Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження складних циклічних алгоритмів» Варіант 25

Виконав	<u> 111-15, Плугатирьов Дмитро Валеріиович</u>
студент	(шифр, прізвище, ім'я, по батькові)
Перевірив	Вєчерковська А.С.
	(прізвище, ім'я, по батькові)

Лабораторна робота № 5

Дослідження складних циклічних алгоритмів

Мета - дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 25

Завдання

25. Дано число а. Знайти найближче до нього просте число.

1. Постановка задачі

Користувач вводить певне число. Воно проходить перевірку на цілочисельність. Потім, створивши зовнішній цикл, умовою якого буде наявність результату відмінного від нуля у змінній результату, відбувається реалізація вкладених в нього двох циклів: перевірки цілих чисел справа та зліва від введеного раніше користувачем на їх простоту. Якщо обидва числа знаходяться на однаковій відстані від введеного користувачем, то вони виведуться в результаті як найближчі прості. Інакше, виведеться лише одне число.

Результатом виконання програми ϵ значення найближчого простого числа або двох простих чисел.

2.Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Дане число	Дійсний	a	Початкові дані
Число, лівіше за	Цілочисельний	lNum	Проміжні дані
дане			
Число, правіше	Цілочисельний	rNum	Проміжні дані
за дане			
Просте число	Цілочисельний	isResult	Результат
Простота	Логічний	isLPrime	Проміжні дані
лівішого числа			
Простота	Логічний	isRPrime	Проміжні дані
правішого числа			
Лічильник циклу	Цілочисельний	i	Проміжні дані
знаходження			
лівішого числа			
Лічильник циклу	Цілочисельний	У	Проміжні дані
знаходження			
правішого числа			

Кількість	Цілочисельний	count	Проміжні дані
дільників			
лівішого числа			
Кількість	Цілочисельний	count2	Проміжні дані
дільників			
правішого числа			

Дія floor(x) означає округлення числа x до меншого.

Дія ceil(x) означає округлення числа x до більшого.

Дія abs(x) означає взяття модуля від змінної з цілочисельним значенням.

Дія fabs(x) означає взяття модуля від змінної з дійсним значенням.

Дія (double)х означає приведення числа х до дійсного типу.

Дія (int)х означає приведення числа х до цілочисельного типу.

Дія х % у означає остачу від ділення числа х на число у.

Дія , означає послідовне виведення кількох елементів на екран комп'ютера, які поєднані цим символом.

3. Розв'язання

Програмні специфікації записати у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначити основні дії.
- Крок 2. Перевірити значення змінної на цілочисельність.
- $\mathit{Kpok}\,3$. Відшукати значення простих чисел зліва та справа від введеного користувачем.
- *Крок 4*. Визначити, яке просте число або числа будуть результатом виконання програми.

4. Псевдокод

Крок 1

початок

перевірити значення змінної на цілочисельність

відшукати значення простих чисел зліва та справа від введеного користувачем

визначити, яке просте число або числа будуть результатом виконання програми

кінець

```
Крок 2
```

початок

```
isResult = 0
     виведення «Please, enter a number: »
     введення а
     якщо ((double)a / (int)a) != 1 та а != 0
           T0
           lNum := floor(a)
           rNum := ceil(a)
     інакше
           lNum := a - 1
           rNum := a + 1
     все якщо
     isLPrime := false
     isRPrime := false
     i = 0
     y := 0
     count := 0
     count2 := 0
     відшукати значення простих чисел зліва та справа від введеного
користувачем
     визначити, яке просте число або числа будуть результатом виконання
програми
кінець
Крок 3
початок
     isResult = 0
```

виведення «Please, enter a number: »

якщо ((double)a / (int)a) != 1 та а != 0

введення а

```
lNum := floor(a)
             rNum := ceil(a)
      інакше
             lNum := a - 1
             rNum := a + 1
      все якщо
      isLPrime := false
      isRPrime := false
      i = 0
      y := 0
      count := 0
      count2 := 0
      повторити
      поки is Result == 0
             повторити
             поки ((i \le |Num \ \text{та} \ |Num > 0) або (i \ge |Num \ \text{та} \ |Num < 0)) або ((y \ge |Num \ \text{та} \ |Num < 0)
<= rNum \ Ta \ rNum > 0) \ afo (y >= rNum \ Ta \ rNum < 0))
                    якщо i != 0 та (lNum % i) == 0
                          count := count + 1
                          якщо (count == 2 та i == lNum) або (count == 1 та
abs(lNum) == 1)
                                 T0
                                 isLPrime := true
                          все якщо
                    все якщо
                    якшо lNum < 0
                          T0
                          i := i - 1
                    інакше якщо lNum > 0
                          T0
```

