Curs Nr. 1

1.1.1. (4)

$$F = \left(p_{\Lambda} \left(q_{\Lambda} r_{\Lambda} \right) \right) = \left(p_{\Lambda} g_{\Lambda} r_{\Lambda} \right) \left(p_{\Lambda} r_{\Lambda} \right)$$

$$g \mid p_{\Lambda} r_{\Lambda} \mid p_{\Lambda} g_{\Lambda} r_{\Lambda} \right) \left(p_{\Lambda} g_{\Lambda} r_{\Lambda} r_{\Lambda} \right)$$

P	2	12	2Vr	l pag	PAR	DAGUR)	(png)V(pn R)	LF
0	0	Q	ව	0	0	1 5	0	1.
0	0	1	1	Ю	0	Ø	0	1
0	ι	0	1	0	0	0	ପ	1
0	1	١	/	0	0	D	0	1
l	0	0	6	D	G	0	O	1
1	0	(1	0	1	1	1	
\	$ \cdot $	0	(1	\mathcal{O}	1	1	1
'			1	1	Ī	1 1		į
			'		ı	. 1	, 1	1

1.2-1.

$$\begin{cases} 117.3 = 1 \times (x-1)(x-2)(x-3) = 0 \end{cases}$$

la terria naiva a multimiler apar paradoxuri mos axiomatiturea teorici!

Godel Benay, J. Neuwan Ierarhia university bui Grothendieck

$$0.5 - \frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{-1}{-2} = \frac{2}{-4} = \frac{-1}{-2}$$

$$A \subset \mathcal{R} (\Rightarrow) \left(A \subseteq \mathcal{R} \times A \neq \mathcal{R} \right)$$

1.28. Den.

1.28. Den.

$$p:=\text{"xeA"}$$
 $j:=\text{"xeA"}$
 $r:=\text{xeC}$

A aratat

 $r:=\text{xeC}$
 $r:=\text{xeC}$
 $r:=\text{xeC}$

$$\begin{array}{c} (a) & \uparrow \Rightarrow \uparrow \\ (b) & (f) \Rightarrow (g) & (g) \Rightarrow (h) \\ (h) & (g) \Rightarrow (h) & (h)$$

Se verif. Ch ta belal di ades.

$$C) \left(p(3) 9 \right) \left(= \right) \left(\left(p > 2 \right) \wedge \left(2 > p \right) \right)$$

(d) D: "xe p" - false indstoleanna S=> p - i-tot deanna adav. De verif multimi vide ava-dona (e) ϕ , ϕ' Cf. (d) $\phi = \phi'$ (1) p'vide 4 p'EApl. Hu william A $Jei \phi' = \phi (2)$ Di~ (N) (2) 1.2.11. P="x <A", g="x <A", \(\tau = \) \(\tau \) \) (a) (pv (gvn)) (>> ((pv2) vn) la fel yl. 1 (p) (p, 6/2, (5, b) (2) prp(>) p(=) prp (=f) 7(prg) (=> (7p 17g) 7(prg) (=> (7p17g)

De ex. def.

Alternative (a,b): $\{a,b,b,b,c\}$ = (4,a)

f:RAR, f(x) = \frac{1}{x} nu uch bive def.

pt. vi \frac{1}{2} nu se definerte.

f row ca in 1.3.7. a) st C-{2,3}

$$X = \{1, 2\} \subseteq \{1, 1, 3\} = A$$
 $f(X) = \{1, 1, 3\} = A$
 $f(X) = \{1, 1, 3\} = \{a, b\} = \{a, b\} = \{a\}$
 $Y = \{a, c\} \in \mathbb{R}$
 $f'(Y) = \{x \in A \mid f(x) \in \{a, c\}\} = \{1, 2\}$
 $f''(\{c, b\}) = \emptyset$

Compraera

A
$$\Rightarrow$$
 B \Rightarrow C \Rightarrow \Rightarrow

A FR

$$(hog)of:A \rightarrow D$$

$$ho(gof):A \rightarrow D$$

Fie xGA:
$$[(h \circ g) \circ f](x) = (h \circ g)(f(x)) = h(g(f(x)))$$

 $[h \circ (g \circ f)](x) = h((g \circ f)(x)) = h(g(f(x)))$
Dei $(h \circ g) \circ f = h \circ (g \circ f).$

$$f \circ I_A : A \longrightarrow \mathbb{S}$$

$$f : A \longrightarrow \mathbb{S}$$

$$I_{\mathbb{R}} \circ f : A \longrightarrow \mathbb{S}$$

AXR Folk

Fie xA
$$(f \circ f)(x) = f(f \circ f)(x) = f(x)$$

$$(f \circ f)(x) = f \circ f(x) = f(x)$$

$$f \circ f \circ f = f \circ f$$

1.39. Dem Pring. 10 3f, f" B->A a.i.

f'of=1_A=f'of i fo-f'=1_R=fof"

f'=fo/R=fo (fof") = (fof)of=40f"=f" => unicit.

(7)=fpl. to founded (or definese in verso mut simetric in foif-X

hy=x(=) e=j

1.3.11.

aturer

$$(f \circ g') \circ (g \circ f) = f \circ (g \circ g) \circ f = f \circ 1_{R} \circ f$$

$$= f \circ f = 1_{A}$$
 $(g \circ f) \circ (f \circ g') = g \circ (f \circ f') \circ g' = g \circ 1_{R} \circ g'$