Practical 8_Searching Algorithms

Brute Force Algorithm - performance

This algorithm works by testing all the possible placement of a given pattern within a string of text. It consists of two nested loops, the outer loop spans from 0 to the end of the text length (n), while the inner loop spans from 0 to the end of the pattern length (m). For this reason, the time complexity of the brute force algorithm is $O(m^*n)$. It is important to note that depending on the length of m, the algorithm could potentially have a worst case performance of $O(n^2)$, which is not very efficient.

Knuth-Morris-Pratt Algorithm - performance

The main idea of the KMP algorithm is to reuse previously performed comparisons. By doing this, the algorithm achieves a worst case performance of O(n+m) - meaning that it will have to examine the entire text and the entire pattern at most once - which is a big improvement in efficiency compared to the brute force algorithm.

String Searching Algorithms - Analysis

Input size (n)	Time (Brute Force)	Time (KMP)
100	0.001	0.0
1000	0.002	0.001
10000	0.003	0.001
100000	0.006	0.002
1000000	0.012	0.003
1000000	0.045	0.003
100000000	0.310	0.010

