CHAPITRE 4: LE PROBLÈME DU FLOT MAXIMUM

Le problème du flot maximum peut correspondre à un problème d'acheminement de tonnages disponibles sur des bateaux, des camions, des wagons ou à des canalisations, à des voies de transmission ...etc, vers une destination. Par exemple, l'alimentation journalière d'une ville en gaz peut être considérée comme un problème de flot maximum, si on s'intéresse à la quantité maximale de gaz que cette ville peut recevoir.

1- Définitions:

• Réseau de transport:

Un réseau de transport est un graphe sans boucles, où chaque arc est valué par un nombre positif c(u) appelé capacité de l'arc u. Ce réseau comporte un sommet sans prédécesseurs appelé "l'entré du réseau" ou "la source" et autre sommet sans successeurs appelé "la sortie de réseau" ou "le puits".

On note un réseau par R=(X,U,C).

Exemple:

• Flot:

Un flot "f" dans un réseau de transport, associe à chaque arc u une quantité f(u) qui représente la quantité de flux qui passe par cet arc en provenance de la source vers le puits.

Remarque:

Un flot est conservatif, s'il obéit à la règle de Kirchoff aux nœuds (aux sommets) suivantes: la somme des quantités de flux sur les arcs entrant dans un sommet doit être égale à la somme des quantités de flux sur les arcs sortant de ce même sommet.

Exemple:

Dans le graphe, la quantité de flux rentrant dans x_1 est égale à la somme des quantités de flux sortant de x_1 . La quantité de flot a pour valeur 2. La loi de Kirchoff est vérifiée au sommet x_1 .

• Flot compatible:

Un flot est compatible dans un réseau si pour tout arc u=(x,y), $0 \le f(u) \le c(u)$, autrement dit pour chaque arc u, le flux qui le traverse ne dépasse pas sa capacité. On retiendra dans ce qui suit la représentation suivante:

THÉORIE DES GRAPHES

Exemple:

Soit le réseau R=(X,U,C) suivant:

Dans le réseau R, le flot qui traverse chaque arc ne dépasse pas sa capacité, alors se flot est compatible.

• Flot complet:

Un flot est complet si pour tout chemin allant de la source au puits il y'a au moins un arc saturé, c'est-à-dire: le flux qui le traverse est égal à sa capacité (f(u)=c(u)).

Exemple:

Dans la figure précédente, on a 3 chemins qui mènent de s à p pour lesquels on a au moins un arc saturé. Le flot est complet.

Premier chemin:

Arc saturé

Arc saturé

Deuxième chemin:

S

Arc saturé

Arc saturé

Arc saturé

Arc saturé

S

Arc saturé

Arc saturé

S

Arc saturé

S

Arc saturé

Arc saturé

S

Arc saturé

Arc saturé

Arc saturé

S

Arc saturé

2- Le problème de la recherche du flot maximum:

Le problème de flot maximum consiste à trouver la quantité maximum de flot à acheminer de la source s vers le puits p, en tenant compte des capacités de transport et de la quantité disponible en s.

Algorithme de Ford et Fulkerson pour la recherche d'un flot maximum:

L'algorithme le plus connu pour résoudre ce problème est celui de Ford et Fulkerson.

Le principe:

L'idée de l'algorithme de Ford et Fulkerson est de faire passer un flot compatible dans le réseau, le plus évident est le flot nul, puis l'améliorer jusqu'à ce qu'on obtienne un flot complet.

Une chaine pour laquelle le flot peut être augmenté est une chaine dont les arcs dans le sens direct n'ont pas atteint leur limite et les arcs dans le sens indirect ont un flux non nul qui les traverse. *Autrement dit:* une chaine C est dite augmentante si:

- Pour tout arc u direct de C, c'est-à-dire $u \in C^+$: f(u) < c(u)
- Pour tout arc u indirect de C, c'est-à-dire $u \in C^-$: f(u) > 0

Le flot sur cette chaine C peut être augmenté de la valeur suivante:

 $\varepsilon = Minimum\ entre\{c(u) - f(u)/u \in C^+\}\ et\ \{f(u)/u \in C^-\}$

Pour améliorer le flot, on ajoute ε au flot des arcs C^+ , c'est-à-dire les arcs directs dans la chaine, et on retranche au flot des arcs de C^- , c'est-à-dire, les arcs indirects, dans la chaine.

