

COURSE OVERVIEW

- o Grading
 - Exercises 40%
 - MidTerm Exam- 30%
 - Final Exam 30%

o Exercises

- Text problems.
- Programming tasks.

COURSE MANAGEMENT

- oUsing Moodle system.
 - http://hi-srv2.u-aizu.ac.jp
- Need an account.
- Exercises downloaded from Moodle.
- OAnswers uploaded to Moodle.
- oGrades, comments from Moodle.

TODAY'S OUTLINE

- Algorithms:
 - Definition.
 - Basic concepts.
- Function growth.
 - Upper bound.
 - · Lower bound.
 - Tight bound.
- o Algorithm complexity.
- Merge sort algorithm.

ALGORITHMS

- To solve any problem by a computer, we need an algorithm.
- Given an algorithm for the problem, we want to know the efficiency the algorithm.
- We are most interested in how much time and how much memory space the algorithm takes to solve the problem.

ALGORITHMS

oWhat is an algorithm?

An <u>algorithm</u> is a well-defined computational **procedure** that transforms inputs into outputs, achieving the desired input-output relationship.

ALGORITHMS

- The **computation time** of an algorithm depends on the number of computational steps of the algorithm and the computer used
- To evaluate the efficiency of algorithms, it is ideal to use an **unique computer** to measure their computation time.

8/34

ALGORITHMS

- The computation time of an algorithm for a problem **depends** on the size of the problem.
- oImportant! How the computation time of the algorithm grows when the size of the problem increases.

ALGORITHMS

- The size of a problem is denoted by an integer n, which is a measure of the quantity of input data.
 - The size of a matrix multiplication problem might be the largest dimension of the matrices.
 - The size of a sorting problem might be the **number of data** to be sorted.
 - The size of a graph problem might be the **number of vertices** or edges.

ALGORITHMS COMPLEXITY

- The computation time needed by an algorithm expressed as a function of the size of a problem is called **time complexity** of the algorithm.
- Analogous definition can be made for space complexity.

ALGORITHMS COMPLEXITY

- Given an algorithm for a problem of size
 n, it is important to find the time complexity and how the time complexity grows when n increases.
- oIt is the growth rate of the **time complexity** (space complexity) of an algorithm which ultimately determines the **size** of problems that can be solved by the algorithm.

GROWTH OF FUNCTIONS

- **Outpose** output g(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $g(n) \le cf(n)$.
- **Lower bound.** $g(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $g(n) \ge cf(n)$.
- **o Tight bound.** $g(n) = \Theta(f(n))$ if g(n) is both O(f(n)) and $\Omega(f(n))$.
- Example: $g(n) = 32n^2 + 17n + 32$.
 - g(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
 - g(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

GROWTH OF FUNCTIONS

- **Output Description** of **Output** of **Ou**
- og(n) = O(f(n))means that the growth rate of g(n) is smaller than or equal to the growth rate of f(n).
- •0(...) is read ``order ..." or ``Big-Oh"

GROWTH OF FUNCTIONS

- o Lower bound $g(n) = \Omega(f(n))$ (read "omega") means that the growth rate of g(n) is *greater than or equal to* the growth rate of f(n).
- o **Tight bound** $g(n) = \Theta(f(n))$ means that for all n right of n_0 , the value of g(n) lies at or above $c_1 f(n)$ and at or below $c_2 f(n)$.

GROWTH OF FUNCTIONS

- Prove $g(n) = an^2 + bn + c = \Theta(n^2)$
 - a, b, c are constants and a > 0.
 - Find c_1 , and c_2 (and n_0) such that $c_1 n^2 \le g(n) \le c_2 n^2$ for all $n \ge n_0$.
 - It turns out: $c_1 = a/4$, $c_2 = 7a/4$ and $n_0 = 2 \max(|b|/a, \sqrt{|c|/a})$
 - Here we also can see that lower terms and constant coefficient can be ignored.
 - How about $g(n) = an^3 + bn^2 + cn + d$?

GROWTH OF FUNCTIONS

o Properties:

If $g_1(n)$ is $O(f_1(n))$, $g_2(n)$ is $O(f_2(n))$ then

- $g_1(n) + g_2(n)$ is $O(\max(f_1(n), f_2(n)))$
- $g_1(n)g_2(n)$ is $O(f_1(n)f_2(n))$
- $ag_1(n)$ is $O(f_1(n))$ for any constant a.

GROWTH OF FUNCTIONS

- Bounds for some functions.
 - Polynomials.

$$a_0 + a_1 n + \dots + a_d n^d$$
 is $O(n^d)$ if $a_d > 0$.

• Logarithms.

