Aljabar Boolean

IF2120 Matematika Diskrit

Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB

Pengantar

- Aljabar Boolean ditemukan oleh George Boole, pada tahun 1854.
- Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (perhatikan kemiripan hukum-hukum aljabar logika dan hukum-hukum aljabar himpunan).
- Dalam buku The Laws of Thought, Boole memaparkan aturanaturan dasar logika.
- Aturan dasar logika ini membentuk struktur matematika yang disebut aljabar Boolean.
- Aplikasi: perancangan rangkaian pensaklaran, rangkaian digital, dan rangkaian IC (integrated circuit) komputer

© Can Stock Photo - csp10410713

Peraga digital

Integarted Circuit (IC)

Jaringan saklar

Definisi Aljabar Boolean

DEFINISI. Misalkan B adalah himpunan yang didefinisikan pada dua operator biner, + dan \cdot , dan sebuah operator uner, \cdot . Misalkan 0 dan 1 adalah dua elemen yang berbeda dari B. Maka, tupel

$$< B, +, \cdot, ', 0, 1 >$$

disebut **aljabar Boolean** jika untuk setiap $a, b, c \in B$ berlaku aksioma berikut:

- 1. Identitas
 - (i) a + 0 = a
 - (ii) $a \cdot 1 = a$
- 2. Komutatif
 - (i) a + b = b + a
 - (ii) $a \cdot b = b \cdot a$
- 3. Distributif
 - (i) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
 - (ii) $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 4. Komplemen

Untuk setiap $a \in B$ terdapat elemen unik $a' \in B$ sehingga

- (i) a + a' = 1
- (ii) $a \cdot a' = 0$

 Berhubung elemen-elemen B tidak didefinisikan nilainya (kita bebas menentukan anggota-anggota B), maka terdapat banyak sekali aljabar boolean.

- Untuk mempunyai sebuah aljabar Boolean, orang harus memperlihatkan:
 - 1. elemen-elemen himpunan B,
 - 2. kaidah/aturan operasi untuk dua operator biner dan operator uner,
 - 3. himpunan *B*, bersama-sama dengan dua operator tersebut, memenuhi keempat aksioma di atas

- Aljabar himpunan dan aljabar logika proposisi juga merupakan aljabar Boolean karena memenuhi empat aksioma di atas.
- Dengan kata lain, aljabar himpunan dan aljabar proposisi adalah himpunan bagian (subset) dari aljabar Boolean.
- Pada aljabar proposisi misalnya:
 - B berisi semua proposisi dengan n peubah.
 - dua elemen unik berbeda dari B adalah T dan F,
 - operator biner: ∨ dan ∧, operator uner: ~
 - semua aksioma pada definisi di atas dipenuhi

Dengan kata lain $\langle B, \vee, \wedge, ^{\sim}, F, T \rangle$ adalah aljabar Booelan

Aljabar Boolean 2-Nilai

- Merupakan aljabar Boolean yang paling popular, karena aplikasinya luas.
- Pada aljabar 2-nilai:
 - (i) $B = \{0, 1\},$
 - (ii) operator biner: + dan ·, operator uner: '
 - (iii) Kaidah untuk operator biner dan operator uner:

a	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

а	a'
0	1
1	0

(iv) Keempat aksioma di atas dipenuhi

Ekspresi Boolean

 Ekspresi Boolean dibentuk dari elemen-elemen B dan/atau peubah-peubah yang dapat dikombinasikan satu sama lain dengan operator +, ·, dan '.

