

Sebastián Suárez Ramírez Juan Esteban Salas Flórez Maria Camila Ramírez López 01

INTRODUCCIÓN

Resumen y objetivo

02

DATOS

Base de datos, preparación y limpieza de los datos 03

MODELO

Red neuronal convolusional (CNN)

04

CONCLUSIONES

Conclusiones y cierre

01. INTRODUCCIÓN

RESUMEN

La clasificación precisa de vehículos a partir de imágenes es una tarea fundamental en diversos campos, como lo son la seguridad vial y la gestión del tráfico. El enfoque propuesto utiliza técnicas de aprendizaje automático para extraer características relevantes de las imágenes y entrenar modelos de clasificación

Desarrollar un modelo de predicción utilizando técnicas de aprendizaje automático con el fin de lograr una clasificación precisa y eficiente de diferentes tipos de vehículos en imágenes

DATOS

01

Recopilar y preparar un conjunto de datos de imágenes de vehículos etiquetadas adecuadamente para su uso en el entrenamiento y evaluación del modelo.

02

Explorar y seleccionar características visuales relevantes que permitan representar adecuadamente las imágenes de los vehículos.

03

Realizar la limpieza de los datos haciendo uso de técnicas de submuestreo y sobremuestreo inteligente

Imágenes originales

Van (450x672)

Van (2489x3413)

Imágenes escaladas

Distribución de los datos

Clase	Muestras		
Barge	202		
Van	1,111		
Motorcycle	2,986		
Ambulance	132		
Cart	51		
Bus	2,133		
Tank	206		
Truck	2,033		
Helicopter	668		
Caterpillar	331		
Snowmobile	123		
Car	6,781		
Boat	8,695		
Segway	153		
Bicycle	1,618		
Taxi	748		
Limousine	74		

Distribución de los datos - Sobremuestreo

Distribución de los datos - Submuestreo

03. MODELO

MODELO

01

Diseñar e implementar un modelo de aprendizaje automático, red neuronal convolucional (CNN), que sea capaz de aprender y extraer patrones discriminativos de las imágenes de los vehículos.

02

Entrenar el modelo utilizando el conjunto de datos preparado, ajustando los hiperparámetros y optimizando el rendimiento del modelo.

03

Evaluar el modelo utilizando métricas de desempeño, como precisión, exhaustividad y puntuación F1, para medir su capacidad de clasificación de vehículos en imágenes.

CNN

E	Pérdida	Acierto	F1	Precisión	Recall
1	1.4213	0.4752	2.3965	4.8390	1.6303
2	1.1793	0.5776	1.6657	1.9273	1.4769
3	0.9621	0.6713	1.4288	1.5380	1.3396
4	0.8786	0.6970	1.6925	1.9054	1.5295
5	1.3697	0.4987	1.6161	1.8875	1.4219
6	0.9213	0.7070	1.3220	1.3910	1.2653
7	0.7974	0.7431	1.3963	1.4544	1.3465
8	0.8596	0.7268	1.2631	1.2914	1.2398
9	0.7515	0.7469	1.3592	1.4267	1.3024
10	0.7790	0.7441	1.3103	1.3380	1.2877
11	0.8374	0.7412	1.2258	1.2351	1.2193
12	0.8784	0.7487	1.2122	1.2169	1.2104
13	0.8567	0.7406	1.2534	1.2918	1.2214
14	0.7422	0.7692	1.2237	1.2414	1.2098
15	0.9340	0.7662	1.2516	1.2818	1.2267
16	0.8972	0.7881	1.1240	1.1128	1.1373
17	1.0167	0.7682	1.1654	1.1529	1.1804
18	0.8427	0.7931	1.1701	1.1589	1.1835
19	0.9551	0.7719	1.1631	1.1509	1.1779
20	0.7316	0.7676	1.3170	1.3496	1.2900

Métricas

Métricas

04.CONCLUSIONES

Resultados

CONCLUSIONES

ACIERTOS

Se obtuvo una tasa de aciertos de aprox. 76%

CALIDAD

La calidad de las imágenes afecta significativamente el desempeño del modelo

CNN

CNN es uno de los modelos más precisos a la hora de predecir imágenes

PROYECCIÓN

El modelo obtenido se puede mejorar realizando ajustes en la cantidad y calidad de los datos, etc.

GRACIAS!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.

