Step-1

a) From the property of Eigen values, the product of Eigen values of the matrix is equal to the determinant of that matrix.

So, the determinant of the matrix B is the product of Eigen values of the matrix B.

The Eigen values of the matrix B are 0, 1, 2.

Then, the determinant of the matrix B is (0)(1)(2) = 0.

So, the matrix B is a singular matrix and its rank is less than 3.

Further, it has two non-zero Eigen values and so, the respective Eigen vectors are linearly independent, then the rank of the matrix B is 2.

Step-2

b) Determinant of $B^T B = |B^T B|$

 $= |B^T| \cdot |B|$

 $= |B^T| \cdot (0$

=0

Step-3

c) The Eigen values of B and that of B^T are one and the same.

Also, the Eigen value of B^n is λ^n when the Eigen value of B is λ .

But nothing to confirm the Eigen values of B^TB .

So, the data is insufficient.

Step-4

d) The roots of $|B - \lambda I| = 0$ are $\lambda = 0, 1, 2$.

So, the Eigen values of B+I are the roots of $\left|B-\left(1+\lambda\right)I\right|=0$ are $1+\lambda=1,2,3$.

Consequently, the Eigen values of $(B+I)^{-1}$ are $1, \frac{1}{2}$, and $\frac{1}{3}$.