Lectures 9 & 10: Combining Kernels, Convergence Diagnostics

Nick Whiteley

Choosing a good proposal distribution

- Ideally: Markov chain with small correlation $\rho(\mathbf{X}^{(t-1)}, \mathbf{X}^{(t)})$ between subsequent values.
 - \rightsquigarrow fast exploration of the support of the target f.
- Two sources for this correlation:
 - the correlation between the current state $\mathbf{X}^{(t-1)}$ and the newly proposed value $\mathbf{X} \sim q(\cdot|\mathbf{X}^{(t-1)})$ (can be reduced using a proposal with high variance)
 - the correlation introduced by retaining a value $\mathbf{X}^{(t)} = \mathbf{X}^{(t-1)}$ because the newly generated value \mathbf{X} has been rejected (can be reduced using a proposal with small variance)
- Trade-off for finding the ideal compromise between:
 - fast exploration of the space (good mixing behaviour)
 - obtaining a large probability of acceptance
- For multivariate distributions: covariance of proposal should reflect the covariance structure of the target.

Example 5.3: Choice of proposal (1)

- Target distribution, we want to sample from: N(0,1) (i.e. $f(\cdot) = \phi_{(0,1)}(\cdot)$)
- We want to use a random walk Metropolis algorithm with

$$\varepsilon \sim \mathsf{N}(0, \sigma^2)$$

- What is the optimal choice of σ^2 ?
- We consider four choices $\sigma^2 = 0.1^2, 1, 2.38^2, 10^2$.

Example 5.3: Choice of proposal (2)

Example 5.3: Choice of proposal (3) 9-9 9.

Example 5.3: Choice of proposal (4)

	Autocorrelation $\rho(X^{(t-1)}, X^{(t)})$		Probability of acceptance $\alpha(X, X^{(t-1)})$	
	Mean	95% CI	Mean	95% CI
$\sigma^2 = 0.1^2$	0.9901	(0.9891,0.9910)	0.9694	(0.9677,0.9710)
$\sigma^2 = 1$	0.7733	(0.7676, 0.7791)	0.7038	(0.7014, 0.7061)
$\sigma^2 = 2.38^2$	0.6225	(0.6162, 0.6289)	0.4426	(0.4401, 0.4452)
$\sigma^2 = 10^2$	0.8360	(0.8303, 0.8418)	0.1255	(0.1237, 0.1274)

Suggests: Optimal choice is $2.38^2 > 1$.

Example 5.4: Bayesian probit model (revisited)

- So far we used: $Var(\epsilon) = 0.08 \cdot \mathbb{I}$.
- ullet Better choice: Let $\mathrm{Var}(oldsymbol{\epsilon})$ reflect the covariance structure
- Frequentist asymptotic theory: $Var(\hat{\boldsymbol{\beta}}^{m.l.e}) = (\mathbf{Z}'\mathbf{D}\mathbf{Z})^{-1}$ \mathbf{D} is a suitable diagonal matrix
- Better choice: $Var(\epsilon) = 2 \cdot (\mathbf{Z}'\mathbf{D}\mathbf{Z})^{-1}$
- Increases rate of acceptance from 13.9% to 20.0% and reduces autocorrelation:

$\mathbf{\Sigma} = 0.08 \cdot \mathbf{I}$	β_0	eta_1	β_2	β_3
Autocorrelation $ ho(eta_j^{(t-1)},eta_j^{(t)})$	0.9496	0.9503	0.9562	0.9532
$\Sigma = 2 \cdot (\mathbf{Z}' \mathbf{D} \mathbf{Z})^{-1}$ Autocorrelation $\rho(\beta_i^{(t-1)}, \beta_i^{(t)})$	β_0	eta_1	eta_2	β_3

(in this example $\det(0.08 \cdot \mathbb{I}) = \det(2 \cdot (\mathbf{Z}'\mathbf{DZ})^{-1})$)

5.5 Composing kernels: Mixtures and Cycles

Composing kernels: Idea

- MCMC algorithm (Gibbs sampler, Metropolis-Hastings) can be uniquely identified by the transition kernel.
- So far: only one type of update in the Metropolis-Hastings algorithm.
- Question: Can we combine different MCMC updates?
- Assume:
 - ullet r possible MCMC updates characterised by kernels $K^{(
 ho)}(\cdot,\cdot)$.
 - ullet f is the invariant distribution of each kernel $K^{(
 ho)}.$
- Two possibilities of combining the r MCMC updates:
 - Cycle Perform the MCMC update in a deterministic order.