Contoh 1:

```
0
1
a
b
a+b
a \cdot b
a' \cdot (b+c)
a \cdot b' + a \cdot b \cdot c' + b', dan sebagainya
```

Hukum-hukum Aljabar Boolean

1. Hukum identitas: (i) $a + 0 = a$ (ii) $a \cdot 1 = a$	 2. Hukum idempoten: (i) a + a = a (ii) a · a = a
3. Hukum komplemen: (i) $a + a' = 1$ (ii) $aa' = 0$	4. Hukum dominansi: (i) $a \cdot 0 = 0$ (ii) $a + 1 = 1$
5. Hukum involusi:(i) (a')' = a	 6. Hukum penyerapan: (i) a + ab = a (ii) a(a + b) = a
7. Hukum komutatif: (i) <i>a</i> + <i>b</i> = <i>b</i> + <i>a</i> (ii) <i>ab</i> = <i>ba</i>	8. Hukum asosiatif: (i) $a + (b + c) = (a + b) + c$ (ii) $a (b c) = (a b) c$
9. Hukum distributif: (i) $a + (b c) = (a + b) (a + c)$ (ii) $a (b + c) = a b + a c$	10. Hukum De Morgan: (i) $(a + b)' = a'b'$ (ii) $(ab)' = a' + b'$
11. Hukum 0/1 (i) 0' = 1 (ii) 1' = 0	

Contoh 2: Buktikan bahwa untuk sembarang elemen *a* dan *b* dari aljabar Boolean maka kesamaaan berikut:

$$a + a'b = a + b$$
 dan $a(a' + b) = ab$ adalah benar.

Penyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Hukum Penyerapan)
 $= a + (ab + a'b)$ (Hukum Asosiatif)
 $= a + (a + a')b$ (Hukum Distributif)
 $= a + 1 \cdot b$ (Hukum Komplemen)
 $= a + b$ (Hukum Identitas)

(ii)
$$a(a' + b) = a a' + ab$$
 (Hukum Distributif)
= $0 + ab$ (Hukum Komplemen)
= ab (Hukum Identitas)

Fungsi Boolean

Contoh-contoh fungsi Boolean:

$$f(x) = x$$

 $f(x, y) = x'y + xy' + y'$
 $f(x, y) = x'y'$
 $f(x, y) = (x + y)'$
 $f(x, y, z) = xyz'$

- Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut **literal**.
- Fungsi h(x, y, z) = xyz' terdiri dari 3 buah literal, yaitu x, y, dan z'.
- Jika diberikan x = 1, y = 1, z = 0, maka nilai fungsinya: $h(1, 1, 0) = 1 \cdot 1 \cdot 0' = (1 \cdot 1) \cdot 1 = 1 \cdot 1 = 1$

Bentuk Kanonik

- Ekspresi Boolean yang menspesifikasikan suatu fungsi dapat disajikan dalam dua bentuk berbeda.
- Pertama, sebagai penjumlahan dari hasil kali dan kedua sebagai perkalian dari hasil jumlah.

Contoh 3:

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

$$dan$$

$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

adalah dua buah fungsi yang sama.

- Minterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil kali
- Maxterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil jumlah.

Contoh 4:

$$f(x, y, z) = x'y'z + xy'z' + xyz$$
 \rightarrow 3 buah minterm: $x'y'z$, $xy'z'$, xyz

$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

 \Rightarrow 5 buah maxterm: $(x + y + z)$, $(x + y' + z)$, $(x + y' + z')$, $(x' + y + z')$, dan $(x' + y' + z)$

Misalkan peubah (variable) fungsi Boolean adalah x, y, dan z
 Maka:

 $x'y \rightarrow bukan minterm$ karena literal tidak lengkap $y'z' \rightarrow bukan minterm$ karena literal tidak lengkap xy'z, xyz', $x'y'z \rightarrow minterm$ karena literal lengkap

 $(x + z) \rightarrow$ bukan maxterm karena literal tidak lengkap $(x' + y + z') \rightarrow$ maxterm karena literal lengkap $(xy' + y' + z) \rightarrow$ bukan maxterm

 Ekspresi Boolean yang dinyatakan sebagai penjumlahan dari satu atau lebih minterm atau perkalian dari satu atau lebih maxterm disebut dalam bentuk kanonik.

