HOMEWORK PROBLEMS 09, ANLY 561, FALL 2018 DUE 11/11/18

Readings: §5.9, 6.1, 6.2, 6.3 of Goodfellow, Bengio, and Courville

Exercises:

1. For any fixed nonzero $\mathbf{v} \in \mathbb{R}^n$ and any fixed $b \in \mathbb{R}$, the set of points $\mathbf{x} \in \mathbb{R}^n$ satisfying

$$\mathbf{v}^T \mathbf{x} - b = 0$$

is called an **affine hyperplane** of dimension n-1 in \mathbb{R}^n . Let $\mathbf{y} \in \mathbb{R}^n$ and find the solution \mathbf{x}^* (in terms of \mathbf{v} , b, and \mathbf{y}) to the program

$$\min_{\mathbf{y} \in \mathbb{P}^n} \|\mathbf{y} - \mathbf{x}\|_2^2 \text{ subject to } \mathbf{v}^T \mathbf{x} - b = 0.$$

This \mathbf{x}^* is called the **projection** of \mathbf{y} onto the affine hyperplane determined by \mathbf{v} and b.

- 2. Suppose $X \in M_{n,d}$ is a data matrix with rows from a dataset $\{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^d$. This problem illustrates the role of optimization in Principal Component Analysis.
 - (a) Show that $\sum_{i=1}^{n} \|\mathbf{x}_{i} c_{i}\mathbf{u}\|_{2}^{2} = \|X \mathbf{c}\mathbf{u}^{T}\|_{Fro}^{2}$, where $\|A\|_{Fro}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}^{2}$ is the Frobenius norm of A for any $A = [A_{i,j}] \in M_{m,n}$, and $\mathbf{c} \in \mathbb{R}^{n}$.
 - (b) Show that, for any $\mathbf{u} \in \mathbb{R}^d$ with $\|u\|_2^2 = 1$, $c_i^* = \mathbf{x}_i^T \mathbf{u}$ is the unique solution to $\min_{c_i \in \mathbb{R}} \|\mathbf{x}_i c_i \mathbf{u}\|_2^2$.
 - (c) Using part (a) and (b), explain why the optimization program

$$\min_{\mathbf{u} \in \mathbb{R}^d, \mathbf{c} \in \mathbb{R}^n} \sum_{i=1}^n \|\mathbf{x}_i - c_i \mathbf{u}\|_2^2 \text{ subject to } \|\mathbf{u}\|_2^2 = 1$$

can be solved if we solve the problem

$$\min_{\mathbf{u} \in \mathbb{R}^d} \|X - X\mathbf{u}\mathbf{u}^T\|_{\text{Fro}}^2 \text{ subject to } \|\mathbf{u}\|_2^2 = 1$$

- (d) Show that $||A||_{\text{Fro}}^2 = \operatorname{trace}(A^T A)$, where $\operatorname{trace}(Q) = \sum_{i=1}^k Q_{i,i}$ is the sum of diagonal entries of any square matrix $Q = [Q_{i,j}] \in M_{k,k}$. Also, show that if $A, B \in M_{m,n}$, then $\operatorname{trace}(A^T B) = \operatorname{trace}(BA^T)$.
- (e) Use part (d) to show that the minimization program

$$\min_{\mathbf{u} \in \mathbb{R}^d} \|X - X\mathbf{u}\mathbf{u}^T\|_{\text{Fro subject to }}^2 \|\mathbf{u}\|_2^2 = 1$$

and the maximization program

$$\max_{\mathbf{u} \in \mathbb{R}^d} \mathbf{u}^T X^T X \mathbf{u} \text{ subject to } \|\mathbf{u}\|_2^2 = 1$$

are equivalent.

(f) Suppose \mathbf{u}^* is a normalized eigenvector of X^TX corresponding to the largest eigenvalue of X^TX . Use part (e) and explain why \mathbf{u}^* and $\mathbf{c}^* = X\mathbf{u}^*$ together solve the program

$$\min_{\mathbf{u} \in \mathbb{R}^d, \mathbf{c} \in \mathbb{R}^n} \sum_{i=1}^n \|\mathbf{x}_i - c_i \mathbf{u}\|_2^2 \text{ subject to } \|\mathbf{u}\|_2^2 = 1$$