Практическая работа №7

Тема: «Настройка маршрутизации по протоколу OSPF».

Цель работы: изучить построение маршрутизации по протоколу OSPF.

Ход работы

Построить следующую схему (рис. 7.2).

Рис. 7.2. Начальная схема сети для нашей работы

Таблица 1. Адреса интерфейсов узлов сети.

Имя узла	Имя интерфейса	IP-адрес интерфейса	Шлюз
R1	GigabitEthernet0/0	10.10.10.1/30	-
	GigabitEthernet0/1	10.10.11.1/30	-
	GigabitEthernet0/2	192.168.1.1/24	-
R2	GigabitEthernet0/0	10.10.10.2/30	-
	GigabitEthernet0/1	10.10.12.2/30	-
	GigabitEthernet0/2	192.168.2.1/24	-
R3	GigabitEthernet0/0	10.10.12.2/30	-
	GigabitEthernet0/1	10.10.11.2/30	-
	GigabitEthernet0/2	192.168.3.1/24	-
PC0	FastEthernet0/0	192.168.1.2/24	192.168.1.1/24
PC1	FastEthernet0/0	192.168.2.2/24	192.168.2.1/24
PC2	FastEthernet0/0	192.168.3.2/24	192.168.3.1/24

Настроить loopback интерфейс на R1

					ИКСиС.09.03.02.050000 ПР			•
Изм.	Лист	№ докум.	Подпись	Дата				
Разра	аб.	Благородов И.				Лит.	Лист	Листов
Пров	ер.	Береза А.Н.			Практическая работа №7		2	
Реце	нз					стройка маршрутизации по иСОиП (филиал) ДГТ.		ил) ДГТУ в
Н. К	онтр.				1 10			
Утве	рд.				iipotokoiiy OO11".	ИСТ-ТЬ21		

На R1 настроить программный loopback интерфейс — алгоритм, который направляет полученный сигнал (или данные) обратно отправителю (рис. 7.3).

IPv4-адрес, назначенный loopback-интерфейсу, может быть необходим для процессов маршрутизатора, в которых используется IPv4-адрес интерфейса в целях идентификации. Один из таких процессов — алгоритм кратчайшего пути (OSPF). При включении интерфейса loopback для идентификации маршрутизатор будет использовать всегда доступный адрес интерфейса loopback, а не IP-адрес, назначенный физическому порту, работа которого может быть нарушена. На маршрутизаторе можно активировать несколько интерфейсов loopback. IPv4-адрес для каждого интерфейса loopback должен быть уникальным и не должен быть задействован другим интерфейсом.

```
Rl#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Rl(config)#int loopback 0

Rl(config-if)#
%LINK-5-CHANGED: Interface Loopback0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed
Rl(config-if)#ip addr 192.168.100.1 255.255.255.255
Rl(config-if)#no sh
Rl(config-if)#exit
```

Рис. 7.3. Настройка интерфейса loopback на R1

Настроить протокол OSPF на R1

Включить OSPF на R1, все маршрутизаторы должны быть в одной зоне area 0 (рис. 7.4).

```
Rl#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Rl(config) #router ospf 1
Rl(config-router) #network 192.168.1.0 0.0.0.3 area 0
Rl(config-router) #network 10.10.10.0 0.0.0.3 area 0
Rl(config-router) #network 10.10.11.0 0.0.0.3 area 0
Rl(config-router) #network 10.10.11.0 0.0.0.3 area 0
Rl(config-router) #end
Rl#
%SYS-5-CONFIG_I: Configured from console by console
```

Рис. 7.4. Включаем протокол OSPF на R1

Проверка результата настроек (рис. 7.5).

Изм.	Лист	№ докум.	Подпись	Дат

```
Rl#show ip interface brief
Interface IP-Address OK? Method Status

GigabitEthernet0/0 10.10.10.1 YES manual up

GigabitEthernet0/1 10.10.11.1 YES manual up

GigabitEthernet0/2 192.168.1.1 YES manual up

Loopback0 192.168.100.1 YES manual up

Vlan1 unassigned YES unset administratively
```

Рис. 7.5 Маршрутизатор R1 настроен

Следует обратить внимание, что физически порта 192.168.100.1 нет, он существует только логически (программно).

