ZAWARTOŚĆ IZOTOPU ⁴⁰K W POTASIE NATURALNYM

T. Fas

30 grudnia 2017

STRESZCZENIE

W doświadczeniu wyznaczono zawartość procentową p radioizotopu 40 K w solach potasu K_2CO_3 . Otrzymano wartość $p=(0,0203\pm0,0012)\%$. Wartość ta jest prawie dwukrotnie wyższa od oczekiwanej, prawdopodobnie na skutek błędnie działającej aparatury. Oprócz tego wyznaczono energetyczną zdolność rozdzielczą spektrometru, która wynosi $(9,024\pm0,047)\%$.

WSTEP

W środowisku naturalnym występują trzy izotopy potasu: 39 K, 40 K i 41 K, z czego tylko 40 K jest radioaktywny. W 89% przypadków ulega on rozpadowi β^- . W pozostałych 11% przypadków dochodzi do emisji kwantu γ . W doświadczeniu mierzono liczbę rozpadów γ w czasie 30 minut i na tej podstawie wyznaczono stosunek masy 40 K do całości naturalnie występującego potasu.

Jeśli w czasie t odnotowano N rozpadów, to z prawa zaniku promieniotwórczego można wyznaczyć początkową liczbę N_0 jąder 40 K. Relacją między N i N_0 dana jest następującym wzorem:

$$N = N_0 \left(1 - e^{-\lambda t} \right),\tag{1}$$

gdzie λ jest stałą rozpadu. Znając czas połowicznego zaniku $T_{1/2}=1,26\cdot 10^9$ lat można go powiązać z wartością λ następującą relacją:

$$\lambda = \frac{\ln 2}{T_{1/2}}.\tag{2}$$

Znając masy molowe $^{39}{\rm K}$ i $^{40}{\rm K}$ oznaczone kolejno m_{39} i $m_{40},$ całkowitą masę M próbki soli ${\rm K_2CO_3}$ oraz jej masę molową m_s można wyznaczyć:

mase potasu ⁴⁰K ze wzoru:

$$M_{40} = \frac{N_0}{N_A} m_{40},\tag{3}$$

gdzie N_A jest liczą Avogadra; masę $^{39}{\rm K}$ ze wzoru:

$$M_{39} = \left(\frac{2M}{m_s} - \frac{N_0}{N_A}\right) m_{39} \tag{4}$$

oraz szukany stosunek $p = M_{40}/(M_{39} + M_{40})$.

UKŁAD DOŚWIADCZALNY

Układ doświadczalny składał się ze spektrometru podłączonego do komputera, próbki cezu 137 Cs, kobaltu 60 Co oraz próbki soli $\rm K_2CO_3$ o masie M=1011,91g. Wykonano 15-minutowy pomiar widma cezu oraz pomiar widma kobaltu, węglanu potasu i tła, z czego każdy z tych pomiarów trwał po 30 minut. Wyniki zostały zapisane w pamięci komputera.

Rysunek 3: Widmo potasu.

Rysunek 4: Widmo tła.

WYNIKI POMIARÓW

Wyniki pomiarów w postaci wykresów widm przedstawione są na Rysunkach 1-4.

ANALIZA DANYCH

DYSKUSJA WYNIKÓW I WNIOSKI

Literatura

[1] J. R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1995, s. 175.