Sunday, 19 July 2020 11:39 PM

S.No	Topic	Details
1.	Project Goal	This Reacher project is as part of Udacity Nanodegree - Al Deep Reinforcement Learning Expert and aims to develop an Al Agent - "a double-jointed arm" - move to target location in Continuous space using Policy-based 'Actor-critic' Methods using Deep Neural Networks. From https://github.com/SENC/AlReacher/Biob/master/README.md
2.	Scope	Develop an Al Agent using 'actor-critic' methods - which should learn the best policy to maximize its rewards by taking best actions in the given continuous environment
		 Goal The environment is considered solved, when the average (over 100 episodes) of those average scores is at least +30. Decided to solve the First Version Option 1: The task is episodic and the Agent must get an average score of +30 over 100 consecutive episodes
3.	Purpose	One of the primary goal of Al is to solve complex tasks in high dimensional, sensory inputs. Though Deep Q Network (DQN) proved to be high performance on many Atari video games but handles well in discrete and low-dimensional action spaces. DQN can't applied directly to continuous domain since the core part to find the action that maximizes the action-value function. This project aims to build a model-free, off-policy actor-critic [Deterministic Policy - action-value] algorithm using deep function approximators that can learn policies in continuous space DDPG Paper: https://arxiv.org/abs/1509.02971.
4.	Solution Approach -Policy based Methods	Policy Gradients - An alternative to the familiar DQN (Value based method) and aims to make it perform well in continuous state space. Off-policy algorithm - Essential to learn in mini-batches rather than Online Develop 'Actor-Critic' agent uses Function approximation to learn a policy (action) and value function
		 Have 2 Neural Networks One for an Actor - Takes stats information as an input and actions distribution as an output Take the action to move to next state and check the reward (Experience) and using TD estimate of the reward to predict the Critic's estimate for the next state
		 Next one for a Critic - Takes states as input and state value function of Policy as output. ■ Learn to evaluate the state value function Vπ using TD estimate To calculate the advantage function and train the actor using this value. So ideally train the actor using the calculated advantages as a baseline.
		 Instead of having baseline using TD estimate, can use Bootstrapping to reduce the variance o Bootstrapping - generalization of a TD and Monte-Carlo estimates TD is one step bootstrapping and MC is infinite bootstrapping Mainly to reduce biasness and variances under controlled & fast convergence
		 Like DQN, have 'Replay Memory' - a digital memory to store past experiences and correlates set of actions -REINFORCE- to choose actions which mostly yields positive rewards Randomly collect experiences from the Replay Memory in to Mini-batches so the experiences may not be in same correlation as Replay Memory to train the Network successfully Buffer size can be large so allowing the algorithm to benefit from learning across a set of uncorrelated transitions Little change in 'Actor-critic' when using DDPG - to approximate the maximizer over the Q value of next state instead of baseline to train the value
		DQN Network
		State $Q(s, "up")$, E.g2.18 $Q(s, "down")$, E.g. 8.45
		Q(s, "down"), E.g. 8.45 $Q(s, "left")$, E.g. 3.51 $max(-2.18, 8.45, 3.51, -3.78, 9.12) = 9.12$ $Q(s, "right")$, E.g3.78
		Q(s, "igmp(50cm)")
		Play (k) This is one of the problems DDFG solves. Image source: Udacity DRLND
		#1 In Actor NN: used to approximate the maximizer - an optimal best policy (action) deterministically - so the Critic learns to evaluate the optimal policy - Action-Value function for the best action Approximate the Maximizer - to calculate the new target value for training the action value function Q(s, µ (s; θµ),θ Q)
		DDPG
		$S = \underbrace{\mu(s; \theta_{\mu})}$ $S = \underbrace{Q(s, \mu(s; \theta_{\mu}); \ \theta_{Q})}$
		Image source: Udacity DRLND
		Regular/local network - UpToDate network since training is done here but target network used to predict the stabilize strain #2 Soft Target updates: Weight of the target network are updated by having them slowly track the learned networks to improve the stability of learning
5.	Algorithm	Deep deterministic Policy Gradient
		Published as a conference paper at ICLR 2016


```
Episode 100 Average Window Score: 1.7100
Episode 200 Average Window Score: 7.0200
Episode 400 Average Window Score: 13.7100
Episode 500 Average Window Score: 13.7100
Episode 500 Average Window Score: 20.4300
Episode 700 Average Window Score: 22.0900
Episode 800 Average Window Score: 22.0900
Episode 800 Average Window Score: 27.2800
Episode 800 Average Window Score: 30.1100
Environment solved in 768 episodes! Average
                                                                                                                                                                                                                                                                                                       Average Score: 30.1100
                                                                                                                                                                      Traceback (most recent call last)
                                                                                                                                                                                          9 #WEIGHT_DECAY = 0
                                                                                                                                                                                      10
                                                                                                                                                                       ---> 11 scores = Ddpg()
12
13 fig = plt.figure()
                                                                                                                                                                      ValueError: int() base must be >= 2 and <= 36
                                                                                                                                                                   Error 2: Loading the weighted file - yet to fix it
                                 Source code
                                                                                                                                                                  1. Nn model.py -Convolutional Neural Network model with 3 layer architecture
                                                                                                                                                                           (fc1): Linear(in_features=33, out_features=24, bias=True)
(fc2): Linear(in_features=24, out_features=48, bias=True)
(fc3): Linear(in_features=48, out_features=4, bias=True)
                                                                                                                                                                            /
Critic/
                                                                                                                                                                                   riic(
(fcs1): Linear(in_features=33, out_features=24, bias=True)
(fc2): Linear(in_features=28, out_features=48, bias=True)
(fc3): Linear(in_features=48, out_features=1, bias=True)
                                                                                                                                                                  2. Agent : Agent with properties for 
• local and Target networks ,

    soft update.

    Noise for exploration
    Replay Memory for Experience Replay

                                                                                                                                                                                    · step, act, reset , learn functions
                                                                                                                                                                  3. Continuous Control.ipynb - Python Notebook covers all the Code and Results
                                                                                                                                                                  4. Checkpoint_actor30.pth - saved model weights for Actor 5. Checkpoint_critic30.pth - saved model weights for Critic
                                  Ideas for future work
                                                                                                                                                                  1. Work on Option 2 and try parallel learning

    Solve a more difficult continuous control environment
    where the goal is to teach a creature with four legs to walk forward without falling.

                                                                                                                                                                        Ref \underline{https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md\#crawler-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-linear-
10.
                                 In Simple
                                                                                                                                                                  THANKS TO UDACITY TEAM!!
```