H4: norms and distances 4.1 normed vector spaces		
> this is a map $\mathbb{F} \rightarrow \mathbb{R}$: $x \rightarrow x $ for which the properties apply:		
• non-negativity: $\forall x \in \mathbb{F}, x \geq 0$ (thus $ \cdot $ is actually a map $\mathbb{F} \to \mathbb{R}_{\geq 0}$),		
• multiplicativity: $\forall x, y \in \mathbb{F}, xy = x y ,$		
	• subadditivity (also known as triangle inequality): $\forall x,y \in \mathbb{F}, x+y \leq x + y $.	
	• positive definiteness: $ x = 0 \iff x = 0$,	
def: norm	For V a vector space over a field $\mathbb F$ with an absolute value	
	> the norm is a map $V \to \mathbb{R}$: $v \to v $ that satisfies $(\forall v, w \in V, \forall a \in \mathbb{F})$: • absolute homogeneity: $ av = a v $,	
	• subadditivity or triangle inequality: $ v+w \le v + w $.	
	• positive definiteness: $ v = 0 \iff v = 0$,	
def: normed vector space (V, .)	= a vector space with a norm .	
4.1.1 Hölder norms		
def: Hölders ρ-norms	For a vector $\mathbf{v} = (\mathbf{v}^1,, \mathbf{v}^n) \in \mathbb{F}^n$	
	> for all $\rho \ge 1$: $\ v\ _p = \left(\sum_{i=1}^n \left v^i\right ^p\right)^{1/p}$.	
def: Manhattan norm	= norm for which ρ=1	
maximum norm	= norm for which ρ=∞	
Euclidean norm	= norm for which ρ =2	
Minkowski's inequality: p and q	assume p \geq 1 and introduce q: $\frac{1}{p}+\frac{1}{q}=1.$ or $q=p/(p-1),$	
lemma1: Young's inequality	any two nonnegative numbers a,b $\in \mathbb{R}_{\geq 0}$ satisfy Young's inequality: $ab \leq rac{a^p}{p} + rac{b^q}{q}.$	
lemma2: Hölder's inequality	Any two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$ satisfy the inequality: $\sum_{i=1}^n \left v^i \right \left w^i \right \leq \ \mathbf{v} \ _p \left\ \mathbf{w} \right\ _q$	
> prop: Minkowski's inequality	any two vactors $\mathbf{v},\mathbf{w} \in \mathbb{F}^n$ satisfy the inequality:	
	$\left\ oldsymbol{v}+oldsymbol{w} ight\ _{p}\leq\left\ oldsymbol{v} ight\ _{p}+\left\ oldsymbol{w} ight\ _{p}.$	
def: the $\ell^p(\mathbb{F})$ space	= subspace of vector space of all sequences $\mathbb{F}^{\mathbb{N}_0}$ > contains all elements \mathbf{v} for which $\sum_{i=1}^{+\infty} v^i ^p$ converges to a finite values	
4.1.2 interlude: calculus in metric sp	paces	
def: metric d	for a set X	
	> metric d is a binary function $X \times X \to \mathbb{R}_{\geq 0}$ satisfying the properties:	
	• identity of indiscernibles: $d(x,y) = 0 \iff x = y$,	
	• symmetry: $d(x,y) = d(y,x)$,	
	• triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$.	
