Smooth representations of locally profinite groups

Emile T. Okada

April 5, 2019

Contents

C	onter	nts	1			
1	Pro	- $\mathcal C$ groups	3			
	1.1	Topological preliminaries	3			
	1.2	Pro- \mathcal{C} groups	3			
2	Smooth Representations of Locally Profinite Groups					
	2.1	Locally profinite groups	5			
	2.2	Smooth representations	5			
	2.3	Irreducible representations and the contragredient	9			
	2.4	Measures	10			
	2.5	The Hecke Algebra	17			

CHAPTER 1

Pro-C groups

1.1 Topological preliminaries

1.2 Pro- \mathcal{C} groups

Thm 1.2.1. Let C be a formation of finite groups. Then the following are equivalent.

- 1. G is a pro-C group;
- 2. G is compact Hausdorff totally disconnected, and for each open normal subgroup U of G, $G/U \in C$;
- 3. G is compact and the identity element 1 of G admits a fundamental system \mathcal{U} of open neighbourhoods U such that $\bigcap_{U \in \mathcal{U}} U = 1$ and each U is an open normal subgroup of G with $G/U \in \mathcal{C}$;
- 4. The identity element 1 of G admits a fundamental system \mathcal{U} of open neighbourhoods U such that each U is a normal subgroup of G with $G/U \in \mathcal{C}$, and

$$\varprojlim_{U \in \mathcal{U}} G/U.$$
(1.1)

CHAPTER 2

Smooth Representations of Locally Profinite Groups

2.1 Locally profinite groups

Definition 2.1.1. A locally profinite group is a topological group G such that every open neighbourhood of the identity in G contains a compact open subgroup of G.

Proposition 2.1.2. Let G be a locall profinite group.

- 1. Closed subgroups of G are locally profinite.
- 2. Quotients of G by closed normal subgroups are locally profinite.

Proposition 2.1.3. Let G be a compact locally profinite group then the map

$$G \to \underline{\lim} G/K$$
 (2.1)

is a topological isomorphism, where K ranges over all open normal subgroups of G.

Proposition 2.1.4. A topological group G is locally profinite iff G is locally compact and totally disconnected.

Proposition 2.1.5. Let $\{K_n\}_n$ be a decreasing sequence of compact open subgroups of G such that $\cap_n K_n = \{e\}$. Then for any neighbourhood U of e there is an n such that $K_n \subseteq U$.

2.2 Smooth representations

Definition 2.2.1. Let G be a locally profinite group and (π, V) a complex representation of G. (π, V) is *smooth* if for every $v \in V$ there is a compact open subgroup K of G such that $v \in V^K$.

 (π, V) is admissable if the space V^K is finite dimensional for each compact open subgroup K of G.

Proposition 2.2.2. Let (π, V) be a smooth representation. Then subrepresentations and quotients are also smooth.

2.2.1 Characters

Proposition 2.2.3. Let $\psi: G \to \mathbb{C}^{\times}$ be a group homomorphism. The following are equivalent

- 1. ψ is continuous,
- 2. $\ker \psi$ is open,
- 3. $\ker \psi$ contains an open set,
- 4. the corresponding representation on \mathbb{C} is smooth.

Proof. (4) \Leftrightarrow (3) \Leftrightarrow (2) \Rightarrow (1) clear. (1) \Rightarrow (2) Let U be an open subset of \mathbb{C}^{\times} . Then $\psi^{-1}(U)$ is open and so contains an open compact subgroup K. For U sufficiently small, it contains no non-trivial subgroups of \mathbb{C}^{\times} and so $K \subseteq \ker \psi$.

Definition 2.2.4. We call a homomorphism $\psi: G \to \mathbb{C}^{\times}$ that satisfies any of the above conditions a character of G.

Proposition 2.2.5. If $\psi: G \to \mathbb{C}^{\times}$ is a character and G is a union of its open compact subgroups, then $\psi(G) \subseteq S^1$.

2.2.2 Semisimplicity

Proposition 2.2.6. If G is compact then any smooth representation is semi-simple.

Proof. Let $v \in V$ and $K \subseteq G$ be an open compact subgroup such that $v \in V^K$. G is compact and so $|G:K| < \infty$. Thus $W = \mathbb{C}Gv$ is finite dimensional. Moreover, if we let $K' = \cap_{g \in G/K} gKg^{-1}$ then this is a open normal subgroup of G and K' acts triviall on W. Thus W descends to a G/K' representation. But G/K' is finite and so W is a sum of its simple submodules. It follows that the same holds for V and so V is semisimple.

Corollary 2.2.7. If G is compact then any irreducible smooth representation is finite dimensional.

Corollary 2.2.8. Let G be a locally profinite group, and let K be a compact open subgroup of G. Let (V, π) be a smooth representation of G. Then Res_K^GV is semisimple.

Proposition 2.2.9. Let G be a locally profinite group, K a compact open subgroups of G and (π, V) a smooth representation of G.

1.

$$V = \bigoplus_{\phi \in \hat{K}} V^{\rho}. \tag{2.2}$$

2. Let (σ, W) be a representation of G and $f: V \to W$ a G-homomorphism. Then for every $\rho \in \hat{K}$ we have $f(V^{\rho}) \subseteq W^{\rho}$ and $W^{\rho} \cap f(V) = f(V^{\rho})$.

Corollary 2.2.10. Let $U \to V \to W$ be a sequence of smooth representations of G. The sequence is exact iff $U^K \to V^K \to W^K$ is exact (as vector spaces) for all compact open subgroups K of G.

Definition 2.2.11. If H is a subgroup of G, we define

$$V(H) = \text{span}\{v - \pi(h)v : v \in V, h \in H\}.$$
(2.3)

Corollary 2.2.12. Let G be a locally profinite group, and let (π, V) be a smooth representation of G. Let K be a compact open subgroup of G. Then

$$V(K) = \bigoplus_{\rho \in \hat{K} \setminus \{1\}} V^{\rho} \tag{2.4}$$

is the unique K-complement to V^K in V.

