Заметки курса «Аналитическая механика II»

Семинарист: Сахаров А. В.

Восторженные слушатели: Хоружий К.

Примак Е.

От: 25 марта 2021 г.

Содержание

1	Малые колебания консервативных систем.	2
2	— / -/ /	3
	2.1 Вынужденные колебания	3
	2.2 Диссипативные системы	4
3	Элементы теории бифуркаций	5
	3.1 Двумерные динамические системы	5
4	Метод усреднений и нормальные формы	5
	4.1 Метод усреднений	5
	4.2 Нормальная форма Коши	6
5	Уравнение Гамильтона	6
	5.1 Немного геометрии	7
	5.2 Уравнения Гамильтона	
	5.3 Уравнения Рауса	
		8
6	Интегралы системы	8
		9
	6.2 Обратные теоремы теории интегральных инвариантов	10
7	Канонические преобразования	10
	7.1 Импульсы не нужны	12
	7.2 Симплектическая геометрия (симплектология)	

1 Малые колебания консервативных систем.

Запишем уравнения Лагранжа для консервативной голономной системе:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0, \qquad q \in M^n; \qquad q, \dot{q} \in TM^n.$$

Тогда можно сказать, что

$$L(q, \dot{q}, t) \colon TM^n \times \mathbb{R}^1 \mapsto \mathbb{R}^1.$$

Параллельным переносом выберем q=0 – положение равновесия. Тогда считаем, что $q(t), \dot{q}(t) \in \varepsilon$ – окрестности. В идеале мы хотим всё линеаризовать, тогда

$$T = T_2 + T_1 + T_0 = T_2 = \frac{1}{2} \dot{q}^i \dot{q}^j A_{ij}(q) \approx \frac{1}{2} \dot{q}^{\mathrm{T}} A(0) \dot{q} + \dots, \qquad A(0) = \frac{\partial^2 T(0)}{\partial \dot{q}^{\mathrm{T}} \partial \dot{q}}.$$

т. к. для консервативных систем $T_1 = T_0 = 0$.

Аналогично можем сделать для потенциальной энергии

$$\Pi = \Pi(0) + \frac{\partial \Pi(0)}{\partial q^{\mathrm{T}}} q + \frac{1}{2} q^{\mathrm{T}} \frac{\partial^2 \Pi(0)}{\partial q^{\mathrm{T}} \partial q} q + \dots \approx \frac{1}{2} q^{\mathrm{T}} C(0) q, \qquad C(0) = \frac{\partial^2 \Pi(0)}{\partial q^{\mathrm{T}} \partial q} q + \dots$$

Таким образом мы пришли к уравнениям вида

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} = -\frac{\partial \Pi}{\partial q} \qquad \Rightarrow \qquad \boxed{A\ddot{q} + Cq = 0.}$$

Последнее уравнение называется уравнением малых колебаний. Важно, что A – положительно определена, в силу невырожденности уравнений на \ddot{q} уравнений Лагранжа.

Из линейной алгебры понятно, что существуют координаты $\theta \in M^n$, а также невырожденная матрица перехода к новым координатам $U \colon q = U\theta$, и $U^{\mathrm{T}}AU = E$, $U^{\mathrm{T}}CU = \Lambda$ – диагональная матрица. Тогда верно, что

$$T = \frac{1}{2}\dot{\boldsymbol{q}}A\dot{\boldsymbol{q}} = \frac{1}{2}\dot{\boldsymbol{\theta}}^{\mathrm{T}}U^{\mathrm{T}}AU\dot{\boldsymbol{\theta}} = \frac{1}{2}\sum_{i=1}^{n}\dot{\theta}_{i}^{2}.$$

Аналогично для потенциальной энергии

$$\Pi = \frac{1}{2} \boldsymbol{q}^{\mathrm{T}} C q = \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} U^{\mathrm{T}} C U \boldsymbol{\theta} = \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \Lambda \boldsymbol{\theta} = \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \theta_{i}^{2}.$$

Это ещё сильнее упрощает уравнения Лагранжа:

$$A\ddot{q} + Cq = 0$$
 \rightarrow $\ddot{\theta}_i + \lambda_i \theta_i = 0, \quad i = 1, \dots, n.$

Здесь λ_i – действительные диагональные элементы Λ . При различных λ получаем, что

$$\lambda_{i} > 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} \sin(\sqrt{\lambda_{i}} t + \alpha_{i});$$

$$\lambda_{i} = 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} t + \alpha_{i}.;$$

$$\lambda_{i} < 0 \qquad \Rightarrow \qquad \theta_{i} = c_{i} \exp(\sqrt{-\lambda_{i}} t) + \alpha_{i} \exp(-\sqrt{-\lambda_{i}} t).$$

где последние два – уже не колебаниям.

Возвращаясь к удобной форме, получаем, что

$$q = U\theta = \sum_{i=1}^{n} c_i u_i \sin(\sqrt{\lambda_i} t + \alpha_i),$$

где u_i — амплитудный вектор i-го главного колебания. Таким образом консервативная система движется по суперпозиции некоторых главных колебаний (гармонических осцилляций).

Иначе мы можем интерпретировать это так, что кинетическая энергия¹ образует некоторую метрику, а амплитудные вектора образуют некоторый ортонормированный базис.

$$U^{\mathrm{T}}AU = E \quad \Rightarrow \quad \boldsymbol{u}_{i}^{\mathrm{T}}A\boldsymbol{u}_{i} = \delta_{ii}$$

Получив матрицы $A,\ C$ переходим к $[C-\lambda A]{m u}=0,$ получая

$$|C - \lambda A| = 0,$$

что называют вековым уравнением, или уравнением частот. Из него получим $\lambda_1, \ldots, \lambda_n$, и уже перейдём к системе уравнений вида $|C - \lambda_i A| \mathbf{u}_i = 0$.

¹Переписать грамотнее.

