

COMP702: Classical Artificial Intelligence

4: Theoretical models for games

▶ A branch of mathematics studying decision making

- A branch of mathematics studying decision making
- A game is a system where one or more players choose actions; the combination of these choices lead to each agent receiving a payoff

- A branch of mathematics studying decision making
- A game is a system where one or more players choose actions; the combination of these choices lead to each agent receiving a payoff
- Important applications in economics, ecology and social sciences as well as Al

 Two students, Alice and Bob, are suspected of copying from each other

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade
- If Alice betrays Bob, she receives an A whilst he gets expelled

- ► Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade
- If Alice betrays Bob, she receives an A whilst he gets expelled
- If Bob betrays Alice, he receives an A whilst she gets expelled

- Two students, Alice and Bob, are suspected of copying from each other
- Each is offered a deal in exchange for information
- Each can choose to betray the other or stay silent but they cannot communicate before deciding what to do
- ▶ If both stay silent, both receive a C grade
- If Alice betrays Bob, she receives an A whilst he gets expelled
- If Bob betrays Alice, he receives an A whilst she gets expelled
- ▶ If both betray each other, both get an F

Payoff matrix

Payoff matrix

	A silent	A betray	
B silent	A: 50	A: 70	
	B: 50	B: -100	
B betray	A: -100	A: 0	
	B: 70	B: 0	

► The best outcome overall is for both of us to stay silent

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him
- And if Bob betrays me, I should betray him to avoid getting expelled

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him
- And if Bob betrays me, I should betray him to avoid getting expelled
- ► Therefore the rational choice is to betray

- ► The best outcome overall is for both of us to stay silent
- However if Bob stays silent, I can get a better mark by betraying him
- And if Bob betrays me, I should betray him to avoid getting expelled
- ► Therefore the rational choice is to betray
- ... and Bob's thought process is the same!

 Consider the situation where both have chosen to betray

- Consider the situation where both have chosen to betray
- Neither person has anything to gain by switching to silence, assuming the other person doesn't also switch

- Consider the situation where both have chosen to betray
- Neither person has anything to gain by switching to silence, assuming the other person doesn't also switch
- ► Such a situation is called a **Nash equilibrium**

- Consider the situation where both have chosen to betray
- Neither person has anything to gain by switching to silence, assuming the other person doesn't also switch
- ► Such a situation is called a Nash equilibrium
- If all players are rational (in the sense of wanting to maximising payoff), they should converge upon a Nash equilibrium

Does every game have a Nash equilibrium?

Does every game have a Nash equilibrium?

	A rock	A paper	A scissors
B rock	A: 0	A: +1	A: -1
	B: 0	B: -1	B: +1
B paper	A: -1	A: 0	A: +1
	B: +1	B: 0	B: -1
B scissors	A: +1	A: -1	A: 0
	B: -1	B: +1	B: 0

Committing to any choice of action can be exploited

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop
 - ▶ If I choose paper, you'll choose scissors, so I should choose rock, but then you'll choose paper, so I'll choose scissors, so you'll choose rock, so I choose paper...

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop
 - ▶ If I choose paper, you'll choose scissors, so I should choose rock, but then you'll choose paper, so I'll choose scissors, so you'll choose rock, so I choose paper...
- ► The optimum strategy is to be unpredictable

- Committing to any choice of action can be exploited
- E.g. if you always choose paper, I choose scissors
- If we try to reason naïvely, we get stuck in a loop
 - ▶ If I choose paper, you'll choose scissors, so I should choose rock, but then you'll choose paper, so I'll choose scissors, so you'll choose rock, so I choose paper...
- The optimum strategy is to be unpredictable
- ► Choose rock with probability $\frac{1}{3}$, paper with probability $\frac{1}{3}$, scissors with probability $\frac{1}{3}$

 A mixed strategy assigns probabilities to actions and chooses one at random

- A mixed strategy assigns probabilities to actions and chooses one at random
- In contrast to a pure or deterministic strategy, which always chooses the same action

- A mixed strategy assigns probabilities to actions and chooses one at random
- In contrast to a pure or deterministic strategy, which always chooses the same action
- If we allow mixed strategies, every game has at least one Nash equilibrium

 Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- ► Example:

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- ▶ Example:
 - ▶ If the guesses are 30, 40 and 80...

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- ▶ Example:
 - ▶ If the guesses are 30, 40 and 80...
 - ... then the mean is $\frac{30+40+80}{3} = 50...$

- Everyone guesses a real number (decimals are allowed) between 0 and 100 inclusive
- ► The winner is the person who guesses closest to $\frac{2}{3}$ of the mean of all guesses
- ▶ Example:
 - ▶ If the guesses are 30, 40 and 80...
 - ... then the mean is $\frac{30+40+80}{3} = 50...$
 - ... so the winning guess is 30, as this is closest to $\frac{2}{3} \times 50 = 33.333$

The average can't possibly be greater than 100

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- ► So no rational player would guess greater than 44.444

- The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44,444

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44.444
- ► So no rational player would guess greater than 29.629

- ► The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44.444
- So no rational player would guess greater than 29.629
- ▶ ... and so on ad infinitum

- ▶ The average can't possibly be greater than 100
- So no rational player would guess a number greater than 66.666
- Which means the average can't possibly be greater than 66.666
- So no rational player would guess greater than 44.444
- Which means the average can't possibly be greater than 44.444
- So no rational player would guess greater than 29.629
- ... and so on ad infinitum
- ► So the only **rational** guess is 0, as every rational player should guess 0 and $\frac{2}{3}$ of 0 is 0

Rationality

Rationality

 Rationality is a useful assumption for mathematics and Al programmers

Rationality

- Rationality is a useful assumption for mathematics and Al programmers
- However it's important to remember that humans aren't always rational

Markov decision processes and games

► A Markov decision process (MDP) is defined by:

- ▶ A Markov decision process (MDP) is defined by:
 - ► A finite set S of **states**;

- ▶ A Markov decision process (MDP) is defined by:
 - ► A finite set S of **states**;
 - ► A finite set A of actions;

- ▶ A Markov decision process (MDP) is defined by:
 - ► A finite set S of **states**;
 - A finite set A of actions;
 - ▶ P(s, a, s') is the **probability** that action a in state s leads to state s';

- ▶ A Markov decision process (MDP) is defined by:
 - ► A finite set S of **states**;
 - A finite set A of actions;
 - ▶ P(s, a, s') is the **probability** that action a in state s leads to state s';
 - ▶ R(s, a, s') is the **reward** received from performing action a in state s and ending up in state s'.

► Given a state s and an action a, the next state s' is determined by P(s, a, s')

- Given a state s and an action a, the next state s' is determined by P(s, a, s')
- ▶ The previous states before s have no effect

- Given a state s and an action a, the next state s' is determined by P(s, a, s')
- ► The previous states before s have no effect
- ► Hence an MDP is "memoryless"

- Given a state s and an action a, the next state s' is determined by P(s, a, s')
- ► The previous states before s have no effect
- Hence an MDP is "memoryless"
- (Or rather, any memory has to be contained within the state)

(Non)determinism

► MDP defines P(s, a, s')

- ► MDP defines P(s, a, s')
- ▶ From state s and action a, there may be several possible states s'

- ► MDP defines P(s, a, s')
- ▶ From state s and action a, there may be several possible states s'
- ▶ MDPs are nondeterministic i.e. stochastic

- ► MDP defines P(s, a, s')
- ▶ From state s and action a, there may be several possible states s'
- MDPs are nondeterministic i.e. stochastic
- ▶ If we have

$$P(s, a, s') = \begin{cases} 1 & \text{for some } s' \\ 0 & \text{for all other } s' \end{cases}$$

then the MDP is deterministic

- ► MDP defines P(s, a, s')
- From state s and action a, there may be several possible states s'
- MDPs are nondeterministic i.e. stochastic
- ▶ If we have

$$P(s, a, s') = \begin{cases} 1 & \text{for some } s' \\ 0 & \text{for all other } s' \end{cases}$$

then the MDP is **deterministic**

In the deterministic case, the same state s and action a always leads to the same state s'

▶ A **policy** for an MDP is a function $\pi: S \to A$

- ▶ A **policy** for an MDP is a function $\pi: S \to A$
- ▶ I.e. in state s, choose action $a = \pi(s)$

- ▶ A **policy** for an MDP is a function $\pi: S \to A$
- ▶ I.e. in state s, choose action $a = \pi(s)$
- ▶ Goal: find π which maximises the total reward over time

lacktriangle We have assumed a **single agent** choosing a policy π

- lacktriangle We have assumed a **single agent** choosing a policy π
- We can extend to *n* agents choosing policies π_1, \dots, π_n

- lacktriangle We have assumed a **single agent** choosing a policy π
- We can extend to *n* agents choosing policies π_1, \ldots, π_n
- ▶ The "action" is now a combination $(a_1, ..., a_n)$ of all the agents' actions

- lacktriangle We have assumed a **single agent** choosing a policy π
- We can extend to *n* agents choosing policies π_1, \ldots, π_n
- ▶ The "action" is now a combination $(a_1, ..., a_n)$ of all the agents' actions
- Each agent has their own reward function and is trying to maximise it

- lacktriangle We have assumed a **single agent** choosing a policy π
- ▶ We can extend to *n* agents choosing policies π_1, \ldots, π_n
- ▶ The "action" is now a combination $(a_1, ..., a_n)$ of all the agents' actions
- Each agent has their own reward function and is trying to maximise it
- ► This is a **game!**

Game trees

Consider a 2-agent MDP with the following restrictions:

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic
 - Only one agent chooses an action from a given state

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic
 - Only one agent chooses an action from a given state
 - Some states are terminal these are the only ones with non-zero reward

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic
 - Only one agent chooses an action from a given state
 - Some states are terminal these are the only ones with non-zero reward
 - ▶ The game is **zero sum**: $\overline{R_1(s, a, s')} + R_2(s, a, s') = 0$

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic
 - Only one agent chooses an action from a given state
 - Some states are terminal these are the only ones with non-zero reward
 - ► The game is **zero sum**: $\overline{R_1(s, a, s') + R_2(s, a, s')} = 0$
- ► I want to **maximise** my reward

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic
 - Only one agent chooses an action from a given state
 - Some states are terminal these are the only ones with non-zero reward
 - ► The game is **zero sum**: $R_1(s, a, s') + R_2(s, a, s') = 0$
- ► I want to **maximise** my reward
- My opponent wants to maximise their reward, which is the same as minimise my reward

- Consider a 2-agent MDP with the following restrictions:
 - Deterministic
 - Only one agent chooses an action from a given state
 - Some states are terminal these are the only ones with non-zero reward
 - ► The game is **zero sum**: $R_1(s, a, s') + R_2(s, a, s') = 0$
- ► I want to **maximise** my reward
- My opponent wants to maximise their reward, which is the same as minimise my reward
- Therefore I want to maximise the minimum value my opponent can achieve

 Recursively defines a value for non-terminal game states

- Recursively defines a value for non-terminal game states
- Consider each possible "next state", i.e. each possible move

- Recursively defines a value for non-terminal game states
- Consider each possible "next state", i.e. each possible move
- If it's my turn, the value is the maximum value over next states

- Recursively defines a value for non-terminal game states
- Consider each possible "next state", i.e. each possible move
- If it's my turn, the value is the maximum value over next states
- If it's my opponent's turn, the value is the minimum value over next states

Minimax search – example

procedure MINIMAX(state, currentPlayer)

procedure MINIMAX(state, currentPlayer) **if** state is terminal **then**

procedure MINIMAX(state, currentPlayer)
if state is terminal then
return value of state

procedure MINIMAX(state, currentPlayer)
if state is terminal then
return value of state
else if currentPlayer = 1 then

procedure MINIMAX(state, currentPlayer) if state is terminal then return value of state else if currentPlayer = 1 then bestValue = $-\infty$

procedure MINIMAX(state, currentPlayer) if state is terminal then return value of state else if currentPlayer = 1 then bestValue = $-\infty$ for each possible nextState do

procedure MINIMAX(state, currentPlayer)
if state is terminal then
return value of state
else if currentPlayer = 1 then
bestValue = $-\infty$ for each possible nextState do V = MINIMAX(nextState, 3- currentPlayer)

```
procedure MINIMAX(state, currentPlayer)
  if state is terminal then
    return value of state
  else if currentPlayer = 1 then
    bestValue = -∞
    for each possible nextState do
    v = MINIMAX(nextState, 3- currentPlayer)
    bestValue = MAX(bestValue, v)
```

```
procedure MINIMAX(state, currentPlayer)
if state is terminal then
return value of state
else if currentPlayer = 1 then
bestValue = -\infty
for each possible nextState do
v = MINIMAX(nextState, 3- currentPlayer)
bestValue = MAX(bestValue, v)
return bestValue
```

```
procedure MINIMAX(state, currentPlayer)
if state is terminal then
return value of state
else if currentPlayer = 1 then
bestValue = −∞
for each possible nextState do
v = MINIMAX(nextState, 3− currentPlayer)
bestValue = MAX(bestValue, v)
return bestValue
else if currentPlayer = 2 then
```

```
procedure Minimax(state, currentPlayer)
   if state is terminal then
      return value of state
   else if currentPlayer = 1 then
      bestValue = -\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = Max(bestValue, v)
      return bestValue
   else if currentPlayer = 2 then
      bestValue = +\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = Min(bestValue, v)
      return bestValue
```

```
procedure Minimax(state, currentPlayer)
   if state is terminal then
      return value of state
   else if currentPlayer = 1 then
      bestValue = -\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = Max(bestValue, v)
      return bestValue
   else if currentPlayer = 2 then
      bestValue = +\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = Min(bestValue, v)
      return bestValue
```

for each possible nextState do
 v = MINIMAX(nextState, 3- currentPlayer)
 bestValue = MAX(bestValue, v)

 \blacktriangleright State values are always between -1 and +1

- ► State values are always between -1 and +1
- ➤ So if we ever have bestValue = 1, we can stop early

- ► State values are always between -1 and +1
- So if we ever have bestValue = 1, we can stop early
- ▶ Similarly when minimising if bestValue = -1

- ▶ State values are always between −1 and +1
- So if we ever have bestValue = 1, we can stop early
- ▶ Similarly when minimising if bestValue = -1
- There are techniques for smarter early stopping, e.g. alpha-beta pruning

▶ To decide what move to play next...

- ► To decide what move to play next...
- Calculate the minimax value for each move

- ► To decide what move to play next...
- ► Calculate the minimax value for each move
- Choose the move with the maximum score

- ▶ To decide what move to play next...
- Calculate the minimax value for each move
- Choose the move with the maximum score
- If there are several with the same score, choose one at random

 For a two-player zero-sum game with perfect information and sequential moves

- For a two-player zero-sum game with perfect information and sequential moves
- Minimax search will always find a Nash equilibrium

- For a two-player zero-sum game with perfect information and sequential moves
- Minimax search will always find a Nash equilibrium
- ▶ I.e. a minimax player plays **perfectly**

- For a two-player zero-sum game with perfect information and sequential moves
- Minimax search will always find a Nash equilibrium
- ▶ I.e. a minimax player plays perfectly
- ▶ But...

► The game tree for noughts and crosses has only a few thousand states

- ► The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully

- The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully
 - ▶ Connect 4 has $\approx 10^{13}$ states

- The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully
 - ▶ Connect 4 has $\approx 10^{13}$ states
 - Chess has $\approx 10^{47}$ states

- The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully
 - ▶ Connect 4 has $\approx 10^{13}$ states
 - ► Chess has $\approx 10^{47}$ states
- Generally need to cut off the tree at a certain depth and use heuristics

- The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully
 - ► Connect 4 has $\approx 10^{13}$ states
 - ► Chess has $\approx 10^{47}$ states
- Generally need to cut off the tree at a certain depth and use heuristics
- Basically, define our own reward function that (hopefully) approximates the real one

Application to games

► The ideas of MDPs and game theory apply readily to board games

- The ideas of MDPs and game theory apply readily to board games
- State = state of the board

- The ideas of MDPs and game theory apply readily to board games
- State = state of the board
- ► Action = a move

- The ideas of MDPs and game theory apply readily to board games
- State = state of the board
- ► Action = a move
- ► Reward = win or loss, score, etc.

Technically a video game is an MDP

- Technically a video game is an MDP
 - State = entire state of the game (memory?)

- Technically a video game is an MDP
 - State = entire state of the game (memory?)
 - Action = controller input on each frame

- Technically a video game is an MDP
 - State = entire state of the game (memory?)
 - Action = controller input on each frame
- ► However this is intractable

- Technically a video game is an MDP
 - State = entire state of the game (memory?)
 - Action = controller input on each frame
- However this is intractable
- Generally necessary to abstract parts out of the game to treat as MDPs / game theory games