```
In [1]: import numpy as np
        array = np.array([1, 2, 3, 4, 5])
        array
Out[1]: array([1, 2, 3, 4, 5])
In [2]: np.log([1, 2, 3, 4, 5])
Out[2]: array([0.
                         , 0.69314718, 1.09861229, 1.38629436, 1.60943791])
In [3]: ##Boolean Indexing
In [8]: import random
        rand_list = [random.random() * 10 for i in range (10)]
        rand_list
Out[8]: [7.028981291497293,
         7.1106314392123,
         0.31630605256362854,
         0.35024346675673446,
         5.529835385313997,
         0.8112849335571393,
         0.4347228146927351,
         6.762144848589107,
         9.284384987900832,
         4.466964888276025]
In [9]: | subset = [val for val in rand_list if val > 7]
        subset
Out[9]: [7.028981291497293, 7.1106314392123, 9.284384987900832]
```

Boolean indexing with numpy

```
In [11]: import numpy as np
    rand_array = np.random.randn(7) * 10
    print (rand_array)
    print (rand_array > 0)

[ 10.71894661   -9.33946013 -10.3367762   -4.57375779   19.00943841
        -8.92423349 -17.87689006]
[ True False False True False False]
```

Data in Dictionaries & Dataframes

```
In [14]: data_dict = {"0 to 9" : np.arange(10),
                     "ones" : np.ones(10),
                     "zeros" : np.zeros(10)}
         print(data dict)
         {'0 to 9': array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), 'ones': array([1., 1., 1.,
         1., 1., 1., 1., 1., 1.]), 'zeros': array([0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0.1)
In [15]: for key in data dict:
             print(key)
         0 to 9
         ones
         zeros
In [16]: for key in data_dict:
             print(key)
             print(data_dict[key])
         0 to 9
         [0 1 2 3 4 5 6 7 8 9]
         [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
         zeros
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

```
In [17]: for key in data dict:
             print(key)
             print(data dict[key])
         data dict.items()
         0 to 9
         [0 1 2 3 4 5 6 7 8 9]
         ones
         [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
         zeros
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Out[17]: dict_items([('0 to 9', array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])), ('ones', array
         ([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])), ('zeros', array([0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0.]))])
In [18]: for key in data dict:
             val = data_dict[key]
             print(key)
             print(val)
                print(data dict[key])
         data dict.items()
         0 to 9
         [0 1 2 3 4 5 6 7 8 9]
         [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
         zeros
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Out[18]: dict_items([('0 to 9', array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])), ('ones', array
         ([1., 1., 1., 1., 1., 1., 1., 1., 1.])), ('zeros', array([0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0.]))])
In [19]: for key, val in data_dict.items():
             print(key)
             print(val)
         0 to 9
         [0 1 2 3 4 5 6 7 8 9]
         [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
         zeros
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

```
In [20]: for key, val in data_dict.items():
        print("Values from index 5", key)
        print(val[5:])

Values from index 5 0 to 9
[5 6 7 8 9]
    Values from index 5 ones
[1. 1. 1. 1. ]
    Values from index 5 zeros
[0. 0. 0. 0. 0.]
```

Pandas Dataframes

```
In [24]: import pandas as pd
         data = pd.Series(np.arange(2,12))
         print(data)
         0
                2
         1
                3
          2
                4
          3
                5
         4
                6
          5
                7
          6
                8
          7
                9
          8
               10
               11
          dtype: int32
In [25]: data_df = pd.DataFrame(data_dict)
```

In [25]: data_df = pd.DataFrame(data_dict) data_df

Out[25]:

	0 to 9	ones	zeros
0	0	1.0	0.0
1	1	1.0	0.0
2	2	1.0	0.0
3	3	1.0	0.0
4	4	1.0	0.0
5	5	1.0	0.0
6	6	1.0	0.0
7	7	1.0	0.0
8	8	1.0	0.0
9	9	1.0	0.0

```
In [26]: data_df["0 to 9"]
Out[26]: 0
                0
                1
          1
          2
                2
                3
          4
                4
          5
                5
          6
                6
          7
                7
          8
                8
                9
          9
          Name: 0 to 9, dtype: int32
In [27]: #df.loc[start:finish - 1] calls according to row name
          data_df.loc[:5]
Out[27]:
              0 to 9 ones zeros
                  0
                      1.0
                             0.0
           1
                  1
                      1.0
                             0.0
           2
                  2
                      1.0
                             0.0
                  3
                      1.0
                             0.0
                             0.0
                  4
                      1.0
                  5
                      1.0
                             0.0
In [28]: #df.loc[start:finish - 1] calls according to row name
          data_df.loc[:5]
Out[28]:
              0 to 9 ones zeros
           0
                  0
                      1.0
                             0.0
                  1
                      1.0
                             0.0
                  2
                      1.0
                             0.0
           2
           3
                  3
                      1.0
                             0.0
                  4
                      1.0
                             0.0
                  5
                      1.0
                             0.0
```

