Экзамен Ozon Masters Вариант 1

Задача 1

Работа Паши - придумывать магические квадраты, то есть такие матрицы $A=\|a_{ij}\|_1^n$, что $\sum_{i=1}^n a_{ij}=\sum_{j=1}^n a_{ij}=s$ для всех $1\leq i,j\leq n$. Чтобы както скрасить свою рутинную работу, Паша придумал для себя игру: выбирая s случайно из набора $\{1,\frac{1}{2},,\frac{1}{3}\dots,\frac{1}{k}\}$ с вероятностью $P[s=\frac{1}{i}]=\frac{2}{k(k+1)}\cdot i,$ Π аша придумывает невырожденную матрицу A и обращает ее, получая матрицу $A^{-1} = ||b_{ij}||_1^n$.

Вычислите $\mathrm{E}\left[\sum_{i,j}b_{ij}\right]$ Задача 2 Пусть K_s - полный граф, имеющий s вершин. Ребра графа K_{3t-1} расскрашивают в 2 цвета. Докажите, что для любого $t \ge 1$ всегда найдутся t ребер одного цвета, не имеющих общих вершин.

Задача 3

На маркетплейсе Озон ноутбук "Плутон"продают три продавца: ООО "Слепили из того, что было ИП Билл Гейтс и АО "Импортозамещение". На них приходится 25%, 45% и 30% продаж соответственно.

Доля брака в их продукции составляет 2%, 3% и 5% соответственно.

Найдите вероятность того, что два случайно выбранных бракованных ноутбука "Плутон"были проданы одним и тем же продавцом.

Задача 4

Дан взвешенный планарный граф G(V, E). Вес каждого ребра $e \in E$ известен и равен t_e . Для каждой вершины $v \in V$ определяется случайная величина X_v с известными $\mathrm{E}[X_v] = \mu_v$ и $\mathrm{VAR}[X_v] = \sigma_v^2$. Обозначим через $P_{i,j}$ - множество маршрутов из вершины i в вершину j. Определим расстояние между вершинами i и j: $dist(i,j) = \min_{pinP_{i,j}} \sum_{e \in p} t_e$.

Назовем подмножество вершин $\hat{V} \subset V$ - кластером диаметра ρ , если для любых $i, j \in \hat{V}$ выполнено $dist(i, j) \le \rho$.

Предложите алгоритм деления V на $m\ (m \le k)$ кластеров $\hat{V}_1, \ldots, \hat{V}_k$, такой, что величина $\sum_{1 \le i \le k} \frac{\sum_{j \in \hat{V}_i} \mu_j}{\sqrt{\sum_{j \in \hat{V}_i} \sigma_j^2}}$ принимает минимальное значение.

От Вас требуется представить алгоритм, оценить его сложность (память, время), доказать корректность. Если получаемое решение приближенно оценки на качество решения.

Задача 5

Решите неоднородную систему:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ -5e^t \sin t \end{pmatrix}$$

Задача 6 Докажите абсолютную сходимость ряда $\sum_{n=1}^{\infty} a_n$, если

$$a_n = \frac{(-1)^n}{\ln^2(n+1)}(1-\cos\frac{1}{\sqrt{n}})$$