Fluid simulation

Jack van der Drift & Marjolein Zwerver

MAC grid

- Fluid Flow for the rest of us Cline, Cardon and Egbert
- Divide the space into grid cells
- For each cell
 - Store velocity components on corresponding faces
 - Store pressure at cell center
- Use marker particles

Algorithm

- 1. Calculate time step Δt
- 2. Update cell states
- 3. Advance the velocity field
 - a. Update fluid velocities
 - b. Apply external forces
 - c. Calculate pressure
 - d. Apply pressure
 - e. Update air velocities
 - f. Set solid cell velocities
- 4. Move marker particles

1. Calculate timestep Δt

- Loop over all velocity components to get max velocity
- $\Delta t = 1/v_{max}$
- Clamped between 0.01 and 0.1

2. Update cell states

- Cell state matrix which keeps track of the state (water/air) for each cell
- If a cell contains a marker particle it is marked as a water cell

3a. Backwards particle trace

- For each face:
 - Get interpolated velocity in x, y and z direction
 - Trace particle backwards:
 - ightharpoonup pos_{prev} = pos_{old} vel * Δt
 - New velocity at face is the interpolated velocity at pos_{prev}

3b. Apply external forces

- Just gravity in our case
- ightharpoonup vel_y = vel_y 9.81 * Δ t
- Apply only to faces that border fluid

3c. Calculate pressure

- Only for fluid cells
- ► A * P = B
 - Matrix A
 - Diagonal: -(number of non-solid neighbors)
 - Rest: 1 if neighbors, 0 otherwise
 - Adjusted divergence B: ρ/Δt * ∇u
- Jacobi method to solve

3d. Apply pressure

- Only applied to velocity components that border fluid cells
- $\nabla p(x, y, z) = p(x, y, z) p(x 1, y, z)$

3e. Update air velocities

- Only for a 1 cell buffer zone
- Interpolated from bordering water cells

Set solid cell velocities

Velocities that point into a wall are set to 0

Move marker particles

- Velocity for each particle calculated by interpolating between face values
- \triangleright pos_{new} = pos_{old} + vel * Δ t

Demo

