Using statistical methods and reproducible tools to gain new insights from biomedical and public health data

Ariel Mundo Ortiz

Centre de Recherches Mathematiques, Université de Montréal

MfPH Next Generation Seminar Series

3/15/23

Introduction

Data is the core of research. However, data is not information, as it needs to be processed before we can get information from it.

Introduction

- Data is the core of research. However, data is not information, as it needs to be processed before we can get information from it.
- This is specially true in the case of health research: public health, or biomedical data can be complex, and decisions along the analysis can result in different interpretations.

Introduction

- Data is the core of research. However, data is not information, as it needs to be processed before we can get information from it.
- This is specially true in the case of health research: public health, or biomedical data can be complex, and decisions along the analysis can result in different interpretations.
- In this talk I will focus on two examples that showcase how we can get more insight from looking at data from a different perspective.

The Case of Public Health Data: COVID-19 Vaccination

The Case of Public Health Data: COVID-19 Vaccination

The Case of Public Health Data: COVID-19 Vaccination

COVID-19: Why?

■ The pandemic is still ongoing

¹Nafilyan et al. 2021.

- The pandemic is still ongoing
- COVID-19 vaccination has been an important component of public health strategies aimed at managing the pandemic.

¹Nafilyan et al. 2021.

- The pandemic is still ongoing
- COVID-19 vaccination has been an important component of public health strategies aimed at managing the pandemic.
- However, COVID-19 vaccination has not been equal across different population segments.

¹Nafilyan et al. 2021.

²Gerretsen et al. 2021.

- The pandemic is still ongoing
- COVID-19 vaccination has been an important component of public health strategies aimed at managing the pandemic.
- However, COVID-19 vaccination has not been equal across different population segments.

¹Nafilyan et al. 2021.

²Gerretsen et al. 2021.

- The pandemic is still ongoing
- COVID-19 vaccination has been an important component of public health strategies aimed at managing the pandemic.
- However, COVID-19 vaccination has not been equal across different population segments.
- Individuals with lower income, and those belonging to a racial/ethnic minority have had lower vaccination uptake^{1,2}.

¹Nafilyan et al. 2021.

²Gerretsen et al. 2021.

- The pandemic is still ongoing
- COVID-19 vaccination has been an important component of public health strategies aimed at managing the pandemic.
- However, COVID-19 vaccination has not been equal across different population segments.
- Individuals with lower income, and those belonging to a racial/ethnic minority have had lower vaccination uptake^{1,2}.
- This is important because these differences in vaccination uptake have implications on virus transmission.

¹Nafilyan et al. 2021.

²Gerretsen et al. 2021.

■ The Fields Institute collected some very nice data regarding COVID-19 vaccination in Ontario: the *Survey of COVID-19* related Behaviours and Attitudes.

- The Fields Institute collected some very nice data regarding COVID-19 vaccination in Ontario: the Survey of COVID-19 related Behaviours and Attitudes.
 - The survey ran between late 2021 and early 2022 and collected socio-demographic information along with self-reported vaccination status ("Have you received the first dose of the Covid vaccine?")

Table 1: Selected socio-economic factors from the survey

Variable	Levels
Age group Income bracket (CAD) Race/ethnicity	16-34,35-54,55 and over under 25,000, 25,000-59,999, 60,000 and above Arab/Middle Eastern, Black, East Asian/Pacific Islander, Indigenous, Latin American, Mixed, South Asian, White Caucasian, Other

 Other studies have analyzed the dependency on vaccination status using socio-economic data.

- Other studies have analyzed the dependency on vaccination status using socio-economic data.
- We could do the same, but what else can we get from this data?

- Other studies have analyzed the dependency on vaccination status using socio-economic data.
- We could do the same, but what else can we get from this data?
 - There have been some interesting changes in Ontario with regard to healthcare.

The Case of Public Health Data: COVID-19 Vaccination

COVID-19: The Case of Ontario

 Between 2006 and 2019, Ontario was geographically divided in "Local Health Integration Networks" (LHINs).

