ANONYMOUS MESSAGE TRANSMISSION SYSTEM AND VOTING SYSTEM

Patent number:

JP8263575

Publication date:

1996-10-11

Inventor:

SAKO KAZUE; JIYOSEFU JIEI KIRIAN

Applicant:

NEC CORP

Classification:

- international:

G06F19/00; G09C1/00

- european:

Application number:

JP19950335493 19951222

Priority number(s):

Also published as:

EP0723349 (A2) US5682430 (A1)

EP0723349 (A3)

EP0723349 (B1)

Report a data error here

Abstract of JP8263575

PURPOSE: To enable an outside observer to verify whether or not an election is carried out actually correctly by sequentially processing ciphered messages from senders at a mixing center and outputting a group of messages which are ciphered in random order wherein they can not be traced finally.

CONSTITUTION: Voters vote through senders 10(1), 10(2)... equipped with arithmetic means, suitably, personal computers. Similarly, respective mixing centers 11(1), 11(2)... are equipped with arithmetic means, suitably, personal computer, work stations, etc. Then the senders 10(1), 10(2)... report voter's ciphered messages firstly to an electronic bulletin board 12 or other openly usable message means. A center 11(i) processes respective messages reported by a preceeding center 11(i-1) and makes the results in shuffled order. This is carried out until the final center 11(n) makes the totalization result of the voting open to the public.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-263575

(43)公開日 平成8年(1996)10月11日

(51) Int.Cl. ⁶	識別語	記号 庁内整理	番号 FI		技術表示箇所
G06F 19	9/00		G06F	15/28 B	
G 0 9 C 1	/00 66	0 $7259-5 J$	G 0 9 C	1/00 6 6 0 Z	

		審査請求有請求	求項の数34 OL 外国語出願 (全 32 頁)
(21)出願番号	特願平7-335493	(71)出願人	000004237 日本電気株式会社
(22)出願日	平成7年(1995)12月22日	(72)発明者	東京都港区芝五丁目7番1号 佐古 和恵
(31)優先権主張番号 (32)優先日	08/376568 1995年1月23日		東京都港区五丁目7番1号 日本電気株式 会社内
(33)優先権主張国	米国 (US)	(72)発明者	ジョセフ ジェイ. キリアン アメリカ合衆国, ニュージャージー 08550, プリンストン ジャンクション, リード ドライヴ ノース 18
		(74)代理人	弁理士 後藤 洋介 (外2名)

(54) 【発明の名称】 匿名メッセージ伝送方式および投票方式

(57)【要約】

【解決手段】 数論的アルゴリズムは、匿名メッセージ 伝送および電子投票を与える。投票者またはセンダは、 暗号化された投票またはメッセージを送る。投票または メッセージは、n個のセンタによって処理され、不正行 為を防止し、投票が正当であることを証明する。いかな る利害関係人も、各投票が適正に計算されたことを検証 することができる。この発明は、電子掲示板にアクセス できる現世代のパーソナル・コンピュータによって実現 できる。

【特許請求の範囲】

【請求項1】 複数のミキシング・センタを用いること によって、複数のセンダから匿名メッセージを伝送する 方法において、

- (a) センダS1 , S2 , …, S1 およびミキシング・ センタ C1, C2, …, C。に対して公開される定数を 選択するステップと、
- (b) 各センダS、が、公開される暗号化メッセージを 構成するステップと、
- (c) 第1のミキシング・センタC1 が、各センダSL からの公開メッセージを処理し、処理したメッセージを 次のミキシング・センタによる使用のために公開するス テップと、
- (d) 各ミキシング・センタC2 ~ C₁₋₁ が、前のミキ シング・センタからの処理されたメッセージを逐次的に 処理し、逐次的に処理されたメッセージを、次のミキシ ング・センタによる使用のために公開するステップと、
- (e) 最終のミキシング・センタC。が、前のミキシン グ・センタ C₁₋₁ からのメッセージを処理し、結果を公 開するステップと、
- (f) 各ミキシング・センタが、その処理の正当性を証 明し、そのプルーフを公開するステップと、
- (g) チャンネル・チェッカが、必要に応じて、公開さ れたメッセージから実行の正しさを検証するステップと を含む、匿名メッセージ伝送方法。

【請求項2】 請求項1記載の匿名メッセージ伝送方法 において、前記ステップ(c), (d), (e) はさら に、

- (h) 各ミキシング・センタに秘密鍵を備えるステップ ٤.
- (i) 前記処理が、各ミキシング・センタの秘密鍵を用 いるステップとを含む、匿名メッセージ伝送方法。

【請求項3】 請求項2記載の匿名メッセージ伝送方法 において、前記ミキシング・センタの証明ステップは、 アルゴリズムprove-DECRYPTの実行を含 む、匿名メッセージ伝送方法。

【請求項4】 請求項3記載の匿名メッセージ伝送方法 において、前記アルゴリズムprove-DECRYP Tの実行は、多数のメッセージに対して一緒に実行され る、匿名メッセージ伝送方法。

【請求項5】 請求項2記載の匿名メッセージ伝送方法 において、前記証明ステップは、Fiat-Shami r法を適用することを含む、匿名メッセージ伝送方法。

【請求項6】 請求項2記載の匿名メッセージ伝送方法 において、

(j) メッセージをシャッフルするステップをさらに含 む、匿名メッセージ伝送方法。

【請求項7】 請求項6記載の匿名メッセージ伝送方法 において、前記証明ステップは、アルゴリズムprov

方法。

【請求項8】 請求項1記載の匿名メッセージ伝送方法 において、前記ステップ(c),(d),(e)は、メ ッセージをシャッフルするステップをさらに含む、匿名 メッセージ伝送方法。

2

【請求項9】 請求項8記載の匿名メッセージ伝送方法 において、最終のミキシング・センタC。が結果を通知 した後に、各ミキシング・センタは、前記結果を用いて アルゴリズムprove-DECRYPTを実行し、ス テップ(d)および(e)を繰返すことを含む、匿名メ ッセージ伝送方法。

【請求項10】 請求項8記載の匿名メッセージ伝送方 法において、各ミキシング・センタは秘密鍵を備え、最 終のミキシング・センタC』が結果を通知した後に、各 ミキシング・センタは、その各秘密鍵および前記結果を 用いて前記処理を実行し、ステップ(d)および(e) を繰返すことを含む、匿名メッセージ伝送方法。

【請求項11】 請求項8記載の匿名メッセージ伝送方 法において、前記証明ステップは、アルゴリズムpro ve-SHUFFLEの実行することを含む、匿名メッ セージ伝送方法。

【請求項12】 請求項11記載の匿名メッセージ伝送 方法において、前記証明ステップに、Fiat-Sha mir 法を適用することを含む、匿名メッセージ伝送方 法。

【請求項13】 請求項8記載の匿名メッセージ伝送方 法において、前記証明ステップに、Fiat-Sham ir法を適用することを含む、匿名メッセージ伝送方 法。

30 【請求項14】 請求項1記載の匿名メッセージ伝送方 法において、前記証明ステップに、Fiat-Sham ir 法を適用することを含む、匿名メッセージ伝送方 法。

