Deep Learning in Computer Vision

Franciszek Górski Gradient Science Club 2023

Plan for Today

- What is a Computer Vision?
- First attempts of Deep Learning in Computer Vision
- Convolution operation
- Convolution neural network (CNN) introduction
- First CNN networks
- Types of tasks in Computer Vision
- Transfer learning

Resources

- But what are convolutions? 3blue1brown
- MIT Deep Learning course: Convolutional Neural Networks

What is a Computer Vision?

What is a Computer Vision?

• Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs — and take actions or make recommendations based on that information.

First attempts of Deep Learning in Computer Vision

Handwritten digits recognition - problem formulation

- This task is many times introduce as first, introduction task in Computer Vision
- The aim is to recognize which digit {0-9} has been drawn?
- So we need a network which can process the input image and predict 1 class from the set of 10
- Images have size 28x28 pixels

Handwritten digits recognition - using MLP

We can try a multi layer perceptron network

Handwritten digits recognition - using MLP

- We can try a multi layer perceptron (MLP) network
- But how MLP can process an image?

Handwritten digits recognition - using MLP

- We can try a multilayer perceptron
 (MLP) network
- But how MLP can process an image?
- We need to unfold image matrix into a vector

MLP network for MNIST dataset

- Images have size 28x28 pixels
- After unfolding we get a vector with 784 values
- The first (input) layer in MLP must have a size of 784

Does MLP for Computer Vision is enough?

 With MLP network we can achieve a ~97% classification accuracy

Sounds good?

Does MLP for Computer Vision is enough?

- 97% classification accuracy is a good result but ...
- Are there any cons of using this network?

Drawbacks of using MLP in Computer Vision

- Too many parameters to optimize:
 - We have an input vector of size 784 neurons
 - In the next layer every neuron must be connected with all neurons from the previous layer
 - For example when first hidden layer have size 128 we have a 128x784 = **100 352 parameters!**
- Local information is not preserved after unfolding an image into a vector we
 destroy the local structure of patterns in the image
- Large computational costs because of the number of parameters
- We need a better solution!

Convolution operation to the rescue

What is a convolution?

	Input matrix I (W, H)			Con	v2D Ke	ernel K	(k, k)	ſ	Result	matrix	(W', H')		
	1	2	3	4	5								
t	5	4	3	2	1		0	1	0		16	?	?
ł	1	2	3	4	5	*	1	1	1	=	?	?	?
	4	3	1	2	5		0	1	0		?	?	?
ł	1	5	2	1	3	<u> </u>							

 Convolution operation calculates a dot product between the kernel and the region of input matrix covered by this kernel

How to calculate the output size?

$$rac{W-K+2P}{S}+1$$

- W width (or height) of the input matrix I
- **K** size of a kernel **K**
- **P** padding

*

• **S** - stride

Input matrix I (W, H)

1	2	3	4	5
5	4	3	2	1
1	2	3	4	5
4	3	1	2	5
4	5	2	1	3

Conv2D Kernel K (k, k)

Result matrix (W', H')

16	?	?
?	?	?
?	?	?

Importance of the kernel

- Convolutions are used in classic computer vision algorithms for:
 - edge detection
 - image blurring
 - image sharpening

0	1	0
1	1	1
0	1	0

 In Convolutional Neural Networks the parameters (values) of the kernel are learned.

Convolution neural network (CNN) introduction

How CNN is build?

CNNs consists of:

- layers
- activation functions e.g. ReLU
- output layer e.g. Softmax layer with classes

During training optimized are parameters of kernels and fc's neurons.

How CNN is build?

Convolutional neural network mostly consists of the following types of layers:

- convolutional layers (1D and 2D)
- pooling layers
- Fully-connected layers (MLP)

Convolutional layers

Padded Input matrix I with P = 1 (W + 2P, H + 2P)

0	0	0	0	0
0	4	3	2	0
0	2	3	4	0
0	3	1	2	0
0	0	0	0	0

+

Conv2D Kernel

0	1	0
1	1	1
0	1	0

Convolutional layers are mainly determined by:

- the size of the kernel
- padding
- stride

During learning a value (parameters) of a kernel are being optimized.

Pooling layers

The are two main types of pooling layers:

- MaxPooling layers
- AveragePooling layers

As a rule, these layers are not subject to optimization.

MaxPooling layer

Input matrix I (W, H)

1	2	3	4	5
5	4	3	2	1
1	2	3	4	5
4	3	1	2	5

5

MaxPooling result matrix (W', H')

MaxPool(3,3) =

5	4	5
5	4	5
5	5	5

- MaxPooling takes a maximal value from the receptive field (k, k)
- Same as convolutional layer it is parametrized by:
 - the size of the kernel
 - padding

3

stride

AvgPooling layer

Input matrix I (W, H)

1	2	3	4	5
5	4	3	2	1
1	2	3	4	5
4	3	1	2	5
4	5	2	1	3

AvgPooling result matrix (W', H')

AvgPool (3, 3) =

2.7	?	?
?	?	?
?	?	?

