Специальные разделы криптологии

Савчук М.Н.

2 апреля 2015 г.

Глава 1

Алгоритм Шора для факторизации

1.1 Введение

Есть число N

$$N = a \cdot b, \qquad a \neq b$$

 ${f 3}$ адача факторизации: для числа $N=p_1^{lpha_1}\cdots p_t^{lpha_t}$

- либо получить каноническую форму
- либо получить нетривиальный делитель

Число $a\in\mathbb{Z}_N$ принадлежит показателю δ , если δ — минимальное число, для которого $a^\delta\equiv 1\mod n$. Обозначаем $\delta_N\left(a\right)$.

Показатель существует только если a и N взаимно просты $(a \in \mathbb{Z}_N)$ и по сути является порядком a в группе $\mathbb{Z}_N : \delta_n(a) = ord_N(a)$. Если $gcd(a, N) \neq 1$, то мы нашли нетривиальный делитель.

Допустим, что для заданного $a \in \mathbb{Z}_N$ у нас есть оракул O_f , который возвращает показатель числа. Если этот оракул полиномиален, то можно факторизовать число (вероятностно)

Пусть
$$r$$
 — чётное и $\gcd\left(a^{r/2}+1,N\right)=1,$ где $O_{f}\left(a\right)=r$

$$a^r \ge 1 \mod N$$
$$\left(a^{r/2} - 1\right) \cdot \left(a^{r/2} + 1\right) \equiv 0 \mod N$$

Но $a^{r/2} \neq 1 \mod N$, потому что иначе r — не минимальное число (нарушение определения показателя). Значит, $\left(a^{r/2}-1\right)$ и N имеет нетривиальный общий делитель.

Важно: условие $\gcd\left(a^{r/2}+1,N\right)=1$ можно заменить на условие $a^{r/2}+1$:N.

Утверждение 1.1.1. Пусть $N = p_1^{\alpha_1} \cdots p_t^{\alpha_t} \ u$

$$S = \left\{ a \in \mathbb{Z}_N : ord\left(a\right) mod2 = 0 \lor a^{ord\left(a\right)/2} + 1 \vdots N \right\}$$

Tог ∂a

$$|S| \le \frac{\varphi\left(N\right)}{2^k}$$

То есть, подходящих нам a очень мало.

1.2 Алгоритм факторизации с оракулом

1. Генерируем такое a, чтобы при $r = O_f(a)$ выполняюсь

$$r = 2 \cdot r_1, a^{r_\alpha} + 1 : N$$

2. $gcd(a^{r_1}-1,N)$ — нетривиальный делитель.

Утверждение 1.2.1. В классической модели найти оракул O_f не получилось. Шору удалось построить его в квантовой модели.

Рассмотрим функцию $f: \mathbb{Z}_N \to \mathbb{Z}_N$

$$f(x) = a^x \mod N$$

Это почти непериодическая функция — её период не кратен N.

1.3 Квантовая система

У нас есть $|0\rangle$, $|1\rangle$; кубит находится в суперпозиции состояний $\lambda_1 \cdot |0\rangle + \lambda_2 |1\rangle$, над которыми можно выполнять унитарные операции.

Набор кубитов — одна из возможных интерпретаций квантово-механической системы. Другой вариант — N-уровневая система, в которое есть N состояний $|0\rangle, |1\rangle, \ldots, |N-1\rangle$, и эти состояния ортонормированы (то есть, при измерении выпадают только эти состояния и ничего среднего между ними).

Глава 2

Задача о скрытой подгруппе

Оглавление

1	Алгоритм Шора для факторизации						
	1.1	Введение	•				
	1.2	Алгоритм факторизации с оракулом	4				
	1.3	Квантовая система	4				
2	Зад	ача о скрытой подгруппе	ļ				