05. Ecuaciones diferenciales fundamentales de la teoría de la elasticidad

parte b: secciones 5.3 a 5.7

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Mecánica de Sólidos

2022b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada [Álvarez, 2022].

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Las condiciones de frontera describen, por ejemplo, la forma como está soportado el sólido o las cargas superficiales aplicadas, y esto se modela matemáticamente definiendo ya sea los desplazamientos o los esfuerzos en los puntos del contorno del sólido.

Condición de frontera esencial

(de desplazamiento o cinemática) se especifican los desplazamientos.

Condición de frontera natura

esfuerzos en el contorno del sólido.

Las condiciones de frontera describen, por ejemplo, la forma como está soportado el sólido o las cargas superficiales aplicadas, y esto se modela matemáticamente definiendo ya sea los desplazamientos o los esfuerzos en los puntos del contorno del sólido.

Condición de frontera esencial

(de desplazamiento o cinemática) se especifican los desplazamientos.

Condición de frontera natura

esfuerzos en el contorno del sólido

Las condiciones de frontera describen, por ejemplo, la forma como está soportado el sólido o las cargas superficiales aplicadas, y esto se modela matemáticamente definiendo ya sea los desplazamientos o los esfuerzos en los puntos del contorno del sólido.

Condición de frontera esencial

(de desplazamiento o cinemática) se especifican los desplazamientos.

Condición de frontera natural

(de fuerza o esfuerzo) describe los esfuerzos en el contorno del sólido.

Figura: (5.3) La especificación de las condiciones de frontera incluyedescribir los desplazamientos y los esfuerzos en la frontera del sólido.

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

5.4. Condiciones de equilibrio en la frontera

- ¿Qué pasa en la frontera del sólido?
- ¿De qué forma las fuerzas superficiales se convierten en esfuerzos en el interior del sólido?

5.4. Condiciones de equilibrio en la frontera

- ¿Qué pasa en la frontera del sólido?
- ¿De qué forma las fuerzas superficiales se convierten en esfuerzos en el interior del sólido?

5.4. Condiciones de equilibrio en la frontera

- ¿Qué pasa en la frontera del sólido?
- ¿De qué forma las fuerzas superficiales se convierten en esfuerzos en el interior del sólido?

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

- Estamos utilizando las funciones X, Y y Z para representar las funciones $\Omega \to \mathbb{R}$ que describen la variación de las fuerzas másicas por unidad de volumen en el interior del sólido Ω .
- Estamos empleando los símbolos \bar{X} , \bar{Y} y \bar{Z} para representar las funciones $\delta\Omega \to \mathbb{R}$ que describen la variación de las fuerzas superficiales por unidad de área en el contorno $\delta\Omega$ del sólido Ω .
- $x := [x, y, z]^T$ representa la posición en el espacio referida a los tres ejes coordenados.
- dS representará un diferencial de superficie (S mayúscula), mientras que ds representa un diferencial de longitud de arco, asociado al parámetro de longitud de arco (s minúscula).

- Estamos utilizando las funciones X, Y y Z para representar las funciones Ω → ℝ que describen la variación de las fuerzas másicas por unidad de volumen en el interior del sólido Ω.
- Estamos empleando los símbolos \bar{X} , \bar{Y} y \bar{Z} para representar las funciones $\delta\Omega \to \mathbb{R}$ que describen la variación de las fuerzas superficiales por unidad de área en el contorno $\delta\Omega$ del sólido Ω .
- $\mathbf{x} := [x, y, z]^T$ representa la posición en el espacio referida a los tres ejes coordenados.
- dS representará un diferencial de superficie (S mayúscula), mientras que ds representa un diferencial de longitud de arco, asociado al parámetro de longitud de arco (s minúscula).

- Estamos utilizando las funciones X, Y y Z para representar las funciones $\Omega \to \mathbb{R}$ que describen la variación de las fuerzas másicas por unidad de volumen en el interior del sólido Ω .
- Estamos empleando los símbolos \bar{X} , \bar{Y} y \bar{Z} para representar las funciones $\delta\Omega \to \mathbb{R}$ que describen la variación de las fuerzas superficiales por unidad de área en el contorno $\delta\Omega$ del sólido Ω .
- $\mathbf{x} := [x, y, z]^T$ representa la posición en el espacio referida a los tres ejes coordenados.
- dS representará un diferencial de superficie (S mayúscula), mientras que ds representa un diferencial de longitud de arco, asociado al parámetro de longitud de arco (s minúscula).

