Inteligência Artificial – ACH2016

Aula 08 – Sistemas baseados em conhecimento: Lógica proposicional

Norton Trevisan Roman (norton@usp.br)

25 de março de 2019

Componentes centrais:

Base de conhecimento

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 → linguagem de representação do conhecimento
 - -> illiguagem de representação do conhecimento

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 Linguagem de representação de conhecimente
 - ightarrow linguagem de representação do conhecimento
 - Cada sentença representa uma afirmação sobre o mundo

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 → linguagem de representação do conhecimento
 - Cada sentença representa uma afirmação sobre o mundo
 - Pode conter tanto informação específica quanto regras sobre um certo assunto

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 → linguagem de representação do conhecimento
 - Cada sentença representa uma afirmação sobre o mundo
 - Pode conter tanto informação específica quanto regras sobre um certo assunto
- Motor de inferência

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 → linguagem de representação do conhecimento
 - Cada sentença representa uma afirmação sobre o mundo
 - Pode conter tanto informação específica quanto regras sobre um certo assunto
- Motor de inferência
 - Deriva novas sentenças a partir de antigas

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 → linguagem de representação do conhecimento
 - Cada sentença representa uma afirmação sobre o mundo
 - Pode conter tanto informação específica quanto regras sobre um certo assunto
- Motor de inferência
 - Deriva novas sentenças a partir de antigas
 - Pode ser determinístico (fatos) ou probabilístico (incerteza)

- Base de conhecimento
 - Conjunto de sentenças expressas em uma linguagem formal
 → linguagem de representação do conhecimento
 - Cada sentença representa uma afirmação sobre o mundo
 - Pode conter tanto informação específica quanto regras sobre um certo assunto
- Motor de inferência
 - Deriva novas sentenças a partir de antigas
 - Pode ser determinístico (fatos) ou probabilístico (incerteza)
 - Pode usar ambos enfoques

Abordagem Declarativa

• Deve haver um meio de adicionar novas sentenças

- Deve haver um meio de adicionar novas sentenças
- Deve haver um meio de perguntar o que se sabe

- Deve haver um meio de adicionar novas sentenças
- Deve haver um meio de perguntar o que se sabe
- Diga ao sistema o que ele precisa saber (ou ele mesmo diz, com base em sua percepção ou aprendizado)

- Deve haver um meio de adicionar novas sentenças
- Deve haver um meio de perguntar o que se sabe
- Diga ao sistema o que ele precisa saber (ou ele mesmo diz, com base em sua percepção ou aprendizado)
 - Ele então descobre o que deve fazer (a partir da base de conhecimento)

- Deve haver um meio de adicionar novas sentenças
- Deve haver um meio de perguntar o que se sabe
- Diga ao sistema o que ele precisa saber (ou ele mesmo diz, com base em sua percepção ou aprendizado)
 - Ele então descobre o que deve fazer (a partir da base de conhecimento)
- Deve haver uma linguagem de representação

Abordagem Declarativa

• Deve ser capaz de:

- Deve ser capaz de:
 - Representar estados, ações etc

- Deve ser capaz de:
 - Representar estados, ações etc
 - Incorporar novas informações

- Deve ser capaz de:
 - Representar estados, ações etc
 - Incorporar novas informações
 - Atualizar a representação interna do mundo

- Deve ser capaz de:
 - Representar estados, ações etc
 - Incorporar novas informações
 - Atualizar a representação interna do mundo
 - Deduzir propriedades escondidas do mundo

- Deve ser capaz de:
 - Representar estados, ações etc
 - Incorporar novas informações
 - Atualizar a representação interna do mundo
 - Deduzir propriedades escondidas do mundo
 - Deduzir ações apropriadas

Abordagem Procedimental

Abordagem Procedimental

 Codifica comportamentos desejados diretamente no código do programa

Abordagem Procedimental

- Codifica comportamentos desejados diretamente no código do programa
- Minimiza o papel de representação explícita

Abordagem Procedimental

- Codifica comportamentos desejados diretamente no código do programa
- Minimiza o papel de representação explícita
- Bons SBCs devem combinar ambos enfoques declarativo e procedimental

Definição

 São sistemas que imitam o comportamento de um especialista humano

- São sistemas que imitam o comportamento de um especialista humano
- Usam a informação dada pelo usuário para dar uma opinião sobre um certo assunto

- São sistemas que imitam o comportamento de um especialista humano
- Usam a informação dada pelo usuário para dar uma opinião sobre um certo assunto
 - Fazem perguntas até que possa identificar um objeto que responda à pergunta do usuário

- São sistemas que imitam o comportamento de um especialista humano
- Usam a informação dada pelo usuário para dar uma opinião sobre um certo assunto
 - Fazem perguntas até que possa identificar um objeto que responda à pergunta do usuário
- São um tipo de Sistema Baseado em Conhecimento

- São sistemas que imitam o comportamento de um especialista humano
- Usam a informação dada pelo usuário para dar uma opinião sobre um certo assunto
 - Fazem perguntas até que possa identificar um objeto que responda à pergunta do usuário
- São um tipo de Sistema Baseado em Conhecimento
 - Têm base de conhecimento

- São sistemas que imitam o comportamento de um especialista humano
- Usam a informação dada pelo usuário para dar uma opinião sobre um certo assunto
 - Fazem perguntas até que possa identificar um objeto que responda à pergunta do usuário
- São um tipo de Sistema Baseado em Conhecimento
 - Têm base de conhecimento
 - Têm motor de inferência

Lógica

Definição

• Linguagem formal para representar informação

Lógica

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas

Lógica

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas
- Possui:

Definição

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas
- Possui:
 - Sintaxe

Definição

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas
- Possui:
 - Sintaxe
 - Semântica

Definição

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas
- Possui:
 - Sintaxe
 - Semântica
 - Algum modo de manipular expressões na linguagem

Definição

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas
- Possui:
 - Sintaxe
 - Semântica
 - Algum modo de manipular expressões na linguagem

Sintaxe

Define uma sentença na linguagem

Definição

- Linguagem formal para representar informação
 - Permite que conclusões sejam tiradas
- Possui:
 - Sintaxe
 - Semântica
 - Algum modo de manipular expressões na linguagem

Sintaxe

- Define uma sentença na linguagem
 - Que expressões são válidas (o que é permitido escrever)

Semântica

• Define o significado de cada sentença

Semântica

- Define o significado de cada sentença
 - Sintaxe é a forma, semântica o conteúdo

Semântica

- Define o significado de cada sentença
 - Sintaxe é a forma, semântica o conteúdo
- Representa uma interpretação para a sentença

Semântica

- Define o significado de cada sentença
 - Sintaxe é a forma, semântica o conteúdo
- Representa uma interpretação para a sentença
 - Define então a veracidade dessa sentença nessa interpretação

Semântica

- Define o significado de cada sentença
 - Sintaxe é a forma, semântica o conteúdo
- Representa uma interpretação para a sentença
 - Define então a veracidade dessa sentença nessa interpretação

Sistema de provas

 Modo de manipular expressões sintáticas para obter outras expressões sintáticas (que nos dizem algo novo)

Sistema de provas: Utilidade

 Pode ser usado, por exemplo para tirar conclusões sobre o que está acontecendo a partir de resultados de sensores

- Pode ser usado, por exemplo para tirar conclusões sobre o que está acontecendo a partir de resultados de sensores
 - O que implicam determinados resultados dos sensores?

