7-in-1 air quality detection module

M701 product specification

Version: 3.0

M701 7-in-1 sensor module is a cost-effective digital serial port output sensor module, using 485/UART output mode, set CO2, formaldehyde, TVOC, laser dust PM2.5,PM10 particles, temperature, humidity in one, a variety of parameters will be in the form of RS485 digital interface unified output.It can carry out real-time comprehensive detection of the environment, has good stability and is very convenient for customers to use.

Applicat ion areas:

- ◆ Hotel room air quality
 monitoring ◆ Agricultural
 greenhouses, outdoor breeding
 place environmental monitoring ◆
 Fresh air ventilation system
- Air purifier, air conditioning
- Air quality monitoring equipment
- Ventilation control system for kitchen and bathroom
- Smart home equipment

Main features:

- Carbon dioxide output at the same time. Formaldehyde.TVOC.PM2.5. PM10. Temperature. High sensitivity and stable data
- \bullet 485 output mode, can be connected to multiple sensors
- \bullet The temperature is accurate to 0.1°C, the humidity is accurate to 0.1%
- Automatic output of seven sensor monitoring data every 2 seconds through RS485/UART signal

Specific ations:

clas Don's t	Measurement resolution	Measurin g range	Accuracy of measuremen t
CO ₂	1pp m	400 PPM to 5000 PPM	Plus or minus 3% + 50 PPM or plus or minus 10%
CH₂O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
TVOC	1 mu g/m3	0 ~ 2000 mu g/m after	Plus or minus 25%
PM2. 5	1 mu g/m3	0 ~ 999 mu g/m after	Plus or minus or plus or minus 10 10%
PM10	1 mu g/m3	0 ~ 1000 mu g/m after after	Plus or minus or plus or minus 10 10%

Temperature	0.1 °C	- 40 °C ~ 100 °C	+/- 1°C					
Humidity	0.1	0 ~ 100%	Plus or minus 3% RH					
Physical interface	Mother XH2.54 seat							
The output data	RS48 5							
Working voltage	5.0 + / - 0.2 VDC							
Working current	500 ma or less (CO ₂ needs 300 mA)	500 ma or less (CO ₂ Transient needs 300 mA)						
Warm up time		2 minutes (CO only ₂ ,CH ₂ O and TVOC need to be preheated, other parameters will be displayed when powered on)						
Working temperature	0 °C to 50 °C							
Working humidity	95% RH or less							
Overall dimensions	71 * 62 * 16 mm (L * W * H)							

Appearance structure drawing: (Height: 16MM)

备注: A/B 款仅为 PM2.5 传感器风口方向不一样

Appearance size diagram:

UART interface definition:

interf	Th	fun
ace	e	cti
	na	on
	me	
	of	
	th	
	е	
1	V	The
	D	power
	D	supply 5
		V
2	G	The
	N	power
	D	to
3	A	
	''	
4	В	

Serial port data stream format:

Baud	9600bps
rate	_
Data	eight
bits	_
Check	There
digit	is no
Stop	1
bit	

UART Communication protocol:

protocol:		
Word	The	instruc
sectio	name	tions
n	of	
	the	
B1	The	A fixed value
Di	frame	3 ch
	head	J CII
	neau 1	
B2	The	A fixed value
D2		A fixed value 02 h
	frame	UZ n
	head	
	2	GO W. 1. 1.
В3	data	eCO₂High byte
D.4	1 .	.CO Th. 1
B4	data	eCO ₂ The low
D.f.	1 ,	byte
B5	data	eCH₂O high byte
В6	data	eCH ₂ O low byte
В	uata	eCII ₂ O IOW Dyte
В7	data	TVOC high byte
2,		r v o o mgm o j vo
B8	data	TVOC low byte
		·
В9	data	PM2.5 high byte
D10	1	D) (0.5.1 1
B10	data	PM2.5 low byte
B11	data	DM10 bigh bodg
ВП	data	PM10 high byte
B12	data	PM10 low byte
D12	data	1 WITO low byte
B13	data	Temperature Integer part
	2.2.2.2	
B14	data	Temperature fractional
		_
B15	data	Humidity is an integer
B16	data	Humidity is the same as
		Humidity.
B17	The	The
	checks	checksum
	um	

Note: The checksum B17 is equal to: B1+B2+ \cdots B16, 8 bits lower.

