PISCO: Pretty Simple Compression for Retrieval-Augmented Generation (arxiv)

Key Highlights

問題

- 目標問題:檢索增強生成 (Retrieval-Augmented Generation, RAG) 管道因推 理成本高而面臨可擴展性問題,這些成本隨著 token 數量的平方增長,而且大型語 言模型 (LLM) 的上下文大小有限,限制了可以利用的文檔數量。
- 現有方法與限制:
 - 硬壓縮(修剪、摘要):壓縮率有限(2倍到5倍),但具可解釋性
 - 軟壓縮:壓縮率較高,但在 RAG-QA 基準上有顯著的準確性損失(>8%),需要對大型數據集進行廣泛的預訓練,並用標註的 OA 數據進行微調

解決方案

- 提出的解決方案: PISCO 一種使用序列級知識蒸餾從基於文檔問題的軟壓縮方法,實現16倍壓縮且準確性損失極小(0-3%)
- •靈感來自:基於語言模型應該在輸入經壓縮後還是未壓縮時給出相同答案的原則
- 理論基礎:使用序列級知識蒸餾 (Sequence-level Knowledge Distillation, SKD),教師模型生成標籤,而不是 token 級別的蒸餾。使用 LoRA 適配器來控制 壓縮器和解碼器組件,以及優化的內存 token 來編碼文檔信息。

實驗

- 性能:
 - 。在各種 RAG-QA 任務中實現 16 倍壓縮,達到 0-3% 的準確性損失
 - ∘ 準確性超過現有壓縮模型8%
 - ∘ 實現 16 倍壓縮後的 5.7 倍推理速度提升
 - 可在單個 A100 GPU 上在小於48小時內微調 7-10B 的 LLM
- 限制/假設:
 - 需要對壓縮器和解碼器都進行微調(非即插即用)
 - 。 壓縮率超過16倍時性能下降
 - 用 k=5 篇文檔進行訓練,對於更大的文檔集可能需要調整

創新

- 新發現:
 - 。 第一個實現大壓縮率且準確性損失極小的壓縮方法
 - 。預訓練對壓縮模型幫助不大 預訓練任務成功與 QA 性能之間相關性弱
 - 。序列級蒸餾比token級別蒸餾對壓縮更有效
 - 。 文檔嵌入顯示空間專業化,每個嵌入專注於特定的文本區域

○ 壓縮嵌入位於正常token嵌入空間之外,解釋了為什麼需要進行解碼器微調

評論/批評

- 限制:
 - 。 需要對編碼器和解碼器組件進行訓練,限制了即插即用部署
 - 。在一些域外任務上的性能顯著下降(ParaphraseRC:-3-10%)
 - 多語言性能顯示衰減,但不清楚是由於壓縮還是基礎模型限制
- **聲明支持**:該論文提供了跨多個數據集的全面實驗,通過詳細的消融研究解釋了設計選擇,並詳細分析了預訓練不起作用的原因。聲明得到了定量結果和對學習表示的定性分析的良好支持。

Comprehensive Analysis

Abstract

摘要摘要

- 本摘要介紹了 PISCO, 一種新穎的文檔壓縮方法,旨在解決檢索增強生成 (RAG)系統中的可擴展性挑戰。
- RAG 流程面臨高推理成本和有限上下文窗口大小的可擴展性問題。
- 現有的文檔壓縮方法有顯著的準確性損失,並且需要大量的預訓練。
- ・PISCO 的主要優勢:
 - 。在保持0-3%準確性損失的情況下達到 **16倍壓縮率**。
 - 不需要預訓練或註釋數據。
 - 。 利用基於文檔問題的序列級知識蒸餾。
 - 高效能:可在單顆 A100 GPU 上於48小時內微調7-10B參數模型。
- 性能結果:
 - 準確性超越現有壓縮模型 8%。
 - 。在多種基於 RAG 的問答任務中進行測試。
 - 為實際部署提供一個可擴展的解決方案。
- 該方法在提高 RAG 系統效率的同時保持問答應用的高準確性,代表了一個重要的 進步。

