University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Katarzyna Kowalska

Student no. 371053

Approximation and Parametrized Algorithms for Segment Set Cover

Master's thesis in COMPUTER SCIENCE

Supervisor: dr Michał Pilipczuk Instytut Informatyki

10 Supervisor's statement

- Hereby I confirm that the presented thesis was prepared under my supervision and that it fulfils the requirements for the degree of Master of Computer Science.
- Date Supervisor's signature

$_{14}$ Author's statement

Hereby I declare that the presented thesis was prepared by me and none of its contents was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic degree.

Moreover, I declare that the present version of the thesis is identical to the attached electronic version.

21 Date Author's signature

22	${f Abstract}$
23 24	The work presents a study of different geometric set cover problems. It mostly focuses on segment set cover and its connection to the polygon set cover.
25	${f Keywords}$
26 27	set cover, geometric set cover, FPT, W[1]-completeness, APX-completeness, PCP theorem, NP-completeness
28	Thesis domain (Socrates-Erasmus subject area codes)
29 30	11.3 Informatyka
31	Subject classification
32 33 34	D. Software D.127. Blabalgorithms D.127.6. Numerical blabalysis
35	Tytuł pracy w języku polskim
36	Algorytmy parametryzowania i trudność aproksymacji problemu pokrywania zbiorów

odcinkami na płaszczyźnie

38 Contents

39	1.	Introduction	5	
40	2.	Definitions	7	
41		2.1. Geometric Set Cover	7	
42		2.2. Approximation	7	
43		2.3. δ -extensions	7	
44	3.	Geometric Set Cover with segments	9	
45		3.1. FPT for segments	9	
46		3.1.1. Axis-parallel segments	9	
47		3.1.2. Segments in arbitrary directions	9	
48		· · · · · · · · · · · · · · · · · · ·	11	
49			11	
50			13	
51			13	
52			14	
53		0 0	 16	
54			18	
55		v	18	
56		v	18	
57		1	22	
58			24	
59		What is missing		
59				
60	4.		29	
61		±	29	
62		U	29	
63		4.3. APX-completeness for arbitrary lines	29	
64		4.4. 2-approximation for arbitrary lines	30	
65		4.5. Connection with general set cover	30	
66	5 .	Geometric Set Cover with polygons	31	
67		5.1. State of the art	31	
	G	Conclusions	22	

69 Chapter 1

Introduction

The Set Cover problem is one of the most common NP-complete problems. [tutaj referencja]
We are given a family of sets and have to choose the smallest subfamily of these sets that cover
all their elements. This problem naturally extends to settings were we put different weights
on the sets and look for the subfamily of the minimal weight. This problem is NP-complete
even without weights and if we put restrictions on what the sets can be. One of such variants
is Vertex Cover problem, where sets have size 2 (they are edges in a graph).

In this work we focus on another such variant where the sets correspond to some geometric shapes and only some points of the plane have to be covered. When these shapes are rectangles with edges parallel to the axis, the problem can be proven to be W[1]-complete (solution of size k cannot be found in $n^o(k)$ time), APX-complete (for suffciently small $\epsilon > 0$, the problem does not admit $1 + \epsilon$ -approximation scheme) [refrencje].

Some of these settings are very easy. Set cover with lines parallel to one of the axis can be solved in polynomial time.

There is a notion of δ -expansions, which loosen the restrictions on geometric set cover. We allow the objects to cover the points after δ -expansion and compare the result to the original setting. This way we can produce both FPT and EPTAS for the rectangle set cover with δ -extensions [referencie].

Our contribution. In this work, we prove that unweighted geometric set cover with segments is fixed parameter tractable (FPT).

Moreover, we show that geometric set cover with segments is APX-complete for unweighted axis-parallel segments, even with 1/2-extensions. So the problem for very thin rectangles also can't admit PTAS. Therefore, in the efficient polynomial-time approximation scheme (EPTAS) for *fat polygons* by [Har-Peled and Lee, 2009], the assumption about polygons being fat is necessary.

Finally, we show that geometric set cover with weighted segments in 3 directions is W[1]-complete. However, geometric set cover with weighted segments is FPT if we allow δ -extension.

This result is especially interesting, since it's counter-intuitive that the unweighed setting is FPT and the weighted setting is W[1]-complete. Most of such problems (like vertex cover or [wiecej przykladow]) are equally hard in both weighted and unweighted settings.

Chapter 2

Definitions

103 2.1. Geometric Set Cover

In the geometric set cover problem we are are given \mathcal{P} – a set of objects, which are connected subsets of the plane, \mathcal{C} – a set of points in the plane. The task is to choose $\mathcal{R} \subseteq \mathcal{P}$ such that every point in \mathcal{C} is inside some element from \mathcal{R} and $|\mathcal{R}|$ is minimized.

In the parametrized setting for a given k, we only look for a solution \mathcal{R} such that $|\mathcal{R}| \leq k$.

In the weighted setting, there is some given weight function $f: \mathcal{P} \to \mathbb{R}^+$, and we would like to find a solution \mathcal{R} that minimizes $\sum_{R \in \mathcal{R}} f(R)$.

110 2.2. Approximation

Let us recall some definitions related to optimization problems that are used in the following sections.

Definition 1. A polynomial-time approximation scheme (PTAS) for a minimization problem Π is a family of algorithms \mathcal{A}_{ϵ} for every $\epsilon > 0$ such that \mathcal{A}_{ϵ} takes an instance I of Π and in polynomial time finds a solution that is within a factor $(1+\epsilon)$ of being optimal. That means the reported solution has weight at most $(1+\epsilon)opt(I)$, where opt(I) is the weight of an optimal solution for I.

Definition 2. A problem Π is **APX-hard** if assuming $P \neq NP$, there exists $\epsilon > 0$ such that there is no polynomial-time $(1 + \epsilon)$ -approximation algorithm for Π .

$_{ ext{0}}$ 2.3. δ -extensions

121 TODO PLACEHOLDER for introductory text

 δ -extensions is one of the modifications to a problem, that makes geometric set cover problem easier, it has been already used in literature (place some refrence here).

Definition 3 (δ -extensions for center-symmetric objects). For any $\delta > 0$ and a center-symmetric object L with centre of symmetry $S = (x_s, y_s)$, the δ -extension of L is the object $L^{+\delta} = \{(1+\delta) \cdot (x-x_s, y-y_s) + (x_s, y_s) : (x,y) \in L\}$, that is, $L^{+\delta}$ is the image of L under homothety centered at S with scale $(1+\delta)$

The geometric set cover problem with δ -extensions is a modified version of geometric set cover where:

- We need to cover all the points in C with objects from $\{P^{+\delta}: P \in P\}$ (which always include no fewer points than the objects before δ -extensions);
- We look for a solution that is no larger than the optimum solution for the original problem. Note that it does not need to be an optimal solution in the modified problem.
- Formally, we have the following.

Definition 4 (Geometric set cover problem with δ-extensions). The geometric set cover problem with δ-extensions is the problem where for an input instance $I = (\mathcal{P}, \mathcal{C})$, the task is to output a solution $\mathcal{R} \subseteq \mathcal{P}$ such that the δ-extended set $\{R^{+\delta} : R \in \mathcal{R}\}$ covers \mathcal{C} and is no larger than the optimal solution for the problem without extensions, i.e. $|\mathcal{R}| \leq |opt(I)|$.

TODO: Some text

130

131

Definition 5 (Geometric set cover PTAS with δ-extensions). We define a PTAS for geometric set cover with δ-extensions as a family of algorithms $\{\mathcal{A}_{\delta,\epsilon}\}_{\delta,\epsilon>0}$ that each takes as an input instance $I = (\mathcal{P}, \mathcal{C})$, and in polynomial-time outputs a solution $\mathcal{R} \subseteq \mathcal{P}$ such that the δ-extended set $\{R^{+\delta}: R \in \mathcal{R}\}$ covers \mathcal{C} and is within a $(1+\epsilon)$ factor of the optimal solution for this problem without extensions, i.e. $(1+\epsilon)|\mathcal{R}| \leq |opt(I)|$.

