

Global United Technology Services Co., Ltd.

Report No.: GTSE15050073201

FCC REPORT

Bravo Tech (Shenzhen) Co. Ltd. Applicant:

No. 8 Building, The 3rd Zone, Tangtou Industrial Park Shiyan, Address of Applicant:

Baoan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: mBSC-C RUM

Model No.: mBSC0800S-005-RUCM11

FCC ID: WBKMBSC08S005RUM

Applicable standards: FCC CFR Title 47 Part 2:2014

FCC CFR Title 47 Part 20:2014

FCC CFR Title 47 Part 90 Subpart I:2014

Date of sample receipt: May 04 2015

Date of Test: May 04-15, 2015

Date of report issued: May 18, 2015

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only

2 Version

Version No.	Date	Description
00	May 18, 2015	Original

Prepared By:	Edward. Pan	Date:	May 18, 2015
	Project Engineer	_	
Check By:	hank. yan	Date:	May 18, 2015
	Reviewer		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
J			
4	TES	ST SUMMARY	5
5	GEI	NERAL INFORMATION	6
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	RELATED SUBMITTAL(S) / GRANT (S)	
		TE LAND MOBILE RADIO SERVICES	
	5.4	MERCIAL MOBILE SERVICES TEST METHODOLOGY	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	ST CONFIGURATION AND CONDITIONS	10
	6.1	EUT CONFIGURATION	10
	6.2	CONFIGURATION OF TESTED SYSTEM	
	6.3	TEST ENVIRONMENTS	
	6.4	TEST FREQUENCY SELECTION	
	6.5	DESCRIPTION OF TEST MODES	14
7	RF	POWER OUTPUT(ERP) MEASUREMENT	15
	7.1	STANDARD APPLICABLE	15
	7.2	TEST SETUP	
	7.3	MEASUREMENT PROCEDURE	
	7.4	TEST RESULT	
8	ME	ASURING THE EUT AGC THRESHOLD	18
	8.1	STANDARD APPLICABLE	18
	8.2	TEST SETUP	18
	8.3	TEST PROCEDURE	18
	8.4	TEST RESULT	18
9	PAS	SSBAND GAIN AND OCCUPIED BANDWIDTH	19
	9.1	STANDARD APPLICABLE	19
	9.2	TEST SETUP	
	9.3	TEST PROCEDURE	19
	9.4	TEST RESULT	19
10	OU.	T OF BAND EMISSION AT ANTENNA TERMINALS	27
	10.1	STANDARD APPLICABLE	27
	10.2	TEST SETUP	
	10.3	MEASUREMENT PROCEDURE	27

				STSE15050073201
	10.4		SUREMENT RESULT	
		0.4.1	Spurious emission	
	10	0.4.2	Band edge emission	40
11	E	MISSION	I MASK	42
	11.1	STAN	DARD APPLICABLE	42
	11.2		SETUP	
	11.3		SUREMENT PROCEDURE	
	11.4		RESULT	
12	N	OISE AT	ANTENNA TERMINALS	55
	12.1		DARD APPLICABLE	
	12.2	_	SETUP	
	12.3		SUREMENT PROCEDURE	
	12.4		RESULT	
42	IN.		DULATION	
IJ	IIN			
	13.1		DARD APPLICABLE	
	13.2		SETUP	
	13.3		SUREMENT PROCEDURE	
	13.4		RESULT	
14	· FI	IELD ST	RENGTH OF SPURIOUS RADIATION MEASUREMENT	69
	14.1	STAN	DARD APPLICABLE	69
	14.2	_	SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
	14.3		SUREMENT PROCEDURE	
	14.4	MEAS	SUREMENT DATA	70
15	F	REQUEN	ICY STABILITY	76
	15.1	STAN	DARD APPLICABLE	76
	15.2		SETUP	
	15.3	TEST	Procedure	76
	15.4	TEST	RESULT	77
16	0	UT-OF-E	BAND REJECTION	79
	16.1	STAN	DARD APPLICABLE	70
	16.2		SETUP	
	16.3		PROCEDURE	
	16.4		RESULT	
17	. P	OWER L	INE CONDUCTED EMISSION TEST	80
	17.1	STAN	DARD APPLICABLE	80
	17.2		SETUP	
	17.3		PROCEDURE	
	17.4		SUREMENT RESULT	
18	TI	EST SET	*UP PHOTO	85
19	F	LIT CON	STRUCTIONAL DETAILS	87

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 Test Summary

Test Item	Test Description	Result
Maximum Permissible Exposure(MPE)	§ 1.1307(b)(1), § 2.1091	PASS* (Please refer to MPE Report)
Effective radiated power (ERP).	§ 2.1046; § 90.219(d)(3)	PASS
Modulation Characteristics	§ 2.1047	N/A*
Passband Gain and Occupied Bandwidth	§ 2.1049; § 90.219 (e)	PASS
Spurious Emissions at Antenna Terminal	§ 2.1051; § 90.219(d); § 90.219 (e) (3)	PASS
Intermodulation	§ 2.1051; § 90.219(d) (6)	PASS
Field Strength of Spurious Radiation	§ 2.1053; § 90.219(d); § 90.219 (e) (3)	PASS
Out of Band Emission, Band Edge	§ 90.219(d); § 90.219 (e) (3)	PASS
Emission Mask	§ 90.210	PASS
Noise at Antenna Terminals	§ 90.219(d); § 90.219(e)	PASS
Frequency Stability vs. Temperature Frequency Stability vs. Voltage	§ 2.1055; § 90.213	PASS
Measuring the EUT AGC threshold		PASS
Out-of-Band Rejection		PASS
AC Power Line Conducted Emission Test	§ 15.207	PASS

