Scilab Manual for
Signals and Systems
by Prof Ishit Shah
Electrical Engineering
Venus International College of Technology,
GTU¹

Solutions provided by
Prof Ishit Shah
Electrical Engineering
Venus International College of Technology - GTU

December 7, 2020

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

Li	st of Scilab Solutions	3
1	Generation of unit step and unit ramp signals in Scilab	5
2	Generation of the sinusoidal wave in discrete time mode through Scilab code	8
3	Plotting of exponential sequence and complex exponential sequence	11
4	Performing cross correlation operation using SCILAB code	17
5	Performing auto correlation operation using Scilab code	21
6	A Scilab program to perform addition of sequences	23
7	A Scilab program to perform multiplication and folding of sequences	26
8	Scilab code to demonstrate amplitude Modulation concept	29
9	Scilab code to demonstrate frequency Modulation concept	32

List of Experiments

Solution 1.1	$\mathrm{Exp}1$. 5
Solution 2.2	Exp2	. 8
Solution 3.3	Exp3	. 11
Solution 4.4	Exp4	. 17
Solution 5.3	Exp5	. 21
Solution 6.6	Exp6	. 23
Solution 7.7	Exp7	. 26
Solution 8.8	Exp8	. 29
Solution 9.9	Exp9	. 32

List of Figures

1.1	Exp1	 	 	 7
2.1	Exp2	 	 	 10
	Exp3 Exp3			15 16
	Exp4 Exp4			20 20
5.1	Exp5	 	 	 22
6.1	Exp6	 	 	 25
7.1	Exp7	 	 	 28
8.1	Exp8	 	 	 31
9.1	Exp9	 	 	 34

Generation of unit step and unit ramp signals in Scilab

Scilab code Solution 1.1 Exp1

```
1 / Experiment -1
2 \hspace{0.1cm} // \hspace{0.1cm} windows \hspace{0.1cm} - \hspace{0.1cm} 10 \hspace{0.1cm} - \hspace{0.1cm} 64 \hspace{-0.1cm} - \hspace{0.1cm} Bit
3 // Scilab - 5.4.1
4
   //AIM: Generation of Unit step and Unit ramp signals
         in SCILAB.
 7
9 //Unit Step Signal
10
11 clear; clc;
12 t = -6:0.01:6;
13 u = ones(t) .*(t>=0);
14 subplot(2,1,1);
                                            //plotting multiple
        graph in one window
15 plot(t,u);
                                            // xgrid ([color] [,
16 xgrid(4,1,7);
        thickness ] [, style])
```

```
17 xlabel("t","fontsize",4);
                                              // Label of
       X-Axis
18 ylabel("u(t)", "fontsize",4);
                                              // Label of
      Y-Axis
                                              // Title of
19 title("Unit step", "fontsize",4);
       graph
20
21 set(gca(), "data_bounds", matrix([-6,6,-0.1,1.1],2,-1)
      ); // Range of axis
22
23 //Ramp Signal
24 r=t.*(t>=0);
25 subplot(2,1,2);
26 plot(t,r);
27 xgrid(4,1,7);
28 xlabel("t","fontsize",4);
29 ylabel("r(t)", "fontsize", 4);
30 title("Ramp", "fontsize", 4);
31 set(gca(), "data_bounds", matrix([-6,6,-0.1,7],2,-1));
        // Range of axis
```


