

PATENT ABSTRACTS OF JAPAN

(11)Publication number : **05-226004**
 (43)Date of publication of application : **03.09.1993**

(51)Int.CI. **H01M 10/40**
H01M 4/62
H01M 4/66

(21)Application number : **04-269144**
 (22)Date of filing : **14.09.1992**

(71)Applicant : **ASAHI CHEM IND CO LTD**
 (72)Inventor : **YOSHINO AKIRA**
TAKIZAWA YUMIKA
KURIBAYASHI ISAO
KOYAMA AKIRA
MINATO YASUFUMI
YAMASHITA MASATAKA
INOUE KATSUHIKO

(30)Priority
 Priority number : **03261293** Priority date : **13.09.1991** Priority country : **JP**

(54) SECONDARY BATTERY

(57)Abstract:

PURPOSE: To secure safety while keeping excellent characteristics by keeping the moisture content in a nonaqueous electrolyte cell, in which an Li containing composite alloy oxide is used as a positive electrode active substance and a carbonaceous material as a negative electrode active substance, within a predetermined range.

CONSTITUTION: The battery comprises a positive electrode 1 in which a lithium containing composite alloy oxide is used as a positive electrode active substance, a negative electrode 3 in which a carbonaceous material is used as a negative electrode active substance, a separator 2, an organic electrolyte, and a cell housing. The moisture content contained in the organic electrolyte is designed to be from 5 to 450ppm. When it exceeds 450ppm, hydrogen gas or the like is unfavorably generated upon an initial charging so that the internal pressure rises and the swelling in the cell takes place. On the other hand, controlling it below 5ppm unfavorably requires an extremely long time of dehydrating process and an extremely high-grade water content control in assembly man-hours. Accordingly, controlling it within the range of 15-300ppm can maintain practical and excellent battery characteristics.

LEGAL STATUS

[Date of request for examination] **25.08.1999**
 [Date of sending the examiner's decision of rejection]
 [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
 [Date of final disposal for application]
 [Patent number]
 [Date of registration]
 [Number of appeal against examiner's decision of rejection]
 [Date of requesting appeal against examiner's decision of rejection]
 [Date of extinction of right]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim]

[Claim 1] The rechargeable battery characterized by being the rechargeable battery which makes a basic component the positive electrode which makes a lithium inclusion compound metallic oxide a positive active material, the negative electrode which makes a carbonaceous material a negative-electrode active material, a separator, the organic electrolytic solution, and a cell container, and the moisture content contained in this organic electrolytic solution being 5 ppm - 450 ppm.

[Claim 2] The rechargeable battery of the claim 1 publication characterized by coming to prepare one [at least] electrode an active material coat on collection **** of metals, and distributing the binder in this active material coat by the binder distribution factors 0.5-5.0.

[Claim 3] The rechargeable battery of the claim 2 publication characterized by for collection **** of metals being a metallic foil, and the surface roughness of this metallic foil being 0.1 micrometers - 0.9 micrometers.

[Claim 4] The rechargeable battery of the claim 2 publication characterized by making into a principal component the styrene / butadiene latex a binder is 40 % of the weight - 95 % of the weight of butadiene contents, and is [latex] 75% - 100% of gel contents.

[Claim 5] The rechargeable battery of the claim 1 publication characterized by the thing for which the organic electrolytic solution was chosen out of ether, ketones, lactone, nitril, an amines, amides, a sulfur compound, chlorinated hydrocarbons, ester, carbonate, the nitro compound, the phosphoric ester system compound, and the sulfo run system compound, and which makes a kind a solvent at least.

[Claim 6] The rechargeable battery of the claim 1 publication characterized by this negative electrode occupying both the most inner circumference and the outermost periphery in the cell structure which carries out separator **, carries out opposite arrangement of the positive/negative electrode, and comes to involve it in.

[Claim 7] The rechargeable battery of the claim 1 publication characterized by equipping with PTC element whose induction temperature coefficient operation temperature is 80 degrees C - 140 degrees C, and is -10--130 as a safety device.

[Claim 8] Operation of the rechargeable battery characterized by making the pocket electronic equipment which consists of an IC element which operates by 3.5V-2.6V drive in the rechargeable battery single cell whose moisture content contained in this organic electrolytic solution it is the rechargeable battery which makes a basic component the positive electrode which makes a lithium inclusion compound metallic oxide a positive active material, the negative electrode which makes a carbonaceous material a negative-electrode active material, a separator, the organic electrolytic solution, and a cell container, and is 5 ppm - 450 ppm.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed description]

[0001]

[Field of the Invention] this invention relates to the new rechargeable battery excellent in cycle nature, a store property, and safety.

[0002]

[Prior art] In recent years, various non-drainage-system rechargeable batteries are proposed as small [which changes to the conventional acid-lead cell, and nickel/cadmium cell], and a lightweight rechargeable battery. The new rechargeable battery system which uses a carbonaceous material for a negative electrode especially using the compound metallic oxide which makes Li and Co a principal component in the positive electrode currently indicated, for example in the Provisional-Publication-No. 90,863 [62 to] official report, the Provisional-Publication-No. 121,260 [63 to] official report, the publication-number 49,155 [three to] official report, etc. attracts attention.

[0003] What uses the metal Li or Li alloy was conventionally proposed as a negative-electrode active material as such a non-drainage-system rechargeable battery. from small and the viewpoint of being lightweight, although the rechargeable battery which used such a metal Li etc. for the negative electrode was satisfied, since performance problems, such as cycle nature, a store property, etc. based on a dendrite precipitation, and the separator by dendrite precipitation similarly broke it through, it had a serious failure to utilization, such as a problem of the life of causing the internal shunt, and a problem when safe] based on a still activity metal [Li] chemical reactivity

[0004] On the other hand, since the new fuel cell subsystem which uses a carbonaceous material for the aforementioned negative-electrode active material does not have an activity chemical reactivity like a metal Li while it has the outstanding cycle nature and the outstanding store property, without causing such a dendrite precipitation, it has the characteristic feature that safety is very excellent.

[0005] When it combines with Li inclusion compound metallic oxide as a positive active material especially, it is expected as what can do the cell of the high voltage and high capacity.

[0006]

[Object of the Invention] By the way, such a Li inclusion compound metallic oxide is made into a positive active material, and the performance of a cell and safety are greatly influenced by the moisture content contained in the electrolytic solution to use in the nonaqueous electrolyte cell using the carbonaceous material as a negative-electrode active material. For example, when many moisture contains in the electrolytic solution in remainder, while the bad influence on the performance of a fall of current efficiency and a fall of cycle nature comes out, the phenomenon which becomes the safe upper problem of a gassing and internal pressure elevation by the reaction with moisture occurs.

[0007] However, although it is theoretically possible to make the moisture content in the electrolytic solution about into zero when the manufacturing process of an actual cell is considered, it becomes high in cost extremely. When using especially the carbonaceous material of this invention for a negative-electrode active material, the moisture content permitted differs from the case where the conventional metal Li is used as a negative-electrode active material. Therefore, it is an important technical problem to clarify the moisture content permitted in the fuel cell subsystem of this invention, and to find out the balance domain of practicality.

[0008]

[A The means for solving a technical problem and an operation] As a result of considering zealously the influence by the moisture content of this fuel cell subsystem, this invention person etc. maintained the property which was excellent in the specific moisture-content domain, and found out that safety was also secured.

[0009] The rechargeable battery of this invention is a rechargeable battery which makes a basic component the positive electrode which was completed based on such knowledge and makes a lithium inclusion compound metallic oxide a positive active material, the negative electrode which makes a carbonaceous material a negative-electrode active material, a separator, the organic electrolytic solution, and a cell container, and the moisture content contained in this organic electrolytic solution is characterized by being 5 ppm - 450 ppm.

[0010] In this invention, especially the inclusion moisture content must be important and the domain of it must be 5 ppm - 450 ppm. It is the domain of 15 ppm - 300 ppm preferably.

[0011] In exceeding 450 ppm, while gas, such as hydrogen gas, occurs at the time of initial charge and internal pressure rises,

phenomena, such as blistering of a cell, generate and are not desirable. Moreover, in order to control to a less than 5 ppm moisture content, while very prolonged dehydration processing is required like the above-mentioned, it is not set as an erector and moisture needed [very advanced], and desirable.

[0012] In order to control a moisture content in the domain of this invention, about the electrolytic solution, the method of using dehydrating agents, such as a molecular sieves, etc. is adopted. Moreover, about component moisture, such as positive, a negative electrode, and a separator, each may be dried preparatorily, and technique, such as establishing a xeransis process, is adopted before electrolytic-solution impregnation as a cell erector.

[0013] Moreover, since the activity matter is not used to the moisture of a metal lithium etc., especially advanced dry conditions are not so required as the erector for positive [of the combination of this invention], and a negative electrode.

When establishing a xeransis process especially before electrolytic-solution impregnation, even if it performs the process till then in the usual atmospheric air, it can be controlled to the moisture content of the limited domain of this invention.

[0014] Like the above, in the case of the cell of positive [of this invention], and the combination of a negative electrode, the moisture content of a large domain is permitted compared with the conventional lithium cell etc., and it becomes a practically big advantage.

[0015] Li compound metallic oxide said by this invention is a compound which has the layer structure, and Li ion intercalates and can deintercalate electrochemically. LiCoO₂ indicated, for example in a Provisional-Publication-No. 136,131 [55 to] official report if an example of such a compound metallic oxide is shown, although not limited especially, and general formula Lix Coy Nz O₂ (however) currently indicated in the Provisional-Publication-No. 90,863 [62 to] official report N was chosen out of the group of aluminum, In, and Sn -- a kind is expressed at least and x, y, and z express the number of each 0.05<=x<=1.10, 0.85<=y<=1.00, and 0.001<=z<=0.10 moreover, Lix Ni_y Co (1-y) O₂ (however, 0< x<=1, 0<=y<0.50) indicated in a publication-number 49,155 [three to] official report -- further -- Lix MnO₂ etc. -- it is mentioned

[0016] In order to obtain such a compound, if it requires further, it will be easily obtained by the baking reaction with other metallic compounds with Li compounds, such as a lithium hydroxide, a lithium oxide, a lithium carbonate, and a lithium nitrate, a metallic oxide and a metal hydroxide, a metal carbonate, a metal nitrate, etc.