- Jadi, ada dua macam bentuk kanonik:
 - 1. Penjumlahan dari hasil kali (sum-of-product atau SOP)
 - 2. Perkalian dari hasil jumlah (*product-of-sum* atau POS)
- Fungsi f(x, y, z) = x'y'z + xy'z' + xyz dikatakan dalam bentuk SOP
- Fungsi g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)

dikatakan dalam bentuk POS

Cara membentuk *minterm* dan *maxterm*:

- Untuk minterm, setiap peubah yang bernilai 0 dinyatakan dalam bentuk komplemen, sedangkan peubah yang bernilai 1 dinyatakan tanpa komplemen.
- Sebaliknya, untuk maxterm, setiap peubah yang bernilai 0 dinyatakan tanpa komplemen, sedangkan peubah yang bernilai 1 dinyatakan dalam bentuk komplemen.

• Cara membentuk *minterm* dan *maxterm* dari tabel kebenaran untuk dua peubah:

		Minterm		Maxterm	
X	y	Suku	Lambang	Suku	Lambang
0	0	x'y'	m_0	x + y	M_0
0	1	x'y	m_1	x + y x + y	M_1
1	0	xy'	m_2	x' + y	M_2
1	1	x y	m_3	x' + y'	M_3

• Cara membentuk *minterm* dan *maxterm* dari tabel kebenaran untuk tiga peubah:

			Minterm		Maxterm	
\mathcal{X}	y	\mathcal{Z}	Suku	Lambang	Suku	Lambang
0	0	0	x' y ' z '	m_0	x + y + z	M_0
0	0	1	x' y ' z	m_1	x + y + z	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'y z	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	x y z	m_7	x'+y'+z'	M_7

 Jika diberikan sebuah tabel kebenaran, kita dapat membentuk fungsi Boolean dalam bentuk kanonik (SOP atau POS) dari tabel tersebut dengan cara:

 mengambil minterm dari setiap nilai fungsi yang bernilai 1 (untuk SOP)

atau

- mengambil *maxterm* dari setiap nilai fungsi yang bernilai 0 (untuk POS).

Contoh 5: Tinjau fungsi Boolean yang dinyatakan oleh Tabel di bawah ini. Nyatakan fungsi tersebut dalam bentuk kanonik SOP dan POS

X	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

POS

х	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod (0, 2, 3, 5, 6)$$

Contoh 6: Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS.

Penyelesaian:

(a) SOP

Lengkapi terlebih dahulu literal untuk setiap suku agar jumlahnya sama.

$$x = x(y + y')$$

$$= xy + xy'$$

$$= xy (z + z') + xy'(z + z')$$

$$= xyz + xyz' + xy'z + xy'z'$$

dan

$$y'z = y'z (x + x') = xy'z + x'y'z$$

Jadi
$$f(x, y, z) = x + y'z$$

 $= xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$
 $= x'y'z + xy'z' + xyz' + xyz' + xyz$
atau $f(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \Sigma$ (1,4,5,6,7)

(b) POS

$$f(x, y, z) = x + y'z$$

 $= (x + y')(x + z)$

Lengkapi terlebih dahulu literal pada setiap suku agar jumlahnya sama:

$$x + y' = x + y' + zz'$$

= $(x + y' + z)(x + y' + z')$

$$x + z = x + z + yy'$$

= $(x + y + z)(x + y' + z)$

Jadi,
$$f(x, y, z) = (x + y' + z)(x + y' + z')(x + y + z)(x + y' + z)$$

= $(x + y + z)(x + y' + z)(x + y' + z')$

atau
$$f(x, y, z) = M_0 M_2 M_3 = \prod (0, 2, 3)$$

Contoh 7: Nyatakan fungsi Boolean f(x, y, z) = xy + x'z dalam bentuk kanonik POS.

