תרגילים: שפות כריעות ושפות קבילות

שאלה L^* מוגדרת: בהינתן השפה L^* מוגדרת:

$$L^* = \{\varepsilon\} \cup \{w = w_1 w_2 \cdots w_k \mid \forall \ 1 \le i \le k \ , \ w_i \in L\}$$

- א). בהינתן מכונת טיורינג Mהמקבלת שפה בהינתן מכונת טיורינג אי דטרמיניסטית M^{\ast} המקבלת את השפה בנו מכונט טיורינג אי דטרמיניסטית
- .L המכריעה שפה M המכונת טיורינג בהינתן מכונת בנו מכונט טיורינג אי דטרמיניסטית M^* המכריעה את השפה בנו מכונט טיורינג אי
- שאלה 2 האם הטענה הבאה נכונה, לא נכונה, או שקולה לבעיה פתוחה. $L(M) \in R$ אזי $L(M) \in Co\,RE$ לכל מכונת טיורינג
- שאלה לבעיה שקולה לכונה, או שקולה לבעיה פתוחה. $L_2 \in Co\:RE\:$ או $L_1 \in RE\:$ אזי או $L_1 \cap L_2 \in R$

-שאלה 4 הוכיחו כי לכל 3 שפות L_1, L_2, L_3 כך ש

- $L_1 \cup L_2 \cup L_3 = \Sigma^*$.1
- $1 \leq i,j \leq 3$, $i \neq j$ לכל ל $L_i \cap L_j = \emptyset$.2
- $1 \leq i \leq 3$ לכל $L_i \in R$ הוכיחו כי $1 \leq i \leq 3$ לכל לכל $L_i \in RE$

... שאלה לבעיה פתוחה. פתוחה. או שקולה לכונה, לא נכונה, לא נכונה אם הטענה הבאה $L_1\in RE$ או $L_1\in RE$ או $L_1\in RE$ או $L_1\in RE$ או $L_1\cap L_2\in RE$ או לכל שתי שפות L_1 וגם

שאלה 6 קבעו אם הטענה הבאה נכונה, לא נכונה או שקולה לבעיה פתוחה.

 $L_{\Sigma^*} \backslash L_{\mathsf{d}} \in RE$

תשובות

שאלה 1

L את מכונת טיורנג שמזהה את M

 L^* אי-דטרמיניסטית אמקבלת אי-דטרמיניסטית טיורינג M^*

תאור הבנייה

:w על קלט $=M^*$

. אם w=arepsilon מקבלת. w=arepsilon

 $k \in \mathbb{N}^+$ כאשר $w = w_1, w_2, \ldots, w_k$ ל- w ל- מלוקה של אי דטרמיניסטי דטרמיניסטי אווקה $w = w_1, w_2, \ldots, w_k$ בוחרת באופן אי

i < i < k לכל.

. ועונה כמוה על w_i על M את מריצה $M^* ullet$

 \star אם M קיבלה חוזרים לשלב 3).

.4 אזי M^* אזי $\{w_i\}$ אזי כל המחרוזות אזי M מקבלת.

כתיבה הוא סופי הוא סופי ולכן הניחוש הוא סופי, לפיכך כתיבה - w - ניתנת לחישוב - מספר הפירוקים האפשריים לw - מספר הפירוקים האפשריים לw - גיתן לחישוב.

 $\underline{L^{*}}=L\left(M^{*}
ight)$:הוכחת נכונות

⇒ כיוון

 $w\in L\left(M^{st}
ight)$ נניח כי

. קיבלה M ($1 \leq i \leq k$) w_i כך שעבור כל ($k \in \mathbb{N}^+$) $w = w_1 \cdot w_2 \cdot \ldots \cdot w_k$ קיימת חלוקה

