Fall 2019

CS 220 Database Systems

Lecture 11

Functional Dependence & Normalization

Ideal Relational Schema

Minimize Redundancy & Update Anomalies

Redundancy occurs when the same data value is stored more than once in a relation.

Redundancy wastes space and reduces performance.

Update anomalies are problems that arise when trying to insert, delete, or update tuples and are often caused by redundancy.

Universal Relation With All Attributes

Universal(eno, pno, resp, hours, ename, bdate, title, salary, supereno, dno, dname, mgreno, pname, budget)

<u>eno</u>	<u>pno</u>	resp	hours	ename	bdate	title	salary	supereno	dno	dname	mgreno	pname	budget
E1	P1	Manager	12	J. Doe	01-05-75	EE	30000	E2				Instruments	150000
E2	P1	Analyst	24	M. Smith	06-04-66	SA	50000	E5	D3	Accounting	E5	Instruments	150000
E2	P2	Analyst	6	M. Smith	06-04-66	SA	50000	E5	D3	Accounting	E5	DB Develop	135000
E3	P3	Consultant	10	A. Lee	07-05-66	ME	40000	E6	D2	Consulting	E7	Budget	250000
E3	P4	Engineer	48	A. Lee	07-05-66	ME	40000	E6	D2	Consulting	E7	Maintenance	310000
E4	P2	Programmer	18	J. Miller	09-01-50	PR	20000	E6	D3	Accounting	E5	DB Develop	135000
E5	P2	Manager	24	B. Casey	12-25-71	SA	50000	E8	D3	Accounting	E5	DB Develop	135000
E6	P4	Manager	48	L. Chu	11-30-65	EE	30000	E7	D2	Consulting	E7	Maintenance	310000
E7	P3	Engineer	36	J. Jones	10-11-72	SA	50000		D1	Management	E8	Budget	250000

Duplicate values?

Challenges with Update?

Update Anomalies

There are three major types of update anomalies:

◆Insertion Anomalies - Insertion of a tuple into the relation either requires insertion of redundant information or cannot be performed without setting key values to NULL.

Deletion Anomalies - Deletion of a tuple may lose information that is still required to be stored.

 Modification Anomalies - Changing an attribute of a tuple may require changing multiple attribute values in other tuples.

eno	ename	bdate	title	salary	supereno	dno	dname	mgreno
E1	J. Doe	01-05-75	EE	30000	E2	null	null	null
E2	M. Smith	06-04-66	SA	50000	E5	D3	Accounting	E5
E3	A. Lee	07-05-66	ME	40000	E7	D2	Consulting	E7
E4	J. Miller	09-01-50	PR	20000	E6	D3	Accounting	E5
E5	B. Casey	12-25-71	SA	50000	E8	D3	Accounting	E5
E6	L. Chu	11-30-65	EE	30000	E7	D2	Consulting	E7
E7	R. Davis	09-08-77	ME	40000	E8	D1	Management	E8
E8	J. Jones	10-11-72	SA	50000	null	D1	Management	E8

Consider these two types of insertion anomalies:

- ◆1) Insert a new employee E9 working in department D2.
 - ⇒You have to redundantly insert the department name and manager when adding this record.
- •2) Insert a department D4 that has no current employees.
 - ⇒This insertion is not possible without creating a dummy employee id and record because eno is the primary key of the relation.

eno	ename	bdate	title	salary	supereno	dno	dname	mgreno
E1	J. Doe	01-05-75	EE	30000	E2	null	null	null
E2	M. Smith	06-04-66	SA	50000	E5	D3	Accounting	E5
E3	A. Lee	07-05-66	ME	40000	E7	D2	Consulting	E7
E4	J. Miller	09-01-50	PR	20000	E6	D3	Accounting	E5
E5	B. Casey	12-25-71	SA	50000	E8	D3	Accounting	E5
E6	L. Chu	11-30-65	EE	30000	E7	D2	Consulting	E7
E7	R. Davis	09-08-77	ME	40000	E8	D1	Management	E8
E8	J. Jones	10-11-72	SA	50000	null	D1	Management	E8

Consider this deletion anomaly:

- Delete employees E3 and E6 from the database.
- Deleting those two employees removes them from the database, and we now have lost information about department D2!