- Estamos utilizando las funciones X, Y y Z para representar las funciones $\Omega \to \mathbb{R}$ que describen la variación de las fuerzas másicas por unidad de volumen en el interior del sólido Ω .
- Estamos empleando los símbolos \bar{X} , \bar{Y} y \bar{Z} para representar las funciones $\delta\Omega \to \mathbb{R}$ que describen la variación de las fuerzas superficiales por unidad de área en el contorno $\delta\Omega$ del sólido Ω .
- $\boldsymbol{x} \coloneqq [x, y, z]^T$ representa la posición en el espacio referida a los tres ejes coordenados.
- dS representará un diferencial de superficie (S mayúscula), mientras que ds representa un diferencial de longitud de arco, asociado al parámetro de longitud de arco (s minúscula).

- Estamos utilizando las funciones X, Y y Z para representar las funciones $\Omega \to \mathbb{R}$ que describen la variación de las fuerzas másicas por unidad de volumen en el interior del sólido Ω .
- Estamos empleando los símbolos \bar{X} , \bar{Y} y \bar{Z} para representar las funciones $\delta\Omega \to \mathbb{R}$ que describen la variación de las fuerzas superficiales por unidad de área en el contorno $\delta\Omega$ del sólido Ω .
- $\boldsymbol{x} \coloneqq [x, y, z]^T$ representa la posición en el espacio referida a los tres ejes coordenados.
- dS representará un diferencial de superficie (S mayúscula), mientras que ds representa un diferencial de longitud de arco, asociado al parámetro de longitud de arco (s minúscula).

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Figura: (5.4) Condiciones de frontera en el punto (x(s), y(s)) para el caso bidimensional. Observe que el contorno del sólido Ω se describe por una curva paramétrica parametrizada con respecto a la longitud de arco que inicia en el punto s=0, se traza en el sentido contrario a las manecillas del reloj a medida que s varía en el intervalo [0, p), siendo p el perímetro de $\delta\Omega$.

Partiendo de la ecuación de Cauchy (2.3) que nos permite analizar no solo los esfuerzos en el interior del sólido, sino también las condiciones en la frontera:

$$\underbrace{\begin{pmatrix} q_x \\ q_y \end{pmatrix}}_{\mathbf{q}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{pmatrix}}_{\mathbf{q}} \underbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}}_{\mathbf{\hat{n}}}$$

Parametrizando y relacionando con las fuerzas superficiales f:

Ecuaciones de equilibrio externo bidimensionales

$$\underbrace{\begin{pmatrix} \bar{X}(s) \\ \bar{Y}(s) \end{pmatrix}}_{f(s)} = \underbrace{\begin{pmatrix} \sigma_x(s) & \tau_{xy}(s) \\ \tau_{xy}(s) & \sigma_y(s) \end{pmatrix}}_{\underline{\sigma}(s)} \underbrace{\begin{pmatrix} \alpha(s) \\ \beta(s) \end{pmatrix}}_{\hat{n}(s)}$$

Se relacionan las cargas superficiales con la forma de la frontera y los esfuerzos en el interior del sólido para un punto $s\in\delta\Omega$

Partiendo de la ecuación de Cauchy (2.3) que nos permite analizar no solo los esfuerzos en el interior del sólido, sino también las condiciones en la frontera:

$$\underbrace{\begin{pmatrix} q_x \\ q_y \end{pmatrix}}_{\mathbf{q}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{pmatrix}}_{\mathbf{q}} \underbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}}_{\mathbf{\hat{n}}}$$

Parametrizando y relacionando con las fuerzas superficiales f:

Ecuaciones de equilibrio externo bidimensionales

$$\underbrace{\begin{pmatrix} \bar{X}(s) \\ \bar{Y}(s) \end{pmatrix}}_{\boldsymbol{f}(s)} = \underbrace{\begin{pmatrix} \sigma_x(s) & \tau_{xy}(s) \\ \tau_{xy}(s) & \sigma_y(s) \end{pmatrix}}_{\underline{\boldsymbol{\sigma}}(s)} \underbrace{\begin{pmatrix} \alpha(s) \\ \beta(s) \end{pmatrix}}_{\hat{\boldsymbol{n}}(s)}$$

Se relacionan las cargas superficiales con la forma de la frontera y los esfuerzos en el interior del sólido para un punto $s\in\delta\Omega$

Partiendo de la ecuación de Cauchy (2.3) que nos permite analizar no solo los esfuerzos en el interior del sólido, sino también las condiciones en la frontera:

$$\underbrace{\begin{pmatrix} q_x \\ q_y \end{pmatrix}}_{\mathbf{q}} = \underbrace{\begin{pmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{pmatrix}}_{\mathbf{g}} \underbrace{\begin{pmatrix} \alpha \\ \beta \end{pmatrix}}_{\mathbf{\hat{n}}}$$

Parametrizando y relacionando con las fuerzas superficiales f:

Ecuaciones de equilibrio externo bidimensionales

$$\underbrace{\begin{pmatrix} \bar{X}(s) \\ \bar{Y}(s) \end{pmatrix}}_{\boldsymbol{f}(s)} = \underbrace{\begin{pmatrix} \sigma_x(s) & \tau_{xy}(s) \\ \tau_{xy}(s) & \sigma_y(s) \end{pmatrix}}_{\boldsymbol{\underline{\sigma}}(s)} \underbrace{\begin{pmatrix} \alpha(s) \\ \beta(s) \end{pmatrix}}_{\boldsymbol{\hat{n}}(s)}$$

Se relacionan las cargas superficiales con la forma de la frontera y los esfuerzos en el interior del sólido para un punto $s\in\delta\Omega$

Figura: Componentes del vector $\hat{\boldsymbol{n}} \coloneqq \hat{\boldsymbol{n}}(s)$. La curva gruesa representa la frontera del sólido y el vector normal a ella está ubicado en el punto (x(s), y(s)).

