Modelling Carbon Tax in the UK Electricity Market using an Agent-Based Model

Alexander Kell School of Computing Newcastle University Newcastle upon Tyne, UK a.kell2@newcastle.ac.uk Matthew Forshaw
School of Computing
Newcastle University
Newcastle upon Tyne, UK
matthew.forshaw@newcastle.ac.uk

A. Stephen McGough
School of Computing
Newcastle University
Newcastle upon Tyne, UK
stephen.mcgough@newcastle.ac.uk

ABSTRACT

Impacts on natural and human systems have already been observed due to anthropogenic greenhouse gas emissions [16]. To reduce these emissions, a transition to a low-carbon economy is required. Carbon taxes can be used as a tool for pricing in the negative externalities of pollution and enabling a more rapid transition to a low-carbon economy.

This paper proposes the use of agent-based models to simulate an electricity market based in the United Kingdom. We vary carbon tax to observe the effects on investment up until 2050. We find that a carbon tax of £70 per tonne of CO_2 is sufficient in driving investment to an almost 100% renewable energy supply. A less aggressive option, however, of setting a carbon tax at £20 would lead to a 50% low-carbon 50%, traditional generation energy mix.

1 INTRODUCTION

Governmental policy is a tool that can be used to aid the transition to a low-carbon economy to prevent the worst effects of climate change. Options include a tax on all carbon emissions or subsidies in low-carbon technologies. In this paper, we propose the varying of carbon taxes to assess the long-term impacts on investment in the electricity market using an agent-based model simulation.

Simulation is a technique to create a physical system in a virtual model. In this context a model is defined as a set of mathematical formulas and algorithms which are designed to mimic real life [9]. Simulation allows practitioners to rapidly prototype high risk ideas in this virtual model and assess their outcome before implementation in the real world

The electricity market in many western democracies consists of multiple heterogenous actors acting for their own best interest [17]. Agent-based modelling is a technique which allows for the simulation of these heterogenous actors with different risk profiles, profit requirements and preferences. A number of agent-based models have been used to model the impact of carbon tax on long term investments [3, 4, 22]. ABMs have been utilised in this field to address phenomena such as market power [20].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. e-Energy '19, June 25–28, 2019, Phoenix, AZ

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06...\$15.00 https://doi.org/10.1145/1122445.1122456

Figure 1: System overview of agent-based market model.

We model the realisation of the wholesale electricity market in the United Kingdom and adjust carbon tax in our agent-based model to see the effect of long-term investment. We posit that decisions made today can have complex long-term consequences, the process of which can be observed through simulation.

This paper details our model, ElecSIM. We contribute a new open-source framework, and test different scenarios with varying carbon taxes to provide advice to stakeholders. Section ?? is a literature review of the models currently used in practice. Section 2 details the model and assumptions made, and Section ?? details how we validated our model, and displays performance metrics. Section 3 details our results, and explores ways in which ElecSIM can be used. We conclude the work and propose future work in Section 4.

2 MODEL ARCHITECTURE

The agent-based model is made up of five significant parts: the agents which are the generation companies (GenCos) and demand agents; power plants and a market operator which controls the spot market. How these parts interact are displayed in figure 1 with the relevant data sources.

We initialise the United Kingdom with every single power plant in operation in the year 2018, owned by their respective generation companies. Individual historical power plant costs are estimated from levelized cost of electricity (LCOE) [5] calculations [11, 12], whereas future power plants are taken from the department of business and industrial strategy [6]. The variable operation and

maintenance cost was defined stochastically to model the changing costs per project. A uniform distribution was chosen to provide sufficient variance between projects.

The demand agent is modelled as a single aggregated demand, split up into 20 segments of a load duration curve (LDC), enabling us to increase speed of computation whilst maintaining accuracy. A LDC is defined as the load within a year, ordered in order of magnitude.

We model the influence of outages using availability data for gas, coal, photovoltaic, offshore and onshore power generators [2, 10, 15]. Historical availabilities are modelled for older gas, coal and hydro power plants [1]. Capacity factors were taken as an average of the UK for solar and wind [19, 21]. Where capacity factors is defined as the ratio of electrical output over a given time period over the maximum possible electrical energy output.

