Intro to Analysis of Algorithms Computational Foundations: Regular Languages Chapter 9

Michael Soltys

CSU Channel Islands

[Git Date: (None) Hash: (None) Ed:3rd]

Section 9.3: Regular languages

Deterministic Finite Automaton (DFA)

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Finite set of states Q
- Finite set of input symbols Σ
- ► Transition fn $\delta: Q \times \Sigma \longrightarrow Q$; given $q \in Q, a \in \Sigma$, $\delta(q, a) = p \in Q$
- ► Start state *q*₀
- A set of final (accepting) states.

To see whether A accepts a string w, we "run" A on $w = a_1 a_2 \dots a_n$ as follows:

$$\delta(q_0, a_1) = q_1, \ \delta(q_1, a_2) = q_2, \ \text{until} \ \delta(q_{n-1}, a_n) = q_n.$$

Accept iff $q_n \in F$.

John von Neumann

Consider $L = \{w | w \text{ is of the form } x01y \in \Sigma^* \}$ where $\Sigma = \{0, 1\}$.

We want to specify a DFA $A = (Q, \Sigma, \delta, q_0, F)$ that accepts all and only the strings in L.

$$\Sigma = \{0,1\}, \ Q = \{q_0,q_1,q_2\}, \ {\sf and} \ F = \{q_1\}.$$

		U	I
Transition table	q 0	q ₂	q 0
	q_1	q_1	q_1
	q_2	q_2	q_1

Extended Transition Function (ETF) given δ , its ETF is $\hat{\delta}$ defined inductively:

Basis Case: $\hat{\delta}(q,\varepsilon)=q$

Induction Step: if w = xa, $w, x \in \Sigma^*$ and $a \in \Sigma$, then

$$\hat{\delta}(q, w) = \hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$$

Thus: $\hat{\delta}: Q \times \Sigma^* \longrightarrow Q$.

$$w \in L(A) \iff \hat{\delta}(q_0, w) \in F$$

Here L(A) is the set of all those strings (and only those) which are accepted by A.

Language of a DFA: $L(A) = \{w | \hat{\delta}(q_0, w) \in F\}$

Note that

- ► *A* is a *syntactic* object
- ▶ while *L*(*A*) is a *semantic* object

Thus L is a function that assigns a *meaning* or *interpretation* to a syntactic object.

Regular Languages: L is regular iff there exists a DFA A such that L = L(A).

Nondeterministic Finite Automata (NFA)

The transition function δ becomes a transition relation, i.e., $\delta \subseteq Q \times \Sigma \times Q$, i.e., on the same pair (q, a) there may be more than one possible new state (or none).

Equivalently, we can look at δ as $\delta: Q \times \Sigma \longrightarrow \mathcal{P}(Q)$, where $\mathcal{P}(Q)$ is the power set of Q.

 $L_n = \{w | n$ -th symbol from the end is 1 $\}$ What is an NFA for L_n

At least how many states does any DFA recognizing L_n require?

NFA with ε transitions: ε -NFA: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \longrightarrow \mathcal{P}(Q)$

To define $\hat{\delta}$ for ε -NFAs we need the concept of ε -closure.

Given q, ε -close(q) is the set of all states p which are reachable from q by following arrows labeled by ε .

Formally, $q \in \varepsilon$ -close(q), and if $p \in \varepsilon$ -close(q), and $p \xrightarrow{\varepsilon} r$, then $r \in \varepsilon$ -close(q).

$$\hat{\delta}(q, \varepsilon) = \varepsilon$$
-close (q)

Suppose
$$w = xa$$
, $\hat{\delta}(q, x) = \{p_1, p_2, \dots, p_n\}$, and $\bigcup_{i=1}^n \delta(p_i, a) = \{r_1, r_2, \dots, r_m\}$, then

then

$$\hat{\delta}(q, w) = \bigcup_{i=1}^{m} \varepsilon$$
-close (r_i)

Theorem: DFAs and ε -NFAs are equivalent.

