

FIG. 1

+

2/6

FIG. 2

+

+

3/6

FIG. 3

+

FIG. 4

+

5/6

OPERATING FREQUENCY: $F = 915 \times 10^6$ Hz ANTENNA GAIN: $G = 5$ dB

ANTENNA INPUT

IMPEDANCE: $Z_{in} = 18$ DIE INPUT IMPEDANCE: $Z_{out} = 3000$

QUALITY FACTOR: $Q = \sqrt{\left(\frac{Z_{out}}{Z_{in}}\right) - 1}$

$Q = 12.871$

TRANSFORMATION RATIO: $T_r = \sqrt{\frac{Z_{out}}{Z_{in}}}$

$T_r = 12.91$

$A_v = 10^{\frac{G}{10}}$

$A_v = 3.162$

TRANSMITTER POWER: $P_t = 1$ WHALF WAVELENGTH $W_1 = 0.439$ feet

DISTANCE LAG FROM

READER: $d = 5$ feetPOWER AT RECEIVE
ANTENNAMATCHING NETWORK
CALCULATIONS

SERIES INDUCTOR:

$X_1 = Q \cdot Z_{in}$

$X_1 = 231.681$

$L = \frac{X_1}{(2 \pi \cdot F)}$

POWER = $\left[\frac{(2 \cdot W_1)}{(4 \pi d)} \right]^2 P_t \cdot A_v$

POWER = 6.175×10^{-4} watts

VOLTAGE AT RECEIVE
ANTENNA

$V_r = \sqrt{(Z_{in} \cdot \text{Power})}$

PARALLEL CAPACITOR: $X_c = \frac{Z_{out}}{Q}$

$V_r = 0.105$ volts

VOLTAGE USING
TRANSFORMATION RATIO

$X_c = 233.079$

$C = \frac{1}{(2 \pi \cdot F \cdot X_c)}$

$C = 7.463 \times 10^{-13}$ F

$V_t = V_r \left(\sqrt{\frac{Z_{out}}{Z_{in}}} \right)$

$V_t = 1.361$ volts

VOLTAGE AFTER
VOLTAGE DOUBLER

$V_{in} = 2.8 \cdot V_t - .6$

$V_{in} = 3.211$ volts

FIG. 5

+

+

6/6

FIG. 6A

FIG. 6B

+