THÉORIE DES GRAPHES

Exemple:

Voici une chaine C reliant les sommets s et p prise d'un réseau de transport dont le flot peut être augmenté:

$$(s)$$
 $3;1$ (x_1) $4;2$ (x_2) $3;1$ (x_3) $4;1$ (p)

Dans la chaine on a:

- Les arcs dans le sens direct $C^+ = \{(s, x_1), (x_1, x_2), (x_3, p)\}$ n'ont pas attient leur limite: f(u) < c(u).
- Les arcs dans le sens indirect $C^- = \{(x_3, x_2)\}$ ont un flux non nul ; f(u) > 0.

D'où la chaine C est augmentente.

Le flot sur cette chaine peut être augmenté de la valeur suivante:

$$\varepsilon = Min[\{c(u) - f(u) / u \in C^+\}; \{f(u) / u \in C^-\}]$$

= Min[3-1;4-2;4-1;1]=1

On augmentera donc le flot de cette chaine de 1, ce qui signifie:

- Augmenter de 1 le flux entre s et x₁.
- Augmenter de 1 le flux entre x_1 et x_2 .
- Diminuer de 1 le flux entre x_3 et x_2 .
- Augmenter de 1 le flux entre x_3 et p.

On obtient alors le nouveau flot sur la chaine:

On remarque que pour les arcs en sens inverse, améliorer le flot signifie réduire le flux les traversant. Entre x₃ et x₂, le flux est réduit d'une unité pour permettre l'arrivée d'une unité de flux sur x₂ par x₁ en augmentant le flux entre x₁ et x₂ d'une unité et ceci en conservant la loi de kirchoff au sommet x_2 .

Enoncé:

Données: un 1-graphe valué G=(X,U,c); f un flot maximum.

Résultat: un flot f complet.

- (0) Initialisation: Marguer un sommet s et poser: $C^+ = \emptyset$; $C^- = \emptyset$; $f^k = 0$; $A = \{s\}$; k = 0
- (1) Soit A l'ensemble des sommets marqués et soit x un sommet de A:
 - Marquer le sommet y successeur de x tel que f(x,y) < c(x,y)On pose: $C^+ := C^+ \cup \{(x, y)\}; A := A \cup \{y\}$
 - Marquer le sommet y prédécesseur de x tel que f(x, y) > 0On pose: $C^- := C^- \cup \{(x, y)\}; A := A \cup \{y\}$

Quand on ne peut plus marquer, deux cas se présentent:

- 1- p est marqué aller en (2)
- 2- p n'est pas marqué, terminé le flot est maximum.
- (2) On a obtenu une chaine augmentante $C = C^+ \cup C^-$ de s à p.

Pour améliorer le flot on calcule:

- $\varepsilon_1 = min[c(u) f(u); u \in C^+]$
- $\varepsilon_2 = min[f(u); u \in C^-]$

D'où $\varepsilon = min\{\varepsilon_1, \varepsilon_2\}$

On définit le nouveau flot:

$$f^{k+1}(u) = \begin{cases} f^{k}(u) + \varepsilon \text{ pour } u \in C^{+} \\ f^{k}(u) - \varepsilon \text{ pour } u \in C^{-} \\ f^{k}(u) \text{ pour } u \notin C \end{cases}$$

Effacer les marques sauf en s, et aller en (1).

THÉORIE DES GRAPHES

Application:

Une usine à gaz alimente une ville V par l'intermédiaire du réseau de distribution ci-dessous. Les nombres associés aux arcs représentent les capacités de transport.

On voudrait connaître la quantité maximale que peut écouler l'usine. Ce qui revient à chercher un flot maximum sur le réseau.

- Initialisation:

On marque le sommet g (entré du réseau R) par le signe +.

On pose : $A = \{g\}$; $C^+ \cup C^- = \emptyset$ et $f^k = 0$; un flot défini sur le réseau R, k=0

Le réseau R après défini le flot f^0

- Itération 1:

Dans le réseau R, on suit la procédure de marquage suivante:

- On marque le sommet x_1 d'un +, car il est successeur de g et $f^0(g, x_1) = 0 < c(g, x_1) = 5$ On pose: $C^+ = C^+ \cup \{(g, x_1)\} = \{(g, x_1)\}; A = A \cup \{x_1\} = \{g, x_1\}.$
- On marque le sommet x_3 d'un +, car il est successeur de x_1 et $f^0(x_1, x_3) = 0 < c(x_1, x_3) = 3$ On pose: $C^+ = C^+ \cup \{(x_1, x_3)\} = \{(g, x_1), (x_1, x_3)\}; A = A \cup \{x_3\} = \{g, x_1, x_3\}.$
- On marque le sommet V d'un +, car il est successeur de x_3 et $f^0(x_3, V) = 0 < c(x_3, V) = 8$ On pose: $C^+ = C^+ \cup \{(x_3, V)\} = \{(g, x_1), (x_1, x_3), (x_3, V)\}; A = A \cup \{V\} = \{g, x_1, x_3, V\}.$

