1 A real number x is badly approximable if there is some c > 0 such that for every rational p/q we have

$$\left| x - \frac{p}{q} \right| > \frac{c}{q^2}.$$

A somewhat weaker condition (let's say α -badly approximable) is when q^2 is replaced by q^{α} for some $\alpha > 2$.

For c > 0 we say $x \in \mathbb{R}$ is (α, c) -bad if for every rational p/q we have

$$\left| x - \frac{p}{q} \right| > \frac{c}{q^{\alpha}}.$$

Then x is α -bad (α -badly approximable) if it is (α , c)-bad for some c > 0.

For c>0 we say $x\in\mathbb{R}$ is (α,c) -good if there is a rational p/q such that

$$\left| x - \frac{p}{q} \right| < \frac{c}{q^{\alpha}}.$$

We say $x \in \mathbb{R}$ is α -good if it is (α, c) -good for all c > 0.

Clearly, if x is α -good then it must not be α -bad, since α -good uses a strict inequality, which is stronger than the negation of α -bad. On the other hand, if x is not α -good, then it must not be (α, c) -good for some c > 0. In which case, c < c/2 so x is $(\alpha, c/2)$ -bad—hence α -bad.

We may therefore conclude that a real number is α -good if and only if it is not α -bad.

Show that there are lots of α -badly approximable numbers and lots of not- α -badly approximable numbers (for example, both sets are uncountable).

Proof. For c > 0 define the set

$$G_c = \bigcup_{p/q \in \mathbb{O}} B_{c/q^{\alpha}}(p/q) = \{x \in \mathbb{R} : x \text{ is } (\alpha, c)\text{-good}\},$$

(where representatives $p/q \in \mathbb{Q}$ are chosen such that gcd(p,q) = 1) and its complement

$$N_c = \mathbb{R} \setminus G_c = \{x \in \mathbb{R} : x \text{ is } (\alpha, c)\text{-bad}\}.$$

Then define

$$G = \bigcap_{n \in \mathbb{N}} G_{1/n}$$
 and $N = \mathbb{R} \setminus G = \bigcup_{n \in \mathbb{N}} N_{1/n}$.

We claim that G is precisely the set of α -good real numbers and, by extension, N is the set of α -bad real numbers. Note that if $x \in \mathbb{R}$ is α -good, then it must be $(\alpha, 1/n)$ -good for every $n \in \mathbb{N}$, i.e., $x \in G$. On the other hand, if $x \in G$ and c > 0 then there is some $n \in \mathbb{N}$ such that 1/n < c. In which case, x is $(\alpha, 1/n)$ -good, implying it is (α, c) -good—hence α -good.

Note that G_c is an open "neighborhood" of \mathbb{Q} since it is the union of open balls—one for each rational. Since \mathbb{Q} is dense in \mathbb{R} , G_c is also dense in \mathbb{R} . It follows that N_c is nowhere

dense as a closed set with dense complement, therefore N is meager. Then G is comeager, so it cannot be meager. Since countable sets are meager, we conclude that G is uncountable.

Let λ denote the Lebesgue measure on \mathbb{R} . For any c>0 we have $G\subseteq G_c$ so

$$\lambda(G) \le \lambda(G_c) \le \sum_{p/q \in \mathbb{Q}} \lambda(B_{c/q^{\alpha}}(p/q)) = \sum_{p/q \in \mathbb{Q}} \frac{2c}{q^{\alpha}}.$$

Again, we are assuming gcd(p,q) = 1 so

$$\sum_{p/q \in \mathbb{Q}} \frac{2c}{q^{\alpha}} = \sum_{n \in \mathbb{N}} \sum_{\substack{k \in \mathbb{Z} \\ \gcd(n,k) = 1}} \frac{1}{n^{\alpha}} = \sum_{n \in \mathbb{N}} \frac{2\varphi(n)}{n^{\alpha}},$$

where φ denote Euler's totient function, i.e., $\varphi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n. Note that $\varphi(n) \leq n$ for all $n \in \mathbb{N}$, (with equality only if n is prime). Then

$$\sum_{n\in\mathbb{N}} \frac{\varphi(n)}{n^{\alpha}} \le \sum_{n\in\mathbb{N}} \frac{n}{n^{\alpha}} = \sum_{n\in\mathbb{N}} \frac{1}{n^{\alpha-1}}.$$

