Discrete Mathematics and Logic Lecture 1

Andrey Frolov

Innopolis University

Course points

Туре	Points
Labs classes	20
Interim performance assessment	30
Exams	50

Labs points (only my recommendations for TAs):

- In-class participation 1 point for each individual contribution in a class but not more than 1 point a week (i.e. 14 points in total for 14 study weeks),
- overall course contribution (to accumulate extra-class activities valuable to the course progress, e.g. a short presentation, book review, very active in-class participation, etc.) up to 6 points.

Course points

Type	Points
Labs classes	20
Interim performance assessment	30
Exams	50

Interim performance assessment:

Each of 3 in-class tests costs 10 points.

- Section 1. Basic elements and the naive set theory
- Section 2. Relations, functions and enumerating combinatorics
- Section 3. Graph theory

Course points

Type	Points
Labs classes	20
Interim performance assessment	30
Exams	50

Interim performance assessment:

• Mid-term exam and final examination costs up to 25 points each (i.e. 50 points for both).

Grades range

Grade	Range
A. Excellent	80-100
B. Good	70-79
C. Satisfactory	60-69
D. Poor	0-59

Discrete Mathematics and Logic

- Basic elements and the naive set theory
- Relations, functions and enumerating combinatorics
- Graph theory

Introduction

Basic objects of Mathematics

- Numbers
- Sets
- Functions
- Relations
- Structures

Natural numbers

Natural numbers

 \mathbb{N}

1, 2, 3, 4, 5, ...

Natural numbers

Natural numbers

 ${
m I\! N}$ or ${
m I\! N}^*$

0?, 1, 2, 3, 4, 5, ...

Natural numbers

Natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, \dots\}$$

Integer numbers

Integer numbers

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

Integer numbers

Integer numbers

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

Integer numbers

Definition

An object is called **countable**, if there exists its enumeration by natural numbers.

So, the set of all integer numbers is countable.

Remark

The proof technique above is called by construction.

Rational numbers

$$\mathbb{Q} = \left\{ \frac{n}{m} \mid n, m \text{ are integer numbers } \& m \neq 0 \right\}$$

Positive rational numbers

Positive rational numbers

$$\frac{1}{1_{1}} \quad \frac{1}{2_{2}} \quad \frac{1}{3_{4}} \quad \frac{1}{4_{7}} \quad \cdots$$

$$\frac{2}{1_{3}} \quad \frac{2}{3_{5}} \quad \frac{2}{5_{8}} \quad \frac{2}{7_{12}} \quad \cdots$$

$$\frac{3}{1_{6}} \quad \frac{3}{2_{9}} \quad \frac{3}{4_{13}} \quad \frac{3}{5} \quad \cdots$$

$$\frac{4}{1_{10}} \quad \frac{4}{3_{10}} \quad \frac{4}{5} \quad \frac{4}{7} \quad \cdots$$

So, using the proof technique by construction, we proof Proposition

The set of all rational numbers is countable.

Real numbers

$$\mathbb{R} = \{X, a_0 a_1 a_2 a_3 \dots \mid X \text{ is integer }, \text{ all } a_i \text{ are digit } \}$$

Any rational number is real.

For example,

$$\frac{4}{3} = 1,33333...$$

Is there irrational numbers?

Proposition

 $\sqrt{2}$ is irrational.

Proof by contradiction.

Suppose for a contradiction that $\sqrt{2}$ is rational number.

Let $\sqrt{2} = \frac{n}{m}$ be an irreducible fraction. Then,

$$2=\frac{n^2}{m^2}$$

$$n^2 = 2m^2$$

Proof by contradiction.

Suppose for a contradiction that $\sqrt{2}$ is rational number. Let $\sqrt{2} = \frac{n}{m}$ be an irreducible fraction. Then,

$$2=\frac{n^2}{m^2}$$

$$n^2 = 2m^2$$

Therefore, n is even, i.e., n = 2k. Then

$$(2k)^2 = 2m^2$$

$$2k^2=m^2$$

Therefore, n and m are both even. Since $\sqrt{2} = \frac{n}{m}$ is irreducible, this is a contradiction.

Proposition

The set of all real number is uncountable.

Proposition

The set of all real number is uncountable.

Proof by contradiction.

Suppose for a contradiction that there exists an enumeration of all real numbers from [0,1).

$$x_0 = 0, a_0^0 a_1^0 a_2^0 a_3^0 \dots$$

$$x_1 = 0, a_0^1 a_1^1 a_2^1 a_3^1 \dots$$

$$x_2 = 0, a_0^2 a_1^2 a_2^2 a_3^2 \dots$$

$$x_3 = 0, a_0^3 a_1^3 a_2^3 a_3^3 \dots$$

Proof by contradiction.

