providing a precursor brine comprising an aqueous solution of a salt at a first density.
said salt comprising cations consisting essentially of cations of one or more
multivalent alkaline earth metals [having a first salt content]; and
mixing a water-soluble polymer with said precursor brine at a [sufficient] first
concentration and under first conditions [sufficient], wherein said first density,
said first concentration, and said first conditions are effective to produce a
precursor polymer dispersion [wherein] comprising particles of said water-
soluble polymer at a level of prehydration;
wherein, upon addition of a sufficient quantity of said precursor polymer dispersion
to [at a sufficient concentration in] a final brine [having a second salt content].
said precursor polymer dispersion produces a final polymer dispersion
comprising a second concentration comprising final particles of said water-
soluble polymer at a final level of hydration, said second concentration and
said final level of hydration being effective at downhole conditions to
[improve] maintain an effective level of a property of said final brine selected
from the group consisting of rheology, fluid loss control, and a combination
thereof.

2. (Once amended) A method for producing a precursor polymer dispersion for addition to a brine for use in drilling and completion operations comprising:

	3	providing a precursor brine comprising an aqueous solution of a salt at a first density,		
	4	said salt comprising cations consisting essentially of cations of one or more		
	5	multivalent alkaline earth metals; and		
	6	mixing a first concentration of a water-soluble polymer with said precursor brine		
	7	under first conditions, wherein said first [The method of claim 1 wherein said		
	8	sufficient] concentration is [between] from about 0.5[-] pounds per gallon to		
	9	about 4 [lb] pounds of said water-soluble polymer per gallon of said precursor		
	10	brine, wherein said first density, said first concentration, and said first		
21	11	conditions are effective to produce a precursor polymer dispersion comprising		
) On	T ₁₂	particles of said water-soluble polymer at a level of prehydration;		
	13	wherein, upon addition of a sufficient quantity of said precursor polymer dispersion		
	14	to a final brine, said precursor polymer dispersion produces a second		
	15	dispersion comprising a second concentration of final particles of said water-		
	16	soluble polymer at a final level of hydration, said second concentration and		
	17	said final level of hydration being effective at downhole conditions to maintain		
	18	an effective level of a property of said final brine selected from the group		
-	19	consisting of rheology, fluid loss control, and a combination thereof.		
		Please cancel claims 4-6.		
- , , , , , , , , , , , , , , , , , , ,	1	7. (Once amended) The method of claim 1 wherein		
2	2	said [precursor brine comprises a salt selected from the group consisting of calcium salts,		

magnesium salts, sodium salts, potassium salts, aluminum salts, lithium salts, and

11

produce a precursor polymer dispersion comprising a first concentration of

particles of said water-soluble polymer at a level of prehydration;

	12
	13
	14
	15
CH	,16 17
	18

wherein, upon addition of a sufficient quantity of said precursor polymer dispersion

to [effective at a sufficient concentration in] a final brine [having a second salt

content], said precursor polymer dispersion produces a second concentration

of final particles of said water-soluble polymer at a final level of hydration,

said second concentration and said final level of hydration being effective at

downhole conditions to [improve] maintain an effective level of a property of

said final brine selected from the group consisting of rheology, fluid loss

control, and a combination thereof.

[16] 15. (Once amended) A method for treating a high density brine for use in drilling and completion operations comprising:

providing a precursor brine comprising an aqueous solution comprising a salt consisting essentially of cations of one or more multivalent alkaline earth metals, said aqueous solution comprising said salt at a first density of from about 9 to about 14 pounds per gallon [having a first salt content];

mixing about 1 to about 2 pounds per gallon of a water-soluble polymer with said precursor brine [at a sufficient concentration and] under first conditions sufficient to produce a precursor polymer dispersion comprising a first concentration of particles of said water-soluble polymer at a level of prehydration;

wherein, upon addition of a sufficient quantity of said precursor polymer dispersion

to [effective at a sufficient concentration in] a final brine [having a second salt

