配列番号：49

配列の長さ：118

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser | Ala | Ser | Leu | Gly |
| 1   |     |     |     |     |     |     | 5   |     | 10  |     |     |     | 15  |     |
| Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser | Gln | His | Ser | Thr |
|     |     |     |     |     |     |     | 20  |     | 25  |     |     | 30  |     |     |
| Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu | Lys | Gly | Pro | Lys |
|     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |
| Tyr | Val | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His | Ser | Thr | Gly | Asp |
|     |     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |
| Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser | Gly | Ala | Glu | Arg |
|     |     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     |
| Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp | Glu | Ala | Asp | Tyr |
|     |     |     |     |     |     |     | 80  |     | 85  |     |     | 90  |     |     |
| Tyr | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln | Phe | Val | Tyr | Val |
|     |     |     |     |     |     |     | 95  |     | 100 |     |     | 105 |     |     |
| Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly | Gln | Pro |     |     |
|     |     |     |     |     |     |     | 110 |     | 115 |     |     |     |     |     |

【0365】配列番号：50

配列の長さ：118

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser | Ala | Ser | Leu | Gly |
| 1   |     |     |     |     |     |     | 5   |     | 10  |     |     | 15  |     |     |
| Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser | Gln | His | Ser | Thr |
|     |     |     |     |     |     |     | 20  |     | 25  |     |     | 30  |     |     |
| Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu | Lys | Gly | Pro | Arg |
|     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |
| Tyr | Leu | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His | Ser | Thr | Gly | Asp |
|     |     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |
| Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser | Gly | Ala | Glu | Arg |
|     |     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     |     |
| Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp | Glu | Ala | Asp | Tyr |
|     |     |     |     |     |     |     | 80  |     | 85  |     |     | 90  |     |     |
| Tyr | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln | Phe | Val | Tyr | Val |
|     |     |     |     |     |     |     | 95  |     | 100 |     |     | 105 |     |     |
| Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly | Gln | Pro |     |     |
|     |     |     |     |     |     |     | 110 |     | 115 |     |     |     |     |     |

【0366】配列番号：51

配列の長さ：118

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser | Ala | Ser | Leu | Gly |
| 1   |     |     |     |     |     |     | 5   |     | 10  |     |     | 15  |     |     |
| Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser | Gln | His | Ser | Thr |
|     |     |     |     |     |     |     | 20  |     | 25  |     |     | 30  |     |     |
| Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu | Lys | Gly | Pro | Arg |
|     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |

Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp  
                   50                  55                  60  
 Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg  
                   65                  70                  75  
 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr  
                   80                  85                  90  
 Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val  
                   95                  100                105  
 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro  
                   110                  115

【0367】配列番号：52

配列の長さ：118

配列の型：アミノ酸

配列：

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly  
   1                  5                  10                  15  
 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr  
   20                  25                  30  
 Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Lys  
   35                  40                  45  
 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp  
   50                  55                  60  
 Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg  
   65                  70                  75  
 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr  
   80                  85                  90  
 Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val  
   95                  100                105  
 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro  
   110                  115

トポロジー：直鎖状

配列の種類：タンパク質

【0368】配列番号：53

配列の長さ：118

配列の型：アミノ酸

配列：

Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser Ala Ser Leu Gly  
   1                  5                  10                  15  
 Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser Gln His Ser Thr  
   20                  25                  30  
 Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu Lys Gly Pro Arg  
   35                  40                  45  
 Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His Ser Thr Gly Asp  
   50                  55                  60  
 Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser Gly Ala Glu Arg  
   65                  70                  75  
 Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp Glu Ala Asp Tyr  
   80                  85                  90  
 Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln Phe Val Tyr Val  
   95                  100                105  
 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro  
   110                  115

トポロジー：直鎖状

配列の種類：タンパク質

【0369】配列番号：54

配列の長さ：118

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser | Ala | Ser | Leu | Gly |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |
| Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser | Gln | His | Ser | Thr |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |
| Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu | Lys | Gly | Pro | Lys |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |
| Tyr | Val | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His | Ser | Thr | Gly | Asp |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |
| Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser | Gly | Ala | Glu | Arg |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     |
| Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp | Glu | Ala | Asp | Tyr |
|     |     |     |     |     |     | 80  |     |     | 85  |     |     | 90  |     |     |
| Ile | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln | Phe | Val | Tyr | Val |
|     |     |     |     |     |     | 95  |     |     | 100 |     |     | 105 |     |     |
| Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly | Gln | Pro |     |     |
|     |     |     |     |     |     | 110 |     |     | 115 |     |     |     |     |     |

【0370】配列番号：55

配列の長さ：118

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser | Ala | Ser | Leu | Gly |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |
| Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser | Gln | His | Ser | Thr |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |
| Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu | Lys | Gly | Pro | Arg |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |
| Tyr | Val | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His | Ser | Thr | Gly | Asp |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |
| Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser | Gly | Ala | Glu | Arg |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     |
| Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp | Glu | Ala | Asp | Tyr |
|     |     |     |     |     |     | 80  |     |     | 85  |     |     | 90  |     |     |
| Ile | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln | Phe | Val | Tyr | Val |
|     |     |     |     |     |     | 95  |     |     | 100 |     |     | 105 |     |     |
| Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly | Gln | Pro |     |     |
|     |     |     |     |     |     | 110 |     |     | 115 |     |     |     |     |     |

