INF2220 - Algoritmer og datastrukturer

Institutt for informatikk, Universitetet i Oslo

INF2220, forelesning 11: Huffman-koding & Dynamisk programmering

Dagens plan

- Grådige algoritmer
 - ► Huffman-koding
- Dynamisk programmering
 - ► Floyds algoritme for korteste vei alle-til-alle
- ► Paradigmer for algoritmedesign

Koding av tegn

Det finnes mange standarder for koding av tegn:

- Hollerith 12-bits hullkortkode
 Brukt på mekaniske datamaskiner før de elektroniske var oppfunnet
- BCD (Binary Coded Decimal)
 4-bits kode brukt av IBM til koding av desimale sifre
 (BCD ble også brukt om 6-bits tegn på noen tidlige datamaskiner)
- ► EBCDIC (Extended Binary Coded Decimal Interchange Code) IBMs 8-bits utvidelse av BCD til fullt tegnsett
- ASCII (American (National) Standard Code for Information Interchange)
 7-bits (senere 8-bits) tegn
- ► Unicode 8-bits tegn (Egentlig variabelt 8–32 bit) ISO-standard for alle tegn i alle språk

Huffman-koding

Motivasjon

- ▶ Store tekstfiler tar stor plass, og tar lang tid å overføre over nettet
- ► Tidligere var ASCII og EBCDIC de rådende standardene
 - ▶ Begge brukte 8-bits tegnkoder (ASCII brukte 7-bits kode + paritetsbit)
 - ► Dette ble ansett som sløsing med plass
- ► Unicode bruker (stort sett) 8-bits koder, men 32-bits koder blir også brukt
 - ▶ Unicode har $17 \cdot 2^{16} = 1 \cdot 114 \cdot 112$ mulige tegr
 - ▶ Selv i store tekstfiler blir bare noen få av disse brukt
 - ► Unicode gir minst dobbelt så store filer som ASCII
- Konklusjon

Det er behov for datakompresjon

Huffman-koding

Motivasjon

- ▶ Store tekstfiler tar stor plass, og tar lang tid å overføre over nettet
- Tidligere var ASCII og EBCDIC de rådende standardene
 - Begge brukte 8-bits tegnkoder (ASCII brukte 7-bits kode + paritetsbit)
 - ► Dette ble ansett som sløsing med plass
- ► Unicode bruker (stort sett) 8-bits koder, men 32-bits koder blir også brukt
 - Unicode har $17 \cdot 2^{16} = 1 \ 114 \ 112 \ \text{mulige tegn}$
 - ▶ Selv i store tekstfiler blir bare noen få av disse brukt
 - ▶ Unicode gir minst dobbelt så store filer som ASCII
- Konklusjon

Det er behov for datakompresjon

Huffman-koding

Motivasjon

- Store tekstfiler tar stor plass, og tar lang tid å overføre over nettet
- Tidligere var ASCII og EBCDIC de rådende standardene
 - Begge brukte 8-bits tegnkoder (ASCII brukte 7-bits kode + paritetsbit)
 - Dette ble ansett som sløsing med plass
- Unicode bruker (stort sett) 8-bits koder, men 32-bits koder blir også brukt
 - Unicode har $17.2^{16} = 1 \ 114 \ 112 \ \text{mulige tegn}$
 - Selv i store tekstfiler blir bare noen få av disse brukt
 - Unicode gir minst dobbelt så store filer som ASCII
- ► Konklusjon

Det er behov for datakompresjon!

ldé og regler

▶ Hovedidé:

Husk "Morse"

Tegn som forekommer ofte \Rightarrow korte koder, sjeldne tegn \Rightarrow lange koder

- ► Regel 1:
 - Hvert tegn som forekommer i filen, skal ha sin egen entydige kode
- ► Regel 2: Ingen kode er prefiks i en annen kode
- ► Eksempel på regel 2:

Dersom 011001 er (binær)kode for et tegn, kan hverken 0, 01, 011, 0110 eller 01100 være kode for noe tegn

ldé og regler

▶ Hovedidé:

Husk "Morse"

Tegn som forekommer ofte \Rightarrow korte koder, sjeldne tegn \Rightarrow lange koder

► Regel 1:

Hvert tegn som forekommer i filen, skal ha sin egen entydige kode

- ▶ Regel 2: Ingen kode er prefiks i en annen kode
- Dersom 011001 er (binær)kode for et tegn, kan hverken 0, 01, 011, 0110 eller 01100 være kode for noe tegn

ldé og regler

▶ Hovedidé:

