ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 12, 2021

Jeremy Porter, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Mr Porter:

Included are the results from the testing of material submitted on August 9, 2021 from the Spic N Span 652 S Dearborn St 060172, F&BI 108130 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Aspect Data ASP0812R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 9, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Spic N Span 652 S Dearborn St 060172, F&BI 108130 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
108130 -01	VGAC-1-INF-080921
108130 -02	VGAC-1-EFF-080921

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

Individually certified canisters were provided for TO-15 sampling.

The APH EC5-8 aliphatics, APH EC9-12 aliphatics, and tetrachloroethene concentration in sample VGAC-1-INF-080921 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

 Client Sample ID:
 VGAC-1-INF-080921
 Client:
 Aspect Consulting, LLC

 Date Received:
 08/09/21
 Project:
 060172, F&BI 108130

 Date Collected:
 08/09/21
 Lab ID:
 108130-01 1/6.2

 Date Analyzed:
 08/10/21
 Data File:
 081017.D

 Matrix:
 Air
 Instrument:
 GCMS7

Matrix: Air Instrument: GCN Units: ug/m3 Operator: bat

Concentration

Compounds: ug/m3

 $\begin{array}{ll} \text{APH EC5-8 aliphatics} & 4,900 \text{ ve} \\ \text{APH EC9-12 aliphatics} & 5,500 \text{ ve} \\ \text{APH EC9-10 aromatics} & 350 \end{array}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: VGAC-1-EFF-080921 Client: Aspect Consulting, LLC Date Received: 08/09/21 Project: $060172, F\&BI\ 108130$ Lab ID: Date Collected: 08/09/21 108130-02 1/5.3 Date Analyzed: 08/10/21 Data File: 081019.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 96 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics 740 APH EC9-12 aliphatics 1,100 APH EC9-10 aromatics 220

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method MA-APH

Client Sample ID: Method Blank Client: Aspect Consulting, LLC Date Received: Not Applicable Project: $060172, F\&BI\ 108130$ Not Applicable Lab ID: Date Collected: 01-1718 MB Date Analyzed: 08/10/21 Data File: 081010.DMatrix: Instrument: GCMS7 Air Units: ug/m3 Operator: bat