【0371】配列番号：56

配列の長さ：118

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：タンパク質

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | Val | Gln | Leu | Val | Glu | Ser | Gly | Gly | Val | Val | Gln | Pro | Gly |     |
| 1   |     |     |     |     | 5   |     |     |     | 10  |     |     | 15  |     |     |
| Arg | Ser | Leu | Arg | Leu | Ser | Cys | Ala | Ala | Ser | Gly | Phe | Thr | Phe | Ser |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |
| Ser | Tyr | Gly | Met | Ser | Trp | Val | Arg | Gln | Ala | Pro | Gly | Lys | Gly | Leu |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |

Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser Tyr Thr Tyr Tyr  
                      50                     55                     60  
 Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser  
                      65                     70                     75  
 Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp  
                      80                     85                     90  
 Thr Ala Val Tyr Tyr Cys Ala Arg Gln Thr Thr Met Thr Tyr Phe  
                      95                     100                    105  
 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser  
                      110                     115

【0372】配列番号：57

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

配列：

|                                                             |     |
|-------------------------------------------------------------|-----|
| ATG AAC TTC GGG CTC AGC TTG ATT TTC CTT GCC CTC ATT TTA AAA | 45  |
| Met Asn Phe Gly Leu Ser Leu Ile Phe Leu Ala Leu Ile Leu Lys |     |
| -15                             -10                     -5  |     |
| GGT GTC CAG TGT GAG GTG CAA CTG GTG GAG TCT GGG GGA GAC TTA | 90  |
| Gly Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Asp Leu |     |
| 1                             5                         10  |     |
| GTG AAG CCT GGA GGG TCC CTG AAA CTC TCC TGT GCA GCC TCT GGA | 135 |
| Val Lys Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly |     |
| 15                             20                     25    |     |
| TTC ACT TTC AGT AGC TAT GGC ATG TCT TGG ATT CGC CAG ACT CCA | 180 |
| Phe Thr Phe Ser Ser Tyr Gly Met Ser Trp Ile Arg Gln Thr Pro |     |
| 30                             35                     40    |     |
| GAC AAG AGG CTG GAG TGG GTC GCA ACC ATT AGT AGT GGT GGT AGT | 225 |
| Asp Lys Arg Leu Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser |     |
| 45                             50                     55    |     |
| TAC ACC TAC TAT CCA GAC AGT GTG AAG GGG CGA TTC ACC ATC TCC | 270 |
| Tyr Thr Tyr Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser     |     |
| 60                             65                     70    |     |
| AGA GAC AAT GCC AAG AAC ACC CTA TAC CTG CAA ATG AGC AGT CTG | 315 |
| Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu |     |
| 75                             80                     85    |     |
| AAG TCT GAG GAC ACA GCC ATG TTT TAC TGT GCA AGA CAG ACT ACT | 360 |
| Lys Ser Glu Asp Thr Ala Met Phe Tyr Cys Ala Arg Gln Thr Thr |     |
| 90                             95                     100   |     |
| ATG ACT TAC TTT GCT TAC TGG GGC CAA GGG ACT CTG GTC ACT GTC | 405 |
| Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val |     |
| 105                             110                     115 |     |
| TCT GCA 411                                                 |     |
| Ser Ala                                                     |     |

【0373】配列番号：58

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

配列：

|                                                             |    |
|-------------------------------------------------------------|----|
| ATG GGG TTT GGG CTG AGC TGG GTT TTC CTC GTT GCT CTT TTA AGA | 45 |
| Met Gly Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg |    |
| -15                             -10                     -5  |    |

|                                                             |     |
|-------------------------------------------------------------|-----|
| GGT GTC CAG TGT CAG GTG CAG CTG GTG GAG TCT GGG GGA GGC GTG | 90  |
| Gly Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val |     |
| 1 5 10                                                      |     |
| GTC CAG CCT GGG AGG TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA | 135 |
| Val Gln Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly |     |
| 15 20 25                                                    |     |
| TTC ACC TTC AGT AGC TAT GGC ATG TCT TGG GTC CGC CAG GCT CCA | 180 |
| Phe Thr Phe Ser Ser Tyr Gly Met Ser Trp Val Arg Gln Ala Pro |     |
| 30 35 40                                                    |     |
| GCG AAG GGG CTG GAG TGG GTG GCA ACC ATT AGT AGT GGT GGT AGT | 225 |
| Gly Lys Gly Leu Glu Trp Val Ala Thr Ile Ser Ser Gly Gly Ser |     |
| 45 50 55                                                    |     |
| TAC ACC TAC TAT CCA GAC AGT GTG AAG GGG CGA TTC ACC ATC TOC | 270 |
| Tyr Thr Tyr Tyr Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser |     |
| 60 65 70                                                    |     |
| AGA GAC AAT TCC AAC AAC AGC CTG TAT CTG CAA ATG AAC AGC CTG | 315 |
| Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu |     |
| 75 80 85                                                    |     |
| AGA GCT GAG GAC AGC GCT GTG TAT TAC TGT GCG AGA CAG ACT ACT | 360 |
| Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gln Thr Thr |     |
| 90 95 100                                                   |     |
| ATG ACT TAC TTT GCT TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC | 405 |
| Met Thr Tyr Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val |     |
| 105 110 115                                                 |     |
| TCC TCA 411                                                 |     |
| Ser Ser                                                     |     |