2 Вынужденные колебания и диссипативные системы

2.1 Вынужденные колебания

Давайте испортим консервативность так, чтобы

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^i} - \frac{\partial T}{\partial q^i} = -\frac{\partial \Pi}{\partial q^i} + Q_i(t).$$

Как выяснили раннее

$$q = U\theta$$
. $U^{T}AU = E, U^{T}CU = \Lambda$.

Посчитаем элементарную работу добавленной силы

$$\delta A = Q_i \delta q^i = \Theta^{\mathrm{T}} \delta \theta = Q^{\mathrm{T}} U \delta \theta,$$

тогда можно записать, что

$$\Theta = U^{\mathrm{T}}Q, \qquad Q = (U^{\mathrm{T}})^{-1}\Theta,$$

то есть преобразование обобщенных сил. То есть уравнение приходит к виду

$$A\ddot{q} + Cq = Q(t),$$
 бог с индексами $\ddot{q}_i + \lambda_i \theta_i = \Theta_i(t)$

Тогда ответ запишется в виде

$$q = \sum_{i=1}^{n} c_i \mathbf{u}_i \sin\left(\sqrt{\lambda_i} t + \alpha_i\right) + \sum_{i=1}^{n} \mathbf{u}_i \theta_i^*(t),$$

где вторая сумма соотвествует *вынужденным колебаниям*, а первая свободным гармоническим колебаниям.

Пусть так вышло, что

$$\begin{cases} \theta_i^* = b_i \sin{(\Omega t)} \\ \Theta_i(t) = a_i \sin{(\Omega t)} \end{cases} \Rightarrow b_i (\lambda_i - \Omega^2) = a_i, \Rightarrow \theta_i^* = \frac{a_i}{\lambda_i - \Omega^2} \sin{(\Omega t)}.$$

В случае же резонанса ищем решение в виде

$$\theta_i^*(t) = b_i t \cos(\Omega t), \quad \Rightarrow \quad b_i = -\frac{a_i}{2\Omega}.$$

И здесь мы видим первые звоночки от Пуанкаре, о конце линейной теории.

Задача 1 (18.42)

Есть некоторая платформа, перемещающаяся по закону $a \sin \omega t$. На ней подвешены куча стержней, соединенных пружинами разной упругости, на разных высотах. Вопрос – на каких ω возможен резонанс?

Перейдём в CO платформы, тогда возбуждающая сила – сила инерции, соотвественно для всех стержней возбуждающая сила одинаковая

$$\boldsymbol{J}_{i}^{e} = -m\boldsymbol{w}_{i}^{e} = m\omega^{2}a\sin(\omega t)\boldsymbol{e}.$$

Посчитаем обобщенные силы, как

$$Q_1^e = \ldots = Q_n^e = \frac{\delta A_i}{\delta \varphi_i} = \frac{(\boldsymbol{J}_i^e \cdot \delta \boldsymbol{r}_i)}{\delta \varphi_i} = \frac{1}{2} m \omega^2 a l \sin(\omega t).$$

Получается, что мы посчитали столбец обобщенных сил

$$\mathbf{Q} = \frac{l}{2} \begin{bmatrix} 1, 1, \dots, 1 \end{bmatrix}^{\mathrm{T}} a\omega^{2} m \sin(\omega t).$$

По крайней мере мы можем сказать, что у нас есть главная частота

$$\lambda_1 = \frac{3g}{2l}, \quad u_1 = [1, 1, ..., 1]^{\mathrm{T}}.$$

Теперь выпишем матрицу кинетической энергии

$$A = \frac{ml^2}{6}E, \qquad U^{\mathrm{T}}AU = E, \quad \Rightarrow \quad UU^{\mathrm{T}} = E,$$

с точностью до множителя. Тогда u_1, \dots, u_n – ортогональный базис.

Теперь вспоминаем, что

$$\Theta = U^{\mathrm{T}}Q = \begin{pmatrix} \boldsymbol{u}_{1}^{\mathrm{T}} \\ \dots \\ \boldsymbol{u}_{n}^{\mathrm{T}} \end{pmatrix} \boldsymbol{u}_{1} \ \frac{1}{2}a\omega^{2}lm\sin(\omega t) = \begin{pmatrix} \boldsymbol{u}_{1}^{\mathrm{T}} \cdot \boldsymbol{u}_{1} \\ \dots \\ \boldsymbol{u}_{n}^{\mathrm{T}} \cdot \boldsymbol{u}_{1} \end{pmatrix} \ \frac{1}{2}a\omega^{2}lm\sin(\omega t) = \begin{pmatrix} n \\ \dots \\ 0 \end{pmatrix} \boldsymbol{u}_{1} \ \frac{1}{2}a\omega^{2}lm\sin(\omega t).$$

Ура, от сих приходим к приятным уравнениям Лагранжа

$$\begin{cases} \ddot{\theta}_q + \lambda_1 \dot{\theta}_1 = na\omega^2 \frac{l}{2} \sin \omega t, \ddot{\theta}_2 + \lambda_2 \theta_2 \\ \dots \\ \ddot{\theta}_n + \lambda_n \theta_n = 0 \end{cases} \Rightarrow \omega_{\text{pes}} = \sqrt{\frac{3g}{2l}}.$$

2.2 Диссипативные системы

И снова испортим консервативную систему до диссипативной,

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^i} - \frac{\partial T}{\partial q^i} = -\frac{\partial \Pi}{\partial q^i} + \tilde{Q}_i(\dot{q}) = Q_i(q,\dot{q}).$$

С кинетической всё как обычно, тогда

$$T = \frac{1}{2}\dot{\boldsymbol{q}}^{\mathrm{T}}A\dot{\boldsymbol{q}}; \qquad \quad \boldsymbol{Q} = \boldsymbol{Q}(0) + \frac{\partial \boldsymbol{Q}}{\partial \boldsymbol{q}^{\mathrm{T}}}\boldsymbol{q} + \frac{\partial \boldsymbol{Q}(0)}{\partial \dot{\boldsymbol{q}}^{\mathrm{T}}}\dot{\boldsymbol{q}} = -C\boldsymbol{q} - B\dot{\boldsymbol{q}}.$$

Где ввели матрицы вида

$$C = -\frac{\partial \boldsymbol{Q}(0)}{\partial \boldsymbol{q}^{\mathrm{T}}}; \qquad \quad B = -\frac{\partial \boldsymbol{Q}(0)}{\partial \dot{\boldsymbol{q}}^{\mathrm{T}}}.$$

В таком случае уравнение примет вид

$$A\ddot{\mathbf{q}} + B\dot{\mathbf{q}} + C\mathbf{q} = 0, \tag{2.1}$$

получили линеаризация уравнений Лагранжа І. Но его сходу к каноническом виду не привести.

