Réseaux de neurones

IFT 603-712

Réseaux de neurones multicouches

Par

Pierre-Marc Jodoin

1

Rappel réseaux de neurones

(Perceptron, régression logistique, SVM)

า

Régression logistique multiclasse Fonction de coût est une **entropie croisée** (cross entropy loss) $E_D(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W_k}(\vec{x}_n)$ $\nabla E_D(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \vec{x}_n \left(y_W(\vec{x}_n) - t_{kn} \right)$

Maintenant, rendons le réseau **profond brolong**Waintenant' tendons le tesean

Simulation
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Comment faire une prédiction? Ex.: faire transiter un signal de l'entrée à la sortie d'un réseau à 3 couches cachées import numpy as np def sigmoid(x): return 1.0 / (1.0+np.exp(-x)) x = np.insert(x, 0, 1) # Ajouter biais H1 = sigmoid(np.dot(W0, x)) H1 = np.insert(H1, 0, 1) # Ajouter biais Couche 1 H2 = sigmoid(np.dot(W1, H1)) H2 = np.insert(H2, 0, 1) # Ajouter biais } Couche 2 H2 = sigmoid(np.dot(W2, H1)) H2 = np.insert(H2, 0, 1) # Ajouter biais } Couche 3 y_pred = np.dot(W3, H2) Couche sortie

46

Comment optimiser les paramètres?

0- Partant de

$$W = \arg\min_{W} E_{D}(W) + \lambda R(W)$$

Trouver une function de régularisation. En général

$$R(W) = ||W||_{1}$$
 ou $||W||_{2}$

47

47

Comment optimiser les paramètres?

1- Trouver une loss $E_D(W)$ comme par exemple Hinge loss Entropie croisée (cross entropy)

N'oubliez pas d'ajuster la <u>sortie du réseau</u>en fonction de la <u>loss</u> que vous aurez choisi.

cross entropy => Softmax

Comment optimiser les paramètres?

2- Calculer le gradient de la loss par rapport à chaque paramètre

$$\frac{\partial \left(E_{D}\left(W\right)+\lambda R\left(W\right)\right)}{\partial w_{a,b}^{[c]}}$$

et lancer un algorithme de <u>descente de gradient</u> pour mettre à jour les paramètres.

$$w_{a,b}^{[c]} = w_{a,b}^{[c]} - \eta \frac{\partial \left(E_D(W) + \lambda R(W) \right)}{\partial w_{a,b}^{[c]}}$$

49

49

Comment optimiser les paramètres?

$$\frac{\partial \left(E_{\scriptscriptstyle D}(W) + \lambda R(W)\right)}{\partial w_{a,b}^{[c]}} \Rightarrow \text{calcul\'e à l'aide d'une r\'etropropagation}$$

50

On résoud le problème de la disparition du gradient à l'aide d'autres fonctions d'activations

52

Fonction d'activation

 $\sigma(x) = \frac{1}{1 + e^{-x}}$

- Ramène les valeurs entre 0 et 1
- Historiquement populaire

3 Problèmes :

• Un neurone saturé a pour effet de « tuer » les gradients

53

Fonction d'activation

- $\sigma(x) = \frac{1}{1 + e^{-x}}$
- Ramène les valeurs entre 0 et 1
- Historiquement populaire
- 3 Problèmes :
- Un neurone saturé a pour effet de « tuer » les gradients
- Sortie d'une sigmoïde n'est pas centrée à zéro.

En pratique

- Par défaut, le gens utilisent ReLU.
- Essayez Leaky ReLU / PReLU / ELU
- Essayez tanh mais n'attendez-vous pas à grand chose
- Ne pas utiliser de sigmoïde sauf à la sortie d'un réseau 2 classes.

