SK Hynix Process 2024

2024 / 10 / 24

HUFS MBA

작성자: JAEHWAN KIM

SK Hynix process 2024

Classification	Process New Deal	Platform New Deal	Digital New Deal	Data New Deal
Goals	Simplification	Preparation	Increase	Optimization of Development
of Change	of Work	of Skills	in Productivity	
Core	Stable Design	Prepared Technology	Conversion from	Optimization of
Changes	Development Process	Development System	Analog to Digital	Data-based Standards
Effects of the Change	Improvement in Completeness (Simplification Process)	Improvement in Performance (Improvement in Technological Continuity)	Improvement in Productivity (Realizing Digitalization)	Optimization of Quality (Expanding Quality Design)

출처: <u>The Quality Design New Deal: How SK hynix develops optimized products with the world's best</u> quality - SK hynix Newsroom

1) 해당 회사의 Process 가 어떻게 구성이 되어 있는지 간략히 서술하시오

- 연구 및 개발(R&D): 반도체 기술의 혁신을 위한 연구가 진행되며, 특히 인공지능(AI) 및 고대역폭 메모리(HBM) 기술에 중점을 둡니다. SK Hynix 는 HBM 기술을 통해 데이터 처리 속도와 에너지 효율성을 극대화하고 있습니다.
- 생산(Manufacturing): 자동화된 클린룸 환경에서 웨이퍼 생산, 회로 설계, 패키징 등의 단계가 진행됩니다. SK Hynix 는 최신 공정 기술을 적용하여 생산 효율성과 품질을 높이고 있습니다.
- 품질 관리(Quality Control): 고도의 검사 및 테스트 시스템을 통해 제품 품질을 확보합니다. 고객 요구 사항에 맞는 고품질 제품을 제공하기 위해 지속적인 품질 개선 활동이 이루어집니다.

출처 : Semiconductor 101: SK hynix's Guide to Key Industry Players

SK Hynix 의 Process 구성

SK Hynix 는 첨단 반도체 제조 공정을 통해 DRAM 과 NAND 플래시 메모리 등 다양한 메모리 제품을 생산하고 있습니다. 이 과정은 여러 단계로 구성되어 있으며, 각 단계는 최신 기술을 활용하여 효율성과 생산성을 극대화하는 데 중점을 두고 있습니다.

- 1. 웨이퍼 제조 및 준비
 - 웨이퍼 제조: 고순도 실리콘 잉곳을 성장시켜 얇은 웨이퍼로 절단합니다.
 - 웨이퍼 준비: 웨이퍼 표면을 평탄화하고 청정하게 유지하여 후속 공정에서의 결함을 최소화합니다.

2. 포토리소그래피

• **EUV 리소그래피**: SK Hynix 는 최신 1anm DRAM 생산에 EUV(극자외선) 리소그래피 기술을 사용합니다. EUV 기술은 웨이퍼 표면에 극도로 미세한 회로 패턴을 그리는 데 사용되며, 이를 통해 더 작은 노드에서 더 많은 칩을 생산할 수 있습니다¹²

3. 식각 및 증착

- 식각: 화학적 또는 물리적 방법으로 불필요한 실리콘과 기타 물질을 제거하여 원하는 회로 패턴을 형성합니다.
- 중착: 필요한 물질(예: 금속, 절연체)을 웨이퍼 표면에 증착하여 회로를 완성합니다.

4. 고유전율 물질 사용

• 고유전율 물질: DRAM 의 성능에 직접적인 영향을 미치는 고유전율 물질을 사용하여 캐패시터를 형성합니다. 최근에는 품질 문제로 인해 일부 생산 장비가 중단되기도 했으나, 이를 해결하기 위한 개선 작업이 진행되고 있습니다³

5. 패키징

MR-MUF 기술: SK Hynix 는 MR-MUF(Mass Reflow Molded Underfill) 기술을 활용하여 칩 적층 시 발생할 수 있는 열 문제와 휨 현상을 해결하고, 더 얇은 칩 적층을 가능하게 합니다. 이는 특히 HBM(High Bandwidth Memory) 제품에서 중요한 역할을 합니다⁴⁵

