Underactuated Robotics

First, some definitions

Actuators

- A single component of a machine that takes a control signal and provides movement.
- Pneumatics
- Motors
- Hydraulics

Degrees of Freedom (DOF)

- Number of parameters that determine the state of a system
- If an object or machine can only move linearly on 1 axis (cannot rotate), then it's position only needs 1 variable to be described. Hence it has 1 DOF.

Fully Actuated VS. Underactuated Machines

- Fully Actuated
 - An actuator for every joint in the machine
 - At Least as many actuators as DOF
- Underactuated
 - Number of Actuators < Number of DOF

Pros VS. Cons

Fully Actuated	Under Actuated
 Simpler physical dynamics Direct control over every joint and axis Often results in rigid constrained movement 	 More power efficient as it utilizes less actuators More natural and fluid motion Requires understanding and research of the natural dynamics of the system More computationally intensive

Fully Actuated Machine Example (Train)

- Single actuator (engine car)
- Single DOF
- Fully actuated
- Completely rigid motion

Underactuated Machine Example (Car)

- 2 actuators (car engine + steering)
- 3 DOF
- Underactuated
- Longitudinal
- Lateral
- Yaw

Source: http://www.speedhunters.com

Underactuated Robots

- Current robots move too conservatively and only achieve a fraction of their mechanically capable potential
- Limited by control technology
- Focus on building control systems that utilize the natural dynamics of the machine to achieve speed, efficiency, and robustness
- Often requires utilizing feedback in control techniques

Underactuated Robot Example 1

- Control of double pendulum with single actuator
- Use natural dynamics to balance the system with only a single actuator
- Analogy -

Underactuated Robot Example 2

- Single actuator drone (1 propeller)
- Utilize a single rotor, natural dynamics, and feedback to create flight capable drone

Optimal Control via Dynamic Programming

- Define a goal of control as the long-term optimization of a scalar cost function.
- In pendulum case, the goal is to balance the position or reduce its velocity at the maximum height.
- Model the states of the machine as a graph and use dynamic programming to find the best next action.
- [EXPLAIN dynamic programming and in this case how using solutions to different states to solve other states]

Solving the dynamic problem

- Model the robot as a state machine, where each state has an associative cost and actions to move from state to state also incur cost.
- Use value iteration to find the optimal 'cost-to-go' to find the minimum cost from all states to the goal state.

Value Iteration

- Let g(s,a) denote the cost of being in state s and taking action a
- Let f(s,a) denote the state transition function so if in state s1, and taking action a1 leads to state a2, then f(s1,a1) = s2
- Then find the optimal cost-to-goal from every node via value iteration DP:

$$\hat{J}^*(s_i) \Leftarrow \min_{a \in A} \left[g(s_i, a) + \hat{J}^*\left(f(s_i, a)\right) \right]$$

• Once we have J^* , we can calculate the optimal policy, or the best action to take given a state(s). $a = \pi_*(s)$

$$\pi^*(s_i) = \operatorname{argmin}_a \left[g(s_i, a) + J^* \left(f(s_i, a) \right) \right]$$

Value Iteration Example

Mod

Hamilton-Jacobi-Bellman Equation

• Given J* and π^* , we can use the HJB to verify our solution is optimal if it satisfies the HJB equation

$$0 = \min_{\mathbf{u}} \left[g(\mathbf{x}, \mathbf{u}) + \frac{\partial J^*}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{u}) \right]$$

Linear Quadratic Regulator (LQR)

LQR

- Dynamic Programming solution without value iteration
- Achieves a closed form solution using quadratic costs

System

- Linear Time Invariant (LTI) system
- state x (n by 1)
- input u (m by 1)
- state matrix A (n by n)
- Input matrix B (n by m)

$$\dot{x} = Ax(t) + Bu(t)$$

Stabilization Assumptions

system is controllable

$$[B AB A^{2}B ... A^{n-1}B]$$

- infinite time
- has an equilibrium state x = 0
- Our goal is to drive the system to x = 0

Derivation - cost

- away from equilibrium
- large inputs to the system

Derivation - cost

- stage cost $g(x, u, t) = x^TQx + u^TRu$
- Q, R are positive definite. In practice non-zero on diagonals

$$\mathbf{Q} = \begin{pmatrix} q_1 & 0 & 0 & \dots & 0 \\ 0 & q_2 & 0 & \dots & 0 \\ 0 & 0 & q_3 & \dots & 0 \\ & \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & q_n \end{pmatrix}$$

$$R = \begin{pmatrix} r_1 & 0 & 0 & \dots & 0 \\ 0 & r_2 & 0 & \dots & 0 \\ 0 & 0 & r_3 & \dots & 0 \\ & \dots & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & r_m \end{pmatrix}$$

