

보스톤 집값 예측 모델

A반 강연주

치솟는 집값, 그 이유는 무엇일까

- 다른 시간, 다른 공간에서 이유를 찾다.

- 2020년, 서울에 위치한 집값의 급격한 상승으로 경제적, 정치적 불안정 야기
- 국내 집 값 변화의 요인을 확인하기 위해, 서울과 같이 높은 집값을 보인 1970년대 Boston의 집값과 영향 요인 탐색
- 탐색적 분석➡ 변수의 상관성 파악
 - 예측 모델 ➡ 정확한 집값을 예측

목표 변수와 설명 변수

● 목표 변수 : 주택 가격 (MEDV)

● 설명변수

- 범죄율 (CRIM)
- 주거지 비율 (ZN)
- 비소매업 비율 (INDUS)
- 강 조망 여부 (CHAS)
- 산화질소 농도 (NOX)
- 주거당 평균 객실 수 (RM)
- 노후 건물 비율 (AGE)
- 중심지(노동센터) 접근 거리 (DIS)
- 고속도로 접근 편이성 지수 (RAD)
- 재산세율 (TAX)
- 학생당 교사 비율 (PTRATIO)
- 흑인 인구 비율 (B)
- 저소득층 비율 (LSTAT)

분석 계획

가설설정

- 환경적 요건
 - 강 조망이 있으면 주택 가격이 높을 것이다.
- 산화 질소 농도가 높으면 주택 가격이 낮을 것이다.
- 접근성 요건
- 주거지 비율이 높을수록 집값은 높을 것이다.
- 중심지 (직업 센터) 접근 거리가
 가까울수록 주택 가격이 높을 것이다.
- 방사형 도로 접근성 지수가 높을수록 주택 가격이 높을 것이다.

• 이웃 요건

- 학생/교사 비율이 낮을수록 주택 가격이 높을 것이다.
- 흑인 인구 비율이 높을수록 주택 가격이 낮을 것이다.
- 저소득층 비율이 높을수록 주택 가격이 낮을 것이다.
- 사회 경제적 요건
- 1인당 범죄율이 높을수록 주택 가격이 낮을 것이다.
- 자기 소유 집 비율이 높을 수록 주택 가격이 높아질 것이다.
- 4 재산 세율이 낮으면 주택 가격이 낮을 것이다. ¿jim pose

데이터 분석 방법

- 탐색적 분석을 통한 목표 변수와 설명 변수와의 관계성을 밝혀 가설 검증
- 예측 모델을 활용한 보스턴 집값 예측

데이터 현황

데이터 전처리

● 결측치 처리

```
# 결측 처리
df raw.isnull().sum(axis=0)
MEDV
CRIM
ZN
INDUS
CHAS
NOX
RM
AGE
DIS
RAD
TAX
PTRATIO
LSTAT
dtype: int64
```

• 타입 변경

```
# 변수별 타입 분석
df_raw.dtypes
           float64
MEDV
CRIM
           float64
           float64
ZN
INDUS
           float64
             int64
CHAS
NOX
           float64
           float64
RM
AGE
           float64
DIS
           float64
RAD
             int64
TAX
             int64
PTRATIO
           float64
           float64
LSTAT
           float64
dtype: object
# CHAS 타입 변경
df raw=df raw.astype({'CHAS':object})
```

• 이상치 제거

```
# 표준화하여 Boxplot을 그려 이상치 제거

df_raw_l=robust_scale(df_raw_numeric)

df_raw_l=pd.DataFrame(df_raw_l,columns = df_raw.columns)

df_raw_l.boxplot(figsize=(15,8))
```



```
# CRIM 이상치 제거
df_raw=df_raw.drop([380,418,405,410,414,404,398,427])
```

-0.2

-0.0

0.4

- 0.6

탐색적 분석을 통한 변수간의 상관 관계 파악

Scatter plot

Hit Map

- 환경적 요건
- 강 조망이 있으면 주택 가격이 높을 것이다.