This is precisely the sum of the *p*-series for $p = \alpha - 1$. With $\alpha > 2$ we have p > 1 so the sum is $\zeta(\alpha - 1)$, i.e., the evaluation of the Riemann zeta function at $\alpha - 1$. In particular, we conclude that $\lambda(G) \leq \zeta(\alpha - 1) < \infty$. Therefore $\lambda(N) = \infty$, implying N is uncountable. \square

2

(a) Prove the Uniform boundedness principle:

Let X be a complete metric space and let \mathcal{F} be a subset of C(X) such that for each $x \in X$, the set

$$\mathcal{F}_x = \{ f(x) : f \in \mathcal{F} \}$$

is bounded. Then there is a nonempty open set U of X on which the functions in \mathcal{F} are uniformly bounded, i.e. there is an M such that $|f(x)| \leq M$ for all $x \in U$ and $f \in \mathcal{F}$.

Hint: Choose $A_N = \{x \in X : |f(x)| \le N \text{ for all } f \in \mathcal{F}\}.$

Proof. Given $x \in X$ we know by assumption that $\mathcal{F}_x \subseteq [-N, N]$ for some $N \in \mathbb{N}$. In other words, $|f(x)| \leq N$ for all $f \in \mathcal{F}$, hence $X = \bigcup_{N \in \mathbb{N}} A_N$. Assuming $X = \operatorname{int} X$ is nonempty, the Baire category theorem implies it cannot be meager. Therefore, some A_N must not be nowhere dense, i.e., $\operatorname{int} \overline{A_N} \neq \emptyset$. We can write

$$A_N = \bigcap_{f \in \mathcal{F}} f^{-1}([-N, N]),$$

which means A_N is closed. Then

$$U = \operatorname{int} A_N = \operatorname{int} \overline{A_N} \neq \emptyset$$

is an open set of X such that $|f(x)| \leq N$ for all $x \in U$ and $f \in \mathcal{F}$.

(b) Suppose now that X is a Banach space and the functions in \mathcal{F} are linear. Show that there is an M such that for every $x \in X$ and $f \in \mathcal{F}$, $|f(x)| \leq M||x||$.

Proof. Let U and M be as in part (a). Choose $z \in U$ and $\varepsilon > 0$ such that $B_{\varepsilon}(z) \subseteq U$. Then for any $f \in \mathcal{F}$ and $u \in B_{\varepsilon}(0)$ we have $z + u \in U$ so

$$|f(u)| = |f(-z + z + u)| = |-f(z) + f(z + u)| \le |f(z)| + |f(z + u)| \le 2M.$$

In other words, $B_{\varepsilon}(0) \subseteq A_{2M}$. Given $x \in X$ choose a > 0 such that $\varepsilon/2 \le a||x|| < \varepsilon$. Then

$$|f(x)| = \frac{|f(ax)|}{a} \le \frac{2||x||}{\varepsilon} \cdot 2M = \frac{4M}{\varepsilon} ||x||.$$

3

(a) Let Z and X be locally compact Hausdorff spaces. Suppose $K \subseteq Z \times X$ is a compact set contained in an open set U. Show that K is covered by a finite number of compact boxes $A_i \times B_i \subseteq U$.

Proof. Consider a point $(z, x) \in K \subseteq U$. Then there are open neighborhoods $V \subseteq Z$ and $W \subseteq X$ of z and x, respectively, such that $V \times W \subseteq U$. Since Z and X are locally compact and Hausdorff, we can choose a compact neighborhood $A_z \subseteq V$ of x and $B_x \subseteq W$ of y. The product of interiors int $A_z \times \operatorname{int} B_x \subseteq A_z \times B_x$ is an open neighborhood of (z, x), hence $A_z \times B_x$ is a compact box neighborhood of (z, x). Importantly, we have found a compact box neighborhood of (z, x) contained in U.

