	Name:
	Pid:
	is exercise $T_1(x,y)$ is a predicate "x is taller than y". Write each proposition in words. (10 points) $\exists x \exists y \ T_1(x,y)$
(b)	(10 points) $\forall x \exists y \ T_1(x,y)$

2	Determine	the	truth	مبداديد	of	each	statement
Ζ.	Determine	ше	սասո	varue	OI	eacn	statement

(a) (10 points) $\forall x \exists y \ x^2 + y^2 = 9$

(b) (10 points) $\forall x \exists y \ x^2 + y^2 > 0$

 $\left. \begin{array}{c} (p \to q) \wedge (r \to s) \\ p \vee r \end{array} \right\} \implies q \vee s.$ 3. (10 points) Show that

4.	(10 points) Let us consider four-lines geometry, it is a theory with undefined terms: point, line, is on, and axioms:
	 there exist exactly four lines, any two distinct lines have exactly one point of on both of them, and
	3. each point is on exactly two lines.
	Show that every line has exactly three points on it.