

NASA Glenn Propulsion Systems Lab: Update on Calibration Testing

Judith F. Van Zante

NASA Glenn Research Center

2015-06 SAE International Icing Conference

Prague, Czech Republic

Agenda

- PSL Icing Configurations and Capabilities
 - Engine
 - Driven Rig
- Icing/Ice Crystal Cloud Characterization
 - Water Content
 - Particle Size
 - Uniformity
 - Particle Temp

Icing Calibration Configurations

Modification upstream of spraybars

PSL Operating Range – Icing System

Specification	Min	Max
Engine / Rig Dia. (in cm)	24 60	72 180
Air Flow Rate (lbm/s kg/s)	10 5	330 150
Altitude, pressure (kft km)	_4 1.2	50 15
Total Temp (°F °C)	-60 -50	50 10
Mach Number	0.15	0.80
TWC (g/m ³)	0.5	8.0 *
MVD (um)	15	>100 #

^{*} Evidence that probe under-measured

[#] Particles larger than ≈ 60 um are NOT fully glaciated.

Setting Conditions in PSL

Given the atmospheric environment (P_{amb} , T_{amb} , Mach) of concern, Provide the static conditions (Ps, Ts, Mach) at the inlet plane of either

- Engine (fan face conditions)
- Driven Rig (LPC inlet, etc)

Define target cloud (TWC, MVD)

- Appendix D/P
- Appendix C
- Large Drop

Conduct calibration toward request to see what PSL can cover.

(from Aircraft Engine Design, Mattingly)

PSL-3 Envelope

Altitude (kft)

PSL Icing Cloud Hardware

Spray Bars – Cloud Generation

- Ten Spray Bars; total of 110 Standard
 - nozzles and 112 Mod1 nozzles.
- Each nozzle is individually controlled.
- Nozzle controls:
 - Pair, atomizing air pressure: 5 90 psid,
 Tair temperature: 45 180 F.
 - Pwat, water pressure: 10 300 psid,
 Twat temperature: 45 180 F.
 - DeltaP = DP = (Pwat Pair)
 - SBCA, Spraybar cooling air.
 P: 5 40 psid, T: -40 40 F.

(Pair, DeltaP) => (MVD, TWC)

At a given air mass flow rate

Full (every) or Half (every other) Pattern

Water Content Instruments – IKP

Iso-Kinetic Probe

SEA Inc.

Ice Catch
Tube system
not
completed
for the May
2015 Entry.

Water Content Instruments – Hot wire

Multi-Wire (TWC & LWC)
(MW)

2-mm reverse half-pipe (083)
2-mm half-pipe (TWC)
0.5-mm wire (021)
Collection Efficiency Corrected*

Robust Probe (TWC only) SEA Inc.

(RP) ribbed (rRP)

3.8-mm half-pipe No collection efficiency correction, yet.

^{*}Ref: Rigby, Struk, Bidwell, "Simulation of fluid flow and collection efficiency for an SEA multi-element probe", AIAA 2014-2752

Water Content – Installation and Analysis

Splitter Plate

Bullet nose (not recommended)

2014 & 2015

Phase Change Energy Requirements

Phase Change Energy Requirements

Heating Steam
0.48 cal/g C

Vaporizing Water
100
Bailing Point ® Sea Level
Phase Change - Heat of Vaporization
539 cal/gm @ Sea Level

Melting Ice

Heating Water-1.0 cal/g C

Phase Change - Heat of Fusion 79.7 cal/gm @ Seal Level

Heating Ice-0.5 cal/g

Energy Added - cal

SEA WCM-2000 User Manual

$$IWC \ \left(\frac{g}{m^{3}}\right) = \frac{C*P_{sense,wet}}{\left[L_{evap} + C_{liq}\left(T_{evap} - T_{amb}\right) + L_{fus} + C_{ice}\left(T_{0} - T_{amb}\right)\right]*V*L_{sense}*W_{sense}}$$

MW Response to Temp. change at Altitude (25 um)

Sample TWC Measurements

Bulk TWC Calculation (g/m3)

Config1: Effects of

- Altitude

- Relative Humidity

Config 2: Correlation between Measured and Calculated

Bulk TWC = mass_water / time mass_air / time

Water Content Sensor Comparison

Water Content Sensor Comparison

Sensor Fit Comparison

Sensor/RP v MVD

CDP (2 – 50 um) Forward Scattering

CIP-GS (15 – 930 um) Shadowing

Sample Combined Distributions

Sample MVD Results

Effect of Relative Humidity

Effect of Altitude (Tank Pressure)

PTANKA (psia)

Additional Particle Sizing Techniques

Artium, Inc.

Phase Doppler Interferometer

- Particle size
- Particle velocity
- LWC
- Number density

High Speed Imaging

- Particle size (ice & liquid)
- Shape
- LWC
- Number density

Cloud Uniformity Diagnostics

- Grid
 - Supercooled liquid only
 - Low speed only
- Laser Sheet *
- Tomography *

Uniformity is required for Bulk TWC calculation.

*Bencic, T., et. al, "Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory", AIAA 2013-2678, 2013.

Cloud Uniformity Measurements

Uniformity Grid 3x6 in

Liquid Water Only Limited Speed, Time

Long time spray for visualization only.

Laser Sheet @ duct exit

Light Extinction Measurements

Tomography in duct

Cloud Uniformity Results

Particle Temperature

Raman Scattering – Primer

- Measures surface temperature
- Measures average bulk particle phase ice or water
- Is a very low light technique, signal can be contaminated by light from other techniques or cell lights

Adding a fluorescent dye greatly helps with signal gain.

Raman Scattering – Particle Phase & Temp.

T. Bencic's bench top results

Raman Area Ratio

Future Tasks

- Continue analysis of May 2015 cloud characterization data
- Implement calibration curves
- Evaluate MVD sensitivity to configuration changes.
- Publish report

With thanks to the PSL Cloud Cal Team:

- Bryan Rosine
- Jonathan Borman

Questions?