Derivation - from Hamilton Jacobi Bellman

$$0 = \min_{\mathbf{u}} \left[\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u} + \frac{\partial J^*}{\partial \mathbf{x}} \left(\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}
ight)
ight]$$

$$J^*(\mathbf{x}) = \mathbf{x}^T \mathbf{S} \mathbf{x} \qquad \qquad rac{\partial}{\partial \mathbf{u}} = 2 \mathbf{u}^T \mathbf{R} + 2 \mathbf{x}^T \mathbf{S} \mathbf{B} = 0$$

$$\mathbf{u}^* = -\mathbf{R}^{-1}\mathbf{B}^T\mathbf{S}\mathbf{x} = -\mathbf{K}\mathbf{x}$$

Derivation - Algebraic Ricatti Equation (ARE)

$$0 = \min_{\mathbf{u}} \left[\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u} + \frac{\partial J^*}{\partial \mathbf{x}} \left(\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}
ight)
ight]$$

$$0 = \mathbf{S}\mathbf{A} + \mathbf{A}^T\mathbf{S} - \mathbf{S}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{S} + \mathbf{Q}$$

feedback stabilization

LQR insights

- For a quadratic cost the optimal solution is closed form
- Optimal controller has constant gain
- LQR picks poles for your system

LQR - Stability and Robustness

- stable performance when linearity holds and system is controllable
- Robust in the face of model error
- Not Robust in the face of state error
 - Other methods such as H-infinity control exist

Example: The Cart-Pole System

Cart-pole system

• Position of cart:

$$\mathbf{x}_1 = \begin{bmatrix} x \\ 0 \end{bmatrix}$$

• Position of mass on pole:

$$\mathbf{x}_2 = \begin{bmatrix} x + l\sin\theta \\ -l\cos\theta \end{bmatrix}$$

$$T=rac{1}{2}\left(m_c+m_p
ight)\dot{x}^2+m_p\dot{x}\dot{ heta}l\cos heta+rac{1}{2}\,m_pl^2\dot{ heta}^2 \ U=-m_pgl\cos heta.$$

Lagrangian

$$L = T - U$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i$$

$$(m_c + m_p)\ddot{x} + m_p l\ddot{\theta} \cos \theta - m_p l\dot{\theta}^2 \sin \theta = f$$

$$m_p l\ddot{x} \cos \theta + m_p l^2 \ddot{\theta} + m_p g l \sin \theta = 0$$

Manipulator Equations

$$\mathbf{H}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) = \mathbf{B}(\mathbf{q})\mathbf{u},$$

$$\mathbf{H}(\mathbf{q}) = egin{bmatrix} m_c + m_p & m_p l \cos heta \ m_p l \cos heta & m_p l^2 \end{bmatrix}, \quad \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = egin{bmatrix} 0 & -m_p l \dot{ heta} \sin heta \ 0 & 0 \end{bmatrix}, \ \mathbf{G}(\mathbf{q}) = egin{bmatrix} 0 \ m_p g l \sin heta \end{bmatrix}, \quad \mathbf{B} = egin{bmatrix} 1 \ 0 \end{bmatrix}$$

Linearizing

$$x^* = [0, \pi, 0, 0]^T$$

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \approx \mathbf{f}(\mathbf{x}^*, \mathbf{u}^*) + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right]_{\mathbf{x} = \mathbf{x}^*, \mathbf{u} = \mathbf{u}^*} (\mathbf{x} - \mathbf{x}^*) + \left[\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right]_{\mathbf{x} = \mathbf{x}^*, \mathbf{u} = \mathbf{u}^*} (\mathbf{u} - \mathbf{u}^*)$$

$$\dot{\bar{\mathbf{x}}} = \mathbf{A}_{lin}\bar{\mathbf{x}} + \mathbf{B}_{lin}\bar{\mathbf{u}}.$$

