Домашнее задание

- 1. Дан массив длины n, состоящий только из нулей и единиц. Предложите линейный алгоритм сортировки данного массива.
- **2.** На прямой задано n отрезков, причем известно, что они образуют систему строго вложенных отрезков (их можно упорядочить так, чтобы каждый строго содержался в следующем). Отрезки заданы координатами концов $[l_i, r_i]$ (и могут быть даны в неупорядоченном виде). Предложите асимптотически эффективный алгоритм (с точки зрения количества арифметических операций), который находит все точки прямой, которые покрыты ровно 2n/3 отрезками.
- **3.** Рассмотрим детерминированный алгоритм поиска порядковой статистики за линейное время из параграфа 9.3 Кормена. Какая асимптотика будет у алгоритма, если делить элементы массива на группы по семь, а не по пять?
- **4.** На вход задачи подаётся число n и массив чисел $x_1, x_2, \ldots, x_{2n+1}$. Постройте линейный алгоритм, находящий число s, при котором достигается минимум суммы

$$\sum_{i=1}^{2n+1} |x_i - s|.$$

- **5.** Предложите полиномиальный от длины входа алгоритм решения сравнения $a \cdot x + b \equiv 0 \pmod{M}$ (На вход дают целые числа a, b, M в двоичной системе исчисления).
- **6.** Перемножьте многочлены $2x^3 + 3x^2 + 1$ и $2x^2 + x$ с помощью БПФ. В решении должны быть приведены вычисления всех используемых преобразований.
- 7. Решите с помощью преобразования Фурье задачу о поиске всех вхождений образца с джокерами в текст. Текст и образец это последовательности $t_0, t_1, \ldots, t_{n-1}$ и $p_0, p_1, \ldots, p_{m-1}, m < n$, где все t_i символы из алфавита, а p_j либо символ из алфавита, либо джокер. Образец входит в текст в позиции $i \in \{0, \ldots, n-m-1\}$, если $t_{i+j} = p_j$ при всех $j \in \{0, \ldots, m-1\}$, для которых p_j символ алфавита. Для решения этой (и более сложной задачи в домашнем задании) есть $O(n \log n)$ алгоритм, основанный на БПФ. Закодируем каждый символ алфавита уникальным положительным числом, а джокер нулём, и определим последовательность r_i :

$$r_i = \sum_{j=0}^{m-1} p_j t_{i+j} (p_j - t_{i+j})^2$$

- 1. Докажите, что образец входит в текст в позиции i тогда и только тогда, когда $r_i = 0$.
- 2. Постройте $O(n \log n)$ алгоритм, который находит все вхождения образца с джокерами в текст.

Заметка. Эта задача подготовлена на основе статьи P. Clifford, R. Clifford Simple deterministic wildcard matching, Information Processing Letters, Vol. 101, Is. 2, 2007, Pp. 53-54,

- **8** [ДПВ **2.30**]. В данном упражнении показывается, как вычислять преобразование Фурье $(\Pi\Phi)$ в арифметике сравнений, например, по модулю 7.
- 1. Существует такое ω , что все степени $\omega,\omega^2,\dots,\omega^6$ различны (по модулю 7). Найдите такое ω и покажите, что $\omega+\omega^2+\dots+\omega^6=0$. (Отметим также, что такое число существует для любого простого модуля.)

- 2. Найдите преобразование Фурье вектора (0,1,1,1,5,2) по модулю 7, используя матричное представление, то есть умножьте данный вектор на $M_6(\omega)$ (для найденного ранее ω). Все промежуточные вычисления производите по модулю 7.
- 3. Запишите матрицу обратного преобразования Фурье. Покажите, что при умножении на эту матрицу получается исходный вектор. (Как и прежде, все вычисления должны производиться по модулю 7.)
- 4. Перемножьте многочлены $x^2 + x + 1$ и $x^3 + 2x 1$ при помощи $\Pi\Phi$ по модулю 7.