[0017] These multiple oxides have the outstanding property which is not seen also for what ** in other active materials called the high voltage and high capacity as a positive active material. especially aforementioned general formula Lix Coy Nz O especially]2 (however, N was chosen out of the group of aluminum, In, and Sn -- a kind is expressed at least and x, y, and z express the number of each 0.05<=x<=1.10, 0.85<=y<=1.00, and 0.001<=z<=0.10) is a multiple oxide which is excellent in properties, such as cycle nature, and is preferably used by this invention

[0018] Moreover, although especially the carbonaceous material said by this invention is not limited, if it shows the example, baking carbide, such as a high surface-area carbon material given in a Provisional-Publication-No. 35,881 [58 to] official report, graphite, and a phenol system resin given in a Provisional-Publication-No. 209,864 [58 to] official report, the baking carbide of a condensation polycyclic hydrocarbon system compound given in a Provisional-Publication-No. 111,907 [61 to] official report, etc. will be mentioned. The carbonaceous material which has BET adsorption method specific-surface-area A (m² / g) indicated in a Provisional-Publication-No. 90,863 [62 to] official report especially in the domain in which the value of the crystal thickness Lc (**) and true-density rho (g/cm³) in X-ray diffraction fills following condition 1.70<rho<2.18 and 10<Lc<120rho-189 in 0.1< A<100 has high capacity and the outstanding cycle property, and is especially used preferably in this invention.

[0019] Although it is not limited, after especially the molding technique of the electrode using such an active material distributes an electrode active material in the solvent solution of an organic polymer, the coating method which carries out coating xeransis can attain a thin film and large area-ization, and it is desirable. [of a method] In this case, that come to prepare one [at least] electrode an active material coat on collection **** of metals, and the binder in this active material coat is distributed by the binder distribution factors 0.5-5.0 prevents a fall of a paint film intensity, the poor contact between active material grain, etc., it can improve the elevated-temperature property of the rechargeable battery of this invention, and it is desirable. a binder distribution factor -- desirable -- 0.75-2.5 -- it is 0.75-2.0 more preferably

[0020] The binder distribution factor said here is a coefficient defined by the below-mentioned measuring method, and the ratio with the amount of binders which exists in a 10-micrometer layer thickness from the amount of binders which exists in a 10-micrometer layer thickness from an active material layer front face, and a ***** side active material layer interface is expressed.

[0021] A <measurement of binder distribution factor> sample:electrode is hardened by the epoxy resin, and let what carried out the disconnection polishing of the electrode cross section be a sample.

[0022] Measurement: Measure the amount of binders in the active material of an electrode cross section by EPMA (electron microprobe analysis method).

[0023] Equipment is HITACHI X-650 (Hitachi make)

HORIBA EMAX-2200 (Horiba make)

Wavelength-dispersion type EPMA is used.

[0024] A lower formula performs <calculation of binder distribution factor> binder distribution factor.

[0025]

[A-one number]

$$\text{バインダー分布係数} = \frac{\text{活物質層表面から } 10\text{ } \mu \text{ までの層のバインダー量}}{\text{集電体側活物質界面から } 10\text{ } \mu \text{ までの層のバインダー量}}$$

In addition, pretreatments, such as dyeing for the above-mentioned measurement, are arbitrarily chosen according to the modality of binder.

[0026] When the distribution factor of a binder is less than 0.5, the intensity on the front face of a paint film is weak, and absence of an active material etc. generates and is not desirable. Moreover, when a binder distribution factor exceeds 5.0, cell performances, such as a cell property especially cycle nature, a store property, and output characteristics, get worse and are not desirable.

[0027] In order to set a binder distribution factor to 0.5-5.0, it is attained by optimizing the conditioning in the describing above] coating method. As a condition factor at that time, selection of a binder, selection of a coating liquid solvent, coating liquid viscosity, coating liquid solid concentration, the xeransis technique, drying temperature, etc. are mentioned.

[0028] Although not limited especially, generally the direction [a rate of drying is slow] gives the result with the higher one desirable [coating liquid viscosity and solid-content concentration].

[0029] Although not limited especially as collection **** of metals used for an electrode, since that collection **** of metals is a metallic foil, and the surface roughness of this metallic foil is 0.1 micrometers - 0.9 micrometers strengthens the adhesive property of an active material and a metallic foil and it can improve an elevated-temperature property too, it is desirable.

[0030] The appearance of this metallic foil presents grinding. 0.2-0.8-micrometer 0.1-0.9 micrometers are preferably controlled by etching processing, the lasing, electroless deposition, electrolysis plating, the blast cleaning, etc. still preferably as a surface roughness to the aforementioned metallic foil which has the appearance of gloss and semigloss at 0.6-0.8 micrometers. Moreover, you may use what goes into the above-mentioned surface-roughness domain in the copper foil directly obtained by electrolysis plating, a nickel foil, etc.

[0031] Hardly, there is adhesive enhancement, and if no exceeds 0.9 micrometers, it causes [into a coating] a disconnection of a metallic foil and is desirable at less than 0.1 micrometers of surface roughnesss.

[0032] 30-300 micrometers of the thicknesss of the positive active material and binder which have been pasted up on the metallic foil are 70-130 micrometers more preferably per one side. As a metallic foil used for a positive electrode, aluminum with a thickness of 100-5 micrometers, nickel, a stainless steel, etc. can be used. It is aluminum preferably and a 30-10-micrometer thing is used still preferably the thickness of 50-8 micrometers.

[0033] Moreover, 60-750 micrometers of the thicknesss of the negative-electrode active material and binder which have been pasted up on the metallic foil are 140-400 micrometers more preferably per one side. As a metallic foil used for a negative electrode, copper with a thickness of 100-5 micrometers, nickel, a stainless steel, etc. can be used. It is copper and a stainless steel preferably and a 25-8-micrometer thing is used still preferably the thickness of 50-6 micrometers.

[0034] Manufacture of the test piece for measuring a surface roughness is first started on 1cm square from a metallic foil, puts this into a mold, and slushes and stiffens an epoxy resin. In ordinary temperature, it takes out from a mold, and cuts after the neglect between days, the resin cut surface containing a metallic foil is ground with the grinder which rotates and revolves around the sun, and the microphotography of a cross section is taken after an air blow. The depth of the concavity on the front face of a metallic foil is measured with an enlargement, and let an average depth be a surface roughness.

[0035] The adhesive test of active material grain and a metallic foil is cut out by the width of face of 2cm to a metallic foil from an application or the electrode by which carries out a coating, dries, and carries out a compression press, and sizing was carried out, and cuts out active material grain and a binder by NT cutter in length of 5cm. Let this be a test sample.

[0036] The 2cm fraction is exfoliated from the edge in the length orientation of the piece of decision in the active material and binder which were pasted up, a metallic foil front face is taken out, and this fraction is stopped and hung with a stapler to a metal plate.

[0037] Next, methanol 80ml is put into a 100ml glass beaker. The above-mentioned glass beaker is put into an ultrasonic washer [a model (Yamato 2200)], city water is added between a scrubber container and a glass beaker, and the water surface is made to come upwards from a methanol oil level for a while.

[0038] 3cm of active material grain jointings is completely impregnated in a methanol in the aforementioned test sample, and a metal plate is hung with yarn. The start button of an ultrasonic washer is pushed, a ultrasonic wave is generated, and a paint film front face is observed. It observes whether with time progress, a blister is produced from a start on an adhesion cortex.

[0039] Especially as a binder which carries out join arrival of the active material to ******, although not limited, various organic polymers are usually used. If an example of such a binder is shown, a poly-fluoride vinyl, a polyvinylidene fluoride, a fluororubber, a polyacrylonitrile, poly-meta ***** tolyl, a nitrile rubber, ethylene-propylene rubber, a styrene butadiene rubber, a polymethylmethacrylate, a polysulfide rubber, a cyanoethyl cellulose, a methyl cellulose, etc. will be mentioned.

[0040] It faces, using such an organic polymer as a binder. The technique using the thing which made the binder solution made to melt this organic polymer in a solvent distribute an electrode active material as coating liquid, The technique using the thing which made the water emulsification variance liquid of this organic polymer distribute an electrode active material as coating liquid, the technique of applying the solution and/or distributed liquid of this organic polymer to the electrode active material by which preforming was carried out beforehand, etc. are mentioned as an example.

[0041] although especially the amount of binders to use is not what is limited -- usually -- the electrode active material 100 weight section -- receiving -- 0.1 - 20 weight section -- it is the domain of 0.5 - 10 weight section preferably

[0042] Making into a principal component the styrene / butadiene latex a binder is 40 % of the weight - 95 % of the weight of butadiene contents, and is [latex] 75% - 100% of gel contents especially can improve an elevated-temperature property, and it is desirable.

[0043] The gel content of the polymer which this styrene / butadiene latex are industrially manufactured by the usual emulsion-polymerization method, and a butadiene content is 40 % of the weight - 95 % of the weight, makes dry this styrene / butadiene latex further, and is obtained is 90% - 100% preferably 75% to 100%. Here, a gel content means the insoluble matter of the polymer to toluene.

[0044] When a butadiene content is less than 40 % of the weight, the bond strength and flexibility of an electrode are missing. Moreover, a bond strength is missing when 95 % of the weight is exceeded.

[0045] When a gel content is less than 75%, while the bloating tendency-proof to the electrolytic solution used for the bond strength and the non-drainage-system cell mentioned later of an electrode is missing, the charge shelf-life ability under a high temperature service falls.

