×

Moja naslovnica / Moji e-kolegiji / <u>linearna</u> / 7. Vektorski prostori / <u>7. domaća zadaća</u>

Započeto srijeda, 29. prosinca 2021., 10:20

Stanje Završeno

Završeno srijeda, 29. prosinca 2021., 15:51

Proteklo vrijeme 5 sat(a) 30 min

**Ocjena 7,60** od maksimalno 13,00 (**58**%)

Pitanje 1

Netočno

Broj bodova: 0,00 od 1,00

Za  $lpha_1,\ldots,lpha_n,eta\in\mathbb{R}$  definiramo

$$U = \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid \sum_{i=1}^n lpha_i x_i = eta\}.$$

U je potprostor vektorskog prostora  $\mathbb{R}^n$  ako i samo ako je

Odaberite jedan odgovor:

$$\bigcirc$$
 a.  $eta=0$ 

$$\bigcirc$$
 b.  $\alpha_1 = \cdots = \alpha_n$ 

$$\bigcirc$$
 c.  $lpha_1=\cdots=lpha_n=0$ 

$$\odot$$
 d.  $\alpha_1 = \cdots = \alpha_n = \beta = 0$ 

$$\bigcirc$$
 e.  $\sum_{i=1}^{n} lpha_i = 0$ 

Vaš odgovor nije točan.

Neka su 
$$\mathbf{x}=(x_1,\ldots,x_n), \mathbf{y}=(y_1,\ldots,y_n)\in U\subset\mathbb{R}^n.$$
 To znači da je  $\sum_{i=1}^n \alpha_i x_i=\beta$  i  $\sum_{i=1}^n \alpha_i y_i=\beta$ .

Vrijedi

$$\lambda \mathbf{x} + \mu \mathbf{y} \in U, \ \forall \lambda, \mu \in \mathbb{R}$$

$$\iff (\lambda x_1 + \mu y_1, \dots, \lambda x_n + \mu y_n) \in U, \ \forall \lambda, \mu \in \mathbb{R}$$

$$\iff \sum_{i=1}^n lpha_i (\lambda x_i + \mu y_i) = eta, \ orall \lambda, \mu \in \mathbb{R}$$

$$\iff \lambda \sum_{i=1}^n lpha_i x_i + \mu \sum_{i=1}^n lpha_i y_i) = eta, \ orall \lambda, \mu \in \mathbb{R}$$

$$\iff \lambda \beta + \mu \beta = \beta, \ \forall \lambda, \mu \in \mathbb{R}$$

$$\iff \beta = 0$$

Ispravan odgovor je:  $\beta=0$ 

Pitanje **2** 

Točno

Broj bodova: 1,00 od 1,00

Definiramo zbrajanje i množenje elemenata iz  $V=\mathbb{R}^2$  realnim brojevima na sljedeći način:

$$(x,y) + (x',y') := (x+x',y+y'),$$

$$\alpha(x,y) := (\alpha x, y).$$

Je li uz ovako definirane operacije V vektorski prostor nad  $\mathbb{R}$ ?

Odaberite jedan odgovor:

- Točno
- Netočno

Potrebno je provjeriti vrijede li svojstva vektorskog prostora  $VP_1-VP_8$ .

Ne vrijedi distributivnost množenja prema zbrajanju u R. Na primjer,

$$(0,1) = 2(0,1) = (1+1)(0,1)$$

S druge strane

$$1(0,1) + 1(0,1) = (0,1) + (0,1) = (0,2)$$

Ispravan odgovor je 'Netočno'.

Pitanje 3

Točno

Broj bodova: 1,00 od 1,00

Neka su U i V vektorski prostori. Na Kartezijevom produktu  $U \times V$  definiramo zbrajanje i množenje skalarom:

$$(u,v)+(u',v'){:}=(u+u',v+v'),\quad u,u'\in U,\ v,v'\in V,$$

$$\alpha(u,v)$$
: =  $(\alpha u, \alpha v)$ ,  $\alpha \in \mathbb{R}$ ,  $u \in U$ ,  $v \in V$ .

Je li, uz ovako definirane operacije, U imes V vektorski prostor nad  $\mathbb{R}$ ?

Odaberite jedan odgovor:

- Točno ✔
- Netočno

Potrebno je provjeriti da vrijede svojstva vektorskog prostora  $VP_1-VP_8$ .

