Множества

Содержание

- 1 Определения
- 2 Способы задания множеств
 - 2.1 Перечисление
 - 2.2 Описание
- 3 Отношения между множествами
 - 3.1 Включение
 - 3.2 Равенство
 - 3.3 Обшие элементы
- 4 Специальные множества
- 5 Операции над множествами
 - 5.1 Бинарные операции над множествами
 - 5.2 Унарные операции над множествами
- 6 Теорема де Моргана

Определения

Определение:

Множество — первичное математическое понятие, которому не дано строгое математическое определение. Представляет собой набор, совокупность каких-либо объектов, объединенных общим свойством.

Определение:

Объекты, из которых состоит множество, называют элементами этого множества. Если a — элемент множества A, то записывают $a \in A$ («a принадлежит A»). Если a не является элементом множества A, то записывают $a \notin A$ («a не принадлежит A»). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов.

Способы задания множеств

Существуют два основных способа задания множеств: перечисление и описание.

Перечисление

Первый способ состоит в том, что задаётся и перечисляется полный список элементов, входящих в множество.

$$A = \{a_1, a_2, \dots, a_n, \dots\}$$

Описание

Второй способ применяется, когда множество нельзя или затруднительно задать с помощью списка. В таком случае множества определяются свойствами их элементов.

$$A = \{a \mid P\}$$
 , где P — определенное свойство элемента a .

Отношения между множествами

Два множества A и B могут вступать друг с другом в различные отношения.

Включение

lacksquare A включено в B, если каждый элемент множества A принадлежит также и множеству B :

$$A \subseteq B \Leftrightarrow \forall a \in A : a \in B$$

lacksquare A включает B, если B включено в A:

$$A \supset B \Leftrightarrow B \subseteq A$$

• A строго включено в B, если A включено в B, но не равно ему:

$$A \subset B \Leftrightarrow (A \subseteq B) \land (A \neq B)$$

Равенство

lacksquare A равно B, если A и B включены друг в друга:

$$A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Общие элементы

lacktriangledown A и B не пересекаются, если у них нет общих элементов:

$$A$$
 и B не пересекаются $\Leftrightarrow orall a \in A: a
otin B$

Специальные множества

Определение:

Пустое множество — множество, не содержащее ни одного элемента. Обычно пустое множество обозначают как \varnothing .

Определение:

Универсальное множество — множество, содержащее все объекты и все множества. В тех аксиоматиках, в которых универсальное множество существует, оно единственно. Обычно универсальное множество обозначают как \mathbb{U} .

Операции над множествами

Бинарные операции над множествами

 \blacksquare Пересечение A и B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

lacktriangle Объединение A и B.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Разность A и B.

$$A \setminus B = A \cap \overline{B} = \{x \mid x \in A \land x \notin B\}$$

lacktriangle Симметрическая разность A и B.

$$A \triangle B \equiv A - B = (A \cup B) \setminus (A \cap B)$$

Унарные операции над множествами

• Дополнение определяется следующим образом:

$$\overline{A} \equiv A^{\complement} = \{x \mid x \notin A\} = U \setminus A.$$

Теорема де Моргана

Теорема (де Моргана):

$$\overline{igcup_{lpha}A_{lpha}}=igcap_{lpha}\overline{A_{lpha}} \ \overline{igcap_{lpha}A_{lpha}}=igcup_{lpha}\overline{A_{lpha}}$$

Доказательство:

b

Докажем первое утверждение, второе доказывается аналогично. Для того, чтобы доказать равенство множеств, докажем, что первое множество включает второе и наоборот (частый приём при доказательстве равенства двух множеств).

Сначала докажем, что
$$\overline{\bigcup_{lpha} A_lpha} \subseteq \bigcap_{lpha} \overline{A_lpha}.$$

Пусть
$$x \in \left(\overline{igcup_{lpha} A_{lpha}}
ight)$$
. Значит, $ot\equiv lpha_i$ такого, что $x \in A_{lpha_i}$. Следовательно,

$$orall lpha:\ x\in\overline{A_lpha}\Rightarrow x\in\left(igcap_lpha\overline{A_lpha}
ight)$$
. В силу выбора x (любой элемент множества $\overline{\bigcup_lpha A_lpha}$) следует

искомое включение.

Теперь докажем, что
$$\bigcap_{lpha} \overline{A_lpha} \subseteq \overline{igcup_lpha} A_lpha$$

Пусть
$$x\in\left(\bigcap_{lpha}\overline{A_lpha}
ight)$$
. Тогда $orall lpha:\ x\in\overline{A_lpha}\Rightarrow x
otin A_lpha$. Поскольку x не входит ни в одно

объединяемое множество, то
$$x
ot\in\bigcup_{lpha}A_{lpha}\Rightarrow x\in\bigcup_{lpha}A_{lpha}$$

Аналогично, в силу выбора \boldsymbol{x} выполняется искомое включение.

◁

Теорема де Моргана устанавливает двойственность понятий объединения и пересечения множеств. То есть, имея некоторое верное равенство, содержащее объединения и пересечения, можно переписать его, заменив пересечения на объединения и наоборот. Например, из равенства

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \Rightarrow (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Доказывается это следующим образом: равны множества, значит, равны дополнения. После раскрытия дополнений приходим к написанному равенству.

Источник — «http://neerc.ifmo.ru/wiki/index.php?title=Множества&oldid=84691»

■ Эта страница последний раз была отредактирована 4 сентября 2022 в 19:14.