DEPART	MENT (OF ELECTF	RICAL AND	ELECTRONIC	C ENGINEERIN	١G
EXAMIN	ATIONS	2011				

MSc and EEE/ISE PART IV: MEng and ACGI

PREDICTIVE CONTROL

Monday, 23 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks.

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): E.C. Kerrigan

Second Marker(s): S. Evangelou

PREDICTIVE CONTROL

1.	a)	What is meant with the term 'receding horizon principle'?	[4]
	b)	When and why would one want to implement an optimal control sequenceding horizon fashion?	ence in a [4]
	c)	When and why would one maybe <i>not</i> want to implement an optimal sequence in a receding horizon fashion?	control [4]
	d)	What are some of the potential problems that could arise in practice w plementing a receding horizon control law, and why do they occur?	hen im- [4]
	e)	What are some of the potential ways of solving some of the problems y tioned in part d)?	ou men-

2. Consider the following finite-horizon discrete-time optimal control problem:

$$\min_{u_0,u_1,\dots,u_{N-1}} \sum_{k=0}^{N-1} (\|Qx_{k+1}\|_2^2 + \|Ru_k\|_1)$$

where the system dynamics are given by

$$x_{k+1} = Ax_k + Bu_k, \quad k = 0, 1, \dots, N-1,$$

where the states $x_k \in \mathbb{R}^n$, inputs $u_k \in \mathbb{R}^m$ and weighting matrices $Q \in \mathbb{R}^{p \times n}$ and $R \in \mathbb{R}^{q \times m}$.

- a) What is interesting and/or challenging about solving the above problem? In other words, why is it potentially 'difficult' to solve the above problem if you have not taken this course, and what new techniques, which you learnt about in this course, allow us to solve the above problem?
- b) Under what practical situations would one maybe be interested in solving the above problem? [4]
- c) Formulate the above problem as an equivalent linear or quadratic program in standard form if an estimate of the current state x_0 is given.

Pay particular attention to also defining the sizes of the various matrices and vectors that define the optimisation problem. [10]

3. a) Consider the following optimisation problem:

$$\theta^* := \arg\min_{\theta} f(\theta)$$

subject to the constraints

$$c(\theta) \leq 0$$
,

where $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^m$.

With reference to the above, discuss what is meant with an 'exact penalty function' and why one might be interested in defining and working with an exact penalty function.

- b) Give an example of a penalty function that cannot be made exact and explain why it cannot be made exact. [2]
- c) We are interested in solving the following optimal control problem:

$$\min_{(u_0,\dots,u_{N-1})} \|Px_N\|_2^2 + \sum_{k=0}^{N-1} (\|Qx_k\|_2^2 + \|Ru_k\|_2^2),$$

where the system dynamics are given by

$$x_{k+1} = Ax_k + Bu_k, \quad k = 0, 1, \dots, N-1,$$

 $y_k = Cx_k, \quad k = 0, 1, \dots, N,$

the states $x_k \in \mathbb{R}^n$, inputs $u_k \in \mathbb{R}^m$, outputs $y_k \in \mathbb{R}^p$ and the weights $P \in \mathbb{R}^{n \times n}$, $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{m \times m}$, subject to hard input constraints

$$u_{\ell} \le u_k \le u_h$$
, $k = 0, 1, \dots, N-1$,

and soft output constraints

$$y_{\ell} \le y_k \le y_h$$
, $k = 1, 2, \dots, N$.

Show that the above problem can be solved by formulating a quadratic programming problem in standard form, given an estimate of the current state x_0 , but where you have an exact penalty function on the soft output constraints only.

Pay particular attention to also defining the sizes of the various matrices and vectors that define the optimisation problem. [10]

- 4. a) Show that if X is a given matrix and v is a given vector, then $X^T X v = 0$ if and only if X v = 0. [2]
 - b) Consider now a generalised version of the least squares problem, namely the equality constrained least squares (ECLS) problem, where the minimisation

$$\theta^* := \arg\min_{\theta} \frac{1}{2} \|M\theta - b\|_2^2$$

is subject to the linear equality constraints

$$C\theta = d$$

in which θ , b, d, M and C are vectors and matrices with compatible dimensions. Show that a solution to the ECLS problem exists for any d and is unique if and only if C is full row rank and

 $\begin{bmatrix} M \\ C \end{bmatrix}$

is full column rank.

