Chapter 6: Fractional Imputation

Jae-Kwang Kim

Department of Statistics, Iowa State University

Kim (ISU) Section 6.1 1/2

Recall: Monte Carlo EM

Remark

- Monte Carlo EM can be used as a frequentist approach to imputation.
- Convergence is not guaranteed (for fixed m).
- E-step can be computationally heavy. (May use MCMC method).

Kim (ISU) Section 6.1 2 / 25

Parametric Fractional Imputation (Kim, 2011)

Parametric fractional imputation

- More than one (say m) imputed values of $\mathbf{y}_{mis,i}$: $\mathbf{y}_{mis,i}^{*(1)}, \cdots, \mathbf{y}_{mis,i}^{*(m)}$ from some (initial) density $h(\mathbf{y}_{mis,i})$.
- Create weighted data set

$$\{(w_{ij}^*, \mathbf{y}_{ij}^*); j = 1, 2, \cdots, m; i = 1, 2 \cdots, n\}$$

where
$$\sum_{j=1}^{m} w_{ij}^* = 1$$
, $\mathbf{y}_{ij}^* = (\mathbf{y}_{obs,i}, \mathbf{y}_{mis,i}^{*(j)})$

$$w_{ij}^* \propto f(\mathbf{y}_{ij}^*, \boldsymbol{\delta}_i; \hat{\eta})/h(\mathbf{y}_{mis,i}^{*(j)}),$$

- $\hat{\eta}$ is the maximum likelihood estimator of η , and $f(\mathbf{y}, \delta; \eta)$ is the joint density of (\mathbf{y}, δ) .
- **3** The weight w_{ij}^* are the normalized importance weights and can be called fractional weights.

Kim (ISU) Section 6.1

Remark

• Importance sampling idea: For sufficiently large *m*,

$$\sum_{j=1}^{m} w_{ij}^{*} g\left(y_{ij}^{*}\right) \cong \frac{\int g(y_{i}) \frac{f(y_{i}, \delta_{i}; \hat{\eta})}{h(y_{mis,i})} h(y_{mis,i}) dy_{mis,i}}{\int \frac{f(y_{i}, \delta_{i}; \hat{\eta})}{h(y_{mis,i})} h(y_{mis,i}) dy_{mis,i}} = E\left\{g\left(y_{i}\right) \mid y_{obs,i}, \delta_{i}; \hat{\eta}\right\}$$

for any g such that the expectation exists.

- In the importance sampling literature, $h(\cdot)$ is called proposal distribution and $f(\cdot)$ is called target distribution.
- Do not need to compute the conditional distribution $f(y_{mis,i} \mid y_{obs,i}, \delta_i; \eta)$. Only the joint distribution $f(y_{obs,i}, y_{mis,i}, \delta_i; \eta)$ is needed because

$$\frac{f(y_{obs,i},y_{mis,i}^{*(j)},\delta_{i};\hat{\eta})/h(y_{i,mis}^{*(j)})}{\sum_{k=1}^{m}f(y_{obs,i},y_{mis,i}^{*(k)},\delta_{i};\hat{\eta})/h(y_{i,mis}^{*(k)})} = \frac{f(y_{mis,i}^{*(j)} \mid y_{obs,i},\delta_{i};\hat{\eta})/h(y_{i,mis}^{*(j)})}{\sum_{k=1}^{m}f(y_{mis,i}^{*(k)} \mid y_{obs,i},\delta_{i};\hat{\eta})/h(y_{i,mis}^{*(k)})}.$$

Kim (ISU) Section 6.1 4/25

EM algorithm by fractional imputation

- **1** Imputation-step: generate $y_{i,\text{mis}}^{*(j)} \sim h(y_{i,\text{mis}})$.
- Weighting-step: compute

$$w_{ij(t)}^* \propto f(y_{ij}^*, \delta_i; \hat{\eta}_{(t)})/h(y_{i,mis}^{*(j)})$$

where $\sum_{i=1}^{m} w_{ii(t)}^* = 1$.

