Bachelor Defense Gödel's Constructible Universe

Dan Saattrup Nielsen

June 24, 2014

Outline

- Construction of the construcible universe L
- Relative consistency of AC and GCH
- Combinatorics in L
- Measurable cardinals are not constructible

Construction of L

• We would like to build the minimal universe satisfying ZF

Construction of L

- We would like to build the minimal universe satisfying ZF
- Restrict the power set operation

Construction of the constructible universe L

- We would like to build the minimal universe satisfying ZF
- Restrict the power set operation
- Naively, $x \in Def(X)$ iff

$$x = \{ y \in X \mid \exists \varphi(\exists p_1, \dots, p_n \in X) \varphi[y, p_1, \dots, p_n] \}$$

- We would like to build the minimal universe satisfying ZF
- Restrict the power set operation
- Naively, $x \in Def(X)$ iff

$$x = \{ y \in X \mid \exists \varphi (\exists p_1, \dots, p_n \in X) \varphi [y, p_1, \dots, p_n] \}$$

– does not work!

Construction of L

- We would like to build the *minimal* universe satisfying ZF
- Restrict the power set operation
- Naively, $x \in \text{Def}(X)$ iff

$$x = \{y \in X \mid \exists \varphi (\exists p_1, \dots, p_n \in X) \varphi [y, p_1, \dots, p_n] \}$$

- does not work!

Construction of L

• Internalise formulas within set theory

Construction of L

Construction of the constructible universe L

- We would like to build the minimal universe satisfying ZF
- Restrict the power set operation
- Naively, $x \in Def(X)$ iff

$$x = \{y \in X \mid \exists \varphi (\exists p_1, \dots, p_n \in X) \varphi [y, p_1, \dots, p_n] \}$$

- does not work!
- Internalise formulas within set theory
- Truth: construct sat($M, \lceil \varphi \rceil$), corresponding to $M \models \varphi$

Let X be a set. Then the definable power set is given as

$$\mathsf{Def}(X) := \{ x \in X \mid (\exists \ulcorner \varphi \urcorner \in \mathscr{L}_X) (\exists p_1, \dots, p_n \in X) \\ \mathsf{sat}[X, \ulcorner \varphi(\dot{x}, \dot{p}_1, \dots, \dot{p}_n) \urcorner] \}$$

Let X be a set. Then the definable power set is given as

$$\mathsf{Def}(X) := \{ x \in X \mid (\exists \ulcorner \varphi \urcorner \in \mathscr{L}_X) (\exists p_1, \dots, p_n \in X) \\ \mathsf{sat}[X, \ulcorner \varphi(\dot{x}, \dot{p}_1, \dots, \dot{p}_n) \urcorner] \}$$

Definition

Define $L_0 := \emptyset$, $L_{\alpha+1} := \mathsf{Def}(L_\alpha)$ and $L_\delta := \bigcup_{\gamma < \delta} L_\gamma$ for δ limit. Then the *constructible universe* is given by $L := \bigcup_{\alpha \in \mathsf{On}} L_\alpha$.

V=L is an abbreviation for $\forall x (\exists \alpha \in On)(x \in L_{\alpha})$.

V=L is an abbreviation for $\forall x (\exists \alpha \in \mathsf{On})(x \in L_{\alpha})$.

Lemma

Construction of L

V=L holds inside L itself.

Relative consistency of AC and GCH

Definition

A class M is an inner model (of ZF) if

- 1. *M* is transitive;
- 2. On $\subseteq M$;
- 3. every axiom of ZF holds in M.

Relative consistency of AC and GCH

Definition

A class M is an inner model (of ZF) if

- 1. *M* is transitive;
- 2. On $\subseteq M$;
- 3. every axiom of ZF holds in M.

Theorem

L is the *smallest* inner model.

Axiom of Choice holds in L. In fact, Global Choice holds in L.

Axiom of Choice holds in L. In fact, Global Choice holds in L.

Condensation Lemma (Gödel)

Let δ be a limit ordinal and $X \leq_1 L_\delta$. Then there is a unique limit ordinal $\alpha \leq \delta$ and a unique isomorphism $\pi : \langle X, \in \rangle \cong \langle L_\alpha, \in \rangle$, which fixes every transitive $Y \subseteq X$.

Axiom of Choice holds in L. In fact, Global Choice holds in L.

Condensation Lemma (Gödel)

Let δ be a limit ordinal and $X \leq_1 L_{\delta}$. Then there is a unique limit ordinal $\alpha \leq \delta$ and a unique isomorphism $\pi : \langle X, \in \rangle \cong \langle L_{\alpha}, \in \rangle$, which fixes every transitive $Y \subseteq X$.