[8]

Hint: You might want to use the Lagrangian function

$$L(\theta, \lambda) := \frac{1}{2} ||M\theta - b||_2^2 + \lambda^T (C\theta - d),$$

where the vector λ is the Lagrange multiplier. It can be shown that θ^* is a solution to the above ECLS problem if and only if a multiplier λ^* exists such that the pair (θ^*, λ^*) is a stationary point of the Lagrangian function. However, be careful not to start by assuming that the solution to the ECLS problem is unique if and only if the stationary point of the Lagrangian is unique.

c) We are interested in solving the following optimal control problem:

$$\min_{\theta} \frac{1}{2} \sum_{k=0}^{N-1} \left(\|Qx_{k+1}\|_{2}^{2} + \|Ru_{k}\|_{2}^{2} \right)$$

subject to the constraints

$$x_{k+1} = Ax_k + Bu_k, \quad k = 0, 1, \dots, N-1$$

where the states $x_k \in \mathbb{R}^n$, inputs $u_k \in \mathbb{R}^m$, weights $Q \in \mathbb{R}^{n \times n}$, $R \in \mathbb{R}^{m \times m}$ and the decision variable

$$\theta := \begin{bmatrix} u_0^T & x_1^T & u_1^T & x_2^T & u_2^T & \cdots & x_{N-1}^T & u_{N-1}^T & x_N^T \end{bmatrix}^T.$$

Using the results from above, show that the solution to the above optimal control problem exists and is unique for any given initial state x_0 if and only if

$$\begin{bmatrix} R & 0 \\ 0 & Q \\ B & -I \end{bmatrix}$$

is full column rank.

[10]

5. A constant, unmeasured disturbance d is acting on a double integrator

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k$$

where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

where x_k is the state, u_k is the input and y_k is the measured output.

- a) Can one design a stable observer to correctly estimate the disturbance *d* if it is an input disturbance? Justify your answer. [6]
- b) Can one design a stable observer to correctly estimate the disturbance d if it is an output disturbance? Justify your answer. [2]
- Can one design a stabilising controller such that the output tracks any constant reference signal r if the disturbance d is any constant input disturbance? Justify your answer.
- d) Does a steady-state exist such that the output is equal to any constant reference signal in the range $-1 \le r \le 1$ if there is a constant input disturbance in the range $-0.5 \le d \le 0.5$ and the input is subject to hard constraints in the range $-1 \le u_k \le 1$? Justify your answer. [6]

6. We are interested in solving the following optimal control problem:

$$V^*(x) := \min_{u_0, \dots, u_{N-1}} \|Px_N\|_2^2 + \sum_{k=0}^{N-1} \|Qx_k + Ru_k\|_2^2$$

subject to the constraints

$$x_0 = x,$$

 $x_{k+1} = Ax_k + Bu_k, \quad k = 0, 1, ..., N - 1$
 $y_k = Cx_k, \quad k = 0, 1, ..., N$
 $u_\ell \le u_k \le u_h, \quad k = 0, 1, ..., N - 1$
 $y_\ell \le y_k \le y_h, \quad k = 1, 2, ..., N$

where the states $x_k \in \mathbb{R}^n$, inputs $u_k \in \mathbb{R}^m$, outputs $y_k \in \mathbb{R}^p$ and weights $P \in \mathbb{R}^{n \times n}$, $Q \in \mathbb{R}^{q \times n}$ and $R \in \mathbb{R}^{q \times m}$ are such that $Q^T R = 0$.

The bounds on the constraints satisfy $u_{\ell} < 0 < u_h$ and $y_{\ell} < 0 < y_h$.

The solution to the above problem is implemented in a receding horizon fashion to form the closed-loop system.