[0046] although it is not certain why the gel content of styrene / butadiene latex polymer affects elevated-temperature shelf-life ability -- bridge formation of a latex polymer -- it is imagined as that to which the polymer which a degree, i.e., a gel content, affects it and seldom carries out a flow to the flow of the polymer under an elevated temperature suppresses a fall of the electric discharge capacity after an elevated-temperature store

[0047] Moreover, the monomer in which the copolymerization of those other than styrene and a butadiene is possible can be used for styrene / butadiene latex, for example, methyl (meta) acrylate, ethyl (meta) acrylate, butyl (meta) acrylate, acrylonitrile (meta), the ethylene nature unsaturation carboxylate of a hydroxyethyl (meta) acrylate grade, and the ethylene nature unsaturated carboxylic acid that are an acrylic acid, a methacrylic acid, an itaconic acid, a fumaric acid, a maleic acid, etc. further can be used. It is desirable to use dicarboxylic acids, such as an itaconic acid, a fumaric acid, and a maleic acid, especially as an ethylene nature unsaturated carboxylic acid in respect of the bond strength of an electrode. General technique, such as adjustment of polymerization temperature, adjustment of the amount of polymerization initiators, and adjustment of the amount of chain transfer agents, is used for adjustment of a gel content.

[0048] Although it does not limit especially, 0.01-0.5 micrometers of the particle diameters of this styrene / butadiene latex are 0.01-0.3 micrometers more preferably.

[0049] although especially the loadings of this latex are not what is limited -- usually -- the active material 100 weight section -- receiving -- 0.1 - 20 weight section -- it is 0.5 - 10 weight section preferably

[0050] Adhesive power good in under 0.1 weight section is not obtained, but if 20 weight section is exceeded, an overvoltage will go up remarkably, and it is ***** about a bad influence to a cell property.

[0051] Moreover, although especially the solid-content concentration of coating liquid is not limited, it is usually 40 % of the weight - 65 % of the weight preferably 30 % of the weight to 65% of the weight.

[0052] Furthermore, **** for 2 - 60 weight sections is also good to styrene / butadiene latex solid-content 100 weight section in a water-soluble thickener as an additive.

[0053] As a water-soluble thickener, a carboxymethyl cellulose, a methyl cellulose, a hydroxymethyl cellulose, an ethyl cellulose, polyvinyl alcohol, a polyacrylic acid (salt), oxidization starch, phosphorization starch, casein, etc. are contained.

[0054] Moreover, a component except a water-soluble thickener is not eliminated an active material, styrene / butadiene latex, and if needed. For example, dispersants, such as sodium hexametaphosphate, the Tripoli sodium phosphate, pyrophosphoric-acid soda, and a sodium polyacrylate, and the thing which added additives, such as the Nonion nature as a stabilizing agent of a latex and an anionic surfactant, further are also contained. the mean particle diameter of the carbonaceous material which is a negative-electrode active material when using styrene / butadiene latex -- a fall of current efficiency, and a fall of the stability of a slurry -- **** -- having -- it is preferably more suitable than problems, such as increase of the resistance between grain within the paint film of an electrode, that it is [0.1-50-micrometer / 3-25-micrometer] the domain of 5-15 micrometers still preferably

[0055] The application xeransis of the slurry is carried out on a base material as coating liquid, and an electrode is fabricated. If it requires at this time, you may fabricate with a ***** material and *****s, such as aluminum foil and copper foil, can also be used as a base material as another law.

[0056] Moreover, as such a method of application, arbitrary coating-machine heads, such as the reverse-video rolling method, the comma bar method, the ***** method, and the air knife method, can be used.

[0057] Although not limited especially as a separator, although textile fabrics, a nonwoven fabric, a glass cloth, a synthetic-resin fine porosity layer, etc. are mentioned, when using a thin film and a large area electrode, the synthetic-resin fine porosity layer indicated by Provisional Publication No. 59072 [58 to], especially a polyolefine system fine porosity layer are desirable in respect of thickness, an intensity, and a membrane resistance.

[0058] Although not limited especially as an electrolyte of nonaqueous electrolyte, if an example is shown LiClO₄, LiBF₄, LiAsF₆, and CF₃ SO₃ Li, 2 (CF₃ SO₂) N, Li and LiPF₆, LiI, LiAlCl₄, NaClO₄, NaBF₄, NaI, 4 (n-Bu) N+ClO₄, 4 (n-Bu) N+BF₄, and KPF₆ A grade is mentioned.

[0059] As an organic solvent of the electrolytic solution used, although ether, ketones, lactone, nitril, an amines, amides, a sulfur compound, chlorinated hydrocarbons, ester, carbonate, a nitro compound, a phosphoric ester system compound, a sulfo

run system compound, etc. can be used, for example, ether, ketones, nitril, chlorinated hydrocarbons, carbonate, and a sulfo run system compound are desirable also among these. Furthermore, it is annular carbonate preferably. As these examples of representation, a tetrahydrofuran, 2-methyl tetrahydrofuran, 1, 4-dioxane, an anisole, a mono-glyme, an acetonitrile, A propionitrile, a 4-methyl-2-pentanone, a butyronitrile, Valeronitrile, a benzonitrile, 1, 2-dichloroethane, gamma-butyrolactone, Dimethoxyethane, a methyl ***** mate, propylene carbonate, Although ethylene carbonate, vinylene carbonate, a dimethylformamide, dimethyl sulfoxide, a dimethyl thio formamide, a sulfo run, a 3-methyl-sulfo run, trimethyl phosphate, phosphoric-acid triethyl, these mixed solvents, etc. can be raised It is not necessarily limited to these.

[0060] Furthermore, if it requires, a cell is constituted using parts, such as ***** a terminal, and an electric insulating plate.

[0061] Although the gestalt of the cylinder-like cell around which the paper type cell which is not limited and used the positive electrode, the negative electrode, and the separator as the monolayer or the double layer especially as structure of a cell, the laminating type cell or the positive electrode, the negative electrode, and the separator were wound in the shape of a roll is mentioned as an example If it is the cell structure where carry out separator **, carry out opposite arrangement of the positive/negative electrode, come to involve it in, and a negative electrode occupies both the most inner circumference and the outermost periphery, since the amount of the metal lithium to separate can be decreased remarkably The degradation by a fall of the cell capacity by repeat use, self-discharge, and the surcharge can be prevented, and it is desirable.

[0062] In such structure, it is the point that the section and the end section of a volume are wearing a positive-active-material side completely by the negative electrode through a separator at electrode volume the beginning of ***** and a positive active material is made to be not exposed. Although the negative electrode used at this time carries out ** arrival of the active material only to one side of collection **** of metallic foils, even if what doubles a metallic foil side and becomes in piles may be used for it and what carries out ** arrival of the active material to both sides of a metallic foil uniformly is used for it, it is not cared about. Also in the positive electrode, it is the same.

[0063] Although the shorter one is good when the length with a negative electrode excessive seen from a positive electrode considers the amount of stuffings for a positive-active-material side a wrap case completely by the negative electrode through a separator, when a too short design is carried out, there is a possibility that ***** which a positive active material exposes may be made according to factors, such as thickness dispersion of each electrode and electrode ***** of take-up motion. Therefore, the distance between each edge of positive [which it ****s, and a positive electrode is completely covered by the negative electrode through a separator in a fraction and the end fraction of a volume, and counters through a separator in the aforementioned site], and a negative electrode is in the ***** status, and it is desirable to be referred to as 1-10nm. Furthermore, it is good to be preferably referred to as 2-5nm.

[0064] It is desirable to equip the rechargeable battery of this invention with PTC element whose induction temperature coefficient operation temperature is 140 degrees C - 80 degrees C, and is -10--130 as a safety device.

[0065] As a PTC element, it is BaTiO₃. Although various things are known from the former, such as a ceramic system, PTC elements which this invention defines are an overcurrent by the conductive polymer with PTC property (property that resistance becomes large as temperature goes up), and an overheat-protection element. For example, what is marketed from Raychem as various protection elements in the tradename of Polyswitch (registered trademark) poly switch is mentioned. When this element induces both temperature and a current and a fixed upper limit is exceeded, it has the function which element resistance goes up automatically and intercepts a current. It is already well-known to equip a cell with such a PTC element. For example, by equipping a lithium primary cell, when a cell short-circuits via an external circuit, this PTC element operates, a current is intercepted, and practical use is already presented with securing the safety of a cell.

[0066] The following fact became clear as a result of this invention person's etc. examining the overcharge process of the rechargeable battery of this invention in detail.

[0067] ** . By the time it results in rupture at the time of overcharge, generation of heat should surely follow.

[0068] ** . Carry out proportionality dependence of the temperature rise of the cell by this generation of heat at the overcharge current.

[0069] ** . Correlate the cell can temperature at the time of rupture with the overcharge current, and the cell can temperature surveyed at the time of rupture should become low so that a overcharge current is large. (Since a temperature rise speed is large, temperature distribution occur, and this is imagined to be what the value lower than the temperature in an actual cell can is detected as.)

It is not more effective than the above fact to equip with the thermal fuse which responds only at temperature as a means to secure the safety at the time of overcharge of the rechargeable battery of this invention.

[0070] Moreover, when it equips with the current fuse which similarly responds only with a current, the current precision which can respond is bad, the distinction with a normal current and a overcharge current is impossible, and it is not the same effective means.

[0071] Therefore, the behavior at the time of overcharge of the rechargeable battery of this invention differs from the behavior of other cells greatly, and this is considered to be the behavior based on the combination of the active material of positive and negative two electrodes used by the rechargeable battery of this invention. therefore -- in order to secure the safety at the time of overcharge of the rechargeable battery of this invention -- both temperature and a current -- responding -- a value negative in the induction temperature coefficient -- it is -- in addition -- and it is required to have the induction temperature coefficient of a fixed domain An induction temperature coefficient here is a parameter which is measured by the

below-mentioned measuring method and shows the current dependency of induction temperature.

