Виртуальная реальность занятие №9

Рябинин Константин Валентинович

e-mail: icosaeder@ya.ru

jabber: icosaeder@jabber.ru

Благодарности:

Bartek Skorupa (Lemon Film Studio, Польша)

Алексей Шестов, Александр Воронов, (ВМК МГУ, Россия) Дмитрий Ватолин

Стереоскопическая визуализация

Стереоизображение – это изображение, которое, являясь плоским, создаёт у наблюдателя эффект объёмного восприятия, то есть передаёт протяжённость пространства и рельефность, свойственные реальным объектам

Сетереоскопическая визуализация — это построение и демонстрация стереоизображений

Области применения стереоскопической визуализации:

- Индустрия развлечений: кино и видеоигры
- € Симуляция среды и условий

3D vs Стерео

Математическая модель трёхмерной сцены

левый кадр

правый кадр

Стереопара

Две двумерных картинки, изображающих сцену с различных ракурсов

Стерео

3D

Вопросы относительно 3D- и стереоизображений, требующие решения

- Как создавать?
- **Как хранить?**
- Как отображать?

Создание качественного стереоизображения – не такая простая задача, даже в кинематографии мирового уровня далеко не всегда находящая решение

Основные проблемы:

- Теоретические результаты далеко не всегда совпадают с практическими, так как определяющим является субъективное восприятие человека
- Математическое моделирование и обсчёт стереоскопического эффекта оказывается весьма нетривиальной задачей
- Многое строится на эвристиках и экспериментировании

Параллакс – изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя

Положительный параллакс – левый кадр находится слева от правого кадра

В этом случае точка пересечения осей взгляда глаз человека лежит за плоскостью экрана

Отрицательный параллакс – левый кадр находится справа от правого кадра

В этом случае точка пересечения осей взгляда глаз человека лежит перед плоскостью экрана

- Если отрицательный параллакс равен по модулю расстоянию между глазами человека, объект воспринимается находящимся на «полпути» от экрана к человеку
- Если положительный параллакс равен расстоянию между глазами человека, объект воспринимается находящимся в бесконечности (далеко за экраном)
- Параллакс и воспринимаемая удалённость объекта связаны сложной экспоненциальной зависимостью
- Параллакс играет в основном вторичную роль в восприятии расстояния. Определяющими для человека являются
 - Перекрытия
 - Перспективные искажения
 - Глубина резкости
- Кроме этого, существует параллакс движения при перемещении наблюдателя дальние объекты движутся медленнее ближних

Восприятие расстояния легко обмануть

Восприятие расстояния легко обмануть

 Большой отрицательный параллакс означает сильное сведение (конвергенцию) глаз

Большой положительный параллакс означает разведение (дивергенцию) глаз

=> положительный параллакс не должен превышать расстояния между зрачками человека; среднестатистический человек в состоянии развести глаза не более,

- Размер параллакса, соотносимого с расстоянием между зрачками человека (~65 мм), зависит от размера экрана
- Для примера:
 - Пусть кадр формата 2К (2048х1556) имеет параллакс в
 пискелей (~1% размера)
 - Экран в 1 метр (широкоформатный телевизор) будет отображать параллакс в 10 мм
 - Экран в 10 метров (экран кинотеатра) будет отображать параллакс в 100 мм (уже больше, чем расстояние между зрачками)
 - Экран в 25 метров (экран в ітах-кинотеатре) будет отображать параллакс в 250 мм
- Однако расстояние от человека до экрана компенсирует дивергенцию

- Экспериментально определено, что безопасное значение (для кадра формата 2К)
 - положительного параллакса:
 12 пискелей
 (в ряде случаев можно увеличивать до 31 пикселя)
 - отрицательного параллакса:15 пикселей

- Важными понятиями в стереоскопии являются
 - Диапазон глубин (depth budget) максимальное значение положительного и отрицательного параллакса, то есть параллаксы потенциально самой ближней и самой дальней точек
 - Рекомендуемое значение: -15 .. +13 пикселей
 - - Рекомендуемое значение: 14 пикселей

- Важными понятиями в стереоскопии являются
 - Позиция глубин (depth position) область пространства, объекты в которой вписываются в дельту глубин, например области с параллаксом
 - **9 -14 .. 0**
 - **●** -4 .. +10
 - **0** .. +14

