

高知工科大学 経済・マネジメント学群

計量經済学

5. 因果推論 I

た内 勇生

yanai.yuki@kochi-tech.ac.jp

今日の目標

- 因果推論 (causal inference) とは何か?
- 因果推論の「難しさ」を理解する
 - ▶ 因果推論の何が難しいのか?
 - ▶ 因果推論の「根本問題」とは?

学問の目的

- 「真実」を見つける
- ・社会科学(経済学,経営学,政治学,社会学,etc.) における真実とは?
 - ▶真の「因果関係」を見つける
 - 結果の原因を考える:特定の結果を生じされる原因は 何か
 - 原因の結果(効果)を考える:特定の原因によってどのような結果(効果)が生じるか

因果関係の探求

- 興味がある現象について、因果関係を明らかにしたい
 - ▶ 因果関係:原因と結果の関係
 - 「原因X」によって「結果Y」が起きた
 - 「原因A」が増えたので、「結果B」が増えた
 - 「原因C」が大きくなったので、「結果D」が減った

原因と結果 (Cause and Effect)

• 原因:cause

• 結果: effect

▶どちらも様々な呼び名をもつ

原因と結果の呼び名

原因	Causse	結果	Effect
処置 [変数]	Treatmtent [variable]	結果 [変数]	Outcome [variable]
説明変数	Explanatory variable	→被説明変数	Explained variable
予測変数	Predictor	応答変数	Response variable
独立変数	Independent variable	→ 従属変数	Dependent variable
入力	Input	出力	Output
特徴量	Feature	━▶目的変数	target variable

原因と結果の関係をどうやって見つけるか?

- •特定の原因が結果に影響している:因果関係がある
 - ▶ その影響が「偶然ではない」というためには、何を確 かめる必要があるか?

共変関係

- 共変関係:変数 X が変化すると、変数 Y も変化する

▶例

- 勉強時間が長いほど、試験の点数が高い
- 身長が高いほど、体重が重い
- Rを使いこなせるほど、年収が高い

自動車による自殺数

アメリカ合衆国での日本車の販売数と

自動車による自殺数

日本車の販売台数

強い相関: r = 0.94

日本車の販売数と自動車による自殺者数は同時に増える(減る)

自殺者を減らすために日本車を減らすべきか?

これは因果関係なのか???

実施すべき政策は何か

• 政策目標:自殺者数を減らしたい

• 因果関係:日本車の売数が増えると、自殺者が増える

・実施すべき政策:日本車の売数を規制する

事実(データ、数字): 因果関係がわからなければ、証拠として使えない

相関関係 + 因果関係

因果関係:日本車が売れると自殺が増える

因果関係:自殺が増えると日本車が売れる

互恵効果:日本車の売り上げと自殺 が相互に影響する

両者に影響する第3の要因の存在: 日本車の売上と自殺者数に因果関係は無い

見せかけの因果関係

因果関係を単純な例で考える

- 例:アスピリン(鎮痛剤)と頭痛の関係 (Imbens and Rubin 2015)
 - ▶「私がアスピリンを飲んだから、私の頭痛が消えた」
 - 観察対象:「私」(一人の個人)
 - 取られた行動:「アスピリンを飲む」
 - 起こった結果:「私の頭痛が消えた」
- ★ 素朴な因果推論:「アスピリンが私の頭痛を消した」

もしあの時…

- 「私」が違う行動を取っていたら、何が起こった?
 - ▶「私」が取った行動:アスピリンを飲む
 - ▶他の行動を取っていたら?
 - 他の行動:アスピリンを飲まない
 - ▶私たちの因果推論が正しければ
 - 「私がアスピリンを飲まなかったので、私の頭痛は消 えなかった」

潜在的結果

- 一つの行動に、一つの潜在的結果
 - ▶ 可能な行動: 「アスピリンを飲む」or 「アスピリンを 飲まない」
 - ▶ 潜在的結果 (potential outcomes)
 - アスピリンを飲んだ場合の頭痛の状態
 - アスピリンを飲まない場合の頭痛の状態

因果関係と行動

- 因果関係は、行動 [action] (処置 [treatment]、介入 [intervention]、操作 [manipulation]) に関係する
 - ▶ 因果関係があるなら、潜在的結果が行動(処置、介 入、操作)によって変わるはず
 - ▶ 「操作なくして、因果関係なし (NO CAUSATION WITHOUT MANIPULATION)」 (Holland 1986: 959)
 - 原因を操作できないなら、因果関係は考えられない
 - 例:「彼女は女だから、髪が長い」

潜在的結果アプローチで因果関係に迫る

- 個体単位での潜在的結果:
 - ▶ 頭痛のある個人 *i* がアスピリンを飲んだら、1時間後に 頭痛は消えるか?
- 個人 $i = \in \{1, 2, ..., N\}$
- ・処置 (原因) $D_i \in \{0,1\}$: 飲まない = 0, 飲む = 1
- ・結果 $Y_i \in \{0,1\}$: 頭痛なし = 0, 頭痛あり = 1

