1.	Patent Number	049191406
2.	Application Type .	1
3.	Issue Date	04/24/90
4.	Serial Number	7258142
5.	Filing Date	10/14/88
6.1.1	Foreign Priority Ctry. Code	ZZX
7.	State/Country Number	18
8.	Title	Method and apparatus for regenerating
		nerves
9.	Entity	SR
11.	Assistant Examiner	Manuel; George
1.2.	Primary Examiner	Jaworski; Francis
13.	Number of Sheets	2
14.	Number of Figures	3
16.	Date Fee Paid	.02/-12/-90
17.	Class/Subclass	- 128/422
18.	Group Art Unit Number	335
19.1.1	Cross Reference Class	128
19.2.1	Cross Reference Subclass	421;419_R;784
20.	International Class Type	5
21.1.1	International Class	A61N
21.2.1	International Subclass	1/00
22.1.1	Field of Search Class	128
02.2.1	Field of Search Subclass	120; 422; 419 F; 419 R; 783; 784
23.	Print Claim Number	1
24.	Total Claims	11
26.1.1	Line 1 Address	Barnes & Thornburg
26.2.1	Line 2 Address	1313 Merchants Bank Building

3/6 0/2

26.3.1	Line 3 Address	11 South Meridian Street
26.4.1	Line 4 Address	Indianapolis, IN 46204
27.1.1	Attorney	Barnes & Thornburg
29.1.1	Assignee Name	Purdue Research Foundation
29.2.1	Assignee Code	02
29.3.1	Assignee City	West Lafayette
29.4.1	Assignee State	IN
30,1.1	Inventor Name	Borgens; Richard B.
30.3.1	Inventor City	Delphi
30.1.2	Inventor Name	McGinnis; Michael E.
30.3.2	Inventor City	West Lafayette, both of
30.4.2	Inventor State ,	IN
32.1.1	U.S. Patent Number	4, 611, 599
32.2.1	U.S. Patent Date	09/00/1986_
32.3.1	U.S. Patentee Name	Bantall et al.
32.4.1	U.S. Patent Class	128
32.5.1	U.S. Patent Subclass	422
32.1.2	U.S. Patent Number	3,817,254
32.2.2	U.S. Patent Date	0.6/00/197.4
32.3.2	U.S. Patentee Name	Maurer
32.4.2	U.S. Patent Class	128
32.5.2	U.S. Patent Subclass	_421
32.1.3	U.S. Patent Number	3,893,462
32.2.3	U.S. Patent Date	07/00/1975~
32.3.3	U.S. Patentee Name	Manning
32.4.3	U.S. Patent Class	128
32.5.3	U.S. Patent Subclass	419 F
32.1.4	U.S. Patent Number	4,084,595
32.2.4	U.S. Patent Date	04/00/1978
32.3.4	U.S. Patentee Name	Miller

1		
32.4.4	U.S. Patent Class	128
32.5.4	U.S. Patent Subclass	422
32.1.5	U.S. Patent Number	4,774,967
32.2.5	U.S. Patent Date	10/00/1988
32.3.5	U.S. Patentee Name	Zanakis et al.
32.4.5	U.S. Patent Class	128
32.5.5	U.S. Patent Subclass	785
34.1.1	Other References	McCaig, Colin D., [37 Spinal Neurite
·		Reabsorption and Regrowth in vitro
		Depent on the Polarity of an Applied
· , ;		Electric Field, [38 [i Development, [1
• • • •		100, 31[14 41, (1987).
34.1.2	Other References	Borgens, Richard B., A. Blight, D.
<u>.</u>		Murphy & L. Stewart, [37 Transecte
		Dorsal Column Axons Within the Guinea
-		Pig Spinal Cord Regenerate in the
		Presence of an Applied Electric
		Field, [38 [0 [i Journal of
		Comparative Neurology, [1 250:168[14
:		180, (1966).
34.1.3	Other References	Borgens, Richard B. a. Blight and M.
		McGinnis, [37 Behavioral Recovery
		Induced by Applied Electric Fields
		after Spinal Cord-Hemisection in
		Guinea Pig, [38 [0 [i Science, [1
		238:366[14 369, (Oct. 16, 1987).
34.1.4	Other References	Wallace, M. Christopher, C. Tator and
		I. Piper, [37 Recovery of Spinal Cord
		Function Induced by Direct Current
		Stimulation of the Injured Rat Spinal

```
Cord, [38 [0 [i Neurosurgery, [1 vol. |
                                         20, No. 6, Part I, (1987).
34.1.5
         Other References
                                         Politis, Michael J. and Michael F. |
                                         Zanakis, [37 Short Term Efficacy of |
                                         Applied Electric Fields in the Repair |
                                         of the Damaged Rodent_Spinal_Cord: |
                                         Behavioral and Morphological |
                                        Results[38 .
34.1.6
         Other References
                                         M. F. Zanakis and M. J. Politis, [37 |
                                         Short Term Bahavioral and |
                                        Histological Changes in the Damaged |
                                         Rat Spinal Cord Following Application |
                                         of D.C. Electric Fields, [38 [0 |
                                         (Abstract).
34.1.7
         Other References
                                         M. Khan, M. J. Politis and D. |
                                         Munoz[14 Garcia, [37 The Effect of |
                                         Localized Oriented Electric Fields on |
                                         Regenerative Changes in Double |
                                         Hemisectioned Spinal Cord of Rats, [38 |
                                         [0 Canadian Congress of Neurological |
                                         Sciences, Jun. 25[14 27, 1987, |
                                         (Abstract).
34.1.8
         Other References
                                         Berry, M., [37 Regeneration in the |
                                        Central Nervous System, [38 [0 [i |
                                        Recent Advances in Neuropathology, [1 |
                                        Ch. 4, (1st ed. 1979), (Editors: W. |
                                         T. Smith and V. B. Cavanaugh).
34.1.9
        Other References
                                       _Kiernan, J., [37 Hypotheses Concerned |
                                        with Axonal Regeneration in the !
                                        Mammalian Nervous System, [38 [0 Biol.
```

34.1.10 Other References

Rev., 54:155[14 197, (1979).

Borgens, Richard E. and Michael E. |

McGinnis, [37 Artificially |

Controlling Axonal Regeneration and |

Development by Applied Electric |

Fields, [38 [0 Chapter 4, [i Electric |

Fields in Vertebrate Repair, [1 |

_ (1989). _

34.1.11 Other References

[37 Final Thrusts Prepared in RES, [38 | [0 [i Spinal Cord Society Newsletter, | pp. 3-[14 4, (Jun. 1987).

35. Abstract Code

1

36. Abstract

A method and apparatus for stimulating nerves in the central nervous system of a mammal to regenerate within the central nervous system applies an oscillating electrical field to the central nervous system across a lesion in the central nervous system. The polarity reversal period of the electrical field is long enough to stimulate growth of cathodally facing axons of the nerve cells in the central nervous system but is shorter than a die back period of anodally facing axons of the nerve cells.