Вспомним, что энергия системы

$$E = \frac{1}{2}\dot{\boldsymbol{q}}\cdot A\dot{\boldsymbol{q}} + \frac{1}{2}\boldsymbol{q}\cdot C\boldsymbol{q}, \quad \Rightarrow \quad \frac{dE}{dt} = A\ddot{\boldsymbol{q}}\cdot\dot{\boldsymbol{q}} + C\boldsymbol{q}\cdot\dot{\boldsymbol{q}} = [A\ddot{\boldsymbol{q}} + C\boldsymbol{q}]\cdot\dot{\boldsymbol{q}} = -B\dot{\boldsymbol{q}}^2 = N.$$

И пошла классификация: если $N\equiv 0$, то силы называем гироскопическими. Если $N\leqslant 0$, то силы $\partial uccunamus$ ные.

Def 2.1. Положение равновесия q^* называется асимптотически устойчивым, если оно устойчиво и

$$\exists \delta \colon \forall \, |\dot{\boldsymbol{q}}| < \delta, \, |\boldsymbol{q}| < \delta \quad \lim_{t \to \infty} \boldsymbol{q}(t) = 0, \, \lim_{t \to \infty} \dot{\boldsymbol{q}}(t) = 0.$$

Возвращаясь к уравнению, вспомним что решение ищется в виде²

$$q = \sum_{i=1}^{2n} C_i u_i \exp(\lambda_i t), \quad \Rightarrow \quad [A\lambda^2 + B\lambda + C] u = 0, \quad \Rightarrow \quad \det[A\lambda^2 + B\lambda + C] = 0,$$

тогда мы находим 2n решений $\lambda_1, \ldots, \lambda_{2n}$, и, соответственно, 2n амплитудных векторов.

Thr 2.2 (Достаточное условие асимптотической устойчивости). Для того, чтобы решение $q = q^*$ было асимптотически устойчиво достаточно, чтобы

$$\operatorname{Re} \lambda_i < 0, \quad \forall i \in \{1, \dots, 2n\}.$$

Eсли $\exists \lambda_i \colon \operatorname{Re} \lambda_i > 0$, тогда всё не так хорошо.

Как узнать, что ..., для этого достаточно посмотреть на рыбу

$$a_m \lambda^m + a_{m-1} \lambda^{m-1} + \ldots + a_0 = 0,$$

и отрежем голову и хвост, получим матрицу

$$\Gamma = \begin{pmatrix} a_{m-1} & a_{m-3} & \dots & 0 \\ a_m & a_{m-2} & \dots & 0 \\ 0 & a_{m-1} & \dots & 0 \\ 0 & 0 & \dots & a_0 \end{pmatrix},$$

так получили матрицу Гурвица.

Thr 2.3 (Критерий Рауса-Гурвица). Для того, чтобы $\operatorname{Re} \lambda_i < 0$ необходимо и достаточно, чтобы $a_i > 0$, и $\Delta_1, \Delta_3, \ldots, \Delta_{m-1} > 0$.

Есть другие формы.

 $^{^2}$ В общем случае решение системы вообще сложнее (при кратных λ), но качественно всё примерно в таком же духе, поэтому, ну, всё хорошо.

3 Элементы теории бифуркаций

Общий подход

Запишем уравнения Лагранжа

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}} - \frac{\partial T}{\partial q} = Q,$$

где основная идея Гамильтонова формализма – всегда уравнения разрешимы относительно ускорений $\ddot{q} = \ddot{q}(q,\dot{q})$. Пусть $x_1 = q_1, x_2 = \dot{q}_1, x_3 = q_2, x_4 = \dot{q}_2$, и т.д. Приведем уравнения к нормальной форме Коши

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}), \qquad \boldsymbol{x} \in M^{2n},$$

где M^{2n} — фазовое пространство, или пространство состояний.

Не умоляя общности будем просто рассматривать системы вида $\dot{x} = f(x)$, считая, что $x \in M^n$. Посмотрим на некоторую $x_0 \in M^n$, — начальные условия. Продолжаем считать, что решение охапки диффуров единственно, тогда и через каждую точку конфигурационного многообразия проходит единственная траектория.

Def 3.1. Множество траекторий (интегральных кривых) образует фазовый портрет. Бифуркация – качественное изменение фазового портрета при плавном изменении параметров модели. Бифуркационная диаграмма отображает бифуркацию системы.

3.1 Двумерные динамические системы

Посмотрим ещё на системы на \mathbb{R}^2 .

Def 3.2. Предельный цикл – замкнутая периодическая траектория (ЗПТ) системы дифференциальных уравнений, изолированная от других ЗПТ. Такжа ЗПТ такая, что для всех траекторий из некоторой окрестности периодических траекторий стремится к ней при $t \to +\infty$ (установившийся периодический цикл) **или** при $t \to -\infty$ (неустановившийся предельный цикл).

Другими словами является аттрактором для некоторой своей окрестности.

