



#### Matheus Albuquerque Gameiro de Moura Everaldo Faustino dos Santos Junior Daniel Carlos Junior

Memória Interna - Focado em Cache

#### ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES

### SISTEMA DE MEMÓRIA DO COMPUTADOR

- O sistema de memória de um computador, pode ser mais facilmente compreendido por meio de sua características.
  - Localização
  - Capacidade
  - Unidade de transferência
  - Método de acesso
  - Desempenho



## SISTEMA DE MEMÓRIA DO COMPUTADOR LOCALIZAÇÃO

• Memória interna

• Memória externa





# SISTEMA DE MEMÓRIA DO COMPUTADOR - CAPACIDADE

- Palavra
  - Expressa em função de bytes.
  - Tamanho da palavra.
  - Número de palavras.
  - Na memória interna é expressa em byte ou palavras
    - Ordens de grandeza:10^3= Kb (cache L1); 106= Mb (cache L2); e 10^9= Gb (memória principal).
    - •
  - Na memória externa é expressa em byte.
    - Ordens de grandeza:10^6= Mb; 10^9= Gb e 10^12= Tb



# SISTEMA DE MEMÓRIA DO COMPUTADOR - UNIDADE DE TRANSFERÊNCIA

- Unidade de transferência de dados corresponde ao n° de bits que podem ser lidos ou escritos de cada vez.
- **Memória interna:** a unidade de transferência é governada pela largura do barramento de dados.
  - Normalmente o n° de linhas de dados = tamanho da palavra
  - Internamente, o endereçamento é feito por palavras.

•

- Memória externa: a unidade de transferência é feita por blocos de dados.
  - Um bloco é muito maior que uma palavra (bloco >> palavra).
  - Em unidades de disco, o bloco é a unidade de endereçamento dos dados(clusters)



# SISTEMA DE MEMÓRIA DO COMPUTADOR - MÉTODO DE ACESSO

- Sequencial: o acesso é feito seguindo uma seqüência linear específica.
- Direto: o acesso é feito por um salto até um bloco de registros, seguido por uma pesquisa seqüencial até o registro (posição) desejado.
- Aleatório: acesso é feito diretamente ao registro através de seu endereço.
- Associativo: acesso é feito diretamente ao registro com base em **parte de seu** conteúdo.



# SISTEMA DE MEMÓRIA DO COMPUTADOR DESEMPENHO

• **Tempo de acesso :** tempo necessário para localizar, ler ou escrever um dado na memória.

- **Tempo de ciclo:** tempo de acesso + tempo adicional requerido pela memória antes de iniciar o próximo acesso.
- Taxa de transferência: taxa na qual os dados podem ser movidos.
  - Acesso aleatório: I/Tc onde:Tc é o tempo de ciclo.
  - Acesso não-aleatório: N/ (Tn-Ta) onde: Tn é o tempo médio de L/E de Nbits e Ta é o tempo médio de acesso.



## HIERARQUIA DE MEMÓRIAS

• As restrições de projeto de uma memória podem ser resumidas em três questões:

Melhoria 10

\$ 0,20 à \$ 2,00 por GB

CPUs rápidos

Quanto?

HD

- Com que velocidade?
- A que custo?

| Tipo | Tempo de acesso | Custo                          |
|------|-----------------|--------------------------------|
| SRAM | 0,5 ns à 2,5 ns | \$ 2000,00 à \$ 5000,00 por GB |
| DRAM | 50 ns à 70 ns   | \$ 20,00 à \$ 75,00 por GB     |



5 ms à 20 ms

# HIERARQUIA DE MEMÓRIAS





## **MEMÓRIA CACHE**

- Cache é um dispositivo interno a um sistema que serve de intermediário entre uma CPU e o dispositivo principal de armazenamento (MP).
- Memória Cache: memória pequena (capacidade de armazenamento) e rápida.





Escola Politécnica de Pernambuco
Universidade de Pernambuco

## **MEMÓRIA CACHE**

#### Localidade Temporal

 Uma posição de memória referenciada recentemente tem boas chances de ser referenciada novamente em um futuro próximo lterações e recursividade.

#### Localidade Espacial

 Uma posição de memória vizinha de uma posição referenciada recentemente tem boas chances de também ser referenciada. Dados tendem a ser armazenados em posições imediatas.

