⑩ 日本 国 特 許 庁 (JP)

① 特許出願公告

平2-34311

❷❸公告 平成2年(1990)8月2日

⑫ 特 報(B2) 許 公

DInt. Cl. 5 識別記号 庁内整理番号 25/08 25/20 8517-4F 8517-4F 7446-4F B 32 B 08 CES F 7/04 // C 08 L 23:02

発明の数 1 (全5頁)

❷発明の名称			オレフイン系樹脂組成物とシリコーンゴムとの複合成形物												
					②特 ② 出			昭59-32608							
@発	明	者	斧	原		Œ	幸	東京都千代田区内幸町1丁目2番2号 住友ベークライト 株式会社内							
@発	明	者	河	井		研	_	- 東京都千代田区内幸町1丁目2番2号 住友ベークライト 株式会社内							
⑦発	明	者	柴	田			勝	東京都千代田区内幸町1丁目2番2号 住友ベークライト 株式会社内							
@発	明	者	五	+	嵐		明	神奈川県横浜市戸塚区秋葉町472番地 富士システムズ株 式会社横浜工場内							
@発	明	者	Ш			信	久	. 神奈川県横浜市戸塚区秋葉町472番地 富士システムズ株 式会社横浜工場内							
砂出	夏	人	住友 会社	_	クライ	卜柱	朱式	東京都千代田区内幸町1丁目2番2号							
⊕出	顧	人	富士 社	シス	テムス	株式	七会	東京都渋谷区恵比寿1丁目11番1号							

1

玲 英 子

切特許請求の範囲

審査官

1 オレフィン系樹脂100重量部に対して、オル ガノ水素シロキサン単位が少くとも30mol%以上 であるオルガノ水素ポリシロキサンを0.01乃至10 重量部含有する、オレフイン系樹脂組成物よりな 5 化物等のエチレン系共重合体、アイオノマー樹 る成形品の表面に、付加重合型シリコーンゴムの 硬化層を設けることを特長とする、オレフイン系 樹脂組成物と付加重合型シリコーンゴムとの複合 成形物。

2 オルガノ水素ポリシロキサンが、該分子中に 10 ムとの複合成形物。 ピニル基又はアリル基を有することを特長とす る、特許請求の範囲第1項記載のオレフイン系樹 脂組成物と付加重合型シリコーンゴムとの複合成 形物。

ロピレン、エチレンープロピレン共重合体、エチ

レンーαーオレフイン共重合体、エチレンープロ ピレンージエン三元共重合体、エチレン一酢酸ビ ニル共重合体、エチレンーピニルアルコール共重 合体、エチレンービニルアルコール共重合体ケン

脂、ポリブタジエン及びブタジエン系共重合体か ら選ばれた、1種又は2種以上の混合物であるこ とを特長とする、特許請求の範囲第1項記載のオ レフイン系樹脂組成物と付加重合型シリコーンゴ

4 オレフイン系樹脂が、ポリエチレン、ポリプ ロピレン、エチレンープロピレン共重合体、エチ レンーαーオレフイン共重合体、エチレンープロ ピレンージェン三元共重合体、エチレン一酢酸ピ 3 オレフイン系樹脂が、ポリエチレン、ポリプ 15 ニル共重合体、エチレンーピニルアルコール共重 合体、エチレンービニルアルコール共重合体ケン

2

3

化物等のエチレン系共重合体、アイオノマー樹 脂、ポリブタジエン及びブタジエン系共重合体か ら選ばれた1種又は2種以上と、上配以外の熱可 塑性樹脂との混合物であることを特長とする、特 物と付加重合型シリコーンゴムとの複合成形物。

発明の詳細な説明

[産業上の利用分野]

本発明は、オレフイン系樹脂組成物と付加重合 型シリコーンゴムとの複合成形物に関するもので 10 ある。

[従来技術]

一般にオレフイン系樹脂、特にポリエチレン、 ポリプロピレン、エチレンープロピレン共重合体 は、低価格で強靱性、剛性に優れており、包装材 15 物に関するものである。 料や医用材料として広く使用されている。しか し、これらのオレフイン系樹脂は極性のない結晶 性樹脂であり、溶剤にほとんど溶解しない為、金 属やプラスチックとは極めて接着しにくいとされ てきた。

そこで従来は、コロナ放電処理などの物理的処 理、あるいは重クロム酸ー硫酸混液等による化学 的処理によつて、表面酸化を行ない、カルボニル 基などの極性基を有する酸化皮膜を生成させ、こ れらの処理品同士をエポキシーポリアミド系、ニ 25 トリルゴム系、イソシアネート系、シアノアクリ レート系の接着剤等によつて接着させる試みがな されてきたが、いずれの場合にも充分実用的な接 着強度の得られるものは、非常に少ない。