- AvgPooling takes a mean value from the receptive field (k, k)
- Same as convolutional layer it is parametrized by:
 - the size of the kernel
 - padding
 - stride

Convolutional neural networks characteristics

- CNNs preserves local patterns and information we don't unfold an image into vector
- Much less parameters to optimize only parameters from small kernels and few fc layers
- Lower computational costs
- CNNs analyze images from the detail to the whole

First CNN networks

Various CNNs architectures

- LeNet (1998)
- AlexNet (2012)
- InceptionNet aka Google LeNet (2014)
- VGG (2015)
- ResNet (2015)
- MobileNets (2017)
- EfficientNet (2019)

Popular benchmark for CNNs tests

- For many years the popular test for new architectures was ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- The main task was to test a propose model on an Imagenet dataset for image classification

LeNet

- Introduce by Yann Lecun et al. in 1998 in paper Gradient-Based Learning Applied to Document Recognition
- But proposed in 1989
- It was one of the first attempts at successful design of CNN for image classification

AlexNet

- Proposed by Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton in paper ImageNet Classification with Deep Convolutional Neural Networks
- It revolutionized the way of designing a neural networks
- Thanks to that in time of publishing it became a new state of the art model

AlexNet

Image: 224 (height) × 224 (width) × 3 (channels) Convolution with 11×11 kernel+4 stride: 54×54×96 ReLu Pool with 3×3 max, kernel+2 stride: 26×26×96 Convolution with 5×5 kernel+2 pad:26×26×256 ReLu Pool with 3×3 max.kernel+2stride:12×12×256 Convolution with 3×3 kernel+1 pad:12×12×384 ReLu Convolution with 3×3 kernel+1 pad:12×12×384 ReLu Convolution with 3×3 kernel+1 pad:12×12×256 ReLu Pool with 3x3 max.kernel+2stride:5x5x256 flatten Dense: 4096 fully connected neurons ReLu, dropout p=0.5 Dense: 4096 fully connected neurons ReLu, dropout p=0.5 Dense: 1000 fully connected neurons

VGG-19

- Introduce in an article *Very Deep Convolutional Networks for Large-Scale Image Recognition (2014)* by Karen Simonyan and Andrew Zisserman
- The main contribution was using a small kernels (3x3) which let to expand network architecture to 16-19 layers
- It helps to reduce errors on many popular tests benchmarks

ResNet

- Introduce in a paper Deep Residual Learning for Image Recognition (2015) by Kaiming He et al.
- The main contribution was adding a residual connection after the block of processing F(x)
- It helps to prevent the **degradation** of a training

Types of tasks in Computer Vision

Types of tasks in Computer Vision

- classification
- semantic segmentation
- object detection
- image captioning
- image generation

Image classification

- The aim is prediction of the class of the image
- It's the simplest task in Computer Vision
- It requires only a single label name of the class per image
- SOTA architectures: ResNet, ViT

Image semantic segmentation

- It assign a class to every pixel in the image
- It results in diving an image into many semantic regions
- It requires a more sophisticated
 labeling marking contours of each
 object
- SOTA architectures: YOLO, Detectron2

Objects detection

- It finds objects of classes and returns its location on image
- The location of objects is mostly returns as a bounding box
- Labeling is a bit simpler than those during image segmentation
- It requires to mark objects of detected classes only with bounding box
- SOTA architectures: YOLO, Detectron2

Image captioning

- It analyzes the input image and returns the caption of it
- It aim is to best mimic a human way of analyzing and describing images
- For labels it requires captions of the image
- SOTA architectures: LLaVA, Donut-OCR

Basis decoder: A black and white photo of a clock tower in the background.

Ours: A view of a bridge with a clock tower over a river.

Image generation

- Task of generating new images from an existing dataset
- It could be conditional by given label e.g. text or another image
- SOTA architectures: Stable Diffusion,
 StyleGAN, DALL-E

Transfer learning

Transfer learning

- It is a method of training a network by so called fine-tuning
- We use a weights (parameters) of a model trained previously on previous dataset for more general task e.g image classification from Imagenet
- We optimize this weights on a more specific (and smaller) dataset designed for a particular task e.g. classification of breed of dogs

Transfer learning

- During transfer learning it is recommended to optimize only a subset of parameters e.g. last few layers
- Fine-tuning helps to achieve a good results for a given tasks with lower computational costs and energy consumption

Questions & Discussion

Hands-on

Hands-on Title

All hands-on materials available at github.com/Gradient-PG/gradient-live-session

Thank you!
See you next week on
Deep Learning in NLP

