10/03/351

15 APR 2005

REC'D 22 DEC 2003

WIPO

TO ALL TO WHOM THESE; PRESENTS; SHALL, COME;

UNITED STATES DEPARTMENT OF COMMERCE **United States Patent and Trademark Office**

December 18, 2003

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/419,463

FILING DATE: October 18, 2002

RELATED PCT APPLICATION NUMBER: PCT/US03/33142

By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

> M. SIAS **Certifying Officer**

PRIORITY DOCUMENT

10-27-50

PTO/SB/16 (10-01)

Approved for use through10/31/2002 OMB 0651-0032

U.S. Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

PDOVISION A LARDE LO A TION TO THE PROPERTY OF COMMERCE

PDOVISION A LARDE LO A TION TO THE PROPERTY OF COMMERCE

PDOVISION A LARDE LO A TION TO THE PROPERTY OF THE PROPE

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c) Express Mail Label No. ET552826798US

	5		INVENTOR	(S)				770
ı	Given Name (first and middle [if at	any]) Family	Name or Su	mame	(City and eit	Res	sidence ite or Foreign Coun	410
	Monique	Royer			Montpelli		•	//
	Additional inventors are being	named on the1	separately nu	imbered sheets	attached hereto			
ı		TITLE OF THE IN						
	COMPLETE BIOSYNTHETIC (ANTIBIOTICS, INCLUDING THI USES THEREOF	GENE SET FOR S IE ALBICIDIN FAMIL	YNTHESIS Y, RESIST	OF POLYK ANCE GENES	ETIDE S, AND			
ı	Direct all correspondence to:	CORRESPO	ONDENCE A	DDRESS				
İ	Customer Number OR Type	e Customer Number here	<u> </u>	→	Place Bar C	Custor ode La	mer Number bel here	
I	Firm or Individual Name	artin L. McGrego	r	•		-		
	Address 264	415 Oak Ridge Drive						
	Address							-;
ļ	City Spri	ing	State	TX	ZIP		77380	
ŀ	Country US/		Telephone	832-585	Fax		11360	
ł	Specification Number of Page	ENCLOSED APPLICA	TION PARTS	S (check all that	apply)			
I	Constitution of Page		[•	CD(s), Numl	ber 1			
I	Drawing(s) Number of Sheets Application Data Sheet. See 37			Other (speci	ify)]
ľ	METHOD OF PAYMENT OF FILING		ICIONAL ACI					
ſ	Applicant claims small entity s	status. See 37 CFR 1.27	ISIUNAL API	PLICATION FOR	PATENT	Ell	ING FEE	
I	A check or money order is en	nclosed to cover the filing	fees				DUNT (\$)	- 1
Ĭ	The Commissioner is hereby fees or credit any overpaymen Payment by credit card. Form	ent to Deposit Account No	mber:			\$	75.00	
ľ	The invention was made by an agence	cy of the United States G	overnment or	under a contrac	t with an agence	v of the		
ı	United States Government. No.				· ········	y or are	•	Į.
ł	Yes, the name of the U.S. Governmen	nt agency and the Governme	ent contract nur	nber are:				
L								ı
	espectivity submittee	An Scho	162	Date 1	0/18/2002			
	PED or PRINTED NAME Martin L	. McGregor	,		STRATION NO	.	29,329	
	ELEPHONE 832-585-0946		-		et Number:		79-1	

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

This collection of information is required by 37 CFR 1.51. The information is used by the public to file (and by the PTO to process) a provisional application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the complete provisional application to the PTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, Washington, D.C. 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Box Provisional Application, Assistant

PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (02-01)
Approved for use through 10/31/2002 OMB 0551-0032
US Palent and Trademark Office; US DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

79-1 **Docket Number** INVENTOR(S)/APPLICANT(S) Residence Given Name (first and middle [if any]) Family or Surname (City and either State or Foreign Country) Dean W. Gabriel Gainseville, Florida Roger **Frutos** Montpellier FRANCE Philippe Rott Montpellier FRANCE

Number	2	of	2
Number	Z	Ωf	

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

Attorney Docket 79-1

In the UNITED STATES PATENT and TRADEMARK OFFICE

APPLICATION OF M. ROYER, D. W. GABRIEL, R. FRUTOS AND P. ROTT

COMPLETE BIOSYNTHETIC GENE SET FOR SYNTHESIS OF POLYKETIDE ANTIBIOTICS, INCLUDING THE ALBICIDIN FAMILY, RESISTANCE GENES, AND USES THEREOF

TECHNICAL FIELD

The invention is in the field of genetic engineering, and in particular the isolation and expression of the biosynthetic genes that produce a family of antibiotics known generically as albicidins.

BACKGROUND OF THE INVENTION

U.S. Patent No. 4,525,354 to Birch and Patil described a "non-peptide" antibiotic of M.W. "about 842" called "albicidin". Albicidin is described as produced by culturing chlorosis-inducing strains of Xanthomonas albilineans isolated from diseased sugarcane, and mutants thereof. The antibiotic was isolated from the culture medium by adsorption on resin and was purified by gel filtration and High Performance Liquid Chromatography (HPLC). The chemical structure of this antibiotic was not determined and remained unknown, although the Birch and Patil patent disclosed spectral data for a fraction having antibiotic activity and the presence of approximately 38 carbon atoms and at least one COOH group. The present invention describes and characterizes the family of antibiotics that is produced by culturing chlorosisinducing strains of X. albilineans and mutants thereof, together with the complete set of twenty biosynthetic genes capable of producing the unique and previously uncharacterized family of antibiotics produced by X. albilineans and previously lumped together as "albicidins". The set of twenty biosynthetic genes isolated, purified and cloned from a culture of X. albilineans revealed that this set of biosynthetic genes is capable of synthesizing products exhibiting a high level of variation among the products, indicating that albicidins comprise a family of polyketide antibiotics. The albicidins described in the present invention are synthesized by twenty genes, including one polyketide-peptide synthase, one polyketide synthase and two peptide synthases, but the substrates of the polyketide-peptide synthase and of one peptide synthase are not α -amino acids. The biosynthetic enzymes represent a previously undescribed and unique polyketide antibiotic biosynthetic system.

5

10

15

20

25

Xanthomonas albilineans is a systemic, xylem-invading pathogen that causes leaf scald disease of sugarcane (interspecific hybrids of Saccharum species) (Ricaud and Ryan, 1989; Rott and Davis, 2000). Leaf scald symptoms include chlorosis, necrosis, rapid wilting, and plant death. Chlorosis-inducing strains of the pathogen produce several toxic compounds. The major toxic component, named albicidin, inhibits chloroplast DNA replication, resulting in blocked chloroplast differentiation and chlorotic leaf streaks that are characteristic of the plant disease (Birch and Patil, 1983, 1985b, 1987a and 1987b). Several studies established that albicidin plays a key role in pathogenesis and especially in the development of disease symptoms (Wall and Birch, 1997; Zhang and Birch, 1997; Zhang et al., 1999; Birch, 2001).

10

5

The prior art indicates that albicidin inhibits prokaryotic DNA replication and is bactericidal to a range of gram-positive and gram-negative bacteria (Birch and Patil, 1985a). Albicidin is therefore of interest as a potential clinical antibiotic (Birch and Patil, 1985a). However, low yield of toxin production in X. albilineans has slowed down studies into the chemical structure of albicidin and its therapeutic application (Zhang et al., 1998). The chemical structure of this albicidin remains unknown, however this albicidin has been partially characterized as a non-peptide antibiotic with a molecular weight of about 842 that contains approximately 38 carbon atoms with three or four aromatic rings, at least one COOH group, two OCH3 groups, a trisubstituted double bond and a CN linkage (Birch and Patil, 1985a; Huang et al., 2001).

20

15

Molecular cloning and characterization of the genes governing the biosynthesis of albicidin is of considerable interest because such information indicates approaches to engineer overproduction of albicidin, to characterize its chemical structure, to allow therapeutical applications and to clarify the relationship between toxin production and the ability to colonize sugarcane. Two similar mutagenesis and complementation studies have been conducted to identify the genetic basis of albicidin production in *X. albilineans* strains isolated in two different geographical locations, Australia and Florida.

25

30

One study of X. albilineans strain LS155 from Australia revealed that genes for albicidin biosynthesis and resistance span at least 69kb (Wall and Birch, 1997). Subsequently, three genes required for albicidin biosynthesis were identified, cloned and sequenced from two Australian strains of X. albilineans (LS155 and Xa13): xabA, xabB and xabC (Huang et al., 2001; Huang et al. 2000a, 2000b). The xabB gene encodes a large protein with a predicted size of 525.6 kDa, with a modular architecture indicative of a multi functional polyketide synthase (PKS) linked to a nonribosomal peptide synthetase (NRPS) (Huang et al., 2001). The xabC gene, located immediately downstream from xabB, encodes an S-adenosyl-L-methionine (SAM)-dependent O-

methyltransferase (Huang et al., 2000a). The xabA gene, located in another region of the genome, encodes a phosphopantetheinyl transferase required for post-translational activation of PKS and NRPS enzymes (Huang et al., 2000b).

These first results demonstrated that the albicidin biosynthesis apparatus is a PKS and/or NRPS system. Such systems assemble simple acyl-coenzyme A or amino acid monomers to produce polyketides and/or nonribosomal peptides (Marahiel et al., 1997; Cane, 1997; Cane and Walsh, 1999). These metabolites form very large classes of natural products that include numerous important pharmaceuticals, agrochemicals, and veterinary agents such as antibiotics, immunosuppressants, anti-cholesterolemics, as well as antitumor, antifungal and antiparasitic agents. Genetic studies of prokaryotic PKS and NRPS produced detailed information regarding the function and the organization of genes responsible for the biosynthesis of polyketides and nonribosomal peptides. Such knowledge, in turn, made it possible to produce combinations of PKS and NRPS genes from different microorganisms in order to produce novel antibiotics (McDaniel et al., 1999; Rodriguez and McDaniel, 2001; Pfeifer et al., 2001). Investigating the complete albicidin biosynthesis apparatus is therefore of great interest because such results may contribute to the knowledge as to how PKS and NRPS interact and how they might be manipulated to engineer novel molecules.

A second study with X. albilineans strain Xa23R1 from Florida revealed that at least two gene clusters, one spanning more than 48 kb, are involved in albicidin production (Rott et al., 1996). This conclusion was based on the following data: (I) fifty Xa23R1 mutants defective in albicidin production were isolated; (ii) a Xa23R1 genomic library of 845 clones, designated pALB1 to pALB845, was constructed; (iii) two overlapping DNA inserts of approximately 47 kb and 41 kb, from clones pALB540 and pALB571 respectively, complemented forty-five mutants and were supposed to contain a major gene cluster involved in albicidin production; (iv) a DNA insert of approximately 36 kb, from clone pALB639, complemented four of the five remaining mutants not complemented by pALB540 and pALB571, and was supposed to contain a second region involved in albicidin production; and (v) the remaining mutant, AM37, which was not complemented by any of the three cosmids pALB540, pALB571 and pALB639, was supposed to be mutated in a third region of the genome involved in albicidin production.

The DNA sequences of all of the genes required to produce the albicidin family of polyketide antibiotics, the expressed protein amino acid sequences of all of the genes and the deduced structure of Albicidin have not been previously reported, although fragmentary sequences that include three of the biosynthetic genes have been reported. Identification of one albicidin gene, xabC, as a methyltransferase gene involved in albicidin biosynthesis is reported

30

5

10

15

20

25

by Huang, G., Zhang, L. & Birch, R.G. (2000a, Gene 255, 327-333) and claimed as biologically active in producing a polyketide antibiotic in PCT WO 02/24736 A1. Identification of a second albicidin gene, xabA, as a phosphopantetheinyl transferase gene is reported by Huang, G., Zhang, L. and Birch, R.G. (2000b) Gene 258, 193-199 and claimed as biologically active in producing a polyketide antibiotic in PCT WO 02/24736 A1. Huang, G., Zhang, L. & Birch, R.G. (2001) Microbiology 147, 631-642, report a DNA sequence of xabB (GenBank accession # AF239749), a multi functional polyketide-peptide synthetase that may be essential for albicidin biosynthesis in Xanthomonas albilineans. This xabB gene is reported as full length by Birch in PCT WO 02/24736 A1 (their seq. ID #1) and claimed by Birch in PCT WO 02/24736 A1 as a biologically active polyketide synthase of 4,801 amino acids in length, enabling production of albicidin. However, the DNA sequence reported by Huang et al (2001) in GenBank AF239749 and by Birch in PCT WO 02/24736 A1 (their seq. ID #1) appears to be incomplete and missing 6,234 bp of DNA sequence encoding 2,078 amino acids. We claim the complete DNA sequence of xabB (albI, our seq. 20) as 20,637 bp, encoding a biologically active polyketide synthase of 6,879 amino acids of in this application (our seq ID #26). Factors affecting biosynthesis by Xanthomonas albilineans of albicidins antibiotics and phytotoxins are discussed in J. Appl. Microbiol. 85, 1023-1028. and Wall, M.K. & Birch, R.G. (1997). Genes for albicidin biosynthesis and resistance span at least 69 kb in the genome of Xanthomonas albilineans. Lett. Appl. Microbiol. 24, 256-260. A gene from X. albilineans strain Xa13, designed AlbF, which confers high level albicidin resistance in Escherichia coli and which encodes a putative albicidin efflux pump, was directly submitted to Genbank by Bostock and Birch (Accession n° AF403709).

SUMMARY OF THE INVENTION

5

10

15

20

25

30

The invention provides a novel antibiotic family, Albicidins, produced by three novel biosynthetic gene clusters (XALB1, XALB2, and XALB3) contained within a host cell DNA in which one strand comprises non-contiguously SEQ. ID No. 1, SEQ. ID No. 2 and SEQ ID No. 3, and the cell expresses the DNA to provide peptides including those named Albi (SEQ ID No. 26) (encoded by SEQ ID No. 20), Albii (SEQ ID No. 27) (encoded by SEQ ID No.21), Albiii (SEQ ID No. 28) (encoded by SEQ ID No. 22), AlbiV (SEQ ID No. 29) (encoded by SEQ ID No. 23), AlbVI (SEQ ID No. 31) (encoded by SEQ ID No. 18), AlbVII (SEQ ID No. 32) (encoded by SEQ ID No. 17), AlbVIII (SEQ ID No. 33) (encoded by SEQ ID No. 16), AlbIX (SEQ ID No. 34) (encoded by SEQ ID No. 15), AlbX (SEQ ID No. 35) (encoded by SEQ ID No. 37) (encoded by SEQ ID No. 36) (encoded by SEQ ID No. 9), AlbXII (SEQ ID No. 37) (encoded by SEQ ID No. 8), AlbXIII (SEQ ID No. 38) (encoded by SEQ ID No. 7),

10

15

20

25

30

AlbXIV(SEQ ID No. 39) (encoded by SEQ ID No. 6), AlbXV (SEQ ID No. 40) (encoded by SEQ ID No. 5), AlbXVII (SEQ ID No. 42) (encoded by SEQ ID No. 11), AlbXVIII (SEQ ID No. 43) (encoded by SEQ ID No. 12), AlbXIX (SEQ ID No. 44) (encoded by SEQ ID No. 13), AlbXX (SEQ ID No. 45) (encoded by SEQ ID No. 14), AlbXXI (SEQ ID No. 46) (encoded by SEQ ID No. 24), and AlbXXII (SEQ ID No. 47) (encoded by SEQ ID No. 25), that in turn interact within the host cell to produce one or more antibiotics as more fully illustrated in Figure 11. In one embodiment the invention comprises a plurality of isolated and purified DNA strands which comprise nucleotide sequences of the group consisting of SEQ ID No: 1 to SEQ. ID No. 25, each individual sequence, except the transposases AlbV (SEQ ID No. 30) (encoded by SEQ ID No. 19) and AlbXVI (SEQ ID No. 41) (encoded by SEQ ID No. 4) found in the XALB1 cluster, being necessary to the biosynthesis of the novel family of antibiotics, Albicidins. The invention also includes the peptides or proteins encoded by the genes of the biosynthetic complex expressed by the combination of DNA with a strand having sequences SEQ ID Nos. 1 to 3. Proteins are named with roman numerals and the prefix Alb from AlbI to Alb XXII have the amino acid sequences of SEQ ID Nos. 26 to 47 (not in Roman numeral order but in the order of placement of the genes within sequences SEQ ID Nos. 1 to 3 that express each protein). Expression of the peptides having the amino acid sequences of SEQ ID Nos. 26 to 29, 31 to 40 and 42 to 47, have been found to be all required for the successful biosynthesis of Albicidins. The invention provides a method for producing Albicidins comprising providing a modified host cell with a heterologous DNA Albicidin Biosynthetic Gene Cluster or set of genes defined as DNA operably comprising DNA sequences substantially similar to SEQ ID Nos. 1 to 3. Substantially the same means DNA having sufficient homology to provide expressed proteins that function to provide an antibiotic material having the structural components identified herein. Preferably a given sequence will have at least 70 percent homology to one of SEQ ID Nos. 1 to 3, preferably 85% homology and most preferably at least 95% homology. The method includes the steps consisting of, modifying the DNA of the host cell to comprise an operable expression system for maintaining the modified host cell under conditions supporting biosynthesis of Albicidins and isolation of Albicidins from the host cell or its environment. The invention further provides a method of production of a group of novel antibiotic materials utilizing at least three of the Sequences selected from the group consisting of DNA SEQ ID No. 1 to SEQ ID No. 25 (excluding transposases encoded by SEQ IDs No. 4 and 19) inclusive in combination with additional sequences to produce a modified Albicidin-like material.

More specifically, the invention provides DNA Sequences comprising at least about 68,498 base pairs more or less and including an about 55,839 bp region from the genome of X.

10

15

20

25

30

albilineans designated as XALB1 (SEQ ID. No. 1) and additional non contiguous regions having about 2,986 bp, XALB2 (SEQ ID. No. 2), and about 9,673 bp, XALB3 (SEQ ID. No. 3). These sequences were found to be required for biosynthesis of Albicidins. Homology analysis revealed the presence of (i) four large genes with a modular architecture characteristic of polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) potentially involved in albicidin precursor biosynthesis; (ii) four smaller genes potentially involved in albicidin substrate biosynthesis (iii) four modifying genes; (iv) one enzyme activating gene, (v) two regulatory genes, (vi) one chaperone gene, (vii) two genes of unknown function; and (viii) two resistance genes. These are named and discussed more fully below. Together these genes allow the successful operation of the biosynthetic pathway when cloned into suitable host cells. Alignment of individual NRPS and PKS domains revealed an extraordinary biosynthetic apparatus believed to involve a trans-action of separate PKS and NRPS domains which could contribute to the production of multiple, structurally related albicidins by the same gene cluster. Furthermore, analysis of selectivity-conferring residues indicated that four NRPS modules of XALB1 specify an unusual substrate. Through the interaction of these genes the following methods are enabled: a) In an alternate embodiment the invention provides a method of producing a polyketide carrying para-aminobenzoic acid and/or carbamoyl benzoic acid by inserting at least one DNA Fragment that encodes a PKS protein into a cell and causing the cell to express the encoded PKS protein under conditions such that the PKS protein functions to produce a polyketide carrying either a para-aminobenzoic acid or a carbamoyl benzoic acid or both. b) Another alternate embodiment is a method of producing polyketide/peptides carrying para-aminobenzoic acid and/or carbamoyl benzoic acid by inserting at least one DNA Fragment that encodes a PKS protein into a cell and causing the cell to express the encoded PKS protein under conditions such that the PKS protein functions to produce a polyketide carrying either a para-aminobenzoic acid or a carbamoyl benzoic acid or both. Or c) In another alternate embodiment the invention provides a method of activating nonproteinogenic amino acids like paraminobenzoic acid and/or carbamoyl benzoic acid for incorporation into peptides or polyketides by inserting at least one DNA Fragment that encodes a PKS protein into a cell and causing the cell to express the encoded PKS protein under conditions such that the PKS protein functions to produce a polyketide carrying either a para-aminobenzoic acid or a carbamoyl benzoic acid or both.

There are three regions of the X. albilineans genome specifying albicidin production. The XALB2 and XALB3 regions each contain only one gene, both of which are required for post-translational activation and folding of albicidin PKS and NRPS enzymes. The XALB1, XALB2 and XALB3 gene clusters are characterized by an unusual hybrid NRPS-PKS system, indicating

Application of Royer, et al.

that albicidin biosynthesis may provide an excellent model for investigating the biosynthesis of hybrid polyketide-polypeptide metabolites in bacteria. The availability of three genomic regions involved in albicidin production, XALB1 and XALB2 and XALB3, also offers the ability to express individually the enzymes of the albicidin family biosynthetic pathway including structural, resistance, secretory and regulatory elements, and to engineer overproduction of albicidin in mutated or modified host cells of the invention. The invention overcomes prior art limitations in albicidin production due to low yields of toxin production in X. albilineans and may also allow characterization of the chemical structure of albicidin as well as application of this potent inhibitor of procaryote DNA replication.

10

15

20

25

5

The invention results from a number of unpredictable results namely the number and complexity of the enzymes involved in biosynthesis. The discovery of the complete sequence required for biosynthesis of Albicidins is previously unreported. The invention provides for a novel process for production of molecule having a polyketide-polypeptide backbone and the formula CaoH15O15N6, a molecular weight of 839, and the structural elements shown in Figure 11. The invention further includes (a) the Albicidin Family Biosynthetic Gene Cluster including (b) the structural and regulatory elements of the operons that encode c) the enzymes PKS-1, PKS-2, PKS-3, PKS-4, NRPS-1, NRPS-2, NRPS-3, NRPS-4, NRPS-5, NRPS-6 and NRPS-7 as well as (e) the proteins AlbI to AlbXXII, (f) the isolated enzymes, proteins, and active forms thereof, as well as mutants, fragments, and fusion proteins comprising any of the forgoing; (g) the uses of the enzymes or proteins encoded by the Albicidins Biosynthesis Gene Cluster or any one of its operons, (h) a host cell expressing one or more enzymes or proteins encoded by the Albicidin Family Biosynthetic Gene Cluster; (i) use of host cells having the Albicidins Biosynthesis Gene Cluster to produce an antibiotic; (i) methods of modifying the DNA sequences to produce members of a series of antibiotic compounds having structures related to Albicidins; (k) DNA sequences that encode the same proteins as any of SEQ. ID. Nos. 1 to 25 but differ in specific codons due to the multiplicity of codons that lead to expression of the same amino acid, (1) antibiotics produced by the process of expression of the Albicidin Family Biosynthetic Genes in a genetically modified host cell sustained in a culture medium and thereafter separation of the antibiotic from the host cell and culture medium, (m) an isolated and purified antibiotic produced by a process that includes at least three proteins coded by DNA sequences selected for the group consisting of SEQ. ID Nos. 1 to 25 in combination with additional enzymes that modify the product to provide a non-naturally occurring Albicidins like product having at least one of the useful properties reported for albicidin and (n) a process for producing an antibiotic that comprises modifying a host cell to enhance expression of the DNA of the Albicidin Family

30

Biosynthetic Gene Cluster by insertion of expression enhancing DNA into the genome of a Xanthomonas albilineans strain in a position operative to enhance expression of the enzymes of the Albicidin Family Biosynthetic Gene Cluster, culturing the modified host cell to produce an antibiotic and isolating the antibiotic. The products and methods described above have utility as proteins or as nucleic acids as the case may be, including such uses sources of pyrimidine or purine bases or amino acids, or as animal food supplements and the like, as well as the more important uses to provide antibiotics, plant disease treatment methods, genetically modified disease resistant plants, phytotoxins and the like.

10 BRIEF DESCRIPTION OF THE DRAWINGS

5

15

25

Figure 1 is a Physical Map and genetic organization of the DNA Region containing the major gene cluster XALB1 involved in the biosynthesis of Albicidins.

Figure 2 is an illustration of the organization of the four PKS modules and the seven NRPS modules identified in cluster XALB1 and comparison with the organization of the prior art material XabB.

Figure 3 shows the conserved sequence motifs in O-methyltransferases and C-methyltransferases involved in antibiotic biosynthesis in bacteria and in AlbII.

Figure 4 shows the conserved sequence motifs in O-methyltransferases and in different tcmP-like hypothetical proteins and AlbVI.

- Figure 5 is an illustration of the alignment of the primary sequences between the conserved motifs A4 and A5 of Alb NPRSs and PKS-4 in *Xanthomonas albilineans* with the corresponding sequences of GrsA (Phe) accession number:P14687 and Blm NRPS-2 (β-Ala) accession number AF210249.
 - Figure 6 shows Rho-independent transcription terminators identified in the intergenic regions of XALB1 and XALB3 clusters.
 - Figure 7A shows sequences identified as a putative bidirectional promoter between albX and albXVII in XALB1 for transcriptional control of operons 3 and 4.
 - Figure 7B shows sequences identified as a putative unidirectional promoter upstream from albXIX for transcriptional control of operon 5 if albXVIII is not expressed.
- Figure 8 is a physical map and genetic organization of the DNA region containing the gene clusters XALB2 and XALB3 involved in albicidin production.
 - Figure 9A is linear model 1 leading to the biosynthesis of only one polyketide-polypeptide albicidin backbone.
 - Figure 9B is linear model 2 leading to the biosynthesis of four different polyketide-polypeptide

backbone.

5

10

15

20

25

30

Figure 10A is an alignment of the conserved motifs in AT domains from RifA-1, -2, -3, RifB-1, RifE-1 (Rifamycin PKSs, August et al., 1998) and BlmVIII (Bleomycin PKS; Du et al., 2000). Figure 10B is a comparison of AlbXIII, FenF (a malonyl-CoA transacylase located upstream from mycA, Duitman et al., 1999) and LipA (a lipase; Valdez et al., 1999).

Figure 11A is a proposed model for biosynthesis of albicidin, including putative substrates of PKS and NRPS modules.

Figure 11B shows the proposed compositions and structures of albicidins.

DETAILED DESCRIPTION OF THE INVENTION

The invention results from the DNA sequencing of the complete major gene cluster XALB1, as well as the noncontiguous fragments XALB2 and XALB3. XALB1 is present in the two overlapping DNA inserts of clones pALB540 and pALB571. Reading frame analysis and homology analyses allow one to predict the genetic organization of XALB1 and to assign a function to the genes potentially required for albicidin production. Based on the alignment of the different PKS and/or NRPS enzymes encoded by XALB1 we proposed a model for the albicidin backbone biosynthesis. However the invention disclosed herein does not depend upon the accuracy of the proposed model. The invention includes the successful cloning and DNA sequencing of the second region of the genome (XALB2) involved in albicidin production and mutated in mutant AM37.

The invention includes the characterization of the third region of the genome (XALB3) involved in albicidin production present in clone pALB639. These results allowed the possibility to characterize all enzymes of the albicidin biosynthesis pathway including structural, resistance and regulatory elements and to engineer overproduction of albicidin.

EXAMPLE 1: Materials and methods

Bacterial strains and plasmids. The source of bacterial strains and their relevant characteristics are described in Table 1.

Media, antibiotics, and culture conditions. X. albilineans strains were routinely cultured on modified Wilbrink's (MW) medium at 30°C without benomyl (Rott et al., 1994). For long-term storage, highly turbid distilled water suspensions of X. albilineans were supplemented with

glycerol to 15% (vol/vol) and frozen at -80° C. For X. albilineans, MW medium was supplemented with the following antibiotics as required at the concentrations indicated: kanamycin, 10 or 25 μ g/ml; and rifampicin, 50 μ g/ml. E. coli strains were grown on Luria-Bertani (LB) agar or in LB broth at 37°C and were maintained and stored according to standard protocols (Sambrook et al., 1989). For E. coli, LB medium was supplemented with the following antibiotics as required at the concentrations indicated: kanamycin, 50 μ g/ml; ampicillin, 50 μ g/ml.

Bacterial conjugation. DNA transfer between E. coli donor (DH5\alphaMCR/pAlb389 or pAC389.1, Table 1) and rifampicin-resistant X. albilineans recipients (X. strains AM10, AM12, AM13, AM36 and AM37, Table 1) was accomplished by triparental conjugation with plasmid pRK2073 as the helper as described previously (Rott et al., 1996).

Table 1: Bacterial strains and plasmids used in this study

5

10

15		Relevant characteristics ^a	Reference or source
	Strains		
	E. coli		
	DH5α	F-f80dlacZΔM15 Δ(lacZYA-argF)U169 deoR recA1 endA1	Gibco-BRL
		hsdR17(r _k m _k) supE44 thi-1 gyrA96 relA1	
	DH5α MCR	DH5a mcrA mcrBC mrr	n
20	X. albilineans		<u> </u>
	Xa23	Wild type from sugarcane (Florida)	Rott et al., 1996
	Xa23R1	Spontaneous Rif derivative of Xa23	tı
	15 AM strains	Xa23R1::Tn5-gusA, Km', Rif', Tox	18
25	Plasmids		
	PBR325	Tc ^r , Ap ^r , Cm ^r	Gibco-BRL
	pBCKS (+)	Cm ^r	Stratagene
	pBluescript II	Apr	H
	KS (+)	·	
30	PRK2073	PRK2013 derivative, Km3 (npt::Tn7), Sp', Tra3, helper plasmid	Leong et al , 1982
	pUFR043	IncW Mob* LacZα, Gm', Km', Cos	De Feyter and Gabriel,
			1991
	pAlb540	47 kb insert from Xa23R1 in pUFR043, Gm', Km'	Rott et al., 1996
	pAlb571	36.8 kb insert from Xa23R1 in pUFR043, Gm ^r , Km ^r	11
	PAlb639	36 kb insert from Xa23R1 in pUFR043, Gm', Km'	"

Application of Royer, et al

	pAM15.1	24 kb EcoR I fragment carrying Tn5 and flanking sequences of	n
		mutant AM15 in pBR325, Km', Tc', Ap', Cm'	
	pAM40.2	11 kb EcoR I fragment carrying Tn5 and flanking sequences of	ıı
		mutant AM40 in pBR325, Km', Tc', Ap', Cm'	
	pAM45.1	12 kb EcoR I fragment carrying Tn5 and flanking sequences of	n
		mutant AM45 in pBR325, Km ^r , Tc ^r , Ap ^r , Cm ^r	•
	pAM12.1	13 kb EcoR I fragment carrying Tn5 and flanking sequences of	"
		mutant AM12 in pBR325, Km', Tc', Ap', Cm'	
5	PAM36.2	9 kbEcoR I fragment carrying Tn5 and flanking sequences of	66
		mutant AM36 in pBR325, Km', Tc', Ap', Cm'	
	pAlb389	37 kb insert from Xa23R1 in pUFR043, Gm ^r , Km ^r	This study
	pAC389.1	2.9 kb insert from Xa23R1 in pUFR043, Gm', Km'	83
	PAlb639A	9.4 kb insert from Xa23R1 in pUFR043, Gm', Km'	. 11
	PEV639	2.6 kb Sal I insert from Xa23R1 in pUFR043, Gm', Km'	13
10	pBC/A'	7.5 kb Kpn I fragment carrying a part of fragment A from	11
		pAlb571 in pBCKS (+), Cm'	
	pBC/AF	15.2 kb EcoR I fragment carrying fragments A and F from	n
		pALB540 in pBCKS (+), Cm ^r	
	pBC/B	11.0 kb Kpn I fragment B from pAlb571 in pBCKS (+), Cm ^r	ti
	pBC/C	6.0 kb Kpn I fragment C from pAlb571 in pBCKS (+), Cm ^r	17
	pBC/E	2.8 kb Kpn I fragment E from pAlb571 in pBCKS (+), Cm ^r	ti
15	pBC/F	2.5 kb Kpn I-EcoR I fragment F from pAlb571 in pBCKS (+),	11
		Cm ^r	
	pBC/G	1.9 kb EcoR I fragment G from pAlb571 in pBCKS (+), Cm'	11
	pBC/I	1.4 kb Kpn I-EcoR I fragment I from pAlb571 in pBCKS (+),	rt
		Cm ^r	
	pBC/J	0.6 kb EcoR I fragment J from pALB540 in pBCKS (+), Cm ^r	n n
	pBC/K	4.7 kb EcoR I fragment K from pALB540 in pBCKS (+), Cm'	11
20	pBC/L	0.4 kb EcoR I fragment L from pALB540 in pBCKS (+), Cm ^r	10
	pBC/N	7.7 kb EcoR I fragment N from pALB540 in pBCKS (+), Cm'	u
	pUFR043/D'	2.2 kb EcoR I-Sau3A I fragment carrying a part of fragment D	" .
		from pAlb571 in pUFR043	
	pAM1	5 kb EcoR I fragment carrying Tn5 and flanking sequences of	1)
		mutant AM1 in pBluescript II KS (+), Km', Ap'	
	pAM4	12 kb EcoR I fragment carrying Tn5 and flanking sequences of	11
		mutant AM4 in pBluescript II KS (+), Km', Ap'	
25	pAM7	6 kb EcoR I fragment carrying Tn5 and flanking sequences of	0
		mutant AM7 in pBluescript II KS (+), Km', Ap'	
	pAM10	7 kb EcoR I fragment carrying Tn5 and flanking sequences of	11
	1 -		

	mutant AM10 in pBluescript II KS (+), Km', Ap'	
pAM29	10 kb EcoR I fragment carrying Tn5 and flanking sequences of mutant AM29 in pBluescript II KS (+), Km', Ap'	ti
pAM37	6 kb EcoR I fragment carrying Tn5 and flanking sequences of mutant AM37 in pBR325, Km', Tc', Ap', Cm'	n n
pAM52	5 kb <i>Eco</i> R I fragment carrying Tn5 and flanking sequences of mutant AM52 in pBluescript II KS (+), Km', Ap'	Р
DNA Fragment		
PR37	1.1 kb Hind III-Hind III from pAM37	tr

35

40

45

50

55

* Ap', Cm', Gm', Km', Rif', Sp', Tc': resistant to ampicilin, chloramphenicol, gentamycın, kanamycın, rifampicin, spectinomycin, tetracycline, respectively. Tox-, deficient ın albicidin production. Tn5-gusA, Tn5-ucdA1 Km' Tc', forms transcriptional fusions.

Assay of albicidin production. Albicidin production was tested by a microbiological assay as described previously (Rott *et al.*, 1996). Rifampicin and kanamycin exconjugants were spotted with sterile toothpicks (2-mm-diameter spots) onto plates of SPA medium (2% sucrose, 0.5% peptone, 1.5% agar) and incubated at 28°C for 2-5 days. The plates were then overlaid with a mixture of E. *coli* DH5 α (10⁷ cells in 2 ml of distilled water) plus 2 ml of molten 1.5% (wt/vol) Noble agar (Difco) at ca. 65°C and examined for inhibition zones after 24 h at 37°C.

Nucleic acid manipulations. Standard molecular techniques were used to manipulate DNA (Sambrook *et al.*, 1989) except for total genomic DNA preparation. Total genomic DNA for southern blot hybridization was prepared as described by Gabriel and De Feyter (1992).

PCR Conditions. PCR amplifications were performed in an automated thermal cycler PTC-100TM (MJ Research, Inc). The 25 μl PCR reaction mix consisted of 100 ng of genomic DNA or 1 ng of plasmid DNA, 2.5 μl of 10X PCR buffer without MgCl2 (Eurobio), 80 μM dNTP mix, 2.5 units of EUROBIOTAQII® (Eurobio), 25 pmoles of each primer, 2.0 mM MgCl₂ (Eurobio) and sterilized distilled water to final volume. The PCR program was 95°C for 2 min, 25 cycles at 94°C for 1 min, Tm for 1 min and 72°C for 1 min, with a final 72°C extension for 5 min. Tm temperature was determined for each couple of primers and varied between 55°C and 60°C. A 5μl aliquot of each amplified product was analyzed by electrophoresis through a 1% agarose gel. For sequencing, PCR products were cloned with the pGEM®-T Easy Vector System (Promega).

Oligonucleotide synthesis. Oligonucleotides were purchased from Genome Express (Grenoble or Montreuil, France).

DNA sequencing. Automated DNA sequencing was carried out on double-stranded DNA by the dideoxynucleotide chain termination (Sanger et al., 1977) using a Dye Terminator Cycle Sequencing kit and an ABI Perkin-Elmer sequencer according to the manufacturer's procedure. Both DNA strands were sequenced with universal primers or with internal primers (20mers). This service was provided by Genome Express (Grenoble, France). Computer-aided sequence analyses were carried out using Sequence NavigatorTM (Applied Biosystems, Inc) and SeqMan (DNASTAR Inc.) programs.

Sequence analysis. Nucleotide sequences were translated in all six reading frames using EditSeq (DNASTAR Inc.). Potential products of ORFs longer than 100 b were compared to protein data bases by the PSI-BLAST program (Swiss-Prot and Genbank) on the NCBI site (http://www.ncbi.nlm.nih.gov/) using Altschul program (Altschul et al., 1997). The TERMINATOR program of the Genetics Computer Group was used to identify putative Rhoindependent transcription terminators.

Procedures

20

25

30

5

10

15

EXAMPLE 2: Sequencing of the double strand region of 55,839 bp from X. albilineans containing XALB1 SEQ ID NO. 1

In Figure 1 is presented a physical map and genetic organization of XALB1. In the figure, E and K are restriction endonuclease sites for EcoRI and KpnI, respectively. Rectangular boxes represent DNA fragments labeled A through N. The numbers below each rectangular box are the number of Tn5-gus insertion sites previously located in each DNA fragment (Rott et al., 1996). The DNA inserts carried by plasmids pALB571 and pALB540 are represented by bold bars above the physical map. The location and direction of putative orfs identified in the XALB1 gene cluster are shown by arrows. Precise positions and proposed functions for individual orfs are summarized in tables 2 and 3, respectively. Position of insertional sites of eight albicidin-defective mutants determinated by sequencing are indicated by vertical arrows. The location and direction of putative ORFS identified in the XALB1 gene cluster are shown by arrow shapes. These twenty putative ORFs are potentially organized in four or five operons, as

Application of Royer, et al.

indicated at the bottom of the figure. Patterns indicate NRPS and PKS genes (diagonal crosshatch), methyl transferase and esterase genes (hollow rectangles), carbamoyl transferase gene (fine crosshatch), benzoate-derived products biosynthesis genes (white), regulatory genes (vertical lined), resistance genes (diagonal lines) and other genes with function of unknown significance to albicidin production (black), and three insertional sites of eight albicidin-defective mutants determinated by sequencing are indicated by vertical arrows. Dotted regions in the physical map and in ORFs represent the two internal duplicated DNA regions of XALB1.

5

10

15

20

25

30

The sequence illustrated in Figure 1 was generated as follows. The sources of DNA are set out in Table 1. DNA fragments F, E, B, C, I, and G, generated by the digestion of cosmid pALB571 (Rott et al., 1996) with EcoRI and/or KpnI, were subcloned into pBCKS (+) and were sequenced from the resulting subclones, pBC/F, pBC/E, pBC/B, pBC/C, pBC/I and pBC/G. DNA fragment D' which corresponds to the part of fragment D present in cosmid pALB571 was sequenced from plasmid pUFR043/D' obtained following self ligation of the complete EcoRI digested cosmid pALB571. DNA fragment H was sequenced from pAM45.1 (Rott et al., 1996), obtained following cloning into vector pBR325 of the 12kb EcoRI fragment carrying Tn5 and flanking sequences from mutant strain XaAM45. DNA fragment A' contains the part of fragment A present in cosmid pALB571 and was subcloned into vector pBCKS (+) and the resulting plasmid pBC/A' was used for sequencing. The presence of a large internal duplication made alignment of sequence data obtained from pBC/A' difficult. This difficulty was resolved using sequence data obtained from an additional plasmid, pAM4, obtained following cloning into vector pBluescript II KS (+) of the 12kb EcoRI fragment carrying Tn5 and flanking sequences from mutant strain XaAM4, which contains only one copy of the large internal duplication. Sequence data from pBC/A' were used to determine the first 1542 bp of fragment A' between nucleotides C-19001 and G-20543. Sequence data from pAM4 and pBC/A' were used to determine the last 4823bp of fragment A' between nucleotides G-21653 and G-26477. The overlapping region between nucleotides G-20469 and C-22159 was amplified by PCR from cosmid pALB571 using primers contigl3-1160 (5'gcgtaccgttgtccagtagg3') SEO ID NO. 48 and pAM4-14 (5'gctggaaaccgagaatctga3') SEQ ID NO. 49, and was sequenced. Resulting sequence data were used to complete sequencing of DNA fragment A'. The junctions A/F, F/H, H/E, E/B, B/C, C/I, I/G, G/D between corresponding DNA fragments were sequenced directly from cosmid pALB571. EcoRI DNA fragment containing fragments A and F was subcloned from pALB540 into pBCKS (+), and the resulting plasmid pBC/AF was used to determine the part of DNA fragment A which was not present in cosmid pALB571 between nucleotides G-13682 and G-19001. EcoRI DNA fragments J, K, L, N were subcloned from pALB540 into pBCKS (+) and were sequenced from resulting plasmid pBC/J, pBC/K, pBC/L, and pBC/N. The junctions L/K, K/J and J/A between corresponding DNA fragments were sequenced directly from cosmid pALB540. DNA region between nucleotides G-7517 and T-8721 was amplified by PCR from cosmid pALB540 using primers E114 (5'gacacgatcagccgctagga3') SEQ ID NO. 50 and EI4-380 (5'accagcagttgggccagcct3') SEQ ID NO. 51 and was sequenced. Resulting sequence data were used to determine the sequence of fragment M and of junctions N/M and M/L. The nucleotide sequence of 55,839 bp containing the entire major gene cluster involved in Albicidin production was sequenced on both strands.

5

10

15

20

25

30

EXAMPLE 3: Analysis of the large internal duplications in the DNA sequence of XALB1

The sequence of the 55,839 bp genomic region (SEQ ID NO. 1) contains two large internal duplications as shown by the dotted regions in the physical map of Figure 1. A direct duplication of 1736 bp was located in DNA fragment A between nucleotides G-19904 and G-21639 and between nucleotides G-23057 and G-24792. Another direct duplication of a 2727 bp was found in DNA fragments B and C between nucleotides C-40410 and G-43136 and between nucleotides C-46644 and G-49370. Comparison of the two copies of each duplication revealed that the two copies of the 1736 bp duplication are identical except for one nucleotide at position 21058, and that the two copies of the 2727 bp duplication are 98.8% identical and differ by 30 nucleotides.

EXAMPLE 4: Comparison of XALB1 with the xabB EcoR1 fragment

Comparison of the DNA sequence of the 55,839 bp genomic region described in this study with the partial DNA sequence of 16,511 bp of the same region in Huang et al.,

Application of Royer, et al.

2001 (described by Huang et al. as an EcoRI fragment including full length xabB from X. albilineans strain Xa13 [GenBank accession N° AF239749]), revealed that the DNA sequence from strain Xa13 over 16,511 bp is identical to the sequence from strain Xa23R1, described herein, with the following exceptions: 1) five nucleotides are different at positions 42963, 42972, 42980, 43014 and 43071 of the XALB1 sequence, and 2) nucleotides from positions 43137 to 49370 are missing (internal to albI; refer Fig. 1). Analysis of genomic DNA of seven strains isolated from different countries (Australia, Reunion Island, Kenya, Zimbabwe and USA), digested by KpnI and hybridized with the pBC/C plasmid (Table 1) labeled with ³²P, revealed that two DNA fragments corresponding to the XALB1 fragments B and C were present in all strains (data not shown). This result indicated that all studied strains contain albI and not xabB because in albI the pBC/C plasmid probe hybridizes with the large internal duplication present in both DNA fragments B and C (Figure 1). Based on this observation we postulated that the DNA sequence of XabB reported as full length by Birch in PCT WO 02/24736 A1 (Their seg. ID#1) appears to be incomplete and missing 6,234 bp of DNA sequence encoding 2,078 amino acids.

EXAMPLE 5: Reading frame analysis in XALB1

5

10

15

20

25

30

Analysis of the 55,839 bp double strand region for coding sequences revealed the presence of 20 open reading frames (ORFs) designated albI to albXX (Table 2 below) which are distributed in four groups of genes according to their position and their orientation in the XALB1 cluster (Figure 1). Genes of each group may form part of the same operon as judged by their overlapping stop and start codons, or by the relatively short intergenic region which varies from 5 to 274 nucleotides. The 20 ORFs appear to be organized in four operons: operon 1 formed by albI - albIV; operon 2 by albV - albIX; operon 3 by albX - albXVI; operon 4 by albXVII - albXX. The majority of alb ORFs are initiated with an ATG codon, except albI and albXVII which are initiated with a TTG codon, and albIV and albVI which are initiated with a GTG start codon. In seven ORFs of XALB1, start codons are preceded by the consensus sequence GAGG which may correspond to the ribosome binding site. Other ORFs are preceded by a less conserved sequence which contain at least three nucleotides A or G and which may serve as a weak

Application of Royer, et al.

ribosome binding site.

EXAMPLE 6: Sequencing of the Tn5 insertional site of eight tox mutants previously located in XALB1

Eight of the 45 X. albilineans Tox mutants complemented by cosmid pALB540 and/or cosmid pALB571 and previously described (Rott et al., 1996) were further analyzed. All eight mutants contain a single Tn5 insertion and correspond to the following X. albilineans strains: XaAM7, XaAM15, XaAM45, and XaAM52 which are complemented by pALB571 but not by pALB540; XaAM4, XaAM29 and XaAM40 which are complemented by both cosmids; and XaAM1 which is complemented by pALB540 but not by pALB571. The Tn5 insertional site of each Tox- mutant was sequenced from plasmids obtained following cloning in pBR325 or in pBluescript II KS (+) of the EcoRI fragments carrying Tn5 and flanking sequence using the sequencing primer GUSN (5'tgcccacaggccgtcgagt3') SEQ ID No. 52 that annealed 135 bp downstream from the insertional sequence IS50L of Tn5-gusA. The sequence of the Tn5 insertional site was compared with the 55,839 bp sequence containing XALB1 in order to determine the alb gene disrupted in each Tox- mutant. albI is disrupted by the Tn5 insertion in XaAM15 and XaAM45 at position 33443 and 34229, respectively (Figure 1). albIV is disrupted by the Tn5 insertion in XaAM7 and XaAM52 at position 53704 and 53915, respectively. albIX is disrupted by the Tn5 insertion in XaAM4, XaAM29 and XaAM40 at position 21653, 23444 and 24376, respectively. alb XI is disrupted by the Tn5 insertion in XaAM1 at position 13301. These results are in accordance with the previous characterization of Tox mutants using Southern blot hybridization (Rott et al., 1996), except for XaAM1. The Tn5-gusA insertion site of XaAM1 was previously located in DNA fragment A (Rott et al., 1996) but results of this study showed that this site is located in DNA fragment J (Figure 1).

Table 2: Analysis of putative translational signals and location of all putative orfs identified in the XALB1 gene cluster

5

10

15

20

25

Application of Royer, et al.

	Intergenic spacing	Orf	Potential RBS ^a	Start codon	Stop codon
	between consecutive		(distance from start	(position)	(position)
:	orfs in each putative		codon)		l
•	operon				
5	Operon 1 (strand +)				
	•	albI	GAGGG (5 b)	TTG (30166)	TAG
-	45 b	albII	GAGGG (5 b)	ATG (50851)	(50805) TAA
			•	` '	(51882)
	ATG overlaps TAA	albIII	GAGGG (7 b)	ATG (51882)	TGA
					(52385)
10	GTG overlaps TGA	albIV	GAGG (7 b)	GTG (52382)	TAA
	0		•		(55207)
	Operon 2 (strand -)	albV	GGAGG (8 b)	ATG (29929)	TAA
					(29210)
:	87 ъ	albVI	AAGG (4 b)	GTG (29122)	TGA
					(28262)
	61 b	albVII	GAG (4 b)	ATG (28200)	TAG
					(25903)
15	7 ь	albVIII	AGGTG (4 b)	ATG (25895)	TAA
					(24903)
	20 Ъ	albIX	GGTG (3 b) "	ATG (24882)	TGA
					(19003)
	Operon 3 (strand -)	albX	GGGGG (8 b)	ATG (14497)	TGA
		41071	00000 (00)	1110 (11137)	(14246)
20	81 b	albXI	AGGAAA (6 b)	ATG (14164)	TGA
20	61 0	ulozi	710071111 (0 0)		(13217)
	5 b	albXII	GGCCTGA (5 b)	ATG (13211)	TAA
		<i>awa</i> 11	GGCCIGA (3 b)	1110 (13211)	(11856)
	36 b	albXIII	GGGG (3 b)	ATG (11819)	(11830) TAA´
	ט טכן	αιυλΙΙΙ	0000 (3 0)	A1G (11619)	(10866)
					(10000)

		19	Application o	r Koyer, et al
12 b	albXTV	GGAG (8 b)	ATG (10853)	TAG (9363)
41 b	albXV	GGAA (6 b)	ATG (9321)	TAG (7567)
208 ь	albXVI	GGAGG (4 b)	ATG (7358)	TAG (7092)
Operon 4 (strand +)	albXVII	GGGAGG (5 b)	TTG (14909)	TGA
	aloxvII	000A00 (3 0)	110 (14909)	(17059)
274 b	albXVIII	GCTCAG (8 b)	ATG (17334)	TGA (17747)
Overlap (17 b)	albXIX	AGG (9 b)	ATG (17728)	TGA (18330)
41 b	albXX	GCAA (8 b)	ATG (18372)	TAG . 18980)

5

10

15

20

25

EXAMPLE 7: Homology analysis of proteins potentially encoded by XALB1

Preliminary functional assignments of individual ORFs were made by comparison of the deduced gene products with proteins of known functions in the Genbank database. The results are set out in Table 3 below. Among the ORFs identified from the sequenced XALB1 gene cluster, we found (i) four genes, albI SEQ ID No. 20, albIV SEQ ID No. 23, albVII SEQ ID No. 17 and albIX SEQ ID No. 15, encoding PKS and/or NRPS modules; (ii) one carbamoyl transferase gene, albXV SEQ ID No. 5; (iii) two esterase genes, albXI SEQ ID No. 9 and albXIII SEQ ID No. 7; (iv) two methyltransferase genes, albII SEQ ID No. 21 and albVI SEQ ID No. 18; (v) two benzoate-derived products biosynthesis genes, albXVII SEQ ID No. 11 and albXX SEQ ID No. 14; (vi) two putative albicidin biosynthesis regulatory genes, albIII SEQ ID No. 22 and albVIII SEQ ID No. 16; (vii) two putative albicidin resistance genes, albXIV SEQ ID No. 6 and albXIX SEQ ID No. 13; and (viii) two additional ORFs encoding proteins similar to transposition proteins, albV SEQ ID No. 19 and albXVI SEQ ID No. 4. No known function was found in the database for albX SEQ ID No. 10 and albXIII SEQ ID No. 8. The potential product of albXVIII SEQ ID No. 12

^a: Ribosomal Binding Site

appeared to be a truncation of an enzyme with strong similarity to 4-amino-4deoxychorismate lyase and branched-chain amino acid aminotransferase. Since the gene encoding the predicted product is roughly half the length of other such lyase or aminotransferase genes, albXVIII may be the result of a recombination event and may be non functional.

Table 3: Deduced functions of the ORFs in the major albicidin biosynthetic cluster X-ALB1

10	Orf	Number of amino acids	Sequence homolog *	Proposed function ^{a, c}
	Operon 1			,
	albI	6879	XabB (AAK15074)	Polyketide- peptide synthase
	1			PKS modules PKS domains
	1			PKS-1 AL ACP1
			Į.	PKS-2 KS1 KR ACP2 ACP3
				PKS-3 KS2 PCP1
				NRPS modules NRPS domains
				NRPS-1 C A PCP2
				NRPS-2 C A PCP3
		1		NRPS-3 C A PCP4
				NRPS-4 C
	albII	343	XabC (AAK15075)	C-methyltransferase
	albIII	167	ComAB (CAA71583)	Activator of alb genes transcription
15	albIV	941	MycA (T44806)	Peptide synthase
	1		WbpG (E83253)	NRPS module NRPS domains
				NRPS-5 A PCP5
	Operon 2			
	albV	239	Thp (AAK15074)	No function (transposition)
	albVI	286	TcmP (AAA67510)	O-methyltransferase
	albVII	765	HbaA (A58538)	4-hydroxybenzoate CoA ligase
20	albVIII	330	SyrP (AAB63253)	Regulation
	albIX	1959	DhbF (CAB04779)	Peptide synthase
				NRPS modules NRPS domains

5

			NRPS-6 A PCP6
			NRPS-7 C A PCP7
Operon 3	-		
albX	83	MbtH (O05821)	Unknown
albXI	315	SyrC (U25130)	Thioesterase
albXII	451	BoxB (AAK006000.1)	Unknown
albXIII	317	hp ^d (AAK25001)	Esterase
albXIV	496	ActII-2 (p46105)	Albicidin transporter
albXV	584	hp ^d (08390)	Carbamoyl transferase
AlbXVI	88	. OrfA (AAC03166)	No function (transposition)
Operon 4	-		
albXVII	716	PabAB (CAC22117)	Para-amino benzoate synthase
Operon 5			
albXVIII	137	ADCL (AAG06352)	No function (not functional)
albXIX	200	McbG (P05530)	Immunity against albicidin
albXX	202	UbiC (S25660)	4-hydroxybenzoate synthetase

*Protein accession numbers in Genbank are given in parentheses.

bNRPS and PKS domains are abbreviated as follows: A, adenylation; ACP, acyl carrier protein, AL, acyl CoA ligase; C, condensation; KR, ketoreductase; KS, ketoacyl synthase; PCP, peptidyl carrier protein

Underlined domains are likely inactive due to the lack of highly conserved motifs.

45

50

55

25

30

35

40

EXAMPLE 8: The alb PKS and/or NRPS genes

The potential product of albI, designated AlbI SEQ ID No. 20, is a protein of 6879 aa with a predicted size of 755.9 kDa. This protein is very similar to the potential product of the xabB gene from X. albilineans strain Xa13 from Australia (Huang et al., 2001), but it differs in length and size (See Table 4 below). XabB is a protein of 4801 aa with a predicted size of 525.7 kDa. Comparison of AlbI with XabB revealed that the N-terminal regions from Met-1 to Ile-4325 of both proteins are identical except for five amino-acids which are Tyr-3941, Pro-3952, Ala-4054, Ala-4271 and Gln-4284 in AlbI and His-3941, Ala-3952, Val-4054, Val-4271 and Glu-4284 in XabB. The same comparison revealed that the AlbI C-terminal region from Arg-6404 to the stop codon is 100% identical to the XabB C-terminal region from Arg-4326 to the stop codon.

dhypothetical protein

10

15

20

25

30

The N-terminal region (from Met-1 to Asp-3235) of AlbI is 100% identical to the corresponding region in XabB which was previously described as similar to many microbial modular PKS (Huang et al., 2001). This PKS region may be divided into three modules (Figure 2). Abbreviations used in the Figure are: A, adenylation; ACP, acyl carrier protein; AL, acyl-CoA ligase; C, condensation; KR, -ketoacyl reductase; KS, -ketoacyl synthase; NRPS, nonribosomal peptide synthase; PCP, peptidyl carrier protein; PKS, polyketide synthase; TE, thioesterase; HBCL, 4-hydroxybenzoate-CoA ligase. The question mark in the NRPS-2 domain indicates that this A domain is incomplete. The first module designated PKS-1 contains acyl-CoA ligase (AL) and acyl carrier protein (ACP1) domains. The second module designated PKS-2 contains β-ketoacyl synthase (KS1) and β-ketoacyl reductase (KR) domains followed by two consecutive ACP domains (ACP2 and ACP3). The third module designated PKS-3 contains a KS domain (KS2) followed by a PCP domain (PCP1). Apart their very high similarity with XabB, these three PKS modules exhibited the highest degree of overall similarity with polyketide synthases SafB and PksM from Myxococcus xanthus and Bacillus subtilis, respectively (Table 4). The motifs characteristic of these domains are 100% identical to those of XabB which were previously aligned with those from other organisms (Huang et al., 2001). The AL domain contains the conserved adenylation core sequence (SGSSG) and the ATPase motif (TGD). The three ACP domains contain a 4'phosphopantetheinyl-binding cofactor box GxDS(IL), except that A replaced G in ACP1. Both KS domains contain motif GPxxxxxxxCSxSL around the active site Cys, and two His residues downstream from the active site Cys, in motifs characteristic of these enzymes. The KR domain contains the NAD(P)H-binding site GGxGxLG.

The PKS part of AlbI is linked by the PCP1 domain to the four apparent nonribosomal peptide synthase modules designated NRPS-1, NRPS-2, NRPS-3 and NRPS-4 (Figure 2). NRPS-1, NRPS-2 and NRPS-3 modules display the ordered condensation, adenylation (A) and PCP domains typical of such enzymes (Marahiel et al., 1997), and NRPS-4 consists of an extra C domain which may correspond to an incomplete NRPS module. Known conserved sequences, characteristic of the domains commonly found in peptide synthases (Marahiel et al., 1997), were compared to those from NRPS-1, NRPS-2, NRPS-3 and NRPS-4 (Tables 5, 6 and 7). Sequences characteristic of C, A, or PCP domains are conserved in these four NRPS, except in A domain of NRPS-2 module, suggesting that this latter A domain may be not functional. Comparison of the four NRPS modules among themselves revealed that NRPS-2, NRPS-3 and NRPS-4 modules were 30.7%, 94.4% and 47.5% similar to NRPS-1 module, respectively. Comparison with XabB revealed NRPS-2 and NRPS-3 modules were not present

Application of Royer, et al.

in XabB which contains only NRPS-1 and NRPS-4 modules (Figure 2). The dotted box in Figure 2 corresponds to the apparent deletion of the NRPS-2 and NRPS-3 modules in XabB as compared to AlbI. Apart their very high similarity with XabB, Alb I NRPS modules exhibited the highest degree of overall similarity with non-ribosomal peptide synthases NosA and NosC from *Nostoc* sp..

5

10 '

15

20

25

30

albIV potentially encodes a protein of 941 aa (AlbIV) with a predicted size of 104.8 kDa. AlbIV is similar to several non-ribosomal peptide synthases such as the BA3 peptide synthase involved in bacitracin biosynthesis in *Bacillus licheniformis* (Table 4). AlbIV forms one NRPS module designated NRPS-5 that contains only an A domain and a PCP domain (Figure 2). Sequences characteristic of the domains A and PCP commonly found in peptide synthases (Marahiel et al., 1997) are conserved in AlbIV (Tables 6 and 7). However the A domain present in AlbIV differs from A domains commonly found in peptide synthases: conserved sequences corresponding to cores A8 and A9 in AlbIV are separated by a very long peptide sequence of 390 amino-acids. This additional peptide sequence exhibits a significative similarity with the protein WbpG of 377 amino acids involved in the biosynthesis of a lipopolysaccharide in *Pseudomonas aeruginosa* (Table 4).

albVII potentially encodes a protein of 765 aa (AlbVII) with a predicted size of 83.0 kDa similar to the 4-hydroxybenzoate-CoA ligase from several bacteria and the closest protein (HbaA) was from *Rhodopseudomonas palustris* (Table 4). High similarity between AlbVII and HbaA suggests that AlbVII is a 4-hydroxybenzoate-CoA ligase and constitutes a fourth PKS module designed PKS-4. The size of HbaA is smaller (539 aa) and the similarity between the two proteins starts only at the residue 277 of AlbVII and at the residue 28 of HbaA. Comparison of AlbVII sequence located upstream from residue 277 produced no significant alignment. AlbVII, like 4-hydroxybenzoate-CoA ligases, contains some conserved sequences characteristic of the A domain commonly found in peptide synthases (Table 6).

albIX potentially encodes a protein of 1959 aa (AlbIX) with a predicted size of 218.4 kDa similar to non-ribosomal peptide synthases. Known conserved sequences, characteristic of the domains commonly found in peptide synthases (Marahiel et al., 1997), were compared with those from AlbIX which forms two NRPS modules designated NRPS-6 and NRPS-7 (Tables 5, 6 and 7). NRPS-6 contains only one A and one PCP domain. NRPS-7 contains the three domains characteristic of NRPS modules (A-C-PCP) followed by a TE domain (Figure 2). Apart their very high similarity with XabB, NRPS-6 and NRPS-7 modules exhibited the highest degree of overall similarity and identity with non-ribosomal peptide synthases DhbF from B. subtilis and NosA from Nostoc sp. (Table 4).

Application of Royer, et al

Table 4: Summary of results obtained from BLAST analyses.

Putative Alb protein	No. of aa residues	Protein homolog	Origin	Genbank accession #	Score	Expect	Identitles	Positives	Gaps
AlbI	6839								
PKS-1		XabB (4801 aa) SafB (1770 aa)	Xanihomonas AAK15074 albilineans AAK15074 Myxococcus xanihus AAC44128	AAK15074 AAC44128	1352 bits (3498) 231 bits (589)	0.0 2e-59	730/730 (100%) 175/532 (32%)	730/730 (100%) 269/532 (49%)	- 23/532 (4%)
PKS-2		XabB (4801 aa) PksM (4273 aa)	X albilineans Bacillus subtilis	AAK15074 CAB13603	3464 bits (8983) 887 bits (2292)	0.0	1882/1882 (100%) 626/1896 (33%)	1882/1882 (100%) 938/1896 (49%)	- 140/1896 - 7%
PKS-3		XabB (4801 aa) PksM (4273 aa)	X. albilineans B. subtılis	AAK15074 CAB13603	1274 bits (3296) 577 bits (1486)	0.0 e-163	653/653 (100%) 293/584 (50%)	653/653 (100%) 391/584 (66%)	- 1 <i>7</i> /584 (2%)
NRPS-1		XabB (4801 aa) NosA (4379 aa)	X albilmeans Nostoc sp	AAK15074 AF204805	1934 bits (5010) 618 bits (1594)	0.0 e-176	1035/1046 (99%) 398/1104 (36%)	1039/1046 (99%) 586/1104 (53%)	- 86/1104 (7%)
NRPS-2		NosA (4379 aa) Peptide synthase (5060 aa)	Nostoc sp Anabaena sp	AF204805 CAC01604	416 bits (1069) e-115 402 bits (1034) e-111	e-115 e-111	337/1127 (29%) 315/1073 (29%)	496/1127 (43%) 479/1073 (44%)	(11%) (11%) 114/1073 (10%)
NRPS-3		XabB (4801 aa) NosA (4379 aa)	X albilmeans Nostoc sp.	AAK15074 AF204805	1847 bits (4784) 610 bits (1573)	0.0 e-173	997/1044 (95%) 392/1069 (36%)	1007/1044 (96%) 571/1069 (52%)	- 86/1069 -

		XabB (4801 aa) NosC (3317 aa)	X. albilineans Nostoc sp	AAK15074 AAF17280	889 bits (2297) 0.0 240 bits (613) 2e-	0.0 2e-62	468/468 (100%) 156/438 (35%)	468/468 (100%) 229/438 (51%)	20/438 (4%)
ı									
, %	343	XabC (343 aa) MtmMII (326 aa) TcmO (339 aa)	X albilmeans Sreptomyces argillaceus S. glaucescens	AAK15075 AAD55584 P39896	633 bus (1633) 0.0 144 bus (361) 16- 81.7 bus (199) 16-	0.0 16-34 16-14	343/343 (100%) 98/323 (30%) 79/314 (25%)	343/343 (100%) 154/323 (47%) 140/314 (44%)	- 4/323 (1%) 12/314 (3%)
=	167	comA operon protein 2 E. coli (136 aa) Bacillu ComAB (116 aa) Itcheny	E. coli Bacillus Itchenforms	AAC74756 CAA71583	133 bits (335) 97.6 bits (242)	1e-30 8e-20	68/135 (50%) 53/111 (47%)	89/135 (65%) 68/111 (60%)	- 1/111 (0%)
8	941								
		BA3 (6359 aa) WbpG (377 aa)	B licheniformis Pseudomonas aeruginosa	AAC06348 E83253	361 bits (926) 81.6 bits (200)	2e-98 4e-15	190/441 (43%) 44/119 (36%)	267/441 (60%) 70/119 (57%)	14/441 (3%) 4/119· (3%)
23	239	Thp (240 aa) IS transposase (260 aa)	X albilmeans Yersinia pestis	nd AAC82714	nd 160 bits (404)	0.0 1e-38	240/240 (100%) 87/183 (47%)	240/240 (100%) 122/183 (66%)	2/183 (1%)

									6561	AlbIX
	28									
	4/306	155/306 (50%)	106/306 (34%)	Se-45	182 bits (458)	AAB63253	syringae	(
	% 6	182/309 (58%)	130/309 (42%)	6e-64	245 bits (619) 6e-64	AF210249	Pseudomonas	SyrP (353 aa)	330	AlbVIII
	2/309						S. verticillus	SyrP Like (339 aa)		
	(%9)	(%94) 764/747	(0/15) 744/051	7. 2.	16-96 (616) 810 607	+0020000	painsuis	con tigase (co) aa)	3	
<u>_</u>	11/402						Rhodopseudomonas	4-hydroxybenzoate-		
	(%9)						multocida			
_	29/197	65/132 (49%)	32/132 (28%)	0.24	36.6 bits (83)	AAK03406	Pasteurella	(m.)		
	(8%)	125/224 (55%)	92/224 (41%)	6e-32	138 bits (347)	AAK46042	tuberculosis	TcmP (276 aa)	286	AlbVI
4	18/224						Mycobacterium	Hymothetical protein		

		XabB (4801 as)	X albilineans	AAK15074	481 bits (1239) e-135	e-135	286/608 (47%)	374/608 (61%)	(3%)
NRPS-6		DhbF (1278 aa)	B subtilts	CAB15186	354 bits (908)	1e-96	222/608 (36%)	341/608 (55%)	21/608 (3%)
NRPS-7		XabB (4801 aa) NosA (4379 aa)	K. albilineans Nostoc sp.	AAK15074 AF204805	874 bits (2258) 551 bits (1420)	0.0 e-155	515/1110 (46%) 388/1148 (33%)	682/1110 (61%) 583/1148 (49%)	52/1110 (4%) 84/1148 (7%)
AlbX	83	Hypothetical protein (72 aa) MbtH (71 aa)	P aeruginosa M. tuberculosis	AAG05800 CAB08480	75.6 bits (185) 59 bits (142)	1e-13 9e-09	34/61 (55%) 25/55 (45%)	44/61 (71%) 37/55 (66%)	
AlbXI	315	SyrC (433 aa) Hydrolase (261 aa)	P syringae S. coelıcolor	AAA85161 CAA16200	34.4 bits (78) 34 bits (77)	1.9 2.9	23/93 (24%) 19/60 (31%)	40/93 (42%) 30/60 (49%)	
АЉХП	451	ВохВ (473 аа)	Azoarcus evansiı	AAK00599	293 bits (751)	3e-78	174/448 (38%)	243/448 (53%)	12/448 (2%)
	ž.	Hypothetical protein (335 aa)	Caulobacter crescentus	AAK25001	99.5 bits (247)	002-45	88/296 (29%)	125/296 (41%)	5/296 (1%)
AbxIII	317	riasma r.A.r acetylbydrolase (444 aa)	Canis familiaris	AAC48484	37.5 bits (86)		43/156	951/95	44/156 (28%)
AlbXIV	496	Putative transmembrane efflux protein (505 aa)	S coelicolor	CAB90983	225 bits (574)	0	154/465 (33%)	240/465 (51%)	8/465
		Alor, putanye albicıdın efflux pump (496 aa)	X albilineans	AF403709	736 bits (1900)		496/496 (100%)	496/496 (100%)	
AlbXV	584	Probable carbamoyl transferase (585 aa) BImD (545 aa)	P aeruginosa S verticillus	AAG08390 AAG02370	201 bits (513) 192 bits (506)	le-50 le-47	158/458 (34%) 149/441 (33%)	222/458 (47%) 209/441 (46%)	39/458 (8%) 33/441 (7%)

AlbXVI	88	Transposase (363 aa) Transposase OrfA (88 aa)	X. axonopodis Desulfovibrio vulgaris	AF263433 AAC03166	64.8 bits (157) 61.0 bits (147)	2e-10 3e-09	27/45 (60%) 29/54 (53%)	40/45 (88%) 38/54 (69%)	
АЉХУП	716	Para-aminobenzoate synthase (723 aa)	Sireptomyces griseus	CAC22117	503 bits (1295) &-141	e-141	302/699 (43%)	409/699 (58%)	36/699 (5%)
AlbXVIII	137	4-amino-4- deoxychorismate lyase (271 aa)	P. aeruginosa	AAG06352	81.4 bits (200)	4e-15	46/105 (43%)	(%19) (97)	•
AlbXIX	200	McbG (187 aa)	E. coli	CAA30724	60.5 bits (145)	60-96	36/141 (25%)	58/141 (40%)	5/141 (3%)
AlbXX	202	4-hydroxybenzoate synthase (202 aa)	E colt	AAC77009	45.6 bits (107) Se-04	Se-04	42/161 (26%)	21/161 (13%)	•
AlbXXI	278	XabA (278aa)	X. albilmeans	AAG28384	430 bits (1106)	0	278/278 (100%)	278/278 (100%)	•
AlbXXII	634	Heat shock protein HrpG (634) Heat shock protein HrpG (624)	P aeruginosa E coli	AAG04985 AAC73575	1051 bits (2688) 743 bits (1899)	0 0	523/634 (82%) 376/624 (60%)	588/634 (92%) 476/624 (76%)	4/624 (0%)

Application of Royer, et al.

Table 5: Comparison of conserved sequences in C domains of peptide synthestases and in putative C domains of the Alb modules

	Core	Sequences conserved in peptide	Sequence	Alb module
		synthetases*		
5	C1	SxAQxR(L/M)(W/Y)xL	TYAQERLWLV	NRPS-1
			STAQERMWFL	NRPS-2
			SYAQERLWLV	NRPS-3
			SLFQERLWFV	NRPS-4
			SYQQERLWFV	NRPS-7
10	C2	RHExLRTxF	RHEVLRTRF	NRPS-1 and NRPS-3
	CZ	RHBADRIAF	RHAVLRTHF	NRPS-2
			RHEILRTRF	NRPS-4
			RHETLRTRI	NRPS-7
15			RHETERIRI	NRPS-/
	C3	MHHxISDG(W/V)S	IHHIISDGWS	NRPS-1 and NRPS-3
			IHHIVFDGWS	NRPS-2
			MHHLIYDAWS	NRPS-4
			MHHIICDGWS	NRPS-7
20	C4	VD / D / V) 3388	WLAYDAY	NRPS-1 and NRPS-3
•	Ç4	YxD(F/Y)AVW	YADYARW ·	NRPS-2
			YADYAIW	NRPS-4
			YADYATW	NRPS-7
25				
	C5	(I/V)GxFVNT(Q/L)(C/A)xR	IGFFINILPLR	NRPS-1, NRPS-3 and NRPS-4
			IGLFVNTLAVR	NRPS-2
			IGFFVNILAVR	NRPS-7
30	C6	(H/N) QD (Y/V) PFE	HQSVPFE	NRPS-1 and NRPS-3
50		(11) 11/ 12/ (1/ 1/ 11 1	HODVPFE	NRPS-2
			NOALPFE	NRPS-4
			HRALPFE	NRPS-7
0.5			pp.aac===	wang a sala wang s
35	C7	RDxSRNPL	RDSSQIPL	NRPS-1 and NRPS-3
			RDTARNPL	NRPS-2
			RDTSRIPL	NRPS-4
			RDSSQIPL	NRPS-7

Application of Royer, et al.

Table 6: Comparison of conserved sequences in A domains of peptide synthestases and in putative A domains of the Alb modules

	Core	Sequences conserved in	Sequence	Alb module
		peptide synthetases*		
45	Al	L(T/S)YxEL	WSYAQL	NRPS-1 and NRPS-3
		_ (,, _, _,	LSYAQL	NRPS-2
			MSYGQL	NRPS-5
			FSYRQL	PKS-4
			LSYAQL	NRPS-6 and NRPS-7
50	A2	LKAGxAYL(V/L)P(L/I)D	FKAGACYVPID	NRPS-1 and NRPS-3
		., ., ., ., ., ., ., ., ., ., ., ., ., .	SLCGAASVLID	NRPS-2
			MKAGAAYVPID	NRPS-5
• •			LAGGLVFAPIN	PKS-4
55			LKAGGCYVPLD	NRPS-6 and NRPS-7
	A3	LAYXXYTSG (S/T) TGXPKG	LACVMVTSGSTGRPKG	NRPS-1 and NRPS-3
			?TRTIMVESGSLSSRLL?	NRPS-2
			PVYCIYTSGSTGSPKG	NRPS-5
60			PAVMICTSGSTGTPKA	PKS-4
			LAYVMYTSGSTGRPKG	NRPS-6 et NRPS-7
	A4	FDxS	FAVS	NRPS-1 and NRPS-3
			FDAA	NRPS-2
65			FDLT	NRPS-5
			FAYG	PKS-4
			FAIS	NRPS-6 and NRPS-7
	A 5	NxYGPTE	NNYGCTE \	NRPS-1 and NRPS-3
70			?AAYGNAE?	NRPS-2
			NEYGPTE	NRPS-5
			DGIGCTE	PKS-4

^{*}Sourced from Marahiel et al., 1997

		32	Application of Royer, e
		YIYGCTE	NRPS-6 and NRPS-7
A6	GELxIxGxG (V/L) ARGYL	GELHVHSVGMARGYW	NRPS-1 and NRPS-3
		np .	NRPS-2
		GQIHIGGAGVAIGYV	NRPS-5
		GSLWVRGNTLTRGYV	PKS-4
		GEVHIESLGITHGYW	NRPS-6 and NRPS-1
A 7	Y (R/K) TGDL	YKTGDM	NRPS-1 and NRPS-3
		?YKTDAL?	NRPS-2
		YASGDL	NRPS-5
		?FDTRDL?	PKS-4
		YRTGDM	NRPS-6 and NRPS-
A8	GRxDxQVKIRGxRIELGEIE	GRQDFEVKVRGHRVDTRQVE	NRPS-1 and NRPS-3
		?GSLDVQSRIDDPRIDLCVVE?	NRPS-2
		GRKDSQIKLRGYRIELGEIE	NRPS-5
		?GRMGSAIKINGCWLSPETLE?	PKS-4
		GRRDYEVKVRGYRVDVRQVE	NRPS-6 and NRPS-
A 9	LPxYM(I/V)P	LPTYMLP	NRPS-1 and NRPS-
		?LPDYLLP?	NRPS-2
		LDEAMTD	NRPS-5
		?LGKHHYP?	PKS-4
		LPTYMLP	NRPS-6 and NRPS-
A10	NGK (V/L) DR	NGKLDR	NRPS-1 and NRPS-
		?HGRVDL?	NRPS-2
		NGKVNR	NRPS-5 .
		?SGKVIR?	PKS-4
		NGKLDT	NRPS-6 and NRPS-

^{*}Sourced from Marahiel et al., 1997

np: not present

^{?:} non conserved sequences

Table 7: Comparison of conserved sequences in PCP and TE domains of peptide synthestases and in putative PCP and TE domains of the Alb modules

	Domain	Sequences conserved in peptide synthetases*	Sequence	Alb module (domain)
5	PCP	DxFFxxLGG(H/D)S(L/I)	D-FFAVGGHSVL	PKS-3 (PCP1)
			DNFFALGGHSLS	NRPS-1 and NRPS-3 (PCP2 and PCP4)
10			DNFFELGGHSVL	NRPS-2 (PCP3)
			DNFFELGGHSLS	NRPS-5 (PCP5)
15			DNFFNLGGHSLL	NRPS-6 and NRPS-7 (PCP6 and PCP7)
	TE	G (H/Y) SxG	GWSSG	NRPS-7

^{*}Sourced from Marahiel et al., 1997

35

EXAMPLE 9: The alb carbamoyl transferase gene

albXV potentially encodes a protein of 584 aa with a predicted size of 65.2 kDa. This protein, AlbXV, is similar to BlmD, a carbamoyl transferase involved in bleomycin biosynthesis in *Streptomyces vertillus* (Du et al., 2000), and to a probable carbamoyl transferase potentially expressed in *P. aeruginosa* (Table 4). High similarity of AlbXV with these proteins suggests that AlbXV is a carbamoyl transferase.

