

Proposta de teste de avaliação Matemática A 10.º Ano de escolaridade

Duração: 90 minutos | Data:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura estão representados, num referencial o.n. xOy, o triângulo ABC e a reta r, mediatriz do segmento de reta [AB].

Sabe-se que:

- \bullet os pontos A e C têm coordenadas (-4,0) e (2,-2), respetivamente;
- o ponto B pertence ao eixo Oy;
- a reta r passa ponto no médio de [AC] e tem a direção do vetor $\vec{u}(-1,2)$.

- Mostre que a reta r pode ser definida pela equação 2x + y + 3 = 0. 1.1.
- 1.2. Mostre que o ponto B tem ordenada 2.
- Sabendo que $\overline{AB} = \overline{BC}$, determine a área do triângulo [ABC]. 1.3.
- Para um certo número real a, o vetor \vec{v} de coordenadas (a+1,2a) é 1.4. colinear com o vetor \vec{u} .

Qual é o valor de a?

- **(A)** $-\frac{1}{2}$ **(B)** $\frac{1}{2}$ **(C)** -1 **(D)** 1

- Num referencial o.n. do plano considere quatro pontos, A, B, C e D, sobre uma reta r. 2. Sabe-se que B é o centro da circunferência de diâmetro AC e que C é o centro da circunferência de diâmetro [BD].

Qual dos seguintes vetores é igual a $\frac{2}{3}\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BD}$?

- \overrightarrow{AB} (A)
- \overrightarrow{AC} **(B)**
- (C) \overrightarrow{AD}
- **(D)** \overrightarrow{CB}

- 3. Na figura, estão representados, num referencial o.n. xOy:
 - os pontos A(0,3) e B(2,1);
 - a reta r que passa no ponto A e é paralela ao eixo Ox;
 - a reta s que passa no ponto B e na origem do referencial;
 - a circunferência que passa nos pontos A e B e tem centro na reta s.

- 3.1. Mostre que a reta de equação y = x + 1 é a mediatriz do segmento de reta AB.
- Mostre que a circunferência tem centro no ponto de coordenadas (-2, -1). 3.2.
- Defina por uma condição a região sombreada, incluindo a fronteira. 3.3.
- Sabe-se que [BD] é um diâmetro da circunferência. 3.4.

As coordenadas do ponto D são:

- (A) (-4, -5)
- (C) (-6, -3) (D) (-4, -2)
- Na figura está representado o hexágono regular [ABCDEF] cujo centro é o ponto O 4. Qual das seguintes afirmações é falsa?

$$(\mathbf{A}) \qquad 2\overrightarrow{FO} + \overrightarrow{AF} = \overrightarrow{AC}$$

(B)
$$\overrightarrow{AO} - \overrightarrow{DE} = \overrightarrow{FD}$$

(C)
$$\overrightarrow{AF} - \frac{1}{2}\overrightarrow{BE} = \overrightarrow{0}$$

(D)
$$\frac{1}{2}\overrightarrow{AD} + \overrightarrow{BF} = \overrightarrow{CE}$$

- 5. No referencial o.n. xOy da figura estão representadas as retas $r \in s$. Sabe-se que:
 - a reta r é definida pela equação vetorial $(x, y) = (6,1) + k(3,1), k \in \mathbb{R};$

- A é o ponto de interseção das retas r e s;
- a reta r interseta o eixo Ox no ponto B e a
 reta s interseta o eixo Oy no ponto D.

- **5.1.** Mostre que o ponto A tem coordenadas (-3, -2).
- **5.2.** Mostre que o ponto B tem abcissa 3.
- **5.3.** Determine as coordenadas do ponto C sabendo que [ABCD] é um paralelogramo em que [AC] é uma das diagonais.
- **5.4.** Uma equação vetorial da reta s é:

(A)
$$(x, y) = (0, 4) + k(2, 1), k \in \mathbb{R}$$

(B)
$$(x, y) = (0, -2) + k(1, 2), k \in \mathbb{R}$$

(C)
$$(x, y) = (-2, 0) + k(1, 2), k \in \mathbb{R}$$

(D)
$$(x, y) = (-3, -2) + k(2, 1), k \in \mathbb{R}$$

FIM

Cotações

1.1.	1.2.	1.3.	1.4.	2.	3.1.	3.2.	3.3.	3.4.	4.	5.1.	5.2.	5.3.	5.4.	Total
15	15	20	10	10	15	15	20	10	10	15	15	20	10	200

Máximo Matemática A

Proposta de resolução

1.
$$A(-4,0), C(2,-2), B(0,y), \vec{u}(-1,2)$$

1.1. Seja M o ponto médio de AC.

As suas coordenadas são
$$\left(\frac{-4+2}{2}, \frac{0-2}{2}\right) = \left(-1, -1\right)$$
.

