Neste trabalho nós implementaremos e compararemos 3 técnicas elementares de estimação de frequência fundamental a partir do máximo pico de amplitude no espectro de magnitude: a própria frequência do pico, a interpolação quadrática, e a diferença de fase do pico entre janelas sucessivas. Além disso usaremos o nosso patch para mensurar os erros cometidos pelas 3 estimativas em diferentes faixas de frequências.

Especificamente, devemos escrever uma abstração $rastreiaF0^{\sim}.pd$ com um argumento N representando o tamanho do bloco de análise, um [inlet $^{\sim}$] para o sinal de entrada e três [outlet] para os três valores estimados de frequência. Considere N=64 como o valor default para o tamanho do bloco de análise, assim se o objeto for criado como [rastreiaF0 $^{\sim}$] esse será o tamanho utilizado.

A análise envolve os espectros de magnitude e de fase, que devem ser armazenados em tabelas compatíveis com o tamanho de bloco de análise. Um índice $k \in \left[0 \dots \frac{N}{2}\right]$ correspondente ao máximo do espectro de magnitude deve ser computado fazendo uma varredura simples da tabela correspondente, numa implementação semelhante à utilizada no primeiro trabalho maior. A partir deste índice k computaremos as três estimativas de frequência como segue:

Frequência de pico: esta estimativa corresponde à expressão $\frac{kR}{N}$, onde R=44100 é a taxa de amostragem. No caso de uma entrada senoidal, o erro máximo cometido por essa estimativa é de $\pm \frac{R}{2N}$, de onde se pode observar que a precisão aumenta com o tamanho de bloco.

Interpolação quadrática: sendo F[k-1], F[k] e F[k+1] os valores do espectro de magnitude nestes 3 índices, o polinômio quadrático interpolador é dado pela expressão $F(x) = A(x-k)^2 + B(x-k) + C$ onde A = (F[k+1]-2*F[k]+F[k-1])/2, B = (F[k+1]-F[k-1])/2 e C = F[k], de onde o valor de \bar{x} correspondente ao máximo de F(x) será dado por $\bar{x} = k - B/2A$. A estimativa produzida no segundo outlet deve ser então a frequência correspondente $\frac{\bar{x}R}{N}$.

Diferença de fase: para entender a relação entre a variação de fase inicial de um certo sinal e o uso dessa informação para re-estimar a frequência fundamental, considere o sinal senoidal da figura abaixo, com frequência $1.1f_0$, próxima da frequência de análise f_0 . Na primeira janela, a fase inicial é 0, enquanto que na segunda janela a fase inicial é $\frac{2\pi}{10}$, pois o sinal já percorreu 10% da sua segunda volta pelo ciclo trigonométrico na janela anterior. Este acúmulo de fase caracteriza a diferença entre a frequência real do sinal $(1.1f_0)$ e a frequência de análise usada pela FFT (f_0) .

Desta forma, é possível re-estimar a frequência real do sinal próxima do k-ésimo bin da FFT a partir da variação de fase inicial $\Delta_{\phi}(k)$ entre duas janelas sucessivas. Considerando que a distância entre os inícios de duas janelas sucessivas é de $\frac{N}{R}$ seg, a frequência real em relação ao k-ésimo bin da FFT será

$$f(k) = \left(\frac{\Delta_{\phi}(k)}{2\pi} + k\right) \frac{R}{N},$$

Em relação ao exemplo da figura, temos k=1 (associado à frequência da janela) e $\Delta_{\phi}(k)=\frac{2\pi}{10}$, de onde $f(k)=1.1\frac{R}{N}$. Esta correção da frequência do k-ésimo oscilador em relação à frequência de análise $k\frac{R}{N}$ sempre produzirá um valor entre $\left(k-\frac{1}{2}\right)\frac{R}{N}$ e $\left(k+\frac{1}{2}\right)\frac{R}{N}$, desde que a variação $\Delta_{\phi}(k)$ seja computada de forma a recair no intervalo $\left[-\pi,+\pi\right]$ (somando ou subtraindo 2π , se necessário).

Para testar o nosso patch e obter algumas medidas de erro dessas 3 estratégias, contrua uma abstração [erroCent] com dois inlets, um para uma estimativa \tilde{f}_0 e outra com o valor real de f_0 , e que computa a expressão $1200\log_2\left(\frac{\tilde{f}_0}{f_0}\right)$ que corresponde ao desvio da estimativa em cents (100 cents = 1 semitom).

Alimente o [rastreiaF0 $^{\sim}$ N] com um oscilador senoidal de frequência f_0 , e teste o seu patch com os parâmetros N=64,256,1024 e com as frequências $f_0=100,1000,10000$, obtendo assim 3 tabelas (uma para cada método) com os 9 valores de erros em cents. Escreva essa tabela num arquivo texto e envie junto com os arquivos erroCent.pd e rastreiaF0 $^{\sim}$.pd.

DICAS:

Para tratar o parâmetro de inicialização, use a sequência [loadbang] -> [f \$1] -> [max 64] -> |; vetor resize \$1<.

Não será necessário considerar mudanças de tamanho de bloco no superpatch; ao invés disso, use um [block~ \$1] no próprio rastreiaF0~.pd.

A entrada pode ser analisada com a sequência [inlet~] -> [fft~] -> [cartopol~], sendo que os dois inlets devem ser enviados para duas tabelas com [tabsend~], que conterão respectivamente os espectros de magnitude e de fase.

Para computar $\Delta_{\phi}(k)$ você deve lembrar do valor do espectro de fase no índice k computado na última janela. Para simplificar o trabalho, considere que o índice k não muda de uma janela para a outra (estaremos interessados em analisar sinais senoidais "estáveis"), e portanto basta armazenar o valor de fase encontrado no índice k no inlet frio de um objeto [-], o que deve acontecer após o cômputo da diferença entre o valor atual e o último valor que havia sido memorizado: primeiro calcula-se a diferença $\Delta_{\phi}(k) = \phi^{\text{atual}}(k) - \phi^{\text{antigo}}(k)$ e só depois se armazena o valor $\phi^{\text{atual}}(k)$ no inlet frio que representa $\phi^{\text{antigo}}(k)$.

Bom Trabalho!