Review VIII Integral

Kulu

University of Michigan-Shanghai Jiao Tong University Joint Institute

December 1, 2022

Kulu (UM-SJTU JI) Review VIII December 1, 2022 1/19

Our first step is to give a proper definition of a "piecewise constant" function and the area "under" its graph.

4.1.1. Definition. A *partition* P of an interval $[a, b] \subset \mathbb{R}$ is a tuple of numbers $P = (a_0, \ldots, a_n)$ such that

$$a = a_0 < a_1 < \ldots < a_n = b$$
.

4.1.2. Definition. A function $\varphi: [a, b] \to \mathbb{R}$ is called a **step function with respect to a partition** $P = (a_0, \ldots, a_n)$ if there exist numbers $y_i \in \mathbb{R}$, $i = 1, \ldots, n$, such that

$$\varphi(t) = y_i \qquad \text{whenever } a_{i-1} < t < a_i \qquad (4.1.1)$$

for i = 1, ..., n. We denote the set of all step functions by Step([a, b])

◆ロト ◆昼 ト ◆ 昼 ト ● ● 今 Q ○

2/19

- 4.1.5. Definition. Let P be a partition of an interval [a, b]. We call a partition R of [a, b] a **sub-partition** of P if $R \supset P$, where we naturally regard P and R as sets instead of tuples.
- 4.1.6. Remark. If $\varphi: [a, b] \to \mathbb{R}$ is a step function with respect to a partition P of [a, b], then it as also a step function with respect to any sub-partition R of P.

- 4.1.7. Proposition. If φ , ψ are step functions on [a, b] and λ , $\mu \in \mathbb{R}$, then $\lambda \varphi + \mu \psi$ is a step function on [a, b].
- 4.1.8. Remark. This also shows that Step([a, b]) is a vector space.

3/19

ılu (UM-SJTU JI) Review VIII December 1, 2022

4.1.9. Definition and Theorem. Let $\varphi: [a, b] \to \mathbb{R}$ be a step function of the form (4.1.1) with respect to some partition P. Then

$$I_P(\varphi) := (a_1 - a_0)y_1 + \dots + (a_n - a_{n-1})y_n$$
 (4.1.2)

is independent of the choice of the partition P. We define the *integral* of f as

$$\int_a^b arphi := I_P(arphi)$$

for any partition P with respect to which φ is a step function.

4.1.11. Definition. Let $I \subset \mathbb{R}$ be an interval. We say that a function $f \colon I \to \mathbb{R}$ is **bounded** if

$$||f||_{\infty} := \sup_{x \in I} |f(x)| < \infty.$$
 (4.1.5)

4.1.13. Definition. A function $f \in L^{\infty}([a,b])$ is said to be **regulated** if for any $\varepsilon > 0$ there exists a step function φ such that

$$\sup_{x \in [a,b]} |f(x) - \varphi(x)| < \varepsilon. \tag{4.1.6}$$

4.1.15. Theorem. The continuous functions on the interval [a, b] are regulated, i.e., $C([a, b]) \subset \text{Reg}([a, b])$.

4.1.18. Definition and Theorem. Let $f \in \text{Reg}([a,b])$ and (φ_n) a sequence in Step([a,b]) converging uniformly to f. Then the **regulated integral** of f, defined by

$$\int_{a}^{b} f := \lim_{n \to \infty} \int_{a}^{b} \varphi_{n} \tag{4.1.8}$$

exists and does not depend on the choice of (φ_n) .

5/19

4.1.16. Definition. Let $I\subset\mathbb{R}$ be an interval, $\{a_1,\ldots,a_n\}\subset I$ a finite set of points and $f\colon I\to\mathbb{C}$ a function such that

- (i) $f: I \setminus \{a_1, \ldots, a_n\} \to \mathbb{C}$ is continuous and
- (ii) For all a_i , i = 1, ..., n, both

$$\lim_{x \nearrow a_i} f(x) \qquad \text{and} \qquad \lim_{x \searrow a_i} f(x)$$

exist.

Then f is said to be **piecewise continuous**. We denote the set of piecewise continuous functions on I by PC(I).

4.1.17. Theorem. The piecewise continuous functions on the interval [a, b] are regulated, i.e., $PC([a, b]) \subset Reg([a, b])$.

In contrast, we will now try to approximate the area under f, without attempting to approximate f at all.

