Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning

Ruizhe Shi*1, Yuyao Liu*1, Yanjie Ze2, Simon Shaolei Du3, Huazhe Xu124

¹Tsinghua University, IIIS ²Shanghai Qi Zhi Institute ³University of Washington ⁴Shanghai AI Lab *Equal contribution. Order is decided by coin flip.

Transformer architecture

QA, text translations, coding writing, image (or even video) generation...
Can LMs do more?

LLM + Robotics control

Learn
optimal
policy
from suboptimal
data by
learning
reward
functions

Learn optimal policy from suboptimal data by learning reward functions Online: collect data through interactions Offline: learn on precollected datasets

pre-collecting data is still expensive ⇒ few-shot learning

Offline RL Baseline ——Decision Transformer (DT)

LM predict token:

P("you"|["How", " ", "are", " "])

Motion model predict action:

 $\pi(a_t|s_1, a_1, r_1, ..., s_t)$

LaMo: Language Models for low level Motion control

large language model pre-train

downstream offline RL

- · knowledge from pre-training
- · retain the knowledge
- · enhancing representation
- · retain the language ability

- Initialize with Pretrained LM
- Low Rank Adaptation (LoRA)
- MLP as Embeddings
- · Auxiliary Language Object

Experiment: Overview

Task selection

_ Action space (continuous, discrete)

Reward distribution (sparse, dense)

Data size (0.1%-100% sampling ratio)

(Average over task and sample ratio)

- In sparse-reward tasks (Kitchen, Reacher), outperform baselines prominently
- In dense-reward tasks (Locomotion, Atari), close the gap between Transformer-based and value-based algorithms

Experiment: Low-Date Regime

Show strong few-shot learning ability

Thank you for your Attention!

