Manual for Package: sediment-transport Revision 1:3M

Karl Kästner

October 29, 2019

Contents

T	@Hermite_profile 1						
	1.1	Hermite_profile	1				
	1.2	fit	1				
	1.3	predict	1				
	1.4	regmtx	1				
	1.5	transform	1				
2	@Nodal_Point 2						
	2.1	Adot	2				
	2.2	Nodal_Point	2				
	2.3	Qs.in	2				
	2.4	Qs_out	2				
	2.5	$derive_jacobian \dots \dots \dots$	2				
	2.6	discharge	2				
	2.7	geometry	2				
	2.8	jacobian	2				
	2.9	phase_diagram	3				
	2.10	phase_diagram_wang	3				
	2.11	solve	3				
	2.12	$stability_analysis \dots \dots \dots \dots \dots \dots$	3				
3	@Parabolic_Constant_Profile 3						
	3.1	Parabolic_Constant_Profile	3				
	3.2	fit	3				
	3.3	predict	3				
	3.4	regmtx	3				
	3.5	transform	4				
1	@Rou	se Profile	1				

	4.1	Rouse_Profile					
	4.2	fit					
	4.3	predict					
	4.4	regmtx					
	4.5	rouse_number					
	4.6	rouse_number_to_grain_diameter					
	4.7	set_parameters					
	4.8	transform					
5	sediment-transport 5						
	5.1	Exponential_SSC_Profile					
	5.2	adaptation_length_bed					
	5.3	adaptation_length_flow					
	5.4	bar_mode_crosato					
	5.5	bed_layer_thickness					
	5.6	bed_load_einstein					
	5.7	bed_load_engelund_fredsoe 6					
	5.8	bed_load_transport_mpm 6					
	5.9	bed_load_transport_rijn 6					
	5.10	bed_load_transport_wu 6					
	5.11	bedform_dimension_rijn 6					
	5.12	bedform_roughness_rijn 6					
	5.13	bedload_direction					
	5.14	bifurcation_critical_aspect_ratio					
	5.15	chezy_einstein					
	5.16	chezy_roughness_engelund_fredsoe					
	5.17	chezy_to_manning					
	5.18	critical_grain_size					
	5.19	critical_shear_stress					
	5.20	critical_shear_stress_ratio					
	5.21	critical_shear_stress_wu					
	5.22	critical_shear_velocity					
	5.23	dimensionless_grain_size					
	5.24	dynamic_shear_stress					
	5.25	fractional_transport_engelund_hansen 8					
	5.26	grain_roughness_rijn					
	5.27	hiding_exposure_wu					
	5.28	manning_to_chezy					
	5.29	reference_concentration_smith_lean					
	5.30	sediment_transport_directed					
	5.31	sediment_transport_engelund_hansen_2 9					
	5.32	sediment_transport_waves					
	5.33	settling_velocity					
	5.34	settling_velocity_cheng					

	5.35	settling_velocity_gravel	9
	5.36	settling_velocity_stokes	10
	5.37	settling_velocity_to_diameter	10
	5.38	$shields_number \dots \dots$	10
	5.39	skin_2_total_friction_eh	10
	5.40	suspended_grain_size	10
	5.41	suspended_grain_size_non_linear	11
	5.42	suspended_grain_size_rijn	11
	5.43	$suspended_transport_mclean \ \dots \dots \dots \dots \dots \dots$	11
	5.44	$suspended_transport_rijn \ \dots \dots \dots \dots \dots \dots \dots$	11
	5.45	$suspended_transport_wu $	11
6	test		11
	6.1	test_adaptation_length_bed	11
	6.2	test_critical_shear_stress	12
	6.3	$test_settling_velocity_to_diameter \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	12
7	sedime	ent-transport	12
	7.1	total_roughness_engelund_fredsoe	12
	7.2	total_roughness_rijn	12
	7.3	total_transport_bagnold	12
	7.4	total_transport_eh_distribution	12
	7.5	total_transport_engelund_hansen	12
	7.6	total_transport_rijn	13
	7.7	transport_stage_mclean	13
	7.8	transport_stage_rijn	13
	7.9	$vertical_ssc_profile_mclean \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	13

$1 \quad @Hermite_profile$

1.1 Hermite_profile

suspended sedimen profile in form of a hermite polynomial

1.2 fit

fit suspended sediment profile

1.3 predict

predict suspended sediment concentration

1.4 regmtx

regression matrix

1.5 transform

hermite profile

2 @Nodal_Point

2.1 Adot

ODE of the nodal point relation (time-derivative of branch cs-area)

