Analyzing the influence of Selection on Genetic Programming's Generalization ability in Symbolic Regression

A comparison of epsilon-lexicase Selection and Tournament Selection

Introduction

Research Question

Experimental Study

Results

Conclusions

Limitations and open Questions

Research Question

Research Question

ightharpoonup Does the usage of ϵ -lexicase parent selection influence the generalization behaviour of genetic programming in symbolic regression if compared to tournament selection?

Genetic Programming

- ➤ A metaheuristic that searches for computer programs that solve a given problem
- ▶ Inventor: John R. Koza¹
- Evolutionary algorithm that simulates the process of Darwinian evolution:
 - 1. Population based
 - 2. The quality of solutions is evaluated by a fitness function
 - 3. Selection: Solutions are selected based on their individual fitness
 - 4. Variation: Mutation and recombination of solutions
- Unique Features:
 - ► Evolve solutions of variable length and structure
 - Solutions are typically represented by recursive tree structures

¹Koza (1992)

Parent Selection

- Operator that selects individual solutions from the population for reproduction and mutation
- Most commonly used selection operator in GP: Tournament selection²
- ▶ Intuition: High chance for "generalist" solutions to be selected since it is based on aggregated fitness scores

²Fang and Li (2010), p.181

epsilon-Lexicase Selection

- Recent alternative: Lexicase Selection and it's variation ϵ -lexicase selection
- ► Idea: Selection method for uncompromising, continous-valued symbolic regression problems³
- ▶ Increases genetic diversity inside the population⁴
- ► Higher chance for "specialist" solutions to be selected since it is decided on a per case basis
- ► Performance increases have been demosntrated in many benchmarking problems⁵

³Helmuth, Spector and Matheson (2015), p.12

⁴Helmuth, Spector and Matheson (2015), p.1

⁵La Cava, Spector and Danai (2016), p.744-745

Symbolic Regression

- Task: Find a mathematical model that fits a given set of datapoints
- One of the first applications of Genetic Programming introduced

. . .

Generalization

Motivation

► Generalization

Genetic Programming

. . .

. . .

Experimental Study

Research Design

Genetic Programming Configuration

Results

Descriptive Statistics

Figure 1: Distribution of Errors

. . .

Conclusions

Conclusions

Limitations and open Questions

Limitations and open Questions

. . .

Fang, Y. and Li, J. (2010) 'A review of tournament selection in genetic programming', in Cai, Z. et al. (eds) *Advances in computation and intelligence*. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 181–192.

Helmuth, T., Spector, L. and Matheson, J. (2015) 'Solving uncompromising problems with lexicase selection', *IEEE Transactions on Evolutionary Computation*, 19(5), pp. 630–643. doi:10.1109/TEVC.2014.2362729.

Koza, J.R. (1992) Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA, USA: MIT Press. Available at:

http://mitpress.mit.edu/books/genetic-programming.

La Cava, W., Spector, L. and Danai, K. (2016) 'Epsilon-lexicase selection for regression', in *Proceedings of the genetic and* evolutionary computation conference 2016. New York, NY, USA: