Esercitazione di Fisica - 2

Riccardo Nicolaidis

27/03/2025

1 Problema 1

Figure 1: Problema 1

Si consideri il sistema rappresentato in Figura 1. Due corpi puntiformi, A e B, entrambi di massa $m_A = m_B = m$, giacciono su due piani orizzontali aventi coefficiente di attrito statico $\mu_{S,A} = \mu_{S,B} = \mu$. I corpi A e B sono collegati, tramite due funi inestensibili, a un terzo corpo C di massa $m_C = M$. Il sistema si trova in condizioni di **equilibrio statico**.

La distanza tra i corpi A e B è pari a $\overline{AB}=d$, mentre le due funi che collegano il corpo C ai corpi A e B formano un angolo θ con l'orizzontale.

Determinare il valore massimo ammissibile della massa M affinché il sistema rimanga in equilibrio statico.

(Si indichino con T_1 e T_2 i moduli delle tensioni nelle funi rispettivamente lungo i segmenti AC e BC).

1.1 Hint

- 1. Disegnare i diagrammi di forza
- 2. Scrivere le equazioni del moto per i tre corpi
- 3. Trovare le tensioni T_1 T_2 e le reazioni vincolari
- 4. Trovare le forze d'attrito che il piano deve esercitare per mantenere la situazione all'equilibrio
- 5. Determinare la forza di attrito massima esercitabile dai due piani

2 Problema 2

Su un piano inclinato di un angolo θ rispetto all'orizzontale giacciono due masse, $m_1 = M$ e $m_2 = m$. Il corpo 1 si trova in una posizione più elevata rispetto al corpo 2 (vedi Figura 2). I due corpi sono vincolati a muoversi lungo il piano inclinato e sono collegati da un'asta rigida, inestensibile e di massa trascurabile.

Tra il corpo 1 e il piano non vi è attrito, mentre tra il corpo 2 e il piano è presente attrito, descritto da un coefficiente di attrito dinamico $\mu_D = \mu$.

I due corpi stanno scivolando lungo il piano verso il basso.

Determinare il valore del coefficiente μ affinché il moto avvenga con **velocità costante** (moto rettilineo uniforme).

Figure 2: Problema 2

2.1 Hint

- Ricordare la cinematica del moto rettilineo uniforme e le sue implicazioni sulle accelerazioni dei corpi
- Sfruttare la condizione di asta inestensibile per capire la relazione tra le accelerazioni dei corpi

3 Problema 3

Un satellite di massa m si trova in orbita attorno alla Terra ad un'altitudine h. Sapendo che, dati due corpi di massa m_1 e m_2 , posizionati rispetto a un sistema di assi cartesiani nei punti \vec{r}_1 e \vec{r}_2 , la forza di gravità esercitata dal corpo 2 sul corpo 1 è data da:

$$\vec{F}_{21} = -\vec{F}_{12} = G \frac{m_2 m_1}{\|\vec{r}_2 - \vec{r}_1\|^3} (\vec{r}_2 - \vec{r}_1)$$
(1)

il cui modulo è descritto da:

$$\|\vec{F}_{21}\| = \|\vec{F}_{12}\| = G \frac{m_2 m_1}{\|\vec{r}_2 - \vec{r}_1\|^2}$$
 (2)

calcolare:

Caso 1: Il periodo dell'orbita sapendo che l'altitudine è $h=550~\mathrm{km}$

Caso 2: L'altitudine h nel caso in cui l'orbita sia geostazionaria (cioè con periodo orbitale uguale a quello di rotazione terrestre)

Valori numerici

• Costante di gravitazione universale: $G = 6.67430 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$

 \bullet Massa della Terra: $M_0 = 5.98 \times 10^{24} \ \mathrm{kg}$

• Raggio della Terra: $R_0 = 6.378 \times 10^6 \text{ m}$

Nota sui versori

Ricordare che, dato un qualsiasi vettore \vec{v} , esso può essere scritto come:

$$\vec{v} = \frac{\vec{v}}{\|\vec{v}\|} \|\vec{v}\| = \|\vec{v}\| \,\hat{v} \tag{3}$$

dove \hat{v} è un versore con la stessa direzione di \vec{v} ma con modulo unitario.