Caso 1: (i cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos\phi, \cos\left(\frac{\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos \phi = \frac{dy}{ds}$$
$$\beta = \cos \left(\frac{\pi}{2} - \phi\right) = \sin \phi = -\frac{dx}{ds}$$

Caso 1: (i cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos\phi, \cos\left(\frac{\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos \phi = \frac{dy}{ds}$$
$$\beta = \cos \left(\frac{\pi}{2} - \phi\right) = \sin \phi = -\frac{dx}{ds}$$

Caso 1: (i cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos\phi, \cos\left(\frac{\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos \phi = \frac{dy}{ds}$$
$$\beta = \cos \left(\frac{\pi}{2} - \phi\right) = \sin \phi = -\frac{dx}{ds}$$

Caso 2: (ii cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos(\pi - \phi), \cos\left(\frac{\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos(\pi - \phi) = -\cos\phi = \frac{-dy}{-ds} = \frac{dy}{ds}$$
$$\beta = \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi = -\frac{dx}{ds}$$

Caso 2: (ii cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos(\pi - \phi), \cos\left(\frac{\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos(\pi - \phi) = -\cos\phi = \frac{-dy}{-ds} = \frac{dy}{ds}$$
$$\beta = \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi = -\frac{dx}{ds}$$

Caso 3: (iii cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos(\pi + \phi), \cos\left(\frac{\pi}{2} + \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos(\pi + \phi) = -\cos\phi = \frac{-dy}{ds} = \frac{dz}{ds}$$
$$\beta = \cos\left(\frac{\pi}{2} + \phi\right) = -\sin\phi = -\frac{dx}{ds}$$

Caso 3: (iii cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos(\pi + \phi), \cos\left(\frac{\pi}{2} + \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos(\pi + \phi) = -\cos\phi = \frac{-dy}{ds} = \frac{dy}{ds}$$
$$\beta = \cos\left(\frac{\pi}{2} + \phi\right) = -\sin\phi = -\frac{dx}{ds}$$

Caso 4: (iv cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos(2\pi - \phi), \cos\left(\frac{3\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos(2\pi - \phi) = \cos\phi = \frac{dy}{ds}$$
$$\beta = \cos\left(\frac{3\pi}{2} - \phi\right) = -\sin\phi = -\frac{da}{ds}$$

Caso 4: (iv cuadrante)

$$\hat{\boldsymbol{n}} \coloneqq \left[\cos(2\pi - \phi), \cos\left(\frac{3\pi}{2} - \phi\right)\right]^T$$
, por lo tanto:

$$\alpha = \cos(2\pi - \phi) = \cos\phi = \frac{dy}{ds}$$
$$\beta = \cos\left(\frac{3\pi}{2} - \phi\right) = -\sin\phi = -\frac{dx}{ds}$$

Vector normal y unitario al contorno (bidimensional)

$$\hat{\boldsymbol{n}} \coloneqq \left[\frac{dy(s)}{ds}, -\frac{dx(s)}{ds} \right]$$

- $\bullet \ \forall (x(s),y(s)) \in \delta \Omega$
- \bullet se deduce que las componentes del vector $\hat{\boldsymbol{n}}$ están relacionadas con la geometría del sólido
- Esta ecuación es válida únicamente cuando la curva (x(s), y(s)) esté parametrizada con respecto a la longitud de arco

Tarea

Se deja como ejercicio al lector demostrar que el vector tangente a la curva paramétrica (x(s), y(s)), que apunta en el mismo sentido de la curva y se grafica a medida que s aumenta, está dado por $\hat{s} = \left[\frac{dx(s)}{ds}, \frac{dy(s)}{ds}\right]$.

Vector normal y unitario al contorno (bidimensional)

$$\hat{m{n}} \coloneqq \left[rac{dy(s)}{ds}, -rac{dx(s)}{ds}
ight]$$

- $\bullet \ \forall (x(s),y(s)) \in \delta \Omega$
- \bullet se deduce que las componentes del vector $\hat{\boldsymbol{n}}$ están relacionadas con la geometría del sólido
- Esta ecuación es válida únicamente cuando la curva (x(s), y(s)) esté parametrizada con respecto a la longitud de arco

Tarea

Se deja como ejercicio al lector demostrar que el vector tangente a la curva paramétrica (x(s),y(s)), que apunta en el mismo sentido de la curva y se grafica a medida que s aumenta, está dado por $\hat{s} = \left\lceil \frac{dx(s)}{ds}, \frac{dy(s)}{ds} \right\rceil$.

