1 Линейная регрессия

1.1 Рассмотрим задачу линейной регресии

$$Q(w) = (y - Xw)^T (y - Xw) \to \min_{w}.$$

- 1. Найдите dQ(w) и $d^2Q(w)$.
- 2. Выведите формулу для оптимального w.
- 3. Выведите формулу для матрицы-шляпницы (hat-matrix), связывающей вектор фактических y и вектор прогнозов $\hat{y} = H \cdot y$.
- **1.2** Рассмотрим задачу регрессии с одним признаком и без константы, $\hat{y}_i = w \cdot x_i$. Решите в явном виде задачи МНК со штрафом:
 - 1. $Q(w) = (y \hat{y})^T (y \hat{y}) + \lambda w^2$;
 - 2. $Q(w) = (y \hat{y})^T (y \hat{y}) + \lambda |w|;$
- 1.3 Храбрая и торопливая исследовательница Мишель хочет решить задачу линейной регрессии по n наблюдениям с вектором y и матрицей признаков X. Сначала исследовательница Мишель так торопилась, что совсем забыла последнее наблюдение и оценила задачу с более коротким вектором y^- и матрицей X^- , где не хватает последней строки. Затем Мишель взяла правильную матрицу X, но неправильный вектор y^* , в котором она вместо фактического последнего наблюдения вектора y вписала его прогноз, полученный с помощью регрессии с y^{-1} и X^- .
 - 1. Как связаны \hat{y}_n^- и \hat{y}_n^* (прогнозы для последнего наблюдения полученные по модели без последнего наблюдения и модели с неверным последним наблюдением)?
 - 2. Как выглядит вектор, равный разнице $y y^*$?
 - 3. Какие величины находятся в векторе $H \cdot (y y^*)$? Чему равна последняя, n-ая, компонента этого вектора? Выразите её через H_{nn} и ошибку прогноза последнего наблюдения по модели без последнего наблюдения, $y_n \hat{y}_n^-$.
 - 4. Как связаны между собой ошибка прогноза n-го наблюдения по полной модели, ошибка прогноза n-го наблюдения по модели без последнего наблюдения и H_{nn} ?
 - 5. Как быстро провести кросс-валидацию с выкидыванием одного наблюдения для задачи линейной регрессии?

2 Линейные классификаторы

- **2.1** Рассмотрим плоскость в \mathbb{R}^3 , задаваемую уравнением $5x_1+6x_2-7x_3+10=0$ и две точки, A=(2,1,4) и B=(4,0,4).
 - 1. Найдите любой вектор, перпендикулярный плоскости.
 - 2. Правда ли, что отрезок AB пересекает плоскость?
 - 3. Найдите длину отрезка AB;
 - 4. Не находя расстояние от точек до плоскости, определите, во сколько раз точка A дальше от плоскости, чем точка B;
 - 5. Найдите расстояние от точки A до плоскости.
- **2.2** Рассмотрим простейший персептрон с константой, единственным входом x_1 и пороговой функцией активации. Подберите веса так, чтобы персептрон реализовывал логическое отрицание (в ответ на 0 выдавал 1, и наоборот).

2.3 Рассмотрим простейший персептрон с константой, двумя входами x_1, x_2 и пороговой функцией активации.

Здесь ассистенты нарисуют в tikz картинку, достойную стоять вместо Джоконды в Лувре

- 1. Подберите веса так, чтобы персептрон реализовывал логическое ИЛИ (OR).
- 2. Подберите веса так, чтобы персептрон реализовывал логическое И (AND).
- 3. Докажите, что веса невозможно подобрать так, чтобы персептрон реализовывал исключающее логическое ИЛИ (XOR).
- 4. Добавьте персептрону вход $x_3 = x_1 \cdot x_2$ и подберите веса так, чтобы персептрон реализовывал XOR.
- 5. Реализуйте XOR с помощью трёх персептронов с двумя входами и константой. Укажите веса и схему их взаимосвязей.
- **2.4** В коробке завалялось три персептрона, у каждого два входа с константой и пороговая функция активации. Реализуйте с их помощью функцию

$$y = \begin{cases} 1, \text{ если } x_2 \geqslant |x_1 - 3| + 2; \\ 0, \text{ иначе} \end{cases}.$$