Proof. Consider the map $V \to V^K$ given by quotienting by $\bigoplus_{\rho \in \hat{K} \setminus \{1\}} V^{\rho}$. V(K) must lie in the kernel so we have on inclusion. Conversly, if U is an irreducible K-subrepresentation of V not isomorphic to the trivial representation the U(K) = U and so we get the other inclusion.

Proposition 2.2.13. Let (π, V) be an aribitrary representation. Define $V^{\infty} = \bigcup_{K} V^{K}$, where K ranges over compact open subgroups of G. Then V^{∞} is a smooth subrepresentation of G.

Proposition 2.2.14. Let (π, V) be a smooth representation of G, and (σ, W) be an arbitrary representation. Then every morphism $f: V \to W$ factors through W^{∞} .

Corollary 2.2.15. $(-)^{\infty}$: Rep_G \rightarrow Smo_G is a functor.

Thm 2.2.16. Let $i: \mathsf{Smo}_G \to \mathsf{Rep}_G$ be the inclusion functor. Then $i \dashv (-)^{\infty}$.

2.2.3 Induction

Definition 2.2.17. Let G be a locally profinite group, H a closed or open subgroup and (σ, W) be a smooth representation of H. Define s-Ind $_H^G(W) = (\operatorname{Ind}_H^G(W))^{\infty}$. Note that if (π, V) is a smooth G representation then so is $\operatorname{Res}_H^G(V)$. Write s-Res for the functor between $\operatorname{Smo}_G \to \operatorname{Smo}_H$.

Proposition 2.2.18. s- $Res_H^G \dashv s$ - Ind_H^G .

Proof. Let V be a G-representation and W be a H-representation. Let α_W : s-Ind $_H^G(W) \to W$ be the H-homomorphism $f \mapsto f(e)$. Then we have the maps

$$\operatorname{Hom}(\operatorname{s-Res}_{H}^{G}(V), W) \leftrightarrow \operatorname{Hom}(V, \operatorname{s-Ind}_{H}^{G}(W))$$
 (2.5)

$$\phi \mapsto (v \mapsto (g \mapsto \phi(gv))$$
 (2.6)

$$\alpha_W \circ \psi \leftarrow \psi.$$
 (2.7)

It is straightforward to check that these maps are mutually inverse.

Proposition 2.2.19. s-Ind_H^G is exact.

Definition 2.2.20. Let G be a locally profinite group, H a closed or open subgroup and (σ, W) be a smooth representation of H. Define c- $\operatorname{Ind}_H^G(W)$ to be the subset of s- $\operatorname{Ind}_H^G(W)$ consisting of functions with compact support modulo H i.e. the image of $\operatorname{supp}(f)$ in $H \setminus G$ is compact. It is an easy check to see that c- $\operatorname{Ind}_H^G(W)$ yields a subrepresentation of s- $\operatorname{Ind}_H^G(W)$.

Lemma 2.2.21. Let G be a locally profinite group, H a subgroup, and K a open compact subgroup. Then

- 1. K-orbits in $H\backslash G$ are open and compact.
- 2. If a subset $C \subseteq H \backslash G$ is compact it lies in the union of finitely many K-orbits.

Proposition 2.2.22. Let $f \in s\text{-}Ind_H^G(W)$. Then f has compact support modulo H iff $supp(f) \subseteq H \cdot C$ for some $C \subseteq G$ compact.

Proof. $f \in \text{s-Ind}_H^G(W)$ so there is a compact open subgroup K such that K stabilises f. It follows that the support of f is a union of double (H, K) cosets. Let $g: G \to H \backslash G$ be the quotient map. Then q(supp(f)) is a union of K-orbits.

- (\Rightarrow) Suppose $q(\operatorname{supp}(f))$ is compact. By the lemma it is a finite union of K-orbits. Thus $\operatorname{supp}(f)$ is a union of finitely many double (H, K)-cosets. Let g_1, \ldots, g_n be double coset representatives. Then $\operatorname{supp}(f) = H \cdot (\cup_i g_i K)$ where $\cup_i g_i K$ is compact (and open).
- (\Leftarrow) Suppose supp(f) ⊆ $H \cdot C$ with C compact. Then $q(H \cdot C) = q(C)$ is compact and so lies in a finite union of K orbits. But $q(\text{supp}(f)) \subseteq q(C)$ and so q(supp(f)) must be a finite union of K-orbits and hence must be compact.

 $Remark\ 2.2.23.$ The proposition is also true if we insist that C is open.

Proposition 2.2.24. $c\text{-Ind}_H^G$ is exact.

Proposition 2.2.25. Let H be an open subgroup of G, and $\phi \in Ind_H^G(W)$ be compactly supported modulo H. Then $\phi \in c\text{-}Ind_H^G(W)$.

Definition 2.2.26. Let H be an open subgroup of G and W an H representation. Then there is a H-homomorphism $\alpha_W^c: W \to \operatorname{c-Ind}_H^G$ given by $w \mapsto f_w$ where f_w is the function that sends h to h.w and is 0 outside of H. By the previous proposition, this does indeed lie in $\operatorname{c-Ind}_H^G(W)$.

Lemma 2.2.27. Let H be an open subgroup of G, and let W be a representation of H. Then

- 1. The map α_W^c is an H-isomorphism with the space of functions $f \in c\text{-}Ind_H^G(W)$ such that $supp(f) \subseteq H$.
- 2. If W is a basis for W and G a choice of representatives for G/H, then $\{gf_w : w \in W, g \in G\}$ is a basis for $c\text{-Ind}_H^G(W)$.

Thm 2.2.28. Let H be an open subgroup of G, W an H-representation and V a G-representation. Then there is a natural bijection

$$\operatorname{Hom}_{G}(c\operatorname{-Ind}_{H}^{G}(W), V) \leftrightarrow \operatorname{Hom}_{H}(W, \operatorname{Res}_{H}^{G}(V)).$$
 (2.8)

Proof. We have the maps

$$\operatorname{Hom}_G(\operatorname{c-Ind}_H^G(W), V) \leftrightarrow \operatorname{Hom}_H(W, \operatorname{Res}_H^G(V))$$
 (2.9)

$$\phi \mapsto \phi \circ \alpha_W^c \tag{2.10}$$

$$(gf_w \mapsto g\psi(w)) \leftrightarrow \psi.$$
 (2.11)

It is starightforward to check that the second map is well-defined and that these maps are mutually inverse.