62

Les bonnes pratiques

Solution

Il est plus efficace d'effectuer UNE multiplication matricielle que PLUSIEURS produits scalaires (exemple de la 6º étape)

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} w_1a + w_2b + w_3c \\ w_1d + w_2e + w_3f \\ w_1g + w_2h + w_3i \end{bmatrix} = Y$$

UNE multiplication matricielle

Vectorisation de la propagation avant

En résumé, lorsqu'on propage une « batch »

Au niveau neuronal	Multi. Vecteur-Matrice	$\vec{W}X = [w_1]$	w_2	$w_3 \begin{bmatrix} a \\ b \\ c \end{bmatrix}$	e		
-----------------------	------------------------	--------------------	-------	---	---	--	--

Au niveau Multi. de la couche Matrice-Matrice	$WX = \begin{pmatrix} w_{11} \\ w_{21} \\ w_{31} \\ w_{41} \\ w_{51} \end{pmatrix}$	W ₁₂ W ₂₂ W ₃₂ W ₄₂ W ₅₂	w ₁₃ w ₂₃ w ₃₃ w ₄₃ w ₅₃	$\begin{bmatrix} w_{14} \\ w_{24} \\ w_{34} \\ w_{44} \\ w_{54} \end{bmatrix} \begin{bmatrix} a & d & h \\ b & e & i \\ c & f & j \\ d & g & k \end{bmatrix}$
---	---	---	---	---

73

Vectoriser la rétropropagation

74

Vectoriser la rétropropagation Exemple simple pour un neurone et une batch de 3

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{W} \qquad X \qquad Y$$

En supposant qu'on connaît le gradient pour les 3 éléments de Y provenant de sortie du réseau, comment faire pour propager le gradient vers W?

Vectoriser la rétropropagation

Exemple simple pour 1 neurone et une batch de 3

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{bmatrix}^T$$

$$W \qquad X \qquad Y$$

Rappelons que l'objectif est de faire une descente de gradient, i.e.

$$w_1 \leftarrow w_1 - \eta \frac{\partial E}{w_1} \quad w_2 \leftarrow w_2 - \eta \frac{\partial E}{\partial w_2} \quad w_3 \leftarrow w_3 - \eta \frac{\partial E}{\partial w_3}$$

76

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{bmatrix}^T$$

$$X$$

Concentrons-nous sur W_1

$$w_1 \leftarrow w_1 - \eta \frac{\partial E}{w_1}$$

$$w_1 \leftarrow w_1 - \eta \frac{\partial E}{\partial Y}^T \frac{\partial Y}{\partial w_1} \qquad \text{(par propriété de la dérivée en chaîne)}$$

$$w_{1} \leftarrow w_{1} - \eta \begin{bmatrix} \frac{\partial E_{1}}{\partial Y} & \frac{\partial E_{2}}{\partial Y} & \frac{\partial E_{3}}{\partial Y} \end{bmatrix} \begin{bmatrix} a \\ d \\ g \end{bmatrix}$$
 (provient de la rétro-propagation)

 $w_1 \leftarrow w_1 - \eta \left(\frac{\partial E_1}{\partial Y} a + \frac{\partial E_2}{\partial Y} b + \frac{\partial E_3}{\partial Y} c \right)$

77

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{bmatrix}^T$$

$$X$$

Et pour tous les poids

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}^T \leftarrow \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}^T - \eta \begin{bmatrix} \frac{\partial E_1}{\partial Y} & \frac{\partial E_2}{\partial Y} & \frac{\partial E_3}{\partial Y} \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$\vec{W}^{T} \leftarrow \vec{W}^{T} - \eta \frac{\partial \vec{E}}{\partial Y} \begin{bmatrix} \partial Y_{1} / \partial w_{1} & \partial Y_{1} / \partial w_{2} & \partial Y_{1} / \partial w_{3} \\ \partial Y_{2} / \partial w_{1} & \partial Y_{2} / \partial w_{2} & \partial Y_{2} / \partial w_{3} \\ \partial Y_{3} / \partial w_{1} & \partial Y_{1} / \partial w_{2} & \partial Y_{3} / \partial w_{3} \end{bmatrix}$$

$$\vec{W}^T \leftarrow \vec{W}^T - \eta \frac{\partial \vec{E}}{\partial Y} \frac{\partial Y}{\partial \vec{W}}$$

