Proton Source Status and Plans

Eric Prebys
FNAL Accelerator Division

Outline

- "Finley Report"
- Linac status
- Proton Demands
- Major Projects Since Last Review
- Booster Performance
- Near Term Priorities
- Major Work in the Next Year.
- The "Proton Plan"

Proton Team ("Finley Report")

- Group formed in early 2003 to study proton demands and needs for the "near" future (through ~2012 or so), in the absence of a proton driver.
- Work culminated in a report to the director, available at www.fnal.gov/directorate/program_planning/studies/ProtonReport.pdf
- No big surprises [see P. Kasper "Getting Protons to NuMI (It's a worry)", FNAL Beams-doc-1036, 2001].
- This work will form the basis of "The Proton Plan".

General Comments

- The linac is not currently a performance bottleneck for the complex when it is running stably.
- There are ongoing longevity and reliability concerns in the linac
 - > General state of instrumentation is inadequate to characterize linac behavior
 - > The 7835 tubes from Burle continue to be a major concern, although the situation is better than it was a year ago.
 - > There are new worries about the klystrons, which we formerly believed were not an issue.
 - > There are some other longevity issues, if we expect the linac to last another ~10 years.

7835 Status

- Lots of interaction between the lab (Czarapata) and Burle to help them improve their reliability.
- They seem to remember how to make tubes again.
- Present inventory:

Last data update: Wed Feb 18 12:30:08 CST 2004

Station	Tube S/N	Gradient	Filament A	Hours	Days	Fraction of median* life	Prob of failure this week
1	N49R6_BNL	1	6393	6126	255	0.38	0
2	A1R8	1.02	6800	8474	353	0.78	0.021
3	P2R4	1.01	6559	346	14	0.03	0
4	A27R6	0.99	6483	6621	275	0.61	0.007
5	BK3	1	6530	2940	122	0.27	0
7	N16R8	-0.02	184	102	4	0	-

Spare 7835 Inventory

- BK1, 214 hours
- A30R6, 0 hours
- + one ready to be tested

Christmas Klystron Woes

- As of Dec. 1, we believed 800 MHz klystrons were not a worry.
 - Very long lifetime (in socket!!)
 - > We had six spares
- A few days before Christmas, the klystron in station one failed.
 - Three spares turned out to be bad
 - > Tracked down to vacuum problem (and a flaw in our measurement technique).

Plan

- We've pulled one good spare from the MuCool project
- > Ralph Pasquinelli put in charge of investigating and acting
- > We think we understand the problem and will work with L3 to address it.

Current stock

- > Two good spares.
- One "gassy" tube, probably bad
- > Three bad tubes at L3, one ready to be repaired (no good estimate)
- > Two more bad tubes which will either be shipped or analyzed here.

Klystron Status

Klystron Hours

Manufacturers: Varian VKP-7955 ("V") and Litton L-5859 ("L")

Module	Manuf	S/N	Hours	Days	Years	Internal Vacuum uA
0	V	L122	86406	3600	9.8	0.41
V	V	L113	90337	3764	10.3	0.00
1	L	0005R1	1266	52	0.1	0.02
2	L	0004	89411	3725	10.1	0.00
3	L	0006	73920	3080	8.4	0.12
4	L	0016	4347	181	0.4	0.15
5	L	0007	91910	3829	10.4	0.04
6	L	0013R1	30035	1251	3.4	0.21
7	L	0015	73127	3046	8.3	0.63
D	V	A21	73846	3076	8.4	0.00

Other Linac Projects

- New quad supplies in LEL
 - > Discussed under proton plan
- Upgrade High Energy Linac Low Level RF (HEL LLRF)
 - > Under way
- Upgrade LEL digitization
 - > Under way
- Upgrade LEL LLRF
 - > Being discussed
- Upgrade LEL modulator switch
 - Being discussed
- Beam notching at the source
 - Pre-notching
 - > 37 MHz laser chopping
 - R&D phase
- Improving beam diagnostics in 400 MeV line
 - > Loss monitors
 - Bunch length monitor
 - Automated emittance measurement
- Dealing with MTA
 - Now: preparing to send 200 MHz and 800 MHz RF
 - > Future: sending beam