Mixture Pick an MCMC update at random.

Cycles

Cycle of MCMC updates $K^{(1)}, \ldots, K^{(r)}$

Starting with $\mathbf{X}^{(0)}$ iterate for $t = 1, 2, \dots$

- 1. Set $\boldsymbol{\xi}^{(t,0)} := \mathbf{X}^{(t-1)}$.
- 2. For $\rho = 1, ..., r$:

Obtain $\boldsymbol{\xi}^{(t,\rho)}$ from $\boldsymbol{\xi}^{(t,\rho-1)}$ by performing an MCMC update corresponding to the kernel $K^{(\rho)}$.

- 3. Set $\mathbf{X}^{(t)} := \boldsymbol{\xi}^{(t,\rho)}$.
 - Similar to the (systematic scan) Gibbs sampler.
 - Corresponding transition kernel is

$$K^{\circ}(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}) = \int \cdots \int K^{(1)}(\mathbf{x}^{(t-1)}, \boldsymbol{\xi}^{(t,1)}) K^{(2)}(\boldsymbol{\xi}^{(t,1)}, \boldsymbol{\xi}^{(t,2)}) \\ \cdots K^{(r)}(\boldsymbol{\xi}^{(t,r-1)}, \mathbf{x}^{(t)}) d\boldsymbol{\xi}^{(t,r-1)} \cdots d\boldsymbol{\xi}^{(t,1)}$$

• f is the invariant distribution of K° if f is the invariant distribution of all $K^{(\rho)}$.

Mixtures

Mixture of MCMC updates $K^{(1)}, \ldots, K^{(r)}$

Starting with $\mathbf{X}^{(0)}$ iterate for $t=1,2,\ldots$

- 1. Draw ρ from $\{1,\ldots,k\}$ with probabilities (w_1,\ldots,w_r) .
- 2. Obtain $\mathbf{X}^{(t)}$ from $\mathbf{X}^{(t-1)}$ by performing an MCMC update corresponding to the kernel $K^{(\rho)}$.
 - Similar to the random scan Gibbs sampler.
 - Corresponding transition kernel is

$$K^{+}(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}) = \sum_{\rho=1}^{r} w_{\rho} K^{(\rho)}(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}).$$

• f is the invariant distribution of K^+ if f is the invariant distribution of all $K^{(\rho)}$.

Example 5.5: One-at-a-time Metropolis-Hastings: Idea

- Metropolis-Hastings algorithm 5.1 updates all components of $\mathbf{X}^{(t)}$ in a single step.
- Can we update each component $X_j^{(t)}$ separately? \rightsquigarrow one-at-a-time Metropolis-Hastings algorithm.
- Can be seen as a composition of p transition kernels $K^{(1)}, \ldots, K^{(p)}$.
- Kernel $K^{(j)}$ is a Metropolis-Hastings update of $X_j^{(t)}$.
- Two possibilities of combining the kernels:
 - Cycle ("systematic scan").
 - Mixture ("random scan").