Create random data for a Dataframe

{'GDP': {1990: 2271.750691338189, 1991: 9513.60902044082, 1992: 8388.1834455837 02, 1993: 35.856107211063026, 1994: 8545.438299876958, 1995: 7979.516924474199, 1996: 8422.740962689822, 1997: 4406.402965670648, 1998: 2806.8311800289457, 199 9: 4839.358772776513, 2000: 9616.900851288445, 2001: 5006.09741842873, 2002: 78 77.946577826013, 2003: 9295.1854283635, 2004: 9108.767172949389, 2005: 4353.690 164286862, 2006: 5568.597777146455, 2007: 3815.535455065361, 2008: 5018.3392584 74879, 2009: 9608.540002680764}, 'Money': {1990: 8825.232320714023, 1991: 2804. 6681771952462, 1992: 8198.205960719037, 1993: 8489.796547170612, 1994: 5892.307 164214367, 1995: 543.142465722316, 1996: 9465.629604981475, 1997: 3815.83661779 8003, 1998: 8689.403601419866, 1999: 5888.029931169889, 2000: 6044.50953857387 9, 2001: 6157.379365257155, 2002: 5230.3224916655745, 2003: 5328.351950616334, 2004: 2307.8695394948513, 2005: 3295.9768732107896, 2006: 3958.2321420353796, 2 007: 3011.3338529338794, 2008: 4079.930880593362, 2009: 477.78045978182917}, 'R eal GDP': {1990: 9970.727843809884, 1991: 4953.976188730306, 1992: 342.24764606 978874, 1993: 7234.991477080936, 1994: 4978.249817673688, 1995: 480.71573756879 87, 1996: 6669.3832283764905, 1997: 8772.334713167276, 1998: 2544.610455136138, 1999: 3955.5864635650837, 2000: 2652.749846169843, 2001: 1820.6774468347553, 20 02: 8916.766775915474, 2003: 7691.21853325068, 2004: 6897.130344972921, 2005: 7 391.169377670905, 2006: 6982.293596094903, 2007: 1322.6236663560665, 2008: 717 8.614980528144, 2009: 5910.8590658388885}, 'Price Level': {1990: 3775.014139865 611, 1991: 4145.749971649274, 1992: 9906.233514707876, 1993: 3146.738562826203 6, 1994: 220.70571134419015, 1995: 6237.1209436877425, 1996: 6892.911296467649, 1997: 6499.889118671621, 1998: 503.61585829035937, 1999: 7826.594521348771, 200 0: 8350.059717932972, 2001: 7578.971237837253, 2002: 6310.089322673427, 2003: 4 485.580784531886, 2004: 1081.2505257561666, 2005: 6332.280960816961, 2006: 464 0.841167182533, 2007: 8363.273366452351, 2008: 6559.1004731980165, 2009: 6690.8 29980903699}}

In [32]: data_df = pd.DataFrame(macro_dict)
 data_df

Out[32]:

	GDP	Money	Real GDP	Price Level
1990	2271.750691	8825.232321	9970.727844	3775.014140
1991	9513.609020	2804.668177	4953.976189	4145.749972
1992	8388.183446	8198.205961	342.247646	9906.233515
1993	35.856107	8489.796547	7234.991477	3146.738563
1994	8545.438300	5892.307164	4978.249818	220.705711
1995	7979.516924	543.142466	480.715738	6237.120944
1996	8422.740963	9465.629605	6669.383228	6892.911296
1997	4406.402966	3815.836618	8772.334713	6499.889119
1998	2806.831180	8689.403601	2544.610455	503.615858
1999	4839.358773	5888.029931	3955.586464	7826.594521
2000	9616.900851	6044.509539	2652.749846	8350.059718
2001	5006.097418	6157.379365	1820.677447	7578.971238
2002	7877.946578	5230.322492	8916.766776	6310.089323
2003	9295.185428	5328.351951	7691.218533	4485.580785
2004	9108.767173	2307.869539	6897.130345	1081.250526
2005	4353.690164	3295.976873	7391.169378	6332.280961
2006	5568.597777	3958.232142	6982.293596	4640.841167
2007	3815.535455	3011.333853	1322.623666	8363.273366
2008	5018.339258	4079.930881	7178.614981	6559.100473
2009	9608.540003	477.780460	5910.859066	6690.829981

