Circuitos Elétricos 2

Circuitos Elétricos Aplicados

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa

Universidade de Brasília (UnB)

Departamento de Engenharia Elétrica (ENE)

Laboratório de Processamento de Sinais em Arranjos

Caixa Postal 4386 CEP 70.919-970, Brasília - DF

Homepage: http://www.pgea.unb.br/~lasp

Circuitos Ressonantes (1)

- Ressonância:
 - ⇒ todo corpo possui uma freqüência natural própria
 - ⇒ ao se produzir vibrações na mesma freqüência da freqüênca natural, o corpo vai vibrar mais forte
- Em diversas áreas da ciência a ressonância é importante
 - ⇒ Motor de dois estágios com escapamento ressonante (Resonanzauspuff)

- Fonte: http://de.wikipedia.org/wiki/Resonanzauspuff
- ⇒ Mecânica, hidromecânica, acústica, engenharia elétrica, física atômica e física nuclear.

Circuitos Ressonantes (2)

Circuitos ressonantes

Circuito RLC em série

$$Z(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$

Circuito RLC em paralelo

$$Y(j\omega) = G + j\omega C + \frac{1}{j\omega L}$$

A reatância de cada circuito é zero quando

$$\omega L = \frac{1}{\omega C} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$

⇒ Na freqüência de ressonância, o circuito é puramente resistivo.

Propriedades dos Circuitos Ressonantes (1)

□ Na ressonância, a impedância (série)/admitância (paralelo) é mínima

$$|\mathbf{Z}|^{2} = \mathbf{R}^{2} + (\omega \mathbf{L} - \frac{1}{\omega C})^{2}$$

$$|\mathbf{Z}|^{2} = \mathbf{R}^{2} + (\omega \mathbf{L} - \frac{1}{\omega C})^{2}$$

$$|\mathbf{Z}|^{\omega_{0}}$$

admitância paralelo

Fator de qualidade:
$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

Propriedades dos Circuitos Ressonantes (2)

O fator de potência é unitário

CIRCUITO	ABAIXO RESSONÂNCIA	ACIMA DA RESONÂNCIA
SÉRIE	CAPACITIVO	INDUTIVO

⇒ Diagrama fasorial

5

Propriedades dos Circuitos Ressonantes (3)

O fator de potência é unitário

CIRCUITO	ABAIXO RESSONÂNCIA	ACIMA DA RESONÂNCIA	
PARALELO	INDUTIVO	CAPACITIVO	

⇒ Diagrama fasorial

Exemplo de Circuitos Ressonantes (1)

Determinar a frequência de ressonância, tensão em cada elemento na ressonância e o valor do fator de qualidade

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(25 \times 10^{-3} H)(10 \times 10^{-6} F)}} = 2000 \, rad \, / \, s$$

Na ressonância, $Z = 2\Omega$

$$I = \frac{V_S}{Z} = \frac{10 \angle 0^\circ}{2} = 5A$$

$$\omega_0 \mathbf{L} = (2 \times 10^3)(25 \times 10^{-3}) = 50\Omega$$

$$V_L = \mathbf{j}\omega_0 \mathbf{L}\mathbf{I} = \mathbf{j}50 \times 5 = 250 \angle 90^\circ(V)$$

$$\frac{1}{\omega_0 C} = \omega_0 \mathbf{L} = 50\Omega$$

$$V_C = \frac{1}{\mathbf{j}\omega_0 C} \mathbf{I} = -\mathbf{j}50 \times 5 = 250 \angle -90^\circ$$

$$\mathbf{Q} = \frac{\omega_0 \mathbf{L}}{\mathbf{R}} = \frac{50}{2} = 25$$

$$|V_L| = \omega_0 L \left| \frac{V_S}{R} \right| = Q |V_S|$$
$$|V_C| = Q |V_S|$$

Exemplo de Circuitos Ressonantes (2)

Dado L = 0.02H com um fator de qualidade 200, determine o capacitor necessário para formar um circuito ressonante em 1000 Hz

$$\omega_0 = \frac{1}{\sqrt{LC}} \Rightarrow 2\pi \times 1000 = \frac{1}{\sqrt{0.02C}} \Rightarrow C = 1.27 \mu F$$

$$L \operatorname{com} Q = 200 \Rightarrow 200 = \frac{\omega_0 L}{R} \Rightarrow R = \frac{2\pi \times 1000 \times 0.02}{200} = 1.59\Omega$$

O que acontece com o capacitor se o circuito é testado com uma tensão de 10 V?

