

BLE 透传模块 HM-BT4502B (-1) 应用指南

HM-BT4502B

HM-BT4502B-1

目录

1	串口流	透传协议说明	4
2	PDN -	与 WAKEUP 引脚操作时序	5
3	恢复	系统参数以及模块复位	5
4	串口	AT 指令	6
	4.1	连接间隔设定	6
	4.2	获取模块名称	6
	4.3	模块重命名	6
	4.4	获取波特率	7
	4.5	波特率设定	7
	4.6	获取物理地址 MAC	8
	4.7	设置模块 MAC 地址	8
	4.8	模块复位	8
	4.9	广播周期设定	8
	4.10	附加自定义广播内容	9
	4.11	定义产品识别码	9
	4. 12	发射功率设定	9
	4. 13	RSSI 信号强度输出	10
	4. 14	RTC 设定与获取	10
	4. 15	数据延时设定	11
	4. 16	广播电池电量设置	11
	4. 17	模块参数恢复出厂设置	12
	4. 18	修改串口服务 UUID	12
	4.19	修改串口服务 RX 通道 UUID	12
	4.20	修改串口服务 TX 通道 UUID	12
	4.21	AT 指令表	13
	4. 22	广播数据设置	14
5	BLE to	办议说明(APP 接口)	15
	5. 1	透传数据通道【服务 UUID:0xFFE0】	15
	5. 2	防劫持密钥【服务 UUID: 0xFFC0】	16
	5. 3	模块参数设置【服务 UUID: 0xFF90】	17
	5.4	OTA 服务 UUID	20
	[0x5	5833ff01-9b8b-5191-6142-22a 4536ef123】	20
	5.5	设备信息【服务 UUID:0x180A】	21
	5.6	ADC 输入服务【服务 UUID: 0xFFD0】	21
	5. 7	4 通道 PWM【服务 UUID:0xFF00】	22
	5.8	2 通道定时翻转服务【服务 UUID: OxFFAO】	23
	5.9	GPIO 及脉冲宽度计数(PWC)服务【服务 UUID: OxFFFO】	23
	5.10	端口定时事件服务【服务 UUID:0xFE00】	24

文档版本	更新日期	修改内容
v1. 12	2022. 7. 20	1. 增加修改透传服务 UUID的三条AT指令。

1 串口透传协议说明

模块通过串口和用户MCU相连,建立用户MCU和移动设备之间的双向通讯。用户可以通过串口,使用指定的AT 指令对串口波特率、BLE 连接间隔进行重设置(详见后面《串口AT 指令》章节)。针对不同的串口波特率以及BLE 连接间隔,以及不同的发包间隔,模块将会有不同的数据吞吐能力。默认串口波特率为115200bps。这里就在电平使能模式下,这种配置为例,对透传协议做详细介绍。模块可以从串口一次性最多传输240 字节数据包,模块会根据蓝牙协议协商情况进行分包或者发送完整包。移动设备方发往模块的数据包,必须根据协议进行发送。模块收到无线包后,会实时转发到主机串口接收端。

- 1. 串口硬件协议: 115200bps, 8, 无校验位, 1 停止位。
- 2. PDN为高电平,蓝牙模块处于完全睡眠状态。PDN置低时(低电平有效),模块会以200ms 的间隔开始广播,直到和手机对接成功。当PDN从低到高跳变,不论模块状态,会立即进入睡眠。
- 3. 当模块有数据上传请求时,模块会置低INT,最快会在500us 之后开始发送, 直到数据发送完毕。这个延时可以通过AT 指令进行配置,见《串口AT 指令》 章节。数据发送完毕,模块会将INT置高。
- 4. 在模块连接成功后,会从UART TX 给出"TTM:CONNECT\r\n\0"字符串,可以根据此字符串来确定是否可以进行正常转发操作。也可以通过手机发送一个特定的确认字符串到模块,主机收到后即可确认已经连接。当连接被APP端主动断开后,会从TX给出" TTM:DISCONNECT\r\n\0 "字符串提示,如果是非正常断开,会从TX 给出"TTM:DISCONNECT FOR TIMEOUT\r\n\0"字符串提示。
- 5. 串口数据包的大小可以不定长,长度可以是240 字节以下的任意值,同样满足以上条件即可。但为最大效率地使用通讯的有效载荷,同时又避免通讯满负荷运行,推荐使用100,200,240 字节长度的串口数据包,包间间隔取大于20ms。注意: MCU发送完AT指令后需要等待模块回应,然后才能发下一个命令。透传数据和AT指令请勿长时间混合发送。

2 PDN 与 WAKEUP 引脚操作时序

- 1. 模块 PDN 和 WAKEUP 脚需要在模块上电后在高电平状态保持 200MS 后再操作。 拉至低电平,从而开启 ADV 广播和唤醒 UART 通信功能。
- 2. 模块 WAKEUP 脚下降沿唤醒 UART 通信功能, WAKEUP 保持低电平至少 1ms 后 UART 才会恢复通信功能。如下图 所示。

