HW5

Jiangyan Feng (Netid: jf8)

Exercise 1

a)

We first fit the log-linear Poisson model of P4 as a function of Treat, BL, P1, and Age. The results are shown as below. Since both the scaled deviance (2.7003) and scaled Pearson X2 (2.5109) are larger than 1, there seems to be overdisperison.

Criteria For Assessing Goodness Of Fit									
Criterion	DF	Value	Value/DF						
Deviance	54	145.8141	2.7003						
Scaled Deviance	54	145.8141	2.7003						
Pearson Chi-Square	54	135.5868	2.5109						
Scaled Pearson X2	54	135.5868	2.5109						
Log Likelihood		591.2912							
Full Log Likelihood		-166.7912							
AIC (smaller is better)		343.5825							
AICC (smaller is better)		344.7146							
BIC (smaller is better)		353.9702							

	Analysis Of Maximum Likelihood Parameter Estimates												
Parameter	DF	Estimate	Standard Error	Wald Confi Lin	dence	Wald Chi- Square	Pr > ChiSq						
Intercept	1	0.9023	0.3054	0.3036	1.5010	8.73	0.0031						
Treat	1	-0.3100	0.1084	-0.5226	-0.0975	8.17	0.0043						
BL	1	0.0195	0.0025	0.0146	0.0245	59.00	<.0001						
P1	1	0.0039	0.0036	-0.0031	0.0109	1.20	0.2732						
Age	1	0.0120	0.0088	-0.0051	0.0292	1.89	0.1696						
Scale	0	1.0000	0.0000	1.0000	1.0000								

We then estimate the scale based on deviance. The results are shown as below. Now both the scaled deviance (1) and scaled Pearson X2 (0.9299) is close to 1.

Criteria For Assessing Goodness Of Fit										
Criterion	DF	Value	Value/DF							
Deviance	54	145.8141	2.7003							
Scaled Deviance	54	54.0000	1.0000							
Pearson Chi-Square	54	135.5868	2.5109							
Scaled Pearson X2	54	50.2125	0.9299							
Log Likelihood		218.9756								
Full Log Likelihood		-166.7912								
AIC (smaller is better)		343.5825								
AICC (smaller is better)		344.7146								
BIC (smaller is better)		353.9702								

According to the Pvalue in Maximum likelihood parameter estimates, Type 1 and 3 analyses, only BL is significant with Pvalue = <.0001 less than 0.05. Only for BL, 0 is not within the Wald 95% confidence limit. Together, only BL should be retained in the model.

	Analysis Of Maximum Likelihood Parameter Estimates												
Parameter	DF	Estimate	Standard Error	Wald Confid Lim	lence	Wald Chi- Square	Pr > ChiSq						
Intercept	1	0.9023	0.5019	-0.0814	1.8861	3.23	0.0722						
Treat	1	-0.3100	0.1782	-0.6593	0.0392	3.03	0.0819						
BL	1	0.0195	0.0042	0.0113	0.0277	21.85	<.0001						
P1	1	0.0039	0.0058	-0.0076	0.0154	0.44	0.5049						
Age	1	0.0120	0.0144	-0.0162	0.0402	0.70	0.4032						
Scale	0	1.6432	0.0000	1.6432	1.6432								

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis												
Source	Deviance Num DF Den DF F Value Pr > F Chi-Square Pr												
Intercept	476.2487												
Treat	473.0840	1	54	1.17	0.2838	1.17	0.2790						
BL	149.6763	1	54	119.77	<.0001	119.77	<.0001						
P1	147.6894	1	54	0.74	0.3948	0.74	0.3910						
Age	145.8141	1	54	0.69	0.4083	0.69	0.4046						

	LR Statistics For Type 3 Analysis												
Source	Num DF	Num DF Den DF F Value Pr > F Chi-Square Pr > Chi											
Treat	1	54	3.06	0.0860	3.06	0.0803							
BL	1	54	20.18	<.0001	20.18	<.0001							
P1	1	54	0.45	0.5065	0.45	0.5037							
Age	1	54	0.69	0.4083	0.69	0.4046							

b) We first fit the log-linear Poisson model of P4 as a function of BL. The results are shown as below. Since both the scaled deviance (2.8060) and scaled Pearson X2 (2.6526) are larger than 1, there seems to be overdisperison.

