Tablas de Supuestos

Libro: "Estadística Inferencial"

Autor: Humberto LLinás Solano

C.10 Resumen de distribuciones muestrales, intervalos de confianza y pruebas de hipótesis

Tabla C.1: Distribución de la media muestral

	¿FORMA DE LA POBLACIÓN?	¿ES σ^2 CONOCIDA?	¿TAMAÑO DE LA MUESTRA?	¿DISTRIBUCIÓN MUESTRAL?	¿Z Ó t?
1.	Normal	Sí	No importa	Normal	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
2.		No	Grande $(n \ge 30)$	Normal	$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
3.			Pequeño	t de Student,	_
			(n < 30)	$\nu = n - 1$	$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
				grados de libertad	-/ V
4.	No normal o desconocida	Sí	Grande $(n \ge 30)$	Normal	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
5.			Pequeño	Callejón sin	
0			(n < 30)	salida	
6.		No	Grande $(n \ge 30)$	Normal	$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
7.			Pequeño $(n < 30)$	Callejón sin salida	

Tabla C.2: Distribución de la proporción muestral y de la diferencia de proporciones muestrales

	¿ESTADÍSTICO?	¿SUPUESTO?	¿DISTRIBUCIÓN MUESTRAL?	$ \downarrow Z? $
1.	Proporción	$n \ge 30$	Normal	$Z = \frac{\overline{p} - p}{\sqrt{p(1-p)}}$
2.	muestral	$np \ge 5, \ n(1-p) \ge 5$	Normal	$\sqrt{\frac{n}{n}}$
3.	Diferencia de proporciones	$n_1 \ge 30, n_2 \ge 30$	Normal	$Z = \frac{(\overline{p}_1 - \overline{p}_2) - (p_1 - p_2)}{\sqrt{(1-p_2)^2}}$
4.	muestrales	$n_1 p_1 \ge 5, n_1 (1 - p_1) \ge 5,$ $n_2 p_2 \ge 5, n_2 (1 - p_2) \ge 5$	Normal	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

Tabla C.3: Distribución de la diferencias de medias muestrales

	¿FORMA DE LAS	¿SON σ_1^2 y σ_2^2 CO-	$_{i}$ SON $σ_{1}^{2}$ y $σ_{2}^{2}$ IGUA-	¿TAMAÑO DE AMBAS	¿DISTRIBUCIÓN MUESTRAL?	¿Z Ó t?
	POBLA- CIONES?	NOCIDAS?	LES?	MUESTRAS?		
1.	No normal	Sí	No importa	Grandes	Normal	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
				$n_1 \ge 30, n_2 \ge 30$,
2.		No	No importa	Grandes	Normal	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{2s_1} + \frac{s_2^2}{n_2}}}$
				$(n_1 \ge 30, n_2 \ge 30)$		V 11 12
3.	Normal	Sí	No importa	No importa	Normal	$Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
4.		No	Si	Pequeño	t de Student con	$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}},$
				$(n_1 < 30, n_2 < 30)$	$ u = n_1 + n_2 - 2 $ grados de libertad	$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
5.			No	Pequeño $(n_1 < 30, n_2 < 30)$	$t \text{ de Student con}$ $\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$ (redondear al en-	$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
					tero más cercano)	

Tabla C.4: Distribución de la varianza muestral y de la razón de varianzas muestrales

	¿ESTADÍSTICO?	¿FORMA DE LA	¿DISTRIBUCIÓN	$\iota \chi^2 \circ F$?
		POBLACIÓN?	MUESTRAL?	
1.	Varianza	Normal	Chi-cuadrada con	
	muestral		u = n - 1 grados de libertad	$\chi^2 = s^2 \frac{(n-1)s^2}{\sigma^2}$
2.	Razón de varianzas muestrales	Ambas normales	F de Fisher con $ u_1=n_1-1, \nu_2=n_2-1$ grados de libertad	$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ Regla: $F_{1-\alpha}(a,b) = \frac{1}{F_{\alpha}(b,a)}$

Tabla C.5: Intervalos de confianza para la media poblacional

	¿FORMA DE LA POBLACIÓN?	ξES $σ$ ² CONOCIDA?	¿TAMAÑO DE LA MUESTRA?	¿DISTRIBUCIÓN MUESTRAL?	¿INTERVALO DE CONFIANZA?
1.	Normal	Sí	No importa	Normal	$\overline{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
2.		No	Grande $(n \ge 30)$	Normal	$\overline{x} - Z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{s}{\sqrt{n}}$
3.			Pequeño $(n < 30)$	t de Student, $\nu = n - 1$ grados de libertad	$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$
4.	No normal	Sí	Grande $(n \ge 30)$	Normal	$\overline{x} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
5.	desconocida		Pequeño $(n < 30)$	Callejón sin salida	
6.		No	Grande $(n \ge 30)$	Normal	$\overline{x} - Z_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + Z_{\alpha/2} \frac{s}{\sqrt{n}}$
7.			Pequeño $(n < 30)$	Callejón sin salida	