Suppose for a contradiction that there exists an enumeration of all real numbers from [0,1).

$$x_0 = 0, a_0^0 a_1^0 a_2^0 a_3^0 \dots$$

$$x_1 = 0, a_0^1 a_1^1 a_2^1 a_3^1 \dots$$

$$x_2 = 0, a_0^2 a_1^2 a_2^2 a_3^2 \dots$$

$$x_3 = 0, a_0^3 a_1^3 a_2^3 a_3^3 \dots$$

$$\dots$$

Let
$$r = 0, (9 - a_0^0)(9 - a_1^1)(9 - a_2^2)(9 - a_3^3)...$$

Proof by contradiction.

Suppose for a contradiction that there exists an enumeration of all real numbers from [0,1).

$$x_0 = 0, a_0^0 a_1^0 a_2^0 a_3^0 \dots$$

$$x_1 = 0, a_0^1 a_1^1 a_2^1 a_3^1 \dots$$

$$x_2 = 0, a_0^2 a_1^2 a_2^2 a_3^2 \dots$$

$$x_3 = 0, a_0^3 a_1^3 a_2^3 a_3^3 \dots$$

Let r = 0, $(9 - a_0^0)(9 - a_1^1)(9 - a_2^2)(9 - a_3^3) \dots$ We see that $0 \le r < 1$ and $r \ne x_i$ for any $i \ge 0$.

Proof by contradiction.

Recall that x_0, x_1, x_2, x_3 is a list of all real numbers from [0, 1).

And we have build the real number r from [0,1) such that $r \neq x_i$ for any $i \geq 0$.

This is a contradiction.

The proof by contradiction is complete.

The set of all real numbers is uncountable and, hence, is not an object of Discrete Mathematics!

A set

$$\{x \mid P(x)\}$$

Examples

- $\mathbb{N} = \{x \mid x \text{ is integer and } x \geq 0\}$
- $[0,1] = \{x \mid x \text{ is real and } 0 \le x \le 1\}$
- $\{1, 2, 3, 4\} = \{x \mid x \text{ is integer and } 0 < x \le 4\}$
- $\emptyset = \{x \mid x > 0 \text{ and } x < 0\}$

 \emptyset is called an empty set.

Let X be a set.

Notions

 $x \in X$ means "x is an element of X"

 $x \notin X$ means "x is not an element of X"

Examples

- $0 \in \mathbb{N}$
- -2 ∉ **N**
- $-5 \in \mathbb{Z}$
- $\sqrt{2} \notin \mathbb{Q}$

Let X and Y be sets.

Notions

 $X \subseteq Y$ means "X is a subset of Y", i.e., if $x \in X$ then $x \in Y$.

 $X \not\subseteq Y$ means "X is not a subset of Y"

Examples

- $\mathbb{N} \subseteq \mathbb{Z}$
- $\mathbb{Z} \subseteq \mathbb{Q}$
- $\mathbb{R} \subseteq \mathbb{N} \ (\sqrt{2} \notin \mathbb{N})$

Let X and Y be sets.

Notions

X = Y means "sets X and Y are equal", i.e., $x \in X$ iff $x \in Y$.

*iff = "if and only if"

Examples

- $\{5,3,2,9\} = \{2,3,5,9\}$
- $\mathbb{Z} \neq \mathbb{Q}$

Properties

- if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- A = B iff $A \subseteq B$ and $B \subseteq A$

Properties

• if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$

Direct proof

We need to prove $A \subseteq C$, i.e., for any x, if $x \in A$ then $x \in C$.

Let $x \in A$.

Since $A \subseteq B$, if follows from $x \in A$ that $x \in A$.

Since $B \subseteq C$, if follows from $x \in B$ that $x \in C$.

Properties

• A = B iff $A \subseteq B$ and $B \subseteq A$

Direct proof

 \Rightarrow . By definition, A = B means $x \in A$ iff $x \in B$ for any x. It obviously follows from this that $A \subseteq B$ and $B \subseteq A$.

 \Leftarrow . Since $A \subseteq B$, for any x, if $x \in A$ then $x \in B$.

Since $B \subseteq A$, for any x, if $x \in B$ then $x \in A$.

Therefore, $x \in A$ iff $x \in B$ for any x. Thus, by definition, A = B.

Definition

The empty set \emptyset is a set with no elements, i.e., $x \notin \emptyset$ for any element x.

A property

• $\emptyset \subseteq X$ for any set X

Thank you for your attention!