Parsing top down

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

Parsing predittivo

In una derivazione sinistra di una stringa, una forma di frase è necessariamente del tipo $V_T^+(V_T \cup V_N)^*$. Esempio: la grammatica

```
\begin{array}{ccc} T & \longrightarrow & R \mid aTc \\ R & \longrightarrow & RbR \mid \varepsilon \end{array}
```

e la produzione sinistra

 $\dot{T} \Rightarrow \underline{a}Tc \Rightarrow \underline{aa}Tcc \Rightarrow \underline{aa}Rcc \Rightarrow \underline{aa}RbRcc \Rightarrow \underline{aa}RbRbRcc \Rightarrow \underline{aab}RbRcc \Rightarrow \underline{aab}RbRbRcc \Rightarrow \underline{aab}RbRbRcc \Rightarrow \underline{aabbbcc}$

Parsing predittivo

- Nel corso di un parsing predittivo con input x, alla forma di frase $wA\alpha$, con $w \in V_T^*$, $A \in V_N$, $\alpha \in (V_T \cup V_N)^+$, corrisponde una situazione in cui il parser ha letto il prefisso w della stringa x e deve determinare, sulla base di esso e della rimanente parte z della stringa x = wz, quale delle produzioni aventi A a sinistra applicare.
- Se la produzione selezionata è $A \longrightarrow yB\beta$, con $y \in V_T^*$, $B \in V_N$, $\beta \in (V_T \cup V_N)^+$, la nuova forma di frase è $wyB\beta\alpha$
- Il parser ad ogni istante fa riferimento alla forma di frase attuale e alla parte di stringa di input ancora da leggere: all'inizio evidentemente queste informazioni sono l'assioma S e l'intera stringa x in input

Parsing predittivo

$$\begin{array}{ccc} T & \longrightarrow & R \mid aTc \\ R & \longrightarrow & RbR \mid \varepsilon \end{array}$$

Parsing a discesa ricorsiva

Implementazione di parser top down: una funzione A() per ogni $A \in V_N$, con la struttura seguente. Il programma inizia da S()

```
A():
```

```
for each A \longrightarrow X_1 X_2 \cdots X_k \in P:
for i in range (1, k+1):
     if X_i \in V_N:
     if not X_i():
     break
     else:
     if X_i uguale al prossimo simbolo a della stringa:
```

letta	forma di frase	stringa	possibilità	scelta
ε	Ī	aabbcc	$T \longrightarrow aTc T \longrightarrow R$	$T \longrightarrow aTc$
a	a <u>T</u> c	abbcc	$T \longrightarrow aTc T \longrightarrow R$	$T \longrightarrow aTc$
aa	aa <u>T</u> cc	bbcc	$T \longrightarrow aTc T \longrightarrow R$	$T \longrightarrow R$
aa	aa <u>R</u> cc	bbcc	$R \longrightarrow RbR$	$R \longrightarrow RbR$
aa	aa <u>R</u> bRcc	bbcc	$R \longrightarrow RbR R \longrightarrow \varepsilon$	$R \longrightarrow RbR$
aa	aa <u>R</u> bRbRcc	bbcc	$R \longrightarrow RbR R \longrightarrow \varepsilon$	$R \longrightarrow \varepsilon$
aa	aab <u>R</u> bRcc	bbcc		-
aab	aab <u>R</u> bRcc	bcc	$R \longrightarrow RbR R \longrightarrow \varepsilon$	$R \longrightarrow \varepsilon$
aab	aabb <u>R</u> cc	bcc		-
aabb	aabbRcc	cc	$R \longrightarrow RbR R \longrightarrow \varepsilon$	$R \longrightarrow \varepsilon$
aabbc	aabbcc	С		-
aabbcc	aabbcc	ε		-

avanza al simbolo successivo

else : break return True

return False

Parsing a discesa ricorsiva

- Utilizzo del backtracking:esplorazione ricorsiva di tutte le possibilità
- Backtracking: trial and error
- La grammatica non può essere ricorsiva sinistra

$$A \longrightarrow Aw$$

- Può essere molto inefficiente
- Può essere reso efficiente se la scelta della produzione da considerare può essere guidata dall'esame dei caratteri successivi

Parsing predittivo

Grammatica

$$\begin{array}{cccc} E & \longrightarrow & TE' \\ E' & \longrightarrow & +TE' \mid \varepsilon \\ T & \longrightarrow & FT' \\ T' & \longrightarrow & *FT' \mid \varepsilon \\ F & \longrightarrow & (E) \mid \mathrm{id} \end{array}$$

