Кольца Илья Вячеславович

Лабораторная работа № 4

In [14]:

```
Вариант 4
In [12]:
import pandas as pd
import warnings
import numpy as np
import scipy.stats as sts
import matplotlib.pyplot as plt
'''import rpy2.robjects.numpy2ri
from rpy2.robjects.packages import importr
rpy2.robjects.numpy2ri.activate()
stats = importr('stats')'''
warnings.filterwarnings('ignore')
%matplotlib inline
In [33]:
df = pd.read csv('Data.csv')
df.head()
Out[33]:
  Age AttendedBootcamp BootcampFinish BootcampFullJobAfter BootcampLoanYesNo BootcampMonthsAgo BootcampNa
0 28.0
                   0.0
                                                 NaN
                                                                  NaN
                                                                                    NaN
                               NaN
1 22.0
                   0.0
                               NaN
                                                 NaN
                                                                  NaN
                                                                                    NaN
2 19.0
                   0.0
                               NaN
                                                 NaN
                                                                  NaN
                                                                                    NaN
3 26.0
                   0.0
                               NaN
                                                 NaN
                                                                  NaN
                                                                                    NaN
4 20.0
                   0.0
                               NaN
                                                 NaN
                                                                  NaN
                                                                                    NaN
5 rows x 113 columns
In [34]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15620 entries, 0 to 15619
Columns: 113 entries, Age to StudentDebtOwe
dtypes: float64(85), object(28)
memory usage: 13.5+ MB
```

df = df[['CityPopulation', 'EmploymentStatus', 'Gender', 'HasDebt', 'JobPref', 'JobWhere

Pref', 'MaritalStatus', 'Income', 'SchoolDegree']]

Out[14]:

	CityPopulation	n EmploymentStatus	Gender	HasDebt	JobPref	JobWherePref	MaritalStatus	Income	SchoolDegree
0	between 100,000 and 1 million	1 Employed for wages	male	1.0	freelance	NaN	married or domestic partnership	32000.0	some college credit, no degree
1	between 100,000 and 1 million	1 Employed for wages	male	0.0	work for a startup	in an office with other developers	NaN	15000.0	some college credit, no degree
2	more than 1 million		male	0.0	start your own business	NaN	NaN	48000.0	high school diploma or equivalent (GED)
3	more than 1 million	1	female	1.0	work for a startup	from home	NaN	43000.0	bachelor's degree
4	between 100,000 and 1 million	1 Employed for wages	female	1.0	work for a medium- sized company	in an office with other developers	NaN	6000.0	some college credit, no degree

In [15]:

```
df = df.dropna()
df = df[(df.Gender == 'male') | (df.Gender == 'female')]
df.head()
```

Out[15]:

	CityPopulation	EmploymentStatus	Gender	HasDebt	JobPref	JobWherePref	MaritalStatus	Income	SchoolDegree
20	more than 1 million	Employed for wages	female	1.0	work for a medium- sized company	in an office with other developers	married or domestic partnership	200000.0	master's degree (non- professional)
36	between 100,000 and 1 million	Self-employed freelancer	male	1.0	work for a medium- sized company	in an office with other developers	married or domestic partnership	60000.0	high school diploma or equivalent (GED)
59	more than 1 million	Employed for wages	male	1.0	work for a medium- sized company	in an office with other developers	married or domestic partnership	35000.0	some college credit, no degree
71	more than 1 million	Employed for wages	male	1.0	work for a multinational corporation	from home	married or domestic partnership	56000.0	some college credit, no degree
72	less than 100,000	Employed for wages	male	1.0	work for a medium- sized company	from home	married or domestic partnership	35000.0	bachelor's degree
4									Þ

In [16]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 931 entries, 20 to 15616
Data columns (total 9 columns):
# Column
                    Non-Null Count Dtype
---
                    -----
0 CityPopulation
                   931 non-null
                                  object
1 EmploymentStatus 931 non-null
                                  object
2
  Gender
                    931 non-null
                                  object
3
  HasDebt
                    931 non-null
                                  float64
                   931 non-null
   JobPref
                                  object
```

