

ARM (Association Rule Mining, 연관규칙탐사)

개념, 알고리즘 및 응용

연관규칙탐사(ARM)란?

■ 연관규칙탐사(ARM: Association Rule Mining): 하나의 거래나 사건에 포함되어 있는 항목들의 경향을 파악해서 상호 연관성을 발견 하는 것 EX) Products in Shopping Cart (One trip, Together)

- 1) 구매자가 제품을 구매할 때 이웃의 영향이 있었는가?
- 2) 오렌지 주스와 청정재 구입시 윈도우 클리너를 같이 구입하는가?
- 3) 우유를 바나나 구입시 함께 구입하는가? 또한 구입 할 때 특정 브랜드를 구입 하는가?
- 4) 청정재를 어는 곳에 위치시켜야지만 판매고를 최대화하는가?

연관규칙(Association Rule) (1/3)

- 어떤 Item 집합의 존재가 다른 Item 집합의 존재를 암시하는 것을 의미하며 다음과 같이 표시한다.

(Item set A) \square (Item set B)

(if A then B : 만일 A 가 일어나면 B 가 일어난다.)

- 함께 구매하는 상품의 조합이나 서비스 패턴 발견하는데 이용
- 특정 제품 또는 사건들이 동시에 발생 하는 패턴을 파악하는데 이용 EX) 가정 용품 판매 기간 동안 같이 판매해야 하는 상품의 패턴 발견

연관규칙(Association Rule) (2/3)

결론 <= 전제(1) & 전제(2) & ... & 전제(m)
Consequent Antecedents

연관규칙(Association Rule) (3/3)

Pattern Miner System

연관규칙의 평가기준 (1/3)

- 지지도 (Support)
 - 전체 거래 중 항목 X와 항목 Y를 동시에 포함하는 거래가 어느 정도인가?

$$S = P(X \cap Y) = \frac{ 품목 X 와 품목 Y 를 포함하는 거래수}{전체 거래 수(N)}$$

■ 전체적 구매도에 대한 경향을 파악

연관규칙의 평가기준 (2/3)

- 신뢰도 (Confidence)
 - 항목 X를 포함하는 거래 중에서 항목 Y가 포함될 확률은 어느 정도 인가 ?

- 조건부확률
- 연관성의 정도
- not symmetric

연관규칙의 평가기준 (3/3)

- 향상도 (Lift)
 - 항목 X를 구매한 경우 그 거래가 항목 Y를 포함하는 경우와 항목 Y가
 X와 무관하게 임의로 구매되는 경우의 비율

$$L = \frac{P(Y \mid X)}{P(Y)} = \frac{P(X \cap Y)}{P(X)P(Y)}$$

Lift	의미	ØI
1	두 품목이 서로 독립적인 관계	과자와 후추
> 1	두 품목이 서로 양의 상관 관계	빵과 버터
< 1	두 품목이 서로 음의 상관 관계	지사제, 변비약

연관규칙탐사 예제

고객의 구매 상품 List

ID	판매 상품
1	소주 , 콜라 ,맥주
2	소주,콜라,와인
3	소주,주스
4	콜라,맥주
5	소주,콜라,맥주,와인
6	주스

지지도가 50% 이상인 연관성 규칙

지지도 50% 이상인 규칙	해당 Transaction	신뢰도
소주 => 콜라	1,2,5	75 %
콜라 => 맥주	1,4,5	75 %
맥주 => 콜라	1,4,5	100 %

- Lift = P(콜라|맥주) / P(콜라) = 1/ (4/6) = 1.5

* 연관규칙: 맥주를 구입한 사람들 모두는(100%) 콜라도 구매한다

- 지지도: 그리고 이러한 경향을 가지는 사람들은 전체의 절반(50%) 정도이다.
- 리프트: 맥주 구매 시 콜라를 구입하게 될 가능성은 맥주 구매가 전제되지 않았을 경우보다 1.5배나 높아진다.

