Семинар 18 (31.01.2023)

Краткое содержание

Обсудили, как задавать линейное отображение:

- 1) Зафиксировать базис в исходном пространстве V: $e = (e_1, \ldots, e_n)$. Выбрать произвольно п векторов из результирующего пространства W: w_1, \ldots, w_n . Положить, что $\varphi(e_1) = w_1, \ldots, \varphi(e_n) = w_n$. Получили валидное линейное отображение
- 2) Зафиксировать базисы в обоих пространствах $e = (e_1, \dots, e_n)$ в V, $f = (f_1, \dots, f_m)$ в W. Выбрать произвольную матрицу A размера $m \times n$. Получили валидное линейное отображение, где A матрица л.о.

Упомянули основные теоремы про ядро и образ линейного отображения $\varphi \colon V \to W$:

- 1) $\dim V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$;
- 2) если A матрица линейного отображения φ в некоторой паре базисов, то $\operatorname{rk} A = \dim \operatorname{Im} \varphi$ (это число называется рангом линейного отображения, обозначается как $\operatorname{rk} \varphi$).

Затем обратились к свойству, что если базис ядра дополнить до базиса всего пространства, то образы дополняющих векторов будут образовывать базис в образе. Используя это свойство, показали, как выбрать базисы в пространствах V и W таким образом, чтобы матрица отображения φ в этих базисах имела диагональный вид с единицами и нулями на диагонали. А именно:

- 1. Найти базис ядра (e_1,\ldots,e_k) и дополнить его до базиса всего V векторами (e_{k+1},\ldots,e_n)
- 2. Положить $f_1 = \varphi(e_{k+1}), \dots, f_{n-k} = \varphi(e_n)$ и дополнить систему f_1, \dots, f_{n-k} до базиса (f_1, \dots, f_m) всего W
- 3. Формируя базис V, уложим базисные векторы ядра в конец. Тогда искомые базисы это $\mathfrak{e} = (e_{k+1}, \dots, e_n, e_1 \dots e_k)$ и $\mathfrak{f} = (f_1, \dots, f_m)$.

Матрица линейного отображения φ в таких базисах будет иметь блочный вид $\begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$, где E — единичная матрица порядка n-k.

Применили данный алгоритм в примере с прошлого семинара, где линейное отображение в некоторой паре базисов имеет матрицу $\begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & -1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$.

Новая тема — линейные функции. Линейная функция на векторном пространстве V над полем F— это просто линейное отображение $V \to F$, где F рассматривается как одномерное векторное пространство над F. Множество всех линейных функций на векторном пространстве V обозначается через V^* и называется двойственным (или сопряжённым) к V векторным пространством. Затем обсудили, что образом линейной функции $V \to F$ может быть либо $\{0\}$ (размерности 0, так получается в случае нулевой функции), либо всё F (размерности 1). Отсюда ядро линейной функции может либо совпасть с V (в случае нулевой функции), либо является подпространством размерности $\dim V - 1$. Объяснили, почему всякое подпространство $U \subseteq V$ размерности $\dim V - 1$ является ядром некоторой линейной функции на V: если e_1, \ldots, e_{n-1} — базис в U и вектор e_n дополняет его до базиса всего V, то, задавая линейную функцию $\alpha \in V^*$ на базисных векторах по формулам $\alpha(e_1) = \cdots = \alpha(e_{n-1}) = 0$ и $\alpha(e_n) = 1$, получаем $\ker \alpha = U$.

Дальше ввели понятие двойственного базиса. Для каждого базиса (e_1, \ldots, e_n) пространства V определён двойственный к нему базис $(\varepsilon_1, \ldots, \varepsilon_n)$ пространства V^* , задаваемый формулами $\varepsilon_i(e_j) = \delta_{ij}$, где δ_{ij} — символ Кро́некера, то есть $\delta_{ij} = 1$ при i = j и $\delta_{ij} = 0$ при $i \neq j$. Это можно представлять

себе как соотношение
$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} (e_1 \dots e_n) = E.$$

Также выяснили, что если два базиса пространства V связаны матрицей перехода C как $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)$ C, то их двойственные базисы тоже связаны той же самой матрицей C

через соотношение
$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} = C \begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix}$$
.