1. Introduction

組織化摘要

本介紹提出了一種新穎的文件壓縮方法 PISCO,以用於檢索增強生成(RAG)系統。

問題背景: - RAG 系統通過納入檢索到的文件來增強大型語言模型(LLM),但推理成本隨文件長度呈二次方比例增加。 - 上下文大小的限制會影響可使用文件的數量。 - 現有的壓縮方法有顯著的限制: - 硬壓縮(修剪、摘要):壓縮率僅限於2倍到5倍。 - 軟壓縮(向量表示):可以達到更高的壓縮率,但準確率損失超過8%,且需要大量前訓練。

PISCO 解決方案: - 以最小的準確率損失(0-3%)實現 **16倍壓縮率**。 - 不需前訓練或 註釋數據,只使用基於文件的問題蒸餾。 - 提供 **5.7倍推理加速**。 - 在單個 A100 GPU 上能在48小時內對 7-10B LLM 進行微調。

主要貢獻: 1. 簡化、高效的 RAG 壓縮訓練管道。 2. 優越性能:比最先進的壓縮模型準確率提高8%。 3. 分析顯示前訓練對壓縮模型的效益有限。

• 這項工作通過提供實用的、高效能的文件壓縮並避免典型的準確率損失,解決了 RAG 系統中的關鍵可擴展性挑戰。

"Currently, all existing soft methods experience significant accuracy losses (> 8%, see Table 2) on RAG-QA benchmarks when compared to the original, uncompressed generator. This hinders the deployment of such systems, as accuracy is a primary concern over inference costs for most RAG systems."

目前,所有現有的軟方法在RAG-QA基準測試中相較於原始未壓縮的生成器,經歷了顯著 的準確度損失(> 8%,參見表2)。這阻礙了此類系統的部署,因為對於大多數RAG系 統來說,準確性是首要關注的問題,而不是推理成本。

"This paper presents PISCO, a compression method for RAG that achieves a x16 document compression rate with minimal to no loss in accuracy (0-3%) across a wide range of RAG-QA tasks, covering multiple domains. Unlike prior approaches, PISCO requires neither pretraining nor annotated data: it relies solely on distillation from open-ended, document-based questions."

本文提出了PISCO,一種針對RAG的壓縮方法,可以在多個領域的廣泛RAG-QA任務中 實現16倍的文檔壓縮率,而準確率的損失極小(0-3%)。與之前的方法不同,PISCO既 不需要預訓練,也不需要標註數據:它完全依賴於開放式的基於文檔的問題蒸餾。

"With x16 compression, PISCO models achieve a 5.7x inference speedup. This makes PISCO a highly efficient and scalable solution for practical applications."

通過16倍的壓縮,PISCO模型實現了5.7倍的推理速度提升。這使得PISCO成為一種高效目可擴展的實用解決方案。

2. Related Work

• 摘要:

本節回顧了機器學習中特定於上下文壓縮的現有方法,特別是用於檢索增強生成(Retrieval-Augmented Generation,RAG)的應用。該工作分為兩類:

一般長上下文壓縮(2.1節):

- 。 **自動壓縮器(Autocompressor)**:使用遞歸壓縮與語言建模訓練
- 。 ICAE:通過凍結解碼器並移除遞歸來簡化壓縮
- 。 **交叉注意力方法(Cross-attention methods)**:使用分隔的注意力機制 並行編碼多個上下文
- **DODO**:使用自適應壓縮將早期上下文壓縮成"金塊狀態(nugget states)"

• RAG專用壓縮(2.2節):

- 。專為文檔問答任務設計的方法
- 。x500壓縮器:使用K/V值作為嵌入,減少計算但增加存儲
- xRAG:通過小型適配器利用現有檢索嵌入

• 識別的主要限制:

- 。 所有當前方法均需要大規模的預訓練和註釋標籤
- 。與未壓縮模型相比,性能顯著下降(例如,16倍壓縮約下降8%)
- 。 計算效率和存儲需求之間的取捨
- 。 沒有一種方法能達到與其未壓縮對應方法的問答性能
- 本節建立了雖然存在各種壓縮方法,但在不大幅降低性能的情況下實現高效壓縮仍存在顯著差距。

'All current compression methods [2, 3, 7, 24, 31, 33, 43] rely on largescale pretraining tasks and require annotated labels. Despite their advancements, these methods still fall short of achieving the QA performance of their uncompressed LLM backbones'

目前所有的壓縮方法 [2, 3, 7, 24, 31, 33, 43] 都依賴於大規模的預訓練任務,並需要帶標註的標籤。儘管它們取得了進展,這些方法仍然無法達到其未壓縮 LLM 骨幹的 QA 性能。

'Although this approach enhances the usability and performance of the RAG pipeline, there remains a significant performance drop (\sim 8%) between uncompressed and x16 compressed models'

儘管這種方法增強了 RAG 管道的可用性和性能,未壓縮模型與 x16 壓縮模型之間仍有顯著的性能下降(約 8%)。

'The Autocompressor, a recursive context compression method trained on a language modeling task. By appending compression tokens to the context and extracting the hidden states, this approach supports longer contexts and can be applied to document compression in RAG-OA'

Autocompressor 是一種在語言建模任務上訓練的遞歸上下文壓縮方法。通過將壓縮標記附加到上下文並提取隱藏狀態,這種方法支持較長的上下文,並且可以應用於 RAG-OA 的文檔壓縮。

3. Methods

這部分描述了 PISCO, 一種用於檢索增強生成 (RAG) 的文檔壓縮方法。

- **第 3.1 節** 解釋了標準的 RAG,其中查詢會與從數據庫檢索到的相關文件進行拼接。
 - 。雖然更多的文檔可以提高準確性,但由於 transformer 的二次擴展,會增加 計算成本。
 - 軟壓縮通過將文檔映射到較短的嵌入來解決這個問題。
- 第 3.2 節 介紹了 PISCO 的架構, 其中包括:
 - 。一個使用 LoRA 插件的 **壓縮器**,其將記憶令牌附加到文檔並提取其最終隱藏 狀態作為壓縮表示。
 - 一個 **解碼器**,其有單獨的 LoRA 插件(與之前的工作不同,這些插件是經過 微調而非凍結的)。

• 關鍵創新 - 蒸餾目標:

- 。PISCO 使用基於不變性原則的 **序列級知識蒸餾 (SKD)**:無論輸入是否壓縮,語言模型應生成相同的答案。
- 該方法:
 - 使用教師模型從未壓縮的文檔中生成回應。
 - 訓練學生模型(使用壓縮文檔)去匹配這些由教師模型生成的序列。
 - 採用交叉熵損失而不是標記級蒸餾。
- 該方法比使用標記級蒸餾且需要標記數據的先前方法(如 xRAG 和 CEPED)更高效,而 PISCO 的 SKD 不需要預先存在的標籤。

"The motivation for using a distillation approach stems from an invariance principle: language models should give the same answers whether their input is compressed or not."

使用蒸餾方法的動機源於不變性原則:語言模型應該在輸入數據是否壓縮的情況下,都能給出相同的答案。

"To achieve this, we propose to use Sequence-level Knowledge Distillation (SKD): generating labels with a teacher model rather than token-level distillation based on existing labels as done in previous works."

為了實現這一點,我們提出使用序列級知識蒸餾(SKD):通過教師模型產生標籤,而不是像以往工作中那樣基於現有標籤進行詞級蒸餾。

"However, token-level knowledge distillation is often less efficient than sequence-level knowledge distillation and less convenient as it requires labeled data, which is not the case for SKD."