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 86 70 130

Concentration

Compounds: ug/m3

APH EC5-8 aliphatics <75 APH EC9-12 aliphatics <25 APH EC9-10 aromatics <25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VGAC-1-INF-080921 Client: Aspect Consulting, LLC Date Received: Project: 060172, F&BI 108130 08/09/21 Lab ID: Date Collected: 108130-01 1/6.2 08/09/21 Date Analyzed: 08/10/21 Data File: $081017.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concent	tration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	10	7 .0	1 0 D' 11	-1.4	-0.01
Propene	12	7.2	1,2-Dichloropropane	<1.4	< 0.31
Dichlorodifluoromethane	4.2	0.86	1,4-Dioxane	<2.2	< 0.62
Chloromethane	<23	<11	2,2,4-Trimethylpentane	<29	<6.2
F-114	<4.3	< 0.62	Methyl methacrylate	<25	<6.2
Vinyl chloride	3.1	1.2	Heptane	<25	<6.2
1,3-Butadiene	0.91	0.41	Bromodichloromethane	< 0.42	< 0.062
Butane	<29	<12	Trichloroethene	190	35
Bromomethane	<14	<3.7	cis-1,3-Dichloropropene	<2.8	< 0.62
Chloroethane	<16	< 6.2	4-Methyl-2-pentanone	<25	<6.2
Vinyl bromide	< 2.7	< 0.62	trans-1,3-Dichloropropene	< 2.8	< 0.62
Ethanol	<47	<25	Toluene	<120	<31
Acrolein	< 0.71	< 0.31	1,1,2-Trichloroethane	< 0.34	< 0.062
Pentane	<18	< 6.2	2-Hexanone	<25	< 6.2
Trichlorofluoromethane	<14	< 2.5	Tetrachloroethene	7,700 ve	1,100 ve
Acetone	<29	<12	Dibromochloromethane	< 0.53	< 0.062
2-Propanol	< 53	<22	1,2-Dibromoethane (EDB)	< 0.48	< 0.062
1,1-Dichloroethene	< 2.5	< 0.62	Chlorobenzene	< 2.9	< 0.62
trans-1,2-Dichloroethene	3.0	0.75	Ethylbenzene	6.8	1.6
Methylene chloride	<220	<62	1,1,2,2-Tetrachloroethane	< 0.85	< 0.12
t-Butyl alcohol (TBA)	<75	<25	Nonane	76	14
3-Chloropropene	<9.7	<3.1	Isopropylbenzene	54	11
CFC-113	<4.8	< 0.62	2-Chlorotoluene	<32	< 6.2
Carbon disulfide	81	26	Propylbenzene	<15	<3.1
Methyl t-butyl ether (MTBE)	<11	< 3.1	4-Ethyltoluene	<15	<3.1
Vinyl acetate	<44	<12	m,p-Xylene	25	5.8
1,1-Dichloroethane	< 2.5	< 0.62	o-Xylene	11	2.6
cis-1,2-Dichloroethene	97	24	Styrene	< 5.3	<1.2
Hexane	<22	< 6.2	Bromoform	<13	<1.2
Chloroform	6.1	1.3	Benzyl chloride	2.6	0.51
Ethyl acetate	<45	<12	1,3,5-Trimethylbenzene	20	4.1
Tetrahydrofuran	36	12	1,2,4-Trimethylbenzene	85	17
2-Butanone (MEK)	<18	< 6.2	1,3-Dichlorobenzene	< 3.7	< 0.62
1,2-Dichloroethane (EDC)	1.5	0.36	1,4-Dichlorobenzene	<1.4	< 0.24
1,1,1-Trichloroethane	<3.4	< 0.62	1,2-Dichlorobenzene	<3.7	< 0.62
Carbon tetrachloride	<2	< 0.31	1,2,4-Trichlorobenzene	<4.6	< 0.62
Benzene	26	8.1	Naphthalene	2.8	0.54
Cyclohexane	<43	<12	Hexachlorobutadiene	<1.3	< 0.12
- /	-3			1.0	- · - -

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: VGAC-1-EFF-080921 Client: Aspect Consulting, LLC Project: 060172, F&BI 108130 Date Received: 08/09/21 Lab ID: Date Collected: 108130-02 1/5.3 08/09/21 Date Analyzed: 08/10/21 Data File: $081019.\mathrm{D}$ Matrix: GCMS7Air Instrument: ug/m3 Units: Operator: bat

