Computer Animation and Games I CM50244

Basic Info

- Lecturer: Yongliang (Mac) Yang
- Lectures
 - Monday (13:15-16:05, Week 1-3, 8W 2.12)
 - Friday (10:15-12:05, Week 1-3, CB 4.5)
- Lab times
 - Friday (10:15-12:05, 1W 2.53, Week 4-11, and 15)

Other Resources

- Moodle page
 - o collections of materials from Prof. Phil Willis
- Reference text book

Today's Lectures

- Introduction to Computer Animation
- Introduction to Computer Games
- 2D/3D Shape Representations

What an Animation Is?

Overview

- Animation & Production
- Rigging
 - Procedural
 - Skeleton-based
- Animation
 - Keyframe Animation
 - Motion Capture
 - Physics-based Animation

Computer Graphics Sub-areas

- Imaging
 - how to manipulate images
- Modeling
 - how to manipulate shapes
- Rendering
 - how to create synthesized images from shapes
- Animation
 - o how to generate movement over time

•

Animation

 Sequence of images that give perception of movement when played in rapid succession

o Film: 24 fps

o Video: 30 fps

~130k images to make a 90 minute movie

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

1. Story Board

- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

- 1. Story Board
- 2. Conceptual Art
- 3. Recording
- 4. Modeling
- 5. Rigging
- 6. Layout
- 7. Animation
- 8. Special Effects
- 9.Shading
- 10.Lighting
- 11.Rendering

Octapodi (Oscar Nominated Short Animated Film 2007)

Overview

- Animation & Production
- Rigging
 - Procedural
 - Skeleton-based
- Animation
 - Keyframe Animation
 - Motion Capture
 - Physics-based Animation

Rigging

- Deform character with controls to easily change its pose, create facial expressions, etc.
- Rigging is like the strings on a marionette.

Rigging

- Extremely important:
 - Determines final shape of the character
 - Quality of rigging deformations has large influence on quality of animation itself
- Expensive:
 - Manual effort
 - Both artistic and technical training

Types of rigging

- Procedural Rigging
- Skeleton-based Rigging

Procedural Rigging

Apply function to points specifying the shape

$$\mathbf{p}' = f(\mathbf{p})$$

Linear Deformation

Non-linear Deformation

 Non-linear deformations for bends, twists, tapering, bulges, etc.

Al Barr. Global and Local Deformations of Solid Primitives. SIGGRAPH 1984.

Types of rigging

- Procedural Rigging
- Skeleton-based Rigging

Skeleton-based Rigging

- Parameterize character deformation with a skeleton.
- Approximate actual skeleton of the character.

Skeleton-based Rigging

Skin on top of the skeleton

Overview

- Animation & Production
- Rigging
 - Procedural
 - Skeleton-based
- Animation
 - Keyframe Animation
 - Motion Capture
 - Physics-based Animation

Keyframe animation

- Animator draws character at "extreme" poses
- Fill in in-betweens

Keyframes

Animation

Keyframe animation

- Expressive! Gives artist total control
- But labor intensive even for talented artist

Motion Capture

- Record live action
- Transform to virtual character

Optical

Motion Capture

Avatar (20th Century Fox)

We can capture these...

Motion Capture??

Physics-based Animation

 Use computational model (usually physics-based) to control the animation

Fluid Simulation (SIGGRAPH 2010)