vulture_population_matrix.R

akane

Thu Mar 16 10:48:14 2017

```
# Matrix Population Models for White-backed Vultures
# useful link http://www.mbr-pwrc.usgs.gov/workshops/uf2016/
# clean everything first
rm(list=ls())
# load required packages
library(popbio)
library(diagram)
## Loading required package: shape
# fecundity calculation, (Gauthier & Lebreton (2004) Population models for Greater Snow Geese)
bp <- 0.85 # breeding propensity
cs <- 1 # clutch size
hs <- 0.75 # hatching success
fs <- 0.6 # fledging success
fecundity <- bp * (cs/2) * hs * fs # divide by 2 to get females only
                KRUGER
fsKr <- 0.42 # first year survival
jsKr <- 0.8193305 # juvenile survival Kruger
ssKr <- 0.8885506 # subadult survival Kruger
asKr <- 1.0 # adult survival Kruger
# survival this year is multiplied by fecundity next year because in this model
# the birds have to survive the year before they become breeders i.e. from 4 years old to
# breeding age at 5 years old
# for Kruger
ssfKr <- ssKr * fecundity
asfKr <- asKr * fecundity
# create the matrix for Kruger
MKr \leftarrow c(0,0,0,0,ssfKr,asfKr,
         fsKr,0,0,0,0,0,0,
         0,0,jsKr,0,0,0,
         0,0,0,ssKr,0,0,
         0,0,0,0,ssKr,asKr
MKr <- matrix ((MKr), ncol=6, byrow = TRUE)
colnames(MKr) <- c("babies","1yr olds","2yr olds","3yr olds","4yr olds","5yr olds")</pre>
MKr
```

babies 1yr olds 2yr olds 3yr olds 4yr olds 5yr olds

```
## [1,]
         0.00 0.0000000 0.0000000 0.0000000 0.1699353 0.19125
         ## [2,]
        0.00 0.8193305 0.0000000 0.0000000 0.0000000 0.00000
## [3,]
## [4,]
        0.00 0.0000000 0.8193305 0.0000000 0.0000000 0.00000
         0.00 0.0000000 0.0000000 0.8885506 0.0000000 0.00000
## [5,]
## [6,]
         0.00 0.0000000 0.0000000 0.0000000 0.8885506 1.00000
# the process looks like the diagram with the nodes representing the age classes
# Create population matrix
par(mfrow=c(1,1))
Numgenerations <- 6
DiffMat <- matrix(data = 0, nrow = Numgenerations, ncol = Numgenerations)
AA <- as.data.frame(DiffMat)
AA[[1,5]] \leftarrow "f[4]"
AA[[1,6]] \leftarrow "f[5]"
AA[[2,1]] \leftarrow "s[list(0,1)]"
AA[[3,2]] <- "s[list(1,2)]"
AA[[4,3]] \leftarrow "s[list(2,3)]"
AA[[5,4]] \leftarrow "s[list(3,4)]"
AA[[6,5]] \leftarrow "s[list(4,5)]"
AA[[6,6]] \leftarrow "s[list(5,5)]"
name <- c(expression(Age[0]), expression(Age[1]), expression(Age[2]),</pre>
          expression(Age[3]), expression(Age[4]), expression(Age[5]))
plotmat(A = AA, pos = 6, curve = 0.7, name = name, lwd = 2,
        arr.len = 0.6, arr.width = 0.25, my = -0.2,
       box.size = 0.05, arr.type = "triangle", dtext = 0.95,
       main = "Age-structured population model",
       relsize=0.97)
```

