MATE 6540: Topology Qualifying Exam

Due on 19 de mayo

Prof. Iván Cardona, C41, 19 de mayo

Sergio Rodríguez

Problem 0

A topological space (X, \mathcal{T}_X) is pseudocompact \iff every continuous function $f: (X, \mathcal{T}_X) \to (\mathbb{R}, \mathcal{T}_{\varepsilon^1})$ is bounded. Here $\mathcal{T}_{\varepsilon^1}$ is the usual topology over \mathbb{R} .

- (i) Show that pseudocompactness is a continuous invariant. Explain.
- (ii) Show that if (Y, \mathcal{T}_Y) is compact, then (Y, \mathcal{T}_Y) is pseudocompact, but that the converse does not hold.

Proof (i):

Let (X,\mathcal{T}_x) be a pseudocompact topological space, and let $\varphi:(X,\mathcal{T}_X) \to \left(\varphi(X),\mathcal{T}_{\varphi(X)}\right)$ be a continuous function. Now let $f:\left(\varphi(X),\mathcal{T}_{\varphi(X)}\right) \to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ be a continuous function. Then $(f\circ\varphi):(X,\mathcal{T}_X)\to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ is continuous. But (X,\mathcal{T}_X) is pseudocompact, so $f\circ\varphi$ is bounded $\Longrightarrow f$ is bounded. Then $\left(\varphi(X),\mathcal{T}_{\varphi(X)}\right)$ is pseudocompact.

: pseudocompactness is a continuous invariant.

MEP

Proof (ii):

We claim that (Y, \mathcal{T}_Y) compact $\Longrightarrow (Y, \mathcal{T}_Y)$ pseudocompact, we show the contrapositive.

Suppose that (Y,\mathcal{T}_Y) is not pseudocompact, then there exists a continuous function $f:(Y,\mathcal{T}_Y)\to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ that is unbounded. Then f(Y) extends infinitely in at least one direction. Suppose, without loss of generality, that it extends infinitely to the right. Then $f(Y)\subseteq (a,+\infty)$, for some $a\in\mathbb{R}\cup\{-\infty\}$. Now define the family $\{(a,i)\}_{n=1}^\infty$ and note that: $\bigcup_{i=1}^\infty (a,i)=(a,+\infty)\supseteq f(Y)$. But note that $(a,i)\in\mathcal{T}_{\varepsilon^1}, \forall i\in\mathbb{N}\Longrightarrow f^{-1}((a,i))\in\mathcal{T}_Y, \forall i\in\mathbb{N}$ because f is continuous. And:

$$\bigcup_{i=1}^{\infty} f^{-1}((a,i)) = f^{-1}\left(\bigcup_{i=1}^{\infty} (a,i)\right) = f^{-1}((a,+\infty)) \supseteq f^{-1}(f(Y)) \supseteq Y \tag{1}$$

This implies that the collection $C:=\{f^{-1}((a,i))\cap Y\mid i\in\mathbb{N}\}$ is an open cover for Y, but note that, for any finite subcollection $C':=\{f^{-1}\big((a,i_j)\big)\mid i_j\in\mathbb{N},\ \forall j\in\{1,...,n\}\}\subseteq C$, there exists a natural number n such that i_n is an upper bound of C'. But f(Y) extends infinitely to the right, so C' cannot be an open cover for Y.

 $\therefore (Y, \mathcal{T}_Y)$ is not compact.

Now we show that the converse does not hold.

Consider the collection: $\mathcal{T}:=\{U\subseteq\mathbb{R}\mid U=\emptyset\lor 0\in U\}$. Note that $\emptyset\in\mathcal{T}$ by construction and $0\in\mathbb{R}\Longrightarrow\mathbb{R}\in\mathcal{T}$, and that arbitrary unions and finite intersections of sets containing 0 also contain 0. Then \mathcal{T} is a topology over \mathbb{R} . Suppose $f:(\mathbb{R},\mathcal{T})\to(\mathbb{R},\mathcal{T}_{\varepsilon^1})$ is a continuous function. Then, since $\mathbb{R}\setminus\{f(0)\}=(-\infty,0)\cup(0,+\infty)\in\mathcal{T}_{\varepsilon^1}$, we have that $A:=f^{-1}(\mathbb{R}\setminus f(\{0\}))\in\mathcal{T}$. But note that $A=f^{-1}(\mathbb{R}\setminus f(\{0\}))=f^{-1}(\mathbb{R})\setminus f^{-1}(f(\{0\}))=\mathbb{R}\setminus f^{-1}(f(\{0\}))$, and $\{0\}\subseteq f^{-1}(f(\{0\}))$, it then follows that $0\notin A$, but $A\in\mathcal{T}$, therefore $A=f^{-1}(\mathbb{R}\setminus f(\{0\}))=\emptyset$. This implies that f doesn't ever map to anything other than 0, so f(x)=0, which is a bounded function.

