# Hierarchically Semi Separable Matrices on Heterogeneous GPU Clusters

Isuru Fernando and Sanath Jayasena, (University of Moratuwa), Milinda Fernando and Hari Sundar (University of Utah)

#### Introduction

Matrix-vector multiplication (matvec) is at the heart of other linear algebraic operations like matrix-matrix multiplication, solving linear systems, inversion, factorization.

Doing matvec efficiently will lead to efficient algorithms for other linear algebra routines. Some ways to optimize matvec,

- 1. Exploit special structure of the matrix
- 2. Use GPU parallelism
- 3. Use a distributed memory system

#### Introduction

Matrix - vector multiplication time-complexity

| Dense matrix of size N * N        | $O(N^2)$        |
|-----------------------------------|-----------------|
| Sparse matrix with d data per row | $O(N \times d)$ |

0/N12N

Hierarchically semi-separable with rank k O(N  $\times$  k)

#### Problem

Factorizing hierarchically semi-separable matrices and performing matrix-vector multiplication as efficiently as possible.

We'll look at using a distributed set of nodes with GPUs to do the computation.

#### **HSS Structure**

HSS matrices have off-diagonal blocks with low rank (upper bound is named k) and the off-diagonal blocks satisfy recursive relations mentioned later

Divide the matrix into a  $2 \times 2$  block matrix and then do the same recursively to the two diagonal blocks until the matrix is small enough.



| Dense    | Low Rank |
|----------|----------|
| Low Rank | Dense    |



| $D_4$            | A <sub>4,5</sub> | Α                |                  |  |
|------------------|------------------|------------------|------------------|--|
| A <sub>5,4</sub> | D <sub>5</sub>   | A <sub>2,3</sub> |                  |  |
|                  |                  | D <sub>6</sub>   | A <sub>6,7</sub> |  |
| A <sub>3,2</sub> |                  | A <sub>7,6</sub> | D <sub>7</sub>   |  |

| D <sub>8</sub>   | A <sub>8,9</sub> | A <sub>4,5</sub>   |                    |                                                                                        |                    |  |     |
|------------------|------------------|--------------------|--------------------|----------------------------------------------------------------------------------------|--------------------|--|-----|
| A <sub>9,8</sub> | $D_9$            |                    |                    | _                                                                                      |                    |  |     |
| A                | 5.4              | D <sub>10</sub>    | A <sub>10,11</sub> |                                                                                        |                    |  |     |
|                  | у, т             | A <sub>11,10</sub> | D <sub>11</sub>    |                                                                                        |                    |  |     |
|                  |                  |                    |                    | D <sub>12</sub> A <sub>12,13</sub> A <sub>6,7</sub> A <sub>13,12</sub> D <sub>13</sub> |                    |  | S 7 |
|                  |                  |                    |                    |                                                                                        |                    |  | ,,  |
| A <sub>3,2</sub> |                  | A <sub>7,6</sub>   |                    | D <sub>14</sub>                                                                        | A <sub>14,15</sub> |  |     |
|                  |                  |                    |                    | A <sub>15,14</sub>                                                                     | D <sub>15</sub>    |  |     |

### **HSS Tree Representation**



### Interpolative Decomposition

For a matrix B, find X and J such that

$$B = B[:J] * X$$

where J is a set of k columns where k is a upper bound for the rank of the matrix B

Randomized algorithm which does a Rank Revealing QR Factorization and then a triangular solve

#### Recursive structure of off-diagonal blocks

For a matrix B with rank k we can write (via ID)

$$B = B[:J^{row}] * V^{T}$$

$$B[:J^{row}]^{T} = B[J^{col}, J^{row}]^{T} * U^{T}$$

$$B = U * B[J^{col}, J^{row}] * V^{T}$$

$$A_{v1, v2} = U_{v1}^{big} * B_{v1, v2}^{big} V_{v2}^{big}$$
 where dim(B<sub>v1,v2</sub>) = (k, k)

where 
$$dim(B_{v1,v2}) = (k, k)$$

$$U_{\tau}^{\text{big}} = \begin{bmatrix} U_{v1}^{\text{big}} & 0 \\ 0 & U_{v2}^{\text{big}} \end{bmatrix} U_{\tau}^{\text{where dim}(U_{\tau}) = (2*k, k)}$$
and v1, v2 are children of  $\tau$ 

where dim(
$$U_{\tau}$$
) = (2\*k, k)  
and v1, v2 are children of  $\tau$ 

## Storage Cost of HSS

Assume that the hierarchical factorization stops when M is of size (2\*k, 2\*k), then there are O(n/k) number of nodes.

