Report_Kenyan_Political_Tweets

December 4, 2018

Note: code is included if it prints an important output or if it is otherwise relevant to the report Full code can be found at https://github.com/crazyfrogspb/kenya

1 User groups

First, we load the user data and create group mappings based on two TXT files

As it turns out, the followers of two accounts haven't been collected (@mavunochurchorg is suspended, @HouseofGraceHQ is just not in the dataset for some reason, can recollect if necessary)

```
follows_mavunochurchorg not in columns
follows_HouseofGraceHQ not in columns
```

Over 85% of the users belong to single group according to our mapping

```
number_of_groups
       649
1
     19972
2
      2251
       355
3
dtype: int64
                   Percentage
{\tt number\_of\_groups}
                      0.027938
1
                      0.859750
2
                      0.096901
3
                      0.015282
                      0.000129
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96b125c358>

Among users with multiple groups, the most popular combinations are Mainline Protestant + nan, Mainline Protestant + Pentecostal + nan and Mainline Protestant + Pentecostal + nan

Out[9]:						users_num
	<pre>group_Mainline</pre>	${\tt Protestant}$	<pre>group_Pentecostal</pre>	group_Catholic	<pre>group_nan</pre>	
	1.0		0.0	0.0	1.0	971
			1.0	0.0	0.0	746
	0.0		1.0	0.0	1.0	479
	1.0		1.0	0.0	1.0	344
			0.0	1.0	0.0	35
	0.0		0.0	1.0	1.0	14
	1.0		0.0	1.0	1.0	7
	0.0		1.0	1.0	0.0	6
	1.0		1.0	1.0	1.0	3
	0.0		1.0	1.0	1.0	2
	1.0		1.0	1.0	0.0	2

2 Tweets

For now, let's keep only users who belong to a single group. Let's also create user-group mappings and calculate the number of users by group. Note that there are a lot of nan (JCCKenya) users

```
Counter({'group_nan': 8246, 'group_Mainline Protestant': 6262, 'group_Pentecostal':
5265, 'group_Catholic': 678})
```

Next, we load all tweets, remove duplicates and tweets that are out of time range; we also drop tweets for which we couldn't identify a single group

/home/crazyfrogspb/.local/share/virtualenvs/kenya/lib/python3.6/site-packages/IPython/core/interactiveshell.py:3020: DtypeWarning: Columns (1,3) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)

Some descriptive statistics and graphs

Dataset size: (8997739, 7) Unique users: 16190

Number of tweets per group: group group_Catholic 303839 group_Mainline Protestant 3524303 group_Pentecostal 1923792 group_nan 3245805

dtype: int64

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96b12f4438>

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96b12a52b0>

2.1 Politicalness

Let's load Word2Vec model pretrained on the sample of 500000 Kenyan tweets and define functions that we need for calculating political scores. Here, we use snowballing technique: starting with a small sample of politicall related words, we then gradually add more words that are most similar to the current dictionary

Let's generate expanded list of political words

```
/home/crazyfrogspb/.local/share/virtualenvs/kenya/lib/python3.6/site-packages/gensim/matutils.py:737: FutureWarning: Conversion of the second argument of issubdtype from `int` to `np.signedinteger` is deprecated. In future, it will be treated as `np.int64 == np.dtype(int).type`.

if np.issubdtype(vec.dtype, np.int):
```

```
['politics', 'government', 'campaign', 'election', 'vote', 'ideology', 'political',
'democracy', 'president', 'partisan', 'corruption', 'reform', 'kenyatta', 'uhuru',
'ruto', 'raila', 'odinga', 'presidency', 'opposition', 'coalition', 'referendum',
'handshake', 'regime', 'electorate', 'legitimacy', 'rao', 'uhuruto', 'majority',
'2022', 'rigging', 'despots', 'uthamaki', 'dictatorship', 'opposed', 'tribal',
'politicians', 'democratic', 'parties', 'sycophants', 'jubilee', 'odm', 'cord',
'intimidation', "gov't", 'rallies', 'oppose', 'nusu', 'illegitimate',
'unconstitutional', 'elites', 'dismissed', 'judiciary', 'electoral', 'legally',
'politically', 'negotiated', 'minority', 'hypocrisy', 'opposing', 'interference',
'allegations', 'impasse', 'threaten', 'incompetent', 'bribery', 'complicit',
'constitutional', 'intolerance', 'defended', 'squarely', 'incompetence', 'purported',
'purport', 'anarchy', 'jurisdiction', 'jsc', 'removal', 'suspend', 'outright',
'govt', 'stance', 'tribunal', 'prosecute', 'impeachment', 'parliamentary',
'fraudulent', 'advises', 'baseless', 'stalemate', 'rejecting', 'duplicitous'
'accuse', 'unfit', 'interfering', 'dissent', 'duress', 'irreducible', 'disbanded',
'scork', 'prosecution', 'reiterated', 'irregularities', 'illegalities',
```

```
'embarrassment', 'lapdogs', 'incitement', 'blatant', 'castigated', 'sharad',
'restructure', 'candidature', 'pnu', 'perennial', 'abuses', 'scrutinize', 'delegated',
'pseudo', 'undermining', 'jailing', 'aden', 'scotus', 'petitioners', 'guliye',
'abolish', 'subvert', 'dissidents', 'charade', 'malpractices', 'commission',
'outlawed', 'dismissal', 'revoked', 'caretaker', 'onslaught', 'repressive',
'prosecuting', 'politcal', 'disbandment', 'despotism', 'criminality', 'engineered',
'perpetuate', 'unions', 'condone', 'slogans', 'harrassing', 'mischief', 'agitating',
'violate', 'allied']
```

Now we load validation data and generate political scores Correlation of political scores with coder_1 is 0.65, with coder_2 - 0.73

```
Out [21]:
                        coder_2
                                       id
                                            coder_1 W2V_political
        coder 2
                       1.000000 0.177303
                                           0.617595
                                                          0.727474
        id
                       0.177303 1.000000 0.210739
                                                          0.217393
        coder 1
                       0.617595 0.210739 1.000000
                                                          0.659002
        W2V_political 0.727474 0.217393 0.659002
                                                          1.000000
```

Let's choose threshold for political score that gives the highest accuracy (according to coder_2). We can achieve 87% accuracy. Precision is 90% (meaning that 90% of tweets identified as political are indeed political), recall is 81% (we can successfully identify 81% of political tweets from the validation dataset)

```
Best threshold: 0.34, best accuracy: 0.868 Precision: 0.895, recall: 0.814
```

2.1.1 Analysis

Now we can apply these rules to all tweets to calculate different statistics for the different group of users

Let's look at some descriptive stats

```
8710773.000000
              0.226505
mean
std
              0.201107
             -0.466819
min
25%
              0.089854
50%
              0.201244
75%
              0.339705
              0.933720
Name: W2V_political, dtype: object
             political_tweets
is_political
0
                       6823394
1
                       2174345
```

Now we can finally look at the mean and median values of:

- 1) percentage of political tweets by group
- 2) political scores

Out[28]:		<pre>is_political</pre>		W2V_political	
		mean	${\tt median}$	mean	median
	group				
	<pre>group_Catholic</pre>	0.279237	0	0.247214	0.219846
	<pre>group_Mainline Protestant</pre>	0.280528	0	0.247286	0.223539
	<pre>group_Pentecostal</pre>	0.195158	0	0.203159	0.181588
	group nan	0.223486	0	0.215702	0.187788

Mainline Protesant and Catholic are significantly more political than Pentercostal group (can perform statistical tests if necessary)

We can also calculate mean values, but averaging on the user level first

Out[29]:		is_political	W2V_political
	group		
	<pre>group_Catholic</pre>	0.270294	0.240474
	<pre>group_Mainline Protestant</pre>	0.247475	0.231318
	<pre>group_Pentecostal</pre>	0.193971	0.202099
	group_nan	0.208377	0.208057

Same picture - Pentecostal group is the least politically active What abouts absolute counts of tweets?

Out[30]:		num_tweets
	<pre>group group_Catholic group_Mainline Protestant group_Pentecostal group_nan</pre>	595.762745 699.544065 474.073928 492.983748
Out[31]:		num_tweets
	group	
	<pre>group_Catholic</pre>	184.041215
	<pre>group_Mainline Protestant</pre>	214.740443
	<pre>group_Pentecostal</pre>	111.407715
	group_nan	124.895489

Mainline Protestant are much more active in general, and tweet more about politics