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

5.4.2. Análisis en tres dimensiones

Haciendo un análisis similar al propuesto para el caso bidimensional:

Ecuaciones de equilibrio externo tridimensionales

$$\underbrace{\begin{pmatrix} \bar{X}(\boldsymbol{x}) \\ \bar{Y}(\boldsymbol{x}) \\ \bar{Z}(\boldsymbol{x}) \end{pmatrix}}_{\boldsymbol{f}(x,y,z)} = \underbrace{\begin{pmatrix} \sigma_x(\boldsymbol{x}) & \tau_{xy}(\boldsymbol{x}) & \tau_{xz}(\boldsymbol{x}) \\ \tau_{xy}(\boldsymbol{x}) & \sigma_y(\boldsymbol{x}) & \tau_{yz}(\boldsymbol{x}) \\ \tau_{xz}(\boldsymbol{x}) & \tau_{yz}(\boldsymbol{x}) & \sigma_z(\boldsymbol{x}) \end{pmatrix}}_{\boldsymbol{f}(\boldsymbol{x})} \underbrace{\begin{pmatrix} \alpha(\boldsymbol{x}) \\ \beta(\boldsymbol{x}) \\ \gamma(\boldsymbol{x}) \end{pmatrix}}_{\boldsymbol{\hat{n}}(\boldsymbol{x})}$$

- $\forall (x, y, z) \in \delta \Omega$
- Relaciona las cargas superficiales con la geometría de las fronteras del sólido y con los esfuerzos internos.
- En tres dimensiones no es posible describir la frontera como una curva paramétrica.

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Un cuerpo se encuentra en **equilibrio estático** cuando:

$$f_{masicas} + f_{superficiales} = 0$$
 $m_{masicas} + m_{superficiales} = 0$;

Acciones producidas por las fuerzas másicas:

$$f_{masicas} = \iiint_{\Omega} b(x) dV$$
 $m_{masicas} = \iiint_{\Omega} x \times b(x) dV$

Acciones producidas por las fuerzas superficiales:

Un cuerpo se encuentra en **equilibrio estático** cuando:

$$f_{masicas} + f_{superficiales} = 0$$
 $m_{masicas} + m_{superficiales} = 0$;

Acciones producidas por las fuerzas másicas:

$$f_{masicas} = \iiint_{\Omega} b(x) dV$$
 $m_{masicas} = \iiint_{\Omega} x \times b(x) dV;$

Acciones producidas por las fuerzas superficiales:

$$m{f}_{superficiales} =
ot \oint_{\delta\Omega} m{f}(m{x}) dS \qquad m{m}_{superficiales} =
ot \oint_{\delta\Omega} m{x} imes m{f}(m{x}) dS$$

Un cuerpo se encuentra en **equilibrio estático** cuando:

$$f_{masicas} + f_{superficiales} = 0$$
 $m_{masicas} + m_{superficiales} = 0$;

Acciones producidas por las fuerzas másicas:

$$f_{masicas} = \iiint_{\Omega} b(x) dV$$
 $m_{masicas} = \iiint_{\Omega} x \times b(x) dV;$

Acciones producidas por las fuerzas superficiales:

$$m{f}_{superficiales} = \oint \int_{\delta\Omega} m{f}(m{x}) dS \qquad m{m}_{superficiales} = \oint \int_{\delta\Omega} m{x} imes m{f}(m{x}) dS.$$

En conclusión, como tenemos equilibrio estático, resulta que:

$$\iiint_{\Omega} \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta\Omega} \boldsymbol{f}(\boldsymbol{x}) dS = 0$$

$$\iiint_{\Omega} \boldsymbol{x} \times \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta\Omega} \boldsymbol{x} \times \boldsymbol{f}(\boldsymbol{x}) dS = 0$$

Tenga en cuenta que las integrales \oiint son integrales de contorno, que se efectúan sobre toda la "piel"de Ω , es decir, sobre $\delta\Omega$.