 $O(k^*n)$  total storage cost which is O(n) when k is constant.



### **HSS Factorization**

- Generate 2 random matrices and multiply
- Bottom up pass with ID and multiplications at each node



#### Algorithm 4: Computing the HSS factorization of a non-symmetric matrix.

Input: A fast means of computing matrix-vector products  $x \mapsto Ax$  and  $x \mapsto A^*x$ . A method for computing individual entries of A. An upper bound for the HSS-rank k of A. A tree T on the index vector [1, 2, ..., N]. Output: Matrices  $U_{\tau}$ ,  $V_{\tau}$ ,  $B_{\nu_1,\nu_2}$ ,  $D_{\tau}$  that form an HSS factorization of A. Generate two  $N \times (k + 10)$  Gaussian random matrices  $R^{\text{row}}$  and  $R^{\text{col}}$ .

Evaluate  $S^{\text{row}} = A^* R^{\text{row}}$  and  $S^{\text{col}} = A R^{\text{col}}$  using the fast matrix-vector multiplier.

loop over levels, finer to coarser,  $\ell = L, L - 1, ..., 1$ 

loop over all nodes  $\tau$  on level  $\ell$ 

if 
$$\tau$$
 is a leaf node then

$$I_{loc}^{row} = I_{\tau}$$
  
 $R_{loc}^{row} = R(I_{\tau}, \cdot)$ 

$$\begin{split} R_{\text{loc}}^{\text{row}} &= R(I_{\tau},:) \\ S_{\text{loc}}^{\text{row}} &= S^{\text{row}}(I_{\tau},:) - A(I_{\tau},I_{\tau}) \, R_{\text{loc}}^{\text{row}} \end{split}$$

Let  $\nu_1$  and  $\nu_2$  be the two children of  $\tau$ .

$$\begin{split} I_{\text{loc}}^{\text{row}} &= [\tilde{I}_{\nu_1}^{\text{row}}, \tilde{I}_{\nu_2}^{\text{row}}] \\ R_{\text{loc}}^{\text{row}} &= \begin{bmatrix} R_{\nu_1}^{\text{row}} \\ R_{\nu_2}^{\text{row}} \end{bmatrix} \end{split}$$

$$S_{\text{loc}}^{\text{row}} = \begin{bmatrix} S_{\nu_1}^{\text{row}} - A(\tilde{I}_{\nu_1}^{\text{row}}, \tilde{I}_{\nu_2}^{\text{col}}) R_{\nu_2}^{\text{row}} \\ S_{\text{row}}^{\text{row}} - A(\tilde{I}_{\nu_1}^{\text{row}}, \tilde{I}_{\nu_2}^{\text{col}}) R_{\nu_2}^{\text{row}} \end{bmatrix}$$

end if

$$[U_{\tau}^{\text{row}}, J_{\tau}^{\text{row}}] = \text{interpolate}((S_{\text{loc}}^{\text{row}})^*)$$

$$S_{\tau}^{\text{row}} = S_{\text{loc}}^{\text{row}}(J_{\tau}^{\text{row}},:)$$

end loop

For all leaf nodes  $\tau$ , set  $D_{\tau} = A(I_{\tau}, I_{\tau})$ . For all sibling pairs  $\{\nu_1, \nu_2\}$  set  $B_{\nu_1,\nu_2} = A(\tilde{I}_{\mu_0}^{row}, \tilde{I}_{\mu_0}^{col})$ .

