Assignment -2

Python Programming

Assignment Date	23 September 2022
Student Name	JANANI.R
Student Roll Number	311419205012
Maximum Marks	2 Marks

Data Visualization and Pre-

processing

Question-1: 1. Load the

dataset

Solution:

```
import pandas as pd import seaborn as
sns import matplotlib.pyplot as plt
import numpy as
np sns.set_style('darkgrid') sns.set(font_scale=1.3)

In [2]:
df=pd.read excel("/content/Churn Modelling.xlsx")
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
sns.set_style('darkgrid')
sns.set(font_scale=1.3)

In [2]:

df=pd.read_excel("/content/Churn_Modelling.xlsx")
```

Question-2:

- 2. Perform Below Visualizations.
- Univariate Analysis
- Bi Variate Analysis
 Multi Variate Analysis

Solution:

```
#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])
```

```
In [7]: #Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc3f3579c50>

#Perform Bivariate Analysis plt.scatter(df.Age,df.Balance)

#Perform Bivariate Analysis df.corr()

Out[9]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
	Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
	Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
	Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
	NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
	HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
	IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
	EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
	Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

#Perform Bivariate Analysis

import statsmodels.api as sm

#define response variable y = df['CreditScore']

#define explanatory variable x = df[['EstimatedSalary']]

#add constant to predictor variables x= sm.add constant(x)

#fit linear regression model model = sm.OLS(y, x).fit()

#view model summary print(model.summary())

OF2 KERLEZZTOU KEZNITZ ______

Dep. Variable:	C	reditScore	R-squared:		0.000		
Model:		OLS	Adj. R-squa	red:	-0.000		
Method:	Lea	st Squares	F-statistic	SE .	0.	01916	
Date:	Thu, 2	9 Sep 2022	Prob (F-sta	tistic):		0.890	
Time:		14:58:55	Log-Likelih	ood:	-5	9900.	
No. Observations		10000	AIC:		1.19	8e+05	
Df Residuals:		9998	BIC:		1.19	8e+05	
Df Model:		1					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
const	650.7617	1.940	335.407	0.000	646.958	654.56	
EstimatedSalary	-2.326e-06	1.68e-05	-0.138	0.890	-3.53e-05	3.06e-05	
						=====	
Omnibus:		132.939	Durbin-Wats	on:		2.014	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	8	4.242	
Skew:		-0.072	Prob(JB):		5.1	0e-19	
Kurtosis:		2.574	Cond. No.		2.32e+05		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+05. This might indicate that there are strong multicollinearity or other numerical problems.

#Perform Multivariate Analysis plt.figure(figsize=(4,4))
sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOfProdu
cts","Tenure","Exited"]],hue="Exited")

Question-3:

3. Perform descriptive statistics on the dataset.

Solution:

#Perform Descriptive Statistics df=pd.DataFrame(df)
print(df.sum())

CreditScore	6505288.0
Geography	FranceSpainFranceFranceSpainSpainFranceGermany
Gender	FemaleFemaleFemaleFemaleMaleMaleFemaleMa
Age	389218.0
Tenure	50128.0
Balance	764858892.88
NumOfProducts	15302.0
HasCrCard	7055.0
IsActiveMember	5151.0
EstimatedSalary	1000902398.81
Exited	2037.0
dtype: object	

```
----Sum Value-----
       102015.88
       197002.44
2
      274149.37
3
        94567.63
      205492.92
4
     97088.64
9995
9996
     159633.38
9997
       42840.58
      168784.83
9998
      169159.57
9999
Length: 10000, dtype: float64
-----Product Value-----
CreditScore inf
Age
               0.0
NumOfProducts inf
HasCrCard 0.0
IsActiveMember
               0.0
               inf
EstimatedSalary
Exited
               0.0
dtype: float64
..........
```

```
------Mean Value-----
CreditScore 650.528800
Age 38.921800
Tenure 5.012800
Balance 76485.889288
NumOfProducts 1.530200
HasCrCard 0.705500
               0.515100
IsActiveMember
EstimatedSalary 100090.239881
                  0.203700
dtype: float64
-----
------Median Value-----
                652.000
CreditScore
                 37.000
Age
                   5.000
Tenure
               97198.540
Balance
NumOfProducts
                 1.000
HasCrCard
                   1.000
IsActiveMember
                   1.000
EstimatedSalary 100193.915
Exited
dtype: float64
.......
-----Mode Value-----
 CreditScore Geography Gender Age Tenure Balance NumOfProducts
      850.0 France Male 37.0 2.0 0.0
 HasCrCard IsActiveMember EstimatedSalary Exited
  1.0 1.0
                            24924.92 0.0
```

Question-4:

4. Handle the Missing values

Solution:

#Handling with missing Values df.isnull().values;
#Checking values are null

 $\# Handling \ with \ missing \ Values \ df. notnull() \# Checking \ values \ are not \ null$

		55	15									
Out[16]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	True	True	True	True	True	True	True	True	True	True	True
	1	True	True	True	True	True	True	True	True	True	True	True
	2	True	True	True	True	True	True	True	True	True	True	True
	3	True	True	True	True	True	True	True	True	True	True	True
	4	True	True	True	True	True	True	True	True	True	True	True
				***	***	***	***		***		***	***
	9995	True	True	True	True	True	True	True	True	True	True	True
	9996	True	True	True	True	True	True	True	True	True	True	True
	9997	True	True	True	True	True	True	True	True	True	True	True
	9998	True	True	True	True	True	True	True	True	True	True	True
	9999	True	True	True	True	True	True	True	True	True	True	True

10000 rows × 11 columns

Question-5:

5. Find the outliers and replace the outliers

Solution:

print(z)

#Find outliers & replace the outliers sns.boxplot(df['Balance'])