Ispravan odgovor je 'Točno'.

1

### Pitanje **4**

Točno

Broj bodova: 1,00 od 1,00

Polinomi  $p,q,r\in\mathcal{P}_3$  zadani s

$$p(t) = t^3 + t^2 + t,$$

$$q(t) = t^3 - t + 1,$$

$$r(t) = 2t^3 - t^2 + t - 2$$

su linearno nezavisni.

Odaberite jedan odgovor:

- Točno ✔
- Netočno

Pretpostavimo da je za  $lpha,eta,\gamma\in\mathbb{R}$ 

$$\alpha p(t) + \beta q(t) + \gamma r(t) = 0.$$

Tada je

$$\alpha(t^3 + t^2 + t) + \beta(t^3 - t + 1) + \gamma(2t^3 - t^2 + t - 2) = 0,$$

$$(\alpha+\beta+2\gamma)t^3+(\alpha-\gamma)t^2+(\alpha-\beta+\gamma)t+(\beta-2\gamma)=0.$$

Odavde lako slijedi  $\alpha=\beta=\gamma=0$ .

Ispravan odgovor je 'Točno'.

#### Pitanje **5**

Točno

Broj bodova: 1,00 od 1,00

Odredite potprostor V od  $\mathbf{M}_2(\mathbb{R})$  koji ne sadrži ne-nul dijagonalne matrice.

Odaberite jedan odgovor:

$$igcirc$$
 a.  $V=\{egin{bmatrix} a & b \ 0 & d \end{bmatrix}\mid a,b,d\in\mathbb{R}\}$ 

$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} 0 & b \ c & 0 \ \end{array} \end{bmatrix} \mid b,c \in \mathbb{R} \} \end{array}$$

$$\bigcirc$$
 c.  $V=\{\mathbf{A}\in\mathbf{M}_2(\mathbb{R})\mid \mathbf{A}^2=\mathbf{I}\}$ 

$$\bigcirc \ \mathrm{d.} \quad V = \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$$

Vaš odgovor je točan.

Ispravan odgovor je: 
$$V = \{ \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} \mid b,c \in \mathbb{R} \}$$



Netočno

Broj bodova: 0,00 od 1,00

Ako skup vektora  $S=\{v_1,v_2,v_3,v_4\}$  čini bazu vektorskog prostora  $\mathbb{R}^4$  i W je potprostor od  $\mathbb{R}^4$ , onda neki podskup skupa S čini bazu za W.

Odaberite jedan odgovor:

- Točno X
- Netočno

$$v_i = e_i, \ W = L(1,1,2,2)$$

Ispravan odgovor je 'Netočno'.

#### Pitanje **7**

Netočno

Broj bodova: 0,00 od 1,00

Neka je skup S baza prostora  $\mathcal{P}_2$  svih polinoma stupnja  $\leq 2$ . Tada S mora sadržavati po jedan polinom svakog stupnja.

Odaberite jedan odgovor:

- Točno X
- Netočno

4 of 11

Na primjer, skup polinoma

$$\{t^2-2t+5,2t^2-3t,t+1\}$$

čini bazu prostora  $\mathcal{P}_2$ .

Ispravan odgovor je 'Netočno'.

29/12/2021, 15:54

Pitanje **8** Točno

Broj bodova: 1,00 od 1,00

Pronađite bazu prostora rješenja sustava linearnih jednadžbi

$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$

$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$

Odaberite jedan odgovor:

- $\bigcirc \ \text{a.} \ \{(4,1,0,0),(-3,0,1,0),(0,0,0,1)\}$
- $\bigcirc$  b.  $\{(4,1,0,0),(0,3,4,0),(0,1,0,4)\}$
- $\bullet$  c.  $\{(1,0,0,1),(0,1,0,-4),(0,0,1,3)\}$
- $\bigcirc \ \mathsf{d.} \ \{(1,-4,3,-1)\}$

Vaš odgovor je točan.

