Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ИНФОРМАТИКИ И РОБОТОТЕХНИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

Направление 231000 – Программная инженерия

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Тема: Программа для рассчета и предупреждения пересечения стволов нефтяных скважин

	ФИО	Подпись	Дата
Студент	Синявский Г. Н.		
Руководитель работы	Еникеева К. Р.		
Консультант	Еникеева К. Р.		
Контроль программного продукта			
Председатель комиссии по предзащите			
Рецензент			

	,	Допущен к защите
	Зав. каф	редрой ВМК, д.т.н., проф.
		Н.И. Юсупова
"	,,, 	2015 г.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАТИКИ И РОБОТОТЕХНИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

Направление 231000 – Программная инженерия

УТВЕРЖДАЮ" Зав. кафедрой ВМІ	К, д.т.н., проф
	Н.И. Юсупова
,, 	2015 г

ЗАДАНИЕ

на подготовку выпускной квалификационной работы

студента Синявского Глеба Николаевича

- 1. Тема работы Программа для рассчета и предупреждения пересечения стволов нефтяных скважин (утверждена распоряжением по факультету No 100500 от "01" Июня 2015г.)
- 2. Срок представления работы "01" Января 2015г.
- 3. Описание задачи

Необходимо разработать программный продукт, позволяющий усреднять и визуализировать замеры стволов нефтяных скважен, а так же позволять оценивать расстояния между стволами нефтяных скважин.

- 5. Спецификация входных и выходных данных Входные данные csv-файлы, содержащие результаты замера ствола скважины. Выходные визуализация скважины в пространстве, визуализации оценки расстояний между стволами.
- 6. Применяемые инструментальные средства Библиотека построение графического интерфейса Qt. СУБД SQLite. Библиотека визуализации MathGL.

- 7. Особые условия эксплуатации программного продукта Основная ОС для запуска программного продукта Windows 7 и старше, но продукт должен разрабатываться как кросс-платформенный и иметь возможность запуска под управлением ОС Linux.
- 8. Дополнительные условия Продукт должен иметь возможность импортировать csv произвольного формата, для этого должен быть разработан мастер импорта, позволяющий выбирать диапазон ячеек таблицы и указывать их тип.

Руководитель работы _	
Консультант	

Оглавление

Аннотация

Введение

Описание предметной области

Мотивация, актуальность проблемы

Цели, задачи ВКР

Целью дипломной работы является разработка программиного обеспечения, позволяющего визуализировать, усреднять и производить анализ замеров стволов нефтяных скважин, на основании данных, полученных с измерительного оборудования. Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ существующих программных продуктов;
- разработка функциональной и информационной моделей, программного обеспечения;
- разработка модуля импорта данных
- разработка системы управления содержимым БД и усреднения замеров
- разработка модуля визуализации замеров
- разаботка модуля рассчетов расстояний между стволами
- разработка модуля визуализации расстояний между стволами

Содержание работы по главам

1. Анализ проблемы и постановка задачи

- 1.1 Анализ предметной области
- 1.2 Содержательная постановка проблемы
- 1.3 Формальная постановка задачи

Формальной постановке задачи соответствует контекстная диаграмма методологии IDEF0, описывающая входные и выходные данные, управляющие воздействия и механизмы, влияющие на систему в целом, приведенная на рисунке 1.1.:

1.4 Структура решения задачи, декомпозиция задачи на подзадачи

- 2. Математическое и информационное обеспечение
- 2.1 Классификация подзадач (отнесение подзадач к классу задач)
- 2.2 Математические модели подзадач (где применимо)
- 2.3 Методы решения подзадач (где применимо)
- 2.4 Информационные модели для подзадач (где применимо)
- 2.5 Алгоритмы и структуры данных для подзадач

3. Программное обеспечение

- 3.1 Аналитический обзор существующих программных технологий, применимых при решении поставленных задач
- 3.2 Архитектура разрабатываемого программного продукта
- 3.3 Язык программирования и инструментальные средства разработки

3.3.1 Язык С++

На данный момент, C++ остается одним из самых популярных и производительных языков программирования и применяется практически во всех прикладных областях программирования, от низкоуровневого программирования для микроконтроллеров, до высокопроизводительных серверных приложений и компьютерных игр.

3.3.2 SQLite

SQLite — это встраиваемая кроссплатформенная СУБД, которая поддерживает достаточно полный набор команд SQL и доступна в исходных кодах (на языке C). На данный момент является самой популярной встраиваемой СУБД. Применяется как на персональный компьютерах, так и в мобильных ОС и "умных" телевизорах.