图 1 模块 WAKEUP 时序(睡眠唤醒时间 >= 1ms)

3 恢复系统参数以及模块复位

- 1 使用AT指令复位模块或恢复默认系统参数(详见《串口AT 指令》章节);
- 2 使用服务通道接口,用APP 对模块进行远程复位。(详见《BLE 协议说明(APP 接口)-模块参数设置》章节);

恢复系统参数后,被声明为掉电不保存的参数将被复位为默认值,另外防劫持密码,恢复到"000000",默认不使用密码。

另外可通过APP对模块进行恢复出厂设置并复位,所有参数都恢复出厂默认设置状态,包括:

- a) 串口波特率,恢复到115200bps;
- b) 设备名称,恢复到"CMT4502-XXXXXXXX",X 是MAC 的后四个字节;
- c) 串口数据延时,恢复到0 (500us < Delay < 1ms);
- d) 广播周期,恢复到2 (200ms);
- e) 连接间隔,恢复到30ms:
- f) 产品识别码,恢复到0x00,0x00;

- g) 发射功率,恢复到0dBm;
- h) 自定义广播长度,恢复到0;
- i) 自定义广播数据,恢复到全0,不使用自定义广播数据,使用默认广播数据;

4 串口AT 指令

以"TTM"开头的字串会当成AT 指令进行解析并执行,并且返回执行结果, "TTM:OK\r\n\0"或"TTM:ERP\r\n\0"等。不以"TTM"开头的串口数据包,将被视为透传数据。

4.1 连接间隔设定

向串口RX 输入以下字串,设定BLE 连接间隔: "TTM:CIT-Xms"其中X="20", "30", "50", "100", "200", "300", "400", "500", "1000", "1500", "2000", 单位ms(以上数据格式都为ASCII 码)。如"TTM:CIT-30ms"表示设定连接间隔为30ms。在执行完此指令之后,会从串口TX 得到以下确认:

"TTM:TIMEOUT\r\n\0"表示更改超时,修改失败;

"TTM:OK\r\n\0" 表示更改成功,正以新的连接间隔在运行;

这个连接间隔设定的成功与否取决于移动设备对连接间隔的限制,不同的手机系统版本最大连接间隔也有不同。

注:此连接间隔掉电不保存,并且更改指令只有在连接成功后有效。

4.2 获取模块名称

向串口RX 输入以下字串: "TTM:NAM-?"

4.3 模块重命名

向串口RX 输入以下字串,其中"Name"为模块名称,长度为15 个字节以内,ASCII

码20格式,

" TTM:REN-" + Name

如"TTM: REN-ABC123"表示将模块重命名为"ABC123"。

若修改成功则会从TX 收到"TTM:OK\r\n\0"确认,如果指令格式不对,则会返回:

"TTM: $ERP\r\n\0$ "

此名称掉电保存。

4.4 获取波特率

向串口RX 输入以下字串,设定波特率:

"TTM:BPS-?"

会从TX 收到:

"TTM:BPS-X"

其中X="9600", "19200", "38400", "57600", "115200", (以上数据格式都为ASCII码)。

4.5 波特率设定

向串口RX 输入以下字串,设定波特率:

"TTM:BPS- $X\r\n\0$ "

其中X="9600", "19200", "38400", "57600", "115200", (以上数据格式都为ASCII码)。如 "TTM:BPS-115200\r\n\0" 表示设定波特率为115200bps。在执行完此指令之后会从TX 收到"TTM:BPS SET AFTER 2S..."确认。如果设置值不在选项中,或者指令格式不对,则返回: "TTM:ERP\r\n\0"。

注: 串口波特率修改需要50ms后才真实生效,在此期间不可以发送数据给模块。 测试表明,在IOS5 中,波特率修改无法成功,但在IOS6 中可立即变更。用户可以通过PC 进行设置后使用,也可以通过移动设备的BLE APP 接口进行设置。见《模块参数设置【服务UUID: 0xFF90】》。

4.6 获取物理地址 MAC

向串口RX 输入以下字串:

"TTM:MAC-?"

