

departamento de física

MECÂNICA E CAMPO ELETROMAGNÉTICO

ano letivo 2024/2025

A. Informação Genérica	. 2
B. Objetivos e competências	2
C. Conteúdos programáticos	2
D. Metodologia	4
E. Avaliação	5
F. Docentes	.7
G. Planificação Geral	.8

A. INFORMAÇÃO GENÉRICA

Ano letivo: 2024/2025

Ciclo / Ano Curricular / Semestre: 1º / 2º / 1º

Área Científica: Física

Escolaridade Semanal: 2 h teóricas (T) + 2 h teórico-práticas (TP) + 2 h prática (PL)

ECTS: 6,0

B. OBJETIVOS E COMPETÊNCIAS

A Unidade Curricular de Mecânica e Campo Eletromagnético tem como objetivo proporcionar o estudo de sistemas mecânicos e elétricos descritos pelos mesmos modelos físicos.

Na primeira parte do programa, serão revistos alguns dos conceitos de mecânica clássica, a fim de estabelecer o formalismo e os princípios necessários à interpretação de qualquer sistema físico. Será abordada a descrição do movimento de corpos indeformáveis e suas relações com as forças atuantes.

Dada a importância dos movimentos harmónicos como modelos exatos ou aproximados para muitos dos problemas de física e engenharia, serão discutidas as propriedades do movimento harmónico nas situações em que o movimento é simples ou forçado. Será também abordado o acoplamento de osciladores.

Seguir-se-á o estudo dos fenómenos de interação entre cargas elétricas em regime estacionário, do campo magnético e do fenómeno da indução, tendo em atenção a interpretação física dos mesmos. Finalmente, serão abordados, de forma introdutória, fenómenos ondulatórios.

Pretende-se conferir competências que permitam aos alunos aplicar, em situações diversas, os fundamentos da mecânica clássica, identificando e relacionando corretamente as grandezas físicas envolvidas. Aplicar a análise dimensional para identificar grandezas que possam descrever o comportamento de um dado sistema e fazer previsões sobre a relação entre as mesmas. Identificar modelos matemáticos simples comuns na descrição e interpretação de diferentes sistemas físicos, em particular sistemas mecânicos e elétricos. Saber adquirir resultados experimentais que representam com precisão os processos físicos que ocorrem na experiência. Interpretação, à luz dos conceitos gerais de sistemas elétricos, as grandezas físicas obtidas e a sua validação. Pretende-se, ainda, desenvolver a análise crítica, conferir autonomia e capacidade de realizar trabalho de forma independente e em equipa, capacidade de elaboração e apresentação de um tópico científico. Reconhecer a importância em apresentar com integridade os resultados de carácter experimental ou teórico ou de qualquer outra atividade proposta.

C. CONTEÚDOS PROGRAMÁTICOS

C.1 – COMPONENTE TEÓRICA

A componente teórica (T) compreende a lecionação teórica dos conteúdos programáticos, de acordo com a calendarização apresentada em **G.3 – Planificação Geral**.

Capítulo 1. Fundamentos de Mecânica Clássica

1.1 Cinemática da partícula

Posição e trajetória. Deslocamento e distância. Velocidade instantânea e média. Aceleração instantânea e média. Aplicações 1-D: queda livre. Aplicações 2-D: projétil e movimento circular. Aplicações 3-D: movimento curvilíneo geral.

1.2 Dinâmica da partícula

Conceito de força. Leis de Newton. Forças de contacto e ligação. Tensões e outras ligações. Força de atrito. Força elástica.

1.3. Trabalho e Energia

Trabalho realizado por uma força constante e variável. Energia cinética e teorema do trabalho. Potência. Forças conservativas e forças não conservativas. Energia potencial. Conservação da energia.

1.4 Dinâmica de um sistema de partículas

Momento linear do sistema. Conservação do Momento linear. Centro de massa. Colisões. Cinemática e energia cinética de rotação. Momento de inércia. Momento de uma força. Dinâmica de rotação. Momento angular.

Capítulo 2: Sistemas oscilatórios

Oscilador harmónico simples. Oscilador harmónico amortecido. Oscilador harmónico forçado: Ressonância. Oscilações acopladas.