[0072] A <measurement of induction temperature coefficient> PTC element is connected to constant-current DC power supply, and the temperature up is carried out within oven, ****ing a fixed current (A). The temperature (**) at the time of the resistance of PTC element increasing 1000 times at the time of a room temperature is measured. A current value is changed, the again same operation is performed, and a total of five points is measured. Temperature is plotted on a quadrature axis and the measured value of five points is plotted for a current value on an axis of ordinate. Let this slope of a line be an induction temperature coefficient.

[0073] The operation temperature said by this invention means temperature in case resistance reaches 1000 times at the time of a room temperature only at temperature, when a current value is a zero.

[0074] The operation temperature of PTC element used by this invention must be 80 degrees C - 140 degrees C. It is 85 degrees C - 140 degrees C preferably. In exceeding 140 degrees C, even if it compares and PTC element operates at the temperature, generation of heat continues as it is, it results in rupture, the probability of the incorrect operation by the practical use operating temperature limits becomes high at less than 80 degrees C, and it is not desirable.

[0075] Moreover, an induction temperature coefficient must be -10--130. desirable -15--100 -- it is -25--80 still preferably

[0076] When an induction temperature coefficient is less than -ten, the case where the prevention to the surcharge in the field where a current value is large becomes not perfect, and explodes is generated. Moreover, in exceeding -130, the current value in which **** is possible a practical use field, i.e., near a room temperature, becomes small, and becomes practically unusable.

[0077] Although especially the method of equipping a cell with PTC element of this invention is not limited, it is desirable for the technique of equipping, for example in a cell can, the technique of equipping a cell can free wheel plate, the technique of equipping cell ****, etc. to be mentioned, and to equip the part which can detect the temperature of a cell to accuracy more with a natural thing.

[0078] By equipping with PTC element which has the property of the above-mentioned domain, the safety to a surcharge is secured in all current domains, and it is desirable.

[0079] In this invention, especially the moisture content in a cell can is important like the above. A moisture content here is a moisture content in the nonaqueous electrolyte in the status in the cell after assembly that it does not charge. For the following ground, such moisture is usually mixed.

[0080] Although especially the operation of the rechargeable battery of the moisture this invention which mixes in inside the moisture (c). cell erector who contained in the cells component, such as a moisture (b). positive electrode contained in (b). nonaqueous electrolyte, a negative electrode, and a separator, by the atmospheric air etc. is not limited The rechargeable battery of this invention has the high voltage of a single cell, since it can moreover obtain a high-energy density, it is a single cell and the operation of making the pocket electronic equipment which consists of an IC element which operates by 3.5V-2.6V drive of it becomes possible. When the rechargeable battery of this invention is used by such operation, small lightweight-ization of pocket electronic equipment can be attained.

[0081] This pocket electronic equipment can be driven by 4.2V-2.5V, and 4 or less W of power consumption is about 3W-0.5W] preferably. For example, there are a personal computer of 3.3V drive, an one apparatus video camera of 3.5V drive, a mobile transmitter of 3.3V drive, etc.

[0082] In this case, as capacity of the rechargeable battery to use, 400 or more mAh, it is 1500 or more mAh and 700 or more mAh are 4000 or less mAh still preferably preferably.

[0083] In 400 or less mAh, if prolonged continuous duty is not borne and 4000mAh are exceeded, it will become difficult to achieve the purpose of lightweight-izing.

[0084]

[Example] Hereafter, an example explains this invention still in detail.

[0085] Example 1 Li1.03Co0.92Sn0.02O2 After mixing Li and the Co multiple-oxide 100 weight section which have composition, the graphite 2.5 weight section, and the acetylene black 2.5 weight section, the liquid made to melt the fluororubber 2 weight section in the 1:1 (weight ratio) partially-aromatic-solvent 60 weight section of ethyl acetate/ethylcellosolve was mixed, and slurry-like coating liquid was obtained.

[0086] The above-mentioned coating liquid was applied to both sides of with a width thickness [15micro thickness of 600mm] aluminum foil using the coater which has a doctor blade coating-machine head. ***** after a double-sided coating was 290micro.

[0087] The liquid made to melt the needle-coke trituration article 100 weight section and the fluororubber 5 weight section in the 1:1 (weight ratio) partially-aromatic-solvent 90 weight section of ethyl acetate/ethylcellosolve was mixed, and slurry-like coating liquid was obtained.

[0088] The above-mentioned coating liquid was applied to both sides of with a width thickness [10micro thickness of 600mm] Cu foil using the coater which has a doctor blade coating-machine head. ***** after a double-sided coating was 350micro.

[0089] Both did the slit of the two aforementioned kinds of coating articles to 41mm width after the press in the calendering roll using the slitter. Li1.03Co0.92Sn0.02O2 The coating article was made into the positive electrode, the needle-coke coating article was used as the negative electrode, and it ****ed with an outer diameter of 14.9mm in the shape of a coil with the **** machine, using the fine porosity layer (high pore 4030U Asahi Chemical Industry Co., Ltd. make) made from

polyethylene as a separator. It is LiBF4 to the partially aromatic solvent of 1:1:2 (weight ratio) of propylene carbonate after putting this **** coil into a cell can with an outer diameter of 16mm / ethylene carbonate / gamma-butyrolactone. It obturated, after impregnating as electrolytic solution what was melted to 1 M concentration, and the cell can of A size with a height [which is shown in drawing 1] of 50mm was made as an experiment.

[0090] In addition, - terms and conditions, such as a moisture content of the cell assembly ambient atmosphere at that time and the electrolytic solution, were as being shown in Table 1.

[0091] It was 75 ppm, when this cell carried out after [assembly] opening and the moisture content of the electrolytic solution in a cell can was measured. The gas chromatograph (GC-14A, Shimadzu make) performed measurement of a moisture content. In addition, the column used ***** Q (1mx3phi).

[0092] When the cell assembled with the same lot was charged, there are also no phenomena, such as blistering of a cell can, and the normal cell performance was shown.

[0093] In examples 2-6 and one to example of comparison 2 example 1, except having made it the operating condition shown in Table 1, the completely same operation was performed and A size cell was made as an experiment.

[0094] Opening of the cell after each assembly was carried out, and the moisture content of the electrolytic solution in a can was surveyed. Moreover, the initial-charge examination was performed about each lot cell of this.

[0095] A result is combined and is shown in Table 1.

[0096]

[Table 1]

	電池組立 霧囲気	含浸に用 いた電解 液水分量	含浸前 の乾燥工 程の有無	電池缶内 の水分量	5サイクル目 の電流効率	電池缶 のフクレ の有無
実施例1	RH10 % の大気中	45ppm	有	75ppm	99.6 %	無
実施例2	RH50 % の大気中	15ppm	有	18ppm	99.8 %	無
実施例3	RH80 % の大気中	80ppm	有	135ppm	99.3 %	無
実施例4	RH 1 % の大気中	10ppm	無	188ppm	99.5 %	無
実施例5	RH 1 % の大気中	250ppm	有	298ppm	98.9 %	無
実施例6	RH50 % の大気中	250ppm	有	320ppm	98.1 %	無
比較例1	RH50 % の大気中	250ppm	無	650ppm	97.9 %	有
比較例2	RH50 % の大気中	15ppm	無	480ppm	98.0 %	有

Except having performed the service condition of the coating machine when manufacturing the electrode sheet of a positive electrode and a negative electrode by the coating method in seven to example 12 example 1 on the conditions shown in Table 2, the completely same operation was performed and the trial production cell was created. The binder distribution factor of a positive electrode and a negative-electrode cell sheet obtained at this time was as being shown in Table 2.

[0097] The elevated-temperature cycle examination at 60 degrees C was performed about this trial production cell. The result is combined and is shown in Table 2.

[0098]

[Table 2]

	乾燥条件		バインダー分布係数		60°Cサイクル試験 100サイクル目の容量 (%)
	正極	負極	正極	負極	
実施例 7	120°C熱風	120°C熱風	1.88	1.93	92
実施例 8	60°C熱風	遠赤外線乾燥	0.96	1.18	95
実施例 9	遠赤外線乾燥	120°C熱風	0.88	1.95	93
実施例 10	150°C熱風	遠赤外線乾燥	6.8	1.05	58
実施例 11	遠赤外線乾燥	150°C熱風	0.92	5.1	49
実施例 12	25°C風乾	25°C風乾	0.41	0.38	83

In 13 to example 16 example 7, except having used the copper foil which has a surface roughness as shown in Table 3 as collection **** of negative electrodes, the completely same operation was performed and the trial production cell was created. The binder distribution factor of the negative-electrode electrode sheet obtained at this time was as being shown in Table 3.

[0099] The result of the capacity retention in 60 degree-C one month retention test of the methanol immersing adhesive property test of this negative-electrode electrode sheet and a trial production cell is also collectively shown in Table 3.

[0100]

[Table 3]

	銅箔 表面粗度	負極バインダー 分布係数	メタノール浸漬 接着性テスト	60°C 1ヶ月保存後の 容量保持率
実施例 13	0.6 μ	1.91	5分間までブリスター発生せず。	89 %
実施例 14	0.3 μ	1.95	"	87 %
実施例 15	0.01 μ	1.90	1分間までブリスター発生せず。2分間でブリスター発生。	61 %
実施例 16	0.04 μ	1.91	"	63 %

The completely same operation was performed except having used the slurry of the following composition as negative-electrode coating liquid in 17 to example 23 example 13.

[0101] As the styrene / butadiene latex 10 weight section (50 % of the weight of solid contents) created by the composition shown in Table 4 to the needle-coke trituration object 100 weight section, and a thickener, the carboxymethyl-cellulose aqueous-solution (1 % of the weight of solid contents) 100 weight section, and 1 / decanormal aqueous ammonia 1 weight section were added, and it mixed, and considered as coating liquid.

