Mathematical Foundations of computer science

Lecture 8: Proofs in FO logic, soundness and completeness

Speaker: Toru Takisaka

April 23, 2024

Recap

Current goal: formalize Mathematician with higher resolution

- We construct atomic propositions from terms / predicates
- We defined structures that specify the meaning of formulas
- We defined the truth of sentences under a given structure
 - Sentence = formula with no free variables
- Today: proofs in FO logic, soundness/completeness

A minor correction on formulas' definition

We defined atomic predicate formulas as follows;

- An expression $P(t_1, ..., t_k)$, where $t_1, ..., t_k$ are terms and $P \in L$ is a k-ary predicate symbol;
- An expression $(t_1 = t_2)$, where t_1 and t_2 are terms.

Let's say \top , \bot are also atomic formulas (as we do in propositional logic).

However, both of old and new definitions work in a same way; in the old one, we can pick any tautology and contradiction, and call them \top and \bot , respectively.

Recap: truth of sentences

We can determine the truth of a formula (given a structure) when it has no free variable. Such a formula is called a **sentence**.

- Consider a formula IsOdd(n) with the structure as given in p10. Thus it could read "a natural number n is odd".
 - \rightarrow We cannot determine the truth of this formula, as it depends on what n is.
- Consider a formula $\exists n.lsOdd(n)$ with the same structure. Thus it could read "there exists an odd natural number n".
 - \rightarrow the truth of this formula should be determined, because the meaning of *n* is *bound* by the prefix "there exists".

n in the first formula is **free**; *n* in the second is **bound**.

Recap: truth of sentences

Suppose we would like to define the truth of sentences written in a language L under a structure A, whose domain is A.

To this end, we augment L by adding a new constant \overline{a} for each $a \in A$. By this, we can instantiate a formula $\varphi(x)$ into $\varphi(\overline{a})$, which claims a property about a particular object a.

 You can write formulas that claim e.g. "1 is odd" "2 is odd", not only "n is odd" (where n is a variable)

Let L_A be such an extension. We also extend A so that it assigns a to \overline{a} , for each $a \in A$. Let A^* be such an extension.

Truth of sentences and formulas, formally

Let $SENT^L$ be the set of all sentences written in L.

Recall a structure A specifies the interpretation of any ground term t, denoted by t^A . Also, P^A is the interpretation of P by A.

Definition

The set Th(A) of sentences written in L_A that are true under A^* is the smallest subset of $SENT^{L_A}$ that satisfy:

- \bullet $\top \in Th(\mathcal{A})$ and $\bot \not\in Th(\mathcal{A})$;
- if $\varphi \equiv P(t_1, \dots, t_k)$, then $\varphi \in Th(A)$ iff $(t_1^{A^*}, \dots, t_k^{A^*}) \in P^{A^*}$;
- if $\varphi \equiv t_1 = t_2$, then $\varphi \in Th(A)$ iff $t_1^{A^*} = t_2^{A^*}$;
- if $\varphi \equiv \neg \psi$, then $\varphi \in Th(\mathcal{A})$ iff $\psi \notin Th(\mathcal{A})$;
- if $\varphi \equiv (\psi_1 \vee \psi_2)$, then $\varphi \in Th(A)$ iff $\psi_1 \in Th(A)$ or $\psi_2 \in Th(A)$;
- if $\varphi \equiv (\psi_1 \wedge \psi_2)$, then $\varphi \in Th(A)$ iff $\psi_1 \in Th(A)$ and $\psi_2 \in Th(A)$;
- if $\varphi \equiv \exists x. \varphi(x)$, then $\varphi \in Th(A)$ iff $\varphi(\overline{a}) \in Th(A)$ for some $a \in A$;
- if $\varphi \equiv \forall x. \varphi(x)$, then $\varphi \in Th(A)$ iff $\varphi(\overline{a}) \in Th(A)$ for any $a \in A$.

Truth of sentences and formulas, formally

Let φ be a formula whose free variables are x_1, \ldots, x_k . We call the sentence $\forall x_1 \ldots \forall x_k. \varphi$ the **universal quantification** of φ .

Definition (truth of first-order sentences)

We say a sentence φ written in L is true under A, written as $A \models \varphi$, when $\varphi \in Th(A)$.

For a general formula φ , we say φ is true under \mathcal{A} if its universal quantification is in $Th(\mathcal{A})$.

