Varmefaktor i ei varmepumpe

I denne øvelsen skal dere bruke en demonstrasjonsvarmepumpe som henter varme fra et begerglass med vann og avgir varmen til et annet begerglass med vann.

Utstyr

- demonstrasjonsvarmepumpe
- 2 store begerglass
- 2 termometre
- energimåler (rimelige utgaver fås kjøpt i butikker som selger hobbyelektronikk)

Framgangsmåte

- 1. Gjør dere kjent med varmepumpa. Vær sikker på at dere finner igjen de forskjellige komponentene i varmepumpekretsen.
- 2. Vei begerglassene og noter massene i måleskjemaet på siste side.
- 3. Fyll begerglassene med passe mengde vann. Vannet skal dekke spiralene, men samtidig skal ikke begerglassene bli helt fulle.
- 4. Vei begerglassene med vann og noter massene.
- 5. Sett begerglassene på plass under spiralene.
- 6. Mål temperaturen i begge begerglassene.
- 7. Start varmepumpa samtidig som dere starter stoppeklokka.
- 8. For hvert minutt i 5 minutter noterer dere: Temperatur i begge begerglassene og elektrisk effekt (W) som brukes av kompressoren.
- 9. Stopp varmepumpa etter 5 minutter.

Resultater og målinger

	Kondensator (innedelen)	Fordamper (utedelen)
Vekt begerglass	kg	kg
Vekt begerglass med vann	kg	kg
Starttemperatur	°C	∘C

	Kondensator (innedelen)	Fordamper (utedelen)
Tid etter start	Temperatur (∘C) ved kondensator	Temperatur (∘C) ved fordamper
1 minutt		
2 minutter		
3 minutter		
4 minutter		
5 minutter		

Effekt tilført kompressoren:

Tid etter start	Effekt (W)
1 minutt	
2 minutter	
3 minutter	
4 minutter	
5 minutter	
Gjennomsnitt	

Beregninger

1. Hvor mye varme er tilført vannet på kondensatorsiden?

Energi tilført vannet=4,18
$$\frac{kJ}{\text{kg}\cdot^{\circ}\text{C}}$$
-____kg·___°C

2. Hvor mye elektrisk energi brukte kompressoren?

Energi forbrukt av kompressoren=
$$\underline{J}_s(W) \cdot 5 \cdot 60s = \underline{J}_s(W)$$

3. Hva er varmefaktoren for denne varmepumpen?

$$Varmefaktor = \frac{Energi\ tilført\ vannet}{Energi\ forbrukt\ av\ kompressor} = \frac{kJ}{----kJ} = -----$$

Konklusjon og diskusjon

- 1. Varmefaktoren (COP) i varmepumper vi har hjemme, er gjerne mellom 3 og 5. Sammenlign dette med varmefaktoren for denne demonstrasjonsmodellen.
- 2. Diskutér mulige forklaringer på eventuelle forskjeller.
- 3. Hvilke forbedringer kan vi gjøre på demonstrasjons-varmepumpa?