С помощью этих знаний решили следующую задачу (успели только пункт (а)):

Пусть (e_1,e_2,e_3) — базис трёхмерного векторного пространства $V, (\varepsilon_1,\varepsilon_2,\varepsilon_3)$ — двойственный ему базис пространства V^* .

- (a) Линейные функции $\varepsilon_1', \varepsilon_2', \varepsilon_3' \in V^*$ таковы, что $\varepsilon_1' = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$, $\varepsilon_2' = \varepsilon_2 + \varepsilon_3$, $\varepsilon_3' = \varepsilon_3$. Найти базис пространства V, для которого $(\varepsilon_1', \varepsilon_2', \varepsilon_3')$ является двойственным.
- (б) Найти базис пространства V^* , двойственный к базису $(e_1 + e_2 + e_3, e_2 + e_3, e_3)$ пространства V.

 \bigcirc

Домашнее задание к семинару 19. Дедлайн 7.02.2023

Номера с пометкой П даны по задачнику Проскурякова, с пометкой К – Кострикина.

- 1. Докажите, что всякое подпространство конечномерного векторного пространства является ядром некоторого линейного отображения и образом некоторого (возможно, другого) линейного отображения.
- 2. Может ли одно и то же подпространство n-мерного векторного пространства V ($n \ge 0$) быть одновременно и ядром, и образом одного и того же линейного отображения V в себя? Если да, приведите пример.
- 3. Линейное отображение $\varphi \colon \mathbb{R}^4 \to \mathbb{R}^3$ в паре стандартных базисов имеет матрицу $\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 3 & 3 & 6 & 6 \end{pmatrix}$. Найдите пару базисов, в которых отображение φ имеет диагональную матрицу с единицами

и нулями на диагонали (как на семинаре), и выпишите эту матрицу.

и нулями на диагонали (как на семинаре), и выпишите эту матрицу.

- 4. Линейное отображение $\varphi\colon \mathbb{R}^4 \to \mathbb{R}^3$ в паре стандартных базисов имеет матрицу $\begin{pmatrix} 1 & 1 & 0 & 2 \\ 3 & -3 & 2 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix}$. Найдите пару базисов, в которых отображение φ имеет диагональную матрицу с единицами
- 5. Пусть ненулевые линейные функции $\alpha, \beta \in V^*$ таковы, что $\ker \alpha = \ker \beta$. Докажите, что тогда α и β пропорциональны, то есть $\beta = \lambda \alpha$ для некоторого ненулевого скаляра $\lambda \in F$.
- 6. K36.11
- 7. Пусть (e_1,e_2,e_3) некоторый базис трёхмерного векторного пространства V, а $(\varepsilon_1,\varepsilon_2,\varepsilon_3)$ двойственный ему базис пространства V^* .
 - (а) Найдите базис пространства V^* (то есть выразите через $\varepsilon_1, \varepsilon_2, \varepsilon_3$), двойственный к базису $(3e_1 + e_2 2e_3, 2e_1 + e_3, e_1)$ пространства V.
 - (б) Найдите базис пространства V (то есть выразите через e_1, e_2, e_3), для которого двойственным является базис ($\varepsilon_3, 2\varepsilon_1 + \varepsilon_3, 3\varepsilon_1 + \varepsilon_2 2\varepsilon_3$) пространства V^* .
- 8. Пусть $V = \mathbb{R}[x]_{\leq n}$, рассмотрим линейные функции $\varepsilon_0, \varepsilon_1, \dots, \varepsilon_n \in V^*$, где $\varepsilon_i(f) = f^{(i)}(0)$ (верхний индекс (i) обозначает i-ю производную). Докажите, что эти функции образуют базис в V^* , и найдите базис в V, для которого данный базис является двойственным.
- 9. K36.9(a)
- 10. К36.10(б)