The Note of Reinforcement Learning

Aoxiang xuyuan

Oct 2025

1 Bellman equation

1.1 basic concept

The agent in time t is in state S_t , takes action A_t , receives reward R_{t+1} , the next state is S_{t+1} , it can be represented as a state-action-reward trajectory:

$$S_t \stackrel{A_t}{\rightarrow} S_{t+1}, R_{t+1} \stackrel{A_{t+1}}{\longrightarrow} S_{t+2}, R_{t+2} \stackrel{A_{t+2}}{\longrightarrow} S_{t+3}, R_{t+3}.... \tag{1.1}$$

and the discounted return can be defined as:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$

$$= R_{t+1} + \gamma \left(R_{(t+1)+1} + \gamma R_{(t+1)+2} + \dots \right) = R_{t+1} + \gamma G_{t+1}$$
(1.2)

where $\gamma \in (0,1)$ is the discount rate , and we also a noted the R_{t+1} as imediate reward¹.

Cause R_t, A_t is random variable (even for a fixed π , the A_t is also random²), so is G_t , we can define the value function as the expectation of G_t :

$$v_{\pi(s)}$$
 = $\mathbb{E}[G_t|S_t=s] = \mathbb{E}[G_t|s]$ (1.3) same as $v(\pi,s)$

Notice that when |s| occurs in $\mathbb{E}[G_t|s]$, it equals to $|S_t = s|$ (And $\mathbb{E}[G_{t+1}|S_{t+1} = 1] \leftrightarrow \mathbb{E}[G_{t+1}|s]$)

And $v_{\pi(s)}$ is time-independent, it only releates to the state s and policy π (for different policies, the action space may be different).

$$\text{when} \quad P \Big(S_{a_i} | S_t \Big) = p_i \quad \& \quad \sum p_i = 1 \quad \text{then} \quad v_\pi(s) = \sum p_i G_{a_i} \tag{1.4}$$

1.2 simply $v_{\pi(s)}$

From the definition of \mathcal{G}_t , we have:

¹when agent receives reward, the agent is in time t+1

²for example, $P(S_a|S_t) = 0.5, P(S_b|S_t) = 0.5$ $a \neq b$

$$\begin{split} v_{\pi(s)} &= \mathbb{E}[G_t | s] = \mathbb{E}\big[\big(R_{t+1} + \gamma G_{t+1} \big) | s \big] \\ &= \mathbb{E}[R_{t+1} | S_t = s] + \gamma \mathbb{E}[G_{t+1} | S_t = s] \end{split} \tag{1.5}$$

Notice there $\mathbb{E}[G_{t+1}|S_t=s]$ can, t be simplified to $\mathbb{E}[G_{t+1}|s]$.

When agent in s at time t, it will be lots of prossible $S_{t+1}=s_i$ when take action a_i . We first consider $\mathbb{E}[R_{t+1}|s]$:

$$\begin{split} \mathbb{E}[R_{t+1}|S_t = s] &= \sum_{i}^{n} p(a_i|s,\pi) \mathbb{E}[R_{t+1}|S_t = s, A_t = a_i] \\ &= \sum_{i}^{n} \pi(a_i|s) \mathbb{E}[R_{t+1}|S_t = s, A_t = a_i] \\ &= \sum_{i}^{n} \pi(a_i|s) \sum_{i}^{m} p(r_j|s, a_i) r_j \end{split} \tag{1.6}$$

where n is number of possible actions in \mathcal{A}_s , m is the number of possible rewards in $\mathcal{R}_{s,a}$. Then we consider $\mathbb{E}[G_{t+1}|S_t=s]$

$$\mathbb{E}[G_{t+1}|S_t = s] = \sum_{i}^{l} P(s_i|s,\pi) \mathbb{E}[G_{t+1}|s_i] = \sum_{i}^{l} p(s_i|s,\pi) v_{\pi}(s_i)$$