0(비조망)에 비해 1(조망)이 높은 집값 분포를 보임

 산화 질소가 높으면 주택 가격이 낮을 것이다.

OLS Regression Results

Dep. Varial	ole:		NOX	R-squa	red:		0.170	
Model:			OLS	Adj. F	-squared:		0.169	
Method:		Least Squa	ares	F-stat	istic:		101.9	
Date:	W	led, 25 Nov 2	2020	Prob (F-statistic):		6.48e-22	
Time:			5:22	Log-Li	kelihood:		414.33	
No. Observations: Df Residuals: Df Model:			498	AIC:			-824.7	
			496	BIC:			-816.2	
			1					
Covariance	Type:	nonrol	bust					
	coef	std err		t	P> t	[0.025	0.975]	
const	0.6723	0.013	52	.730	0.000	0.647	0.697	
MEDV	-0.0053	0.001	-10	.094	0.000	-0.006	-0.004	
Omnibus:		46	. 408	Durbin	-Watson:		0.215	
Prob(Omnibus):		Θ	.000	Jarque	-Bera (JB):		57.048	
Skew:		Θ	.817	Prob(J		4.09e-13		
Kurtosis:		3	. 284	Cond.		66.2		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

회귀식: [MEDV]=-0.01*[NOX]+0.67

설명력: 17%

Prob (F-statistic) < 0.05 , P>|t| < 0.05 이므로 유의함

▷ 산화 질소 농도와 주택 가격은 매우 약한 양의

8 상관관계를 보임

- 접근성 요건
- 주거지 비율이 높을수록 집값이 높을 것이다.

Dep. Variabl	e:		ZN R-squared:						
Model:					-squared:		0.127 0.125 72.07		
Method:		Least Squar		F-stat					
Date:	We	d, 25 Nov 20		Prob (F-statistic)	:	2.43e-16		
Time:		03:45:		Log-Li	-2243.8				
No. Observations: Df Residuals:		4		AIC:			4492		
		4	96	BIC:			4500.		
Df Model:			1						
ovariance Type:		nonrobu	st						
	coef	std err		t	P> t	[0.025	0.975]		
const	-9.3620	2.652	-3.	530	0.000	-14.573	-4.151		
MEDV	0.9189	0.108	8.	489	0.000	0.706	1.132		
Omnibus:		180.8	96	Durbin	-Watson:	======	0.471		
Prob(Omnibus	5):	0.0	00	Jarque	-Bera (JB):		495,424		
Skew:		1.8	13	Prob(J		2.63e-108			
Kurtosis:		6.2	75	Cond.	No.		66.2		

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

회귀식: [MEDV]=0.91*[ZN]-9.36

설명력: 12.7%

Prob (F-statistic) < 0.05 , P>|t| < 0.05 이므로 유의함

⇒ 주거지의 비율과 주택가격은 강한 양의 상관관계를 보임 - 방사형 도로 접근성 지수가 높을수록 주택 가격이 높을 것이다.

방사형 도로 접근성 지수와 주택 가격의 상관성이 거의 없음

• 이웃 요건

 학생/교사 비율이 낮을수록 주택 가격이 높을 것이다.

		OLS Re	gress	ion Res	ults				
Dep. Varia	ble:	PTRA	TIO	R-squa	red:		0.258		
Model:			OLS	Adj. F	-squared:		0.256		
Method:		Least Squa	res	F-stat	istic:		175.1		
Date:	We	d, 25 Nov 2	2020	Prob (F-statistic)	:	1.61e-34		
Time:		03:58	3:10		kelihood:		-1032.9		
No. Observ	ations:		506	AIC:			2070.		
Df Residua	ls:		504	BIC:		2078.			
Df Model:			1						
Covariance Type:		nonrob	oust						
	coef	std err		t	P> t	[0.025	0.975]		
const	21.1489	0.220	96	.216	0.000	20.717	21.581		
MEDV	-0.1195	0.009	-13	.233	0.000	-0.137	-0.102		
Omnibus:		39.733		Durbir	-Watson:		0.389		
Prob(Omnib	us):	θ.	000	Jarque	-Bera (JB):		47.057		
Skew:		-0.	705	Prob(J	B):		6.05e-11		
Kurtosis:		3,495		Cond.		64.5			