【請求項15】 請求項1記載の匿名メッセージ伝送方 法において、前記ステップ(b)で、各センダS、は、 その暗号化メッセージを本質的に同時に公開することを 含む、匿名メッセージ伝送方法。

【請求項16】 請求項1記載の匿名メッセージ伝送方 法において、ステップ(b)で、各センダS。は、前記 40 第1のミキシング・センタC: の鍵を用いて暗号化メッ セージを構成し、前記暗号化メッセージは、各センダS の署名を含む、匿名メッセージ伝送方法。

【請求項17】 請求項1記載の匿名メッセージ伝送方 法において、ステップ(b)で、各センダS。は暗号化 メッセージを構成し、この暗号化メッセージは、前記第 1のミキシング・センタC1 が各暗号化メッセージを受 信した後に、公開されることを含む、匿名メッセージ伝 送方法。

【請求項18】 請求項1記載の匿名メッセージ伝送方 e-SHUFFLEの実行を含む、匿名メッセージ伝送 *50* 法において、前記第1のミキシング・センタC≀ は、適

正なメッセージのみを処理し、および各センダからただ 1つのメッセージを処理することを含む、匿名メッセー ジ伝送方法。

【請求項19】 請求項18記載の匿名メッセージ伝送 方法において、前記センダは、投票者であり、前記メッ セージは投票文である、匿名メッセージ伝送方法。

【請求項20】 請求項19記載の匿名メッセージ伝送 方法において、前記最終ミキシング・センタC。の前記 処理に投票結果を計算することを含む、匿名メッセージ 伝送方法。

【請求項21】 匿名メッセージを伝送する装置において、

定数を記載する掲示板と、

複数のセンダS₁, S₂, …, S₁ とを備え、各センダ S₁ は、前記定数を用いて暗号化メッセージを構成し、 前記暗号化メッセージを前記掲示板に通知し、

複数のミキシング・センタ C_1 , C_2 , …, C_n を備え、第1のミキシング・センタ C_1 は、前記定数を用いて各センダからの通知メッセージを処理して、処理されたメッセージを、次のミキシング・センタによる使用の 20 ために前記掲示板に通知し、各ミキシング・センタ C_2 ~ C_{n-1} は、前記定数を用いて前のミキシング・センタからの処理されたメッセージを逐次的に処理し、さらに処理されたメッセージを、次のミキシング・センタによる使用のために前記掲示板に通知し、最終のミキシング・センタ C_n が、前記定数を用いて前のミキシング・センタ C_{n-1} からのメッセージを処理し、結果を前記掲示板に通知し、

各ミキシング・センタに関連し、各ミキシング・センタ の処理の正当性を証明し、そのプルーフを前記掲示板に 30 通知する手段と、

通知されたメッセージから実行の正しさを検証するチャンネル・チェック手段とを備える匿名メッセージ伝送装置。

【請求項22】 請求項21記載の匿名メッセージ伝送装置において、各ミキシング・センタに関連し、メッセージの処理のために前記各ミキシング・センタが秘密鍵を保持する秘密鍵保持手段をさらに備える、匿名メッセージ伝送装置。

【請求項23】 請求項22記載の匿名メッセージ伝送 40 装置において、前記ミキシング・センタは、アルゴリズムprove-DECRYPTを実行することによって、メッセージを処理する、匿名メッセージ伝送装置。

【請求項24】 請求項23記載の匿名メッセージ伝送 装置において、各ミキシング・センタに関連する前記各 手段は、アルゴリズムprove-DECRYPTを実 行する、匿名メッセージ伝送装置。

【請求項25】 請求項24記載の匿名メッセージ伝送 なされているにも拘らず、理論的または実際的な領域の 装置において、各ミキシング・センタに関連する各手段 いずれにおいても、完全な解決法は発見されていない。 は、多数のメッセージに対しアルゴリズムprove - 50 秘密マルチ・パーティ・プロトコルに対する一般的な解

DECRYPTを実行する、匿名メッセージ伝送装置。

【請求項26】 請求項21記載の匿名メッセージ伝送 装置において、前記ミキシング・センタは、メッセージ をシャッフルすることによってメッセージを処理する、 匿名メッセージ伝送装置。

【請求項27】 請求項26記載の匿名メッセージ伝送 装置において、前記ミキシング・センタは、アルゴリズムprove-SHUFFLEを実行することによって メッセージを処理する、匿名メッセージ伝送装置。

10 【請求項28】 請求項26記載の匿名メッセージ伝送 装置において、各ミキシング・センタに関係した前記各 手段は、アルゴリズムprove-SHUFFLEを実 行する、匿名メッセージ伝送装置。

【請求項29】 請求項21記載の匿名メッセージ伝送 装置において、各センダS、は、その暗号化メッセージ を、前記掲示板にほぼ同時に通知する、匿名メッセージ 伝送装置。

【請求項30】 請求項22記載の匿名メッセージ伝送 装置において、各センダS、は、前記第1のミキシング・センタC1の前記秘密鍵を用いて暗号化メッセージを 構成し、前記暗号化メッセージは、各センダS、の署名 を含む、匿名メッセージ伝送装置。

【請求項31】 請求項21記載の匿名メッセージ伝送 装置において、各センダは、暗号化メッセージを構成 し、この暗号化メッセージは、前記第1のミキシング・ センタC: が各暗号化メッセージを受信した後に、公開 される、匿名メッセージ伝送装置。

【請求項32】 請求項21記載の匿名メッセージ伝送 装置において、前記第1のミキシング・センタC1 は、 適正なメッセージのみを処理し、および各センダからた だ1つのメッセージを処理する、匿名メッセージ伝送装 置。

【請求項33】 請求項32記載の匿名メッセージ伝送 装置において、前記センダは、投票者であり、前記メッ セージは投票文である、匿名メッセージ伝送装置。

【請求項34】 請求項33記載の匿名メッセージ伝送 装置において、前記結果は投票結果を有する、匿名メッ セージ伝送装置。

【発明の詳細な説明】

0001

【発明の属する技術分野】この発明は、匿名メッセージ 伝送に関し、特に、無配名電子投票のための数論的方法 および装置に関するものである。

[0002]

【発明の背景】無記名電子投票は、秘密マルチ・パーティ(multi-party)計算の最も重要な応用の1つである。この無記名電子投票について多くの研究がなされているにも拘らず、理論的または実際的な領域のいずれにおいても、完全な解決法は発見されていない。

決法は、選挙の必要なセキュリティ特性のすべてを実現 することができない。

【0003】かなり異なるセキュリティ特性を有する、より実際的な多くの投票プロトコルが、提案されている。匿名チャンネル/ミキサに基づく方式は、それらの優れた効率および許容される投票の任意性により、非常に一般的になってきた。

【0004】混合ネット (Mix-net) 匿名チャン ネルは、文献 "Untraceable Electr onic Mail, Return Address, and Digital Pseudonyms" in Communication of the AC M. ACM, 1981, pp. 84~88kD. Cha umによって最初に提案された。続いて、この基本技術 に基づいて多くの投票方式が提案されている。例えば、 A. Fujiokaらにより文献 "A Practic al Secret Voting Scheme f or LargeScale Elections", in Advances in Cryptology 251に、また、C. Parkらにより文献 "All/ Nothing Election Scheme a nd Anonymous Channel" in A dvances in Cryptology, Eur ocrypt' 93, 1993, pp. 248~259 に報告されている。

