NBA 4920/6921 Lecture 15 Elastic Net Application

Murat Unal

10/21/2021

```
rm(list=ls())
options(digits = 3, scipen = 999)
library(tidyverse)
library(ISLR)
library(ggplot2)
library(cowplot)
library(ggcorrplot)
library(stargazer)
library(corrr)
library(lmtest)
library(sandwich)
library(MASS)
library(car)
library(jtools)
library(caret)
library(leaps)
library(future.apply)
library(glmnet)
Hitters <- ISLR::Hitters
Hitters <- na.omit(Hitters)</pre>
```

Previous test RMSEs:

```
RMSE <- matrix(NA,ncol = 1, nrow = 8)
rownames(RMSE) <- c("rmse.ridge.lambdabig",
   "rmse.ridge.lambda4","rmse.ridge.lambda0",
   "rmse.ridge.lambdabest","rmse.lasso.lambda1se",
   "rmse.lasso.lambdabest", "rmse.elnet.lambda1se",
   "rmse.elnet.lambdabest")
RMSE[1:6,1] <- c(405,296,300,292,334,297)
RMSE</pre>
```

```
[,1]
rmse.ridge.lambdabig
                       405
rmse.ridge.lambda4
                       296
rmse.ridge.lambda0
                       300
rmse.ridge.lambdabest
                       292
rmse.lasso.lambda1se
                        334
rmse.lasso.lambdabest
                       297
rmse.elnet.lambda1se
                        NA
                        NΑ
rmse.elnet.lambdabest
```

Elastic net

- Now, there are two parameters to tune: λ and α .
- ▶ The **glmnet** package allows to tune λ via cross-validation for a fixed α , but it does not support α -tuning.

- Let's write our own loop that does the tuning
- First, we create a common fold_id, which just allows us to apply the same CV folds to each model.
- \blacktriangleright We then create a tuning grid that searches across a range of αs from 0-1, and empty columns where we'll dump our model results into.

replace=TRUE)

```
results into.
# maintain the same folds across all models
fold_id <- sample(1:10, size = length(y[train]),</pre>
```

search across a range of alphas
tuning_grid <- data.frame(
 alpha = seq(0, 1, by = .1),</pre>

alpha = seq(0, 1, by = .1),
mse_min = NA,mse_1se = NA,
lambda min = NA,lambda 1se = NA)

Now we can iterate over each α value, apply a CV elastic net, and extract the minimum and one standard error MSE values and their respective λ values.

```
for(i in seq along(tuning grid$alpha) ) {
  # fit CV model for each alpha value
  fit <- cv.glmnet(x[train,], y[train],</pre>
                   alpha = tuning_grid$alpha[i],
                                 foldid = fold id)
  # extract MSE and lambda values
  tuning_grid$mse_min[i] <- fit$cvm[fit$lambda==</pre>
                                          fit$lambda.min]
                            <- fit$cvm[fit$lambda==
  tuning_grid$mse_1se[i]
                                          fit$lambda.1sel
  tuning grid$lambda min[i] <- fit$lambda.min
  tuning grid$lambda 1se[i] <- fit$lambda.1se
```

tuning_grid %>% arrange(mse_min)

alpha mse_mir		mse_1se	lambda_min	lambda_1se	
0.0	129229	162541	24.31	4451	
1.0	129734	161372	2.79	115	
0.9	129775	161084	3.11	128	
8.0	129932	160957	3.49	144	
0.7	130133	161130	3.64	165	
0.1	130311	164170	135.91	959	
0.6	130320	161324	3.87	192	
0.2	130418	162119	89.83	526	
0.5	130565	161697	4.23	231	
0.3	130710	163761	65.73	385	
0.4	130749	162338	5.29	289	

 \blacktriangleright Extract the optimum alpha and λ values

best.index <- which.min(tuning_grid\$mse_min)
best.alpha <- tuning_grid[best.index ,"alpha"]
best.lambda <- tuning_grid[best.index ,"lambda_min"]</pre>

best.lambda.1se <- tuning_grid[best.index ,"lambda_1se"]

best.alpha

best.lambda

[1] 24.3

Γ1 0

best.lambda.1se

[1] 4451

Now that have identified the preferred model, we retrain the model and simply use predict to predict the same model on a new data set.

```
elnet.mod <- glmnet(x[train,], y[train],alpha=best.alpha)</pre>
```

```
RMSE[7:8,1] <- c(rmse.elnet.lambda1se,
                rmse.elnet.lambdabest)
RMSE
```

[,1]rmse.ridge.lambdabig 405

329

295

rmse.ridge.lambda4 296 rmse.ridge.lambda0 300 rmse.ridge.lambdabest 292 rmse.lasso.lambda1se 334 rmse.lasso.lambdabest 297

rmse.elnet.lambda1se

rmse.elnet.lambdabest

- We could also use the caret package to do cross-validation for both α and λ
- ▶ The package has the train() meta engine (aggregator) that

allows us to apply almost any direct engine with method()

```
cv 10 = trainControl(method = "cv", number = 10)
grid = expand.grid(alpha = seq(0,1,by=0.1),
                    lambda = 10^seq(3,-2,length=100))
elnet = train(
  Salary ~ .,
  data = Hitters[train,],
 method = "glmnet",
 trControl = cv_10,
  preProcess = c("center", "scale"),
 tuneGrid = grid)
```

$\verb|elnet$bestTune|$

	alpha	lambda
86	0	196

```
alpha.best <- unlist(unname(elnet$bestTune[1]))
lambda.best <- unlist(unname(elnet$bestTune[2]))</pre>
```

plot(elnet, xvar = "lambda")

- Final model with cross-validated parameters elnet.final <- glmnet(x[train,],y[train],alpha=alpha.best)</pre> elnet.final.lambdabest <- predict(elnet.final, s=lambda.best,newx=x[-train,])

elnet.lambdabest.caret

[1] 293

elnet.lambdabest.caret <- sqrt(mean((y[-train]-</pre>

elnet.final.lambdabest)^2))

```
predict(elnet.final, s=lambda.best, type = "coefficients")[1
```

(Intercept)	AtBat	Hits	HmRun	Run
7.62142	-0.05566	1.02454	1.29116	1.2476
Walks	Years	CAtBat	CHits	CHmRu

1.02142	-0.05566	1.02454	1.29116	1.24/0
Walks	Years	\mathtt{CAtBat}	CHits	CHmRu
2.31336	-0.31149	0.00929	0.06329	0.4365

CRBI CWalks LeagueN DivisionW

0.04249

5.37944

0.11970

-1.94017

Errors NewLeagueN

PutOut:

17.35836 -135.45306

0.2111