また、この様にして表面処理したオレフイン系 30 樹脂へ、溶剤で希釈した別の樹脂をコーテイング しても、ほとんどの場合簡単に剝離し、複合一体 化することは困難である。

〔発明の目的〕

本発明の目的は、低価格でありながら強靱性、35 剛性に優れ、医療用具や包装材料として広く使用 されているオレフイン系樹脂と、高価格で強度が 乏しいが生体適合性等に優れたシリコーンゴムと を複合一体化し、熱水やオートグレーブ処理に対 しても剝離せず耐久性のある、主として医療用素 40 材あるいは工業用用途等に有益な素材を提供する ことにある。

〔発明の構成〕

本発明者らは先に特願昭58-203699号等に於い

て、ある特定処方の軟質塩化ビニル樹脂に、ある 特定処方の付加重合型液状シリコーンゴムを塗布 し加熱することによつて、両者が強力に接着する ことを見出しているが、さらに研究を進める中 許請求の範囲第**1**項記載のオレフイン系樹脂組成 5 で、オレフイン系樹脂中にオルガノ水素ポリシロ キサンを添加することによつて、ほとんど全ての 付加重合型シリコーンゴムとの接着が可能になる ことを見出し、鋭意検討を進めて本発明を完成さ せるに至つた。

> 即ち、本発明は、オレフイン系樹脂100重量部 に対してオルガノ水素シロキサン単位が少くとも 30mol%以上であるオルガノ水素ポリシロキサン を0.01乃至10重量部含有する、オレフイン系樹脂 組成物と付加重合型シリコーンゴムとの複合成形

本発明に於ける付加重合型液状シリコーンゴム とは、一般式(1)に示されるビニル基含有のポリシ ロキサンと、一般式(2)に示されるオルガノ水素ポ リシロキサン、及び白金系触媒よりなり、必要に 20 応じて補強材としてのシリカ等を添加したもの で、加熱によつてゴム状に硬化し得るものであ る。

[R:~R: 炭素数 6以下の同種又は異種の 1価 の炭化水素基

m:正の整数〕

式中

(R₅、R₇~R₁₀:炭素数 6 以下の同種又は異種の 1価の炭化水素基

R。: 水素基又は炭素数 3 以下の同種又は異種 の1価の炭化水素基

n: 2以上100以下の整数

1:0又は100以下の正の整数〕

また、一般にいわゆる自己接着性シリコーンゴ ムと云われるものに示される成分として、エポキ シ化合物、カルボン酸無水物、一般式(3)に示され

6

るアクリロキシアルキル基含有のシラン又はシロ キサン、あるいは不飽和炭化水素基含有のオキシ ラン化合物の内、1種以上を含むものであつて も、基本的に第(1)式、第(2)式に示される成分を含 んでいればなんら問題はなく、このような接着性 5 向上の為の成分の添加は、さらに相乗効果を生み 出す。

$$CH_2=C-C-(CH_2)_n-Si\equiv (3)$$

$$R O$$

〔式中 R:CH。又はH基 n:1以上3以下の整数)

本発明に於けるオレフイン系樹脂組成物とは、 主成分が低密度ポリエチレン、中密度ポリエチレ ン、ポリプロピレン、エチレンープロピレンブロ ツク共重合体、エチレンープロピレンランダム共 重合体、エチレンープロピレンージェン三元共重 合体、エチレン一酢酸ピニル共重合体、エチレン ーピニルアルコール共重合体、エチレンーピニル 20 アルコール共重合体ケン化物等のエチレン系共重 合体、アイオノマー、ポリブタジエン、及びブタ ジエン系共重合体等から選ばれた、単体ポリマ 一、又は二種以上の混合物を主成分としており、 分子内に不飽和二重結合を比較的多く含有してい 25 るものが好ましい。

例えばポリエチレンは、本来第(4)式に示すよう なCH2の直鎖状の分子構造を有しているが、重合 条件によつて第(5)式、第(6)式、及び第(7)式のよう な不飽和二重結合が分子鎖中に生成している場合 30 が多い。高密度ポリエチレンの場合でも、末端ピ ニル基が赤外スペクトルから確認されていること も周知であり、このような不飽和二重結合が多く 残留していることが好ましい。

$$\begin{array}{cccc}
CH_{2} & CH_{2} & CH_{2} \\
CH_{2} & CH_{2}
\end{array}$$
(4)

$$\begin{array}{ccc}
CH_2 & CH = CH_2 \\
CH_2 & CH = CH_2
\end{array}$$
(5)

$$CH_3$$
 $CH=C$
 CH_2
 CH_3
(6)

$$CH_3$$
 $CH=CH$
 CH_2
(7)

