

Investigating Active Learning for Concept Prerequisite Learning

Chen Liang¹, Jianbo Ye¹, Shuting Wang¹, Bart Pursel², C. Lee Giles¹

¹Information Sciences and Technology ²Teaching and Learning with Technology Pennsylvania State University

Concept Prerequisite Relations

- A fundamental relation among concepts in knowledge structures

Motivation

- Prerequisites are important for many educational applications
 - Intelligent tutoring system; curriculum planning; transferring credits, ...
- Time-consuming process

Manually Created

3/23/18

Presenter: Chen Liang

2

Motivation

- Prerequisites are important for many educational applications
 - Intelligent tutoring system; curriculum planning; transferring credits, ...
- Time-consuming process

What if we want to organize concepts from thousands of MOOCs?

Concept Prerequisite Learning

Goal:

Predict whether a concept A is a prerequisite of a concept B given the pair (A,B). [Talukdar, BEA'12; Liang, EMNLP'15]

Binary classification problem

Related Work

- Earlier work in educational data mining [Vuong, EDM'11; Scheines, EDM'14; Chen, EDM'15]
 - Analyzes student assessment data which records the performance of students on different items (e.g. units, sections, etc.)
 - Requires that the association between test items and handcrafted knowledge components is set beforehand.
 - Often subject to a specific assessment pool, not applicable for processing a large concept set.

Related Work (cont.)

- Classification framework Lack of large-scale prerequisite labels
 - Wikipedia-based features [Talukdar, BEA'12; Liang, EMNLP'15; Wang, CIKM'16]
 - Information-theoretic metrics [Gordon, ACL'16]
 - MOOC-related features [Pan, ACL'17]
- Learning from course prerequisites [Yang, WSDM'15; Liang, EAAI'17]

Active learning has not been applied to the concept prerequisite learning problem

Our Contribution

- The first to apply active learning to concept prerequisite learning
- Investigate three families of query selection strategies
- Propose a novel set of features for representing concept pairs

Pool-based Active Learning

Algorithm 1 Pseudocode for pool-based active learning.

Input:

 $\mathcal{D} \leftarrow \{1, 2, ..., n\}$ % a data set of n instances

Initialize:

 $\mathcal{D}_l \leftarrow \{s_1, s_2, ..., s_k\}$ % initial labeled set with k seeds

 $\mathcal{D}_u \leftarrow \mathcal{D} \setminus \mathcal{D}_l$ % initial unlabeled set

while $\mathcal{D}_u \neq \emptyset$ do

Select s^* from \mathcal{D}_u % according to a query strategy

$$\mathcal{D}_u \leftarrow \mathcal{D}_u \setminus \{s^*\}$$

Query the label y_{s^*} for the selected instance s^*

$$\mathcal{D}_l \leftarrow \mathcal{D}_l \cup \{s^*\}$$

end while

Query Strategies

• In general, different strategies follow a greedy framework

$$s^* = \underset{s \in D_u}{\operatorname{argmax}} \min_{y \in \{-1,1\}} f(s; y, D_l)$$

- We investigate four commonly used query strategies
 - Uncertainty sampling [Lewis, ICML'94]
 - Query-by-committee [Seung, COLT'92]
 - QUIRE [Huang, TPAMI'14]
 - Diversity sampling

informativeness

Informativeness and representativeness diversity

Query Strategies (cont.)

Uncertainty sampling

$$f(s; y, \mathcal{D}_l) = 1 - P_{\Delta(\mathcal{D}_l)}(y_s = y|\mathbf{x}_s)$$

Query-by-committee

$$f(s; y, \mathcal{D}_l) = \sum_{k=1}^{C} \mathbf{1}[y \neq g^{(k)}(\mathbf{x}_s)]$$

QUIRE

$$f(s; y, \mathcal{D}_l) = (L_{u,l}\mathbf{y}_l + L_{u,s}y)^T L_{u,u}^{-1} (L_{u,l}\mathbf{y}_l + L_{u,s}y) - 2yL_{s,l}\mathbf{y}_l - L_{s,s},$$

Diversity sampling

$$f(s; y, \mathcal{D}_l) = \sum_{i \in \mathcal{D}_l} 1 - \cos(\mathbf{x}_s, \mathbf{x}_i)$$

Experiments – Dataset

Wiki concept map dataset [Wang, CIKM'16]

Domain	# Concepts	# Pairs	# Prerequisites
Data Mining	120	826	292
Geometry	89	1681	524
Physics	153	1962	487
Precalculus	224	2060	699

Table 1: Dataset statistics.

