Automata and Logic

Mia Minnes

April 27, 2006

Overview

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Background and motivation
- Definitions of automata: Closure properties and class inclusions
- Definitions of automatic structures
- Model theoretic questions: Isomorphism and Scott rank
- Unary automatic structures
- Automatic decision procedures
- Directions for future work

Overview Background and Motivation Historical sumary **Definitions Logical Properties** Unary Automata **Decision Procedures Background and Motivation Future Directions**

Historical sumary

Overview

Background and Motivation

Historical sumary

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Kleene, Myhill Nerode theorem, Pumping Lemma characterizing regular languages
- (1960s) J.R Büchi, C.C. Elgot S1S and Büchi automata
- (1969) M.O Rabin S2S and Rabin automata on infinite binary trees
 - Decidability of monadic second order theory of countable linear orders
 - Decidability of first order theory of lattice of all closed subsets of the real line
- (1984) M Vardi and P Wolper ω -automata for program verification
- (1982, 1989) B Hodgson, B Khoussainov, A Nerode Automatic structures

Overview Background and Motivation **Definitions** • Finite Automata \bullet ω -automata Automatic structures **Logical Properties** Unary Automata **Definitions Decision Procedures Future Directions**

Finite Automata

Overview

Background and Motivation

Definitions

- Finite Automata
- \bullet ω -automata
- Automatic structures

Logical Properties

Unary Automata

Decision Procedures

- $\mathcal{A} = (S, \Sigma, I, \delta, F)$, input in Σ^* .
- Regular language: $L \subset \Sigma^*$ such that L = L(A) for some FA.
- Non-deterministic/ deterministic FA equally expressive. But, $2^{O(|S|)}$ cost for determinization.
- The set of regular languages is closed under union, intersection, complementation (exponential blow up), projection.
- Decidable questions:
 - Emptiness
 - Equality
 - Universality
 - Containment

ω -automata

Overview

Background and Motivation

Definitions

- Finite Automata
- \bullet ω -automata
- Automatic structures

Logical Properties

Unary Automata

Decision Procedures

- $\mathcal{A}=(S,\Sigma,I,\delta,Acc)$, input in Σ^{ω} .
 - \circ Büchi $F \subseteq S$ $Acc: Inf(r) \cap F \neq \emptyset$
 - \circ Müller $\mathcal{F} \subseteq \mathscr{P}(S)$ $Acc: \operatorname{Inf}(r) \in \mathcal{F}$
- Non-deterministic Büchi, non-deterministic Müller, deterministic Müller equally expressive. Deterministic Büchi strictly less expressive.
- ω -regular languages: $L \subset \Sigma^{\omega}$ such that $L = L(\mathcal{A})$ for some non-deterministic Büchi automaton.
- The set of ω -regular languages is closed under union, intersection, complementation (hard $2^{O(n \log n)}$ blow up).
- Decidable questions:
 - Emptiness (lasso) , etc.

Automatic structures

Overview

Background and Motivation

Definitions

- Finite Automata
- \bullet ω -automata
- Automatic structures

Logical Properties

Unary Automata

Decision Procedures

- As we saw, automata describe subsets of the words over a given alphabet. What about relations? Define convolution of relation.
- Automatic structure: $(A, R, \ldots, F, \ldots)$ where the domain, A, and each relation and function (replace F by graph(F)) is automatic variants FA, BA, TA.
- Examples:
 - $\begin{array}{ll} \circ & (1^*,S),\, (1^*,\leq),\\ & (\{\lambda\}\cup\{0,\ldots,k-1\}^*\{1,\ldots,k-1\}, \mathrm{Add}_k)\cong (\mathbb{N},+),\\ & (Conf(T),E_T) \text{ all FA presentable structures.} \end{array}$
 - \circ $(\mathbb{Q},+)$ open.
 - $\circ (\{0,1\}^*,\cdot), (\mathbb{N},\cdot)$ not FA presentable.
- Any automatic structure is presentable over binary alphabet
- For each structure \mathcal{A} , there is graph $G(\mathcal{A})$ such that \mathcal{A} is automatically presentable iff $G(\mathcal{A})$ is automatically presentable.

