

Linear Regression (Review and Assignments)

Vinh Dinh Nguyen
PhD in Computer Science

Outline

- **Linear Regression Review**
- **Exercise 1**
- **Exercise 2**
- **Exercise 3**
- **Exercise 4**
- **Exercise 5**
- > Other Discussions

MACHINE LEARNING

Predictive Analysis and Forecasting

SEMI-SUPERVISED LEARNING

Hybrid modeling with labeled and unlabeled data

UNSUPERVISED LEARNING

Raw inferences and Pattern finding

REINFORCEMENT LEARNING

Learn from Mistakes and old data

Area (feet²)	Price (\$)
2140	460k
1416	232k
1534	315k
852	178k
500	135k

How do we represent h?

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Linear Regression with One Variable Univariate linear regression

Linear Regression Can we find

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
Training Sec	2104	460
	1416	232
	1534	315
	852	178

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's: Parameters

How to choose θ_i 's ?

3

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Idea: Choose $heta_0, heta_1$ so that $h_{ heta}(x)$ is close to y for our training examples (x,y)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

$$h_{\theta}(x)$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $J(\theta_1)$

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1)

$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $h_{\theta}(x)$ $J(\theta_1)$ (for fixe θ_1 , this is a function of x) (function of the parameter \times $h_{\theta}(x)$ $J(\theta_1)$ $\theta_1 = 0.5$ 0 0.5 1.5 -0.5 0 2.5

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

 $h_{\theta}(x)$

 $J(\theta_1)$

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1)

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

```
\begin{array}{ll} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \theta_1 := \operatorname{temp1} \end{array} \qquad \begin{array}{ll} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}
```


What, Why using a Derivative?

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$\frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{(i)} - y^{(i)})^{2}$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Labol

Features Label

Advertising data

Introduction

reature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

Footure

House price data

if area=6.0, price=?

if TV=55.0, Radio=34.0, and Newspaper=62.0, price=? **Features**

Label

crim \$	zn ÷	indus \$	chas \$	nox ÷	rm ÷	age \$	dis \$	rad \$	tax ÷	ptratio \$	black \$	lstat ≎	medv \$
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9

Boston House Price Data

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

area	price	predicted	error
6.7	9.1	-2.238	128.55
4.6	5.9	-1.524	55.11
3.5	4.6	-1.15	33.06
5.5	6.7	-1.83	72.76

$$w = -0.34$$

$$b = 0.04$$

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

area	price	predicted	error
6.7	9.1	8.099	1.002
4.6	5.9	5.642	0.066
3.5	4.6	4.355	0.06
5.5	6.7	6.695	0.00002

$$\mathbf{w} = 1.17$$

$$b = 0.26$$

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value, w and b are parameters and x is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Initialize *w* and *b* Compute output \hat{y} Training Compute loss data Pick sample (x, y)Compute derivate for each parameter Update parameters x=area and y=price

How to find optimal w and b?

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and b are parameters

and x is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

How to find optimal w and b?

Use gradient descent to minimize the loss function

Compute derivate for each parameter

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta L'_{w}$$

$$b = b - \eta L'_{b}$$

$$\eta \text{ is learning rate}$$

***** Toy example

Cheat sheet

Compute the output \hat{y} Compute the output \hat{y}

$$\hat{y} = wx + b$$

Compute the loss

$$L = (\hat{y} - y)^2$$

Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

Feature

Linear Regression

 Catuic	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

Lahel

***** Toy example

Model prediction before and after the first update

Giá nhà (chục lượng vàng) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Diện tích nhà (x 100m2) $\mathbf{w} = 1.179292$ $\mathbf{b} = 0.26676$ $\mathbf{L} = 0.868$

Before updating

After updating

Summary (simple version)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

***** For the toy example

Cheat sheet

Compute the output \hat{y} Compute the loss

$$\hat{y} = wx + b$$

$$L = (\hat{y} - y)^2$$

Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$
$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

```
# forward
 2 - def predict(x, w, b):
        return x*w + b
   # compute gradient
 6 - def gradient(y_hat, y, x):
        dw = 2*x*(y_hat-y)
        db = 2*(y_hat-y)
        return (dw, db)
11
    # update weights
13 - def update_weight(w, b, lr, dw, db):
        w new = w - lr*dw
14
        b_new = b - lr*db
16
        return (w_new, b_new)
```

