BB-BPRF — Formal Mathematical Model (v1.1, refreshed)

Purpose. A self-contained formalization of the Bias-Blind Behavioral Pattern Recognition Framework (BB-BPRF): objects, operations, policy/typing discipline, proof obligations, and complexity bounds. Designed for filing appendices, examiner briefings, and peer review.

0. Table of Symbols

- S set of subjects; $s \in S$
- \mathcal{M} set of modalities; $m \in \mathcal{M}$
- $X_{s,m}(t) \in \mathbb{R}^{n}(d_m)$ feature vector for subject s, modality m, time t
- $X_s(t) = \bigoplus \{m \in _s\} X\{s,m\}(t) \in \mathbb{R}^{\wedge}\{d_s\}$ concatenated features
- $\mu_s, \sigma_s \in \mathbb{R} \setminus \{d_s\}$ per-subject robust location/scale
- $C_s \in [0,1]^k$ cultural/context vector (k small, e.g., 4)
- $E = (\mu \land E, \sigma \land E, C \land E)$ Ephemeral Initialization Vector (EIV) priors
- $w_EIV(t) = max(0, 1 t/T), w_ind(t) = 1 w_EIV(t) decay weights$
- $A_s \in \mathbb{R}^{d_s \times d_s}$ (diagonal), $D_s, T_s \in \mathbb{R}^{d_s}$, $R_s \in \mathbb{R}^{d_s \times d_s}$ (sparse)
- $X_s^{adj}(t) = A_s(D_s \circ X_s(t)) + T_s + R_s X_s(t)$
- $\mathcal{V} = \mathcal{V}$ ind $\oplus \mathcal{V}$ proc $\oplus \mathcal{V}$ forbid addressable variables by class
- \mathscr{L} library of subject-local operators
- G_s(t) computation DAG for subject s at time t
- P policy graph over \mathcal{V} with labels {ind, proc, forbid}

1. Formal Objects

1.1 Signals and State

Let time $t \in \mathbb{N}$. For each $s \in \mathcal{S}$, modality m has dimension d_m and observation X_{s,m}(t) $\in \mathbb{R}^{d_m}$. The active feature is X_s(t)= $\bigoplus \{m \in _s\} X\{s,m\}(t) \in \mathbb{R}^{d_s}$. Maintain state ($\mu_s(t)$, $\sigma_s(t)$, C_s(t)). Dispersion is strictly positive component-wise ($\sigma_s > 0$).

1.2 EIV-weighted Baseline

For horizon T>0, [$\mu_s^{eff}(t)=w_{EIV}(t)$ $\mu^E + w_{ind}(t)$ $\mu_s(t)$, $\sigma_s^{eff}(t)=w_{EIV}(t)$ $\sigma^E + w_{ind}(t)$ $\sigma_s(t)$.] EIV influence vanishes after $t \ge T$ ($w_{EIV}(t)=0$).

1.3 Policy Graph and Typing

Let $P=(N,E_P,\lambda)$ where N=V and $\lambda: V \to \{ind,proc,forbid\}$. A program expression e is *well-typed* iff: 1) (Single-Subject Rule, SSR) e references variables for at most one s. 2) e references no

variable v with $\lambda(v)$ =forbid. 3) Every operator $f \in \mathcal{L}$ used by e is *subject-local* (all arguments pertain to the same s) and total on its domain.

1.4 Closures

For subject s and seed $U \subseteq \mathcal{V}_{-ind}(s)$, define the population-of-one closure $\mathcal{C}_{-s}(U)$ as the least set s.t. $U \subseteq \mathcal{C}_{-s}(U)$ and if $f \in \mathcal{L}$ is subject-local with $args \subseteq \mathcal{C}_{-s}(U)$, then $f(args) \in \mathcal{C}_{-s}(U)$. If any $arg \in \mathcal{V}_{-ind}(s)$ forbid or references $s' \neq s$, $\mathcal{C}_{-s}(U)$ is undefined (program rejected).

1.5 Computation Graph

For each event (s,t), define $G_s(t)=(V,E)$ where V contains data nodes ($X_s(t)$, μ_s , σ_s , C_s , A_s ,

2. Operations

2.1 Baseline Updates (Streaming, Robust)

Given observation $x_{s,i}(t)$ for feature i: $[\mu_{s,i}(t+1)=(1-\eta_{\mu,i}) \mu_{s,i}(t)+\eta_{\mu,i} x_{s,i}(t),][\sigma^2_{s,i}(t+1)=(1-\eta_{\sigma,i}) \sigma^2_{s,i}(t)+\eta_{\sigma,i} (x_{s,i}(t)-\mu_{s,i}(t))^2,]$ with η 's chosen by Robbins–Monro or bounded adaptives. Median/MAD variants are admissible.

2.2 Adjustment Transform

Let \circ denote Hadamard product. With A_s diagonal and R_s sparse (|R_{ij}| $\leq \rho_m x$): [X_s^{adj}(t)=A_s(D_s \circ X_s(t))+T_s+R_s X_s(t).] Thresholds T_{s,i}=k_i $\sigma_{s,i}^{eff}(t)$, with k_i constrained by policy bounds.

