Лекция№1

Бинарные отношения

Определение

 $\overline{\text{M-множество}} \neq 0$

R⊂ MxM- бинарное отношение

Пояснение

MxM- множество пар из элементов R

Допустим M=a,b,c

$$MxM = (a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)$$

или $M = \mathbb{N}$

Отношение R-это подмножество пар

Обозначение

 $(x,y) \in R$ пара (x,y) принадлежит отношению

мы будем писать хRу

вместо (x,y)∉R мы пишем xRy

Пример

$$\overline{1.M=R} >= R=(x,y): x>y$$

$$(3,2) \in R \ 3R2 \ 3>2$$

$$(3,4) \notin R \ 3R4 \ 3>4$$

$$2.M=\mathbb{R}$$
 отношение \geq $7\geq 6,7\geq 7$

$$2.M=\mathbb{R}$$
 отношение \geq $7\geq 6,7\geq 7$ $7=7$ $7\neq 8$ $(7,7)\in=$ $(7,8)\not\in=$

4.
$$M=\mathbb{R}$$
: $\approx x \approx y <=>|x-y|<1$

5. M=
$$\mathbb{R}$$
: # x#y <=> $x^2 > y$

$$2\#2 <=> 2^2 > 2$$

7#8

6. М=
$$\mathbb{N}$$
или \mathbb{Z} : \mathbf{x} : \mathbf{x} : \mathbf{y} $<=> $\exists k \in \mathbb{Z}$: \mathbf{x} = $\mathbf{k}\mathbf{y}$$

$$2\dot{:}4 - 10\dot{:}3$$

7.
$$\equiv_3$$
 $0 \equiv_3 3 \ 1 \equiv_3 4 \ 1 \equiv 7$

$$0 \equiv_3 2 1 \equiv_3 8$$

 $8.\mathrm{M}{=}\mathbb{N}$ аЦв, если в числе а 'в' цифр

100Ц3 238Ц3 238Ц8

9.М=прямые на R²

||-11 и ||12 если ||11 не пересекает ||12| или ||11|

10.⊥ 11⊥12 перпендикулярно


```
b \perp c
   d||c|| b\pm a
  a||a|
11.Студенты ЛЭТИ
х≻у средний балл за последнюю сессию больше у х
12. М=пользователи одноклассники
х -> у, если 'у' в друзьях у 'х'
Иванов \rightarrow Петров
\Piетров \rightarrow \Piосов
Свойства бинарных отношений
1. Определение
Бинарное отошение R на M называют рефлексивным, если \forall x \in M \quad xRx
(x,x) \in R
Замечание
Отношение не рефлеквсивно <=>\exists x \qquad xRx-контрпример
Примеры
<u>—-рефлек</u>сивно ∀ х: х=х
\geq
      \forall x: x > x
\approx
      \forall x: x \approx x, \text{ t.k. } |x-x| = 0 < 1
     x:x
>-не рефлексивно 2>2
Ц- не рефлексивно 3Ц3
\rightarrow Hocob \rightarrow Hocob
\perp не рефлексивно a \perp a
Определение
\overline{\text{Б}} отношение R на множестве M называется антирефлексивным, если \forall x
xRx
Замечание
R-не антирефлексивно <=>
\exists x : \mathbf{x} \mathbf{R} \mathbf{x}-контрпример
Примеры
>-антирефлексивно x>x
\perp
      111
       нельзя быть в друзьях у себя
Ц- не антирефлексивно
                               1Ц1
ЗамечаниеЦ - не антирефлексивно и не рефлексивно
2)не бывает R, которое и рефлексивно и антирефлексивно
(рассмотрим a \subset M \rightarrow aRa => aRa => he ap
aRa => не р
Симметричность
Определение
\overline{\text{Бинарное от}}ношение R на множестве M симметрично, если \forall x, y \text{ xRy} <=>
yRx
```

R- не симметрично, $\langle = \rangle \exists x, y : xRy, \frac{yRx}{yRx}$ контрпример

```
Пример
```

 $\overline{=}$ - симметрично x=y <=> y=x

 \approx - симметрично х \approx у |x-y|<1 |y-x|<1

:- не симметрично 4:2 2:4

||, ⊥- симметрично

Ц- не симметричен

Определение

Бинарное отношение R на множестве M антисимметрично, если $\exists x \neq y$ xRy, yRx- контрпример

Пример

 $\overline{>}$: $x \neq y, x > y = > y \Rightarrow x$

Попробуем построить контрпример

 $x\neq y$, x>y, y>x- невозможно

=> нет контрпримера=>антисимметрично

 \geq х \neq у, $x \geq y$, у \geq х- нет контрпримера

= $x \neq y, x = y, y = x$ - нет контрпримера

 \equiv_3 1 \neq 4,1 \equiv_3 4, 4 \equiv_3 1- контрпример

 \vdots над \mathbb{N} х \neq у, x \vdots у, у \vdots х нет для \mathbb{N}

 \vdots над \mathbb{Z} 4 \neq -4, 4 \vdots – 4, -4 \vdots 4 не антисимметрино

Лекция№2

Антисимметричность

: на **Z**- не антисимметрично

$$-2.2$$

$$2 \neq -2$$

 \vdots на \mathbb{N} - антисимметрично $x \neq y$ $\dot{x}:y$ $\dot{y}:x=>$ такого не бывает

$$x \neq y$$
 \dot{x} \Rightarrow \dot{y}

Определение

R- бинарное отношение на M- ассиметричность, если

 $\forall x, y \text{ xRy} => \frac{y}{x}$

 $(x \neq y$ - у антисимметричность)

контрпример- хRу, уRх

Утверждение

R- симметрично <=> R-антисимметрично и антирефлексивно

Пример

>- асиметрично $\forall x, y \ x>y=> \frac{y}{x}$

□(пустое)- асиметрично (пусто, когда R=0)

"выше асиметрично

"начальник"х нач у =>у нач х

R-бинарное отношение транзитивно, если

 $\forall x, y, z \times xRy, yRz => xRz$

Контрпример

> трназитивно x>y, y>z=> x>z

≥ транзитивно

 \vdots транзитивно $x \dot{:} y,$ у $\dot{:} z =>$ х $\dot{:}$ z

 \bot не транзитивно $x \perp y \ y \perp z \ x \perp z$

Ц(кол-во цифр) 100ЦЗ 3Ц1

не транзитивно 100Ц1

Определение

Отношение R называется отношением эквивалентности, если

R-рефлексивно, симметрично, транзитивно

Пример

 $\overline{=}$ на $\mathbb{R}($ или \forall другом множестве)

 $\forall x$ x=x- рефлексивно

 $\forall x,y \ x=y=> y=x$ - симметрично

 $\forall x,y,z \ x=y, \ y=z=>x=z$ - транзитивно

 Θ ote-

||- параллельность

≡3-сравнение

≥- не ОЭ

т.к. не симметрично

 $x \geq y {=}{>} \; \mathbf{y} {\geq} \mathbf{x}$

 $z\ge 1, 1\ge z$

≈- не ОЭ(по транзитивности)

отношение \uparrow на \mathbb{N} х \uparrow у, если у х и у поровну цифр

 $2 \uparrow 5 \ 35 \uparrow 100$

 $12 \uparrow 42$

ОЭ $x \uparrow x$ - рефлексивно

 $x \uparrow y => y \uparrow x$ - симметричность

 $x \uparrow y, y \uparrow z => x \uparrow z$ - транзитивность

=,||,≡₃,↑- OЭ

Определение

R-ОЭ на множестве M

х∈ М, класс элемента х

 $M_x = y | xRy$

Пример

```
= M_5 = 5
\equiv_3 M_2=2,5,8,11...
// M_e = ///////...
Утверждение
R-ОЭ на М
\forall x,y \in M \ M_x = M_y или M_X \cap M_y {=} 0
\begin{array}{l} \underline{\underline{\Lambda}}_{\text{ОКОЗАТЕЛЬСТВО}} \\ \supset M_X \cap M_y & \neq 0 => \exists \mathbf{z} \in M_x, \ \mathbf{z} \in M_y => \mathbf{xRz}, \\ \mathbf{yRz} => (\mathbf{cumm.}) => \mathbf{zRy} => (\mathbf{транз.}) => \mathbf{xRy} \end{array}
Теперь проверим, что класс M_x = M_y
Возьмем \mathbf{u} \in M_x, проверим, что \mathbf{u} \in M_y
\mathbf{u} {\in M_x} => \mathbf{x} \mathbf{R} \mathbf{u}
xRy = yRx = yRu = u \in M_y
Следствие R-OЭ не M
тогда М разбито на несколько классов эквивалентности
M=M_1u...uM_n
M_i \cap M_j = 0
= на \mathbb{N}=1 и 2 и 3...
\equiv_3 на \mathbb{N}{=}0,3,6,9,...
1,4,7,10,...
2,5,8,11,...
Замечание
Если есть M{=}0 разбитое на M_i{=}0
\mathbf{M} = M_1 \mathbf{u} ... \mathbf{u} M_n и M_i \cap M_j
Тогда можно ввести отношение R
xRy, если \exists M_i : x,y \in M_i
abcdefg
aRb bRc <del>aRd</del> gRy <del>gRa</del>
Для // классы эквивалентности
```

