Lecture 0

Praphul Chandra

Insofe

Why are you here?

Why are you here – putting it in context.

Business Understanding

Determine Business Objectives Background

Business Objectives Business Success Criteria

Assess Situation

Inventory of Resources
Requirements,
Assumptions, and
Constraints
Risks and
Contingencies
Terminology
Costs and Benefits

Determine Data Mining Goals Data Mining Goals

Data Mining Goals Data Mining Success Criteria

Produce Project Plan

Project Plan Initial Assessment of Tools and Techniques

Data Understanding

Collect Initial Data Initial Data Collection

Describe Data
Data Description
Report

Explore Data

Report

Data Exploration Report

Verify Data Quality Data Quality Report

Preparation

Data

Select Data

Rationale for Inclusion/ Exclusion

Clean Data

Data Cleaning Report

Construct Data

Derived Attributes Generated Records

Integrate Data

Merged Data

Format Data

Reformatted Data

Dataset Dataset Description

Modeling

Select Modeling Techniques

Modeling Technique Modeling Assumptions

Generate Test Design Test Design

Build Model Parameter Settings

Models Model Descriptions

Assess Model

Model Assessment Revised Parameter Settings

Evaluation

Evaluate Results

Assessment of Data Mining Results w.r.t. Business Success Criteria Approved Models

Review Process

Review of Process

Determine Next Steps List of Possible Actions Decision

Deployment

Plan Deployment Deployment Plan

Plan Monitoring and Maintenance

Monitoring and Maintenance Plan

Produce Final Report

Final Report Final Presentation

Review Project

Experience Documentation

Why are you here – putting it in context (again)

Data Analytics is an iterative process

• If you "get it right" at the first go on the data, you have not explored enough – Iterate!

This module will

Introduce key concepts

Once you know the science, it really is an art

- Learn by doing.
- And doing again...

Data Model: Relational

Salient Features

Structure before Store

Rigid "Tabular" Structure

Relational Algebra (Attributes are "somehow" related)

Data Model: Relational (Columnar Store)

Salient Features

Relational Data Model

Change in how we store data in physical memory

Columnar store → faster to access a "feature" / "attribute" for all rows

Data Model: Graph (Network)

GRAPH STORE

Salient Features

Structure before Store
Nodes & Edges Structure
Graph Theory (Entities & Relationship)

Data Model: "Unstructured"

Salient Features

Key Idea: Store Now; Structure Later (Schema on Read: Store as files; Impose structure later)

Why?: Lots of data formats can "eventually" be structured; *Structure may change with time, instance, analytics-requirements*Very Flexible; Highly Scalable

Data Models : Summary

How is the data organized / structured?

- Relational (Table / Spreadsheet)
- Key Value (Unstructured)
- Graph
- Document

Is it BIG?

- Long (# of rows; Large n)
- Wide (a.k.a. High dimensional) (# of columns; Large p)
- Can it fit in your RAM?

Patterns in Data

Focus on Relational Data Model

$$\mathbf{x_i} = (x_{i1}, x_{i2}, ..., x_{ip}) \in \mathbb{R}^p$$

$$X \in \mathbb{R}^{n \times p}$$

What does data "really" look like?

If you look carefully, data has patterns.

What "patterns"?

- Statistics
 - Summary Statistics (Descriptive)
 - Probability Theory
 - Inferential Statistics (Sample vs. Population)
 - Design of Experiments
- Learning from Data
 - Learning patterns to make predictions
 - Statistical Modeling
 - Function Approximation
- Supervised Learning
 - Regression
 - Classification

- Unsupervised Learning
 - Clustering
 - Association Rules
 - Dimensionality Reduction
- Deep Learning
 - Neural Networks On Steroids + Some insights
 - "Built-in" Feature Engineering
- Reinforcement Learning
 - State, Actions & Rewards
 - Learning from feedback
- Optimization
 - The underlying computational problem

Q?

Praphul Chandra

Insofe