Na ressonância

$$|V_L| = \omega_0 L \left| \frac{V_S}{R} \right| = Q |V_S|$$

$$|V_C| = Q |V_S|$$

$$|V_C| = Q |V_S|$$
 $\Rightarrow |V_C| = 2000V$

$$I = \frac{10}{1.59} = 6.28A$$

A potência reativa do capacitor é 12,56 kVA

Exemplo de Circuitos Ressonantes (3)

Ache a capacitância para o circuito ficar em ressonância em 1800 rad/s, o fator Q e a magnitude da tensão no capacitor

$$\omega_0 = \frac{1}{\sqrt{LC}} 1800 = \frac{1}{\sqrt{0.1(H) \times C}} \Rightarrow C = \frac{1}{0.1 \times 1800^2}$$
 $C = 3.86 \mu F$

$$Q = \frac{\omega_0 L}{R}$$
 $Q = \frac{1800 \times 0.1}{3} = 60$

Na ressonância
$$|V_L| = \omega_0 L \left| \frac{V_S}{R} \right| = Q |V_S|$$

$$|V_C| = Q |V_S|$$

$$|V_C| = Q |V_S|$$

Ressonância para o circuito em série (1)

$$Z(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$

$$|\mathbf{Z}|^2 = \mathbf{R}^2 + (\omega \mathbf{L} - \frac{1}{\omega \mathbf{C}})^2$$

$$G_v = \frac{R}{Z}$$

$$G_{v} = \frac{R}{R + j\omega L + \frac{1}{j\omega C}} = \frac{R}{Z(j\omega)}$$

Na ressonância:

$$\omega_0 L = QR, \ \omega_0 C = \frac{1}{QR}$$

Ganho em tensão é

$$G_{v} = \frac{V_{R}}{V_{1}} = \frac{1}{1 + jQ(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})}$$

Ressonância para o circuito em série (2)

$$Z(j\omega) = R + j\frac{\omega}{\omega_0}QR - j\frac{\omega_0}{\omega}QR$$
$$= R\left[1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]$$

$$M(\omega) = |G_{v}|, \phi(\omega)| = \angle G_{v}$$

Ressonância para o circuito em série (3)

Exemplo de aplicação de fator de qualidade (1)

Determine a frequência de ressonância, fator de qualidade e largura de banda quando $R = 2 \Omega$ e quando $R = 0.2 \Omega$.

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

$$\boldsymbol{BW} = \frac{\omega_0}{\boldsymbol{Q}}$$

$$\omega_0 = \frac{1}{\sqrt{(2 \times 10^{-3})(5 \times 10^{-6})}} = 10^4 rad / s$$

R	Q	
2	10	
0.2	100	

R	Q	BW(rad/s)
2	10	1000
0,2	100	100

$$Q = \frac{10000 \times 0.002}{R}$$

$$BW = 10000 / Q$$

Exemplo de aplicação de fator de qualidade (2)

Dado um circuito RLC com as seguintes especificações: $R = 4 \Omega$, ω_0 = 4000 rad/s e BW = 100 rad/s. Determine os valores de L e C.