When the bit7 of the temperature data B13 =1, it represents negative temperature; when the bit7 of B13 =0, it represents positive temperature. For example, when B13=9Bh, then bit7=1, indicating negative temperature, the actual temperature is - 27°C ; If B13=1Bh, then bit7=0, which means positive temperature, then the actual temperature is 27 degrees Celsius.

The atta ched:

M701 version 485 communication protocol

Ver2.0

1, an overvie w of the

The communication protocol describes the M701 input and output commands, information and data in detail for use and development by third parties. 1.2 Physical Interfaces:

The main communication port of the upper computer is connected with the standard serial RS-485 communication port.

The information transmission mode is asynchronous. The data bit is 8 bits, the stop bit is 1 bit, and there is no verification.

The default data transmission rate is 9600b/s

2. Details of M701 communication protocol

- 1) All loop communication shall follow the master/slave mode. In this way, information and data are passed between a single master station and a slave station (monitoring device).
- 2) Broadcast mode is not supported.
- 3) Under no circumstances can communication be started from a slave station.
- 4) If the master station or any slave station receives a package containing an unknown command, the package will be ignored and the receiving station will not respond.
- 2.2 returned data frame structure description each data frame consists of the following:(RTU mode) address

Function code

Number

of data

Data 1

Data n

CRC 16-bit check

3. Transmission format

(1) Format of command packets

> Host sends read data command:

addre	Functi	Where the data starts	Where the data starts	Return the	Return the	C R
SS	on code	Address	Addressi	data	data	C
	Code	ing a	ng low	The	The	16

		high		number of high	number of low	check
xx	03	00	02	0	0 7	Low in the first

(Currently, only all data can be read. Seven data values can be read starting from address 0002.) There are only seven data, corresponding to seven addresses, whose address and data high levels are not processed in the module. The default value is 0. The value is 0000

Internal message

The starting address	The number of data	instructions
It can only be as follows:		
0x0002	1	CO ₂ The concentration of

0x0004	1	Formaldehyde concentration
0x0006	1	TVOC concentration
0x0008	1	PM2.5 concentrations
0x000A	1	PM10 concentration
0x000C	1	Temperature value
0x000E	1	Humidity value

The start address must be the address listed above. If the number of data is exceeded, no response is given. For example, if the starting address is 0X000C, the number of data can only be 1 or 2. If three data are returned, no response is given. Similarly, if the address 0X000E is used, the number of returned data can only be 1. If the number of returned data is 0, no response is received.

Slave sensor return value:

Slave IP address Function code Number of data Data N CRC

XX 03 xx xx xxxx

The byte length indicates only the data length.

N	N	N2	N3	N	N	N	N	N	N	N10	N11	N12	N13
0	1			4	5	6	7	8	9				
C	C	formalde	formalde	TV	TV	PM	PM	P	PM	The	The	humid	humid
0	0	hyde	hyde	OC	OC	2.5	2.5	M1	10	tempera	tempera	ity	ity
2	2							0		ture	ture		
hi	10	high	low	hi	10	h	1	hi	10	high	1ow	high	low
gh	W			gh	W	i	0	gh	W				
						g	W						
						h							

Host sends read address command:

addre ss	Functi on code	Where the data starts Address ing a high	Where the data starts Addressi ng low	The number of data hi gh	The number of data	C R C 16 check
00	02	00	00	0	0 2	The low value of Xxxx is in front

Slave return address:

ad	ldres s	Functio n code	bytes	Address high	Address the low	CR C 16 check
	00	02	0 2	0	x x	The low value of Xxxx is in front

Set slave address command :(set slave address to 2)

addres s	Functio n code	Data starts at the high level of the address	Data starting address low value		addres s	CRC 16- bit chec k
00	06	0	0	0	02	The low value of Xxxx is in front

4. Host data sampling frequency:

When reading data from the t/h sensor, the upper computer reads data at an interval of at least 500ms (1s is recommended).

