Monitoria 1 MODELO DE SEARCH, CRESCIMENTO E ÁRVORE DE LUCAS

Macroeconomia III

EPGE - FGV

30 de outubro de 2017

McCall 1970

Desemprego?

- ► Excesso de demanda
- ► Fricções no mercado de trabalho

Enviroment:

- ightharpoonup Em t=0 trabalhador encontra-se desempregado
- ▶ Enquanto desempregado recebe oferta de trabalho w, $w \sim^{iid} F(\cdot)$, definida em $[0, \bar{w}]$
- ► Trabalhador decide se aceita ou não o salário w
 - Se não aceita, recebe transferência b, e procurará nova oferta no próximo período.
 - Se aceita w, tem renda w enquanto se mantém empregado, podendo ser despedido com probabilidade π ao final de cada período

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

rohoroglu

Huggett's Model

- ▶ se não aceita w
 - ▶ ele procura nova oferta w': w' sorteada segundo f: $[0, \overline{w}] \to \mathbb{R}_{++}$.
 - ▶ recebe uma transferência *b* neste período
 - ▶ se aceita w
 - ▶ ele trabalha e aufere renda w neste período
 - ightharpoonup com probabilidade π ele é despedido no período seguinte
 - caso seja despedido, ele começa período seguinte com w' = 0
 - ightharpoonup caso não seja despedido, ele começa período seguinte com w'=w

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction nodel

nrohoroglu

Huggett's Model

Preferências representadas por:

$$U(\lbrace c_t\rbrace_{t=0}^{\infty}) = E\left\{\sum_{t=0}^{\infty} \beta^t u(c_t)\right\}$$

em que

- ▶ $\beta \in (0,1)$.
- $ightharpoonup u: \mathbb{R}_+ \to \mathbb{R}.$
- u(0) = 0.
- $\blacktriangleright \lim_{c\to 0} u'(c) = \infty.$
- ▶ u'(c) > 0, $u''(c) < 0 \ \forall c \ge 0$.

Não existe possibilidade de empréstimo ou poupança. Não há *recall*

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction nodel

mrohoroglu

Huggett's Model

Formulação Recursiva

Se o trabalhador <u>aceita</u> w hoje e **segue a política ótima a partir de amanhã**, então aufere

$$u(w) + \beta \left[(1-\pi)v(w) + \pi v(0) \right]$$

Se o trabalhador escolhe <u>procurar</u> nova oferta hoje e **segue** a **política ótima a partir de amanhã**, então aufere

$$u(b) + \beta E\left[v(w')\right] = u(b) + \beta \int_0^{\overline{w}} v(w')f(w')dw'$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's gnal-extraction nodel

nrohoroglu

Huggett's Model

Formulação Recursiva

Portanto

$$v(w) = \max \{ u(w) + \beta \left[(1 - \pi)v(w) + \pi v(0) \right],$$
$$u(b) + \beta \int_0^{\overline{w}} v(w')f(w')dw' \}$$

É possível mostrar que $\exists !v$, contínua e limitada, que satisfaz a equação funcional acima e é solução do problema sequencial.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction

nrohoroglu

Huggett's Model

Formulação Recursiva

Note que,

$$U = u(b) + \beta \int_0^{\overline{w}} v(w')f(w')dw' = v(0)$$

constante.

Pela continuidade de v, $\exists R$ tal que:

$$u(R) + \beta \left[(1 - \pi)v(R) + \pi U \right] = U$$

Assim,

$$v(w) = I(w) [u(w) + \beta [(1 - \pi)v(w) + \pi U]] + (1 - I(w)) U$$
and $I(w) = 1$ so $w \ge R \circ I(w) = 0$ so

onde I(w) = 1 se $w \ge R$ e I(w) = 0 c.c.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

vore de Lucas

ruzzie

Métado da

Método de Newton-Raphson

Newton-Raphson _ucas's

odel

mrohoroglu

luggett's Model

Niyagari's Mod

Nota sobre integração numérica

Integração trapezóide:

Utilizando uma aproximação lagrangeana de F(x) é possível mostrar que

$$\int_a^b F(x)dx \simeq \frac{b-a}{2}(F(a)+F(b)). \tag{1}$$

Quando a e b estiverem próximos o bastante a eq. (1) será uma boa aproximação.

Logo basta fazer uma partição fina o bastante do intervalo [a,b]. Por exemplo, podemos dividir [a,b] em n intervalos de mesmo tamanho h=(b-a)/n.

$$I_n = \frac{h}{2} \left[F(a) + F(b) + 2 \sum_{i=1}^{n-1} F(x_i) \right]. \tag{2}$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Arvore de Lucas

Puzzle

Sistemas lineares

Bisseção

Método de Newton-Raphson

ucas's ignal-extraction nodel

nrohoroglu

Huggett's Model

Nota sobre integração numérica

Algoritmo:

1. calcule
$$h = (b - a)/n$$

2. monte um grid:
$$x_i = a + hi$$
, $i \in \{0, ..., n\}$

3. compute
$$I_n = \frac{h}{2} \left[F(x_0) + F(x_n) + 2 \sum_{i=1}^{n-1} F(x_i) \right]$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

mrohoroglu

Huggett's Model

Algoritmo

- Carregamos todos os parâmetros e funções que o environment fornece.
- 2. Definimos um grid para a variável de estado: w.
- Criamos chutes iniciais para V e G, respectivamente função valor e função política.
- 4. Definimos limites de tolerância para nosso código: ε pequeno e itmax grande.
- Calculamos o payoff de não aceita a oferta e guardamos em uma variável, N.
- 6. Para cada valor do grid de *w* calculamos o payoff de aceitar a oferta e gradamos em um vetor, *A*.
- 7. Para cada valor do grid de w calculamos a nova função valor $TV = max\{N,A\}$ e guardamos a função politica em G.
- 8. Calculamos d = |TV V|, atualizamos V (V = TV).
- 9. Se $d < \varepsilon$ ou as iterações chegaram a *itmax* paramos o código, caso contrário voltamos ao passo 5.

