Summary Sheet for PDE

Linear/Nonlinear: If the PDE is of the first degree in the unknown function u and its partial derivatives, then it is linear. Otherwise, nonlinear.

Homogeneous/Nonhomogeneous: If each of the PDE terms contains either u or one of its partial derivatives, then it is homogeneous. Otherwise nonhomogeneous.

Important Second-Order PDEs:

Equation	One Dimensional	Two Dimensional	Multi-Dimensional
Wave	$u_{tt} = c^2 u_{xx}$	$u_{tt} = c^2(u_{xx} + u_{yy})$	$u_{tt} = c^2 \Delta u$
Heat	$u_t = c^2 u_{xx}$	$u_t = c^2(u_{xx} + u_{yy})$	$u_t = c^2 \Delta u$
Laplace		$u_{xx} + u_{yy} = 0$	$\Delta u = 0$
Poisson		$u_{xx} + u_{yy} = f(x, y)$	$\Delta u = f$

Here, $\Delta = \sum_i \frac{\partial^2}{\partial x_i^2}$, if u is a function of more than one variable, say $x_1, x_2, x_3, ..., x_n$.

Wave Equation Solution (1-D): By Variable Separation Method

$$u_{tt} = c^2 u_{rr}$$

Boundary Condition: $u(0, t) = u(L, t) = 0, t \ge 0$,

Initial Conditions: $u(x, 0) = f(x), u_t(x, 0) = g(x), 0 \le x \le L$

Step 1: Assume u(x,t) = F(x)G(t)

Step 2: Obtain u_{tt} , u_{xx} . Find two ODE's with BVP that satisfy the BCs. Solve two ODEs.

Step 3: Using the Fourier series, compose solution that satisfy both BCs and ICs.

Wave Equation Solution (1-D): d'Alemberts' Solution

Step 1: Introduce variable v = x + ct, w = x - ct

Step 2: Transform wave equation from (x, t) to (v, w) and obtain $u_{vw} = 0$

Step 3: Solve and use initial conditions to obtain

$$u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$$

Types of PDEs

Consider the following quasilinear PDE

$$A(x,y)u_{xx}+B(x,y)u_{xy}+C(x,y)u_{yy}=\psi(x,y,u,u_x,u_y)$$

Depending on the discriminant it is classified into three types

Type	Condition
Hyperbolic	$B^2 - 4AC > 0$
Parabolic	$B^2 - 4AC = 0$
Elliptic	$B^2 - 4AC < 0$

Reduce to Canonical Form

Follow these steps to obtain Canonical Form for

$$A(x, y)u_{xx} + B(x, y)u_{xy} + C(x, y)u_{yy} = \psi(x, y, u, u_x, u_y)$$

Step 1: Introduce the variable $\xi = \xi(x, y), \eta = \eta(x, y)$

Step 2: Transform from (x, y) to (ξ, η) and obtain $au_{\xi\xi} + bu_{\xi\eta} + cu_{\eta\eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta})$

here,
$$a = A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2$$
 $b = 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y$

$$c = A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2 \qquad J = \frac{\partial(\xi,\eta)}{\partial(x,y)} = \begin{vmatrix} \xi_x & \xi_y \\ \eta_x & \eta_y \end{vmatrix}$$

 $b^2 - 4ac = J^2(B^2 - 4AC)$ shows that if PDE is either hyperbolic or parabolic or elliptic, then its canonical form is of the same type

Type	Cases	Canonical Form
Hyperbolic	a = c = 0	$u_{\xi\eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta})$
Hyperbolic	b=0, c=-a	$u_{\alpha\alpha-\beta\beta} = \phi(\alpha,\beta,u,u_{\alpha},u_{\beta}), \alpha = \xi + \eta, \beta = \xi - \eta$
Parabolic	a = b = 0	$u_{\eta\eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta})$
Elliptic	b=0, c=a	$u_{\xi\xi} + u_{\eta\eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta})$

