An Introduction to PAC-Bayes Bounds

Luis A. Ortega

April 3, 2025

Universidad Autónoma de Madrid

In a supervised learning problem, we are given a data set, and

- 1. Fix a family of predictors.
- 2. Find a good predictor in this set.

In a supervised learning problem, we are given a data set, and

- 1. Fix a family of predictors.
- 2. Find a good predictor in this set.

For example, for **linear regression**, you 1) choose to consider only **linear predictors** and 2) use the **least-square method** to choose your linear predictor.

The objective is to *learn from examples to assign labels to objects*.

The objective is to *learn from examples to assign labels to objects*.

· The set of all possible objects will be denoted by $\mathcal{X} \subset \mathbb{R}^d$.

The objective is to *learn from examples to assign labels to objects*.

- · The set of all possible objects will be denoted by $\mathcal{X} \subset \mathbb{R}^d$.
- \cdot The set of labels will be denoted by $\mathcal{Y}.$

The objective is to **learn from examples to assign labels to objects**.

- · The set of all possible objects will be denoted by $\mathcal{X} \subset \mathbb{R}^d$.
- \cdot The set of labels will be denoted by \mathcal{Y} .
- A predictor is a function $f: \mathcal{X} \to \mathcal{Y}$. We are usually interested in parametric sets of predictors. That is, we consider $\{f_{\theta}, \theta \in \Theta\}$.

The objective is to **learn from examples to assign labels to objects**.

- · The set of all possible objects will be denoted by $\mathcal{X} \subset \mathbb{R}^d$.
- \cdot The set of labels will be denoted by \mathcal{Y} .
- A predictor is a function $f: \mathcal{X} \to \mathcal{Y}$. We are usually interested in parametric sets of predictors. That is, we consider $\{f_{\theta}, \theta \in \Theta\}$.
- A loss function $\ell: \mathcal{Y}^2 \to [0, +\infty)$; where $\ell(y, y) = 0$. The 0-1 loss for classification:

$$\ell(y, y') = \begin{cases} 0 & \text{if} \quad y = y', \\ 1 & \text{if} \quad y \neq y'. \end{cases}$$

We want to **predict the label of objects** in the future.

We want to **predict the label of objects** in the future.

· Let P denote the probability distribution over $\mathcal{X} \times \mathcal{Y}$.

We want to **predict the label of objects** in the future.

- · Let P denote the probability distribution over $\mathcal{X} \times \mathcal{Y}$.
- The **expected error** (generalization risk) is

$$R(f) := \mathbb{E}_{(X,Y) \sim P}[\ell(f(X),Y)], \quad R(\theta) := R(f_{\theta}).$$

We want to **predict the label of objects** in the future.

- · Let P denote the probability distribution over $\mathcal{X} \times \mathcal{Y}$.
- The **expected error** (generalization risk) is

$$R(f) := \mathbb{E}_{(X,Y) \sim P}[\ell(f(X),Y)], \quad R(\theta) := R(f_{\theta}).$$

• Observations, $S := [(X_1, Y_1), \dots, (X_n, Y_n)]$ are i.i.d from P.

We want to **predict the label of objects** in the future.

- · Let P denote the probability distribution over $\mathcal{X} \times \mathcal{Y}$.
- The **expected error** (generalization risk) is

$$R(f) := \mathbb{E}_{(X,Y)\sim P}[\ell(f(X),Y)], \quad R(\theta) := R(f_{\theta}).$$

- Observations, $S := [(X_1, Y_1), \dots, (X_n, Y_n)]$ are i.i.d from P.
- The **empirical risk**:

$$r(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i), \quad \mathbb{E}_S[r(\theta)] = R(\theta).$$

An **estimator** takes observations and returns a predictor:

$$\hat{\theta}: \bigcup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \Theta$$
.

An **estimator** takes observations and returns a predictor:

$$\hat{\theta}: \bigcup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \Theta.$$

For example, the **empirical risk minimizer (ERM)**:

$$\hat{\theta}_{ERM} = \operatorname*{arg\,min}_{\theta \in \Theta} r(\theta) = \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(X_i), Y_i).$$

PAC Bounds

$$\hat{\theta}_{ERM} = \operatorname*{arg\,min}_{\theta \,\in \,\Theta} r(\theta) \implies \hat{\theta}_{ERM} = \operatorname*{arg\,min}_{\theta \,\in \,\Theta} R(\theta) \,.$$

ERM relies on the hope that "these two functions are not so different".