$$\begin{split} I_{\text{loc}}^{\text{col}} &= [\tilde{I}_{\nu_1}^{\text{col}}, \, \tilde{I}_{\nu_2}^{\text{col}}] \\ R_{\text{loc}}^{\text{col}} &= \begin{bmatrix} R_{\nu_1}^{\text{col}} \\ R_{\nu_2}^{\text{col}} \end{bmatrix} \\ S_{\text{loc}}^{\text{col}} &= \begin{bmatrix} S_{\nu_1}^{\text{col}} - A(\tilde{I}_{\nu_1}^{\text{row}}, \tilde{I}_{\nu_2}^{\text{fi}} \\ S_{\nu_2}^{\text{col}} - A(\tilde{I}_{\nu_2}^{\text{row}}, \tilde{I}_{\nu_2}^{\text{fi}} \end{bmatrix} \end{split}$$

$$[U_{\tau}^{\text{col}}, J_{\tau}^{\text{col}}] = \text{interpolate}((S_{1}^{\text{col}}))$$

$$\begin{array}{l} [U_{\tau}^{\mathrm{col}},J_{\tau}^{\mathrm{col}}] = \mathtt{interpolate}((S_{\mathrm{loc}}^{\mathrm{col}})^*) \\ R_{\tau}^{\mathrm{col}} = (U_{\tau}^{\mathrm{row}})^* \, R_{\mathrm{loc}}^{\mathrm{col}} \\ S_{\tau}^{\mathrm{col}} = S_{\mathrm{loc}}^{\mathrm{col}}(J_{\tau}^{\mathrm{col}},:) \end{array}$$

$$S_{\tau}^{\text{col}} = S_{\text{loc}}^{\text{col}}(J_{\tau}^{\text{col}},:)$$

### Methodology

#### Single GPU implementation

- Transfer the full matrix to GPU
- Use CURAND and CUBLAS for randomized sampling and projection
- CUDA kernels for each level of the HSS tree for factorization
- Assumes that all of the small matrices have rank the same as the upper bound of the rank. When it is not, some rows in Q of QR factorization become zero.



## Matrix-Vector product using HSS

At each node a dense matrix-multiplication of a matrix  $O(k^2)$  and a vector O(k) is done.

Number of nodes = O(N/k)

Time complexity =  $O(N^*k)$ 

#### Algorithm 1

Given all factors  $U_{\tau}$ ,  $V_{\tau}$ ,  $B_{\nu_1,\nu_2}$  and  $D_{\tau}$  of an HSS matrix A, and a vector x, this scheme computes the product b = Ax.

- (1) For every leaf node  $\tau$ , calculate  $\tilde{x}_{\tau} = V_{\tau}^* x(I_{\tau})$ .
- (2) Looping over all non-leaf nodes  $\tau$ , from finer to coarser, calculate

$$\tilde{x}_{\tau} = V_{\tau}^* \left[ \begin{array}{c} \tilde{x}_{\nu_1} \\ \tilde{x}_{\nu_2} \end{array} \right],$$

where  $\nu_1$  and  $\nu_2$  are the children of  $\tau$ .

- (3) Set  $\tilde{b}_{\tau} = 0$  for the root node  $\tau$ .
- (4) Looping over all non-leaf nodes  $\tau$ , from coarser to finer, calculate

$$\left[ \begin{array}{c} \tilde{b}_{\nu_1} \\ \tilde{b}_{\nu_2} \end{array} \right] = \left[ \begin{array}{cc} 0 & B_{\nu_1,\nu_2} \\ B_{\nu_2,\nu_1} & 0 \end{array} \right] \left[ \begin{array}{c} \tilde{x}_{\nu_1} \\ \tilde{x}_{\nu_2} \end{array} \right] + U_{\tau} \, \tilde{b}_{\tau}$$

where  $\nu_1$  and  $\nu_2$  are the children of  $\tau$ .

(5) For every leaf node  $\tau$ , calculate  $b(I_{\tau}) = U_{\tau} \tilde{b}_{\tau} + D_{\tau} x(I_{\tau})$ .

