Contents

1	Introduzione	3				
2	MLE					
	2.1 MLE di una Bernoulliana	5				
	2.2 MLE di una Poisson	6				
	2.3 MLE distribuzione Uniforme	7				
	2.4 MLE distribuzione Normale	7				
3	Intervalli di confidenza					
	3.1 μ incognita e varianza σ^2 nota	8				
	3.2 μ incognita e varianza σ^2 incognita	g				
	3.3 Metodo Montecarlo	10				
4	Intervalli di predizione 1					
	4.1 μ incognita e varianza σ^2 incognita	11				
	4.2 Intervalli do confidenza per la varianza	12				
	4.3 Stime per la differenza tra le medie di due popolazioni normali	13				
5	Intervalli di confidenza	15				
	5.1 Intervalli approssimati per Bernoulli	15				
	5.2 Intervalli di confidenza (Bilaterali)	19				
	5.3 Intervalli di confidenza (Unilaterali)	21				
	5.4 Esempio:	21				
	5.5 Intervallo di confidenza	22				
	5.6 Integrali Monte Carlo	23				
	5.7 Intervallo di confidenza di Bernoulli	23				
6	Intervalli di confidenza	24				
	6.1 Intervallo di confidenza nella varianza	24				

	6.2	Intervallo di confidenza	25
	6.3	Intervallo di previsione	27
	6.4	Qualità di uno stimatore	28
	6.5	Proprietà di uno stimatore	28
	6.6	Stimatore unbaieseo	29
	6.7	Valutazione di uno stimatore	29
	6.8	Esempio:	29
7	Test	di ipotesi	3 1
	7.1	Metolodogia alternativa	33
	7.2	Test di Hp unilaterale	34
	7.3		34
	7.4	Uguaglianza media di due popolazioni	35
	7.5	Modelli previsionali	37
		7.5.1 Modelli di regressione previsionale	37
		_	38
		7.5.3 Regressione Lineare (e non)	40

1 Introduzione

In probabilità quello che facciamo noi è quello di supporre che le nostre distribuzioni siano **note**.

in statistica facciamo il contrario, ossia dire qualcosa (anche detto *fare dell'inferenza*) su **parametri sconosciuti**.

Dato che i parametri sono scimage pngonosciuti il massimo che possiamo fare è quello di ottenere una stima dei parametri incogniti.

Codesti signorini sono chiamati **stimatori puntuali** e sono indicati con il simbolo $\hat{\theta}$ (in questo caso stiamo parlando di uno stimatore del parametro incognito θ)

Esisono anche gli *stimatori non puntuali*, noti come **intervalli di confidenza**, ossia un intervallo di valori in cui può essere contenuto il *dato incognito*.

Esempio $\hat{\theta}$? Altezza della popolazione

$$X_1 = 1.7$$
 $X_2 = 1.82$ $X_3 = 1.73$ $X_4 = 1.7$

Possibile soluzione

$$\hat{\theta_a} = \frac{1}{n} \sum_{4}^{5} x_i = \frac{1.7 + 1.82 + 1.73 + 1.7 + 1.8}{5} = \frac{8.75}{5} = 1.75$$

$$\hat{\theta_b} = \frac{\min(x_i) + \max(x_i)}{2} = \frac{3.52}{2} = 1.76$$

$$\hat{\theta_c} = \frac{1}{3} \sum_{2}^{4} x_i = \frac{1}{3} (1.8 + 1.73 + 1.7) = \frac{5.23}{3} = 1.743$$

Scartiamo il più piccolo e il massimo, calcolando poi la media dei rimanenti

2 MLE

Definizione: Stima a Massima Verosomiglianza (Maximum Likelihood Estimation)

Questa classe di stimatori sono molto usati in statistica, servono per determinare i migliori parametri del modello che si adattano ai dati e comparare molteplici modelli per *determinare* quello che si adatta di più ai dati.

Ad esempio la stima di massima verosomiglianza $\hat{\theta}$ è definita come il valore di θ che rende massima $f(x_1, x_2, \ldots, x_n | \theta) \to$ anche detta funziona di likelihood

Likelihood: avendo dei dati quale è la probabilità che un certo modello descriva al meglio la natura dei nostri dati

$$\hat{\theta} = argmaxL(\theta) = argmax[f(X_1 \dots X_n/\theta)]$$

Stima parametrica (Point) Parametric Estimation

Formula generica: Bayes

$$P(\theta/X_1 \dots X_n) = \frac{P(X_1 \dots X_n/\theta)P(\theta)}{P(X_1 \dots X_n)}$$

Verosomiglianza (likelihood)

2.1 MLE di una Bernoulliana

Vengono realizzate n prove indipendenti con probabilità p di successo

$$X_i = \begin{cases} 1 & \text{se la prova i-esima ha successo} \\ 0 & \text{altrimenti} \end{cases}$$

La distribuzione dell X_i è la seguente:

$$P(X_i = k) = p^k (1 - p)^{1 - k}, \qquad k \in \{0, 1\}$$

La likelihood (ossia la funzione di massa congiunta) è:

$$f(x_1, x_2, \dots, x_n | p) := P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n | p)$$

$$= p^{x_1} (1 - p)^{1 - x_1} \dots p^{x_n} (1 - p)^{1 - x_n}$$

$$= p^{\sum_i x_1} (1 - p)^{n - \sum_i x_1} \qquad x_1 = 0, 1 \qquad i = 1, \dots, n$$

Possiamo derivare rispetto a p:

$$\frac{d}{dp}\log f(x_1, x_2, \dots, x_n | p) = \frac{1}{p} \sum_{i=1}^n x_i - \frac{1}{1-p} \left(n - \sum_{i=1}^n x_i \right)$$

Da questo bro possiamo ottenere un'espressione per la stima \hat{p} :

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2.2 MLE di una Poisson

La funzione di *likelihood* è data da:

$$f(x_1, x_2 \dots x_n/\lambda) = \frac{\lambda^{x_1} e^{-y}}{x_1!} \dots \frac{\lambda^{x_n} e^{-\lambda}}{x_n!}$$
$$= \frac{\lambda^{\sum_i x_i} e^{-\lambda}}{x_1! \dots x_n!}$$

Come sempre deriviamo e otteniamo:

$$\frac{d}{d\lambda}\log f(x_1, x_2, \dots, x_n | \lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n$$

Da questo bro possiamo ottenere un'espressione per la stima $\hat{\lambda}$:

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_1$$

La stessa formula può essere applicata al campione X_1, X_2, \dots, X_n :

$$P\{X_i = 1\} = 1 - P\{X_i = 0\}$$

Esempio Numero di incidenti stradali in 10 giornate senza pioggia Dataset: { 4 0 6 5 2 1 2 0 4 3 }

Si vuole stimare per quell'anno la frazione di giornate senza pioggia con 2 incidenti o meno

$$\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i = 2.7$$

Cosi otteniamo che la media della poissoniana è 2.7, la stima desiderata è data da:

$$(1+2.7+(2.7)^2/2)e^{-2.7} \approx 0.4936$$

2.3 MLE distribuzione Uniforme

$$f(X_1, \dots X_n | \theta) = \begin{cases} \frac{1}{\theta} & 0 < x_1 < \theta \\ 0 & \text{altrimenti} \end{cases}$$

La formula per la stima di θ

$$\hat{\theta} = \max\{X_1, \dots, X_n\}$$

2.4 MLE distribuzione Normale

Definizione: La distribuzione normale ha media μ e dev. st. σ incognite La densità congiunta (la likelihood) è data da:

$$f(x_1, x_2, \dots, x_n | \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\mu\sigma}} \exp\left\{-\frac{(x_1 - \mu)^2}{2\sigma^2}\right\}$$

La log-likelihood (metodo semplificato per migliorarci la vita che è già una merda) è data da:

$$\log f(x_1, x_2, \dots, x_n | \mu, \sigma) = -\frac{n}{2} \log(2\pi) - n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

La risoluzione (che lasciamo al libro) ci porta alle formule per le stime:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_1$$

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2}$$

TODO TEORIA DEL LIMITE CENTRALE

3 Intervalli di confidenza

3.1 μ incognita e varianza σ^2 nota

Sia X_1, X_2, \ldots, X_n un campione di una popolazione normale con μ incognita e varianza σ^2 nota

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

Chiedo aiuto alla regia, non so cosa stia sta roba ma comunque:

$$P\left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \approx 0.95\right)$$