【0005】これらの方式は効率的であるが、次のような欠点がある。すなわち、これらの方式のうちの最も簡単なものは、悪意のある投票者による選挙妨害を防止しつつ、正当な投票者が選挙の情報遺漏に対して確実に抗 30 議することができないことである。また、選挙後に、各投票者は、彼等の投票が正しく集計されたことをチェックする責任を負うことになる。通常、外部のオブザーバが、選挙が適正に行われたか否かを後に検証する方法はない。さらに、B. Pfitzmannによる文献"Breaking an efficient anonymous channel" in Eurocrypt'94 Proceedings, 1994, pp. $339\sim348$ に記載されているように、いくつかの匿名チャンネルは、攻撃に対して弱い。

【0006】この発明の教示によれば、外部オブザーバが、選挙が実際に正しく行われたか否かを検証することのできる匿名チャンネルおよび投票方式が提供される。したがって、悪意のある投票者による選挙妨害のおそれなしに、投票の情報遺漏を誰でも検出することができる。さらに、この発明は、また、B. Pfitzmannによって提案された攻撃を妨げるのに役立つ。

[0007]

【発明の概要】同一デスティネーションへの多数のメッ (2), 10 (3)…10 (1) からの暗号化メッセーセージが、多数のミキシング・センタを経て秘密に伝送 50 ジは、ミキシング・センタ11 (1), 11 (2), 1

される匿名チャンネルが開示されている。送られるメッセージが投票であり、デスティネーションが投票集計センタであり、第1のミキシング・センタが有効投票者のメッセージを受取るならば、この方式は秘密投票方式となる。この発明は、一般に、無記名電子投票がより一般的な発明の実際的な応用である匿名メッセージの伝送方式に関するものである。

【00008】この方式では、センダからの暗号化メッセージは、ミキシング・センタによって逐次的に処理される。最終的にはミキシング・センタがランダムで追跡できない順序で暗号化されていないメッセージの組を出力する。すなわち、匿名チャンネルに用いられた暗号は、各センタで解かれ、最終的には復号される。上位レベルでは、センダはまず自分の暗号化メッセージを公開し、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、ミキシング・センタid、

【0010】3つのステップの処理が終わった後に、利害関係者は、結果のプルーフをチェックして、メッセージが正しく取り扱われたことを確かめる。一般的な検証可能性を実現するこの方法に対しては、メッセージに冗長性を付加する必要はない。

【0011】また、この発明は、多数のブルーフを1つのブルーフに組合せることによって、ブルーフを生成し、伝送し、チェックするのに必要な通信および演算の量を軽減する方法を与える。

【0012】この発明は、図面を参照した以下の説明に より理解できるであろう。

[0013]

【発明の実施の形態】この発明の匿名メッセージ伝送方式を、図1および図2を参照して説明する。この方式によれば、センダ (sender) 10 (1), 10 (2), 10 (3)…10 (1)からの暗号化メッセージは、ミキシング・センタ11 (1)、11 (2)、1

1 (3) …11 (n) によって逐次的に処理される。こ れは、最後のミキシング・センタが、ランダムで追跡で きない順序で、復号化されたメッセージの組を出力する まで行われる。演算手段、好適にはパーソナル・コンピ ュータ(ワークステーション等とすることができる)を 備えるセンダによって、投票者は投票する。同様に、各 ミキシング・センタは、演算手段、好適にはパーソナル ・コンピュータ、ワークステーション等を備えている。 センダは、最初に、電子掲示板または他の公開的に利用 できるメッセージ手段に、彼等の暗号化メッセージを通 10 知する。ミキシング・センタ11 (i) は、前のミキシ ング・センタ11 (i-1) (i=1) の場合には、セン ダ10)によって通知された各メッセージを処理して、 その結果をシャッフルした順序で公開する。これは、最 終のミキシング・センタ11 (n) が、投票の集計結果 を公開するまで行われる。この方式の概要を説明した が、どのようにしてメッセージmがセンダによって最初 に暗号化されるか、およびどのようにしてミキシング・ センタ11(i)が各メッセージを処理するのかを、以 下に詳細に説明する。

【0014】最初に、投票に関係するエンティティ、すなわちセンダおよびミキシング・センタは、ある整数 k に対して、次の関係が成り立つ

[0015]

$$(G_1, M_1) = (g^{r_0} \mod p, (w_0)^{r_0} \cdot m \mod p)$$

を、ミキシング・センタ11(1)による使用のために公開する。

【0019】説明を簡単にするために、ミキシング・センタの復号、シャッフル、証明の3つのステップを、こ 30の順序で説明する。しかし、実行は、このステップを必ずしもこの順序で行わなくてもよい。

【0020】入力(G_i , M_i) に応じて、ミキシング・センタ11(i)(i=1, …, n-1)は、ランダム数 r_i を生成し(各メッセージ対に対し独立に)、秘密鍵 x_i を用いて、次の値、

[0021]

【数5】

*【数1】

$$p = k q + 1$$

素数 p, q を用いることに同意する必要がある。値 g ' を、mod p の生成元とし、g を、

[0016]

【数2】

$$g = (g')^k \mod p$$

とする。n個のミキシング・センタがあると仮定する。 0 各ミキシング・センタ11(i)は、

[0017]

【数3】

整数 $x_i \in Z_q^*$ を生成し、その公開鍵として、

$$y_i = g^{x_1} \mod p$$

を公開し、その秘密鍵として x_1 を保持する。簡単にす 20 るために、 w_1 は積 y_{i+1} y_{i+2} … y_n を示し、 $w_n = 1$ とする。センダ 1 0 からのメッセージは、mである。センダはランダム数 x_0 を生成し、

[0018]

【数4】

$$(w_0)^{r_0} \cdot m \mod p$$

$$G_{i+1} = G_i \cdot g^{r_i} \mod p$$

$$= g^{r_0^{t} \cdot \dots \cdot t_r} \mod p$$

$$H_{i+1} = G_i^{x_i} \mod p$$

$$M_{i+1} = M_i \cdot w_i^{r_i} / H_{i+i} \mod p$$

$$=\mathbf{w}_{\mathbf{i}}^{\mathbf{r}_{0}^{\dagger}} \stackrel{\cdots}{\longrightarrow} \mathbf{r}_{\mathbf{i}} \cdot \mathbf{m} \mod \mathbf{p}$$

40 を計算し、(G_{i} , M_{i}) に対応する(H_{i+1})を公開する。値(G_{i+1} , M_{i+1})は他の各 i の処理データ間でシャッフルされたあと、ミキシング・センタ 1 1 (i + 1)による使用のために公開される。

【0022】ミキシング・センタ11(i)は、入力(G_i,g,y_i,H_{i+1})に対して、prove-DECRYPTアルゴリズムを実行する。アルゴリズムprove-DECRYPTの記述は、以下に示される。このアルゴリズムの実行は、ミキシング・センタ11(i)がH_{i+1}を正しく生成したことを証明する。次50に、ミキシング・センタ11(i)は、prove-S

