Lecture Notes of Computer Architecture Studies

Matheus S. Farias*

School of Engineering and Applied Sciences, Harvard University

Summer, 2021

Abstract

This lecture notes combines two classes, Digital Design and Computer Architecture, and (Advanced) Computer Architecture taught by Prof. Onur Mutlu at ETH Zurich.

Contents

1	February 25, 2021		
	1.1	Numerical Representations	1
	1.2	First Subsection	1

§1 February 25, 2021

Lecture was almost all of motivations for cutting-edge computer architecture.

I liked a lot to read the classical article Moore (1965), yeah, the one that claims what was called later as Moore's law. I didn't know he did another interest predictions as home computers, mobile phones, etc.

§1.1 Numerical Representations

To change from decimal representation to a k-representation, we just need to divide the number by k until the quotient is zero. Then we take all the remainders backwards (from the latest to the first).

This is an **example** of emphasize and here a **bold text**.

§1.2 First Subsection

Table 1 is the first one.

Figure 1 is the first one.

 $^{{\}rm ^*E\text{-}mail~address:~matheus farias@g.harvard.edu}$

Table 1. First table.

Quadrant	5 m	10 m
Quadrant I	8.63%	9.11%
Quadrant II	5.63%	7.77%

Harvard John A. Paulson School of Engineering and Applied Sciences

Figure 1. First figure.

Definition 1.1. An **inner product** on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in \mathbf{F}$ and has the following properties:

positivity

$$\langle v, v \rangle \ge 0$$
 for all $v \in V$;

definiteness

$$\langle v, v \rangle = 0$$
 if and only if $v = 0$;

additivity in first slot

$$\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$$
 for all $u,v,w\in V$;

homogeneity in first slot

$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$
 for all $\lambda \in \mathbf{F}$ and all $u, v \in V$;

conjugate symmetry

$$\langle u,v\rangle=\overline{\langle v,u\rangle} \text{ for all } u,v\in V.$$

 \bullet The Euclidean inner product on ${\bf F}^n$

$$\langle (w_1,\ldots,w_n),(z_1,\ldots,z_n)\rangle = w_1\overline{z_1}+\cdots+w_n\overline{z_n};$$

 \bullet An inner product can be defined on the vector space of continuous real-valued functions on the interval [-1,1] by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

• The correlation function

$$(f\star g)[n] = \sum_m \overline{f[m]} g[m+n]$$

References

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics magazine.