Rūta Šalkauskaitė

Sintetinės biologijos programavimo kurso baigiamasis projektas

Jėgos trikovės varžybų rezultatų analizė

Kadangi esu pametusi galvą dėl sporto ir 2019 m. lapkritj tapau Pasaulio svarsčių kilnojimo čempione, ieškojau duomenų susijusių su sunkiąja atletika. Duomenis radau *kaggle* svetainės pagalba. OpenPowerlifting duomeny bazėje publikuojama informacija apie daugelio metų jėgos trikovės sporto varžybų rezultatus. Jėgos trikovė – trijų veiksmų su štanga (pitūpimo, spaudimo ir atkėlimo) sportas, kuriame laimi didžiausią svorį pagal griežtas taisykles įveikę atletai, besivaržydami savo svorio kategorijoje. Federacijoms paskelbus oficialius varžybų rezultatus, kiekvieno sportininko pasiekimai patalpinami šioje duomenų bazėje.

Pasaulio svarsčių kilnojimo čempionatas, 2019 m.

Šališkumas duomenyse gali atsirasti nebent dėl šiek tiek besiskiriančių taisyklių tarp jėgos trikovės federacijų ir skirtingo teisėjų akreditavimo. Duomenų rinkinyje kai kuriose vietose trūksta duomenų, pvz., 4 bandymas atlikti veiksmą egzistuoja tik nedaugelyje federacijų, todėl dažnai šiuose stulpeliuose trūksta reikšmių; kartais varžybos gali būti tik vieno iš trijų veiksmų, todėl kitų veiksmų bandymų verčių nebus ir kt. Nesant informacijos įrašyta "NaN". Atliekant kintamojo analizę eilutes su "NaN" pašalinsiu.

Vilniaus universiteto jėgos trikovės komanda

Aprašomoji statistika

Duomenų rinkinyje yra 37 kintamieji ir 1 423 354 stebėjimai, testams stebėjimų tikrai pakaks. Duomenyse yra įvairių tipų kintamųjų: tolydžiųjų (raudona), diskrečiųjų ordinalių (mėlyna) ir diskrečiųjų nominalių (žalia) (1 pav.).

	Name	Sex	Event	Equipment	Age	AgeClass	Division		weightKg			uat1Kg	Squat2Kg	Squat3	<u> </u>	
count		1423354	1423354		757527.0	786800	1415176	1	406622.0	1410		7580.0	333349.0	32384	2.0 3696.0	
unique	412574	2	7	5	nan	16	4842		nan		224	nan	nan	1	nan nan	
top	Alan Aerts	М	SBD	Single-ply	nan	24-34	Open		nan		90	nan	nan	1	nan nan	
freq	214	1060189	1073237	787141	nan	244197	337927		nan	103	156	nan	nan	1	nan nan	
mean	NaN	NaN	NaN	NaN	31.5	NaN	NaN		84.2	١	laN	114.1	92.2	3	0.1 71.4	
std	NaN	NaN	NaN	NaN	13.4	NaN	NaN		23.2	١	laN	147.1	173.7	20	0.4 194.5	
min	NaN	NaN	NaN	NaN	0.0	NaN	NaN		15.1	١	laN	-555.0	-580.0	-60	0.5 -550.0	
25%	NaN	NaN	NaN	NaN	21.0	NaN	NaN		66.7	١	laN	90.0	68.0	-16	7.5 -107.8	
50%	NaN	NaN	NaN	NaN	28.0	NaN	NaN		81.8	١	laN	147.5	145.0	11	0.0 135.0	
75%	NaN	NaN	NaN	NaN	40.0	NaN	NaN		99.2	1	laN	200.0	205.0	19	2.5 205.0	
max	NaN	NaN	NaN	NaN	97.0	NaN	NaN		258.0	١	laN	555.0	567.0	56	0.0 505.5	
	Best3Squ	atKg Ber	nch1Kg B	ench2Kg B	ench3Kg	Bench4Kg	Best3Ber	nchKg	Deadlift1k	(g Deadlift2	Kg Dea	dlift3Kg	Deadlift4k	(g Best	t3DeadliftKg	
count	10314	150.0 49	99779.0	493486.0	478485.0	9505.0	1276	3181.0	363544	.0 35602	3.0 3	39947.0	9246	.0	1081808.0	
unique		nan	nan	nan	nan	nan		nan	na	an r	ian	nan	na	an	nan	
top	nan		nan	nan	nan	nan nan		nan nan		an r	nan		nan		nan	
freq	nan		nan	nan	nan	nan	nan		nan		ıan	nan	nan		nan	
mean	1	74.0	83.9	55.1	-18.5	24.8		116.5	162	1.7 13	0.2	13.0	78	.9	187.3	
std		69.2	105.2	130.3	144.2	165.6		54.8	108	1.7	2.7	215.1	192	.6	62.3	
min	-4	77.5	-480.0	-507.5	-575.0	-500.0		-522.5	-461	.0 -47	0.0	-587.5	-461	.0	-410.0	
25%	1	22.5	57.5	-52.5	-140.0	-127.5		74.8	125	.0 11	5.0	-210.0	-110	.0	138.3	
50%	1	67.8	105.0	95.0	-60.0	77.5		111.1	180	.0 17	7.5	117.5	145	.2	185.0	
75%	217.5		145.0	145.0	117.5	157.5		150.0	226	.8 23	230.0		205.0 210.0		230.0	
max	575.0		467.5	487.5	478.5 487.6			488.5		50.0 460.4		457.5 41		8.0 585.0		
	TotalKg	Place	Wilk	s McCulloc	hGlossbr	enner IPF	Points	Tested	Country	Federation	Date	MeetCo	ountry Me	etState	MeetName	
count	1313184.0	1423354	1304407.	.0 1304254.	0 1304	407.0 127	3286.0 10	93892	388884	1423354	1423354	14	23354 9	941545	1423354	
unique	nan	124	na	ın na	n	nan	nan	1	176	222	5367		96	111	11599	
top	nan	1	na	ın na	n	nan	nan	Yes	USA	THSPA	2017- 02-18		USA	TX	World Championships	
freq	nan	541908	na	ın na	n	nan	nan 10	93892	91333	290547	7001	8	56561 4	148753	32615	
mean	395.6	NaN	288.	.2 296.	1	271.8	485.4	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
std	201.1	NaN	123.	.2 125.	0	117.6	113.3	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
min	2.5	NaN	1.	.5 1.	5	1.4	2.2	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
25%	232.5	NaN	197.	.9 204.	8	182.8	402.9	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
50%	378.8	NaN	305.	.2 312.	0	285.9	478.1	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
75%	540.0	NaN	374.	.6 383.	8	355.3	559.7	NaN	NaN	NaN	NaN		NaN	NaN	NaN	
max	1367.5	NaN	779.	.4 804.	4	743.0	1245.9	NaN	NaN	NaN	NaN		NaN	NaN	NaN	