HUFFLEアルゴリズムを実行する。アルゴリズムp rove-SHUFFLEの記述は、以下に示される。 このアルゴリズムの実行は、ミキシング・センタが正し くシャッフルしたことを証明する。

【0023】ミキシング・センタ11 (n) は、 [0024]

【数6】

$$m = M_n / G_n^{X_n} \mod p$$

を演算することによって、入力 (G。, M。) から、m 10 を回復される。

【0025】次に、ミキシング・センタ11 (n) は、 入力(G₀, g, y₁, M₀/m)に対しアルゴリズム prove-DECRYPTを実行する。

【0026】アルゴリズムprove-DECRYPT およびprove-SHUFFLEについて説明する。 これらアルゴリズムは、プルーバ(prover)およ びペリファイア (verifier) の動作からなる。 ベリファイアの出力として、以下に説明するように、ラ ンダム・ビーコンまたは適当なハッシュ関数の出力とす 20 【0034】 ることができる。

【0027】アルゴリズムprove-DECRYPT を説明するために、プロトコルの第1ステップを、以下 に概説する。最初のステップは、与えられたGに対して 復号を実行し、H=G¹ mod pを生成する。プルー フは、(G, g, y=g' mod p, H) が与えられ た時に、HがこのようにGから生成されたことを示して いる。アルゴリズムは、次のとおりである。prove -DECRYPT

1. プルーバは、一様に、

[0028]

【数7】

$$r \in Z_{p-1}$$
 を選択する。

$$y' = g^T \mod p$$

$$G' = G^T \mod p$$

プルーパは、(y', G')を送る。

【0029】2a. 確率1/2で、ペリファイアは、プ 40 ルーパにrを示すことを要求する。ベリファイアは、 y´およびG´がrと矛盾しないことをチェックする。

【0030】2b. 確率1/2で、ペリファイアは、プ ルーパにr'=r-xを示すことを要求する。ベリファ イアは、

[0031]

【数8】

$$y' = g^{r'} \cdot y \mod p$$
 and $G' = H \cdot G^{r'} \mod p$

10

をチェックする。

アルゴリズムの終了

アルゴリズムprove-SHUFFLEを説明するた めに、プロトコルの第2のステップを、以下に概説す

【0032】定数g, wおよび

[0033]

【数9】

$$A = \begin{pmatrix} a_i^{(1)} \\ a_i^{(2)} \end{pmatrix}$$

が与えられた時に、第2のステップは、 r1, r2, … と置換πを生成し、対の集合

【数10】

$$B = \begin{pmatrix} a_{\pi(i)}^{(1)} \cdot g^{r'} & \pi(i) & \text{mod } p \\ a_{\pi(i)}^{(2)} \cdot w^{r'} & \pi(i) & \text{mod } p \end{pmatrix}$$

を生成することからなる。ここで a、(1) は第1ステッ プのGであり、a: (2)はM/Hである。プルーフは、 (A, B, g, w) が与えられた時に、BはAからこの 30 ようにして生成されたことを示している。アルゴリズム は、次のとおりである。prove-SHUFFLE 1. ブルーバは、一様に、

[0035]

【数11】

 $t \in Z_{n-1}$, ランダム置換 λ を選び

$$C = \begin{pmatrix} a_{\lambda(i)} & b_{\lambda(i)} & b_{$$

を計算する。

【0036】プルーパは、Cを送る。

【0037】2a.確率1/2で、ベリファイアは、プ ルーパにλおよびt; を示すことを要求する。ペリファ イアは、CがA、λ、tiと矛盾しないことをチェック する。

【0038】2b、確率1/2で、ベリファイアはブル ーパに、 $\lambda' = \lambda_0 \pi^{-1}$ および $t'_i = t_i - r'_i$ を 示すことを要求する。ペリファイアは、次のようにし 50 て、BからCを生成できることをチェックする。

[0039] 【数12】

$$B = \begin{pmatrix} b_i^{(1)} \\ b_i^{(2)} \end{pmatrix}$$

に対し [0040] 【数13】

$$C = \begin{pmatrix} b_{\lambda'(i)}^{(1)} \cdot g^{\lambda'(i)} & \text{mod } p \\ b_{\lambda'(i)}^{(2)} \cdot w^{\lambda'(i)} & \text{mod } p \end{pmatrix}$$

が成り立つ。アルゴリズムの終了アルゴリズムprov e-DECRYPT stdprove-SHUFFLE の各実行は、確率 1/2で、不正プルーバを発見する。 この確率を1に高めるために、独立の複数回の実行が必 要となる。

【0041】上記のアルゴリズムはベリファイアの出力 によって記述されているが、より効率的な解決法は、相 互作用を排除するFiat-Shamir法を用いるこ とである。第1に、プロトコルを多数回(約40または 60) 実行して、すべてのチャレンジ (challen ge) に耐える確率を非常に小さくする。次に、ベリフ ァイアを、擬似乱数を発生する適切なハッシュ関数によ って置き換えられる。このハッシュ機能は、アルゴリズ Aprove-DECRYPTまたはprove-SH*

 $\Pi (H^{(j)})^{c_j} = \Pi ((G^{(j)})^{c_j})^{T} \mod n$

したがって $G=\Pi_{i}$ ($G^{(i)}$) i および $H=\Pi_{i}$ (H(i)) いとして上記プロトコルを、センタは実行すれば よい。1つ以上の元の式が誤っている場合は、係数がラ ンダムに選ばれる限り、最後の式は高い確率で誤る。こ れらのランダム係数は、プルーパによって選ばれてはな らず、ペリファイア、ピーコンによって、あるいは適切 なハッシュ機能の出力として、与えられなければならな

【0046】同様に、上記方式の変形として、以下の2 ラウンド(round)匿名チャンネルを、構成するこ とができる。2ラウンド匿名チャンネルにおいて、各ミ キシング・センタ11 (i) は、入力 (Gi, Mi) が あると、まず最初に、入力を(G:・gri mod p, M_i ·w₀ ^{ri} mod p) とシャッフルし、シャ ッフルされた値をランダムな順序で次のセンタに通過さ せる。各センタは、prove-SHUFFLEアルゴ リズムを実行して(この方式に対して一定のいくつかの 定数で)、情報の正しさを証明する。シャッフルされた 50 メッセージに付くようにも操作できない。

*UFFLEのステップ1におけるプルーパの公開メッセ ージから、チャレンジを生成する。Fiat-Sham ir法のこの発見的手法は、文献 "How to Pr ove Yourself: Practical s olutions to identificatio n and signatureproblems" i n Advances in Cryptology-Crypto' 86, Springer-Verla g, 1986, pp. 186~199に記載されてい 10 る。このようにすれば、プルーパは、すべてのメッセー ジを1つの電文にしてベリファイアに送ることができ る。このメッセージは、公開アクセスに対し公開され

