Scattering Observables from Few-Body Densities and Application in Light Nuclei

Alexander Long

George Washington University - Washington DC USA

Support from the US Department of Energy In collaboration with:

Harald Griesshammer, Andreas Nogga, Xiang-Xiang Sun

1. Introduction Motivation

Transition Density Method:

Factor into probe interaction with active nucleons (kernel) and spectator nucleon behavior (density)

Allows interaction kernel to be recycled for different targets

Allows nucleus description to be recycled for different interactions

Allows code to be recycled for different interactions and nuclei

[&]quot;Scattering Observables from One- and Two-Body Densities Griesshammer et. al. arXiv:2005.12207

Overview

Probe interacts with n active nucleons $\implies n$ body kernel $\implies n$ body transition density. Density independent of probe, kernel independent of density

Transition density ρ is the probability amplitude of a nucleus with quantum numbers $|M_J\rangle$ to absorb the momentum $\vec{q} = \vec{k}_2 - \vec{k}_1$ and change into quantum numbers $|M_J'\rangle$

Figure: Griesshammer/... Few-B Sys 61 (2020) 48

Total Contribution

For an n body system, total scattering amplitude is:

$$\begin{split} A_M^{M'}(\vec{k},\vec{q}) &= \binom{A}{1} \left\langle M' \middle| \, \hat{O}_3(\vec{k},\vec{q}) \left| M \right\rangle + \binom{A}{2} \left\langle M' \middle| \, \hat{O}_{12}(\vec{k},\vec{q}) \left| M \right\rangle \\ &+ \binom{A}{3} \left\langle M' \middle| \, \hat{O}_{123}(\vec{k},\vec{q}) \left| M \right\rangle + \binom{A}{4} \left\langle M' \middle| \, \hat{O}_{1234}(\vec{k},\vec{q}) \left| M \right\rangle \\ &+ \ldots + \binom{A}{A} \left\langle M' \middle| \, \hat{O}_{1\ldots A}(\vec{k},\vec{q}) \left| M \right\rangle \end{split}$$

 $\binom{A}{i}$ ways to hit *i* nucleons in a nucleus with A nuclei

4/29

Truncated Result

We use only the first two terms

$$A_{M}^{M'}(\vec{k},\vec{q}) = \begin{pmatrix} A \\ 1 \end{pmatrix} \left\langle M' \middle| \hat{O}_{3}(\vec{k},\vec{q}) \middle| M \right\rangle + \begin{pmatrix} A \\ 2 \end{pmatrix} \left\langle M' \middle| \hat{O}_{12}(\vec{k},\vec{q}) \middle| M \right\rangle$$

Higher order density suppressed by Q^i in this case. $\chi {\rm EFT}$ provides this ordering scheme.

▶ Depends on quantum numbers of probe (helicity), and quantum numbers of nucleus M, M'

Uncertainties of Kernels and Densities

- ▶ Numerical integration uncertainty is negligible
- ▶ One and two body densities only
- ► Convergence pattern, truncation error

- ightharpoonup Finite order in expansion parameter Q
- lacktriangle Different cutoffs Λ in densities, estimate of residual dependence
- ► Expect < 10% theory uncertainty, analysis will determine

Details - 1 body

1 body contribution with $|\alpha\rangle = |[(l_{12}s_{12})j_{12}(l_3s_3)j_3]JM, (t_{12}t_3)TM_T\rangle$

$$\langle M' | \hat{O}_{3}(\vec{k}, \vec{q}) | M \rangle = \sum_{\alpha \alpha'} \int dp_{12} dp_{3} p_{3}^{2} dp'_{12} p'_{12}^{2} dp'_{3} p'_{3}^{2} \psi_{\alpha'}^{\dagger}(p'_{12} p'_{3}) \psi_{\alpha}(p_{12} p_{3})$$

$$\times \langle p'_{12} p'_{3} \left[(l'_{12} s'_{12}) j'_{12} (l'_{3} s_{3}) j'_{3} \right] J' M' (t'_{12} t_{3}) T' M_{T} | \hat{O}_{3}(\vec{k}, \vec{q})$$

$$| p_{12} p_{3} \left[(l_{12} s_{12}) j_{12} (l_{3} s_{3}) j_{3} \right] J M(t_{12} t_{3}) T M_{T} \rangle$$

