ME 233 Advance Control II

Lecture 5 Random Vector Sequences

(ME233 Class Notes pp. PR6-PR10)

Random Vector Sequences

A two-sided random vector sequence is a collection of random vectors

$$X = \{X(k)\}_{k=-\infty}^{\infty}$$

Where

$$X(k) = \begin{bmatrix} X_1(k) \\ \vdots \\ X_n(k) \end{bmatrix} \in \mathcal{R}^n$$

and $X_i(k)$ is defined over the same probability space $(\Omega, \mathcal{S}, Pr)$

Outline

- Random vector sequences
 - Covariance, cross-covariance
- MIMO Linear Time Invariant Systems
- White noise driven state space systems
- Covariance propagation Lyapunov equation

2nd order statistics

For a two-sided Random Vector Sequence (RVS)

$$\{X(k)\}_{k=-\infty}^{\infty}$$

Expected value or mean of X(k),

$$E\left\{X(k)\right\} = m_X(k) \in \mathcal{R}^n$$

Define:
$$\tilde{X}(k) = X(k) - m_X(k)$$

$$\Lambda_{XX}(k,\underline{j}) = E\left\{\tilde{X}(k+\underline{j})\tilde{X}^{(\underline{j})}(k)\right\}$$

$$\Lambda_{XX}(k,\underline{j}) = E\left\{ \begin{bmatrix} \tilde{X}_1(k+\underline{j}) \\ \vdots \\ \tilde{X}_n(k+\underline{j}) \end{bmatrix} \begin{bmatrix} \tilde{X}_1(k) & \cdots & \tilde{X}_n(k) \end{bmatrix} \right\}$$

Cross-covariance

Define: $\tilde{X}(k) = X(k) - m_X(k)$

$$\tilde{Y}(k) = Y(k) - m_Y(k)$$

$$\Lambda_{XY}(k,\underline{j}) = E\left\{\tilde{X}(k+\underline{j})\tilde{Y}(k)\right\}$$

$$\Lambda_{XY}(k,\underline{j}) = E \left\{ \begin{bmatrix} \tilde{X}_1(k+\underline{j}) \\ \vdots \\ \tilde{X}_n(k+\underline{j}) \end{bmatrix} \begin{bmatrix} \tilde{Y}_1(k) & \cdots & \tilde{Y}_n(k) \end{bmatrix} \right\}$$

Wide Sense Stationary (WSS)

A two-sided random vector sequence $\{X(k)\}_{k=-\infty}^{\infty}$

is WSS if:

1)
$$E\{X(k)\} = m_X$$
 (time invariant)

2)
$$\Lambda_{XX}(k,l) = \Lambda_{XX}(k+M,l)$$

(only depends on l)

Notice that: $SSS \Rightarrow WSS$

Auto-covariance function

For WSS RVS, the auto-covariance is only a function of the correlation index j

$$\Lambda_{XX}(j) = E\left\{ \tilde{X}(k+j)\tilde{X}^{T}(k) \right\}$$

for any index k

$$\Lambda_{XX}(l) = \Lambda_{XX}^{(l)}(-l)$$

Since

$$\Lambda_{XX}(j) = E\left\{ \tilde{X}(k+j)\tilde{X}^{T}(k) \right\}$$

Trace
$$[\Lambda_{XX}(j)] = E{\lbrace \tilde{X}^T(k+j)\tilde{X}(k)\rbrace}$$

Using Shwarz' inequality, it can be shown that

Trace
$$[\Lambda_{XX}(0)] \ge |\text{Trace} [\Lambda_{XX}(j)]|$$

Cross-covariance function

X(k) and Y(k) are two **WSS** random vector sequences

$$\Lambda_{XY}(j) = E\{\tilde{X}(k+j)\tilde{Y}^T(k)\}\$$

for any index k

Notice that:

$$\Lambda_{XY}(l) = \Lambda_{YX}^{T}(-l)$$

Power Spectral Density Function

$$\Phi_{XX}(\omega) = \mathcal{F}\{\Lambda_{XX}(\cdot)\}$$
$$= \sum_{l=-\infty}^{\infty} \Lambda_{XX}(l)e^{-j\omega l}$$

$$\Lambda_{XX}(l) = \mathcal{F}^{-1}\{\Phi_{XX}(\omega)\}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega l} \Phi_{XX}(\omega) d\omega$$

