Cours: Théorie des automates et langages formels

TP #3

Exercise 1: Automates finis avec sortie

1. Pour chaque cas suivant, donnez une machine de Moore avec Σ ={a,b} , Γ ={0,1} et une table de transition et table de sortie suivante:

a.

	a	b	Sortie
\mathbf{q}_0	\mathbf{q}_1	\mathbf{q}_0	0
q_1	\mathbf{q}_2	\mathbf{q}_1	1
\mathbf{q}_2	\mathbf{q}_2	q_0	1

b.

	a	b	Sortie
\mathbf{q}_0	q_0	q_3	0
q 1	q_1	q_0	1
\mathbf{q}_2	q_3	q_2	1
q 3	q_2	q_1	0

c.

	a	b	Sortie
\mathbf{q}_0	q_0	q_1	1
\mathbf{q}_1	q_0	q_3	1
\mathbf{q}_2	q_2	q ₃	0
\mathbf{q}_3	q_1	q ₂	0

2. Pour chaque machine de Moore précédente, donnez une machine de Mealy équivalente.

Exercice 2: Langages réguliers

Construisez un automate fini pour $L_1 \cap L_2$ à partir des automates finis de L_1 et de L2 suivants:

- 1. $L_1 = (a+b)b(a+b)^*$ $L_2 = b(a+b)^*$ 2. $L_1 = (a+b)b(a+b)^*$ $L_2 = (a+b)^*b$ 3. $L_1 = (b+ab)^*(a+\Lambda)$ $L_2 = (a+b)^*bb$ $L_2 = (a+b)*bb(a+b)*$

Exercice 3: Langages non-réguliers

Prouvez que deux langages suivants ne sont pas réguliers:

- 1. $\{a^nb^{2n}\}$
- 2. $\{a^nb^{2n}c^n\}$

Exercice 4: Décidabilité

Prouvez que ces deux automates finis suivants sont équivalents:

<u>A rendre</u>: Un fichier **votre_code_etudiant_TP3.pdf** par étudiant en utilisant moodle.