Kapitola XI. Vlastnosti regulárních jazyků

Pumping lemma pro RJ

Myšlenka: Pumping lemma ukazuje nekonečné iterace některých podřetězců v řetězcích v RJ.

Nechť L je RJ. Pak existuje k ≥ 1 takové, že:
pokud z ∈ L a |z| ≥ k, pak existuje u,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤ k 3) pro každé m ≥ 0, uv^mw ∈ L

Příklad: pro RV $r = ab^*c$, L(r) je **regulární**. Pro tento jazyk existuje k = 3 takové, že 1), 2) a 3) platí.

Pumping lemma pro RJ

Myšlenka: Pumping lemma ukazuje nekonečné iterace některých podřetězců v řetězcích v RJ.

Necht' L je RJ. Pak existuje k ≥ 1 takové, že:
pokud z ∈ L a |z| ≥ k, pak existuje u,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤ k 3) pro každé m ≥ 0, uv^mw ∈ L

Příklad: pro RV $r = ab^*c$, L(r) je **regulární**. Pro tento jazyk existuje k = 3 takové, že 1), 2) a 3) platí.

• pro
$$z = abc$$
: $z \in L(r)$ a $|z| \ge 3$: $uv^0w = ab^0c = ac \in L(r)$
 $uv^1w = ab^1c = abc \in L(r)$
 $uv^2w = ab^2c = abbc \in L(r)$
• $uv^2w = ab^2c = abbc \in L(r)$

Pumping lemma pro RJ

Myšlenka: Pumping lemma ukazuje nekonečné iterace některých podřetězců v řetězcích v RJ.

Nechť L je RJ. Pak existuje k ≥ 1 takové, že:
pokud z ∈ L a |z| ≥ k, pak existuje u,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤ k
3) pro každé m ≥ 0, uv^mw ∈ L

Příklad: pro RV $r = ab^*c$, L(r) je **regulární**. Pro tento jazyk existuje k = 3 takové, že 1), 2) a 3) platí.

- pro z = abc: $z \in L(r)$ a $|z| \ge 3$: $uv^0w = ab^0c = ac \in L(r)$ $uv^1w = ab^1c = abc \in L(r)$ $uv^2w = ab^2c = abbc \in L(r)$ • $uv^2w = ab^2c = abbc \in L(r)$
- pro z = abbc: $z \in L(r)$ a $|z| \ge 3$: $uv^0w = ab^0bc = abc \in L(r)$ • $uv^1w = ab^1bc = abbc \in L(r)$ • $uv^2w = ab^2bc = abbbc \in L(r)$
 - $v \neq \varepsilon$, $|uv| = 2 \le 3$

- Nechť L je libovolný regulární jazyk. Potom existuje $DKA M = (Q, \Sigma, R, s, F)$ a L = L(M).
- Pro $z \in L(M)$, M provede |z| přechodů a M navštíví |z| + 1 stavů:

- Necht' $k = \operatorname{card}(Q)$ (celkový počet stavů v M). Pro každé $z \in L$ a $|z| \ge k$, M navštíví nejméně k+1 stavů. Protože $k+1 > \operatorname{card}(Q)$, musí existovat stav q, který M navštíví nejméně dvakrát.
- Pro z existuje u, v, w takové, že: z = uvw:

- Necht' $k = \operatorname{card}(Q)$ (celkový počet stavů v M). Pro každé $z \in L$ a $|z| \ge k$, M navštíví nejméně k+1 stavů. Protože $k+1 > \operatorname{card}(Q)$, musí existovat stav q, který M navštíví nejméně dvakrát.
- Pro z existuje u, v, w takové, že: z = uvw:

- Nechť $k = \operatorname{card}(Q)$ (celkový počet stavů v M). Pro každé $z \in L$ a $|z| \ge k$, M navštíví nejméně k+1 stavů. Protože $k+1 > \operatorname{card}(Q)$, musí existovat stav q, který M navštíví nejméně dvakrát.
- Pro z existuje u, v, w takové, že: z = uvw:

- Necht' $k = \operatorname{card}(Q)$ (celkový počet stavů v M). Pro každé $z \in L$ a $|z| \ge k$, M navštíví nejméně k+1 stavů. Protože $k+1 > \operatorname{card}(Q)$, musí existovat stav q, který M navštíví nejméně dvakrát.
- Pro z existuje u, v, w takové, že: z = uvw:

- Necht' $k = \operatorname{card}(Q)$ (celkový počet stavů v M). Pro každé $z \in L$ a $|z| \ge k$, M navštíví nejméně k+1 stavů. Protože $k+1 > \operatorname{card}(Q)$, musí existovat stav q, který M navštíví nejméně dvakrát.
- Pro z existuje u, v, w takové, že: z = uvw:

$$sz = suvw \mid -iqvw \mid -jqw \mid -*f, f \in F$$

• Obecně tedy *M* může provést přechody:

1. $su \mid -iq$; 2. $qv \mid -jq$; 3. $qw \mid -*f, f \in F$, tedy:

• Obecně tedy *M* může provést přechody:

```
1. su \mid -iq; 2. qv \mid -jq; 3. qw \mid -*f, f \in F, tedy:
```

• pro m = 0, $uv^m w = uv^0 w = uw$,

SUW

• Obecně tedy *M* může provést přechody:

```
1. su \mid -iq; 2. qv \mid -jq; 3. qw \mid -*f, f \in F, tedy:
```

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$suw \mid -i qw$$

• Obecně tedy *M* může provést přechody:

1.
$$su \mid -iq$$
; 2. $qv \mid -jq$; 3. $qw \mid -*f, f \in F$, tedy:

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$\begin{array}{c|c} \textbf{3.} \\ \textbf{suw} \mid -^{i} \textbf{qw} \mid -^{*} \textbf{f}, \ \textbf{f} \in F \end{array}$$

• Obecně tedy *M* může provést přechody:

```
1. su \mid -iq; 2. qv \mid -jq; 3. qw \mid -*f, f \in F, tedy:
```

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$\begin{array}{c|c}
\mathbf{Suw} & \mathbf{3}.\\
-i & \mathbf{qw} & -*f, f \in F
\end{array}$$

• pro každé m > 0,

 Suv^mw

• Obecně tedy *M* může provést přechody:

```
1. su \mid -iq; 2. qv \mid -jq; 3. qw \mid -*f, f \in F, tedy:
```

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$\underbrace{\mathbf{Suw}}_{-i} \underbrace{\mathbf{qw}}_{-i} \underbrace{\mathbf{f}}_{+}, f \in F$$

• pro každé m > 0,

$$\begin{array}{c|c}
\hline
\mathbf{1.} \\
\mathbf{S} \mathbf{u} \mathbf{v}^m \mathbf{w} | -\mathbf{i} \quad \mathbf{q} \mathbf{v}^m \mathbf{w}
\end{array}$$

• Obecně tedy *M* může provést přechody:

```
1. su \mid -iq; 2. qv \mid -jq; 3. qw \mid -*f, f \in F, tedy:
```

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$\begin{array}{c|c}
\mathbf{S}uw & \mathbf{J} & \mathbf{J} \\
-i & \mathbf{q}w & \mathbf{J} & \mathbf{f} \in F
\end{array}$$

• pro každé m > 0,

• Obecně tedy *M* může provést přechody:

```
1. su \mid -iq; 2. qv \mid -jq; 3. qw \mid -*f, f \in F, tedy:
```

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$\begin{array}{c|c}
\mathbf{S}uw & \mathbf{J} & \mathbf{J} \\
-i & \mathbf{q}w & \mathbf{J} & \mathbf{J} \\
-i & \mathbf{f} & \mathbf{f} \\
\mathbf{F} & \mathbf{f} \\
\end{array}$$

• pro každé m > 0,

$$| \underbrace{\mathbf{1}}_{\mathbf{S}uv^{m}w} \underbrace{\mathbf{2}}_{-i} \underbrace{\mathbf{2}}_{\mathbf{q}v^{m}w} \underbrace{\mathbf{2}}_{-j} \underbrace{\mathbf{2}}_{\mathbf{w}} \underbrace{\mathbf{3}}_{-i} \underbrace{\mathbf{4}}_{-i} \underbrace{\mathbf{4}}_$$

• Obecně tedy *M* může provést přechody:

1.
$$su \mid -iq$$
; 2. $qv \mid -jq$; 3. $qw \mid -*f, f \in F$, tedy:

• pro m = 0, $uv^m w = uv^0 w = uw$,

$$\begin{array}{c|c}
\mathbf{S}uw & \mathbf{J} & \mathbf{3} \\
-i & \mathbf{q}w & \mathbf{J} & \mathbf{f} \in F
\end{array}$$

• pro každé m > 0,

Celkově:

- 1) $qv \mid -j q, j \ge 1$; proto $|v| \ge 1$, tedy $v \ne \varepsilon$
- 2) $suv \mid -i qv \mid -j q, i+j \leq k$; proto $|uv| \leq k$
- 3) Pro každé $m \ge 0$: $suv^m w \mid -^* f$, $f \in F$, proto $uv^m w \in L$

• Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

 Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

Předpokládejme, že L je regulární

 Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

Předpokládejme, že L je regulární

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

• Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

Předpokládejme, že L je regulární

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$ ukážeme: existuje $m \geq 0$, pro které $uv^m w \notin L$; ale podle PL platí vztah: $uv^m w \in L$

 Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

Předpokládejme, že L je regulární

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$ ukážeme: existuje $m \geq 0$, pro které $uv^m w \notin L$; ale podle PL platí vztah: $uv^m w \in L$

špatný předpoklad

 Pomocí pumping lemmy pro RJ často provádíme důkaz sporem, že daný jazyk <u>není</u> regulární:

Předpokládejme, že L je regulární

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$ ukážeme: existuje $m \geq 0$, pro které $uv^m w \notin L$; ale podle PL platí vztah: $uv^m w \in L$

špatný předpoklad

Proto **L není regulární**

- 1) Předpokládejme, že L je regulární. Nechť $k \ge 1$ je konstanta z pumping lemmy pro jazyk L.
- 2) Necht' $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) Všechny dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$:

- 1) Předpokládejme, že L je regulární. Nechť $k \ge 1$ je konstanta z pumping lemmy pro jazyk L.
- 2) Necht' $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) Všechny dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$:

- 1) Předpokládejme, že L je regulární. Nechť $k \ge 1$ je konstanta z pumping lemmy pro jazyk L.
- 2) Necht' $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) Všechny dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$:

- 1) Předpokládejme, že L je regulární. Nechť $k \ge 1$ je konstanta z pumping lemmy pro jazyk L.
- 2) Necht' $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) Všechny dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$:

Pumping Lemma: Příklad

Dokažme, že $L = \{a^nb^n : n \ge 0\}$ není regulární:

- 1) Předpokládejme, že L je regulární. Nechť $k \ge 1$ je konstanta z pumping lemmy pro jazyk L.
- 2) Necht' $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) Všechny dekompozice z na uvw, $v \neq \varepsilon$, $|uv| \leq k$:

4) Proto L není regulární jazyk

Poznámka k použití pumping lemmy

• Pumping lemma:

Základní aplikace pumping lemmy:

- důkaz sporem, že L není regulární jazyk.
- Ale následující implikace je špatná:

• Nelze použít pumping lemmy k dokázání, že daný jazyk L je regulární!!

Poznámka k použití pumping lemmy

• Pumping lemma:

Základní aplikace pumping lemmy:

- důkaz sporem, že L není regulární jazyk.
- Ale následující implikace je špatná:

• Nelze použít pumping lemmy k dokázání, že daný jazyk L je regulární!!

• Pumping lemmu je možné použít k dokazování dalších tvrzení.

Ilustrace:

• Necht' M je DKA a k konstanta z pumping lemmy (k je počet stavů v M). Potom platí: L(M) je nekonečný \Leftrightarrow existuje $z \in L(M)$, $k \le |z| < 2k$

Důkaz:

1) existuje $z \in L(M)$, $k \le |z| < 2k \Rightarrow L(M)$ je nekonečný:

• Pumping lemmu je možné použít k dokazování dalších tvrzení.

Ilustrace:

• Necht' M je DKA a k konstanta z pumping lemmy (k je počet stavů v M). Potom platí: L(M) je nekonečný \Leftrightarrow existuje $z \in L(M)$, $k \le |z| < 2k$

Důkaz:

```
1) existuje z \in L(M), k \le |z| < 2k \Rightarrow L(M) je nekonečný: pokud z \in L(M), k \le |z|, potom podle PL: z = uvw, v \ne \varepsilon a dále pro každé m \ge 0: uv^m w \in L(M)
```

• Pumping lemmu je možné použít k dokazování dalších tvrzení.

