Positive Sum Interval

A positive sum interval (PSI) of an array is a contiguous subsequence of the array such that the sum of all elements in the subsequence is positive. For example, {2, -2, 3, -2} is a PSI of the array with the numbers {1, 2, -2, 3, -2, -2, 3}, but {2, -2, 3, -2, -2} is not.

There are many applications of PSI, but that is not our main focus. In this problem, however, you are interested in counting how many PSIs are ther in a given array of integer.

Input

The first line contains an integer N, the number of elements in the array. The second line contains N integers, separated by a single space. All of the integers are in the interval [-10000, 10000].

Output

Print the number of PSIs in the given array of integers.

Sample Input 1 4 1 -2 3 -2	Sample Output 1 5		
		Sample Input 2	Sample Output 2 16
		7	
1 2 -2 3 -2 -2 3			

Explanation

For sample input 1, the PSIs are {1}, {1, -2, 3}, {-2, 3}, {3}, {3, -2}.

For sample input 2, you are encouraged to trace them on your own.

Skeleton

You are given the skeleton file Psi.java.

Notes

- 1. You are free to use anything to solve this problem.
- 2. To pass all test cases on CodeCrunch, your code needs to run in O(N lg N) or faster.
- 3. If you have coded the O(N lg N) solution but still couldn't pass all test-cases due to WA¹ and not TLE, this cryptic message might help: "If it is not long enough, we should make it long, or else it will go with the flow".

Hints

- 1. O(N³) solution: brute-force
- 2. O(N²) solution: smart brute-force
- 3. O(N lg N) solution: do a merge-sort routine with some modifications

¹ See the ICPC problem (sit-in lab 2 – morning session) for the explanation about the terms "WA" and "TLE".