- Between 2006 and 2019, Ontario was geographically divided in "Local Health Integration Networks" (LHINs).
- LHINs were essentially geographic intra-provincial divisions that determined where you could get health care.

- Between 2006 and 2019, Ontario was geographically divided in "Local Health Integration Networks" (LHINs).
- LHINs were essentially geographic intra-provincial divisions that determined where you could get health care.
- There were 14 LHINs, with additional subdivisions.

The Case of Public Health Data: COVID-19 Vaccination

COVID-19: The Case of Ontario

Problems with the LHINs:

³Tsasis, Evans, and Owen 2012.

- Problems with the LHINs:
- In multiple cases, the boundary of a LHIN did not match a municipal boundary.

³Tsasis, Evans, and Owen 2012.

- Problems with the LHINs:
- In multiple cases, the boundary of a LHIN did not match a municipal boundary.
 - One part of a city would be in a LHIN whereas another part of it would be in another LHIN.

³Tsasis, Evans, and Owen 2012.

- Problems with the LHINs:
- In multiple cases, the boundary of a LHIN did not match a municipal boundary.
 - One part of a city would be in a LHIN whereas another part of it would be in another LHIN.
 - Weakness in this approach due to complexity, lack of funding and bureaucracy were identified³.

³Tsasis, Evans, and Owen 2012.

In late 2019, Ontario adopted the Health Regions approach for healthcare and phased out the Local Health Integration Network (LHIN) approach.

- In late 2019, Ontario adopted the Health Regions approach for healthcare and phased out the Local Health Integration Network (LHIN) approach.
- The change is relatively new. Multiple challenges:

- In late 2019, Ontario adopted the Health Regions approach for healthcare and phased out the Local Health Integration Network (LHIN) approach.
- The change is relatively new. Multiple challenges:
 - Data for the Health Regions is not available from the Census.

- In late 2019, Ontario adopted the Health Regions approach for healthcare and phased out the Local Health Integration Network (LHIN) approach.
- The change is relatively new. Multiple challenges:
 - Data for the Health Regions is not available from the Census.
 - Have the Health Regions helped in reducing disparities in healthcare in the province?

Figure 1: Ontario LHINs (Crighton et al. 2015)

Figure 1: Ontario LHINs (Crighton et al. 2015)

Figure 2: Ontario Health Regions (Ontario Business Health Plan 2022-2023)

■ Where in Ontario did responses come from?

Figure 3: Geographic representation of the survey data collected by the Fields Institute

■ Therefore, we decided to integrate the different Health Regions in our analysis to determine the odds of vaccination.

$$\log \left(\frac{p(\text{vac})}{1 - p(\text{vac})} \right) = \beta_0 + \beta_1(\text{Age group}) + \beta_2 \text{ Race} + \beta_3 \text{ Health Region} + \beta_4 \text{ Income} + \beta_4$$

$$\beta_5(\text{Health Region} \times \text{Race}) + \beta_6 \text{ (Income} \times \text{Race})$$

