

On Secure Inter- and Intra-Vehicle Communications

M. M. Hasan and H. T. Mouftah

Presenter: Mahmud Hasan

October 23rd, 2013

The 31st Meeting of the WWRF, Vancouver, BC, Canada

Outline

- Introduction
- System Overview
- Proposed Techniques
- Numerical Results
- Conclusion

Introduction

- Vehicular Communications
 - Vehicle-to-anything (V2X): V2V, V2I, V2G
 - Intra-Vehicle Communications: sensors, controllers
- Applications
 - Intelligent Transport System (ITS): vehicle tracking, collision avoidance, roadside safety, congestion control
 - Smart Grid: EV discharging and charging schedule
 - Vehicular Sensor Networks: Sensing, monitoring

Introduction (cont.)

Security Concerns

- Sensitive information
- Confidentiality
- Integrity
- Availability

PHY layer Security

- To boost up higher layer security mechanisms
- Creation of additional layer of security

Introduction (cont.)

- Our current area
 - V2V communications
 - Intra-vehicle communications

- Issues to be focused
 - V2V Authentication delay
 - V2V Eavesdropping
 - In-vehicle power line

System Overview (V2V)

- Vehicle-to-Vehicle Communications
 - IEEE 802.11p interface
 - Licensed band of 5.9 GHz
 - OFDM at the PHY layer
 - Adaptive MIMO antenna systems

System Overview (V2V Cont.)

Channel Estimation for V2V:

$$SNR_{adj,i} = (1-\alpha)SNR_{est,i} + \alpha SNR_{adj,i-1}$$

$$\alpha = f(v_R)$$

$$f_D = \pm \frac{v_R f_c}{c}$$

System Overview (Intra-Vehicle)

- HomePlug Av Interface
 - Power line communication (PLC)
 - 2-28 MHz band
 - OFDM
 - Communications between electric control units (ECUs)

Proposed Techniques (Adaptive ARQ)

- Number of Retransmission Authentication delay
- Failed Authentication → Interruption of communications

Proposed Techniques (Adaptive ARQ)

- Adaptive ARQ
 - Estimates SNR in each frame → Initial Selection
 - If the previous frame is lost → lower Rate

Else

Initial Selection is Final

Proposed Techniques (Adaptive MIMO)

- Eavesdropping can be active or passive
- Eavesdropping can initiate the MITM or replay attack

Proposed Techniques (Adaptive MIMO)

Adaptive MIMO

- Switches transmission mode between STBC and SM based on CSI
- Mode switching occurs based on post-detection SNR instead of Demmel condition
- Improves reliability between legitimate vehicles
- Eavesdropper experiences very high BER

Proposed Techniques (In-Vehicle Power Line)

- Security of the Wired Networks
- Channel Capacity and Secrecy Capacity
- Design considerations: Signal-to-noise-ratio (SNR)
 - Attenuation 个 Signal degradation 个
 - Group delay ↑ Inter-symbol interference (ISI) ↑

Numerical Results: V2V Authentication

Decremental Distance

- Imperfect CSI
- Initial distance 50m
- Variable power settings

Incremental Distance

- Imperfect CSI
- Initial distance 150m
- Variable power settings

Numerical Results: V2V Security Against Eavesdroppers

BER for Legitimate Users

Improved reliability between legitimate vehicles

Secrecy Capacity

Enhanced secrecy capacity against eavesdropping

Numerical Results: Intra-Vehicle Cables

Manufacturer's Data

Cable Type	Nominal Cross Section (mm2)	Nominal Diameter (mm)	Insulation Thickness (mm)
1	1	1.13	0.7
2	1.5	1.38	0.7
3	2.5	1.78	0.8

Approximate Expressions

Cable Type	Attenuation Constant (Nepers/meter) for (MHz)	Group Delay (ns/meter)
1	0.0020f	6.162
2	0.0018 f	6.072
3	0.0017f	6.096

Conductor diameter ↑ Attenuation **↓** Group delay **↓**

Insulation thickness ↑ Group delay ↑

Conclusion

- PHY layer techniques can boost up higher layer security mechanisms
- Mobility awareness is a key factor in designing V2V security protocols
- Hybrid network can be used for secure
 Intra-vehicle communications

Thank you! And Questions?

