EVERYTHING IS HARD **BEFORE IT** IS EASY.

Today's content

-> Rasics J 2-D array or matrices.

How to declare?

rows: horizontal lines

inf mat [4] [5] columns: vertical lines

total nor of elements = 20 ms * cols

Observation I: If we move in ith-row col changes [0 - M-1]

observation 2: If we move in jth-col row changes [0-N-1] () liven mat (»] [m], print row-wise sum.

void printSum(aux, N, M) {

for(i = 0; i < N; i++) {

 sum = 0

 jor(j = 0; j < M; j ++) {

 Sum += arr[i][i]

 // Drint Sum.

Di Ceiven Square mat N. print diagonals - left to right

Eg: mat[4][4]

3)

$$j=0$$
, $j=0$
while $(i \in N \text{ &l } j \in N)$?
$$print(arr(iT(j)))$$

$$i+=1$$

$$j+=1$$

$$2$$

	0	1	2	3	
0				013	
1			1,2		
2		3			
_1	3,6				

$$j=0$$
, $j=N-1$

while $(i \le N \text{ let } j \ge 0)$?

Point $(arr[i][j])$
 $3+=1$
 $3-=1$

- All squares are rectangle.
- All rectangles are square x

Q1 Given a mat [N][M], point all diagonals going from R-L. Oth row or M-1th column. diagonals starting from mat [4] [6] 1, 1 1, 1 (0, 4) (1,5) 0,4 0,2 (2,4) (1,3) 15 1,2 1/1 (3,3) 2,4 (2,2) 2,2 2,0 2 (4, 2) x 3,3 3,1 (3,1) ઙ Stop. (4,0)

्राष्ट्री -

becudo code

roid print Diagonale (mat [][], N, M) f ~=0, C=2345 // print all diagonals starting from oth row.

for $(j = 0; j \le M; j + 1)$ $(j = 0; j \le M; j + 1)$ while $(z \le N & c > 0)$ while $(z \le N & c > 0)$ print (arr(r](c]) r+=1, c-=1 11 print all Diagonale starting from M-1th Column x=18 (=5 while (r < N && c >=0) { 3 print (arr(r](c]) r+=1, c-=1

T.(-) O(NAM), S.C -> O(1)

[we are touching all elements]
only once.

Break 10 minutes 9:56 PM. Q1 Given matrix (NJ(N). Calculate transpose of mat[] with S.C- O(1). Note-, get transpose in the given matrix itself.

mat [5][5]:

idea: swap upper half elements with lower half elements.

Void take Transpose (am, N)
$$\{i = 0; i < N; i+t\}$$
 for $\{i = 0; i < N; i+t\}$ for $\{j = i+1; j < N; j+t\}$ for $\{j = i+1; j < N; j+$

```
take Transpose ( am, N) {
              for ( i = 0; i < N; i++) {
for (i = 0; i < N),

for (j = 0; j < N; j + t)

//swap arr(i)[i] with arr[j][i]

temp = arr[i][j]

arr[i][i] = arr[j][i]

z arr[j][i] = temp
           arr[0][0] 

arr[0][0] 

arr[0][0] 

arr[0][0] 

arr[0][0] 

arr[0][0]
     = [Matrix is going to remain as it is]
```


1) Civen a square matrix. Rotate 90' clockwise. [S.C-0(1)]

	0	1	2	3	ч
Þ	ſ	2	3	Ч	5
1	6	7	8	9	O
2	11	12	13		V
3	16	17	18	19	20
4	6 11 16 21	22	- 23	24	25

oth row as 9th crl
1st row as 3rd col
21d you - 2nd col
80 row - 1st ch
4th you as oth col.

			•		
	ф	1	2	3	ų
Ь	21	16	Jſ	6	1
1	22	17	12	7	2
	23	18	13	8	3
ı		19	14	9	ч
	25	20	15	10	5

0/0.

fransport

	0	1	2	3	4
10		6	\I	16	<u>ا</u>
1	2	7	12	17	22
2	2	8	13	18	23
3	Y	9	14	19	24
	3	\1	15	20	25

every you.

x(v(r)x	oth row
T(YUX	1st nv
2(Vak	2rd now
revira	Ro Mos
TEVERK	was they

	0)	2	3	4
Φ	21	16	11	6	1
1	22_	17	12	Ŧ	2
2	22	18	13	8	3
3	24	19	14	ვ	4
4	25	20	15	(o	5

1-Darray


```
// step-1. take transpose of the given matrix.
11 Step-a. Reverse every now.
```

Rotate Rectangular matrix. I we need to have extra space ?

STodo q.

2-1 - implementation-based.

no of rows. - arrilength, no of columns - arrioj. length.

int[](] 'arr = new int [X][];

$$\begin{cases}
arr(0) = new & int (5); \\
arr(2) = new & int [3];
\end{cases}$$

```
→ [auestfons that are least solved by your batch.] 4.

→ [optional class] — attendance will not be counted.

→ Duration [2 -3 howes].
```