Il 95% circa delle volte μ starà a una distanza non superiore a 1.96 σ/\sqrt{n} dalla media aritmetica dei dati. Se osserviamo il campione, e registriamo che $\overline{X}=\overline{x}$, allora possiamo dire che "con il 95% di confidenza"

$$\left(\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

Questo intervallo è detto intervallo di confidenza ad un livello del 95%

Esempio segnale elettrico di valore μ

i valori registrati sono i seguenti: 5 8.5 12 15 7 9 7.5 6.5 10.5

Otteniamo \overline{x} :

$$\overline{x} = \frac{81}{9} = 9$$

Un intervallo di confidenza al 95% per μ è

$$\left(9 - 1.96\frac{2}{3}, \quad 9 + 1.96\frac{2}{3}\right) = (7.69, 10.31)$$

Otteniamo quindi il 95% di fiducia che il messaggio fosse compreso tra 7.69 e 10.31

Figure 1: TODO CAPIRE CHE SFACCIMM è STA ROBA

3.2 μ incognita e varianza σ^2 incognita

Dato che tutti i nostri parametri sono ignoti, non possiamo basarci sul fatto che $\sqrt{n}(\overline{X}-\mu)/\sigma$ è una normale standard, dobbiamo quindi ricorrere a una varianza campionaria come segue:

$$S^{2} := \frac{1}{n-1} \sum_{i} (X_{i} - \overline{X})^{2} \longrightarrow \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

Alla fine otteniamo una variabile aleatoria di tipo t con n-1 gradi di libertà

Per Bilaterale

$$P\left\{\overline{X} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{\alpha}{2}, n_1} \frac{S}{\sqrt{n}}\right\} = 1 - \alpha$$

Per Unilaterale

$$P\left(\overline{X} - t_{\frac{\alpha}{2}, n-1} \frac{\sigma}{\sqrt{n}} < \mu\right) / P\left(\mu < \overline{X} + t_{\frac{\alpha}{2}, n_1} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

3.3 Metodo Montecarlo

supponendo di avere una funzione f da \mathbb{R}^r in \mathbb{R} e vogliamo stimare la quantità θ :

$$\theta := \int_0^1 \int_0^1 \cdots \int_0^1 f(y_1, y_2, \dots, y_n) \, dy_1 \, dy_2 \dots \, dy_n$$

Possiamo notare che U_1, U_2, \dots, U_r sono var. al. *uniformi* su 0,1 quindi:

$$\mathbb{E}[f(U_1, U_2, \dots, U_r)] = \theta$$

Se produciamo un numero casuale distribuito come la funzione e lo ripetiamo n volte, possiamo stimare $\pmb{\theta}$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Esempio pensiamo alla stima di questo integrale:

$$\theta := \int_0^1 \sqrt{1 - y^2} \, dy = \mathbb{E}[\sqrt{1 - U^2}]$$

Se $U_1, U_2, \ldots, U_{100}$ sono variabili aleatorie con tale distribuzione e indipendenti ponendo

$$X_i := \sqrt{1 - U_i^2}$$
 $i = 1, 2, \dots, 100$

Otteniamo un campione di 100 variabili aleatorie di media θ . Calcoliamo ora la media campionaria:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_1 = 0.786$$

e successivamente la deviazione standard campionaria:

$$S = 0.23$$

dato che $t_{0.025,99} \approx 1.985$ otteniamo che un intervallo di confidenza al 95% per θ è il seguente:

$$0.786 \pm 1.985 \cdot 0.023$$

Quindi il valore è compreso tra 0.740 e 0.832

4 Intervalli di predizione

4.1 μ incognita e varianza σ^2 incognita

Supponiamo che $X_1, X_2, \ldots, X_n, X_{n+1}$ sia un campione normale di media μ e varianza σ^2 entrambe *incognite*

$$\mu = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Per la riproducibilità

$$X_{n+1} - \overline{X}_n \sim \mathcal{N}(0, \sigma^2 + \frac{\sigma^2}{n}) \longrightarrow \frac{X_{n+1} - \overline{X}_n}{\sigma\sqrt{1 + 1/n}}$$

Dato che σ è incognita dobbiamo sostituirla col suo stimatore (scegliendo la *devi-azione standard campionaria* quindi poniamo:

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Questa grandezza è indipendente da \overline{X}_n quindi otteniamo

$$\frac{X_{n+1} - \overline{X}_n}{S_n \sqrt{1 + 1/n}} \sim t_n - 1$$

Esempio prendiamo in campione i valori rilevati da un contapassi negli ultimi 7 giorni

Dataset: 6822 5333 7420 6252 7005 6752

Si trovi l'intervallo di predizione al 95% di confidenza

Risoluzione: le statistiche del campione sono:

$$\overline{X}_7 \approx 6716.57$$
 $S_7 \approx 733.97$

Dalle tabelle ricaviamo che $t_{0.025,6}\approx 2.447$ (+ altri passaggi) concludiamo col dire che il 95% di confidenza che X_8 cadrà nell'intervallo [4796, 8637]

4.2 Intervalli do confidenza per la varianza

Se X_1, X_2, \ldots, X_n è un campione di una distribuzione *normale* con parametri μ σ^2 **incogniti** ci possiamo basare sul fatto che

Formula generica:

$$(n-1)\frac{S^2}{\sigma^2} \sim \mathcal{X}_{n-1}^2$$

Per caso Bilaterale

$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2},n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right) \tag{1}$$

Per caso Unilaterale

$$P\left(0 < \sigma^2 < \frac{(n-1)S^2}{\mathcal{X}_{1-\alpha,n-1}^2}\right) / P\left(\frac{(n-1)S^2}{\mathcal{X}_{\alpha,n-1}^2} < \sigma^2\right) \tag{2}$$

Stime per la differenza tra le medie di due popolazioni 4.3 normali

Siano X_1, X_2, \ldots, X_n e Y_1, Y_2, \ldots, Y_m due campioni normali e differenti e denotiamo con μ_1 e σ_1^2 e con μ_2 e σ_2^2 $\overline{X}-\overline{Y}$ è lo stimatore di massima verosomiglianza $\mu_1-\mu_2$

Tabella 7.1 Intervalli con livello di confidenza $1 - \alpha$ per campioni normali.

$$\overline{X}_1, X_2, \dots, X_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$\overline{X} := \frac{1}{n} \sum_{i=1}^n X_i, \qquad S := \left(\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2\right)^{1/2}$$

Ipotesi	θ	Intervallo bilaterale	Intervallo sinistro	Intervallo destro
σ^2 nota	μ	$\overline{X}\pm z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$	$\left(-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$	$\left(\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$
σ^2 non nota	μ	$\overline{X}\pm t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}}$	$\left(-\infty, \overline{X} + t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)$	$\left(\overline{X} - t_{\alpha, n-1} \frac{S}{\sqrt{n}}, \infty\right)$
μ non nota	σ^2	$\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}},\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}\right)$	$\left(0, \frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}\right)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha,n-1}}, \infty\right)$

Per ottenere uno $\it stimatore$ non puntuale, dobbiamo conoscere la distribuzione di $\overline{X}-\overline{Y}$ poiche:

$$\overline{X} \sim \mathcal{N}\left(\mu_1, \frac{\sigma_1^2}{n}\right) \qquad e \qquad \overline{Y} \sim \mathcal{N}\left(\mu_2, \frac{\sigma_2^2}{m}\right)$$

Possiamo dedurre che:

$$\overline{X} - \overline{Y} \sim \mathcal{N}\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}\right)$$

lpotizzando di conoscere σ_1^2 e σ_2^2 abbiamo che:

$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n + \sigma_2^2 / m}} \sim \mathcal{N}(0, 1)$$

e possiamo dedurre, con i passaggi che ci sono ormai familiari, che

Per caso Bilaterale

$$1 - \alpha = P\left(-z_{\frac{\alpha}{2}} < \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/n + \sigma_2^2/m}} < z_{\frac{\alpha}{2}}\right)$$

$$= P\left(\overline{X} - \overline{Y} - z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}\right)$$

Per caso Unilaterale

$$1 - \alpha = P\left(\overline{X} - \overline{Y} - z_{\alpha}\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} < \mu_1 - \mu_2\right)/P$$
$$= \left(\mu_1 - \mu_2 < \overline{X} - \overline{Y} - z_{\alpha}\sqrt{\frac{\sigma_2^2}{n} + \frac{\sigma_2^2}{m}}\right)$$

