

Audio source separation

Roland Badeau, roland.badeau@telecom-paris.fr

TSIA 206 - Speech and audio processing

Part I

Introduction

48

Une école de l'IMT

Introduction

Audio source separation

Introduction

- ► Source separation
 - ► Art of estimating "source" signals, assumed independent, from the observation of one or several "mixtures" of these sources
- Application examples:
 - Denoising (cocktail party, suppression of vuvuzela, karaoke)
 - Separation of the instruments in polyphonic music
 - Remix, transformations, re-spatialization

- ► Source separation
 - ► Art of estimating "source" signals, assumed independent, from the observation of one or several "mixtures" of these sources
- ► Application examples:
 - ▶ Denoising (cocktail party, suppression of vuvuzela, karaoke)
 - ► Separation of the instruments in polyphonic music
 - Remix, transformations, re-spatialization

Introduction

- Source separation
 - ► Art of estimating "source" signals, assumed independent, from the observation of one or several "mixtures" of these sources
- Application examples:
 - ▶ Denoising (cocktail party, suppression of vuvuzela, karaoke)
 - ► Separation of the instruments in polyphonic music
 - ► Remix, transformations, re-spatialization

- ► Source separation
 - Art of estimating "source" signals, assumed independent, from the observation of one or several "mixtures" of these sources
- ► Application examples:
 - ▶ Denoising (cocktail party, suppression of vuvuzela, karaoke)
 - ► Separation of the instruments in polyphonic music
 - ► Remix, transformations, re-spatialization

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Introduction

- Source separation
 - ► Art of estimating "source" signals, assumed independent, from the observation of one or several "mixtures" of these sources
- Application examples:
 - ▶ Denoising (cocktail party, suppression of vuvuzela, karaoke)
 - Separation of the instruments in polyphonic music
 - ► Remix, transformations, re-spatialization

Typology of the mixture models

- ▶ Definition of the problem
 - \blacktriangleright Observations: M mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - ▶ Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into $\mathbf{x}(t)$
- ► Stationarity: *A* is translation invariant
- Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - \triangleright \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- Inversibility:
 - \triangleright Determined mixtures: M = K
 - \triangleright Over-determined mixtures: M > K
 - ightharpoonup Under-determined mixtures: M < K

Typology of the mixture models

- Definition of the problem
 - ▶ Observations: M mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - ▶ Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into $\mathbf{x}(t)$

- ► Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - \blacktriangleright \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- Inversibility:
 - \triangleright Determined mixtures: M = K
 - \triangleright Over-determined mixtures: M > K
 - ightharpoonup Under-determined mixtures: M < K

Typology of the mixture models

- Definition of the problem
 - Observations: M mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - ▶ Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into
- ► Linearity: 𝒜 is a linear map
- ► Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - \triangleright \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- Inversibility:
 - \triangleright Determined mixtures: M = K

 - ▶ Under-determined mixtures: M < K

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Typology of the mixture models

- Definition of the problem
 - ▶ Observations: M mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - ▶ Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into $\mathbf{x}(t)$
- ► Stationarity: A is translation invariant
- ► Linearity: 𝒜 is a linear map
- Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - \blacktriangleright \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- ► Inversibility:
 - \triangleright Determined mixtures: M = K
 - \triangleright Over-determined mixtures: M > K
 - ightharpoonup Under-determined mixtures: M < K

Typology of the mixture models

- ▶ Definition of the problem
 - ▶ Observations: M mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - ▶ Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - ▶ General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into $\mathbf{x}(t)$
- ► Linearity: 𝒜 is a linear map
- ► Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - \blacktriangleright \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- ► Inversibility:
 - \triangleright Determined mixtures: M = K
 - \triangleright Over-determined mixtures: M > K
 - ► Under-determined mixtures: *M* < *K*

Audio source separation

PARIS 4/48

三選 新

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

P PARIS

Convolutive linear mixtures

Part II

Mathematical reminders

Real random vectors

- Notation: $\phi[x]$ denotes a function of $\rho(x)$
- Mean vector: $\mu_{\mathbf{x}} = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_{x})(\mathbf{x} \mu_{x})^{T}]$
- ► Characteristic function: $\phi_{\mathsf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}] = \int_{\mathbb{D}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}d\mathbf{x}$
- Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{D}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- Cumulants:

Real random vectors

- Notation: $\phi[x]$ denotes a function of p(x)
- ▶ Mean vector: $\mu_{\mathbf{x}} = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- ► Characteristic function: $\phi_{\mathbf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}] = \int_{\mathbb{D}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}d\mathbf{x}$
- Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{D}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- Cumulants:

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Real random vectors

- Notation: $\phi[x]$ denotes a function of $\rho(x)$
- ▶ Mean vector: $\mu_{\mathbf{x}} = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- Characteristic function: $\phi_{\mathsf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}] = \int_{\mathbb{R}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}d\mathbf{x}$
- Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{R}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- Cumulants:

Real random vectors

- Notation: $\phi[x]$ denotes a function of p(x)
- ▶ Mean vector: $\mu_{\mathbf{x}} = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- ► Characteristic function: $\phi_{\mathsf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}] = \int_{\mathbb{R}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}d\mathbf{x}$
- Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{R}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- ► Cumulants:
 - ► Definition: $\ln(\phi_X(\mathbf{f})) = \sum_{n=1}^{+\infty} \frac{(-2i\pi)^n}{n!} \sum_{k_1=1}^K \sum_{k_n=1}^K \kappa_{k_1...k_n}^n[\mathbf{x}] f_{k_1}...f_{k_n}$
 - $\triangleright \kappa^n[\mathbf{x}]$ is an *n*-th order tensor
 - $\kappa^{1}[\mathbf{x}]$ is the mean vector, $\kappa^{2}[\mathbf{x}]$ is the covariance matrix
 - If $p(\mathbf{x})$ is symmetric $(p(-\mathbf{x}) = p(\mathbf{x}))$, $\kappa^n[\mathbf{x}] = 0$ for any odd
 - \blacktriangleright the ratio $\kappa_{k,k,k,k}^4[\mathbf{x}]/(\kappa_{k,k}^2[\mathbf{x}])^2$ is called "kurtosis"

DIP PARIS 9/48

Une école de l'IMT

Audio source separation

Real random vectors

- Notation: $\phi[x]$ denotes a function of p(x)
- ▶ Mean vector: $\mu_{\times} = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- Characteristic function: $\phi_{\mathbf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^T\mathbf{x}}] = \int_{\mathbb{D}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^T\mathbf{x}}d\mathbf{x}$
- ► Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{R}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- ► Cumulants:
 - ► Definition: $\ln(\phi_x(\mathbf{f})) = \sum_{n=1}^{+\infty} \frac{(-2i\pi)^n}{n!} \sum_{k_1=1}^K \sum_{k_n=1}^K \kappa_{k_1...k_n}^n[\mathbf{x}] f_{k_1} ... f_{k_n}$
 - $ightharpoonup \kappa^n[\mathbf{x}]$ is an *n*-th order tensor
 - $ightharpoonup \kappa^1[\mathbf{x}]$ is the mean vector, $\kappa^2[\mathbf{x}]$ is the covariance matrix
 - If $p(\mathbf{x})$ is symmetric $(p(-\mathbf{x}) = p(\mathbf{x}))$, $\kappa^n[\mathbf{x}] = 0$ for any odd value n
 - ▶ the ratio $\kappa_{k,k,k,k}^4[\mathbf{x}]/(\kappa_{k,k}^2[\mathbf{x}])^2$ is called "kurtosis"

