Injecting Logical Background Knowledge into Embeddings for Relation Extraction

Tim Rocktäschel, Sameer Singh and Sebastian Riedel

2015-08-29 最先端 NLP 勉強会 Sho Yokoi <yokoi@ecei.tohoku.ac.jp>

※ 図表はすべて、論文および論文著者の作成したスライドからの引用です

Motivation

Problem: Relation Extraction [Riedel+ 13]

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

Joint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Motivation

Problem: Relation Extraction

[Riedel+ 13] やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

int: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Problem: Relation Extraction

- ideitifying relations between named entities
- · motivation:

Freebase is incomplete

- Missing Facts: placeOfBirth attribute is missing for 71% of the people (Dong et al., 2014)
- Missing Entities: Contains no information about UCL Machine Reading Lab
- Missing Relations: May contain profAt(John Shawe-Taylor, UCL) but not givesLecturesAt(John Shawe-Taylor, UCL)
- · Machine reading and reasoning to the rescue!

Motivation

Problem: Relation Extraction

[Riedel+13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

Joint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

[Riedel+ 13]

- rows: entity-pairs of interest
- cols: textual patterns + Freebase relations

[Riedel+ 13]

matrix Factorization = low-rank embedding

Approach 1: Matrix Factorization (Low-rank Embedding)

- ✓ generalization
- ✓ tractable (computation is easy)
- hard to fix mistakes
- data sparsity

Approach 2: Logical Inference (Rule-based)

- easy to modify and improve
- ✓ data sparsity
- easy to fix mistakes
- ✗ generalization
- ✗ intractable (e.g. Markov Logic Networks)

Motivation

Problem: Relation Extraction

[Riedel+ 13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

oint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

やりたいこと

• matrix factorization (low-rank embedding) に logical inference を組み込む

Motivation

Problem: Relation Extraction [Riedel+ 13] やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

int: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Research Questions

- How to inject logical background knowledge into embedding?
- Does injection of logic formulae into the embeddings of entity-pairs and lelations provide any *benefits*?
 - 行列分解に FOL で書かれた知識を導入することで どの程度予測精度が向上するか?
 - データの疎性に対して頑健か?
 - 「ならば」の非対称性を捉えた学習になっているか?

Motivation

Problem: Relation Extraction [Riedel+13] やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

oint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Notation [1]

- $\langle constant \rangle ::= e_i, e_j \in \mathcal{E}$
 - · named entities
 - e.g. Nolan
- $\langle predicate \rangle ::= r_m \in \mathcal{R}$
 - binary relations between the entities
 - 1. textual patterns (e.g. #2-co-founder-of-#1)
 - 2. Freebase relations (e.g. company/founders)
- \langle term \rangle ::= \langle constant \rangle | \langle varriable \rangle
 - using <u>function-free</u> first-order logic
 - no function symbols

Notation [2]

- $\langle \text{ground atom} \rangle ::= r_m(e_i, e_j)$
 - predicates applied to constants
 - e.g. directorOf(NoLAN, INTERSTELLAR)
- $\mathbf{w} = \{r_m(e_i, e_j)\}$: possible world
 - a set of ground atoms
 - = training data

Motivation

Problem: Relation Extraction [Riedel+13] やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

int: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Motivation

Problem: Relation Extraction [Riedel+13] やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

Experiments

Settings

Extract Background Knowledge

MF: Matrix Factorization

- $\{0,1\}^{|\mathcal{P}|\times|\mathcal{R}|}$ の行列を、 $\mathbb{R}^{|\mathcal{P}|\times k}$ の行列と $\mathbb{R}^{k\times|\mathcal{R}|}$ の行列の 積に分解する
- · training data
 - $w = \{r_m(e_i, e_j)\}$: possible world
- model to learn
 - $V = \left\{ v_{(e_i, e_j)} \right\} \cup \left\{ v_{r_m} \right\}$: model
 - $\mathbf{v}_{(e_i,e_i)} \in \mathbb{R}^k$: entity pair (e_i,e_j) のベクトル表現
 - $v_{r_m} \in \mathbb{R}^k$: relation r_m のベクトル表現
- · objective function

$$p(\boldsymbol{w}|\boldsymbol{V}) = \prod_{r_m(e_i,e_j) \in \boldsymbol{W}} \sigma(\boldsymbol{v}_{r_m} \cdot \boldsymbol{v}_{(e_i,e_j)}) \prod_{r_m(e_i,e_j) \notin \boldsymbol{W}} \left(1 - \sigma(\boldsymbol{v}_{r_m} \cdot \boldsymbol{v}_{(e_i,e_j)})\right)$$