Code for one update

```
# forward
   def predict(x, w, b):
        return x*w + b
    # compute gradient
    def gradient(y_hat, y, x):
        dw = 2*x*(y_hat-y)
        db = 2*(y hat-y)
        return (dw, db)
10
11
    # update weights
    def update_weight(w, b, lr, dw, db):
14
        w new = w - lr*dw
15
        b new = b - lr*db
16
17
        return (w_new, b_new)
```

```
# test sample
    x = 6.7
   v = 9.1
    # init weights
    b = 0.04
    W = -0.34
    1r = 0.01
 9
    # predict y hat
10
    y_hat = predict(x, w, b)
    print('y_hat: ', y_hat)
12
13
    # compute loss
14
    loss = (y_hat-y)*(y_hat-y)
    print('Loss: ', loss)
16
17
    # compute gradient
    (dw, db) = gradient(y_hat, y, x)
19
    print('dw: ', dw)
20
    print('db: ', db)
21
22
    # update weights
23
    (w, b) = update_weight(w, b, lr, dw, db)
24
    print('w_new: ', w)
25
   print('b_new: ', b)
```


Computational graph

- ***** House price prediction
 - **❖** m-sample training (1<m<N)

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Tính output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < m$$

3) Tính loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < m$$

4) Tính đạo hàm

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < m$

5) Cập nhật tham số

$$w = w - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial w}}{m} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial b}}{m}$$

Computational graph

- ***** House price prediction
 - **❖** N-sample training

- 1) Pick all the N samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Tính output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < N$$

3) Tính loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < N$$

4) Tính đạo hàm

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < N$

5) Cập nhật tham số

$$w = w - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial w}}{N} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial b}}{N}$$

Generalized formula

Label

Feature

House price data

1 catare	Laber
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

Model

price =
$$w * area + b$$

 $\hat{y} = wx + b$

Model (vectorization)

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$
 where $\boldsymbol{\theta}^T = [b \ w]^T$

$$\boldsymbol{x} = [x_0 \ area]^T$$

$$x_0 = 1$$

Features

Label

TV	♦ Radio	* Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1x_1 + w_2x_2 + w_3x_3 + b$

Model (vectorization)

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$
 where $\boldsymbol{\theta}^T = [b \ w_1 \ w_2 \ w_3]^T$ $\boldsymbol{x} = [x_0 \ TV \ Radio \ Newspaper]^T$ $x_0 = 1$

1) Pick a sample (x, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$
$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Linear Regression

Features			Label	
TV	Radio	Newspaper	Sales	
230.1	37.8	69.2	22.1	
44.5	39.3	45.1	10.4	
17.2	45.9	69.3	12	
151.5	41.3	58.5	16.5	
180.8	10.8	58.4	17.9	

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1x_1 + w_2x_2 + w_3x_3 + b$

Features			Label
TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

```
1 def initialize_params():
2    w1 = random.gauss(mu=0.0, sigma=0.01)
3    w2 = random.gauss(mu=0.0, sigma=0.01)
4    w3 = random.gauss(mu=0.0, sigma=0.01)
5    b = 0
6
7    return w1, w2, w3, b
8
9 # initialize model's parameters
10 w1, w2, w3, b = initialize_params()
```

```
2 def predict(x1, x2, x3, w1, w2, w3, b):
        return w1*x1 + w2*x2 + w3*x3 + b
 5 def compute_loss(y_hat, y):
        return (y_hat - y)**2
 9 def compute_gradient_wi(xi, y, y_hat):
        dl_dwi = 2*xi*(y_hat-y)
11
        return dl_dwi
12
13 def compute_gradient_b(y, y_hat):
        dl_db = 2*(y_hat-y)
14
15
        return dl_db
16
17
18 def update_weight_wi(wi, dl_dwi, lr):
19
        wi = wi - lr*dl_dwi
20
        return wi
21
22 def update_weight_b(b, dl_db, lr):
23
        b = b - lr*dl db
24
        return b
```

Outline

Linear Regression Review

- > Exercise 1
- **Exercise 2**
- **Exercise 3**
- **Exercise 4**
- **Exercise 5**
- > Other Discussions

Bài tập 1 (kỹ thuật đọc và xử lý dữ liệu từ file .csv): Cho trước file dữ liệu advertising.csv, hãy hoàn thành function prepare _data(file _name _dataset) trả về dữ liệu đã được tổ chức (X cho input và y cho output).

```
2 # dataset
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import random
7 def get_column(data, index):
      #your code here ****************
10
      return result
11
12
13 def prepare_data(file_name_dataset):
    data = np.genfromtxt(file_name_dataset, delimiter=',', skip_header=1).tolist()
    N = len(data)
15
16
    # get tv (index=0)
17
    tv_data = get_column(data, 0)
19
    # get radio (index=1)
    radio_data = get_column(data, 1)
22
```


TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9
8.7	48.9	75	7.2
57.5	32.8	23.5	11.8
120.2	19.6	11.6	13.2
8.6	2.1	1	4.8
199.8	2.6	21.2	15.6

TV = X[0] = [230.1, 44.5, 17.2, 151.5, 180.8, 8.7, 57.5, 120.2, 8.6, 199.8]

X

Radio = X[1] = [37.8, 39.9, 45.9, 41.3, 10.8, 48.9, 32.8, 19.6, 2,1, 2.6]

News = X[2] = [69.2, 45.1, 69.3, 58.5, 58.4, 75, 32.5, 11.6, 1.0, 21.2]

Sales = Y = [22.1, 10.4, 12, 16.5, 17.9, 7.2, 11.8, 13.2, 4.8, 15.6]

```
# dataset
import numpy as np
import matplotlib.pyplot as plt
import random
def get_column(data, index):
    result = [row[index] for row in data]
    return result
def prepare_data(file_name_dataset):
  data = np.genfromtxt(file_name_dataset, delimiter=',', skip_header=1).tolist()
  N = len(data)
  # get tv (index=0)
  tv_data = get_column(data, 0)
  # get radio (index=1)
  radio_data = get_column(data, 1)
  # get newspaper (index=2)
  newspaper_data = get_column(data, 2)
  # get sales (index=3)
  sales_data = get_column(data, 3)
  # building X input and y output for training
  X = [tv_data, radio_data, newspaper_data]
  y = sales_data
  return X,y
```

Outline

- **Linear Regression Review**
- **Exercise 1**

- **Exercise 2**
- **Exercise 3**
- **Exercise 4**
- **Exercise 5**
- > Other Discussions

Bài tập 2 (kỹ thuật huấn luyện data dùng one sample - linear regression): Sử dụng kết quả dữ liệu đầu vào X, và dữ liệu đầu ra y từ bài 1, để phát triển chương trình dự đoán thông tin sales (y) từ X bằng cách dùng giải thuật linear regression with one sample-training với loss được tính bằng công thức Mean Squared Error $L = (\hat{y} - y)^2$. Sơ đồ hoạt động của giải thuật được mô tả ở hình 2. Nhiệm vụ của bạn là hoàn thành function **implement_linear_regression(X_data, y_data, epoch_max, lr)** và trả về 4 tham số w1,w2,w3,b và lich sử tính loss như bên dưới.

Hình 2: Các bước để thực hiện train linear regression model

33

b = update_weight_b(b, dl_db, lr)

logging

return (w1, w2, w3, b, losses)

losses.append(loss)

```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
   losses = []
   w1, w2, w3, b = initialize_params()
   N = len(y_data)
                                                            1 - def initialize_params():
   for epoch in range (epoch_max):
       for i in range(N):
                                                                     \# w1 = random.gauss(mu=0.0, sigma=0.01)
           # get a sample
           x1 = X_{data}[0][i]
                                                                     \# w2 = random.gauss(mu=0.0, sigma=0.01)
           x2 = X_{data}[1][i]
           x3 = X_{data}[2][i]
                                                                     \# w3 = random.gauss(mu=0.0, sigma=0.01)
           y = y_{data[i]}
14
                                                                     \# b = 0
           # print(y)
                                                            6
           # compute output
17
           y_hat = predict(x1, x2, x3, w1, w2, w3, b)
                                                                     w1, w2, w3, b = (0.016992259082509283, 0.0070783670518262355,
18
19
                                                                          -0.002307860847821344, 0)
           # compute loss
           loss = compute_loss_mse(y, y_hat)
21
                                                                     return w1, w2, w3, b
                                                            8
           # compute gradient w1, w2, w3, b
23
           dl_dw1 = compute_gradient_wi(x1, y, y_hat)
           dl_dw2 = compute_gradient_wi(x2, y, y_hat)
           dl_dw3 = compute_gradient_wi(x3, y, y_hat)
           dl_db = compute_gradient_b(y, y_hat)
           # update parameters
           w1 = update_weight_wi(w1, dl_dw1, lr)
           w2 = update_weight_wi(w2, d1_dw2, lr)
           w3 = update_weight_wi(w3, d1_dw3, lr)
```



```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
   losses = []
    w1, w2, w3, b = initialize_params()
   N = len(y_data)
    for epoch in range (epoch_max):
        for i in range(N):
            # get a sample
            x1 = X_{data}[0][i]
            x2 = X_data[1][i]
            x3 = X_data[2][i]
            y = y_data[i]
            # print(y)
17
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
            # compute loss
            loss = compute_loss_mse(y, y_hat)
21
            # compute gradient w1, w2, w3, b
            dl_dw1 = compute_gradient_wi(x1, y, y_hat)
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
27
            # update parameters
29
            w1 = update_weight_wi(w1, dl_dw1, lr)
            w2 = update_weight_wi(w2, d1_dw2, lr)
            w3 = update_weight_wi(w3, dl_dw3, lr)
            b = update_weight_b(b, dl_db, lr)
            # logging
            losses.append(loss)
     return (u1 u2 u3 h locces)
```