(1) Step 3 for Hyperbolic Equations

$$a = c = 0: A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2 = 0 = A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2$$

$$A\left(\frac{\xi_x}{\xi_y}\right)^2 + B\left(\frac{\xi_x}{\xi_y}\right) + C = 0, A\left(\frac{\eta_x}{\eta_y}\right)^2 + B\left(\frac{\eta_x}{\eta_y}\right) + C = 0$$

$$\mu_1 = \frac{\xi_x}{\xi_y} = \frac{-B + \sqrt{B^2 - 4AC}}{2A}, \mu_2 = \frac{\eta_x}{\eta_y} = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

Along the coordinate line $\xi(x,y) = 0$, $d\xi = \xi_x dx + \xi_y dy = 0$

$$\Rightarrow \frac{dy}{dx} = -\frac{\xi_x}{\xi_y} = -\mu_1 \Rightarrow y = -\int \mu_1 dx + c_1 \Rightarrow \xi = y + \int \mu_1 dx$$

$$\xi = y + \int \frac{-B + \sqrt{B^2 - 4AC}}{2A} dx$$

Similarly,
$$\frac{dy}{dx} = -\frac{\eta_x}{\eta_y} = -\mu_2 \Rightarrow \eta = y + \int \mu_2 dx = y + \int \frac{-B - \sqrt{B^2 - 4AC}}{2A} dx$$

(2) Step 3 for Parabolic Equations

$$a = 0: A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2 = 0$$

$$\Rightarrow \mu_1 = \frac{\xi_x}{\xi_y} = \frac{-B}{2A} \Rightarrow \frac{dy}{dx} = \frac{B}{2A} \Rightarrow y = \int \frac{B}{2A} dx + c_1 \Rightarrow \xi = y - \int \frac{B}{2A} dx$$

$$b = 0: 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y = 0$$

$$\Rightarrow 2A\left(-\frac{B}{2A}\right)\eta_x + B\left(-\frac{B}{2A}\eta_y + \eta_x\right) + 2C\eta_y = 0$$

$$\Rightarrow (B^2 - 4AC)\eta_y = 0 \Rightarrow \eta(x, y)$$
 is function of x. Choose $\eta = x$

(3) Step 3 for Elliptic Equations

$$a = c \Rightarrow a - c = 0 \Rightarrow A(\xi_x^2 - \eta_x^2) + B(\xi_x \xi_y - \eta_x \eta_y) + C(\xi_y^2 - \eta_y^2) = 0$$

$$b = 0 \Rightarrow 2A\xi_x \eta_x + B(\xi_x \eta_y + \xi_y \eta_x) + 2C\xi_y \eta_y$$

$$(\xi_x + i\eta_x)^2 \qquad (\xi_x + i\eta_x)$$

$$A\left(\frac{\xi_x + i\eta_x}{\xi_y + i\eta_y}\right)^2 + B\left(\frac{\xi_x + i\eta_x}{\xi_y + i\eta_y}\right) + C = 0$$
$$\frac{\xi_x + i\eta_x}{\xi_y + i\eta_y} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Let
$$\alpha = \xi(x, y) + i\eta(x, y), \beta = \xi(x, y) - i\eta(x, y),$$

$$\mu_1 = -\frac{\alpha_x}{\alpha_y} = \frac{-B + \sqrt{B^2 - 4AC}}{2A}, \mu_2 = -\frac{\beta_x}{\beta_y} = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

Along the coordinate line $\alpha(x, y) = 0$, $d\alpha = \alpha_x dx + \alpha_y dy = 0$

$$\Rightarrow \frac{dy}{dx} = -\frac{\alpha_x}{\alpha_y} = -\mu_1 \Rightarrow y = -\int \mu_1 dx + c_1 \Rightarrow \alpha = y + \int \mu_1 dx$$

Similarly, $\frac{dy}{dx} = -\frac{\beta_x}{\beta_{xx}} = -\mu_2 \Rightarrow \beta = y + \int \mu_2 dx$

$$\xi = \frac{\alpha + \beta}{2} = y + \int \frac{-B}{2A} dx, \eta = \frac{\alpha - \beta}{2i} = \int \frac{\sqrt{4AC - B^2}}{2A} dx$$

Step 4: Using the ξ and η obtained from step 3, transform the given PDE to canonical form

Heat Equation Solution (1-D): By Variable Separation Method

$$u_t = c^2 u_{xx},$$

BC: u(0,t) = u(L,t) = 0, $t \ge 0$, IC: u(x,0) = f(x), $0 \le x \le L$

Step 1: Assume u(x, t) = F(x)G(t)

Step 2: Obtain u_t , u_{xx} . Find two ODE's with BVP that satisfy the BCs. Solve two ODEs.