2.3 Irreducible representations and the contragredient

Remark 2.3.1. From now on assume that G/K is countable for any compact open subgroup K of G.

Lemma 2.3.2. Let V be an irreducible smooth representation of G. Then $\dim_{\mathbb{C}} V$ is countable.

Lemma 2.3.3. (Schur's lemma). If V is an irreducible smooth representation of G, then $\operatorname{End}_G(V) = \mathbb{C}$.

Corollary 2.3.4. Let V be an irreducible smooth representation of G. Then the central character of V is smooth.

Corollary 2.3.5. If G is abelian then any irreducible smooth representation of G is 1-dimensional.

Definition 2.3.6. Let V be a smooth G-representation. We define the contragredient, or smooth dual, of V to be $\check{V} = (V^*)^{\infty}$.

Remark 2.3.7. If $K \leq G$ is a compact open subgroup of G, then for any $f \in (\check{V})^K$, f(V(K)) = 0.

prop:dual Proposition 2.3.8. Restriction to V^K induces an isomorphism

 $(\check{V})^K \cong (V^K)^*. \tag{2.12}$

Thm 2.3.9. The canonical morphism $V \to \check{V}$ is an isomorphism iff V is admissable.

Proposition 2.3.10. The contravariant functor $\vee : \mathsf{Rep}(G) \to \mathsf{Rep}(G)$ is exact

Proof. Follows from proposition 2.3.8.

Corollary 2.3.11. V is irreducible iff \check{V} is irreducible.

Proposition 2.3.12. Let V and W be smooth representations of G, and $\mathcal{P}(V,W)$ be the space of G-invariant bilinear pairings $V \times W \to \mathbb{C}$. Then there are isomorphisms

$$\operatorname{Hom}_{G}(V, \check{W}) \cong \mathcal{P}(V, W) \cong \operatorname{Hom}_{G}(W, \check{V}).$$
 (2.13)

2.4 Measures

Proposition 2.4.1. Let $C_c^{\infty}(G)$ be the space of locally constant functions on G with compact support. Then $(C_c^{\infty}(G), \lambda)$ and (C_c^{∞}, ρ) are both smooth.

Remark 2.4.2. Suppose a function $f: G \to \mathbb{C}$ is fixed by $\rho(K)$ (or $\lambda(K)$) for K a compact open subgroup K of G. Then f has compact support iff $\operatorname{supp}(f) \subseteq C$ for some compact set C.

Definition 2.4.3. A right Haar integral on G is a non-zero G-homomorphism $I: (C_c^{\infty}(G), \rho) \to \mathbb{C}$ such that $I(f) \geq 0$ for any $f \in C_c^{\infty}(G)$, $f \geq 0$.

Thm 2.4.4. There exists a unique right Haar integral $I: C_c^{\infty}(G) \to \mathbb{C}$ up to scaling.

Proof. Let K be a compact open subgroup of G and write ${}^KC_c^{\infty}$ for the subspace $(C_c^{\infty}(G))^{\lambda(K)}$. Then ${}^KC_c^{\infty}(G) = \text{c-Ind}_K^G 1_K$. It follows that

$$\dim_{\mathbb{C}} \operatorname{Hom}_{G}({}^{K}C_{c}^{\infty}(G), \mathbb{C}) = 1. \tag{2.14}$$

If $f_{K,g}$ denotes the indicator function on the coset Kg, then the map

$$I_K : {}^K C_c^{\infty}(G) \to \mathbb{C}, f_{K,q} \mapsto 1$$
 (2.15)

is a G-homomorphism and so all G-homomorphisms ${}^KC_c^\infty\to\mathbb{C}$ are a multiple of this map.

Now let $\{K_n\}_n$ be a descending sequence of compact open subgroups of G such that $\cap_n K_n = \{e\}$. Then $\{^{K_n}C_c^\infty(G)\}_n$ is an ascending sequence of subspaces of $C_c^\infty(G)$ such that $C_c^\infty(G) = \bigcup_n K_n C_c^\infty(G)$. Let $I_n = I_{K_n}/|K_1:K_n|$. Then

$$I_{n+1}(f_{g,K_n}) = |K_n : K_{n+1}|/|K_1 : K_{n+1}| = 1/|K_1 : K_n| = I_n(f_{g,K_n}).$$
 (2.16)

It follows that $I_{n+1}|_{\kappa_n C_c^{\infty}(G)} = I_n$ and so we can define a G-homomorphism $I: C_c^{\infty}(G) \to \mathbb{C}$. It is clear that this map is a right Haar measure.

Now suppose I' is another Haar measure. Then there are $\alpha_n \in \mathbb{C}$ such that $I'|_{K_n C_c^{\infty}(G)} = \alpha_n \cdot I_n$ for all n. Evaluating at the f_{g,K_n} gives that $\alpha_n = \alpha_{n+1} =: \alpha$ for all n and so $I' = \alpha I$.

Remark 2.4.5. If $f \ge 0$ and there exists a $g \in G$ such that f(g) > 0 then I(f) > 0.

Definition 2.4.6. Define $\vee: C_c^{\infty}(G) \to C_c^{\infty}(G)$ by $f \mapsto \check{f}$ where $\check{f}(g) = f(g^{-1})$. Then $\vee: (C_c^{\infty}(G), \lambda) \to (C_c^{\infty}(G), \rho)$ is a G-isomorphism.

Remark 2.4.7. \vee induces a bijection between left and right Haar measures.

Definition 2.4.8. Let I be a left Haar measure on G. For a non-empty compact open subset S of G, let Γ_S denote its characteristic function. We define

$$\mu_G(S) = I(\Gamma_S). \tag{2.17}$$

Then $\mu_G(gS) = \mu_G(S)$ for all $g \in G$.

Remark 2.4.9. We have that $I(f) = \int_G f d\mu_G$ for $f \in C_c^{\infty}(G)$.