Penyelesaian:

$$f(x, y, z) = xy + x'z$$
= $(xy + x') (xy + z)$
= $(x + x') (y + x') (x + z) (y + z)$
= $(x' + y) (x + z) (y + z)$

Lengkapi literal untuk setiap suku agar jumlahnya sama:

$$x' + y = x' + y + zz' = (x' + y + z) (x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z) (x + y' + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$

Jadi,
$$f(x, y, z) = (x + y + z) (x + y' + z) (x' + y + z) (x' + y + z')$$

atau
$$f(x, y, z) = M_0 M_2 M_4 M_5 = \prod (0,2,4,5)$$

Konversi Antar Bentuk Kanonik

Misalkan f adalah fungsi Boolean dalam bentuk SOP dengan tiga peubah:

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m_0 + m_2 + m_3$$

Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS:

$$f(x, y, z) = (f'(x, y, z))' = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3'$$

$$= (x'y'z')' (x'yz')' (x'yz)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= M_0 M_2 M_3 = \prod (0, 2, 3)$$

Jadi, $f(x, y, z) = \Sigma (1, 4, 5, 6, 7) = \prod (0,2,3)$.

Kesimpulan: $m_i' = M_i$

Rangkaian Logika

- Fungsi Boolean dapat juag direpresentasikan dalam bentuk rangkaian logika.
- Ada tiga gerbang logika dasar: gerbang AND, gerbang OR, dan gerbang NOT

Contoh 8: Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika.

Penyelesaian: Ada beberapa cara penggambaran

Gerbang logika turunan: NAND, NOR, XOR, dan XNOR

Keempat gerbang di atas merupakan kombinasi dari gerbang-gerbang dasar, misalnya gerbang NOR disusun oleh kombinasi gerbang OR dan gerbang NOT:

ekivalen
$$(x + y)'$$
 dengan $x \rightarrow x + y \rightarrow (x + y)$

Selain itu, dengan menggunakan hukum De Morgan, kita juga dapat membuat gerbang logika yang ekivalen dengan gerbang NOR dan NAND di atas:

$$x'$$
 ekivalen x dengan y y $(x+y)$

Transistor untuk gerbang logika

Sumber gambar: http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/trangate.html#c3

Penyederhanaan Fungsi Boolean

- Menyederhanakan fungsi Boolean artinya mencari bentuk fungsi lain yang ekivalen tetapi dengan jumlah literal atau operasi yang lebih sedikit.
- Contoh: f(x, y) = x'y + xy' + y' disederhanakan menjadi f(x, y) = x' + y'.
- Dipandang dari segi aplikasi aljabar Boolean, fungsi Boolean yang lebih sederhana berarti rangkaian logikanya juga lebih sederhana (menggunakan jumlah gerbang logika lebih sedikit).

- Tiga metode yang dapat digunakan untuk menyederhanakan fungsi Boolean:
 - 1. Secara aljabar, menggunakan hukum-hukum aljabar Boolean.
 - 2. Metode Peta Karnaugh.
 - 3. Metode Quine-McCluskey (metode tabulasi)

Yang dibahas hanyalah Metode Peta Karnaugh

Peta Karnaugh

- Peta Karnaugh (atau K-map) merupakan metode grafis untuk menyederhanakan fungsi Boolean.
- Metode ini ditemukan oleh Maurice Karnaugh pada tahun 1953. Peta Karnaugh adalah sebuah diagram/peta yang terbentuk dari kotak-kotak (berbentuk bujursangkar) yang bersisian.
- Tiap kotak merepresentasikan sebuah minterm.
- Tiap kotak dikatakan bertetangga jika minterm-minterm yang merepresentasikannya berbeda hanya 1 buah literal.

Peta Karnaugh dengan dua peubah

				\mathcal{Y}	
				0	1
m_0	m_1	X	0	<i>x</i> ' <i>y</i> '	x'y
m_2	m_3		1	xy'	xy
Penyajian 1 Penyajian			ajian 2		

Peta Karnaugh dengan tiga peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

		00	yz 01	11	10
x	0	<i>x</i> ' <i>y</i> ' <i>z</i> '	x' y ' z	x'yz	<i>x</i> ' <i>yz</i> '
	1	xy'z'	xy'z	xyz	xyz'

Peta Karnaugh dengan empat peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> 9	m_{11}	m_{10}

	yz 00	01	11	10
wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Cara mengisi peta Karnaugh