- Matrice jacobienn

$$W \leftarrow W^{T} - \eta \frac{\partial E}{\partial Y} \begin{bmatrix} \frac{\partial E}{\partial Y_{11}} & \frac{\partial E}{\partial Y_{22}} & \frac{\partial E}{\partial Y_{23}} \\ \frac{\partial E}{\partial Y_{11}} & \frac{\partial E}{\partial Y_{22}} & \frac{\partial E}{\partial Y_{23}} \\ \frac{\partial E}{\partial Y_{11}} & \frac{\partial E}{\partial Y_{22}} & \frac{\partial E}{\partial Y_{23}} \\ \frac{\partial E}{\partial Y_{12}} & \frac{\partial E}{\partial Y_{23}} & \frac{\partial E}{\partial Y_{23}} \end{bmatrix} \begin{bmatrix} a & b & b & c & d \\ a & b & c & f \\ a & b & c & d \\ b & b & c & f \\ a & b & c & d \\ b & b & c & f \\ a & b & c & d \\ b & b & c & f \\ a & b & c & d \\ b & b & c & f \\ a & b & c & d \\ b & b & c & f \\ a & b & c & d \\ b & b & c & f \\ b & b & c & f \\ a & b & c & d \\ b & b & c & f \\ b & b & c & f \\ b & c & f & g \\ b & b & c & f \\ c & c & f & f \\ c & c$$

Vectorisation de la rétro-propagation

En résumé, lorsqu'on rétro-propage un gradient d'une batch

$\vec{W}^T \leftarrow \vec{W}^T - \eta \frac{\partial E}{\partial Y} X^T$

Au niveau de la couche	Multi. Matrice-Matrice	$W^{T} \leftarrow W^{T} - \eta \frac{\partial E}{\partial Y} \frac{\partial Y}{\partial \vec{W}}$ $W^{T} \leftarrow W^{T} - \eta \frac{\partial E}{\partial Y} X^{T}$
---------------------------	------------------------	---

80

Pour plus de détails:

 $https://medium.com/datathings/vectorized-implementation-of-back-propagation-1011884df84 \ https://peterroelants.github.io/posts/neural-network-implementation-part04/$

Comment initialiser un réseau de neurones?

83

Initialisation

Première idée: faibles valeurs aléatoires (Gaussienne $\mu = 0, \sigma = 0.01$)

W_i=0.01*np.random.randn(H_i,H_im1)

Fonctionne bien pour de petits réseaux mais pas pour des réseaux profonds.

E.g. réseau à 10 couches avec 500 neurones par couche et des **tanh** comme fonctions d'activation.

Sanity checks

1. Toujours s'assurer qu'une initialization aléatoire donne une **perte** (*loss*) maximale

Exemple : pour le cas *10 classes*, une **régularisation à 0** et une *entropie croisée*.

$$E_{D}(\mathbf{W}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W,k} (\vec{x}_{n})$$

Si l'initialisation est aléatoire, alors la probabilité sera égale pour chaque classe

$$E_{D}(W) = -\frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{10}$$
$$= \ln(10)$$
$$= 2.30$$

95

Sanity checks

3. Toujours visualiser les courbes d'apprentissage et de validation

100

Sanity checks

3. Toujours vérifier la validité d'un gradient

Comme on l'a vu, calculer un gradient est sujet à erreur. Il faut donc s'assurer que nos gradients sont bons au fur et à mesure qu'on rédige notre code. En voici la meilleure façon

Rappel

Approximation numérique de la dérivée

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

101

Sanity checks

3. Toujours vérifier la validité d'un gradient

On peut facilement calculer un gradient à l'aide d'une approximation numérique.

Rappel

Approximation numérique du gradient

$$\nabla E(W) \approx \frac{E(W+H) - E(W)}{H}$$

En calculant

$$\frac{\partial E(W)}{\partial w_i} \approx \frac{E(w_i + h) - E(w_i)}{h} \quad \forall i$$

(exemple)		X ₄
W	W+h	gradient W
$W_{00} = 0.34$	$W_{00} = 0.34$	-2.5
$W_{01} = -1.11$	$W_{01} = \textbf{-1.11} \textbf{+0.0001}$	0.6=(1.25353-125347)/0.0001
$W_{02} = 0.78$	$W_{02} = 0.78$	
$W_{20} = -3.1$	$W_{20} = -3.1$	
$W_{21} = -1.5,$	$W_{21} = -1.5,$	
$W_{22} = 0.33$	$W_{22} = 0.33$	
NAN-4 25247	E(W+h)=1.25353	

Autre bonne pratique : Dropout

Idée : s'assurer que <u>chaque neurone apprend pas lui-même</u> en brisant au hasard des chemins.