PAC Bounds

$$\hat{\theta}_{ERM} = \operatorname*{arg\,min}_{\theta \,\in\, \Theta} r(\theta) \implies \hat{\theta}_{ERM} = \operatorname*{arg\,min}_{\theta \,\in\, \Theta} R(\theta) \,.$$

ERM relies on the hope that "these two functions are not so different".

Proposition 1. If $\ell(\cdot,\cdot)$ is **bounded** in [0, C]; for any $\theta\in\Theta$ and $\delta\in(0,1)$,

$$\mathbb{P}_S\left[R(\theta) > r(\theta) + C\sqrt{\frac{\log\frac{1}{\delta}}{2n}}\right] \le \delta$$

PAC Bounds

$$\hat{\theta}_{ERM} = \mathop{\arg\min}_{\theta \in \Theta} r(\theta) \implies \hat{\theta}_{ERM} = \mathop{\arg\min}_{\theta \in \Theta} R(\theta).$$

ERM relies on the hope that "these two functions are not so different".

Proposition 1. If $\ell(\cdot, \cdot)$ is **bounded** in [0, C]; for any $\theta \in \Theta$ and $\delta \in (0, 1)$,

$$\mathbb{P}_{S}\left[R(\theta) > r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \leq \delta \iff \mathbb{P}_{S}\left[R(\theta) \leq r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \geq 1 - \delta.$$

Proof. Hoeffding's inequality to $U_i = \mathbb{E}[\ell_i(\theta)] - \ell_i(\theta)$.

$$\mathbb{P}_S\left[R(\theta) > r(\theta) + C\sqrt{\frac{\log\frac{1}{\delta}}{2n}}\right] \le \delta$$

$$\mathbb{P}_S \left| R(\theta) > r(\theta) + C \sqrt{\frac{\log \frac{1}{\delta}}{2n}} \right| \le \delta \iff \mathbb{P}_S \left| R(\theta) \le r(\theta) + C \sqrt{\frac{\log \frac{1}{\delta}}{2n}} \right| \ge 1 - \delta.$$

$$\mathbb{P}_{S}\left[R(\theta) > r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \leq \delta \iff \mathbb{P}_{S}\left[R(\theta) \leq r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \geq 1 - \delta.$$

1. Proposition 1 states that $R(\theta)$ will "usually" not exceed $r(\theta)$ by more than a term in $1/\sqrt{n}$.

$$\mathbb{P}_{S}\left[R(\theta) > r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \leq \delta \iff \mathbb{P}_{S}\left[R(\theta) \leq r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \geq 1 - \delta.$$

- 1. Proposition 1 states that $R(\theta)$ will "usually" not exceed $r(\theta)$ by more than a term in $1/\sqrt{n}$.
- 2. This is **not enough**, to justify the use of the ERM.

$$\mathbb{P}_{S}\left[R(\theta) > r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \leq \delta \iff \mathbb{P}_{S}\left[R(\theta) \leq r(\theta) + C\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right] \geq 1 - \delta.$$

- 1. Proposition 1 states that $R(\theta)$ will "usually" not exceed $r(\theta)$ by more than a term in $1/\sqrt{n}$.
- 2. This is **not enough**, to justify the use of the ERM.
- 3. The result is only true for a **fixed** θ , and we cannot apply it to $\hat{\theta}_{ERM}$ that is a function of the data.

PAC Bound on ERM

The usual approach to control $R(\hat{\theta}_{ERM})$ is to use:

$$R(\hat{\theta}_{ERM}) - r(\hat{\theta}_{ERM}) \le \sup_{\theta \in \Theta} R(\theta) - r(\theta)$$
.

Theorem 2. Assume that $\Theta = \{\theta_1, \dots, \theta_M\}$. Then, for any $\delta \in (0,1)$,

$$\mathbb{P}_S \left[R(\hat{\theta}_{ERM}) \le \inf_{\theta \in \Theta} r(\theta) + C \sqrt{\frac{\log \frac{M}{\delta}}{2n}} \right] \ge 1 - \delta.$$

PAC Bound on ERM

The usual approach to control $R(\hat{\theta}_{ERM})$ is to use:

$$R(\hat{\theta}_{ERM}) - r(\hat{\theta}_{ERM}) \le \sup_{\theta \in \Theta} R(\theta) - r(\theta)$$
.