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

.ucas's iignal-extractio nodel

nrohoroglu

Huggett's Model

Exemplo

Considere o seguinte exemplo:

$$\blacktriangleright$$
 $(\beta, \pi, \bar{w}, b) = (0.9, 0.3, 10, 0).$

$$ightharpoonup u(x) = \sqrt{x}$$
.

•
$$w \sim U([0, \bar{w}])$$
.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Arvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction

nrohoroglu

Huggett's Model

Problema do Planejador

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\}$$

restrito ao conjunto definido por

$$c_t \geq 0, k_{t+1} \geq 0 \quad , \quad orall t \geq 0 \ c_t + k_{t+1} \leq f(k_t) + (1-\delta)k_t \quad , \quad orall t \geq 0 \ k_0 \; \mathsf{dado}$$

• Suponha que $\delta=1$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da

Método de Newton-Raphson

> signal-extractio nodel

mrohoroglu

Huggett's Model

Problema do Planejador

Reescrevendo o problema

$$\max_{k_{t+1}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} u(f(k_{t}) - k_{t+1}) \right\}$$

restrito ao conjunto definido por

$$k_{t+1} \in \Gamma(k_t) = [0, f(k_t)] \quad , \quad orall t \geq 0$$
 $k_0 \; \mathsf{dado}$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Equity Premiun Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

mrohoroglu

Huggett's Model

Formulação Recursiva

Reescrevendo o problema

$$v(k) = \max_{k' \in \Gamma(k)} \left\{ u(f(k) - k') + \beta v(k') \right\}$$

em que
$$\Gamma(k) = [0, f(k)].$$

$$k' = g(k)$$
 função política.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction

mrohoroglu

Huggett's Model

Algoritmo

- 1. Carregamos todos os parâmetros e funções do environment .
- 2. Definimos um grid para a variável de estado: k, capital.
- 3. Criamos chutes iniciais para $V \in Gk \in Gc$, respectivamente função valor e função políticas. Também definimos TV.
- 4. Definimos limites de tolerância para nosso código: ε pequeno e itmax grande. Declaramos também um erro grande inicial d=1, e iteração it=0.
- 5. Enquanto $d < \varepsilon$ e $it \le itmax$.
- 6. Para cada valor de estado k
 - ▶ para cada k' do grid, computamos c e $u(c) + \beta V(k')$.
 - ▶ Dentre todos os k', calculamos TV (máximo entre todos). E guardamos a função politica em G.
 - ▶ Calculamos d = |TV V|, atualizamos V (V = TV).
 - Se $d<\varepsilon$ ou as iterações chegaram a *itmax* paramos o código, caso contrário voltamos ao passo 5.
- 7. Uma vez que convirja, achamos $V^*(k)$ tq $TV^* = V^*$. Basta recuperar as respectivas funções políticas de acordo com a posição guardada no loop das iterações.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extractior nodel

nrohoroglu

Huggett's Model

Modelo Clássico de Crescimento Estocástico Problema do Planejador

Consideramos agora $f(k_t, z_t) = z_t k_t^{\alpha}$, em que z_t é um processo estocástico que segue uma cadeia de Markov tal que $P(z_t = \bar{z}|z_{t-1} = \bar{z}) = \xi$ e $P(z_t = \underline{z}|z_{t-1} = \underline{z}) = \zeta$.

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\}$$

restrito ao conjunto definido por

$$egin{aligned} c_t \geq 0, k_{t+1} \geq 0 &, & orall t \geq 0 \ c_t + k_{t+1} \leq f(k_t, z_t) + (1 - \delta) k_t &, & orall t \geq 0 \ k_0 & \mathsf{dado} \end{aligned}$$

• Suponha que $\delta = 1$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

_ucas's signal-extraction nodel

Imrohoroglu

Huggett's Model

Modelo Clássico de Crescimento Estocástico

Problema do Planejador

Reescrevendo o problema

$$\max_{k_{t+1}\}_{t=0}^{\infty}} \left\{ \sum_{t=0}^{\infty} \beta^{t} u(f(k_{t}, z_{t}) - k_{t+1}) \right\}$$

restrito ao conjunto definido por

$$k_{t+1} \in \Gamma(k_t, z_t) = [0, f(k_t, z_t)]$$
 , $\forall t \ge 0$
 $k_0 > 0$ dado

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Equity Premiur Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

Imrohoroglu

Huggett's Model

Modelo Clássico de Crescimento Estocástico

Formulação Recursiva

Reescrevendo o problema

$$v(k,z) = \max_{k' \in \Gamma(k,z)} \left\{ u(f(k) - k') + \beta \sum_{z'} \pi_{zz'} v(k',z') \right\}$$

em que
$$\Gamma(k,z) = [0, f(k,z)].$$

 $k' = g(k)$ função política.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Equity Premiur

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

> gnal-extraction nodel

nrohoroglu

Huggett's Model

Árvore de Lucas

Enviroment:

- ► Economia de trocas, número grande de indivíduos, sem heterogeneidade (agente representativo)
- Um único ativo durável
- ▶ Possui uma única unidade do ativo (árvore), $s_0 = 1$.
- ▶ ativo não sofre depreciação e produz frutos (dividendos) a cada período que evoluem de acordo com um processo estocástico.
- ► frutos são perecíveis.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction

rohoroglu

Huggett's Model

Niyagari's Mod

Árvore de Lucas

Macroeconomia III

Monitoria 1

Agentes:

▶ Preferências sobre plano de consumo $c = \{c_t\}_{t=0}^{\infty}$:

$$U(c) = \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$

com $\beta \in (0,1), u' > 0, u'' < 0.$

os gastos dos agentes são restritos pela sua riqueza:

$$w_t = (p_t + x_t)s_t$$

que pode ser utilizada para adquirir mais unidades do ativo árvore.

