ENCRYPTION

Encryption: process of turning plaintext into scrambled ciphertext, which can only be understood if it is decrypted.

Plaintext: data in human readable form Ciphertext: data that has been encrypted

Decryption: the process of deciphering encrypted data or messages.

Key: in cryptography is the data that has been used to encrypt and decrypt the data

Frequency Analysis: in cryptography it is the study of how often different letters or phrases are used

Substitution ciphers

Substitution Cipher: a method of encryption where one character is substituted for another to create ciphertext

- ← Caesar Shift: a substitution cipher where letters are shifted backwards or forwards a fixed number of places in the alphabet. Receiver would need to know the shift number to decrypt.
- Random Substitution: uses a random sequence of letters to substitute for the alphabet in the plaintext. The receiver would need the substitution sequence to Decrypt
- ♣ Keyword: substitution key starts with the keyword followed by the remaining alphabet in order (no repeats). The receiver would need to know the keyword to Decrypt

Α	В	С	D	E	F	G	Н		J	K	L	M
A Q	U	1	Ε	T	L	Υ	Α	В	С	D	F	G
N	0	Р	Q	R	s	Т	U	ν	w	Х	Υ	Z
N H	0	P K	Q M	R N	S	T P	U	V	W	X W	Y	Z

- Polyalphabetic: uses more than one alphabet
 - Receiver would need to know all the alphabets to decrypt
 - o German Enigma Machine was polyalphabetic

Transposition ciphers

Transposition Cipher: a method of encryption where the characters are rearranged to form an anagram

♣ Railfence Cipher: type of transposition cipher that encodes the message by splitting it over rows

D				N				Е				Т				L		
	Ε		Е		D		Н		Ε		S		W		L		X	
		F				Т				Α				Α				Х

Route Cipher: variation of a Railfence where the Cipher is put into a grid and read in a different a different pattern. The key is size of the grid + route over the grid.

Α	В	0	R	Т
Т	Н	Е	M	1
S	S	1	0	N

Vernam Cipher

Vernam Cipher: method of encryption that uses one-time key to create Ciphertext that is mathematically impossible to decrypt without the key.

- One-time Pad: key that is only use once to encrypt & decrypt a message and then discarded
- o Key is a sequence of letters as long as the plain text

Sender

- XOR binary codes to produce a new binary code
- Convert new binary code to a
 Character → Ciphertext character
- 3. Repeat for the every character in the plaintext

Receiver

- 1. Convert Ciphertext & Key into binary
- 2. XOR binary codes to produce new binary code
- Convert new binary code to a character → Plaintext
- 4. Repeat for every character in the Ciphertext

Computational Security and Hardness

Computational Security: concept of how secure data encryption is. Secure means:

- Theoretically breakable but not using current technology in a timeframe that would be useful
- o Cipher appropriate to the need to keep the secret: Military Banking Your Email

Computational Hardness: the degree of difficulty in cracking a cipher

Possible methods to crack codes:

- o Frequency Analysis
- Identify common techniques (substitution, transposition)
- Dictionary Attacks: comparing attempts to decrypt with dictionaries to determine if anything sensible has happened
- o Reverse Engineering: going back step by step
- o Brute Force