Linear Models for Classification

Three Approaches to Classification Problems

- 1. Deterministic model
- 2. Probabilistic generative model
- 3. Probabilistic deterministic model

Linear Models for Classification

Goal: Take an input vector x and assign it to one of K classes $C_1, ..., C_K$.

The input space is divided into regions whose boundaries are called **decision boundaries** or **decision surfaces**.

Linear classification models yield linear decision boundaries, which are (D-1)-dimensional hyperplanes within the D-dimensional input space.

4.1 Discriminant Functions

A **discriminant** is a function that takes an input vector x and assigns it to one of K classes C_1, \ldots, C_K . A **linear discriminant** is a function whose decision surfaces are hyperplanes.

The simplest representation of a linear discriminant function is

$$y(x) = \mathbf{w}^T x + w_0$$

where w is a weight vector and w_0 is a bias.

Binary Classification (K = 2)

If $y(x) \ge 0$, assign C_1 . Otherwise, assign C_2 .

The decision surface is defined by y(x) = 0, which is a (D-1)-dimensional hyperplane in the D-dimensional input space.

If v is any vector that lies within the decision surface, then $w^Tv = 0$, so w is orthogonal to every vector in the decision surface. w determines the orientation of the decision surface.

The bias term w_0 determines the location of the decision boundary.

Classification Involving Multiple Classes (K > 2)

Use a single K-class discriminant comprising K linear functions of the form

$$y_k(x) = w_k^T x + w_{k0}$$
, for $k = 1, ..., K$.

Assign x to class C_k if $y_k(x) > y_j(x)$ for all $j \neq k$. The decision boundary between class C_k and class C_j is given by $y_k(x) = y_j(x)$, which is a (D-1)-dimensional hyperplane defined by

$$(\mathbf{w}_k - \mathbf{w}_j)^T \mathbf{x} + (\mathbf{w}_{k0} - \mathbf{w}_{j0}) = 0.$$

Classification Involving Multiple Classes (K > 2)

The decision regions of such a discriminant are **convex**. To see this, if x_A , x_B are two points lying in the same decision region \mathcal{R}_k , the line \hat{x} connecting x_A and x_B can be expressed as

$$\hat{\mathbf{x}} = \lambda \mathbf{x}_A + (1 - \lambda)\mathbf{x}_B$$
, where $0 \le \lambda \le 1$.

By linearity of the discriminant function,

$$y_k(\hat{\mathbf{x}}) = \lambda y_k(\mathbf{x}_A) + (1 - \lambda)y_k(\mathbf{x}_B).$$

Since $y_k(\mathbf{x}_A) > y_j(\mathbf{x}_A)$ and $y_k(\mathbf{x}_B) > y_j(\mathbf{x}_B)$ for all $j \neq k$, $y_k(\hat{\mathbf{x}}) > y_j(\hat{\mathbf{x}})$, so $\hat{\mathbf{x}}$ lies inside \mathcal{R}_k .

Learning the Parameters of Linear Discriminant Functions

Three approaches:

- 1. Least squares
- 2. Fisher's linear discriminant
- 3. Perceptron algorithm

Least Squares

For ease of notation, let

$$\tilde{w}_k = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_D \end{bmatrix}$$
, $\tilde{x} = \begin{bmatrix} 1 \\ x \end{bmatrix}$, $\tilde{W} = \begin{bmatrix} \tilde{w}_1 & \tilde{w}_2 & \cdots & \tilde{w}_K \end{bmatrix}$.

Then we can combine the K equations

$$y_k(x) = w_k^T x + w_{k0}$$
, for $k = 1, ..., K$

into

$$y(x) = \tilde{W}^T \tilde{x}.$$

Least Squares

Note: D = input space dimension, N = number of samples in the training data

We determine the parameter matrix $ilde{ extbf{W}}$ by minimizing a sum-of-squares error function.

Let

$$m{T} = egin{bmatrix} m{ ilde{t}}_1^T \ m{ ilde{t}}_2^T \ dots \ m{ ilde{t}}_N^T \end{bmatrix}$$

where the training data set is $\{x_n, t_n\}$ for n = 1, ..., N. Then the sum-of-sqaure error function is

$$E(\tilde{W}) = \frac{1}{2} \text{Tr} \{ (\tilde{X}\tilde{W} - T)^T (\tilde{X}\tilde{W} - T) \}.$$

The solution for \tilde{W} is

$$\tilde{\mathbf{W}} = (\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T \mathbf{T} = \tilde{\mathbf{X}}^\dagger \mathbf{T}.$$

Drawbacks of Least Squares

Least squares is highly sensitive to outliers.

We can view linear classification as dimensionality reduction.

First look at binary classification (K = 2).

Consider taking a D-dimensional input vector x and projecting it down to one dimension using

$$y = \mathbf{w}^T \mathbf{x}$$
.

Projection onto one dimension leads to a loss of information, and classes that are well separated in the original *D*-dimensional space may become overlapping in one dimension.

By adjusting the components of the weight vector \mathbf{w} , we can select a projection that maximizes the class separation.

