Ikerketa Operatiboa

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritza Bilboko Ingeniaritza Eskola

- 3.1 Sarrera
- 3.2 Problema primalaren eta dualaren arteko erlazioa
- 3.3 Osagarrizko lasaitasuna
- 3.4 Simplex dual metodoa
- 3.5 Sentikortasun analisia

■ 3.1 Sarrera:

- Programazio linealaren garapenean dualtasuna kontzepturik garrantzitsuenetarikoa da
- PLko edozein problemari hemendik aurrera problema primala deituko diogunari, beste problema bat, problema duala deritzona, egoki diezaiokegu.
- Erlazioa: Bi ereduetako bat Simplex metodoa erabiliz ebatziz gero, bi problemen soluzioa lortzen da, ebatzitako ereduaren taula optimoan beste ereduaren soluzio optimoa lortzeko informazioa egonik.

Dualtasuna kontuan hartzeko arrazoi batzuk honako hauek dira:

- Simplex algoritmoarekin iterazio kopurua eredu linealak duen aldagai kopuruaren mende baino murrizketen mende dago. Ondorioz, eredu lineal bat ebazterakoan dagokion eredu dualaren soluzio optimoa ere lortuko denez, ereduen artean ebatzia izango dena aukera daiteke.
- Eredu dualaren soluzioak eredu primalaren soluzioari buruzko informazioa ematen du
- Dualtasunaren propietateak kontuan hartuz, algoritmo bat sortu da, Simplex dual algoritmoa. Algoritmo hau zenbait eredu lineal ebazteko Simplex algoritmoa baino eraginkorragoa da.

min
$$C^T X$$

non $AX \ge B$

$$X \ge 0$$

Forma kanonikoan idatzitako problema primala

$$\max \quad B^T U$$

$$\text{non} \quad A^T U \le C^T$$

$$U \ge 0$$

Problema primalari elkartutako problema duala

min
$$C^T X$$

non
$$AX = B$$

$$X \ge 0$$

Forma estandarrean idatzitako problema primala

$$\max B^T U$$

non
$$A^T U \leq C^T$$

Uez-murriztua

Problema primalari elkartutako problema duala

■ 3.2 Problema primalaren eta dualaren arteko erlazioa:

Bi ereduen arteko erlazioa ondorengoa da:

- Eredu primalaren koefiziente matrizea $A \in \mathcal{M}_{mxn}(\mathbb{R})$ bada (hau da, ereduak m murrizketa eta n aldagai baditu) \Rightarrow eredu dualaren koefiziente matrizea $A^T \in \mathcal{M}_{nxm}(\mathbb{R})$ da (hau da, ereduak n murrizketa eta m aldagai ditu)
- b bektorea, eredua primalaren gai askea dena, problema dualaren helburu funtzioko koefizienteen bektorea da
- c bektorea, eredu primalaren helburu funtzioko koefizienteek sortzen duten bektorea, problema dualaren gai-askea da.

Helburu funtzioaren, murrizketen eta aldagaien arteko erlazioa honako taula honetan laburbiltzen da:

Helburu funtzioa: max	\Leftrightarrow	Helburu funtzioa: min
i. murrizketa ≤	\Leftrightarrow	i. aldagaia ≥ 0
i. murrizketa =	\Leftrightarrow	i. aldagaia ez-murriztua
i. murrizketa ≥	\Leftrightarrow	i. aldagaia ≤ 0
i. aldagaia ≥ 0	\Leftrightarrow	i. murrizketa ≥
i. aldagaia ez-murriztua	\Leftrightarrow	i. murrizketa =
i. aldagaia ≤ 0	\Leftrightarrow	i. murrizketa ≤

<u>Teorema:</u>

Problema dualaren duala problema primala da.

Idatzi ondorengo PLko problemen problema dualak

min
$$z = 3x_1 - 3x_2 - x_3$$

 $x_1 + 2x_2 - 3x_3 \le 5$
 $-2x_1 - 2x_2 + 5x_3 \ge -12$
 $x_1 - 2x_2 - 7x_3 \le 16$
 $x_1, x_2, x_3 \ge 0$

min
$$z = 3x_1 + 5x_2 - 7x_3$$

 $x_1 + x_2 - 3x_3 \le 4$
 $2x_2 + 5x_3 = 12$
 $x_1, x_2 \ge 0, x_3$ ez-murriztua

Teorema:

- Problema primalak edo problema dualak soluzio optimo finitua badu, beste problemak ere soluzio optimo finitua du eta helburu funtzioaren balioak optimoan bat datoz.
- Problema batek soluzio optimo bornatugabea badu, beste problema ez du soluzio bideragarririk.

