BRAC University (Department of Computer Science and Engineering) CSE 330 (Numerical Methods) for Spring 2024 Semester Quiz3 [CO1]

Student ID:	
Name:	
	Full Marks: 10
Section: 08	Duration:15 minutes

1) Consider the following table and use if for central difference for f'(1.25):

x	1.10	1.25	1.40
f(x)	12.52	14.24	17.11

- a) State the value of h. [1]
- **b)** Using the table above, find the f'(1.25) using the central difference method. Round the value to 3 significant figure [2]
- **c)** If the actual value is 16 find the absolute and relative error. Round the value to 3 significant figure [1]
- 2) Find the forward difference and truncation error for ln(x) at x=5, using the corresponding values of h = 0.2, 0.02. [2]
- 3) Find the bases of hermite interpolation using the nodes $(\pi, 1.5\pi)$ using the function, $f(x) = \cos(x)$. [4]
- 4) From question 3, find the hermite polynomial. [Bonus 1]

(b)
$$f(1.25) = \frac{f(n_0 + h)}{2h}$$

$$=\frac{f(1.25+0.15)-f(1.25-0.15)}{2/3(0.15)}$$

1 ...

$$\frac{dy}{dx} = \frac{1}{N}$$

dy = 1 forward difference =

1= = 0.2. at n=5, h=0.2, h=0.2

$$\frac{f_n(n+h)-l_n(n)}{h}$$

	Forward diff	Truncation error
0.2	0.19610	8.0039
0.02	0.19060	0.0004

$$f'(N) = -SinN.$$

 $\frac{1}{1000} = \frac{1000}{1000} =$

 $do(n) = \frac{2\pi}{1-2(x-no)(l'o(no))} (1o(n))^2$

$$2\left[1-2\left(n-7\right)\left(-2\pi\right)\right]\left[-2\pi\chi+3\pi\right]^{2}$$

$$\int_{\gamma} (n) = \frac{\gamma - \chi_0}{\gamma_1 - \gamma_0} = \frac{\gamma - \chi}{15 \chi - \chi} = \frac{\gamma - \chi}{0.5 \chi}$$

$$\hat{h}_{i}(n_{i}) = \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1$$

 $\frac{2n!}{n!} = \frac{2n!}{n!} = \frac{2$