Tutorial 11 STAT 150

Exercise 1:

A birth and death chain has an absorbing state at 0, so $P_{0,0}=1$ and transition probabilities for $i\geq 1$ given by, $P_{i,i-1}=q_i>0, P_{i,i+1}=p_i>0$ and $P_{i,i}=1-p_i-q_i=r_i.$

- (a) Find a non-constant P-harmonic function for the Markov chain. (i.e h s.t Ph=h)
- (b) Starting from position x find the probability of reaching state n before state 0.
 - (c) Find the probability of ever reaching state 0 starting from x.

Exercise 2:

Prove that $\int_0^1 B_t dt \sim \mathcal{N}(0, \frac{1}{3})$

Hint: For every continuous function f we have: $\int_0^1 f(t)dt = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$

Exercise 3:

Let N(t) be a renewal process with increments X_i having a CDF F; Let W_i the time of the i-th arrival (i.e $W_i = X_1 + ... + X_i$), let F_n be the CDF of W_n which is the n-th convolution of F.

Now for every $t \ge 0$, let $\delta_t = t - W_{N(t)}$ be the current life and $\gamma_t = W_{N(t)+1} - t$ be the residual lifetime.

- (a) Find the joint distribution of δ_t and γ_t in function of the convolutions F_n 's.
- (b) Compute it explicitly for the case when N(t) is a Poisson process (i.e when the increments X_i are exponential with parameter λ). We have $dF_k(z) = \frac{\lambda^k z^{k-1}}{(k-1)!} e^{-\lambda z} dz$