- Kotak yang menyatakan minterm diisi "1"
- Sisanya diisi "0"

• Contoh: f(x, y, z) = x'yz' + xyz' + xyz

	_	00	<i>yz</i> 01	11	10
x ()	0	0	0	1
j	1	0	0	1	1

Contoh: f(x, y, z) = xz' + y

xz': Irisan antara:

 $x \rightarrow$ semua kotak pada baris ke-2

 $z' \rightarrow$ semua kotak pada kolom ke-1 dan kolom ke-4

y: $y \rightarrow$ semua kotak pada kolom ke-3 dan kolom ke-4

		yz 00	01	11	10
X	0	0	0	1	1
	1	1	0	1	1
	xz' + y				

Pengisian peta Karnaugh dari tabel kebenaran

x	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Tinjau hanya nilai fungsi yang memberikan 1. Fungsi Boolean yang merepresentasikan tabel kebenaran adalah f(x, y) = x'y'z + xy'z' + xy'z + xyz.

	00	<i>yz</i> 01	11	10
x 0	0	1	0	0
1	1	1	1	0

Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh

 Penggunaan Peta Karnaugh dalam penyederhanaan fungsi Boolean dilakukan dengan cara menggabungkan kotak-kotak yang bernilai 1 dan saling bersisian.

- Kelompok kotak yang bernilai 1 dapat membentuk:
 - pasangan (dua),
 - kuad (empat),
 - oktet (delapan).

Pasangan

wx Vz	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	1	1)
10	0	0	0	0

Bukti secara aljabar:

$$f(w, x, y, z) = wxyz + wxyz'$$

$$= wxy(z + z')$$

$$= wxy(1)$$

$$= wxy$$

Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz'

Sesudah disederhanakan: f(w, x, y, z) = wxy

Kuad (1)

wx VZ	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1)
10	0	0	0	0

Bukti secara aljabar (kuad = 2 buah pasangan):

$$f(w, x, y, z) = wxy' + wxy$$

$$= wx(z' + z)$$

$$= wx(1)$$

$$= wx$$

Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wxyz + wxyz'

Sesudah: f(w, x, y, z) = wx

Kuad (2)

wx VZ	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	0	0
10	1	1	0	0

Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wx'y'z' + wx'y'z

Sesudah: f(w, x, y, z) = wy'

Oktet

wx VZ	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1_	1	1	1

Sebelum:
$$f(w, x, y, z) = wxy'z' + wxy'z + wxyz' + wxy'z + wxy'z' + wx'y'z' + wx'yz + wx'yz'$$

Sesudah: f(w, x, y, z) = w

Penggulungan (1)

Gambar (a) Peta Karnaugh "normal" dengan 3 peubah

(b) Peta Karnaugh dengan sisi kiri dan sisi kanan ditautkan (seperti digulung).

Penggulungan (2)

Contoh: Sederhanakan f(x, y, z) = x'yz + xy'z' + xyz + xyz'.

Sebelum: f(x, y, z) = x'yz + xy'z' + xyz + xyz'

Sesudah: f(x, y, z) = yz + xz'

Ketidakunikan Hasil Penyederhanaan

Hasil penyederhanaan dengan peta Karnaugh tidak selalu unik. Artinya, mungkin terdapat beberapa bentuk fungsi minimasi yang berbeda meskipun jumlah literal dan jumlah *term*-nya sama

$$f(w,x,y,z) = w'x'y + w'xy'z + wxy + wy'z' + wx'z$$

$$f(w,x,y,z) = w'x'y + w'xy'z + wxz' + wyz + wx'y'$$

Tips menyederhanakan dengan Peta Karnaugh

Kelompokkan 1 yang bertetangga sebanyak mungkin

 Dimulai dengan mencari oktet sebanyakbanyaknya terlebih dahulu, kemudian kuad, dan terakhir pasangan.