Particularización para el caso bidimensional

La ecuación (5.26a) (equilibrio de fuerzas):

$$\iint_{\Omega} X(\boldsymbol{x}) dA + \oint_{\delta\Omega} \bar{X}(\boldsymbol{s}) ds = 0$$
$$\iint_{\Omega} Y(\boldsymbol{x}) dA + \oint_{\delta\Omega} \bar{Y}(\boldsymbol{s}) ds = 0$$

La ecuación (5.26b) (equilibrio de momentos):

$$\iint_{\Omega} (xY(x) - yX(x)) dA + \oint_{\delta\Omega} (x(s)\bar{Y}(s) - y(s)\bar{X}(s)) ds = 0$$

Particularización para el caso bidimensional

La ecuación (5.26a) (equilibrio de fuerzas):

$$\iint_{\Omega} X(\boldsymbol{x}) dA + \oint_{\delta\Omega} \bar{X}(\boldsymbol{s}) ds = 0$$

$$\iint_{\Omega} Y(\boldsymbol{x}) dA + \oint_{\delta\Omega} \bar{Y}(\boldsymbol{s}) ds = 0$$

La ecuación (5.26b) (equilibrio de momentos):

$$\iint_{\Omega} (xY(x) - yX(x)) dA + \oint_{\delta\Omega} (x(s)\bar{Y}(s) - y(s)\bar{X}(s)) ds = 0$$

Particularización para el caso bidimensional

La ecuación (5.26a) (equilibrio de fuerzas):

$$\iint_{\Omega} X(\boldsymbol{x}) dA + \oint_{\delta\Omega} \bar{X}(\boldsymbol{s}) ds = 0$$
$$\iint_{\Omega} Y(\boldsymbol{x}) dA + \oint_{\delta\Omega} \bar{Y}(\boldsymbol{s}) ds = 0$$

La ecuación (5.26b) (equilibrio de momentos):

$$\iint_{\Omega} (xY(\boldsymbol{x}) - yX(\boldsymbol{x})) dA + \oint_{\delta\Omega} (x(s)\bar{Y}(s) - y(s)\bar{X}(s)) ds = 0$$

Ecuaciones integrales de equilibrio

Ecuaciones integrales de equilibrio (postulado de Cauchy)

Sea un sólido Ω el cual está sujeto a unas fuerzas másicas y de superficie representadas por los campos vectoriales \boldsymbol{b} y \boldsymbol{f} , respectivamente. Entonces cada subdominio V de un sólido Ω , es decir, cada $V\subseteq\Omega$ satisface la siguientes ecuaciones de equilibrio

$$\iiint_{V} \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta V} \boldsymbol{f}(\boldsymbol{x}) dS = 0$$

$$\iiint_{V} \boldsymbol{x} \times \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta V} \boldsymbol{x} \times \boldsymbol{f}(\boldsymbol{x}) dS = 0$$

- $\boldsymbol{x} \coloneqq [x, y, z]^T \in V$
- Tienen como dominio $V \subseteq \Omega$ (5.29), por lo que son ecuaciones más generales que las vistas anteriormente (5.26).

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Recordemos las EDPs de equilibrio:

$$\mathrm{div}\underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Primer enfoque

Al hacer sumatorias de fuerzas en un elemento diferencial de sólido.

Recordemos la primera EDPs de equilibrio tridimensional:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

Segundo enfoque

Cualquier subconjunto V del sólido Ω está en equilibrio de fuerzas, tal y como lo dicen las **ecuaciones integrales de equilibrio** (5.29)

Recordemos las EDPs de equilibrio:

$$\operatorname{div}\underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Primer enfoque

Al hacer sumatorias de fuerzas en un elemento diferencial de sólido.

Recordemos la primera EDPs de equilibrio tridimensional:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

Segundo enfoque

Cualquier subconjunto V del sólido Ω está en equilibrio de fuerzas, tal y como lo dicen las **ecuaciones integrales de equilibrio** (5.29)

Recordemos las EDPs de equilibrio:

$$\operatorname{div}\underline{\boldsymbol{\sigma}} + \boldsymbol{b} = 0$$

Primer enfoque

Al hacer sumatorias de fuerzas en un elemento diferencial de sólido.

Recordemos la primera EDPs de equilibrio tridimensional:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

Segundo enfoque

Cualquier subconjunto V del sólido Ω está en equilibrio de fuerzas, tal y como lo dicen las **ecuaciones integrales de equilibrio** (5.29)

Procedimiento:

$$\iiint_{V} \boldsymbol{b}(\boldsymbol{x})dV + \oiint_{\delta V} \underline{\boldsymbol{\sigma}} \hat{\boldsymbol{n}}(\boldsymbol{x})dS = 0$$

Tomando la primera ecuación integral

$$\iiint_{V} X(\boldsymbol{x})dV + \oiint_{\delta V} \begin{bmatrix} \sigma_{\boldsymbol{x}}(\boldsymbol{x}) \\ \tau_{xy}(\boldsymbol{x}) \\ \tau_{xz}(\boldsymbol{x}) \end{bmatrix} \cdot \hat{\boldsymbol{n}}(\boldsymbol{x})dS = 0$$

$$\iiint_{V} X(\boldsymbol{x})dV + \iiint_{V} \operatorname{div}\left(\left[\sigma_{x}(\boldsymbol{x}), \tau_{xy}(\boldsymbol{x}), \tau_{xz}(\boldsymbol{x})\right]^{T}\right) dV = 0$$

$$\iiint_{V} \left(\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X\right) dV = 0$$

