Key to Midterm Exam S2 Computer Architecture

Duration: 1 hr 30 min

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use a pencil or red ink.

Exercise 1 (5 points)

Answer on the answer sheet. Let us consider the following 10-bit binary number: 1011101010₂.

- 1. Write down its hexadecimal representation.
- 2. Assuming that it is an unsigned integer, write down its decimal representation.
- 3. Assuming that it is a signed integer, write down its decimal representation.
- 4. Write down the 10-bit binary representation of the following unsigned number: 2^{10} .
- 5. Write down the 10-bit binary representation of the following signed number: -2^{10} .
- 6. Determine the minimum number of bits required to encode the following unsigned number: 65,536?
- 7. Determine the minimum number of bits required to encode the following signed number: **-65,536?**
- 8. Determine the minimum number of bits required to encode the following signed number: **65,536?**
- 9. How many bytes does the value **2 Gib** contain? Use a power-of-two notation.
- 10. How many bits does the value **512 MiB** contain? Use binary prefixes (Ki, Mi or Gi) and choose the most appropriate prefix so that the integer numerical value will be as small as possible.

Exercise 2 (7 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the base-10 following form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 3 (2 points)

- 1. Draw the circuit diagram of a divide-by-two circuit by using only one master-slave D flip-flop. Answer on the answer sheet.
- 1. Draw the circuit diagram of a divide-by-two circuit by using only one master-slave JK flip-flop. Answer on the answer sheet.

Exercise 4 (6 points)

Complete the timing diagrams shown on the <u>answer sheet</u> (up to the last vertical dotted line) for the following circuits.

Figure 1

Figure 2

Last name: Group: Group:

ANSWER SHEET

Exercise 1

1. 2EA ₁₆	6. 17 bits
2. 746 ₁₀	7. 17 bits
3. -278_{10}	8. 18 bits
4. 100 0000 0000 ₂	9. 2 ²⁸ bytes
5. 100 0000 0000 ₂	10. 4 Gib

Exercise 2

1.

Number	S	E	M
-532	1	10001000	00001010000000000000000
1.03125	0	01111111	0000100000000000000000
0.03125	0	01111010	0000000000000000000000

2.

IEEE-754 Representation	Associated Representation
443200000000000016	9 × 2 ⁶⁵
${\rm FFF000000000000}_{16}$	-∞
7FF100000000000 ₁₆	NaN
000FF0000000000 ₁₆	255 × 2 ⁻¹⁰³⁰

Exercise 3

Exercise 4

Figure 1

Figure 2

Feel free to use the blank space below if you need to:

