

Figure 4: Results of different methods when using different step size schemes. Column (a): constant $\epsilon_t = \epsilon_0$; Column (b): decaying step size $\epsilon_t = \epsilon_0 (b+t)^{-\gamma}$; Column (c): Adagrad (whose master step size we denote by ϵ_0). We search the best ϵ_0 in the grid [1e-3, 1e-4, 1e-5, 1e-6] that achieves the lowest constraint loss at the end of the training. For the other parameters, we use fixed $\gamma = 0.55$ and b=1 for decaying step size, and the default parameters of Adagrad in PyTorch except the master step size ϵ_0 .