A reta r tem a direção do vetor $\vec{u}(-1,2)$.

Logo, o seu declive é
$$m = \frac{2}{-1} = -2$$

Uma equação da reta r que passa no ponto M(-1,-1) e tem declive m=-2 é:

$$y - (-1) = -2(x - (-1)) \Leftrightarrow y + 1 = -2(x + 1) \Leftrightarrow$$
$$\Leftrightarrow y + 1 = -2x - 2 \Leftrightarrow 2x + y + 1 + 2 = 0 \Leftrightarrow$$
$$\Leftrightarrow 2x + y + 3 = 0$$

1.2. A(-4,0), B(0,b)

Ponto médio de
$$[AB]$$
: $N\left(\frac{-4+0}{2}, \frac{0+b}{2}\right)$, ou seja, $N\left(-2, \frac{b}{2}\right)$

Como a reta r é a mediatriz do segmento de reta [AB], o ponto N pertence à reta r.

Substituindo as coordenadas de $N\!\left(-2,\frac{b}{2}\right)$ na equação da reta r , vem

$$2 \times (-2) + \frac{b}{2} + 3 = 0 \Leftrightarrow -4 + 3 + \frac{b}{2} = 0 \Leftrightarrow \frac{b}{2} = 1 \Leftrightarrow b = 2$$

Logo, B(0,2).

1.3.
$$A(-4,0), B(0,2), C(2,-2), M(-1,-1)$$

Dado que $\overline{AB} = \overline{BC}$, o triângulo [ABC] é isósceles e [MB] é a altura do

triângulo relativa à base
$$[AC]$$
.
$$\overline{AC} = \sqrt{(2+4)^2 + (-2-0)^2} = \sqrt{36+4} = \sqrt{40}$$

$$\overline{MB} = \sqrt{(-1-0)^2 + (-1-2)^2} = \sqrt{1+9} = \sqrt{10}$$

$$A_{[ABC]} = \frac{\overline{AC} \times \overline{MB}}{2} = \frac{\sqrt{40} \times \sqrt{10}}{2} = \frac{\sqrt{400}}{2} = \frac{20}{2} = 10$$

1.4.
$$\vec{u}(-1,2)$$
, $\vec{v}(a+1,2a)$

Se \vec{u} e \vec{v} são vetores colineares então

$$\frac{a+1}{-1} = \frac{2a}{2} \Leftrightarrow -a-1 = a \Leftrightarrow 2a = -1 \Leftrightarrow a = -\frac{1}{2}$$

Resposta: (A)

Máximo D

2.

Segundo os dados, podemos concluir que B é o ponto médio de $\begin{bmatrix} AC \end{bmatrix}$ e C é o ponto médio de $\begin{bmatrix} BD \end{bmatrix}$ pelo que $\overrightarrow{AB} = \overrightarrow{BC} = \overrightarrow{CD}$.

Então,
$$\frac{2}{3}\overrightarrow{AD} - \frac{1}{2}\overrightarrow{BD} = \frac{2}{3} \times 3\overrightarrow{AB} - \overrightarrow{BC} = \overline{AD} = 3\overrightarrow{AB} \text{ e } \frac{1}{2}\overrightarrow{BD} = \overrightarrow{BC}$$

$$= 2\overrightarrow{AB} - \overrightarrow{AB} = \overline{AB}$$

$$= \overline{AB}$$

Resposta: (A)

- 3. $A(0,3) \in B(2,1)$
 - **3.1.** Seja P(x, y) um ponto da mediatriz do segmento de reta [AB]:

$$d(P, A) = d(P, B)$$

$$(x-0)^{2} + (y-3)^{2} = (x-2)^{2} + (y-1)^{2} \Leftrightarrow$$

$$\Leftrightarrow x^{2} + y^{2} - 6y + 9 = x^{2} - 4x + 4 + y^{2} - 2y + 1 \Leftrightarrow$$

$$\Leftrightarrow -6y + 2y = -4x + 4 + 1 - 9 \Leftrightarrow$$

$$\Leftrightarrow -4y = -4x - 4 \Leftrightarrow$$

$$\Leftrightarrow y = x + 1$$

3.2. O centro da circunferência é o ponto C , interseção da mediatriz do segmento de reta [AB] com a reta s .

Declive da reta s que passa na origem O(0,0) e no ponto B(2,1): $m = \frac{1-0}{2-0} = \frac{1}{2}$

Como a reta s passa na origem do referencial é definida pela equação $y = \frac{1}{2}x$.