然而,詞級知識蒸餾通常比序列級知識蒸餾效率低,而且不太方便,因為它需要標記數據,而SKD則不需要。

4. Experiments

第四部分總結:實驗

本部分展示了PISCO的實驗評估,一個用於檢索增強生成(RAG)的文檔壓縮模型。以下是主要發現:

實驗設置 (4.1): - 測試了三個基礎模型:Mistral-7B、LLama-3.1-8B 和 SOLAR-10.7B - 使用了Wikipedia-KILT數據集中的453k個問題,多個文檔被切分為 128個token - 使用教師大型語言模型進行知識蒸餾以生成訓練標籤 - 每個查詢檢索5個 文檔進行評估

主要結果 (4.2): - 性能: - 在五個問答數據集(Natural Questions、TriviaQA、HotpotQA、ASQA、PopQA)上,PISCO顯著超越現有的壓縮方法 - PISCO 16倍壓縮達到了比之前最佳方法(COCOM)高出8%的準確度 - 性能保持在未壓縮基線模型的0-3%範圍內 - PISCO-Solar甚至略微超越了其未壓縮對應版本,表明有去噪效果 - 壓縮權衡: 性能在16倍壓縮內逐漸下降,超過這一點後則急劇下降 - 計算效率: PISCO-Mistral顯著提升了速度: - 推理速度比Mistral-7B快4倍 - 最大批次大小增大4倍 - 在128倍壓縮下達到5.7倍的速度提升

• 結果表明PISCO在保持接近基線準確度的同時,提供了顯著的計算效率增益,使其成為實際RAG應用中一個有前景的方法。

"PISCO largely outperforms the other compression methods with +8% accuracy on average compared to COCOM with Mistral backbone. PISCO - Mistral trained with 128 compression rate outperforms xRAG by more than 20%."

PISCO 比其他壓縮方法的準確率平均高出 8%,相對於使用 Mistral 骨幹的 COCOM。 經過 128 壓縮率訓練的 PISCO - Mistral 比 xRAG 高出 20% 以上。 "In fact, all PISCO models with compression rate 16 are very close (0-3%) to their uncompressed backbones. Most notably, PISCO-Solar outperforms Solar, showing that the compression can have a de-noising effect, discarding irrelevant information."

事實上,所有壓縮率為 16 的 PISCO 模型都與其未壓縮的骨幹非常接近(0-3%)。尤其是,PISCO-Solar 表現優於 Solar,這表明壓縮可以起到降噪效果,剔除無關信息。

"PISCO-Mistral is 4 times faster than Mistral-7B, it supports a maximum batch size four times larger. PISCO-Mistral with a compression rate of 128 is 5 times faster than Mistral-7B for generation."

PISCO-Mistral 比 Mistral-7B 快四倍,支持的最大批次大小大四倍。壓縮率為 128 的 PISCO-Mistral 在生成方面比 Mistral-7B 快五倍。

5. Conclusion

結構化摘要

- 本文結論部分總結了一篇介紹PISCO的論文的主要貢獻和發現,PISCO是一種用於 檢索增強生成(RAG)系統的新型壓縮方法。主要要點如下:
- **主要貢獻**:PISCO被介紹為第一種專為RAG設計的壓縮方法,在保持準確性的同時 實現了顯著的壓縮比。

• 技術洞察:

- 研究顯示,標準的預訓練在壓縮模型中的問答任務中並不能有效轉移。
- 訓練標籤的質量對壓縮性能至關重要,尤其是選擇教師LLM進行知識蒸餾。
- 實際影響:PISCO可以直接替代現有的未壓縮RAG系統,提供降低推理成本和延遲的效果且性能無顯著下降。
- 本文結論將PISCO定位為一個實際解決方案,在RAG應用中有效地填補模型效率和 性能之間的空隙。

References

No references found.