A character of a torus $T = \operatorname{Spec}(\mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}])$ is a map of \mathbb{C} -algebras $\mathbb{C}[t^{\pm 1}] \to \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ which induces a group homomorphism.

Start with n = 1.

(1) What are the maps of \mathbb{C} -algebras $\mathbb{C}[t^{\pm 1}] \to \mathbb{C}[x^{\pm 1}]$?

(2) Show which of your maps give group homomorphisms $\mathbb{C}^* \to \mathbb{C}^*$.

(3) Now show that if $(\mathbb{C}^*)^n \to \mathbb{C}^*$ is a character of T then composing with the inclusion $\mathbb{C}^* \to (\mathbb{C}^*)^n$ gives a character for each coordinate of $(\mathbb{C}^*)^n$.

(4) Construct a bijection between the characters of $(\mathbb{C}^*)^n$ and the elements of \mathbb{Z}^n .