Factor Analysis Examples

PC method vs ML method on stock data

STAT 32950-24620

Spring 2023 (3/30, wk2)

1/28

Orthogonal factor model assumptions

Assumptions on common factors

•
$$E(F) = 0_m$$

•
$$Cov(F) = I_m$$

Assumptions on errors (specific factors)

• $E(\varepsilon) = 0_p$,

Assumptions on covariance between common and specific factors

•
$$Cov(\varepsilon) = diag\{\psi_1, \cdots, \psi_p\} = \Psi$$

•
$$Cov(F, \varepsilon) = E(F\varepsilon') = 0_{m \times p}$$

•
$$Cov(\varepsilon, F) = E(\varepsilon F') = 0_{p \times m}$$

Orthogonal Factor Model

$$X = \mu + LF + \varepsilon$$

- $X = [X_1 \cdots X_p]'$
- Observable, random, $E(X) = \mu$
- $F = [F_1 \cdots F_m]'$
- Latent factors, unobservable, random
- $L = L_{p \times m}$
- Factor loading matrix, parameters, to be estimated

2 / 28

Covariance structure in factor model

Key structure assumption of the model:

$$\Sigma = LL' + \Psi$$

where

$$\Sigma = Cov(X)$$

under the factor relation

$$X = \mu + LF + \epsilon$$

FA parameter estimation methods

- By Principal Components
- By Maximum Likelihood

The Maximum Likelihood method is usually preferred.

5 / 28

Obtain the e-vector e_i for the L matrix

```
# Using original data (alternative: var. variance=1 later)
summary(princomp(stock), loading=T)
```

```
## Importance of components:
                         Comp.1 Comp.2 Comp.3 Comp.4 (
## Standard deviation
                         0.0368 0.02635 0.01585 0.01188 0
## Proportion of Variance 0.5293 0.27133 0.09822 0.05518 0.
## Cumulative Proportion 0.5293 0.80059 0.89881 0.95399 1.
##
## Loadings:
             Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## JPMorgan
             0.223 0.625 0.326 0.663 0.118
              0.307 0.570 -0.250 -0.414 -0.589
## Citibank
## WellsFargo 0.155 0.345
                                 -0.497 0.780
## Shell
              0.639 -0.248 -0.642 0.309 0.148
## Exxon
             0.651 -0.322 0.646 -0.216
```

Principal factor estimation method

$$L_m = \left[\sqrt{\lambda_1}e_1, \cdots, \sqrt{\lambda_m}e_m\right], \quad m \leq p$$

When m = p: $\Sigma = L_p L'_p$

When m < p: $\Sigma = L_m L'_m + \cdots$

In orthogonal factor model

$$X = \mu + LF + \varepsilon$$

PC method uses the approximation

$$\Sigma \approx L_m L_m' + \Psi$$

for factor model with m < p factors.

6 / 28

Obtain λ_i for the L matrix

```
rtev = princomp(stock)$sdev # =sqrt of e-values of cov(X)
sqrt(eigen(cov(stock))$values) # verify: same as above
```

[1] 0.03698 0.02648 0.01593 0.01194 0.01090

rtev

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 ## 0.03680 0.02635 0.01585 0.01188 0.01085

Two common factors (PC method)

Choose m=2

Take the first 2 PC's

$$Y_i = e_i' X, \quad i = 1, 2.$$

On original data (using covariance matrix)

princomp(stock)\$loading[,1:2]

```
## Comp.1 Comp.2

## JPMorgan 0.2228 0.6252

## Citibank 0.3073 0.5704

## WellsFargo 0.1548 0.3445

## Shell 0.6390 -0.2479

## Exxon 0.6509 -0.3218
```

9 / 28

Factor loadings for m=2 (PC method)

$$L_2 = \left[\sqrt{\lambda_1}e_1, \sqrt{\lambda_2}e_2\right]$$

Scale the PC variables by $\sqrt{\lambda_i}$ to get common factor loadings:

```
## [,1] [,2]
## JPMorgan 0.008200 0.016475
## Citibank 0.011309 0.015030
## WellsFargo 0.005697 0.009078
## Shell 0.023515 -0.006534
## Exxon 0.023955 -0.008481
```

10 / 28

Plot of variables on two factors (PC method)

```
plot(L,type="n",main="Var. loadings on 2 common factors")
text(L,labels=(row.names(L)),col=1:5)
```

Var. loadings on 2 common factors

Comparison: Plot of variables on PC1 and PC2

12 / 28

Covariance structure estimation (PC method)

Model assumption

$$\Sigma = LL' + \Psi$$

PC estimation method:

Let

$$\hat{L} = \hat{L}_m$$

Then

$$\widehat{\Sigma} \approx \widehat{\mathit{L}}\widehat{\mathit{L}}' + \widehat{\Psi}$$

13 / 28

15 / 28

Estimate of LL'

Get $\widehat{L}\widehat{L}'$, the estimate of LL'

```
LLT= L%*%t(L)
round(10000*LLT,3)
```