400 MeV Line Work

- A new Lambertson was installed during the shutdown to steer beam from the Linac to the Booster
- Although the field qualities of this magnet were vastly superior to the old one, it was a major effort to tune for it.
- This highlighted our lack of understanding of the "400 MeV Line".
- A major effort has gone into studying and optimizing this line.
 - > Improved optical model
 - > Automated beam line tuning
 - > Optimizing optics

What Limits Total Proton Intensity?

- Maximum number of Protons the Booster can stably accelerate: 5E12
- Maximum average Booster rep. Rate: currently 7.5 Hz, may have to go to 10 Hz for NuMI+ (full) MiniBooNE
- (NUMI only) Maximum number of booster batches the Main Injector can hold: currently 6 in principle, possibly go to 11 with fancy loading schemes in the future
- (NUMI only) Minimum Main Injector ramp cycle time (NUMI only): 1.4s+loading time (at least 1/15s*nbatches)
- Losses in the Booster:
 - > Above ground radiation
 - > Damage and/or activation of tunnel components

Our biggest worry at the moment!!!!

Proton Demand

Projects in 2003 (a short list)

- 2003 Activities centered around preparation for the September shutdown:
 - > Linac water system upgrade
 - New Linac Lambertson
 - Better optics in 400 MeV line
 - Booster two-stage collimation system
 - In the works a long time
 - Now in place.
 - > Major modifications at main extraction region
 - Address "dogleg problem" caused by extraction chicane system.
 - New, large aperture magnets in extraction line:
 - Should reduce above-ground losses
 - Major vacuum system upgrade.
 - Lots of smaller jobs.

New Collimator System

Basic Idea...

Should dramatically reduce uncontrolled losses

Long 3 Dogleg Work

New magnet to match extraction line

 Increase spacing between dogleg pairs from 18" to 40" to reduce lattice distortions at injection.

How are We Doing?

Recent Running (Last 4 Weeks)

How far have we come?

Before MiniBooNE

Now (same scale!!)

Note less pronounced injection and transition losses

Near Term Priorities (Booster)

- Optimizing Booster for improved lattice:
 - > Tuning and characterizing 400 MeV line (Linac to Booster).
 - Tuning Booster orbit to minimize losses.
- Commission Collimators:
 - Estimate another month or so to bring into standard operation.
 (discussed shortly)
- Aperture Improvments:
 - Alignment (discussed shortly)
 - > Orbit control
 - Abandoning our original global plan in favor of local control at problem spots for the time being.
 - > Prototype RF Cavities
 - Two large aperture prototype cavities have been built, thanks to the help of MiniBooNE and NuMI universities.
 - We will install these as soon as they are ready to replace existing cavities which are highly activated.
- Multibatch timing: Beam cogging (discussed shortly)

Collimator Studies

- Shown is the effect of putting in one of the secondary collimators as a percentage change in losses as a function of time around the ring.
- Studies are continuing.
 - "Rapid response team" will be put on problem.
 - At present, primary collimators are not optimized to energy loss profile
 - Will replace in upcoming shutdown.

Alignment in the Booster

- Long been known to be a problem.
- A little over a year ago, we started a vertical asfound of the entire Booster
 - > Level run
 - > 4 survey points on each magnet (some a bit complicated)
 - (Mostly) completed during the shutdown. Data now in hand.
 - > Some big problems!
- Historical difficulties
 - Lack of priority!
 - > Lack of a coherent plan, both on our part and alignment.
 - \succ Inefficient use of downtime (response time issues).
- Solution? A task force.

