Eksploracja danych

true

2019-03-12

Spis treści

W	stęp	5
	O książce	
	Zakres przedmiotu	
	Zakres technik stosowanych w data mining	
	Etapy eksploracji danych	. 7
1	Import danych	9
	1.1 Przykład	. 9
2	Przygotowanie danych	11
	2.1 Korekta zbioru danych	
	2.2 Przykład	
0		10
3	Podział metod data mining	13
	3.1 Rodzaje wnioskowania	
	3.2 Modele regresyjne	
	3.3 Modele klasyfikacyjne	
	3.4 Modele grupujące	. 13
4	Drzewa decyzyjne	15
	4.1 Węzły i gałęzie	. 16
	4.2 Rodzaje reguł podziału	. 16
	4.3 Algorytm budowy drzewa	. 16
	4.4 Kryteria zatrzymania	. 16
	4.5 Reguly podziału	
	4.6 Przycinanie drzewa decyzyjnego	
	4.7 Obsługa braków danych	
	4.8 Zalety i wady	
	4.9 Przykład	
	4.10 Inne algorytmy budowy drzew decyzyjnych implementowane w R	
	4.11 Przykład	
5	Pochodne drzew decyzyjnych	17
J	5.1 Bagging	
	86 6	
	y .	
	5.3 Boosting	. 17

$\operatorname{Wst} olimits_{\operatorname{St} olimits_{\operatorname{St}} olimits_{\operatorname{St} olimits_{\operatorname{$

O książce

Niniejsza książka powstała na bazie doświadczeń autora, a głównym jej celem jest przybliżenie czytelnikowi podstaw z dziedziny *Data mining* studentom kierunku *Matematyka* Politechniki Lubelskiej. Będzie łączyć w sobie zarówno treści teoretyczne związane z przedstawianymi etapami eksploracji danych i budową modeli, jak i praktyczne wskazówki dotczące budowy modeli w środowisku **R** (R Core Team, 2018). Podane zostaną również wskazówki, jak raportować wyniki analiz i jak dokonać właściwych ilustracji wyników. Bardzo użyteczny w napisaniu książki były pakiety programu R: **bookdown** (Xie, 2018a), **knitr** (Xie, 2018b) oraz pakiet **rmarkdown** (Allaire et al., 2018).

Zakres przedmiotu

Przedmiot Eksploracja danych będzie obejmował swoim zakresem eksplorację i wizualizację danych oraz uczenie maszynowe. Eksploracja danych ma na celu pozyskiwanie i systematyzację wiedzy pochodzącej z danych. Odbywa się ona głównie przy użyciu technik statystycznych, rachunku prawdopodobieństwa i metod z zakresu baz danych. Natomiast uczenie maszynowe, to gałąź nauki (obejmuje nie tylko statystykę, choć to na niej się głównie opiera) dotyczącej budowy modeli zdolnych do rozpoznawania wzorców, przewidywania wartości i klasyfikacji obiektów. Data mining to szybko rosnaca grupa metod analizy danych rozwijana nie tylko przez statystyków ale również przez biologów, genetyków, cybernetyków, informatyków, ekonomistów, osoby pracujace nad rozpoznawaniem obrazów i wiele innych grup zawodowych. W dzisiejszych czasch trudno sobie wyobrazić życie bez sztucznej inteligencji. Towarzyszy ona nam w codziennym, życiu kiedy korzystamy z telefonów komórkowych, wyszukiwarek internetowych, robotów sprzątających, automatycznych samochodów, nawigacji czy gier komputerowych. Lista ta jest niepełna i stale się wydłuża.

href="https://twitter.com/i/status/1091069356367200256">January 31, 2019

Zakres technik stosowanych w data mining

- statystyka opisowa
- wielowymiarowa analiza danych
- analiza szeregów czasowych
- analiza danych przestrzennych
- reguły asocjacji
- uczenie maszynowe¹, w tym:
 - klasyfikacja
 - predykcja
 - analiza skupień
 - text mining
- i wiele innych

