ST205A - Homework 7

Hoang Duong

October 20, 2014

Problem 1. Basic Stopping Time

Proof. (a) $\{\min(S,T) = n\} = A_1 \cup A_2 \cup A_3$, for:

$$A_{1} = \{S = n\} \cap \{T = n\} \in \mathcal{F}_{n}$$

$$A_{2} = \{S = n\} \cap \{T > n\} = \{S = n\} \cap \{T \le n\}^{C} \in \mathcal{F}_{n}$$

$$A_{3} = \{T = n\} \cap \{S > n\} = \{T = n\} \cap \{S < n\}^{C} \in \mathcal{F}_{n}$$

Thus $\{\min(S,T) = n\} \in \mathcal{F}_n$, so it is a stopping time. (b) $\{\max(S,T) = n\} = B_1 \cup B_2 \cup B_3$, for:

$$B_1 = A_1 \in \mathcal{F}_n$$

$$B_2 = \{S = n\} \cap \{T < n\} \in \mathcal{F}_n$$

$$B_3 = \{T = n\} \cap \{S < n\} \in \mathcal{F}_n$$

Thus $\{\max(S,T)=n\}\in\mathcal{F}_n$, so it is a stopping time. (c) $\{S+T=n\}=\bigcup_{i=1}^{n-1}A_i$, for:

$$A_i = \{S_i = i\} \cap \{T_i = n - i\} \in \mathcal{F}_n$$

since i, n - i < n.

Thus $\{S+T=n\}\in\mathcal{F}_n$, so it is a stopping time.

Problem 2. Wald's Second Equation

Proof. (a) Counter example. Let $X_i = Bernoulli(0.5)$. T = 1 if $X_1 = 0$, T = 2 if $X_1 = 1$. Then:

$$\mathbb{E}S_{T} = \mathbb{E}X_{1}\mathbb{E}T = \frac{1}{2} \times \frac{3}{2} = \frac{3}{4}$$

$$\mathbb{E}S_{T}^{2} = \mathbb{E}\left[S_{T}^{2} \mid X_{1} = 0, T = 1\right] \mathbb{P}\left[X_{1} = 0, T = 1\right] + \mathbb{E}\left[S_{T}^{2} \mid X_{1} = 1, T = 2\right] \mathbb{P}\left[X_{1} = 1, T = 2\right]$$

$$= 0 + \frac{1}{2}\mathbb{E}\left[\left(X_{1} + X_{2}\right)^{2} \middle| X_{1} = 1\right] = \frac{5}{4}$$

$$\Rightarrow \operatorname{Var}S_{T} = \frac{5}{4} - \frac{9}{16} = \frac{11}{16}$$

$$\operatorname{Var}X_{1} = \mathbb{E}X_{1}^{2} - (\mathbb{E}X_{1})^{2} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

$$\mathbb{E}T = \frac{3}{2}$$

So $Var S_T = \frac{11}{16}$, and $Var X_1 \mathbb{E} T = \frac{3}{8}$, and they are not equal.

(b) From Durrett's book

Let $\sigma^2 = \mathbb{E}X_i^2$. Denote $T \wedge n = \min\{T, n\}$. We have:

$$S_{T \wedge n}^2 = S_{T \wedge (n-1)}^2 + \left(2X_n S_{n-1} + X_n^2\right) \mathbb{I}_{\{T \geq n\}}$$

$$\Rightarrow \mathbb{E}S_{T \wedge n}^2 = \mathbb{E}S_{T \wedge (n-1)}^2 + \sigma^2 \mathbb{P}\left[T \geq n\right]$$

Since X_n and S_{n-1} are independent, $\mathbb{E}X_n = 0$, and the expectation of $S_{n-1}X_n$ exists because both of them have finite second moment (so one can use Cauchy-Schwartz to bound the product). Using an induction argument we have:

$$\mathbb{E}S_{T\wedge n}^{2} = \sigma^{2} \sum_{m=1}^{n} \mathbb{P}\left[T \geq m\right] \tag{1}$$

$$\Rightarrow \mathbb{E}\left[S_{T\wedge n}^{2} - S_{T\wedge m}^{2}\right] = \sigma^{2} \sum_{k=m+1}^{n} \mathbb{P}\left[T \geq k\right], \forall n > m$$

