Input disc Input bulge

$\text{Log }(M_*/M_{\odot}) = 10.1$	$\text{Log } (M_*/M_{\odot}) = 10.1$
Magnitude = 22.0	Magnitude = 23.75
$R_{eff}/kpc = 4.01$	$R_{eff}/kpc = 0.55$
	•
n = 1.0	$n{=}4.0$
b/a=0.62	b/a=0.76
$\log~(M_*/M_{\odot}) = 10.4$	$\log (M_*/M_{\odot}) = 10.4$
Magnitude = 22.0	Magnitude = 23.75
$R_{eff}/kpc = 4.62$	R_{eff}/kpc = 1.11
$Reff/\kappa pc = 4.02$	$Reff/\kappa pc = 1.11$
	•
1.0	4.0
n=1.0	n=4.0
b/a = 0.62	b/a = 0.76
${ m Log} \ (M_*/M_{\odot}) = 10.7$	$\text{Log } (M_*/M_{\odot}) = 10.7$
Magnitude = 22.0	Magnitude = 23.75
$R_{eff}/kpc = 5.32$	$R_{eff}/kpc = 2.22$
	•
n= 1.0	$n{=}4.0$
b/a=0.62	b/a = 0.76

Starting galaxy (disc+bulge)

Log
$$(M_*/M_{\odot})$$
 = 10.4
Magnitude= 21.8
 R_{eff}/kpc = 3.27

$$n$$
 = 1.37
 b/a = 0.63
Log (M_*/M_{\odot}) = 10.7
Magnitude= 21.8
 R_{eff}/kpc = 3.94

$$n$$
= 1.31 $b/a = 0.63$

n= 1.27 b/a = 0.64

PSB after GCLASS PSBs

 $egin{array}{lll} ext{outside-in disc-fading} & (ext{similar Log} \ & (ext{faded disc+bulge}) & (ext{Mass} \ / \ M_\odot)) \end{array}$

(faded disc+bulge)	$({ m Mass}~/~M_{\odot}))$
$\log \ (M_*/M_{\odot}) = 10.4$ Magnitude= 23.18 $R_{eff}/kpc = 0.37$ $n = 2.82$ $b/a = 0.65$	$\log \ (M_*/M_{\odot}) = 10.42$ Magnitude= 22.51 R_{eff}/kpc = 2.28 n = 1.19 b/a = 0.53
$egin{aligned} & ext{Log} \ (M_*/M_{\odot}) = 10.7 \ & ext{Magnitude} = 22.63 \ & R_{eff}/kpc = 1.08 \end{aligned}$ $n = 2.97 \ & ext{b}/a = 0.35 \end{aligned}$	$\log {(M_*/M_{\odot})} = 10.64$ Magnitude= 21.53 R_{eff}/kpc = 3.48 n = 1.45 b/a = 0.54
$egin{aligned} ext{Log} & (M_*/M_{\odot}) = 11.0 \ ext{Magnitude} = 22.47 \ R_{eff}/kpc = 2.39 \end{aligned}$	$egin{aligned} ext{Log} & (M_*/M_\odot) = 11.01 \ ext{Magnitude} = 20.36 \ R_{eff}/kpc = 5.56 \end{aligned}$

n = 1.88

b/a = 0.53

n = 2.96

b/a = 0.77