Linearizing continued

$$\begin{split} \dot{\bar{\mathbf{x}}} &= \mathbf{A}_{lin}\bar{\mathbf{x}} + \mathbf{B}_{lin}\bar{\mathbf{u}}. \\ \mathbf{A}_{lin} &= \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{H}^{-1}\frac{\partial\mathbf{G}}{\partial\mathbf{q}} + \sum_{j}\mathbf{H}^{-1}\frac{\partial\mathbf{B}_{j}}{\partial\mathbf{q}} u_{j} & -\mathbf{H}^{-1}\mathbf{C} \end{bmatrix}_{\mathbf{x}=\mathbf{x}^{*},\mathbf{u}=\mathbf{u}^{*}} \\ \mathbf{B}_{lin} &= \begin{bmatrix} \mathbf{0} \\ \mathbf{H}^{-1}\mathbf{B} \end{bmatrix}_{\mathbf{x}=\mathbf{x}^{*},\mathbf{u}=\mathbf{u}^{*}} \\ \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})_{\mathbf{x}=\mathbf{x}^{*}} &= \mathbf{0}, \quad \begin{bmatrix} \frac{\partial\mathbf{G}}{\partial\mathbf{q}} \end{bmatrix}_{\mathbf{x}=\mathbf{x}^{*}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -m_{p}gl \end{bmatrix} \end{split}$$

Related Topics and Applications

Policy Search

- Parametrize the system and search the parameter space for the best solution.
- All of the parameters go into a single vector α , and the controller is written as $\pi_{\alpha}(x, t)$
 - Open loop controller: $u = \alpha_n$, where n = floor(t/dt)
 - \circ Feedback controller: $u = -K_a \times (\text{matrix } K \text{ is written in terms of } a1, a2, a3, ... etc)$
- Want to minimize the cost function $J^{\alpha}(x, t)$ for some initial condition
- There are two ways to optimize an open-loop trajectory (a trajectory that depends on time, not state): Shooting Methods and Direct Collocation.

Shooting Methods

- Keep shooting (simulating) values of α until goal is reached
- Define α as decision variables and evaluate J $\alpha(x0)$ through forward simulation
- Compute policy gradient $\partial J\alpha(x0) / \partial \alpha$ by
 - Backward Propagation Through Time (BPTT)
 - Real Time Recurrent Learning (RTRL)
- Locally optimal
- Cost function

$$J(\mathbf{x}_0) = \int_0^T g(\mathbf{x}(t), \mathbf{u}(t)) dt, \quad \mathbf{x}(0) = \mathbf{x}_0.$$

Shooting Methods (continued)

BPTT:

0

0

0

```
O Integrate xdot = f(x, \pi\alpha(x, t)) forward in time from 0 to T, starting from initial x(0)
```

 \circ backward in time until t = 0, where

$$\mathbf{F}_{\mathbf{x}}(t) = \frac{\partial f}{\partial \mathbf{x}(t)} + \frac{\partial f}{\partial \mathbf{u}(t)} \frac{\partial \pi_{\alpha}}{\partial \mathbf{x}(t)}, \quad \mathbf{G}_{\mathbf{x}}(t) = \frac{\partial g}{\partial \mathbf{x}(t)} + \frac{\partial g}{\partial \mathbf{u}(t)} \frac{\partial \pi_{\alpha}}{\partial \mathbf{x}(t)},$$

 $^{\circ}$ evaluated at $\mathbf{x}(t), \mathbf{u}(t)$.

 \circ -ydot = F^T_x y - G^T_x backward in time from T to 0

• Y represents the sensitivity of J to change in x.

$$\stackrel{\circ}{=} \frac{\partial J(\mathbf{x}_0)}{\partial \alpha} = \int_0^T dt \left[\mathbf{G}_{\alpha}^T - \mathbf{F}_{\alpha}^T \mathbf{y} \right] \, .$$

RTRL

$$J(\mathbf{x}_0) = \int_0^T g(\mathbf{x}, \mathbf{u}, t) dt.$$

$$P_{ij} = \frac{\partial x_i}{\partial \alpha_j}.$$

$$\frac{d}{dt}\frac{\partial \mathbf{x}}{\partial \alpha} = \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}} + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}\frac{\partial \pi_{\alpha}}{\partial \mathbf{x}}\right]\frac{\partial \mathbf{x}}{\partial \alpha} + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}\frac{\partial \pi_{\alpha}}{\partial \alpha}$$
$$\dot{\mathbf{P}} = \mathbf{F}_{\mathbf{x}}\mathbf{P} + \mathbf{F}_{\alpha} \quad \mathbf{P}(0) = \mathbf{0}$$

By chain rule

$$\frac{\partial J}{\partial \alpha} = \int_0^T dt \left[\frac{\partial g}{\partial \mathbf{x}(t)} \frac{\partial \mathbf{x}(t)}{\partial \alpha} + \frac{\partial g}{\partial \mathbf{u}(t)} \frac{\partial \pi_{\alpha}}{\partial \alpha} + \frac{\partial g}{\partial \mathbf{u}(t)} \frac{\partial \pi}{\partial \mathbf{x}(t)} \frac{\partial \mathbf{x}(t)}{\partial \alpha} \right]$$
$$= \int_0^T dt \left[\mathbf{G_x} \mathbf{P} + \mathbf{G_\alpha} \right]$$

