Logistic regression

cs434

Logistic regression

- Recall the problem of regression
 - Learns a linear mapping from input vector \mathbf{x} to a continuous output $y \in (-\infty, \infty)$
- Logistic regression can be viewed as extending linear regression to handle binary output y by warping the output of a linear function to the range between 0 and 1
- For convenience, we will assume $y \in \{0,1\}$ for this lecture

Logistic regression (cont.)

Consider the linear regression function

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} = w_0 + w_1 x_1 + \dots + w_m x_m$$

• We introduce a function *g*:

$$g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

Referred to as the sigmoid function or logistic function

Logistic Regression Makes Probabilistic Prediction

 We interpret the output of logistic regression probabilistically:

$$g(\mathbf{w}^T \mathbf{x}) = P(y = 1 | \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

i.e., probability of y = 1 given the input \mathbf{x} and the model's parameter is \mathbf{w}

$$P(y = 0|\mathbf{x}; \mathbf{w}) = 1 - g(\mathbf{w}^T \mathbf{x})$$
$$= \frac{\exp(-\mathbf{w}^T \mathbf{x})}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

Logistic Regression forms a **linear** decision boundary

• We predict y = 1 if

$$p(y = 1|x; \mathbf{w}) > p(y = 0|x; \mathbf{w})$$

Predict y = 1 if

$$\frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})} > 1$$

Predict
$$y = 1$$
 if

$$\log \frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})} = w_0 + w_1 x_1 + \dots + w_m x_m > 0$$
Odds of y=1

Side Note:

the odds of an event are the quantity p / (1 - p), where p is the probability of the event If I toss a fair dice, what are the odds that I will have a six?

LR assumes that the log odds of y=1 is a linear function of the input features

Learning w for logistic regression

• Given a set of training data points (\mathbf{x}^i, y^i) , i = 1, ..., n, the goal of learning is to find a weight vector \mathbf{w} such that

$$g(\mathbf{w}^T\mathbf{x}) = P(y = 1|\mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$$

- is large (approaching 1) for positive (y = 1) training examples
- is small (approaching 0) for negative (y = 0) training examples

Learning Objective for Logistic Regression

Consider a general form of objective (to be minimized):

$$L(\mathbf{w}) = \sum_{i=1}^{n} l(g(\mathbf{w}^{T}\mathbf{x}^{i}), y^{i})$$

For logistic regression the loss function is:

$$l(g(\mathbf{w}^T \mathbf{x}^i), y^i)$$

$$= \begin{cases} -\log g(\mathbf{w}^T \mathbf{x}^i) & \text{if } y^i = 1 \\ -\log \left(1 - g(\mathbf{w}^T \mathbf{x}^i)\right) & \text{if } y^i = 0 \end{cases}$$

Loss function for logistic regression

$$l(g(\mathbf{w}^T\mathbf{x}^i), y^i) = \begin{cases} -\log P(y = 1|x^i; w) & \text{if } y^i = 1\\ -\log (1 - P(y = 1|x^i; w)) & \text{if } y^i = 0 \end{cases}$$

When $y^i = 1$,

- if we predict $P(y = 1 | x^i; w) = 1$, the loss is 0
- If we predict $P(y = 1 | x^i; w) = 0$, the loss is ∞

Loss function for logistic regression

$$l(g_{\mathbf{w}}(x^{i}), y^{i}) = \begin{cases} -\log P(y = 1 | x^{i}; w) & \text{if } y^{i} = 1\\ -\log (1 - P(y = 1 | x^{i}; w)) & \text{if } y^{i} = 0 \end{cases}$$

When $y^i = 0$,

- if we predict $P(y = 1 | x^i; w) = 0$, the loss is 0
- If we predict $P(y = 1 | x^i; w) = 1$, the loss is ∞

Representing it compactly

$$l(g_{\mathbf{w}}(x^{i}), y^{i}) = \begin{cases} -\log P(y = 1 | x^{i}; w) & \text{if } y^{i} = 1\\ -\log (1 - P(y = 1 | x^{i}; w)) & \text{if } y^{i} = 0 \end{cases}$$

can be represented compactly as:

$$l(g_{\mathbf{w}}(x^{i}), y^{i}) = -y^{i} \log P(y = 1 | x^{i}; w) - (1 - y^{i}) \log (1 - P(y = 1 | x^{i}; w))$$

