Lecture 9: 3 May, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Bayesian classifiers

- As before
 - Attributes $\{A_1, A_2, \dots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class c_i defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i)$
- Given a data item $d = (a_1, a_2, ..., a_k)$, identify the best class c for d
- Maximize $Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$

Bayesian classification

- $\blacksquare \text{ Maximize } Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$
- By Bayes' rule,

$$Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$$

$$= \frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, \dots, A_k = a_k)}$$

$$= \frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{\sum_{j=1}^{\ell} Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_j) \cdot Pr(C = c_j)}$$

■ Denominator is the same for all c_i , so sufficient to maximize

$$Pr(A_1 = a_1, \ldots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

Madhavan Mukund Lecture 9: 3 May, 2021

Example

■ To classify
$$A = g, B = q$$

$$P(C=t)A=g, B=q)$$

$$Pr(C = t) = 5/10 = 1/2$$

■
$$Pr(A = g, B = q \mid C = t) = 2/5$$

■
$$Pr(A = g, B = q \mid C = t) \cdot Pr(C = t) = 1/5$$

$$Pr(C = f) = 5/10 = 1/2$$

■
$$Pr(A = g, B = q \mid C = f) = 1/5$$

■
$$Pr(A = g, B = q \mid C = f) \cdot Pr(C = f) = 1/10$$

■ Hence, predict C = t

Α	В	С
m	b	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
m	Ь	f

Example . . .

- What if we want to classify A = m, B = q?
- $Pr(A = m, B = q \mid C = t) = 0$
- Also $Pr(A = m, B = q \mid C = f) = 0!$

Α	В	С
m	b	t
m	5	t
g	q	t
h	5	t
g	q	t
g	q	f
g	5	f
h	Ь	f
h	q	f
m	b	f

Example . . .

- What if we want to classify A = m, B = q?
- $Pr(A = m, B = q \mid C = t) = 0$
- Also $Pr(A = m, B = q \mid C = f) = 0!$
- To estimate joint probabilities across all combinations of attributes, we need a much larger set of training data

AXB

A	В	C
m	Ь	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
m	Ь	f

Naïve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i) = \prod_{j=1}^k Pr(A_j = a_j \mid C = c_i)$$

- $Pr(C = c_i)$ is fraction of training data with class c_i
- $Pr(A_j = a_j \mid C = c_i)$ is fraction of training data labelled c_i for which $A_j = a_j$

6/25

Naïve Bayes classifier

Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i) = \prod_{j=1}^k Pr(A_j = a_j \mid C = c_i)$$

- $Pr(C = c_i)$ is fraction of training data with class c_i
- $Pr(A_j = a_j \mid C = c_i)$ is fraction of training data labelled c_i for which $A_j = a_j$
- Final classification is

$$\underset{c_i}{\operatorname{arg\,max}} \ \operatorname{Pr}(C = c_i) \prod_{j=1}^k \operatorname{Pr}(A_j = a_j \mid C = c_i)$$

P(C=Ci). P(A1=a, -, Ak=an/C=Li)

Naïve Bayes classifier . . .

Conditional independence is not theoretically justified

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering
- However, naive Bayes classifiers work well in practice, even for text classification!
 - Many spam filters are built using this model

- Want to classify A = m, B = q
- $Arr Pr(A = m, B = q \mid C = t) = Pr(A = m, B = q \mid C = f) = 0$

Α	В	С
m	Ь	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	5	f
h	b	f
h	q	f
m	b	f

- Want to classify A = m, B = q
- $Arr Pr(A = m, B = q \mid C = t) = Pr(A = m, B = q \mid C = f) = 0$
- $Pr(A = m \mid C = t) = 2/5$
- $Pr(B = q \mid C = t) = 2/5$

A	В	С
$\binom{m}{m}$	b	t
m	S	t
g	9	t
h	5	t
g	q	t
g	q	f
g	5	f
h	Ь	f
h	q b	f
m	Ь	f

- Want to classify A = m, B = q
- $Arr Pr(A = m, B = q \mid C = t) = Pr(A = m, B = q \mid C = f) = 0$
- $Pr(A = m \mid C = t) = 2/5$
- $Pr(B = q \mid C = t) = 2/5$
- $Pr(A = m \mid C = f) = 1/5$ —
- $Pr(B = q \mid C = f) = 2/5$

В	C
Ь	t
S	t
q	t
5	t
q	t
q	f
5	f
Ь	f
g	f
Ь	f
	b s q s q q s b

- Want to classify A = m, B = q
- $Pr(A = m, B = q \mid C = t) = Pr(A = m, B = q \mid C = f) = 0$