## **MEMÓRIA CACHE**

- Hit dado encontrado no nível procurado.
- Miss dado não encontrado no nível procurado.
- Hit-rate (ratio) percentual de hits no nível.
- Miss-rate (ratio) percentual de misses no nível.
- Hit-time tempo de acesso ao nível



• Miss-penalty – tempo médio gasto para que o dado não encontrado no nível desejado seja transferido dos níveis mais baixos.

Tme = hit-time + (I - hit-rate) \* miss-penalty



## **OPERAÇÃO DE LEITURA**





## ESTRUTURA DE CACHE/MEMÓRIA PRINCIPAL







## ORGANIZAÇÃO DA MEMÓRIA CACHE

 As linhas de dados e de endereços são também conectadas a áreas de armazenamento temporário de dados e de endereços, que se conectam ao barramento do sistema, por meio do qual é feito o acesso à memória principal.





Embora haja um grande número de implementações de memória cache, existem alguns elementos básicos de projeto que servem para classificar e diferenciar as arquiteturas de memórias cache.

**Tabela 4.2**Elementos do projeto de cache.

| Endereços da cache                                                         | Política de escrita                  |  |
|----------------------------------------------------------------------------|--------------------------------------|--|
| Lógico                                                                     | Write through                        |  |
| Físico                                                                     | Write back                           |  |
| amanho da memória cache<br>Função de mapeamento                            | Tamanho da linha<br>Número de caches |  |
| Direto                                                                     | Um ou dois níveis                    |  |
| Associativo                                                                | Unificada ou separada                |  |
| Associativo em conjunto                                                    |                                      |  |
| Algoritmo de                                                               | substituição                         |  |
| Usado menos recentemente (LRU -                                            | – do inglês, Least Recently Used)    |  |
| Primeiro a entrar, primeiro a sair (FIFO — do inglês, First In, First Out) |                                      |  |
| Usado menos frequentemente (LFU — do inglês, Least Frequently Used)        |                                      |  |
| Aleato                                                                     | ória                                 |  |



#### **Endereços da Cache**



CPU: Central Processing Unit MMU: Memory Management Unit TLB: Translation lookaside buffer





#### **Endereços da Cache**





#### Tamanho da Memória Cache

- Pequeno o suficiente para que o custo médio geral por bit fosse próximo do custo médio da memória principal isolada
- Grande o suficiente para que o tempo de acesso médio geral fosse próximo do tempo de acesso médio da cache isolada
- Quanto maior a cache, maior o número de portas envolvidos no endereçamento da cache

Dentre outras motivações para minimizar o tamanho do cache...

Concluímos que: Caches grandes tendem a ser ligeiramente mais lentas que as pequenas mesmo quando construídas com a mesma tecnologia de circuito integrado e colocadas no mesmo lugar no chip e na placa de circuito, a área disponível do chip e da placa também limita o tamanho da cache