Tabla C.6: Intervalos para la proporción poblacional y para la diferencia de proporciones poblacionales

	nom. pfa	GLIDLIDGEGGG	Diamp	DIMPONIAL O. D.D.
	¿ESTADÍS-	¿SUPUESTOS?	¿DISTR.	¿INTERVALO DE
	TICO?		MUESTRAL?	CONFIANZA?
1.	Proporción	$n \ge 30$	Normal	$\overline{p} - Z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$
2.	muestral	$np \geq 5$,	Normal	$p - Z_{\alpha/2}\sqrt{\frac{\alpha}{n}}$
		$n(1-p) \ge 5$		
3.	Diferencia de	$n_1 \ge 30$,	Normal	
	proporciones	$n_2 \ge 30$		$(\overline{p}_1 - \overline{p}_2) - Z_{\alpha/2} \sqrt{\frac{\overline{p}_1(1-\overline{p}_1)}{n_1} + \frac{\overline{p}_2(1-\overline{p}_2)}{n_2}} < p_1 - p_2 < p_1 - p_2$
	muestrales	$n_2 \ge 30$		$(P_1 P_2) Z_{\alpha/2} \bigvee n_1 \mid n_2 \vee P_1 P_2 \vee \cdots \vee P_n P_n \vee P_n $
	muestrales			
4.		$n_1p_1 \geq 5$,	Normal	$<(\overline{p}_1-\overline{p}_2)+Z_{\alpha/2}\sqrt{\frac{\overline{p}_1(1-\overline{p}_1)}{n_1}+\frac{\overline{p}_2(1-\overline{p}_2)}{n_2}}$
		$n_1(1-p_1) \geq 5$,		,
		$n_2p_2 \ge 5$,		
		$n_2(1-p_2) \ge 5$		

Tabla C.7: Intervalos de confianza para la diferencias de medias poblacionales

	¿FORMA			¿TAMAÑO	¿DISTRIBUCIÓN	¿INTERVALO DE
	DE LAS	CONO-	IGUA-	DE LAS	MUESTRAL?	CONFIANZA?
	POBLA-	CIDAS?	LES?	MUES-		$(AQUÍ: \theta := \mu_1 - \mu_2)$
	CIONES?			TRAS?		
1.	No normal	Sí	No	Grandes	Normal	$(\overline{x}_1 - \overline{x}_2) - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \theta < < (\overline{x}_1 - \overline{x}_2) + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	normai		importa	$(n_1 \ge 30,$		$<(\overline{x}_1-\overline{x}_2)+Z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$
				$n_2 \ge 30$)		, v n1 n2
2.		No	No	Grandes	Normal	$(\overline{x}_1 - \overline{x}_2) - Z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \theta <$
			importa	$(n_1 \ge 30,$		$<(\overline{x}_1 - \overline{x}_2) + Z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
				$n_2 \ge 30)$. ,
3.	Normal	Sí	No	No	Normal	$(\overline{x}_1 - \overline{x}_2) - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \theta < < (\overline{x}_1 - \overline{x}_2) + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
			importa	importa		$<(x_1-x_2)+Z_{\alpha/2}\sqrt{\frac{1}{n_1}+\frac{2}{n_2}}$
4.		No	Si	Pequeño	t de Student con	$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}} < \theta < $
				$(n_1 < 30,$	$\nu = n_1 + n_2 - 2$	$<(\overline{x}_1-\overline{x}_2)+t_{\alpha/2}\sqrt{\frac{s^2}{n_1}+\frac{s^2}{n_2}},$
				$n_2 < 30$)	grados de libertad	
						$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
5.					t de Student con	
			No	Pequeño	11-1 12-1	$(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \theta < $
				$(n_1 < 30,$	(redondear al en-	$<(\overline{x}_1-\overline{x}_2)+t_{\alpha/2}\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}$
				$n_2 < 30$)	(tero más cercano)	

Tabla C.8: Intervalos para la varianza poblacional y para la razón de varianzas poblacionales

	¿ESTADÍS- TICO?	¿FORMA DE LA POBLACIÓN?	¿DISTRIBUCIÓN MUESTRAL?	¿INTERVALO DE CONFIANZA?
1.	Varianza	Normal	Chi-cuadrada con	() 2
	muestral		$\nu = n - 1$	$\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}$
			grados de libertad	2
2.	Razón de varianzas	Ambas normales	F de Fisher con $\nu_1 = n_1 - 1, \ \nu_2 = n_2 - 1$	$\frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{\frac{\alpha}{2}}(\nu_1, \nu_2)} < \frac{\sigma_1^2}{\sigma^2} < \frac{s_1^2}{s_2^2} \cdot F_{\frac{\alpha}{2}}(\nu_2, \nu_1)$
	muestrales		grados de libertad	Regla: $F_{1-\alpha}(a,b) = \frac{1}{F_{\alpha}(b,a)}$