Results

Table 2: Selected Multivariable Regression Results

Characteristic	OR	95% CI	p-value
Income (CAD)			
60000 and above			0.011
25000-59999 under 25000	0.59 0.37	0.39, 0.89 0.25, 0.56	0.011 <0.001
Race	0.37	0.23, 0.30	<0.001
White/Caucasian	_	_	
Arab/Middle Eastern	0.31	0.14, 0.69	0.004
Black	0.32	0.17, 0.60	< 0.001
East Asian/Pacific Islander	1.15	0.50, 2.66	0.7
Indigenous	0.44	0.19, 1.02	0.056
Latin Aamerican	0.28	0.11, 0.67	0.004
Mixed Other	0.64 0.22	0.25, 1.65 0.12, 0.41	< 0.4
South Asian	0.91	0.49, 1.69	0.801
Health Region			
Toronto		—	
Central	1.47	0.92, 2.35	0.11
East West	1.42 1.55	0.90, 2.23 1.05, 2.30	0.13 0.029
Income and Race	1.55	1.05, 2.50	0.029
25000-59999 * Arab/Middle Eastern	1.79	0.67, 4.83	0.2
under 25000 * Arab/Middle Eastern	3.05	1.26, 7.39	0.013
25000-59999 * Black	1.34	0.59, 3.05	0.5
under 25000 * Black	3.19	1.45, 6.99	0.004
25000-59999 * East Asian/Pacific Islander	0.42	0.17, 1.05	0.062
under 25000 * East Asian/Pacific Islander	1.16	0.47, 2.86	0.8
25000-59999 * Indigenous	1.36	0.48, 3.89	0.6
under 25000 * Indigenous	1.45	0.55, 3.80	0.5
25000-59999 * Latin American	1.24	0.45, 3.43	0.7

Results

Characteristic	OR	95% CI	p-value	
under 25000 * Latin American	2.80	1.04, 7.51	0.041	
25000-59999 * Mixed	0.85	0.32, 2.26	0.7	
under 25000 * Mixed	1.10	0.37, 3.27	0.9	
25000-59999 * Other	6.93	2.65, 18.1	< 0.001	
under 25000 * Other	4.59	2.33, 9.05	< 0.001	
25000-59999 * South Asian	1.20	0.51, 2.85	0.7	
under 25000 * South Asian	2.00	0.93, 4.30	0.077	
Race and Health Region				
Arab/Middle Eastern * Central	0.66	0.26, 1.70	0.4	
Black * Central	0.44	0.19, 0.98	0.046	
East Asian/Pacific Islander * Central	0.98	0.38, 2.53	>0.9	
Mixed * East	0.91	0.28, 3.03	0.9	
other * East	1.05	0.39, 2.83	>0.9	
South Asian * East	0.52	0.19, 1.45	0.2	
Arab/Middle Eastern * West	1.00	0.37, 2.73	>0.9	
Black * West	0.76	0.32, 1.80	0.5	
East Asian/Pacific Islander * West	0.52	0.20, 1.34	0.2	
Indigenous * West	0.39	0.14, 1.09	0.073	
Latin American * West	0.94	0.32, 2.72	>0.9	
Mixed * West	0.37	0.12, 1.16	0.089	
Other * West	0.41	0.18, 0.93	0.032	
South Asian * West	0.41	0.18, 0.95	0.037	
1 OR = Odds Ratio CI = Confidence Interval				

¹ OR = Odds Ratio, CI = Confidence Interva

How do we interpret this?

 Our results show that there were disparities in vaccination uptake in Ontario.

⁴Hawkins 2020.

How do we interpret this?

- Our results show that there were disparities in vaccination uptake in Ontario.
- People in certain racial minority groups had lower odds of vaccination than White/Caucasian individuals.

⁴Hawkins 2020.

- Our results show that there were disparities in vaccination uptake in Ontario.
- People in certain racial minority groups had lower odds of vaccination than White/Caucasian individuals.
- However, individuals that identified with a racial/ethnic minority and that were in a low household income bracket (<60k CAD) had higher odds of vaccination than individuals with a high household income.

⁴Hawkins 2020.

- Our results show that there were disparities in vaccination uptake in Ontario.
- People in certain racial minority groups had lower odds of vaccination than White/Caucasian individuals.
- However, individuals that identified with a racial/ethnic minority and that were in a low household income bracket (<60k CAD) had higher odds of vaccination than individuals with a high household income.
- This is likely caused by the type of occupation: people in racial minorities, and those with a low household income work in essential occupations⁴, and thus potentially got the vaccine to be able to work.

⁴Hawkins 2020.

But there are also intra-provincial differences in vaccine uptake within the Health Regions:

- But there are also intra-provincial differences in vaccine uptake within the Health Regions:
 - For example, South Asian individuals in the West Health Region had lower odds of vaccination that in other Health Regions.

