

Food process & GI tract modelling

Maykel Verschueren, PhD NIZO food research E: maykel.verschueren@nizo.com

T: +31(0)318659460

George van Aken NIZO food research E: george.vanaken@nizo.com

T: +31(0)318659568

Together to the next level

NIZO food research

Why

Good food needs good science

How

 Science hub for projects in a global food network

What

- Flavor, Texture, Health,
 Processing & Safety
- From lab to pilot plant

Where

- HQ in the Dutch Food Valley
- Sales offices in USA, France & Japan

Who

• 180 professionals

Modelling @ NIZO general overview

Process & product property models

Sensory models

Bio-informatics (metabolic pathway modelling, random forest...)

Product quality & shelf life models

Gl tract modelling

QMRA (Quantitative Microbial Risk Analysis)

NIZO Premia

- PREMIA: PREdictive Models for Industrial Applications
- A user-friendly tool for modelling process-product combinations
 - practical user interfaces for each model
 - models can be linked and combined
- Designed for use in practice
 - built in graphical tools, optimisation tools, calibration etc.

Modelling strategy

- Understanding processproduct interactions is key
- E.g. heat treatment
 - High T to guarantee food safety
 - Low T to minimize fouling and optimize product quality
- Modeling is quantifying process-product interactions

Spray Drying

Market need for:

- Capacity ↑
- Energy ↓
- Powder quality ↑

Spray drying

Feed:

- Flow rate F
- Temperature T_F

0

Composition

Inlet air:

- Flow
- Temp
- Humi

- Temperature T_{out}
- Moisture content X_{out}

Particles hitting the wall:

- $T \cong T_{out}$
- M_p outer layer \cong equil. moisture cont. M_{p,eq}
- Sticky point

=
$$f(T_{out}, M_{p,eq})$$

 $\equiv f(T_{out}, X_{out})$

Powder out:

- Moisture content M_p
- Temperature T_p
- Powder functionality

Stickiness curve – maximizing capacity

Case:

Optimizing capacity at varying ambient air humidity

Case:

Optimizing capacity at varying ambient air humidity

Case: Optimizing capacity at varying ambient air humidity, while keeping powder moisture M_p at 3.5%

PSE/NIZO Collaboration

- Make Premia available in gPROMS
 - Combine Premia's process /product expertise with strengths of the gPROMS platform

- Together with industry and universities
 - Speed up development by combining resources and sharing information
 - Prevent 'wheel reinventions' on precompetitive topics
 - Further enhance practical use of predictive models