- Позицией глубин можно управлять, сводя камеры под разными углами
 - Если точка пересечения осей взгляда камер совпадает с ближайшей точкой сцены, ближайшие объекты будут восприниматься лежащими на экране, а все остальные – за экраном
 - Если точка пересечения ближе ближайшей точки сцены, все объекты будут восприниматься лежащими за экраном
 - Если точка пересечения дальше ближайшей точки сцены, ближайшие объекты будут восприниматься лежащими перед экраном
- Однако сведение камер влечёт за собой эффект трапеции (keystoning problem)

- Камеры должны оставаться параллельными
- Однако в этом случае объекты всегда будут восприниматься находящимися перед экраном, вне зависимости от их фактической удалённости (так как точка пересечения осей взгляда камер определяет восприятие положения экрана, в случае параллельных камер экран оказывается в бесконечности)
- Для достижения восприятия объектов за краном необходимо раздвигать полученные картинки искусственно, на этапе постобработки

Чем больше такое смещение, тем дальше объект воспринимается

- Таким образом, позиция глубины может быть изменена на этапе постобработки
- При этом позиция глубины не влияет на дельту глубин
- Дельта глубин не может быть изменена на этапе постобработки
- На дельту глубин действуют
 - Расстояние до ближней точки сцены
 - Расстояние до дальней точки сцены
 - Размер экрана
 - Фокусное расстояние камеры
 - Стерео-база (расстояние между камерами)

- Максимальный (комфортный) размер стерео-базы:
 - Расстояние до ближней точки ↑
 - Размер стерео-базы ↑
 - **●** Расстояние до дальней точки ↑
 - Размер стерео-базы ↓
 - Размер экрана ↑
 - Размер стерео-базы ↑
 - Фокусное расстояние камеры ↑
 - Размер стерео-базы ↓

- Существуют способы аналитического определения максимального комфортного размера стерео-базы:
 - Формула Джона Берковица

$$Base = \delta \cdot \frac{Far \, Near}{Far - Near} \cdot \left(\frac{1}{Focus} - \frac{Far + Near}{2 \, Far \, Near} \right)$$

Уравнение Франка Ди Марцио

$$Base = \delta \cdot \frac{Far \cdot Near}{Far - Near} \cdot \left(\frac{1}{Focus} - \frac{1}{Width} \right)$$

Формула Пьера Мондра

$$Base = \frac{\delta}{Focus} \cdot \frac{Near Far}{Far - Near}$$

Более простой (но и значительно более грубый)
 приём – правило 1/30

$$\frac{Base}{Near} = \frac{1}{30}$$

Плохо, так как объект переднего плана обрезается границей экрана

Хорошо

Плохо, много пустого пространства, воспринимаемая объёмность сцены теряется

Хорошо

- Даже в профессиональных стереоскопических работах (современных стерео-фильмах) от случая к случаю присутствуют ошибки
 - Разная яркость и цветность кадров стереопары
 - Разный фокус в кадрах стереопары
 - Вертикальный сдвиг кадров стереопары
 - Разное содержимое (!!!) в кадрах стереопары
 - Кадры стереопары перепутаны местами
- Не должно быть слишком много сцен с большим отрицательным параллаксом
- Глубина сцен должна быть выровнена в соответствии с диапазоном глубин, позицией глубины и дельтой

Подход на основе параллельных камер

Подход на основе асиметричных камер

- Анаглиф
- Поляризация

Параллакс-барьер

Эклипс (затвор)

Пространственное разделение (стереоскоп)

Ресурсы кафедры МОВС

В распоряжении кафедры MOBC находится шлем виртуальной реальности eMagin Z800 3DVisor

Технические характеристики:

- Два LCD-дисплея 800x600@60Hz
- Наушники
- Гироскопический датчик поворотов головы,
 регистрирующий вертикальное и горизонтальное вращение
- ΠΟ (Windows only):

Ресурсы кафедры МОВС

В распоряжении кафедры MOBC находятся затворные очки eDimensional 3D Vision

Технические характеристики:

- Два LCD-затвора на максимальную частоту в 200 Гц
- € Синхронизация через инфракрасный маячок
- ΠΟ (Windows native, Linux on Wine):
 - Управляющая программа

