Reinforcement Learning IA318 Markov Decision Process Dynamic Programming

Thomas Bonald

2022 - 2023

Reinforcement learning

Techniques for sequential decision making:

- How to explore the environment?
- How to exploit it?
- ► How to leverage **experience**?

Need for feedback!

The objective is to learn the **optimal policy** sequentially (possibly after multiple episodes)

Example 1: ABCD

Example 2: Maze

Example 3: Tic-Tac-Toe

Outline

- ► Markov decision process
- ► Value function
- Policy iteration
- ► Value iteration

Markov decision process

At time t = 0, 1, 2, ..., the agent in **state** s_t takes **action** a_t and:

- ightharpoonup receives **reward** r_t
- ightharpoonup moves to **state** s_{t+1}

The reward and new state are **stochastic** in general. Some states may be **terminal** (e.g., games).

Definition

A Markov decision process (MDP) is defined by:

- ▶ the initial state distribution, $p(s_0)$
- ▶ the reward distribution, $p(r_t|s_t, a_t)$
- ▶ the transition probabilities, $p(s_{t+1}|s_t, a_t)$

We denote by S the set of **non-terminal** states.

Policy

Definition

Given a Markov decision process, a **policy** defines the action taken in each non-terminal state:

$$\forall s \in S, \quad \pi(a|s) = P(a_t = a|\ s_t = s)$$

- A policy is **stochastic** in general.
- When **deterministic**, we use the simple notation $\pi(s)$ for the action taken in state s.

Remark

Given some policy π , the sequence of states s_0, s_1, s_2, \ldots defines a **Markov chain**.

Objective function

Definition

Given the rewards r_0, r_1, r_2, \ldots , we refer to the **gain** as:

$$G = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots = \sum_{t=0}^{+\infty} \gamma^t r_t$$

This sum might be **truncated** in the presence of terminal states.

The parameter $\gamma \in [0,1]$ is the **discount factor**:

- $ightharpoonup \gamma = 0 \longrightarrow {\sf immediate reward}$
- $ightharpoonup \gamma = 1 \longrightarrow {\sf cumulative\ reward}$

In the absence of terminal states, we assume $\gamma < 1$.

Outline

- ► Markov decision process
- Value function
- Policy iteration
- ► Value iteration

Value function

Definition

The **value function** of a policy π is the **expected gain** from each state:

$$\forall s, \quad V_{\pi}(s) = \mathrm{E}_{\pi}(G|s_0 = s)$$

ABCD (random policy)

Maze (random policy)

Tic-Tac-Toe (random players)

$$t = 0$$

0.34	0.2	0.34
0.2	0.5	0.2
0.34	0.2	0.34

$$t = 2$$

X	0.16	0.27
0.16	0	0.02
0.27	0.02	-0.12

Bellman's equation

Recall the definition:

$$\forall s, \quad V_{\pi}(s) = \mathrm{E}_{\pi}(G|s_0 = s)$$

Proposition

The value function V_{π} of any policy π is the **unique solution** to the equation:

$$\forall s \in S, \quad V(s) = \mathbf{E}_{\pi}(r_0 + \gamma V(s_1)|s_0 = s)$$

ABCD (random policy)

Quiz

Consider the following policy π : $\pi(1)=2,\pi(3)=4$ The discount factor is $\gamma=\frac{1}{2}$ What is the value function V_{π} ?

Solution to Bellman's equation

Write Bellman's equation as the **fixed-point** equation:

$$V = T_{\pi}(V)$$

with $T_{\pi}(V)(s) = \mathbb{E}_{\pi}(r_0 + \gamma V(s_1)|s_0 = s)$ for all $s \in S$.

Proposition

If $\gamma < 1$, then:

$$\forall V$$
, $\lim_{n\to+\infty} T_{\pi}^{n}(V) = V_{\pi}$

Proof: The mapping T_{π} is contracting:

$$\forall U, V, \quad ||T_{\pi}(V) - T_{\pi}(U)||_{\infty} \leq \gamma ||V - U||_{\infty}$$

 \rightarrow Banach fixed-point theorem

ABCD (fixed-point iteration)

Optimal policy

Definition

A policy π^* is **optimal** if and only if

$$\forall s, \quad V_{\pi^{\star}}(s) \geq V_{\pi}(s)$$

ABCD (optimal policy)

Bellman's optimality equation

Recall Bellman's equation for a policy π :

$$\forall s \in S, \quad V(s) = E_{\pi}(r_0 + \gamma V(s_1)|s_0 = s) \\ = \sum_{a} \pi(a|s) E(r_0 + \gamma V(s_1)|s_0 = s, a_0 = a)$$

Let's replace π by the best action in each state.