Alignment Results

Lehman Review, Booster, February 25th, 2004 - Prebys

Alignment Plan

- Peter Kasper put in charge of coordinating alignment on our end.
- O'sheg made task manager on the AMG end.
- Andrew Feld (booster technician) will be trained as a liaison.
- Near term goals (ASAP as opportunities arise)

- DONE
- > Complete vertical as-found (5-10% to be done or redone)
 - > Develop a plan for vertical moves, including both "opportunities" and longer term requests.
 - Align RF cavities and other key elements to optical center of straights.
- Longer term (aim to complete by next big shutdown)
 - > Produce a "beam sheet" based on Sasha's MAD file
 - Add non-magnetic elements
 - > Complete network, including horizontal.

Priorities over the Next Year

- Linac Characterization and Reliability
 - > Increase instrumentation of old linac to study instabilities.
 - Develop set of performance parameters.
- Booster improvements.
 - > Prepare for modification of second extraction region
 - New septum
 - Modified dogleg magnets
 - On track for next year's shutdown.
 - Injection bump (ORBUMP) improvements:
 - Injection Bump (ORBUMP) Power Supply
 - Existing supply a reliability worry.
 - Limited to 7.5 Hz
 - Building new supply, capable of 15 Hz.
 - Aiming for summer shutdown (aggressive, but doable)
 - New ORBUMP Magnets
 - Existing magnets limited by heating to 7.5 Hz
 - Working on a design for cooled versions.
 - These, with a new power supply, will make the Booster capable of sustained 15 Hz operation.
 - Aiming for summer shutdown (aggressive, but doable).

Multibatch Timing

- In order to Reduce radiation, a "notch" is made in the beam early in the booster cycle.
- Currently, the extraction time is based on the counted number of revolutions (RF buckets) of the Booster. This ensures that the notch is in the right place.
- The actual time can vary by > 5 usec!
- This is not a problem if booster sets the timing, but it's incompatible with multi-batch running (e.g. Slipstacking or NuMI)
- We must be able to fix this total time so we can synchronize to the M.I. orbit.
- This is called "beam cogging".

Active cogging

 Detect slippage of notch relative to nominal and adjust radius of beam to compensate.

Allow to slip by integer turns, maintaining the same total time.

- Efforts in this area have been recently increased, with the help of a Minos graduate student (R. Zwaska).
- · Aim to get working in the next few months

Planning for the future

- In response to the "Finley Report", the lab management has asked for a "Proton Plan" for the proton source over the next few years, analogous to the Run II plan, but much lower in scope.
- The plan is to do what we can reasonably do to maximize the throughput and reliability of the existing proton source (incl. MI), under the assumption that a Proton Driver will eventually be built.
- Beyond the things I have already mentions, the scope is largely determined by the budgetary guidance:

```
> FY04: $0-2M
```

> FY05: \$6M

> FY06: \$5M

> FY07: \$5M

> FY08: \$2.5M

Comment on the Budget

- This budget is more than enough to do the basic things that we must do to keep the proton source going, provided some of it appears this year!
- It precludes certain ideas that have been suggested:
 - > New Linac front end, or any significant 200 MHz upgrade.
 - > Decreasing the Main Injector ramp time
 - Which means there will be very little to do with the Main Injector.
- There are some "big" (>\$1M) projects that must be discussed.

Large Projects Under Consideration

Booster RF system:

- > Commission a design for a new booster RF system
- Larger aperture, higher gradient cavities
- > Solid state distributed amplifiers
- Goal to have design by January 2005.
- > Two year timescale to build and install (perhaps solid-state DA's can come sooner).
- > Cost ~all of it.
- Adding two additional cavities
 - Use university prototypes + spare parts
 - > Cost ~\$500K
- 30 Hz harmonic to booster ramp.
 - > Effectively increases RF power
 - > Cost of order \$1-2M
- New LEL quad power supplies.
 - > A significant reliability worry
 - > Cost of order \$1M.

Schedule for the Plan

- Will proceed with the vital projects for this year.
- Hope to have a skeleton of a plan by the end of this month.
- Will have a more detailed plan and major recommendations by this summer.