M-step: update

$$\hat{\eta}^{(t+1)} = \arg\max \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij(t)}^* \log f\left(\mathbf{\eta}; y_{ij}^*, \delta_i\right).$$

Section 6.1

- **(**Optional) Check if $w_{ij(t)}^*$ is too large for some j. If so, set $h(y_{i,mis}) = f(y_{i,mis} \mid y_{i,obs}; \hat{\eta}_t)$ and goto Step 1.
- Step 2 Step 4 until convergence.

5/25

Remark

- "Imputation Step" + "Weighting Step" = E-step.
- The imputed values are not changed for each EM iteration. Only the fractional weights are changed.
 - Omputationally efficient (because we use importance sampling only once).
 - 2 Convergence is achieved (because the imputed values are not changed). See Theorem 6.1.
- For sufficiently large t, $\hat{\eta}^{(t)} \longrightarrow \hat{\eta}^*$. Also, for sufficiently large m, $\hat{\eta}^* \longrightarrow \hat{\eta}_{MLE}$.
- For estimation of ψ in $E\{U(\psi; Y)\} = 0$, simply use

$$\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{*} U(\boldsymbol{\psi}; \mathbf{y}_{ij}^{*}) = 0$$

where $w_{ii}^* = w_{ii}^*(\hat{\eta})$ and $\hat{\eta}$ is obtained from the above EM algorithm.

Theorem 6.1 (Theorem 1 of Kim (2011))

Theorem

Let

$$Q^*(\mathbf{\eta} \mid \hat{\eta}_{(t)}) = \sum_{i=1}^n \sum_{j=1}^m w_{ij(t)}^* \log f\left(\mathbf{\eta}; y_{ij}^*, \delta_i\right).$$

If

$$Q^*(\hat{\eta}_{(t+1)} \mid \hat{\eta}_{(t)}) \ge Q^*(\hat{\eta}_{(t)} \mid \hat{\eta}_{(t)}) \tag{1}$$

then

$$I_{\text{obs}}^*(\hat{\eta}_{(t+1)}) \ge I_{\text{obs}}^*(\hat{\eta}_{(t)}), \tag{2}$$

where $l_{\mathrm{obs}}^*({\color{black}\eta}) = \sum_{i=1}^n \ln\{f_{obs(i)}^*({\color{black}\mathbf{y}_{i,obs}}, {\color{black}\delta_i}; {\color{black}\eta})\}$ and

$$f^*_{obs(i)}(\mathbf{y}_{i,obs}, \boldsymbol{\delta}_i; \boldsymbol{\eta}) = \frac{\sum_{j=1}^m f(\mathbf{y}_{ij}^*, \boldsymbol{\delta}_i; \boldsymbol{\eta}) / h_m(\mathbf{y}_{i, \text{mis}}^{*(j)})}{\sum_{j=1}^m 1 / h_m(\mathbf{y}_{i, \text{mis}}^{*(j)})}.$$

Kim (ISU) Section 6.1 7/25

Proof

By using Jensen's inequality,

$$\begin{split} I_{\text{obs}}^{*}(\hat{\eta}_{(t+1)}) - I_{\text{obs}}^{*}(\hat{\eta}_{(t)}) &= \sum_{i=1}^{n} \ln \left\{ \sum_{j=1}^{m} w_{ij(t)}^{*} \frac{f(\mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i}; \hat{\eta}_{(t+1)})}{f(\mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i}; \hat{\eta}_{(t)})} \right\} \\ &\geq \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij(t)}^{*} \ln \left\{ \frac{f(\mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i}; \hat{\eta}_{(t+1)})}{f(\mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i}; \hat{\eta}_{(t)})} \right\} \\ &= Q^{*}(\hat{\eta}_{(t+1)} \mid \hat{\eta}_{(t)}) - Q^{*}(\hat{\eta}_{(t)} \mid \hat{\eta}_{(t)}). \end{split}$$

Therefore, (1) implies (2).

