

Chapter 01

데이터베이스 시스템

강의 안내

주	장	강의 내용			
1	1장	강의 소개, 소프트웨어 개발과 데이터베이스			
2	2장	관계 데이터 모델			
3	3장	SQL 기초 – MySQL 설치, SELECT			
4	3장	SQL 기초 - DDL, DML			
5	4장	SQL 고급 – 내장 함수, 부속질의			
6	4장	SQL 고급 - 뷰, 인텍스			
7	5장	데이터베이스 프로그래밍			
8		중간고사			
9	6장	데이터베이스 모델링 - 개념, ER 모델, ER 모델과 관계 모델			
10	6장	데이터베이스 설계 - Erwin 실습, 모델링 연습			
11	7장	관계 데이타베이스의 정규화 - 이상현상, 함수 종속성, 정규화			
12	7장	관계 데이타베이스의 정규화 - 정규화 연습			
13	8장	트랜잭션 - 트랜잭션 개념, 동시성 제어, 트랜잭션 고립 수준, 회복			
14	트랜잭션 - 트랜잭션 실습 8장, 9장 데이터베이스 관리(9장) - 데이터베이스 관리, 보안과 권한, 백업과 복원 (진도에 따라 9장 생략)				
15		기말고사			

실습 프로그램 안내

① DBMS 관련(전체 장)

MySQL Community Edition 8.0.15 : 오라클사에서 제공하는 RDBMS(Relational Database Management System)로 윈도우 버전을 제공합니다. 윈도우 버전은 MySQL Installer를 통해 설치할 수 있습니다. https://www.mysql.com

MySQL Workbench 8.0.15 : 오라클사에서 제공하는 MySQL용 쿼리 편집 툴입니다. SQL을 수행하거나 모 델링 작업을 할 수 있습니다. 윈도우 버전은 MySQL Installer를 통해 설치할 수 있습니다. https://www.mysql.com

② 데이터베이스 프로그래밍 관련(5장)

❸ 데이터 모델링 관련(6장)

ERwin: 데이터 모델링을 위한 Case Tool(프로그래밍 자동화 도구)입니다. 이 책에서는 홈페이지에서 아카데미라에센스나 트라이얼 라이센스를 받아 실습을 진행합니다. https://erwin.com/products/erwin-data-modeler/

목차

학습목표

- ❖ 데이터베이스의 유형을 알아보고 개념 및 특징을 이해한다.
- ❖ 데이터베이스 시스템을 중심으로 정보 시스템의 발전 과정을 알아본다.
- ❖ 프로그램과 데이터가 컴퓨터에 어떻게 저장되는지 이해한다.
- ❖ 데이터베이스 시스템의 구성요소를 알아본다.

01 데이터베이스와 데이터베이스 시스템

- 1. 데이터, 정보, 지식
- 2. 일상생활의 데이터베이스
- 3. 데이터베이스의 개념 및 특징
- 4. 데이터베이스 시스템의 구성

데이터 관리

- 질문
 - 나는 중요한 데이터를 잘 관리하고 있는가? (연락처, 비밀번호 etc)
 - 데이터를 관리하는데 어려움을 겪은 적은 없는가?
- 개인보다는 학교나 기업과 같은 큰 조직에서 더욱 절실한 문제임
- 복잡하고 머리 아픈 데이터 관리를 대신해주는 데이터베이스의 필요성

1. 데이터, 정보, 지식

- **데이터**: 현실 세계에서 단순히 관찰하거나 측정하여 수집한 **사실이나 값**
- 정보(information) : 데이터를 의사결정에 활용할 수 있도록 처리하여 체계적으로 조직한 결과물, 즉 데이터에 의미를 부여한 것
- 지식 : 사물이나 현상에 대한 이해

그림 1-1 **데이터, 정보, 지식**

데이터와 정보

참고자료:데이터베이스 개론(한빛아카데미

정보처리(information processing)

■ 데이터에서 정보를 추출하는 과정 또는 방법

참고자료 : 데이터베이스 개론(한빛아카데미

❖ 데이터베이스란?

