# Vertex Cover Linear Program

```
Input Graph G = (V, E) Where V = \{v_1, v_2, ..., v_n\} and E = \{\{v_i, v_j\} \text{ where } v_i, v_j \in V\}
```

```
Output
Smallest set of
versiles covering
alledges
```



#### Vertex Cover ILP

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective:  $\min \sum_{i} x_{i}$ 

Subject to:  $x_i + x_j \ge 1$ , for each edge  $\{v_i, v_j\}$ 

 $x_i \in \{0,1\}$ , for each vertex i

## Example:

Objective:  $\min x_1 + x_2 + x_3 + x_4$ 

Subject to:  $x_1 + x_2 \ge 1$ 





#### Vertex Cover ILP

brinteger

Vertex Cover: Given graph, find the smallest subset of vertices such that every edge in the graph has at least one vertex in the subset.

Objective:  $\min \sum_{i} x_{i}$ 

Subject to:  $x_i + x_j \ge 1$ , for each edge  $\{v_i, v_j\}$ 

 $x_i \in \{0,1\}$ , for each vertex i

## **Example:**

Objective:  $\min x_1 + x_2 + x_3 + x_4$ Subject to:  $x_1 + x_2 \ge 1$   $x_2 + x_3 \ge 1$   $x_2 + x_4 \ge 1$   $x_3 + x_4 \ge 1$  $x_1, x_2, x_3, x_4 \in \{0,1\}$ 



## Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

$$U = \{1,4,7,8,10\}$$

$$S = \{1,7,8\}, \{1,4,7\}, \{7,8\}, \{4,8,10\}\}$$

## Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective:  $\min \sum_{s} x_{s}$ 

Subject to:  $\sum_{s: u \in s} x_s \ge 1$ , for each  $u \in U$ 

 $x_s \in \{0,1\}$ , for each set s

$$V = \{1, 4, 7, 8, 10\}$$

$$V = \{1, 7, 8, 10\}$$

$$X = \{1, 7, 8\}, \{1, 4, 7\}, \}$$

$$\{7, 8\}, \{4, 8, 10\}$$

## Set Cover ILP

Set Cover: Given a universe of elements U and sets S, find the smallest subset of S such that every element in U is in some selected subset.

Objective:  $\min \sum_{s} x_s$ Subject to:  $\sum_{s: u \in s} x_s \ge 1$ , for each  $u \in U$  $x_s \in \{0,1\}$ , for each set s

## **Example:**

Objective:  $\min x_1 + x_2 + x_3 + x_4$ Subject to:  $x_1 + x_2 \ge 1$   $x_2 + x_4 \ge 1$   $x_1 + x_2 + x_3 \ge 1$   $x_1 + x_3 + x_4 \ge 1$   $x_4 \ge 1$  $x_1, x_2, x_3, x_4 \in \{0,1\}$ 

$$U = \{1, 4, 7, 8, 10\}$$

$$S = \left\{ \begin{cases} 1, 7, 8 \\ 7, 8 \end{cases}, \{1, 4, 7 \}, \right\}$$

We now have a reduction from Vertex Cover to

Set Cover 1

Objective,
Constraints
Linear
Fragramming

FRA

Vertex Cover and Set Cover are NP-hard NP-hard = if we can solve in polynomial time, men P=NP

ILP is MP-hard

| $x_1, x_2$ | $\in$ | $\mathbb{R}$ |
|------------|-------|--------------|
|------------|-------|--------------|

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 



$$x_1, x_2 \in \mathbb{R}$$

Subject to:  $x_1 + \overline{x_2} \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$



 $x_1, x_2 \in \mathbb{R}$ 

Objective:  $\max 5x_1 + 8x_2$ 

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$



 $x_1, x_2 \in \mathbb{N}$  integers 30

Objective:  $\max 5x_1 + 8x_2$ 

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$



 $x_1, x_2 \in \mathbb{N}$ 

Objective:  $\max 5x_1 + 8x_2$ 

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 

- Closest integer solution?
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?



$$x_1, x_2 \in \mathbb{N}$$
Objective:  $\max 5x_1 + 8x_2$ 
Subject to:  $x_1 + x_2 \le 6$ 

 $x_1, x_2 \ge 0$ 

 $5x_1 + 9x_2 \le 45$ 

- Closest integer solution? Not feasible
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?



$$x_1, x_2 \in \mathbb{N}$$
Objective:  $\max 5x_1 + 8x_2$ 
Subject to:  $x_1 + x_2 \le 6$ 
 $5x_1 + 9x_2 \le 45$ 
 $x_1, x_2 \ge 0$ 

- Closest integer solution? Not feasible
- Closest feasible integer solution?
- Closest feasible integer solution on feasible region boundary?



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary?



$$x_1, x_2 \in \mathbb{N}$$
Objective:  $\max 5x_1 + 8x_2$ 
Subject to:  $x_1 + x_2 \le 6$ 
 $5x_1 + 9x_2 \le 45$ 
 $x_1, x_2 \ge 0$ 

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 

- Closest integer solution? Not feasible
- Closest feasible integer solution? Obj = 34
- Closest feasible integer solution on feasible region boundary? Obj = 39
- Actual optimal Obj = 40



 $x_1, x_2 \in \mathbb{N}$ 

Objective:  $\max 5x_1 + 8x_2$ 

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 



 $x_1, x_2 \in \mathbb{N}$ 

Objective:  $\max 5x_1 + 8x_2$ 

Subject to:  $x_1 + x_2 \le 6$ 

 $5x_1 + 9x_2 \le 45$ 

 $x_1, x_2 \ge 0$ 



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

#### Integer feasible region:



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

## Integer feasible region:

• Not convex.



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

## Integer feasible region:

• Not convex.



$$x_1, x_2 \in \mathbb{N}$$

Subject to:  $x_1 + x_2 \le 6$ 

$$5x_1 + 9x_2 \le 45$$

$$x_1, x_2 \ge 0$$

#### Integer feasible region:

- Not convex.
- local optimum ≠ global optimum.