Real random vectors

- Notation: $\phi[x]$ denotes a function of p(x)
- ▶ Mean vector: $\mu_{\times} = \mathbb{E}[\mathbf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- Characteristic function: $\phi_{\mathbf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^T\mathbf{x}}] = \int_{\mathbb{D}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^T\mathbf{x}}d\mathbf{x}$
- ► Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{R}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- ► Cumulants:
 - ► Definition: $\ln(\phi_X(\mathbf{f})) = \sum_{n=1}^{+\infty} \frac{(-2i\pi)^n}{n!} \sum_{k_1=1}^K \sum_{k_n=1}^K \kappa_{k_1...k_n}^n[\mathbf{x}] f_{k_1}...f_{k_n}$
 - $\triangleright \kappa^n[\mathbf{x}]$ is an *n*-th order tensor
 - $ightharpoonup \kappa^1[\mathbf{x}]$ is the mean vector, $\kappa^2[\mathbf{x}]$ is the covariance matrix
 - If $p(\mathbf{x})$ is symmetric $(p(-\mathbf{x}) = p(\mathbf{x}))$, $\kappa^n[\mathbf{x}] = 0$ for any odd value n
 - ▶ the ratio $\kappa_{k,k,k,k}^4[\mathbf{x}]/(\kappa_{k,k}^2[\mathbf{x}])^2$ is called "kurtosis"

0/48 Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Real random vectors

- Notation: $\phi[x]$ denotes a function of $\rho(x)$
- ▶ Mean vector: $\mu_{\mathsf{x}} = \mathbb{E}[\mathsf{x}]$
- Covariance matrix: $\Sigma_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- Characteristic function: $\phi_{\mathbf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^T\mathbf{x}}] = \int_{\mathbb{R}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^T\mathbf{x}}d\mathbf{x}$
- ▶ Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{R}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- ► Cumulants:

9/48

- ▶ Definition: $\ln(\phi_X(\mathbf{f})) = \sum_{n=1}^{+\infty} \frac{(-2i\pi)^n}{n!} \sum_{k_1=1}^K \sum_{k_n=1}^K \kappa_{k_1...k_n}^n[\mathbf{x}] f_{k_1} ... f_{k_n}$
- $\triangleright \kappa^n[\mathbf{x}]$ is an *n*-th order tensor
- $\mathbf{k}^{1}[\mathbf{x}]$ is the mean vector, $\kappa^{2}[\mathbf{x}]$ is the covariance matrix
- If $p(\mathbf{x})$ is symmetric $(p(-\mathbf{x}) = p(\mathbf{x}))$, $\kappa^n[\mathbf{x}] = 0$ for any odd value n
- ▶ the ratio $\kappa_{k,k,k,k}^4[\mathbf{x}]/(\kappa_{k,k}^2[\mathbf{x}])^2$ is called "kurtosis"

Real Gaussian random vectors

- ▶ The Gaussian distribution is the one such that all cumulants of order n > 2 are zero
- ► Characteristic function

$$\phi_{\mathsf{x}}(\mathbf{f}) = \exp(-2i\pi\mathbf{f}^{\mathsf{T}}\mu_{\mathsf{x}} - 2\pi^{2}\mathbf{f}^{\mathsf{T}}\Sigma_{\mathsf{xx}}\mathbf{f})$$

ightharpoonup Probability density function (defined if Σ_{xx} is invertible)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{K}{2}} \det(\Sigma_{xx})^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_{x})^{T} \Sigma_{xx}^{-1}(\mathbf{x} - \mu_{x})\right)$$

- The Gaussian distribution is the one such that all cumulants of order n > 2 are zero
- Characteristic function

$$\phi_{x}(\mathbf{f}) = \exp(-2i\pi\mathbf{f}^{T}\mu_{x} - 2\pi^{2}\mathbf{f}^{T}\Sigma_{xx}\mathbf{f})$$

 \triangleright Probability density function (defined if Σ_{xx} is invertible)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{K}{2}} \det(\Sigma_{xx})^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_{x})^{T} \Sigma_{xx}^{-1}(\mathbf{x} - \mu_{x})\right)$$

- ▶ The Gaussian distribution is the one such that all cumulants of order n > 2 are zero
- Characteristic function

$$\phi_{\mathsf{x}}(\mathbf{f}) = \exp(-2i\pi\mathbf{f}^{\mathsf{T}}\mu_{\mathsf{x}} - 2\pi^{2}\mathbf{f}^{\mathsf{T}}\Sigma_{\mathsf{xx}}\mathbf{f})$$

ightharpoonup Probability density function (defined if Σ_{xx} is invertible)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{K}{2}}\det(\Sigma_{xx})^{\frac{1}{2}}}\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{x})^{T}\boldsymbol{\Sigma}_{xx}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{x})\right)$$

