Camber reduction factor, 126-127

Note: Page numbers followed by f indicate figures, t indicate tables and b indicate boxes.

A	Camber reduction factor, 126–127
Abe, 16	Camber stiffness, 77, 156
ABS braking, 385–394	Capsize mode, 531
Adhesion, 79–80	Carcass compliance, 82–85, 126, 349–351,
Aerodynamic drag, 514	382, 621
Aligning stiffness, 93–94, 153, 228	Carcass distortion, 75
Aligning stiffness, definition, 5–6	Caster length (trail), 9, 300, 312, 511
Aligning torque, definition, 3	Center of gravity, 22-23, 306-309, 533,
Aligning torque, steady state, 4, 88, 228–230	540, 550
Axes system, 4–5, 62–63	Characteristic equation, 29-30, 290,
Axle characteristics, 7, 12, 36–37, 40	321–322
Axle cornering stiffness, 9–12	Characteristics, cf. tire characteristics
Axle side force, 11	Characteristic speed, 25–26
Axic side force, 11	Cheli, 455
В	Clark, 458
Badalamenti and Doyle, 478	Cleat, 487–493
Bakker, 165, 168, 171	Coefficient of friction, 5-6, 82, 131-132,
Bandel, 464–465, 478–479	176
Bayer, 506–507	Combined slip, 100-111, 126-127, 158-162,
Bayle, 165, 171–173	174, 424–426
Belt distortion, 75, 128	Combined slip with F_x as input, 163–165
Belt dynamics, 271, 404–405, 445	Composite slip, 175
Belt segments, 583	Conicity, 79, 129–131, 191–196
Bernard, 82, 89–90	Constitutive relations, 453–462
Berritta, 506–507	Contact center, 62-63, 200
Berzeri, 426	Contact length, 95–96, 153–154, 281,
Besselink, xiv-xv, 177, 214, 231f, 241, 250,	624
256-257, 287-288, 298, 306-311,	Contact patch mass, 350, 387, 400-401
313–315, 349–350, 620	Contact patch slip model, 406-444, 587,
Biral, 507	588f
Brake lever arm, 460–462	Contact width, 116
Braking, 49–51, 140–147, 385–394, 515,	Cornering force, cf. side force
546–547, 550	Cornering on uneven road, 58, 214
Breuer, 506–507	Cornering stiffness, 5–6, 93–94,
Brockman and Braisted, 458-459	223–224
Bruni, 455	loss (side force), 359
Brush model, 82, 84, 88, 90-127, 406-426	string model, 215-240, 258-268
Böhm, 88–90	vs normal load, 2, 5, 143-144, 168
	Cornering stiffness, definition, 5–6
C	Cossalter, 507
Calspan flat track test stand, 204, 569	Critical speed, 25, 28, 55, 144–145, 531,
Camber angle, 4, 70, 74–75, 77, 79, 109–110,	548
121, 155, 160, 171, 175–176, 192,	Cross section, 64-65, 75, 199-200,
201, 332, 344–346, 427, 445,	510
513, 515–516, 519, 544–545,	Curvature factor, 166–167
552, 559–560, 567	Cutoff frequency, 233–237