- a) Give a sufficient condition on Q that would ensure the value function $V^*(\cdot)$ is positive definite. Justify your answer. [2]
- b) With reference to proving closed-loop stability, why do we care whether the value function is positive definite? [2]
- c) Give a sufficient condition on *P* that would ensure that the origin of the closed-loop system is locally asymptotically stable. Justify your answer. [6]
- d) Give the definition of an 'invariant set' for an autonomous discrete-time system.
 [4]
- e) How could one modify the above optimal control problem to guarantee that the set of initial states for which the problem is feasible is an invariant set for the closed-loop system? [4]
- f) What problem might occur in practice if the modification in part e) is not implemented? [2]

Question 1 - Bookwork / prescribed reasoling defined over a finite hyrizon (a) An optimal routial problem is solved online at each sumplying instant, using the current estimate of the state and only the list input is applied to the plant. At the next sampling instant, the process is repeated keeping the horizon length the same as before hence the day horizon recedes I moves with the Current time. (b) When the infinite horizon problem cannot be solved analytical or numerically, the but the finite horizon problem can, a 2) When there is plant-madel mismatch and/or disturbances etc. and we thornest to implement a feedback pokey.

3) When it is not possible to compute oran explicit feedback to pokey but it is possible to compute oran explicit feedback segmence, from which one can defrine an implicit feedback land. Any two of the above would be one or other reasonable explanatu. (c) When this is not appropriate to approximate an intinite-huize problem, e.g. when we have finite horizon problems such as approaching and landing an aeroplane when a decreasing horizon policy is perhaps more appropriate. an aptimisation problem at each time step are do it only once (perhaps off-live) and then implement they whole of the ap solution. This might be affective in motion planning, where reference shaping is done off-live. off-line. (d) 1) Lass of stability & violation of constraints because the horizon is too short.

	Date
ld)	2) Because an optimisation problem needs to be solved at each time instent the solution might not be unique or optimal, because there
	is not enough computation time or the problem has not been set up to ensure uniqueness of the solution
()	i) Add a terminal weight, which is a control Copyrion function and gold a terminal constraint which is invariant and constraint - admissable which suited differed control law.
	suitely defined control law.
	2) Define the control problem to ensure uniqueness e.g. use a positive definite weight on the inputs, or use a faster computer or got, inside algorithm which exploits the structure in the control problem.
	algorithm which exploits the structure in the

	Question 2. Bookwork and new problem. No
(a)	This is a non-differentiable function, hence we cannot set the derivative of the cost function to zero in order to compute a statution, hence a statution to zero in order to compute a statution, hence optimal, point.
	a) It contains a mix of a quadratic and 1-norm terms which means it cannot be solved as an unconstrained extend squares problem, or as a linear program, to both would require a quadratic program to solve. We would read to add slack variables to handle the 1-norm term.
	The 1-norm term pendise often occurs in situations where one wents to minime the firel used, e.g. in satellite attitude control.
	The some quadratic term assess when one wents to minimise the creign in a particular variable e.g. the point lost in Scoils /wing, or kinetic energy. By varying Q and R one can tack offer.
	By varying Q and R one can track off one term versus the other freel us ever well versus energy dissipated Plast Iminimised.
L	Cost function is agriculated to $ \left\ \begin{array}{cccc} Qx_{1} & 2 & Ru_{0} & = & - - 2 & Ru_{0} , \\ Qx_{1} & 2 & Ru_{N-1} & - - - - - - -$
	(XN) (UN-1) R := IN OR ERIUM

Date No.	-
2c). There are many ways to proceed from here on, the follow	
2c). There are many ways to proceed from here on, the follow is just an example. The optimisation problem is equivalent to the optimisation problem in the optimisation problem.	m
I, U,S	
subject to the constraints	
$\bar{x} = A x_0 + B \bar{u} + P \bar{z}$ 1-nom. $-s \leq \bar{R} \bar{u} \leq s$ Note $s \Rightarrow 0$ is implied. $\leq \in \mathbb{R}^{2N}$	
where $\overline{A} := [A]$, $\overline{B} := I_N \otimes B \in \mathbb{R}^{N \times mN}$	
Subject to the constraints $ \bar{x} = A \times o + B \cdot u + P \times 1 - n \cdot w = 1 - n \cdot $	
This is a guadratic protogram in standard form if we write it as . N(n+m+q) columns and rows N(n+m+q) components	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{\left(\frac{1}{2}N\right)\left($	
No computed to	
$2qN rows \left\{ \begin{pmatrix} O & \overline{R} & -\overline{I}qN \\ O & -\overline{R} & -\overline{I}qN \end{pmatrix} \middle \overline{x} \right\} \leq \left(\begin{matrix} O \\ O \end{matrix} \right) G \in D$	
N(n+m+y) wlumns (S) (Q) Geanth	