3.3.3 Ot

Qt — кроссплатформенный инструментарий разработки ПО на языке программирования C++, доступен в исходных текстах. Позволяет создавать кросс-платформернные приложения с богатыми возможностями графического интерфейса, работой с сетью, мультимедиа, БД и 3D-графикой. В окружении каждой поддерживаемой ОС будет выглядеть максимально похоже на "родные" приложения системы.

3.3.4 MathGL

MathGL — кроссплатформенная библиотека для визуализации данных. Имеет интеграцию с Ot.

3.3.5 Обоснованность выбора технологий

На данный момент указанные технологии являются единственным способом, как выполнить требования о кроссплатформенности, так и получить легкий в поддержке продукт, базирующийся на надежных и поддерживаемых библиотеках.

- 3.4 Технологии разработки ПО (моделирование разработки ПО, управление разработкой ПО, конфигурирование ПО, технологии тестирования ПО)
- 3.5 Описание структуры программного продукта
- 3.6 Описание интерфейса пользователя

4. Оценка качества решения

4.1 Тестирование ПО

Тестирование является важной и обязательной частью процесса разработки. Процесс тестирования можно разделить на 3 этапа:

- проверка в нормальных условиях;
- проверка в экстремальных условиях;
- проверка в исключительных ситуациях.

Тестирование в нормальных условиях

При проверке в нормальных условиях программа функционировала соответствующим образом: введенные данные были без потерь сохранены в базе данных в нужном формате и в результате запросов были выданы верные сведения.

Рис. 1: Ввод корректных параметров подрядчика

Рис. 2: Созданный подрядчик

Тестирование в экстремальных условиях

Проводилась проверка на ввод нулевых и отсутствующих параметров. Программа не позволяет ввести неверные значения, т.н. "защита от дурака" (Рис. 26).

Рис. 3: Недоступная кнопка ОК при попытка создать заказчика без названия

Тестирование в исключительных ситуациях

Тестирование устойчивости программы при вводе неверных данных проводилось с самого начала разработки. Построение интерфейса программы предусматривает предотвращение возможности совершения пользователем действий, приводящих к исключительным ситуациям.

Практически невозможна ситуация, когда в результате сбоя разработанное ПО выйдет из-под контроля и нарушит целостность исходных данных, системы или других прикладных программ.

Анализ тестирования

Тестирование, проведенное в различных условиях, подтверждает работоспособность программы. Возможно, в процессе эксплуатации программы потребуются некоторые ее доработки.

4.2 Оценка качества программного продукта

Метрическая оценка качества программного продукта.

В данной части дипломной работы проводится оценка качества программного продукта согласно ГОСТ 28195-89.

Определение подкласса программных средств

Данное программное средство относится к подклассу 509 – Прочие ПС.

Показатели надежности программного средства

Таблица 1: Оценочные элементы фактора "Надежность ПС"

Код	Наименование	Метод	Оценка
элемента		оценки	
	Средства восстановления при ошибках на вх	оде	
H0101	Наличие требований к программе по устойчивости	Экспертный	1
	функционирования при наличии ошибок во входных		
	данных		
H0102	Возможность обработки ошибочных ситуаций	То же	1
H0103	Полнота обработки ошибочных ситуаций	»	1
H0104	104 Наличие тестов для проверки допустимых значений входных данных		0
H0105	Наличие системы контроля полноты входных данных	»	0
H0106	Наличие средств контроля корректности входных	<i>></i>	1
	данных		
H0107	Наличие средств контроля непротиворечивости	>>	0
	входных данных		
H0108	Наличие проверки параметров и адресов по диапазону	>>	1
	их значений		
H0109	Наличие обработки граничных результатов	>>	1
H0110	Наличие обработки неопределенностей	>>	0,6
			0,8
	Средства восстановления при сбоях оборудов	ания	· · · · · · · · · · · · · · · · · · ·
H0201	Наличие требований к программе по восстановлению	>>	0
	процесса выполнения в случае сбоя операционной		
	системы, процессора, внешних устройств		
H0202	Наличие требований к программе по восстановлению	»	1
	результатов при отказах процессора, ОС		
H0203	Наличие средств восстановления процесса в случае	>>	0
	сбоев оборудования		
H0204	Наличие возможности разделения по времени	»	1
	выполнения отдельных функций программ		
H0205	Наличие возможности повторного старта с точки	»	1
	останова		
			0,6
	Реализация управления средствами восстанов.	ления	
H0301	Наличие централизованного управления процессами,	»	1
	конкурирующими из-за ресурсов		
	<u> </u>		