Разработка прецизионного метода определения параметров элементарной ячейки для монокристального дифрактометра, оснащенного двумерным детектором

Кудрявцев А.Л.

7 февраля 2025 г.

Содержание

1	Вве	едение				
2	Литературный обзор					
	2.1	Обзор	методов			
	2.2		ц Бонда			
3	Экс	сперим	иентальная часть			
	3.1	Описа	ание установки			
	3.2	Описа	ание методики			
		3.2.1	Отбор монокристалла			
		3.2.2	Предварительная съемка			
		3.2.3	Выбор рефлекса			
		3.2.4	Съемка рефлекса			
		3.2.5	Обработка профилей			
		3.2.6	Рассчет межплоскостного расстояния			

1 Введение

Параметры элементарной ячейки (ПЭЯ) — это одна из основных характеристик кристалла. На их значения влияет На ПЭЯ влияет большое число факторов.

Поэтому ПЭЯ — информация о любом из факторов.

Требуется — высокая прецизионность.

Методы рентгеновской дифракции — измерение ПЭЯ.

Самые распространенные — Рентгенофазовый анализ (РФА) и Рентгеноструктурный анализ (РСтА).

Образец РФА — кристаллический порошок.

Образец РСтА — малый монокристалл.

Установки рассчитаны — на один метод.

Современный РСтА сравнительно с РФА — высокая погрешность ПЭЯ.

Разработанный метод — низкая погрешность.

2 Литературный обзор

2.1 Обзор методов

Были изучены обзорные статьти [1, 2]. В них производятся обзоры рентгеновских дифракционных методов измерения ПЭЯ. Среди них выбирался тот, который можно адаптировать под стандартный лабораторный монокристальный дифрактометр. Такой дифрактометр предполагается оснащенным:

- Рентгеновской трубкой с хорошо монохроматизированным и колимированным пучком.
- Как минимум моторизированным однокружным гониометром для образца.
- Матричным детектором регулируемым углом поворота.

Таким образом из всего многообразия методов срзазу исключаются интерференционные, полихроматические, а также использующие сильно расходящийся пучок методы. Также исключаются методы, требующие установки дополнительных монохроматоров и колиматоров. Среди оставшихся можно выделить методы:

- Бонда
- Обратного рассеяния
- Компланарных рефлексов
- Реннингера
- Эталонов

Метод Бонда среди них — простой, безэталонный, универсальный в реализации, не имеющий строгих требований и дающий при аккуратном проведении эксперимента очень хорошую точность. Его идея и взята за основу разработанной нами методики.

2.2 Метод Бонда

В оригинальном исполнении [3] схема Бонда представляет собой однокристальный спектрометр. В качестве источника используется колимированный монохроматизированный пучок. Кристалл — это ориентированная монокристаллическая пластинка, размерами превосходящая первичный пучок. Детектор используется точечный, с возможностью вращаться вокруг той же оси, что и кристалл. Само измерение угла дифракции в схеме Бонда выглядит так:

- 1. Выбирается плоскость кристалла, отражение от которой будет измеряться
- 2. Детектор устанавливается под углом, чтобы зарегистрировать отражение от плоскости
- 3. Измеряется зависимость интенсивности на детекторе от угла поворота ω кристалла вблизи отражающего положения
- 4. Из полученной зависимости определяется угол ω_1 при котором достигается максимум интенсивности на детекторе
- 5. Предыдущие три шага повторяются для симметричного положения детектора и определяется второй угол ω_2
- 6. Угол дифракции вычисляется как $2\theta = 180^{\circ} |\omega_1 \omega_2|$

Определение угла 2θ по такой схеме является более точным чем по одиночному отражению, так как вычисляя разницу углов ω исключаются ошибки связанные с эксцентриситетом, поглощением и нулевым положением угла ω .

Схема Бонда была адаптирована и для изучения малых монокристаллов [4, 5]. В этом случае уже не исключаются ошибки, связанные с эксцентриситетом образца. Для их конмпенсации изначальную методику дополнили измерением углов ω отражений для фриделевской пары изначальной плоскости. Таким образом суммарно для измерения одного межплоскостного расстояния нужно снять профили 4 различных рефлексов.

Для трехкружного гониометра используются методики измерения 8 различных рефлексов [6]. В такой схеме можно учесть все ошибки, связанные со смещением образца от точки сведения осей гониометра, а также определить нулевые положения гониометра.

Ключевой особенностью совеременных монокристальных дифрактометров является исплоьзование двумерных детекторов, которое, с одной стороны уменьшает время собора данных для РСтА, а с другой негативно влияет на их качество [7].

Методика точного измерения угла дифракции при использовании двумерного детектора по аналогии с оригинальной схемой оказывается во многом не удобной. В том числе необходимость ручного суммирования сигнала и обработки большого числа снимков. В качестве альтернативы был выбран метод, использовавшивайся в [8].