Theorem 2. Assume that $\Theta = \{\theta_1, \dots, \theta_M\}$. Then, for any $\delta \in (0, 1)$,

$$\mathbb{P}_{S}\left[R(\hat{\theta}_{ERM}) \leq \inf_{\theta \in \Theta} r(\theta) + C\sqrt{\frac{\log \frac{M}{\delta}}{2n}}\right] \geq 1 - \delta.$$

These are called **Probably Approximately Correct (PAC) Bounds**.

$$r(\hat{\theta}_{ERM}) = \inf_{\theta \in \Theta} r(\theta) \text{ approximates } R(\hat{\theta}_{ERM}) \text{ within } C\sqrt{\frac{\log \frac{M}{\delta}}{2n}} \text{ with prob. } 1 - \delta \,.$$

PAC Bound Example

$$\mathbb{P}_{S}\left[R(\hat{\theta}_{ERM}) \leq \inf_{\theta \in \Theta} r(\theta) + C\sqrt{\frac{\log \frac{M}{\delta}}{2n}}\right] \geq 1 - \delta.$$

 $\delta = 0.001$ $\delta = 0.05$ $\delta = 0.1$

Let $\min_{\theta \in \Theta} r(\theta) = 0.26$, C = 1, M = 100, n = 1000 and $\delta = 0.05$

$$\mathbb{P}_S \left(R(\hat{\theta}_{ERM}) \le 0.26 + 1 \times \sqrt{\frac{\log \frac{100}{0.05}}{2 \times 1000}} \right)$$

$$\mathbb{P}_S\left(R(\hat{\theta}_{ERM}) \le 0.26 + 0.06165\right) \ge 0.95.$$

PAC Bound Proof Elements

The proof is based on:

1. Chernoff's Inequality: for any t > 0,

$$\mathbb{P}[U > s] = \mathbb{P}\left[e^{tU} > e^{ts}\right] \le \frac{\mathbb{E}\left[e^{tU}\right]}{e^{ts}}.$$

2. The Union bound:

$$\mathbb{P}\left[\sup_{1\leq i\leq M} U_i > s\right] = \mathbb{P}\left[\bigcup_{1\leq i\leq M} \{U_i > s\}\right] \leq \sum_{i=1}^M \mathbb{P}\left[U_i > s\right].$$

PAC Bound Proof Elements

The proof is based on:

1. Chernoff's Inequality: for any t > 0,

$$\mathbb{P}[U > s] = \mathbb{P}\left[e^{tU} > e^{ts}\right] \le \frac{\mathbb{E}\left[e^{tU}\right]}{e^{ts}}.$$

2. The Union bound:

$$\mathbb{P}\left[\sup_{1\leq i\leq M} U_i > s\right] = \mathbb{P}\left[\bigcup_{1\leq i\leq M} \{U_i > s\}\right] \leq \sum_{i=1}^M \mathbb{P}\left[U_i > s\right].$$

PAC-Bayes bounds are a generalization of the union bound argument that will allow us to deal with any parameter set Θ .

What are PAC-Bayes Bounds?

A data-dependent probability measure is a function:

$$\hat{\rho}: \bigcup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{P}(\Theta).$$

To get a **predictor**:

- 1. Draw a parameter $\tilde{\theta}\sim\hat{\rho}$, randomized estimator.
- 2. **Average** predictors

$$f_{\hat{\rho}}(\cdot) := \mathbb{E}_{\theta \sim \hat{\rho}}[f_{\theta}(\cdot)]$$

With PAC-Bayes Bounds, we can obtain bounds related to

- 1. The risk of a randomized estimator, $R(\tilde{\theta})$.
- 2. The average risk of randomized estimators, $\mathbb{E}_{\theta \sim \hat{\rho}}[R(\theta)]$.
- 3. The risk of the aggregated estimator, $R(f_{\hat{\rho}})$.

A first PAC-Bayes Bound

Let $\pi \in \mathcal{P}(\Theta)$ be a **fixed** prob. measure (the prior), and $\ell(\cdot, \cdot)$ be **bounded** in [0, C].