Ondorengo taulan aurreko kasuak laburbiltzen dira:

Problema primala		Problema duala
Soluzio optimo finitua	⇔ Helburu funtzioak bat datoz	Soluzio optimo finitua
Soluzio bornatugabea	\Rightarrow	Soluzio bideragarririk gabe
Soluzio bideragarririk gabe	←	Soluzio bornatugabea
Soluzio bideragarririk gabe	\Rightarrow	Soluzio bideragarririk gabe edo soluzio bornatugabea
Soluzio bideragarririk gabe edo soluzio bornatugabea	←	Soluzio bideragarririk gabe

Korolarioa:

Forma estandarrean idatzitako PLko problema baten oinarrizko soluzio optimo bateko lasaiera-aldagaien kostu murriztuak, balio absolutuan kontsideratuz, forma kanonikoan idatzitako problema dualaren soluzioa dira

Izan bedi honako programazio linealeko problema

$$\max z = 4x_1 + 3x_2$$

$$-x_1 + 2x_2 \le 4$$

$$2x_1 + 3x_2 \le 13$$

$$x_1 - x_2 \le 4$$

$$x_1, x_2 \ge 0$$

3.3 Osagarrizko lasaitasuna

Korolarioa:

Izan bitez (X,X^h) eta (U,U^h) problema primalaren eta dualaren soluzio bideragarriak, X^h eta U^h problema primalaren eta dualaren lasaiera-aldagaiak izanik, hurrenez hurren. Orduan, soluzio hauek optimoak izateko baldintza beharrezkoak eta nahikoak honako hauek dira:

$$X_i \cdot U_i^h = 0 \quad \forall i \in \{1, ..., n\}$$

$$U_j \cdot X_j^h = 0 \quad \forall j \in \{1, ..., m\}$$

Emaitza hau oso garrantzitsua da, izan ere, honi esker problema baten soluzio optimoa ezagutuz, beste problemaren soluzio optimoa lor daiteke.

Izan bedi $x_1^* = x_3^* = 0$, $x_2^* = 10.4$, $x_4^* = 0.4$ honako problemaren soluzio optimoa. Lortu problema dualaren soluzio optimoa.

$$\max z = 2x_1 + 4x_2 + 3x_3 + x_4$$

$$3x_1 + x_2 + x_3 + 4x_4 \le 12$$

$$x_1 - 3x_2 + 2x_3 + 3x_4 \le 7$$

$$2x_1 + x_2 + 3x_3 - x_4 \le 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

3.4 Simplex dual metodoa

Metodo honen bidez aldagai artifizialak erabili gabe problemaren soluzio optimoa lor daiteke. Izan bedi honako minimizazio (maximizazio) problema:

min
$$C^T X$$

non
$$AX = B$$

$$X \ge 0$$

Simplex dual metodoaren pausuak ondorengoak dira:

<u>Algoritmoa</u>

1. Pausua: Hasierako taula $W_j=z_j-c_j\leq 0$ ($W_j=z_j-c_j\geq 0$) beteko duena eraiki. Izan bedi, X_D oinarrizko soluzioa $W_j=z_j-c_j\leq 0$ $\forall j$ ($W_j=z_j-c_j\geq 0$ $\forall j$) betetzen duena (hau da, X_D optimaltasun baldintzak betetzen ditu)

Bi kasu daude:

1.1 $X_D \ge 0 \Rightarrow$ Soluzio bideragarria da \Rightarrow Gelditu \Rightarrow Optimoa lortu dugu.

1.2 $\exists k: X_{DK} < 0 \Rightarrow i = \max_k \{|X_{Dk}| / X_{Dk} < 0\}$ aukeratu $\Rightarrow x_i$ oinarritik irteten da.

2. Pausua:

2.1 i aurreko pausuan finkatutakoa izanik $a_{ij} > 0 \ \forall j \Rightarrow$ dualaren soluzioa bornatugabea da (problema primala bideraezina da)

2.2 $\exists k: a_{ik} < 0 \Rightarrow j = \min_{k,a_{ik} < 0} \left\{ \frac{|z_k - c_k|}{|a_{ik}|} \right\} \Rightarrow x_j$ aldagaia oinarrian sartzen da.