30 **EXAMPLE 10:** The alb esterase genes

albXI potentially encodes a protein of 315 aa with a predicted size of 35.9 kDa. This protein, AlbXI, exhibits low similarity to SyrC, a putative thioesterase involved in syringomycin biosynthesis by *Pseudomonas syringae* (Zhang et al., 1995), and to a potential hydrolase encoded by *Streptomyces coelicolor* (Table 4). Precise function of SyrC remains unknown but SyrC is similar to a number of thioesterases, including fatty acid thioesterases,

haloperoxidases, and acyltransferases that contain a characteristic GxCxG motif. The corresponding SyrC domain GICAG is conserved in AlbXI which contains the sequence GWCQA, except that A replaces the last G, suggesting that AlbXI may be an esterase despite its low overall similarity with SyrC.

albXIII potentially encodes a protein of 317 aa with a predicted size of 34.5 kDa. This protein, AlbXIII, is similar to hypothetical proteins with unknown function from several bacteria including Caulobacter crescentus (Table 4). AlbXIII and these hypothetical proteins contain a GxSxG motif characteristic of serine esterases and thioesterases, the corresponding sequence in AlbXIII being GHSVG. In addition, AlbXIII presents a similarity with the 2-acetyl-lalkylglycerophosphocholine esterase which hydrolyzes the platelet-activating factor in Canis familiaris (Table 4), suggesting that AlbXIII is an esterase.

EXAMPLE 11: The alb methyltransferase genes

5

10

15

20

25

30

albII potentially encodes a protein of 343 aa (AlbII) with a predicted size of 37.7 kDa. albII is 100% identical to the xabC cistron, previously described as encoding an Omethyltransferase downstream xabB (Huang et al., 2000a). This conclusion is based on the similarity of XabC with a family of methyltransferases that utilize S-adenosyl-L-methionine (SAM) as a co-substrate for O-methylation including TcmO protein from Streptomyces plaucescens (Huang et al., 2000a). AlbII contains three highly conserved motifs of SAMdependent methyltransferases, including the motif I involved in SAM binding (Figure 3). In the Figure, identical or similar amino acids (A=G; D=E; I=L=V) are shown in bold. Numbers indicate the position of the amino acid from the N-terminus of the protein. Abbreviations used in the Figure are: Sgl-TcmO and Sgl-TcmN, multifunctional cyclasehydratase-3-O-Mtase and tetracenomycin polyketide synthesis 8-O-Mtase of Streptomyces glaucescens, respectively (accession number: M80674); Smy-MdmC, midecamycin-O-Mtase of Streptomyces mycarofaciens (accession number: M93958); Mxa-SafC, Saframycin O-Mtase of Myxococcus xanthus (accession number: U24657); Ser-EryG, erythromycin biosynthesis O-Mtase of Saccharopolyspora erythraea (accession number: S18533); Spe-DauK, carminomycin 4-O-Mtase of Streptomyces peucetius (accession number: L13453); Sal-DmpM, O-demethylpuromycin-O-Mtase of Streptomyces alboniger (accession number: M74560); Shy-RapM, rapamycin O-Mtase of Streptomyces hygroscopicus (accession number: X86780); Sav-AveD, avermectin B 5-O-Mtase of Streptomyces avermitilis (accession number: G5921167), Sar-Cmet, mithramycin C-methyltransferase of Streptomyces argillaceus (accession number: AF077869); AlbII, putative albicidin biosynthesis C- Methyltransferase of Xanthomonas albilineans (SEQ ID No. 27); identical to XabC, accession number: AF239749).

Comparison of AlbII with the Genbank database revealed that AlbII, besides 100% identity to XabC, exhibited the highest degree of overall identity with MtmMII, a C-methyltransferase from Streptomyces argillaceus (Table 4) involved in C-methylation of the polyketide chain for mithramycin biosynthesis, suggesting that AlbII is a C-methyltransferase. XabC was not compared by Birch and co-workers with MtmMII (Huang et al., 2000a) because the MtmMII sequence was not available until recently in the Genbank database. The three highly conserved motifs in SAM methyltransfererases are also present in MtmMII (Figure 3), suggesting that AlbII is a C-methyltransferase SAM-dependent.

5

10

15

20

25

30

albVI potentially encodes a protein of 286 aa (AlbVI) with a predicted size of 32.1 kDa similar to several hypothetical protein from Mycobacterium tuberculosis (Genbank accessions n° AAK46042, AAK48238, AAK44517, AAK46218) and from S. coelicolor (Genbank accession n° CAC03631). AlbVI is also similar to the tetracenomycine C synthesis protein (TcmP) of Pasteurella multocida (Table 4). Four highly conserved motifs in TcmP and other O-methyltransferases are also present in AlbVI (Figure 4), suggesting that AlbVI is an O-methyltransferase. In the Figure, identical or similar aa (A=G; D=E; I=L=V; K=R) are shown in bold. Numbers indicate the position of aa from the N-terminus of the protein. Abbreviations used in the Figure are: Sgl-tcmP, tetracenomycin C synthesis protein of Streptomyces glaucescens (accession number: C47127); Sme-PKS, putative polyketide synthase of Sinorhizobium meliloti (accession number: AAK65734); Pmu-tcmP: tetracenomycin C synthesis protein of Pasteurella multocida (accession number: AAK03406); Mtu-Omt: putative O-methyltransferase of Mycobacterium tuberculosis (accession number: AAK45444); Mlo-Hp: hypothetical protein containing similarity to O-methyltransferase of Mesorhizobium loti (accession number: BAB50127); Mtu-Hp1: hypothetical protein of Mycobacterium tuberculosis (accession number: AAK46042); Mtu-Hp2: hypothetical protein of Mycobacterium tuberculosis (accession number: AAK48238); Mtu-Hp3: hypothetical protein of Mycobacterium tuberculosis (accession number: AAK44517); AAK46218); Sco-Hp: hypothetical protein of Streptomyces coelicolor (accession number: CAC03631); AlbVI, putative albicidin biosynthesis O-Methyltransferase of Xanthomonas albilineans (this study). The three highly conserved motifs in SAM methyltransfererases are not present in AlbVI, indicating that SAM is not a co-substrate of AlbVI.

EXAMPLE 12: The alb derived-benzoate products biosynthesis genes

albXVII potentially encodes a protein of 716 as with a predicted size of 79.8 kDa. This protein, AlbXVII, is very similar to the para-aminobenzoate (PABA) synthase from Streptomyces griseus (Table 4). This enzyme is required for the production of the antibiotic candicidin (Criado et al., 1993).

albXVIII potentially encodes a protein of 137 aa with a predicted size of 15.0 kDa. This protein, AlbXVIII, is similar to the 4-amino-4-deoxychorismate lyase (ADCL) from P. aeruginosa (Table 4). The function of ADCL is to convert 4-amino-4-deoxychorismate into PABA and pyruvate. The length of AlbXVIII is smaller (Table 4) than the length of ADCL and the similarity of AlbXVIII with this protein starts only at residues 161. albXVIII is preceded by a small ORF encoding a sequence of 59 aa similar to the first 42 amino acids of ADCL from P. aeruginosa. These data suggest that albXVIII is probably a truncated form of albXVIII and probably not functional. albXVIII may, therefore, not be involved in albicidin biosynthesis. The region between albXVIII and albXVIII was amplified by PCR from total DNA of X. albilineans Xa23R1 strain using primers ORFW (5'gcgagaggacaagctgctgc3') SEQ ID No. 53 and ORFY (5'cgttgaggatgcagcgctcg3') SEQ ID No. 54 and was sequenced. Resulting sequence data showed that the sequence of the PCR fragment was 100% identical to the sequence of pALB540, indicating that the recombination of albXVIII did not occur during cloning of the genomic fragment in pALB540.

albXX potentially encodes a protein of 202 as with a predicted size of 22.6 kDa. This protein AlbXX is similar to the 4-hydroxybenzoate synthase potentially involved in ubiquinone biosynthesis by Escherichia coli (Siebert et al., 1992).

EXAMPLE 13: The alb regulatory genes

5

10

15

20

25

30

1

albIII potentially encodes a protein of 167 amino acids with a predicted size of 17.8 kDa that is similar to the transcription factors ComA of different bacteria such as *E. coli* and *B. licheniformis* (Table 4). ComA transcription factors appear to be involved in regulation of antibiotic production in bacteria. In *E. coli*, a gene similar to comA is present in the enterobactin biosynthesis gene cluster (Liu et al., 1989). In *B. subtilis*, ComAB was described as a probable positive activator of lichenysin synthetase transcription (Yakimov et al., 1998) and a gene similar to comA was shown to be essential for bacilysin biosynthesis (Yazgan et al., 2001). These data suggest that AlbIII regulates transcription of genes involved in albicidin biosynthesis.

albVIII potentially encodes a protein of 330 aa with a predicted size of 37.7 kDa. This

protein, AlbVIII, is very similar to the SyrP like protein from S. verticillus and to SyrP protein from P. syringae (Table 4). SyrP participates in a phosphorylation cascade controlling syringomycin synthesis (Zhang et al., 1997) and the syrP like gene was described in the S verticillus bleomycin biosynthetic gene cluster (Du et al., 2000). These data suggest that AlbVIII regulates albicidin biosynthesis in X. albilineans.

EXAMPLE 14: The alb resistance genes

5

10

15

20

25

30

albXIV potentially encodes a protein of 496 aa with a predicted size of 52.7 kDa. This protein, AlbXIV, is 100% identical to AlbF isolated from X. albilineans strain Xa13 (GenBank Accession AF403709; direct submission by Bostock and Birch and described as "a putative albicidin efflux pump which confers resistance to albicidin in E. coli"). AlbXIV and AlbF are closely related to a family of transmembane transporters involved in antibiotic export and antibiotic resistance in many antibiotic-producing organisms. AlbXIV and AlbF exhibited the highest degree of overall identity with the putative transmembrane efflux protein from S. coelicolor (Table 4). These data suggest that AlbXIV and AlbF may be involved in albicidin resistance by transporting the toxin out of the bacterial cells that produce it. Alternatively, AlbXIV and AlbF may simply play a role in antibiotic secretion and/or plant pathogenesis to effect the transport of albicidin outside of producing cells.

albXIX potentially encodes a protein of 200 aa with a predicted size of 22.8 kDa. This protein, AlbXIX, is similar to the McbG protein from E. coli (Table 4). In Enterobacteriae, the McbG protein, together with two other proteins (McbE and McbF), was shown to cause immunity to the peptide antibiotic microcin B17 which inhibits DNA replication by induction of the SOS repair system (Garrido et al., 1988). McbE and McbF proteins serve as a pump for the export of the active antibiotic from the cytoplasm, whereas a McbG alone also provides some protection: a well-characterized deficient-immunity phenotype is exhibited by microcin B17-producing cells in the absence of the immunity gene mcbG (Garrido et al., 1988). The significant similarity between AlbXIX and McbG, together with the fact that albicidin also blocks DNA replication (Birch and Patil, 1985a) suggests that AlbXIX confers immunity against albicidin in X. albilineans.

EXAMPLE 15: Transposition proteins

albV is 100% identical to the thp gene described in a divergent position upstream from xabB (Huang et al., 2000a). The thp gene potentially encodes a protein of 239 as displaying significant similarity to the IS21-like transposition helper proteins. In X. albilineans strain

LS155 from Australia, insertional mutagenesis of *thp* blocked albicidin production, but *trans*-complementation failed, indicating the involvement in albicidin production of a downstream gene in the *thp* operon (Huang *et al.*, 2000a).

albXVI potentially encodes a protein of 88 as with a predicted size of 9.8 kDa similar to the transposases from several bacteria such as Xanthomonas axonopodis or Desulfovibrio vulgaris (Table 4).

The presence of transposition proteins in the XALB1 cluster is probably a remnant from a past transposition event that may have contributed to the development of the albicidin XALB1 cluster.

EXAMPLE 16: Unknown functions

5

10

15

20

25

30

AlbX potentially encodes a protein of 83 aa with a predicted size of 9.4 kDa. This protein, AlbX, is similar to an hypothetical protein from *P. aeruginosa* and to the MbtH protein from *Mycobacterium tuberculosis*. MbtH is a protein with unknown function found in the mycobactin gene cluster (Quadri et al., 1998). A MbtH-like protein with unknown function was also described in the bleomycin biosynthetic gene cluster of *S. verticillus* (Du et al., 2000). These data suggest that AlbX is involved in albicidin biosynthesis but its function remains unknown.

albXII potentially encodes a protein of 451 aa with a predicted size of 51.6 kDa. This protein, AlbXII, is very similar to a protein of 55 kDa encoded by the boxB gene in Azoarcus evansii (Table 4). This protein is a component of a multicomponent enzyme system involved in the hydroxylation of benzoyl CoA, a step of aerobic benzoate metabolism in Azoarcus evansii, but its function remains unknown (Mohamed et al., 2001).

EXAMPLE 17: Prediction of amino acid specificity of Alb NRPS modules

In NRPSs, specificity is mainly controlled by A domains which select and load a particular amino-, hydroxy- or carboxy-acid unit (Marahiel et al., 1997). The substrate-binding pocket of the phenylalanine adenylation (A) domain of the gramicidin S synthetase (GrsA) from Brevibacillus brevis was recently identified by crystal structure analysis as a stretch of about 100 amino acid residues between highly conserved motifs A4 and A5 (Conti et al., 1997). Based on sequence analysis of known A domains, in relation to the crystal structure of the GrsA (Phe)substrate binding pocket, similar models have been published to predict the amino acid substrate which is recognized by an unknown NRPS A domain (Challis et al., 2000; Stachelhaus et al., 1999). These models postulate specificity-conferring codes for

A domains of NRPS consisting of critical amino acid residues putatively involved in substrate specificity. The model proposed by Marahiel and co-workers (Stachelhaus *et al.*, 1999) defined a signature sequence consisting of ten amino acids lining with the ten residues of the phenylalanine-specific binding pocket located at positions 235, 236, 239, 278, 299, 301, 322, 330, 331 and 517 in the GsrA (Phe) sequence (accession number: P14687). The model proposed by Townsend and co-workers (Challis *et al.*, 2000) uses only the first eight of these critical residues.

5

10

15

20

25

30

Preliminary specificity assignments of albicidin synthase AlbI, AlbIV, AlbVII and AlbIX NRPS modules were made by comparison of complete sequences between conserved motifs A4 and A5 with sequences in the Genbank database. The corresponding sequence of the AlbIV NRPS-5 module is most related to domain 5 of bacitracin synthase 3 (BA3) from B. licheniformis that was suggested to activate Asn (Konz et al., 1997). Corresponding sequences of AlbI and AlbIX NRPS-1, NRPS-3, NRPS-6 and NRPS-7 modules, apart from their very high similarity with XabB, exhibited the highest degree of overall identity (39%) with the Blm NRPS2 module of the biosynthetic gene cluster for bleomycin from S. verticillus that specifies for β -Alanine (Du et al., 2000). The corresponding sequence of AlbVII PKS-4 produced the highest significant alignment with acetate-CoA ligase from Sulfolobus solfataricus (Genbank accession number: AAK41550), aryl-CoA ligase from Comamonas testosteroni (Genbank accession number: AAC38458) and 4-hydroxybenzoate-CoA ligase from R. palustris. The sequence between motifs A4 and A5 of the AlbI NRPS-2 could not be significantly aligned with any sequence present in the Genbank database. Comparison of this sequence with the corresponding sequence of GrsA (Phe) revealed that parts of the putative core and structural "anchor" sequences of AlbI NRPS-2 are deleted (Figure 5), suggesting that the AlbI NRPS-2 substrate binding pocket is not functional. In the Figure, amino acids of the six Alb NRPSs and of Alb PKS-4 that are identical or similar to GrsA or Blm sequences (A=G; D=E; I=L=V; R=K) are shown in bold. Amino acids underlined in the GsrA sequence correspond to the phenylalanine-specific binding pocket. The positions of these amino acids in the GrsA primary sequence are indicated at the top of the figure. Amino acids underlined in the other sequences correspond to putative constituents of binding pockets, aligned with the seven residues of the phenylalanine- specific binding pocket of GrsA. Shaded amino-acids correspond to the putative core sequences and structural 'anchors' based on comparison with the GrsA binding-pocket structure.

Alignment of the primary sequence between conserved motifs A4 and A5 of the AlbI, AlbIV, AlbVII and AlbIX NRPS-1, NRPS-3, NRPS-5, NRPS-6, NRPS-7 and PKS-4 modules

with the corresponding sequence of GrsA (Phe) (Figure 5) revealed the putative constituents of binding pockets that constitute the codes as defined by Marahiel and co-workers (Stachelhaus et al., 1999). These codes were compared with those of proteins most related to the sequence between the A4 and A5 motifs (Table 8) and were analyzed with the model Townsend and co-workers (Challis proposed by http://jhunix.hcf.jhu.edu/~ravel/nrps//). Using these codes, we were able to predict the Asparagine specificity of the AlbIV NRPS-5 module. The AlbIV NRPS-5 signature is 100% identical to BacC-M5 (Asn) and TyrC-M1 (Asn) codes identified in bacitracin synthetase 3 from B. licheniformis and in tyrocidine synthetase 3 from B. brevis (Table 8). The AlbIV NRPS-5 signature is also identical to the Asn code defined by Marahiel and co-workers (1997), except that I is replaced by L at position 299 (Table 8). The AlbI and AlbIX NRPS-1, 3, 6 and 7 signatures did not match any of those defined by Marahiel and co-workers (1997). Similarly, convincing predictions using the model proposed by Townsend and co-workers were not obtained either (Challis et al., 2000, http://jhunix.hcf.jhu.edu/~ravel/nrps//). The AlbI and AlbIX NRPS-1, 3, 6 and 7 signatures diverged from all NRPS signatures previously described, except from the XabB signature that is identical to the AlbI NRPS-1 and 3 signatures. The signature most closely related to AlbI NRPS-1 and 3 specify Pro and the signature most closely related to AlbIX NRPS-6 and 7 specify Ser, but the degree of similarity in both cases is very weak (Table 8). The PKS-4 signature is similar to the Albl NRPS-1 and NRPS-3 signatures at positions 235, 299 and 301.

5

10

15

20

25

30

Analysis of alignment of the primary sequence between conserved motifs A4 and A5 of the AlbI and AlbIX NRPS-1, NRPS-3, NRPS-6 and NRPS-7 modules with the corresponding sequences of the bleomycin synthase (Blm) NRPS2 (β -Ala) and gramicidin S synthetase (GrsA) modules (Figure 5) revealed that (i) sequences of AlbI NRPS-1 and AlbI NRPS-3 differ only at the level of two residues that are not involved in substrate binding, (ii) sequences of AlbIX NRPS-6 and AlbIX NRPS-7 are 100% identical, (iii) sequences of AlbI NRPS-1 and AlbI NRPS-3 are very similar to sequences of AlbIX NRPS-6 and AlbIX NRPS-7 but differ at the level of five putative constituents of binding pocket, (iv) AlbI and AlbIX NRPS residues, which are similar to residues of Blm NRPS2 (β -Ala) or GrsA (Phe), are essentially located at the level of the putative core sequences and structural "anchor", and differ at the level of putative constituents of the binding pocket.

Binding-pocket constituents forming the NRPS signatures have been classified into three subgroups according to their variability among 160 specificity-conferring signature sequences (Stachelhaus et al., 1999): (i) invariant residues Asp235 and Lys517 that mediate

5

10

15

20

25

30

)

key interactions with the α-amino and α-carboxylate group of the substrate, respectively; (ii) moderately variant residues in positions 236, 301 and 330 which correspond to aliphatic amino acids and which may modulate the catalytic activity and fine-tune the specificity of the corresponding domains; (iii) highly variant residues in positions 239, 278, 299, 322 and 331 which may facilitate substrate specificity. AlbI and AlbIX NRPS-1, 3, 6 and 7 signatures are not totally in accordance with this classification. Invariant residue Lys517 is conserved in the four NRPS signatures, indicating the presence of an α-carboxylate group in the corresponding substrates. The Asp235Ala alteration is not consistent with an α-amino acid substrate. Birch and co-workers (Huang et al., 2001) assumed that the initial alanine residue in the XabB signature was consistent with a nonproteinogenic hydroxy acid substrate by analogy with the initial glycine in the signature of the hydroxyisovaleric-acid (HVCL) loading domain of enniatin synthetase. The presence of an initial Alanine in the AlbVII PKS-4 signature (Figure 8) and in several 4-hydroxybenzoate-CoA ligase codes may confirm this hypothesis. However, the HVCL loading domain of enniatin synthetase (Table 8) and AlbVII PKS-4 are not preceded by a C domain and are not followed by a PCP domain, in contrast to the AlbI and AlbIX NRPS-1, 3, 6 and 7 modules. An Asp235Val alteration was recently described in the \beta-Ala specificity-conferring code (Du et al., 2000, Table 8), suggesting that the substrate of AlbI and AlbIX NRPS-1, 3, 6 and 7 modules may be different from α -amino acids but may contain an amino group. Residue 236 is an aliphatic residue (Val or Ile) in all AlbI and AlbIX NRPS-1, 3, 6 and 7 signatures. Residue 301 is an aliphatic residue (Ala) in the AlbI NRPS-1 and 3 codes, but it is a Ser in the AlbIX NRPS-6 and 7 signatures. Residue 330 is not an aliphatic residue in the four NRPS signatures but an Asp. Similar alterations are present in the β-Ala code: residue 236 is an Asp, residue 301 is a Ser and residue 330 is an aliphatic amino acid. Concerning highly variable residues, AlbI NRPS-1 and 3 signatures differ from AlbIX NRPS-6 and 7 signatures at residue positions 299, 322 and 331, confirming that both types of NRPS modules specify different substrates.

Table 8: Comparison of signature sequences, as defined by Marahiel and co-workers (Stachelhaus et al., 1999), derived from sequences between the A4 and A5 domains of the AlbI, AlbIV, and AlbIX NRPS modules with those of Tyr-M1 (Pro) (Tyrocidine synthetase 2 module 1, accession number: AAC45929), VirS (Pro) (Virginiamycin S synthetase, accession number: CAA72310), HVCL (hydroxyisovaleric acid-CoA ligase, ACL1 enniatin synthetase, accession number: S39842), EntF-M1 (Ser) (Enterobactin synthase, accession number: AAA92015), β-Ala code (β-Ala selectivity-conferring code defined by Du et al., 2000),

BacC-M5 (Asn) (Bacitracin synthetase 3, accession number: AAC06348), TyrC-M1 (Asn) (Tyrocidine synthetase 3, accession number: AAC45930) and Asn code (Asn selectivity-conferring code defined by Marahiel and co-workers (Stachelhaus *et al.*, 1999). Amino acids of AlbI NRPS-1 and NRPS-3 signatures identical or similar to TyrB-M1 (Pro), VirS (Pro) and HVCL signatures (A=G; D=E; I=L=V; R=K) are shown in bold. Amino acids of AlbIX NRPS-6 and NRPS-7 signatures identical or similar to Vir (Pro) and Blm (β-Ala) signatures (A=G; D=E; I=L=V; R=K) are shown in bold. Variability: 0 indicates invariant residues, +/-moderately variant residues and ++ highly variant residues.

10	
	Doma

5

Position	in	GsrA	(Phe)	and	variability
T ODITION	***	COLL	/ T 11/-/	anu	variavilley

	Domains	235	236	239	278	299	301	322	330	331	517
		0	+/-	++	++	++	+/-	++	+/-	++	0
	Alb NRPS-1	Ā	V	K	Y	V	Ą	·N	D	A	K
15	Alb NRPS-3 TyrB-M1 (Pro)	A D	V V	K Q	Y	V I	A A	N '	D V	A V	K K
13	VirS (Pro)	Ď	v	ğ	S Y	Å	A	H	V	M M	K
•	(2.10)	_	·	•	_				•		
	HVCL	G	Α	L	Н	V	V	G	S	I	K
	Alb NRPS-6	A	I	K	Y	F	S	I	D	M	K
20	Alb NRPS-7	Α	I	K	Y	F	S	I	D	M	K
	VirS (Pro)	Ď	V	Q	Y	A	Α `	, Ĥ	V	M	K
	EntF-M1 (Ser) β-Ala code	D V	V D	W W	H V	F	S S	L L	V A	D.	K K
	p-Ma code	V	ט	VV	V	1	3	L	A	D	K
25	Alb NRPS-5	D	L	T	K	I	G	E	V	G	K
	BacC-M5 (Asn)	D	Ļ	T	K	Į	G	Ē	V	G	K
	TyrC-M1 (Asn) Asn code	D D	L L	T T	K K	L L	G G	E E	V V	G G	K K
	Aldii oodo	ע		•	1.	-	J	ı,	v	u	IX.

30

35

EXAMPLE 18: Identification of putative promoters and putative terminators in XALB1

Putative rho independent terminators were identified downstream from *albIV* and *albXVI* using the Terminator program (Brendel and Trifonov, 1984), run with the Wisconsin PackageTM GCG software (Figure 6). In the Figure, dashes indicate palindromic sequences. Symbols used in the Figure are: P, Primary structure value of putative terminator (minimum threshold value of 3.5 represents 95 percent of known, factor-independent, prokaryotic terminators); S, Secondary structure value of putative terminator. The presence of these

terminators confirmed the proposed genetic organization of operons 1 and 3. A rho-independent terminator was identified in the intergenic region between albXVII and albXVIII, suggesting that the group of genes initially supposed to be organized in operon 4 may be in fact organized in two operons, operon 4 formed by albXVIII and operon 5 by albXVIII – albXX. No putative rho independent terminator was found downstream from albIX and from albXX.

The 236 bp region between albI (operon 1) and albV (operon 2) is 100% identical to the sequence between xabB and thp genes that is assumed to contain a bidirectional promoter (Huang et al., 2000a and 2001), suggesting that transcription of operon 1 and 2 is regulated by the same bidirectional promoter region (Huang et al., 2001).

The 412 bp region comprised between albX (operon 3) and albXVII (operon 4) also contains a putative bidirectional promoter (Figure 7). In the Figure, the sequence of putative promoters are underlined, and putative ATG or TTG start codons are in bold. The closest matches (TTGACA-18x-TATAGT) to the consensus -35 (TTGACA) and -10 (TATAAT) sequences for $E.\ coli\ \sigma^{70}$ promoters occurs 61 bp upstream from albX (operon 3). The closest matches (TTCAGA-19x-TATACA) to the consensus sequences for $E.\ coli\ \sigma^{70}$ promoters occur 320 bp upstream from albXVII (operon 4). The region between albXVII and albXVIII lacks any apparent $E.\ coli\ \sigma^{70}$ promoter. However, the sequence immediately upstream from albXIX, corresponding to the coding sequence of albXVIII, potentially contains an unidirectional promoter (Figure 7). The closest match (TTGCTC-19x-TATATT) to the consensus sequences for $E.\ coli\ \sigma^{70}$ promoters occurs 33bp upstream from albXIX. The presence of a terminator downstream from albXVIII and of a promoter upstream from albXIX suggests that albXVIII is not transcribed and that albXIIX and albXXIX form operon 5.

EXAMPLE 19: Cloning of the XALB2 gene cluster

5

10

15

20

25

30

The 6 kb EcoR I fragment carrying Tn5 and flanking sequence from strain AM37 was cloned in pBR325 and the obtained plasmid was designated pAM37 (Table 1). A 1.1 kb Hind III-Hind III DNA fragment from pAM37, named PR37 (Table 1), was labeled with ³²P and used to probe the 845 clones from the genomic library of X. albilineans strain Xa23R1, previously described (Rott et al., 1996). Eight new cosmids hybridized to this probe and restored albicidin production in mutant AM37. One of these cosmid, pALB389, carrying an insert of about 37 kb (Table 1), was used for complementation studies of the five mutants not complemented by pALB540 and pALB571. Cosmid pALB389 complemented mutants AM10

and AM37. Mutant AM10 was initially thought to be complemented by pALB639 (Rott et al., 1996). However, further complementation studies showed that mutant AM10 was not complemented by pALB639 and that only three mutants (AM12, AM13 and AM36) were complemented by pALB639 containing the third genomic region XALB3 involved in albicidin production. A 3 kb *EcoRI- EcoRI* DNA fragment from pALB389 that hybridized with probe PR37 was sub-cloned in pUFR043 (Table 1). The resulting plasmid pAC389.1 complemented mutants AM10 and AM37, confirming that the second region involved in albicidin production, XALB2, was present in the 3 kb insert of pAC389.1.

EXAMPLE 20: Cloning of the XALB3 gene cluster

5

10

15

20

25

30

Cosmid pALB639, carrying an insert of 36 kb (Rott et al., 1996; Table 1) was used as a probe to compare the EcoRI restriction profiles of X. albilineans strain Xa23R1 with those of mutants AM12, AM13 and AM36 which were supposed to be mutated in the XALB3 gene cluster. An 11 kb band which was found in strain Xa23R1 but not in the three mutants was supposed to contain the XALB3 gene cluster. A 9.7 kb EcoRI DNA fragment purified from cosmid pALB639 also used as a probe in Southern blot analyse revealed the same 11 kb band. This 9.7 kb EcoRI DNA fragment was sub-cloned in pUFR043 (Table 1) and the resulting plasmid pAlb639A complemented mutants AM12, AM13 and AM36. The third region involved in albicidin production, XALB3, was therefore present in the 9.7 kb insert of pAlb639A.

EXAMPLE 21: Sequencing of the Tn5 insertional site of tox mutants located in XALB2 and XALB3 and sequencing of the genomic regions XALB2 and XALB3

In Figure 8, E, H, Sa and S indicate restriction endonuclease cut sites for *EcoRI*, *HindIII*, *SalI* and *Sau3AI*, respectively. The DNA inserts carried by plasmids pAC389.1, pALB639A or pEV639 are represented by the bars at the top of the respective figures. Positions of the Tn5 insertional sites of mutants AM10, AM12, AM36 and AM37 were determined by sequencing and are indicated by vertical arrows. The DNA region corresponding to the Tn5 flanking regions in pAM10, pAM12.1, pAM36.2 and pAM37 and in the PR37 DNA fragment are represented by the bars at the bottom of the respective figures. The location and direction of *albXXII* and *albXXII* are indicated by thick black arrows. The location of other orfs in XALB2 similar to those described by Huang et al. (2000b) are indicated by thick white arrows.

The 7 kb EcoR I fragment carrying Tn5 and flanking sequence from strain AM10 was cloned in pBluescript II KS (+), and the obtained plasmid was designated pAM10 (Table 1). The sequences between EcoRI sites and the Tn5 insertional site of mutants AM10 and AM37 were sequenced from the resulting plasmids pAM10 and pAM37, respectively. The complete double-strand nucleotide sequence of the 2,986 bp EcoR I – EcoR I insert of pAC389.1 was determined from sequencing results of plasmids pAC389.1, pAM10 and pAM37 (Figure 8). The Tn5 insertional sites of mutants AM10 and AM37 were sequenced from plasmids pAM10 and pAM37 (Table 1), respectively, using the sequencing primer GUSN (5'tgcccacaggccgtcgagt3') that annealed 135 bp downstream from the insertional sequence IS50L of Tn5-gusA. The Tn5 insertional site of AM10 and AM37 was located at position 2107 and 1882, respectively.

5

10

15

20

25

30

The EcoRI fragments carrying Tn5 and the flanking sequences from mutants AM12 and AM36 were cloned in pBR325 (Rott et al., 1996; Table1). The sequences between EcoRI site and the Tn5 insertional site of mutants AM12 and AM36 were sequenced from the resulting plasmids pAM12.1 and pAM36.2, respectively. The complete double-strand nucleotide sequence of the 9,673 bp EcoR I – Sau3A I insert of pALB639A was determined from the sequencing results of plasmids pAM12.1, pAM36.2 and pALB639A (Figure 8). The Tn5 insertional site of mutants AM12 and AM36 was sequenced from plasmids pAM12.1, pAM36.2 using the sequencing primer GUSN (5'tgcccacaggccgtcgagt3') that annealed 135 bp downstream from the insertional sequence IS50L of Tn5-gusA. The Tn5 insertional site of AM12 and AM36 was located at position 6500 and 7232, respectively (Figure 8).

EXAMPLE 22: Homology analysis and genetic organization of XALB2 (Figure 8).

The sequence of 2986 bp containing XALB2 is 99.4% identical to the sequence of 2989 bp containing xabA described in X. albilineans strain LS155 from Australia (Huang et al., 2000b; accession number AF191324). The Tn5 insertional site of mutant LS156 described in xabA is 15 bp upstream from the insertional site of AM37. The orf disrupted in AM37 and AM10, designed albXXI, is identical to xabA except a C which replaces a T at position 1642. albXXI potentially encodes a protein of 278 aa with a predicted size of 29.3 kDa which is 100% identical to the potential product of xabA, described as a phosphopantetheinyl transferase (Huang et al., 2000b). Region XALB2 contains three additional orfs (orf1, orf2, and orf3) similar to those described by Huang et al., (2000b; orf, rsp6 and aspT). orf2 and orf3 are 100% identical to rsp6 and aspT respectively, and orf1 is similar to but smaller than orf. There are no close matches to the E. coli γ 70 promoter -10 (TATAAT) and -35 (TTGACA)

consensus sequence, and no putative RBS site upstream from the putative start codon ATG of albXXI. The putative factor-independent transcription site described at 42 bp downstream from the TGA stop codon of xabA (Huang et al., 2000b) is also present at the same position downstream from albXXI.

5

10

15

EXAMPLE 23: Homology analysis and genetic organization of XALB3 (Figure 8).

The orf disrupted in mutants AM12 and AM36 was located between nucleotide 6090 (ATG) and 8009 (TAA) and was designed *albXXII*. The first ATG at position 6090 is not preceded by a putative ribosome binding sequence, suggesting that the start codon is the ATG at position 6105 which is preceded at position –9 by the putative ribosome binding site sequence GGAG. A putative rho independent terminator was identified at position 8082, 73 b downstream from *albXXII* (figure 6). There are no close matches to *E. coli* σ⁷⁰ promoter –10 (TATAAT) and –35 (TTGACA) consensus sequence upstream from the putative start codon. The *SaII* DNA fragment corresponding to DNA sequence from nucleotide 5510 to nucleotide 8124, which contains the 595 bp upstream from the putative start codon, the orf *albXXII* and the putative rho independent terminator, was sub-cloned in pUFR043 in the opposite direction to LacZ (Table 1). The resulting plasmid pEV639 (table 1) complemented mutants AM12, AM13 and AM36, confirming that (i) the third region involved in albicidin production, XALB3, was present in the insert of pEV639; (ii) *albXXII* is not transcribed as part of a larger operon; and (iii) the 595 bp upstream the putative start codon contain a promoter.

20

25

The potential product of albXXII, designated AlbXXII, is a protein of 634 aa with a predicted size of 71.5 kDa. This protein is very similar to the heat shock protein HtpG from Pseudomonas aeruginosa (identities = 82%) and from Escherichia coli (identities = 60%)(table 4). The methionine encoded by the putative start codon at position 6105 was aligned with the first aminoacid of the heat shock protein HtpG from Pseudomonas aeruginosa, confirming that albXXII initiates at position 6105.

30

The invention includes the isolation and sequencing of a region of 55,839 bp from X. albilineans strain Xa23R1 containing the major gene cluster XALB1 involved in albicidin production. Analysis of this region allowed us to predict the genetic organization of the gene cluster XALB1 which contains 20 ORFs grouped in four or five operons (Figure 1). Because albXVIII is a truncated gene, XALB1 genes may be organized in five operons. Therefore, we will from now on consider albXVIII as part of operon 4 and albXIX and albXXX as part of operon 5. Similar operon-type organizations for antibiotic biosynthesis clusters are well

known and have been postulated to facilitate cotranslation of genes within the operon to yield equimolar amounts of proteins for optimal interactions to form the biosynthesis complexes (Cane, 1997). Overlapping genes involved in the same process are also quite common in bacteria (Normark et al., 1983).

Previous results of transposon mutagenesis and complementation studies (Rott et al.,

1996; Rott, unpublished results) are in accordance with the predicted genetic organization of XALB1 described in this study, and allowed us to establish that operons 1, 2 and 3 are involved in albicidin biosynthesis: (I) Tox mutants with a Tn5-gusA insertion site located in DNA fragments B, C, G and D were complemented by cosmid pALB571 and not by cosmid pALB540, confirming that cosmid pALB571 potentially contains the entire operon 1; (ii) Tox mutants with a Tn5-gusA insertion site located in DNA fragments A and H were complemented by both cosmids pALB540 and pALB571, confirming that both cosmids

5

10

15

20

25

30

complemented by both cosmids pALB540 and pALB571, confirming that both cosmids potentially contain the entire operon 2; (iii) mutant XaAM1 with a Tn5-gusA insertion site located in DNA fragment J is the only Tn5 Tox mutant complemented by cosmid pALB540 and not by cosmid pALB571, confirming that cosmid pALB540 potentially contains the entire operon 3. Our mutagenesis studies did not confirm that operons 4 and 5 are required for biosynthesis of albicidin. The para-aminobenzoate (PABA) is required for the growth of many bacteria probably including X. albilineans, suggesting that a mutation in albXVII may be lethal and explaining why we did not obtain any mutant disrupted in this gene.

Putative bidirectional promoters were identified between operons 1 and 2 (Huang et

Putative bidirectional promoters were identified between operons 1 and 2 (Huang et al., 2001) and between 3 and 4 (Figure 7), confirming the prediction of genetic organization of XALB1. The region upstream from operon 1 is 100 % identical to the region upstream from the xabB start codon which was described as a functional promoter during the phase of albicidin accumulation in Australian strain Xa13 of X. albilineans (Huang et al., 2001). Involvement of several operons in albicidin biosynthesis suppose that they are transcribed during the same time. Promoter activities of regions upstream from putative operons 2, 3, 4 and 5 need to be determined to precise if these promoters are functional during the same growth phase of X. albilineans as the promoter upstream from operon 1.

Potential rho-independent transcription terminators were identified downstream from operons 1, 3 and 4 (Figure 6) confirming prediction of the genetic organization of these three operons. Because operons 2 and 5 are convergent (Figure 1) and separated by a very short region of 22 bp between *albIX* and *albXX*, stop codons may allow transcription termination in the absence of sequences corresponding to potential rho-independent transcription terminators downstream from these operons. It is quite possible that simultaneous transcription of

Application of Royer, et al

operons 2 and 5 involving the presence of two RNA polymerases (one on each strand of DNA) may cause RNA polymerases to pause at the end of each operon because of steric interference between both polymerase complexes in the same short region.

5

10

15

20

25

30

48

The presence of putative RBSs upstream of the ATG start codons of all ORFs, except for albXVIII, suggests that these ORFs are translated in X. albilineans. The absence of a canonical RBS upstream from albXVIII further indicates that this ORF is probably not expressed. GTG and TTG codons (usually valine and leucine codons) generally serve as procaryotic start codons when located near the 5' end of an RNA message, but GTG start codons were also described far from the 5' end of messenger RNA in the bacitracin biosynthesis cluster of B. lucheniformis (Genbank accession n° AF184956) or in the bleomycin biosynthetic gene cluster of S. verticillus (Genbank accession n° AF210249). This is in accordance with the fact that the two potential TTG start codons are the first start codons in operons 1 and 4 of XALB1, and that the two potential GTG start codons initiate internal cistrons. The albI and albXVII genes, like xabB (Huang et al., 2001), use TTG as a start codon, which may impose post-transcriptional control of the rate of gene product formation (McCarthy and Gualerzi, 1990).

The predicted genetic organization of operons 1 and 2 presents similarities with the organization of the region involved in albicidin production in strain Xa13 of X. albilineans from Australia (Huang et al. 2000a, Huang et al., 2001). This latter region also contains two divergent operons involved in albicidin production, one comprising the xabB gene (similar to albI, but with a large deletion) and the xabC gene (100% identical to albII) and the other containing thp gene (100% identical to albV). In addition, the sequence between the two operons in strain Xa13 is 100% identical to the sequence between operons 1 and 2, indicating that both clusters are controlled by the same bidirectional promoter. However, transposon mutagenesis studies of Xa13 showed no evidence of another cistron downstream of xabC that may be involved in albicidin production (Huang et al., 2000a), suggesting that the Xa13 xab operon differs from the Xa23R1 operon 1, which contains two additional genes downstream from albII that are potentially involved in albicidin production (albIII and albIV; refer Figure 1).

Homology analysis revealed that four NRPS and/or PKS genes are present in XALB1 (Figure 2), and these genes may be involved in the biosynthesis of the albicidin polyketide-polypeptide backbone (alb1, alb1V, albVII and alb1X). NRPS and PKS enzymes are generally organized into repeated functional units known as modules, each of which is responsible for a discrete stage of polyketide or polypeptide chain elongation (Cane and Walsh, 1999). Each

49

5

10

15

20

25

30

Application of Royer, et al.

PKS or NRPS module is made up of a set of three core domains, two of which are catalytic and one of which acts as a carrier, and together are responsible for the central chain-building reactions of polyketide or polypeptide biosynthesis. Both PKS and NRPS core domains utilize analogous acyl-chain elongation strategies in which the growing chain, tethered as an acyl-Senzyme to the flexible 20 Å long phosphopantetheinyl arm of an acyl carrier protein (ACP) or peptidyl carrier protein (PCP) domain, acts as the electrophilic partner that undergoes attack by a nucleophilic chain-elongation unit, a malonyl- or aminoacyl-S-enzyme derivative, respectively, itself covalently bound to a downstream ACP/PCP domain. In the case of a PKS, the fundamental chain-elongation reaction, a C-C bond-forming step, is mediated by a ketosynthase (KS) domain that catalyzes the transfer of the polyketide acyl chain to an activesite cysteine of the KS domain, followed by condensation with the methylmalonyl- or malonyl-S-ACP by a decarboxylative acylation of the malonyl donor unit. An additional essential component of the core PKS chain-elongation apparatus is an associated acetyltransferase (AT) domain, which catalyzes the priming of the donor ACP sidearm with the appropriate monomer substrate, usually methylmalonyl- or malonyl-CoA. The comparable core domains of an NRPS biosynthetic module function in a chemically distinct but architecturally and mechanistically analogous fashion. In the latter case, the key chainbuilding reaction, a C-N bond-forming reaction, involves the generation of the characteristic peptide bond by nucleophilic attack of the amino group of an amino acyl-S-PCP donor on the acyl group of an upstream electrophilic acyl- or peptidyl acyl-S-PCP chain, catalyzed by a condensation (C) domain. In functional analogy to the PKS AT domain, the core of the NRPS module utilizes an adenylation (A) domain to activate the donor amino-acid monomer as an acyl-AMP intermediate, which is then loaded onto the downstream PCP side chain. Both the AT and A domains of the respective PKS and NRPS modules act as important gatekeepers for polyketide or polypeptide biosynthesis, exhibiting strict or at least high specificity for their cognate malonyl-CoA, methylmalonyl-CoA or amino acid substrates. In addition to the basic subset of core domains, each PKS or NRPS also has a special set of dedicated domains responsible both for the initiation of acyl-chain assembly by loading of a starter unit onto the first, furthest upstream PKS/NRPS module, as well as a chain-terminating thioesterase (TE) domain, most often found fused to the last module, that is responsible for detachment of the most downstream covalent acyl enzyme intermediate and off-loading of the mature polyketide or polypeptide chain (Cane and Walsh, 1999).

XALB1 potentially encodes four PKS modules and seven NRPS modules. Most of the bacterial NRPS gene clusters described up to now are organized in operon-type structures,

Application of Royer, et al.

encoding multi modular NRPS proteins with individual modules organized along the chromosome in a linear order that parallels the order of amino acids in the resultant peptide, following the "colinearity rule" for the NRPS-template assembly of peptides from amino acids (Cane, 1997; Cane et al., 1998; Cane and Walsh, 1999; von Döhren et al., 1999). PKS and NRPS modules are apparently not organized according to this "colinearity rule" for albicidin biosynthesis because of the following features: (I) NRPS and PKS genes are expressed in two divergent operons; (ii) no AT domain was identified in PKS-2 and PKS-3 domains, suggesting involvement of a separate enzyme; (iii) the A domain of NRPS-2 is not functional, suggesting the involvement of a trans-acting A domain; (iv) a single chain-terminating TE domain was identified in XALB1 which may be responsible of the release of the full length albicidin polyketide-polypeptide backbone from the enzyme complexes. Exception to the "colinearity rule" has also been shown for the syringomycin synthetase of P. syringae (Guenzi et al., 1998), for the exochelin synthetase of Mycobacterium smegmatis (Yu et al., 1998) and for the bleomycin synthetases of S. verticillus (Du et al., 2000).

15

20

25

10

5

On the basis of the deduced functions of individual NRPS and PKS domains we have aligned the four PKS and the seven NRPS modules to suggest two different putative linear models for the synthesis of the albicidin polyketide-peptide backbone (Figure 9). In the Figure, NRPS and PKS domains are abbreviated as follows: A, adenylation; ACP, acyl carrier protein; AL, acyl-CoA ligase; AT, acyltransferase; C, condensation; HBCL hydroxybenzoate-CoA ligase; KR, ketoreductase; KS, ketoacyl synthase; PCP, peptidyl carrier protein. Asn designates asparagine. X1 and X2 indicate substrates incorporated by NRPS -1 and 3 and by NRPS-6 and 7, respectively. The crossed A domain in NRPS-2 indicates that this deleted domain may be not functional. In model 1, (Figure 9A), (i) the PKS-1 module alone is responsible for the initiation of the acyl-chain assembly, (ii) PKS-4 (HBCL) interacts with PKS-2 and PKS-3 as an AT domain to allow acyl transfer and (iii) NRPS-5 interacts with only NRPS-2. In model 2 (Figure 9B) two different modules, PKS-1 and PKS-4, are responsible for this initiation step. Model 2 leads to the biosynthesis of four different polyketidepolypetide backbones; in this model (i) PKS-1 (AL) and PKS-4 (HBCL) are in competition for initiation of albicidin precursors; (ii) a separate AT enzyme (potentially AlbXIII) interacts with PKS-2 and PKS-3 to allow acyl transfer; (iii) NRPS-5 interacts with NRPS-2; and (IV) NRPS-5 and NRPS-6 are in competition for interaction with NRPS-4.

30

Both models are based on the fact that PKS-1 contains the AL and ACP1 domains, and PKS-4 shows homology with the hydroxybenzoate-CoA ligases. In other PKS systems, an N-terminal AL domain is involved in the activation and incorporation of an 3,4-dihydroxycyclo

Application of Royer, et al.

hexane carboxylic acid, a 3-amino-5-hydroxybenzoic acid or a long-chain fatty acid as a starter (Aparicio et al., 1996; Motamedi and Shafiee, 1998; Tang et al., 1998; Duitman et al., 1999). PKS-4 may be also involved in the activation and incorporation of hydroxy-benzoate but this latter domain lacks any ACP or PCP domain, suggesting that PKS-4 is responsible for initiation of the acyl-chain assembly (Figure 9B) onto one of the three ACP domains of AlbI (ACP1, ACP2 or ACP3). The 277 amino-acids preceding the PKS-4 module in AlbVII may be necessary for the intercommunication between AlbVII and AlbI. The presence of two different PKS modules potentially involved in the initiation of the acyl-chain assembly suggests a competition of these two modules for the initiation of two different albicidin polyketide-polypeptide backbones, and this could contribute to the production of multiple, structurally related albicidins by the same cluster XALB1. Production of two different components, one initiated by PKS-4 containing an additional aromatic ring due to incorporation of hydroxybenzoate, may explain why partial characterization of albicidin indicated the presence of a variable number (three or four) of aromatic rings (Huang et al., 2001).

5

10

15

20

25

30

In AlbI, PKS-1 is followed by the PKS-2 module which contains a KS domain and a KR domain upstream from two ACP domains (ACP2 and ACP3) and it lacks any discernable AT domain. Tandem ACP domains are unusual within PKS modules but have been shown to occur in the biosynthesis of several fungal and bacterial polyketide synthases (Mayorga and Timberlake, 1992; Yu and Leonard, 1995; Takano et al., 1995; Albertini et al., 1995). However, the significance of the tandem ACP domains in these systems has not been solved yet. In our model 2, one of the tandem ACP (ACP2 or ACP3) may interact with PKS-4 for the initiation of an acyl-chain assembly (Figure 9B). The absence of an AT domain in the PKS-2 module suggests that a separate AT domain is indispensable for the elongation of the acylchain initiated by this module. Separate AT enzymes encoded elsewhere in the genome were described in other systems for two PKS modules lacking AT domains: malonyl-CoA transacyclase gene (fenF) located immediately upstream from the B. subtilis PKS-NRPS mycA gene (Duitman et al., 1999) and an AT gene located 20kb upstream from the M. xanthus NRPS-PKS tal gene (Paitan et al., 1999). We have not identified an AT gene in the gene cluster XALB1 and in the two other genomic regions involved in albicidin production, XALB2 and XALB3, suggesting that the trans-acting AT gene may be encoded elsewhere in the genome. However, AlbXIII, which contains the motif GHSxG conserved in AT domains, may be potentially involved in the acyl transfer, but the similarity of AlbXIII with AT domains is not high enough to confirm this potential function of AlbXIII (Figure 10). Figure 10A describes alignment of the conserved motifs in AT domains from RifA-1, -2, -3, RifB-1, RifE-1 (Rifamycin PKSs, August et al., 1998) and BlmVIII (Bleomycin PKS; Du et al., 2000), identical amino acids are shown in bold. Figure 10B describes alignment of AlbXIII (SEQ ID N°. 38), FenF (a malonyl-CoA transacylase located upstream from mycA, Duitman et al., 1999) and LipA (a lipase; Valdez et al., 1999); amino acids identical to conserved AT domains motifs are shown in bold.

5

10

15

20

25

30

AlbXIII contains only four of the eleven amino acids conserved in AT domains of rifamycin PKSs (August et al., 1998) and Bleomycin PKS (Du et al., 2000), and the AlbXIII sequence appears to be more closely related to lipases such as LipA (Valdez et al., 1999) rather than to AT domains (Figure 10). However, FenF, the trans-acting AT domain involved in mycosubtilin biosynthesis, contains only seven of the eleven amino acids conserved in AT domains (Duitman et al., 1999; Figure 10). AlbVII, that contains a HBCL domain, may be another candidate for the acyl transfer in PKS-2 (Figure 9A) because HBCL exhibits some similarity with A domains at the level of cores A1, A2, A3, A4, A5 and A6 (Table 6). However, no HBCL involved in such a function has been described in the PKSs characterized so far.

In AlbI, PKS-2 is followed by the PKS-3 module which contains the KS2 and the PCP1 domains and it lacks any discernable AT or A domain. PKS-3 is located upstream from the NRPS modules and should therefore be involved in the linkage of polyketide and polypeptide moieties. The presence of a PCP domain in the PKS-3 module suggests the involvement of a trans-acting A domain rather than an AT domain. A putative candidate for this trans-acting A domain is the AlbIV NRPS-5 A domain because of the lack of a C domain in the AlbIV NRPS-5 module. However, by analogy with the BlmVIII PKS module, which is involved in the linkage of polypeptide and polyketide moieties of bleomycin and which contains an AT domain followed by a PCP domain (Du et al, 2000), the presence of a PCP is not incompatible with a possible interaction of the AlbI PKS-3 module with a separate AT domain. This latter trans-acting AT domain may be the same that interacts with the AlbI PKS-2 module, the AlbVII PKS-4 module, AlbXIII or an unindentified separate AT domain.

In AlbI, the PKS-3 module is followed by four NRPS modules. The NRPS-1, 2 and 3 modules display the ordered C, A and PCP domains, suggesting that they are involved in the incorporation of three amino acid residues. The A domain of the NRPS-2 module exhibits poor consensus at A2, A3, A5, A7, A8 A9 and A10 motifs and lacks completely the A6 motif (Table 6). In addition the NRPS-2 substrate binding pocket is partially deleted (Figure 5). These features strongly suggest that the NRPS-2 A domain is inactive and that the loading of

Application of Royer, et al

an amino-acid on the NRPS-2 PCP domain (PCP3) is possibly catalyzed by a trans-acting A domain as in HMWP1 (Gehring et al., 1998) and BlmIII (Du et al., 2000). A putative candidate for this trans-acting A domain is the NRPS-5 A domain present in AlbIV because of the lack of a C domain in NRPS-5 (Figure 2). The additional sequence of 300 amino-acids present in the A domain of NRPS-5 may be necessary for the intercommunication between AlbI and AlbIV. As a consequence of the interaction between NRPS-2 and NRPS-5, a competition between PCP-3 and PCP-5 domains must occur to bind the amino acid activated by the NRPS-5 A domain. A similar competition between two PCP domains was described for syringomycin biosynthesis, during the interaction between SyrB, which contains A and PCP domains, and the last module of SyrE which contains C and PCP domains (Guenzi et al., 1998). The NRPS-4 module contains only a C domain which may transfer the intermediate products synthetized by AlbI to a PCP domain present in an other albicidin synthase. Similar transfers were described for mycosubtilin biosynthesis in which the MycA and MycB Cterminal C domains interact with the MycB and MycC N-terminal A domains, respectively (Duitman et al., 1999). Two different PCP domains may be involved in the transfer of the intermediate products synthetized by AlbI: the PCP-5 and PCP-6 domains which are present in the AlbIV NRPS-5 and AlbIX NRPS-6 modules, respectively. This possible competition between the two NRPS modules that contain two different A domains could also contribute to the production of multiple, structurally related albicidins by the gene cluster XALB1 (Figure 9B). Because of the absence of a C-domain in the AlbIX NRPS-6 module, the intermediate product bound on the AlbIV PCP-5 domain would be necessarily transferred to the AlbIX PCP-7 domain, like the intermediate product bound on AlbIX PCP-6. AlbIX NRPS-7, which contains the single chain-terminating TE domain, may then be responsible for detachment of the mature albicidin polyketide-polypeptide backbone from the complex of enzymes.

25

30

5

10

15

20

The linear model 1 implies that operon 1 and operon 2 in X. Albilineans strain Xa23R1 from Florida potentially produce only one albicidin polyketide-polypetide backbone, with a competion at the level of ACP2/ACP3 and PCP3 and PCP5 which could explain the production by X. albilineans of compounds structurally related to albicidin (Figure 9A). The linear model 2 implies that operon 1 and operon 2 in X. albilineans strain Xa23R1 from Florida potentially produce four different albicidin polyketide-polypetide backbones (Figure 9B) because of (i) the competition of AL and HBCL domains for initation of acyl chain assembly and (ii) the competition of AlbIV NRPS-5 and AlbIX NRPS-6 modules for the incorporation of the next to last amino acid of the albicidin backbone. These four albicidin backbones may lead to the production of four components structurally very different. The

Application of Royer, et al

polyketide moieties of the acyl chains initiated by the AlbI AL domain or by the AlbVII HBCL domain may be very different. The polyketide moiety of acyl chains initiated by the AlbVII HBCL domain may be shorter and may contain an additional aromatic ring. The presence of four structurally different metabolites may explain the difficulty observed by Birch and Patil (1985a) to purify albicidin and to determine its chemical structure.

5

10

15

20

25

30

Homology analysis also revealed that Albl NRPS-1 and 3 and AlbIX NRPS-6 and 7 specify unusual substrates which seem to contain an amino group and a carboxylate group but to be different from α -amino acids and β -alanine. Identification of several aromatic rings in albicidin (Huang et al., 2001) suggested that NRPS-1, -3, -6 and -7 are involved in incorporation of aromatic substrates. By analogy with the Asp235Val alteration in the β -Ala specificity-conferring code (Du et al. 2000), the Asp235Ala alteration in the NRPS-1, -3, -6 and -7 signatures could be consistent with a large distance between the amino group and the carboxylate group in the substrate specified by these modules. Based on this hypothesis, we suggest that operons 3, 4 and 5 are involved in the biosynthesis of two aromatic substrates: the para-aminobenzoate potentially synthesized by AlbXVII (para-aminobenzoate synthase), and the carbamoyl benzoate potentially synthesized by AlbXX (hydroxybenzoate synthase) and AlbXV (carbamoyl transferase). Incorporation of these nonproteinogenic substrates may explain why albicidin is insensitive to proteases (Birch and Patil, 1985a).

According to biosynthesis model 1 leading to the biosynthesis of only one polyketidepolypeptide albicidin backbone that may correspond to the major component produced by XAlb1, we propose a model allowing prediction of the composition and the structure of albicidin (Figure 11). In the Figure, NRPS and PKS domains are abbreviated as follows: A, adenylation; ACP, acyl carrier protein; AL, acyl-CoA ligase; C, condensation; KR, ketoreductase; KS, ketoacyl synthase; PCP, peptidyl carrier protein. C atoms of albicidinbackbone are numbered 1 to 38. Bold methyl groups correspond to methylation of the albicidin backbone by AlbII or AlbVI. In this model, albicidin biosynthesis is initiated by loading of an acetyl-CoA by PKS-1 (step 1), and the chain product is elongated by incorporation of (I) malonyl-CoA by PKS-2 and PKS-3 (steps 2 and 3), (ii) paraaminobenzoate or carbamoyl benzoate by NRPS-1 and NRPS-3 (steps 4 and 6), (iii) asparagine by NRPS-2 coupled to NRPS-5 (step 5) and (iv) para-aminobenzoate or carbamoyl benzoate by NRPS-6 and NRPS-7 (steps 7 and 8). The presence of the KR domain in the PKS-2 module may lead to the formation of an hydroxyl group at the C₂ atom of the albicidin backbone. This hydroxyl group might be methylated by AlbVI (O-methyltransferase). The acyl chain may also be modified by AlbII (C-methyltransferase) at C13 or C14.

)

5

10

15

20

25

30

Application of Royer, et al

The chemical composition (C₄₀O₁₅N₆H₃₅), the molecular weight (839), and the structure of the putative XALB1 product are in accordance with the partial characterization of albicidin published by Birch and Patil (1985a) which indicated that albicidin contains approximately 38 carbon atoms and a carboxylate group and that the molecular weight of albicidin was about 842. The presence of two ester linkages in our predicted albicidin structure is also in accordance with the fact that albicidin is detoxified by the AlbD esterase (Zhang and Birch, 1997). However, an unpublished albicidin analysis cited by Huang *et al.* (2001) indicated the presence of (I) two OCH3 groups and not one as in our predictive albicidin structure, (ii) one CN linkage and not eleven as in our predictive albicidin structure and (iii) a trisubstituted double bond that is not present in the putative XALB1 product. Further investigations to identify the substrate of modules NRPS-1, 3, 6 and 7 and to characterize the structure of albicidin are necessary to valid our model for albicidin biosynthesis.

In conclusion, homology analysis of XALB1 revealed unprecedented features for hybrid polyketide-peptide biosynthesis in bacteria involving a trans-action of four PKS and seven NRPS separate modules which could contribute to the production of multiple, structurally related polyketide-peptide compounds by the same gene cluster. Characterization of the full chemical structure of albicidin may be necessary to validate these models. Four NRPS modules seem to activate a very unusual substrate. Over- expression and purification of A domains from these four NRPS modules will be necessary to examine their substrate specificities. Substrate specificity of each A domain will therefore be determinated by analysis of the ATP-PPi exchange reaction with different substrate putatively incorporated into albicidin. Investigating albicidin backbone biosynthesis will be of great interest because such information adds to the limited knowledge as to how PKS and NRPS interact and how they might be manipulated to engineer novel molecules, and may explain how X. albilineans produces several structurally related, toxic compounds.

Cloning and sequencing of XALB2 showed that the same phosphopantethemyl transferase is required for albicidin production in an X. albilineans strain from Florida and in an X. albilineans strain from Australia (Huang et al., 2000b), explaining the precedented results showing that strain LS156 mutated in xabA (100% identical to albXXI) was not complemented by pALB540, pALB571 and pALB639 (Rott et al., 1996). Mutant LS156 was shown to be complemented by a construction containing the coding sequence of xabA in fusion with lacZ, revealing that xabA is required for albicidin production and that no other cistron downstream from xabA was involved in albicidin production (Huang et al., 2000b).

However, this complementation study did not allow determination of whether xabA is transcribed as a part of a larger operon. Here we disclose the complementation of mutant AM37 with a 2986 bp insert from X. albilineans containing albXXI (100% identical to xabA), confirming that albXXI is involved in albicidin biosynthesis and indicating that the promoter of albXXI is present in the 2986 bp insert and that albXXI is not expressed as part of a operon.

5

10

15

20

25

30

Cloning and sequencing of XALB3 showed that a heat shock protein HtpG was involved in albicidin production in X. albilineans. The heat shock protein HtpG is an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone. Hsp90 from eukaryotes has been demonstrated to possess chaperone activity (Jakob et al., 1995), acting as a non-ATP dependent 'holder', and it also has an important role in signal transduction and the cell cycle. This protein is essential in both drosophila and yeast (Borkovich et al., 1989; Cutforth and Rubin, 1994). In contrast, the HtpG gene can be deleted in E. coli with no effect on the viability of the strain with the exception of decreased growth rate at high temperatures (Bardwell and Craig, 1988). The in vivo role of the HtpG protein remains unknown. However, preliminary results indicated that HtpG facilitates de novo protein folding in stressed E. coli cells, presumably by expanding the ability of the DnaK-DnaJ-GrpE molecular chaperone system to interact with newly synthesized polypeptides (Thomas and Baneyx, 2000). Furthermore, HtpG was copurified in E. coli with MccB17 synthetase, an enzyme involved in the biosynthesis of the peptide antibiotic microcin B17 which inhibits DNA replication by induction of the SOS repair system, suggesting the requirement of HtpG for production of the antibiotic (Li et al., 1996). However, when microcin B17 production by the E. coli strain deleted for HtpG was compared to the one of the parental strain, there was no effect on microcin B17 production in vivo. This result implyed that the copurification of HtpG with the MccB17 synthetase was potentially an artefact, or that another E. coli chaperone could substitute for HtpG (Milne et al., 1999). To examine the effect of HtpG on the reconstitution of MccB17 synthetase in vitro, the chaperone was expressed and purified as a fusion to a hexahistidine (His6) tag. Addition of the His6-HtpG did not stimulate MccB17 synthetase reconstitution or heterocyclisation activity in vitro, suggesting that HtpG mediates complex assembly or stabilizes protein subunits prior to the hetero-oligomerisation (Mılne et al., 1999). Based on these results, we suggest that the function of AlbXXII is to mediate complex assembly by facilitating de novo protein folding of PKS and NRPS enzymes (AlbI, AlbIV, AlbVII and AlbIX) involved in the albicidin backbone biosynthesis.

Characterization of the complete sequence of XALB1, XALB2 and XALB3 clusters enables one to characterize all enzymes of the albicidin biosynthesis pathway including

57

Application of Royer, et al

structural, resistance, secretory and regulatory elements, and to engineer overproduction of albicidin. For example one may insert expression enhancing DNA into the genome of X. albilineans in a position operable to enhance expression of the Albicidins Biosynthesis Gene Clusters. One may also modify naturally occurring Albicidins to obtain additional nonnaturally occurring antibiotics by adding DNA encoding additional enzymes selected to produce a modified albicidin like molecule. This approach will allow (I) the purification of albicidin and the other compounds structurally related and potentially produced by the same biosynthesis apparatus; (ii) the characterization of chemical structure of albicidin; (iii) the investigation of mode of action of albicidin in the pathogenesis of X. albilineans in sugarcane; and (iv) the characterization of the bactericidal activity of albicidin. For example one may also increase the resistance of plants to damage from X. albilineans infection by inserting one or more of the resistance genes identified herein into the genome of the plant. One may also provide materials to prevent damage by albicidin produced by X. albilineans by applying an agent that blocks expression of the Albicidin Biosynthesis Gene Clusters to the plant to be protected. One may also use portions of the DNA of the Albicidin Biosynthesis Gene Clusters to obtain agents useful in blocking expression of albicidin by screening materials against a modified hast cell line that expresses the Albicidin Biosynthesis Gene Clusters and selecting for materials that stop or decrease albicidin production.

5

10

15

Application of Royer, et al.

REFERENCES

15

20

30

Albertini, A.M., Caramori, T., Scoffone, F., Scotti, C. & Galizzi, A. (1995). Sequence around the 159 degree region of the *Bacillus subtilis* genome: the pksX locus spans 33.6 kb. Microbiology 141, 299-309.

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs", Nucleic Acids Res. 25, 3389-3402.

Aparicio, J.F., Molnar, I., Schwecke, T., Konig, A., Haydock, S.F., Khaw, L.E., Staunton, J. & Leadlay, P.F. (1996). Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169, 9-16.

August, P.R., Tang, L., Yoon, Y.J., Ning, S., Muller, R., Yu, T.W., Taylor, M., Hoffmann, D., Kim, C.G., Zhang, X., Hutchinson, C.R. & Floss, H.G. (1998). Biosynthesis of the ansamycın antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of *Amycolatopsis mediterranei* S699. Chem. Biol. 5, 69-79.

Bardwell, J.C. & Craig, E.A. (1988). Ancient heat shock gene is dispensable. J. Bacteriol. 170, 2977-83.

Birch, R.G. (2001). Xanthomonas albilineans and the antipathogenesis approach to disease control. Mol. Plant Pathol. 2, 1-11.

Birch, R.G. & Patil, S.S. (1983). The relation of blocked chloroplast differentiation to sugarcane leaf scal disease. Phytopathology 73, 1368-1374.

Birch, R.G. & Patil, S.S. (1985a). June 1985. Antibiotic and process for the production thereof. U. S. patent 4,525,354.

Birch, R.G. & Patil, S.S. (1985b) Preliminary characterization of an antibiotic produced by *Xanthomonas albilineans* which inhibits DNA synthesis in *Escherichia coli*. J. Gen. Microbiol. 131, 1069-1075.

- Birch, R.G. & Patil, S.S. (1987a). Correlation between albicidin production and chlorosis induction by *Xanthomonas albilineans*, the sugarcane leaf scald pathogen. Physiol. Mol. Plant Pathol. 30, 199-206.
- Birch, R.G. & Patil, S.S. (1987b). Evidence that an albicidin-like phytotoxin induces chlorosis in sugarcane leaf scald disease by blocking plastid DNA replication. Mol. Plant Pathol. 30, 207-214.
 - Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J. & Lindquist, S. (1989). Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9, 3919-30.

15

25

- Brendel, V. & Trifonov, E. N. (1984). A computer algorithm for testing potential prokaryotic terminators. Nucl. Acids Res. 12 4411-4427.
- Cane, D.E. (1997). A special thematic issue on polyketide and nonribosomal polypeptide biosynthesis. Chem. Rev. 97, 2463-2706.
 - Cane, D.E., Walsh, C.T. & Khosla, C. (1998). Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63-8.
 - Cane, D.E. & Walsh, C.T. (1999). The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6, R319-R325.
- Challis, G.L., Ravel, J. & Townsend, C.A. (2000). Predictive, structure-based model of amino acid recognition by nonribosomal peotide synthetase adenylation domains. Chem. Biol. 7, 211-224.

Conti, E., Stachelhaus, T. Marahiel, M.A. & Brick, P. (1997). Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16, 4174-4183.

- Criado, L.M., Martin, J.F. & Gil, J.A. (1993). The pab gene of Streptomyces griseus, encoding p-aminobenzoic acid synthase, is located between genes possibly involved in candicidin biosynthesis. Gene 126, 135-139.
- Cutforth, T. & Rubin, G.M. (1994). Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell. 77, 1027-36.
 - De Feyter, R. & Gabriel, D.W. (1991). Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into *Xanthomonas campestris pv. malvacearum*. J. Bacteriol. 173, 336-342.
- von Döhren, H., Dieckmann, R. & Pavela-Vrancic, M. (1999). The nonribosomal code. Chem. Biol. 6, R273-R279.
- Du, L., Sanchez, C., Chen, M., Edwards, D.J. & Shen, B. (2000). The biosynthetic gene cluster for the antitumor drug bleomycin from *Streptomyces verticillus* ATCC15003 supporting functional interactions between nonrobosomal peptide synthetases and a polyketide synthase. Chem. Biol. 7, 623-642.
- Duitman, E.H., Hamoen, L.W., Rembold, M., Venema, G., Seitz, H., Saenger, W., Bernhard, F., Reinhardt, R., Schmidt, M., Ullrich, C., Stein, T., Leenders, F. & Vater, J. (1999). The mycosubtilin synthetase of *Bacillus subtilis* ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 96, 13294-13299.
- Gabriel, D.W & De Feyter, R. (1992). RFLP analyses and gene tagging for bacterial identification and taxonomy. In Molecular plant pathology. A pratical approach. (Gurr, S.J., McPherson, M.J. & Bowles, D.J. Ed.), vol 1, pp51-66, IRL Press, Oxford.

Garrido, M.C., Herrero, M., Kolter, R. & Moreno, F. (1988). The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell. EMBO J. 7, 1853-1862.

- Gehring, A.M., DeMoll, E., Fetherston, J.D., Mori, I., Mayhew, G.F., Blattner, F.R., Walsh, C.T. & Perry, R.D. (1998). Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by *Yersinia pestis*. Chem. Biol. 5, 573-86.
- Guenzi, E., Galli, G., Grgurina, I., Gross, D.C. & Grandi, G. (1998). Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J. Biol. Chem. 273, 32857-32863.

15

20

- Huang, G., Zhang, L. & Birch, R.G. (2000a). Analysis of the genes flanking xabB: a methyltransferase gene is involved in albicidin biosynthesis in Xanthomonas albilineans. Gene 255, 327-333.
- Huang, G., Zhang, L. & Birch, R.G. (2000b). Albicidin antibiotic and phytotoxin biosynthesis in *Xanthomonas albilineans* requires a phosphopantetheinyl transferase gene. Gene 258, 193-199.
- Huang, G., Zhang, L. & Birch, R.G. (2001). A multifunctional polyketide-peptide synthetase essential for albicidin biosynthesis in *Xanthomonas albilineans*. Microbiology 147, 631-642.
- Jakob, U., Lilie, H., Meyer, I. & Buchner, J. (1995). Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock *in vivo*. J. Biol. Chem. **270**, 7288-94.
- Konz, D., Klens, A., Schorgendorfer, K. & Marahiel, M.A. (1997). The bacitracin biosynthesis operon of *Bacillus licheniformis* ATCC10716: molecular characterization of three multi-modular peptide synthetase. Chem. Biol. 4, 927-937.
 - Leong, S.A., Ditta, G.S. & Helinski, D.R. (1982). Heme biosynthesis in *Rhizobium*: identification of a cloned gene coding for aminolevulinic acid synthesis from *Rhizobium meliloti*. J. Biol. Chem. 257, 8724-8730.

Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. (1996). From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science. 274, 1188-93.

- Liu, J., Duncan, K. & Walsh, C.T. (1989). Nucleotide sequence of a cluster of *Escherichia coli* enterobactin biosynthesis genes: identification of ent A and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate deshydrogenase. J. Bacteriol. 171, 791-798.
- Marahiel, M.A. Stachelhaus, T. & Mootz, H.D. (1997). Modular peptide synthesises involved in nonribosomal peptide synthesis. Chem. Rev. 97, 2651-2673.
 - Mayorga, M.E. & Timberlake, W.E. (1992). The developmentally regulated *Aspergillus nidulans wA* gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol. Gen. Genet. 235, 205-212.
 - McCarthy, J.E. & Gualerzi, C. (1990). Translational control of prokaryotic gene expression. Trends Genet. 6,78-85.

15

- McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M. & Ashley, G. (1999).

 Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products. Proc. Natl. Acad. Sci. USA 96, 1846-1851.
- Milne, J.C., Roy, R.S., Eliot, A.C., Kelleher, N.L., Wokhlu, A., Nickels, B. & Walsh, C.T. (1999). Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. Biochemistry. 38, 4768-81.
- Mohamed, I.S., Rott, P., Davis, M.J. & Chatenet, M. (1996). Differentiation of Xanthomonas albilineans strains based on multiplication of the pathogen in sugarcane varieties. In Proceedings XXII Congress of the International Society of Sugarcane Technologists. (Cock J.H. and Brekelbaum T. Ed.), vol. 2, pp486-492, Cartagena De Indias, Colombia, 5-14 September 1995.

Mohamed, M.E., Zaa, A., Ebenau-Jehle, C. & Fuchs, G. (2001). Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium *Azoarcus evansii*. J. Bacteriol. 183, 1899-1908.

Motamedi, H. & Shafiee, A. (1998). The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur. J. Biochem. 256, 528-534.

10

20

25

30

Normark, S., Bergström, S., Edlund, T., Grundström, T., Jaurin, G., Lindberg, F.P. & Olsson O. (1983). Overlapping genes. Annu. Rev. Genet. 17, 499-525.

Paitan, Y., Orr, E., Ron, E.Z. & Rosenberg, E. (1999). Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of *Myxococcus* xanthus. Microbiology 145, 3059-67.

Pfeifer, B.A., Admiraal, S.J., Gramajo, H., Cane, D.E. & Khosla C. (2001). Biosynthesis of complex polyketides in a metabolically engineered strain of *E. coli*. Science **291**, 1790-1792.

Quadri, L.E., Sello, J., Keating, T.A., Weinreb, P.H. & Walsh, C.T. (1998). Identification of a *Mycobaterium tuberculosis* gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631-645.