Remark:

N/A*: Not application

5 General Information

5.1 Client Information

Applicant:	Bravo Tech (Shenzhen) Co. Ltd.
Address of Applicant:	No. 8 Building, The 3rd Zone, Tangtou Industrial Park Shiyan, Baoan District, Shenzhen, China
Manufacturer:	Bravo Tech (Shenzhen) Co. Ltd.
Address of Manufacturer:	No. 8 Building, The 3rd Zone, Tangtou Industrial Park Shiyan, Baoan District, Shenzhen, China
Factory:	BTI Wireless(ShenZhen)Co.,Ltd.
Address of Factory:	No. 8 Building, The 3rd Zone, Tangtou Industrial Park Shiyan, Baoan District, Shenzhen, China

5.2 General Description of EUT

Product Name:	mBSC-C RUM		
Model No.:	mBSC0800S-005-R	mBSC0800S-005-RUCM11	
Power supply:	RPM: Input: AC 120	RPM: Input: AC 120V/60Hz	
	RUM: DC 28V, 3A N	Лах	
	RTM: Input DC 28V	/ 2.2A	
	Normal test voltage:	AC 120V/60Hz	
Operating Temperature:	-20℃ to + 55℃		
Operating Humidity:	up to 95%		
Technical Parameter:			
Frequency Range	Downlink	851MHz~862MHz	
	Uplink	806MHz~817MHz	
Operating Bandwidth	18MHz	•	
Channel Spacing(s) / Bandwidth(s)	iDEN: 25KHz, C4FN	/l: 12.5KHz, Analog FM: 6.25KHz	
Maximun RF Output Power	Downlink: 36.28dBn	n	
	Uplink: 5.00dBm		
Max Gain	Downlink: 53±0.5dB	; Uplink: 62±0.5dB	
Type of modulation and Designator	iDEN(G7W),C4FM(I	iDEN(G7W),C4FM(D9W),Analog FM(D9W)	
Antenna Type	External antenna (N	female)	
Antenna Gain	Maximum permissib	ele antenna gain is 7.65dBd(9.8dBi-2.15dB)	

5.3 Related Submittal(s) / Grant (s)

Title 47 Part 2	General Requirements and Information for the Certification of Radio Apparatus	
Title 47 Part 90	PRIVATE LAND MOBILE RADIO SERVICES	
Title 47 Part 20	COMMERCIAL MOBILE SERVICES	

5.4 Test Methodology

Title 47 Part 2	General Requirements and Information for the Certification of Radio Apparatus
Title 47 Part 90	PRIVATE LAND MOBILE RADIO SERVICES
Title 47 Part 20	COMMERCIAL MOBILE SERVICES
ANSI C63.4: 2014	Methods of Measurement of Radio-Noise Emissions from Low Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
KDB	AMPLIFIER, BOOSTER, AND REPEATER REMINDER SHEET PART 90 700/800 BANDS INDUSTRIAL BOOSTERS REQUIREMENTS SUMMARY
KDB 935210	D01 Signal Booster Definitions v02; D02 Signal Booster Certification v03 D03 Signal Booster Measurements v03 D04 Signal Booster Provider Specific v01r01 D05 Indus Booster Basic Meas v01

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number
BTI	RTM	mBSC1430-RTM-5SW	N/A

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. to ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC)

The 3m Semi-anechoic chamber of China Certification & Inspection Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

Page 7 of 93

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong

Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

Tel: 0755-27798480 Fax: 0755-27798960

Page 8 of 93

5.8 Test Instruments list

5.8	8 Test Instruments list					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun. 30, 2015
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 22 2015	Feb. 21 2016
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 27 2014	June 26 2015
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016
8	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016
9	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016
10	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016
11	Amplifier(100KHz- 5GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30, 2015
12	Amplifier(2GHz- 20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30, 2015
13	Amplifier (18- 26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015
14	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015
15	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 01 2014	Jun. 30, 2015
16	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 01 2014	Jun. 30, 2015
17	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 01 2014	Jun. 30, 2015
18	Temp. Humidity/ Barometer	Oregon Scientific	BA-888	GTS248	May 09 2014	May 08 2016
19	Spectrum Analyzer	Agilent	E4440A	GTS 536	Oct.21 2014	Oct.20 2015
20	Spectrum Analyzer	Agilent	E4445A	MY41000047	Sept. 10 2013	Sept. 01 2015
21	Splitter	Agilent	11636B	GTS237	May 09 2014	May 08 2016
22	Signal Generator	Rohde & Schwarz	SML03	GTS236	May 09 2014	May 08 2016
23	Signal Generator	AEROFLEX	IFR3414	341300/019		Sept. 10 2015
24	Power Reflection Meter	Rohde & Schwarz	NRT	100540	Sept. 10 2014	Sept. 10 2015
25	Power Sensor	Giga-tronics	80601A	1831785	Sept. 10 2014	Sept. 10 2015
26	Power Attenuator	BTI	30dB/250W	040706090	Sept. 10 2014	Sept. 10 2015
27	Power Attenuator	BTI	20dB	040706089	Sept. 10 2014	Sept. 10 2015
28	Power Attenuator	BTI	10dB	040706088	Sept. 10 2014	Sept. 10 2015
29	Signal Generator	Agilent	E4438C	MY45093111	Oct.21 2014	Oct.20 2015
30	Signal Generator	Agilent	4432B	GB40051373	May 09 2014	May 08 2016
31	Noise Figure Analyzer	Agilent	N8973A	GB42151304	May 09 2014	May 08 2016

6 TEST CONFIGURATION AND CONDITIONS

6.1 EUT Configuration

This MBSC0800S-005-RUCM11 is the Remote Unit on BTI CM system. This remote unit supports 800MHz band with the air standard iDEN, C4FM, Analog FM . The unit consists of Duplexer, PA and CPU board. This product is designed to operate in an outdoor or indoor environment. The conducted output power of the RUM at Antenna interface port is average 36.28dBm for Downlink path with Convection Cooling.