eno	ename	bdate	title	salary	supereno	dno	dname	mgreno
E1	J. Doe	01-05-75	EE	30000	E2	null	null	null
E2	M. Smith	06-04-66	SA	50000	E5	D3	Accounting	E5
E3	A. Lee	07-05-66	ME	40000	E7	D2	Consulting	E7
E4	J. Miller	09-01-50	PR	20000	E6	D3	Accounting	E5
E5	B. Casey	12-25-71	SA	50000	E8	D3	Accounting	E5
E6	L. Chu	11-30-65	EE	30000	E7	D2	Consulting	E7
E 7	R. Davis	09-08-77	ME	40000	E8	D1	Management	E8
E8	J. Jones	10-11-72	SA	50000	null	D1	Management	E8

Consider these modification anomalies:

- ◆1) Change the name of department D3 to Embezzling.
 - ⇒ You must update the department name in 3 different records.
- 2) Change the manager of D1 to E4.
 - ⇒ You must update the mgreno field in 2 different records.

Normalization

Normalization is a technique for producing relations with desirable properties.

Normalization decomposes relations into smaller relations that contain less redundancy.

Decomposition requires that

no information is lost reconstruction of the original relations must be possible.

Relational schemas that are well-designed have several important properties:

- 1) The most basic property is that relations consists of attributes that are logically related.
 - The attributes in a relation should belong to only one entity or relationship.
- •2) Lossless-join property ensures that the information decomposed across many relations can be reconstructed using natural joins.
- •3) Dependency preservation property ensures that constraints on the original relation can be maintained by enforcing constraints on the normalized relations.

Normalization

- Normalization can be used after ER modeling or independently.
- Normalization may be especially useful for databases that have already been designed without using formal techniques.

The purpose of normalization is to develop good relational schemas that minimize

redundancies and update anomalies

Functional Dependency

A functional dependency is a relationship between two attributes, typically between the PK and other non-key attributes within a table.

For a relation R, attribute Y is functionally dependent on attribute X, if for every valid instance of X can uniquely determines the value of Y.

Functional Dependency

A *functional dependency* (abbreviated *FD*) is a statement about the relationship between attributes in a relation. We say a set of attributes *X* functionally determines an attribute *Y* if given the values of *X* we always know the only possible value of *Y*.

- Notation: $X \rightarrow Y$
- X functionally determines Y
- Y is functionally dependent on X

Example:

- ◆eno → ename
- ◆eno, pno → hours

Notation For Functional Dependency

A functional dependency has a left-side called the **determinant** which is a set of attributes, and one attribute on the right-side.

Strictly speaking, there is always only one attribute on the RHS, but we can combine several functional dependencies into one:

eno, pno \rightarrow hours, resp

Remember that this is really short-hand for two functional dependencies.

The Semantics of Functional Dependencies

Functional dependencies are a property of the **domain** being modeled **NOT** of the data instances currently in the database.

This means that similar to keys you cannot tell if one attribute is functionally dependent on another by looking at the data.

Example: Emp Relation

<u>eno</u>	ename	bdate	title	salary	supereno	dno
E1	J. Doe	01-05-75	EE	30000	E2	null
E2	M. Smith	06-04-66	SA	50000	E5	D3
E3	A. Lee	07-05-66	ME	40000	E7	D2
E4	J. Miller	09-01-50	PR	20000	E6	D3
E5	B. Casey	12-25-71	SA	50000	E8	D3
E6	L. Chu	11-30-65	EE	30000	E7	D2
E7	R. Davis	09-08-77	ME	40000	E8	D1
E8	J. Jones	10-11-72	SA	50000	null	D1

Functional dependencies are directional.

Example:

Emp Relation

eno	ename	bdate	title	salary	supereno	dno
E1	J. Doe	01-05-75	EE	30000	E2	null
E2	M. Smith	06-04-66	SA	50000	E5	D3
E3	A. Lee	07-05-66	ME	40000	E7	D2
E4	J. Miller	09-01-50	PR	20000	E6	D3
E5	B. Casey	12-25-71	SA	50000	E8	D3
E6	L. Chu	11-30-65	EE	30000	E7	D2
E7	R. Davis	09-08-77	ME	40000	E8	D1
E8	J. Jones	10-11-72	SA	50000	null	D1

Trivial Functional Dependencies

A functional dependency is *trivial* if the attributes on its left-hand side are a superset of the attributes on its right-hand side.

Examples: $eno \rightarrow eno$ $eno, ename \rightarrow eno$ $eno, pno, hours \rightarrow eno, hours$

Trivial functional dependencies are not interesting because they do not tell us anything.

We are only interested in *nontrivial* FDs.