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

🐼 IP PARIS

WSS vector processes

- Definition: the cumulants of orders 1 et 2 are translation-invariant
- \triangleright Covariance matrices of 2 centered WSS processes $\mathbf{x}(t)$ and y(t)
 - ▶ Definition: $\mathbf{R}_{xy}(\tau) = \mathbb{E}\left[\mathbf{x}(t+\tau)\mathbf{y}(t)^T\right]$
 - Property: $\mathbf{R}_{xx}(0) = \Sigma_{xx}$ is Hermitian and positive semi-definite.
- \triangleright PSD matrices of a WSS process $\mathbf{x}(t)$:
 - **Definition:** $\mathbf{S}_{xx}(v) = \sum_{\tau \in \mathbb{T}} \mathbf{R}_{xx}(\tau) e^{-2i\pi v \tau}$
 - Property: $\forall v$, $S_{xx}(v)$ is Hermitian and positive semi-definite

- WSS vector processes
- ▶ Definition: the cumulants of orders 1 et 2 are translation-invariant
- \triangleright Covariance matrices of 2 centered WSS processes $\mathbf{x}(t)$ and $\mathbf{y}(t)$:
 - ▶ Definition: $\mathbf{R}_{xy}(\tau) = \mathbb{E}\left[\mathbf{x}(t+\tau)\mathbf{y}(t)^T\right]$
 - Property: $\mathbf{R}_{xx}(0) = \Sigma_{xx}$ is Hermitian and positive semi-definite.
- \triangleright PSD matrices of a WSS process $\mathbf{x}(t)$:
 - **Definition:** $\mathbf{S}_{xx}(v) = \sum_{\tau \in \mathcal{T}} \mathbf{R}_{xx}(\tau) e^{-2i\pi v \tau}$
 - Property: $\forall v$, $\mathbf{S}_{xx}(v)$ is Hermitian and positive semi-definite

WSS vector processes

- ▶ Definition: the cumulants of orders 1 et 2 are translation-invariant
- \triangleright Covariance matrices of 2 centered WSS processes $\mathbf{x}(t)$ and $\mathbf{y}(t)$:
 - ▶ Definition: $\mathbf{R}_{xy}(\tau) = \mathbb{E}\left[\mathbf{x}(t+\tau)\mathbf{y}(t)^T\right]$
 - Property: $\mathbf{R}_{xx}(0) = \Sigma_{xx}$ is Hermitian and positive semi-definite.
- \triangleright PSD matrices of a WSS process $\mathbf{x}(t)$:
 - **Definition:** $\mathbf{S}_{xx}(v) = \sum_{\tau \in \mathbb{T}} \mathbf{R}_{xx}(\tau) e^{-2i\pi v \tau}$
 - Property: $\forall v$, $\mathbf{S}_{xx}(v)$ is Hermitian and positive semi-definite

Information theory

- Shannon entropy
 - ▶ Definition: $\mathbb{H}[\mathbf{x}] = -\mathbb{E}[\ln(p(\mathbf{x}))]$
 - $ightharpoonup \mathbb{H}[\mathbf{x}]$ is not necessarily non-negative for a continuous r.v.
- ► Kullback-Leibler divergence

 - Property: $D_{KL}(p||q) \ge 0$, $D_{KL}(p||q) = 0$ if and only if p = q
- Mutual information
 - Definition $\mathbb{I}[\mathbf{x}] = \mathbb{E}\left[\ln\left(\frac{p(\mathbf{x})}{p(\mathbf{x}_1)\dots p(\mathbf{x}_K)}\right)\right] = D_{KL}(p(\mathbf{x})||p(\mathbf{x}_1)\dots p(\mathbf{x}_K))$
 - Property: $\mathbb{I}[\mathbf{x}] = 0$ if and only if $x_1 \dots x_K$ are mutually
 - Relationship with entropy: $\mathbb{I}[\mathbf{x}] = \sum_{k=1}^{K} \mathbb{H}[x_k] \mathbb{H}[\mathbf{x}]$

