ANALIZA ZŁOŻONOŚCI OBLICZENIOWEJ ALGORYTM SORTOWANIA BĄBELKOWEGO

1.	for (indeks i=n-1; i >= 1; zmniejszaj i o 1) {	Dla n = 7			n-1	c_1
		i: 6, 5, 4, 3, 2, 1				
2.	for (indeks j = 0; j < i; zwiększaj j o 1) {	i	j	suma		c_2
	if $(T[j] > T[j+1])$ {	6	0,1,2,3,4,5	6	n-1	
	zamień miejscami T[j] i T[j+1]	5	0,1,2,3,4	5	n-2	
	}	4	0,1,2,3	4		
	}	3	0,1,2	3	3	
ļ	,	2	0,1	2	2	
'		1	0	1	1	

Pierwsza pętla: (n-1)

Druga pętla:
$$S = 1 + 2 + \dots + (n-1) = \frac{1 + (n-1)}{2} \cdot (n-1) = \frac{n \cdot n - n}{2} = \frac{1}{2} (n^2 - n)$$

Suma ciągu arytmetycznego: $S_n = \frac{a_1 + a_n}{2} \cdot n$

$$T(n) = c_1(n-1) + c_2\left(\frac{1}{2}(n^2 - n)\right) = c_1n - c_1 + \frac{c_2}{2}n^2 - \frac{c_2}{2}n = \frac{c_2}{2}n^2 + \left(c_1 - \frac{c_2}{2}\right)n - c_1 = an^2 + bn - c_1$$

Gdy **szacujemy złożoność obliczeniową** nie interesuje nas zazwyczaj dokładna złożoność algorytmu, ale *rząd wielkości złożoności*. W związku z powyższym do szacowania od góry złożoności algorytmów używamy notacji 0 (czyt. "O duże"), która upraszcza szacowania pozwalając *pominąć w trakcie obliczeń stałe i wolniej rosnące składniki wzoru*.

$$T(n) = an^2 + bn - c = O(n^2)$$

Algorithm	Time Complexity (Best)	Time Complexity (Average)	Time Complexity (Worst)	Space Complexity
Bubble Sort	O(n)	O(n ²)	$O(n^2)$	O(1)
Insertion Sort	O(n)	O(n ²)	O(n ²)	O(1)
Selection Sort	O(n ²)	O(n ²)	O(n ²)	O(1)