#:	‡	JPMorgan	${\tt Citibank}$	WellsFargo	Shell	Exxon
#:	# JPMorgan	3.387	3.404	1.963	0.852	0.567
#:	# Citibank	3.404	3.538	2.009	1.677	1.434
#:	# WellsFargo	1.963	2.009	1.149	0.747	0.595
#:	# Shell	0.852	1.677	0.747	5.957	6.187
#:	# Exxon	0.567	1.434	0.595	6.187	6.458

14 / 28

Estimate of specific factor matrix Φ (PC method)

Get the estimate of $\Psi = Cov(\varepsilon)$ (×10⁴)

```
## get the specific factors
Psi = diag(cov(stock)) - diag(LLT)
round(10000*Psi,3)
```

```
## JPMorgan Citibank WellsFargo Shell Exxon ## 0.946 0.849 1.091 1.268 1.199
```

Compared with sample variance $s_{ii} = s_i^2 \ (\times 10^4)$

```
## get sample variance
round(10000*diag(cov(stock)),3)
```

##	JPMorgan	Citibank	WellsFargo	Shell	Exxon
##	4.333	4.387	2.240	7.225	7.657

Estimate of communality h_i^2 (PC method)

Get the estimate of communality $h_i^2 = \ell_{i1}^2 + \cdots + \ell_{im}^2$ (×10⁴), the portion of $Var(X_i)$ explained by common factors, which are diagonal elements of estimated LL':

```
## get communality h_i^2
round(10000*diag(LLT),3)
```

##	JPMorgan	Citibank We	ellsFargo	Shell	Exxon
##	3.387	3.538	1.149	5.957	6.458

16 / 28

%vaiance explained by each common factor (PC)

For $j = 1, \dots, m$.

$$\frac{\hat{\ell}_{1j}^2 + \dots + \hat{\ell}_{pj}^2}{s_{11} + \dots + s_{pp}} = \frac{(\sqrt{\hat{\lambda}_j} e_j)(\sqrt{\hat{\lambda}_j} e_j)'}{tr(\mathbf{S})} = \frac{\hat{\lambda}_j ||e_j||^2}{tr(\mathbf{S})} = \frac{\hat{\lambda}_j}{\sum_{i=1}^p \hat{\lambda}_i}$$

eigen(cov(stock))\$value[1:2]/sum(eigen(cov(stock))\$value)

[1] 0.5293 0.2713

17 / 28

Maximum loading with m=5 factors (PC method)

```
I.5=
princomp(stock)$loading[,1:5]%*%
  +diag((princomp(stock)$sdev))
round(L5,4)
##
               [,1]
                       [,2]
                               [,3]
                                       [,4]
                                               [,5]
## JPMorgan 0.0082 0.0165 0.0052 0.0079
                                            0.0013
## Citibank 0.0113 0.0150 -0.0040 -0.0049 -0.0064
## WellsFargo 0.0057 0.0091 -0.0006 -0.0059 0.0085
## Shell
             0.0235 -0.0065 -0.0102 0.0037 0.0016
## Exxon
             0.0240 -0.0085 0.0102 -0.0026 -0.0010
```

The approximation $\Sigma \approx L_2 L_2' + \Psi \ (\times 10^4)$

```
round((LLT + diag(Psi))*10000,2)
```

```
JPMorgan Citibank WellsFargo Shell Exxon
##
## JPMorgan
                 4.33
                          3.40
                                    1.96 0.85 0.57
## Citibank
                 3.40
                          4.39
                                    2.01 1.68 1.43
## WellsFargo
                 1.96
                          2.01
                                    2.24 0.75 0.59
## Shell
                 0.85
                          1.68
                                    0.75 7.22 6.19
## Exxon
                                    0.59 6.19 7.66
                 0.57
                          1.43
```

Sample Σ ($\times 10^4$)

round((cov(stock))*10000,2)

##		JPMorgan	Citibank	WellsFargo	Shell	Exxon
##	JPMorgan	4.33	2.76	1.59	0.64	0.89
##	Citibank	2.76	4.39	1.80	1.81	1.23
##	WellsFargo	1.59	1.80	2.24	0.73	0.61
##	Shell	0.64	1.81	0.73	7.22	5.08
##	Exxon	0.89	1.23	0.61	5.08	$7.66_{_{18/28}}$

Numerical rounding errors

We should have $L_5L_5'=\Sigma$ in theory, but there are rounding errors. . .

round((L5%*%t(L5))*10000,2)

##	JPMorgan	${\tt Citibank}$	WellsFargo	Shell	Exxon
## JPMorgan	4.29	2.73	1.57	0.63	0.88
## Citibank	2.73	4.34	1.78	1.80	1.22
## WellsFargo	1.57	1.78	2.22	0.73	0.60
## Shell	0.63	1.80	0.73	7.15	5.03
## Exxon	0.88	1.22	0.60	5.03	7.58
round((cov(sto	ock))*1000	00,2)			