 \therefore (\mathbb{R} , \mathcal{T}) is pseudocompact.

Consider the collection $D \coloneqq \{(-i,i) \mid i \in \mathbb{N}\}$. Note that $\forall i \in \mathbb{N}, \ 0 \in (-i,i) \Longrightarrow (-i,i) \in \mathcal{T}$. Also, $\bigcup_{i=1}^{\infty} (-i,i) = \mathbb{R}$. Therefore, D is an open cover for \mathbb{R} . Now take a finite subcollection $D' \coloneqq \left\{ \left(-i_j, i_j\right) \mid i_j \in \mathbb{N}, \ \forall j \in \{1, ..., n\} \right\} \subseteq D$. But clearly D' does not cover \mathbb{R} .

 \therefore (\mathbb{R} , \mathcal{T}) is not compact.

MEP

Problem 1

(Kuratowski's closure operator) Let X be a set, $\mathcal{P}(X)$ be its powerset, and $c:\mathcal{P}(X)\to\mathcal{P}(X)$ be a function that satisfies:

$$(i) c(\emptyset) = \emptyset$$

(ii)
$$A \subseteq c(A), \forall A \in \mathcal{P}(X)$$

(iii)
$$c(c(A)) = c(A), \forall A \in \mathcal{P}(X)$$

$$(iv) c(A \cup B) = c(A) \cup c(B), \forall A, B \in \mathcal{P}(X)$$

Show that the collection $\mathcal{T} = \{X \setminus c(A) \mid A \in \mathcal{P}(X)\}$ is a topology over X, and that in this topology $\overline{A} = c(A)$, $\forall A \in \mathcal{P}(X)$. Here \overline{A} is the closure of A in (X, \mathcal{T}) .

Proof:

We claim that $\emptyset, X \in \mathcal{T}$.

Note that $c(X) \in \mathcal{P}(X)$ and $X \in c(X)$ imply that c(X) = X. Then $X \setminus c(X) = X \setminus X = \emptyset \in \mathcal{T}$. Similarly, note that $c(\emptyset) = \emptyset \Longrightarrow X \setminus c(\emptyset) = X \setminus \emptyset = X \in \mathcal{T}$.

 $\therefore \emptyset, X \in \mathcal{T}.$

We claim that \mathcal{T} is closed under arbitrary unions.

Take $\left\{U_{\alpha}\right\}_{\alpha\in\Lambda}\subseteq\mathcal{T}_{X}$. We show that $U\coloneqq\bigcup_{\alpha\in\Lambda}U_{\alpha}\in\mathcal{T}_{X}$. Note that $\forall\alpha\in\Lambda,\exists V_{\alpha}\in\mathcal{P}(X)$ such that $U_{\alpha}=X\smallsetminus c(V_{\alpha})$. Then $U=\bigcup_{\alpha\in\Lambda}(X\smallsetminus c(V_{\alpha}))=X\smallsetminus\bigcap_{\alpha\in\Lambda}c(V_{\alpha})$

We claim that \mathcal{T} is closed under finite intersections.

Take $U, V \in \mathcal{T}$, then $\exists A, B \in \mathcal{P}(X)$ such that $U = X \setminus c(A)$ and $V = X \setminus c(B)$. Then:

$$\begin{split} U \cap V &= (X \setminus c(A)) \cap (X \setminus c(B)) \\ &= X \setminus (c(A) \cup c(B)) \\ &= X \setminus c(A \cup B) \in \mathcal{T} \end{split} \tag{2}$$

 $: U \cap V \in \mathcal{T}.$

 $\therefore \mathcal{T}$ is closed under finite intersections, by induction.