조직에 필요한 정보를 얻기 위해 논리적으로 연관된 데이터를 모아 구조적으로 통합해 놓은 것

그림 1-2 일상생활에서 생성되는 데이터베이스

그림 1-3 편의점과 철도회사의 데이터베이스: 간단한 거래도 많은 데이터가 포함된다

표 1-1 데이터베이스의 활용 분야

분야	활용
생활과 문화	 기상정보 : 날씨 관련 정보를 제공 교통정보 : 교통상황 관련 정보를 제공 문화예술정보 : 공연이나 인물에 관한 정보를 제공
비즈니스	금융정보 : 금융, 증권, 신용에 관한 정보를 제공 취업정보 : 노동부와 기업의 채용 관련 정보를 제공 부동산정보 : 공공기관이나 민간의 토지, 매물, 세금 정보를 제공
학술정보	연구학술정보 : 논문, 서적, 저작물에 관한 정보를 제공 특허정보 : 특허청의 정보를 기업과 연구자에게 제공 법률정보 : 법제처와 대법원의 법률에 관한 정보를 제공 통계정보 : 국가기관의 통계에 관한 정보를 제공

구축이 쉬움

구축이 어려운

- 데이터베이스 시스템은 데이터의 검색과 변경 작업을 주로 수행함
- 변경이란 시간에 따라 변하는 데이터 값을 데이터베이스에 반영하기 위해 수행하는
 삽입, 삭제, 수정 등의 작업을 말함

표 1-2 검색과 변경 빈도에 따른 데이터베이스 유형

	유형 검색 빈도 변경 빈		변경 빈도	데이터베이스 예	특징				
I	유형1	1 적다 적다 공룡 데이터베이스			검색이 많지 않아 데이터베이스를 구축할 필요 없음 보존가치가 있는 경우에 구축				
	유형2	많다	적다	도서 데이터베이스	사용자 수 보통 검색은 많지만 데이터에 대한 변경은 적음				
	유형3	적다	많다	비행기 예약 데이터베이스	예약 변경/취소 등 데이터 변경은 많지만 검색은 적음, 검색은 변경을 위하여 먼저 시도됨 실시간 검색 및 변경이 중요함				
l	유형4	많다	많다	증권 데이터베이스	사용자 수 많음 검색도 많고 거래로 인한 변경도 많음				

데이터베이스의 활용도

데이터베이스는 저장된 데이터의 양이 많고, 실시간 검색이 많은 분야일수록 활용도가 높다.

변경빈도

비행기예약

증권

검색빈도

공룡 데이터베이스 보존 가치가 높음 도서데이터베이스

3. 데이터베이스의 개념 및 특징

❖ 데이터베이스의 개념

● 통합된 데이터(integrated data)

데이터를 통합하는 개념으로, 각자 사용하던 데이터의 **중복을 최소화**하여 중복으로 인한 데이 터 불일치 현상을 제거

❷ 저장된 데이터(stored data)

문서로 보관된 데이터가 아니라 디스크, 테이프 같은 **컴퓨터 저장장치에 저장**된 데이터를 의미

❸ 운영 데이터(operational data)

조직의 목적을 위해 사용되는 데이터, 즉 업무를 위한 **검색을 할 목적으로 저장**된 데이터

공용 데이터(shared data)
 한 사람 또는 한 업무를 위해 사용되는 데이터가 아니라 공동으로 사용되는 데이터를 의미

데이터베이스

특정 조직의 여러 사용자가 <mark>공유</mark>하여 사용할 수 있도록 **통합**해서 저장한 운영 데이터의 집합

3. 데이터베이스의 개념 및 특징

그림 1-4 데이터베이스의 개념 : 데이터베이스는 운영 데이터를 통합하여 저장하며 공용으로 사용된다

3. 데이터베이스의 개념 및 특징

❖ 데이터베이스의 특징

- 실시간 접근성(real time accessibility) 데이터베이스는 실시간으로 서비스된다. 사용자가 데이터를 요청하면 몇 시간이나 몇 일 뒤 에 결과를 전송하는 것이 아니라 수 초 내에 결과를 서비스한다.
- ❷ 계속적인 변화(continuous change)
 데이터베이스에 저장된 내용은 어느 한 순간의 상태를 나타내지만, 데이터 값은 시간에 따라 항상 바뀐다. 데이터베이스는 삽입, 삭제, 수정 등의 작업을 통하여 바뀐 데이터 값을 저장한다.
- 동시 공유(concurrent sharing) 데이터베이스는 서로 다른 업무 또는 여러 사용자에게 동시에 공유된다. 동시는 병행이라고 도 하며, 데이터베이스에 접근하는 프로그램이 여러 개 있다는 의미이다.
- 내용에 따른 참조(reference by content)
 데이터베이스에 저장된 데이터는 데이터의 물리적인 위치가 아니라 데이터 값에 따라 참조되다.

