МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка символьной информации с использованием строковых команд.

Студентка гр. 0382		Михайлова О.Д.
Преподаватель		Ефремов М.А.
	Санкт-Петербург	

2021

Цель работы.

Изучить представление и обработку символьной информации с использованием строковых команд.

Задание.

Разработать программу обработки символьной информации, реализующую функции:

- инициализация (вывод титульной таблички с указанием вида преобразования и автора программы) на ЯВУ;
- ввода строки символов, длиной не более Nmax (<=80), с клавиатуры в заданную область памяти на ЯВУ; если длина строки превышает Nmax, остальные символы следует игнорировать;
- выполнение заданного в таблице 5 преобразования исходной строки с записью результата в выходную строку на Ассемблере;
- вывода результирующей строки символов на экран и ее запись в файл на ЯВУ.

Преобразования: Вариант 24

Инвертирование введенных во входной строке цифр в шестнадцатиричной системе счисления (СС) и преобразование строчных русских букв в заглавные, остальные символы входной строки передаются в выходную строку непосредственно.

Выполнение работы.

Работа выполнена на языке С++ со встраиванием ассемблерного кода.

В начале программы прописываются команды для работы с кириллицей и на экран выводится сообщение-приветствие. Далее в массив input считывается входная строка и начинается ассемблерный блок.

Регистрам esi и edi присваиваются значения смещения входной строки и строки с результатом соответственно.

С метки start начинается цикл, в котором сначала с помощью команды lodsb в al записывается символ из input и затем он сравнивается с символом конца строки. Если в al записан символ конца строки, то происходит условный переход на метку final, в которой символ записывается в конец массива output, и цикл заканчивается.

Если символ, записанный в al, не равен символу конца строки, то происходит переход на метку from_0_to_5, где он сравнивается сначала с символов '0', а потом с символом '5'. Если код записанного символа меньше кода символа '0' или больше кода символа '5' по таблице ASCII, то происходит условный переход на метки symbols_check или more_5_less_A соответственно, которые описаны ниже. Если же символ входит в диапазон от '0' до '5', то происходит инвертация шестнадцатиричной цифры следующим образом: в аh записывается код символа 'F', затем из него вычитается значение, записанное в al, и прибавляется 48, а в al записывается символ 'F'. С помощью stosw значение, записанное в регистр ах, записывается в выходную строку и осуществляется переход на метку start.

Метка more_5_less_A. В ней проверяется, входит ли символ, записанный в al, в диапазон от '6' до '9'. Если нет, то происходит условный переход на метку more_than_9, описанную ниже. Если да, то инвертация шестнадцатиричной цифры происходит следующим образом: в ah записывается код символа 'F', затем из него вычитается значение, записанное в al, и прибавляется 41, а в al записывается символ 'F'. С помощью stosw значение, записанное в регистр ах, записывается в выходную строку и осуществляется переход на метку start.

Метка more_than_9. В ней происходит инвертация шестнадцатиричной цифры и запись аналогично метке from_0_to_5 в том случае, если символ, записанный в al, входит в диапазон от 'A' до 'F'. В ином случае происходит переход на метку symbols_check.

Метка symbols_check. В ней происходит преобразование строчных русских букв в заглавные, если код символа, записанного в al, входит в диапазон от 224 до 255. Для преобразования из значения, записанного в al, вычитается 32 и с

помощью команды stosb полученное в al значение записывается в выходную строку и осуществляется переход на метку start. Если код символа не попадает в заданный диапазон, то происходит переход по метке уо_check, где проверяется, не является ли записанный символ буквой ё. Если является, то он меняется на заглавную букву, в ином случае происходит переход на метку other, где символ из регистра al просто записывается в выходную строку и осуществляется переход на метку start.

В конце программы происходит вывод строки с результатов на экран и ее запись в файл.

Исходный код программы смотреть в приложении А.

Тестирование.

Результаты тестирования представлены в таблице 1.

Таблица 1 - Результаты тестирования

No	Входные данные	Выходные данные	Комментарии
1.	0358ABF	FF FC FA F7 F5 F4 F0	Результат верный
2.	абвгдя	АБВГДЯ	Результат верный
3.	AF jckd фыва	F5F0 jckd ФЫВА	Результат верный

Выводы.

В ходе работы было изучено представление и обработка символьной информации с использованием строковых команд. Разработана программа, которая обрабатывается символьную строку и преобразуют ее в соответствии с заданием.

.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lab4.cpp

```
#include <iostream>
     #include <locale>
     #include <fstream>
     #include <windows.h>
     using namespace std;
     char input[85];
     char output[170];
     int main()
         setlocale(LC ALL, "Russian");
         system("chcp 1251");
         cout << "Михайлова Оксана, гр. 0382\пВариант 24\пИнвертирование
введенных во входной строке цифр в шестнадцатиричной СС "
              "и преобразование строчных русских букв в заглавные." <<
endl;
           cin.getline(input, 80);
           __asm {
             mov esi, offset input
             mov edi, offset output
              start :
              lodsb
                  cmp al, ' \ 0'
                  je final
                  from_0_to_5:
                  cmp al, '0'
                  jl symbols check
                  cmp al, '5'
                  jg more_5_less_A
                  mov ah, 'F'
                  sub ah, al
                  add ah, 48
                  mov al, 'F'
                  stosw
                  jmp start
                  more 5 less A:
              cmp al, \overline{9}
                  jg more_than_9
                  mov ah, 'F'
                  sub ah, al
                  add ah, 41
                  mov al, 'F'
                  stosw
                  jmp start
                  more than 9:
              cmp al, F'
                  jg symbols check
```

```
mov ah, 'F'
                   sub ah, al
                   add ah, 48
                   mov al, 'F'
                   stosw
                   jmp start
                   symbols check:
               cmp al, 224
                   jl yo check
                   cmp al, 255
                   jg yo_check
                   sub a\overline{1}, 32
                   stosb
                   jmp start
                   yo_check:
               cmp al, 'ë'
jne other
                   mov al, 'Ë'
                   stosb
                   jmp start
                   other:
               stosb
                   jmp start
                   final:
               stosb
          };
          ofstream file;
          file.open(R"(D:\Рабочий стол\уни-
вер\ЭВМ\lab4\lab4\res_lab4.txt)");
          file << output;</pre>
          file.close();
          cout << output;</pre>
          return 0;
      }
```