	Concen	tration		Concer	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
D	0.0.11	F 4 11	1 0 D: 11	4.0	.0.00
Propene	9.3 jl	5.4 jl	1,2-Dichloropropane	<1.2	< 0.26
Dichlorodifluoromethane	2.8	0.57	1,4-Dioxane	<1.9	< 0.53
Chloromethane	<20	<9.5	2,2,4-Trimethylpentane	<25	< 5.3
F-114	<3.7	< 0.53	Methyl methacrylate	<22	< 5.3
Vinyl chloride	4.9	1.9	Heptane	<22	< 5.3
1,3-Butadiene	< 0.23	< 0.11	Bromodichloromethane	< 0.36	< 0.053
Butane	<25	<11	Trichloroethene	< 0.57	< 0.11
Bromomethane	<12	<3.2	cis-1,3-Dichloropropene	< 2.4	< 0.53
Chloroethane	<14	< 5.3	4-Methyl-2-pentanone	<22	< 5.3
Vinyl bromide	< 2.3	< 0.53	trans-1,3-Dichloropropene	< 2.4	< 0.53
Ethanol	<40	<21	Toluene	<100	<26
Acrolein	< 0.61	< 0.26	1,1,2-Trichloroethane	< 0.29	< 0.053
Pentane	<16	< 5.3	2-Hexanone	<22	< 5.3
Trichlorofluoromethane	<12	< 2.1	Tetrachloroethene	<36	< 5.3
Acetone	<25	<11	Dibromochloromethane	< 0.45	< 0.053
2-Propanol	<46	<19	1,2-Dibromoethane (EDB)	< 0.41	< 0.053
1,1-Dichloroethene	< 2.1	< 0.53	Chlorobenzene	< 2.4	< 0.53
trans-1,2-Dichloroethene	< 2.1	< 0.53	Ethylbenzene	3.3	0.75
Methylene chloride	<180	< 53	1,1,2,2-Tetrachloroethane	< 0.73	< 0.11
t-Butyl alcohol (TBA)	<64	<21	Nonane	47	8.9
3-Chloropropene	<8.3	< 2.6	Isopropylbenzene	27	5.4
CFC-113	<4.1	< 0.53	2-Chlorotoluene	<27	< 5.3
Carbon disulfide	<33	<11	Propylbenzene	<13	< 2.6
Methyl t-butyl ether (MTBE)	<9.6	< 2.6	4-Ethyltoluene	<13	< 2.6
Vinyl acetate	<37	<11	m,p-Xylene	13	2.9
1,1-Dichloroethane	< 2.1	< 0.53	o-Xylene	6.8	1.6
cis-1,2-Dichloroethene	< 2.1	< 0.53	Styrene	<4.5	<1.1
Hexane	<19	< 5.3	Bromoform	<11	<1.1
Chloroform	< 0.26	< 0.053	Benzyl chloride	< 0.27	< 0.053
Ethyl acetate	<38	<11	1,3,5-Trimethylbenzene	15	3.1
Tetrahydrofuran	9.9	3.4	1,2,4-Trimethylbenzene	61	12
2-Butanone (MEK)	<16	< 5.3	1,3-Dichlorobenzene	<3.2	< 0.53
1,2-Dichloroethane (EDC)	< 0.21	< 0.053	1,4-Dichlorobenzene	<1.2	< 0.2
1,1,1-Trichloroethane	<2.9	< 0.53	1,2-Dichlorobenzene	<3.2	< 0.53
Carbon tetrachloride	<1.7	< 0.26	1,2,4-Trichlorobenzene	< 3.9	< 0.53
Benzene	2.2	0.69	Naphthalene	1.4	0.28
Cyclohexane	<36	<11	Hexachlorobutadiene	<1.1	< 0.11
Cyclonexame	~50	~11	HEXACIIIOIODULAUIEIIE	`1.1	\0.11

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Aspect Consulting, LLC Date Received: Not Applicable Project: 060172, F&BI 108130

Lab ID: Date Collected: Not Applicable 01-1718 MB08/10/21 $081010.\mathrm{D}$ Date Analyzed: Data File: Matrix: Air Instrument: GCMS7Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	95	70	130

	Concen	tration		Concer	itration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.2 jl	<0.7 jl	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.49	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 0.7	< 0.1	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	<4.8	<2	Trichloroethene	< 0.11	< 0.02
Bromomethane	< 2.3	< 0.6	cis-1,3-Dichloropropene	< 0.45	< 0.1
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<4.1	<1
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	< 7.5	<4	Toluene	<19	<5
Acrolein	< 0.11	< 0.05	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	<3	<1	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	<1.6	< 0.5	Isopropylbenzene	< 2.5	< 0.5
CFC-113	< 0.77	< 0.1	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	< 2.5	< 0.5
Methyl t-butyl ether (MTBE)	<1.8	< 0.5	4-Ethyltoluene	< 2.5	< 0.5
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	<3.5	<1	Bromoform	<2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	<7.2	<2	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Tetrahydrofuran	< 0.59	< 0.2	1,2,4-Trimethylbenzene	< 2.5	< 0.5
2-Butanone (MEK)	< 2.9	<1	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/21 Date Received: 08/09/21

