A. Detailed Mass Balances

General Reaction

Glycerol (FC) + Ammonia (FN) +
$$O_2 \rightarrow X + P + CO_2 + H_2O + \Delta H_R$$

General Mass Balance Formulation

Accumulation = In - Out + Generation - Consumption

Batch Process: $F_{in} = F_{out} = 0$ and V = constant, thus:

Accumulation = Generation - Consumption

Biomass Balance

$$\frac{d}{dt}(X \cdot V) = \mu \cdot X \cdot V$$
$$\frac{dX}{dt} \cdot V = \mu \cdot X \cdot V$$
$$\frac{dX}{dt} = \mu \cdot X$$

Including the death rate constant k_d , the specific net growth rate becomes:

$$\frac{dX}{dt} = (\mu - k_d) \cdot X$$

Substrate and Product Balances

For any substrate or product S, assuming only microbial consumption or generation and constant volume V:

$$\frac{d}{dt}(S \cdot V) = -r_S \cdot V$$

The yield coefficient is defined as:

$$Y_{S/X} = \frac{r_X}{-r_S} = \frac{\mu X}{-r_S}$$

Therefore, the general expression becomes:

$$\frac{dS}{dt} = \pm \frac{\mu X}{Y_{S/X}}$$

where the sign depends on whether S is a substrate (negative) or a product (positive).

B. Ionic Balance

$$[OH^{-}] = \frac{K_{a6}}{[H^{+}]} \tag{8}$$

$$[KHPO_{4}^{-}] = \frac{KH_{2}PO_{4}^{tot}}{\left(1 + \frac{[H^{+}]}{K_{a1}}\right)}$$
(9)

$$[C_6H_5O_7^{3-}] = \frac{C_6H_8O_7^{\text{tot}}}{\frac{[H^+]^3}{K_{a2}K_{a3}K_{a4}} + \frac{[H^+]^2}{K_{a3}K_{a4}} + \frac{[H^+]}{K_{a4}} + 1}$$
(10)

$$[C_6H_6O_7^{2-}] = \frac{[H^+] \cdot [C_6H_5O_7^{3-}]}{K_{a4}}$$
(11)

$$[C_6H_7O_7^-] = \frac{[H^+] \cdot [C_6H_6O_7^{2-}]}{K_{a3}}$$
(12)

$$[HCO_3^-] = \frac{CO_2^{\text{tot}}}{\left(\frac{[H^+]}{K_{a7}} + 1\right)}$$
 (13)

$$[\mathrm{H}^+] = [\mathrm{OH}^-] + [\mathrm{KHPO_4^-}] + 3[\mathrm{C_6H_5O_7^{3-}}] + 2[\mathrm{C_6H_6O_7^{2-}}] + [\mathrm{C_6H_7O_7^-}] + [\mathrm{HCO_3^-}] - [pH_{\mathrm{alk}}]$$

 ${\bf TABLE~II}\\ {\bf Model~Parameters~Used~in~the~Dynamic~Simulation~of~\textit{M.~smegmatis}~Growth}$

Parameter	Description	Value
$t_{ m lag}$	Lag phase duration [h]	7
k_C	Monod constant for glycerol [g/L]	0.3828
k_N	Monod constant for ammonia [g/L]	1.0027×10^{-4}
$Y_{X/C}$	Biomass yield on glycerol [g/g]	0.484
$Y_{X/N}$	Biomass yield on ammonia [g/g]	21.575
$Y_{X/CD}$	CO ₂ yield [g/g]	0.3687
Y_{X/O_2}	O ₂ yield [g/g]	1.352
X_{\max}	Maximum biomass concentration [g/L]	1.4462
μ_{max}	Maximum specific growth rate [1/h]	0.19
k_d	Death rate constant [1/h]	0.001
pH_{LL}	Lower limit of pH tolerance [-]	3.4687
pH_{UL}	Upper limit of pH tolerance [-]	7.4
pH _{alk}	Constant ions in pH charge balance [-]	7.2
pK_{a1} to pK_{a9}	Acid dissociation constants [-]	See Table III
[KH ₂ PO ₄]	Phosphate buffer (monobasic) [mol/L]	2.18
$[C_6H_8O_7]$	Citric acid (tricarboxylic acid) [mol/L]	2.00
$I_{ m val}$	pH inhibition shape parameter [-]	4.0413
$O_{2,\mathrm{sat}}$	O ₂ saturation concentration [g/L]	7.267×10^{-3}
$k_L a$	Oxygen transfer coefficient [1/h]	86.26
k_O	Monod constant for oxygen [g/L]	4.5×10^{-3}