Proposition

There is a **unique solution** V^* to the equation:

$$\forall s \in S, \quad V(s) = \max_{a} E(r_0 + \gamma V(s_1) | s_0 = s, a_0 = a)$$

ABCD (optimal value function)

Quiz

The discount factor is $\gamma = \frac{1}{2}$ What is the optimal value function V^* ?

Solution to Bellman's optimality equation

Write Bellman's optimality equation as the **fixed-point** equation:

$$V = T^{\star}(V)$$

with $T^*(V)(s) = \max_a \mathbb{E}(r_0 + \gamma V(s_1)| s_0 = s, a_0 = a), \forall s \in S$.

Proposition

If $\gamma < 1$, then:

$$\forall V, \quad \lim_{n \to +\infty} (T^{\star})^n(V) = V^{\star} \geq \max_{\pi} V_{\pi}$$

Proof:

- $ightharpoonup T^{\star}$ is contracting ightharpoonup Banach fixed-point theorem
- ▶ $T^* \ge T_{\pi}$ for each policy π , so that:

$$V^{\star} = \lim_{n \to +\infty} (T^{\star})^n(V) \ge \lim_{n \to +\infty} T_{\pi}^n(V) = V_{\pi}$$

ABCD (fixed-point iteration)

Maze (optimal value function)

Tic-Tac-Toe (optimal value function against a random player)

$$t = 0$$

0.995	0.987	0.995
0.987	0.980	0.987
0.995	0.987	0.995

$$t = 2$$

X	0.96	0.92
0.96	0	0.89
0.92	0.89	0.92

Optimal policy

An **optimal policy** follows from the optimal value function:

$$\forall s \in S$$
, $\pi^*(s) = a^* \in \arg\max_a \mathrm{E}(r_0 + \gamma V^*(s_1)|s_0 = s, a_0 = a)$

Bellman's optimality theorem

The policy π^* is optimal:

$$\forall s, \quad V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s)$$

Note that:

- The optimal policy is not unique in general.
- There always exists a deterministic optimal policy.
- Any policy π whose value function V_{π} solves **Bellman's** optimality equation is optimal.

ABCD (optimal policy)

Maze (optimal policy)

Maze (optimal policy)

Outline

- ► Markov decision process
- ► Value function
- Policy iteration
- ► Value iteration

Policy improvement

Assume the value function V_{π} of policy π is known. Let π' the policy defined by:

$$\pi'(s) = a^* \in \arg\max_{a} \mathrm{E}(r_0 + \gamma V_{\pi}(s_1) | s_0 = s, a_0 = a)$$

Proposition

The policy π' is better than π :

$$\forall s, \quad V_{\pi'}(s) \geq V_{\pi}(s)$$

Quiz

Consider the following policy π : $\pi(1) = 2, \pi(3) = 4$ The discount factor is $\gamma = \frac{1}{2}$ What is the new policy π' after policy improvement?

Policy iteration

Algorithm

Starting from some arbitrary **policy** $\pi = \pi_0$, iterate until convergence:

- 1. **Evaluate** the policy (by solving Bellman's equation)
- 2. **Improve** the policy:

$$\forall s, \quad \pi(s) \leftarrow \arg\max_{a} \mathrm{E}(r_0 + \gamma V_{\pi}(s_1)|s,a)$$

- The sequence $\pi_0, \pi_1, \pi_2, ...$ is **monotonic** (in value) and converges in **finite time** (for finite numbers of states and actions).
- The limit is an optimal policy.
- ▶ These results assume **perfect** policy evaluation.

Maze (policy iteration)

Practical considerations

- The step of policy evaluation is time-consuming (solution of Bellman's equation)
- Do we need the exact solution?
 No, since it is used only to improve the policy!
- Why not directly improving the value function? This is value iteration!

Outline

- ► Markov decision process
- ► Value function
- Policy iteration
- **▶** Value iteration

Value Iteration

Algorithm

Starting from some arbitrary value function $V = V_0$, iterate until convergence:

$$\forall s, \quad V(s) \leftarrow \max_{a} \mathrm{E}(r_0 + \gamma V(s_1)|s,a)$$

- ► The sequence V_0, V_1, V_2, \ldots converges (provided $\gamma < 1$) but not in finite time in general \rightarrow need a **stopping** condition
- ► The **limit** solves Bellman's optimality equation.
- ► The corresponding policy is **optimal**.

Summary

Key concepts

- Markov decision process
 A general model for reinforcement learning
- Value function Expected gain in each state
- ► Policy iteration

 Based on successive Bellman's equations
- Value iteration
 Based on Bellman's optimality equation

Next steps

- ▶ What if the state space is **too large**?
- What if the model is unknown?