3. Übung Grundlagen der Elektrotechnik 1, Informatik – Musterlösung

Aufgabe 1 Grundbegriffe der Elektrotechnik – Ladung, Spannung und Energie

Beim Trennen elektrischer Ladungen wird eine Arbeit W_{AB} von -1 J aufgewendet. Dabei wird eine Ladung Q = 1 mC vom Ort A zum Ort B transportiert.

- 1. Wie groß ist die elektrische Spannung $U_{\rm AB}$, die zwischen den Punkten A und B gemessen wird?
- 2. Welche elektrische Leistung P war für den Vorgang erforderlich, wenn dieser $10\,\mu\mathrm{s}$ gedauert hat?
- 3. Die potenzielle Energie $W_{\rm A}$ am Ort A beträgt 3,5 J. Berechnen Sie die potenzielle Energie $W_{\rm B}$.

Lösung

1.1

Gesucht: Die zwischen den Punkten A und B messbare elektrische Spannung $U_{\rm AB}$.

Gegeben: Aufgewendete Arbeit $W_{AB} = -1 \,\mathrm{J}$, Ladung $Q = 1 \,\mathrm{mC}$.

Ansatz: Die gesuchte Spannung U_{AB} ergibt sich durch die Gleichung

$$U_{AB} = \frac{W_{A} - W_{B}}{Q} = \frac{W_{AB}}{Q}.$$

$$U_{\rm AB} = \frac{-1 \,\text{J}}{1 \,\text{mC}} = \frac{-1 \,\text{Ws}}{1 \cdot 10^{-3} \,\text{As}} = \underline{-1 \,\text{kV}}$$

Das Minuszeichen weist darauf hin, dass das Potenzial am Ort B positiv gegenüber dem Potenzial am Ort A ist. Der Spannungspfeil zeigt daher von B nach A und nicht wie angenommen von A nach B.

1.2

Gesucht: Die elektrische Leistung P.

Gegeben: Aufgewendete Arbeit $W_{AB} = -1$ J, Ladungsänderung $\Delta Q = Q = 1$ mC, Spannung $U_{AB} = -1$ kV und Zeitdauer $\Delta t = 10 \,\mu\text{s}$.

Ansatz: Die Leistung P berechnet sich im Gleichstromkreis aus

$$P = UI$$
.

Der benötigte Strom I kann aus der Ladungsänderung ΔQ und dem dafür notwendigen Zeitintervall Δt bestimmt werden:

$$I = \frac{\Delta Q}{\Delta t} \,.$$

Prof. Dr. rer. nat. L. Brabetz Fahrzeugsysteme und Grundlagen der Elektrotechnik

3. Übung Grundlagen der Elektrotechnik 1, Informatik – Musterlösung

Somit ergibt sich die Leistung zu

$$P = \frac{\Delta Q}{\Delta t} \, U_{\rm AB} \, .$$

Alternativ kann die Leistung über Energie und Zeit ausgerechnet werden

$$W = Pt \quad \Rightarrow \quad \boxed{P = \frac{W}{t}}.$$

$$P = \frac{1 \text{ mC}}{10 \,\mu\text{s}} (-)1 \,\text{kV} = -\frac{1 \cdot 10^{-3} \,\text{As}}{10 \cdot 10^{-6} \,\text{s}} \cdot 1 \cdot 10^{3} \,\text{V} = -10^{5} \,\text{VA} = \underline{-100 \,\text{kW}}$$

$$P = \frac{-1\,\mathrm{J}}{10\,\mu\mathrm{s}} = \frac{-1\,\mathrm{VAs}}{1\cdot 10^{-5}\,\mathrm{s}} = -10^{5}\,\mathrm{VA} = \underline{-100\,\mathrm{kW}}$$

Bezogen auf die aufgewendete Arbeit weist das Minuszeichen auf eine an das System abgegebene bzw. dem System zugeführte Leistung hin.

1.3

Gesucht: Die potenzielle Energie $W_{\rm B}$ am Ort B.

Gegeben: Die aufgewendete Arbeit $W_{AB} = -1 \,\mathrm{J}$ und die potenzielle Energie am Ort A $W_{A} = 3.5 \,\mathrm{J}$.

Ansatz: Gemäß der Definition

$$W_{AB} = W_A - W_B$$

beim Berechnen der Spannung $U_{\rm AB}$ wird die gesuchte potenzielle Energie am Ort B durch

$$W_{\rm B} = W_{\rm A} - W_{\rm AB}$$

bestimmt.

$$W_{\rm B} = 3.5 \,\mathrm{J} - (-1 \,\mathrm{J}) = \underline{\underline{4.5 \,\mathrm{J}}}$$

3. Übung Grundlagen der Elektrotechnik 1, Informatik – Musterlösung

Aufgabe 2 Dimensionierung von Widerständen

Gegeben sind drei Widerstände und ihre höchstzulässigen Leistungen

$$R_1 = 3.6 \,\mathrm{k}\Omega, \, P_1 = 0.25 \,\mathrm{W}; \quad R_2 = 20 \,\mathrm{k}\Omega, \, P_2 = 0.5 \,\mathrm{W}; \quad R_3 = 160 \,\mathrm{k}\Omega, \, P_3 = 0.25 \,\mathrm{W}.$$

Wie groß darf für die gegebene Schaltung der Widerstände in Abbildung 2.1 die Gesamtspannung U_0 maximal werden, ohne dass ein Widerstand überlastet wird?

Abbildung 2.1: Schaltung zu Aufgabe 2

Lösung

Ansatz: Die Aufgabe lässt sich am einfachsten durch Betrachtung der maximal erlaubten Spannungen lösen:

$$U_{\text{max}} = \sqrt{P_{\text{max}}R} \quad \Rightarrow \quad U_{1,\text{max}} = 30 \,\text{V}, \ U_{2,\text{max}} = 100 \,\text{V}, \ U_{3,\text{max}} = 200 \,\text{V}.$$
 (2.1)

Aufgrund der Parallelschaltung von R_2 und R_3 muss die Spannung U_3 auf 100 V begrenzt werden und es werden

$$I_3 = \frac{100 \text{ V}}{160 \text{ k}\Omega} = 0.625 \text{ mA}$$
 sowie $I_2 = \frac{100 \text{ V}}{20 \text{ k}\Omega} = 5 \text{ mA}$ (2.2)

Gemäß Kirchhoff 2 kann eine Gleichung für den Eingangskeis der Schaltung aufgestellt werden

$$0 = -U_0 + I_1 R_1 + I_2 R_2. (2.3)$$

und die Knotengleichung

$$0 = I_1 - I_2 - I_3 \implies I_1 = I_2 + I_3 = 5 \,\text{mA} + 0.625 \,\text{mA} = 5.625 \,\text{mA}.$$
 (2.4)

Für die maximal erlaubte Quellenspannung U_0 ergibt sich dann

$$U_{0,\text{max}} = I_1 R_1 + I_2 R_2 = 5,625 \,\text{mA} \cdot 3,6 \,\text{k}\Omega + 5 \,\text{mA} \cdot 20 \,\text{k}\Omega = \underline{120,25 \,\text{V}} \,. \tag{2.5}$$

Abschließend ist noch die Spannung U_1 zu prüfen, diese ist aber mit 20,25 V deutlich kleiner als die erlaubten 30 V.