This equality implies that $S_{T\wedge n}^2$ is a Cauchy sequence in L1. Thus the limit of $S_{T\wedge n}^2$ exists. If we let $n \to \infty$ in (1), we have $\mathbb{E}S_T^2 = \sigma^2 \mathbb{E}T$

Problem 3. Let $\mathcal{F}'_n = \sigma(X_n, X_{n+1}, ...)$. Tail $\sigma - field$ is $\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{F}'_n$.

Proof. (i) $\{X_n \to 0\}$. We have $\{X_n \to 0\} \in \mathcal{F}'_m, \forall m \in \mathbb{N}, \text{ since } X_1, ..., X_{m-1} \text{ does not affect whether } X_n \to 0$ or not. So $\{X_n \to 0\} \in \bigcap_{m=1}^{\infty} \mathcal{F}'_m = \mathcal{T}$

(ii) $\{S_n \text{ converges}\}\$. We have $\{S_n \text{ converges}\}\in \mathcal{F}_m', \forall m\in\mathbb{N}, \text{ since } X_1,...,X_m \text{ does not affect whether } S_n \text{ converges or not. Put it another way, } S_n = \sum_{i=1}^n X_i \text{ converges iff } S_n' = \sum_{i=m}^n X_i \text{ converges.}$

So $\{S_n \text{ converges}\} \in \bigcap_{m=1}^{\infty} \mathcal{F}'_n = \mathcal{T}.$

(iii) Let $m \in \mathbb{N}$ be fixed and arbitrary, then:

$$\{X_n > b_n \text{ i.o.}\} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} \{\omega \mid X_i(\omega) > b_i\}$$

$$= \bigcap_{n=m}^{\infty} \bigcup_{i=n}^{\infty} \{\omega \mid X_i(\omega) > b_i\}$$

$$\in \mathcal{F}'_m$$

$$\Rightarrow \{X_n > b_n \text{ i.o.}\} \in \bigcap_{m=1}^{\infty} \mathcal{F}'_m = \mathcal{T}$$

(iv) This statement is not true. Counter example: $X_1 = Bernoulli(0.5)$. $X_2 = X_3 = ... = 1$ constant. $b_n = n-1$. Then $\mathbb{P}[S_n > b_n \text{ i.o.}] = \frac{1}{2}$. But if we take out X_1 then $\mathbb{P}[S_n > b_n \text{ i.o.}] = 1$. Thus this event depends on X_1 . So it does not belong to the tail σ - field. Another way to note this is that X_i are independent, thus those event that belongs to tail $\sigma - field$ has probability of either 0 or 1 according to the Komogorov

theorem. But our event has probability 1/2, so it does not belong to the tail $\sigma - field$.

(v) Fix $m \in \mathbb{N}$. Consider the two set $A = \left\{ \omega \middle| \lim_{n \to \infty} \frac{\sqrt{\sum_{i=1}^n X_i^2}}{\sum_{i=1}^n X} = 0 \right\}$, $B = \left\{ \omega \middle| \lim_{n \to \infty} \frac{\sqrt{\sum_{i=1}^n X_i^2}}{\sum_{i=m}^n X_i} = 0 \right\}$.

