Segunda Prova de Álgebra Linear 1 - 08.013-6 Turma C 07-11-2017

Nome:	RA:	
-------	-----	--

1. Dê a definição de:

a. Transformação linear de um espaço vetorial real V em um espaço vetorial real W;

Uma transformação linear de um espaço vetorial real \mathbb{V} em um espaço vetorial real \mathbb{W} é uma função $f: \mathbb{V} \to \mathbb{W}$ com domínio \mathbb{V} e contradomínio \mathbb{W} que satisfaz as seguintes propriedades:

- 1) f(v+w) = f(v) + f(w) para quaisquer $v, w \in \mathbb{V}$;
- 2) $f(\lambda \cdot v) = \lambda \cdot f(v)$ para qualquer $\lambda \in \mathbb{R}$ e para qualquer $v \in \mathbb{V}$.
- b. Núcleo de uma transformação linear $T: \mathbb{V} \to \mathbb{W}$;

Dada uma transformação linear $T: \mathbb{V} \to \mathbb{W}$, define-se o núcleo de T como sendo o subconjunto $\operatorname{Ker}(T) = \{v \in \mathbb{V}: \ T(v) = 0_{\mathbb{W}}\}.$

c. Imagem de uma transformação linear $T: \mathbb{V} \to \mathbb{W}$;

Dada uma transformação linear $T: \mathbb{V} \to \mathbb{W}$, define-se a imagem de T como sendo o subconjunto $\operatorname{Im}(T) = \{ w \in \mathbb{W} : w = T(v) \text{ para algum } v \in \mathbb{V} \}.$

d. Matriz $[T]^{\alpha}_{\beta}$ de uma transformação linear $T: \mathbb{V} \to \mathbb{W}$, com respeito às bases ordenadas α de \mathbb{V} e β de \mathbb{W} ;

 $[T]^{\alpha}_{\beta}$ é definida como sendo a única matriz $m \times n$ $(m = \dim(\mathbb{W}))$ e $n = \dim(\mathbb{V})$ tal que:

$$[T]^{\alpha}_{\beta} \cdot [v]_{\alpha} = [T(v)]_{\beta}$$
 para qualquer $v \in \mathbb{V}$

Se $\alpha = \{v_1, v_2, \dots, v_n\}$ então a j-ésima coluna de $[T]^{\alpha}_{\beta}$ é composta por $[T(v_j)]_{\beta}$

e. Autovalor de um operador linear $T: \mathbb{V} \to \mathbb{V}$;

Dado um operador linear $T: \mathbb{V} \to \mathbb{V}$, um autovalor de T é definido como sendo um escalar $\lambda \in \mathbb{K}$ tal que existe $v \in \mathbb{V} - \{0_{\mathbb{V}}\}$ que satisfaz, $T(v) = \lambda \cdot v$.

f. Autovetor de um operador linear $T: \mathbb{V} \to \mathbb{V}$;

Um vetor não nulo $v \in \mathbb{V}$ é chamado autovetor de T se existe um escalar $\lambda \in \mathbb{K}$ tal que $T(v) = \lambda \cdot v$.

2. Sejam $\alpha = \{(1,1,0), (0,-1,1), (1,2,3)\}$ uma base ordenada de \mathbb{R}^3 e $\beta = \{(1,2), (2,-1)\}$ uma base ordenada de \mathbb{R}^2 . Se $T: \mathbb{R}^3 \to \mathbb{R}^2$ é a transformação linear tal que $[T]^{\alpha}_{\beta} = \begin{pmatrix} 2 & 4 & 1 \\ -1 & 3 & -2 \end{pmatrix}$, calcule $[T(2,2,4)]_{\gamma}$, sendo $\gamma = \{(1,0), (0,1)\}$ a base ordenada canônica de \mathbb{R}^2 .