Definition 2.4.10. We can extend the domain of Haar integration as follows. Let μ_G be a left Haar measure on G, and f be a function on G invariant under left translation by a compact open subgroup K of G. If the series

$$\sum_{g \in K \setminus G} \int_{Kg} |f(x)| d\mu_G(x) \tag{2.18}$$

converges define

$$\int_{G} f(x)d\mu_{G}(x) = \sum_{g \in K \backslash G} \int_{Kg} f(x)d\mu_{G}(x). \tag{2.19}$$

Proposition 2.4.11. This definition does not depend on K and is left translation invariant.

Proof. Let K' be any other compact open subgroup of G. Then $K \cap K'$ has finite index in K and K'. It follows that

$$\sum_{g \in K \setminus G} \int_{Kg} |f(x)| d\mu_G(x) = \sum_{g \in K \setminus G} \sum_{h \in K \cap K' \setminus K} \int_{K \cap K' hg} |f(x)| d\mu_G(x)$$

$$= \sum_{g \in K \cap K' \setminus G} \int_{K \cap K' g} |f(x)| d\mu_G(x)$$

$$= \sum_{g \in K' \setminus G} \sum_{h \in K \cap K' \setminus K'} \int_{K \cap K' hg} |f(x)| d\mu_G(x)$$

$$= \sum_{g \in K' \setminus G} \int_{K'g} |f(x)| d\mu_G(x) \tag{2.20}$$

and all series converge. It follows that the same series but without absolute values converge, and so we obtain the first part of the proposition.

For the second part let $y \in g$. Then $\{yg : g \in K \setminus G\}$ is a set of coset representatives for $yKy^{-1} \setminus G$ and

$$\sum_{g \in K \backslash G} \int_{yKy^{-1} \cdot yg} |\lambda_y f(x)| d\mu_G(x) = \sum_{g \in K \backslash G} \int_G 1_{yKy^{-1}yg}(x) |\lambda_y f(x)| d\mu_G(x)$$

$$= \sum_{g \in K \backslash G} \int_G \lambda_y (1_{Kg}(x)|f(x)|) d\mu_G(x)$$

$$= \sum_{g \in K \backslash G} \int_{Kg} |f(x)| d\mu_G(x). \tag{2.21}$$

Thus $\int_G \lambda_y f d\mu_G$ is defined and the above calculation, but without absolute values, shows that it is equal to $\int_G f d\mu_G$.

Proposition 2.4.12. Let G_1, G_2 be locally profinite groups. Then the natural map $C_c^{\infty}(G_1) \otimes_{\mathbb{C}} C_c^{\infty}(G_2) \to C_c^{\infty}(G_1 \times G_2)$ is an isomorphism that respects both left and right translation.

Proposition 2.4.13. If μ_1, μ_2 are left Haar measures then the map

$$\mu: C_c^{\infty}(G_1 \times G_2) \to \mathbb{C} \tag{2.22}$$

defined via the above isomorphism is also a left Haar measure.

Proposition 2.4.14. Let $f \in G_1 \times G_2$. Then the function

$$f_1(g_1) = \int_{G_2} f(g_1, g_2) d\mu_2(g_2)$$
 (2.23)

lies in $C_c^{\infty}(G_2)$ and

$$\int_{G_1 \times G_2} f(g) d\mu_G(g) = \int_{G_1} f_1(g_1) d\mu_1(g_1). \tag{2.24}$$

Definition 2.4.15. Let μ_G be a left Haar measure on G. For $g \in G$, $f \mapsto \int_G \rho_g f d\mu_G$ is another left Haar measure. It follows that there is a unique $\delta_G(g) \in \mathbb{R}_+^{\times}$ such that

$$\delta_G(g) \int_G \rho_g f d\mu_G = \int_G f d\mu_G. \tag{2.25}$$

This map $\delta_G: G \to \mathbb{R}_+^{\times}$ is a homomorphism.

Proposition 2.4.16. δ_G is trivial on open compact subgroups of G.

Proposition 2.4.17. A homomorphism $\psi: G \to R_+^{\times}$ is a character iff it is trivial on compact open subgroups.

Corollary 2.4.18. δ_G is a character.

Proposition 2.4.19. δ_G is trivial iff G is unimodular.

Proposition 2.4.20. The functional $f \mapsto \int_G \delta_G(x)^{-1} f(x) d\mu_G(x)$ is a right Haar integral.

Proof.

$$\rho_{y}f \mapsto \int_{G} \delta_{G}(x)^{-1} \rho_{y}f(x) d\mu_{G}(x) = \delta_{G}(y) \int_{G} \rho_{y}(\delta_{G}(x)^{-1}f(x)) d\mu_{G}(x)$$

$$= \int_{G} \delta_{G}(x)^{-1}f(x) d\mu_{G}(x). \tag{2.26}$$

Definition 2.4.21. Let H be a closed subgroup of G, $\theta: H \to \mathbb{C}^{\times}$ a character and $C_c^{\infty}(H \setminus G, \theta) = \text{c-Ind}_H^G(\theta)$.

Definition 2.4.22. Let μ_H be a left Haar measure on H. Define the map $\sim: (C_c^{\infty}(G), \rho) \to C_c^{\infty}(H \setminus G, \theta)$ by

$$\widetilde{f}(g) = \int_{H} (\theta \delta_H)^{-1} \rho_g f d\mu_H. \tag{2.27}$$

This map is a G-homomorphism and

$$\widetilde{(\lambda_h f)} = (\theta \delta_H)(h)^{-1} \widetilde{f} \tag{2.28}$$

for $f \in C_c^{\infty}(G), h \in H$.

Lemma 2.4.23. \sim is surjective.

Proof. Let K be an open compact subgroup of G. Then each double coset HgK supports at most a 1-dimensional subspace of $C_c^{\infty}(H\backslash G,\theta)^K$ and these spaces span $C_c^{\infty}(H\backslash G,\theta)^K$. But each $1_{gK}\in (C_c^{\infty}(G))^K$ maps to a non-zero element of $C_c^{\infty}(H\backslash G,\theta)^K$ with support HgK and so the map is surjective.

