CS & IT

ENGINEERING

Sequential Circuit

Lecture No. 2

By- CHANDAN SIR

TOPICS TO BE COVERED 01 SR, JK, D, T Flip Flop

02 PRACTICE

03 DISCUSSION

5-R Latch

5	R	Ø	BI
0	0	B	100
0	1	0	1
-1	0	7	0
+	Ĵ	X	×

X	y	Q	Ō
0	0	1	0
0	1	1	0
1	0	C)	9
J	1	1	0

 $\bar{g}_0 t = \bar{g}$

 $\overline{g} \oplus 1 = q$

Latches with control phenomena are called Flip-Flop.

CLOCK

- 1 Circuit Diagram
- 2) Truth table
- 3 Characteristic Table
- 4) Characteristic Equation
- (5) Excitation table
- 6) State Riagram

Circuit Diagram

Truth Table

S	R	Q _{N+1}	<u>Qu+1</u>	
0	0	an	an	- HOLD Previous state/ Memory
0	1	0	1	→ RESET
1	0	1	0	-> SET
1	1	X	× -	InValid

3. Characteristics Table

	S	R	Qn	Q _{n+1}
0	0	0	Q _n	0
	0	0	1	1.
2	0	1	0	0
) 2	0	1	1	0
4	1	0	0	1
(5)	1	0	1	1
6	1	1	0	×
(7)	1	1	1	×

4. Characteristics Equation

Excitation Table

Qn	Q_{n+1}	S	R
0	0	0	×↑
0	1	* 1	0
1	0	0	1
1	1	XV	0 -

S	R	Qn	Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

State Diagram

Qn	Q _{n+1}	S	R
0	0		×
0	1	1	0
1	0	0	1
1	1	X	O

Which of the following will be correct for the given sequential circuit?

- The circuit would hold the previous state for S=0, R=0
- The circuit would hold the previous state for S=0, R=1
- The circuit would hold the previous state for S=1, R=1
- The circuit would never be able to hold the previous state under any condition

Q Truth	CI	7	Qn+1
, , , , , , , , , , , , , , , , , , ,	0	0	ant 1
	0	1.	Q _n
	1	0	1
	1	4	0

Characteristic Table
Characteristic Equation
Excitation Table
State Diagram

Q.

Which of the following will be correct for the given sequential circuit?

A
$$X Q(t)' + Y' Q(t)$$

$$\mathbf{B} \quad \mathbf{X} + \mathbf{Y}' \, \mathbf{Q}(\mathbf{t})$$

(-)	C	X Q(t)+Y'	Q(t)'
-----	---	-----------	-------

X	Y	Q(t)	Q(t + 1)
0	×	0	0
0	1	0	1
1	0	1	0
×	1	1	1

X	Y	Qn	Q _{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

¥	R	Qn	Q _{n+1}
0	0	Q _n	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	X

1. Symbol

J	K	Q_{n+1}
0	0	Qn
0	1	0
1	0	1
1	3	an

3. Characteristics Table

I	K	Qn	Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

4. Characteristics Equation

5. Characteristics Equation

Q _n	Q _{n+1}	J	K
0	0	0	× ^
0	1	L	X
1	0	×	1
1.	1	×	0

J	K	Bn.	Qn+1
0	0		0
O	0	1	l
0	1	-	0
O	T	1	0
1	0	٥	L
1	0	1	١
l	1	0	l
1	1	1	0

State Diagram

Q _n	Q _{n+1}	J	K
0	0	0	X
0	1	1	×
1	0	×	1
1	1	×	0

J	K	9nt1
0	Q	90
0	·J	0
Ŀ	O	1
1	1	9n

J	K	Qn	Qnt
50	0)		6
10	0)	1.	1
50	1)	0	0
0	1)	1	0
51	0)	0	1
l	0)	1	Ĵ
11	1	0	1
	1)	1.	0

Qn	anti	フ	K
0	0	0	X
0	1	1	X
1	0	X	1
1	t	X	0

D FLIP-FLOP

3. Characteristics Table

D	Q _n	Q _{n+1}
0	0	
0	1	
1	0	
1	1	

4. Characteristics Equation

Table 2: Characteristic Table of D Flip Flop

Thank you

Soldiers!