[0102] The result of the capacity retention in 60 degree-C one month retention test of the methanol immersing adhesive property test of the negative-electrode electrode sheet obtained at this time and a trial production cell is also collectively shown in Table 4.

[0103]

[Table 4]

	ラテックスモノマー組成				ゲル含量 (%)	バインダー 分布保数	メタノール浸漬 接着性テスト	60℃1ヶ月保存 性の容量保持率
	ST	BD	MMA	IA				
実施例17	47	40	10	3	83	1.75	5分間まで ブリスター発生せず	93%
実施例18	42	55	0	3	80	1.81	"	92%
実施例19	33	60	5	2	98	1.95	"	95%
実施例20	18	80	0	2	90	1.70	"	94%
実施例21	4	95	0	1	78	1.51	"	92%
実施例22	47	30	20	3	55	1.78	"	88%
実施例23	0	100	0	0	80	1.79	2分間で ブリスター発生	73%

S T : スチレン

B D : ブタジエン

MMA : メチルメタクリレート

I A : イタコン酸

各々重量%組成

[0104]

[Effect of the invention] By making Li inclusion multiple oxide into a positive active material, and setting to 5 ppm - 450 ppm the moisture content contained in the electrolytic solution in a cell can in the nonaqueous electrolyte cell which uses a carbonaceous material for a negative-electrode active material, there is also no internal pressure elevation and cell properties, such as current efficiency, can be maintained so that clearly also from the above explanation.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-226003

(43)公開日 平成5年(1993)9月3日

(51)Int.Cl. ⁵	識別記号	府内整理番号	F I	技術表示箇所
H 01 M 10/40	A			
4/62	Z			
4/66	A			

審査請求 未請求 請求項の数 8(全 10 頁)

(21)出願番号	特願平4-269144
(22)出願日	平成4年(1992)9月14日
(31)優先権主張番号	特願平3-261293
(32)優先日	平3(1991)9月13日
(33)優先権主張国	日本 (JP)

(71)出願人	000000033 旭化成工業株式会社 大阪府大阪市北区堂島浜1丁目2番6号
(72)発明者	吉野 彰 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内
(72)発明者	瀧澤 由美子 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内
(72)発明者	栗林 功 東京都千代田区有楽町1丁目1番2号 旭化成工業株式会社内
(74)代理人	弁理士 豊田 善雄 (外1名) 最終頁に続く

(54)【発明の名称】 二次電池

(57)【要約】

【目的】 実用的、かつ良好な電池特性を維持することができ、従来の金属Liを負極活物質として用いる場合に比べて広い範囲内の水分を含有しうる二次電池を提供する。

【構成】 リチウム含有複合金属酸化物を正極活物質とする正電極、炭素質材料を負極活物質とする負電極、セパレーター、有機電解液及び電池容器を基本構成要素とする二次電池であって、該有機電解液に含有される水分量が5 ppm~450 ppmであることを特徴とする二次電池。

【特許請求の範囲】

【請求項1】 リチウム含有複合金属酸化物を正極活物質とする正電極、炭素質材料を負極活物質とする負電極、セパレーター、有機電解液及び電池容器を基本構成要素とする二次電池であって、該有機電解液に含有される水分量が5 ppm～450 ppmであることを特徴とする二次電池。

【請求項2】 少なくとも一方の電極が金属集電体上に活物質塗膜層が設けられており、該活物質塗膜層中におけるバインダーがバインダー分布係数0.5～5.0で分布していることを特徴とする請求項1記載の二次電池。

【請求項3】 金属集電体が金属箔であり、かつ該金属箔の表面粗度が0.1 μm～0.9 μmであることを特徴とする請求項2記載の二次電池。

【請求項4】 バインダーが、ブタジエン含量40重量%～95重量%であり、かつゲル含量75%～100%であるスチレン/ブタジエンラテックスを主成分とするなどを特徴とする請求項2記載の二次電池。

【請求項5】 有機電解液がエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、塩素化炭化水素類、エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系化合物から選ばれた少なくとも一種を溶媒とすることを特徴とする請求項1記載の二次電池。

【請求項6】 正負電極をセパレーター介して対向配置して巻き込んでなる電池構造において、該負電極が最内周及び最外周と共に占めることを特徴とする請求項1記載の二次電池。

【請求項7】 作動温度が80°C～140°Cであり、感応温度係数が-10～-130であるPTC素子を安全装置として装着したことを特徴とする請求項1記載の二次電池。

【請求項8】 リチウム含有複合金属酸化物を正極活物質とする正電極、炭素質材料を負極活物質とする負電極、セパレーター、有機電解液及び電池容器を基本構成要素とする二次電池であって、該有機電解液に含有される水分量が5 ppm～450 ppmである二次電池単セルで、3.5 V～2.6 Vで作動するIC素子で構成される携帯電子機器を駆動させることを特徴とする二次電池の使用方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明はサイクル性、保存特性、安全性に優れた新規な二次電池に関するものである。

【0002】

【従来の技術】 近年、従来の酸一鉛電池、ニッケル/カドミウム電池に変わる小型、軽量二次電池として、種々の非水系二次電池が提案されている。中でも、例えば特開昭62-90, 863号公報、特開昭63-121,

260号公報、特開平3-49, 155号公報等において開示されている正極にLi, Coを主成分とする複合金属酸化物を用い、負極に炭素質材料を用いる新しい二次電池系が注目されている。

【0003】 従来かかる非水系二次電池として提案されているのは負極活物質として、金属Li、もしくはLi合金を用いるものであった。かかる金属Li等を負極に用いた二次電池は、小型、軽量という観点からは満足されるものの、デンドライト析出に基く、サイクル性、保存特性等の性能上の問題、又、同じくデンドライト析出によるセパレーターの突き破りから内部短絡を引き起こすという寿命の問題、更には金属Liの活性な化学反応性に基く安全上の問題、等実用化への大きな障害を有していた。

【0004】 これに対し、前記の負極活物質に炭素質材料を用いる新しい電池系は、このようなデンドライト析出を起こすことなく、優れたサイクル性、保存特性を有すると共に、金属Liのような活性な化学反応性を有していないことから、安全性が非常に優れているという特徴を有しているものである。

【0005】 特に、正極活物質としてLi含有複合金属酸化物と組合せた場合、高電圧、高容量の電池ができるものとして期待されている。

【0006】

【発明が解決しようとする課題】 ところで、かかるLi含有複合金属酸化物を正極活物質とし、炭素質材料を負極活物質として用いた非水電解液電池においては、用いる電解液中に含有される水分量により、電池の性能、安全性が大きく左右される。例えば余りに多くの水分が電解液中に含有されている場合には電流効率の低下、サイクル性の低下といった性能上の悪影響が出てくると共に、水分との反応によりガス発生、内圧上昇といった安全上問題になる現象が発生する。

【0007】 しかしながら実際の電池の製造工程を考えた場合、電解液中の水分量を0近くにすることは原理的には可能ではあるが、極めてコスト的に高くなる。特に本発明の炭素質材料を負極活物質に用いる場合、従来の金属Liを負極活物質として用いる場合とは、その許容される水分量は異なる。従って本発明の電池系において許容される水分量を明らかにし、実用性とのバランス範囲を見出すことは重要な課題である。

【0008】

【課題を解決するための手段及び作用】 本発明者等は、該電池系の水分量による影響について鋭意検討した結果、特定の水分量範囲において優れた特性を維持し、安全性も確保されることを見出した。

【0009】 本発明の二次電池は、かかる知見に基いて完成されたもので、リチウム含有複合金属酸化物を正極活物質とする正電極、炭素質材料を負極活物質とする負電極、セパレーター、有機電解液及び電池容器を基本構

成要素とする二次電池であって、該有機電解液に含有される水分量が5 ppm～450 ppmであることを特徴とするものである。

【0010】本発明において含有水分量は特に重要であり、5 ppm～450 ppmの範囲でなければならぬ。好ましくは15 ppm～300 ppmの範囲である。

【0011】450 ppmを越す場合には初充電時に水素ガス等のガスが発生し、内圧が上昇すると共に電池のフレ等の現象が発生し好ましくない。又、5 ppm未満の水分量に制御する為には前述の如く極めて長時間の脱水処理が必要であると共に組立工程において極めて高度な水分管理が必要となり好ましくない。

【0012】本発明の範囲に水分量を制御する為には電解液についてはモレキュラーシーブス等の脱水剤を用いる方法等が採用される。又、正、負電極、セパレーター等の部材水分については各々を予備的に乾燥しても良いし、電池組立工程で電解液含浸前に乾燥工程を設ける等の方法が採用される。

【0013】又、本発明の組合せの正、負電極は、金属リチウム等の水分に対して活性な物質を用いていない為、その組立工程では特に高度なドライ条件が必要ではない。特に電解液含浸前に乾燥工程を設ける場合には、それまでの工程は通常の大気中で行っても、本発明の限定範囲の水分量に制御することが可能である。

【0014】前記の如く、本発明の正、負電極の組合せの電池の場合、従来のリチウム電池等に比べ広い範囲の水分量が許容され、実用上大きな利点となる。

【0015】本発明でいうLi複合金属酸化物とは、層状構造を有し電気化学的にLiイオンがインターラート、ディインターラートし得る化合物である。特に限定されないが、かかる複合金属酸化物の一例を示せば、例えば特開昭55-136、131号公報で開示されるLi_xCoO₂、特開昭62-90、863号公報で開示されている一般式Li_xCo_yNi_zO₂（但し、NはA1、In、Snの群から選ばれた少なくとも一種を表わし、x、y、zは各々0.05≤x≤1.10、0.85≤y≤1.00、0.001≤z≤0.10の数を表わす。）、又、特開平3-49、155号公報で開示されるLi_xNi_yCo_(1-y)O₂（但し、0<x≤1、0≤y<0.50）、更にはLi_xMnO₂等が挙げられる。