$$= \sum_{i}^{l} p(a_i|s,\pi) p(s_i|a_i,s) v_{\pi}(s_i) = \sum_{i}^{l} \pi(a_i|s) p(s_i|a_i,s) v_{\pi}(s_i)$$
(1.7)

so finally we have:

$$v_{\pi(s)} = \sum_{i}^{n} \pi(a_{i}|s) \left[\sum_{j}^{m} p(r_{j}|s, a_{i})r_{j} + \gamma \sum_{k}^{l} p(s_{k}|s, a_{i})v_{\pi}(s_{k}) \right]$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \left[\sum_{r \in \mathcal{R}_{s}} p(r|s, a)r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a)v_{\pi}(s') \right] \quad \text{for all } s \in \mathcal{S}$$

$$(1.8)$$

where l is the number of possible states in \mathcal{S}_{t+1} when $S_t = s$.

And it is noteds below:

- The equation Gleichung (1.8) called the Bellman equation is a set of linear equations for all $s \in \mathcal{S}$.
- $\pi(s), \pi(s')$ is unknown and need to be solved.
- what is $\pi(a|s)$? $\pi(a_i|s) \equiv p(a_i|s,\pi)$
- $p(r|s, a) \neq 1, p(s'|s, a)$ represented the system model which can capture the strong randomness of the environment—meaning that the agent cannot know the exact subsequent state and reward even if it takes fixed action a in state s.

1.3 Matrix-vector form of the Bellman equation

For the bellman equation mentioned above, we can rewrite in another form (use some different notations).

$$\sum_{a \in \mathcal{A}} \pi(a|s) \left[\sum_{r \in \mathcal{R}_s} p(r|s, a)r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a)v_{\pi}(s') \right]$$
(1.9)

Firstly, we consider $\sum_{a \in \mathcal{A}} \pi(a|s) \sum_{r \in \mathcal{R}_s} p(r|s,a) r$

$$\begin{split} \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{r \in \mathcal{R}_s} p(r|s,a) r &= \sum_{a \in \mathcal{A}} \sum_{r \in \mathcal{R}_s} p(a|\pi,s) p(r|s,a) r \\ &= \sum_{r \in \mathcal{R}_s} p(r|s,\pi) r \\ &= \sum_{r \in \mathcal{R}_s} p_{\pi}(r|s) r \\ &= \mathbb{E}[R|s,\pi] \equiv r_{\pi(s)} \end{split} \tag{1.10}$$

It means the expected imediate reward when agent in state s following policy π . Secondly, we consider $\sum_{a\in\mathcal{A}}\pi(a|s)\sum_{s'\in\mathcal{S}}p(s'|s,a)v_{\pi}(s')$

$$\sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} p(s'|s,a) v_{\pi}(s') = \sum_{s' \in \mathcal{S}} p(s'|s,\pi) v_{\pi}(s') \tag{1.11}$$

And we notation $p(p'|s, \pi)$ as

$$p(s'|s,\pi)) \equiv p_{\pi}(s'|s) \tag{1.12}$$

so the second part of bellman equation can be rewritten as:

$$\sum_{s' \in \mathcal{S}} p(s'|s, \pi) v_{\pi}(s') = \sum_{s' \in \mathcal{S}} p_{\pi}(s'|s) v_{\pi}(s')$$
 (1.13)

The bellman equation can be rewritten as:

$$\begin{split} v_{\pi(s)} &= \sum_{a \in \mathcal{A}} \pi(a|s) \left[\sum_{r \in \mathcal{R}_s} p(r|s,a)r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)v_{\pi}(s') \right] \\ &= r_{\pi}(s) + \sum_{s' \in \mathcal{S}} p_{\pi}(s'|s)v_{\pi}(s') \end{split} \tag{1.14}$$

