데이터사이언스

호서대학교 빅데이터경영공학부 연규필

데이터 사이언스

- 1.1 데이터분석의 이해
- 1.2 빅데이터 분석
- 1.3 통계학과 기계학습
- 1.4 데이터 분석 툴

■ 데이터와 수량화의 역사

- 메소포타미아의 5,000년 된 점토판
 - 기록내용: 보리 29,086 자루, 37개월, ???
 - : 유발 하라리의 <Sapiens: A brief history of humankind>

■ 수량화의 열기

- 유럽의 전 도시는 과도한 재정 지출을 감내하면서도 최고급 시계(시간을 나타내는 측정)
 의 설치 경쟁에 뛰어 들었다. 시간의 수치화가 도시의 클래스를 보여주는 기준이었다
 (유럽 여행에서 주로 보는 시계탑 들)
- 출생, 사망 등의 수치 기록이 이후에 물리 등의 발전에 영향을 줌.
 - : <수량화 혁명: 유럽의 패권을 가져온 세계관의 탄생> 엘프리드 W. 크로스비(지은이)

■ 숫자표기

- 로마숫자 : I, II, III, IV, V, VI, VII, VIII, IX, X, …
- 아라비아숫자: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ···
- ✓ 16세기 이탈리아 메디치가(무역상 집)는 로마식 숫자 표기가 유치하다는 것을 인정하고 인도의 아라바아 숫자로 부기를 하기 시작하였다.
- ✓ 전 유럽에 확산하여 실질적 숫자로 아라비아 숫자를 사용하는 인류 최대의 문화적 혁명을 가져왔다.
- ✓ 부실한 숫자 체계에서는 과학혁명 발전이 어렵다.

■ 수량화의 열기

- 세금 제도에 대한 여론조사, 세종 12년 (1430년)
- ✓ 표본 크기 172, 648명 (전국 8도)
- ✓ 결과: 개혁안 찬성 57%, 반대 43%
- 측우기 사례: 측정의 안정성 (세계 최초), 그릇으로 재면 어디서 재든 안정한 결과를 준다.
 땅을 뚫으면 땅 종류에 따라 변이가 크다.

■ 데이터 과학의 역사

- > 국가(state)의 산술(arithmetic): 인구, 수명, 농업생산, 군사, ···->통계(statistics)
- ▶ 확률론이 적용되면서 통계학(statistics)
- ▶ 컴퓨터(+ IT)의 발달로 데이터 과학(data science) -> Big Data 가 다시 시작 됨
- ✓ 데이터의 시작은 통계 용어에서 볼 수 있듯이 빅데이터가 시작이다:
- ✓ Big data -> Small data가 활발해 짐 : 조사(survey)(보통 1,000표본 정도, 비교실험(100샘플 정도) -> 다시 최근에 Big data 가 다시 revival 된 것임.

■ 데이터 분석의 유형

- 분석(分析)의 의미: 나누고 쪼갠다. 이를 통해 데이터 안에 담겨져 있는 내용과 의미를 알 아가는 것
- ➤ EDA(exploratory data analysis: 탐색적 데이터 분석): 데이터의 특징과 구조에 대한 탐구, 先데이터, 後분석 → 빅데이터 분석은 EDA에 가깝다.
- CDA(confirmatory data analysis:확증적 데이터 분석): 가설, 모형의 타당성, 일반성,
 재현성 평가, 모형 적합도, 가설검정, 계획->데이터 확보->분석

■ EDA vs CDA

보기 1. 감기에 걸리는 사람들과 걸리지 않는 사람들 간에 어떠한 차이가 있는가를 수 십 가지 측면에서 살펴보았다. 그 결과, 비타민 C를 복용하는 사람들이 감기에 잘 걸리지 않음을 알게되었다. 그러면, 비타민 C를 복용하면 감기에 덜 걸린다고 말할 수 있는가? [EDA]

➢ EDA로 이에 대한 답을 하긴 어렵다. 비교실험을 설계하여 새로 자료를 수집해 가설을 확인 해 볼 필 요가 있다 [CDA]

보기 2. 대형마켓에서 고객들의 구매 내역 자료를 분석한 결과, 일부 고객들은 다른 고객들에 비해 유기농 식재료 비중이 크게 나타났다. 그들이 어던 생각을 하는 사람들인가? 이에 대해 몇개의 추측이 생성되었다. [EDA]

 추측이 맞는가? 이를 확인하기 위하여 전체 고객의 일부를 선택하여 몇 가지 인구사회학적 속성과 연소득, 그리고 소비와 삶에 대한 태도를 조사하여 구매내역과 연결해 확인해 볼 필요 가 있다 [CDA]

