CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 16 OTTOBRE 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Si dia la definizione di *anello*. Si dia poi la definizione di anello *booleano* e se ne fornisca un esempio.

Esercizio 2. Sia $X = \{n \in \mathbb{N} \mid n < 5\}$, per ogni $n \in \mathbb{Z}$, sia $\pi(n)$ l'insieme dei divisori primi positivi di n. Si consideri la relazione binaria \sim definita in \mathbb{Z} ponendo, per ogni $a, b \in \mathbb{Z}$,

$$a \sim b \iff \pi(a) \cap X = \pi(b) \cap X.$$

Stabilire se \sim è una relazione di equivalenza. Nel caso lo sia,

- (i) calcolare $|\mathbb{Z}/\sim|$;
- (ii) posto $A = \{n \in \mathbb{Z} \mid -5 \le n \le 10\}$, elencare gli elementi di ciascuna classe in A/\sim e calcolare $|A/\sim|$.

Ripetere l'esercizio per la relazione binaria σ definita in \mathbb{Z} ponendo, per ogni $a, b \in \mathbb{Z}$,

$$a \sigma b \iff \pi(a) \cap X = (\pi(b) \cap X) \cup \{5\}.$$

Esercizio 3. Sia

$$*\colon (X,Y)\in \mathcal{P}(\mathbb{N})\times \mathcal{P}(\mathbb{N})\longmapsto \begin{cases} \varnothing; & \text{se } X\cup Y=\varnothing\\ \{\min(X\cup Y)\}; & \text{se } X\cup Y\neq\varnothing \end{cases}\in \mathcal{P}(\mathbb{N}).$$

- (i) Spiegare perché * è ben definita (lo sarebbe se sostituissimo \mathbb{Z} ad \mathbb{N} nella sua definizione?).
- (ii) * è iniettiva? È suriettiva? Calcolare l'immagine im * dell'applicazione * e l'antiimmagine $\overleftarrow{*}$ ({{0}, {1}}) dell'insieme {{0}, {1}}.
- (iii) Che genere di struttura algebrica è $(\mathcal{P}(\mathbb{N}), *)$ (semigruppo, monoide, gruppo; commutativo o no)?
- (iv) Determinare, se esiste, $X \in \mathcal{P}(\mathbb{N})$ tale che, $(\forall Y \in \mathcal{P}(\mathbb{N}))(X * Y = X)$. Quanti tali X esistono?
- (v) $\mathcal{P}_1(\mathbb{N}) = \{\{n\} \mid n \in \mathbb{N}\}$ è una parte chiusa in $(\mathcal{P}(\mathbb{N}), *)$? Se lo è, che genere di struttura algebrica è $(\mathcal{P}_1(\mathbb{N}), *)$? Rispondere alle stessa domande dopo aver sostituito $\mathcal{P}_1(\mathbb{N})$ con $\mathcal{P}_2(\mathbb{N}) = \{X \subset \mathbb{N} \mid |X| = 2\}.$

Esercizio 4.

(i) Di ciascuno degli insiemi $P=2\mathbb{N},\ D=2\mathbb{N}+1,\ X=\{n\in\mathbb{N}\mid n<100\},\ Y=X\smallsetminus\{0\}$ si dica se, ordinato dalla relazione di divisibilità (in \mathbb{N}) è o non è sottoreticolo di $(\mathbb{N},|)$, se ha minimo, se ha massimo.

Sia poi $S = \{0, 1, 2, 4, 6, 10, 36, 60\}.$

- (ii) Disegnare il diagramma di Hasse di S ordinato per divisibilità. Questo è un reticolo?
- (iii) Determinare un elemento $a \in S$ tale che $T = S \setminus \{a\}$, ordinato per divisibilità, sia un reticolo.
- (iv) Disegnare il diagramma di Hasse del reticolo T determinato al punto precedente e stabilire se T è totalmente ordinato, distributivo, complementato, booleano.

Esercizio 5. Per ogni $\lambda \in \mathbb{Z}_{11}$ sia f_{λ} il polinomio

$$x^4 + \bar{6}\lambda x^3 + \lambda x^2 + \bar{6}x + \bar{3} \in \mathbb{Z}_{11}[x].$$

- (i) Stabilire per quali valori di λ il polinomio f_{λ} è divisibile per $(x+\bar{1})^2$ in $\mathbb{Z}_{11}[x]$;
- (ii) Fissato uno di questi valori per λ , scrivere f_{λ} come prodotto di polinomi monici irriducibili in $\mathbb{Z}_{11}[x]$. Suggerimento: per il passaggio finale è utile elencare i quadrati degli elementi di \mathbb{Z}_{11} .