سلسلة 2: الإشتقاق و تطبيقاته

التمرين 1

 $f(x)=x+1+\sqrt{x^2+4x}$ لتكن f الدالة المعرفة بما يلي: $f(x)=x+1+\sqrt{x^2+4x}$ ليكن $f(x)=x+1+\sqrt{x^2+4x}$ منحناها في معلم متعامد ممنظم $f(x)=x+1+\sqrt{x^2+4x}$ و ليكن $f(x)=x+1+\sqrt{x^2+4x}$

- ا. حدد D_f حيز تعريف الدالة f ثم أحسب $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$
- ين أن المستقيم ذي المعادلة y=2x+3 مقارب المنحنى y=2x+3 بين أن المستقيم والمنحنى بين أن المستقيم والمستقيم بين أن المستقيم والمستقيم والمستقي
- 3. أدرس قابلية اشتقاق الدالة f على اليمين في 0 و على اليسار في 4 ثم أعط تأويلا هندسيا.
- 4. أعط جدول تغيرات الدالة f ثم أنشئ المنحني (\mathcal{C}).
 - f(x) > 0 حل مبياني المتراجحة.

التمرين 4

لتكن f الجالة العددية للمتغير الحقيقي x المعرفة بما يلي: $f(x)=-1+\sqrt[3]{1-x}$ و $O(\vec{i};\vec{j})$ منحناها في معلم متعامد ممنظم $O(\vec{i};\vec{j})$

1. أدرس تغيرات كل من الدالتين u و v على المجال

v و u المنحنيين الممثلين للدالتين v و v و v المنحنيين الممثلين للدالتين v

lpha مبين أن المعادلة u(x)=v(x) تقبل حلا وحيدا 3.

4. تحقق من أن العدد lpha ينتمي إلى المجال [2;3[.

u(x) > v(x) استنتج مجموعة حلول المتراجحة .u(x) > v(x)

 $[1; +\infty[$ الدالة العددية المعرفة على الدالة العددية المعرفة التكن الدالة العددية العرفة الع

1. أدرس قابلية اشتقاق الدالة f في 1 على اليمين.

 $(\forall x \in]1; +\infty[): \ f'(x) = rac{u(x)-v(x)}{2\sqrt{rac{x^2-1}{x}}}$ ئن: .2

3. استنتج أن f تقبل قيمة دنوية ثم حددها.

 $\bullet[1;+\infty[$ في المجال

 $f(x) = \frac{x}{2} - \sqrt{\frac{x^2 - 1}{x}}$: بما یلي

- ا. حدد D_f مجموعة تعریف الدالة f ثم أحسب $\lim_{x \to -\infty} f(x)$
- أدرس قابلية اشتقاق الدالة f على اليسار في 1 ثم أعط تأويلا هندسيا للنتيجة.
 - أدرس تغيرات الدالة 6.
 - 4. أدرس الفرع اللانهائي للمنحنى (C_f) .
 - رو در f'(0) و f(0) محدد f(0) محدد f(0) و f(0)
- 6. بين أن f تقبل دالة عكسية معرفة على مجال I ينبغي تحديده.
 - I من x من $f^{-1}(x)$ من 7
 - السابق، في نفس المعلم السابق، $(\mathcal{C}_{f^{-1}})$

التمرين 2

نعتبر الدالة f المعرفة على $\mathbb R$ بما يلي:

$$\begin{cases} f(x) = \frac{\sqrt{x}}{1+x}; & x \ge 0\\ f(x) = x\sqrt{x^2 - x}; & x < 0 \end{cases}$$

 $oldsymbol{\cdot} \left(O; ec{i}; ec{j} \right)$ منحناها في معلم متعامد ممنظم (\mathcal{C}) منحناها

- ر. تحقق أن الدالة f متصلة في 0.
- أدرس قابلية إشتقاق الدالة f على اليمين و على اليسار في 0 ثم أعط ىأويلا هندسيا.
 - (C) أدرس الفرعين اللانهائيين للمنحنى
- و $[0;+\infty[$ على كل من المجالين $[0;+\infty[$ و f'(x) على $[0;+\infty[$ و $[0;+\infty[$
 - f أعط جدول تغيرات الدالة f.
 - 6. أرسم المنحني (C).

