33-120 Science & Science Fiction

Welcome!

Today:

Finish Classical Physics – Newton's Laws Begin Modern Physics – Einstein & Relativity

- Quiz 1 (delayed from Friday) due today!
- Problem 1 (acceleration) due this Friday

Announcements for Wednesday, September 6

- Newton's Laws of Motion
 - 1. Inertia
 - **2.** F = dp/dt (or F = ma for constant mass)
 - 3. Action and Reaction

Last time...

What is the nature of space and time?

A. Classical physics and Newton's Laws

Directed by Brett Ratner 20th Century Fox (2006)

Illustration of Newton's 1st Law of Motion *Inertia:* External force needed to change an object's state of motion or rest.

Magneto
pushes cars out
of the way

Consistent with Newton's 1st Law? Yes – external force on cars

Illustration of Newton's 1st Law of Motion *Inertia:* External force needed to change an object's state of motion or rest.

Breaks one end of bridge away from shore while standing on bridge

Consistent with Newton's 1st Law? Yes – external force on one end of bridge

Illustration of Newton's 1st Law of Motion *Inertia:* External force needed to change an object's state of motion or rest.

Moves the entire bridge while standing on bridge

Consistent with Newton's 1st Law?
Only if Magneto interacts with Earth's field

Illustration of Newton's 1st Law of Motion *Inertia:* External force needed to change an object's state of motion or rest.

- Continue Major Question 1
 - What is the nature of space & time?
 - Newton's 2nd & 3rd Laws of Motion
 - Newton's Law of Gravitation
 - Newton's Concept of Time
 - Einstein and Modern Physics

Today...

Star Trek V: The Final Frontier

Directed by William Shatner Paramount (1989)

Illustration of Newton's 2^{nd} Law of Motion F = maForce = mass x acceleration

Kirk attempts to free-climb
El Capitan

Spock arrives on "jet boots"

Illustration of Newton's 2^{nd} Law of Motion F = maForce = mass x acceleration

Kirk falls off of El Capitan

ш

Spock pursues on "jet boots"

Illustration of Newton's 2^{nd} Law of Motion F = maForce = mass x acceleration

Will Kirk survive the fall?

Illustration of Newton's 2^{nd} Law of Motion F = maForce = mass x acceleration

Make some Reasonable assumptions

Take a guess for Kirk's mass:

m ~ 80 kg

Illustration of Newton's 2^{nd} Law of Motion $F = ma = \frac{m}{\Delta v/\Delta t}$

Make some reasonable assumptions

Kirk falls long enough to reach terminal velocity

Illustration of Newton's 2^{nd} Law of Motion $F = ma = m \Delta v/\Delta t$

Time for Spock to stop Kirk's fall?

Make some Reasonable assumptions

Δt ~ 1 second

Illustration of Newton's 2^{nd} Law of Motion $F = ma = m \Delta v / \Delta t$

Estimate force needed to stop Kirk's fall...

 $F = ma = m \Delta v/\Delta t$

= 80 kg(56 m/s)/(1 s)

 $= 4880 \text{ kg m/s}^2$

= 4880 Newtons

Illustration of Newton's 2^{nd} Law of Motion $F = ma = m \Delta v / \Delta t$

Force needed to stop Kirk's fall...

F = 1097 lb

About $\frac{1}{2}$ ton!

Illustration of Newton's 2^{nd} Law of Motion $F = ma = m \Delta v / \Delta t$

Kirk, Spock, Jet Boots and F = ma

Would Kirk survive the acceleration?

 $a \sim 5.7 \times g$

(very rough, but probably OK)

Illustration of Newton's 2^{nd} Law of Motion $F = ma = m \Delta v / \Delta t$ Variables: Kirk's mass, change in velocity and time

Guest Lecture for University of Ljubljana, Slovenia, 9 December 2022

The Martian

Directed by Ridley Scott 20th Century Fox (2015)

Illustration of Newton's 3rd Law of Motion Action-Reaction

The Martian Directed by Ridley Scott 20th Century Fox (2015)

Why does the *Hermes* slow down? Why does Watney fly like *Iron Man*?

Newton's Law of Gravitation:

$$F = \frac{Gm_1m_2}{r^2}$$

- Force is proportional to product of masses,
- Inversely proportional to distance squared,
- > Acts instantaneously over any distance.

What is the nature of space and time? A. Classical physics and Newton's Laws

- Newton's concept of time:
 - Flows continuously from past to future
 - Completely independent of 3-D space
 - An absolute concept (Everyone experiences time in the same way.)

What is the nature of space and time?

A. Classical physics and Newton's Laws

Doctor Who "Blink"

Written by Steven Moffat BBC (2007)

What is time? Is time travel possible?

Doctor Who

The TARDIS

(a.k.a. "the blue box")

Time And Relative Dimension In Space

What is time? Is time travel possible?

- Special Theory of Relativity
 - Spacetime as a 4-dimensional "fabric"
 - Perception of space and time depend on relative motion
 - Speed of light constant for everyone
 - ► E=mc²

What is the nature of space and time?

Part 2. Modern Physics: Einstein and Relativity

- General Theory of Relativity
 - Gravity = distortion of spacetime near a large mass
 - gravitational time dilation
 - NOT instantaneous (effect propagates at speed of light)
 - Black Holes and Gravitational Waves

What is the nature of space and time?

Part 2. Modern Physics: Einstein and Relativity

Short excerpt from The Time Machine

H.G. Wells (1895)

What is time? Is time travel possible?

Planet of the Apes

Directed by Franklin J. Schaffner 20th Century Fox (1967)

What is time? Is time travel possible?

Next time... Calculation of time dilation; Can anything travel faster than light? Begin General Relativity

Barry Luokkala
Teaching Professor of Physics
Carnegie Mellon University