데이터베이스의 특징

4. 데이터베이스 시스템의 구성

그림 1-5 데이터베이스 시스템의 구성 요소와 물리적인 위치

데이터의 분류

- 데이터의 형태에 따른 분류
- 정형데이터structured data)

구조화된 데이터, 미리 정해진 구조에 따라 저장된 데이터 ex> 엑셀의 스프레드시트, 관계 데이터베이스의 테이블

반정형데이터(semi-structured data)
 구조에 따라 저장된 데이터, 내용 안에 구조와 관련된 설명이 함께 존
ex> HTML. XML. JSON 문서나 웹로그, 센서 데이터 등

● 비정형데이터(unstructured data)

정해진 구조가 없이 저장된 데이터

ex> 소셜 데이터의 텍스트. 영상, 이미지, 워드나 PDF 문서와 같은 멀티미디어 데이터

1	A	В	C	D	E
1	종목코드	이름	주가(원)	시가총액(백만원)	섹터
2	A005930	삼성전자	82,600	493,104,039	전기전자
3	A051910	LG화학	941,000	66,427,395	화학
4	A035420	NAVER	398,000	65,376,831	İT
5	A005380	현대차	242,000	51,707,701	자동차
5	A035720	카카오	504,000	44,689,512	IT
7	A068270	셀트리온	318,500	43,858,542	바이오

O

</히워모르>

Chapter 01 데이터베이스 시스템

02 데이터베이스 시스템의 발전

- 1. 데이터베이스 시스템의 예 : 마당서점
- 2. 정보 시스템의 발전

❖ [1단계] 마당서점의 시작 - 1970년대

• 도서 : 100권

• 고객 : 근처 학교의 학생, 지역 주민

• 업무 : 회계 업무(계산기 사용), 장부에 기록

• 고객 서비스 : 사장이 직접 도서 안내

그림 1-6 마당서점 초기

❖ [2단계] 컴퓨터의 도입 - 1980년대

• 도서 : 1,000권

• 고객 : 근처 학교의 학생, 지역 주민

• 업무 : 회계 업무(컴퓨터 사용), 파일 시스템

• 고객 서비스 : 컴퓨터를 이용하여 도서 검색, 직원 고용

그림 1-7 마당서점 전산화

❖ [3단계] 지점 개설 및 데이터베이스 구축 - 1990년대

• 도서 : 10,000권

• 고객 : 서울 지역 고객

• 업무 : 회계 업무(컴퓨터 사용), 데이터베이스 시스템

• 고객 서비스 : 클라이언트/서버 시스템으로 지점을 연결하여 도서 검색 서비스 제공

그림 1-8 마당서점 DBMS 도입

❖ [4단계] 홈페이지 구축 - 2000년대

• 도서 : 100,000권

• 고객 : 국민(전국으로 배송)

• 업무: 회계/인사 업무(컴퓨터와 인터넷 사용), 웹 DB 시스템으로 지점 간 연계

• 고객 서비스 : 인터넷으로 도서 검색 및 주문

그림 1-9 마당서점 인터넷 서비스 실시

❖ [5단계] 인터넷 쇼핑몰 운영 - 2010년대

• 도서 : 1,000,000권

• 고객 : 국민(전국으로 배송)

• 업무: 회계/인사 업무(컴퓨터와 인터넷 사용), DB 서버 여러 개 구축

• 고객 서비스 : 인터넷 종합 쇼핑 서비스 제공

그림 1-10 마당서점 인터넷 쇼핑몰 운영

표 1-3 정보통신기술의 발전과 마당서점의 성장

El all	시기	TO ET			
단계	정보기술	주요 특징			
1단계	1970년대	사장이 모든 도서의 제목과 가격을 기억 매출과 판매가 컴퓨터 없이 관리됨			
마당서점	컴퓨터 없음	• 매출과 현매가 검류다 없이 한다함 • 매출에 대한 내용이 정확하지 않음			
2단계	1980년대	• 컴퓨터를 이용한 초기 응용 프로그램으로 업무 처리			
초기전산화	컴퓨터	파일 시스템 사용 한 대의 컴퓨터에서만 판매 및 매출 관리			
3단계	1990년대	• 지점 간 클라이언트/서버 시스템을 도입하여 업무 처리			
데이터베이스	컴퓨터+원격통신	• 데이터베이스 관리 시스템(DBMS)을 도입			
4단계	2000년대	인터넷을 이용하여 도서 검색 및 주문 웹 DB 시스템으로 불특정 다수 고객 유치			
홈페이지 구축	컴퓨터+인터넷	• 고객이 지리적으로 넓게 분산됨			
5단계	2010년대	• 도서뿐만 아니라 음반, 액세서리, 문구, 공연 티켓까지 판매			
인터넷 쇼핑몰	컴퓨터+인터넷	하는 인터넷 쇼핑몰로 확대 • 도서 외 상품의 매출 비중이 50% 이상으로 늘어남			

