מודלים לא לינאריים בחקר ביצועים – תרגיל בית 3

2021 באפריל

שאלה 1

על־ידי $g:\mathbb{R}^m o \mathbb{R}$ על־ידי $g:\mathbb{R}^m o \mathbb{R}$ נגדיר את $\mathbf{b} \in \mathbb{R}^n$ ו ויהיו $f:\mathbb{R}^n o \mathbb{R}$ ויהיו $f:\mathbb{R}^n o \mathbb{R}$ אז שאם $f:\mathbb{R}^n o \mathbb{R}$ גזירה ברציפות אז $f:\mathbb{R}^n o \mathbb{R}$ גזירה ברציפות אז ברציפות אז א

הכוונה: השתמשו בכלל השרשרת עבור פונקציות מרובות משתנים.

שאלה 2

מיצאו נוסחה מפורשת לחישוב הגרדיאנט וההסיאן של הפונקציות הבאות. ניתן להגדיר פונקציות, מטריצות ווקטורי עזר בדומה למה שראינו בתרגול.

$$f(x,y,z) = (x+2y-3z)^2 - e^{-2x+y-z}$$
 .

$$f(x,y,z) = (x+y)^2 (y+z)^3 (z+x)^4$$
 ...

$$\mathbf{b},\mathbf{c}\in\mathbb{R}^{n}$$
ו־ $\mathbf{A}\in\mathbb{R}^{n imes n}$ עבור $f\left(\mathbf{x}
ight)=\ln\left(\left(\mathbf{c}^{T}\left(\mathbf{A}\mathbf{x}+\mathbf{b}
ight)
ight)^{2}+1
ight)$ ו־המוגדרת על־ידי $f\colon\mathbb{R}^{n} o\mathbb{R}$

וכאשר
$$\mathbf{A}_j$$
 וכאשר $\mathbf{b}\in\mathbb{R}^n$ ו ר $\mathbf{A}\in\mathbb{R}^{n imes m}$ עבור על־יִדי $f(\mathbf{x})=\ln\left(\sum\limits_{j=1}^n e^{\mathbf{A}_j^T\mathbf{x}+\mathbf{b}_j}\right)$ וכאשר $f\colon\mathbb{R}^n o\mathbb{R}$. \mathbf{A} היא

שאלה 3

א. נתונות קבוצה סגורה $\alpha\in\mathbb{R}^n$ סגורה היונית נתונות לופונקציה רציפה $C\subseteq\mathbb{R}^n$ ופונקציה רציפה א. $C\subseteq\mathbb{R}^n$ סגורה $S=\{\mathbf{x}\in\mathbb{R}^n\colon f(\mathbf{x})\leq\alpha\}\cap C$

$$\underset{\mathbf{x}\in C}{\operatorname{argmin}}f\left(\mathbf{x}\right)\neq\emptyset$$

$$\underset{\mathbf{x} \in C}{\operatorname{argmin}} f(\mathbf{x}) \neq \emptyset$$

שאלה 4

תהי $f\colon \mathbb{R}^2 o \mathbb{R}$ המוגדרת על־ידי

$$f(x,y) = \begin{cases} x^2 - 2xy + y^2, & x \neq y \\ x^2 + y^2, & x = y \end{cases}$$

אז $lpha\in\mathbb{R}$ ולכל $(0,0)
eq (x_0,y_0)\in\mathbb{R}^2$ אז

$$, \lim_{\alpha \to +\infty} f(\alpha x_0, \alpha y_0) = \infty$$

. והוכיחו שf לא קוארסיבית

שאלה 5

מיצאו את הנקודות הסטציונריות של הפונקציות הבאות וסווגו אותן (מינימום/מקסימום מקומי/מקומי ממש, גלובלי/גלובלי ממש או אוכף).

$$f(x,y,z) = x^4 - 2x^2 + y^2 + 2yz + 2z^2$$
 .x

$$f(x,y) = (x^2 + y^2) e^{-(x^2 + y^2)}$$
 .1

 $f\left(x,y
ight)=te^{-t}$ ואז $\phi\left(t
ight)=te^{-t}$ וווע בשביל להקל על החישובים, ניתן להגדיר $u\left(x,y
ight)=x^2+y^2$ ואז פטועה: בשביל להקל על החישובים, ניתן להגדיר $\phi'\left(t
ight)=e^{-t}\left(1-t
ight)$ במו כן מתקיים $\phi\left(u\left(x,y
ight)\right)$

$$.f(x,y) = rac{x+y}{3+x^2+xy+y^2}$$
 ...

. נגדיר $v\left(x,y\right)=3+x^2+xy+y^2$ ו ו־ $u\left(x,y\right)=x+y$ ו־ $v\left(x,y\right)=3+x^2+xy+y^2$ נגדיר להקל על החישובים, ניתן להגדיר $v\left(x,y\right)>0$ וראז ישר להעל הערים היים בירו להגדיר $v\left(x,y\right)>0$ וראז ישר להער להגדיר הערים היים בירו להגדיר להקל על החישובים, ניתן להגדיר להגדיר להגדיר להקל על החישובים, ניתן להגדיר להגדיר להגדיר להגדיר להגדיר להקל על החישובים, ניתן להגדיר להגדי