### Methodology

- Batched gemm operations for each level of the HSS tree.
- Allow multiple vectors to be multiplied parallelly. (Matrix-matrix multiplication)



#### Parallelization across nodes

- Matrix factorization and matvec for a distributed memory system using MPI

### How computation is distributed



### How data is distributed on the CPU

|      | $D_8$ $A_{8,9}$ | A4.5                 |                                | ← P0  |
|------|-----------------|----------------------|--------------------------------|-------|
|      | $A_{9,8}$ $D_9$ | 90                   | A2.3                           | ←— P1 |
|      | A= 4            | $D_{10} A_{10,11}$   | 30.330                         | ←— P2 |
| A =  |                 | $A_{11,10}$ $D_{11}$ |                                | ←— P3 |
| 71 — |                 |                      | $D_{12} = A_{12,13} = A_{3,7}$ | ←— P4 |
|      | 4               |                      | $A_{13,12}$ $D_{13}$           | ←— P5 |
|      |                 | 2                    | $D_{14}$ $A_{14,15}$           | ←— P6 |
|      |                 |                      | $A_{15,14}$ $D_{15}$           | ←— P7 |

### How data is distributed on the GPU





#### Option 1

- Distribute the seed and compute Nxd matrix in each GPU

#### Option 2

- Compute  $(N/p) \times d$  on each node on the GPU, bring it back to the CPU
- Do a MPI reduce scatter
- Transfer (N/p) x d data to the GPU.

2. Generate Rc and compute Sc



#### 2. Generate Rc and compute Sc



2. Generate Rc and compute Sc



Do the multiplication and a MPI\_Allreduce  $O(N \times d)$  communication better than  $O(N^2/p)$ 

## Distributed Merging





### Distributed Matvec



Fig. 3. HSS tree with the subtrees given to 8 processors

#### Distributed Matvec



Fig. 3. HSS tree with the subtrees given to 8 processors

## Results - Single Node

| Matrix Size | HSS<br>time (ms) | MATVEC (HSS)<br>time (ms) | MATVEC (dense)<br>time (ms) | MATMAT (HSS)<br>time (ms) | MATMAT (dense)<br>time (ms) | Error of norm of MATVEC |
|-------------|------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|-------------------------|
| 32          | 32               | 0.065                     | 0.161                       | 0.066                     | 0.164                       | 0.0                     |
| 64          | 68               | 0.066                     | 0.055                       | 0.092                     | 0.171                       | 0.0                     |
| 128         | 98               | 0.127                     | 0.184                       | 0.177                     | 0.308                       | 0.0                     |
| 256         | 135              | 0.128                     | 0.315                       | 0.227                     | 0.393                       | 1.183e-16               |
| 512         | 165              | 0.152                     | 0.368                       | 0.507                     | 0.68                        | 1.070e-15               |
| 1024        | 197              | 0.178                     | 0.644                       | 0.76                      | 2.124                       | 1.545e-15               |
| 2048        | 241              | 0.218                     | 0.798                       | 1.214                     | 7.635                       | -2.147e-15              |
| 4096        | 292              | 0.257                     | 2.278                       | 2.06                      | 32.888                      | -1.778e-14              |
| 8192        | 383              | 0.291                     | 8.004                       | 3.825                     | 91.844                      | -5.290e-14              |
| 16384       | 633              | 0.352                     | 25.139                      | 7.534                     | 365.964                     | -7.360e-14              |

Single node GPU results

- Intel 6700U processor with 1 GeForce Titan X GPU

## Results - Single Node



## Results - Single Node





Weak Scaling

Matrix size / Number of GPU nodes = constant

| matrix size | # GPUs | HSS<br>time(ms) | MATVEC (HSS )<br>time(ms) | MATVEC (dense)<br>time (ms) |
|-------------|--------|-----------------|---------------------------|-----------------------------|
| 1024        | 1      | 181.189         | 0.313                     | 0.894                       |
| 2048        | 2      | 187.564         | 0.335                     | 0.824                       |
| 4096        | 4      | 195.951         | 0.336                     | 0.719                       |
| 8192        | 8      | 214.312         | 0.343                     | 1.012                       |
| 16384       | 16     | 245.603         | 0.358                     | 1.818                       |
| 32768       | 32     | 308.729         | 0.362                     | 2.932                       |
| 65536       | 64     | 439.41          | 0.366                     | 5.176                       |
| 131072      | 128    | 700.293         | 0.382                     | 9.574                       |

