Redes de Computadores

Introdução: Capítulo 1- Redes de Computadores e a Internet

> Prof. Jó Ueyama Fevereiro/2014

Cap. 1 – Objetivos

- Entender os conceitos básicos de redes de computadores.
- Maior profundidade e detalhes serão vistos ao longo do curso.

Aula de Hoje

- O que s\u00e3o redes?
- E os protocolos?
- Estrutura da rede
 - A periferia da rede
 - O núcleo da rede
- Comentários finais

O que são Redes???

Rede - Definição

Dicionário Houaiss:

 sistema constituído pela interligação de dois ou mais computadores e seus periféricos, com o objetivo de comunicação, compartilhamento e intercâmbio de dados.

Rede - Exemplos:

- onipresentes:
 - rede telefônica;
 - rede de comunicação de operadoras de cartão de crédito;
 - rede bancária;
 - rede celular;
 - etc.
- e é claro, a Internet!

Cap. 1 – Visão Geral

- O que é a Internet?
- O que é um protocolo?
- Bordas e núcleo da rede.
- Rede de acesso e meio físico.
- Estrutura de Internet/ISP.
- Desempenho: perda, atraso.
- Camadas de protocolo, modelos de serviços.
- Modelagem de redes

Submarine cable map

O que é a Internet? (Borda e Núcleo)

- Milhões de elementos de computação interligados: hospedeiros = sistemas finais.
- Executando aplicações distribuídas.
- Enlaces de comunicação fibra, cobre, rádio, satélite. taxa de transmissão = largura de banda
- Roteadores: enviam pacotes blocos de dados).

Internet (Software de Apoio e Tipos)

- Protocolos: controlam o envio e a recepção de mensagens. Ex.: TCP, IP, HTTP, FTP, PPP
- Internet: "rede de redes".

 Fracamente hierárquica,
 Internet pública e
 Internets privadas
 (intranets).
- Internet standards
 - RFC: Request for comments.
 - IETF: Internet Engineering Task Force.

Aula de Hoje

- O que s\u00e3o redes?
- E protocolos?
- A borda da rede
- O núcleo da rede

O que é um protocolo?

- Protocolos humanos:
 - "Que horas são?"
 - "Eu tenho uma pergunta."
 - Apresentações.
 - ... mensagens específicas enviadas;
 - ... ações específicas tomadas quando mensagens são recebidas ou outros eventos.

O que é um protocolo?

Protocolos de rede:

- Máquinas em vez de humanos.
- Toda atividade de comunicação na Internet é governada por protocolos.

PROTOCOLOS DEFINEM OS FORMATOS, A ORDEM DAS MENSAGENS ENVIADAS E RECEBIDAS PELAS ENTIDADES DE REDE E AS AÇÕES A SEREM TOMADAS NA TRANSMISSÃO E RECEPÇÃO DE MENSAGENS.

Um protocolo humano e um protocolo de rede de computadores:

Estrutura da Rede

- Borda da rede: aplicações e hospedeiros.
- Núcleo da rede: roteadores e rede de redes.
- Redes de acesso, meio físico: enlaces de comunicação.

Aula de Hoje

- O que são redes?
- E protocolos?
- A borda da rede
- O núcleo da rede

Borda da Rede

- Sistemas finais (hospedeiros):
 - Localizam-se nas extremidades da rede.
 - Executam programas de aplicação.
 - Ex.: Web, e-mail.
- Utiliza o modelo cliente/servidor:
 - O cliente toma a iniciativa enviando pedidos que são respondidos por servidores.
 - Ex.: Web client (browser)/ server; e-mail client/server.

Borda da Rede (cont.)

- Podem ser baseados também no modelo peer-to-peer:
 - Mínimo (ou nenhum) uso de servidores dedicados.
 - Ex.: Gnutella, KaZaA, BitTorrent.

Borda da Rede: Serviço orientado à conexão

- Dois tipos de servico:
 - -Orientado a conexao (e.g. telefonema)
 - -Sem conexão (e.g. correspondência)
- Meta: transferência de dados entre sistemas finais.
- Handshaking: estabelece as condições para o envio de dados antes de enviá-los:
 - Alô: protocolo humano.
- •Estados de "conexão" controlam a troca de mensagens entre dois hospedeiros.
 - Confirmação (ACK), rajada de bits recebidos,
 preserva a ordem dos pacotes, etc.

Borda da Rede: Serviço orientado à conexão (cont)

- TCP Transmission Control Protocol [RFC 793]:
 - Realiza o serviço orientado à conexão da Internet.
 - Transferência de dados confiável e seqüencial, orientada à cadeia de bytes.
 - Perdas: reconhecimentos e retransmissões.
 - Controle de fluxo: evita que o transmissor afogue o receptor.
 - Controle de congestionamento: transmissor reduz sua taxa quando a rede fica congestionada.

