Höhere Mathematik

Vorlesung von Prof. Dr. Harald Ita im Sommersemester 2019

Markus Österle Damian Lanzenstiel

26. April 2019

Inhaltsverzeichnis

0	Einführung
	0.1 Wichtige Infos
	0.2 Inhalt der Vorlesung
Ι	Funktionentheorie
1	Komplexe Zahlen
	1.1 Satz: Rechenregeln im \mathbb{C}
	1.1.1 Polarform und komplexe Wurzeln
	1.2 Folgen und Reihen
	1.2.1 Satz: Jede absolut konvergente Reihe konvergiert

Kapitel 0

Einführung

0.1 Wichtige Infos

 $e\hbox{-}mail harals.ita@physik.uni-freiburg.de$

Zimmer 803

Homepage www.qft.physik.uni-freiburg/Teaching

Tutorate 24. Aprill ab 14:00 Einschreibungsbeginn 60% sind zum bestehen der Studienleistung erforderlich. Die Teilnahme an der Prüfung ist nicht daran gebunden und kann auch ohne bestehen mitgeschrieben werden.

0.2 Inhalt der Vorlesung

Die Vorlesung orientiert sich stark am Script von Prof. Dittmeier.

Teil I Funktionentheorie

Theorie der Funktionen in einer komplexen Veränderlichen

Kapitel 1

Komplexe Zahlen

- natürliche Zahlen $\mathbb{N} = \{1, 2, \dots\}$ mit definierten Operatoren + und ×
- ganze Zahlen $\mathbb{Z}=\{0,\pm 1,\pm 2,\pm 3,\dots\}$ mit den Operationen + mit Inversion und × ohne Inversion
- rationale Zahlen $\mathbb{Q}=\left\{\frac{a}{b}\big|a,b\in\mathbb{Z},b\neq0\right\}$ mit den Operatoren + und × und ihren Inversionen

 $x^2=z$ algebraisch unvollständig, konvergente Folge, die nicht in $\mathbb Q$ liegenden Limes hat (Cauchy Folge 1).

 \bullet reelle Zahlen $\mathbb{R}=\mathbb{Q}\cup\{\text{irrationale Zahlen}\}.$ Vollständiger Körper 2 aber algebraisch nicht abgeschlossen.

 $x^2 = -1$ nicht lösbar in \mathbb{R}

• komplexe Zahlen $\mathbb{C} = \mathbb{R}, i$ algebraisch abgeschlossen, vollständiger Körper konstuktion über imaginäre Einheit i mit $(i)^2 = (-1)$, Euler 1777

Def: komplexe Zahlen

a) komplexe Zahl z ist ein Zahlenpaar z=(x,y) mit $x,y\in\mathbb{R}.$ x ist der Realteil von z mit $\Re(z)=x$ und y der Imaginärteil von z mit $\Im(z)=y.$

Definieren wir zwei komplexe Zahlen $z_1 = (x_1, y_1), z_2 = (x_2, y_2)$, so ist: die **Addition** definiert als:

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

die Multiplikation definiert als:

$$z_1 \cdot z_2 = (x_1x_2 + y_1y_2, x_1y_2 + x_2y_1)$$

b) Das Symbol der Menge der komplexen Zahlen ist C.

$$\overline{\mathbb{C}} = \mathbb{C} \cup \{-\infty\}$$

c) Kurzschreibweise: $i = (0, 1); z = (x, y) = x + i \cdot y$

¹Mit einer Cauchy Folge kann gezeigt werden, dass eine Folge konvergiert, ohne dass der Limes bekannt ist.

