Diagrammatic Categories

in Representation Theory

Victor Zhang

Supervisors:

Dr Anna Romanov Dr Arnaud Brothier Dr Daniel Tubbenhauer

UNSW Sydney

Kazhdan-Lusztig Conjecture

(Motivation)

- Relates Kazhdan–Lusztig polynomials to Jordan–Hölder multiplicities of Verma modules
- First proof by Beilinson and Bernstein (1981) using *D*-modules
- Algebraic proof by Elias and Williamson (2010's) using Soergel bimodules and diagrammatics

Talk Overview

- 1. Diagrammatic Monoidal Categories
- 2. Diagrammatic Soergel bimodules
- 3. Further Applications

Monoidal Categories

A monoidal category is a category with an associative multiplication \otimes for objects and morphisms, and a unit object 1, such that the multiplication works well with composition.

Monoidal Categories

Monoidal Categories: Composition

Monoidal Categories: Composition

$$f: a \to b \otimes c$$

$$g: b \otimes c \to a \otimes c$$

$$g$$

$$g$$

$$g$$

$$g$$

$$g$$

$$g$$

$$g$$

Monoidal Categories: Identity

Monoidal Categories: Tensor

Monoidal Categories: Tensor

$$f: a \to b \otimes c$$

$$h: x \to y$$

$$b \qquad c \qquad y$$

$$f \qquad h$$

$$a \qquad x$$

Monoidal Categories: Unit

$$\textit{f}_1: \textit{a} \rightarrow \mathbb{1}$$

Monoidal Categories: Unit

Monoidal Categories

Interchange Law

$$\begin{array}{c|c}
b & d \\
\hline
f & g
\end{array} =
\begin{array}{c|c}
b & d \\
\hline
f & g
\end{array} =
\begin{array}{c|c}
f & g
\end{array}$$

Isotopy

\mathbb{Z} -linear Monoidal Category

Diagrammatic Soergel Bimodules

Let ${\mathcal D}$ be the (diagrammatic) ${\mathbb Z}\text{-linear}$ monoidal category with: Generating object I. Generating morphisms

and local relations...

Relations

$$= 2 \qquad - \qquad = 2 \qquad - \qquad = 2 \qquad - \qquad = 2 \qquad = 2$$

Soergel Bimodules

Theorem (Elias-Williamson, 2013)

The additive Karoubi envelope of \mathcal{D} is equivalent to the category of Soergel Bimodules \mathbb{S} Bim over S_2 as (idempotent complete) graded additive \mathbb{C} -linear monoidal categories.

Generalisations

• Over general Coxeter groups e.g. S_n , D_n

• Diagrammatics for other categories of representations...

Further Applications

- ullet Diagrammatics for BGG Category \mathcal{O} , Tilting modules
- Changing scalars to fields of characteristic p