LQR Trajectory Stabilization (1 of 4)

- Problem: There isn't a guarantee that simulations of the optimized trajectories won't diverge from the planned trajectories (e.g. different time step size, modeling errors... etc)
- ullet Given a system, $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$, we want to express as $\dot{x}(t) = A\,x(t) + B\,u(t)$
- Linearize around a random point (x_0, u_0) and Taylor expand

$$\dot{\mathbf{x}} pprox \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) + rac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x} - \mathbf{x}_0) + rac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u} - \mathbf{u}_0) = \mathbf{c} + \mathbf{A}(\mathbf{x} - \mathbf{x}_0) + \mathbf{B}(\mathbf{u} - \mathbf{u}_0)$$

Change coordinate system

$$\bar{\mathbf{x}}(t) = \mathbf{x}(t) - \mathbf{x}_0(t), \quad \bar{\mathbf{u}}(t) = \mathbf{u}(t) - \mathbf{u}_0(t),$$

LQR Trajectory Stabilization (2 of 4)

We use x_0(t) and u_0(t) because they are a solution to the dynamics.

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}(t) - \dot{\mathbf{x}}_0(t) = \dot{\mathbf{x}}(t) - \mathbf{f}(\mathbf{x}_0(t), \mathbf{u}_0(t)),$$

- Remember our system is $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}),$
- And our Taylor expansion is
- $\bullet \qquad \dot{\mathbf{x}} \approx \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x} \mathbf{x}_0) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u} \mathbf{u}_0) = \mathbf{c} + \mathbf{A}(\mathbf{x} \mathbf{x}_0) + \mathbf{B}(\mathbf{u} \mathbf{u}_0)$
- Now we have

$$\dot{\bar{\mathbf{x}}}(t) = \frac{\partial \mathbf{f}(\mathbf{x}_0(t), \mathbf{u}_0(t))}{\partial \mathbf{x}} (\mathbf{x}(t) - \mathbf{x}_0(t)) + \frac{\partial \mathbf{f}(\mathbf{x}_0(t), \mathbf{u}_0(t))}{\partial \mathbf{u}} (\mathbf{u} - \mathbf{u}_0(t))$$

$$= \mathbf{A}(t)\bar{\mathbf{x}}(t) + \mathbf{B}(t)\bar{\mathbf{u}}(t).$$

LQR Trajectory Stabilization (3 of 4)

- This means our system depends linearly on time
- Linear Time Varying system LTV
- Principles on linear systems still apply like superposition
- And we can do LQR

LQR Trajectory Stabilization: (4 of 4)

Minimize the cost function

$$J(\mathbf{x}_0, 0) = \bar{\mathbf{x}}(t_f)^T \mathbf{Q}_f \bar{\mathbf{x}}(t_f) + \int_0^T dt \left[\bar{\mathbf{x}}(t)^T \mathbf{Q} \bar{\mathbf{x}}(t) + \bar{\mathbf{u}}(t)^T \mathbf{R} \bar{\mathbf{u}}(t) \right].$$

- Penalizes the system at t for being away from x_0(t).
- Solve the Hamilton-Jacobi-Bellman equation and the boundary conditions to get LTV LQR

Iterative LQR

- Can replace shooting method
- Given the cost function used in the shooting method RTRL, we can Taylor expand

$$g(\mathbf{x}, \mathbf{u}) \approx g(\mathbf{x}_0, \mathbf{u}_0) + \frac{\partial g}{\partial \mathbf{x}} \bar{\mathbf{x}} + \frac{\partial g}{\partial \mathbf{u}} \bar{\mathbf{u}} + \frac{1}{2} \bar{\mathbf{x}}^T \frac{\partial^2 g}{\partial \mathbf{x}^2} \bar{\mathbf{x}} + \bar{\mathbf{x}} \frac{\partial^2 g}{\partial \mathbf{x} \partial \mathbf{u}} \bar{\mathbf{u}} + \frac{1}{2} \bar{\mathbf{u}}^T \frac{\partial^2 g}{\partial \mathbf{u}^2} \bar{\mathbf{u}}.$$

- Do the time-varying linearization around the normal trajectory x_0(t) and u_0(t)
- Rewards the system for going to minimum cost function, not stabilizing around x_0(t) and u_0(t). Stabilize around x_d(t) that minimizes cost.
- Each iteration, compute a new u_0(t) from initial conditions