12

【0042】前のセンタからの各メッセージについてア ルゴリズムprove-DECRYPTを実行するのに 要求される演算および通信の量を、軽減することができ る。複数のプルーフを1つのプルーフに統合することに よって、センタは、彼等がすべての入力を正確に復号し たことを効率的に証明することができる。

20 【0043】次式が各対 (G⁽¹⁾ , H⁽¹⁾) について成 文をすることを示すことが必要である。

[0044]

【数14】

る。

$$H^{(j)} = (G^{(j)})^{T} \mod p$$

上式は、ランダムに選ばれた係数で、を用いることによ って、次の1つの式に置き換えることができる。

[0045]

【数15】

メッセージは、最後にミキシング・センタ11 (n) に 与えられ、各メッセージに対しGo+1 およびMo+1 を公 開する。次に、各ミキシング・センタ11(i)はHi $=G_{n+1}$ * 'を公開する。ミキシング・センタ11 (i) は、入力 (Gn+1, g, Hi) に対しprove-DE CRYPTアルゴリズムを実行し、正しさを証明する。 メッセージmは、Mn+1 /ΠH1 によって復号すること **40** ができる。

【0047】模倣投票の攻撃を避けるために、各センダ は、通知すべきメッセージを署名することによって暗号 化することができる。メッセージ・コンストラクタ(以 下に説明する)の出力を署名し、第1センタ11(1) の公開鍵を用いてメッセージを暗号化することによっ て、悪意の投票者は、他のセンダのメッセージをコピー することはできない。というのは、コピーされたメッセ ージは、正しい署名を有さないからである。さらに、メ ッセージは暗号化されているので、異なる署名が暗号化

【0048】あるいはまた、第1のセンタは、各センダ がノートあるいはメッセージを通知するまで、センダか らのすべてのメッセージを秘密にすることができる。

【0049】第1のセンタ11(1)および悪意のセン ダが共謀することを防止するためには、M. Naorに よる文献 "Bit commitment using pseudo-randomness, "in Ad vances in Cryptology-CRYP TO'89, 1989, pp. 128~136に論じら れているような普通の秘密コミットメント方式を用いる 10 されたメッセージ18を公開する。) 電子投票の場合、 ことが可能である。

【0050】この発明を実施する好適な方法を説明した が、次に、この発明を実施するのに有用な好適な実施例 を説明する。

【0051】図1は、この発明を実施する好適な実施例 を示す。センダ10(1), 10(2), 10(3)… 10(1) およびミキシング・センタ11(1), 11 (3), 11(3)…11(n)は、普通の電子掲示板 12に接続されたパーソナル・コンピュータまたはワー 対するすべての当事者(センダ、ベリファイア、センタ 等)は、掲示板にメッセージを通知し、および掲示板か らのメッセージを受信することによって、相互に作用す る。センダは、センタとして機能することもできる。パ ーソナル・コンピュータは、上述した方法を実施するソ フトウェアを含むか、あるいは図2に示す要素のハード ウェアまたはソフトウェアの実施を含む。

【0052】図2は、どのようにメッセージが匿名で伝 送されるかを示している。メッセージ・センダ10 (1), 10(2), 10(3)…10(1)の各メッ 30 セージ・コンストラクタ14(1), 14(2), 14 (3) …14 (1) は、上述した定数15を用いて、暗 号化されたメッセージ16(1), 16(2), 16 (3) … 16 (1) を生成する。暗号化メッセージは、 電子掲示板12に公開される。次に、各ミキシング・セ

ンタ11(i)は、掲示板12からのメッセージ17 (i-1)を、その入力として読取る。(ミキシング・ センタ11(1)は、暗号化メッセージ16を読取る) 次に、ミキシング・センタは、前述したように、その秘 密鍵23(i)を用いて、連続してプロセス復号19、 シャッフル20、prove-DECRYPT21、p rove-SHUFFLE22を実行する。処理された メッセージおよびプルーフ17(i)は、電子掲示板に 公開される。 (ミキシング・センタ11 (n) は、復号 ミキシング・センタ11(n)は、投票の結果を公開す る。

14

【0053】図3は、チャンネル・チェッカ24を模式 的に示す。チャンネル・チェッカ24は、定数15、暗 号化メッセージ16、1組の処理されたメッセージおよ びプルーフ17(i), 17(2), …、復号メッセー ジ18を受信し、メッセージ伝送が上述したように処理 されたかどうかを決定し、チャンネルとして有効あるい は無効であったかを判定する。すなわち、チャンネル・ クステーションを使用する。メッセージ伝送プロセスに 20 チェッカは、ミキシング・センタによって与えられるプ ルーパのためのベリファイアを含んでいる。

> 【0054】図4はメッセージ・コンストラクタ14を 示す。メッセージ・コンストラクタ14は、前述した定 数15を用いて、メッセージ25に対し暗号化メッセー ジ16を生成する。

> 【0055】匿名メッセージ伝送および電子投票の好適 な方法および装置について説明したが、当業者には、こ の発明の広い教示と趣旨から逸脱することなく、変形、 変更が可能である。

【図面の簡単な説明】

【図1】この発明を実施する好適な実施例の模式図であ

【図2】メッセージ・フローの模式図である。

【図3】 チャンネル・チェッカの模式図である。

【図4】メッセージ・コンストラクタの模式図である。

【図3】

【図4】

【図1】

【図2】

【外国語明細書】

1. Title of Invention

Secure Anonymous Message Transfer and Voting Scheme

2. Claims

- 1. A method of secure anonymous message transfer from a plurality of senders by use of a plurality of mixing centers comprising the steps of:
 - (a) choosing constants which are posted for senders S_1, S_2, \dots, S_l and mixing centers, C_1, C_2, \dots, C_n ;
 - (b) each sender S_k constructing an encrypted message which is posted;
 - (c) a first mixing center C_1 processing the posted messages from each sender S_k which processed messages are then posted for use by the next center;
 - (d) each mixing center C_2 through C_{n-1} sequentially processing the processed messages from the previous center,, which sequentially processed messages are then posted for use by the next center;
 - (e) the last mixing center C_n processing messages from the previous center C_{n-1} and posting the result;
 - (f) each mixing center proving the validity of its processing, which proof is posted; and
 - (g) channel checker verifying correctness of the execution from posted messages when necessary.

- 2. A method of secure anonymous message transfer as set forth in claim 1, where steps (c),(d) and (e) further comprises:
 - (h) providing each mixing center with a secret key; and
 - (i) said processing including using the secret key of a respective mixing center.
- 3. A method of secure anonymous message transfer as set forth in claim 2, where said proving comprises executing algorithm prove-DECRYPT.
- 4. A method of secure anonymous message transfer as set forth in claim 3, where said executing algorithm prove-DECRYPT is executed for multiple messages together.
- 5. A method of secure anonymous message transfer as set forth in claim 2, where said proving comprises applying the Fiat-Shamir method.
- 6. A method of secure anonymous message transfer as set forth in claim 2, further comprising (j) shuffling the messages.
- 7. A method of secure anonymous message transfer as set forth in claim 6, where said proving further comprises executing algorithm prove-SHUFFLE.