T0

```
i := i + 1
                 все якщо
                якщо y != 0 та (rNum % y) == 0
                      TO
                      count2 := count2 + 1
                      якщо (count2 == 2 та y == rNum) або (count2 == 1 та
abs(rNum) == 1)
                            T0
                            isRPrime := true
                      все якщо
                 все якщо
                 якщо rNum < 0
                      T0
                      y := y - 1
                інакше якщо rNum > 0
                      T0
                      y := y + 1
                 все якщо
           все повторити
           i = 0
           y := 0
           count := 0
           count2 := 0
           визначити, яке просте число або числа будуть результатом
     виконання програми
     все повторити
кінець
Крок 4
```

початок

isResult = 0

```
введення а
      якщо ((double)a / (int)a) != 1 та а != 0
            T0
            lNum := floor(a)
            rNum := ceil(a)
      інакше
            lNum := a - 1
            rNum := a + 1
      все якщо
      isLPrime := false
      isRPrime := false
      i = 0
      y = 0
      count = 0
      count2 = 0
      повторити
      поки is Result == 0
            повторити
            поки ((i \le lNum та lNum > 0) або (i \ge lNum та lNum < 0)) або ((y \le lNum та lNum < 0)
<= rNum \ Ta \ rNum > 0) \ a fo \ (y >= rNum \ Ta \ rNum < 0))
                  якщо i != 0 та (lNum % i) == 0
                         count := count + 1
                         якщо (count == 2 та i == lNum) або (count == 1 та
abs(lNum) == 1)
                               TO
                               isLPrime := true
                         все якщо
                  все якщо
                  якщо lNum < 0
                         T0
```

виведення «Please, enter a number: »

```
i := i - 1
                 інакше якщо lNum > 0
                       T0
                       i := i + 1
                 все якщо
                 якщо y != 0 та (rNum % y) == 0
                       T0
                       count2 := count2 + 1
                       якщо (count2 == 2 та y == rNum) або (count2 == 1 та
abs(rNum) == 1)
                             T0
                             isRPrime := true
                       все якщо
                 все якщо
                 якщо rNum < 0
                       T0
                       y := y - 1
                 інакше якщо rNum > 0
                       T0
                       y := y + 1
                 все якщо
           все повторити
           i = 0
           y := 0
           count := 0
           count2 = 0
           якщо isLPrime == false та isRPrime == false
                 1Num := 1Num - 1
                 rNum := rNum + 1
```

```
інакше якщо (isLPrime == true та isRPrime == false) або (isLPrime
== false Ta isRPrime == true)
                  якшо isLPrime == true
                        T0
                        isResult := INum
                        вивести "The nearest prime number is: ", isResult
                  інакше якщо is RPrime == true
                        T0
                        isResult := rNum
                        вивести "The nearest prime number is: ", isResult
                  все якщо
            інакше якщо isLPrime == true та isRPrime == true
                  T0
                  якщо ((double)a / (int)a) != 1 та а != 0
                        якщо fabs((double)rNum - a) < fabs((double)lNum - a)
                              T0
                              isResult := rNum
                              вивести "The prime number is: ", is Result
                        інакше
                              isResult := INum
                              вивести "The prime number is: ", is Result
                        все якщо
                  інакше
                        isResult := INum
                        вивести "There are two the nearest prime numbers: ",
isResult
                        isResult := rNum
                        вивести " and ", is Result
                  все якшо
```

все якщо

isRPrime := false

isLPrime := false

все повторити

кінець

Крок 3

Крок 4

5. Тестування

Блок	Дія 1		Дія 2
	Початок		Початок
1	isResult := 0	1	isResult := 0
2	a := 369	2	a := -18.4
3	INum := 368, rNum :=	3	lNum := -19, rNum := -18
	370		
4	isLPrime = false,	4	isLPrime = false,
	isRPrime = false		isRPrime = false
5	i = 0, y = 0, count = 0,	5	i = 0, y = 0, count = 0,
	count2 = 0		count2 = 0
6	i ≔ 1	6	i ≔ 1
7	y := 1	7	$y \coloneqq 1$
8	count ≔ 1	8	count := 1
9	i := 2	9	i := 2
10	count2 := 1	10	count2 := 1
11	y := 2	11	$y \coloneqq 2$
12	count := 2	12	count := 2
13	i := 3	13	i := 3
14	count2 := 2	14	count2 := 2
15	y := 3	15	$y \coloneqq 3$
• • •	•••	•••	•••
	i := 367	217	i := -19, count := 2, lNum := -19
1469	INum := 367	•••	•••
1470	isResult := 367	230	i = 0, y = 0, count = 0, count2 = 0
-	-	•••	•••
-	-	235	isResult := -19
	Кінець		Кінець

6. В исновок

В цій лабораторній роботі мені довелося дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій. А саме, я скористався ітераційними циклами, адже в завданні я вирішив не обмежуватись тільки поступовим збільшенням або зменшенням лічильника циклу.