Cours D

Questionnaire à choix multiples de traitement numérique du signal

Durée: 7 minutes et 30 secondes

Les documents et les calculatrices ne sont pas autorisés. Pour chaque question il y a une ou plusieurs affirmations vraies, il faut indiquer TOUTES les affirmations vraies. Chaque question compte pour 4 points.

Date : NOM : Prénom :

Question 1 Soit x_n un signal temps discret non-périodique. On note $\hat{X}(f)$ sa transformée de Fourier à temps discret.

- A. Il est possible de retrouver x_n à partir de la seule connaissance de $\hat{X}(f)$.
- B. $\hat{X}(f)$ est périodique.
- ullet C. La fréquence d'échantillonnage f_e est égale au temps qui s'écoule entre deux pas de temps successifs.
- D. Si x_n est un signal nul alors $\hat{X}(f)$ est nul.

Question 2 La transformée de Fourier à temps discret

- A. est adaptée aux signaux temps discret périodiques
- B. est adaptée aux signaux temps discret non-périodiques
- C. produit un spectre formé de raies
- D. produit un spectre qui peut s'écrire sous la forme d'une somme infinie de diracs.

Question 3 On considère un signal temps continu $s_1(t) = \cos(\frac{2\pi t}{3})$ et $s_2[n] = \cos(\frac{2\pi n}{3})$

- A. s₁ n'est pas périodique.
- $B. s_2$ est la quantification de s_1 .
- C. Pour calculer la transformée de Fourier de s2 on applique la Transformée de Fourier Discrète.
- D. s₁ est une sinusoïde de fréquence 3Hz.

Question 4 On considère un signal temps discret périodique de période 3 et $x_n = \{1,0,0\}$. On note \hat{X} le spectre. La période d'échantillonnage est de 3s.

- A. Lorsqu'on prolonge x_n , on observe que $x_4 = 0$ et $x_{-1} = 0$.
- B. Le spectre est une succession de raies espacées de ¹/₃Hz.
- C. A la première raie, on a $\hat{X}_0 = \frac{1}{3}$.
- D. A la deuxième raie, on a $\hat{X}_1 = 0$.

Question 5 On considère des signaux sinusoïdaux de fréquence f_0 .

- A. La transformée de Fourier d'un signal sinusoïdal à temps continu est nécéssairement un ensemble de deux raies.
- B. La transformée de Fourier d'un signal sinusoïdal à temps discret est nécéssairement un ensemble de deux raies.
- C. Augmenter la fréquence f₀ d'un signal sinusoïdal à temps continu, cela peut aussi se voir comme le fait de modifier l'échelle des temps.
- D. La transformée de Fourier d'un signal sinusoïdal à temps discret est toujours périodique.

Mettre des croix dans les cases qui vous semblent vraies.

	1	2	3	4	5	
A						
В						
С						
D						