会从TX 收到:

字串后面"xxxxxxxxxxxxx"为6 字节模块蓝牙地址。

4.7 设置模块 MAC 地址

向串口RX 输入以下字串:

"TTM:MAC-xxxxxxxxxxxxx"

会从TX 脚收到"TTM:OK\r\n\0" 确认,如果指令格式不对,则会返回:

"TTM: $ERP\r\n\0$ "

设定掉电保存,重启模块后,模块将按照新的MAC 地址进行工作。

4.8 模块复位

向串口RX 输入以下字串:

"TTM: RST-SYSTEMRESET"

会迫使模块软复位一次。

注:模块复位需要大概200[~]300ms的时间,请勿在模块复位期间通过串口发送数据给模块,否则会产生乱数影响模块配置参数。

4.9 广播周期设定

向串口RX 输入以下字串,设置模块的广播周期,T = X * 100ms "TTM: ADP-(X)"

其中X = "2", "5", "10", "15", "20", "25", "30", "40", "50"之一(以上数据格式都 ASCII 码)。如 "TTM: ADP-(2)" 表示设定广播周期为200ms。会从TX 脚收到 "TTM: OK\r\n\0" 确认,如果指令格式不对,则会返回:

"TTM:ERP\r\n\0"

广播周期设定掉电保存,重启模块后,模块将按照新的广播周期进行广播。

4.10 附加自定义广播内容

向串口RX 输入以下字串, 自定义广播内容;

"TTM:ADD-"+ Data

其中Data 为准备附加的广播的数据,长度0< L <= 16,以ASCII 码格式输入。 例如向串口RX 输入"TTM:ADD-Advertisement!",会从TX 脚收到"TTM:OK\r\n\0" 确认,如果指令格式不对,则会返回:

"TTM:ERP\r\n\0"

此指令设置后立即生效,可以通过此功能广播一些自定义内容,数据掉电保存。如果设置为16个全0数据,则认为不使用自定义广播数据,而是使用默认广播内容。

4.11 定义产品识别码

向串口RX 输入以下字串, 自定义产品识别码:

"TTM:PID-"+ Data

其中Data 为两个字节的产品识别码,范围 $0x0000^{\circ}0xFFFF$ (L = 2),每个字符以ASCII码格式向串口RX 输入。例如向串口RX 输入"TTM:PID-RS"("RS"对应的十六进制为0x5253),会从TX 脚收到"TTM: $0K\r\n\0$ " 确认,如果指令格式不对,则会返回:

"TTM: $ERP\r\n\0$ "

此识别码掉电保存,会出现在广播中,可以以此来过滤设备或判断是否是特定的产品。

4.12 发射功率设定

向串口RX 输入以下字串,设置相应的发射功率,单位dBm。

"TTM: TPL-(X)"

其中X="+10", "+6", "0", "-6", "-10", "-20"(以上数据格式都为ASCII 码)。 如 "TTM: TPL-(+6)"表示设定发射功率为+6dBm。之后会从TX 脚收到 "TTM: $OK\r\n\0$ "确认,并且模块立即使用新的发射功率进行通讯,如果指令格式不对,则会返回:

"TTM: $ERP\r\n\0$ "

注:此参数掉电不保存。

4.13 RSSI 信号强度输出

向串口RX 输入以下字串,设置开启RSSI 信号强度定时打印,时间1 秒。

"TTM:RSI-ON"

向串口RX 输入以下字串,设置关闭RSSI 信号强度定时打印。

"TTM:RSI-OFF"

设置成功后TX 脚收到"TTM:OK\r\n\0"确认,如果指令格式不对,则会返回:

"TTM:ERP\r\n\0"

如果已开启RSSI 打印功能,则每间隔1 秒钟时间打印RSSI 信号强度字符串,

"TTM:RSI-xx\r\n\0"(例如:RSSI 为-63dBm 则打印字符为"TTM:RSI-63\r\n\0")

注:此参数掉电不保存,并且连接断开后自动关闭RSSI输出。

4.14 RTC 设定与获取

向串口RX 输入以下字串,设置RTC 时间,格式为年4 位,月、日、时、分、秒 各2 位。

"TTM:RTC-xxxxxxxxxxxxxxxx"

比如2017 年1 月2 日3 时4 分5 秒则输出字符为

"TTM:RTC-20170102030405\r\n\0"

设置成功后TX 脚收到"TTM:OK\r\n\0" 确认,如果指令格式不对,则会返回:

"TTM: $ERP\r\n\0$ "

向串口RX 输入以下字串,设置获取当前系统时间。

"TTM: RTC-?"

格式不对,则会返回: "TTM:ERP\r\n\0"

注:此参数掉电不保存,并且模块重新上电后RTC需要重新设定。

4.15 数据延时设定

向串口RX 输入以下字串,设置INT输出低到串口TX 输出数据之间的延时,单位ms

"TTM:CDL-Xms"

其中X="0","2","5","10","15","20","25"之一,如果指令无误,会从TX 收到"TTM:0K\r\n\0"

确认,如果指令格式不对,则会返回:

"TTM: $ERP\r\n\0$ "

为让用户CPU 有足够的时间从睡眠中唤醒,到准备接收,模块提供了这个延时(X)设定,在模块串口有数据发出之前会置低INT,而INT输出低到模块TX 输出数据之间的延时由此参数设定。可以保证最小延时不小于X,实际延时会是T = (X + Y)ms,其中500us(Y < 1ms。此参数掉电保存。

