

FIG. 1A

FIG. 1B

FIG. 2

RELATIONSHIP BETWEEN THE SPACING OF LENS
PREFORMERS AND EACH OF THE VARIATION IN
ALIGNMENT PITCH AND THE HORIZONTAL VARIATION

FIG. 3

RELATIONSHIP BETWEEN THE SPACING OF LENS
PREFORMERS AND THE HEIGHT VARIATION

*FIG. 4*RELATIONSHIP BETWEEN THE SPACING OF LENS
PREFORMERS AND THE VARIATION IN ALIGNMENT PITCH

FIG. 5A**FIG. 5B**

*FIG. 6A**FIG. 6B**FIG. 6C*

*FIG. 7**FIG. 8*

*FIG. 9**FIG. 10*

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

CENTER-LINE-AVERAGE
ROUGHNESS (R_a) DEFINED AS:

$$R_a = 1/L \times \int_0^L |f(x)| dx$$

PROVIDED THAT THE CENTER LINE IS
TAKEN ON THE X-AXIS AND

DETERMINED FROM $\int_0^L f(x) dx = 0$

WHERE $f(x)$ IS THE ROUGHNESS CURVE