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Information theory

- Shannon entropy
 - ▶ Definition: $\mathbb{H}[\mathbf{x}] = -\mathbb{E}[\ln(p(\mathbf{x}))]$
 - $ightharpoonup \mathbb{H}[\mathbf{x}]$ is not necessarily non-negative for a continuous r.v.
- Kullback-Leibler divergence
 - $D_{KL}(p||q) = \int p(\mathbf{x}) \ln \left(\frac{p(\mathbf{x})}{q(\mathbf{x})} \right) d\mathbf{x}$
 - Property: $D_{KI}(p||q) > 0$, $D_{KI}(p||q) = 0$ if and only if p = q
- Mutual information

$$\mathbb{I}[\mathbf{x}] = \mathbb{E}\left[\ln\left(\frac{p(\mathbf{x})}{p(x_1)\dots p(x_K)}\right)\right] = D_{KL}(p(\mathbf{x})||p(x_1)\dots p(x_K))$$

- Property: $\mathbb{I}[\mathbf{x}] = 0$ if and only if $x_1 \dots x_K$ are mutually
- Relationship with entropy: $\mathbb{I}[\mathbf{x}] = \sum_{k=1}^K \mathbb{H}[x_k] \mathbb{H}[\mathbf{x}]$

Information theory

- ► Shannon entropy
 - ▶ Definition: $\mathbb{H}[\mathbf{x}] = -\mathbb{E}[\ln(p(\mathbf{x}))]$
 - $ightharpoonup \mathbb{H}[\mathbf{x}]$ is not necessarily non-negative for a continuous r.v.
- Kullback-Leibler divergence
 - $D_{KL}(p||q) = \int p(\mathbf{x}) \ln \left(\frac{p(\mathbf{x})}{q(\mathbf{x})} \right) d\mathbf{x}$
 - Property: $D_{KL}(p||q) \ge 0$, $D_{KL}(p||q) = 0$ if and only if p = q
- Mutual information
 - ► Definition: $\mathbb{I}[\mathbf{x}] = \mathbb{E}\left[\ln\left(\frac{p(\mathbf{x})}{p(\mathbf{x}_1)...p(\mathbf{x}_K)}\right)\right] = D_{KL}(p(\mathbf{x})||p(\mathbf{x}_1)...p(\mathbf{x}_K))$
 - Property: $\mathbb{I}[\mathbf{x}] = 0$ if and only if $x_1 \dots x_K$ are mutually independent
 - ▶ Relationship with entropy: $\mathbb{I}[\mathbf{x}] = \sum_{k=1}^{K} \mathbb{H}[x_k] \mathbb{H}[\mathbf{x}]$

12/48

Part III

Linear instantaneous mixtures

- Observation model:
 - $\forall t, \mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$ where $\mathbf{A} \in \mathbb{R}^{M \times K}$ is called the "mixture"
 - Sources are assumed IID: $p(\{s_k(t)\}_{k,t}) = \prod_{k=1}^K \prod_{t=1}^T p_k(s_k(t))$
- Problem: estimate **A** and sources $\mathbf{s}(t)$ given $\mathbf{x}(t)$
- ▶ Definition: non-mixing matrix
 - \triangleright a matrix **C** of dimension $K \times K$ is non-mixing if and only if it has a unique non-zero entry in each row and each column
- ▶ If $\widetilde{\mathbf{s}}(t) = \mathbf{C}\mathbf{s}(t)$ and $\widetilde{\mathbf{A}} = \mathbf{A}\mathbf{C}^{-1}$, then $\mathbf{x}(t) = \widetilde{\mathbf{A}}\widetilde{\mathbf{s}}(t)$ is another admissible decomposition of the observations
 - ► Sources can be recovered up to a permutation and a multiplicative factor

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Linear separation of sources

