VORONOI DIAGRAM

23-03-2022

- Around 500 years old topic.
- Many applications.
- Also known as Voronoi tessellation, Dirichlet tessellation.

The figure aside shows an artistic rendition on the image of my face using Voronoi diagram.

Courtesy:

http://www.evilmadscientist.com/2012/stipplegenweighted-voronoi-stippling-and-tsp-paths-in-processing

Terminology

- 1. Point =any real point on xy-plane.
- 2. *Site* = special point on *xy*-plane. Voronoi diagram is defined w.r.t. a set of sites, *P*.
- 3. $P = \{p_1, p_2, \dots, p_n\} = \text{set of } n \text{ sites (input).}$
- 4. VD(P) = Voronoi diagram w.r.t. P (output).
- 5. $b(p_i, p_j)$ = perpendicular bisector between p_i and p_j .
- 6. $h(p_i, p_j) = \text{half plane induced by } b(p_i, p_j) \text{ and containing the site } p_i.$
- 7. $h(p_j, p_i) = \text{half plane induced by } b(p_i, p_j) \text{ and containing the site } p_i$.
- 8. $vc(p_i) = \text{Voronoi cell / region of } p_i$.
- 9. $d(p,q) = \sqrt{(x_p x_q)^2 + (y_p y_q)^2}$ = Euclidean distance between $p = (x_p, x_q)$ and $q = (x_q, x_q)$, where either of p and q is a point or a site, as needed.
- 10. $d(q, \lambda) = \text{distance of a point } q \text{ from a line } \lambda.$
- 11. $n_v = \text{#vertices in VD}(P)$.
- 12. $n_e = \#edges in VD(P)$.
- 13. $n_f = \# faces in VD(P)$.
- 14.

Figure: VD of two sites.

Figure: VD of three sites.

Designing a good algorithm needs good definitions, good characterizations, and good theorems. That is what we shall see today.

Examples of VD

Figure: VD of four and five sites.

Figure: More examples.

Figure: An example of VD for many sites.

Definition [Voronoi Diagram (VD)] It subdivides the xy-plane into n cells or regions, called *Voronoi cells*, such that for each Voronoi cell $vc(p_i)$, for any point q in $vc(p_i)$, p_i is a/the nearest site.

Definition [Voronoi cell] For every site p_i , the corresponding Voronoi cell $vc(p_i)$ is the set of all points for which p_i is a/the nearest site. For n sites, we have n Voronoi cells, which are pairwise disjoint by their interiors, and their union is VD(P).

Theorem [
$$vc(p_i)$$
 characterization] $vc(p_i) = \bigcap_{j=1,2,\dots,n,j\neq i} h(p_i,p_j)$.

There are n-1 half-planes for each p_i . So, computing the Voronoi cell for p_i using the above equation will take at least O(n) time. So, for all cells, we need $n \cdot O(n) = O(n^2)$ time. We have to dive deeper to get a better algorithm.

Figure: An example of VD in which a single Voronoi cell has O(n) vertices. That implies a VD may have $O(n^2)$ vertices and $O(n^2)$ edges. But they will be O(n), as stated in the next theorem.

Theorem [upper bounds on VD size] VD(P) has O(n) vertices and O(n) edges.

Proof – Euler's formula for planar graph: #vertices – #edges + #faces = 2.

The extended VD is a planar graph, call it G. Its #vertices $= n_v + 1$, #edges $= n_e$, #faces $= n_f = n$.

So,
$$(n_v + 1) - n_e + n_f = 2$$
, or, $n_v + 1 - n_e + n = 2$, or,

$$n_v - n_e + n = 1.$$

Let s= sum of degrees over all vertices of G. Its every edge contributes degree 2 to s. So, $s=2n_e$. Now, every vertex of G is incident on at least 3 edges of G. So, $s\geq 3(n_v+1)$. So, we have

$$2n_e \ge 3n_v + 3. \tag{\spadesuit}$$

From
$$\clubsuit$$
 and $\spadesuit,$ $2n_e=2n_v+2n-2\geq 3n_v+3 \implies n_v\leq 2n-5.$

Similarly, we get $n_e \leq 3n - 6$. And hence the proof.

Representation of VD: An axis-parallel rectangle is used to bound the VD so that all edges and faces become bounded. The bounded VD is stored in a Doubly Connected Edge List (DCEL). Figure below.

Definition [Largest empty circle] C(q) centered at any point q contains no site in its interior and contains at least one site on its boundary.

Theorem [Vertex and Edge characterization] q is a **vertex** of VD(P) if and only if C(q) contains three or more sites on its boundary. q is a point on an **edge** of VD(P) if and only if C(q) contains exactly two sites on its boundary. So, q lies in the **interior** of some cell/face of VD(P) if and only if C(q) contains exactly one site on its boundary.

Question 1: Let λ be a horizontal line. Which Voronoi cells will not be controlled by any site below λ ?

Answer: Those for which *any* point q in the Voronoi cell is farther off from λ compared to the distance of q from its nearest site.

Figure: Vertex and edge characterization using *largest empty circles*, and characterization of VD *above* λ . For any point in vc(p), its distance from p is less than that from λ , and so the shape of vc(p) is determined only by the sites above λ . But for vc(p'), it is not so, i.e., its shape may vary with the positions of sites below λ .

Question 2: Let λ be a horizontal line. Which portion of VD is fixed for ever and will not be changed by any site below λ ?

Answer: Let p_1, p_2, \ldots, p_i be the sites above λ . Consider the parabolic region β_j whose focus is p_j and directrix is λ . The union of the parabolic regions $\beta_1, \beta_2, \ldots, \beta_i$ contains the portion of VD whose structure is determined only by p_1, p_2, \ldots, p_i .

•

 $\beta_2 = \{q \in \mathbb{R}^2 : d(q, p_2) \le d(q, \lambda)\}$ So, for any $q \in \beta_2$, a site below λ cannot be the nearest site of q.

 $\beta_1 = \{ q \in \mathbb{R}^2 : d(q, p_1) \le d(q, \lambda) \}$

So, for any $q \in \beta_1$, a site below λ cannot be the nearest site of q.

The *break point r* (and r' as well) is equidistant from p_1 and p_2 . So, it will trace $b(p_1, p_2)$ as λ moves down.

Algorithm for Voronoi Diagram

See the other PDF (demo on 10 sites).

Time and space complexities

Number of nodes in B and Q are bounded by O(n). So any query / insertion / deletion will be $O(\log n)$ time. As there will be O(n) event points in total [think why], total time for operations on B and Q will be $O(n \log n)$.

Vertex or edge creation/update in DCEL takes O(1) time. So, for all vertices, edges, and faces, DCEL creation will take O(n) time [think why].

Hence, time complexity is $O(n \log n)$.

Q always stores the sites that are yet to be handled, and it also stores the circle events resulting from only the triplets of consecutive arcs in β , which has at most O(n) parabolic arcs in sequence. So, B stores O(n) sites as foci of parabolic arcs in β , and the breakpoints for each pair of consecutive arcs in β . Hence, space complexity is O(n).