Example 5.5: One-at-a-time MH (cycle, systematic scan)

Starting with $\mathbf{X}^{(0)} = (X_1^{(0)}, \dots, X_p^{(0)})$ iterate for $t = 1, 2, \dots$

- Iterate for $j = 1, \dots, p$
 - i. Draw $X_j \sim q_j(\cdot|X_1^{(t)}, \dots, X_{j-1}^{(t)}, X_j^{(t-1)}, \dots, X_p^{(t-1)})$.
 - ii. Compute

$$\alpha_{j} = \min \left\{ 1, \frac{f(X_{1}^{(t)}, \dots, X_{j-1}^{(t)}, X_{j}, X_{j+1}^{(t-1)}, \dots, X_{p}^{(t-1)})}{f(X_{1}^{(t)}, \dots, X_{j-1}^{(t)}, X_{j}^{(t-1)}, X_{j+1}^{(t-1)}, \dots, X_{p}^{(t-1)})} \cdot \frac{q_{j}(X_{j}^{(t-1)}|X_{1}^{(t)}, \dots, X_{j-1}^{(t)}, X_{j}, X_{j+1}^{(t-1)}, \dots, X_{p}^{(t-1)})}{q_{j}(X_{j}|X_{1}^{(t)}, \dots, X_{j-1}^{(t)}, X_{j}^{(t-1)}, X_{j+1}^{(t-1)}, \dots, X_{p}^{(t-1)})} \right\}.$$

iii. With probability α_j set $X_j^{(t)} = X_j$, otherwise set $X_j^{(t)} = X_j^{(t-1)}$.

(corresponds to setting ${\pmb \xi}^{(t,j)} = (X_1^{(t)}, \dots, X_j^{(t)}, X_{j+1}^{(t-1)}, \dots, X_p^{(t-1)})$)

Example 5.5: One-at-a-time MH (mixture, random scan)

Starting with $\mathbf{X}^{(0)} = (X_1^{(0)}, \dots, X_p^{(0)})$ iterate

- 1. Draw an index j from a distribution on $\{1,\ldots,p\}$ (e.g. uniform)
- 2. Draw $X_j \sim q_j(\cdot|X_1^{(t-1)}, \dots, X_p^{(t-1)}).$
- 3. Compute

$$\alpha_j = \min \left\{ 1, \frac{f(X_1^{(t-1)}, \dots, X_{j-1}^{(t-1)}, X_j, X_{j+1}^{(t-1)}, \dots, X_p^{(t-1)})}{f(X_1^{(t-1)}, \dots, X_{j-1}^{(t-1)}, X_j^{(t-1)}, X_{j+1}^{(t-1)}, \dots, X_p^{(t-1)})} \\ \cdot \frac{q_j(X_j^{(t-1)}|X_1^{(t-1)}, \dots, X_{j-1}^{(t-1)}, X_j, X_{j+1}^{(t-1)}, \dots, X_p^{(t-1)})}{q_j(X_j|X_1^{(t-1)}, \dots, X_{j-1}^{(t-1)}, X_j^{(t-1)}, X_{j+1}^{(t-1)}, \dots, X_p^{(t-1)})} \right\}.$$

- 4. With probability α_j set $X_j^{(t)} = X_j$, otherwise set $X_j^{(t)} = X_j^{(t-1)}$.
- 5. Set $X_{\iota}^{(t)} := X_{\iota}^{(t-1)}$ for all $\iota \neq j$.

The Gibbs sampler as a Metropolis-Hastings algorithm

Remark 5.2

The Gibbs sampler for a p-dimensional distribution is a special case of a one-at-a-time Metropolis-Hasting algorithm:

- ullet the (systematic scan) Gibbs sampler is a cycle of p kernels,
- the random scan Gibbs sampler is a mixture of these kernels.

The proposal q_j corresponding to the j-th kernel consists of drawing $X_i^{(t)} \sim f_{X_i|X_{-i}}$.

The corresponding probability of acceptance is uniformly equal to 1.

7 Convergence diagnostics

Practical considerations: Burn-in period

- Theory (ergodic theorems) allows for the use of the entire chain $(\mathbf{X}^{(0)},\mathbf{X}^{(1)},\ldots)$.
- However distribution of $(\mathbf{X}^{(t)})$ for small t might still be far from the stationary distribution f.
- Can be beneficial to discard the first iterations $\mathbf{X}^{(t)}$, $t=1,\ldots,T_0$ (burn-in period).
- Optimal T_0 depends on mixing properties of the chain.