Ilustrace:

• Necht' M je DKA a k konstanta z pumping lemmy (k je počet stavů v M). Potom platí: L(M) je nekonečný \Leftrightarrow existuje $z \in L(M)$, $k \le |z| < 2k$

Důkaz:

1) existuje $z \in L(M)$, $k \le |z| < 2k \Rightarrow L(M)$ je nekonečný: pokud $z \in L(M)$, $k \le |z|$, potom podle PL: z = uvw, $v \ne \varepsilon$ a dále pro každé $m \ge 0$: $uv^m w \in L(M)$

L(M) je nekonečný

- 2) L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $k \le |z| < 2k$:
- Dokážeme sporem, že platí:

- a) Dokážeme sporem, že:
- L(M) je nekonečný \Rightarrow existuje $z \in L(M), |z| \ge k$

- 2) L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $k \le |z| < 2k$:
- Dokážeme sporem, že platí:

- a) Dokážeme sporem, že:
- L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $|z| \ge k$ Předpokládme, že L(M) je nekonečný a neexistuje $z \in L(M)$, $|z| \ge k$

- 2) L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $k \le |z| < 2k$:
- Dokážeme sporem, že platí:

$$L(M)$$
 je nekonečný existuje $z \in L(M), |z| \ge k$

$$b) \downarrow$$
existuje $z \in L(M), k \le |z| < 2k$

- a) Dokážeme sporem, že:
- L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $|z| \ge k$ Předpokládme, že L(M) je nekonečný a neexistuje $z \in L(M)$, $|z| \ge k$

pro všechna $z \in L(M)$ platí: |z| < k

- 2) L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $k \le |z| < 2k$:
- Dokážeme sporem, že platí:

$$L(M)$$
 je nekonečný existuje $z \in L(M), |z| \ge k$

$$b) \downarrow$$
existuje $z \in L(M), k \le |z| < 2k$

- a) Dokážeme sporem, že:
- L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $|z| \ge k$ Předpokládme, že L(M) je nekonečný a neexistuje $z \in L(M)$, $|z| \ge k$

pro všechna
$$z \in L(M)$$
 platí: $|z| < k$

$$L(M)$$
 je konečný

- 2) L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $k \le |z| < 2k$:
- Dokážeme sporem, že platí:

- a) Dokážeme sporem, že:
- L(M) je nekonečný \Rightarrow existuje $z \in L(M)$, $|z| \ge k$ Předpokládme, že L(M) je nekonečný a neexistuje $z \in L(M)$, $|z| \ge k$

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

a neexistuje $z \in L(M), k \le |z| < 2k$

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \le |z| < 2k \times \times \times \times
```

Nechť z_0 je **nejkratší řetězec** splňující $z_0 \in L(M)$, $|z_0| \ge k$ Protože neexistuje $z \in L(M)$, $k \le |z| < 2k$, musí: $|z_0| \ge 2k$

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \le |z| < 2k \times \times \times \times Necht' z_0 je nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k Protože neexistuje z \in L(M), k \le |z| < 2k, musí: |z_0| \ge 2k Pokud z_0 \in L(M) a |z_0| \ge k, PL zaručuje: z_0 = uvw, |uv| \le k a pro každé m \ge 0, uv^m w \in L(M)
```

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \le |z| < 2k \times \times \times \times

Necht' z_0 je nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k

Protože neexistuje z \in L(M), k \le |z| < 2k, musí: |z_0| \ge 2k

Pokud z_0 \in L(M) a |z_0| \ge k, PL zaručuje: z_0 = uvw, |uv| \le k a pro každé m \ge 0, uv^m w \in L(M)

|uw| = |z_0| - |v| \ge k
```

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \le |z| < 2k \times \times \times \times

Nechť z_0 je nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k

Protože neexistuje z \in L(M), k \le |z| < 2k, musí: |z_0| \ge 2k

Pokud z_0 \in L(M) a |z_0| \ge k, PL zaručuje: z_0 = uvw, |uv| \le k a pro každé m \ge 0, uv^m w \in L(M)

\ge 2k \le k

|uw| = |z_0| - |v| \ge k pro m = 0: uv^m w = uw \in L(M)
```

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \le |z| < 2k \times \times \times \times

