

Úvod do Linuxu

UNIX

- 1964 práce na systému Multics
 - MIT, Bellovy laboratoře a General Electric
 - GE -> Honeywell (1970), vývoj až do 1985
 - Poslední instalace vypnuta v roce 2010
- 1969 vznik systému Unix (PDP-7)
 - Ken Thompson, Dennis Ritchie
 - Vytvořen v asembleru
- 1972 Unix přepsán do jazyka C
 - Snadné přenesení na jiný typ počítače "porting"

MULTICS (**MULT**iplexed **I**nformation and **C**omputing **S**ervice)

UNICS (**UNI**plexed **I**nformation and **C**omputing **S**ervice) (UNIversal)

UNIX

- Licencování Unixu
 - University of California, Berkeley (BSD)
 - Microsoft (Xenix)
 - IBM (AIX)
 - Sun Microsystems (Solaris)
 - ...
- AT&T prodala práva Novellu (1993)
- 1995 prodáno Santa Cruz Operation (SCO)
- Od mikropočítačů až po velké sálové počítače

GNU - GNU's not UNIX

- Projekt GNU založil Richard M. Stallman v roce 1984
- vytvořit kompletní unixový operační systém založený na svobodném software
- založil Nadaci pro svobodný software, stará se o právní a organizační stránky projektu GNU
 - Free Software Foundation
 - volně studovat zdrojový kód softwaru
 - volně sdílet software s jinými uživateli
 - volně upravovat chování programu
 - volně zveřejňovat upravené verze softwaru

GNU/GPL

- Myšlenky formulovány v GNU/GPL
 - General Public License
 Obecná veřejná licence
- Projekt GNU se skládá z menších projektů.
- Systém GNU je (stejně jako jiné unixové operační systémy) modulární.
- Dnes je používaný především systém GNU s jádrem Linux.
 - Původní jádro GNU Hurd

GNU/GPL

- Pokus zajistit určitá práva vývojářům a uživatelům.
- Svoboda spouštět programy z jakýchkoliv pohnutek
- Svoboda studovat a upravovat zdrojový kód
- Svoboda redistribuovat zdroj a svobodu poskytovat (sdílet) všechny úpravy
- GPL neříká nic o ceně
 - "Volnost" spočívá ve svobodách ke zdrojovému kódu
 - Můžete si účtovat za program kolik chcete, ale nesmíte nikomu nařizovat, za jaký poplatek jej má distribuovat dál.
 - Musíte zpřístupnit zdrojové kódy

Linux

- V počátku (1991) byl Linux osobním projektem Linuse Torvaldse
 - Hledal zůpsob, jak se dostat k UNIXovému operačnímu systému co nejlevněji
 - chtěl se učit vstupy a výstupy procesoru 80386
- Jednolitý kód s podporou načítání externích modulů
 - Modulární monolitické jádro
 - zvýšení stability, urychlení běhu jádra, zmenšení velikosti samotného jádra a zmenšení paměťových nároků

Linux

- uvolněn veřejnosti zdarma
- kdokoliv může studovat a vylepšovat v rámci GNU GPL
- Linux je jádro (kernel) operačního systému
 - Vše co se nachází kolem je výsledkem dalších projektů
 - Mnoho z nich pochází z GNU
- vyvíjen stovkami (ne-li tisícovkami) programátorů z celého světa
- portován na různé architektury

Linux – podporované architektury

Alpha instruction set: DEC Alpha, Samsung Alpha CPU

Analog Devices

ARM family of instruction sets (32- and 64-bit)

Atmel AVR32

Axis Communications' ETRAX CRIS

Texas Instruments TMS320 family of DSPs from Texas Instruments

Freescale's (formerly Motorola's) 68k architecture (68020, 68030, 68040, 68060):

Fujitsu FR-V

Qualcomm Hexagon

Hewlett-Packard's PA-RISC family

H8 architecture from Renesas Technology, formerly Hitachi.

