Normal Distribution

Andrey Chinnov, Sebastian Honermann, Carlos Zydorek

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - Q-Q-Plots
 - Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - Shapiro-Wilk Test
 - Pearson's Chi-Squared Test
 - Kolmogorov-Smirnov Test
- Transformation to Normality
 - Box-Cox Transformation
 - Transformation Results Testing
- Summary

Normality as a requirement for statistical methods

Data Set Overview

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - Q-Q-Plots
 - Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - Shapiro-Wilk Test
 - Pearson's Chi-Squared Test
 - Kolmogorov-Smirnov Test
- Transformation to Normality
 - Box-Cox Transformation
 - Transformation Results Testing
- Summary

Sample:

$$x = (x_1, x_2, \ldots, x_n)$$

Empirical quantiles:

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$$

Theoretical quantiles:

$$q_{(j)} = \Phi^{-1}(p_{(j)}),$$

where

$$p_{(j)} = \frac{j - \frac{1}{2}}{n},$$

$$\Phi$$
 - $N(0,1)$ c.d.f. .

Plot $x_{(i)}$ against $q_{(i)}$

Na

Theoretical Quantiles

Theoretical Quantiles ĸ

QQ-Plots of the subdatasets:

- Variables could be normally distributed within the subclasses
- For some cases there appear to be a linear relationships
- For other cases a linear relationship is questionable
- In some subdatasets a linear relationship seems plausible, however n is very small

Results of the Transformation of the Full Dataset :

- For some of the cases there seems to be a slight improvement
- For non-unimodal cases the transformation does not show significant improvements towards normality

Results of the Transformation of the Subdatasets :

- For unimodal cases the transformation shapes the distribution closer to normality
- For non-unimodal cases the transformation does not show significant improvements towards normality

Shapiro-Wilk Test

The test statistic $\,W\,$ indicates the deviation of the observed quantile values from the assumed cumulative distribution function quantiles

$$W = \frac{\sum_{i=1}^{n} (a_i y_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2},$$

where

- a_i denotes the normalised "best linear unbiased" coefficients,
- y_i denotes the observations.

The critical value for W is obtained by the Monte Carlo Method $\implies p$ -value is calculated

Important: If a variable contains only zeros the Shapiro-Wilk test is not applicable, since the term in the denominator sums up to zero.

Shapiro-Wilk Test

Testing the Full Dataset:

Null hypothesis is rejected for all variables at a 1 % significance level

After the Transformation:

The null hypothesis can be rejected for the four transformed variables

⇒ Possible Explanation:

Combination of different distributions in the different glass types

variable	test statistic	sig. level	critical value	p-value	rejected
RI	0.87	0.01	NA	1.0766713449726e-12	yes
Na	0.95	0.01	NA	3.4655430546966e-07	yes
Mg	0.7	0.01	NA	< 1.0e-15	yes
Al	0.94	0.01	NA	2.08315629600399e-07	yes
Si	0.92	0.01	NA	2.17503176825416e-09	yes
K	0.44	0.01	NA	< 1.0e-15	yes
Ca	0.79	0.01	NA	< 1.0e-15	yes
Ba	0.41	0.01	NA	< 1.0e-15	yes
Fe	0.65	0.01	NA	< 1.0e-15	yes

Test results of the Shapiro-Wilk test on the whole data sample

variable	test statistic	sig. level	critical value	p-value	rejected
RI	NA	NA	NA	NA	NA
Na	0.95	0.01	NA	8.75605777309153e-07	yes
Mg	NA	NA	NA	NA	NA
Al	0.97	0.01	NA	0.000244326513056066	yes
Si	0.93	0.01	NA	1.58998125691823e-08	yes
K	NA	NA	NA	NA	NA
Ca	0.89	0.01	NA	1.13880689831982e-11	yes
Ba	NA	NA	NA	NA	ΝA
Fe	NA	NA	NA	NA	NA

Test results of the Shapiro-Wilk test on the whole transformed data sample

Shapiro-Wilk Test

Testing the Subdatasets Example - Glass Type 1:

Null hypothesis is rejected for all variables at a 1 % significance level

variable	test statistic	sig. level	critical value	p-value	rejected
RI	0.88	0.01	NA	6.36192013015468e-06	yes
Na	0.95	0.01	NA	0.00459078607995831	yes
Mg	0.82	0.01	NA	8.02702432879544e-08	yes
Al	0.9	0.01	NA	5.42971629496434e-05	yes
Si	0.91	0.01	NA	0.000117060780025464	yes
K	0.77	0.01	NA	3.14049093233846e-09	yes
Ca	0.93	0.01	NA	0.00103561283726753	yes

Test results of the Shapiro-Wilk test on type 1 glass

After the Transformation:

The null hypothesis cannot be rejected for 3 of the transformed variables

→ Appearently the transformation was successful

variable	test statistic	sig. level	critical value	p-value	rejected
RI	0.89	0.01	NA	1.62433657125306e-05	yes
Na	0.98	0.01	NA	0.353792914291578	no
Mg	0.83	0.01	NA	1.40023833110547e-07	yes
Al	0.96	0.01	NA	0.0459207068393172	no
Si	0.94	0.01	NA	0.00269629206710463	yes
K	NA	NA	NA	NA	NA
Ca	0.97	0.01	NA	0.148237775100495	no

Test results of the Shapiro-Wilk test on the transformed type 1 glass

Quantitative Methods for Normality Testing Pearson's Chi-Squared Test

Normality Testing

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} .