Weak scaling results run on BigRed2 at Indiana 128 nodes with 1 GPU each

Matvec = O(N/p) = O(1)



Factorization =  $O(N^2/p)$ = O(N)



### Conclusion

HSS factorization gives

### THANK YOU

### Experimental setup

- BigRed2 at Indiana University
  - 132 AMD Opteron 16-core Interlagos x86 64 CPUs
  - 1 x K20 GPU
- KINGSPEAK at University of Utah
  - 4 Intel Xeon E5-2670 processors
  - 2 x P100 GPUs each
- Single Node at University of Moratuwa
  - 1 Intel 6700U processor
  - 1 GeForce Titan X GPU

### HSS Factorization - summary

#### **Algorithm 1:** Factorization of HSS matrix

input: Matrix A of size  $N \times N$  divided into chunks of rows and distributed among  $p = 2^q$  processors

An upper bound for the HSS-rank k of A. A tree T on the index vector [1, 2, ..., N].

**output:** Matrices  $L_{\tau}, R_{\tau}, D_{\nu_1, \nu_2}$  that form an HSS factorization of A.

Let  $I_p$  be the index vector for the  $p^{th}$  node on level q of the tree and  $A_p$  be the chunk of rows of A in processor p

Generate a random seed on rank 0 and broadcast it. Generate  $N \times (k+10)$  Gaussian random matrix  $(\Omega r)$  on all processors using the seed;

Generate an  $(N/p) \times (k+10)$  Gaussian random matrix  $(\Omega c_p)$  on each processor p

```
begin
    Sr_p = A_p \cdot \Omega r
    Sc_p = A_p \cdot \Omega c_p
    Reduce Sc_p using sum operator across all
      processors and scatter
    \Omega r_p = \Omega r(I_p,:)
    A = A_p(:, I_p)
    h = I_p(0)
     /* Calculation on the GPU
    p^{th} processor will process all nodes in the
      subtree rooted at the p^{th} node of level q
    for l = L, L - 1, ..., q do
         Calculate L_{\tau}^{row}, L_{\tau}^{col}, D_{\nu_1,\nu_2}, D_{\nu_2,\nu_3} as in
           original algorithm using
           Sr_p, Sc_p, \Omega r_p, \Omega c_p, A which contains the
           parts of Sr, Sc, \Omega r, \Omega c, A needed.
    end
     /* Calculation in the CPU
    for l = q - 1, q - 2, ..., 1 do
         \nu_2 sends \widetilde{I}_{\nu_2}, \Omega^{row}_{\nu_2}, S^{row}_{\nu_2}, \Omega^{col}_{\nu_2}, S^{col}_{\nu_2} to \nu_1
         \nu_1 receives D_{\nu_1,\nu_2} and D_{\nu_2,\nu_1} from the other
           processors.
         Calculate L_{\tau}^{row}, L_{\tau}^{col}, D_{\nu_1, \nu_2}, D_{\nu_2, \nu_1}
          Processor processing \nu_1 will process \tau in
           next level
    end
end
```

### Benchmarks

| Multiplication of (N, N) * (N, E)              |        |        |         |         |          |  |
|------------------------------------------------|--------|--------|---------|---------|----------|--|
| N GPU HSS GPU Cublas CPU HSS Time (s) Time (s) |        |        |         |         |          |  |
| E = 1                                          | 4225   | 0.453  | 6.767   | 0.802   | 28.207   |  |
|                                                | 16641  | 0.583  | 100.717 | 3.075   | 441.287  |  |
| E = 100                                        | 4225   | 2.788  | 29.843  | 48.793  | 52.695   |  |
|                                                | 16,641 | 10.160 | 366.082 | 198.407 | 1019.200 |  |

## Methodology

Parallelization across a GPU



