University of Rajshahi
Department of Computer Science and Engineering

B.Sc. Engg.(CSE) 1st Year 2016

Course: MATH1111(Algebra, Trigonometry and Vector)

Time: 3 Hrs. Full Marks: 52.5

[N.B. Answer SIXquestions taking at least THREE from each part.]

Part A

1.a) Define null set, subset, power set, union and intersection of two sets with example. b) Define one-one and onto functions. Can a constant function be one-one? Justify your answer. Show that if a relation R is transitive, then its inverse relation R^{I} is also transitive.	3 3 2.75
Use Cramer's rule to solve the system of linear equations: $x + y + z = 3$, $x + 2y + 3z = 6$, $5x + 8y + 11z = 24$.	
2.a) Show that in an equation with real coefficients imaginary roots occurs in pairs.	3
b) Solve the equation $54x^3 - 39x^2 - 26x + 16 = 0$, the roots being in geometrical progression.	3
c) In the equation $x^4 - x^3 - 7x^2 + x + 6 = 0$, find the value of S_4 .	2.75
3.a) If a,b,c are the roots of $x^3 + qx + r = 0$, find the equation whose roots are $bc + \frac{1}{a}$, $ca + \frac{1}{b}$, $ab + \frac{1}{c}$.	3.75
b) Solve the cubic equation $x^3 - 15x^2 - 33x + 847 = 0$ by Cardan's method.	3.73
If $x = cos\theta + isin\theta$ and $1 + \sqrt{1 - a^2} = na$ then prove that $1 + acos\theta = \frac{a}{2n}(1 + nx)(1 + \frac{n}{x})$	
4.a) If $x = \frac{2}{1!} - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \cdots \dots to \infty$ and $y = 1 + \frac{2}{1!} - \frac{2^3}{3!} + \frac{2^5}{5!} - \cdots \dots to \infty$ then show	3
that $x^2 = y$.	2.75
b) If i^{1} $A = A + iB$, then prove that $\tan \frac{\pi A}{2} = \frac{B}{A}$ and $A^2 + B^2 = e^{-\pi B}$.	3
c) Find the sum to infinity of the series $sin\theta.sin\theta - \frac{1}{2}sin2\theta.sin^2\theta + \frac{1}{2}sin3\theta.sin^3\theta \dots$	
Part B	
Define dot product of two vectors \vec{A} and \vec{B} . Prove that the area of a parallelogram with sides \vec{A} and	3
\vec{B} is $ \vec{A} \times \vec{B} $.	2.75
The property sector perpendicular to the plane of $A = 2\vec{\imath} - 6\vec{\jmath} - 3k$ and $B = 4i + 3j - k$.	
Show that the vectors $\vec{A} = 3\vec{i} - 2\vec{j} + \vec{k}$, $\vec{B} = \vec{i} - 3\vec{j} + 5\vec{k}$ and $\vec{C} = 2\vec{i} + \vec{j} - 4\vec{k}$ form a right angled triangle.	
angled triangle. Find a unit tangent vector to any point on the curve $x = t^2 + 1$, $y = 4t - 3$, $z = 2t^2 - 6t$. A	2.73
determine it where $t=2$. (b) A particle moves on a curve so that its position vector is given by $\vec{r} = coswt\vec{i} + \sin wt\vec{j}$, where is a constant. Show that the velocity of the particle is perpendicular to \vec{r} and the acceleration is directly in the particle is perpendicular to \vec{r} and the acceleration is directly in the particle is perpendicular to \vec{r} and the acceleration is directly in the particle is perpendicular to \vec{r} and the acceleration is directly in the particle is perpendicular to \vec{r} and the acceleration is directly in the particle in the particle is perpendicular to \vec{r} and the acceleration is directly in the particle in the particle is perpendicular to \vec{r} and the acceleration is directly in the particle in the part	
towards the origin. The curl of a vector field? Determine the value of λ so that	the 3
towards the origin. What is the physical significance of the curl of a vector field? Determine the value of λ so that vector field $\vec{v}(x, y, z) = (x + 3y)\vec{i} + (y - 2z)\vec{j} + (x + \lambda z)\vec{k}$ is solenoidal.	
vector field $v(x, y, z) = (x + 3y)^{x + 6}$	face 3
7. What is meant by $\nabla \varphi$, where φ is a scalar field? Find a unit normal to the sum φ is a scalar field?	race 3
$x^2y + 2xyz = 4$ at the point (2, -2, 3). b) Find angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2). b) Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$	and 3
$x^2 + z^2 = a^2$.	0 101
$ \oint_C (x^2 - 2xy) dx + (x^2y + 3) dy \text{ around the boundary of } x = 2. $ $ x = 3. $	
Verify Stroke's theorem for $A = y - z + 2y$ to $z = 0$, $y = 0$, $z = 0$, $z = 2$, $y = 2$, $z = 2$ above the xy plane.	