Warnings

회귀식: [MEDV]=-0.12*[PIRAITO]+21.15

설명력: 25.6%

Prob (F-statistic) < 0.05 , P>|t| < 0.05 이므로 유의함

⇒ 교육적 요소를 고려하여 학생/교사 비율 주택가격은 약한 음의 상관관계를 가진다. 저소득층 비율이 높을수록 주택 가격이 낮을 것이다.

		0	LS Regres	sion Re	sults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Covariance Type:		Ned, 25	LSTAT OLS Squares Nov 2020 04:00:14 506 504 1	Adj. F F-sta Prob Log-L:	ared: R-squared: tistic: (F-statistic) ikelihood:		0.544 0.543 601.6 5.08e-88 -1513.5 3031. 3039.
	coef	std	err	t	P> t	[0.025	0.975]
					0.000 0.000		26.675 -0.527
Omnibus: Prob(Omnibus): Skew: Kurtosis:			87.432 0.000 1.059 4.524	Jarque Prob(.			0.901 143.457 7.06e-32 64.5

Warnings:

회귀식: [MEDV]=-0.57*[PIRAITO]+25.56

설명력: 54.4%

Prob (F-statistic) < 0.05 , P>|t| < 0.05이므로 유의함

⇒ 저소득층 비율이 높을수록 주택 가격이 낮다.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

- 사회 경제적 요건
- 1인당 범죄율이 높을수록 주택 가격이 낮을 것이다.

Dep. Varia	hle:			CRIM	R-squa	ared:	0.18				
Model:	D.C.			01.5		R-squared:		0.178			
Method:		1	east So			tistic:		108.6 3.95e-23			
Date:			25 Nov			(F-statistic):					
Time:		med,		45:23	Log-Li	-1467.0					
No. Observations: Df Residuals: Df Model:		498 496			AIC:	2938.					
					BIC:			2947.			
			1								
Covariance	Type:		noni	obust							
	COE	ef	std er	-	t	P> t	[0.025	0.975]			
const	8.17	35	0.55	14	.663	0.000	7.078	9.269			
MEDV	-0.237		0.023			0.000	-0.282	-0.192			
Omnibus:			2	16.887	Durbir	n-Watson:		0.449			
Prob(Omnib	us):			0.000	Jarque	e-Bera (JB):		807.208			
Skew:				2.036	Prob(3	5.21e-176					
Kurtosis:				7.724	Cond.	No.		66.2			

Warnings.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

회귀식: [MEDV]=-0.24*[CRIM]+8.17

설명력: 18%

Prob (F-statistic) < 0.05 , P>|t| < 0.05이므로 유의함

⇒ 범죄율이 높은 지역일수록 주택 가격이 낮다.

 주거당 평균 객실 수가 높으면 주택 가격이 높을 것이다.

Dep. Variable:			RM	R-squa	red:		0.484		
Model:		C	LS	Adj. R	-squared:		0.483		
Method: Date: W Time: No. Observations: Df Residuals:		Least Squar	es	F-stat	istic:		471.8		
		d, 25 Nov 26	20	Prob (F-statistic):		2.49e-74		
		04:03:	00	Log-Li	kelihood:	-371.7 747.			
		5	06	AIC:					
		504		BIC:			755.9		
Df Model:			1						
Covariance Typ	e:	nonrobu	ıst						
	coef	std err		t	P> t	[0.025	0.975]		
const	5.0876	0.060	85.	492	0.000	4.971	5.205		
MEDV	0.0531	0.002	21.	722	0.000	0.048	0.058		
Omnibus:		123.6	06	Durbin	-Watson:		1.160		
Prob(Omnibus):		0.6	000	Jarque	-Bera (JB):	931.463			
Skew:		-0.8	340	Prob(J	B):		5.44e-203		
Kurtosis:		9.4	31	Cond.	No.		64.5		

Warnings.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

회귀식 : [MEDV]=0.05*[RM]+5.09

설명력: 48.4%

Prob (F-statistic) < 0.05 , P>|t| < 0.05 이므로 유의함

⇒ 주거당 평균 객실 수와 주택 가격은 약한 양의 상관관계를 갖는다.

