The goal of regression is to develop an equation or formula that best describes the relationship between variables.

$$y = 2x$$

- How do we find a best-fit line?
- Consider a dataset with only one variable
- The best-fit line is just the meanvalue of the data points

- A plant manager wants to know when employees arrive atwork
- The shift starts a 8:30am
- She takes five random timecards and plots the minutes of arrival on a chart

Timecard	Minutes past 8:00am
Α	37
В	25
С	27
D	36
E	25
Total:	150

What makes

y = 30 a
best-fit line?

Consider the error

See that the sum of the distances above the line balances the sum of those below the line

Error (E)	Square Error (SE)
+7	49
-5	25
-3	9
+6	36
-5	25
Sum of Squares Error (SSE)	144

we want to MINIMIZE the SSE

What if we move the line?

Let's set itto y = 31 instead

How does it affect the SSE?

Error (E)		Squ Error	
+7	+6	49	36
-5	-6	25	36
-3	-4	9	16
+6	+5	36	25
-5	-6	25	36
Sum of Squares Error (SSE)		144	149

moving the line INCREASED the SSE

 That's it! The goal of regression is to find the line that best describes our data.

Fortunately, we don't have to rely on trial-

and-error.

We have algebra!

- Recall that the equation of a line follows the form y = m x + b where
 - m is the slope of the line, and
 - b is where the line crosses the y-axis when x=0 (b is the y-intercept)

• In a linear regression, where we try to formulate the relationship between variables, y = m x + b becomes

$$\hat{y} = b_0 + b_1 x$$

 Our goal is to predict the value of a dependent variable (y) based on that of an independent variable (x).

$$\hat{y} = b_0 + b_1 x$$

• How to derive b_1 and b_0 :

$$b_1 = \rho_{x,y} \frac{\sigma_y}{\sigma_x}$$

 $b_1 = \rho_{x,y} \frac{\sigma_y}{\sigma_x}$ $\rho_{x,y} = Pearson Correlation Coefficient <math>\sigma_x, \sigma_y = Standard Deviations$

$$= \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} \cdot \frac{\sqrt{\frac{\sum (y - \bar{y})^2}{n}}}{\sqrt{\frac{\sum (x - \bar{x})^2}{n}}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$\hat{y} = b_0 + b_1 x$

LINEAR REGRESSION

• How to derive b_1 and b_0 :

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

LIMITATIONS OFLINEAR REGRESSION

Anscombe's Quartet illustrates the pitfalls of relying on pure calculation.

Eachgraph results in the same calculated regression line.

 A manager wants to find the relationship between the number of hours that a plant is operational in a week

and weekly production.

Here the independent variable x is hours of operation, and the dependent variable y is production volume.

• The manager develops the following table:

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

• First, plot the data. Is there a linearpattern?

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

$$\hat{y} = b_0 + b_1 x b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} b_0 = \bar{y} - b_1 \bar{x}$$

	Production Hours (x)	Production Volume (y)	$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
	34	102	-6	-32	192	36
	35	109	-5	-25	125	25
	39	137	-1	3	-3	1
	42	148	2	14	28	4
	43	150	3	16	48	9
	47	158	7	24	168	49
$\overline{x}, \overline{y}$	40	134		Sum:	558	124
					$\Sigma(x-\overline{x})(y-\overline{y})$	$\Sigma(x-\overline{x})^2$

$$\hat{y} = b_0 + b_1 x b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} b_0 = \bar{y} - b_1 \bar{x}$$

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158
40	134

$b_1 = \frac{\sum (x_i - \sum x_i)^{-1}}{\sum (x_i - \sum x_i)^{-1}}$	$\frac{(\bar{x})(y_i - \bar{y})}{(x_i - \bar{x})^2}$	$=\frac{558}{124}$	= 4.5
b_0	$= \bar{y} - b_1 \bar{x}$	= 134	$-(4.5\times40)=-46$
	$\hat{y} = -46$	+ 4 . 5 <i>x</i>	
Sum:	558	124	
	$\Sigma(x-\overline{x})(y-\overline{y})$	$\Sigma(x-\overline{x})^2$	

Based on the formula, if the manager wants to produce 125 units perweek, the plant should run for:

