Thinking on its Feet: Using Soar to Model Combatants in Urban Environments

Robert Wray
Soar 22
1 Jun 2002

Introduction

- ONR VIRtual Training & Environments Program (VIRTE)
 - Goal: Build a distributed, virtual environment in order to better train U.S. Marines for urban combat
 - Many components:
 - real-time tracking, head-mounted displays, sound, haptics, intelligent opponents (OPFOR)
- Joint Soar Technology/U. of Michigan effort
 - Soar Technology: Randy Jones, Bob Wray
 - UM: John Laird, Andrew Nuxoll, Soar-RPG group

Problem Statement

- Demonstrate feasibility of creating realistic intelligent combatants in urban environments
 - Use Unreal Tournament for simulation
 - Narrow the behavior space: What's important?
 - Implement behaviors in Soar

Immediate Challenges

- Unreal Tournament simulator
 - Level of "out-of-box" fidelity not be good enough for this domain in many cases
 - must develop domain specific animations or stubs
- Where is it critical to be veridical?
 - Tactical behavior? Gestures? Reactions? → SME: "All of it"
 - Current focus: tactical behaviors for a single scenario
- Implement behaviors in Soar
 - "Non-cognitive" behavior elements are likely necessary
 - Emotion, sense of momentum, reaction to sound/light, ...
 - How do we do encode this in a principled way?
 - Use in Soar? Avoid productions with: (<io> ^fear < 50)
 - Need lots of variability in executed behaviors

Scenario 1: First Floor

Soar Technology/U of MichiganModeling Combatants in Urban Combat

System Architecture

Soar Technology/U of MichiganModeling Combatants in Urban Combat

Initial Analysis

- Tactical Knowledge
 - Not many goals
 - Not many actions
 - Branchy, recursive goal structure

Where will behavior variability come from?

Soar Technology/U of MichiganModelin Combatants in Urban Combat

Longer-term Questions

- Spatial/temporal reasoning
 - Agents that can recognize how to use the terrain & time to their advantage
- Dynamic teaming & coordination
 - Agents that can dynamically form/re-form teams and create low-bandwidth mutually understood team goals (and change them)
- Training
 - OPFOR goals perhaps should <u>not</u> be the same as real humans (maximize experience for training soldiers)
 - Automate not just the OPFOR but the trainer

Dynamic Training

User

user actions.....

Environment

software side

Director

Training script and goals

Trainers

Soar Technology/U of MichiganModeling Combatants in Urban Combat

Summary

- ✓ Attacking a cutting edge domain. Push:
 - Architecture (performance)
 - Modeling techniques
 - branchy, recursive goal hierarchies
 - Physiology and variability
 - Theory? (PSCM & multiple, parallel goals)
- Lots of preparatory work before we get to the research questions
 - Some unanticipated, possibly interesting questions in getting there
- Not clear what's critical to represent and if cognitive architectures will provide leverage for those elements