2.5 Рассмотрим следующий набор данных:

x_i	z_i	y_i
-1	-1	0
1	-1	0
-1	1	0
1	1	0
0	2	1
2	0	1
0	-2	1
-2	0	1

- 1. Существует ли перспетрон с константой, двумя входами и пороговой функцией активации, способный идеально классифицировать y_i на данной выборке? А хватит ли двух таких персептронов? А может хватит трёх?
- 2. Введите такое преобразование исходных признаков $h_i = h(x_i, z_i)$, при котором с идеальной классификацией y_i справился бы даже персептрон с одним входом, константой и пороговой функцией активации.
- **2.6** Бандерлог из Лога¹ ведёт блог, любит считать логарифмы и оценивать логистические регрессии. С помощью нового алгоритма Бандерлог решил задачу классификации по трём наблюдениям и получил $b_i = \hat{\mathbb{P}}(y_i = 1|x_i)$.

y_i	b_i
1	0.7
-1	0.2
-1	0.3

- 1. Постройте ROC-кривую.
- 2. Найдите площадь под ROC-кривой и индекс Джини.
- 3. Постройте PR-кривую (кривая точность-полнота).

 $^{^{1}}$ деревня в Кадуйском районе Вологодской области

- 4. Найдите площадь под РК-кривой.
- 5. Как по-английски будет «бревно»?
- 2.7 Классификатор Бандерлога имеет вид

$$a_i = \begin{cases} 1, \text{ если } b_i > t; \\ -1, \text{ иначе.} \end{cases}$$

Докажите, что площадь под ROC-кривой равна вероятности того, случайно выбранный положительный объект окажется позже случайно выбранного отрицательного объекта, если объекты ранжированы по возрастанию величины b_i .

- **2.8** Все средние издалека выглядят одинаково, среднее $= f^{-1}(0.5f(x_1) + 0.5f(x_2))$. Например, у среднего арифметического f(t) = t, у среднего гармонического f(t) = 1/t.
 - 1. Какая f используется для среднего геометрического?

Для измерения качества бинарной классификации Ара использует среднее арифметическое точности и полноты, Гена — среднее геометрическое, а Гарик — среднее гармоническое.

- 2. У кого будут выходить самые «качественные» и самые «некачественные» прогнозы?
- **2.9** Бандерлог начинает все определения со слов «это доля правильных ответов»:
 - 1. ассигасу это доля правильных ответов...
 - 2. точность (precision) это доля правильных ответов...
 - 3. полнота (recall) это доля правильных ответов. . .
 - 4. TPR это доля правильных ответов...

Закончите определения Бандерлога так, чтобы они были, хм, правильными.

2.10 Алгоритм бинарной классификации, придуманный Бандерлогом, выдаёт оценки вероятности $b_i = \hat{\mathbb{P}}(y_i = 1|x_i)$. Всего у Бандерлога 10000 наблюдений. Если ранжировать их по возрастанию b_i , то окажется что наблюдения с $y_i = 1$ занимают ровно места с 5501 по 5600.

Найдите площадь по ROC-кривой и площадь под PR-кривой.

2.11 Бандерлог собрал выборку из 900 муравьёв и 100 китов. Переменная y_i равна 1 для китов. Бандерлог хочет, чтобы его алгоритм классификации выдавал для каждого наблюдения число $b_i = f(x_i) \in [0;1]$, оценку вероятности того, что наблюдение является китом. В качестве признака Бандерлог использует количество глаз, не задумавшись о том, что оно равно двум и для муравьёв, и для китов.

Решите задачу минимизации эмпирической функции риска и найдите все b_i для функций потерь:

- 1. $L(y_i, b_i) = (y_i b_i)^2$, если для муравьёв $y_i = 0$;
- 2. $L(y_i, b_i) = |y_i b_i|$, если для муравьёв $y_i = 0$;
- 3. $L(y_i, b_i) = \begin{cases} -\log b_i, \text{ если } y_i = 1\\ -\log(1 b_i), \text{ иначе.} \end{cases}$;
- 4. $L(y_i, b_i) = \begin{cases} 1/b_i, \text{ если } y_i = 1\\ 1/(1 b_i), \text{ иначе.} \end{cases}$;
- **2.12** Бандерлог утверждает, что открыл новую верхнюю границу для пороговой функции потерь, $\tilde{L}(M_i) = 1 + \frac{1}{\pi} \cdot \arctan(-x_i)$, где $M_i = y_i \cdot \langle w, x_i \rangle$. Прав ли бандерлог?