5 Intervalli di confidenza

5.1 Intervalli approssimati per Bernoulli

$$P\{X_i = x\} = P^x (1 - P)^x \quad x \in \{0, 1\}$$

Dove X è una variabile aleatoria e x una variabile sperimentale

$$\begin{split} f(x_1 \dots x_n/P) &= P^{x_1} (1-P)^{1-x_1} \cdot P^{x_2} (1-P)^{1-x_2} \dots P^{x_n} (1-P)^{1-x_n} = \\ P^{\sum_i^n x_i} (1-P)^{n-\sum_1^n x_i} &\longrightarrow \text{Bisogna trovare il } \mathbf{massimo} \text{ della funzione} \\ log(f(x_1 \dots x_n/P)) &= \sum_1^n x_i log P - (n-\sum_i^n x_i) log (1-P) \\ &= \frac{d}{dP} [log(f)] = 0 = \frac{1}{\hat{P}} \sum_i^n x_i - \frac{n-\sum_i x_i}{(1-\hat{P})} \\ &= (1-\hat{P}) \sum_i x_i = \hat{P}(n-\sum_i x_i) \\ &= \hat{P} = \frac{\sum_i x_i}{n} \quad \text{MLE} \end{split}$$

Esercizio 1 Probabilità che Oneto dia 30L (Lode)

$$n = 120$$

$$\sum_{i}^{120} x_{i} = 18$$

$$\hat{P} = \frac{18}{120} = 0.15 \rightarrow 15\%$$

Esercizio 2 N studenti da 30 e lode

 $n_1 = 18 \leftarrow \mathsf{Oneto}$

 $n_2 = 20 \leftarrow \mathsf{Anguita}$

 $n_{1.2} = 10 \leftarrow 30 \text{L}$ sia con Oneto che con Anguita

N=? Studenti da **30 e Lode**

$$\hat{P}_{1} \approx \frac{n_{1}2}{n_{2}} \qquad \qquad \hat{P}_{1} \approx \frac{n_{1}}{N} \qquad \qquad \frac{n_{1,2}}{n_{2}} = \frac{n_{1}}{N}$$

$$\implies N = \frac{n_{1} \cdot n_{2}}{n_{2}} \rightarrow \frac{18 \cdot 20}{10} = 36$$

MLE POISSON

$$f(x_1, x_2 \dots x_n/\lambda) = \frac{e^{-\lambda} \lambda^{x_1}}{x_1!} \cdot \frac{e^{-\lambda} \lambda^{x_2}}{x_2!} \cdots \frac{e^{-\lambda} \lambda^{x_n}}{x_n!}$$
$$= \frac{e^{-n\lambda} \lambda^{\sum_i x_i}}{x_1! x_2! \dots x_n!}$$

Formula generica: $\lambda = \frac{\sum_{i} x_i}{\lambda}$

Esercizio 3 Stima del numero di incidenti medio in auto n = 10 $x_1 = \{4, 0, 6, 5, 2, 1, 2, 0, 4, 3\}$ $\hat{\lambda} = \frac{\sum_i x_i}{n} = \frac{27}{10} = 2.7$

$$\hat{\lambda} = \frac{\sum_{i} x_i}{n} = \frac{27}{10} = 2.7$$

$$P\{x \le 2\} = e^{-2.7} \left(\frac{2.7^0}{0!} + \frac{2.7^1}{1!} + \frac{2.7^2}{2!}\right) \approx .4936 \to 49.36\%$$

Probabilità che non ci siano più di 2 incidenti

MLE UNIFORME

$$f(x_1, x_2 \dots x_n/\theta) = \begin{cases} \frac{1}{\theta^n} & 0 < x_i < \theta \\ 0 & \text{altrimenti} \end{cases}$$

$$\hat{\theta} = \max\{x_i\}$$

$$\frac{\hat{\theta}}{2} = \frac{\max\{x_i\}}{2}$$

MLE GAUSSIANA

$$f(x_1, x_2 \dots x_n/\mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x_1-\mu)^2}{2\sigma^2}}$$

$$(\frac{1}{2\pi})^{\frac{n}{2}} \frac{1}{\sigma^n} e^{\frac{-\sum_i (x_i - \mu)^2}{2\sigma}}$$

$$log[f] = -\frac{n}{2} log 2\pi - n log \sigma - \frac{\sum_i (x_i - \mu)^2}{2\sigma^2}$$

$$\frac{d log f}{d\mu} = 0 = \frac{\sum_i (x_i - \mu)^2}{\sigma^2} \longrightarrow \hat{\mu} = \frac{\sum_i x_i}{n}$$

$$\frac{d log f}{d\sigma} = 0 = -\frac{n}{\sigma} + \frac{\sum_i (x_i - \mu)^2}{4\sigma^4} \rightarrow \sigma = \sqrt{\frac{\sum_i (x_i - \mu)^2}{n}}$$

Esercizio primo

$$x_1 = 1.7$$

$$x_2 = 1.82$$

$$x_3 = 1.73$$

$$x_4 = 1.7$$

$$x_5 = 1.8$$

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{n} = \frac{1.7 + 1.82 + 1.73 + 1.7 + 1.8}{5} = 1.75$$

$$\hat{\sigma} = \sqrt{\frac{0.05^{2} + 0.07^{2} + 0.02^{2} + 0.05^{2} + 0.05^{2}}{5}} \approx 0.051$$

Intervalli di confidenza normali TODO

Intervalli di confidenza gaussiani σ^2 Nota

$$x_1mx_2\dots x_n$$

$$\hat{\mu} \longleftarrow \mu$$

$$\begin{array}{l} \hat{\mu} \longleftarrow \mu \\ \frac{\overline{x} - \mu}{\underline{\sigma}} \sim \mathcal{N}(0, 1) \end{array}$$

$$P(-1.96 < \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} < +1.96) = 0.95$$

Esempio: Sistema di comunicazione $\sigma^2 = 4$ n = 9

$$x_1 = \{5.85, 12, 15, 7, 9, 7.5, 6, 5, 10.5\}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{9} \sum_{i=1}^{n} x_i = \frac{81}{9} = 9$$

$$\begin{split} P\left(9-1.96\frac{\sigma}{\sqrt{m}} < \mu < 9+1.96\frac{\sigma}{\sqrt{m}}\right) &= 0.95 \\ p\left(9-1.96\frac{2}{3} < \mu < 9+1.96\frac{2}{3}\right) &= 0.95 \\ &\longrightarrow [7.693, 10.31] \to \mu \text{ si trova tra } 7.693 \text{ e } 10.31 \end{split}$$

In generale $Prob = 1 - \alpha$

$$(\overline{x}-z_a\frac{\sigma}{\sqrt{n}},\overline{x}+z_a\frac{\sigma}{\sqrt{n}})\to Si \text{ rileva dalle tavole}$$

5.2 Intervalli di confidenza (Bilaterali)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$x_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$\overline{X} \sim (\mu, \frac{\sigma^2}{n})$$

$$\mathcal{Z} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1) \quad Var(\frac{x}{2}) = \frac{1}{\sigma^2} Var(x)$$

Supponiamo che σ sia nota:

$$\begin{split} & \Pr\left\{-z_{\frac{\alpha}{2}} < Z < +z_{\frac{\alpha}{2}}\right\} = 1 - \alpha \\ & \Pr\left\{-z_{\frac{\alpha}{2}} < \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{m}}} < +z_{\frac{\alpha}{2}}\right\} = 1 - \alpha \\ & \Pr\left\{-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}} < \bar{x} - \mu < +z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}}\right\} \\ & \Pr\left\{-\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}} < -\mu < -\bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}}\right\} = \\ & \Pr\left\{\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}} < \mu < \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{m}}\right\} = 1 - \alpha \end{split}$$

5.3 Intervalli di confidenza (Unilaterali)

$$\Pr\left\{z < z_{\alpha}\right\} = 1 - \alpha$$

$$\Pr\left\{\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{m}}} < z_{\alpha}\right\} = 1 - \alpha$$

$$\Pr_{r}\left\{\bar{x} - \mu < z_{\alpha}\frac{\sigma}{\sqrt{m}}\right\} = 1 - \alpha$$

$$\Pr\left\{-\mu < -\bar{x} + z_{\alpha}\frac{\sigma}{\sqrt{m}}\right\} = 1 - \alpha$$

$$\Pr\left\{\bar{x} - z_{\alpha}\frac{\sigma}{\sqrt{m}} < \mu\right\} = 1 - \alpha$$

$$\mu \in \left(\bar{x} - z_{\alpha}\frac{\sigma}{\sqrt{m}}, +\infty\right)$$

5.4 Esempio:

Pesca stagionale dei salmoni (*Fisso intervallo -> trovo n*) Ad ogni stagione il peso medio dei salmoni è diverso ma $\sigma=0.3~{\rm Kg}$ Intervallo di confidenza al 95%, quindi $\alpha=0.05$

$$(\overline{X}-1.96\frac{\sigma}{\sqrt{n}},\overline{X}+1.96\frac{\sigma}{\sqrt{n}})$$

$$1.96\frac{\sigma}{\sqrt{n}}\geq 0.1 \quad \sqrt{n}\geq \frac{1.96}{0.1}\sigma$$

$$n\geq (\frac{1.96}{0.1}0.3)^2=5.88^2\approx 34.6\leftarrow \mathsf{salmoni}$$

5.5 Intervallo di confidenza

con media e varianza incognite

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \sigma \qquad \text{Non nota}$$

$$s^2 = \frac{1}{n-1} \sum_i \left(x_i - \bar{x} \right)^2 = \frac{1}{n-1} \sum_i^n \left(x_i^2 - n \bar{x}^2 \right)$$

$$= \frac{1}{n-1} \sum_i \left(x_i^2 + \bar{x}^2 - 2x_i \bar{x} \right)$$

$$= \frac{1}{n-1} \sum_i x_i^2 + \frac{n \bar{x}^2}{n-1} - 2 \bar{x} \frac{\bar{x} n}{n-1}$$

$$T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim T_n - 1 \quad \text{(T studenti con n gradi di libertà)}$$