2.2 Nodal_Point

Nodal point relation for bifurcations, according to Wang

$2.3 \quad Qs_in$

sediment entering branches

2.4 Qs_out

sediment leaving branches

2.5 derive_jacobian

derive Jacobian of the nodal point relation

2.6 discharge

discharge through branches

2.7 geometry

cross section geometry of branches

2.8 jacobian

jacobian of the nodal point relation semi-autogenerated

2.9 phase_diagram

phase diagram

2.10 phase_diagram_wang

phase diagram of Nodal point relation

2.11 solve

solve the nodal point relation for critical points

2.12 stability_analysis

staility analysis for a given configuration

3 @Parabolic_Constant_Profile

3.1 Parabolic_Constant_Profile

parabolic-constant profile

3.2 fit

fit the suspended sediment concentration profile

3.3 predict

predict suspended sediment concentration

3.4 regmtx

regression matrix

3.5 transform

transformation of vertical coordinate

4 @Rouse_Profile

4.1 Rouse_Profile

suspended sediment concentration profile

4.2 fit

fit the suspended sediment concentration profile

4.3 predict

 ${\tt predict\ the\ suspended\ sediment\ concentration}$

4.4 regmtx

regression matrix

4.5 rouse_number

rouse number (suspension number) for given grain siye and shear velocity

4.6 rouse_number_to_grain_diameter

convert known rous number (suspension parameter) to grain size diameter $\,$

4.7 set_parameters

4.8 transform

transform the vertical coordinate

5 sediment-transport

analysis and prediction of fluvial sediment transport and $\tt morphodynamics$

5.1 Exponential_SSC_Profile

5.2 adaptation_length_bed

adaptatoion lenght of bed morphology

5.3 adaptation_length_flow

adaption length of the flow

5.4 bar_mode_crosato

bar mode of a river according to crosato

5.5 bed_layer_thickness

5.6 bed_load_einstein

bed load transport according to einstein jr.

5.7 bed_load_engelund_fredsoe

bed load transport according to engelund and fredsoe

$5.8 \quad bed_load_transport_mpm$

bed load transport rate according to meyer-peter-mueller

5.9 bed_load_transport_rijn

```
bed load transport
method of van Rijn (1984)

function [Q_b q_b Phi_b] = bed_load_transport_rijn(C,d50,d90,U,d,b)

d50 [mm] (converted to m)
d90 [mm] (converted to m)

d : depth
b : width
```

5.10 bed_load_transport_wu

bed load transport according to Wu

5.11 bedform_dimension_rijn

bed form dimensions
cf. rijn 1984 iii

5.12 bedform_roughness_rijn

form drag according to van Rijn

5.13 bedload_direction

bedload transport direction

5.14 bifurcation_critical_aspect_ratio

critical aspect ratio of a bifurcation ${\tt c.f.}$ redolfi and pittaluga

5.15 chezy_einstein

chezey coefficient according to Einstein

5.16 chezy_roughness_engelund_fredsoe

chezy rougness according to engelund and fredsoe

5.17 chezy_to_manning

convert chezy to manning

5.18 critical_grain_size

critical grain size for a given shear velocity

5.19 critical_shear_stress

critical shear Stress

5.20 critical_shear_stress_ratio

critical shields parameter aka critical shear stress ratio aka shields curve

5.21 critical_shear_stress_wu

critical shear stress, according to wu

5.22 critical_shear_velocity

critical shear velocity

5.23 dimensionless_grain_size

dimensionless grain size

5.24 dynamic_shear_stress

dynamic shear stress

5.25 fractional_transport_engelund_hansen

fractional sediment transport according to engelund and hansen

5.26 grain_roughness_rijn

 $\ensuremath{\operatorname{grain}}$ roughness (skin friction) according to van $\ensuremath{\operatorname{Rijn}}$

5.27 hiding_exposure_wu

5.28 manning_to_chezy

manning to chezy conversion

5.29 reference_concentration_smith_lean

reference concentration according to smith and mclean

5.30 sediment_transport_directed

directed sediment transport

5.31 sediment_transport_engelund_hansen_2

sediment transport according to engelund and hansen

5.32 sediment_transport_waves

sediment transport by waves

5.33 settling_velocity

Settling velocity 5.23d in julien-2010

5.34 settling_velocity_cheng

settling velocity according to cheng

5.35 settling_velocity_gravel

settling velocity in water

5.36 settling_velocity_stokes

5.37 settling_velocity_to_diameter

invert settling velocity to diameter

5.38 shields_number

normalized shear stress, shear stress ratio

5.39 skin_2_total_friction_eh

skin friction to total friction conversion according to engelund and hansen

5.40 suspended_grain_size

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

assumes that probability of suspension is inverse proportional to grain diameter

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

 h_bed : [nsxnd] fractions of sediment of size d

5.41 suspended_grain_size_non_linear

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

assumes that probability of suspension is inverse proportional to grain diameter

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

5.42 suspended_grain_size_rijn

grain size of the suspended sediment according to van rijn, empirical

5.43 suspended_transport_mclean

5.44 suspended_transport_rijn

suspended load transport according to van Rijn

5.45 suspended_transport_wu

suspended sediment transport according to Wu

- 6 test
- $6.1 test_adaptation_length_bed$
- 6.2 test_critical_shear_stress
- 6.3 test_settling_velocity_to_diameter

7 sediment-transport

analysis and prediction of fluvial sediment transport and morphodynamics $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

7.1 total_roughness_engelund_fredsoe

roughness lenght according to engelund and fredsoe

7.2 total_roughness_rijn

total roughness according to van rijn

7.3 total_transport_bagnold

total sediment transport accoding to bagnold

7.4 total_transport_eh_distribution

total sediment transport according to engelund hansen for a given graqin size distribution

7.5 total_transport_engelund_hansen

total sediment transport according to Engelund and Hansen

7.6 total_transport_rijn

total sediment transport according to van rijn

7.7 transport_stage_mclean

transport stage according to McLean

7.8 transport_stage_rijn

transport stage as defined by van Rijn

7.9 vertical_ssc_profile_mclean

vertical profile of the suspended sediment according to McLean