

Data Management on UL HPC

Sébastien Varrette, PhD

UL HPC Management Team,
Parallel Computing and Optimization Group (PCOG),
University of Luxembourg (UL), Luxembourg

Summary

- Data Storage on UL HPC
- Storage Policy
- 3 Last Challenges Effective Storage and Memory Management Fault Tolerance

Data Storage on UL HPC

Local Data Storage

SSD R/W: 560 MB/s; 85000 IOps

1000 €/TB

• HDD (SATA @ 7,2 krpm) R/W: 100 MB/s; 190 IOps 100 €/TB

Available File Systems

File Systems

Logical manner to store, organize, manipulate and access data.

- Disk file systems: ext4 (nodes), xfs (storage servers)
- Network file systems: NFS, SMB/CIFS
- Distributed parallel file systems: Lustre, GPFS, GlusterFS
 - → data are stripped over multiple servers for high performance.
 - → generally add robust failover and recovery mechanisms

Shared storage on UL HPC

All based on disk enclosure (Nexsan or NetApp)

NFS-based Storage on UL HPC

- Enclosures configured with xfs over LVM
- An attached server exports the volume over NFS

Effective capacity: 109 TB

- Only available on Chaos:
 - → 1 Netapp Enclosure (109 TB):
 - √ \$HOME
 - √ \$WORK
- Note: all NFS shared storage of Gaia was replaced on March 2015 in favor of GPFS

NFS Performances

- Remember that NFS-based storage DOES NOT scale
- In particular, adding a new enclosure:
 - ⇒ adding a new enclosure: does not improve the general performance
 √ un-like Lustre and GPFS

NFS Performances

- Remember that NFS-based storage DOES NOT scale
- In particular, adding a new enclosure:
 - ⇒ adding a new enclosure: does not improve the general performance
 √ un-like Lustre and GPFS

Lustre Storage (Gaia)

·l·u·s·t·r·e·

Effective capacity: 347 TB

- Scalable Parallel FS
 - \hookrightarrow \$SCRATCH
- Only available on gaia
- Current Layout:
 - → 2 MDS servers,
 - \hookrightarrow 4 OSS servers,
 - → 3 Nexsan E60 encl.
 - \hookrightarrow 1 Netapp E5400 encl.

Lustre Performances

- Remember that Lustre-based storage DOES scale
- In particular, adding a new enclosure:

 - \hookrightarrow adds the performance to the global perf. of the system
 - → Note: below measures were done before the recent extension

GPFS Storage (Gaia)

Effective capacity: 524 TB

- Scalable Parallel FS
 - \hookrightarrow \$HOME
 - → \$WORK
- Only available on gaia
- Current Layout:
 - \hookrightarrow 6 servers,
 - \hookrightarrow 3 Netapp E5400 encl.

GPFS Performances

- Remember that GPFS-based storage DOES scale
- In particular, adding a new enclosure:

 - \hookrightarrow adds the performance to the global perf. of the system

Isilon

Effective capacity: 1460 TB

- Mounting point on the gaia cluster: /mnt/isilon
 - \hookrightarrow Performance evaluation in progress
 - → Obj: projects data go on it

UL HPC Backups

Total Effective (split) capacity: 1365 TB

- Based on bontmia and backupninja
 - → Backup Over Network To Multiple Incremental Archives
 - $\hookrightarrow \ \mathtt{ULHPC/puppet-bontmia} \ \mathsf{puppet} \ \mathsf{module}$
- NFS-based targets:

 - Gaia:
 - √ 1 Netapp Enclosure (130 TB) stan
 - √ 1 Nexsan Enclosure (189 TB): former nfs.gaia
- GlusterFS-based targets (Gaia only) (916 TB)
 - \hookrightarrow highlander server exports the volumes
 - √ bertha and the others Certon are storage enclosures

Storage Policy

Summary

- Data Storage on UL HPC
- 2 Storage Policy
- 3 Last Challenges Effective Storage and Memory Management Fault Tolerance

Multi-Tier Environment

Tier-structure of storage space

- \bigcirc Tier-1 (GPFS): high performance, high reliability
 - $\,\hookrightarrow\,$ put there frequently processed data only
- 2 Tier-2 (Certons): low performance
 - \hookrightarrow storage and backup disks (\simeq archiving)
- 3 Tier-0 (LUSTRE): Scratch

Storage Policy

- \$HOME (NFS or GPFS) is under a regular backup policy.
- \$WORK (NFS or GPFS) is not backed up
 - → Avoid massive parallel writes under NFS
 - Use cdw to quickly change your current directory to \$₩ORK
- \$SCRATCH (Lustre *) is not backed up
 - \hookrightarrow designed for **temporarily need**, with fast I/O
 - → Use cds to quickly change your current directory to \$SCRATCH
 - \hookrightarrow On Chaos, \$SCRATCH is /tmp thus NOT Shared

Directory	Max size	Max #files	Backup
\$HOME	50 GB	500.000	YES
\$WORK	3 TB		NO
\$SCRATCH	10 TB		NO

Project Management

- In case the regular storage limits do not match your expectations
 - → quotas extension for project folders can be granted

Project Storage Request Form

Contact: joanna.smula@uni.lu

Summary

- Data Storage on UL HPC
- 2 Storage Policy
- 3 Last Challenges
 Effective Storage and Memory Management
 Fault Tolerance

Memory bottleneck

- A regular computing node have at least 2GB/core RAM
 - \hookrightarrow Do 12-24 runs fit in the memory?
 - → If your job runs out of memory, it simply crashes
- Use fewer simultaneous runs if really needed!
 - → OR request a big memory machine (1TB RAM)
 - \$> oarsub -t bigmem ...
 - **OR (better)** explore parallization (MPI, OpenMP, pthreads)

Understanding Your Storage Options

Where can I store and manipulate my data?