Настроить loopback интерфейс на R2

На R2 настроить программный loopback интерфейс по аналогии с R1 (рис. 7.6).

```
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int loopback 0

R2(config-if)#
%LINK-5-CHANGED: Interface Loopback0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed
R2(config-if)#ip addr 192.168.100.2 255.255.255
R2(config-if)#no sh
R2(config-if)#exit
```

Рис. 7.6. Настройка логического интерфейса loopback на R2

Настроить OSPF на R2

Включить протокол OSPF на R2, все маршрутизаторы должны быть в одной зоне area 0 (рис. 7.7).

```
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int loopback 0

R2(config-if)#
%LINK-5-CHANGED: Interface Loopback0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed
R2(config-if)#ip addr 192.168.100.2 255.255.255
R2(config-if)#no sh
R2(config-if)#exit
R2(config-if)#exit
R2(config-router)#network 192.168.2.0 0.0.0.3 area 0
R2(config-router)#network 10.10.10.0 0.0.0.3 area 0
R2(config-router)#network 10.10.12.0 0.0.0.3 area 0
```

Рис. 7.7. Включение протокола OSPF на R2

Проверить результат настроек (рис. 7.8).

Изм.	Лист	№ докум.	Подпись	Дат

```
R2#show ip interface brief
Interface IP-Address OK? Method Status

GigabitEthernet0/0 10.10.10.2 YES manual up

GigabitEthernet0/1 10.10.12.1 YES manual up

GigabitEthernet0/2 192.168.2.1 YES manual up

Loopback0 192.168.100.2 YES manual up

Vlan1 unassigned YES unset administratively
```

Рис. 7.8. Маршрутизатор R2 настроен

Настроить loopback интерфейс на R3

Выполнить все аналогично предыдущим действиям (рис. 7.9–7.11).

```
R3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#int loopback 0

R3(config-if)#
%LINK-5-CHANGED: Interface Loopback0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed
R3(config-if)#ip addr 192.168.100.3 255.255.255.255
R3(config-if)#no sh
R3(config-if)#exit
```

Рис. 7.9. Настройка логического интерфейса loopback на R3

Настроить протокол OSPF на R3

```
R3(config) #router ospf 1
R3(config-router) #network 192.168.3.0 0.0.0.3 area 0
R3(config-router) #network 10.10.12.0 0.0.0.3 area 0
R3(config-router) #network 10.10.11.0 0.0.0.3 area 0
R3(config-router) #end
R3#
%SYS-5-CONFIG_I: Configured from console by console

00:49:53: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.100.2 on GigabitE m LOADING to FULL, Loading Done
```

Рис. 7.10. Включение протокола OSPF на R2

R3#show ip interface Interface	brief IP-Address	OK? Method	Status
GigabitEthernet0/0	10.10.12.2	YES manual	up
GigabitEthernet0/1	10.10.11.2	YES manual	up
GigabitEthernet0/2	192.168.3.1	YES manual	up
Loopback0	192.168.100.3	YES manual	up
Vlanl	unassigned	YES unset	administratively

Рис. 7.11. Маршрутизатор R3 настроен

Проверить работу сети

Убедиться, что роутер R3 видит R2 и R1 (рис. 7.12).

Изм.	Лист	№ докум.	Подпись	Дат

```
R3#sh ip ospf neighbor

Neighbor ID Pri State Dead Time Address
192.168.100.2 1 FULL/DR 00:00:39 10.10.12.1
t0/0
192.168.1.1 1 FULL/DR 00:00:38 10.10.11.1
t0/1
R3#
```

Рис. 7.12. Роутер R3 видит своих соседей

Просмотреть таблицу маршрутизации для R3 (рис. 7.13).

Рис. 7.13. Таблица маршрутизации для R3

В этой таблице запись с буквой «О» говорит о том, что данный маршрут прописан протоколом OSPF. Сеть 192.168.1.0 доступна для R3 через адрес 10.10.11.1 (это порт gig0/1 маршрутизатора R1). Аналогично, сеть 192.168.2.0 доступна для R3 через адрес 10.10.12.1 (это порт gig0/1 маршрутизатора R2).

Проверить доступность разных сетей (рис. 7.14).

```
R3>ping 192.168.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.2, timeout is 2 seconds:
.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 0/0/0 ms

R3>ping 192.168.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.2.2, timeout is 2 seconds:
.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max = 0/0/0 ms
```

Рис. 7.14. Сети 192.168.1.0 и 192.168.2.0 доступны

Контрольные вопросы

- 1. Каким образом выполнить конфигурирование протокола OSPF?
- 2. Для чего предназначен интерфейс loopback?
- 3. для чего предназначен протокол OSPF?
- 4. Какие базы данных формирует протокол OSPF?
- 5. Какие существуют области функционирования протокола OSPF?

					ı
Изм.	Лист	№ докум.	Подпись	Дат	