 $O(\log_a n) = O(\log_b n) = O(n) \text{ for } a, b > 0.$

• Exponentials.

For every r > 1 and every d > 0, $n^d = O(r^n)$.

· Constant.

O(c) = O(1) for any c.

• Typical growth functions.

<u>Function</u>	<u>Name</u>		
С	Constant		
$\log n$	Logarithmi		
n	Linear		
$n \log n$	Loglinear		
n^2	Quadratic		
n^3	Cubic		
2^n	Exponentia		

ALGORITHMS

• Running time examples

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	n^2	n^3	1.5^{n}	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
=1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

ALGORITHMS

- Statement complexity.
 - for/while loop:

for
$$i = 1$$
 to m:

if the computation time of S is $t_i(n)$ for each i then the computation time of the for statement is $\sum_{i=1}^{m} t_i(n)$.

If $t_i(n) = t(n)$ for all i then the computation time of the loop is mt(n).

ALGORITHMS

- Statement complexity.
 - *if/else* statement:

if (condition):

 S_1

else:

 S_2

let $t_1(n)$ and $t_2(n)$ be the computation times of S_1 and S_2 , respectively. The computation time of the **if** statement is $\max\{t_1(n), t_2(n)\}$.

ALGORITHMS

- Statement complexity.
 - Consecutive statements:

 S_1

Let $t_1(n)$ and $t_2(n)$ be the computation times of two consecutive statements, respectively. The total computation time of the two statements is $t_1(n) + t_2(n)$.

ALGORITHMS

- Linear Time: O(n)
 - Running time is at most a constant factor times the size of the input.

```
max = a<sub>1</sub>
for i = 2 to n {
  if (a<sub>i</sub> > max)
    max = a<sub>i</sub>
}
```

• Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$.

ALGORITHMS

- Quadratic Time: $O(n^2)$
 - Closest pair of points. Given a list of n points in the plane $(x_1, y_1), ..., (x_n, y_n)$, find the pair that is closest.
 - $O(n^2)$ solution. Try all pairs of points.

```
min = (x<sub>1</sub> - x<sub>2</sub>)<sup>2</sup> + (y<sub>1</sub> - y<sub>2</sub>)<sup>2</sup>
for i = 1 to n {
  for j = i+1 to n {
    d = (x<sub>i</sub> - x<sub>j</sub>)<sup>2</sup> + (y<sub>i</sub> - y<sub>j</sub>)<sup>2</sup>
    if (d < min)
      min = d
  }
}
```


ALGORITHMS

- O Polynomial Time: $O(n^k)$
- Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?
- o $O(n^k)$ solution. Enumerate all subsets of k nodes.

```
foreach subset S of k nodes {
  check whether S in an independent set
  if (S is an independent set)
    report S is an independent set
  }
}
```

- Checking whether S is an independent set is $O(k^2)$.
- Number of k element subsets is $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots(2)(1)} \leq \frac{n^k}{k!}$
- Total complexity is $O\left(\frac{k^2n^k}{k!}\right) = O(n^k)$.

ALGORITHMS

- Exponential Time
 - Given a graph, which is the largest independent set?
 - $O(n^2 2^n)$ solution. Enumerate all subsets.

```
S* = $
foreach subset S of nodes {
  check whether S in an independent set
  if (S is largest independent set seen so far)
    update S* = S
}
}
```


MERGE-SORT ALGORITHM

- •Step 1: divide the *n*-element sequence into two sub-problems of *n*/2 elements each.
- **oStep 2**: sort the two subsequences recursively using merge sort. If the length of a sequence is *1*, do nothing since it is already in order.
- •Step 3: merge the two sorted subsequences to produce the sorted answer.

MERGE-SORT ALGORITHM

• Pseudo-code

```
def merge_sort(A):
    middle = len(A) / 2
    left = merge_sort (A[1:middle])
    right = merge_sort (A[middle+1:end])
    return merge (left, right)
```


MERGE-SORT ALGORITHM • Pseudo-code def merge(A,B): $result = \langle empty \rangle$ while len(A) > 0 or len(B) > 0: if len(A) > 0 and len(B) > 0: if len(A) > 0 and len(B) > 0: if len(A) > 0 and len(B) > 0: if len(B) > 0: append len(B) > 0:

 ${\bf return}\ result$

MERGE-SORT ALGORITHM • Time complexity • There are two recursive calls, each of them sorts a sequence of n/2, and the statements after the two recursive calls take O(n) time. • Let t(n) be the time complexity of the algorithm, then t(n) = 2t(n/2) + cnand t(2) = O(1), where c is a constant. Solving the equation, $t(n) = O(n \log n)$.

