Los_salarios

September 18, 2022

0.1 Data processing techniques for statistical analysis and model building

Student: Jesús David Núñez Rodríguez A01634928

0.1.1 problem description:

Identify the conditions that make a person specialized in data analysis have a better, salary according to the database provided by Kaggle, in a sample of people who are dedicated to data analysis in different parts of the world.

Questions:

What are the best paid jobs?

The salary has increase over time?

Preview of the data:

116	view of the da	ila.						
	work_year	experience_le	vel	employment_	type		job_title	\
0	2020		MI	FT		Data Scientist		
1	2020		SE		FT	Machine Learn	ing Scientist	
2	2020		SE		FT	Big	Data Engineer	
3	2020		MI		FT	Product	Data Analyst	
4	2020		SE		FT	Machine Lear	ning Engineer	
	salary sa	lary_currency	sal	ary_in_usd	emplo	yee_residence	remote_ratio	\
0	70000	EUR		79833		DE	0	
1	260000	USD		260000		JP	0	
2	85000	GBP		109024		GB	50	
3	20000	USD		20000		HN	0	
4	150000	USD		150000		US	50	
	company_loc	cation company	_siz	е				
0		DE		L				
1		JP		S				
2		GB		М				
3		HN		S				
4		US		L				

1 Exploratory phase of data base

There is 607 rows wich will be consider n

Types of atributes:

Categorical (nominal):

Categorical (ordinal): work_year, experience_level, employment_type, job_title, salary_currency, employee_residence, company_location, company_size

Numeric: salary, salary_in_usd, remote_ratio

Describe function gives measures of central tendency and measures of dispersion

	work_year (experience_level	employment_type	job_title \
count	607.000000	607	607	607
unique	NaN	4	4	50
top	NaN	SE	FT	Data Scientist
freq	NaN	280	588	143
mean	2021.405272	NaN	NaN	NaN
std	0.692133	NaN	NaN	NaN
min	2020.000000	NaN	NaN	NaN
25%	2021.000000	NaN	NaN	NaN
50%	2022.000000	NaN	NaN	NaN
75%	2022.000000	NaN	NaN	NaN
max	2022.000000	NaN	NaN	NaN
	salary	salary_currency	•	employee_residence \
count	6.070000e+02	607	607.000000	607
unique	NaN	17	NaN	57
top	NaN	USD	NaN	US
freq	NaN	398	NaN	332
mean	3.240001e+05	NaN	112297.869852	NaN
std	1.544357e+06	NaN	70957.259411	NaN
min	4.000000e+03	NaN	2859.000000	NaN
25%	7.000000e+04	NaN	62726.000000	NaN
50%	1.150000e+05	NaN	101570.000000	NaN
75%	1.650000e+05	NaN	150000.000000	NaN
max	3.040000e+07	NaN	600000.000000	NaN
		company_location		
count	607.00000	607		
unique	NaN	50		
top	NaN	US		
freq	NaN	355		
mean	70.92257	NaN		
std	40.70913	NaN	NaN	

min	0.0000	NaN	NaN
25%	50.00000	NaN	NaN
50%	100.00000	NaN	NaN
75%	100.00000	NaN	NaN
max	100.00000	NaN	NaN

By a quick review of the metrics, it can be said that most of the jobs in df are from people working in US companies, because the most common company location (up to 58%) is in US. Furthermore the **mean salary is \$112,297.00**

The right tail is considerably longer, also is a right-skewed (asymmetric) distribution due to the outliers that pull the mean to the right.

Its important to notice that remote ratio is a numeric atribute but behave like a categorical, would be useful validate with the source of the data the nature of it.

check for NaN values in df to avoid inconsistences in further analisis

work_year	0
experience_level	0
employment_type	0
job_title	0
salary	0
salary_currency	0
salary_in_usd	0

employee_residence 0
remote_ratio 0
company_location 0
company_size 0
dtype: int64

