

By Millis Sahar Nov 2020

<u>LinkedIn</u> <u>Medium</u> <u>GitHub</u>

SDA MODEL

Stacked Denoising Autoencoder

04

TABLE OF CONTENTS

Unique idea!

05

06

GRAPH EMBEDDINGS

PROPOSED APPROCH

Embeddings, Node2vec, Graphs

O7 EXPERIMENTS & RESULTS

Datasets, Performance, Results

CONCLUSIONS
Future work and references

O1 ABSTRACT

DLGraph: Malware Detection Using Deep Learning and Graph Embedding | 2018 New Jersey Institute of Technology, USA Professor Haodi Jiang

DL-GRAPH FOR MALWARE DETECTION

THE PROBLEM

PROGRAM CLASSIFICATION

Given a program, they applied their Graphs Embedding's approach, then use DL to classify whether the given program is malware or not.

Based on different datasets demonstrate the effectiveness of the proposed approach and its superiority.

CHLLANGES

Why DL?

VOLUME

Malware population is rapidly growing. It's a race between antivirus software developers and malware producers

Why static?

BEHAVIOR ANALYSIS

Static vs Dynamic Not by executing in a safe environment. Waiting for the right time (disguise).

Why embeddings?

FEATURES

Malware detection features include string signatures, byte sequence ngrams, control flow graphs, and so on.

The signature-based approach usually cannot recognize new malware

OTHER TECHNIQUES

Edward Raff, 2017

Malware Detection by Eating a Whole EXE Article

Daniel Gibert, 2017

Convolutional neural Phetworks for classification of malware assembly code Article

A Deep Learning Framework for Intelligent Malware Detection DL4MD Article

David & Netanyahu, 2015

Deep Learning for Automatic Malware Signature Generation and Classification DeepSign Article

COMPARE SIMILAR TECHNIQUES

	WIN API CALLS	FUNC CALLS	STACKED AUTOENCODERS	CODE ANALYSIS	GRAPH EMBEDDINGS
DLGraph 2018	V 22k	٧	V	Static	V
DL4MD 2016	V 10k	X	V	Static	X
DeepSign 2015	V 20k	V	V	Dynamic (Sandbox)	X

O4 SDA MODEL

Stacked Denoising Autoencoder

IT'S NOT WHAT YOU KNOW... IT'S WHO YOU KNOW!

A way of mapping something into a fixed length vector that captures key features while reducing the dimensionality

from a graph representation ...

to real vector representation

EMBEDDINGS MOTIVATION

How to represent graphs in a mathematical way? How similar two graphs are? Similar meaning?

A bility (\A/iil) (\A ayy dayyala a d fila a

Ability/Will/May download files

May to monitor PC

May send information to Microsoft

May send information to "Hackers"

Chrome	Edge	Power Point	Malware
0.99	0.96	0.13	0.36
0.24	0.31	0.02	0.84
0.02	0.89	0.76	0.08
0.3	0.23	0.08	0.63
•	•	•	•

Node2Vec

Random walks Algorithm to generate vector representations of nodes on a graph, and learns low-dimensional representations for nodes

ATTRIBUTES WEIGHTS AND MORE

BFS DFS

WINDOWS API CALLS

Abilities

CODE

Extract API calls

API CALLS

Count calls per occurrence

VECTOR

22K Boolean dimension vector

Possible WIN API CALLS:

API1,API2,API3,API4,API5

Progrem WIN API CALLS:

API1, API5

Vector for WIN API CALLS:

[1,0,0,0,1]

FUNCTION CALL GRAPH

Relationships

A function-call graph (FCG) shows the calling **relationships** between subroutines or functions in a computer program.

It can be generated from a binary executable through static analysis of the executable code with a disassembly tool.

They used <u>IDA Pro</u>.

Egypt ncc KcacheGrind Graphviz CodeViz

In general, a function-call graph is a directed graph, in which each node represents either a local function implemented by the program designer, or an external system or library function.

EXAMPLE

The directed edges in the function-call graph represent the caller-callee relationships between the functions (nodes)

def __init__(self): pass def eat(self): self.secret_function() self.chew() self.swallow() def secret_function(self): time.sleep(0.2) def chew(self): pass

def swallow(self):
pass

from pycallgraph import PyCallGraph from pycallgraph.output import GraphvizOutput from banana import Banana

```
graphviz = GraphvizOutput(
input_file='Banana.py',
output_file='banana.png')
```


Collection & Labelling

VirusShare

Malware samples, security researchers

Microsoft

Malware Classification Challenge 2015, 35GB, 20K samples

KafanBBS

Famous Internet security forum in China

Windows 7

*.exe files, *.dll files and *.sys

VirusTotal

60 antivirus scanners

MALWARE

"This adware program shows ads as you browse the web. It can also redirect your search engine results, monitor your PC, download applications, and send information to hackers"

Lollipop

"The Kelihos botnet, also known as Hlux, is a botnet mainly involved in spamming and the theft of bitcoins"

Kelihos-ver3

COLLECTED DATA

	TYPE	COUNT	DS#1	DS#2	DS#3
Lollipop	malicious	2,434	V		٧
Kelihos- ver3	malicious	2,584		V	V
*.exe files	benign	631	V	V	V
*.dll files	benign	1,178	V	V	V
*.sys files	benign	368	V	V	V

Total of 2,177 benign samples

In each dataset

80% of the data - training 20% of the data - testing

EXPERIMENTAL RESULTS

		DL4MD	DLGraph	Improve by
D	ataset #1	0.9838	0.9914	0.0076
D	ataset #2	0.9912	0.9936	0.0024
D	ataset #3	0.9875	0.9931	0.0056

^{*} Accuracy Score

^{**} TP is a malicious program

FUTURE WORK

SOPHISTICATED ARCHITECTURES

FUNCTION CALL GRAPH

Windows API calls

MALWARE IMAGES (CNNs)

PROGRAM BEHAVIOR

multiclass classification

RESOURCES

(not in article)

Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion By Pascal Vincent, Hugo Larochelle and more

https://dl.acm.org/doi/10.5555/1756006.1953039

Relational inductive biases, deep learning, and graph networks By DeepMind

https://arxiv.org/pdf/1806.01261

DeepWalk: Online Learning of Social Representations By Bryan Perozzi, Rami Al-Rfou, Steven Skiena https://arxiv.org/pdf/1403.6652

Anonymous Walk Embeddings By Sergey Ivanov, Evgeny Burnaev https://arxiv.org/pdf/1805.11921

Graph Nets library | https://github.com/deepmind/graph_nets

GraphSAGE: Inductive Representation Learning on Large Graphs | http://snap.stanford.edu/graphsage

DeepWalk: Implementing Graph Embeddings in Neo4j | https://neo4j.com/blog/deepwalk-implementing-graph-embeddings in-neo4j