4.16 广播电池电量设置

串口发送如下命令:

"TTM:BST-X\r\n\0", 其中X为十进制的剩余电量百分比。

如果数据下发正确,模块通过串口返回: "TTM:OK\r\n\0":

如果数据执行错误,模块通过串口返回:"TTM:ERP\r\n\0"

设置成功后,模块用户如果采用默认的广播数据,此电压数据会被附加在广播包内容里Type为0xFF(厂商信息段)发送。

例如发送"TTM:BST-10\r\n\0"

则0xFF段的数据为: 0x00 0x00 0x00 0x00 0x0A 0x00 0x00

4.17 模块参数恢复出厂设置

串口发送如下命令:

" TTM: RESETPARAMETER-O".

如果数据执行错误,模块通过串口返回:"TTM:ERP\r\n\0" 如果数据执行正确,模块通过串口返回:"TTM:OK\r\n\0",并且模块一切参数全部恢复至出厂设置。

4.18 修改串口服务 UUID

串口发送如下命令:

"TTM: SERUUID-x\r\n\0". 其中x为2字节或者16字节 UUID 如果数据执行错误,模块通过串口返回: "TTM: ERP\r\n\0" 如果数据执行正确,模块通过串口返回: "TTM: OK\r\n\0" 此参数掉电保存,且需要重启之后才会生效。

4.19 修改串口服务 RX 通道 UUID

串口发送如下命令:

"TTM:RXUUID-x\r\n\0". 其中x为2字节或者16字节 UUID 如果数据执行错误,模块通过串口返回:"TTM:ERP\r\n\0" 如果数据执行正确,模块通过串口返回:"TTM:OK\r\n\0" 此参数掉电保存,且需要重启之后才会生效。

4.20 修改串口服务 TX 通道 UUID

串口发送如下命令:

"TTM: TXUUID-x\r\n\0". 其中x为2字节或者16字节 UUID 如果数据执行错误,模块通过串口返回: "TTM: ERP\r\n\0" 如果数据执行正确,模块通过串口返回: "TTM: OK\r\n\0" 此参数掉电保存,且需要重启之后才会生效。

4.21 AT 指令表

AT 指令格式	掉 电 保 存	参数说明	可能的回应	含义
TTM:CIT-Xms	否	X="20", "30", "50", "100",	TTM:OK\r\n\0	设置成功
		"200", "300", "400", "500",	$TTM:ERP\r\n\0$	参数错误
		"1000", "1500", "2000"设置	TTM:TIMEOUT\r\n\0	设置超时
		相应的 BLE 连接间隔,单位 MS。		
		(默认间隔为 7.5-200ms)		
TTM: NAM-?	-	获取模块名称	TTM:NAM-x	"x"为模块名
				称
TTM: REN-x	是	x 为需要设置的模块广播名称,	$TTM:OK\r\n\0$	设置成功
		长度为 15 字节以内的任意字	$TTM:ERP\r\n\0$	参数错误
		符串。		
		默认模块名称为: CMT4502-MAC		
		地址后 4 位,例如 MAC 地址为:		
		12: 34: 56: 78: 9A: BC		
		那么默认名称为:		
		CMT4502-56789ABC		
TTM:BPS-?	-	获取波特率	X	波特率数值
TTM:BPS-X	是	X="9600", "19200", "38400",	TTM:BPS SET AFTER	设置成功
		"57600", "115200"设置相应的	2S\r\n\0	
		波特率。	TTM:ERP\r\n\0	参数错误
		默认波特率为 115200		
TTM: MAC-?	-	获取 MAC 地址	TTM:MAC-x	x 为 MAC 地址
TTM: MAC-x	是	x 为 12 位 MAC 字符,比如	TTM:OK\r\n\0	设置成功
		TTM:MAC-112233445566	TTM:ERP\r\n\0	参数错误
TTM:RST-SYSTEMRESET	-	模块软复位	无	软复位模块
TTM: ADP-(X)	是	X = "2", "5", "10", "15", "20",	TTM:OK\r\n\0	设置成功
		"25","30″,"40″,″50″设置	TTM:ERP\r\n\0	参数错误
		相应的广播周期, T = X* 100ms		
		默认广播间隔为 200ms		
TTM: ADD-x	是	x 为自定义广播数据, 数据长度	TTM:OK\r\n\0	设置成功
		L<= 16	$TTM:ERP\r\n\0$	参数错误
TTM:PID-x	是	Data 为自定义产品识别码,数	TTM:OK\r\n\0	设置成功
		据长度 L=2	TTM:ERP\r\n\0	参数错误
		默认为 00 00		
TTM: TPL-(x)	否	X="+10", "6", "0", "-6", "-20"	TTM:OK\r\n\0	设置成功
		设置相应的发射功率,单位	TTM:ERP\r\n\0	参数错误
		dBm		
		默认为 Odbm		

