Tarea 2

Fecha de entrega: antes del 26 de marzo de 2020

- 1.- Usar la transformada de Laplace para resolver las siguientes ecuaciones diferenciales con condiciones iniciales y estudiar la gráfica de las soluciones:
 - a) $y'' + 3y' + 2y = -5\sin(t) + 5\cos(t)$, $y_0 = 5, y'_0 = 3$.
 - b) $y'' + y = 5h(t \pi)$, $y_0 = 2$, $y'_0 = 4$, donde h(t) es la función de Heaviside.
 - c) $y'' + 2y' + 2y = e^{-t} + 5\delta(t-2)$, $y_0 = 0, y_0' = 1$, donde $\delta(t)$ es la delta de Dirac.
 - d) $y'' + 8y' + 15y = \begin{cases} 35e^{2t}, & \text{si } 0 < t < 2 \\ 0, & \text{caso contrario} \end{cases}$, $y_0 = 3, y'_0 = -8$.
- 2.- Se define el siguiente conjunto de funciones (llamado lorentziano):

$$f_{\varepsilon}(t) = \frac{1}{\pi} \frac{\varepsilon}{t^2 + \varepsilon^2}, \quad t \in \mathbb{R}, \quad \varepsilon > 0.$$

- a) Argumentar que $\lim_{\varepsilon\to 0^+} f_{\varepsilon}(t) = \delta(t)$, donde $\delta(t)$ es la delta de Dirac.
- b) A partir de $f_{\varepsilon}(t)$ obtener un conjunto de funciones que aproximen a la función de Heaviside h(t), a $\delta'(t)$ y a $\delta''(t)$ y estudiar las correspondientes gráficas.
- 3.- En los siguientes 4 apartados, a partir de las soluciones de la ecuación homogénea dadas, obtener una solución particular de la ecuación no homogénea usando funciones de Green:
 - a) $y'' y = \operatorname{sech}(x)$, con $\operatorname{senh}(x)$ y $\cosh(x)$ soluciones de la homogénea.
 - b) $x^2y'' 2xy' + 2y = x \log(x)$, con $x y x^2$ soluciones de la homogénea.
 - c) $y'' 2\csc^2(x)y = \sin^2(x)$, con $\cot g(x)$ y $1 x\cot g(x)$ soluciones de la homogénea.
 - d) $(x^2+1)y''-2xy'+2y=(x^2+1)^2$, con x y $1-x^2$ soluciones de la homogénea.
- **4.-** Resolver las siguientes ecuaciones en derivadas parciales con condiciones iniciales usando el método de separación de variables:

a)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 \text{ en } \Omega = \{(x,y,z) \in \mathbb{R}^3 : 0 < x,y < c,0 < z < L\} \text{ con } u(x,y,z)$$
 anulándose en todos los lados del paralelepípedo excepto en $z = L$ donde $u(x,y,L) = V$.

b)
$$-\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) = Eu \text{ en } \Omega = \{(x, y, z) \in \mathbb{R}^3 : 0 < x < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < b, 0 < z < a, 0 < y < a, 0 < y < b, 0 < z < a, 0 < y < a, 0 < x < a, 0 < y < a, 0 < x < a, 0 < x < a, 0 < y < a, 0 < x < a$$

1

 $c\}$ con u(x,y,z) anulándose en todos los lados del paralelepípedo.