MANUAL DE CONSTRUCCIÓN: MINI CNC CON ARDUINO

Plotter CNC basado en MakerBot Unicorn

ÍNDICE

- 1. Introducción
- 2. Materiales necesarios
- 3. Ensamblaje del hardware
- 4. Instalación del software
- 5. Configuración del sistema
- 6. Pruebas iniciales
- 7. Uso del sistema
- 8. Solución de problemas
- 9. Referencias y recursos adicionales

1. INTRODUCCIÓN

Este manual describe la construcción de una mini máquina CNC basada en Arduino, que funciona como un plotter de dibujo. El sistema utiliza el proyecto "MakerBot Unicorn" como base y permite convertir archivos SVG en instrucciones de dibujo para la máquina CNC.

El sistema completo consiste en:

- Una estructura mecánica con motores paso a paso y un servo para controlar un bolígrafo o herramienta de dibujo
- Una placa Arduino con un shield de motores para controlar el sistema
- Software para controlar la máquina y convertir archivos SVG en instrucciones G-code

2. MATERIALES NECESARIOS

Hardware:

- 1 Arduino (UNO o compatible)
- 1 Shield de motor Adafruit (compatible con librería AFMotor)
- 2 Motores paso a paso (28BYJ-48 o compatibles)
- 1 Servo motor pequeño
- 1 Fuente de alimentación de 12V (2A mínimo)
- Varillas roscadas y lisas (diámetro 8mm recomendado)
- Rodamientos lineales (LM8UU o similares)
- Correas y poleas GT2 (opcional para mayor precisión)
- Tornillos, tuercas y arandelas variadas
- Cables de conexión
- Soporte para bolígrafo/herramienta
- Tabla de madera o acrílico para base y plataforma

Software:

- Arduino IDE
- Inkscape (con extensión Unicorn)
- Processing IDE
- Bibliotecas de Arduino:
 - o AFMotor.h
 - o Servo.h

Herramientas:

- Destornilladores (plano y Phillips)
- Llaves Allen
- Soldador y estaño (para conexiones)
- Δlicates
- Sierra para cortar varillas
- Taladro con brocas

3. ENSAMBLAJE DEL HARDWARE

3.1 Estructura Mecánica

1. Preparación de la base:

- Corta una tabla de madera o acrílico de aproximadamente 30x30cm para la base
- o Taladra agujeros para los soportes de las varillas guía.

2. **Eje X:**

- o Monta dos varillas paralelas para el movimiento en X.
- o Instala los rodamientos lineales en los soportes.
- o Fija el motor paso a paso en un extremo del eje X.
- Si usas sistema de correa, instala la polea en el motor y la polea libre en el extremo opuesto.

3. **Eje Y:**

- o Monta el segundo par de varillas perpendiculares al eje X.
- o Instala los rodamientos lineales para el carro del eje Y.
- o Fija el segundo motor paso a paso.
- o Conecta el sistema de transmisión (correa o varilla roscada).

4. Montaje del portaherramientas:

- o Crea un soporte para el bolígrafo/herramienta.
- o Instala el servo motor en el soporte.
- o Diseña un mecanismo que permita al servo subir y bajar el bolígrafo.
- o Ajusta el peso del portaherramientas para minimizar la inercia.

3.2 Conexiones Electrónicas

1. Montaje del Arduino y Shield:

- o Coloca el shield de motor Adafruit sobre el Arduino.
- o Asegura que esté bien conectado.

2. Conexión de motores:

- o Conecta el motor del eje X a los terminales del motor 1 en el shield.
- o Conecta el motor del eje Y a los terminales del motor 2 en el shield.
- o Asegúrate de que las conexiones sean seguras y correctas.

3. Conexión del servo:

- o Conecta el servo al pin 10 del Arduino (según el código principal).
- Asegúrate de conectar correctamente: rojo a 5V, negro a GND, y señal al pin 10.

4. Alimentación:

- o Conecta la fuente de alimentación externa de 12V al shield de motor.
- o Verifica que la polaridad sea correcta.

4. INSTALACIÓN DEL SOFTWARE

4.1 Arduino IDE

- 1. Descarga e instala Arduino IDE desde arduino.cc.
- 2. Instala las bibliotecas necesarias:
 - o AFMotor.h: Se puede descargar desde la biblioteca de Arduino.
 - o Servo.h: Incluida en la instalación estándar de Arduino.

4.2 Inkscape y Extensión Unicorn

- 1. Descarga e instala Inkscape desde inkscape.org.
- 2. Instala la extensión Unicorn para Inkscape:
 - Copia los archivos unicorn.inx, unicorn.py y la carpeta unicorn (con los archivos __init__.py, context.py, entities.py, y svg parser.py) a la carpeta de extensiones de Inkscape.
 - o La ubicación típica de la carpeta de extensiones es:
 - Windows: C:\Program Files\Inkscape\share\extensions
 - Linux: ~/.config/inkscape/extensions/
 - Mac:

/Applications/Inkscape.app/Contents/Resources/share/inkscape/extensions/

4.3 Processing IDE

- 1. Descarga e instala Processing desde processing.org.
- 2. Abre el archivo processing code.pde con Processing IDE.

