Matéria de Lógica Computacional

Árvores Etiquetadas

Alfabeto proposicional $(A'_{Fp}): \{ \perp; P; v; \Lambda; \rightarrow \}$

Regras:

' **BOT**: ⊥ ∈ Fp

' **PROP**: p ∈ P

' **DIS**: Se ϕ , $\psi \in \text{Fp}$, então $(\phi \lor \psi) \in \text{Fp}$

′ **CON**: Se ϕ , ψ ∈ Fp, então $(\phi \land \psi)$ ∈ Fp

' **IMP**: Se ϕ , $\psi \in \text{Fp}$, então $(\phi \rightarrow \psi) \in \text{Fp}$

Abreviaturas:

' Negação: $\sim \varphi \stackrel{abv}{-} (\varphi \rightarrow \bot)$

' Verdade: T abv ~⊥

' Equivalência: $\phi \leftrightarrow \psi \stackrel{abv}{=} ((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$

Tradução de Linguagem Natural para Proposicional

"O João compra um bolo se não estiver mau tempo. Está mau tempo. Logo, o João não comprou um bolo."

Jb: "O João compra/comprou um bolo"

Mt: "Está/estiver mau tempo"

 $((\sim Mt \rightarrow Jb) \land Mt) \rightarrow \sim Jb$

Tabelas de Verdade

$$(a \rightarrow b) \wedge (a \wedge \sim b)$$

а	b	$a \rightarrow b$	~b	a∧~b	$(a \rightarrow b) \land (a \land \sim b)$
6	0	1	1	0	0
1	0	0	1	1	0
0	1	1	0	0	0
1	1	1	0	0	0

NOTA: o "0" implica sempre "1"

Tudo a "0", então a fórmula é contraditória

Se a coluna final **só tiver "1"**, então a fórmula é **válida**Se a coluna final **só tiver "0"**, então a fórmula é **contraditória**Se a coluna final **tiver "1" e "0"**, então a fórmula é **possível**

Semântica da Lógica Proposicional (valorações, ...)

Consideremos $\{\sim (\phi \wedge \psi), \phi \} \mid = (\sim \psi)$

Seja V uma valoração tal que V $\parallel - \{ \sim (\phi \wedge \psi), \phi \}$.

Será que V ||- (~ ψ)?

 $V \parallel - \{ \sim (\phi \wedge \psi), \phi \}$, ou seja:

Por 3) V ||- ($\sim \phi$), mas por 2) V ||- ϕ , logo só sobra que V||- ($\sim \psi$) (c.q.d.)

$T(\phi) = CNFC(NNFC(ImplFree(\phi)))$

(usar as fórmulas do formulário)

Estando a fórmula na **Forma Normal Conjuntiva**, usar o **Lema da Disjunção de Literais** e concluir:

- ' Se estiver de acordo com o Lema, é **válida**
- ' Se não, é **não válida**

Algoritmo de Horn

Se a fórmula estiver na FNC, colocá-la na Forma de Horn, ou seja:

$$(_\rightarrow_) \land (_\rightarrow_)$$

De seguida, aplicar o algoritmo A:

Passar as consequências dos "implica" para o conjunto:

Seja
$$\phi = (p \rightarrow v) \land (T \rightarrow p),$$

$$A (\phi, \{T\})$$

$$A ((p \rightarrow v) \land (T \rightarrow p), \{T\})$$

$$A ((p \rightarrow v), \{T, p\})$$

$$\{T, p, v\}$$

Se no fim, neste **conjunto estiver o** \perp , então a fórmula é **contraditória**.

Se não, é possível e temos que analisá-la pelo Lema da Disjunção de Literais.

Resolução

Colocar a fórmula só com Λ e V.

Separar a fórmula em cláusulas (cada parte separada por um Λ é uma cláusula).

Fazer algo semelhante a:

NOTA: temos que usar as cláusulas todas; o resolvente de 2 cláusulas é a reunião das 2 cláusulas exceto o elemento que vamos retirar (neste caso p e ~p).

NOTA: se na fórmula aparecer Tou L, quando compomos as cláusulas representamos estes símbolos com o Ø, sendo que este já não aparece daí para a frente.

Dedução	Justificação
{~p,v}	Cláusula C1
{~p,v}	Cláusula C2
{v}	Resolvente de C1 e C2: R1

Se Ø estiver no conjunto final, então a fórmula é contraditória.

Se não, é **possível e temos que analisá-la pelo Lema da Disjunção** de Literais.

Dedução Natural

Regras:

Conjunção

Introdução

Eliminação

$$\frac{\phi_{1} \qquad \phi_{2}}{\phi_{1} \wedge \phi_{2}} (\wedge_{l})$$

$$\frac{\phi_{\mathbf{1}} \qquad \phi_{\mathbf{2}}}{\phi_{\mathbf{1}}} (\wedge_{Ed})$$

NOTA: pode-se eliminar tanto à direita como à esquerda.

Disjunção

Introdução

Eliminação

$$\frac{\phi_{\boldsymbol{1}} \qquad \phi_{\boldsymbol{2}}}{\phi_{\boldsymbol{1}} \vee \phi_{\boldsymbol{2}}} (\mathsf{v}_{_{\boldsymbol{I}}})$$

$$\frac{\varphi_{1} \qquad \varphi_{2}}{\varphi_{1} \vee \varphi_{2}} \qquad \frac{\varphi_{1} \vee \varphi_{2} \qquad \varphi_{3} \quad \varphi_{3}}{\varphi_{3}} \qquad (\vee_{E}, 1, 2)$$

Implicação

Introdução

Eliminação

$$\frac{\boldsymbol{\varphi_1}]^n}{\boldsymbol{\varphi_1} \rightarrow \boldsymbol{\varphi_2}} (\boldsymbol{\varphi_l}, \boldsymbol{\eta})$$

$$\frac{\varphi_1 \qquad \varphi_1 \rightarrow \varphi_2}{\varphi_2} \qquad (\wedge_E)$$

Absurdo

$$[\sim\!\!\varphi_1]^n$$

$$\begin{matrix} \phi_1 \\ \hline \bot \end{matrix}$$