Esempio: Trasimttente (μ) e ricevitore $(\mu + \text{rumore})$

$$95\%(7.69, 10.31)$$
 $\hat{\mu} = 9, \sigma^2 = 4$

$$\begin{array}{l} X_i \{5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5\} \\ \hat{\mu} = \overline{X} = \frac{1}{9} \sum_{i}^{n} X_i = \frac{81}{9} = 9 \\ s^2 = \frac{1}{8} \sum_{i} (X_i^2 - 9.81) \approx 9.5 \quad s = 3.082 \end{array}$$

$$\mu \in (9-2.306\frac{3.082}{3}, 9+2.306\frac{3.082}{3}) = (6.63, 11.37)$$

Si può dimostrare che $T_{rac{lpha}{2}\cdot n-1}\mathbb{E}[S]\geq z_{lpha}\sigma$

5.6 Integrali Monte Carlo

$$\theta = \mathbb{E}[f(u)] = \int_{-\infty}^{+\infty} f(u)p(u) \, du = \int_{-\infty}^{+\infty} f(u) \, du$$

Esempio

$$\begin{array}{ll} \int_0^1 \sqrt{1-x^2}\,dx = ? \ \mathbb{E}[\sqrt{1-x^2}] & n=100 \\ X_i = \sqrt{1-U_i^2} & X = \{X_1, X_2 \dots X_100\} \\ \hat{\theta} = \overline{X} \pm t_{\frac{\alpha}{2}}, 99 \frac{s}{\sqrt{100}} \rightarrow \text{Per vedere se il risultato è corretto (confidenza)} \end{array}$$

5.7 Intervallo di confidenza di Bernoulli

n esperimenti Binomiale media np varianza np(1-p)

$$\hat{P} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad X_i \in \{0, 1\}$$

$$X=n\hat{P}\quad P_r\{-z_{\frac{\alpha}{2}}< z< z_{\frac{\alpha}{2}}\approx 1-\alpha\}$$
 Dove
$$\mathbf{z}=\frac{X-np}{\sqrt{np(1-p)}}$$

$$\frac{x-nP}{\sqrt{nP(1-P)}} \sim \mathcal{N}(0,1)$$

$$\rho_r \left\{ -z_{\frac{a}{2}} < \frac{x - mp}{\sqrt{mp(1-\hat{p})}} < z_{\frac{a}{2}} \right\} \cong 1 - \alpha$$

$$\rho_r \left\{ \hat{p} - z_{\frac{a}{2}} \sqrt{\frac{p(1-p)}{m}} < \mu < \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-p)}{m}} \right\} \simeq 1 - \alpha$$
(3)

6 Intervalli di confidenza

Se σ^2 è nota allora:

$$X_{i} \sim \mathcal{N}(\mu, \sigma^{2}) \quad \overline{X} = \frac{1}{n} \sum_{i}^{n} X_{i}$$

$$\mu \in (-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$$

$$\mu \in (\overline{X} - z_{\frac{\sigma}{\sqrt{n}}}, \overline{X} + z_{\frac{\sigma}{\sqrt{n}}}) \quad p_{r}(1 - \alpha)$$

$$\mu \in (-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$$

$$\mu \in (\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$$

 $s^2 = \frac{1}{n-1} \sum_i (X_i - \overline{X})$ Se σ^2 è ignota allora:

$$\mu \in (\overline{X} - z_{\frac{\alpha}{2}}, n - 1 \frac{s}{\sqrt{n}}) \quad \sigma^2 \to s^2 = z \to t$$

6.1 Intervallo di confidenza nella varianza

$$(n-1)\frac{S^2}{\sigma^2} \sim \mathcal{X}^2 \quad X_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$p_r \left\{ \mathcal{X}_{1-\frac{\alpha}{2},n-1}^2 \le (n-1) \frac{s^2}{\sigma^2} \le \mathcal{X}_{\frac{\alpha}{2},n-1} \right\}$$

$$p_r \left\{ \frac{s^2(n-1)}{\mathcal{X}_{\frac{\alpha}{2},n-1}^2} \le \sigma^2 \le \frac{s^2(n-1)}{\mathcal{X}_{1-\frac{\alpha}{2},n-1}^2} \right\} = 1 - \alpha$$

$$\sigma^2 \in \left(\frac{s^2(n-1)}{\mathcal{X}_{\frac{\alpha}{2},n-1}^2}, \frac{s^2(n-1)}{\mathcal{X}_{1-\frac{\alpha}{2},n-1}} \right) \quad p_r = 1 - \alpha$$

Esempio: Laminatoio n = 4 $X_i = \{0.123, 0.124, 0.126, 0.12\}$ spessore in mm

Svolgimento

$$\frac{1}{4} \sum_{i}^{4} X_{i} = \frac{0.493}{4} = 0.12325$$

$$\frac{1}{4-1} \sum_{i}^{4} (X_{i} - 0.12325)^{2} = 1.875 \cdot 10^{-5}$$

$$\sigma^{2} \in \left(\frac{s^{2}(n-1)}{9.348}, \frac{s^{2}(n-1)}{0.216}\right)$$

Dove 9.348 e 0.216 sono ricavati dalle tabelle

Facciamo la radice:

$$\sigma \in (0.0014, 0.0093) \rightarrow 95\%$$

6.2 Intervallo di confidenza

della differenza di due medie:

M campioni

$$\begin{split} X_i \sim \mathcal{N}(\mu_1, \sigma_1^2) & Y_i \sim \mathcal{N}(\mu_2, \sigma_2^2) \\ \overline{X} = \frac{1}{n} \sum_i^n X_i & \overline{Y} = \frac{1}{m} \sum_i^m Y_i \\ \overline{X} - \overline{Y} \sim \mathcal{N} \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} \right) \\ \mathcal{N}(0, 1) \sim \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \\ \mu_1 - \mu_2 \in \left(\overline{X} - \overline{Y} - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}, \overline{X} - \overline{Y} + z_{\frac{\alpha}{2}}, \overline{X} - \overline{Y} + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \right) \end{split}$$

Se σ_1^2, σ_2^2 non sono note:

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})$$

$$S_2^2 = \frac{1}{m-1} \sum_{i=1}^{m} (X_i - \overline{Y})$$

$$(n-1) \frac{S_1^2}{\sigma_1^2} \sim \mathcal{X}_{n-1}^2$$

$$(n-1) \frac{s_2^2}{\sigma_2^2} \sim \mathcal{X}_{n-1}^2$$

Possiamo andare avanti solo se $\sigma_1^2=\sigma_2^2=\sigma^2$

$$(n-1)\frac{s_1^2}{\sigma^2} + (n-1)\frac{s_2^2}{\sigma^2} \sim \mathcal{X}_{n+m-2}^2$$

$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma^2(\frac{1}{n} + \frac{1}{m})}} \longrightarrow \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{S_p(\frac{1}{n} + \frac{1}{m})}}$$

$$\sim \mathcal{N}(0,1) \qquad \sim T_{n+m-2}$$

$$S_p = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

Se σ sono ignote ma uguali

$$\mu_1 - \mu_2 \in (\overline{X} - \overline{Y} - T_{\frac{\alpha}{2}, n+m-2} \sqrt{s^2(\frac{1}{n} + \frac{1}{m})})$$

$$\overline{X} - \overline{Y} + T_{\frac{\alpha}{2}, n+m-2} \sqrt{s^2(\frac{1}{n} + \frac{1}{m})}$$

