Circuitos Lógicos Multiplexadores e Demultiplexadores

Prof.: Daniel D. Silveira

Horário: 4a.f e 6a.f de 10h às 12h

Multiplex e Demultiplex

 Mux => são utilizados nos casos em que necessitamos enviar um certo número de informações, contidas em vários canais, a um só canal

 Demux=> efetuam a função inversa, ou seja, enviam as informações vindas de um único canal a

vários canais

O Mux básico de 2 entradas (2X1)

 A partir de uma entrada de Seleção, direciona a informação l₀ ou l₁ para a saída (pode ser um sinal de clock, bit de informação de dados etc)

Mux de 4 entradas (4X1)

 Utiliza-se da mesma idéia básica de um mux de 2 entradas

Variá sel	Saída	
A	В	S
0	0	IO
0	1	I ₁
1	0	I ₂
1	1	I 3

Mux de 8 entradas (8X1)

FIGURA 9.21

(a) Diagrama lógico para o multiplexador 74ALS151; (b) Tabelaverdade; (c) Símbolo lógico.

	Entra	Saíd	as		
Ē	S ₂	S ₁	S ₀	Z	Z
H L L L L L L L	X	XLLHHLLHH	X	H 0 1 2 3 4 5 6 7	L I ₀ I ₁ I ₂ I ₃ I ₄ I ₅ I ₆ I ₇

FIGURA 9.24

Sistema para mostrar dois contadores BCD de mais de um dígito, sendo um contador de cada vez.

O Demux

 Recebe várias informações e a partir de uma entrada de seleção direciona uma informação para a saída

O Demux básico (1X2)

Variáveis de seleção	Canais de Informação				
A	S ₀	Sı			
0	E	0			
1	0	E			

O Demux (1X4)

Vari	áveis	Can	ais	de s	aída
A	В	S ₀	S ₁	S ₂	S 3
0	0	E	0	0	0
0	1	0	E	0	0
1	0	0	0	E	0
1	1	0	0	0	E

Graduação em Engenharia Elétrica

Circuitos Lógicos - Prof. Daniel D. Silveira

O Demux (1X8)

FIGURA 9.29 Demultiplexador de 1 para 8 linhas.

de Si S ₂	ódigo ELEÇ S ₁		07	O ₆		SAÍD O ₄	-	O ₂	01	00	
0 0 0	0 0 1	0 1 0	0 0	0	0	0	0	0 0 I	0 I 0	I 0 0	Observação: I é a entrada de dados
0	1	1	0	0	0	0 I	I 0	0	0	0	
1	0 1	1	0	0 I	I 0	0	0	0	0	0	

Uma memória de 4 bits (RAM)

Sistema de segurança

FIGURA 9.31 Sistema de monitoração de segurança.

Exercícios propostos

9.33) A figura mostra como um mux pode ser usado para gerar formas de ondas lógicas com qualquer padrão desejado. O padrão é programado usando-se oito chaves de um pólo e duas posições, e a forma de onda é repetidamente gerada ao se aplicar pulsos no contador de módulo 8. Desenhe a forma de onda Z para as posições mostradas na chave.

Exercícios propostos

9.34) Troque o contador de módulo 8 do circuito da figura por um contador de módulo 16 e conecte o MSB na entrada enable do multiplexador. Desenhe a forma de onda Z

FIGURA 9.76 Problemas 9.33 e 9.34.

9.37) O circuito da figura mostra como um mux de 8 entradas pode ser usado para gerar uma função de 4 variáveis lógicas, mesmo que o mux tenha apenas 3 entradas de seleção. Três das variáveis lógicas A,B e C, estão conectadas na SELECAO. A 4a variável D e seu inverso são conectadas em entradas de dados do mux, conforme requer a função lógica desejada. As outras entradas de dados do mux são conectadas em nível baixo ou alto, conforme requer a função lógica. A) Construa uma tabela verdade mostrando a saída Z para as 16 combinações possíveis das

B) Escreva a expressao para Z na forma de soma de produtos e simplifique para verificar que:

variáveis de entrada.

$$Z = \overline{C}B\overline{A} + D\overline{B}.\overline{C}A + \overline{D}.C\overline{B}.\overline{A}.$$

FIGURA 9.77 Problemas 9.37 e 9.38.