Criteria For Assessing Goodness Of Fit										
Criterion	DF	Value	Value/DF							
Deviance	57	159.9413	2.8060							
Scaled Deviance	57	159.9413	2.8060							
Pearson Chi-Square	57	151.2008	2.6526							
Scaled Pearson X2	57	151.2008	2.6526							
Log Likelihood		584.2276								
Full Log Likelihood		-173.8548								
AIC (smaller is better)		351.7097								
AICC (smaller is better)		351.9240								
BIC (smaller is better)		355.8648								

We then estimate the scale based on deviance. The results are shown as below. Now both the scaled deviance (1) and scaled Pearson X2 (0.9454) is close to 1.

Criteria For Assessing Goodness Of Fit									
Criterion DF Value Value/D									
Deviance	57	159.9413	2.8060						
Scaled Deviance	57	57.0000	1.0000						
Pearson Chi-Square	57	151.2008	2.6526						

Criteria For Assessing Goodness Of Fit										
Criterion	DF	Value	Value/DF							
Scaled Pearson X2	57	53.8851	0.9454							
Log Likelihood		208.2074								
Full Log Likelihood		-173.8548								
AIC (smaller is better)		351.7097								
AICC (smaller is better)		351.9240								
BIC (smaller is better)		355.8648								

According to the Pvalue in Maximum likelihood parameter estimates, Type 1 and 3 analyses, BL is significant with Pvalue = <.0001 less than 0.05. For BL, 0 is not within the Wald 95% confidence limit. Together, BL is significant.

1	Analysis Of Maximum Likelihood Parameter Estimates												
Parameter	DF	Estimate	Standard Error	_	dence	Wald Chi- Square	Pr > ChiSq						
Intercept	1	1.0897	0.1295	0.8360	1.3435	70.84	<.0001						
BL	1	0.0209	0.0017	0.0176	0.0242	156.27	<.0001						
Scale	0	1.6751	0.0000	1.6751	1.6751								

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis											
Source Deviance Num DF Den DF F Value Pr > F Chi-Square Pr > Chi-Square												
Intercept	476.2487											
BL	159.9413	1	57	112.73	<.0001	112.73	<.0001					

LR Statistics For Type 3 Analysis										
Source	Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSquare									
BL	1	57	112.73	<.0001	112.73	<.0001				

According to the standardized pearson and deviance residual plots, the residuals are flat and there is no trend. Therefore, there is no problem with the model assumption.

According to the parameter estimates, estimate for BL is 0.0209. It suggests with 1 unit increase in BL, there will be $\exp(0.029) = 1.021$ fold increase in the seizure counts after four treatment periods.

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error			Wald Chi- Square	Pr > ChiSq	
Intercept	1	1.0897	0.1295	0.8360	1.3435	70.84	<.0001	
BL	1	0.0209	0.0017	0.0176	0.0242	156.27	<.0001	
Scale	0	1.6751	0.0000	1.6751	1.6751			

Exercise 2

a)

We first fit the log-linear Poisson model of P1 as a function of Treat, BL, and Age. The results are shown as below. Since both the scaled deviance (3.4069) and scaled Pearson X2 (3.6267) are larger than 1, there seems to be overdisperison.

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	55	187.3802	3.4069					
Scaled Deviance	55	187.3802	3.4069					
Pearson Chi-Square	55	199.4665	3.6267					
Scaled Pearson X2	55	199.4665	3.6267					
Log Likelihood		908.6710						
Full Log Likelihood		-191.9378						
AIC (smaller is better)		391.8756						
AICC (smaller is better)		392.6163						
BIC (smaller is better)		400.1857						

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq		
Intercept	1	-0.2411	0.2733	-0.7768	0.2946	0.78	0.3778		
Treat	1	-0.1189	0.0926	-0.3005	0.0627	1.65	0.1994		
BL	1	0.0257	0.0010	0.0238	0.0276	695.56	<.0001		
Age	1	0.0465	0.0078	0.0312	0.0619	35.42	<.0001		
Scale	0	1.0000	0.0000	1.0000	1.0000				

We then estimate the scale based on deviance. The results are shown as below. Now both the scaled deviance (1) and scaled Pearson X2 (1.0645) is close to 1.

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	55	187.3802	3.4069				
Scaled Deviance	55	55.0000	1.0000				
Pearson Chi-Square	55	199.4665	3.6267				

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Scaled Pearson X2	55	58.5476	1.0645					
Log Likelihood		266.7139						
Full Log Likelihood		-191.9378						
AIC (smaller is better)		391.8756						
AICC (smaller is better)		392.6163						
BIC (smaller is better)		400.1857						

According to the Pvalue in Maximum likelihood parameter estimates, Type 1 and 3 analyses, only BL and Age is significant with Pvalue less than 0.05. Only for BL and Age, 0 is not within the Wald 95% confidence limit. Together, BL and Age should be retained in the model.