6.3 Intervallo di previsione

$$X_1, \dots X_n, X_{n+1} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\overline{X}_n = \frac{1}{n} \sum_i^n X_i \quad \overline{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

$$\overline{X}_n - X_{n+1} \sim \mathcal{N}(0, \sigma^2 + \frac{\sigma^2}{n}) \rightarrow (\mu - \mu, \sigma^2 + \frac{\sigma^2}{n})$$

$$\sigma^2(1 + \frac{1}{n}) \frac{X_n - X_{n+1}}{\sigma\sqrt{1 + \frac{1}{n}}} \sim \mathcal{N}(0, 1)$$

$$s_n^2 = \frac{1}{n-1} \sum_i (X_i - \overline{X}_n)^2$$

$$X_{n+1} \in (\overline{X}_n - T_{\frac{\alpha}{2}, n-1} s_n \sqrt{1 + \frac{1}{n}}, \overline{X}_n + T_{\frac{\alpha}{2}, n-1} s_n \sqrt{1 + \frac{1}{n}}) \longrightarrow P_r(1 - \alpha)$$

Esempio smartwatch contapassi n=7

$$DOM \quad 6752 \quad X_7$$

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^{m} X_i = \frac{47016}{7} \approx 6717$$

$$1 - \alpha = 95\% \quad \alpha = 5\%$$

$$t_{0.0025,6} = 2.997$$

$$S_n = \sqrt{S_n^2} = 7.333.8$$

$$x_{n+1} \in (6717 - 2.447 \cdot 733397 \sqrt{1 + \frac{1}{7}}, 6717 + 2.447 \cdot 73397 \sqrt{1 + \frac{1}{7}})$$

$$X_{n+1} \in (9796, 8637) \mu \in (6037, 7396)$$

6.4 Qualità di uno stimatore

$$X = X_1 \dots X_n \quad \theta \leftarrow \mathsf{parametro} \qquad d(x) \leftarrow \mathsf{stimatore} \ \mathsf{di} \ \theta \ (d(x) - \theta)^2 \ \mathbb{E}[(d(x) - \theta)^2]$$

Errore Quadratico (*misura della qualità*) Errore Quadratico Medio (*M.S.E*) Rischio $r(d,\theta)=\mathbb{E}[(d-\theta)^2]$ Lo stimatore "ottimo" sarà quello con il rischio minimo -> d con r minimo θ

Esempio $d^*(x)=4$ $\sec\theta=4\Rightarrow d^*=$ stimatore ottimo(per tutti gli altri valori non va

6.5 Proprietà di uno stimatore

Def: $b_{\theta}(d)=\mathbb{E}[d]-\theta \to \text{bias o polarizzazione Uno stimatore non è$ **polarizzato** $se <math>b_{\theta}(d)=0$

$$\begin{array}{ll} \textbf{Esempio} &: X_1 \dots X_n \quad \theta \text{media} \\ d_1(X_1 \dots X_n) &= X_1 \\ d_2(X_1 \dots X_n) &= \frac{X_1 + X_2}{2} \\ d_3(X_1 \dots X_n) &= \frac{X_1 + X_2 + \dots X_n}{n} \end{array}$$

Tutti questi sono unbiased

6.6 Stimatore unbaieseo

$$r(d,\theta)=\mathbb{E}[(d(x)-\theta)^2]=\mathbb{E}[(d(x)-\mathbb{E}[d(x)])^2]=Var(d)$$
tra gli stimatori non polarizzati di ottimo è quello con la varianza minima

6.7 Valutazione di uno stimatore

$$X = X_1 \dots X_n \quad \theta = ?$$

Dove θ è un parametro e d(x) è uno stimatore di θ

$$\begin{split} r(d,\theta) &(\text{mse}) \text{ rischio } \qquad b_{\theta}(d) = \mathbb{E}[d] - \theta \\ &\text{se } b_{\theta}(d) = 0 \Rightarrow r(d,\theta) = Var(d) \\ & \text{se } b_{\theta}(d) \neq 0 ? \ r(d,\theta) = ? \\ \\ r(d,\theta) &= \mathbb{E}[(d(x)-\theta)^2] = \mathbb{E}[(d(x)-\mathbb{E}[d]+\mathbb{E}[d]-\theta)^2] \\ &= \mathbb{E}[(d-\mathbb{E}[d])^2 + (\mathbb{E}[d]-\theta)^2 - 2(d-\mathbb{E}[d])(\mathbb{E}[d]-\theta)] \\ &= \mathbb{E}[(d-\mathbb{E}[d])^2] + \mathbb{E}[(\mathbb{E}[d]-\theta)^2] - 2(\mathbb{E}[d]-\theta) \cdot \mathbb{E}[(d-\mathbb{E}[d])] \\ \\ r(d,\theta) &= \mathbb{E}[(d-\mathbb{E}[d])^2] + \mathbb{E}[(\mathbb{E}[d]-\theta)^2] \\ &= Var(d) + b_{\theta}(d)^2 \leftarrow \mathsf{bias}^2 \end{split}$$

6.8 Esempio:

Stimatore della media di una distribuzione uniforme

$$\mathbb{E}[X_i] = \theta/2 \qquad d_1 = 2\frac{1}{n}\sum_i^n X_i X_1, X_2 \dots X_n \qquad d_2 = \max X_i$$

$$d_1: \mathbb{E}[d_1] = \frac{2}{n} \sum_i \mathbb{E}[X_i] = \frac{2}{n} n \frac{\theta}{2} = \theta$$

$$r(d_1,\theta) = Var(d_1) = \frac{4}{n^2}nVar(X_i) = \frac{4}{n}\frac{\theta^2}{12} = \frac{\theta^2}{3n} \Leftarrow Unbiased$$

$$F_2(x) = P_r\{d_2(x) \le x\} = P_r\{\max X_1 \le x\}$$

$$= P_r\{X_1 \le \forall i \in 1\} = \prod_{i=1}^n P_r\{X_i \le x\} = (\frac{x}{\theta})^n$$

$$f_2(x) = \frac{d}{dx}F_2(x) = n\frac{x^{n-1}}{\theta^n} \quad x \le \theta$$

$$\mathbb{E}[d_{2}] = \int_{0}^{\theta} x f_{x}(x) dx = \int_{0}^{\theta} \frac{n}{\theta^{n}} x^{n} dx = \frac{n}{\theta^{n}} \left[\frac{x^{n+1}}{n+1} \Big|_{0}^{\theta} \right] = \frac{n}{n+1} \theta$$

$$\mathbb{E}[d_{2}^{2}] = \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{2} f(x) dx = \frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n+1} dx = \frac{n}{\theta^{n}} \left[\frac{x^{n+2}}{n+2} \Big|_{0}^{\theta} \right] = \frac{n}{n+2} \theta^{2}$$

$$Var(d_{2}) = \mathbb{E}[d^{2}] - \mathbb{E}[d_{2}]^{2} = \frac{n}{n+2} \theta^{2} - \frac{n^{2}}{(n+1)^{2}} \theta^{2} = \frac{n}{(n+2)(n+1)^{2}} \theta^{2}$$

$$r(d_{2}, \theta) = Var(d_{2}) + (\mathbb{E}[d_{2}] - \theta)^{2} = \frac{2 \cdot \theta^{2}}{(n+1)(n+2)}$$

$$n \geq 4 \quad r(d_{2}, \theta) < r(d_{1}, \theta) \qquad d_{3} = \frac{n+1}{n} d_{2}$$

In sintesi

$$\begin{split} r(d_1,\theta) &= \frac{\theta^2}{3n} \Leftarrow \mathsf{Unbiased} \\ r(d_2,\theta) &= \frac{2\theta^2}{(n+1)(n+2)} \Leftarrow \mathsf{Biased} \\ r(d_3,\theta) &= \frac{\theta^2}{n^2+2n} \Leftarrow \mathsf{Unbiased} \\ r(d_4,\theta) &= \frac{\theta^2}{(n+1)^2} \Leftarrow \mathsf{Biased} \end{split}$$

7 Test di ipotesi

lpotesi: Affermazione rispetto a uno o più parametri di una distribuzione lpotesi da confutare: H_0 (ipotesi nulla)

Esempio

$$X_1 \dots X_n \sim \mathcal{N}(\mu, \sigma^2)$$

$$H_0 : \mu = 0$$

$$H_a : \mu \neq 0$$
(4)

Diamo per scontato che l'ipotesi sia **vera** Dobbiamo cercare di *confutarla*

Definizione Regione critica tale che:

$$(X_1 \dots X_n) \in C \to H_0$$
è rifiutata $(X_1 \dots X_n) \not\in C \to H_0$ è accettata $\alpha = \text{Livello di } \mathbf{significatività} \text{ del test } (\alpha = 10\%, 5\% \dots)$

