第10章 方差分析

10.1 内容提要

10.1.1 单因素试验的方差分析

1. 单因素试验

为了考察某个因素 A 对所研究的随机变量 X 的影响, 我们在试验中让其他因素保持不变, 而仅让因素 A 改变, 这样的试验称为单因素试验.

2. 数学模型

设因素 A 有 r 个不同的水平 A_1,A_2,\cdots,A_r ,在水平 A_j 下的总体记为 x_j,j = 1,2,…,r,并设 x_1,x_2,\cdots,x_r 相互独立且

$$x_i \sim N(\mu_i, \sigma^2), j = 1, 2, \dots, r$$
.

在水平 A_j 下进行 n_j 次试验,得到取自总体 x_j 的容量为 n_j 的样本 $x_{1j}, \cdots, x_{n_j j}$ ($j=1,2,\cdots,r$). 于是有

$$x_{ii} \sim N(\mu_i, \sigma^2), j = 1, 2, \dots, r; i = 1, 2, \dots, n_i$$

并且所有的 x_{ii} 相互独立.

令 $\varepsilon_{ij} = x_{ij} - \mu_j (j = 1, 2, \dots, r; i = 1, 2, \dots, n_j)$,则 ε_{ij} 是在水平 A_j 下做第 i 次观察时由于随机因素的影响而产生的随机误差,且 ε_{ii} 相互独立. 所以可得如下的数据结构:

$$\begin{cases} x_{ij} = \mu_j + \varepsilon_{ij}, j = 1, 2, \dots, r; i = 1, 2, \dots, n_j \\ \varepsilon_{ij} \sim N(0, \sigma^2), \end{cases}$$

上式称为单因素方差分析的数学模型. 单因素方差分析的主要任务主要可归结为以下两个:

(1) 在给定的显著水平 α 下检验假设:

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_r; ↔ H_1: \mu_1, \mu_2, \cdots, \mu_r$$
 不全相等;

- (2) 估计参数 $\mu_1, \dots, \mu_r, \sigma^2$.
- 3. 统计分析

总平方和
$$S_T = \sum_{j=1}^r \sum_{i=1}^{n_j} (x_{ij} - \overline{x})^2$$
,其中 $\overline{x} = \frac{1}{n} \sum_{j=1}^r \sum_{i=1}^{n_j} x_{ij}$.

误差平方和
$$S_E = \sum_{j=1}^r \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{ij})^2$$
,其中 $\overline{x}_{ij} = \frac{1}{n_i} \sum_{i=1}^{n_j} x_{ij}$.

因素 A 的效应平方和 $S_A = \sum_{j=1}^r \sum_{i=1}^{n_j} (\overline{x}_{i,j} - \overline{x})^2$.

4. 假设检验

当
$$H_0$$
成立时,则 $\frac{S_E}{\sigma^2}$ ~ $\chi^2(n-r)$, $\frac{S_A}{\sigma^2}$ ~ $\chi^2(r-1)$,且 S_E 与 S_A 相互独立。从而
$$F = \frac{S_A/(r-1)}{S_E/(n-r)} \sim F(r-1,n-r)$$
.

对给定的检验水平 α ,若 $F \ge F_{\alpha}(r-1,n-r)$,则拒绝原假设 H_0 ,即认为因素 A 影响显著.

5. 参数估计

- (1) $\hat{\mu} = \overline{x} \, \oplus \, \mu$ 的无偏估计;
- (2) $\hat{\mu}_i = \overline{x}_{ii}$ 是 μ_i 的无偏估计;
- (3) $\hat{\alpha}_i = \overline{x}_{ij} \overline{x}$ 是 α_i 的无偏估计;

(4)
$$\hat{\sigma}^2 = \frac{S_E}{n-r}$$
 是 σ^2 的无偏估计;

(5) $\mu_j - \mu_k$ 的置信度为 $1-\alpha$ 的置信区间为

$$\left(\overline{x}_{.j} - \overline{x}_{.k} - t_{\alpha/2}(n-r)\sqrt{\frac{S_E}{n-s}(\frac{1}{n_j} + \frac{1}{n_k})}, \overline{x}_{.j} - \overline{x}_{.k} + t_{\alpha/2}(n-r)\sqrt{\frac{S_E}{n-s}(\frac{1}{n_j} + \frac{1}{n_k})}\right).$$

10.1.2 双因素等重复试验的方差分析

1. 数学模型

设有两个 A ,B 作用于试验的指标,因素 A 有 r 个水平 A_1 , A_2 ,…, A_r ,因素 B 有 s 个水平 B_1 , B_2 ,…, B_s ,对因素 A ,B 的水平的每对组合 (A_i, B_j) , $i=1,2,\dots,r$; $j=1,2,\dots,s$ 都作 $t(t\geq 2)$ 次试验,试验数记为 x_{ijk} ,设 x_{ijk} ~ $N(\mu_{ij},\sigma^2)$, $i=1,2,\dots,r$; $j=1,2,\dots,s$; $k=1,2,\dots,t$.令 $\varepsilon_{ijk}=x_{ijk}-\mu_{ij}$ ($i=1,2,\dots,r$; $j=1,2,\dots,s$; $k=1,2,\dots,t$),则 ε_{ijk} 相互独立,且 ε_{ijk} ~ $N(0,\sigma^2)$.于是数据就有如下结构

$$\begin{cases} x_{ijk} = \mu_{ij} + \varepsilon_{ijk}, i = 1, \dots, r; j = 1, \dots, s; k = 1, \dots, t \\ \varepsilon_{ijk} \sim N(0, \sigma^2) \end{cases}$$

上式就是双因素方差分析的数学模型.

