Formatting instructions for NIPS 2018

Anonymous Author(s)

Affiliation Address email

Abstract

- The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. 2 The word **Abstract** must be centered, bold, and in point size 12. Two line spaces 3 precede the abstract. The abstract must be limited to one paragraph.
- Introduction

Preliminaries 2

Markov Decision Processes

We define a Markov decision process (MDP) as a tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, p_0, \gamma \rangle$, where \mathcal{S} is 8 the state-space, \mathcal{A} is a finite set of actions, $\mathcal{P}(\cdot|s,a)$ is the distribution of the next state s' given that action a is taken in state $s, \mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the reward function, p_0 is the initial-state 10 distribution, and $\gamma \in [0,1)$ is the discount factor. We assume the reward function to be uniformly 11 bounded by a constant $R_{max} > 0$. A deterministic policy $\pi : \mathcal{S} \to \mathcal{A}$ is a mapping from states 12 to actions. At the beginning of each episode of interaction, the initial state s_0 is drawn from p_0 . 14 Then, the agent takes the action $a_0 = \pi(s_0)$, receives a reward $\mathcal{R}(s_0, a_0)$, transitions to the next state $s_1 \sim \mathcal{P}(\cdot|s_0, a_0)$, and the process is repeated. The goal is to find the policy maximizing the 15 long-term return over a possibly infinite horizon: $\max_{\pi} J(\pi) \triangleq \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t \mid \mathcal{M}, \pi]$. To this end, we define the optimal value function $Q^*(s, a)$ as the expected return obtained by taking action a16 17 in state s and following an optimal policy thereafter. Then, an optimal policy π^* is a policy that 18 is greedy with respect to the optimal value function, i.e., $\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$ for all states 19 s. It can be shown (e.g., [1]) that Q^* is the unique fixed-point of the optimal Bellman operator T20 defined by $TQ(s,a) = \mathcal{R}(s,a) + \gamma \mathbb{E}_{\mathcal{P}}[\max_{a'} Q(s',a')]$ for any value function Q. From now on, we 21 adopt the term Q-function to denote any plausible value function, i.e., any function $Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ 22 uniformly bounded by $\frac{R_{max}}{1-\gamma}$. 23

When learning the optimal value function, a quantity of interest is how close a given Q-function 24 is to the fixed-point of the Bellman operator. This is given by its Bellman residual, defined by 25 $B(Q) \triangleq TQ - Q$. Notice that Q is optimal if, and only if, B(Q)(s,a) = 0 for all s, a. Furthermore, if we assume the existence of a distribution μ over $\mathcal{S} \times \mathcal{A}$, the expected squared Bellman error 27 of Q is defined as the expected squared Bellman residual of Q under μ , $\mathbb{E}_{\mu} |B^2(Q)|$. Although 28 minimizing the empirical Bellman error is an appealing objective, it is well-known that an unbiased estimator requires two independent samples of the next state s' of each s, a (e.g., []). In practice, [cite Maillard the empirical Bellman error is typically replaced by the TD error, which approximates the former

using a single transition sample. Given a dataset of N samples, the TD error is computed as $\frac{1}{N} \sum_{i=1}^{N} (r_i + \gamma \max_{a'} Q(s_i', a') - Q(s_i, a_i))^2$.

34 2.2 Variational Inference

When working with Bayesian approaches, the posterior distribution of hidden variables $w \in \mathbb{R}^K$ given data D,

$$p(\boldsymbol{w}|D) = \frac{p(D|\boldsymbol{w})p(\boldsymbol{w})}{p(D)} = \frac{p(D|\boldsymbol{w})p(\boldsymbol{w})}{\int_{\boldsymbol{w}} p(D|\boldsymbol{w})p(\boldsymbol{w})},$$
(1)

