体論 (第1回)

1. 体の拡大

今回は「体の拡大」の基本的な用語について説明する.まず、体の定義を復習しておく.

定義 1-1(体)

K を可換環とし, $0_K \neq 1_K$ とする. 任意の $x \in K \setminus \{0\}$ が K の可逆元となるとき, K を体と言う. つまり, K が体なら,

$$x \in K \setminus \{0\} \implies \frac{1}{x} \in K.$$

が成り立つ.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} は体である. 一方, $2 \in \mathbb{Z} \setminus \{0\}$ だが, $\frac{1}{2} \notin \mathbb{Z}$ であるから, \mathbb{Z} は体ではない.

定義 1-2 (体の拡大)

体 L の部分集合 K が L と同じ演算で体になるとき, L を K の拡大体, または K を L の部分体と言い, L/K で表す.

 \mathbb{Q} , \mathbb{R} は \mathbb{C} と同じ演算で体となるので, \mathbb{C} の部分体である.

定理 1-1 (部分体の判定法)

体 L の部分集合 K が次の (i), (ii), (iii), (iv) を満たすとき, K は L の部分体となる.

- (i) $x, y \in K \Rightarrow x y \in K$.
- (ii) $x, y \in K \Rightarrow x \cdot y \in K$.
- (iii) $1_L \in K$.
- (iv) $x \in K \setminus \{0\} \Rightarrow \frac{1}{x} \in K$.

[証明]

(i), (ii), (iii) より K は L の部分環である (詳細は環論 (第 3 回) の定理 3-1 を参照). 特に K は可換環である。また (iv) より K は体である。

例 1-2

 \mathbb{C} の部分集合 $K = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Q}\}$ を考える.

- (1) Kは Cの部分体.
- (2) K は \mathbb{Q} と $\sqrt{-1}$ を含む最小の \mathbb{C} の部分体である.

[証明]

(1) 定理 1-1 の条件を確認すればよい. $x, y, z \in K (z \neq 0)$ をとり,

$$x = a + b\sqrt{-1}, \ y = c + d\sqrt{-1}, \ z = e + f\sqrt{-1} \ (a, b, c, d, e, f \in \mathbb{Q})$$

と表す.

(i) $x - y = (a - c) + (b - d)\sqrt{-1} \in K$.

(ii) $x \cdot y = (a + b\sqrt{-1})(c + d\sqrt{-1}) = (ac - bd) + (ad + bc)\sqrt{-1} \in K$.

(iii) $1 = 1 + 0 \cdot \sqrt{-1} \in K$.

(iv)
$$\frac{1}{z} = \frac{1}{e + f\sqrt{-1}} = \frac{e}{e^2 + f^2} + \left(\frac{-f}{e^2 + f^2}\right)\sqrt{-1} \in K.$$

以上より、K は \mathbb{C} の部分体である.

(2) 定義より, K は $\mathbb Q$ と $\sqrt{-1}$ を含む. (1) より, K は $\mathbb C$ の部分体である. 次に K の最小性についてみる. M を $\mathbb Q$ と $\sqrt{-1}$ を含む $\mathbb C$ の部分体とする. $x=a+b\sqrt{-1}\in K$ $(a,b\in\mathbb Q)$ をとる. M の 仮定から $a,b,\sqrt{-1}\in M$ であり, M は体であることから, $x=a+b\sqrt{-1}\in M$. 従って $K\subseteq M$. これで K の最小性が示せた.

問題 1-1 $\alpha = \sqrt{2}$ とし、 $K = \{a + b\alpha \mid a, b \in \mathbb{Q}\}$ とおく. K は \mathbb{C} の部分体であることを示せ.

例 1-3

 \mathbb{C} の部分体 L は \mathbb{Q} を含む. つまり, \mathbb{Q} は \mathbb{C} の最小の部分体である.