For details, refer to technical document and the user manual.

6.2 Configuration of Tested System

(A) RF Output Power, Occupied Bandwidth, Spurious Emissions at Antenna Terminal, Band Edge, Emission Mask , Noise Test Set-UP

(B) Intermodulation Test Set-UP

(C)Frequency stability Test Set-UP

(D) Radiated Emission Test Set-Up, Frequency below 1000MHz

(E) Radiated Emission Test Set-UP Frequency over 1 GHz

(F) Substituted Method Test Set-UP

6.3 Test Environments

Condition	Minimum value	Maximum value	
Barometric pressure	86 kPa	106 kPa	
Temperature	15°C	30°C	
Relative Humidity	20 %	75 %	
Power supply range	±5% of rated voltages		
Normal Test Condition	(1).Temperature: +15 °C to +30 °C;		
Normal Test Condition	(2). voltage is 120V AC.		
Extreme Test Conditions:	(1). Temperatures: -20°C to +55°C.		
Extreme rest domaitions.	(2). Voltages: 102V AC to 138V AC.		

6.4 Test frequency selection

Downlink:

Operating	Channels frequency (MHz)					
Mode(TX)	Bandplan	Low Ch.	Mid Ch.	High Ch.		
iDEN	B9B	851.0125	856.5125	861.9875		
C4FM	B9B	851.0125	856.5125	861.9875		
Analog FM	B9B	851.00625	856.50625	861.99375		

Uplink:

Operating	Channels frequency (MHz)						
Mode(TX)	Bandplan	Low Ch.	Mid Ch.	High Ch.			
iDEN	B9B	806.0125	811.5125	816.9875			
C4FM	B9B	806.0125	811.5125	816.9875			
Analog FM	B9B	806.00625	811.50625	816.99375			

6.5 DESCRIPTION OF TEST MODES

Test mode	Detail description of the test mode				
Downlink	Downlink (Low channel; middle channel; high channel)				
Uplink	Uplink (Low channel; middle channel; high channel)				
Modulation type	iDEN, C4FM, Analog FM				

Remark:

- 1: The EUT was powered by 120VAC.
- 2: The EUT was configured for maximum gain and maximum ouput power. The input power was the maximum declared by the manufacturer. This is to ensure that the equipment is operating in the linear output range.
- 3: Signal generator was used to provide the input signals to the EUT. Tests were performed with iDEN, C4FM, Analog FM signal input and multi-carrier signal mode input.
- 4: Pre-test all test modes as above, only the worst case and typical mode is list in report it.
- 5: All testing is end-to-end (input to host through to output from remote, and vice-versa)

7 RF POWER OUTPUT(ERP) MEASUREMENT

7.1 Standard Applicable

According to FCC § 2.1046 and § 90.219(e) (1) .

- (e) Device Specifications. In addition to the general rules for equipment certification in §90.203(a)(2) and part 2, subpart J of this chapter, a signal booster must also meet the rules in this paragraph.
- (1) The output power capability of a signal booster must be designed for deployments providing a radiated power not exceeding 5 Watts ERP for each retransmitted channel.

7.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

7.3 Measurement Procedure

- 1. The output from the EUT t signal shall be increased, antenna connector was connected to the power meter
- 2. The level of RF input until the maximum output power per channel, declared by client, is reached.
- 3. The RF output power was measured at low, middle and high channel with iDEN、C4FM、Analog FM signal.

7.4 Test Result

Downlink:

Test	Channel Freq.	Conducted output Power	Cable loss	Ant Gain	EF	RP	ERP Limit	Result
mode	i ieq.	(dBm)	(dB)	Jani	dBm	w	Lilling	
	Low	36.45	8.0	9.8	36.10	4.07		
iDEN	Middle	36.63	8.0	9.8	36.28	4.25		
	High	36.37	8.0	9.8	36.02	4.00	- 5W / - 37dBm	
	Low	36.42	8.0	9.8	36.07	4.05		
C4FM	Middle	36.45	8.0	9.8	36.10	4.07		Pass
	High	36.56	8.0	9.8	36.21	4.18		
	Low	36.44	8.0	9.8	36.09	4.06		
Analog FM	Middle	36.53	8.0	9.8	36.18	4.15		
1 101	High	36.39	8.0	9.8	36.04	4.02	1	

Uplink:

Test mode	Channel Freq.	Conducted output Power	Cable loss	Ant Gain	El	RP	ERP Limit	Result
mode	i icq.	(dBm)	(dB)	Cam	dBm	w	Lilling	
	Low	5.24	8.0	9.8	4.89	0.0031		
iDEN	Middle	5.33	8.0	9.8	4.98	0.0031		
	High	5.29	8.0	9.8	4.94	0.0031	- 5W / - 37dBm	
	Low	5.19	8.0	9.8	4.84	0.0030		
C4FM	Middle	5.35	8.0	9.8	5.00	0.0032		Pass
	High	5.17	8.0	9.8	4.82	0.0030		
	Low	5.11	8.0	9.8	4.76	0.0030		
Analog FM	Middle	5.26	8.0	9.8	4.91	0.0031		
. 101	High	5.13	8.0	9.8	4.78	0.0030		