¹⁴⁵ Chapter 3

Geometric Set Cover with segments

$_{147}$ 3.1. FPT for segments

In this section we consider the fixed-parameter tractable algorithms for unweighted geometric set cover with segments. Setting where segments are limited to be axis-parallel (or limited to constant number of directions) has an FPT algorithm already present in literature. We present an FPT algorithm for unweighted geometric set cover with segments, where segments are in arbitrary directions.

3.1.1. Axis-parallel segments

155

156

157

158

159

161

162

163

164

165

166

168

169

170

171

You can find this in Platypus book. (TODO add referece)

We show an $\mathcal{O}(2^k)$ -time branching algorithm. In each step, the algorithm selects a point a which is not yet covered, branches to choose one of the two directions, and greedily chooses a segment in that direction to cover a. This proceeds until either all points are covered or k segments are chosen.

Let us take the point $a = (x_a, y_a)$ which is the smallest among points that are not yet covered in the lexicographic ordering of points in \mathbb{R}^2 . We need to cover a with some of the remaining segments.

Branch over the choice of one of the coordinates (x or y); without loss of generality, let us assume we chose x. Among the segments lying on line $x = x_a$, we greedily add to the solution the one that covers the most points. As a was the smallest in the lexicographical order, then all points on line $x = x_a$ have the y-coordinate larger than y_a . Therefore, if we denote the greedily chosen segment as s, then any other segment on $x = x_a$ that covers a can only cover a (possibly improper) subset of points covered by s. Thus, greedily choosing s is optimal.

In each step of the algorithm we add one segment to the solution, thus each branch can stop at depth k. If no branch finds a solution, then that means a solution of size at most k does not exist.

TODO: Maybe split it into theorem + algorithm + explanation like in section 3.1.2

Remark 1. The same algorithm can be used for segments in d directions, where we branch over d directions and it runs in complexity $\mathcal{O}(d^k)$.

3.1.2. Segments in arbitrary directions

In this section we consider setting where segments are not constrained to only d directions.

We present a fixed-parameter tractable algorithm, where parameter is the size of the solution.

Theorem 1. (FPT for segment cover). There exists an algorithm that given a family \mathcal{P} of n segments (in any direction), a set of m points \mathcal{C} and a parameter k, runs in time $k^{O(k)} \cdot (nm)^2$, and outputs a subfamily $\mathcal{R} \subseteq \mathcal{P}$ such that $|\mathcal{R}| \leq k$ and \mathcal{R} covers all points in \mathcal{C} , or determines that such a set \mathcal{R} does not exist.

We will need the following lemmas.

Lemma 1. Given an instance $(\mathcal{P}, \mathcal{C})$ of the segment cover problem, without a loss of generality we can assume that no segment covers a superset of what another segment covers. That is, for any distinct $A, B \in \mathcal{P}$, we have $A \cap C \not\subseteq B \cap C$ and $A \cap C \not\supseteq B \cap C$.

Proof. Trivial.

Lemma 2. Given an instance $(\mathcal{P}, \mathcal{C})$ of the segment cover problem, if there exists a line L with at least k+1 points on it, then there exists a subset $\mathcal{A} \subseteq \mathcal{P}$, $|\mathcal{A}| \leq k$, such that every solution \mathcal{R} with $|\mathcal{R}| \leq k$ satisfies $|\mathcal{A} \cap \mathcal{R}| \geq 1$. Moreover, such a subset can be found in polynomial time.

190 Proof. First we use Lemma 1.

Let us enumerate the points from C that lie on L as $x_1, x_2, \ldots x_t$ in the order in which they appear on L. Every segment that is not collinear with L can cover at most one of these points. Therefore, in any solution of size not larger than k, among any k of these points at least one must be covered with segment collinear with L.

Therefore, every solution needs to take one of the segments collinear with L that covers any of the points $x_1, x_2, \ldots x_k$. After using reduction from Lemma 1, there are at most k such segments that are distinct.

We are ready to prove Theorem 1.

199 Proof of Theorem 1.

We will prove this theorem by presenting a branching algorithm that works in desired complexity. It branches over the choice of segments to cover lines with a lot of points, then finally solving the small instance, where every line has at most k points by checking all possible solutions.

Algorithm. First we use Lemma 1.

Next, we present a recursive algorithm. Given an instance of the problem:

- (1) If there exist a line with at least k+1 points from \mathcal{C} , we branch over adding to the solution one of the at most k possible segments provided by Lemma 2; name this segment S. Then we find a solution \mathcal{R} for the problem for points $\mathcal{C} S$, segments $\mathcal{P} \{S\}$, and parameter k-1. We return $\mathcal{R} \cup \{S\}$.
- (2) If every line has at most k points on it and $|\mathcal{C}| > k^2$, then answer NO.
- (3) If $|\mathcal{C}| < k^2$, solve the problem by brute force: check all subsets of \mathcal{P} of size at most k.

Correctness. Lemma 2 proves that at least one segment that we branch over in (1) must be present in every solution \mathcal{R} with $|\mathcal{R}| \leq k$. Therefore, the recursive call can find a solution, provided there exists one.

In (2) the answer is no, because every line covers no more than k points from \mathcal{C} , which implies the same about every segment from \mathcal{P} . Under this assumption we can cover only k^2 points with a solution of size k, which is less than $|\mathcal{C}|$.

Checking all possible solutions in (3) is trivially correct.

- Complexity. In the leaves of recursion we have $|\mathcal{C}| \leq k^2$, so $|\mathcal{P}| \leq k^4$, because every segments can be uniquely identified by the two extreme points it covers (by Lemma 1).

 Therefore, there are $\binom{k^4}{k}$ possible solutions to check, each can be checked in time $O(k|\mathcal{C}|)$.

 Therefore, (3) takes time $k^{O(k)}$.
- In this branching algorithm our parameter k is decreased with every recursive call, so we have at most k levels of recursion with branching over k possibilites. Candidates to branch over can be found on each level in time $O((nm)^2)$.

- Reduction from Lemma 1 can be implemented in time $O(n^2m)$.
- It follows that the overall complexity is $O((nm)^2 \cdot k^O(k))$

$_{28}$ 3.2. APX-completeness for segments parallel to axes

- In this section we analyze whether there exists PTAS for geometric set cover for rectangles.
- We show that we can restrict this problem to a very simple setting: segments parallel to axes
- and allow (1/2)-extension, and the problem is still APX-hard. Note that segments are just
- degenerated rectangles with one side being very narrow.
- Our results can be summarized in the following theorem and this section aims to prove it.
- Theorem 2. (axis-parallel segment set cover with 1/2-extension is APX-hard).
- Unweighted geometric set cover with axis-parallel segments in 2D (even with 1/2-extension)
- is APX-hard. That is, assuming $P \neq NP$, there does not exist a PTAS for this problem.
- Theorem 2 implies the following.
- Corollary 1. (rectangle set cover is APX-hard). Unweighted geometric set cover with rectangles (even with 1/2-extension) is APX-hard.
- We prove Theorem 2 by taking a problem that is APX-hard and showing a reduction. For this problem we choose MAX-(3,3)-SAT which we define below.

3.2.1. MAX-(3,3)-SAT and statement of reduction

- Definition 6. MAX-3SAT is the following maximization problem. We are given a 3-CNF formula, and need to find an assignment of variables that satisfies the most clauses.
- Definition 7. MAX-(3,3)-SAT is a variant of MAX-3SAT with an additional restriction
- that every variable appears in exactly 3 clauses. Note that thus, the number of clauses is
- equal to the number of variables.
- In our proof of Theorem 2 we use hardness of approximation of MAX-(3,3)-SAT proved in [Håstad, 2001] and described in Theorem 3 below.
- **Definition 8** (α -satisfiable MAX-3SAT formula). MAX-3SAT formula of size n is at most α -satisfiable, if every assignment of variables satisfies no more than αn clauses.
- 252 Theorem 3. [Håstad, 2001]
- For any $\epsilon > 0$, it is NP-hard to distinguish satisfiable (3,3)-SAT formulas from at most (7/8 + ϵ)-satisfiable (3,3)-SAT formulas.