Svako rješenje sustava može se izraziti kao linearna kombinacija linearno nezavisnih vektora (1,0,0,1), (0,1,0,-4), (0,0,1,3) na sljedeći način:

$$(x_1,x_2,x_3,x_4)=(x_1,x_2,x_3,x_1-4x_2+3x_3)=x_1(1,0,0,1)+x_2(0,1,0,-4)+x_3(0,0,1,3)$$
 Ispravan odgovor je:  $\{(1,0,0,1),(0,1,0,-4),(0,0,1,3)\}$ 

Pitanje **9** Točno

Broj bodova: 1,00 od 1,00

Odredite bazu prostora svih polinoma stupnja  $\leq 4$  koji u točkama -1, 0 i 1 poprimaju istu vrijednost 0.

Odaberite jedan odgovor:

$$\bigcirc$$
 a.  $\{t^4+t^2,t^3+t\}$ 

$$lacksquare b. \ \{t^4-t^2,t^3-t\}$$

$$\bigcirc$$
 c.  $\{t^4+t^3+t^2+t,1\}$ 

O d. Ništa od navedenog.

Vaš odgovor je točan.

Dakle, mora vrijediti

$$p(-1) = p(0) = p(1) = 0.$$

Ako označimo  $p(t)=at^4+bt^3+ct^2+dt+e$ , onda je

$$a - b + c - d + e = 0$$
,  $e = 0$  i  $a + b + c + d = 0$ .

Tada je 
$$p(t)=at^4+bt^3-at^2-bt$$
.

Skup 
$$\{t^4-t^2,t^3-t\}$$
 je baza.

Ispravan odgovor je:  $\{t^4-t^2,t^3-t\}$ 

Pitanje 10

Djelomično točno

Broj bodova: 0,60 od 1,00

Neka su S i T podskupovi vektorskog prostora V.

Koje su od sljedećih tvrdnji točne a koje netočne?

1. 
$$L(S \cup T) = L(S) \cup L(T)$$
 Točno

2. 
$$L(S\cap T)=L(S)\cap L(T)$$
 Netočno

3. 
$$L(S^c) = L(S)^c$$
 Netočno

4. 
$$L(L(S)) = L(S)$$
 Točno

5. 
$$S \subset L(S)$$
 Netočno

Vaš odgovor je djelomično točan.

Broj točnih odgovora: 3

- 1. Netočno. Uzmimo, na primjer,  $S=\{(1,0,0)\}$ ,  $T=\{(0,1,0)\}$ .  $(1,1,0)\in L(S\cup T)$ , dok s druge strane  $(1,1,0)\not\in L(S)\cup L(T)$ . Općenito, unija dva potprostora ne mora biti potprostor.
- 2. Netočno. Na primjer, za  $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ ,  $T=\{(1,0,0),(0,1,0),(0,1,1)\}$  tvrdnja ne vrijedi.
- 3. Netočno.  $\mathbf{0} \in L(S^c)$  ali  $\mathbf{0} 
  otin L(S)^c$ . Općenito  $L(S)^c$  nije potprostor dok  $L(S^c)$  jest.
- 4. Točno. Očito vrijedi  $L(L(S))\supset L(S)$  (Tvrdnja 5). S druge strane, svaki  $x\in L(L(S))$  se može napisati kao linearna kombinacija elemenata  $y_1,\ldots,y_n\in L(S)$ , a svaki  $y_i$  kao linearna kombinacija elemenata  $z_1,\ldots,z_m\in S$ . U konačnici,  $x\in L(L(S))$  se može napisati kao linearna kombinacija elemenata  $z_1,\ldots,z_m\in S$ , tj.  $L(L(S))\subset L(S)$ .
- 5. Točno. L(S) se sastoji od svih linearnih kombinacija elemenata skupa S pa tako sadrži elemente oblika  $1 \cdot v, \ v \in S$ . Ispravan odgovor je:

Neka su S i T podskupovi vektorskog prostora V.

Koje su od sljedećih tvrdnji točne a koje netočne?

- 1.  $L(S \cup T) = L(S) \cup L(T)$  [Netočno]
- 2.  $L(S\cap T)=L(S)\cap L(T)$  [Netočno]
- 3.  $L(S^c) = L(S)^c$  [Netočno]
- 4. L(L(S)) = L(S) [Točno]
- 5.  $S \subset L(S)$  [Točno]

×

7. domaća zadaća: Pregled pokušaja rješavanja

## Pitanje **11**

Netočno

Broj bodova: 0,00 od 1,00

Zadani su vektori

$$a_1 = (1, 1, 2, 2)$$
,

$$b_1 = (1, 0, 0, 1),$$

$$a_2 = (2, 1, 2, 3)$$
,

$$b_2=(0,1,2,1)$$

te neka je

$$V_1 = L(a_1,b_1)$$
,  $V_2 = L(a_2,b_2)$ .