Definition

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x)$$

- empirical c. d. f. , where

$$\mathbb{1}_{\{x_i \le x\}}(x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{otherwise.} \end{cases}$$

Glass Type 1, Natrium (Na)

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} .

Definition

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x)$$

- empirical c. d. f. , where

$$\mathbb{1}_{\{x_i \le x\}}(x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{otherwise.} \end{cases}$$

F(x) - theoretical normal c. d. f. with

$$\bar{x} = \frac{1}{n} \sum x_i, \quad \sigma_x^2 = \frac{1}{n} (x_i - \bar{x})^2$$

Glass Type 1, Natrium (Na)

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} .

Definition

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x)$$
 - empirical c. d. f. , where

$$\mathbb{1}_{\{x_i \le x\}}(x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{otherwise.} \end{cases}$$

F(x) - theoretical normal c. d. f. with

$$\bar{x} = \frac{1}{n} \sum_{i} x_i, \quad \sigma_x^2 = \frac{1}{n} (x_i - \bar{x})^2$$

$$d = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|$$

distance between them

Glass Type 1, Natrium (Na)

Let $x=(x_1,x_2,\ldots,x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Let $x=(x_1,x_2,\ldots,x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Properties of D_n in case H_0 is TRUE:

• Distribution of $\hat{D}_n := (D_1, D_2, \dots, D_n)$ does not depend on F

Let $x=(x_1,x_2,\ldots,x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Properties of D_n in case H_0 is TRUE:

• Distribution of $\hat{D}_n := (D_1, D_2, \dots, D_n)$ does not depend on F

⇒ tabulated

Let $x = (x_1, x_2, \dots, x_n)$ be a sample of unknown distribution \mathbb{P} . Theoretical c. d. f. F defines a distribution \mathbb{P}_0 .

$$H_0$$
: $\mathbb{P} = \mathbb{P}_0$, H_1 : $\mathbb{P} \neq \mathbb{P}_0$.

KS test statistics:

$$D_n = \sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|.$$

Properties of D_n in case H_0 is TRUE:

- Distribution of $\hat{D}_n := (D_1, D_2, \dots, D_n)$ does not depend on F
 - ⇒ tabulated

 $\bullet \ \forall t>0$:

$$P(D_n \le t) \xrightarrow[n \to \infty]{} H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2t^2}$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

Normality Testing

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

$$\alpha = P(\delta \neq H_0|H_0)$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0)$$

Normality Testing 00000000000000000

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ccc} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0) = 1 - P(D_n \leq c|H_0)$$

Normality Testing

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0) = 1 - P(D_n \leq c|H_0) \approx 1 - H(c).$$

The KS test uses the decision rule

$$\delta = \left\{ \begin{array}{ll} H_0 & : & D_n \le c \\ H_1 & : & D_n > c \end{array} \right.,$$

where c - critical value that depends on a significance level α :

$$\alpha = P(\delta \neq H_0|H_0) = P(D_n > c|H_0) = 1 - P(D_n \leq c|H_0) \approx 1 - H(c).$$

$$\implies c \approx H_{1-\alpha}$$

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}$$

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2 \sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Example:

•
$$n = 70$$

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

- n = 70
- $D_n = \sqrt{n} \sup |F_n F| = 2.2493$

Glass Type 1, Natrium (Na)

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2t^2}$$

- n = 70
- $D_n = \sqrt{n} \sup |F_n F| =$ 2.2493
- $\alpha = 0.01$ $\implies c = H_{1-\alpha} = 1.6276$

The KS test uses the decision rule for a given significance level lpha

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

- n = 70
- $D_n = \sqrt{n} \sup |F_n F| = 2.2493$
- $\alpha = 0.01$ $\Rightarrow c = H_{1-\alpha} = 1.6276$
- $D_n > c \implies H_0$ rejected

The KS test uses the decision rule for a given significance level α

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Example:

- n = 70
- $D_n = \sqrt{n} \sup |F_n F| = 2.2493$
- $\alpha = 0.01$ $\Rightarrow c = H_{1-\alpha} = 1.6276$
- $D_n > c \implies H_0$ rejected
- $\Longrightarrow \mathbb{P} \neq \mathbb{P}_0$

