Railway Trip

บริษัทรถไฟ IOI จัดการเส้นทางรถไฟในเมือง โดยสถานีจะเรียงกันเป็นเส้นตรง มีด้วยกัน N สถานี เรียงลำดับจาก 1 ถึง N สถานีที่ i ($1 \le i \le N-1$) และ i+1 เชื่อมกันด้วยทางรถไฟหนึ่งเส้น

บริษัทรถไฟ IOI ดูแลสายรถไฟ M เส้น โดยนับเป็นเส้นที่ 1 ถึง M สายที่ j ($1 \leq j \leq M$) เริ่มต้นจาก สถานีที่ A_j ถึงสถานีที่ B_j รถไฟจะหยุดทุกสถานี ถ้า $A_j < B_j$ แสดงว่ารถไฟจะหยุดที่สถานี A_j , $A_j + 1$, ..., A_j ตามลำดับ ถ้า $A_j > B_j$ แสดงว่ารถไฟจะหยุดที่สถานี A_j , $A_j - 1$, ..., A_j ตามลำดับ

โจคุงเป็นนักท่องเที่ยว เขามีแผนการเดิน Q แผน แผนที่ k $(1 \le k \le Q)$ เดินทางจากสถานีที่ S_k ไป ยังสถานีที่ T_k โดยนั่งการนั่งรถไฟ

แต่ว่าโจคุงเหนื่อยง่ายและต้องการนั่งในรถไฟที่ค่างข้างว่าง ดังนั้นโจคุงเลยตัดสินใจว่าเขาจะขึ้นรถไฟ จากสถานีที่มีลำดับน้อยกว่าหรือเท่ากับ K ของสายนั้น ๆ กล่าวคือถ้า $A_j < B_j$ เขาจะเลือกขึ้นสายนี้ที่สถานี $A_j, A_j + 1, ..., \min\{A_j + K - 1, B_J - 1\}$ เท่านั้น ในทางกลับกันถ้า $A_j > B_j$ เขาจะเลือกขึ้นสายนี้ที่สถานี $A_j, A_j - 1, ..., \min\{A_j - K + 1, B_J + 1\}$ เท่านั้น โจคุงจะลงจากรถไฟที่สถานีถัดจากสถานีที่เขา ขึ้นหรือสถานีปลายทาง

คุณต้องช่วยโจคุงหาวิธีที่ทำให้โจคุงเปลี่ยนสายให้น้อยที่สุดสำหรับการเดินทางแต่ละแผน

ข้อมูลเข้า

อ่านข้อมูลจาก Standard Input ทุกค่าเป็นจำนวนเต็ม

N K

Μ

 $A_1 B_1$

 $A_2 B_2$

•••

 $A_M B_M$

0

 $S_1 T_1$

 $S_2 T_2$

 $S_O T_O$

ข้อมูลออก

พิมพ์ Q บรรทัด โดยบรรทัดที่ k จะเป็นจำนวนครั้งที่น้อยที่สุดที่โจคุงต้องขึ้นรถไฟตามแผนเที่ยวแผนที่ k ถ้าไม่สามารถหาวิธีเดินทางได้ให้ตอบ -1

ข้อจำกัด

- $2 \le N \le 100000$
- $1 \le K \le N-1$
- $1 \le M \le 200000$
- $1 \le A_i \le N \ (1 \le j \le M)$

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)

- $1 \le B_i \le N \ (1 \le j \le M)$
- $A_j \neq B_j \ (1 \leq j \leq M)$
- $(A_j, B_j) \neq (A_k, B_k) (1 \leq j < k \leq M)$
- $1 \le Q \le 50000$
- $1 \le S_k \le N \ (1 \le k \le Q)$
- $1 \le T_k \le N \ (1 \le k \le Q)$
- $S_k \neq T_k \ (1 \leq k \leq Q)$
- $(S_k, T_k) \neq (S_l, T_l) (1 \le k < l \le Q)$

ปัญหาย่อย

- 1. (8 คะแนน) $N \leq 300, M \leq 300, Q \leq 300$
- 2. (8 คะแนน) $N \le 2\,000$, $M \le 2\,000$, $Q \le 2\,000$
- 3. (11 คะแนน) Q=1
- 4. (25 คะแนน) K = N 1
- 5. (35 คะแนน) $A_i < B_i \ (1 \le j \le M)$, $S_k < T_k \ (1 \le k \le Q)$
- 6. (13 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่าง

ข้อมูลเข้า 1	ข้อมูลออก 1
5 2	1
2	2
5 1	-1
3 5	
3	
5 3	
3 2	
2 1	

แผนการเดินทางแผนแรก โจคุงต้องการเดินทางจากสถานี 5 ไปยังสถานี 3 โจคุงนั่งสาย 1 จากสถานี 5 และไปลงสถานี 3 เป็นการเสร็จสิ้น เนื่องจากไม่มีวิธีอื่นที่ทำให้นั่งน้อยกว่าหนึ่งสาย คำตอบจึงเป็น 1

แผนการเดินทางแผนที่สอง โจคุงต้องการเดินทางจากสถานี 3 ไปยังสถานี 2 โจคุงนั่งสาย 2 จากสถานี 3 ไปลงสถานี 4 จากนั้นขึ้นสาย 1 จากสถานี 4 ไปลงสถานี 2 รวมแล้วโจคุงนั่ง 2 สาย

แผนการเดินทางแผนที่สอง โจคุงต้องการเดินทางจากสถานี 3 ไปยังสถานี 2 แต่ไม่สามารถทำได้ คำตอบจึงเป็น -1

ตัวอย่างนี้ตรงตามเงื่อนไขของปัญหาย่อย 1, 2 และ 6

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)

ข้อมูลเข้า 2	ข้อมูลออก 2
6 3	1
2	-1
1 6	1
5 1	2
4	
5 1	
6 3	
3 6	
2 1	

ตัวอย่างนี้ตรงตามเงื่อนไขของปัญหาย่อย 1, 2 และ 6

ข้อมูลเข้า 3	ข้อมูลเข้า 3
6 5	-1
4	1
3 1	2
2 4	-1
5 3	1
4 6	
5	
1 5	
3 2	
2 6	
6 3	
5 4	

ตัวอย่างนี้ตรงตามเงื่อนไขของปัญหาย่อย 1, 2, 4 และ 6

ข้อมูลเข้า 4	ข้อมูลเข้า 4
12 1	-1
5	1
1 7	4
10 12	-1
3 5	2
8 10	-1
5 9	1
7	
2 11	
5 8	
3 12	
4 6	
1 9	
9 10	
1 4	

ตัวอย่างนี้ตรงตามเงื่อนไขของปัญหาย่อย 1, 2, 5 และ 6