処置と潜在的結果

。 $Y_i(D_i)$:処置が D_i の場合の潜在的結果

•
$$Y_i = Y_i(1)$$
 if $D_i = 1$

$$Y_i = Y_i(0)$$
 if $D_i = 0$

$$Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$$
$$= Y_i(0) + D_i [Y_i(1) - Y_i(0)]$$

潜在的結果と結果の組合せパタン

1. アスピリンを飲んだ場合のみ頭痛が消える

$$Y_i(1) = 0, Y_i(0) = 1$$

2. いずれにせよ頭痛は残る

$$Y_i(1) = 1, Y_i(0) = 1$$

3. いずれにせよ頭痛は消える

$$Y_i(1) = 0, Y_i(0) = 0$$

4. アスピリンを飲んだ場合のみ頭痛が残る

$$Y_i(1) = 1, Y_i(0) = 0$$

★「アスピリンを飲んだから頭痛が消えた」というためには、どのパタンが必要?

潜在的結果と結果の組合せパタン

¹. アスピリンを飲んだ場合のみ頭痛が消える(薬の効果を示す**因果関係**)

$$Y_i(1) = 0, Y_i(0) = 1$$

2. いずれにせよ頭痛は残る

$$Y_i(1) = 1$$
, $Y_i(0) = 1$

3. いずれにせよ頭痛は消える

$$Y_i(1) = 0, Y_i(0) = 0$$

4. アスピリンを飲んだ場合のみ頭痛が残る(逆の因果関係)

$$Y_i(1) = 1, Y_i(0) = 0$$

★ パタン1が正しいことを確かめたい!

因果効果の定義 (Rubinの因果モデル)

- 個体 i に関する因果効果(個体処置効果; individual treatment effect: ITE) : δ_i

$$\delta_i \equiv Y_i(1) - Y_i(0)$$

因果効果は、潜在的結果の差

▶ 同一個体の同一時点での潜在的結果の差によって定義される

アスピリンと頭痛の例の因果効果

- $Y_i(1) = Y_i(0) \Leftrightarrow \delta_i = 0$: 因果効果なし
- $Y_i(1) \neq Y_i(0) \Leftrightarrow \delta_i \neq 0$: 因果効果あり
 - $\delta_i = -1$: アスピリンが頭痛を消す
 - $\delta_i = 1$: アスピリンが頭痛を長引かせる
 - 潜在的結果のうちどちらが観察されるかによって、結 論は変わらない

ダメな因果推論 (1)

- 処置前と処置後を比較する
 - ▶ 処置:アスピリンを飲む
 - ▶ データ:処置前には頭痛があったが、処置後には頭痛が消えた
 - ▶ 結論:アスピリンが頭痛を消した
- ダメ!
- パタン3かもしれない
 - ightharpoonup 残される可能性: $Y_i(1) = 0$ かつ $Y_i(0) = 0$
 - ▶ 「アスピリンを飲まなくても頭痛は消えた」かもしれない

ダメな因果推論 (2)

- 異なる個体を比較する
 - ▶ データ: Sさんはアスピリンを飲んで、彼女の頭痛は消えた。
 た。Rさんはアスピリンを飲まず、頭痛が残った。
 - ▶ 結論:アスピリンが頭痛を消した
- ダメ!
- 。残される可能性: $Y_S(1) = 0$, $Y_S(0) = 0$, $Y_R(1) = 1$, $Y_R(0) = 1$
 - ▶ Sさんの頭痛は処置をしてもしなくても消える
 - ▶ Rさんの頭痛は処置をしてもしなくても残る

分析单位

- 処置(行動)は、分析単位 (unit) に適用される
 - ▶分析単位は
 - 物理的対象:人、物
 - 行政単位:国、県、市町村、州
 - 物や人の集合(グループ)など
 - ▶ 分析単位は、「特定の時間」において定義される
 - ▶ 同一人物でも、異なる時点では異なる単位として扱われる
 - 「昨日の私は今日の私ではない」

疑問

• ある個体(個人)i について

 $Y_i(1) \succeq Y_i(0)$

を同時に観察できる?

できない!!!!

因果推論の根本問題

(Holland 1986)

因果推論の根本問題

表1:処置前

表2:処置後

	潜在的結果		
処置	$Y_i(1)$	$Y_i(0)$	
あり	Y_i として観察される	観察不能	
なし	観察不能	Y_i として観察される	

個体の因果効果は観察不可能!

潜在的結果と因果推論

• いつも潜在的結果のペア(あるいは集合)を考える

$$\{Y_i(1), Y_i(0)\}$$

- ▶ すべての潜在的結果を明確にすることが必要
- ▶ 潜在的結果がわからないと、因果推論はできない
- ・1つの分析単位に対し、潜在的結果は最大で1つしか観測 できない
 - ▶ 因果推論をするために、観察できない潜在的結果について考えることを要求される

次回

因果推論II