Probe kernel: \hat{O}_3 changes quantum numbers of active nucleons

Details - 1 body

1 body contribution:

$$\left\langle M' \left| \hat{O}_{3}(\vec{k}, \vec{q}) \right| M \right\rangle = \sum_{\substack{m_3^{s'} m_3^{s} \\ m_2^{t}}} \hat{O}_{3} \left(m_3^{s'} m_3^{s}, m_3^{t}; \vec{k}, \vec{q} \right) \rho_{m_3^{s'} m_3^{s}}^{m_3^{t} M_T, M'M} (\vec{k}, \vec{q})$$

Example: Pion Photoproduction: $\hat{O}_3 = \frac{1}{2}\vec{\varepsilon} \cdot \vec{\sigma}_1$

4□ > 4回 > 4 恵 > 4 恵 > ■ り 9 ○ ○

Details - 2 Body

$$\left\langle M' \left| \hat{O}_{12} \right| M \right\rangle = \sum_{\alpha'_{11}, \alpha_{12}} \int dp_{12} \ p_{12}^2 \ dp'_{12} \ p'_{12}^2 \ O_{12}^{\alpha'_{12}\alpha_{12}} \left(p'_{12}, p_{12} \right)$$

$$\times \rho_{\alpha'_{12}\alpha_{12}}^{M_T, M'M} \left(p'_{12}, p_{12}; \vec{q} \right)$$

Relative angular momentum ℓ_{12} goes into α_{12} Probe kernel: \hat{O}_{12} changes quantum numbers of active nucleons

Density: $\rho_{\alpha_{12}\alpha_{12}}^{M_T,M'M}$ involves only spectator nucleons

Same kernel convolution code can be used with different target densities

Swapping out densities of different targets is trivial

Potentials

Use potentials to calculate densities

We use $\chi {\rm SMS}$ potential with NN at N4LO and 3N at N2LO and with cutoffs of 400 MeV and 550 MeV

H. Krebs P. Reinert and E. Epelbaum. "Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order"

2. SRG evolution SRG - Similarity Renormalization Group

My work: $A \le 6$, with ⁶Li, many body interactions much more complicated

⇒ Density calculation more efficient with SRG evolution.

See reviews:

Kai Hebeler "Momentum space evolution of chiral three-nucleon forces" arXiv:1201.0169

Sergio Szpigel "The Similarity Renormalization Group" ar Xiv:hep-ph/0009071

Defining an SRG transform

Strong dependence on high momentum \implies Difficult numerics for A > 3

Figures from Kai Hebeler: "Chiral Effective Field Theory and Nuclear Forces: overview and applications" presentation at TALENT school at MITP 2022

Medium resolution

Figures from Kai Hebeler: "Chiral Effective Field Theory and Nuclear Forces: overview and applications" presentation at TALENT school at MITP 2022

Low resolution

Approximate - cut the potential, only use dependence with $k < 2 {\rm fm}^{-1}$. Neglects higher order contributions (4 and 5 nucleon etc). Allows for calculation with less "area" of the potential used Allows ⁶Li calculation

SRG vs Fourier Transform

Fourier transforms are discrete unitary transformations

$$V(\vec{r}, \vec{r}') = \langle r' | V | r \rangle$$

$$= \int d^3p \, d^3p' \langle r' | p' \rangle \langle p' | V | p \rangle \langle p | r \rangle$$

$$= V(\vec{p}, \vec{p}')$$

After the transform our free variables have different physical meaning. SRG is similar and it creates problems

SRG Variables

Any unitary transform, also transforms the coordinates

$$\langle p'|V|p\rangle = \langle p'|\mathbb{1}V\mathbb{1}|p\rangle$$

$$= \langle p'|U^{\dagger}UVU^{\dagger}U|p\rangle$$

$$= \left(\langle p'|U^{\dagger}\right) \left(UVU^{\dagger}\right) \left(U|p\rangle\right)$$

$$= \langle \widetilde{p}'|V_{eff}|\widetilde{p}\rangle$$

Calling the free parameters in the SRG potential "momenta" is abuse of notation. They are not physical momenta.