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$ $BW = \frac{\omega_0}{Q}$

$$\boldsymbol{BW} = \frac{\omega_0}{\boldsymbol{Q}}$$

- 1. Dada uma freg de ressonância e largura de faixa, determine Q.
- 2. Dado R, frequência de ressonância e Q, determine L, C.

$$Q = \frac{\omega_0}{BW} = \frac{4000}{100} = 40$$

$$L = \frac{QR}{\omega_0} = \frac{40 \times 4}{4000} = 0.040 H$$

$$C = \frac{1}{\omega_0 RQ} = \frac{1}{4 \times 10^{-2} \times 16 \times 10^6} = 1.56 \times 10^{-6} F$$

Exemplo de aplicação de fator de qualidade (3)

Dado um circuito RLC operando como filtro passa-baixa com a seguinte especificações: $\omega_0 = 1000 \text{ rad/s}$ e BW = 100 rad/s.

$$G_{v} = \frac{R}{R + j\omega L + \frac{1}{j\omega C}} = \frac{R}{Z(j\omega)}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} \qquad BW = \frac{\omega_0}{Q}$$

$$BW = \frac{\omega_0}{O}$$

Estratégia:

- 1. Determinar Q
- 2. Usar freq. de ressonância e Q para encontrar duas equações com 3 incógnitas
- 3. Arbitrar um valor para uma das incógnitas

$$Q = \frac{\omega_0}{BW} = \frac{1000}{100} = 10$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \Rightarrow (10^3)^2 = \frac{1}{LC}$$

$$Q = \frac{\omega_0 L}{R} \Rightarrow 10 = \frac{1000 L}{R}$$
Por exemplo $C = 1\mu F = 10^{-6} F$

$$L = 1H$$

$$R = 100\Omega$$

Tensão no capacitor em circuito série RLC (1)

Na ressonância

$$\mid V_0 \mid = Q \mid V_R \mid$$

Mas esta NÃO é a máxima tensão no capacitor Vamos ver...

$$\left| \frac{\mathbf{V}_0}{\mathbf{V}_S} \right| = \left| \frac{\frac{1}{j\omega C}}{\mathbf{R} + j\omega \mathbf{L} + \frac{1}{j\omega C}} \right| = \left| \frac{1}{1 - \omega^2 \mathbf{L}C + j\omega CR} \right|$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} \qquad u = \frac{\omega}{\omega_0}; g = \left| \frac{V_0}{V_S} \right|^2$$

$$g(u) = \frac{1}{\left[\left(1 - u^2\right)^2 + \left(\frac{u}{Q}\right)^2\right]}$$

$$g(u) = \frac{1}{\left[\left(1 - u^2\right)^2 + \left(\frac{u}{Q}\right)^2\right]} \qquad \frac{dg}{du} = 0 = \frac{2(1 - u^2)(-2u) + 2(u/Q)(1/Q)}{\left[\left(1 - u^2\right)^2 + \left(\frac{u}{Q}\right)^2\right]^2} \Rightarrow 2(1 - u^2) = \frac{1}{Q^2}$$

Tensão no capacitor em circuito série RLC (2)

$$\boldsymbol{u}_{\text{max}} = \frac{\boldsymbol{\omega}_{\text{max}}}{\boldsymbol{\omega}_0} = \sqrt{1 - \frac{1}{2\boldsymbol{Q}^2}}$$

$$g_{\text{max}} = \frac{1}{\frac{1}{4Q^4} + \left(\frac{1}{Q^2} - \frac{1}{2Q^4}\right)} = \frac{Q^2}{1 - \frac{1}{4Q^2}} |V_0| = \frac{Q|V_S|}{\sqrt{1 - \frac{1}{4Q^2}}}$$

$$|V_0| = \frac{Q|V_S|}{\sqrt{1 - \frac{1}{4Q^2}}}$$

 \blacksquare Exemplo: Determine ω_0 e ω_{max} dado que L = 50 mH e C = 5 μF para os casos de R = 50Ω e R = 1Ω .