Figure 1.1: Exp1

Generation of the sinusoidal wave in discrete time mode through Scilab code

Scilab code Solution 2.2 Exp2

```
1 //Experiment-2
2 // windows - 10 - 64-Bit
3 //Scilab - 5.4.1
4
5
6 //AIM: Generation of the Sinusoidal wave in Discrete time mode through SCILAB code
7
8
9 //Generation of a sinusoidal sequence
10 clear; clc;
11 n=0:40; //Length of sequence
12 f=0.05; // Frequency
13 phase=0;
14 A=1.5; //Amplitude
15 x1=A*sin(2*%pi*f*n-phase);
16 subplot(3,1,1);
```

```
//
17 plot2d3('gnn',n,x1);
      plot2d3 ('gnn',n,x1) in discrete form
18 \ a = gca();
      get the current axes
19 a.x_location = "origin";
                                                        //
      To Change reference axis
20 a.y_location = "origin";
21 title("sinusoidal sequence", "fontsize", 4)
22 xlabel("Time in (ms)", "fontsize", 4)
23 ylabel ("Amplitude", "fontsize", 4)
24 set(gca(), "data_bounds", matrix([0,40,-2,2],2,-1));
      // Range of Axis
25
26 	ext{ x2=A*cos}(2*\%pi*f*n-phase);
27 subplot (3,1,2);
28 plot2d3('gnn',n,x2);
29 \ a = gca();
                                                        //
      get the current axes
30 a.x_location = "origin";
                                                        //
      To Change reference axis
31 a.y_location = "origin";
32 title("cosine sequence", "fontsize", 4)
33 xlabel("Time in (ms)", "fontsize", 4)
34 ylabel ("Amplitude", "fontsize", 4)
35 set(gca(), "data_bounds", matrix([0,40,-2,2],2,-1));
36
37 \times 3 = A * \cos(2 * \% pi * f * n + 120);
38 subplot (3,1,3);
39 plot2d3('gnn',n,x3);
                                                        //
40 \ a = gca();
      get the current axes
41 a.x_location = "origin";
                                                        //
      To Change reference axis
42 a.y_location = "origin";
43 title("phase shifted cosine sequence", "fontsize", 4)
44 xlabel("Time in (ms)", "fontsize", 4)
45 ylabel ("Amplitude", "fontsize", 4)
46 set(gca(), "data_bounds", matrix([0,40,-2,2],2,-1));
```


Figure 2.1: Exp2

Plotting of exponential sequence and complex exponential sequence

Scilab code Solution 3.3 Exp3

```
17 plot2d3('gnn',n,x1); // graph in discrete
      form
18 xlabel("Time in (sec.)", "fontsize", 4);
19 ylabel ("Amplitude", "fontsize", 4);
20 \quad a2=0.9;
21 x2=k*a2.^n;
22 subplot (2,2,2)
23 plot2d3('gnn',n,x2);
24 xlabel("Time in (sec.)", "fontsize", 4);
25 ylabel ("Amplitude", "fontsize", 4);
26 \quad a3 = -2;
27 \times 3 = k * a3.^n;
28 subplot (2,2,3)
29 plot2d3('gnn',n,x3);
30 \ a = gca();
                                                        //
      get the current axes
31 a.x_location = "origin";
                                                        //
      To Change reference axis
32 a.y_location = "origin";
33 xlabel("Time in (sec.)", "fontsize", 4);
34 ylabel ("Amplitude", "fontsize", 4);
35 \quad a4 = -0.9;
36 \quad x4=k*a4.^n;
37 subplot (2,2,4)
38 plot2d3('gnn',n,x4);
                                                        //
39 \ a = gca();
      get the current axes
40 a.x_location = "origin";
                                                        //
      To Change reference axis
41 a.y_location = "origin";
42 xlabel("Time in (sec.)", "fontsize", 4);
43 ylabel ("Amplitude", "fontsize", 4);
44
45
46
47
48 // Generation of a complex exponential sequence
49
```

```
50 clear; clc;
51 n=0:20;
52 \text{ w=\%pi/6};
53 x = exp(\%i*w*n);
54 f4 = scf(2);
55 figure (2)
56 subplot (2,1,1);
57 plot2d3('gnn',n,real(x));
                                                       //
58 a = gca();
      get the current axes
59 a.x_location = "origin";
                                                       //
      To Change reference axis
60 a.y_location = "origin";
61 xlabel("Time in (sec.)", "fontsize", 4)
62 ylabel("Amplitude", "fontsize", 4)
63 title("Real Part", "fontsize", 4);
64 subplot (2,1,2);
65 plot2d3('gnn',n,imag(x));
66 a = gca();
                                                       //
      get the current axes
67 a.x_location = "origin";
                                                       //
      To Change reference axis
68 a.y_location = "origin";
69 xlabel("Time in (sec.)", "fontsize", 4)
70 ylabel("Amplitude", "fontsize", 4)
71 title("Imaginary Part", "fontsize", 4)
72
73
74 // Generation of comlex exponential sequence
75
76 clear; clc;
77 a=input("Type in real exponent = ");
78 b=input("Type in imaginary exponent = ");
                                                   //a+j*b
79 c = a + b * \%i;
      for imaginary value
80 K=input("Type in the gain constant = ");
81 N=input("Type in length of sequence = ");
82 n=1:N;
```

```
83 x=K*exp(c*n); //generate the sequence
84 	ext{ f4=scf(3)};
85 \text{ figure}(3)
86 subplot (2,1,1);
                                                        //
87 plot2d3('gnn',n,real(x));
       real(x) = gives real component
88 \ a = gca();
       get the current axes
 89 a.x_location = "origin";
                                                        //
       To Change reference axis
90 \text{ a.y\_location} = "origin";
91 xlabel("Time in (\sec .)", "fontsize", 4)
92 ylabel ("Amplitude", "fontsize", 4)
93 title("Real Part", "fontsize", 4);
94 subplot (2,1,2)
95 plot2d3('gnn',n,imag(x));
                                                        //
       imag(x) = gives imaginary component
96 \ a = gca();
       get the current axes
97 a.x_location = "origin";
                                                        //
      To Change reference axis
98 a.y_location = "origin";
99 xlabel("Time in (sec.)", "fontsize", 4)
100 ylabel ("Amplitude", "fontsize", 4)
101 title ("Imaginary Part", "fontsize", 4)
102
103 //For Example
104
105 // Type in real exponent = -0.0833
106 // Type in imaginary exponent = 0.5236
107 // Type in the gain constant = 1.5
108 // Type in length of sequence = 40
```