Production Hours (x)	Production Volume (y)
34	102
35	109
39	137
42	148
43	150
47	158

$$\hat{y} = b_0 + b_1 x$$

$$125 = -46 + 4.5x$$

$$x = \frac{171}{4.5} = 38 \text{ hours per week}$$

REGRESSION WITH EXCEL DATA ANALYSIS

LINEAR REGRESSION WITH PYTHON

```
>>> from scipy.stats import linregress
>>> x = [34, 35, 39, 42, 43, 47]
>>> y = [102, 109, 137, 148, 150, 158]
>>> slope = round(linregress(x,y).slope,1)
>>> intercept = round(linregress(x,y).intercept,1)
>>> print(f'y = {intercept} + {slope}x')
y = -46.0 + 4.5x
```

MULTIPLE REGRESSION

LINEAR VS MULTIPLEREGRESSION

 In linear regression we have one independent variable that may relate to a dependent variable with the formula

$$\hat{y} = b_0 + b_1 x$$

LINEAR VS MULTIPLE REGRESSION

- Multiple regression lets us compare several independent variables to one dependent variable at the same time.
- Each independent variable is assigned a subscript: x₁, x₂, x₃ etc.

LINEAR VS MULTIPLE REGRESSION

The general formula is expanded:

linear regression multiple regression $\hat{y} = b_0 + b_1 x \qquad \hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots$

- b_1 is the coefficient on x_1
- b_1 reflects the change in \hat{y} for a given change in x_1 , all else remaining constant

LINEAR VS MULTIPLE REGRESSION

The formulas for coefficients also expand:

$$b_{1} = \frac{\sum (x_{2} - \overline{x_{2}})^{2} \sum (x_{1} - \overline{x_{1}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{2} - \overline{x_{2}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{2} = \frac{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{0} = \overline{y} - b_{1}\overline{x_{1}} - b_{2}\overline{x_{2}}$$

MULTIPLE REGRESSION

- For example, a used car lot may want to know what variables affect net profits
- They would create a list of predictors that might correlate with profit:

price age brand color style

MULTIPLE REGRESSION

- They would want to measure the correlation of each variable to net profit
- However, some predictors might correlate with each other:

MULTIPLE REGRESSION

- The age of a car would have a direct impact on its sales price
- You can't adjust one without affecting the other
- This is called multicollinearity

- Apharmacy delivers medications to the surrounding community.
- Drivers can make several stops per delivery.
- The owner would like to predict the length of time a delivery will take based on one or two related variables.

- First, consider what variables may have an effect on delivery time:
 - o number of stops
 - driving distance
 - outside temperature
 - gasoline prices

 Next, plot each variable against delivery time to see if there may be a relationship

- Once we've chosen our variables x_1 and x_2 , we'll usually test for multicollinearity
- We want to know if our two independent variables are closely related to each other
- If they are, it makes sense to discard one!

A delivery might go to one customer that lives far away, or to a group of stops close by

y = Delivery Time (minutes)

 $x_1 = Number of Stops$

y	<i>x</i> ₁	<i>x</i> ₂	(y – y)	$(x_1-\overline{x_1})$	$(x_1-\overline{x_1})^2$	$(x_2-\overline{x_2})$	$(x_2-\overline{x_2})^2$
29	1	8	-1	-1	1	2	4
31	3	4	1	1	1	-2	4
36	2	9	6	0	0	3	9
35	3	6	5	1	1	0	0
19	1	3	-11	-1	1	-3	9
\overline{y}	$\overline{x_1}$	$\overline{x_2}$		Σ	$(x_1-\overline{x_1})^2$	Σ	$(x_2-\overline{x_2})^2$
30	2	6			4		26

$(x_1-\overline{x_1})(y-\overline{y})$	$(x_2-\overline{x_2})(y-\overline{y})$	$(x_1-\overline{x_1})(x_2-\overline{x_2})$
1	-2	-2
1	-2	-2
0	18	0
5	0	0
11	33	3
$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
18	47	-1

y = Delivery Time (minutes)

 $x_1 = Number of Stops$

$$b_1 = \frac{\sum (x_2 - \overline{x_2})^2 \sum (x_1 - \overline{x_1})(y - \overline{y}) - \sum (x_1 - \overline{x_1})(x_2 - \overline{x_2}) \sum (x_2 - \overline{x_2})(y - \overline{y})}{\sum (x_1 - \overline{x_1})^2 \sum (x_2 - \overline{x_2})^2 - (\sum (x_1 - \overline{x_1})(x_2 - \overline{x_2}))^2}$$

$$b_2 = \frac{\sum (x_1 - \overline{x_1})^2 \sum (x_2 - \overline{x_2})(y - \overline{y}) - \sum (x_1 - \overline{x_1})(x_2 - \overline{x_2}) \sum (x_1 - \overline{x_1})(y - \overline{y})}{\sum (x_1 - \overline{x_1})^2 \sum (x_2 - \overline{x_2})^2 - (\sum (x_1 - \overline{x_1})(x_2 - \overline{x_2}))^2}$$