⁵ SK Hynix Advances HBM4 Development with Advanced Packaging Technologies | ChinaFlashMarket

¹ SK hynix begins mass production of 1anm DRAM with EUV tech | Yonhap News Agency

² SK hynix Starts Mass Production of 1anm DRAM Using EUV Equipment - SK hynix Newsroom

³ SK Hynix faced problems with high-k material during DRAM production - THE ELEC, Korea Electronics Industry Media

⁴ SK hynix Begins Volume Production of the World's First 12-Layer HBM3E

6. 테스트 및 품질 관리

- **테스트**: 완성된 반도체 칩의 전기적 특성을 검사하여 품질을 확인하고 불량품을 제거합니다.
- 품질 관리: 지속적인 품질 개선과 안정성 확보를 위해 다양한 품질 관리 기법을 적용하고 있습니다.

SK Hynix 는 이러한 첨단 공정 기술들을 통해 생산성을 높이고, 비용 경쟁력을 강화하며, 환경적 책임을 다하기 위한 노력을 지속하고 있습니다⁶⁷

2) 경쟁 회사 대비 해당 회사의 Process 상 강점은 무엇인지 간략히 서술하시오

SK Hynix 의 강점은 기술 혁신과 생산 효율성입니다.

- HBM 기술 리더십: SK Hynix 는 HBM 기술에서 선도적인 입지를 차지하고 있으며, 이는 AI 와 데이터 센터의 메모리 솔루션에서 큰 수요를 불러일으키고 있습니다. HBM 3E 와 같은 최신 솔루션을 통해 고객의 요구에 신속하게 대응할 수 있습니다
- 자동화 생산 시스템: 자동화 기술을 통해 생산성을 높이고 비용을 절감할 수 있어 경쟁사보다 높은 품질의 제품을 저렴한 가격에 제공할 수 있습니다.

SK Hynix 의 경쟁사 대비 프로세스 상 강점:

- 1. 고급 패키징 기술:
 - MR-MUF (Mass Reflow Molded Underfill) 기술: SK Hynix 는 업계 최초로 MR-MUF 기술을 개발 및 적용했습니다⁸⁹. 이 기술은 기존의 TC-NCF (Thermal Compression Non-Conductive Film) 방식에 비해 여러 장점을 제공합니다:
 - 열 관리 효율 향상: 최대 10℃ 더 효과적인 열 방출 성능¹⁰

¹⁰ Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

5

⁶ SK hynix Starts Mass Production of 1anm DRAM Using EUV Equipment - SK hynix Newsroom

⁷ SK hynix Leads with '6th Generation 10 nm' DRAM Production Ahead of Samsung - Businesskorea

⁸ SK hynix confirmed that they will be using advanced MR-MUF packaging for HBM4

⁹ Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

- 생산성 향상: 기존 방식 대비 약 3 배 향상된 생산성¹¹
- 안정성 개선: 칩 적층 시 발생할 수 있는 휨 현상 최소화12
- 2. TSV (Through Silicon Via) 기술 선도: 13
 - SK Hynix 는 2013 년 세계 최초로 TSV 구조를 적용한 HBM 을 개발 및 양산했습니다¹⁴
 - TSV 기술을 통해 초당 128GB 의 대용량 데이터 전송이 가능해졌으며, 이는 당시 최고속 제품인 GDDR5 보다 4 배 이상 빠른 속도였습니다
- 3. 첨단 HBM (High Bandwidth Memory) 개발: 15
 - SK Hynix 는 HBM 전 세대(HBM1 부터 HBM3E 까지)를 개발한 유일한 회사입니다
 - 최근 개발된 12 층 HBM3E 는 업계 최고 수준의 속도, 용량, 안정성을 제공합니다
- 4. 혁신적인 VFO (Vertical Fan-Out) 기술: 16
 - SK Hynix 가 개발한 VFO 기술은 기존 배선 대비 전선 길이를 4.6 배 줄이고, 전력 효율을 4.9% 개선했습니다
 - 패키지 두께도 27% 감소시켜 모바일 기기에 최적화된 메모리 제품 개발이 가능해졌습니다
- 5. 지속적인 기술 혁신:¹⁷
 - SK Hynix 는 Advanced MR-MUF 기술을 개발하여 기존 MR-MUF 의 한계를 극복했습니다