compute output and loss
def predict(x1, x2, x3, w1, w2, w3, b):
 return w1*x1 + w2*x2 + w3*x3 + b


```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
    losses = []
    w1, w2, w3, b = initialize_params()
    N = len(y_data)
    for epoch in range (epoch_max):
        for i in range(N):
            # get a sample
            x1 = X_{data}[0][i]
            x2 = X_data[1][i]
            x3 = X_{data}[2][i]
            y = y_data[i]
            # print(y)
            # compute output
17
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
19
            # compute loss
            loss = compute_loss_mse(y, y_hat)
21
22
            # compute gradient w1, w2, w3, b
            dl_dw1 = compute_gradient_wi(x1, y, y_hat)
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
27
            # update parameters
29
            w1 = update_weight_wi(w1, dl_dw1, lr)
            w2 = update_weight_wi(w2, d1_dw2, lr)
            w3 = update_weight_wi(w3, dl_dw3, lr)
            b = update_weight_b(b, dl_db, lr)
            # logging
            losses.append(loss)
     return (u1 u2 u3 h locces)
```

def compute_loss_mse(y_hat, y):
 return (y_hat - y)**2


```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
    losses = []
    w1, w2, w3, b = initialize_params()
    N = len(y_data)
    for epoch in range (epoch_max):
        for i in range(N):
            # get a sample
            x1 = X_{data}[0][i]
            x2 = X_data[1][i]
            x3 = X_{data}[2][i]
            y = y_data[i]
            # print(y)
            # compute output
17
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
            # compute loss
            loss = compute_loss_mse(y, y_hat)
21
22
            # compute gradient w1, w2, w3, b
            dl_dw1 = compute_gradient_wi(x1, y, y_hat)
24
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
27
            # update parameters
29
            w1 = update_weight_wi(w1, dl_dw1, lr)
            w2 = update_weight_wi(w2, d1_dw2, lr)
            w3 = update_weight_wi(w3, dl_dw3, lr)
            b = update_weight_b(b, dl_db, lr)
            # logging
            losses.append(loss)
    return (u1 u2 u3 h losses)
```

```
# compute gradient
def compute_gradient_wi(xi, y, y_hat):
    dl_dwi = 2*xi*(y_hat-y)
    return dl_dwi
```



```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
    losses = []
    w1, w2, w3, b = initialize_params()
    N = len(y_data)
    for epoch in range (epoch_max):
        for i in range(N):
            # get a sample
            x1 = X_{data}[0][i]
            x2 = X_data[1][i]
            x3 = X_{data}[2][i]
            y = y_data[i]
            # print(y)
            # compute output
17
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
            # compute loss
            loss = compute_loss_mse(y, y_hat)
21
            # compute gradient w1, w2, w3, b
            dl_dw1 = compute_gradient_wi(x1, y, y_hat)
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
27
            # update parameters
29
            w1 = update_weight_wi(w1, dl_dw1, lr)
            w2 = update_weight_wi(w2, d1_dw2, lr)
            w3 = update_weight_wi(w3, d1_dw3, 1r)
            b = update_weight_b(b, dl_db, lr)
            # logging
            losses.append(loss)
    return (u1 u2 u3 h losses)
```

```
def compute_gradient_b(y, y_hat):
    dl_db = 2*(y_hat-y)
    return dl_db
```



```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
    losses = []
    w1, w2, w3, b = initialize_params()
   N = len(y_data)
    for epoch in range (epoch_max):
        for i in range(N):
            # get a sample
            x1 = X_{data}[0][i]
            x2 = X_data[1][i]
            x3 = X_data[2][i]
            y = y_data[i]
            # print(y)
            # compute output
17
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
            # compute loss
            loss = compute_loss_mse(y, y_hat)
21
            # compute gradient w1, w2, w3, b
            dl_dw1 = compute_gradient_wi(x1, y, y_hat)
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
27
            # update parameters
29
           w1 = update_weight_wi(w1, dl_dw1, lr)
            w2 = update_weight_wi(w2, d1_dw2, lr)
            w3 = update_weight_wi(w3, d1_dw3, lr)
32
           b = update_weight_b(b, dl_db, lr)
            # logging
            losses.append(loss)
     eturn (u1 u2 u3 h locces)
```

```
# update weights
def update_weight_wi(wi, dl_dwi, lr):
    wi = wi - lr*dl_dwi
    return wi
```



```
1 def implement_linear_regression(X_data, y_data, epoch_max = 50,lr = 1e-5):
   losses = []
    w1, w2, w3, b = initialize_params()
   N = len(y_data)
    for epoch in range (epoch_max):
        for i in range(N):
            # get a sample
            x1 = X_{data}[0][i]
            x2 = X_data[1][i]
            x3 = X_data[2][i]
            y = y_data[i]
            # print(y)
            # compute output
17
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
            # compute loss
            loss = compute_loss_mse(y, y_hat)
            # compute gradient w1, w2, w3, b
            dl_dw1 = compute_gradient_wi(x1, y, y_hat)
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
            # update parameters
29
            w1 = update_weight_wi(w1, dl_dw1, lr)
            w2 = update_weight_wi(w2, d1_dw2, lr)
           w3 = update_weight_wi(w3, dl_dw3, lr)
            b = update_weight_b(b, dl_db, lr)
            # logging
            losses.append(loss)
    return (u1 u2 u3 h losses)
```

```
def update_weight_b(b, dl_db, lr):
    b = b - lr*dl_db
    return b
```



```
# given new data
tv = 19.2
radio = 35.9
newspaper = 51.3
X,y = prepare_data('advertising.csv')
(w1,w2,w3,b, losses) = implement_linear_regression(X,y)
sales = predict(tv, radio, newspaper, w1, w2, w3, b)
print(f'predicted sales is {sales}')
```