A first PAC-Bayes Bound

Let $\pi \in \mathcal{P}(\Theta)$ be a **fixed** prob. measure (the prior), and $\ell(\cdot, \cdot)$ be **bounded** in [0, C].

Cantoni's Bound, 2003. For any $\lambda > 0$, and any $\delta \in (0,1)$,

$$\mathbb{P}_{S}\left[\forall \rho \in \mathcal{P}(\Theta), \ \mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^{2}}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda}\right] \geq 1 - \delta.$$

Gibbs Posterior

$$\hat{\rho}_{\lambda} := \operatorname*{arg\,min}_{\rho \,\in\, \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\mathsf{KL}(\rho|\pi)}{\lambda} \right\} \,.$$

Due to Donsker and Varadhan's variational formula:

$$\hat{\rho}_{\lambda} \propto e^{-\lambda r(\theta)} \pi(\theta)$$
.

Gibbs Posterior

$$\hat{\rho}_{\lambda} := \underset{\rho \in \mathcal{P}(\Theta)}{\arg \min} \left\{ \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\mathsf{KL}(\rho|\pi)}{\lambda} \right\} .$$

Due to Donsker and Varadhan's variational formula:

$$\hat{\rho}_{\lambda} \propto e^{-\lambda r(\theta)} \pi(\theta)$$
.

If
$$r(\theta) := -\ln P(S|\theta)$$
, then, $\hat{\rho}_{\lambda} \propto P(S|\theta)^{\lambda} \pi(\theta)$.

Related to **generalized** Bayesian framework and **tempered posteriors**.

Gibbs Posterior

$$\hat{\rho}_{\lambda} := \operatorname*{arg\,min}_{\rho \,\in\, \mathcal{P}(\Theta)} \left\{ \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\mathsf{KL}(\rho|\pi)}{\lambda} \right\} \,.$$

Due to Donsker and Varadhan's variational formula:

$$\hat{\rho}_{\lambda} \propto e^{-\lambda r(\theta)} \pi(\theta)$$
.

If
$$r(\theta) := -\ln P(S|\theta)$$
, then, $\hat{\rho}_{\lambda} \propto P(S|\theta)^{\lambda} \pi(\theta)$.

Related to **generalized** Bayesian framework and **tempered posteriors**.

$$\mathbb{P}_{S}\left(\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] \leq \inf_{\rho \in \mathcal{P}(\theta)} \left[\mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^{2}}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda}\right]\right) \geq 1 - \delta.$$

Order of Magnitude

Finite case $\Theta = \{\theta_1, \dots, \theta_M\}$.

$$\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] \leq \inf_{\rho \in \mathcal{P}(\theta)} \left[\mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^2}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log \frac{1}{\delta}}{\lambda} \right]$$

Order of Magnitude

Finite case $\Theta = \{\theta_1, \dots, \theta_M\}$.

$$\begin{split} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] &\leq \inf_{\rho \in \mathcal{P}(\theta)} \left[\mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^2}{8n} + \frac{\mathrm{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda} \right] \\ \left[\text{D.V. formula} \right] &\leq -\frac{1}{\lambda} \log \sum_{\theta \in \Theta} \pi(\theta) e^{-\lambda r(\theta)} + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta}}{\lambda} \end{split}$$

Order of Magnitude

Finite case $\Theta = \{\theta_1, \dots, \theta_M\}$.

$$\begin{split} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] & \leq \inf_{\rho \in \mathcal{P}(\theta)} \left[\mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^2}{8n} + \frac{\mathrm{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda} \right] \\ & \left[\mathrm{D.V.\ formula} \right] \quad \leq -\frac{1}{\lambda} \log \sum_{\theta \in \Theta} \pi(\theta) e^{-\lambda r(\theta)} + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta}}{\lambda} \\ & \left[e^{-\lambda r(\theta)} \leq e^{-\lambda \inf_{\eta \in \Theta} r(\eta)} \right] \quad \leq \inf_{\theta \in \Theta} \left[r(\theta) + \frac{\log\frac{1}{\pi(\theta)}}{\lambda} \right] + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta}}{\lambda} \end{split}$$

Order of Magnitude

Finite case $\Theta = \{\theta_1, \dots, \theta_M\}$.