Kim (ISU) Section 6.1 8/25

Example 6.3: Return to Example 3.15

- Fractional imputation
 - **1** Imputation Step: Generate $y_i^{*(1)}, \dots, y_i^{*(m)}$ from $f\left(y_i \mid x_i; \hat{\theta}_{(0)}\right)$.
 - Weighting Step: Using the m imputed values generated from Step 1, compute the fractional weights by

$$w_{ij(t)}^* \propto rac{f\left(y_i^{*(j)} \mid x_i; \hat{ heta}_{(t)}
ight)}{f\left(y_i^{*(j)} \mid x_i; \hat{ heta}_{(0)}
ight)} \left\{1 - \pi(x_i, y_i^{*(j)}; \hat{\phi}_{(t)})
ight\}$$

where

$$\pi(x_i, y_i; \hat{\phi}) = \frac{\exp\left(\hat{\phi}_0 + \hat{\phi}_1 x_i + \hat{\phi}_2 y_i\right)}{1 + \exp\left(\hat{\phi}_0 + \hat{\phi}_1 x_i + \hat{\phi}_2 y_i\right)}.$$

Kim (ISU) Section 6.1 9 / 25

Example 6.3

 Using the imputed data and the fractional weights, the M-step can be implemented by solving

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij(t)}^{*} S\left(\boldsymbol{\theta}; x_{i}, y_{i}^{*(j)}\right) = 0$$

and

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij(t)}^{*} \left\{ \delta_{i} - \pi(\phi; x_{i}, y_{i}^{*(j)}) \right\} \left(1, x_{i}, y_{i}^{*(j)} \right) = 0,$$
 (3)

where $S(\theta; x_i, y_i) = \partial \log f(y_i \mid x_i; \theta) / \partial \theta$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Kim (ISU) Section 6.1 10/25

Example 6.4: Back to Example 3.18 (GLMM)

Level 1 model

$$y_{ij} \sim f_1(y_{ij} \mid x_{ij}, a_i; \theta_1)$$

for some fixed θ_1 and a_i random.

• Level 2 model

$$a_i \sim f_2(a_i; \theta_2)$$

- Latent variable: a_i
- We are interested in generating a_i from

$$p(\mathbf{a}_i \mid \mathbf{x}_i, \mathbf{y}_i; \theta_1, \theta_2) \propto \left\{ \prod_{j=1}^{n_i} f_1(y_{ij} \mid x_{ij}, \mathbf{a}_i; \theta_1) \right\} f_2(\mathbf{a}_i; \theta_2)$$

Kim (ISU) Section 6.1 11/25

Example 6.4 (Cont'd)

- E-step
 - **1** Imputation Step: Generate $a_i^{*(1)}, \dots, a_i^{*(m)}$ from $f_2(a_i; \hat{\theta}_2^{(t)})$.
 - Weighting Step: Using the *m* imputed values generated from Step 1, compute the fractional weights by

$$w_{ij(t)}^* \propto g_1(\mathbf{y}_i \mid \mathbf{x}_i, a_i^{*(j)}; \hat{\theta}_1^{(t)})$$

where $g_1(\mathbf{y}_i \mid \mathbf{x}_i, a_i; \hat{\theta}_1) = \prod_{j=1}^{n_i} f_1(y_{ij} \mid x_{ij}, a_i; \theta_1)$.

M-step: Update the parameters by solving

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij(t)}^{*} S_{1}\left(\frac{\theta_{1}}{1}; \mathbf{x}_{i}, \mathbf{y}_{i}, a_{i}^{*(j)}\right) = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij(t)}^{*} S_{2}\left(\frac{\theta_{2}}{\theta_{2}}; a_{i}^{*(j)}\right) = 0.$$

Example 6.5: Measurement error model

- Interested in estimating θ in $f(y \mid x; \theta)$.
- Instead of observing x, we observe z which can be highly correlated with x.
- Thus, z is an instrumental variable for x:

$$f(y \mid x, z) = f(y \mid x)$$

and

$$f(y \mid z = a) \neq f(y \mid z = b)$$

for $a \neq b$.