We claim that $\overline{A} = c(A), \quad \forall A \in \mathcal{P}(X).$

Problem 2

Let A be a subset of a topological space (X, \mathcal{T}_X) . Show that the following are equivalent:

$$(i)\inf\left(\overline{A}\right)=\emptyset.$$

(ii) $X \setminus \overline{A}$ is dense in X.

$$(iii) X \setminus \overline{\left(X \setminus \overline{A}\right)} = \emptyset.$$

$$(iv) A \subseteq \overline{\left(X \setminus \overline{A}\right)}.$$

Proof:

 $((i) \Longrightarrow (ii))$

Suppose that $\operatorname{int}\left(\overline{A}\right) = \bigcup \left\{U \in \mathcal{T}_X \mid U \subseteq \overline{A}\right\} = \emptyset$. Note that $\overline{\left(X \setminus \overline{A}\right)} \subseteq X$. We claim that $X \subseteq \overline{\left(X \setminus \overline{A}\right)}$. Take $x \in X$ and $U \in \mathcal{T}_X$ such that $x \in U$. Then $U \neq \emptyset$. Now suppose that $U \subseteq \overline{A}$, then $U \subseteq \bigcup \left\{U \in \mathcal{T}_X \mid U \subseteq \overline{A}\right\} = \emptyset \Longrightarrow U = \emptyset$, which is a contradiction. \bigstar

Then
$$U \cap (X \setminus \overline{A}) \neq \emptyset \Longrightarrow x \in \overline{(X \setminus \overline{A})} \Longrightarrow X \subseteq \overline{(X \setminus \overline{A})}$$
.

$$\therefore \overline{\left(X \setminus \overline{A}\right)} = X.$$

 $\therefore X \setminus \overline{A} \text{ is dense in } X.$

 $((ii) \Longrightarrow (iii))$

Suppose that $X \setminus \overline{A}$ is dense in X, then $\overline{(X \setminus \overline{A})} = X$ by definition.

Then
$$X \setminus \overline{\left(X \setminus \overline{A}\right)} = X \setminus X = \emptyset$$
.

$$\therefore X \setminus \overline{\left(X \setminus \overline{A}\right)} = \emptyset.$$

$$((iii) \Longrightarrow (iv))$$

Suppose that $X \setminus \overline{\left(X \setminus \overline{A}\right)} = \emptyset$. Then $\overline{\left(X \setminus \overline{A}\right)} = X$. But $A \subseteq X$ by hypothesis. $A \subseteq \overline{\left(X \setminus \overline{A}\right)}$

$$((iv) \Longrightarrow (i))$$

Suppose that $A\subseteq \overline{(X\setminus \overline{A})}$. Now suppose, by contradiction, that $\operatorname{int}\left(\overline{A}\right)\neq\emptyset$. Then $\exists x\in\operatorname{int}\left(\overline{A}\right)\Longrightarrow\exists U\in\mathcal{T}_X$ such that $x\in\underline{U\subseteq\overline{A}}$. But $x\in\overline{A}$ and \underline{U} neighborhood of x imply that $U\cap A\neq\emptyset$. So $\exists y\in U$ such that $y\in A\subseteq \overline{(X\setminus\overline{A})}$. But now $y\in\overline{(X\setminus\overline{A})}$ and U neighborhood of y imply that $U\cap \overline{(X\setminus\overline{A})}\neq\emptyset$. But this contradics the fact that $U\in\overline{A}$. X

$$\therefore$$
 int $(\overline{A}) = \emptyset$.

MEP

Problem 3

A subset of a topological space is a G_{δ} -set if it is the intersection of countably many open sets. On the other hand, a subset of a topological space is an F_{δ} -set if it is the union of countably many closed sets.

- (i) Let A be an F_{δ} -set of a topological space (X, \mathcal{T}_X) . Show that there is a nested sequence of closed sets $C_1 \subseteq C_2 \subseteq C_3 \subseteq ...$ such that $A = \bigcup_{i=1}^{\infty} C_i$.
- (ii) Show that every closed set in a metric space (X, d) is a G_{δ} -set.

Problem 4

Let A, B be two non-empty subsets of \mathbb{R} with the usual topology. Define:

$$C := \{x + y \mid x \in A \land y \in B\}. \tag{3}$$

- (a) Show that, if A or B is open, then C is open.
- (b) Show that, if A and B are compact, then C is compact.

Proof (a):

Suppose, without loss of generality, that $A \in \mathcal{T}_{\varepsilon^1}$. Now take $(x+y) \in C$, then $x \in A$, which is open, so $\exists \delta \in (0,\infty)$ such that $(x-\delta,x+\delta) \subseteq A$.

We claim that $D := ((x + y) - \delta, (x + y) + \delta) \subseteq C$.

Take $d \in D$, then:

$$(x+y) - \delta < d < (x+y) + \delta$$

$$\Rightarrow x - \delta < d - y < x + \delta$$

$$\Rightarrow (d-y) \in (x - \delta, x + \delta) \subseteq A$$

$$\Rightarrow ((d-y) + y) \in C$$

$$\Rightarrow d \in C$$

$$(4)$$

 $\therefore D \subset C$

 \therefore C is open.