【0374】配列番号：59

配列の長さ：11

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列：

Lys Ala Ser Gln Asp Val Asn Thr Ala Val Ala

【0375】配列番号：60

10

配列の長さ：7

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列：

Ser Ala Ser Asn Arg Tyr Thr

【0376】配列番号：61

5

配列の長さ：9

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列：

Ser Ile Phe Gly Asp Gly Asp Thr Arg Tyr Ser Gln Lys Phe Lys Gly

1

5

10

15

配列：

Gln Gln His Tyr Ser Thr Pro Phe Thr

【0377】配列番号：62

配列の長さ：5

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列：

Pro Tyr Trp Met Gln

【0378】配列番号：63

5

配列の長さ：16

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

【0379】配列番号：64

配列の長さ：11

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：cDNA to mRNA

配列：

Gly Leu Arg Arg Gly Gly Tyr Tyr Phe Asp Tyr

【0380】配列番号：65

10

配列：

ATG GCC TGG ACT CCT CTC TTC TTC TTT GTT CTT CAT TGC TCA 45

Met Ala Trp Thr Pro Leu Phe Phe Phe Val Leu His Cys Ser  
-15 -10 -5

GGT TCT TTC TCC CAA CTT GTG CTC ACT CAG TCA TCT TCA GCC TCT 90

Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Ser Ser Ala Ser  
1 5 10

TTC TCC CTG GGA GCC TCA GCA AAA CTC ACG TGC ACC TTG AGT AGT 135

Phe Ser Leu Gly Ala Ser Ala Lys Leu Thr Cys Thr Leu Ser Ser  
15 20 25

CAG CAC AGT ACG TAC ACC ATT GAA TTG TAT CAG CAA CAG CCA CTC 180

Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Leu  
30 35 40

AAG CCT CCT AAG TAT GTG ATG GAT CTT AAG CAA GAT GGA AGC CAC 225

Lys Pro Pro Lys Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His  
45 50 55

AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCT GGA TCC AGC TCT 270

Ser Thr Gly Asp Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser  
60 65 70

GGT GCT GAT CGC TAC CTT AGC ATT TCC AAC ATC ATC CAG CCA GAA GAT 315

Gly Ala Asp Arg Tyr Leu Ser Ile Ser Asn Ile Gln Pro Glu Asp  
75 80 85

GAA GCA ATG TAC ATC TGT GGT GGT GAT ACA ATT AAG GAA CAA 360

Glu Ala Met Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln  
90 95 100

ITT GTG TAT GTT TTC GGC GGT GGG ACC AAG GTC ACT GTC CTA GGT 405

Phe Val Tyr Val Phe Gly Gly Tha Lys Val Thr Val Leu Gly  
105 110 115

CAG CCC 411

Gln Pro

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：cDNA to mRNA

配列：

ATG GCC TGG ACT CCT CTC TTC TTC TTT GTT CTT CAT TGC TCA 45

Met Ala Trp Thr Pro Leu Phe Phe Phe Val Leu His Cys Ser  
-15 -10 -5

GGT TCT TTC TCC CAG CTT GTG CTC ACT CAA TCG CCC TCT GCC TCT 90

Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser  
1 5 10

GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT 135

|                                                             |     |     |
|-------------------------------------------------------------|-----|-----|
| Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser |     |     |
| 15                                                          | 20  | 25  |
| CAG CAC AGT ACG TAC ACC ATT GAA TGG CAT CAG CAG CAG CCA GAG | 180 |     |
| Gln His Ser Thr Tyr Thr Ile Glu Trp His Gln Gln Gln Pro Glu |     |     |
| 30                                                          | 35  | 40  |
| AAG GGC CCT CGG TAC TTG ATG AAA CTT AAC GAA GAT GGA AGC CAC | 225 |     |
| Lys Gly Pro Arg Tyr Leu Met Lys Leu Lys Gln Asp Gly Ser His |     |     |
| 45                                                          | 50  | 55  |
| AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT | 270 |     |
| Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser |     |     |
| 60                                                          | 65  | 70  |
| GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT | 315 |     |
| Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp |     |     |
| 75                                                          | 80  | 85  |
| GAG GCT GAC TAT TAC TGT GTG GGT GAT ACA ATT AAG GAA CAA     | 360 |     |
| Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln |     |     |
| 90                                                          | 95  | 100 |
| TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGT | 405 |     |
| Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly |     |     |
| 105                                                         | 110 | 115 |

【0382】配列番号: 6 7

鎖の数: 二本鎖

配列の長さ: 411

トポロジー: 直鎖状

配列の型: 核酸

配列の種類: c DNA t o mRNA

配列:

|                                                             |     |     |
|-------------------------------------------------------------|-----|-----|
| ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA | 45  |     |
| Met Ala Trp Thr Pro Leu Phe Phe Phe Val Leu His Cys Ser     |     |     |
| -15                                                         | -10 | -5  |
| GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT | 90  |     |
| Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser |     |     |
| 1                                                           | 5   | 10  |
| GCC TCC CTG GGA GCC TCG GTC AAC CTC ACC TGC ACC TTG AGT AGT | 135 |     |
| Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser |     |     |
| 15                                                          | 20  | 25  |
| CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG | 180 |     |
| Gln His Ser Thr Tyr Thr Ile Glu Trp Tyr Gln Gln Gln Pro Glu |     |     |
| 30                                                          | 35  | 40  |
| AAG GGC CCT AAC TAC CTG ATG GAT CTT AAC GAA GAT GGA AGC CAC | 225 |     |
| Lys Gly Pro Lys Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His |     |     |
| 45                                                          | 50  | 55  |
| AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT | 270 |     |
| Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser |     |     |
| 60                                                          | 65  | 70  |
| GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT | 315 |     |
| Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp |     |     |
| 75                                                          | 80  | 85  |
| GAG GCT GAC TAT TAC TGT GTG GGT GAT ACA ATT AAG GAA CAA     | 360 |     |
| Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln |     |     |
| 90                                                          | 95  | 100 |
| TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC | 405 |     |
| Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly |     |     |

|             |     |     |
|-------------|-----|-----|
| 105         | 110 | 115 |
| CAG CCC 411 |     |     |
| Gln Pro     |     |     |