Practical considerations: Thinning (1)

- MCMC methods typically yield positively correlated chain: $\rho(\mathbf{X}^{(t)}, \mathbf{X}^{(t+ au)})$ large for small au.
- Idea: build a subchain by only keeping every m-th value: Consider a Markov chain $(\mathbf{Y}^{(t)})_{t=1,\dots,\lfloor T/m\rfloor}$ with $\mathbf{Y}^{(t)} = \mathbf{X}^{(m\cdot t)}$ instead of $(\mathbf{X}^{(t)})_{t=1,\dots,T}$ (thinning).
- ullet $(\mathbf{Y}^{(t)})_t$ exhibits less autocorrelation than $(\mathbf{X}^{(t)})_t$, i.e.

$$\rho(\mathbf{Y}^{(t)}, \mathbf{Y}^{(t+\tau)}) = \rho(\mathbf{X}^{(t)}, \mathbf{X}^{(t+m \cdot \tau)}) < \rho(\mathbf{X}^{(t)}, \mathbf{X}^{(t+\tau)}),$$

if the correlation $\rho(\mathbf{X}^{(t)}, \mathbf{X}^{(t+\tau)})$ decreases monotonically in τ .

• Price we have to pay: length of $(\mathbf{Y}^{(t)})_{t=1,\dots,\lfloor T/m\rfloor}$ is only (1/m)-th of the length of $(\mathbf{X}^{(t)})_{t=1,\dots,T}$.

Practical considerations: Thinning (2)

• If $\mathbf{X}^{(t)} \sim f$ and corresponding variances exist,

$$\operatorname{Var}\left(\frac{1}{T}\sum_{t=1}^{T}h(\mathbf{X}^{(t)})\right) \leq \operatorname{Var}\left(\frac{1}{\lfloor T/m \rfloor}\sum_{t=1}^{\lfloor T/m \rfloor}h(\mathbf{Y}^{(t)})\right),\,$$

i.e. thinning cannot be justified when objective is estimating $\mathbb{E}_f(h(\mathbf{X})).$

- Thinning can be a useful concept
 - if computer has insufficient memory.
 - for convergence diagnostics: $(\mathbf{Y}^{(t)})_{t=1,\dots,\lfloor T/m\rfloor}$ is closer to an i.i.d. sample than $(\mathbf{X}^{(t)})_{t=1,\dots,T}$.

The need for convergence diagnostics

- Theory we have studied guarantees (under certain conditions) the convergence of the Markov chain $\mathbf{X}^{(t)}$ to the desired distribution.
- This does not imply that a *finite* sample from such a chain yields a good approximation to the target distribution.
- Validity of the approximation must be confirmed in practise.
- Convergence diagnostics help answering this question.
- Convergence diagnostics are not perfect and should be treated with a good amount of scepticism.

Different diagnostic tasks

- Convergence to the target distribution Does $\mathbf{X}^{(t)}$ yield a sample from the target distribution?
 - Has $(\mathbf{X}^{(t)})_t$ reached a stationary regime?
 - Does $(\mathbf{X}^{(t)})_t$ cover the support of the target distribution?
- Convergence of the averages Does $\sum_{t=1}^T h(\mathbf{X}^{(t)})/T$ provide a good approximation to the expectation $\mathbb{E}_f(h(\mathbf{X}))$ under the target distribution?
- Comparison to i.i.d. sampling How much information is contained in the sample from the Markov chain compared to i.i.d. sampling?

Pathological example 1: potentially slowly mixing

Gibbs sampler from a bivariate Gaussian with correlation $\rho(X_1, X_2)$

$$\rho(X_1, X_2) = 0.3$$

$$\rho(X_1, X_2) = 0.99$$

For correlations $\rho(X_1,X_2)$ close to ± 1 the chain can be poorly mixing.

Pathological example 2: no central limit theorem

The following MCMC algorithm has the ${\sf Beta}(\alpha,1)$ distribution as stationary distribution:

Starting with any $X^{(0)}$ iterate for t = 1, 2, ...

- 1. With probability $1 X^{(t-1)}$, set $X^{(t)} = X^{(t-1)}$.
- 2. Otherwise draw $X^{(t)} \sim \text{Beta}(\alpha + 1, 1)$.