- ▶ Let $\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t)$, where $\mathbf{B} \in \mathbb{R}^{K \times M}$ is referred to as the "separation matrix"
- Linear separation is feasible if **A** has rank *K*:
 - We get $\mathbf{y}(t) = \mathbf{s}(t)$ by defining:
 - ▶ $\mathbf{B} = \mathbf{A}^{-1}$ in the determined case (M = K)
 - **B** = \mathbf{A}^{\dagger} in the over-determined case (M > K)
 - ightharpoonup the pseudo-inverse $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is such that $\mathbf{A}^{\dagger} \mathbf{A} = \mathbf{I}_K$
- ▶ In the under-determined case (M < K), separation is not feasible

Part IV

Independent component analysis

Independent component analysis (ICA)

- ► In practice matrix **A** is unknown:
 - \triangleright We look for a matrix **B** that makes the v_k independent (ICA)
 - ▶ We then get equation $\mathbf{y}(t) = \mathbf{C}\mathbf{s}(t)$, where $\mathbf{C} = \mathbf{B}\mathbf{A}$
 - ► The problem is solved if matrix **C** is non-mixing

- Theorem (identifiability)
 - \triangleright Let s_k be K IID sources, among which at most one is Gaussian, and $\mathbf{y}(t) = \mathbf{C}\mathbf{s}(t)$ with **C** invertible ((over)-determined case). If signals $y_k(t)$ are independent, then **C** is non-mixing.

- We now suppose that the sources are centered: $\mathbb{E}[\mathbf{s}(t)] = \mathbf{0}$ and that the mixture is (over-)determined
- ► Canonical problem: we can assume without loss of generality that $\mathbf{s}(t)$ is spatially white $(\Sigma_{ss} = \mathbb{E}[\mathbf{s}(t)\mathbf{s}(t)^T] = \mathbf{I}_K)$
- ▶ Then $\Sigma_{xx} = \mathbf{A}\Sigma_{ss}\mathbf{A}^T = \mathbf{A}\mathbf{A}^T$: **A** is a matrix square root of
- ▶ We first aim to whiten (decorrelate) the mixture:
 - \triangleright Σ_{xx} is diagonalizable in an orthonormal basis: $\Sigma_{xx} = \mathbf{Q}\Lambda^2\mathbf{Q}^T$ where $\Lambda = \operatorname{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \geq \lambda_K > \lambda_{K+1} = \lambda_M = 0$ (the rank of Σ_{xx} is equal to K)
 - ► Let $\mathbf{S} = \mathbf{Q}_{(:,1:K)} \Lambda_{(1:K,1:K)} \in \mathbb{R}^{M \times K}$
 - ▶ **S** is a matrix square root of Σ_{xx} : $\Sigma_{xx} = \mathbf{S}\mathbf{S}^T$
 - ► Let $\mathbf{W} = \mathbf{S}^{\dagger}$ and $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
 - ► Then $\mathbf{z}(t)$ is white $(\mathbb{E}[\mathbf{z}(t)] = \mathbf{0}$ and $\Sigma_{zz} = \mathbf{W}\Sigma_{xx}\mathbf{W}^T = \mathbf{I})$

Une école de l'IMT

Audio source separation

三選頭

Audio source separation

Whitening

- \blacktriangleright We conclude without loss of generality that $\mathbf{U} \triangleq \mathbf{W}\mathbf{A}$ is a rotation matrix ($\mathbf{U}\mathbf{U}^T = \mathbf{I}$).
- ► Then $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t) = \mathbf{U}^T \mathbf{W} \mathbf{x}(t) = (\mathbf{W} \mathbf{A})^{-1} (\mathbf{W} \mathbf{A}) \mathbf{s}(t) = \mathbf{s}(t)$.
- ightharpoonup We can thus assume $\mathbf{B} = \mathbf{U}^T \mathbf{W}$ where \mathbf{U} is a rotation matrix.

$$\begin{array}{c|c}
\mathbf{y}(t) & \mathbf{x}(t) \\
\downarrow & \downarrow \\
\end{array}$$

Higher order statistics

- lackbox One can estimate Σ_{xx} from the observations and get $oldsymbol{W}$
- ▶ The whiteness property (second order cumulants) determines W and leaves U unknown.
- ▶ If sources are Gaussian, the z_k are independent and **U** cannot be determined.
- ▶ In order to determine rotation **U**, we need to exploit the non-Gaussianity of sources and characterize the independence property by using cumulants of order greater than 2.

