

FTTTFFTTFTTFF

FTFFTFTFTFF

FFFTTTFTTFF

FFFTTFTFTFTF

FFFTFTFTFTF

FFFTFTFTFTF

(a)
$$\forall x (P(x) \Rightarrow A(m, x))$$

(b) $\exists x (P(x) \land A(x, m))$

(c) $A(m, m)$

(d) $\neg \exists x (S(x) \rightarrow \forall y (L(y) \land B(x, y)))$

(e) $\neg \exists y (L(y) \Rightarrow \forall x (S(x) \land B(x, y)))$

(f) $\neg \exists y (L(y) \Rightarrow \exists x (S(x) \land B(x, y)))$

2. (a) $\forall x \in P(x, z) \Rightarrow P(z, x)$
 $\exists x = 0 \bowtie P(x, z) \Rightarrow T$
 $P(z, x) \Rightarrow T$

成上式恒段,从不满足中
(c)
$$\forall x$$
,取 $x=y=Z$,则 $P(x,y) \land P(z,y) \land (P(x,z) \rightarrow P(z,x)))$ 为真

被从满足中

- 1. Prove the validity of the following sequents:

\mathcal{Q}	1 ($(p \wedge q) \wedge \gamma$	premise
	2	SAT	premise
	3	$p \wedge q$	re, I
	4	9	1 e2 3
		S	1e, 2
	1	<i>a</i>	11 4,5
	<i>b</i>	2 1 S	111 4,5

2 1 $q \rightarrow r$ premise

2	$p \rightarrow q$	assumption
3	P	assumption
4	9	→e 2/3
5	r	→ e 1,4
6	D->1	-i 2-t

$$7 \quad (p \rightarrow g) \rightarrow (p \rightarrow r) \quad \rightarrow i \quad 2 - 6$$

$$3 \quad 1 \quad p \land 7p \qquad premse$$

$$2 \quad p \qquad \land e_i \quad 1$$

$$3 \quad 7p \qquad \land e_2 \quad 1$$

$$4 \quad 1 \qquad \neg e \quad 2, 3$$

$$5 \quad r \rightarrow g \qquad 1e \quad 4$$

$$6 \quad \neg (r \rightarrow g) \qquad 1e \quad 4$$

$$7 \quad \neg (r \rightarrow g) \land (r \rightarrow g) \qquad \land i \quad 6, 5$$

2. Prove the validity of the following sequents in predicate logic, where P, and Q have arity 1, and S has arity 0 (a 'propositional atom'):

O	$\exists x \ (S \to Q(x))$	premise
2	$\chi_0 S \rightarrow Q(\chi_0)$	assumption
3	S	assumption
4	$Q(x_0)$	>e 2,3
5	$\exists x Q(x)$	3x i4
6	$S \rightarrow \exists x Q(x)$	→i 3-5
7	$S \rightarrow \exists x Q(x)$	IX e 1, 2-6

