Manual do Usuário - P1T2 ALC

Matheus Lomba de Rezende Conde - DRE: 117085216

Link para execução do programa

O programa desenvolvido pode ser encontrado no seguinte link: https://onlinegdb.com/e_3P6bvCm e, ao entrar no link, o usuário será redirecionado para a tela abaixo:

(Fig 1. Tela inicial do trabalho)

Para executar o código, é necessário apenas que o usuário clique em "Run" (botão em verde no topo da tela), fazendo o promt de comando abrir e mostrando a execução do programa.

Exemplo de dados de entrada e saída para cada método

Power Method:

- 1. Entrada:
 - a. ordemN: 3
 - b. Método de Resolução: 1
 - c. Calcular determinante: s
 - d. Tolerância Máxima: 0.001
 - e. Matriz A:
 - \triangle (1,1) = 1
 - A(1,2) = 0.2
 - A(1,3) = 0
 - \bullet A (2,1) = 0.2
 - A(2,2) = 1
 - A(2,3) = 0.5

- A(3,1) = 0
- A(3,2) = 0.5
- A(3,3) = 1
- f. Vetor inicial solução X:
 - B (1) = 1
 - B(2) = 1
 - B(3) = 1
- 2. Saída:
 - a. O programa printa o R de todas as N iterações. Vou colocar aqui apenas o da última: R da iteração 14 = 0.000835
 - b. Autovalores AV:
 - AV(1) = 1.5385164807134502
 - AV(2) = 0.99999999999994
 - AV(3) = 0.46148351928654946
 - c. Autovetor X:
 - X(1) = 1.0
 - X(2) = 2.6847720874075454
 - X(3) = 2.4915880680441447
 - d. Determinante de A = 0.71

Método de Jacobi:

- 1. Entrada:
 - a. ordemN:3
 - b. Método de Resolução: 2
 - c. Calcular determinante: s
 - d. Tolerância Máxima: 0.01
 - e. Matriz A:
 - A(1,1) = 1
 - A(1,2) = 0.2
 - \bullet A (1,3) = 0.4
 - A (2,1) = 0.2
 - A(2,2) = 1
 - A(2,3) = 0.5
 - A(3,1) = 0.4
 - \bullet A (3,2) = 0.5
 - A(3,3) = 1
 - f. Matriz X Matriz identidade automaticamente inputada:
 - \bullet \times (1,1) = 1
 - X(1,2) = 0
 - X(1,3) = 0
 - X(2,1) = 0

- X(2,2) = 1
- X(2,3) = 0
- X(3,1) = 0
- X(3,2) = 0
- X(3,3) = 1

2. Saída:

- a. Matriz P:
 - P(1,1) = 0.99984465
 - P(1,2) = 0.01762618
 - P(1,3) = 0
 - P(2,1) = -0.01762618
 - P(2,2) = 0.99984465
 - P(2,3) = 0
 - P(3,1) = 0
 - P(3,2) = 0
 - P(3,3) = 1
- b. Matriz A:
 - \bullet A(1,1) = 0.999999826
 - A(1,2) = 0
 - \bullet A(1,3) = 0.0003063
 - A(2,1) = 0
 - A(2,2) = 1.53851648
 - \bullet A(2,3) = 0.0000054
 - \bullet A(3,1) = 0.0003063
 - \bullet A(3,2) = 0.0000054
 - \bullet A(3,3) = 0.461483694
- c. Autovalores AV:
 - \bullet AV(1) = 0.999999836
 - \bullet AV(2) = 1.53851648
 - \bullet AV(3) = 0.46148369
- d. Matriz X:
 - X(1,1) = 0.92832716
 - \bullet X(1,2) = 0.62611544
 - X(1,3) = 0.263142282
 - \bullet X(2,1) = 0.0004022
 - X(2,2) = 0.7071103
 - X(2,3) = -0.070103

- X(3,1) = -0.371764
- X(3,2) = 0.6565288
- X(3,3) = 0.656324
- e. Número de iterações para convergência = 5
- f. Determinante de A = 0.71