Corollary 2.4.24. Let $\theta: H \to \mathbb{C}^{\times}$ be a character of H and I a right Haar integral on G. Then $\operatorname{Hom}_G((C_c^{\infty}(H\backslash G,\theta),\rho),\mathbb{C}) \neq 0$ iff I factors through $C_c^{\infty}(H\backslash G,\theta)$.

Corollary 2.4.25. $\dim_{\mathbb{C}} \operatorname{Hom}_{G}((C_{c}^{\infty}(H \backslash G, \theta), \rho), \mathbb{C}) = 0 \text{ or } 1.$

Remark 2.4.26. Let K be a open compact subgroup of $G, g \in G$ and $f = 1_{gK}$. Suppose $\delta_G|_{H} = \theta \delta_H$. Let $x \in G$. Then

$$\widetilde{f}(x) = \int_{H} (\theta \delta_{H})(h)^{-1} 1_{gKx^{-1}}(h) d\mu_{H}(h). \tag{2.29}$$

But $h \in gKx^{-1}$ iff $x = h^{-1}gk$ for some $k \in K$. Thus $\widetilde{f}(x)$ is 0 if $x \notin HgK$. If $x \in HgK$ write $x = h_0gk_0$ and $L = gKg^{-1} \cap H$. Then

$$\widetilde{f}(x) = \int_{H} (\theta \delta_{H})(h)^{-1} 1_{Lh_{0}^{-1}}(h) d\mu_{H}(h)$$

$$= (\theta \delta_{H})(h_{0}) \int_{H} \rho_{h_{0}}((\theta \delta_{H})^{-1} 1_{L})(h) d\mu_{H}(h)$$

$$= \theta(h_{0}) \int_{L} (\theta \delta_{H})(h)^{-1} d\mu_{H}(h). \tag{2.30}$$

But δ_G is trivial on L and so $\widetilde{f}(x) = \theta(h_0)\mu_H(L)$. It follows that

$$\widetilde{1_{h_i gK}}(hgk) = \theta(h)\delta_G(h_i)^{-1}\mu_H(L).$$
(2.31)

lem:I_ker Lemma 2.4.27. Suppose $\delta_G|_H = \theta \delta_H$ and let I denote the right Haar integral

$$f \mapsto \int_{G} \delta_{G}(x)^{-1} f(x) d\mu_{G}(x). \tag{2.32}$$

If $\widetilde{f} = 0$ then I(f) = 0.

Proof. Suppose f is fixed by K. It suffices to check the case when f is of the form $\sum_i \alpha_i 1_{h_i g K}$ for $\alpha_i \in \mathbb{C}$ and the $h_i g K$ distinct cosets. Then by the remark $\widetilde{f} = 0$ implies that $\sum_i \alpha_i \delta_G(h_i)^{-1} = 0$. But

$$I(1_{h_igK}) = \delta_G(h_ig)^{-1}\mu_G(K)$$
(2.33)

and so

$$I(f) = \mu_G(K)\delta_G(g)^{-1} \sum_{i} \alpha_i \delta_G(h_i)^{-1} = 0.$$
 (2.34)

Thm 2.4.28. Let $\theta: H \to \mathbb{C}^{\times}$ be a character of H. The following are equivalent:

1. $\operatorname{Hom}_G((C_c^{\infty}(H\backslash G,\theta),\rho),\mathbb{C})\neq 0$

2. $\theta \delta_H = \delta_G|_H$.

Proof. (1) \Rightarrow (2) Let $0 \neq I_{\theta} \in \operatorname{Hom}_{G}((C_{c}^{\infty}(H \backslash G, \theta), \rho), \mathbb{C})$ be such that the right Haar integral $I: f \mapsto \int_{G} \delta_{G}(x)^{-1} f(x) d\mu_{G}(x)$ is equal to $I_{\theta}(\widetilde{f})$. Note that elements of the form $\lambda_{h} f - (\theta \delta_{H})(h)^{-1} f$ map to zero under \sim and so we get

$$0 = I(\lambda_h f - (\theta \delta_H)(h)^{-1} f) = \int_G \delta_G(x)^{-1} (\lambda_h f - (\theta \delta_H)(h)^{-1} f) d\mu_G(x)$$
$$= (\delta_G(h)^{-1} - (\theta \delta_H)(h)^{-1}) I(f). \tag{2.35}$$

Picking an f such that $I(f) \neq 0$ we get that $\delta_G|_H = \theta \delta_H$.

 $(2) \Rightarrow (1)$ By lemma 2.4.27, if $\widetilde{f} = 0$ then I(f) = 0. The result follows.

14

Corollary 2.4.29. Suppose $\theta \delta_H = \delta_G|_H$. Then there is a non-zero I_θ : $(C_c^{\infty}(G), \rho) \to \mathbb{C}$ such that $I_{\theta}(f) \geq 0$, whenever $f \geq 0$.

Definition 2.4.30. If H is a closed subgroup of G define $\delta_{H\backslash G} = \delta_H^{-1}\delta_G|_H : H \to \mathbb{R}_+^{\times}$. Write $\mu_{H\backslash G}$ for

$$I_{\delta_{H\backslash G}}(f) = \int_{H\backslash G} f(g) d\mu_{H\backslash G}(g)$$
 (2.36)

where $f \in C_c^{\infty}(H \backslash G, \delta_{H \backslash G})$.

2.4.1 Duality theorem

Fix measures μ_G, μ_H and write $\mu_{H\backslash G}$ for the corresponding semi-invariant measure on $H\backslash G$.

Proposition 2.4.31. Let W be a H-representation. Given $\phi \in c\text{-Ind}_H^GW, \Phi \in s\text{-Ind}_H^G(\delta_{H \setminus G} \otimes \check{W})$ define $f_{\Phi,\phi}: G \to \mathbb{C}$ by

$$f_{\Phi,\phi}(g) = \langle \Phi(g), \phi(g) \rangle.$$
 (2.37)

Then $f_{\Phi,\phi}$ lies in $C_c^{\infty}(H\backslash G, \delta_{H\backslash G})$.