Proof: Slightly modified subset construction.

$$q_0^D = \varepsilon$$
-close $(\{q_0^N\})$
 $\delta_D(R, a) = \cup_{r \in R} \varepsilon$ -close $(\delta_N(r, a))$

Given a set of states S, its ε -closure is the union of the ε -closures of its members.

The states of D are those subsets $S \subseteq Q_N$ which are equal to their ε -closures.

Corollary: A language is regular

 \iff it is recognized by some ε -NFA

Union: $L \cup M = \{w | w \in L \text{ or } w \in M\}$ Concatenation: $LM = \{xy | x \in L \text{ and } y \in M\}$ Star (or closure): $L^* = \{w | w = x_1x_2...x_n \text{ and } x_i \in L\}$

Regular Expressions

Basis Case: $a \in \Sigma, \varepsilon, \emptyset$

Induction Step: If E, F are regular expressions, the so are $E + F, EF, (E)^*, (E)$.

What are $L(a), L(\varepsilon), L(\emptyset), L(E+F), L(EF), L(E^*)$?

Ex. Give a reg exp for the set of strings of 0s and 1s not containing 101 as a substring:

$$(\varepsilon + 0)(1^* + 00^*0)^*(\varepsilon + 0)$$

Theorem: A language is regular iff it is given by some regular expression.

Proof: reg exp $\Longrightarrow \varepsilon$ -NFA & DFA \Longrightarrow reg exp

$$[\Longrightarrow]$$

Use structural induction to convert R to an ε -NFA with 3 properties:

- 1. Exactly one accepting state
- 2. No arrow into the initial state
- 3. No arrow out of the accepting state

Basis Case: $\varepsilon, \emptyset, a \in \Sigma$

Induction Step: $R + S, RS, R^*, (R)$

 $[\longleftarrow]$ Convert DFA to reg exp.

Method 1

Suppose A has n states. $R_{ij}^{(k)}$ denotes the reg exp whose language is the set of strings w such that:

w takes A from state i to state j with all intermediate states $\leq k$

What is R such that L(R) = L(A)?

$$R = R_{1j_1}^{(n)} + R_{1j_2}^{(n)} + \dots + R_{1j_k}^{(n)}$$
 where $F = \{j_1, j_2, \dots, j_k\}$

Build $R_{ij}^{(k)}$ by induction on k.

Basis Case:
$$k = 0$$
, $R_{ij}^{(0)} = x + a_1 + a_2 + \cdots + a_k$ where $i \xrightarrow{a_i} j$ and $x = \emptyset$ if $i \neq j$ and $x = \varepsilon$ if $i = j$

Induction Step: k > 0

$$R_{ij}^{(k)} = \underbrace{R_{ij}^{(k-1)}}_{\text{path does not visit } k} + \underbrace{R_{ik}^{(k-1)} \left(R_{kk}^{(k-1)}\right)^* R_{kj}^{(k-1)}}_{\text{visits } k \text{ at least once}}$$

Method 2: DFA \Longrightarrow G ε -NFA \Longrightarrow Reg Exp

Generalized ε -NFA:

$$\delta: (Q - \{q_{\mathsf{accept}}\}) imes (Q - \{q_{\mathsf{start}}\}) \longrightarrow \mathcal{R}$$

where the start and accept states are unique.

G accepts $w=w_1w_2\dots w_n$, $\underline{w_i\in\Sigma^*}$, if there exists a sequence of states

$$q_0 = q_{\mathsf{start}}, q_1, \dots, q_n = q_{\mathsf{accept}}$$

such that for all i, $w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$.

When translating from DFA to G ε -NFA, if there is no arrow $i \longrightarrow j$, we label it with \emptyset .

For each i, we label the self-loop with ε .