Remark: ERP=Conducted output Power+Ant Gain-2.15-Cable loss
Ant Gain=9.8dBi, Cable loss=8db

Peak to Average Ratio

Downlink:

Test mode	Pe	ak to Average F	Limit	Result	
1001000	Low Ch.	Middle Ch.	High Ch.	(dB)	
iDEN	8.42	7.16	7.59	13	Compliant
C4FM	0.92	0.87	0.94	13	Compliant
Analog FM	0.04	0.04	0.04	13	Compliant

Uplink:

оршк.						
Test mode	Pe	ak to Average F (dB)	Limit	Result		
	Low Ch.	Middle Ch.	High Ch.	(dB)		
iDEN	8.32	7.34	7.24	13	Compliant	
C4FM	0.89	0.92	0.95	13	Compliant	
Analog FM	0.04	0.04	0.04	13	Compliant	

8 MEASURING THE EUT AGC THRESHOLD

8.1 Standard Applicable

Please refer the section §3.2 8 MEASURING THE EUT AGC THRESHOLD of D05 Indus Booster Basic Meas v01

8.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

8.3 Test Procedure

Please refer the section §3.2 8 MEASURING THE EUT AGC THRESHOLD of D05 Indus Booster Basic Meas v01

8.4 Test Result

Downlink:

	A			
Test mode		Result		
	Low Ch.	Middle Ch.	High Ch.	
iDEN	39.01	39.07	39.12	Compliant
C4FM	39.02	39.13	39.11	Compliant
Analog FM	38.98	39.03	39.07	Compliant

Uplink:

Test mode	A	Result		
	Low Ch.	Middle Ch.	High Ch.	
iDEN	5.51	5.56	5.48	Compliant
C4FM	5.47 5.46		5.51	Compliant
Analog FM	5.53	5.61	5.59	Compliant

9 PASSBAND GAIN AND OCCUPIED BANDWIDTH

9.1 Standard Applicable

According to FCC § 2.1049, § 90.219(d), § 90.219(e)

9.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

9.3 Test Procedure

- 1. The EUT RF output port was connected to spectrum analyzer.
- 2. The level of RF input signal shall be increased, until the maximum output power per channel, declared by client, is reached.
- 3. The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth).
- 4. The Occupied Bandwidth was measured at the input and output ports of the EUT at low, middle and high channel of each type of modulation and each type of carrier signal.

Spectrum analyzer settings:

Detector: RMS.

iDEN: RBW= 300Hz, VBW≥RBW, Sweep: Auto

C4FM/Analog FM: RBW= 100Hz, VBW≥RBW, Sweep: Auto

9.4 Test Result

Pass band Gain

Downlink:

Test mode	Channel	Input Power (dBm)	Output Power (dBm)	Passband Gain (dB)	Nominal Gain (dB)	Result
	Low	-16.89	36.45	53.34		Compliant
iDEN	Middle	-16.62	36.63	53.25		Compliant
	High	-16.87	36.37	53.24		Compliant
	Low	-16.75	36.42	53.17		Compliant
C4FM	Middle	-16.84	36.45	53.29	53±0.5dB	Compliant
	High	-16.75	36.56	53.31		Compliant
	Low	-16.70	36.44	53.14		Compliant
Analog FM	Middle	-16.76	36.53	53.29		Compliant
. 101	High	-16.86	36.39	53.25		Compliant

Uplink:

Test mode	Channel	Input Power (dBm)	Output Power (dBm)	Passband Gain (dB)	Nominal Gain (dB)	Result
	Low	-56.91	5.24	62.15		Compliant
iDEN	Middle	-56.94	5.33	62.27		Compliant
	High	-56.94	5.29	62.23	62±0.5dB	Compliant
	Low	-56.88	5.19	62.07		Compliant
C4FM	Middle	-56.86	5.35	62.21		Compliant
	High	-56.99	5.17	62.16		Compliant
	Low	-57.02	5.11	62.13		Compliant
Analog FM	Middle	-56.98	5.26	62.24		Compliant
. 141	High	-56.94	5.13	62.07		Compliant

Remark: Gain (dB) = output power (dBm) - input power (dBm).

Input/output Bandwidth Comparison

Downlink:

Input/output Bandwidth Comparison for iDEN

Input/output Bandwidth Comparison for C4FM

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Input/output Bandwidth Comparison for Analog FM

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Uplink:

Input/output Bandwidth Comparison for iDEN

Input/output Bandwidth Comparison for C4FM

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Input/output Bandwidth Comparison for Analog FM

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

10 OUT OF BAND EMISSION AT ANTENNA TERMINALS

10.1 Standard Applicable

According to FCC § 2.1051 and § 90.219(d)

10.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

10.3 Measurement Procedure

The out of band emissions were measured directly from the EUT antenna output with a spectrum analyzer from 30 MHz to the 10th harmonic of the highest carrier frequency. Test signals used is iDEN、C4FM、Analog FM. The different signals were input one at a time to the EUT. Tests was performed with iDEN、C4FM、Analog FM signal input.

performed with IDEN's C4FM's Analog FM signal input.

Band edge compliance is also demonstrated using a iDEN、C4FM、Analog FM signal at the upper and

lower limits of the band.

1. The EUT RF output port was connected to spectrum analyzer.

2. The level of RF input signal shall be increased, until the maximum output power per channel,

declared by client, is reached.