Problema Sequencial:

$$\max_{c} \mathbb{E} \sum_{t} \beta^{t} u(c_{t})]$$

$$s.t$$
 $c_t + p_t s_{t+1} \le (p_t + x_t) s_t$, $\forall c_t, s_{t+1} \ge 0$ s_0, x_0 dados

Árvore de Lucas

Árvore de Lucas

Formulação Recursiva

Reescrevendo...

$$V(s,x) = \max_{c,s' \ge 0} u(c) + \beta E \left[V(s',x') | x \right]$$

s.t $c + p(x)s' \le [p(x) + x]s$

onde as variáveis de estado são (s, x).

A solução será dada por uma função política s'=g(s,x). Condição de market clearing: g(s,x)=1.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

> ucas's ignal-extraction

mrohoroglu

Huggett's Model

Ambiente

- ightharpoonup massa unitária de agentes com desconto eta
- ▶ uma árvore de Lucas (s)(ativo de risco) e títulos sem risco de um período (B)
- a árvore paga dividendos (y) que crescem a uma taxa x (modificação do enviroment da árvore de Lucas - taxa de crescimento das dotações seguem um processo de Markov).
 - ➤ x segue um processo de markov com n estados
 - $\pi(x',x) = P(x_{t+1} = x' | x_t = x)$
 - ▶ taxa de crescimento bruta dos dividendos: $x' = \frac{y'}{y}$.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's gnal-extraction odel

nrohoroglu

Huggett's Model

iyagari's Mo

Equação de Bellman

$$V(w, x, y) = \max_{s' \ge 0, B' \ge 0} u(c) + \beta \sum_{x'} V(w', x', y') \pi(x', x)$$

sa
$$c + p(x, y)s' + q(x, y)B' \le w$$

(r.o)

$$w' = [p(x', y') + y']s' + B'$$

$$y' = x'y$$

onde as duas últimas equações referem-se as leis de movimento.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

_ucas's signal-extraction nodel

mrohoroglu

Huggett's Mod

Definition

Um equilíbrio competitivo recursivo é $\{V,g_s,g_B,p,q\}$ tais que

- ▶ dados p e q, V, g_s , g_B resolvem o problema de programação dinâmica dos agentes.
- ► Market Clearing

$$s' = g_s(w, x, y) = 1$$

 $B' = g_B(w, x, y) = 0$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Resolvendo o Modelo

Em equilíbrio c = y. Então

$$p(x,y) = \beta \sum_{x'} \frac{u'(x'y)}{u'(y)} [p(x',x'y) + x'y] \pi(x',x)$$

Suponha que $u(c) = c^{1-\sigma}/(1-\sigma)$ e $p(x_i,y) = p_i y$ para todo i, temos

$$p_i = \beta \sum_{j=1}^{n} x_j^{1-\sigma} (p_j + 1) \pi(x_j, x_i)$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Resolvendo o Modelo

Ou seja, temos um sistema com n equações para encontrar n preços.

▶ Definindo a matriz $n \times n$ **A** em que

$$a_{ij} = \beta x_j^{1-\sigma} \pi(x_j, x_i)$$

▶ o vetor \mathbf{n} $n \times 1$ em que

$$b_i = \sum_{j=1}^n x_j^{1-\sigma} \pi(x_j, x_i)$$

▶ podemos redefinir o sistema de equações como

$$\mathbf{p} = \mathbf{A}\mathbf{p} + \mathbf{b} \Rightarrow \tag{3}$$

$$(\mathbf{I} - \mathbf{A})\mathbf{p} = \mathbf{b} \Rightarrow \tag{4}$$

$$\mathbf{p} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{b} \tag{5}$$

se $(\mathbf{I} - \mathbf{A})^{-1}$ existe.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Arvore de Lucas

Equity Premium

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

> ucas's ignal-extraction nodel

nrohoroglu

Huggett's Model

Resolvendo o Modelo

para os títulos,

$$q(x,y) = \beta \sum_{x'} \frac{u'(x'y)}{u'(y)} \pi(x',x)$$

$$q(x_i, y) = \beta \sum_{j=1}^n x_j^{1-\sigma} \pi(x_j, x_i)$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

Imrohoroglu

Huggett's Model

Retornos esperados

para a árvore

$$\hat{r}^{e}(x_{j}, x_{i}) = \frac{p(x_{j}, x_{j}y) + x_{j}y - p(x_{i}, y)}{p(x_{i}, y)}$$
 (6)

$$= \frac{p_j x_j + x_j - p_i}{p_i}$$

Então o retorno esperado condicionais

$$r^{e}(x_{i}) = \sum_{i=1}^{n} \hat{r}^{e}(x_{j}, x_{i}) \pi(x_{j}, x_{i})$$

e o retorno incondicionais

$$\bar{r}^e = \sum_{i=1}^n r^e(x_i) \bar{\pi}(x_i)$$

 $\bar{\pi}$ é a distribuição invariante da matriz de Markov.