引入如下记号:

$$\mu = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij}; \qquad \mu_{i.} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}, \alpha_{i} = \mu_{i.} - \mu, i = 1, 2, \dots, r;$$

$$\mu_{.j} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, \beta_{i} = \mu_{.j} - \mu, j = 1, 2, \dots, s.$$

称 μ 为总平均, 称 α_i 为水平 A_i 的效应, β_i 为水平 B_i 的效应, 记

$$\gamma_{ij} = \mu_{ij} - \mu_{i.} - \mu_{.j} + \mu, i = 1, \dots, r; j = 1, \dots, s,$$

则 $\mu_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij}$, 称 γ_{ij} 为水平 A_i 和水平 B_j 的交互效应, 于是数据的结构可以写成如下的数学模型:

$$\begin{cases} x_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, & i = 1, \dots, r, \\ \varepsilon_{ijk} \sim N(0, \sigma^2), & j = 1, \dots, s, \\ \sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0, \sum_{i=1}^r \gamma_{ij} = \sum_{j=1}^s \gamma_{ij} = 0, & k = 1, \dots, t \end{cases}$$

其中 μ , α_i , β_j , γ_{ij} , σ^2 都是未知参数.

这样假设检验问题可以表述成如下的三个假设检验问题:

$$H_{01}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$; $\leftrightarrow H_{11}$: $\alpha_1, \cdots, \alpha_r$ 不全为零;

$$H_{02}$$
: $\beta_1 = \beta_2 = \cdots = \beta_s = 0$; $\leftrightarrow H_{12}$: β_1, \cdots, β_s 不全为零;

$$H_{03}$$
: $\gamma_{ij} = 0$, $i = 1, \dots, r$, $j = 1, \dots, s$; $\longleftrightarrow H_{13}$: γ_{ij} 不全为零.

2. 统计分析

总平方和
$$S_T = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (x_{ijk} - \overline{x})^2$$
,其中 $\overline{x} = \frac{1}{rst} \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t x_{ijk}$,

因素
$$A$$
 的效应平方和 $S_A = st \sum_{i=1}^r (\overline{x}_{i..} - \overline{x})^2$, 其中 $\overline{x}_{i..} = \frac{1}{st} \sum_{i=1}^s \sum_{k=1}^t x_{ijk}$, $i = 1, \dots, r$,

因素
$$B$$
 的效应平方和 $S_B = rt \sum_{j=1}^s (\overline{x}_{.j.} - \overline{x})^2$, 其中 $\overline{x}_{.j.} = \frac{1}{rt} \sum_{i=1}^r \sum_{k=1}^t x_{ijk}$, $j = 1, \dots, s$,

误差平方和
$$S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (x_{ijk} - \overline{x}_{ij.})^2$$
,其中 $\overline{x}_{ij.} = \frac{1}{t} \sum_{k=1}^t x_{ijk}$, $i = 1, \dots, r; j = 1, \dots, s$,

$$A$$
, B 的交互效应平方和 $S_{A\times B}=t\sum_{i=1}^r\sum_{i=1}^s(\overline{x}_{ij.}-\overline{x}_{i..}-\overline{x}_{i..}+\overline{x})^2$.

3. 假设检验

(1)
$$\frac{S_E}{\sigma^2} \sim \chi^2(rs(t-1)),$$

(2) 当
$$H_{01}$$
为真时, $\frac{S_A}{\sigma^2} \sim \chi^2(r-1)$,从而 $F_A = \frac{S_A/(r-1)}{S_F/(rs(t-1))} \sim F(r-1,rs(t-1))$;

(3) 当
$$H_{02}$$
为真时, $\frac{S_B}{\sigma^2} \sim \chi^2(s-1)$,从而 $F_B = \frac{S_B/(s-1)}{S_E/(rs(t-1))} \sim F(s-1,rs(t-1))$;

(4) 当
$$H_{03}$$
为真时, $\frac{S_{A\times B}}{\sigma^2} \sim \chi^2((r-1)(s-1))$,从而

$$F_{A \times B} = \frac{S_{A \times B} / [(r-1)(s-1)]}{S_F / (rs(t-1))} \sim F((r-1)(s-1), rs(t-1)).$$

对于显著性水平 α , H_{01} 拒绝域为 $F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \ge F_\alpha(r-1,rs(t-1))$,

$$H_{02}$$
 拒绝域为 $F_B = \frac{S_B/(s-1)}{S_E/(rs(t-1))} \ge F_\alpha(s-1,rs(t-1)),$

$$H_{03}$$
 拒绝域为 $F_{A\times B} = \frac{S_{A\times B}/[(r-1)(s-1)]}{S_{F}/(rs(t-1))} \ge F_{\alpha}((r-1)(s-1), rs(t-1))$.