この様な不飽和二重結合を含有するオレフイン 系樹脂に、オルガノ水素ポリシロキサンが添加さ れたものが、本発明に於けるオレフイン系樹脂組 成物である。

オルガノ水素ポリシロキサンとは、一般式(8)に 10 示されるオルガノ水素シロキサン基含有のポリシ ロキサンであつて、オルガノ水素シロキサン単位 を少くとも30mol%以上、好ましくは40mol%以 上含有するものである。さらに、一般式(9)に示さ れる、該分子中にピニル基等の不飽和炭化水素基 ン、高密度ポリエチレン、線状低密度ポリエチレ 15 を含有するオルガノ水素ポリシロキサンの様なも のも使用することができる。

式中

[Ri: 水素基又は炭素数3以下の1価の炭化水 素基

R₂~R₅: 炭素数 6以下の 1 価の炭化水素基

m: 0 又は100以下の正の整数 n: 3以上100以下の正の整数]

$$\begin{array}{c|c}
R_3 & R_4 \\
R_2-Si-O+Si-O+Si-O-Si-R_1
\end{array}$$
(9)

式中

(R₁、R₂:一方がピニル基又はアリル基で、他 方がピニル基又はアリル基又は炭素数3以下の1 価の炭化水素基

R₃~R₇: 炭素数 6 以下の 1 価の炭化水素基 35

x: 0 又は100以下の正の整数

y: 3以上100以下の正の整数]

これら一般式(8)、及び(9)に示されるオルガノ水 素ポリシロキサンの、オレフイン系樹脂に対する 40 添加量はオルガノ水素シロキサン基の含有率によ つて異なるが、一般にオレフイン系樹脂100重量 部に対して、0.01乃至10重量部、好ましくは0.5 乃至5.0重量部が最適であつて、0.01重量部未満 では接着力が不十分であり、又10重量部を越える

7

と滑性が強くなり過ぎて加工が困難となつたり、 著しく白化したりする場合がある。

本発明に於ける接着の機構は、基本的には本発 明者らの先願特許である特願昭58-203699号等で ンゴムとの接着機構とほぼ同様であると考えられ る。即ち、オレフイン系樹脂組成物中に存在する オレフィン系樹脂、及び/又はオルガノ水素ポリ シロキサン中の不飽和炭化水素基への、付加重合 反応、及びオレフィン系樹脂組成物中に存在する オルガノ水素ポリシロキサン中のヒドロシリル基 の、付加重合型液状シリコーンゴム中の不飽和炭 化水素基への付加反応による接着と考えられ、従 応を利用した接着である為、その接着力は極めて 強力である。

本発明に於けるオレフイン系樹脂組成物中のオ レフィン系樹脂に於いて、添加される添加剤は特 に制限されないが、酸化防止剤としてのBHT、20 **亜リン酸エステル、メルカプタン系化合物、有機** ジスルフイド系化合物、あるいは光安定剤として の有機スズ系化合物等は、本発明に於ける付加反 応の阻害要因になる傾向がある為、それらの使用 に於いては添加量を可能な限り減少させることが 25 ル水素シロキサン単位が約60mol%であるメチル 好ましい。

本発明に於けるシリコーンゴムとオレフイン系 樹脂との複合成形物の製造方法は特に限定しない が、付加重合型液状シリコーンゴム、又は該付加 重合型液状シリコーンゴムをトルエン、ヘキサン 30 ーヘブタン溶液を調整した。 等の溶媒に溶解させた溶液を、予じめ成形された*

*オレフイン系樹脂組成物からなる成形品の表面 に、ディッピング法、スプレー法等の方法でコー テイングし、40乃至130℃、好ましくは実用上熱 変形しない最高の温度で、3分乃至5時間、好ま 推定している。軟質塩化ピニル系樹脂とシリコー 5 しくは10分乃至 2時間かけて加熱するものであ

本発明に於けるオレフイン系樹脂組成物とシリ コーンゴムとの複合成形物は、例えば医療分野に 於いては、カニユーラをはじめ、血管カテーテル 型液状シリコーンゴム中のヒドロシリル基の付加 10 等の血液関連医療用具、尿管カテーテル等の泌尿 器関連医療用具などに巾広く応用でき、シリコー ンのもつ抗血栓性、組織適合性と、オレフイン系 樹脂のもつ強靱性、腰の強さなどの長所を両立し た、優れた複合成形物を提供する。また、本複合 来の様に極性基の導入による接着ではなく付加反 15 成形物は医療分野のみならず、シリコーンゴムの 無毒性、耐熱水性等を利用して、レトルト包装等 の包装材料、あるいは工業用途といつた巾広い分 野に応用が可能である。

[発明の効果]

