

Arquitectura de Computadores MEEC (2016/17 – 2º Sem.)

Unidades de Entrada/Saída (I/O)

Prof. Nuno Horta

PLANEAMENTO

- ☐ Introdução
- ☐ Unidade de Processamento
- ☐ Unidade de Controlo
- Arquitectura do Conjunto de Instruções
- Unidade Central de Processamento (CPU)
- □ P3 Processador e Periféricos
- 🔲 🛮 Unidades de Entrada/Saída (I/O)
- Unidade de Memória

SUMÁRIO

☐ Unidades de Entrada/Saída (I/O)

- Barramentos
- ☐ Dispositivos de I/O
- ☐ Interfaces de I/O
- ☐ Comunicação
- Modos de Transferência de Dados

Entradas/Saídas (I/O) Barramentos

1. BUS (Barramento) de Endereços

 Permite à CPU especificar
 Periférico e o respetivo porto ao qual pretende aceder.

2. BUS de Dados

- Permite a comunicação de dados entre a CPU e as Unidades de I/O.
- Comunicação bidirecional.

3. BUS de Controlo

 Permite a comunicação de sinais de controlo entre a CPU e os periféricos.

SUMÁRIO

- Barramentos
- Dispositivos de I/O
- ☐ Interfaces de I/O
- ☐ Comunicação
- Modos de Transferência de Dados

- Teclado
- Monitor
- Discos Rígidos
- Impressora
- CD-ROMs
- Modems
- Scanners ...

Periféricos: Teclado (128 Teclas)

Ritmo de Transferência de Dados: Lento, < 10 bytes/s

Micro-controlador: RAM, ROM, Timer, Interfaces de I/O

(1) Selecção de Linha (Descodificador)

(2) Verificação da Coluna (Multiplexer)

Ritmo de Amostragem: >> 100 amostras/s

- Como processar comandos com mais do que uma tecla?
- Como evitar repetição de teclas?

Periféricos: Disco Rígido

Ritmo de Transferência de Dados: Médio

Disco Rígido:

Discos, Cilindros,
Pistas, Sectores,
Cabeça de Leitura e Escrita

Endereço de 1 byte:

Número de cilindro;

Número de cabeça;

Número do sector;

Offset dentro do sector (256 a 4K)

Periféricos: Disco Rígido (cont.)

Transferência de Dados: Palavras ou Blocos

Exemplo1: Tempos de Acesso

Tempo de Acesso ao Disco: Tempo_de_processamento_do_controlador + Tempo_de_Rotação_do_Disco (**10ms**) + Tempo de deslocamento radial da cabeça (**6ms**)

Ritmo de Transferência: c/ 63 sectores, 512B/sector, vel. Rotação 5400 rpm Leitura de um sector = (60/5400)/63=0,176 ms Leitura de um sector (c/ espaço entre sectores) = **0,15ms** Ritmo de transf = 1/(Leitura_de_um_sector / 512) = 3,4MB/s surface 7

Tempo Global de Acesso a um Sector Isolado: 16,15ms

Periféricos: Disco Rígido (cont.)

Exemplo2: Parâmetros de um Disco Rígido.