• In addition to original sample, we have a separate calibration sample that observes (x_i, z_i) .

Kim (ISU) Section 6.1 13/25

Example 6.5 (Cont'd)

Table: Data Structure

	Z	Χ	Y
Calibration Sample	0	0	
Original Sample	0		0

The goal is to generate x in the original sample from

$$f(\mathbf{x}_i \mid z_i, y_i) \propto f(\mathbf{x}_i \mid z_i) f(y_i \mid \mathbf{x}_i, z_i)$$

= $f(\mathbf{x}_i \mid z_i) f(y_i \mid \mathbf{x}_i)$

- Obtain a consistent estimator $\hat{f}(x \mid z)$ from calibration sample.
- E-step

 - ② Compute the fractional weights associated with $x_i^{*(j)}$ by

$$w_{ij}^* \propto f(y_i \mid x_i^{*(j)}; \hat{\theta})$$

• M-step: Solve the weighted score equation for θ .

Kim (ISU) Section 6.1 14 / 25

Remarks for Computation

Recall that, writing

$$\bar{S}^*(\boldsymbol{\eta} \mid \boldsymbol{\eta}) = \sum_{i=1}^n \sum_{j=1}^m w_{ij}^*(\boldsymbol{\eta}) S(\boldsymbol{\eta}; \mathbf{y}_{ij}^*, \boldsymbol{\delta}_i)$$

where $w_{ij}^*(\eta)$ is the fractional weight associated with y_{ij}^* , denoted by

$$w_{ij}^{*}(\boldsymbol{\eta}) = \frac{f(\mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i}; \boldsymbol{\eta}) / h_{m}(\mathbf{y}_{i,\text{mis}}^{*(j)})}{\sum_{k=1}^{m} f(\mathbf{y}_{ik}^{*}, \boldsymbol{\delta}_{i}; \boldsymbol{\eta}) / h_{m}(\mathbf{y}_{i,\text{mis}}^{*(k)})}, \tag{4}$$

and $S(\eta; \mathbf{y}, \delta) = \partial \log f(\mathbf{y}, \delta; \eta)/\partial \eta$, the EM algorithm for fractional imputation can be expressed as

$$\hat{\eta}^{(t+1)} \leftarrow \text{ solve } \bar{S}^*(\frac{\eta}{\eta} \mid \hat{\eta}^{(t)}) = 0.$$

| Kim (ISU) | Section 6.1 | 15/25

Remarks for Computation

Instead of EM algorithm, Newton-type algorithm can also be used.
 The Newton-type algorithm for computing the MLE from the fractionally imputed data is given by

$$\hat{\eta}^{(t+1)} = \hat{\eta}^{(t)} + \left\{ I_{obs}^*(\hat{\eta}^{(t)}) \right\}^{-1} \bar{S}^*(\hat{\eta}^{(t)} \mid \hat{\eta}^{(t)})$$

where

$$I_{obs}^{*}(\boldsymbol{\eta}) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{*}(\boldsymbol{\eta}) \dot{S}(\boldsymbol{\eta}; \mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i})$$
$$-\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{*}(\boldsymbol{\eta}) \left\{ S(\boldsymbol{\eta}; \mathbf{y}_{ij}^{*}, \boldsymbol{\delta}_{i}) - \bar{S}_{i}^{*}(\boldsymbol{\eta}) \right\}^{\otimes 2},$$

$$\dot{S}({\color{black} \eta};{\color{black} y},{\color{black} \delta}) = \partial S({\color{black} \eta};{\color{black} y},{\color{black} \delta})/\partial \eta$$
 and $\bar{S}_i^*({\color{black} \eta}) = \sum_{j=1}^M w_{ij}^*({\color{black} \eta}) \dot{S}({\color{black} \eta};{\color{black} y}_{ij}^*,{\color{black} \delta}_i).$

