Practice: Lines and Planes in 3D Space

- A) Write the equations of the Ray and line segment passing through the point \vec{s}_0 and parallel to the vector \vec{u} in each case:
 - 1) $\vec{s}_0 = (1,5,-3)$ and $\vec{u} = (1,2,3)$
 - 2) $\vec{s}_0 = (1,0,-1)$ and $\vec{u} = (1,0,2)$
- B) Describe the following line, line segment or ray
 - 1) L1: $\begin{cases} x 1 \\ y = 3 + t \\ z = 1 t \end{cases} \quad t \in \mathbb{R}$
 - 2) L1: $\begin{cases} x = 5 + 2t \\ y = 3 + t \\ z = 2 3t \end{cases}$
 - 3) L1: $\begin{cases} x = 5 \\ y = -3 2t \quad t \ge 0 \\ z = 4t \end{cases}$
- C) Show that the 2 given rays, L1 and L2, are parallel
- 1) L1: $\begin{cases} x = 5 + t \\ y = -3 2t & t \ge 0 \\ z = 4t \end{cases}$ and L2: $\begin{cases} x = 2 + 2t \\ y = 5 4t & t \ge 0 \\ z = 3 + 8t \end{cases}$
 - 2) L1: $\begin{cases} x = 1 3t \\ y = 5 t & t \ge 0 \\ z = 3 + t \end{cases}$ and L2: $\begin{cases} x = 2 + 15t \\ y = 1 + 5t & t \ge 0 \\ z = 10 5t \end{cases}$
- Show that the 2 given rays, L1 and L2, are perpendicular D)
 - 1) L1: $\begin{cases} x = 5 + t \\ y = -3 2t & t \ge 0 \\ z = 4t \end{cases}$ and L2: $\begin{cases} x = 2 + 12t \\ y = 5 4t & t \ge 0 \\ z = 3 5t \end{cases}$
 - 2) L1: $\begin{cases} x = 1 3t \\ y = 5 t & t \ge 0 \\ z = 3 + t \end{cases}$ and L2: $\begin{cases} x = 2 + t \\ y = 1 t & t \ge 0 \\ z = 1 + 2t \end{cases}$
 - L1: $\vec{s}_0 = (1,5,-3)$ and $\vec{u} = (1,2,0)$ and L2: $\vec{s}_0 = (0,1,-3)$ and $\vec{u} = (-12,6,1)$
- E) Calculate the angle between the lines or line segments.

2)
$$\begin{cases} x = 1 \\ y = 3 + t \\ z = 1 - t \end{cases}$$
 and
$$\begin{cases} x = 5 + 2t \\ y = 3 + t \\ z = 2 - 3t \end{cases}$$

Lab: Planes in 3D space

- A) Describe the following planes(find reference point and normal vector)
 - 1) 4x+3y-2z-10=0
 - 2) -x + 2y + z = 14
 - 3) x-y+7=0
- B) Write the equation of the plane with normal \vec{N} and reference point \vec{A}
 - 1) $\vec{N} = (1,2,3)$ $\vec{A} = (0,1,-2)$
 - 2) $\vec{N} = (2,-1,5)$ $\vec{A} = (1,2,-1)$
 - 3) $\vec{N} = (1,-5,0)$ \vec{A} (1,-2,0)
- C) Describe the location(coplanar ,positive or negative half-space) of point \vec{A} relative to the plane P in each case
 - 1) P: x y + z 4 = 0 and \vec{A} (1,2,1)
 - 2) P: -x + 2y + z = 14 and \vec{A} (-7,0,7)
 - 3) P: 2x + y 5z + 2 = 0 and \vec{A} (2,1,-2)
- D) Write the equation of a plane given its 3 vertices \vec{A} , \vec{B} , \vec{C}
 - 1) $\vec{A} = (1,0,1)$ $\vec{B} = (2,1,-1)$ $\vec{C} = (0,1,2)$
 - 2) $\vec{A} = (1,2,3) \ \vec{B} = (1,1,1) \ \vec{C} = (5,2,4)$
- E) Find the projection of the point A onto the plane P in the direction of the plane normal vector
 - 1) P: x y + z + 4 = 0 and \vec{A} (1,2,1)
 - 2) P: -x + 2y + z = 1 and \vec{A} (2,1,3)
 - 3) P: 2x + y 5z + 2 = 0 and \vec{A} (2,1,-2)
- F) Find the distance between the plane P and the point \vec{A}
 - 1) x+2y-z+1=0 $\vec{A}=(1,1,1)$
 - 2) x y + z 4 = 0 $\vec{A} = (1,2,1)$
 - 3) 3x + 2y + z = 7 $\vec{A} = (1,2,1)$
- G) Find the parametric equations for the line of intersection of the planes
 - 1) P1: -3x + 2y + z = -5 and P2: 7x + 3y 2z = -2
 - 2) P1 : -x + 2y + z = 14 and P2 : 2x + y = 3
- H) Given the two planes P1 and P2, Find the angle θ between the two planes
 - 1) P1: x y + z 4 = 0 and P2: x y + 2z = 0
 - 2) P1: 2x y + 3z = 1 and P2: x y + 2z = 0
- I) Given the two planes P1 and P2, Show that they are perpendicular.
 - 1) P1: x 2y + 4z = 7 and p2: 2x 5y 3z = 1
 - 2) P1: 2x + y = 3 and p2: 5x 10y 3z = 1
- J) Given the two planes P1 and P2, Show that they are parallel.
 - 1) P1: x 2y + 4z = 7 and p2: -2x + 4y 8z = 1
 - 2) P1: 2x + y z = 3 and p2: 6x + 3y 3z = 1