\overline{y}	$\overline{x_1}$	$\overline{x_2}$
30	2	6

$$\Sigma(x_1-\overline{x_1})^2$$

$$\Sigma(x_2-\overline{x_2})^2$$

$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
18	47	-1

y = Delivery Time (minutes)

 $x_1 = Number\ of\ Stops$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4)(47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

<u>v</u>	$\overline{x_1}$	$\overline{x_2}$		
30	2	6		

$$\frac{\sum (x_1 - \overline{x_1})^2}{4}$$

$$\frac{\Sigma(x_2-\overline{x_2})^2}{26}$$

$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
18	47	-1

y = Delivery Time (minutes)

 $x_1 = Number of Stops$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4)(47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

$$\hat{y} = 8 + 5x_1 + 2x_2$$

$$b_0 = \overline{y} - b_1 \overline{x_1} - b_2 \overline{x_2}$$

$$= 30 - (5)(2) - (2)(6)$$

$$= 30 - 10 - 12 = 8$$

\overline{y}	$\overline{x_1}$	$\overline{x_2}$
30	2	6

$$\Sigma(x_1-\overline{x_1})^2$$

$$\Sigma(x_2-\overline{x_2})^2$$

$$\frac{\Sigma(x_1 - \overline{x_1})(y - \overline{y})}{18} \frac{\Sigma(x_2 - \overline{x_2})(y - \overline{y})}{47} \frac{\Sigma(x_1 - \overline{x_1})(x_2 - \overline{x_2})}{-1}$$

y = Delivery Time (minutes)

 $x_1 = Number\ of\ Stops$

 $x_2 = Distance (miles)$

$$\hat{y} = 8 + 5x_1 + 2x_2$$

y	x_1	x_2
29	1	8
31	3	4
36	2	9
35	3	6
19	1	3

Based on our analysis, pharmacy deliveries have a fixed time of 8 minutes, plus 5 minutes for each stop, and 2 minutes for each mile traveled

MULTIPLE REGRESSION IN EXCEL

Steps are the same as linear regression, except you select a wider x-axis range

MULTIPLE REGRESSION IN EXCEL

1	A	В	C	Data Analysis					? ×
1	SUMMARY OUTPUT			Data	Data Analysis				
2				<u>A</u> nal	ysis Tools				ОК
3	Regression St	atistics		(Covariance Descriptive Statistics Exponential Smoothing				
4	Multiple R	1							Cancel
5	R Square	1		F-T	F-Test Two-Sample for Variances				
6	Adjusted R Square	1			Fourier Analysis Histogram				<u>H</u> elp
7	Standard Error	1.25607E-15		Mo	Moving Average Random Number Generation Rank and Percentile				
8	Observations	5							
9				-	Rank and Percentile Regression				
10	ANOVA							The state of the s	
11		df	SS	MS	F	Significance F			
12	Regression	2	184	Ğ	2 5.83119E+31	1.71492E-32			
13	Residual	2	3.15544E-30	1.57772E-3	0				
14	Total	4	184						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	8	2.11706E-15	3.77882E+1	.5 7.00306E-32	8	8	8	
18	X Variable 1	5	6.31078E-16	7.92295E+1	.5 1.59304E-32	5	5	5	
19	X Variable 2	2	2.47529E-16	8.07985E+1	.5 1.53177E-32	2	2	2	
20									

MULTIPLE REGRESSION WITH PYTHON

```
>>> from sklearn.linear_model import LinearRegression
>>> x1,x2 = [1,3,2,3,1], [8,4,9,6,3]
>>> y = [29,31,36,35,19]
>>> reg = LinearRegression()
>>> reg.fit(list(zip(x1,x2)), y)
>>> b1,b2 = reg.coef_[0], reg.coef_[1]
>>> b0 = reg.intercept_
>>> print(f'y = {b0:.{3}} + {b1:.{3}}x1 + {b2:.{3}}x2')
y = 8.0 + 5.0x1 + 2.0x2
```