EXO N°1

A- Le pont est alimenté par le réseau qui fournit une tension sinusoïdale de valeur efficace V = 400V et de fréquence 50 Hz.

Les thyristors sont considérés comme parfaits : Th_1 et Th_3 d'une part, Th_2 et Th_4 d'autre part, sont commandés de manière complémentaire avec un retard à l'amorçage noté Ψ .

On admet que le courant I_C fourni par le pont à thyristors est parfaitement lissé grâce à l'inductance L_F (Ic = constante).

- 1- Pour $\psi = \pi/3$, représenter sur le document réponse n°1 (Partie A) :
 - la tension U_c à la sortie du pont en indiquant les thyristors passants;
 - le courant i fourni par le réseau.
- 2- Montrer que, pour une valeur quelconque de ψ la tension moyenne à la sortie du pont a pour expression :

$$U_{\text{Cmoy}} = \frac{2 \cdot V \cdot \sqrt{2}}{\pi} \cos \psi$$

- 3- Quel type de fonctionnement obtient-on pour $\psi > \pi/2$ si on parvient, en modifiant le dispositif, à maintenir constant le courant I_C ?
 - 4- Pour $\psi = \pi/3$ et $I_C = 40A$, calculer :
 - la tension U_{Cmoy};
 - la puissance P absorbée par le moteur ;
 - la valeur efficace I_{eff} du courant i prélevé au réseau ;
 - la puissance apparente S de l'installation;
 - le facteur de puissance de l'installation.
- **B-** Afin d'améliorer le facteur de puissance de l'installation, on place à la sortie du pont précédent une diode de «roue libre» D_{RL} .

La tension sinusoïdale du réseau est inchangée (V = 400V; f = 50Hz).

On admet encore que le courant I_C fourni par le pont à thyristors est parfaitement lissé grâce à L_F .

- 1- Pour un angle de retard à l'amorçage $\psi = \pi/2$, représenter sur le document réponse n°1 (Partie B):
 - la tension U_C à la sortie du pont, en indiquant les composants passants ;
 - le courant i fourni par le réseau alternatif.
- 2- Montrer que, pour une valeur quelconque de ψ la tension moyenne à la sortie du pont a pour expression :

$$U_{\text{Cmoy}} = \frac{V \cdot \sqrt{2}}{\pi} \left(1 + \cos \psi \right)$$

Calculer la valeur de l'angle de retard à l'amorçage ψ donnant U_{Cmoy} = 180 V.

3- Montrer que pour une valeur quelconque de ψ la valeur efficace du courant I_{eff} a pour expression :

$$I_{eff} \, = \, I_{\,C} \, \sqrt{\frac{\pi \, - \, \psi}{\pi}}$$

- 4- Pour $I_C = 50A$ et $U_{mov} = 180V$ calculer :
- la puissance P absorbée par le moteur ;
- la valeur efficace I_{eff} du courant i débité par le réseau;
- la puissance apparente S mise en jeu par le réseau;
- le facteur de puissance de l'installation.
 - 5- Ce pont est-il réversible (susceptible de fonctionner en onduleur)? Justifier votre réponse.

EXO N°2:

Un hacheur série alimente un moteur à courant continu comme l'indique la figure 2. On utilise un oscilloscope bi courbes (deux voies) dont les deux voies sont branchées comme indiqué sur le schéma ci-dessous. La résistance r a pour valeur 1Ω .

A partir de ce schéma, préciser ce que visualise: la voie 1 de l'oscilloscope et la voie 2.

Quel est l'intérêt d'utiliser une résistance $r=1\Omega$?

L'oscillogramme est représenté ci-dessous :

4^{ème} Année Contrôle SYNTHESE TEC 518

30 JUIN 2007

- 1- Que représente H?, Quel est le rôle de la diode D? Quel est le rôle de l'inductance L?
- 2- Déterminer la valeur de la fréquence de hachage f et le rapport cyclique α;
- 2- Déterminer la valeur de la f.e.m. E, en déduire la valeur de la tension moyenne **UC>**;
- 3-Déterminer la valeur de I_{Max} et la valeur de I_{min} , en déduire la valeur du courant moyen <i>
- 4- Établir l'expression de l'équation de fonctionnement de la charge (on négligera la tension r.i) et en déduire l'expression de <Uc> en fonction de R, <i> et E':
- 5- Pour le moteur à courant continu considéré, on considère que $R=0\Omega$. En déduire l'expression de E' en fonction du rapport cyclique α et de la f.e.m E et en déduire la valeur de E'.
- 6- On admet que pour ce moteur, E' = k.n. L'oscillogramme a été relevé pour une vitesse n=1200 tr/min. Déterminer la valeur de k et préciser son unité.