Eliminate states from G until left with just $q_{\mathsf{start}} \stackrel{R}{\longrightarrow} q_{\mathsf{accept}}$:

Algebraic Laws for Reg Exps

$$L + M = M + L$$
 (commutativity of +)
 $(L + M) + N = L + (M + N)$ (associativity of +)
 $(LM)N = L(MN)$ (associativity of concatenation)
 $LM = ML$?

$$\emptyset + L = L + \emptyset = L \ (\emptyset \ identity \ for \ +)$$

 $\varepsilon L = L\varepsilon = L \ (\varepsilon \ identity \ for \ concatenation)$
 $\emptyset L = L\emptyset = \emptyset \ (\emptyset \ annihilator \ for \ concatenation)$

$$L(M + N) = LM + LN$$
 (left-distributivity)
($M + N$) $L = ML + NL$ (right-distributivity)

$$L + L = L$$
 (idempotent law for union)

Laws with closure:

$$(L^*)^* = L^*$$

$$\emptyset^* = \varepsilon$$

$$\varepsilon^* = \varepsilon$$

$$L^+ = LL^* = L^*L$$

$$L^* = L^+ + \varepsilon$$

Test for Reg Exp Algebraic Law:

To test whether E = F, where E, F are reg exp with variables (L, M, N, \ldots) , convert E, F to concrete reg exp C, D by replacing variables by symbols. If L(C) = L(D), then E = F.

Ex. To show $(L+M)^* = (L^*M^*)^*$ replace L, M by a, b, to obtain $(a+b)^* = (a^*b^*)^*$.

Pumping Lemma: Let L be a regular language. Then there exists a constant n (depending on L) such that for all $w \in L$, $|w| \ge n$, we can break w into three parts w = xyz such that:

- 1. $y \neq \varepsilon$
- 2. $|xy| \leq n$
- 3. For all $k \geq 0$, $xy^k z \in L$

Proof: Suppose L is regular. Then there exists a DFA A such that L = L(A). Let n be the number of states of A. Consider any $w = a_1 a_2 \dots a_m$, m > n:

$$\uparrow_{p_0} \overbrace{a_1 \uparrow_{1} a_2 \uparrow_{1} a_3 \dots a_{i}}^{x} \uparrow_{p_i} \overbrace{a_{i+1} \dots a_{j}}^{y} \uparrow_{p_j} \overbrace{a_{j+1} \dots a_{m}}^{z} \uparrow_{p_m}$$

Ex. Show $L = \{0^n 1^n | n \ge 0\}$ is *not* regular.

Suppose it is. By PL $\exists p$. Consider $s=0^p1^p=xyz$. Since $|xy|\leq p,\ y\neq \varepsilon,\ y=0^j,\ j>0.$ And $xy^2z=0^{p+j}1^p\in L$, which is a contradiction.

Ex. Show $L = \{1^p | p \text{ is prime } \}$ is not regular.

Suppose it is. By PL $\exists n$. Consider some prime $p \ge n + 2$.

Let $1^p = xyz$, |y| = m > 0. So |xz| = p - m.

Consider $xy^{(p-m)}z$ which must be in L.

But

$$|xy^{(p-m)}z| = |xz| + |y|(p-m) = (p-m) + m(p-m) = (p-m)(1+m)$$

Now 1+m>1 since $y\neq \varepsilon$, and p-m>1 since p>n+2 and $m=|y|\leq |xy|\leq n$. So the length of $xy^{(p-m)}z$ is not prime, and hence it cannot be in L — contradiction.

R is a *relation* on two sets *A*, *B* if $R \subseteq A \times B$.

e.g.
$$R = \{(m, n) | m - n \text{ is even } \} \subseteq \mathbb{Z} \times \mathbb{Z}$$
. So $(3, 5), (2, -4) \in R$, but $(-2, 1) \notin R$.

R is an equivalence relation if it is

- 1. Reflexive: for all a, $(a, a) \in R$
- 2. Symmetric: for all $a, b, (a, b) \in R \Rightarrow (b, a) \in R$
- 3. Transitive: for all a, b, c, $(a, b) \in R$ and $(b, c) \in R$, implies that $(a, c) \in R$.