Proof. We clearly have

$$f_{\Phi,\phi}(hg) = \delta_{H\backslash G}(h) f_{\Phi,\phi}(g), h \in H, g \in G. \tag{2.38}$$

We also have $gf_{\Phi,\phi} = f_{g\phi,g\Phi}$. Thus, if K is a compact open subgroup that fixes both ϕ and Φ then K also fixes $f_{\Phi,\phi}$. Finally it remains to check that f has compact support module H. But $\operatorname{supp}(f_{\Phi,\phi}) \subseteq \operatorname{supp}(\phi) = H\operatorname{supp}(\phi)$.

Remark 2.4.32. Let $F = \text{s-Ind}_{H}^{G} \circ (\delta_{H \setminus G} \otimes -) \circ \vee$ and $G = \text{c-Ind}_{H}^{G}$. If $h : V \to W$ is a homomorphism between H-representations then for $\phi \in G(V)$, $\Phi \in F(W)$ we have

$$f_{F(h)\Phi,\phi}(g) = \langle \Phi(g) \circ h, \phi(g) \rangle = \langle \Phi(g), h \circ \phi(g) \rangle = f_{\Phi,G(h)\phi}(g).$$
 (2.39)

Definition 2.4.33. Define the pairing

$$(-,-)_W : \operatorname{s-Ind}_H^G(\delta_{H\backslash G} \otimes \check{W}) \times \operatorname{c-Ind}_H^G W \to \mathbb{C}$$
 (2.40)

by

$$(\Phi, \phi)_W \mapsto \int_{H \setminus G} f_{\Phi, \phi} d\mu_{H \setminus G}.$$
 (2.41)

This pairing is clearly G-invariant. By the remark the induced map

$$\operatorname{s-Ind}_{H}^{G}(\delta_{H\backslash G}\otimes \check{W}) \to (\operatorname{c-Ind}_{H}^{G}W)^{\vee}$$
(2.42)

is natural in W.

Lemma 2.4.34. Let K be a compact open subset of G, \mathcal{G} a set of representatives for $H\backslash G/K$, and for each $g\in\mathcal{G}$, let \mathcal{W}_g be a basis for $W^{H\cap gKg^{-1}}$. Then for each $g\in\mathcal{G}, w\in\mathcal{W}_g$ there is a unique $f_{g,w}$ with support HgK and $f_{g,w}(g)=w$, and the collection of all of these form a basis for $(c\text{-Ind}_H^GW)^K$.

Proof. It is clear that the $f_{g,w}$ exist and that they are linearly independent. To see that they span $(\text{c-Ind}_H^G W)^K$, note that if $f \in (\text{c-Ind}_H^G W)^K$ then $\operatorname{supp}(f)$ is the union of finitely many double cosets of $H \setminus G/K$. Noting that f multiplies by the indicators on the various double cosets are still in $(\text{c-Ind}_H^G W)^K$, we may thus reduce to the case when $\operatorname{supp}(f) = HgK$ for some $g \in \mathcal{G}$. But note that $f(g) \in W^{H \cap g^K g^{-1}}$. Taking the appropriate linear combination of $f_{g,w}$'s gives the result.

Remark 2.4.35. We have that

$$(\delta_{H\backslash G} \otimes \check{W})^{H\cap gKg^{-1}} = \check{W}^{H\cap gKg^{-1}} = \left(W^{H\cap gKg^{-1}}\right)^* \tag{2.43}$$

since $\delta_{H\backslash G}$ is trivial on $H\cap gKg^{-1}$. It follows that the dual basis of \mathcal{W}_g give a basis for $(\delta_{H\backslash G}\otimes \check{W})^{H\cap gKg^{-1}}$. Write $f_{g,\check{w}},g\in\mathcal{G},w\in\mathcal{W}_g^*$ for the elements of s-Ind $_H^G(\delta_{H\backslash G}\otimes W)$ that arise in the same way as in the lemma. Then by a similar argument as above, s-Ind $_H^G(\delta_{H\backslash G}\otimes W)$ consists of all functions f such that $f|_{HgK}$ is a finite linear combination of $f_{g,\check{w}}$'s.

Note moreover that for $g \in \mathcal{G}, w \in \mathcal{W}_g, \check{w} \in \mathcal{W}_q^*$,

$$(f_{g,\check{w}}, f_{g,w}) = \int_{H\backslash G} 1_{HgK} \langle \check{w}, w \rangle d\mu_{H\backslash G} = \mu_{H\backslash G}(HgK) \langle \check{w}, w \rangle$$
 (2.44)

and

$$(f_{q,\check{w}}, f_{q',w}) = 0 (2.45)$$

when $g' \in \mathcal{G}$ and $g \neq g'$.

Proposition 2.4.36. The pairing (-,-) is perfect.

Proof. It suffices to show that the induced map

$$\operatorname{s-Ind}_{H}^{G}(\delta_{H\backslash G} \otimes \check{W})^{K} \to ((\operatorname{c-Ind}_{H}^{G}W)^{K})^{*}$$
(2.46)

is an isomorphism for any compact open subgroup K of G. But this just follows from the remark.

Corollary 2.4.37. There is a natural isomorphism

$$(c\text{-}Ind_H^GW)^{\vee} \cong s\text{-}Ind_H^G(\delta_{H\backslash G}\otimes \check{W}). \tag{2.47}$$

2.5 The Hecke Algebra

Definition 2.5.1. Let $f_1, f_2 \in C_c^{\infty}(G)$ and define

$$f_1 * f_2(g) = \int_G f_1(x) f_2(x^{-1}g) d\mu_G(x). \tag{2.48}$$

Lemma 2.5.2. Let $f_1, f_2 \in C_c^{\infty}(G)$. Then the map $(x, g) \mapsto f_1(x) f_2(x^{-1}g)$ is in $C_c^{\infty}(G \times G)$.