Nechť z_0 je nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k

Protože neexistuje z \in L(M), k \le |z| < 2k, musí: |z_0| \ge 2k

Pokud z_0 \in L(M) a |z_0| \ge k, PL zaručuje: z_0 = uvw,

|uv| \le k a pro každé m \ge 0, uv^m w \in L(M)

|uw| = |z_0| - |v| \ge k pro m = 0: uv^m w = uw \in L(M)

Celkově: uw \in L(M), |uw| \ge k a |uw| < |z_0|!
```

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \le |z| < 2k \times \times \times \times

Necht' z_0 je nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k

Protože neexistuje z \in L(M), k \le |z| < 2k, musí: |z_0| \ge 2k

Pokud z_0 \in L(M) a |z_0| \ge k, PL zaručuje: z_0 = uvw,

|uv| \le k a pro každé m \ge 0, uv^m w \in L(M)

|uw| = |z_0| - |v| \ge k pro m = 0: uv^m w = uw \in L(M)

Celkově: uw \in L(M), |uw| \ge k a |uw| < |z_0|!

z_0 není nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k
```

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

```
a neexistuje z \in L(M), k \leq |z| < 2k
Nechť z_0 je nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k
     Protože neexistuje z \in L(M), k \le |z| < 2k, musí: |z_0| \ge 2k
Pokud z_0 \in L(M) a |z_0| \ge k, PL zaručuje: z_0 = uvw,
|uv| \le k a pro každé m \ge 0, uv^m w \in L(M)
                           pro m = 0: uv^m w = uw \in L(M)
Celkově: uw \in L(M), |uw| \ge k a |uw| < |z_0|!
  z_0 není nejkratší řetězec splňující z_0 \in L(M), |z_0| \ge k
```

- b) Dokážeme sporem:
- existuje $z \in L(M)$, $|z| \ge k \Rightarrow$ existuje $z \in L(M)$, $k \le |z| < 2k$

Předpokl., že existuje $z \in L(M)$, $|z| \ge k$ a neexistuje $z \in L(M)$, $k \le |z| < 2k$

Nechť z_0 je nejkratší řetězec splňující $z_0 \in L(M), |z_0| \ge k$

Protože neexistuje $z \in L(M)$, $k \le |z| < 2k$, musí: $|z_0| \ge 2k$

Pokud $z_0 \in L(M)$ a $|z_0| \ge k$, PL zaručuje: $z_0 = uvw$,

 $|uv| \le k$ a pro každé $m \ge 0$, $uv^m w \in L(M)$

$$|uw| = |z_0| - |v| \ge k$$
 pro $m = 0$: $uv^m w = uw \in L(M)$

Celkově: $uw \in L(M)$, $|uw| \ge k$ a $|uw| < |z_0|$!

 z_0 není nejkratší řetězec splňující $z_0 \in L(M), |z_0| \ge k$

SPOR!

Definice: Třída regulárních jazyků je uzavřená vůči operaci *o*, pokud výsledek operace *o* na libovolné regulární jazyky je opět regulární jazyk.

Definice: Třída regulárních jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné regulární jazyky je opět regulární jazyk.

Ilustrace:

• Třída regulárních jazyků je uzavřená vůči *sjednocení*. To znamená:

Definice: Třída regulárních jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné regulární jazyky je opět regulární jazyk.

Ilustrace:

• Třída regulárních jazyků je uzavřená vůči *sjednocení*. To znamená:

Definice: Třída regulárních jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné regulární jazyky je opět regulární jazyk.

Ilustrace:

Třída regulárních jazyků je uzavřená vůči sjednocení.
 To znamená:

Tvrzení: Třída regulárních jazyků je uzavřena vůči: sjednocení, konkatenaci, iteraci.