IBM System/390 (31-bit), Z/Architecture (Z mainframes) (64-bit)

Intel IA-64 Itanium, Itanium II

x86 architecture: IBM PC compatibles using IA-32 and x86-64 processors

M32R from Mitsubishi Microblaze from Xilinx MIPS instruction set

MN103 from Panasonic Corporation

OpenRISC

Power Architecture: IBM Servers,

PowerPC architecture: IBM's Cell, Most pre-Intel Apple computers (all PCI-based Power Macintoshes, limited

support for the older NuBus Power Macs) SPARC: SPARC (32-bit), UltraSPARC (64-bit)

UltraSPARC T4 processors

SuperH

Synopsys DesignWare ARC cores, originally developed by ARC International

S+core Tilera

Xtensa from Tensilica

UniCore32

Linux

17. září 1991 - První verze linuxového jádra (o.o1)

Pracuji na (svobodném) operačním systému (jako koníček, nebude to "velké a profesionální jako gnu) pro klony 386(486) AT.

- dostatečná infrastruktura pro spuštění unixového shellu
 - (10 239 řádek kódu)
- Linus Torvalds chtěl svůj systém pojmenovat Freax
 - Adminovi FTP serveru se to nelíbilo a přejmenoval na *Linux*

```
0.95 – březen 1992 – první verze schopná spuštění X Window System
1.0.0 – 14. března 1994 (176 250 řádek kódu)
2.0.0 – 9. června 1996 (777 956 řádek kódu)
2.2.0 – 25. ledna 1999 (1 800 847 řádek kódu)
2.4.0 – 4. ledna 2001 (3 377 902 řádek kódu)
2.6.0 – 17. prosince 2003 (5 929 913 řádek kódu)
2.6.32 – 3. prosince 2009 (12 606 910 řádek kódu)
3.10 – 30. června 2013 (17,000,000+ řádek kódu)
4.3 – 14. listopadu 2015 (20,600,000+ řádek kódu)
```

Hlavni kategorie verzí

- Prepatch
 - Prepatch nebo "RC" jádra jsou zaměřené na vývoj jádra. nové funkce, které musí být testovány před tím, než může být uveden na stabilní verzi.
- Mainline
 - Hlavní strom udržovaný Torvaldsem
- Stable
 - Když je mainline vydaný, je považován za stabilní
- Longterm
 - Dlouhodobá podpora

Distribuce

- Balík programů, které jsou svázány s jádrem a dalším vybavením systému.
 - jádro operačního systému, knihovny, pomocné nástroje a další aplikační software
- LSB (Linux Standard Base)
 - sada předpisů a standardů, jímž by měla odpovídat každá distribuce

- POSIX
 - Portable Operating System Interface
 - Původně: IEEE 1003 a ISO/IEC 9945
 - Nyní: IEEE Std 1003.1-2008

Dělení distribucí

- Binární
- Zdrojové
- Komerční
- Nekomerční
- Live distribuce
- Mini distribuce
- ...

Rozdíly mezi distribucemi

- skladba programů
- frekvence a způsob vydávání aktualizací
- instalační program a konfigurační nástroje
- řešení startovacích skriptů a jejich obsahu
- někdy se v detailech liší organizace adresářů na disku
- dodatečná úprava programů a zejména jádra
- cena a poskytované služby přidané hodnoty
 - dokumentace, technická podpora atd.

Distribuce

- Slackware GNU/Linux
 - Patrick Volkerding roku 1992
- Debian GNU/Linux
 - Vlastní balíčkovací systém (dpkg)
 - stable, testing a unstable
- Fedora Core
 - RedHat

- **s red**hat
- RPM pro instalaci a správu balíků

Distribuce

- Ubuntu
 - Canonical Ltd.
 - Zaměřuje se na praktické použití
 - Mnoho klonů

- Cinnamon, MATE, KDE, Xfce
- Vychází z Ubuntu (Debian)

- NOVELL
- konfigurační nástroje YaST2 a SaX2 pro správu systému

Zdrojové distribuce

Gentoo GNU/Linux

Linux From Scratch

Source Mage GNU/Linux

velmi snadno optimalizovat pro konkrétní hardware

LIVE distribuce

 můžeme spustit rovnou z CD nebo jiného média bez nutnosti jeho instalace

- Slax
- Knoppix
- Většina instalačních médií je nabízena jako Live CD (DVD)

Nejlepší Linuxová distribuce

Desktop Distribution of the Year (910 votes)

Linux a uživatelé

- běžný uživatel
 - Vlastní uživatelský účet.
 - domovský adresář a specifická nastavení
- administrátor systému
 - Uživatel s označením root.
 - Prakticky neomezená práva
- systémové služby
 - systémové služby vystupují jako uživatelé
 - je nezbytné, aby měly určitá oprávnění (omezení).

