Maximum Entropy Models

Pawan Goyal

CSE, IIT Kharagpur

Week 4, Lecture 4

Practice Question

- P(D|a) = 0.9
- P(N|man) = 0.9
- P(V|sleeps) = 0.9
- P(D|word) = 0.6 for any word other than a, man or sleeps
- P(N|word) = 0.3 for any word other than a, man or sleeps
- P(V|word) = 0.1 for any word other than a, man or sleeps

It is assumed that all other probabilities, not defined above could take any values such that $\sum_{tay} P(tag|word) = 1$ is satisfied for any word in V.

- Define the features of your maximum entropy model that can model this distribution. Mark your features as f_1 , f_2 and so on. Each feature should have the same format as explained in the class. [**Hint:** 6 Features should make the analysis easier]
- For each feature f_i , assume a weight λ_i . Now, write expression for the following probabilities in terms of your model parameters
 - P(D|cat)
 - ightharpoonup P(N|laughs)
 - P(D|man)
- What value do the parameters in your model take to give the distribution as described above. (i.e. P(D|a) = 0.9 and so on. You may leave the final answer in terms of equations)

Features for POS Tagging (Ratnaparakhi, 1996)

The specific word and tag context available to a feature is

$$h_i = \{w_i, w_{i+1}, w_{i+2}, w_{i-1}, w_{i-2}, t_{i-1}, t_{i-2}\}$$

Features for POS Tagging (Ratnaparakhi, 1996)

The specific word and tag context available to a feature is

$$h_i = \{w_i, w_{i+1}, w_{i+2}, w_{i-1}, w_{i-2}, t_{i-1}, t_{i-2}\}$$

Example: $f_j(h_i, t_i) = 1$ if $suffix(w_i) = \text{"ing"} \& t_i = VBG$

Example Features

Condition	Features	
w_i is not rare	$w_i = X$	$\& t_i = \overline{T}$
w_i is rare	X is prefix of w_i , $ X \leq 4$	& $t_i = T$
	X is suffix of w_i , $ X \leq 4$	$\& t_i = T$
	w_i contains number	$\& t_i = T$
	w_i contains uppercase character	& $t_i = T$
	w_i contains hyphen	$\& t_i = T$
$\forall w_i$	$t_{i-1} = X$	& $t_i = T$
	$t_{i-2}t_{i-1} = XY$	& $t_i = T$
	$\overline{w_{i-1}} = X$	& $t_i = T$
	$w_{i-2} = X$	$\& t_i = T$
	$w_{i+1} = X$	& $t_i = T$
	$w_{i+2} = X$	& $t_i = T$

Example Features

Word:	the	stories	about	well-heeled	communities	and	developers
Tag:	DT	NNS	IN	JJ	NNS	CC	NNS
Position:	1	2	3	4	5	6	7

Example Features

Word:	the	stories	about	well-heeled	communities	and	developers
Tag:	DT	NNS	IN	JJ	NNS	CC	NNS
Position:	1	2	3	4	5	6	7

$w_i = \mathtt{about}$	$\& t_i = IN$
$w_{i-1} = \mathtt{stories}$	$\& t_i = IN$
$w_{i-2} = \mathtt{the}$	$\&\ t_i = {\tt IN}$
$w_{i+1} = well-heeled$	$\&\ t_i = {\tt IN}$
$w_{i+2} = \text{communities}$	$\&\ t_i = {\tt IN}$
$t_{i-1} = \mathtt{NNS}$	$\& t_i = IN$
$t_{i-2}t_{i-1} = \mathtt{DT} \ \mathtt{NNS}$	$\& t_i = IN$

$w_{i-1} = \mathtt{about}$	$\& t_i = JJ$
$w_{i-2} = \mathtt{stories}$	$\& t_i = JJ$
$w_{i+1} = \text{communities}$	$\& t_i = \mathtt{J}\mathtt{J}$
$w_{i+2} = $ and	$\&\ t_i = \mathtt{JJ}$
$t_{i-1} = IN$	$\& t_i = JJ$
$t_{i-2}t_{i-1} = \mathtt{NNS} \ \mathtt{IN}$	$\& t_i = JJ$
$\operatorname{prefix}(w_i) = \mathbf{w}$	$\& t_i = JJ$
$\operatorname{prefix}(w_i) = we$	$\& t_i = JJ$
$\operatorname{prefix}(w_i) = wel$	$\& \ t_i = \mathtt{JJ}$
$\operatorname{prefix}(w_i) = well$	$\&\ t_i = \mathtt{JJ}$
$\operatorname{suffix}(w_i) = d$	$\& t_i = JJ$
$\operatorname{suffix}(w_i) = \operatorname{ed}$	$\& t_i = JJ$
$suffix(w_i) = led$	$\& t_i = JJ$
$\operatorname{suffix}(w_i) = eled$	$\&\ t_i = \mathtt{JJ}$
w_i contains hyphen	$\& t_i = JJ$

