

1 of 2:4 Differential Fanout Buffer

Features

- Four ECL/PECL differential outputs
- · Two ECL/PECL and HSTL differential inputs
- · Hot-swappable/-insertable
- 50-ps output-to-output skew (typical)
- 100-ps device-to-device skew (typical)
- · Less than 1-ps RMS typical jitter
- · 500-ps propagation delay (typical)
- Operation from DC to above 1.5 GHz
- PECL and HSTL mode supply range: V_{CC} = 2.375V to 3.465V with V_{EE} = 0V
- ECL mode supply range: V_{EE} = -2.375V to -3.465V with V_{CC} = 0V
- Industrial temperature range: –40°C to 85°C
- 20-pin SSOP package
- Temperature compensation as 100K ECL

Description

The CY2DP314 is a low-skew, low propagation delay 2-to-4 differential fanout buffer targeted to meet the requirements of high-performance clock and data distribution applications. The device is implemented on SiGe technology and has a fully differential internal architecture that is optimized to achieve low signal skews at operating frequencies of up to 1.5 GHz (full swing).

The device features two differential input paths that are multiplexed internally. This mux is controlled by the CLK_SEL pin. The CY2DP314 may function not only as a differential clock buffer but also as a signal level translator and fanout an LVCMOS/LVTTL single-ended signal to four ECL/PECL differential loads. Since the CY2DP314 introduces negligible jitter to the timing budget, it is the ideal choice for distributing high-frequency, high-precision clocks across backplanes and boards in communication systems. Furthermore, advanced circuit design schemes, such as internal temperature compensation, ensure that the CY2DP314 delivers consistent, guaranteed performance over differing platforms.

Pin Description

Pin	Name	I/O	Type	Description
1,10,11,20	VCCO	+PWR	Power	Output power supply
2	NC			No connect
3	VCC	+PWR	Power	Power supply, positive connection
4	CLK_SEL	I,PD	ECL/PECL	pull down, selects between CLKA; pull up for CLKB signals
5,6	CLKA, CLKA#	I,PD ^[1] I,PC	ECL/PECL	Default differential clock input pair
7,8	CLKB, CLKB#	I,PD I,PC	ECL/HSTL	Alternate differential clock input pair
9	VEE ^[2]	–PWR	Power	Power supply, negative connection
18,16,14,12	Q[0:3]#	O,OE	ECL/PECL	Complement output
19,17,15,13	Q[0:3]	O,OE	ECL/PECL	True output

Table 1.

Control	Operation			
CLK_SEL	EL E			
0	Default condition (no connection to the pin)			
0	CLKA, CLKA# input pair is active. CLKA can be driven with ECL or PECL compatible signals with respective power configurations.			
1	CLKB, BLKB# input pair is active. CLKB can be driven by HSTL compatible signals with respective power configurations.			

Governing Agencies

The following agencies provide specifications that apply to the CY2DP314. The agency name and relevant specification is listed below.

Table 2.

Agency Name	Specification
JEDEC	JESD 51 (Theta JA) JESD 8-6 (HSTL) JESD 8-2 (ECL) JESD 65-A (skew,jitter)
IEEE	1596.3 (Jitter specs)
UL	94 (Flammability rating)
Mil-Spec	883E Method 1012.1 (Thermal Theta JC)

Notes:

- 1. In the I/O column, the following notation is used: I = Input, O = Output, PD = Pull-down, PU = Pull-up, PC = Pull-center, O = output, OE = open emitter and PWR = Power.
- In ECL mode (negative power supply mode), V_{EE} is either -3.3V or -2.5V and V_{CC} is connected to GND (0V). In PECL mode (positive power supply mode), V_{EE} is connected to GND (0V) and V_{CC} is either +3.3V or +2.5V. In both modes, the input and output levels are referenced to the most positive supply (V_{CC}) and are between V_{CC} and V_{EE}.

