F29FB 2025 Coursework

- Shyam Sundar Velmurugan
- ssv2001@hw.ac.uk
- H00418621

Q1) Graph (1)

Q2) Highlighting the differences from the graph

So the symbols I have used instead of ♦ and ♥ are @ and \$ respectively.

Q3) Formal definition of the proposed graph

States = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10}

Symbol = {^, 1, @, \$}

Start State = Lowest number state = q0

Initial State	Current Symbol	New State	New Symbol	Move
Mex q0	@	q 9	@	L
Mex q0	1	q1	^	R
Mex q1	@	q2	@	R
Mex q1	1	q1	1	R
Mex q2	\$	q 7	b	L
Mex q2	1	q 3	^	R
Mex q3	\$	q4	\$	R
Mex q3	1	q 3	1	R
Mex q4	۸	q 5	1	L
Mex q4	1	q4	1	R
Mex q5	\$	q6	\$	L
Mex q5	1	q 5	1	L
Mex q6	٨	q2	1	R
Mex q6	1	q6	1	L
Mex q7	@	q8	@	L
Mex q7	1	q 7	1	L

Mex q8	۸	q0	1	R
Mex q8	1	q8	1	L
Mex q9	۸	q10	۸	R
Mex q9	1	q 9	1	L

Q4) Logic of the proposed graph

States = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10}

1) First we initialize at q0 (starting state)

The machine starts up at 'q0', which is the initial state. In the tape if '@' appears, it shifts to 'q1', updating for '^', and then to the right.

2) Numbers Processed (q1 & q2)

q1:

Shifts to 'q3', keeping the blank and moves to right, if '^' is encountered.

If '1' is seen, it moves to 'q2', updating '1' for blank and moves to the left.

q2:

Follows a loop in 'q2' but if '1' is detected, it moves left.

If '^' is detected, it moves to the right and remains at 'q2'.

3) Second Symbol Sequence

At q3:

If it detects '1', it moves right in a loop.

If it detects '\$' it moves right to 'q4'.

At q4:

If it detects '1', it moves to the right and goes back to 'q1'.

4) Retracing & Adapting

At q5:

If it detects 'A', it moves left and updates to '1'.

If it detects 'b', it moves left to 'q6'.

At q6:

If it detects '1', it moves left and loops.

At q7:

If it detects 'b' or '1', it moves left and loops.

At q8:

If it detects 'a' or '1', it moves left and loops.

5) Taking in the input

At q9:

If it detects '^', it moves right to 'q10'.

The machine stops when it reaches the acceptable state 'q10'.

Q6 Machine code

a) 0 and 3 representation

b) 2 and 0 representation

(First 15 steps)

c) 3 and 2 representation (First 15 steps)

(Last 15 steps)

d) 1 and 5 representation (First 15 steps)

(Last 15 steps) (a) (a) 6 (a) (a) (a) (a)

Q7 Graph and JSON (2)

Graph:

Explanation:

The turing machine takes input 'n' number in unary and returns 'n', 'n2' and 'n3' as the outputs, separated by A and B.

Symbols used:

- A -> separator between 'n' and 'n2'.
- B -> separator between 'n2' and 'n3'.
- C -> a marker used temporarily for easier and faster copying.

Main steps:

It duplicates 'n' and inserts 'A' as a separator.

Then computes 'n2' using the multiplication method and separates using 'B'.

Finally it computes 'n3' by multiplying 'n2' and 'n'.

Final Output: 11A1111B11111111

(Last 15 steps) A В A В В В [15] В В В