5. CONFIGURACIÓN DEL SISTEMA

5.1 Carga del Firmware Arduino

- 1. Conecta el Arduino al computador mediante USB.
- 2. Abre el archivo main code.ino en Arduino IDE.
- 3. Selecciona tu placa Arduino y puerto en el menú Herramientas.
- 4. Ajusta los parámetros según tu configuración mecánica:
 - o Revisa las definiciones penup y pendown para ajustar los ángulos del servo.
 - o Ajusta StepsPerMillimeterX y StepsPerMillimeterY según tu sistema de transmisión.
 - o Modifica Xmin, Xmax, Ymin, Ymax según el tamaño de tu área de trabajo.
- 5. Carga el sketch al Arduino.

5.2 Calibración Mecánica

1. Calibración del servo:

- o Usa el sketch servo test.ino para probar las posiciones del servo.
- o Ajusta los valores penup y pendown hasta conseguir la altura correcta para el bolígrafo.

2. Calibración de ejes:

- o Ajusta la tensión de las correas si las utilizas.
- o Asegúrate de que los carros se muevan libremente sin juego excesivo.
- Verifica que los finales de carrera (si los tienes) funcionen correctamente.

3. Ajuste de los parámetros de velocidad:

 En el código principal, ajusta los valores de StepDelay y velocidad de los motores según sea necesario.

6. PRUEBAS INICIALES

6.1 Prueba de Movimiento Básico

- 1. Carga el sketch servo_test.ino para verificar el movimiento básico.
- 2. Observa si los motores se mueven correctamente y el servo sube y baja adecuadamente.
- 3. Verifica que la dirección de movimiento sea la correcta en ambos ejes.

6.2 Primera Prueba de Dibujo

- 1. Coloca un papel en la superficie de trabajo.
- 2. Asegura un bolígrafo en el portaherramientas.
- 3. Ejecuta el sketch servo_test.ino que realizará un movimiento de prueba formando un cuadrado.
- 4. Observa si el bolígrafo dibuja correctamente y ajusta la altura si es necesario.

7. USO DEL SISTEMA

7.1 Preparación de Archivos SVG

- 1. Crea o abre un diseño en Inkscape.
- 2. Convierte todo el texto a trazados (Selecciona el texto -> Menú Trayecto -> Objeto a trayecto).
- 3. Asegúrate de que los trazos estén dentro del área de trabajo de tu máquina.
- 4. Guarda el archivo en formato SVG.

7.2 Conversión a G-code

- 1. En Inkscape, selecciona Archivo -> Guardar como.
- 2. En el menú desplegable de formato, selecciona "MakerBot Unicorn G-Code (*.gcode)".
- 3. Ajusta los parámetros en el diálogo que aparece:
 - Ángulo del bolígrafo arriba/abajo
 - Velocidad de alimentación XY
 - o Retardo después de subir/bajar el bolígrafo
 - o Otras opciones según tus necesidades
- 4. Guarda el archivo G-code.

7.3 Envío de Trabajo a la Máquina

- 1. Conecta el Arduino al computador.
- 2. Abre Processing IDE y carga el archivo processing code.pde.
- 3. Ejecuta el sketch de Processing.
- 4. En la interfaz que aparece:
 - o Presiona 'p' para seleccionar el puerto COM del Arduino.
 - o Presiona 'g' para seleccionar el archivo G-code que creaste.
 - o La máquina comenzará a dibujar una vez cargado el archivo.
 - o Presiona 'x' para detener la ejecución en cualquier momento.

7.4 Durante la Operación

- 1. Mantén el área de trabajo despejada.
- 2. Asegúrate de que el papel esté bien sujeto.
- 3. Observa el proceso para detectar posibles problemas.
- 4. No toques la máquina mientras está en movimiento.

8. SOLUCIÓN DE PROBLEMAS

Problemas Mecánicos

Problema	Posible Causa	Solución
Los ejes se atascan	Desalineación de varillas	Realinea las varillas y asegúrate de que estén paralelas
	Rodamientos dañados	Reemplaza los rodamientos
Dibujo distorsionado	Pasos por mm incorrectos	$\begin{array}{ll} Ajusta \; \text{StepsPerMillimeterX} \; y \\ \text{StepsPerMillimeterY} \end{array}$
	Correas flojas	Tensa las correas
El bolígrafo no dibuja	Altura incorrecta	Ajusta los valores de penup y pendown
	Servo no funciona	Verifica conexiones y alimentación

Problemas de Software

Problema	Posible Causa	Solución
Error de compilación	Bibliotecas faltantes	Instala las bibliotecas necesarias
Processing no se conecta	Puerto COM incorrecto	Selecciona el puerto correcto
	Arduino no responde	Reinicia Arduino y Processing
Inkscape no muestra la extensión	Instalación incorrecta	Verifica la ubicación de los archivos de extensión
G-code no se ejecuta	Formato incorrecto	Revisa el archivo G-code y regenera si es necesario

9. REFERENCIAS Y RECURSOS ADICIONALES

Documentación Original

- Proyecto MakerBot Unicorn en GitHub
- Documentación de AFMotor

Comunidad y Soporte

- Foro de Arduino
- Comunidad de Impresión 3D y CNC

Mejoras y Modificaciones Sugeridas

- Agregar finales de carrera para auto-calibración
- Implementar un control de velocidad variable
- Adaptar para diferentes herramientas (rotuladores, punteros láser, etc.)
- Integrar con otros software de generación de G-code

NOTAS IMPORTANTES

- Este es un proyecto educativo y de hobby.
- Siempre verifica las conexiones eléctricas antes de encender el sistema.
- Mantén las manos alejadas de las partes móviles durante la operación.
- Realiza pruebas con lápices o bolígrafos antes de utilizar otras herramientas.
- Guarda copias de seguridad de tus archivos de configuración y código.