Given an instance I of MAX-(3,3)-SAT, we construct an instance J of axis-parallel segment set cover problem, such that for a sufficiently small $\epsilon > 0$, a polynomial time $(1 + \epsilon)$ approximation algorithm for J would be able to distinguish whether an instance I of MAX(3,3)-SAT is fully satisfiable or is at most $(7/8+\epsilon)$ -satisfiable. However, according to (Theorem
3) the latter problem is NP-hard. This would imply P = NP, contradicting the assumption.

The following lemma encapsulates the properties of the reduction described in this section, and it allows us to prove Theorem 2.

Lemma 3. Given an instance S of MAX-(3,3)-SAT with n variables and optimum value opt(S), we can construct an instance I of geometric set cover with axis-parallel segments in 2D, such that:

- 265 (1) For every solution X of instance I, there exists a solution of S that satisfies at least 15n-|X| clauses.
- (2) For every solution of instance S that satisfies w clauses, there exists a solution of I of size 15n-w.
- 269 (3) Every solution with 1/2-extensions of I is also a solution to the original instance I.

 270 Therefore, the optimum size of a solution of I is opt(I) = 15n opt(S).

We prove Lemma 3 in subsequent sections, but meanwhile let us prove Theorem 2 using Lemma 3 and Theorem 3.

273 Proof of Theorem 2.

275

277 278

279

280

281

284

Consider any $0 < \epsilon < 1/(15 \cdot 8)$.

Let us assume that there exists a polynomial-time $(1 + \epsilon)$ -approximation algorithm for unweighted geometric set cover with axis-parallel segments in 2D with (1/2)-extensions. We construct an algorithm that solves the problem stated in Theorem 3, thereby proving that P = NP.

Take an instance S of MAX-(3,3)-SAT to be distinguished and construct an instance of geometric set cover I using Lemma 3. We now use the $(1 + \epsilon)$ -approximation algorithm for geometric set cover on I. Denote the size of the solution returned by this algorithm as approx(I). We prove that if in S one can satisfy at most $(\frac{7}{8} + \epsilon)n$ clauses, then $approx(I) \ge 15n - (\frac{7}{8} + \epsilon)n$ and if S is satisfiable, then $approx(I) < 15n - (\frac{7}{8} + \epsilon)n$.

Assume S satisfiable. From the definition of S being satisfiable, we have:

$$opt(S) = n.$$

From Lemma 3 we have:

$$opt(I) = 14n.$$

Therefore,

$$approx(I) \le (1+\epsilon)opt(I) = 14n(1+\epsilon) = 14n + 14\epsilon \cdot n =$$

$$= 14n + (15\epsilon - \epsilon)n < 14n + \left(\frac{1}{8} - \epsilon\right)n = 15n - \left(\frac{7}{8} + \epsilon\right)n$$

Assume S is at most $(\frac{7}{8} + \epsilon)$ satisfiable. From the defintion of S being at most $(\frac{7}{8} + \epsilon)$ n satisfiable, we have:

$$opt(S) \le \left(\frac{7}{8} + \epsilon\right)n$$

From Lemma 3 we have:

$$opt(I) \geq 15n - \left(\frac{7}{8} + \epsilon\right)n$$

Since a solution to I with $\frac{1}{2}$ -extensions is also a solution without extentions, by Lemma 3 (3.), we have:

$$approx(I) \ge opt(I) = 15n - \left(\frac{7}{8} + \epsilon\right)n$$

Therefore, by using the assumed $(1 + \epsilon)$ -approximation algorithm, it is possible to distinguish the case when S is satisfiable from the case when it is at most $(\frac{7}{8} + \epsilon)n$ satisfiable, it suffices to compute approx(I) with $15n - (\frac{7}{8} + \epsilon)n$. Hence, the assumed approximation algorithm cannot exist, unless P = NP.

3.2.2. Reduction

291

298

We proceed to the proof of Lemma 3. That is, we show a reduction from MAX-(3,3)-SAT problem to geometric set cover with segments parallel to axis. Moreover, the obtained instance of geometric set cover will be robust to 1/2-extensions (have the same optimal solution after 1/2-extension).

The construction will be composed of 2 types of gadgets: **VARIABLE-gadgets** and **CLAUSE-gadgets**. CLAUSE-gadgets would be constructed using two **OR-gadgets** connected together.

299 3.2.2.1. VARIABLE-gadget

VARIABLE-gadget is responsible for choosing the value of a variable in a CNF formula. It allows two minimum solutions of size 3 each. These two choices correspond to the two Boolean values of the variable corresponding to this gadget.

Points. Define points a, b, c, d, e, f, g, h as follows, where L = 12n:

Figure 3.1: **VARIABLE-gadget.** We denote the set of points marked with black circles as $pointsVariable_i$, and they need to be covered (are part of the set \mathcal{C}). Note that some of the points are not marked as black dots and exists only to name segments for further reference. We denote the set of red segments as $chooseVariable_i^{false}$ and the set of blue segments as $chooseVariable_i^{true}$.

$$a = (-L, 0)$$
 $b = (-\frac{2}{3}L, 0)$ $c = (-\frac{1}{3}L, 0)$ $d = (-L, 1)$
 $e = (-\frac{2}{3}L, 1)$ $f = (-\frac{2}{3}L, 2)$ $g = (L, 0)$ $h = (L, 2)$

Let us define:

pointsVariable =
$$\{a, b, c, d, e, f\}$$

and

304

$$pointsVariable_i = pointsVariable + (0, 4i)$$

We denote $a_i = a + (0, 4i)$ etc.

306 **Segments.** Let us define:

$$\begin{aligned} &\mathsf{chooseVariable}_i^{true} = \{(a_i, d_i), (b_i, f_i), (c_i, g_i)\} \\ &\mathsf{chooseVariable}_i^{false} = \{(a_i, c_i), (d_i, e_i), (f_i, h_i)\} \end{aligned}$$

 $\mathsf{segmentsVariable}_i^{} = \mathsf{chooseVariable}_i^{true} \cup \mathsf{chooseVariable}_i^{false}$

Lemma 4. For any $1 \le i \le n$, points in pointsVariable_i can be covered using 3 segments from segmentsVariable_i.

2009 Proof. We can use either set chooseVariable_i or chooseVariable_i \Box

Lemma 5. For any $1 \le i \le n$, points in pointsVariable_i can not be covered with fewer than 3 segments from segmentsVariable_i.

Proof. No segment of segments Variable_i covers more than one point from $\{d_i, f_i, c_i\}$, therefore points Variable_i can not be covered with fewer than 3 segments.

Lemma 6. For every set $A \subseteq \text{segmentsVariable}_i \ such \ that \ A \ covers \ \mathsf{pointsVariable}_i \ and (c_i, g_i), (f_i, h_i) \in A, \ it \ holds \ that \ |A| \ge 4.$

Proof. No segment from segments Variable_i covers more than one point from $\{a_i, e_i\}$, therefore points Variable_i - $\{c_i, f_i, g_i, h_i\}$ can not be covered with fewer than 2 segments.

318 3.2.2.2. OR-gadget

OR-segment connects input and output segments that are connected to other parts of constructions.

Output segment is part of OR-segment, but iunput is not.

For every solution \mathcal{R} of the whole construction. Define \mathcal{R}' as intersection of \mathcal{R} and the gadget segments. Minimum solution of OR-gadget has size w, i.e. $\mathcal{R}' \leq w$. output segments can be part of \mathcal{R}' only if $input_x$ or $input_y$ are part of the chosen solution \mathcal{R} . If none of them are chosen, then solution containing output segment has weight at least w+1. Therefore the following formula holds:

$$output \in \mathcal{R}' \land |\mathcal{R}'| = w \Rightarrow (x \in R) \lor (y \in R)$$

Only 3 points that belong to this segment: $l_{i,j}, p_{i,j}, v_{i,j}$ can be covered by segment not from the OR-gadget.

Figure 3.2: **OR-gadget.** Figure presenting OR-gadget: segments from $\mathsf{chooseOr}_{i,j}^{false}$ are red, segments from $\mathsf{chooseOr}_{i,j}^{frue}$ are blue, segments from $\mathsf{orMoveVariable}_{i,j}$ are yellow and green. Dark blue segment is an output segment. Grey segments $input_x$ and $input_y$ are input segments that are not part of $\mathsf{segmentsOr}_{i,j}$.

Points.

