

Mag-Walking Simulated Annealing Monte Carlo Study of Nano-solvated Ammonium Chloride

Sangjoon (Bob) Lee

Department of Chemistry, Albert Nerken School of Engineering, The Cooper Union for the Advancement of Science and Art

ACS NY 69th Annual Undergraduate Research Symposium May 7th, 2022

I. Motivation – Atmospheric Nanoparticles

Research Area:

In Topper's research group, we study atmospheric nanoparticles using theoretical and computational tools.

Today's Focus:

Nano-solvated ammonium chloride (NH₄Cl) in water clusters (N•H₂O)

Figure 1. Solvated NH4⁺ and Cl⁻ in N = 2 water molecules

I. Motivation – Why Ammonium Chloride?

Ammonium chloride appears to be associated with air pollution and haze.

Ammonium Chloride Associated Aerosol Liquid Water Enhances Haze in Delhi, India

Ying Chen*, Yu Wang, Athanasios Nenes, Oliver Wild, Shaojie Song, Dawei Hu, Dantong Liu, Jianjun He, Lea Hildebrandt Ruiz, Joshua S. Apte, Sachin S. Gunthe*, and Pengfei Liu*

Chen et al. ACS Environmental Science and Technology (2022)

Figure 2. Nano-solvated ammonium chloride and haze production

I. Motivation – Research Goal **Goal:** To understand the <u>formation process</u> of ammonium chloride solvated in aerosol (N = 2 to 8) water clusters.

Figure 4. Solvated ammonium chloride and water clusters with N = 3, 5, 7 water molecules (left to right)

II. Method – Challenge

Model:

Interaction Potential to assess molecule structures.

$$V = \sum_{i} \sum_{j>i} \left[\frac{q_{i}q_{j}}{r_{ij}} + A_{ij} \exp(-\alpha_{ij}r_{ij}) + \frac{D_{ij}}{r_{ij}^{12}} - \frac{C_{ij}}{r_{ij}^{6}} \right]$$
BOSS 4.9 (Jorgensen et al.)

Challenge:

Identifying the global minimum due to the exponentially increasing number of local minima.

Figure 5. Newman projections and 3 local minima for butane Khalilian et al. *Educación Química* (2016)

II. Method – Strategy

Computational Strategy

Step 1. Mag-Walking Simulated Annealing Monte Carlo Method to find the lowest energy structures. Software) <u>TransRot</u>

Step 2. Quantum Mechanical calculations to determine thermodynamic properties and energetics. Software) *SPARTAN*

II. Method – Introducing Monte Carlo

Original Metropolis Monte Carlo

The Original Metropolis Algorithm:

Translate an atom within a small cube by a random amount

Figure 6. Illustration of Metropolis Monte Carlo

Figure 7. Asymmetric double-well potential

II. Method – Mag-Walking Simulated Annealing

Significant **improvements** were made in locating the <u>global minimum</u> by

- **1. Varying step size:** Optimized random translational and rotational movements.
- **2. Annealing:** System is cooled, reheated and re-cooled.

Frantz, Freeman, Doll JCP (1990)
Topper et al. Reviews in Computational Chemistry (2003)

TransRot is open source!

Github link: github.com/steventopper/Transrot (Developed by Steven. L. Topper)

II. Method – Test TransRot

Test Criteria:

Compare TransRot's global minimum of water clusters (N = 2 to 8) with literature values.

N=2

II. Method – Test TransRot

Table 1. Comparison of TIP4P Water Clusters Global Minima Energy Values between TransRot and Literature (kJ/mol)

N	TransRot	Cambridge Cluster Database	Difference (Cambridge - TransRot)
2	-26.08713	-26.08757	-0.0004
3	-69.99271	-69.99387	-0.0012
4	-116.58841	-116.59042	-0.0020
5	-152.10631	-152.10900	-0.0027
6	-197.77712	-197.78053	-0.0034
7	-243.56793	-243.57240	-0.0045
8	-305.51275	-305.51832	-0.0056

After geometry optimization, one minimum was found for N = 2, 3, 5, 6

N = 2

N = 3

After geometry optimization, one minimum was found for N = 2, 3, 5, 6

After geometry optimization, two minima were found for N = 7, 8

N = 7

Structure 1 (Lower E)

 $\Delta E_{12} = 10.6 \text{ kJ/mol}$

Structure 2 (Higher E)

After geometric optimization, three minima were found for N = 4

(Lowest E)

(Highest E)

 $\Delta E_{12} = 9.4 \text{ kJ/mol}$

 $\Delta E_{23} = 8.1 \text{ kJ/mol}$

 $\Delta E_{13} = 17.5 \, kJ/mol$

III. Result – QM Calculations

Two sets of QM calculations method/basis set were used

Set 1:

Møller-Plesset: RI-MP2/6-31+G*

Set 2:

Density Functional Theory: wB97M-V/6-31+G*

Lomboy and Topper. The Journal of Physical Chemistry A (2021)

III. Result – QM Calculations

IE was calculated for each cluster formation.

Reaction: $NH_4^+ + Cl^- + N \cdot (H_2O) \rightarrow Cluster$

<u>N = 4</u>

Structure 1 Structure 2 Structure 3

IV. Future Work

Next Step:

- Use larger basis sets (aug-cc-pVTZ, etc.)
- Try Coupled Cluster methods (CCSD(T))
- Determine ΔG , ΔH , ΔS , etc., and spectra during formation.

V. Acknowledgements

I would like to express my sincere gratitude towards

Dr. Robert Q. Topper
Professor of Chemistry
Advisor

Steven L. Topper

Developer of TransRot

Department of ChemistryCooper Union

Thank you!

Thank you

Sangjoon (Bob) Lee