TTM:RSI-ON	_	开启定时 1 秒获取 RSSI 信号功	TTM:OK\r\n\0	设置成功
		能	TTM:ERP\r\n\0	参数错误
TTM:RSI-OFF	-	关闭获取 RSSI 信号功能	TTM:OK\r\n\0	设置成功
			TTM:ERP\r\n\0	参数错误
TTM:RTC-x	否	X为年、月、日、时、分秒	TTM:OK\r\n\0	设置成功
			TTM:ERP\r\n\0	参数错误
TTM:RTC-?	-	获取 RTC 时间	TTM:RTC-x	获取 RTC 时
				间
TTM:CDL-Xms	是	X="0", "2", "5", "10", "15",	TTM:OK\r\n\0	设置成功
		"20","25"设置 INT 输出低到串	TTM:ERP\r\n\0	参数错误
		口输出数据之间的延时,单位		
		ms		
		默认参数为0		
TTM:BST-X	否	手动设置电池电量	TTM:OK\r\n\0	设置成功
		X 为百分比,如 10 即为 10%	TTM:ERP\r\n\0	参数错误
TTM: RESETPARAMETER-0	_	模块参数恢复出厂设置	TTM:OK\r\n\0	设置成功
			TTM:ERP\r\n\0	参数错误
TTM:SERUUID-x	是	修改串口服务 UUID, x 为 2 字	TTM:OK\r\n\0	设置成功
		节或者 16 字节 UUID。	TTM:ERP\r\n\0	参数错误
		默认 UUID 为 FFE0		
TTM:RXUUID-x	是	修改串口服务 RX 通道 UUID, x	TTM:OK\r\n\0	设置成功
		为 2 字节或者 16 字节 UUID。	TTM:ERP\r\n\0	参数错误
		默认 UUID 为 FFE9		
TTM: TXUUID-x	是	修改串口服务 TX 通道 UUID, x	TTM:OK\r\n\0	设置成功
		为 2 字节或者 16 字节 UUID。	TTM:ERP\r\n\0	参数错误
		默认 UUID 为 FFE4		

表1 AT指令表

*注:粗体为默认设置。

4.22 广播数据设置

默认广播数据: 当模块的PDN脚被置低后,模块将会进行间隔为200ms 的广播,在广播数据中的GAP_ADTYPE_MANUFACTURER_SPECIFIC(IOS 编程中官方定义宏)域中包含了以下内容,默认广播内容为9 个字节:

0x00,0x00, 自定义设备类型编码,默认为00 00,可由AT 指令进行设定; 0x00,0x00,0x00,0x00,无定义;

0x00, 模块供电电量百分比, 2.0v = 0%;

0x00,0x00, 无定义;

}

自定义广播数据:如果使用AT 指令自定义了广播内容,最大长度为16 字节(蓝色部分),在广播数据中的GAP_ADTYPE_MANUFACTURER_SPECIFIC 域中将包含了以下内容,长度为2+n 个字节:

{

0x00,0x00,自定义设备类型编码,默认为0000,可由AT 指令进行设定; Data[n],自定义广播数据,n <= 16;

}

注: 自定义广播数据可通过AT 指令修改,并且掉电保存。重新上电后,将会使用最后自定义的广播数据。如果自定义广播数据为全0(16 byte),则认为不使用自定义广播,而使用系统默认的广播内容。为避免广播数据过长带来多余的功耗,也可以通过设置自定义广播数据为1 字节的任意值。

5 BLE 协议说明(APP 接口)

5.1 透传数据通道【服务 UUID: 0xFFE0】

特征值UUID	可执行的操作	字节数	默认值	备注
FFE9 (handle: 0x0013)	Write	20	无	写入的数据将会从串口TX 输出
FFE4 (handle: 0x000E)	notify	20	无	从串口RX 输入的数据将会在此通道 产生通知发给移动设备

表2 透传数据通道服务

说明:蓝牙输入转发到串口输出。APP 通过BLE API 接口向此通道写操作后,数据将会从串口TX 输出。详细操作规则见《串口透传协议说明(桥接模式)》章节。串口输入转发到蓝牙输出。如果打开了FFE4 通道的通知使能开关,主CPU 通过串口向模块RX 发送的合法数据后,将会在此通道产生一个notify 通知事件,APP可以直接在回调函数中进行处理和使用。详细操作规则见《串口透传协议说明(桥接模式)》章节。

