第六章 总线

2022年9月21日 星期三 17:09

为什么要设计总线? I/O设备的种类和数量越来越多,为了解决I/O设备与主机之间连接的灵活性,设计了总线 一组能为多个部件分时共享的公共信息传送路线 <mark>分时性</mark>:同一时刻只允许有一个部件向总线<mark>发送</mark>信息;同一时刻只能有一个主设备控制总线的传输操作 共享性: 总线上可以挂接多个部件 优点 • 便于增减外设 • 减少信息传输线的条数 缺点 ● 降低了信息传输的并行性和信息的传输速度 □ 按其对总线有无控制能力可分为主设备和从设备 • 主设备: 获得总线控制权的设备 • 从设备:被主设备访问的设备,它只能响应从主设备发来的各种总线命令 机械特性:尺寸,大小 电气特性: 传输方向和有效电平范围 功能特性: 每根传输线的功能 时间特性: 信号和时序的关系 按功能划分 • 芯片内部的总线 • 是CPU芯片内部寄存器与寄存器之间、寄存器与ALU之间的公共连接线 • 计算机系统内各功能部件(CPU、主存、I/O接口)之间相互连接的总线 • 按系统总线传输内容的不同又可分为3类 数据总线 | 6 传输各功能部件之间的数据信息 • 是双向传输线,其位数与机器字长、存储字长有关。 也址总线 • 指出主存和I/O设备接口电路的地址 • 是单向传输线 • 地址总线的位数与主存地址空间的大小有关 空制总线 ◆ 传输控制信息 • 包括控制命令和反馈信号 • 主要用于连接中低速的I/O设备 • 通过I/O接口与系统总线相连接 • 目的是将低速设备和高速总线分离,以提升总线的系统性能 • 常见的有USB、PCI总线。 • 是在计算机系统之间或计算机系统或其他系统之间传送信息的总线 通信总线也称外部总线 按时序控制方式分同步总线 异步总线

| 按数据传输格式分 | 串行传输:数据的传输在一条线路上按位进行

并行传输:每个数据位有一条单独的传输线,所有的数据位同时进行

总线复用方式: 不同信号在同一条信号线上分时传输

30/05/2013/2019				
	单总线结构	双总线结构	三总线结构	
优点	结构简单,成本低易于接入新的设备	将低速I/O设备从单总线上分离出来实现了存储器总线和I/O总线分离	提高了I/O设备的性能使其更快地响应命令提高系统吞吐量	
缺点	带宽低,负载重多个部件只能争用唯一的主线不支持并发传送操作	• 需要增加通道等硬件设备	• 系统工作效率低	
组成	系统总线	主存总线+I/O总线	I/O总线+主存总线+DMA总线	
结构图	系统总线 CPU 主存 设备接口 设备接口 图 6.1 单总线结构	主存总线	I/O总线 主存总线 J J 主存 DMA总线 I/O接口 I/O接口 磁盘机 打印机 显示器 图 6.3 三总线结构	

见的总线标准(2023删除了该考点!了解USB即可)

- 总线标准是国际上公布的互连各个模块的标准,是把各种不同的模块组成计算机系统时必须遵守的规范
- PCI, EISA, ISA是并行总线
- USB,PCI-Expressx16是串行总线

ISA	• 工业标准体系结构	
	• 非局部总线	
	• 最早出现的微型计算机的系统总线,应用在IBM的AT机上	
EISA	• 扩展的ISA	
VESA	• 视频电子标准协会	
PCI	外部设备互连支持即插即用,局部总线	
AGP	• 加速图形接口,一种视频接口标准	
PCI-E	• 最新的总线接口标准,它将全面取代线性的PCI和AGP	
RS-232C	由美国电子工业协会推荐的一种串行通信总线适用于串行二进制交换的数据终端设备和数据通信设备之间的标准接口	
USB	通用串行总线即插即用,热插拔,有很强的连接能力,有很好的可扩展性;高速传输	
PCMCIA	广泛应用于笔记本电脑的一种接口标准是一个用于扩展功能的小型插槽。即插即用	
IDE	集成设备电路更准确地称为ATA, 硬盘和光驱通过IDE接口与主板连接	
SCSI	小型计算机系统接口是一种用于计算机和智能设备之间(硬盘、软驱)系统级接口的独立处理器标准	
SATA	串行高级技术附件是一种基于行业标准的串行硬件驱动器接口	