Procedimiento:

$$\iiint_{V} \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta V} \underline{\boldsymbol{\sigma}} \hat{\boldsymbol{n}}(\boldsymbol{x}) dS = 0$$

Tomando la primera ecuación integral

$$\iiint_{V} X(x)dV + \oiint_{\delta V} \begin{bmatrix} \sigma_{x}(x) \\ \tau_{xy}(x) \\ \tau_{xz}(x) \end{bmatrix} \cdot \hat{\boldsymbol{n}}(x)dS = 0$$

$$\iiint_{V} X(\boldsymbol{x})dV + \iiint_{V} \operatorname{div}\left([\sigma_{x}(\boldsymbol{x}), \tau_{xy}(\boldsymbol{x}), \tau_{xz}(\boldsymbol{x})]^{T} \right) dV = 0$$

$$\iiint_{V} \left(\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X \right) dV = 0$$

Procedimiento:

$$\iiint_{V} \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta V} \underline{\boldsymbol{\sigma}} \hat{\boldsymbol{n}}(\boldsymbol{x}) dS = 0$$

Tomando la primera ecuación integral

$$\iiint_{V} X(\boldsymbol{x})dV + \oiint_{\delta V} \begin{bmatrix} \sigma_{x}(\boldsymbol{x}) \\ \tau_{xy}(\boldsymbol{x}) \\ \tau_{xz}(\boldsymbol{x}) \end{bmatrix} \cdot \hat{\boldsymbol{n}}(\boldsymbol{x})dS = 0$$

$$\iiint_{V} X(\boldsymbol{x})dV + \iiint_{V} \operatorname{div}\left(\left[\sigma_{x}(\boldsymbol{x}), \tau_{xy}(\boldsymbol{x}), \tau_{xz}(\boldsymbol{x})\right]^{T}\right) dV = 0$$

$$\iiint_{V} \left(\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X\right) dV = 0$$

Procedimiento:

$$\iiint_{V} \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta V} \underline{\underline{\boldsymbol{\sigma}}} \boldsymbol{\hat{n}}(\boldsymbol{x}) dS = 0$$

Tomando la primera ecuación integral

$$\iiint_{V} X(\boldsymbol{x})dV + \oiint_{\delta V} \begin{bmatrix} \sigma_{x}(\boldsymbol{x}) \\ \tau_{xy}(\boldsymbol{x}) \\ \tau_{xz}(\boldsymbol{x}) \end{bmatrix} \cdot \hat{\boldsymbol{n}}(\boldsymbol{x})dS = 0$$

$$\iiint_{V} X(\boldsymbol{x})dV + \iiint_{V} \operatorname{div}\left([\sigma_{\boldsymbol{x}}(\boldsymbol{x}), \tau_{xy}(\boldsymbol{x}), \tau_{xz}(\boldsymbol{x})]^{T} \right) dV = 0$$

$$\iiint_{V} \left(\frac{\partial \sigma_{\boldsymbol{x}}}{\partial \boldsymbol{x}} + \frac{\partial \tau_{xy}}{\partial \boldsymbol{y}} + \frac{\partial \tau_{xz}}{\partial \boldsymbol{z}} + X \right) dV = 0$$

Procedimiento:

$$\iiint_{V} \boldsymbol{b}(\boldsymbol{x}) dV + \oiint_{\delta V} \underline{\boldsymbol{\sigma}} \hat{\boldsymbol{n}}(\boldsymbol{x}) dS = 0$$

Tomando la primera ecuación integral

$$\iiint_{V} X(\boldsymbol{x})dV + \oiint_{\delta V} \begin{bmatrix} \sigma_{x}(\boldsymbol{x}) \\ \tau_{xy}(\boldsymbol{x}) \\ \tau_{xz}(\boldsymbol{x}) \end{bmatrix} \cdot \hat{\boldsymbol{n}}(\boldsymbol{x})dS = 0$$

$$\iiint_{V} X(\boldsymbol{x})dV + \iiint_{V} \operatorname{div}\left([\sigma_{x}(\boldsymbol{x}), \tau_{xy}(\boldsymbol{x}), \tau_{xz}(\boldsymbol{x})]^{T} \right) dV = 0$$

$$\iiint_{V} \left(\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X \right) dV = 0$$

Como esta ecuación es válida para todo $V\subseteq\Omega$ (es decir, cualquier parte V del sólido Ω puede ser escogida), entonces deducimos que el integrando es cero (0), y por lo tanto:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

Pregunta de control 12, sección 5.15

Sea $f:\Omega\to\mathbb{R}$ una función que se integra sobre una región V y supongamos que su integral vale cero para todo $V\subseteq\Omega,$ es decir, $\int_V f(x)dx=0\ \forall\ V\subseteq\Omega;$ esto implica que $f(x)=0\ \forall\ x\in\Omega$

