

Ch. 13 - IoT Application Protocol Layer Sec 2 – COAP Protocol

COMPSCI 147
Internet-of-Things; Software and Systems

APP PROTOCOLS FOR IOT - STANDARDIZATION

- HTTP
 - IETF standard (RFC 2616 is HTTP/1.1)

- CoAP
 - IETF standard (RFC 7252)
- XMPP
 - IETF standard (RFC 6272)
- MQTT
 - OASIS standard
- AMQP
 - OASIS and ISO 19464 standard (1.0)
- SIP
 - IETF Standard (RFC 3261)
- IEEE 1888
 - IEEE Standard
- DDS (RTPS)
 - Object Management Group (OMG) Standard

CORE AND COAP - CONSTRAINED RESTFUL ENVIRONMENTS

- IETF CORE: An Internet Engineering Task Force workgroup working on Constrained RESTful Environments to run on IP networks with constrained resources.
- CoAP: Constrained Application Protocol is a specialized Internet
 Application Protocol for constrained devices mainly by using UDP as transport and short headers.

CORE REQUIREMENTS

THE CORE ARCHITECTURE

COAP

- Constrained Application Protocol (CoAP)
 - Application-level protocol over UDP
 - Standardized by the IETF CORE workgroup as a lightweight alternative to HTTP
 - Powering M2M with a Web of Things
 - Designed to be used with LLNs

COAP II

- Embedded web transfer protocol (coap://)
- Asynchronous transaction model
- UDP binding with reliability and multicast support
- GET, POST, PUT, DELETE methods
- URI support
- Small, simple header < 10 bytes
- HTTP-compatible response codes
- Optional observation, block transfer and discovery

WHAT COAP IS (AND IS NOT)

- CoAP is
 - A RESTful protocol
 - Both synchronous and asynchronous
 - For constrained devices and networks
 - Specialized for M2M applications
 - Easy to proxy to/from HTTP

- CoAP is not
 - A replacement for HTTP
 - General HTTP compression
 - Separate from the web

COAP - THE TRANSACTION MODEL

- Transport
 - CoAP is defined for UDP
- Messaging
 - Simple message exchange between end-points
 - CON Confirmable
 - NON Non-confirmable
 - ACK Acknowledgment
 - RST Reset message (not understood)
- REST
 - Request/Response piggybacked on messages

MESSAGE HEADER

```
Options (if any) ...
 Payload (if any) ...
 Ver - Version (1)
T - Transaction Type (Confirmable, Non-Confirmable, Acknowledgement, Reset)
OC - Option Count, number of options after this header
Code - Request Method (1-10) or Response Code (40-255)
Message ID - Identifier for matching responses
```

REQUEST EXAMPLES

DEALING WITH PACKET LOSS

NORMAL RESPONSE

BITS AND BYTES...

COAP - CACHING

- CoAP includes a simple caching model
 - Cacheability determined by response code
- Freshness model
 - Max-Age option indicates cache lifetime
- Validation model
 - Validity checked using the Etag Option
- A proxy often supports caching
 - Usually on behalf of a sleeping node,
 - and to reduce network load

PROXYING AND CACHING

Where is COAP used

How to run on ESP32

- https://github.com/hirotakaster/CoAP-simple-library
- Copper (Cu) CoAP user-agent browser extension

- Creating Smart Water Networks with Ayyeka
 - https://www.youtube.com/watch?v=w eJL8XPtq0
- Constrained Application Protocol (CoAP) Tutorial
 - https://www.youtube.com/watch?v=4bSr5x5gKvA