以下、実施例によつて本発明の効果を説明す る。

実施例 I

オルガノ水素ポリシロキサンNo.1として、25℃ に於ける粘度が約50CSであり、1分子中のメチ 水素ポリシロキサンを70重量%含有するn-ヘキ サン溶液を調整した。又、分子内にビニル基を有 するオルガノ水素ポリシロキサンM 2として、第 00式に示すポリシロキサンを70重量%含有するn

$$\begin{array}{c|c}
CH_3 & CH_3 \\
CH_2 = CH - Si - O - Si - O - Si - CH = CH_2 \\
CH_3 & CH_3 - CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 \\
CH_3 & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 \\
CH_3 & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3
\end{array}$$

〔式中、m=25~30 $n = 70 \sim 75$

一方、低密度ポリエチレン(住友化学工業㈱製 F101)、エチレンープロピレン共重合体(住友化 学工業㈱製S-131)、及びプロピレンホモポリマ 40 プレス成形し、各々厚み0.5m/mのシートを得 - (住友化学工業㈱製FS-1012) を用意し、こ れらの単体オレフイン系樹脂各々100重量部に対 して、オルガノ水素ポリシロキサンM1及びM2

を各々第1表に示した量を添加したもの、及び比

較例として添加しなかつたものを、各々プレンダ ーにて190乃至220℃で約10分間混練したのち造粒 した。

これらの成形材料を各々190乃至220℃で5分間 た。これらのシートから20m/m×50m/mの大 きさのシートを2枚づつ作成し、第1表に示した 市販の付加重合型液伏シリコーンゴムを厚み 1 m/m、接触面積上下各々20m/m×約25m/m

になるようにしてはさみ、110℃の恒温槽にて90 分間加熱し付加重合型液状シリコーンゴムの硬化 を行なつた。

こうして得られた試験片を用いて、室温で180° の剝離試験を行ない接着力を比較した。

* 結果は第1表に示した通りで、本発明に於ける オレフイン系樹脂組成物は、一般の市販の付加重 合型液状シリコーンゴムと強固に接着一体化でき ることが明らかである。

裘

		· · · · · · · · · · · · · · · · · · ·										
	,	7	実 施 例							比較例		
オレフイン系樹脂組成	オレフ イン系	試験片Na	1	2	3	4	(5)	6	7	8	9	
系樹脂組成物・付加重 物・サンゴム物	樹脂組 成物 (phr)	低密度ポリエチ レン	100	100	_	-	-	_	100	-	-	
合成形物	(Pin)	エチレンープロ ピレン共重合体	_	_	100	100	-	_	-	100	_	
		プロピレンホモ ポリマー	_	-	-	_	100	100	-	_	100	
		オルガノ水素ポ リシロキサンM1	1.5	-	1,5		2.0	_	_	-	_	
		オルガノ水素ポ リシロキサンNa2	_	1.5	_	1.5	_	2.0		_	_	
	コーンコ]重合型液状シリ ム	⑤ 信越化学工業㈱KE-1910				B トーレ・シ リコーン(株) SE6720		⊗		(B)	
180° 剝離強度 (kg/10%)			3,8	4.1	3, 2	3, 9	1.9	2.1	0.5	0.1	0	

実施例 2

低密度ポリエチレン(住友化学工業㈱製F101) 100重量部に対して、第回式で示されるメチル水 素ポリシロキサンの80重量%n −ヘキサン溶液×

25×1.5重量部をブレンダーにて混合した後、造粒し、 40m/m押出機にて内径5m/m、外径7m/m のチューブを成形した。

$$\begin{array}{c|c}
CH_{2}=CH-Si-O & CH_{3} & CH_{3} \\
CH_{2}=CH-Si-O & Si-O & Si-CH=CH_{2} \\
CH_{3} & CH_{3} & CH_{3}
\end{array}$$
(11)

〔式中、J=33~40

 $K = 60 \sim 67$

学工業㈱製KE-1920) の20重量%トルエン溶液 を調整した。次に上記チューブを1mの長さに切 断したのち、上記液状シリコーンゴムのトルエン 溶液を注射筒で約10∞採取し、チューブ内に注入 してチューブ内面のコーティングを行なつた。

次いで30分間風乾した後、熱風乾燥機中にて、 100℃で2時間加熱し、外面が低密度ポリエチレ ン、内面が付加重合型シリコーンゴムの二層チュ ーブ(チユーブA)を得た。全く同様にして、メ

チル水素ポリシロキサンを添加しないで、二層チ ユーブ(比較例チューブ)を得た。これら二種の 一方、付加重合型液状シリコーンゴム(信越化 35 チューブを各々5本づつ、50%エタノール水溶液 中で超音波洗浄した。

洗浄後、合計10本のチューブを取出し、ナイフ で擬方向に切断し目視によつて観察すると、本発 明に於けるチューブAは、5本全部が完全に接着 40 一体化されていたのに対し、比較例チューブ5本 のうち4本には部分的な剝離がみられ、その内1 本はシリコーンゴム層がほとんどチューブ状のま ま剝離しており、その接着性が不十分、且つバラ ツキが大きいことが判つた。