Example: Entropy maximization minimize $f_{\infty} = \sum_{i=1}^{n} \chi_{i} \log \chi_{i}$ Ax & b Suppose (7* 1) is dual optimal. $L(x, \lambda^*, j^*) = \sum_{j=1}^{2} x_i \log x_j + (\lambda^*)^T (Ax - b)$ $0 = \frac{2(x, 7, 7)}{2x}$ $\Rightarrow x_i^* = \frac{1}{(\xi \eta^* A_i^* + \nu^* + 1)}$?=1, ..., N.

Proof of Stong duality under constraint qualification

minimize $f_0(x)$ $f_1(x) \leq 0$, i=1,...,m. $A \times = b$. $A = 9 \times n$. Suppose to,..., In are convex. Assume that there exists foosible & Evelint) Assume that D has nonempty interior. Int D Letank (A) = 2.

Suppose that 2^* is finite. $\mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n$. $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$. $f(x) \leq u_i, h(x) = v_i, f(x) \leq t$ is convex. 2. Define a convex set B as $\mathcal{B} = \left\{ (0,0,s) \in \mathbb{R}^m \times \mathbb{R}^k \times \mathbb{R}^s \leq < p^* \right\}$ Claim: $A \cap B = \emptyset$. Let (o,o,t) with $t < p^*$. $\exists x \in \mathcal{D}$ $\exists x$

3. By the saparating hyperplane A

Theorem, there exists

(\T,\T,\U,\U) \pm, \alpha \exists $\begin{cases} (u,v,\tau) \in \mathcal{A} \Rightarrow \int_{-u+v}^{\infty} u+v t \neq x - u \end{cases}$ $) (u,v,t) \in \mathcal{B} \Rightarrow \lambda^{T} u + \hat{v}^{T} v + u t \leq \alpha - 2)$ in = 2 tut ut is unbounded below over A unloss of 20 and U20.

When the strice I can go to (+00.) (2) $(u,v,t) \in B \Rightarrow U=0, V=0. \Rightarrow Mt \leq \alpha$. This is true for all t < px. $\Rightarrow \mu(\vec{p}^{*}-\vec{\epsilon}) \leq \alpha \cdot \forall \vec{\epsilon} > 0$ $\Rightarrow \mu(\vec{p}^{*}-\vec{\epsilon}) \leq \alpha \cdot \forall \vec{\epsilon} > 0$ $\Rightarrow \alpha \leq b$ Thus for $x \in D$, f(x), f(x) $\in A$. $\sum_{i=1}^{\infty} \widehat{f_i(x)} + \widehat{\mathcal{O}}^T(A_{X}-b) + \mathcal{M}f_{o(X)} \ge \alpha \frac{(3)}{2} \mathcal{M}_{X}^{X}.$

4. Assume 120 divide (3) by in on both sides $\Rightarrow L(x, \frac{2}{\sqrt{n}}, \frac{2}{\sqrt{n}}) \geq p^* \forall x \in \mathbb{D}.$ Thus $g(\alpha, \nu) \ge p^{*}$, where $\lambda = \frac{3}{4} \mu$, $\nu = \frac{3}{4} \mu$. Also, the weak duality says that $g(x,y) \leq \beta^*.$ $g(x,y) = \beta^*.$

5, Assume N=0.