【0383】配列番号：68

配列の長さ：411

配列の型：核酸

配列：

|                                                             |     |     |
|-------------------------------------------------------------|-----|-----|
| ATG GCC TGG ACT CCT CTC TTC TTC TTT GTT CTT CAT TGC TCA     | 45  |     |
| Met Ala Trp Thr Pro Leu Phe Phe Phe Val Leu His Cys Ser     |     |     |
| -15                                                         | -10 | -5  |
| GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT | 90  |     |
| Gly Ser Phe Ser Gln Leu Val Thr Gln Ser Pro Ser Ala Ser     |     |     |
| 1                                                           | 5   | 10  |
| GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT | 135 |     |
| Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser |     |     |
| 15                                                          | 20  | 25  |
| CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG | 180 |     |
| Gln His Ser Thr Tyr Thr Ile Gln Trp Tyr Gln Gln Gln Pro Glu |     |     |
| 30                                                          | 35  | 40  |
| AAG GGC CCT AAG TAC GTG ATG GAT CTT AAG CAA GAT GGA AGC CAC | 225 |     |
| Lys Gly Pro Lys Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His |     |     |
| 45                                                          | 50  | 55  |
| AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT | 270 |     |
| Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser |     |     |
| 60                                                          | 65  | 70  |
| GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT | 315 |     |
| Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp |     |     |
| 75                                                          | 80  | 85  |
| GAG GCT GAC TAT TAC TGT GGT GTG GGT GAT ACA ATT AAG GAA CAA | 360 |     |
| Glu Ala Asp Tyr Tyr Cys Gly Val Gly Asp Thr Ile Lys Glu Gln |     |     |
| 90                                                          | 95  | 100 |
| TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC | 405 |     |
| Phe Val Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly |     |     |
| 105                                                         | 110 | 115 |
| CAG CCC 411                                                 |     |     |
| Gln Pro                                                     |     |     |

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

【0384】配列番号：69

配列の長さ：411

配列の型：核酸

配列：

|                                                             |     |    |
|-------------------------------------------------------------|-----|----|
| ATG GCC TGG ACT CCT CTC TTC TTC TTT GTT CTT CAT TGC TCA     | 45  |    |
| Met Ala Trp Thr Pro Leu Phe Phe Phe Val Leu His Cys Ser     |     |    |
| -15                                                         | -10 | -5 |
| GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT | 90  |    |
| Gly Ser Phe Ser Gln Leu Val Thr Gln Ser Pro Ser Ala Ser     |     |    |
| 1                                                           | 5   | 10 |
| GCC TCC CTG GGA GCC TCG GTC AAG CTC ACC TGC ACC TTG AGT AGT | 135 |    |
| Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser |     |    |
| 15                                                          | 20  | 25 |
| CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG | 180 |    |

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Gln | His | Ser | Thr | Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu |     |
| 30  |     |     |     |     |     |     | 35  |     |     | 40  |     |     |     |     |     |
| AAG | GCC | CCT | AGG | TAC | CTG | ATG | GAT | CTT | AAA | GAT | GGA | AGC | CAC | 225 |     |
| Lys | Gly | Pro | Arg | Tyr | Leu | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His |     |
| 45  |     |     |     |     |     |     | 50  |     |     | 55  |     |     |     |     |     |
| AGC | ACA | GGT | GAT | GGG | ATT | CCT | GAT | CGC | TTC | TCA | GGC | TCC | AGC | TCT | 270 |
| Ser | Thr | Gly | Asp | Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser |     |
| 60  |     |     |     |     |     |     | 65  |     |     | 70  |     |     |     |     |     |
| GGG | GCT | GAG | CGC | TAC | CTC | ACC | ATC | TCC | AGC | CTC | CAG | TCT | GAG | GAT | 315 |
| Gly | Ala | Glu | Arg | Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp |     |
| 75  |     |     |     |     |     |     | 80  |     |     | 85  |     |     |     |     |     |
| GAG | GCT | GAC | TAT | TAC | TGT | GGT | GAT | ACA | ATT | AAG | GAA | CAA |     | 360 |     |
| Glu | Ala | Asp | Tyr | Tyr | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln |     |
| 90  |     |     |     |     |     |     | 95  |     |     | 100 |     |     |     |     |     |
| TTT | GTG | TAC | GTG | TTC | GGC | GGG | ACC | AAA | CTG | ACC | GTC | CTA | GGC |     | 405 |
| Phe | Val | Tyr | Val | Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly |     |
| 105 |     |     |     |     |     |     | 110 |     |     | 115 |     |     |     |     |     |
| CAG | CCC |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gln | Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

