

CPSC 481 Artificial Intelligence

Dr. Mira Kim Mira.kim@fullerton.edu

What we will cover this week

- The Ethics of Al
 - Fairness and Bias
 - Privacy

The Ethics of Al

- Every organization that creates AI technology, and everyone in the organization, has a responsibility to make sure the technology contributes to good, not harm.
- Ensure fairness
- Provide transparency
- Respect privacy
- Ensure safety
- Limit harmful uses of Al
- Promote collaboration

- Establish accountability
- Uphold human rights and values
- Reflect diversity/inclusion
- Avoid concentration of power
- Acknowledge legal/policy implications
- Contemplate implications for employment

"Manager" by Stable Diffusion.

Model generated white men 97% of the time when given prompts like "CEO" or "director."

The average face of a teacher generated by Stable Diffusion and DALL-E 2.

Average face of a teacher

"Manager" by Stable Diffusion.

"Compassionate manager" by Stable Diffusion.

- Attaching different adjectives changes images
- -> Stereotypical gender biases Adding "compassionate," "emotional," or "sensitive"
 - -> generate a woman

Adding "stubborn," "intellectual," or "unreasonable"

-> generate a man

Bloomberg article - Humans are biased. Generative AI is even worse

The world according to

FAIRNESS AND BIAS

Fairness and bias

- AI/ML systems are being deployed in complex high-stakes settings
- Accuracy alone is no longer enough
- Auxiliary criteria are important:
 - Non-discrimination ("fairness")
 - Right to explanation
 - Safety

Real World Scenario: Bail Decision

U.S. police make about 12M arrests each year

- Release vs. Detain is a high-stakes decision
 - Pre-trial detention can go up to 9 to 12 months

Bail Decision

Judge is making a prediction: Will the defendant commit 'crime' if released on bail?

Bail Decision-Making as a Prediction Problem

 Build a model that predicts defendant behavior if released based on their characteristics

Training examples ⊆ Set of All Released Defendants

		endant cteristics		Outcome			
Age	Prev. Crimes	Level of Charge					
28	2	Felony		Crime		Learning	
14	1	Misd.	•••	No Crime			
63	0	Misd.		No Crime		algorithm	
		.	•••		`		,
		Test (case	•			
		endant		Outcome	1	Predictive	Prediction:
	Characteristics			Outcome		riedictive	Crime (0.83
35	3	Felony		?			, S (8188

Accuracy and fairness

Where does bias come from?

- 1. Data reflects bias in the systems/people that create training data
 - "Bias in, bias out"
- 2. Unintended feedback loops
 - Send more police to one neighborhood → more arrests made → more crime! → send even more police → ...
- 3. Data does not reflect true objectives
 - Have only arrest records, not who actually committed crimes
- 4. Different features have different correlations for different sub-groups
 - E.g., Do SAT verbal scores indicate college success for men/women equally?

Accuracy and fairness

- Model was optimized for accuracy
- But is it fair?
 - Is bail granted at equal rates for different groups?
 - Not necessarily accuracy and fairness are different objectives
- What is fairness (for an algorithm)?
 - Statistical parity: fairness metrics in AI the proportion of positive decisions made be the same for different sub-groups
 - Equality of false negatives: model mistakes must be made at the same rate for different sub-groups

Accuracy and fairness: solution 1

- Optimize accuracy and fairness objectives together
 - If only accuracy is maximized, algorithm will naturally optimize better for the majority population, as that has a greater impact on overall accuracy
 - Problem 1: not always possible for one model to maximize accuracy and maximize fairness
 - In fact, different fairness objectives can themselves conflict
 - Statistical parity vs. equality of false negatives
 - Humans/society will have to decide where in the accuracy-fairness trade-off curve we want to be
 - Could be different for different applications: bail decisions are more critical than targeted ads
 - Problem 2: models optimizing for different sub-groups can unintentionally discriminate people at the intersections of these same sub-groups
 - Model is fair with race and gender separately, but unfair to a particular race-gender class

Accuracy and fairness: solution 2

- Make models interpretable:
 - Create a human-understandable explanation of model predictions
 - Versus "black box" model

Bail Decision-Making as a Prediction Problem

Build a model that predicts defendant behavior if released based on his/her characteristics

Give a human-readable explanation of the model

```
If Current-Offense = Felony:
          If Prior-Felony = Yes and Prior-Arrests \geq 1, then Crime
          If Crime-Status = Active and Owns-House = No and Has-Kids = No, then
Crime
          If Prior-Convictions = 0 and College = Yes and Owns-House = Yes, then No
Crime
If Current-Offense = Misdemeanor and Prior-Arrests > 1:
          If Prior-Jail-Incarcerations = Yes, then Crime
          If Has-Kids = Yes and Married = Yes and Owns-House = Yes, then No Crime
          If Lives-with-Partner = Yes and College = Yes and Pays-Rent = Yes, then No
Crime
If Current-Offense = Misdemeanor and Prior-Arrests \leq 1:
          If Has-Kids = No and Owns-House = No and Moved_10times_5years = Yes,
then Crime
          If Age \geq 50 and Has-Kids = Yes, then No Crime
```