Отношения порядка (выше, лучше, сильнее, важнее)

 M_2

M1

Определение

R-бинарное отношение

R- транзитивно, антисимметрично

1)рефлексивно-нестрогий порядок

2)антирефлексивно- строгий порядок

обозначения обычно ≥ нестрогий ≻строгий

 $a \succ b \ b \succ c => a \succ c$

антисимметрично а≻ b

 $b \succ a$

Примеры

 $\overline{>}$ на \mathbb{R} - строий порядок

 $\geq \mathbb{R}$ - не строгий порядок

: на N- не строгий порядок

нач

а нач b

а нач с

b нач f

с нач f

Определение

¬ R-строгий или нестрогий порядок

R-линейный, если $\forall x \neq y$ xRy или yRx

R- частичный иначе $(\exists x \neq y \text{ xRy yRx})$

Примеры >, \geq -линейный порядок

. :- частичный 2:3 3:2

нач- частичный

Утверждение

 $\overline{ ext{R- порядок(}}$ строй или нестрогий) на M- конечное $| ext{M}|{<}\infty$

Тогда $\exists x$ -минимальный, т.е. $\forall y: x \succ y$

Лекция 3

Утверждение R-отношение порядка (строгое или нестрогое)

тогда \exists х-минимальный, т.е. \forall y \neq х

Пример

 \ge Ha 1, 2, 3, 4, 5

1- т.к. ∀у 1 ≥у

Пример

: на 2, 3, 4, 5, 6

2- min ∀y 2: y

3-min 3: y

5-min $5 \div y$

4,6- не min

4:2 6:2

Докозательство

берем х₁- ∀ элемента множества

если он не min $=>\exists x_2\neq x_1\ x_1\succ x_2(\succ$ -это R)

если x_2 не min=> $\exists x_3 \neq x_2 \ x_2 \succ x_3$

если x_3 не min=> $\exists x_4 \neq x_3 \ x_3 \succ x_4$

если не можем найти min элемент

=> т.к. множество М конечно

в какой-то момент $x_i = x_j$ (первый повтор)

$$x_i \succ x_{i+1} \succ x_{i+2} \quad \succ x_{j-1} \succ x_j = x_i$$

 \succ - транзитивно => $x_i \succ x_{j-1}$ $x_{j-1} \succ x_i \neq x_i$ невозможно, см. антисимм

Определение

 $\overline{\text{Отношение R}_1}$ на множестве M рассматривает R_2 на M, если $R_2\subset R_1$

Замечание. R_1 доставляет пары где xRy

Замечание. $xR_2y => xR_1y$

Теорема

о топологической сортировке

Если > - отношение порядка на М(множество конечное)

то $\exists \succ \succ$ - отношение лин порядка на М т.к. $\succ \succ$ расширяет \succ

Пример подчинения

не линейный порядок

ГД-01-02-С1-С2

ГД-01-С1-С2-02

ГД-01-С1-02-С2

Докозательство

<u>Нахождение min</u> элемента отношения ≻

 \supset это х \in М

удалим x_1 из M теперь имеем $\succ | M-x_1|$

очевидно, новое отношение тоже антирефлексивно, рефлексивно, антисимметрично, транзитивно

в нем тоже есть min элемент, это x_2

удаляем x_2 из М и продолджаем

итого, имеем последовательность $x_1, x_2, x_3, ...$

Вводим новый порядок $x_i \prec x_j$ для i < j...

 $x_1 \prec \prec x_2 \prec \prec \dots \prec \prec x_n$

почему << расширяет <

Если х < у => х был удален раньше у

 $=>x\prec\prec y$

Замечание этот алгоритм(поиск min и удаления) не самый эффективный, лучше - сделать поиск в глубину с обратной нумерацией

<u>Замечание</u> топологическая сортировка практически важная задача порядок работы

Транзитивное замыкание

был порядок- расширили до линейного (Топологическая сортировка) было отношение- расшилири до транзитивного (Транзитивность замыкается)

Пример

подчиненное отношение

Пример подчинения

H.R 01

01 R C1

но H.R C1

Если добавить в отношение, что H R C1, H R C2- станет транзитивным Теорема

 $\exists \overline{R}$ отношение на М

1) \overline{R} расширяет R(R $\subset \overline{R}$)

 $2)\overline{R}$ транзитивно

 $3)\overline{R}$ min транз. расширение

т.е. если \overline{R} - тр расширяет R, то $\overline{R}\supset \overline{R}$

Докозательство(не для алгоритма)

рассмотрим се транзитивные расширения

 R_i возьмем $\overline{R} = \cap \overline{R}_i$

т.е. ьеем только те пары, которые есть во всех транзитивных расширениях

Пример

 $\overline{\mathrm{M}=\mathrm{a,b,c,d}}$

стало транзитивным

только те пары, которые есть везде

Проверим, что \overline{R} подходит под улсовия транзитивности

 $0)\overline{R}_i$ существует? R_i полное отошение MxM

 $1)\overline{R}$ - расширяет $\supset \underline{x}Ry => \forall \overline{R}, \ \mathbf{x}\overline{R}_i\mathbf{y} =\geq \mathbf{x}\overline{R}\mathbf{y}$

 $(2)\overline{R}$ -транзитивно? \supset х \overline{R} у, \supset $y\overline{R}z$

 $orall \overline{R}_i \ \mathrm{x} \overline{R}_i \mathrm{y} \ \mathrm{y} \overline{R}_i \mathrm{z} => \mathrm{x} \overline{R}_i \mathrm{z}$ - транзитивно

 $=\geq \underline{x}\overline{R}z$ 3) $\overline{R}=\overline{R}_i>R$ T.E. $R=\overline{R}_i\cap...$

Графы!!!

Определение

неориентированный граф

G=(V,E) где V- множество(вершины)

 $E\subset (u,v)$, где $u,v\in V$

Замечание как рисовать

веришны • или ○

ребра \rightarrow линии между \bigcirc

важно, только что реберо соединеяет

Примеры

обычный граф

полный граф

пустой граф a

d

Определение

b

 $\overline{\text{G-}}$ полный, если $\forall u, v \in V \quad (u, v) \in E$

Замечание. V=vertex E=edge

Определение

|G|- размер (порядок) графа |V|- кол-во вершин

|V|=n(обычно)

|Е|=т(обычно) количество ребер

G-это (n,m) граф

Определение

 $\overline{\text{Степень вершины V} \in \text{V-это } |(v,u)|(u,u) \in \text{E}| \text{ степ 3}$

(кол-во ребер с этой вершиной) степ 2

обозначаем deg V

Определение

 $\overline{\text{K-регулярный}}$ граф- это граф у которого $\forall V \in V \quad degV = K$

b 3 рег граф

2 рег граф

Лекция 4

Напоминание

Графы- множество вершин и ребер

Степени(напротив названий)

Определение

Пусть в графе G(V,E)- последовательность $v_1e_1v_2e_2...v_{n-1}e_{n-1}v_n$ $v_i \in V$ $e_i \in E$ $e_i = (v_i, v_{i+1})$

