Design Issues in VLSI

Pravin Zode

Outline

- Signal Integrity in VLSI
- Antenna Effect
- Electromigration Effect
- Body Effect
- Capacitive crosstalk
- Inductive Crosstalk
- Drain Punch-Through

Introduction

- VLSI circuits are prone to several physical design issues due to the high density of components and interconnects
- Understanding these effects is crucial for reliable, efficient,
 and manufacturable chips
- As technology nodes shrink, parasitic effects become more prominent and need careful handling
- Early detection of these design issues helps avoid costly refabrication and improves chip performance

Signal Integrity

- In digital circuits all signal are subject to noise, distortion and loss
- Signal integrity (SI) refers to the quality and reliability of electrical signals as they travel through interconnects
- It ensures correct logic values at the receiver
- Issues arise due to High frequencies, Aggressive scaling,
 Dense interconnects

Signal Integrity in Physical Design

Digital system SI analysis are done in three levels:

- Logic level
- Circuit level (Interconnect modeling)
- > EM field level (Crosstalk, ground bounce etc.)

Issues concerning Signal Integrity

Major issues concerning signal integrity are

- Cross-talk Delay
- Cross-talk Noise
- Ringing & Ground bounce
- IR (voltage) drop in power lines
- Electro migration
- Manufacturing-related issues that if not addressed can lead to chip failure (Antenna Effect)

Antenna Effect

- Antenna Effect is also called as Plasma Induced Gate Oxide Damage.
- Antenna effect arise in the intermediate steps of CMOS manufacturing process i.e. during dry etching(Plasma)
- Charge accumulation on long metal interconnects during fabrication can damage gate oxides

Antenna Effect – Etching

Dry Etching

- Stable gases are used for etching (Plasma, gaseous chemical)
- Anisotropic in nature i.e. it etches only in one direction
- Result : Clean etching

Wet Etching

- Chemicals are used for etching
- Isotropic in nature: Etches equally in both directions, vertically as well as horizontally
- Result: Undercut

Plasma Etching

- Utilizes plasma (ionized gas) to selectively remove material from the wafer
- Plasma is created using radio frequency (RF) voltage in a vacuum chamber
- lons and neutral species are generated from process gases.
- These reactive species bombard the wafer, removing specific material based on mask patterns.

Antenna Effect: How it happens

- Plasma used in etching releases charged particles (ions, electrons)
- Metal interconnects exposed to plasma collect charge
- If these interconnects are connected to a transistor gate, charge is transferred to the gate oxide
- The gate oxide is very thin and can't withstand high voltages
- Result
 - Gate oxide breakdown
 - Permanent device damage
 - Degraded performance or yield loss

Interconnects act like antennas, collecting charge from plasma (not radio signals)

Antenna Effect: Antenna Ratio

$$Antenna Ratio = \frac{Area of Metal connected to Gate}{Area of Gate}$$

Higher ratio = greater risk of antenna effect.

- Metal layer 3 is long (accumulate the charges, causing antenna violation)
- There is no discharge path, charges will discharge through Gate, and damage the gate

Method to Resolve Antenna Effect (Jumpers)

Metal Jumpers

Add Metal Jumper in higher metal layers

Ex: Metal 3 is broken and jumper is adder in layer 4

Metal jumper are always added at higher layers

Methods to resolve Antenna Violation (Diode)

Add reverse biased diode near the gate

Forward biased diode is not used as it hampers normal operation (normally design work at low voltages)

Electromigration Effect

- Electromigration is the transport of material caused by the momentum transfer from electrons to metal atoms.
- High current density → momentum transfer → atom displacement
- Occurs mostly in metal interconnects (Al, Cu)
- Causes voids and hillocks in metal lines
- Leads to open circuits (failure) or short circuits
- Reduces lifetime and reliability of ICs.