【0385】配列番号：70

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA    t o    mRNA

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ATG | GCC | TGG | ACT | CCT | CTC | TTC | TTC | TTC | TIT | GTT | CIT | CAT | TGC | TCA | 45  |
| Met | Ala | Trp | Thr | Pro | Leu | Phe | Phe | Phe | Val | Leu | His | Cys | Ser |     |     |
| -15 |     |     |     |     |     | -10 |     |     |     |     | -5  |     |     |     |     |
| GGT | TCT | TTC | TCC | CAG | CCT | GTG | CTG | ACT | CAA | TGC | CCC | TCT | GCC | TCT | 90  |
| Gly | Ser | Phe | Ser | Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser |     |
| 1   |     |     |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     |
| GCC | TCC | CTG | GGG | GCC | TCG | GTC | AAG | CTC | ACC | TGC | ACC | TTG | AGT | AGT | 135 |
| Ala | Ser | Leu | Gly | Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser |     |
| 15  |     |     |     |     |     | 20  |     |     |     |     | 25  |     |     |     |     |
| CAG | CAC | AGT | ACG | TAC | ACC | ATT | GAA | TGG | TAT | CAG | CAG | CAG | CCA | GAG | 180 |
| Gln | His | Ser | Thr | Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu |     |
| 30  |     |     |     |     |     | 35  |     |     |     |     | 40  |     |     |     |     |
| AAG | GCC | CCT | AGG | TAC | GTG | ATG | GAT | CTT | AAA | GAT | GGA | AGC | CAC |     | 225 |
| Lys | Gly | Pro | Arg | Tyr | Val | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His |     |
| 45  |     |     |     |     |     | 50  |     |     |     |     | 55  |     |     |     |     |
| AGC | ACA | GGT | GAT | GGG | ATT | CCT | GAT | CGC | TTC | TCA | GGC | TCC | AGC | TCT | 270 |
| Ser | Thr | Gly | Asp | Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser |     |
| 60  |     |     |     |     |     | 65  |     |     |     |     | 70  |     |     |     |     |
| GGG | GCT | GAG | CGC | TAC | CTC | ACC | ATC | TCC | AGC | CTC | CAG | TCT | GAG | GAT | 315 |
| Gly | Ala | Glu | Arg | Tyr | Leu | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp |     |     |
| 75  |     |     |     |     |     | 80  |     |     |     |     | 85  |     |     |     |     |
| GAG | GCT | GAC | TAT | TAC | TGT | GGT | GTG | GAT | ACA | ATT | AAG | GAA | CAA |     | 360 |
| Glu | Ala | Asp | Tyr | Tyr | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln |     |
| 90  |     |     |     |     |     | 95  |     |     |     |     | 100 |     |     |     |     |
| TTT | GTG | TAC | GTG | TTC | GGC | GGG | ACC | AAA | CTG | ACC | GTC | CTA | GGC |     | 405 |
| Phe | Val | Tyr | Val | Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly |     |
| 105 |     |     |     |     |     | 110 |     |     |     |     | 115 |     |     |     |     |

CAG CCC 411

Gln Pro

【0386】配列番号：71

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ATG | GCC | TGG | ACT | CCT | CTC | TTC | TTC | TTC | TTT | GTG | CIT | CAT | TGC | TCA | 45  |
| Met | Ala | Trp | Thr | Pro | Leu | Phe | Phe | Phe | Val | Leu | His | Cys | Ser |     |     |
|     |     |     |     |     |     | -15 |     |     |     |     |     |     |     | -5  |     |
| GGT | TCT | TTC | TCC | CAG | CIT | GTG | CTG | ACT | CAA | TCG | CCC | TCT | GCC | TCT | 90  |
| Gly | Ser | Phe | Ser | Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser |     |
|     |     |     |     |     |     | 1   | 5   |     |     |     |     |     | 10  |     |     |
| GCC | TCC | CTG | GGG | GCC | TCG | GTC | AAG | CTC | ACC | TGC | ACC | TTG | AGT | AGT | 135 |
| Ala | Ser | Leu | Gly | Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser |     |
|     |     |     |     |     |     | 15  | 20  |     |     |     |     | 25  |     |     |     |
| CAG | CAC | AGT | AGC | TAC | ACC | ATT | GAA | TGG | TAT | CAG | CAG | CCA | GAG |     | 180 |
| Gln | His | Ser | Thr | Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu |     |
|     |     |     |     |     |     | 30  | 35  |     |     |     |     | 40  |     |     |     |
| AAG | GCC | CCT | AAG | TAC | CTG | ATG | GAT | CTT | AAG | CAA | GAT | GGA | AGC | CAC | 225 |
| Lys | Gly | Pro | Lys | Tyr | Leu | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His |     |
|     |     |     |     |     |     | 45  | 50  |     |     |     |     | 55  |     |     |     |
| AGC | ACA | GGT | GAT | GGG | ATT | CCT | GAT | GGC | TTC | TCA | GGC | TCC | AGC | TCT | 270 |
| Ser | Thr | Gly | Asp | Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser |     |
|     |     |     |     |     |     | 60  | 65  |     |     |     |     | 70  |     |     |     |
| GGG | GCT | GAG | CGC | TAC | CTC | ACC | ATC | TCC | AGC | CTC | CAG | TCT | GAG | GAT | 315 |
| Gly | Ala | Glu | Arg | Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp |     |
|     |     |     |     |     |     | 75  | 80  |     |     |     |     | 85  |     |     |     |
| GAG | GCT | GAC | TAT | ATC | TGT | GGT | GTG | GGT | GAT | ACA | ATT | AAG | GAA | CAA | 360 |
| Glu | Ala | Asp | Tyr | Ile | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln |     |
|     |     |     |     |     |     | 90  | 95  |     |     |     |     | 100 |     |     |     |
| TTT | GTG | TAC | GTG | TTC | GGC | GGG | ACC | AAA | CTG | ACC | GTC | CTA | GGC |     | 405 |
| Phe | Val | Tyr | Val | Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly |     |
|     |     |     |     |     |     | 105 |     | 110 |     |     |     | 115 |     |     |     |
| CAG | CCC | 411 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gln | Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