Ricaud, C. & Ryan, C.C. (1989). Leaf scald. In Diseases of sugarcane: major diseases. (Ricaud, C. Egan, B.T., Gillaspie, Jr., A.G. & Hughes, C.G. ed.), pp. 39-58, Elsevier Science Publishers B.V., Amsterdam.

Rodriguez, E. & McDaniel, R. (2001). Combinatorial biosynthesis of antimicrobials and other natural products. Curr. Opin. Microbiol. 4, 526-34.

Rott, P.C., Costet, L., Davis, M.J., Frutos, R. & Gabriel D.W. (1996). At least two separate gene clusters are involved in albicidin production by *Xanthomonas albilineans*. J. Bacteriol. 178, 4590-4596.

Rott, R. & Davis, M.J. (2000). Leaf scald. In A guide to sugarcane diseases. (Rott, P., Bailey, R.A., Comstock, J.C., Croft, B.J. and Saumtally, A.S. ed.), pp. 38, Cirad/Issct, Montpellier.

Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: A laboratory Manual (2nd edn), Cold Spring Harbor Lab. Press, Plainview, NewYork.

Sanger, F., Nicklen, S. & Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. USA 74, 5463-5467

5

10

25

Siebert, M., Bechthold, A., Melzer, M., May, U., Berger, U. Schroder, G., Schroder, J., Severin, K. & Heide, L. (1992). Ubiquinone biosynthesis. Cloning of the genes coding for chorismate pyruvate-lyase and 4-hydrobenzoate octaprenyl transferase from *Escherichia coli*. FEBS Lett. 307, 347-350.

Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. (1999). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493-505.

Takano, Y., Kubo, Y., Shimizu, K., Mise, K., Okuno, T. & Furusawa, I. (1995). Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol. Gen. Genet. 249, 162-167.

Tang, L., Yoon, Y.J., Choi, C.Y. & Hutchinson, C.R. (1998). Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 216, 255-65.

Thomas, J.G. & Baneyx, F. (2000). ClpB and HtpG facilitate *de novo* protein folding in stressed *Escherichia coli* cells. Mol. Microbiol. 36, 1360-70.

Valdez, F., Gonzalez-Ceron, G., Kieser, H.M., Servin-Gonzalez, L. (1999). The *Streptomyces coelicolor* A3(2) lipAR operon encodes an extracellular lipase and a new type of transcriptional regulator. Microbiology 145, 2365-74.

Wall, M.K. & Birch, R.G. (1997). Genes for albicidin biosynthesis and resistance span at least 69 kb in the genome of *Xanthomonas albilineans*. Lett. Appl. Microbiol. **24**, 256-260.

Yakimov, M.M., Kroger, A., Slepak, T.N., Giuliano, L., Timmis, K.N. & Golyshin, P.N. (1998). A putative lichenysin A synthase operon in *Bacillus licheniformis*: initial characterization. Biochim. Biophys. Acta. 1399, 141-153.

Yazgan, A., Ozcengiz, G. & Marahiel M.A. (2001). Tn10 insertional mutations of *Bacillus* subtilis that block the biosynthesis of bacilysin. Biochim. Biophys. Acta. 1518, 87-94.

10

25

- Yu, J.H. & Leonard, T.J. (1995). Sterigmatocystin biosynthesis in *Aspergillus nidulans* requires a novel type I polyketide synthase. J. Bacteriol. 177, 4792-4800.
- Yu, S., Fiss, E., & Jacobs, W.R. (1998). Analysis of the exochelin locus in *Mycobacterium* smegmatis: biosynthesis genes have homology with genes of the peptide synthesis family. J. Bacteriol. 180, 4676-4685.
- Zhang, L. & Birch, R.G. (1997). The gene for albicidin detoxification from *Pantoea dispersa* encodes an esterase and attenuates pathogenicity of *Xanthomonas albilineans* to sugarcane. Proc. Natl. Acad. Sci. USA 94, 9984-9989.
- Zhang, J. H., Quigley, N.B. & Gross, D.C. (1995). Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism. J. Bacteriol. 177, 4009-4020.
 - Zhang, J. H., Quigley, N. B. & Gross, D.C. (1997). Analysis of the syrP gene, which regulates syringomycin synthesis by *Pseudomonas syringae pv. syringae*. Appl. Environ. Microbiol. 63, 2771-2778.
 - Zhang, L., Xu, J. & Birch, R.G. (1998). Factors affecting biosynthesis by *Xanthomonas albilineans* of albicidins antibiotics and phytotoxins. J. Appl. Microbiol. 85, 1023-1028.
- Zhang L., Xu, J. & Birch, R.G. (1999). Engineered detoxification confers resistance against a pathogenic bacterium. *Nat Biotechnol.* 17:1021-1024.

Note: In the sequence listing hereafter <210> = SEQ ID

66

Application of Royer, et al

SEQUENCE LISTING

	·	
5	<110> University of Florida Royer, Monique	
J	<120> A BIOSYNTHETIC GENE CLUSTER FOR ALBICIDIN, THE ANITBIOTIC ALB RESISTANCE GENES, AND USES THEREOF	ICIDIN,
10	<130> 79-1	
	<160> 54	
	<170> PatentIn version 3.1	
15	<210> 1	
	<211> 55839	
	<212> DNA <213> Xanthomonas albilineans	
20	<400> 1	60
	gaattettte gecattgeee gggattgatg actggeateg ggattgtegg gaeettetet	60
	ggettgttge teggtetgea teagttegeg gatgetateg egeegaagge cacegegttg	1,20
25	gctactccgg tgcggcagat tggagcgatg ggacatgcac ccgctagcgc ggccagtgcg	180
	ccgatgactg gcggggtgtt cgtctctttt tccgcaacgc cggtgcgatt gcccgcggta	ggattgtcgg gaccttetet 60 cgccgaagge caccgcgttg 120 ccgctagcge ggccagtgcg 180 cggtgcgatt gcccgcggta 240 cgggcgcgge tatcactcat 300 tgttgacagg cgcgttgage 360 ccattgcggt gttgtgcgcg 420 gctttcatca gcttcaggaa 480 gcgacgatcc gatgatgcgt 540 e ggatcgcgct tgcattagac 600
10 15 20 25 30	acaggeatga aggtteteaa tgagggeeat gaeggeatgg egggegegge tateaeteat	300
30	geggeggtaa aaceggtgat ggetecattg acaggggaca tgttgacagg egegttgage	360
	tgcctgctgc acagcgtgtc gggcgctttc ctcgtttcgg ccattgcggt gttgtgcgcg	420
35	cttttgacca cgttcgtcga aaagttacta gtggcgcaat gctttcatca gcttcaggaa	480
	ctgtcgtcga cgattgaccg actgttcgca tttaatcctg gcgacgatcc gatgatgcgt	540
40	ttgacgttga cgtcggaatc gacagagcgg ctaatcaagc ggatcgcgct tgcattagac	600
10	gacattogaa tiroggaga teaagiteag tgagattita tegatacgga titocigige	660

gacattgcaa tttcgcgaga tcaagttcag tgagatttta tcgatacgga tttcctgtgc

Application of Royer, et al

	ggcgtgacgt cgagcgtggc caggaagaaa gccccttctg gatttcgctg tcagacatga 720	
	tgaccggcat gaccgcgctt tttctggtgc tggcctgcag catgctgcta atgcgcatca 780	
5	ccgaatcgaa atcgcccagt ggaacgtcgc ccagcgacga gaaagtcgtt gataccgccg 840	
	cgccgacgca gcgcaacgag cgttccgtgg gtgcggcagt gaacgcttcg catgatgcga 900	i
	accgacttgc tacctacgaa teggatattt ccaccgtgtt gaaaaatata teggegttat 960	١
10	cgcagaaata cggattttcg gtcgatgcta ccactaacac gatcgatetc ggccagtcgg 1020)
	ggctattccc gcttggaagc gaccgcttga gcgcgacaca ggaaaggttg ctgcgcaatt 1080)
15	atgtegeega teteategea etgaeteaga acgateegge catggeacca ttgaagagea ´1140)
	tcaccgtggt cggctataca gatccggctg ggtcgtatct gttcaatctc gatctgagtg 1200)
20	cgcgccgcag cgaacgcctg atgtgcgtgc tacttgccac gctggaaaaa cagagtagca 1260)
20	cgacaggtge accgacgatg accgaggact cgctgcagac catccggcac ctgttcaggg 1320)
	ttggcggcta ttccgccgac gcacagaagg aaagtgccgc agcaagcagg cgattagcgt 1380)
25	tgaagctgga tttttacaag atcgacgagc cccggcggca agccgctgtg cttgcgatgc 1440	0
	eggtegggte gtgegegett ggategegtt agggaaggte tgaataacce ceteceeagt 1500	0
20	aatgcaattt attgatttta taggtgtgaa taagagcgga taacaaaaca tagcgagcga 1560	0
30	ctctcaggcg taccgcgcag cacgcaggaa ccggtgtgta cgagtggtac ataaggaatc 1620	0
	cgagcacagc acgcgcccgt ctggcggaca cgcagtagtt ttgttagctg ctctaagcgc 168	0
35	aggatgaggt taatcagagc atcactaaca ggaatgatag tttggaaacg ataacaagta 174	0
	ttgcgccgtg cgcgctgccg gatgtctggc gtcatgccgc cgaaggcaag accgtcgcct 180	0
	cgttcgactg cttcgatacg ctgctgtggc gtggcgtgag cgcgccgagc caagtttttt 186	0
40	gtgagttggc cggcaagccg ccgttttcga cgcaaggcta taccgcctac catcgcgtga 192	0

67

68

Application of Royer, et al.

	tggccgaatc	gttggcgcgt	cgtgtccggt	ttgaacagaa	agaggttcca	gaagtcacgc	1980
	tgcgcgaggt	gtatcagcag	ttattcccgg	agcctgacga	tgcaacccgg	ataacggcat	2040
5	gcatggcgtg	cgaacaggaa	gctgaggcat	cgatctgctt	cgtcgtgcca	gctgtgattg	2100
	cctgcatgcg	cgaagccagg	cgcttgggga	tgaccattat	cgtcgtcagc	gatacctatt	2160
10	ttaacgctgg	ccagctgcgt	gcactcattg	cgtcagtgtc	gcccgaagcc	gacgagctgg	2220
10	tcgaccggat	cttctgctct	tccgactatc	ggaccatgaa	gaagtaccag	ctatggcacc	2280
	gcgtgctcga	cgaactgtac	gcagcacctg	aaacaatcgt	gcatttaggc	gacaatcgcg	2340
15	tcgccgacat	actaatgccg	tcgaagctgg	gcatcgcgtg	cctgtggcta	gatcggtatg	2400
	ccggtgcagc	catgaccgtg	ttgcgccgac	gcgaatgcgc	gacccgattg	atattcagcg	2460
20	gcgttgaaga	gactcggtcc	gtgtggacac	tttacgacgg	cctcgactgt	cgaacgcaag	2520
20	ccgagcgttc	gaactggcat	gatgaactcg	gctggcactt	tcttggaccg	gtggtctttg	2580
	cttttgcgaa	aacgctggcc	gacgaatttg	ccggccaaac	acacggaatt	gatcagccga	.2640
25	cggttcgctt	cgggtttctg	atgcgcgatg	ctcatctgtt	acgcgaagct	gcggatatcg	2700
	tegeacetea	tgageegeat	ccgtcattgc	acatcagtcg	aaagaccgcg	ttetetgegt	2760
20	ccttcgatag	tgacgatgcc	attctgcatt	tcgtcaagtt	gggcaggctc	gaatatcggt	2820
30	tgagtgccgc	gcaatgtggc	gtctgtctac	ttctgaacga	ggtagagaaa	gegegtetgg	2880
	cggaagcgtt	. catggcaaaa	gaagacacag	caggtgcaat	gcgggaattt	ttttctccgc '	2940
35	agatgttgga	cgctatcaag	acgcgttcga	aagcgttccg	tgccaggcto	atcaggcaca	3000
	tegtegegea	gacaggacte	aagcgeggeg	acacattatg	tetegtegat	: acaggttata	3060
40	atggaacgat	tcaatacttg	ctgcatgatg	tattgcgtaa	ggaaatgaac	gteacegtea	3120
40	teggaeggta	tctaatctac	eggcagaaco	: tcagactgca	cggaagggca	a tegggeetea	3180

69

Application of Royer, et al

		tegaegaate	gtggctcgac	cacggactga	ttcatacgct	ctcgcagtcg	ggtetgtegt	3240
		atctagaggc	gctatgcgcc	ggtgctggcg	gctgcgttgt	cgactatgcg	cagaatgggc	3300
	5	gctccgtctg	caatgcggag	atggtctgcc	gctcgccatg	gatagacgca	tgccagcgta	3360
		tggcgctgat	gttcgtcaat	caggtttgcg	cctcatccgc	gtccgagctg	ccgaagctga	3420
1	i 0	cgcgtagccg	tttacgcgag	tccgcattga	cgaacatcag	cgccatgctg	ttttcccca	3480
10	.0	gcgagtgcga	attgtccgag	atcagtcaga	tgcaggggga	agtgaatctc	ggcgccgata	3540
		tctgccacag	cctgtgcgat	ccagaaaaag	gcctgagtgg	attgcggcgg	egggggetge	3600
1	15	tttatatgac	tggcggtggc	gagtttcgga	gcaattggcc	ttttgagctg	cgttatgcgg	3660
		gcgcagatca	gctggccctt	tacatggcgt	gctttcgcaa	cggtttgcgg	atgaccgagc	3720
,	20	ctgcgttttc	ttaccgccac	attacattgc	cgctgacatt	cgcatttgaa	gcagacgtcg	3780
•	20	cgcgtcgatg	cgtgcccgca	catgcgacat	atgatggata	ttacactgcc	gtttttccac	3840
		ttagccaagg	taaggtgtac	gttgaaatcg	gcgctgtcgc	acagtggttg	caaatcgaat	3900
:	25	cggtgaccag	ctttccagct	gaggegtaeg	gctatatatc	tgagtccagt	gggccacaac	3960
		tgcgcttcga	gtcaaccgat	tatatatttg	atgacgtgac	gcgccatggt	aacggactgc	4020
	30	tggagtgcga	tcatgccgcc	gtaatgacgt	ttgcgccgat	tccggaagga	acgtcggatt	4080
•	50	acatecgget	ggtattccgc	cctataaccc	ttcgcgacga	cccacagcta	actgcgtggc	4140
		ccgccgacca	- gcaactcgtt	gccgtcaacg	gtgtggatag	ccactgcggc	ggcaaagaca	4200
35	35	agteagegee	gatacccagc	tatgcggcgc	ttatcgacgc	aaaactggct	gcgatcggat	4260
		cggttctgaa	cacegeggte	tataccggat	tgtaatgagc	aagggaaaat	actttttgag	4320
	40	gatttaatat	ggatggtgca	gtatttcacg	gctaccacac	cggaggtatc	tacaatgcag	43.80
•	40	gcaagtttga	ggagcggcgt	tatacgacca	taggtattga	tggatacaat	aggaggctcg	444 0

•	cgggtgagtt	ggagtggacc	aacaacgttt	atccgcgtcc	ctatggccct	tccgttgacg	4500
	attgggtgga	tgaacgcgat	agggtgccaa	aagagcggcg	tgtcaaagac	gattatcgcc	4560
5	atccccggtt	ttttgccaaa	cccaccacga	gcgcggcagt	ggaggagtgc	aggccggctt	4620
	cgggcgtcgt	gcagcaggcg	cggcggctgg	acaatgcgag	cgcgagccct	cttttcgctg	4680
10	caagcgcggt	gcgacgagga	atccggtcgt	gtgtcccgtc	gaatctgcca	ccgagtgtcg	4740
10	ccgtgggcca	taggctagca	ggaccattgg	catctgagta	tattcaaaac	tcatgcttgc	4800
	tcgtcaatcg	gcctgcaagt	acgtttgtaa	cgttagggag	tcgtgttacg	gcagggcatg	4860
15	ccctatcgga	catcgccagc	ggtgcagacg	cgaccaaccg	cccgcgcaac	gtgaaaggca '	4920
	aacatgaaaa	agacgacatg	acccaacggg	gccaacataa	tgcaggcggt	cttgtggcga	4980
20	gaatcaaggc	gaatattcgg	aattatatcg	atgcaaagtt	acgccggtat	cctgcaagtc	5040
20	ggacttgagc	tgataaatga	tgaacgcggt	gattcctgta	attaaaattc	ttaccactga	5100
	tgtcactggg	ataaatttt	cccatcctcc	cactttcgca	cagaacggga	agactttgaa	5160
25	tagactctta	gaactcctgc	gcctaccact	tcaaacggag	ttttcgactg	cgcgagatgc	5220
	taccgcgtct	ggetegegee	atgatgetge	accaagetca	tgcgcagccg	gtcttgcgga	5280
20	tggccagtaa	ttttcatagc	cgagaatatt	tactaataaa	taacataata	gcactatctc	5340
30	atcgccatca	tcagaataga	tgatcgattt	tatttattaa	caaggtaatt	atatatgttg	5400
	caatacgttg	gagaaatttg	tgccccacat	aatttaagtt	atggaaaaaa	tatagattcc	5460
35	tcaagaaata	gaatagagat	tgaaggtaat	gtaaaaattc	ccaggcctaa	attatgcaat	5520
	gaaattgcag	ccgttttcag	cgcagatcag	gccataaatg	caaatatgaa	aattttgcaa	5580
40	aaatgcgatt	ttggacaatc	tacgtctgat	acttttagaa	aaaaatcttt	ttttaaccat	5640
40	gctagtaatc	tagtggggaa	aacaatacat	ccccaagttg	cagatcgctt	tcgctcggaa	5700

		gtttcctttg	atggaacggg	taaaataatt	ggattcaaaa	aggaaatttc	aaataataaa	5760
			taataaaaaa					5820
	5		gaacccctgg					5880
			tcccgcttaa		_			5940
			cgcgtcaagc					6000
1	0					_		
			ctgaattata					6060
	_		aaaccttcca					6120
1	5 .	acgcatttat	cagaatattt	aataaaaaat	cctgattatg	cgatgatgga	ggtccgtgat	6180
		gcagtggctg	catttattt	gcaagacttc	atatetecae	ttttaacgtg	caaagggaat	6240
2	0	gaagaatcgc	aatctgcaat	ttgtgaaagg	ctagcttctc	ttatggaaga	tgaccctcct	6300
		tcttggcggt	gcaatattga	atcagttaag	aaatttettg	cctctaagag	tcaagctgac	6360
		tttatagaaa	tgatgaaata	tcatggcgaa	ttttctgtgc	cattgattct	ttcgatagca	6420
2	.5	gtgaaatata	ttactatcgc	gccaggattg	caagagetta	aaaataaagc	gagtgaattt	6480
		tatattgaaa	aaatcattcc	gcaacgcaag	cttcgcaatc	ttatattaag	taataatgct	6540
3	0	cataataaaa	aatccaacct	ttatggtttg	atgcttccat	atcaacgtgg	agcaaatgca	6600
J		ggctattcca	tgagtggcgg	gatcggcatc	aggcctattg	atcgttatgc	actccctggc	6660
		gtggaagatg	gtatgcatga	ggatgatctg	gtagcgtcat	ccaatgagat	aaccattgcg	6720
3	5	actggagttt	ctggctcatc	aaatattctt	aattttcttt	tcaataaaat	tcgaaaaaca	6780
		tcaacgaatt	ttcctatgga	tgccgggaga	ttggccgtgg	cctcttggct	tgcttatagt	6840
Δ	10	ggagggcact	cttttaatga	agcttattct	gtattetegt	acaaaaacgc	agggaaattt	6900
-7		aaatcaatct	cttttaagag	tttagctgaa	gactatgatt	tgatgaataa	aggtgtggag	6960

	catgcataca	atcaagtact	acagacagcc	aaacgtttac	agaaaccggg	gtccgggcaa	7020
	ctgcccccc	atgtcagagt	gtcagcctcc	cgtaaaattg	atccagccat	agctagaggt	7080
5	ctccgtgcgc	actagccacc	gaggcgacca	acaatgegea	agagcaagtt	caccgagagc	7140
	cagatcgtcg	ccacgctgaa	gcaggtggag	ggcggtcgcc	aggtcaagga	tgtatgccgt	7200
10	gagctgggca	tttccgaggc	gacgtacttg	ctcttccact	ggtaataggt	cgccgtgctg	7260
	atgccgactt	ggcgacagat	gtctttgact	ggaacgcctg	cgtcggcctg	ctțgagcgtg	7320
	gcgatgatct	gtgtctcgtt	gaacttcgat	gtgcgcatgg	aaceteetga	cttgggaacg	7380
15	atgccagaaa	gatctactta	tgcggtgtct	geggateggg	gʻgagcttacg	catccagcct	7440
	gggtaagtcg	cagcagaaga	gaagcctaca	tcgagaacag	tacgttatgc	ctagtggttt	7500
20	ggttcggccc	ttgtttgaca	cgatcagccg	ctaggaaccg	ccgccatctg	ggttcgccgc	7560
	ataagcctac	ttttcgatca	gtacgtcatc	gatgaacatc	gcgtccagac	cgctggtgaa	7620
	gaagatcgac	agcgcatcct	ccactgaatg	ggcgatcggt	ttgcccatga	cgttgaagct	7680
25	ggtgttaagc	accaggggaa	tacccgtcag	gcggtagaat	tctttgatca	gggcgtgata	7740
	gegegggtte	caatgttgct	tcaccgtctg	cagacgtccg	gtgccgtcgt	ggtgcacgac	7800
30	gcccggcacc	ttgcgcgtgg	cttccgcacg	gaacttcagg	gtgcgctcca	tgtagggcga	7860
	ttcctggtac	agctcgaaat	actccgcgcc	gtgctcatgc	aaaatcgacg	gtgcgaacgg	7920
	gcggaactcc	tcgcggaact	tcacccgcgc	attgatgatg	tccttgatcg	caggcgaacg	7980
35	cggatctgca	aggatcgagc	gattgcctag	ggcccgtggc	ccgaattccg	cgcggccttg	8040
	cacccaggeg	acgatettae	cctcggtcag	cagcegggee	gcgcgttgtg	ctgcgtcgtc	8100
40	gaggcaacga	gtgaatttgg	atagegegee	gaagcgctcc	acgttatgca	aggteteege	8160
. •	actcatgctg	ctgcccaggt	agggcgattg	ttcgcgcgca	gccggcggtg	tetgeteagg	8220

	atggtcctcg	gcgtgtgccc	ataatgcggc	gcccaccgcg	ttaccgtcat	cgccaggggc	8280
	ggcgaatacg	tgcagatgac	ggaacggagt	ttcagccagc	acgcggccgt	tagccgagga	8340
5	attgagtgca	cageegeege	ccagcaccaa	gtggtcggac	aagcccaaag	cgtgcaggtt	8400
	gtgcaggaat	tcgaagagga	cgtcgcagaa	cacctgctgg	ccggcatagg	ccaggttggc	8460
10	caattcgatc	gttggctggc	ccttgcatcg	gcgcattgca	tacagcgtgc	gctgcaactg	8520
10	gctgaattgt	gctgcgggcg	caaacctcag	cgttaggccg	tcgacgcgta	gcatctggcg	8580
	caacaacteg	tacagttgcc	gatcatgttg	cccgtaggcg	gccaggccca	tcaccttcca	8640
15	ttcttcgccg	gacagggtgc	cgaagccgca	aacctcgcag	atcataccgt	agaagaagcc	8700
	caggctggcc	caactgctgg	tetegetttg	gtggategge	gtaagcttgc	cctgttggta	8760
20	gtggtagcag	gccaaagcat	ttttttcacc	catgccgtcc	agtactgcgc	acaccgcctc	8820
20	ctcgaacggg	ctggtgtagc	agccggccac	cgcgtgggtt	aggtggtgct	cgtaatgacg	8880
	gtagctgggt	ggcttgaagg	caggétegge	catgtggctc	aagtcatatt	cgagcaggtg	8940
25	tccggggtgc	tccaccatcg	ccagctgcga	acggtagaag	aagctctgtg	ccacgaattg	9000
	cttgttgacg	tgccaaggca	ggtcgccgaa	ggcgctgcgg	tattggtcta	ccgcttgcgc	9060
30	ggtcttgccc	aggccctccc	gcatcagttc	aggtgtttgc	ccgctccaac	tagtagcgac	9120
30	gaccagttcg	gcgccgggat	cgccgtattc	gtggaccagc	ttgatggcgc	gctgaaacac	9180
	gtccggggca	acgccgattg	aacgcttgta	ctgcaggtag	cgctcggtgg	cctcggcaaa	9240
35	gcgcacctga	ccatcgtcgc	cgacgatagc	gatggctgaa	tcgtggaagg	aattggcgag	9300
	tccgatgtaa	gtgcgcttca	tgtccgattc	cagtgaaggg	gacgatggat	gcttccggat	9360
40	gcetacggcg	atgattgtgg	cgcaaattgt	gtcagtttga	actgcaatcc	cagcgtagag	9420
40	agcgccacga	aagcattggc	cgcgatgtag	tacaccaccg	tagccccgaa	ggcctgcttg	9480

•	aaagccagag	ctacgcctgc	cggcccctgc	agatgctggt	gcaggccgct	aaagaaaatt	9540
•	tccgagacca	gggcgatgcc	cagcataccg	ccgacctgct	ggatgacctg	cagegegeeg	9600
5	gaacctgcgc	cggcatcctt	cagaggtacc	gtacgcatca	ctgtctggaa	tagcgaggcg	9660
	atggtgatgc	cacageceag	teegeegate	agcaacggca	gggtaagcgt	ccagggatcc	9720
10	agegageett	cactgcgcgt	gatgatgacc	cacaaggcca	gatagctagc	gatcatcaga	9780
	caggegeege	tgaagatttt	cgcgcgtagg	ctttcgacgt	gccgagcgag	catagaggca	9840
	ategecaege	cgacagggaa	aggagtagtg	gcgacgccgg	tttccagtgc	cgaatacgcc	9900
15	agteettget	gcagaaagat	cacgaacacc	aggaaaaaac	cctgcagcgc	cgaatagaac	9960
	accgacacgg	acaaggcgcc	caagatgtag	tegegatgge	tcatcaggta	gateggeage	10020
20	agggccgggc	gcgccaagtg	ggcttgccga	cgttgccagg	cgacgaaggc	caccagcagc	10080
20	ggaataccga	gcgcaatggc	tgcaaagcac	catageggee	agccgtatgc	gegteettet	10140
	attagtggga	acaccaggca	caacaaggcg	agcgcggcca	gggcgatgcc	gacccagtcg	10200
25	ttatggatgc	ccgcatgcgc	cggcaccttg	ggcacccaga	tggcggccgc	cagcaaggtc	10260
•	acgaggccga	tcggcacgtt	gatcaggaag	atcgcgcgcc	agccgacgcc	gaacgcatcg	10320
	atgtggatca	gcaagccgct	gacgagggg	ccggcgaatg	aggccaggcc	cgcgaccagg	10380
30	ccgaacaacg	agaaggcggc	cgcgcgctcc	ttcggagcga	acatggtttg	cgcgatggcc	10440
	atcacctgtg	gtgccagcat	ggctgeggee	aagecetgea	aagcgcgcgc	gatgatgage	10500
35	acgtggatat	tgccagcgat	ggcgcagaac	gcggacatca	agataaaacc	ggccacgccc	10560
	gtgccgaaca	. tgcgcttgcg	gccgagcatg	tcacccaacc	gccccaacgg	cagcaacccc	10620
40	aacgcaaaca	gcagaatgta	tatcgctacg	atccattcca	getgttgete	gtccgcgccc	10680
40	aggttettet	ggatactggg	cagggcgaca	ttgacgatgo	ctacgtccag	caagttcatg	10740

	aaattggcgc	tcagcaacac	gatcatcgct	ggccagcgcc	ateggtagte	gaactgcgct	10800
	ccgggtggtg	ccatgccggg	cggcataccc	agcgcttcct	tgggtttttg	catgttgtgt	10860
5	gctccttatc	cgcttatggc	cgcttcagcc	ggtcgcatgg	tgacggtgag	aaaatgcaag	10920
	atgtcgcgct	ccaactcgcg	ctggaaggcg	ctgcggtcga	agccaggcgg	atcgatggcc	10980
10	geetegeeea	cgcgagcttt	catcgcctcg	gggaatacgc	tgatgaaggc	gtagtggccg	11040
10	gcattgggca	ccacgcgcgc	ttccagtcga	ccatcattgc	ctagcgccgt	gegtgtegee	11100
	acaatcgttt	cgtgcgccca	ttgatccttt	tcaccgacga	tgagcagcac	cggtacctcg	11160
15	actttcgcca	gggcatcctc	gtgcatgtac	aggctgaaat	ccggcgcaag	cgccaccacg	11220
	gegegeaege	geggateage	tgtgaccggc	acggccctga	teggtaeeeg	attttgtcgc	11280
20	accagcgcgg	tecaggeggg	ttgttcggcg	tgttccgggc	gatgcgcaaa	atcgaccatg	11340
20	aaaccggtat	geggttegee	cccggcgatc	gctaaggcgg	tgtagccgcc	gacggagtgg	11400
	ccgatcaccg	ctacgttatg	ggcctgaatg	gcaggaccga	actgcgcatg	gccggtgagc	11460
25	gtatcgatca	ccgcgcggat	gtgccggggg	cggtcttcca	gattctgata	gctgtattcc	11520
	agctgatgct	ggaacaggtt	gtcgcccgga	tgctccggca	aggcgacgat	: aaagccgtgc	11580
50	cgtgctaggt	aatgtgccag	g cgtgcgaaac	actaggccgg	cgctgcgcgt	geegtgegag	11640
30	atcaccgcta	ı geggaaaege	geeggetteg	ateggegege	: ccagggccad	c gtccagcgta	11700
	taaggtccca	tegeegtate	ccgtgaaggc	: gtggcggtgg	gatacatca	c ccacateggc	11760
35	accaccctgo	tggcatcaco	ateggtttee	agttttggd	e aacccacat	a gctattcatg	11820
	cgtaccccaa	a cgaaagaata	a aaaaacgcgt	geegettae	g ceggeatea	g cttatccaga	11880
40	cttgcaccgg	g egggegeea	g ccaaacagc	g gtacgacct	cgcccagct	c cctgcccatc	11940
40	aagcetege	a cgccggcca	g atcctgcgg	gttggcagc	a acgeggeea	g cegttggeeg	12000

	teggeategt	gcacggggtt	gccatctaag	tcgaaggcaa	gccccttgca	cgggccgaaa	12060
	tcgcggtgga	aacgctcgtg	cggcagctgt	agctcaaaag	ccaggccaag	gcgcctgagc	12120
5	tgttgattcc	ageggeegat	gatagegeeg	acttcggcta	tgtattgtcg	gcgcattacc	12180
	gcattgattg	ccaactcggc	aggtgcggtg	gacgagacca	gtetgtette	gcagcgcacg	12240
10	tcgacggcga	cctccgtacc	ttcgagcttg	tcgaagttgc	gtgggctgcg	gatgeeggee	12300
10	tggtacagga	cgcgtgaacg	ctccgaaacg	tegtggeega	acagatcaaa	gatetteggt	12360
	agccaatagt	taaggtattt	ctgaacgact	ggcaagggga	tcgcaccggc	gtcgaagatc	12420
15	gcgtgcgtat	cctcacgcaa	ggtaatctcg	gegettegat	acagcacgcg	ctccaggcca	12480
	tccacgccga	acttaatatg	cagaggttcc	tcgaacatca	tgaageggge	ggtgcgtgcc	12540
20	aacggcagga	aagctgactg	ggtcaccgct	tgaatctggt	acttgcctac	ccggtcggcg	12600
20	aagaagcacc	acatgaaatg	cgatagccag	tetteggtgt	ggtagttgaa	ggcatcgagc	12660
	aggcgcgggt	tetgegeate	gccactcatg	cgttgcagca	ggecetegge	ggegtegget	12720
25	ccgtcgctgc	caaagtattc	gatcagcaga	tgcgacatcg	cccaggtgtg	ccggccttcc	12780
	tctagaaaaa	actggaataa	gtgctccagg	tegategege	tgggcaccat	ttgcgtcagc	12840
30 .	tegtggetet	gctcaaccgc	ggcgttttct	acgtcacctt	gcacggtgac	atgatecage	12900
30 .	agcaggtcac	gatattette	cggcacgcac	gaccatgcca	cctgtccctt	gegetegeeg	12960
	aacactacgg	tgttgcggtc	tggcggcatc	atgaatacgc	cccagcggta	gtegetgggg	13020
35	cgcatgcggt	gatagcgcgt	ccactcgctg	cccttgacgc	caccggtagg	catgegeagg	13080
	ttcatctcgc	gatcgtggaa	ttegetgggg	ccgcggaggc	gccaccatto	g caggaagega	13140
40	acttggtagg	aagtcagttg	cetgaceage	gcgctgtgtg	gatcaaggto	gatattgtta	13200
4 € .	ggaatgtaca	tgagggtcag	gccgcgctgt	gcatcgaggt	aggggcgact	: tegeegaceg	13260

	tgagcccgat	gaagtcgatg	atccgctgag	ccacggcacc	cggatcattg	aacagttgca	13320
	ggtgaccgcc	atgatetage	aggtccagac	gcaaagacgg	gtcgtgccta	gccaactgca	13380
5	ccgaggcgga	gtagtggctg	aagctgtcgt	ccttgcagtg	cacgatcagg	gtagggtgcc	13440
	tgeceaggge	ggtgggcagc	aaggettgea	cggattgctt	gttctcttcg	taggcacgca	13500
10	tgtagcgcga	gaacaccaat	gtgctcgctg	gatcggctag	gtgcagcatg	gtgagctttt	13560
10	cggccaagtc	gtegeegegt	aaaggttggc	cgcggtactt	gtccaggatg	geggegaget	13620
	ttttggcctg	ttccagaccg	tgccgctcga	tctgaaggta	gatcggcaag	gcgcaacgtt	13680
15	cgaattcgga	ttttacgatg	ggcggcagca	ggcccgccgg	cgccacccaa	gccatgctgc	13740
	gtggtgcgaa	gccatgcagc	gcaatggcat	gcacggccaa	ttgtgcagcc	tgacaccaac	13800
	cgacaaaatg	gcaatcggcg	tagtcgtgtt	ggtgcaggat	geceageagg	gtcgcggctt	13860
20	ggcgatccag	atcgaagtct	tccgcggtta	ccgatgtctg	ggcattcggg	cageegatgg	13920
	attcccagca	caacacatgg	aaatgcctag	ccagtcgttg	cgccaaccgg	g ctcagcagca	13980
25	ggtaggacat	gccatagggc	ggtagcagca	ccagettggg	cgatgeetga	gegeetagee	14040
	aatacagcto	aagctgccgt	ccatcggtag	tgcagtattg	cgacagcett	: acccctgcga	14100
	gcgcgtcgtc	: cagggcggac	e agatettget	. tttccagata	gtgcggcaag	g caagcacagc	14160
30	ccatgagttt	cetaceeteg	g cttgaccaca	tgacaagact	gegeegtead	e eggtggetgg	14220
	aaagcttgcg	g ceggggegga	acacctcacg	g agtaactcga	ttcgaaccc	a cttccgtctg	14280
35	gagagetege	c gteecctaaa	ttcttgtcat	cgagttcgc	cagcgataa	g gggcgcatgt	14340
	cggtccagg	t ttcgtcgata	a tacgccatgo	e actegteett	accgccagc	a tagccttcct	14400
	tgcgccagc	c aggcgggaco	tcaagatcg	g acggccacag	g tgaatactg	c agttegtegt	14460
40	tgatcagca	c cagataagc	c tgttcctcg:	a acgteatee	aaagatacc	c ccggaaggct	14520

		gctgcgaagc	acggaagttg	ctacatcgca	caatgcgatt	cagatggacc	aagcaaagcg	14580
		actatacatg	acgtcacttc	gaagatgtca	agaaaaatag	cgcgtgaaga	gcacgtaaga	14640
	5	gtgatgtgtt	tegeaceget	gtacgtccca	tcgccatcgc	ggcaaagctt	acacgaaaaa	14700
		ttcaccaggg	catgcgttca	atacgcgggt	caaagcaata	teettgeget	tgcagagcta	14760
1	0	tgttcgtgcg	taaagcgcca	aggcagtggg	gagcaacacc	ttgggtttcg	gttgaggtgc	14820
	v	gggtagcaat	ttctgcttaa	tatccacgcg	cggcggtttt	tgtcttgccg	ggcgtcaact	14880
•		gtctcatcga	gcagtctggg	aggctatttt	gcgctgcctt	atcataaata	attacgattc	14940
1	5	gttcacttgg	aatctcgccg	actacgtagc	gcagatette	ggcgaagatc	ccctggtggt	15000
		gcacaacgac	gagtactcct	ggcacgaact	gaaggaccgc	gggggatttt	cctcgatcat	15060
2	.0	cgtttcgccc	ggtcccggct	cggtggttaa	tgaageggat	tttcacatct	cgctgcaggc	15120
	.0	gctggagcag	aacgaatttc	cggtgttagg	cgtatgcctg	ggctttcagg	gacttgcgca	15180
		tgtctatggt	ggccgcatcc	tgcatgcgcc	ggtgcccttt	catggccgtc	gctccaccgt	15240
2	.5	catcaacacc	ggcgacggtt	tgttcgaagg	catcccgcag	cgtttcgagg	cagtgcgcta	15300
		tcactcgttg	atggtctgcc	agcaatcgct	gccgcctgtg	ctgaaagtga	cggcgcgtac	15360
7	0	cgattgcggt	gtggtgatgg	gcttgcagca	cgtgcaacac	ccgaaatggg	gagtacagtt	15420
		ccaccccgaa	tcgatcctca	ccgaacacgg	caagcgcatt	gttgctaact	ttgccaagct	15480
		ggctgcgcgc	cacagtgcac	cgttacttgc	cgggtcggag	caggccggca	aggttttaag	15540
3	35	cgtttgcgcg	cccgagatgg	tgacaccgcg	ggtacgtcgc	atgctgagcc	ggaagatcaa	15600
		gtgccgttgg	caggcggaag	atgtetttet	ggeettgtte	gctgacgaaa	agcattgctt	15660
_	10	ctggctggac	agccagctgg	tetgeagtee	aatggcgcgc	tattcgttca	tgggageggt	15720
		gaacgagagc	gaggtagtgc	ggcattgcgt	gcggccaggg	agcatggtgc	aggaggcagg	15780

· 79

	cgagcggttt	cttgctgaga	tggatcgggc	gttgcaatcg	gtgcttactg	aggacgtcgc	15840
	cgagcggcca	ccgttcgcgt	ttcgcggcgg	ctacgtgggc	tacatgagct	acgaaatgaa	15900
5	atcggtgttc	ggcgcgcgg	cttcacatgc	caatgccatc	cccgatgcgt	tgtggatgcg	15960
	cgtggagcgc	ttcgttgcct	tcgaccacgc	cactgaggag	gtatggttgc	tggcgctcgc	16020
10	cgatacggag	gatctgtcgg	cattggcttg	gctagacgcc	atcgagcaac	gtatccatgc	16080
10	cattggtcaa	gcggctccgg	cttgcatttc	gctaggcctg	cgcagcatgg	aaatcgagct	16140
	caatcatggt	cgtcgcggct	accttgaggc	aatcgagcgt	tgcaaacaac	gcatcgtcga	16200
15	tggcgagtcc	tatgaaatct	gtcttaccga	cctgttctcg	ttccaggccg	agctggatcc	16260
	attgatgctc	tatcgctaca	tgcggcgagg	gaacccagcg	ccgttcgggg	cctatttgcg	16320
20	taacggtagc	gattgtatcc	ttagtacttc	accagagcgt	tttctggaag	tggacggcca	16380
20	cggcacgatt	cagaccaagc	caatcaaggg	cacctgecge	cgtgccgagg	atccccaact	16440
	ggaccgtaac	ttggccatgc	gcctggccgc	ctcggaaaag	gaccgagcgg	aaaacttgat	16500
25	gatcgtcgac	ttgatgcgca	acgacctaag	ccgcgtggcg	gtgeeeggea	gcgtcaccgt	16560
	gcccaagctg	atggacatcg	aaagctacaa	gaccgtgcat	cagatggtca	gcacggtgga.	16620
20	agcgaggctg	cgcgccgatt	gcagtctagt	cgacctgctt	aaggcggtgt	tccccggcgg	16680
30	ctcgatcacc	ggcgcaccga	agttgcgcag	tatggagatt	attgatggcc	tggagaatgc	16740
	geegegtgge	gtgtattgcg	gcagcatcgg	ctacctgggc	tacaactgcg	tegeegacet	16800
35 .	aaacattgcg	atccgcagtc	tttcttatga	cgggcaggaa	atacgtttcg	gcgccggcgg	16860
	cgccatcacc	ttcctgtccg	acccgcagga	tgagttcgac	gaagtgttgc	tgaaggcgga	16920
40	ggcgatcctc	aagccgatct	ggcattatct	acatgcgccg	aacactcccc	tgcactacga	16980
40	gttgcgagag	gacaagctgc	tgctagccga	gcactgcgtt	agcgaaatgc	cggccaggca	17040

	ggccttcatc	gaaccatgag	ccgcggcgag	agaggtccat	gcacaccatt	gtgaacggcc	17100
	ttcccgcttc	gtccatagcg	attttcgatc	geggeetaca	gtacggcgat	ggattgttcg	17160
5	aaaccctacg	gctaggcatc	gegetgeegg	acatccgtca	gcaggtctgc	gaggccatcg	17220
	cgactggcgc	egegeegegt	gccgtggcga	aaaactgatc	gtgacgcgtg	gcagcaccga	17280
10	gcgcggctat	cgttgtcctç	tggcggtggc	gcccaactgg	gtgctcagcc	tgaatgaggc	17340
	ccccacgett	acgcgcgaac	caggacgggc	tgctgatgga	tacggccggc	cgggtggtcg	17400
	agggctgcac	cagcaatctg	ttcctcgtcg	agaacggcca	tctggtgacg	cccgacetgg	17460
15	gcgtggccgg	cgtcagcggg	atcatgcgag	gcagggtgat	cgaatatggc	cggcagcacg	17520
	gtctcgcctg	cgcggtaaag	cacgtctatc	cggaccagct	agtgcgtgct	caggaggtgt	17580
20	ttctgactaa	cgccgtgttc	ggcattetge	tggtgcgcag	cattgacgct	cacagetace	17640
20	gcatcgatcc	tgttaccctg	cgtttgctcg	atgccctgtg	tcagggcgta	tatttcaccg	17700
	aacggtcact	acatcaggtt	tccacccatg	ccggccaaga	eccttgaaag	caaggattac	17760
25	tgtggagaaa	gcttcgtcag	cgaagatcgc	tccgggcaat	cgctggagtc	gateegatte	17820
	gaggattgta	cgttccgaca	atgcaacttc	accgaggetg	agctcaatcg	ctgcaagttc	17880
30		agttegtega	ctgcaacctg	agcetcatea	gcattccgca	aaccagcttc	17940
50	atggaagtgc	gcttcgtcga	ctgcaagatg	ctcggtgtca	actggaccag	cgcacaatgg	18000
	ccatcggtga	agatggaggg	ggcgctgtcg	ttcgagcgct	gcatcctcaa	cgacagettg	18060
35	ttctacggcc	tatacctggc	cggggtaaaa	atggtggagt	gccgtatcca	cgatgccaac	18120
	ttcaccgaag	ccgactgcga	ggatgeggae	ttcacgcaga	gcgacctgaa	gggcagcacc	18180
40	ttccacaaca	ccaaactgac	cggcgccagc	ttcatcgatg	cggtgaacta	ccacattgac	18240
	atcttccaca	acgatatcaa	gcgggctagg	ttcagcctgc	cggaagcagc	ctcgctgctc	18300

	aacagcctgg	atatcgagct	gtccgattga	gcctggccat	tegetacegt	gtgactgạtg	18360
	caacetggeg	gatgcatccg	cegtegeegt	tgaacacgca	gcagaaagac	tggctgacac	18420
. 5	gcggtggttc	gttgaccgcg	cacctgcgcc	tgttggggca	ggtacaggtg	caagtgcaac	18480
	gggagcacaa	agccatggcc	tggctggatg	aatatcgggt	gctcggactg	tegegetgee	18540
10	tgcttgtatg	ggtgcgtgaa	gtggtcctgg	tggtggacgc	caaaccctat	gtctatgcgc	18600
10	gtagectgae	gccgctgacc	gccagttaca	acgcctggca	ggcagtgcgt	agcatcggca	18660
	gtcgcccgtt	agctgatctg	ttgttccgtg	atcgcagcgt	gctacgttcg	gcgttggcga	18720
15	gtcggcgcat	caccgcgcag	cateegetge	accggcgcgc	atgcaacttc	gtggcacagt	18780
	cgcatgcgac	gcaagccctg	ctggcgcgcc	gctcggtatt	tacgcggcaa	ggcgccccgt	18840
20	tgctgatcac	cgaatgcatg	ctgccagcgt	tgtgggcaac	gctggaaccg	gtggcagctc	18900
20	cgcgccaggc	gagtctgagt	geggaeggee	cttgccggca	ttcagegeag	g atcgtctcgc	18960
	ctgagtcgat	gctggaatag	ccttggcatc	gaageeetee	: gatcaggcat	cgaggtccgt	19020
25	caccagcatg	cgcgccagct	cacgcagcgg	gtcgccttgt	: aacatgctgt	agtgattgcc	19080
	cgccgcgctc	ttgatctgcg	aaagtggtac	gtaacctgtg	g atateegge	a gtacctcgct	19140
30	acccccgcgt	ggcttggaca	ı tgtcggcata	ggacacgtgt	accgcagte	t gtgcctggta	19200
30	cagatgagcg	ttaggetge	ggcactgcgg	g ctcgaaacc	g gccaacagc	c ccaggtgata	19260
	gcgcgtaacg	cgcaattgct	cggccagcgg	g tggccacat	g cggctttcc	a gagtaaacct	19320
35	caggtgtgcg	agcagtttg	ccagtgatg	e ctggtggcg	g ctgtagtcg	a acacgtgctc	19380
	gtcgtcaccg	teggegaac	a gcagctgcc	g ggettegte	t atttcagcc	t gctcgaagco	19440
40	gcgcttggcc	: aacgcggcc	a acgtattga	g cgctgccac	g aaggtaagc	t geeggggete	19500
40	gegegeatgt	accggtate	a ggctgctat	c gagcaggcc	c acgtaatcg	a cgcgcaggcc	19560

•	gegeegetge	aattgctcag	ccacagccag	ggctagcacg	ccgccggagg	accageccag	19620
	caagcggtag	ggcgcaccgg	tegggeeage	cagcaacgca	tcgcagtagt	gegeggeeag	19680
5	gteggacaaa	tgcgcgaagc	ggegeacegg	ttcgcattgc	aggccataga	ccctggcaga	19740
	gtgccctagg	gcggcagcca	gatcgatgta	gcaatgaatc	tggccgccga	tegggtggat	19800
٠	ggcatacacc	geegegegtt	cggtgcgtag	gctaagcggt	acgataagac	ttaccggcat	19860
10	getgeegget	tggctttggc	gcatgccgcg	ctcgacgaca	gcggcaaaat	cttccagcac	19920
	aggggattcg	aacagcgtgt	tgacccgcac	ttcgatgtcg	aaactctggc	ggatacgcga	19980
15	gaacaactgg	gtggcaagca	gcgagtgacc	gccgaggttg	aagaagttgt	cgttgaggct	20040
	cacgcgtaag	ggggeggeet	gtgcgggggt	cagcagttcg	ctccacagct	tggccagggt	20100
	gatttcgacc	: tegetgegeg	gagcgaggta	gtcgctgtcg	ctgctggcgg	cttgeggete	20160
20	gggcaggcto	aaggtatcga	gcttgccatt	gggcaagcgc	: ggaagcgcc <u>c</u>	geagegaetg	20220
	gaagcgcgtt	; ggcagcatgt	aggtaggcaa	gegtteetge	agcagcttgo	gcagetegte:	20280
25	gaggttcagg	g acaccctggc	gtggcaccac	: gtaggccaac	agttccggc	g tgggcgagcc	20340
	ttgcggccaa	a cegateaegg	eggeetegge	gacctgcagg	g tgggccgcc	a gggetttete	20400
	cacctggcg	c acgtccacgo	ggtagccgcg	g gaccttgace	c tegtagteg	c geeggeegag	20460
30	cagttccag	c gtaccgttgt	. ccagtaggc	g ggccatgtc	g ccggtcctg	t acagacgcga	20520
^	gccgggggg	g ccgtagggat	tggcgatga:	a gegegegge	g gtcaggccg	c cctggcgcca	20580
35	atagccgtg	c gtaatgccga	a ggetttega	t gtgcacttc	g cccatgatg	c caggeggeaa	20640
	cggtcgcag	t tgttegtega	a gcacatgga	c cttggtatt	g gcgatgggc	c gtccgaccgg	20700
	gacgaagcc	g ctgccgctg	t getget e gg	c cggatcgca	a taggtcatg	t cgttgatttc	20760
40	ggtacacco	g tagatgtac	c aggccgtgc	a ggcaggcag	c agegteetg	a gccgttgcag	20820

	cagttccgcc	gggcagggtt	cgatggagac	gaagagctgg	cgcagtcgcg	ccagccgctg	20880
	cggtgtctca	gcaacgtggt	cgagcagcgc	gttgagctgg	gaaggaaagg	tatacaggcg	20940
5	tgtgatctgc	caggtttcca	gegegegeae	gaaagcgggg	atgtcacgca	cggtatcctc	21000
	gtcgatgaac	acctgcggta	cgccagcaag	taggeeggeg	agcagttcct	tgaccgaaat	21060
10	ggcaaaggcg	atcgaggtct	tttgcgccac	ccgctccccg	gcctcgaaag	gcgcacgtgc	21120
10	ccacagegca	tgcagccagt	tgaggatttg	ccgatggggc	accatcaccc	ccttgggacg	21180
	accggtggaa	ccggaggtat	acatcacgta	ggccagctgc	gccggatgca	gggcatgcgg	21240
15	cagtggcgta	tgcggttgac	gagcgatggc	ggcatcgtcc	aggegeagee	gcggtacttg	21300
	gatcagttgc	ccgtcgatgt	ccttgccgca	gagcaacagc	cgtggctgcg	cgtcgtcgag	21360
20	gatctgctga	atgtaggtgg	tggggtaatg	cgggtccaac	ggcacgtagc	agccaccggc	21420
20	cttgagcacg	ccgagtaggg	caatgaggaa	atcgggcgag	cggccgaacc	acagggcgac	21480
	gegeteetge	gggcgcaggc	cgcgctcgat	caggcaatgc	gccaggcggt	tggcgtgttg	21540
25	gtccagttgg	gcatagctca	actgtcggtg	ttgatcggca	caagccagtt	cctcggcgtg	21600
	cagtgccact	tgcgcatcga	acagatccag	cacactgcgc	gaggtatcca	gagtatgagg	21660
30	ggtgaactcg	gtgcgagcga	ccggcagcga	aaaatccgag	aggcggcagc	gcggttcttc	21720
30	cagcatecge	tccagcactc	tttggtggtg	ggccagcatg	cgctgaaccg	tageegeega	21780
	aaacagctcc	gcggcgtatt	cgacagtgac	ttccaggtgg	cttccgtcgc	cgatgaactg	21840
35	caggtccagc	tegttgggtg	tggtgcgttc	gccaaattcc	atctgagcgc	tgaggaagat	21900
	ctgggcaaat	gcattgacgc	cttcggtggc	gaaattttgg	tgtcggagca	tgatcggcac	21960
40	gagcgggatc	tggctgctgt	cacgcggttt	cttgagagcg	cttaagacat	gctcgaacgg	22020
40	cagtgcgcga	tgcgcgtagg	cgtccagcac	ttgctggcgc	acgtgctgca	gaaaatcctc	22080

	ggcaaaggcg tgactgccca agtttaggcg taccgccagg atattgacga aaaagccgat 2214	10
	cagatteteg gttteeaget gategegtee ggegetggta gtacetaage agagtteteg 2220	00
5	eeggeeggtg taetggtgea agaegatege eaggetegee ataagtgtea tgaacaaggt 222	60
	gacgcgccgt tectggctga atgcggcgag acgcgcggcc aaggcgtcgg gataggtcag 223	20
	gtgtagtatg ccagcacgcc aagctcgatt agccgggcgt ggaaaatcgt agggcaaggc 223	80
10	cagecettet tegtaaceat geaaacgetg tttecaataa tecagategg egetgaaate 224	40
	ctgtacgcgc tgccatgtag catagtcggc atattgcagt agcagcggtg gcagtgccgg 225	00
15	tggcgtctgc tgtagcgcgg ctatatagaa agcacgtagg tcgtgaaaga tcaggttaat 225	60
	cgaccagccg tcgcagatga tgtgatgcat gttcatcagg aacacgtggt aatcgtccga 226	320
	tacgegeage accgatacet tgageagegg geegtgggea agategaata egtgegegge 226	680
20	gtgeteggeg actaggegtg geacttetge gggtgteget gtgatgeaag geactgggae 227	740
	ctgcatggcg tcggcgatgt gctggctggg ataatcgccg ccagcgcaag ttgctatgcg 228	800
25	ggtgegeaag gttteatgee tggeeaceag egeetggate geetegegea gegetgaeat 220	860
	cgagaaatcg gcactgcgta aatggcaggc gaaggcgaca ttgtaactgg tacgttgctc 22	920
	gggcatgtgt tcatgcacga accacaggcg ctcctgctga tagctcagcg gaacgggagc 22	980
30	atcgcgcacg gcacgggaag agatggtgtt gccgccagtc ggagcctgtt gttgccgcgc 23	040
	ttcgttgacc actcgcgcaa aatcttccag cacaggggat tcgaacagcg tgttgacccg 23	100
35	cacttegatg tegaaactet ggeggataeg egagaacaae tgggtggeaa geagegagtg 23	160
	accgccgagg ttgaagaagt tgtcgttgag gctcacgcgt aagggggcgg cctgtgcggg 23	220
	ggtcagcagt tcgctccaca gcttggccag ggtgatttcg acctcgctgc gcggagcgag 23	3280
40	gtagtegetg tegetgetgg eggettgegg etegggeagg eteaaggtat egagettgee 23	3340

•	attgggcaag	cgcggaagcg	ccggcagcga	ctggaagcgc	gttggcagca	tgtaggtagg	23400
	caagegttee	tgcagcagct	tgcgcagctc	gtcgaggttc	aggacaccct	ggcgtggcac	23460
5	cacgtaggcc	aacagttccg	gcgtgggcga	gccttgcggc	caaccgatca	cggcggcctc	23520
	ggcgacctgc	aggtgggccg	ccagggcttt	ctccacctgg	cgcacgtcca	cgcggtagcc	23580
10	gcggaccttg	acctcgtagt	cgcgccggcc	gagcagttcc	agcgtaccgt	tgtccagtag	23640
10	gcgggccatg	tegeeggtee	tgtacagacg	cgagccgggg	gggccgtagg	gattggcgat	23700
	gaagegegeg	gcggtcaggc	cgccctggcg	ccaatagccg	tgcgtaatgc	cgaggctttc	23760
15	gatgtgcact	tegeccatga	tgccaggcgg	caacggtcgc	agttgttcgt	cgagcacatg	23820
	gaccttggta	ttggcgatgg	gccgtccgac	cgggacgaag	ccgctgccgc	tgtgctgctc	23880
20	ggccggatcg	caataggtca	tgtcgttgat	ttcggtacac	ccgtagatgt	accaggccgt	23940
20	geaggeagge	agcagcgtcc	tgagccgttg	cagcagttcc	geegggeagg	gttcgatgga	24000
	gacgaagagc	tggcgcagtc	gegeeageeg	ctgcggtgtc	tcagcaacgt	ggtcgagcag	24060
25	cgcgttgagc	tgggaaggaa	aggtatacag	gcgtgtgatc	tgccaggttt	ccagcgcgcg	24120
	cacgaaagcg	gggatgtcac	gcacggtatc	ctcgtcgatg	aacacctgcg	gtacgccagc	24180
30	aagtaggccg	gcgagcagtt	ccttgaccga	gatggcaaag	gcgatcgagg	tettttgege	24240
	cacccgctcc	: ccggcctcga	aaggcgcacg	tgcccacago	gcatgcagco	agttgaggat	24300
	ttgccgatgg	ggcaccatca	cecettggg	acgaccggtg	gaaccggagg	tatacatcac	24360
35	gtaggccagc	: tgcgccggat	gcagggcatg	cggcagtggc	gtatgcggtt	gacgagcgat	24420
	ggcggcatcg	tecaggegea	geegeggtae	ttggatcagt	tgcccgtcga	tgtccttgcc	24480
40	gcagagcaac	: agccgtggct	gegegtegte	gaggatetge	: tgaatgtagg	ı tggtggggta	24540
	atgcgggtcc	aacggcacgt	agcagccacc	ggccttgago	: acgccgagta	gggcaatgag	24600

	gaaatcgggc	gageggeega	accacagggc	gacgcgctcc	tgcgggcgca	ggccgcgctc	24660
	gatcaggcaa	tgcgccaggc	ggttggcgtg	ttggtccagt	tgggcatagc	tcaactgtcg	24720
5	gtgttgatcg	gcacaagcca	gtteetegge	gtgcagtgcc	acttgcgcat	cgaacagatc	24780
	cagcacactg	cgtgaccaat	ccaaggcgag	cgcggtatcc	ggactggccg	cggtcagcgc	24840
10	gacgtcttcg	gcatccagta	gcgacatgct	tgatagtttc	atggggcacc	gggtcggcag	24900
10	ggttaaacgt	gcagcttgag	catggcttcg	ccatcgctgc	gegeagegat	gtcaggggac	24960
	gattgttcgg	gcgaataagg	ttcggccatg	cacacgagga	tcttgcggct	gccctcgtag	25020
15	ggetegegte	cgtgcgaaac	cagcatattg	tcgatcagca	gcacgtcgtc	ccgatgccag	25080
	tcaaaatgga	tettgtgetg	ggcgaaaact	gtgcgcacat	ggtcgagcat	ggcggggtcg	25140
20	atcggcgtgc	catcgccgaa	ataggcgttg	cgcggcagtc	cctgctcgcc	gaagaacgac	25200
20	agcatcatct	tctgcgcagc	tgcctccagc	gcagtgtaat	gaaacaggtg	tgcttggttg	25260
	aaccaaactt	catcgccggt	cgccggatgg	cacgcaaagg	cccggcagat	ctggctggtg	25320
25 [.]	cgcaggccgt	cgccggtcca	ttcgcattgc	atgtcgttgc	gggcgcaata	agcttctact	25380
	teetgettgt	tgegggtgtt	aaacacgtcc	tcccatggca	ggtcgacccc	tgcacggtag	25440
20	tteetgaegt	agegeacetg	tttgcgcgca	aagatttcgc	gcacttgcgg	atcgatagcg	25500
30	gctgtgacct	tgagcatgtc	agccaacggc	gtgcagccgc	cctcgctggc	cggctgcacg	25560
	caatggaaca	gcagtttcat	cggccagacg	cgctggtagg	cgttctcgca	atgttgcgct	25620
35	atggacagct	gcctgggata	ttcggtggcc	gtgtagacat	gctggccgac	gteggtgege	25680
	ggtgtggaac	gataggtata	ggccagtcgc	tcatcgaaga	aacagcgtga	gatetgetee	25740
40	aagecaceag	ggtgcgcaaa	gccacggaac	agtaacgccc	tgtgttgcca	ı tagcagggta	25800
40	ggccacgtcg	cgcggtgcgt	. ggcattccaa	tcagtcagcg	tggcctcggc	cgagteggee	25860

	ttgatggtca	ggggaagatc	agcgtttgtg	tgcatggggc	acctaggttc	gagcatggcc	25920
	gacgaagaac	aggtgggatt	gcaggtgctt	ggcgctagcc	agtgtctcca	acagcgcagg	25980
5	ccggattacc	ttgccgctgc	aggtacgtgg	gategtgete	acttcgacga	atagatgggg	26040
	atagtgatgc	ttgcctagcg	cgttcttgca	caaggcgcgt	aaggcggccc	atagegeece	26100
10	tgtatcgatg	ctggcatcga	caggcaccac	gaaggeggeg	gggcggggca	agccgaactc	26160
10	gtcttcgatc	aggcagatcg	cgcactcctt	cacgcaggcg	tgcgtctgga	tgacgctctc	26220
	cagcgtctca	ggcgaaagcc	aacaaccgtt	gatcttgatg	geggageeca	ttctgcccaa	26280
15	gttatggaag	cgccccttgg	cgtcggcaaa	gaacaggtcg	cgtgtatcga	accagccgtc	26340
	gacgaacaat	tgggcactga	gtatggggtc	gccaacatag	cccctcgtca	gcgtattgcc	26400
20	cctcacccac	aggctgccga	cttcgcctat	gcggcagatc	teteeetget	tgttcaccag	26460
20	cttcacaaca	aagcctggta	ccggcgtgcc	agtgcaaccc	atgagcgcgt	ggcctggccg	26520
	attggagatg	aaggtggaca	gtaceteggt	gcagccgata	ccgtcgagca	cttcgacctg	26580
25	ccaacgcgtg	ctgatcgcat	gaccaagcct	cgccggcaag	ctttcgccgg	ccgatatgca	26640
	caggcgaagc	gccggccaca	ccgcatccgg	egeggeeteg	gcaagcaaca	gcttgaacac	26700
30	ggcgggcacg	gcgagcaata	cagtgacgtg	gtaagtgtgg	atggtttgcg	cgatctgcct	26760
30	gacgctaagc	ggcgcggcaa	tcacatggct	gacaccagcg	agcagcgaca	gcatcaggtt	26820
	gttcaggccg	taggcgaaaa	acaaccgcga	cggtgtatac	atcacgtcat	cgctgcgcag	26880
35	cccgagcacg	geetgetggt	agttgagatg	gcagtgcata	aaatcggcat	gcgagtgcgt	26940
	taccgccttg	ggcgtaccag	tggagccgga	cgtgcatato	atcaccgcgg	gtgcatcggc	27000
40	ggagcagggc	gcaaccacca	gttcgtcgtt	ttcgatcacc	ggcatcaggc	: tcgtcagctc	27060
40	taaggtcggc	: aggtggcgca	acgcggcatg	atgggaaggo	ggcagttcgg	catcgatcag	27120

	cacgaggcga	ggcttgatgg	tcttgagcgt	ggtctcaaag	tggacgagcg	acacaagctc	27180
	gtttatcggc	gcaaagacca	agccaccggc	caagcaggcc	agcatcaggg	caacgcccgc	27240
5	taggctgtcg	atagcaatca	gegecacege	atcaccgctt	tgcaggccaa	gcagactcaa	27300
	gtgccgggca	taggtcgccg	cgcgagagcg	caactggcga	tagctgaagg	cctgctggcg	27360
10	caacggatcg	atcatttgcg	ccgtcgaagc	cagatgcgct	gcggaaaaaa	tttgcgcgca	27420
10	cacgttgacc	tggaccgacg	ggaggaagcc	gataggcgca	caggcgaaca	ccgccgtgct	27480
	tgcgtccgac	caggacggca	teggeceate	ggtegagegt	gcgaaccagc	tegegggcaa	27540
15	atgactggca	atctgacata	gtttgccgtg	gtcgcaggcc	agcagactgg	tatecacete	27600
	gatcaggtct	tcgacgcagg	aaagcgcagg	caaagagatc	tgegeegege	tgccgcatac	27660
20	ggcactatcg	cgcaagtccg	gcaggttcct	ttggcggtgg	teegeatgee	atageageag	27720
20	gccatcgctg	cgtcgcgtgg	ccaaggette	cagtgccatg	cccagggcgc	cttgcaaccg	27780
	gtccagttgc	ttgggtteet	cgatacggcc	caaatccagt	gccagggtgt	tggcgccggg	27840
25	gggcgattcg	gacagcacga	tttggtgccg	atgettgagg	taatcgcaaa	tcaggccggc	27900
	cagettgeet	aaccgtgcat	attecegtag	caggctaccg	aagetgeeae	aggggtaagg	27960
20	tgcggcatag	tcaatggtta	tgtgctggcc	gateggegtg	tegetgaeat	cgatacgcaa	28020
30	gccaggataa	tegegeegee	attgatgcag	cagcgtggtc	cattgacgag	cataggcctc	28080
	gttgegeeet	ggeegegtet	gacctaccga	ccaacgcaaa	tctagttcgg	tgccagagtg	28140
35	catcggaaga	tttgtcagtg	ggctatccat	aagcgttctc	gggtaaggcg	atcgacgcat	2,8200
	cgagctcggc	: tgtgtgcact	ggtttggccg	gtacgccago	: gcgagagact	gttcgcaagc	28260
40	ttcagcgttt	: cagcgcgtgg	accagataac	tttgcggcac	: gaagtgggtg	cegegeggtg	28320
40	cgaccggaaa	cggccaacgo	cccatttgct	ggccageggc	ggegatggte	aacacccctg	28380

	gctcccagcc	cagtggttgg	atcaggcttt	ccggttcgtc	agtgccaaac	tggcgagcca	28440
	tcgcgtgcag	cactcgggca	ttgggcgagt	tgagcataga	gaggccgata	acatcgaaca	28500
5	acacgctgct	gcccttggca	ctcaatgcat	cgatgcgcgc	gaacagcagc	atcactgcct	28560
	cggcgctcaa	gtagcacagc	aagccctcga	ccagccacaa	ggtggcggcg	ctgccgacga	28620
10	atccactctc	cttaagtgcc	tggggccagt	cttcgcgcaa	atcgatcggt	agcgcaatgc	28680
10	gctggcaaac	gggctgggcg	tcatggagtt	tttcgtgctt	gtcggagagg	acatccatgt	28740
	ggtcgatete	gtagacccgg	gtatcggacg	gccaggggag	acgataagcg	cgtgcatcca	28800
15	taccggcggc	caggatcacc	acctggccaa	tgccttcact	aaccgcctgc	atgatettgt	28860
	cgtcgagcca	acgcgtccgt	acctcgatcg	ccggaggcat	cggtacgttc	tggttgttgc	28920
20	gtctgagctc	ttcaacgaat	tcatcgccgg	ccagacgccg	tgcgaaaggg	tcatggaaca	28980
20	gcgcctgctc	ccgctcgctt	tccagcgccc	gcatgcctgc	cacccataaa	geggttettt	29040
	cgatatctct	catgcatacg	ctccggttcg	tggtcggctt	gcgccgatgc	atcatagata	29100
25	tgcatgactc	gattcgcggc	accgtgcctt	gatggtggct	gcgaagcgaa	aacaataacc	29160
	aaagggtggt	getegaegge	tttactgtag	cgacaccttg	tecategeet	tacggatggt	29220
20	ctgatccacg	caagcgaaag	atgagataaa	ccacatcagc	tgtcaacgcc	gatttaaatt	29280
30	tgacccactt	tcctttgaat	cgtcgaagta	aatctgaccc	acccggggtc	ttccatcgtc	29340
	gggctgctag	gctgcgcagg	gcaaagcccg	tcgcagccca	gcagccctgc	gccggctcac	29400
35	gcccgaaggg	caggtageeg	atctcgtcga	ccaccagcag	cttcggccct	agtaccgcgc	29460
	gattgaagta	gtccttcagc	cggttctgcg	ccttgaccgc	tgccagttgc	atcatcaggt	29520
40	cggccgcggt	gatgaaacgt	gccttgtgcc	ccgccatcac	cgcacgctgg	cacagegeca	29580
40	gggcgatgtg	ggtettgeeg	acaccgctgg	ggccaagcat	caccacgttc	teggegeget	29640

	cgacgaaggt	caggtggccg	agctcgacga	tctgcgcctt	cgaggcgccg	ccggcctggg	29700
	cccagtcgaa	ctgctccagc	gtcttgatgg	acggcatcct	ggcaagtcgc	gtcagcaccg	29760
5	tgcgcttgcg	ctcttcacgc	gcgagctgtt	cgcttgccag	caccttctcc	aggaagtagc	29820
	tggcatcctc	gcacgcggcg	gcctgtgcga	gtgcttgcca	gtccgagctc	aggegtgeea	29880
10	gcttcaactg	ctcgcacagc	gcggcgatgc	gcgcacactg	caggtccatc	acgccacctc	29940
10	cagcagggtg	tcatacacgg	ccagcggatg	ctgcaggttt	tccactggca	gggccactgg	30000
	ctgtcgtaag	ggaagcggtg	ccttgagcgc	cggtgcggac	agtataacga	cacgttcctt	30060
15	ggccaagcgc	actgtcggca	cggccttgct	gatgccgccc	atgtagccgc	gcgcctggat	30120
	ctcgcgtagt	agcaccacgc	tggccgggat	ccatcgaggg	cgcgcttgcc	caatgcgctc	30180
20	atgcagataa	ctcttgtagc	cgtccagttt	gcaggcgtat	tgttaggcgt	caccgctcgc	30240
20	gcggcgatcc	ccaataaggc	gggtatgaga	cgcgcatggc	cgcccttccc	gcaggcgtgc	30300
	tgtcgctcta	ttgcttacct	catgcagaga	tegecaatgt	cgccgttaca	gcaaacgctg	30360
25	ctaacccgcc	tegecagtge	ggeegeetee	cggacaatga	tcgagtttcc	gcgtccggag	30420
	cacgcatcgc	cacaatgttg	cgacgatgcc	gagcttgcgc	gactgatcgt	gcagttgtcg	30480
30	gcgggactgc	aaccgctggc	gatgccgggt	acctacgtga	tcattgccgc	gccacatggt	30540
	ggtttgttcg	cggcagccct	gcttgcctgt	ttgcatgcca	acctggtggc	ggtgccgttt	30600
	ccactggatg	ttgctcagcc	aaatgagcgg	gaacaggcca	ggctggagac	gatccacgca	30660
35	caattgatgg	agcatggcaa	tgtagcggtt	ctgcttgacg	atgtcgccga	tcgcagtgcc	30720
	ttcgcgcgca	tggcgcatgc	tgcgggcacc	ttcctggcga	ccttcgccga	tctaaagcgc	30780
40	gaatcgacca	gegeeteett	gtgcccggcg	tcgccttcgg	acgccgcctt	gctgttgttt	30840
40	acctctggtt	cctcgggtga	gtccaagggc	atcctgctta	gccaccgcaa	cctgcatcat	30900

