Categorical Variables

```
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import drive
import os
drive.mount('/content/drive')
os.chdir('/content/drive/MyDrive/')
for item in os.listdir():
  print(item)
print("----")
os.chdir('/content/drive/MyDrive/cloud/GitHub/AdvDataViz/Notebooks/')
for item in os.listdir():
  print(item)
print("----")
notebooks = "/content/drive/MyDrive/cloud/GitHub/AdvDataViz/Notebooks"
print(os.listdir(notebooks))
print("----")
file = "heart-disease.csv"
file_path = os.path.join(notebooks, file)
with open(file path, "r") as f:
  contents = f.read()
→ Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/c
    learningStore
    healthyCar
    startup
    cloud
    Artificial Intelligence
    03 Matplotlib - Exercise.ipynb
    02 Matplotlib.ipynb
    01 Python_Pandas.ipynb
    04 Continuous Variables - Histogram .ipynb
    05 Continuous Variables - Histogram - Exercise ipynb
    07 Continuous Variables - Boxplot - Exercise .ipynb
    03 Matplotlib - Exercise Solutions.ipynb
    05 Continuous Variables - Histogram - Exercise Solutions.ipynb
    06 Continuous Variables - Boxplot.ipynb
    08 Continuous Variables - Scatterplot.ipynb
    07 Continuous Variables - Boxplot - Exercise Solutions.ipynb
    09 Continuous Variables - Scatterplot - Exercise Solutions.ipynb
    09 Continuous Variables - Scatterplot - Exercise .ipynb
    10 Categorical Variables - Bar_Pie.ipynb
    12 Seaborn.ipynb
    11 Pandas Data Visualization.ipynb
    13 Seaborn - Exercise .ipynb
    Top 50 US Tech Companies.csv
    13 Seaborn - Exercise Solution.ipynb
    15 Custom Modules.ipynb
    14 Functions.ipynb
    churn.csv
    student_performance.csv
    myplotlib.py
```

```
employee_attrition_.csv
heart-disease.csv
-----
```

['03 Matplotlib - Exercise.ipynb', '02 Matplotlib.ipynb', '01 Python_Pandas.ipynb', '04 Cont

Bar plot

Display each bar with a different color

→ Horizontal bar plot

Dataset: Heart Disease

```
#df = pd.read_csv("heart-disease.csv")
df = pd.read_csv(file_path)
df.head()
```

		age	sex	chest_pain	rest_bp	chol	max_hr	st_depr	heart_disease
	0	63	female	3	145	233	150	2.3	1
	1	37	female	2	130	250	187	3.5	1
	2	41	male	1	130	204	172	1.4	1
	3	56	female	1	120	236	178	0.8	1
	4	57	male	0	120	354	163	0.6	1
 Next	cte	ne.	Generat	e code with df		/iew rec	commende	d plots	New interactive shee

Count of chest pain type for females

```
females_pain = df.loc[df["sex"] == "female", ["chest_pain"]].value_counts()
females_pain
```

dtype: int64

```
fig, ax = plt.subplots()

# the labels to go beneath the bars # the height of each bar
ax.bar(x = ['0', '2', '1', '3'], height=females_pain, color='violet')
ax.set_xlabel("Chest Pain Type")
ax.set_title("Females");
```


Count of chest pain type for males

males_pain = df.loc[df["sex"] == "male", ["chest_pain"]].value_counts()
males_pain

→		count
	chest_pain	
	0	39
	2	35
	1	18
	3	4

dtype: int64

```
fig, ax = plt.subplots()

# the labels to go beneath the bars # the height of each bar
ax.bar(x = ['0', '2', '1', '3'], height=males_pain, color='cornflowerblue')
ax.set_xlabel("Chest Pain Type")
ax.set_title("Males");
```


Joint: categorical x categorical

Stacked bar chart with legend

```
fig, ax = plt.subplots()

ax.bar(x = ['0', '2', '1', '3'], height=females_pain, color='violet')

# set the first plot on the "bottom"

ax.bar(x = ['0', '2', '1', '3'], height=males_pain, color='cornflowerblue', bottom=females_pain)

ax.set_xlabel("Chest Pain Type")

plt.legend(["Female", "Male"]);
```


Pie chart

Set the colors

→ Set the wedge properties

✓ autopct

fig, ax = plt.subplots(figsize = (15, 5))

Set the start angle

Rotates so that Label1 is at 90 degrees

✓ explode

Separates out the indicated slice

✓ shadow

```
fig, ax = plt.subplots(figsize = (15, 5))
```


Dataset: Top 50 US Tech Companies

```
file = "Top 50 US Tech Companies.csv"
file_path = os.path.join(notebooks, file)
with open(file_path, "r") as f:
  contents = f.read()
#df = pd.read_csv("Top 50 US Tech Companies.csv")
df = pd.read_csv(file_path)
df.head()
\rightarrow
```

	Company Name	Industry	Sector	HQ State	Founding Year	Annual Revenue 2022-2023 (USD in Billions)	Market Cap (USD in Trillions)	Stock Name	Inc Tax 2022-2 (USD Billio
	Apple Inc.	Technology	Consumer Electronics	California	1976	387.53	2.520	AAPL	18.
	Microsoft Corporation	Technology	Software Infrastructure	Washington	1975	204.09	2.037	MSFT	15.
:	Alphabet (Google)	Technology	Software Infrastructure	California	1998	282.83	1.350	GOOG	11.
;	3 Amazon	Technology	Software Application	Washington	1994	513.98	1.030	AMZN	-3.
	NVIDIA Corporation	Technology	Semiconductors	California	1993	26.97	0.653	NVDA	0.

Next steps:

Generate code with df

View recommended plots

New interactive sheet

Unique categories

```
df["HQ State"].unique()
array(['California', 'Washington', 'Texas', 'New York', 'Connecticut', 'Massachusetts', 'New Jersey', 'Wisconsin', 'Idaho', 'Montana',
                'Florida', 'Arizona', 'North Carolina'], dtype=object)
```

Value counts

```
df["HQ State"].value_counts()
```

Ann

HQ State	
California	33
Texas	4
Washington	2
New York	2
Connecticut	1
Massachusetts	1
New Jersey	1
Wisconsin	1
Idaho	1
Montana	1
Florida	1
Arizona	1
North Carolina	1

count

dtype: int64

Plot the top 4 states for tech company headquarters

→ Bar plot

```
data = df["HQ State"].value_counts()[:4]
labels = ["California", "Texas", "Washington", "New York"]
colors = ["darkorange", "darkgoldenrod", "gold", "lightyellow"]
fig, ax = plt.subplots(figsize = (10, 4))
ax.bar(x=labels, height=data, color=colors, edgecolor="black");
```


Pie Chart

Transforming a continuous variable into a categorical variable

Discretizing

Transforming from continuous to discrete variable

```
file = "churn.csv"
file_path = os.path.join(notebooks, file)
with open(file_path, "r") as f:
    contents = f.read()

#df = pd.read_csv("churn.csv")
df = pd.read_csv(file_path)

df.head()
```

$\overrightarrow{\Rightarrow}$		CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estima
	0	619	1	42	2	0.00	1	1	1	
	1	608	1	41	1	83807.86	1	0	1	
	2	502	1	42	8	159660.80	3	1	0	
	3	699	1	39	1	0.00	2	0	0	
	4	850	1	43	2	125510.82	1	1	1	

Next steps: Generate code with df

View recommended plots

New interactive sheet

→ Binning

Count each category

df["Credit Category"].value_counts()

→

count

Credit Category

Fair	3331
Good	2428