```
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import datasets, layers, models
(X_train, y_train), (X_test,y_test) = datasets.cifar10.load_data()
X_train.shape
     (50000, 32, 32, 3)
X_test.shape
     (10000, 32, 32, 3)
y_train.shape
     (50000, 1)
y_train[:5]
     array([[6],
            [9],
            [9],
            [4],
            [1]], dtype=uint8)
# y train is a 2D array, for our classification having 1D array is good enough. so we will convert this to
y_train = y_train.reshape(-1,)
y_train[:5]
     array([6, 9, 9, 4, 1], dtype=uint8)
y_test = y_test.reshape(-1,)
classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]
def plot_sample(X, y, index):
    plt.figure(figsize = (15,2))
    plt.imshow(X[index])
    plt.xlabel(classes[y[index]])
plot_sample(X_train, y_train, 0)
```


plot_sample(X_train, y_train, 1)


```
# Normalize the images to a number from 0 to 1. Image has 3 channels (R,G,B) and each value in the channel X_{train} = X_{train} / 255.0 X_{test} = X_{test} / 255.0
```

```
# model building

model = Sequential()
model.add(Flatten(input_shape = (32,32, 3)))
model.add(Dense(128, activation = 'relu'))
model.add(Dense(128, activation = 'relu'))

# add output layer
model.add(Dense(10, activation = 'softmax'))

model.compile(loss = 'sparse_categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])

history = model.fit(X_train, y_train, epochs = 40, validation_split = 0.2)
```

```
Epoch 1/40
Epoch 2/40
Epoch 3/40
Epoch 4/40
Epoch 5/40
Epoch 6/40
Epoch 7/40
Epoch 8/40
Epoch 9/40
Epoch 10/40
Epoch 11/40
Epoch 12/40
Epoch 13/40
```

```
Epoch 14/40
Epoch 15/40
Epoch 16/40
Epoch 17/40
Epoch 18/40
Epoch 19/40
Epoch 20/40
Epoch 21/40
Epoch 22/40
Epoch 23/40
Epoch 24/40
Epoch 25/40
Epoch 26/40
Epoch 27/40
Epoch 28/40
```

yprob=model.predict(X_test)
yprob[0]

ypred=yprob.argmax(axis=1)
ypred

array([5, 8, 8, ..., 5, 4, 7])

from sklearn.metrics import classification_report
print(classification_report(y_test,ypred))

	precision	recall	f1-score	support
0	0.54	0.45	0.49	1000
1	0.65	0.50	0.57	1000
2	0.38	0.27	0.32	1000
3	0.42	0.13	0.20	1000
4	0.33	0.54	0.41	1000
5	0.41	0.38	0.40	1000
6	0.49	0.50	0.49	1000
7	0.43	0.56	0.49	1000
8	0.53	0.68	0.59	1000
9	0.48	0.57	0.52	1000
acy			0.46	10000
avg	0.47	0.46	0.45	10000
avg	0.47	0.46	0.45	10000

accur macro weighted pit.piot(nistory.nistory[toss])
plt.plot(history.history["val_loss"])

Colab paid products - Cancel contracts here