Given that $\alpha + \beta = 5$ and $\alpha^2 + \beta^2 = 19$ (a) show that $\alpha\beta = 3$ (2) (b) Hence form a quadratic equation, with integer coefficients, which has roots α and β (2) (c) Form a quadratic equation, with integer coefficients, which has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ (5)

DO NOT WRITE IN THIS AREA

Question 5 continued	
	(Total for Question 5 is 9 marks)

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\frac{\sin A}{\cos A} = \tan A$$

Using the above formulae, show that

(a)
$$\sin 2x = 2\sin x \cos x$$

(1)

(b)
$$\cos 2x = \cos^2 x - \sin^2 x$$

(1)

(c)
$$\frac{\sin 2x}{1 + \cos 2x} = \tan x$$

(4)

DO NOT WRITE IN THIS AREA

Question 6 continued	
	(Total for Question 6 is 6 marks)

