Aalto Yliopisto

SCI-C0200 - Fysiikan ja matematiikan menetelmien studio

Fysiikan harjoitus 2: Vaihtovirtapiiri

Elli Kiiski

Sisällys

virta vaihtovirtapiirissä	1	Esitehtävät				
virta vaihtovirtapiirissä		1.1	Resonanssitaajuus			
poteesi taustulokset			Oskilloskooppi			
poteesi taustulokset	2	Mittauksia				
poteesi taustulokset		2.1	Jännite ja virta vaihtovirtapiirissä			
taustulokset			2.1.1 Hypoteesi			
<u>-</u>			2.1.2 Mittaustulokset			
taustulokset		2.2	Teho vaihtovirtapiirissä			
			2.2.1 Mittaustulokset			
ökondensaattorista	3		•			
		4.1	MATLAB-koodi			

Kuva 1: Mittauksissa käytettävän laitteiston piirikaavio. Jännitemittarina toimii oskilloskooppi.

1 Esitehtävät

1.1 Resonanssitaajuus

 $Mit\ddot{a}~tarkoitetaan~vaihtovirtapiirin~resonanssitaajuudella?$

Resonanssitaajuus on se vaihtovirtapiirin taajuus, jolla virta ja jännite ovat samassa vaiheessa keskenään. Tällöin myös virran amplitudi on maksimissaan.

1.2 Oskilloskooppi

Miten oskilloskoopilla voidaan tutkia RLC-piirin yli olevaa jännitettä ja siinä kulkevaa virtaa?

Oskilloskooppi voidaan kytkeä mittaamaan jännitettä suoraan jännityslähteestä tai vastuksen yli. Virta puolestaa saadaan mitatauksi välillisesti jännitehäviöstä vastuksen yli laskemalla Ohmin lain avulla.

2 Mittauksia

2.1 Jännite ja virta vaihtovirtapiirissä

Suoritetaan mittauksia oskilloskoopilla kuvan 1 mukaisessa vaihtovirtapiirissä, jossa $R=1\,k\Omega,\,L=68\,mH$ ja $C=0,1\,\mu F$. Tutkitaan vaihtovirtapiirin käyttäytymistä sen resonanssitaajuuden ympäristössä. Erityisesti mitataan virran amplitudia sekä vaihe-eroa taajuuden funktiona.

2.1.1 Hypoteesi

Arvelen mittausten tuottavan jotakuinkin seuraavanlaisten kuvaajien mukaisia tuloksia.

Kuvaajien täsmällistä muotoa tärkeämpiä seikkoja ovat ne, että virran amplitudi saavuttaa huippunsa resonanssitaajuudella ja vaihe-ero puolestaan on tällöin nolla.

2.1.2 Mittaustulokset

Mittauksisa havaittiin virran amplitudin kasvavan taajuuden kasvaessa, kunnes se noin $1,9\,kHz$ taajuudella käänytyi laskuun. Vaihe-ero on nollassa juurikin samalla tajuudella. Näiltä osin hypoteesi piti hyvin paikkansa.

Kuitenkaan vaihe-eron kuvaajaa hypoteesiin laatiessa en tullut huomioineeksi, että resonanssitaajuutta alhaalta päin lähestyttäessä vaihe-ero on tietenkin negatiivinen, ja mittausten mukaan se onkin pienillä taajuuksilla lähellä -90° ja lähenee nollaa resonanssitaajuutta lähestyttäessä. Vastaavasti taajuuden kasvaessa vaihe-ero lähenee $+90^{\circ}$.

Mitataan vaihe-ero ja jännite vastuksen yli 34 eri tajuudella, ja muodostetaan Ohmin lain avulla laskemalla taulukon 1 data, josta voidaan piirtää kuvan 2 kuvaajat. (Tässä käytetty MATLAB-koodi löytyy tarvittaessa liitteestä 4.1.)

Kun verrataan hypoteesin kuvaajia näihin mittaustuloksista piirrettyihin kuvaajiin, arvelut tosiaankin osuivat jotakuinkin oikeaan, jos huomioidaan, että vaihe-eron kuvaaja hypoteesissa onkin ikäänkuin itseisarvo vaihe-erosta. Tietenkin myös virran amplitudin kuvaaja on siitä vinksallaan, että sen pitäisi pienemmillä taajuuksilla olla matalampi kuin suurilla.

