MA930 Data Analysis. Class test (2018)

The exam comprises two pages with a total of five questions.

Full marks are given for correct answers to each of the five questions.

Note: calculators are neither required nor allowed.

Q1. Random-number generator with unknown distribution

Your supervisor has asked you to make sense of some old software code. In it you found the following function that converts a random number Y drawn from the standard flat distribution between 0 and 1 to a new random number X

$$X = \sqrt{1 + 8Y} - 1. \tag{1}$$

- (a) What is the range of values the random numbers generated by this formula can take?
- (b) What is the distribution f(x) for the random numbers X?

Total marks: 4

Q2. Characteristic functions and probability distributions

(a) Derive the characteristic function for a Binomial distribution of parameter p with n draws. (HINT: Consider the characteristic function of a sum of n Bernoulli random numbers.)

A Poisson distribution is given by $P(k) = \lambda^k e^{-\lambda}/k!$ for $k = 0, 1, \cdots$.

- (b) Derive the mean for this distribution.
- (c) By using characteristic functions, or otherwise, show that the Binomial distribution tends to a Poisson distribution in the limit $p \to 0$ and $n \to \infty$ such that $\lambda = np$ remains finite.

Consider a biological process where for a given event a Poisson-distributed number k of vesicles is released. Each vesicle contains a random quantity of hormone a_j that is Gaussian distributed with mean μ and standard deviation σ . Thus, for each event, the total hormone released is

$$A = \sum_{j=1}^{k} a_j \text{ in the event that } k > 0 \text{ or } A = 0 \text{ if } k = 0$$
 (2)

Note that k and the amounts a_i are all independent random variables.

(d) Derive the form of the probability density p(A) in terms of a sum. You may find it useful to consider the conditional densities p(A|k) given k releases.

(**Note**: be careful with how you write the contribution for k = 0).

Total marks: 7

Q3. Bayesian statistics

Consider a Poisson random process that is characterised by a mean parameter λ . A total of n independent samples are drawn: $k_1, k_2 \dots k_n$.

- (a) Provide the likelihood function for this data set, given a process of mean λ .
- (b) What is the maximum likelihood estimator for λ ?
- (c) A gamma distribution $g(\lambda; \alpha, \beta) = \beta^{\alpha} \lambda^{\alpha-1} e^{-\beta \lambda} / \Gamma(\alpha)$ provides a conjugate prior for a Poisson process. Taking account of the samples drawn, what values α' , β' characterise the posterior?
- (d) The mean of a gamma distribution $g(\lambda; \alpha, \beta)$ is α/β . Show that the mean calculated from the posterior distribution tends to the maximum likelihood result as $n \to \infty$ and provide the order 1/n correction in terms of α , β and n.

Total marks: 5

Q4. Correlated autoregressive models

Two autoregressive models obey the equations

$$X_t = a + \phi X_{t-1} + \epsilon_t$$

$$Y_t = b + \psi Y_{t-1} + \epsilon_t$$

where ϵ_t are independent random numbers with zero mean and variance σ_{ϵ}^2 . Note that both processes are driven by the same random numbers and are therefore correlated. The other quantities a, b, ϕ and ψ are constants chosen such that both processes have a statistical steady state. You can also assume these processes have been going on since infinitely long in the past.

- (a) Provide formulae for both the mean and variance of X.
- (b) By re-writing the difference equation in terms of $x_t = X_t \langle X \rangle$, solve to provide the general solution for X_t in terms of a weighted sum over the history of the noise $\{\epsilon_t\}$.
- (c) Show that the autocovariance (when n > 0) is equal to

$$\langle X_{t+n}Y_t \rangle - \langle X \rangle \langle Y \rangle = \phi^n \frac{\sigma_\epsilon^2}{1 - \phi \psi}$$
 (3)

and provide the form for n < 0 with an explanation of how you arrived at it.

Total marks: 5

Q5. Backpropagation in a network with one hidden layer

Consider a network for categorical classification with an input layer of size n_x with an additional bias neuron; a hidden layer of size n_h with an additional bias neuron; and one output neuron which gives the prediction p. The weights between the input and hidden layer w_{ij} , and hidden layer and output v_j , have dimensions $(n_x + 1, n_h)$ and $(n_h + 1, 1)$, respectively. There are n_s samples so that, in matrix form, the prediction of the network can be written

$$\mathbf{H} = f(\tilde{\mathbf{X}}\mathbf{w})$$
 and $\mathbf{P} = f(\tilde{\mathbf{H}}\mathbf{v})$ with $f(z) = \frac{1}{1 + e^{-z}}$,

and where, for example **H** is an (n_s, n_h) matrix and $\tilde{\mathbf{H}}$ is an $(n_s, n_h + 1)$ matrix for the hidden neuron layer. The vector of targets **T** is binary (i.e. elements are 0 or 1). The cost function is

$$C = -\sum_{s=1}^{n_s} \left[T_s \log(P_s) + (1 - T_s) \log(1 - P_s) \right].$$

(a) The gradient of the cost function for the w weights can be written in matrix form as

$$\frac{\partial C}{\partial \mathbf{w}} = \frac{1}{n_s} \tilde{\mathbf{X}}' \mathbf{\Delta}^h$$

where \mathbf{X}' is the transponse of \mathbf{X} , which is the input matrix. By considering $\partial C/\partial w_{ij}$, derive the form for the elements Δ^h_{sj} of the matrix $\mathbf{\Delta}^h$ in terms of P_s , T_s , H_{sj} and v_j .

Total marks: 4