Capítulo 1

CAMPOS VECTORIALES E INTEGRALES DE LÍNEA

1.1. Campos vectoriales

Definición 1.1. Sea D una región abierta en \mathbb{R}^n . Un **Campo vectorial** en D es una apliclación F que a cada punto $p \in D$ le asigna un vector $F(p) \in \mathbb{R}^n$, con m > 1. Si denotamos por \vec{x} el vector posición de p, entonces podemos describir el campo vectorial por la función vectorial. Las funciones $f_i: D \to \mathbb{R}$ se llaman **componentes** del campo F. Si las componente f_i son derivables decimos que el campo vectorial F es derivable.

Ejemplo 1.1. Sea $D \subseteq \mathbb{R}^n$ una región abierta $y \ f : D \to \mathbb{R}$ una función derivable. Entonces el campo vectorial

$$F(\vec{x}) = \nabla f(x_1, \dots, x_n)$$
$$= \left(\frac{\partial f}{\partial x_1}(x_1, \dots, x_n), \dots, \frac{\partial f}{\partial x_n}\right)$$

se llama Campo vectorial gradiente. Los vectores del campo gradiente son ortogonales a las superficies de nivel de la función f.

En muchos casos para entender un campo vectorial necesitamos dibujarlo, y esto no resulta una tarea no muy corta. Podemos usar para esta tarea ciertas líneas de campo, un concepto muy importante

Definición 1.2. Una **línea de campo** de un campo vectorial $F(\vec{x})$ es una curva $\vec{r}(t)$, tal que

 $\frac{d\vec{r}}{dt} = F(\vec{r}(t)).$

Geométricamente significa que el campo vectroial F es tangente a sus líneas de campo en cada punto. Analicamente, las línea de campo de un campo vectorial $F(x_1, \dots, x_n \text{ con componentes } f_1, f_2 \dots f_n \text{ son las soluciones del sistema de ecuaciones diferenciales}$

$$\begin{cases} \frac{dx_1}{dt}(t) = f_1(x_1(t), \dots, x_n(t)) \\ \frac{dx_2}{dt}(t) = f_2(x_1(t), \dots, x_n(t)) \\ \vdots \\ \frac{dx_n}{dt}(t) = f_n(x_1(t), \dots, x_n(t)) \end{cases}$$

1.2. Intregales de Línea

Definición 1.3. (Intregal de línea sobre un campo escalar). Sea $f: D \to \mathbb{R}$ una función continua, donde $D \subseteq \mathbb{R}^n$ es una región abierta. Y sea γ una curva suave en $D \subseteq \mathbb{R}^n$ con una ecuación dada por una función vectorial $\vec{r}: [a,b] \to D, \vec{r} = \vec{r}(s)$, donde s es el parámetro de longitud de arco y b-a es la longitud de la curva γ . Entonces $f(\vec{r}(s))$ es una función real continua sobre el dominio [a,b]

La intregal de línea de la función f a lo largo de la curva γ , donde γ esta parámetrizada en términos del parámetro natura s (longitud de arco), $s \in [a,b]$, es

$$\int_{\gamma} f ds = \int_{a}^{b} f(r(\vec{s})) ds$$

Si tenemos una ecuación $\vec{r} = \vec{p}(t).t \in [c,d]$ de la curva dada γ , respecto a un parámetro arbitrario t al parámetro natural s aplicando la fórmula

$$s = \int_{c}^{t} \|p'(u)\| du \Rightarrow ds = \|p'(t)\| dt$$

entonces la intregal de línea a lo largo de γ , de cualquier parametrización $\vec{p}(t)$ de γ , es

$$\int_{\gamma} f ds = \int_{c}^{d} f(\vec{p}(t)) ||\vec{p}'(t)|| dt$$

Ejemplo 1.2. La intregral de línea de la función f(x,y)=xy a lo largo de la circunferencia con centro en el origen y radio r>0 es

$$\int_{\gamma} f ds = \int_{0}^{2\pi} (r \cos t)(r \sin t) \|(-r \sin t, r \cos t)\| dt$$
$$= \int_{0}^{2\pi} r^{3} \cos t \sin t dt$$
$$= 0$$

Definición 1.4. (Intregal de línea sobre un campo vectorial). Sea $F: D \to \mathbb{R}^n$ un campo vectorial continuo, donde $D \subseteq \mathbb{R}^n$ una región abierta. Sea γ una curva suave en D con una ecuación dada por una ecuación vectorial $\vec{r}: [a,b] \to D$, $\vec{r} = \vec{r}(t)$. Entonces $F(\vec{r}(t))$ es una función vectorial continua sobre el dominio [a,b].

La Intregal de línea del campo vectorial F a lo largo de la curva γ es

$$\int_{\gamma} F \cdot d\vec{r} = \int_{a}^{b} F(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Ejemplo 1.3. la intregal de línea del campo vectorial F(x,y) = (x+y,y) a lo largo de la curva con parametrización $\vec{r}(t) = (\cos t, \sin t), t \in [0, 2\pi]$ es

$$\int_{\gamma} F \cdot d\vec{r} = \int_{0}^{2\pi} (\cos t + \sin t, \sin t) \cdot (-\sin t, \cos t) dt$$
$$= \int_{0}^{2\pi} -\sin^{2} dt$$