Husk "Morse"

Tegn som forekommer ofte \Rightarrow korte koder, sjeldne tegn \Rightarrow lange koder

► Regel 1:

Hvert tegn som forekommer i filen, skal ha sin egen entydige kode

▶ Regel 2: Ingen kode er prefiks i en annen kode

► Eksempel på regel 2:

Dersom 011001 er (binær)kode for et tegn, kan hverken 0, 01, 011, 0110 eller 01100 være kode for noe tegn

- ► Lag en frekvenstabell for alle tegn som forekommer i datafilen
- ► Betrakt hvert tegn som en node, og legg dem inn i en prioritetskø *P* med frekvensen som vekt
- ▶ Mens P har mer enn ett element
 - ► Ta ut de to minste nodene fra P
 - Gi dem en felles foreldrenode med vekt lik summen av de to nodenes vekter
 - ► Legg foreldrenoden inn i *P*
- Huffmankoden til et tegn (bladnode) får vi ved å gå fra roten og gi en '0' når vi går til venstre og '1' når vi går til høyre
- Resultatfilen består av to deler:
 - ▶ En tabell over Huffmankoder med tilhørende tegn
 - ▶ Den Huffmankodede datafilen

- ► Lag en frekvenstabell for alle tegn som forekommer i datafilen
- ► Betrakt hvert tegn som en node, og legg dem inn i en prioritetskø *P* med frekvensen som vekt
- ▶ Mens P har mer enn ett element
 - ► Ta ut de to minste nodene fra P
 - Gi dem en felles foreldrenode med vekt lik summen av de to nodenes vekter
 - ► Legg foreldrenoden inn i P
- Huffmankoden til et tegn (bladnode) får vi ved å gå fra roten og gi en '0' når vi går til venstre og '1' når vi går til høyre
- Resultatfilen består av to deler:
 - ► En tabell over Huffmankoder med tilhørende tegn
 - ▶ Den Huffmankodede datafiler

- ► Lag en frekvenstabell for alle tegn som forekommer i datafilen
- ► Betrakt hvert tegn som en node, og legg dem inn i en prioritetskø *P* med frekvensen som vekt
- ▶ Mens P har mer enn ett element
 - ► Ta ut de to minste nodene fra P
 - Gi dem en felles foreldrenode med vekt lik summen av de to nodenes vekter
 - ► Legg foreldrenoden inn i P
- ► Huffmankoden til et tegn (bladnode) får vi ved å gå fra roten og gi en '0' når vi går til venstre og '1' når vi går til høyre
- Resultatfilen består av to deler:
 - ► En tabell over Huffmankoder med tilhørende tegn
 - ▶ Den Huffmankodede datafilen

- ► Lag en frekvenstabell for alle tegn som forekommer i datafilen
- ► Betrakt hvert tegn som en node, og legg dem inn i en prioritetskø *P* med frekvensen som vekt
- ▶ Mens P har mer enn ett element
 - ► Ta ut de to minste nodene fra P
 - Gi dem en felles foreldrenode med vekt lik summen av de to nodenes vekter
 - ► Legg foreldrenoden inn i P
- ► Huffmankoden til et tegn (bladnode) får vi ved å gå fra roten og gi en '0' når vi går til venstre og '1' når vi går til høyre
- Resultatfilen består av to deler:
 - ► En tabell over Huffmankoder med tilhørende tegn
 - Den Huffmankodede datafilen

Eksempel

Initiell prioritetskø:

- a 10
- b 15
- - c 3
- d 32
- e 15

- f 10
- g 23
- h 13
- i 5
- sp 23

Bygging av treet

De 2 minste (sjeldnest forekommende) nodene er \mathbf{c} og \mathbf{i} . Disse taes ut og erstattes med \mathcal{T}_1 (vekt 8):

- b 15
- d 32
- e 15

- g 23
- n 13
- 23

Dernest erstattes T_1 og a med T_2 (vekt 18)

- d 32
- e 15
- T2 18

- f 10
- g 23
- h 13
- sp 23

Bygging av treet

De 2 minste (sjeldnest forekommende) nodene er \mathbf{c} og \mathbf{i} .

