NOTIZEN

Na₃OCl und Na₃OBr, die ersten Alkalimetallchalkogenidhalogenide

Na₃OCl and Na₃OBr, the First Alkali Metal Chalcogenide Halides

Horst Sabrowsky*, Karin Paszkowski, Dagmar Reddig und Petra Vogt

Lehrstuhl für Anorganische Chemie I (Arbeitsgruppe Festkörperchemie), Ruhr-Universität Bochum, Universitätsstraße 150, D-4630 Bochum 1

Z. Naturforsch. **43b**, 238–239 (1988); eingegangen am 26. Oktober 1987

Alkali Metal Chalcogenide Halides

The colourless compounds Na₃OCl and Na₃OBr have been prepared and characterized by X-ray diffraction techniques. Na₃OCl crystallizes in a cubic primitive lattice with a=450.0(3) pm (Z=1). Na₃OBr is isotypic with Na₃OCl and its lattice constant is a=457.3(5) pm. The structures are related to the *anti*-perowskitetype.

Einleitung

Bei unseren Untersuchungen zur Existenz von Interalkalimetallchalkogeniden fanden wir Additionsverbindungen, die sich nach dem Reaktionsschema $A_2X + B_2X = 2$ ABX bilden [1–7]. In Weiterführung dieser Arbeiten haben wir uns mit der Frage beschäftigt, ob nicht ebenfalls Verbindungen zwischen Alkalimetalloxiden und Alkalimetallhalogeniden als einfache Additionsverbindungen gemäß dem Reaktionsschema $M_2X + M_2Y = M_3XY$ existieren. Die Strukturen dieser Spezies sollten analog der für Perowskite bekannten Goldschmidtschen Toleranzfaktoren [8] $r_A + r_O = t\sqrt{2} \ (r_B + r_O)$ (siehe Tab. I) für $t \ge 0.8$ Vertreter des anti-Perowskittyps sein.

Tab. I. Auflistung der Toleranzfaktoren t für M_3OX -Vertreter (M = Alkalimetalle, X = Halogene) mit angenommener *anti*-Perowskitstruktur. Zur Ermittlung von t wurden die Ionenradien nach Shannon [13] zugrundegelegt.

	LiF	LiCl	LiBr	LiI
Li ₂ O	0,72	0,85	0,90	0,98
Na ₂ O	NaF	NaCl	NaBr	NaI
	0,72	0,83	0,87	0,94
K_2O	KF	KCl	KBr	KI
	0,72	0,81	0,85	0,90
Rb ₂ O	RbF	RbCl	RbBr	RbI
	0,72	0,81	0,84	0,89
Cs ₂ O	CsF	CsCl	CsBr	CsI
	0,72	0,80	0,83	0,88

Experimentelles

Gemäß der Bruttoformel M_3XY wurden äquimolare Gemenge $M_2X + MY$ (M = Na, X = O, Y = Cl, Br) in verschlossenen Korund- und Silbertiegeln, die sich in versiegelten Quarzampullen befanden, im Temperaturbereich von 793 bis 823 K mehrere Tage getempert. Man erhielt farblose polykristalline Proben mit typisch neuer Reflexabfolge ihrer Guinieraufnahmen (Tab. II und III).

Tab. II. Kubische Indizierung und beobachtete Reflexintensitäten (I_o) einer repräsentativen Guinieraufnahme (Cu_{Ka1}) von Na₃OCl. Für die Intensitätsrechnung (I_c) wurden in der Raumgruppe Pm 3 m die Punktlagen folgendermaßen belegt: 1 O²⁻ in 1a; 1 Cl⁻ in 1b; 3 Na⁺ in 3d; a = 450,0(3) pm.

Nr.	h k l	$\sin^2\theta_{\rm o} \cdot 10^5$	$\sin^2\theta_{\rm c} \cdot 10^5$	I_{o}	$I_c \cdot 10^{-2}$
1	1 0 0	2909	2929	<1	0,06
2	1 1 0	5864	5859	5	2,70
3	1 1 1	8771	8788	10	10,00
4	2 0 0	11688	11718	9	8,97
5	2 1 0	14650	14647	<1	0,05
6	2 1 1	17595	17577	2	0,79
7	2 2 0	23458	23436	8	6,04
8	3 0 0	_	26368	_	0,00
9	3 1 0	29357	29295	1	0,36
10	3 1 1	32229	32224	6	4,61
11	2 2 2	35108	35153	4	2,27
12	3 2 0	_	38083	_	0,00

^{*} Sonderdruckanforderungen an Prof. Dr. H. Sabrowsky. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/88/0200–0238/\$ 01.00/0

Tab. III. Kubische Indizierung und beobachtete Reflexintensitäten (I_0) einer repräsentativen Guinieraufnahme (Cu_{Ka1}) von Na₃OBr. Für die Intensitätsrechnung (I_c) wurden in der Raumgruppe Pm3m die Punktlagen folgendermaßen belegt: 1 O²⁻ in 1a; 1 Br⁻ in 1b; 3 Na⁺ in 3d; a = 457,3(5) pm.

