ГЛАВА 9. ЛИНЕЙНЫЕ ОПЕРАТОРЫ И ЛИНЕЙНЫЕ ФУНКЦИОНАЛЫ В НОРМИРОВАННЫХ ПРОСТРАНСТВАХ

1 Линейные операторы

Пусть X, Y — линейные пространства (оба вещественные или комплексные).

Опр. Отображение $A:X\to Y$ называется линейным оператором, если справедливо равенство

$$A(\lambda x_1 + \mu x_2) = \lambda A x_1 + \mu A x_2 \quad \forall x_1, x_2 \in X, \quad \forall \lambda, \mu.$$

Образом оператора A называется множество

$$\operatorname{Im} A = \{ y = Ax \mid x \in X \},\$$

которое обозначается также через R(A).

Множество

$$\operatorname{Ker} A = \{ x \in X \mid Ax = 0 \}$$

называется ядром оператора A и обозначается также через N(A).

Замечание 1.1. Вообще говоря, линейный оператор A может быть определен не на всем пространстве X, а на некотором линейном многообразии $D(A) \subset X$. Тогда $A:D(A) \to Y$ и

$$A(\lambda x_1 + \mu x_2) = \lambda A x_1 + \mu A x_2 \quad \forall x_1, x_2 \in D(A), \quad \forall \lambda, \mu.$$

Теорема 1.1. Для линейного оператора A его ядро $\operatorname{Ker} A$ и образ $\operatorname{Im} A$ являются линейными многообразиями.

Доказательство. Пусть $x_1, x_2 \in \text{Ker } A$. Тогда

$$A(\lambda x_1 + \mu x_2) = \lambda A x_1 + \mu A x_2 = 0 \Rightarrow \lambda x_1 + \mu x_2 \in \text{Ker } A.$$

Пусть теперь $y_1, y_2 \in \text{Im } A$. Это значит, что существуют $x_1, x_2 \in X$ такие, что $Ax_1 = y_1, \, Ax_2 = y_2$. Но тогда

$$A(\lambda x_1 + \mu x_2) = \lambda A x_1 + \mu A x_2 = \lambda y_1 + \mu y_2 \Rightarrow \lambda y_1 + \mu y_2 \in \operatorname{Im} A$$

Теорема доказана.

Замечание 1.2. Если A – линейный оператор, то A(0) = 0. Действительно,

$$\lambda \cdot A(0) = A(\lambda \cdot 0) = A(0) \quad \forall \lambda \quad \Rightarrow \quad A(0) = 0.$$

Опр. Если Ax = 0 для всех $x \in X$, то оператор A называется *нулевым* оператором и обозначается через 0.

Опр. Оператор A называется *конечномерным*, если его образ $\operatorname{Im} A$ конечномерен.

Опр. Линейный оператор $A: X \to X$ называется линейным преобразованием пространства X.

Опр. Линейное преобразование A такое, что

$$Ax = x \quad \forall x \in X,$$

называется единичным или тожсдественным оператором и обычно обозначается через I (или E).

Примеры линейных операторов.

1. Умножение матрицы A на вектор $x \in \mathbb{R}^m$ или вектор $x \in \mathbb{C}^m$.

$$A: \mathbb{R}^m \to \mathbb{R}^n, \qquad A: \mathbb{C}^m \to \mathbb{C}^n.$$

2. Оператор дифференцирования Du(x) = u'(x).

$$D: C^{1}[a,b] \to C[a,b], \quad D: C^{n}[a,b] \to C^{n-1}[a,b].$$

3. Оператор интегрирования $Ax = \int_a^b x(s) ds$.

$$A: C[a,b] \to \mathbb{R}, \quad A: L_1(a,b) \to \mathbb{R}.$$

4. Оператор интегрирования с переменным верхним пределом $Ax(t) = \int\limits_{a}^{t} x(s) \, ds.$

$$A: C[a,b] \to C^{1}[a,b], \quad A: L_{1}(a,b) \to C[a,b].$$

5. Интегральный оператор $Au(x) = \int_a^b K(x,s)u(s) ds$.

$$A: C[a,b] \to C[a,b], \quad A: L_2(a,b) \to L_2(a,b).$$

Опр. Пусть X, Y, Z – линейные пространства, все вещественные или все комплексные.

Пусть $A:X\to Y,\,B:X\to Y,\,C:Y\to Z$ – линейные операторы.