Capítulo 3: Campos elétrico e magnético

3.1 Campo elétrico

Propriedades das cargas elétricas. Isoladores e condutores. Lei de Coulomb. Campo elétrico.

3.2 Lei de Gauss

Lei de Gauss. Aplicações da Lei de Gauss. Condutores em equilíbrio eletrostático.

3.3 Potencial elétrico

Diferença de potencial. Potencial elétrico. Energia potencial. Cálculo do campo elétrico, a partir do potencial elétrico.

3.4 Corrente elétrica e resistência

Corrente elétrica. Resistência e a Lei de Ohm. Energia e potência elétricas. Combinação de resistências. Leis de Kirchhoff.

3.5 Capacidade e condensadores

Capacidade de um condensador. Combinação de condensadores. Energia armazenada num condensador.

3.6 Campo magnético

Campo magnético. Força magnética. Lei de Biot-Savart. Lei de Ampère.

3.7 Indução eletromagnética

Lei de Faraday. Lei de Lenz. Auto-indutância. Indutância mútua.

3.8 Equações de Maxwell

Conceitos gerais sobre as equações de Maxwell.

C.2 – COMPONENTE PRÁTICA

A componente prática está dividida em aulas teórico-práticas (TP) e de prática laboratorial (PL) e compreendem, respetivamente, a resolução de exercícios de índole TP e a realização de 2 trabalhos práticos de acordo com **G.3 – Planificação Geral** (documento separado).

Prática laboratorial (PL) Trabalhos práticos:

Série 1. Mecânica (3 aulas)

1.1. Movimento de projéteis

Série 2. Campo eletromagnético (3+1 aulas)

2.1. Bobinas de Helmholtz

C.3 – BIBLIOGRAFIA

- Dossiê pedagógico da Unidade Curricular.
- Apontamentos on-line da Unidade Curricular (http://elearning.ua.pt/) e referências incluídas.
- R.A. Serway, *Physics for Scientists and Engineers with Modern Physics*, Saunders Golden Sunburst Series.
- P.A. Tipler e G. Mosca, *Física*, Vol. I, 5ª ed, Livros técnicos e Científicos Editora, S.A, Rio de Janeiro, 2006.
- Alonso & Finn, Física um curso universitário, Vol. I e II, Edgard Bluecher.
- C. Kittel et al., Curso de Física de Berkeley: Mecânica, Vol. 1, Edgard Bluecher.
- H.J. Pain, The Physics of Vibrations and Waves, Ed. Wiley.
- R. Resnick e D. Halliday, *Física*, 4º ed, Livros Técnicos e Científicos Editora.
- R. Kip, Fundamentals of Electricity and Magnetism, McGraw Hill.

Nota: As aulas PL e TP têm bibliografia específica fornecida aos alunos previamente em http://elearning.ua.pt/.

D. METODOLOGIA

D.1 Componente Teórica

O método de ensino tem por base a apresentação e discussão dos fundamentos e interligações dos conceitos subjacentes ao programa. Será usado, sempre que necessário, suporte visual sumário (diapositivos), preparado para cada lição e disponibilizado aos alunos para facilitar o acompanhamento e a preparação das aulas. É dada especial atenção à incorporação de exemplos práticos relacionados com a temática da aula e à resolução de problemas exemplificativos, de forma interativa entre os docentes e os alunos. São, também, sugeridos ao longo de cada aula, problemas de índole teórica/prática diretamente relacionados com a temática abordada para resolução fora do horário de contacto. No final de cada aula, é apresentada uma listagem da bibliografia de suporte ao tema lecionado. Pretende-se, também, introduzir estratégicas pedagógicas que permitam avaliar, em tempo real, a aquisição de conhecimento por parte dos alunos, permitindo corrigir de forma imediata a estratégia e os aspetos relacionados com a exposição dos conceitos abordados. O uso de classroom response systems permite implementar essa estratégia de monitorização em tempo real do processo de aprendizagem e pode servir, em simultâneo, como elemento de avaliação de conhecimentos e de registo de assiduidade, permitindo o aperfeiçoamento da relação ensino/aprendizagem. Em concreto, o uso de classroom response systems requer a preparação de um conjunto de questões conceptuais que serão colocadas ao longo das aulas teóricas, que abordem os aspetos fulcrais dos tópicos em questão. A implementação deste esquema será concretizada recorrendo a sistemas baseados em plataformas digitais, tais como o Kahoot (www.kahoot.com) ou similar.

