## Verifica Reti Burattin

## **Programma**

Un programma è una sequenza ordinata di istruzioni che trasformano i dati ricevuti e forniscono i risultati.

# Componenti della CPU

#### Sintesi

### CPU (Central Processing Unit)

La CPU è la parte del computer che esegue l'elaborazione dei dati, ed è rappresentata fisicamente dal microprocessore. E' composta dai seguenti elementi:

- unità aritmetico-logica (ALU): esegue i calcoli elementari e le operazioni logiche;
- unità di controllo (CU): governa e impartisce gli ordini di esecuzione all'ALU;
- **registri di appoggio**: piccole aree di memoria molto veloci, usate per memorizzare provvisoriamente i dati utilizzati per l'esecuzione dei calcoli.

### Registri di uso speciale

Sono registri che svolgono una specifica funzione e in particolare sono:

- Program Counter (PC): contiene l'indirizzo della prossima istruzione da eseguire;
- **Status Register** (SR): insieme di bit, ciascuno dei quali fornisce informazioni sullo stato in cui si trova il processore. Alcuni bit sono di stato, altri di controllo;
- Stack Pointer (SP): contiene l'indirizzo della cima dello stack. Lo stack è un'area di memoria in cui i dati possono essere inseriti solo dall'alto;
- **Instruction Register** (IR): contiene il codice operativo dell'istruzione;
- Memory Address Register (MAR): contiene l'indirizzo che seleziona la locazione di memoria oppure il dispositivo di I/O coinvolto nell'operazione;
- **Memory Data Register** (MDR): contiene i dati che devono essere scritti in memoria oppure i dati letti dalla memoria.

## **Bus Dati**

Il bus dati è un canale di comunicazione che trasporta informazioni tra le componenti di un computer. Si suddivide in:

- Bus Indirizzi: Usato dalla CPU per indirizzare la memoria o le periferiche.
- Bus Dati: Trasporta i dati tra la CPU e le periferiche.
- Bus di Controllo: Gestisce il trasferimento dei dati e comandi tra CPU e periferiche.

# Compito Principale della Memoria Centrale

La memoria centrale (RAM) serve a memorizzare temporaneamente dati, istruzioni e risultati intermedi necessari per l'esecuzione di programmi.

# Gerarchia della Memoria in base alla Capacità

La gerarchia della memoria è organizzata per livelli, caratterizzati da diverse velocità, capacità e costi:

- Registri
- Cache
- Memoria Principale (RAM)
- Memoria di Massa (Hard Disk, SSD)

#### Gerarchia di memoria

La memoria all'interno della scheda madre di un PC è organizzata in livelli caratterizzati da velocità, capacità di memorizzazione e costi diversi. In ogni istante le informazioni vengono copiate soltanto tra due livelli adiacenti: il livello superiore (quello più vicino al processore) è più piccolo e più veloce. L'obiettivo è quello di tenere i blocchi di informazioni più usati di frequente nei livelli di memoria più vicini al processore, allo scopo di evitare il più possibile accessi a tipi di memorie molto capienti ma lente.



Andando dall'alto al basso, aumenta la capacità di memoria, ma di conseguenza diminuisce la velocità di accesso e i costi per byte.

#### Principio di località

Definisce la ragione per cui i dati nella memoria cache sono usati con maggior frequenza di quelli della memoria centrale. Si distinguono due tipi diversi di località:

- Località temporale: se un dato è richiesto in un certo istante, è probabile che lo stesso dato venga nuovamente richiesto entro breve, come per esempio nelle iterazioni in cui le stesse istruzioni vengono ripetute frequentemente;
- Località spaziale: se un dato è richiesto in un certo istante, è probabile che dati situati nelle
  celle di memoria vicine vengano richieste entro breve, come per esempio accesso a vettori
  oppure matrici attraverso un indice.

#### Tabella. Caratteristiche della gerarchia delle memorie.

| Tipo di memoria     | Capacità          | Tempo di accesso |  |
|---------------------|-------------------|------------------|--|
| Registri di memoria | < 1 KB            | 1 - 3 ns         |  |
| Memoria cache       | 512 KB – 4 MB     | 3 – 10 ns        |  |
| Memoria centrale    | 1 – 4 GB          | 50 – 200 ns      |  |
| Disco magnetico     | 50 GB - 1TB       | 20 – 30 ms       |  |
| Nastro              | 4 GB – 300 GB     | > 1 ns           |  |
| Dischi ottici       | ◆ 650 MB – 4,7 GB | > 1 ns           |  |

# Periferiche di I/O

### Periferiche di Input/Output Servono per comunicare dall'esterno con il sistema e viceversa. Sono collegate al sistema attraverso particolari circuiti, detti interfaccia. Ogni periferica necessita di un dispositivo hardware (controller) e di software specifici (driver). Periferiche classificate come Input Output Input/Output (verso il processore) (dal processore) (in entrambe le direzioni) • Tastiera Monitor Monitor Schede audio Mouse Stampante Trackball Plotter Schede video Joystick Casse

#### Nota bene

Con Input/Output (Ingresso/Uscita, In/Out) sono denotate le interfacce che permettono lo scambio di informazioni tra il PC e il mondo esterno. Alle interfacce sono collegate le periferiche di I/O quali

# **Stampante**

Una stampante è un dispositivo periferico che produce una rappresentazione permanente di testi o immagini su carta.

### **Driver**

Un driver è un software che permette al sistema operativo di comunicare con l'hardware del computer.

