Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liv.ac.uk

v.selis@liv.ac.uk

Digital 1: Basic gates and function implementation

Outline

Dave McIntosh Room 508, EEE building Office hour: Wednesday at 2 pm (email first)

Digital electronics in context

https://www.youtube.com/watch?v=Fxv3JoS1uY8

- Logic gates (revision)
- Combinational logic (revision)
- Karnaugh maps (revision)
- Minterms and maxterms (revision)
- Implementing functions (revision)

Course textbook – please borrow and use it!

Digital electronics in context

Logic gates: basic operations (revision)

Logic gates use Boolean algebra

Basic operations are:

The NOT gate or inverter

The circuit symbol is

The truth table is

The notation is

$$X = \overline{A}$$

$$X = A'$$

$$A \longrightarrow X$$

$$X = A \cdot B$$

$$X = A \wedge B$$

OR

$$X = A + B$$

$$X = A \vee B$$

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

XOR

Exclusive OR

$$X = A \oplus B$$

A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

3+ inputs?

X	С	В	Α
0	0	0	0
0	1	0	0
0	0	1	0
0	1	1	0
0	0	0	1
0	1	0	1
0	0	1	1
1	1	1	1

 $X = A \cdot B \cdot C$

OR

Α	В	C	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

XOR ...?

A	В	C	X	Rarely seen
0	0	0	0	-
0	0	1	1	This
0	1	0	1	interpretation: "one and only
0	1	1	0	one"
1	0	0	1	
1	0	1	0	Alternative:

"odd parity"

$$X = A + B + C$$

Inverted versions of these gates...

"Buffer"

Α	X
0	0
1	1

$$X = A$$

NAND

A	В	С	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$X = \overline{A \cdot B \cdot C}$$

NOR

Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0

$$X = \overline{A + B + C}$$

XNOR (2 input)

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1

$$X = \overline{A \oplus B}$$

Exclusive NOR

$$X = \overline{A \oplus B}$$

Exclusive OR

$$X = A \oplus B$$

A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Notations

AND $A.B \quad (A \land B)$

OR A+B $(A \lor B)$

Inversion \overline{X} ("complementation")

Universal gates

NAND and NOR are 'universal gates'

Each one can implement any Boolean function without using other gates...

e.g. NAND as NOT

UNIVERSITY OF LIVERPOOL

- NAND and NOR gates are cheaper to produce than other gates
- NAND gates are routinely used to build the other gates in circuits
- Particularly if buying in bulk, many NAND gates may be bought instead of purchasing all types

Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?

$$X = (\overline{A \cdot B}) \cdot (A + B)$$

Groups of 2 or 3

- 1. Draw circuit diagram
- 2. Use the individual truth tables to construct a combined truth table

Combinational and sequential circuits

- Combinational circuits:
 - Output depends only on present input (easier)
- Sequential circuits:
 - Output values depend on present and past values
 - Circuit 'remembers' its own **state**
- Combinational logic uses Boolean algebra.

Laws of Boolean Algebra

Operations with 0	X+0=X	X·0=0
Operations with 1	X+1=1	X·1=X
Idempotent laws	X+X=X	X·X=X
Involution law	(X')'=X	
Laws of complementarity	X+X'=1	X·X'=0
Commutative laws	X+Y=Y+X	$X \cdot Y = Y \cdot X$
Associative laws	(X+Y)+Z=X+(Y+Z)=X+Y+Z	(XY)Z=X(YZ)=XYZ
Distributive laws	X(Y+Z)=XY+XZ	X+YZ=(X+Y)(X+Z)

Laws / theorems of Boolean Algebra

Simplification theorem (1)	$X \cdot Y + X \cdot Y' = X$	$(X+Y)\cdot(X+Y')=X$
Simplification theorem (2)	$X+X\cdot Y=X$	<i>X</i> ⋅ (<i>X</i> + <i>Y</i>)= <i>X</i>
Simplification theorem (3)	$(X+Y')\cdot Y=X\cdot Y$	$X \cdot Y' + Y = X + Y$
DeMorgan's laws	(X+Y+Z+)'=X'·Y'·Z'	(X·Y·Z)'=X'+Y'+Z'
Multiplying and factoring	$(X+Y)\cdot(X'+Z)=X\cdot Z+X'\cdot Y$	$X \cdot Y + X' \cdot Z = (X + Z) \cdot (X' + Y)$
Consensus theorem	$X \cdot Y + Y \cdot Z + X' \cdot Z = X \cdot Y + X' \cdot Z$	$(X+Y)\cdot(Y+Z)\cdot(X'+Z)$ $=(X+Y)\cdot(X'+Z)$

BUT KARNAUGH MAPS ARE USUALLY MORE EFFICIENT THAN SIMPLIFYING ALGEBRAICALLY!

Minterms

A	В	C	Minterms	Maxterms
0	0	0	$A'B'C'=m_0$	$A+B+C=M_0$
0	0	1	$A'B'C=m_1$	$A+B+C'=M_1$
0	1	0	$A'BC'=m_2$	$A+B'+C=M_2$
0	1	1	$A'BC=m_3$	$A+B'+C'=M_3$
1	0	0	$AB'C'=m_4$	$A'+B+C=M_4$
1	0	1	$AB'C=m_5$	$A'+B+C'=M_5$
1	1	0	<i>ABC'=m</i> ₆	$A'+B'+C=M_6$
1	1	1	$ABC=m_7$	$A'+B'+C'=M_7$

Minterm: a <u>product</u> term which outputs a logic high for one combination of A, B and C and their inverses.