【0016】かかる化合物を得るには、水酸化リチウム、酸化リチウム、炭酸リチウム、硝酸リチウム等のLi化合物と金属酸化物、金属水酸化物、金属炭酸塩、金属硝酸塩等と、更に要すれば、他金属化合物との焼成反応により容易に得られるものである。

【0017】これらの複合酸化物は何れも正極活物質として、高電圧、高容量という他の活物質には見られない優れた特性を有している。特に前記一般式Li_xCo_y

Ni_zO₂（但し、NはA1、In、Snの群から選ばれた少なくとも一種を表わし、x、y、zは各々0.05≤x≤1.10、0.85≤y≤1.00、0.001≤z≤0.10の数を表わす。）は特にサイクル性等の特性に優れており本発明で好ましく用いられる複合酸化物である。

【0018】又、本発明でいう炭素質材料とは、特に限定されるものではないが、その一例を示せば特開昭58-35、881号公報に記載の高表面積炭素材料、グラファイト、又特開昭58-209、864号公報に記載のフェノール系樹脂等の焼成炭化物、又特開昭61-111、907号公報に記載の縮合多環炭化水素系化合物の焼成炭化物等が挙げられる。中でも特開昭62-90、863号公報で開示されるBET法比表面積A（m²/g）が0.1< A <100の範囲でX線回折における結晶厚みLc（Å）と真密度ρ（g/cm³）の値が下記条件1.70<ρ<2.18かつ10<Lc<120ρ-189を満たす範囲にある炭素質材料は高容量かつ優れたサイクル特性を有しており、本発明において特に好ましく用いられる。

【0019】かかる活物質を用いた電極の成形方法は特に限定されないが、有機重合体の溶剤溶液に電極活物質を分散した後、塗工乾燥する塗工法が薄膜、大面積化を図ることができ好ましい。この場合、少なくとも一方の電極が金属集電体上に活物質塗膜層が設けられてなり、該活物質塗膜層におけるバインダーがバインダー分布係数0.5～5.0で分布していることが、塗膜強度の低下、活物質粒子間の接触不良等を防止し、本発明の二次電池の高温特性を向上でき好ましい。バインダー分布係数は、好ましくは0.75～2.5、より好ましくは0.75～2.0である。

【0020】ここで言うバインダー分布係数とは後述の測定法により定義される係数であり、活物質層表面から10μmの層の厚さに存在するバインダー量と集電体側活物質層界面から10μmの層の厚さに存在するバインダー量との比を表わす。

【0021】〈バインダー分布係数の測定〉

試料：電極をエポキシ樹脂で固め、その電極断面を切断研磨したものを試料とする。

【0022】測定：EPMA（エレクトロンマイクロプロープ分析法）により電極断面の活物質中のバインダー量を測定する。

【0023】装置は、HITACHI X-650（日立製作所製）

HORIBA EMAX-2200（堀場製作所製）

波長分散型EPMA

を用いる。

【0024】〈バインダー分布係数の算出〉バインダー分布係数は下式により行う。

【0025】

【数1】

$$\text{バインダー分布係数} = \frac{\text{活物質層表面から } 10 \mu \text{ までの層のバインダー量}}{\text{集電体側活物質界面から } 10 \mu \text{ までの層のバインダー量}}$$

なお、上記測定のための染色等の前処理は、バインダーの種類により任意に選択する。

【0026】バインダーの分布係数が0.5未満の場合は塗膜表面の強度が弱く、活物質等の欠落が発生し好ましくない。また、バインダー分布係数が5.0を越す場合は、電池特性、特にサイクル性、保存特性、出力特性等の電池性能が悪化し好ましくない。

【0027】バインダー分布係数を0.5～5.0にするには、前記塗工法においてその条件設定を最適化することにより達成される。その時の条件要因としては、バインダーの選択、塗工液溶剤の選択、塗工液粘度、塗工液固形濃度、乾燥方法、乾燥温度等が挙げられる。

【0028】特に限定されるものではないが一般的には、乾燥速度は遅い方が、また塗工液粘度、固形分濃度は高い方が好ましい結果を与える。

【0029】電極に用いる金属集電体としては特に限定されないが、金属集電体が金属箔であり、かつ該金属箔の表面粗度が0.1μm～0.9μmであることが、活物質と金属箔との接着性を強化し、やはり高温特性向上できるため好ましい。

【0030】該金属箔の外観は艶消しを呈する。光沢、半光沢の外観を有する前記金属箔に、エッチング処理、レーザー処理、無電解メッキ、電解メッキ、サンドブラスト等により、表面粗度として0.1～0.9μm、好ましくは0.2～0.8μm、更に好ましくは0.6～0.8μmに制御する。また、電解メッキにより直接得られる銅箔、ニッケル箔等のうち上記表面粗度範囲に入るものを用いてもよい。

【0031】表面粗度0.1μm未満では接着性の向上は殆どなく、0.9μmを越えると塗工中に金属箔の切断を招き好ましくない。

【0032】金属箔に接着している正極活物質及びバインダーの膜厚は、片面あたり、好ましくは30～300μm、より好ましくは70～130μmである。正極に使用する金属箔としては、厚み100～5μmのアルミニウム、ニッケル、ステンレススチール等を用いることができる。好ましくはアルミニウムであり、厚み50～8μm、更に好ましくは30～10μmのものが用いられる。

【0033】また、金属箔に接着している負極活物質及びバインダーの膜厚は、片面あたり、好ましくは60～750μm、より好ましくは140～400μmである。負極に使用する金属箔としては、厚み100～5μmの銅、ニッケル、ステンレススチール等を用いること

ができる。好ましくは銅、ステンレススチールであり、厚み50～6μm、更に好ましくは25～8μmのものが用いられる。

【0034】表面粗度を測定するための試験片の調製は、まず金属箔から1cm角に切り出し、これを型に入れてエポキシ樹脂を流し込み硬化させる。常温で一日間放置後に型から取り出し、切断し、金属箔を含む樹脂切断面を自転および公転する研磨機で研磨し、エアブロー後、断面の顕微鏡写真を撮る。金属箔表面の凹部の深さを拡大写真で測定し、平均の深さを表面粗度とする。

【0035】活物質粒子と金属箔との接着性テストは、金属箔に活物質粒子とバインダーを塗布あるいは塗工し、乾燥し、圧縮プレスし、サイジングされた電極から幅2cm、長さ5cmにNTカッターで裁断する。これを試験サンプルとする。

【0036】接着された活物質とバインダーを裁断片の長さ方向に端から2cmの部分を剥離しておき、金属箔表面を出し、この部分を金属板にステープラーでとめてつるす。

【0037】次に、メタノール80mlを100mlのガラスピーカーに入れる。超音波洗浄器〔機種(Yamato 2200)〕に上記ガラスピーカーを入れて、洗浄器容器とガラスピーカーとの間に水道水を加えてメタノール液面より少し上まで水面がくるようにする。

【0038】前記試験サンプルをメタノール中に活物質粒子接着部3cmが完全に含浸されるようにし、金属板を糸でつるす。超音波洗浄器のスタートボタンを押し、超音波を発生させ塗膜表面を観察する。スタートから時間経過と共に、接着表層にプリスターを生じるかどうかを観察する。

【0039】活物質を集電体に結着させるバインダーとしては、特に限定されないが、通常種々の有機重合体が用いられる。かかるバインダーの一例を示せば、ポリフッ化ビニル、ポリフッ化ビニリデン、フッ素ゴム、ポリアクリロニトリル、ポリメタリロニトリル、ニトリルゴム、エチレンーブロピレンゴム、スチレンーブタジエンゴム、ポリメチルメタクリレート、多硫化ゴム、シアノエチルセルロース、メチルセルロース等が挙げられる。

【0040】かかる有機重合体をバインダーとして用いるに際しては、該有機重合体を溶媒に溶解せしめたバインダー溶液に電極活物質を分散せしめたものを塗工液として用いる方法、該有機重合体の水乳化分散液に電極活物質を分散せしめたものを塗工液として用いる方法、また予め予備成形された電極活物質に該有機重合体の溶液

及び／又は分散液を塗布する方法等が一例として挙げられる。

【0041】用いるバインダー量は特に限定されるものではないが、通常、電極活物質100重量部に対し0.1～20重量部、好ましくは0.5～10重量部の範囲である。

【0042】中でも、バインダーが、ブタジエン含量40重量%～95重量%であり、かつゲル含量75%～100%であるスチレン／ブタジエンラテックスを主成分とすることが、高温特性を向上でき好ましい。

【0043】該スチレン／ブタジエンラテックスとは通常の乳化重合法により工業的に製造されるものであり、ブタジエン含量が40重量%～95重量%であり、さらに該スチレン／ブタジエンラテックスを乾燥させて得られるポリマーのゲル含量が75%～100%、好ましくは90%～100%である。ここで、ゲル含量とは、トルエンに対するポリマーの不溶分をいう。

【0044】ブタジエン含量が40重量%未満の場合、電極の接着強度および柔軟性に欠ける。また、95重量%を超えると、接着強度に欠ける。

【0045】ゲル含量が75%未満の場合、電極の接着強度および後述する非水系電池に用いられる電解液に対する耐膨潤性に欠けるとともに、高温条件下での充電保存性能が低下する。

【0046】何故、スチレン／ブタジエンラテックスポリマーのゲル含量が高温保存性能に影響を与えるのかは定かではないが、ラテックスポリマーの架橋度合すなわちゲル含量が高温下でのポリマーのフローに影響を与え、フローににくいポリマーほど高温保存後の放電容量の低下を抑制するものと推察される。

