Computability Exam Solutions

September 24, 2009

Exercise 1

Projection Theorem and Counterexample

Projection Theorem: If predicate P(x,y) is semi-decidable, then $\exists x.P(x,y)$ is also semi-decidable.

Proof:

Since P(x,y) is semi-decidable, there exists a computable function f such that:

```
P(x,y) \iff f(x,y) \downarrow
```

Define the semi-characteristic function for $\exists x.P(x,y)$:

```
sc_{\exists x.P}(y) = 1(\mu(x,t). f(x,y) \text{ converges in } \leq t \text{ steps})
```

Algorithm:

```
To semi-decide ∃x.P(x,y):
1. For t = 0, 1, 2, ...:
2. For x = 0, 1, ..., t:
3. Run f(x,y) for at most t steps
4. If f(x,y) converges, return 1
5. (Never terminates if ∀x.¬P(x,y))
```

If $\exists x$ such that P(x,y), then eventually we'll find such x and the algorithm terminates.

If $\forall x. \neg P(x,y)$, the algorithm never terminates (correct for semi-decidability).

Therefore, $\exists x.P(x,y)$ is semi-decidable.

Counterexample for the reverse direction:

```
Let Q(y) \equiv \exists x.P(x,y) where P(x,y) \equiv (x \notin K \land y = 0).
```

Then:

- Q(0) $\equiv \exists x.(x \notin K \land 0 = 0) \equiv \exists x.(x \notin K) \equiv \text{True (since } \bar{K} \neq \emptyset)$
- $Q(y) \equiv False for y > 0$

So Q(y) is the predicate "y = 0", which is decidable, hence semi-decidable.

However, $P(x,y) \equiv (x \notin K \land y = 0)$ is not semi-decidable because:

- We cannot semi-decide x ∉ K (since K̄ is not r.e.)
- Even though y = 0 is decidable, the conjunction with the non-semi-decidable predicate $x \notin K$ makes P(x,y) non-semi-decidable

Therefore, $\exists x.P(x,y)$ can be semi-decidable while P(x,y) is not.

Exercise 2

Question: Does there exist a total non-computable $f : \mathbb{N} \to \mathbb{N}$ such that $f(x) \neq \phi_x(x)$ for only one value $x \in \mathbb{N}$?

Answer: No, such a function cannot exist.

Proof:

[Same proof as September 14, Exercise 2]

Suppose f is total, non-computable, and differs from the diagonal $\varphi_x(x)$ at exactly one point x = c.

Define $g : \mathbb{N} \to \mathbb{N}$ by:

```
g(x) = \{
f(c) if x = c
\phi_x(x) if x \neq c
```

Then g is computable:

- Checking x = c is decidable
- f(c) is a fixed constant
- $\phi_x(x)$ is computable via universal function

Since g(x) = f(x) for all x, we have g = f, contradicting f being non-computable.

Therefore, no such function exists.

Exercise 3

Classification of A = $\{x \in \mathbb{N} : \phi_x(y) = y \text{ for infinitely many } y\}$

The set A is saturated since $A = \{x \mid \varphi_x \in A\}$ where $A = \{f \mid f(y) = y \text{ for infinitely many } y\}$.

A is not r.e.: We use Rice-Shapiro theorem. Consider the identity function $id \in A$ since id(y) = y for all y (infinitely many).

For any finite function $\theta \subseteq id$, θ has finite domain, so $\theta(y) = y$ for only finitely many y. Therefore $\theta \notin A$.

Since id \in A and \forall finite $\theta \subseteq$ id: $\theta \notin$ A, by Rice-Shapiro theorem, A is not r.e.

Ā is not r.e.: Consider the constant function f(x) = 0. Then $f \notin A$ since f(y) = y only when y = 0 (just one point, not infinitely many).

For any finite function $\theta \subseteq f$, since f is constant 0, θ maps its domain to $\{0\}$. For $\theta(y) = y$, we need y = 0, so θ can equal the identity on at most one point (y = 0).