Le sommet V était marqué, la procédure s'arrête. On obtient donc la chaine augmentante $C = C^+ \cup C^- = C^+ = \{(g, x_1), (x_1, x_3), (x_3, V)\}$ reliant le sommet g et V

$$(g)$$
 (x_1) (x_3) (x_3) (x_3) (x_4) (x_5)

On calcule: $\varepsilon_1 = min[c(u) - f(u); u \in C^+]$

$$= min[c(g, x_1) - f^0(g, x_1); c(x_1, x_3) - f^0(x_1, x_3); c(x_3, V) - f^0(x_3, V)]$$

= $min[5 - 0; 3 - 0; 8 - 0] = 3$

On améliore ainsi le flot f^0 pour obtenir un nouveau flot f^1 , en ajoutant la quantité ε_1 au flot des arcs de C^+ . Le flux des arcs n'appartenant pas à la chaine, reste inchangé.

Le réseau R après avoir défini le nouveau flot f^1

33

On efface les marques sauf en g.

Itération 2:

Dans le réseau R, on suit la procédure de marquage suivante:

- On marque le sommet x_1 d'un +, car il est successeur de g et $f^1(g,x_1) = 3 < c(g,x_1) = 5$ On pose: $C^+ = C^+ \cup \{(g, x_1)\} = \{(g, x_1)\}; A = A \cup \{x_1\} = \{g, x_1\}.$

Le sommet x_3 est le successeur de x_1 , mais l'arc (x_1, x_3) est saturé $f^1(x_1, x_3) = c(x_1, x_3) = 3$ Donc, on ne peut pas marquer x_3 (on abandonne ce marquage).

- On margue le sommet x_2 d'un +, car il est successeur de g et $f^1(q, x_2) = 0 < c(q, x_2) = 6$ On pose: $C^+ = C^+ \cup \{(g, x_2)\} = \{(g, x_2)\}; A = A \cup \{x_2\} = \{g, x_2\}.$
- On marque le sommet x_3 d'un +, car il est successeur de x_2 et $f^1(x_2, x_3) = 0 < c(x_2, x_3) = 7$ On pose: $C^+ = C^+ \cup \{(x_2, x_3)\} = \{(g, x_2), (x_2, x_3)\}; A = A \cup \{x_3\} = \{g, x_2, x_3\}.$
- On marque le sommet x_4 d'un +, car il est successeur de x_3 et $f^1(x_3, x_4) = 0 < c(x_3, x_4) = 4$ On pose: $C^+ = C^+ \cup \{(x_3, x_4)\} = \{(g, x_2), (x_2, x_3), (x_3, x_4)\}; A = A \cup \{x_3\} = \{g, x_2, x_3, x_4\}.$
- On marque le sommet V d'un +, car il est successeur de x_4 et $f^1(x_4, V) = 0 < c(x_4, V) = 4$ On pose: $C^+ = C^+ \cup \{(x_4, V)\} = \{(g, x_2), (x_2, x_3), (x_3, x_4), (x_4, V)\}; A = A \cup \{V\} = \{(x_4, V)\}; A = A \cup \{(x_4, V)\}; A \cup \{(x_4, V)\}; A = A \cup \{(x_4, V)\}; A \cup \{(x_4, V)\}; A = A \cup \{(x_4,$ $\{g, x_2, x_3, x_4, V\}.$

Le sommet V est marqué, on arrête le marquage. La chaine obtenue est augmentante $C = C^+ \cup C^- = C^+ = \{(g, x_2), (x_2, x_3), (x_3, x_4), (x_4, V)\}$, et relie les deux sommets g et V

On calcule:
$$\varepsilon_1 = min[c(u) - f(u); u \in C^+]$$

$$= min \begin{bmatrix} c(g, x_2) - f^1(g, x_2); c(x_2, x_3) - f^1(x_2, x_3); c(x_3, x_4) - f^1(x_3, x_4); \\ c(x_4, V) - f^1(x_4, V) \end{bmatrix}$$

$$= min[6 - 0; 7 - 0; 4 - 0; 4 - 0] = 4$$

On améliore ainsi le flot f^1 pour obtenir un nouveau flot f^2 , en ajoutant la quantité ε_1 au flot des arcs de C⁺. Le flux des arcs n'appartenant pas à la chaine, reste inchangé.

Le réseau R après défini le flot f^2

On efface les marques sauf en g.

