Notes on Number Theory

Ken Lee

Summer 2020

Contents

1	p-adic Fields		
	1.1	\mathbb{Z}_p and \mathbb{Q}_p	
		<i>p</i> -adic Equations	
		Units of \mathbb{Z}_p and \mathbb{Q}_p	
	1.4	Appendix: Category-Theoretic Results Used	2

These are notes based on Serre's "A Course in Arithmetic", with bits added here and there from various sources like Atiyah, nlab, etc.

1 p-adic Fields

In the following section, let $p \in \mathbb{Z}$, 0 < p be a prime.

1.1 \mathbb{Z}_p and \mathbb{Q}_p

Definition – Projective System

Let $\mathbb N$ be the naturals viewed as a category with the usual ordering. Let $\mathcal C$ be a category. Then a *projective system in* $\mathcal C$ is a contravariant functor from $\mathbb N$ to $\mathcal C$. For a projective system F, we will denote the image of the morphism $k \leq l$ with \downarrow_k^l .

Equivalently, a projective system in $\mathcal C$ is a collection of objects $(F_n)_{n\in\mathbb N}$ in $\mathcal C$ together with a collection of maps $(\downarrow_n^{n+1}:F_{n+1}\to F_n)_{n\in\mathbb N}$ such that for all $n\in\mathbb N$, $\downarrow_n^{n+1}\downarrow_{n+1}^{n+2}=\downarrow_n^{n+2}$.

Definition - Inverse Limit of a Projective System

Let \mathcal{C} be a category and $F: \mathbb{N}^{op} \to \mathcal{C}$ be a projective system. Then an *inverse limit of* F is just a limit of F as an \mathbb{N}^{op} -diagram.

Definition – p-adic Integers

Define the following projective system of commutative rings, $\mathbb{Z}/p^*\mathbb{Z}$ by :

- n ∈ Obj (N^{op}) → Z/pⁿZ
 For n ∈ N^{op}, ↓_nⁿ⁺¹: Z/pⁿ⁺¹Z → Z/pⁿZ is the natural projection (from the universal property of Z/pⁿ⁺¹Z).
 Then the *p-adic integers* Z_p is defined as the inverse limit of Z/p*Z. For n ∈ N, ε_n : Z_p → Z/pⁿZ will denote the projection that comes with the definition of Z_p as a limit.
 We have an explicit construction of Z_p as the subset of x ∈ ∏_{n∈N} Z/pⁿZ such that for all n ∈ N, ↓_nⁿ⁺¹ ε_{n+1}(x) = ε_n(x).

Remark - Meaning of p-adic integers. One should think of p-adic integers along the following analogy with complex analysis:

- 1. \mathbb{Z} is the ring of holomorphic functions on a space, the space being the set of primes of \mathbb{Z} .
- 2. A prime p is a point.
- 3. Taking an integer f to $\mathbb{Z}/p\mathbb{Z}$ is evaluation of the function f at the point p.
- 4. Sending an integer f to $\mathbb{Z}/p^n\mathbb{Z}$ is the taylor expansion of f at p up to terms of order n. You can write f in $\mathbb{Z}/p^n\mathbb{Z}$ as a polynomial in $1, p, \ldots, p^{n-1}$ with coefficients in $\{0, \ldots, p-1\}$.
- 5. Elements of \mathbb{Z}_p are precisely coherent collections of taylor expansions of higher and higher order, i.e. power series in p. This is formalized later.

Proposition – \mathbb{Z} injects into \mathbb{Z}_p

The canonical ring morphism $\mathbb{Z} \to \mathbb{Z}_p$ has kernel $\bigcap_{n \in \mathbb{N}} p^n \mathbb{Z} = 0$.

Proof. Clear from the construction of \mathbb{Z}_p .

Proof. We have a short exact sequence of projective systems in \mathbb{Z} -Mod,

$$0 \longrightarrow p^* \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/p^* \mathbb{Z} \longrightarrow 0$$

where the middle projective system is a constant at Z. Since limits commute with limits, taking the inverse limit is left exact and we obtain:

$$0 \longrightarrow \varprojlim p^* \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \varprojlim \mathbb{Z}/p^* \mathbb{Z}$$

The inverse limit of $\mathbb{Z}/p^*\mathbb{Z}$ in \mathbb{Z} -Mod is still \mathbb{Z}_p . (This follows elementarily, or from the fact that the forgetful functor from CRing to \mathbb{Z} -Mod is a right adjoint, and hence it preserves limits.) And the inverse limit of $p^*\mathbb{Z}$ is the intersection.

Proposition – Truncation

Let $n \in \mathbb{N}$. Then we have the following short exact sequence in $\mathbb{Z}\text{-}\mathbf{Mod}$:

$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{p^n} \mathbb{Z}_p \xrightarrow{\varepsilon_n} \mathbb{Z}/p^n \mathbb{Z} \longrightarrow 0$$

Proof. (Exactness at left) It suffices to show that multiplying by p is an injection, i.e. you can cancel by p. Let $x \in \mathbb{Z}_p$ such that px = 0. Then for $k \in \mathbb{N}$, $0 = \varepsilon_{k+1}(px) = p\varepsilon_{k+1}(x)$ implies the existence of a $x_{k+1} \in \mathbb{Z}$ such that $x_{k+1} = \varepsilon_{k+1}(x)$ in $\mathbb{Z}/p^{k+1}\mathbb{Z}$ and $p^{k+1} \mid px_{k+1}$. Then $p^k \mid x_{k+1}$, so $\varepsilon_k(x) = \bigvee_{k=1}^{k+1} \varepsilon_{k+1}(x) = \bigvee_{k=1}^{k+1} x_{k+1} = 0$. Therefore $\varepsilon_k(x) = 0$ for all $k \in \mathbb{N}$, i.e. x = 0.

(*Exactness at right*) ε_n is surjective.

(Exactness in middle) Clearly, $p^n \mathbb{Z}_p \subseteq \ker \varepsilon_n$. Let $x \in \ker \varepsilon_n$. In the following, for $k \in \mathbb{N}$, let $\pi_k : \mathbb{Z} \to \mathbb{Z}/p^k \mathbb{Z}$ be the natural projection. For $k \in \mathbb{N}$, let x_k be the unique integer in $\{0, \dots, p^k - 1\}$ such that $\pi_k(x_k) = \varepsilon_k(x)$ in $\mathbb{Z}/p^k \mathbb{Z}$. Then $\varepsilon_n(x) = 0$ implies for all $k \in \mathbb{N}$,

$$\pi_n(x_{n+k}) = \downarrow_n^{n+k} \pi_{n+k}(x_{n+k}) = \downarrow_n^{n+k} \varepsilon_{n+k}(x) = \varepsilon_n(x) = 0$$

that is to say $p^n \mid x_{n+k}$. Since $0 \le x_{n+k} < p^{n+k}$, there exists a unique $0 \le y_k < p^k$ such that $x_{n+k} = p^n y_k$ in \mathbb{Z} . Let $y \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}$ such that for all $k \in \mathbb{N}$, $\varepsilon_k(y) = \pi_k(y_k)$. Then for $k \in \mathbb{N}$, $\pi_{n+k}(x_{n+k+1}) = \downarrow_{n+k}^{n+k+1} \varepsilon_{n+k+1}(x) = \varepsilon_{n+k}(x) = \pi_{n+k}(x_{n+k})$ implies $p^{n+k} \mid x_{n+k+1} - x_{n+k} = p^n(y^{k+1} - y^k)$, and therefore $p^k \mid y^{k+1} - y^k$. Hence $y \in \mathbb{Z}_p$. Then for $k \in \mathbb{N}$,

$$\varepsilon_k(p^n y) = \pi_k(p^n y_k) = \downarrow_k^{n+k} \pi_{n+k}(p^n y_k) = \downarrow_k^{n+k} \pi_{n+k}(x_{n+k}) = \downarrow_k^{n+k} \varepsilon_{n+k}(x) = \varepsilon_k(x)$$

Therefore, $x = p^n y \in p^n \mathbb{Z}_p$.

Proof. (Generalized from nLab)

Consider the following short exact sequence of projective systems in \mathbb{Z} -Mod:

Since the left system is surjective, by taking inverse limits we obtain the desired short exact sequence in $\mathbb{Z}\text{-}\mathbf{Mod}$:

$$0 \longrightarrow \mathbb{Z}_p \stackrel{p^n}{\longrightarrow} \mathbb{Z}_p \stackrel{\varepsilon_n}{\longrightarrow} \mathbb{Z}/p^n \mathbb{Z} \longrightarrow 0$$

Remark – Meaning of Truncation. ε_n is precisely truncating a power series at terms of order n and higher. Then the theorem says the power series that are zero up to terms order n are precisely the ones consisting of terms of order n and higher.

Proposition – \mathbb{Z}_p **Local Ring**

For $n \geq 1$, $\mathbb{Z}/p^n\mathbb{Z}$ is a local ring with maximal ideal $p\mathbb{Z}/p^n\mathbb{Z}$. Hence \mathbb{Z}_p is a local ring with maximal ideal $p\mathbb{Z}_p$.

Proof. (Serre's)

Let $n \geq 1$. It suffices to show that $\mathbb{Z}/p^n\mathbb{Z} \setminus p\mathbb{Z}/p^n\mathbb{Z} \subseteq \mathbb{Z}/p^n\mathbb{Z}^\times$. Let $x \in \mathbb{Z}/p^n\mathbb{Z}$ be not divisible by p. Then there exists $y \in \mathbb{Z}/p^n\mathbb{Z}$ such that $\downarrow_1^n(xy) = 1$. Let $0 \leq x_n, y_n < p^n$ be representatives of x, y in \mathbb{Z} . Then there exists $z_n \in \mathbb{Z}$ such that $x_n y_n = 1 - p z_n$. Let $\pi_n : \mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ be the natural projection and $z := \pi_n(z_n)$. Then

we have

$$xy(1+pz+\cdots+(pz)^{n-1})=\pi_n((1-pz_n)(1+pz+\cdots+(pz)^{n-1}))=\pi_n(1-(pz_n)^n)=1$$

Thus *x* is a unit.