Disse taes ut og erstattes med T_1 (vekt 8):

- b 15
- d 32
- e 15

10

g 23 h 13

23

Dernest erstattes T_1 og a med T_2 (vekt 18):

- d 32
- e 15
- T2 18

- f 10 g 23
 - h 13
- sp 23

15

g 23

T3 23

(Ifi, UiO)

Så går f og h ut. De erstattes av T_3 (vekt 23):

- g 23
- sp 23
- 23

Så erstattes b og e med T_4 (vekt 30):

- T2 18
- T4 30

- g 23
- 23
- 23

sp 23 T3 23

Så byttes sp og T_3 ut med T_6 (vekt 46):

Så T_5 og T_6 med T_8 (vekt 87):

Endelig taes T_7 og T_8 ut av køen. Disse blir barn av rotnoden T_9 :

Så T_5 og T_6 med T_8 (vekt 87):

Endelig taes T_7 og T_8 ut av køen. Disse blir barn av rotnoden T_9 :

Så T_5 og T_6 med T_8 (vekt 87):

Endelig taes T_7 og T_8 ut av køen. Disse blir barn av rotnoden T_9 :

(Ifi, UiO)

Det ferdige kodetreet

INF2220

ser slik ut:

Det ferdige kodetreet

ser slik ut:

Det gir denne kodetabellen:

(venstre 0, høyre 1)

а	_	1011	f	_	1110
b	_	010	g	_	100
С	_	10100	h	_	1111
d	-	00	i	_	10101
е	_	011	sp	_	110

H2015, forelesning 11

Eksempel:

caddie hadde bad i hagebed

har følgende Huffmankode:

Vi brukte altså 84 bits på 26 tegn med dette 10-tegns alfabetet

Dekodingstabell

Eksempel:

caddie hadde bad i hagebed

har følgende Huffmankode:

Vi brukte altså 84 bits på 26 tegn med dette 10-tegns alfabetet

Dekodingstabell

00	_	d	10101	_	i
010	_	b	1011	-	а
011	_	е	110	_	sp
100	_	g	1110	_	f
10100	_	С	1111	_	h

Dynamisk Programmering

 $F_n = F_{n-1} + F_{n-2}$

```
int fib_r(int n)
{
    if (n<=1)
        return 1;
    else
        return fib_r(n-1) + fib_r(n-2);
}</pre>
```


Fibonacci Numbers by Dynamic Programming

```
int fib_dp(int n)
{
    int i;
    int [] f = new int [n+1]
    f[0] = 0;
    f[1] = 1;

    for (int i = 2; i <= n; i++) {
        f[i] = f[i-1] + f[i-2];
    }
    return f[n];
}</pre>
```

Dynamisk programmering

- Brukes først og fremst når vi ønsker optimale løsninger
- Må kunne dele det globale problemet i delproblemer
 - ▶ Disse løses typisk ikke-rekursivt ved å lagre del-løsningene i en tabell
- ► En optimal løsning på det globale problemet må være en sammensetning av optimale løsninger på (noen av) delproblemene
- ► Vi skal se på ett eksempel: Floyds algoritme for å finne korteste vei alle-til-alle i en rettet graf

Dynamisk programmering

- Brukes først og fremst når vi ønsker optimale løsninger
- Må kunne dele det globale problemet i delproblemer
 - ▶ Disse løses typisk ikke-rekursivt ved å lagre del-løsningene i en tabell
- ► En optimal løsning på det globale problemet må være en sammensetning av optimale løsninger på (noen av) delproblemene
- Vi skal se på ett eksempel: Floyds algoritme for å finne korteste vei alle-til-alle i en rettet graf

Korteste vei alle-til-alle (Floyd)

Vi ønsker å beregne den korteste veien mellom ethvert par av noder i en rettet, vektet graf

Grunnleggende idé

Hvis det går en vei fra node i til node k med lengde ik, og en vei fra node k til node j med lengde kj, så går det en vei fra node i til node j med lengde ik + kj

- ▶ Floyds algoritme
 - Denne betraktningen gjentas systematisk for alle tripler i, k og j:
 - ▶ Initielt: Avstanden fra node i til node j settes lik vekten på kanten fra til j, uendelig hvis det ikke går noen kant fra i til j
 - ▶ Trinn 0: Se etter forbedringer ved å velge node 0 som mellomnode
 - ▶ Etter trinn k: Avstanden mellom to noder er den korteste veien som bare bruker nodene 0, 1, ..., k som mellomnoder

(Ifi, UiO) INF2220 H2015, forelesning 11 19 / 32

Korteste vei alle-til-alle (Floyd)