<데이터베이스 관리 시스템 등장 배경>

- ❖ 데이터 관리를 파일 시스템이라는 소프트웨어를 이용
- ❖ 파일을 삭제,수정,검색하는 기능이 제공되며 운영체제와 함께 설치
- ❖ 응용 프로그램별로 필요한 데이터를 별도의 파일로 저장
- 예> 고객관리 응용프로그램, 주문관리 응용 프로그램
- 고객데이터 파일/주문데이터파일
- 1> 고객정보 등 같은 내용의 데이터가 여러 파일에 중복저장
- 2> 응용 프로그램이 데이터 파일에 종속적
- 3> 데이터 파일에 대한 동시 공유, 보안, 회복 기능이 부족
- 4> 응용 프로그램을 개발(파일시스템 관리 작업 포함) 이 쉽지 않음

파일시스템 사용 시스템 예제

고객관리 응용 프로그램 - 고객데이터 파일

고객아이디	고객명	연락처	주소	등급	비밀번호

제품관리 응용 프로그램 - 제품마스터 파일

제품번호	제품명	금액

주문관리 응용 프로그램-주문데이터 파일

구군한다 ㅎㅎ 프로그림·구문대이다 파달									
주문번호	고객아이디	고객명	연락처	주소	제품번호	제품명	금액	수량	

● 파일 시스템

- 데이터를 파일 단위로 파일 서버에 저장
- 각 컴퓨터는 LAN(Local Area Network)을 통해 파일 서버에 연결, 파일 서버에 저장된 데이터를 사용하기 위해 각 컴퓨터의 응용 프로그램에서 열기/닫기(open/close)를 요청
- 각 응용 프로그램이 독립적으로 파일을 다루기 때문에 데이터가 중복 저장될 가능성이 있음
- 동시에 파일을 다루기 때문에 데이터의 일관성이 훼손될 수 있음

그림 1-11 **파일 시스템**

② 데이터베이스 시스템

- DBMS를 도입하여 데이터를 통합 관리하는 시스템
- DBMS가 설치되어 데이터를 가진 쪽을 서버(server), 외부에서 데이터 요청하는 쪽을 클라이언 트(client)라고 함
- DBMS 서버가 파일을 다루며 데이터의 일관성 유지, 복구, 동시 접근 제어 등의 기능을 수행
- 데이터의 중복을 줄이고 데이터를 표주하하며 므견서은 오지하

그림 1-12 데이터베이스 시스팅

❸ 웹 데이터베이스 시스템

- 데이터베이스를 웹 브라우저에서 사용할 수 있도록 서비스하는 시스템
- 불특정 다수 고객을 상대로 하는 온라인 상거래나 공공 민원 서비스 등에 사용됨

그림 1-13 웹 데이터베이스 시스템

◑ 분산 데이터베이스 시스템

- 여러 곳에 분산된 DBMS 서버를 연결하여 운영하는 시스템
- 대규모의 응용 시스템에 사용됨

그림 1-14 분산 데이터베이스 시스템

<웹서버와 DB서버 분리>

2. 정보 시스템의 발전

그림 1-15 정보 시스템의 발전과 기업의 업무 환경 변화

Chapter 01 데이터베이스 시스템

03 파일 시스템과 DBMS

- 1. 데이터를 저장하는 방법
- 2. 데이터의 저장 방법 비교
- 3. 파일 시스템과 DBMS의 비교

- 데이터를 프로그램 내부에 저장하는 방법
- ② 파일 시스템을 사용하는 방법
- DBMS를 사용하는 방법

그림 1-16 고객 서비스를 온라인 정보 서비스로 전환

❖ 데이터를 프로그램 내부에 저장하는 방법

[프로그램 1]

- C 언어의 구조체 BOOK을 먼저 선언하고 main() 프로그램에서 구조체 배열 변수 BOOKS[]에 데이터를 저장
- 도서 데이터는 프로그램 내 구조체 변수에 저장됨
- 문제점: 새로운 데이터가 생길 때마다 프로그램을 수정한 후 다시 컴파일해야 함

