ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет информационных технологий и программирования

Дисциплина:

«Прикладная математика»

Отчёт по лабораторной работе №1

«Линейное программирование»

Группа М33001

Выполнили:

Соловьев Роман Сергеевич

Халилов Роман Эдуардович

Преподаватель:

Москаленко Мария

Александровна

Санкт-Петербург 2023 г.

Цель работы:

Изучение симплекс-метода решения задач линейного программирования.

Постановка задачи:

Необходимо реализовать парсер общей формы задачи линейного программирования. Разработать метод приведения к канонической форме. Реализовать симплекс-метод решения задачи.

Ход работы:

Весь код, использованный в ходе выполнения работы: GitHub

Часть 1 – парсинг:

Принимаем файл формата json:

```
"f": [5000 , 2500] ,
        "goal": "max",
        "constraints": [
                 "coefs": [4 , 1.5] ,
            "type": "leq" ,
             "b": 24} .
11
12
                 "coefs": [1200 , 150] ,
             "type": "leq",
             "b": 6000},
16
                 "coefs": [20 , 20] ,
             "type": "leq",
             "b": 200},
                "coefs": [1 , 0] ,
             "type": "geq",
             "b": 2}
```

Красивый (относительно) вывод спаршенного json'a:

```
Task: 5000 * X_1 + 2500 * X_2 \rightarrow max Constraints: 4 * X_1 + 1.5 * X_2 \le 24 1200 * X_1 + 150 * X_2 \le 6000 20 * X_1 + 20 * X_2 \le 200 1 * X_1 \ge 2
```

Имеем два класса – задача и ограничение.

Часть 2 – переход к канонической форме:

Приводим задачу к канонической форме:

```
Task: 5000.0 * X_1 + 2500.0 * X_2 \rightarrow max Constraints: 4.0 * X_1 + 1.5 * X_2 + 1.0 * X_3 = 24 1200.0 * X_1 + 150.0 * X_2 + 1.0 * X_4 = 6000 20.0 * X_1 + 20.0 * X_2 + 1.0 * X_5 = 200 1.0 * X_1 - 1.0 * X_6 + 1.0 * X_7 = 2
```

- Превратили все неравенства в уравнения, добавив вспомогательные переменные.
- Если задание было найти минимум модернизировали в задачу нахождения максимума с коэффициентами, домноженными на -1.
- Если в каком-либо ограничении свободный коэффициент был отрицательным домножили всё уравнение на -1.
- Если для какого-то ограничения не было переменной, имеющей коэффициент, равный 1, и не входящей во все остальные ограничения, то добавляем искусственные переменные, удовлетворяющие этому условию.

Часть 3 – симплекс-метод (двухфазный):

Составляем симплекс-таблицу, используя вместо целевой функции вспомогательную $-f'=\Sigma x_i$, где i – индексы искусственных переменных. Используем симплекс-метод с данной функцией. Таким образом мы избавляемся от искусственных переменных в базисе и переходим ко второй фазе. В ней мы используем целевую функцию и получаем ответ. Симплекс-таблица до первой фазы:

6	7
0.0	0.0
0.0	0.0
0.0	0.0
-1.0	1.0
0.0	1.0
0.0	0.0
0	1
	0.0 0.0 -1.0 0.0 0.0

Симплекс-таблица между фазами:

Basis	b	1	2	3	4	5	6	7
3	16.0	0.0	1.5	1.0	0.0	0.0	4.0	-4.0
4	3600.0	0.0	150.0	0.0	1.0	0.0	1200.0	-1200.0
5	160.0	0.0	20.0	0.0	0.0	1.0	20.0	-20.0
1	2.0	1.0	0.0	0.0	0.0	0.0	-1.0	1.0
j c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
10000.0	f	5000.0	2500.0	0.0	0.0	0.0	0.0	0.0
0	f'	0	0	0	0	0	0	1
+				-		,		·i

Симплекс-таблица после второй фазы:

Basis	b	1	2	3	4	5	6	7
2	6.4	0.0	1.0	-0.399999999999999	0.0	0.0799999999999999	0.0	0.0
6	1.6	0.0	0.0	0.399999999999999	0.0	-0.0299999999999999	1.0	-1.0
4	719.9999999999999	0.0	0.0	-419.9999999999994	1.0	23.99999999999996	0.0	0.0
1	3.6	1.0	0.0	0.399999999999999	0.0	-0.0299999999999999	0.0	0.0
c	34000.0	0.0	0.0	-1000.00000000000002	0.0	-49.99999999999986	0.0	0.0
34000.0	f	5000.0	2500.0	0.0	0.0	0.0	0.0	0.0
0 i	f'	0	0	0	0	0	j ø	1

Часть 4 – тестирование:

Протестировали работоспособность кода на различных случаях, в том числе при бесконечном множестве решений, при решении, включающем в себя переменные, стремящиеся в бесконечность и при отсутствии какихлибо решений.

Общий вывод по проделанной работе:

В ходе работы были реализованы чтение из файла формата json, приведение общей формы задачи линейного программирования к канонической и двухфазный симплекс-метод её решения.