Vi ønsker å beregne den korteste veien mellom ethvert par av noder i en rettet, vektet graf

Grunnleggende idé

Hvis det går en vei fra node i til node k med lengde ik, og en vei fra node k til node j med lengde kj, så går det en vei fra node i til node j med lengde ik + kj

- ► Floyds algoritme
 - Denne betraktningen gjentas systematisk for alle tripler i, k og j:
 - ▶ Initielt: Avstanden fra node i til node j settes lik vekten på kanten fra til j, uendelig hvis det ikke går noen kant fra i til j
 - ▶ Trinn 0: Se etter forbedringer ved å velge node 0 som mellomnode
 - ▶ Etter trinn k: Avstanden mellom to noder er den korteste veien som bare bruker nodene 0, 1, . . . , k som mellomnoder

(Ifi, UiO) INF2220 H2015, forelesning 11 19 / 32

Korteste vei alle-til-alle (Floyd)

Vi ønsker å beregne den korteste veien mellom ethvert par av noder i en rettet, vektet graf

Grunnleggende idé

Hvis det går en vei fra node i til node k med lengde ik, og en vei fra node k til node j med lengde kj, så går det en vei fra node i til node j med lengde ik + kj

- ► Floyds algoritme:
 - Denne betraktningen gjentas systematisk for alle tripler i, k og j:
 - ▶ Initielt: Avstanden fra node i til node j settes lik vekten på kanten fra i til j, uendelig hvis det ikke går noen kant fra i til j
 - ► Trinn 0: Se etter forbedringer ved å velge node 0 som mellomnode
 - ► Etter trinn k: Avstanden mellom to noder er den korteste veien som bare bruker nodene 0, 1, ..., k som mellomnoder

(Ifi, UiO) INF2220 H2015, forelesning 11 19 / 32

2

 ∞

 ∞

5

 ∞

 ∞

5

 ∞

2

0

4

3

0

	0	1	2	3	4	5
0	0	2	5	∞	∞	∞
1	∞	0	7	1	∞	8
2	∞	∞	0	4	∞	∞
3	∞	∞	∞	0	3	∞
4	∞	∞	2	∞	0	3
5	∞	5	∞	2	4	0

	0	1	2	3	4	5
0	0	2	5	31	∞	101
1	∞	0	7	1	∞	8
2	∞	∞	0	4	∞	∞
3	∞	∞	∞	0	3	∞
4	∞	∞	2	∞	0	3
5	∞	5	121	2	4	0

	0	1	2	3	4	5
0	0	2	5	31	∞	101
1	∞	0	7	1	∞	8
2	∞	∞	0	4	∞	∞
3	∞	∞	∞	0	3	∞
4	∞	∞	2	62	0	3
5	∞	5	121	2	4	0

	0	1	2	3	4	5
0	0	2	5	31	63	101
1	∞	0	7	1	43	8
2	∞	∞	0	4	73	∞
3	∞	∞	∞	0	3	∞
4	∞	∞	2	62	0	3
5	∞	5	121	2	4	0

	0	1	2	3	4	5
0	0	2	5	31	63	9 ₄
1	∞	0	64	1	43	7 ₄
2	∞	15 ₅	0	4	73	104
3	∞	115	54	0	3	64
4	∞	85	2	55	0	3
5	∞	5	64	2	4	0

Hvorfor virker Floyd?

Floyd-invarianten:

avstand[i][j] vil være lik lengden av den korteste veien fra node i til node j som har alle sine indre noder behandlet

(Ifi, UiO) INF2220 H2015, forelesning 11 21 / 32

```
public static void kortesteVeiAlleTilAlle(
  int[ ][ ] nabo, int[ ][ ] avstand, int[ ][ ] vei) {
  int n = avstand.length; // Forutsetning: arrayene er
                          // kvadratiske med samme dimension
 // Initialisering:
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      avstand[i][j] = nabo[i][j];
      vei[i][j] = -1:
                                     // Ingen vei foreløpig
  for (int k = 0; k < n; k++) {
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        if (avstand[i][k] + avstand[k][j] < avstand[i][j]) {
            // Kortere vei fra i til j funnet via k
            avstand[i][j] = avstand[i][k] + avstand[k][j];
            vei[i][i] = k;
}}}}
```