White noise vector sequence

A WSS random vector sequence $\{W(k)\}_{k=-\infty}^{\infty}$ is white if:

where

$$\delta(l) = \begin{cases} 1 & l = 0 \\ 0 & l \neq 0 \end{cases}$$

$$\Sigma_{WW} = E\{\tilde{W}(k)\tilde{W}^{T}(k)\} \qquad \tilde{W}(k) = W(k) - m_{W}$$

$$\Sigma_{WW} = \Sigma_{WW}^T \succeq 0$$

White noise vector sequence

Given the white WSS random sequence $\{W(k)\}_{k=-\infty}^{\infty}$

with

$$\Lambda_{WW}(l) = \Sigma_{WW} \, \delta(l)$$

Its power spectral density (Fourier transform)

$$\Phi_{WW}(\omega) = \sum_{l=-\infty}^{\infty} \Lambda_{WW}(l)e^{-j\omega l}$$

is

$$\Phi_{WW}(\omega) = \Sigma_{WW}$$

MIMO Linear Time Invariant Systems

Let
$$\{G(k)\}_{k=-\infty}^{\infty}$$
 with $G(k) \in \mathcal{R}^{p \times m}$

be the pulse response of a causal LTI SISO system

Transfer function

$$G(z) = \mathcal{Z}{G(k)} = \sum_{k=-\infty}^{\infty} G(k) z^{-k}$$

MIMO Linear Time Invariant Systems

Let $U(k) \in \mathbb{R}^m$ be WSS

The forced response (zero initial state)

$$Y(k) = \sum_{i=-\infty}^{\infty} G(i)U(k-i)$$

$$G(k) \in \mathcal{R}^{p \times m}$$

$$Y(k) \in \mathcal{R}^p$$
 is also a WSS

MIMO Linear Time Invariant Systems

Let $U(k) \in \mathcal{R}^m$ be WSS

$$Y(k) = \sum_{i=-\infty}^{\infty} G(i)U(k-i)$$

$$U(k) \longrightarrow G(k)$$

MIMO Linear Time Invariant Systems

We will assume

 $\{U(k)\}_{k=-\infty}^{\infty}$ is zero mean, i.e.

$$E\left\{U(k)\right\} = m_U = 0$$

Thus, the forced response output is also zero mean

$$E\left\{Y(k)\right\} = m_Y = 0$$

MIMO Linear Time Invariant Systems

Let $\{U(k)\}_{k=-\infty}^{\infty}$ be WSS

lf

Then:

MIMO Linear Time Invariant Systems

$$\Phi_{UU}(w) = \Lambda_{UU}(z)|_{z=e^{j\omega}}$$
 $\Phi_{YU}(w) = \Lambda_{YU}(z)|_{z=e^{j\omega}}$

MIMO Linear Time Invariant Systems

Let $\{U(k)\}_{k=-\infty}^{\infty}$ be WSS and

$$Y(k) = \sum_{i=-\infty}^{\infty} G(i)U(k-i)$$

Then:

$$\Lambda_{YU}(l) = \sum_{i=-\infty}^{\infty} G(i) \Lambda_{UU}(l-i)$$

$$\Phi_{YU}(w) = G(w) \, \Phi_{UU}(w)$$

MIMO Linear Time Invariant Systems

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Proof: L

$$Y(k) = \sum_{i=-\infty}^{\infty} G(i)U(k-i) \qquad (m_U = 0)$$

Then:

$$\Lambda_{YU}(l) = E\{Y(k+l)U^{T}(k)\}
= E\left\{ \left[\sum_{i=-\infty}^{\infty} G(i) U(k+l-i) \right] U^{T}(k) \right\}
= \sum_{i=-\infty}^{\infty} G(i) E\left\{ U(k+l-i)U^{T}(k) \right\}
= \sum_{i=-\infty}^{\infty} G(i) \Lambda_{UU}(l-i)$$