Estimation of general parameter

- Parameter Ψ is defined through $E\{U(\Psi; Y)\} = 0$.
- The FI estimator of Ψ is computed by solving

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{*}(\hat{\eta}) U(\mathbf{\Psi}; \mathbf{y}_{ij}^{*}) = 0.$$
 (5)

Note that $\hat{\eta}$ is the solution to

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{*}(\hat{\eta}) S(\hat{\eta}; \mathbf{y}_{ij}^{*}) = 0.$$

Kim (ISU) Section 6.1 17/25

Estimation of general parameter

 We can use either linearization method or replication method for variance estimation. For linearization method, using Theorem 4.2, we can use sandwich formula

$$\hat{V}\left(\hat{\Psi}\right) = \hat{\tau}^{-1}\hat{\Omega}_q\hat{\tau}^{-1'} \tag{6}$$

where

$$\hat{\tau} = n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^* \dot{U}\left(\hat{\Psi}; \mathbf{y}_{ij}^*\right)$$

$$\hat{\Omega}_{q} = n^{-1} (n-1)^{-1} \sum_{i=1}^{n} (\hat{q}_{i}^{*} - \bar{q}_{n}^{*})^{\otimes 2},$$

with
$$\hat{q}_i^* = \bar{U}_i^* + \hat{\kappa} \bar{S}_i^*$$
, where $(\bar{U}_i^*, \bar{S}_i^*) = \sum_{j=1}^m w_{ij}^* (U_{ij}^*, S_{ij}^*)$, $U_{ij}^* = U(\hat{\Psi}; \mathbf{y}_{ij}^*)$, $S_{ij}^* = S(\hat{\eta}; \mathbf{y}_{ij}^*)$, and

$$\hat{\kappa} = \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}^{*}(\hat{\eta}) \left(U_{ij}^{*} - \bar{U}_{i}^{*}\right) S_{ij}^{*} \left\{I_{\mathrm{obs}}^{*}(\hat{\eta})\right\}^{-1}$$

Kim (ISU) Section 6.1 18/25

Estimation of general parameter

• For replication method, we first obtain the k-th replicate $\hat{\eta}^{(k)}$ of $\hat{\eta}$ by solving

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i}^{(k)} w_{ij}^{*} \left(\mathbf{\eta} \right) S \left(\eta; \mathbf{y}_{ij}^{*} \right) = 0.$$

• Once $\hat{\eta}^{(k)}$ is obtained, then the k-th replicate $\hat{\Psi}^{(k)}$ of $\hat{\Psi}$ is obtained by solving

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i}^{(k)} w_{ij}^{*}(\hat{\eta}^{(k)}) U(\mathbf{\Psi}; \mathbf{y}_{ij}^{*}) = 0$$

for ψ .

• The replication variance estimator of $\hat{\Psi}$ from (5) is obtained by

$$\hat{V}_{rep}(\hat{\Psi}) = \sum_{k=1}^{L} c_k \left(\hat{\Psi}^{(k)} - \hat{\Psi}\right)^2.$$

Kim (ISU) Section 6.1 19 / 25

Fractional hot deck imputation (Yang and Kim, 2014)

- For simplicity, we consider a bivariate data structure (x_i, y_i) with x_i fully observed. Let $\{y_1, \cdots, y_r\}$ be the set of respondents and we want to obtain m imputed values, $y_i^{*(1)}, \dots, y_i^{*(m)}$, for $i = r + 1, \dots, n$ from the respondents. Let w_{ii}^* be the fractional weights assigned to $y_i^{*(j)}$ for $j = 1, 2, \dots, m$.
- We consider the special case of m = r. In this case, the fractional weight represents the point mass assigned to each responding y_i . Thus, it is desirable to compute the fractional weights $w_{i1}^*, \dots, w_{ir}^*$ such that $\sum_{i=1}^{r} w_{ii}^* = 1$ and

$$\sum_{j=1}^{r} w_{ij}^* I(y_j < y) \cong Pr(y_i < y \mid x_i, \delta_i = 0).$$
 (7)

• Note that for the special case of $w_{ii}^* = 1/r$, the left side of the above equality estimates $Pr(y_i < y \mid \delta_i = 1)$.