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V _{CC}	Supply Voltage	Non-functional		4.6	VDC
V _{CC}	Operating Voltage	Functional	2.5 – 5%	3.3 + 5%	VDC
I _{BB}	Output Reference Current	Relative to V _{BB}	_	200	uA
VTT	Output Termination Voltage	VTT = 0V for V _{CC} = 2.5V	_	V _{CC} -2	VDC
V _{IN}	Input Voltage	Relative to V _{CC}	-0.3	V _{CC} +0.3	VDC
V _{OUT}	Output Voltage	Relative to V _{CC}	-0.3	V _{CC} +0.3	VDC
LU _I	Latch-up Immunity	Functional	300		mA
T _S	Temperature, Storage	Non-functional	-65	+150	°C
T _A	Temperature, Operating Ambient	Functional	-40	+85	°C
T _J	Temperature, Junction	Non-functional	_	150	°C
Ø _{Jc}	Dissipation, Junction to Case	Functional			°C/W
Ø _{Ja}	Dissipation, Junction to Ambient	Functional	40	60	°C/W
ESD _h	ESD Protection (Human Body Model)		200	0	V
M _{SL}	Moisture Sensitivity Level				N.A.
G _{ATES}	Total Functional Gate Count	Assembled Die	50		Each
FLM	Flammability Rating		V0		N.A.

PECL/HSTL DC Specifications (V_{CC} = 2.5V ± 5% or V_{CC} = 3.3 V ± 5%,VEE = GND, Temp. = Đ40ûC to 85ûC)

Parameter	Description	Condition	Min.	Тур.	Max.	Unit	
V _{IL}	Input Voltage, Low		V _{CC} – 1.945	_	V _{CC} -1.625	V	
V _{IH}	Input Voltage, High		V _{CC} -1.165	-	V _{CC} -0.880	V	
I _{IN}	Input Current ^[3]	$V_{IN} = [V_{ILMIN} = 2.406V \text{ or} V_{IHMAX} = 1.655V] \text{ at } V_{CC} = 3.465V$	-	-	150	uA	
Clock Input	Pair CLKA, CLKA (PECL Differen	tial Signals)					
V _{PP}	Differential input voltage ^[4]	Differential operation	0.1	_	1.3	V	
V _{CMR}	Differential cross point voltage ^[5]	Differential operation	1.2	_	V _{CC}	V	
I _{IN}	Input Current ^[3]	V _{IN} = [V _{ILMIN} = 2.406V or V _{IHMAX} = 1.655V] at V _{CC} = 3.465V	_	-	200	uA	
Clock Input	Pair CLKB, CLKB (HSTL Differen	tial Signals)					
V _{DIF}	Differential input voltage ^[6]		0.4	_	1.9	V	
V _X	Differential crosspoint voltage ^[7]		0.68	_	0.9	V	
I _{IN}	Input Current	$V_{IN} = Vx \pm 0.2V$	_	_	150	uA	
PECL Outpu	PECL Outputs Q0–Q3, Q0–Q3 (PECL Differential Signals)						
V _{OH}	Output High Voltage	IOH = -30 mA ^[8]	V _{CC} -1.2	_	V _{CC} -0.7	V	
V _{OL}	Output Low Voltage V _{CC} = 3.3V ± 5% V _{CC} = 2.5V ± 5%	IOL = -5 ma ^[8]	V _{CC} -1.945 V _{CC} -1.945	-	V _{CC} -1.5 V _{CC} -1.3	V	

- 3. Input have internal pullup/pulldown or biasing resistors which affect the input current.
- 4. VPP (DC) is the minimum differential input voltage swing required to maintain device functionality
- 5. VCMR (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the VCMR (DC) range and the input swing lies within the VPP (DC) specification.
- Swing lies within the VFF (DC) specification.
 VDIF (DC) is the amplitude of the differential HSTL input voltage swing required for device functionality.
 VX (DC) is the crosspoint of the differential HSTL input signal. Functional operations is obtained when the crosspoint is within the VX (DC) range and the input swing lies within the VPP (DC) specification.
 Equivalent to a termination of 50 Ω to VTT.

$\textbf{PECL/HSTL DC Specifications} \ (V_{CC} = 2.5 \text{V} \pm 5\% \ \text{or} \ V_{CC} = 3.3 \ \text{V} \pm 5\%, \text{VEE} = \text{GND}, \text{Temp.} = \text{D40} \text{ûC to } 85 \text{ûC}) (\text{continued})$

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
Supply Current						
I _{EE}	Max. Quiescent Supply Current without output termination current ^[9]	VEE pin	-	_	130	mA

ECL DC Specifications ($V_{EE} = -2.5V \pm 5\%$ or $V_{EE} = -3.3 V \pm 5\%$, $V_{CC} = GND$, $T_A = D40_iC$ to 85_iC)