$$\begin{split} \mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] & \leq \inf_{\rho \in \mathcal{P}(\theta)} \left[\mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^2}{8n} + \frac{\mathrm{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda} \right] \\ & \left[\mathrm{D.V.\ formula} \right] \quad \leq -\frac{1}{\lambda} \log \sum_{\theta \in \Theta} \pi(\theta) e^{-\lambda r(\theta)} + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta}}{\lambda} \\ & \left[e^{-\lambda r(\theta)} \leq e^{-\lambda \inf_{\eta \in \Theta} r(\eta)} \right] \quad \leq \inf_{\theta \in \Theta} \left[r(\theta) + \frac{\log\frac{1}{\pi(\theta)}}{\lambda} \right] + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta}}{\lambda} \end{split}$$

Tight if $r(\theta)$ and $1/\pi(\theta)$ are **small simultaneously**; π cannot be large everywhere. The larger Θ , the more "spread" π is.

$$\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] \le \inf_{\theta \in \Theta} \left\{ r(\theta) + \frac{\log \frac{1}{\pi(\theta)\delta}}{\lambda} + \frac{\lambda C^2}{8n} \right\}$$

If we choose an uniform prior $\pi(\theta)=1/M$, the optimal $\lambda=\sqrt{8n\log(M/\delta)/C^2}$

$$\mathbb{P}_{S}\left(\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] \leq \inf_{\theta \in \Theta} \left\{r(\theta)\right\} + C\sqrt{\frac{\log \frac{M}{\delta}}{2n}}\right) \geq 1 - \delta.$$

$$\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] \leq \inf_{\theta \in \Theta} \left\{ r(\theta) + \frac{\log \frac{1}{\pi(\theta)\delta}}{\lambda} + \frac{\lambda C^2}{8n} \right\}$$

If we choose an uniform prior $\pi(\theta) = 1/M$, the optimal $\lambda = \sqrt{8n \log(M/\delta)/C^2}$

$$\mathbb{P}_{S}\left(\mathbb{E}_{\theta \sim \hat{\rho}_{\lambda}}[R(\theta)] \leq \inf_{\theta \in \Theta} \left\{r(\theta)\right\} + C\sqrt{\frac{\log \frac{M}{\delta}}{2n}}\right) \geq 1 - \delta.$$

- 1. The Gibbs posterior $\hat{\rho}_{\lambda}$ satisfies the **same bound as the ERM**.
- 2. However $\hat{\rho}_{\lambda}$ and $\hat{\theta}_{ERM}$ are **not** equivalent!
- 3. The PAC-Bayes bound can be tighter.

Dirac Delta Posteriors

Cantoni's Bound, 2003. For any $\lambda > 0$, and any $\delta \in (0,1)$,

$$\mathbb{P}_{S}\left(\forall \rho \in \mathcal{P}(\Theta), \ \mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^{2}}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda}\right) \geq 1 - \delta.$$

It holds for every $\rho \in \mathcal{P}(\Theta)$. Then, consider a fixed parameter θ and $\delta_{\theta} \in \mathcal{P}(\Theta)$.

Dirac Delta Posteriors

Cantoni's Bound, 2003. For any $\lambda > 0$, and any $\delta \in (0,1)$,

$$\mathbb{P}_{S}\left(\forall \rho \in \mathcal{P}(\Theta), \ \mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^{2}}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda}\right) \geq 1 - \delta.$$

It holds for every $\rho \in \mathcal{P}(\Theta)$. Then, consider a fixed parameter θ and $\delta_{\theta} \in \mathcal{P}(\Theta)$.

- 1. $\mathbb{E}_{\eta \sim \delta_{\theta}}[r(\eta)] = r(\theta)$.
- 2. $KL(\delta_{\theta}|\pi) = -\log \pi(\theta)$.

$$\mathbb{P}_S\left(\forall \theta \in \Theta, \ R(\theta) \le r(\theta) + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta} + \log\frac{1}{\pi(\theta)}}{\lambda}\right) \ge 1 - \delta.$$

$$\mathbb{P}_S\left(\forall \theta \in \Theta, \ R(\theta) \le r(\theta) + \frac{\lambda C^2}{8n} + \frac{\log\frac{1}{\delta} + \log\frac{1}{\pi(\theta)}}{\lambda}\right) \ge 1 - \delta.$$