To show \mathbb{Z}_p is a local ring with maximal ideal $p\mathbb{Z}_p$, it again suffices that $\mathbb{Z}_p \setminus p\mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$. Let $x \in \mathbb{Z}_p \setminus p\mathbb{Z}_p$. Then for all $n \ge 1$, $0 \ne \varepsilon_1(x) = \downarrow_1^n \varepsilon_n(x)$. Since $\downarrow_1^n : (\mathbb{Z}/p^n\mathbb{Z})/(p\mathbb{Z}/p^n\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$ as rings, $\varepsilon_n(x) \in \mathbb{Z}/p^n\mathbb{Z}^\times$ by the above. Let $y_n = \varepsilon_n(x)^{-1}$. Then uniqueness of inverses implies $\downarrow_n^{n+1} y_{n+1} = y_n$, i.e. there exists a unique $y \in \mathbb{Z}_p$ such that for all n, $\varepsilon_n(y) = y_n$. Then xy = 1, i.e. $x \in \mathbb{Z}_p^{\times}$.

Proof. (via geometric series)

We show \mathbb{Z}_p is local directly. Since $p\mathbb{Z}_p = \ker \varepsilon_1$ which is a maximal ideal in \mathbb{Z}_p , it suffices that $p\mathbb{Z}_p$ is the Jacobson radical of \mathbb{Z}_p , equivalently $1 - p\mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$.

Let $x \in p\mathbb{Z}_p$. All we need to do is justify $1/(1-x) = \sum_{k=0}^{\infty} x^k$ is an element in \mathbb{Z}_p . For $k \in \mathbb{N}$, define $y_k := \sum_{0 \le l < k} \varepsilon_k(x^l) \in \mathbb{Z}/p^k\mathbb{Z}$ and let y be the unique element in $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ such that for all $k \in \mathbb{N}$, $\varepsilon_k(y) = y_k$. Then $x \in p\mathbb{Z}_p$ implies $x^k \in p^k\mathbb{Z}_p = \ker \varepsilon_k$, which shows that $y \in \mathbb{Z}_p$ and is the desired inverse of

Remark – *Why* \mathbb{Z}_p *is a Local Ring*. This is the analogue of the fact that a power series is invertible if and only if its constant coefficient is invertible.

Let $\mathbb{N}^{\infty} := \mathbb{N} \sqcup \{\infty\}$. Define \leq on \mathbb{N}^{∞} as follows:

- For all $n, m \in \mathbb{N}^{\infty} \setminus \{\infty\}$, $n \leq m$ is as usual.

- For all $n \in \mathbb{N}^{\infty}$, $n \leq \infty$.

Define + on \mathbb{N} as follows:

- For $n, m \in \mathbb{N}^{\infty} \setminus \{\infty\}$, n + m is as usual.

- For $n \in \mathbb{N}^{\infty}$, $n + \infty = \infty$.

Definition – *p*-adic Valuation, Norm

The *p-adic valuation* is defined as the following:

$$v_p: \mathbb{Z}_p \to \mathbb{N}^{\infty}, x \mapsto \sup \{n \in \mathbb{N}^{\infty} \mid \varepsilon_n(x) = 0\}$$

From this, we define the *p-adic norm*,

$$|\star|_p : \mathbb{Z}_p \to [0, \infty) \subseteq \mathbb{R}, x \mapsto \begin{cases} p^{-v_p(x)} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Remark – Meaning of p-adic Norm. Continuing the analogy, $|\star|_p$ formalizes the idea that higher order terms are smaller and in the limit, zero.

oposition – Unique Decomposition in \mathbb{Z}_p

- Let $x \in \mathbb{Z}_p, x \neq 0$. Then $1. \ v_p(x) \neq \infty.$ $2. \text{ Since by definition, } \varepsilon_{v_p(x)}(x) = 0 \text{ and multiplying by } p^{v_p(x)} \text{ is injective, there exists a unique } u(x) \in \mathbb{Z}_p \text{ such that } x = p^{v_p(x)}u(x). \text{ Then } u(x) \in \mathbb{Z}_p^{\times}$
 - r all $n \in \mathbb{N}$ and $u \in \mathbb{Z}_p^{\times}$, $x = p^n u$ implies $n = v_p(x)$ and u = u(x)

Proof.

- (1) For $n \in \mathbb{N}$, $\varepsilon_n(x) = 0$ implies for all $k \leq n$, $\varepsilon_k(x) = 0$. Since $x \neq 0$, this implies the set of n such that $\varepsilon_n(x)=0$ is bounded above by a natural $N\in\mathbb{N}$. Hence $v_p(x)\leq N<\infty$.
- (2) Since \mathbb{Z}_p is a local ring with maximal ideal $p\mathbb{Z}_p$, it suffices to show that $u(x) \notin p\mathbb{Z}_p = \ker \varepsilon_1$. Well, if $u(x) \in p\mathbb{Z}_p$, then $x \in p^{v_p(x)} + 1\mathbb{Z}_p$, which implies $\varepsilon_{v_p(x)+1}(x) = 0$, contradicting the maximality of $v_p(x)$.
- (3) Let $n \in \mathbb{N}$, $u \in \mathbb{Z}_p^{\times}$ such that $x = p^n u$. Already, $x \in p^n \mathbb{Z}_p$ implies $n \leq v_p(x)$ by definition of $v_p(x)$. Then $u \in p^{v_p(x)-n}\mathbb{Z}_p$ and $u \in \mathbb{Z}_p^{\times}$ implies $v_p(x) = n$. Then u = u(x) since multiplying by $p^{v_p(x)}$ is injective.

Proposition – $(\mathbb{Z}_p, |\star|_p)$ Normed Ring

- The following are true:

 1. (Positive Definite) For all $x \in \mathbb{Z}_p$, $|x|_p = 0$ if and only if x = 0.

 2. (Ultrametric Property) For all $x, y \in \mathbb{Z}_p$, $|x + y|_p \le \max(|x|_p, |y|_p)$.

 3. (Multiplicative) For $x, y \in \mathbb{Z}_p$, $|xy|_p = |x|_p |y|_p$.

 4. (Normalized) $|1|_p = 1$ Hence \mathbb{Z}_p is a topological ring with the topology from $|\star|_p$.

Proof.

- (1) Clear.
- (2) It suffices to show $\min(v_p(x),v_p(y)) \leq v_p(x+y)$. Let $n=\min(v_p(x),v_p(y))$. Then $\varepsilon_n(x+y)=\varepsilon_n(x)+\varepsilon_n(x)$ $\varepsilon_n(y) = 0$. So $n \le v_p(x+y)$ by its maximality.

- (3) It suffices to show $v_p(xy) = v_p(x) + v_p(y)$. This follows from the result on unique decomposition.
- (4) $v_p(1) = 0$ since 1 is a unit.

Proposition – \mathbb{Z}_p Integral Domain For all $x,y\in\mathbb{Z}_p$, xy=0 implies x=0 or y=0.

Proof. Follows from the norm being multiplicative and \mathbb{R} being an integral domain.

Proof. (Without using the norm)

Let $x, y \in \mathbb{Z}_p$, $x \neq 0 \neq y$. Then $xy = p^{v_p(x) + v_p(y)}u(x)u(y)$ from unique decomposition. Then xy = 0 yields $0 = p^{v_p(x) + v_p(y)}$, which implies \mathbb{Z} does not inject into \mathbb{Z}_p , a contradiction.

Proposition – Ultrametric Property Let (X,d) be a metric space with d satisfying the *ultrametric property* : for all $x,y,z\in X$, $d(x,z)\leq \max(d(x,y),d(y,z))$. Then for all sequences $a:\mathbb{N}\to X$, a_n is cauchy if and only if $\lim_{n\to\infty}d(a_n,a_{n+1})=0$.

Proof. Elementary.

Proposition – Topological Properties of \mathbb{Z}_p

- 1. (Topology) For each $x \in \mathbb{Z}_p$, the set of balls $\left\{B_{p^{-n}(x)}\right\}_{n \in \mathbb{N}}$ is a prefilter that generates the neighbourhood filter of x under the subspace topology of \mathbb{Z}_p in $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ with the product topology from each $\mathbb{Z}/p^n\mathbb{Z}$ being discrete. That is to say, the topology from the norm is equal to the topology from the construction of \mathbb{Z} .

 - 2. (Completeness) \mathbb{Z}_p is compact. Hence a complete metric space under $|\star|_p$.

 3. (Density of \mathbb{Z} in \mathbb{Z}_p) For each $x \in \mathbb{Z}_p$, there exists unique $a : \mathbb{N} \to \{0, \dots, p-1\}$ such that $x = \sum_{k=0}^{\infty} a_k p^k$. Furthermore, for all $a : \mathbb{N} \to \{0, \dots, p-1\}$, $\sum_{k=0}^{\infty} a_k p^k$ is convergent in \mathbb{Z}_m .

Proof.