#### Tamanho da Memória Cache

| Processador          | Tipo                                  | Ano de<br>introdução | Cache L1 <sup>a</sup> | Cache L2      | Cache L3              |
|----------------------|---------------------------------------|----------------------|-----------------------|---------------|-----------------------|
| IBM 360/85           | Mainframe                             | 1968                 | 16-32 kB              | _             | _                     |
| PDP-11/70            | Minicomputador                        | 1975                 | 1 kB                  | a-            | -                     |
| VAX 11/780           | Minicomputador                        | 1978                 | 16 kB                 | _             | _                     |
| IBM 3033             | Mainframe                             | 1978                 | 64 kB                 | _             | _                     |
| IBM 3090             | Mainframe                             | 1985                 | 128-256 kB            | _             | _                     |
| Intel 80486          | PC                                    | 1989                 | 8 kB                  | _             | _                     |
| Pentium              | PC                                    | 1993                 | 8 kB/8 kB             | 256-512 kB    | _                     |
| PowerPC 601          | PC                                    | 1993                 | 32 kB                 | _             | _                     |
| PowerPC 620          | PC                                    | 1996                 | 32 kB/32 kB           | _             | _                     |
| PowerPC G4           | PC/servidor                           | 1999                 | 32 kB/32 kB           | 256 kB a 1 MB | 2 MB                  |
| IBM S/390 G6         | Mainframe                             | 1999                 | 256 kB                | 8 MB          | _                     |
| Pentium 4            | PC/servidor                           | 2000                 | 8 kB/8 kB             | 256 kB        | _                     |
| IBM SP               | Servidor avançado/<br>supercomputador | 2000                 | 64 kB/32 kB           | 8 MB          | _                     |
| CRAY MTAb            | Supercomputador                       | 2000                 | 8 kB                  | 2 MB          | -                     |
| Itanium              | PC/servidor                           | 2001                 | 16 kB/16 kB           | 96 kB         | 4 MB                  |
| Itanium 2            | PC/servidor                           | 2002                 | 32 kB                 | 256 kB        | 6 MB                  |
| IBM POWER5           | Servidor avançado                     | 2003                 | 64 kB                 | 1.9 MB        | 36 MB                 |
| CRAY XD-1            | Supercomputador                       | 2004                 | 64 kB/64 kB           | 1 MB          | _                     |
| IBM POWER6           | PC/servidor                           | 2007                 | 64 kB/64 kB           | 4 MB          | 32 MB                 |
| IBM z10              | Mainframe                             | 2008                 | 64 kB/128 kB          | 3 MB          | 24-48 MB              |
| Intel Core i7 EE 990 | Estação de<br>trabalho/ servidor      | 2011                 | 6 × 32 kB/<br>32kB    | 1,5 MB        | 12 MB                 |
| IBM zEnterprise 196  | Mainframe/<br>servidor                | 2011                 | 24 × 64 kB/<br>128 kB | 24×1,5 MB     | 24 MB L3 192<br>MB L4 |

<sup>&</sup>lt;sup>1</sup> Dois valores separados por uma barra referem-se a caches de instrução e dados. <sup>1</sup> As duas caches são apenas de instrução; não há caches de dados.



#### Funções de Mapeamento

Existem menos linhas de cache do que blocos da memória principal, dito isso foi-se necessário pensar em algoritmos, ou seja, para mapear os blocos da memória principal às linhas de cache.

#### **Mapeamento Direto**





#### **Mapeamento Direto**

A técnica mais simples, conhecida como mapeamento direto, mapeia cada bloco da memória principal a apenas uma linha de cache possível. O mapeamento é expresso como: i = j módulo m

#### onde:

i = número da linha da cache
 j = número do bloco da memória principal
 m = número de linhas da cache



#### **Mapeamento Direto**





#### **Mapeamento Associativo**

O mapeamento associativo compensa a desvantagem do mapeamento direto, permitindo que cada bloco da memória principal seja carregado em qualquer linha da cache

- A lógica de controle da cache interpreta um endereço de memória simplesmente como um campo Tag e um campo palavra.
- O campo Tag identifica o bloco da memória principal
- A lógica de controle da cache precisa comparar simultaneamente o tag de cada linha

Concluímos que com o mapeamento associativo, existe flexibilidade em relação a qual bloco substituir quando um novo bloco for lido para a cache porém demanda uma complexidade do

circuito necessário para examinar as tags de todas as linhas da cache em paralelo.



#### **Mapeamento Associativo**





#### Mapeamento Associativo por Conjunto

É um meio-termo que realça os pontos fortes das técnicas direta e associativa, enquanto reduz suas desvantagens.

- A cache é uma série de conjuntos, cada um consistindo em uma série de linhas.

$$m = v \times k$$

$$i = j \mod u$$
lo  $v$ 

em que

i = número do conjunto de cache

j = número de bloco da memória principal

m = número de linhas na cache

v = número de conjuntos

k = número de linhas em cada conjunto



#### Mapeamento Associativo por Conjunto





#### Mapeamento Associativo por Conjunto





## Algoritmos de substituição

#### FIFO (First in first out)

O método consiste em substituir o bloco que acaba de chegar pelo mais antigo na memória, pode não ser tão interessante, pois o bloco mais antigo pode ser mais importante.





## Algoritmos de substituição

LFU (Least Frequently Used)

Nesse método o bloco que chega irá substituído na linha com o bloco usado menos vezes.

Contra: Pode guardar um bloco que já foi muito utilizado e não será mais necessário.