- But there are also intra-provincial differences in vaccine uptake within the Health Regions:
 - For example, South Asian individuals in the West Health Region had lower odds of vaccination that in other Health Regions.
 - These results provide a more comprehensive assessment of COVID-19 vaccination rates within Ontario, as they showed that certain minority groups within specific income brackets and certain Health Regions had differences in vaccination.

The Case of Public Health Data: COVID-19 Vaccination

Conclusions

■ Data cleaning is **important**}

- Data cleaning is **important**}
 - Unifying geographical data can be challenging

- Data cleaning is important}
 - Unifying geographical data can be challenging
 - Specially because most data relies on legacy information from the LHINs

- Data cleaning is important}
 - Unifying geographical data can be challenging
 - Specially because most data relies on legacy information from the LHINs
- A more granular view of data (in this case, examining differences within Health Region, Income and Race) can provide insight for public policy development.

- Data cleaning is important}
 - Unifying geographical data can be challenging
 - Specially because most data relies on legacy information from the LHINs
- A more granular view of data (in this case, examining differences within Health Region, Income and Race) can provide insight for public policy development.
- There is a need for future studies that examine more in detail these differences and can provide a rationale.

The Case of Biomedical Data

The Case of Biomedical Data

Biomedical studies often collect longitudinal data to see the effect of an intervention over time:

- Biomedical studies often collect longitudinal data to see the effect of an intervention over time:
 - How a chemotherapy treatment changes the metabolism of a tumor

- Biomedical studies often collect longitudinal data to see the effect of an intervention over time:
 - How a chemotherapy treatment changes the metabolism of a tumor
 - How the concentration of a drug changes over time in the blood

- Biomedical studies often collect longitudinal data to see the effect of an intervention over time:
 - How a chemotherapy treatment changes the metabolism of a tumor
 - How the concentration of a drug changes over time in the blood
- How is this data typically analyzed?

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + \beta_2 \times time_t + \beta_3 \times time_t \times treatment_j + \varepsilon_{ijt}$$
 (2)

where,

 $y_{ijt} \colon$ is the response for subject i in treatment group j at time t

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + \beta_2 \times time_t + \beta_3 \times time_t \times treatment_j + \varepsilon_{ijt}$$
(2)

where,

 y_{ijt} : is the response for subject i in treatment group j at time t β_0 : the mean group value

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + \beta_2 \times time_t + \beta_3 \times time_t \times treatment_j + \varepsilon_{ijt}$$
(2)

where,

 y_{ijt} : is the response for subject i in treatment group j at time t

 β_0 : the mean group value

 $time_t$, $treatment_j$: fixed effects

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + \beta_2 \times time_t + \beta_3 \times time_t \times treatment_j + \varepsilon_{ijt}$$
(2)

where,

 y_{ijt} : is the response for subject i in treatment group j at time t

 β_0 : the mean group value

 $time_t$, $treatment_i$: fixed effects

 β_1,β_2 and β_3 : linear slopes of the fixed effects.

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + \beta_2 \times time_t + \beta_3 \times time_t \times treatment_j + \varepsilon_{ijt}$$
(2)

where,

 y_{ijt} : is the response for subject i in treatment group j at time t

 β_0 : the mean group value

 $time_t$, $treatment_i$: fixed effects

 β_1,β_2 and β_3 : linear slopes of the fixed effects.

 ε_{ijt} : error, assumed to be $\sim N(0,\sigma^2)$

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + \beta_2 \times time_t + \beta_3 \times time_t \times treatment_j + \varepsilon_{ijt}$$
(2)

where,

 y_{ijt} : is the response for subject i in treatment group j at time t

 β_0 : the mean group value

 $time_t$, $treatment_i$: fixed effects

 β_1, β_2 and β_3 : linear slopes of the fixed effects.

 ε_{ijt} : error, assumed to be $\sim N(0,\sigma^2)$

A LMEM follows the same exact structure, only incorporates a random effect α_{ij} , which allows for different intercepts.

