

人工智能概述

主讲人: 高 灿

致腾楼936, 计算机视觉所

davidgao@szu.edu.cn

目录

- 1 知识的概念*
- 2 问题求解
- 3 基本数据结构
- 4 知识表示**
- 5 习题及实验

知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。

知识的形式

- ・事实
 - "霍金是伟大物理学家","水往低处流","水低于0℃结冰"
- ・【因果关联

"台风来了,明天可能下雨"、"头痛流涕,有可能感冒了

知识的特性

- 相对正确性 (明确前题)
- ・ 不确定性 (真假之外)
- ・ 可表示性 (形式描述)
- · 可利用性 (学以致用)

相对正确性

在一定的条件及环境下,知识正确

例: 1+1=2?

数学领域:成立

计算机逻辑:?

MO;

例: 水达到100摄氏度时沸腾

真空中不成立?

例: 水往低处流

地球上成立 (有引力)

在哪里不成立?

不确定性

- 知识本身的不精确性台风来了,明天可能下雨,可能一词代表不确定性。
- 知识表示的不确定性
 中医医生诊断很多凭经验,较难以精确的表示。艺术创作设计凭灵感,难以用语言来描述。
- 知识理解的不完整性第二地球、外星人?人类对宇宙的认识不足需要进一步探索

可表示性

知识可用适当的形式表示出来

如:文字、公式,图形,深度网络

 $e^{\pi i} + 1 = 0$

 $E = mc^2$

AphaGo

学习知识的目的

可利用性

知识可以被利用 "博学之,审问之,慎思之,明辨之,笃行之"-礼记·中庸 "知行合一"-王阳明(明朝) 研大千之学,究天人之道-深大

问题求解(problem solving)是人工智能主要应用领域之一,它涉及表示、归约、推断、决策、规划、定理证明和相关过程等核心概念。

问题描述-九宫格拼图

1	2	
4	5	6
7	8	3

八数码问题

问题求解(problem solving)是人工智能主要应用领域之一,它涉及表示、归约、推断、决策、规划、定理证明和相关过程等核心概念。

问题描述-数独

1	7			9	3		2	
6	4 8	9	2		1		2 3	
3 8	2	5			6 7	9		1
8	5	3	6	2	4	7	1	9
4	6	7	9	1	8	3	5	2
9	1	2	9	7	5	4 6	8	4 6
2	9	1			6 7	8		3
	4 8		1	3	9	2		
	3			8	2	1	9	

问题求解(problem solving)是人工智能主要应用领域之一,它涉及表示、归约、推断、决策、规划、定理证明和相关过程等核心概念。

问题描述-棋类

问题求解(problem solving)是人工智能主要应用领域之一,它涉及表示、归约、推断、决策、规划、定理证明和相关过程等核心概念。

问题描述-诊断与控制

问题求解(problem solving)是人工智能主要应用领域之一,它涉及表示、归约、推断、决策、规划、定理证明和相关过程等核心概念。

问题描述

任务	观察度	智能体	确定性	场景	状态	信息
字谜游戏	全部	单个	确定	序列	静态	离散
象棋	全部	多个	确定	序列	半静态	离散
扑克	部分	多个	随机	序列	静态	离散
双陆棋	全部	多个	随机	序列	静态	离散
出行规划	部分	多个	随机	序列	动态	连续
医学诊断	部分	单个	随机	序列	动态	连续
图像分析	全部	单个	确定	周期	半静态	连续
工件机器人	部分	单个	随机	周期	动态	连续
股市分析	部分	单个	随机	序列	动态	连续
AI助手	部分	多个	随机	序列	动态	离散

问题求解(problem solving)是人工智能主要应用领域之一,它涉及表示、归约、推断、决策、规划、定理证明和相关过程等核心概念。

问题的类型

- 单状态问题:确定的且可全部观察(八数码)
 知道问题的所有状态,从而可以计算出最佳动作序列达到目标状态。
- **多状态问题**:确定的且不可全部观察(军棋) 必须通过假定的动作序列和状态来推理以达到目标状态。
- **偶然性问题**:不确定的且不可全部观察(股市分析) 必需通过**实时反馈**来决定执行下一步行动
- 探索性问题: 状态空间未知(游戏) 通过环境探索和学习来决定执行行动

问题求解实例-单状态问题

给定3升、5升和9升的三个水桶,如何量出7升的水?