Tada je

Odaberite jedan odgovor:

$$lacksquare$$
 a.  $V_1 \cap V_2 = \{0\}$ 

$$\bigcirc$$
 b.  $V_1 \subsetneq V_2$ 

$$\bigcirc$$
 c.  $L(V_1 \cup V_2) = \mathbb{R}^4$ 

$$\bigcirc$$
 d.  $V_1=V_2$ 

Vaš odgovor nije točan.

$$a_1=rac{1}{2}(a_2+b_2)$$
,  $b_1=rac{1}{2}(a_2-b_2)$ ,  $\Rightarrow a_1,b_1\in L(a_2,b_2)$ ,  $\Rightarrow L(a_1,b_1)\subset L(a_2,b_2)$   $a_2=a_1+b_1$ ,  $b_2=a_1-b_1$ ,  $\Rightarrow a_2,b_2\in L(a_1,b_1)$ ,  $\Rightarrow L(a_2,b_2)\subset L(a_1,b_1)$   $\Rightarrow V_1=V_2$ 

Ispravan odgovor je:  $V_1=V_2$ 

# Pitanje **12**

Točno

Broj bodova: 1,00 od 1,00

Odredite dimenziju prostora L(S) gdje je

$$S=\{(x_1,x_2,x_3)\mid x_1+x_2=1,\ x_1+x_3=1\}.$$

Odaberite jedan odgovor:

- O a. 0
- O b. 1
- ⊙ c. 2
- O d. 3

Vaš odgovor je točan.

$$S = \{(x_1, 1 - x_1, 1 - x_1) \mid x_1 \in \mathbb{R}\} = \{x_1(1, -1, -1) + (0, 1, 1) \mid x_1 \in \mathbb{R}\}.$$

$$L(S) = \{ \alpha(1, -1, -1) + \beta(0, 1, 1) \mid \alpha, \beta \in \mathbb{R} \}.$$

Ispravan odgovor je: 2

×

7. domaća zadaća: Pregled pokušaja rješavanja

# Pitanje 13

Netočno

Broj bodova: 0,00 od 1,00

Zadani su polinomi  $p_1, p_2, p_3, v_1, v_2, v_3 \in \mathcal{P}_2$ :

$$p_1(t) = t^2 - 2t + 5,$$

$$p_2(t) = 2t^2 - 3t,$$

$$p_3(t) = t + 1,$$

$$v_1(t) = t^2 + 4t - 3,$$

$$v_2(t) = t - 1,$$

$$v_3(t) = 1.$$

Odredi matricu prijelaza iz baze  $P = \{p_1, p_2, p_3\}$  u bazu  $V = \{v_1, v_2, v_3\}$ .

Odaberite jedan odgovor:

O b.  $\begin{bmatrix} -17 & -4 & 2 \\ 14 & 2 & -1 \\ 52 & 9 & 1 \end{bmatrix}$ 

 $\begin{tabular}{c|c} $C$ & $C$ &$ 

Vaš odgovor nije točan.

Prvo možemo naći matricu prijelaza iz baze V u bazu P. Izrazimo vektore baze P pomoću vektora baze V:

$$p_1(t) = v_1(t) - 6v_2(t) + 2v_3(t),$$

$$p_2(t) = 2v_1(t) - 11v_2(t) - 5v_3(t),$$

$$p_3(t) = 0v_1(t) + 1v_2(t) + 2v_3(t).$$

Označimo

$$\mathbf{S} = \begin{bmatrix} 1 & 2 & 0 \\ -6 & -11 & 1 \\ 2 & -5 & 2 \end{bmatrix}.$$

Onda je tražena matrica prijelaza

$$\mathbf{T} = \mathbf{S}^{-1}.$$

Ispravan odgovor je:  $\frac{1}{11}\begin{bmatrix} -17 & -4 & 2\\ 14 & 2 & -1\\ 52 & 9 & 1 \end{bmatrix}$ 

10 of 11

✓ Predavanja 7. Vektorski prostori
 Prikaži...
 9. auditorne vježbe ►