# OCE 313 TÉCNICAS DE ANÁLISIS NO PARAMÉTRICO

#### CLASE 6 - TABLAS DE CONTINGENCIA

Dr. José Gallardo

**Abril 2021** 



#### **PLAN DE LA CLASE**

- Distribución chi cuadrado.
- Tablas de contingencia
- Test chi cuadrado.
- Test exacto de Fisher.
- Interpretación test no paramétricos con R.
- Prácticas R test de correlación, chi cuadrado y fisher.



# Distribución Chi-cuadrado (X²)

- Corresponde a la **distribución muestral de varianzas (s²)** de una población normal.
- El único parámetro que se necesita para modelar la distribución es n, denominado grados de libertad.
- La esperanza matemática es = n y la varianza =2n.





Fuente: Fernando A López Hernández

# Tablas de contingencia o tabla de clasificación cruzada.

| Tratamiento | Respuesta + | Respuesta - |
|-------------|-------------|-------------|
| SI          | а           | b           |
| NO          | С           | d           |

- Se usan comúnmente para **resumir datos de variables categóricas** (ej. Cualitativas, dicotómicas).
- Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y otra es una variable predictora.



# Prueba de Chi-cuadrado (X<sup>2</sup>)

#### **Hipótesis**

 $H_0$ : La variable predictora y la variable respuesta son independientes.

 $H_1$ : La variable predictora y la variable respuesta NO son independientes.

#### **Supuestos:**

- 1) Los datos provienen de una muestra aleatoria de la población de interés.
- 2) El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea mayor 5 y que ninguna frecuencia sea menor que 1.



### **Ejemplo prueba Chi-cuadrado**

#### Frecuencia observada

| Tratamiento | Respuesta + | Respuesta - | Totales |
|-------------|-------------|-------------|---------|
| 1           | 52          | 17          | 69      |
| 2           | 54          | 29          | 83      |
| 3           | 26          | 11          | 37      |
| Totales     | 132         | 57          | 189     |

#### **Hipótesis**

$$H_0$$
:  $P+_{t1} = P+_{t2} = P+_{t3}$ .

$$H_1: P+_{t1} \neq P+_{t2}$$

$$H_1: P+_{t1} \neq P+_{t3}$$

$$H_1: P+_{t2} \neq P+_{t3}$$

#### Frecuencia observada

$$f_{0.11} = 52$$

$$f_{0.12} = 17$$

Etc.



# Ejemplo prueba Chi-cuadrado cont.

#### Frecuencia esperada

| Tratamiento | Respuesta + | Respuesta - | Totales |
|-------------|-------------|-------------|---------|
| 1           | 48,19       | 20,81       | 69      |
| 2           | 57,97       | 25,03       | 83      |
| 3           | 25,84       | 11,16       | 37      |
| Totales     | 132         | 57          | 189     |

#### Valor Chi<sup>2</sup>

$$X^2 = \Sigma (f_o - f_e)^2 / f_e$$

### Frecuencia esperada 11

$$f_{e 11} = N_{+} * N_{T1} / N$$
  
 $f_{e 11} = 132 * 69 / 189 = 48,19$ 

$$X^2 = (52-48,19)^2 / 48,19 + ...$$
  
 $X^2 = 0,30 + 0,27 + 0.00 + 0,70 + 0,63 + 0,00$ 

# Ejemplo prueba Chi-cuadrado cont.

 $X^2$  obtenido = 1,9

**Alfa** = 0,05

CATÓLICA DE

**g.l.** = 3 tratamientos - 1 = 2

X<sup>2</sup> valor crítico de aceptación o rechazo = 5,991



**Conclusión:** No se rechaza la hipótesis nula y por lo tanto concluimos que no hay diferencia en los tratamientos.

# Test de probabilidad exacta de Fisher

- Se utiliza en tablas de contingencia de 2x2.
- Se utiliza cuando NO se cumple el supuesto del test paramétrico Chi-2 respecto de que el número esperado en las categorías sea mayor 5.
- Requiere calcular las probabilidades individuales para las distintas maneras en que pueden aparecer las frecuencias dentro de las 4 celdas, manteniendo constantes las frecuencias marginales, sumando las probabilidades correspondiente a las pregunta de interes.



### Test de probabilidad exacta de Fisher.

| Tratamiento | Respuesta + | Respuesta - | Totales   |
|-------------|-------------|-------------|-----------|
| 1           | а           | b           | g = a + b |
| 2           | С           | d           | h = c + d |
| Totales     | e = a + c   | f = b + d   | n         |

#### Probabilidad exacta de Ficher



# Ejemplo Test de probabilidad exacta de Fisher.

| Tratamiento | Respuesta + | Respuesta - | Totales |
|-------------|-------------|-------------|---------|
| 1           | 7           | 3           | 10      |
| 2           | 1           | 9           | 10      |
| Totales     | 8           | 12          | 20      |

#### **Preguntas:**

¿ El tratamiento 1 fue más efectivo en generar una respuesta + ?