- (1) Let $x \in \mathbb{Z}_p$. By the definition of product topology, the neighbourhood filter of x is generated by the set of preimages of open neighbourhoods of $\varepsilon_n(x)$, where n ranges over \mathbb{N} . Since the $\mathbb{Z}/p^n\mathbb{Z}$ are all discrete, the neighbourhood filter of x is generated by the smaller set of $\left\{\varepsilon_n^{-1}(\varepsilon_n(x))\right\}_{n\in\mathbb{N}}=\left\{x+p^n\mathbb{Z}_p\right\}$ $\left\{B_{p^{-n+1}}(x)\right\}_{n\in\mathbb{N}}$, hence the result.
- (2) Define $C: \mathbb{N} \to 2^{\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}}$ by mapping $n \in \mathbb{N}$ to the set of elements x such that $\downarrow_n^{n+1} \varepsilon_{n+1}(x) = \varepsilon_n(x)$. Then $\mathbb{Z}_p = \bigcap_{n \in \mathbb{N}} C_n$. Since $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}$ is compact by Tychonoff's theorem and closed in compact implies compact, it suffices to show that each \mathcal{C}_n is closed. We can describe \mathcal{C}_n explicitly as

$$C_n = \bigcup_{y \in \mathbb{Z}/p^n \mathbb{Z}} \bigcup_{z \in (\downarrow_n^{n+1})^{-1} y} \varepsilon_n^{-1} y \cap \varepsilon_{n+1}^{-1} z$$

Since every $\mathbb{Z}/p^n\mathbb{Z}$ is discrete, this is a finite union of closed sets and hence is closed.

(3) In the following, let $\pi_k:\mathbb{Z}\to\mathbb{Z}/p^k\mathbb{Z}$ be the natural map. Let $x\in\mathbb{Z}_p$. For $k\in\mathbb{N}$, let $x_k\in\mathbb{Z}$ be unique such that $\pi_k(x_k)=\varepsilon_k(x)$ and $0\le x_k< p^k$. There exists a unique $a^{(k)}:\mathbb{N}\to\{0,\ldots,p-1\}$ such that $x_k=\sum_{l\in\mathbb{N}}a_l^{(k)}p^l$. Since $\pi_k(x_{k+1}-a^{(k+1)}(k)p^k)=\pi_k(x_{k+1})=\downarrow_k^{k+1}\varepsilon_{k+1}(x)=\varepsilon_k(x)=x_k$ and $0\le x_{k+1}-a^{(k+1)}(k)p^k< p^k$, we have $x_{k+1}=x_k+a^{(k+1)}(k)p^k$. Therefore $a:\mathbb{N}\to\{0,\ldots,p-1\}$, $k\mapsto a^{(k)}(k)$. The claim that $x=\sum_{k=0}^\infty a_kp^k$ is equivalent to $x=\lim_{k\to\infty}x_k$. Since the neighbourhood filter of x is generated

by $B_{p^{-n}}(x)$, it suffices x_k converges into each of these balls. Let $n \in \mathbb{N}$. Then for $k \ge n+1$, $\varepsilon_{n+1}(x_k-x) = \downarrow_{n+1}^k$ $\varepsilon_k(x_k - x) = 0$. Therefore $n < v_p(x_k - x)$, i.e. $x_k \in B_{p^{-n}}(x)$. Hence, $x_k \to x$.

Let $b: \mathbb{N} \to \{0,\dots,p-1\}$ such that $x = \sum_{k=0}^\infty b_k p^k$. Then $\pi_1(a_0) = \varepsilon_1(x) = \pi_1(b_0)$. Since $0 \le a_0, b_0 < p$, $a_0 = b_0$. For $k \in \mathbb{N}$, $\pi_{k+1}(a_k p^k) = \varepsilon_{k+1}(x - \sum_{0 \le l < k} a_l p^l) = \varepsilon_{k+1}(x - \sum_{0 \le l < k} b_l p^l) = \pi_{k+1}(b_k p^k)$ by induction. Since $0 \le a_k, b_k < p$, $a_k p^k = b_k p^k$ and hence $a_k = b_k$. Therefore a = b.

A general power series in p converges because $|a_k p^k|_p \leq |p|_p^k = p^{-k} \to 0$, the ultrametric property of the norm and completeness of \mathbb{Z}_p .

Definition – p-adic Rationals \mathbb{Q}_p is defined as the field of fractions of \mathbb{Z}_p . **Proposition** – \mathbb{Q}_p as Localizing \mathbb{Z}_p at pAs \mathbb{Z}_p algebras, \mathbb{Q}_p is canonically isomorphic to $(\mathbb{Z}_p)_p = \mathbb{Z}_p[X]/(pX-1)\mathbb{Z}_p[X]$, the localization of \mathbb{Z}_p with respect to the element p.

Proof. Since p is invertible in \mathbb{Q}_p , there is a canonical \mathbb{Z}_p -algebra morphism from $(\mathbb{Z}_p)_p$ to \mathbb{Q}_p . Since \mathbb{Z}_p be an integral domain, \mathbb{Z}_p injects into \mathbb{Q}_p and thus $(\mathbb{Z}_p)_p$ injects into \mathbb{Q}_p as well. By unique decomposition, every element of \mathbb{Q}_p is of the form $(p^n u)/(p^m v)$ where $n, m \in \mathbb{N}$ and $u, v \in \mathbb{Z}_p^{\times}$. Therefore every element of \mathbb{Q}_p is of the form $p^k w$ where $k \in \mathbb{Z}$ and $w \in \mathbb{Z}_p^{\times}$. This shows $(\mathbb{Z}_p)_p$ surjects onto \mathbb{Q}_p , i.e. the canonical morphism from $(\mathbb{Z}_p)_p$ to \mathbb{Q}_p is an isomorphism.

Remark – *Meaning of* \mathbb{Q}_p . Continuing with the analogy, \mathbb{Q}_p is the field of Laurent series at p with p as a nonessential singularity.

Definition – p-adic Valuation on \mathbb{Q}_p

We extend the p-adic valuation to \mathbb{Q}_p by :

$$v_p: \mathbb{Q}_p \to \mathbb{N}^{\infty}, \frac{x}{p^n} \in (\mathbb{Z}_p)_p \mapsto v_p(x) - n$$

From this, we extend the p-adic norm as well :

$$|\star|_p: \mathbb{Q}_p \to [0,\infty) \subseteq \mathbb{R}, x \mapsto \begin{cases} p^{-v_p(x)} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Proposition – Topological Properties of \mathbb{Q}_p

The following are true:

- (ℚ_p, |⋆|_p) is a normed ring (field) and hence a topological ring.
 ℤ_p is homeomorphic to its canonical image in ℚ_p, where it is an open subring of ℚ_p. Hence, ℚ_p is locally compact.

4. Since \mathbb{Z} injects canonically into \mathbb{Q}_p , \mathbb{Q} injects canonically into \mathbb{Q}_p as well. Then \mathbb{Q} is dense \mathbb{Q}_p .

Proof.

- (1) Same proof as for \mathbb{Z}_p .
- (2) Since the norm of \mathbb{Q}_p extends that of \mathbb{Z}_p , \mathbb{Z}_p is homeomorphic to its canonical image in \mathbb{Q}_p . $\mathbb{Z}_p = B_p(0)$, since the image of $|\star|_p$ is discrete. For all points $x \in \mathbb{Q}_p$, the clopen ball of size 1 around x is homeomorphic to \mathbb{Z}_p (by translation). Hence every x has a compact neighbourhood.
- (3) Let $a: \mathbb{N} \to \mathbb{Q}_p$ be a cauchy sequence. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \in B_1(a_N) = a_N + \mathbb{Z}_p$. Since \mathbb{Z}_p is complete and $B_1(a_N)$ is isometric to \mathbb{Z}_p , a_n converges in $B_1(a_N)$ and hence in \mathbb{Q}_p .
- (4) follows from elements in \mathbb{Q}_p being of the form $p^{-n}x$ where $x \in \mathbb{Z}_p$ and \mathbb{Z} being dense in \mathbb{Z}_p .

1.2 *p*-adic Equations

Proposition - Inverse Limit of Finite, Non-Empty System is Non-Empty

Let $D: \mathbb{N}^{op} \to \mathbf{Set}$ be a projective system such that for all $n \in \mathbb{N}$, D_n is finite and non-empty. Then $\varprojlim D$ is nonempty.

Proof. If D is a surjective system, then $\lim D$ is non-empty. We will reduce to this case.

For $n \in \mathbb{N}$, consider the descending sequence of subsets $\left\{ \downarrow_n^k D_k \mid n \leq k \right\}$ in D_n . Since D_n is finite, there exists an N such that for all $k \geq N$, $\downarrow_n^k D_k = \downarrow_n^N D_N$. For $n \in \mathbb{N}$, let N(n) be the minimal natural with respect to this property. Let $E_n := \downarrow_n^{N(n)} D_{N(n)}$. Since $D_{N(n)} \neq \emptyset$, $E_n \neq \emptyset$. For $n \in \mathbb{N}$, let $M = \max(N(n), N(n+1))$. Then $E_n = \downarrow_n^M D_M = \downarrow_{n+1}^{n+1} \downarrow_{n+1}^M D_M = \downarrow_{n+1}^{n+1} E_{n+1}$. Thus $E : \mathbb{N}^{op} \to \mathbf{Set}$ is a non-empty, surjective system that injects into D. Therefore $\emptyset \neq \varprojlim_{n \in \mathbb{N}} E \to \varprojlim_{n \in \mathbb{N}} D$.

Notation. Let $n \in \mathbb{N}, 0 < m$. Then there is a canonical morphism of \mathbb{Z}_p algebras from $\mathbb{Z}_p[X_1, \dots, X_m]$ to $\mathbb{Z}/p^n\mathbb{Z}[X_1, \dots, X_m]$. For $f \in \mathbb{Z}_p[X_1, \dots, X_m]$, let f_n denote its image in $\mathbb{Z}/p^n\mathbb{Z}[X_1, \dots, X_m]$. More explicitly, for $f = \sum_{t \in \mathbb{N}^m} a_t \underline{X}^t$,

$$f_n := \sum_{t \in \mathbb{N}^m} \varepsilon_n(a_t) \underline{X}^t$$

Proposition – p-adic Affine Variety is Inverse Limit

Let 0 < m, $I \subseteq \mathbb{Z}_p[X_1, \dots, X_m]$, I_n the image of I in $\mathbb{Z}/p^n\mathbb{Z}[X_1, \dots, X_m]$ for $n \in \mathbb{N}$. Then $\mathbb{V}(I) \cong \varprojlim \mathbb{V}(I_\star)$ as sets. In particular, the variety defined by I is non-empty if and only if for all $n \in \mathbb{N}$, its projection mod p^n is non-empty.