Frecuency of categorical variables

SE 280 MI 213 EN 88 EX 26

Name: experience_level, dtype: int64 Data Scientist 143 Data Engineer 132 Data Analyst 97 Machine Learning Engineer 41 Research Scientist 16 Data Science Manager 12 Data Architect 11 8 Big Data Engineer 8 Machine Learning Scientist 7 Principal Data Scientist AI Scientist 7 Data Science Consultant 7 Director of Data Science 7 Data Analytics Manager 7 ML Engineer 6 Computer Vision Engineer 6 BI Data Analyst 6 Lead Data Engineer 6 Data Engineering Manager 5 Business Data Analyst 5 Head of Data 5 Applied Data Scientist 5 Applied Machine Learning Scientist 4 Head of Data Science 4 Analytics Engineer 4 4 Data Analytics Engineer Machine Learning Developer 3 Machine Learning Infrastructure Engineer 3 Lead Data Scientist 3 Computer Vision Software Engineer 3 Lead Data Analyst 3 Data Science Engineer 3 Principal Data Engineer 3 Principal Data Analyst 2 ETL Developer 2

Product Data Analyst	
Director of Data Engineering	
Financial Data Analyst	
Cloud Data Engineer	
Lead Machine Learning Engineer	
NLP Engineer	
Head of Machine Learning	
3D Computer Vision Researcher	
Data Specialist	
Staff Data Scientist	
Big Data Architect	
Finance Data Analyst	
Marketing Data Analyst	
Machine Learning Manager	
Data Analytics Lead	
Name: job_title, dtype: int64	
US 355	
GB 47	
CA 30	
DE 28	
IN 24	
FR 15	
ES 14	
GR 11	
JP 6	
NL 4	
AT 4	
PT 4	
PL 4	
LU 3	
PK 3	
BR 3	
AE 3	
MX 3	
AU 3	
TR 3	
DK 3	
IT 2	
CZ 2	
SI 2	
RU 2	
CH 2	
NG 2	
CN 2	
BE 2	
VN 1	
EE 1	
AS 1	

```
DΖ
         1
MY
         1
MD
         1
ΚE
         1
SG
         1
CO
IR
CL
MT
         1
IL
         1
UA
ΙQ
RO
HR
NZ
HU
HN
         1
ΙE
         1
Name: company_location, dtype: int64
```

2 data preprocesing

Will be remove outliers based in salary. This help to make a better analisis. however the df still shows bias to the right but with shorter tails.

```
The new size of df(after drop outliers) is: 598
```

The atributes to analize will be: As inpedendent: experience_level, job_title, company_location As dependent: salary_in_usd

Salary and salary currency will be drop due that salary_in_usd standarize the income in a unique scala. Remote ratio will be drop for its unsure nature

3 Does the level of experience influence the salary?

3.0.1 Ho: The experience groups have equal mean

3.0.2 H1: At least one group introduce significance to displace the mean

dict for experience map: 0 = 'EN', 1 = 'EX', 2 = 'MI', 3 = 'SE'

\	job_title	employment_type	experience_level	work_year	
	Data Scientist	FT	MI	2020	0
	Machine Learning Scientist	FT	SE	2020	1
	Big Data Engineer	FT	SE	2020	2
	Product Data Analyst	FT	MI	2020	3
	Machine Learning Engineer	FT	SE	2020	4

 ${\tt salary_in_usd\ employee_residence\ company_location\ company_size} \quad \setminus$

0 1 2 3 4	79833 260000 109024 20000 150000	DE JP GB HN US	DE JP GB HN US	L S M S L
0 1 2 3 4	experience_level_map 2 3 3 2 3	job_title_map 21 40 7 46 37	company_location_may 1 2 1 2 4	2 9 8 0
		1 2 3 sd_est_esc	3 - 2 - 1 - 2 - 1 - 1 - 2 - 1 - 1 - 1 - 2 - 1 - 1	0 1 2 3 etical Quantiles

Soft tails distribution, high curtosis, leptocurtic distribution.