Monitoria 1 Macroeconomia III

Equity Premium Puzzle

(7)

28 / 78

Retornos esperados

para os títulos

$$r^f(x_i) = \frac{1 - q(x_i, y)}{q(x_i, y)} = \frac{1 - q_i}{q_i}$$

e o retorno incondicionais

$$\bar{r}^f = \sum_{i=1}^n r^f(x_i) \bar{\pi}(x_i)$$

Então a média do prêmio de risco é

$$\bar{r}^e - \bar{r}^f$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Arvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Calibração

Mehra and Prescott (1985)

- ▶ n = 2
- $x_1 = 1 + \mu \delta, x_2 = 1 + \mu + \delta$
- ► Matriz de transição

$$\begin{pmatrix} \phi & 1 - \phi \\ 1 - \phi & \phi \end{pmatrix}$$

- \blacktriangleright μ : média do crescimento do consumo per capita
- lacktriangleright δ : o desvio padrão do crescimento do consumo per capita
- $ightharpoonup \phi$: autocorrelação de primeira ordem do crescimento do consumo per capita $(2\phi-1)$
- $\beta \in (0,1)$ e $\sigma \in [0,10]$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Equity Premium Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Sistemas Lineares

problema

Queremos resolver sistemas do tipo

$$Ax = b$$

em que

- ► A é n × n
- \triangleright x é $n \times 1$
- ▶ b é *n* × 1

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da

Método de Newton-Raphson

ucas's ignal-extraction

mrohoroglu

luggett's Model

Sistemas Lineares

Método de Jacobi

Sistema

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

 $a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$
 \vdots
 $a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$

Dado x, podemos calcular

$$x_{1} = \frac{1}{a_{1,1}}(b_{1} - a_{1,2}x_{2} - a_{1,3}x_{3} - \dots - a_{1,n}x_{n})$$

$$x_{2} = \frac{1}{a_{2,2}}(b_{2} - a_{2,1}x_{1} - a_{2,3}x_{3} - \dots - a_{2,n}x_{n})$$

$$\vdots$$

$$x_{n} = \frac{1}{a_{n,n}}(b_{n} - a_{1,n}x_{1} - a_{2,n}x_{3} - \dots - a_{1,n-1}x_{n-1})$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Arvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

> ucas s ignal-extraction nodel

mrohoroglu

Huggett's

- ► chute *x*₀
- ► compute x de acordo com o sistema anterior
- se $|x_0 x| < \epsilon$ pare, temos a solução
- ightharpoonup caso contrário, faça $x_0=x$ e volte ao segundo passo

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction nodel

mrohoroglu

Huggett's Model

Sistemas Lineares

Eliminação de Gauss

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}, b = \begin{pmatrix} a_{1,n+1} \\ \vdots \\ a_{n,n+1} \end{pmatrix}$$

defina
$$E_j = [a_{j,1}, \dots, a_{j,n}, a_{j,n+1}].$$

Tomando o cuidado para que $a_{1,1} \neq 0$ fazemos

$$(E_j - (a_{j,1}/a_{1,1})E_1) \to (E_j)$$

Teremos novas A e b, em que

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Arvore de Lucas

Sistemas lineares

Sistemas imeares

Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

Imrohoroglu

Huggett's Mode

$$(E_j - (a_{j,i}/a_{i,i})E_i) \rightarrow (E_j)$$
 para $j = i+1,\ldots,n$

desde que $a_{i,i} \neq 0$, de modo que teremos novas A e b, em que A será triangular superior.

Podemos computar $x_n = a_{n,n+1}/a_{n,n}$ e recursivamente

$$x_i = \frac{a_{1,n+1} - \sum_{j=i+1}^{n} a_{i,j} x_j}{a_{i,i}}$$

para $j = n - 1, n - 2, \dots, 1$.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Àrvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

_ucas s signal-extraction nodel

Imrohoroglu

Huggett's Model

Método da Bisseção

Um método numérico que permite encontrar x tal que f(x) = 0.

Theorem

Seja $A \subseteq \mathbb{R}$. Se $f : A \to \mathbb{R}$ é contínua e existem $\underline{x} \in A$ e $\overline{x} \in A$ tais que:

- $ightharpoonup x < \overline{x}$
- $f(\underline{x})f(\overline{x}) < 0$

então $\exists \ \widetilde{x} \in (\underline{x}, \overline{x})$ tal que $f(\widetilde{x}) = 0$. Adicionalmente, se f'(x) < 0, para todo $x \in A$, então tal solução é única.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Àrvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

> ucas's gnal-extraction

rohoroglu

Huggett's Model

Método da Bisseção

► Podemos então utilizar esse método para otimizar funções cujo ótimo é interior.

- ▶ Para tanto basta definir $f(\tilde{x}) = \frac{\partial F(\tilde{x})}{\partial x}$, em que $F(\cdot)$ é a função que queremos otimizar.
- ▶ Então, basta aplicar o teorema que acabamos de aprender e encontrar \tilde{x} tal que $f(\tilde{x}) = 0$.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

nrohoroglu

Huggett's Model

Método da Bisseção

Algoritmo

(i) Encontre \underline{x} e \overline{x} tais que $f(\underline{x})f(\overline{x}) < 0$.

Obs.: sabe-se que $\widetilde{x} \in (\underline{x}, \overline{x})$

(ii) Defina
$$x_m = \frac{\overline{x} + \underline{x}}{2}$$

(iii) Calcule
$$f(x_m)$$

• se
$$f(x_m) < 0$$
, faça $\overline{x} = x_m$

• se
$$f(x_m) > 0$$
, faça $\underline{x} = x_m$

(iv) Defina
$$x'_m = \frac{\overline{x} + \underline{x}}{2}$$

(v) Calcule
$$\delta_x = |x_m' - x_m|$$
 e $\delta_f = |f(x_m')|$

(vi) Defina
$$\delta \equiv \max\{\delta_x, \delta_f\}$$

- se $\delta > 0$ retorne ao passo (iii).
- se $\delta = 0$, então x_m é a solução

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Arvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

_ucas's signal-extraction

mrohoroglu

Huggett's Model

Método da Bisseção

Propriedades

- (i) Convergência garantida.
- (ii) No entanto, como o método apenas encontra as raízes de uma função, não há garantia de que a solução encontrada é única.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

> ucas's ignal-extraction

nrohoroglu

Huggett's Model

- ▶ Permite encontrar $x \in \mathbb{R}$ tal que f(x) = 0.
- ▶ Sejam A e B subconjuntos de \mathbb{R} .
- ▶ E $f: A \rightarrow B$ uma função diferenciável.