Identify all non-trivial Functional Dependencies

eno	pno	resp	hours	ename	bdate	title	salary	supereno
E1	P1	Manager	12	J. Doe	01-05-75	EE	30000	E2
E2	P1	Analyst	24	M. Smith	06-04-66	SA	50000	E5
E2	P2	Analyst	6	M. Smith	06-04-66	SA	50000	E5
E3	P3	Consultant	10	A. Lee	07-05-66	ME	40000	E6
E3	P4	Engineer	48	A. Lee	07-05-66	ME	40000	E6
E4	P2	Programmer	18	J. Miller	09-01-50	PR	20000	E6
E5	P2	Manager	24	B. Casey	12-25-71	SA	50000	E8
E6	P4	Manager	48	L. Chu	11-30-65	EE	30000	E7
F.7	P3	Fnoineer	36	I Iones	10-11-72	SA	50000	

Functional Dependencies & Keys

- Functional dependencies can be used to determine the candidate and primary keys of a relation.
 - ◆For example, if an attribute functionally determines all other attributes in the relation, that attribute can be a key:

eno \rightarrow eno, ename, bdate, title, supereno, dno

Alternate definition of keys:

- ◆A set of attributes *K* is a *superkey* for a relation *R* if the set of attributes *K* functionally determines all attributes in *R*.
- ◆A set of attributes K is a candidate key for a relation R if K is a minimal superkey of R.

Functional Dependencies & Prime Attribute Types

A prime attribute type is an attribute type that is part of a candidate key

Example: R1(SSN, PNUMBER, PNAME, HOURS)

Prime attribute types: SSN and PNUMBER

Non-prime attribute types: PNAME and HOURS

Normalization Forms

A relation is in a particular *normal form* if it satisfies certain normalization properties.

- ◆1NF First Normal Form
- 2NF Second Normal Form
- ◆3NF Third Normal Form
- ◆BCNF Boyce-Codd Normal Form
- ◆4NF Fourth Normal Form
- ◆5NF Fifth Normal Form

First Normal Form (1NF)

The first normal form (1 NF) states that every attribute type of a relation must be

atomic and single valued

No Composite or Multivalued attribute types

SUPPLIER(SUPNR, NAME(FIRST NAME, LAST NAME), SUPSTATUS)

SUPPLIER(SUPNR, FIRST NAME, LAST NAME, SUPSTATUS)

eno	ename	pno	resp	hours		eno	ename	pno	resp	hours
E1	J. Doe	P1	Manager	12		E1	J. Doe	P1	Manager	12
E2	M. Smith	P1	Analyst	24		E2	M. Smith	{P1,P2}	{Analyst,Analyst}	{24,6}
		P2	Analyst	6				(,, ,, ,,		, .,
E3	A. Lee	P3	Consultant	10		E3	A. Lee	{P3,P4}	{Consultant,Engineer}	{10,48}
		P4	Engineer	48				(= = ,= .)	()	(22,12)
E4	J. Miller	P2	Programmer	18	Two equivalent	E4	J. Miller	P2	Programmer	18
E5	B. Casey	P 2	Manager	24		E5	B. Casey		Manager	24
E6	L. Chu	P4	Manager	48	representations	E6	L. Chu	P4	Manager	48
E 7	J. Jones	P3	Engineer	36		E7	J. Jones	P3	Engineer	36
						11	3. JOHC3	127	Luginos	- 50

Flattening

hours

	1 14666111110									
eno	ename	pno	resp	hours						
E1	J. Doe	P1	Manager	12						
E2	M. Smith	P1	Analyst	24						
E2	M. Smith	P2	Analyst	6						
E3	A. Lee	P3	Consultant	10						
E3	A. Lee	P4	Engineer	48						
E4	J. Miller	P2	Programmer	18						
E5	B. Casey	P2	Manager	24						
E6	L. Chu	P4	Manager	48						
E7	J. Jones	P3	Engineer	36						

eno ename

CHO	chame
E1	J. Doe
E2	M. Smith
E3	A. Lee
E4	J. Miller
E5	B. Casey
E6	L. Chu
E7	J. Jones

P4

P3

)	PIIL
Ι	eno
	E1
	E2
	E2
	E3
	E3
	E4
	E5
	E6

E7

O							
e <u>no</u>	pno	resp	hours				
Ξ1	P1	Manager	12				
Ξ2	P1	Analyst	24				
Ξ2	P2	Analyst	6				
Ξ3	P3	Consultant	10				
Ξ3	P4	Engineer	48				
E 4	P2	Programmer	18				
Ξ5	P2	Manager	24				