Step 3: Using the Fourier series, compose solution that satisfy both BCs and ICs.

Laplace Equation Solution (2-D): By Variable Separation Method

$$u_{xx} + u_{yy} = 0$$
 on a rectangle $R = [0, a] \times [0, b]$

Boundary Condition: u(x, b) = f(x), u(0, y) = u(a, y) = u(x, 0) = 0

Step 1: Assume u(x, t) = F(x)G(y)

Step 2: Obtain u_{xx} , u_{yy} . Find two ODE's with BVP that satisfy the BCs. Solve two ODEs.

Step 3: Using the Fourier series, compose solution that satisfy both BCs and ICs.

Wave Equation Solution (2-D): By Variable Separation Method

$$u_{tt} = c^2(u_{xx} + u_{yy})$$

Boundary Condition: u(x, b, t) = u(0, y, t) = u(a, y, t) = u(x, 0, t) = 0

Initial Conditions: $u(x, y, 0) = f(x, y), u_t(x, y, 0) = g(x, y), 0 \le x \le a, 0 \le y \le b$

Step 1: Assume u(x, t) = F(x, y)G(t), F(x, y) = H(x)Q(y)

Step 2: Obtain u_{tt} , u_{xx} , u_{yy} and $F\ddot{G} = c^2(F_{xx}G + F_{yy}G)$

Step 2(a): Solve $\ddot{G} + \lambda^2 G = 0$, $\lambda = cv$

Step 2(b): Solve the Helmholtz equation $F_{xx} + F_{yy} + v^2 F = 0$ using F(x, y) = H(x)Q(y)

Step 2(c): Obtain $H'' + k^2H = 0$, $Q'' + p^2Q = 0$, $p^2 = v^2 - k^2$

Step 3: Using the boundary conditions, obtain $F_{mn}(x, y)$

Step 4: Using Double Fourier series, obtain the solution that satisfy both BCs and ICs.

Laplace equation in Polar Coordinates

$$r = \sqrt{x^2 + y^2}, \tan\theta = \frac{y}{x}$$

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$$

Wave Equation Solution (2-DPolar Coordinate): By Variable Separation Method

$$u_{tt} = c^2(u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta})$$

BC: u(R, t) = 0, IC: u(r, 0) = f(r), $u_t(r, 0) = g(r)$

Step 1: Assume u(r,t) = W(r)G(t)

Step 2: Obtain u_{tt} , u_{rr} and $\frac{\ddot{G}}{c^2 G} = \frac{1}{W} \left(W'' + \frac{1}{r} W' \right) = -k^2$

Step 2(a): Solve $\ddot{G} + \lambda^2 G = 0$, $\lambda = ck$

Step 2(b): Solve the Helmholtz equation $W'' + \frac{1}{r}W' + k^2W = 0$. Bessel Equation

Step 3: Using the boundary conditions, W(r)

Step 4: Using Fourier-Bessel Series, obtain the solution

Laplace equation in Cylindrical Coordinates

$$x = rcos\theta, y = rsin\theta, z = z$$

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} + u_{zz}$$

Laplace equation in Spherical Coordinates.

$$x = r\cos\theta\sin\phi, y = r\sin\theta\sin\phi, z = r\cos\phi$$

$$\Delta u = u_{rr} + \frac{2}{r}u_r + \frac{1}{r^2}u_{\phi\phi} + \frac{\cot\phi}{r^2}u_{\phi} + \frac{1}{r^2\sin^2\phi}u_{\theta\theta}$$