- 37 is typically intractable for many models of interest (e.g., when working with deep neural networks)
- due to difficulties in computing the integral of Eq. (1). The main intuition behind variational inference
- [] is to approximate the intractable posterior p(w|D) with a simpler distribution $q_{\xi}(w)$. The latter is
- chosen in a parametric family, with variational parameters ξ , as the minimizer of the Kullback-Leibler
- 41 (KL) divergence w.r.t. p:

$$\min_{\boldsymbol{\xi}} KL\left(q_{\boldsymbol{\xi}}(\boldsymbol{w}) \mid\mid p(\boldsymbol{w} \mid D)\right) \tag{2}$$

CITE

Cite MM

- 42 It is well-known that minimizing the KL divergence is equivalent to maximizing the so-called evidence
- lower bound (ELBO), which is defined as:

$$ELBO(\boldsymbol{\xi}) = \mathbb{E}_{\boldsymbol{w} \sim q_{\boldsymbol{\xi}}} \left[\log p(D|\boldsymbol{w}) \right] - KL \left(q_{\boldsymbol{\xi}}(\boldsymbol{w}) \mid\mid p(\boldsymbol{w}) \right)$$
(3)

- 44 Intuitively, the best approximation is the one that maximizes the expected log-likelihood of the data,
- while minimizing the KL divergenge w.r.t. the prior p(w).

46 3 Variational Transfer Learning

- 47 3.1 Algorithm
- 48 3.2 Gaussian Variational Transfer
- 49 3.3 Mixture of Gaussian Variational Transfer

50 4 Theoretical Analysis

- In this section, we theoretically analyze our variational transfer algorithm...
- 52 A first important question that we need to answer is whether replacing max with mellow-max in
- the Bellman operator constitutes a strong approximation or not. It has been proved [] that the
- mellow Bellman operator is a contraction under the L_{∞} -norm and, thus, has a unique fixed-point.
- 55 However, how such fixed-point differs from the one of the optimal Bellman operator remains an open
- question. Since mellow-max monotonically converges to max as $\kappa \to \infty$, it would be desirable if
- 57 the corresponding operator also monotonically converged to the optimal one. We confirm that this
- property actually holds in the following theorem.
- 59 **Theorem 1.** Let V be the fixed-point of the optimal Bellman operator T, and Q the corresponding
- action-value function. Define the action-gap function g(s) as the difference between the value of
- the best action and the second best action at each state s. Let \widetilde{V} be the fixed-point of the mellow
- Bellman operator \widetilde{T} with parameter $\kappa>0$ and denote by $\beta>0$ the inverse temperature of the
- induced Boltzmann distribution (as in []). Let ν be a probability measure over the state-space. Then, \vdash Cite MM
- 64 for any $p \geq 1$:

$$\left\| V - \widetilde{V} \right\|_{\nu,p}^{p} \le \frac{2R_{max}}{(1 - \gamma)^{2}} \left\| 1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g}} \right\|_{\nu,p}^{p} \tag{4}$$

- 5 Related Works
- 66 6 Experiments
- 67 6.1 Gridworld
- 68 6.2 Classic Control
- 69 6.3 Maze Navigation
- 70 **Conclusion**
- 71 References
- [1] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
 & Sons, Inc., New York, NY, USA, 1994.

4 A Proofs

Theorem 1. Let V be the fixed-point of the optimal Bellman operator T, and Q the corresponding action-value function. Define the action-gap function g(s) as the difference between the value of the best action and the second best action at each state s. Let \widetilde{V} be the fixed-point of the mellow

78 Bellman operator \widetilde{T} with parameter $\kappa > 0$ and denote by $\beta > 0$ the inverse temperature of the

79 induced Boltzmann distribution (as in []). Let ν be a probability measure over the state-space. Then, \vdash Cite MM

so for any $p \ge 1$:

$$\left\| V - \widetilde{V} \right\|_{\nu,p}^{p} \le \frac{2R_{max}}{(1 - \gamma)^{2}} \left\| 1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g}} \right\|_{\nu,p}^{p} \tag{4}$$