【0387】配列番号：72

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ATG | GCC | TGG | ACT | CCT | CTC | TTC | TTC | TTC | TTT | GTG | CIT | CAT | TGC | TCA | 45  |
| Met | Ala | Trp | Thr | Pro | Leu | Phe | Phe | Phe | Val | Leu | His | Cys | Ser |     |     |
|     |     |     |     |     |     | -15 |     |     |     |     |     |     | -5  |     |     |
| GGT | TCT | TTC | TCC | CAG | CIT | GTG | CTG | ACT | CAA | TCG | CCC | TCT | GCC | TCT | 90  |
| Gly | Ser | Phe | Ser | Gln | Leu | Val | Leu | Thr | Gln | Ser | Pro | Ser | Ala | Ser |     |
|     |     |     |     |     |     | 1   | 5   |     |     |     |     | 10  |     |     |     |
| GCC | TCC | CTG | GGG | GCC | TCG | AAG | CTC | ACC | TGC | ACC | TTG | AGT | AGT |     | 135 |
| Ala | Ser | Leu | Gly | Ala | Ser | Val | Lys | Gly | Thr | Cys | Thr | Leu | Ser | Ser |     |
|     |     |     |     |     |     | 15  | 20  |     |     |     |     | 25  |     |     |     |
| CAG | CAC | AGT | AGC | TAC | ACC | ATT | GAA | TGG | TAT | CAG | CAG | CCA | GAG |     | 180 |
| Gln | His | Ser | Thr | Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

|                                                             |     |     |     |
|-------------------------------------------------------------|-----|-----|-----|
| 30                                                          | 35  | 40  |     |
| AAG GGC CCT AGG TAC CTG ATG GAT CTT AAG CAA GAT GGA AGC CAC |     |     | 225 |
| Lys Gly Pro Arg Tyr Leu Met Asp Leu Lys Gln Asp Gly Ser His |     |     |     |
| 45                                                          | 50  | 55  |     |
| AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT |     |     | 270 |
| Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser |     |     |     |
| 60                                                          | 65  | 70  |     |
| GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT |     |     | 315 |
| Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp |     |     |     |
| 75                                                          | 80  | 85  |     |
| GAG GCT GAC TAT ATC TGT GTG GGT GAT ACA ATT AAG GAA CAA     |     |     | 360 |
| Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln |     |     |     |
| 90                                                          | 95  | 100 |     |
| TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC |     |     | 405 |
| Phe Val Tyr Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly     |     |     |     |
| 105                                                         | 110 | 115 |     |
| CAG CCC 411                                                 |     |     |     |
| Gln Pro                                                     |     |     |     |

【0388】配列番号：73

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：cDNA t o mRNA

配列：

|                                                             |     |     |     |
|-------------------------------------------------------------|-----|-----|-----|
| ATG GCC TGG ACT CCT CTC TTC TTC TTC TTT GTT CTT CAT TGC TCA |     |     | 45  |
| Met Ala Trp Thr Pro Leu Phe Phe Phe Val Leu His Cys Ser     |     |     |     |
| -15                                                         | -10 | -5  |     |
| GGT TCT TTC TCC CAG CTT GTG CTG ACT CAA TCG CCC TCT GCC TCT |     |     | 90  |
| Gly Ser Phe Ser Gln Leu Val Leu Thr Gln Ser Pro Ser Ala Ser |     |     |     |
| 1                                                           | 5   | 10  |     |
| GCC TCC CTG GGA GCC TCG GTC AAC CTC ACC TGC ACC TTG AGT AGT |     |     | 135 |
| Ala Ser Leu Gly Ala Ser Val Lys Leu Thr Cys Thr Leu Ser Ser |     |     |     |
| 15                                                          | 20  | 25  |     |
| CAG CAC AGT ACG TAC ACC ATT GAA TGG TAT CAG CAG CAG CCA GAG |     |     | 180 |
| Gln His Ser Thr Tyr Thr Ile Gln Trp Tyr Gln Gln Gln Pro Glu |     |     |     |
| 30                                                          | 35  | 40  |     |
| AAG GGC CCT AAG TAC GTG ATG GAT CTT AAG CAA GAT GGA AGC CAC |     |     | 225 |
| Lys Gly Pro Lys Tyr Val Met Asp Leu Lys Gln Asp Gly Ser His |     |     |     |
| 45                                                          | 50  | 55  |     |
| AGC ACA GGT GAT GGG ATT CCT GAT CGC TTC TCA GGC TCC AGC TCT |     |     | 270 |
| Ser Thr Gly Asp Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser |     |     |     |
| 60                                                          | 65  | 70  |     |
| GGG GCT GAG CGC TAC CTC ACC ATC TCC AGC CTC CAG TCT GAG GAT |     |     | 315 |
| Gly Ala Glu Arg Tyr Leu Thr Ile Ser Ser Leu Gln Ser Glu Asp |     |     |     |
| 75                                                          | 80  | 85  |     |
| GAG GCT GAC TAT ATC TGT GTG GGT GAT ACA ATT AAG GAA CAA     |     |     | 360 |
| Glu Ala Asp Tyr Ile Cys Gly Val Gly Asp Thr Ile Lys Glu Gln |     |     |     |
| 90                                                          | 95  | 100 |     |
| TTT GTG TAC GTG TTC GGC GGA GGG ACC AAA CTG ACC GTC CTA GGC |     |     | 405 |
| Phe Val Tyr Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly     |     |     |     |
| 105                                                         | 110 | 115 |     |
| CAG CCC 411                                                 |     |     |     |