- Pode ser usado, por exemplo para tirar conclusões sobre o que está acontecendo a partir de resultados de sensores
 - O que implicam determinados resultados dos sensores?
- Ou vislumbrar os efeitos de uma ação, caso seja executada

- Pode ser usado, por exemplo para tirar conclusões sobre o que está acontecendo a partir de resultados de sensores
 - O que implicam determinados resultados dos sensores?
- Ou vislumbrar os efeitos de uma ação, caso seja executada
 - O que aconteceria SE eu fizesse tal coisa?

- Pode ser usado, por exemplo para tirar conclusões sobre o que está acontecendo a partir de resultados de sensores
 - O que implicam determinados resultados dos sensores?
- Ou vislumbrar os efeitos de uma ação, caso seja executada
 - O que aconteceria SE eu fizesse tal coisa?
 - Que conclusões posso tirar sobre o estado do mundo CASO eu faça tal coisa?

Consequência Lógica

 O raciocínio lógico envolve a relação de consequência lógica entre sentenças

- O raciocínio lógico envolve a relação de consequência lógica entre sentenças
 - A ideia de que uma sentença segue logicamente de outra(s)

- O raciocínio lógico envolve a relação de consequência lógica entre sentenças
 - A ideia de que uma sentença segue logicamente de outra(s)
 - Ou, contrariamente, que uma ou mais sentenças acarretam (entail) outra

- O raciocínio lógico envolve a relação de consequência lógica entre sentenças
 - A ideia de que uma sentença segue logicamente de outra(s)
 - Ou, contrariamente, que uma ou mais sentenças acarretam (entail) outra
- Escrita matematicamente como $\alpha_1, \alpha_2, \ldots, \alpha_n \models \beta$

- O raciocínio lógico envolve a relação de consequência lógica entre sentenças
 - A ideia de que uma sentença segue logicamente de outra(s)
 - Ou, contrariamente, que uma ou mais sentenças acarretam (entail) outra
- Escrita matematicamente como $\alpha_1, \alpha_2, \ldots, \alpha_n \models \beta$
 - β é consequência lógica (segue logicamente) de $\alpha_1, \ldots, \alpha_n$

- O raciocínio lógico envolve a relação de consequência lógica entre sentenças
 - A ideia de que uma sentença segue logicamente de outra(s)
 - Ou, contrariamente, que uma ou mais sentenças acarretam (entail) outra
- Escrita matematicamente como $\alpha_1, \alpha_2, \ldots, \alpha_n \models \beta$
 - β é consequência lógica (segue logicamente) de $\alpha_1, \ldots, \alpha_n$
 - $\alpha_1, \ldots, \alpha_n$ acarretam β

Consequência Lógica – Definição

• $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ se e somente se, **em qualquer interpretação** em que $\alpha_1, \alpha_2, \dots, \alpha_n$ forem simultaneamente verdadeiras, β também seja verdadeiro

- $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ se e somente se, **em qualquer interpretação** em que $\alpha_1, \alpha_2, \dots, \alpha_n$ forem simultaneamente verdadeiras, β também seja verdadeiro
 - Uma interpretação define a veracidade de todas as sentenças envolvidas

- $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ se e somente se, **em qualquer interpretação** em que $\alpha_1, \alpha_2, \dots, \alpha_n$ forem simultaneamente verdadeiras, β também seja verdadeiro
 - Uma interpretação define a veracidade de todas as sentenças envolvidas
 - Ex: $\alpha_1 = V, \alpha_2 = F, ..., \alpha_n = F, \beta = V$

- $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ se e somente se, **em qualquer interpretação** em que $\alpha_1, \alpha_2, \dots, \alpha_n$ forem simultaneamente verdadeiras, β também seja verdadeiro
 - Uma interpretação define a veracidade de todas as sentenças envolvidas
 - Ex: $\alpha_1 = V, \alpha_2 = F, \dots, \alpha_n = F, \beta = V$
- Trata-se de uma relação entre sentenças (sintaxe) baseada em semântica

- $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ se e somente se, **em qualquer interpretação** em que $\alpha_1, \alpha_2, \dots, \alpha_n$ forem simultaneamente verdadeiras, β também seja verdadeiro
 - Uma interpretação define a veracidade de todas as sentenças envolvidas
 - Ex: $\alpha_1 = V, \alpha_2 = F, ..., \alpha_n = F, \beta = V$
- Trata-se de uma relação entre sentenças (sintaxe) baseada em semântica
 - Bastante parecida com implicação

Inferência

 Considere a base de conhecimentos (BC) como sendo tudo que sabemos sobre o domínio do problema

- Considere a base de conhecimentos (BC) como sendo tudo que sabemos sobre o domínio do problema
 - Uma coleção de sentenças (também chamadas **axiomas**) $\alpha_1, \alpha_2, \dots, \alpha_n$

- Considere a base de conhecimentos (BC) como sendo tudo que sabemos sobre o domínio do problema
 - Uma coleção de sentenças (também chamadas **axiomas**) $\alpha_1, \alpha_2, \dots, \alpha_n$
- Se um algoritmo de inferência i puder derivar α a partir de BC, dizemos que $BC \vdash_i \alpha$

- Considere a base de conhecimentos (BC) como sendo tudo que sabemos sobre o domínio do problema
 - Uma coleção de sentenças (também chamadas **axiomas**) $\alpha_1, \alpha_2, \dots, \alpha_n$
- Se um algoritmo de inferência i puder derivar α a partir de BC, dizemos que $BC \vdash_i \alpha$
 - ullet Ou seja, lpha é derivada de BC por i

- Considere a base de conhecimentos (BC) como sendo tudo que sabemos sobre o domínio do problema
 - Uma coleção de sentenças (também chamadas **axiomas**) $\alpha_1, \alpha_2, \dots, \alpha_n$
- Se um algoritmo de inferência i puder derivar α a partir de BC, dizemos que $BC \vdash_i \alpha$
 - ullet Ou seja, lpha é derivada de BC por i
 - ullet Ou *i* deriva α a partir de *BC*

- Considere a base de conhecimentos (BC) como sendo tudo que sabemos sobre o domínio do problema
 - Uma coleção de sentenças (também chamadas **axiomas**) $\alpha_1, \alpha_2, \dots, \alpha_n$
- Se um algoritmo de inferência i puder derivar α a partir de BC, dizemos que $BC \vdash_i \alpha$
 - ullet Ou seja, lpha é derivada de BC por i
 - ullet Ou i deriva lpha a partir de BC
- Inferimos α de BC

Inferência

• Consistência:

- Consistência:
 - Um algoritmo de inferência que deriva somente sentenças que seguem logicamente da base é dito **consistente**

- Consistência:
 - Um algoritmo de inferência que deriva somente sentenças que seguem logicamente da base é dito **consistente**
 - Ou seja, i é consistente se, toda vez que $BC \vdash_i \alpha$, também for verdade que $BC \models \alpha$

Inferência

- Consistência:
 - Um algoritmo de inferência que deriva somente sentenças que seguem logicamente da base é dito **consistente**
 - Ou seja, i é consistente se, toda vez que $BC \vdash_i \alpha$, também for verdade que $BC \models \alpha$
- Completude

