Interpreting Indirect Answers Using Self-Rationalizing Models

Yun Li, Michael Neely, Frederik Nolte

When asked a polar question...

Question: Do you like red meat?

...People can respond indirectly

Question: Do you like red meat?

Answer: I'm a vegetarian.

Humans intuitively interpret such responses

Question: Do you like red meat?

Answer: I'm a vegetarian.

Interpretation: She means **no**

because vegetarians don't eat meat.

But what about modern neural language models?

- Circa Dataset (Louis et al., 2020) to test interpretation capacity.
 - o 34,268 crowdsourced (context, polar question, indirect answer) pairs
 - Two label settings:

Label	STRICT	
Yes	14,504	(42.3%)
No	10,829	(31.6%)
Probably yes / sometimes yes	1,244	(3.6%)
Yes, subject to some conditions	2,583	(7.5%)
Probably no	1,160	(3.4%)
In the middle, neither yes nor no	638	(1.9%)
I am not sure	63	(0.2%)
Other	504	(1.5%)
N/A	2,743	(8.0%)

Table 7: Distribution of STRICT gold standard labels. 'N/A' indicates lack of majority agreement.

Label	RELAXED	
Yes	16,628	(48.5%)
No	12,833	(37.5%)
Yes, subject to some conditions	2,583	(7.5%)
In the middle, neither yes nor no	949	(2.8%)
Other	504	(1.5%)
N/A	771	(2.2%)

Our focus

Table 8: Distribution of RELAXED gold standard labels. 'N/A' indicates lack of majority agreement.

But what about modern neural language models?

- 1. Expectation: It will be **difficult**, because interpreting indirect answers requires extensive amounts of *background knowledge* and *common sense*
- 2. Reality: easy to classify
 - Multiple Choice QA models can easily reach 90%+ accuracy in the relaxed setting, and can reach 80+% accuracy with the answer only.
 - O Why?
 - Annotation artifacts: simple pattern matching and co-occurrence statistics
 - Poor benchmarking task: does not require reading comprehension skills, common sense reasoning, or world knowledge (see e.g., Sugawara et al., 2019)

What if we raise the bar?

 If we ask a model to rationalize (explain) its decision, we can more accurately gauge its ability to understand natural language.

Faithfulness

- Accurately represents the reasoning process behind the model's prediction (Jacovi and Goldberg, 2020)
- o If the model predicts the wrong label, we can see why it made a mistake
- o If the model predicts the right label, we can see if makes the correct logical inference
- Best type of explanation: free-form natural language text (unrestricted)

Options

Pipeline: Explain-Then-Predict

e.g., (Latcinnik and Berant, 2020)

Jointly: Predict and Rationalize

More Faithful (Wiegreffe et al., 2020)

Method

- Text-to-Text with T5 (Raffel et al., 2020)
- Same setup as Narang et al., 2020: "WT5"

Method

- One problem: no references with which to supervise rationale generation!
- Solution (similar to Narang et al., 2020): transfer learning
 - e-SNLI (Camburu et al., 2018): ~570k Natural language inference (NLI) instances with human-provided explanations
 - CoS-E (Rajani et. al, 2019): ~10k multiple choice questions from CommonSense QA (Talmor et al., 2019) with human-provided explanations
- Training: Finetune T5 on 5-task mixture:
 - e-SNLI with/without rationales, CoS-E with/without rationales, Circa without rationales
- Evaluation: Predict and rationalize held out Circa test set

Training

Context: X wants to know about Y's food preferences.

Question (X): Do you eat red meat?

Answer (Y): I'm a vegetarian.

Target: No

nli context: X wants to know about Y's food preferences. hypothesis: I eat red meat. premise: I'm vegetarian.

Contradiction.

Evaluation

Evaluation measures

- Predictive power:
 - Accuracy
 - Micro F1
- Rationale quality and faithfulness:
 - Human judgments (Mechanical Turk survey Likert scale)
 - Leakage-Adjusted Simulatability (Hase et al., 2020)
 - Intuition: when do explanations support model behavior?
 - Gauge "how well an observer can use model explanations to predict the model's output, while controlling for explanation leakage" (per Hase et al., 2020)
 - Observer in our experiments: DistilBERT (Sanh et al., 2019)

Results

- Highly accurate
 - ~88% accuracy on held-test test set with unseen contexts
- Very faithful
 - LAS score on par with human results reported by Hase et al., 2020
- Not very creative
 - 39% of rationales match 9 verbose logical regexes
 - Another 41% match 3 naive logical regexes
 - The rest are mostly moderate modifications to the some combination of the premise, hypothesis, and/or context
- Displays average capacity for fluency and reasoning
 - Sometimes applies logical templates that do not match the predicted label
 - Most poor rationales would be correct with just one logical flip (e.g., 'would' → 'would not')
 - Average rationale quality rating is 3/5

Discussion

contradiction. Thai food is not the same as Thai food.

entailment. I can't
wait to get in my PJs
implies I am excited to
go home.

- Semi-intelligent pattern matching
 - Applies templates from e-SNLI and CoS-E based on the predicted label of the Circa instance
 - Because the templates are (mostly) logical in nature, annotators tend to rate the rationales very highly or very poorly. E.g., either the rationale is correct or completely wrong
- Rationales tend to leak
 - Classifiers like DistilBERT can reach ~99% accuracy on a large subset of the rationales
- Still not a true test of language understanding, but a step in the right direction
 - Can reasonably transfer rational generating capacity to new datasets, but only when in a similar domain

References I

- Icons: https://www.flaticon.com/
- O.-M. Camburu, T. Rockt aschel, T. Lukasiewicz, and P. Blunsom. <u>e-snli: Natural language inference with natural language explanations</u>, 2018.
- A. Jacovi and Y. Goldberg. Towards faithfully interpretable NLP systems: <u>How should we define and evaluate faithfulness?</u> In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4198–4205, Online, July 2020. Association for Computational Linguistics.
- Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. 2020. <u>Leakage-adjusted simulatability: Can models generate non-trivial explanations of their behavior in natural language?</u> In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 4351–4367.
- V. Latcinnik and J. Berant. <u>Explaining question answering models through text generation</u>, 2020.
- Annie Louis, Dan Roth, and Filip Radlinski. 2020. "I'd rather just go to bed": Understanding indirect answers.
- Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and Karishma Malkan.
 2020. <u>WT5?! Training text-to-text models to explain their predictions.</u>

References II

- N. F. Rajani, B. McCann, C. Xiong, and R. Socher. <u>Explain yourself! leveraging language models for commonsense reasoning.</u> In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4932–4942, Florence, Italy, July 2019. Association for Computational Linguistics.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. <u>Exploring the limits of transfer learning with a unified text-to-text transformer.</u> Journal of Machine Learning Research, 21(140):1–67.
- Saku Sugawara, Pontus Stenetorp, Kentaro Inui, and Akiko Aizawa. <u>Assessing the benchmarking capacity of machine reading comprehension datasets</u>. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8918–8927, Apr. 2020.
- Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. <u>CommonsenseQA: A question answering challenge targeting commonsense knowledge.</u> In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421.
- Sarah Wiegreffe, Ana Marasovic, and Noah A. Smith. 2021. <u>Measuring association between labels and free-text rationales</u>.