3. The spurious emissions at antenna were measured at the RF output port of the EUT at middle

channel of each type of modulation.

Spectrum analyzer settings:

Detector: RMS.

Band Edge:

RBW=1%of the occupied channel bandwidth without going below 1%, VBW≥ RBW

Spurious emissions:

Below 1G: RBW=100kHz; VBW=300KHz; Above 1G: RBW=1 MHz; VBW≥ RBW

10.4 Measurement Result

10.4.1 Spurious emission

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Downlink:

Spurious emission of iDEN

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 28 of 93

Spurious emission of C4FM

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Spurious emission of Analog FM

Uplink:

Spurious emission of iDEN

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Spurious emission of C4FM

Lowest channel

Spurious emission of Analog FM

Lowest channel

Project No.: GTSE150500732RF

10.4.2 Band edge emission

Downlink:

Band edge of iDEN

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 40 of 93

Uplink:

Band edge of iDEN

11 EMISSION MASK

11.1 Standard Applicable

According to FCC § 90.210

11.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

11.3 Measurement Procedure

The test signals used is iDEN、C4FM、Analog FM. The different signals were input one at a time to the EUT. Tests was performed with iDEN、C4FM、Analog FM signal input.

- 1. The 806MHz-809MHz/851MHz-854MHz band conforms to emission mask H.
- 2. For other band, the equipment designed must accord with emission mask B----- For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:
- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Spectrum analyzer settings:

Detector: RMS.

RBW=1%of the occupied channel bandwidth without going below 1%; VBW≥ RBW

11.4 Test Result

Passed.

Downlink:

Emission Mask for iDEN

851.00MHz-854.00MHz(Mask H)

Page 43 of 93

854.00MHz-862.00MHz(Mask B)

Emission Mask for C4FM

851.00MHz-854.00MHz(Mask H)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

854.00MHz-862.00MHz(Mask B)

Emission Mask for Analog FM

851.00MHz-854.00MHz(Mask H)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

854.00MHz-862.00MHz(Mask B)

Uplink:

Emission Mask for iDEN

806.00MHz-809.00MHz(Mask H)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

809.00MHz-817.00MHz(Mask B)

Emission Mask for C4FM

806.00MHz-809.00MHz(Mask H)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

809.00MHz-817.00MHz(Mask B)

Emission Mask for Analog FM

806.00MHz-809.00MHz(Mask H)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

809.00MHz-817.00MHz(Mask B)

12 NOISE AT ANTENNA TERMINALS

12.1 Standard Applicable

According to FCC § 90.210(d) and § 90.210(e)

12.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

12.3 Measurement Procedure

The test signals used is iDEN、C4FM、Analog FM. The different signals were input one at a time to the EUT. Tests was performed with iDEN、C4FM、Analog FM signal input.

- 1. The ERP of noise within the signal booster passband should not exceed -43dBm.
- 2. The ERP of noise on spectrum more than 1MHz outside of the signal booster passband should not exceed -70dBm.
- 3. The noise figure of a signal booster mast not exceed 9dB in either direction.

Spectrum analyzer settings:

RBW=10KHz, VBW=30KHz

12.4 Test Result

Passed.

more than 1MHz outside of the signal booster passband

within the signal booster passband

noise figure of a signal booster

13 INTERMODULATION

13.1 Standard Applicable

According to FCC § 2.1051 and § 90.219(d)

13.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

13.3 Measurement Procedure

- The EUT RF output port was connected to spectrum analyzer. The EUT shall be set to maximum gain
 - and maximum rated output power per channel.
- 2. Two continuous sinusoidal RF signals shall be fed to the input antenna port of the repeater using a combining device. The two channels near each other should be separated by at least one operating channel width.
- 3. The spurious emissions at antenna were measured at the RF output port of the EUT.
- 4. The modulation types tested is iDEN、C4FM、Analog FM.

Spectrum analyzer settings:

Detector: RMS.

Intermodulation:

RBW=1%of the occupied channel bandwidth without going below 1%; VBW≥ RBW

Spurious emissions:

Below 1G: RBW=100kHz; Above 1G: RBW=1 MHz; VBW≥ RBW

13.4 Test Result

Passed.

Remark: Both case of the normal input power level and increase 3dB above the AGC threshold were tested, we found this case increase 3dB above the AGC threshold which was the worst, and record in the report.

Downlink:

Intermodulation of iDEN

Uplink:

Intermodulation of iDEN

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

14 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

14.1 Standard Applicable

According to FCC § 2.1053 and § 90.219(d)

14.2 EUT Setup (Block Diagram of Configuration)

Please refer the section §6.2 Configuration of Tested System.

14.3 Measurement Procedure

- 1. The EUT RF output port was connected to 50 ohm RF load.
- 2. The EUT input port was connected to signal generator and was setup to transmit maximum power.
- 3. The measurement antenna was placed at a distance of 3 meters from the EUT.
- 4. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from EUT.
- 5. The frequency range up to 10-th harmonic of each of the three fundamental frequencies (low, middle and high channels) was investigated. The worst case of emissions was reported.
- 6. For spurious emissions attenuation, the substitution method was used.
- 7. The EUT was substituted by a reference antenna (half-wave dipole below 1 GHz, or Horn antenna above 1 GHz), connected to a signal generator.
- 8. The signal generator output level was adjusted to obtain the same reading as from EUT. The EIRP at the spurious emissions frequency was calculated as follows:

EIRP = S.G. output (dBm) + Antenna Gain(dBi) – Cable Loss (dB)