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error			Wald Chi- Square	Pr > ChiSq			
Intercept	1	-0.2411	0.5045	-1.2299	0.7477	0.23	0.6328			
Treat	1	-0.1189	0.1710	-0.4540	0.2163	0.48	0.4869			
BL	1	0.0257	0.0018	0.0222	0.0293	204.16	<.0001			
Age	1	0.0465	0.0144	0.0182	0.0748	10.40	0.0013			
Scale	0	1.8458	0.0000	1.8458	1.8458					

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis									
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq			
Intercept	746.4361									
Treat	745.4460	1	55	0.29	0.5920	0.29	0.5898			
BL	222.2496	1	55	153.57	<.0001	153.57	<.0001			
Age	187.3802	1	55	10.23	0.0023	10.23	0.0014			

	LR Statistics For Type 3 Analysis										
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq					
Treat	1	55	0.48	0.4896	0.48	0.4867					
BL	1	55	163.79	<.0001	163.79	<.0001					
Age	1	55	10.23	0.0023	10.23	0.0014					

b)

We first fit the log-linear Poisson model of P1 as a function of BL and Age. The results are shown as below. Since both the scaled deviance (3.3755) and scaled Pearson X2 (3.5746) are larger than 1, there seems to be overdisperison.

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	56	189.0289	3.3755					
Scaled Deviance	56	189.0289	3.3755					
Pearson Chi-Square	56	200.1801	3.5746					
Scaled Pearson X2	56	200.1801	3.5746					
Log Likelihood		907.8467						
Full Log Likelihood		-192.7621						
AIC (smaller is better)		391.5243						
AICC (smaller is better)		391.9606						
BIC (smaller is better)		397.7569						

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq		
Intercept	1	-0.3815	0.2520	-0.8754	0.1123	2.29	0.1300		
BL	1	0.0257	0.0010	0.0238	0.0276	694.89	<.0001		
Age	1	0.0494	0.0075	0.0348	0.0641	43.60	<.0001		
Scale	0	1.0000	0.0000	1.0000	1.0000				

Note: The scale parameter was held fixed.

We then estimate the scale based on deviance. The results are shown as below. Now both the scaled deviance (1) and scaled Pearson X2 (1.0590) is close to 1.

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	56	189.0289	3.3755					
Scaled Deviance	56	56.0000	1.0000					
Pearson Chi-Square	56	200.1801	3.5746					
Scaled Pearson X2	56	59.3036	1.0590					

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Log Likelihood		268.9505						
Full Log Likelihood		-192.7621						
AIC (smaller is better)		391.5243						
AICC (smaller is better)		391.9606						
BIC (smaller is better)		397.7569						

According to the Pvalue in Maximum likelihood parameter estimates, Type 1 and 3 analyses, BL and Age are significant with Pvalue less than 0.05. For BL and Age, 0 is not within the Wald 95% confidence limit. Together, BL and Age are significant.

	Analysis Of Maximum Likelihood Parameter Estimates											
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq					
Intercept	1	-0.3815	0.4630	-1.2890	0.5259	0.68	0.4099					
BL	1	0.0257	0.0018	0.0222	0.0292	205.86	<.0001					
Age	1	0.0494	0.0138	0.0225	0.0764	12.92	0.0003					
Scale	0	1.8373	0.0000	1.8373	1.8373							

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis											
Source Deviance Num DF Den DF F Value Pr > F Chi-Square Pr > C												
Intercept	746.4361											
BL	231.9037	1	56	152.43	<.0001	152.43	<.0001					
Age	189.0289	1	56	12.70	0.0008	12.70	0.0004					

	LR Statistics For Type 3 Analysis											
Source	Chi-Square	Pr > ChiSq										
BL	1	56	165.11	<.0001	165.11	<.0001						
Age	1	56	12.70	0.0008	12.70	0.0004						

According to the standardized pearson and deviance residual plots, the residuals are flat and there is no trend. Therefore, there is no problem with the model assumption.

According to the parameter estimates, estimate for BL and Age is 0.0257 and 0.0494. It suggests with 1 unit increase in BL, there will be exp(0.0257) and exp(0.0494) fold increase in the seizure counts after one treatment periods.

