▼ Football player's market value

https://arxiv.org/ftp/arxiv/papers/1807/1807.01104.pdf

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv("epldata_final.csv")
```

df.head()

₽		name	club	age	position	position_cat	market_value	page_views	fpl_value
	0	Alexis Sanchez	Arsenal	28	LW	1	65.0	4329	12.0
	1	Mesut Ozil	Arsenal	28	AM	1	50.0	4395	9.8
	2	Petr Cech	Arsenal	35	GK	4	7.0	1529	5.4
	3	Theo Walcott	Arsenal	28	RW	1	20.0	2393	7.5
	4								•

df.shape

(461, 17)

▼ EDA

df.dtypes

name object club object age int64 position object position_cat int64 position_cat market_value page_views fpl_value fpl_sel fpl_points float64 int64 float64 object int64 float64 region nationality object new_foreign int64 age_cat int64 club_id int64 big_club int64 new_signing dtype: object int64

df.describe()

	age	position_cat	market_value	page_views	fpl_value	fpl_points
count	461.000000	461.000000	461.000000	461.000000	461.000000	461.000000
mean	26.804772	2.180043	11.012039	763.776573	5.447939	57.314534
std	3.961892	1.000061	12.257403	931.805757	1.346695	53.113811
min	17.000000	1.000000	0.050000	3.000000	4.000000	0.000000
25%	24.000000	1.000000	3.000000	220.000000	4.500000	5.000000
50%	27.000000	2.000000	7.000000	460.000000	5.000000	51.000000
75%	30.000000	3.000000	15.000000	896.000000	5.500000	94.000000
mav 4	38 000000	4 000000	75 000000	7664 000000	12 500000	364 000000

```
df[df.isna()==False]
df.isna().sum()
```

name 6

```
age
      position
      position_cat
                         0
      market_value
      page_views
                         0
     fpl_value
fpl_sel
                         0
                         a
      fpl_points
                         0
      region
                         1
      nationality
                         0
      new_foreign
                         0
      age_cat
                         0
      club_id
                         0
      big_club
                         0
      new_signing
dtype: int64
df.dropna(inplace=True)
df[df.isna()==False]
df.isna().sum()
      name
      club
                         0
                         0
      age
      position
                         0
      position_cat
                         0
      market_value
                         0
      page_views
                         0
      fpl_value
                         0
      fpl_sel
      fpl_points
      region
      nationality
                         0
      new_foreign
                         0
      age_cat
                         0
      club_id
                         0
      big\_club
                         0
      new_signing
                         0
      dtype: int64
clubs=df['club'].unique()
print(clubs)
print("Total clubs", len(clubs))
      ['Arsenal' 'Bournemouth' 'Brighton+and+Hove' 'Burnley' 'Chelsea'
        'Crystal+Palace' 'Everton' 'Huddersfield' 'Leicester+City' 'Liverpool' 'Manchester+City' 'Manchester+United' 'Newcastle+United' 'Southampton' 'Stoke+City' 'Swansea' 'Tottenham' 'Watford' 'West+Brom' 'West+Ham']
      Total clubs 20
df.hist(figsize=(10,10), color='teal')
plt.title("Histogram Plot of the Features")
plt.show()
```


plt.figure(figsize=(10, 8)) # Adjust the figure size as needed
sns.heatmap(df.corr(), annot=True, center=0)
plt.title("Correlation Heatmap")
plt.show()

<ipython-input-20-5d3363fde466>:2: FutureWarning: The default value of numeric_onl
sns.heatmap(df.corr(), annot=True, center=0)

4

▼ Train Test Split

```
df.columns
```

```
print("X-shape", X.shape)
print("Y-shape", Y.shape)

    X-shape (460, 9)
    Y-shape (460,)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)

print("Training: ", X_train.shape, " ", y_train.shape)
print("Testing: ",X_test.shape, " ", y_test.shape)

    Training: (368, 9) (368,)
    Testing: (92, 9) (92,)
```

▼ Fitting Model

Accuracy of Model

```
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error (MSE):", mse)

mae = mean_absolute_error(y_test, y_pred)
print("Mean Absolute Error (MAE):", mae)

r_squared = r2_score(y_test, y_pred)
print("R-squared:", r_squared)

Mean Squared Error (MSE): 57.55466975972589
    Mean Absolute Error (MAE): 4.547691897399721
    R-squared: 0.7047079603681493
```