330

$$l_0 = (0,0)$$
 $m_0 = (0,1)$ $n_0 = (0,2)$ $o_0 = (0,3)$
 $p_0 = (0,4)$ $q_0 = (1,1)$ $r_0 = (1,3)$ $s_0 = (2,1)$
 $t_0 = (2,2)$ $u_0 = (2,3)$ $v_0 = (3,2)$

$$vec_{i,j} = (10i + 3 + 3j, 4n + 2j)$$

Define $\{l_{i,j}, m_{i,j} \dots v_{i,j}\}$ as $\{l_0, m_0 \dots v_0\}$ shifted by $vec_{i,j}$ Note that $v_{i,0} = l_{i,1}$ (see Figure 3.3)

pointsOr_{i, j} =
$$\{l_{i,j}, m_{i,j}, n_{i,j}, o_{i,j}, p_{i,j}, q_{i,j}, r_{i,j}, s_{i,j}, t_{i,j}, u_{i,j}\}$$

Note that $\mathsf{pointsOr}_{i,j}$ does not include point $v_{i,j}$

334 Segments. We define names subsets of segments, to refer to them in lemmas.

$$\begin{split} \text{chooseOr}_{i,j}^{false} &= \{(q_{i,j}, r_{i,j}), (s_{i,j}, u_{i,j})\} \\ \text{chooseOr}_{i,j}^{true} &= \{(m_{i,j}, s_{i,j}), (o_{i,j}, u_{i,j}), (t_{i,j}, v_{i,j})\} \end{split}$$

orMoveVariable_{i,j} = {
$$(l_{i,j}, n_{i,j}), (n_{i,j}, p_{i,j})$$
}

Segments in OR-gadget:

$$\mathsf{segmentsOr}_{i,j} = \mathsf{chooseOr}_{i,j}^{false} \cup \mathsf{chooseOr}_{i,j}^{true} \cup \mathsf{orMoveVariable}_{i,j}$$

Lemma 7. For any $1 \le i \le n, j \in \{0,1\}$ and $x \in \{l_{i,j}, p_{i,j}\}$, points in points $\operatorname{Or}_{i,j} - \{x\} \cup \{v_{i,j}\}$ can be covered with 4 segments from segments $\operatorname{Or}_{i,j}$.

Proof. We can do that using one segment from orMoveVariable_{i,j}, the one that does not cover x, and all segments from chooseOr $_{i,j}^{true}$.

Lemma 8. For any $1 \le i \le n, j \in \{0, 1\}$, points in points $Or_{i,j}$ can be covered with 4 segments from segments $Or_{i,j}$.

Proof. We can do that using segments from $\mathsf{orMoveVariable}_{i,j}$ and $\mathsf{chooseOr}_{i,j}^{false}$.

3.2.2.3. CLAUSE-gadget

CLAUSE-gadget is responsible for calculating if variables values assigned in variable gadgets satisfy the respective clause in CNF. It has minimum solution of weight w if and only if the clause is satisfied, i.e. at least one of the respective variables is assigned a correct value. Otherwise it has minimum solution of weight w+1. This way, by analyzing the minimum solution for the whole problem, we can tell how many clauses were possible to satisfy in the optimum solution of CNF.

The CLAUSE-gadgets consist of two OR-gadgets. It would be inconvenient to position the CLAUSE-gadents in between the very long variable segments. Instead, we use a simple auxiliary gadget to transfer whether the segment is in a solution, i.e. segments $(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1})$. Each gadget consists of two segments $(x_{i,0}, x_{i,1}), (x_{i,1}, a)$. These are the only segments that can cover $x_{i,1}$. If $x_{i,0}$ is already covered by some other gadget, we can cover $x_{i,1}$ by the other segment covering another point from the gadget, say a. If $x_{i,0}$ is not covered, then the only way to cover $x_{i,0}$ is to use segment $(x_{i,0}, x_{i,1})$. Intuitively, the two segments transfer the state of $x_{i,0}$ onto a, but there are less restrictions on where a can be placed, simplifying the construction.

Figure 3.3: **CLAUSE-gadget.** This figure presents CLAUSE-gadget. Every green rectangle is an OR-gadget. y-coordinates of $x_{i,0}$, $y_{i,0}$ and $z_{i,0}$ depend on the variables in the i-th clause. Grey segments corresponds to the values of variables satisfying the i-th clause.

Points. TODO: Rephrase it

Assuming clause $C_i = a \lor b \lor c$, function idx(w) returns index of the variable w, function neg(w) returns whether variable w is negated in a clause.

$$x_{i,0} = (10i + 1, 4 \cdot idx(a) + 2 \cdot neg(c)) \quad x_{i,1} = (10i + 1, 4n)$$

$$y_{i,0} = (10i + 2, 4 \cdot idx(b) + 2 \cdot neg(b)) \quad y_{i,1} = (10i + 2, 4n + 4)$$

$$z_{i,0} = (10i + 3, 4 \cdot idx(c) + 2 \cdot neg(c)) \quad z_{i,1} = (10i + 3, 4n + 6)$$

$$\text{moveVariable}_i = \{x_{i,j} : j \in \{0,1\}\} \cup \{y_{i,j} : j \in \{0,1\}\} \cup \{z_{i,j} : j \in \{0,1\}\}$$

$$\text{pointsClause}_i = \text{moveVariable}_i \cup \text{pointsOr}_{i,0} \cup \text{pointsOr}_{i,1} \cup \{v_{i,1}\}$$

$$\text{Segments.}$$

segmentsClause_i = $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1}), (x_{i,1}, l_{i,0}), (y_{i,1}, p_{i,0}), (z_{i,1}, p_{i,1}), \} \cup$ \cup segmentsOr_{i 0} \cup segmentsOr_{i 1}

 $\mathbf{Lemma~9.}~\textit{For any}~1 \leq i \leq n~\textit{and}~a \in \{x_{i,0}, y_{i,0}, z_{i,0}\},~\textit{there is a}~\mathsf{solClause}_i^{true,a} \subset \mathsf{segmentsClause}_i$ with $|solClause_i^{true,a}| = 11$ that covers points in pointsClause_i - $\{a\}$.

Proof. For $a = x_{i,0}$ (analogous proof for $y_{i,0}$): First we use Lemma 7 twice with excluded 365 $x = l_{i,0}$ and $x = l_{i,1} = v_{i,0}$, resulting with 8 segments chooseOr $_{i,0}^{true} \cup \text{chooseOr}_{i,1}^{true}$ which cover all required points apart from $x_{i,1}, y_{i,0}, y_{i,1}, z_{i,0}, z_{i,1}, l_{i,0}$. We cover those using additional 3 367 segments: $\{(x_{i,1}, l_{i,0}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1})\}$ 368

For $a = z_{0,i}$: Using Lemma 8 and Lemma 7 with $x = p_{i,1}$, resulting with 8 segments 369 $\mathsf{chooseOr}_{i,0}^{false} \cup \mathsf{chooseOr}_{i,1}^{true} \text{ which cover all required points apart from } x_{i,0}, x_{i,1}, y_{i,0}, y_{i,1}, z_{i,1}, p_{i,1}, y_{i,2}, y_{i,3}, y_{i,4}, y_{i,4},$ 370 We cover those using additional 3 segments: $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,1}, p_{i,1})\}$. 371

 $\mathbf{Lemma\ 10.}\ For\ any\ 1 \leq i \leq n\ there\ is\ \mathsf{solClause}_i^{false} \subset \mathsf{segmentsClause}_i\ with\ |\mathsf{solClause}_i^{false}| =$ 372 12 that covers points in pointsClause. 373

Proof. Using Lemma 8 twice we can cover points $Or_{i,0}$ and points $Or_{i,1}$ with 8 segments. 374 To cover the remaining points we additionally use: $\{(x_{i,0}, x_{i,1}), (y_{i,0}, y_{i,1}), (z_{i,0}, z_{i,1}), (t_{i,1}, v_{i,1})\}$ 375 376

Lemma 11. For any $1 \le i \le n$:

384

- (1) points in pointsClause; can not be covered using any subset of segments from segmentsClause; 378 of size smaller than 12;
- (2) points in pointsClause_i $\{x_{i,0}, y_{i,0}, z_{i,0}\}$ can not be covered using any subset of segments 380 $from \ segmentsClause_i \ of \ size \ smaller \ than \ 11.$

Proof of (1). No segment in segments Clause_i covers more than 2 points from $\{x_{i,0}, y_{i,0}, z_{i,0}, l_{i,0}, p_{i,0}, q_{i,0}, u_{i,0}, v_{i,0}, v_{i,0}, q_{i,0}, u_{i,0}, v_{i,0}, u_{i,0}, v_{i,0}, u_{i,0}, u_{$ $l_{i,1}, p_{i,1}, q_{i,1}, u_{i,1}, v_{i,1}$. 383

Therefore we need to use at least 12 segments.

