Prof. Dr. Peer Kröger Michael Fromm, Florian Richter

Einführung in die Programmierung

WS 2018/19

Übungsblatt 1: Mengen, Boolesche Algebra

Besprechung: 29.10.2018 - 02.11.2018

Hinweise zur Abgabe:

Sammeln Sie die Lösungen zu diesem Übungsblatt (also mengen1.txt, mengen2.txt und relationen.txt) in einem zip-Archiv loesung01.zip. Dieses zip-Archiv können Sie schließlich unter https://uniworx.ifi.lmu.de/abgeben.

Wichtig: Achten Sie bitte darauf, dass Ihre Lösungsdateien die korrekten, d. h. die in der Angabe geforderten Namen haben, sonst kann Ihre Lösung nicht der richtigen Aufgabe zugeordnet werden. Java-Dateien, die nicht fehlerfrei kompilierbar sind, werden im Allgemeinen nicht korrigiert.

Aufgabe 1-1 *Mengenlehre*

In der Vorlesung haben Sie das Mengenkonzept kennengelernt. Beantworten Sie folgende Fragen zu mathematischen Mengen:

(a) Geben Sie die Menge aller Zweierpotenzen zwischen 2 und 100 sowohl in *extensionaler* als auch in *intensionaler* Darstellung an.

Lösungsvorschlag: Extensional:
$$M_e = \{2, 4, 8, 16, 32, 64\}$$
; Intensional: $M_i = \{2^x | x \in \mathbb{N} \land 2 \le 2^x \le 100\}$

(b) Ist eine extensionale Aufzählung der Elemente der folgenden intensional definierten Menge möglich? Wenn Ja, geben Sie diese an. Wenn nein, begründen Sie, warum.

$$M_i = \{5^x | x \in \mathbb{Z} \land 1 \le 5^x \le 100\}$$

Lösungsvorschlag: Ja,
$$M_i = \{1, 5, 25\}$$

- (c) Für welche der folgenden Mengen gilt Äquivalenz, d.h. $M_i = M_j$?
 - $M_1 = \{1, 7, 9, 15, 16\}$
 - $M_2 = \{1, 7, 16, 15, 7\}$
 - $M_3 = \{1, 7, 9, 15, 16, 7\}$
 - $M_4 = \{16, 7, 15, 9, 1\}$

Lösungsvorschlag:

Es gilt $M_1 = M_3 = M_4$

(d) Berechnen Sie $A \cup B$, $A \cap B$, $A \setminus B$ für $A = \{1, 6, 17, 63, 82\}$ und $B = \{3, 6, 17, 62, 82\}$

Lösungsvorschlag:
$$A \cup B = \{1, 3, 6, 17, 62, 63, 82\}$$

- (e) Bestimmen Sie die extensionale Darstellung von:
 - (i) $M_1 = \{ n \in \mathbb{Z} | |n^3| \le |n^2| \}$
 - (ii) $M_2 = \{X | X \subseteq \{1, 2, 3, 4\} \land |X| = 3\}$
 - (iii) $M_3 = \{(x, y) \in \mathbb{Z}^2 | x^2 + y^2 \le 1\}$

$$\begin{array}{c} \textbf{L\"osungsvorschlag:} \\ M_1 = \{-1,0,1\} \\ M_2 = \{\{2,3,4\},\{1,3,4\},\{1,2,4\},\{1,2,3\}\} \\ M_3 = \{(-1,0),(0,-1),(1,0),(0,1),(0,0)\} \end{array}$$

- (f) Bestimmen Sie die intensionale Darstellung von:
 - (i) $M_4 = \{1, 3, 5, 7, 9\}$
 - (ii) $M_5 = \{1, 3, 9, 27, 81\}$
 - (iii) $M_6 = \{1, 2, \frac{1}{2}\}$

Lösungsvorschlag:
$$M_4 = \{2*k+1|0 \le k \le 4 \land k \in \mathbb{N}_0\}$$

$$M_5 = \{3^x|0 \le x \le 4 \land x \in \mathbb{N}_0\}$$

$$M_6 = \{\frac{a}{b} \in \mathbb{Q}|a+b \le 3 \land a,b \in \mathbb{N}\} = \{2^x|-1 \le x \le 1 \land x \in \mathbb{Z}\}$$

Geben Sie die Lösung zu dieser Aufgabe in einer Datei mengen1.txt ab.

