

- Variable types in Statistics
- How variables are expressed in python

Variables for Statistical Data Analysis

- Population Vs Samples
- Learn why sampling
- Common sampling methods

Population Vs Samples

Why Sampling?

- Population keeps growing e.g. population census
- Analyzing population is expensive and almost always impossible
- Solution: Sampling
- Assumption: Properties of the sample are statistically identical to that of the population

Sampling Methods

Population Vs Samples

Sampling Methods

- Population Vs Samples
 - Population: All data. Keeps Growing. Impossible to collect.
 - Sample: Subset of the population
- Learn why sampling
- Sampling methods
 - Probability:
 - Random sampling, Systematic sampling, Stratified sampling, Cluster sampling
 - Non-Probability:
 - Convenient sampling, Judgement sampling

- Need to summarize data
- Central Tendency Measures to summarize data
- Mean, Median and Mode
- When to use what

How To Summarize?

Central Tendency Measures

Mean, Median and Mode

Median = midpoint of { 3, 5, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 13 } = 10

When to use what?

- What's the cost per unit
- What's the daily revenue
- What's the temperature
- Who is the most popular movie star
- Which is the most popular movie genre
- Which is the most visited restaurant in the town

Mean Vs Median

Mean

- Less reliable when data is skewed or when dispersion is high
- Works with most statistical methods and therefore convenient

Median

- More reliable when data is skewed or when dispersion is high
- Few statistical methods use median

- Need to summarize data
- Central Tendency Measures to summarize data
 - Mean: arithmetic center point
 - Median: geometric center point
 - Mode: most occurring value
- When to use what
 - Mean and median to summarize numerical data
 - Mode for categorical data

- Why central tendency measures are not enough
- What is dispersion?
- How to measure dispersion?
- Types of dispersion measures

Dispersion

Sources of variance. a.k.a. Spread, Deviation

Measures of Dispersion

How to Summarize?

How to Summarize?

Histogram

Box Plot and IQR

- Why central tendency measures are not enough to summarize data and not completely reliable when dispersion is high
- Dispersion measures the spread or variability of the data
 - Range
 - Interquartile range

- What outliers are?
- How to detect outliers?
- How to deal with them?

Outliers and Variance

Outliers are extreme deviations. They are significantly different from the remaining observations. May indicate error in measurement or in the process.

Spread: Good or Bad?

Would the mean, median be different if we eliminate these deviations?

Inter Quartile Range and Outliers

IQR = Q3 - Q1

Lower Limit = Q1 - 1.5*IQR

Upper Limit = Q3 + 1.5*IQR

- Outliers are extreme values
- Inter quartile ranges and boxplots are useful in identifying the outliers
- Whiskers show the upper and lower limits
- Values outside the limits can be eliminated before analysis

How to quantify dispersion?

Variance and Standard Deviation

$$Var = \frac{\sum_{i}^{n} (x_i - \bar{x})^2}{n}$$

$$\sigma = \sqrt{\frac{\sum_{i}^{n}(x_{i} - \bar{x})^{2}}{n}} \qquad \text{Standard deviation is the unit distance by which an observation (data point) is away from the mean of population it belongs to$$

- What is bivariate analysis?
- Common tools for bivariate analysis: two-way boxplots and scatterplots

Tools for Descriptive Statistics

Central tendency measures and dispersion measures of each variable

Tools used: One way tables, line / bar plots, histogram, distribution plot, boxplot

Relation between two numerical or categorical variables

Tools used: Two way cross tables, two-way boxplots, scatter plots, pair-plots, correlation tables, heatmaps

Bivariate Analysis

- Objective is to understand relation between two variables
- Often used to study the effect of one variable (independent) on the other variable (dependent)

		Impacted Variable Dependent		
		Categorical	Numerical	
Impacting Variable	Categorical	Two way frequency table and Heatmaps		
Independent	Numerical			

Two way frequency table and heatmap

Bivariate Analysis

- Objective is to understand relation between two variables
- Often used to study the effect of one variable (independent) on the other variable (dependent)

		Impacted Variable Dependent	
		Categorical	Numerical
Impacting Variable Independent	Categorical	Two way frequency table and Heatmaps	Box plot
	Numerical		

Two-way box plots

Bivariate Analysis

- Objective is to understand relation between two variables
- Often used to study the effect of one variable (independent) on the other variable (dependent)

		Impacted Variable Dependent	
		Categorical	Numerical
Impacting	Categorical	Two way frequency table and Heatmaps	Box plot
Variable Independent	Numerical	Discriminant Analysis	Scatter plots, Pair plots, Variance – Covariance matrix, Correlation matrix. Heatmaps

- In Bivariate analysis the Objective is to understand relation between two variables. Often used to study the effect of one variable (independent) on the other variable (dependent)
- Common tools for bivariate analysis of variables: two-way boxplots and scatterplots

- What covariance and correlation are?
- Mathematical intuition
- Calculating covariance and correlation in python

Covariance

How to mathematically model this relationship?

We know that variance is the mean squared distance from the variable's own mean

$$Var = \frac{\sum_i (x_i - \bar{x})^2}{N - 1}$$

Similarly we can calculate the covariance by multiplying the distance from mean for the ovariable pairs

$$CoVar = \frac{\sum_i (x_i - \bar{x}) \cdot (y_i - \bar{y})}{N - 1}$$

Positive values indicate positive relation and Negative values indicate negative relation

Correlation

Correlation is a standardized measure

$$Correlation = \frac{\sum_i (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sigma_x \sigma_y}$$

Values are between -1 and + 1

- -1 indicate perfect negative correlation and +1 indicate perfect positive correlation

- Covariance is a measure to quantify the relationship between two numerical variables
- Correlation does the same but it is a standardized measure with values ranging between -1 and +1
- -1 means negative correlation and +1 means positive correlation