# Apparati di Rete

- Hub: Dispositivo che connette vari dispositivi in una rete, trasmettendo i dati a tutti i dispositivi connessi.
- Switch: Simile all'hub, ma inoltra i dati solo al dispositivo destinatario.
- Router: Dispositivo che instrada i pacchetti di dati tra diverse reti.



### Reti Broadcast

Una rete broadcast è un tipo di rete in cui i messaggi inviati da un nodo vengono ricevuti da tutti gli altri nodi della rete.



# **Topologie**

### Classificazione per topologia

La topologia definisce la struttura di una rete, cioè il modo con cui i dispositivi (nodi) sono fisicamente collegati tra loro. Essa quindi determina la dimensione e la forma, l'affidabilità, i costi, l'espandibilità e la complessità della rete.



## Topologia di Rete a Bus

- Vantaggi:
  - Economica e facile da installare.
  - Ideale per reti piccole.
- Svantaggi:
  - Se il cavo principale si guasta, l'intera rete si interrompe.
  - Difficoltà nel rilevamento dei guasti.

#### Topologia a bus

La **topolologia a bus** usa un **singolo backbone** (linea principale), detto bus, a cui si collegano tutti gli host; alle **due estremità del cavo** è posta una resistenza terminale (**terminatore**).



- Topologia a basso costo in quanto esiste un solo canale che collega tutti i nodi.
- I segnali passano lungo i cavi tra i due terminatori e vengono controllati da tutti gli host connessi al bus: solo se l'indirizzo di destinazione del messaggio coincide con quello dell'host, il messaggio viene ricevuto ed elaborato dall'host.
- Si tratta quindi di una trasmissione di tipo broadcast (cioè inviata a tutti).
- Se un host non funziona la rete continua a funzionare.
- Svantaggio: un guasto sul cavo provoca il malfunzionamento dell'intera rete.
- Questa topologia è tipica delle reti locali (LAN) e metropolitane (MAN).
- · Molto usata in passato, attualmente non viene più realizzata per la sua bassa tolleranza ai guasti.

# Topologia di Rete a Stella

#### Vantaggi:

- Facile gestione e manutenzione.
- Guasti a un singolo cavo non influenzano l'intera rete.

#### Svantaggi:

- · Costo maggiore per i cavi.
- Se il nodo centrale si guasta, l'intera rete si interrompe.

### Topologia a stella

In questa topologia **tutti gli host sono collegati a un punto centrale**, chiamato **centro stella**, che di solito è un hub, switch o router e costituisce il punto di collegamento comune in maniera che i computer siano in comunicazione l'uno con l'altro.



- Anche se questa topologia porta ad aumento del numero di cavi essa offre vantaggi in termini di:
- fault tollerance: il guasto di un canale o nodo della rete non ne compromette il funzionamento;
- flessibilità ed espandibilità: lo spostamento di un host da un punto ad un altro della rete oppure l'inserimento di uno nuovo non richiedono il fermo della rete;
- semplicità di gestione
- Svantaggi: se si guasta il centro stella, la rete smette di funzionare.
- La topologia a stella è utilizzata nelle rete locali (LAN) e nelle reti geografiche (WAN).

## I Sette Livelli OSI

- 1. Fisico: Trasmissione di bit su un canale di comunicazione.
- 2. **Collegamento Dati**: Trasferimento affidabile di frame tra due nodi collegati fisicamente.
- 3. Rete: Instradamento dei pacchetti attraverso le reti.
- 4. **Trasporto**: Trasferimento dati end-to-end.
- 5. **Sessione**: Gestione delle sessioni di comunicazione.
- 6. Presentazione: Traduzione dei dati tra il formato di rete e il formato applicativo.

## 7. **Applicazione**: Interfaccia per le applicazioni utente.

|   | Livello       | Funzionalità                                                                                                                                                                           | Unità dati |
|---|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 7 | Applicazione  | Contiene i programmi applicativi che consentono all'utente di svolgere le sue attività in rete: trasferimento, accesso dei file, posta elettronica, terminale virtuale ecc.            | Dati       |
| 6 | Presentazione | Traduce i dati trasmessi in formati standard; gestisce anche la riservatezza e la protezione dei dati mediante algoritmi di criptaggio e autenticazione.                               | Dati       |
| 5 | Sessione      | Ha lo scopo di aprire e chiudere una comunicazione tra due<br>host in rete, nonché riaprirla nel caso di eventi indesiderati:<br>perdita di dati, caduta della linea ecc.              | Dati       |
| 4 | Trasporto     | Si occupa di rendere affidabile la trasmissione dei pacchetti<br>garantendo che arrivino al destinatario nell'ordine corretto,<br>senza errori, duplicazioni o perdite.                | Segmenti   |
| 3 | Rete          | Trasmissione dei pacchetti mediante la rete, dal dispositivo sorgente al destinatario; a questo livello la trasmissione dei dati non è affidabile (non gestisce gli errori nei frame). | Pacchetti  |
| 2 | Collegamento  | Trasmissione/ricezione di pacchetti di bit chiamati frames, garantendo che i bit arrivino a destinazione correttamente, senza errori, duplicazioni o perdite.                          | Struttura  |
| 1 | Fisico        | Trasmissione o ricezione delle sequenze binarie sul mezzo trasmissivo; definisce le proprietà meccaniche ed elettriche dei collegamenti di rete (cavi, prese, modulazioni).            | Bits       |