التمرين 3

 $[1; +\infty[$ للأول: لتكن u و v الدالىين المعرفتين على $v(x) = 1 + \frac{1}{x^2}$ و $u(x) = \sqrt{\frac{x^2-1}{x}}$: يما يلي:

التمرين 5

يعتبر الدالة f المعرفة على $\mathbb R$ بما نلي:

 $\left\{ egin{array}{ll} f(x)=1+\sqrt[3]{1-x^3}; & x<1 \ f(x)=x+\sqrt{x^2-1}; & x\geq 1 \end{array}
ight.$ و $\left(O;\vec{i};\vec{j}
ight)$ منحناها في معلم متعامد ممنظم $\left(\mathcal{C}_f
ight)$

- $\lim_{x \to +\infty} f(x)$ أدرس اتصال f في f ثم أحسب أ $\lim_{x \to -\infty} f(x)$
- بين أن المستقيم (D) الذي معادلته y=2x مقارب للمنحنى (\mathcal{C}_f) بجوار (\mathcal{C}_f)
- د. أدرس وضع المنحنى (\mathcal{C}_f) بالنسبة للمستقيم (D) على المجال [$1; +\infty$].
 - \mathcal{C}_f . أدرس الفروع اللانهائية للمنحنى
- 5. أدرس قابلية اشتقاق الدالة f في 1 ثم اعط تأويلا هندسيا للنتيجة.
 - \bullet ا ∞ ; 1[الكل x من المجال f'(x) أحسب 6.
 - $(\forall x \in]1; +\infty[): \ f'(x) > 0$ بین أن: 7
- $\cdot(\mathcal{C}_f)$ أعط جدول تغيرات الدالة f ثم أنشئ المنحنى \cdot 8
 - $I = [1; +\infty[$ لتكن g قصور الدالة f على المجأل g
- را) بین أن g تقیل دالة عکسیة g^{-1} معرفة علی مجال J ینبغی تحدیده.
 - J من $g^{-1}(x)$ من $g^{-1}(x)$ من (ψ)
 - $\left(oldsymbol{arphi}_{g}
 ight)$ أنشئ $\left(\mathcal{C}_{g^{-1}}
 ight)$ في نفس المعلم السابق $\left(oldsymbol{arphi}
 ight)$

6. بين أن الدالة f تقبل دالة عكسية على $]\infty+\infty[$ ثم حدد دالتها العكسية.

التمرين 7

 $f(x)=rac{|2x^2-x-1|}{\sqrt{1-x^2}}$ لتكن f الدالة المعرفة بما يلي: f

- ر مدد D_f مجموعة تعريف الدالة f.
 - $\lim_{x \to -1} f(x)$ و $\lim_{x \to 1} f(x)$ عدد 2
- 3. أدرس قابلية اشتقاق الدالة f في $\frac{1}{2}$ ثم أول هندسيا النتيجة.
- $-1; -\frac{1}{2}$ على كل من المجالين f'(x) على $-1; -\frac{1}{2}$ على كل من المجالين $-1; -\frac{1}{2}; 1$
 - ر أعط جدول تغيرات الدالة f.
 - f أنشئ منحنى الدالة f.

التمرين 6

 $[x]: -rac{1}{2}; +\infty$ نعتبر الدالة $[x]: f(x) = \sqrt{2x+1} - rac{x}{\sqrt{2x+1}}$

 $oldsymbol{\cdot} \left(O; ec{i}; ec{j}
ight)$ منحناها في معلم متعامد ممنظم (\mathcal{C}_f)

- ا، حدد $\lim_{x\to -\frac12} f(x)$ و $\lim_{x\to +\infty} \frac{f(x)}{x}$ و $\lim_{x\to +\infty} f(x)$ محدد النتائج.
- و أعط $]-\frac{1}{2};+\infty[$ من المجال f'(x) من f'(x) عط جدول تغيرات f
 - 3. $\frac{5}{1}$

 $(\forall x \in]-\frac{1}{2}; +\infty[): f''(x) = (2x+1)^{-\frac{5}{2}}(1-x)$

- 4. بين أن النقطة A ذات الافصول 1 تمثل نقطة المعطاف للمنحني (\mathcal{C}_f) .
 - $\cdot(\mathcal{C}_f)$ أنشئ المنحنى .5