Therefore $\theta \notin A$ for any finite $\theta \subseteq f$.

Since all finite functions have finite domains, no finite function can equal the identity on infinitely many points. By Rice-Shapiro analysis, Ā is also not r.e.

Final classification: A and \bar{A} are both not r.e. (and hence not recursive).

Exercise 4

Proof that $P \leq_m Pr$ and $Pr \leq_m P$

where $P = \{0, 2, 4, 6, ...\}$ (even numbers) and $Pr = \{2, 3, 5, 7, 11, ...\}$ (primes).

Proof of $P \leq_m Pr$:

We need a total computable function $f : \mathbb{N} \to \mathbb{N}$ such that:

```
x \in P \iff f(x) \in Pr
```

Define f(x) = 2x + 2.

Verification:

- f is total and computable (linear function)
- If $x \in P$: x is even, so x = 2k for some $k \ge 0$, thus f(x) = 2(2k) + 2 = 4k + 2 = 2(2k + 1). Since $2k + 1 \ge 1$, we have $f(x) \ge 2$. For $k \ge 1$, f(x) = 2(2k + 1) is even and > 2, so f(x) is composite (not prime). For k = 0, $f(0) = 2 \in Pr$.

Wait, this doesn't work. Let me try a different approach.

Corrected approach for $P \leq_m Pr$:

Since both P and Pr are infinite decidable sets, we can establish the reduction by using enumeration:

```
Let p_0, p_1, p_2, ... be the enumeration of primes: 2, 3, 5, 7, 11, ...
Let e_0, e_1, e_2, ... be the enumeration of even numbers: 0, 2, 4, 6, 8, ...
```

Define $f : \mathbb{N} \to \mathbb{N}$ by:

```
f(x) = \{ \\ p_{x/2} & \text{if } x \text{ is even} \\ p_0 + 1 = 3 & \text{if } x \text{ is odd (where 3 is chosen to be composite)} \}
```

Wait, 3 is prime. Let me use 4:

```
f(x) = {
  p_{x/2}    if x is even
    4     if x is odd
}
```

Then $x \in P$ (x even) \iff $f(x) \in Pr$.

Proof of $Pr \leq_m P$:

Similarly, define $g : \mathbb{N} \to \mathbb{N}$ using enumerations:

```
g(x) = {
  e_k     if x = pk (x is the k-th prime)
     1     if x is not prime (1 is odd, so 1 ∉ P)
}
```

Then $x \in Pr \iff g(x) \in P$.

Both reductions are computable since:

- Prime testing is decidable
- Even/odd testing is decidable
- Enumeration of primes and evens can be computed

Therefore $P \leq_m Pr$ and $Pr \leq_m P$.

Exercise 5

Question: Can there exist an index $x \in \mathbb{N}$ such that $\bar{K} = \{y^2 - 1 : y \in E_x\}$?

Answer: No, such an index cannot exist.

Proof:

Suppose there exists x such that $\bar{K} = \{y^2 - 1 : y \in E_x\}$.

Key observations:

- 1. K is not r.e.
- 2. The set $\{y^2 1 : y \in E_x\}$ is r.e. (as the image of the r.e. set E_x under the computable function $y \mapsto y^2 1$)

Contradiction: Since E_x is r.e. (as the codomain of ϕ_x) and the function $h(y) = y^2 - 1$ is total and computable, the set:

```
{y^2 - 1 : y \in E_x} = h(E_x)
```

is r.e. (as the image of an r.e. set under a computable function).

But \bar{K} is not r.e., so we cannot have $\bar{K} = \{y^2 - 1 : y \in E_x\}$.

Alternative argument using density: The set $\{y^2 - 1 : y \in \mathbb{N}\} = \{-1, 0, 3, 8, 15, 24, 35, ...\}$ has density 0 (grows like \sqrt{n}).

However, \bar{K} has positive density (roughly half of all natural numbers), so \bar{K} cannot equal any subset of $\{y^2 - 1 : y \in \mathbb{N}\}$.

Therefore, no such index x can exist.