Density Calculation

SRG changes Hamiltonian \implies changes Lagrangian \implies diagram contribution changes, and momenta aren't physical

One option: do a unitary transform of diagrams and kernels

Problem: This breaks kernel - target (density) independence. Would have to introduce SRG λ dependence into the code

- Effectively would give SRG dependence on Lagrangian and therefore the diagrams.

3. Specific Systems Initial ⁴He

⁴He Compton scattering, with and without SRG

Smaller $\lambda \Rightarrow$ more change \Rightarrow further deviation from true value

Initial ⁶Li

Theory vs experiment Compton scattering in CM frame on $^6{\rm Li}$ with 60 MeV

Density Calculation

- ► Transforming the diagrams against the philosophy of separating the kernel from the target
- ▶ Instead: Back transform the densities

Xiang-Xiang Sun and Andreas Nogga have completed the back transform, with our collaboration (to be published).

Have ⁴He with and without SRG back transform for comparison

Gained confidence moving ⁶Li

Comparison - Compton Scattering Results on ⁴He

SRG calculation uses harmonic oscillator basis, non-SRG uses Fadeev basis

Differences come from SRG induced many body forces and difference in basis

Each line: different maximum of number of states x-axis: width of harmonic oscillator potential

Reactions

$$\gamma X \to \gamma X$$

Already implemented, can do new targets

$$\gamma X \to \pi^0 X$$

Technical limitation \implies require π^0

Initial kernel: Beane/... NPA 618(1997) 381

$$\pi X \to \pi X$$

Charged pions \implies easier for experiment

Initial considerations: Beane/... NPA 720(2003) 399

Kernel Similarity

Figure: Two body kernels for: Top - Compton scattering; Middle - Pion scattering; Bottom - pion photoproduction

Specific Systems

Technical limitation \implies nucleus doesn't change

Reactions are $yX \to zX$ with

$$X = {}^{3}\text{He}, {}^{4}\text{He}, {}^{3}\text{H}, {}^{6}\text{Li}$$

Extraction - Compton Scattering $\gamma X \to \gamma X$

Feldman, Downie: $\gamma^6 {\rm Li} \to \gamma^6 {\rm Li}$

Extract nucleon polarizabilities α_{E1} and β_{M1} (stiffness)

$$\mathcal{H} = -4\pi \left(\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \right).$$

Many experiments on $^6\mathrm{Li}$, no theory prediction

Kernel exists and is implemented

Figure: Myers/... PRC 90(2014) 027603

Two body Pion Photoproduction

Pion Photoproduction Two Body Result - At threshold

Lenkewitz Result arXiv:1103.3400

Lenkewitz (AV18+UIX) My Result (CHSMS)
$$x, y$$
 polarization : -29.3 fm^{-1} $\sim -31 \text{ fm}^{-1}$ z polarization : -22.9 fm^{-1} $\sim -24 \text{ fm}^{-1}$

%6.6 and %5.3 difference

My result is currently numerically unstable

Conclusion

- \blacktriangleright Kernel, for $\gamma X \to \gamma X$, $\gamma X \to \pi X$, $\pi X \to \pi X$
 - Development
 - ► Coding
 - ► Convolution
- ► Extract, predict, and parameterize scattering processes
- ► Fill in theory gap for experiment
- ► Lay groundwork for future work with densities
 - ► So far has only been used with Compton, and dark matter scattering
 - ➤ Trigger interest: J. de Vries et. al. "Dark matter scattering off ⁴He in chiral effective field theory" arxiv:2310.11343