Kim (ISU) 20 / 25

FHDI

• If we can assume a parametric model $f(y \mid x; \theta)$ for the conditional distribution of y on x and the response probability model is given by $Pr(\delta_i = 1 \mid x_i, y_i) = \pi(x_i, y_i; \phi)$, then the fractional weights satisfying (7) are given by

$$w_{ij}^{*} \propto f\left(y_{j} \mid x_{i}, \delta_{i} = 0; \hat{\theta}, \hat{\phi}\right) / f(y_{j} \mid \delta_{j} = 1)$$

$$\propto f\left(y_{j} \mid x_{i}, \hat{\theta}\right) \left\{1 - \pi\left(x_{i}, y_{j}; \hat{\phi}\right)\right\} / f(y_{j} \mid \delta_{j} = 1).$$

Kim (ISU) Section 6.1 21/25

FHDI

Since

$$f(y_j \mid \delta_j = 1) \propto \int \pi(x, y_j) f(y_j \mid x) f(x) dx$$

$$\cong \frac{1}{n} \sum_{i=1}^{n} \pi(x_i, y_j) f(y_j \mid x_i),$$

we can express

$$w_{ij}^* \propto \frac{f(y_j \mid x_i, \hat{\theta}) \left\{ 1 - \pi(x_i, y_j; \hat{\phi}) \right\}}{\sum_{k=1}^n \pi(x_k, y_j; \hat{\phi}) f(y_j \mid x_k; \hat{\theta})}.$$

Kim (ISU) Section 6.1 22 / 25

• Under MAR, $\pi(x,y) = \pi(x)$ and the fractional weight is

$$w_{ij}^* \propto \frac{f(y_j \mid x_i; \hat{\theta})}{\sum_{k; \delta_k = 1} f(y_j \mid x_k; \hat{\theta})}$$

with $\sum_{i:\delta_i=1} w_{ii}^* = 1$.

ullet Once the fractional imputation is created, the imputed estimating equation for ψ is computed by

$$\sum_{i=1}^{n} \left\{ \delta_{i} U(\psi; x_{i}, y_{i}) + (1 - \delta_{i}) \sum_{j; \delta_{j} = 1} w_{ij}^{*} U(\psi; x_{i}, y_{j}) \right\} = 0$$
 (8)

where

$$w_{ij}^{*} = \frac{f(y_{j} \mid x_{i}; \hat{\theta}) / \{\sum_{k; \delta_{k} = 1} f(y_{j} \mid x_{k}; \hat{\theta})\}}{\sum_{j; \delta_{j} = 1} \left[f(y_{j} \mid x_{i}; \hat{\theta}) / \{\sum_{k; \delta_{k} = 1} f(y_{j} \mid x_{k}; \hat{\theta})\} \right]}.$$
 (9)

Example 6.7

- Consider the setup of Example 5.10, except that $e_i = u_i 1$ where u_i is the exponential distribution with mean 1. Suppose that the imputation model for the error term is $e_i \sim N(0, \sigma^2)$. Thus, the imputation model is not correct because the true sampling distribution is $e_i \sim \text{Exp}(1) 1$.
- We are interested in estimating $\theta_1 = E(Y)$ and $\theta_2 = P(Y < 1)$.
- A simulation study was performed to compare the three imputation methods: multiple imputation, parametric fractional imputation of Kim (2011), and fractional hot deck imputation, with m=50 for all methods.

Kim (ISU) Section 6.1 24/25

Table: Simulation Results of the Point Estimators

Parameter	Method	Bias	Standard Error
$\overline{ heta_1}$	MI	0.00	0.084
	PFI	0.00	0.084
	FHDI	0.00	0.084
θ_2	MI	-0.014	0.026
	PFI	-0.014	0.026
	FHDI	-0.001	0.029