D. Input and output

Nearly all electronic circuits accept some sort of applied *input* (usually a voltage) and produce some sort of corresponding *output* (which again is often a voltage). For example, an audio amplifier might produce a (varying) output voltage that is 100 times as large as a (similarly varying) input voltage. When describing such an amplifier, we imagine measuring the output voltage for a given applied input voltage. Engineers speak of the *transfer function* \mathbf{H} , the ratio of (measured) output divided by (applied) input; for the audio amplifier above, \mathbf{H} is simply a constant ($\mathbf{H} = 100$). We'll get to amplifiers soon enough, in the next chapter. However, with only resistors we can already look at a very important circuit fragment, the *voltage divider* (which you might call a "de-amplifier").

1.2.3 Voltage dividers

We now come to the subject of the voltage divider, one of the most widespread electronic circuit fragments. Show us any real-life circuit and we'll show you half a dozen voltage dividers. To put it very simply, a voltage divider is a circuit that, given a certain voltage input, produces a predictable fraction of the input voltage as the output voltage. The simplest voltage divider is shown in Figure 1.6.

Figure 1.6. Voltage divider. An applied voltage $V_{\rm in}$ results in a (smaller) output voltage $V_{\rm out}$.

An important word of explanation: when engineers draw a circuit like this, it's generally assumed that the $V_{\rm in}$ on the left is a voltage that you are applying to the circuit, and that the $V_{\rm out}$ on the right is the resulting output voltage (produced by the circuit) that you are measuring (or at least are interested in). You are supposed to know all this (a) because of the convention that signals generally flow from left to right, (b) from the suggestive names ("in," "out") of the signals, and (c) from familiarity with circuits like this. This may be confusing at first, but with time it becomes easy.

What is V_{out} ? Well, the current (same everywhere, assuming no "load" on the output; i.e., nothing connected across the output) is

$$I = \frac{V_{\text{in}}}{R_1 + R_2}.$$

Figure 1.7. An adjustable voltage divider can be made from a fixed and variable resistor, or from a potentiometer. In some contemporary circuits you'll find instead a long series chain of equal-value resistors, with an arrangement of electronic switches that lets you choose any one of the junctions as the output; this sounds much more complicated – but it has the advantage that you can adjust the voltage ratio *electrically* (rather than mechanically).

(We've used the definition of resistance and the series law.) Then, for R_2 ,

$$V_{\text{out}} = IR_2 = \frac{R_2}{R_1 + R_2} V_{\text{in}}.$$
 (1.6)

Note that the output voltage is always less than (or equal to) the input voltage; that's why it's called a divider. You could get amplification (more output than input) if one of the resistances were negative. This isn't as crazy as it sounds; it is possible to make devices with negative "incremental" resistances (e.g., the component known as a *tunnel diode*) or even true negative resistances (e.g., the negative-impedance converter that we will talk about later in the book, §6.2.4B). However, these applications are rather specialized and need not concern you now.

Voltage dividers are often used in circuits to generate a particular voltage from a larger fixed (or varying) voltage. For instance, if $V_{\rm in}$ is a varying voltage and R_2 is an adjustable resistor (Figure 1.7A), you have a "volume control"; more simply, the combination R_1R_2 can be made from a single variable resistor, or *potentiometer* (Figure 1.7B). This and similar applications are common, and potentiometers come in a variety of styles, some of which are shown in Figure 1.8.

The humble voltage divider is even more useful, though, as a way of *thinking* about a circuit: the input voltage and upper resistance might represent the output of an amplifier, say, and the lower resistance might represent the input of

Figure 1.8. Most of the common potentiometer styles are shown here. Top row, left to right (panel mount): power wirewound, "type AB" 2W carbon composition, 10-turn wirewound/plastic hybrid, ganged dual pot. Middle row (panel mount): optical encoder (continuous rotation, 128 cycles per turn), single-turn cermet, single-turn carbon, screw-adjust single-turn locking. Front row (board-mount trimmers): multiturn side-adjust (two styles), quad single-turn, 3/8" (9.5 mm) square single-turn, 1/4" (6.4 mm) square single-turn, 1/4" (6.4 mm) round single-turn, 4 mm square single-turn surface mount, 4 mm square multiturn surface mount, 3/8" (9.5 mm) square multiturn, quad nonvolatile 256-step integrated pot (E²POT) in 24-pin small-outline IC.