81 *Proof.* We begin by noticing that:

$$\begin{split} \left\| V - \widetilde{V} \right\|_{\nu,p}^{p} &= \left\| TV - \widetilde{T}\widetilde{V} \right\|_{\nu,p}^{p} \\ &= \left\| TV - \widetilde{T}V + \widetilde{T}V - \widetilde{T}\widetilde{V} \right\|_{\nu,p}^{p} \\ &\leq \left\| TV - \widetilde{T}V \right\|_{\nu,p}^{p} + \left\| \widetilde{T}V - \widetilde{T}\widetilde{V} \right\|_{\nu,p}^{p} \\ &\leq \left\| TV - \widetilde{T}V \right\|_{\nu,p}^{p} + \gamma \left\| V - \widetilde{V} \right\|_{\nu,p}^{p} \end{split}$$

where the first inequality follows from Minkowsky's inequality and the second one from the contrac-

tion property of the mellow Bellman operator. This implies that:

$$\left\|V - \widetilde{V}\right\|_{\nu,p}^{p} \le \frac{1}{1 - \gamma} \left\|TV - \widetilde{T}V\right\|_{\nu,p}^{p} \tag{5}$$

Let us bound the norm on the right-hand side separately. In order to do that, we will bound the

function $|TV(s) - \widetilde{T}V(s)|$ point-wisely for any state s. By applying the definition of the optimal

and mellow Bellman operators, we obtain:

$$\begin{split} \left| TV(s) - \widetilde{T}V(s) \right| &= \left| \max_{a} \{ R(s, a) + \gamma \mathbb{E} \left[V(s') \right] \} - \max_{a} \{ R(s, a) + \gamma \mathbb{E} \left[V(s') \right] \} \right| \\ &= \left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| \end{split}$$

87 Recall that applying the mellow-max is equivalent to computing an expectation under a Boltzmann

distribution with inverse temperature β induced by κ []. Thus, we can write:

Cite MM

$$\left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| = \left| \sum_{a} \pi^{*}(a|s)Q(s, a) - \sum_{a} \pi_{\beta}(a|s)Q(s, a) \right|$$

$$= \left| \sum_{a} Q(s, a) \left(\pi^{*}(a|s) - \pi_{\beta}(a|s) \right) \right|$$

$$\leq \sum_{a} |Q(s, a)| |\pi^{*}(a|s) - \pi_{\beta}(a|s)|$$

$$\leq \frac{R_{max}}{1 - \gamma} \sum_{a} |\pi^{*}(a|s) - \pi_{\beta}(a|s)|$$
(6)

where π^* is the optimal (deterministic) policy w.r.t. Q and π_{β} is the Boltzmann distribution induced

90 by Q with inverse temperature β :

$$\pi_{\beta}(a|s) = \frac{e^{\beta Q(s,a)}}{\sum_{a'} e^{\beta Q(s,a')}}$$

Denote by $a_1(s)$ the optimal action for state s under Q. We can then write:

$$\sum_{a} |\pi^{*}(a|s) - \pi_{\beta}(a|s)| = |\pi^{*}(a_{1}(s)|s) - \pi_{\beta}(a_{1}(s)|s)| + \sum_{a \neq a_{1}(s)} |\pi^{*}(a|s) - \pi_{\beta}(a|s)|$$

$$= |1 - \pi_{\beta}(a_{1}(s)|s)| + \sum_{a \neq a_{1}(s)} |\pi_{\beta}(a|s)|$$

$$= 2|1 - \pi_{\beta}(a_{1}(s)|s)|$$
(7)