Manager

Engineer

48

36

DEPARTMENT(<u>DNUMBER</u>, DLOCATION, *DMGRSSN*)

Assumption: a department can have multiple locations and multiple departments are possible at a given location

DNUMBER	DLOCATION	DMGRSSN
15	{New York, San Francisco}	110
20	Chicago	150
30	{Chicago, Boston}	100

DEPARTMENT

DNUMBER	DMGRSSN
15	110
20	150
30	100

DEP-LOCATION

<u>DNUMBER</u>	DLOCATION	
15	New York	
15	San Francisco	
20	Chicago	
30	Chicago	
30	Boston	

Full Functional Dependency

A functional dependency $A \rightarrow B$ is a full functional dependency if removal of any attribute from A results in the dependency not existing any more.

- ◆We say that B is fully functionally dependent on A.
- ◆If remove an attribute from A and the functional dependency still exists, we say that B is partially dependent on A.

```
eno \rightarrow ename (full FD)
eno, ename \rightarrow salary, title (partial FD - can remove ename)
eno, pno \rightarrow hours, resp (full FD)
```

Second Normal Form (2NF)

A relation R is in the second normal form (2 NF) if it satisfies 1 NF and every non-prime attribute A in R is fully functional dependent on the primary key of R

A prime attribute is an attribute in any candidate key.

If the relation is not in second normal form, we must:

- Keep a relation with the original primary key and any attribute types that are fully functional dependent on it
- Set up a new relation for each partial key together with its dependent attribute types

This table has a composite primary key [Customer ID, Store ID] TABLE PURCHASE DETAIL

1NF

CustomerID	Store ID	Purchase Location
1	1	Los Angeles
1	3	San Francisco
2	1	Los Angeles
3	2	New York
4	3	San Francisco

[Purchase Location] only depends on [Store ID]

TABLE_PURCHASE

Customer ID	Store ID
1	1
1	3
2	1
3	2
4	3

TABLE_STORE

Purchase Location	
Los Angeles	
New York	
San Francisco	

2NF

<u>SSN</u>	PNUMBER	PNAME	HOURS
100	1000	Hadoop	50
220	1200	CRM	200
280	1000	Hadoop	40
300	1500	Java	100
120	1000	Hadoop	120

PNUMBER	PNAME
1000	Hadoop
1200	CRM
1500	Java

		MIN
<u>SSN</u>	<u>PNUMBER</u>	HOURS
100	1000	50
220	1200	200
280	1000	40
300	1500	100
120	1000	120

Not So Simple Example

- Emp (eno, ename, title, bdate, salary, supereno, dno)
- WorksOn (eno, pno, resp, hours)
- Proj (pno, pname, budget)

Emp relation:

WorksOn relation:

Proj relation:

Third Normal Form (3NF)

Functional Dependency Rules:

Transitive Rule: If $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$

A relation is in the third normal form (3 NF) if it satisfies 2 NF and no non-prime attribute type of R is transitively dependent on the primary key.

Emp relation:

Third Normal Form (3NF)

If the relation is not in third normal form

Decompose the relation R and set up a relation that includes the non-key attributes that functionally determine the other non-key attributes

<u>SSN</u>	NAME	DNUMBER	DNAME	DMGRSSN
10	O'Reilly	10	Marketing	210
22	Donovan	30	Logistics	150
28	Bush	10	Marketing	210
30	Jackson	20	Finance	180
12	Thompson	10	Marketing	210

<u>SSNR</u>	NAME	DNUMBER
10	O'Reilly	10
22	Donovan	30
28	Bush	10
30	Jackson	20
12	Thompson	10

3 NF

DNUMBER	DNAME	DMGRSSN
10	Marketing	210
30	Logistics	150
20	Finance	180

Example

2NF?

[Book ID] determines [Genre ID] [Genre ID] determines [Genre Type]

TABLE_BOOK_DETAIL

Book ID	Genre ID	Genre Type	Price
1	1	Gardening	25.99
2	2	Sports	14.99
3	1	Gardening	10.00
4	3	Travel	12.99
5	2	Sports	17.99

3NF

TABLE_BOOK

Book ID	Genre ID	Price
1	1	25.99
2	2	14.99
3	1	10.00
4	3	12.99
5	2	17.99

TABLE GENRE

Genre ID Genre Type			
Genreid	Genre Type		
1	Gardening		
2	Sports		
3	Travel		