Taking the infimum over θ with $\Theta = \{\theta_1, \dots, \theta_M\}$:

$$R(\hat{\theta}_{ERM}) \le \inf_{\theta \in \Theta} \{r(\theta)\} + \frac{\lambda C^2}{8n} + \frac{\log \frac{M}{\delta}}{\lambda}.$$

Taking again $\lambda = \sqrt{8n \log(M/\delta)/C^2}$

$$R(\hat{\theta}_{ERM}) \le \inf_{\theta \in \Theta} \{r(\theta)\} + C\sqrt{\frac{\log \frac{M}{\delta}}{2n}}.$$

1. PAC-Bayes can be used to prove **generalization bounds for Gibbs posteriors**.

- 1. PAC-Bayes can be used to prove **generalization bounds for Gibbs posteriors**.
- 2. Recent papers study **non-Bayesian robust estimators** of the mean and covariance matrix of **heavy-tailed** random vectors.

- 1. PAC-Bayes can be used to prove **generalization bounds for Gibbs posteriors**.
- 2. Recent papers study **non-Bayesian robust estimators** of the mean and covariance matrix of **heavy-tailed** random vectors.
- 3. The choice of λ has a different status:

- 1. PAC-Bayes can be used to prove **generalization bounds for Gibbs posteriors**.
- 2. Recent papers study **non-Bayesian robust estimators** of the mean and covariance matrix of **heavy-tailed** random vectors.
- 3. The choice of λ has a different status:
 - 3.1 Bound on the ERM: λ is chosen to **minimize the bound**, but the estimation procedure is not affected by λ .

- 1. PAC-Bayes can be used to prove **generalization bounds for Gibbs posteriors**.
- 2. Recent papers study **non-Bayesian robust estimators** of the mean and covariance matrix of **heavy-tailed** random vectors.
- 3. The choice of λ has a different status:
 - 3.1 Bound on the ERM: λ is chosen to **minimize the bound**, but the estimation procedure is not affected by λ .
 - 3.2 Bound for the Gibbs posterior is also minimized with respect to λ , but $\hat{\rho}_{\lambda}$ depends on λ .

Example: Lipschitz loss and Gaussian prior

Assumptions:

- 1. $\Theta = \mathbb{R}^d$.
- 2. $\theta \mapsto \ell(f_{\theta}(x), y)$ is *L*-Lipschitz for any (x, y).
- 3. $\pi(\theta) = \mathcal{N}(0, \sigma^2 I_d)$.

Example: Lipschitz loss and Gaussian prior

Assumptions:

- 1. $\Theta = \mathbb{R}^d$.
- 2. $\theta \mapsto \ell(f_{\theta}(x), y)$ is *L*-Lipschitz for any (x, y).
- 3. $\pi(\theta) = \mathcal{N}(0, \sigma^2 I_d)$.

Starting point:

$$\forall \rho \in \mathcal{P}(\Theta), \ \mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^2}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda} \ .$$

Example: Lipschitz loss and Gaussian prior

Assumptions:

- 1. $\Theta = \mathbb{R}^d$.
- 2. $\theta \mapsto \ell(f_{\theta}(x), y)$ is *L*-Lipschitz for any (x, y).
- 3. $\pi(\theta) = \mathcal{N}(0, \sigma^2 I_d)$.

Starting point:

$$\forall \rho \in \mathcal{P}(\Theta), \ \mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^2}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{1}{\delta}}{\lambda} \ .$$

Simplifications:

$$\begin{split} \mathsf{KL}(\rho|\pi) &= \frac{\|m\|^2}{2\sigma^2} + \frac{d}{2} \left[\frac{s^2}{\sigma^2} + \log \frac{\sigma^2}{s^2} - 1 \right] \,. \\ r(\theta) \text{ is L-Lipschitz} \implies \mathbb{E}_{\theta \sim \rho}[r(\theta)] \leq r(m) + Ls\sqrt{d} \,. \end{split}$$

$$(\tilde{m}, \tilde{s}) = \operatorname*{arg\,min}_{m \in \mathbb{R}^d, \ s > 0} \left\{ r(m) + \frac{\lambda C^2}{8n} + \frac{\frac{\|m\|^2}{2\sigma^2} + \frac{d}{2} \left[\frac{s^2}{\sigma^2} + \log \frac{\sigma^2}{s^2} - 1 \right] + \log \frac{1}{\delta}}{\lambda} \right\}.$$

$$ilde{
ho}_{\lambda}:=\mathcal{N}(ilde{m}, ilde{s}^2I_d)$$
 is a variational approximation of $\hat{
ho}_{\lambda}$.