Notions related to the truth of formulas

We say φ is a **tautology** if $\mathcal{A} \models \varphi$ for any structure \mathcal{A} . We say φ is a **contradiction** if $\mathcal{A} \not\models \varphi$ for any structure \mathcal{A} .

We say a set Σ of formulas **logically implies** a formula φ , written as $\Sigma \models \varphi$, if any structure $\mathcal A$ that makes $\mathcal A \models \psi$ for every $\psi \in \Sigma$ makes $\mathcal A \models \varphi$ also true.

We call a structure \mathcal{A} a **model** of a set Σ of formulas if $\mathcal{A} \models \psi$ holds for every $\psi \in \Sigma$.

On logical implication in predicate logic

In propositional logic, if Σ logically implies $\varphi \to \psi$, then $\Sigma \cup \{\varphi\}$ logically implies ψ , and vice versa. In predicate logic, the latter holds when φ is a sentence.

Lemma

Let Σ be a set of formula, and φ , ψ are formulas. Then we have:

- **1** If $\Sigma \cup \{\varphi\} \models \psi$ and φ is a sentence, then $\Sigma \cup \{\varphi\} \models \psi$.
- 2 If $\Sigma \cup \{\varphi\} \models \psi$, then $\Sigma \cup \{\varphi\} \models \psi$.

Non-example: $\varphi(x) \models \forall y. \varphi(y)$ generally does not imply $\varphi(x) \rightarrow \forall y. \varphi(y)$ is a tautology.

 The latter statement means ∀x.(φ(x) → ∀y.φ(y)) is a tautology, which can be false (for example, imagine the statement "if 1 is odd, then any natural number is odd").

Examples of models

Consider a structure $A = (H; IsProf_A, IsInChina_A, Over20_A)$ for a language L = (IsProf, IsInChina, Over20) such that

- H is the set of humans (say, who were alive at a certain timestamp),
- $\mathit{IsProf}_{\mathcal{A}} \subseteq \mathit{H}$ is the set of professors in H (say, at that timestamp),
- $IsInChina_A \subseteq H$ is the set of residents in China in H, and
- $Over20_A \subseteq H$ is the set of humans in H that are over 20 years old.

Suppose any professor in H who lives in China is over 20years old. Then $\mathcal A$ models $\Sigma=\{\varphi\}$, where

$$\varphi \equiv \forall x. \Big((\textit{IsProf}(x) \land \textit{IsInChina}(x)) \rightarrow \textit{Over20}(x) \Big).$$

Examples of models

Consider a structure $A = (\mathbb{N}; 0, S)$, where

- N is the set of natural numbers, and
- $S : \mathbb{N} \to \mathbb{N}$ is the successor function (i.e., S(n) = n + 1).

Also let Σ consists of the following sentences*, which are called **axioms of natural numbers**:

Then A is a model of Σ .

^{*)} precisely speaking, we have a language $L=(\overline{0},\overline{S})$ in mind and we should write these axioms by $\overline{0},\overline{S}$ instead of 0,S. But the meaning should be clear.

Now we formalize the notion of proofs in predicate logic. Recall, in propositional logic, we needed the following ingredients:

- Axioms, which are formulas that we admit to be "generally true";
- Inference rules, which allows us to infer a new formula out of certain formulas.

Then we defined a proof as a sequence of formulas from axioms and assumptions to the target formula, connected by inference rules.

We define proofs in predicate logic in a similar way.

Propositional Axioms

As axioms, We first register similar formulas as axioms in propositional logic. Namely, for any formula φ , ψ and γ , the following formulas are axioms.

$$Q \varphi \to (\varphi \lor \psi).$$

$$(\varphi \to (\psi \to \gamma)) \to ((\varphi \to \psi) \to (\varphi \to \gamma)).$$

Equality Axioms

We have the equality symbol "=", which should have a fixed interpretation. To this end, we register the following formulas as axioms.

- $2 x = y \rightarrow y = x.$
- **3** $(x = y \& y = z) \rightarrow (x = z).$
- 4 $(x_1 = y_1 \& \ldots \& x_k = y_k) \rightarrow (P(x_1, \ldots, x_k) \leftrightarrow P(y_1, \ldots, y_k)),$ where P is a predicate symbol of arity k.
- $(x_1 = y_1 \& \ldots \& x_k = y_k) \to f(x_1, \ldots, x_k) = f(y_1, \ldots, y_k),$ where f is a operation symbol of arity k.

Quantifier axioms

We have new logical connectives that do not appear in propositional logic, namely $\exists x$ and $\forall x$. We also register the following formulas as axioms. Here, t is any term.

