Theoretische Physik II – Quantenmechanik – Blatt 8

Sommersemester 2023

Webpage: http://www.thp.uni-koeln.de/~rk/qm_2023.html/

Abgabe: bis Mittwoch, 21.06.23, 10:00 in elektronischer Form per ILIAS unter https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_5154210.html

33. Zur Diskussion

0 Punkte

- a) Wie lautet die Grundzustandswellenfunktion eines harmonischen Osillators?
- b) Wie lautet die Wellenfunktion des kokärenten Oszillatorszustands $|c(\alpha)\rangle$?

34. Vollständigkeit kohärenter Zustände

3+7=10 Punkte

Die kohärenten Zustände $\{|c(\alpha)\rangle\}_{\alpha\in\mathbb{C}}$ eines harmonische Oszillators bilden ein *nicht*-orthogonales vollständings Systems. Genauer gilt:

(i)
$$|\langle c(\alpha)|c(\beta)\rangle|^2 = e^{-|\alpha-\beta|^2}$$
,

$$(ii) \quad \frac{1}{\pi} \int \mathrm{d} u \int \mathrm{d} v \ \left| c(u+iv) \right\rangle \left\langle c(u+iv) \right| \ = \ \mathbf{1} \ .$$

- a) Zeigen Sie (i) mittels der Darstellung eines kohärenten Zustands aus Aufgabe 32 c).
- b) Beweisen Sie (ii), indem Sie Matrixelemente $\langle m|\dots|n\rangle$ der Identität bzgl. beliebiger Oszillatorzustände $|m\rangle$, $|n\rangle$ betrachten.

Hinweise: **32 c)** hilft auch hier weiter, das zweidimensionale Integral berechnet sich am einfachsten in Polarkoordinaten: $u+iv=r\mathrm{e}^{i\varphi}$, das r-Integral kann durch eine geeignete Substitution in $\int_0^\infty t^n\mathrm{e}^{-t}\mathrm{d}t = \Gamma(n+1) = n!$ überführt werden.

35. Störungstheorie

6+2=8 Punkte

Ein harmonischer Oszillator mit Hamiltonoperator

$$H_0 = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$$

erfährt eine lineare Störung

$$H_1 = \hbar \omega \frac{x}{l}, \qquad l = \sqrt{\frac{\hbar}{m\omega}} .$$

Ermitteln Sie die Energieniveaus $E_n(\lambda)$ des gestörten Systems $H(\lambda) = H_0 + \lambda H_1$

- a) in Störungstheorie einschließlich zweiter Ordnung in λ ,
- b) indem Sie durch eine geeignete Koordinatentransformation $H(\lambda)$ auf die Standardform eines harmonischen Oszillators bringen.

36. Niveauabstoßung

2+3+2=7 Punkte

Der Hamiltonoperator eines Zwei-Zustand-Systems sei $H=H_0+\lambda H_1$ $(\lambda\in\mathbb{R})$ mit

$$H_0 = \begin{pmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{pmatrix} \quad \text{und} \quad H_1 = \begin{pmatrix} 0 & d \\ d^* & 0 \end{pmatrix} \,, \qquad \varepsilon \in \mathbb{R}_+, \; d \in \mathbb{C} \,.$$

- a) Bestimmen Sie die exakten Energieniveaus $E_0 < E_1$ des Systems. Skizzieren Sie diese für $\varepsilon = d = 1$ als Funktion von λ .
- b) Fassen Sie nun H_1 als Störung des Hamiltonoperators H_0 auf. Wie lauten die Energieniveaus $E_0,\ E_1$ in Störungstheorie erster bzw. zweiter Ordnung in λ ? Skizzieren Sie die störungstheoretischen Energieniveaus als Funktion von λ für den Fall $\varepsilon=d=1$ und vergleichen Sie mit den exakten Niveaus aus a).
- c) Ermitteln Sie die Energieeigenzustände φ_0 und φ_1 für $\lambda=0$ und in den Grenzfällen $\pm\lambda\gg |\varepsilon/d|$.