- 9. The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic dipole
- 10. From KDB (AMPLIFIER, BOOSTER, AND REPEATER REMINDER SHEET): Radiated spurs (enclosure) Use of CW signal (low, mid. and high freq.) is acceptable rather than all modulations.
- 11. The maximum RFI field strength was determined during the measurement by rotating the turntable (±180 degrees) and varying the height of the receive antenna (h = 1 ... 4 m) as like defined in ANSI C63.4. A measurement receiver has been used with a RBW 120 kHz up to 1 GHz and 1 MHz above 1 GHz. Steps with during pre measurement was half the RBW.
- 12. Both, the Fully Anechoic Chamber (FAC) and the Semi Anechoic Chamber (SAC) fulfil the requirements of ANSI C63.4 and CISPR 16-1-4 with regards to NSA and SVSWR.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE150500732RF

14.4 Measurement data

Downlink mode

Test mode:	Belo	w 1G	Test channel:	Lowest channel
Frequency (MHz)	Spurious Emission		Line it (dDay)	Danill
	Polarization	Level (dBm)	Limit (dBm)	Result
46.58	Vertical	-50.86		Pass
68.55	V	-55.68		
153.86	V	-47.38	12.00	
275.68	V	-56.53	-13.00	
569.35	V			
756.35	V			
58.45	Horizontal	-53.85		Pass
163.52	Н	-51.24		
243.53	Н	-45.75	12.00	
546.35	Н	-48.33	-13.00	
728.86	Н			
849.53	Н			
Test mode:	Above 1G		Test channel:	Lowest channel
Frequency (MHz)	Spurious Emission		Limit (dBm)	Result
Frequency (IVII IZ)	Polarization	Level (dBm)	Limit (apm)	Result
2534.00	Vertical	-55.35		Pass
4537.00	V	-45.75		
5325.00	V	-49.55	-13.00	
6728.00	V			
8725.00	V			
2435.00	Horizontal	-57.53	-13.00	Pass
4247.00	Н	-51.42		
5356.00	Н	-49.04		
6716.00	Н			
07 10.00				

Test mode:	Below 1G		Test channel:	Middle channel
Frequency (MHz)	Spurious Emission		1: "((15))	Descrit
	Polarization	Level (dBm)	Limit (dBm)	Result
57.83	Vertical	-53.86	-13.00	Pass
153.75	V	-46.58		
246.77	V	-47.86		
293.42	V	-56.55		
546.86	V			
843.56	V			
32.75	Horizontal	-52.16		Pass
146.53	Н	-56.32		
286.57	Н	-47.22	-13.00	
469.17	Н	-46.92		
682.35	Н			
843.27	Н			
Test mode:	Above 1G		Test channel:	Middle channel
Fraguency (MHz)	Spurious Emission		Limit (dDm)	Result
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
2367.00	Vertical	-56.82		Pass
3846.00	V	-54.61		
534100	V	-50.35	-13.00	
7108.00	V			
8354.00	V			
1381.00	Horizontal	-56.87	-13.00	Pass
4108.00	Н	-53.27		
5350.00	Н	-52.88		
6637.00	Н			
8169.00	Н			

Test mode:	Belo	ow 1G	Test channel:	Highest channel
Frequency (MHz)	Spurious Emission		Lineit (dDne)	Dogult
	Polarization	Level (dBm)	Limit (dBm)	Result
46.54	Vertical	-53.76	-13.00	Pass
128.16	V	-56.27		
243.65	V	-46.46		
562.07	V	-50.35		
672.43	V			
931.44	V			
53.42	Horizontal	-55.43		Pass
156.74	Н	-50.17		
275.17	Н	-47.16	-13.00	
571.24	Н	-49.66		
729.53	Н			
877.82	Н			
Test mode:	Above 1G		Test channel:	Highest channel
Fraguency (MHz)	Spurious Emission		Limit (dDm)	Result
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
1861.00	Vertical	-54.26		Pass
2963.00	V	-53.44	-13.00	
4371.00	V	-53.64		
6857.00	V			
8276.00	V			
1851.00	Horizontal	-56.85	-13.00	Pass
3926.00	Н	-53.61		
5377.00	Н	-53.09		
6351.00	Н			
7328.00	Н			

Remark:

1. Remark"---" means that the emission level is too low to be measured

Uplink mode

Uplink mode Test mode:	Below 1G		Test channel:	Lowest channel		
F (NALLE)	Spurious	Emission	Limit (dDoo)	Result		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)			
43.82	Vertical	-55.38				
57.85	V	-49.78				
163.77	V	-52.71	-13.00	Pass		
375.42	V	-46.93	-13.00	Pass		
671.56	V					
846.52	V					
46.75	Horizontal	-56.69				
148.78	Н	-49.68		Pass		
376.42	Н	-52.41	-13.00			
524.71	Н	-50.27	-13.00			
708.30	Н					
873.11	Н					
Test mode:	Abov	ve 1G	Test channel:	Lowest channel		
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Result		
Frequency (MHZ)	Polarization	Level (dBm)	Lilliit (dbill)			
2507.00	Vertical	-56.17				
4234.00	V	-55.37				
5730.00	V	-55.27	-13.00	Pass		
6275.00	V					
8396.00	V					
1351.00	Horizontal	-55.86				
2637.00	Н	-56.27				
3864.00	Н	-55.96	-13.00	Pass		
5963.00	Н					
7928.00	Н					