Пример

1) a(a,b)b c(c,d)d

2)ab

3)aba

4)abcdecdeba

Определение

 $\overline{\Pi}$ уть замкнутый- если $V_1 = V_n$. "4) замкнутый

не замкнутый- открытые $(v_i \neq v_n)$

Определение

Путь простой, если $e_i \neq e_j$ при $i \neq j$

"4)"непростой, т.к. 2 раза de

5)bedce- простой, но не замкнутый

Замкнутый простой замкнутый путь цикл Открытый простой открытый путь цепь	Пути	все ребра разные(простые)	все вершины разные
Открытый простой открытый путь цепь	Замкнутый	простой замкнутый путь	цикл
	Открытый	простой открытый путь	цепь

цикл- путь из одной вершины в неё же

путь может проходить через себя же неограниченное количество раз, идёт из одной вершины в другую

простой путь- путь не проходящий по пройденному пути, но имеющий точки пересечения

цепь- путь безпересечений

Теорема

 $\overline{\text{Если}}\ \exists\ \text{путь между вершинами}\ u,v=>$ есть цепт от u до v

Докозательство

 \supset путь и $e_1v_1e_2v_2...e_n$ v

рассмторим все пути из этих ребер и выберем min, это будет цепь

иначе: $u...u_i...u_j...v$ $\supset v_i = v_j$

укоротим $u...v_i = v_i...v??$

Теорема

 $\overline{\text{Если есть}}$ простой замкнутый путь через ребро e=> есть цепи через е Докозательство аналогично

Замечание

dbacbd- не простой путь(е-повторяется)

цикла через е нет

Связность графа

Определение

 $\overline{\Gamma}$ раф связан, если $\forall u,v \in V \exists$ цепь(путь) из и в v

пример

1-связан

2,3-не связаны

Введем отношение \equiv на вершинах графа:

 $U \equiv \, V, \, ec$ ли \exists путь из Uв V

Пример

 $a \equiv c$ $a \equiv d$ $e \equiv g$ a $\equiv e$

Проверим, что ≡- это отношение эквивалентности

- 1)
рефлексивность $u \equiv u$ -верно, путь и
- 2)
симметричность $u\equiv v => v\equiv u$ путь $ue_1v_1...v$ путь $v...v_1e_1u$
- 3)
транзитивно $u\equiv v,v\equiv \omega$ путь $\underline{ue_1...v}\overline{v...\omega}$ v не повторяется,

а входит в 2 пути

Определение

Классы эквивалентности ≡-это компоненты связности

- 2 компонента связности

Определение

 $\overline{G_1 = (V_1, E_1)}$ - подграф G, если $V_1 \subset V$ $E_1 \subset E$

Пример

Помеченные • являются подграфом

Замечание

G-свой подгаф

0-пустой граф-подграф чего угодно

Определение

G ребро е называется мостом,

если комп связности G< кол-воткомп. связности (V,Ee)

Пример

56 moct

Определение

Степень связности графа G- это количество ребер,

которые надо выкинуть, чтобы G стал несвязным

Определение

 $\overline{\Box}$ вусвязный граф- надо выкинуть ≥ 2 ребер, чтобы он стал несвязным

Замечание: двусвязный <=> нет мостов и связи

Определение

 $\overline{\text{Вершина } v \in V}$ называется точкой сочленения,

если количество компонента связности < количества компонента связности

 $G'=(Vv, E'(u,v)|(v,u)\in E)$

Пример

Теорема

 $\overline{\text{В графе}} \text{ G=(V,E)}$

если deg(u)- степень вершины u

$$|\mathbf{E}| = \frac{1}{2} \sum_{v \in V} \operatorname{deg}(\mathbf{v})$$

Пример

ребер 6=1/2(3+2+2+4+1)=6, верно

Докозательство

 $\overline{\deg(\mathbf{v})} =$ количество ребер, выходящих из вершин $\sum\limits_{v \in V} =$ все ребра

посчитали дважды=2|Е|

Следствие:

- 1) сумма степеней вершин всегда четна
- 2)вершин нечетной степени- четно

Пример

15 инопланетян, по 3 руки у каждого,мгу ли они взяться за руки, чтобы не было свободных рук?

Решение:

нет, эьо граф из 15 нечетных вершин степени 3(нечет.)

Определение

Висячая вершина- это вершина степени 1

•- висячая

Теорема

Если в графе есть ребра, но нет висячих вершин, то ∃ цикл

Докозательство

 $\overline{\text{Берем ребро e}} = (u1U2)$

$$u_1 - e^e - u_2 - e_1 - u_3$$

 u_2 - не висячая вершина=> из неё есть еще ребро (u_2u_3) u_3 - не висячая вершина=> из неё есть еще ребро (u_3u_4)

. . .

Продолжаем, пока очередность u_n не будет равна u_i путь $u_1 \quad u_{i+1}...u_n$ -цикл(ребра разные, вершины разные) Определение

Дерево- связный граф без циклов

Пример

Теорема

В любом дереве ≥ 2 висячих вершины

Докозательство

Берем \forall вершину, если она не висячая, идём по ребру, если опять не висячая, есть ребро и т.д. циклов нет=>конец

Чтобы найти вторую, надо начать из первой

Теорема

 $\overline{\text{Если G-}}$ дерево, то |V|=1+|E|

Пример

7 вершин, 6 ребер

Докозательство по индукции (кол-во вершин)

 $\overline{\text{B. } |V|=1 \text{ 0 } |E|=0}$, сходится |V|=|E|+1

 $\Pi.\supset |V|=n+1,$

найдем висячую и удалим с её ребром

 $G'{=}(V'v{,}E'e),$ тоже дерево, т.к. связан, нет циклов=> $|V'|{=}1{+}|E'|,$

но |V|=|V'|+1 |E|=|E'|+1

отсюда следует |V|=1+|E|

Лекция 5

Напоминание

Дерево- связной граф

|E|+1=|V|

 \supset G- полный граф, \forall u \neq \subset V соединены ребром

Если п вершин(
$$|V|=n$$
), то ребер 1) C_n^2 ребер, выбираем пары $=\frac{n(n-1)}{2}$ 2)степени всех вершин n-1 $\sum_{v\in V} deg(v)=2|E|=>(n-1)n=2|E|$ Ответ: $\frac{n(n-1)}{2}$ Планарные графы

Определение

G-планарный граф, если его можно нарисовать а плоскости так, чтобы ребра не пересекались

- планарный, но неправильно нарисован-

Формула Эйлера Если планарный граф G=(V,E) нарисован на плоскости у него можно посчитать грани \supset их f, |V|=n |E|=m

Тогда: n-m+v=2

проверим:

1) 4-4+2=2 2) 6-7+3=2

Докозательство

Индуция по количеству ребер <u>База</u> G-дерево

-1 грань

вокруг грани есть цикл, а дерево без циклов

n-m+f=n-(n-1)+1=2

переход G- не знаем, верно ли (G,G'-связная планарные графы), если G' имеет меньше ребер=> верно

G- не дерево => есть цикл, берем ребро цикла

-вокруг него 2 грани, удалим ребро, получим G' то-

же связен и планарен

n' m' f'- вершины, ребра, грани G'

n'=n

m'=m-1

f'=f-1

по индукции предпололжим n'=m'+f'=2=>n-(m-1)+(f-1)=2=> n-m+f=2 Следствия

- 1) неважно, как рисовать планарный граф, количество граней постоянно
- 2) про многогранники также

8-12+6-2

3) Если G планарный
(не обяательно связный) то n-m+f=1+|комп. связности G|

Докозательство упражнение

 $4.\supset У$ каждой рани вокруг ≥ 3 ребра

 $3{\rm f}{\le}\sum_{y\in grani}$ количество ребер вокруг у $\le 2{\rm m}$ каждое ребро посчитно 1 или 2 раза=> $3{\rm f}{\ge}~2{\rm m}$

но n-m+f=2, умножим на 3

3n-3m+3f=6 => 3n-3m+2m≥6 => 3n-m≥6 => m≤3n-6

Итого т ≤ 3n-6 в связном планарном графе

Следствие

полный граф при n=5- не планарен

Докозательство

 $\overline{n=5}$

 $\begin{array}{l} m = \frac{5 \cdot 4}{2} = 10 \\ 10 \le 3*5 \text{-} 6 \text{=} 9?? \end{array}$

Замечание

 K_5 - полный граф n=5

Утверждение граф $K_{3,3}$ тоже не планарный

Докозательствро

 $n=6 m=9 9 \le 3*6-6$ нет противоречия

Сколько граней, если полярный 6-9+f=2=>f=5 граней

В $K_{3,3}$ все циклы цетные С ходим лево-право или прав-лево

=> у грани ≤ 4 ребра — невозможно

 $4f \le \sum$ ребер грани $g \le 2m => m \ge 2f$ но $9 \ge 2*5$

Теорема Понтрягина-Курлотовского

Связный граф планарен <=> если не содержит полуграфов стягивающихся к K_5 и $K_{3,3}$

стягивается и $K_{3,3}$ не планарен

не планарен, в нем есть K_5

Хроматизм

Определение

 $\overline{\supset}$ G=G(V,E)- граф раскраска графа G в к цветов это функция c: V->1..К причем, если есть ребро (U,V), то C(U)≠C(V)

какие графы можно раскрасить в 1 цвет

1

1 — 1 — это граф без ребер

какие графы можно раскрасить в 2 цветах

Определение

граф G-двудолен, еслли его можно раскарсить в 2 цвета?

