Assignment 1

Diptasri Ghosh

August 2021

1 Assignment 1

Question 21: Find the coordinates of the points which divide, internally and externally, the line joining the point (a+b, a-b) to the point (a-b, a+b) in the ratio a: b.

Solution:

Let us consider a line segment as \vec{BA} . The coordinates of point B is (a+b, a-b) and coordinates of point A is (a-b, a+b).

Now considering another point say P, which divides the \vec{BA} internally or externally in the ratio a: b.

'O' be the origin.

 \overrightarrow{OB} , \overrightarrow{OP} , \overrightarrow{OA} be the position vectors

We have to find out the coordinates of P point when it divides \vec{BA} internally and also externally.

Using Vectors:

For Internal Division Section:

Say $\hat{v}=$ a unit vector in the direction of \vec{BA} So, $\vec{BA}=\hat{v}$ $\vec{BP}=\hat{a}\hat{v}-(i)$ $\vec{PA}=\hat{b}\hat{v}-(ii)$ Multiplying both sides of (i) with b we get, $\hat{bBP}=\hat{abv}$ Multiplying both sides of (ii) with a we get, $\hat{aPA}=\hat{abv}$ So, $\hat{bBP}=\hat{aPA}-(iii)$ $\hat{b(OP}-\vec{OB})=\hat{a(OA}-\vec{OP})$ $\hat{bOP}-\hat{bOB}=\hat{aOA}-\hat{aOP}$ $\hat{bOP}+\hat{aOP}=\hat{aOA}+\hat{bOB}$ $\vec{OP}(\hat{a}+\hat{b})=\hat{aOA}+\hat{bOB}$ $\vec{OP}=\frac{a}{a+b}\vec{OA}+\frac{b}{a+b}\vec{OB}$

Figure 1: Internal Division Section

$$\vec{OP} = \frac{a}{a+b}(a-b,a+b) + \frac{b}{a+b}(a+b,a-b)$$

$$= \left(\frac{a(a-b)}{a+b}, \frac{a(a+b)}{a+b}\right) + \left(\frac{b(a+b)}{a+b}, \frac{b(a-b)}{a+b}\right)$$

$$= \left(\frac{a(a-b)}{a+b} + \frac{b(a+b)}{a+b}\right), \left(\frac{a(a+b)}{a+b} + \frac{b(a-b)}{a+b}\right)$$

$$= \left(\frac{a(a-b) + b(a+b)}{a+b}\right), \left(\frac{a(a+b) + b(a-b)}{a+b}\right)$$

So, coordinates of P

$$\vec{OP} = \left(\frac{(a^2 + b^2)}{a + b}\right), \left(\frac{(a^2 + 2ab - b^2)}{a + b}\right)$$

For External Division Section:

From equation (iii)
$$a\vec{PA} = b\vec{BP}$$

So, $a(\vec{OP} - \vec{OA}) = b(\vec{OP} - \vec{OB})$
 $a\vec{OP} - a\vec{OA} = b\vec{OP} - b\vec{OB}$
 $a\vec{OP} - b\vec{OP} = a\vec{OA} - b\vec{OB}$
 $\vec{OP}(a-b) = a\vec{OA} - b\vec{OB}$

$$\vec{OP} = \frac{a}{a-b}\vec{OA} - \frac{b}{a-b}\vec{OB}$$

$$\vec{OP} = \frac{a}{a-b}(a-b, a+b) - \frac{b}{a-b}(a+b, a-b)$$

$$= \left(\frac{a(a-b)}{a-b}, \frac{a(a+b)}{a-b}\right) - \left(\frac{b(a+b)}{a-b}, \frac{b(a-b)}{a-b}\right)$$

Figure 2: External Division Section

$$= \left(\frac{a(a-b)}{a-b} - \frac{b(a+b)}{a-b}\right), \left(\frac{a(a+b)}{a-b} - \frac{b(a-b)}{a-b}\right)$$
$$= \left(\frac{a(a-b) - b(a+b)}{a-b}\right), \left(\frac{a(a+b) - b(a-b)}{a-b}\right)$$

So, coordinates of P

$$\vec{OP} = \left(\frac{(a^2 - 2ab - b^2)}{a - b}\right), \left(\frac{(a^2 + b^2)}{a - b}\right)$$