Usando expansão de Taylor tem-se

$$f(x) \approx f(x_0) + f'(x_0)[x - x_0]$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

Imrohoroglu

Huggett's Model

Uma estimativa de x tal que f(x) = 0 é \overline{x} tal que

$$f(x_0) + f'(x_0)[\overline{x} - x_0] = 0$$

e portanto

$$\overline{x} = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

luggett's Model

Aivagari's Madal

Algoritmo

- (i) Defina i=0 e escolha $\alpha \in \mathbb{R}$. Faça $x_i=\alpha$
- (ii) Estime x_{i+1} segundo

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

(iii) Calcule
$$\delta_x = |x_{i+1} - x_i|$$
 e $\delta_f = |f(x_{i+1})|$

- (iv) Defina $\delta \equiv \max\{\delta_{\mathsf{x}}, \delta_{\mathsf{f}}\}$
 - se $\delta > 0$, faça i = i + 1 e retorne ao passo (ii)
 - se $\delta = 0$, então x_i é a solução

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Propriedades

- (i) Convergência não garantida.
 - ▶ se restringirmos a busca num intervalo fechado [a, b] garantimos a convergência do método.
- (ii) No entanto, como o método apenas encontra as raízes de uma função, não há garantia de que a solução encontrada é única.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

nrohoroglu

Huggett's Model

Método de Newton multivariado

Notação

$$x \in \mathbb{R}^n$$
, $f : \mathbb{R}^n \to \mathbb{R}^m$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}; f(x) = \begin{pmatrix} f^1(x) \\ \vdots \\ f^m(x) \end{pmatrix};$$

$$J(x) = \begin{pmatrix} \frac{\partial f^1}{\partial x_1} & \cdots & \frac{\partial f^1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x_1} & \cdots & \frac{\partial f^m}{\partial x_n} \end{pmatrix}.$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método d Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

Imrohoroglu

Huggett's Model

Airemeni'e Medel

Método de Newton multivariado

Problema

Queremos encontrar x^* tal que $f(x^*) = 0$.

Podemos fazer uma aproximação linear de f a partir de um certo ponto x^0 . Pelo Teorema de Taylor temos que

$$f(x) \simeq f(x^0) + J(x^0)(x - x^0)$$

$$f(x) = 0 \Rightarrow x^1 = x^0 - J(x^0)^{-1} f(x^0),$$

em que x^1 é nosso candidato a solução.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

nrohoroglu

Huggett's Model

Método de Newton multivariado

Algoritmo

Vamos utilizar a ideia acima para construir um método para encontrar x^* . Dado um ponto inicial x^0 , defina a sequência

$$x^{k+1} = x^k - J(x^k)^{-1} f(x^k), \ \forall \ k > 0.$$

Passos:

- 1. Escolha x^0 e faça k=0.
- 2. Defina $A_k = J(x^k)$ e resolva para s_k o seguinte sistema linear $A_k s_k = -f(x^k)$ e faça $x^{k+1} = x^k + s^k$.
- 3. Se $||x^k x^{k+1}|| > \varepsilon$, faça k = k+1 e volte ao passo anterior.
- 4. Se $||f(x^{k+1})|| \le \varepsilon$ reporte sucesso, caso contrário reporte falha.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

rvore de Lucas

Puzzle

Sistemas lineares

Metodo da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

nrohoroglu

Huggett's Model

Ambiente:

- ▶ tempo discreto e infinito: $t = 0, 1, 2, \cdots$
- gerações sobrepostas: cada agente vive dois períodos e maximiza: E[u(c) + v(c')]
 - ► c: lazer quando jovem; e c' consumo quando velho.
 - u'' < 0 < u', v'' < 0 < v', $u'(0) = v'(0) = \infty$.
 - g' > 0 em que g(x) = xv'(x)
- ▶ não há tecnologia de estocagem
- ▶ dotação de horas (lazer): w > 0 somente quando jovem.
 - dotação pode ser transformada em uma unidade de consumo do período através de tecnologia (função de produção) Um-para-Um.

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

rvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Choques

tamanho da geração t: N_t

- $P(\ln(N_t) = \beta + \Delta i \equiv \ln N^i) = \pi_i$
- ▶ onde $i \in \{1, 2, \dots, I\}$.

taxa crescimento da moeda: $x_t = \frac{M_t}{M_{t-1}}$

- ▶ $M_t 1$: quantidade de moeda que a geraçãp t 1 leva para t.
- $P(\ln(x_t) = \lambda + \Delta j \equiv \ln x^j) = \theta_j,$
- ▶ onde $j \in \{1, 2, \dots, J\}$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Mode

Informação

Hipótese: agentes não observam diretamente x_t e N_t em t, mas conhecem toda história anterior de x e N, além de M_0 .

Definition

Uma história é um vetor $q_t=(M_0,x_1,\cdots,x_t,N_1,\cdots,N_t)\in Q_t$, onde Q_t é a coleção de histórias possíveis até t.