Outline

- **Linear Regression Review**
- **Exercise 1**
- **Exercise 2**

- **Exercise 3**
- **Exercise 4**
- **Exercise 5**
- > Other Discussions

Bài tập 3 (kỹ thuật huấn luyện data dùng batch N samples - linear regression): Cải tiến giải thuật ở bài tập 2, bằng cách huấn luyện giải thuật linear regression sử dụng N samples-training. Công việc của bạn ở bài tập này là bạn cần implement lại function **implement_linear_regression_nsamples** sử dụng N sample-training với MSE loss function $L(\hat{y}, y) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y)^2$ và MAE loss function $L(\hat{y}, y) = \frac{1}{N} \sum_{i=1}^{N} |\hat{y} - y|$

```
def implement_linear_regression_nsamples(X_data, y_data, epoch_max = 50,lr = 1e-5):
    losses = []

w1, w2, w3, b = initialize_params()
    N = len(y_data)
```



```
def implement_linear_regression_nsamples(X_data, y_data, epoch_max = 50,lr = 1e-5):
  losses = []
  w1, w2, w3, b = initialize_params()
 N = len(y_data)
  for epoch in range(epoch_max):
      loss total = 0.0
      dw1_total = 0.0
      dw2 total = 0.0
      dw3 total = 0.0
      db total = 0.0
      for i in range(N):
          # get a sample
          x1 = X_{data[0][i]}
          x2 = X_{data}[1][i]
          x3 = X_{data[2][i]}
          y = y_data[i]
          # print(y)
          # compute output
          y_{hat} = predict(x1, x2, x3, w1, w2, w3, b)
```



```
for i in range(N):
   # get a sample
   x1 = X data[0][i]
   x2 = X_{data[1][i]}
   x3 = X data[2][i]
    y = y data[i]
   # print(y)
   # compute output
    y_hat = predict(x1, x2, x3, w1, w2, w3, b)
    # compute loss
    loss = compute_loss_mae(y, y_hat)
    loss total = loss total + loss
    # compute gradient w1, w2, w3, b
    dl_dw1 = compute_gradient_wi(x1, y, y_hat)
    dl_dw2 = compute_gradient_wi(x2, y, y_hat)
    dl_dw3 = compute_gradient_wi(x3, y, y_hat)
    dl db = compute gradient b(y, y hat)
   # accumulate
    dw1 total = dw1 total + dl dw1
    dw2 total = dw2 total + dl dw2
    dw3\_total = dw3\_total + dl\_dw3
    db total = db total + dl db
```

```
# (after processing N samples) - update parameters
w1 = update_weight_wi(w1, dl_dw1/N, lr)
w2 = update_weight_wi(w2, dl_dw2/N, lr)
w3 = update_weight_wi(w3, dl_dw3/N, lr)
b = update_weight_b(b, dl_db/N, lr)

# logging
losses.append(loss_total/N)
return (w1,w2,w3,b, losses)
```



```
X,y = prepare_data('advertising.csv')
(w1,w2,w3,b, losses) = implement_linear_regression_nsamples(X,y,1000)
plt.plot(losses)
plt.xlabel("#epoch")
plt.ylabel("MAE Loss")
plt.show()
```



```
X,y = prepare_data('advertising.csv')
(w1,w2,w3,b, losses) = implement_linear_regression_nsamples(X,y,1000)
plt.plot(losses)
plt.xlabel("#epoch")
plt.ylabel("MSE Loss")
plt.show()
```