Teoreettinen resonanssitaajuus olisi kaavan mukaan

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0,068\,H\cdot 0,0000001\,F}} \approx 1930\,Hz\,,$$
 (1)

mikä heittää jonkin verran mitatusta resonanssitaajuuden arvosta 1847. Ero on itse asiassa suurempi kuin oletettu mittausvirhe $\pm 5 Hz$, joten jossain kohtaa mittauksia tai laskelmia on täytynyt sattua jokin yllättävämpi virhe.

f(Hz)	I(mA)	Φ (°)
50	0,7	87
100	1,4	-85
200	2,7	-80
300	4,0	-75
400	5,3	-72
500	6,6	-67
700	9,0	-57
800	10,3	-51,5
900	11,3	-47,8
1000	12,4	-42
1100	13,3	-37
1200	14,2	-31
1300	14,8	-27,3
1400	15,4	-21,5
1500	15,9	-16,5
1600	16,1	-12,5
1700	16,6	-7
1847	16,5	0
1900	16,5	2
2000	16,5	6
2200	16,3	12
2300	15,9	16
2400	15,7	18
2600	15,1	24
2800	14,5	29,5
3000	14,0	34
3500	12,6	42
4500	10,3	55
6000	8,0	63
8000	6,0	70
10000	5,0	74
13000	3,9	78
15000	$_{3,4}$	80
20000	2,4	83

Taulukko 1: Oskilloskoopilla mitattu vaihe-ero Φ sekä jännitehäviöstä laskettu sähkövirran amplitudin peak-to-peak arvo I taajuuden f mukaan. Resonanassitajuus on mittausten mukaan 1847 Hz ja virran amplitudin maksimi 16,5 mA. Arvioidut virheet ovat jännittellee $\pm 0,1\,V$, vaihe-erolle $\pm 1^\circ$ ja resonanssitaajuudelle $\pm 5\,Hz$.

Kuva 2: Mittausten tuloksena saadut kuvaajat.

2.2 Teho vaihtovirtapiirissä

Tarkastellaan edelleen kuvan 1 vaihtovirtapiiriä. Mitataan oskilloskoopilla sekä koko virtapiirin jännitteen että vastuksen yli olevan jännitteen tehollisarvot ja vaihe-ero sekä lasketaan niiden avulla näennäis- ja pätöteho. Mitataan myös jännitteiden aikakeskiarvo ja lasketaan sen avulla keskimääräinen teho. Vertaillaan saatuja tehoja.

2.2.1 Mittaustulokset

Saadaan seuraavat mittaustulokset:

- Lähdejännitteen tehollisarvo: $U_0 = 7,28 V$
- Jännitteen tehollisarvo vastuksen yli: $U_R = 1.89 \, V$
- Vaihe-ero: $\Phi = 61^{\circ}$
- Jännitteiden aikakeskiarvo: $U_0 \cdot U_R = 10,0 V^2$.

Näiden avulla saadaan laskettua

- Näennäisteho: $P_S = U_0 \cdot \frac{U_R}{R} = 7,28\,V\,\frac{1.89\,V}{1000\,\Omega} \approx 0,014\,W$
- Pätöteho: $P_P = P_S \cos \Phi \approx 0,014\,W\cdot 0,48 \approx 0,0067\,W$
- Keskiteho: $P_K = \frac{U_0 \cdot U_R}{R} \approx \frac{10,0 \, V^2}{1000 \, \Omega} \approx 0,01 \, W.$

Saadut arvot eri tehoille vaikuttavat järkeviltä. Näennäisteho on suurin niin kuin pitääkin ja pätöteho huomattavasti pienempi, kuten voi niinkin suurella vaihe-erolla kuin 61° odottaa. Kuulostaa myös uskottavalta, että keskimääräinen teho, joka ei ota huomioon vaihe-eroa, on suurempi kuin saatu pätöteho, jossa vaihe-ero on lähempänä 90 astetta kuin nollaa.

3 Kysymys sähkökondensaattorista

Monissa elektroniikan sovellutuksissa käytetään RLC-piirejä, joissa on mukana säätökondensaattori. Mitä säätökondensaattorin käytöllä voidaan saavuttaa?

Säätökondensaattorilla voidaan säätää vaihtovirtapiirin kapasitanssia. Näin ollen valitsemalla sen avulla sopiva kapasitanssi, voidaan piirin resonanssitaajuus asettaa halutuksi yhtälön (1) avulla.

4 Liitteet

4.1 MATLAB-koodi

Osion 2.1.2 laskelmissa käytetty MATLAB-koodi:

```
% Alustetaan alkuarvot
R = 1000;
L = 0.068;
C = 0.0000001;
% Alustetaan mittaustulokset
F = xlsread('vaihtovirtapiiri.xlsx', 'A2:A35');
U = xlsread('vaihtovirtapiiri.xlsx', 'B2:B35');
Fii = xlsread('vaihtovirtapiiri.xlsx', 'C2:C35');
% Lasketaan virran amplitudi Ohmin lailla
I = U/R;
% Virta milliampeereina
I*1000
% RESONASSITAAJUUS
% mitattu
zeroFii = F(find(Fii(:)==0))
% laskennallinen
F0 = 1/(2*pi*sqrt(L*C))
% Plotataan virran amplitudi ja vaihe-ero taajuuden funktiona
% omiin kuvaajiinsa allekkain ja merkitaan mitattu resonanssitaajuus
figure
subplot(2,1,1)
plot(F,I);
xline(zeroFii);
title('Sahkovirran amplitudi taajuuden funktiona')
xlabel('f (Hz)')
ylabel('I (A)')
subplot(2,1,2)
plot(F,Fii);
xline(zeroFii);
title('Vaihe-ero taajuuden funktiona')
xlabel('f (Hz)')
ylabel('\Phi (aste)')
```