ex1.pdf	
PDF	
	,

Give solution to this exercise

Solution to Exercise 1 - Introduction to Markov Decision Processes (MDPs)

1. Formalizing Problems as MDPs

Each problem is formalized as an MDP $\langle S, A, P, R, \gamma \rangle$:

(a) Road Crossing

The agent must cross a single-lane road with randomly changing traffic conditions.

- States (S):
 - $s \in \{(x,c)\}$, where:
 - *x* is the agent's position ({start, middle, goal}).
 - *c* is the lane occupancy ({empty, occupied}).
- Actions (A):
 - $a \in \{\text{wait, move}\}$, where:
 - "wait" keeps the agent in the current position.
 - "move" advances to the next position if no car is in the lane.
- Transition Probabilities (P):
 - $P(s' \mid s, a)$ is defined by:
 - If a = wait, x stays the same, and c changes randomly.
 - If a = move, the agent moves forward only if c = empty.
- Reward Function (R):
 - R = +1 for reaching the goal.
 - R = 0 for waiting or safe movement.
 - R = -1 if the agent is hit by a car.
- Discount Factor (y):
 - $\gamma \in (0,1]$, depending on whether crossing speed is incentivized.

(b) Chess Against a Random Opponent

The agent plays chess against an opponent making random moves.

- States (S):
 - Each board configuration is a state.
 - \bullet Approximate cardinality: 10^{43} (all possible board configurations).
- Actions (A):
 - All legal chess moves at each state.
 - Approximate cardinality: Around 30-35 moves per state.
- Transition Probabilities (P):
 - Deterministic if the agent plays.
 - Stochastic if the opponent plays (uniform random move selection).
- Reward Function (R):
 - R = +1 for a win.
 - R = 0 for a draw.
 - R = -1 for a loss.
- Discount Factor (y):
 - Typically close to 1, encouraging long-term strategic play.

2. Maze Runner - Modifying the MDP

The agent takes too long to solve the maze due to lack of urgency.

Problem:

- Since R = 0 for all steps except reaching the goal (+1), the agent has no incentive to act quickly.
- The agent may wander indefinitely without prioritizing the goal.

- Introduce a small negative reward per timestep, e.g., R = -0.01, to encourage faster solutions.
- Use **lower discount factor** y < 1 to prioritize short-term gains.

3. Markov Property & Camera Sensing

The Markov property states that the future depends only on the present state, not past states.

Does S_t as a camera image satisfy the Markov property?

- No, because a single image does not capture velocity or motion of objects.
- Important information, such as whether an object is moving, is lost.

How to satisfy the Markov property?

- Include past frames (i.e., sequence of images) to capture motion.
- Feature extraction: Use optical flow or recurrent models (RNNs, LSTMs) to track moving objects.

This solution provides a structured approach to formalizing MDPs and addressing challenges in reinforcement learning problems.