10.1.3 双因素无重复试验的方差分析

1. 数学模型

设有两个因素 A , B , 因素 A 有 r 个水平 A_1 , A_2 , \cdots , A_r , 因素 B 有 s 个水平 B_1 , B_2 , \cdots , B_s , 对因素 A , B 的每对组合 (A_i, B_j) , $i=1,2,\cdots,r$, $j=1,2,\cdots,s$, 作一次试验,试验数据记为 x_{ij} , 设 x_{ij} 相互独立,且设 x_{ij} ~ $N(\mu_{ij},\sigma^2)$. 此时数据结构的数学模型可以写成如下形式:

$$\begin{cases} x_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, i = 1, 2, \dots, r; j = 1, 2, \dots, s \\ \varepsilon_{ij} \sim N(0, \sigma^2), \sum_{i=1}^r \alpha_i = 0, \sum_{i=1}^s \beta_i = 0 \end{cases}$$

其中 μ 为总平均, α_i 为水平 A_i 的效应, β_j 为水平 B_j 的效应,且 μ , α_i , β_j , σ^2 均为未知参数.此时要检验假设有以下两个:

$$H_{01}: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0; \leftrightarrow H_{11}: \alpha_1, \cdots, \alpha_r$$
 不全为零;
 $H_{02}: \beta_1 = \beta_2 = \cdots = \beta_s = 0; \leftrightarrow H_{12}: \beta_1, \cdots, \beta_s$ 不全为零.

与双因素等重复试验方差分析的讨论过程类似, 可以得到方差分析表:

方差来源	平方和	自由度	均方	F 比
因素 A	S_A	r-1	$S_A/(r-1)$	$F_A = \frac{S_A / (r-1)}{S_E / ((r-1)(s-1))}$

因素 B	$S_{\scriptscriptstyle B}$	s-1	$S_B/(s-1)$	$F_A = \frac{S_B / (s-1)}{S_E / ((r-1)(s-1))}$
误差	$S_{\scriptscriptstyle E}$	(r-1)(s-1)	$S_E/(r-1)(s-1)$	
总和	S_{T}	rs -1		

取显著性水平为 α ,得 $H_{01} \leftrightarrow H_{11}$ 的拒绝域为

$$F_A = \frac{S_A/(r-1)}{S_F/((r-1)(s-1))} \ge F_\alpha(r-1,(r-1)(s-1)),$$

得 $H_{02} \leftrightarrow H_{12}$ 的拒绝域为

$$F_B = \frac{S_B/(s-1)}{S_F/((r-1)(s-1))} \ge F_\alpha(s-1,(r-1)(s-1)).$$

10.2 习题详解

1. 三台机器制造同一种产品, 记录五天的产量如下:

机器	$A_{\rm l}$	A_2	A_3
	138 163 144 148 135 152	163	155
	144	148	144
日产量	135	152	159
	149	146	147
	143	157	153

试在显著性 $\alpha = 0.05$ 下检验这三台机器的日产量是否有显著差异.

 \mathbf{H} 对假设检验问题 $H_0: \mu_1 = \mu_2 = \mu_3$ \longleftrightarrow $H_1: \mu_1, \mu_2, \mu_3$ 不全相等,

取检验统计量 $F = \frac{S_A/(r-1)}{S_F/(n-r)}$,则在零假设 H_0 下有

$$F = \frac{S_A/(r-1)}{S_E/(n-r)} \sim F(r-1, n-r),$$

拒绝域为 $F = \frac{S_A/(r-1)}{S_F/(n-r)} \ge F_\alpha(r-1,n-r)$, α 为显著性水平,

其中
$$S_A = \sum_{j=1}^r \sum_{i=1}^{n_j} (\overline{x}_{.j} - \overline{x})^2 = \sum_{j=1}^r n_j \overline{x}_{.j}^2 - n \overline{x}^2, \ S_E = \sum_{j=1}^r \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{.j})^2, \ r = 3, \ n = 15.$$

计算分析得

组	观测数	求和	平均	方差
列 1	5	709	141.8	29. 7
列 2	5	766	153. 2	47. 7
列 3	5	758	151.6	36.8

差异源	SS	df	MS	F	P-value	F crit
组间	380. 9333	2	190. 4667	5. 003503	0.026286	3. 885294
组内	456.8	12	38. 06667			
总计	837. 7333	14				

查表得 F = 5.003503,因为 $F_{0.05}(2,12) = 3.89$,所以 $F \ge F_{0.05}(2,12)$,拒绝原假设,因此三台机器的日产量有显著差异.

2. 下列数据给出了对灯泡光通量的试验结果(单位:流明/瓦特)

工厂	测量值							
1	9. 47	9. 00	9. 12	9. 27	9. 27	9. 25		
2	10.80	11. 28	11. 15					
3	10. 37	10. 42	10. 28					
4	10. 65	10. 33						
5	9. 54	8. 62						

试在显著性水平 $\alpha = 0.05$ 下检测不同工厂生产的灯泡光通量有无显著差别?

$$\mathbf{H}$$
 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 \leftrightarrow H_1: \mu_1, \mu_2, \mu_3, \mu_4, \mu_5$ 不全相等,

构造检验统计量 $F = \frac{S_A/(r-1)}{S_E/(n-r)}$,则在零假设 H_0 下有

$$F = \frac{S_A/(r-1)}{S_F/(n-r)} \sim F(r-1, n-r),$$

拒绝域为

$$F = \frac{S_A/(r-1)}{S_F/(n-r)} \ge F_{\alpha}(r-1,n-r)$$
, α 为显著性水平,

其中
$$S_A = \sum_{j=1}^r \sum_{i=1}^{n_j} (\overline{x}_{.j} - \overline{x})^2 = \sum_{j=1}^r n_j \overline{x}_{.j}^2 - n \overline{x}^2, S_E = \sum_{j=1}^r \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{.j})^2, r = 5, n = 16.$$