Figure 3.1: Exp3

Figure 3.2: Exp3

Performing cross correlation operation using SCILAB code

Scilab code Solution 4.4 Exp4

```
1 / Experiment -4
2 // \text{ windows} - 10 - 64 - \text{Bit}
3 // Scilab - 5.4.1
  // AIM : Performing Cross Correlation Operation
      using SCILAB code
8 clear; clc;
10 n1 = [-1, 0, 1]
11 x1 = [1, 2, 3]
12 f4=scf(1);
13 figure(1)
14 subplot (2,2,1)
15 plot2d3('gnn',n1,x1);
                                                          //
16 \ a = gca();
      get the current axes
17 a.x_location = "origin";
```

```
To Change reference axis
18 a.y_location = "origin";
19 xlabel("Reference Axis", "fontsize", 3);
20 ylabel("Amplitude", "fontsize", 3);
21 title ("Sequence -1", "fontsize", 3);
22 \quad n2 = [-1, 0, 1]
23 \times 2 = [4, 5, 6]
24 subplot (2,2,2)
25 plot2d3('gnn',n2,x2);
26 \ a = gca();
                                                       //
      get the current axes
27 a.x_location = "origin";
                                                       //
      To Change reference axis
28 a.y_location = "origin";
29 xlabel("Reference Axis", "fontsize", 3);
30 ylabel("Amplitude", "fontsize", 3);
31 title ("Sequence -2", "fontsize", 3);
32 [c, ind]=xcorr(x1,x2)
                                    // function of cross
       correlation
33 [ind',c']
34 subplot (2,2,3)
35 plot2d3('gnn',c)
36 \ a = gca();
                                                       //
      get the current axes
37 a.x_location = "origin";
                                                       //
      To Change reference axis
38 a.y_location = "origin";
39 xlabel("Reference Axis", "fontsize", 3);
40 ylabel ("Amplitude", "fontsize", 3);
41 title("Cross- Correlation Sequence", "fontsize", 3);
42
43
44 clear; clc;
45
46 x=input ("Type in the refrence sequence = ");
47 y=input ("Type in the second sequence = ");
48
49 //compute the correlation sequence
```

```
50
51 \quad n1 = length(y) - 1;
52 n2 = length(x) - 1;
r = conv(x,y);
54 k = (-n1):n2;
55 f4=scf(2);
56 figure (2)
57 plot2d3('gnn',k,r);
                                                              //
58 a = gca();
       get the current axes
59 a.x_location = "origin";
                                                              //
      To Change reference axis
60 a.y_location = "origin";
61 xlabel("Lag index", "fontsize", 4);
62 ylabel("Amplitude", "fontsize", 4);
63
64
65
66 //For Example
67
  //Type in the refrence sequence =
       [2, -1, 3, 7, 1, 2, -3, 0]
69 //Type in the second sequence = [1, -1, 2, -2, 4, 1, -2, 5]
```


Figure 4.1: Exp4

Figure 4.2: Exp4

Performing auto correlation operation using Scilab code

Scilab code Solution 5.3 Exp5

```
1 / Experiment -5
2 // \text{ windows} - 10 - 64 - \text{Bit}
3 // Scilab - 5.4.1
5 / / 5
7 //AIM: Performing Auto Correlation Operation using
      SCILAB code
9 clear; clc;
10 x = [2, -1, 3, 7, 1, 2, -3, 0]
11 [c,ind]=xcorr(x)
12 [ind' c']
13 plot2d3("gnn",c)
                                                         //
14 \ a = gca();
      get the current axes
                                                         //
15 a.x_location = "origin";
      To Change reference axis
16 a.y_location = "origin";
```