2.3 QA / Adversarial Tests

- Physiological bounds: feature-wise intervals.
- Inter-modal coherence: σ^2 (intermodal, s)(t) < $\beta \cdot \{\sigma\}^2$ (s)(t).
- Distributional: univariate KS (α =0.01), SPRT for change, Mahalanobis distance using diagonal or robust Σ .
- Low-confidence handling: history weight ≥ 0.7 until convergence.

2.4 Guards and Attestation

- Compile-time: static rejection of V_forbid or cross-subject references ⇒ E-NO-COMPARE.
- Run-time: proxy-risk detector; trigger E-PROXY-RISK if |corr(input, proxy)|>τ_p.
- Load-time: build/schema attestation to ensure protected-class fields absent.

3. Proof Obligations and Strategies

3.1 Non-Interference (Bias-Blindness by Construction)

Claim. For any well-typed e over $\mathcal{C}_{-s}(U)$, if worlds W and W' differ only in demographic attributes or between-group statistics, then $[e]W = e \ \{W'\}$. **Strategy.** Induction on typing derivation. Base: variables in $\mathcal{V}_{-ind}(s)$ equal across W,W'. Step: each $f \in \mathcal{L}$ is subject-local and references only $\mathcal{V}_{-ind}(s)$; forbidden symbols are unreferencable by typing; hence denotation invariant.

3.2 Convergence of Calibration

Assume F_s(θ) over θ =(μ , σ ,C,A,D,T,R) is L-smooth and μ -strongly convex on a compact policy-bounded domain. Projected gradient / coordinate updates with step $\gamma \in (0,2/L)$ yield [| $\theta \setminus \{(t)\}_s - \theta \setminus s \mid \le (1-\mu/L) \setminus \{\theta \setminus \{(0)\}_s - \theta \setminus s \mid \}$] so for error ε : $(N\{conv\} \le (L/\mu)(|\theta \setminus \{(0)\}_s - \theta \setminus s \mid \})$.)

3.3 EIV Ephemerality

For finite T, $w_EIV(t)=max(0,1-t/T)$ implies $w_EIV(t)=0$ for $t\geq T$. Any statistic that depends on E reverts to intra-personal baselines thereafter.

3.4 Information-Utilization Advantage

Let I_demo be mutual information from demographic buckets (few bits). Let I_ind be the MI from per-subject temporal/multi-modal calibration (tens of bits). With demographic variables excluded by construction, downstream predictions depend only on I_ind; ratio $R=I_ind/I_demo$ typically $\gg 1$ (empirically $6-12\times$).

3.5 Meta-Learning Safety

Let \mathcal{D} _proc contain process-only tuples (timestamp, conv_time, iters, success, eiv_id, reliability). Gradients used to tune hyperparameters are functions of \mathcal{D} _proc only. By non-interference, no cross-subject behavioral leakage occurs.

4. Complexity

Let $d=d_s$. - Event transform: $A_s(D_s\circ X) - O(d)$; $R_s X - O(nnz(R_s))$ with sparsity s.t. $nnz=\Theta(d)$. $\Rightarrow T_event=\Theta(d)$. - QA: KS O(d); Mahalanobis $O(d^2)$ (dense) or O(d) (diagonal/robust); SPRT amortized O(1). - Updates: O(d) time, O(d) space per subject for (μ,σ,C,A,D,T) plus $O(nnz(R_s))$. Fleet space $O(|\mathcal{S}|\cdot d)$.

5. Pattern and Paradox Notes (for reviewers)

• **Pattern:** Population-of-one closure behaves as a safety *monoid*: closed under composition; absence of forbidden symbols is absorbing (program invalid), not reflective.

- **Paradox:** Removing a *few* bits (demographics) increases total usable information: architectural removal of brittle, high-variance between-group signals forces exploitation of richer within-subject dynamics ($R \gg 1$).
- **Pattern:** EIV is a scaffolding prior with guaranteed self-destruction; proof is purely algebraic (weights), not trust-based.

6. Verification Checklist (Audits)

- 1) Type audit: SSR satisfied; no V_{forbid} .
- 2) Build attestation: schemas contain no protected-class fields.
- 3) EIV logs: $w_EIV(t) \rightarrow 0$ by $t \ge T$.
- 4) Proxy checks: $|corr(outputs, any external demographics)| < \tau_p (where lawfully testable).$
- 5) QA thresholds: stability ratios s_{s,i}(t) stabilize; drift triggers local recalibration only.
- 6) Process isolation: \mathcal{D}_{proc} excludes behavioral measurements.

7. Minimal Reference Implementation (pseudo-math)

Per-event: 1) $(x \leftarrow X_s(t))$; enforce bounds $\rightarrow x$. 2) $\mu, \sigma \leftarrow Update(\mu, \sigma, x)$. 3) $x_adj \leftarrow A_s(D_s \circ x) + T_s + R_s x$. 4) Run QA (KS/SPRT/Mahalanobis); if anomaly \rightarrow low-confidence path. 5) Emit *relative-to-baseline* outputs only.

Compile-time: static typecheck ⇒ reject if cross-subject or forbid. **Run-time:** proxy-risk detector; build/schema attested at load.

End (v1.1).