3

2.13 Бандерлог из Лога оценил логистическую регрессию по четырём наблюдениям и одному признаку с константой, получил $b_i = \hat{\mathbb{P}}(y_i = 1|x_i)$, но потерял последнее наблюдение:

y_i	b_i
1	0.7
-1	0.2
-1	0.3
?	?

- 1. Выпишите функцию потерь для задачи логистической регрессии.
- 2. Выпишите условие первого порядка по коэффициенту перед константой.
- 3. Помогите бандерлогу восстановить пропущенные значения!
- **2.14** У Бандерлога три наблюдения, первое наблюдение кит, остальные муравьи. Киты кодируются $y_i = 1$, муравьи $y_i = -1$. На этот раз Бандерлог, чтобы быть уверенным, что x_i различаются, сам лично определил $x_i = i$. После этого Бандерлог оценивает логистическую регрессию с константой.
 - 1. Выпишите эмпирическую функцию риска, которую минимизирует Бандерлог;
 - 2. При каких оценках коэффициентов логистической регрессии эта функция достигает своего минимума?
- 2.15 Рассмотрим целевую функцию логистической регрессии с константой

$$Q(w) = \frac{1}{\ell} \sum L(y_i, b_i),$$

где
$$b_i = 1/(1 + \exp(-\langle w, x_i \rangle)$$
 и $L(y_i, b_i) = \begin{cases} -\log b_i, \text{ если } y_i = 1 \\ -\log(1 - b_i), \text{ иначе.} \end{cases}$.

- 1. Найдите dQ(w) и $d^2Q(w)$;
- 2. Найдите dQ(0) и $d^2Q(0)$;
- 3. Выпишите квадратичную аппроксимацию для Q(w) в окрестности w=0;
- 4. С какой задачей совпадает задача минимизации квадратичной аппроксимации?
- **2.16** Винни-Пух знает, что мёд бывает правильный, $honey_i = 1$, и неправильный, $honey_i = 0$. Пчёлы также бывают правильные, $bee_i = 1$, и неправильные, $bee_i = 0$. По 100 своим попыткам добыть мёд Винни-Пух составил таблицу сопряженности:

	$honey_i = 1$	$honey_i = 0$
$bee_i = 1$	12	36
$bee_i = 0$	32	20

Винни-Пух использует логистическую регрессию с константой для прогнозирования правильности мёда с помощью правильности пчёл.

- 1. Какие оценки коэффициентов получит Винни-Пух?
- 2. Какой прогноз вероятности правильности мёда при встрече с неправильными пчёлами даёт логистическая модель? Как это число можно посчитать без рассчитывания коэффициентов?
- **2.17** Винни-Пух оценил логистическую регрессию для прогнозирования правильности мёда от высоты дерева (м) x_i и удалённости от дома (км) z_i : $\ln odds_i = 2 + 0.3x_i 0.5z_i$.
 - 1. Оцените вероятность того, что $y_i = 1$ для x = 15, z = 3.5.
 - 2. Оцените предельный эффект увеличения x на единицу на вероятность того, что $y_i=1$ для $x=15,\,z=3.5.$
 - 3. При каком значении x предельный эффект увеличения x на единицу в точке z=3.5 будет максимальным?

3 Матрицы

3.1 Известна матрица X,

$$X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 0 \end{pmatrix};$$

- 1. Найдите QR-разложение матрицы X'X;
- 2. Найдите QR-разложение матрицы XX';
- 3. Найдите спектральное разложение матрицы X'X;
- 4. Найдите спектральное разложение матрицы XX';
- 5. Найдите сингулярное разложение (SVD) матрицы X;
- 3.2 Объясните геометрический смысл QR, SVD и спектрального разложений.
- **3.3** Бандрелог выполнил SVD-разложение матрицы регрессоров X. Помогите Бандерлогу поскорее найти формулу для матрицы-шляпницы H, которая проецирует y на пространство столбцов матрицы X, $\hat{y} = Hy$.
- **3.4** Бандрелог выполнил QR-разложение матрицы регрессоров X. Помогите Бандерлогу поскорее найти формулу для матрицы-шляпницы H, которая проецирует y на пространство столбцов матрицы X, $\hat{y} = Hy$.