Motivation

Problem: Relation Extraction

[Riedel+ 13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

Joint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Pre: Pre-Factorization Inference

- 1. トレーニングデータを,logical formulae に従って拡充
 - logical formula: e.g. $\forall x, y : r_s(x, y) \implies r_t(x, y)$
- 2. 行列分解

Motivation

Problem: Relation Extraction

[Riedel+13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

Joint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Joint: Joint Optimization

- F
- a logical formula
- 38
- a training set of logical formulae
- 1. ground atoms (facts)
- 2. logical background knowledge

Objective Function

$$\min_{\mathbf{V}} \left(\sum_{\mathcal{F} \in \mathfrak{F}} \mathcal{L}([\mathcal{F}]) + \lambda \sum_{\mathbf{v} \in \mathbf{V}} \|\mathbf{v}\|_{2}^{2} \right)$$

- $[\mathcal{F}] := p(\mathcal{F}|V)$
 - the marginal probability that the formula $\ensuremath{\mathcal{F}}$ is true under the model
 - ・論文ではp(w|V)と記載
- $\mathcal{L}([\mathcal{F}]) := -\log([\mathcal{F}])$

optimize using AdaGrad \rightarrow We need to calculate

- the marginal probabilities $[\mathcal{F}]$
- the gradients of the losses $\partial \mathcal{L}([\mathcal{F}])/\partial v$

for every $\mathcal{F} \in \mathfrak{F}$

Ground Atom

- if $\mathcal{F} = r_m(e_i, e_j)$ then
- $[\mathcal{F}] = \sigma(v_{r_m} \cdot v_{(e_i, e_j)})$

$$\partial[\mathcal{F}]/\partial \mathbf{v}_{(e_i,e_j)} = [\mathcal{F}](1 - [\mathcal{F}])\mathbf{v}_{r_m}$$
 (2)

$$\partial[\mathcal{F}]/\partial \mathbf{v}_{r_m} = [\mathcal{F}](1 - [\mathcal{F}])\mathbf{v}_{(e_i, e_j)}$$
(3)

$$\partial \mathcal{L}([\mathcal{F}])/\partial \mathbf{v}_{(e_i,e_j)} = -[\mathcal{F}]^{-1}\partial [\mathcal{F}]/\partial \mathbf{v}_{(e_i,e_j)}$$
 (4)

$$\partial \mathcal{L}([\mathcal{F}])/\partial \mathbf{v}_{r_m} = -[\mathcal{F}]^{-1}\partial [\mathcal{F}]/\partial \mathbf{v}_{r_m}.$$
 (5)

Logical "And" (A Set of Ground Atoms)

- $[\mathcal{A} \land \mathcal{B}] = [\mathcal{A}][\mathcal{B}]$
 - provided both formula concern non-overlapping sets of ground atoms
 - 重なりがある場合は互いに素な集合に分ければよい
- if $\mathcal{F} = \mathcal{F}_1 \wedge \cdots \wedge \mathcal{F}_n$ then
 - $[\mathcal{F}] = \prod_{\mathcal{F}_i \in \mathcal{F}} [\mathcal{F}_i]$
 - $\mathcal{L}([\mathcal{F}]) = \sum_{\mathcal{F}_i \in \mathcal{F}} \mathcal{L}([\mathcal{F}_i])$
- 以後.
 - 論理式=論理式が満たすべき ground atoms の集合
 - ・モデル V に対する論理式の条件付確率 = 論理式をなす ground atom の条件付き確率 $(\sigma(v_{r_m}\cdot v_{(e_i,e_j)}))$ の総積