D	steering vibrations, 381
Damping:	vehicle handling, 16-17, 19-21, 31-32
motorcycle steer, 524	
shimmy, 291–292	F
tire, 454	Fancher, 82
vehicle handling, 28	Fiala, 82, 88–90, 150–152
Davis, 478–479	Finite Element Model, 478
Deflections (tire), 63, 84	Forissier, 171
Delft dynamic brake and cleat rig,	Four wheel steer, 35f
463–464, 574f	Frank, 88
Delft flat plank, 491, 498f, 572	Frequency response:
Delft pendulum test stand, 464–465, 465f,	align. torque (SWIFT), 236
474, 574–575	- and approximations, 243f
Delft-Tire, 588	braked wheel, 109–110
Delft tire test trailer, 462–463, 466 Delft University of Technology, 362, 404,	lateral force (SWIFT), 237
462–463, 572	longitudinal force (single point), 372–373 longitudinal force (SWIFT), 394, 408f,
Delft yaw oscillation test rig, 464–466,	410f
575–576	steering vibrations, 379–385
Differential equations:	string model, 224–225
- with carcass compliance, 415–417	string with approx. dynamics, 272
contact patch, 396, 407, 409, 415	SWIFT (zero belt mass), 410–411
single contact point, 312, 355	vehicle handling, 32
string approximations, 253–255	Freudenstein, 88–90, 139–140
Dijks, 178–179	Fritz, 214
Dugoff, 82	Fromm, 88, 288
	FTire, 405, 582–586
E	
Effective inputs, 404–405, 475–476	G
Effective road plane height/slope, 476,	Geometric filtering, 475
478–487, 493–497	Gillespie, 16
Effective rolling radius, 63, 69, 77, 156, 201,	Gipser, xv, 84, 405, 478, 582, 586
344, 348, 367–370, 459, 461–462,	Goncharenko, 256
487–493, 498–499, 618	Gong, 478
Effective rolling radius, def., 3–4, 63	Gough, 476
Eigenvalues:	Green function, 84 Growth (centrifugal), 440, 618
motorcycle, 529, 531	Guan, Dihua, 84
vehicle handling, 28	Guntur, 390–391
Eindhoven University of Technology, 572,	Guo, 84, 89–90
586–587 Eldik Thieme, van, xiv, 568, 572	Gyroscopic couple, 218, 269–271, 288, 294,
Empirical model, 82	297–300, 306–309, 348–349, 533
Energy flow, 302–303, 309–310, 311–320	
Enveloping, 404–405, 577–578, 587–588,	Н
624	Handling curve, 36, 556–557
Equations of motion:	Handling diagram, 36f, 38, 557f, 559–560
braked wheel system, 382	Handling experiments, 598
car-trailer, 53–57	Hasegawa, 506–507
contact patch mass, 428, 449	Higuchi, 139–140, 215, 332, 338–343
motorcycle, 520–529	Ho and Hall, 214
rigid belt, 446	HSRI (UMTRI), 82
shimmy 294	Human rider model, 506

Hurwitz stability criterium, 55, 290	Longitudinal force, definition, 3–4
Hysteresis, 366–367	Longitudinal slip, 97–100, 406–410
	Longitudinal slip, definition, 3–4, 63–65, 70,
	97–100
Iffelsberger, 506–507	Longitudinal slip stiffness, 6, 99–100, 156,
Inclination angle, cf. camber angle	387, 409, 617–618
Influence function, 84	Longitudinal slip stiffness, definition, 5-6
Instability:	Lugner, xiv, 16
divergent, 28, 56, 290, 292, 296–297	
oscillatory, 2, 55–57, 292, 312	M
_	Magic Formula, 7, 82, 150–154, 165–206,
J	330, 335, 387, 404–406, 415, 424,
Jagt, van der, 198, 206, 349-350, 386, 394,	426–435, 441, 449–450, 452,
438–441	517–519, 565, 587–588
Jansen, xiv, 507	Magic Formula, cosine version, 170f, 171
Jianmin, 366–367, 624	Magic Formula motorcyc., 176, 565
Julien, 88	Magic Formula Tire Model, 165–206, 565
vanen, oo	Magic Formula with turn slip, 183–188
K	Maneuvering, 52f, 507
	Mastinu, 84
Karlsruhe University of Technology,	
569–572	MATLAB, 611
Katayama, 507	Maurice, 214–215, 271, 404, 407, 413, 426,
Keldysh, 241, 256–257	432, 435, 455, 466, 469–472, 474,
Kluiters, 214, 241, 249–250	574–576
Kobiki, 468	Meier-Dörnberg, 214
Koenen, 506-507, 563-564	Meijaard, 507
Kooijman, 507	MF-Tire, 588
Kortüm, 16	Michelin, 165, 168f, 171
	Milliken, xvi, 16, 51, 53, 150–152
L	Milliken Research Associates, 51
Laerman, 214	Mitschke, 16, 458
	Modes of vibration, 309-310, 454, 563-564
Lafon, 171	Moment method, 51–53
Lagrange's equations, 17	Moreland, 214, 241, 256–258
Lateral acceleration response, 34	Motorcycle dynamics, 505–566
Lateral c.g. offset (motorcycle), 550	Motorcycle tire force/ and moment, 202–206
Lateral force, cf. side force	Mousseau, 478
Lateral slip, 67	MTS Flat Trac III, 203f, 206
Lateral slip stiffness, cf. cornering	MTS Flat Trac Roadway Simulator, 53, 53f
stiffness	W113 That Trac Roadway Simulator, 33, 331
Lateral stiffness	N. 1
standing tire, 228, 231	N
suspension, 288	Natural frequencies:
Lee, 191–192	shimmy, 309f, 310f
Limebeer, 506–507	steering vibration, 309–310, 315f
Limit-cycle, 287–288, 320–322	tire in-plane, 371–372, 468t
Lippmann, 476	tire out-of-plane, 271, 468, 468t
Loaded radius, 198, 201, 448, 457, 461–462,	vehicle handling, 30
618	Neutral steer, 25
Load transfer, 7, 9, 514–515	Neutral steer point, 24
Load variations, 277–281, 410	Nishimi, 507
Longitudinal force, 3–4, 157, 179, 181,	Non-dimensionalisation, 552
366–378	Non-holonomic constraint, 523
200 2.0	

