Topología, curso 2019-20

Ноја 4

- 1. i) Demuestra que un espacio X es conexo si y sólo si no existe ninguna aplicación continua y sobreyectiva $f: X \longrightarrow Y$ donde $Y = \{0, 1\}$ con la topología discreta.
- ii) Usa el apartado anterior para probar que si S es un subconjunto conexo de un espacio X y K satisface $S \subset K \subset \overline{S}$ entonces K es conexo.
- **2.** i) Sean A_1, A_2, \ldots, A_n subconjuntos conexos de un espacio topológico tales que $A_k \cap A_{k+1} \neq \emptyset$ para todo $1 \le k < n$. Prueba que $\bigcup_{k=1}^n A_k$ es conexo. Generaliza el resultado para una colección numerable de conexos.
- ii) Sean A y A_{α} , $\alpha \in I$, conjuntos conexos de un espacio topológico X, con la propiedad de que $A_{\alpha} \cap A \neq \emptyset$ para todo $\alpha \in I$. Demuestra que $(\cup_{\alpha \in I} A_{\alpha}) \cup A$ también es conexo.
- **3.** i) Sea I un intervalo de \mathbb{R} . Demuestra que la gráfica de una función continua $f:I\to\mathbb{R}$ es un subconjunto conexo del plano.
- ii) Para $\alpha \in I$, sean $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ funciones continuas que toman valores tanto positivos como negativos en \mathbb{R} y sea F la función idénticamente nula en \mathbb{R} . Prueba que la unión de las gráficas de F y de las f_{α} es un subconjunto conexo del plano. ¿Se sigue la misma conclusión si no incluimos en la unión la gráfica de F?
- **4.** i) Prueba que si $f: X \to Y$ es un homeomorfismo entonces, para cualesquiera $x_1, \ldots, x_n \in X, \ X \setminus \{x_1, \ldots, x_n\}$ e $Y \setminus \{f(x_1), \ldots, f(x_n)\}$ también son homeomorfos.
- ii) Aplica lo anterior para demostrar que (1,2), [1,2] y [1,2) no son subconjuntos homeomorfos de \mathbb{R} .
- iii) Demuestra que un intervalo abierto y un intervalo cerrado de \mathbb{R} no pueden ser homeomorfos.
- **5.** Estudia si $X = [0,1] \times [0,1]$ es conexo con:
- i) La topología del orden lexicográfico en X.
- ii) La topología heredada de \mathbb{R}^2 con el orden lexicográfico.
- **6.** i) Demuestra que si X e Y son conexos y A, B son subconjuntos propios no vacíos de X e Y respectivamente entonces $X \times Y \setminus \mathsf{A} \times \mathsf{B}$ es conexo.
- ii) En la situación anterior, ¿es cierto que si X e Y son conexos por caminos entonces $X \times Y \setminus \mathsf{A} \times \mathsf{B}$ también lo es?
- 7. i) Caracteriza todos los subconjuntos conexos de \mathbb{R} con la topología cofinita.
- ii) Demuestra que las componentes conexas de R con la topología de Sorgenfrey son los puntos.
- **8.** i) Demuestra que si A es numerable entonces $\mathbb{R}^2 \setminus A$ es conexo por caminos. Indicación: El conjunto de rectas que pasan por un punto no es numerable.
- ii) Demuestra que todo subconjunto conexo de \mathbb{R}^n con más de un punto es no numerable.
- **9.** Demuestra que $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R})$ no es homeomorfo a \mathbb{R} . ¿Son \mathbb{R}^1 y \mathbb{R}^2 homeomorfos?
- 10. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- i) Si X es conexo por caminos y $\exists f \colon X \to Y$ continua y suprayectiva entonces Y también es conexo por caminos.
- ii) Si A es un conexo por caminos de un espacio topológico X y A \subset D \subset \overline{A} entonces D es conexo por caminos.
- iii) Si una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ satisface la conclusión del teorema de los valores intermedios en cualquier intervalo, entonces es necesariamente continua.

- **11.** Sea (X, \mathcal{T}) el espacio topológico dado por $X = \{a, b, c, d, e\}, \mathcal{T} = \{X, \emptyset \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}.$
- i) Es (X, \mathcal{T}) conexo?
- ii) ¿Es $A = \{b, d, e\}$ un conexo de X?
- 12. Se dice que un espacio topológico es totalmente disconexo si sus únicos subconjuntos conexos son los conjuntos que constan de un único punto.
- i) Demuestra que un espacio finito Hausdorff es totalmente disconexo.
- ii) Demuestra que si la topología es la discreta entonces el espacio es totalmente disconexo. ¿Conoces un ejemplo de espacio totalmente disconexo cuya topología no sea la discreta?
- **13.** Demuestra que un espacio X es conexo si y sólo si todo subconjunto propio $A \subset X$ tiene frontera no vacía. Recuerda que $\partial A = \overline{A} \cap \overline{X \setminus A}$ y que $\overline{A} = \operatorname{Int}(A) \cup \partial A$.
- **14.** i) Se considera a \mathbb{N} y a [0,1) con sus respectivos órdenes usuales, y a los productos $\mathbb{N} \times [0,1)$ y $[0,1) \times \mathbb{N}$ con los correspondientes órdenes lexicográficos. ¿Cuáles son continuos lineales?
- ii) Sea X un conjunto totalmente ordenado con la topología \mathcal{T} del orden. Demuestra que (X, \mathcal{T}) es conexo si y sólo si es un continuo lineal.