Generalized Continuum Hypothesis

GCH is the statement that $2^{\kappa} = \kappa^{+}$ for all infinite cardinals κ .

Theorem (Gödel)

Axiom of Choice holds in L. In fact, Global Choice holds in L.

Condensation Lemma (Gödel)

Let δ be a limit ordinal and $X \leq_1 L_\delta$. Then there is a unique limit ordinal $\alpha \leq \delta$ and a unique isomorphism $\pi : \langle X, \in \rangle \cong \langle L_\alpha, \in \rangle$, which fixes every transitive $Y \subseteq X$.

Generalized Continuum Hypothesis

GCH is the statement that $2^{\kappa} = \kappa^+$ for all infinite cardinals κ .

Theorem (Gödel)

V=L implies GCH.

Proof.

• Let κ be an infinite cardinal and $A \subseteq \kappa$. We find $\beta \in On$ such that $\beta < \kappa^+$ and $A \in L_{\beta}$, because then $\mathcal{P}(\kappa) \subseteq L_{\kappa^+}$ and thus $2^{\kappa} = |\mathcal{P}(\kappa)| \leq |L_{\kappa^+}| = \kappa^+$

Proof.

- Let κ be an infinite cardinal and $A \subseteq \kappa$. We find $\beta \in On$ such that $\beta < \kappa^+$ and $A \in L_{\beta}$, because then $\mathcal{P}(\kappa) \subseteq L_{\kappa^+}$ and thus $2^{\kappa} = |\mathcal{P}(\kappa)| \leq |L_{\kappa^+}| = \kappa^+$
- Say $A \in L_{\alpha}$. Find $X \leq L_{\alpha}$ with $|X| = \kappa$ and $\kappa \cup \{A\} \subseteq X$

Proof.

- Let κ be an infinite cardinal and $A \subseteq \kappa$. We find $\beta \in On$ such that $\beta < \kappa^+$ and $A \in L_{\beta}$, because then $\mathcal{P}(\kappa) \subseteq L_{\kappa^+}$ and thus $2^{\kappa} = |\mathcal{P}(\kappa)| \leq |L_{\kappa^+}| = \kappa^+$
- Say $A \in L_{\alpha}$. Find $X \leq L_{\alpha}$ with $|X| = \kappa$ and $\kappa \cup \{A\} \subseteq X$
- Collapse X to some L_{β} , making $|\beta| = |L_{\beta}| = |X| = \kappa$

- Let κ be an infinite cardinal and $A \subseteq \kappa$. We find $\beta \in \mathsf{On}$ such that $\beta < \kappa^+$ and $A \in L_{\beta}$, because then $\mathcal{P}(\kappa) \subseteq L_{\kappa^+}$ and thus $2^{\kappa} = |\mathcal{P}(\kappa)| < |\mathcal{L}_{\kappa^+}| = \kappa^+$
- Say $A \in L_{\alpha}$. Find $X \leq L_{\alpha}$ with $|X| = \kappa$ and $\kappa \cup \{A\} \subseteq X$
- Collapse X to some L_{β} , making $|\beta| = |L_{\beta}| = |X| = \kappa$
- As $\pi: \langle X, \in \rangle \cong \langle L_{\beta}, \in \rangle$, $a \in A \Leftrightarrow \pi(a) \in \pi(A)$ and hence $\pi(A) = \pi'' A$

- Let κ be an infinite cardinal and $A \subseteq \kappa$. We find $\beta \in On$ such that $\beta < \kappa^+$ and $A \in L_{\beta}$, because then $\mathcal{P}(\kappa) \subseteq L_{\kappa^+}$ and thus $2^{\kappa} = |\mathcal{P}(\kappa)| \leq |L_{\kappa^+}| = \kappa^+$
- Say $A \in L_{\alpha}$. Find $X \leq L_{\alpha}$ with $|X| = \kappa$ and $\kappa \cup \{A\} \subseteq X$
- Collapse X to some L_{β} , making $|\beta| = |L_{\beta}| = |X| = \kappa$
- As $\pi: \langle X, \in \rangle \cong \langle L_{\beta}, \in \rangle$, $a \in A \Leftrightarrow \pi(a) \in \pi(A)$ and hence $\pi(A) = \pi$ " A
- But π fixes transitive κ , so $A = \pi$ " $A = \pi(A) \in L_{\beta}$.