Inferência

- Consistência:
 - Um algoritmo de inferência que deriva somente sentenças que seguem logicamente da base é dito **consistente**
 - Ou seja, i é consistente se, toda vez que $BC \vdash_i \alpha$, também for verdade que $BC \models \alpha$
- Completude
 - Um algoritmo de inferência que deriva qualquer sentença que siga logicamente é dito completo

Inferência

- Consistência:
 - Um algoritmo de inferência que deriva somente sentenças que seguem logicamente da base é dito **consistente**
 - Ou seja, i é consistente se, toda vez que $BC \vdash_i \alpha$, também for verdade que $BC \models \alpha$
- Completude
 - Um algoritmo de inferência que deriva qualquer sentença que siga logicamente é dito completo
 - Ou seja, i é completo se, toda vez que $BC \models \alpha$, também for verdade que $BC \vdash_i \alpha$

Consequência Lógica e Inferência

• Consequência lógica é então básica para inferência

- Consequência lógica é então básica para inferência
 - Se $P \models Q$, então não pode haver situação em que P seja verdadeiro e Q falso

- Consequência lógica é então básica para inferência
 - Se $P \models Q$, então não pode haver situação em que P seja verdadeiro e Q falso
 - Pois isso seria uma interpretação (P = V, Q = F) em que $P \models Q$ não valeria

- Consequência lógica é então básica para inferência
 - Se $P \models Q$, então não pode haver situação em que P seja verdadeiro e Q falso
 - Pois isso seria uma interpretação (P = V, Q = F) em que $P \models Q$ não valeria
 - Assim, se $BC \models \alpha$, então BC ser verdadeira faz com que α necessariamente também o seja

- Consequência lógica é então básica para inferência
 - Se $P \models Q$, então não pode haver situação em que P seja verdadeiro e Q falso
 - Pois isso seria uma interpretação (P = V, Q = F) em que $P \models Q$ não valeria
 - Assim, se $BC \models \alpha$, então BC ser verdadeira faz com que α necessariamente também o seja
 - Da mesma forma, se a base for verdadeira, então qualquer sentença α derivada dela por um procedimento de inferência i consistente (BC ⊢_i α) também será verdadeira

- Consequência lógica é então básica para inferência
 - Se $P \models Q$, então não pode haver situação em que P seja verdadeiro e Q falso
 - Pois isso seria uma interpretação (P = V, Q = F) em que $P \models Q$ não valeria
 - Assim, se $BC \models \alpha$, então BC ser verdadeira faz com que α necessariamente também o seja
 - Da mesma forma, se a base for verdadeira, então qualquer sentença α derivada dela por um procedimento de inferência i consistente (BC ⊢_i α) também será verdadeira
 - E assim qualquer afirmação derivada da base será verdadeira

Consequência Lógica e Inferência

 Se cada sentença na base corresponder a um aspecto do mundo real, ao derivarmos novas sentenças estaremos inferindo novos aspectos desse mesmo mundo

Consequência Lógica e Inferência

 Se cada sentença na base corresponder a um aspecto do mundo real, ao derivarmos novas sentenças estaremos inferindo novos aspectos desse mesmo mundo

- Base:
 - Se ele depositar R\$ 2,00 na máquina, terá um refrigerante
 - Se ele tiver um refrigerante, comprará um lanche
 - Ele depositou R\$ 2,00

- Base:
 - Se ele depositar R\$ 2,00 na máquina, terá um refrigerante
 - Se ele tiver um refrigerante, comprará um lanche
 - Ele depositou R\$ 2,00
- Inferência:

- Base:
 - Se ele depositar R\$ 2,00 na máquina, terá um refrigerante
 - Se ele tiver um refrigerante, comprará um lanche
 - Ele depositou R\$ 2,00
- Inferência:
 - Ele comprou o lanche

- Base:
 - Se ele depositar R\$ 2,00 na máquina, terá um refrigerante
 - Se ele tiver um refrigerante, comprará um lanche
 - Ele depositou R\$ 2,00
- Inferência:
 - Ele comprou o lanche
 - Conhecimento novo, inferido das 3 proposições acima

Sintaxe

Sentenças atômicas

- Sentenças atômicas
 - Consistem de um único símbolo proposicional

- Sentenças atômicas
 - Consistem de um único símbolo proposicional
- Símbolos

- Sentenças atômicas
 - Consistem de um único símbolo proposicional
- Símbolos
 - Representam proposições, que podem ser verdadeiras ou falsas

- Sentenças atômicas
 - Consistem de um único símbolo proposicional
- Símbolos
 - Representam proposições, que podem ser verdadeiras ou falsas
 - Símbolos com significado variável: P, Q, R etc

- Sentenças atômicas
 - Consistem de um único símbolo proposicional
- Símbolos
 - Representam proposições, que podem ser verdadeiras ou falsas
 - Símbolos com significado variável: P, Q, R etc
 - Símbolos com significado fixo: Verdadeiro e Falso

- Sentenças atômicas
 - Consistem de um único símbolo proposicional
- Símbolos
 - Representam proposições, que podem ser verdadeiras ou falsas
 - Símbolos com significado variável: P, Q, R etc
 - Símbolos com significado fixo: Verdadeiro e Falso
- Sentenças compostas (ou complexas)

- Sentenças atômicas
 - Consistem de um único símbolo proposicional
- Símbolos
 - Representam proposições, que podem ser verdadeiras ou falsas
 - Símbolos com significado variável: P, Q, R etc
 - Símbolos com significado fixo: Verdadeiro e Falso
- Sentenças compostas (ou complexas)
 - São construídas a partir de sentenças mais simples, por meio de conectivos lógicos

Sintaxe: Conectivos Lógicos

¬ (não): negação

- ¬ (não): negação
- ∧ (e): conjunção

- ¬ (não): negação
- ∧ (e): conjunção
- ∨ (ou): disjunção

- ¬ (não): negação
- ◆ (e): conjunção
- ∨ (ou): disjunção
- ullet ightarrow ou \Rightarrow (implica): implicação ou condicional

- ¬ (não): negação
- ∧ (e): conjunção
- ∨ (ou): disjunção
- ullet ightarrow ou \Rightarrow (implica): implicação ou condicional
 - $A \rightarrow B$: A é a premissa ou antecedente, e B a conclusão ou consequente

- ¬ (não): negação
- ◆ (e): conjunção
- ∨ (ou): disjunção
- ullet ightarrow ou \Rightarrow (implica): implicação ou condicional
 - A → B: A é a premissa ou antecedente, e B a conclusão ou consequente
- → ou ⇔ (se e somente se): bicondicional ou equivalência

- ¬ (não): negação
- ∧ (e): conjunção
- ∨ (ou): disjunção
- ullet ightarrow ou \Rightarrow (implica): implicação ou condicional
 - A → B: A é a premissa ou antecedente, e B a conclusão ou consequente
- → ou ⇔ (se e somente se): bicondicional ou equivalência
 - $A \leftrightarrow B$: B será verdade se e somente se A for verdade

