FACE REPLACEMENT SYSTEM

Rajan Prasad Upadhyay (065/BCT/530)

Mubin Shrestha (065/BCT/518)

Robik Shrestha (065/BCT/534)

Ram Sharan Shrestha (065/BCT/531)

INTRODUCTION

Face Replacement System is a system which replaces human faces in still images.

OBJECTIVES

- To implement skin color thresholding, snake algorithm and edge detection for face extraction
- To implement warping, region growing, shifting, color consistency and blending for face replacement
- To develop a face replacement application based on above algorithms

APPLICATIONS

- Entertainment Industries
- Facebook and iPhone apps
- Photo Montage
- Face Deidentification

SYSTEM BLOCK DIAGRAM

FACE EXTRACTION

FACE EXTRACTION

- Two major steps
 - Rough face region extraction
 - Post processing to enhance the region

FACE REGION EXTRACTION

There are 3 alternatives:

- 1. Skin Color Thresholding
- 2. Snake Algorithm
- 3. Edge Detection

1. SKIN COLOR THRESHOLDING

Face region is extracted by selecting only skin colored pixels in the image.

Thresholding is applied in Y-Cb-Cr color space.

SKIN COLOR THRESHOLDING

RESULT

Original Image

Result of Skin Region Detection

SKIN COLOR THRESHOLDING

Problem:

The output of the skin color detection contains

Result obtained after applying Skin Color Thresholding

Solution For Holes:

HOLE FILLING ALGORITHM

HOLE FILLING ALGORITHM

FACE MASK

BOUNDARY

FILLING IN X-DIRECTION

HOLE FILLING ALGORITHM

X-direction filled mask

Y-direction filled mask

Area contributed by Noise

HOLE FILLING ISSUES

- Noises present in the mask may produce bad result.
- Noise reduction should be done first.

Solution For Noise:

PIXEL SHRINKING AND GROWING

SHRINKING AND GROWING

Presence of Noise

Before Shrinking and Growing

Removal of

After Shrinking and Growing

EXAMPLE OF SHRINKING

The figures show the results of the "shrinking" algorithm

GROWING

"Growing" algorithm restores the original shape and size of the image.

EXAMPLE OF GROWING

The figures show the results of the "growing" algorithm

2.EDGE BASED FACE EXTRACTION

CANNY EDGE DETECTION

CANNY EDGE DETECTION

Separation between eyes

Rectangle around the face

OUTPUT OF CANNY EDGE DETECTION

LONGEST EDGE DETECTION

Longest edges are considered to be parts of the face boundary.

Output after Canny Edge Detection

Longest edge

LONGEST EDGES

Edge map of longest edges of four region of face.

Genetic Algorithm

 It was used to find the thresholds for Canny Edge Detection that give the longest edges.

Active Contour Model

 The output of the edge map of the longest edges were supposed to be treated with the active contour model or Hough transform in order to find the continuity in the edges.

Problems

- All the thresholds in the Canny Edge Detection provide the longest edges with the similar length.
- This process consumes too much time

Solution

- Adaptive active contour algorithm(Snake algorithm)
- The result that was supposed to be obtained from above all methods of Canny Edge Detection, Genetic algorithm and active contour model was easily obtained by applying only Snake Algorithm

3. Adaptive Active Contour Model

(Snake Algorithm)

 Skin color thresholding doesn't give fine output for the faces with shadows.

Original Image

Result of skin color thresholding

Result of snake algorithm

- The processing time of Snake Algorithm is lesser than the combined processing time of Canny Edge Detection, Active Contour Model and Genetic Algorithm.
- Also the expected result from combined Canny Edge Detection, Genetic Algorithm and Active Contour Model was single obtained using Snake algorithm and even better.

