CS-23334 FUNDAMENTALS OF DATA SCIENCE ABENANTHAN P 240701005

EXPERIMENT 3

3.A Handling Missing Data In a Dataset

Aim:

To demonstrate an experiment to handle missing data and inappropriate data using pandas

Algorithm:

Step 1: Identify Missing Data

Step 2: Quantify and Visualize Missingness

Step 3: Decide on a Strategy (Drop, Impute, Flag)

Step 4: Apply the Chosen Method and Validate

Given Dataset:

CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill	NoOfPax	EstimatedSalary	Age_Group
1	20-25	4	Ibis	veg	1300	2	40000	20-25
2	30-35	5	LemonTree	Non-Veg	2000	3	59000	30-35
3	25-30	6	RedFox	Veg	1322	2	30000	25-30
4	20-25	-1	LemonTree	Veg	1234	2	120000	20-25
5	35+	3	Ibis	Vegetarian	989	2	45000	35+
6	35+	3	Ibys	Non-Veg	1909	2	122220	35+
7	35+	4	RedFox	Vegetarian	1000	-1	21122	35+
8	20-25	7	LemonTree	Veg	2999	-10	345673	20-25
9	25-30	2	Ibis	Non-Veg	3456	3	-99999	25-30
9	25-30	2	Ibis	Non-Veg	3456	3	-99999	25-30
10	30-35	5	RedFox	non-Veg	6755	4	87777	30-35

About Dataset:

No. of Columns = 9 (called as series – Customer ID, Age Group, Rating(1-5), Hotel, Food Preference, Bill, No Of Pax, Estimated Salary)

CutomerID: Numerical Continuous data

Age: Categorical Data

Rating (1-5): Numerical Discrete Data

Hotel: Categorical Data

Food: Categorical Data

Bill: Numerical Continuous data

NoOfPax: Numerical Discrete

EstimatedSalary: Numerical Continuous data

Code with Output:

imp	<pre>import numpy as np import pandas as pd df=pd.read_csv(r"D:\REC 2nd Year\Data Science\Data Sets\ Hotel_Dataset.csv") df</pre>								
,	CustomerID	Age_Group	Rating(1-5)	Hotel	${\sf FoodPreference}$	Bill			
0	1	20-25	4	Ibis	veg	1300			
1	2	30-35	5	LemonTree	Non-Veg	2000			
2	3	25-30	6	RedFox	Veg	1322			
3	4	20-25	-1	LemonTree	Veg	1234			
4	5	35+	3	Ibis	Vegetarian	989			
5	6	35+	3	Ibys	Non-Veg	1909			
6	7	35+	4	RedFox	Vegetarian	1000			
7	8	20-25	7	LemonTree	Veg	2999			
8	9	25-30	2	Ibis	Non-Veg	3456			
9	9	25-30	2	Ibis	Non-Veg	3456			
10	10	30-35	5	RedFox	non-Veg	-6755			

```
df.duplicated()
      False
1
      False
2
      False
3
      False
   False
4
5
     False
6
    False
7
     False
     False
8
9
      True
10
      False
dtype: bool
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11 entries, 0 to 10
Data columns (total 9 columns):

# Column Non-Null (
                     Non-Null Count Dtype
     -----
    CustomerID
0
                    11 non-null
                                    int64
 1
    Age Group
                    11 non-null
                                    object
                   11 non-null
    Rating(1-5)
2
                                    int64
                    11 non-null
3
    Hotel
                                    object
4
    FoodPreference 11 non-null
                                    object
                     11 non-null
5
    Bill
                                    int64
    No0fPax
6
                    11 non-null
                                    int64
7
   EstimatedSalary 11 non-null
                                    int64
                    11 non-null object
8 Age Group.1
dtypes: int64(5), object(4)
memory usage: 924.0+ bytes
```