Proof. We first show that \mathbb{Z}_p^m has the universal property of $\varprojlim (\mathbb{Z}/p^*\mathbb{Z})^m$. Let X be an arbitrary set. We have the following chain of set-theoretic isomorphisms :

$$\mathbf{Set}(X,\mathbb{Z}_p^m) \cong \left(\mathbf{Set}(X,\mathbb{Z}_p)\right)^m \cong \left(\mathbf{Set}^{\mathbb{N}^{op}}(\underline{X},\mathbb{Z}/p^*\mathbb{Z})\right)^m \cong \mathbf{Set}^{\mathbb{N}^{op}}(\underline{X},(\mathbb{Z}/p^*\mathbb{Z})^m)$$

Thus $\mathbb{Z}_p^m \cong \varprojlim (\mathbb{Z}/p^*\mathbb{Z})^m$ in a unique way that commutes with their projections to $(\mathbb{Z}/p^n\mathbb{Z})^m$.

For $x \in \mathbb{Z}_p^m$ and $f \in \mathbb{Z}_p[X_1, \dots, X_m]$, f(x) = 0 if and only if for all $n \in \mathbb{N}$, $\varepsilon_n \circ f(x) = 0$. For $n \in \mathbb{N}$,

$$\varepsilon_n \circ f(x) = \varepsilon_n \left(\sum_{t \in \mathbb{N}^m} a_t x^t \right) = \sum_{t \in \mathbb{N}^m} \varepsilon_n(a) \varepsilon_n^m(x)^t = f_n \circ \varepsilon_n^m(x)$$

Therefore f(x)=0 if and only if for all $n\in\mathbb{N}$, $f_n\circ\varepsilon_n^m(x)=0$. This shows that $\mathbb{V}(I)\cong \varprojlim \mathbb{V}(I_\star)$ under the isomorphism $\mathbb{Z}_p^m \cong \underline{\lim} (\mathbb{Z}/p^*\mathbb{Z})^m$.

The 'in particular' follows from inverse limit of finite, nonempty is nonempty.

Let $m, n \in \mathbb{N}^+$. For $x \in \mathbb{Z}_p^m$, x is called *primitive* when $\varepsilon_1^m(x) \neq 0$, i.e. when it is not divisible by p. Similarly, for $x \in (\mathbb{Z}/p^n\mathbb{Z})^m$, x is called primitive when $(\downarrow_1^n)^m x \neq 0$.

Definition – Homogeneous Polynomials

Let $1 \leq m$, A be a commutative ring, $f \in A[X_1, \ldots, X_m]$. Then f is called *homogeneous* when for all $\lambda \in A$, $f(\lambda X) = \lambda^{\deg f} f(X)$. Equivalently, all monomials in f with non-zero coefficients

Proposition – \mathbb{Q}_p , \mathbb{Z}_p **Points of Projective Varieties**(?)

Let $1 \leq m, I \subseteq \mathbb{Z}_p[X_1, \dots, X_m]$, for all $f \in I$, f homogeneous. Then the following are equiva-

- There exists x ∈ V[Q_p]I such that x ≠ 0.
 There exists x ∈ V[Z_p]I such that x is primitive.
 For all n ≥ 1, there exists x_n ∈ V[Z/pⁿZ]I_n such that x_n primitive.

Proof.

 $(1\Leftrightarrow 2)$ The reverse implication is clear. For forwards, let $x=(x_i)_{i=1}^m\in \mathbb{V}[\mathbb{Q}_p]I$, $x\neq 0$. Let $h:=\inf\{v_p(x_i)\,|\,i=1,\ldots,m\}$. Since $x\neq 0$, $h<\infty$. Let $y:=p^{-h}x$. Then by definition of $h,y\in\mathbb{Z}_p^m$ and there exists one component that is not-divisible by p, i.e. y is primitive. Then $f(y) = p^{-h \deg f} f(x) = 0$ by homogeneity of f. Thus y is as desired.

 $(2 \Leftrightarrow 3)$ It suffices to show that the sets of primitive elements in $\mathbb{V}[\mathbb{Z}/p^n\mathbb{Z}]I_n$ forms a projective subsystem of $\mathbb{V}[\mathbb{Z}/p^*\mathbb{Z}]I_*$ and that the inverse limit is isomorphic to the primitive elements in $\mathbb{V}[\mathbb{Z}_p]I$.

Let $P: \mathbb{N}^{op} \to \mathbf{Set}$, $n \mapsto \mathbb{V}[\mathbb{Z}/p^n\mathbb{Z}]I_n \cap \{x \mid x \text{ primitive}\}$. By the definition of $\mathbb{V}[\mathbb{Z}/p^*\mathbb{Z}]I_*$ being projective, $\downarrow_n^{n+1}{}^m$ takes primitive zeros to primitive zeros. This induces the structure of a projective system for P, making it a subsystem of $\mathbb{V}[\mathbb{Z}/p^*\mathbb{Z}]I_*$. Hence, $\varprojlim P$ injects into $\mathbb{V}[\mathbb{Z}_p]I$ canonically. We identify it with its image. Clearly, for any $x \in \lim P$, $\varepsilon_1(x) \neq 0$. So $\lim P$ is a subset of primitive elements of $\mathbb{V}[\mathbb{Z}_p]I$. Conversely,

gives you a primitive zero for n=1 via \downarrow_1^n . We cannot let n=0 though, since there are no primitive elements in $\mathbb{Z}/\mathbb{Z}^m=0^m$. ^aSerre only requires n > 1. This is indeed equivalent since have a primitive zero for any n > 1 automatically

any primitive element x of $\mathbb{V}[\mathbb{Z}_p]I$ defines a natural transformation from the singleton set * as a constant functor to the projective system P, i.e. an element of $\lim P$ that maps to x. Hence $\lim P$ is equal to the set of primitives in $\mathbb{V}[\mathbb{Z}_p]I$.

Remark – Goal of this section. To give conditions to lift approximate solutions mod p^n to solutions in \mathbb{Z}_p . This will be done via the p-adic analogue of Newton's method. As with Newton's method from real analysis, we need mean value theorem.

Proposition – Mean Value Theorem for Polynomials

Let A be a commutative ring, $f \in A[X]$, $a \in A$. Then f - f(a) = f'(a)(X - a) in $A[X]/(X - a)^2A[X]$.

Proof. If the result is true for $g, h \in A[X]$, then it's true for $\lambda g + h$ where $\lambda \in A$. Therefore it suffices to show the result for monomial X^n . This follows from induction.

roposition – p-adic Newton's Method

Then there exists $\overline{x} \in \mathbb{Z}_p$ such that

1. $|f(\overline{x})|_p \leq p^{-1} |f(x)|_p$ 2. $|\overline{x} - x|_p \leq \frac{|f(x)|_p}{|f'(x)|_p}$ 3. $|f'(\overline{x})|_n = |f'(x)|_n$

$$|f(x)|_p < |f'(x)|_p^2$$

1.
$$|f(\overline{x})|_p \le p^{-1} |f(x)|_p$$

2.
$$|\overline{x} - x|_p \le \frac{|f(x)|_p}{|f'(x)|_p}$$

3.
$$|f'(\overline{x})|_p = |f'(x)|_p$$

Proof. If f(x) = 0, then pick $\overline{x} = x$. So WLOG $0 < |f(x)|_p$. Note that since all p-adic integers have norm ≤ 1 , we have $|f(x)|_p < |f'(x)|_p$. Then $1 < |f'(x)|_p |f(x)|_p^{-1} \in p\mathbb{Z} \subseteq p\mathbb{Z}_p$. Define

$$\overline{x} := x + \frac{|f'(x)|_p}{|f(x)|_p} y$$

for some $y \in \mathbb{Z}_p$ to be determined. Then by applying mean value theorem to f, we have

$$f(\overline{x}) = f(x) + f'(x)(\overline{x} - x) + a_0(\overline{x} - x)^2$$

= $f(x) + f'(x)y |f'(x)|_p |f(x)|_p^{-1} + a |f'(x)|_p^2 |f(x)|_p^{-2}$

for some $a, a_0 \in \mathbb{Z}_p$. By definition of $|\star|_p$, the topology of \mathbb{Z}_p and unique decomposition, $f(x) = b |f(x)|_p^{-1}$ for some $b\in\mathbb{Z}_p^{\times}$ and $f'(x)=c\left|f'(x)\right|_p^{-1}$ for some $c\in\mathbb{Z}_p^{\times}$. We thus have

$$f(\overline{x}) = (b + yc) |f(x)|_p^{-1} + a |f'(x)|_p^2 |f(x)|_p^{-2}$$

Choosing $y := -bc^{-1}$, we obtain :

$$|f(\overline{x})|_{p} = \left| a |f'(x)|_{p}^{2} |f(x)|_{p}^{-2} \right|_{p} \le |f(x)|_{p}^{2} |f'(x)|_{p}^{-2} < |f(x)|_{p} \Rightarrow |f(\overline{x})|_{p} \le p^{-1} |f(x)|_{p}$$

$$|f'(x)|_{p} |\overline{x} - x|_{p} = \left| f(\overline{x}) - f(x) - a_{0}(\overline{x} - x)^{2} \right|_{p} \le \max(|f(\overline{x})|_{p}, |f(x)_{p}|, |a_{0}(\overline{x} - x)^{2}|_{p}) = |f(x)|_{p}$$

