CSE206 (Digital Logic Design Sessional)

Experiment No. 04 Name of the Experiment

Comparator, adder / subtractor

Group no.	01
Group Members	1805061, 1805062, 1805063, 1805064, 1805065
Section	B1
Department	CSE
Date of Submission	03.04.2021

Problem No. 01

Problem specification:

Design using basic gates, a 2-bit comparator to compare 2-bit numbers X and Y. The circuit should provide 3 output lines to indicate X>Y, X=Y and X<Y.

Required instruments:

No.	Name of the Instrument	Quantity
1	IC - Hex 1-input Inverter gate (74x04)	1 piece
2	IC- Quad 2-input AND gate (74x08)	2 pieces
3	IC- Quad 2-input OR gate (74x32)	1 piece
4	IC- Quad 2-input XOR gate (74x86)	1 piece
5	Input pin	4 pieces
6	Output pin	3pieces
7	Wires	A lot
8	Software Logisim	

Truth Table:

Here A_1 , A_0 , B_1 , B_0 are the input pins and L, E, G are the output pins. L is on when A<B, E is on when A=B and G is on when A>B. The truth table is shown below:

A 1	Ao	B ₁	\mathbf{B}_0	L	E	G
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Simplification of the Equation:

From the truth table we can derive the equation of L, E, and G.

Now,

$$\begin{split} L &= A_1'A_0'B_1'B_0 + A_1'A_0'B_1B_0' + A_1'A_0'B_1B_0 + A_1'A_0B_1B_0' + A_1'A_0B_1B_0 + A_1A_0'B_1B_0 \\ &= A_1'A_0'B_1B_0' + A_1'A_0'B_1B_0 + A_1'A_0B_1B_0' + A_1'A_0B_1B_0 + A_1'A_0'B_1'B_0 + A_1A_0'B_1B_0 \\ &= A_1'B_1\left(A_0'B_0' + A_0'B_0 + A_0B_0' + A_0B_0\right) + \left(A_1'B_1' + A_1B_1\right)A_0'B_0 \\ &= A_1'B_1\left(A_0'(B_0' + B_0) + A_0(B_0' + B_0)\right) + \left(A_1 \bigoplus B_1\right)'A_0'B_0 \quad \left[X'Y' + XY = (X \bigoplus Y)'\right] \\ &= A_1'B_1\left(A_0' + A_0\right) + \left(A_1 \bigoplus B_1\right)'A_0'B_0 \quad \left[X' + X = 1 \text{ and } X.1 = X\right] \\ &= A_1'B_1 + \left(A_1 \bigoplus B_1\right)'A_0'B_0 \end{split}$$

$$\begin{split} E &= A_1'A_0'B_1'B_0' + A_1'A_0B_1'B_0 + A_1A_0'B_1B_0' + A_1A_0B_1B_0 \\ &= A_1'B_1'(A_0'B_0' + A_0B_0) + A_1B_1(A_0'B_0' + A_0B_0) \\ &= (A_1'B_1' + A_1B_1)(A_0'B_0' + A_0B_0) \\ &= (A_1 \bigoplus B_1)'(A_0 \bigoplus B_0)' \qquad [X'Y' + XY = (X \bigoplus Y)'] \end{split}$$

$$G = A_{1}'A_{0}B_{1}'B_{0}' + A_{1}A_{0}'B_{1}'B_{0}' + A_{1}A_{0}'B_{1}'B_{0} + A_{1}A_{0}B_{1}'B_{0}' + A_{1}A_{0}B_{1}'B_{0} + A_{1}A_{0}B_{1}'B_{0}'$$

$$= A_{1}A_{0}'B_{1}'B_{0}' + A_{1}A_{0}'B_{1}'B_{0} + A_{1}A_{0}B_{1}'B_{0}' + A_{1}A_{0}B_{1}'B_{0} + A_{1}'A_{0}B_{1}'B_{0}' + A_{1}A_{0}B_{1}B_{0}'$$

$$= A_{1}B_{1}' (A_{0}'B_{0}' + A_{0}'B_{0} + A_{0}B_{0}' + A_{0}B_{0}) + (A_{1}'B_{1}' + A_{1}B_{1}) A_{0}B_{0}'$$

$$= A_{1}B_{1}' (A_{0}'(B_{0}' + B_{0}) + A_{0}(B_{0}' + B_{0})) + (A_{1} \oplus B_{1})' A_{0}B_{0}' \quad [X'Y' + XY = (X \oplus Y)']$$

$$= A_{1}B_{1}' (A_{0}' + A_{0}) + (A_{1} \oplus B_{1})' A_{0}B_{0}' \quad [X' + X = 1 \text{ and } X.1 = X]$$

$$= A_{1}B_{1}' + (A_{1} \oplus B_{1})' A_{0}B_{0}'$$

Circuit Diagram:

The circuit diagram is shown below-

Observation:

We can make some observations from the truth table and the simplified equations and can derive equations for a n-bit comparator.

