MATH 321 WEEK 13 UNCLAIMED PROBLEM SOLUTIONS

KENAN INCE

(1) 3.2.3

Exercise 3.2.3. (a) Neither. Given any point in \mathbf{Q} , there is no ϵ -neighborhood contained in \mathbf{Q} because the irrational numbers are dense. The set of limit points not contained in \mathbf{Q} is \mathbf{I} .

- (b) Closed. Given any point in N, there is no ε-neighborhood of that point contained in the set.
 - (c) Open. The limit point 0 is not contained in the set $\{x \in \mathbf{R} : x \neq 0\}$.
- (d) Neither. None of the points in this set have ε-neighborhoods contained in the set. The set is not closed because this particular sequence converges to some finite limit (i.e., ∑1/n² converges) and this limit, whatever it might be, is not an element of the set.
- (e) Closed. There is no ϵ -neighborhood of any point in the set contained in $\{1+1/2+1/3+\cdots+1/n:n\in \mathbb{N}\}$. Because the series $\sum 1/n$ diverges, this particular sequence of points does not have a limit point in \mathbb{R} , and is thus a closed set.

(2) 3.2.8

- (a) It's a closure, so the set is definitely closed. It's not definitely open; for example, take A=(0,1), B=[0,1]. Then $\overline{A\cup B}=[0,1]$.
- (b) Definitely open. Since B is closed, its complement is open, and $A \setminus B = A \cap B^c$ is the intersection of two open sets, so must be open.
- (c) Definitely open. $A^c \cup B$ is the union of two closed sets, so is closed, hence its complement is open.
- (d) Definitely closed, since

$$(A \cap B) \cup (A^c \cap B) = (A \cup A^c) \cap B = \mathbb{R} \cap B = B.$$

- (e) Definitely open. If $x \in \bar{A}^c$, then $x \notin \bar{A}$ and definitely $x \notin A$, thus $x \in A^c \subseteq \bar{A}^c$. Therefore, $\bar{A}^c \subseteq \bar{A}^c$, and the intersection is just \bar{A}^c . Since this is the complement of a closed set, it must be open.
- (3) 3.2.10
 - (a) Can't exist; let A be a countable set contained in [0,1] and consider any sequence of points $(a_n) \subseteq A$. Then, by Bolzano-Weierstrass, (a_n) has a convergent subsequence $(a_{n_k}) \to a \in \mathbb{R}$. But certainly $(a_{n_k}) \subseteq A$, and hence a is a limit point of A.
 - (b) This can exist; one example is $R = C \cap \mathbb{Q}$, where C is the Cantor set. If $x \in R$, we can define a sequence (a_n) converging to x as follows. Choose $a_n \in R \cap C_n$ to be an endpoint of the interval of C_n containing x that is not equal to x. Then $|x a_n| \leq \frac{1}{3^n}$ for all $n \in \mathbb{N}$. Let $\epsilon > 0$ be arbitrary. Since $(\frac{1}{3^n}) \to 0$, we can choose N so that whenever $n \geq N$, $\frac{1}{3^n} < \epsilon$. Now, if $n \geq N$,

$$|x - a_n| \le \frac{1}{3^n} < \epsilon$$

and hence x is a limit point of R.

(c) Can't exist. Let X be a set that contains only isolated points. This means that, for every $x \in X$, there exists $\epsilon(x) > 0$ so that $V_{\epsilon(x)}(x)$ contains no point of X. Since $\mathbb Q$ is dense in $\mathbb R$, we can choose a rational number $r(x) \in V_{\epsilon(x)}(x)$ for every $x \in X$. Thus, X is in 1-1 correspondence with some (not necessarily proper) subset of $\mathbb Q$, and hence X can't be uncountable.