We will do this by considering step functions that are larger than f (i.e., $\varphi(x) \geq f(x)$ for all x) and step functions that are smaller than f ($\psi(x) \leq f(x)$ for all x), as illustrated at right.

ulu (UM-SJTU JI) Review VIII December 1, 2022 7/19

4.1.22. Definition. Let $[a,b] \subset \mathbb{R}$ be a closed interval and f a bounded real function on [a,b]. Let \mathcal{U}_f denote the set of all step functions u on [a,b] such that $u \geq f$ and \mathcal{L}_f the set of all step functions v on [a,b] such that $v \leq f$. The function f is then said to be **Darboux-integrable** if

$$\underline{\underline{I}}(f) = \sup_{v \in \mathscr{L}_f} \int_a^b v = \inf_{u \in \mathscr{U}_f} \int_a^b u = \overline{\underline{I}}(f).$$

In this case, the **Darboux integral of f**, $\int_a^b f$, is defined to be this common value.

8/19

4.1.26. Theorem. If $f \in \text{Reg}([a, b])$, then f is Darboux-integrable and the Darboux integral coincides with the regulated integral.

A **tagged partition** (P,Ξ) on an interval [a,b] consists of a partition $P=\{x_0,\ldots,x_n\}$ together with numbers $\Xi=\{\xi_1,\ldots,\xi_n\}$ such that each $\xi_k\in[x_{k-1},x_k]$. The **mesh size** of P is defined as

$$m(P) := \max_{k=1,...,n} (x_k - x_{k-1})$$

A step function $\varphi \in \text{Step}([a,b])$ for a function $f \in L^{\infty}([a,b])$ with respect to (P,Ξ) is given by

$$\varphi(x) = f(\xi_k)$$
 for $x_{k-1} < x < x_k$, $k = 1, ..., n$,

where as usual $\varphi(x_k)$ can be defined in an arbitrary manner. The sum

$$\int_{a}^{b} \varphi := \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1})$$
 (4.1.12)

is then called a *Riemann sum* for f.

4.1.28. Definition. Let $[a, b] \subset \mathbb{R}$ be a closed interval and f a bounded real function on [a, b]. Then f is Riemann-integrable with integral

$$\int_a^b f \in \mathbb{R}$$

if for every $\varepsilon>0$ there exists a $\delta>0$ such that for any tagged partition (P,Ξ) on [a,b] with mesh size $m(P)<\delta$

$$\left|\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1})-\int_a^b f\right|<\varepsilon.$$

4.1.29. Theorem. A bounded real function is Riemann-integrable on [a, b] if and only if it is Darboux-integrable. Moreover, the values of the integrals coincide.

4□ > 4□ > 4 = > 4 = > = 99

Integration Method

Method0: Symmetry

Suppose f(x) is an odd integrable function, then

$$\int_{-a}^{a} f(x) dx = 0$$

Exercises: For a > 0, calculate

$$\int_{-a}^{a} \frac{\cos(x)}{1 + even(x)^{odd(x)}} dx$$

where even(x) is a continuous strictly positive even function, and odd(x) is an odd function

11/19

Kulu (UM-SJTU JI) Review VIII December 1, 2022

Integration Method

Method1: Recite!

Common indefinite integrals include:

•
$$\int \ln(x) = ?$$

For more complex integrals, we need other theorems to help us evaluate them.

12/19

Kulu (UM-SJTU JI) Review VIII December 1, 2022

Exercise

Calculte the following integrals:

•

$$\int \frac{2}{\sqrt{x^3}} dx$$

9

$$\int \frac{1}{x^2 + 6x + 5} dx$$

Comment. Partial fraction is sometimes powerful!

Integration Method

Method2: Substitution!

- Let u = g(x).
- Compute du = g'(x).
- Substitute g(x) = u and g'(x) = du. At this moment, only u, no x ! ! ! !
- Calculate the above integral of u, it should be easier.
- Replace u by g(x) to get the result with x.
- For definite integral, pay attention to the range.

Demo

$$\int \sin(x)\cos(x)dx$$

Exercise

Calculte the following integrals:

•

$$\int_{-1}^{3} \sqrt{9 - x^2} dx$$

•

$$\int \tan(x) dx$$

0

$$\int \frac{x}{3x^2 + 6x + 10} dx$$

•

$$\int \frac{e^{4x}}{1 + e^{2x}} dx$$

Integral Method

Method3: Integration by part!

For definite integral:

$$\int_{a}^{b} f'(x)g(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

For indefinite integral:

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

Demo:

$$\int x \sin(x) dx$$

16 / 19

Kulu (UM-SJTU JI) December 1, 2022

Exercise

$$\int x^2 e^{-x} dx$$

$$\int (\ln x)^2 dx$$

$$\int x^2 e^{-x} dx$$
$$\int (\ln x)^2 dx$$
$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx$$

Reference

 \bullet 2021-Vv186 TA-Niyinchen

End

Thanks!