■
$$Pr(A = m \mid C = t) = 2/5$$
 7

■
$$Pr(B = q \mid C = t) = 2/5$$

- $Pr(A = m \mid C = f) = 1/5$
- $Pr(B = q \mid C = f) = 2/5$
- $Pr(A = m \mid C = t) \cdot Pr(B = q \mid C = t) \cdot Pr(C = t) = 2/25$ P(A=m, B=q) C=t)

A	В	C
m	Ь	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	5	f
h	Ь	f
h	q	f
m	Ь	f

■ Want to classify A = m, B = q

$$Arr Pr(A = m, B = q \mid C = t) = Pr(A = m, B = q \mid C = f) = 0$$

■
$$Pr(A = m \mid C = t) = 2/5$$

■
$$Pr(B = q \mid C = t) = 2/5$$

■
$$Pr(A = m \mid C = f) = 1/5$$

■
$$Pr(B = q \mid C = f) = 2/5$$

■
$$Pr(A = m \mid C = t) \cdot Pr(B = q \mid C = t) \cdot Pr(C = t) = 2/25$$

■
$$Pr(A = m \mid C = f) \cdot Pr(B = q \mid C = f) \cdot Pr(C = f) = 1/25$$

(
	~
	_

X

23

×

2

A	В	C
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
m	Ь	f

- Want to classify A = m, B = q
- $Arr Pr(A = m, B = q \mid C = t) = Pr(A = m, B = q \mid C = f) = 0$

■
$$Pr(A = m \mid C = t) = 2/5$$

■
$$Pr(B = q \mid C = t) = 2/5$$

■
$$Pr(A = m \mid C = f) = 1/5$$

■
$$Pr(B = q \mid C = f) = 2/5$$

■
$$Pr(A = m \mid C = t) \cdot Pr(B = q \mid C = t) \cdot Pr(C = t) = 2/25$$

■
$$Pr(A = m \mid C = f) \cdot Pr(B = q \mid C = f) \cdot Pr(C = f) = 1/25$$

■ Hence predict
$$C = t$$

A B C m b t	
m b t	
m s t	
$g \mid q \mid t$	
h s t	
$g \mid q \mid t$	
$g \mid q \mid f$	
g s f	
h b f	
h q f	
$m \mid b \mid f$	

■ Suppose A = a never occurs in the test set with C = c

9/25

- Suppose A = a never occurs in the test set with C = c
- Setting $Pr(A = a \mid C = c) = 0$ wipes out any product $\prod_{i=1}^{n} Pr(A_i = a_i \mid C = c)$ in which this term appears

9/25

Suppose A = a never occurs in the test set with C = c

- Setting $Pr(A = a \mid C = c) = 0$ wipes out any product $\prod_{i=1}^{n} Pr(A_i = a_i \mid C = c)$ in which this term appears
- Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$

Azaik dos not ocur for C=c

- Suppose A = a never occurs in the test set with C = c
- Setting $Pr(A = a \mid C = c) = 0$ wipes out any product $\prod_{i=1}^{n} Pr(A_i = a_i \mid C = c)$ in which this term appears
- Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$
- "Pad" training data with one sample for each value $a_i m_i$ extra data items

- Suppose A = a never occurs in the test set with C = c
- Setting $Pr(A = a \mid C = c) = 0$ wipes out any product $\prod_{i=1}^{n} Pr(A_i = a_i \mid C = c)$ in which this term appears
- Assume A_i takes m_i values $\{\underline{a_{i1}, \dots, a_{im_i}}\}$
- "Pad" training data with one sample for each value $a_i m_i$ extra data tems
- Adjust $Pr(A_i = a_i \mid C = c_j)$ to $\frac{n_{ij} + 1}{n_j + m_i}$ where
 - n_{ij} s number of samples with $A_i = a_i$, $C = c_j$ n_i is number of samples with $C = c_i$

Smoothing

■ Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

Madhavan Mukund Lecture 9: 3 May, 2021 DMML Apr–Jul 2021 10 / 25

Smoothing

■ Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

■ More generally, Lidstone's law of succession, or smoothing

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + \lambda}{n_j + \lambda m_i}$$

Smoothing

Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

More generally, Lidstone's law of succession, or smoothing

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + \lambda}{n_j + \lambda m_i}$$

 $\lambda = 1$ is Laplace's law of succession

Classify text documents using topics

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content

11 / 25

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment

11 / 25

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model
- How do we represent documents?

■ Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$

12 / 25

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- lacktriangle Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$

Focus on words of interest x the, a, in --/ HP Parilion IBM Thuly as C722X7

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)

12 / 25

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

Set of words model

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

$$Pr(d \mid c) = \prod_{w_i \in D} Pr(w_i \mid c) \prod_{w_i \notin D} (1 - Pr(w_i \mid c))$$

Set of words model

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

$$Pr(d \mid c) = \prod_{w_i \in I} Pr(\hat{w}_i \mid c) \prod_{w_i \notin Pd} (1 - Pr(w_i \mid c))$$

$$\blacksquare$$
 $Pr(d) = \sum_{c \in C} Pr(d \mid c) \cdot P(C)$

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C

Set
$$X \subseteq U = f_{x} : U \rightarrow \{o_{1}i\}$$

$$f_{x}(x)=1 \text{ if } x \in X$$

13 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_j)$ is fraction of D labelled c_j

13 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i \mid c_j)$ is fraction of documents labelled c_j in which w_i appears

13 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i \mid c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_{c} Pr(c \mid d)$

13 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_i)$ is fraction of D labelled c_i
- $Pr(w_i \mid c_i)$ is fraction of documents labelled c_i in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_{c} Pr(c \mid d)$
- By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$ As usual, discard the common denominator and compute $arg \max_{c} Pr(d \mid c)Pr(c)$

Madhavan Mukund Lecture 9: 3 May. 2021 DMML Apr-Jul 2021 13 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i \mid c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_{c} Pr(c \mid d)$
- By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$
 - As usual, discard the common denominator and compute $\arg \max_{c} Pr(d \mid c)Pr(c)$

$$\blacksquare \mathsf{Recall} \; \mathit{Pr}(d \mid c) = \prod_{w_i \in \mathcal{C}} \mathit{Pr}(w_i \mid c) \prod_{w_i \notin \mathcal{C}} (1 - \mathit{Pr}(w_i \mid c))$$

13 / 25

■ Each document is a multiset or bag of words over a vocabulary

$$V = \{w_1, w_2, \dots, w_m\}$$

Count multiplicities of each word

14 / 25

■ Each document is a multiset or bag of words over a vocabulary

$$V = \{w_1, w_2, \dots, w_m\}$$

- Count multiplicities of each word
- As before
 - Each topic c has probability Pr(c)
 - Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_i) = 1$
 - Assume document length is independent of the class

14 / 25

- Generating a random document d
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - \blacksquare Recall |V| = m.

- Repeat ℓ times

- Generating a random document d
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an m-sided die that displays w with probability $Pr(w \mid c)$
 - Repeat ℓ times
- Let n_j be the number of occurrences of w_j in d

15 / 25

- Generating a random document d
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an m-sided die that displays w with probability $Pr(w \mid c)$
 - Repeat ℓ times
- Let n_i be the number of occurrences of w_i in d

$$Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$

15 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each d_i is a multiset over V of size ℓ_i

Madhavan Mukund Lecture 9: 3 May, 2021 DMML Apr–Jul 2021 16 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each d_i is a multiset over V of size ℓ_i
- As before, $Pr(c_j)$ is fraction of D labelled c_j

16 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each d_i is a multiset over V of size ℓ_i
- As before, $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i \mid c_j)$ fraction of occurrences of w_i over documents $D_j \subseteq D$ labelled c_j
 - \bullet n_{id} occurrences of w_i in d

$$Pr(w_i \mid c_j) = \underbrace{\sum_{d \in D_j} n_{id}}_{m}$$

$$\sum_{t=1}^{m} \sum_{d \in D_j} n_{td}$$

16 / 25

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each d_i is a multiset over V of size ℓ_i
- As before, $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i \mid c_j)$ fraction of occurrences of w_i over documents $D_j \subseteq D$ labelled c_j

$$Pr(c \mid d) = \frac{Pr(d \mid c) \ Pr(c)}{Pr(d)}$$

Madhavan Mukund Lecture 9: 3 May, 2021 DMML Apr—Jul 2021 17 / 25

$$Pr(c \mid d) = \frac{Pr(d \mid c) \ Pr(c)}{Pr(d)}$$

• Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$

$$Pr(c \mid d) = \frac{Pr(d \mid c) \ Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

$$Pr(c \mid d) = \frac{Pr(d \mid c) \ Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

■ Recall,
$$Pr(d \mid c) = Pr(\ell) \ell \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)
- Recall, $Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$, where $|d| = \ell$
- Discard $Pr(\ell)$, $\ell!$ since they do not depend on c

$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

■ Recall,
$$Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^m \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

- Discard $Pr(\ell), \ell!$ since they do not depend on c
- Compute $\underset{c}{\operatorname{arg max}} Pr(c) \prod_{j=1}^{m} \frac{Pr(w_{j} \mid c)^{n_{j}}}{n_{j}!}$

di dog dog cat c=0
de dog cat work c=0

$$P(dog | C=0) = \frac{2}{2} = 1$$

d |= l Set bonds

17/25