Mathematical Walkthrough: Exact-Stroke Correlation Engine with Acoustic Cooling

EchoKey Asks: Correlated Engine Demo

October 25, 2025

Abstract

These notes give a detailed, equation-level walkthrough of the correlation-fueled engine/refrigerator realized by the accompanying Python implementation ek_engine_acoustic.py. All strokes are exact (piecewise-constant Hamiltonians with unitary propagators). We define heat/work at the cycle boundary, construct an entropic resource ledger, derive consistency checks, and relate resource spending to heat balances. Units: $\hbar = k_B = 1$.

0) Hilbert Space, Ordering, and Conventions

Composite space

$$\mathcal{H} = \mathcal{H}_{S_h} \otimes \mathcal{H}_{S_c} \otimes \mathcal{H}_{B_{h1}} \otimes \mathcal{H}_{B_{h2}} \otimes \mathcal{H}_M \otimes \mathcal{H}_D,$$

with dimensions $(2, 2, 2, 2, n_M, n_D)$ and ordering $(S_h, S_c, B_{h1}, B_{h2}, M, D)$. Partial trace: $\rho_X = \text{Tr}_{\bar{X}} \rho$. Frequencies from CLI in GHz are converted internally to angular frequencies $\omega = 2\pi f$.

1) Bare Hamiltonians and Couplings (Embedded)

1.1 Bare terms

$$H_S = \frac{\omega_h}{2} \sigma_z^{(S_h)} + \frac{\omega_c}{2} \sigma_z^{(S_c)},\tag{1}$$

$$H_{B_h} = \frac{\omega_{h1}}{2} \sigma_z^{(B_{h1})} + \frac{\omega_{h2}}{2} \sigma_z^{(B_{h2})}, \tag{2}$$

$$H_M = \omega_M \left(a_M^{\dagger} a_M + \frac{1}{2} \right), \qquad H_D = \omega_D \left(a_D^{\dagger} a_D + \frac{1}{2} \right),$$
 (3)

$$H_{B_c} = H_M + H_D, \qquad H_0 = H_S + H_{B_h} + H_{B_c}.$$
 (4)

1.2 Work, contact, and cooling couplings

Work channel (XY) on S_h - S_c :

$$H_g = \frac{1}{2} \left(\sigma_x^{(S_h)} \sigma_x^{(S_c)} + \sigma_y^{(S_h)} \sigma_y^{(S_c)} \right). \tag{5}$$

Contacts:

$$H_{SB}^{(h)} = \sigma_x^{(S_h)} \sigma_x^{(B_{h1})} + \sigma_x^{(S_h)} \sigma_x^{(B_{h2})}, \tag{6}$$

$$H_{SB}^{(c)} = \sigma_x^{(S_c)} X^{(M)}, \quad X^{(M)} = a_M + a_M^{\dagger}.$$
 (7)

Cooling leg:

$$H_{\rm bs} = \sigma_{-}^{(S_c)} a_M^{\dagger} + \sigma_{+}^{(S_c)} a_M \quad \text{(beam-splitter)}, \tag{8}$$

$$H_{\rm md} = a_M a_D^{\dagger} + a_M^{\dagger} a_D \quad \text{(mode-mode)}. \tag{9}$$

2) Stroke Hamiltonians and Exact Evolution

With couplings $(\kappa_h, \kappa_c, g_{\rm on}, \chi, g_{\rm bs}, g_{\rm md})$ and durations $(t_{\rm th}, t_{\rm work}, t_{\rm cool}, t_{\rm rlx})$,

$$H_{\rm th} = H_0 + \kappa_h H_{SB}^{(h)} + \kappa_c H_{SB}^{(c)}, \tag{10}$$

$$H_{\text{work}} = H_0 + g_{\text{on}} H_g + \chi \left(H_{SB}^{(h)} + H_{SB}^{(c)} \right),$$
 (11)

$$H_{\text{cool}} = H_0 + g_{\text{bs}}H_{\text{bs}} + g_{\text{md}}H_{\text{md}},\tag{12}$$

$$H_{\rm rlx} = H_0 + \frac{1}{2}\kappa_h H_{SB}^{(h)} + \frac{1}{2}\kappa_c H_{SB}^{(c)}.$$
 (13)

Each stroke is unitary: $U = \exp(-iHt)$ via spectral decomposition.

