Simulating a Horn Antenna in CST

Major Project 1
Experiment 2
Adil Shaik & Ayapilla Vinith
Dr. Naveen Babu

Horn Antenna

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are used as feed antennas (called feed horns) for larger antenna structures such as parabolic antennas, as standard calibration antennas to measure the gain of other antennas.

-Sourced from Wikipedia

Objective

To simulate a working 10 GHz Horn Antenna using the Microwaves & RF/Optical Builder tools in CST Software.

Setup

Antennas which consist of waveguide elements or which transform energy from guided form (waveguide, coaxial line) to radiating by a gradual transition, e.g. horn or conical elements.

< Back

Finish

Cancel

Parameters

PARAMETER	VALUE
fctr	180/waveguide_width = 9
fmax	200/waveguide_width = 10
fmin	160/waveguide_width = 8
horn_length	30
Taper_angle	30
Wall_thickness	2
Waveguide_height	10
Waveguide_width	20

Simulation

S- Parameters

Electric Field

We can see the broadside radiation of the horn

Magnetic Field

We can clearly observe the magnetic radiation pattern in this simulation.

Farfield The 3D pattern of the farfield is shown in dBi

farfield (f=8) [1]

 Type
 Farfield

 Approximation
 enabled (kR >> 1)

 Component
 Abs

 Output
 Directivity

 Frequency
 8 GHz

 Rad. Effic.
 0.008322 dB

 Tot. Effic.
 -0.07239 dB

12.58 dBi