Category theory summer course HW 1, meet and discuss 6.6.2019

David Forsman, david.s.forsman@helsinki.fi

May 28, 2019

1. We'll define Rel to be the following category where objects of Rel are sets and morphisms of Rel are relations $R \subset X \times Y$. Define composition to category Rel such Set is its subcategory. Show that Rel is a category.

Solution

- 2. Let's define a monoidoid. Let M be a class and $\cdot: M \times M \to M$. Pair (M, \cdot) is called a monoidoid if the following holds:
 - (a) If one of the expressions (km)n and k(mn) is defined, then so is the other and the expressions are equal for all $k, m, n \in M$. (associative)
 - (b) For every $m \in M$ there exists neutral elements $e, f \in M$ where me and fm are defined.
 - (c) Let $m, n, e \in M$ where e is a neutral element. If the expressions me and en are defined then so is mn.

Given a category $C = (O, M, \circ, dom, cod)$, show that (M, \circ) is a monoidoid. Additionally show that every monoidoid defines canonically a category when one defines the objects to be the neutral elements.

- 3. Give definitions for the following categories:
 - (a) Mon of monoids
 - (b) Grp of groups
 - (c) Ab of Abelian groups
 - (d) Ring of rings
 - (e) R-mod of R-modules where R is a fixed ring
 - (f) Top of topological spaces

page 3, example 1.1.3

- 4. Monoidoid is similar to a monoid. By analogy what are the natural morphisms between monoidoids?
- 5. Show that the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is epic and monic in Ring but not an isomorphism. Solution, ex 4

 $^{^{1}}e\in M$ is a neutral element if ef=f and ge=g for all $f,g\in M$ where the expressions are defined

- 6. Let C be a category and $a \xrightarrow{f} b$ a morphism in C. Prove the following statements:
 - (a) If f is a retraction, it's epic. Dual: If f is a section, it's monic.
 - (b) If f is a retraction and monic, it's an isomorphims Dual: If f is a section and epic, it's an isomorphims.
 - (c) The morphism f has at most one inverse.

Similar to exercises 1 and 3

- 7. Let C be a category. Define C^* to consist of the following information:
 - (a) objects of C
 - (b) those morphisms f of C such that f is an isomorphism.

Show that C^* is a subcategory of C. solution, ex 2

- 8. Let C be a category. Define a relation \cong on the objects of C by setting $a \cong b$ if and only if a and b are isomorphic for all objects a and b in C. Show that the relation \cong is an equivalence relation.
- 9. Let c, c' be initial objects in a category C. Show that the unique morphism $c \to c'$ is an isomorphism.
- 10. Category C is called skeletal, if $a \cong b$ implies that a = b for all objects a, b in C. A subcategory $A \leq C$ is called dense, if A is full subcateogry and for any object c in C there exists an object a in A such that $c \cong a$. Show that for any category C there exists skeletal and dense subcategory. Such subcategory is called a skeleton of C. Hint: Use a very large axiom of choice and choose representatives of every isomorphism class.
- 11. Let $G \xrightarrow{f} H$ be an epimorphism in the cateogry Grp of groups. Show that f is surjective.

outline of the proof, page 21 exercise 5