Age-structured population model


```
# Population sizes at each age from Kruger
# Murn estimates 904 pairs of breeding adults
# Assume an additional 0.3 immature and non-breeding birds per pair
# Remember, we're only modelling females
additionalPopKr <- 904 * 0.3
totalPopKr <- 904*2 + additionalPopKr # = Murn's estimate
\# divide additional population among the 5 non-adult categories
# (Note: do we want some of these included among the adults as adult aged non-breeders?)
additionalPopKr / 5 / 2
## [1] 27.12
nKR<-c(27, 27, 27, 27, 27, 904)
nKR<-matrix (nKR, ncol=1)</pre>
nKR
##
        [,1]
## [1,]
          27
## [2,]
          27
## [3,]
         27
## [4,]
          27
## [5,]
          27
## [6,]
# previous function is wrapped up into pop.projection
popModelKr <- pop.projection(MKr,nKR,iterations=10)</pre>
```

```
# Calculate population growth rate and other demographic parameters from a projection matrix model
# using matrix algebra
eigen.analysis(MKr, zero=TRUE)
## $lambda1
## [1] 1.036838
##
## $stable.stage
## [1] 0.13470442 0.05456579 0.04311902 0.03407354 0.02920039 0.70433684
## $sensitivities
##
        babies
              1yr olds
                      2yr olds
                              3yr olds
                                      4yr olds 5yr olds
## [4,] 0.00000000 0.00000000 0.03936602 0.00000000 0.00000000 0.00000000
## [5,] 0.00000000 0.00000000 0.00000000 0.03629932 0.000000000 0.0000000
##
## $elasticities
##
        babies
              1yr olds
                      2yr olds
                              3yr olds
                                      4yr olds
                                              5yr olds
## [4,] 0.00000000 0.00000000 0.03110785 0.00000000 0.00000000 0.00000000
## [5,] 0.00000000 0.00000000 0.00000000 0.03110785 0.000000000 0.00000000
##
## $repro.value
## [1] 1.000000 2.468661 3.124014 3.953344 4.613103 5.191716
##
## $damping.ratio
## [1] 2.158824
           KZN
fsKZN <- 0.42 # first year survival
jsKZN <- 0.8601882 # juvenile survival KZN
ssKZN <- 0.5134050 # subadult survival KZN
asKZN <- 0.5672604 # adult survival KZN
# survival this year is multiplied by fecundity next year because in this model
# the birds have to survive the year before they become breeders i.e. from 4 years old to
# breeding age at 5 years old
# for KZN
ssfKZN <- ssKZN * fecundity
asfKZN <- asKZN * fecundity
# create the matrix for KZN
MKZN \leftarrow c(0,0,0,0,ssfKZN,asfKZN,
      fsKZN,0,0,0,0,0,
      0,0,jsKZN,0,0,0,
```

```
0,0,0,ssKZN,0,0,
          0,0,0,0,ssKZN,asKZN
MKZN <- matrix ((MKZN), ncol=6, byrow = TRUE)
colnames(MKZN) <- c("babies","1yr olds","2yr olds","3yr olds","4yr olds","5yr olds")</pre>
MKZN
##
        babies 1yr olds 2yr olds 3yr olds
                                             4yr olds 5yr olds
## [1,]
         0.00 0.0000000 0.0000000 0.000000 0.09818871 0.1084886
## [2,]
         ## [3,] 0.00 0.8601882 0.0000000 0.000000 0.0000000 0.0000000
        0.00 0.0000000 0.8601882 0.000000 0.00000000 0.0000000
## [4,]
        0.00 0.0000000 0.0000000 0.513405 0.00000000 0.0000000
## [5,]
         0.00 0.0000000 0.0000000 0.000000 0.51340500 0.5672604
## [6,]
# Population sizes at each age from KZN
# Rushworth estimates 319 pairs of breeding adults
# Assume an additional 0.3 immature and non-breeding birds per pair
# Remember, we're only modelling females
additionalPopKZN <- 319 * 0.3
totalPopKZN <- 319*2 + additionalPopKZN # < Rushworth's estimate
# divide additional population among the 5 non-adult categories
# (Note: do we want some of these included among the adults as adult aged non-breeders?)
additionalPopKZN / 5 / 2
## [1] 9.57
# this value is too low to reach the estimated 900 birds, instead we subtract the breeding population
# from the total pop estimate and divide the remainder up among the other 5 age categories
# Rushworth assumes there are between 800 and 900 birds in total in KZN, taking the 900 value
(900-319*2)/5/2
## [1] 26.2
nKZN<-c(26, 26, 26, 26, 26, 319)
nKZN<-matrix (nKZN, ncol=1)
nKZN
##
        [,1]
## [1,]
## [2,]
         26
## [3,]
         26
## [4,]
         26
## [5,]
         26
## [6,] 319
# pop.projection function
popModelKZN <- pop.projection(MKZN,nKZN,iterations=10)</pre>
# Calculate population growth rate and other demographic parameters from a projection matrix model
# using matrix algebra
eigen.analysis(MKZN, zero=TRUE)
## $lambda1
## [1] 0.6532752
##
```

```
## $stable.stage
## [1] 0.10299820 0.06621902 0.08719269 0.11480938 0.09022800 0.53855270
##
## $sensitivities
      babies
            1yr olds
                   2yr olds 3yr olds
                                4yr olds 5yr olds
## [4.] 0.0000000 0.00000000 0.06549906 0.0000000 0.00000000 0.0000000
## [5,] 0.0000000 0.00000000 0.00000000 0.1097409 0.00000000 0.0000000
##
## $elasticities
            1yr olds
##
                   2yr olds
                          3yr olds
                                 4yr olds
## [4,] 0.00000000 0.00000000 0.08624469 0.00000000 0.00000000 0.00000000
## [5,] 0.00000000 0.00000000 0.00000000 0.08624469 0.00000000 0.00000000
##
## $repro.value
## [1] 1.0000000 1.5554171 1.1812711 0.8971236 1.1415327 1.2612777
## $damping.ratio
## [1] 1.542428
# Plot the data
# create panel plot to show the population trends of both populations side by side
par(mfrow=c(1,2))
plot(popModelKr$pop.sizes, type="l", xlab = "year", ylab = "pop. size (females)", main = "Kruger")
plot(popModelKZN$pop.sizes, type="l", xlab = "year", ylab = "pop. size (females)", main = "KZN")
```