Outline

- **Linear Regression Review**
- **Exercise 1**
- **Exercise 2**
- **Exercise 3**

- **Exercise 4**
- **Exercise 5**
- > Other Discussions

Bài tập 4 Như chúng ta đã biết, mục đích của linear regression là tìm hàm xấp xỉ y = ax1 + bx2 + cx3 + bx0. Trong đó x1 là TV, x2 là Radio, x3 là Newspapers, và x0 = 1. Đầu tiên, bạn cần tổ chức lại dữ liệu đầu vào ở bài tập 1 theo dạng danh sách các feature (x0, x1,x2,x3). Ví dụ theo hình 1, dữ liệu đầu vào dòng thứ 1 và 2 ta có thể tổ chức lại như sau:

$$X[0] = [1, x1,x2,x3] = [1, 230.1, 37.8, 69.2]$$

 $X[1] = [1, x1,x2,x3] = [1, 44.5, 39.3, 45.1]$

10

AI VIETNAM

aivietnam.edu.vn

••••

$$X[199] = [1, x1,x2,x3] = [1, 232.1,8.6, 8,7]$$

Để implement ý tưởng trên vào chương trình, bạn có thể sử dụng function bên dưới:

Generalized formula

Label

6.7

price area 6.7 9.1 4.6 5.9 3.5 4.6 5.5

Feature

House price data

Model

price =
$$w * area + b$$

 $\hat{y} = wx + b$

Model (vectorization)

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$
 where $\boldsymbol{\theta}^T = [b \ w]^T$

$$\boldsymbol{x} = [x_0 \ area]^T$$

$$x_0 = 1$$

Features

Label

TV	♦ Radio	Newspaper	♦ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$

Model (vectorization)