Suppose there are N_1 points of class C_1 and N_2 points of class C_2 . The mean vectors of the two classes are

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n, \qquad m_2 = \frac{1}{N_1} \sum_{n \in C_2} x_n.$$

The simplest measure of the separation of the classes, when projected onto w, is the separation of the projected class means. So we can choose w to maximize

$$m_2-m_1=\mathbf{w}^T(\mathbf{m}_2-\mathbf{m}_1)$$

where

$$m_k = \mathbf{w}^T \mathbf{m}_k$$

is the mean of the projected data from class C_k .

Constrain w to have unit length, so that $\sum_i w_i^2 = 1$. Perform constrained maximization using Lagrange multiplier. We get $w \propto (m_2 - m_1)$. This can still have problems, such as having considerable class overlap in the projected space.

Figure 1: Left: projection with class overlap; Right: projection based on the Fischer linear discriminant

Maximize a function that will give a large separation between the projected class means while also giving a small variance within each class.

The within-class variance of the transformed data from class C_k is

$$s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$$

where $y_n = \mathbf{w}^T \mathbf{x}$.

Define the total within-class variance for the whole data set to be $s_1^2 + s_2^2$.

The Fisher criterion is defined as the ratio of the between-class variance to the within-class variance:

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}.$$

We can rewrite J(w) as

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{W}} \mathbf{w}}$$
(4.26)

where $S_{\rm B}$ is the *between-class* covariance matrix and is given by

$$\mathbf{S}_{\mathrm{B}} = (\mathbf{m}_2 - \mathbf{m}_1)(\mathbf{m}_2 - \mathbf{m}_1)^{\mathrm{T}} \tag{4.27}$$

and $S_{\rm W}$ is the total within-class covariance matrix, given by

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1})(\mathbf{x}_{n} - \mathbf{m}_{1})^{\mathrm{T}} + \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2})(\mathbf{x}_{n} - \mathbf{m}_{2})^{\mathrm{T}}.$$
 (4.28)

Differentiating (4.26) with respect to w, we find that $J(\mathbf{w})$ is maximized when

$$(\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{B}}\mathbf{w})\mathbf{S}_{\mathrm{W}}\mathbf{w} = (\mathbf{w}^{\mathrm{T}}\mathbf{S}_{\mathrm{W}}\mathbf{w})\mathbf{S}_{\mathrm{B}}\mathbf{w}. \tag{4.29}$$

From (4.27), we see that $S_B w$ is always in the direction of $(m_2 - m_1)$. Furthermore, we do not care about the magnitude of w, only its direction, and so we can drop the scalar factors $(w^T S_B w)$ and $(w^T S_W w)$. Multiplying both sides of (4.29) by S_W^{-1} we then obtain

$$\mathbf{w} \propto \mathbf{S}_{\mathbf{W}}^{-1}(\mathbf{m}_2 - \mathbf{m}_1). \tag{4.30}$$

Fisher's linear discriminant gives a specific choice of direction for projection of the data down to one dimension.

Projected data can subsequently be used to construct a discriminant, by choosing a threshold y_0 so that we classify a new point as belonging to C_1 if $y(x) \ge y_0$ and classify it as belonging to C_2 otherwise.

Perceptron Algorithm

For binary classification where the input vector x is transformed using a nonlinear transformation to give a feature vector $\phi(x)$. We construct a **generalized linear model** is of the form

$$y(\mathbf{x}) = f(\mathbf{w}^T \phi(\mathbf{x}))$$

where the nonlinear activation function $f(\cdot)$ is given by a step function

$$f(a) = \begin{cases} 1 & \text{if } a \ge 0 \\ -1 & \text{if } a < 0. \end{cases} \tag{1}$$

Perceptron Algorithm

Find a weight vector \mathbf{w} such that for \mathbf{x}_n in class C_1 will have $\mathbf{w}^T \phi(\mathbf{x}_n) > 0$, whereas \mathbf{x}_n in class C_2 have $\mathbf{w}^T \phi(\mathbf{x}_n) < 0$.

The perceptron criterion associates zero error with any pattern that is correctly classified, whereas for a misclassified x_n it tries to minimize the quantity $-\mathbf{w}^T\phi(\mathbf{x}_n)t_n$.

The perceptron criterion is given by

$$E(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^T \phi_n t_n$$

where M is the set of misclassified data.

Bayesian Probability Recap

Bayes' Theorem:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Bayes' theorem can be used to convert a **prior probability** into a **posterior probability** by incorporating the evidence from the observed data.

Bayesian Probability Recap

Bayes' Theorem:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Bayes' theorem can be used to convert a **prior probability** into a **posterior probability** by incorporating the evidence from the observed data.

Bayesian view of probability: probabilities provide a quantification of uncertainty.

We can use probability theory to describe the uncertainty in model parameters such as w, or in the choice of model itself.

Bayesian Probability Recap

We capture our assumptions about the model parameter w, before observing the data, in the form of a **prior probability distribution** p(w).

The effect of the observed data $D = \{t_1, ..., t_N\}$ is expressed through the conditional probability $p(D|\mathbf{w})$.

Bayes's theorem gives us

$$p(w|D) = \frac{p(D|w)p(w)}{p(D)}$$
 (posterior \propto likelihood \times prior)

which allows us to evaluate the uncertainty in w after we have observed D in the form of the **posterior probability** p(w|D).

p(D|w) on the right hand side can be viewed as a function of w, which is called the **likelihood function**. It expresses how probable the observed data set is for different settings of the parameter vector w.