Crédit http://cs231n.stanford.edu

109

Autre bonne pratique : Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
 """ X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = np.random.rand(*H1.shape) < p # first dropout mask

H1 *= U1 # drop!

H2 = np.maximum(0, np.dot(W2, H1) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask

H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)

perform parameter update... (not shown)

Crédit http://cs231n.stanford.edu/

110

Autre bonne pratique : Dropout

Le problème avec *Dropout* est en prédiction (« test time »)

car dropout ajoute du bruit à la prédiction

$$pred = y_W(\vec{x}, Z)$$
masque aléatoire


```
y_{W,1}(\vec{x}) est max
dropout ajoute du bruit à la prédiction.
Exemple simple : \vec{x} = |
Solution, exécuter le modèle un grand nombre de fois et prendre la
moyenne.
                      0.09378555 0.76511644 0.141098
                                                0.23131764
                      0.13982909
                                   0.62885327
                      0.23658253
0.23779425
0.16005442
                                                0.14381585]
                                   0.61960162
0.51357115
                                   0.68060227
                                                0.1593433
                      0.16303195
0.24183069
                                   0.50583392
0.51319834
                                                0.33113413]
                    0.33471327]
                                                0.23378379]
              [ 0.15933813,
                                  0.65957005,
                                                   0.18109183]
```

113

<pre>""" Vanilla Dropout: Not recommended implementation (see notes below) """ p = 0.5 # probability of keeping a unit active. higher = less dropout def train_step(X): "" X contains the data """</pre>
<pre>def train_step(X):</pre>
def train_step(X):
A STATE OF THE STA
forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape) < p # first dropout mask
H1 *= U1 # drop! H2 = np.maximum(U, np.dot(W2, H1) + b2)
U2 = np.random.rand(*H2,shape) < p # second dropout mask
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3
backward pass: compute gradients [not shown]
perform parameter update (not shown)
def predict(X):
ensembled forward pass H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
En prédiction, tous les neurones sont actifs
→ tout ce qu'il faut faire est de multiplier la sortie de chaque couche
par la probabilité de dropout
Crédit http://cs231n.stanford.ed

Descente de gradient version améliorée

Descente de gradient

$$W^{[t+1]} = W^{[t]} - \eta \nabla E_D \left(W^{[t]} \right)$$

Descente de gradient : problème

Qu'arrive-t-il si la fonction de coût (loss) a une pente prononcée dans une direction et moins prononcée dans une autre direction?

121

Descente de gradient : problème

Qu'arrive-t-il si la fonction de coût (loss) a une pente prononcée dans une direction et moins prononcée dans une autre direction?

Progrès très lent le long de la pente la plus faible et oscillation le long de l'autre direction.

Descente de gradient + Momentum

Descente de gradient stochastique

Descente de gradient stochastique + Momentum

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla E_{\bar{\mathbf{x}}_n} \left(\mathbf{w}_t \right)$$

$$v_{t+1} = \rho v_t + \nabla E_{\bar{x}_n} (\mathbf{w}_t)$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta v_{t+1}$$

Provient de l'équation de la vitesse (à démontrer en devoir ou en exercice)

 ρ exprime la « friction », en général \in [0.5,1[

124

125

AdaGrad (décroissance automatique de η)

Descente de gradient stochastique

AdaGrad

$$\begin{aligned} dE_t &= \nabla E_{\bar{x}_n} \left(\mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \eta \nabla E_{\bar{x}_n} \left(\mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{w}_t + \left| dE_t \right| \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \frac{\eta}{m_{t+1} + \varepsilon} dE_t \end{aligned}$$

