

DON BOSCO INSTITUTE OF TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION

BE Project: Progress Seminar II

DEVELOPING A CONTAINER GPS TRACKING SYSTEM TO ENHANCE SUPPLY CHAIN SECURITY

INDUSTRY COLLABORATION PROJECT: QDNET TECHNOLOGIES PVT. LTD.

Group Members: Group No. 4

Sanskar Kumar (Leader) 31

Russel Dmello 14

Sakshi Kaveri 25

Shreyas Nanaware 42

Project Guide: Ms. Freda Carvalho

QDnet: Mr. Quentin Desouza

GPS

OVERVIEW

- 1. Introduction
- 2. Problem Statement
- 3. Objectives
- 4. Outcomes
- 5. Methodology
- 6. Approach and Analysis
- 7. Block Diagram & Connections
- 8. Results
- 9. Gantt Chart
- 10. Bill of materials
- 11. References

INTRODUCTION

- The proposed project aims to develop a container GPS tracking system that will help prevent theft and improve the security of the supply chain
- With the use of GPS technology, the system will enable companies to track the location of their containers in real-time and receive alerts if any unauthorized activity is detected
- By implementing this system, businesses can safeguard their precious shipments, ensure seamless logistics, and elevate overall customer satisfaction

PROBLEM STATEMENT

Develop and implement a low-power container GPS tracking system for real-time monitoring and tracking of container locations and preventing theft to enhance supply chain security and ensure safe transportation of goods.

OBJECTIVES

- To create a reliable GPS tracking solution for shipping containers
- Set up UART-GSM communication to send collected data to the server
- Efficiently designing and fabricating the PCB
- To design an closed circuit system for alerting any theft attempt
- To optimize power consumption to extend the tracking system's battery life
- To create data analysis algorithms for processing and interpreting GPS data on a web server

OUTCOMES

- Improved Real-Time Visibility
- To enhance supply chain security
- Reduced Theft and Loss
- Minimum Power requirement
- Publication of Paper

METHODOLOGY

- 1) Initialize GPS module
- 2) Establish UART communication between GPS and STM32 microcontroller
- 3) Retrieve data in the form of NMEA sentences and convert it into a suitable format
- 4) Initialize GSM module with AT commands
- 5) Establish UART communication between GSM and STM32 microcontroller
- 6) To send the collected data from STM32 to the server via GSM
- 7) Repeat steps 3 to 7 at hourly intervals for continuous tracking and updating

APPROACH & ANALYSIS OF PROJECT

ANALYSIS OF PROJECT

- The system's behavior depends on factors like traffic for location updates
- It has provisions to prevent false alerts during traffic delays
- Geofencing allows setting virtual boundaries for alerts when the container deviates from its route
- Modules can enter low-power mode during extended stationary periods to save power
- Motion sensors act as a security measure to detect break-in attempts when the container is stationary

BLOCK DIAGRAM

TARGET ACCOMPLISHED

SCHEMATICS

Software: Kicad

TIMELINE / GANTT CHART

Task	June	July	August	Sept	Oct	Nov	Dec	Jan	Feb
Literature Survey									
Finalising and working on GSM and GPS modules									
Testing the GSM and GPS modules									
Serial communication through STM32									
Designing Circuit diagram, schematics									
Layout and fabrication									
Testing									
Paper Publication									

BILL OF MATERIALS

Components	Quantity	Price (Rs.)	
GSM (M66) module	1	1,549.04	
GPS (L80) module	1	450	
STM32F302R8	1	912.91	
Fabrication cost	1	10,000	

REFERENCES

- [1] S. Ni, M. Naing, and S. Naing, "GPS and GSM Based Vehicle Tracking System," International Journal of Trend in Scientific Research and Development, vol. 3, pp. 271-275, 2019. DOI: 10.31142/ijtsrd23718.
- [2] K. Maurya, M. Singh, and N. Jain, "Real Time Vehicle Tracking System using GSM and GPS Technology An Anti-theft Tracking System," International Journal of Electronics and Computer Science Engineering, vol. 1, 2012.
- [3] H. D. Pham, M. Drieberg, and C. C. Nguyen, "Development of vehicle tracking system using GPS and GSM modem," 2013 IEEE Conference on Open Systems (ICOS), Kuching, Malaysia, 2013, pp. 89-94, doi: 10.1109/ICOS.2013.6735054...

REFERENCES

- [4] W. El-Medany, A. Al-Omary, R. Al-Hakim, S. AlIrhayim, and M. Nusaif, "A Cost Effective Real-Time Tracking System Prototype Using Integrated GPS/GPRS Module," in Proceedings of the 6th International Conference on Wireless and Mobile Communications (ICWMC), 2010, pp. 521-525, 20-25 Sept. 2010.
- [5] P.B. Fleischer, A.Y. Nelson, R.A. Sowah, and A. Bremang, "Design and development of GPS/GSM based vehicle tracking and alert system for commercial inter-city buses," in Proceedings of the 2012 IEEE 4th International Conference on Adaptive Science & Technology (ICAST), 2012, pp. 1-6, 25-27 Oct. 2012.

Thank You