5

Question 3 Bookwork and new problem. Date a) An exact penalty function is a term that is added to the cost function to turn the constrained aptimisation problem ito2 on unconstrained problem the penalty function is positive if there is constraint violation and it is zero if none of the constraints are sadisfied, e.y. 0 = ary min f(e) + (g)g(e) where offers of state that the first of the girls and the girls are anount by which the sconstraints are another mostly of the first of the left of the caption $(a(0) + i) = \{(a(0) + i) + (a(0) + i) \}$ represents the amount of constraint violation in the 1th constraint. A suitable choice for g(0) would then be $g(0) = \|C(0)^{\dagger}\|_{1}$ or $g(0) = \|C(0)^{\dagger}\|_{2}$. A penalty function is said to be exact if one our choose the Scalar goodswith the that the i.e. the solution to the above "unconstrained" optimised problem is opposed to the solution of the constraine solution. (b) g(0) = 1/c(0)+1/2 & is cannot be made- and exactness is that the penalty function be non-diffrentiable. Quadratic penalty functions themperal be much exact.

Gearth

-	Late:	No.
3 (c) We can formulate the control pre	oblem as	
min 1/P D(N 1/2 + S (Q xk)	$ _{2}^{2} + Ruk _{2}^{2}$	+st) scalar
St. School Axiv + Bul 6	- (1) N-1	-
ul = uk = & uh	2 = U, I, , N - 1	1
$yl-1pt \leq Cxk \leq yl+1pt$	k = 1, 2,, N	
Ul = Uk = \$ Uh & Uh	∞ -num exact	penulty
The	1 10	
There are many ways to convert the The following is just an example.	above problem	into a QP.
Cost Linden becomes		
		•
$\begin{array}{c cccc} Q & X_0 & 2 & & & & & & & & & & & & & & & & & $	2 2 2 2	
	\(\overline{\z}\)	
t t Q xn-1 = P	\a	+pt
R Up		J
	R/	
RUN-1/2		
	/ X.	\ \ \langle U_o \
$M := / I \times Q = 0$, z (=	\ ,u = :
O P O O INOR	XN) (UN-1
=> Cost function = (\$\overline{\pi} M' M(\overline{\pi}) + t	= (E) M'M C	$3P\left(\frac{x}{4}\right)$
is in standard form.	(人) 人	
a standard to the	(N+1)n+ NM+	1 rows and

60

3 the) Constraints become Current state estimate
$$\overline{x} = \overline{A}(x_0) \cdot \overline{B} \, \overline{u} + \overline{P} \, \overline{x}$$

$$1_N \otimes Ul \leq \overline{u} \leq 1_N \otimes Uh$$

$$1_N \otimes Yl - 1_{pN} t \leq \overline{C} \, \overline{x} \leq 1_N \otimes Yh + 1_{pN} t$$

$$-t \leq 0$$
where $\overline{A} := (\overline{I}_n) \in \mathbb{R}^{(N+1)n \times Nm}$

$$\overline{B} := (\overline{O}) \in \mathbb{R}^{(N+1)n \times Nm}$$

$$\overline{P} := [\overline{O} \times \overline{A}] = [\overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \hat{x}_0 \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \hat{x}_0 \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{A} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{C} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{C} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V}] = [\overline{C} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

$$\overline{C} := [\overline{O} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V} \times \overline{V}$$

