青岛大学课程考试试卷

2015~2016 学年 春季学期

考试时间: 2016.01

课程名称 线性代数与概率统计 1 A 券 B B 券 □

题号	 =	Ξ	四	五	六	七	八	九	+	成绩	复核
得分											
阅卷											

注音事项:答卷前, 考生务必把答题纸上密封线内各项内容填写清楚(学号应与教务在线中 学号相同), 否则可能得不到成绩, 必须填写在密封线与装订线之间。答案必须写在边框内。

得分

一 (每小题 3 分, 共 24 分)

1.设行列式
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 =m, $\begin{vmatrix} a_{13} & a_{11} \\ a_{23} & a_{21} \end{vmatrix}$ =n, 则行列式 $\begin{vmatrix} a_{11} & a_{12} + a_{13} \\ a_{21} & a_{22} + a_{23} \end{vmatrix}$ 等于 ()

A. m+n

; B, -(m+n); C. n-m;

D. m-n

2.设矩阵
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 4 \end{pmatrix}$$
, A^* 是 A 的伴随矩阵,则 A^* 中位于(1, 2)的元素是()

; B.6 : C.2

 $D_{r}-2$

3.设两个向量组 α_1 , α_2 , …, α_s 和 β_1 , β_2 , …, β_s 均线性相关,则(

A.有不全为 0 的数 λ_1 , λ_2 , ..., λ_s 使 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_s \alpha_s = 0$ 和 $\lambda_1 \beta_1 + \lambda_2 \beta_2 + \cdots \lambda_s$ $\beta = 0$

B.有不全为 0 的数 λ_1 , λ_2 , …, λ_s 使 λ_1 ($\alpha_1+\beta_1$) + λ_2 ($\alpha_2+\beta_2$) + … + λ_s ($\alpha_s+\beta_s$)

C.有不全为0的数 λ_1 , λ_2 , …, λ_s 使 λ_1 ($\alpha_{1-}\beta_1$)+ λ_2 ($\alpha_{2-}\beta_2$)+…+ λ_s ($\alpha_{s-}\beta_s$)

D.有不全为 0 的数 λ_1 , λ_2 , …, λ_s 和不全为 0 的数 μ_1 , μ_2 , …, μ_s 使 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots$ $+ \lambda_s \alpha_s = 0$ 和 μ₁β₁+ μ₂β₂+···+ μ_sβ_s=0

4.下列矩阵中是正定矩阵的为(

$$A.\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$$
; $B.\begin{pmatrix} 3 & 4 \\ 2 & 6 \end{pmatrix}$ $C.\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & 2 & 5 \end{pmatrix}$ $D.\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

$$C. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -3 \\ 0 & -3 & 5 \end{pmatrix}$$

$$D. \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

5.
$$\begin{vmatrix} 1 & 1 & 1 \\ 3 & 5 & 6 \\ 9 & 25 & 36 \end{vmatrix} = \underline{\hspace{1cm}}.$$

6.
$$\mathcal{L}_{\mathbf{A}} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & 4 \end{pmatrix}$. $\mathcal{L}_{\mathbf{A}} = \mathbf{A} + 2\mathbf{B} = \underline{\qquad}$

- 7. 设 A=(a_{ij})_{3 × 3} , |A|=2 , A_{ij} 表 示 |A| 中 元 素 a_{ij} 的 代 数 余 子 式 (i,j=1,2,3) ,则 $(a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23})^2+(a_{21}A_{21}+a_{22}A_{22}+a_{23}A_{23})^2+(a_{31}A_{21}+a_{32}A_{22}+a_{33}A_{23})^2=$
- 8.设矩阵 $A = \begin{pmatrix} 0 & 10 & 6 \\ 1 & -3 & -3 \\ 2 & 10 & 0 \end{pmatrix}$,已知 $\alpha = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ 是它的一个特征向量,则 α 所对应的特征值

为

得分

二、(本题共7分)

设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ -1 & 2 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 3 & -1 \\ -2 & 4 & 0 \end{pmatrix}. 求 \mathbf{A} \mathbf{B}^{\mathrm{T}}$$

三、(本题共 7 分) 设矩阵
$$A = \begin{pmatrix} 1 & -2 & -1 & 0 & 2 \\ -2 & 4 & 2 & 6 & -6 \\ 2 & -1 & 0 & 2 & 3 \\ 3 & 3 & 3 & 3 & 4 \end{pmatrix}$$
.