Electromigration Effect

Failures caused by electromigration

Mitigate the Effects of Electromigration

- Increasing interconnect width to reduce current density.
- Using materials with high electromigration resistance, such as gold and copper.
- Diverting current intensity using redundant vias.
- Decreasing spacing between interconnects.
- Designing the circuit for lower voltage levels

Crosstalk

- Unintended coupling between signal lines due to electromagnetic interference
 - Capacitive Crosstalk (electric field)
 - Inductive Crosstalk (magnetic field)

Capacitive Crosstalk

- Capacitive Crosstalk is the undesired coupling of signals between adjacent interconnects due to parasitic capacitance
- It can cause timing errors, logic glitches, or signal integrity issues in high-speed digital circuits

Cross-talk has two effects: Cross-talk Noise & Cross-talk Delay

Cross-talk Noise/Cross-talk Glitch

- Signal transition in aggressor causes a noise bump or glitch on victim net. This in known as cross-talk noise
- Cross-talk noise/glitch/bump occurs when aggressor net switches and the victim nets remain in a steady state

Range of Safe/Unsafe Glitch

- Safe Glitch: Has no effect on logic state of victim net.
- Glitch height < Noise Margin Low (NML), a safe glitch.
- Glitch height > Noise Margin High (NMH), a unsafe glitch.
- NML < Glitch Height < NMH, an unpredictable case

Cross-talk Delay/Cross-talk Delta Delay

- Signal transition in aggressor create delay in the output transition of victim. This is known as cross-talk delay
- Cross-talk delay occurs when both aggressor and victim nets switch together
- There are two types of cross-talk delay:
 - Negative Crosstalk Delay
 - Positive Crosstalk Delay

Negative Cross-talk Delay

Aggressor and victim nets switch in the same direction

- If aggressor has higher driving strength, transition will happen faster.
- A potential difference from node A to V will be developed.
- Node A will try to pull up the victim node
 - Transition of the victim node will have a bump.
- Victim net will reach from 0 to 1 earlier and transition time will decrease.
- Cross-talk will be decrease the delay by Δ and the new delay will be $(D \Delta)$.

Positive Cross-talk Delay

Aggressor and victim nets switch in the Opposite direction

- Aggressor net and node A switches from 0→ 1.
- Victim net or node V switches from 1→ 0.
- There will be a potential difference from node A to V.
- Node A will try to pull up node V.
- There will be a bump in victim net waveform.
- Transition of the victim node will have a bump.
- Victim net will take longer time to reach from 1 to 0.
- Transition time will increase

Inductive Crosstalk

- Inductive crosstalk is the unintended electromagnetic coupling between nearby conductors due to changing magnetic fields
- Occurs when a time-varying current in one wire induces a voltage in a nearby wire through mutual inductance.

Drain Punch-Through

- Occurs in short-channel MOSFETs
- Depletion region of drain extends toward source as channel length decreases
- At very short lengths, drain and source depletion regions merge
- This allows leakage current to flow even when gate voltage is below threshold
- Causes loss of gate control, degrading device performance
- Leads to higher off-state current and power consumption.

Drain Punch-Through

 Schematic diagram for punch through. When we drain is a High enough voltage with respect to the source, the depletion region around the drain may extend to the source, causing current to flow irrespective of gate voltage

Body Effect

- Threshold Voltage is minimum voltage Vgs required to form a inversion layer (Channel) in source and drain
- Threshold voltage determines the operation of MOSFET
- If Vgs is less than threshold voltage MOSFET stays in cutoff
- Due to voltage at substrate(Body), threshold voltage changes, it is called as Body Effect

Body Effect

$$V_{th} = V_{th0} + \gamma \left(\sqrt{\left|V_{SB} + 2\phi_F
ight|} - \sqrt{\left|2\phi_F
ight|}
ight)$$

- ullet V_{th0} : Threshold voltage at zero V_{SB}
- γ: Body effect coefficient
- ullet V_{SB} : Source-to-body voltage
- φ_F: Fermi potential

- For NMOS:
 - $V_{SB} > 0 \Rightarrow V_{th} \uparrow$
- For PMOS:
 - $V_{SB} < 0 \Rightarrow |V_{th}| \uparrow$
- Higher threshold → reduced current drive, slower switching

No Body Effect

Body Effect

Thank you!

Happy Learning