【0047】また、スチレン／ブタジエンラテックスにはスチレン、ブタジエン以外の共重合可能なモノマーを使用することができ、例えば、メチル（メタ）アクリレート、エチル（メタ）アクリレート、ブチル（メタ）アクリレート、（メタ）アクリロニトリル、ヒドロキシエチル（メタ）アクリレート等のエチレン性不飽和カルボン酸エステル、さらに、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸を使用することができる。特に、エチレン性不飽和カルボン酸としてはイタコン酸、フマル酸、マレイン酸等のジカルボン酸を使用することが、電極の接着強度の面で好ましい。ゲル含量の調整には、重合温度の調整、重合開始剤量の調整、連鎖移動剤量の調整等の一般的な方法が用いられる。

【0048】特に限定するものではないが、好ましくは該スチレン／ブタジエンラテックスの粒子径は0.01～0.5μm、より好ましくは0.01～0.3μmである。

【0049】該ラテックスの配合量は特に限定するものではないが、通常活物質100重量部に対して0.1～

20重量部好ましくは0.5～10重量部である。

【0050】0.1重量部未満では良好な接着力が得られず、20重量部を超えると過電圧が著しく上昇し電池特性に悪影響をおよぼす。

【0051】また、塗工液の固形分濃度は特に限定するものではないが、通常30重量%～65重量%好ましくは40重量%～65重量%である。

【0052】さらに、添加剤として水溶性増粘剤をスチレン／ブタジエンラテックス固形分100重量部に対して2～60重量部用いてもよい。

【0053】水溶性増粘剤としては、カルボキシメチセルロース、メチルセルロース、ヒドロキシメチセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸（塩）、酸化スター、リン酸化スター、カゼイン等が含まれる。

【0054】又、活物質とスチレン／ブタジエンラテックスと必要に応じて水溶性増粘剤以外の成分を排除するものではない。例えば、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダ等の分散剤、さらにラテックスの安定化剤としてのノニオン性、アニオン性界面活性剤等の添加剤を加えたものも含まれる。スチレン／ブタジエンラテックスを用いる場合、負極活物質である炭素質材料の平均粒径は電流効率の低下、スラリーの安定性の低下、又得られる電極の塗膜内の粒子間抵抗の増大等の問題より、0.1～50μm、好ましくは3～25μm、更に好ましくは5～15μmの範囲であることが好適である。

【0055】スラリーは塗工液として基材上に塗布乾燥され、電極が成形される。この時要すれば集電体材料と共に成形しても良いし、又、別法としてアルミ箔、銅箔等の集電体を基材として用いることもできる。

【0056】又、かかる塗布方法としてはリバースロール法、コンマバー法、グラビヤ法、エアナイフ法等任意のコーナーヘッドを用いることができる。

【0057】セパレーターとしては特に限定されないが、織布、不織布、ガラス織布、合成樹脂微多孔膜等が挙げられるが、薄膜、大面積電極を用いる場合には、例えば特開昭58-59072号に開示される合成樹脂微多孔膜、特にポリオレフィン系微多孔膜が、厚み、強度、膜抵抗の面で好ましい。

【0058】非水電解液の電解質としては特に限定されないが、一例を示せば、LiClO₄、LiBF₄、LiAsF₆、CF₃SO₃Li、(CF₃SO₂)₂N·Li、LiPF₆、LiI、LiAlCl₄、NaClO₄、NaBF₄、NaI、(n-Bu)₄N⁺ClO₄、(n-Bu)₄N⁺BF₄、KPF₆等が挙げられる。

【0059】用いられる電解液の有機溶媒としては、例えばエーテル類、ケトン類、ラクトン類、ニトリル類、アミン類、アミド類、硫黄化合物、塩素化炭化水素類、

エステル類、カーボネート類、ニトロ化合物、リン酸エステル系化合物、スルホラン系化合物等を用いることができるが、これらのうちでもエーテル類、ケトン類、二トリル類、塩素化炭化水素類、カーボネート類、スルホラン系化合物が好ましい。更に好ましくは環状カーボネート類である。これらの代表例としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1, 4-ジオキサン、アニソール、モノグライム、アセトニトリル、プロピオニトリル、4-メチル-2-ペンタノン、ブチロニトリル、バレロニトリル、ベンゾニトリル、1, 2-ジクロロエタン、 γ -ブチロラクトン、ジメトキシエタン、メチルフルメイト、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルチオホルムアミド、スルホラン、3-メチルスルホラン、リン酸トリメチル、リン酸トリエチルおよびこれらの混合溶媒等をあげることができるが、必ずしもこれらに限定されるものではない。

【0060】更に要すれば、集電体、端子、絶縁板等の部品を用いて電池が構成される。

【0061】電池の構造としては、特に限定されるものではなく、正極、負極、セパレーターを単層又は複層としたペーパー型電池、積層型電池、又は正極、負極、セパレーターをロール状に巻いた円筒状電池等の形態が一例として挙げられるが、正負電極をセパレーター介して対向配置して巻き込んでなり、負電極が最内周及び最外周と共に占める電池構造とすると、析出する金属リチウムの量を著しく減少させることができるので、繰り返し使用による電池容量の低下、自己放電、及び過充電による劣化を防止でき好ましい。

【0062】かかる構造においては、捲回体の電極巻始め部、巻終り部共に正極活物質面をセパレーターを介して、負極で完全に覆ってしまい、正極活物質が露出しないようにすることがポイントである。この時に使用する負極は、金属箔集電体の片面のみに活物質を添着せしめたものの金属箔側を合わせて重ねてなるものを用いてもよいし、金属箔の両面に均一に活物質を添着せしめたものを用いても構わない。正極においても同様である。

【0063】正極活物質面をセパレーターを介して負極で完全に覆う場合、正極からみて負極の余分な長さは、詰め込み量を考えると短い方がよいが、短過ぎる設計をすると各電極の厚みばらつき、巻取装置の電極測長精度などの要因により、正極活物質が露出する捲回体ができてしまうおそれがある。従って、巻出し部分及び巻終り部分において正極がセパレーターを介して完全に負極によって覆われ、かつ、前記部位において、セパレーターを介して対向する正、負極の各端部間の距離は捲回体状態で、1~10nmとするのが好ましい。更に好ましくは2~5nmとするのがよい。

【0064】本発明の二次電池には、作動温度が140

°C~80°Cであり、感応温度係数が-10~-130であるPTC素子を安全装置として装着するのが好ましい。

【0065】PTC素子としては、BaTiO₃セラミックス系等従来より種々のものが知られているが、本発明で定義するPTC素子とは、PTC特性（温度が上がるにつれて抵抗が大きくなる特性）を持つ導電性ポリマーによる過電流及び過熱保護素子のことである。例えば（株）レイケムからPolyswitch（登録商標）ポリスイッチの商品名で種々の保護素子として市販されているものが挙げられる。この素子は温度、電流の両方に感応し一定上限を超えた場合に自動的に素子抵抗が上昇し電流を遮断する機能を有しているものである。かかるPTC素子を電池に装着することは既に公知である。例えばリチウム一次電池に装着することにより、例えば電池が外部回路経由で短絡した場合に該PTC素子が作動し電流を遮断し、電池の安全性を確保することは既に実用に供されている。

【0066】本発明者等が本発明の二次電池の過充電過程を詳細に検討した結果、下記の事実が明らかとなつた。

【0067】①. 過充電時破裂に至るまでに必ず発熱が伴うこと。

【0068】②. この発熱による電池の温度上昇は過充電電流に比例依存していること。

【0069】③. 破裂時の電池缶温度は過充電電流と相関しており、過充電電流が大きい程、破裂時に実測される電池缶温度が低くなること。（これは温度上昇速度が大きい為に温度分布が発生し、実際の電池缶内の温度よりも低い値が検知されているものと推察される。）以上的事実より、本発明の二次電池の過充電時の安全性を確保する手段として、単に温度のみで感応する温度ヒューズを装着することは有効ではない。

【0070】又、同じく電流のみで感応する電流ヒューズを装着した場合には、感応し得る電流精度が悪く、正常電流と過充電電流との区別が不可能であり、同じく有効な手段ではない。

【0071】従って本発明の二次電池の過充電時における挙動は他の電池の挙動と大きく異なっており、これは本発明の二次電池で用いる正、負両電極の活物質の組み合わせに基く挙動と思われる。従って本発明の二次電池の過充電時の安全性を確保する為には温度と電流の両方に感応し、その感應温度係数が負の値であり、尚かつ一定の範囲の感應温度係数を有していることが必要である。ここでいう感應温度係数とは後述の測定方法により測定され、感應温度の電流依存性を示すパラメータである。

【0072】〈感應温度係数の測定〉PTC素子を定電流直流電源に接続し、一定電流（A）を通電しながらオーブン内で昇温していく。PTC素子の抵抗値が室温時

の1000倍になった時点の温度(°C)を測定する。電流値を変えて再び同じ操作を行い合計5点測定する。電流値を横軸に、温度を縦軸に5点の測定値をプロットする。この直線の傾きを感應温度係数とする。

【0073】本発明でいう作動温度とは電流値がゼロの時、即ち温度のみで抵抗値が室温時の1000倍に達する時の温度をいう。

【0074】本発明で用いるPTC素子の作動温度は80°C~140°Cでなければならない。好ましくは85°C~140°Cである。140°Cを越す場合には例え、PTC素子がその温度で作動しても、そのまま発熱が続き破裂に至り、80°C未満では実用使用温度範囲での誤作動の確率が高くなり、好ましくない。

【0075】又、感應温度係数は-10~-130でなければならない。好ましくは-15~-100、更に好ましくは-25~-80である。

【0076】感應温度係数が-10未満の場合は電流値の大きい領域での過充電に対する防止が完全でなくなり破裂するケースが発生する。又-130を越す場合には実用領域、即ち室温付近で通電可能な電流値が小さくなり実用上使用不可能となる。

【0077】本発明のPTC素子を電池に装着する方法は特に限定されないが、例えば電池缶内に装着する方法、電池缶フタに装着する方法、電池缶壁に装着する方法等が挙げられ、当然のことながら電池の温度をより正確に検知できる個所に装着することが好ましい。