Sintaxe: Gramática formal

```
Sentença → Sentença_Atômica | Sentença_Composta
 Sentenca_Atômica → Verdadeiro | Falso | Símbolo
            Símbolo \rightarrow P | Q | R | ...
Sentença_Composta \rightarrow (Sentença) | [Sentença]
                            ¬Sentenca
                            Sentença ∧ Sentença
                            Sentença ∧ Sentença
                            Sentença ⇒ Sentença
                            Sentença ⇔ Sentença
            Precedência de operadores: \neg, \land, \lor, \Rightarrow, \Leftrightarrow
```

Sintaxe: Gramática formal

```
Sentença → Sentença_Atômica | Sentença_Composta
 Sentença_Atômica → Verdadeiro | Falso | Símbolo
            Símbolo \rightarrow P | Q | R | ...
Sentença_Composta \rightarrow (Sentença) | [Sentença]
                            ¬Sentenca
                            Sentença ∧ Sentença
                                                       [] e () signifi-
                            Sentença ∧ Sentença
                                                     cam a mesma coisa
                            Sentença ⇒ Sentença
                            Sentença ⇔ Sentença
            Precedência de operadores: \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow
```

Sintaxe: Gramática formal

```
Sentença → Sentença_Atômica | Sentença_Composta
 Sentença_Atômica → Verdadeiro | Falso | Símbolo
            Símbolo \rightarrow P | Q | R | ...
Sentença_Composta \rightarrow (Sentença) | [Sentença]
                            ¬Sentenca
                            Sentença ∧ Sentença
                                                      Apenas dão mais
                                                      opções para leitura
                            Sentença ∧ Sentença
                            Sentença ⇒ Sentença
                            Sentença ⇔ Sentença
            Precedência de operadores: \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow
```

<u>Se</u>mântica

 Define as regras para determinar a veracidade de qualquer sentença com respeito a um modelo

- Define as regras para determinar a veracidade de qualquer sentença com respeito a um modelo
 - Especifica como calcular o valor verdade (verdadeiro ou falso) de qualquer sentença, dado um modelo

- Define as regras para determinar a veracidade de qualquer sentença com respeito a um modelo
 - Especifica como calcular o valor verdade (verdadeiro ou falso) de qualquer sentença, dado um modelo
- Associa assim um valor a um símbolo ou sentença (dá seu significado):

<u>Se</u>mântica

- Define as regras para determinar a veracidade de qualquer sentença com respeito a um modelo
 - Especifica como calcular o valor verdade (verdadeiro ou falso) de qualquer sentença, dado um modelo
- Associa assim um valor a um símbolo ou sentença (dá seu significado):
 - Verdadeiro ou falso

<u>Se</u>mântica

- Define as regras para determinar a veracidade de qualquer sentença com respeito a um modelo
 - Especifica como calcular o valor verdade (verdadeiro ou falso) de qualquer sentença, dado um modelo
- Associa assim um valor a um símbolo ou sentença (dá seu significado):
 - Verdadeiro ou falso
- Avalia sentenças complexas com base na precedência dos operadores

Semântica: Modelo

 Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo
 - É o que chamávamos de "Interpretação"

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo
 - É o que chamávamos de "Interpretação"
- Ex: Se as sentenças na base usam os símbolos P_1 , P_2 e P_3 , poderemos ter os seguintes modelos

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo
 - É o que chamávamos de "Interpretação"
- Ex: Se as sentenças na base usam os símbolos P_1 , P_2 e P_3 , poderemos ter os seguintes modelos
 - $m_1 = \{P_1 = f, P_2 = v, P_3 = v\}$

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo
 - É o que chamávamos de "Interpretação"
- Ex: Se as sentenças na base usam os símbolos P_1 , P_2 e P_3 , poderemos ter os seguintes modelos
 - $m_1 = \{P_1 = f, P_2 = v, P_3 = v\}$
 - $m_2 = \{P_1 = v, P_2 = v, P_3 = v\}$

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo
 - É o que chamávamos de "Interpretação"
- Ex: Se as sentenças na base usam os símbolos P_1 , P_2 e P_3 , poderemos ter os seguintes modelos
 - $m_1 = \{P_1 = f, P_2 = v, P_3 = v\}$
 - $m_2 = \{P_1 = v, P_2 = v, P_3 = v\}$
 - . . .

- Em lógica proposicional, um modelo simplesmente fixa o valor verdade para cada símbolo proposicional
 - Ou seja, define seu valor dentro do modelo
 - É o que chamávamos de "Interpretação"
- Ex: Se as sentenças na base usam os símbolos P_1 , P_2 e P_3 , poderemos ter os seguintes modelos
 - $m_1 = \{P_1 = f, P_2 = v, P_3 = v\}$
 - $m_2 = \{P_1 = v, P_2 = v, P_3 = v\}$
 - . . .
 - Com 3 símbolos teremos $2^3 = 8$ possíveis modelos

Semântica

 Toda sentença é construídas recursivamente a partir de sentenças atômicas

- Toda sentença é construídas recursivamente a partir de sentenças atômicas
 - Precisamos então especificar como calcular a veracidade de sentenças atômicas

- Toda sentença é construídas recursivamente a partir de sentenças atômicas
 - Precisamos então especificar como calcular a veracidade de sentenças atômicas
 - E então de sentenças formadas com os conectivos

- Toda sentença é construídas recursivamente a partir de sentenças atômicas
 - Precisamos então especificar como calcular a veracidade de sentenças atômicas
 - E então de sentenças formadas com os conectivos
- Tratamento de sentenças atômicas

- Toda sentença é construídas recursivamente a partir de sentenças atômicas
 - Precisamos então especificar como calcular a veracidade de sentenças atômicas
 - E então de sentenças formadas com os conectivos
- Tratamento de sentenças atômicas
 - Verdadeiro é verdadeiro em qualquer modelo, assim como Falso é falso

<u>Se</u>mântica

- Toda sentença é construídas recursivamente a partir de sentenças atômicas
 - Precisamos então especificar como calcular a veracidade de sentenças atômicas
 - E então de sentenças formadas com os conectivos
- Tratamento de sentenças atômicas
 - Verdadeiro é verdadeiro em qualquer modelo, assim como Falso é falso
 - O valor verdade de qualquer outro símbolo proposicional deve ser especificado diretamente no modelo

<u>Se</u>mântica

- Toda sentença é construídas recursivamente a partir de sentenças atômicas
 - Precisamos então especificar como calcular a veracidade de sentenças atômicas
 - E então de sentenças formadas com os conectivos
- Tratamento de sentenças atômicas
 - Verdadeiro é verdadeiro em qualquer modelo, assim como Falso é falso
 - O valor verdade de qualquer outro símbolo proposicional deve ser especificado diretamente no modelo
 - Ex: em m_1 , $P_1 = falso$

Semântica

• Regras Semânticas (dado um modelo *m*):

- Regras Semânticas (dado um modelo m):
 - $\neg P$ é verdadeiro sse P for falso em m

- Regras Semânticas (dado um modelo m):
 - $\neg P$ é verdadeiro sse P for falso em m
 - $P \wedge Q$ é verdadeiro sse ambas as sentenças ($P \in Q$) forem verdadeiras em m

- Regras Semânticas (dado um modelo *m*):
 - $\neg P$ é verdadeiro sse P for falso em m
 - $P \wedge Q$ é verdadeiro sse ambas as sentenças ($P \in Q$) forem verdadeiras em m
 - $P \lor Q$ é verdadeiro sse pelo menos uma das sentenças (P ou Q) for verdadeira