Linear Regression (다중 회귀 분석)을 통한 예측 모델링

• 최종 모델링

		ULS Regre	ssion Resul	.LS				
Dep. Variable:		MEDV	R-square	R-squared:				
Model:		OLS	Adj. R-s		0.734			
Method:	L	east Squares	F-statis	tic:		108.1		
Date:	Wed,	25 Nov 2020	Prob (F-	statistic):	6	.72e-135		
Time: 03:46			Log-Like	lihood:		-1498.8		
No. Observation	ns:	506	AIC:			3026.		
Df Residuals:		492	BIC:			3085.		
Df Model:		13						
Covariance Type	e:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975		
Intercept	36.4595	5.103	7.144	0.000	26.432	46.48		
C(CHAS)[T.1]	2.6867	0.862	3.118	0.002	0.994	4.38		
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.04		
ZN	0.0464	0.014	3.382	0.001	0.019	0.07		
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.14		
NOX	-17.7666	3.820	-4.651	0.000	-25.272	-10.26		
RM	3.8099	0.418	9.116	0.000	2.989	4.63		
AGE	0.0007	0.013	0.052	0.958	-0.025	0.02		
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.08		
RAD	0.3060	0.066	4.613	0.000	0.176	0.43		
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.00		
PTRATIO	-0.9527	0.131	-7.283	0.000	-1.210	-0.69		
В	0.0093	0.003	3.467	0.001	0.004	0.01		
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.42		
Omnibus:		178.041	Durbin-W	latson:		1.078		
Prob(Omnibus):		0.000		lera (JB):		783.126		
Skew:		1.521	Prob(JB)		8	.84e-171		
Kurtosis:		8.281	Cond. No			1.51e+04		

Warnings:

최종 모델링 (후진제거법으로 중요변수 추출)

			=====	ion Res			
Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model:	W tions: s:	Least Squa ed, 25 Nov 2 03:47	020 :41 506 500 5	Adj. R F-stat Prob (0.708 0.705 242.6 3.67e-131 -1528.7 3069. 3095.		
Covariance	Type:	nonrob	ust =====				
	coef	std err		t	P> t	[0.025	0.975]
Intercept	37.4992	4.613	8	.129	0.000	28.436	46.562
LSTAT	-0.5811	0.048	-12	.122	0.000	-0.675	-0.487
NOX	-17.9966	3.261	-5	.519	0.000	-24.403	-11.590
RM	4.1633	0.412	10	.104	0.000	3.354	4.973
DIS	-1.1847	0.168	-7	.034	0.000	-1.516	-0.854
PTRATIO	-1.0458	0.114	-9	.212	0.000	-1.269	-0.823
Omnibus:		187.	456	Durbin	-Watson:		0.971
Prob(Omnibu	s):	0.	000	Jarque	-Bera (JB):		885.498
Skew:		1.	584	Prob(J	B):		5.21e-193
Kurtosis:		8.	654	Cond.	No.		545.