Shared storage

$$\hookrightarrow$$
 GPFS – scalable \simeq 6 GB/s (R) $\mathcal{O}(500 \text{ TB})$

$$\hookrightarrow$$
 Lustre – scalable $\simeq 5$ GB/s (R) $\mathcal{O}(400$ TB)

Local storage

$$\hookrightarrow$$
 local file system (/tmp) $\mathcal{O}(200 \text{ GB})$

$$\checkmark$$
 over HDD \simeq 100 MB/s \checkmark over SDD \simeq 400 MB/s

$$\hookrightarrow$$
 RAM (/dev/shm) \simeq 30 GB/s (R) $\mathcal{O}(20 \text{ GB})$

 \Rightarrow In all cases: small I/Os really kill storage performances

Storage performances

Based on IOR or IOZone, reference I/O benchmarks

Read

Storage performances

• Based on IOR or IOZone, reference I/O benchmarks

Write

Speed Expectation on Data Transfer

http://fasterdata.es.net/

• How long to transfer 1 TB of data across various speed networks?

Network	Time
10 Mbps	300 hrs (12.5 days)
100 Mbps	30 hrs
1 Gbps	3 hrs
10 Gbps	20 minutes

- (Again) small I/Os really kill performances

 - \hookrightarrow same rack, 10Gb/s. 4 weeks \longrightarrow 63TB transfer...

Speed Expectation on Data Transfer

http://fasterdata.es.net/

Data set size

10PB	166.67 TB/sec	33.33 TB/sec	8.33 TB/sec	2.78 TB/sec
1PB	16.67 TB/sec	3.33 TB/sec	833.33 GB/sec	277.78 GB/sec
100TB	1.67 TB/sec	333.33 GB/sec	83.33 GB/sec	27.78 GB/sec
10TB	166.67 GB/sec	33.33 GB/sec	8.33 GB/sec	2.78 GB/sec
1TB	16.67 GB/sec	3.33 GB/sec	833.33 MB/sec	277.78 MB/sec
100GB	1.67 GB/sec	333.33 MB/sec	83.33 MB/sec	27.78 MB/sec
10GB	166.67 MB/sec	33.33 MB/sec	8.33 MB/sec	2.78 MB/sec
1GB	16.67 MB/sec	3.33 MB/sec	0.83 MB/sec	0.28 MB/sec
100MB	1.67 MB/sec	0.33 MB/sec	0.08 MB/sec	0.03 MB/sec
	1 Minute	5 Minutes	20 Minutes	1 Hour
	Time to transfer			

Legend:

Requires less than 100Mbps throughput

Requires between 100Mbps and 10Gbps throughput

Requires between 10Gbps and 100Gbps throughput

Requires more than 100Gbps throughput

Note: Kilo, Mega, etc. are in SI units. E.g. 1KB is 1000 bytes, not 1024 bytes

Speed Expectation on Data Transfer

http://fasterdata.es.net/

	_	
Data	set	size

1XB	34.72 TB/sec	11.57 TB/sec	1.65 TB/sec	385.80 GB/sec
100PB	3.47 TB/sec	1.16 TB/sec	165.34 GB/sec	38.58 GB/sec
10PB	347.22 GB/sec	115.74 GB/sec	16.53 GB/sec	3.86 GB/sec
1PB	34.72 GB/sec	11.57 GB/sec	1.65 GB/sec	385.80 MB/sec
100TB	3.47 GB/sec	1.16 GB/sec	165.34 MB/sec	38.58 MB/sec
10TB	347.22 MB/sec	115.74 MB/sec	16.53 MB/sec	3.86 MB/sec
1TB	34.72 MB/sec	11.57 MB/sec	1.65 MB/sec	0.39 MB/sec
100GB	3.47 MB/sec	1.16 MB/sec	0.17 MB/sec	0.04 MB/sec
10GB	0.35 MB/sec	0.12 MB/sec	0.02 MB/sec	0.00 MB/sec
	8 Hours	24 Hours	7 Days	30 Days
	Time to transfer			

Legend:

Requires less than 100Mbps throughput

Requires between 100Mbps and 10Gbps throughput

Requires between 10Gbps and 100Gbps throughput

Requires more than 100Gbps throughput

Note: Kilo, Mega, etc. are in SI units. E.g. 1KB is 1000 bytes, not 1024 bytes

Fault Tolerance

• Cluster maintenance from time to time

Fault Tolerance

- Cluster maintenance from time to time
- Reliability vs. Crash Faults in Distributed systems

24 / 25

Fault Tolerance

- Cluster maintenance from time to time
- Reliability vs. Crash Faults in Distributed systems
- Fault Tolerance general strategy: checkpoint/rollback
 - \hookrightarrow assumes a way to save the state of your program
 - \hookrightarrow hints: OAR -signal -checkpoint -idempotent..., BLCR
 - → combine best-effort jobs with checkpointing (http://git.io/c-dn1A)

Thank you for your attention...

Questions?

Sébastien Varrette, PhD

mail: sebastien.varrette@uni.lu

Office E-007

Campus Kirchberg
6, rue Coudenhove-Kalergi

L-1359 Luxembourg

UL HPC Management Team mail: hpc-sysadmins@uni.lu

- 2 Storage Policy
- 3 Last Challenges Effective Storage and Memory Management Fault Tolerance

