Linearization Continued

D. Zack Garz

Linearization Continued Section 8.4 Follow-Up

D. Zack Garza

April 2020

Definitions

The Floer equation is given by

$$\frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} + \operatorname{grad} H_t(u) = 0.$$

— We fixed a solution and lifted it to a sphere:

$$u \in C^{\infty}(S^1 \times \mathbb{R}; W) \quad \mapsto \quad \tilde{u} \in C^{\infty}(S^2; W)$$

- We use the assumption: For every $w \in C^{\infty}(S^2, W)$ there exists a symplectic trivialization of the fiber bundle w^*TW , i.e. $\langle c_1(TW), \pi_2(W) \rangle =$ 0 where c_1 denotes the first Chern class of the bundle TW.
- We use this trivialize the pullback \tilde{u}^*TW to obtain an orthonormal unitary frame

$${Z_i}_{i=1}^{2n} \subset T_{u(s,t)}W$$

Order 0 Part is Symmetric in the Limit

Linearization Continued

D. Zack Garz

Order 0 Part is Symmetric in the Limit

Theorem (8.4.4, CR + Symmetric in the Limit)

If u solves Floer's equation, then

$$(d\mathcal{F})_u = \bar{\partial} + S(s, t)$$

where

- 1 S is linear
- 2 S tends to a symmetric operator as $s \longrightarrow \pm \infty$, and
- 3 We have the limiting behavior

$$\frac{\partial S}{\partial s}(s,t) \stackrel{s \longrightarrow \pm \infty}{\longrightarrow} 0$$
 uniformly in t

Proof

Collect terms in the order zero part:

Linearization of Hamilton's Equation

Linearization Continued

D. Zack Garz

Recall

$$(d\mathcal{F})_{u} = \bar{\partial}Y + SY = (\bar{\partial} + S)Y$$

Now think of S as a map $Y \mapsto S \cdot Y$, so $S \in C^{\infty}(\mathbb{R} \times S^1; \operatorname{End}(\mathbb{R}^{2n}))$ and define the symmetric operators

$$S^{\pm} \coloneqq \lim_{s \longrightarrow \pm \infty} S(s, \cdot)$$
 respectively

Theorem

The equation

$$\partial_t Y = J_0 S^{\pm} Y$$

is a linearization of Hamilton's equation

$$\frac{\partial z}{\partial t} = X_t(z) \quad \text{at} \quad \begin{cases} x = \lim_{s \to -\infty} u & \text{for } S^- \\ y = \lim_{s \to \infty} u & \text{for } S^+ \end{cases} \text{ respectively.}$$