Stringa id+id*id

Parsing predittivo

ε	<u>E</u>	<u>id</u> +id*id	$E \longrightarrow TE'$
ε	<u>T</u> E'	<u>id</u> +id*id	$T \longrightarrow FT'$
ε	<u>F</u> T'E'	<u>id</u> +id*id	$F \longrightarrow {\tt id}$
id	id <u>T</u> ′E′	<u>+</u> id*id	$T' \longrightarrow \varepsilon$
id	id <u>E</u> ′	<u>+</u> id*id	$E' \longrightarrow +TE'$
id+	id+ <u>T</u> E′	<u>id</u> *id	$T \longrightarrow FT'$
id+	id+ <u>F</u> T'E'	<u>id</u> *id	$F \longrightarrow {\tt id}$
id+id	$id+id\underline{T}'E'$	<u>*</u> id	$T' \longrightarrow *FT'$
id+id*	id+id* <u>F</u> T'E'	<u>id</u>	$F \longrightarrow {\tt id}$
id+id*id	id+id*id <u>T</u> ′E′	ε	$T' \longrightarrow \varepsilon$
id+id*id	id+id*idE'	ε	$E' \longrightarrow \varepsilon$
id+id*id	id+id*id	ε	_

Ad ogni passo è possibile selezionare una sola produzione, guardando un solo terminale (token) Parsing predittivo efficiente

Se per ogni simbolo non terminale da espandere i prossimi k caratteri della stringa consente di individuare la produzione da applicare, il parser è LL(k)

- Left-to-right: la derivazione è calcolata da sinistra a destra (dalla prima produzione applicata all'ultima)
- Leftmost derivation: la derivazione calcolata è sinistra
- k simboli (di look-ahead) da considerare

Un linguaggio CF è LL(k) se esiste un parser LL(k) che può effettuarne l'analisi sintattica Costruzione di un parser LL: la funzione FIRST

Consideriamo il caso LL(1), per semplicità.

- Per ogni sequenza $\alpha \in (V_T \cup V_N)^+$, FIRST (α) è l'insieme dei terminali che possono comparire all'inizio di una forma di frase derivata da α
- quindi, $c \in \mathsf{FIRST}(\alpha)$ se e solo se esiste $\beta \in (V_T \cup V_N)^*$ e $\alpha \stackrel{*}{\Longrightarrow} c\beta$

Costruzione di un parser LL: la funzione FIRST

- Siamo in particolare interessati a $FIRST(\alpha)$ se α è la parte destra di una produzione $A \longrightarrow \alpha$
- Questo perché se per un qualunque c, se $c \in \mathsf{FIRST}(\alpha)$ e $A \longrightarrow \alpha$, allora una stringa che inizia per c potrebbe essere derivata a partire da A, in quanto $A \Longrightarrow \alpha \stackrel{*}{\Longrightarrow} c\beta$

Costruzione di un parser LL: la funzione FIRST

Date le A-produzioni in P

$$A \longrightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$$

- se ogni terminale appartiene a non più di un insieme $FIRST(\alpha_i)$, allora possiamo sempre individuare quale produzione applicare per riscrivere A, esaminando il solo prossimo carattere c
- infatti, va applicata $A \longrightarrow \alpha_i$ se e solo se $c \in \mathsf{FIRST}(\alpha_i)$
- se non esiste α_i tale che $c \in \mathsf{FIRST}(\alpha_i)$, c'è un errore e la parte di stringa da leggere non è derivabile a partire da A

Costruzione della funzione FIRST

Per la costruzione di FIRST (α) va utilizzato il predicato Nullable (β) definito come Nullable (β) = TRUE se e solo se β è annullabile, cioè se e solo se esiste una derivazione $\beta \stackrel{*}{\Longrightarrow} \varepsilon$. Una produzione $B \longrightarrow \beta$ è annullabile se e solo se β è annullabile.

La costruzione di Nullable (β) è basata sulle seguenti proprietà

$$\begin{aligned} & \mathsf{Nullable}(\varepsilon) = \mathsf{TRUE} \\ & \mathsf{Nullable}(a) = \mathsf{False} \quad \forall a \in V_T \\ & \mathsf{Nullable}(\alpha\beta) = \mathsf{Nullable}(\alpha) \land \mathsf{Nullable}(\beta) \\ & \mathsf{Nullable}(A) = \bigvee_i \mathsf{Nullable}(\alpha_i) \quad \forall A \in V_N, \forall A \longrightarrow \alpha_i \in P \end{aligned}$$

Costruzione della funzione FIRST

La costruzione di FIRST(α) avviene in modo simile.

Consideriamo in primo luogo la costruzione di FIRST(X), dove X è un simbolo della grammatica, $X \in V_T \cup V_N$

- 1. Se $X \in V_T$, allora $\mathsf{FIRST}(X) = \{X\}$
- 2. Se $X \in V_N$, per ogni $X \longrightarrow Y_1Y_2 \cdots Y_k \in P$ ($k \ge 1$):
 - (a) $\mathsf{FIRST}(Y_1) \subseteq \mathsf{FIRST}(X)$
 - (b) Per $i=2,\ldots k$, se Nullable $(Y_1\cdots Y_{i-1})$ allora FIRST $(Y_i)\subseteq \mathsf{FIRST}(X)$

Costruzione della funzione FIRST

Costruzione di $FIRST(X_1 \cdots X_n)$ da FIRST(X) per ogni X:

- $\mathsf{FIRST}(X_1) \subseteq \mathsf{FIRST}(X_1 \cdots X_n)$
- Per $i=2,\ldots n$, se Nullable $(X_1\cdots X_{i-1})$ allora $\mathsf{FIRST}(X_i)\subseteq \mathsf{FIRST}(X_1\cdots X_n)$

La funzione FIRST

Da quanto detto, se

- x = cy è la stringa da leggere
- A è il terminale da riscrivere

allora le possibili produzioni da applicare sono tutte le $A \longrightarrow \alpha_i$ tali che $c \in \mathsf{FIRST}(\alpha_i)$.

Se in tutti i casi possibili c'è al più una di tali produzioni, abbiamo un parser LL(1).

La funzione FIRST

Errore! In realtà, se A è annullabile, cy potrebbe essere prodotta in modo diverso:

- Supponiamo che la forma di frase attuale sia ABw, con $w \in (V_T \cup V_N)^*$
- dato che A è annullabile, esiste una derivazione $A \Longrightarrow \varepsilon$

allora, x = cy potrebbe essere ancora derivabile se $c \in \mathsf{FIRST}(B)$ (e quindi se $B \Longrightarrow c\beta$) in quanto

$$ABw \stackrel{*}{\Longrightarrow} Bw \stackrel{*}{\Longrightarrow} c\beta w$$

La funzione FOLLOW

Definiamo la funzione FOLLOW nel modo seguente:

- Per ogni non terminale $A \in V_N$, FOLLOW(A) è l'insieme dei terminali che possono comparire subito dopo A in una forma di frase derivata da S
- Quindi, dati $A \in V_N$ e $c \in V_T$, $c \in \mathsf{FOLLOW}(A)$ se e solo se esistono $\alpha, \beta \in (V_T \cup V_N)^*$ tali che $S \triangleq \alpha A c \beta$
- In realtà, la funzione FOLLOW(A) riveste interesse soltanto se Nullable $(A)=\mathtt{TRUE},$ quindi se esiste una derivazione $A \stackrel{*}{\Longrightarrow} \varepsilon$

La funzione FOLLOW

Durante il parsing:

- Siano A il non terminale da riscrivere e c il simbolo attualmente letto
- Se $c \in \mathsf{FOLLOW}(A)$ e $\mathsf{Nullable}(A) = \mathsf{TRUE}$

allora la derivazione $A \stackrel{*}{\Longrightarrow} \varepsilon$ può portare all'annullamento di A

Costruzione della funzione FOLLOW

Per tener conto del caso in cui A potrebbe essere l'ultimo simbolo di una forma di frase, cioè in cui $S \Longrightarrow \alpha A$, estendiamo la grammatica con:

• un non terminale \$ di fine stringa

- ullet un nuovo assioma S'
- ullet una produzione $S' \longrightarrow S\$$

Evidentemente, A può comparire a fine stringa nella prima grammatica se e solo se $\$ \in \mathsf{FOLLOW}(A)$ nella nuova grammatica.

Costruzione della funzione FOLLOW

FOLLOW viene costruita a partire da un insieme di vincoli derivati dalle produzioni.

- $\$ \in \mathsf{FOLLOW}(S)$
- Se $A \longrightarrow \alpha B\beta \in P$, allora FIRST $(\beta) \subseteq \mathsf{FOLLOW}(B)$
- se $A \longrightarrow \alpha B\beta \in P$ e Nullable (β) , allora FOLLOW $(A) \subseteq$ FOLLOW(B)
- se $A \longrightarrow \alpha B \in P$ allora $\mathsf{FOLLOW}(A) \subseteq \mathsf{FOLLOW}(B)$

Esempio

Grammatica

$$\begin{array}{cccc} E & \longrightarrow & TE' \\ E' & \longrightarrow & +TE' \mid \varepsilon \\ T & \longrightarrow & FT' \\ T' & \longrightarrow & *FT' \mid \varepsilon \\ F & \longrightarrow & (E) \mid \mathrm{id} \end{array}$$

