TOSHIBA PHOTOCOUPLER GaAlAs IRED & PHOTO IC

6 N 1 3 7

DEGITAL LOGIC ISOLATION

TELE-COMMUNICATION

ANALOG DATA EQUIPMENT CONTROL

The TOSHIBA 6N137 consist of a high emitting diode and a one chip photo IC. This unit is 8-lead DIP package.

LSTTL/TTL Compatible: 5V Supply

Ultra High Speed : 10MBd

Guaranteed Performance Over Temperature: 0°C to 70°C

High Isolation Voltage : 2500Vrms Min.

UL Recognized : UL1577, File No. E67349

TRUTH TABLE

INPUT	ENABLE	OUTPUT
H	H	${f L}$
L	H	H
H	${f L}$	H
L	L	H

Unit in mm

Weight: 0.54g

PIN CONFIGURATIONS (Top view)

1 : N.C.

2: ANODE

3: CATHODE

4: N.C.

5 : GND

6: OUTPUT (OPEN COLLECTOR)

7: ENABLE

8 : VCC

961001EBC2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.

MAXIMUM RATINGS

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current	${ m I_F}$	20	mA
闰	Pulse Forward Current (Note 1)	$I_{ ext{FP}}$	40	mA
1	Reverse Voltage	v_{R}	5	V
- 3	Output Current	IO	50	mA
O R	Output Voltage	v_{0}	7	V
П	Supply Voltage (1 minute Maximum)	v_{CC}	7	V
ETEC	Enable Input Voltage (Not to exceed V _{CC} by More than 500mV)	$ m v_{EH}$	5.5	V
D	Output Collector Power Dissipation	PO	85	mW
Operating Temperature Range		$T_{ m opr}$	0~70	°C
Storage Temperature Range		$\mathrm{T_{stg}}$	-55~125	°C
Lea	d Solder Temperature (10s) (Note 2)	$T_{ m sol}$	260	°C

(Note 1) 50% duty cycle, 1ms Pulse width.

(Note 2) Soldering portion of lead: up to 2mm from the body of the device.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Input Current, Low Level Each Channel	${ m I_{FL}}$	0	250	μ A
Input Current, High Level Each Channel	$I_{ m FH}$	7	20	mA
High Level Enable Voltage	$ m v_{EH}$	2.0	v_{CC}	V
Low Level Enable Voltage (Output High)	$V_{ m EL}$	0	0.8	V
Supply Voltage, Output	v_{CC}	4.5	5.5	V
Fan Out (TTL LOAD)	N	_	8	_
Operating Temperature	Ta	0	70	$^{\circ}\mathrm{C}$

PRECAUTION

Please be careful of the followings.

A ceramic capacitor $(0.1\mu F)$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1cm.

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED TEMPERATURE ($Ta = 0 \sim 70^{\circ}C$ unless otherwise noted)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	(**)TYP.	MAX.	UNIT
High Level Output Current	IOH	V_{CC} =5.5V, V_{O} =5.5V I_{F} =250 μ A, V_{E} =2.0V	_	1	250	μ A
Low Level Output Voltage	$v_{ m OL}$	$V_{\rm CC}$ =5.5V, I _F =5mA $V_{\rm EH}$ =2.0V $I_{\rm OL}$ (Sinking) =13mA	_	0.4	0.6	V
High Level Enable Current	${ m I_{EH}}$	V_{CC} =5.5V, V_{E} =2.0V	_	-1.0	_	mA
Low Level Enable Current	$_{ m I_{EL}}$	$V_{CC} = 5.5V, V_{E} = 0.5V$	_	-1.6	-2.0	mA
High Level Supply Current	I_{CCH}	$V_{CC} = 5.5V, I_F = 0, V_E = 0.5V$	_	7	15	mA
Low Level Supply Current	ICCL	$V_{CC} = 5.5 \text{V}, I_{F} = 10 \text{mA}$ $V_{E} = 0.5 \text{V}$	_	12	18	mA
Resistance (Input-Output) (Note 3)	R _{I-O}	$V_{\text{I-O}} = 500\text{V}, \text{ Ta} = 25^{\circ}\text{C} \\ \text{R.H.} \le 60\%$	_	10^{12}	_	Ω
Capacitance (Input-Output) (Note 3)	C _{I-O}	f=1MHz, Ta=25°C	_	0.6	_	pF
Input Forward Voltage	$ m V_{f F}$	$I_F = 10 \text{mA}, Ta = 25 ^{\circ}\text{C}$	_	1.65	1.75	V
Input Reverse Breakdown Voltage	BV_R	I _R =10μA, Ta=25°C	5	_	_	V
Input Capacitance	$c_{\rm IN}$	V_F =0, f=1MHz		45		pF
Current Transfer Ratio	CTR	I_F =5.0mA, R_L =100 Ω	_	1000	—	%

(**) All typical values are at $V_{CC}=5V$, $T_a=25^{\circ}C$ (Note 3) Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.

SWITCHING CHARACTERISTICS (Ta = 25°C, V_{CC} = 5V)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time to High Output Level	t _{pLH}	1	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	60	75	ns
Propagation Delay Time to Low Output Level	t _{pHL}	1	$egin{array}{c} R_L\!=\!350\Omega,\ C_L\!=\!15pF \ I_F\!=\!7.5mA \end{array}$	_	60	75	ns
Output Rise-Fall Time (10-90%)	t _r , t _f	_	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	30	_	ns
Propagation Delay Time of Enable from V _{EH} to V _{EL}	^t ELH	2	$\begin{array}{l} R_L\!=\!350\Omega,\; C_L\!=\!15pF \\ I_F\!=\!7.5mA \\ V_{EH}\!=\!3.0V \\ V_{EL}\!=\!0.5V \end{array}$		25		ns
Propagation Delay Time of Enable from V _{EL} to V _{EH}	tEHL	2	$R_{L} = 350\Omega, C_{L} = 15 pF$ $I_{F} = 7.5 mA$ $V_{EH} = 3.0 V$ $V_{EL} = 0.5 V$		25	<u> </u>	ns
Common Mode Transient Immunity at Logic High Output Level	смН	3	$V_{CM}=10V$ $R_{L}=350\Omega$ $V_{O(min.)}=2V$ $I_{F}=0mA$	_	200	_	V/μs
Common Mode Transient Immunity at Logic Low Output Level	$ m CM_L$	3	$ \begin{vmatrix} V_{\text{CM}} = 10V \\ R_{\text{L}} = 350\Omega \\ V_{\text{O (max.)}} = 0.8V \\ I_{\text{F}} = 5\text{mA} \end{vmatrix} $		-500	_	V/μs

TEST CIRCUIT 1.

CL is approximately 15pF which includes probe and stray wiring capacitance.

TEST CIRCUIT 2.

CL is approximately 15pF which includes prove and stray wiring capacitance.

TEST CIRCUIT 3.

Transient Immunity and Typical Waveforms

