Metody statystyczne - zestaw 3

Rozważamy proces Poissona, w którym sygnały są wysyłane do serwera ze średnią częstością $\lambda=1min^{-1}$.

- 1. Proszę narysować liczbę wysyłanych sygnałów w funkcji czasu dla $t \in (0,90)$ min. Aby to zrobić, należy każdorazowo losować czas pomiędzy kolejnymi sygnałami z rozkładu wykładniczego $f(t) = \lambda e^{-\lambda t}$. Na jednym wykresie proszę umieścić kilka trajektorii.
- 2. Proszę doświadczalnie (dla 10^4 trajektorii) uzyskać rozkład liczby sygnałów dla chwil czasu $t=1,\,t=20,\,t=90$. Następnie proszę porównać go z rozkładem Poissona: $P_t(k)=\frac{(\lambda t)^k}{k!}e^{-\lambda t}$. 3^* . Proszę narysować rozkład czasu oczekiwania na k-te zdarzenie dla
- 3*. Proszę narysować rozkład czasu oczekiwania na k-te zdarzenie dla $k=2,\,5,\,10,\,50$. Proszę znaleźć wartość oczekiwaną oraz odchylenie standardowe, a następnie porównać z wartościami teoretycznymi $E(\Gamma(k,\lambda))=\frac{k}{\lambda}$, $\sigma(\Gamma(k,\lambda))=\frac{\sqrt{k}}{\lambda}$. 4*. Proszę zasymulować kilka źródeł sygnału o różnych częstościach λ_i ,
- 4^* . Proszę zasymulować kilka źródeł sygnału o różnych częstościach λ_i , a następnie sprawdzić, czy otrzymany proces jest równoważny procesowi Poissona z $\lambda = \sum_i \lambda_i$ (sprawdzenia można dokonać przez porównanie z rozkładem teoretycznym.).