DKT02174 10

What is claimed is:

1	1. A method of producing parts from powdered metal comprising the steps of:
2	a) providing a metallurgic powder comprising iron, 0-1.5 weight percent
3	silicon, 0.4-0.9 weight percent carbon, 0.5-4.5 weight percent
4	nickel, 0.5-1.0 weight percent molybdenum, 0-0.5 weight percent
5	manganese, and 0-1.5 weight percent copper, the weight
6	percentages calculated based on the total weight of the powder;
7	b) compressing the metallurgic powder at a pressure of 25 to 65 tsi to
8	provide a green compact;
9	c) heating the compact to 2100°F to 2400°F for 20 to 60 minutes;
10	d) holding the compact between 1000°F to 1900°F for 5 to 60 minutes,
11	such that microstructure of the compact becomes mainly Pearlite;
12	e) increasing the density of at least a portion of the compact to greater than
13	7.6g/cc;
14	f) heating the compact to 1650°F to 2100°F for 20 to 80 minutes;
15	g) cooling the compact at a rate of 150°F to 250°F per minute; and
16	h) heating the compact to 300°F to 1000°F for 30 to 90 minutes, such that
17	the microstructure of the compact becomes tempered martensite, 0
18	to 20% bainite, and less than 5% retained austenite and has a
19	hardness of 27 to 50 HRC.
1	2. The method of claim 1, wherein the parts are sprockets.
1	3. The method of claim 2, wherein the sprockets have a tooth density of 6.75g/cc to
2	7.25g/cc.
1	4. The method of claim 1, wherein the step of compressing the metallurgic powder
2	produces a compact with a density of 6.4g/cc to 7.4 g/cc.

1	5. The method of claim 1, wherein the compact is heated in step c) to a temperature of
2	2300°F for 40 minutes.
1	6. The method of claim 1, wherein the compact is held in step d) at a temperature between
2	1000°F to 1800°F.
1	7. The method of claim 1, wherein the compact is held in step d) at a temperature between
2	1500°F to 1900°F.
1	8. The method of claim 1, wherein the compact is not subjected to additional cooling or
2	heating between steps c) and d).
1	9. The method of claim 8, wherein the compact produced in step c) has a critical
2	temperature and in step d) is held below the critical temperature.
1	10. The method of claim 8, wherein the compact produced in step c) has a critical
2	temperature and in step d) is held at the critical temperature.
1	11. The method of claim 1, wherein the Pearlite may be spheroidized.
1	12. A method of producing parts from powdered metal comprising the steps of:
2	a) providing a metallurgic powder comprising iron, 0-1.5 weight percent
3	silicon, 0.4-0.9 weight percent carbon, 0.5-4.5 weight percent
4	nickel, 0.5-1.0 weight percent molybdenum, 0-0.5 weight percent
5	manganese, and 0-1.5 weight percent copper, the weight
6	percentages calculated based on the total weight of the powder;
7	b) compressing the metallurgic powder at a pressure of 25 to 65 tsi to
8	provide a compact with a density of 6.4 to 7.4 g/cc;
9	c) heating the compact to 2100°F to 2400°F for 20 to 60 minutes and
10	cooling the compact to room temperature;
11	d) heating the compact to 1650°F to 2100 °F for 20 to 80 minutes;
12	e) cooling the compact at a rate of 150°F to 250 °F per minute; and

11

DKT02174 12

13	f) heating the compact to 300°F to 1000°F for 30 to 90 minutes.
1 2	13. The method of claim 12, wherein the compact is heated in step c) is to a temperature of 2300°F for 40 minutes.
1	14. A method of producing parts from powdered metal comprising the steps of:
2	a) providing a metallurgic powder comprising iron, 0-1.5 weight percent
3	silicon, 0.4-0.9 weight percent carbon, 0.5-4.5 weight percent
4	nickel, 0.5-1.0 weight percent molybdenum, 0-0.5 weight percent
5	manganese, and 0-1.5 weight percent copper, the weight
6	percentages calculated based on the total weight of the powder;
7	b) compressing the metallurgic powder at a pressure of 25 to 65 tsi to
8	provide a compact with a density if 6.4 to 7.4 g/cc;
9	c) heating the compact to 1650°F to 2100 °F for 20 to 80 minutes;
10	d) cooling the compact at a rate of 150°F to 250 °F per minute; and
11	e) heating the compact to 300°F to 1000°F for 30 to 90 minutes.