Сумма операторов, произведение оператора на число и произведение операторов определяются формулами

$$(A + B)x = Ax + Bx,$$

$$(\lambda A)x = \lambda(Ax),$$

$$(CA)x = C(Ax)$$

для всех $x \in X$.

Опр. Всюду далее X, Y – нормированные пространства.

Оператор $A: X \to Y$ называется *непрерывным в точке* $x_0 \in X$, если

$$x_n \to x_0 \quad \Rightarrow \quad Ax_n \to Ax_0.$$

Оператор $A: X \to Y$ называется *непрерывным*, если он непрерывен во всех точках $x_0 \in X$.

Теорема 1.2. Линейный оператор $A: X \to Y$ непрерывен тогда и только тогда, когда он непрерывен в точке $x_0 = 0$.

Доказательство. Пусть оператор A непрерывен в точке $x_0=0$. Пусть $x\in X$ и $x_n\to x$. Тогда

$$Ax_n = Ax + A(x_n - x) \rightarrow Ax + A(0) = Ax.$$

Таким образом оператор A непрерывен во всех точках $x \in X$.

Если же оператор A непрерывен, то он непрерывен и в точке $x_0 = 0$.

Опр. Линейный оператор $A: X \to Y$ называется *ограниченным*, если он каждое ограниченное множество переводит в ограниченное множество.

Теорема 1.3. Для линейного оператора $A: X \to Y$ его ограниченность эквивалентна выполнению каждого из следующих двух свойств.

1. Справедливо неравенство

$$||Ax||_Y \leqslant c \, ||x||_X \quad \forall \, x \in X \tag{1.1}$$

с некоторой постоянной $c \geqslant 0$, не зависящей от x.

2. Оператор A переводит единичную сферу $S = \{x \in X \mid ||x||_X = 1\}$ в ограниченное множество.

Доказательство. Пусть оператор A ограничен. Тогда он переводит единичную сферу в ограниченное множество, то есть справедливо свойство 2).

Пусть справедливо свойство 2). Тогда существует постоянная $c\geqslant 0$ такая, что

$$||x||_X = 1 \Rightarrow ||Ax||_Y \leqslant c.$$

Возьмем произвольный $x \in X, x \neq 0$. Тогда

$$\left\| \frac{x}{\|x\|_X} \right\|_X = 1 \Rightarrow \left\| A\left(\frac{x}{\|x\|_X}\right) \right\|_Y = \frac{1}{\|x\|_X} \|Ax\|_Y \leqslant c \quad \Rightarrow \quad \|Ax\|_Y \leqslant c \|x\|_X,$$

то есть справедливо свойство 1).

Пусть справедливо свойство 1). Пусть $M\subset X,\, M$ – ограниченное множество. Тогда существует постоянная $C_1>0$ такая, что

$$||x||_X \leqslant C_1 \quad \forall x \in M.$$

В силу свойства 1) имеем:

$$||Ax||_Y \leqslant c||x||_X \leqslant C_2 = cC_1 \quad \forall x \in M.$$

Таким образом, оператор A всякое ограниченное множество переводит в ограниченное.

В силу теоремы 1.3 для ограниченных линейных операторов и только для них конечна величина

$$||A|| = \sup_{x \in X, \ x \neq 0} \frac{||Ax||_Y}{||x||_X},\tag{1.2}$$

называемая нормой оператора A.

Действительно, если для линейного оператора выполнено неравенство

$$||Ax||_Y \leqslant c \, ||x||_X \quad \forall \, x \in X,\tag{1.3}$$

с некоторой постоянной $c \geqslant 0$, то

$$\frac{\|Ax\|_Y}{\|x\|_X}\leqslant c\quad\forall\,x\in X,\,\,x\neq0\quad\Rightarrow\quad \|A\|=\sup_{x\in X,\,\,x\neq0}\frac{\|Ax\|_Y}{\|x\|_X}\leqslant c.$$

Замечание 1.2. Из определения нормы оператора следует, что

$$\frac{\|Ax\|_Y}{\|x\|_X} \leqslant \|A\| \quad \forall x \in X, \ x \neq 0.$$

Поэтому

$$||Ax||_Y \le ||A|| ||x||_X \quad \forall x \in X.$$
 (1.4)

Таким образом ||A|| является минимальной из постоянных c, для которых выполнено неравенство (1.3).

