Combinación lineal. De <i>n</i> vectores de <i>m</i> dimensiones. Ejemplo:	Matriz por Vector. De m renglones y n columnas. Ejemplo:	Transformación matricial. $T: \mathbb{R}^n \to \mathbb{R}^m$ Ejemplo:	Sistema de ecuaciones. De m ecuaciones con n incógnitas. Ejemplo:
$x_0 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$	$ \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} $	$T\left(\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}\right) = \begin{bmatrix} 1x_0 + -1x_1 \\ 0x_0 + 1x_1 \\ 2x_0 + 3x_1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 & : & b_0 \\ 0 & 1 & : & b_1 \\ 2 & 3 & : & b_1 \end{bmatrix}$
Espacio Generado.	Espacio columna.	Imagen de la transforma- ción.	
$Gen\left(\left\{\overline{u_0},\ldots,\overline{u_{(n-1)}}\right\}\right)$ $=\left\{x_0\overline{u_0}+\ldots+x_{(n-1)}\overline{u_{(n-1)}}\right\}$	$Col(A) = \{A\overline{x} \mid \overline{x} \in \mathbb{R}^n\}$	$Im(T) = \{T(\overline{x}) \mid \overline{x} \in \mathbb{R}^n\}$	
$\mid x_0 \cdots x_{(n-1)} \in \mathbb{R} \big\}$	Se <u>pueden quitar las columnas</u> <u>que no tienen l-pivotes</u>		
Dimensión de espacio generado	Rango de A, $\rho(A)$ $ \underbrace{\text{Número de l-pivotes de } A} $ $ \underbrace{\text{Col}(A) = \Re^m}. $	Rango de T , $\rho(T)$	
Genera todo el espacio $Gen(\{v_0, \dots, v_{(n-1)}\}) = \Re^m$	• $A \text{ tiene } \underline{\text{un}} \text{ l-pivote } \underline{\text{en}}$ $\underline{\text{cada renglón. } A \text{ tiene } m}$	lacktriangledown T es sobreyectiva.	• $[A:b]$ es consistente para cualquier $b \in \Re^m$.
Dim(Gen(S)) = m	l-pivotes. $\rho(A) = m.$	$\bullet \ \rho(T) = m.$	• Si $B \sim A$ entonces B no tienen renglones de ceros.
Encontrar coeficientes. Ejemplo:	Encontrar \overline{x} . Ejemplo:	Imagen inversa. Ejemplo:	Solucionar el sistema. Ejemplo:
$x_0 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$	$T^{-1} \left(\begin{bmatrix} -2\\-1\\-1 \end{bmatrix} \right)$	$\begin{bmatrix} 1 & -1 & : & -2 \\ 0 & 1 & : & -1 \\ 2 & 3 & : & -1 \end{bmatrix}$
Coeficientes que dan cero. Ejemplo:	Espacio nulo.	\mathbf{N} úcleo de T .	Solución del sistema homogéneo. Ejemplo:
$x_0 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + x_1 \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\mathrm{Nu}(A) = \{ \overline{x} \mid A\overline{x} = \overline{0} \}$	$Nu(T) = \{ \overline{x} \mid T(\overline{x}) = \overline{0} \}$	$\begin{bmatrix} 1 & -1 & : & 0 \\ 0 & 1 & : & 0 \\ 2 & 3 & : & 0 \end{bmatrix}$
-	Nulidad de A , $\nu(A)$ (# columnas) $-$ (# l-pivotes)	Nulidad de T , $\nu(T)$	# de parámetros
■ Vectores Linealmente Independientes.	A tiene un l-pivote en cada $columna. A tiene n l pivotes.$		• $[A:b]$ no tiene variables libres.
■ Ningún vector se puede escribir como combina-	La solución de $A\overline{x} = \overline{0}$ es $\{\overline{0}\}$. $Nu\{A\} = \{\overline{0}\}$		• [A:b] no tiene infinitas soluciones.
ción lineal de los otros.	$Nu\{A\} = \{0\}$ $\nu\{A\} = 0$ A es invertible (Existe B tal	2 00 111, 000114	■ La única solución de $[A: \overline{0}]$ es la trivial $(\overline{x} = \overline{0})$.
■ Los vectores forman una	A es invertible (Existe B tal que $AB = I = BA$). A es cuadrada de orden n con	■ T_A es un isomorfismo de \mathbb{R}^n en \mathbb{R}^n .	■ A es equivalente a la
base de \Re^n (son L.I. y generan \mathbb{R}^n).	$\frac{n}{A}$ l-pivotes. A es el producto de matrices elementales.	Existe T_A^{-1} tal que $T_A^{-1}(T_A(\overline{x})) = \overline{x}$ y $T_A(T_A^{-1}(\overline{y})) = \overline{y}$.	identidad. • $[A:b]$ tiene solución única para todo b .
	$\det(A) \neq 0.$		

Con el fin de condensar un poco la tabla, definí un **l-pivote** de una matriz A como el lugar de un pivote en una matriz equivalente A' en forma escalón. Por ejemplo, un el único l-pivote de $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ queda en el primer renglón con la primera columna. Ya que es el lugar donde está el único pivote de la matriz equivalente $A' = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$

- 1. Ejemplos 2.3.{22, 23} (pg 90), 2.3.{25, 26, 27} (pg 91) y 2.3.28 (pg 92) de [NJ99].
- 2. Ejemplos 2.4.{31, 33} (pg 97) y 2.4.{34,36} (pg 98) de [NJ99].
- 3. Ejemplos 5.3.26 (pg 332), 5.3.27 (pg 333) y 5.3.34 (pg 338) de [NJ99]

4. Sea
$$T(\overline{x}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \overline{x}$$
.

- a) Encuentre el dominio y el codominio de T.
- b) Encuentre Nu(T) y $\nu(T)$.
- c) Encuentre Im(T) y $\rho(T)$.
- d) Dibuje el núcleo.
- e) Dibuje la imagen.