MEP

Proof (b):

Suppose that A,B are compact. Then, by Tychonoff's Theorem, $A\times B$ is compact when given the product topology. Note that the product topology $\mathcal{T}_{A\times B}$ is a relative topology inherited from \mathbb{R}^2 . Define a function $\varphi:(A\times B,\mathcal{T}_{A\times B})\to(\mathbb{R},\mathcal{T}_{\varepsilon^1})$ by $\varphi(a,b)=a+b$. Note that this is a polynomial function, and thus continuous. Also note that:

$$\varphi(A\times B)=\{\varphi(a,b)\mid (a,b)\in A\times B\}=\{a+b\mid a\in A\wedge b\in B\}=C \tag{5}$$

But $A \times B$ is compact and compactness is a continuous invariant.

 \therefore C is compact.

MEP

Problem 5

(Intermediate value theorem) Let $f:(X,\mathcal{T}_X)\to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ be a continuous function, where (X,\mathcal{T}_X) is connected. Show that if a,b are two points in X and if r is a real number lying between f(a) and f(b), then there is a $c\in X$ such that f(c)=r.

Proof:

Note that $f^{-1}(\mathbb{R}) = X$. Now, suppose, by contradiction, that $\exists c \in X$ such that f(c) = d. Then the previous equation still holds when you remove d from \mathbb{R} . That is:

$$f^{-1}(\mathbb{R} \smallsetminus \{d\}) = f^{-1}((-\infty,d) \cup (d,+\infty)) = X \tag{6}$$

Now, let $A := f^{-1}((-\infty, d))$, and $B := f^{-1}((d, +\infty))$, and note that:

(i)
$$a \in A \Longrightarrow A \neq \emptyset \land b \in B \Longrightarrow B \neq \emptyset$$

(ii)
$$A \cup B = f^{-1}((-\infty, d)) \cup f^{-1}((d, +\infty))$$

= $f^{-1}((-\infty, d) \cup (d, +\infty)) = X$ (7)

$$\begin{split} \text{(iii)} \qquad A \cap B &= f^{-1}((-\infty,d)) \cap f^{-1}((d,+\infty)) \\ &= f^{-1}((-\infty,d) \cap (d,+\infty)) = f^{-1}(\emptyset) = \emptyset \end{split}$$

Then $\{A, B\}$ forms a separation for X, which is a contradiction. X

 $\therefore \exists c \in \mathbb{R} \text{ such that } f(c) = d.$

MEP

Problem 6

Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces and suppose $X_1 \times X_2$ has the product topology. For each i=1,2, let $A_i \subseteq X_i$. Prove that:

(i)
$$\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$$
.

(ii)
$$\operatorname{int}(A_1 \times A_2) = \operatorname{int}(A_1) \times \operatorname{int}(A_2)$$
.

Lemma 1:

Let C_1, C_2, D_1, D_2 be sets. Then $(C_1 \times C_2) \cap (D_1 \times D_2) = (C_1 \cap D_1) \times (C_2 \cap D_2)$.

Proof:

Note that:

$$(x,y) \in (C_1 \times C_2) \cap (D_1 \times D_2)$$

$$\iff (x,y) \in (C_1 \times C_2) \wedge (x,y) \in (D_1 \times D_2)$$

$$\iff (x \in C_1 \wedge y \in C_2) \wedge (x \in D_1 \wedge y \in D_2)$$

$$\iff (x \in C_1 \wedge x \in D_1) \wedge (y \in C_2 \wedge y \in D_2)$$

$$\iff x \in (C_1 \cap D_1) \wedge y \in (C_2 \cap D_2)$$

$$\iff (x,y) \in (C_1 \cap D_1) \times (C_2 \cap D_2)$$

$$(8)$$

$$\div (C_1 \times C_2) \cap (D_1 \times D_2) = (C_1 \cap D_1) \times (C_2 \cap D_2)$$

Proof (i):