Test mode:	Below 1G		Test channel:	Middle channel	
(MI I=)	Spurious	Emission	Limit (dDas)	Result	
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)		
32.99	Vertical	-52.53			
124.78	V	-48.24			
246.53	V	-50.88	-13.00	Pass	
527.74	V	-49.35	-13.00	Pass	
726.86	V				
924.77	V				
39.53	Horizontal	-56.35			
136.52	Н	-52.41			
368.45	Н	-50.75	-13.00	Pass	
563.75	Н	-56.72	-13.00	Pass	
726.55	Н				
941.45	Н				
Test mode:	Abov	ve 1G	Test channel:	Middle channel	
Fraguency (MHz)	Spurious	Emission	Limit (dPm)	Result	
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Resuit	
1463.00	Vertical	-55.35			
2963.00	V	-54.21			
4237.00	V	-53.53	-13.00	Pass	
6534.00	V				
7692.00	V				
2634.00	Horizontal	-55.58			
3759.00	Н	-53.82			
5782.00	Н	-54.22	-13.00	Pass	
7350.00	Н				
8296.00	Н				

Test mode:	Below 1G		Test channel:	Highest channel		
Fragueray (MIII-)	Spurious Emission		Limit (dDms)	Result		
Frequency (MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
52.16	Vertical	-46.83				
124.61	V	-53.22				
213.16	V	-49.65	-13.00	Pass		
361.19	V	-48.45	-13.00	Pass		
519.26	V					
756.63	V					
50.16	Horizontal	-53.82				
103.52	Н	-47.26		Pass		
242.86	Н	-50.24	-13.00			
356.25	Н	-52.33	-13.00	Pass		
564.58	Н					
758.86	Н					
Test mode:	Abov	Above 1G		Highest channel		
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Result		
Frequency (IVII IZ)	Polarization	Level (dBm)	Limit (dbin)	Result		
2568.00	Vertical	-55.68				
3856.00	V	-54.53				
4284.00	V	-54.16	-13.00	Pass		
6752.00	V					
8325.00	V					
1686.00	Horizontal	-55.38				
2964.00	Н	-55.02				
4536.00	Н	-54.59	-13.00	Pass		
6823.00	Н					
8329.00	Н					

Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. 10GHz-26.5GHz: No substitution measurement has been performed, because there were no emissions detected during the pre measurement other than noise.

15 FREQUENCY STABILITY

15.1 Standard Applicable

According to FCC § 2.1055 and § 90.213

15.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

15.3 Test Procedure

- 1. The EUT was placed inside the temperature chamber.
- 2. The RF output port was connected to a spectrum analyzer.
- 3. The level of RF input signal shall be increased, until the maximum output power per channel, declared by client, is reached.
- 4. After the temperature stabilized for approximately 20 min, the transmitting frequency was measured by the spectrum analyzer and recorded.
- 5. At room temperature, the frequency was measured when EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

15.4 Test Result

Passed.

Downlink:

iDEN mode	iDEN mode								
Reference Frequency: Middle channel=856.5125MHz									
Voltage with nominal Voltage	Power Supplied (VAC)	Temperature Frequency (°C) Frequency (rc) (Hz)		Frequency Error (ppm)	Result				
100%		-40	16.7	0.019	Passed				
100%		-30	14.5	0.017	Passed				
100%		-20	12.4	0.014	Passed				
100%		-10	10.7	0.012	Passed				
100%		0	8.3	0.010	Passed				
100%	120V	10	10.7	0.012	Passed				
100%		20	11.3	0.013	Passed				
100%		30	13.4	0.016	Passed				
100%		40	13.7	0.016	Passed				
100%		50	15.6	0.018	Passed				
100%		55	13.8	0.016	Passed				
85%	102V	20	13.6	0.016	Passed				
115%	138V	20	11.5	0.013	Passed				

Remark: EUT is specified for outdoor use with temperature range of -40° to +55° C, and was tested with its range.

Page 77 of 93

Uplink:

iDEN mode										
Reference Frequency: Middle channel=811.5125MHz										
Voltage with nominal Voltage	Power Supplied (VAC)	Temperature Frequency Error (Hz)		Frequency Error (ppm)	Result					
100%		-40	15.5	0.019	Passed					
100%		-30	13.2	0.016	Passed					
100%		-20	12.4	0.015	Passed					
100%		-10	10.7	0.013	Passed					
100%		0	6.5	0.008	Passed					
100%	120V	10	5.3	0.007	Passed					
100%		20	12.5	0.015	Passed					
100%		30	13.2	0.016	Passed					
100%		40	13.5	0.017	Passed					
100%		50	14.7	0.018	Passed					
100%		55	13.6	0.017	Passed					
85%	102V	20	11.9	0.015	Passed					
115%	138V	20	8.3	0.010	Passed					

Remark: EUT is specified for outdoor use with temperature range of -40° to +55° C, and was tested with its range.

16 OUT-OF-BAND REJECTION

16.1 Standard Applicable

According to KDB (AMPLIFIER, BOOSTER, AND REPEATER REMINDER SHEET):

Out of Band Rejection – Test for rejection of out of band signals. Filter freq. response plots are acceptable.

Please refer the section §3.3 OUT-OF-BAND REJECTION of D05 Indus Booster Basic Meas v01

16.2 Test setup

Please refer the section §6.2 Configuration of Tested System.

16.3 Test Procedure

Please refer the section §3.3 OUT-OF-BAND REJECTION of D05 Indus Booster Basic Meas v01

16.4 Test Result

17 POWER LINE CONDUCTED EMISSION TEST

17.1 Standard Applicable

According to FCC §15.207. The emission value for frequency within 150KHz to 30MHz shall not Exceed criteria of below chart.