Application of Royer, et al

	cagatecagg	ctggcatccg	gcagtggagc	ttggacgagc	atagccatgt	ggtgacctgg	30960
	ctttctcccg	cgcacaactt	cggcctgcat	tteggettge	tggcaccctg	gttcagtggc	31020
5	gcgacggtca	gtttcatcca	teegeacagt	tatatgaaac	gacccggctt	ctggctggag	31080
	acggttgcgg	ctagagacgc	cacgcacatg	gccgcgccga	acttcgcgtt	cgactactgc	31140
	tgcgactggg	tgatggtcga	gcagcttccg	ccgtctgcgt	tgtctacgct	tacgcatatc	31200 ·
10	gtgtgtggcg	gcgagccggt	gcgcgcctcg	accatgcagc	gcttcttcga	gaaattcgcc	31260
	ggactcggtg	cgcgtacgca	gactttcatg	ccgcacttcg	gcttgtctga	aaccggtgcg	31320
15	ctgagtacct	tggacgaggc	gccccaacag	cgcgtcttgg	aactagatgc	cgacgccttg	31380
	aacaaacgca	agegegtgge	ggcaggggcg	agccaggcgc	gtgtgacagt	gctcaattgc	31440
	ggcgccgtcg	accaagatgt	ggagttgcgt	atcgtctgtc	: ctgaaggcga	gacgttgtgc	31500
20	agaccagatg	agatcggcga	aatatgggta	aagtcgcctg	g cgategeeeg	tggctacctg	31560
	tttgcgaago	: ccgccgatca	gcgacagttc	: aactgcagca	tccgtcatac	cgacgatage	31620
25	ggttactttc	gtaccggcga	cctgggtttc	attgccgate	g getgtetgta	a tgtcaccgga	31680
	agggtaaagg	g aggtgetgat	catacgcggt	: aagaatcati	acccgcaca	a tatcgaagcc	31740
	tegategeeg	g ctaccgcato	geetggegeg	g ctgatgccg	g tggtgttca	g catcgagcgg	31800
30	caggacgag	g agegegtage	tgcggtgate	gccgtcaat	c acccgtgga	c gccggcagca	31860
	tgcgccgcg	c aggcacacaa	a gatccggca	a caggtagec	g accagcatg	g agtegeeetg	31920
35	gcggagcta	g cetttgeega	a acaccggca	c gtgttcggc	a cctatccgg	g caaactgaag	31980
	cggcgccta	g tcaaggaag	c ctatgtcaa	c ggccagctg	c cgttgttat	g gcatgagggt	32040
	aagaaccgg	g acgtaccag	c ggccgccgc	g gacgatcgg	c aggcgcaac	a cgtggcggac	32100
40	ctgtgtcgg	a aggtetttt	t geeggtgtt	g ggtgtegeg	c cgccgcatg	c ccaatggccg	32160

	ctgtgcgaac	tggcgctgga	ttcgctccaa	tgegtgegte	ttgccggtgc	catcgaagag	32,220
•	tgctacggcg	tgcctttcga	acccacgttg	ctattcaagc	ttgagacggt	cggggcaatc	32280
5	gccgaatatg	teetggegea	cggacgtcag	gcgcccacgc	cgacgcgtgc	gccggtggca	32340
	agcacaacat	gctcagagga	accgatcgcc	attgtggcga	tgcactgtga	ggtgcccgga	32400
10	gcgggcgaga	acactgaagc	attgtggtcg	ttcctgcgga	gegaegteaa	cgcgatccgg	32460
	ccgatcgaat	caacgcgccc	ggacttatgg	gcagcgatgc	gcgcctatcc	cggcctcgcg	32520
	ggcgaacagc	tgccgcgcta	tgegggttte	ctcgacgacg	ttgatgettt	cgatgctgcg	32580
15	tttttcggta	tetegegteg	cgaggccgaa	tgcatggacc	egeageageg	caaagtgctg	32640
	gagatggtgt	ggaagctgat	cgagcaagcc	ggtcacgatc	egetgteetg	gggcggccag	32700
20	ccggtcggcc	tgttcgtggg	tgcgcatacg	tccgactatg	gcgagctgct	ggcgagccag	32760
20	ccgcaactga	tggcccaatg	tggcgcttac	atcgattcgg	gttcgcattt	gaccatgatt	32820
	ccgaaccggg	cttqgcgctg	gttcaatttc	accggcccca	gcgaagtaat	caacagcgct	32880
25	tgctccagct	cgctggtggc	gctgcatcgg	gcggttcaat	cgctgcgcca	aggegaaage	32940
	agtgtcgccc	tggtactcgg	cgtgaacctt	atcctggctc	ccaaggtgct	gttagccagt	33000
20	gcaagcgcgg	gcatgctttc	gcccgatggc	cgctgcaaga	cgcttgacgo	: cgccgccgat	33060
30	ggcttcgtgc	gttcggaagg	gategeaggg	gtgatattga	agccactggo	gcaggcgctg	33120
	gccgatggtg	acagggtcta	cggtctagtc	cgcggcgtgg	g cggtcaacca	tggcggccgt	33180
35	tccaattcct	tgcgtgctcc	: caacgtcaac	gegeagegge	aactgetgat	ccggacttac	33240
	caggaagccg	gtgtcgagco	ggccagcgtc	ggttatgttg	, aactacacgo	g cactggtacc	33300
40	agcctgggtg	atccgatcga	aatccaggcg	g ctgaaggaag	g ctttcattgo	gttgggggca	33360
40	caggccgccc	cgtcaaactg	g cggcatcggt	: tcggtgaagt	cegegetggg	g ccatctagaa	33420

	gccgctgcag	gcctgaccgg	cctgatcaag	gtgctgctga	tgctcaagca	cggcgagcag	33480
	gccggcacgc	gccatttcag	cacgctcaat	ccgctgatcg	atttgcgagg	tacgtcattc	33540
5	gaagtggtgg	cgcagcatcg	cgcatggccg	tegeaggteg	gcattcacgg	cacactcttg	33600
	ccgcgtcgcg	cgggtatcag	ctcattcggc	tteggeggeg	ccaatgcgca	tgcgatcgtg	33660
10	gaagagcatg	tcattgccac	gececeteg	acgageteeg	ctggcggccc	ggtaggtatc	33720
10	gtgttgtcag	ccggtagtga	agctgtcttg	cggcaacaag	tgctggcctt	gtcagcctgg	33780
	ctaaggcagc	aatcgccgac	acccgcgcaa	atgatcgatg	tegeetacae	cttacaggta	33840
15	ggacgcgcag	ccctgtcgca	caggttggct	tttagcgcga	cggacgccga	gcaggcattg	33900
	gcgaggcttg	agggtcgtct	ggcgggcgtg	atggatgccg	aggtccatca	cggtgtcgtg	33960
20	gatgctgccg	caacggctcc	cgaacatggg	cggcagacgc	gcgaaggtct	tgccggtttg	34020
20	ctgcgagcct	ggactcaggg	cgtgcgcgtc	gattggtcgg	cgctgtacgg	catacagcga	34080
	ccgcagcgcg	ttageetgee	tgtctacccc	ttcgctaggg	aacgctattg	gctgcccggc	34140
25	caggetatge	atgeegetge	ggacgctcat	ccgatgctgc	agctgttgca	tgccaatgcc	34200
	aaactacatc	gctacgcctt	gegtaggtee	ggctgcgcaa	getttettgt	tgatcattgc	34260
20	gtggatggtc	gacaggtact	accggcagcc	gtgcaactgg	aattggtgcg	cgccgtggcg	34320
30	cagegggtea	tggcgcagga	tgagggttgt	atcgaactgg	cgcaggtcgc	ctttttgcat	34380
	cccctcatga	tggaggagac	tgagctggag	gtcgaaatcg	aactgtcgaa	gagcgatcaa	34440
35	gatgagttcg	atttccaact	tcacgatget	. caccgccaac	aggtetttag	ccaggggcac	34500
	gtacgtcgcc	gggtctatac	ggcgacaccg	gettggatt	tagcccagct	gcaaaagctt	34560
40	tgtgccgago	gegtgttgte	eggcgaagad	tgttatgcgc	: acttcaccgo	ctgcggattg	34620
40	cagctcggcg	g accggctcaa	atccgtgcaa	ı tegategget	geggaegeaa	tggcgagggc	34680

	gagccgatcg cattgggtgt cctgcgcctg ccaccatcaa gcgttgaaga cagccatgtg 3474	40
	etgeetecta geetgettga tggtgeettg cagtgtagee ttggettgea gegtgatgte 348	00
5	gagcacateg ceatgecata caegetggag eggatgaegg tgeatgegee gatteeteee 348	60
	gaggeetggg tgetgetgeg teaeggeeat geageeagae agteeetgga categatete 349	20
10	ctggattecg aaggtagggt ctgcgtcage ctcggcaatt acaccggccg tgcaccgaaa 349	80
10	gccgtttccg ccgtcagggc gcttgtcttg gcaccggtct ggcaagcgtt gaccgaaacg 350	40
	gegeeggeat ggeeegatee ggeegaaege ategttaegg taggagaega tgeatggegt 351	.00
15	agtcacttcg gtttcgacga gccggccttg tccctggagg acagcgtcga agtcatcgcg 351	160
	acgegactgg gecagagegg caagttegat catetagtet ggategtgee gatageegag 352	220
	agtgaaaccg atattgcagc gcaaggttca gcggcgatcg ccggtttccg gttggtcaag 352	280
20	gegttgettg egttgggeta tgegeatege eegetgggte teacegtget gaetegeeaa 35:	340
	gecettaege ggcageegte geaegeggea gtgcaeggge tgategggae getggecaag 35	400
25	gaatactgca actggaaaat ccgtctgctc gacctgccga gcgtaaaatc ttggccgcaa 35	460
	tgggagcaat tgcggtcgtt gccttggcat gcgcagggcg aagccctgat cggccgtggg 35	520
	acttgttggt atcggcggca gttgtgtgaa gtgctgccgc tgccgtcgtt ggaaccgccg 35	580
30	ccgtaccgcg taggcggtgt ctacgtcgtg atcggcggcg ctggcggctt gggtgaagta 35	640
	ttgagcgaac acttgateeg caegtaegae gegeagetga tetggategg geggegegtg 35	700
35	ctggacgaag gcattgcgcg caagcagacc cggcttgcgt cgctgggccg cgcaccgcat 35	5760
	tacateteeg eggaegegag tgaeeegget geeetgeagg eggeaeataa tgagategtt 35	5820
	gegetgeatg gecagececa tgggeteate etaageaaca tegtgetgaa ggatgecagt 35	5880
40	ctggctcgta tggaggaagc cgatttccgt gacgtgctgg ccgcgaaact cgacgtcagc 3	5940

Application of Royer, et al

	gtgtgtgegg cacaggtgtt eggcaeggee eeeettgatt tegtgetgtt	tttttcttcc	36000
	atccagagca ctaccaaggc ggccgggcaa ggtaactacg ccgccggctg	ctgctatgtc	36060
5	gacgettteg gegagetatg ggegegeegg ggtttgaggg taaagaceat	caactggggc	36120
	tactggggca gcgtgggcgt cgtagcgggc gaggactatc gccggcgcat	ggcgcaaaaa	36180
10	cacatggctt cgattgaggg tgccgaagcg atgcaggtgt tgtcgcagtt	gttgtgtgcg	36240
10	cegttgcaae ggettgeeta egteaagate gaegatgeta aegeaatgeg	cgctctgggc	36300
	gtagtagagg acgagagcgt gcaaatccct gtgcacgcac cggccgagcc	tcccagaggg	36360
15	cagcctggtc ccgtggtcga gttgtcggtg aatctggatg cccggcgcga	acgggaaact	36420
	ttgctggcgg cctggctgct tgagttgatc gagcaactcg gtggttttcc	gccggcaagt	36480
••	ttcgacatcg ctacgettgc gcaacgeetg cacategtac eegeetateg	aagctggctg	36540
20	gaacacageg tgeggatget eggegtgtat ggttacetea gagegaeggg	ggaaagccga	36600
	ttcgagctgg ccgacaagcc gcccgatgat gccaggggtg cctggaacgc	gcatgtgcac	36660
25 .	gaggccagcg tcgaagccgg tgaagaggca cagcggcgtc tgctcgatcg	g ctgcatgcgg	36720
	gegttgeegg eggteetteg aggegaaege aaggeeaeeg aattgetgtt	teeggaaggt	36780
20	tegatggegt gggtegaggg tatetaceag aacaaceege ttgeegatta	a cttcaacgca	36840
30	caactagtea egegactgat tgeetaettg agaegaegae tagagtegae	geetaeggeg	36900
	egeetgaage tgtgegagat eggegeegge ageggtggta etaetgeaag	g cgtgctacaa	36960
35	cagttgcagg catatggtga gcatattgag gaatatctct ataccgacc	t gtegeetgte	37020
	tteetgeate atgeggaaaa acaetateag eeaegagege ettatttga	g gaccgcctgt	37080
40	ttcgacgtag cgcgcgcgcc gacggcgcag gccctggaat ctggcggct	a cgacgtggtg	37140
40	attgccgcca acgtactgca tgctacgcgc gatatcgcca agaccttgc	g caatgegaag	37200

	gcactcctca	aacctggcgg	tetgetettg	ctcaacgaag	tgatcgagcg	cagcctcgtc	37260
	ttgcacctga	cttteggtet	gctggagagc	tggtggttgc	cccaggacaa	gatettgege	37320
5	cttgccggct	cgccgttgct	ggcttgcgcc	acctggcgca	gcctgctgga	ggctgagggt	37380
	tttgegggge	tgagcgtgca	cagggcgcaa	cccgatgccg	ggcaggccat	catctgtgcc	37440
10	tacagcgatg	ggatagtgcg	gcaagccagt	acgatcgagg	ttgcgcggaa	tgaaaaagta	37500
10	accgttccgt	cgcagccggc	ggaagccggg	gaatcgccgc	tggatctggt	caaaaaactg	37560
	cttggacgca	ttctgaaaat	ggateeggee	acactcgata	ccagccaccc	gctggagtac	37620
15	tacggtgtcg	attcgatcgt	ggcgatcgaa	ctggctatgg	cactgcgcga	gacatteceg	37680
	ggttttgaag	tcagcgagct	gtttgaaacg	caatccatcg	ataccttgtt	gggctctctt	37740
20	gagcaggctc	ctctccttgc	taccctcaca	geteegeege	aacaagacat	gctgcagcag	37800
20	ctgaaacaac	: tgctggcgcg	tacgctgaag	ctggacatta	cgcagatcga	cacgagcaag	37860
	acgctggaga	gctatggtgt	. cgactccatc	gtcatcatcg	g aattageeaa	cgccttgcgt	37920
25	gagcgctato	: cgagcttgga	cgcgtcacag	g ctgatggaaa	ccttatcgat	: cgaccggctg	37980
	gttgcccaat	ggcaggcaad	ggagecegee	gtaccggcac	g agccaacago	ggaaccgccg	38040
20	gtagccgacg	g aagacgccg	tgccatcatc	ggactggcc	g geegettte	e aggegeggae	38100
30	acgttggagg	g agttetggaa	a caacctgcgc	c aacggccaa	a gcagtatgg	g agaggtgcca	38160
	ggcgagcgc	t gggatcacc	a gcactactto	e gacagtgaa	c gccaggcac	c gggcaagacg	38220
35	tatageege	t ggggtgcgt	t tctgagggad	c atagacggc	t tcgatgcag	c cttctttgaa	38280
	tggcccgac	a gegtegege	t ggaatcgga	t ccgcaagcg	c ggatatttc	t agagcaggcc	38340
40	tatgccggg	a tcgaagatg	c cggctacac	g cctggctcg	c tcagcaaga	g ccaacgcgta	38400
40	ggtgtattc	g taggtgtga	t gaatggtta	c tacagegge	g gagcgcgct	t ctggcaaatc	38460

	gccaaccgcg	tgtcgtacca	gttcgatttt	cgcgggccaa	gcctggcggt	ggataccgcc	38520
	tgttcggctt	cgctcaccgc	gatccacctg	gcgctggaaa [.]	gectgcgcag	cggcagttgc	38580
5	gaggtcgcac	tggccggtgg	cgtgaatctg	ctggtcgatc	cgcagcaata	tcttaatttg	38640
	getggegeeg	cgatgctctc	cgccggcgcc	agctgtcggc	cgttcggcga	ggccgcggac	38700
	ggtttcgtgg	ccggcgaagc	ctgcggcgtg	gtgctgctca	ageegeteaa	gcaagcgagg	38760
10	gccgatggcg	atgtgatcca	tgccgtaatc	aggggcagca	tgatcaatgc	cggtgggcac	38820
	accagcgcgt	teteetegee	taaccctgcc	gcccaggccg	aagtegtgeg	gcaggccttg	38880
15	cagcgcgcgg	gcgtggcgcc	cgattcgatc	agctacateg	aggcgcatgg	caccggcacc	38940
	gtactaggcg	atgcagtgga	gttgggtgct	ttgaataaag	tgttcgacaa	gcgcgcggcg	39000
00	ccatgcccga	teggeteget	gaaggcgaac	atcggccatg	ccgaaagcgc	egegggeate	39060
20	geeggeetgg	ccaagctggt	attgcagttc	aggcatggcg	agttggtgco	: tagtctgaat	39120
	gcgtttccct	tgaatcccta	tattgagttc	ggtcgcttcc	aggtacaaca	gcagccggca	39180
25	ccgtggccgc	geegtggege	: ccagccgcgg	ı cgcgccgggt	tatctgcctt	: cggtgctggc	39240
	ggatcgaatg	g cgcacctagt	. ggtagaggaa	geteeggeta	a tggctcccg	g ggtctcgatc	39300
	agegeeaget	t ctccagcctt	gategtgett	teggegega:	a cgctgcctg	c cttgcaacag	39360
30	cgtgctcgc	g atctgctcg!	ctggatgca	a gegeggeag	g tggatgacg	t catgotggcc	39420
	gacgttgct	t atacgctgca	a cttgggccg	gtcgcgatg	g agcaacgcc	t ggcttttacc	39480
35	gctggctcg	g ctgccgagt	t gagcgagaa	a ttacaggct	t acctgggcc	a tgcgattcgg	39540
	gccgacatc	t atctgagcg	a ggacacgcc	c ggcaaaccg	g caggcgctc	c gategtggee	39600
	gaggaagat	c tgctcacgc	t gatggatge	c tggatcgaa	a agggccagt	a cggtcgtttg	39660
40	ctggagtac	t ggaccaagg	g ccaaccgat	c gactggaac	a aactctatt	g gcgcaagctg	39720

	tatgcggacg	gacggccgcg	gcggatcagc	ctgcccacct	atccgttcga	gcaccggcgt	39780
	tattggcaaa	cgccggtgcc	gggcgagcga	agcctgcacg	ccaccgcgcc	agctactcgg	39840
5	gaaacggttg	cggttggtgc	catgccggat	ccggccggcg	ctacggtgca	agcccggttg	39900
	tgcgccttgt	gccaagtgtt	gttgggcaaa	ccggtcacgg	cccagatgga	tttctttgcc	39960
	gteggeggee	attcggtgct	ggcgatccaa	ttggtctcgc	gcatccgcaa	aagcttcggg	40020
10	gtggagtatc	cggtcagcgc	tttgttcgaa	teggegetgt	tgtcggacat	ggcgcggcag	40080
	atcgaacaat	tgcgggtgaa	cggagtcgcc	aagcgcatgc	cggcgttgtt	gcctgccggg	40140
15	cgcgtgggcg	cgattcctgc	gacttatgca	caggagcgcc	tatggctcgt	ccacgaacat	40200
	atgagtgagc	aacgcagtag	ttacaacatc	acctttgcca	tgcacttcag	aggegtegae	40260
20	ttccgtgctg	aagcgatgcg	tgccgcattg	aacgcgctgg	tggtgeggea	cgaagtgctg	40320
20	cgcacacgct	` ttctttcgga	ggacgggcag	ctgcaacagg	tgatcgctgc	ctcgttgacg	40380
	ttggaggtgc	cggtaagaga	gatgtcggtc	gaggaggtcg	acctgctgct	ggccgcgagc	40440
25	acgcgggaga	ctttcgatct	gcggcagggg	cccttgttca	aggcacgcat	cctgcgcgtg	40500
	geggeegate	accatgtggt	gttgagcagc	atccaccaca	tcatttccga	cggctggtcg	40560
20	ctgggagtgt	tcaaccgtga	cctgcaccag	ctgtacgagg	cgtgtttgcg	gggacgccc	40620
30	cccacactgc	cgacgctggc	ggtgcagtat	gccgactacg	cgctgtggca	acggcaatgg	40680
	gagetggegg	ctccgctgtc	gtactggacg	cgggcactgg	aaggctacga	cgacggcctg	40740
35	gacttgccct	acgaccggcc	: gcgcggcgcc	acgcgggcgt	ggcgggcagg	gctggtcaaa	40800
	caccgctatc	: cgccgcaact	ggcccagcag	ttggcggcct	acagccaaca	a gtaccaagcg	40860
40	acgctgttca	tgagcctgct	ggcaggcctg	gegttggtge	: tgggccgtta	a cgccgatcgc	40920
40	aaggacgtgt	gcatcggcgc	gacggtctcc	ggccgcgacc	: agctggagct	ggaagagetg	40980

Application of Royer, et al.

99

	atcggctttt	tcatcaatat	tttgccgctg	cgggtggacc	tgtcggggga	tccgtgcctg	41040
	gaggaggtgc	tgctgcgcac	gcgtcaagtg	gtactggatg	gcttcgcgca	ccagtcggtg	41100
5	ccgttcgagc	acgtgttgca	ggcgctgcgg	cgtcagcgcg	acagtagcca	gatecegetg	41160
	gtgccggtga	tgctgcgaca	ccagaacttc	ccgacgcagg	agattggcga	ttggcccgag	41220
10	ggagtgcggc	tgacgcagat	ggagctgggg	ctggaccgta	gcacgccgag	cgagetggat	41280
10	tggcagttct	acggcgacgg	cagetegetg	gagctgacgc	tggaatacgc	gcaggacctc	41340
	ttcgacgaag	cgacggtgcg	gcggatgatc	gcacaccacc	agcaggcgtt	ggaggcgatg	41400
15	gtgagccggc	cacagetgeg	ggtgggcaag	tgggacatgc	tgacggccga	agagcgccgg	41460
	ctgtttgccg	cgctaaatgc	gacaggtacg	ccacgggagt	ggcccagtct	ggcgcagcag	41520
	ttcgaacggc	aggcgcaggc	gacgccgcag	gccatcgcgt	gcgtgagcga	tgggcagtcg	41580
20	tggagctatg	cgcagttgga	ggegegegee	aaccagctgg	cacaggcgct	gcgggggcag	41640
	ggegegggee	gggacgtgcg	ggtggcggta	cagagtgcgc	gcacgccgga	actgctgatg	41700
25	gccttgctgg	g cgatetttaa	ggccggtgcg	tgctatgtgc	cgatcgatco	ggcctacccg	41760
	geggeetace	gcgagcagat	cctggccgag	gtgcaggtgt	cgatcgtgct	ggagcaagac	41820
•	gagetggege	: tggacgagca	agggcagttc	: cacaatccgc	: gttggcgcga	gcaagccccg	41880
30	acgccgctgg	g ggctgaggga	gcateeggge	: gacctggcgt	gegtgatggt	gaceteegge	41940
	tegacegge	ggcccaaggg	cgtgatggtg	g cegtatgege	: agctgtacaa	a ctggctgcat	42000
35	gcaggctggc	e agegttetee	gttegagged	ggggagcggg	g tgctgcaga:	a gacctcgatc	42060
	gcctttgcgg	g tgtcggtaaa	ı ggagttgeta	a agegggetge	tggcggggg	t ggaacaggtg	42120
	atgctgccg	g acgagcaggt	gaaggacago	c ctggcgttgg	g cgcgggcga	t tgagcaatgg	42180
40	caggtgacg	c ggctgtacct	agtgccatcg	g cacctgcag	g cgctgctgg	a cgcgacgcaa	42240

	ggacgagacg	ggctactgca	ctcgctgcgt	cacgtggtga	cggcggggga	agcgttgccg	42300
	tetgeggtge	gcgaaacggt	gcgggcgcgt	ctgccacagg	tgcagctatg	gaacaactac	42360
5	ggctgcacgg	aactgaacga	cgcgacctac	caccggtcgg	atacggtggc	gccaggaacg	42420
	tttgtgccga	teggegeace	gatcgccaac	accgaggtat	acgtgctgga	ceggcagetg	42480
	cggcaggtgc	cgatcggggt	gatgggcgag	ctgcacgtac	acagcgtggg	gatggcgcgc	42540
10	ggctactgga	accggccggg	gctgacggcc	tcgcgcttca	tegegeacee	gtatagcgag	42600
	gagccgggca	cacggetgta	caagaccggt	gacatggtac	gccggctggc	ġgacgggacg	42660
15	ctggaatacc	tgggccgaca	ggacttcgag	gtcaaggtgc	gcggccaccg	ggtggatacg	42720
	cggcaggtgg	aggeggeett	gegggegeag	cccgcggtgg	ccgaggcggt	ggtgagcggt	42780
	caccgggtgg	acggggacat	gcagttggtg	gcctatgtgg	tggcgcgtga	agggcaggca	42840
20	ccgagcgcgg	gcgagttgaa	acaacagetg	teggegeagt	tgccgaccta	catgctgccg	42900
	accgtgtacc	agtggctgga	gcagttgccg	cggctgtcca	acggcaagtt	ggaccggttg	42960
25	gccctgccgg	caccgcaggc	ggtacacgcg	caggagtacg	tegegecaeg	caaccaggcc	43020
	gagcaacggc	tggcggcact	gtttgccgag	gtgctgcggg	tggagcaggt	. aggcatccac	43080
	gacaacttct	tegeettggg	tgggcactcg	ctgtctgcat	cgcaactgat	ctcgcgtatt	43140
30	gccagggata	tggcgatcga	tetgeceetg	gccatgctgt	tegagetge	cacggtagcg	43200
	cagcttagcg	aatccctcgc	: cagccatgca	cgegacageg	attacgatgt	cateceegea	43260
35	agcaccgagg	ı aggegaceat	. teegetttee	actgcgcagg	agegeatgte	g gttcctgcac	43320
	aagttcgtgc	: aggagacgcc	: gtacaacacc	: ccgggtctcg	g ccttattgca	a aggegaaetg	43380
	gacatttcgg	g ccttgcaggt	agcatttege	tgtgtgctag	g aacggcacge	c c gtgctgcgt	43440
40	acccatttcc	g tggaaaccga	a gcagcaatgo	: gtacaggtca	a ttggcgcag	c agagcagttc	43500

101 Application of Royer, et al.

gtgctgcagc ttaggtcgat tcgcgacgag gctgatctgc atggcctatt gcacacagcc 43560 gtcagcgaac cettcgattt agaacgcgag ctgccattgc gcgccctgct gtatcgcctg 43620 5 gacgacegge ggcattacet agcagtggtc atccatcaca tegtettega eggetggteg 43680 acctcaatcc tgtttcgtga gctggccacg cactatgctg catgccgcca tggccaatcc 43740 gegeetttge caeegetgga gettagetat geegattaeg caegetggga gegtgegagg 10 ctgaaccagg aagacgcgct gcgcaagctc gaatattgga aaacgcagct tgccgatgca 43860 ccgccgctgg tgttgcccac gacctatgcg cggccggttt tccagaactt caatggcgcg actgtggcgc ttcagatcga gccgccgctg ctgcaacgcc tgcagcgttt cgccgacgca 43980 15 cacagettta cattgtacat getacttetg geageactgg gegtegtatt gtegegeeat 44040 gcccggcaga agcatttctg cattggcagt ccggtcgcca atcgcgcccg agccgagttg 20 cacggtttga tcggtttgtt cgtcaacacc ctggcggtac ggctcgattt ggacggcaat cccagegtge gegagetget egaaegeate caetgeaeea egetggeege etaegageae caggatgtgc cgttcgaaag aatcgtggaa agcctgaagg taccgcgcga taccgcgcgt 44280 25 aacccgctgg ggcaggtgat gctcaatttc cagaacatgc caatgtcggc gttcgacctg 44340 gatggtgtcc aggtgcaggt gctccccatg cacaacggca cggccaagtg cgagctgacc 30 ttcgacctgc tgctggatgg ctcacgccta tccggtttcg tcgaatacgc cactgggctg tttgcgccgg aatgggtcca ggcgctggta cagcaattca agtgtgtgct ggcggcattg gtggaacggc cggaggcatc gctgaatgat ttgcccatgg cgcccaacga ggcgcaaccg 35 gcgtcgccgg cattgatgaa gcatgtcgcg ccgagcttgc ccaacttact tgaggctatg 44640 gcggccaatg atgccgcacg cctcgccttg caagcgccgg aaggtgcgct cagttacgct 44700 40 cagctaatcg aggcagcaaa cgagttcgcc tggcgtttgc ggtgcgagca cgccggtccg 44760

		gacaaagtcg	ttgccctgtg	cctagcgcct	tgctccgcct	tggtggttgc	tttgctggcc	44820
		gcttcattat	geggtgegge	gagcgtgctg	atcgatccga	cgacgactgc	cgaggcgcaa	44880
	5	tacgaccagt	tgttcgaaac	gcgggccggc	atcgtggtga	cctgttctag	cttgctggag	44940
		aagttgccgc	tcgacgacca	ggctgtagtg	ctgatcgacg	agcaagctgc	agaagcgacg	45000
10	10	ccgcgtttga	tgcatttcac	cgacgatcca	gctttgcccg	caatgctgta	ttgtgtgtgt	45060
	10	gacgaaaagg	ggcgaacccg	cacgatcatg	gtcgaaagcg	gcagtttgtc	gagtcgcctg	45120
		ctcgatagcg	tgcagcgttt	cagtetegaa	cgcaccgatc	gcttcctgct	gcgcagcccg	45180
	15	ctttctgccg	aactggcgaa	taccgaagta	ctgcaatggt	tggcggcagg	cggcagcctc	45240
		agcatcgcac	ccatgcatgg	cgatttcgat	gccgctgcct	ggctggagac	cctcgcgacg	45300
20	20	tacgcgatca	ccgtggccta	cctggctcaa	gttgaattga	ccgagatgct	ggcgcatctg	45360
	10	caaaaccatc	ctcttgagcg	caacaagctg	geeggettae	gegtgetggt	ggtgcatggc	45420
		gcgcccttgc	cgatcgcgcc	actgatgcgc	ctagacgcgt	ggttgcgaga	ggtgggcggt	45480
•	25	tccgcacgga	tettegeege	ctacgggaat	gccgagttcg	gtgccgaaat	attgagccag	45540
		gatgtcagcg	ctgcattgca	agcgggtatt	ggcgctcaat	acaagcatcg	ccgtggtctg	45600
	30	ttcccgttgg	gtgccaactc	gatgtgtcac	gtggtgcaga	gcaacggccg	categegece	45660
	50	gacggcatgg	ttggtgaatt	gtggatcaca	cagccagcct	gcttgtacaa	aaccgatgca	45720
		ttggtgcgtc	gcctggcaaa	tgggcaactg	gaatggttgg	gctccctcga	tgtccagtcg	45780
	35	cgtatcgatg	atccccgcat	cgatctgtgc	gtcgtggagg	cacaactgcg	cttgtgcgaa	45840
	•	gacgtcggcg	aagcggtagt	gctgtatgag	ccgttgaagc	getgettggt	agectatete	45900
	40	tcggcccgta	gcacagetge	aatcatgacc	gacgagacgc	tggccaggat	ccgccaggcc	45960
	,0	ctgagcgaaa	ccttgccgga	ttatctactg	cctgcaatct	gggtgccgct	cgcgcactgg	46020

Application of Royer, et al

ccacgcttac	cccatgggcg	ggtcgacctc	ggcgccttgc	ctgcaccgga	tttcgatctt	46080
gegeggeatg	agtcgtacat	agegeeaege	acageegteg	aacaggccgt	ggccgaaata	46140
tggcaacgcg	tgttgaagcg	tacccaggtc	ggcgtgcatg	acaatttctt	cgagctgggc	46200
ggccattcgg	tgctggcgat	ccagctggtg	teeggettge	gcaaggcttt	ggccatcgaa	46260
gtgccggtca	ccctggtgtt	cgaggcgccg	atactggggg	cgctggcgcg	gcagatcgcc	46320
cccttgttgg	tcagcgaacg	gegteegege	ccgcctggcc	tgacgcgcct	ggagcataca	46380
gggccgattc	cggcttcgta	tgcacaggag	cggttatggc	tggtgcacga	gcatatggag	46440
gagcagcgaa	ccagctacaa	catcagtaac	gcagcgcatt	tcatcggagc	agcettcage	46500
gtcgaagcga	tgcgtgccgc	attgaacgcg	ctggtggcgc	ggcacgaagt	gctgcgcaca	46560
cgctttcttt	cggaggacgg	gcagctgcaa	caggtgatcg	ctgcctcgtt	gacgctggag	46620
gtgccggtac	gcgaggtgtc	ggccgaggag	gtcgacctgc	tgctggccgc	gagcacgcgg	46680
gagactțtcg	atctgcggca	ggggcccttg	ttcaaggcac	gcatcctgcg	cgtggcggcc	46740
gatcaccatg	tggtgttgag	cagcatccac	cacatcattt	ccgacggctg	gtcgctggga	46800
gtgttcaacc	gtgacctgca	ccagctgtac	gaggcgtgtt	tgegeggeae	gcccccaca	46860
ctgccgacgc	tggcggtgca	gtatgccgac	tacgcgctgt	ggcaacggca	atgggagetg	46920
gcggctccgc	tgtcgtactg	gacgcgggca	ctggaaggct	acgacgacgg	cctggacttg	46980
ccctacgacc	ggccgcgcgg	cgccacgcgg	gcgtggcggg	cagggctggt	caaacaccgc	47040
tatccgccgc	aactggccca	gcagttggcg	gcctacagcc	aacagtacca	agcgacgctg	47100
ttcatgagcc	tgctggcagg	cctggcgttg	gtgctgggc	gttacgccga	tcgcaaggac	47160
gtgtgcatcg	gegegaeggt	ctccggccgc	gaccagctgg	agctggaaga	gctgatcggc	47220
tttttcatca	atattttgcc	: gctgcgggtg	gacctgtcgg	gggatccgtg	cctggaggag	47280

	gtgctgctgc	gcacgcgtca	agtggtactg	gatggcttcg	cgcaccagtc	ggtgccgttc	47340
	gagcacgtgt	tgcaggcgct	geggegteag	cgcgacagta	gccagatccc	gctggtgccg	47400
5	gtgatgctgc	gacaccagaa	cttcccgacg	caggagattg	gcgattggcc	cgagggagtg	47460
	cggctgacgc	agatggagct	ggggctggac	cgtagcacgc	cgagcgagct	ggattggcag	47520
10	ttctacggcg	acggcagctc	gctggagctg	acgctggaat	acgcgcagga	cctcttcgac	47580
10	gaagcgacgg	tgcggcggat	gatcgcacac	caccagcagg	cgttggaggc	gatggtgagc	47640
	cggccacagc	tgcgggtggg	caagtgggac	atgctgacgg	ccgaagagcg	ccggctgttt	47700
15	gccgcgctaa	atgcgacagg	tacgccacgg	gagtggccca	gtctggcgca	gcagttcgaa	47760
	cggcaggcgc	aggcgacgcc	gcaggccata	gcatgcgtga	gcgatgggca	gtcgtggagc	47820
20	tatgcgcagt	tggaggcgcg	cgccaaccag	ctggcacagg	cgctgcgtgg	gcagggcgcg	47880
20	ggccgggacg	tgcgggtggc	ggtacagagt	gcgcgcacgc	cggaactgct	gatggccttg	47940
	ctggcgatct	tcaaggccgg	tgcatgctat	gtgccgatcg	atccggccta	cccggcggcc	48000
25	taccgcgagc	aaatcctggc	cgaggtgcag	gtgtcgatcg	tgctggagca	aggegagetg	48060
	gcgctggacg	agcaagggca	gttccgcaat	cggcgttggc	gcgagcaagc	cccgacgccg	48120
30	ctggggctga	ggggacatcc	gggcgacctg	gcgtgcgtga	tggtgacctc	eggetegace	48180
30	ggccggccca	agggcgtgat	ggtgccgtat	gcgcagctgc	acaactggct	gcatgcaggc	48240
	tggcagcgtt	ctgcgttcga	ggccggggag	cgggtgctgc	agaagacctc	gategeettt	48300
35	gcggtgtcgg	taaaggagtt	gctaagcggg	ctgctggcgg	gggtggggca	ggtgatgctg	48360
	ccggacgagc	aggtgaagga	cagcctggcg	ttggcgcggg	cgatcgagca	atggcaggtg	48420
40	acgcggctgt	acctagtgcc	gtcgcacctg	caggcgctgc	tggacgcgac	gcaaggacgc	48480
40	gacgggctac	tgcactcgct	gcgtcacgtg	gtgacggcgg	gggaagcgtt	geegteggeg	48540

	gtgggcgaag	cggtgcgggt	gcgcctgcca	caggtgcagc	tatggaacaa	ctatggctgc	48600
	acggaactga	acgacgcgac	ctaccatcgg	teggataegg	tggcgccagg	aacgtttgtg	48660
5	ccgatcggcg	caccgatcgc	caacaccgag	gtatacgtgc	tggaccggca	gctgcggcag	48720
	gtgccgatcg	gggtgatggg	cgagctgcac	gtacacagcg	tggggatggc	gegeggetae	48780
	tggaaccggc	cggggctgac	ggcctcgcgc	ttcatcgcgc	acccgtatag	cgaggagccg	48840
10	ggcacacggc	tgtacaagac	cggtgatatg	gtacgccggc	tggcggacgg	gacgctggaa	48900
•	tacctgggcc	gacaggactt	cgaggtcaag	gtgegeggee	accgggtgga	tacgcggcag	48960
15	gtggaggcgg	ccttgcgggc	geageeegeg	gtggccgagg	cggtggtgag	cggtcaccgg	49020
	gtggacgggg	acatgcagtt	ggtggcctat	gtggtggcgc	gtgäagggca	ggcaccgagc	49080
20	gegggegagt	tgaaacaaca	getgteggeg	cagttgccga	cctacatgct	gccgaccgtg	49140
20 .	taccagtggc	tggagcagtt	gccgcggctg	tccaacggca	agttggacçg	gttggcgctg	49200
	ceggegeege	aggtggtaca	cgcgcaggag	tacgtcgcgc	cacgcaacga	ggccgagcaa	49260
25	cggctggcgg	cactgtttgc	cgaggtgctg	cgggtggagc	aggtgggcat	ccacgacaac	49320
	ttettegeet	tgggtgggca	ctcgctgtct	gcatcgcaac	tgatctcgcg	cateegeeaa	49380
	agttttcacg	tegatetgee	gctgagccgg	atcttcgagg	cacccacgat	cgagggcctg	49440
30	gtcaggcagc	tagegttgee	tagtgaaggc	ggcgtggcca	gcatcgccag	ggtagcgcga	49500
	aaccggacga	tcccattgtc	gctgttccag	gaacgcctgt	ggttcgtgca	ccaacacatg	49560
35	cctgagcaac	gcaccagtta	caacggcacg	ctcgccttgc	gtttgcgtgg	tcctttgtcg	49620
	gtggaagcga	tgcgtgcagc	gctgcgtgcg	ttagtgctgc	gccacgaaat	cttgcgtacc	49680
40	cgcttcgtgt	tgccgaccgg	tgetagegag	ccggtgcagg	tcattgacga	gcacagcgat	49740
40	ttccagctct	cagtacagct	agtcgaggat	actgagatcg	cgtcgctgat	ggatgaactg	49800

	gcaagtcata	tctacgactt	agccaacggc	cegetgttca	ttgcatgcct	tttgcaactg	49860
	gatgagcaag	aacatgtgct	gctaatcggc	atgcatcacc	ttatctacga	cgcttggtcg	49920
5	caattcaccg	tgatgaaccg	cgatctacgc	gtgctgtatc	accgccacct	cggaettgee	49980
	ggcggagatc	tgccggaatt	accgatccaa	tatgccgact	atgcgatctg	gcaacgcgcc	50040
10	cagaacctgg	acgcgcaact	ggcctattgg	caggctatgt	tgcacgacta	cgacgacggc	50100
10 .	ctggagctgc	cctacgacta	teegegteeg	cgcaatcgca	cctggcacgc	ageggtetae	50160
	acacacacct	atccggctga	actggtacag	cgctttgccg	gcttcgtaca	ggcgcatcag	50220
15	tcgaccttgt	tcatcgggct	gttggccagc	ttegeggteg	tgttgaacaa	atacaccggc	50280
	cgggacgact	tgtgcatcgg	taccaccacg	gcagggcgca	cgcacctgga	gctggagaac	50340
	ctgatcggtt	tcttcatcaa	catcttgcct	ttgcgcttgc	gcttggacgg	cgatccggac	50400
20	gttgccgaaa	tcatgcggcg	aacacggttg	gtggcgatga	gcgcgtttga	gaaccaggcg	50460
	ctaccgttcg	agcacctgct	caacgccctg	cacaagcaac	gtgacaccag	ceggatteeg	50520
25	ctagttccgg	tggtgatgcg	tcatcagaac	: ttcccggaca	cgateggega	ctggagcgat	50580
	ggcatccgta	ı ccgaagtgat	ccagcgcgat	ctgegtgeea	ccccaatga	aatggacctg	50640
	caattcttco	gcgacggtac	ggggettteg	gtcacagtgg	g aatacgcggc	ggagetgtte	50700
30	tcagaagcga	a ccattegeeg	cctgatccac	catcaccaac	tegteetgga	a gcagatgttg	50760
	gcggcccatg	g aaagcgccac	gtgccccttg	g gatgttgccg	g actagcaaa	a geeggeegee	50820
35	gtcacccgtt	catcgatago	gagggcaate	e atggattcag	g cgttaccta	c atctgcattt	50880
•	accttcgate	c tettttaeac	ca c ggttaa	e geetaetate	geactgeeg	c agtcaaggcg	50940
	gcgatcgaa	c tggggctatt	. cgatgtggt	g gggcagcag	g geegaaete	c cgcagccatc	51000
40	geegaggee	t gecaggegte	geegegegg	c attcgcatc	c tttgctatt	a cctagtatcg	51060

	atcggttttc	tacgccgcaa	cggtggcctg	ttctacatag	atcgcaacat	ggccatgtac	51120
	ctggatcgta	gttcgcccgg	ctacctgggt	ggcagcatca	agttcctgct	ctcgccctac	51180
5	atcatgagcg	ccttcaccga	tctgaccgcc	gtagtcagga	ccggcaagat	caacctggcg	51240
	caggacggcg	tggtggcacc	ggatcacccg	cagtgggtgg	aatttgcacg	cgcgatggca	51300
10	ccgatgatgg	cgctgccctc	ggcgttgatc	gccaatatgg	tgtcgttgcc	cgctgatcgg	51360
10	ccgattcgtg	tgctggacgt	ggcagccggc	cacggcctgt	teggeatege	cttcgcgcag	51420
•	cgcttccgcc	aggetgaagt	gagcttcctg	gactgggaca	acgtgctaga	cgtagcacgc	51480
15	gaaaacgccc	aggcggccaa	agtggccgag	cgagcgcgtt	teetgeeegg	caacgcattc	51540
	gacctcgatt	acggcagcgg	ctacgacgtg	atcttgttga	ccaacttcct	gcaccatttc	51600
20	gatgaggtcg	atggcgagcg	catcttggct	aagacgcgcg	atgcgctgaa	cgacgacggc	51660
20	atggtgatca	ctttcgaatt	categeegae	gaagagcgtt	cctcaccgcc	gctggccgcc	51720
	accttcagca	tgatgatgct	gggcaccacc	ccggcgggcg	agtcctacac	ctatagcgat	51780
25	ctggaaagga	tgtttcggca	tgccggcttc	ggccacgtgg	aactaaaatc	gatacegeeg	51840
	gccttgctga	aagtggtggt	ttcccgcaag	agggccccat	aatgatcgaa	teggegacat	51900
20	ccctgtggc	gaaaaccgag	cgcatctggt	gcaccgagct	ggacctggat	gcactcaacg	51960
30	ccatgtcggc	caacacgatg	caggccctgc	tcggtatacg	catgatcgag	ateggetegg	52020
	actatctggt	ctcctgcatg	tcggtggact	ggcgttgcca	ccagccctat	ggggtattgc	52080
· 35	atggcggcgc	atcggtcacc	ctggccgagg	ctaccggcag	catggcggcc	tccatgtgcg	52140
•	tgccggccgg	ccaacgttgc	gttggcctag	acatcaatgo	caaccacatc	gcgagcatct	52200
	ccagtggcca	agtacagtgc	ategegegge	cgctgcacat	aggggccttg	acccaggtat	52260
40	ggcagatgcg	catctatgac	gaaggtgacc	gcacgatctg	cgtgtcgcgc	ctgaccatgg	52320

	cggtattatc	ggtgcacgtc	gcgcgcgtat	ccccgaatcc	agccagcagc	ggagtccaga	52380
	cgtgaacgaa	actgcaactg	taaccaaggc	tacceteagt	tcagcgaagg	cgagtataac	52440
. 5	gccagcctgc	gttcaccaat	ggtttgaage	gcaggtgagt	tcgacaccgg	atgegeetge	52500
	tgccttctta	ggegagegte	gaatgagtta	tggccagctc	aacacccgcg	ccaatcggct	52560 ·
10	tgcacggctg	ttgcagtcac	agggcgttgg	gcctggtgcc	egggtegegg	tgtggatgaa	52620
10	tcgcagcccc	gaatgcctgg	ccgctttgct	ggcggtcatg	aaggccgggg	cagettatgt	52680
	accgatcgac	ctgagcctgc	cgatccgacg	tgtccaatac	atcttgcagg	acagecagge	52740
15	ccggctcgta	ctggtcgatg	acgaagggca	aggccgcctg	gacgaacttg	agetgggege	52800
	gatgactgcc	gtcgatgtct	geggeaetet	ggacggcgac	gaggcgaatc	tggacctgcc	52860
20	ttgcgatccg	gegeageegg	tttattgcat	ctatacetce	ggctccacag	gtagccccaa	52920
20	gggcgtgctg	gtacggcaca	gegggttgge	taactacgtg	gcctgggcta	agcggcaata	52980
,	cgttacggct	gacacgacga	gtttcgcctt	ttactcctcg	etgtegtteg	atctgaccgt	53040
25	cacctcgatc	tacgtgcccc	tggtggctgg	cctgtgtgtg	catgtgtacc	cggagcaggg	53100
	cgacgacgtg	. ccggtaatca	accgcgtgct	ggacgacaac	caagtagacg	tgatcaagct	53160
30	gacaccctcg	cacatgctga	tgctgcgcaa	cgcggcactg	gegaegtete	ggctgaagac	53220
30	gctgatcgtg	ggtggcgagg	acctgaaagc	ggeggtggeg	tacgacatcc	atcagcggtt	53280
	ccgccgcgat	gtggcgatct	acaacgaata	cggtcctacc	gaaaccgtag	tggggtgcgc	53340
35	gatccatcgt	tacgatccgg	cgaccgaacg	cgaaggctcg	gtgccgattg	gtgtgccgat	53400
	cgatcacacc	agcetecace	tgctcgatga	acgtctgcag	ccggtcgcac	cgggcgaggt	53460
40	cggccagato	: cacatcggtg	gegegggegt	ggccatcggc	tatgtgaaca	agccggagat	53520
1 0	caccgatgcg	, caattcattg	acaatccctt	. cgaaggcagc	ggccggcttt	acgccagtgg	53580

	cgacctagga	cgcatgcgtg	ccgacggtaa	gcttgaattc	cttggccgca	aggattcgca	53640
	gatcaagctg	cgcggctacc	gcatcgaact	gggcgagata	gagaacgttc	tgcttggcca	53700
5	cgcagccttg	cgcgaatgca	tegtggatac	caccgtggcg	cegegeegeg	actatgacag	53760
	caagagcttg	cgctattgcg	cgcgttgcgg	tatcgcttca	aatttcccca	ataccagett	53820
10	cgacgagcac	ggtgtctgca	accattgcca	cgcctacgac	aaataccgga	acgtggtcga	53880
10	ggattatttc	cggaccgaag	atgagctacg	tactatcttc	gagcaggtca	aggcgcacaa	53940
	caggctccgc	tacgactgcc	tggtggcttt	cagcggcggc	aaggacagca	cctatgcgct	54000
15	atgeegegta	gtggacatgg	gcctgcgcgt	gttggcgtac	accctggaca	atggctacat	54060
	ctccgacgag	gccaaggcaa	acgtcgaccg	cgtcgtgcgc	gagctggggg	tggaccatcg	54120
20	ctatctgggt	actccacaca	tgaacgccat	cttcgtggac	agcctgcatc	gccacagcaa	54180
	cgtctgcaac	ggctgcttca	agaccatcta	tacgctgggt	atcaacctgg	cgcacgaagt	54240
	gggcgtaagc	gacattgtaa	tgggcctgtc	caaaggacag	ctgttcgaga	cgcgcctgtc	54300
25	tgagctgttt	cgcgccagca	ccttcgacaa	ccaggtattt	gagaagaacc	tgatggaggc	54360
	gcgcaagatc	taccatcgca	tcgacgacgc	ggcggcccgc	ctgctggaca	cctcttgcgt	54420
20	gcgcaacgat	cgcttgctcg	aaagtacgcg	tttcatcgac	ttctaccgct	actgcagtgt	54480
30	cagccgcaag	gacatgtatc	gctatatcgc	cgagcgcgta	ggctggagcc	gtccggctga	, 54540
	caccggccgc	tcgactaact	gcctgctcaa	cgatgtgggc	atctacatgc	acaagaagca	54600
35	acgtggctat	cacaactatt	cgttgcccta	cagttgggac	gtgcgggtag	gccatatccc	54660
	aagggaagac	gegatgegeg	agctggagga	caccgacgat	atagacgagg	ccaaggtact	54720
40	gggcctgctc	aagcagatcg	gctatgactc	aagcctgatc	gatacccagg	cgggcgatgc	54780
40	gcagctgatc	gcctactacg	tggcggcgga	ggaactggat	ccggtggcat	tgcgcaattt	54840

Application of Royer, et al.

	tgctgctgcg	atcttgcccg	agtacatgct	gccttcgtat	ttcgtgcggc	tggaccgaat	54900
	geegttgaeg	ccgaatggca	aggtgaaccg	ccgagcattg	ccgaggccgg	agttgaagaa	54960
5	gaacgccagc	gaggcgcata	ccgagccgag	cagtgcgcta	gagcaggaac	tggtgcaaat	55020
	ctggaaagag	gtgctgatgg	tcgacaaggt	cggcgtcagg	gacaactttt	tcgagctggg	55080
10	cggccactcg	ctgagcgcgc	tgatgttgct	ctacagcata	gccgagcgct	accagaagat	55140
10	ggtcagcatc	caggcattct	cggttaatcc	gaccatcgaa	ggtctgtcgg	agcatctggt	55200
	cgcataaaag	ggcaaggacc	tcagcgctgt	cctctgcatg	gtgcggcgtt	ggggttcgca	55260
15	cgccattcaa	tatgattgtc	atcacttatc	gtgagtacgc	taatcatagg	gcagggcgcc	55320
	gacacaggag	gcattcacgg	cgctgccgac	gcacttgtgc	cgccggcgaa	cgcccgactg	55380
20	tggagcgcat	ccgtgcccac	ctaggcactg	ggtctccgaa	caccgtggtg	cgctggctgg	55440
. 20	atacctggtg	gcaaggcttg	ggagatcgaa	tcgccaacgt	gcctgaagca	gtctccgcac	55500
	tggtagggca	gtggtggacg	ctggctttgg	atcatgcgcg	aagccatgcc	ggtgaggcca	55560
25	tegetgetga	gcgcacagcc	ctccaagatg	cacgcagcag	cttggagggc	gaccgccatg	55620
	gctgcaggcc	gagctcgctc	agctacgggg	tgagaccgaa	gctgcccact	aaacggaaca	55680
20	gctcgcgacg	acccgagcta	ttgagctgga	gcgcctggtc	gagcaactcc	aacgccagat	55740
30 .	taatgaģatg	gagcggcagc	gtgacacggc	ggtgcagcgc	atcaccgagg	ctgaggaggc	55800
	acgggaggtg	ctccggaggc	agtacgtgaa	aatttgatc		•	55839

35

<210> 2

<211> 2986

<212> DNA

<213> Xanthomonas albilineans

40

<400> 2

Application of Royer, et al.

		1	1	1						
--	--	---	---	---	--	--	--	--	--	--

. 60	ccaggtagtt	ccctgcggca	caccgccttg	cggtggccgg	atgttggctg	gaattcagcg	
120	tggtgacttt	ccgcccaggt	gtcgccgagg	cgtcgacctt	cccggcttga	gcggccgtaa	
180	catgcggcca	ttageggegg	ecgttatteg	tggcgttact	atcaattgca	ctgcagaaga	
240	acatgtaccc	gcggagtcgg	attggattgc	ataggacggg	tgctgtccga	ccgcaacgcg	
300	ttccgaacga	atgcgcgcgc	gcacacggga	tteggtegee	cggcggttgc	aaccgacacc	
360	gcgcacgctt	gccaggaaac	cgggatcagc	tgtccgtgta	acgtcgtggt	ctcggatcaa	
420	ggctcggcac	ccggtcacgc	ggacttggtg	gctggtactt	gccaactgac	gaccgccgtg	
480	agtcgatctc	agateettgt	cagggtgttg	ggtactggcg	ttctcggtga	gatettgeeg	
540	tggacatgga	cggaagaact	cttgcgacga	atttgcagaa	tcggcggtga	tttgacgccc	
600	ggcggacaca	cgttggcggc	cegteggett	gacggcgtcg	aggeggette	cctgctcctt	
660	gcccttctcg	cgggcttgtc	tcaccacggt	acgacgacgc	cgtcgtcgcg	tegecategt	
720	gatcgccagg	catcgcgctt	gtgtcggcgc	cgactgctcg	tcatgatcag	teettgetet	
780	cacggcctga	actcgctcag	ctctcgacca	gaagcggaag	eggegtegtt	tgacgcagca	
840	cgggtaggcc	gattctggat	gccttcacca	gacgtagtgc	tgttgagcat	tccacttcga	
900	ctcgaccagc	cgccgccgtt	tggatggtgc	ttccaggcgg	ggccccagtc	aactgtcggc	
960	gaccaggaac	ggtccggatg	tgctcgctct	ggcggggacc	gctcgatcat	gacttgtagc	
1020	agggccagtc	atgtggccca	tacctttcgg	catgtggttg	aatgacgact	acgatttcgt	
1080	ggaagccaat	aataggcgca	ttcccgcccg	ggagcaaggg	aggtggcggt	agececege	
1140	cgctctgctc	ccaggacgcc	gctcatgcac	ccaatgacaa	gcgcccttga	aagtatggca	
1200	aggaccgaat	catcgaccaa	cgaccccaag	cgcccctccc	atcgccattg	cgcgtcgtcc	
1260	ttgacgccca	atcgtcgaca	gcgcaatgtt	tgcgacacta	ggcgcgactc	gcggcgggta	

	cagccctcag	cgcaacgcaa	tgcccaatgc	cgtaccgatg	cagggcgcgc	ggggaeteee	1320
	gcagccgcaa	gcgatgaacc	cagggttgcc	gagcgtcggc	ggcttgagcg	caggccagcc .	1380
5	attgcagttg	tcgttagcac	cggaactgca	ggcagccgcg	cgcagtgccc	accgccatct	1440
	gctcgacgac	ggcacggcgc	tttacctgct	ggcgttcgat	accgcgcaat	tcgacccggg	1500
10	ggetttegeg	gcaatggcaa	tegecegece	ggacagcatc	gcccgcagcg	tgcgcaagcg	1560
10	tcaggccgag	ttcctgttcg	gccgtctggc	cgcgcgactg	gcgctgcaag	aggtgctggg	1620
	acctgcgcaa	gcgcaggcag	acattgcaat	cggcgcgacg	cgcgcgccct	getggeetge	1680
15	cggcagcctg	ggcagcattt	cccattgcga	ggactacgcg	gccgccatcg	ccatggcggc	1740
	cggcacccgc	cacggcgtgg	gcatcgatct	ggaacgacca	atcacacccg	cggcgcgc	1800
20	ggcgttgctg	agcatcgcaa	tcgatgccga	cgaagccgct	cgtctggcaa	aggcggcaga	1860
20	cgcgcagtgg	ccgcaagacc	tgctgctgac	cgcactattt	tcggccaagg	aaagcctgtt	1920
	caaagccgcc	tacagcgcgg	teggaegeta	cttcgacttc	agcgcggcac	gcctgtgcgg	1980
25	catcgacctg	gcacggcaat	gcctgcatct	gcgcctgacc	gagacactct	gcgcgcaatt	2040
	cgtggccggg	caagtgtgcg	aggtcggctt	cgcgcgccta	ccaccggacc	tggtgctcac	2100
30	ccactacgcc	tggtgagcac	gcggacagtc	gaacccgcca	acgccaacgg	cactcaagac	2160
30	gtggcgtgcg	ccgcgtcggt	cgtgaagctc	tccccgcagc	cgcactcggc	ggtggcattg	2220
	ggattgcgga	acacgaaggt	ctcacccaag	ccctgcttgg	cgaagtcgat	ttcggtgcca	2280
· 35	tcgaccaact	gcagactggc	ggcatcgaca	taaatccgca	ctccgtcctg	ctcgaacacc	2340
	gcatcgtccg	cgcgtgcctc	gtgcgccaga	tcggtgacat	ggccccaacc	ggaacagcct	2400
40	gtgcgtacca	ccccgaaacg	tagacccagc	gcaccgggag	tctggtcgag	gaaacgetge	2460
40	acgcgtgcaa	acgcggcggg	ggtgaggcgg	atggccatga	cgaacgactc	caacgacttg	2520

Application of Royer, et al

	cgatacgaca ttatacgacc gatgcccgca acgcctcgca agcgctacgc tccagccagt	2580
	acacttgttc attccatatc gagccactgc ggcgaggatt caagtcatga cggtggtgag	2640
5	cgttgaacat gcgctggcag ggaagatccc ggtcggcggc gaagtgaccg tccgcggctg	2700
	ggtccgtacc cggcgcgact ccaaagcggg gctgtccttc gtcaatgtca gcgacggttc	2760
10	ctgcttcgcg ccgatccagg tggtggctcc ggccgcgctg cccaactacg aaccggaagt	2820
	gaagegeetg accgeegget gegeggtgat egegegeggg cacetggteg eetegeaagg	2880
	ccagggccaa agcttcgaga tccaggccga gagcatcgag gtactgggct gggtcgagga	2940
15	cccggagacc tacccgatcc aacccaaagc gcattcgctc gaattc	2986
20	<210> 3 <211> 9673 <212> DNA <213> Xanthomonas albilineans	
	<400> 3 gaatteggae etggegagta ettggaeege getgtgatgg teaaetgeea gggtggaage	60
25	ttcgctcccg gcatcgagat gacgttcgtc gtgcgcgatc cggcgctcta ccgcgccgac	120
	tggcaaagca gcggctgcgg accattccga atccgaggac gtgcgttgga ctacgccagc	180
30	gtgcaatacg gccagccatt tctgagcgtt ggctatctcc cctaccaacc cggtccggat	240
	ggcatcgacc ccgcgccgct ggagccaggc gacctctcca agtttatgtc gattccttgg	300
35	caaaccgact acaacgcctg cgcgacgttc actgccgacc cgaatccgga caacagcacc	360
<i>33</i>	acactttact gggcctggcc agcacagcgc ccattcaccg tgcatgtagc caccgatgtc	420
	agggacggca agccaggccc gcaacgctat tccattcgcg gtgcgggcac cacatccgac	480
40	gatctgagta acgctggccg tttccaaaac catatcgaca tggtgaacaa ctggcaccgc	540

	ateggetteg	tcatccaggg	cagegegate	gacggcgata	ttcgctacag	cccggacatg	600
	tacctggaag	tggccagtca	actggacgaa	ceggagateg	cgccctggcc	gatgaatgcc	660
. 5	aacagcgcgg	acacttgaag	catgaatacc	cactgcgacg	tggcggtcat	cggcgcaggg	720
	ccggcgggat	gcgcggcagc	catcgcattg	cgccgtgccg	gcgtcggcag	cgtggtcctg	780
10	atcgatgccg	gcgacggtca	gcgcccgcgt	tacggcgaga	gcctgcctcc	ggcgaccggc	840
10	ctgctgctgc	atgcactggg	cgtggccgat	accttcgctg	cgctggacat	gcgcagatgc	900
	atcggcaacg	cctcgtcatg	gggagcgcaa	acgttgggct	acaacgactt	cctgttcgat	960
15	ccacacgggc	ccggttggca	ggtggatcgc	cgcgatttcg	atgcgttcct	gctgcaacag	1020
	gcgagcagcg	gcggtaccgg	cgtgcgcttg	cacacccgcc	tggagagtgc	ctccgacgcg	1080
20	gacccggatg	gtctgcgact	gcgcttgcgc	tegcaeggea	cggcactaac	cacgetgeat	1140
20	gecegttteg	ccgtcgatgc	cagcggccaa	cgcgcacggc	tggcacaggc	gctgggcgcc	1200
	gaacgcgtca	ccggtgatcg	cttggtctgc	cttgeegege	tgttgccggt	ggacaccacg	1260
25	agtcggctcg	ggcaacgctc	gctgctcgaa	gcagtcgact	atggctggtg	gtatgcggca	1320
	ccgttgacgt	ccggcgaagc	catcgtcgtc	ctcgccaccg	atgcggcggt	cctgcgcgaa	1380
. 30	cagcgtctgc	aagaacccgc	gcgatggtcg	gtgcggttgg	cacaaaccca	ccatatcggc	1440
. 30	gccaccgtcg	gctggatgcg	cagggcacca	ccatactgcc	tgtccacgcg	ccaggegege	1500
	tctgcacgat	tgagccactg	ctgtggagcg	cgctggctgg	caatcggcga	tgcagcgtcc	1560
35	agctacgatc	cgctgtcctc	acaaggcgtg	cataaggcat	tggccgatgc	gctcgcagcc	1620
	gccccgcgca	tttgcgccgt	gctcgaacga	caccaagaca	ctgcggtgat	ggaacaggca	1680
40	cagcagatgc	tggcgcgttt	cgaaggctac	cagcgcatgc	gcgagcattt	ctatcggcag	1740
40 .	gaagcacgct	ggctggatgc	gccattctgg	cgccggcgcc	gtgccgcgca	aatacctgcc	1800

	ccgccccaca	cggaccattc	ccctataaaa	acccaccgca	tgaacgtatc	gccttgagcg	1860
	atcatcaata	caaccaaata	cccacgacat	aggttcatgc	tgggacgacg	acactgcacc	1920
5	tgaaccacat	gccgatgttc	ggctagcagg	accgcatcct	gaacagcgct	gccgcccgcg	1980
	cagcacgcaa	gcccgcccgg	atgcacgacg	tgcagcgcgg	caccaggatc	gccgacgcgc	2040
10	gcatcgcgtg	gtcagtgcgc	cggcattgcc	agttgcacct	cggcactacc	gaccttgttg	2100
10	cgcgggtcgc	tggcggcacc	tagctcatcg	cggcgtttgt	cccattccac	cgtctgcagg	2160
	ttgccccaga	catggctgga	accgcgcccg	tccttggcgc	tgtcgccagg	caacttgagc	2220
15	ggatggtcca	tcgccttcag	cccctgcacg	gtggctgcat	cgaaggtacc	ggtctcggcc	2280
٠.	tegateaegt	ccggcaacca	ctggtggtgg	tagcgcttca	gcgcggcgac	ctgttgcgga	2340
20	tccagaccgt	cgtcgtagcc	gaggatgcca	agcagaacca	tggtgatgat	acgactaccg	2400
20	cccggagtac	cgagcacgat	cgccttgtcc	gcgttctcca	tgaaggtcgg	cgtcatcgag	2460
٠	ctgagcgggc	gcttgcccgg	tttgggtgca	ttggccgcat	agcccatcac	cccgaatacg	2520
25	ttgggcgtac	ccggacgcaa	ggcgaagtcg	tccatctcat	cgttgagcag	cacgccggtg	2580
	cccttgggga	tcagtcccga	gccgtacaac	agattgaccg	tctgggtggc	gccgacacga	2640
30	ttgccttcac	ggtcgatgat	cgaaaaatgc	gtggtctcat	cgtcttccag	cggggtcggc	2700
30	tgacccgaca	acaggtcgct	gggcgtggcc	ttgtccgggt	tgatggtcga	acgcaggccc	2760
	accgcatagt	ccttgctcaa	taaaatgcgc	tgcggcacaa	cggtgaaatc	cgggtcgccc	2820
35	aggaagaagg	tgcggtcacg	gtaggcacgg	cgcatcgctt	ccacggtcag	atggatccgg	2880
	tgcaccgggt	ccatcgcctt	gagatcgtag	gcttccagga	tctgcagcat	gctggccagc	2940
40	gcaatgccgc	cggaggatgg	tggcggcgcc	gtggtgatcg	tccagccctt	gtagtcgaag	3000
₩	cggatcggcg	tgcgctgctt	gaccgtgtag	ccggccaact	cgtcagcggt	ccagcggcca	3060

	ccggcctgct	tgaccccage	cagcagcttc	ctggcggtga	cgccgcgata	aaagccgtcg	3120
	aagcccttgt	cggccagcaa	ctgcagagtg	acggccagtt	ccggctgctt	gaacaggtcg	3180
5	ccctcggcga	teggeeggee	atgacgcaga	taaacctcgc	gcgtgcccgg	ataacgctcc	3240
	atcaccttac	geegggeetg	atageceteg	gccatgcgcg	catacaccgg	gaageegteg	3300
10	cgggcgatgc	ggatcgccgg	cgccagcgac	tgccgcagcg	gcaaccgacc	atgccgggtc	3360
10	gccaactcca	ccagcgccgc	aggcagaccg	ggaatgccag	cggaccatgg	gccgttgacc	3420
	gageggtegt	ggtccagtgc	gcccttggcg	tcgaggaacg	tgtcgggcgt	cgccgattcc	3480
15	ggcgccactt	cgcgcgcgtc	cagcatcgtg	teetggeeeg	tcctggcatc	gtgcaggaga	3540
	aagaaaccgc	cgccgccgag	accggagctg	atcggttcga	ccaccgacag	cgtcgaggac	3600
20	accgccaccg	ccgcatcgaa	ggcattgccg	ccctcgcgca	ggatctgcaa	gcccgcctcg	3660
20	gtggcgaggc	ggtggccgct	ggcgattgcg	tcaccgggcg	gatgcgacgt	gggcgcagcg	3720
	gegetegeae	cgagcgaggc ·	ctgggcccac	gccgatgaca	tcagcaccca	ggcaagcaac	3780
25	aggacacagc	gaacgctacg	cctcatgcgc	ageceeget	ccgtgtgggt	acaactcggg	3840
•	gtggtegegg	cgcaaccgcg	ccagcttggc	cagcaactgc	ggatgggttt	ccggaatcgc	3900
20	cggatccgga	tcgatgcact	ccacggggca	caccaccacg	cactacggct	catcgaaatg	3960
30	accgacgcat	teggtgeage	gggccgggtc	gatcacgtag	ategtetege	ccatgaagat	4020
	ggcctggttt	gggcaggccg	gttcgcaaac	gtcgcagttg	acgcagagcg	cgttgatett	4080
35	gagggacata	gtgcgccatc	ggaccctgac	cagcgcatct	taccggatcg	tgatgacacg	4140
	accatgcatt	gacctgtaca	acggcgccac	cgcctacgcc	tegecactge	gggcgacgcg	4200
40	tgcgtgagga	cgccggcgcg	cgcaacgcgc	gccggcgatg	cacaacctac	ttggcttcga	4260
40	cgaagatgta	atcggcaccg	gtcggcttga	ccaccgcctc	gacacgggca	ttgtcggccg	4320

	gggcgccgat atagaccacg cgcacgccct tcatgctgtt cggctcgacc ttggcgaagg	1380
	ccgctgcgat caggtcggcc atcttggacg atgccgagga gccgaacgcc agcatgttcc	4440
5	ccggctgaat accacgaccg acggcggtgg tggcgcttte gacctgacgc tegtacttgg	4500
		4560
10	tgcccatgtt ctggattgcc acttgctgca ggtatttttt ccaaccggca tcgtcgtcct	4620
10	tggccggggc agtcagcgcc ggttgcgcat cggcgaccgg tttggccgcc tcttcctttt	4680
	tgcaggcgct cacgcccagg gccaacgaga caatcaacaa cgcgcgtgcg gtggtcttca	4740
15	tggaacggtt teetetgtgt agtegatgaa tgaegggegg eteageeeeg egtegeggee	4800
	tggcgggcct gaaccagcgc ctgcaacacc gaaggcggaa cgaagccgga cacgtccccg	4860
20	ccgaggcgcg caatctcgcg caccagcgag gacgagatga aactgtgttg ctcagccggg	4920
20	gtgaggaaca gcgtctccac ctcggggatc agatgccggt tcatgctcgc catctggaac	4980
	tegtactega aateggacae egegegeagg eegegeagea gaaceecaee acegacegaa	5040
25	cgcacgaaat gcgccaacag cgtgtcgaag ccgatcacct ccacgttgcg gtgtccagcc	5100
	agegeetege gggeeaggge caegegeaat tecagegaea gggtgggeee ettggaegga	5160
20	etetgegeca egeegaecae cacetgeteg aacageggtg eggeeegatt gaccaaateg	5220
30	atatgeceat tggtgategg ategaaggtg eegggataga eggegatgeg getattggee	5280
	acggtcatgc gtaggatacc gcgtgaaagt cgccgggcag tttagcagcg gtgcgtcggt	5340
35	acagggcage acggaceteg cggetacege ectegeggta caaegeeeag eegaeeggea	5400
	gegetggege etgeceggeg ggegatteca agtacaacca ggeategace gecaggegtg	5460
46	ccggcaaacg ctgcaacgcc ttctcccaca gaccggccgt gaaaggcggg tcgacgaagg	5520
40	cgatatcggc cagcgcggcg ccatcgtgtt cggccagcca gcgcagcgca	5580

•	ccacctccac	ctgagtctgg	gcctgcaatc	tggcgacggt	ggcgcgcaac	tgtgccgcct	5640
	gggccgggtc	gegttegate	agacaagcgc	tgtgcgcgcc	gcgcgacacc	gcctccaacc	5700
5	ccagcgcacc	gctgcctgcg	aacaggtcca	acacgcgcgc	accgggcagt	atcggctgca	5760
	accaattgaa	cagtgtctcg	cggacccggt	cggacgtcgg	gegeageeeg	gccaggtcgg	5820
10	gcaccggcaa	gcgcgtattg	cgccaacgcc	cgccgatgat	gcgtacctgc	cccgcaccgg	5880
10	gacggttcat	cggcagcctc	gcgcgggtgt	gacggcaaca	gaaaccaggc	gcagggtcgg	5940
	catcgacggc	aagcgttgcg	gaacggaacc	cggatgatag	accagccccc	tetgeggegt	6000
15	atgcatcggg	cacggcttga	agccgacctc	tgccgccacc	atgtccgctg	atagagccgc	6060
•	gegeeeege	gcacggccat	ccgtcctcca	tggagcacct	accgatgagc	gtggaaaccc	6120
20	aaaaagaaac	cctgggcttt	cagaccgagg	tcaaacagct	gctgcagctg	atgatccatt	6180
20	cgttgtattc	caacaaggag	atcttcctgc	gcgagctgat	ctccaatgcc	tccgacgcgg	6240
	ccgacaaact	gcgcttcgag	gcactggtca	agccggaact	tetggaegge	gatgegeaae	6300
25	tgcgcatccg	catcggcttc	gacaaggacg	ccggcaccgt	caccatcgac	gacaacggca	6360
	teggeatgag	ccgcgaggag	atcgtcgcgc	acctgggcac	catcgccaaa	tccggcacct	6420
20	ccgatttcct	caagcatctg	teeggegate	agaagaagga	ttegeacetg	atcggccagt	6480
30	teggtgtegg	cttctacagt	gccttcatcg	tegeegatea	agtggacgtg	tacagecgte	6540
	gcgccgggct	gccggccagc	gacggcgtac	actggtcctc	gcgtggcgaa	ggcgagttcg	6600
35	aggtcgccac	catcgacaag	cccgagcgcg	gcacccgcat	cgtgctgcac	ttgaaggagg	6660
	aagagaaagg	cttcgccgac	ggttggaagt	tgcgcagcat	. cgtgcgcaag	tactccgacc	6720
40	acatcgcctt	geegategag	ctaatcaagg	aacactacgg	rgaggacaag	gacaagccgg	6780
70	aaacccccga	gtgggagaco	gtcaatcgcg	ccagcgcgct	gtggacacgg	ccgcgcaccg	6840

		agatcaagga	cgaggaatac	caagaactgt	acaagcacat	tgcccacgac	cacgaaaacc	6900
		cggtggcgtg	gagccataac	aaggtcgaag	gcaaactgga	atacacctcg	ctgctgtacc	6960
5		tgcccggccg	cgcccgttc	gacctgtacc	agegegatge	ctcgcgcggg	ctcaagctgt	7020
•		acgtgcagcg	cgtcttcatc	atggaccagg	ccgaccaatt	cctgccgctg	tacctgcgct	7080
10		tcatcaaggg	catcgtcgat	tccagcgacc	tgccgctgaa	cgtctcgcgc	gaaateetge	7140
10		aatctggtcc	ggtgatcgac	tcgatgaagt	cggcgctgac	caagcgcgca	ctggacatgc	7200
		tggaaaagct	cgccaaagac	gatecegaac	gctacaaggg	cgtgtggaag	aacttcggcc	7260
15		aggtgctgaa	ggaaggtccg	gcccaggact	tcggcaaccg	cgaaaagatc	gccggcctgc	7320
		tgcgcttcgc	gtccacccac	agcggcgacg	acgcccagaa	cgtgtcgctg	gccgactacg	7380
20		tggcgcggat	gaaagacggc	caggacaagc	tgtactacct	gaccggggaa	agctacgcgc	7440
20		aaatcaagga	cagecegeae	ctggaggtgt	tccgcaagaa	gggcatcgag	gtgctcctgc	7500
		tcaccgaccg	catcgacgag	tggctgatga	gctatctcac	cgagttcgac	agcaaatcct	7560
25		tcgtcgatgt	ggegegegge	gacctggacc	tgggcaagct	ggacagcgaa	gaagaaaagc	7620
		aggegeagga	agaagccgcc	aaggccaagc	aagggctggc	cgagcgcatc	cagcaggtac	7680
20		tcaaggacga	ggtcgccgag	gtgegggtet	cgcaccggct	gaccgattcg	ccggcgattc	7740
30		ttgccatcgg	ccagggcgac	atgggtctgc	aaatgcggca	gateetggaa	gccagcgggc	7800
		agaagctgcc	ggagagcaag	ccggtgttcg	agttcaaccc	cgcgcatccg	ctgatcgaga	7860
35		aactggatgo	ggaacccgat	gtcgatcgtt	tcggtgatct	ggcgcgggtg	ctgttcgatc	7920
	•	aggccgcgct	ggccgccggc	gacageetea	aggacccggc	: cgcctacgtg	cgtcggctca	7980
40		acaagctgtt	. gctggagctg	teggegtaag	cagtgacgca	cetgegegte	gcaccgcgcg	8040
40	,	acgcagtcca	a cagegeaceg	acattgcaaa	gaaaagcgga	aacgaaaaaa	gggcctacgg	8100

	gcccttttt	cttccatcgt	cgacatcggc	ttgcagcgca	cgagcaacgc	tgtaatgcgc	8160
	cggtgcatca	cgctcccgac	gcgaccagca	gcactcacgc	ctgcattaac	ttaaaacctc	8220
5	accagcttag	aacttcaccg	tegecegege	ccagtaataa	cgcccgagta	gatcgtaggt	8280
	cgccacatcg	gtgttggcat	tgacgacgtt	gttggcgtag	tacagtggcg	gctgtcggtc	8340
10	ggtcaggttg	tccacgccca	cttcgaagcg	ggtgtgccac	ggettgacet	gatageegae	8400
10	ctgcacgctg	tgatagacat	aggtaccgat	gtegegeace	acattggcct	gaccgatatc	8460
	ggccgacaac	ccctgacgcg	cgtcggcact	gccaatctcg	gtgcggccga	cataacgcac	8520
15	gcgccaagac	gcactccagt	cgcccagatt	ccagctcaac	gtgccgaggc	cacgccagcg	8580
	cggaaaattg	ccgtaagcgt	aggtgtactt	gccggcattg	tggatggtga	cggtgtcggg	8640
20	atcggcggta	ttcggattga	tatcgtagcg	gatcacatag	gtgccgttga	ggctggcatt	8700
20	gaagctaccc	caggcggtct	gcggcaagcg	atagttcagg	ctgaaatcgg	caccgctggc	8760
	ccacaacttg	cccagattca	cggtcggctc	ggcgatatag	ttgatcgtgc	cattgtcgtt	8820
25	gcgatggatc	agcggacaga	acggactcgc	gtcgttggcg	tagcactggt	tcagcacggt	8880
	ctgcgccgac	acctgggtga	tggtgtcctt	caagtcgatc	ttccacaggt	ccgtgctcag	8940
20	cgacaggccg	tccacccaac	ccgggtcgta	aaccatgccg	aaatcgtagg	acttgccggt	9000
30	ttccggtttg	agccggtagc	cggccaccac	cgcgcctgaa	gccttggcgg	acacctgatt	9060
	gttctcctgc	tggtagctgc	categgtggg	cacgtgggca	caggcagccg	cgtgtccgcc	9120
35	gctgtagccg	tcgcacggat	cgttgaccgc	cggggcatca	ccgaccacgo	cggagtaaag	9180
	ctcgctgatg	ttgggcgcac	ggaacacctg	cgagaccgtg	ccgcgcagca	acaggttete	9240
40	gaccggacgg	tactccaacg	ccagtttgct	gttggtcttg	ctgccgaccg	tgtcgtaatc	9300
40	ggaaaagcgg	ctgccgacgg	tcaggtttag	g cgaatgcacg	ccaggcagco	: ccgccagcaa	9360

				121		Application of Ro	yer, et al
	cgggaacaac	gcctcggcat	aggetteett	gacgctgaaa	ctgccaccga	gcacgctggc	9420
	gcagtattcg	agcaccccgc	agatgccgtt	ctcgtcgccc	gtccacagcg	gatcggcggc	9480
5	ggtcgaggtg	cgttccttgc	ggtaagccac	accggccgcċ	agactcactg	caccggccgg	9540
	cagatcgaac	aggttgccgt	tgacgttggc	ttcgaactgt	ttgacggtgt	acacgttggt	9600
10	caccatcgga	ttgacttgca	gegeeegeaa	cgeggeetgg	ttccctgggt	tgttgaggtt	9660
10	gaacacgtcg	atc					9673
	<210> 4						
15	<211> 267						
	<212> DNA <213> Xant	homonas alk	oilineans				
20	<400> 4						
20	ctagccaccg	aggegaceaa	caatgegeaa	gagcaagtte	accgagagcc	agacegtege	60
	cacgctgaag	caggtggagg	gcggtcgcca	ggtcaaggat	gtatgccgtg	agctgggcat	120
25	ttccgaggcg	acgtacttgc	tettecactg	gtaataggtc	gccgtgctga	tgccgacttg	180
	gcgacagatg	tetttgaetg	gaacgcetge	gteggeetge	ttgagcgtgg	cgatgatctg	240
	tgtctcgttg	aacttcgatg	tgcgcat	•			267
30							
	<210> 5						
	<211> 1755	j					
	<212> DNA <213> Xant	homonag all	ailimeans				
35	~213> AdnC	.iomonas all	ATTINEANS				
	<400> 5						
	ctacttttcg	atcagtacgt	catcgatgaa	catcgcgtcc	agaccgctgg	tgaagaagat	60
	cgacagcgca	tcctccactg	aatgggcgat	cggtttgccc	atgacgttga	agctggtgtt	120
40	aagcaccagg	ggaatacccg	tcaggcggta	gaattetttg	atċagggcgt	gatagcgcgg	180

٠	gttccaatgt	tgcttcaccg	tctgcagacg	teeggtgeeg	tcgtggtgca	cgacgcccgg	240
	caccttgcgc	gtggcttccg	cacggaactt	cagggtgcgc	tccatgtagg	gcgattcctg	300
5	gtacageteg	aaatactccg	cgccgtgctc	atgcaaaatc	gacggtgcga	acgggcggaa	360
	ctcctcgcgg	aacttcaccc	gcgcattgat	gatgtccttg	atcgcaggcg	aacgcggatc	420
10	tgcaaggatc	gagcgattgc	ctagggcccg	tggcccgaat	teegegegge	cttgcaccca	480
10	ggcgacgatc	ttaccctcgg	tcagcagccg	ggccgcgcgt	tgtgctgcgt	cgtcgaggca	540
	acgagtgaat	ttggatagcg	cgccgaagcg	ctccacgtta	tgcaaggtct	ccgcactcat	600
15	gctgctgccc	aggtagggcg	attgttcgcg	cgcagccggc	ggtgtctgct	caggatggtc	660
	ctcggcgtgt	gcccataatg	cggcgcccac	cgcgttaccg	tcatcgccag	gggcggcgaa	720
	tacgtgcaga	tgacggaacg	gagtttcagc	cagcacgcgg	ccgttagccg	aggaattgag	780
20	tgcacagecg	ccgcccagca	ccaagtggtc	ggacaagccc	aaagcgtgca	ggttgtgcag	840
	gaattcgaag	aggacgtcgc	agaacacctg	ctggccggca	taggccaggt	tggccaattc	900
25	gategttgge	: tggcccttgc	atcggcgcat	tgcatacago	gtgcgctgca	actggctgaa	960
	ttgtgctgcg	ggcgcaaacc	tcagcgttag	geegtegaeg	gtagcatc	ggcgcaacaa	1020
	ctcgtacagt	tgccgatcat	gttgcccgta	ggcggccagg	cccatcacc	tecattette	1080
30	geeggaeagg	g gtgccgaago	: cgcaaacct	gcagatcata	ccgtagaag	a ageceagget	1140
	ggcccaactg	g ctggtctcgc	: tttggtggat	. cggcgtaagd	ttgccctgt	t ggtagtggta	1200
35	gcaggccaaa	a gcatttttt	cacccatgc	c gtccagtact	gegeacace	g cctcctcgaa	1260
	cgggctggt	g tageageegg	g ccaccgcgtg	g ggttaggtgg	g tgctcgtaa	t gacggtagct	1320
	gggtggctt	g aaggcaggct	cggccatgt	g gctcaagtca	a tattcgagc	a ggtgtccggg	1380
40	gtgctccac	c atcgccagct	gegaaeggt	a gaagaagct	c tgtgccacg	a attgcttgtt	1440

Application of Royer, et al.