D.2 Componente Prática

Componente PL

A realização dos trabalhos práticos é suportada por guiões laboratoriais preparados pelos docentes e disponibilizados aos alunos no início do semestre. A realização dos trabalhos práticos é realizada em grupo, onde o docente privilegia a autonomia e a distribuição ponderada de tarefas entre os elementos do grupo. Será adotada uma estratégia de PBL (*project based learning*) nas aulas de prática laboratorial, que permitirá uma melhoria efetiva desta relação ensino/aprendizagem.

Componente TP

Para as aulas de resolução de exercícios (TP) serão disponibilizados os enunciados e respetiva bibliografia (http://elearning.ua.pt/). Serão resolvidos em grupo exercícios para avaliação e acompanhamento do trabalho do aluno.

E. AVALIAÇÃO

Nos períodos de avaliação não é permitido o uso nem a posse de calculadoras ou qualquer outro dispositivo eletrónico, exceto se especificadamente indicado pela equipa docente. Os alunos deverão trazer apenas material de escrita e um documento de identificação com fotografia. Não são permitidas saídas antecipadas durante as provas de avaliação, a saída por desistência só será possível após o decurso de metade da duração da prova.

A CLASSIFICAÇÃO FINAL (N_{Final}) é calculada de acordo com:

N_{FINAL} = 30% Nota PL +70% Nota TP

O tipo de avaliação pré-definida é a AVALIAÇÃO CONTÍNUA.

Os alunos que pretendam ser avaliados **por AVALIAÇÃO FINAL** (1 único teste a realizar na época de exames, com um peso relativo de 100%) <u>deverão inscrever-se até ao dia **30 setembro 2024**</u>.

E.1 – Componente Teórica/Teórico-prática (T/TP)

A avaliação contínua será dividida nos seguintes elementos/momentos de avaliação:

- i) Três momentos de avaliação individual (ACT1+ ACT2+ ACT3), realizados no horário das aulas T, indicados a vermelho em G.3 Planificação Geral, com a duração de 15 min e peso relativo total de 30%, (3×10%), com recurso a uma avaliação do tipo *classroom response systems* (*clickers*). Cada resposta errada, desconta 1/4. Tempo de resposta limitado: resposta fora do tempo ou ausência de resposta equivale a classificação nula.
 - ii) **Teste Final** (70%), a realizar no período de exames, no dia do Exame Final, com a duração de 75 min.

E.2 – Componente prática laboratorial (PL)

Serão realizados 2 trabalhos práticos, no decorrer do semestre (**ver G.3 – Planificação Geral**), avaliados de acordo com os seguintes parâmetros

Parâmetros de avaliação	Valoração (%)
preparação do trabalho	25
desempenho laboratorial	25
relatório sumário/apresentação oral*	50

^{*}Trabalho 2.1

REGRAS GERAIS

- Os alunos deverão trazer para cada aula material de escrita, máquina de calcular científica ou gráfica e computador (facultativo e, no máximo, um por grupo).
- As aulas decorrerão em grupos de 3 alunos. Cada grupo deverá, previamente, preparar o trabalho de acordo com o objetivo de cada aula. Deverão recorrer aos laboratórios abertos.
- No final de cada aula, será obrigatoriamente entregue um relatório sumário das tarefas executadas.
- O docente discutirá com cada grupo o relatório entregue, na aula seguinte à data de entrega.

<u>NOTA</u>: o laboratório das aulas PL estará em regime aberto, durante o período em que decorrem os trabalhos 1.1 e 2.1. Os docentes de PL estarão disponíveis, às quartas-feiras das 15-17 h, para atendimento de dúvidas sobre o laboratório, devendo ser contactados previamente por email.