Como esta ecuación es válida para todo $V\subseteq\Omega$ (es decir, cualquier parte V del sólido Ω puede ser escogida), entonces deducimos que el integrando es cero (0), y por lo tanto:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

Pregunta de control 12, sección 5.15

Sea $f:\Omega\to\mathbb{R}$ una función que se integra sobre una región V y supongamos que su integral vale cero para todo $V\subseteq\Omega,$ es decir, $\int_V f(x)dx=0\ \forall\ V\subseteq\Omega;$ esto implica que $f(x)=0\ \forall\ x\in\Omega$

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Caso bidimensional

$$\varepsilon_x(x,y) = \frac{\partial u(x,y)}{\partial x} \to \partial u(x,y) = \varepsilon_x(x,y)\partial x \quad \to u(x,y) = \int \varepsilon_x(x',y)dx' + f(y)dx'$$

$$\varepsilon_y(x,y) = \frac{\partial v(x,y)}{\partial y} \to \partial v(x,y) = \varepsilon_y(x,y)\partial x \quad \to v(x,y) = \int \varepsilon_y(x,y')dy' + g(x)dy'$$

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(\int \varepsilon_x(x',y) dx' + f(y) \right) + \frac{\partial}{\partial x} \left(\int \varepsilon_y(x,y') dy' + g(x) \right)$$

Caso bidimensional

$$\varepsilon_x(x,y) = \frac{\partial u(x,y)}{\partial x} \to \partial u(x,y) = \varepsilon_x(x,y)\partial x \quad \to u(x,y) = \int \varepsilon_x(x',y)dx' + f(y)$$

$$\varepsilon_y(x,y) = \frac{\partial v(x,y)}{\partial y} \to \partial v(x,y) = \varepsilon_y(x,y)\partial x \quad \to v(x,y) = \int \varepsilon_y(x,y')dy' + g(x)$$

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(\int \varepsilon_x(x',y) dx' + f(y) \right) + \frac{\partial}{\partial x} \left(\int \varepsilon_y(x,y') dy' + g(x) \right)$$

Caso bidimensional

$$\varepsilon_x(x,y) = \frac{\partial u(x,y)}{\partial x} \to \partial u(x,y) = \varepsilon_x(x,y)\partial x \quad \to u(x,y) = \int \varepsilon_x(x',y)dx' + f(y)$$

$$\varepsilon_y(x,y) = \frac{\partial v(x,y)}{\partial y} \to \partial v(x,y) = \varepsilon_y(x,y)\partial x \quad \to v(x,y) = \int \varepsilon_y(x,y')dy' + g(x)$$

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(\int \varepsilon_x(x',y) dx' + f(y) \right) + \frac{\partial}{\partial x} \left(\int \varepsilon_y(x,y') dy' + g(x) \right)$$

Caso bidimensional

Organizando términos:

$$\frac{df(y)}{dy} + \frac{dg(x)}{dx} = \gamma_{xy}(x,y) - \frac{\partial}{\partial y} \left(\int \varepsilon_x(x',y) dx' \right) - \frac{\partial}{\partial x} \left(\int \varepsilon_y(x,y') dy' \right).$$

El desplazamiento depende de dos funciones f(y) y g(x); encontrarlas requiere de cierta pericia en el cálculo de la solución, ya que estas dos funciones contienen términos asociados a los desplazamientos y rotaciones rígidas del sólido.

Ni el desplazamiento ni la rotación rígida producen deformaciones longitudinales o angulares en el sólido, es decir:

$$\varepsilon_x(x,y) = \varepsilon_{x,y} = \gamma_{xy}(x,y) = 0 \ \forall \ (x,y) \in \Omega$$

Obtenemos que los desplazamientos vendrán dados por:

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 obtenemos $u(x, y) = c_1 + f(y)$ (1)

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 obtenemos $v(x, y) = c_2 + g(x)$ (2)

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(c_1 + f(y) \right) + \frac{\partial}{\partial x} \left(c_2 + g(x) \right) = \frac{df(y)}{dy} + \frac{dg(x)}{dx} = 0$$

Ni el desplazamiento ni la rotación rígida producen deformaciones longitudinales o angulares en el sólido, es decir:

$$\varepsilon_x(x,y) = \varepsilon_{x,y} = \gamma_{xy}(x,y) = 0 \ \forall \ (x,y) \in \Omega$$

Obtenemos que los desplazamientos vendrán dados por:

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 obtenemos $u(x, y) = c_1 + f(y)$ (1)

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 obtenemos $v(x, y) = c_2 + g(x)$ (2)

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(c_1 + f(y) \right) + \frac{\partial}{\partial x} \left(c_2 + g(x) \right) = \frac{df(y)}{dy} + \frac{dg(x)}{dx} = 0$$

