Introduction to the Moduli Spaces of Sheaves on K3 Surfaces

Exercise sheet 4

Exercise 4.1. Let X be a scheme over \mathbb{C} and $P = \operatorname{Spec}(\mathbb{C}[\varepsilon]/(\varepsilon^2))$ (the scheme P is sometimes called "the fat point"). Consider a coherent sheaf $\mathcal{F} \in \operatorname{Coh}(X \times_{\mathbb{C}} P)$ and denote by F its restriction to the fibre over $\operatorname{Spec}(\mathbb{C}) \subset P$, i.e. $F = \mathcal{F}/\varepsilon\mathcal{F}$. Prove that \mathcal{F} is flat over P if and only if the natural map $F \to \varepsilon \mathcal{F}$ is an isomorphism of sheaves of \mathcal{O}_X -modules.

Exercise 4.2. Consider the zero locus S of a generic section of the following vector bundles E over the varieties X, and prove that S is a K3 surface:

- $X = \mathbb{P}^4$, $E = \mathcal{O}(2) \oplus \mathcal{O}(3)$;
- $X = \mathbb{P}^5, E = \mathcal{O}(2)^{\oplus 3};$
- $X = \mathbb{P}^1 \times \mathbb{P}^2$, $E = \mathcal{O}(2,3)$;
- $X = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, $E = \mathcal{O}(2, 2, 2)$;
- $X = Gr(2,6), E = \mathcal{O}(1)^{\oplus 6}.$

Exercise 4.3. Let $S \to \mathbb{P}^2$ be a double covering branched over a smooth curve $D \subset \mathbb{P}^2$ of degree 6. Prove that S is a K3 surface.

Exercise 4.4. Let S be a K3 surface and $f: S \to C$ a dominant morphism onto a smooth curve C. Prove that $C \simeq \mathbb{P}^1$. What are the fibres of such a morphism?

Exercise 4.5*. For a projective K3 surface X let T(X) be the minimal sub Hodge structure of $H^2(X,\mathbb{Q})$ that contains $H^{2,0}(X)$. Prove that T(X) is the orthogonal complement of NS(X). Let $\alpha \colon T(X) \to T(X)$ be a Hodge isometry. Prove that $\alpha^n = \mathrm{id}$ for some n.