Proof. Let K be a compact open subgroup such that $\rho(K)$ fixes f_1, f_2 and $\lambda(K)$ fixes f_2 . Then for $k_1, k_2 \in K$, $(xk_1, gk_2) \mapsto f_1(x)f_2(x^{-1}g)$ and so it is fixed by $K \times K$. It remains to check that it has compact support. But its support is

$$\{(x,g): x \in \text{supp}(f_1), g \in x \cdot \text{supp}(f_2)\}.$$
 (2.49)

This is the image of $\operatorname{supp}(f_1) \times \operatorname{supp}(f_2)$ under the homeomorphism $G \times G \to G \times G : (x,y) \mapsto (x,xy)$ and so is compact.

Proposition 2.5.3. If $f_1, f_2 \in C_c^{\infty}(G)$ then $f_1 * f_2 \in C_c^{\infty}(G)$.

Proof. Note that for a fixed $g \in G$ the map $x \mapsto f_1(x)f_2(x^{-1}g)$ is in $C_c^{\infty}(G)$ and so $f_1 * f_2$ is defined everywhere. Let K be a compact open subgroup of G such that $\rho(K)$ fixes f_2 . Then it is clear that $\rho(K)$ also fixes $f_1 * f_2$. To see that the support is compact note that $f_1 * f_2(g) \neq 0$ only if $\operatorname{supp}(f_1) \cap g^{-1} \operatorname{supp}(f_2) \neq \emptyset$. But $\operatorname{supp}(f_1)$ is compact and $\operatorname{supp}(f_2)$ is open and so only finitely many cosets of $\operatorname{supp}(f_2)$ can intersect $\operatorname{supp}(f_1)$. Thus $\operatorname{supp}(f_1 * f_2)$ is contained a finite union of cosets of $\operatorname{supp}(f_2)$ and so is compact.

Remark 2.5.4. It is easy to check that * is associative.

Definition 2.5.5. The Hecke algebra of G is $\mathcal{H}(G) = (C_c^{\infty}(G), *)$. This is an associative algebra.

For a compact open subgroup K of G define $e_K := 1_K/\mu_G(K)$.

Remark 2.5.6. e_K is idempotent.

Remark 2.5.7. For any $f \in C_c^{\infty}(G)$, $k \in K, g \in G$ we have $e_K * f(kg) = e_K * f(g)$. In other words, $e_K * f$ is fixed by $\lambda(K)$. Similarly $f * e_K$ is fixed by $\rho(K)$.

Proposition 2.5.8. Let K be a compact open subgroup of G and $f \in C_c^{\infty}(G)$. Then f is fixed by $\lambda(K)$ iff $e_K * f = f$.

Proof. It is clear that if f is fixed by $\lambda(K)$ then $e_K * f(g) = f(g)$ for all $g \in G$. Conversely, suppose $e_K * f = f$. Then the result follows from the remark.

Remark 2.5.9. Similarly f is fixed by $\rho(K)$ iff $f * e_K = f$.

Corollary 2.5.10. The space $\mathcal{H}(G,K) := e_K * \mathcal{H}(G) * e_K$ is a subalgebra of $\mathcal{H}(G)$, with unit e_K .

Corollary 2.5.11.

$$\mathcal{H}(G,K) = \{ f \in \mathcal{H}(G) : f(k_1 g k_2) = f(g), g \in G, k_1, k_2 \in K \}.$$
 (2.50)

Definition 2.5.12. Let M be a left $\mathcal{H}(G)$ -module. We say that M is smooth if $\mathcal{H}(G)*M=M$. Since $\mathcal{H}(G)$ is a union of the $\mathcal{H}(G,K)$ this is equivalent to saying for every $m\in M$ there is a compact open subgroup K such that $e_K*m=m$.

Write $\mathcal{H}(G)$ – Mod for the category of smooth $\mathcal{H}(G)$ -modules.

Definition 2.5.13. Let (π, V) be a smooth G representation. We can turn V into a smooth $\mathcal{H}(G)$ -module by defining for $f \in \mathcal{H}(G), v \in V$

$$\pi(f)v = \int_{G} f(g)\pi(g)v d\mu_{G}(g). \tag{2.51}$$

Remark 2.5.14. Let K be a compact open subgroup of G such that $\rho(K)$ fixes f and K fixes v. Then map $g \mapsto f(g)\pi(g)v$ is fixed by $\rho(K)$ and has compact support. Thus the integral is defined and is equal to the finite sum

$$\sum_{g \in G/K} f(g)\pi(g)v. \tag{2.52}$$

It is then clear that $\pi(e_K)v = v$ for $v \in V^K$.

Remark 2.5.15. If $V = (C_c^{\infty}(G), \lambda)$ then the $\mathcal{H}(G)$ -module action is given by $\lambda(\phi)f = \phi * f$.

If $V = (C_c^{\infty}(G), \rho)$ then the $\mathcal{H}(G)$ -module action is given by $\rho(\phi)f = f * \check{\phi}$.

Proposition 2.5.16. The above procedure defines a functor $Smo_G \to \mathcal{H}(G)$ – Mod which is the identity on morphisms.

Proof. It is easy to check that if $f_1, f_2 \in C_c^{\infty}(G), v \in V$ then $\pi(f_1)(\pi(f_2)v) = \pi(f_1 * f_2)v$. Thus V is a $\mathcal{H}(G)$ -module. By the remark, V is moreover a smooth $\mathcal{H}(G)$ -module. It is clear that G-homomorphisms are also $\mathcal{H}(G)$ -homomorphisms.

Lemma 2.5.17. Let M be a smooth $\mathcal{H}(G)$ -module. Then $\mathcal{H}(G) \otimes_{\mathcal{H}(G)} M \cong M$.

Proof. Let $\theta: \mathcal{H}(G) \otimes_{\mathcal{H}(G)} M \to M$ be the canonical map. Suppose $\sum_i f_i \otimes m_i$ is in the kernel. Let K be a compact open subgroup that fixes each of the f_i by translation on both sides and is such that $m_i \in e_K * M$ for all i. Then $e_K * m_i = m_i$ for all i and so

$$\sum_{i} f_i \otimes m_i = e_K \otimes \sum_{i} f_i * m_i = 0.$$
 (2.53)

Thus the map is injective. But it is surjective by definition of smoothness. Hence we have an isomorphism.

Corollary 2.5.18. Let M be a smooth $\mathcal{H}(G)$ -module. Then M is naturally a G-representation.

