Fiche Théorie des graphes
· Dans un graphe quelconque de n sommets et manêtes
I deg (v) = 2 x m Graphe II existe un chemin eulerich si le nomine de sommets de degré impoir
· drbre = graphe comerce sans cycle. Un arbu de n sommets possède n-lavètes Binet - Cauchy det (AB) = \(\subseteq \text{det} \text{ (As)} \times \text{det} \text{ (Bs)} Th: Dags in anable comerce il sicol
de sommets de degré impoir est 2 ou Chemin enlerier soi le nombre
Habrice Laplacienne $e_{ij} = \begin{cases} deg(\pi i) & Si = j \\ -1 & Si (\pi i, \pi i) \text{ est une anelle} \end{cases}$ Habrice d'adjacence $Sinon$
Notations G = (V, E) ensemble des anètes (Edges) Ensemble des semmets Dans les graphes non orientes E est une nelative symétrique Si on a un graphe pondéré, ajoute une fonction w: E => IW - V = nombre de sommets - E = f-nombre d'arcs - &x nombre d'arcs - &x nombre d'arcs - &x nombre d'arctes. Distance dans un graphe d'arctes. Exertricité d'un sommet exc(u) = max d(u, v) Rayon d'un graphe = min exc(u) Userr Diamètre d'un graphe = max exc(u) userr
Dans un graphe cornexe toujeurs $ E > V - 1 \text{et} V = O(E) E = O(V ^2)$
Complexité de BFS
motrice Piste
on conexe $O(V + V ^2+ E) = O(V ^2)$ $O(V + E) = O(V ^2)$ $O(V + E) = O(E)$
ionexe O(IVI+IV2+1EI) = O(IVI) O(IVI+IEI) = O(IEI)