计算分析得

组	观测数	求和	平均	方差
列 1	6	55.38	9. 23	0. 02524
列 2	3	33. 23	11.07667	0.061633
列 3	3	31.07	10. 35667	0.005033
列 4	2	20.98	10.49	0.0512
列 5	2	18. 16	9.08	0. 4232

差异源	SS	df	MS	F	P-value	F crit
组间	9. 502642	4	2. 37566	35. 60577	3. 1E-06	3. 35669
组内	0. 733933	11	0.066721			
总计	10. 23658	15				

计算得 F = 35.60577, $F_{0.05}(4,11) = 3.36$, $F \ge F_{0.05}(4,11)$,拒绝原假设,因此不同工厂生产的灯泡光通量有显著差别.

3. 将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效. 下表列出 5 种常用的抗生素注入到牛的体内时, 抗生素与血浆蛋白质结合的百分比. 试在显著性水平 $\alpha = 0.05$ 检验这些百分比的均值有无显著的差异. 设各总体服从正态分布, 且方差相同.

抗生素	青霉素	四环素	链霉素	红霉素	氯霉素
	29. 6	27. 3	5.8	21.6	29. 2
测量值	24. 3	32. 6	6. 2	17. 4	32.8
八主臣	28. 5	30.8	11. 0	18. 3	25. 0
	32. 0	34.8	8.3	19. 0	24. 2

$$\mathbf{H}$$
 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 \ \leftrightarrow \ H_1: \mu_1, \mu_2, \mu_3, \mu_4, \mu_5$ 不全相等,

构造检验统计量 $F = \frac{S_A/(r-1)}{S_E/(n-r)}$,则在零假设 H_0 下有

$$F = \frac{S_A/(r-1)}{S_F/(n-r)} \sim F(r-1, n-r),$$

拒绝域为

$$F = \frac{S_A/(r-1)}{S_E/(n-r)} \ge F_{\alpha}(r-1,n-r)$$
, α 为显著性水平,

其中
$$S_A = \sum_{i=1}^r \sum_{i=1}^{n_j} (\overline{x}_{.j} - \overline{x})^2 = \sum_{i=1}^r n_j \overline{x}_{.j}^2 - n \overline{x}^2, \ S_E = \sum_{i=1}^r \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{.j})^2, \ r = 5, \ n = 20.$$

计算分析得

组	观测数	求和	平均	方差
列 1	4	114.4	28.6	10. 35333
列 2	4	125. 5	31. 375	10.05583
列 3	4	31.3	7.825	5. 6825
列 4	4	76. 3	19.075	3. 2625
列 5	4	111.2	27.8	15.92

差异源	SS	df	MS	F	P-value	F crit
组间	1480. 823	4	370. 2058	40. 88488	6. 74E-08	3. 055568
组内	135. 8225	15	9. 054833			
总计	1616. 646	19				

计算得 F=40.88488 , $F_{0.05}(4,15)=3.06$, $F\geq F_{0.05}(4,15)$, 拒绝原假设, 即表明均值有显著差异.

4. 一个年级有三个班, 他们进行了一次数学考试, 现从各个班级随机地抽取了一些学生, 记录其成绩如下:

	1班		2班 3班					
73	66	89	88	77	78	68	41	79
60	82	45	31	48	78	59	56	68
80	43	93	91	62	51	91	53	71
36	73	77	76	85	96	79	71	15
			74	80	56		87	

试在显著性水平 $\alpha = 0.05$ 下检验各班级的平均分数有无显著性差异. 设各个总体服从正态分布, 且方差相同.

$$\mathbf{H}$$
 $H_0: \mu_1 = \mu_2 = \mu_3$ \longleftrightarrow $H_1: \mu_1, \mu_2, \mu_3$ 不全相等,

构造检验统计量 $F = \frac{S_A/(r-1)}{S_E/(n-r)}$,则在零假设 H_0 下有

$$F = \frac{S_A/(r-1)}{S_F/(n-r)} \sim F(r-1, n-r),$$

拒绝域为

$$F = \frac{S_A/(r-1)}{S_F/(n-r)} \ge F_{\alpha}(r-1,n-r)$$
, α 为显著性水平,

其中
$$S_A = \sum_{j=1}^r \sum_{i=1}^{n_j} (\overline{x}_{.j} - \overline{x})^2 = \sum_{j=1}^r n_j \overline{x}_{.j}^2 - n \overline{x}^2, S_E = \sum_{j=1}^r \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_{.j})^2, r = 3, n = 30.$$

计算分析得

组	观测数	求和	平均	方差
列 1	12	817	68. 08333	343. 9015
列 2	15	1071	71.4	327.9714
列 3	13	838	64. 46154	414.6026

差异源	SS	df	MS	F	P-value	F crit
组间	335. 3526	2	167. 6763	0.46473	0.631923	3. 251924
组内	13349.75	37	360.804			
总计	13685. 1	39				

计算得 F = 0.46473, $F_{0.05}(2,37) = 3.25$, $F \le F_{0.05}(2,37)$, 接受原假设, 即表明平均分数没有显著差异.