	14	content] said precursor polymer dispersion produces a second concentration				
CH CO	15	of final particles of said water-soluble polymer at a final level of hydration,				
	16	said second concentration and said final level of hydration being effective at				
	(1 7	downhole conditions to [improve] maintain an effective level of a property of				
	NT 18	said final brine selected from the group consisting of rheology, fluid loss				
	19	control, and a combination thereof[; and				
	20	mixing said sufficient concentration of said precursor polymer dispersion with said				
	21	final brine].				
		Please cancel claims 17-20.				
	1	[22] 21. (Once amended) The method of claim 15 wherein				
35	2	said [precursor brine comprises a salt selected from the group consisting of calcium salts,				
	3	magnesium salts, sodium salts, potassium salts, aluminum salts, lithium salts, and				
	4	combinations thereof] salt is selected from the group consisting of calcium chloride,				
	5	calcium bromide, and combinations thereof[, and				
	6	said first salt content comprises a initial density about 9-14 pounds per gallon].				
	1	[23] 22. (Once amended) The method of claim [17] 16 wherein				
	2	said [precursor brine comprises a salt selected from the group consisting of calcium salts,				
	3	magnesium salts, sodium salts, potassium salts, aluminum salts, lithium salts, and				
	4	combinations thereof] salt is selected from the group consisting of calcium chloride.				
	5	calcium bromide, and combinations thereof[; and				
	6	said first salt content comprises a initial density about 9-14 pounds per gallon?				

to about 4 pounds per gallon. --

2

(Once amended) A precursor polymer dispersion [for addition to a final brine for use in drilling and completion operations] comprising: an aqueous solution of a salt at a\first density, said salt comprising cations consisting 3 essentially of cations of one or more multivalent alkaline earth metals [a first salt 4 content]; and 5 a first concentration of particles of a water-soluble polymer at a level of prehydration [in an 7 amount effective at a sufficient concentration in a final brine having a second salt 8 content to improve]; 9 wherein, upon addition of a sufficient quantity of said precursor polymer dispersion to a final brine, said precursor polymer dispersion produces a final polymer dispersion 10 comprising a second concentration comprising final particles of said water-soluble 11 polymer at a final level of hydration, said second concentration and said final level of 12 13 hydration being effective at downhole conditions to maintain an effective level of a 14 property of said final brine selected from the group consisting of rheology, fluid loss control, and a combination thereof. 15 Please cancel claim 28. Please add the following new claims: The dispersion of claim 26 wherein said first concentration is from about 0.5

The dispersion of claim 26 wherein said first concentration is from about 1 to 1 --30. about 2 pounds per gallon. --2 The dispersion of claim 26 wherein said density is in the range of from about 1 2 9 to about 14 pounds per gallon. — The dispersion of claim 26 wherein said density is from about 11 to about 13 --32. 1 2 pounds per gallon. --The dispersion of claim 26 wherein said salt is selected from the group 1 2 consisting of calcium chloride, calcium bromide, and combinations thereof. — 1 The dispersion of claim 29 wherein said salt is selected from the group consisting of calcium chloride, calcium bromide, and combinations thereof. — 2 The dispersion of claim 30 wherein said salt is selected from the group 1 2 consisting of calcium chloride, calcium bromide, and combinations thereof. --

consisting of calcium chloride, calcium bromide, and combinations thereof. --

1

2

The dispersion of claim 31 wherein said salt is selected from the group

1	37.	The dispersion of claim 32 wherein said salt is selected from the group
2	consisting of	calcium chloride, calcium bromide, and combinations thereof. —
		•
1	38.	The dispersion of claim 26 wherein said one or more multivalent alkaline earth
2	metals are div	valent alkaline earth metals.
1	39.	The method of claim 1 wherein said one or more multivalent alkaline earth
2	metals are div	valent alkaline earth metals
1	40.	The method of claim 2 wherein said one or more multivalent alkaline earth
2	metals are div	ralent alkaline earth metals
1	41.	The method of claim 15 wherein said one or more multivalent alkaline earth
2	metals are div	alent alkaline earth metals
		•
	42 .	A method for producing a brine for use in drilling and completion operations
	comprising:	
3	provid	ing a precursor brine comprising an aqueous solution of a salt at a first density,
4		said salt comprising cations consisting essentially of cations of one or more
5		multivalent alkaline earth metals; and

brine.