Aufgabe 1-2 *Operationen auf Mengen*

Betrachten wir die Mengen $M_1 = \{a\}, M_2 = \{A, B, C, D\}$ und $M_3 = \{1, 2\}$.

Geben Sie die Elemente der Lösungsmengen zu den folgenden Definitionen extensional an, d.h. zählen Sie die jeweiligen Elemente explizit auf.

• Das kartesische Produkt $M_1 \times M_2 \times M_3$

Lösungsvorschlag:
$$L_1 = \{(a,A,1), (a,A,2), (a,B,1), (a,B,2), (a,C,1), (a,C,2), (a,D,1), (a,D,2)\}$$

• Die Potenzmenge $\wp(M_3)$

$$\textbf{L\"osungsvorschlag:}$$

$$L_2 = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

• Eine 2-stellige Relation zwischen M_1 und M_2 , die eine Funktion ist. (Eine mögliche Lösungsmenge genügt)

Lösungsvorschlag:
$$L_3 = \{(a, A)\} \text{ oder } L_3 = \{(a, B)\} \text{ oder } L_3 = \{(a, C)\} \text{ oder } L_3 = \{\}$$

• Eine 2-stellige Relation zwischen M_3 und M_2 , die keine Funktion ist. (Eine mögliche Lösungsmenge genügt)

• Eine totale Funktion von M_2 nach M_3 . (Eine mögliche Lösungsmenge genügt)

Lösungsvorschlag:
$$L_4 = \{(A,1),(B,2),(C,2),(D,1)\}$$

Geben Sie die Lösung zu dieser Aufgabe in einer Datei mengen2.txt ab.

Aufgabe 1-3 Relationen

Im folgenden seien $M, N \subseteq \mathbb{N}$ beliebige Mengen von natürlichen Zahlen. Die in Kapitel 3.1 eingeführten Beziehungen zwischen Mengen lassen sich auch als Relationen auffassen.

Bezeichnung	Notation	Bedeutung	
M ist Teilmenge von N	$M \subseteq N$	aus $a \in M$ folgt $a \in N$	
M ist echte Teilmenge von N	$M \subset N$	es gilt $M \subseteq N$ und $M \neq N$	
M und N sind disjunkt	$M \cap N = \emptyset$	M und N haben keine gemeinsamen Elemente	
M und N sind identisch	$M \equiv N$	es gilt $M \subseteq N$ und $N \subseteq M$	

(a) Geben Sie jeweils die Wertebereiche dieser Relationen an!

Verwenden Sie für diese Aufgabe die Datei relationen.txt, in der Sie Ihre Antworten eintragen können.

Lösungsvorschlag:

Die Definition setzt voraus:

- 1. Die Relation ist zweistellig.
- 2. Der Wertebereich ist die Potenzmenge über einem Kreuzprodukt einer Menge mit sich selbst.

Damit können wir notieren:

- " \subseteq " $\subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$
- " \subset " $\subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$
- "disjunkt" $\subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$
- " \equiv " $\subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$

(b) Welche dieser Relationen sind

- reflexiv?
- symmetrisch?
- antisymmetrisch?
- transitiv?
- alternativ?

Ergänzen Sie Ihre Lösung in der Datei relationen.txt entsprechend.

Lösungsvorschlag:

Zur Erinnerung: Eine zweistellige Relation $R \in \mathcal{P}(M \times M)$ ist

- reflexiv, wenn für alle $x \in M$ gilt: xRx.
- symmetrisch, wenn für alle $x, y \in M$ gilt: $xRy \Rightarrow yRx$.
- antisymmetrisch, wenn für alle $x, y \in M$ gilt: $xRy \wedge yRx \Rightarrow x = y$.
- transitiv, wenn für alle $x, y, z \in M$ gilt: $xRy \wedge yRz \Rightarrow xRz$.
- alternativ, wenn für alle $x, y \in M$ gilt: $xRy \vee yRx$.

	reflexiv	symmetrisch	antisymmetrisch	transitiv	alternativ
\subseteq	×		×	×	
\subset			× *	×	
disjunkt		×			
=	×	×	×	×	

Zu *: Aus was Falschem folgt alles: $xRy \wedge yRx = \{\} \Rightarrow x = y$