Дисциплина электроника Лабораторный практикум №1

по теме: «Исследование характеристик и параметров полупроводниковых диодов»

Работу выполнил: студент группы ИУ7-36Б Жаворонкова Алина

Цель работы

Проведение экспериментальных исследований (натурных и модельных в программах схемотехнического анализа MathCad 15 и Micro-Cap 12) полупроводникового диода с целью получения исходных данных для расчёта параметров модели полупроводникового диода и внесение модели в базу данных программ схемотехнического анализа.

Пункт № 1

Моему варианту соответствует диод марки D2C510B. Проведем моделирование лабораторного стенда для получения BAX диода в программе Місго-Сар как на прямой, так и на обратной ветвях по показанным ниже схемам:

Схема для снятия ВАХ с прямой ветви:

Схема для снятия ВАХ с обратной ветви:

Далее построим графики по данным схемам с настройками как в методичке.

Рисунок 1. Снятие ВАХ с прямой ветви

Рисунок 2. Снятие ВАХ с обратной ветви

Пункт №2

После того как мы получили желаемые графики, надо настроить корректный вывод данных, который сможет быть импортированным в программу МСАD.

В результате содержимое нашего файла – только числа.

После получения такого файла открываем MCAD

 $VAX := READPRN("C:\Users\Honor\Desktop\O\Im\lab_1\circuit1.DNO")$

		0	1			0			0
VAX =	0	0	0		0	0		0	0
	1	0.02	8·10-6		1	0.02		1	8·10-6
	2	0.04	1.6.10-2		2	0.04		2	1.6·10-5
	3	0.06	2.4·10-5	$VAX^{\langle 0 \rangle} =$	3	0.06		3	2.4·10-5
	4	0.08	3.2·10-5		4	0.08		4	3.2·10-5
	5	0.1	4·10-5		5	0.1		5	4·10-5
	6	0.12	4.8·10-5		6	0.12		6	4.8·10-5
	7	0.14	5.6·10-5		7	0.14		7	5.6·10-5
	8	0.16	6.4·10-5		8	0.16		8	6.4·10-5
	9	0.18	7.2·10-5		9	0.18		9	7.2·10 ⁻⁵
	10	0.2	8.01.10-5		10	0.2		10	8.01·10-5
	11	0.22	8.81 · 10 - 5		11	0.22		11	8.81·10-5
	12	0.24	9.61·10-5		12	0.24		12	9.61·10-5
	13	0.26	1.042 · 10 - 4		13	0.26		13	1.042 · 10 - 4
	14	0.28	1.123·10-4		14	0.28		14	1.123 · 10 - 4
	15	0.3			15			15	
<u>vax</u> (0.0 0.0 (1) 0.0	13-							
		0 (0.2 0.	4	0.6		0.8	1	l
$VAX^{\langle 0 \rangle}$									

<u>Пункт № 3</u>

Далее рассчитаем параметры модели нашего диода методом трех ординат и методом вычислительного блока.

$$\begin{split} \text{Id3} &:= \text{max} \Big(\text{VAX}^{\left< 1 \right>} \Big) \quad \text{Id3} = 0.033 \\ &\quad \text{nMax} := \text{match} \Big(\text{Id3}, \text{VAX}^{\left< 1 \right>} \Big) \\ &\quad \text{nMax} = (50) \end{split} \\ \text{nId1} &:= \text{match} \left(\frac{\text{Id3}}{4}, \text{VAX}^{\left< 1 \right>} \right) \\ &\quad \text{nId2} := \text{match} \left(\frac{\text{Id3}}{2}, \text{VAX}^{\left< 1 \right>} \right) \\ &\quad \text{nId1} = (36) \\ \text{nId2} &:= (41) \end{split} \\ \text{Ud1} &:= \text{linterp} \bigg(\text{VAX}^{\left< 1 \right>}, \text{VAX}^{\left< 0 \right>}, \frac{\text{Id3}}{4} \bigg) \\ \text{Ud1} &:= 0.718 \\ \text{Ud2} &:= \text{linterp} \bigg(\text{VAX}^{\left< 1 \right>}, \text{VAX}^{\left< 0 \right>}, \frac{\text{Id3}}{4} \bigg) \\ \text{Ud2} &:= 0.807 \\ \text{Ud2} &:= \text{linterp} \bigg(\text{VAX}^{\left< 1 \right>}, \text{VAX}^{\left< 0 \right>}, \frac{\text{Id3}}{2} \bigg) \\ \text{Ud2} &:= 0.807 \\ \text{Ud2} &:= \frac{\text{Id3}}{2} \\ \text{Id2} &:= 0.017 \\ \end{split} \\ \text{Rb} &:= \frac{(\text{Ud1} - 2\text{Ud2} + \text{Ud3})}{\text{Id1}} \\ \text{Rb} &:= 8.426 \\ \\ \text{NFt} &:= \frac{\left[(3\text{Ud2} - 2\text{Ud1}) - \text{Ud3} \right]}{\text{In(2)}} \\ \text{NFt} &:= 0.027 \\ \end{split} \\ \text{Is0} &:= \text{Id1-exp} \left[\frac{(\text{Ud3} - 2\text{Ud2})}{\text{NFt}} \right] \\ \text{Is0} &:= 4.051 \times 10^{-13} \\ \end{split}$$

