Distributed Database

Centralized DBMS

statistical data

data

application

sophisticated

database

naive users

tellers, agents,

Main Components

- 1. Data in storage
- 2. Querying Data
- 3. Query Optimization
- 4. Indexing
- Transaction processing
- 6. Application
 Development
 and Design
- 7. Architecture
- 8. Advanced Model

Distributed DBMS Ch.1/2

Disk

Motivation

integration ≠ centralization

What is a Distributed Database System?

A distributed database (DDB) is a collection of multiple, *logically interrelated* databases distributed over a *computer network*.

A distributed database management system (D–DBMS) is the software that manages the DDB and provides an access mechanism that makes this distribution transparent to the users.

Distributed database system (DDBS) = DDB + D-DBMS

Centralized DBMS on a Network

Distributed DBMS Environment

Homogeneous Distributed Database

In Homogeneous Distributed Database –

All sites shall have same DBMS

Heterogeneous Distributed Database

In Heterogeneous Distributed Database –

Different sites shall have different DBMS

Question 19-1: Compare homogeneous and heterogeneous DDBMS in terms of storage, querying and transaction.

Transparency

- Transparency is the separation of the higher level semantics of a system from the lower level implementation issues.
- Fundamental issue is to provide

data independence

in the distributed environment

- → Network (distribution) transparency
- → Replication transparency
- → Fragmentation transparency
 - horizontal fragmentation: selection
 - vertical fragmentation: projection
 - hybrid

Example

EMP						
ENO	ENAME	TITLE				
E1 E2 E3 E4	J. Doe M. Smith A. Lee J. Miller	Elect. Eng Syst. Anal. Mech. Eng. Programmer				
E5	B. Casey	Syst. Anal.				

L. Chu

ASG						
ENO	PNO	RESP	DUR			
E1 E2	P1 P1	Manager	12 24			
E2 E2	P1 P2	Analyst Analyst	6			
E3 E3	P3 P4	Consultant	10 48			
E4	P2	Engineer Programmer	18			
E5	P2	Manager	24			
E6	P4	Manager	48			
E7 E8	P3 P3	Engineer	36 40			
_ ⊏0	P3	Manager	40			

PROJ

E6

E7

E8

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2 P3	Database Develop. CAD/CAM	135000 250000
P4	Maintenance	310000

Elect. Eng.

R. Davis Mech. Eng.

J. Jones Syst. Anal.

PAY

TITLE	SAL	
Elect. Eng.	40000	
Syst. Anal.	34000	
Mech. Eng.	27000	
Programmer	24000	

Transparent Access

SELECT ENAME, SAL

FROM EMP, ASG, PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE

Reliability Through Distributed Transactions

- Replicated components and data should make distributed DBMS more reliable.
- Distributed transactions provide
 - □ Concurrency transparency
 - → Failure atomicity
- Distributed transaction support requires implementation of
 - → Distributed concurrency control protocols
 - □ Commit protocols
- Data replication
 - Great for read-intensive workloads, problematic for updates
 - → Replication protocols

Potentially Improved Performance

- Proximity of data to its points of use
 - → Requires some support for fragmentation and replication
- Parallelism in execution
 - → Inter-query parallelism
 - Intra-query parallelism

Parallelism Requirements

 Have as much of the data required by each application at the site where the application executes

→ Full replication

Read-intensive: more replication, better Write-intensive: less replication, better

• How about updates?

→ Mutual consistency

→ Freshness of copies

Distributed DBMS Issues

Distributed Database Design

- → How to distribute the database
- → Replicated & non-replicated database distribution
- → A related problem in directory management

Query Processing

- Convert user transactions to data manipulation instructions
- → Optimization problem
 - min{cost = data transmission + local processing}
- → General formulation is NP-hard

Distributed DBMS Issues

Concurrency Control

- → Synchronization of concurrent accesses
- Consistency and isolation of transactions' effects
- → Deadlock management

Reliability

- → How to make the system resilient to failures
- → Atomicity and durability

Question 19-2: Explain the challenges in data transparency and transactional reliability in DDBMS.

Relationship Between Issues

Mediator/Wrapper Architecture for Data Integration