■ 데이터와 모형의 진화

- 복잡성(현실)의 이해: 현실 세계는 많은 요인이 얽혀져 있다. 그렇다고 절대적으로 불가지(不可知) 한 것은 아님
- ▶ 데이터 : 우리가 포착한 복잡계의 한 단면이다.
- ▶ 모형(Model): 모형은 우리가 현실을 이해하는 '틀'이다. 진리는 아니다.
 - "All models are wrong but some are useful." George Box-
- ▶ 데이터와 모형의 진화(evolution)
 - 데이터 → 모형 → New 데이터 → New 모형 → 계속적 진화

■ 빅데이터(Big Data)

데이터의 양이 거대하고 형태도 다양해서 기존 방법으로 수집, 저장, 분석이 어려운 데이터 => 3V+1C(?)

- Volume(대규모)
- ➤ Velocity(실시간 생성)
- ▶ Variety(숫자, 문자, 영상 등)
- Complexity(복잡성)
- ➤ Value(가치 창출 ?)
- ⇒ 한 시점에서 굉장히 크다가 다른 시점에서는 별거 아닐 수도 있으므로 좋은 정의가 아니다. 즉, 한시점에서는 좋을 지 모르지만 넓게는 좋지 않다.
- ⇒ "범람하는(넘쳐나는) 데이터와 정보": 이제까지 다루지 못한(안해본 것, 통찰력이 없어서) 데이터의 양, 융합의 어려움 등을 망라하여 정의되어야 한다.
- ⇒ '빅 '데이터=데이터: '빅 '데이터로부터의 정보와 지식=통찰력을 얻는 것. 새로운 것에 도전하는 정성과 실력(자질)이 필요함.

■ 스몰데이터(Small Data)

조사/실험 데이터 등 과학적이고 체계적임 → 재현성이 확인될 필요가 있을 때.

■ 빅데이터의 정의

• 삼성경제연구소

기존의 관리 및 분석 체계로는 감당할 수 없을 정도의 거대한 데이터의 집합으로 대규모 데이터와 관계된 기술 및 도구를 모두 포함하는 개념

• 국가전략위원회

대용량 데이터를 활용, 분석하여 가치 있는 정보를 추출하고 생성된 지식을 바탕으로 능동적으로 대응하거나 변화를 예측하기 위한 정보화 기술

■ 예전의 데이터

이름	생년월일	신장
유리	89.12.05	167
효연	89.09.22	160
서현	91.06.28	168
수영	90.02.10	170
써니	89.05.15	158
태연	89.03.09	162

■ 최근의 데이터

■ 최근의 데이터

단언컨대 가장 완벽한 유닛! 스페셜한 그녀 들! 소녀시대-태티서가 #더쇼 에 찾아왔습니 다^^* 눈 부시게 아름다운 그녀들의 모습! # 더쇼 에서 확인해볼까요?? #소녀시대 #태티 서 #할라

★ 답골하기 13 리트윗 ★ 관심글 담기 ••• 더 보기

1.460

609

오후 7:04 - 2014년 9월 23일

미디어 신고하기

■ 최근의 데이터

■ 비수치형 데이터의 구조화

- 수치 데이터 5%
- 非수치 데이터 95% → 새로운 분야의 데이터 분석 전문가가 필요 텍스트, 이미지, Audio, Video, ···

■ Interval data의 회귀분석

Scatterplot Using Intervals

출처: https://chance.amstat.org/2013/09/big_picture_26-3/

■ 이미지 세그멘테이션

출처: https://wiki.tum.de/display/lfdv/Image+Semantic+Segmentation

■ Small Data vs. Big Data : 실험(조사) 자료 vs. 관찰자료

	Small Data(설업)	BIG Data(판절)
목적	연구	업무활용
가치	과학	상업
수집	통제된 현재 자료	관찰된 과거 자료
크기	작다	크다
정도	정제되어 있다	정제되어 있지 않다
상태	정적	동적

Cmall Data(시청) Dia Data(과차)

- 사례 : 2차 세계대전의 생존 전투기 탄흔 기록
- ▶ 생존전투기의 탄흔 기록을 보면 전투기에서 탄흔이 없는 부분(그곳에 맞은)에 해당되는 전투기들은 돌아오지 않았다(이런 데이터는 없다)
- Big data는 관찰된 데이터라 편향된 데이터가 올 수 있다.
- 관찰된 부분의 데이터만 보면 매우 위험할 수 있다.
- 관측 데이터는 특정 목적에 맞게 기획되어 수집된 자료가 아니라 표본이 모집단을 대표하지 않는다
- Small data(조사 혹은 실험 데이터)는 데이터를 잘 디자인하여 균형 있게 추출하여 이런 문제점
 이 없다
- ▶ 즉, 이 사례는 빅데이터의 기계학습 예측의 위험을 주의해야 됨을 말해 준다

