Natural Language Processing I

2. 最小编辑距离

WU Xiaokun 吴晓堃

xkun.wu [at] gmail

定义

用例:拼写

拼写校正

- 用户写"graffe",下面那个正确?
 - graf, graft, grail, giraffe

用例:拼写

拼写校正

- 用户写"graffe",下面那个正确?
 - graf, graft, grail, giraffe

中文:拼音输入法

严谨作弊? 严禁作弊!

=

用例:拼写

拼写校正

- 用户写"graffe",下面那个正确?
 - graf, graft, grail, giraffe

中文:拼音输入法

严谨作弊? 严禁作弊!

模糊搜索: 返回相近的搜索

用例: 计算生物学

• RNA 序列匹配:

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

用例:共指

共指 coreference: 表述之间是否指向同一个实体

中国中华人民共和国

大中华地区

中國 (佛教) : 釋迦牟尼出生地

震旦: 漢傳佛教經典中, 對古代中國的稱呼

阮朝: 越南阮朝朝廷在國內有時也自稱為「中國」

China, la Chine, ...

用例:共指

共指 coreference: 表述之间是否指向同一个实体

中国 中华人民共和国

大中华地区

中國 (佛教) : 釋迦牟尼出生地

震旦: 漢傳佛教經典中, 對古代中國的稱呼

阮朝: 越南阮朝朝廷在國內有時也自稱為「中國」

China, la Chine, ...

其他应用: 机器翻译, 信息提取, 语言识别

度量相似度

从计算的角度讲,很多NLP任务的核心是度量字符串的相似度

- 如何度量相似度? 观察打字与修改
 - 字符串是由编辑操作构造的
 - 每一步只涉及一个字符

例如最简单的拉丁字母序列

intention execution

编辑距离

从计算的角度讲,很多NLP任务的核心是度量字符串的相似度

- 如何度量相似度? 观察打字与修改
- 例如最简单的拉丁字母序列

intention execution

编辑距离 edit distance: 编辑操作的数量

- 插入字符
- 删除字符
- 替换字符

对齐可视化

对齐 alignment: 将尽可能多的相同字符对应起来

• 插入、删除字符时插入空字符*

• 编辑距离: 简单数一下编辑操作

对齐可视化

对齐 alignment: 将尽可能多的相同字符对应起来

• 插入、删除字符时插入空字符*

• 编辑距离: 简单数一下编辑操作

最小编辑距离:对齐最多的字母;最少的编辑操作

编辑成本

Levenshtein 距离:字符串之间的加权编辑距离

• 每种操作的"成本"可以不一样

d	s	s		ı	s				
ı	Ν	Т	Е	*	Ν	Т	1	0	N
*	Е	X	Е	С	U	Т	1	0	Ν

• 等权重: 5

• 替换成本翻倍: 8

■ 替换可以看成: 删除+插入

MED 应用

评测机器翻译、语音识别

	d	d		-		i	1
Не	to	reporters	introduced	main	content	*	*
Не	*	*	introduced	main	content	to	reporters
他	向	记者	介绍了	主要	内容	*	*

MED 应用

评测机器翻译、语音识别

	d	d				1	1
Не	to	reporters	introduced	main	content	*	*
Не	*	*	introduced	main	content	to	reporters
他	向	记者	介绍了	主要	内容	*	*

命名实体识别、共指消解

中华人民共和国 简称 中国

如何计算MED?

简单搜索: 搜索空间随字符长度指数级增长

- D: 1
- I: 26
- S: 26, 或禁止替换操作

如何计算MED?

简单搜索: 搜索空间随字符长度指数级增长

• D: 1

• I: 26

• S: 26, 或禁止替换操作

大量路径通往相同字符串

d	s	s		ı	s				
1	Ν	Т	Е	*	Ν	Т	I	0	N
*	Е	X	Е	С	U	Т	1	0	Ν

s	d	s		s	i				
l l	Ν	Т	Е	Ν	*	Т	I	0	Ν
Ε	*	X	Ε	С	U	Т	1	0	Ν

- 不需要记住所有路径
- 只需要其中一条最短路径

如何计算MED?

简单搜索: 搜索空间随字符长度指数级增长

• D: 1

• I: 26

• S: 26, 或禁止替换操作

大量路径通往相同字符串

d	s	s		ı	s				
1	Ν	Т	Е	*	Ν	Т	I	0	N
*	Е	X	Е	С	U	Т	1	0	Ν

s	d	s		s	i				
l	Ν	Т	Е	N	*	Т	I	0	Ν
Е	*	X	Ε	С	U	Т	1	0	Ν

- 不需要记住所有路径
- 只需要其中一条最短路径

听起来像是动态规划的思想?