问题求解实例-单状态问题

给定3升、5升和9升的三个水桶,如何量出7升的水? 问题表示:

$$a(3)$$
 $b(5)$ $c(9)$ 0 start

问题求解实例-单状态问题

给定3升、5升和9升的三个水桶,如何量出7升的水? **解1:**

$$a(3)$$
 $b(5)$ $c(9)$ 0 start

问题求解实例-单状态问题

给定3升、5升和9升的三个水桶,如何量出7升的水? 解2:

$$a(3)$$
 $b(5)$ $c(9)$ 0 start

解: 0 0 9

0 5 4

3 5 4

问题求解实例-探索性问题 (腾讯绝悟-王者荣耀)

问题求解技术两个主要的方面

- (1)问题的表示: 将问题以计算机可理解接受的方式进行描述, 即知识表示;
- (2)求解的方法:解决问题的办法,如搜索法,归结法,推理法。

哥尼斯堡七桥: 经过每座桥一次回到原地

一笔画

线性表(List):零个或多个数据元素的有穷序列。

例: $a_1, a_2, \dots, a_n (n \ge 0)$, 前驱、后继、长度。

栈(Stack):限定仅在表尾进行插入和删除操作的线性表。先

进后出

队列(Queue):限定在一端添加元素,在另一端取出元素的 线性表。**先进先出**

数组(Array):是一种聚合数据类型,它是将具有相同类型的若干变量有序地组织在一起的集合。

2	8	3	Г2	8	31
1	6	4	1	8 6 0	$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$
7		5	L7	0	51

树(Tree):

树是有 $n(n \ge 0)$ 个结点的有限集合。

如果 n=0 , 称为空树;

如果 n > 0,称为非空树,对于非空树,有且仅有一个特定的称为根(Root)的节点(无直接前驱)

如果 n > 1 , 则除根以外的其它结点划分为 m(m > 0)个互不相交的有限集 $\{T_1, T_2, ..., T_m\}$, 其中每个集合本身又是一棵树,并且称为根的子树(SubTree)。

每个结点都有唯一的直接前驱,但可能有多个后继。

树(Tree):

只有根结点的树

有13个结点的树

其中: A 是根; 其余结点分成三个互不相交的子集, $T_1 = \{B, E, F, K, L\}; T_2 = \{C, G\}; T_3 = \{D, H, I, J, M\}, T_1, T_2, T_3$ 都是根 A 的子树,且本身也是一棵树

树(Tree):

树的基本术语

• 结点:包含一个数据元素及若干指向其子树的分支

• 结点的度: 结点拥有的子树数

• 叶结点: 度为0的结点[没有子树的结点]

• 分支结点: 度不为0的结点[包括根结点], 也称为非终端结点

• 内部结点:除根外以外的结点

• 孩子:结点的子树的根[直接后继,可能有多个]

• 双亲: 孩子的直接前驱[最多只能有一个]

· 兄弟:同一双亲的孩子

• 子孙: 以某结点为根的树中的所有结点

• 祖先: 从根到该结点所经的所有结点

• 层次:根结点为第一层,其孩子为

第二层,依此类推

• 深度: 树中结点的最大层次

树(Tree):

- 无序树: 树中任意节点的子结点之间没有顺序关系,也称为自由树;
- **有序树**:树中任意节点的子结点之间有顺序关系(**左右不能互换**);
- 二叉树:每个节点最多含有两个子树的树称为二叉树;完全二叉对和满二叉树;
- 霍夫曼树: 带权路径最短的二叉树称为哈夫曼树或最优二叉树;

图(Graph):

- 图 G 是由两个集合 V(G) 和 E(G) 组成的,记为G=(V,E)
- 其中: V(G) 是顶点(Vertex)的非空有限集合;
- E(G) 是边(Edge)的有限集合,边是顶点的无序对或有序对。