- f) ¿Es T sobreyectiva, inyectiva o biyectiva?
- $g) \downarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in Nu(T)?$
- 5. Sean A y B dos matrices cuadradas de orden n=3 y sean A' y B' sus matrices equivalentes en forma escalón reducida. Se sabe que A es invertible y que B no lo es. Para cada una de las preguntas diga cual matriz cumple el enunciado, cual matriz no lo cumple y cual matriz no se sabe si cumple o no lo cumple. En el enunciado M remplaza cada una de las matrices A, A', B y B'
 - a) Sus columnas son linealmente dependientes.
 - b) La solución de [M:0] tiene parámetros
 - c) La única solución del sistema homogéneo $M\overline{x} = 0$ es $\overline{x} = 0$?
 - d) El sistema $M\overline{x} = \overline{b}$ tiene solución única para cualquier $b \in \mathbb{R}^n$?
 - e) La transformación T_M es inyectiva.
 - f) Todas las columnas tienen lugar de pivotes (Puede considerar los lugares de pivotes de A' y B' como lugares de pivotes de A y de B respectivamente)
 - g) El sistema $M\overline{x} = \overline{b}$ es consistente para cualquier $b \in \mathbb{R}^n$?

- h) Las columnas de M generan a \mathbb{R}^n .
- i) M tiene al menos un renglón de ceros.
- j) La transformación T_M es sobreyectiva.
- k) Todos los renglones tienen lugares de pivotes (Puede considerar los lugares de pivotes de A' y B' como lugares de pivotes de A y de B respectivamente)
- l) Tiene 3 lugares de pivotes (Puede considerar los lugares de pivotes de A' y B' como lugares de pivotes de A y de B respectivamente)
- m) Es el producto de matrices elementales.
- n) Es la identidad.
- \tilde{n}) La transformación T_M es un isomorfismo.
- o) Las columnas forman una base de \mathbb{R}^n
- 6. Encuentre tres puntos en cada conjunto generado y grafique dicho conjunto.
 - $a) \ Gen(\left[\frac{1}{2}\right])$
 - $b) \ Gen(\begin{bmatrix} 2\\0\\3 \end{bmatrix})$
 - $c) \ Gen(\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix})$
 - $d) \ Gen(\left[\begin{smallmatrix} 2 \\ 0 \\ 3 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 1 \\ 1 \end{smallmatrix} \right])$

Determine si $\begin{bmatrix} 2\\1\\4 \end{bmatrix}$ pertenece a cada uno se los conjuntos de los tres últimos incisos.

- 7. Para cada una de las transformaciones asociadas a las siguientes matriciales, encuentre la imagen (y grafíquela) y el núcleo (escríbalo como el generado de un conjunto de vectores y grafíquelo).
 - $a) \begin{bmatrix} 2 & 2 \\ 8 & 8 \end{bmatrix}$
 - $b) \begin{bmatrix} 2 & 2 & 0 \\ 8 & 8 & 0 \end{bmatrix}$
 - $c) \begin{bmatrix} 2 & 2 \\ 8 & 8 \\ 0 & 0 \end{bmatrix}$
- 8. Para cada inciso grafique el conjunto solución de cada sistema y compárelos.
 - a) $[1 \ 2 : 0]$ y $[1 \ 2 : 3]$
 - b) $\begin{bmatrix} 3 & -1 & : & 0 \\ -6 & 2 & : & 0 \end{bmatrix}$ y $\begin{bmatrix} 3 & -1 & : & -2 \\ -6 & 2 & : & 4 \end{bmatrix}$
 - c) $\begin{bmatrix} 1 & 0 & : & 0 \\ -2 & 0 & : & 0 \\ 8 & 0 & : & 0 \end{bmatrix}$ y $\begin{bmatrix} 1 & 0 & : & -1 \\ -2 & 0 & : & 2 \\ 8 & 0 & : & -8 \end{bmatrix}$

Que concluye de los tres sistemas anteriores.

9. Para cada inciso grafique el conjunto solución de cada sistema y compárelos.

a)
$$[1 \ 2 \ 0 : 0]$$
 y $[1 \ 2 \ 0 : 3]$

b)
$$\begin{bmatrix} 3 & -1 & 0 & : & 0 \\ -6 & 2 & 0 & : & 0 \end{bmatrix}$$
 y $\begin{bmatrix} 3 & -1 & 0 & : & -2 \\ -6 & 2 & 0 & : & 4 \end{bmatrix}$

Bibliografía

- [Blo00] E. D. Bloch, *Proofs and Fundamental*, Birkhäuser, Boston, 2000.
- [Ant06] H. Anton, Álgebra Lineal, Editorial Limusa, 3a. edición, Mexico 2006.
- [Len13] E. Lengyel, *Matemáticas para videojuegos*, Editorial Cengage Learning, 2a. edición, 2013
- [Gro05] S. A. Grossman, Álgebra Lineal, Mc Graw Hill, 5a. edición, Mexico 2005.
- [NJ99] Nakos, Joyner, Álgebra Lineal con aplicaciones, Editorial Thomson 1999.
- [Str03] G. Strang, Introduction to Linear Algebra, 3a. edición, Wellesley Cambridge Press.