Axioms are sound

Lemma (soundness of axioms)

All axioms are tautologies, that is, any axiom φ and structure $\mathcal A$ satisfy $\mathcal A \models \varphi$.

Proof.

One proves this by going through the axioms. As an example, consider the axiom scheme $\gamma \equiv \varphi \to (\varphi \lor \psi)$. Let x_1, \ldots, x_m be all the variables in φ and ψ . We let $x_1 = \overline{a_1}, \ldots, x_m = \overline{a_m}$ and evaluate $\mathcal{A} \models \varphi(\overline{a_1}, \ldots, \overline{a_m})$ and $\mathcal{A} \models \psi(\overline{a_1}, \ldots, \overline{a_m})$. Substitute these truth values into $\varphi \to (\varphi \lor \psi)$, and compute the value $\mathcal{A} \models \gamma(\overline{a_1}, \ldots, \overline{a_m})$. Since $\varphi \to (\varphi \lor \psi)$ is a propositional axiom, we know that it is always evaluated to **true** independent of values of $\mathcal{A} \models \varphi(\overline{a_1}, \ldots, \overline{a_m})$ and $\mathcal{A} \models \psi(\overline{a_1}, \ldots, \overline{a_m})$. Hence, the value of $\mathcal{A} \models \gamma(\overline{a_1}, \ldots, \overline{a_m})$ is **true** for any \mathcal{A} and a_1, \ldots, a_m ; therefore, we have $\mathcal{A} \models \forall x_1 \ldots \forall x_m. \gamma(x_1, \ldots, x_m)$.

Inference rules

The first order logic uses the following inference rules:

- **1** The *Modus Ponens (MP) rule*: From φ and $\varphi \to \psi$ infer ψ .
- ② The Generalisation (G) rules. Let x be not free in φ .
 - **1** From $\varphi \to \psi$ infer $\varphi \to \forall x \psi$.
 - **2** From $\psi \to \varphi$ infer $\exists x \psi \to \varphi$.

Lemma (soundness of inference rules)

Let A be an algebraic structure.

- **1** If $A \models \varphi$ and $A \models \varphi \rightarrow \psi$, then $A \models \psi$.
- 2 Let x be a variable not free in φ .
 - **1** If $A \models \varphi \rightarrow \psi$ then $A \models \varphi \rightarrow \forall x \psi$.
 - 2 If $A \models \psi \rightarrow \varphi$ then $A \models \exists x \psi \rightarrow \varphi$.

Item 2 in the lemma does not hold if we allow x to be free in φ ; see the non-example in p9.

Definition of proof in the FO logic

From now on we fix Σ a set of sentences. Let ψ be a formula.

Definition

A **proof** of ψ from Σ is a sequence $\psi_1, \psi_2, ..., \psi_n$ of formulas such that $\psi_n = \psi$, and for all k = 1, ..., n, either

- ψ_k is an axiom, or
- $\psi_k \in \Sigma$, or
- there are i, j < k such that φ_k is inferred from ψ_i and ψ_j via Modus Ponens rule, or ψ_k is inferred from φ_i via the generalisation rule.

Call *n* the length of the proof. If there is a proof of ψ from Σ , then write this $\Sigma \vdash \psi$. If $\Sigma = \emptyset$, then write this $\vdash \psi$.

Soundness theorem

Theorem (Soundness Theorem)

If $\Sigma \vdash \varphi$ *then* $\Sigma \models \varphi$.

Proof.

Let \mathcal{A} be a model of Σ , and let $\varphi_1,\ldots,\varphi_k$ be a proof of φ from Σ . Then by soundness of axioms and inference rules, one can inductively show $\mathcal{A}\models\varphi_j$ for each $j\in\{1,\ldots,k\}$ (observe each $\psi\in\Sigma$ satisfies $\mathcal{A}\models\psi$). As $\varphi_k\equiv\varphi$ by definition of a proof, we have $\mathcal{A}\models\varphi$; hence we have $\Sigma\models\varphi$.

Completeness theorems

Definition

We say a set Σ of formulas is **inconsistent** if $\Sigma \vdash \bot$. Otherwise, we say that Σ is consistent.

Theorem (The second completeness theorem)

A set Σ of sentences is consistent if and only if Σ has a model.

Theorem (The first completeness theorem)

Let Σ be a set of sentences and φ be a formula. Then $\Sigma \vdash \varphi$ if and only if $\Sigma \models \varphi$.