Hasil penyederhanaan: f(w, x, y, z) = wy' + yz' + w'x'z

Hasil penyederhanaan: f(w, x, y, z) = z + xy + wx'y'

Hasil penyederhanaan: f(w, x, y, z) = wx + wz + wy + xyz

Tentukan bentuk sederhana dari fungsi Boolean yang merepresentasikan tabel kebenaran berikuit dalam bentuk baku SOP dan bentuk baku POS.

х	y	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Penyelesaian:

(a) Bentuk baku SOP: kelompokkan 1

Fungsi minimasi: f(x, y, z) = x'z + xz'

(b)Bentuk baku POS: kelompokkan 0

x yz	00	01	11	10	
0 _	0)	1	1	0	
1	1	0	0)	1	

Fungsi minimasi: f(x, y, z) = (x' + z')(x + z)

Minimisasi fungsi Boolean $f(x, y, z) = \Sigma (0, 2, 4, 5, 6)$

Penyelesaian:

Peta Karnaugh untuk fungsi tersebut adalah:

Hasil penyederhanaan: f(x, y, z) = z' + xy'

Minimisasi f(w, x, y, z) = w'x'y' + x'yz' + w'xyz' + wx'y'Penyelesaian:

wx yz	00	01	11	10
00		1	0	
01	0	0	0	1
11	0	0	0	0
10	1	1	0	1

Hasil penyederhanaan: f(w, x, y, z) = x'y' + x'z' + w'yz'

Minimisasi fungsi Boolean $f(w, x, y, z) = \Sigma (0,1,2,4,5,6,8,9,12,13,14)$ Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = y' + w'z' + xz'

Sederhanakan fungsi f(w,x,y,z) = (w + x')(w + x + y)(w' + x' + y')(w' + x + y + z'). Hasil penyederhanaan dalam bentuk baku SOP dan POS.

Penyelesaian:

Hasil penyederhanaan

SOP: f(w, x, y, z) = x'y + wxy' + wy'z' (garis penuh)

POS: f(w, x, y, z) = (x' + y')(w + y)(x + y + z') (garis putus-putus)

Sederhanakan fungsi f(x, y, z, t) = xy' + xyz + x'y'z' + x'yzt'Penyelesaian:

Pengelompokan yang berlebihan Pengelompokan yang benar

xy zt	00	01	11	10
00	1	1	0	0
01	0	0	0	
11	0	0	1	1
10		1	1	1

xy zt	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	0	0	1	1
10	1	1	1	1

Fungsi minimasi: f(x, y, z, t) = y'z' + xz + yzt'

Minimasi fungsi yang telah dipetakan ke peta Karnaugh di bawah ini dalam bentuk baku SOP dan bentuk baku POS.

Penyelesaian:

SOP: f(w, x, y, z) = yz + wz + xz + w'xy'

POS: f(w, x, y, z) = (y' + z)(w' + z)(x + z)(w + x + y)

(garis penuh)
(garis putus-putus

Sederhanakan rangkaian logika berikuit:

<u>Penyelesaian</u>: Fungsi yang berkoresponden dengan rangkaian logika tsb: f(x, y, z) = x'yz + x'yz' + xy'z' + xy'z'

Fungsi Boolean hasil minimisasi:

$$f(x, y, z) = x'y + xy'$$

Rangkaian logika hasil penyederhanaan:

Keadaan don't care

- Keadaan don't care adalah kondisi nilai peubah yang tidak diperhitungkan oleh fungsinya.
- Artinya nilai 1 atau 0 dari peubah don't care tidak berpengaruh pada hasil fungsi tersebut.

Contoh:

- peraga digital angka desimal 0 sampai 9.
- Jumlah bit yang diperlukan untuk merepresentasikan = 4 bit.
- Bit-bit untuk angka 10-15 tidak terpakai

w	х	У	Z	Desimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0 0 0	1	0	1	4 5 6
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	9 X X X X X X
1	1	1	0	X
1	1	1	1	X

don't care

- Dalam menyederhanakan Peta Karnaugh yang mengandung keadaan don't care, ada dua hal penting sebagai pegangan.
- Pertama, kita anggap semua nilai don't care (X) sama dengan
 1 dan kemudian membentuk kelompok sebesar mungkin yang melibatkan angka 1 termasuk tanda X tersebut.
- Kedua, semua nilai X yang tidak termasuk dalam kelompok tersebut kita anggap bernilai 0.
- Dengan cara ini, keadaan-keadaan X telah dimanfaatkan semaksimal mungkin, dan kita boleh melakukannya secara bebas.

