3조 분석기획서

팀 명 : 아, 진짜요. 와 대박.

1.비즈니스 배경 및 문제 식별

- 전력 사용량 급증 시 전력망에 과부하 발생으로 정전 가능성이 존재한다.
- 추가 전력 공급을 위해 빠르게 구동할 수 있는 화력 발전소를 구동하면 온실가스 배출로 인해 환경오염의 원인이 된다.
- ESS(Energy Storage System)을 사용하면 전력 수요가 낮은 시간에 잉여전력을 저 장해 두었다가 전력 사용량 급증 시 공급하여 안정성을 높이고 탄소 배출을 줄일 수 있 다.
- 연구에 따르면 제주계통에 BESS(Battery Energy Storage System)를 적용할 경우 연간 173,374톤의 이산화탄소를 감축하는 것과 같은 효과를 보인다고 한다.

2 해결방안 수립 및 주제 확정

2.1 해결방안 수립 (필요한 정보 도출, 기대효과 파악, 해결방법 수립 ← 구체적)

같은 요일 및 시간대를 기준으로, 각 건물의 현재 전력 사용량이 과거 전력 사용량에 비해 지나치게 증가한 경우에는 1의 값을, 그렇지 않을 경우에는 0의 값을 부여하는 변수를 생성한다. 이 변수와 날씨 정보, 설비 정보를 이용하 앞으로의 "특정 건물에서 특정 요일과 시간대에 전력 사용량이 급증할 것"이라는 걸 예측하고자 한다.

이를 통해, 전력 사용량 급증으로 문제 발생 위험이 있는 건물에 ESS를 설치하는 것과, 어느 요일 시간에 가동해야 하는지를 제안하고자 한다. 이러한 제안은 전력망 과부하를 방지하는데 도움이 될 것이다. 장기적으로는 탄소배출량이 감소하고, 환경 오염 문제를 해결할 수 있을 것이다.

2.2 후보 분석주제 확정

No	분석주제명	비즈니스 문제	활용방안	기대효과
1	설비 특성(예: 태 양광 설비 여부, 비전기 냉방 등)에 의한 전력 사용량 분석.	설비 특성(예: 태 양광 설비 여부, 비전기 냉방 등)에 따른 전력 사용량 을 파악하지 못해	설비 특성(비전기 냉방설비, 태양광) 을 기준으로 건물 을 4개로 그룹화 한 후 각 그룹마다	전력을 효율적으로 사용할 수 있는 설비 특성을 알아보고, 해당 설비를 특정 건물에 더 설

No	분석주제명	비즈니스 문제	활용방안	기대효과
		서 어떤 설비를 구 비해야 하는지 알 수 없다.	전력 사용량을 예 측해 본다. 예측된 전력 사용량을 기 준으로 어떤 설비 를 구비해야 전력 을 효율적으로 사 용할 수 있을 지 제안할 수 있다.	치하여 전력 사용 량을 효율적으로 사용할 수 있다.
2	환경요인(예: 온 도, 습도, 강수량 등)에 의한 전력 사용량 분석.	환경요인(예: 온 도, 습도, 강수량 등)과 전력 사용량 의 관계를 파악하 지 못한다. 환경에 따른 효율적인 전 력 사용 방법을 알 지 못한다.	환경요인(예: 온 도, 습도, 강수량 등)마다 예측되는 전력 사용량으로 앞으로 예상되는 환경에 전력을 어 떻게 효율적으로 사용할 수 있는지 제안할 수 있다.	환경 특성에 대한 전력 사용량을 알 아보고, 해당 환경 이 예상될 때 전력 사용량을 조절하 여 효율적으로 사 용할 수 있다.
3	건물마다 전력 사 용량 급증 시간대 예측.	유독 어떤 건물에 서 어느 시간대에 전력 사용량이 급 증하는지를 알지 못해 전력을 효율 적으로 사용하지 못한다.	어떤 건물에서 어느 시간대에 전력 사용량이 급증하는지를 알면 ESS를 어떤 건물에 설치하는 게 좋고, 어느 시간대에 가동해야 효율적인지 제안할 수 있다.	모든 건물에 ESS 를 설치하지 않고 필요한 건물에만 적절하게 ESS를 설치할 수 있다. 그리고 모든 시간 대에 항시 ESS를 가동하지 않고 필요한 시간대에만 적절하게 가동할 수 있다.
4	전력 수요 피크 타 임 예측 및 대응 전략 수립.	특정 요일, 시간대에 전력 사용량 급증으로 전력망 과부하 위험과 환경오염 문제가 존재한다.	시계열 예측 모델을 활용하여 어떤 요일, 시간대에 전력 사용량 급증이발생하는지 파악하여 해당 요일, 시간대에 전력 사용량 급증을 대비하기 위한 대책을 제안할 수 있다.	잉여 전력을 준비 하여 예상되는 전 력 수요 피크 타임 에 전력을 효율적 으로 공급하여, 전 력망 과부하와 환 경오염을 예방할 수 있다.

3 데이터 정의 및 식별

1) 컬럼명 :

'건물번호', '날짜', '전력사용량', '기온', '풍속', '습도', '강수량', '일조', '비전기냉방설비운 영', '태양광보유'

2) 생성 규칙 : 시간 단위(1시간)

3) 관리 상태: 60개 건물들의 2020년 6월 1일 부터 2020년 8월 24일 까지의 데이터

4 분석정의

4.1 변수의 역할 정의

설명변수: 기온', '풍속', '습도', '강수량', '일조', '비전기냉방설비운영', '태양광보유', '전력사용량'

목표변수: '급증여부'

4.2 분석기간 정의

2024년 10월 7일 ~ 10월 11일

4.2.1 설명변수기간 정의

3개월

4.3 평가기준 정의

기초통계량(그룹별 평균, 중위수 등의 분포)의 탐색

5 분석결과 활용 방안

- 전력 사용량 급증 빈도가 높은 건물의 특징을 분석하여 ESS를 설치, 전력 사용량 급증 에 대응한다.
- 전력 사용량 급증 시점을 예측하여, 사전에 ESS에 전력을 저장한 후 급증 시에 이를 활용함으로써 공급 안정성을 높이고 탄소 배출을 줄인다.

1. 구본희, 차준민. (2012). 배터리 충방전 특성을 고려한 제주계통의 적정 ESS용량과 탄소 배출량 산정에 관한 연구. 한국전력학회논문지.