In [37]: macro_df = pd.DataFrame(macro_dict)
macro_df

Out[37]:

	GDP	Money	Real GDP	Price Level
1990	2271.750691	8825.232321	9970.727844	3775.014140
1991	9513.609020	2804.668177	4953.976189	4145.749972
1992	8388.183446	8198.205961	342.247646	9906.233515
1993	35.856107	8489.796547	7234.991477	3146.738563
1994	8545.438300	5892.307164	4978.249818	220.705711
1995	7979.516924	543.142466	480.715738	6237.120944
1996	8422.740963	9465.629605	6669.383228	6892.911296
1997	4406.402966	3815.836618	8772.334713	6499.889119
1998	2806.831180	8689.403601	2544.610455	503.615858
1999	4839.358773	5888.029931	3955.586464	7826.594521
2000	9616.900851	6044.509539	2652.749846	8350.059718
2001	5006.097418	6157.379365	1820.677447	7578.971238
2002	7877.946578	5230.322492	8916.766776	6310.089323
2003	9295.185428	5328.351951	7691.218533	4485.580785
2004	9108.767173	2307.869539	6897.130345	1081.250526
2005	4353.690164	3295.976873	7391.169378	6332.280961
2006	5568.597777	3958.232142	6982.293596	4640.841167
2007	3815.535455	3011.333853	1322.623666	8363.273366
2008	5018.339258	4079.930881	7178.614981	6559.100473
2009	9608.540003	477.780460	5910.859066	6690.829981

```
In [50]: macro_df["Velocity"] = macro_df["GDP"] / macro_df["Money"]
macro_df["Real GDP"] = macro_df["GDP"] / macro_df["Price Level"]
print(macro_df)
```

```
GDP
                                  Real GDP
                          Money
                                             Price Level
                                                            Velocity
1990
      2271.750691
                    8825.232321
                                  0.601786
                                             3775.014140
                                                            0.257415
1991
      9513.609020
                    2804.668177
                                  2.294786
                                             4145.749972
                                                            3.392062
1992
      8388.183446
                                                            1.023173
                    8198.205961
                                  0.846758
                                             9906.233515
1993
        35.856107
                    8489.796547
                                  0.011395
                                             3146.738563
                                                            0.004223
1994
      8545.438300
                   5892.307164
                                 38.718700
                                              220.705711
                                                            1.450270
1995
      7979.516924
                     543.142466
                                  1.279359
                                             6237.120944
                                                           14.691388
1996
      8422.740963
                    9465.629605
                                  1.221942
                                             6892.911296
                                                            0.889824
1997
      4406.402966
                    3815.836618
                                  0.677920
                                             6499.889119
                                                            1.154767
1998
      2806.831180
                   8689.403601
                                  5.573357
                                              503.615858
                                                            0.323018
1999
      4839.358773
                    5888.029931
                                  0.618322
                                             7826.594521
                                                            0.821898
                   6044.509539
2000
      9616.900851
                                                            1.591014
                                  1.151716
                                             8350.059718
2001
      5006.097418
                   6157.379365
                                  0.660525
                                             7578.971238
                                                            0.813024
2002
      7877.946578
                    5230.322492
                                  1.248468
                                                            1.506207
                                             6310.089323
2003
      9295.185428
                   5328.351951
                                  2.072237
                                             4485.580785
                                                            1.744477
2004
      9108.767173
                    2307.869539
                                  8.424289
                                             1081.250526
                                                            3.946829
2005
                   3295.976873
                                  0.687539
      4353.690164
                                             6332.280961
                                                            1.320910
2006
      5568.597777
                                  1.199911
                    3958.232142
                                             4640.841167
                                                            1.406840
2007
      3815.535455
                    3011.333853
                                  0.456225
                                             8363.273366
                                                            1.267058
2008
      5018.339258
                    4079.930881
                                  0.765096
                                             6559.100473
                                                            1.230006
2009
      9608.540003
                     477.780460
                                  1.436076
                                             6690.829981
                                                           20.110785
```

