软件过程和质量控制

质量模型

李娟 lijuan@bjut.edu.cn

大纲

- ▶ 软件质量管理
- ▶ 软件质量模型

质量管理理论

- ▶始于20世纪初期
- ▶ 三个发展阶段
 - 。质量检验阶段(20世纪初-20世纪40年代)
 - 统计质量控制阶段(20世纪40年代-20世纪60年代)
 - 。全面质量管理阶段(20世纪60年代至今)

质量管理发展历史

阶 段

全面质量管理

手工操作者

时间

1900 1920 1940 1960 1980

2015/5/12

4

发展阶段特点

全面质量管理

- ▶ TQM是一种管理模式,以质量为中心,以 全员参与为基础,目的在于通过让顾客满 意和本组织所有者、员工、供方、合作伙 伴或社会等相关方受益而使组织达到长期 成功的一种管理途径。
- ▶特点:四全
 - 。全员参与、质量形成全过程管理、全公司管理、 各种专业技术和管理方法全面运用

全面质量管理: 三个原则

1. 系统的原则

产品质量的形成和发展过程包括了许多相互联系、相互制约的环节,不论是保证和提高产品质量还是解决产品质量问题,都应该把生产企业看成一个开放的系统,运用系统科学的原理和方法,对所有环节进行全面的组织管理。

2. 向用户服务的观点,用户满意是第一原则

要树立质量第一、用户第一的思想,满足广义用户(产品的使用者以及企业生产过程的下一阶段)对产品质量的要求。

3. 预防为主的原则,事前主动进行质量管理

这个观点要求生产企业的质量管理重点应从事后检验把关 转移到事前预防,从管结果转变为管因素,找出影响产品 质量的各种因素,抓住主要因素,使生产经营活动处于受 控状态。

全面质量管理:四个要素

- 关注客户:目标是取得全面客户 满意度,包括收集和研究客户的 期望和需求,测量和管理客户满 意度
- 过程改进:目标是降低过程的变化性,获得持续的过程改进,包括商业过程和产品过程
- 质量的人性化要素:目标是在全组织内营造质量文化,重点包括领导能力、管理承诺、全面参与、职员授权及其他社会、心理、人文因素
- **度量和分析**:目标是推进所有质量参数的持续改进

软件质量管理体系的建立

建立和实施质量体系的方法

- 确定顾客和其他相关方的需求和期望;
- 建立组织的质量方针和质量目标;
- 确定实现质量目标必需的过程和职责;
- 确定和提供实现质量目标必需的资源;
- 规定测量每个过程的有效性和效率的方法;
- 应用这些测量方法确定每个过程的有效性 和效率;
- 确定防止不合格并消除产生原因的措施;
- 建立和应用持续改进质量管理体系的过程。

软件质量管理体系的构成

质量管理理论

- ▶21世纪是质量的世纪
- ▶代表性理论
 - 。戴明PDCA循环
 - 朱兰质量环

质量管理理论

▶朱兰螺旋曲线

▶ISO质量环

PDCA循环

最早由美国质量管理专家戴明提 出来的, 所以又称为"戴明环"。 PDCA的含义如下: P (PLAN) --计划: D (Do)--执行: C (CHECK)——**检查;** A (Action)— 行动,对总结检查的结果进行处 理. 成功的经验加以肯定并适当 推广、标准化: 失败的教训加以 总结,未解决的问题放到下一个 PDCA循环里。

质量管理的PDCA循环图

PDCA循环

大循环套小循环

PDCA循环四个明显特点

▶ 周而复始 PDCA循环的四个过程不是运行一次就完结,而是周而复始地进行。一个循环结束了,解决了一部分问题,可能还有问题没有解决,或者又出现了新的问题,再进行下一个PDCA循环,依此类推。

PDCA循环四个明显特点

- 大环带小环 类似行星轮系,一个公司或组织的整体运 行的体系与其内部各子体系的关系,是大 环带小环的有机逻辑组合体。
- ▶ 阶梯式上升 PDCA循环不是停留在一个水平上的循环, 不断解决问题的过程就是水平逐步上升的 过程

PDCA循环四个明显特点

- ▶ 统计的工具 PDCA循环应用了科学的统计观念和处理 方法。作为推动工作、发现问题和解决问 题的有效工具,典型的模式被称为"四个阶 段"、"八个步骤"和"七种工具"。
- ▶四个阶段就是P、D、C、A;

PDCA的八个步骤

- ① 分析现状,发现问题;
- ② 分析问题中各种影响因素;
- ③ 分析影响问题的主要原因;
- ④ 针对主要原因,采取解决的措施;
- --为什么要制定这个措施?
- --达到什么目标?
- --在何处执行?
- --由谁负责完成?
- --什么时间完成?
- --怎样执行?