	A set X with a metric d is called a metric space (X, d)	

prop: normed vector space to metric space	A normed vector space (V, .) becomes a metric space using the definition:	
	$d_V: V \times V \to \mathbb{R}: (v, w) \mapsto \ v - w\ .$	
def: isometric map	For a map $\Phi: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y)	
	> this is a isometric map if it preserves distances:	
	$\forall x, x' \in X, d_X(x, x') = d_Y(\Phi(x), \Phi(x')).$	
open subset	S \subseteq X is open if for every x \in S there is some r>0 such that B _r (x) is contained in S	
closed subset	if S ^C = X\S is open, then S ^C is closed	
def: closure ⁻ S ⁻	= smallest closed set containing S ie: union of S with any possible limit point of sequences in S	
dense subset	a subset S⊆X is dense if X=¯S¯	
separable matric space X	= matric space that admits a dense subset and is countable	
bounded matric set	= metric set for which there exists a real constant M such that d(x,y) <m all="" for="" td="" x,y<=""></m>	
4.1.3 convergence and continuity in normed vector spaces		
prop: norm as a function	the norm itself is a continuous function $V \rightarrow \mathbb{R}$	
prop: vector addition and scalar mult.	- vector addition is a continuous map from VxV to V	
	- scalar multiplication is a continuous map from $\mathbb{F}xV$ to V	
4.1.4 equivalence of norms		
def: equivalence of norms	For two norms $\ v\ _a$ and $\ v\ _b$ on V	
	> $\ .\ _a$ is equivalent with $\ .\ _b$ if they give rise to the same converging sequences with the same limits	
	ie: $\lim_{k\to\infty} \ v_k - v\ _a = 0$ if and only if $\lim_{k\to\infty} \ v_k - v\ _b = 0$.	
prop: equivalence of norms	For two norms $\ v\ _a$ and $\ v\ _b$ on V	
	> $\ .\ _a$ is equivalent with $\ .\ _b$ if and only if there exists constants c,C>0 such that:	
	$\forall v \in V : c \ v\ _a \le \ v\ _b \le C \ v\ _a$.	
prop: equivalence of norms on V	For V a finite-dimensional vector space	
	> any two norms on V are equivalent	
> prop: continuity of norms on V	For a finite-dimensional vector space V	
	> any norm is continuous with respect to the metric generated by any other norms	
theorem: properties of norms > definition of compactness	For a finite-dimensional vector space V For a subset U⊆V	
	> the following statements are equivalent and indicate that U is <i>compact</i> :	
	 Every cover of U contains a finite subcover, i.e. if a set of open subsets {V_α ⊆ V} covers U (which means U ⊆ ∪{V_α}), then there exists a finite selection {V_{α1}, V_{α2},,V_{αk}} that covers U. 	
	Any sequence in U has a convergent subsequence with limit point in U.	
	U is bounded and closed.	
Lemma: Riesz-lemma	For W a closed proper subspace of W For any $\epsilon \in (0,1)$	
	> we can always find a $\ v_{arepsilon}\in V\ with\ \ v_{arepsilon}\ =1\ and\ \ v_{arepsilon}-w\ \geq arepsilon\ for\ all\ w\in W.$	

	4.2 Banach spaces
4.2.1 Cauchy sequences and complete	ness
def: Cauchy sequence	Cauchy space in a metric space (X,d _x)
	= a sequence of points $(x_n \in X)_{n \in \mathbb{N}_0}$ such that:
	for any $\varepsilon > 0$, $\exists N'_{\varepsilon} \in \mathbb{N}$ such that $\forall m, n > N'_{\varepsilon}, d_X(x_m, x_n) < \varepsilon$.
prop: Cauchy space and convergence	For a metric space (X,d _X)
	> any sequence $(x_n \in X)_{n \in \mathbb{N}_0}$ that converges to a limit x is a Cauchy space
def: metric completeness	the metric set X is metric complete
	> if every Cauchy sequence in X has a limit
def: Banach space	= normed vector space that is complete
prop: sequence and Banach spaces	All of the sequence spaces $\ell^p(\mathbb{F})$ over a complete field \mathbb{F} are Banach spaces.
prop: Banach space of C([a,b])	The space of continuous functions C([a,b]) on a compact interval [a,b] with the uniform norm ∥.∥ _∞ is a Banach space
4.2.2 dense subspaces, closures and co	omplete sets
def: complete set	For S≼V a subset of a Banach space V over the field F
	> S is a complete set if S is such that the span $\mathbb{F} S$ is dense in V, thus $\overline{\mathbb{F} S} = V$
prop: separability	if a Banach space V admits a countable infinite set S, it is separable
4.2.3 Convergence of series	
def: convergence	For a series $\sum_{n=1}^{\infty} v_n$ of vectors v_n in a normed vector space $(V, \ \cdot\)$ For a vector $v \in V$
	> the series converges to v if the sequence of partial sums converge: $\sum_{n=1}^{+\infty} v_n = v \iff \lim_{n\to\infty} \left\ \sum_{k=1}^n v_k - v \right\ = 0.$
def: absolutely convergent	For a series $\sum_{n=1}^{+\infty} v_n$ of vectors in a normed vector space $(V, \ \cdot\)$
	> this series is absolutely convergent if: $\textstyle\sum_{n=1}^{\infty}\ v_n\ <\infty.$
prop: complete normed space	For a normed space (V, .)
	> this space is metric complete if and only if every absolutely convergent series converges > then the space is thus a Banach space
	4.3 Norms for linear maps
def: Frobenius norm	For a matrix $A \in \mathbb{F}^{mxn}$
	> the Frobenius norm is given by: $\ \mathbf{A}\ _{\mathrm{F}} = \left(\sum_{i=1}^m \sum_{j=1}^n \left A^i_j\right ^2\right)^{1/2} = \sqrt{\mathrm{tr}(\mathbf{A}^H\mathbf{A})}.$
4.3.1 continuity and subordinate norm	s
def: bounded linear map	For a linear map Â∈Hom(V,W)
	> \hat{A} is bounded if there exists a constant $C \in \mathbb{R}_{\geq 0}$ such that $\ \hat{A}v\ _W \leq C \ v\ _V$.
prop: equivalent statements for Â	For a linear map Â∈Hom(V,W), the following statements are equivalent: 1. Â is bounded 2. Â is continuous at the origin (or some other point).
	3. \hat{A} is continuous everywhere, and is in fact uniformly continuous.

def: subspace of bounded linear maps	For two normed vector spaces $(V,\ \cdot\ _V)$ and $(W,\ \cdot\ _W)$
	> we define: $\mathcal{B}(V,W)\subseteq \operatorname{Hom}(V,W) \text{ as the subspace of bounded linear maps between } V \text{ and } W.$
prop: B = Hom	For two normed vector spaces $(V,\ \cdot\ _V)$ and $(W,\ \cdot\ _W)$
	> if V is finite-dimensional, then: $\mathcal{B}(V,W) = \operatorname{Hom}(V,W).$
def: subordinate	For a norm $\ \hat{A}\ $ for linear maps $\hat{A} \in \mathfrak{B}(V,W)$ For two normed spaces $(V,\ .\ _V)$ and $(W,\ .\ _W)$
	> if these normed spaces satisfy for all v∈V:
	$\left\ \hat{A}v\right\ _{W} \leq \left\ \hat{A}\right\ \left\ v\right\ _{V}$
	the subordinate with respect to the vector norms (V, $\ .\ _v$) and (W, $\ .\ _w$)
def: operator norm /induced norm	= smallest constant C which bounds a bounded linear map > equivalent definitions: $\begin{split} \ \hat{A}\ _{V \to W} &= \inf\{C \ \hat{A}v\ _W \leq C \ v\ _V, \forall v \in V\} \\ &= \sup\left\{ \frac{\ \hat{A}v\ _W}{\ v\ _V} \text{ with } v \neq o_V \right\} \\ &= \sup\{\ \hat{A}v\ _W \text{ with } \ v\ _V = 1\} \end{split}$
prop: induced norm and Banach space	For $(V, . _V)$ a normed vector space For $(W, . _W)$ a Banach space
	> the space of bounded linear maps $\mathfrak{B}(V,W)$ together with the induced norm $\ .\ _{V\to W}$ is a Banach space
def: submultiplicative	For . a norm on the space of linear operators End(V) For V a vector space
	> if $\ \hat{A}\hat{B}\ \leq \ \hat{A}\ \ \hat{B}\ $, then $\ \cdot\ $ is said to be submultiplicative .
prop: operator norm and submult.	For (V, . _V) a normed vector space
	> the associated operator norm $\ .\ _{V\to V}$ on End(V) is submultiplicative
4.3.2 matrix norms	
def: consistent matrix norm	For a family of norms for all matrices: $\{\ \cdot\ ^{(m\times n)}: \mathbb{F}^{m\times n} \to \mathbb{R}_{\geq 0}; \forall m,n\in\mathbb{N}\}$ For all matrices $A\in\mathbb{F}^{mxk}$ and $B\in\mathbb{F}^{kxn}$ For all $m,n,k\in\mathbb{N}$
	> the family is consistent if it satisfies:
	$\left\ AB\right\ ^{(m\times n)} \leq \left\ A\right\ ^{(m\times k)} \left\ B\right\ ^{(k\times n)}$
prop: norms and matrix size	The norms: $\ \mathbf{A}\ _p = \ \mathbf{A}\ _{p \to p} \text{ that are induced by the vector } p\text{-norm}$
	can be defined for any matrix size, and form a consistent family of matrix norms
prop: consistent Frobenius norm	The Frobenius norm $\mathbf{A_F}$ is consistent > thus submultiplicative and subordinate with respect to vector 2-norm > reduces for column matrices in $\mathbb{F}^{n\times 1}$

4.3.3 spectral radius and Gelfand formul	a
def: spectral radius	The spectral radius of an operator Â∈End(V) is:
	$ \rho_{\hat{A}} = \sup\{ \lambda ; \lambda \in \sigma_{\hat{A}}\}. $
prop: norm and spectral radius	For . a submultiplicative norm on End(V)
	For a finite-dimensional vector space V
	For any Â∈End(V)
	it holds: $\ \hat{A}\ \geq ho_{\hat{A}}.$
prop: Gelfand formula	For . a submultiplicative norm on End(V)
	For a finite-dimensional vector space V For any Â∈End(V)
	For any Acend(v)
	> we have: $\lim_{n o\infty} \left\ \hat{A}^n ight\ ^{1/n} = ho_{\hat{A}}.$
4.3.4 dual norms	
def: dual norm . *	For a normed vector space $(V, .)$ For $V^* = Hom(V, \mathbb{F})$
	> the induced norm on V* is also known as the dual norm . *
	ie: for $\xi \in V^*$
	$\left\ \mathcal{\xi} ight\ ^* = \sup \left\{ rac{\left \mathcal{\xi} \left[v ight] ight }{\left\ v ight\ }; orall v \in V, v eq o ight\}.$
prop: dual norm of normed vector space	For the normed vector space $(\mathbb{F}^n,\ .\ _p)$ (ie the standard n-dimensional vector space with Hölder p-norm)
	> the dual norm of $\xi = (\xi_1, \dots, \xi_n) \cong \boldsymbol{\xi}^T$ is given by $\ \boldsymbol{\xi}\ _p^* = \ \boldsymbol{\xi}\ _q$
	with q such that $\frac{1}{p} + \frac{1}{q} = 1$.
	4.4 applications
4.4.1 functions of matrices revisited	
function on matrix	define the application of a function f: $\mathbb{C} \to \mathbb{C}$ to an operator $\hat{A} \in End(V)$:
	When the function f has a Taylor series:
	$f(z) = \sum_{n=0}^{+\infty} f_n z^n$
	that converges absolutely for all z with z <r> R is the convergence radius</r>
	Define a norm on End(V) > investigate the convergence of the series:
	$\sum_{n=0}^{+\infty} f_n \hat{A}^n. \tag{4.34}$
	In particular, if $\ \cdot\ $ is a submultiplicative norm on $\mathrm{End}(V)$, so that $\ \hat{A}^n\ \leq \ \hat{A}\ ^n$, we have
	$\sum_{n=0}^{+\infty} \ f_n \hat{A}^n\ = \sum_{n=0}^{+\infty} f_n \ \hat{A}^n\ \le \sum_{n=0}^{+\infty} f_n \ \hat{A}\ ^n $ (4.35)

> is guaranteed to converge if ||Â||<R