Introduction to Data Science

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"We are drowning in information, but starving for knowledge"
-John Naisbett

What is **knowledge**?

*This lesson refers to chapters 1 and 2 of the GIDS book

Content of this lesson

- What is Data Science?
- The Data Science Process
- Data Science: An Example

What is Data Science?

Data

- refer to single instances (single objects, people, events, points in time, etc.)
- describe individual properties
- are often available in large amounts (databases, archives)
- are often easy to collect or to obtain (e.g., scanner cashiers in supermarkets, Internet)
- do not allow us to make predictions or forecasts

Knowledge

- refers to *classes* of instances (*sets* of objects, people, events, points in time, etc.)
- describes general patterns, structures, laws, principles, etc.
- consists of as few statements as possible
- is often difficult and time consuming to find or to obtain (e.g., natural laws, education)
- allows us to make predictions and forecasts

Criteria to assess knowledge

- correctness (probability, success in tests)
- generality (domain and conditions of validity)
- usefulness (relevance, predictive power)
- comprehensibility (simplicity, clarity, parsimony)
- novelty (previously unknown, unexpected)

What is Data Science?

[Wikipedia quoting Dhar 13, Leek 13]

Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms and systems to **extract knowledge and insights** from structured and unstructured data.

[Fayyad, Piatetsky-Shapiro & Smyth 96]

Knowledge discovery in databases (KDD) is the process of (semi-)automatic **extraction of knowledge** from databases which is *valid*, *previously unknown*, and *potentially useful*.

7

Some Clarity about Words

- (semi)-automatic: no manual analysis, though some user interaction required
- valid: in the statistical sense
- previously unknown: not explicit, no "common sense knowledge"
- potentially useful: for a given application
- structured data: numbers
- unstructured data: everything else (images, texts, networks, chem. compounds, ...)

Valid?

99.98%

Valid?

customer age ∈ [18, 150](in 9, 999 of 10, 000 cases)

Previously Unknown?

 $A \Rightarrow B \text{ (in 100\% of all cases)}$

Previously Unknown?

Pregnant => Female

Useful?

$$A \Rightarrow B$$

(with s = 0.81% and c = 21.3%)

Useful?

Beer => Diapers

(with s = 0.81% and c = 21.3%)

Valid, Interesting, and Useful?

Books A and B => Book C

(with s = 0.81% and c = 21.3%)

The Data Science Process

The Data Science Process

SEMMA

Sample, Explore, Modify, Model, Assess

— CRISP-DM

 Cross Industry Standard Process for Data Mining

– KDD

Knowledge Discovery in Databases

A Classic Data Science Project

Problem Categories

Classification

- Predict experiment outcome falling into a finite number of possible results
- How credit-worthy is this customer? Very / Enough / Not enough / Absolutely not
- Will this customer respond to our mailing? Yes / No

Regression

- Predict numeric values
- How will the EUR/USD exchange rate develop?
- What will be the price of this washing machine next week?

Clustering, Segmentation

- Group similar cases in order to get overview, detect outliers, or get insights on the data structure
- Do my customers separate into different groups?
- How many operating points does the machine have, and what do they look like?

Problem Categories

Association Analysis

- Find correlations to better understand the interdependencies of all the attributes
- Focus in the full record (all the attributes) rather than on a single target variable
- Which optional equipment of a car often goes together?
- How do the various qualities in a car influence each other?

Deviation Analysis

- Knowing the trend of the data, find subgroups that behave differently
- Under which circumstances does the system behave differently?
- Which properties do those customers who do not follow the crowd share?

Data Science: an Example

Example

Dataset from a hypotetical supermarket chain

- Customers
- Products
- Purchases

Three tasks

- Divide customers into different groups according to their purchase behaviour
- Identify connections between products to implement cross-selling campaigns
- Helping design a marketing campaign to increase purchases

Two approaches

- Naive approach lead by common sense
- Sound approach using DS techniques

Data Understanding and Pattern Finding: Customer Segmentation

Naive Approach

- Aggregate purchases to respective customer
- Join with the customer details
- No interesting relations highlighted

Cluster-id	Age	Customer revenue
1	46.5	€ 1,922.07
2	39.4	€ 11,162.20
3	39.1	€ 7,279.59
4	46.3	€ 419.23
5	39.0	€ 4,459.30

Data Understanding and Pattern Finding: Customer Segmentation

Sound Approach

- Check values for the string attributes (name, employment..)
- Check and add constraints to numeric attributes (e.g. Age between 18-100)
- Look for misleading information (e.g. In the dataset a missing birthdate was by default set to 1970. If not handled properly, this information can lead to errors)
- Use average basket price as estimator for the value of a customer
- Use average number of purchases per month as further estimator
- Apply normalization to average attributes magnitudes

Cluster	Age	Avg. cart price	Avg. purchases/month
1	75.3	€ 19	5.6
2	42.1	€ 78.—	7.8
3	38.1	€ 112	9.3
4	30.6	€ 16	4.8
5	44.7	€ 45.—	3.7

Explanation Finding: Find Product Dependencies

Naive Approach

- Run Association Rule Mining algorithm with default setting
- Consider Product ID (differenciating each product)
- Unintuitive and unuseful result
- Rules have high confidence but low support values

Sound Approach

- Consider product categories
- Rules match with well-known facts
- Monitor combinations on regular basis

```
'foie gras' (p1231) <- 'champagne Don Huberto' (p2149),
    'truffle oil de Rossini' (p578) [s=1E-5, c=75%]
'Tortellini De Cecco 500g' (p3456)'
    <- 'De Cecco Sugo Siciliana' (p8764) [s=1E-5, c=60%]
```

```
tomatoes <- capers, pasta [s=0.007, c=32%] tomatoes <- apples [s=0.013, c=22%]
```

Predicting the Future: Forecast customers reactions to coupon mailings

Naive Approach

- No detailed analysis
- Send coupon with discounts after a certain purchase amount
- Just monitor the results
- Fail: customers only combine shopping trips, no additional revenues
- The data analyst is in the end fired

Sound Approach

- Discriminate valuable customers => exploit earlier segmentation
- Derive meaningful attributes, e.g. Customers underperforming on specific category, distance
- Build black box classifier model

What you have learned

Course Organization

KNIME Analytics Platform

– What is Data Science?

CRISP-DM Cycle

Thank you

For any questions please contact: education@knime.com