그림 1-17 도서 검색 프로그램

[프로그램 1] 소스코드

```
/* BOOK 데이터 구조 정의 */
typedef struct
   int bookid[5];
   char bookname[20]:
   char publisher[20];
   int price:
} BOOK:
int main() {
   BOOK BOOKS[10];
/* 구조체 배열 변수에 데이터 저장 */
 /* 첫 번째 도서 저장 */
 BOOKS[1].bookid=1:
 strcpv(BOOKS[1],bookname, "축구의 역사");
 strcpv(BOOKS[1].publisher, "굿스포츠");
 BOOKS[1].price=7000;
 /* 두 번째 도서 저장 */
 BOOKS[2].bookid=2;
 strcpy(BOOKS[2].bookname, "축구 아는 여자");
 strcpv(BOOKS[2].publisher, "나무수");
 BOOKS[2].price=13000;
/* 나머지 다른 도서 저장(생략) */
/* 모든 도서보기 프로그램 호출 */
 search all();
```

❖ 파일 시스템을 사용하는 방법

[프로그램 2]

- BOOK 데이터 구조를 먼저 선언하고 main() 프로그램에서 파일로부터 데이터를 불러와 구조체 배열 변수 BOOKS[]에 저장
- 새로운 데이터가 추가되어도 프로그램을 수정할 필요 없음
- 문제점 : 같은 파일을 두 개의 프로그램이 공유하는 것이 운영체제의 도움 없이 불가능

그림 1-18 도서 검색 프로그램에서 도서를 등록하는 화면

[프로그램 2] 소스코드

```
/* BOOK 데이터 구조 정의 */
typedef struct
      int bookid[5];
      char bookname[20];
      char publisher[20]:
      int price:
} BOOK:
int main()
      BOOK BOOKS[10];
      int i=1:
      /* 도서 입력 함수 */
      insert():
      /* 파일에 저장된 데이터를 배열 BOOKS[1에 저장 */
       fp=fopen("book.dat","rb");
       bp=(BOOK *)calloc(1.sizeof(BOOK));
       /* 파일에서 책을 읽는다 */
       while(fread(bp,sizeof(BOOK),1,fp) != 0)
           BOOKS[i].bookid =bp->bookid;
           strcpv(BOOKS[i],bookname, bp -> bookname);
           strcpv(BOOKS[i].publisher, bp ->publisher);
           BOOKS[i].price =bp ->price:
           j++;
       /* 모든 도서보기 프로그램 호출 */
        search all();
```

❖ DBMS를 사용하는 방법

[프로그램 3]

- 데이터 정의와 데이터 값을 DBMS가 관리
- DBMS는 데이터 정의, 데이터 변경 등의 작업을 할 수 있는 별도의 프로그램을 갖고 있음
- 프로그램에 데이터 정의나 데이터 값을 포함하지 않기 때문에 데이터 구조가 바뀌어도 다시 컴파일함 필요가 없음

그림 1-19 MySQL Workbench의 데이터베이스 관리 화면

[프로그램 3] 소스코드

```
int main()
          /* 반환된 행의 수 */
           int num ret:
           /* DBMS에 접속 */
           EXEC SQL CONNECT :username IDENTIFIED BY :password;
           /* SQL 문 실행 */
           EXEC SQL DECLARE c1 CURSOR FOR
                SELECT bookname, publisher, price FROM BOOK;
           EXEC SOL OPEN c1:
           /* 모든 도서보기 프로그램 호출 */
           search all();
           /* SQL 문 실행 결과 출력 */
           for (;;) {
                EXEC SOL FETCH c1 INTO :BOOK rec:
                print rows(num ret);
           EXEC SOL CLOSE c1:
           /* 접속 해제 */
           EXEC SOL COMMIT WORK RELEASE:
```

2. 데이터의 저장 방법 비교

[프로그램 1] 구조

- 프로그램에 데이터 정의와 데이터 값을 모두 포함 하는 방식
- 프로그램에 BOOK 데이터 구조를 정의하고 데이터 값도 직접 변수에 저장함
- 데이터 구조 혹은 데이터 값이 바뀌면 프로그램을 다시 컴파일해야 함