Důkaz:

- Nechť L_1 , L_2 jsou dva regulární jazyky
- Potom existují dva RV r_1, r_2 : $L(r_1) = L_1, L(r_2) = L_2$;
- Podle definice regulárních výrazů:
 - $r_1.r_2$ je RV značící L_1L_2
 - $r_1 + r_2$ je RV značící $L_1 \cup L_2$
 - r_1^* je RV značící L_1^*
- Každý RV značí regulární jazyk, tedy

 L_1L_2 , $L_1 \cup L_2$, L_1^* jsou regulární jazyky

Algoritmus: KA pro doplněk

- Vstup: Úplný KA: $M = (Q, \Sigma, R, s, F)$
- Výstup: Úplný KA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

- Metoda:
- $\bullet F' := Q F$

Příklad:

Algoritmus: KA pro doplněk

- Vstup: Úplný KA: $M = (Q, \Sigma, R, s, F)$
- Výstup: Úplný KA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

- Metoda:
- $\bullet F' := Q F$

Příklad:

Algoritmus: KA pro doplněk

- Vstup: Úplný KA: $M = (Q, \Sigma, R, s, F)$
- Výstup: Úplný KA: $M' = (Q, \Sigma, R, s, F'),$ $L(M') = \overline{L(M)}$
- Metoda:
- $\bullet F' := Q F$

Příklad:

 $L(M) = \{x: ab \text{ je podřetězec } x\}; L(M') = \{x: ab \text{ není podřetězec } x\}$

- Předchozí algoritmus vyžaduje úplný KA
- Pokud *M* není úplný KA, potom *M* musí být převed na úplný KA a pak může být použit předchozí algoritmus

Příklad:

Neúplný DKA:

- Předchozí algoritmus vyžaduje úplný KA
- Pokud *M* není úplný KA, potom *M* musí být převed na úplný KA a pak může být použit předchozí algoritmus

- Předchozí algoritmus vyžaduje úplný KA
- Pokud *M* není úplný KA, potom *M* musí být převed na úplný KA a pak může být použit předchozí algoritmus

- Předchozí algoritmus vyžaduje úplný KA
- Pokud *M* není úplný KA, potom *M* musí být převed na úplný KA a pak může být použit předchozí algoritmus

Uzávěrové vlastnosti: Doplněk

Tvrzení: Třída regulárních jazyků je uzavřena vůči doplňku.

Důkaz:

- Nechť L je regulární jazyk
- Pak existuje úplný DKA M: L(M) = L
- Můžeme sestrojit úplný DKA M': L(M') = L užitím předchozího algoritmu
- Každý KA definuje regulární jazyk, tedy
 L je regulární jazyk

Uzávěrové vlastnosti: Průnik

Tvrzení: Třída regulárních jazyků je uzavřena vůči průniku.

Důkaz:

- Nechť L_1 , L_2 jsou dva regulární jazyky
- L_1 , L_2 jsou regulární jazyky (třída regulárních jazyků je uzavřena vůči doplňku)
- $L_1 \cup L_2$ je **regulární jazyk** (<u>třída regu</u>lárních jazyků je uzavřena vůči sjednocení)
- $\overline{L_1} \cup \overline{L_2}$ je regulární jazyk (třída regulárních jazyků je uzavřena vůči doplňku)
- $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ je **regulární jazyk** (De-Morganovy zákony)

Boolova algebra jazyků

Definice: Nechť je třída jazyků uzavřena vůči sjednocení, průniku a doplňku. Potom tato třída tvoří *Boolovu algebru jazyků*.

Tvrzení: Třída regulárních jazyků tvoří Booleovu algebru jazyků.

Důkaz:

• Třída regulárních jazyků je uzavřená vůči sjednocení, průniku a doplňku.

Hlavní rozhodnutelné problémy

1. Problém členství:

• Instance: FA $M, w \in \Sigma^*$; Otázka: $w \in L(M)$?

2. Problém prázdnosti:

• Instance: FA M; Otázka: $L(M) = \emptyset$?

3. Problém konečnosti:

• Instance: FA M; Otázka: Je L(M) konečný?

4. Problém ekvivalence:

• Instance: FA M_1, M_2 ; Otázka: $L(M_1) = L(M_2)$?