Zavedení systému

- Po zapnutí PC se jako první provede POST (BIOS)
- Spuštění kódu v MBR GRUB, LILO, SYSLINUX, Loadlin
- Zavedení jádra Linux (Linux kernel)
 - bzImage, initrd
 - Přepnutí procesoru do tzv. chráněného módu.
 - Identifikace technického vybavení počítače.
 - Zjišťuje se při každém startu znovu.
 - Vytvoření spontánních procesů
- Spuštění startup skriptů a daemonů
 - Tradiční init, Upstart nebo novější systemd
 - Provedení startovních skriptů
 - První spuštěný proces v user space
 - Proces init lze označit jako "rodič" všech procesů v systému Unix

BIOS

login

Uncompressing Linux... Ok, booting the kernel.


```
Classroom:/boot/grub# ls -l
celkem 220
                              1. zář 13.42 default
rw-r--r-- 1 root root
                             1. zář 13.42 device.map
 rw-r--r-- 1 root root
                              1. zář 13.42 e2fs_stage1_5
          1 root root
                              1. zář 13.42 fat_stage1_5
                        8544
 rw-r--r-- 1 root root
                              1. zář 13.42 jfs_stage1_5
                        9568
          1 root root
                        3925
                              1. zář 13.42 menu.lst
 rw-r--r-- 1 root root
                              1. zář 13.42 menu.lst~
                        3921
      -r-- 1 root root
                        7904
                              1. zář 13.42 minix_stage1_5
     --r-- 1 root root
 rw-r--r-- 1 root root 10720
                              1. zář 13.42 reiserfs_stage1_5
rw-r--r-- 1 root root
                         512
                              1. zář 13.42 stage1
rw-r--r-- 1 root root 128552
                              1. zář 13.42 stage2
rw-r--r-- 1 root root 10280 1. zář 13.42 xfs_stage1_5
Classroom:/boot/grub# _
```

GRUB GRand Unified Bootloader

- Podpora souborového systému při spuštění
 - Umožňuje načíst konfigurační soubor z FS
 - Změna konfigurace za běhu
- Obsahuje příkazový řádek
- Je schopen zřetězení s jiným zavaděčem (multiboot)
- Načítán ve 2 (volitelně 3) fázích
 - Stage 1 načten z MBR a spuštěn BIOSem
 - Může být i na jiném zaváděcím sektoru oddílu (VBR)
 - Stage 1.5 načítán kódem ze stage 1 pokud je nutný přístup na FS (v případě, že stage 2 spojitě nenavazuje)
 - Stage 2 zobrazí menu pro výběr OS, možnost upravy parametrů
 - Nahrává jádro OS do paměti

GNU GRUB MBR-partitioned hard disk drives

Each partition table entry comprises of 16 octets:

Flag	Start CHS	Туре	End CHS	Start LBA	Size
1	3	1	3	4	4 octets

GNU GRUB GPT-partitioned hard disk drives

72 octets

Fáze jádra

- Činnost zavaděče končí předáním řízení kernelu
 - tzv. "setup" rutina jádra.
 - připraví přechod na protected mód
 - dekomprimuje jádro a předá mu řízení.
- Po inicializaci registrů a kontrole typu procesoru následuje vysokoúrovňová inicializace
 - Datové struktury, systémová konzola, podpora pro dynamické zavádění modulů, VFS (Virtual File System), VM (Virtual Memory manager), vyrovnávací cache, IPC (InterProcess Communication), quota (Subsystém limit a využití disků uživateli), provádí se kontroly na chyby HW
 - Zavedení knihoven (glibc Gnu LIBrary C)
 - odstartuje vlákno (thread) pro start procesu init

Proces init

PID 1

- "Systém V" inicializace (zkráceně SysV init)
- Zařizuje spuštění skriptů
- *init* rozlišuje několik **úrovní běhu** (runlevel 0-6)
- Konfigurační soubor /etc/inittab
 - id:2:initdefault:
 - <id>:<runlevels>:<action>::
 - Runlevels
 - Action: wait, respawn
- /etc/init.d
 - /etc/rcN.d (/etc/init.d/rcN.d)
 - SnnJméno_Služby, KnnJméno_Služby
 - K stop, S start

