Sammanfattning av SG1121 Mekanik

Yashar Honarmandi

24 januari 2018

Sammanfattning

Denna sammanfattningen innehåller essensiella ekvationer i kursen ${\bf SG}1121$

Innehåll

1	Fundamentala koncepter	1
2	Kraftsystem	2

1 Fundamentala koncepter

Krafter En kraft **F** beskrivs av en vektor med belopp och rikting, samt en angrepspunkt.

Kraftmoment En kraft kan ha en viss vridningsförmåga med avseende på en punkt. Detta är kraftens kraftmoment. Dens storhet ges av

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F},$$

där O är punkten vi tänker oss att kraften vrider kring, \mathbf{r} är vektorn från O till \mathbf{F} :s angrepspunkt och \mathbf{F} är själva kraften.

Riktingen till kraftmomentet anger den positiva rotationsriktningen. Vad betyder detta? Jo, låt en linje gå genom O och parallellt med \mathbf{M} . Då skapar \mathbf{M} en vridning mot klockan kring denna linjen.

Kraftmomentet ändras inte av att kraften förskjutas längs med dens verkningslinje. Detta ser man vid att låta den angripa i två punkter A, B på verkningslinjen.

$$\begin{aligned} \mathbf{M}_O &= \mathbf{r}_{OA} \times \mathbf{F} \\ \mathbf{M}_O' &= \mathbf{r}_{OB} \times \mathbf{F} \\ &= (\mathbf{r}_{OA} + \mathbf{r}_{AB}) \times \mathbf{F} \\ &= \mathbf{r}_{OA} \times \mathbf{F} + \mathbf{r}_{AB} \times \mathbf{F} \\ &= \mathbf{M}, \end{aligned}$$

då den andra vektoren är parallell med \mathbf{F} .

Detta kan utvidgas till kraftmomentet kring en axel vid att välja en punkt P på axeln och beräkna kraftmomentet med avseende på denna punkten. Projektionen på axeln av detta kraftmomentet är oberoende av valet av P. Detta ser man vid att välja en ny punkt Q och beräkna

$$\begin{aligned} \mathbf{M}_{P} &= \mathbf{r}_{PA} \times \mathbf{F} \\ \mathbf{M}_{Q} &= \mathbf{r}_{QA} \times \mathbf{F} \\ &= (\mathbf{r}_{QP} + \mathbf{r}_{PA}) \times \mathbf{F} \\ &= \mathbf{r}_{QP} \times \mathbf{F} + \mathbf{r}_{PA} \times \mathbf{F} \end{aligned}$$

Man projicerar sen på axeln.

$$\begin{aligned} \mathbf{M}_{Q} \cdot \mathbf{e}_{\lambda} &= \mathbf{r}_{QP} \times \mathbf{F} \cdot \mathbf{e}_{\lambda} + \mathbf{r}_{PA} \times \mathbf{F} \cdot \mathbf{e}_{\lambda} \\ &= \mathbf{r}_{QP} \times \mathbf{F} \cdot \mathbf{e}_{\lambda} \\ &= \mathbf{M}_{Q} \cdot \mathbf{e}_{\lambda}, \end{aligned}$$

där \mathbf{e}_{λ} är parallell med axeln. Detta är eftersom \mathbf{r}_{QP} är parallell med \mathbf{e}_{λ} , och kryssprodukten vi beräknar då måste vara normal på båda dessa.

2 Kraftsystem

Ett kraftsystem är ett system av krafter som verkar på en kropp och deras angrepspunkter.

Ekvimomenta kraftsystem Två kraftsystem är ekvimomenta om

- $\sum (\mathbf{F}_i)_1 = \sum (\mathbf{F}_i)_2$, där subskriptet utanför parentesen bestämmer vilket kraftsystem kraften är i.
- $(\mathbf{M}_A)_1 = (\mathbf{M}_A)_2$, där \mathbf{M}_A anger summan av alla kraftmoment med avseende på A.

Två ekvimomenta kraftsystem har samma moment i alla punkter eftersom

$$(\mathbf{M}_B)_1 = (\mathbf{M}_A)_1 + \mathbf{r}_{AB} \times (\mathbf{F})_1,$$

$$(\mathbf{M}_B)_2 = (\mathbf{M}_A)_2 + \mathbf{r}_{AB} \times (\mathbf{F})_2$$

$$= (\mathbf{M}_A)_1 + \mathbf{r}_{AB} \times (\mathbf{F})_1$$

$$= (\mathbf{M}_B)_1.$$

Kraftpar Ett kraftpar består av två lika stora och motsatt riktade krafter som ej ligger på samma linje. Kraftsumman är $\bf 0$ och beloppet av det totala momentet är

$$M_O = dF$$
,

där F är kraftens belopp och d är avståndet mellan linjerna de två krafterna ligger på. Man kan visa att momentvektorn ej beror på val av O, och därmed kan placeras var som hälst i kroppen.

Förflyttning av krafter För ett kraftsystem av n krafter kan man flytta alla dessa till punkten A vid att för varje kraft \mathbf{F}_i lägga till \mathbf{F}_i , $-\mathbf{F}_i$ i punkten A. Kraften i A och kraften i P_i bildar då ett kraftpar med moment $\mathbf{M}_i = \mathbf{r}_{AP_i} \times \mathbf{F}_i$ i punkten A. Momentet kan placeras i A eftersom beloppet av momentet för ett kraftpar ej beror av valet av punkt. Då finns även en \mathbf{F}_i kvar. Resultatet blir att kraftsystemet är ekvivalent med en enkelt kraft och ett enkelt moment som ges av

$$\mathbf{F} = \sum \mathbf{F}_i, \ \mathbf{M} = \sum \mathbf{r}_{AP_i} imes \mathbf{F}_i.$$

Förflyttning till ny punkt Låt oss försöka flytta krafterna till en ny punkt. Det är klart att kraftsumman är den samma, och

$$\begin{aligned} \mathbf{M}_{A} &= \sum \mathbf{r}_{AP_{i}} \times \mathbf{F}_{i} \\ &= \sum (\mathbf{r}_{AB} + \mathbf{r}_{BP_{i}}) \times \mathbf{F}_{i} \\ &= \sum \mathbf{r}_{AB} \times \mathbf{F}_{i} + \mathbf{r}_{BP_{i}} \times \mathbf{F}_{i} \\ &= \mathbf{r}_{AB} \times \sum \mathbf{F}_{i} + \sum \mathbf{r}_{BP_{i}} \times \mathbf{F}_{i} \\ &= \mathbf{r}_{AB} \mathbf{F} + \mathbf{M}_{B} \end{aligned}$$