



# نظریه اساسی مدارها و شبکهها

فصل دوم [بخش اول] اجزاء مدار

گروه مهندسی کامپیوتر مدرس: مصطفی کشاورز معظم

ویرایش نیمسال دوم ۲۰ – ۱۴۰۱



#### مقدمه:

- عناصری که در ساختمان مدارهای الکتریکی فشرده به کار میروند عبارتند از: مقاومتها، دیودها، ترانزیستورها، لامپهای خلاء، خازنها، سلفها، ترانسفورماتورها و غیره.
  - هر عنصری به منظور استفاده از یک خاصیت اصلی فیزیکی آن طرح شده است.
  - در تجزیه و تحلیل و طراحی مدارهای الکتریکی باید با درنظر گرفتن تقریبهایی مدلهای مناسبی را انتخاب نمود.
  - در تئوری مدار، عناصر ایدهآلی(در مقابل عناصر فیزیکی) تعریف میشوند که به عنوان **اجزاء مدار** تلقی خواهند شد.





- vi منحنی تعریف میشود، صدق کنند. t از زمان، ولتاژ v(t) و جریان i(t) آن در رابطهای که در صفحه vi به وسیله یک منحنی تعریف میشود، صدق کنند.
  - این منحنی، مشخصه مقاومت در لحظه t نامیده می شود و مجموعه مقادیری را که جفت متغیرهای v(t) و v(t) در لحظه t ممکن است دارا باشند معین می کند.
- معمول ترین مقاومتی که به کار میرود مقاومتی است که مشخصه آن با زمان تغییر نمی کند، این مقاومت را تغییر ناپذیر با زمان گویند.

  با زمان گویند.







# مقاومت خطی تغییرناپذیر با زمان

- مقاومت خطی تغییرناپذیر با زمان طبق تعریف، مقاومتی است که مشخصه آن خط مستقیمی باشد که از مبدأ گذشته و با زمان تغییر نکند.
  - و مقدار لحظه ای ولتاژv(t) و مقدار لحظه ای جریان i(t) طبق قانون اهم بصورت زیر بیان می شود:

$$v(t) = Ri(t)$$
  $\downarrow$   $i(t) = Gv(t)$ 



- را مقاومت و G را رسانایی گویند. R
- واحدهای ولتاژ، جریان، مقاومت و رسانایی بهترتیب عبارتند از: ولت، آمپر، اهم و مهو.
- وابطه بین v(t) و v(t) برای یک مقاومت خطی تغییرناپذیر با زمان بوسیله یک تابع خطی بیان میشود.



#### دو حالت ویژه از مقاومتها

دو نمونه ویژه از مقاومت های خطی تغییرناپذیر با زمان که مورد توجه خاص ما هستند عبارتند از:

- مدار باز
- مدار با اتصال کوتاه

- یک عنصر دوسر را مدار باز گویند اگر جریان شاخه آن به ازای همه مقادیر ولتاژ شاخه مساوی صفر باشد.
  - مشخصه یک مدار باز، محور  $\,v\,$  در صفحه  $\,^{ullet}$  میباشد.  $\,^{ullet}$



است. G=0 این مشخصه دارای  $\frac{m}{m}$  بینهایت یعنی  $R=\infty$  و یا  $R=\infty$ 





• یک عنصر دوسر را مدار با اتصال کوتاه گویند اگر ولتاژ شاخه آن به ازای همه مقادیر جریان شاخه مساوی صفر باشد.

مشخصه یک مدار با اتصال کوتاه، محور i در صفحه  $\cdot$ 



 $G=\infty$ این مشخصه دارای شیب صفر است یعنی R=0 و یا •



## مقاومت خطی تغییرپذیر با زمان

• مشخصه یک مقاومت خطی تغییرپذیر با زمان با معادلههای زیر توصیف میشود:

$$v(t) = R(t)i(t)$$
  $u(t) = G(t)v(t)$ 

$$R(t) = \frac{1}{G(t)}$$

• مشخصه در شرط خطی بودن صدق کرده ولی با زمان تغییر میکند.



# مقاومت خطی تغییرپذیر با زمان



مثال: یک پتانسیومتر با اتصال لغزنده، نمونهای از یک مقاومت خطی تغییرپذیر با زمان است،

$$R(t) = R_a + R_b \cos 2\pi f t$$

t اتصال لغزنده پتانسیومتر بوسیله یک سروموتور به جلو و عقب حرکت میکند بطوریکه در زمان مشخصه بصورت زیر است:

$$v(t) = (R_a + R_b \cos 2\pi f t)i(t)$$

.  $R_a > R_b > 0$  و مقادیر ثابت بوده و  $R_b$  ،  $R_a$  که در آن



• مشخصه این مقاومت خطی تغییرپذیر با زمان در صفحه iv خط مستقیمی است که در تمام لحظات از مبدأ می گذرد.