Analysis Of Maximum Likelihood Parameter Estimates											
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq				
Intercept	1	-0.3815	0.4630	-1.2890	0.5259	0.68	0.4099				
BL	1	0.0257	0.0018	0.0222	0.0292	205.86	<.0001				
Age	1	0.0494	0.0138	0.0225	0.0764	12.92	0.0003				
Scale	0	1.8373	0.0000	1.8373	1.8373						

Similarities and differences:

Similarities: The seizure counts at the first and last visit all depend on BL. And the estimate for BL is similar for both the first and the last visit.

Difference: The seizure counts at the last visit only depend on BL. However, the seizure counts at the first visit also depend on the edge.

Exercise 3

a)

The results of principal component analysis are shown as below. We need to keep 4 components (cumulative=0.7399) to retain at least 70% of the variation. Based on average eigenvalue, the eigenvalue of the fist 3 components is larger than 1. Based on the Scree plot, the elbow is 3. So we may choose 3 components based on average eigenvalue and Scree plot.

	Eigenval	lues of the C	orrelation M	[atrix
	Eigenvalue	Difference	Proportion	Cumulative
1	4.39595632	2.22065955	0.3663	0.3663
2	2.17529677	0.75572719	0.1813	0.5476
3	1.41956959	0.53169566	0.1183	0.6659
4	0.88787392	0.07206032	0.0740	0.7399
5	0.81581361	0.18385862	0.0680	0.8079
6	0.63195499	0.08407250	0.0527	0.8605
7	0.54788249	0.20115694	0.0457	0.9062
8	0.34672554	0.08719022	0.0289	0.9351
9	0.25953532	0.01307050	0.0216	0.9567
10	0.24646482	0.07696032	0.0205	0.9773
11	0.16950450	0.06608236	0.0141	0.9914
12	0.10342214		0.0086	1.0000

b)

For the component 1, the largest positive coefficient is nonflavanoid_phenols, the largest negative coefficient is from proanthocyanins. So prin1 may contrast nonflavanoid_phenols over proanthocyanins. With the increase in nonflavanoid_phenols and the decrease in proanthocyanins, the prin1 will increase.

For the component 2, the largest positive coefficient is hue, the largest negative coefficient is from od280_od315. So prin1 may contrast hue over od280_od315. With the increase in hue and the decrease in od280_od315, the prin2 will increase.

For the component 3, the largest positive coefficient is magnesium, the largest negative coefficient is from malic_acid. So prin1 may contrast magnesium over malic_acid. With the increase in magnesium and the decrease in malic_acid, the prin3 will increase.

For the component 4, the largest positive coefficient is ash, the largest negative coefficient is from total_phenols. So prin1 may contrast ash over total_phenols. With the increase in ash and the decrease in total_phenols, the prin4 will increase.

			Eigenvec	tors				
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8
malic_acid	0.091117	0.513423	272161	0.056347	0.346100	307291	0.011071	0.476373
ash	270461	0.212854	0.053675	0.479292	374837	449505	0.424981	0.059783
alcalinity_ash	032286	0.368823	0.604043	111362	0.223412	198971	121932	178046
magnesium	234041	0.000809	0.622592	0.057773	149722	0.134509	323528	0.414439
total_phenols	0.115882	0.360852	0.079682	690601	411900	030540	0.339990	119475
flavanoids	0.401759	0.174439	0.101046	0.217309	0.092075	0.055670	012998	373440
nonflavanoid_phenols	0.437057	0.104214	0.116337	0.167173	0.058894	001610	049458	173616
proanthocyanins	311970	041107	0.211733	0.083123	0.519266	0.244948	0.601632	209902
color	0.324574	0.146536	0.095412	0.260981	269933	0.603280	0.313095	0.340714
hue	147665	0.537132	208820	0.029726	0.170214	0.359295	227546	018474
od280_od315	0.328153	256709	0.133869	273486	0.336884	142788	0.262469	0.465785
proline	0.405845	077350	0.158127	0.220377	028456	261483	029436	068693

Eigenvectors									
	Prin9 Prin10 Prin11 Prin12								
malic_acid	0.310651	152282	299147	0.019934					
ash	201018	0.255290	0.126378	0.025478					
alcalinity_ash	455102	342277	080059	137506					
magnesium	0.389505	0.278728	020473	0.086627					
total_phenols	0.248079	0.066514	0.056849	0.058457					

Eigenvectors									
	Prin9	Prin10	Prin11	Prin12					
flavanoids	0.167235	0.517817	295946	464584					
nonflavanoid_phenols	066495	0.135231	053219	0.833690					
proanthocyanins	0.310269	046205	0.047901	0.113542					
color	176352	299390	103626	116475					
hue	134160	0.249965	0.595363	008470					
od280_od315	316105	0.382656	0.245096	086924					
proline	0.406245	353937	0.605393	155437					

c)
The score plots are shown below for prin1 to prin4. Only prin1-2 plot provides clear associations.