The implication followed from $|\mathbb{Z}_p|_p = \{1, p^{-1}, p^{-2}, \dots, 0\}$. It remains to show $|f'(\overline{x})|_p = |f'(x)|_p$. By applying mean value theorem to f', we have for some $d, e \in \mathbb{Z}_p$,

$$\begin{split} f'(\overline{x}) &= f'(x) + f''(x)y \left| f'(x) \right|_p \left| f(x) \right|_p^{-1} + d \left| f'(x) \right|_p^2 \left| f(x) \right|_p^{-2} \\ &= \left| f'(x) \right|_p^{-1} \left(c + e \left| f'(x) \right|^2 \left| f(x) \right|_p^{-1} + d \left| f'(x) \right|_p^3 \left| f(x) \right|_p^{-2}) \end{split}$$

Since $\left| e \left| f'(x) \right|^2 |f(x)|_p^{-1} \right|_p \le |f(x)| \left| f'(x) \right|_p^{-2} < 1$ and $\left| d \left| f'(x) \right|_p^3 |f(x)|_p^{-2} \right|_p \le |f(x)|_p^2 |f'(x)|_p^{-4} < 1$, the term being multiplied by $|f'(x)|_p^{-1}$ is still a unit, and hence norm 1. It then follows from taking norms that $|f'(\overline{x})|_p = \left| |f'(x)|_p^{-1} \right|_p = |f'(x)|_p$.

$$|f(x)|_p < \left| \frac{\partial f}{\partial X_j} \right|_x \Big|_p^2$$

Proposition – Lifting Solutions / Generalized Hensel's Lemma Let
$$1 \leq m, f \in \mathbb{Z}_p[X_1,\dots,X_m], x \in \mathbb{Z}_p^m$$
 such that there exists $1 \leq j \leq m$ satisfying
$$|f(x)|_p < \left|\frac{\partial f}{\partial X_j}\right|_x\Big|_p^2$$
 Then there exists $y \in \mathbb{Z}_p^m$ such that $f(y) = 0$ and
$$\max(|\pi_i(y-x)|_p)_{1 \leq i \leq m} \leq \frac{|f(x)|_p}{\left|\frac{\partial f}{\partial X_j}\right|_x\Big|_p}$$
 where $\pi_i : \mathbb{Z}_p^m \to \mathbb{Z}_p$ takes the i -th component.

Proof. We induct on m.

Suppose m=1. Define $x_0:=x$. Then $|f(x_0)|_p<|f'(x_0)|_p^2$, so by p-adic Newton's method, we have $x_1\in\mathbb{Z}_p$

- 1. $|f(x_1)|_p \leq p^{-1} |f(x_0)|_p$
- 2. $|x_1 x_0|_p \le \frac{|f(x_0)|_p}{|f'(x_0)|_p}$
- 3. $|f'(x_1)|_p = |f'(x_0)|_p$

Then $|f(x_1)|_p < |f'(x_1)|_p^2$. By induction, we have a sequence $x : \mathbb{N} \to \mathbb{Z}_p$ such that for all $k \in \mathbb{N}$,

- 1. $|f(x_{k+1})|_p \le p^{-1} |f(x_k)|_p \le p^{-(k+1)} |f(x_0)|_p$
- 2. $|x_{k+1} x_k|_p \le \frac{|f(x_k)|_p}{|f'(x_k)|_p} \le \frac{|f(x_0)|_p}{p^k |f'(x_0)|}$
- 3. $|f'(x_{k+1})|_p = |f'(x_k)|_p$

From (1), we see that $\lim_{k\to\infty} f(x_k)=0$. From (2) and the ultrametric property of $|\star|_p$, there exists $y\in\mathbb{Z}_p$ such that $\lim_{k\to\infty} x_k=y$. Since \mathbb{Z}_p is a topological ring with topology from $|\star|_p$ and the map $\mathbb{Z}_p\to 0$

 $\mathbb{Z}_p, x \mapsto f(x)$ is defined by finitely many additions and multiplications, it is continuous and hence f(y) = x $f(\lim_{k\to\infty} x_k) = \lim_{k\to\infty} f(x_k) = 0$. For $k \in \mathbb{N}$, again by the ultrametric property,

$$|x_k - x|_p \le \max(|x_0 - x|_p, \dots, |x_k - x|_p) \le \frac{|f(x_0)|_p}{|f'(x_0)|_p}$$

Taking limits, we obtain

$$|y - x|_p \le \frac{|f(x_0)|_p}{|f'(x_0)|_p}$$

as desired.

For 1 < m, we reduce to the single variable case. Define $\overline{f}(X_j) := f(\pi_1(x), \dots, X_j, \dots, \pi_m(x)) \in \mathbb{Z}_p[X_j]$. By the single variable case, there exists $y_j \in \mathbb{Z}_p$ such that $\overline{f}(y_j) = 0$ and

$$|y_j - \pi_j(x)|_p \le \frac{\left|\overline{f}(\pi_j(x))\right|_p}{\left|\overline{f}'(\pi_j(x))\right|_p} = \frac{|f(x)|_p}{|f'(x)|_p}$$

Let $y = (\pi_1(x), \dots, y_j, \dots, \pi_m(x)) \in \mathbb{Z}_p^m$. Then $f(y) = \overline{f}(y_j) = 0$ and for all $1 \le i \le m$,

$$|\pi_i(y-x)|_p \begin{cases} = 0 & i \neq j \\ \leq \frac{|f(x)|_p}{|f'(x)|_p} & i = j \end{cases}$$

Proposition – Hensel's Lemma Let $1 \leq m, f \in \mathbb{Z}_p[X_1, \dots, X_m], x \in \mathbb{Z}_p^m, \varepsilon_1(f(x)) = 0, 1 \leq i \leq m, \varepsilon_1(\frac{\partial f}{\partial X_i}\Big|_x) \neq 0$. Then there exists $y \in \mathbb{Z}_p^m$ such that f(y) = 0 and $\varepsilon_1^m(y - x) = 0$.

 $\textit{Proof.} \ \ \varepsilon_1(f(x)) \ = \ 0 \ \text{is equivalent to} \ \left|f(x)\right|_p \ \leq \ p^{-1} \ \text{and} \ \ \varepsilon_1\big(\frac{\partial f}{\partial X_i}\Big|_x\big) \ \neq \ 0 \ \text{is equivalent to} \ \left|\frac{\partial f}{\partial X_i}\Big|_x\Big|_p \ = \ 1. \ \ \text{The proof.}$ conditions of lifting solutions are satisfied, hence we have $y \in \mathbb{Z}_p^m$ such that for all $1 \leq i \leq m$

$$\max(|\pi_i(y-x)|_p)_{1 \le i \le m} \le \frac{|f(x)|_p}{\left|\frac{\partial f}{\partial X_j}\right|_x|_p}$$

The inequality is equivalent to $\varepsilon_1^m(y-x)=0$.

Proposition – Lifting Solutions of Quadratic Forms for $p \neq 2$ Let $p \neq 2, 1 \leq m, f = \sum_{i,j=1}^{m} a_{ij} X_i X_j \in \mathbb{Z}_p[X_1, \dots, X_m]$ where $1. \ [a_{ij}]^\top = [a_{ij}]$ $2. \ \det[a_{ij}] \in \mathbb{Z}_p^\times$

i.e. f is a non-degenerate quadratic form. Let $a \in \mathbb{Z}_p$, $x \in \mathbb{Z}_p^m$ such that x is primitive and $\varepsilon_1(f(x)) = \varepsilon_1(a)$. Then there exists $y \in \mathbb{Z}_p^m$ such that f(y) = a and $\varepsilon_1^m(y - x) = 0$.

Proof. By Hensel's Lemma, it suffices to give $1 \le i \le m$ such that $\varepsilon_1(\frac{\partial f}{\partial X_i}\Big|_x) \ne 0$. Taking the derivative of f, evaluating at x and reducing mod p yields the following linear system :

$$\left[\varepsilon_1 \left(\frac{\partial f}{\partial X_i}\Big|_{x}\right)\right]_{i=1}^m = 2\left[\varepsilon_1(a_{ij})\right]_{i,j=1}^m \varepsilon_1(x)$$

Since $\det[a_{ij}] \in \mathbb{Z}_p^{\times}$, $\det[\varepsilon_1(a_{ij})]_{i,j=1}^m \neq 0$. The matrix is hence invertible and since $\varepsilon_1(x) \neq 0$ by definition of primitivity, there exists a desired $1 \leq i \leq m$.

Proposition – Lifting Solutions of Quadratic Forms for p = 2

- Let $p=2, 1 \leq m$, $f=\sum_{i,j=1}^m a_{ij}X_iX_j \in \mathbb{Z}_p[X_1,\ldots,X_m]$ where $[a_{ij}]^\top=[a_{ij}]$, i.e. f is a quadratic form. Let $a\in\mathbb{Z}_2, x\in\mathbb{Z}_2^m$ such that x is primitive and $\varepsilon_3(f(x))=\varepsilon_3(a)$. Then

 1. Let $1\leq i\leq m$ where $\varepsilon_2\left(\left.\frac{\partial f}{\partial X_i}\right|_x\right)\neq 0$. Then there exists $y\in\mathbb{Z}_2^m$ such that f(y)=a and $\varepsilon_3(y-x)=0$.

 2. The condition of (1) is satisfied when $\det[a_{ij}]_{i,j=1}^m\in\mathbb{Z}_2^\times$.

Proof.