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
V _{IL}	Input Voltage, Low		-1.945	_	-1.625	V
V _{IH}	Input Voltage, High	Define V _{CC} and load current	-1.165	_	-0.880	V
I _{IN}	Input Current ^[10]	V _{IN} = V _{IL} or V _{IN} = V _{IH} , V _{CC} = 3.465V	_	_	200	uA
Clock Input Pa	air CLKA, CLKA (ECL Differential Sign	nals)				
V_{PP}	Differential input voltage ^[11]	Differential operation	0.1	_	1.3	V
V_{CMR}	Differential cross point voltage ^[12]	Differential operation	V _{EE} +1.2	-	-0.3	V
I _{IN}	Input Current ^[10]	$V_{IN} = V_{IL} \text{ or } V_{IN} = V_{IH}, V_{CC} = 3.465V$	-	-	200	uA
ECL Outputs (Q0–Q3, Q0–Q3 (ECL Differential Signa	•				
V_{OH}	Output High Voltage	$I_{OH} = -30 \text{ mA}^{[13]}$	-1.2	_	-0.7	V
V _{OL}	Output Low Voltage $V_{EE} = -3.3V \pm 5\%$ $V_{EE} = -2.5V \pm 5\%$	I _{OL} = -5 ma ^[13]	-1.945 -1.945	-	-1.5 -1.3	V
Supply Current						
I _{EE}	Maximum Quiescent Supply Current without output termination current ^[9]	V _{EE} pin	_	_	130	mA

$\textbf{AC Specifications} \ ([ECL: V_{EE} = -3.3 \ VDC \pm 5\% \ or \ V_{EE} = -2.5 \ V \pm 5\%, \ V_{CC} = GND] \ or \ [HSTL/PECL: V_{CC} = 3.3 \ V \pm 5\% \ or \ V_{CC} = 2.5 \ V \pm 5\%, \ V_{EE} = GND] \ Temporal \ Tempo$ $= \pm 40$ iC to 85iC) [14]

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
Clock Input	Pair CLKA, CLKA (PECL or ECL Diff	erential Signals)				•
V_{PP}	Differential input voltage [15]	Differential operation	0.1	_	1.3	V
V_{CMR}	Differential cross point voltage [16]	Differential operation	VEE+1.0	-	-0.3	V
F _{CLK}	Input Frequency [17]	50% duty cycle Standard load	_	-	2200	MHz
T _{PD}	Propagation Delay CLKA or CLKB to Q0–Q3 pair	660-MHz 50% duty cycle Standard load Differential Operation	280	400	750	ps
Clock Input	Pair CLKB, CLKB (HSTL Differential	Signals)				•
V_{DIF}	Differential input voltage ^[18]	660-MHz 50% duty cycle Standard load Differential Operation	0.4	_	1.9	V
V _X	Differential cross point voltage ^[19]	660-MHz 50% Standard load Differential Operation	0.68	_	0.9	V

- 9. Power Calculation: $V_{CC} * I_{EE} + 0.5 (I_{OH} + I_{OL})(V_{OH} V_{OL})$ (number of differential outputs used) 10. Input have internal pullup / pulldown or biasing resistors which affect the input current.
- 11. VPP (DC) is the minimum differential input voltage swing required to maintain device functionality.
- 12. VCMR (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the VCMR (DC) range and the input swing lies within the VPP (DC) specification.
- 13. Equivalent to a termination of 50 Ω to VTT.
- 14. AC characteristics apply for parallel output termination of 50 Ω to VTT.
- 15. VPP (AC) is the minimum differential ECL/PECL input swing required to maintain AC characteristics including tpd and device-to-device skew.
- 16. VCMR (AC) is the crosspoint of the differential ECL/PECL input signal. Normal AC operation is obtained when the crosspoint is within the VCMR(AC) range and the input swing lies within the VPP(AC) specification. Violation of VCMR(AC) or VPP(AC) impacts the device propagation delay, device and part-to-part skew.

 17. The CY2DP314 is fully operational up to 1.5 GHz with full PECL swing. Reduced swing up to TBD GHz.
- 18. VDIF (AC) is the minimum differential HSTL input voltage swing required to maintain AC characteristics including tkpd and device-to-device skew
- 19. VX(AC) is the crosspoint of the differential HSTL input signal. Normal AC operation is obtained when the crosspoint is within the VX(AC) range and the input swing lies within the VDIF(AC) specification. Violation of VX(AC) or VDIF(AC) impacts the device propagation delay, device and part-to-part skew.