	work_year		salary_in_usd		\	
	mean	std	mean	std		
experience_level_map						
0	2021.011364	0.686392	61643.318182	44395.541126		
1	2021.521739	0.593109	167095.347826	65874.574937		
2	2021.285714	0.708314	82953.142857	48222.337602		
3	2021.628159	0.598005	135797.263538	51162.122770		
			.			,
	job_title_map		company_locat	10n_map		\
	mean	st	d	mean	std	
experience level map						

experience_level_map

()	19.375000	11.4393	08	29.511364	16.312321
1	l	19.869565	8.9762	53	36.652174	16.305628
2	2	20.300000	10.1830	38	31.395238	16.128698
3	3	20.350181	9.8129	30	40.862816	14.292593
		salary_in_usd_	est_esc			
			mean	std		
6	experience_level_map					
()	-0	.775471	0.750247		
1	l	1	.006580	1.113225		

-0.415353

0.477668

0.814917

0.864597

2

3

In conclusion, h0 is not rejected, that could be validate by the confidences intervals graph. Validate normality in data

According to normality graph there ir normality in data, but is necesary to validate with complementary tests like Shapiro-Wilk and homocedasticity.

Normality test Shapiro-Wilk

normal	pval	W	
False	0.000005	0.956378	2
True	0.331550	0.993931	3
False	0.000002	0.889819	0
True	0.464865	0.960074	1

The result of Shapiro-Wilk test show that the data present inconsistencies in normality, in some.

Homocedasticity test

The second red flag is that the data do not present homocedasticity

3.0.3 One-way ANOVA test

```
Source
                                 SS
                                      DF
                                                 MS
                                                                        p-unc
                                     3 58.551317 82.543748
  experience_level_map 175.653951
                                                                1.199071e-44
                 Within 421.346049 594
                                           0.709337
                                                                          NaN
                                                            {\tt NaN}
        np2
  0.294228
1
        NaN
```

P-value is smaller than 0.05 wich is evidence to refuse the null hipotesis. Consequently, the experience level does affect the average income.

Post-hoc Tukey test

	Α	В	mean(A)	mean(B)	diff	se	T	p-tukey	hedges
0	0	1	-0.775	1.007	-1.782	0.197	-9.035	0.000	-2.101
1	0	2	-0.775	-0.415	-0.360	0.107	-3.367	0.004	-0.426
2	0	3	-0.775	0.478	-1.253	0.103	-12.159	0.000	-1.485
3	1	2	1.007	-0.415	1.422	0.185	7.687	0.000	1.683
4	1	3	1.007	0.478	0.529	0.183	2.894	0.021	0.626
5	2	3	-0.415	0.478	-0.893	0.077	-11.588	0.000	-1.059

The groups 0,2 have a small diference in their means wich demostrate that these groups are similar, also 1,3

4 The salary has increase over time?

Description of data

	salary_in_usd			experience_level_	map		\
	mean		std	-	nean	std	`
work_year			Doa		·oui	204	
2020	82775.884058	53887.35	52872	1.652	174	1.148222	
2021	92860.436620	61531.28	32500	1.840	1316	1.108655	
2022	122825.943038	54286.30	3186	2.430	380	0.853505	
	job_title_map		comp	cany_location_map		\	
	mean	sto	i	mean		std	
work_year							
2020	21.811594	10.936011	L	30.797101	15.	995937	
2021	22.070423	11.719188	3	32.887324	16.	327326	
2022	18.531646	8.437385	5	38.677215	15.	363849	
	salary_in_usd_e	est_esc					
	•	mean	S	std			
work_year							
•		440040		254			
2020	-0	.418348 (0.9106	551			

2021	-0.247928	1.039827
2022	0.258464	0.917393

There is no need in do a deeper analisis, from 2020 to 2021 it has increase the salary in a 12%, and a 48% from 2020 to 2022.

5 What are the best paid jobs?

```
job_title
Principal Data Engineer 192500.000000
Principal Data Scientist 181782.833333
Data Architect 177873.909091
Analytics Engineer 175000.000000
Director of Data Science 173419.666667
Data Specialist 165000.000000
Head of Data 160162.600000
Name: (salary_in_usd, mean), dtype: float64
```

The top 7 of better paid jobs are the list from above

Conclusion, the data is not reliable because it do not present normality or homoscedasticity in the case of the variable of experience.

Code link: https://github.com/a01634928/TC3006C_101_A01634928/tree/main/modulo_1/tecnicas_de%20procesamiento_de_datos_para_el_analisis%20_estadistico