Trends Over Time

Figure 4: Tumor imaging data (Skala et al. 2010)

Figure 5: Tumor oxygenation data

(Vishwanath et al. 2009)

Trends Over Time

The issue in those data is that the trends are not linear, and therefore, a linear model will miss changes in the signal where some metabolic or physiological relevant change is taking place.

⁵Beck and Jackman 1998.

Trends Over Time

- The issue in those data is that the trends are not linear, and therefore, a linear model will miss changes in the signal where some metabolic or physiological relevant change is taking place.
- Polynomial effects can be used, but they create biases at the boundaries of the covariates⁵.

⁵Beck and Jackman 1998.

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + f(time_t \mid \beta_j) + \varepsilon_{ijt}$$
 (3)

■ The change of y_{ijt} over time is represented by the smooth $function \ f(time_t \mid \beta_j)$ with inputs as the covariates $time_t$ and parameters β_j .

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + f(time_t \mid \beta_j) + \varepsilon_{ijt}$$
 (3)

■ The change of y_{ijt} over time is represented by the smooth $function \ f(time_t \mid \beta_j)$ with inputs as the covariates $time_t$ and parameters β_j .

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + f(time_t \mid \beta_j) + \varepsilon_{ijt}$$
 (3)

- \blacksquare The change of y_{ijt} over time is represented by the smooth function $f(time_t \mid \beta_j)$ with inputs as the covariates $time_t$ and parameters $\beta_j.$
- We can use a basis function to estimate the smooth function.

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + f(time_t \mid \beta_j) + \varepsilon_{ijt}$$
 (3)

- \blacksquare The change of y_{ijt} over time is represented by the smooth function $f(time_t \mid \beta_j)$ with inputs as the covariates $time_t$ and parameters $\beta_j.$
- We can use a basis function to estimate the smooth function.

$$y_{ijt} = \beta_0 + \beta_1 \times treatment_j + f(time_t \mid \beta_j) + \varepsilon_{ijt}$$
 (3)

- The change of y_{ijt} over time is represented by the smooth $function \ f(time_t \mid \beta_j)$ with inputs as the covariates $time_t$ and parameters β_j .
- We can use a *basis function* to estimate the smooth function.
- Splines are helpful as basis functions: Thin plate regression splines (TPRS) are computationally efficient, and the underlying principle is that of polynomial pieces "joined" together

How GAMs work

Figure 6: Fitting process of a GAM.

An Example

 Simulated data from a study on radiotherapy in a mouse model of melanoma⁶.

Figure 7: Tumor volume in two groups of tumors under radiotherapy

⁶Sen et al. 2011.

Figure 8: GAM fitted to simulated data

■ The model captures the trend of the data

Fitting a GAM

Figure 8: GAM fitted to simulated data

- The model captures the trend of the data
- We can furthermore compare the trends.

Differences

Figure 9: Pairwise comparisons between smooths

■ We can compare the smooths for each group. Here, we see that T2 is significantly higher after day 18.

Differences

Figure 9: Pairwise comparisons between smooths

- We can compare the smooths for each group. Here, we see that T2 is significantly higher after day 18.
- This can give an idea of further explorations of hiological

GAMs are useful to analyze longitudinal data because they provide:

Conclusions

- GAMs are useful to analyze longitudinal data because they provide:
 - A model that captures non-linear trends in the data

Conclusions

- GAMs are useful to analyze longitudinal data because they provide:
 - A model that captures non-linear trends in the data
 - This allows to examine specific time points that might be of interest, where metabolic, or physiological relevant changes might be occurring

Conclusions

- GAMs are useful to analyze longitudinal data because they provide:
 - A model that captures non-linear trends in the data
 - This allows to examine specific time points that might be of interest, where metabolic, or physiological relevant changes might be occurring
 - Lets the data speak for itself

The Case of Biomedical Data

Addressing Reproducibility

■ There is an ongoing need of making papers reproducible.

