

Spatial-Temporal-Decoupled Masked Pre-training for Spatiotemporal Forecasting

Haotian Gao^{1,2}, Renhe Jiang^{1*}, Zheng Dong², Jinliang Deng³, Yuxin Ma², Xuan Song²

¹The University of Tokyo
²Southern University of Science and Technology
³University of Technology Sydney

Challenges: Heterogeneity and Mirage

Spatiotemporal heterogeneity and mirage

Spatiotemporal heterogeneity:
 Differences and inconsistencies in patterns or behaviors observed across different locations and times.

Spatiotemporal mirage:

- i) Dissimilar input time series followed by similar future values;
- ii) Similar input time series followed by dissimilar future values.

■ Masked Autoencoder (MAE):

Mask part of the input and reconstruct them from the visible part.

Basic Solution:

Apply MAE to learn temporal representation. (*STEP KDD 2022*)

STD-MAE Framework

Therefore, we aim to introduce spatial-temporal-decoupled masked pre-training (STD-MAE) to capture clear and complete spatiotemporal heterogeneity.

Two decoupled masked autoencoders are trained to learn the temporal and spatial relation.

- Temporal Masking (T-Mask)
- Spatial Masking (S-Mask)

Spatial-Temporal-Decoupled Masked AutoEncoder

Forecasting Phase

The learned spatial and temporal representations by two autoencoders through pre-training are fed to downstream predictors without modifying original architecture.

■ **Datasets:** Four real-world datasets including **PEMS03**, **04**, **07**, and **08** collected from the California Transportation Performance Management System (**PEMS**) are used.

STD-MAE has sustained state-of-the-art performance on these four spatiotemporal forecasting benchmarks for almost one year.

Model	PEMS03			PEMS04			PEMS07			PEMS08		
	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
ARIMA [Fang et al., 2021]	35.31	47.59	33.78	33.73	48.80	24.18	38.17	59.27	19.46	31.09	44.32	22.73
VAR [Song et al., 2020]	23.65	38.26	24.51	23.75	36.66	18.09	75.63	115.24	32.22	23.46	36.33	15.42
SVR [Song et al., 2020]	21.97	35.29	21.51	28.70	44.56	19.20	32.49	50.22	14.26	23.25	36.16	14.64
LSTM [Song et al., 2020]	21.33	35.11	23.33	27.14	41.59	18.20	29.98	45.84	13.20	22.20	34.06	14.20
TCN [Lan et al., 2022]	19.31	33.24	19.86	31.11	37.25	15.48	32.68	42.23	14.22	22.69	35.79	14.04
Transformer [Vaswani et al., 2017]	17.50	30.24	16.80	23.83	37.19	15.57	26.80	42.95	12.11	18.52	28.68	13.66
DCRNN [Li et al., 2018]	18.18	30.31	18.91	24.70	38.12	17.12	25.30	38.58	11.66	17.86	27.83	11.45
STGCN [Yu et al., 2018]	17.49	30.12	17.15	22.70	35.55	14.59	25.38	38.78	11.08	18.02	27.83	11.40
ASTGCN [Guo et al., 2019]	17.69	29.66	19.40	22.93	35,22	16.56	28.05	42.57	13.92	18.61	28.16	13.08
STG2Seq [Bai et al., 2019]	19.03	29.73	21.55	25.20	38.48	18.77	32.77	47.16	20.16	20.17	30.71	17.32
GWNet [Wu et al., 2019]	19.85	32.94	19.31	25.45	39.70	17.29	26.85	42.78	12.12	19.13	31.05	12.68
STSGCN [Song et al., 2020]	17.48	29.21	16.78	21.19	33.65	13.90	24.26	39.03	10.21	17.13	26.80	10.96
STFGNN [Li and Zhu, 2021]	16.77	28.34	16.30	19.83	31.88	13.02	22.07	35.80	9.21	16.64	26.22	10.60
STGODE [Fang et al., 2021]	16.50	27.84	16.69	20.84	32.82	13.77	22.99	37.54	10.14	16.81	25.97	10.62
DSTAGNN [Lan et al., 2022]	15.57	27.21	14.68	19.30	31.46	12.70	21.42	34.51	9.01	15.67	24.77	9.94
ST-WA [Cirstea et al., 2022]	15.17	26,63	15.83	19.06	31.02	12.52	20.74	34.05	8.77	15.41	24.62	9.94
ASTGNN [Guo et al., 2021]	15.07	26.88	15.80	19.26	31.16	12.65	22.23	35.95	9.25	15.98	25.67	9.97
EnhanceNet [Cirstea et al., 2021]	16.05	28.33	15.83	20.44	32.37	13.58	21.87	35.57	9.13	16.33	25.46	10.39
AGCRN [Bai et al., 2020]	16.06	28.49	15.85	19.83	32.26	12.97	21.29	35.12	8.97	15.95	25.22	10.09
Z-GCNETs [Chen et al., 2021]	16.64	28.15	16.39	19.50	31.61	12.78	21.77	35.17	9.25	15.76	25.11	10.01
STNorm [Deng et al., 2021]	15.32	25.93	14.37	19.21	32.30	13.05	20.59	34.86	8.61	15.39	24.80	9.91
STEP [Shao et al., 2022b]	14.22	24.55	14.42	18.20	29.71	12.48	19.32	32.19	8.12	14.00	23.41	9.50
PDFormer [Jiang et al., 2023]	14.94	25.39	15.82	18.32	29.97	12.10	19.83	32.87	8.53	13.58	23.51	9.05
STAEformer [Liu et al., 2023]	15.35	27.55	15.18	18.22	30.18	11.98	19.14	32,60	8.01	13.46	23.25	8.88
STD-MAE (Ours)	13.80	24.43	13.96	17.80	29.25	11.97	18.65	31.44	7.84	13.44	22.47	8.76

Table 2: Performance Comparison with Baseline Models on PEMS03,04,07,08 Benchmarks

Ablation Study

Ablation experiments on Masking Mechanism:

- T-MAE: Only temporal masking.
- S-MAE: Only **spatial** masking.
- STM-MAE: Masking on mixed spatial and temporal dimension.
- w/o Mask: Without masking mechanism.

Figure 3: Masking Ablation on PEMS03 and PEMS07

Hyper-parameter Study

Hyper-parameter Study on

Mask Ratio:

The optimal mask ratio is 0.25, which indicates that time series data require a lower mask ratio compared to natural language data (mask ratio=0.9) and image data (mask ratio=0.75).

Figure 4: Hyper-parameter Study on Masking Ratio

Prediction under Spatiotemporal Mirage:

- GWNet: Without masked pre-trainin
- STD-MAE: With spatial-temporalmasked pre-training.

Figure 6: Prediction under Spatiotemporal Mirage

Conclusion:

- 1. We propose STD-MAE, a novel spatial-temporal-decoupled masked pre-training framework for spatiotemporal forecasting.
- 2. We propose a novel spatial-temporal-decoupled masking strategy to effectively learn spatial and temporal heterogeneity.
- 3. Comprehensive experiments and in-depth analyses conducted on four benchmark datasets demonstrate the superiority of STD-MAE.