One cycle from $\rho_{\rm in}$:

$$\rho_1 = U_{\rm th} \rho_{\rm in} U_{\rm th}^{\dagger}, \quad U_{\rm th} = e^{-iH_{\rm th}t_{\rm th}}, \tag{14}$$

$$\rho_2 = U_{\text{work}} \rho_1 U_{\text{work}}^{\dagger}, \quad U_{\text{work}} = e^{-iH_{\text{work}}t_{\text{work}}},$$
(15)

$$\rho_3 = U_{\text{cool}} \rho_2 U_{\text{cool}}^{\dagger}, \quad U_{\text{cool}} = e^{-iH_{\text{cool}}t_{\text{cool}}}, \tag{16}$$

$$\rho_4 = U_{\rm rlx} \rho_3 U_{\rm rlx}^{\dagger}, \quad U_{\rm rlx} = e^{-iH_{\rm rlx}t_{\rm rlx}}. \tag{17}$$

Set $\rho_{\text{out}} = \rho_4$ (faithful paper path). The optional standard control replaces $\rho_{\text{out}} \mapsto \rho_{S_h S_c} \otimes \rho_{B_h} \otimes \rho_{B_c}$ at the boundary (non-unitary).

3) Heat and Work (Cycle Boundary)

3.1 Heat definitions

$$Q_h = -\Delta \langle H_{B_h} \rangle = -\left(\text{Tr}[\rho_{\text{out}} H_{B_h}] - \text{Tr}[\rho_{\text{in}} H_{B_h}] \right), \quad (+ \text{ means energy from hot to device}), \quad (18)$$

$$Q_c = +\Delta \langle H_{B_c} \rangle = Q_M + Q_D, \tag{19}$$

$$Q_M = +\Delta \langle H_M \rangle, \qquad Q_D = +\Delta \langle H_D \rangle.$$
 (20)

 $Q_M < 0$ indicates refrigeration of the mechanical mode.

3.2 Quench work identity (exact)

At a sudden change $H_{\text{before}} \to H_{\text{after}}$ the state is unchanged instantaneously, so

$$W_q = \text{Tr}\left[\rho \left(H_{\text{after}} - H_{\text{before}}\right)\right]. \tag{21}$$

For our four boundaries:

$$W_q^{(1)} = \text{Tr}[\rho_1(H_{\text{work}} - H_{\text{th}})], \quad W_q^{(2)} = \text{Tr}[\rho_2(H_{\text{cool}} - H_{\text{work}})],$$
 (22)

$$W_q^{(3)} = \text{Tr}[\rho_3(H_{\text{rlx}} - H_{\text{cool}})], \quad W_q^{(4)} = \text{Tr}[\rho_4(H_{\text{th}} - H_{\text{rlx}})].$$
 (23)

Total work done on the device: $W_{\text{on}} = \sum_{k} W_q^{(k)}$. We report

$$W_{\text{out}} = -W_{\text{on}}. (24)$$

Optional reset charge (fair control comparison). If the control decorrelates at temperature T_{reset} , the minimum erasure work is

$$W_{\text{reset}} \ge T_{\text{reset}} (\sigma_{\text{pre}} - \sigma_{\text{post}}),$$
 (25)

and we include it via $W_{\rm on} \mapsto W_{\rm on} + W_{\rm reset}$.

3.3 Consistency checks

Evaluated at $H_{\rm th}$:

$$\underbrace{\left(\langle H_{\rm th}\rangle_f - \langle H_{\rm th}\rangle_i\right) + W_{\rm out}}_{\text{same-}H \text{ ledger}} \approx 0, \tag{26}$$

$$\underbrace{W_{\text{out}} - (Q_h - Q_c) + (\Delta E_S + \Delta E_{\text{int}})}_{\text{split ledger}} \approx 0, \tag{27}$$

where $H_{\rm int} = H_{\rm th} - H_S - H_{B_h} - H_{B_c}$, $\Delta E_S = \Delta \langle H_S \rangle$, and $\Delta E_{\rm int} = \Delta \langle H_{\rm int} \rangle$. In the faithful path, both residuals are at machine precision in simulation.