Project: Spic N Span 652 S Dearborn St 060172, F&BI 108130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 108130-01 1/6.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	9,700	9,600	1
APH EC9-12 aliphatics	ug/m3	5,500	5,600	2
APH EC9-10 aromatics	ug/m3	350	360	3

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	72	70-130
APH EC9-12 aliphatics	ug/m3	67	92	70-130
APH EC9-10 aromatics	ug/m3	67	93	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/21 Date Received: 08/09/21

Project: Spic N Span 652 S Dearborn St 060172, F&BI 108130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 108130-01 1/6.2 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Propene	ug/m3	12	13	8
Dichlorodifluoromethane	ug/m3	4.2	5.0	17
Chloromethane	ug/m3	<23	<23	nm
F-114	ug/m3	<4.3	<4.3	nm
Vinyl chloride	ug/m3	3.1	3.1	0
1,3-Butadiene	ug/m3	0.91	0.88	3
Butane	ug/m3	<29	<29	nm
Bromomethane	ug/m3	<14	<14	nm
Chloroethane	ug/m3	<16	<16	nm
Vinyl bromide	ug/m3	< 2.7	< 2.7	nm
Ethanol	ug/m3	<47	<47	nm
Acrolein	ug/m3	< 0.71	< 0.71	nm
Pentane	ug/m3	<18	<18	nm
Trichlorofluoromethane	ug/m3	<14	<14	nm
Acetone	ug/m3	<29	30	nm
2-Propanol	ug/m3	< 53	< 53	nm
1,1-Dichloroethene	ug/m3	< 2.5	< 2.5	nm
trans-1,2-Dichloroethene	ug/m3	3.0	2.9	3
Methylene chloride	ug/m3	<220	<220	nm
t-Butyl alcohol (TBA)	ug/m3	<75	<75	nm
3-Chloropropene	ug/m3	< 9.7	<9.7	nm
CFC-113	ug/m3	<4.8	<4.8	nm
Carbon disulfide	ug/m3	81	83	2
Methyl t-butyl ether (MTBE)	ug/m3	<11	<11	nm
Vinyl acetate	ug/m3	<44	<44	nm
1,1-Dichloroethane	ug/m3	< 2.5	< 2.5	nm
cis-1,2-Dichloroethene	ug/m3	97	99	2
Hexane	ug/m3	<22	<22	nm
Chloroform	ug/m3	6.1	6.2	2
Ethyl acetate	ug/m3	<45	<45	nm
Tetrahydrofuran	ug/m3	36	35	3
2-Butanone (MEK)	ug/m3	<18	<18	nm
1,2-Dichloroethane (EDC)	ug/m3	1.5	1.5	0
1,1,1-Trichloroethane	ug/m3	< 3.4	< 3.4	nm
Carbon tetrachloride	ug/m3	<2	<2	nm
Benzene	ug/m3	26	26	0
Cyclohexane	ug/m3	<43	<43	nm
1,2-Dichloropropane	ug/m3	<1.4	<1.4	nm
1,4-Dioxane	ug/m3	< 2.2	< 2.2	nm
2,2,4-Trimethylpentane	ug/m3	<29	<29	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/21 Date Received: 08/09/21