University of Rajshahi

Department of Computer Science and Engineering

B.Sc. (Engg.) Part-1 (Odd Semester) Examination-2015

Course: MATH-1111 (Algebra, Trigonometry and Vector)

Marks: 52.5	Course: MAIH-IIII (AI	gebra, Trigonometry and v	Time: 03 I	Hours.
	Answer any six (06) question	s taking three (03) from each	ch section]	
	<u>s</u>	ection-A		
1. a) Define null s	et and subset. State and prove	De Morgan's rule.		3 2.75
b) Define functi	on. Find the domain and range	e of the function $f(x) = \frac{x}{x}$	<u>-3</u> (+1	
c) Using Crame $x + y + z =$	T's rule solve the following sy 1; $x + 2y + 3z = 2$; $x + 4y$	stem: $+9z = 4$.		3
2.(a) Evaluate the	leterminant: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \end{vmatrix}$			3
b) Prove that in	$\begin{vmatrix} a^3 & b^3 & c^3 \end{vmatrix}$ an equation with real coeffici	ents imaginary roots occur	r in nairs	3
c) If a, b, c are the	the roots of the equation x^3 +	$px^2 + qx + r = 0, \text{ find th}$	the value of $\sum \frac{b^2+c^2}{bc}$.	2.75
3. a) Prove that eve	ry equation of n th degree has	exactly n roots and no mo	ore.	3
b) Solve the cub	c equation: $28x^3 - 9x^2 + 1$	= 0.		3
c) State Demoive	er's theorem and prove it wh	en n is fractional either po	ositive or negative.	2.75
	$+ i \sin \frac{\pi}{2r}$, then prove that, λ			3
b) If $(1+x)^n =$	$P_0 + P_1 x + P_2 x^2 + \cdots $ th	en show that, $P_1 - P_3 + P_3$	$P_5 - \dots = 2^{\frac{n}{2}} \sin \frac{n\pi}{4}$	/3
c) Solve $x^4 - 4x$	$^2 + 16 = 0$ using Demoive	r's theorem.		2.75
		Section-B >		
5 a) If $A + iB = lc$	g(x+iy), then show that	$B = \tan^{-1} \frac{y}{x}$ and $A = \frac{1}{2} la$	$og(x^2+y^2).$	2.75
), a) II i - C	's series prove that $\frac{\pi}{8} = \frac{1}{1.3}$	+ 1 + 1 + 1 +		3
c) Find the sum of	f the series cosec α + cosec	$c 2\alpha + cosec 2 \alpha + \cdots + c$	cosec 2 ⁿ⁻¹ a	3
(n: 11	tion of the vector $\vec{A} = \hat{\imath} - \hat{I}$	$2\hat{i} + \hat{k}$ on the vector $\bar{B} =$	$=4\hat{\imath}-4\hat{\jmath}+7\hat{k}.$	2.75
b) Find principal	normal and binormal at po	int t - ht to the com.		
			en hy	
c) Find the total v $\bar{F} = 3xv\hat{i} - 5z$	$y = 3 \sin t$, $2 - 10 \cos t$ Fork done in moving a part $\hat{j} + 10x\hat{k}$ along the curve	$x = 1 + t^2, y = 2t^2, z$	$= t^2$ from $t = 1$ to t	= 2.
a) Define gradient	and divergence. What is derivative of $\varphi = x^2yz$ at a, b, c so that $\overline{F} = (x - 1)$	the physical significance	e of gradient?	$\hat{i} - 2\hat{k}$. 2.
is irrotational.				
a) If $\overline{F} = 4xz\hat{i} - 1$	$(2\hat{j} + yz\hat{k}, \text{ evaluate } \iint_{S} dz$	$\bar{F}.\bar{n}$ ds where s is the	surface of the cube	bounded
bv r = 0 r = 1	y = 0, y = 1, z = 0, z = 0 eorem in the plane. Verify $+ x^2 dy$, where c is the		the plane for	
$y=x^2.$				

University of Rajshahi

Department of Computer Science and Engineering

B. Sc. (Engg.) Part-I Odd Semester Exam - 2014

Course: MATH-1111 (Algebra, Trigonometry and Vector Analysis)

Full Marks: 52.5 Time: 3 Hours

[N.B.: Answer any SIX questions taking THREE from each section. Marks for each question are shown on the right side margin.]

