CLASIFICACIÓN AFIN DE LAS CÓNICAS

		C L /	1 21.1	01101011			
TIPO	I	RI	151	151	(0)		
15/=15/	2	2	2	2		$\chi^2 + \chi^2 = 0$	PUNTO
\$08		1	1	1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$x^2 = 0$	RECTA DOBLE
3(A	2	2	0	0	$\begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$	x2- y2=0	PAR RECTAS SECANTES
	Contract of the Contract of th		anna ganana ana ana ana ana ana ana ana		,		

			-		\ \ - /		
TIPO II R=r+1 8 =15 ±1		R 3	151	3	$\left(\begin{array}{c}1\\1\\1\end{array}\right)$	$x^2 + y^2 + 1 = 0$	Ø
	1	2	1	2	$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	$x^2 + 1 = 0$	\not
A 80	2	3	2	1	$\left(\begin{array}{c} -1 \\ 1 \end{array}\right)$	$x^2 + y^2 - 1 =$	O ELIPSE
2	1	2	1	0	$\left(\begin{array}{c c} -1 & 1 \\ \hline \end{array}\right)$	$x^2 - 1 = 0$	PAR RECTAS PARALELAS
	3	3	0	1	$\frac{\pm 1}{1-1}$	$\chi^2 - \gamma^2 \pm 1 = 0$	HIPÉRBOLA
			**************************************		,		

		The second secon			1		
TIF R=r+2) S =15 Y	R	131 131	0	10-1	$\chi^2 - 2\gamma = 0$	PARÁBOLA
accessions sampens	O A	5		andrew .	· ·		
- 1 -							

|S| = valor absoluto de la diferencia entre el mimero de +1 y el mimero de -1 de la matriz de Sylvester asociada a A

CLASIFICACION AFÍN DE LAS CUADRICAS

T	1	PC) [1

K=	1		
15	:=	13	į

CASOS

~	R	5	151
3	3	3	3
2	2	2	2
1	1	1	1
3	3	1	1
2	2	0	0

$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \times^{2} + y^{2} + 2^{2} = 0$ PUNTO
$\begin{pmatrix} 0 \\ 11 \\ 0 \end{pmatrix}$ $\chi^2 + \chi^2 = 0$ RECTA
(100) X=0 PLANO DOBLE
$\left(\frac{0}{1_{1-1}}\right) x^2 + y^2 - z^2 = 0$ CONO
PAR DE PLANOS SECANTES

R=++1 |S|=151±1

TIPOIL	~	R	151	151
<=r+1	3	4	3	4
5 = s ±1	2	3	2	3
	1	2	1	2
-	3	4	1	2
SO	3	4	3	2
9 CA SOS	2	3	2	1
G	1	2	1	0
	3	4	1	O
	2	3	0	1
			1	

(1-10) X2-Y2=0 PAR DE PLANOS SECANTES
$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right) \times^{2} + y^{2} + 2^{2} + 1 = 0 \phi$
$\left(\frac{1}{1}\right) \times 2 + y^2 + 1 = 0 \emptyset$
(-1) x2+y2+22-1=0 ELIPSOIDE
(-4) 110) X2+Y2-1=0 CILINDRO ELÍPTICO
PAR DE PLANOS PARALELOS
(-1) X2+y2-Z-1=0 HIPERBOLOIDE DE UNA

TIPO III

$$R = r + 2$$

$$|S| = |S|$$

	~	R	151	18	
	2	4	2	2	
į	1	3	1	1	
	2	+	0	0	

$$\begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & +y^2 - 2z & = 0 \\ PARABOLOIDE \\ ELIPTICO \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & -1 \\
0 & 1 \\
0 & -1 \\
-1 & 0
\end{pmatrix}$$

$$\begin{array}{c}
\chi^2 - \chi^2 - 2z = 0 \\
PARABOLOIDE \\
HIPERBOLICO$$

$$\gamma = \text{rango}(A)$$

$$R = rango \left(\frac{c \mid B^{\pm}}{B \mid A} \right)$$