Data Visualization and Pre-processing

- 1. Download the dataset: Dataset
- 2. Load the dataset

data.describe()

```
In [42]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read csv('/content/chrun modelling.csv')
3.Perform Below Visualizations
                                                                            In [11]:
sns.kdeplot(data['CreditScore'], shade=True)
sns.kdeplot(data['Age'], shade=True)
sns.kdeplot(data['Balance'], shade=True)
sns.kdeplot(data['EstimatedSalary'], shade=True)
sns.kdeplot(data['Tenure'], shade=True)
                                                                           Out[11]:
                                                                            In [15]:
from sklearn.preprocessing import StandardScaler
stand= StandardScaler()
for column in ['CreditScore','Age','Balance','EstimatedSalary','Tenure']:
    data[column] = stand.fit transform(data[column].values.reshape(-1,1))
                                                                            In [16]:
sns.kdeplot(data['CreditScore'], shade=True)
sns.kdeplot(data['Age'], shade=True)
sns.kdeplot(data['Balance'], shade=True)
sns.kdeplot(data['EstimatedSalary'], shade=True)
sns.kdeplot(data['Tenure'], shade=True)
                                                                           Out[16]:
                                                                            In [18]:
sns.countplot(data['Exited'])
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43: FutureWarni
ng: Pass the following variable as a keyword arg: x. From version 0.12, the o
nly valid positional argument will be `data`, and passing other arguments wit
hout an explicit keyword will result in an error or misinterpretation.
  FutureWarning
                                                                           Out[18]:
   4. Perform descriptive statistics on the dataset
```

In [36]:

Out[36]:

	RowN umber	Custo merId	Credit Score	Age	Tenur e	Balanc e	NumOf Product s	HasC rCard	IsActive Member	Estimat edSalar y	Exited
co un t	10000. 00000	1.0000 00e+0 4	1.0000 00e+0 4	1.0000 00e+0 4	1.0000 00e+0 4	1.0000 00e+0 4	10000.0 00000	10000 .0000 0	10000.0 00000	1.00000 0e+04	10000. 000000
m ea n	5000.5 0000	1.5690 94e+0 7	4.8245 85e-16	2.3181 46e-16	1.0782 49e-16	6.2527 76e-17	1.53020 0	0.705 50	0.51510 0	2.87769 8e-17	0.2037 00
st d	2886.8 9568	7.1936 19e+0 4	1.0000 50e+0 0	1.0000 50e+0 0	1.0000 50e+0 0	1.0000 50e+0 0	0.58165 4	0.455 84	0.49979 7	1.00005 0e+00	0.4027 69
mi n	1.0000	1.5565 70e+0 7	3.1095 04e+0 0	1.9949 69e+0 0	1.7333 15e+0 0	1.2258 48e+0 0	1.00000	0.000	0.00000	1.74026 8e+00	0.0000
25 %	2500.7 5000	1.5628 53e+0 7	6.8835 86e-01	6.6001 85e-01	6.9598 18e-01	1.2258 48e+0 0	1.00000	0.000	0.00000	8.53593 5e-01	0.0000
50 %	5000.5 0000	1.5690 74e+0 7	1.5222 18e-02	1.8325 05e-01	4.4259 57e-03	3.3196 39e-01	1.00000	1.000	1.00000	1.80280 7e-03	0.0000
75 %	7500.2 5000	1.5753 23e+0 7	6.9810 94e-01	4.8422 46e-01	6.8712 99e-01	8.1992 05e-01	2.00000	1.000	1.00000	8.57243 1e-01	0.0000
m ax	10000. 00000	1.5815 69e+0 7	2.0638 84e+0 0	5.0611 97e+0 0	1.7244 64e+0 0	2.7953 23e+0 0	4.00000	1.000	1.00000	1.73720 0e+00	1.0000

5 .Handle the Missing values

data.isnull().sum()

In [8]:

RowNumber 0
CustomerId 0
Surname 0
CreditScore 0

Out[8]:

Geography 0
Gender 0
Age 0
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0

dtype: int64

6.Find the outliers and replace the outliers

In [41]:

lowerlimit=data['Age'].quantile(0.05)
lowerlimit
data[data['Age']<lowerlimit]
upperlimit=data['Age'].quantile(0.95)
upperlimit
data[data['Age']<upperlimit]
data=data[(data['Age']>lowerlimit)&(data['Age']<upperlimit)]
data</pre>

Out[41]:

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geog raph y	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estimat edSalar y	Ex ite d
0	1	1563 4602	Har grav e	619	Fran ce	Fe mal e	4 2	2	0.00	1	1	1	101348. 88	1
1	2	1564 7311	Hill	608	Spai n	Fe mal e	4	1	8380 7.86	1	0	1	112542. 58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe mal e	4 2	8	1596 60.8 0	3	1	0	113931. 57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe mal e	3 9	1	0.00	2	0	0	93826.6	0
4	5	1573 7888	Mit chel l	850	Spai n	Fe mal e	4 3	2	1255 10.8 2	1	1	1	79084.1 0	0
					•••									