¿ Es posible que este resultado positivo sea solo por azar ?



# Tablas de contingencia alternativas.

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>0</u> | 10  | 10   |
| 2     | 8        | 2   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>1</u> | 9   | 10   |
| 2     | 7        | 3   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>2</u> | 8   | 10   |
| 2     | 6        | 4   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>3</u> | 7   | 10   |
| 2     | 5        | 5   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>4</u> | 6   | 10   |
| 2     | 4        | 6   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>5</u> | 5   | 10   |
| 2     | 3        | 7   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>6</u> | 4   | 10   |
| 2     | 2        | 8   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>7</u> | 3   | 10   |
| 2     | 1        | 9   | 10   |
| Tot.  | 8        | 12  | 20   |

| Trat. | R +      | R - | Tot. |
|-------|----------|-----|------|
| 1     | <u>8</u> | 2   | 10   |
| 2     | 0        | 10  | 10   |
| Tot.  | 8        | 12  | 20   |



# Cálculo de la probabilidad exacta de Fisher.

| а | <i>P</i> (a)            | <i>P</i> (a)            |  | Trat. | R +      | R - | Tot. |
|---|-------------------------|-------------------------|--|-------|----------|-----|------|
| 0 | <u>8! 12! 10! 10!</u>   | 0,00036                 |  | SI    | <u>0</u> | 10  | 10   |
|   | 0! 10! 8! 2! 20!        | 0,0000                  |  | NO    | 8        | 2   | 10   |
| 1 |                         | 0,00953                 |  | Tot.  | 8        | 12  | 20   |
| 2 |                         | 0,07502                 |  |       |          |     |      |
| 3 |                         | 0,24006                 |  |       |          |     |      |
| 4 |                         | 0,35008                 |  |       |          |     |      |
| 5 |                         | 0,24006                 |  |       |          |     |      |
| 6 |                         | 0,07502                 |  | Trat. | R +      | R - | Tot. |
| 7 | <b>7</b> 8! 12! 10! 10! | 0.00053                 |  | SI    | <u>7</u> | 3   | 10   |
|   | 7! 3! 1! 9! 20!         | 7! 3! 1! 9! 20! 0,00953 |  | NO    | 1        | 9   | 10   |
| 8 |                         | 0,00036                 |  | Tot.  | 8        | 12  | 20   |

**Tarea:** complete la información faltante en P(a).



### Prueba de hipótesis

#### **Hipótesis**

$$H_0$$
:  $P+_{t1} = P+_{t2}$   
 $H_1$ :  $P+_{t1} > P+_{t2}$ 

La probabilidad de obtener un valor de **a (respuesta positiva del trat 1)** mayor o igual que 7 = P(7) + P(8) = 0,00953 + 0,00036 = 0,00989.

**Conclusión:** Se rechaza la hipótesis nula con un alfa de 0,01 y por lo tanto concluimos que el tratamiento 1 es más efectivo que el tratamiento 2 en generar una respuesta positiva.



### Coeficiente de correlación (cor.test)

Test for Association/Correlation Between Paired Samples cor.test {stats} R Documentation

#### **Description**

Test for association between paired samples, using one of Pearson's product moment correlation coefficient, Kendall's tau or Spearman's rho.



### Coeficiente de correlación de Spearman

cor.test(X,Y, method = "spearman", alternative = "two.sided")

```
Spearman's rank correlation rho

data: X and Y
S = 16, p-value = 0.4167
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.6
```



### Test de Chi-squared en R (chisq.test)

chisq.test {stats} R Documentation
Pearson's Chi-squared Test for Count Data

#### **Description**

chisq.test performs chi-squared contingency table tests and goodness-of-fit tests.

#### **Usage**



# Test de Chi-squared en R (chisq.test)

M <- c(52, 54, 26, 17, 29, 11) dim(3,2) chisq.test(M)

Pearson's Chi-squared test

data: M

X-squared = 1.9025, df = 2, p-value = 0.3863



### Test de fisher en R (fisher.test)

fisher.test {stats} R Documentation Fisher's Exact Test for Count Data

### **Description**

Performs Fisher's exact test for testing the null of independence of rows and columns in a contingency table with fixed marginals.

#### Usage

```
fisher.test(x, y = NULL, workspace = 200000,
hybrid = FALSE, control = list(), or = 1,
alternative = "two.sided", conf.int = TRUE,
conf.level = 0.95, simulate.p.value = FALSE, B
= 2000)
```

### Test de fisher en R (fisher.test)

```
Prueba_fisher <- matrix(c(7, 3, 1, 9), nrow= 2,
    dimnames = list(response = c("positive", "negative"), treatment = c("T1","T2")))
Fisht<- fisher.test(Prueba_fisher, alternative = "greater")</pre>
Fisht
```



#### RESUMEN DE LO APRENDIDO

- 1. Revisión de conceptos de permutación.
- 2. Recordatorio correlación Pearson.
- 3. Funciones monótonas.
- 4. Aplicación de concepto de permutación a prueba de correlación de Spearman.