Example:

For the combination **A=1**, **B=0**, **C=1**, the only product term worth 1 is **A**.**B**'**C**.

[Let
$$A = 1$$
, $B = 0$, $C = 1$, then:
 $A.B'C = 1.1.1 = 1$]

The binary number 101 is 5 as a decimal, so we call this minterm 5, m_5

Maxterms

A	В	C	Minterms	Maxterms
0	0	0	$A'B'C'=m_0$	$A+B+C=M_0$
0	0	1	$A'B'C=m_1$	$A+B+C'=M_1$
0	1	0	$A'BC'=m_2$	$A+B'+C=M_2$
0	1	1	$A'BC=m_3$	$A+B'+C'=M_3$
1	0	0	$AB'C'=m_4$	$A'+B+C=M_4$
1	0	1	$AB'C=m_5$	$A'+B+C'=M_5$
1	1	0	<i>ABC'=m</i> ₆	$A'+B'+C=M_6$
1	1	1	$ABC=m_7$	$A'+B'+C'=M_7$

Maxterm: a <u>sum</u> term which outputs a logic LOW for one combination of A, B and C and their inverses.

Example:

For the combination A=1, B=0, C=1, the only sum term worth 0 is A' + B + C'.

[Let
$$A = 1$$
, $B = 0$, $C = 1$, then:
 $A' + B + C' = 0 + 0 + 0 = 0$]

The binary number 101 is 5 as a decimal, so we call this maxterm 5, M_5

Implement a function using minterms & maxterms

Consider the function, *f*, represented by this truth table.

We only want f to take a logic 'high' value for the combinations of A, B, C in the final five rows (ABC = 011, 100, 101, 110, 111).

How can we implement this using logic gates?

A	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Minterms and the Sum of Products

We can derive an expression for the output, f, by ORing together the product terms that make f = 1 for the desired combinations:

$$f=(A'BC)+(AB'C')+(AB'C)+(ABC')+(ABC)$$

This is called a SUM OF PRODUCTS (SOP)

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Maxterms and the Product of Sums

We can also write f by ANDing together the product terms that make f = 0 for the desired combinations:

$$f = (A+B+C)(A+B+C')(A+B'+C)$$

This is called a PRODUCT OF SUMS (POS)

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Minimum SOP

Before implementing using logic gates, it makes sense to minimise (simplify) the sum of products expression using Boolean laws:

$$f=(A'BC)+(AB'C')+(AB'C)+(ABC')+(ABC')$$

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Minimum SOP and implementation

Maxterms – minimum POS

• As noted, we can also write f by ANDing together the combinations of values that make it 0 (maxterms):

$$f = (A+B+C)(A+B+C')(A+B'+C)$$

$$f = BC + A$$

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Combinational logic: minterms

Combinational logic expressions can be expressed as a sum of minterms ('canonical sum of products') as follows:

$$f(C,B,A) = m_2 + m_5 + m_7$$

 $f(C,B,A) = \sum m(2,5,7)$

 m_2 , m_5 and m_7 are minterms; we can substitute them in:

$$m_2 = C'BA'$$
 $m_5 = CB'A$ $m_7 = CBA$ $f = C'BA' + CB'A + CBA = C'BA' + CA$

Minterms & Maxterms

Α	В	C	Minterms	Maxterms
0	0	0	$A'B'C'=m_0$	$A+B+C=M_0$
0	0	1	$A'B'C=m_1$	$A+B+C'=M_1$
0	1	0	$A'BC'=m_2$	$A+B'+C=M_2$
0	1	1	$A'BC=m_3$	$A + B' + C' = M_3$
1	0	0	$AB'C'=m_4$	$A'+B+C=M_4$
1	0	1	$AB'C=m_5$	$A'+B+C'=M_5$
1	1	0	$ABC'=m_6$	$A'+B'+C=M_6$
1	1	1	$ABC=m_7$	$A'+B'+C'=M_7$

Sum of Products (SOP)

Product of Sums (POS)

$$m_2 + m_5 + m_7 = \Sigma m(2,5,7) \qquad M_2 \cdot M_5 \cdot M_7 = \Pi M(2,5,7)$$
UNIVERSITY OF LIVERPOOL A'BC'+AB'C+ABC = A'BC'+AC
$$(A+B'+C)(A'+B+C')(A'+B'+C')$$

Question

• Substitute in the minterms to give the following 'canonical sum of products' as a sum of product terms, and simplify (if possible).

$$f(C,B,A) = \sum m(0,3,6)$$

? ? Question

• By substituting in the minterms and simplifying, rewrite the following 'canonical sum of products' expression as a minimum sum of products (minimum SOP).

$$f(D, C, B, A) = \sum m(1,4,8,9,14)$$

Summary and suggested reading

Context Logic gates (Section 2.2) Minterms & maxterms (Section 4.3) Boolean algebra (Sections 2.4 – 2.8) Karnaugh maps (Sections 5.2 – 5.3)

Roth and Kinney Fundamentals of Logic Design

Next lecture is this
Wednesday at 12.00
in the Chadwick
Barkla lecture
theatre:
Multiplexers,
decoders, encoders...