Coordenadas de ${\it C}$, centro da circunferência:

$$\begin{cases} y = x + 1 \\ y = \frac{1}{2}x \end{cases} \Leftrightarrow \begin{cases} \frac{1}{2}x = x + 1 \\ y = \frac{1}{2}x \end{cases} \Leftrightarrow \begin{cases} x = 2x + 2 \\ y = \frac{1}{2}x \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ y = -1 \end{cases}$$

$$C(-2,-1)$$

3.3. Equação da circunferência

Raio:
$$r = \overline{CA} = \sqrt{(0+2)^2 + (3+1)^2} = \sqrt{4+16} = \sqrt{20}$$

Equação:
$$(x+2)^2 + (y+1)^2 = 20$$

Reta
$$r: y = 3$$

Reta
$$s: y = \frac{1}{2}x$$

Eixo
$$Oy: x = 0$$

Condição:
$$(x+2)^2 + (y+1)^2 \ge 20 \land y \le 3 \land y \ge \frac{1}{2} x \land x \ge 0$$

3.4.
$$B(2,1), C(-2,-1)$$

$$D = C + \overline{CD} = C + \overline{BC}$$

$$\overline{BC} = C - B = (-2, -1) - (2, 1) =$$

$$= (-2 - 2, -1 - 1) = (-4, -2)$$

$$D = C + \overrightarrow{BC} = (-2, -1) + (-4, -2) = (-6, -3)$$

4.
$$2\overrightarrow{FO} + \overrightarrow{AF} = \overrightarrow{FC} + \overrightarrow{CD} =$$

= $\overrightarrow{FD} = \overrightarrow{AC}$

$$\overrightarrow{AO} - \overrightarrow{DE} = \overrightarrow{AO} + \overrightarrow{ED} =$$

$$= \overrightarrow{AO} + \overrightarrow{OC} =$$

$$= \overrightarrow{AC} = \overrightarrow{FD}$$

(B) é verdadeira

$$\overrightarrow{AF} - \frac{1}{2}\overrightarrow{BE} = \overrightarrow{AF} - \overrightarrow{BO} =$$
$$= \overrightarrow{AF} - \overrightarrow{AF} = \overrightarrow{0}$$

(C) é verdadeira

$$\frac{1}{2}\overrightarrow{AD} + \overrightarrow{BF} = \overrightarrow{AO} + \overrightarrow{BF} =$$

$$= \overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BE} \neq \overrightarrow{CE}$$
(D) \(\hat{\text{\text{falsa}}}\)

Resposta (D)

Máximo Matemática A

5.
$$r: (x, y) = (6,1) + k(3,1), k \in \mathbb{R}$$

 $s: y = 2x + 4$

5.1. A é o ponto de interseção das retas $r \in S$

$$(x,y) = (6,1) + k(3,1), k \in \mathbb{R} \Leftrightarrow$$
$$\Leftrightarrow (x,y) = (6+3k,1+k), k \in \mathbb{R}$$

Qualquer ponto da reta r é da forma $R(6+3k,1+k), k \in \mathbb{R}$

Substituindo as coordenadas de R na equação y = 2x + 4 da reta s, obtém-se:

$$1+k=2(6+3k)+4 \Leftrightarrow k-6k=12+4-1 \Leftrightarrow$$
$$\Leftrightarrow -5k=15 \Leftrightarrow k=-3$$

Substituido *k* por -3 em (6+3k,1+k) obtemos $(6+3\times(-3),1-3)=(-3,-2)$.

Portanto, o ponto A tem coordenadas (-3, -2).

5.2. Um ponto do eixo Ox é da forma (x,0) com $x \in \mathbb{R}$. Se este ponto pertence à reta r então

$$(x,0) = (6,1) + k(3,1) \Leftrightarrow \begin{cases} x = 6 + 3k \\ 0 = 1 + k \end{cases} \Leftrightarrow \begin{cases} x = 6 + 3 \times (-1) \\ k = -1 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ k = -1 \end{cases}$$

A abcissa do ponto $B \in 3$.

5.3.
$$C = B + \overrightarrow{BC} = B + \overrightarrow{AD}$$

$$A(-3,-2)$$
 e $B(3,0)$

A ordenada de D é a ordenada na origem

da reta s: y = 2x + 4

$$\overrightarrow{AD} = D - A = (0, 4) - (-3, -2) = (3, 6)$$

$$C = B + \overrightarrow{AD} = (3,0) + (3,6) = (6,6)$$

B(6,6)

5.4.
$$s: y = 2x + 4$$

A reta s tem declive m = 2.

Logo, um vetor diretor da reta $s \in \vec{s}(1,2)$ (opções B e C).

$$2x + 4 = 0 \Leftrightarrow 2x = -4 \Leftrightarrow x = -2$$

A reta s interseta o eixo Ox no ponto de coordenadas (-2,0).

 $(x, y) = (-2, 0) + k(1, 2), k \in \mathbb{R}$ é uma equação vetorial da regta s.

Resposta: (C)