2. 데이터의 저장 방법 비교

[프로그램 2] 구조

BOOK 데이터 파일

- 파일에 데이터 값, 프로그램에 데이터 정의를 포함 하는 방식
- 프로그램에 BOOK 데이터 구조만 정의하고, 데이터 값은 book.dat라는 파일에 저장됨
- 데이터 값이 바뀌면 프로그램에 변경이 없지만, 데이터 구조가 바뀌면 프로그램을 다시 컴파일해야 함

2. 데이터의 저장 방법 비교

[프로그램 3] 구조

- DBMS가 데이터 정의와 데이터 값을 관리하는 방식
- BOOK 데이터 구조는 DBMS가 된리하고, 데이터 값은 데이터베이스에 저장됨
- 데이터 값이 바뀌거나 데이터 값이 바뀌어도 프로그램을 다시 컴파일할 필요 없음

3. 파일 시스템과 DBMS의 비교

표 1-5 파일 시스템과 DBMS의 비교

구분	파일 시스템	DBMS
데이터 정의 및 저장	데이터 정의 : 응용 프로그램 데이터 저장 : 파일 시스템	데이터 정의 : DBMS 데이터 저장 : 데이터베이스
데이터 접근 방법	응용 프로그램이 파일에 직접 접근	응용 프로그램이 DBMS에 파일 접근을 요청
사용 언어	자바, C++, C 등	자바, C++, C 등과 SQL
CPU/주기억장치 사용	적음	많음

3. 파일 시스템과 DBMS의 비교

그림 1-20 파일 시스템으로 구축된 구매 및 판매 응용 프로그램

그림 1-21 DBMS로 구축된 구매 및 판매 응용 프로그램

3. 파일 시스템과 DBMS의 비교

표 1-6 DBMS의 장점

구분	파일 시스템	DBMS		
데이터 중복	데이터를 파일 단위로 저장하므로 중복 가능	DBMS를 이용하여 데이터를 공유하기 때문에 중복 가능성 낮음		
데이터 일관성	데이터의 중복 저장으로 일관성이 결여됨	중복 제거로 데이터의 일관성이 유지됨		
데이터 독립성	데이터 정의와 프로그램의 독립성	데이터 정의와 프로그램의		
데이더 국립경	유지 불가능	독립성 유지 가능		
관리 기능	보통	데이터 복구, 보안, 동시성 제어, 데이터 관리 기능 등을 수행		
프로그램 개발 생산성	나쁨	짧은 시간에 큰 프로그램을 개발할 수 있음		
기타 장점	별도의 소프트웨어 설치가 필요없음 (운영체제가지원)	데이터 무결성 유지, 데이터 표준 준수 용이		

Chapter 01 데이터베이스 시스템

04. 데이터베이스 시스템의 구성

- 1. 데이터베이스 언어
- 2. 데이터베이스 사용자
- 3. DBMS
- 4. 데이터 모델
- 5. 데이터베이스의 개념적 구조

<데이터베이스 시스템의 구성>

그림 1-22 데이터베이스 시스템의 구성

1. 데이터베이스 언어

- SQL(Structured Query Language)
 - 데이터 정의어(DDL, Data Definition Language)
 - 데이터 조작어(DML, Data Manipulation Language)
 - 데이터 제어어(DCL, Data Control Language)

질의 1-1 Book 테이블에서 모든 도서이름(bookname)과 출판사(publisher)를 검색하시오.

SELECT bookname, publisher FROM Book;

bookid	bookid bookname publisl		price
DOOKIG	DOOKHAIIIE	publisher	price
1	축구의 역사	굿스포츠	7000
2	축구아는 여자	나무수	13000
3	축구의 이해	대한미디어	22000
4	골프 바이블	대한미디어	35000
5	피겨 교본	굿스포츠	8000

bookname	publisher
축구의 역사	굿스포츠
축구아는 여자	나무수
축구의 이해	대한미디어
골프 바이블	대한미디어
피겨 교본	굿스포츠

1. 데이터베이스 언어

질의 1-2 가격(price)이 10,000원 이상인 도서이름(bookname)과 출판사(publisher)를 검색하시오.

