Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.11.26

Key words: Difference Set, Finite Linear Space

Recall:

A (v, k, λ) design (X, D), |X| = v, |D| = b, r replication number satisfies each pair $\{x, y\} \subset X$ appears in exactly λ blocks.

- $b \ge v$, if b = v, called symmetric design
- $r(k-1) = \lambda(v-1) \& bk = rv$

G is an Abelian group of size v

Def: $2 \le k < v, \ \lambda \ge 1$, A (v, k, λ) **difference set** (D, S) is a k-subset $D = \{d_1, d_2, \cdots, d_k\} \subseteq G$, s.t. the collection of differences $d_i - d_j \ (i \ne j)$ contains every element in $G \setminus \{0\}$ exactly λ times.

Note: If $G = \mathbb{Z}_v$, call D is cyclic DS E.g. $G = \mathbb{Z}_7$, (7,3,1)-DS, $D = \{0,1,3\}$

比別 r=k. b=

Fact:

- ① $\lambda(v-1) = k(k-1) \implies \lambda < k$.
- ② A translate of D is $a + D = \{a + d_1, a + d_2, \dots, a + d_k\}$ for some $a \in G$. Then $a + D \neq D$ if $a \neq 0$.

proof:

- K-17 translactions
- ① Count # of differences in D.
- ② If a + D = D for some $a \neq 0$, then \exists a permutation π of [k] satisfies that $\pi(i) \neq i$ and $d_i + a = d_{\pi(i)}$ for all $i \in [k]$. Then a is expressed as a difference $d_{\pi(i)} d_i$ in k ways. But $k > \lambda$, contradiction.

Theorem 1. If D is a (v, k, λ) difference set, then $\{a + D : a \in G\}$ are blocks of a symmetric (v, k, λ) design.

proof:

- ① $b = v = |G| \Longrightarrow \text{symmetric.}$
- $(2) |i+D| = k, \forall i.$
- ③ Show any pair of points is contained in exactly λ blocks. $\forall x \neq y \in G$, assume $x-y=d\neq 0$, then $\{x,y\}\subset a+D \Longleftrightarrow x=a+d_i, y=a+d_j \text{ for some } i\neq j \Longleftrightarrow x-y=d_i-d_j=d\neq 0$. Since there are exactly λ pairs d_i,d_j s.t. $d_i-d_j=d$, and for each such pair, there are exactly one $a=x-d_i=y-d_j$ s.t. $\{x,y\}\subset a+D$.

<u>Theorem</u> 2. If q is a prime power, $q \equiv 3$ (4), then nonzero squares in F_q form a $(q, \frac{q-1}{2}, \frac{q-3}{4})$ DS.

proof:

$$G = F_q = \{0, \alpha^0, \alpha^1, \dots, \alpha^{q-2}\}, D = \{\alpha^0, \alpha^2, \dots, \alpha^{q-3}\}, \text{then } k = \frac{q-1}{2}$$

 $\therefore q \equiv 3$ (4), $\therefore -1 = \alpha^{\frac{q-1}{2}} \notin D \Longrightarrow \text{if } s \in D$, then $-s \notin D$ $\forall s \in D, \exists x, y \in D \text{ and } x - y = 1 \Longleftrightarrow \exists sx, sy \in D \text{ and } sx - sy = s \Longleftrightarrow \exists sx, sy \in D \text{ and } sy - sx = -s$. This means all nonzero space and nonsquares have the same # of representatives as a difference of two elements in D.

of two elements in D. $\Rightarrow \lambda = \frac{k(k-1)}{q-1} = \frac{\frac{q-1}{2}\frac{q-3}{2}}{q-1} = \frac{q-3}{4}$

Def: Finite linear space over a finite set X is a family α of subsets of X called lines such that:

- every line contains at least 2 points
- any 2 points are on exactly one line

Theorem 3. If α is a finite linear space over X with $|\alpha| \geq 2$, then $|\alpha| \geq |X|$ with equality holds iff any two lines share exactly one point.

proof:(Conway).

Let $b = |\alpha| \ge 2$, v = |X|. $\forall x \in X$, let r_x be the replication number, i.e. # lines through x

Choose a line $L \in \alpha$ and a point $x \notin L$. $\forall a \neq b \in L, \{x, a\} and \{x, b\}$ are on different lines, $\therefore r_x \geq |L|$

Assume $b \le v$, then $b(v - |L|) = bv - b|L| \ge bv - vr_x = v(b - r_x)$

 \Longrightarrow

$$\frac{1}{v - |L|} \le \frac{b}{v(b - r_x)}$$

$$b = \sum_{L \in \alpha} 1 = \sum_{L \in \alpha} \sum_{x \in X : x \notin L} \frac{1}{v - |L|} \le \frac{b}{v} \sum_{L \in \alpha} \sum_{x \in X : x \notin L} \frac{1}{b - r_x}$$
$$= \frac{b}{v} \sum_{x \in X} \sum_{L \in \alpha : x \notin L} \frac{1}{b - r_x} = \frac{b}{v} \sum_{x \in X} 1 = b$$

This implies all inequalities are equalities so that b = v and $r_x = |L|$ whenever $x \notin L$, i.e. any line containing x share one point with L. $\therefore b \geq v$ with equality holds iff any two lines share exactly one point.

