Code Explanation

```
for i in 0..bit_count {
    let a_bit = (a >> i) & T::from(1);
    let b_bit = (b >> i) & T::from(1);

let sum_bit = a_bit ^ b_bit ^ c_in;
    carry = (a_bit & b_bit) | (b_bit & c_in) | (c_in & a_bit);

sum |= sum_bit << i;
    c_in = carry;
}</pre>
```

Step-by-Step Breakdown

1. Loop Initialization

The loop runs from i = 0 to $i < \text{bit_count}$, iterating over each bit position.

2. Extracting Bits

- let a_bit = (a >> i) & T::from(1);
 - -(a >> i) shifts the bits of a to the right by i positions.
 - -&T::from(1) isolates the least significant bit (LSB) after the shift, effectively extracting the bit at position i from a.
- let b_bit = (b >> i) & T::from(1);
 - Similarly, this extracts the bit at position i from b.

3. Calculating the Sum Bit

- let sum_bit = a_bit \oplus b_bit \oplus c_in;
 - \oplus is the bitwise XOR operator.
 - The sum bit is calculated using the XOR of a_bit , b_bit , and the carryin (c_in) . This is because XOR of two bits gives the sum without carry.

4. Calculating the Carry

- carry = $(a_bit \land b_bit) \mid (b_bit \land c_in) \mid (c_in \land a_bit);$
 - \wedge is the bitwise AND operator.
 - − | is the bitwise OR operator.

- The carry is calculated using the AND of pairs of bits and the carry-in. This ensures that the carry is set if any two of the three bits (a_bit, b_bit, c_in) are 1.

5. Updating the Sum

- sum |= sum_bit << i;
 - sum_bit << i shifts the sum bit to the correct position.
 - \mid = is the bitwise OR assignment operator, which updates the sum by setting the bit at position i to sum_bit.

6. Updating the Carry-In

- c_in = carry;
 - The carry-out from the current bit position becomes the carry-in for the next bit position.

Example

Let's use some example values to illustrate:

- $a_bit = 1$
- $b_bit = 0$
- $c_{-}in = 1$

For the XOR operation:

- 1. $a_bit \oplus b_bit$ results in $1 \oplus 0 = 1$.
- 2. $1 \oplus c_{-}in$ results in $1 \oplus 1 = 0$.

For the OR operation:

- 1. $(a_bit \wedge b_bit)$ results in $1 \wedge 0 = 0$.
- 2. $(b_bit \wedge c_in)$ results in $0 \wedge 1 = 0$.
- 3. $(c_i n \wedge a_b it)$ results in $1 \wedge 1 = 1$.
- 4. Combining these with OR: 0|0|1 = 1.