4 Метод усреднений и нормальные формы

4.1 Метод усреднений

Рассмотрим уравнение вида

$$\ddot{x} + \omega^2 x + \varepsilon h(x, \dot{x}) = 0.$$

Рассмотрим систему в терминах быстрого времени $\tau=t$ и медленного $T=\varepsilon t$. В первом приближение получим, что

$$O(1): x_0 = r(T)\cos(\omega\tau + \varphi(T))$$

$$O(\varepsilon): \partial_{\tau}^2 x_1 + \omega^2 x_1 = -2\partial_{\tau}\partial_T x_0 - h = +2\omega\partial_T (r\cos(\omega\tau + \varphi)) - h =$$

$$= 2\omega(r'\sin(\omega\tau + \varphi)) + r\varphi'\cos(\omega\tau + \varphi) - h$$

и далее будем считать, что $\omega \tau + \varphi = \theta$, и разложим h в ряд Фурье. Тогда

$$h = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos k\theta + b_k \sin k\theta,$$

соответственно, дабы убить резонансные слагаемые,

$$2\omega r' - b_1 = 0 2\omega r \varphi' - a_1 = 0. \Rightarrow \begin{cases} \omega r' = \frac{1}{2} \frac{1}{\pi} \int_0^{2\pi} h \sin \theta \, d\theta &= \langle h \sin \theta \rangle \\ \omega r \varphi' = \dots &= \langle h \cos \theta \rangle \end{cases}$$

Осциллятор Ван дер Поля

Рассмотрим уравнения вида

$$\ddot{x} + x + \varepsilon(x^2 - 1)\dot{x} = 0,$$

что соответствует рассмотренному случаю с $\omega = 1$, или $(\tau + \varphi = \theta)$

$$h = (r^2 \cos^2(\tau + \varphi) - 1)(-r \sin(\tau + \varphi)) =$$
$$= r(\sin \theta - r^2 \cos^2 \theta \sin \theta),$$

тогда

$$r' = r = \frac{1}{2\pi} \int_0^{2\pi} \left(\sin^2 \theta - r^2 \cos^2 \theta \sin^2 \theta \right) d\theta = \frac{r}{2} \left(1 - \frac{r^2}{4} \right),$$

что соответствует возникновению предельного цикла радиуса 2.

4.2 Нормальная форма Коши

Продолжаем рассматривать

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}), \qquad \boldsymbol{x} = 0: \boldsymbol{f}(0) = 0.$$

также будем считать, что f(x) – аналитическая функция, и разложим её в ряд. Уравнение вида

$$\dot{\boldsymbol{x}} = A\boldsymbol{x} + \boldsymbol{g}(\boldsymbol{x}),$$

хотим свести к линейному виду. Сделаем следующую замену

$$m{x}
ightarrow ilde{m{x}} \quad \Rightarrow \quad \dot{ ilde{m{x}}} = \Lambda ilde{m{x}} + m{q}(ilde{m{x}}),$$

далее сделаем замену

$$\tilde{x} = y + p(y),$$

где p(y) – «вектор» из полиномов минимальной нелинейной степени

Прямой подстановкой получаем, что

$$\dot{\boldsymbol{y}} + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{y}^{\mathrm{T}}} \dot{\boldsymbol{y}} = \left(E + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{y}^{\mathrm{T}}} \right) \dot{\boldsymbol{y}} = \Lambda \boldsymbol{y} + \Lambda \boldsymbol{p} + \boldsymbol{g}(\boldsymbol{y} + \boldsymbol{p}), \quad \Rightarrow \quad \dot{\boldsymbol{y}} = \left(E + \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{y}^{\mathrm{T}}} \right)^{-1} \left(\Lambda \boldsymbol{y} + \Lambda \boldsymbol{p} + \boldsymbol{g}(\boldsymbol{y} + \boldsymbol{p}) \right),$$

а теперь разложим всё в ряд и оставим слагаемые степени не более $\deg p = k$, тогда

$$\dot{\boldsymbol{y}} = \left(E - \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{y}^{\mathrm{T}}}\right) (\Lambda \boldsymbol{y} + \Lambda \boldsymbol{p} + \boldsymbol{g}^{m}(\boldsymbol{y})) + O(|\boldsymbol{y}|^{m+1}) =$$

$$= \Lambda \boldsymbol{y} + \Lambda \boldsymbol{p} + \boldsymbol{g}^{m}(\boldsymbol{y}) - \frac{\partial \boldsymbol{p}}{\partial \boldsymbol{y}^{\mathrm{T}}} \Lambda \boldsymbol{y} + O(|\boldsymbol{y}|^{m+1}).$$

Вспомним, что понятно как выглядит p_i

$$p_i = \sum_{k_1, \dots, k_n} p_{k_1, \dots, k_n}^i y^{k_1} \dots y^{k_n}, \qquad k_1 + \dots + k_n = m,$$

а также g_i^m

$$g_i^m = \sum_{k_1, \dots, k_n} g_{k_1, \dots, k_n}^i y^{k_1} \dots y^{k_n},$$

работая с каждым мономом приходим к уравнениям

$$\lambda_{i} p_{k_{1},...,k_{n}}^{i} - (k_{1}\lambda_{1} + k_{2}\lambda_{2} + ... + k_{n}\lambda_{n}) p_{k_{1},...,k_{n}}^{i} = -g_{k_{1},...,k_{n}}^{i}, \quad \Rightarrow \quad \boxed{p_{k_{1},...,k_{n}}^{i} = \frac{-g_{k_{1},...,k_{n}}^{i}}{\lambda_{i} - (\mathbf{k} \cdot \boldsymbol{\lambda})}}$$

что приводит нас к следующей теореме.

Thr 4.1 (Теорема Пуанкаре-Дюлака). Можно всё убрать, кроме резонансных слагаемых.