Markov chain converges very slowly (no central limit theorem applies).

Pathological example 3: nearly reducible chain

Metropolis-Hastings sample from a mixture of two well-separated Gaussians, i.e. the target is

$$f(x) = 0.4 \cdot \phi_{(-1,0.2^2)}(x) + 0.6 \cdot \phi_{(2,0.3^2)}(x)$$

If the variance of the proposal is too small, the chain cannot move from one population to the other.

Basic plots

- Plot the sample paths $(X_j^{(t)})_t$. should be oscillating very fast and show very little structure.
- Plot the cumulative averages $(\sum_{\tau=1}^t X_j^{(\tau)}/t)_t$. should be converging to a value.
- Alternatively plot CUSUM $(\bar{X}_j \sum_{\tau=1}^t X_j^{(\tau)}/t)_t$ with $\bar{X}_j = \sum_{\tau=1}^T X_j^{(\tau)}/T$. should be converging to 0.
- Only very obvious problems visible in these plots.
- Difficult to assess multivariate distributions from univariate projections.

Basic plots for pathological example 1 ($\rho(X_1, X_2) = 0.3$)

Looks OK.

Basic plots for pathological example 1 ($\rho(X_1, X_2) = 0.99$)

Slow mixing speed can be detected.

Basic plots for pathological example 2

Slow convergence of the mean can be detected.

Basic plots for pathological example 3

We *cannot* detect that the sample only covers one part of the distribution.

("you've only seen where you've been")

Non-parametric tests of convergence

Partition chain in 3 blocks:

```
burn-in (\mathbf{X}^{(t)})_{t=1,...,|T/3|}
   first block (\mathbf{X}^{(t)})_{t=|T/3|+1,...,2|T/3|}
second block (\mathbf{X}^{(t)})_{t=2|T/3|+1,\dots,T}
```

- Distribution of $\mathbf{X}^{(t)}$ in both blocks should be identical.
- Idea: Use of a non-parametric test to test whether the two distributions are identical.
- Problem: Tests designed for i.i.d. samples. \leadsto Resort to a (less correlated) thinned chain $\mathbf{Y}^{(t)} = \mathbf{X}^{(m \cdot t)}$.

Kolmogorov-Smirnov test

- ullet Two i.i.d. populations: $Z_{1,1},\ldots,Z_{1,n}$ and $Z_{2,1},\ldots,Z_{2,n}$
- Estimate empirical CDF in each population:

$$\hat{F}_k(z) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{(-\infty, z]}(Z_{k,i})$$

 Test statistic is the maximum difference between the two empirical CDFs:

$$K = \sup_{x \in \mathbb{R}} |\hat{F}_1(x) - \hat{F}_2(x)|$$

• For $n \to \infty$ the CDF of $\sqrt{n} \cdot K$ converges to the CDF

$$R(k) = 1 - \sum_{i=1}^{+\infty} (-1)^{i-1} \exp(-2i^2 k^2)$$

Kolmogorov-Smirnov test

- In our case the two populations are thinned first block $(\mathbf{Y}^{(t)})_{t=\lfloor T/(3\cdot m)\rfloor+1,\dots,2\lfloor T/(3\cdot m)\rfloor}$ thinned second block $(\mathbf{X}^{(t)})_{t=2|T/(3\cdot m)|+1,\dots,|T/m|}$
- Even the thinned chain $(\mathbf{Y}^{(t)})_t$ is autocorrelated \rightsquigarrow test invalid from a formal point of view.
- Standardised test statistic $\sqrt{\lfloor T/(3 \cdot m) \rfloor} \cdot K$ can still be used a heuristic tool.

KS test for pathological example 1

$$\rho(X_1, X_2) = 0.3$$

$$\rho(X_1, X_2) = 0.99$$

Slow mixing speed can be detected for the highly correlated chain.

KS test for pathological example 2

Problems can be detected.

KS test for pathological example 3

We *cannot* detect that the sample only covers one part of the distribution.

