BLOCK POSTERS

Your settings for this Block Poster are:

Pages Wide 4

Orientation PORTRAIT
Paper Format LETTER

Border Setting Top: 0, Right: 0, Bottom: 0, Left: 0

You can find tips on printing, assembling and putting up your poster at www.blockposters.com

Enjoy your Block Poster!

Predicting FanDuel

Problem

We sought to predict weekly fantasy football production different position groups. Given a player and a week of t season, we featurize the player and generate two output regression, we predict the actual points and with classific we predict the range (i.e. 10-15 points).

We built models for all six fantasy positions (QB, RB, WR, PK, Def), tested three different learning algorithms(Rand Forest, Gradient Boosted Trees, and Logistic/Linear Regresor both regression and classification. Ultimately, we leve these predictions for our CS221 project to create optima Line-ups to effectively bet on the FanDuel website..

Features

All:

 Difference between team and opponent rank and statistics for last X games and home/away boolea

QB:

 Passing and rushing yds, passing and rushing TDs completion percentage, sacks, INTs, QB rating, fur lost, pass attempts, EB scored, and salary for last.

Fantasy Football Pro

Data

for six he NFL s: with cation

TE, om ession) eraged We handbuilt our dataset by scraping: box-score statistics for receiving, rushing, kicking, and passing from NFL.com; offensive line, defensive line, team efficiency, team defense, and team offense rankings and DVOA analysis from FootballOutsiders.com; historical fantasy production data for FanDuel from RotoGuru.com; and we downloaded the weekly available player list directly from FanDuel.com.

	Data
Pos	Trai
QB	194
WR	952
RB	854
TE	605
PK	238
Def	236

For training, we used data from the 2011-2015 New For testing, we used data from the ongoing 2016

Model: Random For

Random Forest utilizes a multitude of decision to each tree is built top-down to ensure all leaves class using the Gini impurity:

$$I_C(f) = \sum_{i=1}^{J} f_i(1-f_i) = \sum_{i=1}^{J} (f_i - f_i^2) = \sum_{i=1}^{J} f_i - \sum_{i=1}^{J} f_i^2 = 1 - \sum_{i=1}^{J} f_i^2$$

l DVOA n.

mbles

duction

set Sizes		
n	Test	
9	421	
0	1681	
8	1268	
2	905	
6	354	
8	354	

IFL seasons. NFL season

rest

rees, where point to one

$\int f_i^2 = \sum f_i f_i$

To get the the mean squares error on the classification algs, we use an expectation generated from the classification buckets.

The table uses mean squares error for regression, and the accuracy score for classification.

Based on our evaluations, we note that Gradient Boosting and

Pos

QB WR

RB TE

PK

Def

Pos

Alexei Bastidas (alexeib@stanford.edu) Ingerid Fosli (ifosli@stanford.edu)

	Regression - Mean Squared Error						
	Random Forest		Gradient Boosting		Linear Regression		
И,	Train	Test	Train	Test	Train	Test	
	47.121437	49.326750	50.386858	62.032432	48.305206	99.701834	
	35.396886	32.971057	32.882062	37.831552	31.116383	64.818122	
	26,223301	31.291023	28.022192	38.211607	25.405439	57.522470	
	19.903092	18.764963	21.753863	20.372867	20.950363	31.463102	
	19.006974	16.619200	20.551494	17.125919	19.229433	20.589196	
	35.643216	45.213687	38.934565	31.286147	33.635457	108.959499	

Classification - Accuracy

Random Forest		Gradient Boosting		Logistic Regression	
Train	Test	Train	Test	Train	Test

games.

WR:

 Receiving yds, receptions, receiving TDs, fumbles scored, and salary for last 6 games.

RB:

 Rushing yards, rush attempts, receiving yards, receptions, receiving TDs, avg reception, avg rush scored, and salary for last 3 games.

TE:

 Receiving yds, receptions, receiving TDs, fumbles scored, and salary for last 3 games.

PK:

 FG made, FG attempted, PAT made, PAT attempted points scored, FP scored, and salary for last 3 gan

Def:

FP scored and salary for last 6 games.

Automated Feature Selection

For each position group, we leveraged SKLearn's SelectPercentile automated feature extractor to optimiz features for classification.

We selected the following top percentiles for each position QB - 90%; WR - 85%; RB - 85%; TE - 85%; PK - 85%; Def - 75%

lost, FP , FP lost, FP ed, nes

n:

e the

on:

Each tree gives different probabilities for each of the decision function, we average the them and with the highest probability.

We opted to use 500+ trees of max height 20, we position groups only using trees of height 10. The to generalize better by reducing the likelihood of the second control of the

Discussion

We define 7 potential output classes: (0 : 0-5 pts 20-25 pts), (5: 25-30 pts), (6: 30+ pts). Our focus probability, but rather on the entire probability

Our goal is to generate predictions for betting. Nextremely difficult -- the team based nature of Foundation between players on both sides of the ball, which scores, we did not capture.

However, while we could not reliably predict the looking at the whole probability distribution acrefound that the players with the highest expectation fantasy point production. So while we are not a good job of selecting high performers on which a profit -- in fact, we've so far lost \$60 :(

simi slass; to get pick the class

similarly, but we give the edge to Random Forest on account of a higher accuracy score and lower MSE on % position groups.

Def

QB

WR

RB

TE

PK

_ (

The including likel

Mor bety mod

line

K

- 1.
- 2.
- 3. J
- 4.
- ..

of overfitting.

nis allows us

ith most

We found that accurate player predictions are sootball implies a lot of inter-dependence as evidenced by our accuracy and MSE

s), (1: 5-10 pts), (2: 10-15 pts), (3: 15-20 pts), (4:

is less on the class with the highest

distribution for a given player.

e exact number of points a player will score, by oss classes, and sorting by expectation, we tion tend to be the players with the highest ccurately predicting points, we do a surprisingly to bet. With that being said, we have yet to turn

	0.312821	0.268409	0.328205	0.273159	0.264103	0.182898
	0.53729	0.550863	0.532356	0.561570	0.542973	0.505651
9	0.611696	0.608044	0.612865	0.604101	0.592982	0.589905
	0.694467	0.709392	0.681055	0.703867	0.696945	0.690608
	0.41841	0.457627	0.393305	0.435028	0.393305	0.378531
	0.341772	0.432203	0.316456	0.398305	0.324435	0.302260

uture

re are some additional features we'd like to add, uding snap-counts information and modeling ihood of injuries.

e interestingly, we'd look at the interdependence ween players. We could use covariance matrices to deliberate the ups.

eferences

Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

- . Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
- . Friedman, Stochastic Gradient Boosting, 1999
- F. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.
- 'Decision Tree Learning", Wikipedia,

https://en.wikipedia.org/wiki/Decision tree learning