Fraguenay rango (MHz)	Limits dB(uV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15 to 0.50	79	66			
0.50 to 30	73	60			

Note

- 1. The lower limit shall apply at the transition frequencies
- 2.The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

17.2 Test setup

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2001.
- 2. The EUT was plug-in DC power adaptort and was placed on the center of the back edge on the test table. The peripherals like earphone was placed on the side of the EUT. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The Power adaptor was connected with 110VAC/60Hz power source.

17.3 Test Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

17.4 Measurement Result

Downlink:

Line:

: FCC PART15 CLASSA QP LISN-2013 LINE Condition

: 0732RF

Job No. Test mode : Downlink mode

Test Engineer: Edward

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBu₹	dBuV	dB	
1	0.199	66.48	0.14	0.13	66.75	79.00	-12.25	QP
2	0.199	55.48	0.14	0.13	55.75	66.00	-10.25	Average
3	0.396	62.55	0.11	0.11	62.77	79.00	-16.23	QP
4	0.396	52.80	0.11	0.11	53.02	66.00	-12.98	Average
5	0.497	63.47	0.12	0.11	63.70	79.00	-15.30	QP
6	0.497	52.85	0.12	0.11	53.08	66.00	-12.92	Average
7	0.595	62.84	0.13	0.12	63.09	73.00	-9.91	QP
8	0.595	51.89	0.13	0.12	52.14	60.00	-7.86	Average
9	0.989	61.35	0.14	0.13	61.62	73.00	-11.38	QP
10	0.989	52.70	0.14	0.13	52.97	60.00	-7.03	Average
11	16.398	60.16	0.39	0.22	60.77	73.00	-12.23	QP
12	16.398	38.51	0.39	0.22	39.12	60.00	-20.88	Average

Neutral:

Condition : FCC PART15 CLASSA QP LISN-2013 NEUTRAL

Job No. : 0732RF Test mode : Downlink mode

Test Engineer: Edward

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.197	66.35	0.07	0.13	66.55	79.00	-12.45	QP
2 3	0.197	55.13	0.07	0.13	55.33	66.00	-10.67	Average
3	0.592	62.58	0.07	0.12	62.77	73.00	-10.23	QP
4	0.592	54.02	0.07	0.12	54.21	60.00	-5.79	Average
5	0.686	62.44	0.07	0.13	62.64	73.00	-10.36	QP
6	0.686	52.49	0.07	0.13	52.69	60.00	-7.31	Average
7	0.984	58.69	0.07	0.13	58.89	73.00	-14.11	QP
8	0.984	50.71	0.07	0.13	50.91	60.00	-9.09	Average
9	3.140	57.48	0.12	0.15	57.75	73.00	-15.25	QP
10	3.140	49.27	0.12	0.15	49.54	60.00	-10.46	Average
11	16.486	61.05	0.37	0.22	61.64	73.00	-11.36	QP
12	16.486	42.57	0.37	0.22	43.16	60.00	-16.84	Average

Uplink: Line:

Condition : FCC PART15 CLASSA QP LISN-2013 LINE

Job No. : 0732RF Test mode : Uplink mode Test Engineer: Edward

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.195	62.53	0.14	0.13	62.80	79.00	-16.20	QP
2	0.195	54.50	0.14	0.13	54.77	66.00	-11.23	Average
3	0.297	62.17	0.11	0.10	62.38	79.00	-16.62	QP
4	0.297	48.54	0.11	0.10	48.75	66.00	-17.25	Average
5	0.686	60.17	0.14	0.13	60.44	73.00	-12.56	QP
6	0.686	52.13	0.14	0.13	52.40	60.00	-7.60	Average
7	1.082	56.34	0.13	0.13	56.60	73.00	-16.40	QP
8	1.082	43.43	0.13	0.13	43.69	60.00	-16.31	Average
9	3.720	57.15	0.19	0.15	57.49	73.00	-15.51	QP
10	3.720	43.40	0.19	0.15	43.74	60.00	-16.26	Average
11	16.661	54.59	0.41	0.22	55.22	73.00	-17.78	QP
12	16 661	43 20	∩ 41	0.22	43 83	60 00	-16 17	Average

Neutral:

Condition : FCC PART15 CLASSA QP LISN-2013 NEUTRAL

Job No. : 0732RF Test mode : Uplink mode Test Engineer: Edward

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	d₿	dBu₹	dBuV	dB	
1	0.197	66.41	0.07	0.13	66.61		-12.39	
2 3	0.197	55.23	0.07	0.13	55.43	66.00	-10.57	Average
3	0.491	63.48	0.06	0.11	63.65	79.00	-15.35	QP
4	0.491	52.33	0.06	0.11	52.50	66.00	-13.50	Average
5	0.592	64.55	0.07	0.12	64.74	73.00	-8.26	QP _
6	0.592	52.49	0.07	0.12	52.68	60.00	-7.32	Average
7	0.788	61.87	0.07	0.13	62.07	73.00	-10.93	QP
8	0.788	53.08	0.07	0.13	53.28	60.00	-6.72	Average
9	1.082	62.30	0.08	0.13	62.51	73.00	-10.49	QP
10	1.082	50.26	0.08	0.13	50.47	60.00	-9.53	Average
11	15.718	58.56	0.34	0.22	59.12	73.00	-13.88	QP
12	15.718	52.78	0.34	0.22	53.34	60.00	-6.66	Average

18 Test Setup Photo

Radiated Emission

Conducted Emission

Noise figure

19 EUT Constructional Details

RUM- Rear view

-----end-----