5 Уравнение Гамильтона

Запишем уравнения Лагранжа

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0, \qquad L = \frac{1}{2}a_{ij}\dot{q}^i\dot{q}^j - \Pi.$$

Пусть есть некоторый импульс

$$p=rac{\partial L}{\partial \dot{q}}=A\dot{q}+\dots, \quad \Rightarrow \quad \dot{q}=A^{-1}+\dots, \quad \Rightarrow \quad \stackrel{(q,\dot{q},t)-}{(q,p.t)-}$$
 гамильтоновы переменные $(q,p.t)-$ гамильтоновы переменные

5.1 Немного геометрии

Было конфигурационное многообразие размерности n. Каждому состоянию соответствует точка на многообразии, $\dot{q} \in T_q M$. Собственно, $p \in T_q^* M$ (TM – касательное расслоение) лежит в кокасательном пространстве (T^*M – кокасательное расслоение)(почему?). Тогда возьмем некоторый функционал

$$H(q, p, t): T^*M \times \mathbb{R}^1 \to \mathbb{R}^1.$$

Считая (q,t) = const

$$dL = \frac{\partial L}{\partial \dot{q}} \cdot d\dot{q} = p \cdot \, d\dot{q}, \qquad \quad d(\dot{q}p) = p \, d\dot{q} + \dot{q} \, dp = \, dL + \dot{q} \, dp.$$

Тогда давайте всё сгруппируем

$$d(\dot{q}p - L) = \dot{q} dp = \frac{\partial H}{\partial p} dp.$$

To есть dL = pdq, a $dH = \dot{q} dp$.

Def 5.1. Определим гамильтониан, как

$$H(q, p, t) \stackrel{\text{def}}{=} p \cdot \dot{q}(q, p, t) - L(q, \dot{q}(q, p, t), t).$$

5.2 Уравнения Гамильтона

Запишем дифференциал Гамильтониана

$$\begin{split} dH &= \frac{\partial H}{\partial q} \, dq + \frac{\partial H}{\partial p} \, dp + \frac{\partial H}{\partial t} \, dt, \\ dH &= \dot{q} \, dp + p \, d\dot{q} - \frac{\partial L}{\partial q} \, dq - \frac{\partial L}{\partial \dot{q}} \, d\dot{q} - \frac{\partial L}{\partial t} \, dt. \end{split}$$

Во-первых отсюда следует, что

$$\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}. ag{5.1}$$

Также имея право приравнивать коэффициенты

$$\dot{q} = \frac{\partial H}{\partial p}, \qquad \dot{q} = \frac{\partial H}{\partial p}, \ \dot{p} = \frac{\partial L}{\partial q} \quad \Rightarrow \quad \boxed{\dot{q} = \frac{\partial H}{\partial p}, \ \dot{p} = -\frac{\partial H}{\partial q}}.$$
 (5.2)

Которые, о чудо, уже существуют в нормальной форме Коши.

Замечания

Консервативные системы

Для консервативной системы

$$L = T_2 - \Pi, \quad \Rightarrow \quad H = \frac{\partial L}{\partial \dot{q}} \cdot \dot{q} - T_2 + \Pi = T_2 + \Pi = E.$$
 (5.3)

Вообще уранвения Гамильтона написал ещё Лагранж, а H, потому что Гюйгенс. А выше мы получили полную механическую энергию.

Общность происходящего

Последовательный курс – некоторая история, должна быть приемственность тем. В общем так мы и движемся в сторону большей абстракции. Но минус в том, что лагранжева механика и гамильтонова механика существуют сами по себе. Гамильтонова система это (M,ω,H) , где M – конфигурационное 2n-мерное многообразие, ω – 2-форма, а H – гамильтониан, то есть функция гамильтоновых переменных.

Задача 19.24

Есть некоторая сфера, у которой радиус – известная функция времени R(t) (реономная связь), есть сила тяжести g. В качестве координат выберем сферические θ, φ .

$$r = (\ldots)$$
 \Rightarrow $T = \frac{m}{2}(R^2\dot{\theta}^2 + R^2\dot{\varphi}^2\sin^2\theta) + \frac{m}{2}\dot{R}^2.$

Потенциальная энергия

$$\Pi = mgR\cos\theta.$$

Теперь

$$p_{\theta} = \frac{\partial L}{\partial \dot{q}_{\theta}} = mR^{2}\dot{\theta}, \qquad \Rightarrow \qquad \dot{\theta} = \frac{p_{\theta}}{mR^{2}},$$

$$p_{\varphi} = mR^{2}\dot{\varphi}^{2}\sin^{2}\theta, \qquad \Rightarrow \qquad \dot{\varphi} = \frac{p_{\varphi}}{mR^{2}\sin^{2}\theta}$$

Теперь

$$H = p \cdot q - L = p_{\varphi}\varphi + p_{\theta}\dot{\theta} - L = \frac{mR^2}{2}\left(p_{\theta}^2 + \frac{p^2\varphi}{\sin^2\theta}\right) - \frac{m}{2}\dot{R}^2(t) + mgR(t)\cos\theta.$$

Запишем теперь уравнения Гамильтона

$$\dot{\theta} = \frac{p_{\theta}}{mR^2}, \qquad \dot{\varphi} = \frac{p_{\varphi}}{mR^2 \sin^2 \theta},$$

что вполне логично, а также второй набор

$$\dot{p}_{\theta} = -mg\dot{R}$$

5.3 Уравнения Рауса

Идея в том, что можно делать преобразование только по некоторому набору переменных, что приводит нас к функции Раусса

$$R = \left(\sum_{i=k+1}^{n} p_{i} \dot{\hat{q}}_{i}\right) - L(q, \dot{q}_{1}, \dots, \dot{q}_{k+1}, \dot{\hat{q}}_{k}, \dots, \dot{\hat{q}}_{n}, t),$$

где шляпка соответствует выражению через q, p, t. Можно ещё здесь уравнения записать, см. билеты.