Overview Background and Motivation **Definitions Logical Properties** FO Decidability • Isomorphism problem Scott Rank Scott Rank, cont'd **Logical Properties Unary Automata Decision Procedures Future Directions**

FO Decidability

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

- Theorem: (1) There is an algorithm which, given FO formula $\varphi(\bar{x})$ produces automaton recognizing R_{φ} .
- Theorem: (2) The FO theory of any automaton is decidable.

FO Decidability

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

- Theorem: (1) There is an algorithm which, given FO formula $\varphi(\bar{x})$ produces automaton recognizing R_{φ} .
- Theorem: (2) The FO theory of any automaton is decidable.
- Proof: (1) Use automata given for atomic sentences, then closure under Boolean operations of regular languages yields automata for arbitrary FO formulas.
- Proof: (2) To check if $A \models \exists x \varphi(x)$, construct automaton for $\varphi(x)$ and check for emptiness.
- Note: the above is the basis for automatic decision procedures...more on this later.

Isomorphism problem

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

Future Directions

The complexity of the isomorphism problem for automatic...

 \ldots structures (in general) is Σ^1_1 -complete

(Khoussainov, Nies, Rubin, Stephan 2004)

- ... ordinals is decidable.
- ... Boolean algebras is decidable.
- \dots equivalence structures is at most Π_1^0 .

Open whether decidable or Π_1^0 -complete.

... linear orders is unknown.

(Blumensath; Khoussainov, Rubin)

Isomorphism problem

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

Future Directions

The complexity of the isomorphism problem for automatic...

 \ldots structures (in general) is Σ^1_1 -complete

(Khoussainov, Nies, Rubin, Stephan 2004)

- ... ordinals is decidable.
- ... Boolean algebras is decidable.
- ... equivalence structures is at most Π_1^0 .

Open whether decidable or Π_1^0 -complete.

... linear orders is unknown.

(Blumensath; Khoussainov, Rubin)

Idea of proofs:

- To show Σ_1^1 -complete, reduce isomorphism problem of c.e. downward closed trees to it.
- To show decidable, find characterization of automatic structures of the class in terms of something finite (e.g. FC-rank for ordinals, finite powers of BA of finite and cofinite subsets of ω).

Scott Rank

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

Future Directions

Equivalence relations:

- \circ $\bar{a} \equiv^0 \bar{b}$ if \bar{a} and \bar{b} satisfy the same quantifier free formulas
- $\circ \quad \bar{a} \equiv^{\alpha+1} \bar{b} \text{ if for all } c \text{ there is } d \text{, and for all } d \text{ there is } c \text{ such that } \bar{a}, c \equiv^{\alpha} \bar{b}, d$
- $\circ \quad \bar{a} \equiv^{\beta} \bar{b}$ if for all $\gamma < \beta$, $\bar{a} \equiv^{\gamma} \bar{b}$.
- Scott rank of \bar{a} in \mathcal{A} , $SR(\bar{a})$, is least β such that for all \bar{b} , $\bar{a} \equiv^{\beta} \bar{b}$ implies $(\mathcal{A}, \bar{a}) \cong (\mathcal{A}, \bar{b})$.
- Scott rank of \mathcal{A} , $SR(\mathcal{A})$, is least ordinal greater than the ranks of all tuples in \mathcal{A} .

(Scott, 1965)

Scott Rank

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

Future Directions

Equivalence relations:

- \circ $\bar{a} \equiv^0 \bar{b}$ if \bar{a} and \bar{b} satisfy the same quantifier free formulas
- $\circ \quad \bar{a} \equiv^{\alpha+1} \bar{b} \text{ if for all } c \text{ there is } d \text{, and for all } d \text{ there is } c \text{ such that } \bar{a}, c \equiv^{\alpha} \bar{b}, d$
- $\circ \quad \bar{a} \equiv^{\beta} \bar{b}$ if for all $\gamma < \beta$, $\bar{a} \equiv^{\gamma} \bar{b}$.
- Scott rank of \bar{a} in \mathcal{A} , $SR(\bar{a})$, is least β such that for all \bar{b} , $\bar{a} \equiv^{\beta} \bar{b}$ implies $(\mathcal{A}, \bar{a}) \cong (\mathcal{A}, \bar{b})$.
- Scott rank of \mathcal{A} , $SR(\mathcal{A})$, is least ordinal greater than the ranks of all tuples in \mathcal{A} .