5.2 防劫持密钥【服务 UUID: 0xFFC0】

模块支持防劫持加密,此服务可以有效防止被非授权移动设备(手机)连接到此模块。模块的初始密码为000000 (ASCII),此情况下APP 无需提交密码,视为不使用密码,任何安装指定APP 的移动设备可以对其发起连接。新密码(非全0)的设置和备份保存由APP 完成,如果设置了新密码(非全0),开始启用防劫持密码。在APP 对此模块进行连接后,必须在蓝牙连接后的20 秒内向模块提交一次曾经设置的连接密码,否则模块会断开连接。在APP 提交正确密码到模块之前,无法对服务通道进行任何除提交密码之外的写操作。如果想恢复密码,需先复位模块。为了安全起见,模块不提供密码读操作,密码的记忆由APP 来负责。协议提供了密码通道来实现密码的提交,修改,和取消密码服务。同样也提供了密码事件通知服务来通知APP 对密码操作的结果,其中包括密码正确,密码错误,密码修改成功,取消使用密码四个事件。

特征值UUID	可执行的操作	字节数	举例	备注
			"123456 ₁₂₃₄₅₆ " (ASCII)	提交当前密码 123456 ,新 密码和旧密码必须一致
FFC1 (handle: 0x0045)	write (掉电保存)	12	"123456888888" (ASCII) "888888000000" (ASCII)	把旧密码123456修改为新密码8888888,旧密码必须正确 取消密码,新密码修改为
PPG0			O (PWD_RIGHT_EVENT)	000000,旧密码必须正确 提交密码正确
FFC2 (handle:	notify 1	1	1 (PWD_ERROR_EVENT)	提交密码错误
0x0048)			2 (PWD_UPDATED_EVENT) 3 (PWD_CANCEL_EVENT)	密码修改成功取消密码

表3 密钥数据服务

说明:

- 1. 密码结构为12 字节ASCII 码,前6位红色大字体部分为当前密码,后6位黑色小字体部分为新密码;
- 2. 当前密码在被APP 修改之前,默认为"000000";
- 3. 通过打开通道FFC2 的通知使能,将会在此通道产生有关密码操作的执行结果通知。
- 4. 当APP 提交密码"123456123456",新密码和当前密码相同,APP 会在FFC2 通道得到通知notify:0(PWD_RIGHT_EVENT),表示提交密码正确;
- 5. 当APP 提交密码(红色部分)和当前密码不一致,如:"123455xxxxxx",x 部分不论是何值,APP 会在FFC2 通道得到通知notify:1(PWD_ERROR_EVENT),表示密码提交错误:
- 6. 当APP 提交密码"123456888888",新密码为"888888",当前密码为"123456", APP会在FFC2 通道得到通知notify:2(PWD_UPDATED_EVENT),表示密码 修改成功;
- 7. 当APP 提交密码 "888888000000", 新密码被修改为全0, 则表示取消使用密码, APP会在FFC2 通道得到通知notify:3(PWD_CANCEL_EVENT)。

5.3 模块参数设置【服务 UUID: 0xFF90】

特征值UUID	可执行的操作	是否保存	字节数	默认值	备注
FF91 (handle: 0x0062)	Read/write	是	16	Tv232u-xxxxxxxx (带结束符的 ASCII 字串)	设备名称,xxxxxxxxx为物理地址的后 四个字节
FF92 (handle: 0x0065)	Read/write	否	1	1	蓝牙通讯连接间隔: 0: 20ms 1: 30ms 2: 50ms 3: 100ms 4: 200ms 5: 300ms 6: 400ms 7: 500ms 8: 1000ms 9: 2000ms

					HM-BT4502B(-1) V1.12
FF93 (handle: 0x0068)	Read/write	是	1	5	设定串口波特率: 0: 4800 bps 1: 9600 bps 2: 19200 bps 3: 38400 bps 4: 57600 bps 5: 115200 bps
FF94 (handle: 0x006B)	write	_	1	无	远程复位恢复控制通道: 远程复位 控制,写入0x55 对模块进行复位 远 程浅恢复控制,写入0x35 对模块进行 浅恢复(仅仅恢复用户数据),并复 位 远程深度恢复控制,写入0x36 对 模块进行深度恢复(让模块所有参数 回到出厂设置),并复位
FF95 (handle: 0x006E)	Read/write	是	1	0	设定广播周期: 0: 200 ms, 1: 500 ms, 2: 1000 ms, 3: 1500 ms, 4: 2000 ms, 5: 2500 ms, 6: 3000 ms, 7: 4000 ms, 8: 5000 ms,
FF96 (handle: 0x0071)	Read/write	是	2	0x0000	设定产品识别码
FF97 (handle: 0x0074)	Read/write	否	1	1	设定发射功率: 0: +4 dBm 1: 0 dBm 2: -6 dBm 3: -20dBm

FF98 (handle: 0x0077)	Read/write	是	16	默认广播内容(详见 《广播数据设置》章 节)	设定自定义广播数据自定义广播数据, 0 < n <= 16
FF99 (handle: 0x007A)	write	_	1	无	Reserve
FF9A (handle: 0x007D)	Read/write	是	1	无	Reserve

