Day 11 Coloring

Lecturer: Msc. Minh Tan Le

Contents

- I. Graph labeling
- II. Graph coloring
- III. Approaches
- IV. Examine graph applications in the internet \Rightarrow

I. Graph labeling

- The job is to giving edges and/or vertices names.
- The problem was first mentioned by Alexander Rosa in 1967.
- Types:
 - β (Graceful) labeling, Edge-graceful labeling
 - Lucky labeling
 - α -labeling
 - ρ -labeling

Graceful labeling

- If $v \in [0, |E|]$ such that:
 - No duplicate naming
 - $w_{v_a v_b} = |v_a v_b|$ is unique

Theorems

1. An Eulerian graph with $\text{mod}_4(|E|) \in \{1,2\}$ cannot be graceful.

Theorems #1

An Eulerian graph with $\text{mod}_4(|E|) \in \{1,2\}$ cannot be graceful.

Theorem #2

• A cycle graph is graceful iff $\text{mod}_4(|V|) \in \{0,3\}$.

Edge-graceful labeling

- If $e \in [0, |E|]$ such that:
 - No duplicate naming
 - No edge have same v_a , v_b
 - No edge connecting to a single v_a
 - $v_{e_a e_b} = mod_{|V|}(e_a + e_b)$ is unique

II Graph coloring

The problem

• We want to paint the areas so that no connected areas are colored the same.

Theorems

- 4-color: You only need no more than 4 colors to solve the problem.
- 2. 2-color: A graph can be colored with at least 2 colors if it doesn't contain any odd cycle.

III. Approach: sequential coloring

- Some call it **greedy coloring**.
- The idea is beyond simple: We abstract the colors.
- Preparation:
 - Name nodes in order
 - usedColors = {Null, Null,...}

Steps

1. Travel nodes in order:

```
usedColors = Used colors by neighbors.
colors[node] = mex(usedColors, P={possible colors at max})
```

2. Return colors

usedColors = {Null, Null, Null, Null}
P = {Red, green, blue, yellow}

usedColors = {1, Null, Null, Null}

usedColors = {1, 2, Null, Null}

usedColors = {1, 2, 3, Null}

usedColors = {1, 2, 3, 2}

Bước	0	1	2	3	Màu tô
Khởi tạo	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	

usedColors = {1, 2, 3, 2}

usedColors = {1, 2, 3, 2}

0	1
	7
	/
3 2	

Bước	Mex \	1	2	3	Màu tô
Khởi tạo	XB, ♥	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	
i=0	Đ	.XL, XB, V	XL, XB, V	XL, XB, V	Đỏ
i=1	Đ	XL	XB, V	XL, XB, V	Xanh lá

usedColors = {1, 2, 3, 2}

Bước	0	1	2	3	Màu tô
Khởi tạo	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	
i=0	Đ	XL, XB, V	XL, XB, V	XL, XB, V	Đỏ
i=1	Đ	XL	XB, V	XL, XB, V	Xanh lá
i=2	Đ	XL	XB	XL, V	Xanh biển

usedColors = {1, 2, 3, 2}

Màu sử dụng: Đỏ (Đ), xanh lá (XL), xanh biển (XB), vàng (V)

0	1
3 2	

usedColors = {1, 2, 3, 2}

Bước	0	1	2	3	Màu tô
Khởi tạo	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	Ð, XL, XB, V	
i=0	Đ	XL, XB, V	XL, XB, V	XL, XB, V	Đỏ
i=1	Đ	XL	XB, V	XL, XB, V	Xanh lá
i=2	Đ	XL	XB	XL, V	Xanh biển
i=3	Ð	XL	XB	XL	Xanh lá

IV. Examine graph application in the internet

ping

nslookup

tracert

Intel NUC
Intel Pentium Silver J5005
4 cores 4 threads 1.50GHz
16GB RAM
1Gb ethernet

Edge server

CDN benefits

- Speed
 - Minification
 - Caching
- Security
 - WAF (Web application firewall)
 - DDOS protection
- Load balancing
- Custom pages

vinhthanh.net Monitor security and performance for vinhthanh.net. Configure products and services from the ☆ Star 24 Hours 7 Days 30 Days 17 NOVEMBER — 18 NOVEMBER **Unique Visitors** 338 Total Requests 28.01k Percent Cached 40.44% Total Data Served 1 GB Data Cached 535 MB

nslookup

ping

ping

Traceroute = Multiple pings

Examine

III. Routing protocol algorithms

Adaptive

Nonadaptive

Hybrid

Adaptive

- The routing decisions change when the topology or traffic load changes.
- Parameters: Distance, number of hops, estimated transit time.
- 3 types: Isolated, centralized, and distributed.
 - Isolated: **Backward Learning**, Source Routing, Hot Potato.

Backward Learning algorithm

- Preparation: table[ip1, ip2] = [n1, n2]
- When Node B receives the packet (srcip, destip) from node A:
 - Step 1: If B is the destination, process, response and stop.
 - Step 2: If there's table[srcip, destip] or table[destip, srcip], go to step 3. Else, go to step 4.
 - Step 3: Find one node n in [n1, n2] that isn't A. If found, send to n, set Null node in [n1, n2] with A and stop.
 - Step 4: table[srcip, destip] = [A, Null].
 - Step 5: Send to all nodes, except for node A.

