作业解答

 P_{13} 项: 对 θ_{13} 灵敏 周期短,振幅小 P_{12} 项: 对

 P_{12} 项: 对 θ_{13} 不灵敏 周期长,振幅大

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13}(\cos^2 \theta_{12}\sin^2 \Delta_{31} + \sin^2 \theta_{12}\sin^2 \Delta_{32}) - \cos^4 \theta_{13}\sin^2 2\theta_{12}\sin^2 \Delta_{21}$$

0.09

9

大 0.21

大

0.85

1

注意: $|\Delta m_{32}^2| \approx |\Delta m_{31}^2| \gg |\Delta m_{21}^2|$, $\theta_{12} > \theta_{13}$

Parameter	True NO	True IO
$\Delta m_{31}^2 (\text{eV}^2)$	2.53×10^{-3}	-2.44×10^{-3}
$\Delta m_{21}^{21} (eV^2)$	7.39×10^{-5}	
θ_{12} (°)	33.82	
$\theta_{13}(^{\circ})$	8.61 ± 0.13	8.65 ± 0.13
$\theta_{23}(^{\circ})$	49.6	49.8
$\delta_{\mathrm{CP}}(\mathrm{rad})$	0	0

- 对大亚湾实验来说:需要利用 P_{13} 项来测量 θ_{13} ,因此需要振荡基线长度较短,这样 P_{12} 项贡献很小,且 Δm_{32}^2 , Δm_{31}^2 大小差异来不及造成影响(因此对质量顺序不敏感)。
- 江门实验理论上也可以测量 $heta_{13}$,但是受到 P_{12} 项影响较大,因此灵敏度不及大亚湾实验。

作业解答

 $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \left[\sin^2 2\theta_{13}(\cos^2 \theta_{12}\sin^2 \Delta_{31} + \sin^2 \theta_{12}\sin^2 \Delta_{32}) - \cos^4 \theta_{13}\sin^2 2\theta_{12}\sin^2 \Delta_{21}\right]$

Δ_{31} 与 Δ_{32} 项的"干涉":类比"光学拍"(频率相近、同向传播、同向振动的两列波的叠加)

设两列平面波均沿 z 轴正方向传播,其振动方向相同,振幅皆为 E_0 ,两列波的传播数和角频率分别为 k_1 、 ω 和 k_2 、 ω . 取第一列波的初相为零,第二列波相对于第一列波的初相差为 δ ,则两列波的实波函数可写为

$$\begin{cases} E_{1}(z,t) = E_{0}\cos(k_{1}z - \omega_{1}t), \\ E_{2}(z,t) = E_{0}\cos(k_{2}z - \omega_{2}t + \delta_{0}). \end{cases}$$
 (2.3.49)

任一时刻及位置波场中的合振动可表示为

$$E(z,t) = E_1(z,t) + E_2(z,t)$$

$$= 2E_0 \cos\left[\frac{\Delta k}{2}z - \frac{\Delta \omega}{2}t - \frac{\delta_0}{2}\right] \cos\left[\bar{k}z - \bar{\omega}t + \frac{\delta_0}{2}\right], \quad (2.3.50)$$

中

周期大,频率低,"调制波" 周期小,频率高,"载波"

$$\Delta k = k_1 - k_2$$
, $\Delta \omega = \omega - \omega$,
 $\bar{k} = \frac{1}{2}(k_1 + k_2)$, $\bar{\omega} = \frac{1}{2}(\omega_1 + \omega_2)$.

叠加后会出现 $(\Delta_{31} - \Delta_{32}) = \pm \Delta_{21}$ 与 $(\Delta_{31} + \Delta_{32})$ 两部分

决定了小周期的振幅大小

决定了正反中微子顺序造成的 小周期不同

- 更长基线长度=>更弱的中微子束流 =>需要更大的探测器。
- 同时需要更高的能量测量精度。