1 pav. Aprašomosios statistikos charakteristikos

Tolydžiųjų kintamųjų (raudona) centrinė statistika – vidurkis – nurodyta 1 pav. "mean" eilutėje. Kintamojo "Age" minimali vertė yra 0, bet tokio amžiaus būti negali, todėl prieš skaičiuojant šio kintamojo vidurkį reikėtų pašalinti nulines vertes. Nulines vertes pakeitus "NaN", mažiausias amžius – 0,5 metų, kas irgi yra nerealu, todėl vidurkį apskaičiuosiu atmetus 0 – 14 metų vertes; gauta ~31,8 metų.

2 pav. Histogramos pasiskirstymui įvertinti

Kiekvieno veiksmo (Squat, Bench ir Deadlift) bandymų vidurkių vertės neatitinka realių, nes esant nesėkmingam bandymui prie kilogramų skaičiaus nurodomas minuso ženklas. Norint apskaičiuoti tikruosius vidurkius ir patikrinti ar duomenys normaliai pasiskirstę, reikia pašalinti neigiamas vertes. Tai atlikus, geriausio pritūpimo (Best3SquatKg) vidurkis – 174,5 kg; geriausio spaudimo (Best3BenchKg) – 116,96 kg; geriausio atkėlimo (Best3DeadliftKg) – 187,5 kg; sumos (TotalKg) – 395,6 kg. Ar duomenys pasiskirstę normaliai tikrinau vizualiai panaudodama histogramas (2 pav.), bet moterų ir vyrų rezultatai varžybose skiriasi, todėl siekiant įvertinti pasiskirstymą reikia atskirti duomenis pagal lytį (3 pav.). Šie duomenys pasiskirstę normaliai, išskyrus bendrą kilogramų sumą, kurios pasiskirstyme matyti du maksimumai, atsiradę dėl varžybų, kuriose atliekamas tik vienas iš veiksmų. Amžiaus ir kūno svorio pasiskirstymai nepanašūs į normalų (2 pav.).

3 pav. Histogramos pasiskirstymui nustatyti pagal lytis (viršuje – moterų, apačioje – vyrų)

Kiti kintamieji – taškai pagal įvairias skaičiuokles gaunami atsižvelgiant į lytis, todėl papildomai skirstyti nebereikia (4 pav.). Wilks, McCulloch ir Glossbrenner taškų pasiskirstymuose yra po du

maksimumus, nes skaičiuojant naudojama tik kilogramų suma ir neatsižvelgiama, jei atliekamas tik vienas veiksmas. IPF taškai pasiskirstę normaliai, nes skaičiuojant juos atsižvelgiama į varžybų pobūdį.