\$2

1

	Question 4 New problem Date No.
(0	T) XTXV = 0 (VT XTX = 0) VT XT XV = 0 (IXV) = 0
	$(=) X_{1} = 0$
	$X^T X_V = 0 \Rightarrow X_V = 0$ QED
h	
(0)	$L(0,\lambda) = \frac{1}{2} \left(\underbrace{\text{OTMTMe}_{*} - 2\text{CTMTb} + \text{bTb}} \right) + \lambda^{T} \left(\underbrace{\text{CO}_{-d}} \right)$ Stationary points: $V_{0}L = MM \underbrace{\text{O}_{-M}}_{+} - M^{T} \underbrace{\text{D}_{-M}}_{+} + C^{T} \lambda = 0$ $V_{0}L = (0 - d = 0)$
	VOL =MM & -MTb *20 +CTA = 0
	V2 L = CO -d=0
	$\stackrel{(a)}{=} \left(\begin{array}{c} M^{T}M & C^{T} \\ C & O \end{array} \right) \left(\begin{array}{c} O \\ \gamma \end{array} \right) = \left(\begin{array}{c} M^{T}b \\ d \end{array} \right) (*)$
	Clearly (0 =d for any d @) (full row rank.
	Clearly (O = d for any d @) C full row rank. Suppose 'two solutions exist to (namely (0.12. + 60.2) 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	Control Control
	MTM (T) (0, -02) lefring X=0,-02
	After then $ \begin{array}{ccc} M T M & CT \\ C & O \end{array} $ $ \begin{array}{ccc} O, -O_2 \\ O, -N_2 \end{array} $ $ \begin{array}{ccc} O & \text{defring } X = O, -O_2 \\ O & \text{ord } Y = N, -N_2 \end{array} $
	\Rightarrow MTM x + CTy = 0 and $(z = 0)$
	=> xTMTMx + SCTCTy = 20 (=> xTMTMx =0, because 2TCT=0.
	$\Rightarrow \ M_{2}\ _{2}^{2} = 0$
	$(a) \qquad M_{2}(a) = 0$
	ENOTE PULL DE MARCHANTON
	Summarising PM = a has to be satisfied
	for y two stationery points.
	Summarising, (M) x = 0 has to be satisfied. (M) is full column rank (>> X = 0 is the only
-	solution.
-,	C) runk

GED

			The state of the s
-		Date:	No
4 () The cost function becomes		34.4
	Rue 2 Qx, 2	1-	
	1 RU. 17 11 18 16	A) 42	
	DOX2 = 5 TNO	Q112	
		T MI	
	RU_{N-1}	() (b) = 0.	
	QXN 2 = 1 INO (B)	0),0/2	_
	11 12 211 -10 (0)	Q)) 112	
	M	, b:	= O ,
	The constraints become		
		/	/ . \
	B-IOO OAB-I	1 21	-Axo
	OAB-I OOOA	1 41	0
	000A	1 2 =	
	-I O O) XN-1	: /
	OABT) (Un-1)	(0)
			<u> </u>
		9	CI.
	C is full row rank because of +1	he Too position	not the I
	og each block row. (Hower, Clea	why a o	alwey exuts
	ter and to because we can a	always set Ti	e input
(on each block row. (Hower, Clear for any 20, because we can a sequence to zero). By rearrange	J columns of C	ecomes obvous:
	/ 1)	1 / 40	-Ax0
25 Je	B A -I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0
only)	B A -1,	U3-1 =	•
		X2 /	· /
	$B \leftarrow B A - I$	X	
	full row runk	1 /	
\$2	Callrows non-3er)	(-i

	Date: No.
40)	If we were to know stack M and C, we get (M) =
	(RO)
	ROOQ
	RO
	00
	RO
	13 - I
	A B-I
	·
	B-T AB-T
	A B - I
	Clearly, this matrix has full column rank if ato
	(RO) is full column rank (B-I)
	(00) is full rolumn rank
	because each block column is linearly independent of each, other, because the matrix block columns in the
	each other because the matistre matrix block columns in the
	(RO)
	RO
	B-IGG pole no A here.
	0 (Q) B - I
100	This block column is full column is full column rank QEO only it the last block column is full column is full column rank QEO
Serveren	only it the last black column is full roturn rank. Genth