The choice of λ

In general, is **not possible** to optimize the right-hand side of the PAC-Bayes equality **with respect to** λ .

The choice of λ

In general, is **not possible** to optimize the right-hand side of the PAC-Bayes equality **with respect to** λ .

The **optimal value** of λ could depend on ρ .

The choice of λ

In general, is **not possible** to optimize the right-hand side of the PAC-Bayes equality **with respect to** λ .

The **optimal value** of λ could depend on ρ .

A natural idea is to propose a **finite grid** $\Lambda \subset (0, +\infty)$ and to minimize over this grid, which can be justified by a **union bound argument**:

$$\mathbb{P}_{S}\left[\forall \rho \in \mathcal{P}(\Theta), \ \mathbb{E}_{\theta \sim \rho}[R(\theta)] \leq \mathbb{E}_{\theta \sim \rho}[r(\theta)] + \frac{\lambda C^{2}}{8n} + \frac{\mathsf{KL}(\rho|\pi) + \log\frac{\mathsf{card}(\Lambda)}{\delta}}{\lambda}\right] \geq 1 - \delta.$$

Final Remarks

- 1. Optimizing ρ and λ is an **open-problem**.
- 2. "There is no PAC-Bound tight for **all data-generating distributions**" Gastpar et al., Fantastic generalization measures are nowhere to be found, ICLR (2024).

Final Remarks

- 1. Optimizing ρ and λ is an **open-problem**.
- 2. "There is no PAC-Bound tight for **all data-generating distributions**" Gastpar et al., Fantastic generalization measures are nowhere to be found, ICLR (2024).

 \downarrow

Data-distribution dependent or Algorithm dependent bounds

3. PAC-Bayes Bounds for **unbounded** losses are an open problem.

- Alquier, Pierre (2024). "User-friendly Introduction to PAC-Bayes Bounds". In: Foundations and Trends® in Machine Learning 17.2, pp. 174–303. ISSN: 1935-8245. URL: https://arxiv.org/pdf/2110.11216.
- Casado, Ioar et al. (2024). **"PAC-Bayes-Chernoff Bounds for Unbounded Losses".** In: The Thirty-eighth Annual Conference on Neural Information Processing Systems. URL: https://openreview.net/pdf?id=CyzZeND3LB.
- Gastpar, Michael et al. (2024). "Fantastic Generalization Measures are
 Nowhere to be Found". In: The Twelfth International Conference on Learning
 Representations. URL: https://openreview.net/forum?id=NkmJotfL42.
- Jiang, Yiding et al. (2020). **"Fantastic Generalization Measures and Where to Find Them".** In: International Conference on Learning Representations. URL: https://openreview.net/pdf?id=SJgIPJBFvH.

Kullback-Leibler Divergence

Given two probability measures μ and ν in $\mathcal{P}(\Theta)$, the Kullback-Leibler (or simply KL) divergence between μ and ν is defined as

$$\mathsf{KL}(\mu|\nu) = \int \log\left(\frac{d\mu}{d\nu}(\theta)\right) \mu d(\theta)$$

Under absolutely continuity assumptions:

$$\mathsf{KL}(\mu|\nu) = \int \mu(\theta) \log \left(\frac{\mu(\theta)}{\nu(\theta)}\right) \ d(\theta).$$

Hoeffding's Inequality

Let X_1, X_2, \ldots, X_n be independent random variables such that $a_i \leq X_i \leq b_i$ almost surely. Then, consider

$$S_n = X_1 + \dots + X_n .$$

It verifies that

$$P(S_n - \mathbb{E}[S_n]) \ge t) \le \exp\left(\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

Donsker and Varadhan's Variational Formula

For any measurable, bounded function $h: \Theta \to \mathbb{R}$ we have:

$$\log \mathbb{E}_{\theta \sim \pi}[e^{h(\theta)}] = \sup_{\rho \in \mathcal{P}(\Theta)} \left[\mathbb{E}_{\theta \sim \rho}[h(\theta)] - \mathsf{KL}(\rho|\pi) \right].$$

It verifies that

$$P(S_n - \mathbb{E}[S_n]) \ge t) \le \exp\left(\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$