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(5 \times 10^{-2})(5 \times 10^{-6})}} = 2000 rad / s$$

$$Q = \frac{2000 \times 0.050}{R}$$

$$\boldsymbol{Q} = \frac{2000 \times 0.050}{\boldsymbol{R}} \qquad \omega_{\text{max}} = 2000 \times \sqrt{1 - \frac{1}{2} \boldsymbol{Q}^2}$$

R	Q	Wmax
50	2	1871
1	100	2000

Tensão no capacitor em circuito série RLC (3)

Tensão no capacitor em circuito série RLC (4)

Circuito ressonante RLC em paralelo (1)

Impedância do circuito RLC em série

Admitância em paralelo RLC

$$Z(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$

$$Z(j\omega) = R + j\omega L + \frac{1}{j\omega C}$$
Note equivalencias
$$|Z|^{2} = R^{2} + (\omega L - \frac{1}{\omega C})^{2}$$

$$Z(j\omega) = R + j\omega L + \frac{1}{j\omega L} + j\omega C$$

$$R \leftrightarrow G, L \leftrightarrow C, C \leftrightarrow L$$

$$Z(j\omega) = G + \frac{1}{j\omega L} + j\omega C$$

$$|Y|^{2} = G^{2} + (\omega C - \frac{1}{\omega L})^{2}$$

$$R \leftrightarrow G, L \leftrightarrow C, C \leftrightarrow L$$

 $Z \leftrightarrow Y \ V \leftrightarrow I$

$$Y(j\omega) = G + \frac{1}{j\omega L} + j\omega C$$

$$|\mathbf{Y}|^2 = \mathbf{G}^2 + (\omega \mathbf{C} - \frac{1}{\omega \mathbf{L}})^2$$

RLC em série

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$Q = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG}$$

RLC série
$$BW = \frac{\omega_0}{Q}$$

RLC paralelo
$$BW = \frac{\omega_0}{O}$$

Circuito ressonante RLC em paralelo (2)

$$egin{aligned} oldsymbol{I}_G &= oldsymbol{G} oldsymbol{V}_S = rac{oldsymbol{G}}{oldsymbol{Y}} oldsymbol{I}_S \ oldsymbol{I}_L &= rac{1}{i\omega L} oldsymbol{V}_S = rac{\dot{oldsymbol{J}}/\omega L}{oldsymbol{Y}} oldsymbol{I}_S \end{aligned}$$

Circuito ressonante RLC em paralelo (3)

Assumindo que a fonte opera na freqüência de ressonância da rede, ache todas as correntes nos ramos.

$$I_{G} = 0.01 \times 120 \angle 0^{\circ} = 1.2 \angle 0^{\circ} (A) = I_{S}$$

$$\omega_{0} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.120 \times (6 \times 10^{-4})}} = 117.85 \text{ rad/s}$$

$$C = 600 \mu F$$
, $L = 120 mH$

$$V_S = 120 \angle 0^\circ, \quad G = 0.01S$$
 $I_C = (1\angle 90^\circ) \times (117.85) \times (600 \times 10^{-6}) \times 120 \angle 0^\circ = 8.49 \angle 90^\circ (A)$

$$I_L = 8.49 \angle -90^{\circ}(A)$$

Na ressonância
$$I_G = GV_S = \frac{G}{Y}I_S \qquad \omega_0 C = \frac{1}{\omega_0 L} \Rightarrow Y = G$$

$$I_x = \underline{\hspace{1cm}}$$

$$I_C = j\omega CV_S = \frac{j\omega C}{Y}I_S$$
 $I_C = I_S$
 $I_C = -I_L$

$$I_{L} = \frac{1}{j\omega L} V_{S} = \frac{1/j\omega L}{Y} I_{S} | I_{C} = \frac{\omega_{0}C}{G} | I_{S} | = Q | I_{S} |$$

$$|I_{L}| = \frac{1}{\omega_{0}LG} |I_{S}|$$

Exemplo de circuitos ressonantes RLC em paralelo (1)

Derive expressões para a frequência de ressonância, frequência de meia potência, BW e Q.

$$V_{out} = \frac{I_{in}}{Y_T} \Rightarrow H = \frac{V_{out}}{I_{in}} = \frac{1}{Y_T}$$

$$Y_T = G + j\omega C + \frac{1}{j\omega L}$$

$$|H| = \frac{1}{G + j\omega C + \frac{1}{j\omega L}} = \frac{1}{\sqrt{G^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}}$$