In [44]: macro_df.loc[2002:2009]

Out[44]:

	GDP	Money	Real GDP	Price Level	Velocity
2002	7877.946578	5230.322492	8916.766776	6310.089323	1.506207
2003	9295.185428	5328.351951	7691.218533	4485.580785	1.744477
2004	9108.767173	2307.869539	6897.130345	1081.250526	3.946829
2005	4353.690164	3295.976873	7391.169378	6332.280961	1.320910
2006	5568.597777	3958.232142	6982.293596	4640.841167	1.406840
2007	3815.535455	3011.333853	1322.623666	8363.273366	1.267058
2008	5018.339258	4079.930881	7178.614981	6559.100473	1.230006
2009	9608.540003	477.780460	5910.859066	6690.829981	20.110785

```
In [49]: macro df["Price Level"].loc[1998:2004]
```

Out[49]: 1998 503.615858 1999 7826.594521 2000 8350.059718 2001 7578.971238 2002 6310.089323 2003 4485.580785 2004 1081.250526

Name: Price Level, dtype: float64

```
In [51]: macro_df["Price Level"].iloc[1998:2004]
Out[51]: Series([], Name: Price Level, dtype: float64)
In [52]: macro_df.loc[1998:2004, ["Real GDP", "Money"]]
Out[52]:
```

	Real GDP	Money
1998	5.573357	8689.403601
1999	0.618322	5888.029931
2000	1.151716	6044.509539
2001	0.660525	6157.379365
2002	1.248468	5230.322492
2003	2.072237	5328.351951
2004	8.424289	2307.869539

Real GDP

In [54]: macro_df[["Real GDP", "Money"]]

Money

Out[54]:

	Real GDP	woney
1990	0.601786	8825.232321
1991	2.294786	2804.668177
1992	0.846758	8198.205961
1993	0.011395	8489.796547
1994	38.718700	5892.307164
1995	1.279359	543.142466
1996	1.221942	9465.629605
1997	0.677920	3815.836618
1998	5.573357	8689.403601
1999	0.618322	5888.029931
2000	1.151716	6044.509539
2001	0.660525	6157.379365
2002	1.248468	5230.322492
2003	2.072237	5328.351951
2004	8.424289	2307.869539
2005	0.687539	3295.976873
2006	1.199911	3958.232142
2007	0.456225	3011.333853
2008	0.765096	4079.930881
2009	1.436076	477.780460

```
In [57]: import matplotlib.pyplot as plt
%matpotlib inline
macro_df.plot.line()
```

UsageError: Line magic function `%matpotlib` not found.

```
In [59]: for key in macro_df:
    macro_df(key):plot.line()
    plt.show()
    plt.close()
```

File "<ipython-input-59-920dab183c42>", line 2
 macro_df(key):plot.line()

SyntaxError: illegal target for annotation

```
In [61]: import matplotlib.pyplot as plt
%matplotlib inline
macro_df.plot.line(legend = "best")
```

Out[61]: <AxesSubplot:>

In [62]: import matplotlib.pyplot as plt
%matplotlib inline
macro_df.plot.line()

Out[62]: <AxesSubplot:>


```
In [64]: for key in macro_df:
    macro_df[key].plot.line()
    plt.title(key, fontsize = 20)
    plt.show()
    plt.close()
```



```
In [67]: for key in macro_df:
              # fig, ax = plt.subplots() allows you to adjust different features of the plo
              fig, ax = plt.subplots(figsize = (12,8))
              macro df[key].plot.line(ax = ax)
              # we can make the display a scatter plot if we want
              macro_df[key].plot.line(ls = "", marker = "", ax = ax)
              plt.title(key, fontsize = 32)
              plt.show()
              plt.close()
           6000
           4000
           2000
                         1992.5
                                  1995.0
                                            1997.5
                1990.0
                                                     2000.0
                                                              2002.5
                                                                        2005.0
                                                                                 2007.5
                                            Real GDP
                               l
In [ ]:
```

n []:
n []:
n []: