Fractional numbers.

Given a number 15.213 in base-10 is
$$1 \times 10 + 5 \times 1 + 2 \times \frac{1}{10} + \frac{1}{100} \times 1 + \frac{3}{1000}$$

$$1 \times 10 + 5 \times 1 + 2 \times \frac{1}{10} + \frac{1}{100} \times 1 + \frac{3}{1000}$$

Simblady, we can have representations in binary as well.

Qn: How do we represent 17?

La How do we represent numbers with repeating parts?

Figure 2.30

Fractional binary representation. Digits to the left of the binary point have weights of the form 2^i , while those to the right have weights of the form $1/2^i$.

Qn: Is there a better way of expressing numbers in the form 2 × 24?

Floating point

We can represent numbers in the form (-1) x M x 2

S: Stown

M: Signb Reand & [1,2)

E: Exponent

Figure 2.31 Standard floating-point formats. Floating-point numbers are represented by three fields. For the two most common formats, these are packed in 32-bit (single precision) or 64-bit (double precision) words.

S: Single bit

exp: ek, ek, ... eo

frac: fun, ..., fo

Normalized values:

Case when exp is not all zeroes nor all 1s.

E= e-bias
$$k=8 \Rightarrow 2^{k-1}$$

$$= 128-1 = 127$$

$$e_{k-1} \dots e_0$$

$$= 126 \text{ fo } 127$$

$$= 127$$

$$= 128 - 1 = 127$$

M= 1+f where f=(0,1). = 1=M<2

Denormalized values: Case when exp is all zeroes.

E= 1-bias Note that this is 1-bias instead of -bias. M=f.

On: How do we represent zero?

1. Normalized

≠ 0 & ≠ 255

2. Denormalized

90	00	0	0	0	0	0
3 0	1010		0	U	0	U

3a. Infinity

	s	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

3b. NaN

s 1 1 1 1 1 1 1 1 ± 0	
-----------------------	--

Figure 2.32 Categories of single-precision, floating-point values. The value of the exponent determines whether the number is (1) normalized, (2) denormalized, or a (3) special value.

(a) Complete range

(b) Values between -1.0 and +1.0

Figure 2.33 Representable values for 6-bit floating-point format. There are k = 3 exponent bits and n = 2 fraction bits. The bias is 3.

Largest denormalized number:

Venin =
$$\frac{1}{64} \times \frac{7}{8} = \frac{7}{512}$$

Smallest normalized number:

Max value is 240.

More generally,

Denomalized numbers:

$$M \ge 2^{-n}$$
. $E = -2 + 2$. $Y = 2^{2-n-2k-1}$ Smallest.

$$M = 1 - 2^{N}$$

$$E = -2^{k-1} + 2$$

$$V = (1 - 2^{N}) \times 2^{-2^{k-1}} + 2$$
Largest denorm.
Value.

Smallest normalized value: $E = -2^{k-1} + 2$; M = 1 $V = 2^{-2^{k-1}} + 2$

Dn: How do we represent 1?

Largest normalized value

$$V = (2-2^{-1}) \times 2^{2^{k-1}}$$

Rounding:

$$\chi^{-1} \leq \chi \leq \chi^{\dagger}$$

FP Multiplication

- \blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

4 bit significand: $1.010*2^2 \times 1.110*2^3 = 10.0011*2^5$ = $1.00011*2^6 = 1.001*2^6$

Floating Point Addition

 \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}

Assume E1 > E2

Get binary points lined up

■ Exact Result: (-1)^s M 2^E

- Sign s, significand M:
 - Result of signed align & add
- Exponent E: E1

(-1)5 M

Fixing

- ■If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- Overflow if *E* out of range
- Round M to fit frac precision

$$1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}$$

= $10.0110 * 2^{3} = 1.00110 * 2^{4} = 1.010 * 2^{4}$