- Let κ be an infinite cardinal and $A \subseteq \kappa$. We find $\beta \in On$ such that $\beta < \kappa^+$ and $A \in L_{\beta}$, because then $\mathcal{P}(\kappa) \subseteq L_{\kappa^+}$ and thus $2^{\kappa} = |\mathcal{P}(\kappa)| \leq |L_{\kappa^+}| = \kappa^+$
- Say $A \in L_{\alpha}$. Find $X \leq L_{\alpha}$ with $|X| = \kappa$ and $\kappa \cup \{A\} \subseteq X$
- Collapse X to some L_{eta} , making $|eta|=|L_{eta}|=|X|=\kappa$
- As $\pi: \langle X, \in \rangle \cong \langle L_{\beta}, \in \rangle$, $a \in A \Leftrightarrow \pi(a) \in \pi(A)$ and hence $\pi(A) = \pi$ " A
- But π fixes transitive κ , so $A = \pi$ " $A = \pi(A) \in L_{\beta}$.

Corollary

 $Con(ZF) \Rightarrow Con(ZFC + GCH).$

Theorem (Cantor)

 $\langle \mathbb{R}, < \rangle$ is the (up to isomorphism) unique complete dense linear ordering without endpoints, containing a countable dense subset.

Combinatorics in L

Theorem (Cantor)

 $\langle \mathbb{R}, < \rangle$ is the (up to isomorphism) unique complete dense linear ordering without endpoints, containing a countable dense subset.

Suslin's Hypothesis (SH)

 $\langle \mathbb{R}, < \rangle$ is the (up to isomorphism) unique complete dense linear ordering without endpoints, where every set of disjoint intervals is countable.

 \diamondsuit is the statement that there exists a sequence $(A_{\alpha})_{\alpha<\omega_1}$, such that for every $A\subseteq\omega_1$, the set $\{\alpha\in\operatorname{On}\mid A\cap\alpha=A_{\alpha}\}$ is stationary.

 \diamondsuit is the statement that there exists a sequence $(A_{\alpha})_{\alpha<\omega_1}$, such that for every $A\subseteq\omega_1$, the set $\{\alpha\in \mathsf{On}\mid A\cap\alpha=A_{\alpha}\}$ is stationary.

Theorem (Jensen)

 \Diamond implies \neg SH.

 \diamondsuit is the statement that there exists a sequence $(A_{\alpha})_{\alpha<\omega_1}$, such that for every $A\subseteq\omega_1$, the set $\{\alpha\in\operatorname{On}\mid A\cap\alpha=A_{\alpha}\}$ is stationary.

Theorem (Jensen)

 \diamondsuit implies \neg SH.

Theorem (Jensen)

 \diamondsuit holds in L.

 \diamondsuit is the statement that there exists a sequence $(A_{\alpha})_{\alpha<\omega_1}$, such that for every $A\subseteq\omega_1$, the set $\{\alpha\in\mathsf{On}\mid A\cap\alpha=A_{\alpha}\}$ is stationary.

Theorem (Jensen)

 \diamondsuit implies \neg SH.

Theorem (Jensen)

 \diamondsuit holds in L.

Corollary

 $Con(ZF) \Rightarrow Con(ZF + \diamondsuit + \neg SH).$

Let κ be an infinite cardinal. Then a filter D is κ -complete if $\bigcap X \in D$ for every $X \subseteq D$ with $|X| < \kappa$.

Measurable cardinals are not constructible

Definition

Let κ be an infinite cardinal. Then a filter D is κ -complete if $\bigcap X \in D$ for every $X \subseteq D$ with $|X| < \kappa$.

Lemma

Let D be a filter over a set I with $|I| = \kappa$. If D is κ^+ -complete then D is principal.

Measurable cardinals are not constructible

Definition

Let κ be an infinite cardinal. Then a filter D is κ -complete if $\bigcap X \in D$ for every $X \subseteq D$ with $|X| < \kappa$.

Lemma

Let D be a filter over a set I with $|I| = \kappa$. If D is κ^+ -complete then D is principal.

Definition

A measurable cardinal is a cardinal κ with a "maximally complete" free filter; i.e. on which there exists a free κ -complete ultrafilter.

Let κ be an infinite cardinal. Then a filter D is κ -complete if $\bigcap X \in D$ for every $X \subseteq D$ with $|X| < \kappa$.

Lemma

Let D be a filter over a set I with $|I| = \kappa$. If D is κ^+ -complete then D is principal.

Definition

A measurable cardinal is a cardinal κ with a "maximally complete" free filter; i.e. on which there exists a free κ -complete ultrafilter.