5. 为了寻找适应某地区的高产水稻品种,今选取五个不同品种的种子进行试验,每一品种在四种试验田上试种. 假定这 20 块土地面积与其他条件基本上相同,观测到各块土地的产量 (kg)如下:

₹th マ.日 ₹th A	田号						
种子品种 A	1	2	3	4			
A_{l}	67	67	55	42			
A_2	68	96	90	66			
A_3	60	69	50	55			
A_4	79	64	81	70			
A_5	90	70	79	88			

试检验: (1) 种子品种对水稻高产有无显著影响 ($\alpha = 0.01$), (2) 第 2,5 号种子对水稻高产的影响有无显著差异 ($\alpha = 0.05$).

解 (1)
$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0 \leftrightarrow H_1: \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$$
 不全为 0 ,

构造检验统计量
$$F_A = \frac{S_A/(r-1)}{S_F/((r-1)(s-1))}$$
,则在零假设 H_0 下有

$$F_A = \frac{S_A/(r-1)}{S_F/((r-1)(s-1))} \sim F(r-1,(r-1)(s-1)),$$

拒绝域为
$$F_A = \frac{S_A/(r-1)}{S_F/((r-1)(s-1))} \ge F_\alpha(r-1,(r-1)(s-1))$$
,

其中
$$S_A = st \sum_{i=1}^r (\overline{x}_{i..} - \overline{x})^2$$
, $S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (x_{ijk} - \overline{x}_{ij.})^2$,该题中 $t = 1$.

SUMMARY	观测数	求和	平均	方差
行 1	4	231	57.75	142. 25
行 2	4	320	80	232
行 3	4	234	58.5	65.66667
行 4	4	294	73.5	63
行 5	4	327	81.75	84. 25
列 1	5	364	72.8	138. 7
列 2	5	366	73. 2	167.7
列 3	5	355	71	305.5
列 4	5	321	64.2	295. 2

差异源	SS	df	MS	F	P-value	F crit
行	2128.7	4	532. 175	4. 258252	0.022536	5. 411951
列	261.8	3	87. 26667	0.698273	0.570851	5. 952545
误差	1499.7	12	124. 975			
总计	3890. 2	19				

计算得 $F_A = 4.258252$, $F_{0.01}(4,12) = 5.411951$, $F_A \leq F_{0.01}(4,12)$,接受原假设,即表明种子品种对水稻高产无显著差异.

(2)
$$H_0: \alpha_2 = \alpha_5 = 0 \iff H_1: \alpha_2, \alpha_5$$
 不全为 0 ,

构造检验统计量 $F_A = \frac{S_A/(r-1)}{S_F/((r-1)(s-1))}$,则在零假设 H_0 下有

$$F_A = \frac{S_A/(r-1)}{S_R/((r-1)(s-1))} \sim F(r-1,(r-1)(s-1)),$$

拒绝域为
$$F_A = \frac{S_A/(r-1)}{S_E/((r-1)(s-1))} \ge F_\alpha(r-1,(r-1)(s-1))$$
,

其中
$$S_A = st \sum_{i=1}^r (\overline{x}_{i..} - \overline{x})^2$$
, $S_E = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (x_{ijk} - \overline{x}_{ij.})^2$,该题中 $t = 1$.

SUMMARY	观测数	求和	平均	方差
行 1	4	320	80	232
行 2	4	327	81.75	84. 25
列 1	2	158	79	242
列 2	2	166	83	338
列 3	2	169	84.5	60.5
列 4	2	154	77	242

差异源	SS	df	MS	F	P-value	F crit
行	6. 125	1	6. 125	0.020967	0.89405	10. 12796
列	72.375	3	24. 125	0. 082585	0.965061	9. 276628
误差	876.375	3	292. 125			
总计	954. 875	7				

计算得 $F_A = 0.020967$, $F_{0.05}(1,3) = 10.12796$, $F_A \le F_{0.05}(1,3)$,接受原假设,即无显著差异. 6. 下面记录了三位操作工分别在四种不同机器上操作三天的日产量:

机器					操作工B				
A	B_1			B_2			B_3		
$A_{\rm l}$	15	15	17	19	19	16	16	18	21
A_2	17	17	17	15	15	15	19	22	22
A_3	15	17	16	18	17	16	18	18	18
A_4	18	20	22	15	16	17	17	17	17

试在显著性水平 $\alpha = 0.05$ 下检验操作工人之间的差异是否显著?机器之间差异是否显著?交互影响是否显著?

$$egin{aligned} H_0: & lpha_{11} = lpha_2 = lpha_3 = lpha_4 = 0 & \longleftrightarrow & H_1: lpha_1, lpha_2, lpha_3, lpha_4$$
 不全为 0 , $H_{02}: eta_1 = eta_2 = eta_3 = 0 & \longleftrightarrow & H_{12}: eta_1, \ eta_2 = eta_3$ 不全为 0 , $H_{03}: \gamma_{ij} = 0, i = 1, 2, 3, 4; j = 1, 2, 3 & \longleftrightarrow & H_{13}: \gamma_{ij}$ 不全为 0 .