On désire maintenant que la vitesse de rotation du moteur soit de n=1600 tr/min. Calculer la nouvelle valeur de E'. En déduire la nouvelle valeur du rapport cyclique α qu'il faut pour obtenir cette vitesse de rotation.

EXO N° 1: Partie A : 06.25pt

- Le pont est en conduction est ininterrompue, d'où la tension U_c est égale à $\pm V$ 0.5pts

- Etude du fonctionnement du pont

$$\begin{cases} \theta \in [0 \quad \psi] \cup [\pi + \psi \quad 2\pi] \quad Th_2 \quad \text{et} \quad Th_4 \quad \text{ferm\'es} \Rightarrow U_C = -V \underbrace{0.25 \text{pts}} \\ \\ \theta \in [\psi \quad \pi + \psi] \qquad \qquad Th_1 \quad \text{et} \quad Th_3 \qquad \text{ferm\'es} \Rightarrow U_C = V \underbrace{0.25 \text{pts}} \end{cases}$$

- Pour $\psi = \frac{\pi}{3}$ les courbes de la tension U_c et le courant i sont comme suit:

- La tension moyenne à la sortie du pont est :

We may
$$=\frac{1}{T}\int_{0}^{2\pi}V(\theta)d\theta$$
 $0.25pts$
 $U_{cmoy} = \frac{1}{2\pi}\int_{\psi}^{\pi+\psi}V_{eff}\sqrt{2}\sin\theta.d\theta$
 $0.25pts$
 $U_{cmoy} = \frac{\sqrt{2}V_{eff}}{\pi}\left[-\cos\theta\right]_{\psi}^{\pi+\psi}$
 $U_{cmoy} = \frac{2\sqrt{2}V_{eff}}{\pi}\cos\psi$
 $0.5pts$

- Pour un angle d'amorçage $\psi \nearrow \frac{\pi}{2}$, on maintient la conduction ininterrompue, on a alors une tension moyenne négative. Le pont fonctionne en onduleur assisté. 0.5pts

- Pour un
$$\psi = \frac{\pi}{3}$$
, $I_c = 40A$ et $V_{eff} = 400V$

- La tension moyenne :
$$U_{cmoy} = \frac{2\sqrt{2}V_{eff}}{\pi}\cos\psi = \frac{2\sqrt{2}.400}{\pi}\cos\frac{\pi}{3} = 180V$$
 0.25pts

- La valeur efficace du courant:
$$i_{eff} = I_c = 40A$$
 0.25pts 0.25pts

- La puissance apparente :
$$S = V_{eff}$$
. $I_c = 400.40 = 16000VA$ $0.25pts$ $0.25pts$

- Le facteur de puissance de l'installation
$$\cos\theta = \mathbf{K} = \frac{P}{S} = \frac{7200}{16000} = 0.45$$
 (0.25pts)

Dans ce cas, le courant I_c emprunte le passage par la diode roue libre D_{RL} lors des passages de la tension du réseau en négatif. 0.5pts

- Etude du fonctionnement du pont

$$\begin{cases} \theta \in \begin{bmatrix} 0 & \boldsymbol{\psi} \end{bmatrix} \cup \begin{bmatrix} \pi & \pi + \boldsymbol{\psi} \end{bmatrix} & D_{RL} & \text{ferm\'ee} \Rightarrow U_C = 0 & 0.25 \text{pts} \\ \theta \in \begin{bmatrix} \boldsymbol{\psi} & \pi \end{bmatrix} & Th_1 & \text{et} & Th_3 & \text{ferm\'es} \Rightarrow U_C = V & 0.25 \text{pts} \\ \theta \in \begin{bmatrix} \pi + \boldsymbol{\psi} & 2\pi \end{bmatrix} & Th_2 & \text{et} & Th_4 & \text{ferm\'es} \Rightarrow U_C = V & 0.25 \text{pts} \end{cases}$$

- Pour $\psi = \frac{\pi}{2}$ les courbes de la tension U_c et le courant i sont comme suit:

- La tension moyenne à la sortie du pont est :

$$U_{cmoy} = \frac{1}{T} \int_{0}^{2\pi} V(\theta) d\theta = 0.25pts$$

$$U_{cmoy} = \frac{1}{2\pi} \int_{\psi}^{\pi} V_{eff} \sqrt{2} \sin \theta d\theta = 0.25pts$$

$$U_{cmoy} = \frac{\sqrt{2} V_{eff}}{\pi} \left[-\cos \theta \right]_{\psi}^{\pi}$$

$$U_{cmoy} = \frac{\sqrt{2} V_{eff}}{\pi} (1 + \cos \psi) = 0.5pts$$

- La valeur de l'angle d'amorçage pour avoir U_{cmoy} =180V

$$U_{cmoy} = \frac{\sqrt{2} V_{eff}}{\pi} (1 + \cos \psi) = 180 \implies \cos \psi = 0 \implies \psi = \frac{\pi}{2}$$

$$0.25pts$$

$$I_{\text{eff}}^{2} = \frac{1}{T} \int_{0}^{2\pi} i^{2} (\theta) d \theta \qquad 0.25 \text{pts}$$

$$I_{\text{eff}}^{2} = \frac{2}{2\pi} \int_{\psi}^{\pi} I_{C}^{2} d \theta \qquad 0.25 \text{pts}$$

$$I_{\text{eff}}^{2} = \frac{I_{C}^{2}}{\pi} \left[\theta\right]_{\psi}^{\pi}$$

$$I_{\text{eff}}^{2} = \frac{I_{C}^{2}}{\pi} (\pi - \psi)$$

$$I_{\text{eff}} = I_{C} \sqrt{\frac{\pi - \psi}{\pi}} \qquad 0.5 \text{pts}$$

- Pour un $\psi = \frac{\pi}{3}$, $I_c = 50A$ et $U_{cmoy} = 180V$
- La puissance absorbée par le moteur : $P = U_{cmoy}$. $I_c = 180$. 50 = 9000W 0.25pts
- La valeur efficace du courant: $I_{eff} = I_{c} \sqrt{\frac{\pi \psi}{\pi}} = 50 \sqrt{\frac{\pi \frac{\pi}{2}}{\pi}} = 35.35A$ 0.25pts 0.25pts
- La puissance apparente : $S = V_{eff}.\ I_{eff} = 400.35.35 = 14140 VA$
 - 0.25pts 0.25p
- Le facteur de puissance de l'installation $\cos\theta = \mathbf{K} = \frac{P}{S} = \frac{9000}{14140} = 0.636$ 0.25 pts 0.25 pts
- Le pont n'est pas réversible à cause de la diode de roue libre qui ne permet pas d'avoir une valeur moyenne aux bornes de la charge négative. $0.25 \mathrm{pts}$

La voie 1 de l'oscilloscope : $U_C(t)$, 0.25pts

La voie 2 de l'oscilloscope : r.i(t) 0.25pts

La voie 2 permet de visualiser l'image de l'intensité i. Ur = r.i = 1.i = i (0.25pts)

H est un interrupteur commandé.

$$0.25$$
pts

0.25pts

Le rôle de la diode D est d'éviter les surtensions aux bornes de H.

0.25pts

0.25pts

L'inductance L sert à lisser le courant i.

$$T = 5 \text{ div x } 0.2 \text{ ms/div} = 1 \text{ms}$$
 0.25pts

et
$$f=1/T=1000 \text{ Hz}$$

$$\alpha = \frac{t_{\text{off}}}{T}$$

$$\alpha = \frac{3}{5} = 0.63 \quad 0.25 \text{pts}$$

$$E = 5 \text{ div } \times 20 \text{ V/div} = 100 \text{ V}$$
 0.25 pts

$$<$$
Uc>= α .E = 0,6 x 100 = 60 V (0.25pts)

$$r.I_{MAX} = 3 \text{ div x } 0.2 \text{ V/div} = 0.6 \text{ V et } I_{MAX} = 0.6 \text{ V / } 1 = 0.6 \text{ A}$$

$$r.I_{min} = 2 \text{ div x } 0.2 \text{ V/div} = 0.4 \text{ V et } I_{min} = 0.4 \text{ V / } 1 = 0.4 \text{ A}$$
 (0.25pts)

$$\langle i \rangle = (I_{MAX} + I_{min}) / 2 = (0.6 + 0.4) / 2 = 0.5 \text{ A}$$
 0.25pts

$$U_{c} = L \frac{di}{dt} + Ri + E D'où U_{cmoy} = R I_{Cmoy} + E 0.5pts$$

Si R est négligée, R.i = 0 et E' = α .E d'où : E' = 0,6 x 100 = 60 V 0.25pts

 $E' = k.n \text{ soit } k = E' / n \text{ en } [V.(tr/min)-1] k = 60 / 1200 = 0.05 V.(tr/min)^{-1}$

$$E' = k.n = 0.05 \times 1600 = 80 \text{ V}$$
 (0.25pts)

On sait que E' =
$$\alpha$$
.E soit α = E' / E = 80 / 100 = 0,8 (0.25pts)