Procedimento

- Fisso alpha
- ullet Suppongo che lpha sia vera
- ullet calcolo stima di μ
- verifico che non sia "troppo distante"

$$X_1 \dots X_n \sim \mathcal{N}(\mu, \sigma^2)$$

$$H_0 : \mu = \mu_0 \quad H_a : \mu \neq \mu_0$$

$$\overline{X} = \frac{1}{n} \sum_i X_i$$

$$\begin{array}{ll} \textbf{Regione critica} & \{(X_1 \dots X_n): |\overline{X} - \mu_0| > c\} \\ P_{r_{\mu_0}} & \{|\overline{X} - \mu_0| > c\} = \alpha \\ P_{r_{\mu_0}} & \left\{\frac{|\overline{X} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} > \frac{c}{\frac{\sigma}{\sqrt{n}}}\right\} = \alpha \\ P_{r_{\mu_0}} & \{|z| > z_\alpha\} = \alpha \end{array}$$

Esempio (5 transimissioni)
$$n=5$$
 $H_0: \mu=8$ $\overline{X}=9.5$ $\alpha=5\%$

Ipotizzando che H_0 sia vera:

$$\frac{|\overline{X} - \mu|}{\frac{\sigma}{\sqrt{n}}} = \frac{|9.5 - 8|}{\frac{2}{\sqrt{5}}} \approx 1.68$$

Se:

 $\alpha = P_r(\text{rifiuto } H_0 \mid H_0 \text{ vera})$

 $\alpha \uparrow \text{più }$ "facile" rifiutare l'ipotesi

 $\alpha \downarrow$ più "difficile" rifiutare l'ipotesi

7.1 Metolodogia alternativa

$$Ts = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} o \mathsf{Statistica}$$
 di test

P-value = **probabilità** di ottenere un valore più "anomalo" di quello osservato

Esempio:
$$X_i \sim \mathcal{N}(\mu, 4)$$

$$n = 5$$

$$\overline{X} = 8.5$$

$$\frac{|\overline{X} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} = \frac{|8.5 - 8|}{\frac{2}{\sqrt{5}}} = \frac{\sqrt{5}}{2}0.5 \approx 0.559$$

 $P\{|z|>0.559\}=2P\{z>0.559\}\approx 2\cdot 0.288=0.579 \to \text{P-value}$

Se
$$\overline{X}=11.5$$
:

$$\frac{|\overline{X} - \mu_0|}{\frac{\sigma}{\sqrt{n}}} = \frac{|11.5 - 8|}{\frac{2}{\sqrt{5}}} \approx 3.913$$

 $P\{|z|>3.913\}=2P\{z>3.913\}\leq 0.00005 \rightarrow \underline{\text{Rifiuto ipotesi } H_0}$

7.2 Test di Hp unilaterale

$$H_0: \mu = \mu_0(\mu \leq \mu_0) \qquad \qquad H_a: \mu > \mu_0$$

$$C = \{(X_1 \dots n) \cdot \overline{X} - \mu_0 > c\}$$

$$P_{r_{\mu_0}}\{\overline{X} - \mu_0 > c\} = P_r\{\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > \frac{c}{\frac{\sigma}{\sqrt{n}}}\} = P_{r_{\mu_0}}\{z > z_a\} = \alpha$$
 Statistica test $\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \leq z_{\alpha}$ accetto

7.3 Test di ipotesi

H_0	H_a	TS	Livello $lpha$	P - Value
$\mu = \mu_0$	$\mu \neq \mu_0$	$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{1}}$	Rifiuto H_0 se $TS > \frac{z\alpha}{2}$	$2P(z \ge TS)$

Altre ipotesi :

$$\begin{array}{lllll} H_0 & H_a & \text{TS} & \text{Livello } \alpha & \text{P - Value} \\ \\ \mu < \mu_0 & \mu > \mu_0 & \frac{\overline{X} - \mu_0}{\sigma/\sqrt{2}} & H_0 & z_\alpha > TS & P(z \geq TS) \\ \mu \geq \mu_0 & \mu < \mu_0 & // & H_0 & z_\alpha < -TS & P(z \leq TS) \end{array}$$

7.4 Uguaglianza media di due popolazioni

$$\begin{array}{ll} X_{1} \dots X_{n} \sim \mathcal{N}(\mu_{1}, \sigma_{2}^{2}) & Y_{i} \dots Y_{m} \sim \mathcal{N}(\mu_{2}, \sigma_{2}^{2}) \\ \overline{X} = \frac{1}{n} \sum_{i}^{n} X_{i} & \overline{Y} = \frac{1}{m} \sum_{i}^{m} Y_{i} \\ S_{x}^{2} = \frac{1}{n-1} \sum_{i} (X_{i} - \overline{X})^{2} & S_{y}^{2} = \frac{1}{m-1} \sum_{i} (Y_{i} - \overline{Y})^{2} \\ S_{p}^{2} = \frac{(n-1)S_{x}^{2} + (m-1)S_{y}^{2}}{n+m} \end{array}$$

$$\begin{array}{lll} & & & \text{TS} \\ H_0 & H_a & & \frac{\overline{X}-\overline{Y}}{\sqrt{\sigma_{1/n}^2+\sigma_{2/m}^2}} & \text{Livello } \alpha & \text{P - Value} \\ \mu_1 = \mu_2 & \mu \neq \mu_2 & \frac{\overline{X}-\overline{Y}}{\sqrt{S_p^2(\frac{1}{n}+\frac{1}{m})}} & \text{rif. } |TS| > z_{\frac{\alpha}{2}} & 2P(z \geq |TS|) \\ \mu_1 = \mu_2 & \mu \neq \mu_2 & S_i \in \text{T-student} \end{array}$$

4) T-test per coppie di dati Se X_1 e X_2 NON sono indipendenti

$$W_i = X_i - Y_i$$

$$X_i \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

$$Y_i \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

ES Manutenzione (n guasti) tagliand

$$H_0: \mu_a - \mu_b \ge 0 \quad \overline{W} = \frac{1}{5}(-7.5 + 2.5 - 2.5 - 3.5 - 1.5) = -2.5$$

$$S_W^2 = \frac{1}{4}(W_i - \overline{W})^2 = 13$$

$$Ts = \frac{\overline{W}}{\frac{S_W}{\sqrt{n}}} = \frac{\frac{-2.5}{\sqrt{13}}}{\frac{1}{\sqrt{5}}} = 1.55$$

$$P_r\{T_{n-1} \le Ts\} = \{T_4 \le Ts\}$$

5) Test sulla varianza

$$H_0: \sigma^2 = \sigma_0^2 \quad H_a: \sigma^2 \neq \sigma_0^2$$

$$\frac{(n-1)}{\sigma_0^2} \sim \mathcal{X}_{n-1}^2$$

$$Pr\{\mathcal{X}_{1-\frac{\alpha}{2},n-1}^2 \le \frac{(n-1)s^2}{\sigma_0^2} \le \mathcal{X}_{\frac{\alpha}{2},n-1}^2\} = 1 - \alpha$$

Uguaglianza di varianza

$$X_1 \dots X_n$$
 $Y_1 \dots Y_n$ $H_0: \sigma_x^2 = \sigma_y^2$ $H_a: \sigma_x^2 \neq \sigma_y^2$

$$S_x^2 - S_y^2$$
 $Ts = \frac{\frac{S_x^2}{\sigma_x^2}}{\frac{S_y^2}{\sigma_y^2}} = \frac{S_x^2}{S_y^2}$

$$\frac{S_x^2}{S_y^2} \sim F_{n-1,m-1} \qquad Pr\{F_{1-\frac{\alpha}{2},n-1,m-1} \leq \frac{S_x^2}{S_y^2} \leq -F_{1-\frac{\alpha}{2},n-1,m-1}\}$$
 Non rifiuto se soddisfa la disuguaglianza

Test parametro Bernoulli (Var discrete.)

$$H_0: p \le p_0 \quad H_a ip > p_0$$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 n campioni (Bernoulli)

Binomiale ~ Gaussiana (quando n è grande)

