Cheat Sheet

isakhammer 2020

Contents

1	Definitions	2
2	References	3

1 Definitions

Definition 1.1 (Topological spaces.). Recall that a topological space is a set X together with a collection Y of subsets of X that are open in X s.t.

- $T1. \emptyset, X \in \tau$
- **T2.** τ is closed under union if $U_{\lambda} \in \tau$ for all $\lambda \in \Lambda$, then

$$\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \tau$$

• T3. τ is under finite intersections if $U_1, U_2, \dots, U_n \in \tau$, then

$$U_1 \cap U_2 \cap \ldots \cap U_n \in \tau$$

Definition 1.2 (Basis). A basis for a topology on X is a collection of subsets of X s.t.

- **B1.** For each $x \in X$ there is a $B \in \mathfrak{B}$ s.t. $x \in B$.
- **B2.** $B_1, B_2 \text{ and } x \in B_1 \cap B_2 \text{ there is a } B_3 \in \mathfrak{B} \text{ s.t. } x \in B_3 \subseteq B_1 \cap B_2$

Definition 1.3 (Open and closed sets). Let (X, τ) , $U \subseteq X$

- Open set. If $U \in \tau$, then is U open.
- Closed set. If $U^c = X U \in \tau$, then is U closed

Remark. Let $X=\{a,b,c\}$ and let $U=\{a,b\}$. Then if $\tau=\{X,\emptyset\},$ U is not open nor closed.

Theorem 1.1. Continuity between topological spaces. Let X, Y be topological spaces. A map $f: X \to Y$ is said to be continuous if preimages of open sats are open, i.e., if V is an open set in Y then the preimage $f^{-1}(V)$ of V is open in X.

Definition 1.4 (Neighbourhoods). Let X be a topological space, U a subset of X and $x \in X$. We say U is a neighborhood of x if $x \in U$ and U is open in X.

2 References