[証明]

L は \mathbb{C} の部分体より $1 \in L$ である. L は体より, 任意の自然数 n に対して,

$$n = \underbrace{1 + 1 + \dots + 1}_{n \text{ fill}} \in L_n$$

2

また $0 = 1 - 1 \in L$. さらに, 負の整数 n に対して, $|n| \in \mathbb{N} \subseteq L$ より,

$$n = 0 - |n| \in L.$$

以上より $\mathbb{Z}\subseteq L$ が示せた. 次に $x\in\mathbb{Q}$ をとる. $x=\frac{n}{m}\;(n,m\in\mathbb{Z},\;m\neq0)$ と表せば, $n,m\in L$ より

$$x = n \cdot \frac{1}{m} \in L.$$

よって $\mathbb{Q} \subseteq L$ が示せた.

定義 1-3 (中間体)

K, M を L の部分体とする. $K \subseteq M \subseteq K$ のとき, M は L/K の中間体と言う.

例えば、 \mathbb{R} は \mathbb{C}/\mathbb{Q} の中間体である.

問題 1-2 L を \mathbb{C}/\mathbb{R} の中間体とする.

- (1) $\mathbb{R} \neq L$ のとき, $i \in L$ を示せ.
- (2) L は \mathbb{R} または \mathbb{C} のいずれかであることを示せ.

定義 1-4

L/K を体の拡大とする. $\alpha_1, \alpha_2, ..., \alpha_n \in L$ に対して,

$$K(\alpha_1, \alpha_2, ..., \alpha_n) = \left\{ \frac{f(\alpha_1, \alpha_2, ..., \alpha_n)}{g(\alpha_1, \alpha_2, ..., \alpha_n)} \mid f, g \in K[x_1, x_2, ..., x_n], \ g(\alpha_1, \alpha_2, ..., \alpha_n) \neq 0 \right\}$$

は K と $\alpha_1, \alpha_2,, \alpha_n$ を含む最小の L の部分体となる. $K(\alpha_1, \alpha_2,, \alpha_n)$ を K **に** $\alpha_1, \alpha_2,, \alpha_n$ を添加した体という. また $1 \le m < n$ のとき,

$$K(\alpha_1, \alpha_2, ..., \alpha_m)(\alpha_{m+1}, \alpha_{m+2}, ..., \alpha_n) = K(\alpha_1, \alpha_2, ..., \alpha_n)$$
 (eq1)

が成立する.

問題 1-3 定義 1-4 の状況を考える.

- (1) $K(\alpha_1,\alpha_2,...,\alpha_n)$ は K と $\alpha_1,\alpha_2,....,\alpha_n$ を含む最小の L の部分体であることを示せ.
- (2) 等式 (eq1) を示せ.

例 1-4

 $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$ が成り立つ.

(解答)

 $\alpha=\sqrt{2}+\sqrt{3}$ とおく. $\sqrt{2},\sqrt{3}\in\mathbb{Q}(\sqrt{2},\sqrt{3})$ より $\alpha\in\mathbb{Q}(\sqrt{2},\sqrt{3})$ となる. $\mathbb{Q}(\alpha)$ の最小性から $\mathbb{Q}(\alpha)\subseteq\mathbb{Q}(\sqrt{2},\sqrt{3})$. 逆に $\frac{1}{\alpha}=\sqrt{3}-\sqrt{2}$ なので,

$$\sqrt{3} = \frac{1}{2} \left(\alpha + \frac{1}{\alpha} \right) \in \mathbb{Q}(\alpha), \quad \sqrt{2} = \frac{1}{2} \left(\alpha - \frac{1}{\alpha} \right) \in \mathbb{Q}(\alpha).$$

よって $\mathbb{Q}(\sqrt{2},\sqrt{3})\subseteq\mathbb{Q}(\alpha)$. 従って $\mathbb{Q}(\sqrt{2},\sqrt{3})=\mathbb{Q}(\alpha)$.

問題 1-4 $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{6})$ を示せ.

4