4 Метод опорных векторов

- **4.1** На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1).
 - 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
 - 2. Укажите опорные вектора.
- **4.2** На плоскости имеются точки двух цветов. Красные: (1,1), (1,-1) и синие: (-1,1), (-1,-1) и (2,0).
 - 1. Найдите разделяющую гиперплоскость методом опорных векторов при разных C.
 - 2. Укажите опорные вектора.
- **4.3** Эконометресса Авдотья решила использовать метод опорных векторов с гауссовским ядром с параметром $\sigma=1$ и штрафным коэффициентом C=1. Соответственно, она минимизировала целевую функцию

$$\frac{w'w}{2} + C\sum_{i=1}^{n} \xi_i,$$

где разделяющая плоскость задаётся $w'x-w_0=0,$ а ξ_i — размеры «заступа» за разделяющую полосу.

Затем Автдотья подумала, что неплохо бы выбрать наилучшие C и σ . Ей лень было использовать кросс-валидацию, поэтому Авдотья минимизировала данную функцию по $C\geqslant 0$ и $\sigma\geqslant 0$. Какие значения она получила?

5

- **4.4** Задан вектор w = (2,3) и число $w_0 = 7$.
 - 1. Нарисуйте прямые $\langle w, x \rangle = w_0$, $\langle w, x \rangle = w_0 + 1$, $\langle w, x \rangle = w_0 1$.
 - 2. Найдите ширину полосы между $\langle w, x \rangle = w_0 + 1$ и $\langle w, x \rangle = w_0 1$.
 - 3. Найдите расстояние от точки (5,6) до прямой $\langle w,x\rangle=w_0-1$.

- **4.5** Заданы две прямые, l_0 : $x^{(1)} + 3x^{(2)} = 9$ и l_1 : $x^{(1)} + 3x^{(2)} = 13$. Найдите подходяющий вектор w и число w_0 так, чтобы прямая l_0 записывалась как $\langle w, x \rangle = w_0 1$, а прямая l_1 как $\langle w, x \rangle = w_0 + 1$.
- 4.6 Даны наблюдения

$x^{(1)}$	$x^{(2)}$	y
1	0	0
2	0	0
0	3	1
0	4	1

- 1. Нарисуйте разделяющую полосу наибольшей ширины.
- 2. Решите задачу оптимизации

$$\min_{w,w_0} \frac{1}{2} \langle w, w \rangle$$

при ограничении: для $y_i=1$ выполнено условие $\langle w,x\rangle\geqslant w_0+1,$ а для $y_i=0$ выполнено условие $\langle w,x\rangle\leqslant w_0-1.$

- 3. Для точки $x=(x^{(1)},x^{(2)})=(1,1)$ найдите значение $\langle w,x\rangle-w_0$ и постройте прогноз $\hat{y}.$
- 4.7 По картинке качественно решите задачу разделения точек:

Целевая функция имеет вид:

$$\min_{w,w_0} \frac{1}{2} w' w + C \sum_{i=1}^{n} \xi_i$$

Уравнение разделяющей поверхности — $w'x = w_0$, уравнения краёв полосы: $w'x = w_0 + 1$ и $w'x = w_0 - 1$. Нарушителями считаются наблюдения, которые попали на нейтральную полосу или на чужую территорию. Здесь $\xi_i = |w| \cdot d_i$, где d_i — длина «заступ» наблюдения за черту «своих».

- 1. Как пройдёт разделяющая полоса при C=1? Найдите w, w_0 , и величины штрафов ξ_i .
- 2. Как пройдёт разделяющая полоса при $C = +\infty$? Найдите w, w_0 , и величины штрафов ξ_i .

4.8 ююю

5 Ядра к бою!

5.1 Ядерная функция, скалярное произведение в расширяющем пространстве, имеет вид $K(a,b) = \exp(-|a-b|^2)$.

Имеются вектора a = (1, 1, 1) и b = (1, 2, 0).

Найдите длину векторов и косинус угла между ними в исходном и расширяющем пространстве.