df.d	drop_duplica	ates(inplac	e=True)			
\	CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill
0	1	20-25	4	Ibis	veg	1300
1	2	30-35	5	LemonTree	Non-Veg	2000
2	3	25-30	6	RedFox	Veg	1322
3	4	20-25	-1	LemonTree	Veg	1234
4	5	35+	3	Ibis	Vegetarian	989
5	6	35+	3	Ibys	Non-Veg	1909
6	7	35+	4	RedFox	Vegetarian	1000
7	8	20-25	7	LemonTree	Veg	2999
8	9	25-30	2	Ibis	Non-Veg	3456
10	10	30-35	5	RedFox	non-Veg	-6755

```
len(df)
10
index=np.array(list(range(0,len(df))))
df.set_index(index,inplace=True)
index
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
df
   CustomerID Age_Group Rating(1-5)
                                            Hotel FoodPreference Bill
NoOfPax \
                   20-25
                                             Ibis
                                                                   1300
                                                              veg
2
1
                  30-35
                                        LemonTree
                                                          Non-Veg
                                                                  2000
            2
3
2
                   25-30
                                           RedFox
                                                                   1322
                                                              Veg
2
3
2
4
                  20-25
                                    -1
                                        LemonTree
                                                              Veg
                                                                   1234
            5
                     35+
                                     3
                                             Ibis
                                                       Vegetarian
                                                                    989
2
5
                     35+
                                     3
                                             Ibys
                                                          Non-Veg
                                                                  1909
2
6
                     35+
                                     4
                                           RedFox
                                                       Vegetarian
                                                                   1000
-1
7
                   20-25
                                        LemonTree
                                                              Veg
                                                                  2999
-10
            9
                   25-30
                                     2
                                             Ibis
                                                          Non-Veg 3456
8
3
9
                                           RedFox
                                                          non-Veg -6755
           10
                  30-35
4
```

<pre>df.drop(['Age_Group.1'],axis=1,inplace=True) df</pre>									
- -	CustomerID Age_Group Rating(1-5) Hotel FoodPreference								
0	` 1	20-25	4	Ibis	veg	1300			
1 3	2	30-35	5	LemonTree	Non-Veg	2000			
2	3	25-30	6	RedFox	Veg	1322			
2 3 2	4	20-25	-1	LemonTree	Veg	1234			
4	5	35+	3	Ibis	Vegetarian	989			
2 5 2 6	6	35+	3	Ibys	Non-Veg	1909			
6 -1	7	35+	4	RedFox	Vegetarian	1000			
7 -10	8	20-25	7	LemonTree	Veg	2999			
8	9	25-30	2	Ibis	Non-Veg	3456			
9	10	30-35	5	RedFox	non-Veg	-6755			

 $\label{loc_df.CustomerID<0} $$ df.CustomerID<0]=np.nan \\ df.Bill.loc[df.Bill<0]=np.nan \\$

df.EstimatedSalary.loc[df.EstimatedSalary<0]=np.nan
df</pre>

\	CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill
0	1.0	20-25	4	Ibis	veg	1300.0
1	2.0	30-35	5	LemonTree	Non-Veg	2000.0
2	3.0	25-30	6	RedFox	Veg	1322.0
3	4.0	20-25	-1	LemonTree	Veg	1234.0
4	5.0	35+	3	Ibis	Vegetarian	989.0
5	6.0	35+	3	Ibys	Non-Veg	1909.0
6	7.0	35+	4	RedFox	Vegetarian	1000.0
7	8.0	20-25	7	LemonTree	Veg	2999.0
8	9.0	25-30	2	Ibis	Non-Veg	3456.0
9	10.0	30-35	5	RedFox	non-Veg	NaN

df df		.loc[(df['N	NoOfPax']<1)	((df['NoOfPax']>20)]=np.nan
	CustomerTD	Age Group	Rating(1-5)		Hotel FoodPreference

	CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill
\						
0	1.0	20-25	4	Ibis	veg	1300.0
1	2.0	30-35	5	LemonTree	Non-Veg	2000.0
2	3.0	25-30	6	RedFox	Veg	1322.0
3	4.0	20-25	-1	LemonTree	Veg	1234.0
4	5.0	35+	3	Ibis	Vegetarian	989.0
5	6.0	35+	3	Ibys	Non-Veg	1909.0
6	7.0	35+	4	RedFox	Vegetarian	1000.0
7	8.0	20-25	7	LemonTree	Veg	2999.0
8	9.0	25-30	2	Ibis	Non-Veg	3456.0
9	10.0	30-35	5	RedFox	non-Veg	NaN

```
df.Age Group.unique()
array(['20-25', '30-35', '25-30', '35+'], dtype=object)
df.Hotel.unique()
array(['Ibis', 'LemonTree', 'RedFox', 'Ibys'], dtype=object)
df.FoodPreference.unique
<bound method Series.unique of 0</pre>
                                           veg
        Non-Veg
2
            Veg
3
            Veg
  Vegetarian
5
       Non-Veg
6
   Vegetarian
7
            Veg
8
        Non-Veg
9
        non-Veg
Name: FoodPreference, dtype: object>
df.FoodPreference.replace(['Vegetarian','veg'],'Veg',inplace=True)
df.FoodPreference.replace(['non-Veg'],'Non-Veg',inplace=True)
```