			Λ - 1			
	Questic	n 5	New	prodem	Date	No.
(a) (We can Xkn = Yh	Form the Axie = Cxle	engmente + Bul + + Colche	Eddh		
(=	=> (x)	k+1) =	A	B) (xh)	$ (\beta)^{c}$	lk.
		yk =		(d)		
l	We can	design a	stable	Spener (\Rightarrow $(\tilde{A}\tilde{c})$) is detectable.
	Bd = B,	d =	o Cor	on inpu	t choturban	Ce
	=> (A) ?) detecto	ble (=	$\frac{1}{2}$	BI F	Cell rolumn runk l'expertes of A on on ontrice and dyle of I (all 1)
	> e/value	of A	values of	A \$ B	e/values	of I (all 1)
	But A	has al	l e/v.	ities at	(=)	T = T = 0
) (2 A)	detection		(100)	for	all e/valus
		I	-A	0-1	Bd) fo	DI-I = 0 all e/valus ill columnant
3	J=B, (0	l= U =) (anle	100		
				0-1 0	S = 3	
	> Yes,	we the	system	10 c	Juste	
) (an	design	ca s	table o	berver	
		<u> </u>				QED

6

. Date:	No
5 b) BA Bel = (0) (d= 11 if, output dutuburge = (2) Addet table = (10 (15) = 24 = 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	第2 <程3
= Cannot HAMAN design a stuble because disturbance is not medetected	obstaer,
(c) At equilibrium Xe = Axe + Bue + Bool Ye = (xe + Cool = r	QED
If Bd = B, G=0 (This disturbance	is already) letectable)
This how a solution for any rank on the LHS is full coloner from rank	the matrix
rank (0-1-0.5) = 3 & Reachability, (0 0 -1) = 3 & Reachability, Wr = (BA) >> /es we can design a stablie ing control ?> hart y = r in skady stable.	natrix (0.5 15) uchalle
? hart y = r in steady state.	aen

(5)

Name Annual Property of the Parket	Date No.
5 (al)	Went to guarante a solution to the following constraints exist if V. r & [-1, 1] and of & [-0.5, 0.5]
	$\begin{pmatrix} 0 & -1 & -0.5 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \end{pmatrix} = \begin{pmatrix} 0.5 d \\ 1 d \\ \Gamma \end{pmatrix}$
	$-1 \leq U \leq 1$
	Solving the linear equations we get $ x_1 = 7 $ $ x_2 = 0 $
	Hence, if $d \in [-0.5, 0.5] \Rightarrow u \in [-0.5, 0.5]$ So yes, imprinciple are a constraint-admissible steady-state exists.
	$Q \in \mathcal{D}$

	Question 6 Bookwork and ren problem No
(a'	The stage wot is $\ Qx + Ru\ _2^2 = \chi'QQ\chi + 2u'R'Q\chi + u'R'Ru$
	=> The stage cost is positive definite if Q'Q>0, which is the case if Q is full column rank. => (ost function is positive definite.
(b)	We went to use the value function as a hyperior function for the closed-loop system. One of the conditions it has to fulfield is that it is postue define.
	Let K be any stablising feedback gain, ie. § (A+BK) < 1.
	=) Rey Let Vx: 11 P(A+BK)x1/2-11Px1/2<-11Qx+RKx1/2
	(=> \frac{1}{2} \f
	(A+BK) TPTP(A+BK)-P < -QTQ -KTRTRK
	This means that the terminal cost is a control dyapunor function in a neighbourhood of the origin, which is sufficient to guarantee closect loops to be life.
(d)	A set S is invariant for the system $x_{k+1} = f(x_k)$ if $f(x_k) \in S$ for all $x_k \in S$.

6(e)	Would add the a constraint of the form.
	$M \times N \leq b$
	where M and b are computed such that it is constraint - admissible under a stabilising gam K, it Ul & K x & Ub \ \forall x \cdot Mx & b. Ul & Cx & \forall L \tau \cdot Mx & b. Where \(\beta (A + B K) < 1 \) and it is invarient for the closed-lap system \(\chi_{K+1} = (A + B K) \times_{K+1} \), is $M(A + B K) \times (A + B K) \times$
(f)	The optimisation problem might become infeasible at some sample instant, hence constraints have to be violated.
	$Q \in \mathcal{O}$