构造检验统计量,并分别得到零假设下分布

$$\begin{split} F_A &= \frac{S_A / (r-1)}{S_E / (rs(t-1))} \sim F(r-1, rs(t-1)) \,, \\ F_B &= \frac{S_B / (s-1)}{S_E / (rs(t-1))} \sim F(s-1, rs(t-1)) \,, \\ F_{A \times B} &= \frac{S_{A \times B} / ((r-1)(s-1))}{S_E / (rs(t-1))} \sim F((r-1)(s-1), rs(t-1)) \,, \end{split}$$

平均 17.16667 16.5 18.58333 方差 4.333333 2.272727 4.083333

_							
	差异源	SS	df	MS	F	P-value	F crit
	样本	2.75	3	0. 916667	0. 532258	0.664528	3. 008787
	列	27. 16667	2	13. 58333	7.887097	0.00233	3. 402826
	交互	73. 5	6	12. 25	7. 112903	0.000192	2. 508189
	内部	41. 33333	24	1.722222			
	总计	144. 75	35				
_							

由计算得 $F_A = 0.532258$, $F_B = 7.887097$, $F_{A \times B} = 7.112903$, 又有 $F_{0.05}(3, 24) = 3.01$,

 $F_{0.05}(2,24)=3.4$, $F_{0.05}(6,24)=2.51$,所以机器间无显著差异,工人间有显著差异,交互影响有显著差异.

7. 在化工生产中为了提高得率,选了三种不同浓度,四种不同温度情况做试验.为了考虑浓度与温度的交互作用,在浓度(%)与温度(${}^{0}C$)的每一种水平组合下各做两次试验,其得率数据如下面的表所示(数据均已减去 75)

	$B_1 =$	=10	B ₂ =	= 24	$B_3 =$	= 38	B_4 =	= 52
$A_1 = 2$	14	10	11	11	13	9	10	12
$A_2 = 4$	9	7	10	8	7	11	6	10
$A_3 = 6$	5	11	13	14	12	13	14	10

试在显著性水平 $\alpha = 0.05$ 下检验不同浓度,不同温度以及它们之间的交互作用对得率有无显著影响?

解
$$H_{01}: \alpha_1 = \alpha_2 = \alpha_3 = 0 \leftrightarrow H_{11}: \alpha_1, \alpha_2, \alpha_3$$
 不全为 0 ,
$$H_0: \beta_2 = \beta_2 = \beta_3 = \beta_4 = 0 \leftrightarrow H_{12}: \beta_1, \ \beta_2, \ \beta_3 \ \beta_4$$
 不全为 0 ,
$$H_{03}: \gamma_{ii} = 0, i = 1, 2, 3; \ j = 1, 2, 3, 4. \leftrightarrow H_{13}: \gamma_{ii}$$
 不全为 0 .

构造检验统计量,并分别得到零假设下分布

$$F_{A} = \frac{S_{A}/(r-1)}{S_{E}/(rs(t-1))} \sim F(r-1, rs(t-1)),$$

$$F_{B} = \frac{S_{B}/(s-1)}{S_{E}/(rs(t-1))} \sim F(s-1, rs(t-1)),$$

$$F_{A \times B} = \frac{S_{A \times B} / ((r-1)(s-1))}{S_E / (rs(t-1))} \sim F((r-1)(s-1), rs(t-1)),$$

则拒绝域分别为
$$F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \ge F_\alpha(r-1,rs(t-1))$$
,

$$F_B = \frac{S_B/(s-1)}{S_F/(rs(t-1))} \ge F_\alpha(s-1, rs(t-1)),$$

$$F_{A \times B} = \frac{S_{A \times B} / ((r-1)(s-1))}{S_F / (rs(t-1))} \ge F_{\alpha} ((r-1)(s-1), rs(t-1)).$$

观测数	2	2	2	2	8
求和	24	22	22	22	90
平均	12	11	11	11	11.25
方差	8	0	8	2	2. 785714

观测数	2	2	2	2	8
求和	16	18	18	16	68
平均	8	9	9	8	8. 5
方差	2	2	8	8	3. 142857

观测数	2	2	2	2	8
求和	16	27	25	24	92
平均	8	13.5	12.5	12	11.5
方差	18	0.5	0.5	8	8.857143

总计	
加测粉	

<i>为</i> 比例	Ü	O	Ü	O
求和	56	67	65	62
平均	9. 333333	11. 16667	10.83333	10. 33333
方差	9.866667	4. 566667	5. 766667	7. 066667

	差异源	SS	df	MS	F	P-value	F crit
_	样本	44. 33333	2	22. 16667	4. 092308	0. 044153	3. 885294
	列	11.5	3	3.833333	0.707692	0. 565693	3. 490295
	交互	27	6	4.5	0.830769	0.568369	2.99612
	内部	65	12	5. 416667			

由计算得 $F_{\scriptscriptstyle A} = 4.092308$, $F_{\scriptscriptstyle B} = 0.707692$, $F_{\scriptscriptstyle A\times B} = 0.830769$, 又有 $F_{\scriptscriptstyle 0.05}(2,12) = 3.885294$,

 $F_{0.05}(3,12) = 3.490295$, $F_{0.05}(6,12) = 2.99612$,所以浓度间有显著影响, 温度无显著影响, 交互作用无显著影响.

8. 考察合成纤维弹性, 影响因素为: 收缩率 A 和总的拉伸倍数 B. 试验结果如下表:

	$A_1 = 0 A_2 = 4$		= 4	$A_3 = 8$		$A_4 = 12$		
$B_1 = 460$	71	73	73	75	76	73	75	73
$B_2 = 520$	72	73	76	74	79	77	73	72
$B_3 = 580$	75	73	78	77	74	75	70	71
$B_4 = 640$	77	75	74	74	74	73	69	69

试在显著性水平 $\alpha = 0.05$ 下检验因素 A, B 及它们的交互作用对试验结果是否有显著性影响 差异?