If R is an equivalence relation, and $(a, b) \in R$, then we write $a \equiv_R b$ or just $a \equiv_B b$.

Equivalence class: $[a] = \{x | x \equiv a\}$

Theorem: For any equivalence relation:

- 1. $a \in [a]$
- 2. $a \equiv b \iff [a] = [b]$
- 3. $a \not\equiv b$ then $[a] \cap [b] = \emptyset$
- 4. any two equivalence classes are either equal or disjoint.

Proof: 3. prove the contra-positive: suppose $[a] \cap [b] \neq \emptyset$, so there exists an $x \in [a] \cap [b]$.

By definition, $x \equiv a$ and $x \equiv b$.

By symmetry and transitivity, $a \equiv b$.

 $L \subseteq \Sigma^*$; given $x, y \in \Sigma^*$ we say that they are *distinguishable* if $\exists z \in \Sigma^*$ such that exactly one of xz, yz is in L.

E.g., $L = \{w \in \{0,1\}^* | w \text{ has an even number of 1s }\}$, and x = 00, y = 10. Then x, y are distinguishable because letting z = 1, $xz = 001 \not\in L$ but $yz = 101 \in L$.

Given L, let \equiv_L be the relation: $x \equiv_L y$ iff x, y are not distinguishable. Then \equiv_L is an equivalence relation.

Myhill-Nerode Theorem: L is regular $\iff \equiv_L$ has *finitely many* equivalence classes.

Moreover, the number of states in the smallest DFA recognizing L is equal to the number of equivalence classes of \equiv_L .

Closure Properties of Regular Languages

Union: If L, M are regular, so is $L \cup M$.

Proof: L = L(R) and M = L(S), so $L \cup M = L(R + S)$.

Complementation: If *L* is regular, so is $L^c = \Sigma^* - L$.

Proof: L = L(A), so $L^c = L(A')$, where A' is the DFA obtained from A as follows: $F_{A'} = Q - F_A$.

Intersection: If L, M are regular, so is $L \cap M$.

Proof: $L \cap M = \overline{\overline{L} \cup \overline{M}}$.

Reversal: If L is regular, so is $L^R = \{w^R | w \in L\}$, where $(w_1 w_2 \dots w_n)^R = w_n w_{n-1} \dots w_1$.

Proof: Given a reg exp E, define E^R by structural induction. The only trick is that $(E_1E_2)^R = E_2^R E_1^R$.

Homomorphism: $h: \Sigma^* \longrightarrow \Sigma^*$, where

$$h(w) = h(w_1w_2 \ldots w_n) = h(w_1)h(w_2) \ldots h(w_n).$$

Ex. $h(0) = ab, h(1) = \varepsilon$, then h(0011) = abab.

$$h(L) = \{h(w)|w \in L\}$$

If L is regular, then so is h(L).

Proof: Given a reg exp E, define h(E).

Inverse Homomorphism: $h^{-1}(L) = \{w | h(w) \in L\}.$

Proof: Let A be the DFA for L; construct a DFA for $h^{-1}(L)$ as follows: $\delta(q, a) = \hat{\delta}_A(q, h(a))$.

Complexity of converting among representations

 ε -NFA \longrightarrow DFA is $O(n^32^n)$

 $O(n^3)$ for computing the ε closures of all states – Warshall's algorithm, and 2^n states

DFA \longrightarrow NFA is O(n)

DFA \longrightarrow Reg Exp is $O(n^34^n)$ There are n^3 expressions $R_{ii}^{(k)}$, and at each stage the size quadruples (as we need four stage (k-1) expressions to build one for stage k)

Reg Exp $\longrightarrow \varepsilon$ -NFA is O(n)

The trick here is to use an efficient parsing method for the reg exp; O(n) methods exist

Decision Properties

- ▶ Is a language empty? Automaton representation: Compute the set of reachable states from q₀. If at least one accepting state is reachable, then it is not empty.
 What about regress representation?
 - What about reg exp representation?
- Is a string in a language? Translate any representation to a DFA, and run the string on the DFA.
- Are two languages actually the same language? Equivalence and minimization of Automata.

