

Progetto 1 Bis

Metodi del Calcolo Scientifico - Giugno 2024

Realizzato da:

Biancini Mattia – 865966 Gargiulo Elio – 869184

Lo Scopo del Progetto

Realizzazione di una libreria che implementasse quattro metodi iterativi:

- Jacobi
- Gauss-Seidel
- Gradiente
- Gradiente Coniugato

Implementazione nel linguaggio di programmazione **Python**, attraverso due file:

- Main.py: File di testing della libreria
- Methods.py: Libreria effettiva

Il Problema del Fill-In

Esso si manifesta quando trattiamo matrici sparse con metodi diretti come la decomposizione PALU o di Cholesky.

Decomponendo la matrice viene perso il formato sparso.

La Soluzione: Metodi Iterativi

Nessuna decomposizione permette al fenomeno del **Fill-In** di non manifestarsi.

01 Metodo di Jacobi

Metodo Stazionario che aggiorna ogni variabile indipendentemente utilizzando i valori della precedente iterazione.

O3 Metodo del Gradiente

Metodo non Stazionario che ottimizza la funzione obiettivo muovendosi nella direzione opposta al gradiente.

02 Metodo di Gauss-Seidel

Metodo Stazionario che aggiorna ogni variabile utilizzando immediatamente i valori più recenti disponibili.

O4 Metodo del Gradiente Coniugato

Metodo non Stazionario che risolve sistemi lineari spostandosi nelle direzioni coniugate rispetto alla matrice dei coefficienti.

Le Matrici Trattate

Tutte devono essere: Definite Positive e Simmetriche

01

Spa2

Vem2

L'Approccio Utilizzato

Main

- 2 Interfacce a linea di comando
- SolveAll per eseguire tutte le matrici
- Stampa dei risultati su file di testo
- Import solo delle matrici sparse

Methods

- Costruttore = (Matrice, #iterazioni, tolleranza e Debug-status)
- Log per contenente lo stato della memoria ad ogni iterazione
- Calcolo delle soluzioni attraverso i metodi iterativi
- Tempi di esecuzione, Numero di Iterazioni ed Errore Relativo

01 Metodo di Jacobi

Può non convergere se la matrice sparsa non è a dominanza diagonale stretta per righe.

O3 Metodo del Gradiente

Alto numero di iterazioni, ma più efficiente in termini di tempo.
Convergenza assicurata.

02 Metodo di Gauss-Seidel

Stesso problema del metodo di Jacobi, ma converge più velocemente se entrambi convergono

O4 Metodo del Gradiente Coniugato

Converge più velocemente degli altri metodi, sistemando il problema del zig-zag del gradiente.

Matrice	Iterazioni	Tempo	Errore Relativo
Spa1	313	0.057003000	1.8524371366782515e-09
Spa2	99	0.194018000	1.484271702680792e-09
Vem1	4671	0.143018000	3.539458754943593e-09
Vem2	7174	0.251038000	4.964185239985714e-09

Matrice	Iterazioni	Tempo	Errore Relativo
Spa1	31	0.044506000	2.2480878875168565e-08
Spa2	15	0.178019000	5.570741072640405e-09
Vem1	2338	4.650932000	3.508242366381709e-09
Vem2	3589	16.102473000	4.948912858660209e-09

Matrice	Iterazioni	Tempo	Errore Relativo
Spa1	12919	4.017760000	9.820388475415228e-08
Spa2	8285	21.259285000	6.937815012078666e-08
Vem1	3058	0.136509000	2.7131686294531124e-09
Vem2	4696	0.270936000	3.798772480516601e-09

Matrice	Iterazioni	Tempo	Errore Relativo
Spa1	200	0.113013000	1.2160866949314527e-09
Spa2	240	1.039938000	5.324230565910014e-09
Vem1	59	0.005001000	2.191751450892725e-11
Vem2	74	0.008001000	2.2476275108448333e-11

01 Metodo di Jacobi

Ottimo compromesso tra tempi di esecuzione e numero di iterazioni.

Migliori prestazioni: matrici Spa

O3 Metodo del Gradiente

Simmetrico rispetto alle performance del metodo di Gauss.

Migliori prestazioni: matrici Vem

02 Metodo di Gauss-Seidel

Generalmente migliore in tutto rispetto al metodo di Jacobi, tranne nel tempo di esecuzione delle matrici Vem.

Migliori prestazioni: Matrici Spa

O4 Metodo del Gradiente Coniugato

Performance migliori in assoluto sotto tutte e 3 le categorie.

Migliori prestazioni: matrici Vem

Considerazioni Finali

01 Spa1

Precisione: Gradiente Coniugato

Tempo: Gauss-Seidel

Iterazioni: Gauss-Seidel

03 Vem 1

Precisione: Gradiente Coniugato
Tempo: Gradiente Coniugato

Iterazioni: Gradiente Coniugato

02 Spa2

Precisione: Jacobi

Tempo: Gauss-Seidel

Iterazioni: Gauss-Seidel

04 Vem 2

Precisione: Gradiente Coniugato

Tempo: Gradiente Coniugato

Iterazioni: Gradiente Coniugato