X n eventi favorevoli

$$\mathbb{E}[X] = np \qquad Var(X) = np(1-p) \quad \mathcal{N}(np, np(1-p))$$

Esempio Difetti di fabbricazione:

$$\label{eq:control_point} \begin{split} \mathbf{n} &= 300 \ H_oip \leq p_0 \quad p_0 = 2\% \\ \mathsf{X} &= 10 \ \mathsf{n} \ \mathsf{difetti} \end{split}$$

$$\frac{X - np}{\sqrt{nP_0(1 - p_0)}} = \frac{10 - 300 \cdot 0.02}{\sqrt{300 \cdot 0.02 \cdot 0.98}} = 1.65$$

$$Pr\{z>1.65\}=0.0495$$

7.5 Modelli previsionali

7.5.1 Modelli di regressione previsionale

$$Y_i = \alpha + \beta x_i + e_i \qquad e_i \sim \mathcal{N}(0, \sigma^2)$$

Problema $\{x_i, y_i\}_{i=1}^n \quad \alpha, \beta = ?$

Sum of square -> SS $SS = \sum_{i=1}^{n} (y_i - \alpha + \beta x_i)^2 Dove B \ e \ A \ -> \ var \ aleatoria$

$$\begin{cases} \frac{dSS}{dA} = -2\sum_{i=1}^{n} (y_i - A - Bx_i) = 0\\ \frac{dSS}{dB} = -2\sum_{i=1}^{n} (y_i - A - Bx_i)^2 x_i = 0 \end{cases}$$

$$\begin{cases} \sum_{i=1}^{n} y_i = nA + B \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i y_i = n \sum_{i=1}^{n} + B \sum_{i=1}^{n} x_i \end{cases}$$
$$A = \frac{1}{n} \sum_{i=1}^{n} y_i - B \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{y} - \beta \overline{x}$$

7.5.2 Regressione lineare

$$y = \alpha + \beta x$$
 $e \sim (0, 1)$ $y_i = A + \beta x$

$$\begin{array}{ll} \mathbb{E}[B] = \beta & \mathbb{E}[A] = \alpha \\ Var[B] = \frac{\sigma^2}{\sum_i x_i^2 - n\overline{x}} & Var[A] = \frac{\sigma^2 \sum_i x_i^2}{n(\sum_i x_i^2 - n\overline{x}^2)} \end{array}$$

$$SS_R = \sum_i (y_i - (A + Bx_i))^2$$
 (Somma dei quadrati dei residui)

$$\frac{SS_R}{\sigma^2} \sim \mathcal{X}_{n-2}^2$$

$$\mathbb{E}\left[\frac{SS_R}{\sigma^2}\right] = n - 2 \qquad \qquad \mathbb{E}\left[\frac{SS_R}{n-2}\right] = \sigma^2$$

MLE :

$$f_{y_1...y_n}(y_1...y_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\sum(y-(\alpha+\beta x_i0))^2/2\sigma^2}$$

$$\mathsf{MSE} = \mathsf{MLE}$$

Notazione

$$S_{xy} = \sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y}) = \dots = \sum_{i} x_{i} y_{i} - n\bar{x}\bar{y}$$

$$S_{xx} = \sum_{i} (x_{i} - \bar{x})^{2} = \dots = \sum_{i} x_{i}^{2} - n\bar{x}$$

$$S_{yy} = \sum_{i} (y_{i} - \bar{y})^{2} = \dots = \sum_{i} y_{i}^{2} - n\bar{y}$$
(5)

 S_{xy} (Dispersione di x e y) S_{xy} (Dispersione di x) S_{xy} (Dispersione di y)

$$A = \overline{y} - B\overline{x} \qquad B = \frac{S_{xy}}{S_{xx}} \qquad SS_R = \frac{S_{xx}S_{yy} - S_{xy}^2}{S_{xx}}$$

Inferenza su $eta = \frac{B-eta}{\sqrt{\frac{\sigma^2}{S_{xx}}}} \sim \mathcal{N}(0,1)$ $\frac{SS_R}{\sigma^2} \sim \mathcal{X}_{n-2}^2$

$$\frac{\frac{B-\beta}{\sqrt{\frac{\sigma^2}{S_{xx}}}}}{-\sqrt{\frac{SS_R}{j^2(n-2)}}} \sim t_{2-2}$$

$$\begin{split} &\sqrt{\frac{(n-2)S_{xx}}{SS_R}}(B-\beta) \sim t_{n-2} \\ &\beta \in B \pm \sqrt{\frac{SS_R}{(n-2)S_{xx}}} \quad t_{\frac{\alpha}{2},n-2} \to \text{Livello di confidenza} \end{split}$$

$$\text{Inferenza su } \alpha \quad \frac{A-\alpha}{\sqrt{\frac{\sigma^2\sum x_i^2}{nS_{xx}}}} \sim \mathcal{N}(0,1) \qquad \frac{SS_R}{\sigma^2} \sim \mathcal{X}_{n-2}^2$$

coeffieciente della retta:

$$lpha \in A \pm rac{SS_R \sum x_i^2}{\sqrt{n(n-2)S_{xx}}} \sim t_{rac{lpha}{2},n-2}
ightarrow {
m Livello}$$
 di confidenza

Interferenza su $\alpha + \beta x_0$

$$\mathbb{E}[A + Bx_0] = \mathbb{E}[A] + x_0 \mathbb{E}[B] = \alpha + \beta x_0$$
$$Var(A + Bx_0) = \dots = \sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{S_{xx}}\right]$$

Distribuzione $A + Bx_0$?

$$A + Bx_0 \sim \mathcal{N}(\alpha + \beta x_0, \sigma^2 \left[\frac{1}{n} + \frac{(\overline{x} - x_0)^2}{S_{xx}}\right])$$
 Stima di $\alpha + \beta x_0$

$$\frac{A + Bx_0 - (\alpha + \beta x_0)}{\sqrt{(\frac{1}{n} + \frac{(x_0 - x)^2}{S_{xx}}(\frac{SS_R}{n - 2}))}} \sim t_{n - 2}$$

$$\alpha + \beta x_0 \in A + Bx_0 \pm t_{\frac{\alpha}{n}, n-2} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} (\frac{SS_R}{n-2})}$$

Piccolo se i punti sono vicini alla media

7.5.3 Regressione Lineare (e non)

$$\{x_i, y_i\}_{i=1}^2 \leftarrow \mathsf{punti} \mathsf{stocastici}$$

Inferenza $\alpha+\beta x_0=\mathbb{E}[y] o$ non so niente del valore della y in quel punto Inferenza $y_0=y(x_0)\theta$

$$\begin{aligned} &\alpha+\beta x_0\in A+Bx_0\pm t_{\frac{\alpha}{2},n-2}\sqrt{(\frac{1}{n}+\frac{(x_0-\overline{x})^2}{S_{xx}})\frac{SS_R}{n-2}}\\ &\alpha+\beta\mathbf{x_0}\rightarrow \text{II punto }x_0\text{ che sta sulla retta }\alpha+\beta x_0\end{aligned}$$

Inferenza
$$y_0=y(x_0)
ightarrow \;\;$$
 predittivo

$$y \sim \mathcal{N}(\alpha + \beta x_0, \sigma^2)$$

$$A + Bx_0 \sim \mathcal{N}(\alpha + \beta x_0, \sigma^2(\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}))$$

$$y_0 - (A + Bx_0) \sim \mathcal{N}(\sigma, \sigma^2(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}))$$

$$y_0 = y(x_0) = A + Bx_0 \pm t_{\frac{\alpha}{2}, n-2} \sqrt{(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}) \frac{SS_R}{n-2}}$$

Coefficiente di determinazione

Definizione: La verifica dei miei valori

Formula generica: $S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 \rightarrow \text{dispersione di y}$ La dispersione è data da due fattori:

• Retta (regressione)

Rumore

 $SS_R = \sum_{i=1}^n (y_i - (A + Bx_i))^2 \to \text{Dipende dalla porzione non spiegata della retta}$ Utilizzo coefficienti di determinazione:

$$R^{2} = \frac{S_{yy} - SS_{R}}{S_{yy}} = 1 - \frac{SS_{R}}{S_{yy}} \quad 0 \le R^{2} \le 1$$

Se ${f R^2=1}$ la dispersione è data solo dalla retta *(regressione)* Se ${f R^2=0}$ la dispersione è data solo dal *rumore*

La retta è migliore più \mathbb{R}^2 è vicino a $\mathbf{1}$

Coefficiente di correlazione

Formula generica:

$$r = \frac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_i (x_i - \overline{x})^2 \sum_i (y_i - \overline{y})^2}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

$$r^2 = \frac{S_{xy}^2}{S_{xx}S_{yy}} = \ldots = 1 - \frac{SS_R}{S_{yy}} \to \text{Dimostrazione matematica di } R^2$$

Analisi dei residui y-(A+Bx) o verifico tutti gli errori residui Per la non linearità

Trasformazione lineare

$$W(t) = ce^{-dt}$$

Dove $ce \ e \ -dt$ sono parametri

 $\log(W(t)) = \log(c) - dt \rightarrow \mathsf{Prob}$. soluzione al non lineare $y = \alpha + \beta x$

Rimedio al caso eteroschedastico

$$y_i = \alpha + \beta x_i + e_i$$
 $e_i \sim \mathcal{N}(0, \sigma_i^2) \rightarrow \text{errore in crescita x}$ $Var(e_i) = \frac{\sigma^2}{W_i} \sum W_i (y - (A + Bx_0))^2$

• Regressione lineare multipla

$$-\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 \dots \beta_k \mathbf{x}_k + \mathbf{e}$$
$$-\min \sum_{i} (y_i - (B_0 + B_1 x_{i1} + B_2 x_{i2} + \dots + B_k x_{ik}))^2$$

• Regressione (lineare) polinomiale

$$- y = \beta_0 = \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + e$$
$$- \{ \underline{x_i}, y_i \}_{i=1}^n$$

$$\frac{\mathrm{d}}{\mathrm{d}B_0} = 0 = \sum_{i} (y_i - 1 - B_1 x_{i1} + B_2 x_{i2} + \dots + B_k x_{ik})$$

$$\frac{\mathrm{d}}{\mathrm{d}B_1} = 0 = \sum_{i} x_{i1} (y_i - B_0 - B_1 x_{i1} + B_2 x_{i2} + \dots + B_k x_{ik})$$

$$x^t x \underline{\beta} = x^t \underline{y} \Longrightarrow \underline{\beta} = (x^x x)^{-1} x^t \underline{y}$$

AN.O.VA (analysis of variance)

Analisi delle varianze / estensione del test di ipotesi sulle medie

Esempio voti medi degli anni scolastici

Anno. Voti medi.