Conditional Probability

Given a sentence $\{w_1, \ldots, w_n\}$, a tag sequence candidate $\{t_1, \ldots, t_n\}$ has conditional probability:

$$P(t_1,\ldots,t_n|w_1\ldots,w_n)=\prod_{i=1}^n p(t_i|x_i)$$

Conditional Probability

Given a sentence $\{w_1, \ldots, w_n\}$, a tag sequence candidate $\{t_1, \ldots, t_n\}$ has conditional probability:

$$P(t_1,\ldots,t_n|w_1\ldots,w_n)=\prod_{i=1}^n p(t_i|x_i)$$

A *Tag Dictionary* is used, which, for each known word, lists the tags that it has appeared with in the training set.

Let $W = \{w_1, ..., w_n\}$ be a test sentence, s_{ij} be the jth highest probability tag sequence up to and including word w_i .

Let $W = \{w_1, ..., w_n\}$ be a test sentence, s_{ij} be the jth highest probability tag sequence up to and including word w_i .

Search description

• Generate tags for w_1 , find top N, set s_{1j} , $1 \le j \le N$, accordingly.

Let $W = \{w_1, ..., w_n\}$ be a test sentence, s_{ij} be the jth highest probability tag sequence up to and including word w_i .

- Generate tags for w_1 , find top N, set s_{1j} , $1 \le j \le N$, accordingly.
- Initialize i = 2
 - ▶ Initialize i = 1
 - Generate tags for w_i , given $s_{(i-1)j}$ as previous tag context, and append each tag to $s_{(i-1)j}$ to make a new sequence
 - j = j + 1, repeat if $j \le N$

Let $W = \{w_1, ..., w_n\}$ be a test sentence, s_{ij} be the jth highest probability tag sequence up to and including word w_i .

- Generate tags for w_1 , find top N, set s_{1j} , $1 \le j \le N$, accordingly.
- Initialize i=2
 - Initialize i = 1
 - Generate tags for w_i , given $s_{(i-1)j}$ as previous tag context, and append each tag to $s_{(i-1)j}$ to make a new sequence
 - j = j + 1, repeat if $j \le N$
- Find N highest probability sequences generated by above loop, set sij accordingly

Let $W = \{w_1, ..., w_n\}$ be a test sentence, s_{ij} be the jth highest probability tag sequence up to and including word w_i .

- Generate tags for w_1 , find top N, set s_{1j} , $1 \le j \le N$, accordingly.
- Initialize i=2
 - Initialize j = 1
 - Generate tags for w_i , given $s_{(i-1)j}$ as previous tag context, and append each tag to $s_{(i-1)j}$ to make a new sequence
 - j = j + 1, repeat if $j \le N$
- Find N highest probability sequences generated by above loop, set sij accordingly
- i = i + 1, repeat if $i \le n$

Let $W = \{w_1, ..., w_n\}$ be a test sentence, s_{ij} be the jth highest probability tag sequence up to and including word w_i .

- Generate tags for w_1 , find top N, set s_{1j} , $1 \le j \le N$, accordingly.
- Initialize i = 2
 - ▶ Initialize i = 1
 - Generate tags for w_i , given $s_{(i-1)j}$ as previous tag context, and append each tag to $s_{(i-1)j}$ to make a new sequence
 - j = j + 1, repeat if $j \le N$
- Find N highest probability sequences generated by above loop, set sij accordingly
- i = i + 1, repeat if $i \le n$
- Return highest probability sequence s_{n1}

A Good Reference

Berger et al., *A Maximum Entropy Approach to Natural Language Processing*, Computational Linguistics, Vol. 22, No. 1.