Then the collection of interior boxes $\{\operatorname{int} A_z \times \operatorname{int} B_x\}_{(z,x)\in K}$ is an open cover of K. If we choose $\{\operatorname{int} A_i \times \operatorname{int} B_i\}_{i=1}^n$ to be a finite subcover of K, then $\{A_i \times B_i\}_{i=1}^n$ is the desired cover by compact boxes contained in U.

(b) In class, we showed that if X is a locally compact Hausdorff space, then for any spaces Z and Y,

$$C(Z, C(X, Y))$$
 and $C(Z \times X, Y)$

are in bijection as sets, where C(X,Y) is given the compact-open topology. Show that if Z is also locally compact Hausdorff, then this bijection is a homeomorphism if both sets are considered as spaces with the compact-open topology.

Hint: As always, a good strategy to show two spaces are homeomorphic is to show that a subbasis for the topology of one is open in the other and vice versa.

Lemma 1. If S is a subbasis of open sets for Y then

$$\{V(K, U) : K \subseteq X \text{ compact}, U \in \mathcal{S}\}$$

is a subbasis of open sets for C(X,Y) with the compact open topology.

Proof. Let \mathcal{B} be the collection of finite intersections of sets in \mathcal{S} . Then \mathcal{B} is a basis of open sets for Y. Consider an arbitrary standard subbasis set $V(K,U) \subseteq C(X,Y)$, i.e., $K \subseteq X$ is compact and $U \subseteq Y$ is open. Then $U = \bigcup_{\alpha \in I} U_{\alpha}$ for some $U_{\alpha} \in \mathcal{B}$ so

$$V(K,U) = \bigcup_{\alpha \in I} V(K,U_{\alpha}).$$

In other words,

$$\{V(K,U): K \subseteq X \text{ compact}, U \in \mathcal{B}\}$$

generates the standard subbasis for C(X,Y) under arbitrary unions and is therefore itself a subbasis. Given a basis set $U \in \mathcal{B}$, we can write $U = \bigcap_{i=1}^n U_i$ for some $U_i \in \mathcal{S}$ so

$$V(K, U) = \bigcap_{i=1}^{n} V(K, U_i).$$

That is, the collection subbasis sets in the statement of the Lemma generates a subbasis for C(X,Y) under finite intersections and arbitrary unions, hence the collection is itself a subbasis.

Lemma 2. The collection

$$\{V(A \times B, U) : A \subseteq Z \text{ and } B \subseteq X \text{ compact}, U \subseteq Y \text{ open}\}$$

is a subbasis of open sets for $C(Z \times X, Y)$ with the compact open topology.

Proof. Let V(K,U) be a standard subbasis set and $f \in V(K,U)$. Then $K \subseteq Z \times X$ is a compact set contained in the open set $f^{-1}(U)$. As in part (a), let $\{A_i \times B_i\}_{i=1}^n$ be a cover of K by compact boxes contained in $f^{-1}(U)$. Then $f \in K(A_i \times B_i, U)$ for $i = 1, \ldots, n$ and

$$\bigcap_{i=1}^{n} V(A_i \times B_i, U) = V(\bigcup_{i=1}^{n} (A_i \times B_i), U) \subseteq V(K, U).$$

This is an open neighborhood of f contained in V(K,U). We can then write V(K,U) as the union of all such intersections for $f \in V(K,U)$. That is, the collection in question generates the standard subbasis under finite intersections and arbitrary unions and is therefore itself a subbasis.

Proof (a). Lemma 1 tells us that

$$\{V(A, V(B, U)) : A \subseteq Z \text{ and } B \subseteq X \text{ compact}, U \subseteq Y \text{ open}\}$$

is a subbasis of open sets for C(Z, C(X, Y)) with the compact open topology. Applying Lemma 2, the bijection induces a correspondence of subbasis sets:

$$C(Z, C(X, Y)) \longleftrightarrow C(Z \times X, Y)$$

 $V(A, V(B, U)) \longleftrightarrow V(A \times B, U)$