Algoritmus: Problém členství

- Vstup: DKA $M = (Q, \Sigma, R, s, F); w \in \Sigma^*$
- Výstup: ANO, pokud $w \in L(M)$ NE, pokud $w \notin L(M)$
- Metoda:
- if $sw \mid -^* f$, $f \in F$ then napiš('ANO')

 else napiš('NE')

Celkově:

Problém členství je pro KA rozhodnutelný

Algoritmus: Problém prázdnosti

- Vstup: KA $M = (Q, \Sigma, R, s, F)$;
- Výstup: ANO, pokud $L(M) = \emptyset$ NE, pokud $L(M) \neq \emptyset$
- Metoda:
- if s je neukončující then napiš('ANO')
 else napiš('NE')

Celkově:

Problém prázdnosti je pro KA rozhodnutelný

Algoritmus: Problém konečnosti

- Vstup: DKA $M = (Q, \Sigma, R, s, F)$;
- Výstup: ANO, pokud L(M) je konečný NE, pokud L(M) je nekonečný
- Metoda:
- Necht' $k = \operatorname{card}(Q)$
- if existuje $z \in L(M)$, $k \le |z| < 2k$ then napiš('NE')
 else napiš('ANO')

Pozn.: Tento algoritmus je založen na tvrzení: L(M) je nekonečný \Leftrightarrow existuje z: $z \in L(M)$, $k \le |z| < 2k$

Celkově:

Problém konečnosti je pro KA rozhodnutelný

Otázka: $ab \in L(M)$?

Otázka: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$

Otázka: $ab \in L(M)$?

 $sab \mid -sb \mid -f, f \in F$

Odpověď: ANO, protože $sab \mid -^* f, f \in F$

Otázka: $ab \in L(M)$?

 $sab \mid -sb \mid -f, f \in F$

Odpověď: ANO, protože $sab \mid -^* f, f \in F$ Otázka: $L(M) = \emptyset$?

$$M:$$
 a
 b
 b
 b
 a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F$

Otázka: $L(M) = \emptyset$? $Q_0 = \{f\}$

$$M:$$
 a
 b
 b
 b
 a

Otázka: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Odpověď: ANO, protože $sab \mid -^* f, f \in F$ Otázka: $L(M) = \emptyset$? $Q_0 = \{f\}$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

$$M: a$$
 s
 b
 f
 a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F$

Otázka: $L(M) = \emptyset$?

$$Q_0 = \{ \mathbf{f} \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

Odpověď: NE, protože s je ukončující

$$M: a$$
 s
 b
 f
 a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F$

Otázka: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

Odpověď: NE, protože s je ukončující

Otázka: Je L(M) konečný?

$$M:$$
 a
 b
 b
 b
 a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F|$

Otázka: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

Odpověď: NE, protože s je ukončující

Otázka: Je L(M) konečný? k = Card(Q) = 2

Všechny řetězce $z \in \Sigma^*$: $2 \le |z| < 4$: aa, bb, ab, ...

$$M: a$$
 b b a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F|$

Otázka: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

Odpověď: NE, protože s je ukončující

Otázka: Je L(M) konečný? k = Card(Q) = 2

Všechny řetězce $z \in \Sigma^*$: $2 \le |z| < 4$: $aa, bb, ab \in L(M), ...$

$$M: a$$
 b b a

```
Otázka: ab \in L(M)?

sab \mid -sb \mid -f, f \in F
```

Odpověď: ANO, protože sab $|-^*f, f \in F$

Otázka: $L(M) = \emptyset$?

$$Q_0 = \{ f \}$$

1. $qa' \rightarrow f$; $q \in Q$; $a' \in \Sigma$: $sb \rightarrow f$, $fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\}$... s je ukončující

Odpověď: NE, protože s je ukončující

Otázka: Je L(M) konečný? k = Card(Q) = 2Všechny řetězce $z \in \Sigma^*$: $2 \le |z| < 4$: $aa, bb, ab \in L(M)$, ...

Odpověď: NE, protože existuje $z \in L(M)$, $k \le |z| < 2k$

Algoritmus: Problém ekvivalence

- Vstup: Dva minimální KA, M_1 a M_2
- Výstup: ANO, pokud $L(M_1) = L(M_2)$ NE, pokud $L(M_1) \neq L(M_2)$
- Metoda:
- if M₁ má stejnou strukturu jako M₂ až na pojmenování stavů
 then napiš('ANO')
 else napiš('NE')

Celkově:

Problém ekvivalence je pro KA rozhodnutelný

Otázka: $L(M_1) = L(M_2)$?

Otázka: $L(M_1) = L(M_2)$?

Otázka: $L(M_1) = L(M_2)$?

Minimální KA

Otázka: $L(M_1) = L(M_2)$?

Minimální KA

Odpověď: ANO, protože M_{min1} má stejnou strukturu jako M_{min2}