N je číslo runlevelu

nn 00-99 číslo určující pořadí

• init, telinit

Default runlevel. The runlevels used by RHS are: # 0 - halt (Do NOT set initdefault to this) # 1 - Single user mode # 2 - Multiuser, without NFS (The same as 3, if you do not have networking) # 3 - Full multiuser mode # 4 - unused # 5 - X11 # 6 - reboot (Do NOT set initdefault to this) id:3:initdefault: # System initialization. si::sysinit:/etc/rc.d/rc.sysinit I0:0:wait:/etc/rc.d/rc 0 l1:1:wait:/etc/rc.d/rc 1 12:2:wait:/etc/rc.d/rc 2 13:3:wait:/etc/rc.d/rc3 14:4:wait:/etc/rc.d/rc 4 15:5:wait:/etc/rc.d/rc5 16:6:wait:/etc/rc.d/rc6 # Trap CTRL-ALT-DELETE ca::ctrlaltdel:/sbin/shutdown -t3 -h now # Run gettys in standard runlevels 1:2345:respawn:/sbin/mingetty --noclear tty1

2:2345:respawn:/sbin/mingetty --noclear tty2

x:5:respawn:/etc/X11/prefdm -nodaemon

Run xdm/gdm/kdn in runlevel 5 # xdm is now a separate service Init spouští skripty postupně, jeden za druhým, takže celý proces je pomalý, protože každý skript musí čekat až je dokončen ten předchozí.

Getty a Login

- Getty je program který umožňuje připojit se přes sériové zařízení jako je virtuální terminál, textový terminál, nebo modem.
- Zobrazí přihlašovací prompt a když zadáte vaše uživatelské jméno, getty jej předá programu login
- Login se zeptá na heslo, ověří ho a spustí shell.
 - Login kontroluje přihlášení uživatele v /etc/passwd
 - pokud systém podporuje stínování hesel též v /etc/shadow
 - Spouští program uvedený v /etc/passwd
 - U běžného uživatele shell, většinou bash (Bourne Again Shell)
- Getty je obyčejně startován v /etc/inittab procesem init.

Bash

- Bash je uživatelské rozhraní
 - čte příkazy uživatele a provádí je
 - Interní (cd, pwd, fg, bg, kill, ...)
 - Externí (cp, rm, shutdown, ...)
 - Historie, doplňování, klávesové zkratky, ...
- Bash je interpret programovacího jazyka
 - Skripty
- Nastavení
 - /etc/bashrc, /etc/profile,
 - ~/.bash_profile , ~/.bash_login, ~/.profile, ~/.bashrc
 - ~/.bash_logout

systemd

- Nahrazuje init, přechází na něj většina distribucí
- Klade si za cíl zajistit jednotný, centralizovaný způsob, jak projít celým init procesem od začátku do konce.
- Startuje a zastavuje procesy a služby, přičemž sleduje jejich závislosti.
 - Dokonce může spustit proces jako reakci požadavku závislosti na jiném procesu.
 - Nejen při bootování, ale i jako reakce na nějakou událost.
- Na rozdíl od SysV init, systemd zná a sleduje všechny procesy, včetně PID a získávání informací o procesech, čímž je mnohem jednodušší pro systémové administrátory.
- Podporuje "zásobníky", jsou to v podstatě izolovaná prostředí, kde služby nepožadují virtuálních stroje.
 - potenciál pro větší bezpečnost a jednodušší projektování systému.
- Většina init skriptů jde použít bez modifikace.

Přihlášení uživatele

- Identifikace uživatele login
 - jméno účtu (account name)
 - heslo (password)

Slackware login: root

Password:

Nápověda

- man
- man příkaz
- příkaz –-help
- help příkaz
- apropos

Manuálové stránky

Skupina	Popis
1	Popis uživatelských příkazů
2	Popis programových knihoven
3	Popis knihoven jazyka C
4	Popis konfiguračních souborů
5	Popis syntaxe konfiguračních souborů
6	Popis her
7	Popis práce s textem
8	Popis příkazů pro správu systému
9	Popis linuxového jádra
n	Novinky a ostatní manuálové stránky

Ukončení práce

 nutno provést řadu kroků, které zajistí bezpečné ukončení systému.

logout

exit

shutdown

halt

Poweroff

odhlášení ze systému

odhlášení ze systému

vypnutí systému

vypnutí systému

vypnutí systému

Základní odlišnosti

- Soubory a adresáře se oddělují "/"
- Disky jsou mapovány do adr. struktury
- Parametry se zapisují s "-"
- Tečka je součástí názvu
- Tečka na začátku značí skrytý soubor
- Psaní je **case-sensitive**
- Grafické rozhraní X-window