 $(1) \ \varepsilon_3(f(x)) = \varepsilon_3(a) \ \text{and} \ \varepsilon_2\left(\left.\frac{\partial f}{\partial X_i}\right|_x\right) \neq 0 \ \text{are respectively equivalent to} \ |f(x)-a|_p \leq p^{-3} \ \text{and} \ p^{-1} \leq \left|\left.\frac{\partial f}{\partial X_i}\right|_x\right|_p.$ Hence

$$|f(x) - a|_p < \left| \frac{\partial f}{\partial X_i} \right|_x \Big|_p^2$$

So by lifting solutions, there exists $y \in \mathbb{Z}_p^m$ such that f(y) = a and

$$\max(|\pi_i(y-x)|_p)_{1 \le i \le m} \le \frac{|f(x)-a|_p}{\left|\frac{\partial f}{\partial X_j}\right|_x|_p}$$

By taking the derivative of f, evaluating at x and reducing mod 2, we have $\varepsilon_1\left(\frac{\partial f}{\partial X_i}\Big|_x\right)=0$ and hence its valuation is 1. We thus obtain

$$\max(|\pi_i(y-x)|_p)_{1 \le i \le m} \le p^{-2}$$

This is equivalent to $\varepsilon_2(y-x)=0$.

(2) This follows from taking the derivative of f, reducing mod 4 and using the primitivity of x and invertibility of $\varepsilon_2[a_{ij}]_{i,j=1}^m$.

1.3 Units of \mathbb{Z}_p and \mathbb{Q}_p

Definition – Group Ring

$$\mathbb{Z}[G] := \mathbb{Z}[X_g]_{g \in G} / I$$

Let
$$G$$
 be an abelian group. Then the *group ring over* G is defined as
$$\mathbb{Z}[G] := \mathbb{Z}[X_g]_{g \in G}/I$$
 where $I := (X_e - 1)\mathbb{Z}[X_g]_{g \in G} + \sum_{g,h \in G} (X_g X_h - X_{gh})\mathbb{Z}[X_g]_{g \in G}.$

Notation. For G an abelian group, $g \in G$, we denote the image of X_q in $\mathbb{Z}[G]$ with g. So elements of $\mathbb{Z}[G]$ are formal polynomials in elements of *G* such that multiplication respects the multiplication of *G*. With this, *G* injects into $\mathbb{Z}[G]$ and we subsequently identify G with its image in $\mathbb{Z}[G]$.

Proposition – Adjunction of Group Rings and Units

- The following are true:
 1. Z[-]: Ab → CRing is a functor.
 2. Z[-] and (-)[×] forms an adjunction, that is to say CRing(Z[-],*) ≅ Ab(-,(*)[×]) natural.

Proof. (1) Follows from the universal property of polynomial ring over a set and quotient ring.

(2) For a commutative ring A and abelian group G, the map is $\mathbf{CRing}(\mathbb{Z}[G], A) \to \mathbf{Ab}(G, A \times), f \mapsto f(g)$. This is well-defined because $G \subseteq \mathbb{Z}[G]^{\times}$. Injectivity and surjectivity follows, again, from universal property of the polynomial ring over *G* and quotient ring. Naturality is straightforward to check.

Proposition – Coprime implies Split Exact Let $0 \to A \to E \to B \to 0$ be a short exact sequence of abelian groups. Let $a = |A|, b = |B|, a, b < \infty$ such that a, b coprime. Let $B' := \ker(b : x \mapsto bx)$. Then $E \cong A \oplus B'$ canonically and B' is the unique subgroup of E isomorphic to B.

Proof. Elementary.

In the following subsection, let $\mathbb{U}:=\mathbb{Z}_p^{\times}$ and for $n\in\mathbb{N}$, $\mathbb{U}_n:=\ker((\varepsilon_n)^{\times}:\mathbb{U}\to\mathbb{Z}/p^n\mathbb{Z}^{\times})$.

Proposition – Units of \mathbb{Z}_p as a Inverse Limit

 \mathbb{U} is a inverse limit of the projective system $\mathbb{U}/\mathbb{U}_{\star}$ in the category of abelian groups. More generally, for $k \in \mathbb{N}$, $\mathbb{U}_k \cong \varprojlim \mathbb{U}_k/\mathbb{U}_{k+\star}$ canonically.

Proof. From truncation, we have $\mathbb{Z}_p/p^*\mathbb{Z}_p \cong \mathbb{Z}/p^*\mathbb{Z}$ canonically as projective systems of commutative rings. By taking inverse limits, we see that $\underline{\lim} \mathbb{Z}_p/p^*\mathbb{Z}_p \cong \mathbb{Z}_p$ canonically. The result now follows since taking units is a right adjoint functor, and hence preserves limits.

Now let $k \in \mathbb{N}$. Consider the following short exact sequence of projective systems of abelian groups :

$$1 \to \mathbb{U}_k/\mathbb{U}_{\star} \to \mathbb{U}/\mathbb{U}_{\star} \to \underline{\mathbb{U}/\mathbb{U}_k} \to 1$$

where

$$\mathbb{U}_k/\mathbb{U}_{\star}: n \in \mathbb{N}^{op} \mapsto \begin{cases} 1 &, n \leq k \\ \mathbb{U}_k/\mathbb{U}_n &, k \leq n \end{cases}$$

and

$$\underline{\mathbb{U}/\mathbb{U}_k}:n\in\mathbb{N}^{op}\mapsto\begin{cases}1&,\ n\leq k\\\mathbb{U}/\mathbb{U}_k&,\ k\leq n\end{cases}$$

The sequence is short exact by the 3rd isomorphism theorem for groups. Since the system $\mathbb{U}_k/\mathbb{U}_{\star}$ is surjective, we can pass the short exact sequence to the inverse limit and obtain the short sequence of abelian groups:

$$1 \to \underline{\lim} \, \mathbb{U}_k / \mathbb{U}_{\star} \to \mathbb{U} \to \mathbb{U} / \mathbb{U}_k \to 1$$

This shows that $\mathbb{U}_k \cong \lim_k \mathbb{U}_k / \mathbb{U}_{\star} \cong \lim_k \mathbb{U}_k / \mathbb{U}_{k+\star}$ canonically as abelian groups.

Let $n \in \mathbb{N}$. Then $U_n/U_{n+1} \cong \ker \left(\downarrow_n^{n+1} \right)^{\times}$ canonically as abelian groups, which for $1 \leq n$ is in turn isomorphic to $\mathbb{Z}/p\mathbb{Z}$. Hence for $1 \leq k \geq n$, $|U_k/U_n| = p^{n-k}$.

Proof. Consider the following commutative diagram:

$$1 \longrightarrow \mathbb{U}_{n+1} \longrightarrow \mathbb{U} \longrightarrow \left(\mathbb{Z}/p^{n+1}\mathbb{Z}\right)^{\times} \longrightarrow 1$$

$$\downarrow \subseteq \qquad \qquad \downarrow^{\mathbb{I}} \qquad \qquad \downarrow^{(\downarrow_{n}^{n+1})^{\times}}$$

$$1 \longrightarrow \mathbb{U}_{n} \longrightarrow \mathbb{U} \longrightarrow \left(\mathbb{Z}/p^{n}\mathbb{Z}\right)^{\times} \longrightarrow 1$$

Then by the snake lemma, we have the exact sequence:

$$1 \to 1 \to 1 \to \ker\left(\downarrow_n^{n+1}\right)^\times \to \mathbb{U}_n/\mathbb{U}_{n+1} \to 1 \to 1 \to 1$$

 $\text{which says } U_n/U_{n+1} \cong \ker \left(\downarrow_n^{n+1} \right)^\times. \text{ For } 1 \leq n \text{, by counting } \left(\mathbb{Z}/p^{n+1}\mathbb{Z} \right)^\times \text{ and } \left(\mathbb{Z}/p^n\mathbb{Z} \right)^\times \text{, we obtain } \left| \ker \left(\downarrow_n^{n+1} \right)^\times \right| = 0$ p and hence isomorphic to $\mathbb{Z}/p\mathbb{Z}$ since p is prime. To show $|U_k/U_n|=p^n$ for $n\leq k$, note that by the first isomorphism, $\mathbb{U}_k/\mathbb{U}_{n-1} \cong (\mathbb{U}_k/\mathbb{U}_n)/(\mathbb{U}_n/\mathbb{U}_{n-1})$, so $|\mathbb{U}_k/\mathbb{U}_n| = |\mathbb{U}_n/\mathbb{U}_{n-1}| |\mathbb{U}_k/\mathbb{U}_{n-1}| = p^{n-k}$ by induction. \square

Proposition – Structure of \mathbb{U} Let $\mathbb{V}:=\left\{x\in\mathbb{U}\,|\,x^{p-1}=1\right\}$. Then $\mathbb{U}\cong\mathbb{V}\times\mathbb{U}_1$ canonically where \mathbb{V} is isomorphic to \mathbb{F}_p^{\times} under ε_1^{\times} and is the unique subgroup isomorphic to \mathbb{F}_p^{\times} . Hence \mathbb{Q}_p has p-1 roots of unity.