2020-2021 lockdown μ_a 2021-2022 lockdown parziale μ_b 2022-2023 presenza μ_c

$$H_0: \mu_a = \mu_b = \mu_c$$

1) stimatore di σ^2 :

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{(x_{ij} - \mathbb{E}[x_{ij}])^2}{\sigma^2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{(x_{ij} - \mu_i)^2}{\sigma^2} \sim \mathcal{X}_{m \cdot n}^2$$
$$SS_W = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{(x_{ij} - x_{i*})^2}{\sigma^2} \sim \mathcal{X}_{m \cdot n - m}^2$$

$$\mathbb{E}\left[\frac{SS_w}{\sigma^2}\right] = n \cdot m - m$$

$$\mathbb{E}[\frac{SS_w}{nm-m}] = \sigma^2$$
 stimatore 1

2) stimatore di σ^2 supponendo $\mu_1=\mu_2=\mu_3=\ldots=\mu_m=\mu$

$$n \sum_{i=1}^{m} \frac{(x_{i*} - \mu)^2}{\sigma^2} \sim \mathcal{X}_m^2 \qquad x_{**} = \frac{\sum_{i=1}^{m} \sum_{i=1}^{n} x_{ij}}{m \cdot n}$$

$$\begin{array}{l} SS_b = n \sum_{i=1}^m (x_{i*} - x_{**})^2 \sim \mathcal{X}_{m-1}^2 \\ \mathbb{E}[\frac{SS_b}{m-1}] = \sigma^2 \rightarrow \text{Stimatore 2} \end{array}$$

Verifico stimatori

$$Ts = rac{SS_b/m - 1}{SS_W/nm - m}
ightarrow {
m intorno}$$
 a 1 va bene

F Distribution: $F_{m-1}, mn - m, \alpha$

ANOVA

Se i gruppi sono uguali : $n \underset{-}{\operatorname{camp}} = n \cdot m$

Se sono diversi : $n \text{ camp} = \sum_i n_i$

Life testing (Misura di affidabilità)

$$x \geq 0 |$$
 tempo di vita $\lambda(t) = \frac{f(t)}{1 - F(t)}$

f(t) = Densità di popolazione

 $\lambda(t) = \text{Intensità di rottura (failure rate)}$

$$\begin{split} P(x \in (t, t + \triangle t) | x > t) &= \frac{P(x \in (t, t + \triangle t), x > t)}{P(x > t)} \\ &= \frac{P(x \in (t, t + \triangle t))}{P(x > t)} \\ &\approx \frac{F(t) \triangle t}{1 - F(t)} \end{split}$$

Intensità di rottura

Definizione: Densità condizionale di probabilità che un oggetto funzionante almeno fino a t si guasti "subito dopo"

Formula generica:

$$\lambda(t) = \frac{F(t)}{1 - F(t)}$$

Se la distribuzione è esponenziale:

$$\lambda(t) = \frac{\lambda e^{-\lambda t}}{1 - 1 + e^{-\lambda t}} = \lambda \to \text{dove } \lambda \text{ è una costante}$$

Proprietà $\lambda(t) \Rightarrow F(t)$

$$\lambda(s) = \frac{f(s)}{1 - F(s)} = \frac{F'(s)}{1 - F(s)} = \frac{d}{dS} [-\log(1 - F(s))]$$

$$\int_0^t \lambda(s) = -\log(1 - F(s)) + \log(1 - F(s)) = 1 - F(t) = e^{-\int_0^t \lambda(s)ds}$$

Esempio Tasso di mortalità di un fumatore (λ_s) e di un <u>non</u> fumatore (λ_n)

$$\lambda_s(t) = 2\lambda_n(t)$$

$$\begin{split} &= P(\mathsf{Non fumatore di età} \; \mathbf{A} \; \mathsf{vive fino a} \; \mathbf{B}) \\ &= P(\mathsf{Non fumatore vive fino a} \; \mathbf{B} \; | \; \grave{\mathsf{e}} \; \mathsf{vissuto fino} \; \mathbf{A}) \\ &= \frac{P(\mathsf{Non fumatore viva fino a} \; \mathbf{B})}{P(\mathsf{Non fumatore viva fino a} \; \mathbf{A})} \\ &= \frac{1 - F_N(B)}{1 - F_N(A)} \\ &= \frac{e^{-\int_0^B \lambda(t) \; dt}}{e^{-\int_0^A \lambda(t) \; dt}} \end{split}$$

Quindi:

 $P({\sf Non\ fumatore\ di\ eta\ A\ vive\ fino\ a\ B}) = e^{-\int_A^B \lambda(t)\,dt}$

Per i non fumatori invece:

 $P({\sf Fumatore\ di\ eta\ {f A}\ vive\ fino\ a\ {f B}}) = e^{-\int_A^B \lambda(t)\, dt} = Ps$

Dove $Ps=(Pn)^2 o$ quindi la probabilità di soppravivenza del fumatore è uguale alla probabilità di soppravivenza del non fumatore al quadrato

Probabilità che un non fumatore arrivi ai 60 anni sapendo che è arrivato ai 50:

$$\lambda_N(t) = \frac{1}{20} \qquad 50 \le t \le 60$$

$$\begin{split} P_N &= e^{-\int_{50}^{60} \frac{1}{20} \, dt} = e^{-\frac{1}{20}(60-50)} = e^{-\frac{1}{2}} \approx 0.607 \approx 61\% \\ P_{\leq}(e^{-\frac{1}{2}})^2 &= e^{-1} \approx 0.368 \approx 37\% \end{split}$$

Stima di affidabilità N oggetti che si possono guastare *indipendenti* tra di loro Tempi di vita: $\lambda e^{-\lambda t}$ $\lambda = \frac{1}{\theta} \Rightarrow \frac{1}{\theta} e^{-\frac{t}{\theta}}$

 $\textbf{Dati a disposizione} \quad x_1 \leq x_2 \leq x_3 \leq x_4 = r \quad i_1 = 2, i_2 = 3, i_3 = n, i_4 = 1$

Studio la variabile aleatoria $X_i,\,i_j$ indica quale $oggetto\,si\,\,\grave{e}\,\,guastato\,$ per j-esimo all'istante x_j

(n-r) non si sono guastati \Rightarrow per questi $X_i > x_r$

$$fx_1, x_2 \dots x_r(x_1, x_2, \dots, x_r) = \prod_{j=1}^{r} \frac{1}{\theta} e^{-\frac{x_j}{\theta}} = \frac{1}{\theta^r} e^{-\frac{\sum_{j=1}^{r} x_j}{\theta}}$$

Ora per i non guasti:

$$\begin{split} P\left(X_j > x_j \text{ con } j \not\in \{i_1, \dots, i_r\}\right) &= \prod_{r+1}^n (1 - F_{X_j}(x_r)) = \left[1 - (1 - e^{\frac{-x_r}{\theta}})\right] \\ &\log L = -r\log \theta - \frac{1}{\theta} \left[\sum_i^r x_i + (n-r)x_r\right] \\ &\frac{d\log}{d\theta} = -\frac{r}{\theta} + \frac{1}{\theta^2} \left[\sum_i^r x_i + (n-r)x_r\right] = 0 \\ &- \theta r + \left[\sum_i^r x_i + (n-r)x_r\right] = 0 \\ &\hat{\theta} &= \frac{\sum_i^r x_i + (n-r)x_r}{r} = \frac{t}{r} = \frac{TTT}{r} \to \text{Total Time Test} \end{split}$$