mixing a water-soluble polymer with said precursor brine at a first concentration and under first conditions, wherein said first density, said first concentration, and said first conditions are effective to produce a precursor polymer dispersion comprising particles of said water-soluble polymer at a level of prehydration; wherein, upon addition of a sufficient quantity of said precursor polymer dispersion to a final brine, said precursor polymer dispersion produces a final polymer dispersion comprising a second concentration comprising final particles of said water-soluble polymer at a final level of hydration, said second concentration and said final level of hydration being effective at downhole conditions to maintain an effective level of a property of said final brine selected from the group consisting of rheology, fluid loss control, and a combination thereof, and

- --43. The method of claim 42 wherein said first concentration is from about 0.5 pounds to about 4 pounds per gallon. --
- --44. The method of claim 42 wherein said first concentration is from about 1 pound to about 2 pounds per gallon. —

1 The method of claim 42 wherein said first density is from about 9 to about 14 2 pounds per gallon. --The method of claim 43 wherein said first density is from about 9 to about 14 1 2 pounds per gallon. --The method of claim 44 wherein said first density is from about 9 to about 14 pounds per gallon. --The method of claim 42 wherein said first density is from about 11 to about 1 --48. 13 pounds per gallon. --2 1 The method of claim 43 wherein said first density is from about 11 to about 2 13 pounds per gallon. --1 The method of claim 44 wherein said first density is from about 11 to about 2 13 pounds per gallon. --1 The method of claim 42 wherein said one or more multivalent alkaline earth

metals are divalent alkaline earth metals.

2

1	52. The method of claim 42 wherein said salt is selected from the group consisting
2	of calcium chloride, calcium bromide, and combinations thereof
1	53. The method of claim 43 wherein said salt is selected from the group consisting
2	of calcium chloride, calcium bromide, and combinations thereof. —
1	54. The method of claim 44 wherein said salt is selected from the group consisting
2	of calcium chloride, calcium bromide, and combinations thereof
1	55. The method of claim 46 wherein said salt is selected from the group consisting
2	of calcium chloride, calcium bromide, and combinations thereof
1	56. The method of claim 49 wherein said salt is selected from the group consisting
2	of calcium chloride, calcium bromide, and combinations thereof
	57. A precursor polymer dispersion comprising:
2	a precursor brine comprising a salt at density, said salt comprising cations consisting
3	essentially of cations of one or more multivalent alkaline earth metal;
4	a precursor polymer dispersion in said precursor brine comprising a first
5	concentration of particles of a water-soluble polymer at a level of
5	prehydration;

wherein, upon mixing of a sufficient quantity of said precursor polymer dispersion with a final brine, said precursor polymer dispersion produces a second concentration of final particles of said water-soluble polymer at a final level of hydration, said second concentration and said final level of hydration being effective at downhole conditions to maintain an effective level of a property of said final brine selected from the group consisting of rheology, fluid loss control, and a combination thereof. --

- -- 58. The precursor polymer dispersion of claim 57 wherein said one or more multivalent alkaline earth metals are divalent alkaline earth metals. --
- The method of claim 2 wherein said first concentration is from about pound to about 2 pounds per gallon. --
- The method of claim 1 wherein said density is from about 9 to about 14 pounds per gallon. --
- The method of claim 2 wherein said density is from about 9 to about 2 l4 pounds per gallon. --
- The method of claim 1 wherein said density is from about 11 to about 2 pounds per gallon. --