Resolution and accuracy in Congreve & Lamsdell matrices

 $Martin\ R.\ Smith\ martin.smith@durham.ac.uk\\ 2019-07-20$

Contents

	Summary																					
0.2	Trees $1-10$													 								2
0.3	Trees $11-20$.				 									 								5
0.4	Trees $21–30$.													 								8
0.5	Trees $31–40$.				 									 								11
0.6	Trees $41–50$.				 									 								14
0.7	Trees $51–60$.				 									 								17
0.8	Trees $61-70$.				 									 								20
0.9	Trees $71–80$.				 									 								23
0.10	Trees $81–90$.				 									 								26
	Trees $91-100$																					
Refe	rences				 			 						 								31

This page depicts the analytical results of all 100 matrices generated by Congreve & Lamsdell [1] using a ternary plotting approach [2], with quartets and partitions used as distance metrics.

0.1 Summary

0.2 Trees 1-10

0.3 Trees 11-20

0.4 Trees 21-30

0.5 Trees 31-40

0.6 Trees 41-50

0.7 Trees 51-60

0.8 Trees 61-70

0.9 Trees 71-80

0.10 Trees 81–90

0.11 Trees 91-100

References

- 1. Congreve CR, Lamsdell JC. 2016 Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. *Palaeontology* **59**, 447–465. (doi:10.1111/pala.12236)
- 2. Smith MR. 2019 Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. $Biology\ Letters\ {f 15},\ 20180632.$ (doi:10.1098/rsbl.2018.0632)