COMP417

Quiz on GraphSLAM

First Name:

Last Name:

Student ID:

Thursday 9th March, 2017

Each of the following questions is worth 1 point

- 1. Suppose the 1D random variable x has variance $\sigma_x^2 = 10$. Then the random variable z = 2x + 1 has variance: **40**
- 2. Suppose the 1D random variable x has mean $\mu_x=10$. Then the random variable z=2x+1 has mean: **21**
- 3. Suppose the 2D random variable \mathbf{x} has covariance matrix Σ_x . Then the covariance matrix of the random variable $\mathbf{z} = \mathbf{A}x + \mathbf{b}$, where \mathbf{b} is a constant vector is: $\mathbf{A}\Sigma\mathbf{A}^T$
- 4. Suppose the 2D random variable **x** has mean μ_x . Then the mean of the random variable $\mathbf{z} = \mathbf{A}x + \mathbf{b}$, where **b** is a constant vector is: $\mathbf{A}\mu_x + \mathbf{b}$
- 5. Write down the terms of the GraphSLAM cost function $J(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{m}_0, \mathbf{m}_1)$ for the scenario shown in Figure 1:

$$J(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{m}_{0}, \mathbf{m}_{1}) = ||\mathbf{x}_{1} - f(\mathbf{x}_{0}, \mathbf{u}_{0})||_{\mathbf{Q}}^{2} + ||\mathbf{x}_{2} - f(\mathbf{x}_{1}, \mathbf{u}_{1})||_{\mathbf{Q}}^{2} + ||\mathbf{x}_{3} - f(\mathbf{x}_{2}, \mathbf{u}_{2})||_{\mathbf{Q}}^{2} + ||\mathbf{z}_{0}^{(0)} - h(\mathbf{x}_{0}, \mathbf{m}_{0})||_{\mathbf{R}}^{2} + ||\mathbf{z}_{1}^{(0)} - h(\mathbf{x}_{1}, \mathbf{m}_{0})||_{\mathbf{R}}^{2} + ||\mathbf{z}_{1}^{(1)} - h(\mathbf{x}_{1}, \mathbf{m}_{1})||_{\mathbf{R}}^{2} + ||\mathbf{z}_{2}^{(1)} - h(\mathbf{x}_{2}, \mathbf{m}_{1})||_{\mathbf{R}}^{2} + ||\mathbf{z}_{2}^{(1)} - h(\mathbf{x}_{2}, \mathbf{m}_{1})||_{\mathbf{R}}^{2}$$

Figure 1: State \mathbf{x}_0 is known and fixed. The dynamics model is assumed to be $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{w}_t$ with $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$. The observation model is assumed to be $\mathbf{z}_t^{(k)} = h(\mathbf{x}_t, \mathbf{m}_k) + \mathbf{n}_t$ where $\mathbf{n}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$.