Experiments – Features

- For each concept pair (A, B), we calculate
 - Graph-based features
 - Text-based features
- Use a Wikipedia dump of Oct. 2016

Graph-based Features

Feature	Description
In/Out Degree	The in/out degree of A/B.
Common Neighbors	# common neighbors of A and B.
# Links	# times A/B links to B/A .
Link Proportion	The proportion of pages that link to A/B also link to B/A .
NGD	The Normalized Google Distance between A and B [Witten,
	AAAI'08].
PMI	The Pointwise Mutual Information relatedness between the in-
	coming links of A and B [Ratinov, ACL'11].
RefD	A metric to measure how differently A and B's related concepts
	refer to each other [Liang, EMNLP'15].
PageRank	The difference between A and B's PageRank scores. [Page'99]
HITS	The difference between A and B's hub/authority scores. [Klein-
	berg, JACM'99]

Text-based Features

Feature	Description
1st Sent	Whether A/B is in the first sentence of B/A.
In Title	Whether A appears in B's title.
Title Jaccard	The Jaccard similarity between A and B's titles.
Length	# words of A/B's content.
Mention	# times A/B are mentioned in the content of B/A.
NP	# noun phrases in A/B's content; $#$ common noun phrases.
Tf-idf Sim	The cosine similarity between Tf-idf vectors for A and B's first paragraphs.
Word2Vec Sim	The cosine similarity between vectors of A and B trained by
	m Word2Vec.
LDA Entropy	The Shannon entropy of the LDA [Blei, JMLR'03] vector of A/B.
LDA Cross Entropy	The cross entropy between the LDA vector of A/B and B/A [Gor-
	don, ACL'16].

Classification Results

- Compared classifiers:
 - Naïve Bayes (NB)
 - Logistic Regression (LR)
 - Support Vector Machine (SVM)
 - Random Forest (RF)
- 5-fold cross validation

Classifier	Metric	Data Mining	Geometry	Physics	Precalulus
MD	\overline{P}	71.5	84.4	54.3	85.7
	R	28.5	44.3	71.9	66.9
NB	F1	37.8	58.1	61.6	75.0
	AUC	81.4	87.1	85.5	93.2
	\overline{P}	65.8	71.3	58.0	81.7
I D	R	77.4	81.3	78.8	88.4
LR	F1	71.1	75.8	66.8	84.8
	AUC	85.9	91.6	89.2	95.4
	P	73.7	82.8	77.9	86.7
SVM	R	64.7	69.9	50.3	81.4
S V 1VI	F1	68.6	75.5	61.1	83.9
	AUC	85.0	91.3	88.8	95.1
	P	80.7	95.0	85.2	90.2
DE	R	73.3	84.7	59.3	87.1
RF	F1	76.7	89.5	69.9	88.6
	AUC	$\boldsymbol{92.2}$	97.8	$\boldsymbol{93.9}$	$\boldsymbol{97.5}$

Table 1: Results (%) for concept prerequisite relation classification.

Classifier	Metric	Data Mining	$\mathbf{Geometry}$	Physics	Precalulus
ND	P	71.5	84.4	54.3	85.7
	R	28.5	44.3	71.9	66.9
NB	F1	37.8	58.1	61.6	75.0
	AUC	81.4	87.1	85.5	93.2
	\overline{P}	65.8	71.3	58.0	81.7
ΙD	R	77.4	81.3	78.8	88.4
LR	F1	71.1	75.8	66.8	84.8
	AUC	85.9	91.6	89.2	95.4
	P	73.7	82.8	77.9	86.7
SVM	R	64.7	69.9	50.3	81.4
S V IVI	F1	68.6	75.5	61.1	83.9
	AUC	85.0	91.3	88.8	95.1
	P	80.7	95.0	85.2	90.2
DE	R	73.3	84.7	59.3	87.1
RF	F1	76.7	89.5	$\boldsymbol{69.9}$	88.6
	AUC	$\boldsymbol{92.2}$	97.8	93.9	97.5

- Worst F1 and AUC
- The strong independence assumption does not hold for the proposed feature set.

Table 1: Results (%) for concept prerequisite relation classification.

Classifier	Metric	Data Mining	Geometry	Physics	Precalulus
	\overline{P}	71.5	84.4	54.3	85.7
MD	R	28.5	44.3	71.9	66.9
NB	F1	37.8	58.1	61.6	75.0
	AUC	81.4	87.1	85.5	93.2
	P	65.8	71.3	58.0	81.7
$_{ m LR}$	R	77.4	81.3	78.8	88.4
	F1	71.1	75.8	66.8	84.8
<u> </u>	AUC	85.9	91.6	89.2	95.4
	P	73.7	82.8	77.9	86.7
SVM	R	64.7	69.9	50.3	81.4
D V 1V1	F1	68.6	75.5	61.1	83.9
	AUC	85.0	91.3	88.8	95.1
	P	80.7	95.0	85.2	90.2
RF	R	73.3	84.7	59.3	87.1
1(1,	F1	76.7	89.5	$\boldsymbol{69.9}$	88.6
	AUC	$\boldsymbol{92.2}$	97.8	93.9	97.5

- Similar F1 and AUC scores
- Higher recall for LR
- Higher precision for SVM

Table 1: Results (%) for concept prerequisite relation classification.