Proof. G acts on $\mathcal{H}(G)$ by left translation, and hence on $\mathcal{H}(G) \otimes_{\mathcal{H}(G)} M$.

Remark 2.5.19. If $m \in M$ and K is a compact open subgroup of G such that $e_K * m = m$, then for $g \in G$, $gm = 1_{gK} * m/\mu_G(K)$. But then for the induced $\mathcal{H}(G)$ -module structure we have

$$\pi(1_{gK})m = \int_G 1_{gK}(x)1_{xK} * md\mu_G(x)/\mu_G(K) = 1_{gK} * m.$$
 (2.54)

This suffices to show that the induces module structure is just the original module structure.

Corollary 2.5.20. The above procedure defines a functor $\mathcal{H}(G)-Mod \to \mathsf{Smo}_G$ which is the identity on morphisms.

Remark 2.5.21. Conversely if we start with a smooth G-representation V, then for $v \in V^K$ we have $gv = 1_{gK} * v/\mu_G(K) = \int_G 1_{gK}(x)\pi(x)vd\mu_G(x)/\mu_G(K) = \pi(g)v$. We thus have the following result.

Thm 2.5.22. The functors $Smo_G \to \mathcal{H}(G) - Mod$ and $\mathcal{H}(G) - Mod \to Smo_G$ are mutually inverse.

Proposition 2.5.23. Let V be a smooth G-representation. Then the operator e_K* is the projection onto V^K along V(K). The space V^K is an $\mathcal{H}(G,K)$ -module on which e_K acts as the identity.

Proof. Let $k \in K$ and $v \in V$. Then

prop:bij

$$k(e_K * v) = e_K * (kv) = e_K * v$$
 (2.55)

where the last equality follows from δ_G being trivial on K. Thus e_K is a K-homomorphism with image in V^K . It follows that it must send V(K) to 0. Moreover it is idempotent and the identity on V^K . This gives the result.

Lemma 2.5.24. Let V be an irreducible smooth G-representation. Then V^K is either 0 or a simple $\mathcal{H}(G,K)$ -module.

Proof. Suppose $V^K \neq 0$. Then let M be a non-zero $\mathcal{H}(G,K)$ -submodule of V. Then $\mathcal{H}(G)M = V$ by irreducibility and so

$$V^K = e_K * V = e_K * \mathcal{H}(G)M = \mathcal{H}(G, K)M = M.$$
 (2.56)

Proposition 2.5.25. The map $V \mapsto V^K$ induces a bijection between

1. equivalence classes of smooth representations of G such that $V^K \neq 0$

2. equivalance classes of simple $\mathcal{H}(G,K)$ -modules.

Proof. Let M be a simple $\mathcal{H}(G,K)$ -module and let $U=\mathcal{H}(G)\otimes_{\mathcal{H}(G,K)}M$. Then $U^K=e_K*\mathcal{H}(G)\otimes_{\mathcal{H}(G,K)}M=e_K\otimes M\cong M$. Let X be a maximal G-subspace of U such that $X^K=0$ (exists by Zorn). This subspace is unique since $(X+X')^K=X^K+X'^K$. Note that X is maximal such that $X\cap U^K=X\cap e_K\otimes M=0$. If $X\subsetneq W$ is a G-subspace of G then G must meet G and so must contain G and so must equal to G. It follows that G is irreducible and G as G

Thus we now have maps going in both directions and we know that one composition is the identity. To see that the other composition is the identity, let V be an irreducible G-representation and $M = V^K$. We have a map $U = \mathcal{H}(G) \otimes_{\mathcal{H}(G,K)} M \to V$, $f \otimes m \mapsto f * m$. The image is non-zero subrepresentation of V and so the map must be surjective. Moreover, the image of X is a submodule that does not intersect V^K and so must be zero. Thus X lies in the kernel of the map. Now suppose u lie in the both U^K and the kernel of the map. Then $u = e_K \otimes m$ some $m \in M$. But then $e_K * m = 0$ and $e_K * m = m$ and so $e_K \otimes m = 0$. Thus the kernel lies inside X. It follows that $V \cong U/X$ as required.

Corollary 2.5.26. Let V be a smooth non-zero representation of G. Then V is irreducible iff for any open compact open subgroup K of G, the space V^K is either zero or $\mathcal{H}(G,K)$ -simple.

Proof. (\Rightarrow) Done. (\Leftarrow) Let V a G-representation with a non-zero sub-representation U. Let W=V/U and K be a compact open subgroup of G such that $U^K, W^K \neq 0$. Then $0 \to U^K \to V^K \to W^K \to 0$ is exact and so V^K is not a simple $\mathcal{H}(G,K)$ -module.

Definition 2.5.27. Let $(\rho, V) \in \hat{K}$ and define

$$e_V(x) = \frac{\dim V}{\mu_G(K)} \operatorname{tr}(\rho(x^{-1})) 1_K(x).$$
 (2.57)

Recall that since K is compact, the kernel of ρ is also a compact open subgroup $K' \leq K$ such that K/K' is finite. It follows that ρ is constant on double cosets $K' \setminus G/K'$ and so $e_{K'} * e_{\rho} = e_{\rho} * e_{K'} = e_{\rho}$. Thus $e_{\rho} \in \mathcal{H}(K, K') \subseteq \mathcal{H}(G, K')$.

Proposition 2.5.28. The map $\mathcal{H}(K,K') \to \mathbb{C}[K/K']$, $1_{gK'}/\mu_G(K') \mapsto gK'$ is an algebra isomorphism that respects their respective actions on V.

Remark 2.5.29. Under this isomorphism e_V gets sent to the idempotent for V is $\mathbb{C}[K/K']$.

Corollary 2.5.30. 1. The function $e_V \in \mathcal{H}(G)$ is idempotent.

2. If W is a smooth G-representation of G, then e_{ρ} is the K-projection $V \to V^{\rho}$.

Remark 2.5.31. Replacing V^K with V^ρ and $\mathcal{H}(G,K)$ with $e_\rho * \mathcal{H}(G) * e_\rho$ we get an exact analogue of proposition 2.5.25.