Tidsforbruket er åpenbart $\mathcal{O}(\mathsf{n}^3)$

(Ifi, UiO) INF2220 H2015, forelesning 11 22 / 32

```
public static void kortesteVeiAlleTilAlle(
  int[ ][ ] nabo, int[ ][ ] avstand, int[ ][ ] vei) {
  int n = avstand.length; // Forutsetning: arrayene er
                          // kvadratiske med samme dimension
  // Initialisering:
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      avstand[i][j] = nabo[i][j];
      vei[i][j] = -1:
                                     // Ingen vei foreløpig
  for (int k = 0; k < n; k++) {
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        if (avstand[i][k] + avstand[k][j] < avstand[i][j]) {
            // Kortere vei fra i til j funnet via k
            avstand[i][j] = avstand[i][k] + avstand[k][j];
            vei[i][i] = k:
}}}}
```

Tidsforbruket er åpenbart $\mathcal{O}(n^3)$

(Ifi, UiO) INF2220 H2015, forelesning 11 22 / 32

Hvordan tolke resultatet av Floyd

- Ved start inneholder nabo[i][j] lengden av kanten fra i til j, ∞ hvis det ikke er noen kant
- ► Floyd lar nabo være uendret og legger resultatet i avstand og vei
- avstand[i][j] er lengden av korteste vei fra i til j.
 oo hvis det ikke er noen vei
- Når vi oppdager at den korteste veien fra i til j passerer gjennom en mellomnode k, setter vi vei[i][j] = k
- vei sier hva som er den korteste veier
 - k₁ = vei[i][j] er den største verdi av k slik at k ligger på den korteste veien fra i til j
 - k₂ = vei[i][k₁] er den største verdi av k slik at k ligger på den korteste veien fra i til k₁ osv.
 - Når $vei[i][k_m] = -1$, er (i, k_m) den første kanten i korteste vei fra i til i

(Ifi, UiO) INF2220 H2015, forelesning 11 23 / 32

Hvordan tolke resultatet av Floyd

- Ved start inneholder nabo[i][j] lengden av kanten fra i til j, ∞ hvis det ikke er noen kant
- ► Floyd lar nabo være uendret og legger resultatet i avstand og vei
- ▶ avstand[i][j] er lengden av korteste vei fra i til j, ∞ hvis det ikke er noen vei
- Når vi oppdager at den korteste veien fra i til j passerer gjennom en mellomnode k, setter vi vei[i][j] = k
- vei sier hva som er den korteste veier
 - k₁ = vei[i][j] er den største verdi av k slik at k ligger på den korteste veien fra i til j
 - k₂ = vei[i][k₁] er den største verdi av k slik at k ligger på den korteste veien fra i til k₁ osv.
 - ▶ Når $vei[i][k_m] = -1$, er (i, k_m) den første kanten i korteste vei fra i til i

(Ifi, UiO) INF2220 H2015, forelesning 11 23 / 32

Hvordan tolke resultatet av Floyd

- Ved start inneholder nabo[i][j] lengden av kanten fra i til j, ∞ hvis det ikke er noen kant
- ► Floyd lar nabo være uendret og legger resultatet i avstand og vei
- Når vi oppdager at den korteste veien fra i til j passerer gjennom en mellomnode k, setter vi vei[i][j] = k
- vei sier hva som er den korteste veien
 - k₁ = vei[i][j] er den største verdi av k slik at k ligger på den korteste veien fra i til j
 - k₂ = vei[i][k₁] er den største verdi av k slik at k ligger på den korteste veien fra i til k₁ osv.
 - Når $vei[i][k_m] = -1$, er (i, k_m) den første kanten i korteste vei fra i til j

(Ifi, UiO) INF2220 H2015, forelesning 11 23 / 32

Den korteste veien fra i til j

- ▶ Hvis vei[i][j] = -1, passerer ikke den korteste veien gjennom noen mellomnoder og den korteste veien er (i, j)
- ► Ellers, vi rekursivt beregne den korteste veien fra i til vei[i][j] og den korteste veien fra vei[i][j] til j

```
Kortestevei(i,j){
  if (vei[i][j] = -1) //en kant
    output (i,j);
  else {
     kortestevei(i, vei[i][j]);
     kortestevei(vei[i][j], j);
  }
}
```

(Ifi, UiO) INF2220 H2015, forelesning 11 24 / 32

Hva gjør Floyd dynamisk?