(Scott, 1965)

Fact (Nadel, 1974): If \mathcal{A} is a computable structure, then $SR(\mathcal{A}) \leq \omega_1^{CK} + 1$.

Fact (Makkai, 1981; Knight, Millar Young 2004): There are computable structures of all computable ranks, of Scott Rank ω_1^{CK} , and of Scott Rank $\omega_1^{CK}+1$.

Scott Rank, cont'd

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

Future Directions

Given computable structure \mathcal{A} , we construct automatic structure \mathcal{A}^* such that $\mathcal{A} \cong \mathcal{B}$ iff $\mathcal{A}^* \cong \mathcal{B}^*$ and there is a copy of \mathcal{A} definable in \mathcal{A}^* by an $\mathcal{L}_{\omega_1,\omega}$ formula.

(Joint with B Khoussainov)

Scott Rank, cont'd

Overview

Background and Motivation

Definitions

Logical Properties

- FO Decidability
- Isomorphism problem
- Scott Rank
- Scott Rank, cont'd

Unary Automata

Decision Procedures

Future Directions

Given computable structure \mathcal{A} , we construct automatic structure \mathcal{A}^* such that $\mathcal{A}\cong\mathcal{B}$ iff $\mathcal{A}^*\cong\mathcal{B}^*$ and there is a copy of \mathcal{A} definable in \mathcal{A}^* by an $\mathcal{L}_{\omega_1,\omega}$ formula.

(Joint with B Khoussainov)

- Assume wlog that \mathcal{A} is graph.
- Let $\mathcal{M}_{\mathcal{A}}$ be the reversible TM computing domain of \mathcal{A} , modified so it only halts in an accept state.
- Let $Conf(\mathcal{M}_{\mathcal{A}})$ be the configuration space of $\mathcal{M}_{\mathcal{A}}$. Recall, this is FA presentable. Moreover, by reversibility, consists of chains either finite or isomorphic to (\mathbb{N}, S) .
- The set of chains beginning with initial configurations is FA recognizable.
- Smooth out so that it preserves isomorphisms
- For R the edge relation in A, let $\mathcal{M}_{\mathcal{R}}$ be the reversible TM computing R, modified as above.
- Have similar automatic presentation of R, but connect representations of domain and edge relation.

Overview Background and Motivation **Definitions Logical Properties Unary Automata** Unary Automata **Decision Procedures Unary Automata Future Directions**

Unary Automata

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Unary Automata

Decision Procedures

Future Directions

Def: A unary automatic structure is one which has a presentation over $\Sigma = \{1\}$.

The general shape of a unary automaton of a binary relation is:

Current work with B Khoussainov and J Liu: For finite degree graphs,

- Given automaton recognizing edge relation, can construct unary automaton recognizing reachability relation.
- Conjecture: isomorphism problem is decidable.
- Conjecture: if $\operatorname{Aut}(\mathcal{A})$ is at most countable, $\operatorname{Aut}(\mathcal{A}) = \operatorname{Aut}_a(\mathcal{A})$.

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- ullet p-adics under +
- Khoussainov-Vardi conjecture

Future Directions

Decision Procedures

Büchi, Elgot, Rabin decision procedures

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- ullet p-adics under +
- Khoussainov-Vardi conjecture

Future Directions

For S1S:

- Encode relations as tuples of characteristic functions.
- Bijection between formulae in S1S and Büchi automata such that an ω -language is Büchi recognizable iff it is definable in S1S.
- $\varphi \in Th(S1S) \iff \varphi \text{ is valid } \iff \\ \neg \varphi \text{ is not satisfiable } \iff L(A_{\neg \varphi}) \text{ is empty.}$

For S2S: Same idea except with sets of infinite binary trees instead of ω -languages.

Presburger arithmetic

FO Theory of $(\mathbb{Z}; +, \leq, 0, 1)$.