Itération 3:

Dans le réseau R, on suit la procédure de marquage suivante:

- On marque le sommet x_2 d'un +, car il est successeur de g et $f^2(g,x_2) = 4 < c(g,x_2) = 6$ On pose: $C^+ = C^+ \cup \{(g, x_2)\} = \{(g, x_2)\}; A = A \cup \{x_2\} = \{g, x_2\}.$
- On marque le sommet x_4 d'un +, car il est successeur de x_2 et $f^2(x_2, x_4) = 0 < c(x_2, x_4) = 5$ On pose: $C^+ = C^+ \cup \{(x_2, x_4)\} = \{(g, x_2), (x_2, x_4)\}; A = A \cup \{x_4\} = \{g, x_2, x_4\}.$
- On marque le sommet x_3 d'un +, car il est prédécesseur de x_4 et $f^2(x_3, x_4) = 4 > 0$ On pose: $C^- = C^- \cup \{(x_3, x_4)\} = \{(x_3, x_4)\}; A = A \cup \{x_3\} = \{g, x_2, x_4, x_3\}.$
- On marque le sommet V d'un +, car il est successeur de x_3 et $f^2(x_3, V) = 5 < c(x_3, V) = 8$ On pose:

$$C^{+} = C^{+} \cup \{(x_{3}, V)\} = \{(g, x_{2}), (x_{2}, x_{4}), (x_{3}, V)\}; A = A \cup \{V\} = \{g, x_{2}, x_{4}, x_{3}, V\}.$$

Le sommet V est marqué, on arrête le marquage. La chaine obtenue est augmentante $C = C^+ \cup C^- = \{(g, x_2), (x_2, x_4), (x_3, x_4), (x_3, V)\}$, et relie les deux sommets g et V

$$(g)$$
 (x_2) (x_3) (x_4) (x_4) (x_4) (x_4) (x_4) (x_4) (x_5) (x_5) (x_6) (x_6)

On calcule:
$$\varepsilon_1 = min[c(u) - f(u); u \in C^+]$$

$$= min[c(g, x_2) - f^2(g, x_2); c(x_2, x_4) - f^2(x_2, x_4); c(x_3, V) - f^2(x_3, V)]$$

$$= min[6 - 4; 5 - 0; 8 - 5] = 2$$

$$\varepsilon_2 = min[f(u); u \in C^-]$$

$$= min[f^2(x_3, x_4)] = 4$$

$$\varepsilon = min[\varepsilon_1, \varepsilon_2] = min[2, 4] = 2$$

On améliore ainsi le flot f^2 pour obtenir un nouveau flot f^3 , en ajoutant la quantité ε au flot des arcs de C^+ et retranchant la quantité ε au flot des arcs C. Le flux des arcs n'appartenant pas à la chaine, reste inchangé.

Le réseau R après défini le flot f^3

On efface les marques sauf en g.

- Itération 4:

Dans le réseau R, on ne peut pas marquer le sommet V. Donc le flot obtenu est maximum, on le représente comme suit:

Arcs	(g,x_1)	(g,x_2)	(x_1,x_3)	(x_2,x_3)	(x_2,x_4)	(x_3,x_4)	(x_3,V)	(x_4,V)
flux	3	6	3	4	2	2	5	4

La valeur du flot maximum est égale à celle des flux sortant de la source g, ou la somme des valeurs des flux entrant au puits p.

C'est-à-dire:
$$f_{max} = \sum (f(s,x)/x \in \Gamma^+(s)) = \sum (f(x,p)/x \in \Gamma^-(p))$$

La production maximale que peut écouler l'usine g vers la ville V:
 $f_{max} = f^3(x_3,V) + f^3(x_4,V) = 5 + 4 = 9$ ou $f_{max} = f^3(g,x_1) + f^3(g,x_2) = 3 + 6 = 9$

Remarque 1:

Pour accélérer le processus de résolution de problème de recherche de flot maximum, on démarre avec un flot au jugé, et on essaie de le rendre complet.

Un flot au jugé, consiste à envoyer une matière à partir du sommet s, et de la distribuer sur le réseau tout en respecter la conservation de la matière en chaque sommet. On applique ensuite l'algorithme de Ford et Fulkerson avec comme flot de départ, le flot complet obtenu.

Remarque 2:

Lors de l'application de l'algorithme de Ford et Fulkerson; on peut déterminer dans un premier temps un flot complet, c'est-à-dire, déterminer toutes les chaines augmentantes qui sont des chemins, puis dans un second temps, chercher toutes celles qui permettront de rendre le flot complet maximum.