MTH420 PROBLEM SET 12

(1) Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{bmatrix}$$

(a) Compute A^{adj}

(b) Check that your answer to the first part is plausible by computing $A \cdot A^{\text{adj}}$.

(2) Let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

(a) Compute B^{adj} .

(b) Check that your answer to the first part is plausible by computing $B \cdot B^{\text{adj}}$. (3) Let R be a commutative ring with unity and consider the space $T^2(R^{2\times 1})$ of bilinear functions $R^{2\times 1} \times R^{2\times 1} \to R$. (That is, we're looking at bilinear functions which take in a pair of column vectors and return a scalar.)

(a) For any $A \in \mathbb{R}^{2 \times 2}$, $X, Y \in \mathbb{R}^{2 \times 1}$ let $f_A(X, Y) = X^t \cdot A \cdot Y$. (The t is a transpose.) Prove that $f_A \in T^2(\mathbb{R}^{2 \times 1})$.

(b) Let $\underline{f}: \mathbb{R}^{2 \times 2} \to T^2(\mathbb{R}^{2 \times 1})$ be the mapping which sends A to f_A for each A. Prove that it

is an isomorphism.

(c) Inside of $T^2(R^{2\times 1})$ we have the subspace of alternating elements. What subspace of $T^2(R^{2\times 1})$ does it correspond to?

(4) Let R be a commutative ring with unity, and M a free R-module with basis $\mathcal{B} = (\beta_1, \dots, \beta_n)$. Let $\bigwedge^k(M)$ be the set of all k-linear alternating functions $M^k \to R$.

(a) Prove that $\bigwedge^k(M)$ is a submodule of the $\{f: M^k \to R\}$.

(b) Prove that it is free (i.e., has a basis) and describe a basis. How many elements does the basis have?