Result:

Thus the process of missing data values handling is carried out using pandas library in Python.

3.B Data Preprocessig In Data Science

Aim:

To understand the data preprocessing in Data Science and understand the importance of data preprocessing in data science.

Algorithm:

Step 1: Data Cleaning

Step 2: Data Transformation

Step 3: Feature Engineering

Step 4: Data Scaling and Encoding

Code With Output:

```
import numpy as np
import pandas as pd
df=pd.read csv(r"D:\REC 2nd Year\Data Science\Data Sets\
Pre Process Data.csv")
df
  Country Age Salary Purchased
    France 44.0 72000.0
0
                                  No
1 Spain 27.0 48000.0
2 Germany 30.0 54000.0
                                  Yes
                                  No
3
    Spain 38.0 61000.0
                                  No
4 Germany 40.0
                                 Yes
                       NaN
5
   France 35.0 58000.0
                                 Yes
6
    Spain NaN
                   52000.0
                                  No
7 France 48.0 79000.0
8 Germany 50.0 83000.0
                                 Yes
                                  No
9 France 37.0 67000.0
                                 Yes
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
#
    Column
            Non-Null Count Dtype
- - -
    -----
               _____
               10 non-null
                               object
0
    Country
1
               9 non-null
                              float64
    Age
               9 non-null
2
    Salary
                               float64
3
    Purchased 10 non-null
                              object
dtypes: float64(2), object(2)
memory usage: 452.0+ bytes
```

```
df['Country'].mode()
0    France
Name: Country, dtype: object
df.Country.mode()[0]
'France'
```

```
df.Country.fillna(df.Country.mode()[0],inplace=True)
df.Age.fillna(df.Age.median(),inplace=True)
df.Salary.fillna(round(df.Salary.mean()),inplace=True)
df
```

```
df.Salary.fillna(round(df.Salary.mean()),inplace=True)
   Country
             Age
                   Salary Purchased
0
  France 44.0 72000.0
     Spain 27.0 48000.0
                                  Yes
1
2 Germany 30.0 54000.0
                                   No
    Spain 38.0 61000.0
3
                                  No
4 Germany 40.0 63778.0
5 France 35.0 58000.0
                                  Yes
                                  Yes
    Spain 38.0 52000.0
6
                                  No
7 France 48.0 79000.0
                                  Yes
  Germany 50.0 83000.0 France 37.0 67000.0
8
                                  No
                                  Yes
```

```
pd.get_dummies(df.Country)
  France Germany Spain
   True
          False False
1
   False
           False True
2
   False
           True False
   False
            False
                 True
3
           True False
4
   False
5
   True
           False False
6
   False
          False True
7
   True
          False False
8
   False
            True False
           False False
9
    True
```

```
updated_dataset=pd.concat([pd.get_dummies(df.Country),df.iloc[:,
[1,2,3]],axis=1)
updated_dataset
   France Germany Spain
                         Age
                               Salary Purchased
            False False 44.0
0
    True
                               72000.0
                                              No
1
   False
            False
                  True 27.0 48000.0
                                             Yes
   False
            True False 30.0 54000.0
2
                                              No
3
   False
            False True 38.0 61000.0
                                              No
4
            True False 40.0 63778.0
   False
                                             Yes
5
   True
            False False 35.0 58000.0
                                             Yes
          False True 38.0
False False 48.0
6
   False
                               52000.0
                                             No
7
   True
                                             Yes
                               79000.0
            True False 50.0 83000.0
8
   False
                                             No
9 True
            False False 37.0 67000.0
                                             Yes
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):
            Non-Null Count Dtype
#
    Column
- - -
0
                10 non-null
     Country
                                object
1
                10 non-null
     Age
                                float64
2
                10 non-null
                                float64
     Salary
3
     Purchased 10 non-null
                                object
dtypes: float64(2), object(2)
memory usage: 452.0+ bytes
```