660

	gacgtgccaa ggcaggtcgc cgaaggcgct gcggtattgg tctaccgctt gcgcggtctt	1500
	gcccaggccc tcccgcatca gttcaggtgt ttgcccgctc caactagtag cgacgaccag	1560
5	ttcggcgccg ggatcgccgt attcgtggac cagcttgatg gcgcgctgaa acacgtccgg	1620
	ggcaacgccg attgaacgct tgtactgcag gtagcgctcg gtggcctcgg caaagcgcac	1680
10	ctgaccatcg tcgccgacga tagcgatggc tgaatcgtgg aaggaattgg cgagtccgat	1740
10	gtaagtgcgc ttcat	1755
15 .	<210> 6 <211> 1491 <212> DNA <213> Xanthomonas albilineans	·
20	<400> 6 ctacggcgat gattgtggcg caaattgtgt cagtttgaac tgcaatccca gcgtagagag	60
	cgccacgaaa gcattggccg cgatgtagta caccaccgta gccccgaagg cctgcttgaa	120
25	agccagaget aegeetgeeg geeeetgeag atgetggtge aggeegetaa agaaaattte	180
25	cgagaccagg gcgatgccca gcataccgcc gacctgctgg atgacctgca gcgcgccgga	240
	acctgcgccg gcatccttca gaggtaccgt acgcatcact gtctggaata gcgaggcgat	300
30	ggtgatgcca cagcccagtc cgccgatcag caacggcagg gtaagcgtcc agggatccag	360
	cgagcettea etgegegtga tgatgaecea caaggeeaga tagetagega teateagaea	420
35	ggcgccgctg aagattttcg cgcgtaggct ttcgacgtgc cgagcgagca tagaggcaat	480
33	cgccacgccg acagggaaag gagtagtggc gacgccggtt tccagtgccg aatacgccag	540
	teettgetge agaaagatea egaacaceag gaaaaaaeee tgeagegeeg aatagaacae	600
40	cgacacggac aaggcgccca agatgtagtc gcgatggctc atcaggtaga tcggcagcag	660

				124		Application of Roy	yer, et al.
	ggccgggcgc	gccaagtggg	cttgccgacg	ttgccaggcg	acgaaggcca	ccagcagcgg	720
	aataccgage	gcaatggctg	caaagcacca	tagcggccag	ccgtatgcgc	gtecttetat	780
5	tagtgggaac	accaggcaca	acaaggcgag	cgcggccagg	gcgatgccga	cccagtcgtt	840
	atggatgccc	gcatgcgccg	gcaccttggg	cacccagatg	gcggccgcca	gcaaggtcac	900
10	gaggeegate	ggcacgttga	tcaggaagat	cgcgcgccag	ccgacgccga	acgcatcgat	960
	gtggatcagc	aageegetga	cgagggggcc	ggcgaatgag	gecaggeceg	cgaccaggcc	1020
	gaacaacgag	aaggeggeeg	cgcgctcctt	cggagcgaac	atggtttgcg	cgatggccat	1080
15	cacctgtggt	gccagcatgg	ctgcggccaa	gccctgcaaa	gcgcgcga	tgatgagcac	1140
	gtggatattg	ccagcgatgg	cgcagaacgc	ggacatcaag	ataaaaccgg	ccacgcccgt	1200
20	gccgaacatg	cgcttgcggc	cgagcatgtc	acccaaccgc	cccaacggca	gcaaccccaa	1260
20	cgcaaacagc	agaatgtata	tcgctacgat	ccattccage	tgttgctcgt	ccgcgcccag	1320
	gttcttctgg	atactgggca	gggcgacatt	gacgatgcct	acgtccagca	agttcatgaa	1380
25	attggcgctc	agcaacacga	tcatcgctgg	ccagcgccat	cggtagtcga	actgcgctcc	1440
	gggtggtgcc	atgccgggcg	gcatacccag	cgcttccttg	ggtttttgca	t	1491
30	<210> 7 <211> 954 <212> DNA <213> Xan	thomonas all	bilineans				
35	<400> 7						60
	•	atggccgctt					60
	gcgctccaac	tcgcgctgga	aggegetgeg	gccgaagcca	ggcggatcga	tggccgcctc	120
40	gcccacgcga	gctttcatcg	cctcggggaa	tacgctgatg	aaggcgtagt	ggccggcatt	180

Application of Royer, et al.

	•	
	gggcaccacg cgcgcttcca gtcgaccatc attgcctagc gccgtgcgtg tcgccacaat	240
	cgtttcgtgc gcccattgat ccttttcacc gacgatgagc agcaccggta cctcgacttt	300
5	cgccagggca tcctcgtgca tgtacaggct gaaatccggc gcaagcgcca ccacggcgcg	360
	cacgegegga teagetgtga eeggeaegge eetgateggt accegatttt gtegeaeeag	420
10	cgcggtccag gcgggttgtt cggcgtgttc cgggcgatgc gcaaaatcga ccatgaaacc	480
	ggtatgeggt tegeecegg cgategetaa ggeggtgtag eegeegaegg agtggeegat	540
	caccgctacg ttatgggcct gaatggcagg accgaactgc gcatggccgg tgagcgtatc	600
15	gatcaccgcg cggatgtgcc gggggcggtc ttccagattc tgatagctgt attccagctg	660
	atgctggaac aggttgtcgc ccggatgctc cggcaaggcg acgataaagc cgtgccgtgc	720
20	taggtaatgt gccagcgtgc gaaacactag gccggcgctg cgcgtgccgt gcgagatcac	780
	egetagegga aacgggeegg ettegategg egegeecagg geeacgteea gegtataagg	840
	teccategee gtatecegtg aaggegtgge ggtgggatae ateaeceaea teggeaecae	900
25	cctgctggca tcaccatcgg tttccagttt ttggcaaccc acatagctat tcat	954
•		
	<210> 8 <211> 1356	
,30	<212> DNA	
	<213> Xanthomonas albilineans	
	<400> 8	
35	ttacgccggc atcagcttat ccagacttgc accggcgggc gccagccaaa cagcggtacg	60
	accttcgccc agctccctgc ccatcaagcc tcgcacgccg gccagatcct gcggcgttgg	120
	cagcaacgcg gccagccgtt ggccgtcggc atcgtgcacg gggttgccat ctaagtcgaa	180
40	ggcaagcccc ttgcacgggc cgaaatcgcg gtggaaacgc tcgtgcggca gctgtagctc	240

125

Application of Royer, et ai

	aaaagccagg ccaaggcgcc tgagctgttg attccagcgg ccgatgatag cgccgacttc	300
	ggctatgtat tgtcggcgca ttaccgcatt gattgccaac tcggcaggtg cggtggacga	360
5	gaccagtetg tettegeage geaegtegae ggegaeetee gtaeettega gettgtegaa	420
	gttgcgtggg ctgcggatgc cggcctggta caggacgcgt gaacgctccg aaacgtcgtg	480
10	gccgaacaga tcaaagatct tcggtagcca atagttaagg tatttctgaa cgactggcaa	540
10	ggggatcgca ccggcgtcga agatcgcgtg cgtatcctca cgcaaggtaa tctcggcgct	600
٠	tegatacage aegegeteca ggeeatecae geegaaetta atatgeagag gtteetegaa	660
15	catcatgaag egggeggtge gtgeeaaegg caggaaaget gaetgggtea eegettgaat	720
	ctggtacttg cctacccggt cggcgaagaa gcaccacatg aaatgcgata gccagtcttc	780
••	ggtgtggtag ttgaaggcat cgagcaggcg cgggttctgc gcatcgccac tcatgcgttg	840
20	cagcaggece teggeggegt éggeteegte getgecaaag tattegatea geagatgega	900
	categeceag gtgtgeegge etteetetag aaaaaaetgg aataagtget eeaggtegat	960
25	cgcgctgggc accatttgcg tcagctcgtg gctctgctca accgcggcgt tttctacgtc	1020
	accttgcacg gtgacatgat ccagcagcag gtcacgatat tcttccggca cgcacgacca	1080
	tgccacctgt cccttgcgct cgccgaacac tacggtgttg cggtctggcg gcatcatgaa	1140
30	tacgccccag cggtagtcgc tggggcgcat gcggtgatag cgcgtccact cgctgccctt	1200
	gacgccaccg gtaggcatgc gcaggttcat ctcgcgatcg tggaattcgc tggggccgcg	1260
35	gaggegeeae cattgeagga agegaaettg gtaggaagte agttgeetga ceagegeget	1320
	gtgtggatca aggtcgatat tgttaggaat gtacat	1356

40 <210> 9 <211> 948

	<212> DNA <213> Xanthomonas albilineans	
5	<400> 9 tcaggccgcg ctgtgcatcg aggtagggc gacttcgccg accgtgagcc cgatgaagtc	60
	gatgateege tgageeaegg eaceeggate attgaacagt tgcaggtgae egecatgate	120
10	tageaggtee agaegeaaag acgggtegtg cetageeaae tgeaeegagg eggagtagtg	180
10	gctgaagctg tcgtccttgc agtgcacgat cagggtaggg tgcctgccca gggcggtggg	240
	cagcaaggct tgcacggatt gcttgttetc ttcgtaggca cgcatgtagc gcgagaacac	300
15	caatgtgctc gctggatcgg ctaggtgcag catggtgagc ttttcggcca agtcgtcgcc	360
	gcgtaaaggt tggccgcggt acttgtccag gatggcggcg agctttttgg cctgttccag	420
20	accgtgccgc tcgatctgaa ggtagatcgg caaggcgcaa cgttcgaatt cggattttac	480
20	gatgggcggc agcaggcccg ccggcgccac ccaagccatg ctgcgtggtg cgaagccatg	540
	cagegeaatg geatgeacgg ceaattgtge ageetgacae caacegacaa aatggeaate	600
25	ggcgtagtcg tgttggtgca ggatgcccag cagggtcgcg gcttggcgat ccagatcgaa	660
	gtetteegeg gttacegatg tetgggeatt egggeageeg atggatteee ageacaacae	720
	atggaaatgc ctagccagtc gttgcgccaa ccggctcagc agcaggtagg acatgccata	780
	gggcggtagc agcaccagct tgggcgatgc ctgagcgcct agccaataca gctcaagctg	840
•	ccgtccatcg gtagtgcagt attgcgacag ccttacccct gcgagcgcgt cgtccagggc	900
35	ggacagatet tgetttteea gatagtgegg caagcaagea cageecat	948
	<210> 10 \	
40	<211> 252 <212> DNA <213> Xanthomonas albilineans	

Application of Royer, et al

•		.0 :aa (ctcqattcqa	acccacttcc	gtctggagag	ctcgcgtccc	ctaaattctt	60
5	gtcatcga	igt 1	tcgcgcagcg	ataaggggcg	catgtcggtc	caggtttcgt	cgatatacgc	120
J	catgcact	.cg	teettacege	cagcatagcc	ttccttgcgc	cagccaggcg	ggacctcaag	180
	atcggącg	ggc (cacagtgaat	actgcagttc	gtcgttgatc	agcaccagat	aagcctgttc	240
10	ctcgaac	gtc	at					252
	<210> 1	L1						
	<211> 2	2151						
15		ANC						
	<213> 2	Kant	homonas alb	oilineans				
	<400>	11		•				
	ttgcgctg	gcc	ttatcataaa	taattacgat	tcgttcactt	ggaatctcgc	cgactacgta	61
20								
	gcgcagat	tct	tcggcgaaga	tcccctggtg	gtgcacaacg	acgagtactc	ctggcacgaa	120
	ctgaagga	acc	gcgggggatt	ttcctcgatc	atcgtttcgc	ccggtcccgg	ctcggtggtt	18
			•					
25	aatgaag	cgg	attttcacat	ctcgctgcag	gcgctggagc	agaacgaatt	tccggtgtta	24
								20
	ggcgtate	gcc	tgggcttca	gggacttgcg	catgtctatg	gtggccgcat	cetgeatgeg	30
	aaaataa	aat	ttastaaaa	tagatagaaa	arastassas	aaaaaaaaaa	tttattaaa	36
30	cegguge	GGL	cceacggeeg	cegececace	gccaccaaca	ccggcgacgg	cccgcccgaa	30
50	ggcatec	cac	agcgtttcga	ggcagtgcgc	tatcactcqt	tgatggtctg	ccaqcaatcq	42
•	,	-3-		355-5-		-535	, <u>,</u>	
	ctgccgc	ctg	tgctgaaagt	gacggcgcgt	accgattgcg	gtgtggtgat	gggcttgcag	48
		_						
35	cacgtgc	aac	acccgaaatg	gggagtacag	ttccaccccg	aatcgatcct	caccgaacac	54
	ggcaagc	gca	ttgttgctaa	ctttgccaag	ctggctgcgc	gccacagtgc	accgttactt	60
•	gccgggt	cgg	agcaggccgg	caaggtttta	agcgtttgcg	cgcccgagat	ggtgacaccg	66
40								
	cgggtac	gtc	gcatgctgag	ccggaagatc	aagtgccgtt	ggcaggcgga	agatgtcttt	72

128

	ctggccttgt	tcgctgacga	aaagcattgc	ttctggctgg	acagccagct	ggtctgcagt	780
	ccaatggcgc	gctattcgtt	catgggagcg	gtgaacgaga	gcgaggtagt	geggeattge	840
. 5	gtgcggccag	ggagcatggt	gcaggaggca	ggcgagcggt	ttcttgctga	gatggatcgg	900
	gcgttgcaat	cggtgcttac	tgaggacgtc	gccgagcggc	caccgttcgc	gtttcgcggc	960
10	ggctacgtgg	gctacatgag	ctacgaaatg	aaatcggtgt	teggegegee	ggcttcacat	1020
10	gccaatgcca	tccccgatgc	gttgtggatg	cgcgtggagc	gcttcgttgc	cttcgaccac	1080
	gccactgagg	aggtatggtt	gctggcgctc	gccgatacgg	aggatctgtc	ggcattggct	1140
15	tggctagacg	ccatcgagca	acgtatccat	gccattggtc	aagcggctcc	ggcttgcatt	1200
	tegetaggee	tgcgcagcat	ggaaatcgag	ctcaatcatg	gtcgtcgcgg	ctaccttgag	1260
20	gcaatcgagc	gttgcaaaca	acgcatcgtc	gatggcgagt	cctatgaaat	ctgtcttacc	1320
20	gacctgttct	cgttccaggc	cgagctggat	ccattgatgc	tctatcgcta	catgcggcga	1380
	gggaacccag	cgccgttcgg	ggcctatttg	cgtaacggta	gcgattgtat	ccttagtact	1440
.25	tcaccagage	gttttctgga	agtggacggc	cacggcacga	ttcagaccaa	gccaatcaag	1500
	ggcacetgcc	gccgtgccga	ggatccccaa	ctggaccgta	acttggccat	gcgcctggcc	1560
	gcctcggaaa	aggaccgagc	ggaaaacttg	atgatcgtcg	acttgatgcg	caacgaccta	1620
30	agccgcgtgg	cggtgcccgg	cagegteace	gtgcccaagc	tgatggacat	cgaaagctac	1680
	aagaccgtgc	: atcagatggt	cagcacggtg	gaagcgaggc	tgcgcgccga	ttgcagtcta	1740
35	gtcgacctgo	: ttaaggcggt	gtteeeegge	ggctcgatca	ceggegeace	: gaagttgege	1800
	agtatggaga	ı ttattgatgg	cctggagaat	. gegeegegtg	gcgtgtatte	g eggeageate	1860
	ggctacctgg	g gctacaactg	g cgtcgccgac	: ctaaacattg	g cgatccgcag	g tetttettat	1920
40	gacgggcagg	g aaatacgttt	. eggegeegge	: ggcgccatca	ccttcctgto	c cgacccgcag	1980

				130		Application of Roy	er, et al.
	gatgagttcg	acgaagtgtt	gctgaaggcg	gaggcgatcc	tcaagccgat	ctggcattat	2040
	ctacatgcgc	cgaacactcc	cctgcactac	gagttgcgag	aggacaagct	gctgctagcc	2100
5	gagcactgcg	ttagcgaaat	gccggccagg	caggcettca	tcgaaccatg	a	2151
10	<210> 12 <211> 414 <212> DNA <213> Xant	thomonas alk	Dilineans				
15	<400> 12 atgaggcccc	cacgcttacg	cgcgaaccag	gacgggctgc	tgatggatac	ggccggccgg	60
10	gtggtcgagg	gctgcaccag	caatctgttc	ctcgtcgaga	acggccatct	ggtgacgccc	120
	gacctgggcg	tggccggcgt	cagcgggatc	atgcgaggca	gggtgatcga	atatggccgg	180
. 20	cagcacggtc	tegeetgege	ggtaaagcac	gtctatccgg	accagctagt	gcgtgctcag	240
	gaggtgtttc	tgactaacgc	cgtgttcggc	attctgctgg	tgcgcagcat	tgacgctcac	300
25	agctaccgca	tcgatcctgt	taccctgcgt	ttgctcgatg	ccctgtgtca	gggcgtatat	360
23	ttcaccgaac	ggtcactaca	teaggtttee	acccatgccg	gccaagaccc	ttga	414
30	<210> 13 <211> 603 <212> DNA <213> Xan		bilineans				
35	<400> 13 atgccggcca	agacccttga	aagcaaggat	tactgtggag	aaagcttcgt	cagcgaagat	60
	cgctccgggc	aatcgctgga	gtcgatccga	ttcgaggatt	gtacgttccg	acaatgcaac	120
40	ttcaccgagg	ctgagctcaa	tcgctgcaag	ttccgcgaat	gcgagttcgt	cgactgcaac	180
40	ctgagcctca	tcagcattcc	gcaaaccagc	ttcatggaag	, tgegettegt	cgactgcaag	240

131 Application of Royer, et al atgeteggtg teaactggae eagegeacaa tggeeategg tgaagatgga gggggegetg 300 tegttegage getgeateet caacgacage ttgttetaeg geetataeet ggeegggeta 360 5 aaaatggtgg agtgccgtat ccacgatgcc aacttcaccg aagccgactg cgaggatgcg 420 gacttcacgc agagcgacct gaagggcagc accttccaca acaccaaact gaccggcgcc 480 agetteateg atgeggtgaa etaceaeatt gaeatettee acaaegatat caageggget 10 aggttcagcc tgccggaagc agcctcgctg ctcaacagcc tggatatcga gctgtccgat 600 tga 603 15 Xanthomonas albilineans 20 <400> 14 atgcatccgc cgtcgccgtt gaacacgcag cagaaagact ggctgacacg cggtggttcg ttgaccgcgc acctgcgcct gttggggcag gtacaggtgc aagtgcaacg ggagcacaaa 120 25 gccatggcct ggctggatga atategggtg cteggactgt cgcgctgcct gcttgtatgg 180 gtgcgtgaag tggtcctggt ggtggacgcc aaaccctatg tctatgcgcg tagcctgacg 240 30 ccgctgaccg ccagttacaa cgcctggcag gcagtgcgta gcatcggcag tcgcccgtta 300 getgatetgt tgtteegtga tegeagegtg etaegttegg egttggegag teggegeate 360 accgegeage atcegetgea eeggegegea tgeaaetteg tggeaeagte geatgegaeg 420 35 caagecetge tggegegeeg eteggtattt aegeggeaag gegeeeegtt getgateaee 480 gaatgcatgc tgccagcgtt gtgggcaacg ctggaaccgg tggcagctcc gcgccaggcg 540 40 agtotgagtg oggacggood ttgooggoat toagogoaga togtotogod tgagtogatg 600

	ctggaatag .	609
5	<210> 15 <211> 5880 <212> DNA <213> Xanthomonas albilineans	
10	<400> 15 tcaggcatcg aggtccgtca ccagcatgcg cgccagctca cgcagcggt cgccttgtaa	60
	catgetgtag tgattgcccg ccgcgctctt gatctgcgaa agtggtacgt aacctgtgat	120
15	atcoggoagt acctogotac cocogogtgg cttggacatg toggoatagg acacgtgtac	180
	cgcagtctgt gcctggtaca gatgagegtt aggctgcagg cactgegget cgaaacegge	240
	caacagecee aggtgatage gegtaaegeg caattgeteg geeageggtg geeaeatgeg	300
20	gctttccaga gtaaacctca ggtgtgcgag cagtttgtcc agtgatgcct ggtggcggct	360
	gtagtegaae acgtgetegt egteacegte ggegaacage agetgeeggg ettegtetat	420
25	ttcagcctgc tcgaagccgc gcttggccaa cgcggccaac gtattgagcg ctgccacgaa	480
23	ggtaagetge eggggetege gegeatgtae eggtateagg etgetatega geaggeecae	540
	gtaatcgacg cgcaggccgc gccgctgcaa ttgctcagcc acagccaggg ctagcacgcc	600
30	gccggaggac cagcccagca agcggtaggg cgcaccggtc gggccagcca gcaacgcatc	660
	gcagtagtgc gcggccaggt cggacaaatg cgcgaagcgg cgcaccggtt cgcattgcag	720
35	gccatagacc ctggcagagt gccctagggc ggcagccaga tcgatgtagc aatgaatctg	780
	gccgccgatc gggtggatgg catacaccgc cgcgcgttcg gtgcgtaggc taagcggtac	840
•	gataagactt accggcatgc tgccggcttg gctttggcgc atgccgcgct cgacgacagc	900
40	ggcaaaatct tccaqcacag gggattcgaa cagcgtgttg acccgcactt cgatgtcgaa	96

. Application of Royer, et al.

133

actctggcgg atacgcgaga acaactgggt ggcaagcagc gagtgaccgc cgaggttgaa 1020 1080 gaagttgtcg ttgaggctca cgcgtaaggg ggcggcctgt gcgggggtca gcagttcgct ccacagettg gecagggtga tttcgacete getgegegga gegaggtagt egetgteget 5 1140 gctggcggct tgcggctcgg gcaggctcaa ggtatcgagc ttgccattgg gcaagcgcgg 1200 1260 aagcgccggc agcgactgga agcgcgttgg cagcatgtag gtaggcaagc gttcctgcag 10 1320 cagettgege agetegtega ggtteaggae accetggegt ggeaceaegt aggeeaacag 1380 ttccggcgtg ggcgagcctt geggccaacc gatcacggcg gcctcggcga cctgcaggtg 15 ggccgccagg gctttctcca cctggcgcac gtccacgcgg tagccgcgga ccttgacctc 1440 gtagtcgcgc cggccgagca gttccagcgt accgttgtcc agtaggcggg ccatgtcgcc 1500 ggtcctgtac agacgcgagc cgggggggcc gtagggattg gcgatgaagc gcgcggcggt 1560 20 caggeegeec tggegeeaat ageegtgegt aatgeegagg etttegatgt geaettegee 1620 1680 catgatgcca ggcggcaacg gtcgcagttg ttcgtcgagc acatggacct tggtattggc 25 gatgggccgt ccgaccggga cgaagccgct gccgctgtgc tgctcggccg gatcgcaata 1740 ggtcatgtcg ttgatttcgg tacacccgta gatgtaccag gccgtgcagg caggcagcag 1800 1860 cgtcctgagc cgttgcagca gttccgccgg gcagggttcg atggagacga agagctggcg 30 1920 cagtegegec ageegetgeg gtgteteage aacgtggteg ageagegegt tgagetggga aggaaaggta tacaggcgtg tgatctgcca ggtttccagc gcgcgcacga aagcggggat 1980 gtcacgcacg gtatcctcgt cgatgaacac ctgcggtacg ccagcaagta ggccggcgag . 35 cagtteettg accgaaatgg caaaggegat egaggtettt tgegeeacce geteeeegge 2100 ctcgaaaggc gcacgtgccc acagcgcatg cagccagttg aggatttgcc gatggggcac 2160 40 catcacccc ttgggacgac cggtggaacc ggaggtatac atcacgtagg ccagctgcgc 2220

	•	cggatgcagg	gcatgcggca	gtggcgtatg	cggttgacga	gcgatggcgg ,	catcgtccag	2280
		gcgcagccgc	ggtacttgga	tcagttgccc	gtcgatgtcc	ttgccgcaga	gcaacagccg	2340
	5 .	tggctgcgcg	tcgtcgagga	tctgctgaat	gtaggtggtg	gggtaatgcg	ggtccaacgg	2400
		cacgtagcag	ccaccggcct	tgagcacgcc	gagtagggca	atgaggaaat	cgggcgagcg	2460
	10	gccgaaccac	agggcgacgc	geteetgegg	gcgcaggccg	cgctcgatca	ggcaatgcgc	2520
	10	caggcggttg	gegtgttggt	ccagttgggc	atagctcaac	tgtcggtgtt	gatcggcaca	2580
		agccagttcc	teggegtgea	gtgccacttg	cgcatcgaac	agatccagca	cactgcgcga	2640
•	15	ggtatccaga	gtatgagggg	tgaactcggt	gcgagcgacc	ggcagcgaaa	aatccgagag	2700
		gcggcagcgc	ggttcttcca	gcatccgctc	cagcactctt	tggtggtggg	ccagcatgcg	2760
	20	ctgaaccgta	gccgccgaaa	acageteege	ggcgtattcg	acagtgactt	ccaggtggct	2820
	20	tccgtcgccg	atgaactgca	ggtccagctc	gttgggtgtg	gtgcgttcgc	caaattccat	2880
		ctgagcgctg	aggaagatct	gggcaaatgc	attgacgcct	tcggtggcga	aattttggtg	2940
	25	tcggagcatg	atcggcacga	gcgggatctg	gctgctgtca	cgcggtttct	tgagagcgct	3000
		taagacatgc	tcgaacggca	gtgcgcgatg	cgcgtaggcg	tccagcactt	gctggcgcac	3060
•	30	gtgctgcaga	aaatcctcgg	caaaggcgtg	actgcccaag	tttaggcgta	ccgccaggat	3120
	30	attgacgaaa	aagccgatca	gatteteggt	ttccagctga	tegegteegg	cgctggtagt	3180
		acctaagcag	agttctcgcc	ggccggtgta	ctggtgcaag	acgatcgcca	ggctcgccat	3240
	35	aagtgtcatg	aacaaggtga	cgcgccgttc	ctggctgaat	gcggcgagac	gegeggeeaa	3300
		ggcgtcggga	taggtcaggt	gtagtatgcc	agcacgccaa	gctcgattag	ccgggcgtgg	3360
	40	aaaatcgtag	ggcaaggcca	gcccttcttc	gtaaccatgc	aaacgctgtt	tccaataatc	3420
	40	cagateggeg	ctgaaatcct	gtacgcgctg	ccatgtagca	tagtcggcat	attgcagtag	3480

	cageggtgge	agtgccggtg	gcgtctgctg	tagcgcggct	atatagaaag	cacgtaggtc	3540
	gtgaaagatc	aggttaatcg	accagccgtc	gcagatgatg	tgatgcatgt	tcatcaggaa	3600
5	cacgtggtaa	tegteegata	cgcgcagcac	cgataccttg	agcagcgggc	cgtgggcaag	3660
	atcgaatacg	tgcgcggcgt	gctcggcgac	taggcgtggc	acttctgcgg	gtgtcgctgt	3720
10	gatgcaaggc	actgggacct	gcatggcgtc	ggcgatgtgc	tggctgggat	aatcgccgcc	3780
	agcgcaagtt	gctatgcggg	tgcgcaaggt	ttcatgcctg	gccaccagcg	cctggatcgc,	3840
	ctcgcgcagc	gctgacatcg	agaaatcggc	actgcgtaaa	tggcaggcga	aggcgacatt	3900
15	gtaactggta	cgttgctcgg	gcatgtgttc	atgcacgaac	cacaggcgct	cctgctgata	3960
	gctcagcgga	acgggagcat	cgcgcacggc	acgggaagag	atggtgttgc	cgccagtcgg	4020
20	agcctgttgt	tgccgcgctt	cgttgaccac	tcgcgcaaaa	tcttccagca	caggggattc	4080
20	gaacagcgtg	ttgacccgca	cttcgatgtc	gaaactctgg	cggatacgcg	agaacaactg	4140
	ggtggcaagc	agcgagtgac	cgccgaggtt	gaagaagttg	tcgttgaggc	tcacgcgtaa	4200
25	gggggcggcc	tgtgcggggg	tcagcagttc	gctccacagc	ttggccaggg	tgatttcgac	4260
	ctcgctgcgc	ggagcgaggt	agtcgctgtc	gctgctggcg	gcttgcggct	cgggcaggct	4320
30	caaggtatcg	agcttgccat	tgggcaagcg	cggaagcgcc	ggcagcgact	ggaagcgcgt	4380
30	tggcagcatg	taggtaggca	agcgttcctg	cagcagcttg	cgcagctcgt	cgaggttcag	4440
•	gacaccetgg	cgtggcacca	cgtaggccaa	cagttccggc	gtgggcgagc	cttgcggcca	4500
35	accgatcacg	geggeetegg	cgacctgcag	gtgggccgcc	agggetttet	ccacctggcg	4560
	cacgtccacg	cggtagccgc	ggaccttgac	ctcgtagtcg	cgccggccga	gcagttccag	4620
40	cgtaccgttg	tccagtaggc	gggccatgtc	geeggteetg	tacagacgcg	agccgggggg	4680
40 .	gccgtaggga	ttggcgatga	agcgcgcggc	ggtcaggccg	ccctggcgcc	aatageegtg	4740

Application of Royer, et al.

	cgtaatgccg	aggctttcga	tgtgcacttc	gcccatgatg	ccaggcggca	acggtcgcag	4800
	ttgttegteg	agcacatgga	ccttggtatt	ggcgatgggc	cgtccgaccg	ggacgaagcc	4860
5	gctgccgctg	tgetgetegg	ceggategea	ataggtcatg	tcgttgattt	cggtacaccc	4920
	gtagatgtac	caggccgtgc	aggcaggcag	cagcgtcctg	agccgttgca	gcagttccgc	4980
10	cgggcagggt	tcgatggaga	cgaagagctg	gcgcagtcgc	gccagccgct	gcggtgtctc	5040
10	agcaacgtgg	tcgagcagcg	cgttgagctg	ggaaggaaag	gtatacaggc	gtgtgatctg	5100
•	ccaggtttcc	agcgcgcgca	cgaaagcggg	gatgtcacgc	acggtatcct	cgtcgatgaa	5160
15	cacctgcggt	acgccagcaa	gtaggccggc	gagcagttcc	ttgaccgaga	tggcaaaggc	5220
•	gatcgaggtc	ttttgcgcca	cccgctcccc	ggcctcgaaa	ggcgcacgtg	cccacagcgc	5280
20	atgcagccag	ttgaggattt	gccgatgggg	caccatcacc	cccttgggac	gaccggtgga	5340
20	accggaggta	tacatcacgt	aggccagctg	cgccggatgc	agggcatgcg	gcagtggcgt	5400
	atgcggttga	cgagcgatgg	cggcatcgtc	caggcgcagc	cgcggtactt	ggatcagttg	5460
25	cccgtcgatg	teettgeege	agagcaacag	cegtggetge	gegtegtega	ggatctgctg	5520
	aatgtaggtg	gtggggtaat	gegggtecaa	cggcacgtag	cagccaccgg	ccttgagcac	5580
20	gccgagtagg	gcaatgagga	aatcgggcga	gcggccgaac	cacagggcga	cgcgctcctg	5640
30	cgggcgcagg	ccgcgctcga	tcaggcaatg	cgccaggcgg	ttggcgtgtt	ggtccagttg	5700
	ggcatagctc	aactgtcggt	gttgatcggc	acaagccagt	tcetcggegt	gcagtgccac	5760
35	ttgcgcatcg	aacagatcca	gcacactgcg	tgaccaatcc	aaggcgagcg	cggtatccgg	5820
	actggccgcg	gtcagcgcga	egtettegge	atccagtagc	gacatgcttg	atagtttcat	5880

40 <210> 16 <211> 993

Application of Royer, et al.

Xanthomonas albilineans 16 <400> 5 ttaaacgtgc agcttgagca tggcttcgcc atcgctgcgc gcagcgatgt caggggacga 60 ttgtteggge gaataaggtt eggeeatgea caegaggate ttgeggetge cetegtaggg 120 . ctcgcgtccg tgcgaaacca gcatattgtc gatcagcagc acgtcgtccc gatgccagtc 180 10 aaaatggatc ttgtgctggg cgaaaactgt gcgcacatgg tcgagcatgg cggggtcgat 240 300 cggcgtgcca tcgccgaaat aggcgttgcg cggcagtccc tgctcgccga agaacgacag 15 catcatcttc tgcgcagctg cctccagcgc agtgtaatga aacaggtgtg cttggttgaa ccaaacttca tcgccggtcg ccggatggca cgcaaaggcc cggcagatct ggctggtgcg 420 caggeegteg ceggtecatt egcattgeat gtegttgegg gegeaataag ettetaette 480 20 ctgcttgttg cgggtgttaa acacgtcctc ccatggcagg tcgacccctg cacggtagtt cctgacgtag cgcacctgtt tgcgcgcaaa gatttcgcgc acttgcggat cgatagcggc 600 25 tgtgaccttg agcatgtcag ccaacggcgt gcagccgccc tcgctggccg gctgcacgca 660 atggaacage agtttcateg gecagaegeg etggtaggeg ttetegeaat gttgegetat 720 780 ggacagetge etgggatatt eggtggeegt gtagacatge tggeegaegt eggtgegegg 30 tgtggaacga taggtatagg ccagtcgctc atcgaagaaa cagcgtgaga tctgctccaa 840 gccaccaggg tgcgcaaagc cacggaacag taacgccctg tgttgccata gcagggtagg 900 35 ccacgtegeg eggtgegtgg cattecaate agteagegtg geeteggeeg agteggeett 960 993 gatggtcagg ggaagatcag cgtttgtgtg cat

40

<210> 17

<212>

DNA

<211> 2298

Application of Royer, et al.

<212> DNA

<213> Xanthomonas albilineans

ctaggttcga gcatggccga cgaagaacag gtgggattgc aggtgcttgg cgctagccag 60 tgtctccaac agcgcaggcc ggattacctt gccgctgcag gtacgtggga tcgtgctcac 120 ttcgacgaat agatggggat agtgatgett geetagegeg ttettgeaca aggegegtaa 180 10 ggeggeeeat agegeeetg tategatget ggeategaca ggeaecaega aggeggeggg 240 geggggcaag cegaactegt ettegateag geagategeg caeteettea egeaggegtg 300 15 cgtctggatg acgctctcca gcgtctcagg cgaaagccaa caaccgttga tcttgatggc 360 ggagcccatt ctgcccaagt tatggaagcg ccccttggcg tcggcaaaga acaggtcgcg 420 tgtatcgaac cagccgtcga cgaacaattg ggcactgagt atggggtcgc caacatagcc 480 20 cctcgtcage gtattgcccc tcacccacag gctgccgact tcgcctatgc ggcagatctc 540 tecetgettg tteaceaget teacaacaaa geetggtace ggegtgeeag tgeaacecat 600 25 gagegegtgg cetggeegat tggagatgaa ggtggaeagt aceteggtge ageegatace 660 gtegageact tegacetgee aacgegtget gategeatga ceaageeteg ceggeaaget 720 ttegeeggee gatatgeaea ggegaagege eggecaeaee geateeggeg eggeetegge 780 30 aagcaacage ttgaacacgg cgggcacggc gagcaataca gtgacgtggt aagtgtggat 840 ggtttgegeg atetgeetga egetaagegg egeggeaate acatggetga caccagegag 900 35 cagcgacage atcaggttgt tcaggccgta ggcgaaaaac aaccgcgacg gtgtatacat 960 cacgtcatcg etgcgcagcc egagcacgge etgetggtag ttgagatgge agtgcataaa 1020 ateggeatge gagtgegtta cegeettggg cgtaccagtg gageeggaeg tgeatateat 1080 40 caccgcgggt gcatcggcgg agcagggcgc aaccaccagt tcgtcgtttt cgatcaccgg 1140

Application of Royer, et al.

catcaggctc	gtcagctcta	aggtcggcag	gtggcgcaac	geggeatgat	gggaaggcgg	1200
cagttcggca	tcgatcagca	cgaggcgagg	cttgatggtc	ttgagcgtgg	tctcaaagtg	1260
gacgagcgac	acaagctcgt	ttatcggcgc	aaagaccaag	ccaccggcca	agcaggccag	1320
catcagggca	acgcccgcta	ggctgtcgat	agcaatcagc	gccaccgcat	caccgetttg	1380
caggccaagc	agactcaagt	gccgggcata	ggtcgccgcg	cgagagcgca	actggcgata	1440
gctgaaggcc	tgctggcgca	acggatcgat	catttgcgcc	gtcgaagcca	gatgcgctgc	1500
ggaaaaaatt	tgcgcgcaca	cgttgacctg	gaccgacggg	aggaagccga	taggcgcaca	1560
ggcgaacacc	geegtgettg	cgtccgacca	ggacggcatc	ggcccatcgg	tegagegtge	1620
gaaccagctc	gcgggcaaat	gactggcaat	ctgacatagt	ttgccgtggt	cgcaggccag	1680
cagactggta	tccacctcga	tcaggtcttc	gacgcaggaa	agcgcaggca	aagagatctg	1740
cgccgcgctg	ccgcatacgg	cactatcgcg	caagtccggc	aggttccttt	ggcggtggtc	1800
cgcatgccat	agcagcaggc	categetgeg	tegegtggee	aaggcttcca	gtgccatgcc	1860
cagggcgcct	tgcaaccggt	ccagttgctt	gggtteeteg	atacggccca	aatccagtgc	1920
cagggtgttg	gegeeggggg	gcgattcgga	cagcacgatt	tggtgccgat	gcttgaggta	1980
atcgcaaatc	aggeeggeea	gettgeetaa	ccgtgcatat	tcccgtagca	ggctaccgaa	2040
gctgccacag	gggtaaggtg	cggcatagto	aatggttatg	tgctggccga	teggegtgte	2100
gctgacatcg	atacgcaagc	caggataato	gcgccgccat	tgatgcagca	gcgtggtcca	2160
ttgacgagca	taggcctcgt	tgcgccctgg	ccgcgtctga	cetacegace	: aacgcaaatc	2220
tagttcggtg	ccagagtgca	tcggaagatt	. tgtcagtggg	g ctatccataa	gegttetegg	2280
gtaaggcgat	cgacgcat					2298
	cagtteggea gaegagegae catcagggea caggecaage getgaaggee ggaaaaaatt ggegaacace gaaceagete cagaetggta egcegegetg egcatgecat cagggegeet cagggegeet cagggegeet gategeaate getgeaaate getgeaaate getgecacag getgacateg ttgaegagea tagtteggtg	cagtteggea tegateagea gaegagegae acaagetegt cateagggea acgeegeta caggecaage agaeteaagt getgaaggee tgetggegea ggaaaaaatt tgegegeaea ggegaacace geegtgettg gaaceagete gegggeaaat cagaetggta tecacetega egeegegetg eegeataegg egeatgeeat ageageagge cagggegeet tgeaaceggt cagggtgttg gegeeggggg ategeaaate aggeeggega getgecacag gggtaaggtg getgacateg ataegeaage	cagtteggea tegateagea egaggegagg gaegagegae acaagetegt ttateggege cateagggea acgeeegeta ggetgtegat caggecaage agaeteaagt geegggeata getgaaggee tgetggegea acggategat ggaaaaaatt tgeggegeaa egttgaeetg ggaacaee geegtgettg egteegaea gaaceagete gegggeaaat gaetggeaat eagaetggta teeacetega teaggtette egeegegetg eegeataegg eactategeg eagggeget tgeaaceggt eeagtgett cagggtgttg gegeeggggg gegattegga ategeaaate aggeeggea gettgeetaa getgacateg gggtaaggtg eggeatagte getgacateg ataegeage eaggataate ttgaegagea taggeetegt tgegeeetgg tagtteggtg eeagagtgea teggaagate	cagtteggea tegateagea egaggegagg ettgategee gaegagegae acaagetegt ttateggege aaagaeeaag eateaggea acgeeegeta ggetgtegat ageaateage eaggeeaage tgetggegaa acggegaaa eggetgategat ggetgaeegeg getgaaagae tgetggegaa acggategat eatttgegee ggaaaaaaatt tgeggegaaa egttgaeetg gaeegaeggg ggegaaaaaaatt tgeggegaaa egttgaeetg gaeegaeggg ggaacaee geegtgettg egteegaeaa etgaeeggg gaacaeeggge eggggaaaat gaetggeaat etgaeatagt eageeggegaa eegeeggegaaa eggeeggegaaa eegeeggegg eagetggaaa eggeeggeget eegeataegg eactategeg eaagteegge eaggggggeet tgeaaceggt eeagttgett gggtteeteg eaggggggtgtt geggeggggg gegattegga eageaegatt ategeaaate aggeeggeaa gettgeetaa eegtgeatateggeegetgaeaategggegeaaggegeagggggggg	cagttcggca tcgatcagca cgaggcgagg cttgatggtc ttgagcgtgg gacgagcgac acaagctcgt ttatcggcge aaagaccaag ccaccggcca catcagggca acgeccgcta ggctgtcgat agcaatcagc gccaccgcat caggccaagc agactcaagt gccgggcata ggtcgccgcg cgagagcgca gctgaaggcc tgctggcgca acggatcgat catttgcgcc gtcgaagcca ggaaaaaatt tgcgcgcaca cgttgacctg gaccgacggg aggaagccga ggaaccagctc gccgtgcttg cgtccgacca ggacggcatc ggccatcgg gaaccagctc gcgggcaaat gactggcaat ctgacatagt ttgccgtggt cagactggta tccacctcga tcaggtcttc gacgacgaga aggaagccga cgccgcgctg ccgcatacgg cactatcgcg caagtccggc aggttccttt cgcatgccat agcagcaggc catcgctgg tcgcgtggcc aaggttcctt caggggcgct tgcaaccggt ccagttgctt gggttcctcg atacggcca cagggtgttt gcgccggggg gcgattcgga cagcacgatt tggtgccgat atcgcaaatc aggccggcca gcttgcctaa ccgtgcatat tcccgtagca gctgcaccag gggtaaggtg cggcatagtc aatggttatg tgctggccgat gctgacatcg atacgcaagc caggataatc gcgccgccat tgatgcagca ttgacgagca taggcctcgt tgcgccctgg ccgcgtctga cctaccgacc tagttcggtg ccagagtgca tcggaagatt tgtcagtgg ctatccataa	catcaggete greageteta aggreggeag gragegeaac geggeatgat gggaaaggegg cagtteggea tegateagea egaggegagg ettgategte ttgagegtgg teteaaagtg gacgagegac acaagetegt ttateggege aaagaceaag ecaceggeca ageaggeeag catcagggea acgeeegeta ggetgtegat ageaateage gecacegeat cacegetttg caggeeaage agacteaagt geegggeata ggtegeege egagagegea actggegata getgaaaggee tgetggegea acggategat catttgegee gtegaageea actggegata ggaaaaaatt tgegegeaca egttgacetg gacegaeggg aggaageega taggegaea ggaacaagee geegtgettg egteegacea ggacggeate ggeecategg tegaggega gaaceagete gegggaaaat gactggeaat etgacatagt ttgeegtggt egeaggeeag cagactggta tecacetega teaggtette gacgaagaa aggeeaggae aaggatetg eggeageetg eegeataegg cactategeg eaggteega aggtteettt ggeggtggte caggatgeat ageageagge categetge tegegtggee aaggetteea gtgeeatagee cagggegeet tgeaaceggt caagttegta gggtteeteg atacggeea acteggtge caggatgttg gegeeggggg gegattegga eaggetgat tegegeaga ggetaeegaa getgecaaag gggtaaaggt eggeatagte aatggttatg tgetggeega teggegtgte getgacateg atacgeaage eaggataate gegeegeeat tgatgeagea gegtaeega getgacateg atacgeaage eaggataate gegeegeeat tgatgeagea gegtggteea ttgacgagaa taggeetegt tgegeeetgg eeggetetga eetaeegae aacgeaaate tagtteggtg eeagagtgea teggaagatt tgteagtgg ctateeataa gegttetegg gtaaggeat egacgaat

Application of Royer, et al.

	<210> 18	
	<211> 861	
	<212> DNA	
	<213> Xanthomonas albilineans	
5 .		
•	<400> 18	
		60
	tcagcgtttc agcgcgtgga ccagataact ttgcggcacg ccgtgggtgc cgcgcggtgc	
	gaccggaaac ggccaacgcc ccatttgctg gccagcggcg gcgatggtca acacccctgg	120
10		
	ctcccagccc agtggttgga tcaggctttc cggttcgtca gtgccaaact ggcgagccat	180
	cgcgtgcage actcgggcat tgggcgagtt gagcatagag aggccgataa catcgaacaa	240
15	cacqctgctg cccttggcac tcaatgcatc gatgcgcgcg aacagcagca tcactgcctc	300
	cacgongong accordagean boardagean sandageages annuageages contractions	
		260
	ggcgctcaag tagcacagca agccctcgac cagccacaag gtggcggcgc tgccgacgaa	360
	tccactctcc ttaagtgcct ggggccagtc ttcgcgcaaa tcgatcggta gcgcaatgcg	420
20		
	ctggcaaacg ggctgggcgt catggagttt ttcgtgcttg tcggagagga catccatgtg	480
	gtcgatctcg tagacccggg tatcggacgg ccaggggaga cgataagcgc gtgcatccat	540
25	accggcggcc aggatcacca cetggccaat gcettcacta accgcctgca tgatcttgtc	600
23	accyginger aggandanca congentati generatia accyminger iganorogun	000
	gtcgagccaa cgcgtccgta cctcgatcgc cggaggcatc ggtacgttct ggttgttgcg	660
	totgagetet teaacgaatt categeegge cagaegeegt gegaaagggt catggaacag	720
30		
	cgcctgctcc cgctcgcttt ccagcgcccg catgcctgcc acccataaag cggttctttc	780
	gatatetete atgeataege teeggttegt ggteggettg egeegatgea teatagatat	840
35		861
33	gcatgactcg attcgcggca c	001
	<210> 19	
	<211> 720	
40	<212> DNA	

<213> Xanthomonas albilineans

	<400> 19 ttacggatgg	tetgatecae	gcaagcgaaa	gatgagataa	accacatcag	ctġtcaacgc	60
_	cgatttaaat	ttgacccact	ttcctttgaa	tcgtcgaagt	aaatctgacc	cacccggggt	120
5	cttccatcgt	cgggctgcta	ggctgcgcag	ggcaaagccc	gtcgcagccc	agcagccctg	180
	cgccggctca	cgcccgaagg	gcaggtagcc	gatetegteg	accaccagca	gcttcggccc	240
10	tagtaccgcg	cgattgaagt	agtectteag	ccggttctgc	gccttgaccg	ctgccagttg	300
	catcatcagg	teggeegegg	tgatgaaacg	tgccttgtgc	cccgccatca	ccgcacgctg	360
15	gcacagcgcc	agggcgatgt	gggtcttgcc	gacaccgctg	gggccaagca	tcaccacgtt	420
13	ctcggcgcgc	tcgacgaagg	tcaggtggcc	gagetegaeg	atctgcgcct	tcgaggcgcc	480
•	gccggcctgg	gcccagtcga	actgctccag	cgtcttgatg	gacggcatcc	tggcaagtcg	540
20	cgtcagcacc	gtgcgcttgc	gctcttcacg	cgcgagctgt	tcgcttgcca	gcaccttctc	600
•	caggaagtag	ctggcatcct	cgcacgcggc	ggcctgtgcg	agtgcttgcc	agtccgagct	660
25	caggcgtgcc	agcttcaact	getegeaeag	cgcggcgatg	cgcgcacact	gcaggtccat	720
	<210> 20 <211> 206 <212> DNA <213> Xan		bilineans				
	<400> 20 ttgcccaatg	cgctcatgca	gataactett	gtageegtee	agtttgcagg	cgtattgtta	6
35	ggcgtcaccg	ctcgcgcggc	gatccccaat	aaggcgggta	tgagacgcgc	atggccgccc	12
	ttcccgcagg	cgtgctgtcg	ctctattgct	tacctcatgo	agagategee	aatgtcgccg	18
40	ttacagcaaa	cgctgctaac	cegeetegee	agtgcggccg	cctcccggac	aatgatcgag	24
שדי	tttccgcgtc	eggagcacge	atcgccacaa	tgttgcgacg	atgccgagct	tgcgcgactg	30

1	47	
1	42	

		•
	atcgtgcagt tgtcggcggg actgcaaccg ctggcgatgc cgggtaccta cgtgatcatt	360
	gccgcgccac atggtggttt gttcgcggca gccctgcttg cctgtttgca tgccaacctg	420
5	gtggcggtgc cgtttccact ggatgttgct cagccaaatg agcgggaaca ggccaggctg	480
	gagacgatcc acgcacaatt gatggagcat ggcaatgtag cggttctgct tgacgatgtc	540
10	geegategea gtgeettege gegeatggeg catgetgegg geacetteet ggegaeette	600
	gccgatctaa agcgcgaatc gaccagcgcc tccttgtgcc cggcgtcgcc ttcggacgcc	660
	geettgetgt tgtttacete tggtteeteg ggtgagteea agggeateet gettageeae	· 720
15	cgcaacctgc atcatcagat ccaggctggc atccggcagt ggagcttgga cgagcatagc	780
	catgtggtga cctggctttc tcccgcgcac aacttcggcc tgcatttcgg cttgctggca	840
20	ccctggttca gtggcgcgac ggtcagtttc atccatccgc acagttatat gaaacgaccc	900
	ggettetgge tggagaeggt tgeggetaga gaegeeaege acatggeege geegaaette	960
	gegttegaet actgetgega etgggtgatg gtegageage tteegeegte tgegttgtet	1020
25	acgettacge atategtgtg tggcggcgag ccggtgcgcg cctcgaccat gcagcgette	1080
	ttcgagaaat tcgccggact cggtgcgcgt acgcagactt tcatgccgca cttcggcttg	1140
30	tetgaaaceg gtgegetgag tacettggae gaggegeece aacagegegt ettggaacta	1200
30	gatgccgacg ccttgaacaa acgcaagcgc gtggcggcag gggcgagcca ggcgcgtgtg	1260
	acagtactca attacagaa agtacagaa antacaga	1320
35	ggcgagacgt totocagacc agatgagate ggggaatat and	1380
	georgtaget acctattiac gaageegge gateagge acta	1440
40	Cataccgacg ataggggtta ctttcgtacg gggggatta	1500
40	ctatatatra reggazget assegggets	1560
		

	gcacatatcg	aagcctcgat	cgccgctacc	gcatcgcctg	gegegetgat	gccggtggtg	1620
	ttcagcatcg	agcggcagga	cgaggagcgc	gtagctgcgg	tgatcgccgt	caatcacccg	1680
5	tggacgccgg	cagcatgcgc	cgcgcaggca	cacaagatcc	ggcaacaggt	agccgaccag	1740
	catggagtcg	ccctggcgga	gctagccttt	gccgaacacc	ggcacgtgtt	cggcacctat	1800
10	ccgggcaaac	tgaageggeg	cctagtcaag	gaagcctatg	tcaacggcca	gctgccgttg	1860
10	ttatggcatg	agggtaagaa	ccgggacgta	ccagcggccg	cegeggaega	teggeaggeg	1920
	caacacgtgg	cggacctgtg	tcggaaggtc	tttttgccgg	tgttgggtgt	cgcgccgccg	1980
15	catgcccaat	ggeegetgtg	cgaactggcg	ctggattcgc	tccaatgcgt	gegtettgee	2040
	ggtgccatcg	aagagtgcta	cggcgtgcct	ttcgaaccca	cgttgctatt	caagettgag	2100
20	acggtcgggg	caatcgccga	atatgtcctg	gcgcacggac	gtcaggcgcc	cacgccgacg	2160
20	cgtgcgccgg	tggcaagcac	aacatgctca	gaggaaccga	tcgccattgt	. ggcgatgcac	2220
	tgtgaggtgc	ccggagcggg	cgagaacact	gaagcattgt	ggtegtteet	geggagegae	2280
25	gtcaacgcga	teeggeegat	cgaatcaacg	cgcccggact	. tatgggcago	gatgegegee	2340
	tatcccggcc	tegegggega	acagctgccg	cgctatgcgg	gttteeteg	cgacgttgat	2400
20	gctttcgatg	ctgcgttttt	cggtatctcg	cgtcgcgagg	g ccgaatgcat	ggacccgcag	2460
30	cagcgcaaag	tgctggagat	ggtgtggaag	ctgatcgago	aagccggtc	a cgatccgctg	2520
	tcctggggcg	gecagecggt	eggeetgtte	: gtgggtgcgd	atacgtccga	a ctatggcgag	2580
35	ctgctggcga	gecageegea	actgatggco	: caatgtggcg	g cttacatcg	ttegggtteg	2640
	catttgacca	tgattccgaa	a cogggattes	g egetggtte:	a atttcaccg	g ccccagcgaa	2700
40	gtaatcaaca	gegettgete	cagctcgctg	g gtggcgctg	c ategggegg	t tcaatcgctg	2760
40	cgccaaggcg	g aaagcagtgt	: cgccctggt:	a ctcggcgtg	a accttatcc	t ggctcccaag	2820

	gtgctgttag	ccagtgcaag	cgcgggcatg	ctttcgcccg	atggccgctg	g caagacgctt	2880
	gacgccgccg	ccgatggctt	cgtgcgttcg	gaagggatcg	caggggtgat	attgaagcca	2940
5	ctggcgcagg	cgctggccga	tggtgacagg	gtctacggtc	tagtccgcgg	cgtggeggte	3000
	aaccatggcg	gccgttccaa	ttccttgcgt	gctcccaacg	tcaacgcgca	gcggcaactg	3060
· 10	ctgatccgga	cttaccagga	agccggtgtc	gagccggcca	gcgtcggtta	tgttgaacta	3120
	cacggcactg	gtaccagcct	gggtgatccg	atcgaaatcc	aggegetgaa	ggaagettte	3180
	attgcgttgg	gggcacaggc	cgccccgtca	aactgcggca	teggtteggt	gaagteegeg	3240
15	ctgggccatc	tagaagccgc	tgcaggcctg	accggcctga	tcaaggtgct	gctgatgctc	3300
	aagcacggcg	agcaggccgg	cacgcgccat	ttcagcacgc	tcaatccgct	gatcgatttg	3360
20	cgaggtacgt	cattcgaagt	ggtggcgcag	catcgcgcat	ggccgtcgca	ggtcggcatt	3420
	cacggcacac	tettgeegeg	tcgcgcgggt	atcagctcat	tcggcttcgg	cggcgccaat	3480
	gcgcatgcga	tcgtggaaga	gcatgtcatt	gccacgcccc	cctcgacgag	ctccgctggc	3540
25	ggcccggtag	gtatcgtgtt	gtcagccggt	agtgaagctg	tcttgcggca	acaagtgetg	3600
•	gccttgtcag	cctggctaag	gcagcaatcg	ccgacacccg	cgcaaatgat	cgatgtcgcc	3660
30	tacaccttac	aggtaggacg	cgcagccctg	tcgcacaggt	tggcttttag	cgcgacggac	3720
	gccgagcagg	cattggcgag	gcttgagggt	egtetggegg	gcgtgatgga	tgccgaggtc	3780
	catcacggtg	tcgtggatgc	tgccgcaacg	gctcccgaac	atgggcggca	gacgcgcgaa	3840
35	ggtcttgccg	gtttgctgcg	agcctggact	cagggcgtgc	gcgtcgattg	gteggegetg	3900
	tacggcatac	agcgaccgca	gcgcgttagc	ctgcctgtct	accccttcgc	tagggaacgc	3960
40 ,	tattggctgc	ccggccaggc	tatgcatgcc	gctgcggacg	ctcatccgat	gctgcagctg	4020
	ttgcatgcca	atgccaaact	acategetae	gccttgcgta	ggtccggctg	cgcaagcttt	4080

	cttgttgatc	attgcgtgga	tggtcgacag	gtactaccgg	cagccgtgca	actggaattg	4140
	gtgcgcgccg	tggcgcagcg	ggtcatggcg	caggatgagg	gttgtatcga	actggcgcag	4200
5	gtcgcctttt	tgcatcccct	catgatggag	gagactgagc	tggaggtcga	aatcgaactg	4260
	tcgaagagcg	atcaagatga	gttcgatttc	caacttcacg	atgctcaccg	ccaacaggtc	4320
10	tttagccagg	ggcacgtacg	tcgccgggtc	tatacggcga	caccgcgctt	ggatttagcc	4380
	cagctgcaaa	agctttgtgc	cgagcgcgtg	ttgtccggcg	aagactgtta	tgcgcacttc	4440
	accgcctgcg	gattgcagct	cggcgaccgg	ctcaaatccg	tgcaatcgat	cggctgcgga	4500
15	cgcaatggcg	agggcgagcc	gatcgcattg	ggtgtcctgc	gcctgccacc	atcaagcgtt	4560
	gaagacagco	atgtgctgcc	tcctagcctg	cttgatggtg	ccttgcagtg	tagccttggc	4620
20	ttgcagcgtg	atgtcgagca	catcgccatg	ccatacacgc	tggagcggat	gacggtgcat	4680
20	gcgccgattc	ctcccgaggc	ctgggtgctg	ctgcgtcacg	gccatgcagc	cagacagtcc	4740
	ctggacatcg	atctcctgga	ttccgaaggt	agggtctgcg	tcagcctcgg	caattacacc	4800
25	ggccgtgcac	cgaaagccgt	ttccgccgtc	agggcgcttg	tcttggcacc	ggtctggcaa	4860
	gcgttgaccg	aaacggcgcc	ggcatggccc	gateeggeeg	aacgcatcgt	tacggtagga	4920
30	gacgatgcat	ggcgtagtca	cttcggtttc	gacgagccgg	ccttgtccct	ggaggacagc	4980
30	gtcgaagtca	tegegaegeg	actgggccag	agcggcaagt	tcgatcatct	agtctggatc	5040
	gtgccgatag	r ccgagagtga	aaccgatatt	gcagcgcaag	gttcagcggc	gategeeggt	5100
35	tteeggttgg	tcaaggcgtt	gettgegttg	ggctatgcgc	atcgcccgct	gggtctcacc	5160
	gtgctgactc	gccaagccct	tacgcggcag	ccgtcgcacg	cggcagtgca	cgggctgatc	5220
40	gggacgctgg	g ccaaggaata	ctgcaactgg	aaaatccgtc	tgetegaeet	gccgagcgta	5280
40	aaatcttggo	: cgcaatggga	gcaattgcgg	tegttgeett	ggcatgcgca	gggcgaagcc	5340

ЛЬ	
40	

•	ctgatcggcc	gtgggacttg	ttggtatcgg	cggcagttgt	gtgaagtgct	gccgctgccg	5400
	tcgttggaac	cgccgccgta	ccgcgtaggc	ggtgtctacg	tegtgategg	cggcgctggc	5460
5	ggcttgggtg	aagtattgag	cgaacacttg	atccgcacgt	acgacgcgca	gctgatctgg	5520
	atcgggcggc	gcgtgctgga	cgaaggcatt	gcgcgcaagc	agacccggct	tgcgtcgctg	5580
10	ggccgcgcac	cgcattacat	ctccgcggac	gcgagtgacc	eggetgeeet	gcaggcggca	5640
	cataatgaga	tegttgeget	gcatggccag	ccccatgggc	tcatcctaag	caacatcgtg	5700
	ctgaaggatg	ccagtctggc	tcgtatggag	gaagccgatt	tccgtgacgt	gctggccgcg	5760
15	aaactcgacg	tcagcgtgtg	tgcggcacag	gtgttcggca	cggcccccct	tgatttcgtg	5820
	ctgtttttt	cttccatcca	gagcactacc	aaggeggeeg	ggcaaggtaa	ctacgccgcc	5880
20	ggctgctgct	atgtcgacgc	tttcggcgag	ctatgggcgc	gccggggttt	gagggtaaag	5940
	accatcaact	ggggctactg	gggcagcgtg	ggcgtcgtag	cgggcgagga	ctatcgccgg	6000
	cgcatggcgc	aaaaacacat	ggcttcgatt	gagggtgccg	aagcgatgca	ggtgttgtcg	6060
25	cagttgttgt	gtgcgccgtt	gcaacggctt	gcctacgtca	agatcgacga	tgctaacgca	6120
	atgcgcgctc	tgggcgtagt	agaggacgag	agcgtgcaaa	tccctgtgca	cgcaccggcc	6180
30	gageeteeca	gagggcagcc	tggtcccgtg	gtcgagttgt	cggtgaatct	ggatgcccgg	6240
	cgcgaacggg	aaactttgct	ggeggeetgg	ctgcttgagt	tgatcgagca	actcggtggt	6300
	tttccgccgg	caagtttcga	catcgctacg	cttgcgcaac	gcctgcacat	cgtacccgcc	6360
35	tategaaget	ggctggaaca	cagegtgegg	atgctcggcg	tgtatggtta	cctcagagcg	6420
	acgggggaaa	gccgattcga	gctggccgac	aagccgcccg	atgatgccag	gggtgcctgg	6480
40	aacgcgcatg	tgcacgaggc	cagcgtcgaa	gccggtgaag	aggcacagcg	gegtetgete	6540
	gategetgea	tgegggegtt	gccggcggtc	cttcgaggcg	aacgcaaggc	caccgaattg	6600

		ctgtttccgg	aaggttcgat	ggcgtgggtc	gagggtatct	accagaacaa	cccgcttgcc	6660
		gattacttca	acgcacaact	agtcacgcga	ctgattgcct	acttgagacg	acgactagag	6720
;	5	tcgacgccta	cggcgcgcct	gaagctgtgc	gagatcggcg	ccggcagcgg	tggtactact	6780
•		gcaagcgtgc	tacaacagtt	gcaggcatat	ggtgagcata	ttgaggaata	tctctatacc	6840
1	n	gacctgtcgc	ctgtcttcct	gcatcatgcg	gaaaaacact	atcagccacg	agcgccttat	6900
1	J	ttgaggaccg	cctgtttcga	cgtagcgcgc	gcgccgacgg	cgcaggccct	ggaatctggc	6960 ,
		ggctacgacg	tggtgattgc	cgccaacgta	ctgcatgcta	cgcgcgatat	cgccaagacc	7020
1	5	ttgcgcaatg	cgaaggcact	cctcaaacct	ggcggtctgc	tcttgctcaa	cgaagtgatc	7080
		gagegeagee	tcgtcttgca	cctgactttc	ggtctgctgg	agagctggtg	gttgccccag	7140
20	^	gacaagatct	tgcgccttgc	cggctcgccg	ttgctggctt	gegecacetg	gcgcagcctg	7200
	U	ctggaggctg	agggttttgc	ggggctgagc	gtgcacaggg	cgcaacccga	tgccgggcag	7260
		gccatcatct	gtgcctacag	cgatgggata	gtgcggcaag	ccagtacgat	cgaggttgcg	7320
2	5	cggaatgaaa	aagtaaccgt	tccgtcgcag	ccggcggaag	ccggggaatc	gccgctggat	7380
		ctggtcaaaa	aactgcttgg	acgcattctg	aaaatggatc	cggccacact	cgataccagc	7440
2	0	cacccgctgg	agtactacgg	tgtcgattcg	atcgtggcga	tcgaactggc	tatggcactg	7500
3	0	cgcgagacat	tcccgggttt	tgaagtcagc	gagctgtttg	aaacgcaatc	catcgatacc	7560
		ttgttgggct	ctcttgagca	ggatacteta	cttgctaccc	tcacagetee	gccgcaacaa	7620
3	5	gacatgctgc	agcagctgaa	acaactgctg	gcgcgtacgc	tgaagctgga	cattacgcag	7680
		atcgacacga	gcaagacgct	ggagagctat	ggtgtcgact	ccatcgtcat	catcgaatta	7740
,	Λ	gccaacgcct	tgcgtgagcg	ctateegage	ttggacgcgt	cacagctgat	ggaaacctta	7800
4	0	tegategace	ggetggttge	ccaatggcag	gcaacggagc	cegeegtace	ggcagagcca	7860

	acagcggaac	cgccggtagc	cgacgaagac	gccgctgcca	tcatcggact	ggccggccgc	7920
	tttccaggcg	cggacacgtt	ggaggagttc	tggaacaacc	tgcgcaacgg	ccaaagcagt	7980
5	atgggagagg	tgccaggcga	gċgctgggat	caccagcact	acttcgacag	tgaacgccag	8040
	gcaccgggca	agacgtatag	ccgctggggt	gcgtttctga	gggacataga	cggcttcgat	8100
10	gcagccttct	ttgaatggcc	cgacagcgtc	gcgctggaat	cggatccgca	agcgcggata	8160
10	tttctagagc	aggeetatge	cgggatcgaa	gatgccggct	acacgcctgg	ctcgctcagc	8220
	aagagccaac	gcgtaggtgt	attcgtaggt	gtgatgaatg	gttactacag	cggcggagcg	8280
15	egettetgge	aaatcgccaa	ccgcgtgtcg	taccagttcg	attttcgcgg	gccaagcctg	8340
	gcggtggata	ccgcctgttc	ggcttcgctc	accgcgatcc	acctggcgct	ggaaagcctg	8400
20	cgcagcggca	gttgcgaggt	cgcactggcc	ggtggcgtga	atctgctggt	cgatccgcag	8460
20	caatatetta	atttggctgg	cgccgcgatg	ctctccgccg	gcgccagctg	teggeegtte	8520
	ggcgaggccg	cggacggttt	cgtggccggc	gaagcctgcg	gegtggtget	gctcaagccg	8580
25	ctcaagcaag	cgagggccga	tggcgatgtg	atccatgccg	taatcagggg	cagcatgatc	8640
	aatgccggtg	ggcacaccag	cgcgttctcc	tegeetaace	ctgccgccca	ggccgaagtc	8700
20	gtgcggcagg	ccttgcagcg	cgcgggcgtg	gegeeegatt	cgatcagcta	catcgaggcg	8760
30	catggcaceg	gcaccgtact	aggcgatgca	gtggagttgg	gtgctttgaa	taaagtgttc	8820
	gacaagegeg	cggcgccatg	cccgatcggc	tegetgaagg	cgaacatcgg	ccatgccgaa	8880
35	agcgccgcgg	gcatcgccgg	cctggccaag	ctggtattgc	agttcaggca	, tggcgagttg	8940
	gtgcctagtc	tgaatgcgtt	toccttgaat	ccctatattg	agtteggteg	cttccaggta	9000
40	caacagcagc	cggcaccgtg	geegegeegt	ggcgcccagc	cacaacacac	cgggttatct	9060
40	gccttcggtg	ctggcggatc	gaatgcgcac	ctagtggtag	aggaagetee	ggctatggct	9120

	cccggggtct	cgatcagcgc	cagctctcca	gccttgatcg	tgctttcggc	gcgaacgetg	9180
	cctgccttgc	aacagcgtgc	tegegatetg	ctcgtctgga	tgcaagcgcg	gcaggtggat	9240
5	gacgtcatgc	tggccgacgt	tgcttatacg	ctgcacttgg	gccgcgtcgc	gatggagcaa	9300
	cgcctggctt	ttaccgctgg	ctcggctgcc	gagttgagcg	agaaattaca	ggcttacctg	9360
10	ggccatgcga	ttcgggccga	catctatctg	agcgaggaca	сдсссддсаа	accggcaggc	9420
10	gctccgatcg	tggccgagga	agatetgete	acgetgatgg	atgcctggat	cgaaaagggc	9480
	cagtacggtc	gtttgctgga	gtactggacc	aagggccaac	cgatcgactg	gaacaaactc	9540
15	tattggcgca	agctgtatgc	ggacggacgg	ccgcggcgga	tcagcctgcc	cacctateeg	9600
	ttcgagcacc	ggcgttattg	gcaaacgccg	gtgccgggcg	agcgaagcct	gcacgccacc	9660
20	gcgccagcta	ctcgggaaac	ggttgcggtt	ggtgccatgc	cggatccggc	cggcgctacg	9720
20	gtgcaagccc	ggttgtgcgc	cttgtgccaa	gtgttgttgg	gcaaaccggt	cacggcccag	9780
	atggatttct	ttgccgtcgg	cggccattcg	gtgctggcga	tccaattggt	ctcgcgcatc	9840
25	cgcaaaagct	tcggggtgga	gtatccggtc	agcgctttgt	tcgaatcggc	gctgttgtcg	9900
	gacatggcgc	ggcagatcga	acaattgcgg	gtgaacggag	tcgccaagcg	catgccggcg	9960
20	ttgttgcctg	ccgggcgcgt	gggcgcgatt	cctgcgactt	atgcacagga	gcgcctatgg	10020
30	ctcgtccacg	aacatatgag	tgagcaacgc	agtagttaca	acatcacctt	tgccatgcac	10080
	ttcagaggcg	tcgacttccg	tgctgaagcg	atgcgtgccg	cattgaacgc	gctggtggtg	10140
35	cggcacgaag	tgctgcgcac	acgctttctt	tcggaggacg	ggcagctgca	acaggtgatc	10200
	gctgcctcgt	tgacgttgga	ggtgccggta	agagagatgt	cggtcgagga	ggtcgacctg	10260
40	ctgctggccg	, cgagcacgcg	ggagactttc	gatetgegge	: aggggccctt	gttcaaggca	10320
40	cgcatcctgc	: gcgtggcggc	gatcaccat	gtggtgttga	ı gcagcatcca	ccacatcatt	10380

