第1章 胞腔复形

1.1 胞腔复形的构造

定义 1.1

设 $k\geq 1$ 是整数, 对于每个指标 $\alpha\in\Lambda$, 令 D^k_α 表示 \mathbb{R}^k 上的单位闭球 \mathbb{D}^k 的一个复制. 给定两个空间 X 和 (Y), 我们称 X 是 Y 通过黏着 k -胞腔得到的, 若存在一族 连续映射 $f_\alpha:\mathbb{S}^{k-1}\to Y, \alpha\in\Lambda$, 使得 X 是无交并空间

$$Y \sqcup_{\alpha \in \Lambda} D_{\alpha}^{k}$$

在等价关系 $x \sim f_{\alpha}(x), x \in \partial D_{\alpha}^{k}, \alpha \in \Lambda$ 的下的商空间.

Remark

- 1. 映射 $\{f_{\alpha}\}$ 被称为是胞腔的黏着映射;
- 2. 用 ϕ_{α} 表示商映射在胞腔 D_{α}^{k} 上的限制, 则 $\phi_{\alpha}|\partial D_{\alpha}^{k}=f_{\alpha}$, 并且 ϕ_{α} 在 D_{α}^{k} 的内部上是单射. 因此 ϕ_{α} 定义出 D_{α}^{k} 到其像集的同胚. 称 $\phi_{\alpha}\left(\operatorname{int}\left(D_{\alpha}^{k}\right)\right)$ 为 X 上的开胞腔.
- 3. 称 ϕ_{α} 为胞腔的特征映射.
- 4. D_{α}^{k} 的连续像是 X 的紧子空间. 称它们为 (X,Y) 上的闭 k-胞腔, 记作 e_{α}^{k} .

引理 1.1

设 X 是 Y 通过黏合 k-胞腔得到的空间, 则

- 1. X 的一个子集 A 是闭的,当且仅当 $A\cap Y$ 在 Y 中是闭的,并且 $A\cap e_{\alpha}^k$ 在 e_{α}^k 中是闭的, $\alpha\in\Lambda$;
- 2. $Y \in X$ 的一个闭子集.

Remark

- 1. e_{α}^k 不需要是闭集, 但若 Y 是 Hausdorff 的, 则 $f_{\alpha}\left(\mathbb{S}^{k-1}\right)$ 是 Y 的闭子集, 进而 e_{α}^k 在 X 中是闭的.
- 2. e^k_{α} 不必同胚于 \mathbb{D}^k , 但 e^k_{α} 的内部同胚于 $\operatorname{int}\left(\mathbb{D}^k\right)$.

Proof 设q是商映射,则

 $q^{-1}\left(A
ight) = q^{-1}\left(A
ight) \cap \left(Y \sqcup_{\alpha \in \Lambda} D_{lpha}^{k}
ight) = q^{-1}\left(A
ight) \cap Y \sqcup_{\alpha \in \Lambda} q|_{D_{lpha}^{k}}^{-1}\left(A
ight) = q^{-1}\left(A
ight) \cap Y \sqcup_{\alpha \in \Lambda} \phi_{lpha}^{-1}\left(A
ight)$ 是闭的,当且仅当 $\phi_{lpha}^{-1}\left(A
ight)$ 是闭的, $A \cap Y$ 在 Y 中是闭的,当且仅当 $q|_{Y}^{-1}\left(A \cap Y
ight) = q^{-1}\left(A
ight) \cap Y$ 是闭的。由此可见 1. 成立。

对于 2., 由于 $Y\cap Y=Y$ 在 Y 中是闭的, 且 $\phi_{\alpha}^{-1}(Y)=f_{\alpha}^{-1}(Y)=\partial D_{\alpha}^{k}$ 是闭集, 由 1. 可知 Y 是闭的.

定义 1.2 (胞腔复形)

- -个胞腔复形包含以下信息:
 - 1. 一个离散集 X^0 , 其中的点称为是 0-胞腔.
 - 2. 有限或无限个集合 $\{X^k\}$, $k=1,\cdots,n$ 或 $k=1,2,\cdots$. 其中称 X^k 为 k-骨架.
 - 3. 对于上面这些 k, X^k 通过 X^{k-1} 黏着 k-胞腔得到.

·

Remark

1. 若 $X = X^n$ 对于某个 n 成立, 则称 X 是有限维的, 最小的这样的 n 称为是 X 的维数, 它也是 X 的胞腔的最大维数.