Section A

- 1. a) Explain the operations of union, intersection and difference of sets with the aid of 3 Venn-Euler diagrams.
 - b) Is there any difference between mappings and operators? Explain your answer. 2.75 Give an example of a relation which is not symmetric.
 - (C) Using Cramer's rule solve the following system:

$$3x - y + 2z = 7$$

$$2x + y + z = 7$$

$$x + y - 2z = -3$$

- Solve the cubic equation $3x^3 26x^2 + 52x 24 = 0$, the roots being in 2.75
 - geometrical progression. b) What is Descartes' rule of signs? Use the rule to find the nature of the roots of the 3 quintic equation $x^5 + 5x^4 - 20x^2 - 19x - 2 = 0$. Show that the equation has a real root between 2 and 3.
 - c) Obtain the value of S_6 in equation $x^3 x 1 = 0$.
- 3. a) Test the equation $2x^4 + x^3 6x^2 + x + 2 = 0$ whether it is reciprocal. If a, b and c 2.75 are roots of the equation $x^3 + qx + r = 0$, form the equation whose roots are $\frac{b+c}{a^2}$,

$$\frac{c+a}{b^2}$$
, $\frac{a+b}{c^2}$

- b) Solve the quartic equation $x^4 6x^3 + 12x^2 10x + 3 = 0$ which has equal roots.
- c) Use Cardan's method to solve the cubic equation $x^3 + 21x + 342 = 0$.
- 4. a) Mention some applications of Demoivre's theorem. With the aid of Demoivre's theorem solve the polynomial equation $x^7 + x^4 + x^3 + 1 = 0$.
 - b) If $x_r = \cos \frac{\Pi}{2^r} + i \sin \frac{\Pi}{2^r}$, prove that $x_1 x_2 x_3$to infinity = -1.
 - 2 c) If $\frac{Sinx}{x} = \frac{5045}{5046}$ then show that x is nearly 1°58'.

Section B

2.75

- a) Explain a technique to find the numerical value of Π using Gregory's series.
 - b) Show that $i^{i} = e^{-(4n+1)\frac{\Pi}{2}}$
 - c) Find the sum of the following series up to n terms

- (2.1) (2.2) (2.3)

 6. (a) Show graphically that $-(\vec{A} \vec{B}) = -\vec{A} + \vec{B}$. Graph the vector field defined by 3
 - $\vec{V}(x,y) = x\hat{i} + y\hat{j}$.

 (b) Show that commutative law for dot products is valid. Find the projection of the vector $2\hat{i} 3\hat{j} + 6\hat{k}$ on the vector $\hat{i} + 2\hat{j} + 3\hat{k}$. Draw a rough sketch of it.
 - (c) Show that $\vec{A} \cdot (\vec{B} \times \vec{C}) = \vec{B} \cdot (\vec{C} \times \vec{A}) = \vec{C} \cdot (\vec{A} \times \vec{B})$.
- 7. (a) A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \, \hat{i} + \sin \omega t \, \hat{j}$, where ω is a constant. Show that
 - (i) the velocity \overrightarrow{v} of the particle is perpendicular to \overrightarrow{r} .
 - (ii) $\overrightarrow{r} \times \overrightarrow{v}$ is a constant vector.
 - (b) Show that $\overrightarrow{div.curl} \stackrel{\rightarrow}{A} = 0$.
 - © If $\vec{\nabla} \cdot \vec{E} = 0$, $\vec{\nabla} \cdot \vec{H} = 0$, $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{H}}{\partial t}$, $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{E}}{\partial t}$, show that \vec{E} and \vec{H} satisfy $\nabla^2 \vec{u} = \frac{\partial^2 \vec{u}}{\partial t^2}.$
- 8. (a) The acceleration of a particle at any time t given by $\vec{a} = \frac{d\vec{v}}{dt} = 12\cos 2t \,\hat{i} 8\sin 2t \,\hat{j} + 16t \,\hat{k}.$

If the velocity \overrightarrow{v} and displacement \overrightarrow{r} are zero at t=0, find \overrightarrow{v} and \overrightarrow{r} at any time.

- b) Find the value of $\int_{-3}^{3} \int_{0}^{4} \int_{2}^{5} (x+y+z)dzdydx.$ 2.75
- c) State Green's theorem. Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$.