PDCA的八个步骤

⑤ 执行,按措施计划的要求去做; ⑥ 检查,把执行结果与要求达到的目标进行对比; ⑦ 标准化,把成功的经验总结出来,制定相应的 标准;

⑧ 把没有解决或新出现的问题转入下一个PDCA 循环中去解决

七种工具是指在质量管理中广泛应用的直方图、 控制图、因果图、排列图、相关图、分层法和统计分析表等

PDCA的7种工具

7种工具是指在质量管理中广泛应用的:

- ∘直方图
- •控制图
- 。因果图
- ∘排列图
- 。相关图
- 。分层法
- •统计分析表

因果图

大纲

- ▶ 软件质量管理
- ▶ 软件质量模型

软件质量模型

- ▶ McCall 软件质量模型 (1977)
 - 。由11个指标构成,分为产品操作,产品修订和产品转移
- ▶ Boehm 模型 (1978)
 - 。基于很多特性和 19个标准
- ▶ ISO/IEC 9126 (1991)
 - 。包括6个质量目标,每个质量目标有很多属性

MCCall质量模型

- ▶早期的软件质量模型是1977年McCall和他的同事建立的, 提出了影响质量因素的分类
- 集中在软件产品的三个重要方面
 - · 操作特性(产品运行)、承受可改变能力(产品修正)、新环 境适应能力(产品转移)

正确性	在预定环境下,软件满足设计规格说明及用户预期目标的程度。
	它要求软件本身没有错误
可靠性	软件按照设计要求,在规定时间和条件下不出故障,持续运行的
	程度
	为了完成预定功能,软件系统所需的计算机资源的多少
完整性	为某一目的而保护数据,避免它受到偶然的或有意的破坏、改动
	或遗失的能力
可使用性	对于一个软件系统,用户学习、使用软件及为程序准备输入和解
	释输出所需工作量的大小
可维护性	为满足用户新的要求,或当环境发生了变化,或运行中发现了新
	的错误时,对一个已投入运行的软件进行相应诊断和修改所需工
	作量的大小
可测试性	测试软件以确保其能够执行预定功能所需工作量的大小
灵活性	修改或改进一个已投入运行的软件所需工作量的大小
可移植性	将一个软件系统从一个计算机系统或环境移植到另一个计算机
	系统或环境中运行时所需工作量的大小
可复用性	一个软件(或软件的部件)能再次用于其他应用(该应用的功能与
	此软件或软件部件的所完成的功能有关)的程度
互连性	又称相互操作性。连接一个软件和其它系统所需工作量的大小。
	如果这个软件要联网或与其它系统通信或要把其它系统纳入到
	自己的控制之下,必须有系统间的接口,使之可以联结

Boehm质量模型

- ▶ 1978年Boehm和他的同事们提出了分层结构的软件质量模型
 - 。 除包含了用户的期望和需要的概念,还包括了McCaⅡ模型中没有的硬件特性
- Boehm模型始于软件的整体效用,从系统交付后涉及不同类型的用户。
 - 。第一种用户是**初始顾客**,系统做了顾客所期望的事情。
 - 。第二种用户是要将软件移植到其他软硬件系统下使用的客户
 - 。第三种用户是维护系统的程序员
- 这三种用户都希望系统是可靠有效的,因此,Boehm模型反映了对 软件质量的理解,即软件做了用户要它做的;有效的使用系统资源; 易于学习和使用;易于维护和测试

Boehm质量模型

Criteria/goals	McCall,	Boehm,
	1977	1978
Comment	*	*
Correctness	*	*
Reliability	·	
Integrity	*	*
Usability	*	*
Effiency	*	*
Maintainability	*	*
Testability	*	
Interoperability	*	
Flexibility	*	*
Reusability	*	*
Portability	*	*
Clarity		*
Modifiability		*
Documentation		*
Resilience		*
Understandability		*
Validity		*
Functionality		
Generality		*
Economy		*

可维护性

ISO/IEC 9126质量模型

- 20世纪90年代早期,软件工程组织试图将诸多的软件质量模型统一到一个模型中,并把这个模型作为度量软件质量的一个国际标准。
- ▶ 国际标准化组织1991年颁布了IS09126-1991标准《软件产品评价-质量特性及其使用指南》
- ▶ 我国也与1996年颁发了同样的软件产品质量评价标准GB/T 16260-1996。它是一个分层质量模型,有6个影响质量的 特性。

Are the required functions available in the software?

