Data Splitting

- · Process: Divide the dataset into training and testing subsets.
 - Key Phrase: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 - Callout: 80% of data used for training, 20% for testing. random_state ensures reproducibility.

Model Initialization

- Process: Select and initialize the classification algorithm.
 - Key Phrase: model = LogisticRegression(solver='liblinear', random_state=42)
 - · Callout: Logistic Regression model chosen for binary classification.

Model Training

- Process: Train the model using the prepared training data.
 - Key Phrase: model.fit(X_train, y_train)
 - Callout: The model learns patterns from the features and their corresponding target labels.

Model Prediction

- Process: Generate predictions on the unseen test data.
 - Key Phrase: y_pred = model.predict(X_test)
 - Callout: Model forecasts landing outcomes (0 or 1) for the test set.

Model Evaluation

- Process: Assess the model's performance using various metrics.
 - Key Phrase (Accuracy): accuracy = accuracy_score(y_test, y_pred)
 - Key Phrase (Confusion Matrix): conf_matrix = confusion_matrix(y_test, y_pred)
 - Key Phrase (Classification Report): print(classification_report(y_test, y_pred))
 - Callout: Metrics provide insight into correct/incorrect predictions, precision, recall, and F1-score.