Disco Rígido de 750 GB

4 Discos

8 Cabeças

512 bytes/sector

63 sectores por pista

16383 cilindros

Velocidade de Rotação: 7200 RPMs

Buffer: 16MB

Leitura: 8,4 ms

Escrita: 10 ms

Ritmo de Transferência: 300 MB/s

Characteristics	Seagate ST33000655SS	Seagate ST31000340NS	Seagate ST973451SS	Seagate ST9160821AS
Disk diameter (inches)	3.50	3.50	2.50	2.50
Formatted data capacity (GB)	147	1000	73	160
Number of disk surfaces (heads)	2	4	2	2
Rotation speed (RPM)	15,000	7200	15,000	5400
Internal disk cache size (MB)	16	32	16	8
External interface, bandwidth (MB/sec)	SAS, 375	SATA, 375	SAS, 375	SATA, 150
Sustained transfer rate (MB/sec)	73-125	105	79-112	44
Minimum seek (read/write) (ms)	0.2/0.4	0.8/1.0	0.2/0.4	1.5/2.0
Average seek read/write (ms)	3.5/4.0	8.5/9.5	2.9/3.3	12.5/13.0
Mean time to failure (MTTF) (hours)	1,400,000 @ 25°C	1,200,000 @ 25°C	1,600,000 @ 25°C	_
Annual failure rate (AFR) (percent)	0.62%	0.73%	0.55%	_
Contact start-stop cycles	_	50,000	_	>600,000
Warranty (years)	5	5	5	5
Nonrecoverable read errors per bits read	<1 sector per 10 ¹⁶	<1 sector per 10 ¹⁵	<1 sector per 10 ¹⁶	<1 sector per 10 ¹⁴
Temperature, shock (operating)	5°-55°C, 60 G	5°-55°C, 63 G	5°-55°C, 60 G	0°-60°C, 350 G
Size: dimensions (in.), weight (pounds)	1.0" × 4.0" × 5.8", 1.5 lbs	1.0" × 4.0" × 5.8", 1.4 lbs	0.6" × 2.8" × 3.9", 0.5 lbs	0.4" × 2.8" × 3.9", 0.2 lbs
Power: operating/idle/ standby (watts)	15/11/—	11/8/1	8/5.8/—	1.9/0.6/0.2
GB/cu. in., GB/watt	6 GB/cu.in., 10 GB/W	43 GB/cu.in., 91 GB/W	11 GB/cu.in., 9 GB/W	37 GB/cu.in., 84 GB/W
Price in 2008, \$/GB	~ \$250, ~ \$1.70/GB	~ \$275, ~ \$0.30/GB	~ \$350, ~ \$5.00/GB	~ \$100, ~ \$0.60/GB

Periféricos: Monitor

Resolução: nº de pixels por linha * nº de linhas

Para 256 cores, 1,280 pixels por linha e 1024 linhas, a memória de vídeo deverá ter aproximadamente 1,25 MB.

Ritmo de Transferência: Considerando um refrescamento de 60 imagens por segundo, a transferência para a memória RAM de vídeo será de 75MB/s.

Samsung SyncMaster 2023NW

Resolução: 1680x1050

Cor: 32 bits (4bytes)

Mem. de Video: 7056000 Bytes = 6,9 MB

Ritmo de Transferência: 413 MB/s (p/60 imagens)

Periféricos: Sensores de Imagem (câmera compacta vs câmera reflex)

Nota: A mesma resolução não corresponde à mesma qualidade de imagem! Sensor maior permite uma melhor captura com redução de ruido e uma melhor definição da cor.

Máq. Foto. SLR

SUMÁRIO

Input/Output

Entradas/Saídas (I/O)

Interfaces de I/O

Interfaces de I/O:

Comunicação: BUS Comum entre a CPU e as interfaces com os periféricos.

Identificação: Endereço associado a cada interface (recurso a circuito descodificador).

Comunicação entre a CPU e a memória ou periféricos:

Memory-Mapped I/O – Bus de endereços, dados e controlo comuns.

I/O Isolado – Bus de endereços e dados comuns.

Bus de controlo independentes.

Processador de I/O - Bus de endereços, dados e controlo independentes.

Device	Behavior	Partner	Data rate (Mbit/sec)
Keyboard	Input	Human	0.0001
Mouse	Input	Human	0.0038
Voice input	Input	Human	0.2640
Sound input	Input	Machine	3.0000
Scanner	Input	Human	3.2000
Voice output	Output	Human	0.2640
Sound output	Output	Human	8.0000
Laser printer	Output	Human	3.2000
Graphics display	Output	Human	800.0000-8000.0000
Cable modem	Input or output	Machine	0.1280-6.0000
Network/LAN	Input or output	Machine	100.0000-10000.0000
Network/wireless LAN	Input or output	Machine	11.0000-54.0000
Optical disk	Storage	Machine	80.0000-220.0000
Magnetic tape	Storage	Machine	5.0000-120.0000
Flash memory	Storage	Machine	32.0000-200.0000
Magnetic disk	Storage	Machine	800.0000-3000.0000

Entradas/Saídas (I/O) Interfaces de I/O

Interfaces de I/O:

TÉCNICO LISBOA

Função: Tradução de sinais entre a CPU e o periférico.