¹⁷ [Tech Pathfinder] Small Size, Big Impact

¹¹ Packaging Technology, a Key to Next-Generation Semiconductor Competitiveness, How Far Has SK hynix Come? - SK hynix Newsroom

¹² Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

¹³ SK 하이닉스, 업계 최초 TSV 기술 기반 초고속 메모리 개발

¹⁴ Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

¹⁵ SK hynix Begins Volume Production of the World's First 12-Layer HBM3E

¹⁶ [Tech Pathfinder] Small Size, Big Impact

- 이를 통해 12 층 HBM3 개발 시 발생하는 휨 현상 문제를 해결하고, 열 방출 성능을 36% 개선했습니다
- 6. 고밀도 메모리 제품 개발:
 - SK Hynix 는 128~256GB 3D-TSV DIMM 라인업을 확장하여 고밀도 메모리수요에 대응하고 있습니다¹⁸

이러한 기술적 강점들을 통해 SK Hynix 는 메모리 시장에서 선도적인 위치를 유지하고 있으며, 특히 AI 와 고성능 컴퓨팅 분야에서 경쟁 우위를 확보하고 있습니다.

3) 경쟁 회사 대비 해당 회사의 Process 상 단점은 무엇인지 간략히 서술하시오.

SK Hynix 의 단점은 시장 변동성에 대한 민감성입니다.

- 고정비용 부담: 대규모 생산 시설과 고정비용이 높아, 수요 변화에 민감하게 반응해야합니다. 예를 들어, 반도체 시장의 경기 침체 시 손익이 급격히 악화될 수 있습니다.
- **재고 관리 리스크**: 반도체의 수요 변동성이 크기 때문에 높은 재고를 유지해야 하는 부담이 있습니다. 이는 재무적 위험으로 이어질 수 있습니다.

SK Hynix 의 경쟁사와 비교한 프로세스상 단점:

- 1. **고유전율(High-k) 물질** 관련 문제: ¹⁹
 - SK Hynix 는 DRAM 생산 과정에서 고유전율 물질의 품질 문제로 인해 어려움을 겪었습니다
 - SK Trichem 에서 공급한 지르코늄(Zr) 고유전율 물질에 불순물이 포함되어 있어 일부 DRAM 생산 장비의 가동이 중단되는 사태가 발생했습니다
 - 이는 생산 효율성 저하와 비용 증가로 이어질 수 있는 중대한 문제입니다.

¹⁹ SK Hynix faced problems with high-k material during DRAM production - THE ELEC, Korea Electronics Industry Media

¹⁸ Creating New Values in DRAM Using Through-Silicon-Via Technology for Continued Scaling in Memory System Performance and Capacity - SK hynix Newsroom

2. 공정 안정성 문제: 20

- 고유전율 물질 문제로 인해 SK Hynix 는 즉시 세정 작업을 진행해야 했고, 장비 부품 교체가 필요했습니다
- 이는 경쟁사인 삼성전자에 비해 공정 안정성이 상대적으로 낮을 수 있음을 시사합니다.
- 3. 공급망 관리의 취약성: ²¹
 - SK Trichem 으로부터의 고유전율 물질 공급 중단으로 인해 대체 공급업체를 찾아야 하는 상황이 발생했습니다
 - 이는 SK Hynix 의 공급망 관리가 경쟁사에 비해 취약할 수 있음을 보여줍니다.
- 4. 기술 개발 속도의 지연:22
 - 1b 나노미터 DRAM 개발에서 삼성전자에 뒤처졌습니다
 - 이는 SK Hynix 가 일부 첨단 기술 개발에서 경쟁사보다 뒤쳐질 수 있음을 나타냅니다.
- 5. 생산 유연성의 한계:23
 - SK Hynix 는 HBM(High Bandwidth Memory) 생산 증가로 인해 표준 메모리 생산이 상대적으로 감소할 수 있습니다
 - 이는 시장 수요 변화에 대응하는 생산 유연성이 경쟁사에 비해 제한적일 수 있음을 시사합니다.
- 6. 시장 대응 속도:24
 - 메모리 시장의 변동성에 대응하는 속도가 경쟁사에 비해 다소 느릴 수 있습니다. 예를 들어, 생산량 조절 결정이 경쟁사보다 늦어질 수 있습니다