Proof of (2). We can choose disjoint sets X, Y, Z such that $X \cup Y \cup Z \subseteq \mathsf{pointsClause}_i$ 385 $\{x_{i,0}, y_{i,0}, z_{i,0}\}$ and there are no segments covering points from different sets. And we prove 386 lower bounds for each of these sets.

$$X = \{x_{i,1}, y_{i,1}, z_{i,1}\}\$$

No two points in X are covered with one segment of segments Clause, so it must be covered 388 with 3 different segments.

$$Y = \mathsf{pointsOr}_{i,0} - \{l_{i,0}, p_{i,0}\}$$

$$Z = \mathsf{pointsOr}_{i,1} - \{l_{i,1}, p_{i,1}\}$$

For both Y and Z we can check all of the subsets of 3 segments of segmentsClause_i with brutforce that none of them cover the set of points, so both Y and Z have to be covered with disjoined sets of 4 segments.

TODO: Funny fact, neither Y nor Z doesn't have independent set of size 4.

Therefore pointsClause, must be covered with at least 3+4+4=11 segments.

395 3.2.2.4. Summary

393

401

402

403

404

405

406

407

409

410

411

412

413

396 Add some smart lemmas that sets will be exclusive to each other.

Lemma 12. Robustness to 1/2-extensions. For every segment $s \in \mathcal{P}$, s and $s^{+1/2}$ cover the same points from \mathcal{C} .

Proof. We can just check every segment. Most of the segments s are collinear only with points that lay on s, so trivially $s^{+\frac{1}{2}}$ cannot cover more points than s does.

TODO: list problematic segments here

In the same gadget: $(n_{i,j}, p_{i,j})$ does not cover $m_{i,j}$ and symmetrically. $(t_{i,j}, v_{i,j})$ does not cover $n_{i,j}$. $(o_{i,0}, u_{i,0})$ does not cover $m_{i,1}$ and symmetrically. $(y_{i,1}, p_{i,0})$ does not cover $n_{i,j}$.

From different gadgets: (b_i, f_i) after $\frac{1}{2}$ -extensions does not cover b_{i+1} point.

VARIABLE-gadget's (a_i, c_i) after $\frac{1}{2}$ -extensions does not cover any points $x_{i,0}, y_{i,0}$ or $z_{i,0}$ from CLAUSE-gadget.

3.2.2.5. Summary of construction

We define:

$$\mathcal{C} := \bigcup_{1 \leq i \leq n} \mathsf{pointsVariable}_i \cup \mathsf{pointsClause}_i$$

$$\mathcal{P} := \bigcup_{1 \leq i \leq n} \mathsf{segmentsVariable}_i \cup \mathsf{segmentsClause}_i$$

The subsequent sections define these sets.

We prove some properties of different gadgets. Every segment for a gadget will only cover points in this gadget (won't interact with any different gadget), so we can prove lemmas *locally*.

TODO: y axis is increasing values downward on figures (not upwards like in normal).

3.2.3. Construction lemmas and proof of Lemma 3

In order to prove Lemma 3 we introduce several auxiliary lemmas proving properties of the construction described in the previous section.

Consider an instance S of MAX-(3,3)-SAT of size n with optimum solution satisfying k clauses. Let us construct an instance (C, P) of geometric set cover as described in Section 3.2.2 for instance S of MAX-(3,3)-SAT.

Lemma 13. Instance (C, P) of geometric set cover admits a solution of size 15n - k.

Figure 3.4: General schema.

General layout of VARIABLE-gadget and CLAUSE-gadget and how they interact with each other.

TODO: Rename Choose X to VARIABLE-gadget and Clause C to CLAUSE-gadget.

Proof. Let the clauses in S be $c_1, c_2 \ldots c_n$ and the variables be $x_1, x_2 \ldots x_n$. Let the assignment of the variables in the optimum solution to S be $\phi : \{x_1, x_2 \ldots x_n\} \to \{\text{true}, \text{false}\}$.

We cover every VARIABLE-gadget with solution described in Lemma 4, in the *i*-th gadget choosing the set of segments corresponding to the value of $\phi(x_i)$.

For every clause that is satisfied, say c_i , let us name the variable that is true in it as x_i and point corresponding to x_i in pointsClause_i as a. Points in pointsClause_i are covered with set solClause_i^{true,a} described in Lemma 9. For every clause that is not satisfied, say c_j , points in pointsClause_i are covered with set solClause_i^{false} described in Lemma 10.

Formally we define sets responsible for choosing variable and satisfing the variable, R_i and C_i respectively, as following:

$$R_i = \begin{cases} \mathsf{chooseVariable}_i^{true} & \text{if } \phi(x_i) = \mathsf{true} \\ \mathsf{chooseVariable}_i^{false} & \text{if } \phi(x_i) = \mathsf{false} \end{cases}$$

$$C_i = \begin{cases} \mathsf{solClause}_i^{true,a} & \text{if } c_i \text{ satisfied} \\ \mathsf{solClause}_i^{false} & \text{if } c_i \text{ not satisfied} \end{cases}$$

$$\mathcal{R} = \bigcup_{i=1}^n \{R_i \cup C_i : 1 \leq i \leq n\}.$$

This set covers all the points from C, because the sets R_i , C_i individually cover their corresponding gadgets, as proved in the respective lemmas.

All of these sets are disjoint, so the size of the obtained solution is:

$$|\mathcal{R}| = \sum_{i=1}^{n} R_i + \sum_{i=1}^{n} C_i = 3n + 11k + 12(n-k) = 15n - k.$$

Lemma 14. Suppose we have a solution \mathcal{R} of the instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover. Then there exists a solution \mathcal{R}' , such that $|\mathcal{R}'| \leq |\mathcal{R}|$, and for each VARIABLE-gadget \mathcal{R}' contains at most one of the segments (c_i, g_i) and (f_i, h_i) .

Proof. Assume that we have $\{(c_i, g_i), (f_i, h_i)\}\subseteq \mathcal{R}$ for some i. We will show how to modify \mathcal{R} into \mathcal{R}' , such that the number of such i decreases, while \mathcal{R}' is still a valid solution of $(\mathcal{C}, \mathcal{P})$, and $|\mathcal{R}'| \leq |\mathcal{R}|$. Then, by repeating this procedure, we can eventually construct a solution satisfying the property from the Lemma.

To construct \mathcal{R}' , we remove either (c_i, g_i) or (f_i, h_i) from \mathcal{R} , and then add one extra segment to make \mathcal{R}' valid. Recall that the *i*-th VARIABLE-gadget corresponds to variable x_i in S. As every variable in S is used in exactly 3 clauses, one of the ways of setting x_i (to either true or false) must satisfy at least 2 clauses. If that setting is $x_i = \text{true}$, then we remove (f_i, h_i) , otherwise we remove (c_i, g_i) . Now, there exists at most one CLAUSE-gadget which needs adjustment to make \mathcal{R}' valid; we do that by adding $(t_{j,1}, v_{j,1})$ to \mathcal{R}' .

TODO: Can we really just remove one segment and add another one? I'd think we need to "restructure" \mathcal{R} around pointsVariable_i (saving one segment due to Lemma 5 and Lemma 6) and then again restructure \mathcal{R} around the clause that we need to fix?

Lemma 15. Suppose we have a solution \mathcal{R} of the instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover that is of size w. Then there exists a solution of S that satisfies at least 15n - w clauses.