Componentes: 2 Registos de Dados (Portos),

1 Registo de Controlo,

1 Registo de Estado,

Circuitos de Controlo e de Temporização.

Sincronização CPU-Interface: Strobing ou Handshaking

cs	RS1	RS0	Register selected
0 1 1 1	X 0 0 1 1	X 0 1 0	None: data bus in high-impedance state Port A register Port B register Control register Status register

Entradas/Saídas (I/O)

Interfaces de I/O

Interfaces de I/O: Exemplos (P3Sim)

Janela de Texto:

Porto Leitura (FFFFh): Retorna o código ASCII da última tecla premida.

Porto Escrita (FFFEh): Envia o caracter, correspondente ao código ASCII

escrito neste porto, para a Janela de Texto.

Porto de Estado (FFFDh): Permite verificar se existe alguma tecla premida

na Janela de Texto.

Porto de Controlo (FFFCh): Permite posicionar o cursor na Janela de Texto.

1.5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Linl	na								una			

Janela de Texto

Entradas/Saídas (I/O)

Interfaces de I/O

Interfaces de I/O: Exemplos (P3Sim)

Display de 7 Segmentos:

Portos (FFF0h, FFF1h, FFF2h, FFF3h): Escrita no Display de 7 Seg, os 4 bits menos significativos escritos no porto determinam o caracter hexadecimal (0 a F) que aparece no display respectivo.

LEDS:

Porto (FFF8h): cada bit da palavra escrita neste porto define quais dos 16 LEDs estão ligados

Interruptores:

Porto de Controlo (FFF9h): Estado dos interruptores (1 - cima; 0 - baixo).

LEDs

Display de 7 Segmentos

Interruptores

Janela de Interface

SUMÁRIO

- Barramentos
- ☐ Dispositivos de I/O
- ☐ Interfaces de I/O
- Comunicação
- Modos de Transferência de Dados

Interfaces de I/O: Strobing

Vantagem: Simplicidade

Desvantagens: (1) Comunicação iniciada pela fonte: Não há garantia que o sinal de Strobe tenha sido

recebido.

(2) Comunicação iniciada pelo destino: Não há garantia que a fonte tenha colocado o dado

no BUS.

(3) O ritmo da comunicação é limitada pelo periférico mais lento.

Interfaces de I/O: Handshaking

Vantagem: Flexibilidade e Segurança

Desvantagens: Maior complexidade.

Comunicação Série:

Comunicação:

Paralela: Mais rápida mas obriga a mais linhas. Utilizada para curtas distâncias e quando a velocidade é importante.

Série: Uma linha, mais económica mas mais lenta.

Modos de Transmissão (Comunicação): Simplex, Half Duplex e

Full Duplex.

Simplex: Comunicação Unidireccional

Half Duplex: Com. bidireccional mas não simultânea (2 linhas).

Full Duplex: Com. bidireccional simultânea (2 linhas ou uma subdivisão do

espectro de frequências).

Modos de Transmissão (Ritmo): Síncrono ou Assíncrono.

Comunicação Série:

Transmissão Assíncrona

Ritmo de Transmissão: exemplo, 110 baud – 10 caracteres de 11 bits /s.

Transmissão Síncrona

Vantagem: Redução da dimensão dos caracteres, não utiliza **start** and **stop** bits. Apenas necessita de bits de controlo no início e fim de cada **bloco** de informação.

Desvantagem: Maior complexidade.

Comunicação Série: Teclado

- Transmissão Síncrona: Teclado para Interface
- Mecanismo de Interrupção: Interface para CPU

Comunicação Série: Infraestrutura de Comunicação Partilhada

Porta USB (Universal Serial Bus)

Ritmo dos dispositivos: Lento e Médio

Dispositivos: Teclado, rato, joysticks, impressoras, scanners, microfones, etc.