Equivalence and Minimization of Automata

Take a DFA, and find an *equivalent* one with a *minimal* number of states.

Two states are equivalent iff for all strings w,

$$\hat{\delta}(p,w)$$
 is accepting $\iff \hat{\delta}(q,w)$ is accepting

If two states are not equivalent, they are distinguishable.

Find pairs of distinguishable states: Basis Case: if p is accepting and q is not, then $\{p, q\}$ is a pair of distinguishable states.

Induction Step: if $r = \delta(p, a)$ and $s = \delta(q, a)$, where $a \in \Sigma$ and $\{r, s\}$ are distinguishable, then $\{p, q\}$ are distinguishable.

Table Filling Algorithm

A recursive algorithm for finding distinguishable pairs of states.

Distinguishable states are marked by "x"; the table is only filled below the diagonal (above is symmetric).

Theorem: If two states are not distinguished by the algorithm, then the two states are equivalent.

Proof: Use the Least Number Principle (LPN): any set of natural numbers has a least element.

Let $\{p,q\}$ be a distinguishable pair, for which the algorithm left the corresponding square empty, and furthermore, of all such "bad" pairs $\{p,q\}$ has a shortest distinguishing string w.

Let $w = a_1 a_2 \dots a_n$, $\hat{\delta}(p, w)$ is accepting & $\hat{\delta}(q, w)$ isn't.

 $w \neq \varepsilon$, as then p, q would be found out in the Basis Case of the algorithm.

Let $r = \delta(p, a_1)$ and $s = \delta(q, a_1)$. Then, $\{r, s\}$ are distinguished by $w' = a_2 a_3 \dots a_n$, and since |w'| < |w|, they were found out by the algorithm.

But then $\{p, q\}$ would have been found in the next stage.

Equivalence of DFAs

Suppose D_1 , D_2 are two DFAs. To see if they are equivalent, i.e., $L(D_1) = L(D_2)$, run the table-filling algorithm on their "union", and check if $q_0^{D_1}$ and $q_0^{D_2}$ are equivalent.

Complexity of the Table Filling Algorithm: there are n(n-1)/2 pairs of states. In one round we check all the pairs of states to check if their successor pairs have been found distinguishable; so a round takes $O(n^2)$ many steps. If in a round no "x" is added, the procedure ends, so there can be no more than $O(n^2)$ rounds, so the total running time is $O(n^4)$.

Minimization of DFAs

Note that the equivalence of states is an equivalence relation. We can use this fact to minimize DFAs.

For a given DFA, we run the Table Filling Algorithm, to find all the equivalent states, and hence all the equivalence classes. We call each equivalence class a *block*.

In our last example, the blocks would be:

$${E, A}, {H, B}, {C}, {F, D}, {G}$$

The states within each block are equivalent, and the blocks are disjoint.

We now build a minimal DFA with states given by the blocks as follows: $\gamma(S, a) = T$, where $\delta(p, a) \in T$ for $p \in S$.

We must show that γ is well defined; suppose we choose a different $q \in S$. Is it still true that $\delta(q, a) \in T$?

Suppose not, i.e., $\delta(q,a) \in T'$, so $\delta(p,a) = t \in T$, and $\delta(q,a) = t' \in T'$. Since $T \neq T'$, $\{t,t'\}$ is a distinguishable pair. But then so is $\{p,q\}$, which contradicts that they are both in S.

Theorem: We obtain a minimal DFA from the procedure.

Proof: Consider a DFA A on which we run the above procedure to obtain M. Suppose that there exists an N such that L(N) = L(M) = L(A), and N has fewer states than M.

Run the Table Filling Algorithm on M, N together (renaming the states, so they don't have states in common). Since L(M) = L(N) their initial states are indistinguishable. Thus, each state in M is indistinguishable from at least one state in N. But then, two states of M are indistinguishable from the same state of N...