Take $(x,y)\in \overline{A_1\times A_2}$, and take $U_1\in \mathcal{T}_1, U_2\in \mathcal{T}_2$ such that $x\in U_1$ and $y\in U_2$. Then $(x,y)\in U_1\times U_2$ and $U_1\times U_2\in \mathcal{T}_\Pi$ by the definition of the product topology (for finite products). But:

$$(x,y) \in \overline{A_1 \times A_2} \Longrightarrow (U_1 \times U_2) \cap (A_1 \times A_2) \neq \emptyset$$

$$\Longrightarrow \exists (x',y') \in (U_1 \times U_2) \cap (A_1 \times A_2)$$

$$\Longrightarrow (x',y') \in (U_1 \cap A_1) \times (U_2 \cap A_2)$$

$$\Longrightarrow x' \in U_1 \cap A_1 \wedge y' \in U_2 \cap A_2$$

$$\Longrightarrow U_1 \cap A_1 \neq \emptyset \wedge U_2 \cap A_2 \neq \emptyset$$

$$\Longrightarrow x \in \overline{A_1} \wedge y \in \overline{A_2}$$

$$\Longrightarrow (x,y) \in \overline{A_1} \times \overline{A_2}$$

$$(9)$$

$$\stackrel{...}{...} \overline{A_1 \times A_2} \subseteq \overline{A_1} \times \overline{A_2}$$

Similarly, take $(a,b)\in\overline{A_1}\times\overline{A_2}$, and take $U_1\times U_2\in\mathcal{T}_\Pi$ such that $(a,b)\in U_1\times U_2$. Then $a\in U_1\in\mathcal{T}_1$ and $b\in U_2\in\mathcal{T}_2$ by the definition of the product topology (for finite products). But:

$$(a,b) \in \overline{A_1} \times \overline{A_2} \Longrightarrow a \in \overline{A_1} \wedge b \in \overline{A_2}$$

$$\Longrightarrow U_1 \cap A_1 \neq \emptyset \wedge U_2 \cap A_2 \neq \emptyset$$

$$\Longrightarrow \exists a' \in U_1 \cap A_1 \wedge \exists b' \in U_2 \cap A_2$$

$$\Longrightarrow (a',b') \in (U_1 \cap A_1) \times (U_2 \cap A_2)$$

$$\Longrightarrow (a',b') \in (U_1 \times U_2) \cap (A_1 \times A_2)$$

$$\Longrightarrow (U_1 \times U_2) \cap (A_1 \times A_2) \neq \emptyset$$

$$\Longrightarrow (a,b) \in \overline{A_1 \times A_2}$$

$$(10)$$

$$\begin{split} & \therefore \overline{A_1} \times \overline{A_2} \subseteq \overline{A_1 \times A_2} \\ & \therefore \overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2} \end{split}$$

MEP

Proof (ii):

Note that, for any subset B of a topological space (Y,\mathcal{T}_Y) , we have that $z\in \operatorname{int}(B)\Longleftrightarrow \exists U\in \mathcal{T}_Y$ such that $z\in U\subseteq B$. Here's a brief proof: Take $z\in\operatorname{int}(B)=\bigcup\{V\in \mathcal{T}_Y\mid V\subseteq B\}\subseteq B$. This proves (\Longrightarrow) . Now suppose $\exists U\in \mathcal{T}_Y$ such that $z\in U\subseteq B$, then $U\in\bigcup\{V\in \mathcal{T}_Y\mid V\subseteq B\}=\operatorname{int}(B)$. This proves (\Longleftrightarrow) .

Now for the main proof. Take $(x,y) \in \mathtt{int}(A_1 \times A_2)$, then $\exists U_1 \times U_2 \in \mathcal{T}_\Pi$ such that $(x,y) \in U_1 \times U_2 \subseteq A_1 \times A_2 \Longrightarrow x \in U_1 \subseteq A_1$ and $y \in U_2 \subseteq A_2 \Longrightarrow x \in \mathtt{int}(A_1)$ and $y \in \mathtt{int}(A_2)$. Then $(x,y) \in \mathtt{int}(A_1) \times \mathtt{int}(A_2)$.

$$\therefore$$
 int $(A_1 \times A_2) \subseteq$ int $(A_1) \times$ int (A_2) .

Now take $(a,b) \in \operatorname{int}(A_1) \times \operatorname{int}(A_2)$, then $a \in \operatorname{int}(A_1)$ and $b \in \operatorname{int}(A_2) \Longrightarrow \exists U_1 \in \mathcal{T}_1$ such that $a \in U_1 \subseteq A_1$ and $\exists U_2 \in \mathcal{T}_2$ such that $b \in U_2 \subseteq A_2$. Then $(a,b) \in U_1 \times U_2 \subseteq A_1 \times A_2$, which implies that $(a,b) \in \operatorname{int}(A_1 \times A_2)$.

- \therefore int $(A_1) \times$ int $(A_2) \subseteq$ int $(A_1 \times A_2)$.
- $\therefore \operatorname{int}(A_1 \times A_2) = \operatorname{int}(A_1) \times \operatorname{int}(A_2).$

MEP