- There is an ongoing need of making papers reproducible.
- This is specially important in the case of data/methods of health research.

- There is an ongoing need of making papers reproducible.
- This is specially important in the case of data/methods of health research.
 - Otherwise, tools cannot be used by others.

- There is an ongoing need of making papers reproducible.
- This is specially important in the case of data/methods of health research.
 - Otherwise, tools cannot be used by others.
- How are we addressing this in our research?

The Case of Biomedical Data

Addressing Reproducibility

■ Using GitHub to share:

- Using GitHub to share:
 - Data: Making publicly available the datasets used

- Using GitHub to share:
 - Data: Making publicly available the datasets used
 - Methods: Sharing the code used for statistical analyses

- Using GitHub to share:
 - Data: Making publicly available the datasets used
 - Methods: Sharing the code used for statistical analyses
- In synthesis, sharing all the information used to create a paper such that anyone can re-create the analysis, results, and the paper itself from the files provided.

The Case of Biomedical Data

Addressing Reproducibility

For GAMs https://github.com/aimundo/GAMs-biomedical-research

- For GAMs https://github.com/aimundo/GAMs-biomedical-research
- COVID-19: Work is ongoing, but repository will be ready when paper is submitted

Conclusion

■ There is an ongoing need of analyzing public health data to address important disparities in areas such as vaccination.

Conclusion

- There is an ongoing need of analyzing public health data to address important disparities in areas such as vaccination.
- Semi-parametric statistical to analyze biomedical/public health longitudinal data, such as GAMs can provide better insight on periods where important biological changes might occur.

Acknowledgements

- The Nasri Lab (Université de Montréal)
 - Bouchra Nasri, PhD (PI)
 - Idriss Sekkak, PhD
 - Rado Ramasy
 - Fatima El-Mousawi
 - Rawda Berkat
- The Muldoon Lab (University of Arkansas)
 - Timothy J. Muldoon (PI)
- John R. Tipton (Los Alamos National Laboratory)

- Beck, Nathaniel and Simon Jackman (Apr. 1998). "Beyond Linearity by Default: Generalized Additive Models". In: *American Journal of Political Science* 42.2, p. 596. DOI: 10.2307/2991772. URL: https://doi.org/10.2307/2991772.
- Gerretsen, Philip et al. (Nov. 2021). "Individual determinants of COVID-19 vaccine hesitancy". In: *PLOS ONE* 16.11. Ed. by Leeberk Raja Inbaraj, e0258462. DOI: 10.1371/journal.pone.0258462. URL: https://doi.org/10.1371/journal.pone.0258462.
- Hawkins, Devan (June 2020). "Differential occupational risk for COVID-19 and other infection exposure according to race and ethnicity". In: *American Journal of Industrial Medicine* 63.9, pp. 817–820. DOI: 10.1002/ajim.23145. URL: https://doi.org/10.1002/ajim.23145.

- Nafilyan, Vahe et al. (July 2021). "Sociodemographic inequality in COVID-19 vaccination coverage among elderly adults in England: a national linked data study". In: *BMJ Open* 11.7, e053402. DOI: 10.1136/bmjopen-2021-053402. URL: https://doi.org/10.1136/bmjopen-2021-053402.
- Sen, Arindam et al. (May 2011). "Mild Elevation of Body Temperature Reduces Tumor Interstitial Fluid Pressure and Hypoxia and Enhances Efficacy of Radiotherapy in Murine Tumor Models". In: Cancer Research 71.11, pp. 3872–3880. DOI: 10.1158/0008-5472.can-10-4482. URL: https://doi.org/10.1158/0008-5472.can-10-4482.
- Tsasis, Peter, Jenna M. Evans, and Susan Owen (Sept. 2012). "Reframing the challenges to integrated care: a complex-adaptive systems perspective". In: *International Journal of Integrated Care* 12.5. DOI: 10.5334/ijic.843. URL: https://doi.org/10.5334/ijic.843.