Example 1.1 一个一维胞腔复形 $X = X^1$ 在代数拓扑中被称为是一个图. 它由一些顶点 (0-胞腔) 和一些附着的边 (1-胞腔) 组成.

Example 1.2 球面 S^n 有由两个胞腔 e^0, e^n 组成的胞腔复形结构, n 胞腔通过常值映射 $S^{n-1} \to e^0$ 黏着. 等价地说, $S^n \to D^n \setminus \partial D^n$ 的商空间.

Example 1.3 实射影空间 $\mathbb{R}P^n$ 被定义为由 \mathbb{R}^{n+1} 上全体过原点的直线构成的空间. $\mathbb{R}P^n$ 可以被扬扑地描述为 $\mathbb{R}^n\setminus\{0\}$ 在等价关系 $v\sim\lambda v$, $\lambda\neq 0$ 下的商空间. $\mathbb{R}P^n$ 也可以视为 n-球面 S^n 粘贴对径点得到的空间 $S^n/(v\sim -v)$. 又或者描述为半球面 D^n 通过粘贴 ∂D^n 上的对径点得到的商空间. 在最后一种描述下,注意到 ∂D^n 粘贴对径点恰好得到 $\mathbb{R}P^{n-1}$,于是 $\mathbb{R}P^n$ 可以通过 $\mathbb{R}P^{n-1}$ 黏着一个 n-胞腔得到,黏着映射为商投影 $S^n\to\mathbb{R}P^{n-1}$.

通过对 $\mathbb{R}P^n$ 的 n 归纳, 可以得到 $\mathbb{R}P^n$ 拥有一个胞腔复形结构 $e^0 \cup e^1 \cup \cdots \cup e^n$. 它 在每个维数 $i \leq n$ 上恰有一个 i-胞腔.

Example 1.4 复射影空间 $\mathbb{C}P^n$ 被定义为 \mathbb{C}^{n+1} 上全体过原点的直线构成的空间,即 \mathbb{C}^{n+1} 的复-1 维的子空间的全体. $\mathbb{C}P^n$ 被扬扑地刻画为 $\mathbb{C}^{n+1}\setminus\{0\}$ 在等价关系 $v\sim \lambda v, \lambda\in\mathbb{C}, \lambda\neq 0$ 下的商空间. 也可以刻画为单位球面 $S^{2n+1}\subseteq\mathbb{C}^{n+1}$ 在等价关系 $v\sim \lambda v, \lambda\in\mathbb{C}, |\lambda|=1$ 下的商空间. 由于对于最后一个复分量非零的 $v\in S^{2n+1}\subseteq\mathbb{C}^{n+1}$,存在唯一的 $\lambda\in\mathbb{C}, |\lambda|=1$,使得 $(\lambda v)^n=\lambda v^n\in\mathbb{R}_{>0}$,且等价关系保持最后一个分量的非零性,故可以定义等价类在最后一个分量上是否非零. 故 S^{2n+1} 上最后一个复分量非零

的全体向量,唯一地对应到 S^{2n+1} 上最后一个分量非零的等价类。此外, S^{2n+1} 上最后一个复分量非零的向量形如 $\left(w,\sqrt{1-|w|^2}\right)\in\mathbb{C}^n\times\mathbb{C}, |w|\leq 1$,这些向量的全体由函数 $w\mapsto\sqrt{1-|w|^2}, |w|\leq 1$ 的图像给出,它恰是边界为 $S^{2n-1}\subseteq S^{2n+1}$ 的上半球面 D^{2n}_+ .

综上, S^{2n+1} 在等价关系 $v\sim \lambda v$ 下, 最后一个复分量非零的等价类与 D^{2n}_+ 一一对应, 最后一个复分量等于零的等价类全体恰是 $\mathbb{C}P^{n-1}$. 于是 $\mathbb{C}P^n$ 可以通过 $\mathbb{C}P^{n-1}$ 黏着 2n -胞腔 D^{2n}_+ 得到. 黏着映射为商映射 $\partial D^{2n}_+ = S^{2n-1} \to \mathbb{C}P^{n-1}$.

通过对 n 归纳, 可以得到 $\mathbb{C}\mathrm{P}^n$ 由胞腔复形结构 $e^0\cup e^2\cup\cdots\cup e^{2n}$, 它在每个不大于 2n 的偶维数上恰有一个胞腔.

定义 1.3 (子复形)

设 X 是胞腔复形. 若闭子空间 $A\subseteq X$ 写作 X 的一些胞腔的并, 则称 A 是 X 的一个子复形.

