

Griffin Statistics

Griffin Impact Challenge

Jonah Zembower

Benjamin Nicholson

Outline

The Urban Heat Island Effect

- ◆ ↑ Heat
- ◆ ↑ Electricity
- ↓ Money
- ◆ Community Activity

Methodology

- Sentinel 1 and 2
- Landsat 8
- LiDAR
- Machine Learning

Findings

- ↑ City Center
 Temperatures
- ◆ Suburban Temperatures

Steps For Change

- ◆ ↑ Vegetation
- ◆ ↑ Vibrancy
- ◆ ↑ Community

The Urban Heat Island Effect

Thermal image taken of a street in New Mexico

The Costs of Urban Heat Islands

Energy Costs

For a 1.8 degree fahrenheit increase there is a 0.5-5% increase in energy.

Economic Costs

Greensburg companies paying higher electricity bills due to electricity demands.

Health Impacts

Increased risk of health related injuries on warmer day.

Livability

Less pleasant for public foot traffic.

Methodology

July 20, 2024 Data Collected

Sentinel - 1 Satellite

Sentinel - 2 Satellite

Landsat - 8 Satellite

- VV
- VI-
- Grey Scale Bands

- B1 B12
- B8A
- Color Bands

- Thermal
- Near Infrared
- Red
- Green
- Blue

- DSM (Total Elevation)
- DTM (Natural Elevation)
- HAG (Building Height)

Urban Heat Island (UHI) Intensity in Greensburg, PA

Findings

- Clear indication of Urban Heat Island Effect
- 2 degree fahrenheit increase in downtown Greensburg

Steps For Change

Green Spaces

- ◆ Greenery which improves landscape of downtown
- Offer tax incentives to property owners

Red Maple Trees

Community Pool

Roof Solar Panels

- ↑ Greenery which 10\$ for 30 seeds
 - Community Planting
 - EducationOpportunity
 - ◆ Tree Canopy Shade

- In-ground swimming pool
- \$50,000 \$ 100,000
- Community Activity

- → Electricity
- Renewable Energy
- Dissipates Heat
- \$15,000 to \$35,000 before incentives

Steps For Change

References

- Kasniza Jumari, N. A., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., Sherif, M., & Elshafie, A. (2023).
 Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. *Heliyon*, *9*(8). https://doi.org/10.1016/j.heliyon.2023.e18424
- Yang, L., Qian, F., Song, D.-X., & Zheng, K.-J. (2016).
 Research on urban heat-island effect. *Procedia Engineering*, 169, 11–18. https://doi.org/10.1016/j.proeng.2016.10.002
- Environmental Protection Agency. (2020, July 29). Heat island impacts. EPA.
 https://19january2021snapshot.epa.gov/heatislands/heatisland-impacts_.html
- Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., & Roger, J.-C. (2018). Characterization of sentinel-2a and landsat-8 top of atmosphere, surface, and Nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215, 482–494. https://doi.org/10.1016/j.rse.2018.04.031