<u>Informação incompleta:</u> somente $z_t = \frac{x_t}{N_t}$ é observável em t

- $P(\ln(z_t) = \lambda \beta + \Delta k \equiv \ln z^k) = \phi_k \equiv \sum_{j=1}^J \theta_j \pi_{j-k}$
- ▶ onde k=j-i, $k\in\{1-I,2-I,\cdots,J-1\}$ e $\pi_i=0$ para $i\notin\{1,2,\cdots,I\}$

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

iyagari's Mod

Preços

- cada unidade de consumo é vendida ao preço p_t em t
- ▶ agente jovem poupa sua dotação de lazer em y_t (= unidades produzidas do bem de consumo corrrente) e vende por moeda, recebendo $m_t = y_t \cdot p_t$ unidades montárias.
- ightharpoonup carrega m_t para t+1
- ightharpoonup consumirá $c'_{t+1} = m_t/p_{t+1}$.
- ▶ agente não conhece p_{t+1} em t, impossibilitando risk-sharing perfeito.
- Extração de Sinal: de onde surge as variações de preço?
 - ▶ aumento N_t \Rightarrow diminuição de p_t (efeito real da oferta de bens)
 - ▶ aumento de x_t ⇒ aumento de p_t (efeito nominal de emissão monetária)

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

, a voic de Lacas

²uzzle

Sistemas lineares

Nietodo da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Problema do indivíduo jovem

restrições:

$$c_t \leq w - y_t$$

$$m_t \leq p_t y_t$$

$$p_{t+1}c'_{t+1} \leq m_t$$

escolha de y_t para maximizar

$$W(y_t)=u(w-y_t)+E\left[v\left(rac{y_tp_t}{p_{t+1}}
ight);p_t,q_{t-1}
ight]$$
 em que $q_t\equiv (M_0,x_1,x_2,\cdots,x_t,N_1,N_2,\cdots,N_t)$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

Imrohoroglu

Huggett's Model

Definition

Um equilíbrio em expectativas racionais do modelo são as sequências de funções $\{p_t\}: Q_t \to \mathbb{R}$ e $\{y_t\}: Q_t \to \mathbb{R}$ tal que para todo $t \geq 1$ e todo $q_t \in Q_t$,

- $y_t = y_t(q_t)$ maximiza $W(y_t)$ quando $p_t = p_t(q_t)$ e quando a esperança é tomada com respeito a distribução de $p_{t+1} = p_{t+1}(q_{t+1})$ condicional a (q_{t-1}, p_t) ,
- ▶ Market Clearing: $N_t y_t(q_t) = \frac{M_t}{p_t(q_t)}$.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

iyagari's Moo

Equilíbrio

Olhamos para uma família menor de equilíbrios:

$$y_t = y_t \left(\frac{x_t}{N_t} \right)$$

- ► guess and verify
- ▶ guess: equilíbrio é estacionário (y_t depende de q_t somente por z_t e a dependencia é tal que z_t/y_t é estritamente crescente em z_t)

Theorem

Existe um e somente um equilíbrio satisfazendo $y_t(q_t) = y(z_t) > 0$ e $z_t/y(z_t)$ é estritamente crescente.

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

iyagari's Mod

Equilíbrio

Observação

Como z_t assume no máximo I+J-1 valores, então $y(\cdot)$ é um vetor do \mathbb{R}^{I+J-1} .

▶ CPO do problema do indivíduo: $W'(y_t) = 0$,

$$y_t u'(w-y_t) = E\left[v'\left(\frac{y_t p_t}{p_{t+1}}\right) \frac{y_t p_t}{p_{t+1}} | p_t, q_{t-1}\right]$$

▶ definindo f(x) = xu'(x), temos

$$f(y_t) = E[g(y_t p_t/p_{t+1})|p_t, q_{t-1}]$$

.

► Pelo MC:

$$\frac{p_t}{p_{t+1}} = \frac{M_t/N_t y_t}{M_{t+1}/N_{t+1} y_{t+1}} = \frac{N_{t+1} y_{t+1}}{x_{t+1} N_t y_t} = \frac{y_{t+1}}{z_{t+1} y_t N_t}$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método de

Lucas's signal-extraction model

Imrohoroglu

Huggett's Model

Equilíbrio

Ficamos com

$$f(y_t) = E\left[g\left(\frac{y_{t+1}}{z_{t+1}N_t}\right)|p_t, q_{t-1}\right]$$

- guess: $y_t = y(q_t) = y(z_t)$.
- equivalência (p_t, q_{t-1}) com (q_{t-1}, z_t) .
- ▶ Daí

$$f(y(z_t) = E\left[g\left(\frac{y(z_{t+1})}{z_{t+1}N_t}\right)|z_t\right]$$

• usando condições de equilíbrio, propriedades dos choques e $\phi_{ik} \equiv \frac{\pi_i \theta_{i+k}}{\phi_{ik}}$

$$f(y^k) = \sum_i \phi_{ik} \left[\sum_h \phi_h g(y^h/z^h N^i) \right]$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

nrohoroglu

Huggett's Model

Equilíbrio

Então,

$$y^{k} = f^{-1} \left(\sum_{i} \phi_{ik} \left[\sum_{h} \phi_{h} g(y^{h}/z^{h} N^{i}) \right] \right).$$
 (8)

É possível mostrar que o operador acima defini uma contração, logo possui um único ponto fixo.

Theorem

Existe um e apenas um equilíbrio tal que $y_t(q_t) = y(z_t) > 0$ e $z_t/y(z_t)$ é estritamente crescente.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

tivoic de Eucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Algoritmo

Passos do algoritmo:

- 1. Carregar os parâmetros.
- 2. Definir as probabilidades.
- 3. Chute inicial para o vetor y.
- 4. Iterar o operador definidor por (8) até o ponto fixo ser atingido.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

rvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Environment

Imrohoroglu (1992) The welfare cost of inflation under imperfect insurance - JEDC

- ▶ tempo discreto e horizonte infinito
- ► contínuo de indivíduos (massa 1)
- ▶ indivíduo possui dois estados: emprego e desemprego
- ▶ $s_i \in E := \{y, \theta y\}, \ \theta < 1$
- ► transição markoviana:

$$\pi(s'|s) = \Pr(s_{t+1} = s'|s_t = s) > 0$$

preferências representáveis por

$$E\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right] \qquad \beta \in (0,1)$$

$$u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma} \qquad \sigma > 1$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Netodo da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction

Imrohoroglu

Huggett's Model

Environment

- ► Não há comprometimento com ações futuras
- lacktriangle As pessoas começam na data t com encaixes monetários $ilde{m}_{t-1}$
- lacktriangle transferências positivas $T= au ilde{M}_{t-1}$ (lump-sum)
- au au é a taxa de crescimento da base monetária: $ilde{M}_t = (1+ au) ilde{M}_{t-1}$
- $ightharpoonup p_t$ denota o preço da moeda em unidades do bem de consumo da data t

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Classico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

Imrohoroglu

Huggett's Model

ivagari's Mode

Restrição orçamentária

$$c_t + p_t \tilde{m}_t \le p_t \tilde{m}_{t-1} + y_t + \tau p_t \tilde{M}_{t-1}$$

em que

$$y_t = egin{cases} y & ext{se está empregado} \\ heta y & ext{se não está empregado} \end{cases}$$

Definindo $m_t=p_t \tilde{m}_t$, $M_t=p_t \tilde{M}_t$ e $1/(1+\pi_t)=p_t/p_{t-1}$, temos

$$c_t + m_t \le 1/(1+\pi_t)m_{t-1} + y_t + \tau/(1+\pi_t)M_{t-1}$$
 (9)

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

> viodeio Ciassico de Prescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método de

Newton-Raphson

ucas's gnal-extraction nodel

Imrohoroglu

Huggett's Model

vagari's Model

Problema Recursivo

Equação de Bellman

$$V(s,m) = \max_{m',c} \left\{ u(c) + \beta \mathbb{E}_{s'}[V(s',m')] \right\}$$
sa (9)

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

Imrohoroglu

Huggett's Model

Equilíbrio

Definition

Um equilíbrio recursivo estacionário é um preço p, uma função valor v(s, m), uma função política m'(s, m), uma distribuição estacionária $\lambda(s, m)$ e oferta de moeda M tais que

- (i) v(s, m) e m'(s, m) resolvem o problema do indivíduo
- (ii) Market clearing no mercado de bens e moeda

$$\sum_{m,s} \lambda(s,m)c(s,m) = \sum_{m,s} \lambda(s,m)y(s)$$

$$\sum_{m,s} \lambda(s,m)m(s,m) = M$$

(iii) λ é uma distribuição estacionária

Imrohoroglu

Algorítimo

- 1. carregar os parâmetros ($au=\pi$)
- 2. fixe M a oferta de moeda
- 3. Resolva o problema do consumidor para encontrar m'(s, m)
- 4. Construa a matriz de transição em (s,m) e encontre λ
- 5. Calcule a demanda por moeda $\sum_{m,s} \lambda(s,m) m(s,m) = D$
 - se $\|D-M\|<\epsilon$ solução encontrada
 - ► caso contrário, atualize *M* e volte ao passo 3

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

Imrohoroglu

Huggett's Model

ivagari's Mod

Environment

Huggett (1993) Journal of Economic Dynamics and Control

- ► tempo discreto e horizonte infinito
- ▶ economia de trocas puras (não há produção)
- ► contínuo de indivíduos (massa 1)
- $e_i \in E := \{e_I, e_h\}$: dotação do agente
- transição markoviana:

$$\pi(e'|e) = \mathsf{Pr}(e_{t+1} = e'|e_t = e) > 0$$

preferências representáveis por

$$E\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right] \qquad \beta \in (0,1)$$

$$u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma} \qquad \sigma > 1$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

rvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

_ucas's signal-extraction nodel

mrohoroglu

Huggett's Model

Environment

- ▶ há somente um ativo:
 - ▶ vendido ao preço q
 - lacktriangle paga uma unidade em t+1
- restrição de endividamento: $a \ge \underline{a}$
- ► restrição orçamentária

$$c + a'q \le a + e$$

- ▶ $x = (a, e) \in X$: estado do indivíduo
 - $ightharpoonup X = A \times E$: espaço estado
 - $A = [\underline{a}, \infty)$
 - $E = \{e_I, e_h\} \text{ com } e_h > e_I$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's gnal-extraction

nrohoroglu

Huggett's Model

Problema Recursivo

$$v(x;q) = \max_{(c,a') \in \Gamma(x;q)} \left\{ u(c) + \beta \sum_{e'} \pi(e'|e)v(x';q) \right\}$$

em que

$$\Gamma(x;q) = \{(c,a') : c + a'q \le a + e; c \ge 0; a' \ge \underline{a}\}$$

ou ainda.

$$v(x;q) = \max_{a'} \left\{ u(a+e-a'q) + \beta \sum_{e'} \pi(e'|e)v(x';q) \right\}$$

sujeito a $a' \in \left| \underline{a}, \frac{a+e}{a} \right|$

▶ Seja $g: X \rightarrow A$ a função política correspondente

Monitoria 1 Macroeconomia III

Huggett's Model

66 / 78

Mudança de estado

Evolução da Riqueza (ativos e dotação)

$$\lambda_{t+1}(a',e') = \sum_{a} \sum_{e} \lambda_{t}(a,e) \pi(e'|e) I(a',a,e)$$

em que I(a', a, e) = 1 se g(a, e) = a' e nula cc.