 $K_{3,3}$ -двудольный

Замечание

Двудольные графы, часть рисуют из 2ух частей(долей)

Теорема

Двудолен <=> вс циклы G имеют четную длину

Докозательство

1)двудолен=> циклы четные

цикл поровну цвета 1 и цвета 2

2)циклы четные ?=> двудолен

"подвесим граф за вершину"∀ вершина 1 1 1 1 ребра назад не рисуем назначаем цвета по уровням

-обратное

Почему обратное ребро не соединяет о
инаковые цвета? Потому что иначе цикл нечетный

Напоминание

К-раскраска графа к цветов у вершин

цвет запрещены $\leq \triangle$ цветов $=> \geq 1$ цвет можно Утверждение

 $\overline{\text{G-планарный}}$ граф => $\psi(G) \leq 5$

Докозательство

1)в G есть вершина степени $\leq 5 \ |V| = n$ Если нет $=> \deg V \geq 6 => \sum \deg v \geq 6n$ $=> 2m \geq 6n => m \geq 3n6$ но в планарном G m $\leq 3n$ -6

Утверждение

Раскрасим в 5 цветов по индуцкции

Б графы 1,2,3,4,5 вершин- можно раскрасить

⊃ у нас n вершин (для n-1 вершин есть раскраска)

Берем v: deg v ≤ 5

раскрасим G' без v

если соседи v_i исчезнут \leq и цветов => для V есть цвет осталось

 \overline{G}

стягиваем 1 граньбез V сделаем \overline{G}

 \overline{G} -n-2 вершины => можно раскрасить

вернемся у G, а и d имеют один цвет => есть для V

если v_i v_j все соединены ребром => есть $K_5=>$ не планарен

Утверждение

 $\overline{\psi(G)} \le 4$ (проблема 4х красок)

Хроматические многочлены

 $\overline{\psi(G,K)}$ -это функция, сколько способов расрасить G в k цветов

$$\psi(G,K)$$
-это функция, си $\psi(0-0,k) = \left\{ egin{array}{ll} k=0 & 0 \\ k=1 & 0 \\ k=2 & 2 \\ k=3 & 6 \\ k=4 & 12 \end{array} \right.$ иначе k(k-1)

$$\psi(0-0,k)=k(k-1)$$

$$\psi(0 \quad 0, k) = k^2$$

Утверждение

 $\overline{1)\psi(0_n,k)=k}^n$ граф из n вершин без ребер

$$(2)\psi(K_n(\text{полный}), k) = k(k-2)(k-1)...(k-n+1) = k^n$$

 $3)\psi(T_n,k)=$ подвесим дерево \forall вершину

4) \overline{G} - граф

u,k вершины с ребром (u,v)

 $G = \overline{G}(u,v)$

без ребра

 $G'=\overline{G}$ где u,v стянуты в вершину


```
\psi(G, k) = \psi(\overline{G}, k) + \psi(G', k)
 способы раскрасить G, где и и v- разные цвета
 способы
 раскраска G, где u,v- один цвет
 Следствие
 \psi(\overline{G}, k) = \psi(G, k) - \psi(G', k)
 Примеры
 =k(k-1)(k-2)(k-3)+k(k-1)(k-2)
                                                         (n вершин),k)=?
\psi(C_n, k) = \psi(\underbrace{\phantom{a}}_{,k}) - \psi(C_{n-1}, k) = k(k-1)^{n-2} - \psi(C_{n-k}, k)
= > C_n = k(k-1)^{n-1} - C_{n-1} = k(k-1)^{n-1} - k(k-1)^{n-2} + C_{n-2} = k(k-1)^{n-1} - k(k-1)^{n-2} + k(k-1)^{n-3} + k(
 \pm k(k-1)^1 + (-1)^{n-1}C
                                                                                               c = \psi(0, k) = k
геометрическая прогрессия q=(-1)^nk(k-1)\frac{q^n-1}{q-1}+(-1)^{n-1}k=(-1)^nk(k-1)\frac{(-1)^n(k-1)^{n-1}-1}{k-1}+(-1)^{n-1}k \approx (k-1)^n+(-1)^n
                                                                  - C_5 цикл из 5 вершин
 \psi(C_n,K)- несколько способов раскрасить C_n в к цветов
 \psi(T_n(\text{дерево}), \mathbf{k}) = k(k-1)^{n-1}
 \psi(K_n(\text{полный}),\mathbf{k})=k^n=k(k-1)...(k-n+1)
 \psi(C_n,k) = k(k-1)^{n-1} - k(k-1)^{n-2} + k(k-1)^{n-3} ... (-1)^n k(k-1) + (-1)^{n+1} k - C_1
  =геом прогрессия
 начало:(-1)^{n+1}k
 множитель:-(k-1)
 членов:п штук
 S = (-1)^{n+1} k^{\frac{q^{n+1}-1}{q-1}}
 S = (-1)^{n+1} k \frac{q-1}{q-1}
= (-1)^{n+1} k \frac{(-1)^k (k-1)^n - 1}{-k} = (-1)^n ((-1)^n (k-1)^n - 1) = (k-1)^n - (-1)^n
```

 $\frac{{\rm Утверждение}}{\supset {\rm G}}$ имеет висячую вершину и

1)

 $\psi(G,K)=\psi(G',k)x(k-1)$ - расчитали

и соединены с v_1 и v_2 $(v_1, v_2) \in G$ $\psi(G, k)$

 $=\psi(G',k)x(k-2)$ <u>Утверждение</u> \supset $G=G_1'$ v G_2' нет ребер между G' и G_2'

 G_2'

нет ребер $\psi(G,k)=\psi(G_1',k)\psi(G_2',k)$

Пример

$$=(k-1)(k-2)^2\psi($$
 $)=(k-1)(k-2)^2\cdot k(k-1)(k-2)$

Напоминание

Утверждение

- $\overline{\psi(G,k)}$ это многочлен
- 1)старший коэффициент=1
- 2)степень= п(количество вершин)
- 3)знаки чередуются
- 4)младший коэффициент=0
- 5) коэффициент при $k^{n-1} = \pm m$ (количество ребер)

Докозательство

<u>Индукция по количеству</u> вершин при равном количестве вершин: количество ребер

База. пустой граф ищ
 п вершин $\psi(\dddot{..},k)=k^n\pm 0k^{n-1}$

переход \overline{G} с ребером $\psi(\ ,\mathbf{k})=\psi(\ ,\mathbf{k})(*1)-\psi(\ ,\mathbf{k})(*2)$

*1-мало ребер, количество вершин

*2-мало вершин

работает индукционное предположение

- 1) ст. коэффициент $(1k^n) (k^{n-1})$
- 2)степень=п
- $3)(k^{n}-k^{n-1}+k^{n-2})-(k^{n-1}-k^{n-2}+k^{n-3})$
- 4)младший коэффициент
- 5)
ребер $\mathbf{G}k^{n-1} =$ -(количество ребер $\mathbf{G}+1)k^{n-1} =$ -ребер $\mathbf{G}k^{n-1}$ на практике

Раскроем скобки

$$k^4 - 4k^3 + 5k^2 - 2k$$

Утверждение

 $\psi(G)$ -хроматическое число (минмальное число цветов для раскраски)

 $\psi(G,k)$ k=0,1,2,... $\psi(G)$ – 1- корни многочлена

 $\psi(G)$ - не корень

Эйлеровы графы

Нарисовать не проводя дважды по одному ребру

Определение

Эейлеров путь- цикл, содержащий все ребра не проходящие дважды по ребру

Утверждение

 $\overline{\mathbf{G}}$ содержит Эйлеров цикл <=> \mathbf{G} связан и все степени вершин четные deg v-чет $\forall v \in V$

Пример

Докозательство

представим граф имеющий одну веришну с длинным ребром пересекющимся самого себя, но входящим и исходящим из одной вершины- такой граф связен.