Proof. Let the clauses in S be $c_1, c_2 \ldots c_n$ and the variables be $x_1, x_2 \ldots x_n$. Given a solution \mathcal{R} of the instance $(\mathcal{C}, \mathcal{P})$ of geometric set cover, we use Lemma 14 to modify \mathcal{R} such that for any i it contains at most one of (c_i, g_i) and (f_i, h_i) ; this may decrease the cost of \mathcal{R} , but that does not matter in the subsequent construction. To simplify notation, in the remainder of this proof we use \mathcal{R} to refer to the modified solution.

Given \mathcal{R} , we construct a solution of S by constructing an assignment of variables ϕ : $\{x_1, x_2 \dots x_n\} \to \{\text{true}, \text{false}\}\$ that satisfies at least 15n-w clauses in S.

Variables Recall that due to Lemma 14, \mathcal{R} contains at most one of (c_i, g_i) and (f_i, h_i) . We define the value $\phi(x_i)$ for the variable x_i as follows:

$$\begin{cases} \phi(x_i) = \text{true} & \text{if } (c_i, g_i) \in \mathcal{R} \\ \phi(x_i) = \text{false} & \text{if } (f_i, h_i) \in \mathcal{R} \\ \phi(x_i) = \text{false} & \text{otherwise} \end{cases}$$
(3.1)

Moreover, from Lemma 5 we get $|pointsVariable_i \cap \mathcal{R}| \geq 3$ for every i.

Clauses For a clause $C_i = x \vee y \vee z$, \mathcal{R} needs to use at least 11 segments to cover pointsClause_i $-\{x,y,z\}$ in CLAUSE-gadget (Lemma 11).

TODO: maybe put something with cases and names of sets as above

Moreover, if all of the points $\{x_{i,0}, y_{i,0}, z_{i,0}\}$ are not covered by the segments from $\mathcal{R} \cap \mathsf{pointsVariable}_i$, then \mathcal{R} needs to cover $\mathsf{pointsClause}_i$ with at least 12 segments by Lemma 11.

TODO: Maybe remove section below, because we do this calculation at the end anyway We covered CLAUSE-gadget with at least 11 or at least 12 segments:

$$|\bigcup_{i=1}^n \mathsf{segmentsClause}_i \cap \mathcal{R}| \geq 11n + a$$

where a is the number of clauses where none of the points $x_{i,0}, y_{i,0}, z_{i,0}$ were covered by $\mathcal{R} \cap \mathsf{segmentsVariable}_i$ for their respective variable x_j .

Satisfied clauses with chosen variable assignment. Consider a clause, say c_i . If none of the points $x_{i,0}, y_{i,0}, z_{i,0}$ in pointsClause_i were covered by segments from $\mathcal{R} \cap \mathsf{segmentsVariable}_j$, this clause is not satisfied by assignment ϕ .

If one of these points is covered by segments from VARIBALE-gadget (TODO better this or $\mathcal{R} \cap \mathsf{segmentsVariable}_j$), then denote this point as t and say it corresponds to variable x_j . Consider the cases of choosing value of $\phi(x_j)$ in equation (3.1).

If \mathcal{R} contains exactly one of the segments (c_j, g_j) and (f_j, h_j) , then the value $\phi(x_j)$ satisfies c_i .

If \mathcal{R} contains neither (c_j, g_j) nor (f_j, h_j) , then it is impossible that t is covered by segments in $\mathcal{R} \cap \text{segmentsVariable}_i$.

This means that ϕ satisfies all but at most a clauses in S.

To conclude, we proved that given a solution of $(\mathcal{C}, \mathcal{P})$ of size w, we have constructed a variables assignment ϕ that satisfies at least n-a clauses of S. Finally, note that

$$w \ge 3n + 11(n - a) + 12a = 3n + 11n + a = 14n + a,$$

hence

459

460

463

468

469

470

471

476

477

478

479

480

481

$$15n - w \le 15n - 14n - a = n - a.$$

So ϕ satisfies at least 15n - w clauses of S.

We are ready to conclude the proof of Lemma 3.

Proof of Lemma 3. By Lemma 13, we know that there exists a solution to $(\mathcal{C}, \mathcal{P})$ of size 15n - k, so:

$$opt((\mathcal{C}, \mathcal{P})) \le 15n - k.$$

Since the optimum solution of S satisfies k clauses, then according to Lemma 15:

$$opt((\mathcal{C}, \mathcal{P})) \ge 15n - k.$$

Therefore, the solution given by Lemma 13 of size 15n - k is an optimum solution to the instance $(\mathcal{C}, \mathcal{P})$.

3.3. FPT for weighted segments with δ -extensions

486 TODO: Some intro

482

502

Theorem 4 (FPT for weighted segment cover with δ -extensions). There exists an algorithm that given a family \mathcal{P} of n weighted segments (in any direction), a set of m points \mathcal{C} , and parameters k and $\delta > 0$, runs in time $f(k, \delta) \cdot (nm)^c$ for some computable function f and a constant c, and outputs a set $\mathcal{R} \subseteq \mathcal{P}$ such that $|\mathcal{R}| \leq k$ and $\mathcal{R}^{+\delta}$ covers all points in \mathcal{C} , or determines that such a set \mathcal{R} does not exist.

- To solve this problem we will introduce a lemma about choosing a *good* subset of points.

 TODO: Some intuition
- **Definition 9.** For a set of collinear points C, a subset $A \subseteq C$ is (k, δ) -good if for any set of segments R that covers A and such that $|R| \leq k$, it holds that $R^{+\delta}$ covers C.
- Lemma 16. There exists an algorithm that for any set of collinear points C, $\delta > 0$ and $k \ge 1$, outputs a (k, δ) -good set $A \subseteq C$ of size at most $f(k, \delta)$ for some computable function f. This algorithm runs in time $O(|C| \cdot f(k, \delta))$.
- 499 *Proof.* We prove this for a fixed δ by induction over k.
- Inductive hypothesis. For any set of collinear points C, there exists an algorithm that runs in time $O(|C|k(1+\frac{1}{\delta}))$ and finds a set A such that:
 - A is (ℓ, δ) -good for every $1 \le \ell \le k$,
- A has size $|A| < f(\delta, k)$ for some computable function f,
- extreme points from C are in A.
- Base case for k = 1. It is sufficient that A consists of 2 points: extreme points from C or a single point if |C| = 1.
- If they are covered with one segment, it must be a segment that includes the extreme points from C, so it covers the whole set C.

Inductive step. Assuming inductive hypothesis for any set of collinear points C and 509 for parameter k, we will prove hypothesis for k+1. 510

Let be s the minimal segment that includes all points from C. That is, the extreme points 511 of C are endpoints of s.

We define $M = \left[1 + \frac{2}{\delta}\right]$ subsegments of s in the following way. We split s into M parts v_i of equal length, that is $|v_i| = \frac{|s|}{M}$ for each $1 \le i \le M$. Let C_i be the subset of C consisting of points laying on v_i . 514

Let t_i be the segment with endpoints being the extreme points of C_i (it might be degenerated segment if $|C_i| = 1$ or it might be empty if C_i is empty).

TODO: Add a picture with v_i and t_i here

515

516

517

521

522

523

524

525

528

530

533

534

537

539

542

We use the inductive hypothesis to choose (k, δ) -good sets A_i for sets C_i . Note that if 519 $|C_i| \leq 1$, then $A_i = C_i$ and it's still a (k, δ) -good set for C_i . 520

Then we define $A = \bigcup_{i=1}^{M} A_i$. Thus A includes the extreme points of C, because they are included in the sets A_1 and A_M .

Proof that A is (k, δ) -good for C. Let us take any cover of A with k+1 segments and call it \mathcal{R} .

For every segment t_i , if there exists a segment x in \mathcal{R} that is disjoint with t_i , then we have a cover of A_i with at most k segments using $\mathcal{R} - \{x\}$. Since A_i is (k, δ) -good for t_i and C_i , then $(\mathcal{R} - \{x\})^{+\delta}$ covers C_i . So $\mathcal{R}^{+\delta}$ covers C_i as well.