Minimizing $L(\mathbf{w})$

- Unfortunately this does not have a close form solution
 - You take the derivative, set it to zero, but no closed form solution
- Instead, we iteratively search for the optimal w
- Start with a random w, iteratively improve w (similar to Perceptron) by taking the negative gradient
- This is referred to as gradient descent

Gradient descent to minimize $L(\mathbf{w})$

- 1. Start from some initial guess \mathbf{w}^0
- 2. Find the direction of steepest descent opposite of the gradient direction $\nabla f(\mathbf{w})$
- 3. Take a step toward that direction

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \nabla f(\mathbf{w}^t)$$

4. Repeat until no local improvement is possible $(|\nabla f(\mathbf{w}^t)| \le \epsilon)$

Different starting points may lead to different local minimum if objective is not convex (like what's shown in the above figure)

Gradient of $L(\mathbf{w})$

$$\begin{split} l(g(\mathbf{w}^T \mathbf{x}^i), y^i) &= -y^i \log P(y = 1 | \mathbf{x}^i; \mathbf{w}) - (1 - y^i) \log \left(1 - P(y = 1 | \mathbf{x}^i; \mathbf{w}) \right) \\ l(g(\mathbf{w}^T \mathbf{x}^i), y^i) &= -y^i \log g(\mathbf{w}^T \mathbf{x}^i) - \left(1 - y^i \right) \log (1 - g(\mathbf{w}^T \mathbf{x}^i)) \\ &\text{Useful fact: } g'(t) = t(1 - t) \\ \nabla g(\mathbf{w}^T \mathbf{x}^i) &= g(\mathbf{w}^T \mathbf{x}^i) \left(1 - g(\mathbf{w}^T \mathbf{x}^i) \right) \mathbf{x}^i \\ \nabla l(g(\mathbf{w}^T \mathbf{x}^i), y^i) &= \left(y^i - g(\mathbf{w}^T \mathbf{x}^i) \right) \mathbf{x}^i \end{split}$$

Online gradient descent for Logistic Regression

Note: y takes 0/1 here, not 1/-1

Given: training examples (\mathbf{x}^i , y^i), i = 1,...,N

Let $\mathbf{w} \leftarrow (0,0,0,...,0)$

Repeat until convergence

For every example i

$$\widehat{\mathbf{y}}^i \leftarrow \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}^i}}$$

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \cdot (y^i - \hat{y}^i) \cdot \mathbf{x}^i$$

 η is the learning rate or step size

Note the striking similarity between LR and perceptron Both learn a linear decision boundary The iterative algorithm takes very similar form

Batch Learning for Logistic Regression

Note: y takes 0/1 here, not 1/-1

Given: training examples
$$(\mathbf{x}^i, y^i)$$
, $i = 1,...,N$
Let $\mathbf{w} \leftarrow (\mathbf{0}, \mathbf{0}, \mathbf{0}, ..., \mathbf{0})$
Repeat until convergence
 $d \leftarrow (\mathbf{0}, \mathbf{0}, \mathbf{0}, ..., \mathbf{0})$
For $i = 1$ to N do

$$\hat{y}^i \leftarrow \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}^i}}$$

$$error = y^i - \hat{y}^i$$

$$d = d + error \cdot \mathbf{x}^i$$

$$\mathbf{w} \leftarrow \mathbf{w} + \eta d$$

Logistic regression: Summary

- LR uses the logistic function to warp the output of a linear function to between zero and one, which is interpreted as $P(y = 1|\mathbf{x}; \mathbf{w})$
- Learning aims to learn a vector \mathbf{w} s.t. examples with y=1 are predicted to have high $P(y=1|\mathbf{x};\mathbf{w})$ and vice versa
- Learn w iteratively using gradient descent
- Strong similarity with Perceptron
- Logistic regression learns a linear decision boundaries
 - By introducing nonlinear features (i.e., $x_1^2, x_2^2, x_1x_2, ...$), can be extended to nonlinear boundary.