Количество входов= количество выходов=> deg четн.

В каждой вершине по пути

Использовано чет. ребер(к вход, к выходу)

- +1 реберо, через которые вошли
- => использовали нечет ребер
- =>есть еще одно, по нему можно уйти, кроме начальной, из неё вышли на 1 раз больше

=> мы закончим в начатой вершине

граф с 1 вершиной и ребром входящим и исходящим из неё Построена часть в остатке, все степени четные, т.к. G связен из начальной вершины x можно попасть в \forall вершину и ребро

Повторим процесс из $v \in 1$ циклу, из которой ведет новое ребро объединим 2 цикла

Продолжаем пока все ребране объединятся в 1 цикл

Теорема

<u>G содер</u>жит Эйлеров путь <=>

1)связен

граф с двумя вершинами и ребром выходящим из одной и входящей в другую

В этом случае нечет вершины- это начало и конец

Определение

<u>Гамильтонов</u> цилы- полсьые цепи/циклыпо всем вершинам

В прошлый раз (по всем вершинам) гамильлтоновы пути (по всем ребрам) эйлеровы циклы

Длины путей в графе

Определение

Длина пути в графе- количество ребер в пути

Пример

ABCDF- путь от A до F- длина 4(4 ребра)

ACEDF- длина 4

ACDF-длина 3

ABCEDF- длина 5

Определение

Расстояние между вершинами- минимальная длина пути между вершинами или $+\infty$, если пути нет

Обозначение d(x,y)- растояние от X до Y

Пример d(A,F)=3

Определение

Диаметр графа- минимальное расстояние между вершинами графа

 $\frac{\text{Пример}}{\text{В}}$ примере выше для него =3(достигается на др)

Все другие расстояние ≤ 4

<u>Определение</u> Для каждой вершины графа G=(V,E) можно посчитать мах расстояние до других вершин

 $r(v){=}maxd(v,\!s)|\ s{\in}V$

Радиус

 $\overline{r(G)} = minr(v) | v \in V$

те вершины, на которых достигается min- это центр

2-центр

r(6)=2-радиус графа

Центров может быть много

Утверждение в G=(V,E) d(G)
≤ 2 r(G)

Докозательство

<u>⊃ с-центр граф</u>а u,v∈ V

 $d(c,\!u)\!\!\leq r$

 $d(c,v) \le r$

 $=>d(u,v){\leq}\ 2r{=}>d(G){=}\ \max\ d(u,v){\leq}\ 2r$

Утверждение В дереве ≤ 2 центров

⊃ их 3:

Построим пути между C_1 C_2

потом C_2 C_3 (в дереве ровно 1 путь между вершинами)

$$r(c_0) < r(c_1) = r(c_2) = r(c_3) = r(G) = r$$

Замечание

Будем далье иногда использовать ориентированиые графы G=(V,E)

(ребра в ориентированном графе иногда называют дугами)

E ⊂(u,v)-упорядоченная пара

Пример

Замечание У рёбер будут весы

G=(V,E) вес- это f:E \rightarrow R

то есть у числа каждому ребру

Расстояние на графе с весами считается как min \sum весов по всем путям

d(A,B)=?

d(ACDB)=1+4+2=7

d(ACDEFB)=1+4+3+1+5=14

d(AEFB)=2+1+5=8

d(AEDB)=2+3+2=7

 $\hat{min}=7$

=> d(A,B)=7

Замечание расстояние во взвешенном графе не всегда существует

$$d(F,G)=4$$

$$d(G,F)=+\infty$$

$$d(A,B)=?$$

$$d(ADCEB)=1-5+2+1=-1$$

$$d(ADCEDCEB)=1-5+2+2-5+2+1=-2$$

и т.д.
$$\min = -\infty$$

цикла отрицательной длины

Докозательство

Если есть цикл $<0=>\forall$ две вершины этого цикла не имеют расстояние
(или $\to \infty$

Если нет расстояния, то есть для u,v есть пути сколь угодно маленикие \supset есть путь длинее n=|v| ребер => повтор ведущих в пути

- это и будет отрицтальный цикл

Как хранить графы в компьютере (представление графа в компьютере)

1. Матрица смежности: таблица ведущих вершин

$$a(i,j) = \begin{cases} 0 \text{если нет ребра} \\ 1 \text{если есть ребро} \\ \frac{1}{1} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

1	0	1	1	1
2	1	0 1 0	1	0
3	1	1	0	0
3	1	0	0	0

-симметичная для неориентированного графа Для графов с весами a(i,j)=вес ребра ij или $+\infty$, если нет

	1	2	3	4	
1	$+\infty$	15	$+\infty$	$+\infty$	
2	10	$+\infty$	21	$+\infty$	
3		$+\infty$	$+\infty$	14	
3	$+\infty$	42	$+\infty$	$+\infty$	

объем памяти $n^2 = |V|^2$

- 2. Списки смежности
- для каждой вершины хранит список соседей

Пример 1: 2(15) 2:1(10),3(21) 3:4(14) 4:2(42)

Пример

1:234

2:13

3:24

4:13

Память $\approx |E|$ количество ребер

3. Неявные способы умеем вычислять всех соседей \forall вершины Пример

Задача обход конем шахматной доски

граф: вершины=клета 64 шт

ребра- вершины перел ходом коня

Можно для ∀ клетки(вершины) посчитать, куда можно попасть

Задача обхода конем= гамильтонов цикл в этом графе

Задача

дано две вершины u,v, найти d(u,v) и путь, на котором достигается это расстояние

Замечание

оказывается, что найти путь от и до ${\bf v}$ это то де самое, что иметь путь от ${\bf r}$ до всех вершин.

Алгоритмы Форда-Беллмана

 $\overline{\text{Дано G}=(V,E)}$

 $u \in V$, найти расстояния d(u,v) для $\forall v \in V$,

Будем писать d(v)=d(u,v) т.к. и не меняется

Будем хранить в массиве d текущие найденные расстояния. В начале $d(u){=}0\ d(v){=}{+}\infty,$ если $v{\neq}$ и

Релаксация ребра $e=(v_1v_2)$

$$d(v_1)$$
 $d(v_2)$ v_1 v_2

Если $d(v_1)+f(v_1v_2)< d(v_2)=> d(v_2)=d(v_1)+f(v_1v_2)$

Алгоритм: Повторить n-1 раз: перебрать все ребра е и каждое релексировать

(в неориентированом графе — = , то есть две релаксации на ребро)

Пример

n=4(4 вершины)

ребра: A:B(1)C(5)d(10) B:C(2) C:D(3) D:

Шаг 1

A:3B, 1C

B:4C

C:2B

Путь из А

Релаксируем

 $A \xrightarrow{3} B$

 $0 \quad \infty$

 $0+3<\infty$

 $A \xrightarrow{1} C$

 $0+1<\infty$

 $B \xrightarrow{4} C$

3 1

3+4 < 1

 $C \xrightarrow{3} B$

$$1 + 1 < 3$$

n=1=>n-1=2 раза цикл релаксирующий

АВ,АС,ВС,СВ= нет улушений АВС

Корректность алгоритма

Теорема

В конце массив d содержит расстояния от A

Докозательство

После і-го цикла релаксации всех ребер, d хранит числа d(v)≤ min длин путей, в которых ≤ і ребер

Дейститвтельно, і=0(База индукции)

 \min (по пути из 0 ребер) только A-A d(A)=0 $d(u)=\infty$

 \supset есть оптимальный путь из i+1

ребра

от А до В і+1 ребер

от A до G і ребер

По предположении d(C)=dB+(A,C)

длина пути
$$\underbrace{A-C-B}_{d(c)=dist(c)}=$$
dB $+$ (C) $+$ вес(CB)

$$d(c) = dist(c)$$

проверка

$$d(C) + Bec(CB) \le d(B)$$

-верно, так как путь A-C-B оптимален => d(B)=d(C)+вес (CB)

Почем путь n-1 этап?