 $\textbf{AC Specifications} \text{ ([ECL:V}_{EE} = -3.3 \text{ VDC} \pm 5\% \text{ or V}_{EE} = -2.5 \text{V} \pm 5\%, \text{ V}_{CC} = \text{GND] or [HSTL/PECL:V}_{CC} = 3.3 \text{V} \pm 5\% \text{ or V}_{CC} = 2.5 \text{V} \pm 5\%, \text{ V}_{EE} = \text{GND] Temp} = 9.40 \text{ j} \text{C to } 85 \text{ j} \text{C)} \text{ (continued)}^{[14]}$

Parameter	Description	Condition	Min.	Тур.	Max.	Unit
F _{CLK}	Input Frequency	50% duty cycle Standard load Differential Operation	-	_	2200	MHz
T _{PD}	Propagation Delay CLKA or CLKB to Q0–Q3 pair	660-MHz 50% duty cycle Standard load Differential Operation	280	400	750	ps
ECL Clock C	Outputs (Q0-3, Q0-3) (Differential)					
Vo _(P-P)	Differential output voltage (peak-to-peak)	Differential PRBS fo < 50 MHz fo < 0.8 GHz fo < 1.0 GHz	0.45 0.4 0.375	_	_	V
tsk(o)	Output-to-output skew	50% duty cycle Standard load Dif- ferential Operation	_	_	50	ps
tsk(PP)	Output-to-output skew (part-to-part)	50% duty cycle Standard load Dif- ferential Operation	_	_	500	ps
t _{JIT(CC)}	Output cycle-to-cycle jitter (Intrinsic)	50% duty cycle Standard load Dif- ferential Operation	_	_	1	ps rms
tsk(P)	Output pulse skew ^[20]	50% duty cycle Standard load Dif- ferential Operation	_	_	50	ps
tr, tf	Output Rise/Fall time	50% duty cycle Differential 20%–80%	-	_	0.3	ns
TTB	Total Timing Budget	660-MHz 50% duty cycle Standard load	_	_	250	ps
Dj	Deterministic/Intrinsic Jitter	50% duty cycle Standard load	-	_	1	ps rms

Timing Definitions

Figure 1. PECL Waveform Definitions

Note:

20. Output pulse skew is the absolute difference of the propagation delay times: | tPLH – tPHL |.

Figure 2. HSTL Differential Waveform Definitions

Figure 3. ECL Differential Waveform Definitions

Figure 4. ECL/LVPECL Output

PRELIMINARY

Figure 5. TPD Propagation Delay of Both CLKA or CLKB to Q0-Q3 Pair PECL/ECL/HSTL to PECL/ECL

tsk(P) Output pulse skew = | tPLH - tPHL |

Figure 6. Output Pulse Skew

Figure 7. Output-to-Output Skew

Test Configurations

Standard test load using a differential pulse generator and differential measurement instrument.

Figure 8. CY2DP314 AC Test Reference

CY2DP314

Applications Information

Termination Examples

Figure 9. Standard LVPECL - PECL Output Termination

Figure 10. Standard ECL Output Termination

Figure 11. Driving a PECL/ECL Single-Ended Input

Evaluation Material

Figure 12. Demonstration PCB

Part Number	Package Type	Product Flow
CY2DP314OI	20 SSOP	Industrial, –40° to 85°C
CY2DP314OIT	20 SSOP-pin Tape and Reel	Industrial, –40° to 85°C

Package Drawing and Dimensions

20-Lead (5.3 mm) Shrunk Small Outline Package O20

FastEdge is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

	Document Title: CY2DP314 FastEdge TM SERIES 1 of 2:4 Differential Fanout Buffer Document #: 38-07550				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	126779	06/13/03	RGL	New Data Sheet	
*A	128940	08/19/03	RGL	Changed the operation value from 1.5 GHz, reduced swing to 3 GHz to from DC to above 1.5 GHz Changed V _{CC} value in the I _{IN} parameter from 3.6V to 3.645V. Changed the V _{OL} min value from V _{CC} –1.9 to V _{CC} –1.945 Changed the I _{EE} max value from 48 mA to 130 mA Specified the max input frequency (F_{CLK}) to 2200 MHz Specified the TTB max value to 250 ps	
*B	See ECN	207710	RGL	Added Junction Temperature (T_J) parameter in the Absolute Max. Conditions Table Replaced I_{CC} calculation with power calculation in the footnote	