Замечание 1.3. Для вычисления нормы ограниченнного оператора A можно использовать эквивалентную формулу

$$||A|| = \sup_{\|x\|_X = 1} ||Ax||_Y.$$
 (1.5)

Действительно,

$$\sup_{\|x\|_X=1} \|Ax\|_Y \leqslant \sup_{x \in X, \ x \neq 0} \frac{\|Ax\|_Y}{\|x\|_X} = \sup_{x \in X, \ x \neq 0} \left\|A\Big(\frac{x}{\|x\|_X}\Big)\right\|_Y = \sup_{\|x\|_X=1} \|Ax\|_Y.$$

Теорема 1.4. Линейный оператор $A: X \to Y$ непрерывен тогда и только тогда, когда он ограничен.

Доказательство. Пусть A – ограниченный оператор и $x_n \to x_0$. Тогда

$$||Ax_n - Ax_0||_Y = ||A(x_n - x_0)||_Y \le ||A|| ||x_n - x_0||_X \to 0,$$

то есть оператор A непрерывен.

Пусть теперь A – непрерывный оператор. Предположим, что он не является ограниченным. Тогда существует последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ такая, что

$$||x_n||_X = 1 \quad \text{if} \quad ||Ax_n||_Y \geqslant n.$$

Положим $y_n = \frac{1}{n}x_n$. Очевидно, что

$$||y_n||_X = \frac{1}{n}$$
 но $||Ay_n||_Y \geqslant 1$.

Полученное противоречие доказывает ограниченность оператора A.

Обозначим через $\mathscr{L}(X,Y)$ множество всех ограниченных линейных операторов $A:X\to Y$. В случае X=Y положим для краткости $\mathscr{L}(X)=\mathscr{L}(X;X)$.

Утверждение 1.1. Множество $\mathcal{L}(X,Y)$ является нормированным пространством, в котором норма оператора A вводится следующим образом:

$$||A|| = \sup_{\|x\|_X = 1} ||Ax||_Y = \sup_{x \in X, \ x \neq 0} \frac{||Ax||_Y}{\|x\|_X}.$$

Доказательство.

I. Пусть $A, B \in \mathcal{L}(X, Y)$. Тогда

$$||(A+B)x||_Y = ||Ax+Bx||_Y \leqslant ||Ax||_Y + ||Bx||_Y \leqslant$$

$$\leqslant ||A|| ||x||_X + ||B|| ||x||_X = (||A|| + ||B||) ||x||_X \quad \forall x \in X.$$

Следовательно $A+B\in \mathscr{L}(X,Y)$ и

$$||A + B|| \le ||A|| + ||B||.$$

II. Заметим также, что

$$\|(\lambda A)x\|_Y = \|\lambda Ax\|_Y = |\lambda| \|Ax\|_Y \le |\lambda| \|A\| \|x\|_X \quad \forall x \in X.$$

Следовательно $\lambda A \in \mathcal{L}(X,Y)$ и

$$\|\lambda A\| = |\lambda| \|A\|.$$

III. Нетрудно убедиться в справедливости аксиом линейного пространства

- 1) A + B = B + A;
- 2) (A+B)+C=A+(B+C);
- 3) существует нулевой оператор $0 \in \mathcal{L}(X,Y)$ такой, что A+0=A;
- 4) для каждого $A \in \mathcal{L}(X,Y)$ существует противоположный элемент $(-1)A \in \mathcal{L}(X,Y)$ такой, что A + (-1)A = 0;
- $5) \quad 1 \cdot A = A;$
- 6) $\lambda(\mu A) = (\lambda \mu) A;$
- 7) $\lambda(A+B) = \lambda A + \lambda B;$
- 8) $(\lambda + \mu)A = \lambda A + \mu A$.

Для завершения доказательства осталось заметить, что $||A|| = 0 \Leftrightarrow A = 0$. Для нулевого оператора 0x = 0. Поэтому $||0|| = \sup_{x \in X, \ x \neq 0} \frac{||0x||_Y}{||x||_X} = 0$.

Если же $\|A\|=\sup_{x\in X,\ x\neq 0}\frac{\|Ax\|_Y}{\|x\|_X}=0$, то $\|Ax\|=0$ для всех $x\in X$, то есть Ax=0 для всех $x\in X$. Значит, A=0.

Утверждение доказано.