Theorem (Scott)

V=L implies that there exists no measurable cardinal.

Say $\boldsymbol{\kappa}$ is the least measurable cardinal.

Say κ is the least measurable cardinal. Then:

• For non-trivial elementary $j: \mathfrak{A} \leq_1 \mathfrak{B}$ with $B \subseteq A$, there is least $\alpha \in \mathsf{On}$ such that $j(\alpha) > \alpha$; define $\mathsf{crit}\, j := \alpha$

- For non-trivial elementary $j: \mathfrak{A} \leq_1 \mathfrak{B}$ with $B \subseteq A$, there is least $\alpha \in \mathsf{On}$ such that $j(\alpha) > \alpha$; define $\mathsf{crit}\, j := \alpha$
- The class ultrapower Ult := $\langle \Pi_{i \in I} V/U^{\times}, \in_{U} \rangle$ is well-defined and we have $d: \langle V, \in \rangle \preceq \mathsf{Ult}$

- For non-trivial elementary $j: \mathfrak{A} \leq_1 \mathfrak{B}$ with $B \subseteq A$, there is least $\alpha \in \mathsf{On}$ such that $j(\alpha) > \alpha$; define $\mathsf{crit}\, j := \alpha$
- The class ultrapower Ult := $\langle \Pi_{i \in I} V/U^{\times}, \in_{U} \rangle$ is well-defined and we have $d: \langle V, \in \rangle \preceq \mathsf{Ult}$
- Ult is subject to the Mostowski collapse, so we have $j: V \leq M \cong \text{Ult}$, resulting in the inner model M

- For non-trivial elementary $j: \mathfrak{A} \preceq_1 \mathfrak{B}$ with $B \subseteq A$, there is least $\alpha \in \mathsf{On}$ such that $j(\alpha) > \alpha$; define $\mathsf{crit}\, j := \alpha$
- The class ultrapower Ult := $\langle \Pi_{i \in I} V/U^{\times}, \in_{U} \rangle$ is well-defined and we have $d: \langle V, \in \rangle \preceq \text{Ult}$
- Ult is subject to the Mostowski collapse, so we have $j: V \leq M \cong \text{Ult}$, resulting in the inner model M
- If κ is a measurable cardinal with $j:V\preceq M\cong Ult$, then $crit j=\kappa$

- For non-trivial elementary $j: \mathfrak{A} \preceq_1 \mathfrak{B}$ with $B \subseteq A$, there is least $\alpha \in \mathsf{On}$ such that $j(\alpha) > \alpha$; define $\mathsf{crit}\, j := \alpha$
- The class ultrapower Ult := $\langle \Pi_{i \in I} V/U^{\times}, \in_{U} \rangle$ is well-defined and we have $d: \langle V, \in \rangle \preceq \text{Ult}$
- Ult is subject to the Mostowski collapse, so we have $j: V \leq M \cong \text{Ult}$, resulting in the inner model M
- If κ is a measurable cardinal with $j:V\preceq M\cong \mathsf{Ult}$, then $\mathsf{crit}\,j=\kappa$
- $M \models "j(\kappa)$ is the least measurable cardinal"

- For non-trivial elementary $j: \mathfrak{A} \preceq_1 \mathfrak{B}$ with $B \subseteq A$, there is least $\alpha \in \mathsf{On}$ such that $j(\alpha) > \alpha$; define $\mathsf{crit}\, j := \alpha$
- The class ultrapower Ult := $\langle \Pi_{i \in I} V/U^{\times}, \in_{U} \rangle$ is well-defined and we have $d: \langle V, \in \rangle \preceq \mathsf{Ult}$
- Ult is subject to the Mostowski collapse, so we have $j: V \leq M \cong \text{Ult}$, resulting in the inner model M
- If κ is a measurable cardinal with $j:V\preceq M\cong \mathsf{Ult}$, then $\mathsf{crit}\,j=\kappa$
- $M \models "j(\kappa)$ is the least measurable cardinal"
- L is the least inner model, so M=L and hence $j(\kappa)$ is the least measurable, but $j(\kappa) > \kappa$, $\mbox{$\rlap/ 4$}$.

Perspective

The inner model problem (1960's)

Given any large cardinal κ , can we find a canonical inner model like L, in which κ exists?

Perspective

The inner model problem (1960's)

Given any large cardinal κ , can we find a canonical inner model like L, in which κ exists?

This problem spawned an entire mathematical field called *inner model theory*. There is ongoing progress, but it remains unsolved.

Thank you for listening.