Ni el desplazamiento ni la rotación rígida producen deformaciones longitudinales o angulares en el sólido, es decir:

$$\varepsilon_x(x,y) = \varepsilon_{x,y} = \gamma_{xy}(x,y) = 0 \ \forall \ (x,y) \in \Omega$$

Obtenemos que los desplazamientos vendrán dados por:

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 obtenemos $u(x, y) = c_1 + f(y)$ (1)

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 obtenemos $v(x, y) = c_2 + g(x)$ (2)

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(c_1 + f(y) \right) + \frac{\partial}{\partial x} \left(c_2 + g(x) \right) = \frac{df(y)}{dy} + \frac{dg(x)}{dx} = 0$$

Ni el desplazamiento ni la rotación rígida producen deformaciones longitudinales o angulares en el sólido, es decir:

$$\varepsilon_x(x,y) = \varepsilon_{x,y} = \gamma_{xy}(x,y) = 0 \ \forall \ (x,y) \in \Omega$$

Obtenemos que los desplazamientos vendrán dados por:

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 obtenemos $u(x, y) = c_1 + f(y)$ (1)

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 obtenemos $v(x, y) = c_2 + g(x)$ (2)

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(c_1 + f(y) \right) + \frac{\partial}{\partial x} \left(c_2 + g(x) \right) = \frac{df(y)}{dy} + \frac{dg(x)}{dx} = 0$$

Ni el desplazamiento ni la rotación rígida producen deformaciones longitudinales o angulares en el sólido, es decir:

$$\varepsilon_x(x,y) = \varepsilon_{x,y} = \gamma_{xy}(x,y) = 0 \ \forall \ (x,y) \in \Omega$$

Obtenemos que los desplazamientos vendrán dados por:

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 obtenemos $u(x, y) = c_1 + f(y)$ (1)

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 obtenemos $v(x, y) = c_2 + g(x)$ (2)

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(c_1 + f(y) \right) + \frac{\partial}{\partial x} \left(c_2 + g(x) \right) = \frac{df(y)}{dy} + \frac{dg(x)}{dx} = 0$$

Ni el desplazamiento ni la rotación rígida producen deformaciones longitudinales o angulares en el sólido, es decir:

$$\varepsilon_x(x,y) = \varepsilon_{x,y} = \gamma_{xy}(x,y) = 0 \ \forall \ (x,y) \in \Omega$$

Obtenemos que los desplazamientos vendrán dados por:

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
 obtenemos $u(x, y) = c_1 + f(y)$ (1)

$$\varepsilon_y = \frac{\partial v}{\partial y}$$
 obtenemos $v(x, y) = c_2 + g(x)$ (2)

$$\gamma_{xy}(x,y) = \frac{\partial}{\partial y} \left(c_1 + f(y) \right) + \frac{\partial}{\partial x} \left(c_2 + g(x) \right) = \frac{df(y)}{dy} + \frac{dg(x)}{dx} = 0$$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones:

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones:

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones:

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones:

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones:

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

La ecuación anterior se puede descomponer en dos ecuaciones diferenciales a saber:

$$\frac{df(y)}{dy} + \omega_0 = 0 \qquad \frac{dg(x)}{dx} - \omega_0 = 0$$

Resolviendo estas ecuaciones:

$$f(y) = -\omega_0 y + d_1 \qquad g(x) = \omega_0 x + d_2$$

Reemplazando en (eq 5.32)

$$u(x,y) = c_1 + d_1 - \omega_0 y$$
 $v(x,y) = c_2 + d_2 + \omega_0 x$

Los desplazamientos asociados a la rotación y al desplazamiento rígido en las direcciones x y y están dados, respectivamente, por:

$$u(x, y) = u_0 - \omega_0 y$$
 $v(x, y) = v_0 + \omega_0 x;$

Donde:

- u_0 , v_0 representan el desplazamiento rígido en las direcciones x y y, respectivamente.
- ω_0 representa, para ángulos pequeños, el ángulo de rotación rígida del sólido en radianes.

Figura: (5.6) El rectángulomostrado con vértices de coordenadas (0,0) y (x,y) sufre un desplazamiento rígido u_0 en la dirección x y otro v_0 en la dirección y; adicionalmente rota rígidamente un ángulo ω_0 medido en radianes y en sentido antihorario; observe que el desplazamiento del punto (x,y) está dado por las ecuaciones (5.35). Para el cálculo de las distancias $\omega_0 x y - \omega_0 y$ se tuvo en cuenta el hecho de que para ángulos pequeños $\omega_0 \approx \tan \omega_0$

Derrotero

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.3. Nota sobre la nomenclatura
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
- 3 5.5. Equilibrio estático
- ⑤ 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplazamientos a partir de las deformaciones
- 6 Referencias

Referencias I

Álvarez, D. A. (2022).

Teoría de la elasticidad.

Universidad Nacional de Colombia.