TABLE III $\mbox{Acid Dissociation Constants } (pK_a) \mbox{ Used in the PH Model}$

Parameter	Chemical species or group	Value
pK_{a1}	KH ₂ PO ₄ (phosphate buffer)	6.86
pK_{a2}	Citric acid (C ₆ H ₈ O ₇)	3.13
pK_{a3}	Mono-deprotonated citric acid (C ₆ H ₇ O ₇) ⁻	4.76
pK_{a4}	Di-deprotonated citric acid (C ₆ H ₇ O ₇) ²⁻	6.40
pK_{a5}	Ammonium (NH ₃)	9.25
pK_{a6}	Glycerol (C ₃ H ₈ O ₃)	14.15
pK_{a7}	Carbon dioxide (CO ₂)	6.35
pK_{a8}	Bicarbonate (HCO ₃ ⁻)	10.33
pK_{a9}	Water (H ₂ O)	14.00

TABLE IV INITIAL CONDITIONS USED IN THE SIMULATION OF $\it M.$ smegmatis Growth for the fitting data

Variable	Description	Initial Value
X_0	Biomass concentration [g/L]	0.229
C_0	Glycerol concentration [g/L]	5.389
N_0	Ammonium concentration [g/L]	0.951
$CO_{2,0}$	Carbon dioxide concentration [g/L]	4.39×10^{-4}
$O_{2,0}$	Dissolved oxygen concentration [g/L]	7.267×10^{-3}

TABLE V INITIAL CONDITIONS USED IN THE SIMULATION OF $\it M.\ smegmatis$ Growth for the validation data

Variable	Description	Initial Value
X_0	Biomass concentration [g/L]	0.223
C_0	Glycerol concentration [g/L]	5.922
N_0	Ammonium concentration [g/L]	1.027
$CO_{2,0}$	Carbon dioxide concentration [g/L]	4.39×10^{-4}
$O_{2,0}$	Dissolved oxygen concentration [g/L]	7.267×10^{-3}

TABLE VI Highly correlated parameter pairs ($|\rho| > 0.95$), grouped by correlation sign

Parameter A	Parameter B	Correlation	
Positively correlated pairs			
$t_{ m lag}$	k_C	0.9702	
Y_{X/CO_2}	k_d	0.9955	
Y_{X/O_2}	pH _{LL}	0.9977	
I_{val}	k_{La}	0.9975	
μ_{max}	k_O	0.9686	
Negat	ively correlated	pairs	
$t_{ m lag}$	pH _{UL}	-0.9704	
t_{lag}	k_N	-0.9543	
k_N	μ_{max}	-0.9801	
Y_{X/O_2}	$I_{ m val}$	-0.9976	
Y_{X/O_2}	$k_{ m La}$	-1.0000	
pH _{LL}	$I_{ m val}$	-1.0000	
pH _{LL}	k_{La}	-0.9975	

Parameter	t-Value	New Value
pH_{UL}	50674.90	7.571
X_{\max}	4098.99	1.174 g/L

 $TABLE\ VIII \\ NRMSE\ for\ Model\ Fitting\ Under\ Different\ Parameter\ Sets\ for\ adjusting\ based\ on\ the\ sensitivity\ analysis$

Variable	1 parameter adjusted	2 parameter adjusted	3 parameter adjusted	4 parameter adjusted
Biomass	30.37 %	19.73 %	19.73 %	19.93 %
Ammonia	27.30 %	28.68 %	28.68 %	28.81 %
Glycerol	22.12 %	15.95 %	15.95 %	16.26 %
рН	14.38 %	11.77 %	11.77 %	12.13 %

TABLE IX
PARAMETER ESTIMATION — RESULTS

Set	pH_{UL}	Xmax	μ_{max}	I _{val}
1 Parameter	6.52	_	-	-
2 Parameters	7.571	1.174	-	_
3 Parameters	7.400	1.446	0.113	_
4 Parameters	7.751	1.1545	0.111	4.9

D. Complementary Figures

Fig. 1. Comparison between original model without oxygen, and the updated model with oxygen consumption on hypoxic conditions.

Fig. 2. Heatmap of the mean relative sensitivity of each parameter with respect to the model outputs.

Fig. 3. Mean relative sensitivity of all model parameters, sorted by overall influence and disaggregated by output variable.

Fig. 4. Correlation matrix between the parameters.

Fig. 5. Comparison between all the models tested, with the validation data. Error bars represent the relative deviation of experimental validation data.