Usando a notação x = (a, e),

$$\lambda_{t+1}(x') = \sum_{x} \lambda_{t}(x) \pi(e'|e) I(a',x)$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

mrohoroglu

Huggett's Model

Mudança de estado

ightharpoonup seja \bar{x} o vetor de estados dado por

$$[(e_I,a_1),\ldots,(e_I,a_n),(e_h,a_1),\ldots,(e_h,a_n)]$$

▶ Lei de movimento da distribuição:

$$\lambda'(\bar{x}) = \lambda(\bar{x})M$$

em que

$$M_{ij} = \pi(e'|e)I(a',x)$$

se
$$x_i = (a, e)$$
 e $x_j = (a', e')$

lacktriangle uma distribuição $ar{\lambda}$ é dita estacionária se

$$\bar{\lambda}(\bar{x}) = \bar{\lambda}(\bar{x})M$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ignal-extractio nodel

mrohoroglu

Huggett's Model

Equilíbrio

Definition

Dado \underline{a} , um equilíbrio recursivo estacionário é um preço q, uma função valor v(a,e), uma função política g(a,e) e uma distribuição estacionária $\lambda(a,e)$ tais que

- (i) v(a,e) e g(a,e) resolvem o problema do indivíduo
- (ii) λ é induzida por Π e g(a,e) (via M)
- (iii) oferta e demanda se igualam no mercado de crédito

$$G(q) = \sum_{x} \lambda(x)g(x) = 0$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

All voic de Edeas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction nodel

mrohoroglu

Huggett's Model

Algorítimo

- 1. fixe um preço q > 0
- 2. calcule v(x) e g(x) que resolvem o problema do indivíduo
- 3. calcule M usando Π e g(x)
- 4. encontre a distribuição invariante λ
- 5. calcule o excesso de demanda de crédito G(q)
 - se G(q) < 0, há excesso de oferta:

$$q = \alpha q$$
 $\alpha < 1$

e retorne ao passo 2 usando novo preço

• se G(q) > 0, há excesso de demanda:

$$q = \alpha q$$

 $\alpha > 1$

e retorne ao passo 2 usando novo preço

• se G(q) = 0, o mercado está em equilíbrio: q é o preço de equilíbrio

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction nodel

mrohoroglu

Huggett's Model

Environment

Aiyagari (1994) Quarterly Journal of Economics

- ▶ tempo discreto e horizonte infinito
- ► contínuo de indivíduos (massa 1)
- ▶ $n_i \in N := \{n_l, n_h\}$: produtividade do agente
- ▶ oferta inelástica de trabalho por um salário wni
- ► transição markoviana *iid*:

$$\pi(n'|n) = \Pr(n_{t+1} = n'|n_t = n) > 0$$

preferências representáveis por

$$E\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right] \qquad \beta \in (0,1)$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

nrohoroglu

Huggett's Model

Environment

- os agentes acumulam capital
 - ▶ rende uma taxa de juros *r*
 - lacktriangle deprecia a uma taxa δ
- restrição de endividamento: $k \ge 0$
- restrição orçamentária

$$c + k' \le (1 + r - \delta)k + wn$$

- $x = (k, n) \in X$: estado do indivíduo
 - $X = K \times N$: espaço estado
 - $ightharpoonup \mathbb{K} = [0, k_{max}]$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

ucas's ignal-extraction

mrohoroglu

Huggett's Model

Problema Recursivo

$$v(x) = \max_{(c,k') \in \Gamma(x)} \left\{ u(c) + \beta \sum_{n'} \pi(n'|n) v(x') \right\}$$

em que

$$\Gamma(x) = \{(c, k') : c + k' \le (1 + r - \delta)k + wn; c \ge 0; k' \ge 0\}$$

 $lackbox{ Seja } g:X
ightarrow A$ a função política correspondente

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Arvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

signal-extraction model

mrohoroglu

luggett's Model

Matriz de Markov Endógena

A partir: de Π, g determinamos a matriz de Markov M no espaco $\mathbb{K} \times N$.

A partir de M encontramos a distribuição invariante $\lambda(k,n)$,

$$\lambda(k,n) = Pr(k_t = k, n_t = n).$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction

nrohoroglu

Huggett's Model

Agregação

Vamos nos concentrar em um equilíbrio estacionário. Então:

$$K = \sum_{k \in \mathbb{K}} \sum_{n \in N} g(k, n) \lambda(k, n)$$

e

$$L=\sum_{n\in N}n\bar{\pi}(n)$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas s signal-extraction model

mrohoroglu

luggett's Model

Problema da Firma

Maximizar

$$F(K, L) - rK - wL$$

CPO's

$$\frac{\partial F(K,L)}{\partial K} = r$$

$$\frac{\partial F(K,L)}{\partial I} = w$$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de

Modelo Classico de Crescimento

Arvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

Imrohoroglu

Huggett's Model

Equilíbrio

Definition

Um equilíbrio recursivo estacionário é: preços (w,r), uma função valor v(k,n), uma função política g(k,n), uma distribuição estacionária $\lambda(k,n)$, capital e emprego agregados (K,L) tais que

- (i) v(k,n) e g(k,n) resolvem o problema do indivíduo
- (ii) (K, L) resolvem o problema da firma
- (iii) λ é induzida por Π e g(k,n) (via M)

$$K = \sum_{k \in \mathbb{K}} \sum_{n \in N} g(k, n) \lambda(k, n)$$
 e $L = \sum_{n \in N} n \bar{\pi}(n)$

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Modelo Clássico de Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Netodo da Bisseção

Método de Newton-Raphson

> ignal-extractio nodel

mrohoroglu

Huggett's Model

Algorítimo

- 1. Calcule L via Π .
- 2. Chute K
- 3. Com (K, L) encontre (w, r)
- 4. resolva o problema do consumidor e obtenha g(k, n)
- 5. calcule M usando Π e g(k, n)
- 6. encontre a distribuição invariante λ
- 7. calcule $K' = \sum_{k \in \mathbb{K}} \sum_{n \in \mathbb{N}} g(k, n) \lambda(k, n)$
 - se $|K K'| \neq 0$, atualize K e retorne ao passo 3 usando o novo K
 - se |K K'| = 0, pare, encontramos o equilíbrio.

Monitoria 1

Macroeconomia III

Modelo de Search no Mercado de Trabalho

Crescimento

Árvore de Lucas

Puzzle

Sistemas lineares

Método da Bisseção

Método de Newton-Raphson

Lucas's signal-extraction model

nrohoroglu

Huggett's Model