Extracting Threshold Voltage and Transconductance from NMOS VI Characteristics

1 Introduction

This document outlines the step-by-step procedure to extract the threshold voltage (V_{th}) and transconductance (g_m) of an NMOS transistor from its VI characteristics.

2 Step-by-Step Procedure

2.1 Step 1: Plot I_D vs V_{GS} for Linear Region

We have measured the drain current (I_D) for different gate-to-source voltages (V_{GS}) at a fixed drain-to-source voltage $(V_{DS} = 0.1 \text{ V})$. The data is as follows:

Table 1: Linear Region Data $(V_{DS}=0.1\,\mathrm{V})$

V_{GS} (V)	$I_D (\mu A)$
0.5	0
0.7	0
0.9	0
1.1	5
1.3	20
1.5	35
1.7	50
1.9	65
2.1	80
2.3	95

2.2 Step 2: Determine V_{th} in the Linear Region

The threshold voltage V_{th} is found by extrapolating the linear part of the I_D vs V_{GS} curve.

• Select two points from the linear region:

Point 1:
$$V_{GS1} = 1.1 \text{ V}$$
, $I_{D1} = 5 \mu\text{A}$,
Point 2: $V_{GS2} = 2.3 \text{ V}$, $I_{D2} = 95 \mu\text{A}$.

• Calculate the slope m:

$$\begin{split} m &= \frac{I_{D2} - I_{D1}}{V_{GS2} - V_{GS1}} = \frac{95\,\mu A - 5\,\mu A}{2.3\,\mathrm{V} - 1.1\,\mathrm{V}} \\ &= 75\,\mu A/\mathrm{V}. \end{split}$$

• The threshold voltage V_{th} is:

$$V_{th} = V_{GS1} - \frac{I_{D1}}{m} = 1.1 \text{ V} - \frac{5 \,\mu A}{75 \,\mu A/\text{V}}$$

= 1.033 V.

Thus, $V_{th} \approx 1.03 \,\mathrm{V}$ in the linear region.

2.3 Step 3: Calculate g_m in the Linear Region

Transconductance g_m is the slope of the linear portion:

$$g_m = m = 75 \,\mu A/V.$$

Alternatively, using $g_m = kV_{DS}$:

$$k = \frac{g_m}{V_{DS}} = \frac{75 \,\mu A/\mathrm{V}}{0.1 \,\mathrm{V}} = 750 \,\mu A/\mathrm{V}^2.$$

2.4 Step 4: Plot I_D vs V_{GS} for Saturation Region

Next, we measure I_D at $V_{DS}=2\,\mathrm{V}$. The data is as follows:

Table 2: Saturation Region Data $(V_{DS} = 2 \text{ V})$

V_{GS} (V)	$I_D (\mu A)$
0.5	0
0.7	0
0.9	0
1.1	2
1.3	8
1.5	18
1.7	32
1.9	50
2.1	72
2.3	98

2.5 Step 5: Determine V_{th} in the Saturation Region

We use the $\sqrt{I_D}$ vs V_{GS} plot to find V_{th} . Calculate $\sqrt{I_D}$:

Table 3: $\sqrt{I_D}$ for Saturation Region			
V_{GS} (V)	$I_D (\mu A)$	$\sqrt{I_D} \; (\mu A^{0.5})$	
1.1	2	1.414	
1.3	8	2.828	
1.5	18	4.243	
1.7	32	5.657	
1.9	50	7.071	
2.1	72	8.485	
2.3	98	9.899	

By selecting two points, we calculate the slope m':

$$m' = \frac{\sqrt{I_{D_B}} - \sqrt{I_{D_A}}}{V_{GS_B} - V_{GS_A}} = \frac{9.899 - 2.828}{2.3 - 1.3} = 7.071 \,\mu A^{0.5} / V.$$

Using this, we find:

$$V_{th} = V_{GS_A} - \frac{\sqrt{I_{D_A}}}{m'} = 1.3 \,\text{V} - \frac{2.828}{7.071} = 0.9 \,\text{V}.$$

Thus, $V_{th} \approx 0.9 \, \text{V}$ in the saturation region.

2.6 Step 6: Calculate g_m in the Saturation Region

The transconductance in the saturation region is calculated using:

$$g_m = \frac{2I_D}{V_{GS} - V_{th}}.$$

For $V_{GS} = 1.9 \,\mathrm{V}$ and $I_D = 50 \,\mu A$:

$$g_m = \frac{2 \times 50 \,\mu A}{1.0 \,\text{V}} = 100 \,\mu A/\text{V}.$$

3 Summary

The threshold voltage and transconductance are as follows:

- V_{th} (Linear Region): 1.03 V
- V_{th} (Saturation Region): 0.9 V
- g_m (Linear Region): $75 \,\mu A/V$
- g_m (Saturation Region): $100 \,\mu A/V$