For all $s \in \mathcal{S}$, we notation s as s_i

$$v_{\pi}(s_{i}) = r_{\pi}(s_{i}) + \gamma \sum_{s' \in \mathcal{S}} p_{\pi}(s'|s_{i})v_{\pi}(s')$$

$$= r_{\pi}(s_{i}) + \gamma \sum_{j}^{n} p_{\pi}(s_{j}|s_{i})v_{\pi}(s_{j})$$
(1.15)

where n is the number of states in $\mathcal S$. Then , we define some vector notation:

$$\begin{aligned} v_{\pi} &= \left[v_{\pi}(s_{1}), v_{\pi}(s_{2}), ..., v_{\pi}(s_{n})\right]^{T} \\ r_{\pi} &= \left[r_{\pi}(s_{1}), r_{\pi}(s_{2}), ..., r_{\pi}(s_{n})\right]^{T} \\ P_{\pi}[i, j] &= p_{\pi}(s_{j}|s_{i}) \quad \left\{P_{\pi}[i, j] > 0, \sum (P_{\pi}[i, :]) = 1\right\} \end{aligned} \tag{1.16}$$

simply Gleichung (1.15) in matrix-vector form:

$$v_{\pi}(s_i) = r_{\pi}(s_i) + \gamma P_{\pi[i,:]} v_{\pi} \tag{1.17}$$

Take n = 1, 2, 3...n as example

$$\begin{split} v_{\pi}(s_1) &= r_{\pi}(s_1) + \gamma P_{\pi[1,:]} v_{\pi} \\ v_{\pi}(s_2) &= r_{\pi}(s_2) + \gamma P_{\pi[2,:]} v_{\pi} \\ & \dots \\ v_{\pi}(s_n) &= r_{\pi}(s_n) + \gamma P_{\pi[n,:]} v_{\pi} \end{split} \tag{1.18}$$

Obviously, we can rewrite above equations in matrix-vector form:

$$v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi} \tag{1.19}$$

1.4 Solving state values from the Bellman equation

1.4.1 close form solution

not applicable in practice because it involves a matrix inversion operation, which still needs to be calculated by other numerical algorithms

$$v_{\pi} = (I - \gamma P_{\pi})^{-1} r_{\pi} \tag{1.20}$$

1.4.2 Iterative solution

In fact, we can directly solve the Bellman equation using the following iterative algorithm

$$v_{k+1} = r_{\pi} + \gamma P_{\pi} v_k \tag{1.21}$$

where v_0 is a initial guess of v_{π} , and when $k \to \infty$, v_k will converge to v_{π} .

Proof is below:

First define $\delta_k = v_k - v_\pi$, we need to prove when $k \to \infty, \delta_k \to 0$

$$v_k = v_{\pi} + \delta_k \quad v_{k+1} = v_{\pi} + \delta_{k+1} \quad \dots$$
 (1.22)

Take Gleichung (1.22) into Gleichung (1.21), we have:

$$v_{\pi} + \delta_{k+1} = r_{\pi} + \gamma P_{\pi} (v_{\pi} + \delta_k) \tag{1.23}$$

Then simply the notation of δ_{k+1} and δ_k :

$$\delta_{k+1} = r_\pi + \gamma P_\pi \delta_k + \gamma P_\pi v_\pi - v_\pi \tag{1.24}$$

Use Gleichung (1.24) $v_\pi = r_\pi + \gamma P_\pi v_\pi$, we have:

$$\delta_{k+1} = \gamma P_{\pi} \delta_k = \gamma^k P_{\pi} \delta_0 \tag{1.25}$$

Since $\gamma \in (0,1), \text{when } k \to \infty, \gamma^k \to 0, \delta_{k+1} \to 0$.

