# small RNAseq with behin

Lorena Pantano Harvard TH Chan School of Public Health

## small RNA

RNA molecules of 18-36 its long with regulation function





Hui Chiu and Chieh Chang, Aging (Albany NY). 2013 Jul; 5(7): 485-486.

### isomiks

| hsa-miR-24-1-5pGGUGCCUACUGAGCUGAUAUC | hsa-miR-24-3p |
|--------------------------------------|---------------|
| GUGCCUACUGAGCUGAUAUCAGU              |               |
| GUGCCUACUGAGCUGAUAUCAG               |               |
| <u>UGCCUACUGAGCUGAUAUCA</u>          |               |
| <u>UGCCUACUGAGCUGAUAUC</u>           |               |
| CCUACUGAGCUGAUAUCA                   |               |
| CUACUGAGCUGAUAUCA                    |               |

#### isomiks

#### Gene expression



transfected mammary cells line derived from metastatic site



Aristeidis G. Telonis et al. Nucl. Acids Res. 2015;nar.gkv922

#### small tRNAs



Yong Sun Lee et al. Genes Dev. 2009;23:2639-2649



# piRNAs

## bcbio-nextgen

processing & QC

fastqc qualimap detection & annotation

miraligner seqcluster tdrmapper

de-novo

mirdeep2 for mirna (current) protac for pirna (next)

# challenges

- \* isomiks
- \* small RNAs coming from multiple precursors over the genome (multi-mapped reads can be 40% of the data.)
- \* differentiate degradation and functional molecules
- \* non-model organism
- \* high variability among cell types/individuals



#### isomiRs at 5' end of the miRNAs



# tRNA analysis



seqcluster deals with multi-mapped reads

# segcluster naming



meta-cluster

## multi-mapped reads





#### annotation

#### Only for well annotated genomes

meta-cluster C3 **tRNA** NO YES YES YES miRNA NO NO NO NO YES NO repeat NO NO

...

Most-voted strategy

# mikac project



# Good samples



## Quantification

\* A: universal human RNA sample

\* B: human brain sample

\* C: 25% of A + 75% of B

\* D: 25% of B + 75% of A

For each miRNA:

\* If A > B then A > D > C > B

\* If B > A then A < D < C < B

# miRNA quantification

miRNAs > 5 counts in average upper quantile normalization

miRNAs which A > B are 111, and all of them follows A > D > C

miRNAs which B > A are 181 and 174 follows B > C > D

# others' quantification

expression > 5 counts in average upper quantile normalization

\* clusters which A > B are 147, where 139 (75 are known miRNAs) follow D > C

\* clusters which B > A are 230, where 222 (129 are known miRNAs) follow D > C

# Specificity



#### Resources

| Total            | 3:19 total cores |   | total memory GB |  |  |
|------------------|------------------|---|-----------------|--|--|
| organize samples | 0                | 1 | 1               |  |  |
| trimming & miRNA | 0:21             | 8 | 20              |  |  |
| prepare          | 0:01             | 1 | 8               |  |  |
| alignment        | 0:07             | 6 | 42.1            |  |  |
| cluster          | 2:49             | 1 | 8               |  |  |
| quality control  | 0:01             | 8 | 20              |  |  |
| report           | 0                | 1 | 1               |  |  |

The time for 8 samples with 6 millions reads each was 3 hours and 19 minutes.

#### visualization

| ← → (                    | G [] file:// | //Users/lpantano/repos | s/seqclusterViz/r | eader.html                          |                      | ☆ | 9 0 | . / | <b>₽</b> ₩ ≡    |
|--------------------------|--------------|------------------------|-------------------|-------------------------------------|----------------------|---|-----|-----|-----------------|
| Brigw<br>Clust<br>Filter | ters         | Table with cluster     |                   | dreads: Book revi 🚻 Timesheet – HBC | - H Save to Mendeley |   |     |     | Other Bookmarks |
| Clust                    | ters Id:     | Sel.                   | I.D.              | Description:                        |                      |   |     |     |                 |

https://raw.githubusercontent.com/lpantano/seqcluster/master/doc/slides/seqclusterViz.gif

#### open project for small RNA annotation and analysis

standard formats naming rules

best-practices

miRNAs, tRNAs ...

## thanks

- \* Harvard T.H. Chan School of Public Health for supporting the integration of small RNAseq pipeline in bcbio. Special thanks to @roryk and @chapmanb.
  - \* Research Computing at Harvard Medical School: Chris Botka, Director of Research Computing and all the people in the team.
  - \* Special thanks to the author of that papers to make data available. I encourage to use this data for any tool that analyzes small RNA data.