Esempio

 $\mathsf{Nullable}(E') = \mathsf{Nullable}(T') = \mathsf{TRUE}$

- $FIRST(F) = \{(,id)\}$
- $FIRST(T') = \{*\}$
- $FIRST(E') = \{+\}$
- $FIRST(T) = FIRST(F) = \{(,id)\}$
- $FIRST(E) = FIRST(T) = \{(,id)\}$

Esempio

- $\$ \in \mathsf{FOLLOW}(E)$
- $FIRST(E') = \{+\} \subseteq FOLLOW(T)$
- $FIRST(T') = \{*\} \subseteq FOLLOW(F)$
- $FIRST(')') = \{\} \subseteq FOLLOW(E)$
- $FOLLOW(E) \subseteq FOLLOW(E')$
- $\mathsf{FOLLOW}(E) \subseteq \mathsf{FOLLOW}(T)$
- $FOLLOW(T) \subseteq FOLLOW(T')$
- $\mathsf{FOLLOW}(E') \subseteq \mathsf{FOLLOW}(T)$
- $FOLLOW(T') \subseteq FOLLOW(F)$

Esempio

Da cui deriva

- $FOLLOW(E) = \{\$, \}$
- $FOLLOW(E') = FOLLOW(E) = \{\$, \}$
- $FOLLOW(T) = FOLLOW(E) \cup \{+\} = \{\$, \}, +\}$
- $FOLLOW(T') = FOLLOW(T) = \{\$, \}, +\}$
- $FOLLOW(F) = FOLLOW(T') \cup \{*\} = \{\$,), +, *\}$

Tabella di parsing predittivo

Associa ad ogni coppia (a, X), $a \in V_T$, $X \in V_N$, un insieme di produzioni (1 se LL(1)) da applicare nel caso in cui X sia il non terminale da riscrivere e a sia il simbolo letto in input.

Costruzione della tabella M:

Per ogni produzione $A \longrightarrow \alpha \in P$:

- se $\alpha \neq \varepsilon$, per ogni $a \in \mathsf{FIRST}(A)$ aggiungi $A \longrightarrow \alpha$ a M[A, a]
- se Nullable(α), per ogni $b \in \mathsf{FOLLOW}(A)$ aggiungi $A \longrightarrow \alpha$ a M[A, b]

Esempio

Per la grammatica precedente

	id	+	*	()	\$
\overline{E}	$E \to TE'$			$E \to TE'$		
E'		$E' \to +TE'$			$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' \to \varepsilon$	$T' \to *FT'$		$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F o \mathtt{id}$			$F \to (E)$		

Parsing predittivo non ricorsivo

Utilizza uno stack (pila) in modo esplicito, invece che implicitamente, simulando una derivazione sinistra della stringa.

Parsing predittivo non ricorsivo

```
\begin{split} & \text{input.first()} \\ & \text{stack.push(S\$)} \\ & \textbf{while} \text{ stack.top()}! = \$: \\ & \textbf{if} \text{ stack.top()} == \text{input.current()}: \\ & \text{stack.pop()} \\ & \text{input.next()} \\ & \textbf{elif} \text{ table[stack.top(),input.current()]}! = \text{Null:} \\ & \textit{Let table[stack.top(),input.current()]} \text{ be } X \rightarrow Y_1 \cdots Y_k \\ & \text{output stack.top()} \longrightarrow Y_1 \cdots Y_k \\ & \text{stack.pop()} \\ & \text{stack.push}(Y_1 \cdots Y_k) \end{split}
```

else:

error

Parsing predittivo non ricorsivo

Esempio di parsing di id + id * id

sempre ar p	aroning ar ia	, .aa	
Matched	l Stack	Input	Action
	E\$	id+id*id\$	
	TE'\$	id+id*id\$	output $E o TE'$
	FT'E'\$	id+id*id\$	output $T o FT'$
	idT'E'\$	id+id*id\$	$output\: F \to id$
id	T'E'\$	+id*id\$	match id
id	E'\$	+id*id\$	output $T' o \varepsilon$
id	+TE'\$	+id*id\$	output $E' \rightarrow +TE'$
id+	TE'\$	id*id\$	match +
id+	FT'E'\$	id*id\$	output $T \to FT'$
id+	idT'E'\$	id*id\$	$output\: F \to id$
id+id	T'E'\$	*id\$	match id

Parsing predittivo non ricorsivo

Matched	Stack	Input	Action
id+id	*FT'E'\$	*id\$	output $T' \to *FT'$
id+id*	FT'E'\$	id\$	match *
id+id*	idT'E'\$	id\$	output $F o id$
id+id*id	T'E'\$	\$	match id
id+id*id	E'\$	\$	output $T' o \varepsilon$
id+id*id	\$	\$	output $E' \to \varepsilon$

Parsing predittivo non ricorsivo

Ne risulta la derivazione sinistra

Parsing predittivo non ricorsivo

E l'albero sintattico