According to prin1-2, alcohol=1 seems to have larger prin1 and prin2 value whereas alcohol=3 seems to have the smaller prin1 and larger prin2. Based on the eigenvectors in part b, alcohol=1 may have the largest amount of nonflavanoid_phenols and hue. Alcohol=3 may have the lowest amount of nonflavanoid_phenols and the largest amount of hue.

Exercise 4

a)

The results of principal component analysis are shown as below. We need to keep 1 component (cumulative=0.9094) to retain at least 70% of the variation. Based on average eigenvalue, the eigenvalue of the fist 4 components is larger than 1. Based on the Scree plot, the elbow is 1. So we may choose 4 components based on the average eigenvalue and 1 component based on Scree plot.

	Eigenva	lues of the C	ovariance M	atrix
	Eigenvalue	Difference	Proportion	Cumulative
1	204.430157	192.898984	0.9094	0.9094
2	11.531173	5.918322	0.0513	0.9607
3	5.612851	4.019780	0.0250	0.9857
4	1.593071	0.703453	0.0071	0.9928
5	0.889618	0.563699	0.0040	0.9967
6	0.325918	0.174534	0.0014	0.9982
7	0.151385	0.039105	0.0007	0.9989
8	0.112279	0.040485	0.0005	0.9994
9	0.071795	0.032056	0.0003	0.9997
10	0.039738	0.018336	0.0002	0.9999
11	0.021403	0.013154	0.0001	1.0000
12	0.008249		0.0000	1.0000

b)

For the component 1, the largest positive coefficient is total_phenols (0.998890), the negative coefficients are all trivial. So prin1 may directly correlate with total_phenols. With the increase in total_phenols, the prin1 will increase.

			Eigenvec	tors				
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8
malic_acid	0.015668	065065	0.187912	0.161677	0.240292	0.885632	0.287494	070489
ash	004332	0.113858	0.151458	430817	0.862211	157531	065092	018076
alcalinity_ash	0.005480	0.037488	0.016268	0.063172	0.049902	0.074794	149892	080382
magnesium	020748	0.974629	099771	0.184381	009645	0.054118	0.015088	002555
total_phenols	0.998890	0.022272	033182	023580	004593	002403	003512	0.002266
flavanoids	0.009507	067339	037169	0.368905	0.185038	083839	176913	250621
nonflavanoid_phenols	0.013847	120155	109412	0.615473	0.281703	131963	247855	374679
proanthocyanins	002245	0.013882	0.010282	031499	012403	0.005546	0.006342	038127
color	0.009540	037778	028309	0.264997	0.147812	355282	0.869821	0.047116
hue	0.033232	0.067341	0.944479	0.205120	111605	167790	081176	0.099885
od280_od315	0.000877	022772	054129	0.065496	027146	0.047273	003208	036197
proline	0.003303	073173	145601	0.342398	0.217849	0.034986	185593	0.877540

	Eigenvec	tors		
	Prin9	Prin10	Prin11	Prin12
malic_acid	0.008002	057316	029191	0.012826
ash	019859	014003	0.070478	011416
alcalinity_ash	098151	0.942693	178441	164775
magnesium	0.003472	048573	0.009410	0.000902
total_phenols	0.000195	003957	0.000400	0.002390
flavanoids	0.849549	0.010319	0.002733	026033
nonflavanoid_phenols	514036	159034	038939	0.070461
proanthocyanins	0.035481	0.197010	0.129210	0.969669
color	0.006187	0.141199	017620	017009
hue	022595	011772	0.049075	003569
od280_od315	043031	0.143459	0.970181	155841
proline	0.016411	0.024607	0.007936	0.045369

c) The score plots are shown below for prin1 to prin2. According to prin1-2, alcohol=2 seems to have larger prin1. Based on the eigenvectors in part b, alcohol=2 may have the largest amount of total_phenols.

Differences between correlation and covariance results:

For covariance analysis, only 1 component is used versus 4 in correlation analysis. And the covariance analysis identifies the total_phenols as the feature of different wines whereas the correlation analysis identifies different chemical components as features.