If there exists a segment t_i for which a segment x as defined above does not exist, then all k+1 segments that cover A_i intersect with t_i . (Note: There may exist only one such segment (t_i) . From the inductive hypothesis end points of s are in A_1 and A_M respectively, so $\mathcal R$ must cover them. Hence there must exist segments starting in the ends of s and ending somewhere in t_i . Let us call these two segments y and z. It follows that: $|y| + |z| + |t_i| \geq |s|$. Since $|t_i| \le |v_i| = \frac{|s|}{M} \le \frac{|s|}{1+\frac{2}{\delta}} = \frac{|s|\delta}{\delta+2}$, we have $\max(|y|,|z|) \ge |s|(1-\frac{\delta}{\delta+2})/2 = \frac{|s|}{\delta+2}$.

TODO: Add a picture with such segments here

After δ -extension, the longer of these segments will lengthen both ways by at least:

$$\frac{|s|\delta}{\delta+2} = \frac{|s|}{1+\frac{2}{\delta}} > \frac{|s|}{M} = v_i > t_i.$$

Therefore the longer of segments y and z will cover the segment t_i after δ -extension, 536

therefore $\mathcal{R}^{+\delta}$ covers C_i . Since $C = \bigcup_{i=1}^M C_i$, then $\mathcal{R}^{+\delta}$ covers C.

Complexity We use the recursive algorithm for subsets C_i . Every point from C belongs to at most 2 sets C_i .

Apart from recursive algorithm we perform operations linear in size of |C|+M to calculate 540 the sets C_i . 541

Therefore it has complexity:

$$O(|C|+M) + \sum_{i}^{M} O(|C_{i}|k(1+\frac{1}{\delta})) = O(|C|+(1+\frac{1}{\delta})) + O((\sum_{i}^{M} |C_{i}|)k(1+\frac{1}{\delta})) \leq O(|C|k(1+\frac{1}{\delta})).$$

Proof of Theorem 4. To construct an algorithm for this problem let us formulate some claims about the problem first.

23

Definition 10. Line is **long** if there are at least k+1 points from \mathcal{C} on it.

Claim 1. If there are more than k long lines, then C can not be covered with k segments.

Claim 2. If there is more than k^2 points from C that do not lie on any long line, then C can not be covered with k segments.

Applying the above claims, if we have more than k long lines or more than k^2 points form C that do not lie on any long line, then we answer that there is no solution of size at most k.

Otherwise, we can split C into at most k+1 sets: D, at most k^2 points that do not lie on any long line and C_i – points that lay on i-th long line. Sets C_i do not need to be disjoint.

Then for every set C_i , we can use Lemma 16 to get (k, δ) -good set A_i for C_i .

Then we have set $D \cup \bigcup A_i$ of size at most $f(k, \delta)$ for some computable function f, that if we have a solution \mathcal{R} of size at most k that covers $D \cup \bigcup A_i$, then $\mathcal{R}^{+\delta}$ covers \mathcal{C} . This is because \mathcal{R} already covers points D, they cover C_i , because they cover (k, δ) -good set A_i with at most k segments, so $\mathcal{R}^{+\delta}$ covers C_i .

After that we shrunk down size of \mathcal{C} to size of $f(k,\delta)$ for some computable function f. Then we would like to shrink down size of \mathcal{P} . For every collinear subset of D, we can choose one segment from \mathcal{P} that covers these points and have the lowest weight or decide there is no segment that cover them. There are at most $|D|^2$ different segments, because we can distinguish these collinear sets by their extreme points.

This has complexity $O(|D|^2|\mathcal{P}|)$ and produce shrunk down set \mathcal{P} of size $f(k,\delta)$ for some computable function f.

Then we can iterate over all subsets of shrunk down set \mathcal{P} and choose the set with the lowest sum of weights that cover D. This solution would have weight not larger than optimal solution for the problem without extension, because we iterate over all posibilities of covering the subset of \mathcal{C} .

3.4. W[1]-completeness for weighted segments in 3 directions

Theorem 5. Weighted geometric set cover with segments in 3 directions is W[1]hard. Consider the problem of covering a set C of points by selecting k axis-parallel or rightdiagonal weighted segments from a set P with weights $w: P \to \mathbb{R}$ with minimal weight.

Assuming ETH, there is no algorithm for this problem with running time $f(k) \cdot (|C| + |P|)^{o(\sqrt{(k)})}$ for any computable function f.

Corollary 2. Weighted geometric set cover is W[1]-hard. Assuming ETH, there is no algorithm for weighted geometric set cover with running time $f(k) \cdot (|\mathcal{C}| + |\mathcal{P}|)^{o(\sqrt(k))}$ for any computable function f.

579 Proof. Trivial from Theorem 5.

549

550

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

580

In order to prove theorem 5 we will show reduction from grid tiling problem.

Definition 11. In grid tiling we are given inetgers n, k > 0 and function of allowed tiles on k^2 grid $f: \{1 \dots k\} \times \{1 \dots k\} \to \{1 \dots n\} \times \{1 \dots n\}$. Task is to find any functions that assign numbers to rows and columns $g, h: \{1 \dots k\} \to \{1 \dots n\}$, such that $(g(i), h(j)) \in f(i, j)$ or conclude that such function does not exist.

Theorem 6. Assuming ETH, there is no algorithm for grid tiling problem $f(k) \cdot n^{o(\sqrt{(k)})}$ for any computable function f.

TODO: proof from reference in literature

Let us have an instance of grid tiling problem – size of the grid k, number of colors n and function of allowed tiles $f: \{1 \dots k\} \times \{1 \dots k\} \to \{1 \dots n\} \times \{1 \dots n\}$.

590 Construction. We construct a set \mathcal{P} of segments and a set \mathcal{C} of points.

First let us choose any ordering of n^2 elements $\{1, n\} \times \{1, n\}$ and name this sequence $a_1 \dots a_{n^2}$. Define $match_v(i, j)$ and $match_h(i, j)$ as functions denoting whether two points share x or y coordinate.

$$match_v(i,j) \iff a_i = \{x_i, y_i\} \land a_j = \{x_j, y_j\} \land x_i = x_j$$

$$match_h(i,j) \iff a_i = \{x_i, y_i\} \land a_j = \{x_j, y_i\} \land y_i = y_j$$

Points. Define points:

587

$$h_{i,j,t} = (i \cdot (n^2 + 1) + t, j \cdot (n^2 + 1))$$

$$v_{i,i,t} = (i \cdot (n^2 + 1), j \cdot (n^2 + 1) + t)$$

Let's define sets H and V as:

$$H = \{h_{i,j,t} : 1 \le i, j, \le k, 1 \le t \le n^2\}$$

$$V = \{v_{i,j,t} : 1 \le i, j, \le k, 1 \le t \le n^2\}$$

Let us define $\epsilon = \frac{1}{2k^2}$. For a point $p = \{x, y\}$ we define points:

$$p^L = \{x - \epsilon, y\},\$$

$$p^R = \{x + \epsilon, y\},\,$$

$$p^U = \{x, y + \epsilon\},$$

$$p^D = \{x, y - \epsilon\}.$$

Then we define:

594

$$\mathcal{C} := H \cup \{p^L : p \in H\} \cup \{p^R : p \in H\} \cup V \cup \{p^U : p \in V\} \cup \{p^D : p \in V\}$$

Segments. Define horizontal segments.

$$\mathsf{hor}_{i,j,t_1,t_2} = (h^R_{i,j,t_1}, h^L_{i+1,j,t_2})$$

$$\mathsf{ver}_{i,j,t_1,t_2} = (v^D_{i,j,t_1}, v^U_{i,j+1,t_2})$$

$$\mathsf{horBeg}_{i,t} = (h^L_{1,i,1}, h^L_{1,i,t})$$

$$\mathsf{horEnd}_{i,t} = (h_{n,i,t}^R, h_{n,i,n^2}^R)$$

$$verBeg_{i\,t} = (v_{i\,1\,1}^U, v_{i\,1\,t}^U)$$

$$\mathsf{verEnd}_{i,t} = (v_{i,n,t}^D, v_{i,n,n^2}^D)$$

$$\begin{split} HOR &= & \{ \mathsf{hor}_{i,j,t_1,t_2} : 1 \leq i \leq k, 1 \leq j < k, 1 \leq t_1, t_2 \leq n^2, match_h(t_1,t_2) \} \\ & \cup & \{ \mathsf{horBeg}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \} \\ & \cup & \{ \mathsf{horEnd}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \} \end{split}$$

$$\begin{array}{lcl} VER & = & \{ \mathsf{ver}_{i,j,t_1,t_2} : 1 \leq i \leq k, 1 \leq j < k, 1 \leq t_1, t_2 \leq n^2, match_v(t_1,t_2) \} \\ & \cup & \{ \mathsf{verBeg}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \} \\ & \cup & \{ \mathsf{verEnd}_{i,t} : 1 \leq i \leq k, 1 \leq t \leq n^2 \} \end{array}$$

$$DIAG := \{(h_{i,j,t}, v_{i,j,t}) : 1 \le i, j \le k, 1 \le t \le n^2, a_t \in S_{i,j}\}$$