²Bei einem vollständigen Körper liegen die Grenzwerte aller konvergenter Folgen wieder in dem Körper.

d) komplex konjugierte Zahl

$$z = (x, y) = x + iy \rightarrow \overline{z} = (x, -y) = x - iy$$

e) Betrag einer komplexen Zahl

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$$

f) Polardarstellung

$$z = (r\cos\varphi, r\sin\varphi) = r\cos\varphi + i \cdot r\sin\varphi$$
$$\varphi \in (-\pi, \pi] \qquad r \in \mathbb{R}^+$$

r ist der **Betrag** von z: r=|z|. φ ist das **Argument** von z: $\varphi=\arg(z)$

1.1 Satz: Rechenregeln im \mathbb{C}

für $z_i \in \mathbb{C}$ gilt:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \qquad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} \qquad \overline{\overline{z_1}} = z_1$$

$$\Re(z) = \frac{1}{2}(z + \overline{z}) \qquad \Im(z) = \frac{1}{2i}(z - \overline{z})$$

$$|z_1 z_2| = |z_1||z_2| \qquad |\overline{z}| = |z|$$

$$|z| \ge 0 \quad \text{und} \quad |z| = 0 \quad \Rightarrow \quad z = (0, 0) = 0 + i0 = 0$$

$$|z_1| + |z_2| \ge |z_1 + z_2| \ge |z_1| - |z_2|$$

Gaußsche Zahlenebene

 \mathbb{C} bildet einen 2-dimensionale Vektorraum wie \mathbb{R}^2 . Es gibt also eine gemeinsame Struktur mit dem \mathbb{R}^2 , dennoch ist \mathbb{C} eine Erweiterung.

- a) Vektoraddition, Multiplikation mt reeller zahl, Länge und Abstandsbegriff.
- b) Multiplikation komplexer Zahlen \rightarrow Darstellung in Polarform

$$z_1 z_2 = (r_1 \cos \varphi_1, r_1 \sin \varphi_1) \cdot (r_2 \cos \varphi_2, r_2 \sin \varphi_2)$$

= $r_1 r_2 \cdot (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2, \cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1)$
= $r_1 r_2 \cdot (\cos(\varphi_1 + \varphi_2), \sin(\varphi_1 + \varphi_2))$

 \Rightarrow Beträge multiplizieren, Argumente addieren

Kehrbruch einer komplexen Zahl

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{1}{r^2} (r\cos\varphi, -r\sin\varphi)$$
$$= \frac{1}{r} (\cos(-\varphi), \sin(-\varphi))$$

mit
$$r' = \frac{1}{r}$$
, $\varphi' = -\varphi$

Riemannsche Sphäre

Kompaktifizierung der komplexen Zahlen Ebene \mathbb{C} durch stereographische Projektion: $\hat{\mathbb{C}} = \overline{\mathbb{C}} = \mathbb{C} \cup \{-\infty\}.$

Es wird also ein Punkt im unendlichen zu $\mathbb C$ hinzugefügt.

N = (0, 0, 1)

Sphäre mit Radius R = 1, um Koordinatenuhrsprung in \mathbb{R}^3 . \mathbb{C} wird identifiziert mit der (x, y)-Ebene.

stereographische Projektion = Zuordnung von Punkten auf Sphäre mit Punkten in (x, y)Ebene.

Vorschrift: Gerade durch Punkt $(x_{\Re}, y_{\Im}, 0)$ und den Nordpol N. Durchstoßpunkt = projezierter Punkt auf Sphäre. Bildpunkte: $\mathbf{w}(z)$.

Def: Chordaler Abstand

 $\chi(z_1, z_2) =$, Abstand der Bilder $\boldsymbol{w}_1 = \boldsymbol{w}(z_1), \ \boldsymbol{w}_i = \boldsymbol{w}(z_i)$ unter stereographischen Projektion im \mathbb{R}^3 "

$$\chi(z_1, z_2) = |\boldsymbol{w}(z_1) - \boldsymbol{w}(z_2)|$$

Def: Metrik

(Topologie, Stetigkeit, Limes)

Abstandsfunktion: $d(\cdot, \cdot)$ auf Menge $M: M \times M \to \mathbb{R}^+$

- (a) $d(z_1, z_2) \ge 0 \ \forall z_i \in M \ (\mathbb{C}) \text{ sowie } d(z_1, z_2) > 0 \Leftrightarrow z_1 = z_2$
- (b) $d(z_1, z_2) \le d(z_1, z_3) d(z_3, z_2) \ \forall z_i \in M$

Beispiele:

- (i) $\mathbb{C}: d(z_1, z_2) = |z_1 z_2|$
- (ii) $\overline{\mathbb{C}}: \chi(z_1, z_2)$ abgeleitet von Abstandsfunktion im \mathbb{R}^3 $d(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_1 \boldsymbol{x}_2)^2}$