- Regras Semânticas (dado um modelo *m*):
 - $\neg P$ é verdadeiro sse P for falso em m
 - $P \wedge Q$ é verdadeiro sse ambas as sentenças ($P \in Q$) forem verdadeiras em m
 - $P \lor Q$ é verdadeiro sse pelo menos uma das sentenças (P ou Q) for verdadeira
 - $P \rightarrow Q$ é verdadeiro a menos que P seja verdadeiro e Q seja falso em m

- Regras Semânticas (dado um modelo *m*):
 - $\neg P$ é verdadeiro sse P for falso em m
 - $P \wedge Q$ é verdadeiro sse ambas as sentenças ($P \in Q$) forem verdadeiras em m
 - $P \lor Q$ é verdadeiro sse pelo menos uma das sentenças (P ou Q) for verdadeira
 - $P \rightarrow Q$ é verdadeiro a menos que P seja verdadeiro e Q seja falso em m
 - $P \leftrightarrow Q$ é verdadeiro sse P e Q forem ambos verdadeiros ou ambos falsos em m

- Regras Semânticas (dado um modelo *m*):
 - $\neg P$ é verdadeiro sse P for falso em m
 - $P \wedge Q$ é verdadeiro sse ambas as sentenças ($P \in Q$) forem verdadeiras em m
 - $P \lor Q$ é verdadeiro sse <u>pelo menos</u> uma das sentenças (P ou Q) for verdadeira
 - $P \rightarrow Q$ é verdadeiro a menos que P seja verdadeiro e Q seja falso em m
 - $P \leftrightarrow Q$ é verdadeiro sse P e Q forem ambos verdadeiros ou ambos falsos em m
 - Ou seja, se $(P \rightarrow Q) \land (Q \rightarrow P)$

Regras Semânticas: Tabela Verdade

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

Regras Semânticas: Tabela Verdade

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

• Além destes, há o **ou exclusivo** $(P \oplus Q)$

Regras Semânticas: Tabela Verdade

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

- Além destes, há o **ou exclusivo** $(P \oplus Q)$
 - falso quando P e Q forem ambos verdadeiros ou ambos falsos

Regras Semânticas: Tabela Verdade

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

- Além destes, há o **ou exclusivo** $(P \oplus Q)$
 - falso quando P e Q forem ambos verdadeiros ou ambos falsos
 - Ou seja, apenas um deles pode ser verdadeiro

Regras Semânticas: Implicação

 \bullet $P \rightarrow Q$

Regras Semânticas: Implicação

- \bullet $P \rightarrow Q$
 - Não se trata de uma relação de causa e efeitos

Regras Semânticas: Implicação

- \bullet $P \rightarrow Q$
 - Não se trata de uma relação de causa e efeitos
 - Pode ser vista como uma promessa: Se P então Q

Regras Semânticas: Implicação

- \bullet $P \rightarrow Q$
 - Não se trata de uma relação de causa e efeitos
 - Pode ser vista como uma promessa: Se P então Q
 - P = V e Q = F significa que a promessa foi quebrada

Lógica Proposicional

Regras Semânticas: Implicação

- \bullet $P \rightarrow Q$
 - Não se trata de uma relação de causa e efeitos
 - Pode ser vista como uma promessa: Se P então Q
 - P = V e Q = F significa que a promessa foi quebrada
 - Mas, se P=F, não temos razão para crer que a promessa foi quebrada, independentemente de Q

Lógica Proposicional

Regras Semânticas: Implicação

- \bullet $P \rightarrow Q$
 - Não se trata de uma relação de causa e efeitos
 - Pode ser vista como uma promessa: Se P então Q
 - P = V e Q = F significa que a promessa foi quebrada
 - Mas, se P=F, não temos razão para crer que a promessa foi quebrada, independentemente de Q
 - Alternativamente, pode ser lida como "Se P for verdadeiro, então estou afirmando que Q é verdadeiro. Do contrário, não estou afirmando nada"

Consequência Lógica × Implicação

• Se $\alpha \models \beta$, então podemos dizer que $\alpha \to \beta$?

- Se $\alpha \models \beta$, então podemos dizer que $\alpha \rightarrow \beta$?
 - Ou seja, se β segue logicamente de α , então α implica β ?

- Se $\alpha \models \beta$, então podemos dizer que $\alpha \to \beta$?
 - Ou seja, se β segue logicamente de α , então α implica β ?
 - Não necessariamente...

- Se $\alpha \models \beta$, então podemos dizer que $\alpha \to \beta$?
 - Ou seja, se β segue logicamente de α , então α implica β ?
 - Não necessariamente...
- $\alpha \to \beta$ possui o significado "se α então β "

- Se $\alpha \models \beta$, então podemos dizer que $\alpha \to \beta$?
 - Ou seja, se β segue logicamente de α , então α implica β ?
 - Não necessariamente...
- $\alpha \to \beta$ possui o significado "se α então β "
 - ullet Se lpha for verdadeiro, então eta também o será

- Se $\alpha \models \beta$, então podemos dizer que $\alpha \to \beta$?
 - Ou seja, se β segue logicamente de α , então α implica β ?
 - Não necessariamente...
- $\alpha \to \beta$ possui o significado "se α então β "
 - Se α for verdadeiro, então β também o será
 - Porém sem a obrigatoriedade dessa relação ser sempre verdadeira

- Se $\alpha \models \beta$, então podemos dizer que $\alpha \to \beta$?
 - Ou seja, se β segue logicamente de α , então α implica β ?
 - Não necessariamente...
- $\alpha \to \beta$ possui o significado "se α então β "
 - Se α for verdadeiro, então β também o será
 - Porém sem a obrigatoriedade dessa relação ser sempre verdadeira
 - Assim, pode haver uma interpretação (um modelo) em que $\alpha \to \beta$ seja falso (quando $\alpha = V$ e $\beta = F$)

Consequência Lógica × Implicação

• Contudo, $\alpha \models \beta$ exige que a relação ocorra em toda interpretação

- Contudo, $\alpha \models \beta$ exige que a relação ocorra em toda interpretação
- Ex: Se chover, então molhará

- Contudo, $\alpha \models \beta$ exige que a relação ocorra em toda interpretação
- Ex: Se chover, então molhará
 - Então chover o molhar (condicional)

- Contudo, $\alpha \models \beta$ exige que a relação ocorra em toda interpretação
- Ex: Se chover, então molhará
 - Então chover o molhar (condicional)
- Mas chover \models molhar?