We will prove that the two sets are equal-

- $\sqrt{\sum_{i=1}^{n} X_i^2}$ is an non-negative increasing sequence. Thus there are exactly three cases: (a) First, for those ω such that $\lim \sum_{i=1}^{n} X_i^2 = 0$, then both limits in A and B do not exist since all $X_i = 0$. So $\omega \notin A, \omega \notin B$.
- (b) Second for those ω such that $\lim \sum_{i=1}^n X_i^2 = a, a \in (0, \infty)$. Thus $\lim_{n \to \infty} \sum_{i=m}^n X_i^2 = b, b \in [0, a]$. If b = 0. Then the limit in A goes to some number not zero, and the limit in B does not exist. So $\omega \notin A$ and $\omega \notin B$. If b > 0. Then $\lim_{n \to \infty} \frac{\sqrt{\sum_{i=1}^n X_i^2}}{\sqrt{\sum_i^n X_i^2}} = \frac{\sqrt{a}}{\sqrt{b}} > 1$ and is finite. Thus:

$$\lim_{n \to \infty} \frac{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}{\sum_{i=1}^{n} X} = 0 \Leftrightarrow \lim_{n \to \infty} \frac{\sqrt{\sum_{i=m}^{n} X_{i}^{2}}}{\sum_{i=1}^{n} X} \frac{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}{\sqrt{\sum_{i=m}^{n} X_{i}^{2}}} = 0$$
 (1)

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sqrt{\sum_{i=m}^{n} X_i^2}}{\sum_{i=1}^{n} X_i} = 0$$
 (2)

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{\sqrt{\sum_{i=m}^{n} X_i^2}} = \pm \infty$$
 (3)

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{i=m}^{n} X_i}{\sqrt{\sum_{i=m}^{n} X_i^2}} = \pm \infty \tag{4}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sqrt{\sum_{i=m}^{n} X_i^2}}{\sum_{i=m}^{n} X_i} = 0$$
 (5)

For (4) is true because the expression is different from that in (3) by a finite amount.

So $\omega \in A \Leftrightarrow \omega \in B$ in this case.

(c) Third, for those ω such that $\lim \sum_{i=1}^{n} X_i^2 = \infty$.

$$\lim_{n \to \infty} \frac{\sqrt{\sum_{i=1}^{n} X_i^2}}{\sum_{i=1}^{n} X} = 0 \Leftrightarrow \lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{\sqrt{\sum_{i=1}^{n} X_i^2}} = \pm \infty$$
 (6)

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{i=m}^{n} X_i}{\sqrt{\sum_{i=1}^{n} X_i^2}} = \pm \infty \tag{7}$$

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{\sqrt{\sum_{i=m}^{n} X_i^2}} = \pm \infty$$
 (8)

$$\Leftrightarrow \lim_{n \to \infty} \frac{\sqrt{\sum_{i=m}^{n} X_i^2}}{\sum_{i=m}^{n} X_i} = 0 \tag{9}$$

For $(6) \Leftrightarrow (7)$ is true because the different between the expression in (7) and (6) is a finite amount. $(7) \Rightarrow (8)$ is true because the expression in (8) is larger in magnitude as the denominator is smaller in magnitude. (8) \Rightarrow 7 is true because the ratio $\lim_{n\to\infty}\frac{\sum_{i=1}^{\infty}X_i^2}{\sum_{i=m}^{\infty}X_i^2}=1$. In conclusion, $\omega\in A\Leftrightarrow\omega\in B$. Thus A=B. Thus $A\in\mathcal{F}_m'$ for arbitrary $m\in\mathbb{N}$. Thus A is in the tail

 σ – field.

Problem 4. Large Deviation Theorem

Proof. (a) a > 1. We check the two condition: (H1)

$$\varphi(\theta) = \mathbb{E} \exp(\theta X_i)$$

$$= \int_0^\infty \exp(\theta x) \exp(-x) dx$$

$$= \int_0^\theta \exp((\theta - 1)x) dx$$

$$= \frac{\exp((\theta - 1)x)}{\theta - 1} \Big|_0^\infty$$

$$= \frac{1}{1 - \theta} \frac{1}{\exp((1 - \theta)x)} \Big|_\infty^0 \text{ for } \theta$$

$$= \frac{1}{1 - \theta}$$

So $\theta_- = -\infty$, $\theta_+ = \infty$. And $\varphi(\theta) < \infty$, $\forall \theta \in (-\infty, 1)$.