Nr.	h k l	$\sin^2\theta_{\rm o} \cdot 10^5$	$\sin^2\theta_{\rm c} \cdot 10^5$	I_o	$I_c \cdot 10^{-2}$
1	1 0 0	2827	2841	3	2,26
2	1 1 0	5673	5682	9	7,23
3	1 1 1	8485	8522	10	10,00
4	2 0 0	11340	11363	10	7,70
5	2 1 0	14181	14204	2	1,19
6	2 1 1	17041	17045	5	2,92
7	2 2 0	22692	22726	6	5,46
8	3 0 0	25575	25567	1	0,16
9	3 1 0	28378	28408	3	1,45
10	3 1 1	31216	31249	6	4,96
11	2 2 2	34029	34089	3	2,10
12	3 2 0	36843	36930	1	0,47
13	2 3 1	39689	39771	3	2,13

Ergebnisse und Diskussion

Im System Na₂O/NaCl beobachten wir im Gegensatz zu Fischer [9] eine neue Phase, deren Guinier-

aufnahmen sich vollständig kubisch mit a=450,0(3) pm (Zellvolumen $V_z=54,7$ cm³) indizieren läßt (Tab. II). Das Zellvolumen stimmt gut mit dem für Na₃OCl aus den Biltzschen Volumeninkrementen zu $V_B=50,5$ cm³ und dem aus der Summe der Molvolumina der binären Komponenten (V=52,8 cm³) gemittelten überein. Für die Existenz von Na₃OCl mit *anti*-Perowskitstruktur spricht auch die vorliegende Intensitätsrechnung.

Guinieraufnahmen von getemperten äquimolaren $Na_2O/NaBr$ -Gemengen lassen sich ebenfalls kubisch mit a=457,3(5) pm indizieren ($V_z=57,6$ cm³, $V_B=55,5$ cm³, V=57,8 cm³) (Tab. III).

Mit diesen Untersuchungen zeichnen sich gleichzeitig interessante Analogien zu den im *anti*-Perowskittyp kristallisierenden Verbindungen Na₃ONO₂ [10] und Ag₃SI [11, 12] ab.

Unsere Arbeiten zeigen abermals, daß auf dem sehr gut untersuchten Gebiet der Alkalimetallverbindungen neue, überraschende Ergebnisse zu erzielen sind. Mit der Darstellung weiterer Vertreter und vor allem mit der Präparation von Einkristallen zur detaillierten Charakterisierung dieser neuen Verbindungsklasse sind wir beschäftigt.

^[1] H. Sabrowsky und U. Schröer, Z. Naturforsch. 37b, 818 (1982).

^[2] H. Sabrowsky, P. Vogt-Mertens und A. Thimm, Z. Naturforsch. 40b, 1761 (1985).

^[3] H. Sabrowsky, P. Mertens und A. Thimm, Z. Kristallogr. 171, 1 (1985).

^[4] H. Sabrowsky und P. Vogt, Z. Anorg. Allg. Chem., in Vorbereitung.

^[5] H. Sabrowsky, A. Thimm und P. Vogt-Mertens, Z. Naturforsch. 40b, 1759 (1985).

^[6] H. Sabrowsky, A. Thimm und P. Mertens, Z. Naturforsch. 40b, 733 (1985).

^[7] H. Sabrowsky, A. Thimm, P. Vogt und B. Harbrecht, Z. Anorg. Allg. Chem. **546**, 169 (1987).

^[8] V. M. Goldschmidt, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Naturv. Kl., No. 8 (1926).

^[9] W. Fischer und H.-J. Abendroth, Z. Anorg. Allg. Chem. 308, 98 (1961).

^[10] M. Jansen, Z. Anorg. Allg. Chem. 435, 13 (1977).

^[11] B. Reuter und K. Hardel, Z. Anorg. Allg. Chem. 340, 158 (1965).

^[12] B. Reuter und K. Hardel, Z. Anorg. Allg. Chem. 340, 168 (1965).

^[13] R. D. Shannon und C. T. Prewitt, Acta Crystallogr. B 26, 1046 (1970).