Meshes and Simplicial Complexes:
Meshes are geometric structures made up of simple shapes called simplexes.
These simplexes can be points, line segments, triangles, and higher-dimensional
analogs.
Simplicial Complexes: A simplicial complex is a collection of simplexes that are
joined together in a specific manner. Two types are discussed:
Abstract Simplicial Complex: Focuses on the connectivity of elements without
considering their spatial arrangement.
Geometric Simplicial Complex: Includes spatial information, defining where
elements exist in space.
Convex ,simplex Sets:
A Convex Set is a set of points where, for any two points in the set, the line
segment connecting them lies entirely within the set.
A simplex is the simplest possible shape in any given space.
Depending on its dimension, it can be a point (0-dimension), line segment (1-
dimension), triangle (2-dimensions), or a tetrahedron (3-dimensions).
Affine Independence: This property ensures that the points defining a simplex do
not lie in a lower-dimensional space. For example, three points in a 2D space must
not lie on a straight line to form a triangle.

Barycentric Coordinates:
These are a way to express points within a simplex relative to its vertices.
They're useful for operations like interpolation within simplexes and are defined such that
their sum is always 1.
Topological Data Analysis:
This is a method of analyzing the shape of data. It's especially useful in identifying
patterns and structures within complex datasets.
Persistent Homology is a technique in topological data analysis that examines how
features of data persist across multiple scales.
Anatomy of Simplicial Complexes:
Closure: The smallest simplicial complex containing a given set of simplexes.
Star: The collection of all simplexes that have a shared vertex or edge.
Link: This concept is used to analyze the 'neighborhood' around a given simplex,
especially in higher-dimensional spaces.
Orientation in Simplices:
Orientation in geometry refers to the directionality or rotational arrangement of
_simplexes.
For example, in a 2D simplex (triangle), the orientation could be clockwise or
_counterclockwise.