¹ang. machine learning

CLUSTERING

Rysunek 1: Przykład nienadzorowanego uczenia maszynowego. Źródło:https://analyticstraining.com/cluster-analysis-for-business/

Rysunek 2: Etapy eksploracji danych (Kavakiotis et al., 2017)

href="https://twitter.com/i/status/1097199751072690176">Ferbruary 17, 2019

Etapy eksploracji danych

- 1. Czyszczenie danych polega na usuwaniu braków danych, usuwaniu stałych zmiennych, imputacji braków danych oraz przygotowaniu danych do dalszych analiz.
- 2. Integracja danych łączenie danych pochodzących z różnych źródeł.
- 3. Selekcja danych wybór z bazy tych danych, które są potrzebne do dalszych analiz.
- 4. Transformacja danych przekształcenie i konsolidacja danych do postaci przydatnej do eksploracji.
- 5. Eksploracja danych zastosowanie technik wymienionych wcześniej w celu odnalezienia wzorców² i zależności.
- 6. Ewaluacja modeli ocena poprawności modeli oraz wzorców z nich uzyskanych.
- 7. Wizualizacja wyników graficzne przedstawienie odkrytych wzorców.
- 8. Wdrażanie modeli zastosowanie wyznaczonych wzorców.

 $^{^2}$ ang. patterns

Import danych

Placeholder

1.1 Przykład

Przygotowanie danych

Placeholder

- 2.1 Korekta zbioru danych
- 2.1.1 Identyfikacja braków danych
- 2.1.2 Zastępowanie braków danych
- 2.2 Przykład

Podział metod data mining

Placeholder

0 1	D 1 .		• 1	1	•
3.1	Rodzaj	\mathbf{e}	wning	kowai	ทเล
о. т	itouzaj	\mathbf{c}	WIIIOD.		ша

- 3.1.1 Dziedzina
- 3.1.2 Obserwacja
- 3.1.3 Atrybuty obserwacji
- 3.1.4 Zbiór uczący
- 3.1.5 Zbiór testowy
- 3.1.6 Model
- 3.1.7 Jakość dopasowania modelu
- 3.2 Modele regresyjne
- 3.3 Modele klasyfikacyjne
- 3.4 Modele grupujące

Drzewa decyzyjne

- 4.1 Węzły i gałęzie
- 4.2 Rodzaje reguł podziału
- 4.2.1 Podziały dla atrybutów ze skali nominalnej
- 4.2.2 Podziały dla atrybutów ze skali ciągłej
- 4.2.3 Podziały dla atrybutów ze skali porządkowej
- 4.3 Algorytm budowy drzewa
- 4.4 Kryteria zatrzymania
- 4.5 Reguly podziału
- 4.6 Przycinanie drzewa decyzyjnego
- 4.6.1 Przycinanie redukujące błąd
- 4.6.2 Przycinanie minimalizujące błąd
- 4.6.3 Przycinanie ze względu na współczynnik złożoności drzewa
- 4.7 Obsługa braków danych
- 4.8 Zalety i wady
- 4.8.1 Zalety
- 4.8.2 Wady
- 4.9 Przykład
- 4.9.1 Podział zbioru na próbę uczącą i testową
- 4.9.2 Budowa drzewa
- 4.9.3 Przycinanie drzewa
- 4.9.4 Ocena dopasowania modelu
- 4.10 Inne algorytmy budowy drzew decyzyjnych implementowane w R
- 4.11 Przykład
- 4.11.1 ctree
- 4.11.2 J48
- 4.11.3 C50

Pochodne drzew decyzyjnych

Placeholder

- 5.1 Bagging
- 5.1.1 Przykład
- 5.2 Lasy losowe
- 5.2.1 Przykład
- 5.3 Boosting

Bibliografia

- Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., and Iannone, R. (2018). rmarkdown: Dynamic Documents for R. R package version 1.11.
- Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., and Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. *Computational and Structural Biotechnology Journal*, 15:104 116.
- R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Xie, Y. (2018a). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.9.
- Xie, Y. (2018b). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.21.