Графовые свёрточные нейронные сети

Александр Колодезный БПМИ192

Национальный исследовательский университет «Высшая школа экономики» (Москва)

23 ноября 2021 г.

Graph Convolutional Network

Вид одного свёрточного слоя

$$\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \Big(\mathbf{h}_v^{\ell}, \ \Psi(\{\psi^{\ell+1}(\mathbf{h}_u^{\ell}) \mid u \in \mathcal{N}_v\}) \Big)$$

- ▶ Ψ permutation-invariant функция
- $ightharpoonup \phi^{l+1}$ и ψ^{l+1} некоторый функция на l-ом слое

Graph Convolutional Network

$$\mathbf{h}_v^{\ell+1} = \sigma(\mathbf{W}^{\ell+1} \sum_{u \in \mathcal{N}(v)} \mathbf{L}_{uv} \mathbf{h}_u^{\ell}),$$

- ▶ σ сигмоида
- $ightharpoonup W^{l+1}$ обучаемая матрица
- ► *L*_{uv} нормированный Лаплассиан

Attention

▶ Добавление дополнительных обучаемых весов на рёбра α_{uv}^{l+1}

$$\mathbf{h}_v^{\ell+1} = \phi^{\ell+1} \Big(\mathbf{h}_v^\ell, \ \Psi(\{\alpha_{uv}^{\ell+1} * \psi^{\ell+1}(\mathbf{h}_u^\ell) \mid u \in \mathcal{N}_v\}) \Big),$$

Вычисляем сначала attention coefficient

$$a(\mathbf{W}^\ell \, \mathbf{h}_u^\ell, \mathbf{W}^\ell \, \mathbf{h}_v^\ell) = \mathrm{LeakyReLU}((\mathbf{b}^\ell)^T [\mathbf{W}^\ell \, \mathbf{h}_u^\ell, \mathbf{W}^\ell \, \mathbf{h}_v^\ell]),$$

Считаем softmax

$$\alpha_{uv}^{\ell} = \frac{\exp(w_{uv}^{\ell})}{\sum_{u' \in \mathcal{N}_v} \exp(w_{u'v}^{\ell})}.$$

Sampling (GraphSAGE)

- Проблема много вычислений на плотных графах
- Для каждой вершины на каждом слое выбираем случайное подмножество соседних вершин.
- ▶ Пересчитываем h_v только от h_u , которые выбрали.
- Приходится пересчитывать градиенты для всех вершин.

Sampling (FastGCN)

- Выбираем случайное подмножество вершин графа
- Оставляем в графе только выбранные вершины и рёбра между ними
- Рассматриваем при обучении модель только выбранные вершины.

Pooling

- ▶ Сжатие кластеров похожих вершин в одну
- Уменьшает размеры графа
- Уменьшает вычислительную стоимость

Differentiable Pooling

Обучаем для каждой вершины попадание в кластера

$$\mathbf{S}^{\ell+1} = \operatorname{softmax}(\operatorname{GNN}(\mathbf{A}^{\ell}, \mathbf{H}^{\ell})),$$

 Пересчитываются embedding для новых вершин, и новая матрица смежности

$$\mathbf{H}^{\ell+1} = \mathbf{S}^{\ell+1} \mathbf{H}^{\ell}$$
 and $\mathbf{A}^{\ell+1} = \mathbf{S}^{\ell+1} \mathbf{A}^{\ell} \mathbf{S}^{\ell+1}$.

Новая матрица смежности оказывается полной

Top-k Pooling

 Для каждой вершины посчитаем attention как проекция его эмбединга на обучаемый вектор р

$$s^{\ell+1} = \frac{\mathbf{H}^{\ell} p^{\ell+1}}{\|p^{\ell+1}\|}.$$

- ▶ Выбираем *k* вершин с наибольшим полученным attention
- Оставляем в графе только найденные вершины
- ▶ Расширение метода Self-attention pooling

$$s^{\ell+1} = \sigma(GCN(\mathbf{A}^{\ell}, \mathbf{H}^{\ell})).$$

Edge Pooling

Считаем attention для рёбер

$$s^{\ell+1}((v, u) \in \mathcal{E}_g) = \sigma(\mathbf{w}^T[\mathbf{h}_v^{\ell}, \mathbf{h}_u^{\ell}] + \mathbf{b}).$$

- Сжимаем две вершины, соединённые этим ребром в одну
- Повторяем итерационно

Топологические pooling-и

- GRACLUS алгоритм основанный на спектральной кластеризации
- Non-negative Factorization Matrix Pooling pooling основанный на NFM факторизации матрицы смежности.

Graph embedding

- Хотим построить embedding для всего графа
- ▶ Нужно агрегировать embedding для нод
- Можно делать polling графа, пока не останется одна вершина

Graph embedding

$$\mathbf{h}_g^\ell = \Psi\Big(\{f(\mathbf{h}_v^\ell) \mid v \in \mathcal{V}_g\}\Big),\,$$

- Выбрать Ψ как сумму, максимум или минимум, а f тождественную функцию.
- ▶ f как нейронная сеть

Список литературы

- https://arxiv.org/pdf/1912.12693.pdf
- https://arxiv.org/pdf/1609.02907.pdf
- https://arxiv.org/pdf/1812.04202.pdf
- https://arxiv.org/pdf/1801.10247.pdf
- https://arxiv.org/pdf/1706.02216.pdf