Figure 5.1: Exp5

```
17 xlabel("Lag index", "fontsize",4);
18 ylabel("Amplitude", "fontsize",4);
```

A Scilab program to perform addition of sequences

Scilab code Solution 6.6 Exp6

```
1 //Experiment-6
2 // \text{ windows} - 10 - 64 - \text{Bit}
3 // Scilab - 5.4.1
5 //A SCILAB program to perform Addition of sequences
6 clc;
7 clear;
8 i=1:20;
9 n1=[ones(1,10),zeros(1,10)];
                                      // Discrete
      Signal
10 n2=[zeros(1,6),ones(1,6),zeros(1,8)]; //Discrete
      Signal
                                               //Addition
11 \quad n3=n1+n2;
      of two discrete Signals
12 / n4 = n1 - n2;
                                                 //
      Subtraction of two discrete Signals
13 subplot(2,2,1);
14 plot2d3 (i,n1);
15 xlabel('Reference Axis', "fontsize", 4);
```

```
16 ylabel ('Amplitude', "fontsize", 4);
17 title('1st Signal', "fontsize", 4);
18 subplot (2,2,2);
                                              //plot2d3('
19 plot2d3 (i,n2);
      gnn',n,x1) in discrete form
20 xlabel('Reference Axis', "fontsize", 4);
21 ylabel('Amplitude', "fontsize", 4);
22 title('2nd Signal', "fontsize", 4);
23 subplot (2,2,3);
24 plot2d3(i,n3);
25 xlabel('Reference Axis', "fontsize", 4);
26 ylabel('Amplitude', "fontsize", 4);
27 title ('Addition of two discrete Signals', "fontsize"
      ,4);
28 subplot (2,2,4);
                                              // Plot
29 plot(i,n3);
      Continuous Signal
30 xlabel('Reference Axis', "fontsize", 4);
31 ylabel('Amplitude', "fontsize", 4);
32 title ('Addition of two continuous Signals', "fontsize
     ",4);
33 set(gca(), "data_bounds", matrix([0,20,0,2.5],2,-1));
       // Range of axis
34 // subplot(2,3,5);
35 / \text{plot} 2d3 (i, n4);
36 //a = gca();
                                                         //
       get the current axes
  //a.x_location = "origin";
                                                         //
37
       To Change reference axis
38 //a.y.location = "origin";
39 //xlabel('time');
40 //ylabel('amplitude');
41 //title('Subtraction of two discrete Signals');
42 / subplot(2,3,6);
43 // plot(i, n4);
44 //xlabel('time');
45 //ylabel('amplitude');
46 //title ('Subtraction of two continuous Signals');
```


Figure 6.1: Exp6

47 //

A Scilab program to perform multiplication and folding of sequences

Scilab code Solution 7.7 Exp7

```
1 / Experiment -7
2 // \text{ windows} - 10 - 64 - \text{Bit}
3 // Scilab - 5.4.1
5 //A SCILAB program to perform Multiplication and
      Folding of sequences
7 clc;
8 clear;
9 i = 0:6;
10 n1=[zeros(1,3),ones(1,4)];
                                        //Advancing Shifting
11 n2=i-2;
       Signal
12 \quad n3=i+2;
                                        //Delay Shifting
      Signal
                                        //Folded Signal
13 n4=i;
14 / n5 = n1 + n2;
                                          //Addition of
```

```
Signals
15 n6=n3.*n4;
                                      // Multiplication of
      Signals
16 subplot (3,1,1);
17 plot2d3(i,n1);
18 xlabel('Reference Axis', "fontsize", 4);
19 ylabel('Amplitude', "fontsize", 4);
20 title('Sample Signal', "fontsize", 4);
21 / subplot(3,2,2);
22 // plot 2 d 3 (i, n2);
                                                         //
23 //a = gca();
       get the current axes
24 //a.x.location = "origin";
                                                         //
       To Change reference axis
25 //a.y_location = "origin";
26 //xlabel('time');
27 //ylabel('amplitude');
28 //title('Advancing Shifting Signal');
29 / subplot(3,2,3);
30 // plot 2d3 (i, n3);
31 //a = gca();
                                                         //
       get the current axes
32 //a.x_location = "origin";
                                                         //
       To Change reference axis
33 //a.y_location = "origin";
34 //xlabel('time');
35 //ylabel('amplitude');
36 //title('Delay Shifting Signal');
37 subplot(3,1,2);
38 plot2d3(i,n4);
39 xlabel('Reference Axis', "fontsize", 4);
40 ylabel('Amplitude', "fontsize", 4);
41 title('Folded Signal', "fontsize", 4);
42 / \text{subplot}(3,2,5);
43 // plot 2 d 3 (i, n5);
44 //a = gca();
                                                         //
       get the current axes
45 //a.x.location = "origin";
                                                         //
```