Precisamos determinar as coordenadas de (2,2,4) com respeito à base ordenada α . Se (2,2,4)=a(1,1,0)+b(0,-1,1)+c(1,2,3) então, $a+c=2,\ a-b+2c=2$ e b+3c=4. Fazendo as contas conclui-se que a=b=c=1. Logo,

$$[T(2,2,4)]_{\beta} = [T]_{\beta}^{\alpha} \cdot [(2,2,4)]_{\alpha} = \begin{pmatrix} 2 & 4 & 1 \\ -1 & 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}$$

Desta forma,
$$T(2,2,4) = 7 \cdot (1,2) + 0 \cdot (2,-1) = (7,14)$$
. Portanto, $T(2,2,4) = 7 \cdot (1,2) + 0 \cdot (2,-1) = (7,14)$.

3. Seja $T: \mathbb{R}^5 \to \mathbb{R}^5$ o operador linear definido por T(x,y,z,w,t) = (x,2y,-4z,9w,9t). a. Calcule $[T]^{\alpha}_{\alpha}$, sendo $\alpha = \{(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0),(0,0,0,0,1)\};$ Temos que T(1,0,0,0,0) = (1,0,0,0,0), T(0,1,0,0,0) = (0,2,0,0,0), T(0,0,1,0,0) = (0,0,-4,0,0), T(0,0,0,1,0) = (0,0,0,9,0) e T(0,0,0,0,0,1) = (0,0,0,0,9). Logo,

$$[T]_{\alpha}^{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 & 9 \end{pmatrix}$$

b. Determine o polinômio minimal $M_T(x)$ de T.

Pelo item anterior temos que T é diagonalizável e seus autovalores são $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -4$ e $\lambda_4 = 9$. Logo, o polinômio minimal de T é dado por $M_T(x) = (x-1)(x-2)(x+4)(x-9)$

- 4. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ o único operador linear tal que T(1,1) = (0,0) e T(2,-3) = (1,0).
 - a. Determine o polinômio característico $P_T(x)$ de T;

Determinemos primeiramente uma expressão para T(x,y). Temos que, se $(x,y)=\lambda(1,1)+\mu(2,-3)$ então $\lambda+2\mu=x$ e $\lambda-3\mu=y$. Logo, $5\mu=x-y$ portanto, $\mu=\frac{x-y}{5}$ e $\lambda=y+3\mu$, ou seja, $\lambda=\frac{3x+2y}{5}$. Desta forma,

$$T(x,y) = T(\frac{3x+2y}{5} \cdot (1,1) + \frac{x-y}{5} \cdot (2,-3)) = \frac{3x+2y}{5} \cdot T(1,1) + \frac{x-y}{5} \cdot T(2,-3) = (\frac{x-y}{5},0)$$

Considerando a base ordenada canônica $\beta = \{(1,0),(0,1)\}$ de \mathbb{R}^2 temos que $[T]_{\beta}^{\beta} = \begin{pmatrix} \frac{1}{5} & -\frac{1}{5} \\ 0 & 0 \end{pmatrix}$. Desta forma, o polinômio característico de T é dado por,

$$P_T(x) = \det(xI_{2\times 2} - [T]_{\beta}^{\beta}) = \det\begin{pmatrix} x - \frac{1}{5} & \frac{1}{5} \\ 0 & x \end{pmatrix} = x(x - \frac{1}{5})$$

Resolução alternativa

Consideremos a base ordenada $\delta = \{(1,1), (2,-3)\}$. Temos que,

$$T(1,1) = (0,0) = 0(1,1) + 0(2,-3)$$
e $T(2,-3) = (1,0) = p(1,1) + q(2,-3)$.

Fazendo as contas, conclui-se que $p=\frac{3}{5}$ e $q=\frac{1}{5}$. Assim, $[T]_{\delta}^{\delta}=\begin{pmatrix} 0&\frac{3}{5}\\0&\frac{1}{5} \end{pmatrix}$. Portanto, o polinômio característico de T é dado por,

$$P_T(x) = \det \begin{pmatrix} x & -\frac{3}{5} \\ 0 & x - \frac{1}{5} \end{pmatrix} = x(x - \frac{1}{5})$$

b. T é diagonalizável? Se a resposta for afirmativa, determine uma base ordenada α de \mathbb{R}^2 formada por autovetores de T. Se a resposta for negativa, calcule o polinômio minimal $M_T(x)$ de T.