…と考える

Complex Logical Formulae

Negation

• $[\neg \mathcal{A}] = 1 - [\mathcal{A}]$

Other Logical Connectives (∧,¬を用いて)

- $[\mathcal{A} \vee \mathcal{B}] = [\neg(\mathcal{A} \wedge \mathcal{B})] = [\mathcal{A}] + [\mathcal{B}] [\mathcal{A}][\mathcal{B}]$
- $[\mathcal{A} \implies \mathcal{B}] = [\neg \mathcal{A} \lor \mathcal{B}] = \cdots = [\mathcal{A}]([\mathcal{B}] 1) + 1$

Universal Quantifier

- if $\mathcal{F} = \forall x, y \in \mathcal{E} : \mathcal{G}(x, y)$ then
- $[F] = [\forall x, y \in \mathcal{E} : \mathcal{G}(x, y)] = [\land_{x,y \in \mathcal{E}} \mathcal{G}(x, y)]$

More Complex Logical Formulae

以上を再帰的にに適用

"Implications"

• if
$$\mathcal{F} = \forall x, y \in \mathcal{E} : r_s(x, y) \implies r_t(x, y)$$

•
$$\mathcal{F}_{ij} := r_s(e_i, e_j) \implies r_t(e_i, e_j)$$

•
$$[\mathcal{F}] = \prod_{(e_i, e_i) \in \mathcal{P}} [F_{ij}]$$

•
$$\mathcal{L}([\mathcal{F}]) = \sum_{(e_i, e_j) \in \mathcal{P}} \mathcal{L}([F_{ij}])$$

$$[\mathcal{F}_{ij}] = [r_s(e_i, e_j)] ([r_t(e_i, e_j)] - 1) + 1$$
(6)
$$\frac{\partial \mathcal{L}([\mathcal{F}_{ij}])}{\partial \mathbf{v}_{r_s}} = -[\mathcal{F}_{ij}]^{-1} ([r_t(e_i, e_j)] - 1) \frac{\partial [r_s(e_i, e_j)]}{\partial \mathbf{v}_{r_s}}$$

$$\frac{\partial \mathcal{L}([\mathcal{F}_{ij}])}{\partial \mathbf{v}_{r_t}} = -[\mathcal{F}_{ij}]^{-1} [r_s(e_i, e_j)] \frac{\partial [r_t(e_i, e_j)]}{\partial \mathbf{v}_{r_t}}$$
(7)
$$\frac{\partial \mathcal{L}([\mathcal{F}_{ij}])}{\partial \mathbf{v}_{e_i, e_j}} = -[\mathcal{F}_{ij}]^{-1} ([r_t(e_i, e_j)] - 1) \frac{\partial [r_s(e_i, e_j)]}{\partial \mathbf{v}_{e_i, e_j}}$$

$$-[\mathcal{F}_{ij}]^{-1} [r_s(e_i, e_j)] \frac{\partial [r_t(e_i, e_j)]}{\partial \mathbf{v}_{e_i, e_j}}.$$
(8)

Motivation

Problem: Relation Extraction

[Riedel+ 13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

Joint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Motivation

Problem: Relation Extraction

[Riedel+ 13] やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

loint: Joint Optimization

Experiments

Settings

Extract Background Knowledge Results / Consideration

Data

knowledge base completion of Freebase [Bollacker+ 08] with textual data from the NYTimes corpus [Sandhaus 08]

- R
- 151 Freebase relations
- 3,960 textual (surface) patterns
- $\mathcal{P} \subseteq \mathcal{E} \times \mathcal{E}$
 - 41,913 entity-pairs of interest
- $\mathcal{R} \times \mathcal{P}$
 - 118,781 training facts
 - including 7,293 Freebase relations (alignments between entity-pairs and Freebase relations)