Hovedløkken i Floyd ser slik ut:

```
for (int k = 0; k < n; k++) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      if (avstand[i][k] + avstand[k][j] < avstand[i][j]) {
            // Kortere vei fra i til j funnet via k
            avstand[i][j] = avstand[i][k] + avstand[k][j];
            vei[i][j] = k;
}}}</pre>
```

- Algoritmeinvarianten forutsetter at i- og j-løkken fullføres før
 k-verdien økes
- ▶ If-testen sikrer at for en gitt k kan hverken avstand[i][k] eller avstand[k][j] bli endret i i- og j-løkken
- Dermed er i
 og j
 løkkene uavhengige av hverandre og kan parallelliseres (de er uavhengige delproblemer)
- Dette er definisjonen på dynamisk programmering

(Ifi, UiO) INF2220 H2015, forelesning 11 25 / 32

Hva gjør Floyd dynamisk?

Hovedløkken i Floyd ser slik ut:

- Algoritmeinvarianten forutsetter at i- og j-løkken fullføres før
 k-verdien økes
- If-testen sikrer at for en gitt k kan hverken avstand[i][k] eller avstand[k][j] bli endret i i- og j-løkken
- Dermed er i
 og j
 løkkene uavhengige av hverandre og kan parallelliseres (de er uavhengige delproblemer)
- Dette er definisjonen på dynamisk programmering

(Ifi, UiO) INF2220 H2015, forelesning 11 25 / 32

Hva gjør Floyd dynamisk?

Hovedløkken i Floyd ser slik ut:

- Algoritmeinvarianten forutsetter at i- og j-løkken fullføres før k-verdien økes
- If-testen sikrer at for en gitt k kan hverken avstand[i][k] eller avstand[k][j] bli endret i i- og j-løkken
- Dermed er i- og j-løkkene uavhengige av hverandre og kan parallelliseres (de er uavhengige delproblemer)
- Dette er definisjonen på dynamisk programmering

(Ifi, UiO) INF2220 H2015, forelesning 11 25 / 32

PARADIGMER FOR ALGORITMEDESIGN

26 / 32

Paradigmer for algoritmedesign

Her følger en oppsummering av tre viktige paradigmer for algoritmedesign som vi gjør bruk av i dette kurset:

- ► Splitt og hersk
- Grådige algoritmer
- Dynamisk programmering

Splitt og hersk

- ► Dette er en generell metode som bruker rekursjon til å designe effektive algoritmer
- ▶ Den går ut på å dele et gitt problem opp i mindre delproblemer, og så rekursivt løse hvert delproblem
- ► Rekursjonen stoppes når problemet er så lite at løsningen er triviell
- ➤ Til slutt settes løsningen av delproblemene sammen til en løsning av det opprinnelige problemet

Eksempler:

- ▶ Binærsøking
- Quick-sort
- Merge-sort

28 / 32

Grådige algoritmer

- Dette er en metode som brukes på optimaliseringsproblemer
- Den går ut på å løse problemet ved å foreta en rekke valg
- ► I hvert trinn gjør vi det valget som i øyeblikket ser ut til å bringe oss nærmest mulig løsningen
- ▶ Merk: Metoden virker ikke alltid
- ▶ Vi sier at problemer metoden virker på, har "grådighetsegenskapen":
 - ▶ En rekke lokale optimaliseringer vil føre til et globalt optimum

Eksempler:

- Dijkstras algoritme
- ▶ Prims algoritme
- Kruskals algoritme
- Huffman-koding

Dynamisk programmering

- Dette er en annen metode som brukes på optimaliseringsproblemer
- Metoden er noe vanskeligere å forstå enn Splitt og hersk og Grådige algoritmer
- Metoden bør brukes på problemer som ser ut til å trenge eksponensiell eksekveringstid
- ▶ Dynamisk programmering gir alltid algoritmer som er polynomiske i tid, og disse algoritmene er vanligvis enkle å programmere
- ► For at metoden skal virke, må problemet ha en viss struktur som vi kan utnytte for å oppnå denne enkle løsningen

Litt terminologi knyttet til dynamisk programmering:

► Enkle delproblemer:

Det må finnes en måte å dele problemet opp i delproblemer som er enkle å beskrive

► Delproblem-optimalisering:

En optimal løsning på det globale problemet må kunne settes sammen av optimale løsninger på delproblemene

► Overlapp av delproblemer:

Optimale løsninger av urelaterte problemer kan inneholde felles delproblemer

Eksempler:

- Floyds algoritme
- Beregning av lange matriseprodukter
- Lengste felles delsekvens

(Ifi, UiO) INF2220 H2015, forelesning 11

31 / 32

Neste forelesning: 5. november

Sortering