- **5.2** Рассмотрим два вектора, $v_1 = (1, 1, 2)$ и $v_2 = (1, 1, 1)$. Переход в спрямляющее пространство осуществляется с помощью гауссовской ядерной функции с параметром γ , $k(v, v') = \exp(-\gamma |v v'|^2)$.
 - 1. Как от γ зависят длины векторов в спрямляющем пространстве?
 - 2. Как от γ зависит угол между векторами в спрямляющем пространстве?
- **5.3** Имеются три наблюдения A, B и C:

	\boldsymbol{x}	y
\overline{A}	1	-2
B	2	1
C	3	0

- 1. Найдите расстояние AB и косинус угла ABC.
- 2. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью гауссовского ядра с $K(x, x') = \exp(-|x x'|^2)$.
- 3. Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью полиномиального ядра второй степени.
- 5.4 Переход из двумерного пространства в расширяющее задан функцией

$$f:(x_1,x_2)\to (1,x_1,x_2,3x_1x_2,2x_1^2,4x_2^2).$$

Найдите соответствующую ядерную функцию.

5.5 Ядерная функция имеет вид

$$K(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2.$$

Как может выглядеть функция $f:\mathbb{R}^2 \to \mathbb{R}^3$ переводящие исходные векторы в расширенное пространство?

6 Двойственные задачи

- **6.1** Выпишите двойственную задачу для минимизации $x_1^2 + x_2^2 + x_3^2$ при ограничении $2x_1 + 3x_2 + 5x_3 = 10$.
- **6.2** Выпишите двойственную задачу для $x_1 + 2x_2 + 3x_3 \to \max$ при ограничениях $x_1 + x_2 + x_3 \leqslant 10$, $2x_1 + x_2 + x_3 \leqslant 10$, все $x_i \geqslant 0$.
- **6.3** Выпишите двойственную задачу для максимизации $1/x_1 + 2/x_2$ при ограничении $2x_1 + 3x_2 = 10$ и $x_1 \in [1; 10], x_2 \in [2; 6].$
- **6.4** Выпишите двойственную задачу для минимизации $f(x) = \frac{1}{2}x'Hx + g'x$ при ограничении A'x = b.
- **6.5** Выпишите двойственную задачу для минимизации $f(x) = \frac{1}{2}x'Hx + g'x$ при ограничении $A'x \leqslant b$.
- 6.6 Выпишите прямую и двойственную задачу для метода опорных векторов в исходном пространстве.
- **6.7** Выпишите прямую и двойственную задачу для метода опорных векторов в спрямляющем пространстве с использованием ядра K(.,.).

8

7 Метод главных компонент

- **7.1** Найдите прямую, у которой сумма квадратов расстояний до точек (0,0), (1,1), (2,1) будет минимальной. Чему равна при этом доля объяснённого разброса точек?
- **7.2** Есть две переменных, x = (1, 0, 0, 3)', z = (3, 2, 0, 3)'. Найдите первую и вторую главные компоненты.
- **7.3** Известна матрица выборочных ковариаций трёх переменных. Для удобства будем считать, что переменные уже центрированы.

$$\begin{pmatrix} 4 & 1 & -1 \\ 1 & 5 & 0 \\ -1 & 0 & 9 \end{pmatrix}$$

- 1. Выразите первую и вторую главные компоненты через три исходных переменных.
- 2. Выразите первую и вторую главные компоненты, через три исходных переменных, если перед методом главных компонент переменные необходимо стандартизировать.
- 7.4 Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g для Крокодила Гены, вектор h для Чебурашки и вектор x для Пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $\mathrm{sCorr}(g,h) = -0.9$. Гена и Чебурашка собирали независимо от Пионеров, поэтому выборочные корреляции $\mathrm{sCorr}(g,x) = 0$, $\mathrm{sCorr}(h,x) = 0$. Если регрессоры g,h и x центрировать и нормировать, то получится матрица \tilde{X} .
 - 1. Найдите параметр обусловленности матрицы $(\tilde{X}'\tilde{X})$.
 - 2. Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы. \tilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров.
 - 3. Шпионка Шапокляк пытается смоделировать ежедневный выпуск танков, y. Выразите оценки коэффициентов регрессии $y = \beta_1 + \beta_2 g + \beta_3 h + \beta_4 x + \varepsilon$ через оценки коэффициентов регрессии на главные компоненты, объясняющие не менее 70% общей выборочной дисперсии.