²⁴ SK Hynix could increase DRAM production in first quarter, CEO says - THE ELEC, Korea Electronics Industry Media

²⁰ <u>SK Hynix faced problems with high-k material during DRAM production - THE ELEC, Korea Electronics</u> <u>Industry Media</u>

²¹ SK Hynix faced problems with high-k material during DRAM production - THE ELEC, Korea Electronics Industry Media

²² SK hynix announces world's first 1c DRAM chips

²³ Samsung, SK hynix Delay Production Increase in Standard DRAM, NAND for Specific Reasons - Businesskorea

이러한 단점들은 SK Hynix 가 지속적으로 개선해 나가야 할 과제들입니다. 그러나 회사는 이러한 문제들을 인식하고 있으며, **1c 나노미터 DRAM 개발 성공**²⁵²⁶과 같은 혁신을 통해 이러한 단점들을 극복하려 노력하고 있습니다.

4) 운영 전략의 Positioning 전략 상, 해당 회사가 현재 주력하고 있는 Dimension 은 무엇이며 향후 경쟁력 확보를 위해 집중해야 할 Dimension 은 무엇인지 제안하고 그 이유를 서술하시오

현재 SK Hynix 는 **기술 혁신**과 품질을 중심으로 Positioning 하고 있습니다.

- 현재 주력 Dimension:
 - 。 기술력: 반도체의 성능 향상 및 제조 비용 절감을 위한 지속적인 R&D 투자.
- 향후 집중해야 할 Dimension:
 - 。 지속 가능성(Sustainability): 반도체 제조에서의 환경 영향을 줄이기 위해 지속 가능한 생산 공정으로의 전환이 필요합니다. 이로 인해 사회적 책임을 다하고 기업 이미지 개선에 기여할 수 있습니다²⁷

SK Hynix 의 운영 전략 Positioning:

1. **현재 주력 Dimension**: 고성능 AI 메모리 제품 SK Hynix 는 현재 고성능 AI 메모리 제품, 특히 HBM(High Bandwidth Memory)과 DDR5 DRAM 에 주력하고 있습니다. 이는 다음과 같은 이유에서 비롯됩니다:

- AI 시장의 급격한 성장: 인공지능 기술의 발전으로 고성능 메모리에 대한 수요가 크게 증가하고 있습니다.
- 기술적 우위: SK Hynix 는 HBM 기술에서 선도적인 위치를 차지하고 있으며, 특히 MR-MUF 와 Advanced MR-MUF 기술을 통해 경쟁사 대비 우수한 열 관리 능력을 보유하고 있습니다²⁸²⁹

²⁹ SK Hynix Pioneers Advanced MR-MUF Technology to Increase Heat-Dissipating Performance -Businesskorea

²⁵ SK hynix Develops Industry's First 1c DDR5

²⁶ SK hynix announces world's first 1c DRAM chips

²⁷ HBM Technology: SK hynix And The Al Revolution | Perspectives | SK

²⁸ Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

 시장 점유율 확대: HBM 시장에서의 리더십을 통해 전체 메모리 시장에서의 점유율을 높이고 있습니다.