92 Finally, let us bound this last term:

$$|1 - \pi_{\beta}(a_{1}(s)|s)| = \left|1 - \frac{e^{\beta Q(s,a_{1}(s))}}{\sum_{a'} e^{\beta Q(s,a')}}\right|$$

$$= \left|1 - \frac{e^{\beta(Q(s,a_{1}(s)) - Q(s,a_{2}(s)))}}{\sum_{a'} e^{\beta(Q(s,a') - Q(s,a_{2}(s)))}}\right|$$

$$= \left|1 - \frac{e^{\beta g(s)}}{\sum_{a'} e^{\beta(Q(s,a') - Q(s,a_{2}(s)))}}\right|$$

$$= \left|1 - \frac{e^{\beta g(s)}}{e^{\beta g(s)} + \sum_{a' \neq a_{1}(s)} e^{\beta(Q(s,a') - Q(s,a_{2}(s)))}}\right|$$

$$\leq \left|1 - \frac{e^{\beta g(s)}}{e^{\beta g(s)} + |\mathcal{A}|}\right|$$

$$= \left|1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g(s)}}\right|$$
(8)

93 Combining Eq. (6), (7), and (8), we obtain:

$$\left| \max_{a} Q(s, a) - \min_{a} Q(s, a) \right| \le \frac{2R_{max}}{1 - \gamma} \left| 1 - \frac{1}{1 + |\mathcal{A}| e^{-\beta g(s)}} \right|$$

- Taking the norm and plugging this into Eq. (5) concludes the proof.
- **Lemma 1.** Let p and ν denote probability measures over Q-functions and state-action pairs, respec-
- 96 tively. Assume Q^* is the unique fixed-point of the optimal Bellman operator T. Then, for any $\delta > 0$,
- with probability at least $1-\delta$ over the choice of a Q-function Q, the following holds:

$$\|Q - Q^*\|_{\nu}^2 \le \frac{\mathbb{E}_p\left[\|B(Q)\|_{\nu}^2\right]}{(1 - \gamma)\delta}$$
 (9)

98 *Proof.* First notice that:

$$\begin{split} \|Q - Q^*\| &= \|Q + TQ - TQ - TQ^*\| \\ &\leq \|Q - TQ\| + \|TQ - TQ^*\| \\ &\leq \|Q - TQ\| + \gamma \|Q - Q^*\| \\ &= \|B(Q)\| + \gamma \|Q - Q^*\| \end{split}$$

99 which implies that:

$$||Q - Q^*|| \le \frac{1}{1 - \gamma} ||B(Q)||$$

100 Then we can write:

$$P\left(\|Q - Q^*\| > \epsilon\right) \le P\left(\|B(Q)\| > \epsilon(1 - \gamma)\right) \le \frac{\mathbb{E}_p\left[\|B(Q)\|_{\nu}^2\right]}{(1 - \gamma)\epsilon}$$

Settings the right-hand side equal to δ and solving for ϵ concludes the proof.

Corollary 1. Let p and ν denote probability measures over Q-functions and state-action pairs, respectively. Assume \widetilde{Q} is the unique fixed-point of the mellow Bellman operator \widetilde{T} . Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the choice of a Q-function Q, the following holds:

$$\left\| Q - \widetilde{Q} \right\|_{\nu}^{2} \leq \frac{\mathbb{E}_{p} \left[\left\| \widetilde{B}(Q) \right\|_{\nu}^{2} \right]}{(1 - \gamma)\delta} \tag{10}$$

Lemma 2. Assume Q-functions belong to a parametric space of functions bounded by $\frac{R_{max}}{1-\gamma}$. Let p and q be arbitrary distributions over the parameter space W, and ν be a probability measure over $S \times A$. Consider a dataset D of N samples and define $v(w) \triangleq \mathbb{E}_{\nu} [Var_{\mathcal{P}}[b(w)]]$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following two inequalities hold simultaneously:

$$\mathbb{E}_{q}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] \leq \mathbb{E}_{q}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right] - \mathbb{E}_{q}\left[v(\boldsymbol{w})\right] + \frac{\lambda}{N}KL(q||p) + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}}$$
(11)

 $\mathbb{E}_{q}\left[\|B(\boldsymbol{w})\|_{D}^{2}\right] \leq \mathbb{E}_{q}\left[\|B(\boldsymbol{w})\|_{\nu}^{2}\right] + \mathbb{E}_{q}\left[v(\boldsymbol{w})\right] + \frac{\lambda}{N}KL(q||p) + 4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}}$ (12)