- 8. A method of secure anonymous message transfer as set forth in claim 1, where steps (c), (d), and (e) further comprises shuffling the messages.
- 9. A method of secure anonymous message transfer as set forth in claim 8, where after the last mixing center C_n posts the result, each mixing center executes algorithm prove-DECRYPT using the result.
- 10. A method of secure anonymous message transfer as set forth in claim 8, further comprising providing each mixing center with a secret key and where after the last mixing center C_n posts the result, each mixing center performs said processing using its respective secret key and the result.
- 11. A method of secure anonymous message transfer as set forth in claim 8, where said proving comprises executing algorithm prove-SHUFFLE.
- 12. A method of secure anonymous message transfer as set forth in claim 11, where said proving comprises applying the Fiat-Shamir method.
- 13. A method of secure anonymous message transfer as set forth in claim 8, where said proving comprises applying the Fiat-Shamir method.
- 14. A method of secure anonymous message transfer as set forth in claim 1, where said proving comprises applying the Fiat-Shamir method.

- 15. A method of secure anonymous message transfer as set forth in claim 1, where in step (b) each sender S_k posts its encrypted message substantially simultaneously.
- 16. A method of secure anonymous message transfer as set forth in claim 1, where in step (b) each sender S_k constructs its encrypted message using a key of said first mixing center C_1 and said encrypted message includes a signature of a respective sender S_k .
- 17. A method of secure anonymous message transfer as set forth in claim 1, where in step (b) each sender S_k constructs an encrypted message which is publicly revealed after said first mixing center C_1 receives a respective encrypted message.
- 18. A method of secure anonymous message transfer as set forth in claim 1, said first mixing center C_1 processing only legitimate messages and processing only one message from each sender.
- 19. A method of secure anonymous message transfer as set forth in claim 18, where said senders are voters and said messages are votes.
- 20. A method of secure anonymous message transfer as set forth in claim 19, where said processing of said last mixing center C_n comprises computing a tally.

- 21. An apparatus for secure anonymous message transfer comprising:
 - a bulletin board having constants;
 - a plurality of senders, S_1, S_2, \ldots, S_ℓ , each sender S_k constructing an encrypted message using the constants and posting said encrypted message to said bulletin board;
 - a plurality of mixing centers, C_1 , C_2 , ..., C_n , a first mixing center C_1 processing the posted messages from each sender using the constants and posting a processed message to said bulletin board for use by the next mixing center, each mixing center C_2 through C_{n-1} sequentially processing the processed message from the previous mixing center using the constants and posting a further processed message to said bulletin board for use by the next mixing center, the last mixing center C_n processing messages from the previous center C_{n-1} using the constants and posting the result on said bulletin board;
 - means associated with each respective mixing center for proving the validity of the processing of the respective mixing center, which proof is posted on said bulletin board; and
 - channel checking means for verifying the correctness of execution from posted messages.
 - 22. An apparatus for anonymous message transfer as set forth in claim 21, further comprising secret key means associated with each respective mixing center for providing a secret key to said respective mixing center for processing messages.

- 23. An apparatus for anonymous message transfer as set forth in claim 22, where said mixing center processes messages by executing algorithm prove-DECRYPT.
- 24. An apparatus for anonymous message transfer as set forth in claim 23, where each said means associated with each respective mixing center executes algorithm prove-DECRYPT.
- 25. An apparatus for anonymous message transfer as set forth in claim 24, where each means associated with each respective mixing center executes algorithm prove-DECRYPT for multiple messages.
- 26. An apparatus for anonymous message transfer as set forth in claim 21, where said mixing center processes messages by shuffling messages.
- 27. An apparatus for anonymous message transfer as set forth in claim 26, where said mixing centers process messages by executing algorithm prove-SHUFFLE.
- 28. An apparatus for anonymous message transfer as set forth in claim 26, where each said means associated with each respective mixing center executes algorithm prove-SHUFFLE.

- 29. An apparatus for anonymous message transfer as set forth in claim 21, where each sender S_k posts its encrypted message to said bulletin board substantially simultaneously.
- 30. An apparatus for anonymous message transfer as set forth in claim 22, where each sender S_k constructs its encrypted message using said secret key of said first mixing center C_1 and including a signature of the respective sender S_k .
 - 31. An apparatus for anonymous message transfer as set forth in claim 21, where each sender constructs an encrypted message which is publicly revealed after said first mixing center C₁ receives a respective encrypted message.
 - 32. An apparatus for anonymous message transfer as set forth in claim 21, said first mixing center C₁ processing only legitimate messages and processing only one message from each sender.
 - 33. An apparatus for anonymous message transfer as set forth in claim 32, where said senders are voters and said messages are votes.
 - 34. An apparatus for anonymous message transfer as set forth in claim 33, where said result comprises a tally.

3. Detailed Description of Invention

Field of Invention

The present invention relates to secure anonymous message transfer and specifically, to number-theoretic methods and apparatus for secure electronic voting.

Background of the Invention

Secure electronic voting is one of the most important applications of secure multiparty computation. Yet despite extensive work on this subject, no complete solution has been found in either the theoretical or practical domains. Even the general solutions to secure multi-party protocols fail to exhibit all of the desired security properties of elections.

A number of more practical voting protocols have been proposed, with widely differing security properties. Schemes based on anonymous channels/mixers have become very popular due to their superior efficiency and the arbitrary nature of the votes that are allowed.

Mix-net anonymous channels were first proposed by D. Chaum in an article entitled "Untraceable Electronic Mail, Return Address, and Digital Pseudonyms" in Communication of the ACM, ACM, 1981, pp 84 to 88. Subsequently, many voting schemes have been proposed based on this basic technique as in an article by A. Fujioka et al, entitled "A Practical Secret Voting Scheme for Large Scale Elections," in Advances in Cryptology - Auscrypt '92, 1992, pp. 244 to 251, and in an article by C. Park et al, entitled "All/Nothing Election Scheme and Anonymous Channel" in Advances in Cryptology, Eurocrypt '93, 1993, pp. 248 to 259.

These schemes are efficient, but have the following shortcomings. The simplest of these schemes does not allow a voter to securely protest the omission of a vote without allowing a malicious voter to block the election. After the election, each

voter is typically responsible for checking that their vote was correctly tallied. There is usually no way for an outside observer to later verify that the election was properly performed. Furthermore, some anonymous channels are vulnerable to an attack as described in an article by B. Pfitzmann entitled "Breaking an efficient anonymous channel" in Eurocrypt '94 Proceedings, 1994, pp. 339 to 348.

In accordance with the teachings of the present invention, a secure anonymous channel and a voting scheme are described in which an outside observer can verify that the election was indeed performed correctly. Therefore omission of a vote can be detected by anyone, without fear of a malicious voter blocking the election. Furthermore, the present invention also helps thwart an attack proposed by B. Pfitzmann, supra.

Summary of the Invention

A secure anonymous channel is described where multiple messages to a same destination are transferred securely though multiple mixing centers. If the messages to be sent are votes where the destination is a vote-counting center and the first mixing center accepts messages of valid voters, then this scheme becomes a secure voting scheme. The present invention generally refers to an anonymous message transfer scheme where secure electronic voting is a practical application of the more general invention.