Frequência de ressonância : $\omega_0 = \frac{1}{\sqrt{LC}} | \boldsymbol{H}_{\text{max}} | = \frac{1}{G} = \boldsymbol{R}$

$$|\boldsymbol{H}_{\text{max}}| = \frac{1}{G} = \boldsymbol{R}$$

Frequência de meia potência $\Rightarrow |H(j\omega_h)|^2 = 0.5 |H|^2$

$$BW = \omega_{HI} - \omega_{LO} = \frac{G}{C}$$

$$Q = \frac{\omega_0}{BW} = \frac{1}{G} \sqrt{\frac{C}{L}} = R \sqrt{\frac{C}{L}}$$

Exemplo de circuitos ressonantes RLC em paralelo (2)

Derive expressões para a freqüência de ressonância, freqüência de meia potência, BW e Q.

Frequência de ressonância :
$$\omega_0 = \frac{1}{\sqrt{LC}} | \boldsymbol{H}_{\text{max}} | = \frac{1}{\boldsymbol{G}} = \boldsymbol{R}$$

Frequência de meia potência $\Rightarrow |H(j\omega_h)|^2 = 0.5 |H|_{max}^2$

$$G^2 + \left(\omega_h C - \frac{1}{\omega_h L}\right)^2 = 2G^2 \implies \omega_h C - \frac{1}{\omega_h L} = \pm G$$

Exemplo de circuitos ressonantes RLC em paralelo (3)

Determine a frequência de ressonância, fator Q e BW para o circuito abaixo

$$R = 2k\Omega, L = 20mH, C = 150\mu F$$

RLC em paralelo

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $Q = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG}$ $BW = \frac{\omega_0}{Q}$

$$\boldsymbol{BW} = \frac{\omega_0}{\boldsymbol{Q}}$$

$$\omega_0 = \frac{1}{\sqrt{(20 \times 10^{-3})(150 \times 10^{-6})}} = 577 \, \text{rad} \, / \, \text{s}$$

$$Q = \frac{577 \times 150 \times 10^{-6}}{(1/2000)} = 173$$

$$BW = \frac{577}{173} = 3.33 rad / s$$

Exemplo de circuitos ressonantes RLC em paralelo (4)

$$R = 6k\Omega, BW = 1000rad/s, Q = 120$$

Determine L, C, ω_0

RLC em paralelo

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $Q = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG}$ $BW = \frac{\omega_0}{Q}$

$$\boldsymbol{BW} = \frac{\omega_0}{\boldsymbol{Q}}$$

$$\omega_0 = \mathbf{Q} \times \mathbf{BW} = 120 \times 1000 = 1.2 \times 10^5 \, rad \, / s$$

$$C = \frac{Q}{R\omega_0} = \frac{120}{6000 \times 1.2 \times 10^5} = 0.167 \mu F$$

$$L = \frac{R}{Q\omega_0} = \frac{6000}{120 \times 1.2 \times 10^5} = 417 \,\mu \,H$$

Exemplo de circuitos ressonantes (1)

$$Y(j\omega) = j\omega C + \frac{1}{R + j\omega L} \times \frac{R - j\omega L}{R - j\omega L}$$

$$Y(j\omega) = j\omega C + \frac{R - j\omega L}{R^2 + (\omega L)^2}$$

$$Y(j\omega) = j\omega C + \frac{R - j\omega L}{R^2 + (\omega L)^2}$$

$$Y(j\omega) = \frac{R}{R^2 + (\omega L)^2} + j\left(C - \frac{\omega L}{R^2 + (\omega L)^2}\right)$$

$$Y \text{ real} \Rightarrow C - \frac{\omega L}{R^2 + (\omega L)^2} = 0 \Rightarrow \omega_R = \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}, \, \boldsymbol{Q}_0 = \frac{\omega_0 L}{R} \Rightarrow \omega_R = \omega_0 \sqrt{1 - \frac{1}{\boldsymbol{Q}_0^2}}$$

Exemplo de circuitos ressonantes (2)

Determine ω_0 , ω_R para $R = 50\Omega$, 5Ω

R	Q0	Wr(rad/s)	f(Hz)
50	2	1732	275.7
5	20	1997	317.8

Exemplo de circuitos ressonantes (3)