Figure 7.1: Exp7

```
To Change reference axis

46  //a.y_location = "origin";

47  //xlabel('time');

48  //ylabel('amplitude');

49  //title('Addition of Signals');

50  subplot(3,1,3);

51  plot2d3(i,n6);

52  xlabel('Reference Axis', "fontsize", 4);

53  ylabel('Amplitude', "fontsize", 4);

54  title('Multiplication of Signals', "fontsize", 4);
```

Scilab code to demonstrate amplitude Modulation concept

Scilab code Solution 8.8 Exp8

```
1 / Experiment - 8
2 // \text{ windows} - 10 - 64 - \text{Bit}
3 // Scilab - 5.4.1
4
  //SCILAB code to demonstrate Amplitude Modulation
      concept
8 clear; clc;
9 t=0:0.001:1;
10 Am=5; // Amplitude of signal
11 Ac=5;
12 fm=input("Message frequency=");//Accepting input
13 fc=input("Carrier frequency=");//Accepting input
      value (fc>fa)
14 mi=input("Modulation Index=");//Modulation Index
15 Sm=Am*sin(2*%pi*fm*t);//Message Signal
16 subplot(3,1,1);
```

```
17 plot(t,Sm);
18 xlabel("Time in (sec.)", "fontsize", 4);
19 ylabel("Amplitude", "fontsize", 4);
20 title("Message Signal", "fontsize", 4);
21 Sc=Ac*sin(2*%pi*fc*t);//Carrier Signal
22 subplot(3,1,2);
23 plot(t,Sc);
24 xlabel("Time in (sec.)", "fontsize", 4);
25 ylabel("Amplitude", "fontsize", 4);
26 title("Carrier Signal", "fontsize", 4);
27 Sam=(Ac+mi*Sm).*sin(2*\%pi*fc*t);//AM Signal
28 subplot(3,1,3);
29 plot(t,Sam);
30 xlabel("Time in (sec.)", "fontsize", 4);
31 ylabel("Amplitude", "fontsize", 4);
32 title("AM Signal", "fontsize", 4);
33
34
35 //For Example
36 //fm = 3
37 // fc = 50
38 //mi = 1
```


Figure 8.1: Exp8

Scilab code to demonstrate frequency Modulation concept

Scilab code Solution 9.9 Exp9

```
1 / Experiment -9
2 // \text{ windows} - 10 - 64 - \text{Bit}
3 // Scilab - 5.4.1
4
  //SCILAB code to demonstrate Frequency Modulation
      concept
8 clear; clc;
9 fm=input("Message frequency=");//Accepting input
10 fc=input("Carrier frequency=");//Accepting input
      value (fc>fa)
11 mi=input ("Modulation Index="); // Modulation Index
12 t=0:0.0001:0.1;
13 Sm=sin(2*%pi*fm*t);
14 subplot(3,1,1);
15 plot(t,Sm);
16 xlabel("Time in (sec.)", "fontsize", 4);
```

```
17 ylabel("Amplitude", "fontsize", 4);
18 title ("Message Signal", "fontsize", 4);
19 Sc=sin(2*%pi*fc*t);
20 subplot(3,1,2);
21 plot(t,Sc);
22 xlabel("Time in (sec.)", "fontsize", 4);
23 ylabel("Amplitude", "fontsize", 4);
24 title("Carrier Signal", "fontsize", 4);
25 Sfm=sin(2*%pi*fc*t+(mi.*sin(2*%pi*fm*t))); //
      Frequency changing w.r.t Message
26 subplot(3,1,3);
27 plot(t,Sfm);
28 xlabel("Time in (sec.)", "fontsize", 4);
29 ylabel("Amplitude", "fontsize", 4);
30 title("FM Signal", "fontsize", 4);
31
32
33 //For Example
34
35 // Message frequency=25
36 // Carrier frequency=400
37 // Modulation Index=5
```


Figure 9.1: Exp9