SELECT bookname, publisher FROM Book Where price >= 10000;

Book 테이블

bookid	bookname	publisher	price	
1	축구의 역사	굿스포츠	7000	
2	축구아는 여자	나무수	13000	
3	축구의 이해	대한미디어	22000	
4	골프 바이블	대한미디어	35000	
5	피겨 교본	굿스포츠	8000	

2. 데이터베이스 사용자

■ 일반사용자

- 은행의 창구 혹은 관공서의 민원 접수처 등에서 데이터를 다루는 업무를 하는 사람
- 프로그래머가 개발한 프로그램을 이용하여 데이터베이스에 접근 일반인

■ 응용프로그래머

- 일반 사용자가 사용할 수 있도록 프로그램을 만드는 사람
- 자바, C, JSP 등 프로그래밍 언어와 SQL을 사용하여 일반 사용자를 위한 사용자 인터페이스와 데이터를 관리하는 응용 로직을 개발

SOL 사용자

- SQL을 사용하여 업무를 처리하는 IT 부서의 담당자
- 응용 프로그램으로 구현되어 있지 않은 업무를 SOL을 사용하여 처리

■ 데이터베이스 관리자(DBA, Database Administrator)

- 데이터베이스 운영 조직의 데이터베이스 시스템을 총괄하는 사람
- 데이터 설계, 구현, 유지보수의 전 과정을 담당
- 데이터베이스 사용자 통제, 보안, 성능 모니터링, 데이터 전체 파악 및 관리, 데이터 이동 및 복 사 등 제반 업무를 함

2. 데이터베이스 사용자

표 1-7 데이터베이스 사용자 별로 갖추어야 할 지식 수준(x : 없음, ○ : 보통, ◎ : 높음)

	SQL 언어 프로그래밍 능력		DBMS 지식	데이터 구성	
일반 사용자	×	×	×	×	
SQL 사용자	0	×	0	0	
응용 프로그래머	0	0	0	0	
데이터베이스 관리자	0	0	0	0	

3. DBMS

DBMS

- 사용자와 데이터베이스를 연결시켜주는 소프트웨어
- 데이터베이스 사용자가 데이터베이스를 생성,공유,관리할 수 있도록 지원해주는 역할
- SQL을 번역하는 DML/DDL컴파일러와 응용프로그램에 삽입된 embedded DML컴파일러로 구성, 번역된 SQL을 처리하는 알고리즘인 질의처리기가 있음
- 트랜잭션관리자, 파일 관리자, 버퍼 관리자가 있음
- 데이터베이스에는 데이터파일, 인덱스, 데이터 사전 등을 저장하고 있으며 DBMS는 이들 데이터에 저그하여 사용자의 집의를 처리하

다에 다른어서 사용사기 르기를 사다면			
데이터 정의(Definition)	데이터의 구조를 정의하고 데이터 구조에 대한 삭제 및 변경 기능을 수행함		
데이터 조작(manipulation)	데이터를 조작하는 소프트웨어(응용 프로그램)가 요청하는 데이터의 삽입, 수정, 삭제 작업을 지원함		
데이터 추출(Retrieval)	사용자가 조회하는 데이터 혹은 응용 프로그램의 데이터를 추출함		
데이터 제어(Control)	데이터베이스 사용자를 생성하고 모니터링하며 접근을 제어함. 백업과 회복, 동시성 제어 등의 기능을 지원함		

표 1-8 DBMS의 기능

- 계층 데이터 모델(hierarchical data model)
- 네트워크 데이터 모델(network data model)
- 객체 데이터 모델(object data model)
 - 관계 데이터 모델(relational data model) *→ 가장 많이 쓰인다*
- 객체-관계 데이터 모델(object-relational data model) → 관계 데이터 모델과 객체 데이터

모델의 장점을 결합한 모델

● 포인터 사용: 계층 데이터 모델, 네트워크 데이터 모델

그림 1-23 관계 표현을 위한 예시

그림 1-24 포인터를 사용하여 관계 표현

❷ 속성 값 사용 : 관계 데이터 모델

그림 1-23 관계 표현을 위한 예시

그림 1-25 속성 값을 사용하여 관계 표현

액체식별자 사용: 객체 데이터 모델

그림 1-23 관계 표현을 위한 예시

그림 1-26 객체식별자를 사용하여 관계 표현

표 1-9 데이터 모델과 각 모델에서 관계의 표현 방법

데이터 모델	관계의 표현	데이터 구성
계층 데이터 모델 (포인터 사용)	학생 P 강좌	
네트워크 데이터 모델 (포인터 사용)	학생	

표 1-9 데이터 모델과 각 모델에서 관계의 표현 방법

데이터 모델	관계의 표현	데이터 구성
관계 데이터 모델 (속성 값 사용)	학생 강좌	
객체 데이터 모델 (객체식별자 사용)	학생 이id 강좌 객체 번호 oid	