Non-lagging part, 496–497, 517	Relaxation length:
Non-linear system, 517–520, 555–563	- with carcass compl., 398f
Non-steady state, 211–286	contact patch model, 416f
Nonuniformity, 366–378	motorcycle tire, 531, 533
Normal deflect., 200, 456f, 494	vs normal load, 517
Normal force, 456-458, 494	single pt. model, 251–252, 329
Nyquist plot:	string model, 226f, 230f, 236
and approximations, 247f	string with tread elements, 258, 260–261,
- with gyroscopic couple, 270	283
string model, 215–240	vehicle handling, 22
string with approx. dynamics, 274	Residual stiffness, 404–405, 405f, 435, 466
•	Residual torque, 156, 164–165, 195
SWIFT (with zero belt mass), 431	Response successive steps, 452f, 472f, 473f
tire measurements, 239f, 245f	Response to cleats (SWIFT), 487–493, 499
0	
O	Response to load var., 277–281, 349, 365f
Obstacle, 475–476, 476f, 490–491, 587	Rider robot, 507, 536
Oertel, xv, 405, 478, 578–582	Rigid ring, 444, 454, 474
Olley, 288	Rigid wheel, 296–297, 484f
Optimization, 589	Rise time, 31
Out of roundness, 370, 372–373	RMOD-K, 405, 578–582
Oversteer, 25, 40	Road camber, 487
Overturning couple, 182, 196-201, 198f,	Road experiments, 462–463, 483, 582–583
198t, 206, 452	Road unevenness, 389–390, 475–504
	Rogers, 213, 249
P	Roll angle motorcycle, 540, 543-544
Pacejka, 565, 586–587	Roll axis, 8, 611
•	Rolling resist. moment, 63-64, 89, 182,
Parameter assessment, 463, 466, 469, 483, 589	459–462
	Rolling resistance, 371-372, 458-462, 616
Parameters Mag.F./SWIFT, 613–625	Roll steer/camber, 13-14, 21-22
Parking maneuver, 436–444	Rotation transformation, 511-512
Path curvature, 24, 171, 183, 189f, 422, 541,	Ruijs, 507, 536
548–549	
Pevsner, 16	6
Phase plane, 46f	S
Physical model, 82, 85, 420, 426, 582	Sakai, 90, 126–127
Plöchl, xvi	Savkoor, 88
Ply-steer, 75, 129–131, 191–196	Scaling factors, 178–179
Pneumatic trail, 6, 27–28, 35, 43–44, 95,	Schlippe,von, 213, 221, 241, 287-288
103–105, 103f, 136–137, 136f,	Schmeitz, xv, 478, 485-487, 589-591
165, 169–170, 227, 261,	Segel, 6-7, 16, 82, 213, 215, 221, 345-346
263, 517	Self aligning torque, cf. aligning torque
Pneumatic trail, definition, 5–6	Self-excited oscillations, 287–288
Point of intersection, 62–63	Separatrix, 47-48, 323-324
Pothole response (SWIFT), 503–504	Shang, Jin, 84
Pressure distribution, 82–84, 89, 92	Shape factor, 166
Pure slip, 5	Sharp, xiv, 84, 506–507
	Sharpness factor, 168f
R	Shimmy, 288, 317–320
Radial stiffness, 478–480	Side force, 4, 88, 92, 172, 184–185, 277–286,
Radt, 16, 150–152	473f
Regression technique, 168	Side force, definition, 2
Reimpell, 178–179, 198, 456–457	Side force steer, 9–10
Kempen, 170–173, 130, 430–437	Side force steer, 7–10

