5 三角関数のグラフ

5.1 基本

(1) $y = \sin \theta$

特徴

- 2π ごとに同じ形を繰り返している. (周期が 2π)
- 値域は _____ ≦ y ≦ _____
- _____ に関して対称. (奇関数という)

(2) $y = \cos \theta$

特徴

- 周期が_____
- 値域は _____ ≦ y ≦ _____
- _____ に関して対称. (偶関数という)

(3) $y = \tan \theta$

θ	$-\pi$	0	3π
y			

特徴

- 周期が_____
- 値域は _____
- _____に関して対称.
- $y=\tan\theta$ のグラフは, θ が $\frac{1}{2}\pi$ に近づくと, 直線 $\theta=\frac{1}{2}\pi$ に近づく. (グラフが限りなく近づく直線を<u>漸近線</u>という.)

5.2 拡大・縮小・平行移動

$(1) \ y = 3\sin\theta$

θ	$-\pi$	0	3π
y			

$$(2) \ y = \frac{1}{2}\cos\theta$$

(3) $y = \sin\left(\theta\right)$	$\theta - \frac{1}{4}\pi$
-----------------------------------	---------------------------

θ	$-\pi$	0	3π
\overline{u}			

 $y = \sin\left(\theta - \frac{1}{4}\pi\right)$ のグラフは, $y = \sin\theta$ のグラフを θ 軸方向に______だけ平行移動したグラフ.

$$(4) \ y = \cos\left(\theta + \frac{1}{3}\pi\right)$$

 $y=\cos\left(heta+rac{1}{3}\pi
ight)$ のグラフは, $y=\cos heta$ のグラフを heta 軸方向に_____だけ平行移動したグラフ.

 $(5) \ y = \sin 2\theta$

θ	$-\pi$	0	3π
y			

 $(6) \ y = \cos\frac{1}{2}\theta$

(7)
$$y = \sin\left(2\theta + \frac{\pi}{3}\right) = \sin 2\left(\theta + ---\right)$$

θ	$-\pi$	0	3π
$y \mid$			

 $y=\sin\left(2\theta+\frac{\pi}{3}\right)$ のグラフは, y= ______ のグラフを θ 軸方向に _____ だけ平行移動したグラフ.

周期は_____

(8)
$$y = \cos\left(\frac{\theta}{2} - \frac{\pi}{3}\right)$$

周期は_____

6 三角関数と二次関数

例題

 $y=\sin^2 x-2\sin x+3$ $(0 \le x < 2\pi)$ について、以下の問いに答えよ.

- (1) $t = \sin x$ とおいたとき, t の値の範囲を求めよ.
- (2) yをtの式で表せ.
- (3) y の最大値, 最小値と, そのときの x の値を求めよ.

練習 1

 $y=2\cos^2 x-4\cos x$ $(0 \le x < 2\pi)$ について、以下の問いに答 えょ

- (1) $t = \cos x$ とおいたとき, t の値の範囲を求めよ.
- (2) yをtの式で表せ.
- (3) y の最大値、最小値と、そのときの x の値を求めよ.

練習 2

 $y = \cos 2x + 4\cos x - 2$ $(0 \le x < 2\pi)$ について、以下の問いに答えよ.

- (1) $t = \cos x$ とおいたとき, t の値の範囲を求めよ.
- (2) yをtの式で表せ.
- (3) y の最大値, 最小値と, そのときの x の値を求めよ.

練習3

 $y = \cos 2x + 2\sin x - 2$ $(0 \le x < 2\pi)$ について、以下の問いに答えよ、

- (1) $t = \sin x$ とおいたとき, t の値の範囲を求めよ.
- (2) yをtの式で表せ.
- (3) y の最大値、最小値と、そのときの x の値を求めよ.

6.1 実数解の個数

確認

 $(1) \ y = \sin x \ \texttt{と} \ y = \frac{1}{2} \ \mathcal{O} \ (0 \leqq x < 2\pi) \ \texttt{における共有点の個数を求めよ}.$

(2) $y = \tan x$ と y = 1 の $(0 \le x < 2\pi)$ における共有点の個数を求めよ.

例題

方程式 $\sin^2 x + 2 \sin x + 1 = k \quad \left(0 \le x < 2\pi\right)$ の実数解の個数を求めよ

練習問題 1

方程式 $\cos^2 x - 2\cos x + 3 = k \quad (0 \le x < 2\pi)$ の実数解の個数を求めよ

練習問題 2

方程式 $\cos 2x + 4 \sin x + k = 0$ $\left(0 \le x < 2\pi\right)$ の実数解の個数を求めよ