Project 5 by Ashwin Kumar Ashok Kumar

Q1. Least Square Monte Carlo:

a) Laguerre polynomials

Q1.a [method = Laguerre] S0 = 36.000000			
['T/K', 'nan'] ['Binomial-using J-R Model', '% deviation'] [0.5 nan] [4.2076689 0.] [1. nan] [4.4871167 0.] [2. nan] [4.84680593 0.]	['K=2', '% deviation'] [3.98954488 5.18396363] [3.98008112 11.29980822] [3.95796233 18.3387495]	['K=3', '% deviation'] [4.05437298	['K=4', '% deviation'] [4.19203344 0.3715943] [4.26751805 4.89398134] [4.31456721 10.98122623]
S0 = 40.000000			
['T/K', 'nan'] ['Binomial-using J-R Model', '% deviation'] [0.5 nan] [1.80072793 0.] [1. nan] [2.31581127 0.] [2. nan] [2.89227396 0.]	['K=2', '% deviation'] [1.37009677 23.91428194] [1.434298 38.0649877] [1.54455538 46.59719641]	['K=3', '% deviation'] [1.677248	['K=4', '% deviation'] [1.78574476 0.83206186] [2.14704694 7.28748223] [2.29167158 20.76575017]
S0 = 44.000000			
['T/K', 'nan'] ['Binomial-using J-R Model', '% deviation'] [0.5 nan] [0.62878238 0.] [1. nan] [1.11576557 0.] [2. nan] [1.68865437 0.]	['K=2', '% deviation'] [0.49442231 21.3682937] [0.60746465 45.55624689] [0.71370993 57.73499036]	['K=3', '% deviation'] [0.61167739 2.72033554] [0.84259215 24.48304815] [1.00598812 40.42664154]	['K=4', '% deviation'] [0.62586107

b) Hermite polynomials

U) Her mitt	porynomiais			
Q1.b [method = I S0 = 36.000000				
[0.5 nan]	['Binomial-using J-R Model', '% deviation'] [4.2076689 0.] [4.4871167 0.] [4.84680593 0.]	[4.41853379 1.5284406]		['K=4', '% deviation'] [4.21081297 0.0747224] [4.47546235 0.25972908] [4.82748757 0.39857922]
S0 = 40.000000				
['T/K', 'nan'] [0.5 nan] [1. nan] [2. nan]	['Binomial-using J-R Model', '% deviation'] [1.80072793 0.] [2.31581127 0.] [2.89227396 0.]	[1.7683478 1.79816904] [2.27766775 1.64709108]	['K=3', '% deviation'] [1.79596391	[2.31473794 0.04634795]
S0 = 44.000000				
['T/K', 'nan'] [0.5 nan] [1. nan] [2. nan]	['Binomial-using J-R Model', '% deviation'] [0.62878238	[0.61148475 2.75097137]	['K=3', '% deviation'] [0.63188487	['K=4', '% deviation'] [0.63483142

c) Simple Monomials

```
| Company | Comp
```

The results are compared against the Binomial Model (J-R with 100000 simulations).

Based on the above results, we can see that the Monomials with K=4 gives the best results (close to the Binomial-using J-R model).

General trend is increasing K the % error (Deviation from actual) decreases. But we also see the error increases (drastically) when increase the stock price (out of the money) or increase time to expiration. Laguerre method gives least performance for higher T/Stock Price.

Roughly on performance basis, Monomial > Hermite> Laguerre

Q2.

```
Forward-start European Put Price = 3.160828 with var = 0.000725 *****[1.007263 sec]
Forward-start American Put Price = 3.476219 with var = 0.000995 *****[25.511993 sec]

Process finished with exit code 0
```