##		JPMorgan	${\tt Citibank}$	WellsFargo	Shell	Exxon
##	JPMorgan	4.33	2.76	1.59	0.64	0.89
##	Citibank	2.76	4.39	1.80	1.81	1.23
##	WellsFargo	1.59	1.80	2.24	0.73	0.61
##	Shell	0.64	1.81	0.73	7.22	5.08
##	Exxon	0.89	1.23	0.61	5.08	7.66

Factor model estimation by Maximum Likelihood method

```
Create normalized data with variance = 1
```

```
normdata=(as.matrix(stock))%*%diag(1/sqrt(diag(cov(stock)))
dim(normdata)
```

```
## [1] 103 5 cov(normdata)
```

```
## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.0000 0.6323 0.5105 0.1146 0.1545

## [2,] 0.6323 1.0000 0.5741 0.3223 0.2127

## [3,] 0.5105 0.5741 1.0000 0.1825 0.1462

## [4,] 0.1146 0.3223 0.1825 1.0000 0.6834

## [5,] 0.1545 0.2127 0.1462 0.6834 1.0000
```

21 / 28

```
ML2 =factanal(normdata,2, rotation="none")
ML2$call

## factanal(x = normdata, factors = 2, rotation = "none")
ML2$method

## [1] "mle"
ML2$uniquenesses

## [1] 0.4165 0.2747 0.5420 0.0050 0.5298

ML2$loadings
```

22 / 28

Proportion of vaiance explained by 2 common factors (ML)

$$\frac{\hat{\ell}_{1j}^2 + \dots + \hat{\ell}_{pj}^2}{s_{11} + \dots + s_{pp}} = \frac{\hat{\ell}_{1j}^2 + \dots + \hat{\ell}_{pj}^2}{p}, \qquad j = 1, \dots, m.$$

```
## Loadings:
```

Factor1 Factor2

[1,] 0.121 0.754

[2,] 0.328 0.786

[3,] 0.188 0.650

[4,] 0.997

[5,] 0.685

##

Factor1 Factor2

SS loadings 1.622 1.610

Proportion Var 0.324 0.322

Cumulative Var 0.324 0.646

Plots of variables on two factors

```
Lm = factanal(normdata,2,rotation="none")$loading[,1:2]
plot(Lm,type="n",main="Factor loadings (m=2) by ML")
text(Lm,labels=(row.names(L)),col=1:5)
```

Factor loadings (m=2) by ML

23 / 28

Remarks on ML method for FA

• ML method for FA always estimate correlation matrix

```
factanal(stock,2,rotation="none") #same as using normdata
```

Large sample test for the number of common factors*

```
ML2$STATISTIC # Bartlett chisq approximation for LR test

## objective
## 1.974

ML2$dof # [(p-m)^2 - p - m]/2

## [1] 1

ML2$PVAL # p-value

## objective
## 0.16
```

25 / 28

Check model performance

```
Residual matrix = \Sigma - LL' - \Psi
```

PC (m=2) on correlation matrix

```
##
             JPMorgan Citibank WellsFargo Shell Exxon
## JPMorgan
                0.000
                       -0.099
                                  -0.185 -0.025 0.056
## Citibank
               -0.099
                        0.000
                                  -0.134 0.014 -0.054
                      -0.134
                                   0.000 0.003 0.006
## WellsFargo
               -0.185
## Shell
               -0.025
                        0.014
                                  0.003 0.000 -0.156
## Exxon
                0.056
                       -0.054
                                   0.006 -0.156 0.000
```

Factor estimations by ML vs PC

```
Check residuals \Sigma - LL' - \Psi
ML (m=2)
Lm = factanal(normdata,2, rotation="none")$loading[,1:2]
Psim = factanal(normdata,2, rotation="none")$uniq
# Residual matrix for m = 2, using ML method
round(cor(stock) - Lm%*%t(Lm) - diag(Psim),3)
              JPMorgan Citibank WellsFargo Shell Exxon
                                               0 0.052
## JPMorgan
                 0.000
                          0.000
                                    -0.003
## Citibank
                          0.000
                                               0 - 0.033
                 0.000
                                     0.002
## WellsFargo
                -0.003
                          0.002
                                     0.000
                                               0 0.001
## Shell
                 0.000
                          0.000
                                     0.000
                                               0.000
                         -0.033
                                               0.000
## Exxon
                 0.052
                                     0.001
```

26 / 28

Which method is better for this data set?

- Compare proportions of variation explained
- Compare residual matrix element size

```
# ML methods sum-abs and sum-sq of residual(ij), m=2
c(sum(abs(cor(stock) - Lm%*%t(Lm) - diag(Psim))),
    sum((cor(stock) - Lm%*%t(Lm) - diag(Psim))^2))

## [1] 0.180946 0.007612

#PC method sum-abs, sum-sq of residuals, m=2, corr mat
c(sum(abs(cor(stock) - Ln%*%t(Ln) - diag(rep(1,5)
    - diag(Ln%*%t(Ln)))), sum((cor(stock) -
Ln%*%t(Ln) - diag(rep(1,5) - diag(Ln%*%t(Ln))))^2))

## [1] 1.4630 0.1861
```