In the scheme, encrypted messages from the senders are successively processed by the mixing centers until the last center outputs a randomly, untraceably ordered set of unencrypted messages. That is, the encryptions used for the anonymous channel have been stripped off or decrypted. At a high level, the senders first post their encrypted messages. mixing center i processes each message posted by mixing center i-1 (or the senders, when i=1) and posts the results in permuted order.

A three-step procedure is followed by each mixing center *i*. The first step is posting decrypted results of each input message. The second step is mixing the results and posting them in permuted order. The third step is proving that the centers correctly executed the first and second steps. The Fiat-Shamir technique as discussed in an article entitled "How to Prove Yourself: Practical Solutions to identification and signature problems" in Advances in Cryptology - Crypto '86, Springer-Verlag, 1986, pp. 186 to 199, can be used to make the above proofs non-interactive.

At the conclusion of the three step process or at a later time, any interested party can check the resulting proofs to confirm that the messages have all been handled correctly. With this method for achieving universal verifiability there is no need for adding redundancy to the messages.

Also, the invention results in a method which reduces the amount of communication and computation necessary to generate, transmit and check the proofs by combining multiple proofs into a single proof.

The present invention will be best understood when the following description is read in conjunction with the accompanying drawing.

Detailed Description of the Invention

The anonymous message transfer scheme comprising the present invention will now be described with reference to Figures 1 and 2. In accordance with the scheme, encrypted messages from senders 10(1), 10(2), 10(3)...10(1) are successively processed by the mixing centers 11(1), 11(2), 11(3)...11(n) until the last center provides as its output a randomly, untraceably ordered set of unencrypted messages. Voters cast their ballot by means of a sender which comprises a computing means, preferably a personal computer but it may also be a workstation or the like. Similarly, each mixing center comprises a computing means, preferably a personal computer, a workstation or the like. The senders first post their encrypted messages preferably on an electronic bulletin board or other publicly

available messaging means. Mixing center 11(i) processes each message posted by the previous mixing center 11(i-1) (or the senders 10, when i=1) and posts the results in permuted order until the last mixing center 11(n) posts the result or tally of the voting. Having set forth an overview of the scheme, the detail of how a message m is initially encrypted by a sender and how a mixing center 11(i) processes each message will now be described in detail.

Initially, entities participating in the voting, i.e. the senders and the mixing centers, need to agree on using prime numbers p and q where the following relationships exist for some integer k:

$$p = k q + 1$$
.

The value g' is a generator mod p and g is equal to

$$g = (g')^k \mod p$$
.

Assume there are n mixing centers. Each mixing center 11(i) generates a integer $x_i \in Z_q^*$ and publishes $y_i = g^{X_i} \mod p$

as its public key and keeps x_i as its secret key. For the purpose of simplification, w_i will represent the product $y_{i+1}y_{i+2}\cdots y_n$ and $w_n=1$.

The message from a sender 10 is m. The sender generates a random number r_0 , and posts

$$(G_1, M_1) = (g^{r_0} \mod p, (w_0)^{r_0} \cdot m \mod p)$$
 for use by mixing center 11(1).

For ease of explanation, the three steps of decrypt, shuffle and prove of the centers will be described in this order. However, implementation does not necessarily require the steps to be performed in this order.

In response to input (G_i, M_i) , mixing center 11 $i(i = 1, \dots, n-1)$ generates a random number r_i (independently for each message-pair) and calculates the following values using the secret key x_i :

$$G_{i+1} = G_i \cdot g^{r_i} \mod p$$

$$= g^{r_0^+ \cdots + r_i} \mod p$$

$$H_{i+1} = G_i^{x_i} \mod p$$

$$M_{i+1} = M_i \cdot w_i^{r_i} / H_{i+1} \mod p$$

$$= w_i^{r_0^+ \cdots + r_i} \cdot m \mod p$$

and posts (H_{i+1}) corresponding to (G_i, M_i) . The value (G_{i+1}, M_{i+1}) is posted, permuted with the other processed messages for use by mixing center 11 (i+1).

The mixing center 11(i) executes a prove-DECRYPT algorithm for inputs (G_i, g, y_i, H_{i+1}) . The description of the algorithm prove-DECRYPT is given in below. Execution of this algorithm proves that mixing center 11(i) generated H_{i+1} correctly. Mixing center 11(i) then executes a prove-SHUFFLE algorithm, a description of which is given below. Execution of this algorithm proves that the mixing center shuffled honestly.

Mixing center 11(n) recovers m from input (G_i, M_i) by computing:

$$m = M_n / G_n^{T_n} \mod p$$

The mixing center 11(n) then executes the prove-DECRYPT algorithm for inputs $(G_n, g, y_i, M_n/m)$.

The algorithms prove-DECRYPT and prove-SHUFFLE will now be described. The algorithms involve a prover and a verifier. The verifier may be a random beacon or an output of a suitable hash function, as is described below.

In order to describe the algorithm prove-DECRYPT, the first phase of the protocol is abstracted as follows. Given G, the first step comprises performing decryption in order to generate $H = G^x \mod p$. The proof comprises, given $(G, g, y = g^x \mod p, H)$, showing that H is generated in this manner from G. The algorithm is as follows:

prove-DECRYPT

1. The prover uniformly chooses $r \in \mathbb{Z}_{p-1}$.

Let
$$y' = g^r \mod p$$

 $G' = G^r \mod p$

The prover sends (y', G').

- 2a. With probability $\frac{1}{2}$, the verifier asks the prover to reveal r. The verifier checks that y' and G' are consistent with r.
- 2b. With probability $\frac{1}{2}$, the verifier asks the prover to reveal r' = r z. The verifier checks that

$$y' = g^{r'} \cdot y \mod p \text{ and}$$

$$G' = H \cdot G^{r'} \mod p.$$

end of algorithm

In order to describe the algorithm prove-SHUFFLE, the second step is abstracted as follows.

Given constants g, w and

$$A = \begin{pmatrix} a_i^{(1)} \\ a_i^{(2)} \end{pmatrix},$$

the second step comprises generating r_1, r_2, \ldots and a permutation π and generating a set of pairs

$$B = \begin{pmatrix} a_{\pi(i)}^{(1)} \cdot g & r' & \pi(i) & mod & p \\ a_{\pi(i)}^{(2)} \cdot w & r' & \pi(i) & mod & p \end{pmatrix}.$$

Here $a_i^{(1)}$ refers to G's and $a_i^{(2)}$ refers to M/H's in the first step. The proof comprises, given (A, B, g, w), showing that B could be generated in this manner from A. The algorithm is as follows:

prove-SHUFFLE

1. The prover uniformly chooses $t \in \mathbb{Z}_{p-1}$, random permutation λ and

$$C = \begin{pmatrix} a_{\lambda(i)}^{(1)} \cdot g^{t_{\lambda(i)}} & \text{mod } p \\ a_{\lambda(i)}^{(2)} \cdot w^{t_{\lambda(i)}} & \text{mod } p \end{pmatrix}.$$

The prover sends C.

2a. With probability $\frac{1}{2}$, the verifier asks the prover to reveal λ and t_i . The verifier checks that C is consistent with A, λ, t_i in that way.

