MLOPS: THE
MOST IMPORTANT
PIECE IN THE
ENTERPRISE AI
PUZZLE

Francesca Lazzeri, PhD
Principal Cloud Advocate Manager, Microsoft
@frlazzeri

```
@frlazzeri
```

```
rror mod.use x = False
   rror mod.use_y = False
When is a ML algorithm
    er ob.select=1
    becoming Al?
    ata.objects[one.name].se
```

vpes.Operator): X mirror to the selected ject.mirror_mirror_x" FOR X"

int("please select exact.

-- OPERATOR CLASSES ----

_____object

peration == "MIRROR_X": mirror_mod.use_x = True mlrror_mod.use_y = False mlrror_mod.use_z = False _operation == "MIRROR_Y" lrror_mod.use_x = False lrror_mod.use_y = True mirror_mod.use_z = False operation == "MIRROR Z"

Ject to mirror

. ic not

MLOps == How to bring ML to production

Bring together **people**, **process**, and **platform** to automate ML-infused software delivery & provide continuous value to our users.

People

- Blend together the work of individual engineers in a repository.
- Each time you commit, your work is automatically built and tested, and bugs are detected faster.
- Code, data, models and training pipelines are shared to accelerate innovation.

101010 010101 101010

Process

- Provide templates to bootstrap your infrastructure and model development environment, expressed as code.
- Automate the entire process from code commit to production.

Platform

- Safely deliver features to your customers as soon as they're ready.
- Monitor your pipelines, infrastructure and products in production and know when they aren't behaving as expected

How is MLOps different from DevOps?

Data/model versioning != code versioning - how to version data sets
as the schema and origin data change

Digital audit trail (lineage) requirements change when dealing with code + data

Model reuse is different than software reuse, as models must be tuned based on input data / scenario. To reuse a model you may need to finetune / transfer learn on it (meaning you need the training pipeline)

Model performance tends to decay over time & you need the ability to retrain them on demand to ensure they remain useful in a production context.

Traditional vs. ML infused systems

ML introduces two new assets into the software development lifecycle – data and models.

More assets & process to manage

Sculley, D.; Holt, Gary; Golovin, Daniel; Davydov, Eugene; Phillips, Todd; Ebner, Dietmar; Chaudhary, Vinay; Young, Michael; Crespo, Jean-Francois; Dennison, Dan (7 December 2015). "Hidden Technical Debt in Machine Learning Systems"

Customer pain points

Customer pain	Capability to Address
Hard to deploy a model for inference after I have trained it.	No-code deployment for models of common languages and frameworks
Hard to integrate the ML lifecycle into my application lifecycle.	Production-grade model release with model validation, multi-stage deployment, controlled rollout
Hard to know how and when to retrain an ML model.	Model feedback loop with AB scorecards and drift analysis, integrated with ML pipelines for retraining
Hard to figure out where my model came from and how it's being used.	Enterprise asset management with Audit trail, policy + quota management

So... how do we implement MLOps in the real world?

There are many jobs & tools involved in production ML

Azure Machine Learning GitHub TensorFlow, PyTorch, sklearn Azure Compute – CPU/GPU/FPGA

Business Owner

& many more...

Azure Data Lake Azure Data Factory Azure DataBricks Azure SQL Azure DevOps
GitHub
Azure Kubernetes Service
Azure IoT Edge
Azure Monitor