```
5 JobWherePref 931 non-null object 6 MaritalStatus 931 non-null object 7 Income 931 non-null float64 8 SchoolDegree 931 non-null object dtypes: float64(2), object(7) memory usage: 72.7+ KB
```

In [17]:

```
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до хода:") z, p = sts.shapiro(df.Income) print(f"Статистика критерия \{z\}, p_value \{p\}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода: Статистика критерия 0.8556973934173584, р value 2.449250369630941e-28

In [18]:

```
df['log_income'] = np.log(df.Income + 1)
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до
хода после лог-трансформации:")
z, p = sts.shapiro(df.log_income)
print(f"Статистика критерия {z}, p_value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода пос ле лог-трансформации:

Статистика критерия 0.9735249876976013, р value 5.58358003929782e-12

In [19]:

```
df['sqrt_income'] = np.sqrt(df.Income)
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до
хода после вычисления квадратного корня:")
z, p = sts.shapiro(df.sqrt_income)
print(f"Статистика критерия {z}, p_value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода пос ле вычисления квадратного корня:

Статистика критерия 0.9709372520446777, p value 1.1025697499097986e-12

In [20]:

```
df['inv\_income'] = 1 / (df.Income) print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до хода после вычисления квадратного корня:") z, p = sts.shapiro(df.inv_income) print(f"Статистика критерия {z}, p_value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода пос ле вычисления квадратного корня:

Статистика критерия 0.7213217616081238, p value 1.0208053496571024e-36

In [21]:

```
df['max_minus_income'] = (df.Income.max() + 1 - df.Income)
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до
xода после вычисления квадратного корня:")
z, p = sts.shapiro(df.max_minus_income)
print(f"Статистика критерия {z}, p_value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода пос ле вычисления квадратного корня:

Статистика критерия 0.8556959629058838, р value 2.448604220134599e-28

In [22]:

```
df['sqrt4_income'] = df.Income ** (1 / 4)
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до
хода после вычисления квадратного корня:")
z, p = sts.shapiro(df.sqrt4_income)
```

```
print(f"Статистика критерия {z}, p_value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода пос ле вычисления квадратного корня:

Статистика критерия 0.9876828789710999, p value 4.7637308853154536e-07

In [23]:

```
ргіпт (f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня до хода (первые 100):") z, p = sts.shapiro(df.Income[:100]) print(f"Статистика критерия \{z\}, p_value \{p\}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для уровня дохода (первые 100):

Статистика критерия 0.8403542041778564, р value 5.3046971260073406e-09

In [24]:

```
import statsmodels.api as sm
from statsmodels.formula.api import ols

df_short = df.iloc[:100, :]

model1 = ols("Income ~ SchoolDegree", df_short).fit()
model1.summary()
```

Out[24]:

OLS Regression Results

Dep. Variable:	Income	R-squared:	0.044
Model:	OLS	Adj. R-squared:	-0.052
Method:	Least Squares	F-statistic:	0.4561
Date:	Tue, 07 Dec 2021	Prob (F-statistic):	0.900
Time:	14:41:18	Log-Likelihood:	-1182.7
No. Observations:	100	AIC:	2385.
Df Residuals:	90	BIC:	2411.
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P>ltl	[0.025	0.975]
Intercept	5.85e+04	1.75e+04	3.350	0.001	2.38e+04	9.32e+04
SchoolDegree[T.associate's degree]	-3.164e+04	2.19e+04	-1.446	0.152	-7.51e+04	1.18e+04
SchoolDegree[T.bachelor's degree]	-7465.7143	1.84e+04	-0.405	0.686	-4.41e+04	2.92e+04
SchoolDegree[T.high school diploma or equivalent (GED)]	-1.369e+04	2.14e+04	-0.640	0.524	-5.62e+04	2.88e+04
SchoolDegree[T.master's degree (non-professional)]	-5777.7778	1.93e+04	-0.299	0.765	-4.41e+04	3.26e+04
SchoolDegree[T.no high school (secondary school)]	6500.0000	3.9e+04	0.166	0.868	-7.11e+04	8.41e+04
SchoolDegree[T.professional degree (MBA, MD, JD, etc.)]	-1.056e+04	2.14e+04	-0.494	0.623	-5.31e+04	3.19e+04
SchoolDegree[T.some college credit, no degree]	-8783.3333	2.02e+04	-0.436	0.664	-4.88e+04	3.13e+04
SchoolDegree[T.some high school]	-1.95e+04	2.67e+04	-0.731	0.467	-7.25e+04	3.35e+04
SchoolDegree[T.trade, technical, or vocational training]	-1.525e+04	2.47e+04	-0.618	0.538	-6.43e+04	3.38e+04

