School of Computing and Information Systems COMP30026 Models of Computation Tutorial Week 8

11–15 September 2017

Plan

If you need to catch up on some questions from Week 7, that may be possible this week. Question 60 below is somewhat time-consuming, and it is optional, but it does introduce many useful concepts.

The exercises

- 53. We have prepared a Week 8 Worksheet on Grok. It asks you to implement a few Haskell functions; one to check whether a relation is symmetric, one to compose relations, and (optionally, harder) one to find the transitive closure of a relation.
- 54. Show that a relation R on A is transitive iff $R \circ R \subseteq R$. Then give an example of a transitive relation R for which $R \circ R = R$ fails to hold.
- 55. Relations are sets. To say that $R(x,y) \wedge S(x,y)$ holds is the same as saying that (x,y) is in the relation R and also in the relation S, that is, $(x,y) \in R \cap S$.

Suppose R and S are reflexive relations on a set A. Then $\Delta_A \subseteq R$ and $\Delta_A \subseteq S$, so $\Delta_A \subseteq R \cap S$. That is, $R \cap S$ is also reflexive. We say that intersection *preserves* reflexivity. It is easy to see that union also preserves reflexivity. Similarly, if R is reflexive then so is R^{-1} , but the complement $A^2 \setminus R$ is clearly not. The following table lists these results. Complete the table, indicating which operations on relations preserve symmetry and transitivity.

Property	Reflexivity	Symmetry	Transitivity
preserved under \cap ?	yes		
preserved under \cup ?	yes		
preserved under inverse?	yes		
preserved under complement?	no		

- 56. Continuing from the previous question, now assume that R and S are equivalence relations. From your table's first two rows, determine whether $R \cap S$ necessarily is an equivalence relation, and whether $R \cup S$ is.
- 57. Suppose A is a set of cardinality 42, that is, A has 42 elements. What, if anything, can we say about B's cardinality if we know that some function $f: A \to B$ is injective? What, if anything, can we say about B's cardinality if we know that some function $f: A \to B$ is surjective?
- 58. Suppose we know about functions $f: A \to B$ and $g: B \to A$ that f(g(y)) = y for all $y \in B$. What, if anything, can be deduced about f and/or g being injective and/or surjective?
- 59. Suppose $h: X \to X$ satisfies $h \circ h \circ h = 1_X$. Show that h is a bijection. Also give a simple example of a set X and a function $h: X \to X$ such that $h \circ h \circ h = 1_X$, but h is not the identity function (hint: think paper-scissors-rock).

- 60. (Optional.) Let \leq be a partial order on a set X. We say that a function $h: X \to X$ is:
 - idempotent iff $\forall x \in X \ (h(h(x)) = h(x))$
 - monotone iff $\forall x, y \in X \ (x \le y \Rightarrow h(x) \le h(y))$
 - increasing iff $\forall x \in X \ (x < h(x))$

Note that an idempotent function does all of its work "in one go"; repeated application will not change its result. A monotone function is one that respects order; if its input grows, its output must grow too (or stay the same).

A function which is idempotent and monotone is a closure operator. If it is also increasing, we call it an upper closure operator. Closure operators are important and appear in many different contexts. We have met several—let \mathcal{R} be the set of all binary relations. Then the functions refl, symm, and trans, in $\mathcal{R} \to \mathcal{R}$, producing a relation's reflexive, symmetric, and transitive closure, respectively, are all upper closure operators. Soon we will meet an " ϵ -closure" function that is part of the algorithm for turning a non-deterministic automaton into an equivalent deterministic automaton—yet another upper closure operator.

Consider $D = \{a, b, c, d\}$ and the partial order \leq on D, defined by

$$x \le y \text{ iff } x = a \lor x = y \lor y = d$$

Below is the so-called Hasse diagram for D. A Hasse diagram provides a helpful way of depicting a partially ordered set. The nodes are the elements of the set, and the order is given by the edges: $x \leq y$ if and only if there is a path from x to y travelling upwards only, along edges (and the path can have length 0).

Define eight functions $f_1, \ldots, f_8: D \to D$, exhibiting all possible combinations of the three properties. That is, find some

- (a) f_1 which is idempotent, monotone, and increasing;
- (b) f_2 which is idempotent and monotone, but not increasing;
- (c) f_3 which is idempotent and increasing, but not monotone;
- (d) f_4 which is monotone and increasing, but not idempotent;
- (e) f_5 which is idempotent, but neither monotone nor increasing;
- (f) f_6 which is monotone, but neither idempotent nor increasing;
- (g) f_7 which is increasing, but neither idempotent nor monotone;
- (h) f_8 which is neither idempotent, monotone, nor increasing.
- 61. (Optional.) Lecture 12 introduced the function $c: \mathbb{N} \hookrightarrow \mathbb{N}$, defined recursively like so:

$$c(n) = \begin{cases} 1 & \text{if } n = 0 \text{ or } n = 1\\ c(n/2) & \text{if } n \text{ is even and } n > 1\\ c(3n+1) & \text{if } n \text{ is odd and } n > 1 \end{cases}$$

An exercise in the Grok worksheet for Week 8 asks you to explore this function and generate so-called hailstone sequences.