Presburger proved decidable (1927), Weispfenning gave triply
 exponential upper bound (97) – both using quantifier elimination.

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- p-adics under +
- Khoussainov-Vardi conjecture

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- ullet p-adics under +
- Khoussainov-Vardi conjecture

Future Directions

Presburger arithmetic

FO Theory of $(\mathbb{Z}; +, \leq, 0, 1)$.

- Presburger proved decidable (1927), Weispfenning gave triply
 exponential upper bound (97) both using quantifier elimination.
- Boudet, Comon (1996), Boigelot, Wolper (1995, 2000) gave automatic decision procedure
 - Given formula φ , construct FA A_{φ} which accepts an encoding of the set of tuples satisfying φ .
 - Atomic formula $\bar{a} \cdot \bar{x} = c$: states of FA represent integer value of $\bar{a} \cdot \bar{x}$ so far. Accept if final state is c.
 - Atomic formula $\bar{a} \cdot \bar{x} \leq c$: similar, but need to add more transitions to any state representing number greater than current value.
 - Use closure under Boolean operations of regular languages to obtain automata for non-atomic formulae.
 - $\circ \quad \varphi$ is satisfiable iff A_{arphi} is non-empty.

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- ullet p-adics under +
- Khoussainov-Vardi conjecture

Future Directions

Presburger arithmetic

FO Theory of $(\mathbb{Z}; +, \leq, 0, 1)$.

- Presburger proved decidable (1927), Weispfenning gave triply
 exponential upper bound (97) both using quantifier elimination.
- Boudet, Comon (1996), Boigelot, Wolper (1995, 2000) gave automatic decision procedure
 - Given formula φ , construct FA A_{φ} which accepts an encoding of the set of tuples satisfying φ .
 - Atomic formula $\bar{a} \cdot \bar{x} = c$: states of FA represent integer value of $\bar{a} \cdot \bar{x}$ so far. Accept if final state is c.
 - Atomic formula $\bar{a} \cdot \bar{x} \leq c$: similar, but need to add more transitions to any state representing number greater than current value.
 - Use closure under Boolean operations of regular languages to obtain automata for non-atomic formulae.
 - $\circ \quad \varphi$ is satisfiable iff A_{arphi} is non-empty.
- Klaedtke (2003) showed that automatic decision method has tight triple exponential bound to size of automaton.

p-adics under +

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- ullet p-adics under +
- Khoussainov-Vardi conjecture

Future Directions

p-adic numbers are completion of \mathbb{Q} wrt $N=|\ |_p$

$$|x|_p = \begin{cases} p^{-ord_p(x)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

• Every p-adic has unique digit expansion

$$\alpha = \alpha_{-r}p^{-r} + \alpha_{1-r}p^{1-r} + \dots + \alpha_{-1}p^{-1} + \alpha_0 + \alpha_1p + \dots$$

For automatic decision method, need to recognize

$$x_1 + \dots + x_n = 0.$$

 Use Müller automata where states keep track of carry, except for a distinguished fail state which is excluded from any successful run.

Khoussainov-Vardi conjecture

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

- Büchi, Elgot, Rabin decision procedures
- Presburger arithmetic
- p-adics under +
- Khoussainov-Vardi conjecture

- The decision methods we've discussed have used FA, BA, MA,
 Rabin Tree Automata.
- Conjecture: If A has a decidable FO theory then there is an automata theoretic approach to proving decidability.
 - Need to formalize "automata theoretic approach".
 - Do more general notions of automata need to be employed?

Overview Background and Motivation **Definitions Logical Properties** Unary Automata **Decision Procedures Future Directions Future Directions** Next steps

Next steps

Overview

Background and Motivation

Definitions

Logical Properties

Unary Automata

Decision Procedures

Future Directions

Next steps

- Transducer representable structures: functional languages.
 - More in line with computational model as opposed to verification.
- Büchi automatic structures.
- Automatic model theory.
- Current open questions
 - \circ Is $(\mathbb{Q}, +)$ FA-presentable?
 - o Is (\mathbb{N}, \cdot) Büchi-presentable? (known not to be FA-presentable)
 - Is the isomorphism question for unary automatic graphs decidable?