Proof. Consider again the short exact sequence of projective systems of abelian groups:

$$1 \to \mathbb{U}_1/\mathbb{U}_{\star} \to \mathbb{U}/\mathbb{U}_{\star} \to \underline{\mathbb{U}/\mathbb{U}_1} \to 1$$

Note that the system $\underline{\mathbb{U}}/\underline{\mathbb{U}}_1\cong\underline{\mathbb{F}}_p^{\times}$ canonically. For $n\in\mathbb{N}, 1\leq n$, we have $|\mathbb{U}_1/\mathbb{U}_n|=p^{n-1}$. p^{n-1} and p-1 are coprime. So by coprime implies short exact, $\mathbb{V}_n=\left\{x\in\mathbb{U}/\mathbb{U}_n\,|\,x^{p-1}=1\right\}$ has the property that $\mathbb{U}/\mathbb{U}_n\cong\mathbb{V}_n\times\mathbb{U}_1/\mathbb{U}_n$ canonically and it is the unique subgroup of \mathbb{U}/\mathbb{U}_n that's isomorphic of \mathbb{U}/\mathbb{U}_1 . Under the following commutative square

$$\begin{array}{ccc} \mathbb{U}/\mathbb{U}_{n+1} & \longrightarrow & \mathbb{U}/\mathbb{U}_1 \\ & & & \downarrow^{\mathbb{I}} \\ \mathbb{U}/\mathbb{U}_n & \longrightarrow & \mathbb{U}/\mathbb{U}_1 \end{array}$$

the horizontal projections map $\mathbb{V}_n, \mathbb{V}_{n+1}$ isomorphically to \mathbb{U}/\mathbb{U}_1 . Thus \mathbb{V}_{\star} forms a projective system of abelian groups :

$$\cdots \xrightarrow{\sim} \mathbb{V}_2 \xrightarrow{\sim} \mathbb{V}_1 \longrightarrow 1$$

With this, the first short exact sequence turns into

$$1 \to \mathbb{U}_1/\mathbb{U}_{\star} \to \mathbb{V}_{\star} \times (\mathbb{U}_1/\mathbb{U}_{\star}) \to \mathbb{U}/\mathbb{U}_1 \to 1$$

Finally, as noted before $\mathbb{U}_1/\mathbb{U}_{\star}$ is surjective, so we can pass the short exact sequence to the inverse limit.

$$1 \to \mathbb{U}_1 \to \underline{\lim} \left(\mathbb{V}_{\star} \times (\mathbb{U}_1/\mathbb{U}_{\star}) \right) \to \mathbb{U}/\mathbb{U}_1 \to 1$$

This shows that $\mathbb{U}\cong\varprojlim((\mathbb{U}_1/\mathbb{U}_\star)\times\mathbb{V}_\star)$ canonically. Let $\mathbb{V}:=\varprojlim\mathbb{V}_\star\cong\mathbb{U}/\mathbb{U}_1$. Then since limits commute with limits, we have $\mathbb{U}\cong\mathbb{V}\times\mathbb{U}_1$ canonically. The fact that $\varepsilon_1^\times:\mathbb{V}\cong\mathbb{F}_p^\times$ comes from $\mathbb{V}_1=\mathbb{U}/\mathbb{U}_1\cong\mathbb{F}_p^\times$ canonically. An element $x\in\mathbb{U}$ satisfies $x^{p-1}=1$ if and only if it satisfies it modulo p^n for all n. which is equivalent to x being in \mathbb{V}_n modulo \mathbb{U}_n for all n, which is in turn equivalent to $x\in\mathbb{V}$. This shows the form of \mathbb{V} . To show uniqueness of \mathbb{V} , note that any subgroup isomorphic to \mathbb{F}_p^\times must satisfy $x^{p-1}=1$ by Lagranges theorem, and hence be a subgroup of \mathbb{V} , and thus equal to \mathbb{V} .

Proof. Consider the polynomial $f:=X^{p-1}-1\in\mathbb{Z}_p[X]$. The integers $x=1,\ldots,p-1$ are roots modulo p, i.e. $\varepsilon_1(f(x))=0$. Furthermore, $0=\varepsilon_1(f'(x))=(p-1)x^{p-2}=-x^{p-2}$ implies x=0, which cannot be. We thus have the conditions for Hensel's lemma, and hence have $x_1,\ldots,x_{p-1}\in\mathbb{Z}_p$ satisfying f(x)=0. These elements are distinct since they are distinct modulo p. By going into \mathbb{Q}_p and the factor theorem, there are at most p-1 elements satisfying $x^{p-1}=1$. Hence $\mathbb{V}=\{x_1,\ldots,x_{p-1}\}$. Uniqueness of \mathbb{V} follows again from Lagrange's theorem.

Proposition – Convergence of Units to 1

Let $n \in \mathbb{N}$ such that

$$p \neq 2 \Rightarrow 1 \leq n \text{ and } p = 2 \Rightarrow 2 \leq n$$

Let
$$x \in \mathbb{U}_n \setminus \mathbb{U}_{n+1}$$
. Then $x^p \in \mathbb{U}_{n+1} \setminus \mathbb{U}_{n+2}$.

Proof. We have $x = 1 + kp^n$ where $k \in \mathbb{Z}_p \setminus p\mathbb{Z}_p$. Then by the binomial theorem, we have

$$x^{p} = 1 + kp^{n+1} + \sum_{l=0}^{p-1} \frac{(p-1)!}{l!(p-l)!} k^{l} p^{nl+1} + k^{n} p^{np}$$

For $2 \le l$, $n+2 \le 2n+1 \le nl+1$. For p=2, $n+2 \le 2p$ and for $p \ne 2$, $n+2 \le 3n \le np$, and hence $n+2 \le np$ in general. This shows that $\varepsilon_{n+2}(x^p) = 1 + kp^{n+1}$, which gives the desired result.

Remark – Why Structure of \mathbb{U}_1 is Not Surprising. The following result is analogous to the fact that given any unit real α , $\mathbb{R} \cong \mathbb{R}^{\times}$ as abelian groups via the morphism $x \mapsto \alpha^x$.

- The following are true:
 1. Let p ≠ 2. Then U₁ ≅ Z_p as abelian groups.
 2. Let p = 2. Then U₁ ≅ (-1)^Z × U₂ canonically as abelian groups where (-1)^Z is the subgroup generated by -1 and U₂ ≅ Z₂ as abelian groups.

Proof. $(p \neq 2)$ Let $\alpha \in \mathbb{U}_1 \setminus \mathbb{U}_2$, for example 1 + p. For $n \in \mathbb{N}$, let $\alpha_n \in \mathbb{U}_1/\mathbb{U}_{n+1}$ be the image of α . Then by convergence of units to 1, we have for $k \in \mathbb{N}$, $\alpha^{p^k} \in \mathbb{U}_{1+k} \setminus \mathbb{U}_{2+k}$. So $\alpha^{p^n}_n = 1$, $\alpha^{p^{n-1}}_n \neq 1$ and $|\mathbb{U}_1/\mathbb{U}_{n+1}| = p^n$ implies $\mathbb{U}_1/\mathbb{U}_{n+1}$ is cyclic with generator α_n . From this, we can define the following morphism of projective systems:

$$\theta_{\alpha}: \mathbb{Z}/p^{*}\mathbb{Z} \to \mathbb{U}_{1}/\mathbb{U}_{\star+1}$$
$$(\theta_{\alpha})_{n}: z \in \mathbb{Z}/p^{n}\mathbb{Z} \mapsto \alpha_{n}^{z} \in \mathbb{U}_{1}/\mathbb{U}_{n+1}$$

Since α_n has order p^n , $(\theta_\alpha)_n$ is well-defined. It is clearly a morphism of abelian groups, thus θ_α is indeed a morphism of projective systems of abelian groups. We therefore have the following short exact sequence of projective systems of abelian groups:

$$0 \to 0 \to \mathbb{Z}/p^*\mathbb{Z} \to \mathbb{U}_1/\mathbb{U}_{\star+1} \to 1$$

Since 0 is a surjective system, we can pass the isomorphism to the limit and obtain $\mathbb{Z}_p \cong \mathbb{U}_1$ as abelian groups.

(p=2) $\varepsilon_2(-1)=-1\neq 1$ implies $\mathbb{Z}(-1)\cap\mathbb{U}_2=\{1\}$. Since the short exact sequence

$$1 \to \mathbb{U}_2 \to \mathbb{U}_1 \stackrel{\varepsilon_2}{\to} (\mathbb{Z}/4\mathbb{Z})^{\times} \to 1$$

maps -1 to -1, $\mathbb{U}_1 = (-1)^{\mathbb{Z}} \mathbb{U}_2$. Hence $\mathbb{U}_1 \cong (-1)^{\mathbb{Z}} \times \mathbb{U}_2$ canonically as abelian groups.

For $\mathbb{U}_2 \cong \mathbb{Z}_2$, we use a similar technique to the $p \neq 2$ case. Let $\alpha \in \mathbb{U}_2 \setminus \mathbb{U}_3$, such as 5. For $n \in \mathbb{N}$, define $\alpha_n \in \mathbb{U}_2/\mathbb{U}_{n+2}$ be the image of α . Then by convergence of units to 1, we have for $k \in \mathbb{N}$, $\alpha^{p^k} \in \mathbb{U}_{2+k} \setminus \mathbb{U}_{3+k}$. So $\alpha_n^{2^n}=1$, $\alpha_n^{2^{n-1}}\neq 1$ and $|\mathbb{U}_2/\mathbb{U}_{n+2}|=2^n$ implies $\mathbb{U}_2/\mathbb{U}_{n+2}$ is cyclic with generator α_n . We can thus define θ_{α} in an analogous way to $p \neq 2$ and yield an isomorphism $\mathbb{Z}_2 \cong \mathbb{U}_2$ of abelian groups.

Proposition – **Structure** of Units of \mathbb{Q}_p

- The following are true : $\text{ Let } p \neq 2. \text{ Then } \mathbb{Q}_p^\times \cong p^\mathbb{Z} \times \mathbb{V} \times \mathbb{U}_1 \text{ canonically as abelian groups where } p^\mathbb{Z}, (-1)^\mathbb{Z} \text{ are the subgroups generated } p \text{ and } -1.$ $\text{ Let } p = 2. \text{ Then } \mathbb{Q}_2^\times \cong 2^\mathbb{Z} \times (-1)^\mathbb{Z} \times \mathbb{U}_2.$

Proof. $\mathbb{Q}_p^{\times} \cong p^{\mathbb{Z}} \times \mathbb{U}$ from elements of \mathbb{Q}_p^{\times} being of the form $p^n u$ where $n \in \mathbb{Z}$, $u \in \mathbb{Z}_p^{\times} = \mathbb{U}$. The rest follows from the structure of \mathbb{U} and \mathbb{U}_1 .

