ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2019-2020

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

Phy 4141: Physics I

Programmable calculators are not allowed. Do not write anything on the question paper. There are 4 (four) questions. Answer any 3 (three) of them including Question no 4.

		Figures in the right margin indicate marks.		
		Use single answer script		
1.	a)	State and explain Coulomb's law in electrostatics. With the help of an example show that electric charge is conserved.	7	
	b)	State Gauss's law in electrostatics. Write down Gauss's law for electricity, magnetism and the gravitation. A hypothetical cylinder of radius R is immersed in a uniform electric field E, the cylinder axis being parallel to the field. Show that the electric flux ϕ_E for this closed surface is zero.	10	
	c)	The distance r between the electron and proton in hydrogen atom is about 5.3 x 10^{-11} meter. Calculate the magnitude of electrical force and the gravitational force between these two particles. (G = $6.7 \times 10^{-11} \text{ nt-m}^2/\text{kg}^2$, $\epsilon_0 = 8.85 \times 10^{-12} \text{ coul}^2/\text{nt-m}^2$)	8	
2.	a)	Define electric field E . Obtain an expression for the electric field E at a distance y from an infinitely long line charge of linear charge density λ .	7	
	b)	What is an electric dipole and the dipole moment? Find the electric field E due to a dipole at a distance r along the perpendicular bisector of the dipole. Plot E for a point charge and a dipole as function of r with E being on the Y-axis and r along the X-axis.	10	
	c)	Calculate the magnitude of the electric field strength E such that an electron placed in the field, would experience an electric force equal to its weight?	8	
3.	a)	Define electric potential V. How is V related to the electric field E? What is an equipotential surface? Draw equipotential surfaces for a point charge and an electric dipole.	7	
	b)	Show that potential due to a point charge is given by $V \frac{1}{4\pi\varepsilon_o} \frac{q}{r}$ where the symbols have	10	
	c)	their usual meaning. Calculate the electric potential at the surface of a gold nucleus. The radius of gold nucleus is 6.6×10 -15 meter and the atomic number of gold $Z = 79$.	8	
	[M	Mandatory]		
4.	-	What is Fresnel biprism? How did Fresnel construct a biprism in order to study interference of light?	7	
	b)	the separation between such coherent sources measured in the experiment with biprism. Explain how you determined the wave length of light using biprism experiment.	10	
	c)	In a biprism experiment the eyepiece is placed at a distance of 1.2 m from the source. The distance between the virtual sources was found to be 7.5×10 ⁻⁴ m. Find the wavelength of light, if the eyepiece is to be moved transversely through a distance of 1.89 cm for 20 fringes.	8	