解
$$H_0: \alpha_{11} = \alpha_2 = \alpha_3 = \alpha_4 = 0 \leftrightarrow H_1: \alpha_1, \alpha_2, \alpha_3, \alpha_4$$
 不全为 0 , $H_0: \beta_2 = \beta_2 = \beta_3 = \beta_4 = 0 \leftrightarrow H_{12}: \beta_1, \beta_2, \beta_3, \beta_4$ 不全为 0 , $H_{03}: \gamma_{ii} = 0, i = 1, 2, 3, 4; j = 1, 2, 3, 4 \leftrightarrow H_{13}: \gamma_{ii}$ 不全为 0 .

构造检验统计量,并分别得到零假设下分布

$$\begin{split} F_A &= \frac{S_A / (r-1)}{S_E / (rs(t-1))} \sim F(r-1, rs(t-1)) \,, \\ F_B &= \frac{S_B / (s-1)}{S_E / (rs(t-1))} \sim F(s-1, rs(t-1)) \,, \\ F_{A \times B} &= \frac{S_{A \times B} / ((r-1)(s-1))}{S_E / (rs(t-1))} \sim F((r-1)(s-1), rs(t-1)) \,. \end{split}$$

$$F_{A} = \frac{S_{A}/(r-1)}{S_{E}/(rs(t-1))} \ge F_{\alpha}(r-1, rs(t-1)),$$

$$F_{B} = \frac{S_{B}/(s-1)}{S_{-}/(rs(t-1))} \ge F_{\alpha}(s-1, rs(t-1)),$$

	$F_{{\scriptscriptstyle A} imes {\scriptscriptstyle B}} =$	$\frac{S_{A\times B}/((r-1))}{S_E/(rs(t))}$	$\frac{1)(s-1)}{(s-1)} \ge I$	$F_{\alpha}((r-1)(s-1))$	-1), $rs(t-1)$).
观测数	2	2	2	2	8	
求和	144	145	148	152	589	
平均	72	72.5	74	76	73.625	
方差	2	0.5	2	2	3. 696429	
观测数	2	2	2	2	8	-
求和	148	150	155	148	601	
平均	74	75	77. 5	74	75. 125	
方差	2	2	0.5	0	2. 982143	
观测数	2	2	2	2	8	
求和	149	156	149	147	601	
平均	74. 5	78	74. 5	73. 5	75. 125	
方差	4.5	2	0.5	0.5	4. 410714	
						_
观测数	2	2	2	2	8	
求和	148	145	141	138	572	
平均	74	72. 5	70.5	69	71. 5	
方差	2	0.5	0.5	0	4. 571429	
总计						
观测数	8	8	8	8		-
求和	589	596	593	585		
平均	73.625	74. 5	74. 125	73. 125		
方差	2. 553571	6. 571429	7. 553571	7.839286		
差异源	SS	df	MS	F	P-value	F crit
样本	70. 59375	3	23. 53125	17. 51163	2.62E-05	3. 238872
列	8. 59375	3	2.864583	2. 131783	0. 136299	3. 238872
交互	79. 53125	9	8.836806	6. 576227	0.000591	2. 537667
内部	21. 5	16	1. 34375			
总计	180. 2188	31				

由计算得 $F_A = 17.51163$, $F_B = 2.131783$, $F_{A\times B} = 6.576227$, 又有 $F_{0.05}(3,16) = 3.24$,

 $F_{0.05}(3,16) = 3.24$, $F_{0.05}(9,16) = 2.54$,所以 A 的影响显著,B 的影响不显著,交互作用影响显著。

9. 进行农业试验, 选择四个不同品种的小麦及三块试验田, 每块试验田分成四块面积相等的小块, 各种植一个品种的小麦, 收获量(kg)如下:

	B_1	B_2	B_3	B_4
$A_{\rm l}$	26	30	22	20
A_2	25	23	21	21
A_3	24	25	20	19

试在显著性水平 $\alpha = 0.05$ 下检验小麦品种及试验田对收获量是否有显著影响?

解
$$H_{01}: \alpha_1 = \alpha_2 = \alpha_3 = 0 \leftrightarrow H_{11}: \alpha_1, \alpha_2, \alpha_3$$
 不全为 0 , $H_0: \beta_2 = \beta_2 = \beta_3 = \beta_4 = 0 \leftrightarrow H_{12}: \beta_1, \beta_2, \beta_3, \beta_4$ 不全为 0 ,

构造检验统计量,并分别得到零假设下分布

$$F_A = \frac{S_A/(r-1)}{S_E/((r-1)(s-1))} \sim F(r-1,(r-1)(s-1)),$$

$$F_B = \frac{S_B/(s-1)}{S_E/((r-1)(s-1))} \sim F(s-1,(r-1)(s-1)),$$

$$F_A = \frac{S_A/(r-1)}{S_F/((r-1)(s-1))} \ge F_\alpha(r-1,(r-1)(s-1)),$$

$$F_B = \frac{S_B/(s-1)}{S_E/((r-1)(s-1))} \ge F_\alpha(s-1,(r-1)(s-1)).$$

SUMMARY	观测数	求和	平均	方差
行 1	4	98	24. 5	19.66667
行 2	4	90	22.5	3.666667
行 3	4	88	22	8.666667
列 1	3	75	25	1
列 2	3	78	26	13
列 3	3	63	21	1
列 4	3	60	20	1