Vantagem: Reduz o número de interfaces dedicadas a um único dispositivo.

Comunicação Série: Infraestrutura de Comunicação Partilhada

Porta USB (Universal Serial Bus)

SYNC – padrão de sincronização

PID – Identificação do pacote

CRC – Cyclic Redundancy Check

EOP - End of Packet

SYNC PID Packet-specific data CRC	EOP
-----------------------------------	-----

(a) General packet format

SYNC 8 bits	Type 4 bits 1001	Check 4 bits 0110	Device address 7 bits	Endpoint address 4 bits	CRC	ЕОР
----------------	------------------------	-------------------------	-----------------------------	-------------------------	-----	-----

(b) Output packet

SYNC 8 bits	Type 4 bits 1100	Check 4 bits 0011	Data (Up to 1024 bytes)	CRC	ЕОР
----------------	------------------------	-------------------------	----------------------------	-----	-----

(c) Data packet (Data0 type)

8 bits 4 bits 4	heck bits EOP
-----------------	------------------

(d) Handshake packet (Acknowledge type)

SUMÁRIO

Input

device

Output

device

Output

device

Memory

Input/Output

Datapath

Control

unit

disk

Input and output

device

Modos de Transferência de Dados (entre CPU e dispositivos de I/O):

Controlado por Programa:

- Acesso para leitura/escrita iniciado por instruções do programa (e.g. In, out).
- Requer uma monitorização constante dos periféricos.

Interrupção:

- Evita a necessidade de uma monitorização dos periféricos, permitindo a execução independente do programa.
- A interface monitoriza o periférico e gera um pedido de interrupção externo à CPU quando o periférico pretende receber/enviar dados de/para a CPU.

DMA (Direct Memory Access):

 Recorrendo a um controlador de DMA os periféricos acedem directamente a memória sem intervenção da CPU, mantendo esta a excução em paralelo do programa.

Processador de I/O:

 Permite isolar todo o processamento de dados de/para periféricos através do recurso a um processador específico.

Modos de Transferência de Dados: Controlado por Programa

Aplicação: Sempre que existe necessidade de monitorizar periféricos continuamente.

Fluxograma referente ao programa de monitorização

Transferência c/ recurso ao Handshaking

Modos de Transferência de Dados: Interrupção

Microinstruções

```
SP←SP-1,
M[SP]←PC,
SP←SP-1,
M[SP]←PSR,
EI←0,
INTACK←1,
PC←IVAD
```


Modos de Transferência de Dados: Interrupção

Prioridades nas Interrupções por Software:

- Recebido um pedido externo, a CPU utiliza o sistema de polling para identificar a fonte da interrupção e de seguida passa à rotina de atendimento respectiva.
- No caso de muitas interrupções (fontes de interrupção) o processo torna-se ineficiente.

Prioridades nas Interrupções por Hardware: Modo Série (Daisy Chain)

Modos de Transferência de Dados: Interrupção

TÉCNICO LISBOA

Prioridades nas Interrupções por Hardware: Modo Série (Daisy Chain)

Modos de Transferência de Dados: Interrupção

Prioridades nas Interrupções por Hardware: Modo Paralelo

Modos de Transferência de Dados: Interrupção

Modos de Transferência de Dados: DMA - Acesso Directo à Memória

Transferência:

- Bloco
- Palavra

Modos de Transferência de Dados: DMA - Acesso Directo à Memória

Modos de Transferência de Dados: Processadores de I/O

Processador de I/O

Entradas/Saídas (I/O) BIBLIOGRAFIA

• Bibliografia

[1] M. Morris Mano, Charles R. Kime, "Logic and Computer Design Fundamentals", Prentice-Hall International, Inc. (Capítulos 11)

[2] N. Horta, "Arquitecturas de Computadores", Aulas Teóricas, 2017.

Periféricos: Monitor

LCD Pixel

