

Data Driven Engineering II: Advaced Topics

Genetic programming: towards data driven control

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Convergence

- * Max generation
- * Elapsed time

* Track fitness Best individual worst individual Z fi or fi

- 1. Initialize population
- 2. Get current fitness (+filtering)
- 7 3. create offsprings -> crossover
- 19 4. Mutations
- 5. "Survival of the fittest,, update the population

DDE C> Optimization

- Optimization landscape
- Evolutionary algorithms
- Genetic algorithms Genetic programing

Obj: Engineering De Automate the process

DATA [mean] [Source]

Automaled production

Craftsmorelup
" nordnade,

Obj: Engineering De Automate the process

La controllable way

[mean] [Source]

Genetic
Programming) | Create a population Evolve Adapted
programs
programs

Experience the data on which they train.

Genetic Programmy

GA De fixed-length strongs / lists / arrays

Stochastic decision process

Seretic operations { mutations, conssover, breeding }

Fitness based selection

* GP 🖒 hierarchical, varrable in size

Gedanken Experiment

*	EA	⇒ give	a	rod	4	certain	length	
---	----	--------	---	-----	---	---------	--------	--

Rule: Rod must be assembled from smaller rods.

Solution;
$$\star$$
 eq. $N \rightarrow 5$,
 $N < 3$ you get a subset
 $N > 9$ of possible solutiony.

Genome Size	# sol.	Sauple
2	ø	_
3	3	991
4	12	4221
5	20 5	42111
6 :	6	411111
; 9	1	1 1
10	Ø	d

Data Driver Engineering

Genetic Programming

"Inductive learning,

GP / Ilnew

graph-based

Tree representation

Year	Inventor	Technique	Individual
1958	Friedberg	learning machine	virtual assembler
1959	Samuel	mathematics	polynomial
1965	Fogel, Owens and Walsh	evolutionary programming	automaton
1965	Rechenberg, Schwefel	evolutionary strategies	real-numbered vector
1975	Holland	genetic algorithms	fixed-size bit string
1978	Holland and Reitmann	genetic classifier systems	rules
1980	Smith	early genetic programming	var-size bit string
1985	Cramer	early genetic programming	tree
1986	Hicklin	early genetic programming	LISP
1987	Fujiki and Dickinson	early genetic programming	LISP
1987	Dickmanns, Schmidhuber	early genetic programming	assembler
	and Winklhofer		
1992	Koza	genetic programming	tree

Cramer, 1985 & Koza, 1989

* Suggested tree-like structure for program represent.
"Genetic Programming ,,

In particular, I describe a single, unified, domain-independent approach to the problem of program induction — namely, genetic programming. I demonstrate, by example and analogy, that genetic programming is applicable and effective for a wide variety of problems from a surprising variety of fields. It would probably be impossible to solve most of these problems with any one existing paradigm for machine learning, artificial intelligence, self-improving systems, self-organizing systems, neural networks, or induction. Nonetheless, a single approach will be used here — regardless of whether the problem involves optimal control, planning, discovery of game-playing strategies, symbolic regression, automatic programming, or evolving emergent behavior.

J. Koza, 1992

Why tree representation in popular?

- * Recursive evaluation
- * Dynamically changing sizes & shapes. (?)
- Allows algorithm to modify the structure of the solution

how many ?
parameters ?

Meaning of parameters

How parametels interact

Genetic Programmy

(1) Crossover

Single Pont; Replace one subtree with the other.

Genetic Operations:

Mutations

* Choose a node randouly.

Debte subtree

Replace it with a randou tree.

Change a sub-property. ('>' => '<')

Genetic Programmy

- * GA D fixed-length strongs / lists / arrays
- * GP 🖒 hierarchical, varrable û sîze

sala structure Algorithm

functions Terminals

Genetic Programmy

How Des structure evolve dynamically?

" Iterative, + "Selective, algorithm
" Essence of evolution,

Practical significance in GP

(1) population → reproduction opportunitées

(ii) selection ⇒ bette varionts have higher chosse

+

"Cumulative Selection,

representation Introns

Evolvable Representation

* GP >> may evolve any solution (using Turing complete language)

Evolvable Representation

☐ GP may ignore operators / terminals

$$\{+,-,\times,/\}$$
; Fitness of "1", is typically ower. $\{+,-,\times\}$

- ☐ Meta-learning ⇒ Create a bias for gramma rules
 from previous generations
- a GP can find solutions of "right, length.

Ink genetic materials
$$\begin{pmatrix} x = x + 1 \\ y = y + 0 \end{pmatrix}$$

"> ~90s; emerge due to variable length of GP genes.

GP => grows uncontrollaby (until dmax).

less useful => spread => reach the } Stagnation genes => pool population } evolution

Introns => does not affect individual fittness.

Why do they emerge?

Effective fitness: Survivability of an indivial's off spring

- Cross overs ~ children are much less fit that parents.

 Mutatrons ~ usually have (-) effects!
- D Any parent reduces negative effects of (crossover) in mutation
- Better a parent con protect the child from destructive operations

higher effective fitness

Introns > does not affect individual fittness.

Why do they emerge?

Fortness Parent := chosen for reproduction } Emergence of Child := gene is passed down. Introng

Destructive genetic exercise on advortage for parents with introns

Effective Complexity:

Eff.
$$comp(\ell) = useful genes / $\sum g_i$$$

$$P_{j}^{t+t} = P_{j}^{t} \frac{f_{j}}{f} \left(1 - P_{c} \cdot \mathcal{E} P_{j}^{d} \right)$$

genes fitness crossover destructive

Effective Complexity:

Effective Complexity:

* As I'/. moreoses in population,

Destructive - Neutral crossover

Exchanged code has no/little effect.

- Strategy: Finding better prevent disrupting good solutions
 - □ Stagnation; more comp. power | effective growth memory | ends.

what as be done?

- Reduce destructive effects of crossover intelligent crossover
- Dersimony >> penalty to the length of programs
- □ Variable fitness function → gradually

 □ sensors,

 □ repochs

Genetic Programmy

Convergence

- * Max generation
- * Elapsed time

* Track fitness Best individual worst individual Z fi or fi

Algorithm of GA:

- 1. Initialize population
- 2. Get current fitness (+filtering)
- 7 3. create offsprings -> crossover
- 19 4. Mutations
 - 5. "Survival of the fittest,, update the population

6P: Initialization

- * Heuristically // randowly:
- * Max Lepth (dmax -> hyperparameter)

Full method

- d < dmax
 node → function (f)
- d = dmax

 node > terminal (t)

Grow method

d < dmax

node > f // t

od = d_{max} node $\Rightarrow t$ → ramped nalf-half

Closer look to Crossover:

* Primary search mechanism for opt. problem

Hypothesis) good building blocks coubined into larger, better blocks.

□ Algorithm → Take the fittest parents

Combined >> better individuals &

Closer book to Crossover:

Good building abournont is reflected blocks

* Crossover & 70-75% lethal to

has color => muscle density

colab

- Handbook of Genetic Programming Applications, Springer
- Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications, CRC