Logistic Regression

Multilayer Perceptron

Complex Relationships Using Deep Learning

- Can be captured by using deep neural networks
- Can be represented accurately and predicted well
- Can give perfect performance in the training set
- Can perform poorly in the real world
- Needs to be validated

Want to come up with function to predict observation given *x*

Increasing Polynomial Order

Multilayer Perceptron

Problems with Overfitting

- Increasing parameters increases error rate
- Complex relationship may be too complex for reality

Problems with Overfitting

- Increasing parameters increases error rate
- Complex relationship may be too complex for reality
- Models and analysis are not generalized

how well will this work in the real world?

Problems with Overfitting

- Increasing parameters increases error rate
- Complex relationship may be too complex for reality
- Models and analysis are not generalized

Standard Validation Strategy

Standard Validation Strategy

Is costly, can we use existing data to estimate performance?

Split Data in Separate Groups

Split Data in Separate Groups

Test Set

- Standard practice in machine learning
- Created prior to any analysis
- Will never be used to learn or fit any parameters
- Can evaluate performance of network on test set
- Analogous to running a new experiment

Test Set

- Should ideally only be used once
- Reusing a test set will lead to bias
- Bias results will lead to optimistic performance estimates

Validation Set

- Can be used to compare which approach is best
- Not used to learn parameters
- Used repeatedly to estimate the
- performance of a model
- Can be used to pick out the best performance model