University of Rajshahi Department of Computer Science and Engineering B. Sc. (Engg.) Examination-2013, Part-1, Odd Semester Course: MATH-1111 (Algebra, Trigonometry, Vector Analysis) Full Marks-52.5 Time: 4 hours

[N. B: Answer any six questions taking three from each group]

1.	2)	PA PA	RT-A		3
		State and prove De-Morgan's Laws.			3
		show that $a + b\omega$	$+ c\omega^2 + d\omega^3$ is a	a factor of	
		L D C	d		
		D C d a	a b		
		d a b	C		
	H c)	ence show that the determinant is equal to Solve the following system of linear equal	-(a+b+c+d)ations (By Cran	$(a - b + c - d)[(a - c)^2 + (b - d)^2].$ ner's rule)	2.75
		x-2y+3z=11 $2x+y+2z=10$ $3x+2y+z=9$			
					3
2.	a)	Define the complement of a set. Prove t	hat $B-A^{c}=B$	1 A. Phifa h is divisible by 2. Show	3
	b)	Let S be the set of all integers. Given a,	b ∈ 5 define a	RO II a-0 IS divisione by 2.	
	-	that the relation R defines an equivalence What is the difference between an into	function and ar	onto function?	2.75
	c)				
3.	2	If a, b, c are the roots of $x^3 - 3qx + s = 0$	0, show that the	e equation whose roots are a-b, b-c,	3
		$c-a$ is $x^3 + 90x + 3k = 0$, where $k^2 = 3(4)$	+q -s).		3
	h	1 0 1 3 10-2 Cm 10-0 by Cardan	's method.		2.75
	C	Solve $x^2 - 12x^2 - 6x - 10 = 0$ by Cardan) If the roots of $x^n - 1 = 0$ are 1 , α , β , γ ,	show that (1-0	α) $(1-\beta)(1-\gamma)=n$.	
					3
4.	a	State De-Moiver's theorem and find the If $x = \frac{2}{1!} - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \cdots \infty$ and $y = \frac{1}{1!} - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \cdots \infty$	e value of (1) (-	25 2	3
	b)	If $x = \frac{2}{3} - \frac{4}{3!} + \frac{6}{3!} - \frac{8}{3!} + \cdots \infty$ and y=	$1 + \frac{1}{1!} - \frac{1}{3!} + \frac{1}{3!}$	to ∞, snow that x -y.	
		If $x + \frac{1}{x} = 2\cos\theta$, then show that If x^n	$+\frac{1}{2} = 2\cos \theta$	nθ.	2.75
	c)	If $x + \frac{1}{x} = 20050$, then show that $x = \frac{1}{x}$	x ⁿ		
			PART-B		
		where a and h are	real.		3
5.	a)	Evaluate Log(a+ib), where a and b are Express Log {Log (cosθ+isinθ)} in the			3
	b)	Express Log {Log (coso+isino)} in the If tan Log(x+iy) = a+ib, where $a^2 + b^2$	→ 1 prove th	at tan $\log (x^2 + y^2) = \frac{2a}{\sqrt{2a^2}}$	2.75
	c)	If $tan Log(x+iy) = a+ib$, where $a + b$	+ 1, prove th	$1-(a^2+b^2)$	
				1 Decale Corion	3
6.	a)	Find the numerical value of π to 4 place	ces of decimal	is by Dase's Series.	
0.	b)	Find the numerical value of π to 4 place. Find the summation of the following s	series to n term	ns: tand + ztanzu + z tanz u ·····	2.75
	c)	Show that coshθ is periodic.			
				1 1' 1 the conton	3
7.	150	Define the dot product of two vectors	s. Find the ang	gles which the vector	
1.	(4)	$\Rightarrow = 3i - 6j + 2k \text{ makes with the con}$	ordinate axes.		2.75
		A			2.13
	(b)	Prove that $\overrightarrow{A} \cdot \left(\overrightarrow{A} \times \overrightarrow{C} \right) = 0$.		2 22	6+ 3
	6	Prove that $\overrightarrow{A} \cdot (\overrightarrow{A} \times \overrightarrow{C}) = 0$. Find the unit tangent vector to any po	int on the cur	$ve x = t^2 + 1, y = 4t - 3, z = 2t^2 - 1$	ot. 3
	0				
	16	Define the curl of a differential vector	r field. Show	that $\nabla \times (\nabla \varphi) = 0$.	3
8.	(a) (b)	Find the volume of the region commo	on to the inter	rsecting cylinders $x^2 + y^2 = a^2$ an	d 2.75
	(p)	Find the volume of the region comme	on to the mis.		
()	^	$x^2+z^2=a^2$.	rem of Gauss		3
) (9)	State and prove the Divergence Theo	Icili of Gauss		