- Contudo, $\alpha \models \beta$ exige que a relação ocorra em toda interpretação
- Ex: Se chover, então molhará
 - ullet Então *chover* o *molhar* (condicional)
- Mas chover \models molhar?
 - "Vulcão lança chuva de cinzas na Cidade do México" (Manchete do Estadão, 01/08/2016)

- Contudo, $\alpha \models \beta$ exige que a relação ocorra em toda interpretação
- Ex: Se chover, então molhará
 - Então chover o molhar (condicional)
- Mas chover \models molhar?
 - "Vulcão lança chuva de cinzas na Cidade do México" (Manchete do Estadão, 01/08/2016)
- Com ⊨, a implicação tem que ser verdadeira em toda interpretação

Tautologia

 Uma tautologia é uma expressão composta que é necessariamente verdadeira, independentemente dos valores de seus componentes

- Uma tautologia é uma expressão composta que é necessariamente verdadeira, independentemente dos valores de seus componentes
 - Ou seja, é verdadeira em todos os modelos

- Uma tautologia é uma expressão composta que é necessariamente verdadeira, independentemente dos valores de seus componentes
 - Ou seja, é verdadeira em todos os modelos
 - Também chamada de expressão válida

- Uma tautologia é uma expressão composta que é necessariamente verdadeira, independentemente dos valores de seus componentes
 - Ou seja, é verdadeira em todos os modelos
 - Também chamada de expressão válida
- Ex: $P \vee \neg P$ é sempre verdadeira

- Uma tautologia é uma expressão composta que é necessariamente verdadeira, independentemente dos valores de seus componentes
 - Ou seja, é verdadeira em todos os modelos
 - Também chamada de expressão válida
- Ex: $P \vee \neg P$ é sempre verdadeira

Ρ	$ \neg P $	$P \vee \neg P$	
V	F	V	
F	V	V	

Tautologia

- Uma tautologia é uma expressão composta que é necessariamente verdadeira, independentemente dos valores de seus componentes
 - Ou seja, é verdadeira em todos os modelos
 - Também chamada de expressão válida
- Ex: $P \lor \neg P$ é sempre verdadeira

	P ¬P V F F V		$P \vee \neg P$		
			V		
			V		

ullet Sua coluna na tabela verdade será sempre V

- Ex:
 - $P \wedge Q \rightarrow Q$

- Ex:
 - $P \wedge Q \rightarrow Q$

P	Q	$P \wedge Q$	$P \wedge Q \rightarrow Q$		
V	V	V	V		
V	F	F	V		
F	V	F	V		
F	F	F	V		

Tautologia

- Ex:
 - $P \wedge Q \rightarrow Q$

	Ρ	Q	$P \wedge Q$	$P \wedge Q \rightarrow Q$
1	V	V	V	V
,	V	F	F	V
	F	V	F	V
	F	F	F	V

• É uma tautologia

- Ex:
 - $P \wedge Q \rightarrow Q$

	Ρ	Q	$P \wedge Q$	$P \wedge Q \rightarrow Q$		
Ī	V	V	V	V		
Ī	V	F	F	V		
ĺ	F	V	F	F V		
ĺ	F	F	F	V		

- É uma tautologia
- Não há situação (interpretação) em que $P \wedge Q \rightarrow Q$ possa ser falso

Tautologia, Consequência Lógica e Equivalência

• Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)

- Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)
 - Ou seja, se α tautologicamente implicar β (se $\alpha \to \beta$ for válida).

- Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)
 - Ou seja, se α tautologicamente implicar β (se $\alpha \to \beta$ for válida).
- O mesmo ocorre com equivalência ($\alpha \leftrightarrow \beta$)?

- Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)
 - Ou seja, se α tautologicamente implicar β (se $\alpha \to \beta$ for válida).
- O mesmo ocorre com equivalência ($\alpha \leftrightarrow \beta$)? Sim

- Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)
 - Ou seja, se α tautologicamente implicar β (se $\alpha \to \beta$ for válida).
- O mesmo ocorre com equivalência ($\alpha \leftrightarrow \beta$)? Sim
- Dizemos que $\alpha \equiv \beta$ se e somente se $\alpha \leftrightarrow \beta$ for uma tautologia

- Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)
 - Ou seja, se α tautologicamente implicar β (se $\alpha \to \beta$ for válida).
- O mesmo ocorre com equivalência ($\alpha \leftrightarrow \beta$)? Sim
- Dizemos que $\alpha \equiv \beta$ se e somente se $\alpha \leftrightarrow \beta$ for uma tautologia
 - Temos então uma **equivalência tautológica** (α e β são tautologicamente equivalentes)

- Dizemos então que $\alpha \models \beta$ se e somente se $\alpha \to \beta$ for uma tautologia (**Teorema da Dedução**)
 - Ou seja, se α tautologicamente implicar β (se $\alpha \to \beta$ for válida).
- O mesmo ocorre com equivalência ($\alpha \leftrightarrow \beta$)? Sim
- Dizemos que $\alpha \equiv \beta$ se e somente se $\alpha \leftrightarrow \beta$ for uma tautologia
 - Temos então uma **equivalência tautológica** (α e β são tautologicamente equivalentes)
 - $\alpha \equiv \beta$ se e somente se $\alpha \models \beta$ e $\beta \models \alpha$

Tautologia, Consequência Lógica e Equivalência

• Ex: $A \wedge \neg B \equiv \neg (\neg A \vee B)$

Tautologia, Consequência Lógica e Equivalência

• Ex: $A \wedge \neg B \equiv \neg (\neg A \vee B)$

Α	В	$\neg A$	$\neg B$	$\neg A \lor B$	$\neg(\neg A \lor B)$	$A \wedge \neg B$
V	V	F	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	V	F	F
F	F	V	V	V	F	F

Tautologia, Consequência Lógica e Equivalência

• Ex: $A \wedge \neg B \equiv \neg (\neg A \vee B)$

Α	В	$\neg A$	$\neg B$	$\neg A \lor B$	$\neg(\neg A \lor B)$	$A \wedge \neg B$
V	V	F	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	V	F	F
F	F	V	V	V	F	F

Para serem equivalentes as colunas precisam ser idênticas

Tautologia, Consequência Lógica e Equivalência

• Ex: $A \wedge \neg B \equiv \neg (\neg A \vee B)$

Α	В	$\neg A$	$\neg B$	$\neg A \lor B$	$\neg(\neg A \lor B)$	$A \wedge \neg B$	Da aantudula
V	V	F	F	V	F	F	Do contrário
V	F	F	V	F	V	V	teremos um $V ightarrow F$, e
F	V	V	F	V	F	F	$\alpha \to \beta$ será falso
F	F	V	V	V	F	F	$\alpha \rightarrow \rho$ seta talso

Tautologia, Consequência Lógica e Equivalência

• Ex: $A \wedge \neg B \equiv \neg (\neg A \vee B)$

 Se duas sentenças são tautologicamente equivalentes, então elas expressam essencialmente os mesmos fatos

Tautologia, Consequência Lógica e Equivalência

• Ex: $A \wedge \neg B \equiv \neg (\neg A \vee B)$

Α	В	$\neg A$	$\neg B$	$\neg A \lor B$	$\neg(\neg A \lor B)$	$A \wedge \neg B$	Da aantudula
V	V	F	F	V	F	F	Do contrário
V	F	F	V	F	V	V	teremos um $V ightarrow F$, e
F	V	V	F	V	F	F	$\alpha \to \beta$ será falso
F	F	V	V	V	F	F	$\alpha \rightarrow \rho$ seta laiso

- Se duas sentenças são tautologicamente equivalentes, então elas expressam essencialmente os mesmos fatos
 - E consequentemente seus papéis na inferência são quase idênticos

Tautologia (Validade) e Satisfatibilidade

 Uma sentença é satisfatível se for verdadeira sob alguma interpretação

- Uma sentença é satisfatível se for verdadeira sob alguma interpretação
 - Ou seja, se for verdadeira em algum modelo