MIMO Linear Time Invariant Systems

Let $\{U(k)\}_{k=-\infty}^{\infty}$ be WSS

lf

Then:

$$E\{\tilde{U}(k+l)\tilde{Y}^{T}(k)\} = \bigwedge_{UY}(l) \qquad \qquad \bigwedge_{YY}(l)$$

$$G(l)$$

MIMO Linear Time Invariant Systems

Let $\{U(k)\}_{k=-\infty}^{\infty}$ be WSS

$$\Phi_{UY}(w) = \Lambda_{UY}(z)|_{z=e^{j\omega}}$$
 $\Phi_{YY}(w) = \Lambda_{YY}(z)|_{z=e^{j\omega}}$

MIMO Linear Time Invariant Systems

Let $\{U(k)\}_{k=-\infty}^{\infty}$ be a WSS VRS

lf

$$Y(k) = \sum_{i=-\infty}^{\infty} G(i)U(k-i)$$

Then:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$\Phi_{YY}(w) = G(w) \, \Phi_{UY}(w)$$

$$\Lambda_{UY}(l) = \Lambda_{YU}^T(-l)$$

MIMO Linear Time Invariant Systems

$$\Lambda_{YY}(l) = \sum_{i=-\infty}^{\infty} G(i) \Lambda_{UY}(l-i)$$

Proof:

$$i = -\infty$$

$$Y(k) = \sum_{i = -\infty}^{\infty} G(i)U(k - i) \qquad (m_U = 0)$$

Then:

$$\Lambda_{YY}(l) = E\{Y(k+l)Y^{T}(k)\}
= E\left\{ \left[\sum_{i=-\infty}^{\infty} G(i)U(k+l-i) \right] Y^{T}(k) \right\}
= \sum_{i=-\infty}^{\infty} G(i) E\left\{ U(k+l-i)Y^{T}(k) \right\}
= \sum_{i=-\infty}^{\infty} G(i) \Lambda_{UY}(l-i)$$

MIMO Linear Time Invariant Systems

$$\Phi_{UY}(w) = \Phi_{YU}^T(-w)$$

This is a consequence of the fact that

$$\Lambda_{UY}(l) = \Lambda_{YU}^T(-l)$$

$\Phi_{UY}(w) = \Phi_{YU}^T(-w)$

Proof:

$$\Phi_{UY}(\omega) = \sum_{l=-\infty}^{\infty} \Lambda_{UY}(l)e^{-j\omega l}$$

$$(\Lambda_{UY}(l) = \Lambda_{YU}^{T}(-l))$$

$$= \sum_{l=-\infty}^{\infty} \Lambda_{YU}^{T}(-l)e^{-j\omega l}$$

$$= \sum_{l=-\infty}^{\infty} \Lambda_{YU}^{T}(l)e^{j\omega l} = \Phi_{YU}^{T}(-\omega)$$

MIMO Linear Time Invariant Systems

If
$$Y(k) = \sum_{i=-\infty}^{\infty} G(i)U(k-i)$$

Then:

$$\Phi_{YY}(\omega) = G(\omega) \, \Phi_{UU}(\omega) \, G^T(-\omega)$$

$$G(\omega) = G(e^{j\omega})$$
 $G(-\omega) = G(e^{-j\omega})$

Proof: Use

$$\Phi_{YU}(w) = G(w) \, \Phi_{UU}(w)$$

$$\Phi_{UY}(w) = \Phi_{YU}^T(-w)$$

then

$$\Phi_{UY}(w) = \underbrace{\Phi_{UU}^{T}(-w)}_{GU}G^{T}(-w)$$

$$\Phi_{UU}(w)$$

$$\Phi_{YY}(\omega) = G(\omega) \, \Phi_{UU}(\omega) \, G^T(-\omega)$$

Thus,

$$\Phi_{UY}(w) = \Phi_{UU}(w) G^{T}(-w)$$

Since,

$$\Phi_{YY}(w) = G(w) \, \Phi_{UY}(w)$$

then

$$\Phi_{YY}(\omega) = G(\omega) \, \Phi_{III}(\omega) \, G^T(-\omega)$$

2nd order statistics of a random sequence

We now consider one-sided random sequence

$$\{X(k)\}_{k=0}^{\infty}$$

Expected value or mean of X(k),

$$E\left\{X(k)\right\} = m_X(k)$$

Auto-covariance function:

$$\begin{split} & \Lambda_{XX}(k,\underline{j}) = \\ & E\left\{ \left[X(k+\underline{j}) - m_X(k+\underline{j}) \right] \left[X(k) - m_X(k) \right]^T \right\} \end{split}$$

Subtracting the mean

• Define

$$\tilde{X}(k) = X(k) - m_X(k)$$

Auto-covariance

$$\Lambda_{XX}(k,j) = E\left\{ \tilde{X}(k+j) \, \tilde{X}^T(k) \right\}$$

White noise driven state space systems

Consider a LTI system driven by white noise:

$$X(k+1) = AX(k) + BW(k)$$
$$Y(k) = CX(k)$$

$$X(k) \in \mathcal{R}^n$$
 $W(k) \in \mathcal{R}^p$
$$Y(k) \in \mathcal{R}^m$$

White noise driven state space systems

Consider a LTI system driven by white noise:

$$X(k+1) = AX(k) + BW(k)$$
$$Y(k) = CX(k)$$

W(k) is white, but not stationary

$$m_W(k) = E\{W(k)\}$$

$$\Lambda_{WW}(k,l) = E\{\tilde{W}(k+l)\tilde{W}^T(k)\}\$$

White noise driven state space systems

W(k) is white, but not stationary

$$\Lambda_{WW}(k,l) = \Sigma_{WW}(k) \, \delta(l)$$

$$\delta(l) = \begin{cases} 1 & l = 0 \\ 0 & l \neq 0 \end{cases}$$

$$\Sigma_{WW}(k) = E\{\tilde{W}(k)\tilde{W}^{T}(k)\} \in \mathcal{R}^{p \times p}$$

White noise driven state space systems

$$X(k+1) = AX(k) + BW(k)$$

$$Y(k) = CX(k)$$

State Initial Conditions (IC):

$$m_X(0) = E\{X(0)\} = m_X(0)$$

$$\Lambda_{XX}(0,0) = E\{\tilde{X}(0)\tilde{X}^T(0)\}$$

$$E\{\tilde{X}(0)\tilde{W}^T(k)\} = 0$$

Dynamics of the mean

$$X(k+1) = AX(k) + BW(k)$$

$$Y(k) = CX(k)$$

Taking expectations on the equations above:

$$m_X(k+1) = A m_X(k) + B m_W(k)$$

$$m_Y(k) = C m_X(k)$$

White noise driven state space systems

Subtracting the means we obtain,

$$\tilde{X}(k+1) = A\tilde{X}(k) + B\tilde{W}(k)$$

$$\tilde{Y}(k) = C\tilde{X}(k)$$

Where now

$$m_{\tilde{W}}(k) = 0$$

$$m_{\tilde{X}}(k) = 0$$

Covariance propagation

$$\tilde{X}(k+1) = A\tilde{X}(k) + B\tilde{W}(k)$$

Notice that:

$$\tilde{X}(k+1)\tilde{X}^{T}(k+1) = \left[A\tilde{X}(k) + B\tilde{W}(k) \right] \left[A\tilde{X}(k) + B\tilde{W}(k) \right]^{T}$$

White noise driven covariance propagation

Taking expectations to:

$$\tilde{X}(k+1)\tilde{X}^{T}(k+1) = A\tilde{X}(k)\tilde{X}^{T}(k)A^{T} + A\tilde{X}(k)\tilde{W}^{T}(k)B^{T} + B\tilde{W}(k)\tilde{X}^{T}(k)A^{T} + B\tilde{W}(k)\tilde{W}^{T}(k)B^{T} + B\tilde{W}(k)\tilde{W}^{T}(k)B^{T}$$

