

Overcoming Human Error with Al-Powered Assessments

Okan Bulut

Measurement, Evaluation, and Data Science University of Alberta

Selected-Response (Multiple-Choice, T/F)

Constructed-Response (Open-Answer)

- Easier to develop
- Capability to assess complex skills
- Ease of partial credit scoring
- Less prone to cheating

- ♀ Subjective human scoring → bias

Rater fatigue Rater's personal beliefs Off-topic elements

Response accuracy Completeness of response

ARTIFICIAL INTELLIGENCE

"Having a computer do something that we assume(d) only entities having human-like intelligence could do."

NATURAL LANGUAGE PROCESSING

Source: https://aliz.ai/natural-language-processing-a-short-introduction-to-get-you-started/

Source: https://pub.towardsai.net/ai-can-bring-fairness-to-assessments-but-are-we-ready-for-it-4bd2b039ee8d

Processing responses & scores

Building a scoring model

Applying **deep learning** models

Extracting linguistic features

Short-Answer Scoring

- 10 short-answer items
- 2,230 students (Grade 10)
- 2 human raters to score each item
- Scores: 0, 1, 2, or 3 points

Some information about a science experiment

Prompt—Acid Rain

A group of students wrote the following procedure for their investigation.

Procedure:

- 1. Determine the mass of four different samples.
- 2. Pour vinegar in each of four separates, but identical, containers.
- Place a sample of one material into one container and label. Repeat with remaining samples, placing a single sample into a single container.
- After 24 hours, remove the samples from the containers and rinse each sample with distilled water.
- 5. Allow the samples to sit and dry for 30 minutes.
- 6. Determine the mass of each sample.

The students' data are recorded in the table below.

Sample	Starting Mass (g)	Ending Mass (g)	Difference in Mass (g)
Marble	9.8	9.4	-0.4
Limestone	10.4	9.1	-1.3
Wood	11.2	11.2	0.0
Plastic	7.2	7.1	-0.1

Question

After reading the group's procedure, describe what additional information you would need in order to replicate the experiment. Make sure to include at least three pieces of information.

A scoring algorithm based on the Long Short-Term Memory (LSTM) model yielded:

A

Thank You

bulut@ualberta.ca