求: (1) 秩 (A); (2) A 的列向量组的一个最大线性无关组。

学院:

图

本

年级:

姓名:

李心:

得分

四、(本题共7分)

求解非齐次线性方程组的通解:

$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1 \\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4 \end{cases}$$

得分 五、(本题共5分)

设 η_0 是非齐次线性方程组 Ax=b 的一个特解, ξ_1 , ξ_2 是其导出组 Ax=0 的一个基础解系.试证明

(1) $\eta_1 = \eta_0 + \xi_1$, $\eta_2 = \eta_0 + \xi_2$ 均是 Ax=b 的解;	
(2) η ₀ , η ₁ , η ₂ 线性无关。	
得分 六、(本题共24分,每小题3分)	
1. 己知事件 A, B 相互独立, 且 P (A) >0, P(B)>0, 则下列等式成立的是 ()	
A. $P(A \cup B) = P(A) + P(B)$ B. $P(A \cup B) = 1 - P(\overline{A}) P(\overline{B})$	
C. $P(A \cup B)=P(A)P(B)$ D. $P(A \cup B)=1$	
(-02)	
2. 设二维随机变量(X, Y)的联合概率密度为 $f(x,y)=\begin{cases} e^{-(x+y)} & x>0,y>0 \\ 0 & $ 其它	
则 P $(X \ge Y) = ($). A. $\frac{1}{4}$; B. $\frac{1}{2}$; C. $\frac{2}{3}$; D. $\frac{3}{4}$	
3.设下列函数的定义域均为(-∞, +∞),则其中可作为概率密度的是()	
A. $f(x) = e^{-x}$ B. $f(x) = e^{-x}$ C. $f(x) = \frac{1}{2}e^{- x }$ D. $f(x) = e^{- x }$	
4.设随机变量 X 与 Y 相互独立,且 $X\sim B$ (16,0.5), Y 服从参数为 9 的泊松分布,则	
D(X-2Y+3)=(
A14 B11 C.40 D.43	
5. 设 X 在[1,4]服从均匀分布,则其密度函数为	
5. 设随机变量 X 服从 参数为 λ 的泊 松(poisson)分布,则 X 的概率分布律为	

7. 设在一次实验中事件 A 发生的概率为 p,现进行 n 次独立实验,则 A 至少发生一次的概

值表示)。

得分

七、(本题共7分)

设随机变量X的概率密度为

$$f(x) = \begin{cases} cx^2, & -2 \le x \le 2; \\ 0 & \text{ 其他.} \end{cases}, \text{ 试求: (1) 常数 c; (2) } E(X), D(X).$$

得分

八、(本题共7分)

设顾客在某银行窗口等待服务的时间X(单位:分钟)具有概率密度

$$f(x) = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}}, & x > 0; \\ 0, & \text{其他.} \end{cases}$$
 ,某顾客在窗口等待服务,若超过9分钟,他就离开.

(1) 求该顾客未等到服务而离开窗口的概率 $P\{X>9\}$; (2) 若该顾客一个月内要去银行 5次,以 Y 表示他未等到服务而离开窗口的次数,即事件 $\{X>9\}$ 在 5次中发生的次数,试求 $P\{Y=1\}$.

年级:

时线

专业:

統

在 中 中

例

平吗:

本

得分

九、(本题共6分)

设随机变量X与Y相互独立,且X,Y的分布律分别为

X	0	1
	1	3
P	4	4

Y	1	2
-	2	3
P	5	5

试求: (1) 二维随机变量 (X, Y) 的分布律; (2) 随机变量 Z=XY 的分布律.

得分

十、(本题共6分)

设随机变量 X 的概率分布为 $P[X=1]=P[X=2]=\frac{1}{2}$, 在给定 X=i 的条件下,随机变量 Y 服从均匀分布 U (0, i), (i=1,2),求 Y 的分布函数及数学期望。