4 pav. Histogramos taškų pagal Wilks, McCulloch, Glossbrenner ir IPF pasiskirstymui nustatyti

Inferencinė statistika

Įdomu sužinoti ar skiriasi jaunesnių ir vyresnių moterų jėgos trikovės rezultatai. Šiai hipotezei patikrinti tiriamieji atskirti pagal lytį, o moterys į dvi grupes pagal amžių – iki 30 ir virš 30 metų. Moterų rezultatą lyginsiu remiantis IPF taškų skaičiumi (IPFPoints), nes šis rodmuo yra populiariausias ir tiksliausias vertinant jėgos trikovės sportininkų pajėgumą. Atlikus t-testą, nustatyta, kad šių amžiaus grupių IPF taškai statistiškai reikšmingai skiriasi (p vertė labai maža). Moterų iki 30 metų IPF taškų vidurkis – 510, o 30 ir vyresnių – 522.

Suskirsčius atletus į amžiaus grupes nubraižytos IPF taškų stačiakampės diagramos atsižvelgiant ir j sportininko lytį (5 pav.).

Ieškant tarpusavyje koreliuojančių kintamųjų nubraižytos (su didelėm kompiuterio pastangom) taškinės diagramos (6 pav.). Nepaisant to, kad analizei trukdo nesėkmingi bandymai su neigiamomis kilogramų vertėmis, daugelyje grafikų matosi koreliacija. Stipriausiai koreliuoja atskiri to paties veiksmo bandymai, skirtingi taškų skaičiavimo metodai (raudonai apibrėžta, 6 pav.), kas yra aivaizdu, nes visi jie apskaičiuojami remiantis tais pačiais rezultatais. Pvz., Wilks ir Glossbrenner taškų koreliacijos koeficientas – 0,995.

5 pav. IPF taškų pagal amžiaus kategoriją ir lytį stačiakampės diagramos

Rezultatų skirtumų tarp lyčių ir amžiaus grupių dar kartą ieškota pasitelkiant PCA, o ne stačiakampes diagramas. 4 dimensijos ("Best3SquatKg", "Best3BenchKg", "Best3DeadliftKg", "TotalKg") suredukuotos iki dviejų ("principal component 1", "principal component 2"). Jas atvaizduojant suskirsčius į amžiaus grupes arba lytis nepastebėta išsiskiriančių klasterių – visi jie persidengia, arba nėra daug nutolę nuo kitų grupių (7 pav.)

6 pav. korelogramos (kategorinis kintamasis – "Sex", geltona – "M", mėlyna – "F")

7 pav. PCA vizualizacijos. Kairėje – pagal amžiaus grupes, dešinėje – pagal lytj

Išvados

Pasirinkau duomenų rinkinį apie jėgos trikovės rezultatus, norėdama į šį sportą pažvelgti iš statistinės pusės bei skaičiais įrodyti, kad jėgos sportas – kiekvienam, tiek jaunuoliui, tiek seneliui. Atliekant aprašomąją statistinę analizę, kėblumų sukėlė nesėkmingi veiksmų bandymai su minuso ženklu, manau, reikalingas kitoks nesėkmių aprašymo būdas. Dar viena kliūtis – varžybos kuriose neatliekami visi 3 jėgos trikovės veiksmai. Tokiu atveju gaunamos mažos sumos ir taškų pagal Wilks, Glossbrenner ir McCulloch vertės ir sportininko pajėgumą galima vertinti tik pagal IPF taškų skaičių. Trūkstamos vertės duomenų rinkyje nesutrukdė atlikti statistinius testus, nes duomenų kiekis yra labai didelis, ką pajautė ir mano kompiuteris. Žvelgiant į koreliacijos analizės rezultatus pasitvirtina nerašyta taisyklė – kuo stipresnis atletas, tuo geresni rezultatai visuose trijuse veiksmuose. Taip pat stipri ir statistiškai reikšminga koreliacija stebėta tarp skirtingų taškų skaičiavimo formulių. Wilks ir Glossbrenner taškų koreliacijos koeficientas artimas 1, todėl abi sistemos vienodai tinkamos sportininkų rezultatams analizuoti. Ieškant įrodymų, kad jėgos sportas kiekvienam, palyginau moterų iki 30 ir vyresnių rezultatus remdamasi IPF taškų vertėmis. Mano nuostabai, vyresnės moterys netgi turėjo statistiškai reikšmingą pranašumą! Vargu, ar šis pranašumas iš esmės reikšmingas, bet aišku viena – vyresnės moterys nenusileidžia jaunesėms. Skirtumų tarp sportininkų amžiaus grupių ieškojau ir PCA pagalba, bet vizualiai jų pamatyti nepavyko. Žvelgiant j stačiakampes IPF taškų diagramas suskirstytas pagal amžiaus grupes, geriau išryškėja skirtumai tarp grupių, bet jie nėra drastiški.