- 사례 : 구글의 독감 트렌드 Google Flu Trend)
 - ▶ Ignaz Semmelweis (산부인과 의사), 1844 오스트리아 빈
 - ✓ 2008년, 독감과 관련 검색어의 빈도를 집계 독감을 예측하는 서비스
 - ✓ 미국 질병관리본부(CDC)보다 1주 이상 빠르게 독감의 유행을 예측 (Nature지에서 소개)
 - ✓ 2009년, 신종 인플루엔자(H1H1)의 세계적 유행을 놓침
 - ✓ 2013년, 실제 발생률의 2배에 달하는 예측치 → 서비스 중단
 - ✓ 2008년 사이트를 조회하면서 조회 수가 늘고 독감이 과대 예측됨
 - ✓ 예측(prediction)과 설명(cause-and effect)의 문제를 인식할 필요가 있다.

■ DB로부터의 지식발견(KDD) 과정

■ 빅데이터 분석 프로세스

■ 데이터 사이언스

https://marsiantech.com/data-science-analytics-training-course-pune.php

■ 통계학과 기계학습

IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics (Hoyt et al., 2017)

■ 통계학과 기계학습

	MACHINE LEARNERS	STATISTICIANS
Network/Graphs vs. Models	Network/Graphs to train and test data	Models to create predictive power
Weights vs. Parameters	Weights used to maximize accuracy scoring and hand tuning	Parameters used to interpret real-world phenomena - stress on magnitude
Confidence Interval	There is no notion of uncertainty	Capturing the variability and uncertainty of parameters
Assumptions	No prior assumption (we learn from the data)	Explicit a-priori assumptions
Distribution	Unknown a priori	A-priori well-defined distribution
Fit	Best fit to learning models (generalization)	Fit to the distribution

 $\underline{\text{https://blog.galvanize.com/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/}$

■ 통계학과 기계학습

Statistics	Machine Learning
Model	Network, Graphs
Parameter	Weight
Fitting	Learning
Test set performance	Generalization
Regression Classification	Supervised learning
Density estimation Clustering	Unsupervised learning
통계학은 해석가능성에, 기계학습은 예측정확도에 더 많은 관심을 둠	

■ 예측 vs 설명

기계학습: 주로 예측 목적, 블랙박스 모형

Input

▶ 설명 없는 예측이 과학(science)인가?

Shmueli (2010). "To explain or to predict", Statistical Science 25(3), 289-310.

- 데이터분석과 기계학습을 위한 시각
 - ➤ 빅데이터 → Exploratory Data Analysis, Machine Learning
 - → Confirmatory Studies with Small Data
 - → 지식화
 - → 빅데이터

■ 기계학습 분류

Types of Machine Learning

■ Machine Learning, Deep Learning, Al

Companies using Machine Learning in cool ways

(https://www.wordstream.com/blog/ws/2017/07/28/machine-learning-applications)

1. Yelp – Image Curation at Scale

- Companies using Machine Learning in cool ways
 - 2. Google Neural Networks and 'Machines That Dream'

- Companies using Machine Learning in cool ways
 - 3. Edgecase Improving Ecommerce Conversion Rates

- Companies using Machine Learning in cool ways
 - 4. Baidu The Future of Voice Search

- Companies using Machine Learning in cool ways
 - 5. Pinterest Improved Content Discovery

■ 데이터 분석 도구

프로그램	주사용자	특징
SAS	통계 전공자	통계분석의 막강한 기능 가격이 비쌈, 코딩 기반, 배우기 어려움
SPSS	사회과학 전공자	메뉴 방식의 분석, 배우기 쉬움, 유료
R	통계 전공자 등	무료 소프트웨어, 다양한 통계 분석 기능 , 그래픽 기능, 패키지를 통한 확장
Python	프로그래머 등	무료 소프트웨어, 빅데이터분석도구로 각광
Spotfire	데이터 분석가 등	데이터 시각화에 강함, 유료

R vs Python

(https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis)

■ R vs Python

(https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis)

R vs Python

■ R vs Python

■ R vs Python

■ R vs Python

■ R vs Python

Tool Preference for Data Scientists vs. Other Predictive Analytics Professionals

- traditional predictive analytics professionals working with structured data
- data scientists working with unstructured or streaming data.

The key word in "Data Science" is not Data, it is Science

- Jeff Leek, Simply Statistics (2013)