Contoh: Sebuah fungsi Boolean, f, dinyatakan dengan tabel berikut. Minimisasi fungsi f sesederhana mungkin.

+			_		
3	V	X	у	Z	f(w, x, y, z)
()	0	0	0	1
()	0	0	1	0
()	0	1	0	0
()	0	1	1	1
()	1	0	0	1
()	1	0	1	1
()	1	1	0	0
()	1	1	1	1
	1	0	0	0	X
	1	0	0	1	X X X
	1	0	1	0	X
	1	0	1	1	X
	1	1	0	0	X
	1	1	0	1	X
	1	1	1	0	X
	1	1	1	1	X

Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = xz + y'z' + yz

Contoh: Minimisasi fungsi Boolean berikut (dalam bentuk baku SOP dan bentuk baku POS): $f(w, x, y, z) = \Sigma (1, 3, 7, 11, 15)$ dengan kondisi *don't care* adalah $d(w, x, y, z) = \Sigma (0, 2, 5)$.

Penyelesaian:

Hasil penyederhanaan:

SOP: f(w, x, y, z) = yz + w'z (

(kelompok garis penuh)

POS: f(w, x, y, z) = z (w' + y)

(kelompok garis putus-putus)

Perancangan Rangkaian Logika

1. Majority gate merupakan sebuah rangkaian digital yang keluarannya sama dengan 1 jika mayoritas masukannya bernilai 1 (mayoritas = 50% + 1). Keluaran sama dengan 0 jika tidak memenuhi hal tersebut di atas. Dengan bantuan tabel kebenaran, carilah fungsi Boolean yang diimplementasikan dengan 3-input majority gate. Sederhanakan fungsinya, lalu gambarkan rangkaian logikanya.

Penyelesaian:

Tabel kebenaran:

х	у	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Rangkaian logika:

$$f(x, y, z) = xz + xy + yz$$

2. Gunakan Peta Karnaugh untuk merancang rangkaian logika yang dapat menentukan apakah sebuah angka desimal yang direpresentasikan dalam bit biner merupakan bilangan genap atau bukan (yaitu, memberikan nilai 1 jika genap dan 0 jika tidak).

<u>Penyelesaian</u>:

Angka desimal: 0 .. 9 (direpresentasikan dalam 4 bit biner, misalkan $a_0a_1a_2a_3$).

Fungsi $f(a_0, a_1, a_2, a_3)$ bernilai 1 jika representasi desimal dari $a_0a_1a_2a_3$ menyatakan bilangan genap, dan bernilai 0 jika tidak genap.

Tabel kebenaran:

<i>a</i> ₀	a_1	<i>a</i> ₂	<i>a</i> ₃	Desimal	$f(a_0, a_1, a_2, a_3)$
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	2	1
0	0	1	1	3	0
0	1	0	0	4	1
0	1	0	1	5	0
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	1
1	0	0	1	9	0
1	0	1	0	10	X
1	0	1	1	11	X
1	1	0	0	12	X
1	1	0	1	13	X
1	1	1	0	14	X
1	1	1	1	15	X

$$f(a_0, a_1, a_2, a_3) = a_3'$$

Rangkaian logika:

3. Di dalam unit aritmetika komputer (*Arithmetic Logical Unit – ALU*) terdapat rangkaian penjumlah (*adder*). Salah satu jenis rangkaian penjumlah adalah penjumlah-paruh (*half adder*). Rangkaian ini menjumlahkan 2 bit masukan dengan keluarannya adalah *SUM* (jumlah) dan *CARRY* (pindahan).

