K - Means Clustering

Linux Campus Club SJCE

Unsupervised Learning

- Unsupervised Learning is a type of Machine Learning Algorithm used to draw inferences from datasets consisting of input data <u>without labelled responses</u>.
- How is it different from Supervised Learning ??
- Some Unsupervised Learning Algorithms include
 - Clustering
 - Anamoly Detection

Clustering

- Grouping the set of objects(data samples) that have similar data features.
- These groups are referred to as Clusters.

Types of Clustering:

- ★ Hierarchical Clustering
 - Agglomerative algorithm
 - Divisive algorithm
- ★ Partitional Clustering
 - K Means Clustering

Some applications of Clustering

- Market Segmentation
- Astronomical data analysis
- > Social Network Analysis
- Organizing computer clusters

K - Means Clustering

 K-Means Algorithm is an algorithm to classify objects based on attributes/features into K number of group.

 The grouping is done by minimizing the sum of squares distances between data and the corresponding cluster centroid.

The algorithm

Input: Data Samples $\{x1,x2,x3,...,xm\}$ and K (number of clusters).

- → Randomly allocate K points as cluster centroids.
- → Cluster assignment step:
 - ◆ Go through each data sample and depending on its's distacne from centroids, assign each sample to one of the centroids.
- → Centroid updation:
 - Take the mean of the each clusters and shift the new centroid to the mean.

Repeat step 2 and step 3 until convergence or for specified number of iterations.

The Optimization Objective

- Like supervised, even unsupervised learning algorithms have an optimization objective.
- This is helpful in debugging.
- This cost function is referred to as distortion.

The red line in the figure indicates the distance between x^i (ith data sample) and its corresponding cluster centroid.

Random Initialization

- The convergence of this algorithm also depends upon initialization step
- We might face the convergence problem if we randomly initialize the cluster centroids.
- One method is to randomly pick K training samples and set centroids to these sample values.
- Risk of local optimum.

How to choose the number of clusters? - The Elbow Method

- Normally K is chosen manually after data visualization.
- This technique will be ambiguous if data is distributed uniformly.

Elbow Method

- → Plot cost function after convergence v/s number of clusters curve.
- → The value at which elbow is obtained is our K.

Thank You