Introduction au Green IT logiciel

David Sferruzza

Human Talks 11/03/2014

À propos de moi

- @d_sferruzza
- github.com/dsferruzza
- ingénieur Icam
- 5 mois sur le projet Code Vert

Le Green IT

3 / 23

Qu'est ce que c'est?

Proposition de définition :

Démarche d'amélioration continue qui vise à réduire l'empreinte écologique, économique et sociale des technologies de l'information et de la communication.

Qu'est ce que c'est?

Figure: Développement durable

À quoi ça sert ?

Consommer moins d'énergie implique :

- consommer moins de ressources naturelles
- moins polluer
- réduire les coûts

Réduire l'empreinte énergétique d'un programme

Que peut-on optimiser?

Approche matérielle

Agir sur le matériel qui fait fonctionner les programmes.

Exemples:

- réduire le dégagement de chaleur d'un processeur
- réduire le coût énergétique de la fabrication d'un disque dur

Avantages/inconvénients

- possible d'obtenir un gain important
- difficile d'accès pour le développeur

Approche logicielle

Agir directement sur les programmes.

Exemples:

- supprimer des opérations inutiles
- réduire la configuration matérielle minimum requise

Avantages/inconvénients

- à la portée du développeur
- gain à priori moins important (mais pas forcément non significatif)

Mesure du gain

Soient:

- A, un programme
- B, une version optimisée de A

Mesure du gain

Soient:

- A, un programme
- B, une version optimisée de A

Pour savoir si l'optimisation est concluante, il faut :

- choisir des indicateurs
- mesurer un gain

Mesure du gain

Soient:

- A, un programme
- B, une version optimisée de A

Pour savoir si l'optimisation est concluante, il faut :

- choisir des indicateurs
- mesurer un gain

$$gain = \frac{indicateur_B}{indicateur_A}$$

Indicateurs

Un bon indicateur (observable) est en **corrélation** avec la grandeur qu'on souhaite connaître.

À lire: http://ploum.net/mefiez-vous-des-observables/

Indicateurs

Exemple : surconsommation énergétique provoquée par l'exécution du programme

- en Joule
- obtenu par mesure physique

Indicateurs

Exemple : maximum de la mémoire vive occupée

- en octet
- obtenu par mesure logique

Exemple d'expérience

Hypothèse

On veut vérifier l'hypothèse suivante :

En Java, il vaut mieux initialiser les variables de manière littérale plutôt qu'avec un objet.

Programmes de test

Hypothèse : les techniques de micro-benchmarking permettent d'obtenir un résultat pertinent

```
Code "vert"
for (int i = 0; i < 1000; i++) {
    array[i] = "abcdefg...";
}</pre>
```

```
Code "gris"
for (int i = 0; i < 1000; i++) {
    array[i] = new String("abcdefg...");
}</pre>
```

Plan d'expérience

On mesure la *surconsommation énergétique* provoquée par l'exécution de 2 programmes de **fonction(s) identique(s)**.

Matériel:

- un ordinateur d'essai dont l'alimentation est monitorée
- un ordinateur d'acquisition

Déroulement de la mesure :

- lancement de la mesure
- attente de X secondes
- lancement de la perturbation (programme sur l'ordinateur d'essai)
- fin de la perturbation
- attente de Y secondes
- fin de la mesure

Mesures

Analyse

Variante	Énergie code vert	Énergie code gris	Gain
String	697 J (± 4,40 %)	7885 J (± 8,14 %)	11,3
Integer	685 J (± 5,21 %)	9575 J (± 6,51 %)	14,0
Float	10311 J (± 5,85 %)	10448 J (± 6,58 %)	1,0
Double	10003 J (± 5,58 %)	10210 J (± 7,83 %)	1,0

Avec cet indicateur : gain significatif avec certains types, mais pas tous !

Pour aller plus loin :

- regarder d'autres indicateurs
- reproduire dans des conditions/environnements différents
- reproduire avec des programmes différents
- essayer de comprendre la différence de gain

Conclusion

Conclusion

- ullet optimiser pour la conso \simeq optimiser pour les perfs
- bientôt plus besoin de mesures physiques ?

Conclusion

- ullet optimiser pour la conso \simeq optimiser pour les perfs
- bientôt plus besoin de mesures physiques ?

De manière générale :

- prendre en compte l'ensemble du cycle
- choisir de bons indicateurs par rapport à ce qu'on veut mesurer
- reproduire l'expérience
- faire varier les paramètres d'environnement

Bisous

https://github.com/dsferruzza/talk-green-it-logiciel
Merci à Jérôme Rocheteau

Questions?