Outputs (Snake Algorithm)

T = 3 and I = 10

After applying Snake

T = 2 and I = 11

After applying Snake

Input Image

Output Image

Conclusion For Face Extraction

- Use skin color thresholding when there is no shadow in face and face color can be separated from background.
- Use snake algorithm when the face edges are clear

CHIN CURVE ESTIMATION

- Chin curve can be estimated using feature points
- It is used for separating face and neck region

CHIN CURVE ESTIMATION

Original Image

Image with Chin curve

CHIN CURVE ESTIMATION

Before curve estimation

After curve estimation

3. HAIR AND BACKGROUND REMOVAL

Problem:

Hair and Background may have colors similar to that of the face.

PROBLEM: HAIR IS EXTRACTED TOO

Original Image

Extraction

SOLUTION

Solution:

Extract Hair/ Background too.

Remove those regions from the result.

HAIR AND BACKGROUND REMOVAL

Before removing hair

After removing hair

BUT HOW?

Background and hair regions can be extracted using:

SEED REGION GROWING ALGORITHM

It places similar (connected) pixels into same region.

SEED REGION GROWING

Seeds

Specifying seed pixels

After applying "Seed Region Growing"

SEED REGION GROWING

Problem: The result contains "holes" inside the region.

Hole

The image shows that the hair region has not been extracted properly.

Solution: Fill up the holes

Before filling the holes

After filling the holes

IMAGE WARPING

Source and Target faces might have different sizes and pose angles.

Source Image

Target Image with different size and pose

IMAGE WARPING

Therefore, the source image needs to be:

- 1. Shifted
- 2. Scaled
- 3. Rotated

This is image warping.

EXAMPLE

Here, the source face has been ROTATED ANTI-CLOCKWISE.

It has also been **SCALED** to a different size.

INTERPOLATION

The image thus obtained contains fuzziness. So the intensity levels should be interpolated.

Before Interpolation

After Interpolation

APPROPRIATE POSITION TO PASTE

The source face is pasted in such a way that region of overlap of the source and target face regions is the largest. The source face is shifted in search for such a position.

OVERLAP

COLOR CONSISTENCY

HISTOGRAM MATCHING

- It is a method of generating image that has a specified histogram
- The specification of the histogram is given by the histogram of target image

Result

Result image and its histogram

Source image and its histogram

BLENDING

- Two major steps
 - Alpha Blending
 - Intensity Interpolation

Alpha Blending

- Used to smooth the sharp transition of regions in the boundary
- Use iterative transparency variation

Process of alpha blending

Create a transparency gradient in the face boundary

Face Region

Face Boundary

ALPHA BLENDING

Before alpha blending

After alpha blending

Intensity Interpolation

- To reduce the region transition effect
- Increase realistic look in the edge
- Weighted Interpolation of Intensity through the boundary

Change in result

Alpha blended image

Intensity gradient Image

RESULTS OF FACE REPLACEMENT

SOURCE TARGET

RESULT

RESULT

RESULT OF FACE REPLACEMENT

Source image

Target image

Result

FUTURE WORKS

The system can be extended for

- 1. profile (side) view.
- 2. transferring facial expressions.
- 3. notifying the users if the faces cannot be replaced accurately.
- 4. automatic feature points allocation

SCREENSHOTS OF APPLICATION

LOAD IMAGES

SPECIFY FEATURE POINTS OF SOURCE

SPECIFY SOURCE HAIR

SOURCE FACE EXTRACTION

SPECIFY TARGET FEATURE POINTS

SPECIFY TARGET HAIR

TARGET FACE EXTRACTION

FINAL RESULT

Thank You

Questions?

BACKUP SLIDES

SKIN COLOR THRESHOLDING

150 0 50 100 C_b 150 200 250

YCbCr Color Space

2D Projection on CbCr

BLUE dots represent the reproducible color on a monitor **RED** dots represent the skin color samples

OUTPUT OF SHRINKING AND GROWING

Original Image

Result of "shrinking and growing" algorithm

After hole filling

The face is divided into four regions:

- –Forehead
- –Left Face
- —Right Face
- -Bottom Face