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$
 where $\boldsymbol{\theta}^T = [b \ w_1 \ w_2 \ w_3]^T$ $\boldsymbol{x} = [x_0 \ TV \ Radio \ Newspaper]^T$ $x_0 = 1$


```
def prepare_data(file_name_dataset):
   data = np.genfromtxt(file_name_dataset, delimiter=',', skip_header=1).tolist()
   # get tv (index=0)
   tv_data = get_column(data, 0)
   # get radio (index=1)
   radio_data = get_column(data, 1)
   # get newspaper (index=2)
   newspaper_data = get_column(data, 2)
   # get sales (index=3)
   sales_data = get_column(data, 3)
   # building X input and y output for training
   #Create list of features for input
   X = [[1, x1, x2, x3] \text{ for } x1, x2, x3 \text{ in } zip(tv_data, radio_data, newspaper_data)]
   y = sales_data
   return X, y
```



```
def implement_linear_regression(X_feature, y_ouput, epoch_max = 50, lr = 1e-5):
  losses = []
  weights = initialize_params()
  N = len(y ouput)
  for epoch in range(epoch_max):
      print("epoch", epoch)
      for i in range(N):
          # get a sample - row i
         features_i = X_feature[i]
         y = sales_data[i]
         # compute output
                                                                           def predict(X_features, weights):
         y_hat = predict(features_i, weights)
                                                                                return sum([f*w for f, w in zip(X_features, weights)])
          # compute loss
          loss = compute_loss(y, y_hat)
         # compute gradient w1, w2, w3, b
          dl_dweights = compute_gradient_w(features_i, y, y_hat)
         # update parameters
         weights = update_weight(weights, dl_dweights, lr)
          # logging
          losses.append(loss)
  return weights, losses
```



```
def implement_linear_regression(X_feature, y_ouput, epoch_max = 50, lr = 1e-5):
  losses = []
  weights = initialize_params()
  N = len(y ouput)
  for epoch in range(epoch_max):
      print("epoch", epoch)
      for i in range(N):
          # get a sample - row i
          features_i = X_feature[i]
          y = sales_data[i]
          # compute output
          y_hat = predict(features_i, weights)
          # compute loss
          loss = compute_loss(y, y_hat)
          # compute gradient w1, w2, w3, b
          dl_dweights = compute_gradient_w(features_i, y, y_hat)
          # update parameters
          weights = update_weight(weights, dl_dweights, lr)
          # logging
          losses.append(loss)
  return weights, losses
```

```
def compute_loss(y_hat, y):
    return (y_hat - y)**2
```



```
def implement_linear_regression(X_feature, y_ouput, epoch_max = 50, lr = 1e-5):
  losses = []
  weights = initialize_params()
 N = len(y ouput)
  for epoch in range(epoch_max):
      print("epoch", epoch)
      for i in range(N):
          # get a sample - row i
          features_i = X_feature[i]
          y = sales_data[i]
          # compute output
                                                                                 # compute gradient
          y_hat = predict(features_i, weights)
                                                                                 def compute_gradient_w(X_features, y, y_hat):
                                                                                     dl_dweights = [2*xi*(y_hat-y) for xi in X_features]
          # compute loss
                                                                                     return dl_dweights
          loss = compute_loss(y, y_hat)
          # compute gradient w1, w2, w3, b
          dl_dweights = compute_gradient_w(features_i, y, y_hat)
          # update parameters
          weights = update_weight(weights, dl_dweights, lr)
          # logging
          losses.append(loss)
  return weights, losses
```

```
def implement_linear_regression(X_feature, y_ouput, epoch_max = 50, lr = 1e-5):
  losses = []
  weights = initialize_params()
  N = len(y ouput)
  for epoch in range(epoch_max):
      print("epoch", epoch)
      for i in range(N):
          # get a sample - row i
          features_i = X_feature[i]
          y = sales_data[i]
          # compute output
                                                                        # update weights
          y_hat = predict(features_i, weights)
                                                                        def update_weight(weights, dl_dweights, lr):
                                                                            weights = [w - lr*dw for w, dw in zip(weights, dl_dweights)]
          # compute loss
                                                                            return weights
          loss = compute_loss(y, y_hat)
          # compute gradient w1, w2, w3, b
          dl_dweights = compute_gradient_w(features_i, y, y_hat)
          # update parameters
          weights = update_weight(weights, dl_dweights, lr)
          # logging
          losses.append(loss)
  return weights, losses
```

```
X,y = prepare_data('advertising.csv')
W,L = implement_linear_regression(X,y)
plt.plot(L[-100:])
plt.xlabel("#iteration")
plt.ylabel("MSE loss")
plt.show()
```


Outline

- **Linear Regression Review**
- **Exercise 1**
- **Exercise 2**
- **Exercise 3**
- **Exercise 4**

- **Exercise 5**
- Other Discussions

Bài tập 5 (Tìm hiểu kỹ thuật Feature Scaling thông qua min and max)): Ở bài tập này các bạn cần

12

AI VIETNAM aivietnam.edu.vn

phải chuẩn hoá dữ liệu đầu vào X trước thuật nhằm tăng tốc độ hội tụ của giải thuật linear regression. Yêu cầu của bài tập là các bạn cần chuẩn hoá data theo MinMax scale $X_{new} = \frac{X_{old} - X_{min}}{X_{max} - X_{min}}$ trước khi đưa vào huấn luyện data. Nhiệm vụ của bạn ở bài tập này là cần implement hàm \min_{max} scaling() để chuẩn hoá dữ liệu input X như bên dưới:


```
def prepare_data(file_name_dataset):
 data = np.genfromtxt(file_name_dataset, delimiter=',', skip_header=1).tolist()
 # get tv (index=0)
 tv_data = get_column(data, 0)
 # get radio (index=1)
  radio_data = get_column(data, 1)
 # get newspaper (index=2)
 newspaper data = get column(data, 2)
 # get sales (index=3)
 sales_data = get_column(data, 3)
 # scale data (only for features)
 # remember to scale input features in inference, therefore, we need to save max, min and mean values
  (tv_data, radio_data, newspaper_data), (max_data_1, max_data_2, max_data_3, min_data_1, min_data_2, min_data_3)
  = min max scaling(tv data, radio data, newspaper data)
 # building X input and y output for training
 #Create list of features for input
 X = [[1, x1, x2, x3] \text{ for } x1, x2, x3 \text{ in } zip(tv_data, radio_data, newspaper_data)]
 y = sales_data
  return X,y
```



```
def min_max_scaling(data1, data2, data3):
    max_data_1 = max(data1)
    max_data_2 = max(data2)
    max data_3 = max(data_3)
    min data 1 = min(data1)
    min_data_2 = min(data2)
    min data 3 = min(data3)
    data1 = [(x - min_data_1) / (max_data_1 - min_data_1) for x in data1]
    data2 = [(x - min_data_2) / (max_data_2 - min_data_2) for x in data2]
    data3 = [(x - min_data_3) / (max_data_3 - min_data_3) for x in data3]
    return (data1, data2, data3), (max_data_1, max_data_2, max_data_3, min_data_1, min_data_2, min_data_3)
```