Def: Metrischer Raum

Metrischer Raum = Menge + Metrik

1.1.1 Polarform und komplexe Wurzeln

a) Formel von Moivre $(\rightarrow Übungen)$

$$(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi)$$

b) Die *n*-te Wurzeln $\xi_n, \circ_n^2, \xi_n^3, \dots, \xi_n^n$ mit

$$\xi_n = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$$

$$\xi_n^n = \left(\cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2pi}{n}\right)\right)^2 = \cos\left(\frac{2\pi n}{n}\right) + i\sin\left(\frac{2\pi n}{n}\right) = 1$$

$$\left(\xi_n^k\right)^n = \xi_n^{kn} = \cos\left(\frac{2\pi kn}{n}\right) + i\sin\left(\frac{2\pi kn}{n}\right)$$

Wurzeln lösen $z^k = 1$

Für n=2 und $z^2=1$ gibt es die Lösungen $z=\pm 1$

$$\xi_2 0 \cos\left(\frac{2\pi}{2}\right) + i \sin\left(\frac{2\pi}{2}\right) = (-1)$$

$$\xi_2^2 = 1$$

c) Verallgemeinerung $z^n = a \Rightarrow, \sqrt[n]{a}$ "

$$z_{k} = \sqrt[n]{|a|} \left(\cos\left(\frac{\alpha}{n}\right) + i\sin\left(\frac{\alpha}{n}\right)\right) \xi_{k}^{k} \qquad \alpha = \arg(a), k = 0, \dots, n - 1$$

$$z_{k}^{n} = \left(\sqrt[n]{|a|}\right)^{n} \left(\cos\left(\frac{\alpha}{n} \cdot n\right) + i\sin\left(\frac{\alpha}{n} \cdot n\right)\right) (\xi_{n^{k}})^{n}$$

$$= |a| \left(\cos\alpha + i\sin\alpha\right) \cdot 1 = a$$

Nützliche begriffe

Kreisscheiben: $K_R(z_0) = \{z_0 \in \mathbb{C}, R \in \mathbb{R}^+ : |z - z_0| < R\}$

Kreislinie: $C_R(z_0) = \{ z_0 \in \mathbb{C}, R \in \mathbb{R}^+ : |z - z_0| = R \}$

1.2 Folgen und Reihen

Motivation: $\sum_{n=0}^{\infty} a_n = 0$ mit $a_n \in \mathbb{C}$

Partialsummen, Folge der Partialsummen (s_0, s_1, \ldots, s_m)

$$s_m = \sum_{n=0}^m a_n$$

Konvergenz der unendlichen Reihe \Leftrightarrow Konvergenz der Folge ihrer Partialsummen $(s_n)_{n=1,\infty}$

Def: Folge

Eine Folge ist eine geordnete Menge von Zahlen (a_1, a_2, \dots) , die Zuordnung von $\mathbb{N} \to \mathbb{R}$ oder $\mathbb{N} \to \mathbb{C}$ darstellt.

Def: Konvergenz einer Folge

Eine Folge Konvergiert gegen den Grenzwert a, wenn es zu jedem $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$ einen Index $N(\varepsilon)$ gibt, so dass $\forall n \geq N(\varepsilon), n \in \mathbb{N}$ gilt $|a_n - a| < \varepsilon$

Satz: Konvergenzkriterium von Cauchy

Eine Folge (a_n) ist genau dann konvergent, wenn es zu jedem $\varepsilon > 0$ ein $N(\varepsilon)$ gibt, so dass $|a_n - a_m| \le \varepsilon$ für $n, m \ge N(\varepsilon)$

Satz: Rechenregeln zu Limite

 $(z_n), (w_n)$ seinen Folgen, die in \mathbb{C} konvergieren, dann konvergieren auch die Folgen: $(z_n + w_n), (z_n \cdot w_n)$ und (z_n/w_n) hier muss $w_n \neq 0$ geordert werden.