updated_dataset.Purchased.replace(['No','Yes'],[0,1],inplace=True)
updated_dataset

```
France
          Germany
                  Spain
                        Age
                                Salary
                                       Purchased
0
                  False 44.0
                               72000.0
    True
            False
                                               0
                   True 27.0 48000.0
1
   False
            False
                                               1
            True False 30.0 54000.0
2
   False
                                               0
            False True 38.0 61000.0
3
   False
                                               0
                                               1
4
   False
            True False 40.0 63778.0
5
   True
            False False 35.0 58000.0
                                               1
                  True 38.0
6
                              52000.0
                                               0
   False
            False
            False False 48.0
                                               1
7
    True
                              79000.0
            True False 50.0 83000.0
8
   False
                                               0
9
    True
            False False 37.0 67000.0
                                               1
```

3.C. Create And Save a CSV file Using Pandas

Aim:

To create a CSV File and save the file using Pandas Library in python

Algorithm:

- 1. Import Pandas
- 2. Prepare Data
- 3. Create a Dataframe
- 4. Save to CSV File

Description:

Follow Steps to create and save a file a CSV File using Pandas Library

Code With Output:

```
import pandas as pd
import random
from datetime import datetime, timedelta
```

```
# Step 1: Define columns
columns = [
     "Member ID", "Name", "Age", "Gender", "Trainer_Name" | "Plan_Type", "Join_Date", "Expiry_Date", "Trainer_Name"
# Step 2: Sample data lists
names = [
     "Aarav", "Ananya", "Vihaan", "Ishita", "Advait",
"Meera", "Rohan", "Priya", "Kabir", "Simran",
"Arjun", "Neha", "Yash", "Sanya", "Kunal",
"Ritika", "Omkar", "Ira", "Aditya", "Tanya",
     "Siddharth", "Pooja", "Manav", "Shruti", "Aditi"
genders = ["Male", "Female"]
plans = ["Monthly", "Quarterly", "Yearly"]
trainers = ["Raj", "Priya", "Amit", "Sonal", "Vikram"]
# Step 3: Generate dataset
data = []
start date = datetime(2025, 1, 1)
for i in range(25):
     member id = f''M\{100+i\}''
     name = names[i]
     age = random.randint(18, 50)
     gender = random.choice(genders)
     plan = random.choice(plans)
     join date = start date + timedelta(days=random.randint(0, 60))
     if plan == "Monthly":
          expiry date = join date + timedelta(days=30)
     elif plan == "Quarterly":
          expiry date = join date + timedelta(days=90)
     else:
          expiry date = join date + timedelta(days=365)
     trainer = random.choice(trainers)
     data.append([
          member id, name, age, gender, plan,
          join date.strftime("%Y-%m-%d"),
          expiry_date.strftime("%Y-%m-%d"),
          trainer
     1)
```

```
# Step 4: Create DataFrame
df = pd.DataFrame(data, columns=columns)
```

```
# Step 5: Save to CSV
df.to_csv("gym_members.csv", index=False)
print("[] gym members.csv file created with 25 entries.")
print(df.head())
gym members.csv file created with 25 entries.
              Name Age Gender Plan Type Join Date Expiry Date \
  Member ID
       M100
              Aarav
                     41 Female
                                     Yearly 2025-02-02 2026-02-02
                                     Yearly 2025-02-22
1
       M101 Ananya
                     41 Female
                                                        2026-02-22
                            Male Quarterly 2025-02-22 2025-05-23 emale Yearly 2025-01-12 2026-01-12
2
       M102 Vihaan 49
      M103 Ishita 22 Female
3
4
       M104 Advait 35 Male
                                     Yearly 2025-02-23 2026-02-23
  Trainer Name
0
         Sonal
1
         Sonal
2
           Raj
3
         Priya
4
           Raj
```

Result:

Thus a dataset is created in CSV format and saved using Pandas Library