### مقاومت غيرخطي

- مقاومتی را که خطی نباشد غیرخطی گویند.
- دیود ژرمانیوم نمونهای از یک مقاومت غیرخطی است.

در مورد دیود پیوندیpnکه در شکل زیر نشان داده شده است، جریان شاخه، یک تابع غیرخطی از ولتاژ شاخه  $i(t)=I_s(e^{qv(t)/kT}-1)$ 

مقاومت غیرخطی به علت غیرخطی بودنش دارای مشخصهای است که در تمام لحظات یک خط غیر مستقیم گذرنده از vi صفحه vi







• مثالهای دیگر از وسایل غیرخطی دوسر که بتوان آنها را به صورت یک مقاومت غیرخطی درنظر گرفت عبارتند از دیود تونل و لامپ گازدار.

 $oldsymbol{v}$ در یک <mark>دیود تونل</mark> جریان i تابعی از ولتاژ v است، درنتیجه: i همانطور که در مشخصه نشان داده شده است،

به ازای هر مقدار ولتاژ  $\nu$  یک و تنها یک مقدار ممکن برای جریان وجود دارد.

چنین مقاومتی را کنترل شده بوسیله ولتاژ نامند.







در یک  $\frac{V}{v}$  ولتاژ vیک تابع از جریان i است زیرا همانطور که در مشخصه نشان داده شده است، v=g(i) برای هر مقدار v و تنها یک مقدار ممکن برای v وجود دارد، بنابراین:



چنین مقاومتی را کنترل شده بوسیله جریان نامند.





- i. منابع نابسته
- ii. منابع وابسته

• منابع ولتاژ و جریان نابسته را برای متمایز ساختن آنها از منابع وابسته که بعداً تعریف خواهیم کرد، بیان میکنیم.

• برای سهولت اغلب واژههای «منبع ولتاژ» و «منبع جریان» را بدون صفت «نابسته» به کار خواهیم برد.





یک عنصر دوسر را منبع ولتاژ نابسته گویند اگر مقدار ولتاژ معین  $v_s(t)$  را در دو سر یک مدار دلخواه نگه دارد؛  $v_s(t)$  بماند. یعنی صرفنظر از جریان i(t) که از داخل آن میگذرد ولتاژ دوسر آن به مقدار  $v_s(t)$  بماند.

اگر ولتاژ معین **۷**s ثابت باشد (یعنی وابسته به زمان نباشد)، این منبع ولتاژ را یک <u>منبع ولتاژ</u> ثابت مینامیم.







منبع ولتاژ در لحظه t دارای مشخصهای به صورت یک خط مستقیم موازی با محور i و به عرض  $v_s(t)$  درصفحه iv میباشد.





یک عنصر دوسر را منبع جریان نابسته گویند اگر یک جریان معین  $i_s(t)$  را در داخل مدار دلخواه ثابت نگه دارد؛  $i_s(t)$  است. یعنی صرفنظر از ولتاژ v(t) که ممکن است در دو سر مدار باشد جریانی که به داخل مدار میرود مساوی v(t) است.





مشخصه یک منبع جریان در لحظه t خطی است عمودی . t به طول  $t_s(t)$  که در شکل زیر نشان داده شده است.



### مدارهای معادل تونن و نورتن

• فرض کنید بخواهیم جریان یا ولتاژِ یک بار مقاومتی را توسط دنباله مدار معین کنیم؛ اگر دنباله مدار از مقاومتها و منابع تشکیل شده باشد:



می توان کل دنباله مدار را با یک منبع ولتاژ  $V_0$  سری شده با یک مقاومت خطی تغییرناپذیر با زمان  $R_{
m S}$  جایگزین کرد.

• قضیه **نور تن** می گوید:

می توان کل دنباله مدار را با یک منبع جریان ثابت  $I_0 \triangleq \frac{V_0}{R_S}$  موازی شده با یک منبع جریان ثابت  $R_S$  مقاومت خطی تغییرناپذیر با زمان  $R_S$  جایگزین کرد.

• چون دو مدار نشان داده شده دارای یک مشخصه میباشند، آنها را معادل همدیگر گویند.









[فصل دوم]

■ تمرین های تحویلی: تمرین شماره ، ، ( -- تمرین )

[از کتاب نظریه اساسی مدارها و شبکه ها - جبه دار (جلد اول)]

تاریخ نهایی تحویل: یک هفته پس از ارائه این اسلاید

■ تمرین های تکمیلی (\*) – تمرین شماره ....