1.5 From state value to action value

Finish the state value $v_{\pi(s)}$, we can easily get the action value $q_{\pi}(s,a)$ which means the agent expected reward when agent in state s and take action a:

$$\begin{split} q_{\pi}(s,a) &\equiv \mathbb{E}[G_t|S_t=s,A_t=a] \\ &\equiv \mathbb{E}[G_t|s,a] \end{split} \tag{1.26}$$

And use condition expectation, we have:

$$\begin{split} v_{\pi}(s) &= \mathbb{E}[G_t|s] = \sum_{a \in \mathcal{A}} \mathbb{E}[G_t|s,a]\pi(a|s) \\ &= \sum_{a \in \mathcal{A}} q_{\pi}(s,a)\pi(a|s) \end{split} \tag{1.27}$$

Then $v_{\pi}(s)$ can be represented by $q_{\pi}(s,a)$.

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[\sum_{r \in \mathcal{R}_s} p(r|s, a)r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a)v_{\pi}(s') \right]$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s, a) \underset{\text{Gleichung (1.27)}}{\longleftarrow} (1.28)$$

So we can notation $q_{\pi}(s, a)$ as:

$$q_{\pi}(s,a) = \sum_{r \in \mathcal{R}_s} p(r|s,a)r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a)v_{\pi}(s')$$
 (1.29)

Use q_{π} to replace $v_{\pi}(s')$ in Gleichung (1.29), we have:

$$\begin{split} v_{\pi}(s') &= \sum_{a' \in \mathcal{A}} q_{\pi}(s', a') \pi(a'|s') \\ q_{\pi}(s, a) &= \sum_{r \in \mathcal{R}_s} p(r|s, a) r + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a') \\ &= \sum_{r \in \mathcal{R}_s} p(r|s, a) r + \gamma \sum_{k} \frac{\operatorname{len}(\mathcal{S})}{p(s_k|s, a)} \sum_{l} \frac{\operatorname{len}(\mathcal{A})}{\pi(a_l|s_k)} q_{\pi}(s_k, a_l) \\ &= \sum_{r \in \mathcal{R}_s} p(r|s, a) r + \gamma \sum_{k} \sum_{l} \frac{\operatorname{len}(\mathcal{S})}{p(s_k|s, a)} \frac{\operatorname{len}(\mathcal{A})}{p_{\pi}(s_k|s, a)} \pi(a_l|s_k) q_{\pi}(s_k, a_l) \end{split} \tag{1.30}$$

And like state value , we can also rewrite the equation by matrix-vector form: (i = 1, 2, ..., len(S), j = 1, 2, ..., len(A))

$$q_{\pi} \left(s_i, a_j \right) = \sum_{r \in \mathcal{R}_s} p(r|s, a) r + \gamma \sum_k^{\operatorname{len}(\mathcal{S})} \sum_l^{\operatorname{len}(\mathcal{A})} p_{\pi} \left(s_k | s_i, a_j \right) \pi(a_l | s_k) q_{\pi}(s_k, a_l) \tag{1.31}$$

Notation some useful notation:

- 1. Notation q_{π} as a $|\mathcal{A}||\mathcal{S}| \times 1$ vector , and it can be accessed via the pair (i,j), where $i=1,2,...,|\mathcal{A}|,j=1,2,...,|\mathcal{S}|$
- 2. $P\Pi$ ia a $|\mathcal{A}||\mathcal{S}| \times |\mathcal{A}||\mathcal{S}|$ matrix, where the element at row pair (i,j) and column pair (k,l) is defined as:

$$p_{\pi}(s_k|s_i, a_i)\pi(a_l|s_k) \tag{1.32}$$

3. \tilde{r} is the immediate reward vector indexed by the state-action pairs (a, s), is also a $|\mathcal{A}||\mathcal{S}| \times 1$ vector. And the element at row pair (i, j) is defined as:

$$\sum_{r \in \mathcal{R}_s} p(r|s, a)r \tag{1.33}$$

So we have

$$q_{\pi}[(i,j),1] = \tilde{r}[(i,j),1] + \gamma P\Pi[(i,j),:]q_{\pi}$$

$$q_{\pi} = \tilde{r} + \gamma P\Pi q_{\pi}$$
(1.34)

2 Optimal State Values and Bellman Optimality Equation

参考文献