Messung & Darstellung von Schallwellen

Jochen Trommer

jtrommer@uni-leipzig.de

Universität Leipzig Institut für Linguistik

Phonologie/Morphologie - SS 2007

Überblick

Messung von Schallwellen

Digitalisierung

Sampling Quantisierung

Darstellung von Schallwellen

Oszillogramme Fourier-Analyse Spektren Spektrogramme

Aufbau eines Mikrofons (Reetz, 2003:11)

Über einem luftdicht abgeschlossenen Raum ist eine flexible Membran gespannt:

Funktionsweise eines Mikrofons (Reetz, 2003:11)

Ist der Luftdruck aussen höher, biegt sich die Membran nach innen

Ist der Luftdruck innen höher, biegt sich die Membran nach aussen

Funktionsweise eines Mikrofons (Reetz, 2003:11)

In der Mitte der Membran wird ein Bleistift angebracht, der ihre Ausschläge auf Papier festhält:

Funktionsweise eines Mikrofons (Reetz, 2003:11)

Das Papier wird mit einer festen Geschwindigkeit vorbeigezogen, um die Ausschläge festen Zeiten zuordnen zu können:

Funktionsweise eines richtigen Mikrofons

- Ausschläge der Membran rufen entsprechende elektronische Impulse hervor
- Impulse werden verstärkt und
- mit Kasettenrekorder, Computer, etc. aufgenommen

Analog vs. Digital (Reetz, 2003:40)

Digital

Analog vs. Digital

Sprachsignale sind analog:

- Sie können in beliebig kleinen Zeitintervallen gemessen werden
- Amplituden können beliebig genau gemessen werden

Computerdaten sind digital:

- endlich viele Messungen
- Amplituden können beliebig genau gemessen werden

Digitalisierung (AD-Wandlung)

Sampling: Das Signal wird in bestimmten Zeitabständen

gemessen ("abgetastet")

Quantisierung kontinuierliche Amplitudenwerte

werden in digitalisierte Werte umgewandelt

(Messung mit bestimmter Genauigkeit)

Analoges & Digitales Signal (Mayer, 2006:49)

Hohe vs. niedrige Abtastrate

Zu niedrige Abtastrate

Um ein periodisches Signal F zu erfassen,

muss die Abtastrate mindestens

die doppelte Frequenz von F haben

Typische Abtastraten

Musik auf einer Audio-CD: 44 kHz

DAT-Aufnahmen: 48 kHz

viele phonetische Aufnahmen: 22 KHz

Quantisierung (Mayer, 2006:60)

Quantisierung

Standard \approx 6500-stufige Skala

Graphische Darstellungen von Schall

- Oszillogramm
- Amplituden-Spektrum
- Spektrogramm/Sonagramm

Graphische Darstellungen: Oszillogramm

- entspricht weitgehend den Messungen, die durch ein Mikrofon zustande kommen
- X-Achse: Zeit (Sekunden)
- Y-Achse: Amplitude (Luftdruck in Pascal)

Oszillogramm eines Klangs

Luftdruck (Pa)

Zeit (s)

Oszillogramm eines Quasi-Klangs: [a]

Oszillogramm eines Geräuschs: [s]

Fourier-Analyse

- kehrt Fourier-Synthese um
- mathematisch komplex
- Gängigster Algorithmus: Fast Fourier Transformation (FFT)

Fouriersynthese (http://id.mind.net/~zona/mstm/physics/waves/waveAdder/.WaveAdder1.html)

Teilwelle 1 Teilwelle 2

Fouriersynthese

Teilwellen 1 und 2 übereinander

Teilwellen 1 und 2 addiert

Fourieranalyse (Umkehrung)

Teilwelle 1 Teilwelle 2

Fourier-Analyse eines Klangs

Graphische Darstellungen: (Linien-)Spektrum

- Komplexe Schwingungen werden durch Fourier-Analyse in Teilschwingungen zerlegt
- jede Teilschwingung wird durch eine Linie dargestellt
- X-Achse: Frequenz (Hertz)
- Y-Achse: Amplitude (Luftdruck in Pascal)

Luftdruck (Pa) 4 3 2

Frequenz (Hz)

300

100

200

(Linien-)Spektrum eines Klangs

(Linien-)Spektrum eines Quasi-Klangs: [a]

(Linien-)Spektrum eines Geräuschs: [s]

Graphische Darstellungen: Spektrogramm

- stellt wie ein Spektrum Teilschwingungen dar
- berücksichtigt aber auch die zeitliche Abfolge
- Amplitude wird durch Schwärzung angezeigt
- ightharpoonup "Spektrogramm" pprox "Sonagramm"

Spektrogramm eines Klangs

Grad der Schwärzung = Lautstärken der Teil-Schwingungen

Spektrogramm eines Quasi-Klangs: [a]

Frequenz (Hz)

Zeit (s)

Schwärzung = Lautstärken der Teil-Schwingungen

Spektrogramm eines Geräuschs: [s]

Frequenz (Hz)

Zeit (s)

Schwärzung = Lautstärken der Teil-Schwingungen

Obertöne in einer akustischen Täuschung