```
#Find outliers & replace the outliers
print(np.where(df['Balance']>100000))
(array([ 2, 4, 5, ..., 9987, 9993, 9999]),)

#Find outliers & replace the outliers from scipy
import stats import numpy as np z =
np.abs(stats.zscore(df["EstimatedSalary"]))
```

In [19]:

```
0 0.021886
1
      0.216534
      0.240687
2
3
       0.108918
4
      0.365276
        1000
     0.066419
9995
9996 0.027988
9997 1.008643
     0.125231
9998
9999
      1.076370
Name: EstimatedSalary, Length: 10000, dtype: float64
```

Question-6:

6. Check for Categorical columns and perform encoding

Solution:

```
#Check for categorical columns & performs encoding from
sklearn.preprocessing import LabelEncoder

df['Gender'].unique() df['Gender'].value_counts()
encoding=LabelEncoder()
df["Gender"]=encoding.fit_transform(df.iloc[:,1].values) df
```

```
#Check for categorical columns & performs encoding
from sklearn.preprocessing import LabelEncoder
df['Gender'].unique()

array(['Female', 'Male'], dtype=object)

#Check for categorical columns & performs encoding
df['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64
```

Out[22]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	619.0	France	0	42.0	2,0	0.00	1.0	1.0	1.0	101348,88	1.0
	1	608.0	Spain	2	41.0	1.0	83807.86	1.0	0.0	1.0	112542.58	0.0
	2	502.0	France	0	42.0	8.0	159660.80	3.0	1.0	0.0	113931.57	1.0
	3	699.0	France	0	39.0	1.0	0.00	2.0	0.0	0.0	93826.63	0.0
	4	850.0	Spain	2	43.0	2,0	125510.82	1.0	1.0	1.0	79084.10	0.0
		***		***				***		10	***	
	9995	771.0	France	0	39.0	5.0	0.00	2.0	1.0	0.0	96270.64	0.0
	9996	516.0	France	0	35.0	10.0	57369.61	1.0	1.0	1,0	101699.77	0.0
	9997	709.0	France	0	36.0	7.0	0.00	1.0	0.0	1.0	42085.58	1.0
	9998	772.0	Germany	1	42.0	3.0	75075.31	2.0	1.0	0.0	92888.52	1.0
	9999	792.0	France	0	28.0	4.0	130142.79	1.0	1.0	0.0	38190.78	0.0

10000 rows × 11 columns

Question-7:

7.Split the data into dependent and independent variables.

Solution:

Question-8:

8. Scale the independent variables

Solution:

Question-9:

9. Split the data into training and testing

Solution:

#Split the data into training & testing from sklearn.model_selection import
train_test_split

In [34]:

#Split the data into training & testing x_train, x_test, y_train,
y_test = train_test_split(x, y, test_size=4,random_state=4)
x_train x_test y_train

y_test

Out[31]:		const	EstimatedSalary
	1603	1.0	23305.85
	8713	1.0	41248.80
	4561	1.0	143317.42
	6600	1.0	174123.16

In [32]:	#Spl	it the data into training & testing ain
Out[32]:	2558	727.0
PMr[34]+	7642	811.0
	8912	623.0
	3319	430.0
	6852	600.0

	456	733.0
	6017	487.0
	709	686.0
	8366	637.0
	1146	614.0
	Name:	CreditScore, Length: 9996, dtype: float64
		5 WE 180 W.

Out[34]:		const	EstimatedSalary
	2558	1.0	137903.54
	7642	1.0	121765.00
	8912	1.0	109470.34
	3319	1.0	2923.61
	6852	1.0	7312.25

	456	1.0	7666.73
	6017	1.0	9085.00
	709	1.0	147794.63
	8366	1.0	102515.42
	1146	1.0	54776.64

9996 rows × 2 columns