Introduction to the Newton Method

Yasemin BEKIROGLU

Outline

• When to use

• How it works

Potential issues

• Solving f(x) = 0, $f: R \rightarrow R$

• Solving f(x) = 0, $f: R \rightarrow R$

• no explicit expression describing x

- Solving f(x) = 0, $f: R \rightarrow R$
 - no explicit expression describing x
 - e.g. $x + e^x = 4$

- Solving f(x) = 0, $f: R \rightarrow R$
 - no explicit expression describing x
 - e.g. $x + e^x = 4$

Solve for x iteratively – approximate solution

• Solving f(x) = 0, $f: R \rightarrow R$

Solve for x iteratively – approximate solution

Newton Method – how it works

x

x

x

• Solving f(x) = 0, $f: R \rightarrow R$

Solve for x iteratively – approximate solution

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

We make use of linear approximation, first-order Taylor approximation, of f(x) and solve for x_+ , given a guess - x

$$f(x_+) \approx f(x) + f'(x)(x_+ - x)$$

We make use of linear approximation, first-order Taylor approximation, of f(x) and solve for x_+ , given a guess - x

$$f(x_{+}) \approx f(x) + f'(x)(x_{+} - x)$$

$$f(x_{+}) \approx f(x) + f'(x)(x_{+} - x) = 0$$

We make use of linear approximation, first-order Taylor approximation, of f(x) and solve for x_+ , given a guess - x

$$f(x_{+}) \approx f(x) + f'(x)(x_{+} - x)$$

$$f(x_{+}) \approx f(x) + f'(x)(x_{+} - x) = 0$$

$$x_{+} = x - \frac{f(x)}{f'(x)}$$

$$\Delta x$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$$

$$\vdots$$

$$x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$$

• Given an initial solution x_0 , iterate until a stopping criteria is fullfilled:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Stopping criteria can be:

$$|f(x_n)| < \varepsilon$$

$$|x_n - x_{n-1}| < \delta$$

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x				_
x_1			į.		
x_2			į.		
<i>x</i> ₃					
x_4					

True solution

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$			_
x_1					
x_2			8		
<i>x</i> ₃					
x_4					

True solution

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x		_
x_1			ii j		
x_2			1		
x_3					
x_4					

True solution

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x	$x - \frac{x^2 - 2}{2x}$	_
x_1			ii j		
x_2			8		
<i>x</i> ₃					
x_4					,

True solution

 \mathbf{X}_{n+1} f(x)f'(x) $f(x) = x^2 - 2 \quad | \quad f'(x) = 2x$ x_1 x_2 x_3 x_4

True solution

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x		_
x_1	1	-1	2	$1 - \frac{-1}{2} = 3/2$	<u>1</u> .5000000000000
x_2					
<i>x</i> ₃				6	9
x_4					

True solution

1.4142135623731

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x	$x - \frac{f(x)}{f'(x)}$	_
x_1	1	-1	2	$1 - \frac{-1}{2} = 3/2$	1.5000000000000
x_2	$\frac{3}{2}$,
<i>x</i> ₃					
x_4	1				r

True solution

1.4142135623731

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x		_
x_1	1	-1	2	$1 - \frac{-1}{2} = 3/2$	<u>1</u> .5000000000000
x_2	$\frac{3}{2}$	$\frac{1}{4}$	3	$\frac{3}{2} - \frac{1/4}{3} = \frac{17}{2}$	<u>1.41</u> 6666666667
<i>x</i> ₃				6	9
x_4					

True solution

1.4142135623731

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x		_
x_1	1	-1	2	$1 - \frac{-1}{2} = 3/2$	<u>1</u> .5000000000000
x_2	$\frac{3}{2}$	$\frac{1}{4}$	3	$\frac{3}{2} - \frac{1/4}{3} = \frac{17}{2}$	<u>1.41</u> 6666666667
<i>x</i> ₃	17 12	1		6	9
x_4					

True solution

1.4142135623731

True solution

1.4142135623731

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x	$x - \frac{f(x)}{f'(x)}$	_
x_1	1	-1	2	$1 - \frac{-1}{2} = 3/2$	<u>1</u> .5000000000000
x_2	$\frac{3}{2}$	$\frac{1}{4}$	3	$\frac{3}{2} - \frac{1/4}{3} = \frac{17}{2}$	<u>1.41</u> 6666666667
<i>x</i> ₃	17 12	<u>1</u> 144	<u>17</u> 6	$\frac{17}{12} - \frac{1/144}{17/6} = \frac{577}{408}$	<u>1.41421</u> 56862745
x_4	577 408	1/166464	<u>577</u> 204	665857 470832	1.4142135623747

True solution 1.4142135623731

		f(x)	f'(x)	$x - \frac{f(x)}{f'(x)}$	X _{n+1}
x_n	x	$f(x) = x^2 - 2$	f'(x) = 2x	$x - \frac{f(x)}{f'(x)}$	_
x_1	1	-1	2	$1 - \frac{-1}{2} = 3/2$	1.5000000000000
x_2	$\frac{3}{2}$	$\frac{1}{4}$	3	$\frac{3}{2} - \frac{1/4}{3} = \frac{17}{2}$	<u>1.41</u> 6666666667
<i>x</i> ₃	17 12	<u>1</u> 144	<u>17</u> 6	$\frac{17}{12} - \frac{1/144}{17/6} = \frac{577}{408}$	<u>1.41421</u> 56862745
x_4	<u>577</u> 408	1 166464	<u>577</u> 204	665857 470832	1.4142135623747

True solution 1.4142135623731

roughly doubling the number of decimal points in each round