```
\left\{ a \right\}_{n=0}^{\infty} \qquad a_n = \frac{C_1 \cdot a_{n-1}}{C_1 \cdot a_{n-2}} + \frac{C_2 \cdot a_{n-2}}{C_2 \cdot a_{n-2}} \qquad n > 2
                  Olo: Ao a, = A, C, Cz, Oo, A, : Constants
[Find explicit formula]
ex: 1,1,2,3,5,8,13,21,34,55,...
  fn: fn, + fn-2 , n > 2 for 0 f, =1
Step 1:
 Solve for t: t2-C1 t-C2 = 0 (solutions r1, r2)
 case 1: r, + r2
 The explicit formula take form:
  an = Br, " + Dr," (B, D constants)
  case 2: r_1 = r_2
  The explicit formula will be like:
   a_n = B r_i^n + D r_i^n \cdot n (B, D constants)
Step 2
 case 1: r, + 12
 for n=0: a = Br, + Dr, = Ao
 for n = 1: a_1 = B r_1' + D r_2' = A_1
                                                    Solve for B and D
<u>case 2</u>: r1 = r2
  a. = B.1 + D.1.0 = A.
  a_i = B r_i' + D r_i' \cdot 1 = A_i
```

<u>ex</u> :
Let $a_n = 5 a_{n-1} \cdot b a_{n-2} n \ge 2 \cdot a_0 = 7 \cdot a_1 = 16$
 7, 16, 38, 94
5.16-6.7 5.38-6.16
Step 1:
Colve: t2-6t+6=0
$(t-2)(t-3)=0$ $r_1=2, r_2=3$
$a_n = B_2^n + D_3^n$
(In = B)
Step 2:
<u>n=0</u>
a. = B.2° + D.3° = B+D = A. =) B+D=7
<u>n=</u> 1:
a: B.2' + D.3' = 2B+3D=16
(B+D=7 -> B-7-D
(2B+3D=16
2(7-D)+3D=16
$14 - 2D + 3D = 16 \rightarrow D = 2 D = 5 $

ly.
Let fn=1.fn-, +1.fn-2 for n=2, a==0 q=1
Step 1:
Step 1: Solve: t 2 - t - 1 = 0 1+ J1-4(1)(1) = 1+J5
Ž Ž
$Q_{n} = B\left(\frac{1+\sqrt{5}}{2}\right)^{n} + D\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
$\frac{a_n = B(\frac{1}{2}) + D(\frac{1}{2})}{a_0!}$
$a_{0}: B+D=0 \Rightarrow B=-0$
a:
$a_1: B(\frac{1+\sqrt{5}}{2}) + D(\frac{1-\sqrt{5}}{2}) = 1 \Rightarrow \frac{B+B\sqrt{5}}{2} + \frac{D-O\sqrt{5}}{2} = 1$
=> B+ B15+ D-D18=2 Solve:
=D-D15 +D-D16 = 2 » -2D15 = 2 => D= -16;
$B = \frac{1}{L} D = -\frac{1}{L}$
Into Fibonacci sequence for: VE (1+15)h - VE (1-15)h
1n: 15 (2)
Salutian!
fo = 0
$f_1 = \frac{1}{12} \left(\frac{1+15}{2} \right) - \frac{1}{12} \left(\frac{1-15}{2} \right) = \frac{1+15}{215} = \frac{215}{215} = 1$
$f_2 = \frac{1}{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1$

ex:
$a_n = 4a_{n-1} - 4a_{n-2}$ $a_0 = 0$ $a_1 = 4$
 Find the explicit formula:
Step1: Solve
$\ell^2 - 4\ell + 4 = 0$
$(t-2)^2 = 0 t=2$
$r_1 = r_2 = 2$
Cand case 8
 $a_n = 3 \cdot 2^n + D \cdot n \cdot 2^n$ for some constant B,D
 a. B=0
a,= 2B + 2D = 4 => B+0=2
B=0 D=2
formula:
an = 2 n 2 n = n 2 n - 1
σ_{\bullet} , a_{i} , a_{2} a_{3}
0, 4, 16, 48
4.4.4.0 4.16- 4.4
A sequence: an = 5-2" + 2.3" For all n>0
 $a_{0}=7$, $a_{1}=16$, $a_{2}=5\cdot 2^{2}+2\cdot 3^{2}=38$
$ \begin{aligned} Q_{i} &= 5 \cdot 2^{i} + 2 \cdot 3^{i} \\ Q_{i-1} &= 5 \cdot 2^{(i-1)} + 2 \cdot 3^{(i-1)} \\ Q_{i-2} &= 5 \cdot 2^{(i-2)} + 2 \cdot 3^{(i-2)} \end{aligned} $
$a_{i-1} = 5 \cdot 2^{\binom{i-1}{2}} + 2 \cdot 3^{i-1}$
$a_{1-2} = 5 \cdot 2^{(1-2)} + 2 \cdot 3^{(1-2)}$
Validate (True / Faire)
an = 5an-, - 6an-z for nzz, and a0=7 a,=1