2. 향후 집중해야 할 Dimension:

a) 차세대 패키징 기술 개발³⁰

- Hybrid Bonding 기술: 16 층 이상의 HBM 제품에 적용할 수 있는 Hybrid Bonding 기술
 개발에 주력하고 있습니다
- 2.5D 및 3D SiP(System in Package) 솔루션: 대역폭, 용량, 에너지 효율성 등의 기술적 과제를 해결하기 위해 다양한 솔루션을 평가하고 있습니다

b) **맞춤형 제품 개발**³¹

- HBM4E 부터는 고객 요구에 따른 맞춤형 제품 제공이 가능할 것으로 예상됩니다
- 글로벌 파트너들과의 협력을 강화하여 다양한 고객 니즈를 효과적으로 충족시킬 수
 있는 생태계를 구축하고 있습니다.

c) 소프트웨어 역량 강화³²

 프로세서를 포함한 아키텍처의 변화를 예측하고 대응하기 위해 소프트웨어 관련 역량을 강화해야 합니다

d) 글로벌 역량 고도화33

 전 세계 거점을 효율적으로 활용하고 우수한 인재를 확보하여 기업 가치를 높이는 전략이 필요합니다

이러한 **Positioning 전략**을 통해 SK Hynix 는 **현재의 AI 메모리 시장에서의 강점**을 유지하면서도, 미래의 기술 변화와 시장 요구에 선제적으로 대응할 수 있을 것으로 보입니다. 특히 **차세대 패키징 기술**과 **맞춤형 제품 개발**에 집중함으로써, **고부가가치 메모리 솔루션** 기업으로의 성장을 가속화할 수 있을 것입니다.

^{33 [2022} 년 신임 임원 인터뷰①] "SK 하이닉스가 나아갈 방향을 찾는 데 기여하고 싶다"_ 미래전략 전략기획 <u>이재서 담당</u>

10

³⁰ SK Hynix Advances HBM4 Development with Advanced Packaging Technologies | ChinaFlashMarket

³¹ SK Hynix Advances HBM4 Development with Advanced Packaging Technologies | ChinaFlashMarket

³² [2022 년 신임 임원 인터뷰①] "SK 하이닉스가 나아갈 방향을 찾는 데 기여하고 싶다"_ 미래전략 전략기획 이재서 담당

5) 품질관리에서 정의한 다양한 품질의 Dimension 중에서 해당 회사가 품질 개선을 위해 집중해야 할 Dimension 을 제안하고 그 이유를 서술하시오

1. 신뢰성 (Reliability)

- 중요성: 반도체 제품의 장기적인 성능과 안정성 보장은 고객 신뢰와 직접 연결되며, 특히 데이터 센터와 같은 고신뢰성 환경에서 요구됩니다.
- 개선 방안:
 - 。 **공급망 관리 강화**: 고유전율 물질의 품질 문제를 해결하기 위해 안정적이고 품질 높은 원자재 공급망을 구축합니다.³⁴
 - 。 **열 관리 능력 향상**: MR-MUF 기술을 활용하여 반도체 소자의 열을 효과적으로 관리함으로써 제품의 수명을 연장합니다.³⁵³⁶
 - 。 **체계적인 품질 관리**: 스테이지 게이트 프로세스를 통해 개발 초기 단계에서부터 품질을 체계적으로 관리합니다.³⁷

2. 성능 (Performance)

- 중요성: AI 와 고성능 컴퓨팅 분야의 수요가 급증하고 있어, 반도체 제품의 성능 향상이 필수적입니다.
- 개선 방안:
 - HBM 제품 성능 향상: HBM3E 와 같은 고성능 메모리 제품을 개발하여 시장의 변화에 빠르게 대응합니다. 38
 - 모바일 DRAM 성능 개선: HKMG 기술을 도입하여 모바일 DRAM 의 성능을 높여, 사용자 경험을 향상시킵니다.³⁹

³⁹ Rulebreakers' Revolutions: HKMG Advances Mobile DRAM Scaling

³⁴ SK Hynix faced problems with high-k material during DRAM production - THE ELEC, Korea Electronics Industry Media

³⁵ 반도체 기술 탐구: SK Hynix 의 HBM .. : 네이버블로그

³⁶ SK Hynix Pioneers Advanced MR-MUF Technology to Increase Heat-Dissipating Performance - Businesskorea

^{37 &}quot;최고의 제품을 안정적으로 지속 공급하다" SK 하이닉스의 품질설계 뉴딜정책

³⁸ SK Hynix Pioneers Advanced MR-MUF Technology to Increase Heat-Dissipating Performance - Businesskorea

3. 일관성 (Consistency)

• 중요성: 대량 생산 과정에서 일관된 품질을 유지하는 것이 경쟁력을 확보하는 데 중요합니다.