- Uma sentença é satisfatível se for verdadeira sob alguma interpretação
 - Ou seja, se for verdadeira em algum modelo
- Da mesma forma, uma sentença é insatisfatível se for falsa em todas as interpretações

- Uma sentença é satisfatível se for verdadeira sob alguma interpretação
 - Ou seja, se for verdadeira em algum modelo
- Da mesma forma, uma sentença é insatisfatível se for falsa em todas as interpretações
 - Ou seja, se não for verdadeira em <u>nenhum</u> modelo

- Uma sentença é satisfatível se for verdadeira sob alguma interpretação
 - Ou seja, se for verdadeira em algum modelo
- Da mesma forma, uma sentença é insatisfatível se for falsa em todas as interpretações
 - Ou seja, se não for verdadeira em <u>nenhum</u> modelo
- Satisfatibilidade está ligada a validade:

- Uma sentença é satisfatível se for verdadeira sob alguma interpretação
 - Ou seja, se for verdadeira em algum modelo
- Da mesma forma, uma sentença é insatisfatível se for falsa em todas as interpretações
 - Ou seja, se não for verdadeira em <u>nenhum</u> modelo
- Satisfatibilidade está ligada a validade:
 - α é válida sse $\neg \alpha$ for insatisfatível

- Uma sentença é satisfatível se for verdadeira sob alguma interpretação
 - Ou seja, se for verdadeira em algum modelo
- Da mesma forma, uma sentença é insatisfatível se for falsa em todas as interpretações
 - Ou seja, se não for verdadeira em <u>nenhum</u> modelo
- Satisfatibilidade está ligada a validade:
 - α é válida sse $\neg \alpha$ for insatisfatível
 - Da mesma forma, α é satisfatível sse $\neg \alpha$ não for válida

Tautologia (Validade) e Satisfatibilidade

• Satisfatibilidade também está ligada a inferência:

- Satisfatibilidade também está ligada a inferência:
 - $BC \models \alpha$ se e somente se $(BC \land \neg \alpha)$ for insatisfatível

- Satisfatibilidade também está ligada a inferência:
 - $BC \models \alpha$ se e somente se $(BC \land \neg \alpha)$ for insatisfatível
 - Ou seja, prova-se α a partir de BC por **reductio ad** absurdum

- Satisfatibilidade também está ligada a inferência:
 - $BC \models \alpha$ se e somente se $(BC \land \neg \alpha)$ for insatisfatível
 - Ou seja, prova-se α a partir de BC por **reductio ad** absurdum
 - Também conhecida como prova por refutação ou contradição

- Satisfatibilidade também está ligada a inferência:
 - $BC \models \alpha$ se e somente se $(BC \land \neg \alpha)$ for insatisfatível
 - Ou seja, prova-se α a partir de BC por **reductio ad** absurdum
 - Também conhecida como prova por refutação ou contradição
 - Assume-se α como falsa e mostra-se que isso leva a uma contradição com algum axioma da base

- Satisfatibilidade também está ligada a inferência:
 - $BC \models \alpha$ se e somente se $(BC \land \neg \alpha)$ for insatisfatível
 - Ou seja, prova-se α a partir de BC por **reductio ad** absurdum
 - Também conhecida como prova por refutação ou contradição
 - Assume-se α como falsa e mostra-se que isso leva a uma contradição com algum axioma da base
 - Veremos melhor mais adiante...

Tautologia (Validade) e Satisfatibilidade – Ex:

ullet Fumaça o Fumaça

- ullet Fumaça o Fumaça
 - Válida (tautologia)

- ullet Fumaça o Fumaça
 - Válida (tautologia)
- ullet Fumaça o Fogo

- ullet Fumaça o Fumaça
 - Válida (tautologia)
- ullet Fumaça o Fogo
 - Não válida (Fumaça = V, Fogo = F)

- ullet Fumaça o Fumaça
 - Válida (tautologia)
- ullet Fumaça o Fogo
 - Não válida (Fumaça = V, Fogo = F)
 - Satisfatível

- ullet Fumaça o Fumaça
 - Válida (tautologia)
- ullet Fumaça o Fogo
 - Não válida (Fumaça = V, Fogo = F)
 - Satisfatível
- ullet (Fumaça o Fogo) o (oFumaça o oFogo)

- ullet Fumaça o Fumaça
 - Válida (tautologia)
- ullet Fumaça o Fogo
 - Não válida (Fumaça = V, Fogo = F)
 - Satisfatível
- ullet (Fumaça o Fogo) o (oFumaça o oFogo)
 - Não válida (Fumaça = F, Fogo = V)

- ullet Fumaça o Fumaça
 - Válida (tautologia)
- ullet Fumaça o Fogo
 - Não válida (Fumaça = V, Fogo = F)
 - Satisfatível
- ullet (Fumaça o Fogo) o (oFumaça o oFogo)
 - Não válida (Fumaça = F, Fogo = V)
 - Satisfatível

Inferência em uma Base de Conhecimento

 Vimos que uma base de conhecimento é um conjunto de sentenças

- Vimos que uma base de conhecimento é um conjunto de sentenças
 - Cada sentença α_i nela é uma proposição lógica (um fato)

- Vimos que uma base de conhecimento é um conjunto de sentenças
 - Cada sentença α_i nela é uma proposição lógica (um fato)
 - Podemos vê-la como sendo $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$

- Vimos que uma base de conhecimento é um conjunto de sentenças
 - Cada sentença α_i nela é uma proposição lógica (um fato)
 - Podemos vê-la como sendo $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$
- Inferência:

- Vimos que uma base de conhecimento é um conjunto de sentenças
 - Cada sentença α_i nela é uma proposição lógica (um fato)
 - Podemos vê-la como sendo $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$
- Inferência:
 - Busca decidir se *Base* $\models \alpha$, para algum α

- Vimos que uma base de conhecimento é um conjunto de sentenças
 - Cada sentença α_i nela é uma proposição lógica (um fato)
 - Podemos vê-la como sendo $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$
- Inferência:
 - Busca decidir se $Base \models \alpha$, para algum α
- Como?

- Vimos que uma base de conhecimento é um conjunto de sentenças
 - Cada sentença α_i nela é uma proposição lógica (um fato)
 - Podemos vê-la como sendo $\alpha_1 \wedge \alpha_2 \wedge \ldots \wedge \alpha_n$
- Inferência:
 - Busca decidir se $Base \models \alpha$, para algum α
- Como?
 - Provando (ou não) que $Base \models \alpha$

Provas: Algoritmo

Verificação do Modelo

- Verificação do Modelo
 - Enumere todas as interpretações (modelos)

- Verificação do Modelo
 - Enumere todas as interpretações (modelos)
 - Selecione aquelas em que todos os elementos da BC são verdadeiros

- Verificação do Modelo
 - Enumere todas as interpretações (modelos)
 - Selecione aquelas em que todos os elementos da BC são verdadeiros
 - Ou seja, aquelas em que a BC é verdadeira

Provas: Algoritmo

Verificação do Modelo

- Enumere todas as interpretações (modelos)
- Selecione aquelas em que todos os elementos da BC são verdadeiros
 - Ou seja, aquelas em que a BC é verdadeira
- Verifique se α é verdadeiro em todos eles

- Verificação do Modelo
 - Enumere todas as interpretações (modelos)
 - Selecione aquelas em que todos os elementos da BC são verdadeiros
 - Ou seja, aquelas em que a BC é verdadeira
 - Verifique se α é verdadeiro em todos eles
- Ou seja, decida se $BC \models \alpha$

Provas: Algoritmo

- Enumere todas as interpretações (modelos)
- Selecione aquelas em que todos os elementos da BC são verdadeiros
 - Ou seja, aquelas em que a BC é verdadeira
- Verifique se α é verdadeiro em todos eles
- Ou seja, decida se $BC \models \alpha$
 - Verificando, na força bruta, se $BC \to \alpha$ é verdadeiro em todo modelo

- Base de dados:
 - ullet Se hoje for ensolarado, Tomás estará feliz (S o H)
 - ullet Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \to H)$
 - ullet Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)
- A aula foi boa (G)?