110 Proof. From Hoeffding's inequality we have:

109

$$P\left(\left|\mathbb{E}_{\nu,\mathcal{P}}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right]-\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right|>\epsilon\right)\leq 2exp\left(-\frac{2N\epsilon^{2}}{\left(2\frac{R_{max}}{1-\gamma}\right)^{4}}\right)$$

which implies that, for any $\delta > 0$, with probability at least $1 - \delta$:

$$\left| \mathbb{E}_{\nu,\mathcal{P}} \left[\|B(\boldsymbol{w})\|_D^2 \right] - \|B(\boldsymbol{w})\|_D^2 \right| \le 4 \frac{R_{max}^2}{(1-\gamma)^2} \sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$

Under independence assumptions, the expected TD error can be re-written as:

$$\mathbb{E}_{\nu,\mathcal{P}}\left[\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right] = \mathbb{E}_{\nu,\mathcal{P}}\left[\frac{1}{N}\sum_{i=1}^{N}(r_{i} + \gamma \min_{a'}Q_{\boldsymbol{w}}(s'_{i}, a') - Q_{\boldsymbol{w}}(s_{i}, a_{i}))^{2}\right]$$

$$= \mathbb{E}_{\nu,\mathcal{P}}\left[\left(R(s, a) + \gamma \max_{a'}Q_{\boldsymbol{w}}(s', a') - Q_{\boldsymbol{w}}(s, a)\right)^{2}\right]$$

$$= \mathbb{E}_{\nu}\left[\mathbb{E}_{\mathcal{P}}\left[b(\boldsymbol{w})^{2}\right]\right]$$

$$= \mathbb{E}_{\nu}\left[Var_{\mathcal{P}}\left[b(\boldsymbol{w})\right] + \mathbb{E}_{\mathcal{P}}\left[b(\boldsymbol{w})\right]^{2}\right]$$

$$= v(\boldsymbol{w}) + \|B(\boldsymbol{w})\|_{\nu}^{2}$$

where $v(\boldsymbol{w}) \triangleq \mathbb{E}_{\nu} \left[Var_{\mathcal{P}} \left[b(\boldsymbol{w}) \right] \right]$. Thus:

$$\left| \|B(\boldsymbol{w})\|_{\nu}^{2} + v(\boldsymbol{w}) - \|B(\boldsymbol{w})\|_{D}^{2} \right| \leq 4 \frac{R_{max}^{2}}{(1 - \gamma)^{2}} \sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$
(13)

From the change of measure inequality [], we have that, for any measurable function f(w) and any two probability measures p and q:

Find a reference for this

$$p$$
 and q .

$$\log \mathbb{E}_p \left[e^{f(\boldsymbol{w})} \right] \ge \mathbb{E}_q \left[f(\boldsymbol{w}) \right] - KL(q||p)$$

Thus, multiplying both sides of (13) by $\lambda^{-1}N$ and applying the change of measure inequality with

117
$$f(oldsymbol{w}) = \lambda^{-1} N \left| \left\| B(oldsymbol{w}) \right\|_{
u}^2 + v(oldsymbol{w}) - \left\| B(oldsymbol{w}) \right\|_D^2 \right|$$
, we obtain:

$$\mathbb{E}_{q}\left[f(\boldsymbol{w})\right] - KL(q||p) \le \log \mathbb{E}_{p}\left[e^{f(\boldsymbol{w})}\right] \le 4 \frac{R_{max}^{2} \lambda^{-1} N}{(1-\gamma)^{2}} \sqrt{\frac{\log \frac{2}{\delta}}{2N}}$$

where the second inequality holds since the right-hand side of (13) does not depend on w. Finally, we can explicitly write:

$$\mathbb{E}_{q}\left[\left|\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}+v(\boldsymbol{w})-\left\|B(\boldsymbol{w})\right\|_{D}^{2}\right|\right]\leq\frac{\lambda}{N}KL(q||p)+4\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{2N}}$$

120 from which the lemma follows straightforwardly.