отрицательный путь не содержит цикл

Замечания

Мы вычисляем только расстояния, но путь неизвестен

Как восстановить путь?

Будем сохранять информацию об успешных релаксациях

prev-массив вершин

Если релаксация и v успешна, то Prev[v]=и оптимальный путь в v лежит через и

восстановить путь в $B \rightarrow C \rightarrow B$

A=prev(C) C=prev(B)

Алгоритм Дейкстры

 $\overline{\mathrm{B}}$ отличие от $\Phi\mathrm{E}$ требует, чтобы веса $\mathrm{w}(\mathrm{e}){\geq}0$

Алгоритм

Дан граф G=(V,E) $A \in V$

Найти расстояния до всех вершин d(u)=dist(A,u)

Алгоритм p=0 d(A)=0 d(u≠A)=∞- обаботанные вершины for n paз (n=v)

выбрать $\mathbf{u}{\in V}$ / p, где $\mathbf{d}(\mathbf{u})$ \rightarrow min (из необработ. min d)

for $e \in \text{ ребра из } U, e = (u,v)$

рефлексируем ребро е

 $p=p \cup u$

Пример

$$\begin{array}{ccc} A & \xrightarrow{} B \\ 0 & \infty \\ A & \xrightarrow{} C \\ 0 & \infty \end{array}$$

$$B \xrightarrow{g} D$$

 $\begin{array}{c} {\rm B} \xrightarrow{8} {\rm D} \\ 1 & \infty \end{array}$

 $U{=}C$

 $\begin{array}{c} C \xrightarrow{4} D \\ 3 & 9 \end{array}$

4=D

Эффективность |V|x|E|xlog|V|

log|V|- выбор мин

Корректность

идея- на каждом шаге d(u)=min путей

База шаг $=0 \ d(A)=0 \ d(U)=\infty$

переход

Р-обр

Выбрали u=min вершин из V/{ p}

 \supset есть оптимальный путь в и $\underbrace{A--\overline{u}}_{\sim}$ —u

 $dist(\overline{u}) = dist(u) - x$

По предложению $\operatorname{dist}(\overline{u}) = \operatorname{d}(\overline{u})$

 $d(u)>d(\overline{u})=>??\ d(u)$ был min

путь через Р

⊃ оптимальный путь в v идет через u

dist(A,U)+w(u,v)=dist(A,v)

=> релаксация и \rightarrow v успешна и d(v) получит оптимальное расстояние для восстановления пути нужен аналогичный prev усиленная релаксация u v prev[v]=u

A	В	\mathbf{C}	D	E
0	∞	∞	∞	∞
	1/A	3/A	∞	∞
		3/A	9/D	8
			7/C	∞
				9/D

 $A{\rightarrow}C{\rightarrow}D{\rightarrow}E$

Утверждение

 $\overline{\mathrm{B}}$ дереве $1 \leq \mathrm{центров} \leq 2$

Напомним

Максимальное расстояние -3

Докозательство

Если убрать у дерева все висячие вершины, расстояние изменяется на 1 $\,$

$$2 - 1 - 2$$

Если повторять убирания висячих

или — центры

Алгоритм Флойда

 $\overline{\text{Дан граф G}=(V,E)}$

Вернуть d(u,v)

$$\begin{array}{c|cccc} u \ c & v \\ \hline u & d(u;v) \\ \end{array}$$

Алгоритм

 $\overline{\text{составляе}}$ м матрицу $d_0 =$

$$d_0:d_0(u,v)=0$$

 $d_0(\mathbf{u},\mathbf{v})=egin{array}{c} \infty, \ \text{если} \ \text{чет ребра u-v} \\ \omega(u,v), \ \text{если есть ребро u-v} \end{array}$

 d_0

 $for k \in V$

for $v \in V$

$$\text{if } d(u,v) > d(u,k) + d(k,v) \\$$

$$=> d(u,v)=-//-$$

Пример

$\overline{\mathbf{k}}=\overline{\mathbf{A}}$								
	A	В	\mathbf{C}					
A	0	5	2					
В	3	0	5					
\mathbf{C}	∞	1	0					
BC>BA+AB								
	Α	В	\mathbf{C}					
A	0	5	2					
В	3	0	5					
\mathbf{C}	4	1	0					
CA>CB+BC								
	A	В	\mathbf{C}					
A	0	3	2					
В	3	0	5					
\mathbf{C}	4	1	0					

Корректность

Утверждается

 $\overline{\text{после шага k в }}$ d(u,v) min d(пути) u- от 1 до k -v

База k=0

d(u,v)=u- нет -v

действительно, в начале d содержит длины ребер, переход u- содержит от 1 до $k{+}1$ -v

- \supset есть оптимальный путь из u- k+1 -v ightarrow
- 1) \rightarrow в нем нет k+1 => его длина d(u,v)
- $2) \rightarrow$ есть k+1 u- O-k+1-O -v

его длина d(u,k+1) + d(k+1,v)

это ровно проверка цикла, меньший вариант ззанимается в d, в конце

 $d(u,v) = \min(u \forall \text{ вершины } v) = \text{dist}(u,v)$

Замечание

Чтобы восстанавливать путь, можно ввести массив through

if d(u,v) > d(u,k) + d(k,v) = > d(u,v) = -//- through (u,v) = k

Для восстановления пути

- 1) A... th(A,i)...I...th(I,B)...B
- 2)
и так далее, если $\mathrm{th}(\mathrm{x},\mathrm{y})$ нет, запишем => реберо ху это оптимальный путь

Замечание

В алгоритме Флойда идет транзитивное замыкание бинарных отношений

- ⊃ R-бинарное отношение на М
- $\supset \overline{R}$ транзитивное замыкание R, если
- 1) $\overline{R} \supset R$
- \overline{R} -транзитивно
- 3)
∀ \overline{R} $\overline{R}\supset\overline{\overline{R}}\supset R$ не транзитивно Пример

не транзитивно aRb, bRd, но aRd aRc, cRa, но aRd делаем транзитивным

 \supset R-бинарно отношение \supset G=(M,R) граф отношения, тогда \overline{R} - это $x\overline{R}y<=>$ есть путь x-у в G Докозательство

- $1)\overline{R}\supset$ R так как xRy=> есть путь из 1 ребра => $x\overline{R}y$ x-y 2) \overline{R} транзитивно, т.к. x \overline{R} y, y \overline{R} z => x \overline{R} z
- $3)\supset \overline{\overline{R}}\supset R, \overline{\overline{R}}$ транзитивно
- \supset есть путь \mathbf{x} в $\mathbf{y} \to x_1 \to x_2 \to x_3 \to \mathbf{y}$

 $xR\underline{x}_1 => x_1\underline{\overline{R}}x_2 => x\underline{\overline{R}}x_2$

 $x_2\overline{\overline{R}}x_3 => x\overline{\overline{R}}x_3 => \dots => x\overline{\overline{R}}y => \overline{\overline{R}} \supset \overline{R} \supset R$

Применим алгоритм Флойда к графу $G{=}(M,R)$

 $d_0(x,y) = 1$, если хRу

 $d_0(x,y) = \infty$, если хRу

После конца алгоритма

замыкание х \overline{R} у, если $d(x,y)<\infty$

Алгоритм транзитивного замыкания

 \overline{R} =R

for $k \in M$

for $x \in M$ for $y \in M$ if xRk & kRy $\overline{\overline{R}} \in (x,y)$, то есть сделать х \overline{R} у Потоки в сетях Определение $\overline{\text{Сеть- граф G}} = (V,E)$ ориентированный $s \in V$ Де=(4,s) ничего не входит $t \in V$ Де=(t,u) ничего не выходит