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geog raph y	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estimat edSalar y	Ex ite d
9 9 9 5	9996	1560 6229	Obij iaku	771	Fran ce	Ma le	3 9	5	0.00	2	1	0	96270.6 4	0
9 9 9 6	9997	1556 9892	Joh nsto ne	516	Fran ce	Ma le	3 5	10	5736 9.61	1	1	1	101699. 77	0
9 9 9 7	9998	1558 4532	Liu	709	Fran ce	Fe mal e	3 6	7	0.00	1	0	1	42085.5 8	1
9 9 9 8	9999	1568 2355	Sab bati ni	772	Ger many	Ma le	4 2	3	7507 5.31	2	1	0	92888.5	1
9 9 9	10000	1562 8319	Wal ker	792	Fran ce	Fe mal e	2 8	4	1301 42.7 9	1	1	0	38190.7 8	0

 $8863 \; rows \times 14 \; columns$

$7. Check \ for \ Categorical \ columns \ and \ perform \ encoding$

In [26]:

x = pd.get_dummies(x)

x.head()

Out[26]:

	R o w N u m b er	C u st o m e rI d	C r e di t S c o r e	A g e	T e n u r	B a l a n c	N u m Of Pr od uc ts	Su rn a m e_ A ba zu	Su rn a m e_ A bb ie	Su rn a m e_ A bb ott	 Su rn am e_ Zu ba re v	Su rn am e_ Zu ba rev a	Su rn a m e_ Z ue v	Su rn a m e_ Z uy ev	Su rn a me _Z uy ev a	Ge og ra ph y_ Fr an ce	Ge ogr ap hy_ Ge rm any	Ge og ra ph y_ Sp ai n	G en de r_ Fe m al e	G en de r_ M al e
0	1	1 5 6 3 4 6 0 2	0. 3 2 6 2 2 1	0 2 9 3 5 1 7	1 0 4 1 7 6	1 2 2 5 8 4 8	1	0	0	0	 0	0	0	0	0	1	0	0	1	0
1	2	1 5 6 4 7 3 1	0. 4 4 0 0 3 6	0 1 9 8 1 6 4	1 3 8 7 5 3 8	0 1 1 7 3 5 0	1	0	0	0	 0	0	0	0	0	0	0	1	1	0
2	3	1 5 6 1 9 3 0 4	1. 5 3 6 7 9 4	0 2 9 3 5 1 7	1 0 3 2 9 0 8	1 3 3 3 0 5 3	3	0	0	0	 0	0	0	0	0	1	0	0	1	0
3	4	1 5 7 0 1 3 5 4	0. 5 0 1 5 2	0 0 0 7 4 5 7	1 3 8 7 5 3 8	1 2 2 5 8 4 8	2	0	0	0	 0	0	0	0	0	1	0	0	1	0
4	5	1 5 7 3	2. 0 6 3	0 3 8	1 0	0 7 8	1	0	0	0	0	0	0	0	0	0	0	1	1	0

```
\mathbf{C}
R
       \mathbf{C}
                                                                                  Su
                                                                                            Su
                                                                                                    \mathbf{S}\mathbf{u}
                                                                                                                                                           G
                r
                                           \mathbf{N}
                                                   Su
                                                            Su
                                                                    Su
                                                                                                             Su
                                                                                                                     Su
                                                                                                                              Ge
                                                                                                                                                 Ge
                                   В
                                                                                                                                        Ge
                                                                                                                                                                   \mathbf{G}
                             T
                                                                                                                                                          en
0
        u
                e
                                            u
                                                   rn
                                                            rn
                                                                     \mathbf{r}\mathbf{n}
                                                                                  rn
                                                                                            rn
                                                                                                    rn
                                                                                                             rn
                                                                                                                      \mathbf{r}\mathbf{n}
                                                                                                                               og
                                                                                                                                                  \mathbf{og}
                                                                                                                                                                  en
                                    a
                                                                                                                                        ogr
              di
                                                                                                                                                          de
w
       st
                             \mathbf{e}
                                           m
                                                    a
                                                             a
                                                                      a
                                                                                  am
                                                                                           am
                                                                                                     a
                                                                                                              a
                                                                                                                       a
                                                                                                                               ra
                                                                                                                                                  ra
                      A
                                    l
                                                                                                                                                                  de
                                                                                                                                        ap
N
                                          Of
        0
                t
                             n
                                                                                                                               ph
                                                                                                                                                  ph
                                                    m
                                                            m
                                                                     m
                                                                                            e_
                                                                                                     m
                                                                                                             m
                                                                                                                     me
                                                                                                                                                          r_{-}
                                    a
                                                                                                                                       hy_
u
               \mathbf{S}
                             u
                                          Pr
                                                                                  Zu
                                                                                           Zu
                                                                                                                     \mathbf{Z}
                                                                                                                                                          Fe
       m
                                                   \mathbf{e}_{-}
                                                            e_{-}
                                                                     e_{-}
                                                                                                    \mathbf{e}_{-}
                                                                                                             e_
                                                                                                                                                                  \mathbf{M}
                                   n
                                                                                                                                        Ge
                             r
                                          od
                                                    Α
                                                            Α
                                                                     Α
                                                                                  ba
                                                                                            ba
                                                                                                     \mathbf{Z}
                                                                                                              \mathbf{Z}
                                                                                                                               Fr
                                                                                                                                                  Sp
                                                                                                                                                           m
m
        e
                \mathbf{c}
                                                                                                                      uy
                                    \mathbf{c}
                                                                                                                                                                   al
                                                                                                                                        rm
b
       rΙ
                0
                                           uc
                                                   ba
                                                           bb
                                                                    bb
                                                                                   re
                                                                                           rev
                                                                                                    ue
                                                                                                             uy
                                                                                                                      \mathbf{e}\mathbf{v}
                                                                                                                               an
                                                                                                                                                   ai
                                                                                                                                                           al
                                    e
                                                                                                                                       any
                                                                                                                                                                    e
        d
er
                r
                                           ts
                                                   zu
                                                            ie
                                                                    ott
                                                                                              a
                                                                                                             ev
                                                                                                                               ce
                                                                                                                                                   n
                                                                                                                                                            e
                                                                                                                       a
                e
                8
                                    7
        8
               8
                      8
                             1
                             7
                                    2
        8
                      7
               4
        8
                      1
                             6
                                    8
```