3. Pausua: a_{ij} pibotea erabiliz oinarri aldaketa gauzatzen da.

4. Pausua: 1. pausura joan

Ondoko problema Simplex dual metodoa aplikatuz ebatzi:

min
$$z = x_1 + x_2 + x_3 + x_4$$

 $2x_1 + x_4 \ge 250$
 $3x_2 \ge 1000$
 $3x_2 + 10x_3 + 6x_4 \ge 750$
 $x_1, x_2, x_3, x_4 \ge 0$

■ 3.5 Sentikortasun analisia

Sentikortasun analisia eredu linealaren soluzio optimoa kalkulatu ondoren egiten da, eredu linealaren parametroetan gertatutako aldaketek soluzio optimoaren gain izango duten eragina ezagutzeko asmoz. Aldaketek A koefiziente matrizean, b gai-askean eta c helburu funtzioko koefizienteetan gerta daitezke.

Bi kasu desberdin daude:

- (a) Bideragarritasunean aldaketak egotea
- (b) Optimaltasunean aldaketak egotea

3.5.1 Bideragarritasunean aldaketak egotea

Ondorengo aldaketek soluzio optimoaren bideragarritasunean eragina izaten dute:

- Gai-askeko aldaketek
- Murrizketa berrien gehiketak

Gogoratu soluzio optimoa bideragarria izateko $x_B = B^{-1} \cdot b \ge 0$ bete behar dela. Aurreko bi kasuetan soluzio optimoa ez-bideragarria izango da oinarrizkoa den aldagaien baten balioa negatiboa bilakatzen bada.

Aldaketak b bektorean:

Izan bitez eredu lineal bat eta bere soluzioa. Demagun b gai-askean aldaketa bat gertatzen dela eta aldaketaren ondorioz \hat{b} gai-aske berria sortzen dela.

1. Eredua

$$\max z = c^T X$$

non $AX \leq b$

$$X \ge 0$$

2. Eredua

$$\max z = c^T X$$

non
$$AX \leq \hat{b}$$

$$X \ge 0$$

Aldaketak sortutako eragina aztertzeko, 1. ereduari dagokion taula optimoan oinarrituko gara eta \hat{b} gai-aske berriak taula horretan duen eragina aztertuko dugu

Programazio Lineala. Simplex metodoa

1. ereduko taula optimoa

		c_i	<i>c</i> ₁	<i>c</i> ₂	•••	c_n			
$C_{oinarrizko}$	$A_{oinarrizkoa}$	$B^{-1} \cdot b$	<i>x</i> ₁	<i>x</i> ₂	•••	x_n			
c_{B_1}	OA ₁	x_{B_1}							
C _{B2}	OA ₂	<i>x</i> _{B2}	$Y = B^{-1} \cdot A$						
•••	•••	•••							
c_{B_m}	OA_m	x_{B_m}							
$Z = \sum_{k=1}^{m} c_{B_i} x_{B_i}$		z_j	<i>z</i> ₁	<i>z</i> ₂	•••	z_n			
R=	1	z _j -c _j	z ₁ -c ₁	z ₂ -c ₂	•••	z_n - c_n			

2. ereduko hasierako taula

		c_i	c ₁	<i>c</i> ₂	•••	c_n		
$C_{oinarrizko}$	$A_{oinarrizkoa}$	$B^{-1}\cdot \widehat{\boldsymbol{b}}$	<i>x</i> ₁	<i>x</i> ₂	•••	x_n		
<i>c</i> _{B₁}	OA ₁	<i>x</i> _{B₁}						
C _{B2}	OA ₂	<i>x</i> _{B2}	$Y = B^{-1} \cdot A$					
	•••	•••						
c_{B_m}	OA _m	x_{B_m}						
$\hat{Z} = \sum_{i=1}^{n}$	$\hat{Z} = \sum_{k=1}^{m} c_{B_i} x_{B_i}$		Z ₁	z ₂	•••	z _n		
k=	=1	z _j -c _j	z ₁ -c ₁	z ₂ -c ₂	•••	z_n - c_n		

Taula honetan $\hat{x}_B = B^{-1} \cdot \hat{b}$ zutabea eta ondorioz \hat{z} helburu funtzioaren balioa aldatzen dira.

- 2. ereduko taula optimoan bi kasu gerta daitezke:
- 1. kasua: $\hat{x}_B = B^{-1} \cdot \hat{b} \ge 0$ bada, soluzio optimoaren bideragarritasuna mantentzen da \Rightarrow Soluzio optimoa \hat{x}_B eta helburu funzioaren balioa \hat{z} dira.
- 2. kasua: $\hat{x}_B = B^{-1} \cdot \hat{b} \ngeq 0$ bada, soluzio optimoaren bideragarritasuna galdu egiten da. Kasu honetan 2. ereduko hasierako taulan Simplex dual metodoa aplikatu.