TODO: explain that these segments are in fact diagonal

$$\mathcal{P} := HOR \cup VER \cup DIAG$$

Weight function is equal to length of the segment for HOR and VER and equal to $\delta = \frac{1}{4k^4}$ for DIAG.

$$w(s) = \begin{cases} |s| & \text{if } s \in HOR \cup VER \\ \delta & \text{if } s \in DIAG \end{cases}$$

Lemma 17. If there exists solution for grid tiling, then there exists solution of instance (C, P) of geometric set cover with weight $2k \cdot (k(n^2 + 1) - 2 - 2\epsilon(k - 1) + k^2\delta)$.

Claim 3. If there exists a solution to the grid tiling $c_1 \ldots c_k$ and $r_1 \ldots r_k$, then there exists a solution covering all points

$$\{h_{i,j,t}: 1 \le i, j \le k, t = (c_i, r_j)\} \cup \{v_{i,j,t}: 1 \le i, j \le k, t = (c_j, r_i)\}$$

- with segments in DIAG and the rest in VER or HOR and has weight $2k \cdot (k(n^2+1)-601-2-2\epsilon(k-1))$.
- 602 **Proof.** TODO: jakiś prosty z definicji

595

- Lemma 18. If there exists solution of instance (C, P) of geometric set cover with weight at most $2k \cdot (k(n^2+1)-2-2\epsilon(k-1)+k^2\delta)$, then there exists a solution for grid tiling
- Proof. This follows from Lemma $\ref{lem:eq:$
- Claim 4. Points p^L, p^R, p^U, p^D cannot be covered with DIAG.
- Claim 5. Points in $H \cup \{p^L : p \in H\} \cup \{p^R : p \in H\}$ cannot be covered with VER. Points in $V \cup \{p^U : p \in V\} \cup \{p^D : p \in V\}$ cannot be covered with HOR.
- Claim 6. For given i, j if none of the points $h_{i,j,t}$ $(v_{i,j,t})$ for $1 \le t \le n^2$ are covered with DIAG, then some spaces between neighbouring points were covered twice.
- Claim 7. For given i, j two points h_{i,j,t_1}, h_{i,j,t_2} $(v_{i,j,t_1}, v_{i,j,t_2})$ for $1 \le t_1 < t_2 \le n^2$ are covered with DIAG, then one of them had to be also covered with a segment from HOR (VER).

Proof. Point v_{i,j,t_2}^L had to be covered with VER from Claims 4 and 5. And every segment in VER covering v_{i,j,t_2}^L , covers also v_{i,j,t_1}^L .

616 3.5. What is missing

We don't know FPT for axis-parallel segments without δ -extensions.

Chapter 4

623

624

625

636

Geometric Set Cover with lines

620 4.1. Lines parallel to one of the axis

When \mathcal{R} consists only of lines parallel to one of the axis, the problem can be solved in polynomial time.

We create bipartial graph G with node for every line on the input split into sets: H – horizontal lines and V – vertical lines. If any two lines cover the same point from C, then we add edge between them.

Of course there will be no edges between nodes inside H, because all of them are pararell and if they share one point, they are the same lines. Similar argument for V. So the graph is bipartial.

Now Geometric Set Cover can be solved with Vertex Cover on graph G. Since Vertex Cover (even in weighted setting) on bipartial graphs can be solved in polynomial time.

Short note for myself just to remember how to this in polynomial time:

Non-weighted setting - Konig theorem + max matching

Weighted setting - Min cut in graph of $\neg A$ or $\neg B$ (edges directed from V to H)

$_{634}$ 4.2. FPT for arbitrary lines

You can find this is Platypus book. We will show FPT kernel of size at most k^2 .

(Maybe we need to reduce lines with one point/points with one line).

For every line if there is more than k points on it, you have to take it. At the end, if there is more than k^2 points, return NO. Otherwise there is no more than k^4 lines.

In weighted settings among the same lines with different weights you leave the cheapest one and use the same algorithm.

4.3. APX-completeness for arbitrary lines

We will show a reduction from Vertex Cover problem. Let's take an instance of the Vertex Cover problem for graph G. We will create a set of |V(G)| pairwise non-pararell lines, such that no three of them share a common point.

Then for every edge in $(v, w) \in E(G)$ we put a point on crossing of lines for vertices v and w. They are not pararell, so there exists exactly one such point and any other line don't cover this point (any three of them don't cross in the same point).

Solution of Geometric Set Cover for this instance would yield a sound solution of Vertex Cover for graph G. For every point (edge) we need to choose at least one of lines (vertices) v or w to cover this point.

Vertex Cover for arbitrary graph is APX-complete, so this problem in also APX-complete.

⁶⁵² 4.4. 2-approximation for arbitrary lines

Vertex Cover has an easy 2-approximation algorithm, but here very many lines can cross through the same point, so we can do d-approximation, where d is the biggest number of lines crossing through the same point. So for set where any 3 lines don't cross in the same point it yields 2-approximation.

The problematic cases are where through all points cross at least k points and all lines have at least k points on them. It can be created by casting k-grid in k-D space on 2D space.

Greedy algorithm yields $\log |\mathcal{R}|$ -approximation, but I have example for this for bipartial graph and reduction with taking all lines crossing through some point (if there are no more than k) would solve this case. So maybe it works.

Unfortunaly I haven't done this:(

I can link some papers telling it's hard to do.

4.5. Connection with general set cover

Problem with finite set of lines with more dimensions is equivalent to problem in 2D, because we can project lines on the plane which is not perpendicular to any plane created by pairs of (point from C, line from P).

Of course every two lines have at most one common point, so is every family of sets that have at most one point in common equivalent to some geometric set cover with lines?

No, because of Desargues's theorem. Have to write down exactly what configuration is banned.

Chapter 5

Geometric Set Cover with polygons

5.1. State of the art

Covering points with weighted discs admits PTAS [Li and Jin, 2015] and with fat polygons with δ -extensions with unit weights admits EPTAS [Har-Peled and Lee, 2009].

Although with thin objects, even if we allow δ -expansion, the Set Cover with rectangles is APX-complete (for $\delta = 1/2$), it follows from APX-completeness for segments with δ -expansion in Section 3.2.

Covering points with squares is W[1]-hard [Marx, 2005]. It can be proven that assuming SETH, there is no $f(k) \cdot (|\mathcal{C}| + |\mathcal{P}|)^{k-\epsilon}$ time algorithm for any computable function f and $\epsilon > 0$ that decides if there are k polygons in \mathcal{P} that together cover \mathcal{C} , Theorem 1.9 in [Marx and Pilipczuk, 2015].

- Chapter 6
- 685 Conclusions

Bibliography

- [Har-Peled and Lee, 2009] Har-Peled, S. and Lee, M. (2009). Weighted geometric set cover problems revisited. *Journal of Computational Geometry*, 3.
- [Håstad, 2001] Håstad, J. (2001). Some optimal inapproximability results. J. ACM, 48(4):798-859.
- [Li and Jin, 2015] Li, J. and Jin, Y. (2015). A PTAS for the weighted unit disk cover problem. CoRR, abs/1502.04918.
- [Marx, 2005] Marx, D. (2005). Efficient approximation schemes for geometric problems? In Brodal, G. S. and Leonardi, S., editors, *Algorithms - ESA 2005*, pages 448–459, Berlin, Heidelberg. Springer Berlin Heidelberg.
- [Marx and Pilipczuk, 2015] Marx, D. and Pilipczuk, M. (2015). Optimal parameterized algorithms for planar facility location problems using voronoi diagrams. CoRR, abs/1504.05476.