Найдем параметры диода методом Given Minerr. Точки возьмем с помощью трассировки графика.

$$\underline{Rb} := 1 \quad \underline{Is0} := 10^{-10} \underline{m} := 2 \quad \text{Ft} := 0.02$$

$$\underline{Uk} := \underline{Ik} \cdot \underline{Rb} + \underline{In} \left[\frac{(\underline{Is0} + \underline{Ik})}{\underline{Is0}} \right] \cdot \underline{m} \cdot \underline{Ft}$$

Given
$$0.55962 = 0.0004949 \cdot Rb + ln \left[\frac{(Is0 + 0.0004949)}{Is0} \right] \cdot m \cdot Ft$$

$$0.61833 = 0.0017896 \cdot Rb + ln \left[\frac{(Is0 + 0.0017896)}{Is0} \right] \cdot m \cdot Ft$$

$$0.65639 = 0.0037371 \cdot Rb + ln \left[\frac{(Is0 + 0.0037371)}{Is0} \right] \cdot m \cdot Ft$$

$$0.69375 = 0.006393 \cdot Rb + ln \left[\frac{(Is0 + 0.006393)}{Is0} \right] \cdot m \cdot Ft$$

 $Diod_P := Minerr(Is0, Rb, m, Ft)$

$$Diod_P = \begin{pmatrix} 3.317 \times 10^{-10} \\ 5.648 \\ 2.074 \\ 0.019 \end{pmatrix}$$

Сравним результат моделирования и эксперимента, построив на одном графике ВАХ экспериментальную и ВАХ модельную.

$$\begin{array}{ll} \textbf{Rb} \coloneqq \textbf{Diod}_\textbf{P}_1 & \textbf{NFt} \coloneqq \textbf{Diod}_\textbf{P}_2 \cdot \textbf{Diod}_\textbf{P}_3 & \textbf{Is0} \coloneqq \textbf{Diod}_\textbf{P}_0 \\ \\ \textbf{Idiod} \coloneqq \textbf{0}, \textbf{10}^{-5} ... \textbf{0}.055 \\ \\ \textbf{Udiod}(\textbf{Idiod}) \coloneqq \textbf{Idiod} \cdot \textbf{Rb} + \textbf{NFt} \cdot \textbf{In} \left[\frac{(\textbf{Idiod} + \textbf{Is0})}{\textbf{Is0}} \right] \end{array}$$

$$Rb1 := 1.2 \qquad NFt1 := 0.0255 \quad Is01 := 22.7 \cdot 10^6$$

$$Idiod := 0, 10^{-5} ... 0.055$$

$$Uformula(Idiod) := Idiod \cdot Rb1 + NFt1 \cdot ln \left[\frac{(Idiod + Is01)}{Is01} \right] \qquad Idiod := VAX^{\langle 1 \rangle}$$

$$\left(VAX^{\langle 0 \rangle} \right)_{45} = 0.876 \qquad Iproverka := \left(VAX^{\langle 1 \rangle} \right)_{45} \qquad \left(VAX^{\langle 1 \rangle} \right)_{45} = 0.024 \qquad Uformula(Iproverka) = 0.029$$