Strackerjan, 214, 271
Straight tangent approx., 215, 241, 250-251
String model, 215–240, 258–268, 277–281
String with tread elements, 258–268,
277–281
Suspension compliance, 300, 383
SWIFT, 404, 497–504, 586–591, 613–625
Synchronous oscillation, 325-328
System of axes, cf. axes system
T
Takahashi, 214, 277, 338, 361-362, 364,
506–507
Tandem rear axle, 43
Tandem 'cam' technique, 485–486
Teerhuis, 507
Test facilities, 463–466, 567–576
Tire characteristics (steady-state):
brush model, 90–127, 117f, 119f
brush model, camber, 120f
brush model, spin, 119–120
example, 3–7
Magic Formula, 165–206
Magic Formula motor cycle, 207f
Magic Formula with turn slip, 183–184
measured, 82, 616
nondimensionalised, 151f
similarity method, 150–165
spin, turn slip, 138
string with tread elements, 258–268
tread simulation model, 128–140
Tire dynamics, 271, 444–462
Tire inertia, 268–276, 404, 621
Tire models, 81–85
Tire pull, 195–196
TNO-Automotive, xiv-xv, 176-177, 196,
404, 568
Toe angle, 9
Torsional stiffness:
motorcycle, 535-536
standing tire, 228, 237
Trailer, 53–57
Trajectory, 145-146
Transfer function:
string model, 228
string with tread elements, 258
Transient slip values, 392, 396
Transient tire behaviour, 385
Tread compliance, 130
Tread simulation model, 128–140
Tread width effect, 344, 431

Truck, 43, 139, 327
TU-Delft, xiv, 165, 232f, 339–343, 568
Turning, 112–127
Turn slip, 68, 70, 112–113, 138, 183–188, 228, 231
Turn slip stiffness, 228, 231

U

UMTRI, 6–7, 572 Unbalance, 325–327 Understeer, 24–25, 541, 548 Understeer at braking, 49–50

٧

Vehicle handling, 16–58 Vehicle handling experiments, 611 Vehicle model, 7–8, 8f, 16–17 Vehicle slip angle response, 31–32 Vehicle stability, cf. stability Volvo, 165 Vries, de, 171, 175–176, 464–466, 518

W

Wavelength, 212, 363, 386, 403–474
Weave mode, 529
Weighting function, 171–173, 184
Weir, 507
Wet road, 6–7, 155
Wheel lock, 140–147
Whipple, 506
Willumeit, 84
Wind-up oscillations, 397–400
Winkler, 43
Wisselman, 506–507
Wobble mode, 531

Υ

Yaw velocity response, 22-23

Z

Zegelaar, 214–215, 404, 453, 455, 460–461, 463, 466, 469, 476, 478–481, 483, 491, 497, 503–504, 586–587