4) Entropic Resource Ledger

Let $R = B_{h1}B_{h2}MD$ and $B_c = MD$. Define

$$I(S_h S_c : R) = S(\rho_{S_h S_c}) + S(\rho_R) - S(\rho), \tag{28}$$

$$D(\rho \| \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]. \tag{29}$$

With thermal references $\rho_{B_h}^{\text{th}}$ at T_h and $\rho_{B_c}^{\text{th}}$ at T_c ,

$$\sigma \equiv I(S_h S_c : R) + D\left(\rho_{B_h} \| \rho_{B_h}^{\text{th}}\right) + D\left(\rho_{B_c} \| \rho_{B_c}^{\text{th}}\right), \qquad \Delta\sigma = \sigma_{\text{out}} - \sigma_{\text{in}}.$$
 (30)

 $\Delta \sigma < 0$ flags resource consumption in that cycle.

5) Linking $\Delta \sigma$ to Heat/Entropy Balances

For a fixed bath Hamiltonian H_B and Gibbs state $\tau_B = e^{-\beta_B H_B}/Z_B$:

$$D(\rho_B \| \tau_B) = \beta_B \operatorname{Tr}[\rho_B H_B] - \log Z_B - S(\rho_B) \quad \Rightarrow \quad \Delta D_B = \beta_B \Delta E_B - \Delta S_B. \tag{31}$$

With our heat signs $(Q_h = -\Delta E_{B_h}, Q_c = +\Delta E_{B_c}),$

$$\beta_h Q_h + \beta_c Q_c = -\left(\Delta S_{B_h} + \Delta S_{B_c}\right) - \left(\Delta D_{B_h} + \Delta D_{B_c}\right). \tag{32}$$

Global unitary dynamics conserve $S(\rho)$, so

$$\Delta I(S_h S_c : R) = \Delta S_{S_h S_c} + \Delta S_R. \tag{33}$$

Approximating $\Delta S_R \simeq \Delta S_{B_h} + \Delta S_{B_c}$ (bath-internal correlations absorbed in the resource term) gives

$$\Delta \sigma \simeq \Delta S_{S_h S_c} - \beta_h Q_h - \beta_c Q_c \tag{*}$$

Hence, with no net resource spending ($\Delta \sigma \geq 0$) the Clausius-like inequality is recovered; when $\Delta \sigma < 0$ a cycle can transiently offset the heat-entropy ledger by consuming correlations/athermality.

6) First Law and Efficiency

At the boundary (same reference $H_{\rm th}$):

$$\Delta E_{\text{tot}} + W_{\text{out}} = 0, \qquad \Delta E_{\text{tot}} = \Delta \langle H_{\text{th}} \rangle.$$
 (34)

Split form:

$$W_{\text{out}} = Q_h - Q_c - (\Delta E_S + \Delta E_{\text{int}}). \tag{35}$$

In steady operation, $\Delta E_S + \Delta E_{\rm int} \approx 0$ and $W_{\rm out} \approx Q_h - Q_c$.

Efficiency (engine mode only).

$$\eta = \frac{W_{\text{out}}}{\max(Q_h, 0)} \quad \text{if } Q_h > 0 \text{ and } W_{\text{out}} > 0, \qquad \eta_C = 1 - \frac{T_c}{T_h}.$$
(36)

We print "n/a" outside genuine engine mode to avoid ill-conditioned ratios when Q_h is tiny.

7) Modes of Operation (Sign Logic)

Using $(Q_M, W_{\text{out}}, \Delta \sigma)$:

- Engine-burst: $W_{\text{out}} > 0$ and $\Delta \sigma < 0$ (resource was spent to deliver work).
- Refrigerator: $Q_M < 0$ and $W_{\text{out}} < 0$ (work invested to cool M; typically $\Delta \sigma \ge 0$).
- Heat-dump: $Q_D \gg 0$, $Q_M \approx 0$, $W_{\text{out}} < 0$ (energy pumped mainly to the dump).

8) Thermal References and Exact Quantities

Thermal state on (H, β) : $\rho^{\text{th}} = e^{-\beta H}/Z$, $Z = \text{Tr}[e^{-\beta H}]$. Von Neumann entropy: $S(\rho) = -\text{Tr}[\rho \log \rho]$. Relative entropy: $D(\rho \| \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$. Mutual information: $I(S:R) = S(\rho_S) + S(\rho_R) - S(\rho_{SR})$.

