

Optimal control for walking robots

Theory and practice with Crocoddyl

Nicolas Mansard

Gepetto, LAAS-CNRS & ANITI

#01: Basis of

nonlinear optimization constrained

Follow the slope

• Decreasing sequence: $f(x_{k+1}) < f(x_k)$

Problem specifications

- Problem specification
 - Computing f(x) is easy
 - We can differentiate $f: x \rightarrow f(x)$
 - We know the distance to the reference value

Optimality principles

$$\min_{x} c(x)$$

• First order

$$\nabla c = 0$$

Second order

$$abla c = 0$$
 $abla c = 0$
 $abla c = 0$

Newton method (unconstrained)

Newton method (unconstrained)

- Ill-conditionned hessian
- Non positive hessian

Main algorithms to understand

- Gradient descent
- Newton descent
- Quasi-newton principle (BFGS example)
- Guauss-Newton and Levenberg-Marquardt descent

Optimization with constraint

Linearly-Constrained Quadratic Program (LCQP)

$$\min_{x} ||Ax - b||^2$$
s. t $Cx = d$

Optimization with constraint

Linearly-Constrained Quadratic Program (LCQP)

$$\min_{x} ||Ax - b||^2$$

$$s.t \ Cx \le d$$

Optimization with constraint

Linearly-Constrained Quadratic Program (LCQP)

$$\min_{x} ||Ax - b||^2$$

$$s.t Cx \le d$$

$$\mathcal{L}(x, \lambda) = ||Ax - b||^2 + \lambda^T (Cx - d)$$

- The dual variable is an auxiliary quantity
 - Needed to assert the optimality condition

$$\min_{x} \max_{\lambda} \mathcal{L}(x, \lambda)$$

$$\min_{x} c^{T} x \qquad \max_{\lambda} b^{T} \lambda$$

$$s. t. \quad Ax \ge b \qquad s. t. \quad A^{T} \lambda = c, \lambda \ge 0$$
(LP*

Primal problem

Dual problem

Feasible = I can demonstrate the existence of a path

Feasible = I can demonstrate the existence of a path

Feasible = I can demonstrate the existence of a path

Unfeasible = I can demonstrate the existence of a wall-black path

Feasible = I can demonstrate the existence of a path

Primal problem

Unfeasible = I can demonstrate the existence of a wall

Dual problem

Optimality conditions (KKT conditions)

$$\min_{x} f(x) \quad s.t. \quad g(x) \ge 0$$

• x, λ are solutions if they respects:

$$\mathcal{L}(x,\lambda) = f(x) - \lambda^T g(x)$$
 Lagrangian

$$\nabla_{x} \mathcal{L} = \nabla f - \lambda^{T} \nabla g = 0$$

$$\nabla_{\lambda} \mathcal{L} = g(x) \ge 0$$

$$\lambda^{T} g(x) = 0$$

Gradient normal to constraints

Constraint satisfied

Complementarity

Dynamics for simulation

Complementarity problem

$$\ddot{q} = M^{-1}(\tau - b + J^T f)$$

$$J\ddot{q} + \dot{J}\dot{q} \ge 0 \quad \perp \quad f \ge 0$$

no penetration

no pulling

one or the other

Equivalent to a principled QP

$$\min_{\ddot{q}} \|\ddot{q} - \ddot{q}_{free}\|_{M} \text{ s.t. } J\ddot{q} + \dot{J}\dot{q} \ge 0$$

Main algorithms to understand

- Projection algorithms
 - Sequential quadratic programming
- Penalty algorithms
 - Soft penalties
 - Interior points ... not good for warm-start
 - Augmented Lagrangian