

MPSH11

MMBTH11

NPN RF Transistor

This device is designed for common-emitter low noise amplifier and mixer applications with collector currents in the 100 μA to 10 mA range to 300 MHz, and low frequency drift commonbase VHF oscillator applications with high output levels for driving FET mixers. Sourced from Process 47.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	3.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units	
		MPSH11	*MMBTH11		
P _D	Total Device Dissipation	350	225	mW	
	Derate above 25°C	2.8	1.8	mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W	

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

(continued)

 		\sim		4	
 △△tri	COL	ľ'n	ara	CtAI	istic
 CULI	cai	UII	aı a	しして	13116

TA = 25°C unless otherwise noted

Parameter	Test Conditions	Min	Max	Units
RACTERISTICS				
Collector-Emitter Sustaining Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	25		V
Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	30		V
Emitter-Base Breakdown Voltage	$I_E = 10 \mu\text{A}, I_C = 0$	3.0		V
Collector Cutoff Current	$V_{CB} = 25 \text{ V}, I_{E} = 0$		100	nA
Emitter Cutoff Current	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$		100	nA
	RACTERISTICS Collector-Emitter Sustaining Voltage* Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current	RACTERISTICS Collector-Emitter Sustaining Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_E = 0$ Emitter-Base Breakdown Voltage $I_E = 10 \mu\text{A}, I_C = 0$ Collector Cutoff Current $V_{CB} = 25 \text{ V}, I_E = 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RACTERISTICS Collector-Emitter Sustaining Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ 25 Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_E = 0$ 30 Emitter-Base Breakdown Voltage $I_E = 10 \mu\text{A}, I_C = 0$ 3.0 Collector Cutoff Current $V_{CB} = 25 \text{ V}, I_E = 0$ 100

ON CHARACTERISTICS

h _{FE}	DC Current Gain	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 4.0 \text{ mA}, I_B = 0.4 \text{ mA}$		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$		0.95	V

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	650		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$		0.7	pF
C _{rb}	Common-Base Feedback Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$	0.6	0.9	pF
rb묬c	Collector Base Time Constant	$I_C = 4.0 \text{ mA}, V_{CB} = 10 \text{ V},$ f = 31.8 MHz		9.0	pS

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Typical Characteristics

(continued)

Typical Characteristics (continued)

Collector Cut-Off Current vs Ambient Temperature

Capacitance vs Reverse Bias Voltage

Contours of Constant Gain Bandwidth Product (f_T)

(continued)

Common Emitter Y Parameters

Input Admittance vs **Collector Current**

Input Admittance vs Collector Current

Input Admittance vs Collector Voltage

Input Admittance vs Frequency

Forward Transfer Admittance

Forward Transfer Admittance

(continued)

Common Emitter Y Parameters (continued)

(continued)

Common Emitter Y Parameters (continued)

Output Admittance vs Collector Current

Output Admittance vs Collector Voltage

Output Admittance vs Frequency

Power Gain and Noise Figure vs Collector Current

Conversion Gain vs Collector Current

(continued)

Test Circuits

FIGURE 1: Unneutralized 200 MHz PG and NF Test Circuit

(continued)

Test Circuits (continued)

FIGURE 2: 45 MHz Power Gain Circuit

FIGURE 3: 200 MHz Conversion Gain Test Circuit