Lab Session#10

Roll no: 20k-0409 Name: Mukand Krishna

Task#1

Design 2-bit comparator and Truth Table

A1	A0	B 1	В0	A>B	A <b< th=""><th>A=B</th></b<>	A=B
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Circuit Diagram

Task#2

Find minimal SOP and POS expressions for the outputs L, E, and G using K-map

K-Map for output L (A<B)

	B1~B0~	B1~B0	B1B0	B1B0~
A1~A0~	0	1	1	1
A1~A0	0	0	1	1
A1A0	0	0	0	0
A1A0~	0	0	1	0

SOP

L:
$$A < B = B1A1 \sim + B0B1A0 \sim + A1 \sim A0 \sim B0$$

POS

L:
$$A < B = (B1+B0) + (A1\sim +A0) + (A0\sim +B1) + (A1\sim +B1) + (A1\sim +B1\sim +B0)$$

K-Map for output G(A > B)

	B1~B0~	B1~B0	B1B0	B1B0~
A1~A0~	0	0	0	0
A1~A0	1	0	0	0
A1A0	1	1	0	1
A1A0~	1	1	0	0

SOP

G: $A > B = A1B1 \sim + A0B1 \sim B0 \sim + A1A0B0 \sim$

POS

G: $A > B = (A1+A0) (A1+B0\sim) (A1+B1\sim) (B1\sim+B0\sim) (A0+B1\sim)$

K-Map for output E(A = B)

	B1~B0~	B1~B0	B1B0	B1B0~
A1~A0~	1	0	0	0
A1~A0	0	1	0	0
A1A0	0	0	1	0
A1A0~	0	0	0	1

SOP

E:
$$A = B = A1 \sim A0 \sim B1 \sim B0 \sim + A1 \sim A0B1 \sim B1B0 \sim + A1A0B1B0 + A1A0 \sim B1B0 \sim A = B$$
: (A0 **Ex-NOR** B0) (A1 **Ex-NOR** B1)

POS

E:
$$A = B = (A1 \sim + B1) + (A0 \sim + B1 \sim + B0) + (A0 + B0 \sim) + (A1 + B1 \sim)$$