		tccgacggct	ggtcgctggg	agtgttcaac	: cgtgacctgo	: accagctgta	cgaggcgtgt	10440
		ttgcgcggca	cgcccccac	actgccgacg	ctggcggtgc	agtatgccga	ctacgcgctg	10500
	5	tggcaacggc	aatgggagct	ggcggctccg	ctgtcgtact	ggacgcggg	actggaaggc	10560
		tacgacgacg	gcctggactt	gccctacgac	cggccgcgcg	gegecaegeg	ggcgtggcgg	10620
	10	gcagggctgg	tcaaacaccg	ctatccgccg	caactggccc	agcagttggc	ggcctacage	10680
		caacagtacc	aagcgacgct	gttcatgagc	ctgctggcag	gcctggcgtt	ggtgctgggc	10740
		cgttacgccg	ategeaagga	cgtgtgcatc	ggcgcgacgg	teteeggeeg	cgaccagctg	10800
	15	gagctggaag	agetgategg	ctttttcatc	aatattttgc	cgctgcgggt	ggacctgtcg	10860
		ggggatccgt	gcctggagga	ggtgctgctg	cgcacgcgtc	aagtggtact	ggatggette	10920
20	20	gcgcaccagt	cggtgccgtt	cgagcacgtg	ttgcaggcgc	tgcggcgtca	gcgcgacagt	10980
		agccagatcc	cgctggtgcc	ggtgatgctg	cgacaccaga	acttcccgac	gcaggagatt	11040
	•	ggcgattggc	ccgagggagt	gcggctgacg	cagatggagc	tggggctgga	ccgtagcacg	11100
2	25	ccgagcgagc	tggattggca	gttctacggc	gacggcagct	cgctggagct	gacgctggaa	11160
		tacgcgcagg	acctcttcga	cgaagcgacg	gtgeggegga	tgatcgcaca	ccaccagcag	11220
3	80	gcgttggagg	cgatggtgag	ccggccacag	ctgcgggtgg	gcaagtggga	catgctgacg	11280
		gccgaagagc	gccggctgtt	tgccgcgcta	aatgegacag	gtacgccacg	ggagtggccc	11340
		agtotggogo	agcagttcga	acggcaggcg	caggcgacgc	cgcaggccat	cgcgtgcgtg	11400
35	5	agcgatgggc	agtcgtggag	ctatgcgcag	ttggaggege	gcgccaacca	gctggcacag	11460
		gcgctgcggg	ggcagggcgc	gggccgggac	gtgcgggtgg	cggtacagag	tgcgcgcacg	11520
4	0	ccggaactgc	tgatggcctt	gctggcgatc	tttaaggccg	gtgcgtgcta	tgtgccgatc	11580
•	~	gatccggcct	acccggcggc	ctaccgcgag	cagatectgg	ccgaggtgca	ggtgtcgatc	11640

	gtgctggagc	aagacgagct	ggcgctggac	gagcaagggc	agttccacaa	tccgcgttgg	11700
	cgcgagcaag	cccgacgcc	getggggetg	agggagcatc	cgggcgacct	ggcgtgcgtg	11760
5	atggtgacct	ccggctcgac	cggccggccc	aagggcgtga	tggtgccgta	tgcgcagctg	11820
	tacaactggc	tgcatgcagg	ctggcagcgt	tctccgttcg	aggccgggga	gcgggtgctg	11880
10	cagaagacct	cgatcgcctt	tgcggtgtcg	gtaaaggagt	tgctaagcgg	gctgctggcg	11940
 -	ggggtggaac	aggtgatgct	gccggacgag	caggtgaagg	acagcctggc	gttggcgcgg	12000
	gcgattgagc	aatggcaggt	gacgcggctg	tacctagtgc	catcgcacct	gcaggcgctg	12060
15	ctggacgcga	cgcaaggacg	agacgggcta	ctgcactcgc	tgcgtcacgt	ggtgacggcg	12120
	ggggaagcgt	tgccgtctgc	ggtgcgcgaa	acggtgcggg	cgcgtctgcc	acaggtgcag	12180
20	ctatggaaca	actacggctg	cacggaactg	aacgacgcga	cctaccaccg	gtcggatacg	12240
20	gtggcgccag	gaacgtttgt	gccgatcggc	gcaccgatcg	ccaacaccga	ggtatacgtg	12300
	ctggaccggc	agctgcggca	ggtgccgatc	ggggtgatgg	gcgagctgca	cgtacacagc	12360
25	gtggggatgg	cgcgcggcta	ctggaaccgg	ccggggctga	cggcctcgcg	cttcatcgcg	12420
	cacccgtata	gcgaggagcc	gggcacacgg	ctgtacaaga	ccggtgacat	ggtacgccgg	12480
20	ctggcggacg	ggacgctgga	atacctgggc	cgacaggact	tcgaggtcaa	ggtgcgcggc	12540
30	caccgggtgg	atacgcggca	ggtggaggcg	geettgeggg	cgcagcccgc	ggtggccgag	12600
	gcggtggtga	gcggtcaccg	ggtggacggg	gacatgcagt	tggtggccta	tgtggtggcg	12660
35 .	cgtgaagggc	aggcaccgag	cgcgggcgag	ttgaaacaac	agctgtcggc	gcagttgccg	12720
	acctacatge	tgccgaccgt	gtaccagtgg	ctggagcagt	tgeegegget	gtecaaegge	12780
40	aagttggacc	ggttggccct	gccggcaccg	caggcggtac	acgcgcagga	gtacgtcgcg	12840
40	ccacgcaacc	aggccgagca	acggctggcg	gcactgtttg	ccgaggtgct	gcgggtggag	12900

	caggtaggca	tccacgacaa	cttcttcgcc	ttgggtgggc	actcgctgtc	tgcatcgcaa	12960
	ctgatctcgc	gtattgccag	ggatatggcg	ategatetge	ccctggccat	gctgttcgag	13020
5	ctgcccacgg	tagcgcagct	tagcgaatcc	ctcgccagcc	atgcacgcga	cagcgattac	13080
	gatgtcatcc	ccgcaagcac	cgaggaggcg	accattccgc	tttccactgc	gcaggagcgc	13140
10	atgtggttcc	tgcacaagtt	cgtgcaggag	acgccgtaca	acaccccggg	tctcgcctta	13200
10	ttgcaaggcg	aactggacat	tteggeettg	caggtagcat	ttegetgtgt	gctagaacgg	13260
	cacgccgtgc	tgcgtaccca	tttcgtggaa	accgagcagc	aatgcgtaca	ggtcattggc	13320
15	gcagcagagc	agttegtget	gcagcttagg	tcgattcgcg	acgaggctga	tctgcatggc	13380
	ctattgcaca	cagccgtcag	cgaacccttc	gatttagaac	gcgagctgcc	attgcgcgcc	13440
20	ctgctgtatc	gcctggacga	ccggcggcat	tacctagcag	tggtcatcca	tcacatcgtc	13500
20 .	ttcgacggct	ggtcgacctc	aatcctgttt	cgtgagctgg	ccacgcacta	tgctgcatgc	13560
	cgccatggcc	aatccgcgcc	tttgccaccg	ctggagctta	gctatgccga	ttacgcacgc	13620
25	tgggagcgtg	cgaggctgaa	ccaggaagac	gcgctgcgca	agctcgaata	ttggaaaacg	13680
	cagcttgccg	atgcaccgcc	gctggtgttg	cccacgacct	atgcgcggcc	ggttttccag	13740
30	aacttcaatg	gcgcgactgt	ggcgcttcag	atcgagccgc	cgctgctgca	acgcctgcag	13800
30	cgtttcgccg	acgcacacag	ctttacattg	tacatgctac	ttctggcagc	actgggcgtc	13860
	gtattgtcgc	gccatgcccg	gcagaagcat	ttctgcattg	gcagtccggt	cgccaatcgc	13920
35	gcccgagccg	agttgcacgg	tttgatcggt	ttgttcgtca	acaccetgge	ggtacggctc	13980
	gatttggacg	gcaatcccag	cgtgcgcgag	ctgctcgaac	gcatecactg	caccacgetg	14040
40	gccgcctacg	agcaccagga	tgtgccgttc	gaaagaatcg	tggaaagcct	gaaggtaccg	14100
TV	cgcgataccg	cgcgtaaccc	gctggggcag	gtgatgctca	atttccagaa	catgccaatg	14160

	teggegtteg	acctggatgg	tgtccaggtg	caggtgctcc	ccatgcacaa	cggcacggcc	14220
	aagtgcgagc	tgaccttcga	cctgctgctg	gatggctcac	gcctatccgg	tttcgtcgaa	14280
5	tacgccactg	ggetgtttgc	gccggaatgg	gtccaggcgc	tggtacagca	attcaagtgt	14340
	gtgctggcgg	cattggtgga	acggccggag	gcatcgctga	atgatttgcc	catggcgccc	14400
10	aacgaggcgc	aaccggcgtc	gccggcattg	atgaagcatg	tegegeegag	cttgcccaac	14460
10	ttacttgagg	ctatggcggc	caatgatgcc	gcacgcctcg	ccttgcaagc	gccggaaggt	14520
	gcgctcagtt	acgeteaget	aatcgaggca	gcaaacgagt	tegeetggeg	tttgeggtge	14580
15	gagcacgccg	gtccggacaa	agtcgttgcc	ctgtgcctag	cgccttgctc	cgccttggtg	14640
	gttgctttgc	tggccgcttc	attatgcggt	gcggcgagcg	tgctgatcga	tccgacgacg	14700
20	actgccgagg	cgcaatacga	ccagttgttc	gaaacgcggg	ccggcatcgt	ggtgacctgt	14760
20	tctagcttgc	tggagaagtt	gccgctcgac	gaccaggctg	tagtgctgat	cgacgagcaa	14820
	gctgcagaag	cgacgccgcg	tttgatgcat	ttcaccgacg	atccagcttt	gcccgcaatg	14880
25	ctgtattgtg	tgtgtgacga	aaaggggcga	acccgcacga	tcatggtcga	aagcggcagt	14940
	ttgtcgagtc	gcctgctcga	tagcgtgcag	cgtttcagtc	tcgaacgcac	cgatcgcttc	15000
30	ctgctgcgca	gecegettte	tgccgaactg	gcgaataccg	aagtactgca	atggttggcg	15060
	gcaggcggca	gcctcagcat	cgcacccatg	catggcgatt	tcgatgccgc	tgcctggctg	15120
	gagacecteg	cgacgtacgc	gatcaccgtg	gcctacctgg	ctcaagttga	attgaccgag	15180
35	atgctggcgc	atctgcaaaa	ccatcctctt	gagcgcaaca	agctggccgg	cttacgcgtg	15240
•	ctggtggtgc	atggcgcgcc	cttgccgatc	gcgccactga	tgcgcctaga	cgcgtggttg	15300
40	cgagaggtgg	geggtteege	acggatcttc	gccgcctacg	ggaatgccga	gttcggtgcc	15360
40	gaaatattga	ı gccaggatgt	cagegetgea	ttgcaagegg	gtattggcgc	tcaatacaag	15420

	categeegtg	gtctgttccc	gttgggtgcc	aactcgatgt	gtcacgtggt	gcagagcaac	15480
	ggccgcatcg	cgcçcgacgg	catggttggt	gaattgtgga	tcacacagcc	agcctgcttg	15540
5	tacaaaaccg	atgcattggt	gcgtcgcctg	gcaaatgggc	aactggaatg	gttgggctcc	15600
	ctcgatgtcc	agtcgcgtat	cgatgatccc	cgcatcgatc	tgtgcgtcgt	ggaggcacaa	15660
10	ctgcgcttgt	gcgaagacgt	cggcgaagcg	gtagtgctgt	atgagccgtt	gaagegetge	15720
	ttggtagcct	atctctcggc	ccgtagcaca	gctgcaatca	tgaccgacga	gacgetggee	15780
	aggateegee	aggccctgag	cgaaaccttg	ccggattatc	tactgcctgc	aatctgggtg	15840
15	ccgctcgcgc	actggccacg	cttaccccat	gggcgggtcg	acctcggcgc	cttgcctgca	15900
	ccggatttcg	atcttgcgcg	gcatgagtcg	tacatagege	cacgcacagc	cgtcgaacag	15960
20	geegtggeeg	aaatatggca	acgcgtgttg	aagcgtaccc	aggtcggcgt	gcatgacaat	16020
	ttcttcgagc	tgggcggcca	tteggtgetg	gcgatccagc	tggtgtccgg	cttgcgcaag	16080
	gctttggcca	tcgaagtgcc	ggtcaccctg	gtgttcgagg	cgccgatact	gggggcgctg	16140
25	gcgcggcaga	tegeceeett	gttggtcage	gaacggcgtc	cgcgcccgcc	tggcctgacg	16200
	cgcctggagc	atacagggcc	gattccggct	tcgtatgcac	aggagcggtt	atggctggtg	16260
30	cacgagcata	tggaggagca	gcgaaccagc	tacaacatca	gtaacgcagc	gcatttcatc	16320
30	ggagcagcct	tcagcgtcga	agcgatgcgt	gccgcattga	acgcgctggt	ggcgcggcac	16380
	gaagtgctgc	gcacacgctt	tctttcggag	gacgggcagc	tgcaacaggt	gatcgctgcc	16440
35	tcgttgacgc	tggaggtgcc	ggtacgcgag	gtgtcggccg	aggaggtega	cctgctgctg	16500
	gccgcgagca	cgcgggagac	tttcgatctg	cggcaggggc	ccttgttcaa	ggcacgcatc	16560
40	ctgcgcgtgg	cggccgatca	ccatgtggtg	ttgagcagca	tccaccacat	catttccgac	16620
10	ggctggtcgc	tgggagtgtt	caaccgtgac	ctgcaccagc	tgtacgaggc	gtgtttgege	16680

	ggcacgcccc	ccacactgcc	gacgctggcg	gtgcagtatg	ccgactacgc	gctgtggcaa	16740
	cggcaatggg	agctggcggc	tccgctgtcg	tactggacgc	gggcactgga	aggctacgac	16800
. 5	gacggcctgg	acttgcccta	cgaccggccg	cgcggcgcca	cgcgggcgtg	gcgggcaggg	16860
	ctggtcaaac	accgctatcc	gccgcaactg	gcccagcagt	tggcggccta	cagccaacag	16920
10	taccaagcga	cgctgttcat	gagcctgctg	gcaggcctgg	egttggtget	gggccgttac	16980
10	gccgatcgca	aggacgtgtg	catcggcgcg	acggtctccg	gccgcgacca	gctggagctg	17040
	gaagagetga	tcggcttttt	catcaatatt	ttgccgctgc	gggtggacct	gtcgggggat	17100
15	ccgtgcctgg	aggaggtgct	gctgcgcacg	cgtcaagtgg	tactggatgg	cttcgcgcac	17160
	cagtcggtgc	cgttcgagca	cgtgttgcag	gcgctgcggc	gtcagegega	cagtagccag	17220
20	atcccgctgg	tgccggtgat	gctgcgacac	cagaacttcc	cgacgcagga	gattggcgat	17280
20	tggcccgagg	gagtgcggct	gacgcagatg	gagctggggc	tggaccgtag	cacgccgagc	17340
	gagctggatt	ggcagttcta	cggcgacggc	agctcgctgg	agctgacgct	ggaatacgcg	17400
· 25	caggacctct	tcgacgaagc	gacggtgcgg	cggatgatcg	cacaccacca	gcaggcgttg	17460
	gaggcgatgg	tgagccggcc	acagetgegg	gtgggcaagt	gggacatgct	gacggccgaa	17520
30	gagcgccggc	tgtttgccgc	gctaaatgcg	acaggtacgc	cacgggagtg	gcccagtctg	17580
30	gcgcagcagt	tcgaacggca	ggcgcaggcg	acgccgcagg	ccatagcatg	cgtgagcgat	17640
	gggcagtcgt	ggagetatge	gcagttggag	gcgcgcgcca	accagctggc	acaggcgctg	17700
35	cgtgggcagg	gcgcgggccg	ggacgtgcgg`	gtggcggtac	agagtgcgcg	cacgccggaa	17760
	ctgctgatgg	ccttgctggc	gatcttcaag	gccggtgcat	gctatgtgcc	gatcgatccg	17820
40	gcctacccgg	cggcctaccg	cgagcaaatc	ctggccgagg	tgcaggtgtc	gatcgtgctg	17880
4V	gagcaaggcg	agctggcgct	ggacgagcaa	gggcagttcc	gcaatcggcg	ttggcgcgag	17940

	caageceega	cgccąctggg	gctgagggga	cateegggeg	acctggcgtg	cgtgatggtg	18000
•	acctccggct	cgaccggccg	gcccaagggc	gtgatggtgc	cgtatgcgca	gctgcacaac	18060
5	tggctgcatg	caggetggca	gcgttctgcg	ttcgaggccg	gggagcgggt	gctgcagaag	18120
	acctcgatcg	cctttgcggt	gtcggtaaag	gagttgctaa	gegggetget	ggcgggggtg	18180
10	gggcaggtga	tgctgccgga	cgagcaggtg	aaggacagcc	tggcgttggc	gegggegate	18240
	gagcaatggc	aggtgacgcg	gctgtaccta	gtgccgtcgc	acctgcaggc	gctgctggac	18300
	gegaegeaag	gacgcgacgg	gctactgcac	tegetgegte	acgtggtgac	ggcgggggaa	18360
15	gegttgeegt	cggcggtggg	cgaagcggtg	egggtgegee	tgccacaggt	gcagcțatgg	18420
	aacaactatg	gctgcacgga	actgaacgac	gcgacctacc	atcggtcgga	tacggtggcg	18480
20	ccaggaacgt	ttgtgccgat	cggcgcaccg	atcgccaaca	ccgaggtata	cgtgctggac	18540
	cggcagctgc	ggcaggtgcc	gatcggggtg	atgggcgage	tgcacgtaca	cagcgtgggg	18600
	atggegegeg	gctactggaa	ccggccgggg	ctgacggcct	cgcgcttcat	cgcgcacccg	18660
25	tatagcgagg	agccgggcac	acggctgtac	aagaccggtg	atatggtacg	ccggctggcg	18720
	gacgggacgc	tggaatacct	gggccgacag	gacttcgagg	tcaaggtgcg	cggccaccgg	18780
30	gtggatacgc	ggcaggtgga	ggcggccttg	cgggcgcagc	ccgcggtggc	cgaggcggtg	18840
50	gtgagcggtc	accgggtgga	cggggacatg	cagttggtgg	cctatgtggt	ggcgcgtgaa	18900
	gggcaggcac	cgagcgcggg	cgagttgaaa	caacagctgt	cggcgcagtt	gccgacctac	18960
35	atgctgccga	ccgtgtacca	gtggctggag	cagttgccgc	ggctgtccaa	cggcaagttg	19020
	gaccggttgg	cgctgccggc	gccgcaggtg	gtacacgcgc	aggagtacgt	cgcgccacgc	19080
40	aacgaggccg	agcaacggct	ggcggcactg	tttgccgagg	tgctgcgggt	ggagcaggtg	19140
T U	ggcatccacg	acaacttctt	cgccttgggt	gggcactcgc	tgtctgcatc	gcaactgatc	19200

	tegegeatee	gccaaagttt	tcacgtcgat	ctgccgctga	gccggatett	cgaggcaccc	19260
	acgatcgagg	gcctggtcag	gcagctagcg	ttgcctagtg	aaggeggegt	ggccagcatc	19320
5	gccagggtag	cgcgaaaccg	gacgatccca	ttgtcgctgt	tccaggaacg	cctgtggttc	19380
	gtgcaccaac	acatgcctga	gcaacgcacc	agttacaacg	gcacgctcgc	cttgcgtttg	19440
10	cgtggtcctt	tgtcggtgga	agcgatgcgt	gcagcgctgc	gtgcgttagt	gctgcgccac	19500
	gaaatcttgc	gtacccgctt	cgtgttgccg	accggtgcta	gcgagccggt	gcaggtcatt	19560
	gacgagcaca	gcgatttcca	gctctcagta	cagctagtcg	aggatactga	gatcgcgtcg	19620
15	ctgatggatg	aactggcaag	tcatatctac	gacttagcca	acggcccgct	gttcattgca	19680
	tgccttttgc	aactggatga	gcaagaacat	gtgctgctaa	teggeatgea	tcaccttatc	19740
20	tacgacgctt	ggtcgcaatt	caccgtgatg	aaccgcgatc	tacgcgtgct	gtatcaccgc	19800
20	cacctcggac	ttgccggcgg	agatetgeeg	gaattaccga	tccaatatgc	cgactatgcg	19860
	atctggcaac	gcgcccagaa	cctggacgcg	caactggcct	attggcaggc	tatgttgcac	19920
25	gactacgacg	acggcctgga	gctgccctac	gactatecge	gtccgcgcaa	tegeacetgg	19980
•	cacgcagcgg	tctacacaca	cacctatecg	gctgaactgg	tacagcgctt	tgccggcttc	20040
20	gtacaggege	atcagtcgac	cttgttcatc	gggctgttgg	ccagcttcgc	ggtcgtgttg	20100
30	aacaaataca	ccggccggga	cgacttgtgc	ateggtacea	ccacggcagg	gcgcacgcac	20160
	ctggagctgg	agaacctgat	cggtttcttc	atcaacatct	tgcctttgcg	cttgcgcttg	20220
35	gacggcgatc	cggacgttgc	cgaaatcatg	cggcgaacac	ggttggtggc	gatgagcgcg	20280
	tttgagaacc	aggegetaçe	gttcgagcac	ctgctcaacg	ccctgcacaa	gcaacgtgac	20340
	accagccgga	ttccgctagt	tccggtggtg	atgcgtcate	agaacttccc	ggacacgatc	20400
40	ggcgactgga	gcgatggcat	ccgtaccgaa	gtgatccago	gegatetgeg	tgccaccccc	20460

Application of Royer, et al.

aatgaaatgg acctgcaatt cttcggcgac ggtacggggc tttcggtcac agtggaatac 20520 geggeggage tgtteteaga agegaecatt egeegeetga tecaccatca ecaactegte 20580 5 ctggagcaga tgttggeggc ccatgaaagc gccacgtgcc ccttggatgt tgccgactag 20640 -21 <210> 10 Xanthomonas albilineans <400> 21 atggattcag cgttacctac atctgcattt accttcgatc tcttttacac cacggttaac 60 15 gectactate geactgeege agteaaggeg gegategaae tggggetatt egatgtggtg 120 gggcagcagg gccgaactcc cgcagccatc gccgaggcct gccaggcgtc gccgcgcggc 180 20 attegeatee titgetatta cetagtateg ateggttite taegeegeaa eggtggeetg 240 300 ttctacatag ategeaacat ggecatgtac etggategta gttegeeegg etacetgggt ggcagcatca agttcctgct ctcgccctac atcatgagcg ccttcaccga tctgaccgcc 360 25 gtagtcagga ccggcaagat caacctggcg caggacggcg tggtggcacc ggatcacccg 420 cagtgggtgg aatttgcacg cgcgatggca ccgatgatgg cgctgccctc ggcgttgatc 480 30 gccaatatgg tgtcgttgcc cgctgatcgg ccgattcgtg tgctggacgt ggcagccggc 600 cacggcetgt teggcatege ettegegeag egetteegee aggetgaagt gagetteetg 660 gactgggaca acgtgctaga cgtagcacgc gaaaacgccc aggcggccaa agtggccgag 35 cgagcgcgtt tcctgcccgg caacgcattc gacctcgatt acggcagcgg ctacgacgtg 780 atcttgttga ccaacttcct gcaccatttc gatgaggtcg atggcgagcg catcttggct

aagacgcgcg atgcgctgaa cgacgacggc atggtgatca ctttcgaatt catcgccgac

40

Application of Royer, et al.

gaagagegtt cetcacegee getggeegee acetteagea tgatgatget gggeaceace ccggcgggcg agtcctacac ctatagcgat ctggaaagga tgtttcggca tgccggcttc 960 5 ggccacgtgg aactaaaatc gatacegccg gccttgctga aagtggtggt ttcccgcaag 1032 agggccccat aa 10 <210> 22 504 <212> DNA <213> Xanthomonas albilineans 15 <400> 22 atgategaat eggegacate eeetgtggeg aaaacegage geatetggtg cacegagetg 60 gacctggatg cactcaacgc catgteggcc aacacgatgc aggccctgct cggtatacgc 120 20 atgategaga teggetegga etatetggte teetgeatgt eggtggaetg gegttgeeae 180 cagecetatg gggtattgea tggeggegea teggteacee tggeegagge taeeggeage 240 atggeggeet ecatgtgegt geeggeegge caaegttgeg ttggeetaga cateaatgee 300 25 aaccacatcg cgagcatctc cagtggccaa gtacagtgca tcgcgcggcc gctgcacata 360 420 ggggcettga cccaggtatg gcagatgcgc atctatgacg aaggtgaccg cacgatctgc 30 gtgtcgcgcc tgaccatggc ggtattatcg gtgcacgtcg cgcgcgtatc cccgaatcca 480 gccagcagcg gagtccagac gtga 504 35 <210> 23 2826 Xanthomonas albilineans 40 <400> 23 gtgaacgaaa ctgcaactgt aaccaaggct accctcagtt cagcgaaggc gagtataacg

159

				160		Application of Roye	r, et al
	ccagcctgcg	ttcaccaatg	gtttgaagcg	caggtgagtt	cgacaccgga	tgegeetget	120
	gccttcttag	gcgagcgtcg	aatgagttat	ggccagctca	acacccgcgc	caatcggctt	180
5	gcacggctgt	tgcagtcaca	gggcgttggg	cctggtgccc	gggtcgcggt	gtggatgaat	240
	cgcagccccg	aatgeetgge	cgctttgctg	gcggtcatga	aggccggggc	agcttatgta	300
10	ccgatcgacc	tgageetgee	gatccgacgt	gtccaataca	tcttgcagga	cagccaggcc	360
10	cggctcgtac	tggtcgatga	cgaagggcaa	ggccgcctgg	acgaacttga	gctgggcgcg	420
	atgactgccg	tcgatgtctg	cggcactctg	gacggcgacg	aggcgaatct	ggacctgcct	480
15	tgcgatccgg	egeageeggt	ttattgcatc	tatacctccg	gctccacagg	tagccccaag	540
	ggcgtgctgg	tacggcacag	cgggttggct	aactacgtgg	cctgggctaa	gcggcaatac	600
20	gttacggctg	acacgacgag	tttcgccttt	tactcctcgc	tgtcgttcga	tctgaccgtc	660
20	acctcgatct	acgtgcccct	ggtggetgge	ctgtgtgtgc	atgtgtaccc	ggagcagggc	720
	gacgacgtgc	cggtaatcaa	ccgcgtgctg	gacgacaacc	aagtagacgt	gatcaagctg	780
25	acaccctcgc	acatgctgat	gctgcgcaac	geggeaetgg	cgacgteteg	gctgaagacg	840
	ctgatcgtgg	gtggcgagga	cctgaaagcg	gcggtggcgt	acgacatcca	tcagcggttc	900
30	cgccgcgatg	tggcgatcta	caacgaatac	ggtcctaccg	aaaccgtagt	ggggtgcgcg	960
30	atccatcgtt	acgatecgge	gaccgaacgc	gaaggetegg	tgccgattgg	tgtgccgatc	1020
	gatcacacca	gcctccacct	gctcgatgaa	cgtctgcagc	cggtcgcacc	gggcgaggtc	1080
35	ggccagatcc	acatcggtgg	cgcgggcgtg	gccatcggct	atgtgaacaa	geeggagate	1140
	accgatgcgc	aattcattga	caatcccttc	gaaggcagcg	gccggcttta	cgccagtggc	1200
40	gacctaggac	gcatgcgtgc	cgacggtaag	cttgaattcc	ttggccgcaa	ggattcgcag	1260
-fU	atcaagctgc	geggetaceg	catcgaactg	ggcgagatag	agaacgttct	gcttggccac	1320

	gcagcettgc	gcgaatgcat	cgtggatacc	accgtggcgc	cgcgccgcga	ctatgacagc	1380
	aagagcttgc	gctattgcgc	gcgttgcggt	atcgcttcaa	atttccccaa	taccagette	1440
5	gacgagcacg	gtgtctgcaa	ccattgccac	gcctacgaca	aataccggaa	cgtggtcgag	1500
	gattatttcc	ggaccgaaga	tgagctacgt	actatcttcg	agcaggtcaa	ggcgcacaac	1560
10	aggeteeget	acgactgcct	ggtggctttc	agcggcggca	aggacagcac	ctatgcgcta	1620
10	tgccgcgtag	tggacatggg	cctgcgcgtg	ttggcgtaca	ccctggacaa	tggctacatc	1680
	teegaegagg	ccaaggcaaa	cgtcgaccgc	gtcgtgcgcg	agctgggggt	ggaccatcgc	1740
15	tatctgggta	ctccacacat	gaacgccatc	ttcgtggaca	gcctgcatcg	ccacagcaac	1800
	gtctgcaacg	gctgcttcaa	gaccatctat	acgctgggta	tcaacctggc	gcacgaagtg	1860
20	ggcgtaagcg	acattgtaat	gggcctgtcc	aaaggacagc	tgttcgagac	gegeetgtet	1920
20	gagctgtttc	gcgccagcac	cttcgacaac	caggtatttg	agaagaacct	gatggaggcg	1980
	cgcaagatct	accatcgcat	cgacgacgcg	geggeeegee	tgctggacac	ctcttgcgtg	2040
25	cgcaacgatc	gcttgctcga	aagtacgcgt	ttcatcgact	tctaccgcta	ctgcagtgtc	2100
	agccgcaagg	acatgtatcg	ctatatcgcc	gagcgcgtag	gctggagccg	teeggetgae	2160
30	accggccgct	cgactaactg	cctgctcaac	gatgtgggca	tctacatgca	caagaagcaa	2220
30	cgtggctatc	acaactattc	gttgccctac	agttgggacg	tgcgggtagg	ccatatccca	2280
•	agggaagacg	cgatgcgcga	gctggaggac	accgacgata	tagacgaggc	caaggtactg	2340
35	ggcctgctca	agcagatcgg	ctatgactca	agcctgatcg	atacccaggo	gggcgatgcg	2400
	cagctgatcg	cctactacgt	ggcggcggag	gaactggatc	: cggtggcatt	gcgcaatttt	2460
40	gctgctgcga	tettgeeega	gtacatgctg	ccttcgtatt	: tegtgegget	ggaccgaatg	2520
40	ccgttgacgo	: cgaatggcaa	ggtgaacege	cgagcattgo	: cgaggccgga	gttgaagaag	2580

	aacgccagcg agg	gcgcatac d	cgagccgagc	agtgcgctag	agcaggaact	ggtgcaaatc	2640
	tggaaagagg tgo	ctgatggt (cgacaaggtc	ggcgtcaggg	acaactttt	cgagctgggc	2700
5	ggccactcgc tga	agegeget (gatgttgctc	tacagcatag	ccgagcgcta	ccagaagatg	2760
	gtcagcatcc agg	gcattete (ggttaatccg	accatcgaag	gtctgtcgga	gcatctggtc	2820
	gcataa						2826
10							
	<210> 24						
	<211> 837 <212> DNA			i			
15		monas alb	ilineans				
	<400> 24						
	atgcccaatg cc	gtaccgat	gcagggcgcg	cggggactcc	cgcagccgca	agcgatgaac	60
20				##1###################################	ast bassatt	at eat to an	120
20	ccagggttgc cg	agegcegg	eggettgage	gcaggccagc	Cartycagtt	geegeeagea	120
	ceggaactge ag	gcagccgc	gcgcagtgcc	caccgccatc	tgctcgacga	cggcacggcg	180
0.5	ctttacctgc tg	gcgttcga	taccgcgcaa	ttcgacccgg	gggctttcgc	ggcaatggca	240
25	ategecegee eg	gacagcat	cgcccgcagc	gtgcgcaagc	gtcaggccga	gtteetgtte	300
	ggeegtetgg ce	gegegaet	ggcgctgcaa	gaggtgctgg	gacctgcgca	agcgcaggca	360
30	gacattgcaa to	:ggcgcgac	gegegegeee	tgctggcctg	ccggcagcct	gggcagcatt	420
	tcccattgcg ag	gactacgc	ggccgccatc	gccatggcgg	ccggcacccg	ccacggcgtg	480
35	ggcatcgatc tg	gaacgacc	aatcacaccc	gcggcgcgcg	cggcgttgct	gagcatcgca	_, 540
	atcgatgccg ac	gaagccgc	tcgtctggca	aaggcggcag	acgcgcagtg	gccgcaagac	6,00
	ctgctgctga co	egcactatt	ttcggccaag	gaaagcctgt	tcaaagccgc	ctacagegeg	660
40	gtcggacgct ac	ettegaett	cagcgcggca	cgcctgtgcg	gcatcgacct	ggcacggcaa	720

	tgcctgcatc	tgcgcctgac	cgagacactc	tgcgcgcaat	tegtggeegg	gcaagtgtgc	780
	gaggtcggct	tegegegeet	accaccggac	ctggtgctca	cccactacgc	ctggtga	837
5				_			
	<210> 25			`			
	<211> 1905						
	<212> DNA						
	<213> Xant	homonas alb	oilineans		•		
10							
	<400> 25				_		
	atgagcgtgg	aaacccaaaa	agaaaccctg	ggctttcaga	ccgaggtcaa	acagetgetg	60
	cagctgatga	tccattcgtt	gtattccaac	aaggagatct	tcctgcgcga	gctgatctcc	120
15	aatgcctccg	acgeggeega	caaactgcgc	ttegaggeae	tggtcaagcc	ggaacttctg	180
	gacggcgatg	cgcaactgcg	catccgcatc	ggcttcgaca	aggacgccgg	caccgtcacc	240
20	atroaroara	acqqcat.cqq	catoaoccoc	gaggagatcg	tcgcgcacct	gggcaccatc	300
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			33533	3 2	555	
•	gccaaatccg	gcacctccga	tttcctcaag	catctgtccg	gcgatcagaa	gaaggattcg	360
25	cacctgatcg	gccagttcgg	tgtcggcttc	tacagtgcct	tcatcgtcgc	cgatcaagtg	420
25	gacgtgtaca	geegtegege	cgggctgccg	gccagcgacg	gcgtacactg	gtcctcgcgt	480
	ggcgaaggcg	agttcgaggt	cgccaccatc	gacaagcccg	agcgcggcac	ccgcatcgtg	540
30	ctgcacttga	aggaggaaga	gaaaggcttc	gecgacggtt	ggaagttgcg	cagcatcgtg	60
	cgcaagtact	ccgaccacat	cgccttgccg	atcgagctaa	tcaaggaaca	ctacggcgag	66
						cgcgctgtgg	72
35	JJJ	5 -, 55		- <del>-</del> -			
	acacggccgc	gcaccgagat	caaggacgag	gaataccaag	aactgtacaa	gcacattgcc	78
	cacgaccacg	aaaacccggt	ggcgtggagc	cataacaagg	r tcgaaggcaa ,	actggaatac	84
40					. rataaaaa	, castacatca	90

ccaattcctg	960

Application of Royer, et al.

-	cgcgggetca	agctgtacgt	gcagcgcgtc	ttcatcatgg	accaggccga	ccaattcctg	960
	cegetgtace	tgcgcttcat	caagggcatc	gtcgattcca	gcgacctgcc	gctgaacgtc	1020
5	tegegegaaa	tectgeaate	tggtccggtg	atcgactcga	tgaagtcggc	gctgaccaag	1080
	cgcgcactgg	acatgetgga	aaagetegee	aaagacgatc	ccgaacgcta	caagggcgtg	1140
10	tggaagaact	teggeeaggt	gctgaaggaa	ggteeggeee	aggacttcgg	caaccgcgaa	1200
10	aagategeeg	geetgetgeg	cttcgcgtcc	acccacagcg	gcgacgacgc	ccagaacgtg	1260
	tegetggeeg	actacgtggc	gcggatgaaa	gacggccagg	acaagetgta	ctacctgacc	1320
15	ggggaaagct	acgcgcaaat	caaggacage	cegeaectgg	aggtgttccg	caagaagggc	1380
	atcgaggtgc	teetgeteae	cgaccgcatc	gacgagtggc	tgatgagcta	teteacegag	1440
20	ttcgacagca	aatccttcgt	cgatgtggcg	egeggegaee	tggacctggg	caagctggac	1500
20	agcgaagaag	aaaagcaggc	gcaggaagaa	gccgccaagg	ccaagcaagg	gctggccgag	1560
	cgcatccagc	aggtactcaa	ggacgaggtc	gccgaggtgc	gggtctcgca	ccggctgacc	1620
25	gattegeegg	cgattcttgc	categgeeag	ggcgacatgg	gtctgcaaat	gcggcagatc \	1680
	ctggaagcca	gcgggcagaa	getgeeggag	agcaagccgg	tgttcgagtt	caaccccgcg	1740
30	catccgctga	tcgagaaact	ggatgcggaa	cccgatgtcg	atcgtttcgg	tgatetggeg	1800
30	cgggtgctgt	tcgatcaggc	cgcgctggcc	gccggcgaca	gcctcaagga	cccggccgcc	1860
	tacgtgcgtc	ggctcaacaa	gctgttgctg	gagetgtegg	cgtaa		1905
35							

<210> 26

<211> 6879

<212> PRT

<213> Xanthomonas albilineans

40

<400> 26

	Met 1	Pro	Asn	Ala	Leu 5	Met	Gln	Ile	Thr	Leu 10	Val	Ala	Val	Gln	Phe 15	Ala
5	Gly	Val	Leu	Leu 20	Gly	Val	Thr	Ala	Arg 25	Ala	Ala	Ile	Pro	Asn 30	Lys	Ala
10 ,	Gly	Met	Arg 35	Arg	Ala	Trp	Pro	Pro 40	Phe	Pro	Gln	Ala	Сув 45	Cys	Arg	Ser
15	Ile	Ala 50	Tyr	Leu	Met [*]	Gln	Arg 55	Ser	Pro	Met	Ser	Pro 60	Leu	Gln	Gln	Thr
	Leu 65	Leu	Thr	Arg	Leu	Ala 70	Ser	Ala	Ala	Ala	Ser 75	Arg	Thr	Met	Ile	Glu 80
<b>20</b>	Phe	Pro	Arg	Pro	Glu 85	His	Ala	Ser	Pro	Gln 90	Cys	Cys	Asp	Asp	Ala 95	Glu
25	Leu	Ala	Arg	Leu 100	Ile	Val	Gln	Leu	Ser		Gly	Leu	Gln	Pro		Ala
30	Met	Pro	Gly 115		Tyr	Val	Ile	Ile 120		Ala	Pro	His	Gly 125		Leu	Phe
35	Ala	Ala 130		Leu	Leu	Ala	Cys 135		His	Ala	Asn	Leu 140		Ala	Val	Pro
	Phe 145		Leu	Asp	<b>V</b> al	Ala 150		. Pro	Asn	Glu	Arg		Gln	Ala	Arg	Leu 160
40	Glu	ı Thr	: Ile	His	: Ala	Gln	Leu	Met	: Glı	ı His	s Gly	Asn	val	. Ala	val	Leu

Application of Royer, et al. Leu Asp Asp Val Ala Asp Arg Ser Ala Phe Ala Arg Met Ala His Ala Ala Gly Thr Phe Leu Ala Thr Phe Ala Asp Leu Lys Arg Glu Ser Thr Ser Ala Ser Leu Cys Pro Ala Ser Pro Ser Asp Ala Ala Leu Leu Leu Phe Thr Ser Gly Ser Ser Gly Glu Ser Lys Gly Ile Leu Leu Ser His Arg Asn Leu His His Gln Ile Gln Ala Gly Ile Arg Gln Trp Ser Leu Asp Glu His Ser His Val Val Thr Trp Leu Ser Pro Ala His Asn Phe Gly Leu His Phe Gly Leu Leu Ala Pro Trp Phe Ser Gly Ala Thr Val Ser Phe Ile His Pro His Ser Tyr Met Lys Arg Pro Gly Phe Trp Leu Glu Thr Val Ala Ala Arg Asp Ala Thr His Met Ala Ala Pro Asn Phe Ala Phe Asp Tyr Cys Cys Asp Trp Val Met Val Glu Gln Leu Pro Pro

	Ser	Ala	Leu	Ser 340	Thr	Leu	Thr	His	Ile 345	Val	Cys	Gly	Gly	Glu 350	Pro	Val
5	Arg	Ala	Ser 355	Thr	Met	Gln	Arg	Phe 360	Phe	Glu	Lys	Phe	Ala 365	Gly	Leu	Gly
10	Ala	Arg 370	Thr	Gln	Thr	Phe	Met 375	Pro	His	Phe	Gly	Leu 380	Ser	Glu	Thr	Gly
15	Ala 385	Leu	Ser	Thr	Leu	Asp 390	Glu	Ala	Pro	Gln	Gln 395	Arg	Val	Leu	Glu	Leu 400
20	Asp	Ala	Asp	Ala	Leu 405	Asn	Lys	Arg	Lys	Arg 410	Val	Ala	Ala	Gly	Ala 415	Ser
	Gln	Ala	Arg	Val 420	Thr	Val	Leu	Asn	Cys 425	Gly	Ala	Val	Asp	Gln 430	Asp	Val
25	Glu	Leu	Arg 435		Val	Cys	Pro	Glu 440	Gly	Glu	Thr	Leu	Сув 445		Pro	Asp
30	Glu	Ile 450		Glu	Ile	Trp	Val 455		Ser	Pro	Ala	11e		Arg	Gly	Туr
35,	Leu 465		Ala	Lys	Pro	Ala 470		Gln	Arg	Gln	Phe 475		Сув	Ser	Ile	Arg 480
40	His	Thr	Asp	Asp	Ser 485		Туг	Phe	Arg	Thr 490		Asp	Leu	ı Gly	Phe 495	Ile

	Ala	Asp	Gly	Сув 500	Leu	Tyr	Val	Thr	Gly 505	Arg	Val	Lys	Glu	Val 510	Leu	Ile
5	Ile	Arg	Gly 515	Lys	Asn	His	Tyr	Pro 520	Ala	His	Ile	Glu	Ala 525	Ser	Ile	Ala
10	Ala	Thr 530	Ala	Ser	Pro	Gly	Ala 535	Leu	Met	Pro	Val	Val 540	Phe	Ser	Ile	Glu
15	Arg 545	Gln	Asp	Glu	Glu	Arg 550	Val	Ala	Ala	Val	Ile 555	Ala	Val	Asn	His	Pro 560
	Trp	Thr	Pro	Ala	Ala 565	Сув	Ala	Ala	Gln	Ala 570	His	Lys	Ile	Arg	Gln 575	Gln
	Val	Ala	Asp	Gln 580	His	Gly	Val	Ala	Leu 585	Ala	Glu	Leu	Ala	Phe 590	Ala	Glu
25	His	Arg	His 595	Val	Phe	Gly	Thr	Туг 600	Pro	Gly	Lys	Leu	Lys 605	Arg	Arg	Leu
30	Val	Lys 610		Ala	Tyr	Val	Asn 615	Gly	Gln	Leu	Pro	Leu 620	Leu	Trp	His	Glu
35	Gly 625	_	Asn	Arg	Asp	Val 630	Pro	Ala	Ala	Ala	Ala 635	Asp	ĄsĄ	Arg	Gln	Ala 640
	Gln	His	Val	Ala	Asp 645		Cys	Arg	Lys	Val 650		Leu	Pro	Val	Leu 655	Gly
40	Val	Ala	Pro	Pro	His	Ala	Gln	Trp	Pro	Leu	Cys	Glu	Leu	Ala	Leu	Asp

Application of Royer, et al.

				660					665					670		
5	Ser	Leu	Gln 675	Cys	Val	Arg	Leu	Ala 680	Gly	Ala	Ile	Glu	Glu 685	Cys	Tyr	Gly
10	Val	Pro 690	Phe	Glu	Pro	Thr	Leu 695	Leu	Phe	, Tàs	Leu	Glu 700	Thr	Val	Gly	Ala
4.5	Ile 705	Ala	Glu	Tyr	Val	Leu 710	Ala	His	Gly	Arg	Gln 715	Ala	Pro	Thr	Pro	Thr 720
15	Arg	Ala	Pro	Val	Ala 725	Ser	Thr	Thr	Cys	Ser 730	Glu	Glu	Pro	Ile	Ala 735	Ile
20	Val	Ala	Met	His 740	Cys	Glu	Val	Pro	Gly 745	Ala	Gly	Glu	Asn	Thr 750	Glu	Ala
25	Leu	Trp	Ser 755	Phe	Leu	Arg	Ser	Asp 760	Val	Asn	Ala	Ile	Arg 765	Pro	Ile	Glu
30	Ser	Thr 770	Arg	Pro	Asp	Leu	Trp 775	Ala	Ala	Met	Arg	Ala 780	Туг	Pro	Gly	Leu
	Ala 785		Glu	Gln	Leu	Pro 790	Arg	Tyr	Ala	Gly	Phe 795	Leu	Asp	Asp	Val	Asp 800
35	Ala	Phe	Asp	Ala	Ala 805		Phe	Gly	Ile	Ser 810		Arg	Glu	Ala	Glu 815	
40	Met	Asp	Pro	Gln 820	Gln	Arg	Lys	Val	Leu 825		Met	Val	Trp	Lys		Ile

•	Glu	Gln	Ala 835	Gly	His	Ąsp	Pro	Leu 840	Ser	Trp	Gly	Gly	Gln 845	Pro	Val	Gly
5	Leu	Phe 850	Val	Gly	Ala	His	Thr 855	Ser	Asp	Tyr	Gly	Glu 860	Leu	Leu	Ala	Ser
10	Gln 865	Pro	Gln	Leu	Met	Ala 870	Gln	Суз	Gly	Ala	Tyr 875	Ile	Asp	Ser	Gly	Ser 880
15	His	Leu	Thr	Met	11e 885	Pro	Asn	Arg	Ala	Ser 890	Arg	Trp	Phe	Asn	Phe 895	Thr
20	Gly	Pro	Ser	Glu 900	Val	Ile	Asn	Ser	Ala 905	Cys	Ser	Ser	Ser	Leu 910	Val	Ala
25	Leu	His	Arg 915	Ala	Val	Gln	Ser	Leu 920	Arg	Gln	Gly	Glu	Ser 925	Ser	Val	Ala
25	Leu	Val 930	Leu	Gly	Val	Asn	• Leu 935	Ile	Leu	Ala	Pro	Lys 940	Val	Leu	Leu	Ala
30	Ser 945	Ala	Ser	Ala	Gly	Met 950	Leu	Ser	Pro	Asp	Gly 9 <b>5</b> 5	Arg	Сув	Lys	Thr	Leu 960
35	qaA	Ala	Ala	Ala	Asp 965	Gly	Phe	Val	Arg	Ser 970	Glu	Gly	Ile	Ala	Gly 975	Val
40	Ile	Leu	Lys	Pro 980	Leu	Ala	Gln	Ala	Leu 985	Ala	Asp	Gly	Asp	Arg 990	Val	Tyr

	GΙΆ	Leu	Va1 995	Arg	Gly	Val	Ala '	Val 1000	Asn	His	Gly		Arg 1005	Ser	Asn	Ser
5	Leu	Arg		Pro	Asn	val	. Asn 101		Gln	Arg	Gln	Leu 102		ı Ile	: Arg	,
10	Thr	Tyr 1025		Glu	ı Ala	Gly	Val		Pro	Ala	Ser	Val 103		туг	· Val	
15	Glu	Leu 1040		Gly	Thr	Gly	Thr 1045		Leu	Gly	Asp	Pro 105		Glu	lle	
	Gln	Ala 1055		Lys	Glu	Ala	Phe 1060	Ile		Leu	Gly	Ala 106!		Ala	Ala	
20	Pro	Ser 1070		Суз	Gly	Ile	Gly 1075		Val	Lys	Ser	Ala 1080		Gly	His	
25	Leu	Glu 1085		Ala	Ala	Gly	Leu 1090		Gly	Leu	Ile	Lys 1095		Leu	Leu	
<b>30</b>	Met '	Leu 1100		His	Gly	Glu	Gln 1105		Gly	Thr	Arg	His 1110		Ser	Thr	
35	Leu	Asn 1115	Pro	Leu	Ile	Asp	Leu 1120		Gly	Thr	Ser	Phe 1125		Val	Val	•
		Gln 1130	His	Arg	Ala	Trp	Pro 1135	Ser	Gln	Val	Gly	Ile 1140		Gly	Thr	
40	Leu	Leu	Pro	Arg	Arg	Ala	Gly	Ile	Ser	Ser	Phe	Gly	Phe	Gly	Gly	

		1145					1150					1155		,	
5	Ala	Asn 1160	Ala	His	Ala	Ile	Val 1165	Glu	Glu	His	Val	Ile 1170	Ala	Thr	Pro
10	Pro	Ser 1175	Thr	Ser	Ser	Ala	Gly 1180	Gly	Pro	Val	Gly	Ile 1185	Val	Leu	Ser
	Ala	Gly 1190		Glu	Ala	Val	Leu 1195	Arg	Gln	Gln	Val	Leu 1200	Ala	Leu	Ser
15	Ala	Trp 1205	Leu	Arg	Gln	Gln	Ser 1210	Pro	Thr	Pro	Ala	Gln 1215	Met	Ile	Asp
20	Val	Ala 1220	Tyr	Thr	Leu	Gln	Val 1225	Gly	Arg	Ala	Ala	Leu 1230	Ser	His	Arg
25	Leu	Ala 1235		Ser	Ala	Thr	Asp 1240	Ala	Glu	Gln	Ala	Leu 1245	Ala	Arg	Leu
30	Glu	Gly 1250	Arg	Leu	Ala	Gly	Val 1255	Met	Asp	Ala	Glu	Val 1260	His	His	Gly
	Val	Val 1265	Asp	Ala	Ala	Ala	Thr 1270	Ala	Pro	Glu	His	Gly 1275	Arg	Gln	Thr
35	Arg	Glu 1280	Gly	Leu	Ala	Gly	Leu 1285	Leu	Arg	Ala	Trp	Thr 1290	Gln	Gly	Val
40	Arg	Val 1295	Asp	Trp	Ser	Ala	Leu 1300	Tyr	Gly	Ile	Gln	Arg 1305	Pro	Gln	Arg

	Val	Ser 1310		Pro	Val	Tyr	Pro 1315		Ala	Arg	Glu	Arg 1320	Tyr	Trp	Leu
5	Pro	Gly 1325		Ala	Met	His	Ala 1330		Ala	Asp	Ala	His 1335	Pro	Met	Leu
10	Gln	Leu 1340	Leu	His	Ala	Asn	Ala 1345		Leu	His	Arg	Tyr 1350	Ala	Leu	Arg
15	Arg	Ser 1355	Gly	Cys	Ala	Ser	Phe 1360		Val	Asp	His	Сув 1365	Val	Asp	Gly
20	Arg	Gln 1370	Val	Leu	Pro	Ala	Ala 1375	Val	Gln	Leu	Glu	Leu 1380	Val	Arg	Ala
25	Val	Ala 1385	Gln	Arg	Val	Met	Ala 1390	Gln	Ąsp	Glu	Gly	Сув 1395	Ile	Glu	Leu
	Ala	Gln 1400	Val	Ala	Phe	Leu	His 1405	Pro	Leu	Met	Met	Glu 1410	Glu	Thr	Glu
30	Leu	Glu 1415	Val	Glu {	Ile	Glu	Leu 1420	Ser	Lys	Ser	Asp	Gln 1425	Asp	Glu	Phe
35	Asp	Phe 1430	Gln	Leu	His	Asp	Ala 1435	His	Arg	Gln	Gln	Val 1440	Phe	Ser	Gln
40	Gly	His 1445	Val	Arg	Arg	Arg	Val 1450	Tyr	Thr	Ala	Thr	Pro 1455	Arg	Leu	Asp

	Leu	Ala 1460	Gln	Leu	Gln	Lys	Leu 1465	Cys	Ala	Glu	Arg	Val 1470	Leu	Ser	Gly
5	Glu	Asp 1475		Tyr	Ala	His	Phe 1480	Thr	Ala	Cys	Gly	Leu 1485	<b>Gln</b>	Leu	Gly
10	Asp	Arg 1490		Lys	Ser	Val	Gln 1495	Ser	Ile	Gly	Сув	Gly 1500	Arg	Asn	Gly
15	Glu	Gly 1505		Pro	Ile	Ala	Leu 1510	Gly	Val	Leu	Arg	Leu 1515		Pro	Ser
	Ser	Val 1520		Asp	Ser	His	Val 1525		Pro	Pro	Ser	Leu 1530		Asp	Gly
20	Ala	Leu 1535		Сув	Ser	Leu	Gly 1540		Gln	Arg	Asp	Val 1545		His	Ile
25	Ala	Met 1550		Tyr	Thr	· Leu	Glu 1555		Met	Thr	Val	His 1560		Pro	lle
30	Pro	Pro 1569		a Ala	Trp	Val	. Leu 1570		Arg	, His	Gly	His 1575		Ala	Arg
35	Glı	n Ser 1580		ı Asp	o Ile	e Asp	Leu 1585		ı Ası	Ser	Glu	1590		y Val	l Cys
	• Va	l Ser 159		ı Gly	/ Ası	а Туі	Thr 1600		/ Arg	g Ala	a Pro	160		a Vai	l Ser
40	Ala	a Val	Arg	g Ala	a Le	u Vai	l Leu	Ala	a Pro	o Vai	l Trj	o Gln	Ala	a Le	u Thr

		1610					1615					1620			
5	Glu	Thr 1625	Ala	Pro	Ala	Trp	Pro 1630	Asp	Pro	Ala	Glu	Arg 1635	Ile	Val	Thr
10	Val	Gly 1640	Asp	Asp	Ala	Trp	Arg 1645	Ser	His	Phe	Gly	Phe 1650	Asp	Glu	Pro
	Ala	Leu 1655	Ser	Leu	Glu	Asp	Ser 1660	Val	Glu	Val	Ile	Ala 1665	Thr	Arg	Leu
15	Gly	Gln 1670	Ser	Gly	Lys	Phe	Asp 1675		Leu	Val	Trp	Ile 1680	Val	Pro	Ile
20	Ala	Glu 1685	Ser	Glu	Thr	Asp	Ile 1690		Ala	Gln	Gly	Ser 1695	Ala	Ala	Ile
25	Ala	Gly 1700	Phe	Arg	Leu	Val	Lys 1705		Leu	Leu	Ala	Leu 1710	Gly	туг	Ala
30	His	Arg 1715		Leu	Gly	Leu	Thr 1720		Leu	Thr	Arg		Ala	Leu	Thr
	Arg	Gln 1730		Ser	His	Ala	Ala 1735		His	Gly	Leu	Ile 1740		Thr	Leu
35	Ala	Lys 1745		Tyr	Cys	Asn	Trp 1750		Ile	Arg	Leu	Leu 1755		Leu	Pro
40	Ser	Val 1760	_	Ser	Trp	Pro	Gln 1765		Glu	Gln	Leu	Arg 1770		Leu	Pro

•	Trp	His	Ala	Gln	Gly	Glu	Ala	Leu	Ile	Gly	Arg		Thr	Cys	Trp
_		1775					1780					1785			
5	Tyr	Arg 1790	Arg	Gln	Leu	Cys	Glu 1795	Val	Leu	Pro	Leu	Pro 1800	Ser	Leu	Glu
10	Pro	Pro 1805		Tyr	Arg	Val	Gly 1810	Gly	Val	туг	Val	Val 1815	Ile	Gly	Gly
15	Ala	Gly 1820		Leu	GļĀ	Glu	Val 1825		Ser	Glu	His	Leu 1830		Arg	Thr
20	Tyr	Asp 1835		Gln	Leu	Ile	Trp 1840		Gly	Arg	Arg	Val 1845		ĄsĄ	Glu
	Gly	lle 1850		Arg	Lys	Gln	Thr 1855		Leu	Ala	Ser	Leu 1860		Arg	Ala
25	Pro	His 1865	_	Ile	s Ser	· Ala	Asp 1870		Ser	. Asp	Pro	Ala 1875		Leu	Gln
30	Ala	Ala 1880		Asn	Glu	ı Ile	val 1885		Leu	His	Gly	Gln 1890		His	Gly
35	Lev	1 Ile 1895		ı Ser	: Asn	ı Ile	val 1900		Lys	a Asp	Ala	Ser 1905		ı Ala	. Arg
40	Met	: Glu 191(		ı Ala	a Asp	) Phe	e Arg 1915		Va]	l Lei	ı Ala	1920		Let	ı Asp

	Val	Ser 1925	Val	Cys	Ala	Ala	Gln 1930	Val	Phe	Gly	Thr	Ala 1935	Pro	Leu	Asp
5	Phe	Val 1940	Leu	Phe	Phe	Ser	Ser 1945	Ile	Gln	Ser	Ţhr	Thr 1950	Lys	Ala	Ala
10	Gly	Gln 1955	Gly	Asn	Tyr	Ala	Ala 1960	Gly	Cys	Cys	Tyr	Val 1965	Asp	Ala	Phe
15	Gly	Glu 1970	Leu	Trp	Ala	Arg	Arg 1975	Gly	Leu	Arg	Val	Lys 1980	Thr	Ile	Asn
	Trp	Gly 1985	Tyr	Trp	Gly	Ser	Val 1990	Gly	Val	Val	Ala	Gly 1995	Glu	Asp	Tyr
	Arg	Arg 2000	Arg	Met	Ala	Gln	Lys 2005		Met	Ala	Ser	Ile 2010		Gly	Ala
25	Glu	Ala 2015		Gln	Val	Leu	Ser 2020		Leu	Leu	Cys	Ala 2025		Leu	Gln
30	Arg	Leu 2030		Tyr	Val	Lys	Ile 2035		Asp ,	Ala	Asn	Ala 2040		Arg	Ala
35	Leu	Gly 2045	Val	Val	Glu	qaA	Glu 2050		Val	Gln	Ile	Pro 2055		His	Ala
	Pro	Ala 2060		Pro	Pro	Arg	Gly 2065		Pro	Gly	Pro	Val 2070		Glu	Leu
40	Ser	Val	Asn	Leu	Asp	Ala	Arg	Arg	Glu	Arg	Glu	Thr	Leu	Leu	Ala

		2075					2080					2085			
5	Ala	Trp 2090	Leu	Leu	Glu	Leu	Ile 2095	Glu	Gln	Leu	Gly	Gly 2100	Phe	Pro	Pro
10	Ala	Ser 2105	Phe	Asp	Ile	Ala	Thr 2110	Leu	Ala	Gln	Arg	Leu 2115	His	Ile	Val
	Pro	Ala 2120	_	Arg	Ser	Trp	Leu 2125	Glu	His	Ser	Val	Arg 2130	Met	Leu	Gly
15	Val	Туг 2135	Gly	Tyr	Leu		Ala 2140		Gly	Glu	Ser	Arg 2145		Glu	Leu
20	Ala	Asp 2150	_	Pro			Asp 2155	Ala	Arg	Gly	Ala	Trp 2160	Asn	Ala	His
25	Val	His 2165		Ala	Ser	Val	Glu 2170	Ala	Gly	Glu	Glu	Ala 2175	Gln	Arg	Arg
30	Leu	Leu 2180	_	Arg	Cys	Met	Arg 2185		Leu	Pro	Ala	Val 2190	Leu	Arg	Gly
	Glu	Arg 2195		Ala	Thr	Glu	Leu 2200		Phe	Pro	Glu	Gly 2205	Ser	Met	Ala
35	Trp	Val 2210		Gly	Ile	Tyr	Gln 2215	Asn	Asn	Pro	Leu	Ala 2220	_	Tyr	Phe
40	Asn	Ala 2225		Leu	Val	Thr	Arg 2230		Ile	Ala	Tyr	Leu 2235	Arg	Arg	Arg

	Leu	Glu 2240	Ser	Thr	Pro	Thr	Ala 2245	Arg	Leu	Lys	Leu	Cys 2250	Glu	Ile	Gly
5	Ala	Gly 2255	Ser	Gly	Gly	Thr	Thr 2260	Ala	Ser	Val	Leu	Gln 2265	Gln	Leu	Gln
10	Ala	Tyr 2270	Gly	Glu	His	Ile	Glu 2275	Glu	Tyr	Leu	Tyr	Thr 2280	qaA	Leu	Ser
15	Pro	Val 2285	Phe	Leu	His	His	Ala 2290		Lys	His	Tyr	Gln 2295	Pro	Arg	Ala
20	Pro	Tyr 2300		Arg	Thr	Ala	Cys 2305	Phe	Asp	Val	Ala	Arg 2310	Ala	Pro	Thr
	Ala	Gln 2315		Leu	Glu	Ser	Gly 2320	Gly	Tyr	Asp	Val	Val 2325	Ile	Ala	Ala
25	Asn	Val 2330		His	Ala	Thr	Arg 2335		Ile	Ala	Lys	Thr 2340	Leu	Arg	Asn
30	Ala	Lys 2345		Leu	Leu	Lys	Pro 2350		Gly	Leu	Leu	Leu 2355		Asn	Glu
35	Val	Ile 2360		Arg	Ser	Leu	Val 2365		His	Leu	Thr	Phe 2370		Leu	Leu
40	Glu	Ser 2375	_	Trp	Leu	Pro	Gln 2380		Lys	Ile	Leu	Arg 2385		Ala	Gly

	Ser	Pro 2390		Leu	Ala	Cys	Ala 2395	Thr	Trp	Arg	Ser	Leu 2400	Leu	Glu	Ala
5	Glu	Gly 2405	Phe	Ala	Gly	Leu	Ser 2410	Val	His	Arg	Ala	Gln 2415	Pro	Asp	Ala
-10	Gly	Gln 2420	Ala	Ile	Ile	Cys	Ala 2425	Tyr	Ser	Asp	Gly	Ile 2430	Val	Arg	Gln
15	Ala	Ser 2435	Thr	Ile	Glu	Val	Ala 2440	Arg	Asn	Glu	Lys	Val 2445	Thr	Val	Pro
	Ser	Gln 2450	Pro	Ala	Glu	Ala	Gly 2455	Glu	Ser	Pro	Leu	Asp 2460	Leu	Val	Lys
20	Lys	Leu 2465		Gly	Arg	Ile	Leu 2470	Lys	Met	Asp	Pro	Ala 2475	Thr	Leu	Asp
25	Thr	Ser 2480	His	Pro	Leu	Glu	Tyr 2485	Туг	Gly	Val	Asp	Ser 2490	Ile	Val	Ala
30	Ile	Glu 2495		Ala	Met	Ala	Leu 2500	_	Glu	Thr	Phe	Pro 2505	Gly	Phe	Glu
35	Val	Ser 2510		Leu	Phe	Glu	2515	Gln	Ser	Ile	Asp	Thr 2520	Leu	Leu	Gly
	Ser	Leu 2525		Gln	Ala	Pro	Leu 2530		Ala	Thr	Leu	Thr 2535	Ala	Pro	Pro
40	Gln	Gln	Asp	Met	Leu	Gln	Gln	Leu	Lys	Gln	Leu	Leu	Ala	Arg	Thr

		2540					2545					2550			
5	Leu	Lys 2555	Leu	Asp	Ile	Thr	Gln 2560	Ile	Asp	Thr	Ser	Lys 2565	Thr	Leu	Glu
10	Ser	Tyr 2570	Gly	Val	Asp	Ser	Ile 2575	Val	Ile	Ile	Glu	Leu 2580	Ala	Asn	Ala
	Leu	Arg 2585	Glu	Arg	Tyr	Pro	Ser 2590	Leu	Asp	Ala	Ser	Gln 2595	Leu	Met	Glu
15	Thr	Leu 2600	Ser	Ile	Asp	Arg	Leu 2605	Val	Ala	Gln	Trp	Gln 2610	Ala	Thr	Glu
20	Pro	Ala 2615	Val	Pro	Ala	Glu	Pro 2620	Thr	Ala	Glu	Pro	Pro 2625	Val	Ala	ĄsĄ
25	Glu	Asp 2630	Ala	Ala	Ala	Ile	Ile 2635	Gly	Leu	Ala	Gly	Arg 2640	Phe	Pro	Gly
30	Ala	Asp 2645	Thr	Leu	Glu	Glu	Phe 2650	Trp	Asn	Asn	Leu	Arg 2655	Asn	Gly	Gln
	Ser	Ser 2660	Met	Gly	Glu	Val	Pro 2665	Gly	Glu	Arg	Trp	Asp 2670	His	Gln	His
35	Tyr	Phe 2675		Ser	Glu	Arg	Gln 2680	Ala	Pro	Gly	Lys	Thr 2685	туг	Ser	Arg
40	Trp	Gly 2690	Ala	Phe	Leu	Arg	Aşp 2695	Ile	Asp	Gly	Phe	Asp 2700	Ala	Ala	Phe

•	Phe	Glu 2705	Trp	Pro	Asp	Ser	Val 2710	Ala	Leu	Glu	Ser	Asp 2715	Pro	Gln	Ala
5	Arg	Ile 2720	Phe	Leu	Glu	Gln	Ala 2725	Tyr	Ala	Gly	Ile	Glu 2730	Asp •	Ala	Gly
10	Туг	Thr 2735	Pro	Gly	Ser	Leu	Ser 2740	Lys	Ser	Gln	Arg	Val 2745	Gly	Val	Phe
15	Val	Gly 2750		Met	Asn	Glý	Tyr 2755	Tyr	Ser	Gly	Gly	Ala 2760	Arg	Phe	Trp
20	Gln	Ile 2765		Asn	Arg	Val	Ser 2770		Gln	Phe	Asp	Phe 2775		Gly	Pro
	Ser	Leu 2780		Val	Asp		Ala 2785		Ser	Ala	Ser	Leu 2790		Ala	Ile
25	His	Leu 2795		Leu	Glu	Ser	Leu 2800		Ser	Gly	Ser	Cys 2805		Val	Ala
30	Leu	Ala 2810	_	Gly	Val	Asn	Leu 2815		Val	Asp	Pro	Gln 2820		Tyr	Leu
35	Asr	Leu 2825		Gly	/ Ala	Ala	Met 2830		Ser	: Ala	Gly	Ala 2835		Cys	Arg
40	Pro	2840	_	Glu	ı Ala	a Ala	a Asp 2845		Phe	e Val	. Ala	Gly 2850		Ala	. Cys

	Gly	Val 2855	Val	Leu	Leu	Lys	Pro 2860	Leu	Lys	Gln	Ala	Arg 2865	Ala	Asp	Gly
5	Asp	Val 2870	Ile	His	Ala	Val	Ile 2875	Arg	Gly	Ser	Met	Ile 2880	Asn	Ala	Gly
10	Gly	His 2885	Thr	Ser	Ala	Phe	Ser 2890	Ser	Pro	Asn	Pro	Ala 2895	Ala	Gln	Ala
15	Glu	Val 2900	Val	Arg	Gln	Ala	Leu 2905	Gln	Arg	Ala	Gly	Val 2910	Ala	Pro	Asp
	Ser	Ile 2915		Tyr	Ile	Glu	Ala 2920		Gly	Thr	Gly	Thr 2925	Val	Leu	Gly
20	Asp	Ala 2930		Glu	Leu	Gly	Ala 2935		Asn	Lys	Val	Phe 2940	_	Lys	Arg
25	Ala	Ala 2945		Cys	Pro	Ile	Gly 2950		Leu	Lys	Ala	Asn 2955		Gly	His
30	Ala	Glu 2960		Ala	Ala	Gly	Ile 2965		Gly	Leu	Ala	Lys 2970		Val	Leu
35	Gln	Phe 2975	_	His	Gly	Glu	Leu 2980		Pro	Ser	Leu	Asn 2985		Phe	Pro
	Leu	Asn 2990		Tyr	Ile	Glu	Phe 2995	_	Arg	Phe	Gln	Val 3000		Gln	Gln
40	Pro	Ala	Pro	Trp	Pro	Arg	Arg	Gly	Ala	Gln	Pro	Arg	Arg	Ala	Gly

	3005	3010	3015
5	Leu Ser Ala Phe Gly A	Ala Gly Gly Ser Asn Ala I 3025	His Leu Val Val 3030
10	Glu Glu Ala Pro Ala I	Met Ala Pro Gly Val Ser :	Ile Ser Ala Ser
	3035	3040	3045
	Ser Pro Ala Leu Ile 3	Val Leu Ser Ala Arg Thr 3055	Leu Pro Ala Leu 3060
15	Gln Gln Arg Ala Arg	Asp Leu Leu Val Trp Met 3070	Gln Ala Arg Gln 3075
20	Val Asp Asp Val Met	Leu Ala Asp Val Ala Tyr	Thr Leu His Leu
	3080	3085	3090
25	Gly Arg Val Ala Met	Glu Gln Arg Leu Ala Phe	Thr Ala Gly Ser
	3095	3100	3105 /
30	3110	Glu Lys Leu Gln Ala Tyr 3115	Leu Gly His Ala 3120
	Ile Arg Ala Asp Ile	Tyr Leu Ser Glu Asp Thr	Pro Gly Lys Pro
	3125	3130	3135
35	Ala Gly Ala Pro Ile	Val Ala Glu Glu Asp Leu	Leu Thr Leu Met
	3140	3145	3150
40	Asp Ala Trp Ile Glu	Lys Gly Gln Tyr Gly Arg	Leu Leu Glu Tyr
	3155	3160	3165

	Trp	Thr 3170	Lys	Gly	Gln	Pro	Ile 3175	Asp	Trp	Asn	Lys	Leu 3180	Tyr	Trp	Arg
5	Lys	Leu 3185	Tyr	Ala	Asp	Gly	Arg 3190	Pro	Arg	Arg	Ile	Ser 3195	Leu	Pro	Thr
10	Tyr	Pro 3200		Glu	His		Arg ·3205		Trp	Gln	Thr	Pro 3210	Val	Pro	Gly
15	Glu	Arg 3215		Leu	His	Ala	Thr 3220		Pro	Ala	Thr	Arg 3225		Thr	Val
20	Ala	Val 3230		Ala	Met	Pro	Asp 3235		Ala	Gly	Ala	Thr 3240		Gln	Ala
	Arg	Leu 3245		Ala	Leu	Сув	Gln 3250		Leu	Leu	Gly	Lys 3255		Val	Thr
25	Ala	Gln 3260		. Asp	Phe	Phe	Ala 3265		Gly	Gly	His	Ser 3270		Leu	Ala
30	Ile	Gln 3275		ı Val	. Ser	Arg	] Ile 3280		, Lys	s Ser	Phe	Gly 3285		Glu	туг
35	Pro	0 Val 3290		c Ala	a Lev	ı Phe	e Glu 3295		Ala	a Lev	ı Lev	3300		) Met	: Ala
40	Arg	3 Gln 3305		e Glu	ı Glr	ı Lev	3310		l Ası	n Gly	y Val	3315		arg	j Met

	Pro	Ala 3320	Leu	Leu	Pro	Ala	Gly 3325	Arg '	Val	Gly		Ile 3330	Pro	Ala	Thr	
5	Tyr	Ala 3335		Glu	Arg	Leu	Trp 3340	Leu	Val	His		His 3345	Met	Ser	Glu	
10	Gln	Arg 3350		Ser	Tyr	Asn	Ile 3355		Phe	Ala	Met	His 3360	Phe	Arg	Gly	
15	Val	Asp 3365		Arg	Ala	Glu	Ala 3370		Arg	Ala	Ala	Leu 3375		Ala	Leu	
	Val	Val 3380		His	Glu	Val	Leu 3385		Thr	Arg	Phe	Leu 3390		Glu	Asp	٠,
20	Gly	Gln 3395		Gln	Gln	Val	Ile 3400		Ala	Ser	Leu	Thr 3405		Glu	Val	
25	Pro	) Val 3410		Glu	. Met	Ser	Val 3415		Glu	Val	. Asp	Leu 3420		Leu	Ala	
30	Ala	3425		Arg	, Glu	Thr	Phe 3430		Leu	ı Arg	g Gln	Gly 3435		Leu	Phe	
35	Ly	s Ala 344		J Il∈	e Leu :	a Arg	y Val 344!		Ala	a Ası	, His	3450		L Va]	Leu	
	Se:	r Ser 345		e His	s His	ı Ile	346		: Asj	o Gly	у Тт	Ser 346		ı Gly	y Val	
40	Ph	e Asn	Arg	g Asj	p Let	ı Hi:	s Gln	Let	1 <b>T</b> y:	r Gl	u Ala	a Cys	Let	u Arg	g Gly	

		3470					3475					3480				
5	Thr	Pro 3485	Pro	Thr	Leu	Pro	Thr 3490	Leu	Ala	Val		Tyr 3495	Ala .	Asp	Туг	
10	Ala	Leu 3500	Trp	Glń	Arg	Gln	Trp 3505	Glu	Leu	Ala		Pro 3510	Leu	Ser	Tyr	
	Trp	Thr 3515	Arg	Ala	Leu	Glu	Gly 3520	Tyr	Asp	Asp	Gly	Leu 35 <u>2</u> 5	Asp	Leu	Pro	
15	Tyr	Asp 3530	Arg	Pro	Arg	Gly	Ala 3535		Arg	Ala	Trp	Arg 3540	Ala	Gly	Leu	
<b>20</b> ·	Val	Lys 3545		Arg	Tyr	Pro	Pro 3550		Leu	Ala	Gln	Gln 3555	Leu	Ala	Ala	
25	Tyr	Ser 3560		Gln	Tyr	Gln	Ala 3565		Leu	Phe	Met	Ser 3570		Leu	Ala	
30	Gly	Leu 3575		Leu	Val	Leu	Gly 3580		Tyr	Ala	Asp	Arg 3585		Asp	Val	
·	Суя	3590		Ala	Thr	· Val	Ser 3595		Arg	j Asp	Gln	Leu 3600		Leu	: Glu	
35	Gli	1 Leu 3605		e Gly	y Phe	Phe	3610		ı Ile	e Leu	ı Pro	Leu 3615		Va]	L Asp	
40	Le	u Ser 3620		y Ası	p Pro	о Су	s Leu 362!		u Gl	u Val	l Lev	1 Leu 3630		j Thi	r Arg	

•	Gln	Val 3635	Val	Leu	Asp	Gly	Phe 3640	Ala	His	Gln	Ser	Val 3645		Phe	Glu
5	His	Val 3650	Leu	Gln	Ala	Leu	Arg 3655	Arg	Gln	Arg	Asp	Ser 3660	Ser	Gln	Ile
10 ·	Pro	Leu 3665		Pro	Val	Met	Leu 3670		His	Gln	Asn	Phe 3675	Pro	Thr	Gln
15	Glu	Ile 3680		Asp	Trp	Pro	Glu 3685		Val	Arg	Leu	Thr 3690		Met	Glu
20	Leu	Gly 3695		Asp	Arg	Ser	Thr 3700		Ser	Glu	Leu	Asp 3705		Gln	Phe
	Tyr	Gly 3710		Gly	Ser	Ser	Leu 3715		Leu	Thr	Leu	Glu 3720		Ala	Gln
25	Asp	Leu 3725		: Asp	Glu	ı Ala	Thr 3730		. Arg	Arg	Met	Ile 3735		His	His
30	Gln	3740		Leu	Glu	ı Ala	Met 3745		. Ser	Arg	Pro	Gln 3750		Arg	Val
35	Gly	y Lys 3755		) Asr	) Met	. Leu	Thr 3760		a Glu	ı Glu	a Arg	3765		Phe	a Ala
40	Ala	a Leu 3770		ı Ala	a Tha	r Gly	7 Thr 377!		o Arg	g Glu	ı Tr <u>ı</u>	9 Pro 3780		: Let	a Ala