- Proposition Squares in \mathbb{Q}_p The following are true : $\bullet \ (p \neq 2) \text{ Let } x = p^n u \in \mathbb{Q}_p^{\times} \text{ where } n \in \mathbb{Z} \text{ and } u \in \mathbb{Z}_p^{\times}. \text{ Then } x \in \mathbb{Q}_p^{\times(2)} \text{ if and only if } n \in 2\mathbb{Z} \text{ and } \varepsilon_1(u) \in \mathbb{F}_p^{\times(2)}.$ $\bullet \ (p = 2) \text{ Let } x = 2^n u \in \mathbb{Q}_2^{\times} \text{ where } n \in \mathbb{Z} \text{ and } u \in \mathbb{Z}_2^{\times}. \text{ Then } x \in \mathbb{Q}_2^{\times(2)} \text{ if and only if } n \in 2\mathbb{Z} \text{ and } \varepsilon_3(u) = 1.$

Proof.

 $(p \neq 2)$ From the structure of \mathbb{Q}_p^{\times} , we have $\mathbb{Q}_p^{\times} \cong p^{\mathbb{Z}} \times \mathbb{V} \times \mathbb{U}_1$. We have a decomposition of $x = p^n v u_1$ where $n \in \mathbb{Z}$, $v \in \mathbb{V}$ and $u_1 \in \mathbb{U}$. It follows that x is a square if and only if $n \in 2\mathbb{Z}$, v is a square and u_1 is a square. Since $\mathbb{U}_1 \cong \mathbb{Z}_p$ as abelian groups and scalar multiplication by 2 is surjective in \mathbb{Z}_p , every element of \mathbb{U}_1 is a square. Mapping $\varepsilon_1: \mathbb{V} \to \mathbb{F}_p^{\times}$ is an isomorphism with $\varepsilon_1(v) = \varepsilon_1(u)$. So v is a square if and only if $\varepsilon_1(u)$ is a square.

(p=2) From the structure of \mathbb{Q}_p^{\times} , we have $\mathbb{Q}_2^{\times} \cong 2^{\mathbb{Z}} \times (-1)^{\mathbb{Z}} \times \mathbb{U}_2$. Decompose $x=2^n(-1)^m u_2$ with $n,m \in \mathbb{Z}$ and $u_2 \in \mathbb{U}_2$. Then x is a square if and only if $n \in 2\mathbb{Z}$ and $u = u_2$ is a square. Consider the isomorphism of projective systems $\theta_{\alpha}: \mathbb{Z}/2^{*}\mathbb{Z} \cong \mathbb{U}_{2}/\mathbb{U}_{2+\star}$. We have the following commutative diagram with exact rows:

$$0 \longrightarrow \mathbb{Z}/2^{*}\mathbb{Z} \stackrel{2}{\longrightarrow} \mathbb{Z}/2^{*}\mathbb{Z}$$

$$\sim \downarrow \qquad \qquad \sim \downarrow \theta_{\alpha}$$

$$1 \longrightarrow \mathbb{U}_{3}/\mathbb{U}_{2+\star} \longrightarrow \mathbb{U}_{2}/\mathbb{U}_{2+\star}$$

where $\mathbb{U}_3/\mathbb{U}_{2+\star}$ denotes the system

$$1 \longleftarrow \mathbb{U}_3/\mathbb{U}_3 \longleftarrow \mathbb{U}_3/\mathbb{U}_4 \longleftarrow \cdots$$

Taking inverse limits as before, we obtain an isomorphism of abelian groups $2\mathbb{Z}_2 \cong \mathbb{U}_3$ which respects the isomorphism of $\mathbb{Z}_2 \cong \mathbb{U}_2$. This shows that $\mathbb{U}_2^{(2)} = \mathbb{U}_3$. Therefore u is a square if and only if $\varepsilon_3(u) = 1$.

Proof.

 $(p \neq 2)$ An alternative proof for $\mathbb{U}_1 = \mathbb{U}_1^{(2)}$. Let $a \in \mathbb{U}_1$. Consider the polynomial $f := X^2 - a$. Then $\varepsilon_1(f(1))=0$ and $\varepsilon_1(f'(1))=2\neq 0$. So by Hensel's lemma, there exists $b\in\mathbb{Z}_p$ such that $b^2=a$ and

(p=2) An alternative proof for $\mathbb{U}_2^{(2)}=\mathbb{U}_3$. The forward inclusion is given by convergence of units to 1. For the reverse inclusion, let $u\in\mathbb{U}_3$. Consider the polynomial $f:=X^2-u$. Then $\varepsilon_3(f(1))=0$ and $\varepsilon_2(f'(1))=2-1=1\neq 0$. So by lifting solutions of quadratic forms for p=2, we obtain the existence of $v \in \mathbb{Z}_2$ such that $v^2 = u$ and $\varepsilon_3(v) = \varepsilon_3(u) = 1$. This shows that $u \in \mathbb{U}_2(2)$.

Proposition – Alternate Equivalence for being Square in \mathbb{Q}_2

$$\varepsilon: \mathbb{U} \to \mathbb{Z}/2\mathbb{Z}, x \mapsto \varepsilon_1\left(\frac{x-1}{2}\right) \qquad \omega: \mathbb{U}_2 \to \mathbb{Z}/2\mathbb{Z}, x \mapsto \varepsilon_1\left(\frac{x^2-1}{8}\right)$$

- Let p=2. Define $\varepsilon: \mathbb{U} \to \mathbb{Z}/2\mathbb{Z}, x \mapsto \varepsilon_1\left(\frac{x-1}{2}\right) \qquad \omega: \mathbb{U}_2 \to \mathbb{Z}/2\mathbb{Z}, x \mapsto \varepsilon_1\left(\frac{x^2-1}{8}\right)$ Then the following are true : $1. \ \varepsilon: \mathbb{U}/\mathbb{U}_2 \to \mathbb{Z}/2\mathbb{Z} \text{ is an isomorphism of abelian groups.}$ 2. $\omega: \mathbb{U}_2/\mathbb{U}_3 \to \mathbb{Z}/2\mathbb{Z}$ is an isomorphism of abelian groups. $3. \ (\varepsilon, \omega): \mathbb{U}/\mathbb{U}_3 \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \text{ is an isomorphism of abelian groups.}$ 3. $(\varepsilon, \omega): \mathbb{U}/\mathbb{U}_3 \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \text{ is an isomorphism of abelian groups.}$ Hence $u \in \mathbb{U}^{(2)}$ if and only if $\varepsilon(x) = \omega(x) = 0$.

Proof.

(1) Let $x \in \mathbb{U} = 1 + 2\mathbb{Z}_2$. Then since \mathbb{Z}_2 is a integral domain, there exists a unique $\overline{x} \in \mathbb{Z}_2$ such that $x = 1 + 2\overline{x}$. Hence (x-1)/2 is well-defined. Let $y \in \mathbb{U}$, $y = 1 + 2\overline{y}$. Then

$$xy = (1 + 2\overline{x})(1 + 2\overline{y}) = 1 + 2(\overline{x} + \overline{y} + 2\overline{x}\overline{y})$$

Hence $\varepsilon(xy) = \varepsilon(x) + \varepsilon(y)$. Clearly ε is surjective. It remains to show that $\ker \varepsilon = \mathbb{U}_2$. Well, $\varepsilon(x) = \varepsilon_1((x - 1)^2)$ (1)/2 = 0 if and only if $\overline{x} \in 2\mathbb{Z}_2$ if and only if $\varepsilon_2(x) = 1$ if and only if $x \in \mathbb{U}_2$.

- (2) Let $x \in \mathbb{U}_2 = 1 + 4\mathbb{Z}_2$. Then again since \mathbb{Z}_2 is a integral domain, there exists a unique $\overline{x} \in \mathbb{Z}_2$ such that $x=1+4\overline{x}$. Then $x^2=(1+4\overline{x})^2=1+8(\overline{x}+2\overline{x}^2)$, hence $(x^2-1)/8$ is well-defined. Let $y=1+4\overline{y}\in\mathbb{U}_2$. By similar computation as before, $\omega(xy) = \omega(x) + \omega(y)$. Clearly, ω is surjective, so it remains to show that $\ker \omega = \mathbb{U}_3$. Well, $\omega(x) = \varepsilon_1((x^2 - 1)/8) = 0$ if and only if $\overline{x} \in 2\mathbb{Z}_2$ if and only if $x \in \mathbb{U}_3$.
- (3) By the 3rd isomorphism theorem of modules, $(\mathbb{U}/\mathbb{U}_3)/(\mathbb{U}_2/\mathbb{U}_3) \cong \mathbb{U}/\mathbb{U}_2$ canonically. Since \mathbb{U}/\mathbb{U}_3 is isomorphic to $\mathbb{Z}/8\mathbb{Z}^\times$, there exists a section for the short exact sequence :

$$1 \to \mathbb{U}_2/\mathbb{U}_3 \to \mathbb{U}/\mathbb{U}_3 \to \mathbb{U}/\mathbb{U}_2 \to 1$$

Thus $\mathbb{U}/\mathbb{U}_3 \cong \mathbb{U}/\mathbb{U}_2 \times \mathbb{U}_2/\mathbb{U}_3$ and the latter is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ via (ε, ω) as claimed. The "Hence" follows from $\mathbb{U}^{(2)} = \mathbb{U}_3$, which itself follows from the structure of \mathbb{Q}_2^{\times} .

1.4 Appendix : Category-Theoretic Results Used

- Category of diagrams $\mathcal{C}^{\mathcal{I}}$.
- ${\mathcal C}$ abelian category implies ${\mathcal C}^{\mathcal I}$ abelian category.
- Limits commute with limits.
- Right adjoint commutes with limits.
- Snake Lemma.

_