计算机组成

1 微机

微机结构

- Input 输入
- Output 输出
- Memory 存储器
- ALU 算术逻辑单元
- Control unit 控制单元

指令集: CISC(1-n个字), RISC(1个

字: CPU一次可以处理的最大比特数

位扩展:同一地址的位扩展,满足 一个字的输出

字扩展:增大字的量,选择不同的字,满足存储量需求

2 存储与I/O

内存特征

Location CPU,内部,外部

Capacity 字大小,字数目

Unit of transfer 内部(一字),外部(多字) — Addressable Unit: 内部(一字节),外部(簇)

Access method 访存方式

- Sequential 串行访问 (tape)
- Direct 直接访问 (disk)
- Random 随机访问 (RAM,ROM)
- Associative 关联访问 (cache)

Performance 评价指标

- Access time
- Memory Cycle time
- Transfer Rate

Physical type 物理类型

- Semiconductor (RAM)
- Magnetic (disk & tape)
- Optical (CD & DVD)
- Others (Bubble Hologram)

Organisation Physical arrangement of bits into words(存储字)

I/O数据传送方式

程序控制方式 Programmed I/O

图 6.7 查询式输入流程图

图 6.9 查询式输出流程图

中断方式 Interrupt driven I/O 采用中断方式后,CPU平时可以执

行主程序,只有当输入设备将数据准备好了,或者输出端口的数据缓冲器已空时,才向CPU发中断请求。CPU响应中断后,暂停执行当前的程序,转去执行管理外设的中断服务程序(ISR)。在中

断服务程序中,用于输入或输出指令在CPU和外设之间进行一次数据交换。等输入或输出操作完成之后,CPU又回去执行原来的程序。

Figure 7.6 Simple Interrupt Processing

Figure 7.12 DMA and Interrupt Breakpoints during an Instruction Cycle

3 80x86

表 1: 微机概念差异

1、1、1000000000000000000000000000000000		
微处理器 Microprocessor	可以被微缩成集成电路规模的CPU电路,包	
	含ALU,CU,寄存器	
微型计算机 Mircrocomputer	微处理器,存储器,I/O,总线	
微型计算机系统 Microcomputer system	以微型计算机为主体,配上I/O及系统软件就构成了	
	微型计算机系统。	
微控制器 Microcontrollers	A microcontroller has a CPU in addition to a fixed	
	amount of RAM, ROM, I/O ports on one single chip	
	(e.g. Cortex)	
嵌入式系统 Embedded Systems	An embedded system uses a microcontroller or a mi-	
	croprocessor to do one task and one task only	

表 2: 总线类型

类型	仲裁	时序
単工	集中式	同步
多上	分布式	异步

表 3: 总线结构

	优点	缺点
单线结构	简单	吞吐量低
CPU-Central 双线结构	数据传输率高	I/O与内存需要经过CPU
Memory-Central 双线结构	CPU性能好 吞吐量高	

表 4: RAM 区别

太王 ICHN 医洲		
	DRAM	\mathbf{SRAM}
字节存储方式	电容电荷	开关状态
电荷泄漏	有	无
刷新	需要	不需要
构造	简单	复杂
每位规模	更小	更大
价格	便宜	昂贵
刷新电路	需要	不需要
速度	更慢	更快
用途	主存储器	高速缓存

表 5: ROM 区别

掩膜型 ROM	无法修改		
可编程只读存储器	一旦写入,不可改		
PROM	变		
可擦除可编程只读存	可写, 用紫外光擦		
储器 EPROM	除,重新写入		
点可擦除的可编程只	通电擦除, 重新写		
读存储器 EEPROM	入		
闪存 Flash	对芯片编程,通电		
	擦除再写入		

表 6: DMA 架构

	使用总线次数	CPU暂停次数
Single Bus, Detached	2	2
Single Bus,Intergrated	1	1
Seperate I/O	1	1