Ondorengo probleman Simplex metodoa aplikatu ondoren lortzen den taula optimoan oinarrituz:

$$\max z = 3x_1 + x_2 + 4x_3$$

$$6x_1 + 3x_2 + 5x_3 \le 25$$

$$3x_1 + 4x_2 + 5x_3 \le 20$$

$$x_1, x_2, x_3 \ge 0$$

- (a) Gai-askea $b^T = (40,30)$ izatera aldatzen bada gertatzen dena aztertu
- (b) Gai-askea $b^T = (50,20)$ izatera aldatzen bada gertatzen dena aztertu
- (c)Zehaztu soluzio bideragarria izaten jarraitzeko gai-askearen lehenengo koordenatuak zein balioen artean egon behar den.

Murrizketa berrien gehiketa:

m ekuazio eta n ezezagun dituen eredu batean ekuazio bat gehituz gero honako hau dugu:

1. Eredua

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$$

$$\vdots \qquad \vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$$

$$x_1, x_2, \dots, x_n \ge 0$$

2. Eredua

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$$

$$\vdots \qquad \vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$$

$$a_{m+1,1} x_1 + a_{m+1,2} x_2 + \dots + a_{m+1,n} x_n \le b_{m+1}$$

$$x_1, x_2, \dots, x_n \ge 0$$

Aldaketak duen eragina aztertzeko, 1. ereduari dagokion taula optimoan murrizketa berria erantsi behar da.

Programazio Lineala. Simplex metodoa

1. ereduko taula optimoa

		c _i	<i>c</i> ₁	c ₂		c _n
Coinarrizk	o A _{oinarrizkoa}	$B^{-1} \cdot b$	<i>x</i> ₁	x ₂	•••	x_n
c _{B1}	OA ₁	<i>x</i> _{B₁}	•••	1	0	
C _{B2}	OA ₂	<i>x</i> _{B2}	•••	0	0	•••
		•••	•••	0	1	
C _{Bm}	OA _m	x_{B_m}			1	
$Z = \frac{1}{2}$	$\sum_{i=1}^{m} c_{B_i} x_{B_i}$	Z _j	z ₁	z ₂		z_n
	t=1	z _j -c _j	z ₁ -c ₁	z ₂ -c ₂		z_n - c_n

2. ereduko hasierako taula

		c _i	<i>c</i> ₁	<i>c</i> ₂	•••	c_n	c _{n+1}
Coinarrizh	$A_{oinarrizh}$	$B^{-1} \cdot b$	<i>x</i> ₁	<i>x</i> ₂	•••	x_n	x_{n+1}
<i>c</i> _{B₁}	OA ₁	<i>x</i> _{B₁}		1		0	0
c_{B_2}	OA ₂	<i>x</i> _{B2}	•••	0		0	0
	•••	•••	•••	0	•••	1	0
c_{B_m}	OA_m	x_{B_m}					
<i>C</i> _{B_{m+1}}	0A _{m+1}	<i>x</i> _{B_{m+1}}	•••	0	***		. 1
$Z = \sum_{k=1}^{m}$	$c_{B_i}x_{B_i}$	z_j	z ₁	z ₂	•••	z_n	z_{n+1}
k=:	i	z _j -c _j	z ₁ -c ₁	z ₂ -c ₂		z_n - c_n	z_{n+1} - c_{n+1}

Oinarrizko aldagaiekin erlazionatutako identitate matrizea

Murrizketa berriaren lasaiera aldagaia

Taula berrian oinarrizko aldagaiei dagozkien zutabeetan identate matrizea eduki ahal izateko, errenkaden arteko eragiketak egin behar dira

Aldaketa hauen ondorioz bi kasu gerta daitezke:

- 1. kasua: $\hat{x}_B \ge 0$ bada, soluzio optimoaren bideragarritasuna mantentzen da \Rightarrow Soluzio optimoa \hat{x}_B eta helburu funzioaren balioa \hat{z} dira.
- 2. kasua: $\hat{x}_B \ngeq 0$ bada, soluzio optimoaren bideragarritasuna galdu egiten da. Kasu honetan 2. ereduko hasierako taulan Simplex dual metodoa aplikatu.

Praktikan, lehenengo eta behi gehitzen den murrizketa erredundantea den edo ez aztertzen da. Murrizketa erredundantea bada, soluzio optimoa mantendu egiten da.