В этом методе снимается не зависимость интенсивности от угла поворота кристалла $I(\omega)$, а двумерный профиль интенсивности при полном равномерном повороте кристалла вокруг оси ω через отражающее положение. В таком случае, вид зависимости интенсивности от координат детектора в основном определяется спектром первичного пучка. Зная его можно довольно точно определять положения дифракционных пиков на детекторе, из которых в дальнейшем можно определить и углы дифракции.

3 Экспериментальная часть

3.1 Описание установки

Pентгенографические эксперименты проводились на монокристальном дифрактометре Bruker D8 Venture.

- Микрофокусная трубка Incoatec $I\mu S$ 3.0
 - $-\operatorname{Cu} K\alpha$ и Мо $K\alpha$ излучение
 - Монохроматизация и фокусировка с помощью многослойных зеркал Монтела
 - * Диаметр пучка 110 мкм
 - * Расходимость пучка 0.3°
- Двумерный детектором PHOTON III
 - Разрешение 768 × 1024 пикселей
 - Размер пикселя $135 \times 135 \text{ мкм}^2$
 - Ручная установка расстояния до образца
- Трехкружный гониометр FIXED-CHI
 - Угол χ фиксирован и равен 54.7112°
 - Паспортная воспроизводимость установки углов 0.0001°
 - Паспортная точность установки углов не указана, но согласно результатам измерения эталонного образца на порошковом дифрактометре Bruker D8 Advance, оснащенном аналогичным гониометром, она не хуже 0.005°
- Температурная приставка Oxford Cryostream 800Plus
 - Стабильность поддержания температуры 0.2 К
- Управление прибором средствами програмного пакета АРЕХЗ [9].

Необходимо отметить, что из-за расположения трубок область доступных углов для детектора оказывается ограниченой. Для использовавшегося расстояния от образца до детектора около 130 мм, угол $2\theta_D$ не мог превосходить примерно 100° .

3.2 Описание методики

Первое описание методики дано в статье [10]. Общая схема проведения измерений выглядит примерно так:

- 1. Отбор монокристалла
- 2. Предварительная съемка
- 3. Выбор рефлекса
- 4. Съемка рефлекса
- 5. Обработка профилей
- 6. Рассчет межплоскостного расстояния

3.2.1 Отбор монокристалла

Отбор монокристалла проводится так же, как и для РСтА. Монокристалл выбирается так, чтобы не превосходить размера первичного пучка. В нашем случае оптимальный размер равен приблизительно 50 мкм.

3.2.2 Предварительная съемка

Предварительная съемка проводится с целью определения ориентации кристалла, его дифракционного класса и получения данных об интенсивности рефлексов.

Сама съемка состоит серии полных сканирований при вращении вокруг оси φ с шагом 0.5° для при фиксированном угле ω . Три таких сканирования выполняются при углах детектора $2\theta_D = -45^\circ, 0^\circ, 45^\circ$ при фиксированном расстоянии до образца $D \approx 70$ мм.

Обработка снимков и получение ориентации производится в программме APEX3. На выходе программы получается файл формата p4p, где информация об ориентации кристалла содержится в виде UB матрицы [11].

3.2.3 Выбор рефлекса

Выбор рефлекса для съемки происходит так, чтобы погрешность измерений была минимальной. Основными критериями в таком случае оказываются наибольшие угол 2θ и интенсивность рефлекса. При этом необходимо учитывать геометрию установки, так как не все рефлексы оказывается возможно вывести в отражающее положение для двух симметричных положений в экваториальной плоскости.

Средствами программы APEX3 производить такой перебор рефлексов неэффективно и крайне проблематично, так как программа рассчитывает для одного рефлекса максимум только одну пару углов (φ , ω) из двух возможных в общем случае. Поэтому была специально написана программа [12] для перебора всех рефлексов, рассчета для них угов гониометра и отбора случаев когда в оказывается возможным вывести рефлекс в два симметричных положения, а также когда доступна для выведения и его фриделевская пара.

Программа позволяет находить среди множества плоскостей, связанных симметрией такие, которые можно вывести в отражающее положение хотя бы при одном (из двух симметричных) положений детектора. Для этого используется информация о текущей ориентации кристалла на гониометре, т.е. р4р-файл, в котором находится матрица ориентации UB и предварительные значения ПЭЯ. Используя известную длину волны, размеры пикселя, расстояние до детектора, и другие неизменные параметры прибора, программа вычисляет углы гониометра (φ, ω) , необходимые для выведения каждой плоскости в отражающее положение на экваториальную плоскость. В каждом случае проверяются геометрические ограничения прибора. Полученная информация для всех подходящих рефлексов собирается в таблицу Excel, ее можно проанализировать и провести отбор.