5. Function code

03: Reads data

```
02: Reads the
    address
    06: Setting the address (1
    to 255)
6. Command
examples:
Serial port Settings: asynchronous communication,
data bit 8, no parity check, stop bit 1 data
transmission rate the default value is 9600b/s
01 03 00 02 00 07 CRCL, CRCH
M701
returns:
0 x01, 0 x01, 0 x0e, CO<sub>2</sub>H,CO<sub>2</sub>L H L, formaldehyde, formaldehyde, TVOCH TVOCL, PM2.5 H, PM2.5, L
PM10H, PM10L, temperature of H, L, temperature, humidity, H, L, humidity CRCL, CRCH
Case
1:
TX: 01 03 00 02 00 07 CRCL, CRCH
RX: 01 03 0E 01 E2 00 05 00 24 00 2D 00 38 01 31 02 86 CRCL, CRCH CO<sub>2</sub>
    Concentration = CO_2H \times 256 + CO_2L PPM (BYTE3 \times 256 + BYTE4)
    formaldehyde concentration = formaldehyde H ×256 + formaldehyde L μg
    (BYTE5 ×256 + BYTE6) TVOC concentration = TVOCH ×256 + TVOCL μg
    (BYTE7) ×256 + BYTE8) PM2.5 concentration = PM2.5H x 256 + PM2.5L μg
    (BYTE9 x 256 + BYTE10) PM10 concentration = PM10H x 256 + PM10L μg
    (BYTE11 \times 256 + Temperature = ((BYTE13) \times 256 + (BYTE14)) / 10
    Humidity = ((BYTE15) \times 256 + (BYTE16))
The above CO_2 = 5 = 482, formaldehyde, TVOC = 36, PM2.5 = 45, PM10 = 56,
= 30.5 temperature and humidity = 64.6
Exam
ple
2:
TX:01 03 000C 00 02 CRCL, CRCH (10:43:52:001) (Reads two data starting from address 01 000C)
0x000C, corresponding to temperature and humidity.
RX:01 03 02 01 27 02 45 03 57 (10:43:52:159)
The returned temperature 0X0127 corresponds to base
295, indicating that the temperature is 29.5 ^{\circ} C. The
returned humidity 0X0245 corresponds to base 581,
indicating that the humidity is 58.1%RH
Note:
Returns each data
format from the
machine
Temperature is a 16-bit signed number and other data is a 16-bit unsigned
number. The temperature and humidity are converted to base 10 and divided by 10,
which is the test value.
The temperature 0X0127 corresponds to base 295,
indicating 29.5 ° C
The return temperature of 0xFFF4 pairs is 12 in base 10,
indicating the temperature -1.2℃
Such
Returned humidity hexadecimal unsigned data: 0X0311, corresponding to
decimal 785, indicating that the humidity is 78.5%RH Return temperature
```

Hexadecimal signed data: 0X00FF, corresponding to decimal 255, indicating that the temperature is 25.5 ° C Return temperature Hexadecimal signed data: 0xFFF4 corresponds to base 10 12, indicating temperature $-1.2\,^{\circ}$ C

Set address:
Address CRCL, CRCH transmitter: 00 06 00 00, 00, address CRCL, CRCH

Read address value:
00 02 02 00, address, CRCL, CRCH

CRC check reference:

0x01, 0xC0,

CRC high byte value table: static char auchCRCHi[] = $\{0x00, 0xC1, 0x81, 0x40, 0x80, 0x41, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x00, 0x01, 0xC0, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x80, 0x41, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x00, 0xC1, 0x81, 0x00, 0xC1, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0xC1, 0x81, 0x40, 0x01, 0xC0$

 $0x41,\ 0x00,\ 0xC1,\ 0x81,\ 0x40,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x00,\\ 0xC1,\ 0x81,\ 0x40,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x00,\ 0xC1,\ 0x81,\ 0x40,\ 0x01,\ 0xC1,\ 0x81,\ 0x40,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x00,\ 0xC1,\ 0x81,\ 0x40\};$