University of Rajshahi Department of Computer Science and Engineering B.Sc. Engg. (CSE) 1" Year Odd Semester 2012 Course: MATH 1111(Algebra, Trigonometry and Vector Analysis) Time: 4 Hrs Full Marks: 52.5 [N.B. Answer any SIX questions taking at least THREE from each part]

Section A

 a) Define function. Find the domain and range of f given by y = f(x) = x-1/(2x-3). x, y ∈ ℝ b) Define difference of two sets. Prove AU(B∩C)=(AUB)∩(BUC). c) Solve the system of equations using Cramer's rule x+2y-z=4, x+4y-2z=-6, 2x+3y+z=3 	2.75
 2. a) State and prove De Moivre's theorem for positive integer n. b) Prove that sin α=α - α³/_{3!} + α⁵/_{5!} + ··· to infinity term c) Expand tanx in power of x as far as the term involving x⁶ 	3 3 2.75
3. a) Prove that if $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of the equation. $f(x) = c_0 x'' + c_1 x^{n-1} + \ldots + c_n = 0$, then the sum of the roots is $-\frac{c_1}{c_0}$, the sum of the products of roots taken two at a time is $-\frac{c_2}{c_0}$, the sum of products of the roots taken tree at a time is $-\frac{c_3}{c_0}$, etc, finall the product of all the roots is equal to $(-1)^n \frac{c_n}{c_0}$	y
 b) If a, b, c are roots of the equation x³+p₁x²+p₂x+p₃=0, form the equation whose roots are α²,b²,c². c) State Descartes' rule of signs, Find the nature of the roots of the equation x9+5x8-x3+7x+2= 	0 2.75
 4. a) Prove that in an equation with real coefficients imaginary roots occur in pairs. b) Solve the cubic equation x³-15x-126=0 C Solve the equation 3x³-26x²+52x-24=0, the roots being in geometrical progression. 	2.75 3 3
Section B Separate $log(a+ib)$ into real and imaginary parts.	3 3
b) Show that $i^{i} = e^{-(4n+1)} \pi/2$ c) Using Gregory's series show that $\pi = \frac{8}{1.3} + \frac{8}{9.11} + \cdots$	2.75
a) Sum to n terms the series $\cot^{1}(2.1^{2})+\cot^{1}(2.2^{2})+\cot^{1}(2.3^{2})+\dots$ b) If $\sin^{-1}(u+iv)=\alpha+i\beta$ prove that $\sin^{2}\alpha$ and $\cosh^{2}\beta$ are roots of the ex $x^{2}-x(1+u^{2}+v^{2})+u^{2}=0$	2.75 quation 3
c) Sum to n terms the series $\sqrt{1 + \sin\alpha} + \sqrt{1 + \sin2\alpha} + \sqrt{1 + \sin2\alpha}$ and $\vec{R} = 4\hat{i} + 3\hat{j} - \hat{k}$.	3 2.75
Find the projection of $A = 6i-2j+3k$ on $B = 4i+7$ so $A = 6i-2j+3k$ on $B = 4i+7$ so $A = 6i-2j+3k$ on $A = 6i-2j+3k$	ty \vec{V} and $\vec{3}$
a) If $\vec{A} = x^2yz\hat{\imath}-2xz^3\hat{\jmath}+xz^2\hat{k}$ and $\vec{B} = 2z\hat{\imath}+y\hat{\jmath}-x^2\hat{k}$, find $\frac{\delta^2}{\delta x \delta y}(\vec{A} \times \vec{B})$ at $(1,0,-2)$. b) If $\vec{\nabla} \cdot \vec{E} = 0$, $\vec{\nabla} \cdot \vec{H} = 0$, $\vec{\nabla} \times \vec{E} = -\frac{\delta \vec{H}}{\delta t}$, $\vec{\nabla} \times \vec{H} = \frac{\delta \vec{E}}{\delta t}$, show that \vec{E} and \vec{H} satisfy $\nabla^2 \vec{u} = 0$. c) The acceleration of a particle at any time $t \ge 0$ is given by $\vec{a} = \frac{d\vec{v}}{dt} = 12\cos 2t\hat{\imath} - 16t\hat{k}$, if the velocity \vec{V} and displacement \vec{r} are zero at $t = 0$, find \vec{V} and \vec{r} at any time	$\frac{\delta^2 \vec{u}}{\delta t^2} = 3$ $-8\sin 2t\hat{j} + 3$