개선 방안:

- 품질 설계 체계 구축: 제품의 완성도를 높이기 위해 초기 설계 단계에서부터 품질을 고려한 설계를 시행합니다.⁴⁰
- 데이터 기반 품질 관리 시스템: 데이터를 활용한 품질 모니터링 시스템을
 도입하여 생산 과정의 일관성을 확보합니다.41

4. 혁신성 (Innovation)

- 중요성: 지속적인 기술 혁신을 통해 시장에서의 선도적인 위치를 유지해야 합니다.
- 개선 방안:
 - 차세대 패키징 기술 개발: 하이브리드 본딩 기술을 통해 반도체 칩의 성능과 밀도를 개선합니다.⁴²⁴³
 - 지속적인 공정 기술 개선: EUV 리소그래피와 같은 최신 공정 기술을 도입하여
 생산 효율성을 높이고 있습니다.

5. 고객 만족 (Customer Satisfaction)

• 중요성: 고객의 요구사항에 신속하게 대응함으로써 시장 점유율을 유지하고, 충성 고객을 확보하는 것이 필수적입니다.

• 개선 방안:

- 。 지속적인 커뮤니케이션 강화: 고객과의 소통을 통해 피드백을 반영하고, 요구에 맞춘 제품 개발을 추진합니다.⁴⁴
- 맞춤형 제품 개발 능력 향상: 고객의 특정 요구를 반영한 맞춤형 솔루션을 제공하여 고객 만족도를 높입니다.45

<u>Businesskorea</u>

⁴⁵ SK Hynix Pioneers Advanced MR-MUF Technology to Increase Heat-Dissipating Performance - Businesskorea

12

⁴⁰ DRAM 설계 일하는 방법 혁신 '품질 설계'

^{41 &}quot;최고의 제품을 안정적으로 지속 공급하다" SK 하이닉스의 품질설계 뉴딜정책

⁴² SK Hynix Pioneers Advanced MR-MUF Technology to Increase Heat-Dissipating Performance -

⁴³ Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

⁴⁴ Gyujei Lee: Next-Gen Packaging Tech Key to HBM Success

6. 환경 친화성 (Environmental Friendliness)

- 중요성: ESG 경영의 중요성이 증가함에 따라, 지속 가능한 생산 방식이 필요합니다.
- 개선 방안:
 - 。 **저전력 제품 개발**: LPDDR5X 와 같은 저전력 메모리 제품을 개발하여 에너지 효율성을 높입니다.46
 - 。 지속 가능한 제조 프로세스 도입: 환경에 미치는 영향을 최소화하기 위해 지속 가능한 제조 기술을 채택합니다.47

SK Hynix 가 품질 개선을 위해 집중해야 할 Dimension 은 신뢰성(Reliability)입니다.

• 이유: 반도체 제품은 장기적으로 사용되므로 신뢰성 있는 제품을 공급하는 것이 필수적입니다. 특히 데이터 센터와 같은 고신뢰성 환경에서 사용되는 제품에서 신뢰성을 높이는 것이 중요하며, 이를 통해 고객의 만족도를 증가시킬 수 있습니다.

6) 통계적 품질관리에서 Random 과 Non-Random Variability 의 차이가 무엇인지 간략히 서술하고, 각각의 Variability 에 대한 해당회사의 구체적 사례를 논하시오

- Random Variability: 자연적 원인에 의해 발생하는 예측할 수 없는 변동입니다. 예를 들어, 생산 환경의 온도 변화나 습도 변화는 Random Variability 에 해당합니다.
- Non-Random Variability: 특정 원인으로 인해 발생하는 변동으로, 관리가 가능합니다. 예를 들어, 특정 기계의 지속적인 고장이나 불량 원자재 사용은 Non-Random Variability 로, 이는 문제를 파악하고 해결할 수 있습니다.