 $5 \text{ rows} \times 2944 \text{ columns}$

8. Split the data into dependent and independent variables

0.

01

0.

73

1.

34

0.

70

0.

00

0.

2.

0.

01

```
In [22]:
x = data.iloc[:, 0:10]
y = data.iloc[:,10]
print(x.shape)
print(y.shape)
(10000, 10)
(10000,)
9. Scale the independent variables
                                                                                In [32]:
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
x train, x test, y train, y test=
train test split(x,y,test size=0.25,random state=0)
sc = StandardScaler()
x_train=sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)
x train = pd.DataFrame(x train)
x train.head()
                                                                               Out[32]:
                                                  9
3
                                                      29
                                                          29
                                                              29
                                                                  29
                                                                       29
                                                                               29
                                                                                   29
                                                                           29
    0
                 3
                         5
             2
                                                      36
                                                          37
                                                              38
                                                                  39
                                                                       40
                                                                           41
                                                                               42
                                                                                   43
```

0.

0

0.

01

0.

01

0.

01

0.

01

1.

01

1.

76

1.

1.

08

0.

57

	0	1	2	3	4	5	6	7	8	9	29 34	2 9 3 5	29 36	29 37	29 38	29 39	29 40	29 41	29 42	29 43
	21 76	33 30	55 07	52 66	88 60	31 60	50 34	63 32		3	15 48		15 48	15 48	63 32	55 88	02 16	46 82	72 61	72 61
1	1. 48 57 22	1. 55 83 30	1. 02 44 27	0. 65 26 09	0. 00 88 60	1. 20 77 24	0. 80 42 42	0. 01 63 32	0 . 0	0. 0 2 3 1	 0. 01 15 48	0 0	0. 01 15 48	0. 01 15 48	0. 01 63 32	0. 98 46 51	0. 56 81 12	0. 57 46 82	1. 08 72 61	1. 08 72 61
2	0. 52 45 22	0. 65 51 56	0. 80 82 95	0. 46 17 88	1. 39 32 93	0. 35 69 37	0. 80 42 42	0. 01 63 32	0 . 0	0. 0 2 3 1	 0. 01 15 48	0 . 0	0. 01 15 48	0. 01 15 48	0. 01 63 32	1. 01 55 88	0. 56 81 12	1. 74 00 94	1. 08 72 61	1. 08 72 61
3	1. 16 73 96	1. 20 05 94	0. 39 66 14	0. 08 01 45	0. 00 88 60	0. 00 93 56	0. 92 65 51	0. 01 63 32	0	0. 0 2 3 1	 0. 01 15 48	0 . 0	0. 01 15 48	0. 01 15 48	0. 01 63 32	1. 01 55 88	0. 56 81 12	1. 74 00 94	0. 91 97 43	0. 91 97 43
4	1. 45 11 59	0. 77 87 98	0. 46 79 15	1. 25 56 05	0. 70 10 77	1. 20 77 24	0. 80 42 42	0. 01 63 32	0 . 0	0. 0 2 3 1	 0. 01 15 48	0 0	0. 01 15 48	0. 01 15 48	0. 01 63 32	0. 98 46 51	0. 56 81 12	0. 57 46 82	0. 91 97 43	0. 91 97 43

In [23]:

 $5 \text{ rows} \times 2944 \text{ columns}$

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=
train_test_split(x,y,test_size=0.25,random_state=0)
print(' x_train.shape : ',x_train.shape)
print(' y_train.shape : ',y_train.shape)
print(' x_test.shape : ',x_test.shape)
print(' y_test.shape : ',y_test.shape)

x_train.shape : (7500, 10)
y_train.shape : (7500,)
x test.shape : (2500, 10)
```

y_test.shape : (2500,)