O polinômio $x(x-\frac{1}{5})$ possui 0 e $\frac{1}{5}$ como raízes, anula $[T]^{\alpha}_{\alpha}$ (pois é o polinômio característico de T) e é o polinômio mônico de menor grau com essas propriedades. Logo, esse polinômio é o polinômio minimal de T. Assim, $M_T(x) = x^{m_1}(x-\frac{1}{5})^{m_2}$, com $m_1 = m_2 = 1$. Portanto, T é diagonalizável.

Notamos que, $T(1,1) = (0,0) = 0 \cdot (1,1)$ e $T(1,0) = (\frac{1-0}{5},0) = (\frac{1}{5},0) = \frac{1}{5} \cdot (1,0)$. Assim, uma base de \mathbb{R}^2 formada por autovetores de T é dada por $\alpha = \{(1,1),(1,0)\}$.

• Resolução alternativa

Pelo item a) os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = \frac{1}{5}$. Como T possui dois autovalores distintos e dim $(\mathbb{R}^2) = 2$, segue que T é diagonalizável. Determinemos uma base ordenada de \mathbb{R}^2 , formada por autovetores de T.

- Autovetores associados ao autovalor $\lambda_1 = 0$

$$\begin{pmatrix} 0 - \frac{1}{5} & \frac{1}{5} \\ 0 & 0 - 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Resolvendo esse sistema linear, chegamos que x = y. Logo o autoespaço dos autovetores de T, associados ao autovalor $\lambda_1 = 0$ é dado por $\mathbb{V}_{T,0} = [(1,1)]$.

- Autovetores associados ao autovalor $\lambda_2 = \frac{1}{5}$

$$\begin{pmatrix} \frac{1}{5} - \frac{1}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} - 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Resolvendo esse sistema linear, chegamos que y=0. Logo o autoespaço dos autovetores de T, associados ao autovalor $\lambda_2=\frac{1}{5}$ é dado por $\mathbb{V}_{T,\frac{1}{5}}=[(1,0)]$.

Assim, uma base ordenada de \mathbb{R}^2 , formada por autovetores de T é dada por $\alpha = \{(1,1),(1,0)\}.$

5. Seja $T: \mathbb{V} \to \mathbb{V}$ um operador linear definido no espaço vetorial $\mathbb{V} \neq \{0_{\mathbb{V}}\}$. Mostre que

$$T$$
é injetor $\Leftrightarrow \ \lambda = 0$ não é autovalor de T

- (⇒) Suponhamos que T seja um operador linear injetor, então $\text{Ker}(T) = \{0_{\mathbb{V}}\}$. Logo, se $v \in \mathbb{V}$ é tal que $T(v) = 0 \cdot v = 0_{\mathbb{V}}$ então $v = 0_{\mathbb{V}}$. Desta forma, não existe vetor não nulo $w \in \mathbb{V}$ tal que, $T(w) = 0 \cdot w$, ou seja, 0 não é autovalor de T.
- (\Leftarrow) Reciprocamente, suponha que 0 não é autovalor de T. Então, se $T(v) = 0 \cdot v$ devemos ter que $v = 0_{\mathbb{V}}$ (pois se fosse $v \neq 0_{\mathbb{V}}$ então 0 seria autovalor de T). Assim, se $T(v) = 0_{\mathbb{V}} = 0 \cdot v$ então $v = 0_{\mathbb{V}}$, ou seja, se $v \in \text{Ker}(T)$, então $v = 0_{\mathbb{V}}$. Portanto, $\text{Ker}(T) = \{0_{\mathbb{V}}\}$ e consequentemente, T é injetor.

BOA PROVA