DESENHO INDUSTRIAL ASSISTIDO POR COMPUTADOR

AULA PRÁTICA NORMAS DESENHO TÉCNICO

Profa. Eneida González Valdés

TIPOS DE LINHA				
	TIPO	sugestão p/ espessura	exemplos aplicação	UTILIZAÇÃO
LARGA	0,150,30	indicado na linha	1	traço do plano de corte
		0,30	2	aresta e contornos visíveis
ESTREITA		0,15	3	arestas e contornos invisíveis
		0,15	4	linha de cota
				linha de chamada
		0,15	5	diâmetro interno de rosca externa diâmetro maior da rosca interna diâmetro do pé do dente de engranagens diâmetro do pé do dente de rodas dentadas
		0,15	6	hachuras
	~	0,15	7	linha de ruptura curta
		0,15	8	linha de simetria
				linha de centro
				linha de eixo
				linhas primitivas
	√ √ √ √	0,15	9	linha de ruptura longa
		0,15	10	linha fantasma

Quando se está revisando um projeto se deve verificar se o mesmo está na escala que informa a legenda, para isto se utiliza o escalímetro, mas para o uso do mesmo é necessário saber:

- Identificar visualmente se o desenho foi reduzido, ampliado ou está representado na escala natural
- As indicações de escala existentes nos escalímetros vendidos no comércio só contêm escala de redução, 1:2; 1:2,5; 1:50;1:100; 1:1000; 1:75; 1:125 etc.

√O escalímetro permite a medição direta das escalas natural e reduzidas e, por multiplicação as escalas ampliadas;

O aluno deve lembrar que:

- $\sqrt{1M} = 1000 \text{ MM},$
- \checkmark 1DM =100 MM,
- ✓ 1 CM = 10 MM E
- √ 1MM = 1MM (1 DIVISÓRIA)

LEITURA COM ESCALAS DE REDUÇÃO

- ✓ Tome como exemplo a peça mostrada que foi desenhada numa escala de 1:20, significa que a peça foi desenhada vinte vezes menor do que ela realmente é, uma leitura com um escalímetro 1:20 deve ser realizada da seguinte forma:
- ✓ Determinar quanto vale a menor divisão do escalímetro: verifique quantas divisões existem de 0 a 1m (existe escalímetro indicando de 0 a 10m, e de 0 a 100m, deve-se proceder da mesma forma), neste caso existem 50 divisões, logo cada divisão vale 0,02 metros, (no de 0 a 10 valeria 0,2 m e no de 0 a 100 valeria 2m).

✓ Contamos quantas divisões existem de zero até o final da peça, no exemplo abaixo são 65 divisões, ✓ A dimensão real da peça é 1,3 metros que é resultado do produto de 65 (número de divisões no escalímetro do início ao final da peça) vezes 0,02 metros (valor da menor divisão deste escalímetro).

LEITURA COM ESCALAS DE AMPLIAÇÃO

✓ Veja o exemplo de uma peça que sua dimensão real é de 20 mm, para mostrar com todos seus detalhes temos que desenhar na escala ampliada de 5:1, o escalímetro poderia medir, mas com alguns cálculos, o mais fácil é multiplicar o valor da dimensão real pela escala. Mas a dimensão no desenho sempre é a real

• ESCALA NATURAL → ESC. 1:1 = 1 MM (1 DIVISÓRIA)

ESCALA → ESC. 1:2 = 2MM (1 DIVISÓRIA)

• ESCALA \rightarrow ESC. 1:5 =5MM (1 DIVISÓRIA)

ESCALA → ESC. 1:25 = 25MM (1 DIVISÓRIA)
OU ESC. 1:2,5 = 2,5MM (1 DIVISÓRIA)

Esc. 1:20 = 20mm

Esc. 1:200=200mm

A TRABALHAR!!!