Theo-II: Analytische Mechanik und Thermodynamik (PTP2)

Universität Heidelberg Sommersemester 2020 Dozent: Prof. Dr. Matthias Bartelmann Obertutor*innen: Veronika Oehl & Christian Sorgenfrei

Übungsblatt 11

Besprechung in den virtuellen Übungsgruppen am 13. Juli 2020 Bitte schicken Sie maximal 2 Aufgaben per E-Mail zur Korrektur an Ihre Tutorin / Ihren Tutor!

1. Energie und Entropie eines Gases

An einem Gas werde eine temperaturunabhängige Wärmekapazität C_V und eine Zustandsgleichung der Form

 $P = aT\left(\frac{b}{V} - \frac{V}{c}\right)$

mit positiven Konstanten a, b und c gemessen.

- a) Zeigen Sie, dass die Energie E nur eine Funktion der Temperatur T aber nicht des Volumens V ist.
- b) Bestimmen Sie die Entropieänderung $\Delta S \equiv S(T, V) S(T_0, V_0)$ beim Übergang von (T_0, V_0) nach (T, V).
- c) Wie ändert sich die Entropie bei isothermen Zustandsänderungen? Diskutieren Sie das Ergebnis mit Blick auf den 2. Hauptsatz.

2. Thermodynamische Potentiale des idealen Gases

In der Vorlesung haben Sie bereits gesehen, dass die Energie des idealen Gases durch

$$E = C_V T$$

und seine Entropie durch

$$S(T, V) = C_V \ln \frac{T}{T_0} + \nu R \ln \frac{V}{V_0} + S_0$$

mit S_0 = const. gegeben sind.

a) Zeigen Sie, dass die Enthalpie des ideales Gases durch

$$H = C_P T$$

gegeben ist. Setzen Sie dafür unter anderem S(T, P) an und verwenden Sie eine geeignete Maxwell-Relation.

b) Zeigen Sie, dass die Entropie als Funktion von T und P durch

$$S(T, P) = C_P \ln \frac{T}{T_0} - \nu R \ln \frac{P}{P_0} + S_0$$

mit S_0 = const. gegeben ist.

c) Stellen Sie die Energie *E*, die Enthalpie *H*, die freie Energie *F* und die freie Enthalpie *G* des idealen Gases in ihren natürlichen Variablen dar.

d) Verifizieren Sie, dass die Ergebnisse

$$\left(\frac{\partial E}{\partial V}\right)_{S} = \left(\frac{\partial F}{\partial V}\right)_{T} = -P$$

erfüllen.

3. Freie Energie des Van-der-Waals-Gases

In der Vorlesung haben Sie gesehen, dass die Zustandsgleichung des Van-der-Waals-Gases durch

$$\left(P + \frac{av^2}{V^2}\right)(V - vb) = vRT$$

gegeben ist. Außerdem haben Sie bereits gesehen, dass seine Entropieänderung beim Übergang von (T_0, V_0) nach (T, V) durch

$$\Delta S = C_V \ln \frac{T}{T_0} + \nu R \ln \frac{V - \nu b}{V_0 - \nu b}$$

gegeben ist. Bestimmen Sie mit Hilfe der beiden vorherigen Gleichungen die Änderung der freien Energie ΔF für diesen Übergang.

4. Verständnisfragen

- a) Erklären Sie den Sinn der Legendre-Transformationen in der Thermodynamik und der verschiedenen thermodynamischen Potentiale.
- b) Erklären Sie den Ursprung der Maxwell-Relationen.
- c) Erläutern Sie die van der Waals'sche Zustandsgleichung und ihre Unterschiede zur Zustandsgleichung des idealen Gases.