 $E{
ightarrow}$ N пропускные способности ребер целые ${
ightarrow}0$

Определение

 $\overline{\Pi}$ оток f в сеть G-это

f:
$$E \rightarrow \mathbf{R}$$
 1) $0 \le f(e) \le c(e)$

$$2) \forall u \neq S, t$$

 $\sum_{\substack{l=(v,u)\in E \ \text{пример}}} f(e)$

Поток в сетях Пример

\leftarrow поток, красные f

 \leftarrow поток, черные с

 $0 \le f(e) \le c(e)$

Пример

-поток корректный

величина потока в примере 1: 4, в примере 2: 2

b

Дана сеть (G=(V,E),c),поток f на G

$$\sum_{u:e=(s,u)}^{\text{Тогда}} f(e) = \sum_{u:e=(u,t)}^{} f(e)$$
 Рассмтрим

Рассмтрим
$$\sum_{e \in E} f(e) = 1 \sum_{v \in V} f(e) \sum_{e: e = (u, v)} f(e) = \sum_{e: e = (u, v)} f(e) + \sum_{e: e = (u, t)} f(e) + \sum_{v \in V\{s,\}} \sum_{e: e = (u, v)} f(e) = \sum_{e: e = (u, v)} f(e)$$

вытекает
$$+\sum_{v \in V\{s,t\}} \sum_{e:e=(v,u)} f(e) =$$
вытекает $+\sum_{v \in V(s,t)} \sum_{e:e=(v,u)} f(e) - \sum_{e:e=(s,u)} f(e) - \sum_{e:e=(t,u)} f(e) =$
вытекает $+\sum_{v \in V\{s,\}} \sum_{e:e=(u,v)} f(e)$ -втекает- $O=$

вытекает-втекает+ $\sum_{e \in E} f(e) =$ \Rightarrow вытекает- втекает \Rightarrow вытекает=втекает $\sum_{e:e=(u,t)} f(e) = \sum_{e:e=(s,u)} f(e)$

$$\sum_{e=(u,t)} f(e) = \sum_{e:e=(s,u)} f(e)$$

Определение

 $\overline{\mathrm{w}(\mathrm{f})}$ - эта величина называется вершиной потока

Определение

 $\overline{\text{Разрез в сети}} \; (G=(V,E),c) \; \text{Разрез } G=(V_1,V_2)$

$$s \in V_1 \quad t \in V_2 \quad V_1 \cap V_2 = \emptyset \quad V_1 \cup V_2 = V$$

Пример

 V_1 Определение

 $\overline{E_c}$ -ребра разреза это все рёбра, которые идут из V_1 в V_2 или наоборот E_c^+ -прямые ребра разреха (из V_1 в V_2) E_c^+ -обратные ребра разреха (из V_2 в V_1)

 V_2

Пример

ообратное
$$E_c^-$$
 прямое E_c^+ $E_c = E_c^- \cap E_c^+$

Определение

Величина разреза= $\sum_{e \in E_c^+} c(e)$

Обозначение c(G)

Например

$$C = (V_1, V_2)$$

$$c(C)=8+3+4=15$$

Утверждение

Пусть есть (G=(V,E),c), поток f, разрез C=(V_1,V_2) тогда w(f)= $\sum_{e\in E_c^+} f(e) - \sum_{e\in E_c^-} f(e)$

Пример

$$\begin{aligned} &\mathbf{w}(\mathbf{f}) {=} 1 {+} 3 {=} 2 {+} 2 {=} 4 \\ &\sum_{e \in E_c^+} f(e) = 1 + 3 + 0 + 2 = 6 \\ &\sum_{e \in E_c^-} f(e) = 2 \\ &\mathbf{\Pi} \mathbf{a}! \ 4 {=} 6 {-} 2 \end{aligned}$$

ла: 4—0-2 посчитаем сумму
$$\sum_{v \in V_1} \left(-\sum_{e:e=(u,v)} f(e) + \sum_{e:e=(v),u} f(e) \right)$$

1) для
$$\forall v \in V_1 \setminus \{s\}$$
внутреняя $\sum -\sum = 0$ для v=s получается $\mathbf{w}(\mathbf{f}) = \sum_{e} f(e)$

1) для
$$\forall v \in V_1 \setminus \{s\}$$
внутреняя $\sum -\sum = 0$ для v=s получается $\mathbf{w}(\mathbf{f}) = \sum_{e: e=(v), u} f(e)$ 2) $\sum_{e=(v), u} (f(e) - f(e)) + \sum_{e \in E_c^+} f(e) - \sum_{e \in E_c^-} + [-f(e)] = 0$ +величина их условия обозданации.

Обозначение

w(c,f)-выличина потока через разрез

$$\sum_{e \in E_c^+} f(e) - \sum_{e \in E_c^-} f(e)$$
 Замечание

 $\forall C \text{ w(f)}=\text{w(C,f)}$ - по Теореме

Замечание

Будем решать задачу о максимальном потоке в сети то есть найти f: $w(f) \rightarrow max$

Утверждение

Дано G,с-сеть, C-разрез

Тогда w(f) ≥ c(C)

$$V_1$$
 V_2

$$\mathbf{w}(\mathbf{f}) = \mathbf{w}(\mathbf{C}, \mathbf{f}) = \sum_{e \in E_c^+} f(e) - \sum_{e \in E_c^-} f(e) \le \sum_{e \in E_c^+} f(e) \le \sum_{e \in E_c^+} f(e) \le \sum_{e \in E_c^+} f(e) \le \mathbf{w}(\mathbf{f}) \le \mathbf{c}(\mathbf{C})$$

Следствие

B сети G w(f_{max}) \leq c(C_{min})

где $\mathbf{w}(\mathbf{f}_{max}) = \mathbf{max} \ \mathbf{w}(\mathbf{f})$ f-поток $\mathbf{c}(C_{min}) = \mathbf{min} \ \mathbf{c}(\mathbf{C})$ C-разрез

Теорема Форда-Фалкерсона

$$\overline{\mathbf{w}(\mathbf{f}_{max}) = \mathbf{c}(\mathbf{C}_{min})}$$

в сети (G,c) c(e)∈N

- для простоты считаем, что пропускные способности целые

Определение

дополнительный граф для потока

 \overline{G} имеет \overline{V} =V

 \overline{E} :

если f(e)<c(e)

$$e=(u,v)$$

то есть e'=(e',v')

$$g(e)=c(e)-f(e)$$

если 0 < f(e) e = (u,v)

то есть $e^{\dot{y}}=(v',u')$

Докозательство

 $\overline{\text{Начнем с нулев}}$ ого потока и будем его постепенно увеличивать Построим дополнительный граф \overline{G} и найдем в нём путь из s в t s-O-t

Найдем min g(e) на этом пути \supset это х

Вычтем в доп графе- х на каждом ребре

$$1)c(e)- f(e) \rightarrow c(e)- f(e)-x$$

$$f(e):=f(e)+x$$

$$f(e)$$

2)f(e)-x f'(e):=f(e)-x

Поймем, что 1) новый поток f' остался потое

2) величина потока увеличилась на х

Проверяем, что это поток $0 \le f'(e) \le c(e)$ уменьшаем по обратному, увеличиваем по прямому $c(e) - (f(e) + x) \ge 0$

В вершинах верно ∑вход=∑исх

Итого f'-поток

можно построить дополнительный граф

Пример. строим пути

сначала поток=0

Дополнительный граф не отличается от исходного

путь из s в t

S-(5)-a-(3)-d-(2)-b-(8)-t

добавим к поток +2 на каждое из этих ребер

поток

Продолжаем докозательство теорема Форда-Фалкерсона Если пути нет, то поток оптимальный?

