Gurobi para no matemáticos

¡Python al rescate!

Jesús Sánchez-Oro Calvo

¿Por qué Python?

Simplicidad

Código compacto y limpio

IDE

· Pycharm: entorno muy completo para desarrollo y depuración

Multiparadigma

·Orientación a objetos, imperativa, funcional, etc.

Estructuras de datos

· Colección de las estructuras más utilizadas ya implementada

¿Por qué Python?

Prototipado rápido

• Muy similar a pseudocódigo, tiempos de desarrollo reducidos.

Extensiones

• Gran cantidad de módulos que amplían la funcionalidad del lenguaje.

Multiplataforma

Windows, macOS, Linux, ...

Muy extendido

Oct 2022	Oct 2021	Change	Programming Lang	guage Ratings	Change
1	1		Python	17.08%	+5.81%
2	2		G c	15.21%	+4.05%
3	3		Java	12.84%	+2.38%
4	4		⊘ C++	9.92%	+2.42%
5	5		© C#	4.42%	-0.84%
6	6		VB Visual Ba	asic 3.95%	-1.29%

Mi primer programa en Python

•¿Cómo implemento el clásico Hello, World! En Python?

print("Hello, World!")

• Nada más, ni incluir librerías externas, ni creación de un main, ni clases, ni nada parecido, solo imprimir por pantalla.

¿Dónde programo?

- •IDE Integrated Development Environment
 - Entorno de desarrollo que nos facilita la vida a la hora de programar, depurar, ejecutar, etc.
- PyCharm
 - IDE para Python, versión community gratuita para todos, profesional para profesores y estudiantes universitarios.

Creación de un proyecto

Nos aseguramos de que es un proyecto de Python

Creación de un proyecto

Dónde se va a crear

Creación de un proyecto

Elección del intérprete de Python

Creación de un fichero

¿Cómo ejecuto el código?

Instalación del modulo gurobipy

 A partir de ahora, para usar Gurobi en nuestro código solo tenemos que importar el módulo gurobipy

from gurobipy import *

¿Cómo empezamos?

- •Un modelo en Gurobi se compone de tres elementos principales
 - · Variables de decisión
 - Función objetivo
 - Restricciones

Conceptos básicos

Parámetros

- Controlan el comportamiento de Gurobi
- Deben establecerse antes de comenzar la optimización

Atributos

- •Sirven para modificar propiedades de un modelo
- Pueden ser del modelo, de variables, de restricciones, etc.

Entornos

- Contenedores para modelos y parámetros globales
- •Un modelo hereda todos los parámetros de su entorno

Estado de la solución

- Cuando Gurobi termina, nos devuelve un código indicando cómo ha finalizado el proceso
 - https://www.gurobi.com/documentation/9.5/refman/optimization_status_co des.html
- Códigos más comunes:
 - •OPTIMAL (2): El modelo ha encontrado la solución óptima
 - INFEASIBLE (3): El modelo que hemos implementado no es factible
 - •TIME_LIMIT (9): El modelo ha terminado por el tiempo límite que hemos puesto pero no puede certificar la optimalidad

Threads

· Controla el número de threads que utilizará Gurobi

MIPFocus

- Controla la estrategia de resolución
- Por defecto, balance entre encontrar nuevas soluciones y probar que la actual es óptima
 - ·Si queremos encontrar más soluciones factibles, establecer en 1
 - •Si queremos que se centre en probar optimalidad, establecer en 2
 - •Si la mejor cota no se actualiza o va muy lenta, establecer en 3

ImproveStartTime / ImproveStartGap

- Permiten dejar de centrarse en certificar optimalidad en cierto punto para pasar a buscar soluciones factibles
- El primero establece el tiempo límite para el cambio
- El segundo establece el GAP mínimo para el cambio

NodefileStart

- Permite escribir a disco para reducir el uso de memoria
- Por defecto en 0.5, si necesitamos más memoria, reducimos

MemLimit

•Si Gurobi no puede reservar este valor máximo de memoria, devolverá un error en lugar de matar el proceso

NodefileStart

- Permite escribir a disco para reducir el uso de memoria
- Por defecto en 0.5, si necesitamos más memoria, reducimos

MemLimit

•Si Gurobi no puede reservar este valor máximo de memoria, devolverá un error en lugar de matar el proceso

¿Qué problema queremos resolver?

Maximización de la diversidad

- Maximizar la mínima distancia entre los elementos seleccionados
- 3 modelos diferentes para resolver el mismo problema

Manos a la obra

I er modelo: Classical linear integer formulation (Kuby, 1988)

 \max m

s.t.

$$\sum_{i=1}^{n} x_i = p$$

$$m \le d_{ij} + M(2 - x_i - x_j)$$

 $x_i \in \{0, 1\}$

$$1 \le i < j \le n$$
$$1 \le i \le n$$

Ier modelo: Classical linear integer formulation (Kuby, 1988)

Variables

 \max m

s.t.

$$\sum_{i=1}^{n} x_i = p$$

$$m \le d_{ij} + M(2 - x_i - x_j)$$

$$x_i \in \{0,1\}$$

$$1 \le i < j \le n$$

$$1 \le i \le n$$

ler modelo: Classical linear integer formulation (Kuby, 1988)

Función objetivo

 \max m

$$\sum_{i=1} x_i = p$$

$$m \le d_{ij} + M(2 - x_i - x_j)$$

 $x_i \in \{0, 1\}$

$$1 \le i < j \le n$$
$$1 \le i \le n$$

I er modelo: Classical linear integer formulation (Kuby, 1988)

Restricciones

 \max m

s.t.
$$\sum_{i=1}^{n} x_i = p$$

$$m \le d_{ij} + M(2 - x_i - x_j)$$

$$x_i \in \{0, 1\}$$

$$1 \le i < j \le n$$
$$1 \le i \le n$$

2° modelo: standard model (Kuo, Glover & Dhir, 1993)

 $x_i \in \{0, 1\}$

 \max z

s.t.

$$\sum_{i=1}^{n} x_i = p$$

$$y_{ij} \le x_i \qquad 1 \le i < j \le n$$

$$y_{ij} \le x_j \qquad 1 \le i < j \le n$$

$$x_i + x_j \le y_{ij} + 1 \qquad 1 \le i < j \le n$$

$$z \le d_{ij} \cdot y_{ij} + D(1 - y_{ij}) \qquad 1 \le i < j \le n$$

1 < i < n

3er modelo: node packing (Sayyady and Fathi, 2016)

max

$$\sum_{i=1}^{n} x_i$$

s.t.

$$\sum_{i=0}^{n} x_i = p$$

$$x_i + x_j \le 1$$

$$x_i \in \{0, 1\}$$

$$\forall (i,j) \in E(l)$$

$$1 \le i \le n$$

$$G(l) = (V, E(l))$$

$$E(l) = \{(i, j) \in E : d_{ij} < l\}$$

Gurobi para no matemáticos

¡Python al rescate!

Jesús Sánchez-Oro Calvo