+				
	х	у	SUM	CARRY
	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

Peta Kamaugh untuk SUM:

Peta Kamaugh untuk CARRY:

Rangkaian logika:

$$SUM = x^{2}y + xy^{2} = x \oplus y$$

$$CARRY = xy$$

Sekedar pengetahuan, di bawah ini rangkaian untuk full adder

Full adder using 2-Half adder

Full Adder – Truth Table						
	Input	Output				
А	В	Carry in	Sum	Carry		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Sumber gambar: http://www.circuitstoday.com/ripple-carry-adder

4. Buatlah rangkaian logika yang menerima masukan dua-bit dan menghasilkan keluaran berupa kudrat dari masukan. Sebagai contoh, jika masukannya 11 (3 dalam sistem desimal), maka keluarannya adalah 1001 (9 dalam sistem desimal).

Penyelesaian:

Misalkan 2-bit masukan kita simbolkan dengan *xy*, dan kuadratnya (4-bit) kita simbolkan dengan *abcd*.

Tabel kebenaran:

Masukan		Keluaran				
w	X	α	ь	С	d	
0	0	0	0	0	0	
0	1	0	0	0	1	
1	0	0	1	0	0	
1	1	1	0	0	1	

Rangkaian logikanya pengkuadrat 2-bit biner:

5. Sebuah instruksi dalam sebuah program adalah

if A > B then writeln(A) else writeln(B);

Nilai A dan B yang dibandingkan masing-masing panjangnya dua bit (misalkan a_1a_2 dan b_1b_2).

- (a) Buatlah rangkaian logika (yang sudah disederhanakan tentunya) yang menghasilkan keluaran 1 jika A > B atau 0 jika tidak.
- (b) Gambarkan kembali rangkaian logikanya jika hanya menggunakan gerbang NAND saja (petunjuk: gunakan hukum de Morgan)

Penyelesaian:

(a)

Desimal			Bir	ner		
A	В	a_1	<i>a</i> ₂	b_1	<i>b</i> ₂	$f(a_1, a_2, b_1, b_2)$
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	2	0	0	1	0	0
0	3	0	0	1	1	0
1	0	0	1	0	0	1
1	1	0	1	0	1	0
1	2	0	1	1	0	0
1	3	0	1	1	1	0
2	0	1	0	0	0	1
2	1	1	0	0	1	1
2	2	1	0	1	0	0
2	3	1	0	1	1	0
3	0	1	1	0	0	1
3	1	1	1	0	1	1
3	2	1	1	1	0	1
3	3	1	1	1	1	0

$b_1 b_2$	² 00	01	11	10
00	0	0	0	1
01		0	0	0
11_		1	0	1
10	1	1	0	0

$$f(a_1,\,a_2,\,b_1,\,b_2)=a_1b_1{}'+a_2b_1{}'b_2{}'+a_1a_2b_2{}'$$

(b)
$$f(a_1, a_2, b_1, b_2) = a_1b_1' + a_2b_1'b_2' + a_1a_2b_2'$$

= $((a_1b_1')' (a_2b_1'b_2')' (a_1a_2b_2')')'$ (De Morgan)

Rangkaian logika:

Latihan

Sebuah Peraga angka digital disusun oleh tujuh buah segmen (selanjutnya disebut dekoder tujuh-segmen).

$$\frac{b}{d} c \qquad a = \frac{b}{d} c$$

$$g = \frac{b}{d} c \qquad a = \frac{d}{d} c$$

$$g = \frac{b}{d} c \qquad d = \frac{d}{d} c$$

$$dekoder 7-segmen \qquad angka 4$$

Piranti tersebut mengubah masukan 4-bit menjadi keluaran yang dapat menunjukkan angka desimal yang dinyatakannya (misalnya, jika masukan adalah 0100 (angka 4 dalam desimal), maka batang/segmen yang menyala adalah a, d, c, dan e). Tulislah fungsi Boolean untuk setiap segmen, dan gambarkan rangkaian kombinasionalnya.