Project: Spic N Span 652 S Dearborn St 060172, F&BI 108130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 108130-01 1/6.2 (Duplicate, continued)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Methyl methacrylate	ug/m3	<25	<25	nm
Heptane	ug/m3	<25	<25	nm
Bromodichloromethane	ug/m3	< 0.42	< 0.42	nm
Trichloroethene	ug/m3	190	190	0
cis-1,3-Dichloropropene	ug/m3	< 2.8	<2.8	nm
4-Methyl-2-pentanone	ug/m3	<25	<25	nm
trans-1,3-Dichloropropene	ug/m3	< 2.8	<2.8	nm
Toluene	ug/m3	<120	<120	nm
1,1,2-Trichloroethane	ug/m3	< 0.34	< 0.34	nm
2-Hexanone	ug/m3	<25	<25	nm
Tetrachloroethene	ug/m3	7,700	7,700	0
Dibromochloromethane	ug/m3	< 0.53	< 0.53	nm
1,2-Dibromoethane (EDB)	ug/m3	< 0.48	< 0.48	nm
Chlorobenzene	ug/m3	< 2.9	< 2.9	nm
Ethylbenzene	ug/m3	6.8	6.8	0
1,1,2,2-Tetrachloroethane	ug/m3	< 0.85	< 0.85	nm
Nonane	ug/m3	76	75	1
Isopropylbenzene	ug/m3	54	53	2
2-Chlorotoluene	ug/m3	<32	<32	nm
Propylbenzene	ug/m3	<15	<15	nm
4-Ethyltoluene	ug/m3	<15	<15	nm
m,p-Xylene	ug/m3	25	25	0
o-Xylene	ug/m3	11	11	0
Styrene	ug/m3	< 5.3	< 5.3	nm
Bromoform	ug/m3	<13	<13	nm
Benzyl chloride	ug/m3	2.6	2.8	7
1,3,5-Trimethylbenzene	ug/m3	20	20	0
1,2,4-Trimethylbenzene	ug/m3	85	84	1
1,3-Dichlorobenzene	ug/m3	< 3.7	< 3.7	nm
1,4-Dichlorobenzene	ug/m3	<1.4	<1.4	nm
1,2-Dichlorobenzene	ug/m3	<3.7	<3.7	nm
1,2,4-Trichlorobenzene	ug/m3	<4.6	<4.6	nm
Naphthalene	ug/m3	2.8	2.8	0
Hexachlorobutadiene	ug/m3	<1.3	<1.3	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/21 Date Received: 08/09/21

Project: Spic N Span 652 S Dearborn St 060172, F&BI 108130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	67 vo	70-130
Dichlorodifluoromethane	ug/m3	67	106	70-130
Chloromethane	ug/m3	28	96	70-130
F-114	ug/m3	94	97	70-130
Vinyl chloride	ug/m3	35	85	70-130
1,3-Butadiene	ug/m3	30	89	70-130
Butane	ug/m3	32	95	70-130
Bromomethane	ug/m3	52	101	70-130
Chloroethane	ug/m3	36	96	70-130
Vinyl bromide	ug/m3	59	106	70-130
Ethanol	ug/m3	25	101	70-130
Acrolein	ug/m3	31	92	70-130
Pentane	ug/m3	40	90	70-130
Trichlorofluoromethane	ug/m3	76	99	70-130
Acetone	ug/m3	32	89	70-130
2-Propanol	ug/m3	33	89	70-130
1,1-Dichloroethene	ug/m3	54	98	70-130
trans-1,2-Dichloroethene	ug/m3	54	96	70-130
Methylene chloride	ug/m3	94	76	70-130
t-Butyl alcohol (TBA)	ug/m3	41	91	70-130
3-Chloropropene	ug/m3	42	88	70-130
CFC-113	ug/m3	100	98	70-130
Carbon disulfide	ug/m3	42	102	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	92	70-130
Vinyl acetate	ug/m3	48	85	70-130
1,1-Dichloroethane	ug/m3	55	96	70-130
cis-1,2-Dichloroethene	ug/m3	54	97	70-130
Hexane	ug/m3	48	85	70-130
Chloroform	ug/m3	66	96	70-130
Ethyl acetate	ug/m3	49	91	70-130
Tetrahydrofuran	ug/m3	40	86	70-130
2-Butanone (MEK)	ug/m3	40	100	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	96	70-130
1,1,1-Trichloroethane	ug/m3	74	99	70-130
Carbon tetrachloride	ug/m3	85	100	70-130
Benzene	ug/m3	43	94	70-130
Cyclohexane	ug/m3	46	89	70-130
1,2-Dichloropropane	ug/m3	62	92	70-130
1,4-Dioxane	ug/m3	49	97	70-130
2,2,4-Trimethylpentane	ug/m3	63	93	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 08/12/21 Date Received: 08/09/21