The generation companies make electricity bids each year for each of their power plants. The market operator then matches demand with supply in order of price, also known as merit-order dispatch. We model a uniform pricing market, where each of the companies are paid the highest accepted bid.

GenCos have the ability to invest every year in new power plants based on the expected net present value (NPV) of each power plant type. NPV is a summation of the present value of a series of present and future cash flow. The NPV calculation is dependent on a stochastic representation of GenCos predictions of fuel, carbon and electricity price and demand.

Each GenCo has a separate weighted average cost of capital (WACC), which is the rate that a company is expected to pay on average for its stock and debt, this is used as the discount rate in the NPV calculation [13]. The WACC is modelled as a stochastic variable, with a Gaussian distribution and a $\pm 3\%$ standard deviation, with values of 5.9% for non-nuclear power plants, and 10% for nuclear power plants [14, 18].

The model took yearly time-steps to limit the impact on computation time, however, to model the intermittency of renewable generation, we correlated demand with the respective capacity factor, enabling for example, solar and wind to only contribute a certain capacity to their load curve.

Stochasticity of fuel price within a year was also modelled, to take into account difference in hedging strategies and chance. An ARIMA model [7] was fit to historic coal and natural gas prices.

3 RESULTS

We experimented with the following levels of carbon tax: £10, £20 and £70.

This section describes scenario runs using ElecSIM. Here, we vary the carbon tax and either grow or reduce total electricity demand. This was done to observe the effects of carbon tax policy on long-term investment.

We assume that carbon tax is set by the government, and not subject to market forces such as the EU Emissions Trading Scheme [8].

We run 16 different scenarios 8 times each, with demand increasing and decreasing by 1% per year and varying carbon prices. In this section we explore a decreasing demand of 1% a year. We chose this due to the increasing efficiency of homes, industry and

technology, and due to the recent trend in the UK. Demand, however, did not display a large effect on the optimum carbon price. We select a burn-in period of 6 years, due to the fact that the majority of power plants take 6 years to go from investment to operation.

It can be seen from Figure 2c that a carbon tax of £10 per year does little to influence investment in low-carbon, renewable technology. With traditional, fossil fuel based generation, providing the majority of supply in each year. However, there is an increase in renewable technology over the years, starting from mean 15.85% market share in the year range 2019-2029, to 24.38% in the year range 2039-2050. A similar increase of renewable energy with a carbon tax of £0 can be seen, albeit at a lower mean by the year range 2039-2050 (22.29%).

4 CONCLUSIONS

The shift in electricity markets from a centrally controlled monopoly, to a liberalised market with many heterogeneous players has increased the need for a new type of modelling. We motivate that agent-based models can be used as a solution to this, by their ability to model many actors with individual properties.

Agent-based models are able to model imperfect information as well as heterogeneous actors. ElecSIM models imperfect information through forecasting of electricity demand and future fuel and electricity prices. This leads to agents taking risk on their investments, and more realistically model market conditions.

We demonstrated that increasing carbon tax can lead to a significant increase in investment of low-carbon technologies such as onshore wind. However, an interesting result was that early decisions have a long impact on the future energy mix. The market can be significantly changed through investment decisions made many years previously.

Our future work includes comparing agent-learning techniques, using multi-agent reinforcement learning algorithms and artificial intelligence to allow agents to learn in a non-static environment. We propose the integration of a higher temporal and spatial resolution to model changes in daily demand, as well as capacity factors by region, and transmission effects.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Sciences Research Council, Centre for Doctoral Training in Cloud Computing for Big Data [grant number EP/L015358/1].