50 40 MSE loss 30 20 10 100 20 60 80 #iteration

Before Feature Scaling

After Feature Scaling

Outline

- **Linear Regression Review**
- **Exercise 1**
- **Exercise 2**
- **Exercise 3**
- > Exercise 4
- **Exercise 5**

> Other Discussions

	X		$oxed{\mathbf{Y}}$	
TV	Radio	Newspaper	Sales	
230.1	37.8	69.2	22.1	
44.5	39.3	45.1	10.4	
17.2	45.9	69.3	12	
151.5	41.3	58.5	16.5	
180.8	10.8	58.4	17.9	
8.7	48.9	75	7.2	
57.5	32.8	23.5	11.8	
120.2	19.6	11.6	13.2	
8.6	2.1	1	4.8	
199.8	2.6	21.2	15.6	
66.1	5.8	24.2	12.6	
214.7	24	4	17.4	
23.8	35.1	65.9	9.2	
97.5	7.6	7.2	13.7	
204.1	32.9	46	19	
195.4	47.7	52.9	22.4	
67.8	36.6	114	12.5	
281.4	39.6	55.8	24.4	
69.2	20.5	18.3	11.3	
147.3	23.9	19.1	14.6	
218.4	27.7	53.4	18	
237.4	5.1	23.5	17.5	

Training

Strategy:

> Train: 200 samples

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	412	59.5	16.5
180.8	GOOD!	WHAT	17.9
8.7		DO YOU	7.2
57.5	32.8		11.8
120.2	19.6	THINK	13.2
8.6	2.1	1	4.8
199.8	2.6	21.2	15.6
66.1	5.8	24.2	12.6
214.7	24	4	17.4
23.8	35.1	65.9	9.2
97.5	7.6	7.2	13.7
204.1	32.9	46	19
195.4	47.7	52.9	22.4
67.8	36.6	114	12.5
281.4	39.6	55.8	24.4
69.2	20.5	18.3	11.3
147.3	23.9	19.1	14.6
218.4	27.7	53.4	18
237.4	5.1	23.5	17.5

Testing

Strategy: n = 200

> Train: 200 samples

> Test: 200 samples

100% dataset for training 100% dataset for

 $extit{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$

	Y		
TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	412	59.5	16.5
180.8	COOD!	WHAT	17.9
8.7		DO YOU	7.2
57.5	32.8		11.8
120.2	19.6	THINK	13.2
8.6	2.1	1	4.8
199.8	2.6	21.2	15.6
66.1	5.8	24.2	12.6
214.7	24	4	17.4
23.8	35.1	65.9	9.2
97.5	7.6	7.2	13.7
204.1	32.9	46	19
195.4	47.7	52.9	22.4
67.8	36.6	114	12.5
281.4	39.6	55.8	24.4
69.2	20.5	18.3	11.3
147.3	23.9	19.1	14.6
218.4	27.7	53.4	18
237.4	5.1	23.5	17.5

Testing

Strategy:

> Train: 160 samples

> Test: 40 samples

80% dataset for training 20% dataset for testing Train set ≠ Test set

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	GOOD!	59.5	16.5
180.8	(COO)	WHAT	17.9
8.7		DO YOU	7.2
57.5	32.8		11.8
120.2	19.6	THINK	13.2
8.6	2.1	1	4.8
199.8	2.6	21.2	15.6
66.1	5.8	24.2	12.6
214.7	24	4	17.4
23.8	35.1	65.9	9.2
97.5	7.6	7.2	13.7
204.1	32.9	46	19
195.4	47.7	52.9	22.4
67.8	36.6	114	12.5
281.4	39.6	55.8	24.4
69.2	20.5	18.3	11.3
147.3	23.9	19.1	14.6
218.4	27.7	53.4	18
237.4	5.1	23.5	17.5

Testing

Strategy:

> Train: 160 samples

> Test: 40 samples

60% dataset for training 20% dataset for

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Train/Validation/Test