Borda da rede: serviço sem conexão

- Meta: transferência de dados entre sistemas finais.
 - O mesmo de antes!
- UDP User Datagram Protocol [RFC 768]: oferece o serviço sem conexão da Internet.
 - Transferência de dados não confiável.
 - Sem controle de fluxo.
 - Sem controle de congestão.

Borda da rede

Aplicações usando TCP:

- -HTTP (Web),
- -FTP (transferência de arquivo),
- -ssh (login remoto),
- -SMTP (e-mail), ...

Aplicações usando UDP:

- streaming media,
- teleconferência,
- DNS,
- telefonia IP, ...

Aula de Hoje

- O que s\u00e3o redes?
- E protocolos?
- A borda da rede
- O núcleo da rede

O Núcleo da Rede

O núcleo da Rede

- Malha de roteadores interconectados.
- Questão fundamental:
 - como os dados são transferidos através da rede?
 - Comutação de circuitos: usa um canal dedicado para cada conexão.
 - Ex.: rede telefônica.
 - Comutação de pacotes: dados são enviados em "blocos" discretos.

Núcleo da rede: Comutação de Circuitos

- •Recursos fim-a-fim são reservados por "chamada".
 - estabelecimento de conexão!
 - Recursos dedicados:
 não há
 compartilhamento.
 - Desempenho análogo aos circuitos físicos (QOS garantido).

Núcleo da rede: Comutação de Circuitos (cont.)

- Recursos da rede (ex.: capacidade de transmissão) dividida em "pedaços".
- "Pedaços" alocados às chamadas.
- "Pedaço" do recurso desperdiçado se não for usado pelo dono da chamada (sem divisão).
- Formas de divisão da capacidade de transmissão em "pedaços":
 - Divisão em freqüência (FM/AM, canais da TV, broadband, telefonia celular AMPS);
 - Divisão temporal (GSM, 802.16a).

Comutação de circuitos:FDM e TDM

Núcleo de Rede: Falamos de Comutação de Circuitos, mas e Quanto à Comutação de Pacotes

Núcleo da rede: Comutação de Pacotes

- Cada fluxo de dados fim-a-fim é dividido er pacotes.
 - recursos
 compartilhados em bases estatísticas;
 - pacote x usa toda a banda disponível;
 - recursos são usados quando necessários (não há reserva no início).

Núcleo da rede: Comutação de Pacotes (cont.)

Contenção de recursos:

- demanda agregada por recursos pode exceder a capacidade disponível!
 - O que isso significa?
- Congestão: filas de pacotes, espera para uso do link.
- Armazena e reenvia: pacotes se movem um "salto" por vez.
 - Por que tem que armazenar?
- O nó recebe o pacote completo antes de encaminhá-lo.

Redes de Comutação de Pacotes: Roteamento

Objetivo do Roteamento: mover pacotes entre roteadores da origem ao destino.

Tipos de Roteamento

 Diferença: um usa endereço de destino enqt outro o ID do circuito para rotear pacotes

a) Redes datagrama:

- endereço de destino determina o próximo salto.
- Rotas podem mudar durante uma sessão.
- Analogia: dirigir perguntando o caminho.

Redes de Comutação de Pacotes: Roteamento

b) Rede de circuitos virtuais:

- Cada pacote leva um número (virtual circuit ID), o número determina o próximo salto.
- O caminho é fixo e escolhido no instante de estabelecimento da conexão, permanece fixo durante toda a conexão.
- Analogia: dirigir já sabendo a rota.

Comutação de Pacotes X Comutação de Circuitos

Comutação de pacotes:

- Ótima para dados em "rajada" (burst):
 - melhor compartilhamento de recursos;
 - não há estabelecimento de chamada.
- Congestionamento excessivo: atraso e perda de pacotes!
 - Protocolos são necessários para transferência confiável, controle de congestionamento!

Comutação de circuitos:

- ótima para dados "constantes";
- taxa de transmissão constante e garantida.

Taxonomia da Rede

- Rede de datagramas <u>não</u> é orientada à conexão!
- A Internet provê serviços com orientação à conexão (TCP) e serviços sem orientação à conexão (UDP) para as aplicações.

Comutação de circuitos: exemplo

- Quanto tempo leva para enviar um arquivo de 640.000 bits do nó A para o nó B numa rede de comutação de circuitos?
 - -todos os links possuem 1,536 Mbps;
 - -cada link utiliza TDM com 24 slots;
 - 500 mseg para estabelecer um circuito fim-a-fim.

Então...

- Próxima aula:
 - Continuaremos no capítulo 1
- Tarefas:
 - Ler as seções abordadas hoje