Notes

 $^aI(E)$ in keV cm⁻² s⁻¹ sr⁻¹ keV⁻¹; $4\pi J_{\lambda}$ in erg cm⁻² s⁻¹ μ m⁻¹. b For E > 3.3 keV, I(E) = 11.0E (keV)^{-0.4} keV cm⁻² s⁻¹ sr⁻¹ keV⁻¹.

Reference

1. McCammon, D., & Sanders, W.T. 1990, ARA&A, 28, 657

Sources of the observed gas and dust in the Galaxy are given in Table 21.5.

Table 21.5. Sources of gas and dust in the Galaxy [1, 2].

Stellar type	No. in Galaxy	dM(gas)/dt $(\mathcal{M}_{\odot} \text{ yr}^{-1})$	dM(dust)/dt $(\mathcal{M}_{\odot} \text{ yr}^{-1})$
M stars (Miras)	1.3×10^{5}	0.01-0.03	$(1-3) \times 10^{-4}$
OH/IR stars	10 ⁴	0.1-0.5	$(1-5) \times 10^{-3}$
C stars	$(3-6) \times 10^4$	0.1-0.5	$(1-5) \times 10^{-3}$
Supernovae	$0.02-0.03 \text{ yr}^{-1}$	0.1-0.3	0.001-0.006
M supergiants	5211	0.05-0.5	$(2-50) \times 10^{-4}$
Wolf-Rayets: WN, WC7	2744	0.05	Ò
WC8, WC9	484	0.01	10^{-4}
Planetary Nebulae	1.5×10^4	0.02-0.2	$(0.7-7) \times 10^{-5}$
Novae	30-50 yr ⁻¹	$(0.5-1) \times 10^{-4}$	$10^{-5} - 10^{-4}$
RV Tauri stars	600-1200	0.006-0.01	$(3-5) \times 10^{-6}$
O, B stars	$(2.5-5) \times 10^4$	0.03-0.3	0
Total in Galaxy		0.3-1.5	0.003-0.015
Star formation rate	• • •	-(3-10)	-(0.03-0.1)

References

2. Jura, M., & Kleinmann, S.G. 1992, ApJS, 79, 123

21.2 GALACTIC INTERSTELLAR EXTINCTION

21.2.1 Extinction

If E(B-V)=A(B)-A(V), then $N(H)/E(B-V)=5.8\times 10^{21}$ atoms cm⁻² mag⁻¹ [13]. Here $A(\lambda)$ is the extinction, in magnitudes, or $1.086\tau(\lambda)$, where τ is the optical depth in dust. The mean extinction law for interstellar dust can be described [14] as depending upon the optical parameter $R_V=A(V)/[A(B)-A(V)]$. The diffuse ISM has a typical value $R_V=3.1$; in dense clouds, a typically $R_V=4-5$. Table 21.6 gives mean values for 3.1 and 5. There is considerable uncertainty in the infrared extinction for $(\lambda > 5 \ \mu m)$, perhaps a factor of 2 or more for $\lambda \ge 20 \ \mu m$.

the infrared extinction for $(\lambda > 5 \ \mu m)$, perhaps a factor of 2 or more for $\lambda \ge 20 \ \mu m$. $A(V)/N(H) \approx 5.3 \times 10^{-22} \ cm^2$ mag, where $N(H) = \text{column density of } (H+H^++2H_2)$. Johnson filters are indicated in parentheses in Table 21.6.

Table 21.6. $A(\lambda)/A(V)$ at various wavelengths for $R_V = 3.1$ and $5.^a$

λ (μι	m) $R_V = 3.1$	5	λ (μm)	$R_V = 3.1$	5	λ (μm)	$R_V = 3.1$	5
250 ^b	` '	4.9(-4)		0.027	0.031		2.54	1.68
100 60	1.2(-3) 2.0(-3)	1.3(-3) 2.3(-3)	3.4 (L) 2.2 (K)	0.051 0.108	0.039	0.218 0.20	3.18 2.84	1.97 1.74

Gehrz, R.D. 1989, in *Interstellar Dust*, edited by L.J. Allamandola and A.G.G.M. Tielens (Kluwer Academic, Dordrecht), IAU Symp. 135, p. 445