SK Hynix 의 통계적 품질관리에서 Random 과 Non-Random Variability 의 차이와 사례

Random Variability (무작위 변동성)

• 정의: 예측할 수 없는 다양한 요인에 의해 발생하는 내재적인 변동으로, 자연적으로 발생하며 완전히 제거할 수 없습니다. 일반적으로 정규분포를 따르는 경향이 있습니다.

⁴⁷ SK 하이닉스 지속가능경영보고서 2024.pdf

⁴⁶ Rulebreakers' Revolutions: HKMG Advances Mobile DRAM Scaling

• SK Hynix 의 사례:

- Panoptes VM (Virtual Metrology) 솔루션 활용: Al 기반의 가상 계측 시스템을 도입하여 공정 변동성을 관리합니다. 2022 년 12 월부터 5 천만 개 이상의 웨이퍼에 대해 초당 1 개 이상의 속도로 가상 측정을 수행하며, 공정 변동성을 29% 개선했습니다.⁴⁸
- 。 **웨이퍼 제조 과정에서의 두께 변화**: 실리콘 웨이퍼 절단 시 미세한 두께 차이가 발생하며, 이를 통계적 공정 관리(SPC) 차트를 활용하여 모니터링하고 관리합니다.
- 。 **포토리소그래피 공정에서의 광원 강도 변동**: EUV 리소그래피 기술 사용 시 발생하는 광원 강도의 미세한 변동은 1anm DRAM 생산에 있어 중요하게 관리되어야 합니다.

Non-Random Variability (비무작위 변동성)

- 정의: 특정 요인으로 인해 발생하며, 식별 가능하고 제거할 수 있는 변동입니다. 일반적으로 특정 패턴이나 경향을 보입니다.
- SK Hynix 의 사례:
 - 고유전율 물질 품질 문제: SK Trichem 에서 공급받은 지르코늄(Zr) 고유전율 물질에서 불순물이 발견되어 DRAM 생산에 차질을 초래했습니다. 이에 대한 해결책으로 공급업체를 변경하고 품질 관리 프로세스를 강화했습니다.
 - HBM3 12 층 제품의 칩 휨 현상: 기존 MR-MUF 방식으로 12 층 HBM3 제품을 생산할 때 칩 휨 현상이 발생했습니다. 이를 해결하기 위해 Advanced MR-MUF 기술을 개발하였고, 이 기술을 통해 40% 더 얇은 칩 적층이 가능해졌으며 열 방출 성능이 36% 개선되었습니다.⁴⁹
 - HKMG 공정 도입 시 안정성 문제: LPDDR 제품에 HKMG 공정을 최초
 적용하면서 새로운 물질 사용으로 인한 안정성 문제가 발생했습니다. 이를
 해결하기 위해 파일럿 제품을 통해 사전 평가 및 테스트를 수행하였습니다.50

⁵⁰ Rulebreakers' Revolutions: HKMG Advances Mobile DRAM Scaling

⁴⁸ SPIE AL 2024: Gauss Labs & SK hynix Present Al Papers

⁴⁹ SK Hynix Pioneers Advanced MR-MUF Technology to Increase Heat-Dissipating Performance - Businesskorea

SK Hynix 는 이러한 Random 과 Non-Random Variability 를 체계적으로 관리함으로써 제품의 품질을 향상시키고 생산성을 높이고 있습니다. 특히 AI 기반 솔루션과 첨단 패키징 기술 개발을 통해 변동성 관리의 정확도와 효율성을 지속적으로 개선하고 있습니다. 이러한 노력은 SK Hynix 가 메모리 반도체 시장에서 선도적 위치를 유지하는 데 중요한 역할을 하고 있습니다.

Count on SK Hynix for exceptional reliability—
your trusted partner for long-lasting performance
and stability.