表4 参数设置服务

模块信息配置通道说明:

FF91 为设备名称设置通道

可以通过对此通道进行读写操作,来获取和设定模块名称。设置的名称长度L,必须满足0<L<17,建议以结束符结尾('\0')。默认为"Tv2vvv-xxxxxxxxx\0"(16 byte),vvvv为固件版本号,xxxxxxxxx为MAC 地址后四个字节。

FF92 为模块连接间隔设置通道

可以通过对此通道进行写操作,来设定移动设备和模块之间的连接间隔,借此可以灵活控制设备功耗,以及数据吞吐量。为了提高连接速度,连接间隔参数不保存,上电后总以默认值(30ms)工作。

FF93 为模块串口波特率设置通道

可以通过对此通道进行读写操作,来设定模块通用串口波特率,两秒后开始启用新的波特率,掉电保存。出厂设置默认为5(115200 bps)。

FF94 为远程复位恢复控制通道

通过写入不同值,可以实现不同的控制功能。

- 1. 对此通道写入0x55,对模块进行软件复位。
- 2. 对此通道写入0x35,对模块进行浅恢复,防劫持密码将恢复到出厂设置,之后会复位模块。

3. 对此通道写入0x36,对模块进行深度恢复,所有系统参数将恢复到出厂设置控制,之后会复位模块。

FF95 为模块广播周期设置通道

可以通过对此通道进行读写操作,来设定模块广播周期。此参数掉电保存,出厂设置默认为0(200ms)。

FF96 为模块产品识别码设置通道

可以通过对此通道进行读写操作,来设定模块识别码,APP 端可以通过此识别码来进行过滤和连接指定的产品类型,此参数掉电保存。出厂设置默认为0x0000。

FF97 为模块发射功率设置通道

可以通过对此通道进行写操作,来设定模块发射功率,此参数掉电不保存。出厂设置默认为1 (0 dBm)。

FF98 为模块广播内容设置通道

可以通过对此通道进行写操作,来自定义模块的广播数据,此参数掉电保存。当数据为全0(16 byte)时,认为不使用自定义广播数据,而使用默认的广播数据,详见《广播数据设置》章节。

5.4 OTA 服务 UUID

[0x5833ff01-9b8b-5191-6142-22a 4536ef123]

特征值 UUID	可执行的操作	字节数	默认值	备注
0x5833ff02-9b8b-5191-6142-22a	write	20	NULL	Firmare
4536ef123				
0x5833ff03-9b8b-5191-6142-22a	notify	20	NULL	Response
4536ef123				

表5 OTA服务

5.5 设备信息【服务 UUID: 0x180A】

特征值 UUID	可执行的操作	字节数	默认值	备注
2A23	Read	8	xxxxxx0000xxxxxx	系统 ID, xxxxxxxxxxxx为模块芯
(handle:0x0003)			(Hex)	片物理地址,低字节在前
2A26	Read	7	v2.32u (ASCII)	模块软件版本号
(handle:0x0005)				

表6 设备信息服务

模块信息读取通道说明:

2A23 为模块信息获取通道,可以通过对此通道进行读操作,来获取此模块ID。格式如xxxxxx00000xxxxxx,其中xx部分为模块芯片的物理地址MAC,六个字节,低字节在前。2A26 为模块软件版本号读取通道,可以通过对此通道进行读操作,来获取模块软件版本,格式为Vx.xx。x.xx为固件版本号。

5.6 ADC 输入服务【服务 UUID: 0xFFD0】

特征值 UUID	可执行的操作	字节数	默认值	备注
FFD1	Read /Write	1	0	ADCO enable
FFD2	Read /Write	1	0	ADC1 enable
FFD3	Read /Write	4	0	ADCO 采样周期(单位ms)
FFD4	Read /Write	4	0	ADC1 采样周期(单位ms)
FFD5	Read	4	0	ADCO 采样结果(浮点数)
FFD6	Read	4	0	ADC1 采样结果(浮点数)

表7 ADC输入服务

模块ADC输入服务通道说明:

ADCO 通道为GPI015,ADC1 通道为GPI020,用户只需配置好采样周期(单位ms)并且是能通道即可获取ADC采样结果。

5.74 通道 PWM【服务 UUID: 0xFF00】

特征值 UUID	可执行的操作	字节数	默认值	备注
FF03	预分频	1	0	PWM_CLK_NO_DIV = 0,
				PWM_CLK_DIV_2 = 1,
				PWM_CLK_DIV_4 = 2,
				PWM_CLK_DIV_8 = 3,
				PWM_CLK_DIV_16 = 4,
				PWM_CLK_DIV_32 = 5,
				PWM_CLK_DIV_64 = 6,
				PWM_CLK_DIV_128 = 7
				(N_prescaler)
FF04	Read /Write	1	255	PWM转变范围(N_top_count)
FF05	Read /Write	1	0	PWMO Compare Count (P31)
				(N_threshold)
				(若为0则关闭通道)
FF06	Read /Write	1	0	PWM1 Compare Count (P32)
				(N_threshold)
				(若为0则关闭通道)
FF07	Read /Write	1	0	PWM2 Compare Count (P33)
				(N_threshold)
				(若为0则关闭通道)
FF08	Read /Write	1	0	PWM3 Compare Count (P34)
				(N_threshold)
				(若为0则关闭通道)