总线传输周期	• 指一次总线操作所需的时间,由若干总线时钟周期构成
总线时钟周期	• 即机器的时钟周期
总线工作频率	 总线上各种操作的频率,为总线周期的倒数 工作频率 = $\frac{1}{\dot{c}$ 总线周期
总线时钟频率	• 时钟频率 = $\frac{1}{$ 时钟周期
总线宽度 (总线位宽)	• 总线上同时能传输的数据位数,通常指数据总线的根数
总线带宽	总线的最大数据传输率,即单位时间内总线上最多可传输数据的位数总线带宽=总线工作频率×(总线位宽/8)【单位为字节/s】
总线复用	一种信号线在不同的时间传输不同的信息因此可以使用较少的线传输更多的信息,从而节约空间和成本
信号线数	• 地址总线、数据总线和控制总线3种总线数的总和称为信号线数
	• 其中最重要的是总线宽度、总线工作频率、总线带宽
	• 三者关系: (总线带宽) 或者说(传输率) =总线宽度×总线工作频率

十算传输数据所要的时间	22.【2012 统考真题】某同步总线的时钟频率为 100MHz, 宽度为 32 位, 地址/数据线复用, 每传输一个地址或数据占用一个时钟周期。若该总线支持突发(猝发)传输方式, 则一次"主存写"总线事务传输 128 位数据所需要的时间至少是()。
	A.20ns B.40ns C.50ns . D.80ns
	时脚周期 = $\frac{1}{H + h + h} = \frac{1}{100 \times 10^6} = \frac{1}$
	使送地址 => 1个时钟周期 = 10ns 使送数据 >> $\frac{12812}{316}$ × 时钟周期 = 40ns
	佐送数据 >> 12872 × 时钟周期 =40115
计算数据传输率/总线带宽	25.【2014 统考真题】某同步总线采用数据线和地址线复用方式,其中地址/数据线有 32 根,总线时钟频率为 66MHz,每个时钟周期传送两次数据(上升沿和下降沿各传送一次数据),该总线的最大数据传输率(总线带宽)是(し)。 パブーニン 次をみまれ
	A.132MB/s B.264MB/s C.528MB/s D.1056MB/s
	財師母期 = -1000 S
	3以之一) 4月後2年后
	財師母期 = $\frac{1}{66M}$ \$ 31% => 48% \$ 数据传输 = $\frac{\cancel{\text{E}}\cancel{\text{Com}}}{\cancel{\text{Com}}}$ = $\frac{48\times2}{\cancel{\text{E}}\cancel{\text{Com}}}$ = $88\times66M$ = $524MB/S$
	32.【2020 统考真题】QPI 总线是一种点对点全工同步串行总线,总线上的设备可同时接收和发送信息,每个方向可同时传输 20 位信息(16 位数据+4 位校验位),每个 QPI 数据包有 80 位信息,分2 个时钟周期传送,每个时钟周期传递 2 次。/因此,QPI 总线带宽为:每秒传送次数×2B×2。若 QPI 时钟频率为 2.4GHz,则总线带宽为(()).
	A.4.8GB/s B.9.6GB/s C.19.2GB/s D.38.4GB/s
	总伐带家 = 每初传送从数 × 2B × 2 > 全双飞线 ————————————————————————————————————
	总伐带皮 = 一每种性送水散 × 2B × 2 > 全双飞线 两个方向可同 由 15 的传输信息
	= 19.2GB(S 1612th=2B

• 总线事务: 从请求总线到完成总线使用的操作序列。【在一个总线周期中发生的一系列活动】 | <mark>请求阶段</mark> | 主设备发出总线传输请求并且获得总线控制权 | <mark>仲裁阶段</mark> | 总线仲裁机构决定将下一个传输周期的总线使用权授予某个申请者 ||<mark>寻址阶段</mark>||主设备通过总线给出要访问的从设备地址及有关命令,启动从模块 ││<mark>传输阶段</mark>│主模块和从模块进行数据交换,可单向或双向进行数据传送(一般只能传输一个字长的数据) | <mark>释放阶段</mark> | 主模块的有关信息均从系统总线上撤除,让出总线使用权 • 突发传送方式能够进行连续成组数据的传送;其寻址阶段发送的是连续数据单元的首地址 • 突发传送方式可以提高总线数据传输率

• 主设备只需给出一个首地址,从设备就能从首地址开始的若干连续单元读出或写入多个数据

总线定时/控制: 总线在双方交换数据的过程中需要时间上配合关系的控制【实质是一种协议或者规则】