L(M) = L בפרט, בפרט. $w_i \in L(M)$ \Leftarrow

 $w_i \in L \Leftarrow$

 $w = w_1 w_2 \dots w_k \in L^* \Leftarrow$

 $L(M^*) \subseteq L^* \Leftarrow$

\Rightarrow כיוון

 $w \in L^*$ נניח כי

 $(1 \leq i \leq k) \ w_i \in L$ כך שכל ($k \in \mathbb{N}^+$) $w = w_1 w_2 \cdots w_k$ קיימת חלוקה $k \in \mathbb{N}^+$

w תנחש את הפירוק הזה עבור $M^* \Leftarrow$

כזה w_i כזה תקבל כל M

w תקבל את $M^* \Leftarrow$

 $w \in L(M^*) \Leftarrow$

 $L^* \subset L(M^*) \Leftarrow$

 $L\left(M^{st}
ight)=L^{st}$ אזי אזי $L^{st}\subseteq L\left(M^{st}
ight)$ ו- $L\left(M^{st}
ight)\subseteq L^{st}$ אזי שלכן, מאחר ומצאנו ש

.L את מכונת טיורנג שמכריעה את מכונת מיורנג M^* אי-דטרמיניסטית המכריעה את גבנה מכונת טיורינג אי-דטרמיניסטית

תאור הבנייה

:w על קלט $=M^*$

- .1. אם w=arepsilon מקבלת.
- $k \in \mathbb{N}^+$ כאשר $w = w_1, w_2, \ldots, w_k$ ל- w ל- בוחרת באופן אי דטרמיניסטי חלוקה של $w = w_1, w_2, \ldots, w_k$ בוחרת באופן אי
 - $1 \le i \le k$ לכל.
 - w_i על M מריצה את M^*
 - . דוחה M^* אם M דוחה או M^*
 - אחרת אם M קיבלה חוזרים לשלב 3). \ast
 - .4 אזי M^* אזי $\{w_i\}$ אזי לכל המחרוזות M מקבלת.

ניתנת לחישוב - מספר הפירוקים האפשריים ל- w הוא סופי ולכן הניחוש הוא סופי, לפיכך כתיבה - M^st על הסרט והרצת M ניתן לחישוב.

$L^{st}=L\left(M^{st} ight)$ הוכחת נכונות:

 \Leftarrow כיוון

 $w\in L\left(M^{st}
ight)$ ננית כי

- קיבלה. M ($1 \leq i \leq k$) w_i כך שעבור כל ($k \in \mathbb{N}^+$) $w = w_1 \cdot w_2 \cdot \ldots \cdot w_k$ קיימת חלוקה
 - L(M) = L בפרט, בפרט. $w_i \in L(M)$ כל
 - $w_i \in L \Leftarrow$
 - $w = w_1 w_2 \dots w_k \in L^* \Leftarrow$
 - $L(M^*) \subseteq L^* \Leftarrow$

\Rightarrow כיוון

 $w \in L^*$ נניח כי

- $(1 \leq i \leq k) \ w_i \in L$ כך שכל ($k \in \mathbb{N}^+$) $w = w_1 w_2 \cdots w_k$ קיימת חלוקה $k \in \mathbb{N}^+$
 - w תנחש את הפירוק הזה עבור $M^* \Leftarrow$
 - כזה w_i כזה תקבל כל M כזה \Leftarrow
 - w תקבל את $M^* \Leftarrow$
 - $w \in L(M^*) \Leftarrow$
 - $L^* \subseteq L(M^*) \Leftarrow$

 $L\left(M^{*}
ight)=L^{*}$ אזי אזי $L^{*}\subseteq L\left(M^{*}
ight)$ -ו $L\left(M^{*}
ight)\subseteq L^{*}$ אזי ישחר ומצאנו ש

שאלה 2 הטענה נכונה:

 $L(M) \in RE$. ההגדרה: מתקיים, לפל מכונת טיורינג מתקיים, לפי ההגדרה: $L(M) \in Co\:RE \mapsto L(M) \in RE \cap Co\:RE = R \;.$

שאלה 3 הטענה לא נכונה. דוגמה נגדית:

יהי
$$L_1 = L_{\Sigma^*}
otin RE$$
 כאשר

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$

$$.L_2=\overline{L_{\Sigma^*}}$$
 ותהי

$$.L_1\cap L_2=\emptyset\in R$$
 -בורר ש

,
$$L_1
otin Co \, RE$$
 מצד שני, $L_1 = L_{\Sigma^*}
otin RE$ וגם

$$L_2
otin RE$$
 וגם $L_2 = \overline{L_{\Sigma^*}}
otin Co\,RE$ -י

שאלה 4

שיטה 1

 $.1 \leq i \leq 3$ לכל L_i את המקבלת M_i טיורינג סיורינג קיימת קיימת שר קיימת שר $L_i \in RE$ את מכונת אם לכל המכריעה המכריעה M_i^* המכריעה או נבנה מכונת אורינג ל L_i המכריעה את המכריעה את אורינג לבנה מכונת המכריעה את אוריינג לבנה מכונת המכריעה את אוריים אורי

 M_3^* -ו M_2^* את הבנייה עבור באופן דומה אפשר לבנות את הבנייה עבור M_1^*

$$:w$$
 על קלט $=M_1^*$

 M_1,M_2,M_3 מריצה במקביל את שלושת במקביל •

. אם
$$M_1^* \Leftarrow$$
 מקבלת סיבלת אם M_1

. דוחה
$$M_2^* \Leftarrow \eta$$
 קיבלה $M_2 \circ$

. דוחה
$$M_3^* \Leftarrow$$
 קיבלה M_3 דוחה ס

נכונות הבנייה:

 $.L_1$ את מכרעיה את M_1^st נראה כי

.w את מקבלת $M_1^* \Leftarrow w$ את מקבלת $M_1 \Leftarrow w \in L_1$ אם

.w את דוחה $M_1^* \Leftarrow w$ את מקבלת את את מקבלת את מקבלת $M_2 \Leftarrow w \in M_2 \cup M_3 \Leftarrow w \notin L_1$ אם

שיטה 2

 $ar{L}_1\in RE$ נשים לב כי RE תחת איחוד, גם $L_2\in RE$ וגם $L_2\in RE$ ואם לב כי $L_3=ar{L}_1$ נשים לב כי $L_1\in R$ ואם לב $L_1\in RE$ וגם לב כי $L_1\in RE$ איי קיבלנו ש-

 $.L_3$ -ו L_2 כנ"ל עבור

שאלה 5 הטענה לא נכונה. דוגמה נגדית:

נתונה השפה

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$

ונתונה השפה

$$\overline{L_{\Sigma^*}} = \left\{ \langle M \rangle \mid L(M) \neq \Sigma^* \right\} \cup \left\{ x \neq \langle M \rangle \right\} .$$

הוכחנו בכיתה כי:

$$L_{\Sigma^*}
otin RE$$
 (x

$$L_{\Sigma^*}
otin R$$
 (2

$$\overline{L_{\Sigma^*}}
otin RE$$
 (3

:תהיינה L_1, L_2 השפות הבאות

$$L_1 = L_{\Sigma^*}$$
, $L_2 = \overline{L_{\Sigma^*}}$.

מכאן

$$L_1 \cap L_2 = \emptyset \in RE$$
, $L_1 \cup L_2 = \Sigma^* \in RE$,

 $.L_{2}
otin RE$ אבל $L_{1}
otin RE$ וגם

שאלה 6 הטענה לא נכונה.

השפה L_{Σ^*} היא

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$

והשפה $L_{
m d}$ היא

$$L_{\rm d} = \left\{ \langle M \rangle \ \middle| \ \langle M \rangle \notin L(M) \right\} \qquad \Rightarrow \qquad \overline{L_{\rm d}} = \left\{ \langle M \rangle \ \middle| \ \langle M \rangle \in L(M) \right\} \cup \left\{ x \neq \langle M \rangle \right\}$$

לכן

$$L_{\Sigma^*} \backslash L_{\mathsf{d}} = L_{\Sigma^*} \cap \overline{L_{\mathsf{d}}} = L_{\Sigma^*} \notin RE$$
.