표 1-10 데이터 모델의 역사

데이터 모델	1960	1970	1980	1990	2000	2010
제품 종류	년대	년대	년대	년대	년대	년대
계층 데이터 모델 IMS(IBM)	⇒	⇒	⇒			
네트워크 데이터 모델 IDS(GE)	⇒	⇒	⇒			
관계 데이터 모델 Oracle(Oracle), System R(IBM)			⇒	⇒	⇒	⇒
객체 데이터 모델 GemStone, ObejectStore				⇒	⇒	
객체-관계 데이터 모델 UniSQL					⇒	⇒

- 위 표에는 해당 데이터 모델이 주로 사용되던 시기를 표시한 것이다.
- 계층 데이터 모델과 네트워크 데이터 모델은 1960년대에, 관계 데이터 모델은 1970년대에 처음 사용되기 시작하였다.

❖ 3단계 데이터베이스 구조

그림 1-27 ANSI의 3단계 데이터베이스 구조

❖ 3단계 데이터베이스 구조 (아파트에 비유)

■ 외부 단계

- 일반 사용자나 응용 프로그래머가 접근하는 계층으로 전체 데이터베이스 중에서 하나의 논리 적인 부분을 의미
- 여러 개의 외부 스키마(external schema)가 있을 수 있음
- 서브 스키마(sub schema)라고도 하며, 뷰(view)의 개념임

■ 개념 단계

- 전체 데이터베이스의 정의를 의미
- 통합 조직별로 하나만 존재하며 DBA가 관리함
- 하나의 데이터베이스에는 하나의 개념 스키마(conceptual schema)가 있음

■ 내부 스키마

- 물리적 저장 장치에 데이터베이스가 실제로 저장되는 방법의 표현
- 내부 스키마(intenal schema)는 하나
- 인덱스, 데이터 레코드의 배치 방법, 데이터 압축 등에 관한 사항이 포함됨

■ 외부/개념 매핑

- 사용자의 외부 스키마와 개념 스키마 간의 매핑(사상)
- 외부 스키마의 데이터가 개념 스키마의 어느 부분에 해당되는지 대응시킴

■ 개념/내부 매핑

• 개념 스키마의 데이터가 내부 스키마의 물리적 장치 어디에 어떤 방법으로 저장되는지 대응시킴

❖ 데이터베이스 구조의 예 : 수강신청 데이터베이스 구조

그림 1-28 수강신청 데이터베이스의 **개념 스키마**

학사관리과에서 수강등록 업무를 하는 경우

그림 1-29 수강등록 담당 부서에서 필요한 데이터베이스(외부 스키마1)

시간표 작성을 담당하는 수업관리과에서 시간표 작성을 하는 경우

그림 1-30 시간표 담당 부서에서 필요한 데이터베이스(외부 스키마2)

그림 1-31 수강신청 데이터베이스의 내부 스키마

내보 스키마

그림 1-32 수강신청 데이터베이스의 3단계 구조

데이터베이스의 구조

❖ 데이터 독립성

■ 논리적 데이터 독립성(logical data independence)

- 외부 단계(외부 스키마)와 개념 단계(개념 스키마) 사이의 독립성
- 개념 스키마가 변경되어도 외부 스키마에는 영향을 미치지 않도록 지원
- 논리적 구조가 변경되어도 응용 프로그램에는 영향이 없도록 하는 개념
- 개념 스키마의 테이블을 생성하거나 변경하여도 외부 스키마가 직접 다루는 테이블이 아니면 영향이 없음

■ 물리적 데이터 독립성(physical data independence)

- 개념 단계(개념 스키마)와 내부 단계(내부 스키마) 사이의 독립성
- 저장장치 구조 변경과 같이 내부 스키마가 변경되어도 개념 스키마에 영향을 미치지 않도록 지원
- 성능 개선을 위하여 물리적 저장 장치를 재구성할 경우 개념 스키마나 응용 프로그램 같은 외부 스키마에 영향이 없음
- 물리적 독립성은 논리적 독립성보다 구현하기 쉬움

요약

- 1. 데이터베이스
- 2. 데이터베이스의 개념
- 3. 데이터베이스의 특징
- 4. 데이터베이스 시스템의 구성
- 5. 정보 시스템의 발전
- 6. DBMS의 장점
- 7. SQL
- 8. 데이터베이스 관리자(DBA)
- 9. 데이터 모델
- 10. 3단계 데이터베이스 구조
- 11. 데이터 독립성