White noise driven covariance propagation

Taking expectations to:

$$\Lambda_{XX}(k+1,0) = A \Lambda_{XX}(k,0) A^{T}
+ A \Lambda_{XW}(k,0) B^{T}
+ B \Lambda_{WX}(k,0) A^{T}
+ B \Lambda_{WW}(k,0) B^{T}$$

White noise driven covariance propagation

Notice that:

$$\Lambda_{XX}(k+1,0) = A \Lambda_{XX}(k,0) A^{T} \\
+ A \Lambda_{XW}(k,0) B^{T} \\
+ B \Lambda_{WX}(k,0) A^{T} \\
+ B \Lambda_{WW}(k,0) B^{T}$$

(W is white)

$$\Lambda_{XW}(k,0) = \Lambda_{WX}^{T}(k,0)
= E\left\{\tilde{X}(k)\tilde{W}^{T}(k)\right\} = 0$$

Proof of $E\left\{\tilde{X}(k)\tilde{W}^T(k)\right\} = 0$

By induction:

1) For
$$k=0$$
: $E\left\{ \tilde{X}(0)\tilde{W}^{T}(k) \right\} = 0$

2) Assume
$$E\left\{ ilde{X}(k-1) ilde{W}^T(k)
ight\} = 0$$
 , then

$$\tilde{X}(k) = A \tilde{X}(k-1) + B \tilde{W}(k-1)$$

$$E\{\tilde{X}(k)\tilde{W}^{T}(k)\} = AE\{\tilde{X}(k-1)\tilde{W}^{T}(k)\}$$

$$+ BE\{\tilde{W}(k-1)\tilde{W}^{T}(k)\}$$

White noise driven covariance propagation

We obtain the following Lyapunov equation:

$$\Lambda_{XX}(k+1,0) = A \Lambda_{XX}(k,0) A^T + B \Sigma_{WW}(k) B^T$$

$$\Lambda_{XX}(k,0) = E\left\{\tilde{X}(k)\tilde{X}^{T}(k)\right\}$$

$$\Lambda_{WW}(k,0) = E\left\{\tilde{W}(k)\tilde{W}^{T}(k)\right\} = \Sigma_{WW}(k)$$

White noise driven covariance propagation

From the output equation

$$\tilde{Y}(k) = C\tilde{X}(k)$$

we obtain

$$\Lambda_{YY}(k,0) = C \Lambda_{XX}(k,0) C^T$$

Covariance propagation

Lets now compute,

$$\Lambda_{XX}(k,l) = E\left\{\tilde{X}(k+l)\tilde{X}^T(k)\right\} \qquad l \ge 0$$

Using the solution of the LTI system,

$$\tilde{X}(k+l) = A^{l} \tilde{X}(k) + \sum_{j=k}^{k+l-1} A^{k+l-1-j} B \tilde{W}(j)$$

Covariance propagation

$$\tilde{X}(k+l) = A^{l} \tilde{X}(k) + \sum_{j=k}^{k+l-1} A^{k+l-1-j} B \tilde{W}(j)$$

$$\Lambda_{XX}(k,l) = E\left\{\tilde{X}(k+l)\tilde{X}^{T}(k)\right\}$$

$$= A^{l} E\{\tilde{X}(k)\tilde{X}^{T}(k)\}$$

$$+ \sum_{k=l}^{k+l-1} A^{k+l-1-j} B E\{\tilde{W}(j)\tilde{X}^{T}(k)\}$$

Covariance propagation

Since

$$\Lambda_{WX}(k,j) = E\left\{\tilde{W}(k+j)\tilde{X}^{T}(k)\right\}$$
$$= 0 \qquad j \ge 0$$