差异源	SS	df	MS	F	P-value	F crit
行	14	2	7	2. 3333333	0. 177979	5. 143253
列	78	3	26	8.666667	0.013364	4.757063
误差	18	6	3			
总计	110	11				

则计算得 $F_A = 2.3333$, $F_B = 8.6667$, 又有 $F_{0.05}(2,6) = 5.14$, $F_{0.05}(3,6) = 4.757$, 所以试验 田对收获量无显著影响, 小麦品种对收获量有显著差异.

10. 在橡胶生产过程中, 选择四种不同的配料方案 A 及五种不同的硫化时间 B, 测得产品的抗压强度 (kg/cm^3) 如下:

	B_1	B_2	B_3	B_4	B_5
A_1	151	157	144	134	136
A_2	144	162	128	138	132
A_3	134	133	130	122	125
A_4	131	126	124	126	121

试分别在显著性水平 $\alpha = 0.05$, 0.01 下检验配料方案及硫化时间对产品的抗压强度是否有显著影响?

解 (1) 显著性水平 $\alpha = 0.05$ 情况下:

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0 \quad \leftrightarrow \quad H_1: \alpha_1, \alpha_2, \alpha_3, \alpha_4 \text{ Tree by } 0$$

$$H_0: \beta_{12} = \beta_{2} = \beta_{3} = \beta_{4} = \beta_{5} = 0 \quad \leftrightarrow \quad H_1: \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}$$
 不全为 0 ,

构造检验统计量,并分别得到零假设下分布

$$F_A = \frac{S_A/(r-1)}{S_E/((r-1)(s-1))} \sim F(r-1,(r-1)(s-1)),$$

$$F_B = \frac{S_B/(s-1)}{S_E/((r-1)(s-1))} \sim F(s-1,(r-1)(s-1)),$$

$$F_A = \frac{S_A/(r-1)}{S_E/((r-1)(s-1))} \ge F_\alpha(r-1,(r-1)(s-1)),$$

$$F_B = \frac{S_B/(s-1)}{S_E/((r-1)(s-1))} \ge F_\alpha(s-1,(r-1)(s-1)).$$

SUMMARY	观测数	求和	平均	方差
行 1	5	722	144. 4	95. 3
行 2	5	704	140.8	177. 2

	行 3	5	644	128.8	26. 7		
	行 4	5	628	125.6	13.3		
	列 1	4	560	140	84. 66667		
	列 2	4	578	144. 5	312. 3333		
	列 3	4	526	131.5	75. 66667		
	列 4	4	520	130	53. 33333		
	列 5	4	514	128. 5	45. 66667		
	差异源	SS	df	MS	F	P-value	F crit
	行	1243.8	3	414.6	10. 55857	0.001103	3. 490295
	列	778.8	4	194. 7	4. 958404	0.013595	3. 259167
	误差	471.2	12	39. 26667			
_	总计	2493.8	19				

则计算得 $F_A = 10.55857$, $F_B = 4.958404$,因为 $F_{0.05}(3,12) = 3.49$, $F_{0.05}(4,12) = 3.259$,所以两者均有显著影响.

(2) 显著性水平 $\alpha = 0.01$ 情况下:

$$H_0: \alpha_{11} = \alpha_2 = \alpha_3 = \alpha_4 = 0 \quad \leftrightarrow H_1: \alpha_1, \alpha_2, \alpha_3, \alpha_4$$
 不全为 0 ,

构造检验统计量.并分别得到零假设下分布

$$F_A = \frac{S_A/(r-1)}{S_E/((r-1)(s-1))} \sim F(r-1,(r-1)(s-1)),$$

$$F_B = \frac{S_B/(s-1)}{S_F/((r-1)(s-1))} \sim F(s-1,(r-1)(s-1)),$$

$$F_A = \frac{S_A/(r-1)}{S_E/((r-1)(s-1))} \ge F_\alpha(r-1,(r-1)(s-1)),$$

$$F_B = \frac{S_B/(s-1)}{S_E/((r-1)(s-1))} \ge F_\alpha(s-1,(r-1)(s-1)).$$

SUMMARY	观测数	求和	平均	方差
行 1	5	722	144. 4	95. 3
行 2	5	704	140.8	177. 2

行 3	5	644	128.8	26. 7		
行 4	5	628	125.6	13.3		
列 1	4	560	140	84. 66667		
列 2	4	578	144. 5	312. 3333		
列 3	4	526	131.5	75. 66667		
列 4	4	520	130	53. 33333		
列 5	4	514	128. 5	45. 66667		
差异源	SS	df	MS	F	P-value	F crit
行	1243.8	3	414.6	10. 55857	0.001103	5. 952545
列	778.8	4	194.7	4. 958404	0.013595	5. 411951
误差	471.2	12	39. 26667			
总计	2493.8	19				

则计算得 F_A = 10.55857, F_B = 4.958404,因为 $F_{0.05}(3,12)$ = 5.9525, $F_{0.05}(4,12)$ = 5.412,所以硫化时间无显著差异,表明配料方案有显著影响.