Dual spaces:

Let X, X be named vis.

L(X, y) = { bold linear maps X→ y}

Operator norm: ||T|| = sup { ||tx|| | ||x||=1 }.

f: X -> K is a linear functional (K: R or C)

Det Dual space X*:= L(X, K)

- Banach Space

-example: L^2 is dual to L^p for $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$.

Prop: Let X be a C vs. 4 4: X - C linear. Then

① $Re(\varphi): X \rightarrow \mathbb{R}$ is \mathbb{R} -linear, $\notin \forall x \in X$, $\varphi(x) = Re(\varphi)(x) - i Re(\varphi)(ix)$

② if $f:X \to \mathbb{R}$ is \mathbb{R} -linear true setting V(x) = f(x) - i f(ix) defines a \mathbb{C} -linear functional.

• Case 1:
$$\| \varphi \| < \infty \Rightarrow \| \operatorname{Re}(\varphi) \| \in \| \varphi \|$$

• Case 2: $\| \operatorname{Re}(\varphi) \| < \infty \Rightarrow \| \varphi \| \leq \| \operatorname{Re}(\varphi) \|$

If
$$(\varphi) = -Re(i\varphi(x)) = -Re(\varphi(ix)) = -Re(\varphi)(ix)$$
.

$$\Psi(ix) = f(ix) - i f(-x) = i f(x) + f(ix) = i (f(x) - i f(ix)) = i \Psi(x).$$

$$\text{case 2:} \quad \left| \operatorname{Re}(y) (x) \right| \leq \left| \left| \varphi(x) \right| \, \forall \, x$$

$$\text{case 2:} \quad \left| f \left| \varphi(x) \neq 0 \right|, \quad \left| \varphi(x) \right| = \overline{\operatorname{sign}(\varphi(x))} \left| \varphi(x) \right| = \left| \left| \left| \left| \left| \left| \left| \left| \left| \varphi(x) \right| \right| \right| \right| \right| \right| \right| \right| \right|$$

Det X is a IR-Us. A sublinear functional on X is a for p:X -> R S.E.

- · (Positive humogeneity) YXEX & L>O, P(Lx) = LP(x)
- (subadditivity) $\forall x, y \in X, p(x+y) \in p(x) + p(y)$

ex serviron.

Hahn-Banach Thm: Let X be a R-vs, $P:X \to R$ a sublinear functional, $M \subseteq X$ a subspace, $f:M \to R$ a linear functional s,t. $f(m) \in p(m) \ \forall m \in M$.

Then \exists linear functional $\varphi:X \to R$ s,t. $\forall |m=f| \text{ and } \varphi(x) \in p(x) \ \forall x \in X$.

Pf: Step 1: $\forall x \in X \setminus M$, $\exists g: m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f + i$, $\exists f : m + R_{\infty} \rightarrow R \mid m \cdot f \rightarrow R \mid M \mid m \cdot f \rightarrow R \mid$

If $g(m+\lambda x)=f(m)+\lambda \alpha$, we want α s.l. $f(m)+\lambda \alpha \leq p(m+\lambda x)$. Suffices to check $\lambda=\pm 1$. so we want

Page 2

 $f(m) - \alpha \leq p(m-x), \quad f(n) + \alpha \leq p(n+x) \qquad \forall m, n \in M.$ i.e. $f(m) - p(m-x) \leq \alpha \leq p(n+x) - f(n).$

Now p(n+x) - f(n) - f(m) + p(m-x)= p(n+x) + p(m-x) - f(n+m)> p(n+m) - f(n+m)> o,

So such an & exists.

Step 2: We can apply Step 1 to any ext g of f to n>m s.b. $g|_{m}=f$ 1 $g(y) \leq p(y) \ \forall y \in \mathbb{N}$. Thus any max! ext p of f s.t. $p|_{m}=f$ and q=p has January X.

Now $\{(n, g) \mid m \in n \in X, g : n \rightarrow R \text{ s.i. } g \mid m = f + g \leq p\}$ is partially award by extension

ero: every enain hus an upper bound, so there is a max's elt by Zaris Lenna.

Remark: Suppose p is a seminary on $X + f:X \rightarrow \mathbb{R}$ is \mathbb{R} -linear. Then $f \in P \Longrightarrow |f| \leq p$ $(|f(x)| = \pm f(x) = f(\pm x) \leq p(\pm x) = p(x))$.

C Hahn-Banach Thm. X is C-v.s., P: X → [0,00) seminorm, m ∈ X sursp, f: M → C is a C-hear fH s.t. If | ≤ p on M. Then F C-linear ftl 9: X - C sit 4/m=f aw 14/=P.

If R-HB applied to Re(f): $\exists g: X \rightarrow R$ R-luw s.t. $|g| \in P$ and $g|_{m} = f$. Let $\psi(x) = g(x) - ig(ix)$. C-new ext, $\psi|_{m} = f$ and $\psi(x)$, $|\psi(x)| = \overline{sign(gx)} \ \psi(x) - \psi(\overline{sign(fx)} \times) - g(\overline{sign(fx)} \times) \in P(\overline{sign(fx)} \times) = p(x)$.

Cor of H-B thun: X is a normal us.

- ① If $x \in X$, $x \neq 0$, $\exists \varphi \in X^*$ s.t. $\varphi(x) = \|x\|$ and $\|\varphi\| = 1$.

 If $f: \|Kx \longrightarrow K\|$ if $f(\lambda x) = \lambda \|x\|$. Note $\|f\| \neq \|\cdot\|$ apply H.B.
- $\text{ If } \mathbf{m} = \mathbf{x} \text{ closed } \mathbf{x} \times \epsilon \mathbf{m}^{\epsilon}, \quad \exists \ \mathbf{q} \in \mathbf{X}^{*} \text{ s.t. } \mathbf{q}(\mathbf{x}) = \inf_{\mathbf{m} \in \mathbf{M}} \|\mathbf{x} \mathbf{m}\|_{*}, \|\mathbf{q}\| = 1$ $\text{ If } \mathbf{m} = \mathbf{x} \text{ closed } \mathbf{x} \times \epsilon \mathbf{m}^{\epsilon}, \quad \exists \ \mathbf{q} \in \mathbf{X}^{*} \text{ s.t. } \|\mathbf{\tilde{q}}(\mathbf{x} + \mathbf{m})\| = \|\mathbf{x} + \mathbf{m}\|_{*}$ $= \inf_{\mathbf{m} \in \mathbf{M}} \|\mathbf{x} + \mathbf{m}\|_{*}$

By HW, $Q:X \longrightarrow X/m$ ets and $\|x+m\| \le \|x\| \longrightarrow \|Q\| \le 1$. Then $\varphi = \widetilde{\varphi} \cdot Q$

- 3 X^* separates points of XIf $x \neq y \in X$, $\exists \varphi \in X^*$ s.t. $\varphi(x-y) = \|x-y\| \neq 0$ by \emptyset .
- 9 for $x \in X$, def $ev_x : X^* \longrightarrow \mathbb{K}$ by $ev_x(f) = f(x)$. Then $ev : X \longrightarrow X^{**}$ is a linear isometry. If $\forall \varphi \in X^*$, $\|ev_x \varphi\| = \|\varphi(x)\| \le \|\varphi\| \|x\|$ so $\|ev_x\| \le \|x\|$ also, if $x \ne 0$, apply 0. The $\|ev_x\| = \|x\|$.

Def $\hat{X} := \overline{ev(X)} \subseteq X^{**}$ is a Banach space.

"Completion" of X. If X is banneh, ev(X) is closed. If $ev(X) = X^{**}$ then X is called reflexive.