Ondorengo probleman Simplex metodoa aplikatu ondoren lortzen den taula optimoan oinarrituz:

$$\max z = 3x_1 + x_2 + 4x_3$$
$$6x_1 + 3x_2 + 5x_3 \le 25$$
$$3x_1 + 4x_2 + 5x_3 \le 20$$
$$x_1, x_2, x_3 \ge 0$$

- (a) $x_2 + 3x_3 \le 10$ murrizketa gehitzean gertatzen dena aztertu
- (b) $x_1 + x_2 + 5x_3 \le 10$ murrizketa gehitzean gertatzen dena aztertu

3.5.2 Optimaltasunean aldaketak egotea

Optimaltasunean eragina duten aldaketak eredu funtzioko koefizienteetan dauden aldaketak dira, izan ere optimaltasun baldintza z_j - c_j kostu murriztuekin erlazionatuta dago.

Izan bedi eredu lineal bat, zeinaren soluzio optimoa ezaguna den. Demagun c helburu funtzioko koefizientea aldatu egin dela, bektore berria \hat{c} izanik.

1. Eredua

$$\max z = c^T X$$

non $AX \leq b$

$$X \ge 0$$

2. Eredua

$$\max z = \hat{c}^T X$$

non
$$AX \leq b$$

Aldaketak duen eragina aztertzeko, 1. ereduko taula optimoan oinarriztu eta \hat{c} helburu funtzioko koefiziente berriak duen eragina aztertuko dugu:

1. ereduko taula optimoa

		c_l	c ₁	<i>c</i> ₂		c _n		
Coinarrizko	$A_{oinarrizkoa}$	$B^{-1} \cdot b$	<i>x</i> ₁	<i>x</i> ₂	•••	x_n		
<i>c</i> _{<i>B</i>₁}	OA ₁	x_{B_1}						
c _{B2}	OA ₂	<i>x</i> _{B2}	$Y = B^{-1} \cdot A$					
	•••	•••						
c _{Bm}	OA_m	x_{B_m}						
$Z = \sum_{k=1}^{m} c_{B_l} x_{B_l}$		zj	z ₁	z ₂		z _n		
		z _j -c _j	z ₁ -c ₁	z ₂ -c ₂		z_n - c_n		

2. ereduko hasierako taula

		Ĉį	\hat{c}_1	Ĉ ₂	•••	Ĉ _n		
Coinarrizko	$A_{oinarrizkoa}$	B ⁻¹ ⋅ b	<i>x</i> ₁	<i>x</i> ₂		x_n		
c _{B1}	OA ₁	x_{B_1}						
C _{B2}	OA ₂	<i>x</i> _{B2}	$Y = B^{-1} \cdot A$					
•••	•••	•••						
c _{Bm}	OA _m	x_{B_m}						
$\hat{Z} = \sum_{i=1}^{n}$	$\hat{Z} = \sum_{k=1}^{m} \hat{c}_{B_i} x_{B_i}$		\hat{z}_1	\hat{z}_2	•••	Ĉ _n		
k=1		Źj-Ĉj	Ź ₁ -Ĉ ₁	2 2−22	•••	\hat{z}_n - \hat{c}_n		

Behin \hat{z}_j - \hat{c}_j eta \hat{z} balioak kalkulatuak izan direnean, 2. ereduaren hasierako taulan jasotzen dira.

Aldaketa hauen ondorioz bi kasu gerta daitezke:

- 1. kasua: $\hat{z}_j \hat{c}_j \geq 0 \ \forall j$ maximizazio kasuan ($\hat{z}_j \hat{c}_j \leq 0 \ \forall j$ minimizazioan) $\Rightarrow x_B$ soluzio bideragarria optimoa da \Rightarrow Soluzio optimoa x_B da eta $\hat{z} = \hat{c}_B^T \cdot x_B$ helburu funzioaren balio optimoa da
- 2. $\exists j \ \hat{z}_j \hat{c}_j < 0$ maximizazio kasuan ($\exists j \ \hat{z}_j \hat{c}_j > 0$ minimizazioan) $\Rightarrow x_B$ ez da soluzio optimoa eta Simplex algoritmoa erabili behar da.

Ondorengo probleman Simplex metodoa aplikatu ondoren lortzen den taula optimoan oinarrituz:

$$\max z = 3x_1 + x_2 + 4x_3$$
$$6x_1 + 3x_2 + 5x_3 \le 25$$
$$3x_1 + 4x_2 + 5x_3 \le 20$$
$$x_1, x_2, x_3 \ge 0$$

- (a) Helburu-funtzioa $4x_1 + 2x_2 + 5x_3$ izatera aldatzen bada gertatzen dena aztertu
- (b) Helburu-funtzioa $x_1+x_2+2x_3$ izatera aldatzen bada gertatzen dena aztertu