REFERENCES

- Alberta System Electric Operator. 2016. AESO 2015 Annual Market Statistics. March (2016), 28. https://www.aeso.ca/market/market-and-system-reporting/annual-market-statistic-reports/
- [2] James Carroll, Allan May, Alasdair McDonald, and David McMillan. [n. d.]. Availability Improvements from Condition Monitoring Systems and Performance Based Maintenance Contracts. 45 ([n. d.]), 39.
- [3] Emile J.L. Chappin, Laurens J. de Vries, Joern C. Richstein, Pradyumna Bhagwat, Kaveri Iychettira, and Salman Khan. 2017. Simulating climate and energy policy with agent-based modelling: The Energy Modelling Laboratory (EMLab). Environmental Modelling and Software 96 (2017), 421–431.
- [4] Lin-Ju Chen, Lei Zhu, Ying Fan, and Sheng-Hua Cai. 2014. Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis. *Energy & Environment* 24, 7-8 (2014), 1271–1293. https://doi.org/10.1260/0958-305x.24.7-8.1271
- [5] Michael Dale. 2013. A Comparative Analysis of Energy Costs of Photovoltaic, Solar Thermal, and Wind Electricity Generation Technologies. Applied Sciences 3, 2 (2013), 325–337. https://doi.org/10.3390/app3020325
- [6] Department for Business Energy & Industrial Strategy. 2016. Electricity Generation Costs. November (2016).
- [7] "Norbert Wiener et al.". 1930. "Autoregressive integrated moving average". (1930).
- [8] EU. 2003. Directive 2003/87/EC of the European Parliament and of the Council. 2014, March 2014 (2003), 1–66.
- [9] Matthew Forshaw, Nigel Thomas, and A. Stephen McGough. 2016. The case for energy-aware simulation and modelling of internet of things (IoT). Proceedings of the 2nd International Workshop on Energy-Aware Simulation - ENERGY-SIM '16 (2016), 1-4.
- [10] Kirby Hunt, Anthony Blekicki, and Robert Callery. 2015. Availability of utility-scale photovoltaic power plants. 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 (2015), 0–2. https://doi.org/10.1109/PVSC.2015.7355976
- [11] IEA. 2015. Projected Costs of Generating Electricity. (2015), 215.
- [12] IRENA. 2018. Renewable Power Generation Costs in 2017. IRENA International Renewable Energy Agency. 160 pages.
- [13] Stephen C Kincheloe. 1990. The Weighted Average Cost Of Capital The Correct Discount. The Appraisal journal. 58, 1 (1990).
- [14] KPMG. 2017. Cost of Capital Study 2017. KPMG (2017).
- [15] LeighFisher Ltd. 2016. Final Report: Electricity Generation Costs and Hurdle Rates. (2016).
- [16] V Masson-Delmotte, P Zhai, H.O Pörtner, D Roberts, J Skea, P R Shukla, A Pirani, W Moufouma-Okia, C Péan, R Pidcock, S Connors, J B Matthews, Y Chen, X Zhou, M I Gomis, E Lonnoy, T Maycock, M Tignor, and T Waterfield. 2018. IPCC Special Report 1.5 - Summary for Policymakers.
- [17] Dominik Möst and Dogan Keles. 2010. A survey of stochastic modelling approaches for liberalised electricity markets. European Journal of Operational Research 207, 2 (2010), 543–556.
- [18] Icept Working Paper and Phil Heptonstall. 2012. Cost estimates for nuclear power in the UK. ICEPT Working Paper August (2012).
- [19] Stefan Pfenninger and Iain Staffell. 2016. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (2016), 1251–1265. https://doi.org/10.1016/j.energy.2016.08.060
- [20] Philipp Ringler, Dogan Keles, and Wolf Fichtner. 2016. Agent-based modelling and simulation of smart electricity grids and markets - A literature review. Renewable and Sustainable Energy Reviews 57, September (2016), 205–215.
- [21] Iain Staffell and Stefan Pfenninger. 2016. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114 (2016), 1224–1239. https://doi.org/10.1016/j.energy.2016.08.068
- [22] Ling Tang, Jiaqian Wu, Lean Yu, and Qin Bao. 2015. Carbon emissions trading scheme exploration in China: A multi-agent-based model. *Energy Policy* 81, 2015 (2015), 152–169. https://doi.org/10.1016/j.enpol.2015.02.032