Remark

- 1. 由于 A 是闭的, A 中每个胞腔的特征映射的像都含于 A. 特别地, 黏着映射的像含于 A. 故 A 本身也是一个胞腔复形.
- 2. 一个由胞腔复形 X 和子复形 A 组成的对 (X,A) 被称为是一个 CW 对.

Example 1.5 存在自然的包含关系 $S^0 \subseteq S^1 \subseteq \cdots \subseteq S^n$,但这些子球面不是 S^n 的子复形. 不过可以选择 S^n 的另一种胞腔复形结构, 使得这鞋子球面称为 S^n 的子复形. 具体地, 对于每个 S^k ,令 S^k 是通过 S^{k-1} 黏着两个 k-胞腔得到的, 这两个胞腔分别为 $S^k - S^{k-1}$ 的上半部分和下半部分.

此时,无穷维球面 $S^\infty = \bigcup_n S^n$ 也是一个胞腔复形。 连接对径点的 2-1 商映射 $S^\infty \to \mathbb{R} P^\infty$ 将 S^∞ 的两个 n-胞腔与 $\mathbb{R} P^\infty$ 的唯一的 n-胞腔所等同。

Example 1.6 胞腔的闭包不一定是子复形. 例如我们可以通过一个像为 S^1 的非平凡弧的映射 $S^1 \to S^1$ 将一个 2-胞腔黏着到 S^1 上, 此时由于 2-胞腔的闭包只包含了 1-胞腔的一个部分, 故无法成为一个胞腔复形.

1.2 空间上的算子

命题 1.1

若 X 和 Y 是胞腔复形, 则 $X \times Y$ 有由全体积胞腔 $e^m_{\alpha} \times e^n_{\beta}$ 为胞腔的胞腔复形结构. 其中 e^m_{α} 跑遍 X 的胞腔, e^n_{β} 跑遍 Y 的胞腔.

Example 1.7

例如由 $S_1^1=\{a\}\cup e_1^1$ 和 $S_2^1=\{b\}\cup e_2^1$ 构成的环面 $S^1\times S^1$, 它的 0-胞腔是 $\{(a,b)\}$, 两个 1-胞腔是 $\{a\}\times e_2^1$ 和 $e_1^1\times \{b\}$, 一个 2-胞腔是 $e_1^1\times e_2^2$.

命题 1.2

设 (X,A) 是一个 CW 对, 则商空间 X/A 有继承自 X 的自然的胞腔复形结构°. X/A 的胞腔为全体 X-A 上的胞腔, 和一个新的 0-胞腔 b , 为 A 在 X/A 中的像. 对于 X-A 的一个胞腔 e^n_α ,若它通过 $\varphi_\alpha:S^{n-1}\to X^{n-1}$ 黏着,则它在 X/A 上相应的 黏着映射为复合映射 $S^{n-1}\to X^{n-1}\to X^{n-1}/A^{n-1}$.

°就是把 A 粘成一个点

 $^{\mathrm{b}}$ 因为 X 上的胞腔要么完全落在 A 上, 要么最多只有边界粘在 A 上.

Example 1.8 给定任意胞腔结构的 S^{n-1} , 通过 S^{n-1} 黏着一个 n-胞腔构造 D^n , 则 D^n/S^{n-1} 在自然胞腔结构下变成 S^n .

定义 1.4 (楔和)

- 。给定拓扑空间 X,Y, 以及各一点 $x_0 \in X, y_0 \in Y$. 定义楔和 $X \vee Y$, 为通过 将无交并 $X \coprod Y$ 上的 x_0, y_0 等同于一点, 得到的商空间.
- 更一般地, 可以对一族扬扑空间 X_{α} , 定义楔和 $\bigvee_{\alpha} V_{\alpha}$ 通过将 $x_{\alpha} \in X_{\alpha}$ 等同于一点.

Example 1.9 任给胞腔复形 X, 商空间 X^n/X^{n-1} 就是 n-球面的楔和 $\bigvee_{\alpha} S_{\alpha}^n$, 其中每个 X 的 n-胞腔对应于一个 n-球面. ²

 $^{{}^{1}}S^{n}$ 通过点 $[S^{n-1}]_{/A}$ 黏着 n-胞腔得到.

 $^{^{2}}$ 由于每个 n-胞腔都将边界粘在 (n-1)-骨架上,并且内部两两无交,因此商去 X^{n-1} 后,n-胞腔的边界都 粘在同一个点上.