Schreibweise:

$$\lim_{n \to \infty} = z, \lim_{n \to \infty} w_n = w$$

$$\lim_{n \to \infty} (z_n + w_n) = \lim_{n \to \infty} z_n + \lim_{n \to \infty} w_n = z + w$$

$$\lim_{n \to \infty} (z_n \cdot w_n) = \left(\lim_{n \to \infty} z_n\right) \cdot \left(\lim_{n \to \infty}\right)$$

$$\lim_{n \to \infty} (z_n/w_n) = \left(\lim_{n \to \infty} z_n\right) / \left(\lim_{n \to \infty} w_n\right)$$

Def: unendliche Reihen

Die Reihe $\sum_{n=0}^{\infty} a_n$ mit $a_n \in \mathbb{C}$ ist definiert als Grenzwert der Folge $(s_n)_{n=0,\infty}$ der Partialsummen $s_n = \sum_{k=0}^{n} a_k$.

Def: Absolute Konvergenz

$$\left(\sum a_n \to \sum |a_n| \stackrel{?}{=} \text{konvergenz ? } (|a_n| \in \mathbb{R}^+)\right)$$

Eine Reihe $\sum_{n=0}^{\infty}a_n$ heißt absolut konvergent, falls $\sum_{n=0}^{\infty}|a_n|$ konvergiert.

Satz: Jede absolut konvergente Reihe konvergiert

Beweis:

$$|s_m - s_n| = \left| \sum_{\substack{k=n+1 \\ n < m}}^m a_k \right| \le \sum_{k=n+1}^m |a_k| \quad \leftarrow \text{Differenz von Partial summen von } \sum_{k=0}^\infty |a_k|$$
$$= |\hat{s}_m - \hat{s}_n| \quad \leftarrow \text{Partial summen von} \uparrow$$

$$\hat{s}_n = \sum_{k=0}^n |a_k|$$

absolute Konvergenz: $\forall \varepsilon > 0 \ \exists n_0 \text{ sodass } |\hat{s}_m - \hat{s}_n| < \varepsilon \text{ für } m, n \ge n_0.$

 \Rightarrow Konvergenz von $\sum_{k=n+1}^{m} a_k$ *hier fehlt was*

Bemerkung

Nicht jede konvergente Reihe ist absolut konvergent. Zum Beispiel:

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad \text{divergiert}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \quad \text{konvergiert}$$

$$s_{2n} - s_m = \underbrace{\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2m}}_{m} > \underbrace{\frac{1}{2m} + \frac{1}{2m} + \dots + \frac{1}{2m}}_{m} = \frac{m}{2m} = \frac{1}{2}$$

 \rightarrow Cauchy Kriterium nicht erfüllt.

Satz: Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert (absolut)

$$\Leftrightarrow \sum_{n=0}^{\infty} \Re(a_n)$$
 und $\sum_{n=0}^{\infty} \Im(a_n)$ konvergieren (absolut)

Dabei gilt:

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \Re(a_n) + i \sum_{n=0}^{\infty} \Im(a_n)$$

Beweis:

Konvergenz: Aussage über Folge $s_n, \Re(s_n), \Im(s_n)$

$$s_n = \sum_{k=0}^n a_k$$
 , $\hat{s}_n^{\Re} = \sum_{k=0}^n \Re(a_k) = \Re\left(\sum_{k=0}^n a_k\right) = \Re(s_n)$

außerdem gilt auch:

$$\hat{s}_n^{\Im} = \Im(s_n)$$

a)
$$|s_n - s_m| < \varepsilon$$
 für $m, n \ge n_0$

$$\varepsilon > |s_n - s_m| = |\Re(s_n - s_m) + i\Im(s_n - s_m)| \ge |\Re(s_m) - \Re(s_n)|$$

Hierbei sind $\Re(s_m)$ Partialsummen von $\sum_{n=0}^{\infty} \Re(a_n)$

 \Rightarrow Konvergenz analog für $\sum \Im(a_n)$

b)
$$|s_n - s_m| = |\Re(s_n - s_m) + i\Im(s_n - s_m)| \le \underbrace{|\Re(s_n - s_m)|}_{<\varepsilon/2} + \underbrace{|\Im(s_n - s_m)|}_{<\varepsilon/2} < \varepsilon \text{ für } m, n > n_0$$