Exercises

■ 아래의 트랜잭션에서 추출된 연관규칙 중 하나인 "B -> C"의 신뢰도(Confidence)는 얼마인가?

```
transaction #1 {A, B, C}
transaction #2 {A, B, D}
transaction #3 {A, E}
transaction #4 {B, C}
transaction #5 {A, B, C, D}
transaction #6 {E}
```

● 어느 할인매장의 생필품 판매내역으로부터 다음과 같은 결과를 얻었다. Pr(세제)=0.4, Pr(식용유)=0.5, Pr(세제 & 식용유)=0.3. 이 값으로부터 연관성규칙 "세제 -> 식용유"의 향상도(Lift)를 구하면 얼마인가?

연관규칙탐사 프로세스

적절한 Item Set 결정 및 분석 수준 결정

상품간 단순 패턴 발견

- 소주와 콜라, 맥주와 콜라는 타(他)상품의 경우보다 동시구매 횟수가 높다.
- 주스는 맥주, 콜라, 와인과 동시에 구매되지 않는다.

연관규칙 발견

- 지지도, 신뢰도, 리프트 값을 통한 연관규칙의 유용성 분석
- 유용한 연관규칙 결정

Item 분석수준(Grain) 결정의 예 (1/2)

Item 분석수준(Grain) 결정의 예 (2/2)

H백화점 여성용품 Case

연관규칙탐사의 결과유형

Useful Result

- 마케팅 전략상 유용한 결과가 나온 경우
- EX) 주말을 위해, 목요일 소매점에 기저귀를 사러 온 아빠들은 맥주 도 함께 사 간다. => 주말에 FOOTBALL을 보면서 마심

Trivial Result

- 기존의 마케팅 전략에 의해 연관성이 높게 나온 경우
- EX) 정비계약을 맺은 소비자들은 많은 설비를 구매 할 것 같다. => 정 비계약은 대개의 경우 따로 맺어지는 것이 아니라, 많은 설비 구입시 함께 제시된다.

Inexplicable Result

- 의미를 발견하기 위해 많은 고민이 필요한 경우
- EX) 새로 철물점을 개업하면, 대개 화장실 문고리를 많이 사 간다.

의미 있는 연관규칙의 도출

- 지지도 값의 최소기준치를 미리 설정하여
- 최소기준치 이상의 지지도 값을 갖는 규칙을 생성한다.
- 생성된 규칙 중 높은 신뢰도를 갖는 규칙들을 의미 있는 연관규칙으로 선 정한다.
- 자주 구매되는 상품에 대해서 지지도와 신뢰도가 우연히 높게 나올 수 있다.
 - 리프트(>1)

연관규칙탐사의 장단점

■ 장점

- 전문지식이 필요치 않으며 결과에 대한 이해가 쉬움
- 도출된 규칙간의 상호비교, 평가가 쉬움
- Undirected Data 분석에 유용
- 다양한 크기의 데이터에 적합
- 신경망이나 유전자 알고리즘에 비해 단순

■ 단점

- 문제의 크기가 커질수록 지수적으로 증가
- 데이터 속성에 대한 제한적 지원
- 항목에 대한 올바른 수 결정의 어려움
- 희박한 항목에 대해서는 문제화
- 품목의 수에 비해 거래 수가 충분치 못하면 신뢰 확률이 낮은 연관규칙 발견 가능성

연관규칙탐사 활용 분야

교차판매 (Cross-Selling), 상승판매 (Up-Selling)

✓ 스펜서 존슨의 '누가 내 치즈를 옮겼을까?'라는 책을 구매한 고객에게 최인훈의 '상도' 연관 상품을 추천하는 데 활용

부정탐지 (Fraud Detection): Negative Rule의 활용

- ✓ 신용카드 회사와 같은 금융기관에서는 연관성 규칙을 이용하여 카드 도용과 같은 부정행위를 적발하는 데 활용
 - Negative Rule의 활용
 - Negative Rule은 조건과 결과에 'True' 뿐만 아니라 'False"를 포함한다. 예) ~A ⇒ B , A ⇒ ~B , ~A ⇒ ~B 등

매장의 상품진열 (Shelf Planning)

✓ 「케이크 ▶ 와인」이라는 유용한 연관 규칙이 발견 되었다면, 케이크와 와인 상품을 나란히 진열하여 동시 구매를 유도하는 데 활용

Case Study - 클릭스트림 분석 (1/2)