	Gln	Gln 3785	Phe	Glu	Arg	Gln	Ala 3790	Gln	Ala	Thr		Gln 3795	Ala	Ile	Ala
5	Cys	Val 3800	Ser	Asp	Gly	Gln	Ser 3805	Trp	Ser	Tyr		Gln 3810	Leu	Glu	Ala
0	Arg	Ala 3815	Asn	Gln	Leu	Ala	Gln 3820	Ala	Leu	Arg	Gly	Gln 3825	Gly	Ala	Gly
15	Arg	Asp 3830	Val	Arg	Val	Ala	Val 3835	Gln	Ser	Ala	Arg	Thr 3840	Pro		Leu
	Leu	Met 3845	Ala	Leu	Leu	Ala	Ile 3850		Lys	Ala	Gly	Ala 3855		Tyr	Val
20	Pro	Ile 3860	_	Pro	Ala	Tyr	Pro 3865		Ala	Tyr	Arg	Glu 3870		Ile	Leu
25	Ala	Glu 3875		Gln	Val	Ser	Ile 3880		Leu	Glu	Gln	Asp 3885		Leu	Ala
30	Leu	Asp 3890		Gln	Gly	Gln	Phe 3895		Asn	Pro	Arg	Trp 3900		Glu	Gln
35	Ala	Pro 3905		Pro	Leu	Gly	Leu 3910		Glu	His	Pro	Gly 3915		Leu	ı Ala
	Суз	; Val 3920		. Val	Thr	Ser	Gly 3925		Thr	Gly	Arg	Pro 3930		Gly	/ Val
40	Met	: Val	Pro	туг	: Ala	a Glr	ı Leu	Туг	Asr	ı Trp	Leu	His	Ala	a Gly	y Trp

	3935		3940	1	3945	
5	Gln Arg 3950		he Glu Ala 3955		Val Leu Gln 3960	Lys Thr
10	Ser Ile 3965		la Val Ser 3970		Leu Leu Ser 3975	Gly Leu
	Leu Ala 3980	_	slu Gln Val 3985		Asp Glu Gln 3990	Val Lys
15	Asp Ser 3995	•	eu Ala Arg 4000		ı Gln Trp Gln 4005	Val Thr
20	Arg Leu 4010	_	/al Pro Ser 401!		n Ala Leu Leu 4020	Asp Ala
25	Thr Gln 4025		Asp Gly Leu 403		r Leu Arg His 4035	Val Val
30	Thr Ala	_	Ala Leu Pro 404		l Arg Glu Thr 4050	Val Arg
	Ala Arg 4055		Gln Val Gln 406		n Asn Tyr Gly 4065	· Cys Thr
35	Glu Leu 4070		Ala Thr Tyr 407		r Asp Thr Val 4080	Ala Pro
40	Gly Thr 408		Pro Ile Gly 409		e Ala Asn Thi 4095	c Glu Val

	Tyr	Val 4100	Leu	Ąsp	Arg	Gln	Leu 4105	Arg	Gln	Val	Pro	Ile 4110	Gly	Val	Met
5	Gly	Glu 4115	Leu	His	Val	His	Ser 4120	Val	Gly	Met	Ala	Arg 4125	Gly	Ťyr	Trp
0	Asn	Arg 4130		Gly	Leu	Thr	Ala 4135		Arg	Phe	Ile	Ala 4140		Pro ·	туг
15	Ser	Glu 4145		Pro	Gly	Thr	Arg 4150		Tyr	Lys	Thr	Gly 4155		Met	Val
20	Arg	Arg 4160		Ala	Asp		Thr 4165		Glu	Tyr	Leu	Gly 4170		Gln	Asp
25	Phe	Glu 4175		Lys	Val	Arg	Gly 4180		Arg	Val	Asp	Thr 4185		Gln	Val
25	Glu	Ala 4190		Leu	Arg	Ala	Gln 4195		Ala	. Val	Ala	Glu 4200		Val	. Val
30	Ser	Gly 4205		Arg	Val	. Asp	Gly 4210		) Met	. Gln	. Leu	Val 4215		Туг	. Val
35	Val	Ala 4220		g Glu	Gly	/ Glr	1 Ala 4225		Ser	: Ala	Gly	Glu 4230		ı Lys	3 Gln
40	Glr	1 Leu 4235		: Ala	Glr	ı Lev	1 Pro 4240		: Туі	Met	. Lev	Pro 4245		r Val	1 Туг

	Gln	Trp 4250			Gln		Pro 4255		Leu	Ser		Gly 4260	Lys	Leu	Asp
5	Arg	Leu 4265	Ala	Leu	Pro	Ala	Pro 4270	Gln		Val		Ala 4275	Gln	Glu	Tyr
10	Val	Ala 4280	Pro	Arg	Asn	Gln	Ala 4285	Glu	Gln	Arg	Leu	Ala 4290	Ala	Leu	Phe
15	Ala	Glu 4295	Val	Leu	Arg	Val	Glu 4300	Gln	Val	Gly	Ile	His 4305	Asp	Asn	Phe
	Phe	Ala 4310		Gly	Gly	His	Ser 4315		Ser	Ala	Ser	Gln 4320	Leu	Ile	Ser
20	Arg	Ile 4325		Arg	Asp	Met	Ala 4330		Asp	Leu	Pro	Leu 4335	Ala	Met	Leu
25	Phe	Glu 4340	Leu	Pro	Thr	Val	Ala 4345		Leu	Ser	Glu	Ser 4350	Leu	Ala	Ser
30	His	Ala 4355		Asp	Ser	Asp	Туr 4360		Val	Ile	Pro	Ala 4365	Ser	Thr	Glu
35	Glu	Ala 4370		Ile	Pro	Leu.	Ser 4375		Ala	Gln	Glu	Arg 4380	Met	Trp	Phe
	Leu	His 4385	_	Phe	Val	Gln	Glu 4390		Pro	Tyr	Asn	Thr 4395	Pro	Gly	Leu
40	Ala	Leu	Leu	Gln	Gly	Glu	Leu	Asp	Ile	Ser	Ala	Leu	Gln	Val	Ala

		4400					4405					4410			
5	Phe	Arg 4415	Cys	Val	Leu	Glu	Arg 4420	His	Ala	Val		Arg 4425	Thr	His	Phe
0	Val	Glu 4430	Thr	Glu	Gln	Gln	Сув 4435	Val	Gln	Val	Ile	Gly 4440	Ala	Ala	Glu
	Gln	Phe 4445	Val	Leu	Gln	Leu	Arg 4450	Ser	Ile	Arg	Asp	Glu 4455	Ala	Asp	Leu
.5	His	Gly 4460		Leu	His	Thr	Ala 4465	Val	Ser	Glu	Pro	Phe 4470	Asp	Leu	Glu
20	Arg	Glu 4475		Pro	Leu	Arg	Ala 4480		Leu	Tyr	Arg	Leu 4485		Asp	Arg
25	Arg	His 4490		Leu	Ala	Val	Val 4495		His	His	Ile	Val 4500		Asp	Gly
30	Trp	Ser 4505		Ser	Ile	Leu	Phe 4510		Glu	Leu	Ala	Thr 4515		Tyr	Ala
	Ala	Cys 4520		His	Gly	Gln	Ser 4525		Pro	Lev	Pro	Pro 4530		ı Glu	Leu
35	Ser	Tyr 4535		Asp	Tyr	· Ala	Arg 4540		Glu	Arg	: g Ala	Arg 4549		ı Asn	Gln
40		1 Asp 455(		ı Lev	ı Arg	Lys	Leu 4555		тух	Tr	) Lys	Thr 4560		n Lev	Ala

	Asp	Ala 4565	Pro	Pro	Leu	Val	Leu 4570	Pro	Thr	Thr	Tyr	Ala 4575	Arg	Pro	Val
5	Phe	Gln 4580	Asn	Phe	Asn	Gly	Ala 4585	Thr	Val	Ala	Leu	Gln 4590	Ile	Glu	Pro
10	Pro	Leu 4595	Leu	Gln	Arg	Leu	Gln 4600	Arg	Phe	Ala	Asp	Ala 4605	His	Ser	Phe
15	Thr	Leu 4610	Tyr	Met	Leu	Leu	Leu 4615		Ala	Leu	Gly	Val 4620	Val	Leu	Ser
20	Arg	His 4625		Arg	Gln	Lys	His 4630		Суз	Ile	Gly	Ser 4635	Pro	Val	Ala
	Asn	Arg 4640		Arg	Ala	Glu	Leu 4645		Gly	Leu	Ile	Gly 4650		Phe	Val
25	Asn	Thr 4655		Ala	Val	Arg	Leu 4660		Leu	Asp	Gly	Asn 4665		Ser	Val
30	Arg	Glu 4670		Leu	Glu	Arg	Ile 4675		Cys	Thr	Thr	Leu 4680		Ala	Tyr
35	Glu	His 4685		Asp	Val	Pro	Phe 4690		Arg	Ile	Val	Glu 4695		Leu	Lys
40	Val	. Pro 4700		Asp	Thr	· Ala	Arg 4705		Pro	Leu	Gly	Gln 4710		Met	. Leu

	Asn	Phe 4715		Asn	Met	Pro	Met 4720	•	Ala	Phe	Asp	Leu 4725		Gly	Val
5	Gln	Val 4730		Val	Leu	Pro	Met 4735		Asn	Gly	Thr	Ala 4740		аұЭ	Glu
10	Leu	Thr 4745		Asp	Leu	Leu	Leu 4750		Gly	Ser	Arg	Leu 4755		Gly	Phe
15	Val	Glu 4760		Ala	Thr	Gly	Leu 4765		Ala	Pro	Glu	Trp 4770		Gln	Ala
· .	Leu	Val 4775		Gln	Phe	Lys	Cys 4780	Val	Leu	Ala	Ala	Leu 4785	Val	Glu	Arg
20	Pro	Glu 4790		Ser	Leu	Asn	Asp 4795	Leu	Pro	Met	Ala	Pro 4800	Asn	Glu	Ala
25	Gln	Pro 4805		Ser	Pro	Ala	Leu 4810	Met	Lys	His	Val	Ala 4815	Pro	Ser	Leu
30	Pro	Asn 4820	Leu	Leu	Glu	Ala	Met 4825	Ala	Ala	Asn	Asp	Ala 4830	Ala	Arg	Leu
. 35	Ala	Leu 4835	Gln	Ala	Pro	Glu ,	Gly 4840	Ala	Leu	Ser	Tyr	Ala 4845	Gln	Leu	Ile
40	Glu	Ala 4850	Ala	Asn	Glu	Phe	Ala 4855	Trp	Arg	Leu	Arg	Cys 4860	Glu	His	Ala
40	Gly	Pro	Asp	Lys	Val	Val	Ala	Leu	Cys	Leu	Ala	Pro	Cys	Ser	Ala

			4865					4870					4875			
	<b>5</b> .	Leu	Val 4880		Ala ,	Leu	Leu	Ala 4885	Ala	Ser	Leu	Cys	Gly 4890	Ala	Ala	Sei
•	10	Val	Leu 4895		Asp	Pro	Thr	Thr 4900		Ala	Glu	Ala	Gln 4905	Tyr	Asp	Glr
		Leu	Phe 4910		Thr	Arg	Ala	Gly 4915	Ile	Val	Val	Thr	Cys 4920		Ser	Let
	15	Leu	Glu 4925		Leu	Pro	Leu	Asp 4930		Gln	Ala	Val	Val 4935	Leu	Ile	Ası
	<b>20</b>	Glu	Gln 4940		Ala	Glu	Ala	Thr 4945			Leu ,		His 4950	Phe	Thr	Asg
	25	Asp	Pro 4955		Leu	Pro	Ala	Met 4960	Leu	Tyr	Сув	Val	Cys 4965	Asp	Glu	Lys
	30	Gly	Arg 4970		Arg	Thr	Ile	Met 4975	Val	Glu	Ser	Gly	Ser 4980	Leu	Ser	Ser
		Arg	Leu 4985	Leu	Asp	Ser	Val	Gln 4990	Arg	Phe	Ser	Leu	Glu 4995	Arg	Thr	Asp
	35	Arg	Phe 5000	Leu	Leu	Arg	Ser	Pro 5005	Leu	Ser	Ala	Glu	Leu 5010	Ala	Asn	Thr
	40	Glu	Val					Ala 5020					Leu		Ile	Ala

	Pro	Met 5030	His	Gly	Asp	Phe	Asp 5035	Ala	Ala	Ala	Trp	Leu 5040	Glu	Thr	Leu
<b>5</b>		Thr 5045	Tyr	Ala	Ile	Thr	<b>Val</b> 5050	Ala	Tyr	Leu	Ala	Gln 5055	Val	Glu	Leu
10	Thr	Glu 5060	Met	Leu	Ala	His	Leu 5065	Gln	Asn	His	Pro	Leu 5070	Glu	Arg	Asn
15	Lys	Leu 5075	Ala	Gly	Leu	Arg	Val 5080		Val	Val	His	Gly 5085	Ala	Pro	Leu
20	Pro	Ile 5090	Ala	Pro	Leu	Met	Arg 5095	Leu	Asp	Ala	Trp	Leu 5100	Arg	Glu	Val
0.5	Gly	Gly 5105	Ser	Ala	Arg	Ile	Phe 5110	Ala	Ala	Tyr	Gly	Asn 5115	Ala	Glu	Phe
25	Gly	Ala 5120	Glu	Ile	Leu	Ser	Gln 5125	Asp	Val	Ser	Ala	Ala 5130	Leu	Gln	Ala
30	Gly	Ile 5135	Gly	Ala	Gln	Tyr	Lys 5140	His	Arg	Arg		Leu 5145	Phe	Pro	Leu
35	Gly	Ala 5150	Asn	Ser	Met	Суз	His 5155	Val	Val	Gln	Ser	Asn 5160	Gly	Arg	Ile
40	Ala	Pro 5165	Asp	Gly	Met	Val	Gly 5170	Glu	Leu	Trp	Ile	Thr 5175	Gln	Pro	Ala

	Cys	Leu 5180		Lys	Thr	Asp	Ala · 5185		Val	Arg	Arg	Leu 5190		Asn	Gly
5	Gln	Leu 5195		Trp	Leu	Gly	Ser 5200		Asp	Val	Gln	Ser 5205	Arg	Ile	Ąsp
10	Asp	Pro 5210		Ile	Asp	Leu	Cys 5215	Val	Val	Glu	Ala	Gln 5220	Leu	Arg	Leu
. 15	Cys	Glu 5225		Val	Gly	Glu	Ala 5230		Val	Leu	туг	Glu 5235	Pro	Leu	Lys
	Arg	Cys 5240	Leu	Val	Ala	Туг	Leu 5245	Ser	Ala	Arg	Ser	Thr 5250	Ala	Ala	Ile
20	Met	Thr 5255	Asp	Glu	Thr	Leu	Ala 5260	Arg	Ile	Arg	Gln	Ala 5265	Leu	Ser	Glu
25	Thr	Leu 5270	Pro	Asp	Tyr	Leu	Leu 5275	Pro	Ala	Ile	Trp	Val 5280	Pro	Leu	Ala
30	His	Trp 5285	Pro	Arg	Leu	Pro	His 5290	Gly	Arg	Val	Asp	Leu 5295	Gly	Ala	Leu ·
35	Pro	Ala 5300	Pro	Asp	Phe	Asp	Leu 5305	Ala	Arg	His	Glu	Ser 5310	Tyr	Ile	Ala
	Pro	Arg 5315	Thr	Ala	Val	Glu	Gln 5320	Ala	Val	Ala	Glu	Ile 5325	Trp	Gln	Arg
40	Val	Leu	Lys	Arg	Thr	Gln	Val	Gly	Val	His	Asp	Asn	Phe	Phe	Glu

	5	5330					5335					5340			
5		31y 5345	Gly	His	Ser	Val	Leu 5350	Ala	Ile	Gln	Leu	Val 5355	Ser	Gly	Leu
10		Сув 5360	Ala	Leu	Ala	Ile	Glu 5365	Val	Pro	Val	Thr	Leu 5370	Val	Phe	Glu
		Pro 5375	Ile	Leu	Gly	Ala	Leu 5380	Ala	Arg	Gln	Ile	Ala 5385	Pro	Leu	Leu
15		Ser 5390	Glu	Arg	Arg	Pro	Arg 5395	Pro	Pro	Gly	Leu	Thr 5400	Arg	Leu	Glu
20	His T	Thr 5405	Gly	Pro	Ile	Pro	Ala 5410	Ser	Tyr	Ala	Gln	Glu 5415	Arg	Leu	Trp
25		Val 5420	His	Glu	His	Met	Glu 5425	Glu	Gln	Arg	Thr	Ser 5430	Tyr	Asn	Ile
30		Asn 5435	Ala		His	Phe	Ile 5440	Gly	Ala	Ala	Phe	Ser 5445	Val	Glu	Ala
		Arg 5450	Ala	Ala	Leu	Asn	Ala 5455	Leu	Val	Ala	Arg	His 5460	Glu	Val	Leu
35	_	Thr 5465	Arg	Phe	Leu	Ser	Glu 5470	Asp	Gly	Gln	Leu	Gln 5475	Gln	Val	Ile
<b>40</b>		Ala 5480	Ser	Leu	Thr	Leu	Glu 5485	Val	Pro	Val	Arg	Glu 5490	Val	Ser	Ala

	Glu	Glu 5495	Val	qaA	Leu	Leu	Leu 5500	Ala	Ala	Ser	Thr	Arg 5505	Glu	Thr	Phe
5	Авр	Leu 5510	Arg	Gln	Gly	Pro	<b>Leu</b> 5515	Phe	Lys	Ala	Arg	Ile 5520	Leu	Arg	Val
10	Ala	Ala 5525	Asp	His	His	Val	Val 5530	Leu	Ser	Ser	Ile	His 5535	His	Ile	Ile
15	Ser	Asp 5540	Gly	Trp	Ser	Leu	Gly 5545	Val	Phe	Asn	Arg	Asp 5550	Leu	His	Gln
20	Leu	<b>Tyr</b> 5555	Glu	Ala	Сув	Leu	Arg 5560	Gly	Thr	Pro	Pro	Thr 5565	Leu	Pro	Thr
25		Ala 5570	Val	Gln	Tyr	Ala	Asp 5575	Tyr	Ala	Leu	Trp	Gln 5580	Arg	Gln	Trp
	Glu	Leu 5585	Ala	Ala	Pro	Leu	Ser 5590	Tyr	Ттр	Thr	Arg	Ala 5595	Leu	Glu	Gly
30	Tyr	Asp 5600	Asp	Gly ,	Leu	Asp	Leu 5605	Pro	Tyr	Asp	Arg	Pro 5610	Arg	Gly	Ala
35	Thr	Arg 5615	Ala	Trp	Arg	Ala	Gly 5620	Leu	Val	Lys	His	Arg 5625	Tyr	Pro	Pro
40	Gln	Leu 5630	Ala	Gln	Gln	Leu	Ala 5635	Ala	Tyr	Ser	Gln	Gln 5640	Tyr	Gln	Ala

	Thr	Leu 5645	Phe	Met	Ser	Leu	Leu 5650	Ala	Gly	Leu	Ala	Leu 5655	Val	Leu	Gly
5	Arg	Tyr 5660	Ala	Asp	Arg	Lys	Asp 5665	Val	Cys	Ile	Gly	Ala 5670	Thr	Val	Ser
10	Gly	Arg 5675	Asp	Gln	Leu	Glu	Leu 5680	Glu	Glu	Leu	Ile	Gly 5685	Phe	Phe	Ile
15	Asn	5690	Leu	Pro	Leu	Arg	Val 5695	_	Leu	Ser	Gly	Asp 5700	Pro	Cys	Leu
	Glu	Glu 5705		Leu	Leu	Arg	Thr 5710	Arg	Gln	Val	Val	Leu 5715	Asp	Gly	Phe
20	Ala	His 5720		Ser	Val	Pro	Phe 5725		His	Val	Leu	Gln 5730		Leu	Arg
25	Arg	Gln 5735	_	Asp	Ser	Ser	Gln 5740		Pro	Leu	Val	Pro 5745		Met	Leu
30	Arg	His 5750		Asn	Phe	Pro	Thr 5755		Glu	Ile	Gly	Asp 5760		Pro	Glu
35	Gly	Val 5765			Thr	Gln	Met 5770		Leu	Gly	Leu	Asp 5775		Ser	Thr
	Pro	Ser 5780		Leu	Asp	Trp	Gln 5785		Tyr	Gly	Asp	Gly 5790		Ser	Leu
40	Glu	Leu	Thr	Leu	Glu	Tyr	· Ala	Gln	. Asp	Leu	Phe	Asp	Glu	Ala	Thr

	579	5				5800					5805			
5	Val Arg		Met	Ile	Ala	His 5815	His	Gln	Gln	Ala	Leu 5820	Glu	Ala	Met
10	Val Ser 582		Pro	Gln	Leu	.Arg 5830	Val	Gly	r ,	Trp	Asp 5835	Met	Leu	Thr
	Ala Glu 584		Arg	Arg	Leu	Phe 5845	Ala	Ala	Leu	Asn	Ala 5850	Thr	Gly	Thr
15	Pro Arg		Trp	Pro	Ser	Leu 5860	Ala	Gln	Gln	Phe	Glu 5865	Arg	Gln	Ala
20	Gln Ala		Pro	Gln	Ala	Ile 5875	Ala	Cys	Val	Ser	Asp 5880	Gly	Gln	Ser
25 ,	Trp Ser		Ala	Gln	Leu	Glu 5890	Ala	Arg	Ala	Asn	Gln 5895	Leu	Ala	Gln
30	Ala Let		Gly		Gly	Ala 5905	Gly	Arg	Asp	Val	Arg 5910	Val	Ala	Val
	Gln Ser		Arg	Thr	Pro	Glu 5920		Leu	Met	Ala	Leu 5925	Leu	Ala	Ile
35	Phe Lys 593		Gly	Ala	Cys	Tyr 5935		Pro	Ile	Asp	Pro 5940	Ala	Tyr	Pro
40	Ala Ala 594	• -	Arg	Glu	Gln	Ile 5950		Ala	Glu	Val	Gln 5955	Val	Ser	Ile

	Val	Leu 5960	Glu	Gln	Gly	Glu	Leu 5965		Leu	Asp	Glu	Gln 5970	Gly	Gln	Phe
5	Arg	Asn 5975	Arg	Arg	Trp	Arg	Glu 5980	Gln	Ala	Pro	Thr	Pro 5985	Leu	Gly	Leu
10	Arg	Gly 5990		Pro	Gly	Asp	Leu 5995		Cys	Val	Met	Val 6000	Thr	Ser	Gly
15	Ser	Thr 6005	_	Arg	Pro	Lys	Gly 6010	Val	Met	Val	Pro	Тут 6015	Ala	Gln	Leu
20	His	Asn 6020	_	Leu	His	Ala	Gly 6025	Trp	Gln	Arg	Ser	Ala 6030	Phe	Glu	Ala
	Gly	Glu 6035	_	Val	Leu	Gln	Lys 6040		Ser	Ile	Ala	Phe 6045	Ala	Val	Ser
25	Val	<b>L</b> ys 6050		Leu	Leu	Ser	Gly 6055		Leu	Ala	Gly	Val 6060	Gly	Gln	Val
30	Met	Leu 6065		Asp	Glu	Gln	Val 6070	_	Asp	Ser	Leu	Ala 6075	Leu	Ala	Arg
35	Ala	Ile 6080		Gln	Trp	Gln	Val 6085		Arg	Leu	Tyr	Leu 6090		Pro	Ser
40	His	Leu 6095		Ala	Leu	Leu	Asp 6100		Thr	Gln	Gly	Arg 6105		Gly	Leu

	Leu	His 6110		Leu	ı Arg	His	Val 6115		Thr	· Ala	Gly	Glu 6120		Leu	Pro
5	Ser	Ala 6125	Val	Gly	Glu	Ala	Val 6130		Val	. Arg	Leu	Pro 6135		Val	Gln
10	Leu	Trp 6140		Asn	туг	Gly	Cys 6145		Glu	. Leu	Asn	Asp 6150		Thr	Tyr
,15	His	Arg 6155		Asp	Thr	Val	Ala 6160		Gly	Thr	Phe	Val 6165		Ile	Gly
20	Ala	Pro 6170		Ala	Asn	Thr	Glu 6175		Tyr	Val	Leu	Asp 6180		Gln	Leu
20	Arg	Gln 6185		Pro	Ile	Gly	Val 6190		Gly	Glu	Leu	His 6195		His	Ser
25	Val	Gly 6200	Met	Ala	Arg	Gly	Tyr 6205	Trp	Asn	Arg	Pro	Gly 6210	Leu	Thr	Ala
30	Ser	Arg 6215	Phe	Ile	Ala	His	Pro 6220	Tyr	Ser	Glu	Glu	Pro 6225	Gly	Thr	Arg
35	Leu	Tyr 6230	Lys	Thr	Gly	Asp	Met 6235	Val	Arg	Arg	Leu	Ala 6240	Asp	Gly	Thr
	Leu	Glu 6245	Tyr	Leu	Gly	Arg	Gln 6250	Asp	Phe	Glu	Val	Lys 6255	Val	Arg	Gly
40	His	Arg	Val	Asp	Thr	Arg	Gln	Val	Glu	Ala	Ala	Leu	Arg	Ala	Gln

		6260					6265					6270			
5	Pro	Ala 6275	Val	Ala	Glu	Ala	Val 6280	Val	Ser	Gly	His	Arg 6285	Val	Aśp	Gly
10,	Asp	Met 6290	Gln	Leu	Val	Ala	Tyr 6295	Val	Val	Ala	Arg	Glu 6300	Gly	Gln	Ala
٠	Pro	Ser 6305	Ala	Gly	Glu	Leu	Lys 6310	Gln	Gln	Leu	Ser	Ala 6315	Gln	Leu	Pro
15	Thr	Tyr 6320	Met	Leu	Pro	Thr	Val 6325	Tyr	Gln	Trp	Leu	Glu 6330	Gln	Leu	Pro
. 20	Arg	Leu 6335	Ser	Asn	Gly	Lys	Leu 6340	Asp	Arg	Leu	Ala	Leu 6345	Pro	Ala	Pro
25		Val 6350	Val	His	Ala	Gln	Glu 6355	Tyr	Val	Ala	Pro	Arg 6360	Asn	Glu	Ala
30	Glu	Gln 6365	Arg	Leu	Ala	Ala	Leu 6370	Phe	Ala	Glu	Val	Leu 6375	Arg	Val	Glu
	Gln	Val 6380	Gly	Ile	His	Asp	Asn 6385	Phe	Phe	Ala	Leu	Gly 6390	Glÿ	His	Ser
35	Leu	6395	Ala	Ser	Gln	Leu	Ile 6400	Ser	Arg	Ile	Arg	Gln 6405	Ser	Phe	His
40	Val	Asp 6410	Leu	Pro	Leu	Ser	Arg 6415	Ile	Phe	Glu	Ala	Pro 6420	Thr	Ile	Glu

	Gly	Leu 6425		Arg	Gln	Leu	Ala 6430		Pro	Ser	Glu	Gly 6435	Gly	Val	Ala
5	Ser	Ile 6440		Arg		Ala	Arg 6445		Arg	Thr	Ile	Pro 6450	Leu	Ser	Leu
10	Phe	Gln 6455		Arg	Leu	Trp	Phe 6460		His	Gln	His	Met 6465	Pro	Glu	Gln
15	Arg	Thr 6470		Tyr	Asn	Gly	Thr 6475		Ala	Leu	Arg	Leu 6480	Arg	Gly	Pro
20	Leu	Ser 6485	Val	Glu	Ala	Met	Arg 6490	Ala	Ala	Leu	Arg	Ala 6495	Leu	Val	Leu
25	Arg	His 6500		Ile	Leu	Arg	Thr 6505	Arg	Phe	Val	Leu	Pro 6510	Thr	Gly	Ala
25	Ser	Glu 6515	Pro	Val	Gln		Ile 6520	Asp	Glu	His	Ser	Asp 6525	Phe	Gln	Leu
30	Ser	Val 6530	Gln	Leu	Val	Glu	Asp 6535	Thr	Glu	Ile	Ala	Ser 6540	Leu	Met	Asp
35	Glu	Leu 6545	Ala	Ser	His		Tyr 6550	Asp	Leu	Ala		Gly 6555	Pro	Leu	Phe
40	Ile	Ala 6560	Сув	Leu	Leu		Leu 6565	Asp	Glu	Gln	Glu	His 6570	Val	Leu	Leu

	. Ile	6575		His	His	Leu	Ile 6580		Asp	Ala	Trp	Ser. 6585		Phe	Thr
5	Val	Met 6590		Arg	Asp	Leu	Arg 6595		Leu	Tyr	His	Arg 6600		Leu	Gly
10	Leu	Ala 6605		Gly	Asp	Leu	Pro 6610		Leu	Pro	Ile	Gln 6615		Ala	Asp
15	Tyr	Ala 6620		Trp	Gln	Arg	Ala 6625		Asn	Leu	Asp	Ala 6630		Leu	Ala
20	туr	Trp 6635		Ala	Met	Leu	His 6640		Tyr	Asp	Asp	Gly 6645		Glu	Leu
20	Pro	Tyr 6650		Tyr	Pro	Arg	Pro 6655	Arg	Asn	Arg	Thr	Trp 6660	His	Ala	Ala
25	Val	Tyr 6665		His	Thr	тут	Pro 6670	Ala	Glu	Leu	Val	Gln 6675	Arg	Phe	Ala
30	Gly	Phe 6680		Gln	Ala	His	Gln 6685	Ser	Thr	Leu	Pḥe	Ile 6690	Gly	Leu	Leu
35	Ala	Ser 6695	Phe	Ala	Val	Val	Leu 6700	Asn	Lys	Tyr	Thr	Gly 6705	Arg	Asp	Asp
	Leu	Cys 6710	Ile	Gly	Thr	Thr	Thr 6715	Ala	Gly	Arg	Thr	His 6720	Leu	Glu	Leu
40	Glu	Asn	Leu	Ile	Gly	Phe	Phe	Ile	Asn	Ile	Leu	Pro	Leu	Arg	Leu

	•	6725					6730					6735			
5	Arg	Leu 6740	Asp	Gly	Asp	Pro	Asp 6745	Val	Ala	Glu	Ile	Met 6750	Arg	Arg	Thr
10	Arg	Leu 6755	Val	Ala	Met	Ser	Ala 6760	Phe	Glu	Asn	Gln	Ala 6765	Leu	Pro	Phe
	Glu	His 6770	Leu	Leu	Asn	Ala	<b>Le</b> u 6775	His	Lys	Gln	Arg	Asp 6780	Thr	Ser	Arg
15	Ile	Pro 6785	Leu	Val	Pro	Val	Val 6790	Met	Arg	His	Gln	Asn 6795	Phe	Pro	Asp
20	Thr	Ile 6800		Asp	Trp	Ser	Asp 6805		Ile	Arg	Thr	Glu 6810	Val	Ile	Gln
25	Arg	Asp 6815	Leu	Arg	Ala	Thr	Pro 6820	Asn	Glu	Met	Asp	Leu 6825	Gln	Phe	Phe
30 .	Gly	Asp 6830	Gly	Thr	Gly	Leu	Ser 6835	Val	Thr	Val	Glu	Tyr 6840	Ala	Ala	Glu
	Leu	Phe 6845	Ser	Glu	Ala	Thr	Ile 6850	Arg	Arg	Leu	Ile	His 6855	His	His	Gln
35	Leu	Val 6860	Leu	Glu	Gln	Met	Leu 6865	Ala	Ala	His	Glu	Ser 6870	Ala	Thr	Cys
40	Pro	Leu 6875	Asp	Val	Ala	Asp									

	<2	10>	27													
	<2	11>	343													
	<2	12>	PRT													
5	<2	13>	Xan	thom	onas	alb	ilin	eans								
	<4	00>	27	•												
10	Me 1	t As	p Se	r Ala	a Lev	ı Pro	Th:	r Sei	r Ala	a Phe	e Thi	r Phe	aA e	) Le	u Phe 15	≥ Ту
15	Th	r Th:	r Val	l Asr 20	n Ala	а Туг	туг	Arg	j Thi 25	Ala	a Ala	val	L <b>Ly</b> s	30	a Ala	ılle
	Glı	ı Leı	u Gl <u>y</u> 35	/ Leu	ı Phe	a Asp	Val	. Val	Gly	<b>Gl</b> n	ı Gln	Gly	Arg	Th:	Pro	) Ala
20	Ala	ı Ile 50	e Ala	ı Glu	Ala	. Cys	Gln 55	Ala	Ser	Pro	Arg	Gly 60	'Ile	Arg	, Ile	Leu
25	Суs 65	тух	туг	· Leu	Val	Ser 70	Ile	Gly	Phe	Leu	Arg 75	Arg	Asn	Gly	Gly	Leu 80
30	Phe	Tyr	lle	Asp	Arg 85	Asn	Met	Ala	Met	Tyr 90	Leu	Asp	Arg	Ser	Ser 95	Pro
35	Gly	Tyr	Leu	Gly 100	Gly	Ser	Ile	Lys	Phe 105	Leu	Leu	Ser	Pro	Tyr 110	Ile	Met
	Ser	Ala	Phe 115	Thr	Ąsp	Leu	Thr	Ala 120	Val	Val	Arg	Thr	Gly 125	Lys	Ile	Asn
40	Lev	Ala	Gln	Acn	Glw	l ev	Va I	71~	Dwa	3	1	_				
					Y	* ***	* 54.4	$\alpha$		44.00		177	~1	/Tlases	~~_ <b>7</b>	~ 7

		•		135		140	
. 5	Phe Ala 145	Arg Ala	Met Ala ,150			Geu Pro Ser 155	Ala Leu Ile 160
10	Ala Asn		Ser Leu 165	Pro Ala	Asp Arg F	Pro Ile Arg	Val Leu Asp 175
	Val Ala	Ala Gly 1	His Gly	Leu Phe	Gly Ile A	Ala Phe Ala	Gln Arg Phe 190
15	Arg Gln	Ala Glu '	Val Ser	Phe Leu 200	Asp Trp A	Asp Asn Val 205	Leu Asp Val
20	Ala Arg		Ala Gln	Ala Ala 215	Lys Val A	Ala Glu Arg 220	Ala Arg Phe
25	Leu Pro 225	Gly Asn	Ala Phe 230	Asp Leu		Sly Ser Gly	Tyr Asp Val 240
30	Ile Leu		Asn Phe 245	Leu His	His Phe A 250	sp Glu Val	Asp Gly Glu 255
	Arg Ile	Leu Ala 1 260	Lys Thr	Arg Asp	Ala Leu A 265	asn Asp Asp	Gly Met Val 270
35	Ile Thr	Phe Glu 1	Phe Ile	Ala Asp 280	Glu Glu A	arg Ser Ser 285	Pro Pro Leu
40	Ala Ala 290			Met Met 295	Leu Gly T	hr Thr Pro	Ala Gly Glu

_	Ser Tyr Thr Tyr Ser Asp Leu Glu Arg Met Phe Arg His Ala Gly Phe 305 310 315 320	
5	Gly His Val Glu Leu Lys Ser Ile Pro Pro Ala Leu Leu Lys Val Val 325 330 335	
10 .	Val Ser Arg Lys Arg Ala Pro 340	
15	<210> 28 <211> 167 <212> PRT <213> Xanthomonas albilineans	
20	<pre>&lt;400&gt; 28  Met Ile Glu Ser Ala Thr Ser Pro Val Ala Lys Thr Glu Arg Ile Trp 1</pre>	
25	Cys Thr Glu Leu Asp Leu Asp Ala Leu Asn Ala Met Ser Ala Asn Thr 20 25 30	
30	Met Gln Ala Leu Leu Gly Ile Arg Met Ile Glu Ile Gly Ser Asp Tyr 35 40 45	
35	Leu Val Ser Cys Met Ser Val Asp Trp Arg Cys His Gln Pro Tyr Gly 50 55 60	`
40	Val Leu His Gly Gly Ala Ser Val Thr Leu Ala Glu Ala Thr Gly Ser 65 70 75 80	
70	Met Ala Ala Ser Met Cys Val Pro Ala Gly Gln Arg Cys Val Gly Leu	

Application of Royer, et al Asp Ile Asn Ala Asn His Ile Ala Ser Ile Ser Ser Gly Gln Val Gln Cys Ile Ala Arg Pro Leu His Ile Gly Ala Leu Thr Gln Val Trp Gln Met Arg Ile Tyr Asp Glu Gly Asp Arg Thr Ile Cys Val Ser Arg Leu Thr Met Ala Val Leu Ser Val His Val Ala Arg Val Ser Pro Asn Pro Ala Ser Ser Gly Val Gln Thr <210> 29 <211> 941 <212> PRT <213> Xanthomonas albilineans <400> 29 Met Asn Glu Thr Ala Thr Val Thr Lys Ala Thr Leu Ser Ser Ala Lys Ala Ser Ile Thr Pro Ala Cys Val His Gln Trp Phe Glu Ala Gln Val Ser Ser Thr Pro Asp Ala Pro Ala Ala Phe Leu Gly Glu Arg Arg Met

	Ser	Tyr 50	Gly	Gln	Leu	Asn	Thr 55	Arg	Ala	Asn	Arg	Leu 60	Ala	Arg	Leu	Leu
5	Gln 65	Ser	Gln	Gly	Val	Gly 70	Pro	Gly	Ala	Arg	<b>Val</b> 75	Ala	Val	Trp	Met	Asn 80
10	Arg	Ser	Pro	Glu	Сув 85	Leu	Ala	Ala	Leu	Leu 90	Ala	Val	Met	Lys	Ala 95	Gly
15	Ala	Ala	Tyr	Val 100	Pro	Ile	Asp	Leu	Ser 105	Leu	Pro	Ile	Arg	Arg 110	Val	Gln
	Tyr	Ile	Leu 115	Gln	qaA	Ser	Gln	Ala 120	Arg	Leu	Val	Leu	Val 125	Asp	Asp	<b>Glu</b>
20	Gly	Gln 130	Gly	Arg	Leu	Asp	Glu 135	Leu	Glu	Leu	Gly	Ala 140	Met	Thr	Ala	Val
25	Asp 145	Val	Cys	Gly	Thr	Leu 150	Asp	Gly	Asp	Glu	Ala 155	Asn	Leu	Asp	Leu	Pro 160
30	Cys	Asp	Pro	Ala	Gln 165	Pro	Val	Tyr	Cys	Ile 170	Tyr	Thr	Ser	Gly	Ser 175	Thr
. 35	Gly	Ser	Pro	Lys 180	Gly	Val	Leu	Val	Arg 185	His	Ser	Gly	Leu	Ala 190	Asn	Tyr
	Val	Ala	Trp 195	Ala	Lys	Arg	Gln	Tyr 200	Val	Thr	Ala	qaA	Thr 205	Thr	Ser	Phe
40	Ala	Phe	Tyr	Ser	Ser	Leu	Ser	Phe	Àsp	Leu	Thr	Val	Thr	Ser	Ile	Tyr

		210					215 ´					220				
5	Val 225	Pro	Leu	Val	Ala	Gly 230	Leu	Cys	Val	His	Val 235	Туг	Pro	Glu	Gln	Gly 240
10	Asp	Asp	Val	Pro	Val 245	Ile	Asn	Arg	Val	Leu 250	Asp	Asp	Asn	Gln	Val 255	Asp
	Val	Ile	Lys	Leu 260	Thr	Pro	Ser	His	Met 265	Leu	Met	Leu	Arg	Asn 270	Ala	Ala
15	Leu	Ala	Thr 275	Ser	Arg	Leu	Lys	Thr 280	Leu	Ile	Val	Gly	Gly 285	Glu	Asp	Leu
20	Lys	Ala 290	Ala	Val	Ala	Tyr	Asp 295	Ile	His	Gln	Arg	Phe 300	Arg	Arg	Asp	Val
25	Ala 305	Ile	Tyr	Asn	Glu	Tyr 310	Gly	Pro	Thr	Glu	Thr 315	Val	Val	Gly	Cys	Ala 320
30	Ile	His	Arg	Tyr	Asp 325	Pro	Ala	Thr	Glu	Arg 330	Glu	Gly	Ser	Val	Pro 335	Ile
	Gly	Val	Pro	Ile 340	Asp	His	Thr	Ser	Leu 345	His	Leu	Leu	Asp	Glu 350	Arg	Leu
35	Gln	Pro	Val 355	Ala	Pro	Gly	Glu	Val 360	Gly	Gln	Ile	His	Ile 365	Gly	Gly	Ala
40	Gly	Val 370	Ala	Ile	Gly	Tyr	Val 375	Asn	Lys	Pro	Glu	Ile 380	Thr	Asp	Ala	Gln

Application of Royer, et al.

	Phe 385		Asp	Asn	Pro	Phe 390	Glu	Gly	Ser	Gly	Arg 395	Leu	Tyr	Ala	Ser	Gly 400
5	Asp	Leu	Gly	Arg	Met 405	Arg	Ala	Asp	Gly	Lys 410	Leu	Glu	Phe	Leu	Gly 415	Arg
10	Lys	Asp	Ser	Gln 420	Ile	Lys	Leu	Arg	Gly 425	Тут	Arg	Ile	Glu	Leu 430	Gly	Glu
15	Ile	Glu	Asn 435	Val	Leu	Leu	Gly	His 440	Ala	Ala	Leu	Arg	Glu 445	Cys	Ile	Val
20	Asp	Thr 450	Thr	Val	Ala	Pro	Arg 455	Arg	Asp	Tyr	Asp	Ser 460	Lys	Ser	Leu	Arg
	Tyr 465	Cys	Ala	Arg	Сув	Gly 470	Ile	Ala	Ser	Asn	Phe 475	Pro	Asn	Thr	Ser	Phe 480
25	Asp	Glu	His	Gly	Val 485	Сув	Asn	His	Cys	His 490	Ala	Туг	Asp	Lys	Tyr 495	Arg
30	Asn	Val	Val	Glu 500	Asp	Tyr	Phe	Arg	Thr 505	Glu	Asp	Glu	Leu	Arg 510		Ile
35	Phe	Glu	Gln 515	Val	Lys	Ala	His	Asn 520	Arg	Leu	Arg	Tyr	Asp 525	Cys	Leu	Val
40	Ala	Phe 530	Ser	Gly	Gly	Lys	Asp 535	Ser	Thr	Tyr	Ala	Leu 540	Сув	Arg	Val	Val

Application of Royer, et al.

	Asp 545	Met	Gly	Leu	Arg	Val 550	Leu	Ala	Tyr	Thr	Leu 555	Asp	Asn	Gly	Tyr	Ile 560
5	Ser	Asp	Glu	Ala	<b>L</b> ув 565	Ala	Asn	Val	Asp	Arg 570	Val	Val	Arg	Glu	Leu 575	Gly
10	Val	Asp	His	Arg 580	туг	Leu	Gly	Thr	Pro 585	His	Met	Asn	Ala	Ile 590	Phe	Val
15	Asp	Ser	Leu 595	His	Arg	His	Ser	Asn 600	Val	Суѕ	Asn	Gly	Сув 605	Phe	Lys	Thr
	Ile	Туг 610	Thr	Leu	Gly	Ile	Asn 615	<b>L</b> eu	Ala	His	Glu	Val 620	Gly	Val	Ser	Asp
20	Ile 625	Val	Met	Gly	Leu	Ser 630	Lys	Gly	Gln	Leu	Phe 635	Glu	Thr	Arg	Leu	Ser 640
25	Glu	Leu	Phe	Arg	Ala 645	Ser	Thr	Phe	Asp	Asn 650	Gln	Val	Phe	Glu	Lys 655	Asn
30	Leu	Met	Glu	Ala 660	Arg	Lys	Ile	Tyr	His 665	Arg	Ile	Asp	Asp	Ala 670	Ala	Ala
35	Arg	Leu	Leu 675	Asp	Thr	Ser	Cys	Val 680	Arg	Asn	Asp	Arg	Leu 685	Leu	Glu	Ser
	Thr	Arg 690	Phe	Ile	Asp.	Phe	Tyr 695	Arg	Tyr	Cys	Ser	Val 700	Ser	Arg	Lys	Asp
40	Met	Tyr	Arg	Tyr	Ile	Ala	Glu	Arg	Val	Gly	Trp	Ser	Arg	Pro	Ala	Asp

10 / 20

	705		-			710					715					720
5	Thr	Gly	Arg	Ser	Thr 725	Asn	Сув	Leu	Leu	Asn 730	Asp	Val	Gly	Ile	Tyr 735	Met
10	His	Lys	Lys	Gln 740	Arg	Gly	Tyr	His	Asn 745	Tyr	Ser	Leu	Pro	Tyr 750	Ser	Trp
	Asp	Val	Arg 755	Val	Gly	His	Ile	Pro 760	Arg	Glu	Asp	Ala	Met 765	Arg	Glu	Leu
15	Glu	Asp 770	Thr	Asp	Asp	Ile	Asp 775	Glu	Ala	Lys	Val	Leu 780	Gly	Leu	Leu	Lys
20	Gln 785	Ile	Gly	Tyr	Asp	Ser 790	Ser	Leu	Ile	Asp	Thr 795	Gln	Ala	Gly	Asp	Ala 800
25	Gln	Leu	Ile	Ala	Tyr 805	Tyr	Val	Ala	Ala	Glu 810	Glu	Leu	Ąsp	Pro	Val 815	Ala
30	Leu	Arg	Asn	Phe 820	Ala	Ala	Ala	Ile	Leu 825	Pro	Glu	Tyr	Met	Leu 830	Pro	Ser
	Tyr	Phe	Val 835	Arg	Leu	Asp	Arg	Met 840	Pro	Leu	Thr	Pro	Asn 845	Gly	Lys	Val
35	Asn	Arg 850	Arg	Ala	Leu	Pro	Arg 855	Pro	Glu	Leu	Lys	<b>L</b> ys	Asn	Ala	Ser	Glu
40	Ala 865	His	Thr	Glu	Pro	Ser 870	Ser	Ala	Leu	Glu	Gln 875	Glu	Leu	Val	Gln	Ile 880

	Trp	Lys	Glu	Val	Leu 885	Met	Val	Asp	Lys	Val 890	Gly	Val	Arg	Asp	Asn 895	Phe
5	Phe	Glu	Leu	Gly 900	Gly	His	Ser	Leu	Ser 905	Ala	Leu	Met	Leu	Leu 910	Tyr	Ser
10 .	Ile	Ala	Glu 915	Arg	Tyr	Gln	Lys	Met 920	Val	Ser	Ile	Gln	Ala 925	Phe	Ser	Val
15	Asn	Pro 930	Thr	Ile	Glu	Gly	Leu 935	Ser	Glu	His	Leu	Val 940	Ala			
20	<210 <210 <210 <210	l> : 2> :	30 239 PRT Kantl	omoi	nas a	albil	linea	ns								
25	<400 Met	0> :	30						Ala	Ala	Leu	Cvs	Glu	Gln	Leu	I.ve
25		0> :							Ala	Ala 10	Leu	Cys	Glu	Gln	Leu 15	rya Lya
25 30	Met 1	O> :	30	Gln	Cys 5	Ala	Arg	Ile		10					15	
	Met 1 Leu	Asp	30 Leu	Gln Leu 20	Cys 5 Ser	Ala	Arg Asp	Ile Trp	Gln 25	10 Ala	Leu	Ala	Gln	Ala 30	15 Ala	, Ala
30	Met 1 Leu Cys	Asp Ala Glu	Leu Arg	Gln Leu 20 Ala	Cys 5 Ser	Ala Ser Tyr	Arg Asp	Ile Trp Leu 40	Gln 25 Glu	10 Ala Lys	Leu Val	Ala	Gln Ala 45	Ala 30 Ser	15 Ala Glu	Ala Gln

	65	70	75	80
5	Gly Ala Ser Lys	Ala Gln Ile Val Glu L 85 9	eu Gly His Leu Thr Pho 0 95	e Val
10	Glu Arg Ala Glu 100	Asn Val Val Met Leu G 105	ly Pro Ser Gly Val Gly	/ Lys
	Thr His Ile Ala 115	Leu Ala Leu Cys Gln A	rg Ala Val Met Ala Gly 125	His
15	Lys Ala Arg Phe 130	Ile Thr Ala Ala Asp Le	eu Met Met Gln Leu Ala 140	Ala
20	Val Lys Ala Gln 145	Asn Arg Leu Lys Asp Ty 150	yr Phe Asn Arg Ala Val 155	Leu 160
25	Gly Pro Lys Leu	Leu Val Val Asp Glu II 165 17		Gly
30	Arg Glu Pro Ala 180	Gln Gly Cys Trp Ala Al 185	a Thr Gly Phe Ala Leu 190	Arg
	Ser Leu Ala Ala . 195	Arg Arg Trp Lys Thr Pr 200	o Gly Gly Ser Asp Leu 205	Leu
35	Arg Arg Phe Lys (	Gly Lys Trp Val Lys Pho 215	e Lys Ser Ala Leu Thr 220	Ala
40	Asp Val Val Tyr 1 225	Leu Ile Phe Arg Leu Arg 230	g Gly Ser Asp His Pro 235	

5	<210> 31 <211> 286 <212> PRT <213> Xanthomonas albilineans <400> 31
10	Met Pro Arg Ile Glu Tyr Cys Ile Ser Met Met His Arg Arg Lys Pr 1 5 10 15
15	Thr Thr Asn Arg Ser Val Cys Met Arg Asp Ile Glu Arg Thr Ala Le 20 25 30
20	Trp Val Ala Gly Met Arg Ala Leu Glu Ser Glu Arg Glu Gln Ala Leu 35 40 45
	Phe His Asp Pro Phe Ala Arg Arg Leu Ala Gly Asp Glu Phe Val Glu 50 55 60
25	Glu Leu Arg Arg Asn Asn Gln Asn Val Pro Met Pro Pro Ala Ile Glu 65 70 75 80
30	Val Arg Thr Arg Trp Leu Asp Asp Lys Ile Met Gln Ala Val Ser Glu 85 90 95
35	Gly Ile Gly Gln Val Val Ile Leu Ala Ala Gly Met Asp Ala Arg Ala 100 105 110
40	Tyr Arg Leu Pro Trp Pro Ser Asp Thr Arg Val Tyr Glu Ile Asp His 115 120 125
70	Met Asp Val Leu Ser Asp Lys His Glu Lys Leu His Asp Ala Gln Pro

**221**.

	130		135	140	
5	Val Cys Gln 145	i Arg Ile Ala 150	Leu Pro Ile Asp	Leu Arg Glu Asp Trp	Pro 160
10 .	Gln Ala Leu	Lys Glu Ser 165	Gly Phe Val Gly	Ser Ala Ala Thr Leu 175	Trp
	Leu Val Glu	Gly Leu Leu 180	Cys Tyr Leu Ser 185	Ala Glu Ala Val Met 190	Leu
15	Leu Phe Ala 195		Ala Leu Ser Ala 200	Lys Gly Ser Ser Val 205	Leu
20	Phe Asp Val	Ile Gly Leu	Ser Met Leu Asn 215	Ser Pro Asn Ala Arg 220	Val
25	Leu His Ala 225	Met Ala Arg 230	Gln Phe Gly Thr	Asp Glu Pro Glu Ser 235	Leu 240
30	Ile Gln Pro	Leu Gly Trp 245	Glu Pro Gly Val 250	Leu Thr Ile Ala Ala 255	Ala
	Gly Gln Gln	Met Gly Arg 260	Trp Pro Phe Pro 265	Val Ala Pro Arg Gly 270	Thr
35	His Gly Val 275	Pro Gln Ser	Tyr Leu Val His 280	Ala Leu Lys Arg 285	
40	<210> 32 <211> 765				

Application of Royer, et al.

	<213	> X	anth	omor	nas a	lbil	inea	ns								
5	<400	<b>3</b>	2													
	Met ?	Arg .	Arg	Ser	Pro 5	Tyr	Pro	Arg	Thr	Leu 10	Met	Asp	Ser	Pro	Leu 15	Thr
10	Asn I	Leu	Pro	Met 20	His	Ser	Gly	Thr	Glu 25	Leu	Asp	Leu	Arg	Trp 30	Ser	Val
15	Gly (		Thr 35	Arg	Pro	Gly	Arg	Asn 40	Glu	Ala	Туг	Ala	Arg 45	Gln	Trp	Thr
20	Thr I	Leu 50	Leu	His	Gln	Trp	Arg 55	Arg	Asp	Туг	Pro	Gly 60	Leu	Arg	Ile	Asp
	Val 8	Ser	Двр	Thr	Pro	Ile 70	Gly	Gln	His	Ile	Thr 75	Ile	Asp	Tyr	Ala	Ala 80
25 .	Pro :	ſyr	Pro	Сув	Gly 85	Ser	Phe	Gly	Ser	Leu 90	Leu	Arg	Glu	Tyr	Ala 95	Arg
30	Leu (	Gly	Lys	Leu 100	Ala	Gly	Leu	Ile	Cys 105	Asp	Tyr	Leu	Lys	His 110	Arg	His
35	Gln :	Ile	Val 115	Leu	Ser	Glu	Ser	Pro 120	Pro	Gly	Ala	Asn	Thr 125	Leu	Ala	Lev
40	Asp 1	Leu 130	Gly	Arg	Ile	Glu	Glu 135	Pro	Lys	Gln	Leu	Asp 140	Arg	Leu	Gln	Gly

<212> PRT

	Ala 145	Leu	Gly	Met	Ala	Leu 150	Glu	Ala	Leu	Ala	Thr 155	Arg	Arg	Ser	Asp	Gly 160
5	Leu	Leu	Leu	Trp	His 165	Ala	qaA	His	Arg	Gln 170	Arg	Asn	Leu	Pro	Asp 175	Leu
10	Arg	Ąsp	Ser.	Ala 180	Val	Сув	Gly	Ser	Ala 185	Ala	Gln	Ile	Ser	Leu 190	Pro	Ala
15	Leu	Ser	Cys 195	Val	Glu	Asp	Leu	Ile 200	Glu	Val	Asp	Thr	Ser 205	Leu	Leu	Ala
	Сув	Asp 210	His	Gly	Lys	Leu	Сув 215	Gln	Ile	Ala	Ser	His 220	Leu	Pro	Ala	Ser
20	Trp 225	Phe	Ala	Arg	Ser	Thr 230	Asp	Gly	Pro	Met	Pro 235	Ser	Trp	Ser	Asp	Ala 240
25	Ser	Thr	Ala	Val	Phe 245	Ala	Сув	Ala	Pro	Ile 250	Gly	Phe	Leu	Pro	Ser 255	Val
30	Gln	Val	Asn	Val 260	Сув	Ala	Gln	Ile	Phe 265	Ser	Ala	Ala	His	Leu 270	Ala	Ser
35	Thr	Ala	Gln 275	Met	Ile	Asp	Pro	Leu 280	Arg	Gln	Gln	Ala	Phe 285	Ser	Tyr	Arg
	Gln	Leu 290	Arg	Ser	Arg	Ala	Ala 295	Thr	Tyr	Ala	Arg	His 300		Ser	Leu	Leu
40	Gly	Leu	Gln	Ser	Gly	Asp	Ala	Val	Ala	Leu	Ile	Ala	Ile	Asp	Ser	Leu

				224	Application of Royer, et al
	305		310	315	320
5	Ala Gl	y Val Ala Le 32	eu Met Leu <i>I</i> 25	la Cys Leu Ala Gly Gly 330	V Leu Val Phe 335
10	Ala Pro	o Ile Asn Gl 340	u Leu Val S	er Leu Val His Phe Glu 345	Thr Thr Leu 350
15	Lys Thr	lle Lys Pr 355	o Arg Leu V	al Leu Ile Asp Ala Glu 60 365	
	Ser His 370	His Ala Ala	a Leu Arg H: 375	ls Leu Pro Thr Leu Glu 380	Leu Thr Ser
20	Leu Met 385	Pro Val Ile	: Glu Asn As 390	p Glu Leu Val Val Ala 395	Pro Cys Ser 400
25	Ala Asp	Ala Pro Ala 405	Val Met Il	e Cys Thr Ser Gly Ser 410	Thr Gly Thr 415
30	Pro Lys	Ala Val Thr 420	His Ser Hi	s Ala Asp Phe Met His 425	Cys His Leu 430
	Asn Tyr (	Gln Gln Ala 435	Val Leu Gly	Leu Arg Ser Asp Asp 445	Val Met Tyr
35	Thr Pro S	Ser Arg Leu	Phe Phe Ala 455	Tyr Gly Leu Asn Asn 1 460	Leu Met Leu
<b>40</b>	Ser Leu L	Seu Ala Gly	Val Ser His 470	Val Ile Ala Ala Pro I 475	eu Ser Val 480

	Arg	Gln	Ile	Ala	Gln 485	Thr	Ile	His	Thr	Tyr 490	His	Val	Thr	Val	Leu 495	Leu
	Ala	Val	Pro	Ala 500	Val	Phe	Lys	Leu	Leu 505	Leu	Ala	Glu	Ala	Ala 510	Pro	Asp
10	Ala	Val	Trp 515	Pro	Ala	Leu	Arg	Leu 520	Сув	Ile	Ser	Ala	Gly 525	Glu	Ser	Leu
15	Pro	Ala 530	Arg	Leu	Gly	His	Ala 535	Ile	Ser	Thr	Arg	Trp 540	Gln	Val	Glu	Val
20	Leu 545	Asp	Gly	Ile	Gly	Cys 550	Thr	Glu	Val	Leu	Ser 555	Thr	Phe	Ile	Ser	Asn 560
	Arg	Pro	Gly	His	Ala 565	Leu	Met	Gly	Cys	Thr 570	Gly	Thr	Pro	Val	Pro 575	Gly
25	Phe	Val	Val	Lys 580	Leu	Val	Asn	Lys	Gln 585	Gly	Glu	Ile	Cys	Arg 590	Ile	Gly
30	Glu	Val	Gly 595	Ser	Leu	Trp	Val	Arg 600	Gly	Asn	Thr	Leu	Thr 605	Arg	Gly	Tyr
35	Val	Gly 610	Asp	Pro	Ile	Leu	Ser 615	Ala	Gln	Leu	Phe	Val 620	_	Gly	Trp	Phe
40	Asp 625	Thr	Arg	Asp	Leu	Phe 630	Phe	Ala	Asp	Ala	Lys 635	Gly	Arg	Phe	His	Asn 640

	Leu Gly Arg Me	t Gly Ser Ala	a Ile Lys Ile 650	Asn Gly Cys T	rp Leu Ser 655
5	Pro Glu Thr Le		l Ile Gln Thr 665	His Ala Cys Va	al Lys Glu 70
10	Cys Ala Ile Cy 675	s Leu Ile Gl	u Asp Glu Phe 680	Gly Leu Pro An 685	rg Pro Ala
15	Ala Phe Val Va	l Pro Val As _l 69		Asp Thr Gly A	la Leu Trp
20	Ala Ala Leu Ar 705	g Ala Leu Cya 710	s Lys Asn Ala	Leu Gly Lys H: 715	is His Tyr 720
20	Pro His Leu Ph	e Val Glu Va	l Ser Thr Ile 730	Pro Arg Thr Cy	ys Ser Gly 735
25	Lys Val Ile Ax		u Leu Glu Thr 745	Leu Ala Ser A	la Lys His 50
30	Leu Gln Ser Hi 755	s Leu Phe Pho	e Val Gly His 760	Ala Arg Thr 765	
35	<210> 33 <211> 330 <212> PRT <213> Xanthom	onas albilin	eans		·
40	<400> 33 Met His Thr As	n Ala Asp Let 5	u Pro Leu Thr 10	Ile Lys Ala As	sp Ser Ala 15

_	Glu	Ala	Thr	. Leu 20	Thr	Asp	Trp	Asn	Ala 25	Thr	His	Arg	Ala	Thr 30	Trp	Pro
5	Thr	Leu	Leu 35	Trp	Gln	His	Arg	Ala 40	Leu	Leu	Phe	Arg	Gly 45	Phe	Ala	His
10	Pro	Gly 50	Gly	Leu	Glu	Gln	Ile 55	Ser	Arg	Cys	Phe	Phe 60	Asp	Glu	Arg	Leu
15	Ala 65 _.	Tyr	Thr	Tyr	Arg	Ser 70	Thr	Pro	Arg	Thr	Asp 75	Val	Gly	Gln	His	Val 80
20	Tyr	Thr	Ala	Thr	Glu 85	Tyr	Pro	Arg	Gln	Leu 90	Ser	Ile	Ala	Gln	His 95	Cys
	Glu	Asn	Ala	Tyr 100	Gln	Arg	Val	Trp	Pro 105	Met	Lys	Leu	Leu	Phe 110	His	Сув
25	Val	Gln	Pro 115	Ala	Ser	Glu	Gly	Gly 120	Cys	Thr	Pro	Leu	Ala 125	Asp	Met	Leu
30	Lys	Val 130	Thr	Ala	Ala	lle	Asp 135	Pro	Gln	Val	Arg	Glu 140	Ile	Phe	Ala	Arg
35	Lys 145	Gln	Val	Arg	Tyr	Val 150	Arg	Asn -	Tyr	Arg	Ala 155	Gly	Val	qaA	Leu	Pro 160
40	Trp	Glu	Asp	Val	Phe 165	Asn	Thr	Arg	Asn	Lys 170	Gln	Glu	Val	Glu	Ala 175	Tyr

Application of Royer, et al.

		Cys	Ala	Arg	Asn 180	Asp	Met	Gln	Сув	Glu 185	Trp	Thr	Gly	Asp	Gly 190	Leu	Arg
5		Thr	Ser	Gln 195	Ile	Cys	Arg	Ala		Ala	Суз	His	Pro	Ala 205	Thr	Gly	Ąap
10		Glu	Val 210	Trp	Phe	Asn	Gln	Ala 215	His	Leu	Phe	His	Туг 220	Thr	Ala	: Leu	Glu
15		Ala 225	Ala	Ala	Gln	Lys	Met 230	Met	Leu	Ser	Phe	Phe 235	Gly	Glu	Gln	Gly	Leu 240
	1	Pro	Arg	Asn	Ala	Туг 245	Phe	Gly	Asp	Gly	Thr 250	Pro	Ile	Asp	Pro	Ala 255	Met
20		Leu	Asp	His	Val 260	Arg	Thr	Val	Phe	Ala 265	Gln	His	Lys	Ile	His 270	Phe	Asp
25		Trp	His	Arg 275	Asp	Asp	Val	Leu	Leu 280	Ile	Asp	Asn	Met	Leu 285	Val	Ser	His
30		Gly	Arg 290	Glu	Pro	Tyr	Glu	Gly 295	Ser	Arg	Lys	Ile	Leu 300	Val	Сув	Met	Ala
35		Glu 305	Pro	туг	Ser	Pro	Glu 310	Gln	Ser	Ser	Pro	Asp 315	Ile	Ala	Ala	Arg	Ser 320
		Asp	Gly	Glu	Ala	Met 325	Leu	Lys	Leu	His	Val 330						
40																	

<210> 34

	<211><212><213>	1959 PRT Xant		nas	albi	line	ans								
5	<400>	34												•	
	Met Ly 1	s Leu	Ser	Ser 5	Met	Ser	Leu	. Leu	Asp 10	Ala	Glu	Asp	Val	Ala 15	Let
10	Thr Al	a Ala	Ser 20	Pro	Asp	Thr	Ala	Leu 25	Ala	Leu	Asp	Trp	Ser	Arg	Ser
15	Val Le	u Asp 35	Leu	Phe	Asp	Ala	Gln 40	Val	Ala	Leu	His	Ala 45	Glu	Glu	Leu
20	Ala Cy 50	s Ala	Asp	Gln	His	Arg 55	Gln	Leu	Ser	Tyr	Ala 60	Gln	Leu	Asp	Gln
25	His Al 65	a Asn	Arg	Leu	Ala 70	His	Cys	Leu	Ile	Glu 75	Arg	Gly	Leu	Arg	Pro
	Gln Gl	u Arg	Val	Ala 85	Leu	Trp	Phe	Gly	Arg 90	Ser	Pro	Asp	Phe	Leu 95	Ile
30	Ala Le	ı Leu	Gly 100	Val	Leu	Lys	Ala	Gly 105	Gly	Cys	Туг	Val	Pro 110	Leu	Asp
35	Pro His	115	Pro	Thr	Thr	Tyr	Ile 120	Gln	Gln	Ile	Leu	Asp 125	Asp	Ala	Gln
40	Pro Arg	J Leu (	Leu :	Leu		Gly 135	Lys	Asp	Ile	Asp	Gly 140	Gln	Leu	Ile	Gln

	Val 145		Arg	Leu	Arg	Leu 150	Asp	Ąsp	Ala	Ala	Ile 155	Ala	Arg	Gln	Pro	His 160
5	Thr	Pro	Leu	Pro	His 165	Ala	Leu	His	Pro	Ala 170	Gln	Leu	Ala	Tyr	Val 175	Met
10	Tyr	Thr	Ser	Gly 180	Ser	Thr	Gly	Arg	Pro 185	Lys	Gly	Val	Met	Val 190	Pro	His
15	Arg	Gln	Ile 195	Leu	Asn	Trp	Leu	His 200	Ala	Leu	Trp	Ala	Arg 205	Ala	Pro	Phe
	Glu	Ala 210	Gly	Glu	Arg	Val	Ala 215	Gln	Lys	Thr	Ser	Ile 220	Ala	Phe	Ala	Ile
20	Ser 225	Val	Lys	Glu	Leu	Leu 230	Ala	Gly	Leu	Leu	Ala 235	Gly	Val	Pro	Gln	Val 240
25	Phe	Ile	Asp	Glu	Asp 245	Thr	Val	Arg	Asp	Ile 250	Þro	Ala	Phe	Val	Arg 255	Ala
30	Leu	Glu	Thr	Trp 260	Gln	Ile	Thr	Arg	Leu 265	Tyr	Thr	Phe	Pro	Ser 270	Gln	Leu
35	Asn	Ala	Leu 275	Leu	Asp	His	Val	Ala 280	Glu	Thr	Pro	Gln	Arg 285	Leu	Ala	Arg
	Leu	Arg 290	Gln	Leu	Phe	Val	Ser 295	Ile	Glu	Pro		Pro 300	Ala	Glu	Leu	Leu
40	Gln	Arg	Leu	Arg	Thr	Leu	Leu	Pro	Ala	Cys	Thr	Ala	Trp	Tyr	Ile	Tyr

										23	1				Appli	cation of Royer, et al.
	305	5				310	)				315	5				320
5	Gl	у Сув	Thi	Glu	1 Ile 325	e Asr	n Asp	) Met	Thr	тух 330		as,	) Pro	Ala	Glu 335	Gln
10 ⁻		Ser	Gly	7 Ser 340		Phe	e Val	. Pro	Val 345		Arg	Pro	) Ile	Ala 350		Thr
	Lya	<b>V</b> al	His	Val	. Leu	Asp	Glu	Gln 360		Arg	Pro	Leu	Pro 365	Pro	Gly	Ile
15	Met	Gly 370	Glu	. Val	His	Ile	Glu 375		Leu	Gly	Ile	Thr	His	Gly	Tyr	Trp
20	Arg 385	Gln	Gly	Gly	Leu	Thr 390		Ala	Arg	Phe	Ile 395	Ala	Asn	Pro	Tyr	Gly 400
25	Pro	Pro	Gly	Ser	Arg 405	Leu	Tyr	Arg	Thr	Gly 410	Asp	Met	Ala	Arg	Leu 415	Leu
30	Asp	Asn	Gly	Thr 420	Leu	Glu	Leu	Leu	Gly 425	Arg	Arg	Asp	Tyr	Glu 430	Val	
	Val	Arg	Gly 435	Tyr	Arg	Val	Asp	Val 440	Arg	Gln	Val	Glu	Lys 445	Ala	Leu	Ala ·
35	Ala	His 450	Leu	Gln	∤ Val	Ala	Glu 455	Ala	Ala	Val		Gly 460	Trp	Pro	Gln	Gly
40	Ser 465	Pro	Thr	Pro	Glu	Leu 470	Leu	Ala	Tyr ,		Val 475	Pro	Arg	Gln		Val 480

	Leu	Asn	Leu	Asp	Glu 485	Leu	Arg	Lys	Leu	Leu 490	Gln	Glu	Arg	Leu	Pro 495	Thr
5	Туг	Met	Leu	Pro 500	Thr	Arg	Phe	Gln	Ser 505	Leu	Pro	Ala	Leu	Pro 510	Arg	Leu
10	Pro	Asn	Gly 515	Lys	Leu	Ąsp	Thr	Leu 520	Ser	Leu	Pro	Glu	Pro 525	Gln	Ala	Ala
15	Ser	Ser 530	Asp	Ser	Asp	Tyr	Leu 535	Ala	Pro	Arg	Ser	Glu 540	Val	Glu	Ile	Thr
20	Leu 545	Ala	Lys	Leu	Trp	Ser 550	Glu	Leu	Leu	Thr	Pro 555	Ala	Gln	Ala	Ala	Pro 560
	Leu	Arg	Val	Ser	Leu 565	Asn	Asp	Asn	Phe	Phe 570	Asn	Leu	Gly	Gly	His 575	Ser
25	Leu	Leu	Ala	Thr 580	Gln	Leu	Phe	Ser	Arg 585	Ile	Arg	Gln	Ser	Phe 590	Asp	Ile
30	Glu	Val	Arg 595	Val	Asn	Thr	Leu	Phe 600	Glu	Ser	Pro	Val	Leu 605	Glu	Ąsp	Phe
35	Ala	Arg 610	Val	Val	Asn	Glu	Ala 615	Arg	Gln	Gln	Gln	Ala 620	Pro	Thr	Gly	Gly
40	Asn 625	Thr	Ile	Ser	Ser	Arg 630	Ala	Val	Arg	Asp	Ala 635	Pro	Val	Pro	Leu	Ser 640

	Tyr	Gln	Gln	Glu	Arg 645	Leu	Trp	Phe	Val	His 650	Glu	His	Met	Pro	Glu 655	Gln
5	Arg	Thr	Ser	Туг 660	Asn	Val	Ala	Phe	Ala 665	Cys	His	Leu	Arg	Ser 670	Ala	Asp
10	Phe	Ser	Met 675	Ser	Ala	Leu	Arg	Glu 680	Ala	Ile	Gln	Ala	Leu 685	Val	Ala	Arg
15	His	Glu 690	Thr	Leu	Arg	Thr	Arg 695	Ile	Ala	Thr	Cys	Ala 700	Gly	Gly	Asp	Tyr
	Pro 705	Ser	Gln	His	Ile	Ala 710	Asp	Ala	Met	Gln	Val 715	Pro	Val		Суз	Ile 720
20	Thr	Ala	Thr	Pro	<b>Ala</b> 725	Glu	Val	Pro	Arg	Leu 730	Val	Ala	Glu	His	Ala 735	Ala
25	His	Val	Phe	Asp 740	Leu	Ala	His	Gly	Pro 745	Leu	Leu	Lys	Val	Ser 750	Val	Leu
30	Arg	Val	Ser 755	Asp	Asp	Tyr	His	Val 760	Phe	Leu	Met	Asn	Met 765	His	His	Ile
35 .	Ile	Суs 770	Asp	Gly	Trp	Ser	Ile 775	Asn	Leu	Ile	Phe	His 780	Asp	Leu	Arg	Ala
	Phe 785	Tyr	Ile	Ala	Ala	Leu 790	Gln	Gln	Thr	Pro	Pro 795	Ala	Leu	Pro	Pro	Leu 800
40	Leu	Leu	Gln	Tyr	Ala	Asp	Tyr	Ala	Thr	Trp	<b>Gl</b> n	Arg	Val	Gln	Asp	Phe

Application of Royer, et al Ser Ala Asp Leu Asp Tyr Trp Lys Gln Arg Leu His Gly Tyr Glu Glu Gly Leu Ala Leu Pro Tyr Asp Phe Pro Arg Pro Ala Asn Arg Ala Trp Arg Ala Gly Ile Leu His Leu Thr Tyr Pro Asp Ala Leu Ala Ala Arg Leu Ala Ala Phe Ser Gln Glu Arg Arg Val Thr Leu Phe Met Thr Leu Met Ala Ser Leu Ala Ile Val Leu His Gln Tyr Thr Gly Arg Arg Glu Leu Cys Leu Gly Thr Thr Ser Ala Gly Arg Asp Gln Leu Glu Thr Glu Asn Leu Ile Gly Phe Phe Val Asn Ile Leu Ala Val Arg Leu Asn Leu Gly Ser His Ala Phe Ala Glu Asp Phe Leu Gln His Val Arg Gln Gln Val Leu Asp Ala Tyr Ala His Arg Ala Leu Pro Phe Glu His Val Leu . 950 Ser Ala Leu Lys Lys Pro Arg Asp Ser Ser Gln Ile Pro Leu Val Pro 

	980 985 990
5	Ala Gln Ile Phe Leu Ser Ala Gln Met Glu Phe Gly Glu Arg Thr Thr 995 1000 1005
10	Pro Asn Glu Leu Asp Leu Gln Phe Ile Gly Asp Gly Ser His Leu 1010 1015 1020
15	Glu Val Thr Val Glu Tyr Ala Ala Glu Leu Phe Ser Ala Ala Thr 1025 1030 1035
20	Val Gln Arg Met Leu Ala His His Gln Arg Val Leu Glu Arg Met 1040 1045 , 1050
25	Leu Glu Glu Pro Arg Cys Arg Leu Ser Asp Phe Ser Leu Pro Val 1055 1060 1065
	Ala Arg Thr Glu Phe Thr Pro His Thr Leu Asp Thr Ser Arg Ser 1070 1075 1080
30	Val Leu Asp Leu Phe Asp Ala Gln Val Ala Leu His Ala Glu Glu 1085 1090 1095
35	Leu Ala Cys Ala Asp Gln His Arg Gln Leu Ser Tyr Ala Gln Leu 1100 1105 1110
40	Asp Gln His Ala Asn Arg Leu Ala His Cys Leu Ile Glu Arg Gly 1115 1120 1125

	Let	1 Arg 113(	Pro	Gl:	n Glu	Arg	Val 1135		Leu	Trp	Phe	Gly 1140		Ser	Pro
5	Asr	Phe 1145		ı Ile	e Ala	Leu	Leu 1150		· Val	. Leu	Lys	Ala 1155		Gly	' Cys
10	Тух	' Val		Lev	ı Asp	Pro	His 1165		Pro	Thr	Thr	Tyr 1170		Gln	Gln
15	Ile	Leu 1175	Asp	Asp	Ala	Gln	Pro 1180		Leu	Leu	Leu	Cys 1185		Lys	Asp
	Ile	Asp 1190	Gly	Gln	Leu	Ile	Gln 1195	Val	Pro	Arg	Leu	Arg 1200	Leu	Asp	Asp
20	Ala	Ala 1205		Ala	Arg	Gln	Pro 1210	His	Thr	Pro	Leu	Pro 1215	His	Ala	Leu
25	His	Pro 1220		Gln	Leu	Ala	Tyr 1225	Val	Met	Tyr	Thr	Ser 1230	Gly	Ser	Thr
30	Gly	Arg 1235	Pro	Lys	Gly	Val	Met 1240	Val	Pro	His	Arg	Gln 1245	Ile	Leu	Asn
35	Trp	Leu 1250	His	Ala	Leu	Trp	Ala 1255	Arg	Ala	Pro	Phe	Glu 1260	Ala	Gly	Lys
	Arg	Val 1265	Ala	Gln	Lys		Ser 1270	Ile	Ala	Phe	Ala	Ile 1275	Ser	Val	Lys
40	Glu	Leu	Leu	Ala	Gly	Leu	Leu	Ala	Gly	Val	Pro	Gln	Val	Phe	Ile

		1280	•				1285	5				1290	)		
5	Asp	Glu 1295		Thr	· Val	Arg	Asp 1300		Pro	) Ala	Phe	val 1305		j Ala	Le:
10	Glu	Thr 1310	Trp	Gln	Ile	Thr	Arg 1315		Туг	Thr	Phe	Pro 1320		Gln	Lei
	Asn	Ala 1325		Leu	Asp	His	Val 1330		Glu	Thr	Pro	Gln 1335		Leu	Ala
15	Arg	Leu 1340		Gln	Leu	Phe	Val 1345		Ile	Glu	Pro	Cys 1350		Ala	Glu
20	Leu	Leu 1355	Gln	Arg	Leu	Arg	Thr 1360		Leu	Pro	Ala	Cys 1365		Ala	Trp
25	Tyr	Ile 1370	Tyr	Gly	Сув	Thr	Glu 1375	Ile	Asn	Asp	Met	Thr 1380	Tyr	Cys	Asp
30	Pro	Ala 1385	Glu	Gln	His	Ser	Gly 1390	Ser	Gly	Phe	Val	Pro 1395	Val	Gly	Arg
		Ile 1400	Ala	Asn	Thr	Lys	Val 1405	His	Val	Leu	Asp	Glu 1410	Gln	Leu	Arg
35		Leu 1415	Pro	Pro	Gly	Ile	Met 1420	Gly	Glu	Val	His	Ile 1425	Glu	Ser	Leu
40		Ile 1430	Thr	His	Gly		Trp 1435	Arg	Gln	Gly	Gly	Leu 1440	Thr	Ala	Ala

	Arg	Phe 1445		Ala	Asn	Pro	Tyr 1450		Pro	Pro	Gly	Ser 1455		Leu	Tyr
5	Arg	Thr 1460		Asp	Met	Ala	Arg 1465		Leu	Ąsp	Asn	Gly 1470	Thr	Leu	Glu
10	Leu	Leu 1475		Arg	Arg	Asp	Туг 1480		Val	Lys	Val	Arg 1485	Gly	Tyr	Arg
15	Val	Asp 1490		Arg	Gln	Val	Glu 1495		Ala	Leu	Ala	Ala 1500	His	Leu	Gln
20	Val	Ala 1505		Ala	Ala	Val	Ile 1510	Gly	Trp	Pro	Gln	Gly 1515	Ser	Pro	Thr
25	Pro	Glu 1520		Leu	Ala	Tyr	Val 1525	Val	Pro	Arg	Gln	Gly 1530	Val	Leu	Asn
,	Leu	Asp 1535	Glu	Leu	Arg	Lys	Leu 1540	Leu	Gln	Glu	Arg	Leu 1545	Pro	Thr	туг
30′	Met	Leu 1550	Pro	Thr	Arg	Phe	Gln 1555	Ser	Leu	Pro	Ala	Leu 1560	Pro	Arg	Leu
35 .		1565					Thr 1570					1575			
40		Ser 1580	Ser	Asp	Ser		Tyr 1585 _.	Leu	Ala	Pro		Ser 1590	Glu	Val	Glu

	Ile	Thr 1595	Leu	Ala	Lys	Leu	160	Se 0	r Gl	u Le	u Le	u Thr		o Ala	a Gln
5	Ala	Ala 1610	Pro	Leu	Arg	Val	Ser 161	Le:	u As	n Ası	aA. q	n Phe 162		e Asr	l Leu
10	Gly	Gly 1625	His	Ser	Leu	Leu	Ala 1630	Thi	Gl:	n Let	Ph	e Ser 163		j Ile	Arg
15	Gln	Ser 1640	Phe	Asp	Ile	Glu	Val 1645	Arg	y Val	l Asn	Th	r Leu 1650		: Glu	Ser
20	Pro	Val 1655	Leu	Glu	Asp	Phe	Ala 1660	Ala	. Val	. Val	Glu	ı Arg 1665		Met	Arg
20	Gln :	Sèr ( 1670	Gln .	Ala	Gly	Ser	Met 1675	Pro	Val	Ser	Leu	11e 1680		Pro	Leu
25.	Ser I	Leu <i>1</i> L685	Arg :	Thr	Glu i	Arg	Ala 1690	Ala	Val	туг	Ala	Ile 1695		Pro	Ile
30	Gly G	Sly 6	3ln ]	[le ]	His (	Cys '	Tyr 1705	Ile	Asp	Leu	Ala	Ala 1710	Ala	Leu	Gly
35	His S	er A 715	la A	urg t	/al 7	Yr (	Gly 1720	Leu	Gln	Cys	Glu	Pro 1725	Val	Arg .	Arg
40	Phe A	la H 730	is L	eu S	er A	sp I	ieu 1735	Ala	Ala	His '	Tyr	Cys 1740	Asp	Ala 1	Leu
<del>70</del>	Leu A	la G	ly P	ro T	hr G	ly A	la :	Pro '	Tyr	Arg 1	Leu	Leu	Gly '	Frp S	Ser

		1745					1750					1755			
5	Ser	Gly 1760		Val	Leu	Ala	Leu 1765		Val	Ala	Glu	Gln 1770	Leu	Gln	Arg
10	Arg	Gly 1775		Arg	Val	Asp	Туr 1780		Gly	Leu	Leu	Asp 1785	Ser	Ser	Leu
	Ile	Pro 1790		His	Ala	Arg	Glu 1795	Pro	Arg	Gln	Leu	Thr 1800	Phe	Val	Ala
15	Ala	Leu 1805		Thr	Leu	Ala	Ala 1810	Leu	Ala	Lys	Arg	Gly 1815	Phe	Glu	Gln
20	Ala	Glu 1820		Asp	Glu	Ala	Arg 1825	Gln	Leu	Leu	Phe	Ala 1830	Asp	Gly	Asp
25	Asp	Glu 1835	His	Val	Phe	Asp	Tyr 1840	Ser	Arg	His	Gln	Ala 1845	Ser	Leu	Asp
<b>30</b> ·	Lys	Leu 1850	Leu	Ala	His	Leu	Arg 1855	Phe	Thr	Leu	Glu	Ser 1860	Arg	Met	Trp
	Pro	Pro 1865	Leu	Ala	Glu	Gln	Leu 1870	Arg	Val	Thr	Arg	Tyr 1875	His	Leu	Gly
35	Leu	Leu 1880	Ala	Gly	Phe	Glu	Pro 1885	Gln	Сув	Leu	Gln	Pro 1890	Asn	Ala	His
40	Leu	Tyr 1895	Gln	Ala	Gln	Thr	Ala 1900	Val	His	Val	Ser	Tyr 1905	Ala	Asp	Met

Application of Royer, et al.