计算MED

问题定义

字符串:

- $x = x_1x_2..x_n$
- $\bullet \ y=y_1y_2..y_m$

问题定义

字符串:

- $x = x_1x_2..x_n$
- $y = y_1 y_2 ... y_m$

子串:

- $\bullet \ x[1..i] = x_1x_2..x_i$
- $y[1..j] = y_1y_2..y_j$

问题定义

字符串:

- $x = x_1x_2..x_n$
- $y = y_1 y_2 ... y_m$

子串:

- $x[1..i] = x_1x_2..x_i$
- $y[1..j] = y_1y_2..y_j$

距离函数:

- 字串距离: D(i,j) = MED(x[1..i], y[1..j])
- 编辑距离: D(n,m)

动态规划

动态规划 dynamic programming: 基于表格查找

- 将问题拆解成一系列子问题
- 自底向上合并子问题的解

动态规划

动态规划 dynamic programming: 基于表格查找

- 将问题拆解成一系列子问题
- 自底向上合并子问题的解

Bellman 方程: 递推关系 recurrence relation

$$D(i,j) = \left\{egin{array}{ll} j\delta & ext{if } i=0 \ i\delta & ext{if } j=0 \ \min\{lpha_{x_i,y_j} + D(i-1,j-1), \delta + D(i-1,j), \delta + D(i,j-1)\} & ext{otherwise} \end{array}
ight.$$

• 插入、删除花费: $\delta=1$; 替换花费: $\alpha_{pq}=\{0,2\}$

MED表:初始化

	#	E	Χ	Е	C	U	Т	1	0	N
#	0	1	2	3	4	5	6	7	8	9
Ī	1									
Ν	2									
Т	3									
Ε	4									
Ν	5									
Т	6									
1	7									
0	8									
N	9									

MED表: 填表 I

MED表: 填表 E

	#	Ε	X	Ε	С	U	Т	1	0	Ν
#	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	6	7	8
Ν	2	3	4	5	6	7	8	7	8	7
Т	3	4	5	6	7	8	7	8	9	8
Е	4	3	4	5	6	7	8	9	10	9

d	d	d		
ı	Ν	Т	E	
*	*	*	E	

MED表: 完整版

#	0	1	2	3	4	5	6	7	8	9
I	1	2	3	4	5	6	7	6	7	8
N	2	3	4	5	6	7	8	7	8	7
Т	3	4	5	6	7	8	7	8	9	8
E	4	3	4	5	6	7	8	9	10	9
N	5	4	5	6	7	8	9	10	11	10
Т	6	5	6	7	8	9	8	9	10	11
l	7	6	7	8	9	10	9	8	9	10
0	8	7	8	9	10	11	10	9	8	9
N	9	8	9	10	11	12	11	10	9	8

回溯

对齐方案

注意: 任务通常并不仅是计算编辑距离

• 大多数情况需要字符对齐的具体方案

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
1	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
Ε	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
1	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	1	0	Ν

s	d	s		s	i			
L	Ν	Т	Е	Ν	*	Т	I	0
Е	*	X	Ε	С	U	Т	1	0

回溯法

回溯法 backtrace: 在计算每个表格时, 记录路径来源

- 算法结束后, 从终点回溯到起点
- 注意: 路径不唯一, 取决于代码执行顺序
 - 但关键节点一定会通过

н	#	34.0	U-ECG-0	50411100	C	57.57	Т		0	N
#	0	1	2	3	4	5	6	7	8	q
I	1	2	3	4	5	6	7	6	7	8
N	2	3	4	5	6	7	8	7	8	7
Т	3	4	5	6	7	8	7	8	9	8
Е	4	3	4	5	6	7	8	9	10	9

MED回溯表

	#	e	x	e	c	u	t	i	0	n
#	0	1	2	3	4	5	6	7	8	9
i	1	$\not \mathrel{/} \leftarrow \downarrow 2$	∠ ←↓3	∠ ←↓4	∠ ←↓5	∠ - ↓6	∠ - ↓7	76	← 7	← 8
n	2	/ ←↓3	∠ ↓4	∠ ← ↓ 5	∠ - ↓6	∠ - ↓7	/ ←↓8	↓ 7	∠←↓ 8	77
t	3	$\not \leftarrow \downarrow 4$	∠ ←↓5	∠←↓ 6	∠ ← ↓7	∠ ⊢ ↓8	7	<i>←</i> ↓ 8	∠ 49	↓8
e	4	/3	← 4	∠ ←5	← 6	← 7	← ↓ 8	∠←↓9	∠ ←↓ 10	↓9
n	5	↓4	∠ ←↓5	∠←↓6	∠ ← ↓7	∠ ⊢ ↓8	/←↓9	∠ ⊢ ↓ 10	∠ - ↓11	∕↓ 10
t	6	↓5	∠←↓ 6	∠-↓7	∠ ← ↓8	∠ ←↓9	/8	← 9	← 10	← ↓ 11
i	7	↓6	∠ - ↓7	∠ ←↓8	∠ - ↓9	∠ ←↓ 10	↓9	/8	← 9	← 10
0	8	↓ 7	∠←↓8	∠ ⊢ ↓9	∠⊷ _~ 10	∠ ←↓11	↓ 10	↓9	/8	← 9
n	9	↓8	∠ 	∠ → 10	/←, 11	∠ ←↓ 12	↓11	↓ 10	↓9	/8