Classifier	Metric	Data Mining	Geometry	Physics	Precalulus
	P	71.5	84.4	54.3	85.7
ND	R	28.5	44.3	71.9	66.9
NB	F1	37.8	58.1	61.6	75.0
	AUC	81.4	87.1	85.5	93.2
	P	65.8	71.3	58.0	81.7
LR	R	77.4	81.3	78.8	88.4
$\mathbf{L}\mathbf{I}\mathbf{V}$	F1	71.1	75.8	66.8	84.8
	AUC	85.9	91.6	89.2	95.4
	P	73.7	82.8	77.9	86.7
SVM	R	64.7	69.9	50.3	81.4
S V IVI	F1	68.6	75.5	61.1	83.9
	AUC	85.0	91.3	88.8	95.1
	P	80.7	95.0	85.2	90.2
RF	R	73.3	84.7	59.3	87.1
171.	F1	76.7	$\bf 89.5$	$\boldsymbol{69.9}$	88.6
	AUC	$\boldsymbol{92.2}$	97.8	93.9	97.5

Table 1: Results (%) for concept prerequisite relation classification.

Best F1 and AUC

- Better than linear combination of features

20

 Chosen for active learning experiments

Feature Analysis

Data Mining	Geometry	Physics	Precalculus
Authority diff	PageRank diff	PageRank diff	PageRank diff
LDA entropy of A	In degree of A	RefD	Authority diff
PageRank diff	Out degree of A	# mentions of A in B	RefD
In degree of A	RefD	In degree of B	# mentions of A in B
RefD	# mentions of A in B	Authority diff	Out degree of A
LDA entropy of B	LDA entropy of A	Link proportion of B	A in B's 1st sentence
In degree of B	A in B's 1st sentence	Out degree of A	In degree of A
LDA cross entropy (A;B)	Length of A	In degree of A	Hub diff
Link proportion of A	# NPs in A	LDA entropy of A	# NPs in A
LDA cross entropy (B;A)	# mentions of B in A	# NPs in B	# mentions of A in B

Table 1: Top 10 important features for each domain.

Ranked by "mean decrease impurity" of Random Forest

Feature Analysis

- Common top features: PageRank diff, Authority diff, RefD, ...
- Graph-based > Text-based
- Symmetric pairwise features such as similarity and PMI are NOT important in current in-domain classification setting

Data Mining	Geometry	Physics	Precalculus
Authority diff	PageRank diff	PageRank diff	PageRank diff
LDA entropy of A	In degree of A	RefD	Authority diff
PageRank diff	Out degree of A	# mentions of A in B	RefD
In degree of A	RefD	In degree of B	# mentions of A in B
RefD	# mentions of A in B	Authority diff	Out degree of A
LDA entropy of B	LDA entropy of A	Link proportion of B	A in B's 1st sentence
In degree of B	A in B's 1st sentence	Out degree of A	In degree of A
LDA cross entropy (A;B)	Length of A	In degree of A	Hub diff
Link proportion of A	# NPs in A	LDA entropy of A	# NPs in A
LDA cross entropy (B;A)	# mentions of B in A	# NPs in B	# mentions of A in B

Table 1: Top 10 important features for each domain.

Active Learning – Settings

- Randomly split a dataset into a training set ${\cal D}$ and a test set ${\cal D}_{test}$ with a ratio of 2:1
- Randomly select 20 samples from the training set as the seed set \mathcal{D}_l
- The active learning is repeated 300 times with distinct random seeds.
- Report average scores and confidence intervals ($\alpha = 0.05$)

Active Learning – Strategies (cont.)

- Random: baseline
- LC: least confident sampling, a widely used uncertainty sampling variant
- QBC: query-by-committee algorithm. Use query-by-bagging [Mamitsuka, ICML'98] with a committee of three decision trees
- QUIRE: follow authors' experimental approach to use an RBF kernel with \lambda = 1
- Diversity: diversity sampling

Active Learning – Results

Active Learning – Results (cont.)

Active Learning – Results (cont.)

- LC, QBC > Random
- Diversity is not significantly different from Random
- QUIRE performs worse than Random
- QBC is better than other compared methods

Summary

- Investigated the applicability of active learning to concept prerequisite learning.
- Found that QBC outperforms uncertainty sampling, QUIRE, and diversity sampling.
- Proposed a novel set of feature for the task. Top features hopefully will be helpful for other prerequisite learning methods.

Future Work

- Design active learning query strategies tailored to the concept prerequisite learning problem.
 - <u>Active Learning of Strict Partial Orders: A Case Study on Concept Prerequisite</u> <u>Relations</u> (*Liang et al., arXiv:1801.06481 [cs.LG], January 2018*)
- Design more complex and effective concept pair representation and study their effect on the classification performance.

Thanks! Questions?

Chen Liang <u>cul226@ist.psu.edu</u> http://www.personal.psu.edu/cul226/