表8 ADC输入服务

PWM 计算公式为:

主时钟为16M,对于每一个PWM输出而言,首先需要设置一个范围为 2^2128 的预分频因子($2^N_prescaler$),其次设置 $16\,bits$ 计数器的最大值 N_top_count ,PWM

时钟可以通过如下公式获得: Freq_PWM = 16MHz / (N_prescaler *

N top count); PWM占空比为: Duty cycle PWM = N threshold/N top count;

5.82 通道定时翻转服务【服务 UUID: 0xFFA0】

特征值 UUID	可执行的操作	字节数	默认值	备注
FFA1	Read /Write	9	0	P24 定时翻转参数设置
FFA4	Read /Write	9	0	P25 定时翻转参数设置

表9 定时翻转服务

2通道定时翻转服务说明:

本服务为ms级别低功耗下睡眠功能。可以在精度不高的情况下使用他产生翻转方波。配置数据格式如下:

1bytes enable	4B high level value	4B low level value
---------------	---------------------	--------------------

5.9 GPIO 及脉冲宽度计数 (PWC) 服务【服务 UUID: 0xFFF0】

特征值 UUID	可执行的操作	字节数	默认值	备注
FFF1	Read /Write	2	0	GPIOs 配置
FFF2	Read	2	0	GPIOs status
FFF3	Read	1	0	Input GPIOs notify
FFF6	Read /Write	1	0	通道0计数配置(GPIO1)
FFF7	Read /Write	4	0	通道0计数结果(单位us)
FFF8	Read /Write	1	0	通道1计数配置(GPIO2)
FFF9	Read /Write	4	0	通道1计数结果(单位us)

表10 GPI0及脉冲宽度计数服务

模块15路GPI0功能说明:

GPIO 掩码顺序依次为: P1, P2, P3, P14, P15, P18, P20, P23, P24, P25, P31,

P32, P33, P34, 其中P1, P2, P3, P14, P15 可以作为输入唤醒中断。其他引脚不支持作为输入中断或者睡眠唤醒引脚使用。

➤ GPIOs 配置格式

8b gpio index	lb i/o	3b io pull cfg	1b out value	1b enable int &
				notify

gpio index: 为GPIO掩码,如P1掩码为0,P14掩码为13。

I/0:设置为输入或者输出,1-输出0-输入

IO PULL cfg: 0- FLOATING 1- WEAK_PULL_UP 2- STRONG_PULL_UP 3- PULL_DOWN 4-Normal 默认为Normal。(注: 模块在sleep后所有输出高电平的引脚如果不使能上拉,输出会直接变成0)

out value:输出高电平或者低电平 0-低电平输出 1-高电平输出 enable int & notify:设置引脚为输入中断,如果引脚有跳变会主动上报跳变状态。

上报跳变状态格式

7b gpio index	1b i/o trigger status
---------------	-----------------------

1b i/o trigger status: O- POSEDGE 1- NEGEDGE

> PWC 配置格式

1b PWC direction	1b PWC enable	6b reserved
------------------	---------------	-------------

1b PWC direction: 1-高电平计数 0-低电平计数

1b PWC enable: 1-enable 0-disable

5.10 端口定时事件服务【服务 UUID: 0xFE00】

特征值 UUID	可执行的操作	字节数	默认值	备注
FE01	Read /Write	7	0	GPI01 event配置
FE03	Read/Write	7	0	GPIO2 event配置
FE05	Read /Write	7	0	GPIO3 event配置

FE07	Read /Write	7	0	GPI023 event配置
------	-------------	---	---	----------------

表11 GPI0端口定时事件服务

配置参数说明:

每一个GPIO可以配置四个定时服务,每个GPIO的四个定时服务为队列的方式响应。 用户可以据此来组合复杂的波形。

GPIOx event配置格式为:

4bytes time value 1B time index 1	1B level	1B recycle
-----------------------------------	----------	------------

其中 time value 即为定时器值, time index为timer索引, leve为定时器到期后的GPI0应该触发的动作(1: 高电平; 0: 低电平; 3: 翻转), recycle (1: 加入循环队列, timer会循环触发; 0, 为一次性timer, timer到期即停止)注意: 此功能期间,模块会持续wakeup不会进行睡眠。