Contrast functions

- ▶ Definition: ϕ is a "contrast function" if and only if $\phi[\mathbf{C}\mathbf{s}(t)] \ge \phi[\mathbf{s}(t)] \ \forall \mathbf{C}$ and if $\phi[\mathbf{C}\mathbf{s}(t)] = \phi[\mathbf{s}(t)] \Leftrightarrow \mathbf{C}$ is non-mixing.
- ► Separation is performed by minimizing $\phi[\mathbf{y}(t) = \mathbf{C}\mathbf{s}(t)]$ with respect to \mathbf{U} (or \mathbf{B})
- ▶ "Canonical" contrast function: $\phi_{IM}[\mathbf{y}(t)] = \mathbb{I}[\mathbf{y}(t)]$
- ► Orthogonal contrasts: to be minimized under the constraint $\mathbb{E}[\mathbf{y}(t)\mathbf{y}(t)^T] = \mathbf{I}$. For instance, $\phi_{IM}^{\circ}[\mathbf{y}(t)] = \sum_{k=1}^{K} \mathbb{H}(y_k(t))$
- ▶ Order 4 approximation of ϕ_{IM}° : $\phi_{ICA}^{\circ}[\mathbf{y}(t)] = \sum_{iikl \neq iiii} (\kappa_{ijkl}^{4}[\mathbf{y}(t)])^{2}$
- **D**escent algorithms for minimizing ϕ with respect to **B** or **U**:
 - ► Gradient algorithm applied to matrix **B**
 - Parameterization of U with Givens rotations and coordinate descent

- 1. Estimation of the covariance matrix Σ_{xx}
- 2. Diagonalization of Σ_{xx} : $\Sigma_{xx} = \mathbf{Q}\Lambda^2\mathbf{Q}^T$ where $\Lambda = \operatorname{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 > \dots > \lambda_M > 0$
- 3. Computation of $\mathbf{S} = \mathbf{Q}_{(:,1:K)} \Lambda_{(1:K,1:K)}$
- 4. Computation of the whitening matrix $\mathbf{W} = \mathbf{S}^{\dagger}$
- 5. Data whitening: $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
- 6. Estimation of **U** by minimizing the contrast function ϕ°
- 7. Estimation of source signals via $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t)$

L/48 Une école de l'IMT

Audio source separation

№ IP PARIS 22/48

三選問

Une école de l'IMT

Audio source separation

Part V

Second order methods

Temporal coherence of sources

- ► Model: $\mathbb{E}(\mathbf{s}(t)) = \mathbf{0}$, $\mathbf{R}_{ss}(\tau) = \mathbb{E}\left(\mathbf{s}(t+\tau)\mathbf{s}(t)^T\right) = \operatorname{diag}(r_{s_k}(\tau))$
- ightharpoonup Canonical problem: we assume that $\Sigma_{ss} = \mathbf{R}_{ss}(0) = \mathbf{I}$
- ▶ We first aim to spatially whiten the mixture:
 - ▶ Let **S** be a matrix square root of Σ_{xx}
 - ► Let $\mathbf{W} = \mathbf{S}^{\dagger}$ and $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
- ▶ Since $\Sigma_{xx} = \mathbf{A} \mathbf{A}^T$, $\mathbf{U} \triangleq \mathbf{W} \mathbf{A}$ is a rotation matrix
- ▶ However, $\forall \tau \in \mathbb{Z}$, $\mathbf{R}_{zz}(\tau) = \mathbf{U}\mathbf{R}_{ss}(\tau)\mathbf{U}^T$
- The joint diagonalization of matrices $\mathbf{R}_{zz}(\tau)$ for various values of τ permits us to identify rotation \mathbf{U}