2b. With probability $\frac{1}{2}$, the verifier asks the prover to reveal $\lambda' = \lambda \circ \pi^{-1}$ and $t'_i = t_i - r'_i$. The verifier checks that C can be generated from B in the following way:

For
$$B = \begin{pmatrix} b_i^{(i)} \\ b_i^{(2)} \end{pmatrix}$$
,
$$C = \begin{pmatrix} b_{\lambda'}^{(i)} & b_i^{(i)} & b_i^{($$

End of algorithm

Each execution of the algorithms prove-DECRYPT or prove-SHUFFLE finds a cheating prover with probability $\frac{1}{2}$. In order to raise this probability closer to 1, independent executions are necessary.

While these algorithms are given in terms of a verifier, a more efficient solution is to use the Fiat-Shamir method of eliminating interaction. First, the protocol is run many times (on the order of 40 or 60) in order to make the probability of withstanding all of the challenges exceedingly small. Then the verifier is replaced by a suitably "random looking" hash function which generates the challenges from the prover's posting in Step 1 of the algorithms prove-DECRYPT or prove-SHUFFLE. This heuristic of Fiat-Shamir method is described in an article entitled "How to Prove Yourself: Practical solutions to identification and signature problems" in Advances in Cryptology- Crypto '86, Springer-Verlag, 1986, pp. 186 to 199. This way the prover can send all the messages to the verifier in a single message. This message is posted for public access.

The bulk of the computation and communication required to execute algorithm prove-DECRYPT for each of the messages from previous centers can reduced. By combining many of the proofs into a single proof, the centers can efficiently prove they decrepted all of the inputs correctly.

It is necessary to show that the following equation holds for each pair $(G^{(j)}, H^{(j)})$.

$$H^{(j)} - (G^{(j)})^{x} \mod p$$

The above equations are reduced to the following single equation using randomly chosen coefficients ^c₃:

$$\prod_{i} (H^{(j)})^{c_{j}} = \prod ((G^{(j)})^{c_{j}})^{x} \mod p$$

A center can execute the above protocol where

$$G = \prod_i (G^{(j)})^{e_j}$$
 and $H = \prod_i (H^{(j)})^{e_j}$.

Advantage is made of the fact that if one or more of the original equations is wrong, then if the coefficients are chosen randomly, the final equation will also be wrong with high probability. These random coefficients must not be chosen by the prover, but should be provided by a verifier, beacon or as the output of a suitable hash function.

Similarly, as a variation of the above scheme, the following two round anonymous channel can be constructed. In the two round anonymous channel, each mixing center 11(i), on inputs (G_i, M_i) first shuffles the inputs to $(G_i \cdot g^{r_i} \mod p, M_i \cdot w_0^{r_i} \mod p)$ and passes the shuffled values in a random order to the next center. Each center executes the prove-SHUFFLE algorithm (with some constants fixed to this scheme) to prove the correctness of the information. When the shuffled messages are finally provided to the mixing center 11(n), mixing center 11(n) publishes G_{n+1} and M_{n+1} for each message. Then each mixing center 11(i) publishes $H_i = G_{n+1}^{x_i}$. The mixing center 11(i) executes the prove-DECRYPT algorithm with input (G_{n+1}, g, H_i) to prove the correctness. The message m can be recovered by $M_{n+1}/\prod H_i$.

In order to avoid vote-duplication attack, each sender may sign and encrypt the message to be posted. That is, the sender may sign the output of a message to be posted. By signing the output of a message constructor (described below) and then encrypting the message using the public key of the first center 11(1), a malicious sender cannot copy another sender's message, since the copied message would not have the correct signature. Moreover, the message is encrypted in a manner such that the message cannot be decrypted, nor can a different signature be affixed to the encrypted message.

Alternatively, the first center may conceal all of the message from the senders until each sender has posted a note or message.

In order to prevent the first center 11(1) and a malicious sender from conspiring, it is possible to use a conventional secure commitment scheme such as that discussed in an article by M. Naor, entitled "Bit commitment using pseudo-randomness," in Advances in Cryptology - CRYPTO '89, 1989, pp. 128 to 136.

Having described a preferred method of practicing the present invention, preferred embodiments useful for practicing the invention will now be described. Figure 1 schematically illustrates a preferred embodiment for practicing the invention. The senders 10(1), 10(2), 10(3),...10(ℓ) and mixing centers 11(1), 11(2), 11(3)...11(n) use personal computers or workstations connected to a conventional electronic bulletin board 12. All parties (senders, verifiers, centers and the like) to the message transfer process interact by posting messages to and receiving messages from the bulletin board. Senders can also serve as centers. The personal computers either contain software to perform the method described above or alternatively contain in hardware or software embodiments of the elements described in Figure 2.

Figure 2 illustrates how messages are anonymously transferred. Each message constructor 14(1), 14(2), 14(3)... $14(\ell)$ of message sender 10(1), 10(2), 10(3)... $10(\ell)$ generates an encrypted message 16(1), 16(2), 16(3),... $16(\ell)$, using constants 15 as described above. The encrypted messages 16 are posted to the electronic bulletin board 12. Then each mixing center 11(i) reads as its input, message 17(i-1) from the bulletin board 12. (mixing center 11(1) reads the encrypted message 16.) The mixing center then follows the sequence process decrypt 19, shuffle 20, prove-DECRYPT 21, prove-SHUFFLE 22 using its secret key 23(i) as described above. The processed messages and proofs 17(i) are posted to the electronic bulletin board. (Mixing center 11(n) posts decryted messages 18.) In the case of electronic voting, mixing center 11(n) will post a tally of the votes

Figure 3 schematically illustrates a channel checker 24. The channel checker 24 receives constants 15, encrypted messages 16, a set of processed messages and proofs 17(1), 17(2)... and decrypted messages 18 and determines whether the message transfer was processed as specified above, thus indicating a valid or invalid channel. That is, the channel checker includes a verifier for the proofs given by the mixing centers.

Figure 4 illustrates a message constructor 14. The message constructor 14 generates encrypted message 16 for the message 25 using constants 15 as described above.

While there has been described and illustrated a preferred method and apparatus of secure anonymous message transfer and electronic voting, it will be apparent to those skilled in the art that variations and modifications are possible without deviating from the broad teachings and spirit of the present invention which shall be limited solely by the scope of the claims appended hereto.

4. Brief Description of Drawings

Figure 1 is a schematic illustration of a preferred embodiment for practicing the present invention;

Figure 2 is a schematic illustration of message flow;

Figure 3 is a schematic illustration of a channel checker; and

Figure 4 is a schematic illustration of a message constructor.

Flg.1

SENDERS

MIXING CENTERS

Fig.2

Flg.3

Fig.4

1. Abstract

A number-theoretic based algorithm provides for secure anonymous message transfer and electronic voting. A voter or sender may cast an encrypted vote or message that is processed through n centers in a manner which prevents fraud and authenticates the votes. Any interested party can verify that each vote has been properly counted. The invention can be realized by current-generation personal computers with access to an electronic bulletin board.

2. Representative Drawing

FIG. 1