Pattern Recognition

(EE5907R)

Jiashi FENG

Email: elefjia@nus.edu.sg

Outlines

- Unsupervised Feature Extraction (PCA, NMF,...)
- Supervised Feature Extraction (LDA, GE, ...)
- Clustering and Applications
- Gaussian Mixture Model
- Support Vector Machine
- Deep Learning

Implicit class label, not pre-defined!

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

- Better understanding & search
 - Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Visualization

Reduce the size of large data sets

Clustering rain fall amount in Australia

Image Segmentation

Segment the image into regions

What is not Cluster Analysis?

- Supervised classification
 - Have class label information

- Intuitive segmentation
 - Dividing students into different registration groups alphabetically, by first name

Notion of a Cluster can be Ambiguous

Types of Clustering

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters)
 such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Cluster number is determined as you like

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Hierarchical Clustering

Non-traditional Dendrogram

Partitional Clustering vs. Hierarchical Clustering

Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

- In non-exclusive clustering, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points

Fuzzy versus non-fuzzy

- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights must sum to 1
- Probabilistic clustering has similar characteristics

Partial versus complete

In some cases, we only want to cluster some of the data

Types of Clusters

- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters

Types of Clusters: Well-Separated

Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to <u>one or more</u> other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by lowdensity regions, from other regions of high density.
- Used when noise and outliers are present.

6 density-based clusters

Clustering Algorithms

• K-means

Hierarchical clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.

"How" is the key!
Discuss!

- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of features

K-means: an example

K-means: Initialize centers randomly

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

No changes: Done

Two different K-means Clusterings

Sub-optimal Clustering

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them:

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - m_i corresponds to the center (mean) of the cluster mostly
- Given many clusterings, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

• Try different Ks

• When K = 1, SSE = 873.0

• When K = 2, SSE = 173.1

• When K = 3, SSE = 133.6

- We can plot objective function values for K=1 to 6
- The abrupt change at K=2 is highly suggestive of two clusters
- "knee finding" or "elbow finding"
- Note that the results are not always as clear cut as in this toy example

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Problems with Selecting Initial Points

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Use hierarchical clustering to determine initial centroids
- Select more than K initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing

Post-processing

- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
- K-means has problems when the data contains outliers (not belonging to any cluster).
- The similarity function is suitable or not.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points

K-means Clusters

Example

Four data points are $x_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $x_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $x_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and the task is to partition the data into two clusters. i) Perform k-means with two initial centroids as $\{x_1, x_2\}$, please list the iterative centroids until converged; and ii) perform k-means with two initial centroids as $\{x_2, x_4\}$, please list the iterative centroids until converged.

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram

A tree like diagram that records the sequence of merges or

splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity/distance matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity/distance matrix
 - **6.** Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update **C**3 C4 C5

C2

the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

	p1	p2	рЗ	p4	р5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> p3						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u> </u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
р4						
<u>р4</u> <u>р5</u>						_
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
p1						
p 2						
<u>p2</u> <u>p3</u>						
						_
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p1	p2	рЗ	p4	р5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

_	I 1	12	13	14	1 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

• Can handle non-elliptical shapes

Good for contiguity-based clustering

Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

_	I 1	l 2	I 3	1 4	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
I 4	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

• Less sensitive to noise and outliers

Limitations of MAX

- •Tends to break large clusters
- Biased towards **equal** globular clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} \sum_{\substack{p_{i} \in Cluster_{j} \\ |Cluster_{i}| * |Cluster_{i}|}} \sum_{\substack{p_{i} \in Cluster_{j} \\ |Cluster_{i}| * |Cluster_{i}|}} \sum_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{i}| * |Cluster_{i}|}}} \sum_{\substack{p_{i} \in Cluster_{i} \\ |Cluster_{i}| * |Cluster_{i}|}} \sum_{\substack{p_{i} \in Cluster_{i}|}} \sum_{\substack{p_{i} \in Cluster_{$$

Need to use average connectivity for scalability since total proximity

favors large clusters

_				I 4	
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

- Strengths
 - Less sensitive to noise and outliers

- Limitations
 - Biased towards globular clusters

Example

Six data points are

$$x_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, x_4 = \begin{pmatrix} 0 \\ 2.51 \end{pmatrix}, x_5 = \begin{pmatrix} 0 \\ -1.4 \end{pmatrix}, x_6 = \begin{pmatrix} -1.5 \\ 0 \end{pmatrix}.$$

Please list the nested clusters by using hierarchical clustering based on MIN, MAX, and Group Average methods for inter-cluster Euclidean distance measure respectively. Note that, for each method, list all the intermediate Euclidean distance matrices.

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters
 - Breaking large clusters

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following two types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Accuracy with major class label as cluster label
 - Internal Index: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)

Happy Ending with Clustering

Other Trends

- Clustering with feature extraction
 - Ye at al. <u>Discriminative K-means</u> for Clustering, NIPS'07.

- Robust clustering with outliers
 - Liu et al. <u>Robust Subspace Segmentation by Low-Rank</u> <u>Representation</u>, ICML'10.
- Deterministic/convex clustering for given K