5.4 Уравнения Уиттекера

Хочется уменьшать порядок дифференциальных уравнений. Пусть $H(q,p) \equiv h$. Тогда у нас есть некоторая 2n-1-поверхность. Пусть

$$\frac{\partial H}{\partial p_1} \neq 0, \quad \Rightarrow \quad p_1 = -K(q, p_2, \dots, p_n, h).$$

Получается, что траектории заполняют не всё пространство, а некоторое его подпространство. Количество уравнения можем сменить с 2n до 2n-2

$$\frac{\partial H}{\partial q_i} + \frac{\partial H}{\partial p_1} \frac{\partial p_1}{\partial q_i} = 0, \qquad \quad \frac{\partial H}{\partial p_i} + \frac{\partial H}{\partial p_1} \frac{\partial p_1}{\partial p_i} = 0.$$

Теперь выпешем уравнения Гамильтона

$$\begin{split} \dot{q}_1 &= \frac{\partial H}{\partial p_1}, & \dot{p}_1 &= -\frac{\partial H}{\partial q_1}, \\ \dot{q}_i &= \frac{\partial H}{\partial p_i}, & \dot{p}_i &= -\frac{\partial H}{\partial q_i}. \end{split}$$

Тогда

$$\frac{dq_i}{dq_1} = \frac{\partial H}{\partial p_i} / \frac{\partial H}{\partial p_1} = \frac{\partial K}{\partial p_i}, \qquad \frac{dp_i}{dq_1} = -\frac{\partial H}{\partial q_i} / \frac{\partial H}{\partial p_1} = -\frac{\partial K}{\partial q_i}, \qquad i = 2, \dots, n.$$
 (5.4)

Красота и победа!)

6 Интегралы системы

Есть система Гамильтона

$$\begin{cases} \dot{q} = \partial_p H \\ \dot{p} = -\partial_q H \end{cases}$$

и для них существуют первые интегралы – $\varphi(q, p, t)$ – сохранение на любых траектория движения системы.

Как их получать? Во-первых, до тех пор, пока гамильтонин явно от времени не зависит – это первый интеграл:

$$\partial_t H = 0, \quad \Rightarrow \quad d_t H = 0.$$

Аналогично

$$\frac{\partial H}{\partial a^i} = 0, \quad \Rightarrow \quad p_i = \text{const.}$$

Def 6.1. Скобкой Пуассона для функции гамильтоновых переменных может быть определена, как

$$\{\varphi,\psi\} = \frac{\partial \varphi}{\partial q} \frac{\partial \psi}{\partial p} - \frac{\partial \varphi}{\partial p} \frac{\partial \psi}{\partial q}.$$

Что происходит и почему

$$\frac{d\varphi}{dt} = \frac{\partial \varphi}{\partial t} + \frac{\partial \varphi}{\partial q}\dot{q} + \frac{\partial \varphi}{\partial p}\dot{p} = \frac{\partial \varphi}{\partial t}\{\varphi, H\} = 0,$$

соответственно скобки пуассона – вплоне логичный критерий первого интеграла.

Thr 6.2. Если φ, ψ – первые интагралы, то $\{\varphi, \psi\}$ – это первый интеграл или число.

Первые интегралы бывают зависимы, так для $\varphi_1, \ldots, \varphi_m$ можем составить

$$\operatorname{rg} \frac{\partial(\varphi_1, \dots, \varphi_m)}{\partial(q^i, p_i, t)} = m.$$

Thr 6.3 (Теорема Э. Нетер). Пусть есть некоторое однопараметрическое семейство $\tilde{q} = \tilde{q}(q,t,\alpha)$ и $\tilde{t} = \tilde{t}(q,t,\alpha)$ где $\alpha \in \mathbb{R}^1$ такое, что дифференцируемо, $\alpha = 0 \sim$ тождественное преобразование, и

$$L\left(\tilde{q},\frac{d\tilde{q}}{d\tilde{t}},t\right)\,d\tilde{t}=L\left(q,\frac{dq}{dt},t\right)\,dt.$$

Тогда в системе есть первый интеграл, который вычисляется так:

$$\varphi(q,p,t) = \tilde{p} \cdot \left(\frac{\partial \tilde{q}}{\partial \alpha}\right)_{\alpha=0} - H \cdot \left(\frac{\partial \tilde{t}}{\partial \alpha}\right)_{\alpha=0}.$$

Например,

$$\tilde{q} = q + \alpha, \quad \Rightarrow \quad p_q = \text{const}$$

 $\tilde{t} = t + \alpha, \quad \Rightarrow \quad H = \text{const}.$

Задача 1

Пусть есть некоторая точка в радиальном потенциальном поле. Лагранжиан

$$L = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\varphi^2) - \Pi(r).$$

Тогда вполне логично рассмотреть $\tilde{\varphi} = \varphi + \alpha$, тогда

$$I = p_{\varphi} \left(\frac{\partial \tilde{\varphi}}{\partial \alpha_{\alpha=0}} = p_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = mr^2 \sin^2 \theta \dot{\varphi}, \right)$$

так что момент сохраняется. Вопрос: если есть первый интеграл, то существует ли симметрия для этого первого интеграла?

6.1 Интегральные инварианты

Def 6.4. *Интегральный инвариант* – интегральное выражение, от гамильтоновых переменных, сохраняющееся на некоторой области траектории прямых путей.

Скажем, что N – конфигурационное многообразие, $(q,\dot{q})\in TN$, также введем ${\boldsymbol x}=(q,p)^{\rm T}$, где

$$x \in M^{2n} = T^*N$$
.

Продолжим итерации, перейдем к

$$(\boldsymbol{x}, \dot{\boldsymbol{x}}) \in TM^{4n}$$
.

Теперь введем некоторый

$$L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t) \equiv L(q, p, \dot{q}, \dot{p}, t) = p \cdot \dot{q} - H(q, p, t).$$

Также мы знаем, что

$$\delta \int L \, dt = 0, \quad \Rightarrow \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{\boldsymbol{x}}} - \frac{\partial L}{\partial \boldsymbol{x}} = 0, \quad \Rightarrow \quad \dot{p} = -\frac{\partial H}{\partial q}, \quad \dot{q} = \frac{\partial H}{\partial p}.$$

что верно для задачи варьирования за закрепленными концами

 $\Phi_{\rm W}$ 3 $T_{\rm F}$ X

Тогла

$$\delta \int_{t_0(\alpha)}^{t_1(\alpha)} L \, dt = \left(p \delta q - H \delta t \right) \bigg|_{t_0}^{t_1} - \int_{t_0}^{t_1} \left[\left(\dot{p} + \frac{\partial H}{\partial q} \right) \cdot \delta q + \left(\dot{q} - \frac{\partial H}{\partial p} \right) \cdot \delta p \right] \, dt.$$

Это приводит нас к **трубке прямых путей**. Вводим согласованные контуры по α .