• <u>E Function:</u>

From the truth table we can see that, output pin E will be on if $A_i = B_i$, where i=0, 1, ..., n-1.

Two bits A_i and B_i are equal if, $x_i = (A_i \odot B_i) = (A_i \oplus B_i)$ ' holds.

So, for n-bit comparator, $E = x_0x_1...x_{n-1}$, where $x_i = (A_i \oplus B_i)'$.

• <u>L Function:</u>

From the truth table we can see that, output pin L will be on if

- $\circ A_{n-1} < B_{n-1}$
- o $A_{n-1}=B_{n-1}$ and $A_{n-2}< B_{n-2}$
- $\circ \quad A_{n\text{-}1} = B_{n\text{-}1} \text{ and } A_{n\text{-}2} = B_{n\text{-}2} \text{ and } A_{n\text{-}3} < B_{n\text{-}3} \text{ and so on.}$

So, for n-bit comparator, $L = A_{n-1}'B_{n-1} + x_{n-1} A_{n-2}'B_{n-2} + ... + x_{n-1}x_{n-2}...x_1A_0'B_0$, where $x_i = (A_i \bigoplus B_i)'$.

• <u>G Function:</u>

From the truth table we can see that, output pin L will be on if

- $\circ A_{n-1} > B_{n-1}$
- o $A_{n-1}=B_{n-1}$ and $A_{n-2}>B_{n-2}$
- $\circ \quad A_{n\text{-}1} = B_{n\text{-}1} \text{ and } A_{n\text{-}2} = B_{n\text{-}2} \text{ and } A_{n\text{-}3} > B_{n\text{-}3} \text{ and so on.}$

So, for n-bit comparator, $L = A_{n-1}B_{n-1}' + x_{n-1} \ A_{n-2}B_{n-2}' + \ldots + x_{n-1}x_{n-2} \ldots x_1 A_0 B_0'$, where $x_i = (A_i \bigoplus B_i)'$.

Problem No. 02

Problem specification:

Design a 1-bit full sub tractor circuit using basic logic gates. Inputs are P, Q and R denoting minuend, subtrahend and previous borrow respectively. The outputs are D and B representing the difference and output borrow.

Required instruments:

No.	Name of the Instrument	Quantity
1	IC - Hex 1-input Inverter gate (74x04)	1 piece
2	IC- Quad 2-input AND gate (74x08)	1 piece
3	IC- Quad 2-input OR gate (74x32)	1 piece
4	IC- Quad 2-input XOR gate (74x86)	1 piece
5	Input pin	3 pieces
6	Output pin	2 pieces
7	Wires	A lot
8	Software Logisim	

Truth Table:

Here P, Q, R are the input pins and D and Bout is the output pin.

The truth table of the equation of F:

Inputs			Outputs		
Minuend(P)	Subtrahend(Q)	Borrow(R)	D	Bout	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Simplification of the Equation:

$$D = P'Q'R+P'QR'+PQ'R'+PQR$$

$$= R(P'Q'+PQ) + R'(P'Q+PQ')$$

$$= R(P'Q+PQ')' + R'(P'Q+PQ')$$

$$= P \bigoplus Q \bigoplus R$$

So, the simplified equation is for D: $P \oplus Q \oplus R$

And,

$$B(out) = P'Q'R+P'QR'+P'QR+PQR$$

$$= P'(Q'R+QR') + QR(P+P')$$

$$=P'(Q \oplus R) + QR$$
 [since P+P'=1]

So, the simplified equation is for B(out): $P'(Q \oplus R) + QR$

Circuit Diagram:

Observation:

After simplifying the equation, we can see that the function represents $P \oplus Q \oplus R$ And $P'(Q \oplus R) + QR$. Combination of X-OR and AND gates.