Judges were able to make decisions 2.8 times faster and 38% more accurately (compared to no explanation and only prediction)

Motivation for Interpretability

- Auxiliary criteria are often hard to quantify (completely)
 - E.g.: "Safety"
 - Impossible to enumerate all scenarios violating safety of an autonomous car

- Fallback option: interpretability
 - If the system can explain its reasoning, we can verify if that reasoning is sound with regards to auxiliary criteria like fairness, safety

In-class exercise

- Discuss how you would design an interpretable AI system for the following scenarios. Write a human-readable explanation of the system. (Follow a similar format as slide 18)
 - 1.Medical Diagnosis: A hospital uses an AI system to diagnose heart diseases. Based on certain criteria, the system concludes a low, medium or high risk of heart disease.
 - 2.Loan Approvals in Banking: A bank uses an AI system to determine whether to approve or reject a loan application. The system examines different factors to make decisions.

PRIVACY

Privacy

- Data collectors have a moral and legal responsibility to be good stewards of the data they hold
- Individual's right to privacy versus the value that society gains from sharing data
 - We want to cure diseases without compromising any individual's right to keep their health history private

Privacy

- De-identification: eliminating personally identifying information (such as name and social security number) before releasing data to the public
 - E.g., so that medical researchers can use the data in analyses

Privacy: de-identification

Health insurance database

Privacy: de-identification

- Are "de-identified" data more secure?
 - Not necessarily!
- 87% of the US population can be uniquely identified by ZIP code, gender, and date of birth (Sweeney, 2002).
- Sweeney identified William Weld, governor of Massachusetts, in a health insurance database for state employees by purchasing voter registration for Cambridge, Massachusetts, for \$20 and linking ZIP code, gender, and date of birth to the "de-identified" medical database (Sweeney, 1997).

Dr. Latanya Sweeney

Privacy: de-identification

Need for Privacy

- The data contains:
 - Attribute values which can uniquely identify an individual
 - { zip-code, nationality, age } or/and {name} or/and {SSN}
 - sensitive information corresponding to individuals
 - { medical condition, salary, location }

	Iden	tity-rela	ated Data	Sensitive Data		
#	Zip	Age	Nationality	Name	Condition	
1	13053	28	Indian	Kumar	Heart Disease	
2	13067	29	American	Bob	Heart Disease	
3	13053	35	Canadian	Ivan	Viral Infection	
4	13067	36	Japanese	Umeko	Cancer	

Need for Privacy

		Identity-rela	Sensitive Data	
#	Zip	Age	Nationality	Condition
1	13053	28	Indian	Heart Disease
2	13067	29	American	Heart Disease
3	13053	3 5	Canadian	Viral Infection
4	13067	36	Japanese	Cancer

Published

Data

Data leak!

	#	Name	Zip	Age	Nationality
	1	John	13053	28	American
.	2	Bob	13067	29	American
	3	Chris	13053	23	American

Voter List

Source of Problem

- Even if we remove the direct uniquely identifying attributes
 - There are some fields that may still uniquely identify some individual!
 - The attacker can join them with other sources and identify individuals

	Iden	tity-rela	Sensitive Data	
#	Zip Age Nationality			Condition
	•••	•••		

Quasi-Identifiers

Identifier: information that uniquely identifies a person

E.g., full name, or SSN

Quasi-Identifier: information that can identify a person

when combined with another dataset

A solution: K-anonymity

- Proposed by Sweeney
- Change data in such a way that for each tuple in the resulting table there are at least (k-1) other tuples with the same value for the quasi-identifier – K-anonymized table

#	Zip	Age	Nationality	Condition
1	130**	< 40	*	Heart Disease
2	130**	< 40	*	Heart Disease
3	130**	< 40	*	Viral Infection
4	130**	< 40	*	Cancer

Techniques for anonymization

- 1. Data Swapping interchange values between records
- 2. Randomization add random noise to the data
- 3. Generalization replace the original value by a semantically consistent but *less* specific value
- 4. Suppression data not released at all

Techniques for anonymization

#	Zip	Age	Nationality	Condition
1	130**	≠ 40	*	Heart Disease
2	130**	< 40	*	Heart Disease
3	130**	< 40	*	Viral Infection
4	130**	 40	\ * /	Cancer

Generalization

Suppression (cell-level)

In-class Exercise

2-anonymize this dataset (for the Identity-related columns)

		Identity-rela	Sensitive Data	
#	Zip	Age	Insurance	Condition
1	13053	28	Kaiser	Heart Disease
2	13067	29	Kaiser	Heart Disease
3	13053	35	Aetna	Viral Infection
4	13067	36	Aetna	Cancer

References

- Russel and Norvig, Artificial Intelligence: A Modern Approach, 4th edition
 - Section 27.3 "The Ethics of AI"
- https://www.technologyreview.com/2023/03/22/1070167/these-news-tool-let-you-see-for-yourself-how-biased-ai-image-models-are/
- https://www.bloomberg.com/graphics/2023-generative-ai-bias/
- Hima Lakkaraju, CS282BR: Topics in Machine Learning Interpretability and Explainability