无向图

G = (V, E), 用(x, y)表示两个顶点x, y之间的一条边

$$V = \{0,1,2,3,4,5\}$$
,

$$E = \{(0,1), (0,4), (0,5), (1,2), (1,3), (1,5), (2,3), (3,4), (3,5), (4,5)\}$$

有向图

G = (V, E), 用< x, y >表示从x到y的一条弧(Arc), 且称x为弧尾, y为弧头,

$$V = \{0,1,2,3,4\},\$$

$$E = \{\langle 0,1\rangle, \langle 0,3\rangle, \langle 0,4\rangle, \langle 1,2\rangle, \langle 2,4\rangle, \langle 3,2\rangle\}$$

带权图

图的边具有与它相关的数值,这种与边相关的数叫做权。这些权可以表示从一个顶点到另一个顶点的距离或花费的代价。

知识的表示

- · 知识表示就是将人类知识形式化或者模型化
- 知识表示是对知识的一种描述,一种计算机可以接受的用于描述知识的数据结构(表示方式)
- 知识表示是知识推理和应用的基础

知识表示的方法

- 状态空间 (博弈)
- 问题归约 (推理问题)
- **谓词逻辑** (知识图谱)
- 产生式 (专家系统)
- 语义网络
- · 框架法...

状态空间方法:基于解答空间的问题表示和求解方法,它以 状态和算符为基础来表示和求解问题。

- (1) 状态(state):表示问题解法中每一步问题状况的数据结构;
- (2) 操作(operator):将问题从一种状态变换为另一种状态的手段;
- (3) **状态空间**(state space)是一个表示该问题全部可能状态及 其关系的图

2	8	3	Down	2	8	3	Down	2		3	Right		2	3	Up	1	2	3
1	6	4		1		4		1	8	4		1	8	4			8	4
7		5		7	6	5		7	6	5		7	6	5		7	6	5

1	2	3	Left
8		4	Len
7	6	5	

状态空间法定义

状态空间方法可**形式化**为四元组表示: (S, O, S_0, G)

其中, S 是状态的集合, O 是操作算子的集合, S_0 是初始状态, G 是目标状态。

2	8	3
1	6	4
7		5

2		3
1	8	4
7	6	5

1	2	3
8		4
7	6	5

Left Right Up Down

初始状态

中间状态

目标状态

操作算子

状态空间的解: 从初始状态 S_0 到目标状态 G 的操作算子序列

Down→Down →Right →Up →Left

深圳大学计算机与软件学院

旅行商问题

旅行商问题(TSP)的描述:一位商人去n个城市推销货物,所有城市走一遍后,再回到起点,问如何事先确定好一条最短的路线,使其旅行的费用最少。

回溯法: 把所有的解列出来, 形成一棵树, 利用剪枝深度优先进行遍历, 遍历的过程记录和寻找最优解。

动态规划: 把一个大问题拆分成小问题, 把小问题的最优结果通过表保留, 在新问题需要时可以直接获取。

旅行商问题

旅行商问题(TSP)的描述:一位商人去n个城市推销货物,所有城市走一遍后,再回到起点,问如何事先确定好一条最短的路线,使其旅行的费用最少。

路径ABCDA的总距离是: 4+2+4+2=12

路径ABDCA的总距离是: 4+6+4+6=20

路径ACBDA的总距离是: 6+2+6+2=16

路径ACDBA的总距离是: 6+4+6+4=20

路径ADCBA的总距离是: 2+4+2+4=12

路径ADBCA的总距离是: 2+6+2+6=16

城市数目为4时,组合路径数为6 城市数目为n时,组合路径数为(n-1)! **组合爆炸**。 搜索技术

假如城市的数目为**20**个,组合路径数则为(20-1)!≈1.216×10¹⁷ 若计算机以每秒检索1000万条路线的速度计算,也需要花上**386**年的时间。

练一练

汉诺塔问题:在世界中心贝拿勒斯的圣庙里,一块黄铜板上插着三根宝石针A、B和C。印度教的主神梵天在创造世界时,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是汉诺塔问题。

三阶汉诺塔

不论白天黑夜,总有一个僧侣在按下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有金片移到另外一根针上时,世界将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

习题及实验

练习题:

- 1. 知识的特性有哪些? 试用现实的例子分别说明。
- 2. 知识表示的方法有哪些? 试详细描述一种知识表示方法,并说明其应用。

实验题:

实现(1)队列和栈; (2) 树及搜索; (3)图及搜索基本算法(三选一),并尝试利用该数据结构解决一个实际应用问题。