 $\supset V_1$ - вершины, достигшие из S по ребрам до t графа $V_2{=}\mathbf{V}\,\setminus\,\mathbf{V}_1$

 $t \in V_2,$ так как нет пути S ${\to} {\bf t}$ получаем разрез исходной сети ребра E_G^+ Ребер нет в дополнительном графе, в дополнительном графе веса=0 c(e)-f(e)=0 c(C)= $\sum_{e \in E_C^+} c(e) = \sum_{e \in E_C^+} f(e)$ =c(f) Течет ли что-то по нечетным? Нет, иначе V_1 неверен

$$c(C) = \sum_{e \in E_C^+} c(e) = \sum_{e \in E_C^+} f(e) = c(f)$$

В прошлый раз мы напоминали Vc- разрез $\forall f$ -поток $c(C) \ge c(f)$

получается с-min разрз f-max поток

c(C)=2+3=5

min разрез

Утверждение

Если каждый раз искать путь с min количеством ребер,

то время тах поток $\sim V^2 E$

Без докозательства

Утверждение

 $\overline{\text{Для плоской}}$ сети(без пересечений ребер)=c(f) эффективно искать верхние пути

Задачи о паросочетаниях

Дан двудольный граф G=(u,v)

Определение

 $\overline{\Pi}$ аросочетания в G-это $P \in E$, где ребра из P не имеют общие вершины Определение

 $\overline{\text{Максимальн}}$ ое паросочетание, это РСЕ, $|P| \to \max$ из возможных Пример

 $D\{cA,bC,aB\}$

Пример

4-нельзя

Сводим к задаче о потоке

Ребра из S \rightarrow u

 $v{\rightarrow}t$

 $u \rightarrow v$

слева направо

c(e)=1

Утверждение

каждому потоку (из f=0,1) соотвествует паросочетание ребра с f(c)=1 это ребра паросочетания \Rightarrow поток

 \Leftarrow паросочетание соответвует потоку, где f(e)=1 для ребер паросочетания Следствие Размер тах паросочетаний=размер тах потока

Строим паросочетание методом ФФ

Строим дополнительный граф, но без чисел

Поток в сетях

Задача о максимальном контролируемом множестве Определение

 $\overline{\supset G{=}(V{,}E)}$ С
 $\subset V{-}$ контолирующее множество, если
 \forall G=(u,v)
 \in Е Примеры

Замечание $c{=}v$ -контролируемое множество

Утверждение

 $\overline{\mathrm{B}}$ двудольном графе G=(u \lor v,E) \supset с-контролируемое множество

 \supset р-паросочетание, тогда $|\mathbf{c}| \leq |\mathbf{p}|$

Докозательство

у каждого ребра c
 \in р есть вершины u или v
 \in

 $\underline{\mathbf{G}} = (\mathbf{u} \lor \mathbf{v}, \mathbf{E})$ -двудольный граф

Размер максимального паросочетания размеру min контролируемого множества

Докозательство

Построим максимальное паросочетание по Форду=Фалкерсон и рассмотрим разрез

 V_2

 $|\mathbf{u}| = \mathbf{x}$

 $|\mathbf{v}| = \mathbf{y}$

 $|u \wedge v_1| = a$

 $|\mathbf{u} \vee \mathbf{v_2}| = \mathbf{b}$

 $c([v_1,v_2])$ -разрез= $\sum 1=$ е реберо исходное= (x-a)+b+n Итого m= $c((V_1,V_2))$ =x-a+b+n \leq m

 $x-a+b \ge 0$

Возьмем в качестве контролируещего множества $c = (u \lor v_1) \lor (v \land v_1)$ есть ребро из $v \wedge v_2$ в и v_1

 $v \wedge v_2 \ v \wedge v_1$

- ⊃ есть ребро е=(u,v)
- 1) щначит $v \subset v_1$??
- 2) как понять в u? только из v?

Вывод 1 с= $(u \lor v_1) \lor (v \land v_1)$ -контролируемое множество

Вывод 2 c([
$$v_1, v_2$$
])-разрез=
$$\sum_{e \in u, v} 1 = (x-a) + 0 + b = |c| \Rightarrow |p| = |c|$$
$$u \in v_1$$
$$v \in v_1$$

поиск в глубину, ширину

1)структура для хранения вершин данных

D-стек или очередь/ stack or queue

 $V{
ightarrow} D$ положить в V в D

 $V \angle D$ посмотреть

стек first in last out

очередь first in first out

Пример

Пример	стек	оередь
$a{\rightarrow}D$	\mathbf{a}	a
$b{\rightarrow}D$	ba	ba
$c{\rightarrow}D$	$_{\mathrm{cba}}$	cba
_	\mathbf{c}	a
$\mathrm{D}\!\!\to$	ba	$^{\mathrm{cb}}$
$\mathrm{D}{\rightarrow}$	b	b

Поиск в ширину (D очередь) или глубину (D стек) D
Є V_0 начальная вершина

пока D не пуст

 $u = \angle D$

если есть ребро (u,v) тогда $v \rightarrow D$

в глубину, иначе достать $d{
ightarrow}u$

в глубину в ширину a \mathbf{a} ba badba cba edba $^{\mathrm{cb}}$ dba dcb edcb a ca edc fedc fca gfedc cagfed \mathbf{a} gfegfg

поиск в глубину/ ширину

D-стек/очередь

Алгоритм поиска

Дано: начальная вершина и D←u

used=0(обработанные, то есть были в D)

```
пока D\neq 0
реек D(смотрим)
если есть ребро v-w, где w∉used
иначе D \leftarrow w_i used=used v\{w\}
← D(убираем вершину из D)
в глубину из h
h
he
heb
heba
hebad
heba
heb
{
m hebc}
hebcf
{
m hebc}
heb
he
h
hg
hgi
hg
h
0
в ширину
h
he
heg
\operatorname{eg}
egb
{\rm gb}
gbi
bi
```

bia biac iac ac

ac

acd

 cd

d 0

Введем

n(u)-номер, како попался в D

b(u)- обратный номер, ккаой ушла из D

обратная

Замечание

При поиске в ширину n(u)=b(u)

Утверждение

Поиск в глубину перебирает вершины в том же порядке, что и алгоритм Дейкстры(веса ребер 1)

Действительно, добавление вершинв в D- это релаксация ребер v-w удаление из D-убирание вершины с \min расстоянием

полный поиск в глубину

Пока есть непосещенная вершина и:

поиск в глубину(и)

dfs- deep first search

Пример

 $\overline{\mathrm{dfs(c)}}$

dfs(e)

dfs(i)

Утверждение

<u>Пусть G-орие</u>нтированный граф без циклов

Пусть есть путь $u \rightarrow v$

(нет пути $v{
ightarrow}u$, т.к. нет циклов)

Докозательство

Делаем dfs

Куда попали раньше?

1) сначала попали в и

 $u{\rightarrow}\cdot{\rightarrow}\cdot{\rightarrow}v$

в стэк будет и...v \Rightarrow сначала из стэка уйдет v, потом u 2)сначала в v \Rightarrow значит закончим просмотр не попав в u \Rightarrow номер b(c) присвоится раньше чем b(u)

следствие алгоритма топологической сортировки

делаем каждый dfs и линейный порядок, зачтем как $\mathrm{b}(\mathrm{u})$

Пример

Ответ: deahgfcb

Компонент сильной связности

Напоминание

G-ориентированный граф Введем отошение \leftrightarrow на V

 $u \leftrightarrow v =$ если есть путь $h \to v$ и $v \leftrightarrow h$

abde, cf, hgi- компоненты сильной связности

 $c \Leftrightarrow f$

a⇔e

e⇔h

 $b \Leftrightarrow c$

классы эквивалентности называются компоненты сильной связности

Опрделение

 $\overline{\supset} G=(V,E)$ - ориентированный граф $G^o=(v^o,E^o)$ -граф конденсации, если $V^o=V/B$ примере E^o u^o в v^o есть ребро, если $\exists e=(u,v),$ где $u\in u^o,$ $v\in v^o$ замечание G^o не имеет циклов

 \Rightarrow у вершины \leftrightarrow

Утверждение

 $\supset G = (V, E)$ - ориентированный граф

 $G^o\operatorname{--}$ граф конденсации G

делаем полный dfs в G

Тогда

Если в G^o есть путь из \mathbf{u}^o в \mathbf{v}^o , то $\mathbf{b}(\mathbf{u}){>}\mathbf{b}(\mathbf{v})$ для любых $\mathbf{u}{\in}~u^o$ $\mathbf{v}{\in}~v^o$ $\max_{\mathbf{u} \in u^o} \mathbf{b}(\mathbf{u}) < \max_{\mathbf{v} \in v^o} \mathbf{g}(\mathbf{v})$

Докозательство

Аналогично пролому утверждению

Следствие

Поиск компонент сильной связности

- 1)полный dfs в G
- $2)^{\!\!\!\!/}$ Находим и b(i) \rightarrow max, делаем dfs по обратным ребрам G