Lemma 3. Let p be a prior distribution over the parameter space \mathcal{W} , and ν be a probability measure over $\mathcal{S} \times \mathcal{A}$. Assume $\widehat{\xi}$ is the minimizer of $ELBO(\xi) = \mathbb{E}_{q_{\xi}} \left[\|B(\boldsymbol{w})\|_{D}^{2} \right] + \frac{\lambda}{N} KL(q_{\xi}||p)$ for a dataset D of N samples. Define $v(\boldsymbol{w}) \triangleq \mathbb{E}_{\nu} \left[Var_{\mathcal{P}} \left[b(\boldsymbol{w}) \right] \right]$. Then, for any $\delta > 0$, with probability at least $1 - \delta$:

$$\mathbb{E}_{q_{\widehat{\xi}}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] \leq \inf_{\xi \in \Xi} \left\{\mathbb{E}_{q_{\xi}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] + \mathbb{E}_{q_{\xi}}\left[v(\boldsymbol{w})\right] + 2\frac{\lambda}{N}KL(q_{\xi}||p)\right\} + 2\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{N}}$$

125 *Proof.* Let us use Lemma 2 for the specific choice $q = q_{\widehat{\epsilon}}$. From Eq. (11), we have:

$$\begin{split} \mathbb{E}_{q_{\widehat{\xi}}} \left[\left\| B(\boldsymbol{w}) \right\|_{\nu}^{2} \right] &\leq \mathbb{E}_{q_{\widehat{\xi}}} \left[\left\| B(\boldsymbol{w}) \right\|_{D}^{2} \right] - \mathbb{E}_{q_{\widehat{\xi}}} \left[v(\boldsymbol{w}) \right] + \frac{\lambda}{N} K L(q_{\widehat{\xi}} || p) + 4 \frac{R_{max}^{2}}{(1 - \gamma)^{2}} \sqrt{\frac{\log \frac{2}{\delta}}{2N}} \\ &\leq \mathbb{E}_{q_{\widehat{\xi}}} \left[\left\| B(\boldsymbol{w}) \right\|_{D}^{2} \right] + \frac{\lambda}{N} K L(q_{\widehat{\xi}} || p) + 4 \frac{R_{max}^{2}}{(1 - \gamma)^{2}} \sqrt{\frac{\log \frac{2}{\delta}}{2N}} \\ &= \inf_{\xi \in \Xi} \left\{ \mathbb{E}_{q_{\xi}} \left[\left\| B(\boldsymbol{w}) \right\|_{D}^{2} \right] + \frac{\lambda}{N} K L(q_{\xi} || p) \right\} + 4 \frac{R_{max}^{2}}{(1 - \gamma)^{2}} \sqrt{\frac{\log \frac{2}{\delta}}{2N}} \end{split}$$

where the second inequality holds since $v(\boldsymbol{w}) > 0$, while the equality holds from the definition of $\widehat{\xi}$.

We can now use Eq. (12) to bound $\mathbb{E}_{q_{\xi}} \left[\|B(\boldsymbol{w})\|_{D}^{2} \right]$, thus obtaining:

$$\mathbb{E}_{q_{\widehat{\xi}}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] \leq \inf_{\xi \in \Xi} \left\{ \mathbb{E}_{q_{\xi}}\left[\left\|B(\boldsymbol{w})\right\|_{\nu}^{2}\right] + \mathbb{E}_{q_{\xi}}\left[v(\boldsymbol{w})\right] + 2\frac{\lambda}{N}KL(q_{\xi}||p)\right\} + 2\frac{R_{max}^{2}}{(1-\gamma)^{2}}\sqrt{\frac{\log\frac{2}{\delta}}{N}}$$

This concludes the proof.