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz (S o H)
 - ullet Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)
- A aula foi boa (G)?
 - Enumere todas as interpretações

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \to H)$
 - ullet Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)
- A aula foi boa (G)?
 - Enumere todas as interpretações

S	Н	G	$S \rightarrow H$	$H \rightarrow G$
V	V	V		
V	V	F		
V	F	V		
V	F	F		
F	V	V		
F F F	V	F		
F	F	V		
F	F	F		

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \to H)$
 - ullet Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)
- A aula foi boa (G)?
 - Enumere todas as interpretações
 - Derive as proposições da base de conhecimento, com base nesses valores

S	Н	G	$S \rightarrow H$	$H \rightarrow G$
V	V	V		
V	V	F		
V	F	V		
V	F	F		
F F F	V	V		
F	V	F		
F	F	V		
F	F	F		
		•		

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \to H)$
 - ullet Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)
- A aula foi boa (G)?
 - Enumere todas as interpretações
 - Derive as proposições da base de conhecimento, com base nesses valores

S	Н	G	$S \rightarrow H$	H o G
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F F F	V	V	V	V
F	V	F	V	F
F	F	V	V	V
F	F	F	V	V

- Base de dados:
 - ullet Se hoje for ensolarado, Tomás estará feliz (S o H)
 - Se Tomás estiver feliz, então a aula será boa (H o G)
 - Hoje há sol (S)
- A aula foi boa (G)?
 - Veja qual interpretação tem como verdadeira toda a base

S	Н	G	$S \rightarrow H$	H o G
V	V	V	V	V
V	V	F	V F	F
V	F F	V	F	V
V	F	F	F	V
F	V	V	V	V
F	V	F	V	F
F F F	F	V	V	V
F	F	F	V	V

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \rightarrow H)$
 - Se Tomás estiver feliz, então a aula será boa $(H \to G)$
 - Hoje há sol (5)
- A aula foi boa (G)?
 - Veja qual interpretação tem como verdadeira toda a base

S	H	G	$S \rightarrow H$	H o G
V	V	V	V	V
V	V	F	V F	F V
V	F	V	F	V
V	F	F	F	V
F	V	V	V	V
F F	V	F	V	F
	F	V	V	V
F	F	F	V	V

Verificação do Modelo: Exemplo

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \rightarrow H)$
 - Se Tomás estiver feliz, então a aula será boa $(H \to G)$
 - Hoje há sol (5)
- A aula foi boa (G)?
 - Veja qual interpretação tem como verdadeira toda a base

S	Н	G	$S \rightarrow H$	H o G
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F	V	V	V	V
F	V	F	V	F
	F	V	V	V
F	F	F	V	V

 Verifique G em toda interpretação na qual a base é verdadeira:

Verificação do Modelo: Exemplo

- Base de dados:
 - Se hoje for ensolarado, Tomás estará feliz $(S \rightarrow H)$
 - Se Tomás estiver feliz, então a aula será boa $(H \to G)$
 - Hoje há sol (5)
- A aula foi boa (G)?
 - Veja qual interpretação tem como verdadeira toda a base

		_		
S	Н	G	$S \rightarrow H$	H o G
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F	V	V	V	V
F F	V	F	V	F
F	F	V	V	V
F	F	F	V	V

 Verifique G em toda interpretação na qual a base é verdadeira: a aula foi boa

Verificação do Modelo

Note que:

- Note que:
 - Se a sentença S for verdadeira em todo modelo em que BC é verdadeira, então $BC \models S$

- Note que:
 - Se a sentença S for verdadeira em todo modelo em que BC é verdadeira, então $BC \models S$
 - Se S for verdadeira em pelo menos um deles (uma linha na tabela), então $BC \to S$ (nesse modelo)

- Note que:
 - Se a sentença S for verdadeira em todo modelo em que BC é verdadeira, então $BC \models S$
 - Se S for verdadeira em pelo menos um deles (uma linha na tabela), então $BC \to S$ (nesse modelo)
- Método dispendioso:

- Note que:
 - Se a sentença S for verdadeira em todo modelo em que BC é verdadeira, então $BC \models S$
 - Se S for verdadeira em pelo menos um deles (uma linha na tabela), então $BC \to S$ (nesse modelo)
- Método dispendioso:
 - Ocupa muita memória

- Note que:
 - Se a sentença S for verdadeira em todo modelo em que BC é verdadeira, então $BC \models S$
 - Se S for verdadeira em pelo menos um deles (uma linha na tabela), então $BC \to S$ (nesse modelo)
- Método dispendioso:
 - Ocupa muita memória
 - Tempo de execução muito longo, dependendo do tamanho da base

Verificação do Modelo

Solução: Aplicação de regras de inferência

- Solução: Aplicação de regras de inferência
 - Modo de testar se uma $BC \models S$ sem enumerar todas as possíveis interpretações

- Solução: Aplicação de regras de inferência
 - Modo de testar se uma BC ⊨ S sem enumerar todas as possíveis interpretações
 - Aplicam-se regras de inferência diretamente a sentenças na BC para construir uma prova para a sentença desejada

- Solução: Aplicação de regras de inferência
 - Modo de testar se uma BC ⊨ S sem enumerar todas as possíveis interpretações
 - Aplicam-se regras de inferência diretamente a sentenças na BC para construir uma prova para a sentença desejada
 - Não há necessidade de se consultar o modelo

- Solução: Aplicação de regras de inferência
 - Modo de testar se uma BC ⊨ S sem enumerar todas as possíveis interpretações
 - Aplicam-se regras de inferência diretamente a sentenças na BC para construir uma prova para a sentença desejada
 - Não há necessidade de se consultar o modelo
 - Mais eficiente que a verificação do modelo, se o número de modelos for grande e o comprimento da prova pequeno

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach. Prentice Hall. 3a ed.
 - Slides do livro: http://aima.eecs.berkeley.edu/slides-pdf/
- Nicoletti, M.C. (2017): A Cartilha da Lógica. LTC. 3a ed.
- Suppes, P. (1957): Introduction to Logic. Van Nostrand Reinhold Co.

Referências

- http://ocw.mit.edu/OcwWeb/Electrical-Engineeringand-Computer-Science/6-034Spring-2005/ LectureNotes/index.htm
- https://pt.wikipedia.org/wiki/Acarretamento
- http:
 //www.math.niu.edu/~richard/Math101/implies.pdf