

Méthodes: Suites

Démontrer qu'une suite ne converge pas

Pour démontrer qu'une suite (u_n) est divergente,

- ullet on peut trouver deux suites extraites de (u_n) qui convergent vers des valeurs différentes:
- on peut la minorer par une suite tendant vers $+\infty$.

Pour lever une forme indéterminée

- on peut essayer de factoriser par le terme dominant, puis utiliser des équivalents ou des développements limités;
- on peut utiliser la quantité conjuguée si on a la différence de deux racines carrées;
- on peut encadrer la suite et appliquer le théorème d'encadrement (ou théorème des gendarmes).

Pour démontrer qu'une suite (u_n) est monotone

- ullet on peut étudier la différence $u_{n+1}-u_n$;
- ullet si la suite est strictement positive, on peut étudier le quotient u_{n+1}/u_n ;
- on peut essayer de prouver par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \leq u_{n+1}$; ceci est particulièrement adapté pour les suites définies par une relation de récurrence.

Étude des suites récurrentes

Voici une méthode générale pour étudier une suite récurrente définie par $u_{n+1}=f(u_n)$, où $f:D\to\mathbb{R}$ est continue et $u_0\in D$.

- Étape 1 : Étudier la fonction f sur son ensemble de définition (monotonie, croissance,...)
- Étape 2 : Résoudre l'équation aux limites possibles f(l) = l. En effet, si la suite (u_n) converge, sa limite sera solution de cette équation. Pour résoudre cette équation, on peut parfois s'aider du résultat de l'étape 1.
- Étape 3 : Déterminer un intervalle I stable par f sur lequel f est monotone, et tel que $u_0 \in I$. On sait alors que $u_n \in I$ pour tout $n \geq 0$. Souvent, c'est le tableau de variations de f qui donne la réponse.
 - Il est des cas où on ne peut pas y arriver pour u_0 , mais où c'est vrai pour u_1 , ou u_2 . Par exemple, si $u_{n+1}=u_n^2$ et $u_0=-2$, alors $u_1=4$ est dans l'intervalle $[0,+\infty[$ qui est stable par $f:x\mapsto x^2$, et sur lequel cette fonction est croissante.
- Etape 4 premier cas: la fonction f est croissante sur I. Dans ce cas, la suite (u_n) est monotone sur I. Son sens de monotonie est donné par le signe de u_1-u_0 . Si $u_1\geq u_0$, alors (u_n) est croissante, sinon (u_n) est décroissante. On conclut alors souvent de l'une des 2 façons suivantes:
 - On arrive à prouver que (u_n) est bornée (parce que I l'est par exemple). Dans ce cas, on applique le théorème de convergence des suites croissantes majorées, et on détermine la limite grâce à l'équation aux limites possibles.
 - On prouve que (u_n) est croissante, et on sait que u_0 est supérieur strict à toute solution de f(l)=l. Alors f ne peut pas converger, sinon sa limite vérifierait $l\geq u_0$ et ne pourrait pas être solution de l'équation aux limites possibles. Et une suite croissante qui ne converge pas tend nécessairement vers $+\infty$.

M

Etape 4 - deuxième cas : la fonction f est décroissante sur I.
Dans ce cas, on pose g = f ∘ f, qui est croissante sur I, puis v_n = u_{2n} et w_n = u_{2n+1}.
Alors (v_n) et (w_n) vérifient la relation de récurrence v_{n+1} = g(v_n) et w_{n+1} = g(w_n), avec g croissante sur l'intervalle I. On se ramène donc à étudier les suites (v_n) et (w_n) comme dans le cas précédent.
Rappelons que la suite (u_n) converge si et seulement si (v_n) et (w_n) convergent vers la même limite.