(W is white)

$$\sum_{j=k}^{k+l-1} A^{k+l-1-j} B E\{\tilde{W}(j)\tilde{X}^{T}(k)\} = 0$$

Stationary covariance equation

If W(k) is WSS

and A is Schur (i.e. all eigenvalues inside unite circle):

and X(k) and Y(k) will converge to WSS zero mean VRS:

$$\lim_{k \to \infty} m_X(k) = \bar{m}_X \qquad \lim_{k \to \infty} m_Y(k) = C\bar{m}_X$$

$$\lim_{k \to \infty} \Lambda_{XX}(k,0) = \bar{\Lambda}_{XX}(0) \qquad \lim_{k \to \infty} \Lambda_{YY}(k,0) = \bar{\Lambda}_{YY}(0)$$

$$= C\bar{\Lambda}_{YY}(0)C^T$$

Covariance propagation

$$\Lambda_{XX}(k,l) = E\left\{\tilde{X}(k+l)\tilde{X}^{T}(k)\right\}$$

Satisfies:

$$\Lambda_{XX}(k,l) = A^l \Lambda_{XX}(k,0) \qquad l \ge 0$$

$$\Lambda_{XX}(k,-l) = \Lambda_{XX}^{T}(k,l)$$
$$= \Lambda_{XX}(k,0) (A^{l})^{T}$$

WSS Stationary covariance equation

For W(k) WSS, and A Schur,

$$m_X(k+1) = A m_X(k) + B m_W$$

converges to

$$\bar{m}_X = [I - A]^{-1} B m_W$$

WSS Stationary covariance equation

For W(k) WSS, and A Schur,

$$\bar{\Lambda}_{XX}(0) = \lim_{k \to \infty} E\{\tilde{X}(k)\tilde{X}^T(k)\}$$

Satisfies the Lyapunov equation:

$$A\,\bar{\Lambda}_{XX}(0)\,A^T - \bar{\Lambda}_{XX}(0) = -B\,\Sigma_{WW}\,B^T$$

WSS Stationary covariance equation

For W(k) WSS, and A Schur,

$$\bar{\Lambda}_{XX}(l) = \lim_{k \to \infty} E\{\tilde{X}(k+l)\tilde{X}^T(k)\}$$

Satisfies

$$\bar{\Lambda}_{XX}(l) = A^l \bar{\Lambda}_{XX}(0) \qquad l \ge 0$$

Illustration – first order system

Plant:

$$Y(k+1) = 0.5Y(k) + 1W(k)$$

• Input:

• State initial conditions:

$$m_Y(0) = 0 \Lambda_{YY}(0,0) = .1$$

Matlab simulation: 500 sample sequences

```
\begin{aligned} & \text{lyy0} = 0.1 \\ & \text{lww} = 0.2 \\ & \text{sys1} = \text{ss}(.5,1,1,0,1) \\ & \text{N} = 20; \\ & \text{p} = 500; \\ & \text{w} = \text{sqrt}(\text{lww}) * \text{randn}(\text{N},\text{p}) + 1; \\ & \text{y} = \text{zeros}(\text{N},\text{p}); \\ & \text{y0} = \text{sqrt}(\text{lyy0}) * \text{randn}(1,\text{p}); \\ & \text{k} = (0:1:\text{N} - 1)'; \\ & \text{for } \text{j} = 1:\text{p} \\ & \text{[y(:,j),k]} = \text{lsim}(\text{sys1},\text{w(:,j),k,y0(1,j)}); \\ & \text{end} \\ & \text{m\_y} = \text{mean}(\text{y'}) \\ & \text{L\_yy} = \text{diag}(\text{cov}(\text{y'})); \end{aligned}
```


Mean Transient Response

Actual:

$$m_Y(k+1) = 0.5 m_Y(k) + 1$$

 $m_Y(0) = 0$

Covariance Transient Response Actual:

$$\begin{split} & \Lambda_{XX}(k+1,0) \ = \ 0.5^2 \Lambda_{XX}(k,0) + 0.2 \\ & \Lambda_{XX}(0,0) \ = \ .1 \\ & \begin{array}{c} \Lambda_{WW}(k,l) = 0.2 \, \delta(l) \\ & \begin{array}{c} \\ \times \\ \times \\ \end{array} \\ & \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ & \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ & \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ & \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ & \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ & \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \\ \times \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \times \end{array} \\ \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times \\ \times \\ \times \\ \times \\ \end{array} \\ \begin{array}{c} \times$$

Covariance Transient Response 0.35 0.35 0.25 0.25 0.25 0.25 0.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.25