## Gln Pro

【0389】配列番号：74

配列の長さ：411

配列の型：核酸

鎖の数：二本鎖

トポロジー：直鎖状

配列の種類：c DNA t o mRNA

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ATG | GCC | TGG | ACT | CCT | CTC | TTC | TTC | TTC | TTT | GTT | CTT | CAT | TGC | TCA |     | 45  |
| Met | Ala | Trp | Thr | Pro | Leu | Phe | Phe | Phe | Phe | Val | Leu | His | Cys | Ser |     |     |
|     |     |     |     |     |     | -15 |     |     |     | -10 |     |     | -5  |     |     |     |
| GGT | TCT | TTC | TCC | CAG | CTT | GTG | CTG | ACT | CAA | TCG | CCC | TCT | GCC | TCT |     | 90  |
| Gly | Ser | Phe | Ser | Gln | Leu | Vai | Leu | Vai | Gln | Ser | Pro | Ser | Ala | Ser |     |     |
|     |     |     |     |     |     | 1   |     |     |     | 5   |     |     | 10  |     |     |     |
| GCC | TCC | CTG | CGG | GCC | TCC | GTC | AAG | CTC | ACC | TGC | ACC | TTG | AGT | AGT |     | 135 |
| Ala | Ser | Leu | Gly | Ala | Ser | Val | Lys | Leu | Thr | Cys | Thr | Leu | Ser | Ser |     |     |
|     |     |     |     |     |     | 15  |     |     |     | 20  |     |     | 25  |     |     |     |
| CAG | CAC | AGT | ACG | TAC | ACC | ATT | GAA | TGG | TAT | CAG | CAG | CCA | GAG |     | 180 |     |
| Gln | His | Ser | Thr | Tyr | Thr | Ile | Glu | Trp | Tyr | Gln | Gln | Gln | Pro | Glu |     |     |
|     |     |     |     |     |     | 30  |     |     |     | 35  |     |     | 40  |     |     |     |
| AAG | GCC | CCT | AGG | TAC | GTG | ATG | GAT | CTT | AAG | CAA | GAT | GGA | AGC | CAC |     | 225 |
| Lys | Gly | Pro | Arg | Tyr | Val | Met | Asp | Leu | Lys | Gln | Asp | Gly | Ser | His |     |     |
|     |     |     |     |     |     | 45  |     |     |     | 50  |     |     | 55  |     |     |     |
| AGC | ACA | GGT | GAT | GGG | ATT | CCT | GAT | CGC | TTC | TCA | GGC | TCC | AGC | TCT |     | 270 |
| Ser | Thr | Gly | Ile | Pro | Asp | Arg | Phe | Ser | Gly | Ser | Ser | Ser | Ser | Ser |     |     |
|     |     |     |     |     |     | 60  |     |     |     | 65  |     |     | 70  |     |     |     |
| GGG | GCT | GAG | CGC | TAC | CTC | ACC | ATC | TCC | AGC | CTC | CAG | TCT | GAG | GAT |     | 315 |
| Gly | Ala | Glu | Arg | Tyr | Leu | Thr | Ile | Ser | Ser | Leu | Gln | Ser | Glu | Asp |     |     |
|     |     |     |     |     |     | 75  |     |     |     | 80  |     |     | 85  |     |     |     |
| GAG | GCT | GAC | TAT | ATC | TGT | GGT | GGT | GAT | ACA | ATT | AAG | GAA | CAA |     | 360 |     |
| Glu | Ala | Asp | Tyr | Ile | Cys | Gly | Val | Gly | Asp | Thr | Ile | Lys | Glu | Gln |     |     |
|     |     |     |     |     |     | 90  |     |     |     | 95  |     |     | 100 |     |     |     |
| TTT | GTG | TAC | GTG | TTC | GGC | GGG | GGG | ACC | AAA | CTG | ACC | GTC | CTA | GGC |     | 405 |
| Phe | Val | Tyr | Val | Phe | Gly | Gly | Gly | Thr | Lys | Leu | Thr | Val | Leu | Gly |     |     |
|     |     |     |     |     |     | 105 |     |     |     | 110 |     |     | 115 |     |     |     |
| CAG | CCC |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gln | Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

【0390】配列番号：75

配列の長さ：34

配列の型：アミノ酸

トポロジー：直鎖状

配列の種類：ペプチド

配列：

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| Ala | Val | Ser | Glu | His | Gln | Leu | Leu | His | Asp | Lys | Gly | Lys | Ser | Ile |  |  |
|     |     |     |     |     |     | 1   | 5   |     |     | 10  |     |     | 15  |     |  |  |
| Gln | Asp | Leu | Arg | Arg | Phe | Phe | Leu | His | His | Leu | Ile | Ala | Glu |     |  |  |
|     |     |     |     |     |     | 20  |     |     |     | 25  |     |     | 30  |     |  |  |
| Ile | His | Thr | Ala |     |     |     |     |     |     |     |     |     |     |     |  |  |

【画面の簡単な説明】

【図1】本発明の抗体の模式図である

【図2】CDR—グラフティングの概要を示す図である。

【図3】V領域のFR及びCDRの評価を示す図である。

【図4】抗体結合活性の測定結果を示す図である。

【図5】抗体結合活性の測定結果を示す図である。

【図6】抗体結合活性の測定結果を示す図である。

【図7】抗体結合活性の測定結果を示す図である。

【図8】抗体結合活性の測定結果を示す図である。

【図9】抗体結合活性の測定結果を示す図である。

【図10】抗体結合活性の測定結果を示す図である。

【図11】抗体結合活性の測定結果を示す図である。

- 【図1 2】ヒト型化抗体の中和活性を示す図である。
- 【図1 3】ヒト型化抗体の中和活性を示す図である。
- 【図1 4】ヒト型化抗体の中和活性を示す図である。
- 【図1 5】高カルシウム血症モデル動物に対する本発明の抗体の効果を示す図である。
- 【図1 6】高カルシウム血症モデル動物に対する本発明の抗体の効果を示す図である。
- 【図1 7】高カルシウム血症モデル動物に対する本発明の抗体の効果を示す図である。
- 【図1 8】高カルシウム血症モデル動物に対する本発明の抗体の効果を示す図である。
- 【図1 9】センサーチップへのPThrP の固定化のセンサーグラムを示す図である。
- 【図2 0】本発明の抗体の速度論的解析結果を示す図である。
- 【図2 1】本発明の抗体の速度論的解析結果を示す図である。
- 【図2 2】本発明の抗体の速度論的解析結果を示す図である。
- 【図2 3】本発明の抗体の速度論的解析結果を示す図である。