3.2.4 Съемка рефлекса

Съемка рефлекса представляет собой сканирование при вращении вокруг оси ω в диапазоне $\pm 2^{\circ}$ относительно расчитанного значения ω для отражающего положения. Время съемки выставлялось таким, чтобы максимум на профиле пика составлял не менее 10000 имп.

В программе APEX3 невозможно выставить время съемки больше 10 мин., поэтому для достижения последнего условия производились несколько одинаковых съемок по 10 мин. пока не достигнется требуемая интенсивность.

3.2.5 Обработка профилей

Обработка профилей состоит из нескольких этапов, по завершению которых можно рассчитать межплоскостное расстояние. Реализована она была тоже в виде программы [12].

На входе она использует р4р-файл и информацию о примерном положении центра детектора (результат юстировки, прямое определение, калибровка). Из экспериментального фрейма вырезается центральная область $X=\pm 30, Y=\pm 15$ пикс., в которой, исходя из условия $2\theta_D \approx 2\theta$, должен находиться искомый рефлекс. Медианное значение интенсивности принимается за начальное значение фона. Пиксели с интенсивностью больше заранее заданной принимаются за "горячие пиксели"и их значения приравниваются среднему значению по 8 соседним пикселям. После учета горячих пикселей максимум интенсивности в выбранной области назначается примерным положением $K\alpha_1$ -составляющей. Далее, исходя из значений D и 2 heta рассчитывается положение $Klpha_1$ –составляющей и обе точки смещаются так, чтобы теоретическое положение $K\alpha_1$ совпадало с координатами найденного максимума интенсивности. Аппроксимация дублета проводится двумя независимыми функциями 2D-Gauss, т.е. без закрепления междублетного расстояния и соотношения интенсивностей составляющих 2/1. Направлениями главных осей берутся вдоль координат детектора X и Y детектора. В наших экспериментах именно функция 2D-Gauss наиболее хорошо описывала форму пика при минимальном числе уточняемых параметров: координаты максимума, полуширины (ширина на половине высоты, FWHM) в направлениях Xи Y, и интегральная интенсивность.

3.2.6 Рассчет межплоскостного расстояния

Список литературы

- [1] В. В. Лидер. Прецизионное определение параметров кристаллической решётки. Успехи физических наук, 190(9):971–994, 2020.
- [2] E. Galdecka. International Tables for Crystallography Volume C: Mathematical, physical and chemical tables, chapter X-ray diffraction methods: single crystal, pages 505–508. Wiley Online Library, 2006.
- [3] W. L. Bond. Precision lattice constant determination. *Acta Crystallographica*, 13(10):814–818, Oct 1960.
- [4] C. R. Hubbard and F. A. Mauer. Precision and accuracy of the Bond method as applied to small spherical crystals. *Journal of Applied Crystallography*, 9(1):1–8, Feb 1976.
- [5] В. И. Пономарев and Д. М. Хейкер. Методика исследования малых кристаллов в рентгеноском дифрактометре ДРОН-1. *Аппаратура и Методы Рентгеноструктур-*ного Анализа, выпуск VII:185–193, 1969.
- [6] H. E. King, Jnr and L. W. Finger. Diffracted beam crystal centering and its application to high-pressure crystallography. *Journal of Applied Crystallography*, 12(4):374–378, Aug 1979.
- [7] А. П. Дудка, Е. С. Смирнова, И. А. Верин, and Н. Б. Болотина. Алгоритм и программа для прецизионного определения параметров элементарной ячейки монокристаллов с учетом эксцентриситета образца. *Кристаллография*, 62(4):669–677, 2017.
- [8] П.С. Серебренникова, В.Ю. Комаров, А.С. Сухих, and С.А. Громилов. К вопросу о точности определения параметров элементарной ячейки монокристаллов на современных лабораторных дифрактометрах. *Журнал Структурной Химии*, 62(5):734, 2021.
- [9] Bruker AXS Inc. APEX3 v.2019.1-0, SAINT v.8.40a and SADABS v.2016/2. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- [10] А. Л. Кудрявцев, П. С. Серебренникова, Н. Г. Наумов, and С.А. Громилов. Реализация схемы Бонда на монокристальном дифрактометре. Изучение однородности монокристаллов $(Y_{1-x}Eu_x)_2O_3$. Журнал Структурной Химии, 65(10):133158, 2024.
- [11] W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. *Acta Crystallographica*, 22(4):457–464, Apr 1967.
- [12] А. Л. Кудрявцев and С.А. Громилов. Учет эксцентриситета образца при измерении параметров элементарной ячейки малых монокристаллов в схеме Бонда на современных дифрактометрах. Журнал Структурной Химии, 65(12):137338, 2024.