(H2) The exponential distribution is a continuous distribution, and it obviously is not a point mass at 1. Now we find the solution to:

$$a = \frac{1}{(1-\theta)^2}(1-\theta)$$

$$\Leftrightarrow 1 - \theta = \frac{1}{a}$$

$$\Leftrightarrow \theta = 1 - \frac{1}{a}$$

By the Large Deviation Theorem, we have:

$$n^{-1}\log \mathbb{P}\left[S_n \ge na\right] \to -a(1-\frac{1}{a}) + \log \frac{1}{1-(1-\frac{1}{a})}$$

=1 - a + log a

(b) The Large Deviation Theorem is similar for a < 1 except that $\theta_a \in (\theta_-, 0)$. Following the same step we have $\theta_a = 1 - \frac{1}{a}$. And

$$n^{-1}\log \mathbb{P}\left[S_n \leq na\right] \to 1 - a + \log a$$
, for a ; 1.

Lemma 1. Statement 2.6.1 in Durrett's book. Let $X_1, X_2, ...$ be i.i.d and $S_n = X_1 + ... + X_n$. Then $\mathbb{P}[S_n \geq na] \leq \exp(n\gamma(\alpha))$.

Proof. From the first part of Section 2.6 in Durrett's book, denote $\pi_n = \mathbb{P}[S_n \ge na]$, we have: $\pi_{m+n} \ge \pi_m \pi_n$. Thus $\pi_{mn} \ge \pi_n^m$. Fix n. We have:

$$m \log \pi_n \le \log \pi_{mn}$$

 $\Rightarrow \log \pi_n \le n \frac{1}{mn} \log \pi_{mn}, \forall m$

Let the $m \to \infty$ we have, and using the fact that $\lim_{i \to \infty} \frac{1}{i} \log \pi_i = \gamma(a)$ (as derived from Lemma 2.6.1 in Durrett's book), we have:

$$\log \pi_n \le n\gamma(a)$$

$$\Rightarrow \pi_n \le \exp(n\gamma(a))$$

Problem 5. Oriented First Passage Percolution

Proof. Upper Bound. Consider a path where at each point, we choose the smaller edge. Then each of the chosen edge has the distribution of $\min(X, X')$ for X, X' iid Exponential(1). We have $\min(X, X') \sim Exponential(1/2)$. Thus the sample mean according to the Law of Large Number $S_{\pi}/d = \frac{1}{d} \sum \min(X_i, X'_i) \rightarrow \frac{1}{2}$ a.s. So an upper bound is 1/2.

Lower Bound. We have:

$$\mathbb{P}\left[\frac{H_d}{d} \leq a\right] \leq \mathbb{P}\left[\frac{S_{\pi}}{d} \leq a \text{ for all possible path}\pi\right]$$

$$= \mathbb{P}\left[\bigcup_{\pi_0} \left(\frac{S_{\pi_0}}{d} \leq a\right)\right]$$

$$\leq \sum \left(\mathbb{P}\left[\frac{S_{\pi_0}}{d} \leq a\right]\right)$$

$$\leq 2^d \mathbb{P}\left[\frac{S_{\pi_0}}{d} \leq a\right]$$

$$\leq 2^d \exp(d\gamma(a)) \text{ (From Lemma 1)}$$

$$\leq \exp\left(d\log 2 + d\gamma(a)\right)$$

$$= \exp\left(d\left(\log 2 + 1 - a + \log a\right)\right) \text{ (From Q.4)}$$

$$= \exp\left(d(\log(2a) + 1 - a)\right)$$

The last expression goes to infinity as $d \to \infty$ iff $\log(2a) + 1 - a < 0$. Solving the equation $\log(2a) + 1 - a = 0$ we have one root $a^* \approx 0.231$, and $\forall a < a^*, \log(2a) + 1 - a < 0$. So picking any $a < a^*$ we have: $\lim_{d \to \infty} \mathbb{P}\left[\frac{H_d}{d} \le a\right] \to 0$ So a lower bound would be 0.23.