## Algoritmos de substituição

#### LRU (Least Recently Used)

Nesse método o bloco menos recentemente usado será substituido, ou seja, o bloco usado há mais tempo será trocado pelo novo bloco.





#### Política de Escrita

#### Write Through

Todas as operações são feitas na cache e na MP. Gera tráfego de memória, possível gargalo. Caso haja outros processadores eles também atualizam suas caches.





#### Política de Escrita

Write Back

A cache é atualizada e é gerado uma indicação para que a MP seja atualizada.





#### Política de Escrita

- Observação do barramento com write through
- Transparência do hardware
- Memória não cacheável



Inicialmente os sistemas possuíam uma única cache, recentemente o uso de múltiplas caches é mais comum.







|                    | DRAM (dinâmica)                                                                                                                                  | SRAM (estática)                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Vantagens          | <ul> <li>alta densidade de<br/>integração</li> <li>baixo consumo de<br/>potência</li> <li>baixa geração de calor</li> <li>baixo custo</li> </ul> | <ul> <li>alta velocidade</li> <li>não precisam de<br/>"refresh"</li> </ul>                                                                 |
| Desvantagens       | baixa velocidade     necessidade de refresco<br>("refresh")                                                                                      | <ul> <li>baixa densidade de<br/>integração</li> <li>alto consumo de potência</li> <li>alta geração de calor</li> <li>alto custo</li> </ul> |
| Tempo de<br>Acesso | 60 a 70 ηs                                                                                                                                       | 10 a 20 ηs                                                                                                                                 |



#### Níveis de Cache:

A memória cache é dividida em três níveis, conhecidos como L1, L2 e L3. Eles dizem respeito à proximidade da memória cache das unidades de execução do processador.





#### Caches Unificadas ou Separadas:

Incluem duas caches LI no chip, uma para dados e uma para instruções. Para o Pentium 4, por exemplo, a cache de dados LI tem 16 kB, usando um tamanho de linha de 64 bytes e uma organização associativa em conjunto com quatro linhas.





A evolução da organização das memórias cache pode ser vista na evolução dos microprocessadores Intel.







| Problema                                                                                                                                                                                                                              | Solução                                                                                 | Processador em que o recurso apareceu inicialmente |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|
| Memória externa mais lenta que o barramento do sistema                                                                                                                                                                                | Acrescentar cache externa usando tecnologia de memória mais rápida                      | 386                                                |
| Maior velocidade do processador torna o barramento externo um gargalo para o acesso à cache L2                                                                                                                                        | Mover a cache externa para o chip,<br>trabalhando na mesma velocidade do<br>processador | 486                                                |
| Cache interna um tanto pequena, por conta do espaço limitado no chip                                                                                                                                                                  | Acrescentar cache L2 externa usando tecnologia mais rápida que a memória principal      | 486                                                |
| Quando ocorre uma disputa entre o mecanismo de pré-busca de instruções e a unidade de execução no acesso simultâneo à memória cache. Nesse caso, a busca antecipada é adiada até o término do acesso da unidade de execução aos dados | Criar caches separadas para dados e instruções                                          | Pentium                                            |



| Problema                                                                                                                                                | Solução                                                                                                                                                                 | Processador em que o recurso apareceu inicialmente |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Maior velocidade do processador torna o barramento externo um gargalo para o acesso à cache L2                                                          | Criar barramento back-side separado, que trabalha com velocidade mais alta que o barramento externo principal (front-side). O barramento backside é dedicado à cache L2 | Pentium Pro                                        |
|                                                                                                                                                         | Mover cache L2 para o chip do processador                                                                                                                               | Pentium II                                         |
| Algumas aplicações lidam com bancos de dados enormes, e precisam ter acesso rápido a grandes quantidades de dados. As caches no chip são muito pequenas | Acrescentar cache L3 externa                                                                                                                                            | Pentium III                                        |
|                                                                                                                                                         | Mover cache L3 para o chip                                                                                                                                              | Pentium 4                                          |







### **EXERCÍCIOS**

- 1. Em geral, quais são as estratégias para explorar a localidade espacial e a localidade temporal?
- 2. Quais os principais algoritmos de substituição? Fale sobre as vantagens e desvantagens de cada um.
- 3. Comente sobre as vantagens e desvantagens de cada tipo de mapeamento: direto, associativo e associativo por conjunto.