The KS test uses the decision rule for a given significance level lpha

$$\delta = \begin{cases} H_0 : D_n \le H_{1-\alpha} \\ H_1 : D_n > H_{1-\alpha} \end{cases}, \quad H(t) = 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} \exp^{-2i^2 t^2}$$

Example:

- n = 70
- $D_n = \sqrt{n} \sup |F_n F| = 2.2493$
- $\alpha = 0.01$

$$\implies c = H_{1-\alpha} = 1.6276$$

- $D_n > c \implies H_0$ rejected
- $\bullet \implies \mathbb{P} \neq \mathbb{P}_0$
- ullet \Rightarrow data not normally

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

R code used:

KS test is improved by solving the following optimization problem

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

R code used:

c(mean(dat), var(dat))

[1] 13.2422857 0.2493019

#optim is a predifined R function in stats package
#defalut method of optimization is Nelder and Mead
result = optim(c(mean(dat), var(dat)), KS)
result\$par

[1] 13.1769501 0.4682486

result\$value

[1] 0.07870673

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423$, $\sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$

Glass Type 1, Natrium (Na)

Normality Testing

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 0.6585

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 0.6585
- c = 1.6276

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 0.6585
- c = 1.6276
- $D_n < c \implies H_0$ accepted

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| =$ 0.6585
- c = 1.6276
- $D_n < c \implies H_0$ accepted
- $\bullet \implies \mathbb{P} = \mathbb{P}_0$

Glass Type 1, Natrium (Na)

$$KS(\mu, \sigma) = \sup_{x \in \mathbb{R}} |F_n(x) - F(x, \mu, \sigma)| \to \min.$$

- Initial vector of parameters $\mu = 13.2423, \quad \sigma^2 = 0.2493$
- Optimized vector of parameters $\hat{\mu} = 13.1770, \quad \hat{\sigma}^2 = 0.4682$
- $D_n = \sqrt{n} \sup |F_n F_{new}| = 0.6585$
- c = 1.6276
- $D_n < c \implies H_0$ accepted
- $\bullet \implies \mathbb{P} = \mathbb{P}_0$
- ⇒ data normally distributed!

Glass Type 1, Natrium (Na)

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

Results of Improved KS test on the whole data set:

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

• 5 variables are normaly distributed (RI,Na,AI,Si,Ca)

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

- 5 variables are normaly distributed (RI,Na,AI,Si,Ca)
- 4 variables are not (Mg,K,Ba,Fe)

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

- 5 variables are normaly distributed (RI,Na,AI,Si,Ca)
- 4 variables are not (Mg,K,Ba,Fe)
- The best statistics test value for Al

variable	test statistic	sig. level	critical value	p-value	rejected
RI	1.34	0.01	1.63	0.0561963016778131	no
Na	0.87	0.01	1.63	0.43825271603342	no
Mg	2.94	0.01	1.63	6.18457917100912e-08	yes
Al	0.84	0.01	1.63	0.474757887353829	no
Si	0.96	0.01	1.63	0.314710019077325	no
K	2.14	0.01	1.63	0.000212776619708754	yes
Ca	1.33	0.01	1.63	0.057710602872685	no
Ba	2.60	0.01	1.63	2.75476085742632e-06	yes
Fe	4.68	0.01	1.63	< 1.0e-15	yes

- 5 variables are normaly distributed (RI,Na,AI,Si,Ca)
- 4 variables are not (Mg,K,Ba,Fe)
- The best statistics test value for Al
- The worst statistic test value for Fe

Quantitative Methods for Normality Testing

Test Results:

variable	rejected
RI	no
Na	no
Mg	yes
ΑI	no
Si	no
K	yes
Ca	no
Ba	yes
Fe	yes

Quantitative Methods for Normality Testing

Test Results:

Theoretical Quantiles...

Theoretical Quantiles

Theoretical Quantiles 🕢 🔾 🔿

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - Q-Q-Plots
 - Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - Shapiro-Wilk Test
 - Pearson's Chi-Squared Test
 - Kolmogorov-Smirnov Test
- Transformation to Normality
 - Box-Cox Transformation
 - Transformation Results Testing
- Summary

Box-Cox Transformation

Transformation Results Testing

Outline

- Introduction
 - Normality as a requirement for statistical methods
 - Data Set Overview
- Normality Testing
 - Graphical Methods for Normality Testing
 - Q-Q-Plots
 - Chi-Square Plot
 - Quantitative Methods for Normality Testing
 - Shapiro-Wilk Test
 - Pearson's Chi-Squared Test
 - Kolmogorov-Smirnov Test
- Transformation to Normality
 - Box-Cox Transformation
 - Transformation Results Testing
- Summary

Summary

Case Studies "Data Analytics"