【0078】上記範囲の特性を有するPTC素子を装着することにより全ての電流範囲において過充電に対する安全性が確保され好ましい。

【0079】本発明において前記の如く電池缶内の水分量は特に重要である。ここでいう水分量とは組立後の電池内の未充電状態における非水電解液中の水分含有量である。かかる水分は通常下記の理由により、混入する。

【0080】(イ) 非水電解液に含有されていた水分(口)、正極、負極、セパレーター等電池部材に含有されていた水分

(ハ) 電池組立工程中に大気等により混入してくる水分

本発明の二次電池の使用方法は特に限定されないが、本発明の二次電池は、単セルの電圧が高く、しかも高エネルギー密度を得られるため、単セルで、3.5V~2.6Vで作動するIC素子で構成される携帯電子機器を駆動させるという使用方法が可能となる。本発明の二次電池をかかる使用方法で用いた場合には、携帯電子機器の小型軽量化を図ることができる。

【0081】該携帯電子機器は、4.2V~2.5Vで駆動可能であり、消費電力は4W以下、好ましくは3W~0.5W程度である。例え3.3V駆動のパソコン、3.5V駆動の一体型ビデオカメラ、3.3V駆動の移動体通信機等がある。

【0082】この場合に使用する二次電池の容量としては、400mAh以上、好ましくは700mAh以上、更に好ましくは、1500mAh以上であり、4000mAh以下である。

【0083】400mAh以下では長時間の連続使用に耐えず、また4000mAhを越えると、軽量化の目的を果たすことが困難となる。

【0084】

【実施例】以下、実施例により本発明を更に詳しく説明する。

【0085】実施例1

$\text{Li}_{1.03}\text{Co}_{0.92}\text{Sn}_{0.02}\text{O}_2$ の組成を有するLi_{1.03}Co_{0.92}Sn_{0.02}O₂複合酸化物100重量部とグラファイト2.5重量部、アセチレンブラック2.5重量部を混合した後、フッ素ゴム2重量部を酢酸エチル/エチルセロソルブの1:1(重量比)混合溶剤60重量部に溶解させた液を混合しスラリー状塗工液を得た。

【0086】ドクターブレードコーナーヘッドを有する塗工機を用い巾600mm厚さ15μのAl箔の両面に上記塗工液を塗布した。両面塗工後の塗工厚は290μであった。

【0087】ニードルコークス粉砕品100重量部とフッ素ゴム5重量部を酢酸エチル/エチルセロソルブの1:1(重量比)混合溶剤90重量部に溶解させた液を混合しスラリー状塗工液を得た。

【0088】ドクターブレードコーナーヘッドを有する塗工機を用い巾600mm厚さ10μのCu箔の両面に上記塗工液を塗布した。両面塗工後の塗工厚は350μであった。

【0089】前記2種類の塗工品をカレンダーロールにてプレス後、両者共にスリッターを用い41mm巾にスリットした。 $\text{Li}_{1.03}\text{Co}_{0.92}\text{Sn}_{0.02}\text{O}_2$ 塗工品を正極とし、ニードルコークス塗工品を負極とし、セパレーターとしてポリエチレン製微多孔膜(ハイポア4030U旭化成社製)を用い、捲回機により外径14.9mmのコイル状に捲回した。この捲回コイルを外径16mmの電池缶に入れた後、プロピレンカーボネート/エチレンカーボネート/γ-ブチロラクトンの1:1:2(重量比)の混合溶剤にLiBF₄を1M濃度で溶かしたものを電解液として含浸した後封口し、図1に示す高さ50mmのAサイズの電池缶を試作した。

【0090】尚、その時の電池組立雰囲気、電解液の水分量等・諸条件は表1に示す通りであった。

【0091】この電池の組立後開口し、電池缶内の電解液の水分量を測定したところ75ppmであった。水分量の測定は、ガスクロマトグラフ(GC-14A、島津製作所製)により行なった。尚、カラムはポラパックQ(1m×3φ)を使用した。

【0092】同じロットで組立てた電池を充電したところ、電池缶のフクレ等の現象もなく、正常な電池性能を

示した。

【0093】実施例2～6、比較例1～2

実施例1において、表1に示す操作条件にした以外は全く同じ操作を行いAサイズ電池を試作した。

【0094】各々の組立後の電池を開口し缶内電解液の

水分量を実測した。又各々の同ロット電池について初充電試験を行った。

【0095】結果を併せて表1に示す。

【0096】

【表1】

	電池組立 雰囲気	含浸に用 いた電解 液水分量	含浸前 の乾燥工程 の有無	電池缶内 の水分量	5サイクル目 の電流効率	電池缶の フクレの 有無
実施例1	RH10 % の大気中	45ppm	有	75ppm	99.6 %	無
実施例2	RH50 % の大気中	15ppm	有	18ppm	99.8 %	無
実施例3	RH80 % の大気中	80ppm	有	135ppm	99.3 %	無
実施例4	RH 1 % の大気中	10ppm	無	188ppm	99.5 %	無
実施例5	RH 1 % の大気中	250ppm	有	298ppm	98.9 %	無
実施例6	RH50 % の大気中	250ppm	有	320ppm	98.1 %	無
比較例1	RH50 % の大気中	250ppm	無	650ppm	97.9 %	有
比較例2	RH50 % の大気中	15ppm	無	480ppm	98.0 %	有

実施例7～12

実施例1において正極及び負極の電極シートを塗工法により製造する時のコーテーの運転条件を表2に示す条件で行った以外は全く同じ操作を行い試作電池を作成した。この時得られた正極、負極電池シートのバインダー

分布係数は表2に示す通りであった。

【0097】この試作電池について60℃での高温サイクル試験を行った。その結果を併せて表2に示す。

【0098】

【表2】

	乾燥条件		バインダー分布係数		60℃サイクル試験 100サイクル目の容 量(%)
	正極	負極	正極	負極	
実施例7	120℃熱風	120℃熱風	1.88	1.93	92
実施例8	60℃熱風	遠赤外線乾燥	0.96	1.18	95
実施例9	遠赤外線乾燥	120℃熱風	0.88	1.95	93
実施例10	150℃熱風	遠赤外線乾燥	6.8	1.05	58
実施例11	遠赤外線乾燥	150℃熱風	0.92	5.1	49
実施例12	25℃風乾	25℃風乾	0.41	0.38	83

実施例13～16

実施例7において、負極集電体として表3に示す通りの

表面粗度を有する銅箔を用いた以外は全く同じ操作を行い試作電池を作成した。この時得られた負極電極シート

のバインダー分布係数は表3に示す通りであった。

【0099】この負極電極シートのメタノール浸漬接着性テスト及び試作電池の60°C 1ヶ月保存試験での容量

保持率の結果も併せて表3に示す。

【0100】

【表3】

	銅箔 表面粗度	負極バインダー 分布係数	メタノール浸漬 接着性テスト	60°C 1ヶ月保存後の 容量保持率
実施例13	0.6 μ	1.91	5分間までブリスター発生せず。	89 %
実施例14	0.3 μ	1.95	"	87 %
実施例15	0.01 μ	1.90	1分間までブリスター発生せず。2分間でブリスター発生。	61 %
実施例16	0.04 μ	1.91	"	63 %

実施例17～23

実施例13において負極塗工液として下記の組成のスラリーを用いた以外は全く同じ操作を行った。

【0101】ニードル・コークス粉碎物100重量部に対し表4に示した組成で作成したスチレン／ブタジエンラテックス10重量部（固形分50重量%）、増粘剤としてカルボキシメチルセルロース水溶液（固形分1重量

%）100重量部、1/10規定アンモニア水1重量部を加え、混合し、塗工液とした。

【0102】この時得られた負極電極シートのメタノール浸漬接着性テスト及び試作電池の60°C 1ヶ月保存試験での容量保持率の結果も併せて表4に示す。

【0103】

【表4】

	ラテックスモノマー組成				ゲル含量 (%)	バインダー 分布係数	メタノール浸漬 接着性テスト	60°C 1ヶ月保存 性の容量保持率
	ST	BD	MMA	IA				
実施例17	47	40	10	3	83	1.75	5分間まで ブリスター発生せず	93 %
実施例18	42	55	0	3	80	1.81	"	92 %
実施例19	33	60	5	2	98	1.95	"	95 %
実施例20	18	80	0	2	90	1.70	"	94 %
実施例21	4	95	0	1	78	1.51	"	92 %
実施例22	47	30	20	3	55	1.78	"	88 %
実施例23	0	100	0	0	80	1.79	2分間で ブリスター発生	73 %

ST : スチレン

BD : ブタジエン

MMA : メチルメタクリレート

IA : イタコン酸

各々重量%組成

【0104】

【発明の効果】以上説明からも明らかのように、Li

含有複合酸化物を正極活物質とし、炭素質材料を負極活物質に用いる非水電解液電池において、電池缶内電解液に含有される水分量を 5 ppm~450 ppm にすることにより、内圧上昇もなく電流効率等の電池特性を維持することができる。

【図面の簡単な説明】

【図 1】本発明に係る電池の半裁断面図

【符号の説明】

- 1 正極
- 2 セパレーター
- 3 負極
- 4 絶縁板
- 5 負極リード
- 6 正極リード
- 7 ガスケット

【図 1】

フロントページの続き

(72)発明者 小山 章

神奈川県川崎市川崎区夜光 1 丁目 3 番 1 号
旭化成工業株式会社内

(72)発明者 渋 康文

神奈川県川崎市川崎区夜光 1 丁目 3 番 1 号
旭化成工業株式会社内

(72)発明者 山下 正隆

神奈川県川崎市川崎区夜光 1 丁目 3 番 1 号
旭化成工業株式会社内

(72)発明者 井上 克彦

神奈川県川崎市川崎区夜光 1 丁目 3 番 1 号
旭化成工業株式会社内