128

AdaGrad (décroissance automatique de η)

Descente de gradient stochastique

AdaGrad

$$\mathbf{W}_{t+1} = \mathbf{W}_{t} - \eta \nabla E_{\bar{x}_{n}} \left(\mathbf{W}_{t} \right)$$

$$dE_{t} = \nabla E_{\bar{x}_{n}} \left(\mathbf{W}_{t} \right)$$

$$m_{t+1} = m_{t} + \left| dE_{t} \right|$$

$$\mathbf{W}_{t+1} = \mathbf{W}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} dE_{t}$$

η décroit sans cesse au fur et à mesure de l'optimisation

RMSProp (AdaGrad amélioré) AdaGrad RMSProp $dE_{t} = \nabla E_{\overline{x}_{n}}\left(\mathbf{w}_{t}\right) \qquad dE_{t} = \nabla E_{\overline{x}_{n}}\left(\mathbf{w}_{t}\right) \\ m_{t+1} = m_{t} + \left| dE_{t} \right| \qquad m_{t+1} = \gamma m_{t} + (1 - \gamma) \left| dE_{t} \right| \\ \mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} dE_{t} \qquad \mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} dE_{t}$ $\eta \quad \text{décroit lorsque le gradient est élevé} \\ \eta \quad \text{augmente lorsque le gradient est faible}$

Adam (Combo entre Momentum et RMSProp)

Momentum

Adam

$$\begin{aligned} dE_t &= \nabla E_{\bar{x}_n} \left(\mathbf{w}_t \right) \\ v_{t+1} &= \rho v_t + \nabla E_{\bar{x}_n} \left(\mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \eta v_{t+1} \end{aligned} \qquad \begin{aligned} dE_t &= \nabla E_{\bar{x}_n} \left(\mathbf{w}_t \right) \\ v_{t+1} &= \alpha v_t + (1 - \alpha) dE_t \\ m_{t+1} &= \gamma m_t + (1 - \gamma) |dE_t| \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1} \end{aligned}$$

133

Adam (Combo entre Momentum et RMSProp)

Momentum

Adam

$$\begin{aligned} v_{t+1} &= \rho v_t + \nabla E_{\vec{x}_n} \left(\mathbf{w}_t \right) \end{aligned} \qquad \begin{aligned} dE_t &= \nabla E_{\vec{x}_n} \left(\mathbf{w}_t \right) \\ v_{t+1} &= \alpha v_t + (1-\alpha) dE_t \end{aligned}$$

$$\mathbf{w}_{t+1} &= \mathbf{w}_t - \eta v_{t+1} \end{aligned} \qquad \begin{aligned} m_{t+1} &= \gamma m_t + (1-\gamma) |dE_t| \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1} \end{aligned}$$

134

Adam (Combo entre Momentum et RMSProp)

RMSProp

Adam

$$dE_{t} = \nabla E_{\bar{x}_{n}} (\mathbf{w}_{t})$$

$$m_{t+1} = \gamma m_{t} + (1 - \gamma) |dE_{t}|$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} dE_{t}$$

$$dE_{t} = \nabla E_{\bar{x}_{n}} (\mathbf{w}_{t})$$

$$v_{t+1} = \alpha v_{t} + (1 - \alpha) dE_{t}$$

$$m_{t+1} = \gamma m_{t} + (1 - \gamma) |dE_{t}|$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1}$$

$$\begin{aligned} \textbf{Adam (Version complète)} \\ v_{t=0} &= 0 \\ m_{t=0} &= 0 \\ \text{for t=1 à num_iterations} \\ \text{for n=0 à N} \\ dE_t &= \nabla E_{\bar{x_n}} \left(\mathbf{w}_t \right) \\ v_{t+1} &= \alpha v_t + (1-\alpha) dE_t \\ m_{t+1} &= \gamma m_t + (1-\gamma) |dE_t| \\ v_{t+1} &= \frac{v_{t+1}}{1-\beta_1^t}, m_{t+1} &= \frac{m_{t+1}}{1-\beta_2^t} \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1} \end{aligned}$$