 Omnibus:
 48.916
 Durbin-Watson:
 1.740

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 138.918

 Skew:
 1.774
 Prob(JB):
 6.83e-31

 Kurtosis:
 7.556
 Cond. No.
 18.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Статистика Дарбина-Уотсона стремится к **2**, следовательно автокорреляция отсутствует.\ Омнибус тест, **p-value=0 < 0.05** - данные гомоскедастичны.\ Cond. No. 18.2 < 20, мультиколлинеарность не наблюдается.\ $p_value > 0.05$, гипотеза об отсутствии связи между образованием и уровнем дохода принимается. Взаимосвязь отсутствует, тест Тьюки не применяется.

```
In [25]:
```

```
model2 = ols("Income ~ C(Gender) + C(MaritalStatus)", df short).fit()
print(model2.summary())
anova = sm.stats.anova lm(model2, typ=1)
print(anova)
                OLS Regression Results
______
Dep. Variable:
                      Income R-squared:
                                                    0.003
                      OLS Adj. R-squared:
                                                   -0.028
Model:
              Least Squares F-statistic:
                                                  0.08715
Method:
              Tue, 07 Dec 2021 Prob (F-statistic):
Date:
                                                    0.967
                            Log-Likelihood:
                                                  -1184.8
Time:
                   14:41:18
No. Observations:
                        100
                            AIC:
                                                    2378.
Df Residuals:
                         96
                            BIC:
                                                     2388.
Df Model:
Covariance Type:
                   nonrobust
______
coef std err
                                                           +
P>|t|
     [0.025
               0.975]
______
                                      4.608e+04 1.7e+04
Intercept
                                                        2.715
0.008 1.24e+04 7.98e+04
C(Gender)[T.male]
                                     -2976.7607 8811.301 -0.338
0.736 -2.05e+04 1.45e+04
C(MaritalStatus)[T.married or domestic partnership] 5337.5571 1.59e+04 0.336
0.738 -2.62e+04 3.69e+04
                                2426.1620 1.97e+04 0.123
C(MaritalStatus)[T.single, never married]
0.902 -3.67e+04 4.15e+04
_____
                      50.101 Durbin-Watson:
Omnibus:
Prob(Omnibus):
                      0.000
                           Jarque-Bera (JB):
                                                  142.275
                       1.827 Prob(JB):
                                                  1.27e-31
Skew:
                       7.561 Cond. No.
Kurtosis:
                                                    12.9
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie
              df
                     sum sq
                              mean sq
                                         F
                                             PR (>F)
C(Gender)
             1.0 1.266437e+08 1.266437e+08 0.106214 0.745205
C(MaritalStatus) 2.0 1.850984e+08 9.254920e+07 0.077620 0.925374
Residual
            96.0 1.144646e+11 1.192339e+09
                                        NaN
                                                NaN
```

Статистика Дарбина-Уотсона стремится к **2**, следовательно автокорреляция отсутствует.\ Омнибус тест, **p-value=0 < 0.05** - данные гомоскедастичны.\ **Cond. No. 12.9 < 20**, мультиколлинеарность не наблюдается.\ **p_value > 0.05**, гипотеза об отсутствии связи между уровнем дохода и параметрами принимается.

In [26]:

```
model3 = ols("Income ~ C(Gender) * C(MaritalStatus)", df_short).fit()
print(model3.summary())
anova = sm.stats.anova_lm(model3, typ=1)
print(anova)
```

```
.__ ...______ ... ....
______
Dep. Variable:
                      Income R-squared:
                                                       0.013
                       OLS Adj. R-squared:
                                                      -0.039
Model:
     Least Squares F-statistic:
Tue, 07 Dec 2021 Prob (F-statistic):
14:41:18 Log-Likelihood:
                                                      0.2518
Method:
Date:
                                                     -1184.3
Time:
No. Observations:
                         100
                              AIC:
                                                       2381.
Df Residuals:
                          94
                             BIC:
                                                       2396.
                           5
Df Model:
Covariance Type:
                    nonrobust
______
        t P>|t| [0.025
                               0.975]
                                                         4e+04 3.47
Intercept
e+04 1.152 0.252 -2.89e+04
e+04 1.132
C(Gender)[T.male]
'04 0.119 0.905 -7.24e+04 8.17e+04
                               1.09e+05
                                                     4625.0000 3.88e
C(MaritalStatus) [T.married or domestic partnership]
                                                     1.423e+04 3.58e+
0.398 0.692 -5.68e+04 8.53e+04
C(MaritalStatus)[T.single, never married]
                                                      -1.09e+04 4.25e
+04 -0.256 0.798 -9.53e+04 7.35e+04
C(Gender) [T.male]:C(MaritalStatus) [T.married or domestic partnership] -1.104e+04
                                                                 4e+
04 -0.276 0.783 -9.04e+04 6.83e+04
C(Gender)[T.male]:C(MaritalStatus)[T.single, never married]
                                                     1.827e+04 4.81e+
0.380 0.705 -7.71e+04 1.14e+05
_____
                      49.257 Durbin-Watson:
Omnibus:
Prob(Omnibus):
                       0.000 Jarque-Bera (JB):
                                                     136.824
Skew:
                        1.804 Prob(JB):
                                                    1.95e-30
                        7.453 Cond. No.
______
[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie
d.
                      df
                                    mean sq
                              sum sq
                     1.0 1.266437e+08 1.266437e+08 0.105108
C(Gender)
C(Gender)
C(MaritalStatus)
                     2.0 1.850984e+08 9.254920e+07 0.076811
C(Gender):C(MaritalStatus) 2.0 1.205011e+09 6.025055e+08 0.500051
                     94.0 1.132595e+11 1.204889e+09
Residual
                      PR (>F)
                     0.746504
C(Gender)
C(MaritalStatus)
                     0.926123
C(Gender):C(MaritalStatus) 0.608104
```

Статистика Дарбина-Уотсона стремится к **2**, следовательно автокорреляция отсутствует.\ Омнибус тест, **p-value=0 < 0.05** - данные гомоскедастичны.\ Cond. No. 46.2 > 20, мультиколлинеарность наблюдается.\ **p_value > 0.05**, гипотеза об отсутствии связи между уровнем дохода и параметрами принимается.

NaN

In [27]:

Residual

```
data = pd.read_excel('countries.xlsx', sheet_name='russia')
data = data.iloc[:, :10]
data.head()
```

Out[27]:

		brent	petrol_ru	usa	interest_ru	intiation_ru	petroi_br	interest_br	inflation_br
0 2021-12-01 5958	5.375500 5240	0.182184 1	45.462335	74.0191	7.50	1.11	58.198200	9.25	0.9
1 2021-11-01 5897	4.278400 5932	2.841316 1	69.926867	72.2724	7.50	1.11	58.717200	9.25	0.9
2 2021-10-01 5324	2.145160 5969	9.471025 1	56.704642	71.4372	6.75	1.11	58.042000	9.25	0.9
3 2021-09-01 5185	9.870920 5413	3.151835 1	55.521319	72.8676	6.75	0.60	57.960143	9.25	1.3

```
In [28]:
```

```
for i in ['seed', 'brent', 'usd', 'petrol ru', 'petrol br']:
   data[i] = pd.cut(data[i], bins=[data[i].quantile(0) - 1,
                                data[i].quantile(0.2),
                                data[i].quantile(0.4),
                                data[i].quantile(0.60),
                                data[i].quantile(0.80),
                                data[i].quantile(1) + 1],
                    labels=['very low', 'low', 'medium', 'high', 'very high'])
data.head()
```

Out[28]:

	date	seed	brent	petrol_ru	usd	interest_ru	inflation_ru	petrol_br	interest_br	inflation_br
0	2021-12-01	very high	very high	high	high	7.50	1.11	very high	9.25	0.9
1	2021-11-01	very high	very high	very high	medium	7.50	1.11	very high	9.25	0.9
2	2021-10-01	very high	very high	very high	medium	6.75	1.11	very high	9.25	0.9
3	2021-09-01	very high	very high	very high	medium	6.75	0.60	very high	9.25	1.3
4	2021-08-01	very high	very high	very high	medium	6.50	0.17	very high	9.25	0.2

In [29]:

```
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для инфляции
в России:")
z, p = sts.shapiro(data.inflation ru)
print(f"Статистика критерия {z}, p value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для инфляции в России Статистика критерия 0.9729399681091309, p value 0.5111347436904907

In [30]:

```
print(f"Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для инфляции
в Белоруссии:")
z, p = sts.shapiro(data.inflation br)
print(f"Статистика критерия {z}, p value {p}")
```

Проверка гипотезы на нормальность распределения тестом Шапиро-Уилка для инфляции в Белору ссии:

Статистика критерия 0.9658294916152954, р value 0.32278209924697876

In [31]:

```
model4 = ols("inflation ru ~ C(seed) + C(brent) + C(petrol ru)", data).fit()
print(model4.summary())
anova = sm.stats.anova lm(model4, typ=1)
print(anova)
```

OLS Regression Results

Dep. Variable:	inflation ru	R-squared:	0.536
Model:	_ OLS	Adj. R-squared:	0.293
Method:	Least Squares	F-statistic:	2.211
Date:	Tue, 07 Dec 2021	Prob (F-statistic):	0.0493
Time:	14:41:21	Log-Likelihood:	0.71463
No. Observations:	36	AIC:	24.57
Df Residuals:	23	BIC:	45.16
Df Model:	12		
Covariance Type:	nonrobust		

coef std err t P>|t| [0.025

0.975]

0.059 					
C(petrol_ru)[T.high] 0.138 C(petrol ru)[T.very high]	-0.3696 -0.6363	0.246	-1.505 -1.893	0.146	-0.878 -1.332
C(petrol_ru)[T.medium] 0.103	-0.2834	0.187	-1.517	0.143	-0.670
(petrol_ru)[T.low] .218	-0.1321	0.169	-0.780	0.443	-0.482
C(brent)[T.very high]	0.7581	0.356	2.129	0.044	0.022
J.987 C(brent)[T.high] 1.197	0.6548	0.262	2.498	0.020	0.112
J.755 C(brent)[T.medium] J.987	0.4952	0.238	2.082	0.049	0.003
1.213 C(brent)[T.low]).755	0.3155	0.212	1.487	0.151	-0.124
0.826 C(seed)[T.very high] 1.213	0.6221	0.286	2.178	0.040	0.031
0.940 C(seed)[T.high]	0.4689	0.173	2.714	0.012	0.111
0.611 C(seed)[T.medium]	0.4533	0.235	1.928	0.066	-0.033
0.471 C(seed)[T.low]	0.1515	0.222	0.682	0.502	-0.308
Intercept	-0.0315	0.243	-0.130	0.898	-0.534

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

	df	sum_sq	mean_sq	F	PR (>F)
C(seed)	4.0	1.627046	$0.406\overline{7}62$	4.618297	0.006958
C(brent)	4.0	0.350369	0.087592	0.994507	0.430456
C(petrol_ru)	4.0	0.359509	0.089877	1.020449	0.417605
Residual	23.0	2.025751	0.088076	NaN	NaN

Статистика Дарбина-Уотсона стремится к 2, следовательно автокорреляция отсутствует.\ Омнибус тест, рvalue=0.9 > 0.05 - данные гетероскедастичны.\ Cond. No. 13.2 < 20, мультиколлинеарность не наблюдается.\ p_value= 0.049 < 0.05, гипотеза об отсутствии связи между уровнем инфляции и параметрами отвергается.

In [32]:

```
model5 = ols("inflation br ~ C(seed) + C(brent) + C(petrol br)", data).fit()
print(model5.summary())
anova = sm.stats.anova lm(model5, typ=1)
print(anova)
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:	inflation_br OLS Least Squares Tue, 07 Dec 2021 14:41:21 36 24	Adj. R-squared: F-statistic:	0.377 0.092 1.323 0.272 -14.103 52.21 71.21
Df Model:	11	210.	, 1, 1, 1

nonrobust

Covariance Type: ______

0.9751

coef std err t P>|t| [0.025]

-					
Intercept	-0.4135	0.410	-1.009	0.323	-1.2
0.433	0 5451	0.000	1 066	0 074	0 0
C(seed)[T.low] 1.148	0.5451	0.292	1.866	0.074	-0.0
C(seed)[T.medium]	0.7891	0.363	2.176	0.040	0.0
1.537					
C(seed)[T.high]	0.7959	0.440	1.809	0.083	-0.1
1.704 C(seed)[T.very high]	0.5843	0.565	1.035	0.311	-0.5
1.750	0.3043	0.303	1.033	0.511	0.5
C(brent)[T.low]	0.5254	0.310	1.695	0.103	-0.1
1.165	0 5500	0 400	1 246	0 101	0 0
C(brent)[T.medium] 1.395	0.5508	0.409	1.346	0.191	-0.2
C(brent)[T.high]	0.6379	0.384	1.662	0.109	-0.1
1.430					
C(brent)[T.very high]	0.2566	0.391	0.657	0.517	-0.5
1.063 C(petrol br)[T.low]	0.1820	0.359	0.506	0.617	-0.5
).924	0.1020	0.333	0.300	0.017	0.5
C(petrol_br)[T.medium]	0.1358	0.412	0.330	0.744	-0.7
).985	0 0120	0 517	0 005	0 000	1 0
C(petrol_br)[T.high] 1.053	-0.0130	0.517	-0.025	0.980	-1.0
C(petrol br)[T.very high]	0.2566	0.391	0.657	0.517	-0.5
.063					
 Omnibus:	0.131	======= Durbin-Wa	======= tson:	:=======	1.755
Prob(Omnibus):	0.937	Jarque-Be	ra (JB):		0.338
Skew:	-0.068	Prob(JB):		2	0.844
Kurtosis:	2.545	Cond. No.		3.	.94e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.
- [2] The smallest eigenvalue is 3.4e-34. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

	dī	sum_sq	mean_sq	Ľ.	PR (>F)
C(seed)	4.0	1.830850	0.457713	2.380746	0.079938
C(brent)	4.0	0.831339	0.207835	1.081032	0.387925
C(petrol_br)	4.0	0.151057	0.037764	0.196427	0.937830
Residual	24.0	4.614142	0.192256	NaN	NaN

Статистика Дарбина-Уотсона стремится к 2, следовательно автокорреляция отсутствует.\ Омнибус тест, p-value=0.9 > 0.05 - данные гетероскедастичны.\ Cond. No. 3.94e+17> 20, мультиколлинеарность наблюдается.\ p_value 0.27 > 0.05, гипотеза об отсутствии связи между уровнем инфляции и параметрами принимается.