Project: Spic N Span 652 S Dearborn St 060172, F&BI 108130

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample (continued)

		(Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	92	70-130
Heptane	ug/m3	55	88	70-130
Bromodichloromethane	ug/m3	90	96	70-130
Trichloroethene	ug/m3	73	109	70-130
cis-1,3-Dichloropropene	ug/m3	61	100	70-130
4-Methyl-2-pentanone	ug/m3	55	96	70-130
trans-1,3-Dichloropropene	ug/m3	61	95	70-130
Toluene	ug/m3	51	98	70-130
1,1,2-Trichloroethane	ug/m3	74	97	70-130
2-Hexanone	ug/m3	55	93	70-130
Tetrachloroethene	ug/m3	92	105	70-130
Dibromochloromethane	ug/m3	120	99	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	97	70-130
Chlorobenzene	ug/m3	62	100	70-130
Ethylbenzene	ug/m3	59	91	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	94	70-130
Nonane	ug/m3	71	84	70-130
Isopropylbenzene	ug/m3	66	98	70-130
2-Chlorotoluene	ug/m3	70	93	70-130
Propylbenzene	ug/m3	66	95	70-130
4-Ethyltoluene	ug/m3	66	91	70-130
m,p-Xylene	ug/m3	120	96	70-130
o-Xylene	ug/m3	59	100	70-130
Styrene	ug/m3	58	95	70-130
Bromoform	ug/m3	140	102	70-130
Benzyl chloride	ug/m3	70	101	70-130
1,3,5-Trimethylbenzene	ug/m3	66	91	70-130
1,2,4-Trimethylbenzene	ug/m3	66	92	70-130
1,3-Dichlorobenzene	ug/m3	81	102	70-130
1,4-Dichlorobenzene	ug/m3	81	97	70-130
1,2-Dichlorobenzene	ug/m3	81	100	70-130
1,2,4-Trichlorobenzene	ug/m3	100	93	70-130
Naphthalene	ug/m3	71	98	70-130
Hexachlorobutadiene	ug/m3	140	100	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COCTO-15.DOC VEAC- 1-EFF. 080921 Od 5387 V6AC-1-INF-080921 OI SAMPLE INFORMATION Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Phone 200. 790. 2129 Email porter @ aspect consuming alm City, State, ZIP SPAMIC, WA 98104 Address 710 2nd Ave Swite 550 Company ASpect CONSILITION Report To Teremy Porter Sample Name Received by: W. Kl Relinguished by 16 18 Received by: Relinquished by: Hab Hab 32*i*00 Canister ID SIGNATURE Cont. $\overline{\nu}$ Z Flow SG=Soil Gas (Circle One) IA=Indoor Air IA / Ā Ä IA / SG IA / SG IA / SG IA / (SG) 1A / (SG) |08|09|21|30 Reporting Level: SAMPLERS (signature) MMV PROJECT NAME & ADDRÉSS NOTES: SG SG SG 1952 S. Dearburn St. 12/12/180/80 Sampled ("Hg) Monigue Date 2 Initial Vac. PRINT NAME 大公社人 I Field 1345 Time Vac. ("Hg) Final Ø) ഗ 195 3 Final Final Time 060172 INVOICE TO ANALYSIS REQUESTED B TO15 Full Scan であるか COMPANY TO15 BTEXN Samples TO15 cVOCs APH received at 25°C SAMPLE DISPOSAL

□ Default: Clean after 3 days □ Archive (Fee may apply) Standard RRUSH 72 hours Rush charges authorized by: Helium Page# TURNAROUND TIME 4 (21 | 12/120180

Notes

DATE

HMIL

108130

SAMPLE CHAIN OF CUSTODY

ME 8/9/12