

INFERENTIAL STATISTICS

INTRODUCTION

prepared by:

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Inferential Statistics

Distribution

Histogram

Normal Distribution

INFERENTIAL STATISTICS

<u>Inferential statistics</u> is a branch of statistics that uses sample data to <u>draw conclusions</u> (inferences) about a population.

Normal Distribution

<u>Distribution</u> or the probability distribution describes the <u>probabilities</u> or <u>frequencies</u> of different outcomes in an experiment or observed data.

Rolling one die

Outcome	Probability
1	1/6 or 0.17
2	1/6 or 0.17
3	1/6 or 0.17
4	1/6 or 0.17
5	1/6 or 0.17
6	1/6 or 0.17
7 (all else)	0

Sum of probabilities = 1 or 100%

UNIFORM DISTRIBUTION

Discrete data

One die distribution

Rolling one die

Outcome	Probability
1	1/6 or 0.17
2	1/6 or 0.17
3	1/6 or 0.17
4	1/6 or 0.17
5	1/6 or 0.17
6	1/6 or 0.17
7 (all else)	0

Sum of probabilities = 1 or 100%

36 possible outcomes

Rolling two dice

Sum	Probability
2	0.03
3	0.06
4	0.08
5	0.11
6	0.14
7	0.17
8	0.14
9	0.11
10	0.08
11	0.06
12	0.03
All else	0

Discrete data

Two dice distribution

Rolling two dice

Sum	Probability
2	0.03
3	0.06
4	0.08
5	0.11
6	0.14
7	0.17
8	0.14
9	0.11
10	0.08
11	0.06
12	0.03
All else	0

HISTOGRAM

Histograms are used to visualize the shape, spread, and central tendency of data, making them a useful tool for assessing whether a dataset follows a normal distribution or deviates from it.

<u>Histogram</u>

<u>syntax</u>

import matplotlib.pyplot as plt
plt.hist(data, bins = 10)
plt.show()

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or bell curve because of its shape.

Johann Carl Friedrich Gauss

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

Denoted by

$$N(\mu,\sigma^2)$$

Bell Curve

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

<u>Formula</u>

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Bell Curve

mean = median = mode

<u>syntax</u>

p = stats.norm.pdf(x, mean, std)
plt.plot(x, p)
plt.show()

EXERCISE

The dataset consists of 30 samples of current measurements (in mA). Generate a **normal distribution plot** in a Jupyter Notebook.

<u>dataset</u>

current-test.csv

Current Response

Sample	Current
1	12.0
2	15.0
3	8.3
4	9.7
5	12.0
6	13.9
7	14.1
8	9.2
9	12.4
10	13.7
11	10.6
12	21.5
13	12.0

LABORATORY