▶ ARM과 SNA를 결합한 분석

- 5000명의 1년간 쇼핑사이트 접속기록을 활용
- 한 사람이 하루 동안 동시에 접속하는 쇼핑사이트 리 스트를 하나의 트랜잭션으로 간주
- 전항(Antecedents)의 항목 수를 1로 고정. 즉 A => B의 연관규칙만 생성되도록 함
- A => B 라는 규칙이 발견되면 A에서 B로 링크를 연결하고 링크의 강도(굵기)는 신뢰도로 표현하는 Social Network를 구축
- 쇼핑사이트 간의 관계 및 각 쇼핑사이트의 브랜드 파 워 차이를 시각적으로 파악할 수 있음

Case Study - 클릭스트림 분석 (2/2)

■ 상승규칙 vs. 하향규칙

■ 분기별 판매규칙을 기준으로 꾸준히 신뢰도가 상승 또는 하락하는 규칙

규칙	1분기	2분기	3분기	4분기	판정
치킨1⇒치킨2	25%	26%	28%	31%	상승 규칙
치킨1⇒찜닭	61%	52%	57%	60%	
찜닭⇒치킨1	76%	54%	43%	42%	하향 규칙
치킨2⇒소주	46%	36%	33%	45%	

■ 소멸규칙 vs. 새로운 규칙

■ 기준 월(분기)과 비교대상 월(분기)을 정하여 비교했을 때 소멸 또는 새로 나 타나는 규칙

규칙	1분기	2분기	3분기	4분기	판정
치킨1⇒치킨2	25%	26%	28%	0%	소멸 규칙
치킨1⇒찜닭	61%	52%	57%	60%	
찜닭⇒치킨1	34%	43%	43%	41%	
치킨1⇒소주	45%	46%	43%	45%	

규칙	1분기	2분기	3분기	4분기	판정
치킨1⇒치킨2	25%	26%	28%	32%	
치킨1⇒찜닭	61%	52%	57%	60%	
찜닭⇒치킨1	0%	0%	0%	23%	새로운 규칙
치킨1⇒소주	45%	46%	43%	45%	

Case Study - 주가 분석 (1/2)

Objectives

 investigate the forecasting movement of the KOSPI using the time series data of various interrelated world stock market indices.

Input variables

•	
Index	Description
Kospi Up	Today's Kospi index is higher than that of the day before
Kospi Down	Today's Kospi index is lower than that of the day before
Dow Jones	Today's Dow Jones Industrial Average index is higher than
Up	that of the day before
Dow Jones	Today's Dow Jones Industrial Average index is lower than that
Down	of the day before
Nikkei Up	Today's Nikkei225 index is higher than that of the day before
Nikkei Down	Today's Nikkei225 index is lower than that of the day before
SSE Up	Today's SSE Composite Index is higher than that of the day
	before
SSE Down	Today's SSE Composite Index is lower than that of the day
	before
TSEC Up	Today's TSEC weighted index is higher than that of the day
	before
TSEC Down	Today's TSEC weighted index is lower than that of the day
	before
Hang Seng	Today's Hang Seng index is higher than that of the day before
Up	
Hang Seng Down	Today's Hang Seng index is lower than that of the day before
FTSE Up	Today's FTSE100 index is higher than that of the day before
FTSE Down	Today's FTSE100 index is lower than that of the day before
CAC Up	Today's CAC 40 index is higher than that of the day before
CAC Down	Today's CAC 40 index is lower than that of the day before
DAX Up	Today's DAX index is higher than that of the day before
DAX Down	Today's DAX index is lower than that of the day before

Transactions (2006.1 ~ 2008.12)

Day	Variable	Day	Variables	ID
06.06.09 06.06.10 06.06.11	KOSPI Up KOSPI Up KOSPI Down	06.06.08 06.06.09 06.06.10	Dow Jones Up, Nikkei225 Down, SSE Up, TSEC Down, Hang Seng Down, FTSE Up, CAC Up, DAX Up Dow Jones Down, Nikkei225 Down, SSE Down, TSEC Down, Hang Seng Down, FTSE Up, CAC Down, DAX Up Dow Jones Up, Nikkei225 Down, SSE Up, TSEC Down, Hang Seng Down, FTSE Up, CAC Up, DAX Down	101 102 103
			•••	

Results of ARM

Rule		Condition
Rule 1	If Nikkei225 index is Down and Dow Jones and DAX indices are up, then KOSPI index is Up	Confidence 1.59, Support 9.81, Lift 1.32
Rule 2	If Hang Seng index is Down and Dow Jones and DAX indices are up, then KOSPI index is Up	Confidence 73.42, Support 9.03, Lift 1.35
Rule 3	If Hang Seng index is Down and Dow Jones and FTSE indices are up, then KOSPI index is Up	Confidence 71.43, Support 8.57, Lift 1.32
Rule 4	If Hang Seng index is Down and Dow Jones and CAC indices are up, then KOSPI index is Up	Confidence 70.13, Support 8.41, Lift 1.29

Apriori

- ✓ 최소 규칙 지지도(Support), 최대 규칙 신뢰도(Confidence), 최대 전항값 수(Antecedent)로 규칙 생성
- ✓ 품목필드가 이분형(flag) 또는 범주형(set)인 경우에 적용 가능
- ✓ 결합(join)과 가지치기(prune)의 두 과정으로 구성
- ✔ 아이템의 수에 따라 런타임이 기하급수적으로 증가

FP-Growth

- ✔ Apriori의 단점인 DB 스캔 횟수를 2회로 제한
- ✔ Candidate itemset을 만들지 않고 FP-tree라는 자료구조를 사용
- ✔ 트랜잭션과 아이템의 수에 따라 런타임이 선형적으로 증가

File	Apriori	FP-Growth
Simple Market Basket test file	3.66 s	3.03 s
"Real" test file (1 Mb)	8.87 s	3.25 s
"Real" test file (20 Mb)	34 m	5.07 s
Whole "real" test file (86 Mb)	4+ hours (Never finished, crashed)	8.82 s

Apriori 알고리즘 (1/3)

■ 빈발항목집합(frequent itemset)

- 최소지지도 이상을 갖는 항목집합
- 트랜잭션에 나타나는 모든 항목들의 집합을 I={i₁, i₂, ..., i_m}라 할 때, 모든 가능한 부분집합의 수는 2^m-1(공집합 제외)
- k개의 항목으로 이루어진 집합을 k-항목집합이라 함
- 원시적으로 연관규칙을 찾기 위해서는 모든 가능한 부분집합에 대해 전체 트랜잭션에 대한 지지도를 계산해야 함

선험적 규칙(Apriori Principle)

- 모든 항목집합에 대한 지지도를 계산하지 않고 원하는 빈발항목집 합을 찾아내는데 이용되는 선험적 규칙:
 - 한 항목집합이 빈발하다면, 이 항목집합의 모든 부분집합 역시 빈발항목집합
 - 한 항목집합이 非빈발하다면, 이 항목집합의 모든 부분집합 역시 非빈발항목집합
- 이 사실을 이용하면 최소 지지도 기준을 넘지 못하는 항목집합들을 쉽게 가지치기 할 수 있는데, 이를 선험적 규칙을 이용한 빈발항목 집합 추출 알고리즘(Apriori algorithm)이라 함

Apriori 알고리즘 (2/3)

■ 빈발항목집합 탐사과정

■ 결합(join)과 가지치기(prune)의 두 과정으로 구성

■ 연관규칙 추출과정

- 모든 빈발항목집합 L에 대하여 L의 모든 공집합이 아닌 부분집합들을 탐색
- 각각의 부분집합 A에 대하여, 만약 Support(A)에 대한 Support(L)의 비율이 적어도 최소 신뢰도 이상이면 A => (L-A)의 형태의 규칙을 출력

n(L)	L	Rules (Conf _{min} = 0.7)
	{A,C}	A => C (2/2); C => A (2/3)
2	{B,C}	$B \to C (2/3); C \to B (2/3)$
	{B,E}	B => E (3/3); E => B (3/3)
	{C,E}	$C \Rightarrow E(2/3); E \Rightarrow C(2/3)$
3	{B,C,E}	$B \Rightarrow C,E (2/3); C \Rightarrow B,E (2/3); E \Rightarrow B,C (2/3),$ $B,C \Rightarrow E (2/2); B,E \Rightarrow C (2/3); C,E \Rightarrow B (2/2)$