EE101

Tutorial 4 (30-AUG-2013)

1. (a) In the two circuits shown in Figure for Problem 1(a), the transistors have $\beta=100$. Assume $V_{BE}=0.7$ V when the B-E junction is forward biased and V_{CE}=0.6 V if the C-E junction is forward biased.

Find the Q-point for the transistors in (a) and (b), i.e. V_{CE}, I_C and I_B

Figure for Problem 1(a) Figure for Problem 1(b) (b) In the circuit of Figure for Problem 1(b), R_1 is changed to be $20K\Omega$ while everything else remains the same. What will be the state of the transistor in this case?

- 2. For the network given in the Figure for Problem 2
- (a) Calculate the time-constant τ
- (b) Compare the half period of the applied signal to 5τ
- (c) Sketch v_o

Figure for Problem 2

Figure for Problem 3

- 3. Given the transistor circuit in Figure for Problem 3 and the information provided in that, determine $(a)\beta$
- (b) V_{CC}
- (c) $R_{\rm R}$
- **4.** A voltage source of $e(t) = 141\sin(\omega t)$ is applied a circuit with two parallel branches. The currents in the two brances are:

$$i_1(t) = 7.07 \sin(\omega t - \pi / 3)$$
, and $i_2(t) = 10 \sin(\omega t + \pi / 6)$

- (a) Calculate the total power supplied by the source.
- (b) Express the voltage and currents in phasor forms and calculate,
 - the total current supplied by the source
 - the apparent power of the whole circuit, and
 - the power factor of the whole circuit
- (c) Write the expression for the total current $i_T(t)$
- (d) Draw the phasor diagram showing the voltage and all the currents.
- 5. A voltage source $v(t) = V_m \sin(\omega t)$ is connected to a series RLC circuit. Given that L=4 H and C=1 F. For this circuit it is found that the power factor

is
$$\frac{1}{\sqrt{2}}$$
 at a frequency which is two

times the frequency at which current in the circuit becomes maximum. Determine R.