ISO/IEC 9126质量模型

- 功能性: 指软件是否满足了客户的需求
 - 。合适性
 - 所提供的功能是用户所需要的,及用户所需要的功能软件系统已 提供。
 - 准确性
 - 软件系统提供给用户的功能是否满足用户对该功能的精确度要求。
 - 。 互操作性
 - 软件系统与一个或多个周边系统进行信息交互的能力
 - 。安全性
 - 指软件系统保护信息和数据的能力
 - 。依从性
 - · 遵循相关的标准(国际标准、国家标准、行业标准、企业内部规范等)约定或法规以及类似规定的能力

- 可靠性: 指软件是否能够一直在一个稳定的状态上满足可用性
 - 。成熟性
 - 软件系统防止内部错误扩散而导致失效的能力。
 - 。容错性
 - 软件系统防止外部接口错误扩散而导致系统失效的能力
 - 。易恢复性
 - 系统失效后重新恢复原有功能、性能的能力,包括对原有能力恢复的程度与速度。

- 可用性: 衡量用户使用软件需要付出多大的努力的质量属性
 - 。易理解性
 - · 指用户在使用软件系统的过程中,展示给用户的信息是否准确、清晰、易懂,能帮助用户准确理解系统当前真实的状态,并指导其进一步的操作。
 - 。易学性
 - 指软件提供相关的辅助手段,帮助用户学习使用它的能力。
 - 。易操作性
 - · 指用户基本不用额外学习即能操作软件,包括多方面的内容。
 - 。吸引性
 - 指软件具体某些独特的,能让用户眼前一亮的属性

- 效率: 衡量软件正常运行需要耗费多少时间及物理资源
 - 。时间效率
 - 指软件系统在各业务场景下完成用户指定的业务请求 所需的响应时间。
 - 。资源效率
 - 指软件系统在完成用户指定的业务请求所消耗的系统 资源

- 可维护性: 衡量对已经完成的软件进行调整需要多大的努力
 - 。易分析性
 - · 指软件系统提供辅助手段帮助开发人员分析识别缺陷、失效产生的原因,找出待修复部分的能力
 - 。易改变性
 - · 指软件缺陷的修复容易被实施,这与软件的设计有着密切 关系
 - 。稳定性
 - · 指软件系统在长时间连续工作环境下能否正常工作,不出错,无异常情况等
 - 。易测试性
 - 指从测试验证角度,软件存在可测试性的难易程度

- 可移植性: 衡量软件是否能够方便地部署到不同的运行环境中的能力
 - 。 适应性
 - 指软件系统无需做任何相应变动就能适应不同运行环境的 能力
 - 。易安装性
 - 指平台变化后,成功安装软件的难易程度
 - 。 共存性
 - 指软件系统在公共环境与其共享资源的其他系统共存的能力
 - 。易替换性
 - 指软件系统的升级能力,包括在线升级、打补丁升级等

ISO/IEC 9126质量模型

- ▶ ISO/IEC 9126-1: 2001 已被 ISO/IEC 25010: 2011 代替并废止
- ▶ ISO/IEC 25010 中新增了软件使用质量, 其包含 5 个特征,并进一步被划分为可以 被度量的多个子特征。

Software Quality Attributes

http://satc.gsfc.nasa.gov/support/STC_APR96/qualtiy/stc_qual.html

Criteria/Goals	McCall, 1977	Boehm, 1978	ISO 9126, 1993
Correctness	x	x	maintainability
Reliability	X	X	X
Integrity	X	X	
Usability	X	X	X
Efficiency	X	X	X
Maintainability	X	X	X
Testability	X		maintainability
Interoperability	X		
Flexibility	X	X	
Reusability	X	X	
Portability	X	X	X
Clarity		X	
Modifiability		X	maintainability
Documentation		X	
Resilience		X	
Understandability		X	
Validity		X	maintainability
Functionality			X
Generality		X	
Economy		X	

Compiled by Arthur Alexander Reyes. reyes@uta.edu

作业

▶ 请选择两种不同类型的软件,在ISO/IEC 9126中选取合适的质量属性集用来进行软件质量评价。

谢谢!