Билет 11

1. \exists р-я зад.Коши для ур-я тепл-сти. Постановка задачи: $\begin{cases} u_t = a^2 u_{xx}, & -\infty < x < \infty \\ u(x,0) = \phi(x) \end{cases}$ (1). Хотим доказать, что решение u(x,t) существует и единственно.Подготовка:Используем метод разделения переменных. u(x,t) = X(x)T(t). Подставим в(1). Получим $T'X = a^2 X''T \Rightarrow \frac{X''}{X} = \frac{T'}{a^2T} = -\lambda^2, \quad \lambda = const > 0$

В итоге получили такую систему: $\begin{cases} X'' + \lambda^2 X = 0 \\ T' + a^2 \lambda^2 T = 0 \end{cases}$ Решения системы: $\begin{cases} X(x) = exp(i\lambda x) \\ T(t) = exp(-a^2 \lambda^2 t) \end{cases}$

Итак, решение исходной системы: $u(x,t) = exp(i\lambda x - a^2\lambda^2 t)$. Пусть $A(\lambda)$ - некоторая функция. Тогда $u_{\lambda} = A(\lambda)u(x,t)$

- тоже решение системы(функция по сути константа). Определим решение таким образом: $u(x,t) = \int\limits_{-\infty}^{\infty} A(\lambda) exp(i\lambda x - i\lambda x) dx$

 $a^2\lambda^2t)d\lambda$. Сделаем так, что она удовлетворяет начальному условию $u(x,0)=\phi(x)$: $\phi(x)=\int\limits_0^\infty A(\lambda)e^{i\lambda x}d\lambda$,

где $A(\lambda) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} e^{-i\lambda s} \phi(s) ds$ //Коэффициенты ряда Фурье. Подставим найденные коэффициенты A в решение:

$$u(x,t) = \int_{-\infty}^{\infty} \frac{1}{2\pi} \left[\int_{-\infty}^{\infty} e^{-i\lambda s} \phi(s) ds \right] exp(i\lambda x - a^2 \lambda^2 t) d\lambda = \int_{-\infty}^{\infty} \phi(s) \left[\int_{-\infty}^{\infty} \frac{1}{2\pi} exp(i\lambda (x-s) - a^2 \lambda^2 t) d\lambda \right] ds$$

Внутренний интеграл можно посчитать. В результате получится: $u(x,t) = \frac{1}{\sqrt{4\pi a^2 t}} \int_{-\infty}^{\infty} exp(-\frac{(x-s)^2}{4a^2t})\phi(s)ds$

Более короткая запись: $u(x,t)=\int\limits_{-\infty}^{\infty}G(x,s,t)\phi(s)ds$, где $G(x,s,t)=\frac{1}{\sqrt{4\pi a^2t}}exp(-\frac{(x-s)^2}{4a^2t})$,

Теорема. Пусть $\phi(x)$ - начальное условие, такое что оно непрерывно по x и ограничено : $|\phi(x)| < M$. Тогда u(x,t)(onped-я формулой через G) непрерывна имеет непр-е частные произв-е u_{xx}, u_t и удовлетворяет уравнению теплопроводности при $x \in \Re, t > 0$. K тому же, $\lim_{t \to 0+} u(x,t) = \phi(x)$

Доказательство. 1. Для начала докажем, что u(x,t) непрерывна. Для этого достаточно доказать, что u(x,t) непрерывна в прямоугольнике $= \{(x,t): -L < x < L, t_0 < t < T\}$ где все эти пределы - const > 0.