("you've only seen where you've been")

Comparing multiple chains

- Compare L > 1 chains $(\mathbf{X}^{(1,t)})_t, \dots, (\mathbf{X}^{(L,t)})_t$.
- Initialised using overdispersed starting values $\mathbf{X}^{(1,0)},\dots,\mathbf{X}^{(L,0)}.$
- Idea: Variance and range of each chain $(\mathbf{X}^{(l,t)})_t$ should equal the range and variance of all chains pooled together.
- Compare basic plots for the different chains.
- Quantitative measure:
 - Compute distance $\delta_{\alpha}^{(l)}$ between α and $(1-\alpha)$ quantile of $(X_k^{(l,t)})_t$.
 - Compute distance $\delta_{\alpha}^{(\cdot)}$ between α and $(1-\alpha)$ quantile of the pooled data.
 - The ratio $\hat{S}_{\alpha}^{\mathrm{interval}} = \frac{\sum_{l=1}^{L} \delta_{\alpha}^{(l)} / L}{\delta_{\alpha}^{(r)}}$ should be around 1.
- Alternative: compare variance within each chain with the pooled variance estimate.
- Choosing suitable initial values $\mathbf{X}^{(1,0)}, \dots, \mathbf{X}^{(L,0)}$ difficult in high dimensions.

Comparing multiple chains plots for pathological example 3

$$\hat{S}_{\alpha}^{\mathrm{interval}} = 0.2703 \ll 1$$

We can detect that the sample only covers one part of the distribution (provided the chains are initialised appropriately).

Riemann sums and control variates

- Consider order statistic $X^{[1]} \leq \ldots \leq X^{[T]}$.
- Provided $(X^{[t]})_t = 1 \dots, T$ covers the support of the target, the Riemann sum

$$\sum_{t=2}^{T} (X^{[t]} - X^{[t-1]}) f(X^{[t]})$$

converges to

$$\int f(x)dx = 1.$$

- Thus if $\sum_{t=2}^T (X^{[t]} X^{[t-1]}) f(X^{[t]}) \ll 1$, the Markov chain has failed to explore all the support of the target.
- Requires that target density f is available inclusive of normalisation constants.
- Only effective in 1D.
- Riemann sums can be seen as a special case of control variates.

Riemann sums for pathological example 3

For the chain stuck in the population with mean 2 we obtain

$$\sum_{t=2}^{T} (X^{[t]} - X^{[t-1]}) f(X^{[t]}) = 0.598 \ll 1,$$

so we can detect that we have not explored the whole distribution.

Effective sample size

- MCMC algorithms yield a positively correlated sample $(\mathbf{X}^{(t)})_{t=1,\dots,T}.$
- ullet MCMC sample of size T thus contains less information than an i.i.d. sample of size T.
- Question: how much less information?
- Approximate $(h(\mathbf{X}^{(t)}))_{t=1,\dots,T}$ by an AR(1) process, i.e. we assume that

$$\rho(h(\mathbf{X}^{(t)}), h(\mathbf{X}^{(t+\tau)})) = \rho^{|\tau|}.$$

Variance of the estimator is

$$\operatorname{Var}\left(\frac{1}{T}\sum_{t=1}^{T}h(\mathbf{X}^{(t)})\right) \approx \frac{1+\rho}{1-\rho} \cdot \frac{1}{T}\operatorname{Var}\left(h(\mathbf{X}^{(t)})\right)$$

- Same variance as an i.i.d. sample of the size $T \cdot \frac{1-\rho}{1+\rho}$.
- Thus define $T \cdot \frac{1-\rho}{1+\rho}$ as effective sample size.

Effective sample for pathological example 1

Rapidly mixing chain ($\rho(X_1,X_2)=0.3$) 10,000 samples

$$\rho(X_1^{(t-1)}, X_1^{(t)}) = 0.078$$

ESS for estimating $\mathbb{E}_f(X_1)$ is 8,547.

Slowly mixing chain $(\rho(X_1, X_2) = 0.99)$ 10,000 samples

ESS for estimating $\mathbb{E}_f(X_1)$ is 105.