# Model Quality

Model Selection, Evaluation, and Documentation

Jin Guo SOCS McGill University How do you know the model is doing what you intended to do?

Data Scientists/Model Developers

How do you know the model is doing what you intended to do?

How do you know a program is doing what you intended to do?







"All software you write will be tested—if not by you and your team, then by the eventual users—so you might as well plan on testing it thoroughly ..."

### Test Case Example during Unit Test

```
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

class UndergradTest {
    @Test
    void getFirstName() {
        Student s = new Undergrad("001","Lily", "Joe");
        assertEquals("Lily", s.getFirstName());
    }
}
```

assertEquals method

Oracle



#### Activity 1

- How do you, as a model developer, consider a model is performing reasonable? You can draw from your experience.
- How do that compare model evaluation with the unit test practice for traditional software source code? What are the transferable consideration, and what are not?
- Summarize your comparison on Miro.

#### Model Evaluation VS Software Unit Testing

- Evaluation Means
- Evaluation Objective
- What do to in the case of unsatisfied evaluation outcome
- Quality of the evaluation itself

• • •

Metrics for Machine Learning Model

## Activity 2

- 1.Identify the metrics you have used before. Describe its context and why you chose those metrics.
- 2. Have you used metrics not in this table before? If so, describe it and its context.
- 3. Any observations form this table.

|           | Accuracy | Root mean T<br>Square error | rue positive<br>Rate F | False<br>Positive R | Precision<br>ate | Recall | F-measure |      | enko and Bratko<br>ormation score |
|-----------|----------|-----------------------------|------------------------|---------------------|------------------|--------|-----------|------|-----------------------------------|
| Algorithm | Acc      | RMSE                        | TPR                    | FPR                 | Prec             | Rec    | F         | AUC  | K & B                             |
| NB        | 71.7     | 0.4534                      | 0.44                   | 0.16                | 0.53             | 0.44   | 0.48      | 0.7  | 48.1118                           |
| c45       | 75.5     | 0.4324                      | 0.27                   | 0.04                | 0.74             | 0.27   | 0.4       | 0.59 | 34.2789                           |
| 3nn       | 72.4     | 0.5101                      | 0.32                   | 0.1                 | 0.56             | 0.32   | 0.41      | 0.63 | 43.3682                           |
| RIP       | 71       | 0.4494                      | 0.37                   | 0.14                | 0.52             | 0.37   | 0.43      | 0.6  | 22.3397                           |
| SVM       | 69.6     | 0.5515                      | 0.33                   | 0.15                | 0.48             | 0.33   | 0.39      | 0.59 | 54.8934                           |
| Bagging   | 67.8     | 0.4518                      | 0.17                   | 0.1                 | 0.4              | 0.17   | 0.23      | 0.63 | 11.3004                           |
| Boosting  | 70.3     | 0.4329                      | 0.42                   | 0.18                | 0.5              | 0.42   | 0.46      | 0.7  | 34.4795                           |
| RF        | 69.23    | 3 0.47                      | 0.33                   | 0.15                | 0.48             | 0.33   | 0.39      | 0.63 | 20.7763                           |

Area under the ROC curve

#### Common Metrics

Accuracy (TP + TN) / (P + N)

Precision TP / (TP + FP)

Recall TP / (TP + FN)

F-measure  $\frac{(1+\alpha)Precision*Recall}{\alpha*Precision+Recall}$ 

|          | Model Pred<br>Positive | Model Pred<br>Negative |
|----------|------------------------|------------------------|
| Actual   | True                   | False                  |
| Positive | Positive(TP)           | Negative(FN)           |
| Actual   | False                  | True                   |
| Negative | Positive(FP)           | Negative(TN)           |

| Input | <b>Actual Output</b> | <b>Model Output</b> |
|-------|----------------------|---------------------|
| 1     | No                   | Yes                 |
| 2     | No                   | No                  |
| 3     | Yes                  | No                  |
|       |                      |                     |

## **ROC** Analysis



|          | Model Pred<br>Positive | Model Pred<br>Negative |
|----------|------------------------|------------------------|
| Actual   | True                   | False                  |
| Positive | Positive(TP)           | Negative(FN)           |
| Actual   | False                  | True                   |
| Negative | Positive(FP)           | Negative(TN)           |

True Positive Rate (Hit Rate) TP / (TP + FN)False Positive Rate (Fallout) FP / (FP + TN)

### Precision-Recall (PR) Curves



|          | Model Pred<br>Positive | Model Pred<br>Negative |
|----------|------------------------|------------------------|
| Actual   | True                   | False                  |
| Positive | Positive(TP)           | Negative(FN)           |
| Actual   | False                  | True                   |
| Negative | Positive(FP)           | Negative(TN)           |

| Input | <b>Actual Output</b> | <b>Model Output</b> |
|-------|----------------------|---------------------|
| 1     | No                   | 0.8 -> Yes          |
| 2     | No                   | 0.7 -> No           |
| 3     | Yes                  | 0.75 -> No          |
|       |                      |                     |
| 14    | Yes                  | 0.4                 |

## Domain Specific Metrics

- Mean Average precision
- Information Retrieval
- ROUGE, BLEU score
- Text generation

. . .

#### Other properties of the model

- Fairness : group and individual level
  - Equalized odds
  - Demographic parity
  - •
- Explainability: model and individual level
  - Complexity
  - Representativeness
  - ...

## Activity 3

 What content do/should you include in the model documentation?

• What content do you need as a model user?

#### Model Documentation

- Examples:
  - <a href="https://keras.io/api/applications/vgg/">https://keras.io/api/applications/vgg/</a>
  - https://huggingface.co/bert-base-multilingual-cased
  - <a href="https://modelcards.withgoogle.com/object-detection">https://modelcards.withgoogle.com/object-detection</a>

#### Model Documentation



Drug Facts (continued)

Other information ■ store at 20-25°C (68-77°F) ■ protect from excessive moisture

Inactive ingredients D&C yellow no. 10, lactose, magnesium stearate, microcrystalline cellulose, pregelatinized starch

Image from: https://www.fda.gov/drugs/resources-you-drugs/over-counter-medicine-label-take-look

#### Model Card

Mitchell, Margaret, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. "Model cards for model reporting." In *Proceedings of the conference on fairness, accountability, and transparency*, pp. 220-229. 2019.

- Model Details. Basic information about the model.
  - Person or organization developing model
  - Model date
  - Model version
  - Model type
  - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features
  - Paper or other resource for more information
  - Citation details
  - License
  - Where to send questions or comments about the model
- **Intended Use**. Use cases that were envisioned during development.
  - Primary intended uses
  - Primary intended users
  - Out-of-scope use cases
- Factors. Factors could include demographic or phenotypic groups, environmental conditions, technical attributes, or others listed in Section 4.3.
  - Relevant factors
  - Evaluation factors

- **Metrics**. Metrics should be chosen to reflect potential realworld impacts of the model.
  - Model performance measures
  - Decision thresholds
  - Variation approaches
- Evaluation Data. Details on the dataset(s) used for the quantitative analyses in the card.
  - Datasets
  - Motivation
  - Preprocessing
- Training Data. May not be possible to provide in practice. When possible, this section should mirror Evaluation Data. If such detail is not possible, minimal allowable information should be provided here, such as details of the distribution over various factors in the training datasets.
- Quantitative Analyses
  - Unitary results
  - Intersectional results
- Ethical Considerations
- Caveats and Recommendations

On Thursday:

More on Model Quality (Saskia)

Model -> System