Примеры вычисления нормы оператора

1. Пусть $A: X \to X, A = \alpha I$.

$$||A|| = \sup_{x \in X, \ x \neq 0} \frac{||\alpha Ix||_X}{||x||_X} = \sup_{x \in X, \ x \neq 0} |\alpha| = |\alpha|$$

Таким образом, $\|\alpha I\| = |\alpha|$.

2. Пусть $Ax(t) = \int\limits_0^t x(s)\,ds,\,A:C[0,1]\to C[0,1].$ Заметим, что

$$|Ax(t)| \le \int_{0}^{t} |x(s)| ds \le \int_{0}^{1} |x(s)| ds \le ||x||_{C[0,1]}.$$

Поэтому

$$||Ax||_{C[0,1]} \le ||x||_{C[0,1]} \quad \forall x \in C[0,1] \Rightarrow ||A|| \le 1.$$

Для $x_0(t) \equiv 1$ имеем $Ax_0(t) = t$. Поэтому

$$||A|| \geqslant \frac{||Ax_0||_{C[0,1]}}{||x_0||_{C[0,1]}} = \frac{1}{1} = 1 \quad \Rightarrow ||A|| \geqslant 1.$$

Таким образом, ||A|| = 1.

3. Пусть $Ax(t) = x'(t), A: C^1[0,1] \to C[0,1].$ Заметим, что

$$\frac{\|Ax\|_{C[0,1]}}{\|x\|_{C^1[0,1]}} = \frac{\|x'\|_{C[0,1]}}{\|x\|_{C[0,1]} + \|x'\|_{C[0,1]}} < 1 \quad \Rightarrow \|A\| \leqslant 1.$$

Для $x_n(t) = t^n$ имеем $Ax_n(t) = nt^{n-1}$. Поэтому

$$\frac{\|Ax_n\|_{C[0,1]}}{\|x_n\|_{C^1[0,1]}} = \frac{n}{1+n} \to 1 \quad \text{при} \quad n \to \infty \quad \Rightarrow \|A\| \geqslant 1.$$

Таким образом, ||A|| = 1.

Теорема 1.5. Пусть Y – банахово пространство. Тогда $\mathcal{L}(X;Y)$ – банахово пространство.

Доказательство. Пусть $\{A_n\}_{n=1}^{\infty} \in \mathcal{L}(X;Y)$ — фундаментальная последовательность операторов. Тогда для всякого $\varepsilon > 0$ существует $N(\varepsilon)$ такой, что

$$||A_n - A_m|| < \varepsilon \quad \forall n, m > N(\varepsilon).$$

Возьмем произвольный $x \in X$ и рассмотрим последовательность $\{A_n x\}_{n=1}^{\infty}$. Эта последовательность фундаментальна, так как

$$||A_n x - A_m x||_Y \le ||A_n - A_m|| ||x||_X < \varepsilon ||x||_X \quad \forall n, m > N(\varepsilon).$$
 (1.6)

Поскольку Y – банахово пространство, то существует предел последовательности $A_n x$. Определим оператор A формулой

$$Ax = \lim_{n \to \infty} A_n x.$$

Заметим, что оператор A - линейный. Действительно,

$$A(\lambda x + \mu y) = \lim_{n \to \infty} A_n(\lambda x + \mu y) = \lambda \lim_{n \to \infty} A_n x + \mu \lim_{n \to \infty} A_n y = \lambda A x + \mu A y.$$

Из неравенства (1.6) следует, что

$$||A_n x - A_m x||_Y < \varepsilon ||x||_X \quad \forall n, m > N(\varepsilon) \quad \forall x \in X.$$

Переходя к пределу при $m \to \infty$, имеем

$$||A_n x - Ax||_Y \leqslant \varepsilon ||x||_X \quad \forall n > N(\varepsilon) \quad \forall x \in X.$$
 (1.7)

Таким образом $A_n - A$ – ограниченный оператор. Так как $\mathcal{L}(X;Y)$ – линейное пространство, то

$$A = A_n - (A_n - A) \in \mathcal{L}(X; Y).$$

Из неравенства (1.7) следует, что

$$||A_n - A||_Y \leqslant \varepsilon \quad \forall n > N(\varepsilon),$$

то есть $A_n \to A$ в $\mathscr{L}(X;Y)$.

Домашнее задание к 25 мая.

Задачи 1.12, 1.13, 1.15 - 1.18, 1.23, 1.24, 1.31, 1.32 из параграфа 3.1