Вспоминаем, что

$$\int_{\alpha=0}^{\alpha=1} \delta S(\alpha) = S(1) - S(0) \equiv 0.$$

Тогла

$$\oint_{C_0} (p\delta q - H\delta t) - \oint_{C_1} (p\delta q - H\delta t) = 0,$$

что в силу произвольности выбранных контуров

$$J_{\Pi K} = \oint_C (p\delta q - H\delta t) = \text{const}$$

что приводит нас к интегралу Пуанкаре-Картана.

В изохронном случае

$$I_{\Pi} = \oint p\delta q = \text{const}$$

что приводит к унивреальному интегральному инварианту Пуанкаре. Прикол в том, что он не особо зависит от H.

Пример

Пусть $L=\frac{1}{2}(\dot{q}^2-q^2)$, и в качестве C_0 выберем $q=\cos\alpha$ и $\dot{q}=\sin\alpha$, при $t\equiv0$. Хочется найти вид трубки прямых путей и посчитать интегральный инвариант:

$$\begin{cases} q = A\cos(t+\alpha) \\ p = \dot{q} = -A\sin(t+\alpha) \end{cases}$$

Тогда

$$q^2 + p^2 = A^2,$$

что соответсвует окружности, или, в случае с движением по времени, цилиндру. Интеграл Пуанкаре тогда

$$I_{\Pi} = \oint p \delta q = \int_{0}^{2\pi} p \frac{\partial q}{\partial \alpha} \delta \alpha = \int_{0}^{2\pi} \cos^{2} \alpha \, d\alpha \stackrel{!}{=} A^{2} \pi.$$

то есть пока n=1 интеграл Пуанкаре – это просто фазовый объем, который для всех гамильтоновых систем сохраняется.

6.2 Обратные теоремы теории интегральных инвариантов

Пока что мы сформулировали, что если система Гамильтонова, то у нее сохраняется интегральный инвариант Пуанкаре и интегральный инвариант Пуанкаре Картана.

Но верно и обратно, если $\forall \bar{c}$

$$I_{\Pi} = \oint p \delta q = \text{const}, \quad \Rightarrow \quad \exists H(q, p, t).$$

Если же сохранятся для некоторой F интеграл $I_{\Pi \mathbf{K}},$ то H=F(q,p,t)+f(t).

7 Канонические преобразования

Thr 7.1 (Теорема Ли Хуа-Сжуна). *Был некоторый интегральный инвариант Пуанкаре, так вот, утвержда-ется, что*

$$J = \oint A(q, p, t) \cdot \delta q + B(q, p, t) \cdot \delta p = const \cdot J_{\Pi},$$

только вот интегральный инвариант Пуанкаре существует для трубки прямых путей, а сейчас мы обобщаем это на отношения для разных трубок.

Говоря о некоторых следствиях

$$\oint q\delta p = c \oint p\delta q, \quad \Rightarrow \quad \oint \underbrace{(q\delta p - cp\delta q)}_{\delta \Phi} = 0.$$

Раньше были уравнения Лагранжа

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0, \qquad \bigg/\tilde{q} = \tilde{q}(q,t)\bigg/ \qquad \frac{d}{dt}\frac{\partial \tilde{L}}{\partial \dot{\tilde{q}}} - \frac{\partial \tilde{L}}{\partial \tilde{q}} = 0.$$

Но, скорости не преобразуются.

Чуть прикольнее в уравнениях Якоби

$$\begin{cases} \tilde{q} = \tilde{q}(q, p, t) \\ \tilde{p} = \tilde{p}(q, p, t) \end{cases} \left| \frac{\partial(\tilde{q}, \tilde{p})}{\partial(q, p)} \right| \neq 0.$$
 (7.1)

что приводит к ситуации

$$\begin{cases} \dot{q} = \partial_p H \\ \dot{p} = -\partial_q H \end{cases} \rightarrow \begin{cases} \dot{\tilde{q}} = \tilde{Q}(\dot{\tilde{q}}, \dot{\tilde{p}}, t) \\ \dot{\tilde{p}} = \tilde{P}(\dot{\tilde{q}}, \dot{\tilde{p}}, t) \end{cases}$$

Def 7.2. Преобразование (7.1) называется каноническим, если оно переводит любую гамильтонову систему в гамильтонову.

Из вариационных принципов умеем получать уравнения Лагранжа, да и уравнения Гамильтона тоже

$$\delta \int_{t_0}^{t_1} \left(p \cdot \dot{q} - H \right) \, dt = 0.$$

Как раньше выбираем $\dot{x} = [q, p]^{\mathrm{T}}$, что приведет к 2n переменным.

Но и в новых переменных хочется видеть что-то похожее,

$$\delta \int \left(\tilde{p} \cdot \dot{\tilde{q}} - \tilde{H} \right) dt = 0,$$

что приводит нас к мысли о том, что

$$\tilde{p} \cdot \dot{\tilde{q}} - \tilde{H} = c(p \cdot \dot{q} - H) - \frac{d\tilde{F}}{dt}(q, p, t).$$

домножая, получаем

$$\tilde{p}\cdot d\tilde{q} - \tilde{H}\,dt = cp\,dq - H\,dt - \,dF,$$

тогда

$$d\tilde{q} = \frac{\partial \tilde{q}}{\partial t} dt + \delta^t \tilde{q}, \qquad dF = \frac{\partial F}{\partial t} dt + \delta^t F.$$

так приходим к уравнению

$$\tilde{p} \cdot \frac{\partial \tilde{q}}{\partial t} dt + \tilde{p} \cdot \partial^t \tilde{q} - \tilde{H} dt = cp \cdot dq - cH dt - \frac{\partial F}{\partial t} dt - \delta^t F,$$

что приводит к уравнению

$$\boxed{\tilde{p} \cdot \delta^t \tilde{q} - cp \, dq = -\delta^t F}, \quad - \quad \text{критерий канонического преобразования}, \tag{7.2}$$

где $c - \epsilon$ алентность, соответствующая теореме Ли Хуа-Сжуна, а F - производящая функция.

