Title: Racecar Agent Development Log

1. Agent Overview

The project involved creating a rule-based agent (MyAgent.py) to autonomously drive a simulated racecar using LIDAR sensor data and velocity readings. The agent uses a simple, heuristic-driven decision strategy to choose among discrete actions.

2. Logic Explanation

Direction Logic:

If the front path is obstructed (front < 0.7), the agent turns toward the side with more space.

If the side distances (fleft, fright) are low, it performs side-based avoidance.

If one side (left or right) is significantly more open than the other (by > 0.5), it favors that direction.

Otherwise, it continues straight

Motion Logic:

If the car is too close to any obstacle in front or front-diagonal -> brake

If velocity is low and there is space ahead (front > 1.0) -> accelerate

Otherwise -> coast

3. Testing Results

Ran on all 8 tracks provided.

Track 1:-123.77

Track 2:-123.70

Track 3:-123.52

Track 4:-123.34

Track 5:-125.3

Track 6:- 123.9

Track 7:-123.67

Track 8:-123.26

Best accuracy achieved: 123

Max speed \sim 0.200, average speed \sim 0.185.

Stable on most tracks without crashing.

4. Iteration Summary

Version Change Made Result

V1 Basic turning with no braking logic Frequent Crashes

V2 Added motion control (brake/accelerate) Became stable, accuracy ~90+

V3 Tuned LIDAR thresholds + velocity logic Reached 123 accuracy

V4+ Over-tuned margin thresholds (>0.5) Accuracy dropped

Final Balanced turning (+-0.5), motion tuned Best overall performance (123)

5. Future Improvements

Dynamic Thresholding: Adjust LIDAR thresholds based on speed or lap number.

Smarter Decision Making: Replace rule-based logic with a Q-learning agent.

Map Awareness: Use pre-learned features per track to improve decisions.

6. File Structure

MyAgent.py | Final rule-based agent implementation

Development.pdf | Design log with logic, test results, and tuning summary

No MyData used | Not a learning agent, no training data required

7. Final Submission

Push the following files to your GitHub repo:

MyAgent.py

Development.pdf