Motivation

Problem: Relation Extraction

[Riedel+ 13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

oint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

Extract Background Knowledge

- 1. 全教師データで行列分解
- 2. すべての $(r_s, r_t) \in \mathcal{R} \times \mathcal{R}$ (ただし r_t は Freebase relation) について $[\forall (e_i, e_j) \in \mathcal{P}r_s(e_i, e_j) \implies r_s(e_i, e_j)]$ を計算
- 3. 上位 100 件から手動で 36 件をフィルタリング

Formula	Score
$\forall x,y: \#2$ -unit-of- $\#1(x,y) \Rightarrow \text{org/parent/child}(x,y)$	0.97
$\forall x,y: \texttt{\#2-city-of-\#1}(x,y) \Rightarrow \texttt{location/containedby}(x,y)$	0.97
$orall x,y:$ #2-minister-#1 $(x,y)\Rightarrow$ person/nationality (x,y)	0.97
$\forall x,y: \texttt{\#2-executive-\#1}(x,y) \Rightarrow \texttt{person/company}(x,y)$	0.96
$\forall x,y: \texttt{\#2-co-founder-of-\#1}(x,y) \Rightarrow \texttt{company/founders}(y,x)$	0.96

Table 1: Sample Extracted Formulae: Top implica-

Metric

(weighted) mean average precision (*MAP*, *wMAP*) on manually annotated predictions for Freebase relations

Motivation

Problem: Relation Extraction

[Riedel+ 13]

やりたいこと

Research Questions

Notation

Injecting Logic into Factorization (Proposed Method)

MF: Matrix Factorization

Pre: Pre-Factorization Inference

oint: Joint Optimization

Experiments

Settings

Extract Background Knowledge

1. Zero-shot Relation Learning

- Freebase relations $\subseteq \mathcal{R} \times \mathcal{E} \times \mathcal{E}$ をすべて隠して、当てる
- background knowledge は使う

Relation	#	MF	Inf	Post	Pre	Joint
person/company	102	0.07	0.03	0.15	0.31	0.35
location/containedby	72	0.03	0.06	0.14	0.22	0.31
author/works_written	27	0.02	0.05	0.18	0.31	0.27
person/nationality	25	0.01	0.19	0.09	0.15	0.19
parent/child	19	0.01	0.01	0.48	0.66	0.75
person/place_of_birth	18	0.01	0.43	0.40	0.56	0.59
person/place_of_death	18	0.01	0.24	0.23	0.27	0.23
neighborhood/neighborhood_of	11	0.00	0.00	0.60	0.63	0.65
person/parents	6	0.00	0.17	0.19	0.37	0.65
company/founders	4	0.00	0.25	0.13	0.37	0.77
film/directed_by	2	0.00	0.50	0.50	0.36	0.51
film/produced_by	1	0.00	1.00	1.00	1.00	1.00
MAP		0.01	0.23	0.34	0.43	0.52
Weighted MAP		0.03	0.10	0.21	0.33	0.38

Table 2: Zero-shot Relation Learning: Average and

2. Relations with Few Distant Labels

- Freebase relations $\subseteq \mathcal{R} \times \mathcal{E} \times \mathcal{E}$ を一部隠して、当てる
- トレーニングデータとして使う Freebase relations (distant labels) の割合を変化させる

Figure 2: Relations with Few Distant Labels:

3. Comparison on Complete Data

- Freebase relations $\subseteq \mathcal{R} \times \mathcal{E} \times \mathcal{E}$ をすべて使う
- 先行研究 [Riedel+13] の matrix factorization model "F" との性能比較
- ただし [Riedel+13] 中の「もっとも良い」モデルである "NF" や "NFE" とは比較されていない

4. Analysis of Asymmetry in the Predictions

- 学習に利用した logical formulae はすべて $\forall x, y : r_s(x, y) \implies r_t(x, y)$ の形
- 学習されたモデルは " \Longrightarrow " の非対称性を捉えられているか?
- Joint は捉えられているように見える

	MF	Pre	Joint
$[\forall x, y : r_s(x, y) \implies r_t(x, y)]$	0.94	0.96	0.97
$[\forall x, y : r_t(x, y) \implies r_s(x, y)]$			