Warnings:

표준화 회귀 계수 (변수의 중요도 파악)

범죄율, 비소매업 비율, 노후 건물 모든 변수에서 p-value < 0.05 비율 에서 P> 0.05

▷ 모델의 수정 필요

▷ 적합 모델

변수 중요도

산화질소 농도 > 중심지 (노동센터) 접근거리 > 학생당 교사 비율 > 저소득층 비율 > 주거당 평균 객실 수

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Decision Tree (의사 결정 나무)를 통한 예측 모델링

● 최종 모델

● 설명 변수 중요도

⚠ 저소득층 비율 > 주거당 평균 객실 수 > 중심지 (노동센터) 접근 거리 > 학생당 교사 비율

test set의 정확도 "85.5%

Train set의 정확도와 모델의 적합 개선 필요

Random Forest 를 통한 예측 모델링

● 최종 모델

● 설명 변수 중요도

☆ 최종 모델 결과

train set의 정확도: 89.2% test set의 정확도: 89.2%

Train/test 정확도를 고려하였을 때, 정확도는 낮지만 적합한 모델

Linear Regression, DTR, RFR, GBR 모델 비교

4종류의 오차를 평가하였을 때, Gradient Boosting에서 오차가 가장 작다.

⇒ Gradient Boosting 모델의 예측 정확도가 가장 높다

집값에 영향을 미치는 요인들과 집값의 예측

- 강 조망권, 주거 밀집율, 주거당 평균 객실 수가 높을 수록 주택 가격은 높아진다.
- 반면, 산화 질소의 농도,
 저소득층의 비율, 1인당 범죄율,
 중심지로 부터의 접근 거리가
 클수록 주택 가격은 낮아진다.
- Gradient Boosting 모델을 통한 예측이 가장 높은 정확도를 보인다.

→ 과거 집 값에 영향을 미친 요인은 현재에도 유효한 것을 확인

서울과 유사한 해외 지역의 집값 예측 모델을 활용하여 국내 집값 예측 모델 정확한 구상에 기여 가능

실습 과정을 통해 배운 또는 느낀 통찰, 아이디어, 애로사항 등을 정리합니다

- 탐색적 방법을 활용하여 목표 변수와 설명 변수의 상관 관계를 파악하며 가설을 검정하는 것이 흥미로움
- 국내에서 발생한 문제를 해외 사례를 적용하여 해결 방안을 제시할 수 있음을 암시
- 제약적 프로그래밍 활용 역량으로 다양한 방법으로 데이터 분석을 하지 못한 것이 아쉬움

핵심인자 선정을 위한 분석 과정에서 나온 결과를 순위 등으로 종합 정리합니다. 각자 필요한 형식으로 변경해서 사용하세요(엑셀 파일 제공)

нл	bh Ан	바시여하	버스 형태	분석		탐색적 기	4			Ī	고델링 기법			太叫	선정
변수	변수 설명	변수 역할	변수 형태	제외 사유	그래프	검정	상관분석	분석 회귀분석 DT RF GB ··· KNN 사례인	사례연구	총점	(순위, 사유)				
MEDV	주택가격(중앙값)	목표변수	연속형										1-1-1		-11111
CRIM	범죄율	설명변수	연속형						7	4	4			15	4
ZN	주거지 비율	설명변수	연속형						13	13	13			39	13
INDUS	비소매업 비율	설명변수	연속형						9	10	10		8	29	10
CHAS	강 조망 여부(1-조망,0-비조망)	설명변수	이산형						12	11	11			34	11
NOX	산화질소 농도	설명변수	연속형					1	8	7	7			22	7
RM	주거당 평균 객실 수	설명변수	연속형					5	2	2	2		8	6	2
AGE	노후 건물 비율	설명변수	연속형					9	11	5	5		,	21	6
DIS	중심지(노동센터) 접근 거리	설명변수	연속형					2	3	3	3			9	3
RAD	고속도로 접근 편이성 지수	설명변수	연속형	상관성이 낮음					10	12	12			34	11
TAX	재산세율	설명변수	연속형						6	8	8			22	7
PTRATIO	학생당 교사 비율	설명변수	연속형		-			3	4	6	6		9	16	5
В	흑인 인구 비율	설명변수	연속형	상관성이 낮음				3	5	9	9) (23	9
LSTAT	저소득층 비율	설명변수	연속형					4	1	1	1			3	1