Sistemi Operativi

C.d.L. in Informatica (laurea triennale) Anno Accademico 2022-2023

Canale A-L

Dipartimento di Matematica e Informatica – Catania

Introduzione

Prof. Mario Di Raimondo

O Do ma rio di raim ond o

Sistemi Operativi

- 9 CFU (72 ore)
- Struttura:
 - teoria
 - laboratorio
- Propedeuticità:
 - Architettura degli Elaboratori
 - Programmazione I
- Esame:
 - prova teoria (65%):
 - scritto + orale
 - prova pratica in laboratorio (35%)

Opono ma rio di raim ondo

Risorse e contatti

- Prof. Mario Di Raimondo
 - Email: diraimondo@dmi.unict.it
 - Home Page: https://diraimondo.dmi.unict.it
 - Ufficio: stanza 355 Blocco I
- Pagina del corso: https://diraimondo.dmi.unict.it/teaching/sistemi-operativi/
- Calendario
- Gruppo Telegram
- FAQ

Libri e appunti

Testo principale:

Andrew S. Tanenbaum, Herbert Bos
 I moderni sistemi operativi
 4ª edizione (2016) o 5ª edizione (2023)
 Pearson

Testo secondario:

 Abraham Silberschatz, Peter Baer Galvin, Greg Gagne
 Sistemi operativi - Concetti ed esempi
 9ª edizione (2014) o 10ª edizione (2019)
 Pearson

Slide

O poo mia rio di raim ond o

Cos'è un Sistema Operativo?

- Un moderno calcolatore è tipicamente formato da:
 - uno o più processori;
 - memoria centrale;
 - dischi;
 - stampanti e altre periferiche di I/O.
- I dettagli di basso livello sono molto complessi.
- Gestire tutte queste componenti richiede uno strato intermedio software: il **Sistema Operativo**.

bo ma rio di raim ond

Cos'è un Sistema Operativo?

- Doppia modalità supportate dall'hardware:
 - modalità kernel (o supervisor);
 - modalità utente.

De ma rio di raim ond

Il sistema operativo come macchina estesa

concetto di astrazione

of so ma rio di raim ondo

Il sistema operativo come gestore delle risorse

- Da un moderno sistema operativo ci aspettiamo che gestisca:
 - più programmi in esecuzione;
 - più utenti.
- Necessita allocazione ordinata e controllata di risorse quali: processori, memoria, unità di I/O,...
- Non solo hardware: file, database,...
- Multiplexing:
 - nel tempo: CPU, stampante,...
 - nello spazio: memoria centrale, disco,...

L'evoluzione dei sistemi operativi

(1) (2) ma rio di raim ondo

Uno sguardo all'hardware

Architettura (semplificata) di un calcolatore

a sa ma rio d i raim ond o

Il Processore

- Ciclo di base: prelevamento (fetch), decodifica, esecuzione
- Registri particolari:
 - Program Counter (PC);
 - Stack Pointer (SP);
 - Program Status Word (PSW).
- Progettazioni avanzate: pipeline, cpu superscalare
 - non del tutto trasparenti al SO

DS ma rio di raim ondo

Modalità di esecuzione

- Doppia modalità di esecuzione;
- chiamate di sistema (TRAP);

• **interrupt** hardware.

● ③ ■ ma rio di raim ond c

Più processori

- Multithreading (o hyperthreading):
 - tiene all'interno della CPU lo stato di due thread;
 - non c'è una esecuzione parallela vera e propria;
 - il S.O. deve tenerne conto.
- Multiprocessori, vantaggi:
 - throughput;
 - economia di scala;
 - affidabilità;
- Multicore;
- GPU.

Memorie

©⊕© ma rio di raim ondo

Unità di misura: kB/MB/GB vs. KiB/MiB/GiB

Opono ma rio di raim ondo

Dispositivi di I/O

- Si indiduano due componenti:
 - il controller: più semplice da usare per il SO;
 - il dispositivo in sé: interfaccia elementare ma complicata da pilotare.
 - esempio: dischi SATA.
- Ogni controller ha bisogno di un driver per il S.O.
- Il driver interagisce con il controller attraverso le porte di I/O:
 - istruzioni tipo IN / OUT;
 - mappatura in memoria.

Dispositivi di I/O

- Modalità di I/O:
 - busy waiting;
 - con programmazione di **interrupt**;
 - con uso del DMA.

(=) ma rio di raim ondo

Bus

Opono ma rio di raim ondo

Lo zoo dei sistemi operativi

- Sistemi operativi per mainframe/server
- Sistemi operativi per personal computer
- Sistemi operativi per palmari/smart-phone
- Sistemi operativi per sistemi integrati (embedded)
- Sistemi operativi real-time

O to di raim ond o

Struttura di un sistema operativo

- Alcune possibili strutture per un SO:
 - Monolitici
 - A livelli (o a strati)
 - Microkernel
 - A Moduli
 - Macchine virtuali
- categorie con intersezioni (sistemi ibridi);
- tassonomia non per forza completa o condivisa.

Struttura monolitica

- Monolitici:
 - nessun supporto hardware;
 - problemi...;
 - esempi: MS-DOS, UNIX;
 - arrivò il supporto hardware alla modalità kernel/utente;
 - unico kernel con tutto dentro;
 - ogni componente può richiamare tutti gli altri
 - poco gestibile nel bestigned tempo.

re alla		
(the users)		
shells and commands compilers and interpreters system libraries		
system-call interface to the kernel		
signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory
kernel interface to the hardware		
terminal controllers terminals	device controllers disks and tapes	memory controllers physical memory

O bno ma rio di raim ondo

Struttura a livelli (o a strati)

- Si utilizza una gerarchia di livelli;
- ogni livello implementa delle funzionalità impiegando quelle fornite da quello inferiore;
- migliore progettazione, più semplice da sviluppare e controllare (incapsulamento tipo OOP); suddivisione a livello progettuale;
- variante ad anelli concentrici (MULTICS):
 - separazione forzata dall'hardware;
- **problemi di prestazioni** dovuti alle chiamate nidificate e al relativo overhead.

De ma rio di raim ond o

Microkernel

- Uso di un microkernel minimale che si occupa dello scheduling, memoria e IPC;
- tutto il resto gestito da moduli (livello utente): filesystem, driver di dispositivi;
- comunicazione attraverso messaggi;
- miglior design (componenti piccoli) e migliore stabilità;
- esempi: MINIX 3, Mach, QNX, Mac OS (Darwin), Windows NT

Struttura a Moduli

- Idea della programmazione OO applicata al kernel;
- moduli che implementano un qualche aspetto specifico;
 - filesystem, driver,...
- kernel principale a funzionalità ridotte;
- moduli caricabili dinamicamente;
- design pulito (ad oggetti);
- efficiente:
 - ogni modulo può invocare qualunque altro modulo direttamente;
 - niente messaggi;
- esempi: Solaris, Linux,
 Mac OS (ibrido).

application environments

Macchine virtuali

- L'estremizzazione del concetto di astrazione porta alla virtualizzazione;
- Perchè? Uso di più SO, VPS, isolamento dei servizi,...
- Simulazione, paravirtualizzazione.
- Viene tutto gestito dallo Hypervisor:
 - Hypervisor di tipo 1:
 - gira direttamente sull'hardware;
 - esempi: VMware ESX/ESXi,
 Microsoft Hyper-V hypervisor;
 - Hypervisor di tipo 2:
 - è un processo in un SO Host
 - esempi: VMware Workstation, VirtualBox.
- Supporto hardware per efficienza.
- Java Virtual Machine.