CRC low byte value table: static char auchCRCLo[] = {0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF5, 0xF7, 0x37, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0x3B, 0xFA, 0x3A, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0xEE, 0x2A, 0xEA, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0xE6, 0x27, 0xE7, 0x26, 0x22, 0xE2, 0xE3, 0xA3, 0x61, 0xA1, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC,

0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x97, 0x56, 0x57, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x9A, 0x5E, 0x5A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x4A, 0x8B, 0x8A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x47, 0x45, 0x87, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40};

CRC function calculation method:

1.Preset a 16-bit register to hexadecimal FFFF (that is, all 1); Call this register a CRC register; 2.The first 8-bit binary data (i.e. the first byte of a communication frame) is different or from the lower 8 bits of a 16-bit CRC register, and the result is placed in the CRC register;

3.Move the contents of the CRC register one right (toward the low) and fill the highest bit with a 0, and check the move out bit after the right move; 4.If move out is 0: repeat step 3 (move right again one bit); If the offbit is 1, the CRC register is xOR with multientry A001 (1010 0000 0000 0001);

5.Repeat steps 3 and 4 until the right shift is 8 times so that the entire 8-bit data has been processed;

6. Repeat Step 2 to Step 5 to process the next byte of the communication information frame.

7.After all bytes of the communication information frame are calculated according to the above steps, the high and low bytes of the 16-bit CRC register obtained are exchanged;

 $8.\mbox{The final CRC}$ register content is: CRC code.

CRC function routines: //*pushMsg is the array pointer variable to be checked, usDataLen is the number of data variables to be checked

void CRC16(char *pushMsg,unsigned short usDataLen) {

```
char uchCRCHi=0xFF;
                           // High CRC byte initialization
                           // Low CRC bytes initialize
char uchCRCLo=0xFF;
unsigned int uIndex;
                        // index in CRC loop
while(usDataLen--)
uIndex=uchCRCHi^*pushMsg++;//CRC
calculation
uchCRCHi=uchCRCLo^auchCRCHi[uIndex];
 uchCRCLo = auchCRCLo[uIndex];\\
 *pushMsg++=uchCRCHi;
                              // Check data is higher
 than that
  *pushMsg=uchCRCLo;
                              }}
Matters
needing
attentio
To power on a device for the first
time, preheat the device for at
least five minutes.
```

Unconsciously, do not apply this module to

systems that involve personal security. Unconsciously do not expose the module to high levels of organic gas for long periods of time.

Anyway, do not install a module in a strong-air convection environment.

Wired the metal shell plugs into the sensor's internal power supply, taking care not to short-circuit other external circuits or the chassis shell.

The optimal installation method is to put the air inlet and outlet in a plane that is close to the user's inner wall to connect with the outside world, and there is no shelter within 2cm around the air outlet. There should be air isolation between the air inlet and the air outlet to avoid direct flow of air back to the air inlet from the air outlet inside the equipment.

The hole sizes of the air inlet and outlet of the device should not be smaller than the hole sizes of the air inlet of the sensor.

When using something like a purifier, users avoid putting sensors directly into the purifier's own air duct by designing a self-supporting structural space where the sensor is placed, insulating it from the purifier's own air duct.

The sensor should be installed 15 to 20CM higher than the ground. Otherwise, the fan may be polluted by large dust particles such as ground dust, floating flocs or even flocs. You are advised to use the device to prefilter the fan.

Users automatically do not disassemble the sensor, including the metal shield, to prevent irreversible damage.

The sensor data ensures consistency between manufacturers, without using third-party instrumentation or data as a comparison standard. If the user wants the final measurement result to be consistent with a third-party testing device, the user can perform data fitting and calibration according to the actual collected results.

The sensor lends itself to a common indoor environment, where the user's device can lose data consistency due to excessive dust, oil and water accumulation:

A) Annual dust concentration greater than 300 μ g/m3 for more than 50% of the time, or greater than 500 μ g/m3 for more than 20% of the time; B) Lampblack environment;C) High water mist environment;D) outside.