【図2 4】本発明の抗体の速度論的解析結果を示す図である。

【図2 5】本発明のヒト型化抗体についてリン排泄率に及ぼす影響を試験した結果を示す図である。

【図2 6】本発明のヒト型化抗体について血漿中リン濃度濃度に及ぼす影響を試験した結果を示す図である。

【図2 7】高カルシウム血症マウスに抗PThrP抗体を投与した後の外見上の臨床諸症状を観察した結果を示す写真である(生物の形態)。

【図2 8】高カルシウム血症マウスに抗PThrP抗体を投与した後の外見上の臨床諸症状を観察した結果を示す写真である(生物の形態)。

【図2 9】高カルシウム血症モデルを用いて、抗PThrP抗体投与後の自発運動量の経日変化を、対照群(生理食塩水投与)と比較した図である。

【図2 10】高カルシウム血症モデルを用いて、抗PThrP抗体投与後の体温の経日変化を、対照群(生理食塩水投与)と比較した図である。

【図2 11】高カルシウム血症モデルを用いて、抗PThrP抗体投与後の血液pHの経日変化を、対照群(生理食塩水投与)と比較した図である。



【図3】

V領域

| FR1 | FR2  | FR3  | FR4  | プラズミド        | 活性 |
|-----|------|------|------|--------------|----|
|     | CDR1 | CDR2 | CDR3 |              |    |
| H   | H    | m    | m    | h/m MBC1L(λ) | -  |
| m   | m    | H    | H    | m/h MBC1L(λ) | +  |
| H   | m    | m    | m    | hmm MBC1L(λ) | +  |
| m   | H    | m    | m    | mhm MBC1L(λ) | -  |

H : ヒト抗体のFR

m : マウス抗体のFR

【図4】



【図5】



【図6】



【図7】



【図8】



【図9】



【図10】



【図11】



【図12】



【図13】



【図14】

ヒト型化抗PTThRP(1-34)抗体の中和活性



【図25】

リン排泄率に及ぼす影響



【図15】

高カルシウム血症モデル動物（ヒト脳漿癌PAN-7 肝癌ヌードマウス）に対するキメラ抗体およびヒト型化抗体の効果



【図16】



【図17】



【図18】

高カルシウム血症モデル動物（ヒト肺癌L C - 6 - J C K 肉腫ヌードマウス）に対するキメラ抗体およびヒト型化抗体の効果



【図19】



| Fe | Time   | Window | AbsResp | SD   | Slope | Baseline | RelResp | Id                        |
|----|--------|--------|---------|------|-------|----------|---------|---------------------------|
| 2  | 368.5  | 5.0    | 11784.0 | 0.17 | -0.07 | Yes      | 0       | pre-NHS+EDC               |
| 2  | 1621.5 | 5.0    | 12517.3 | 2.29 | -1.22 | Yes      | 373.2   | NHS+EDC-100fL             |
| 2  | 2065.5 | 5.0    | 12504.9 | 1.36 | -0.71 | No       | 447.6   | PDEA-100fL                |
| 2  | 3529.5 | 5.0    | 14058.6 | 0.34 | -4.45 | No       | 1901.3  | (I-34-C)5ug/ml-10uL-pH5.0 |
| 2  | 5545.5 | 5.0    | 12423.6 | 2.08 | -1.10 | No       | 256.3   | Cys/NaCl-100fL            |
| 2  | 5803.5 | 5.0    | 12394.6 | 0.28 | -0.13 | No       | 239.3   | Gly/HCl-10uL              |
| 2  | 6062.5 | 5.0    | 12383.5 | 0.13 | 0.00  | No       | 226.4   | 10mM-HCl-10uL             |

センサーチップへのPTHrP(1-34+C)の固定化のセンサーグラム

【図20】



MBC センサーグラム重ね合わせ

【図21】



3F5 センサーグラム重ね合わせ

【図22】



chMBC センサーグラム重ね合わせ

【図23】



hMBCm センサーグラム重ね合わせ

【図24】



hMBCq センサー グラム重ね合わせ

【図26】

### 血漿中リン濃度に及ぼす影響



【図27】



【図28】



【図29】



【図30】

体温に及ぼす影響



【図31】

血液pHに及ぼす影響



【手続補正書】

【提出日】平成9年10月13日

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】図27

【補正方法】変更

【補正内容】

【図27】

図面代用写真



【手続補正4】

【補正対象書類名】図面

【補正対象項目名】図28

【補正方法】変更

【補正内容】

【図28】

図面代用写真



---

フロントページの続き

| (51) Int. Cl. <sup>e</sup> | 識別記号  | F I           |
|----------------------------|-------|---------------|
| C 1 2 N 1/21               |       | C 1 2 N 1/21  |
| 5/10                       |       | C 1 2 P 21/08 |
| 15/02                      |       | C 1 2 N 5/00  |
| 15/09                      | Z N A | 15/00         |
| C 1 2 P 21/08              |       | B             |
| // A 6 1 K 38/00           | ADD   | C             |
| (C 1 2 N 1/21)             |       | Z N A A       |
| (C 1 2 R 1:19)             |       | ADD           |
| (C 1 2 N 5/10)             |       |               |
| C 1 2 R 1:91)              |       |               |

(C 1 2 P 21/08  
C 1 2 R 1;91)