Trabalho 1.1 (3 aulas, 40 % classificação)

- Os alunos deverão preparar o trabalho, de acordo com o guião disponibilizado em elearning.ua.pt.
- A divisão das tarefas deverá assegurar a entrega do relatório completo até uma semana depois da 2ª aula.

Trabalho 2.1 (4 aulas, 60 % classificação)

- Os alunos deverão preparar o trabalho, de acordo com o guião disponibilizado em elearning.ua.pt.
- A divisão das tarefas deverá assegurar, a entrega do relatório completo, no final da terceira aula.
- Apresentação oral (quarta aula) em suporte visual com a duração aproximada de 9 minutos, distribuídos pelos 3 alunos. Seguir-se-ão cerca de 6 minutos de questões colocadas pelo docente a cada aluno individualmente.

QUADRO – RESUMO

Avaliação pré-definida – Avaliação Contínua NFINAL = 30% Nota PL +70% Nota T

- O Componente Teórica / Teórico-Prática (T/TP) _ 70%
 - 3 momentos de avaliação (ACT1, ACT2 e ACT3) _ 30% (3x10%)
 - Teste Final (TF) _ 70%
- o Componente prática-laboratorial (PL) _ 30%
 - Trabalho 1.1 (T1.1) 40%
 - Trabalho 2.1 + apresentação oral (T2.1) _60%

Cálculo $N_{\text{FINAL}} = 0.30 (0.40 \text{ T}1.1 + 0.60 \text{ T}2.1) + 0.70 (0.30 \text{ ACTi} + 0.70 \text{TF})$

E.3 - Nota mínima

Para efeitos de aprovação na unidade curricular, a nota mínima para cada uma das componentes de avaliação é de 6,5 valores.

E.4 – Época de Recurso

Os alunos que não tenham tido aprovação na unidade curricular, durante o semestre letivo, estão automaticamente inscritos para Exame de Recurso.

Os alunos, com aprovação à UC, que queiram melhorar a classificação obtida, deverão inscrever-se previamente nos Serviços Académicos para exame de melhoria, que pode incidir sobre a componente teórica, a componente prática ou ambas. Deverá comunicar a sua opção ao coordenador da UC por email. Desde que superior, a nota obtida nesta prova substitui na íntegra a classificação global obtida anteriormente.

E.5 – Validade da classificação anterior da componente prática (PL)

Será válida a nota positiva da componente prática dos últimos 5 anos. Os alunos devem consultar a listagem disponível em http://elearning.ua.pt/.

Se se pretender repetir a componente prática, a nota anterior fica anulada. Neste caso, devem comunicar a sua opção ao coordenador da UC, por email.

E.6 – Regime de presenças

Aulas práticas (PL e TP)

A componente prática da UC (aulas PL e TP) são de frequência obrigatória, devendo os estudantes assistir a pelo menos 80% das aulas (REUA – lecionação de Unidades Curriculares do 1º ciclo)

Aulas teóricas (T)

As aulas teóricas não estão abrangidas pelo regime de faltas.

F. DOCENTES

- Isabel Maria Coelho de Oliveira Malaquias (T1) coordenadora imalaquias@ua.pt, Gabinete: 13.3.16
- Armando António Cardoso dos Santos Lourenço (T2, TP3, PL3, PL4, PL5, PL6) alourenco@ua.pt, Gabinete: 13.2.14
- António Ferreira da Cunha (TP1, TP2) antonio.cunha@ua.pt, Gabinete: 13.2.8
- Sandra Correia (PL1, PL2)
 sandracorreia@ua.pt, Sala atendimento Física, Complexo Pedagógico

G. PLANIFICAÇÃO DO SEMESTRE

G.1 Aulas Teóricas: T

T - 2ª e 3ª feiras

G.2 Aulas Práticas: TP e PL TP - 5º feira e PL - 5º e 6º feiras

<u>Aulas Práticas</u>: T1.1 – Movimento de Projéteis; T2.1 – Bobinas de Helmholtz <u>TP</u>- Aulas teórico-práticas: resolução dos problemas TP designados por P1-P6

G.3 Planificação Geral

Em documento individual separado.