9) Why All Mechanical Work is Quench Work Here

Within a stroke $\dot{H} = 0$ and $\dot{\rho} = -i[H, \rho]$ gives $d\langle H \rangle/dt = \text{Tr}[\dot{\rho}H] + \text{Tr}\left[\rho\dot{H}\right] = 0$. Thus internal stroke evolution contributes no external work; all mechanical work is at parameter quenches, exactly the W_q terms.

10) Resource–Heat Inequality and Bounds (Intuition)

From (\star) :

$$\Delta S_{S_h S_c} - \beta_h Q_h - \beta_c Q_c \approx \Delta \sigma. \tag{37}$$

If $\Delta \sigma \geq 0$, a Clausius-like bound holds; if $\Delta \sigma < 0$, the resource offsets the ledger and can transiently enable $W_{\rm out} > 0$ or enhanced cooling. Sustained super-Carnot averages require sustained resource spending and replenishment by nonthermal means.

11) Map to Experiment (Symbols \leftrightarrow Knobs)

- H_{work} : XY exchange via tunable coupler or CR; tune g_{on} , t_{work} . Small χ during work allows $I(S_hS_c:R)$ to drop (spend resource) where it converts to W_{out} .
- H_{cool} : red-sideband $S_c \leftrightarrow M$ sets g_{bs} ; parametric bridge $M \leftrightarrow D$ sets g_{md} . Larger values and longer t_{cool} drive refrigeration $(Q_M < 0, W_{\text{out}} < 0)$.
- $H_{\rm th}, H_{\rm rlx}$: soft contacts to build correlations and settle; overly strong contacts wash out coherence; overly weak slow resource charging.

12) Parameter Effects (Qualitative)

- Increase $g_{\rm on}$, $t_{\rm work}$, $|\chi| \Rightarrow$ higher chance of athermal burst $(W_{\rm out} > 0, \Delta \sigma < 0)$.
- Increase g_{bs} , g_{md} , $t_{\text{cool}} \Rightarrow \text{stronger refrigeration } (Q_M < 0, n_M \downarrow)$, typically $W_{\text{out}} < 0$.
- Long cycles + strong cooling \Rightarrow commonly $\Delta \sigma > 0$ per cycle (resource charging).

13) Efficiency Guard (Why Sometimes "n/a")

Reporting $\eta = W_{\text{out}}/Q_h$ is ill-conditioned when Q_h is tiny; we only report η when $Q_h > 0$ and $W_{\text{out}} > 0$.

14) Optional Control and Fairness

The diagnostic control performs $\rho \mapsto \rho_{S_h S_c} \otimes \rho_{B_h} \otimes \rho_{B_c}$ at the boundary. This is non-unitary and not free. To compare fairly, charge the minimal erasure work $W_{\text{reset}} \geq T_{\text{reset}}(\sigma_{\text{pre}} - \sigma_{\text{post}})$ (Landauer), and, if desired, include the state-change work at the same reference Hamiltonian to close the ledger.

15) What to Check in Data

Per cycle:

- Energy checks $\sim 10^{-13}$ (simulation) / within error bars (experiment).
- Engine-burst: $W_{\text{out}} > 0$ and $\Delta \sigma < 0$.
- Refrigeration: $Q_M < 0$, n_M decreases, typically $W_{\text{out}} < 0$.
- Persist logs of $Q_h, Q_M, Q_D, Q_c, W_{\text{out}}, I(S_h S_c : R), D_{B_h}, D_{B_c}, n_M$ with calibration metadata.

16) Minimal Identities Used

- Relative-entropy identity: $D(\rho || \tau_{\beta}) = \beta \operatorname{Tr}[\rho H] \log Z S(\rho)$, hence $\Delta D = \beta \Delta E \Delta S$.
- Mutual information under global unitary: $\Delta I(S:R) = \Delta S_S + \Delta S_R$ (since S_{SR} is constant).
- Sudden quench work: $W_q = \text{Tr}[\rho (H_{\text{after}} H_{\text{before}})].$

Companion files: ek_engine_acoustic.py (exact-stroke simulator) and ek_engine_acoustic_experiment.tex (build/measurement guide).