There is rarely "one pipeline" to manage the E2E process

MLOps – Process Maturity Model

Maturity Level	People	Model Creation	Model Release	Application Integration	Technology
Level 1 - No MLOps	 Data Scientists - silo'd, not in regular comms with larger team Data Engineers - silo'd (if exists), not in regular comms with larger team Software Engineers - Silo'd, receive model "over the wall" 	 Data pipeline gathers data automatically Compute may or may not be managed Experiments are not predictably tracked End result may be a single file manually handed off (model), with inputs/outputs 	 Manual process Scoring script may be manually created well after experiments, likely version controlled Is handed off to Software Engineers 	 Basic integration tests exist for the model Heavily reliant on Data Scientist expertise to implement model Releases are automated Application code has unit tests 	 Automated Builds Automated Tests for Application code Manual model training No centralized tracking of model performance
Level 2 - Automated Training	 Data Scientists - Working directly with Data Engineers to convert experimentation code into repeatable scripts/jobs Data Engineers - Working with Data Scientists Software Engineers - Silo'd, receive model "over the wall" 	 Data pipeline gathers data automatically Compute is managed Experiment results are tracked Both training code and resulting models are version controlled 	Manual Release Scoring Script is version controlled with tests Release is managed by Software engineering team	Basic integration tests exist for the model Heavily reliant on Data Scientist expertise to implement model Application code has unit tests	Automated Builds Automated Tests for Application code Automated model training Centralized tracking of model training performance Model Management
Level 3 - Automated Model Deployment	 Data Scientists - Working directly with Data Engineers to convert experimentation code into repeatable scripts/jobs Data Engineers - Working with Data Scientists and Software Engineers to manage inputs/outputs Software Engineers - Working with Data Engineers to automate model integration into application code 	 Data pipeline gathers data automatically Compute is managed Experiment results are tracked Both training code and resulting models are version controlled 	 Automatic Release Scoring Script is version controlled with tests Release is managed by CI/CD pipeline 	Unit and Integration tests for each model release Less reliant on Data Scientist expertise to implement model Application code has unit/integration tests	Automated Builds Integrated A/B testing of model performance for deployment Automated Tests for All code Automated model training Centralized tracking of model training performance Model Management
Level 4 - Automated Retraining (full MLOps)	 Data Scientists - Working directly with Data Engineers to convert experimentation code into repeatable scripts/jobs. Working with Software Engineers to identify markers for retraining Data Engineers - Working with Data Scientists and Software Engineers to manage inputs/outputs Software Engineers - Working with Data Engineers to automate model integration into application code. Implementing metrics gathering post-deployment 	Data pipeline gathers data automatically Retraining triggered automatically based on production metrics Compute is managed Experiment results are tracked Both training code and resulting models are version controlled	Automatic Release Scoring Script is version controlled with tests Release is managed by CI/CD pipeline	Unit and Integration tests for each model release Less reliant on Data Scientist expertise to implement model Application code has unit/integration tests	Automated Builds Integrated A/B testing of model performance for deployment Automated Tests for All code Automated model training and testing Centralized tracking of model training performance Model Management Verbose, centralized metrics from deployed model

Level 1 – No MLOps

Interactive, exploratory, get to something useful.

Level 2 – Reproducible Model Training

Version code, data, ensure model can be recreated.

Level 3 – Automated Model Deployment

Package, certify, deploy

Level 4 – Automated E2E ML Lifecycle

Real world Examples

Leveraging MLOps to ship recommender systems.

Generalized MLOps process

Azure Machine Learning MLOps Features

How does Azure ML help with MLOps?

Azure Machine Learning

Dataset management & versioning

Track tabular data and file data Easily import / export across language boundaries

Declarative ML pipelines

Define training pipeline declaratively

Easy to diff / compare

```
16 lines (15 sloc)
                     548 Bytes
         pipeline:
             name: SamplePipelineForTraining
              steps:
                  TrainStep:
                      python_script_step:
                          name: "PythonScriptStep"
                          script_name: "train_explain.py"
                          allow reuse: True
                          source directory: "."
                      runconfig: 'aml config/train.runconfig'
 10
                      outputs:
 11
                          result:
 12
                              destination: Output
 13
                              datastore: workspaceblobstore
 14
                              type: mount
```

Model management, packaging & deployment

Capture framework / version / resource requirements
Supports no-code deployment

Supported frameworks:

- scikit-learn
- TensorFlow (SavedModel)
- ONNX (all models)

Azure DevOps integration

Automate training & deployment into existing release management processes

Azure ML Event Grid integration

Fully managed event routing for all activities in the ML lifecycle

Let's look at some examples...

Set up a data drift monitor...

Compare datasets over time

Determine when to take a closer look

Key Takeaways

Better together: ML + DevOps mindset

MLOps provides structure for building, deploying and managing and an enterprise-ready Al application lifecycle

MLOps enhances delivery

Adoption will increase the agility, quality and delivery of AI project teams.

More than technology

MLOps is a conversation about people, process and technology Al principles and practices need to be understood by all roles

Learn More

Start Free

Build, train, and deploy models with an Azure free account

Documentation

Dig into our technical documentation

Give feedback

Tell us what you think, ask for a feature

https://aka.ms/AzureMLDocs

https://github.com/microsoft/MLOps

https://aka.ms/AzureML feedback

https://azure.microsoft.com/free