23/48

Audio source separation

Joint diagonalization

SOBI algorithm

- Unicity theorem :
 - Let a set of matrices $\mathbf{R}_{zz}(\tau)$ of dimension $K \times K$ and of the form $\mathbf{R}_{zz}(\tau) = \mathbf{U}\mathbf{R}_{ss}(\tau)\mathbf{U}^T$ with \mathbf{U} unitary and $\mathbf{R}_{ss}(\tau) = \mathrm{diag}(r_{s_k}(\tau))$. Then \mathbf{U} is unique (up to a non-mixing matrix) if and only if $\forall 1 \leq k \neq l \leq K$, there is τ such that $r_{s_k}(\tau) \neq r_{s_l}(\tau)$
- ▶ Joint diagonalization methods: minimize the criterion

$$J(\mathbf{U}) = \sum_{\tau} \|\mathbf{U}^{T} \mathbf{R}_{zz}(\tau) \mathbf{U} - \operatorname{diag}(\mathbf{U}^{T} \mathbf{R}_{zz}(\tau) \mathbf{U})\|_{F}^{2}$$

► Parameterization of **U** with Givens rotations and coordinate descent

- ► Second Order Blind Identification (SOBI)
 - 1. Estimation and diagonalization of Σ_{xx} : $\Sigma_{xx} = \mathbf{Q} \Lambda^2 \mathbf{Q}^T$ where $\Lambda = \operatorname{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \geq \dots \geq \lambda_M \geq 0$
 - 2. Computation of $\mathbf{S} = \mathbf{Q}_{(:,1:K)} \Lambda_{(1:K,1:K)}$
 - 3. Computation of the whitening matrix $\mathbf{W} = \mathbf{S}^{\dagger}$
 - **4**. Data whitening: $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
 - 5. Estimation of covariance matrices $\mathbf{R}_{zz}(\tau)$ for various delays τ
 - 6. Approximate joint diagonalization of matrices $\mathbf{R}_{zz}(\tau)$ in a common basis \mathbf{U}
 - 7. Estimation of source signals via $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t)$

5/48 Une école de l'IMT

Audio source separation

№ IP PARIS 26/48

Une école de l'IMT

Audio source separation

Non-stationarity of sources

- ▶ Model: $\mathbb{E}(\mathbf{s}(t)) = \mathbf{0}$, $\Sigma_{ss}(t) \triangleq \mathbb{E}(\mathbf{s}(t)\mathbf{s}(t)^T) = \operatorname{diag}(\sigma_k^2(t))$
- ► Then $\forall t \in \mathbb{Z}$, $\Sigma_{xx}(t) = \mathbf{A}\Sigma_{ss}(t)\mathbf{A}^T$
- ▶ Joint diagonalization methods: minimize the criterion

$$J(\mathbf{B}) = \sum_{t} \|\mathbf{B} \Sigma_{xx}(t) \mathbf{B}^{T} - \operatorname{diag}(\mathbf{B} \Sigma_{xx}(t) \mathbf{B}^{T})\|_{F}^{2}$$

- ► Gradient descent algorithm applied to matrix **B**
- In the over-determined case, **B** must be constrained to span the principal subspace of all matrices $\Sigma_{xx}(t)$
- Variant of the SOBI algorithm:
 - 1. Segmentation of source signals and estimation of covariance matrices $\Sigma_{xx}(t)$ on windows centered at different times t
 - 2. Joint diagonalization of matrices $\Sigma_{xx}(t)$ in a common basis **B**
 - 3. Estimation of source signals via $\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t)$

Conclusion of the first part

- ► The use of higher order cumulants is only necessary for the non-Gaussian IID source model
- ▶ Second order statistics are sufficient for sources that are:
 - stationary but not IID (→ spectral dynamics)
 - \blacktriangleright non stationary (\rightarrow temporal dynamics)
- ▶ Remember that classical tools (based on second order statistics) are appropriate for blind separation of independent (and possibly Gaussian) sources, on condition that the spectral / temporal source dynamics is taken into account.