	Ser Lys Pro Arg Gly Gly Ser Glu Val Leu Pro Asp Ile Thr Gly 1910 . 1915 1920	
5	Tyr Val Pro Leu Ser Gln Ile Lys Ser Ala Ala Gly Asn His Tyr 1925 1930 1935	
10	Ser Met Leu Gln Gly Asp Pro Leu Arg Glu Leu Ala Arg Met Leu 1940 1945 1950	
15	Val Thr Asp Leu Asp Ala 1955	•
<b>20</b>	<210> 35 <211> 83 <212> PRT <213> Xanthomonas albilineans	
25	<pre>&lt;400&gt; 35  Met Thr Phe Glu Glu Gln Ala Tyr Leu Val Leu Ile Asn Asp Glu Leu 1</pre>	
30	Gln Tyr Ser Leu Trp Pro Ser Asp Leu Glu Val Pro Pro Gly Trp Arg 20 25 30	
35	Lys Glu Gly Tyr Ala Gly Gly Lys Asp Glu Cys Met Ala Tyr Ile Asp 35 40 45	
	Glu Thr Trp Thr Asp Met Arg Pro Leu Ser Leu Arg Glu Leu Asp Asp 50 55 60	
40		

Lys Asn Leu Gly Asp Ala Ser Ser Pro Asp Gly Ser Gly Phe Glu Ser

Application of Royer, et al.

80 . Ser Tyr Ser <210> 36 <211> 315 <212> PRT <213> Xanthomonas albilineans <400> 36 Met Gly Cys Ala Cys Leu Pro His Tyr Leu Glu Lys Gln Asp Leu Ser Ala Leu Asp Asp Ala Leu Ala Gly Val Arg Leu Ser Gln Tyr Cys Thr Thr Asp Gly Arg Gln Leu Glu Leu Tyr Trp Leu Gly Ala Gln Ala Ser Pro Lys Leu Val Leu Leu Pro Pro Tyr Gly Met Ser Tyr Leu Leu Leu Ser Arg Leu Ala Gln Arg Leu Ala Arg His Phe His Val Leu Cys Trp Glu Ser Ile Gly Cys Pro Asn Ala Gln Thr Ser Val Thr Ala Glu Asp Phe Asp Leu Asp Arg Gln Ala Ala Thr Leu Leu Gly Ile Leu His Gln 

	His Asp Tyr Ala Asp Cys His Phe Val Gly Trp Cys Gln 115 120 125	
5	Leu Ala Val His Ala Ile Ala Leu His Gly Phe Ala Pro 130 135 140	Arg Ser Met
10	Ala Trp Val Ala Pro Ala Gly Leu Leu Pro Pro Ile Val 145 150 155	Lys Ser Glu 160
15	Phe Glu Arg Cys Ala Leu Pro Ile Tyr Leu Gln Ile Glu 165 170	Arg His Gly 175
20	Leu Glu Gln Ala Lys Lys Leu Ala Ala Ile Leu Asp Lys 180 185	Tyr Arg Gly 190
20	Gln Pro Leu Arg Gly Asp Asp Leu Ala Glu Lys Leu Thr i 195 200 205	Met Leu His
25	Leu Ala Asp Pro Ala Ser Thr Leu Val Phe Ser Arg Tyr N 210 215 220	Met Arg Ala
30	Tyr Glu Glu Asn Lys Gln Ser Val Gln Ala Leu Leu Pro 1 225 230 235	hr Ala Leu 240
35	Gly Arg His Pro Thr Leu Ile Val His Cys Lys Asp Asp S 245 250	er Phe Ser 255
40	His Tyr Ser Ala Ser Val Gln Leu Ala Arg His Asp Pro Se 260 265 2°	er Leu Arg 70
70	Leu Asp Leu Leu Asp His Gly Gly His Leu Gln Leu Phe As	an Asp Pro

Application of Royer, et al

5	Gly Al 29		Ala	Gln	Arg	lle 295		Asp	Phe	Ile	Gly 300		Thr	Val	Gly
10	Glu Va 305	l Ala	Pro	Thr	Ser		His	Ser	Ala	Ala 315					
15	<210> <211> <212> <213>	37 451 PRT Xant	homo	nas	albi	line	ans								
20	<400> Met Tyn	37	Pro	Asn 5	Asn	Ile	Asp	Leu	Asp 10	Pro	His	Ser	Ala	Leu 15	Val
25	Arg Glr	ı Le'u	Thr 20	Ser	Tyr	Gln	Val	Arg 25	Phe	Leu	Gln	Trp	Trp 30	Arg	Leu
	Arg Gly	Pro 35	Ser	Glu	Phe	His	Asp 40	Arg	Glu	Met	Asn	Leu 45	Arg	Met	Pro
30	Thr Gly 50	Gly	Val	Lys	Gly	Ser 55	Glu	Trp	Thr	Arg	Tyr 60	His	Arg	Met	Arg
35	Pro Ser	. Ysb	Tyr	Arg	Trp 70	Gly	Val	Phe	Met	Met 75	Pro	Pro	Asp	Arg	Asn 80
40	Thr Val	Val	Phe	Gly 85	Glu	Arg	Lys	Gly	Gln 90	Val	Ala	Trp	Ser	Cys	Val

	Pro	Glu	Glu	Tyr 100		qaA	Leu	Leu	Leu 105	qaA	His	Val	Thr	Val 110	Gln	Gly
5	ĄsĄ	Val	Glu 115		Ala	Ala	Val	Glu 120	Gln	Ser	His	Glu	Leu 125		Gln	Met
10	. Val	Pro 130	Ser	Ala	Ile	Asp	Leu 135	Glu	His	Leu	Phe	Gln 140	Phe	Phe	Leu	Glu
15	Glu 145		Arg	His	Thr	Trp 150	Ala	Met	Ser	His	Leu 155	Leu	Ile	Glu	туг	Phe
	Gly	Ser	Asp	Gly	Ala 165	Asp	Ala	Ala	Glu	Gly 170	Leu	Leu	Gln	Arg	Met 175	Ser
20	Gly	Asp	Ala	Gln 180	Asn	Pro	Arg	Leu	Leu 185	Asp	Ala	Phe	Asn	Tyr 190	His	Thr
25	Glu	Asp	Trp 195	Leu	Ser	His	Phe	Met 200	Trp	Cys	Phe	Phe	Ala 205	Asp	Arg	Val
30	Gly	Lys 210	Tyr	Gln	Ile	Gln	Ala 215	Val	Thr	Gln	Ser	Ala 220	Phe	Leu	Pro	Leu
35	Ala 225	Arg	Thr	Ala	Arg	Phe 230	Met	Met	Phe	Glu	Glu 235	Pro	Leu	His	Ile	Lys 240
	Phe	Gly	Val	Asp	Gly 245	Leu	Glu	Arg	Val	Leu 250	туг	Arg	Ser	Ala	Glu 255	Ile
40	Thr	Leu	Arg	Glu	Asp	Thr	His	Ala	Ile	Phe	Asp	Ala	Gly	Ala	Ile	Pro

Application of Royer, et al.

		260		265		270
5	Leu Pro Va	al Val Gln 75	Lys Tyr	Leu Asn Tyr 280	Trp Leu Pro 285	o Lys Ile Phe
10	Asp Leu Pl 290	ne Gly His	Asp Val 295	Ser Glu Arg	Ser Arg Val	Leu Tyr Gln
	Ala Gly II 305	e Arg Ser	Pro Arg	Asn Phe Asp	Lys Leu Glu 315	Gly Thr Glu 320
15	Val Ala Va	l Asp Val 325	Arg Cys	Glu Asp Arg 330	Leu Val Ser	Ser Thr Ala 335
20		u Leu Ala 340	Ile Asn	Ala Val Met 345	Arg Arg Gln	Tyr Ile Ala 350
25	Glu Val Gl	y Ala Ile 5	Ile Gly	Arg Trp Asn 360	Gln Gln Leu 365	Arg Arg Leu
30	Gly Leu Ala 370	a Phe Glu	Leu Gln : 375	Leu Pro His	Glu Arg Phe 380	His Arg Asp
2.5	Phe Gly Pro	o Cys Lys	Gly Leu <i>1</i> 390		Leu Asp Gly 395	Asn Pro Val
35 .	His Asp Ala	Asp Gly (	Gln Arg I	Leu Ala Ala 410	Leu Leu Pro	Thr Pro Gln 415
40	Asp Leu Ala	Gly Val 7	Arg Gly I	eu Met Gly ; 425	Arg Glu Leu	Gly Glu Gly 430

	Ar	g Th	r Al:	a Va 5	l Tr	p Le	u Al	a Pro	0 Al	a Gl	y Al	a Se	r Le 44		, Ly	s Leu
5	Me	t Pro 450		a												
10	<23	10> 11> 12>	38 317 PRT Xant	homo	onas	alb	iline	eans								
15	<40	00>	38													
20	Met 1	Asn	Ser	Туг	Val	. Gly	/ Cys	Gln	Lys	Leu 10	ı Glu	Thr	: Asp	Gly	Asp 15	Ala
20	Ser	Arg	Val	Val	Pro	Met	Trp	Val	Met 25	Туг	Pro	Thr	Ala	Thr 30	Pro	Ser
25	Arg	Asp	Thr 35	Ala	Met	Gly	Pro	Tyr 40	Thr	Leu	Asp	Val	Ala 45	Leu	Gly	Ala
30	Pro	Ile 50	Glu	Ala	Gly	Pro	Phe 55	Pro	Leu	Ala	Val	Ile 60	Ser	His	Gly	Thr
35	Arg 65	Ser	Ala	Gly	Leu	Val 70	Phe	Arg	Thr	Leu	Ala 75	His	Туг	Leu	Ala	Arg 80
	His	Gly	Phe	Ile	<b>Val</b> 85	Ala	Leu	Pro	Glu	His 90	Pro	Gly	Asp	Asn	Leu 95	Phe
40	Gln	His	Gln	Leu	Glu	Tyr	Ser	Tyr	Gln	Asn	Leu	Glu	Asp	Arg	Pro	Arg

Application of Royer, et al

				100	)				105	5				110	)	
5	His	3 Ile	e Arg	g Ala	a Val	l Ile	e Asp	120		Th	c Gly	/ His	125		ı Phe	e Gly
10	Pro	) Ala	a Ile	e Glr	Ala	a His	135		Ala	Va]	l Ile	: Gly 140		Ser	. Val	. Gl
1.5	Gly 145	<b>т</b> у1	Thr	· Ala	Lev	1 Ala 150		Ala	Gly	Gly	r Glu 155		His	Thr	Gly	Phe
15	Met	Val	Asp	Phe	Ala 165	His	Arg	Pro	Glu	His 170		Glu	Gln	Pro	Ala 175	
20	Thr	Ala	Leu	Val 180		Gln	Asn	Arg	Val 185	Pro	Ile	Arg	Ala	Val 190	Pro	Val
25	Thr	Ala	Asp 195	Pro	Arg	Val	Arg	Ala 200	Val	Val	Ala	Leu	Ala 205	Pro	Asp	Phe
30	Ser	Leu 210	Tyr	Met	His	Glu	Asp 215	Ala	Leu	Ala	Lys	Val 220	Glu	Val	Pro	Val
35	Leu 225	Leu	Ile	Val	Gly	Glu 230	Lys	Asp	Gln	Trp	Ala 235	His	Glu	Thr	Ile	Val 240
<i>33</i>	Ala	Thr	Arg	Thr	Ala 245	Leu	Gly	Asn		Gly 250	Arg	Leu	Glu	Ala	Arg 255	Val
40	Val	Pro	Asn	Ala	Gly	His	Tyr	Ala	Phe	Ile	Ser	Val	Phe	Pro	Glu	Ala

	Met Lys A	la Arg 75	y Val	Gly	Glu	Ala 280		Ile	Asp	Pro	Pro 285		Phe	Asp
5	Arg Ser A	la Phe	Gln	Arg	Glu	Leu	Glu	Arg	Asp	Ile	Leu	His	Phe	Leu
-	290				295					300				
10	Thr Val T	hr Met	. Arg	Pro 310		<b>Gl</b> u	Ala	Ala	Ile 315		Gly			
15	<210> 39 <211> 49 <212> PR <213> Xa		onas	albi	linea	ans								
20	<400> 39													
	Met Gln L	ys Pro	Lys 5	Glu	Ala	Leu	Gly	Met 10	Pro	Pro	Gly	Met	Ala 15	Pro
25	Pro Gly A	la Gln 20	Phe	Asp	Туr	Arg	Trp 25	Arg	Trp	Pro	Ala	Met 30	Ile	Val
30	Leu Leu Sa		Asn	Phe	Met	Asn 40	Leu	Leu	Asp	Val	Gly 45	Ile	Val	Asn
35	Val Ala Le 50	eu Pro	Ser	Ile	Gln 55	Lys	Asn	Leu	Gly	Ala 60	Asp	Glu	Gln	Gln
	Leu Glu Tr	p Ile	Val	Ala 70	Ile	Tyr	Ile	Leu	Leu 75	Phe	Ala	Leu	Gly	Leu 80
40	Leu Pro Le	u Gly	Arq	Leu	Gly	Asp	Met	Leu	Glv	Ara	Lvs	Ara	Met	Phe

										25	0				Appli	cation of Royer, et al
					85					90					95	
5	Gly	Thi	Gly	/ Val		Glş	Phe	: Ile	Leu 105		: Sei	r Ala	. Phe	Cys		. Ile
10	Ala	Gly	Asn 115	ı Ile	His	Val	. Leu	Ile   120		: Ala	Arg	, Ala	Leu 125		Gly	' Leu
15	Ala	Ala	Ala	Met	Leu	Ala	Pro 135		Val	Met	Ala	Ile 140		Gln	Thr	Met
15	Phe 145	Ala	Pro	Lys	Glu	Arg 150		Ala	Ala	Phe	Ser 155		Phe	Gly	Leu	Val 160
20	Ala	Gly	Leu	Ala	Ser 165	Phe	Ala	Gly	Pro	Leu 170		Ser	Gly	Leu	Leu 175	
25	His	Ile	Asp	Ala 180	Phe	Gly	Val	Gly	Trp 185	Arg	Ala	Ile	Phe	Leu 190	Ile	Asn
30	Val	Pro	Ile 195	Gly	Leu	Val	Thr	Leu 200	Leu	Ala	Ala	Ala	Ile 205	Trp	Val	Pro
22	Lys	Val 210	Pro	Ala	His	Ala	Gly 215	Ile	His	Asn	Asp	Trp 220	Val	Gly	Ile	Ala
35	Leu 225	Ala	Ala	Leu		Leu 230	Leu	Сув	Leu	Val	Phe 235	Pro	Leu	Ile	Glu	Gly 240
40	Arg	Ala	Tyr	Gly	Trp 245	Pro	Leu	Trp	Cys	Phe 250	Ala	Ala	Ile		Leu 255	Gly

	Il	e P	ro	Leu	260	u Vai	l Ala	a Ph	e Vai	26:		p Gl	n Arg	g Arg	Gl: 270		His
5	Lei	u A]	la	Arg 275	Pro	Ala	a Lei	ı Lei	1 Pro 280		э Туг	r Lei	ı Met	Ser 285		a Arg	Asp
10	Туз	r I] 29	.e 0	Leu	Gly	/ Ala	a Lev	295	· Val	. Ser	: Va]	l Phe	: Тух 300		Ala	Leu	Gln
15	Gly 305	Ph	e	Phe	Leu ,	Val	. Phe 310	val	. Ile	Phe	: Leu	Gln 315		Gly	Leu	Ala	Tyr 320
20	Ser	Al	a.	Leu	<b>Gl</b> u	Thr 325	Gly	Val	Ala	Thr	Thr 330		Phe	Pro	Val	Gly 335	Val
25	Ala	11	ej	Ala	Ser 340	Met	Leu	Ala	Arg	His 345	Val	Glu	Ser	Leu	Arg 350	Ala	Lys
25	Ile	Phe	e 8	Ser 355	Gly	Ala	Cys	Leu	Met 360	Ile	Ala	Ser	Tyr	Leu 365	Ala	Leu	Trp
30	Val	Ile 370	e ]	Ile	Thr	Arg	Ser	Glu 375	Gly	Ser	Leu	Asp	Pro 380	Trp	Thr	Leu	Thr
35	Leu 385	Pro	· I	eu :	Leu	Ile	Gly 390	Gly	Leu	Gly	Cys	Gly 395	Ile	Thr	Ile		Ser 400
40	Leu	Phe	G	ln :	Thr	Val 405	Met	Arg	Thr		Pro 410	Leu	Lys	Asp /		Gly . 415	Ala

	Gly Ser Gly Ala Leu Gln Val Ile Gln Gln Val Gly Gly Met Leu Gl 420 425 430	У
5 .	Ile Ala Leu Val Ser Glu Ile Phe Phe Ser Gly Leu His Gln His-Leu 435 440 445	ı
10	Gln Gly Pro Ala Gly Val Ala Leu Ala Phe Lys Gln Ala Phe Gly Ala 450 455 460	ì
15.	Thr Val Val Tyr Tyr Ile Ala Ala Asn Ala Phe Val Ala Leu Ser Thr 465 470 475 480	
	Leu Gly Leu Gln Phe Lys Leu Thr Gln Phe Ala Pro Gln Ser Ser Pro 485 490 495	
20	<210> 40 <211> 584 <212> PRT	
25	<213> Xanthomonas albilineans <400> 40	
30	Met Lys Arg Thr Tyr Ile Gly Leu Ala Asn Ser Phe His Asp Ser Ala 1 5 10 15	
	Ile Ala Ile Val Gly Asp Asp Gly Gln Val Arg Phe Ala Glu Ala Thr 20 25 30	
35	Glu Arg Tyr Leu Gln Tyr Lys Arg Ser Ile Gly Val Ala Pro Asp Val 35 40 45	
40	Phe Gln Arg Ala Ile Lys Leu Val His Glu Tyr Gly Asp Pro Gly Ala 50 55 60	

	G1: 65	u Le	u Vai	l Val	l Ala	Thr 70	: Ser	Trp	Ser	Gly	7 Glr. 75	Thr	Pro	Glu	Leu	Met 80
5	Arg	g Glı	ı Gly	/ Let	1 Gly 85	' Lys	Thr	`Ala	Gln	Ala 90	Val	Asp	Gln	Туг	Arg	Ser
10	Ala	a Phe	e Gly	7 Asp	Leu	Pro	Trp	His	Val		Lys	Gln	Phe	Val		Gln
<b>15</b> .	Ser	Phe	Phe 115	Tyr	Arg	Ser	Gln	Leu 120	Ala	Met	Val	Glu	His 125	Pro	Gly	His
20	Leu	Leu 130	Glu	Tyr	Asp	Leu	Ser 135	His	Met	Ala	Glu	Pro 140	Ala	Phe	Lys	Pro
	Pro 145	Ser	Tyr	Arg	His	Туг 150	Glu	His	His	Leu	Thr 155	His	Ala	Val	Ala	Gly 160
25	Сув	Tyr	Thr	Ser	Pro 165	Phe	Glu	Glu	Ala	Val 170	Cys	Ala	Val	Leu	Asp 175	Gly
30	Met	Gly	Glu	Lys 180	Asn	Ala	Leu		Cys 185	Tyr	His	Туг	Gln	Gln 190	Gly	Lys
35	Leu	Thr	Pro 195	Ile	His	Gln		Glu 200	Thr	Ser	Ser	Trp	Ala 205	Ser	Leu	Gly
40	Phe	Phe 210	Tyr	Gly	Met		Сув 215	Glu '	Val (	Cys (		Phe 220	Gly	Thr :	Leu	Ser

	G1 22	y G1 5	u Gl	u Tr	ъ Гу	's Va 23	1 Me 0	t Gl	y Le	u Al	a Ala 23:		r Gl	y Glı	n Hi	8 Asp 240
5	Ar	g Gl	n Le	u Ty	r Gl 24	u Lei 5	u Le	u Ar	g Gl	n Me: 25:		ı Arg	g Vai	l Asp	Gl ₃ 255	/ Leu
10	Thi	r Le	u Ar	g Pho 260	e Ala	a Pro	) Ala	a Ala	a Gl: 26!		e Sei	Glr	ı Let	2 Gln 270		Thr
15	Lev	ту:	r Ala 27!	a Mei	: Arg	a Arg	ј Сув	Ъуя 28(		y Glr	n Pro	Thr	Ile 285		Leu	Ala
20	Asn	Le:	ı Ala	туг	: Ala	Gly	Gln 295	Gln	ı Val	Phe	: Cys	Asp 300		Leu	Phe	Glu
20	Phe 305	Leu	His	Asn	Leu	His 310	Ala	Leu	Gly	' Leu	Ser 315	Asp	His	Leu	Val	Leu 320
25	Gly	Gly	Gly	Сув	Ala 325	Leu	Asn	Ser	Ser	Ala 330	Asn	Gly	Arg	Val	Leu 335	Ala
30	Glu	Thr	Pro	Phe	Arg	His	Leu	His	Val 345	Phe	Ala	Ala	Pro	Gly 350	Asp	Asp
35	Gly	Asn	Ala 355	Val	Gly	Ala	Ala	Leu 360	Trp	Ala	His	Ala	Glu 365	Asp	His	Pro
40	Glu	Gln 370	Thr	Pro	Pro	Ala	Ala 375	Arg	Glu	Gln		Pro 380	Tyr	Leu (	Зlу	Ser
40	Ser	Met	Ser	Ala	Glu	Thr :	Leu	His	Asn	<b>Val</b>	Glu i	Arg :	Phe	Gly A	Ala :	Leu

Application of Royer, et al Ser Lys Phe Thr Arg Cys Leu Asp Asp Ala Ala Gln Arg Ala Ala Arg Leu Leu Thr Glu Gly Lys Ile Val Ala Trp Val Gln Gly Arg Ala Glu Phe Gly Pro Arg Ala Leu Gly Asn Arg Ser Ile Leu Ala Asp Pro Arg ູ 15 Ser Pro Ala Ile Lys Asp Ile Ile Asn Ala Arg Val Lys Phe Arg Glu Glu Phe Arg Pro Phe Ala Pro Ser Ile Leu His Glu His Gly Ala Glu Tyr Phe Glu Leu Tyr Gln Glu Ser Pro Tyr Met Glu Arg Thr Leu Lys Phe Arg Ala Glu Ala Thr Arg Lys Val Pro Gly Val Val His His Asp Gly Thr Gly Arg Leu Gln Thr Val Lys Gln His Trp Asn Pro Arg Tyr His Ala Leu Ile Lys Glu Phe Tyr Arg Leu Thr Gly Ile Pro Leu Val Leu Asn Thr Ser Phe Asn Val Met Gly Lys Pro Ile Ala His Ser Val 

	Glu Asp Ala Leu Ser Ile Phe Phe Thr Ser Gly Leu Asp Ala Met Phe 565 570 575
5	Ile Asp Asp Val Leu Ile Glu Lys 580
10	<210> 41 <211> 88 <212> PRT <213> Xanthomonas albilineans
15	<400> 41
20	Met Arg Thr Ser Lys Phe Asn Glu Thr Gln Ile Ile Ala Thr Leu Lys  1 10 15
20	Gln Ala Asp Ala Gly Val Pro Val Lys Asp Ile Cys Arg Gln Val Gly 20 25 30
25	Ile Ser Thr Ala Thr Tyr Tyr Gln Trp Lys Ser Lys Tyr Val Ala Ser 35 40 45
30	Glu Met Pro Ser Ser Arg His Thr Ser Leu Thr Trp Arg Pro Pro Ser 50 55 60
35	Thr Cys Phe Ser Val Ala Thr Ile Trp Leu Ser Val Asn Leu Leu Leu 65 70 75 80
	Arg Ile Val Gly Arg Leu Gly Gly 85
40	<210> 42

# ADTESTE TOLEGE

Application of Royer, et al. <211> 716 <212> PRT <213> Xanthomonas albilineans <400> 42 Met Arg Cys Leu Ile Ile Asn Asn Tyr Asp Ser Phe Thr Trp Asn Leu Ala Asp Tyr Val Ala Gln Ile Phe Gly Glu Asp Pro Leu Val Val His Asn Asp Glu Tyr Ser Trp His Glu Leu Lys Asp Arg Gly Gly Phe Ser Ser Ile Ile Val Ser Pro Gly Pro Gly Ser Val Val Asn Glu Ala Asp Phe His Ile Ser Leu Gln Ala Leu Glu Gln Asn Glu Phe Pro Val Leu Gly Val Cys Leu Gly Phe Gln Gly Leu Ala His Val Tyr Gly Gly Arg Ile Leu His Ala Pro Val Pro Phe His Gly Arg Arg Ser Thr Val Ile Asn Thr Gly Asp Gly Leu Phe Glu Gly Ile Pro Gln Arg Phe Glu Ala 

Val Arg Tyr His Ser Leu Met Val Cys Gln Gln Ser Leu Pro Pro Val

	Le [.]	u Ly 5	⁄s Va	l Th	r Ala	a Arg		r Ası	o Cyr	s Gly	y Va:		l Me	c Gly	/ Let	1 Gln 160
5	Hi	s Va	l G1	n Hi	s Pro	o Ly:	s Tr	o Gly	y Val	l Glr 170		e His	Pro	o Glu	1 Ser	: Ile
10	Leı	ı Th	r Gl	u Hi:	s Gly O	r Lys	Arg	j Ile	e Val		a Asr	n Phe	: Ala	190		Ala
15	Ala	Ar	g Hi 19	s Sei 5	Ala	Pro	Leu	Leu 200		Gly	Ser	Glu	Gln 205		Gly	Lys
20	Val	Le ²	u Se:	r Val	. Сув	Ala	Pro 215		Met	Val	Ţhr	Pro 220	Arg	Val	Arg	Arg
20	Met 225	Le	ı Sei	r Arg	Lys	Ile 230		Cys	Arg	Trp	Gln 235	Ala	Glu	Asp	Val	Phe 240
25	Leu	Ala	a Lei	ı Phe	Ala 245	Asp	Glu	Lys	His	Суs 250	Phe	Trp	Leu	Asp	Ser 255	Gln
30	Leu	Va]	. Cys	Ser 260	Pro	Met	Ala	Arg	Туг 265	Ser	Phe	Met	Gly	Ala 270	Val	Asn
35	Glu	Ser	Glu 275	Val	Val	Arg	His	Cys 280	Val	Arg	Pro	Gly	Ser 285	Met	Val	Gln
40	Glu	Ala 290	Gly	Glu	Arg.	Phe	Leu 295	Ala	Glu	Met	Asp	Arg 300	Ala	Leu	Gln	Ser
40	Val	Leu	Thr	Glu	Asp	Val	Ala	Glu	Arg	Pro	Pro	Phe .	Ala	Phe	Arg	Gly

										2:	59				Appl	ication of Royer, et al
	305					31	0				31	.5				320
5	Gly	Ту	c Va	1 G1;	у Ту 32	r Me 5	t Se	т Ту	r Gl	u Me 33		s Se	r Val	l Phe	e Gly 335	/ Ala
10	Pro	Ala	. Se:	r Hi:	s Ala	a Ası	n Ala	a Ile	9 Pro		o Al	a Le	ı Trp	) Met		, Val
15	Glu	Arg	355	e Val	L Ala	a Phe	e As <u>r</u>	360		Thi	Glı	u Glı	1 Val 365		Leu	Leu
	Ala	Leu 370	Ala	Asp	Thr	Glu	1 Asp 375	Leu	Ser	Ala	. Lei	1 Ala 380	Trp	Leu	Asp	Ala
20	Ile (	Glu	Gln	Arg	Ile	His	Ala	Ile	Gly	Gln	Ala 395		Pro	Ala	Cys	Ile 400
25	Ser 1	Leu	Gly	Leu	Arg 405	Ser	Met	Glu	Ile	Glu 410	Leu	Asn	His	Gly	Arg 415	Arg
30	Gly 7	Гуr	Leu	Glu 420	Ala	Ile	Glu	Arg	Cys 425	Lys	Gln	Arg	Ile	Val 430	Asp	Gly
	Glu S	Ser	Tyr 435	Glu	Ile	Cys	Leu	Thr 440	Asp	Leu	Phe	Ser	Phe 445	Gln	Ala	Glu
35	Leu A	sp 50	Pro	Leu	Met	Leu	Tyr 455	Arg	туг	Met	Arg	Arg 460	Gly .	Asn	Pro .	Ala
40	Pro P	he (	Gly	Ala	Tyr	Leu 470	Arg	Asn	Gly		Авр 475	Cys	Ile :	Leu :		Thr 480



	Ser	Pro	Glu	Arg	Phe 485	Leu	Glu	Val	Asp	Gly 490	His	Gly	Thr	Ile	Gln 495	Thr
<b>.</b>	Lys	Pro	Ile	Lys 500	Gly	Thr	Сув	Arg	Arg 505	Ala	Glu	qaA	Pro	Gln 510	Leu	Asp
10	Arg	Asn	Leu 515	Ala	Met	Arg	Leu	Ala 520	Ala	Ser	Glu	Lys	Asp 525	Arg	Ala	Glu
15	Asn	Leu 530	Met	Ile	Val	Asp	Leu 535	Met	Arg	Asn	Asp	Leu 540	Ser	Arg	Val	Ala
20	Val 545	Pro	Gly	Ser	Val	Thr 550	Val	Pro	Lys	Leu	Met 555	Asp	Ile	Glu	Ser	<b>Tyr</b> 560
	Ьys	Thr	Val	His	Gln 565	Met	Val	Ser	Thr	Val 570	Glu	Ala	Arg	Leu	Arg 575	Ala
25	Asp	Cys	Ser	Leu 580	Val	Asp	Leu	Leu	Lys 585	Ala	Val	Phe	Pro	Gly 590	Gly	Ser
30	Ile	Thr	Gly 595		Pro	Ļys	Leu	Arg 600	Ser	Met	Glu	Ile	Ile 605	ĄsĄ	Gly	Leu
35	Glu	Asn 610		Pro	Arg	Gly	Val 615	Tyr	Cys	Gly	Ser	Ile 620	Gly	Tyr	Leu	Gly
40	Tyr 625		Cys	Val	Ala	Asp 630	Leu	Asn	Ile	Ala	11e 635	Arg	Ser	Leu	Ser	Tyr 640

	Asp Gly Gln Glu Ile Arg Phe Gly Ala Gly Gly Ala Ile Thr Phe Leu 645 650 655
5	Ser Asp Pro Gln Asp Glu Phe Asp Glu Val Leu Leu Lys Ala Glu Ala 660 665 670
10	Ile Leu Lys Pro Ile Trp His Tyr Leu His Ala Pro Asn Thr Pro Leu 675 680 685
15	His Tyr Glu Leu Arg Glu Asp Lys Leu Leu Leu Ala Glu His Cys Val 690 695 , 700
	Ser Glu Met Pro Ala Arg Gln Ala Phe Ile Glu Pro 705 710 715
20	<210> 43 <211> 137 <212> PRT
25	<213> Xanthomonas albilineans <400> 43
30	Met Arg Pro Pro Arg Leu Arg Ala Asn Gln Asp Gly Leu Leu Met Asp 1 5 10 15
	Thr Ala Gly Arg Val Val Glu Gly Cys Thr Ser Asn Leu Phe Leu Val 20 25 30
35	Glu Asn Gly His Leu Val Thr Pro Asp Leu Gly Val Ala Gly Val Ser 35 40 45
40	Gly Ile Met Arg Gly Arg Val Ile Glu Tyr Gly Arg Gln His Gly Leu 50 55 60

5	Ala Cys Ala Val Lys His Val Tyr Pro Asp Gln Leu Val Arg Ala Gln 65 70 75 80
5	Glu Val Phe Leu Thr Asn Ala Val Phe Gly Ile Leu Leu Val Arg Ser 85 90 95
10	Ile Asp Ala His Ser Tyr Arg Ile Asp Pro Val Thr Leu Arg Leu Leu 100 105 110
15	Asp Ala Leu Cys Gln Gly Val Tyr Phe Thr Glu Arg Ser Leu His Gln 115 120 125
20	Val Ser Thr His Ala Gly Gln Asp Pro 130 135
25	<210> 44 <211> 200 <212> PRT <213> Xanthomonas albilineans
30	<pre>&lt;400&gt; 44  Met Pro Ala Lys Thr Leu Glu Ser Lys Asp Tyr Cys Gly Glu Ser Phe 1</pre>
35	Val Ser Glu Asp Arg Ser Gly Gln Ser Leu Glu Ser Ile Arg Phe Glu 20 25 30
40	Asp Cys Thr Phe Arg Gln Cys Asn Phe Thr Glu Ala Glu Leu Asn Arg 35 40 45
<b>⊤∪</b>	Cys Lys Phe Arg Glu Cys Glu Phe Val Asp Cys Asn Leu Ser Leu Ile

Application of Royer, et al.

	50		55	60	
5	i	7	70	Glu Val Arg Phe Val 75	80
10	Met Leu Gly	y Val Asn T 85	Frp Thr Ser 1	Ala Gln Trp Pro Ser 90	Val Lys Met 95
	Glu Gly Ala	Leu Ser P.		ys Ile Leu Asn Asp .05	Ser Leu Phe 110
15	Tyr Gly Leu 115	Tyr Leu A	la Gly Val L 120	ys Met Val Glu Cys 125	Arg Ile His
20	Asp Ala Asn 130	Phe Thr G	lu Ala Asp C 135	ys Glu Asp Ala Asp : 140	Phe Thr Gln
25	Ser Asp Leu 145	Lys Gly Se	er Thr Phe H 50	is Asn Thr Lys Leu ? 155	Thr Gly Ala 160
30	Ser Phe Ile	Asp Ala Va	al Asn Tyr H	is Ile Asp Ile Phe F 170	His Asn Asp 175
	Ile Lys Arg	Ala Arg Ph 180	e Ser Leu Pr 18	co Glu Ala Ala Ser I 35 1	Geu Leu Asn 190
35	Ser Leu Asp 195	Ile Glu Le	u Ser Asp 200		
40	<210> 45 1				

35

	<212>	PRT												
	<213>	Xanthom	onas	albi	line	ans								
				_										
	<400>	45												
5									•					
	Met His	Pro Pr	o Ser	Pro	Leu	Ası	ı Th	r Gl	n Gla	n Tay	e Ac	Dom		
	1		5					10	~	y.	o no,	נייי פ		u Thi
													15	
10	Arg Gly	Gly Se	Leu	Thr	Ala	His	Lei	ı Arc	J T.e.	1 T.01	. (3)			
		20					25		,	· Det	. 61		ı va.	r Gr
												30		
	Val Gln	Val Glr	Arg	Glu	His	Lvs	Ser	Met	· 2\1=	· ~~~			<b>~</b> 3.	_
15		35				40			. MI	, rrr	, шес 45	Asp	GIU	ı Tyr
											43			
	Arg Val	Leu Gly	Leu	Ser	Arq	Cvs	Len	Len	Va 1	Trees	1707	3		
	50				55	-,-		204	val	60 60	val	Arg	GIU	Val
20										00				
	Val Leu	Val Val	Asp	Ala	Lvs	Pro	Tvr	Va 1	Tur	77.	7		_	
	65		_	70	•		-1-	• • • •	75	ALA	Arg	ser	Leu	
									73					80
25														
	Pro Leu	Thr Ala	Ser	Tvr	Asn	Δla	Trans	Cln.	77.	*** *	_	_	_	
			85				ııp	90	ATG	val	Arg	Ser		Gly
								30					95	
30	Ser Arg	Pro Leu	Ala	Asp 1	Leu	Len	Dha	λτα	7	<b>3</b>	•		_	
		100			- <b></b>		105	Arg	Asp	Arg	ser		Leu	Arg
							103					110		
	Ser Ala	Leu Ala	Ser A	Ara A	Ara .	la '	ምb ~	71-	<b>01</b> -	*** _	<b>.</b>	_		
35	:	115		5 -	· 9 ·	120	1111	ALA	GIII			Leu	His	Arg
					-	-20					125			
	Arg Ala (	ys Asn	Phe v	al M	da o	י מונ	Sa~ '	u i _	<b>7</b> 7 –	m	<b>~</b> 3		_	
	130			1	.35		-c1 .	nis .			GIN	Ala	Leu	Leu
40				_						140				

2	CE	
L	O.	

	Ala 145		j Arg	Ser	Val	Phe 150		Arg	Gln	Gly	7 Ala 159		Leu	. Leu	. Ile	Thr. 160
. 5	Glu	ı Суғ	: Met	Leu	Pro 165		Leu	Trp	Ala	Thr. 170		Glu	Pro	Val	Ala 175	Ala
10	Pro	Arg	Gln	Ala 180		Leu	Ser	Ala	Авр 185		Pro	Суз	Arg	His 190	Ser	Ala
15	Gln	ı Ile	Val	Ser	Pro	Glu	Ser	Met 200	Leu	Glu			•			
20	<21 <21 <21 <21	1> 2> 3>	46 278 PRT Xantl	10moi	nas a	albi]	linea	ans								
25			Asn	Ala	Val 5	Pro	Met	Gln	Gly	Ala 10	Arg	Gly	Leu	Pro	Gln 15	Pro
30	Gln	Ala	Met	Asn 20	Pro	Gly	Leu	Pro	Ser 25	Val	Gly	Gly	Leu	Ser 30	Ala	Gly
	Gln	Pro	Leu 35	Gln	Leu	Ser	Leu	Ala 40	Pro	Glu	Leu	Gln	Ala 45	Ala	Ala	Arg
35	; Ser	Ala 50	His	Arg	His		Leu 55	Asp	Asp	Gly	Thr	Ala 60	Leu	Tyr	Leu	Leu
40	Ala 65	Phe	Asp	Thr		Gln 70	Phe	Asp	Pro	Gly	Ala 75	Phe	Ala	Ala		Ala 80

	Ile	e Ala	Arg	Pro	Asp 85	Ser	·Ile	Ala	Arg	Ser 90	· Val	Arg	Lys	Arg	Gln 95	Ala
5	Glu	Phe	. Leu	Phe 100		Arg	Leu	Ala	Ala 105		Leu	Ala	Leu	Gln 110	Glu	Val
10	Leu	Gly	Pro 115	Ala	Gln	Ala	Gln	Ala 120	Ąsp	Ile	Ala	Ile	Gly 125	Ala	Thr	Arg
15	Ala	Pro 130		Trp	Pro	Ala	Gly 135	Ser	Leu	Gly	Ser	Ile 140	Ser	His	Cys	Glu
20	Asp 145	Tyr	Ala	Ala	Ala	Ile 150	Ala	Met	Ala	Ala	Gly 155	Thr	Arg	His	Gly	Val 160
25	Gly	Ile	Asp	Leu	Glu 165	Arg	Pro	Ile	Thr	Pro 170	Ala	Äla	Arg	Ala	Ala 175	Leu
25	Leu	Ser	Ile	Ala 180	Ile	Asp	Ala	Asp	Glu 185	Ala	Ala	Arg	Leu	Ala 190	-Lys	Ala
30	Ala	Asp	Ala 195	Gln	Trp	Pro	Gln	Asp 200	Leu	Leu	Leu	Thr	Ala 205	Leu	Phe	Ser
35	Ala	Lys 210	Glu	Ser	Leu	Phe	Lys 215	Ala	Ala	Tyr	Ser	Ala 220	Val	Gly	Arg	Tyr
40	Phe 225	Asp	Phe	Ser	Ala	Ala 230	Arg	Leu	Cys	Gly	Ile 235	Asp	Leu	Ala	_	Gln 240

	Cys Leu His Le	u Arg Leu Thi 245	Glu Thr Leu 250		Phe Val Ala 255
5	Gly Gln Val Cy 26		/ Phe Ala Arg 265	Leu Pro Pro	Asp Leu Val
10	Leu Thr His Ty	r Ala Trp			
. 15	<210> 47 <211> 634 <212> PRT <213> Xanthome	onas albiline	eans		
· 20	<400> 47  Met Ser Val Glu	Thr Gln Lys 5	Glu Thr Leu 10	Gly Phe Gln	Thr Glu Val
25	Lys Gln Leu Let 20	ı Gln Leu Met	Ile His Ser 25	Leu Tyr Ser	Asn Lys Glu 30
30	Ile Phe Leu Arg 35	Glu Leu Ile	Ser Asn Ala 40	Ser Asp Ala 45	Ala Asp Lys
	Leu Arg Phe Glu 50	Ala Leu Val 55	Lys Pro Glu	Leu Leu Asp	Gly Asp Ala
35	Gln Leu Arg Ile 65	Arg Ile Gly	Phe Asp Lys	Asp Ala Gly 75	Thr Val Thr
40	Ile Asp Asp Asn	Gly Ile Gly	Met Ser Arg	Glu Glu Ile	Val Ala His 95

	Leu	Gly	Thr	11e	Ala	Lys	Ser	Gly	Thr 105		Asp	Phe	Leu	Lys 110		Leu
5	Ser	Gly	Asp 115		Lys	Lys	Asp	Ser 120		Leu	Ile	Gly	Gln 125	Phe	Gly	Val
10	Gly	Phe 130		Ser	Ala	Phe	Ile 135	Val	Ala	Asp	Gln	Val	Asp	Val	Tyr	Ser
15	Arg 145	Arg	Ala	Gly	Leu	Pro 150	Ala	Ser	Asp	Gly	Val 155	His	Trp	Ser	Ser	Arg 160
20	Gly	Glu	Gly	Glu	Phe 165	Glu	Val	Ala	Thr	Ile 170	Asp	Lys	Pro	Glu	Arg 175	Gly
	Thr	Arg	Ile	Val 180	Leu	His	Leu	Lys	185	Glu ,	Glu	Lys	Gly	Phe 190	Ala	qaA
25	Gly	Trp	Lys 195	Leu	Arg	Ser	Ile	Val 200			туг	Ser	Asp 205	His	Ile	Ala
30	Leu	Pro 210	Ile	Glu	Leu	Ile	Lys 215	Glu	His	Tyr	Gly	Glu 220	Asp	Lys	Asp	Lys
35	Pro 225	Glu	Thr	Pro	Glu	Trp 230	Glu	Thr	Val	Asn	Arg 235	Ala	Ser	Ala	Leu	Trp 240
40	Thr	Arg	Pro	Ārg	Thr 245	Glu	Ile	Lys	Asp	Glu 250	Glu	Tyr	Gln	Glu	Leu 255	Tyr

	Lys	His		Ala 260	His	Asp	His	Glu	Asn 265	Pro	Val	Ala	Trp	Ser 270	His	Asn
5	Lys	Val	Glu 2 <b>7</b> 5	Gly	Lys	Leu	Glu	Tyr 280	Thr	Ser	Leu	Leu	Tyr 285	Leu	Pro	Gly
10	Arg	Ala 290	Pro	Phe	Asp	Leu	Tyr 295	Gln	Arg	Asp	Ala	Ser 300	Arg	Gly	Leu	Lys
15	Leu 305	Tyr	Val	Gln	Arg	Val 310	Phe	Ile	Met	Asp	Gln 315	Ala	Asp	Gln	Phe	Leu 320
	Pro	Leu	Tyr	Leu	Arg 325	Phe	Ile	Lys	Gly	Ile 330	Val	Asp	Ser	Ser	Asp 335	Leu
20	Pro	Leu	Asn	Val 340	Ser	Arg	Glu	Ile	Leu 345	Gln	Ser	Gly	Pro	Val 350	Ile	Asp
25	Ser	Met	Lys 355	Ser	Ala	Leu	Thr	Lys 360	Arg	Ala	Leu	Asp	Met 365	Leu	Glu	Lys :
30	Leu	Ala 370	Lys	Asp	Asp	Pro	Glu 375	Arg	Tyr	Lys	Gly	Val 380	Trp	Lys	Asn	Phe
35	Gly 385	Gln	Val	Leu	Lys	Glu 390	Gly	Pro	Ala	Gln	Азр 395	Phe	Gly	Asn	Arg	Glu 400
40	Lys	Ile	Ala	Gly	Leu 405	Leu	Arg	Phe	Ala	Ser 410	Thr	His	Ser	Gly	Asp 415	Asp
	Ala	Gln	Asn	Val	Ser	Leu	Ala	qaA	Tyr	Val	Ala	Arg	Met	Lys	Asp	Gly

				420	)				425	5				430	)	
5	Gln	a Asp	Lys 435		тух	Туг	Leu	Thr 440		Glu	Ser	туг	Ala 445		Ile	Lys
10	Asp	Ser 450		His	Leu	Glu	Val 455		Arg	Lys	Lys	Gly 460		Glu	. Val	Leu
15	Leu 465		Thr	Asp	Arg	Ile 470		Glu	Trp	Leu	Met 475		Tyr	Leu	Thr	Glu 480
15	Phe	Asp	Ser	Lys	Ser 485	Phe	Val	Asp	Val	Ala 490		Gly	Asp	Leu	Asp 495	
20	Gly	Lys	Leu	Asp	Ser	Glu	Glu	Glu	Lys 505	Gln	Ala	Gln	Glu	Glu 510	Ala	Ala
25	Lys	Ala	Lys 515	Gln	Gly	Leu	, Ala	Glu 520	Arg	Ile	Gln	Gln	Val 525	Leu	Lys	Asp
30	Glu	Val 530	Ala	Glu	Val	Arg	Val 535	Ser	His	Arg	Leu	Thr 540	Asp	Ser	Pro	Ala
25	Ile 545	Leu	Ala	Ile	Gly	Gln 550	Gly	Asp	Met	Gly	Leu 555	Gln	Met	Arg	Gln	Ile 560
35	Leu	Glu	Ala	Ser	Gly 565		Lys	Leu	Pro	Glu 570	Ser	Lys	Pro	Val	Phe 575	Glu
40	Phe	Asn	Pro	Ala 580	His	Pro	Leu	Ile	Glu 585	Lys	Leu	qaA	Ala	Glu 590	Pro	Asp

271 .

	Val Asp Arg Phe Gly Asp Leu Ala Arg Val Leu Phe Asp Gln Ala Ala 595 600 605	
5		
	Leu Ala Ala Gly Asp Ser Leu Lys Asp Pro Ala Ala Tyr Val Arg Arg 610 615 620	
10		
10	Leu Asn Lys Leu Leu Glu Leu Ser Ala 625 630	
	<210> 48	
15	<211> 20	
	<212> DNA	
	<213> Xanthomonas albilineans	
	<400> 48	
20	gcgtaccgtt gtccagtagg ,	20
	•	
	<210> 49	
25	<211> 20	
25	<212> DNA	
	<213> Xanthomonas albilineans	
	<400> 49	
30	gctggaaacc gagaatctga	20
	<210> 50	
	<211> 20	
35	<212> DNA	
33	<213> Xanthomonas albilineans	
	<400> 50	
	gacacgatca gccgctagga	20
40		
	<210> 51	

Application of Royer, et al.

			212	• •	•
	<211>	20			
	<212>	DNA			
	<213>	Xanthomonas albilineans			
5	<400>				
	accage	agtt gggccagcct			20
	<210>				
10-	<211>		1		
	<212>				
	<213>	Xanthomonas albilineans			
				•	
15	<400>				19
13	tgccca	cagg ccgtcgagt		ŧ	19
	<210>	63			
	<211>				
20	<212>				
20		Xanthomonas albilineans			
	44257				
	<400>	53			
		iggac aagetgetge			20
25					
	<210>	54			
	<211>	20			
•	<212>	DNA			
30	<213>	Xanthomonas albilineans			
	<400>	54			
	cgttga	aggat geagegeteg			20
35					

## CLAIMS:

5

# We claim:

1	1.	DNA molecules encoding the Albicidin Biosynthetic Gene Clusters and
2		proteins selected from the group consisting of:
3	•	(a) isolated DNA fragments which encode proteins that in turn
4		individually and collectively perform functions in Albicidin Biosynthesis;
5		(b) isolated DNA which hybridizes to isolated DNA of (a) above and that
6		encodes a protein that in turn performs an individual function in Albicidin
7		Biosynthesis; and
8		(c) isolated DNA differing from the isolated DNAs of (a) and (b) above
9		in codon sequence due to the degeneracy of the genetic code, and which encodes
10		a protein that in turn performs as function in Albicidin Biosynthesis
11		(d) isolated DNA selected from the group of DNA molecules having a
12		sequence that is at least 70% homologous with a DNA comprising one or more
13		of SEQ. ID. Nos.1 to 25.
1	2.	Isolated DNA molecules of claim 1 comprising any one of SEQ ID No.1, SEQ
2		ID No. 2 or SEQ ID No. 3.
1	3.	A vector comprising a purified and isolated DNA molecule(s) of claim 1
2		operably linked to promoters.
1	4.	A host cell comprising an isolated DNA molecule of claim 1.
		in the state and state in the s
.1	5.	A host cell comprising the isolated DNA molecule of claim 2.
1	6.	A host cell comprising a vector of claim 3.

A method of producing a protein, wherein said protein consists of an amino 1 7. acid sequence selected from the group consisting of SEQ ID Nos. 26 to 48, 2 comprising the steps of: expressing DNA molecules of Claim 1 in a host cell, 3 wherein said DNA molecules encodes a protein, and wherein the expression of 4 said DNA molecules leads to the production of Albicidins by said cell. 5 A method of producing a polyketide carrying para-aminobenzoic acid and/or 8. 1 carbamoyl benzoic acid by inserting at least one DNA Fragment of Claim 1 2 that encodes a PKS protein into a cell and causing the cell to express the 3 encoded PKS protein under conditions such that the PKS protein functions to 4 produce a polyketide carrying either a para-aminobenzoic acid or a carbamoyl 5 benzoic acid or both. 6 A method of producing polyketide/peptides carrying para-aminobenzoic acid 9. 1 and/or carbamoyl benzoic acid by inserting at least one DNA Fragment of 2 Claim 1 that encodes a PKS protein into a cell and causing the cell to express 3 the encoded PKS protein under conditions such that the PKS protein functions 4 to produce a polyketide carrying either a para-aminobenzoic acid or a 5 carbamoyl benzoic acid or both. 6 10. A method of activating nonproteinogenic amino acids like paraminobenzoic 1 acid and/or carbamoyl benzoic acid for incorporation into peptides or 2 polyketides by inserting at least one DNA Fragment of Claim 1 that encodes a 3 PKS protein into a cell and causing the cell to express the encoded PKS protein 4 under conditions such that the PKS protein functions to produce a polyketide 5 carrying either a para-aminobenzoic acid or a carbamoyl benzoic acid or both. 6 1 11. Proteins encoded by the DNA of Claim 1. 12. Proteins encoded by the DNA of Claim 2. 1 An isolated and purified antibiotic produced by a process that includes at least 13. 1

three proteins coded by DNA sequences of claim 1 in combination with

additional enzymes that modify the product to provide a non-naturally

2

2		occurring Albicidin-like product having at least one of the useful properties reported for albicidin.
1 2	14.	An antibiotic or antibiotics of claim 13 having at least one of the general structures illustrated in Figure 11.
1 2 3 4	15.	An antibiotic produced by the process of expressing the DNA of one or more of the genes included in the Albicidin Biosynthetic Gene Clusters of Claim 1 in a genetically modified host cell sustained in a culture media, and thereafter separating the antibiotic from the host cell and culture media.
1 2 3 4 5 6	16.	A process for producing an antibiotic that comprises modifying a host cell to enhance expression of the DNA of claim 1 by insertion of expression enhancing DNA into the genome of a <i>Xanthomonas albilineans</i> strain, <i>Escherichia coli</i> strain, or other Albicidin producing microbial strain, in a position operative to enhance expression of the enzymes of the Albicidin Biosynthetic Gene Clusters, culturing the modified host cell to produce an antibiotic and isolating the antibiotic.
1 2	17.	An isolated purified antibiotic having at least 4 of the structural elements illustrated in Figure 11, and an elemental composition of $C_{40}H_{35}N_6O_{15}$ .
1 2 3	18.	A method of protecting a plant against damage from albicidin that comprises applying an agent that blocks expression at least one gene in the Albicidin Biosynthetic Gene Clusters of claim 1 to the plant to be protected.
1 2 3 4	19.	A method of obtaining agents useful in blocking expression of albicidin by screening materials against a modified host cell line that expresses the Albicidin Biosynthesis Gene Clusters of claim 1 and selecting for materials that stop or decrease albicidin production.
1 2	20.	A method of protecting a plant against phytotoxic damage from an antibiotic that comprises inserting into the plant and operably expressing at least one

1	7	-
Z	1	o

Application of Royer, et al.

2		resistance gene from the Albicidin Biosynthesis Gene Clusters of claim 1 in the plant to be protected.
1	21.	A plant reproductive part carrying an albicidin resistance gene of claim 1
2		selected from the group consisting of seeds, propagative materials and plant
_		- " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

3

parts.

Application of Royer, et al.

#### **ABSTRACT**

Three gene clusters that together encode albicidin biosynthesis, the complete gene DNA sequences, the deduced protein sequences for the enzymes and methods for using the DNA sequences are disclosed and discussed as well as methods for plant protection and creating new antibiotics. The novel Albicidin family of antibiotics is disclosed and their structure deduced.



Figure 1

the many state attach and the same of the

7 1 11

NRPS-3 NRPS-4	PCP4 C	-	NRPS-4	<b>O</b>
	3 C A		,   	1 1 1 1 1 1 1 1
NRPS-2	C (A?) PC		1 1 1 1	1 1 1 1
NRPS-1	C A PCP2		NRPS-1	C A PCP2
PKS-3	KS2 PCP1		PKS-3	KS2 PCP1
PKS-2	AL ACP1 KS1 KR ACP2 ACP3 KS2 PCP1 C A PCP2 C (A?) PCP3 C A PCP4		PKS-2	AL ACP1 KS1 KR ACP2 ACP3 KS2 PCP1 C A PCP2
Albl PKS-1	AL ACP1	XabB	PKS-1	AL ACP1

AlbiV NRPS-5 A. PCP5

AlbVII PKS-4 HBCL

AlbiX NRPS-6 NRPS-7 A PCP6 C A PCP7

ALTPGGAVIV IGDDDARLLI IVRPGGLIIL VLKPGGVLAI ALEPGGRIII AMPAHARLLV ALRRGGALSH VLRPGGRLAV ATRPGGRLAV	MOtit TTT
263 1159 1159 273 273 1151 151 251	
PRADVEIV IGYDAYLE GAFDIVEV GTEDLAFI ETFDRATIL GGGDLYVL VQGDAEEL GSFDAAWA GPYDLSLI SGYDLSLI	Motif II
233 255 255 255 255 255 255 255 255 255	
FYDLGGARG IADLGGGDG VLEIGTFTG TLEVGVFTG VLDVGGGGG VLDVGGGRG VVDIGGADG VLEVGCCMG VLDVGCGSG VLDVACGHG	Motif I
173 331 64 63 853 106 71 178 178	
Sgl-Tcm0 Sgl-TcmN Smy-MdmC Mxa-SafC Ser-EryG Spe-DauK Sal-DmpM Shy-RapM Say-AveD Sar-Cmet	

<u>-</u>	
150 PALVVARGLTPYL 150 PTMIVARGULPYL 152 PVLLILEGVLMFF 155 GVFITARGLLMYL 150 PAMVVARGLTPYL 178 PTAMLARGLLIYL 172 PSAMIARGLLIYL 177 PSAMSVRGLLFYL	MOH 1 F TV
139 EDWLDTVP 139 RGWIERLP 141 TDWMKTVS 144 YSWMDSVD 139 PGWLAEVP 162 ADWPTALQ 162 QDWPKALQ 161 TDWPTPLT 153 EDWPSALA	Motif III
109 DVDVPDVIELR 111 DLDLPEVINIR 113 TVDLPPIVDLR 109 DADVPQVIELR 127 RIDQPKVMEPR 129 BLDQPKVLRFR 129 BLDQPKVLRFR 129 BLDQPKVLRFR 1218 BLDVPKVLRFR 118 EVDTPAPLRFR	Motif II
VVLHLACGLDSRAFRMDVPD TVLHLGCGLDSRIFRIDPGP VVVQLGAGLDARFERLGKPQ TVVALAEGLQTSFWRLDVAI TVLHLGCGLDTRVFRVDPPP QVAILASGLDSRAYRLPWPD QVVILASGDLSRAWRLPWPD QVVILASGDLSRAWRLPWPD QVVILASGDLSRAYRLPWPD QVVILAAGLDCRAYRLPWPD QVVILAAGLDCRAYRLDWQP QVVILGAGWDSRAFRWAWPE	Motif I
88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Sgl-tcmP Sme-PKS Pmu-tcmP Mtu-Omt Mtu-Hp Mtu-Hp2 Mtu-Hp3 Mtu-Hp3 Mtu-Hp3 Mtu-Hp4 Sco-Hp	

	TEE	eod (	y	31	នានាន	목원	멸덞躙
Motif As	•••				SGILAGVEGVNIPDEGVEDSLALARAIEGNGTRILIJÄÄÄHLOALLDATGGRDGIHEIRHYYTÄÄALPSAVRETVRARIPGVGLWÄNÄÄÄÄÄÄÄÄÄLMDA SGILAGVGOVNIPDEGVEDSLALARAIEGNGYTRILIJÄÄÄHLOALLDATGGRDGIIHBIRHYYTÄÄÄALPSAVGENVRIPOVGUMÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	lagilagypeddedtyrdipafvraletwoxtrlytyppsquaalidhvaetporlarirojevssyspopaelloririllpactawylygotrindd Lagilagypovpidedtyvrdipafvraletwoxtrlytyppsquaalidhvaetporlarirojevsgorbellorililpactawylygotrindd 	yvplvagicchyvp-eggddvpvinrvlddnoòdvi <u>klategerlilaeaapdavwpalrlóisá</u> öberaavaydihoffrdvalvæmemee Mesllagvshviaaplsvroiaqtihtyh <del>ùtvullagyskvfklilaeaapdavwpalrlóisá</del> öbslparlghtstrwojbulógásókkust 
agtre V	355	bos					TYPE TYPE TYPE TYPE TYPE TYPE TYPE TYPE
				KAPLPPALAKKFHUKLBGK1	556		/Br
		!	REKV.	25 27 27	NEOV.	LLPAC.	REPREDIATION
			SLVNK		SAVRVI	PRLRI	PDIHOI HAISTI MRLDA
			ATSP		PSAVR	PARLIC	KAAVA. PARLGI PIAPLI
	TOF	bos	9		A SEPT		GÉREL AGREL HGAPL
	562	eod :	TTO OTHER	rtwing Ministra	RHIVY	ROLEV ROLEV	RUÇIS RUÇIS RVLVV
			RILSI		-LHSL		ATSRI PAL IKLAGI
			derilsiodaltaggatspsiunkwkekv7	VTDLG	DGL	regr.	NAAI JAVW
				DESAR	DATOG	OHVAE: OHVAE:	AEAAPI AHLON
			V-VHIL	LTMITT	LOALE	LNALE	MIMIER FYLLI LTEME
			enalligassyiilkotindpvkpeqyingkeätvijjäätyv-vhld	poplarovplvilptdeardpalltaalerrrysrm <u>vro</u> glitatildesaratdigtrlactru 		05.00	LAPPY LACVE
	875	.Bog	MIVIE S	SKSRWQ SSRWQ	KTRLY VTRLY	ATRLY ATRLY	ŠDVIK PTVLI LTVAZ
•			TINGKE	LERHI	LEGWC	LETWO	ZIHTYR
			VKPEQ	ALLIA	LALAR!	PAEVR PAEVR	PVINE AQ
			TINDE	EARDE	QVKDSI	TVRDI	SVRQI
			TILKO	TLPTO	MLPDE	FIDED	VYP-E TAAPL
			GASLY	VIEVPLV	GWEQV GWGQV	MAYPOV MAYPOV	GLCVH
			MALL	PGPLLA	ragern CSGLL	CAGEE	CESTED
¥	6£2	-Bod	SVWEM)	NAME TO	VKBL.	SVKEL SVKEL	TATE
motife A4	982	pos.	TOPDA		INFAV INFAV	TO THE	S PAY
		•	W	ez	2-1 3-3 8 8	3-6 S-7-8	N 4. C1
			_	Blm NRPS-2 (β-Ala)	NRP	X NRPS-6 X NRPS-7	Albiv NRPS-5 Albvii PKS-4 Albi NRPS-2
			GrsA (Phe	Blm (B-A)	Albi	Albix Albix	Albr Albr

XALB1 Strand +		
29 bp downstream from the TGA stop codon of albXVII		
-40 -35 -30 -25 -20 -15 -10 -5 -1+ +5	_	
17085=> ACCATTGTGÁACGGCCTTCCCGCTTCGTCCATAGCGATTTTCGÁTCGCGGC	p	S
	4.30	0
VANDIG		
XALB1 Strand +		
400 bp downstream from the TAA stop codon of albIV		
-40 -35 -30 -25 -20 -15 -10 -5 -1+ +5	p	s
55617=> CATGGCTGCAGGCCGAGCTCGCTCAGCTACGGGGTGAGACCGAAGCTGCCC <= 55667	4.13	12
	4.13	12
KALB1 Strand –	<del></del>	
52 bp, 170 bp and 560 bp downstream from the TAG stop codon of albXVI		
-40 -35 -30 -25 -20 -15 -10 -5 -1+ +5		
7030=> ĠĠĠĠĠĠĊAĠŦŤĠĊĊĊĠĠAĊĊĊĊĠĠŦŤŦĊŦĠŤAAĊĠŦŦŦĠĠĊŦĠŤĊŦĠŦAĠ <= 6879	p	8
5879	3.95	13
6922=> AACTCTTAAAAGAGATTGATTTAAATTTCCCTGCGTTTTTGTACGAGAATA <= 6872		
	4.42	0
6532=> TACTTAATATAAGATTGCGAAGCTTGCGTTGCGGAATGATTTTTTCAATAT <= 6482		
6482	4.27	53
(ALB3 Strand+		
	_	
-40 -35 -30 -25 -20 -15 -10 -5 -1+ +5	•	
	р	ន
8065=> GCAAAGAAAAGCGGAAACGAAAAAAGGGCCTACGGGCCCTTTTTTCTTCCA	4.78	0
8072=> AAAGCGGAAACGAAAAAAGGGCCTTACGGGCCCTTTTTCCTTCC	3.94	86
	J . J 12	00

Figure 6

GTCGTTGATCAGCAGCAGATAAGCCTGTTCCTCGAACCTCATAAGATTTCCTATGGGGGCCTCCGAAGCTCGTGCTGCTACATGGTTGCTACATCGTCG CAGCAACTAGTCGTGGTCTATTCGGACAAGGAGCTTGCAGAATTTCTAT<u>GGGGG</u>CCTTCCGACGACGTTCGTGCCTTCAACGATGTAGCGTG D N I L V L Y A Q E E F T M LYAOREFT NILV 14456

-35 (Paidx: operon 3) -10 (Paidx: operon 3)
AATGCGA<u>TICAGA</u>TGAGCAC<u>TAIDAL</u>TGACGTCACTTCGAAGATGTCAAGAAAATAGCGGGTGAAGAGCACGTAAGAGTGATGT
TTACGCTAAGTCTACCTGGTTACGTGATGTACTGCAGTGAAGCTTCTAGAGATTTTATATCGCGGACTTCTCGTGCATTCTCACTACA 14552

GTTTGGCACCGCTGTACGTCCCATCGCCATCGCGGCAAGCTTACACGAAAATTCACCGGGGCATGCGTTCAATACGGGGTCAAAGCAATATCC CAAAGCGTGGCGACATGCAGGGGTAGCGGTAGCGCCGTTTCGAATGTGCTTTTTTAAGTGGTCCCGTACGCAAGTTATGCGCCCAGTTTCGTTATAGG 14648

14744 TIGGGCTTGCAGAGCTATGTTCGTGCGTAAAGCGCCAAGGCAGTGGGGAAGCAACACCTTGGGTTTCGGTTGAGGTGCGGGTAGCAATTTCTGCTTA AACGCGAACGTCTCGATACAAGCACGCATTTGGCGGTTTCCGTCACCCCTCGTTGTGGAACCCAAAGCCAACTCCACGGCCCATGGTTAAAGACGAAT

**RB8** 

albxvii

1742B TCGAGAACGGCCATCTGGTGACGCCCGACCTGGCCGTGGCCGGCGTCAGCGGGATCATGCGAGGCAGGGTGATCGAATATGGCCGGCAGCAGCTC AGCTCTTGCCGGTAGACCACTGCGGGCTGGACCCGCACCGGCCGCAGTGGCCCCTAGTACGCTCCGTCCCACTAGCTTATACCGGCCGTCGTGCCAG

17524

-35 (PalbXIX: operon 5) -10 (PalbXIX: operon 5) 0.00 CANTIGATION OPERON 5) -10 (PalbXIX: operon 5) 0.00 CANTIGACCATIGATION OF CONTINUATION OF

RBS

albXIX

Figure 7B





Figure 8



Rifa-1 LGRVDVLQPACFAVWVGLAAVWESVGVRPDAVVGHSQGEI Rifa-2 LDQTMYTQGALFAVETALFRLFESWGVRPGLLAGHSIGEL Rifa-3 LDRVDVVQPASFAMMVGLAAVWTSLGVTPDAVLGHSQGEI Rifa-1 LDRVDVVQPASFAVWVGLAAVWESVGVRPDAVVGHSQGEI Rifa-1 LNQTVFTGAGLFAVESALFRLAESWGVRPDVVLGHSIGEI BlmVIII ADDTRAAQPALFAVESYALARTLMDWGVRPAAMLGHSLGEV

# Figure 10A

Albxiii ledrprhiravidtlighaqfgpaiqahnvavi**ghs**vggy Fenf trimmaqpailtvsviayqvymqeigixphfla**ghslge**y Lipa pdsrgrqllaaldyltgrssvrgridsgrlgvm**ghs**mggg

# Figure 10B

modules
NRPS
and
PKS
₫
outative substrates
4
Figure 1

AlbiX		A) (A) (C) (A) (TE)		t cate carbam 1) (hyp	
	NRPS3 NRPS4		e e e e e e e e e e e e e e e e e e e	para-amnobenzoate (hypothesis 1) or carhamoyi benzoate (hypothesis 2)	<b>©</b>
	NRPS-2 AlbiV		A STATE OF THE PROPERTY OF THE	NH2 asparagine	Ø
3	Albi NRPS-1			para-annobenzoate (hypothesis 1) or carbamoyl benzoate (hypothesis 2)	<b>9</b>
	PKS-3 N		<u>بال</u> ا،	malonyi-CoA	Ø
ubstrates of Pro	PKS-2	KR) ACPA (ACP3)		malonyl-CoA	0
Figure 11A: Putative substrates of PhS and INNES Included	PKS-1	(AL) (ACP) (KSI)	eto.	BOSH-COA	Steps 1 to 8: (i)

Figure 11B: Compositions and structures of albicidins