Thr 7.3 (критерий каноничности преобразования). Если существует с и F такие, что выполняется (7.2), то преобразование $(p,q) \mapsto (\tilde{p},\tilde{q})$ канонично.

Бонусом находим новый Гамильтониан, приравнивая коэффициенты при dt.

$$\tilde{H} = cH + \frac{\partial F}{\partial t} + \tilde{p} \cdot \frac{\partial \tilde{q}}{\partial t}.$$

Решим Задачу

Возьмем такое преобразование

$$\begin{cases} \tilde{q} = p \operatorname{tg} t \\ \tilde{p} = q \operatorname{ctg} t \end{cases}, \qquad H = \frac{qp}{\sin t \cos t}.$$

тогда

$$\tilde{p}\,\delta^t\tilde{q} = q\,\mathrm{ctg}\,t\,\,\mathrm{tg}\,t\,\delta^t p = q\delta^t p = \delta^t(qp) - p\delta q, \quad \Rightarrow \quad \tilde{p}\cdot\delta^t\tilde{q} - (-1)p\delta q = -\delta(-qp).$$

Теперь можем найти новый гамильтониан

$$\tilde{H} = (-1)\frac{pq}{\sin t \cos t} + 0 + \frac{q \cot(t) p}{\cos^2 t} = 0,$$

что очень здорово, ведь в новых переменных $\dot{\tilde{q}}=0,\,\dot{\tilde{p}}=0,$ что позволило найти первые интегралы системы, а также движение

$$\begin{cases} q = \beta \lg t, \\ p = \alpha \operatorname{ctg} t. \end{cases}$$

7.1 Импульсы не нужны

Вообще, пусть нам хочется в (q, \tilde{q}) onucanue

$$\left|\frac{\partial \tilde{q}}{\partial p}\right| \neq 0, \quad \Rightarrow \quad (q, p) \to (q, \tilde{q}).$$

Отличная идея! Теперь $F \to S(q, \tilde{q}, t)$ – производящая функция. К слову, такие преобразования называются csobodhumu. Кусок вывода сразу можем выкинуть и перейти к

$$\tilde{p} \cdot d\tilde{q} - \tilde{H} dt = cp \cdot dq - cH dt - dS,$$

что дает возможность работать сразу работать с независимыми дифференциалами

$$\begin{cases} \tilde{p} = -\partial_{\tilde{q}} S \\ p = c^{-1} \partial_{q} S \end{cases} - \text{ критерий каноничности в } (q, \tilde{q}) \text{ onucanue}.$$

Ещё и гамильтониан, как раньше, находим

$$\tilde{H} = cH + \partial_t S.$$

Задача 2

Есть преобразование

$$\begin{cases} q = \sqrt{2\tilde{p}}\cos\tilde{q} \\ p = \sqrt{2\tilde{p}}\sin\tilde{q} \end{cases}, \quad H = \frac{q^2 + p^2}{2}.$$

Теперь

$$p = q \operatorname{tg} \tilde{q}, \quad \tilde{p} = \frac{q^2}{2 \cos^2 \tilde{q}},$$

и теперь, интегрируя,

$$\begin{cases} \frac{q^2}{2}(1+\operatorname{tg}^2\tilde{q}) = -\partial_{\tilde{q}}S, \\ q\operatorname{tg}\tilde{q} = c^{-1}\partial_qS, \end{cases} \Rightarrow S = -\left(\frac{q^2}{2}\operatorname{tg}\tilde{q}\right), \quad c = -1.$$

И новый гамильтониан

$$\tilde{H} = -H = -\tilde{p}.$$

Заметим, что тут уже не восстановить Лагранжиан, – преобразования Лежандра вырожденно. И уравнения движения

$$q = \sqrt{2\alpha}\cos(-t + \beta)$$
$$p = \sqrt{2\alpha}\sin(-t + \beta).$$

7.2 Симплектическая геометрия (симплектология)

Гамильтонова система – набор (M, ω, H) , где $\dim M = 2n$ – конфигурационное многообразие, H – гамильтониан, ω – симплектическая 2-форма.

Thr 7.4 (Теорема Дарбу). Всегда локально есть такие переменные, что 2-форма принимает канонический вид

$$\omega = \sum_{i=1}^{n} dp_i \wedge dq_i.$$

К слову, $H: M \times \mathbb{R}_t \to \mathbb{R}$. Также точка $x \in M$ такая, что

$$\xi \in T_x M, \quad \omega_{\xi}(\ldots) = \omega(\ldots, \xi) \in T_x^* M,$$

что позволяет задать отображение

$$\omega \colon T_x M \to T_x^* M.$$

Если сделаем для всех $x \in M$, то

$$\omega \colon TM \mapsto T^*M.$$

Аналогично можем построить

$$J \colon T^*M \mapsto TM$$
.

Таким образом, считая dH 1-формой,

$$J(dH) \in TM$$
, – гамильтоново векторное поле,

что позволяет прийти к

$$\dot{x} = J(dH)(x), \qquad J = \begin{bmatrix} 0 & E \\ -E & 0 \end{bmatrix}.$$

Как мы до такой жизни дошли? Было же трёхмерное пространство, время, которое на часах смотрим, наб-людаемые переменные, но как только мы захотели обобщить, выработать общий метод, пришлось прийти к n-мерному конфигурационному многообразию, -- деятельности воспаленного мозга.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea *commodo* consequat. Duis aute irure dolor in reprehenderit in voluptate velit **esse** cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.