Все функции в интеграле из и (а это G и ϕ) непрерывны в П. Тогда если интеграл сходится равномерно, то и и тоже. Для этого построим фун-цию F(s). Оцениваем показатель exp при разных s: (след-е нер-ва и усл-я лучше записывать

 $\{-\frac{(x-s)^2}{4a^2t}\leqslant 0, |s|<2L\}, \{-\frac{(x-s)^2}{4a^2t}\leqslant -\frac{(L-s)^2}{4a^2t}, s\geqslant 2L\}, \{-\frac{(x-s)^2}{4a^2t}\leqslant -\frac{(L+s)^2}{4a^2t}, s\leqslant -2L\},$ также оценим 1ый сомножитель в интеграле : $\{\frac{1}{\sqrt{4\pi a^2t}}\leqslant \frac{1}{\sqrt{4\pi a^2t}}\}$

Получаем что $|G(x,s,t)|\leqslant F(s)$ где F(s)= либо $\{\frac{1}{\sqrt{4\pi a^2t_0}},|s|\leqslant 2L\}$ либо $\{\frac{1}{\sqrt{4\pi a^2t_0}}exp(-\frac{(L-s)^2}{4a^2T}+\frac{L^2}{4a^2T}),s\geqslant 2L\}$ либо $\left\{\frac{1}{\sqrt{4\pi a^2 t_0}} exp\left(-\frac{(L+s)^2}{4a^2T} + \frac{L^2}{4a^2T}\right), s \leqslant -2L\right\}$

 $\frac{L^2}{4a^2T}$ это было добавлено в показатель ехр лишь для непр-сти $\mathrm{F}(\mathrm{s})$ Получаем инт-л $\int\limits_{-\infty}^{\infty}F(s)ds$ сходящийся; |G(x,s,t)|<F(s) ; по условию $\phi(x) < M$,значит справ-во: $|G(x,s,t)\phi(x)| < |G(x,s,t)||\phi(x)| < MF(s)$, а инт-л от MF(s) схся.Следовательно по признаку Вейерштрасса мы получаем равномерную сходимость исходного интеграла и непрерывность функции u(x, t) в прям-ке.

2. Док-м непрерывность в прям-ке u_{xx} , u_t

$$|G_{xx}(x,s,t)| = \left| \frac{(x-s)^2}{4a^4t^2} G(x,s,t) - \frac{1}{2a^2t} G(x,s,t) \right| \le F(s) \left\{ \frac{1}{2a^2t_0} + \frac{L^2 + 2LS + S^2}{4a^4t_0^2} \right\} = F_1(s)$$

 $F_1(s)$ интегрируема, а значит можем предст-ть $u_{xx}(x,t) = \int\limits_{-\infty}^{\infty} G_{xx}(x,s,t)\phi(x)ds \leqslant \int\limits_{-\infty}^{\infty} |G_{xx}(x,s,t)||\phi(x)|ds \leqslant \int\limits_{-\infty}^{\infty} |G_{xx}(x,s,t)||\phi(x,t)|ds \leqslant \int\limits_{-\infty}^{\infty} |G_{xx}(x,s,t)||\phi(x,t)|ds \leqslant \int\limits_{-\infty}^{\infty} |G_{xx}(x,s,t)||\phi(x,t)|ds \leqslant \int\limits_{-\infty}^{\infty} |G_{xx}(x,s,t)|ds \leqslant \int\limits_{-\infty}^{\infty} |G_{xx}(x,s,t)|$

 $\leqslant M\int\limits_{-\infty}^{\infty}F_1(s)ds<\infty$ т.е $\int\limits_{-\infty}^{\infty}u_{xx}(x,t)$ равномерно сх-ся в прям-ке $\Rightarrow u_{xx}(x,t)$ непр-на в прям-ке.

Аналогично док-ся $u_t(x,t)$

3. Теперь докажем $\lim_{t\to 0+}u(x,t)=\phi(x)$. Замена $\frac{s-x}{2a\sqrt{t}}=p$. Тогда $s=x+2a\sqrt{t}p,\ ds=2a\sqrt{t}dp$

$$u(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} exp(-p^2)\phi(2pa\sqrt{t}+x)dp$$
 — при $(t\to 0+)$ к интегралу $\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} exp(-p^2)\phi(x) = \phi(x)$

2. Постановка внешней задачи Дирихле для уравнения Лапласа в пространстве Пусть Ω - некоторая открытая область в E^3 , огранченная поверхностью Σ . Задача:

$$\Delta u=0$$
(т.е гарм-я) — и и непрерывна вне области
$$u(M)=\mu(M), \quad M\in \varSigma$$

$$u(M) \rightrightarrows 0 \ M \to \infty$$