Berkovich Space

No Cover Image

Use $\coverimage{filename}$ to add an image

Berkovich Space

Author: Tianle Yang

Email: loveandjustice@88.com

Homepage: https://www.tianleyang.com

 $Source\ code:\ github.com/MonkeyUnderMountain/Berkovich_Space$

Version: 0.1.0

Last updated: October 25, 2025

 $Copyright © 2025 \ Tianle \ Yang$

Contents

1	Commutative banach algebras			5
	1.1	Semi-r	normed Rings and Modules	5
		1.1.1	Semi-normed algebraic structures	5
		1.1.2	banach rings	6
		1.1.3	Complete field	7
		1.1.4	Examples	8
1.2		Affinoid algebras		8
		1.2.1	The first properties	8
		1.2.2	Finite banach module	9
2	Affinoid spaces			11
	2.1	Spectr	um	11
		2.1.1	Definition	11
		2.1.2	Examples	12
	2.2	Affino	id domains	14
3	Analytic spaces			15
References				17
	The main references are [Ber90; BGR84].			

CONTENTS

Chapter 1

Commutative banach algebras

1.1 Semi-normed Rings and Modules

1.1.1 Semi-normed algebraic structures

Definition 1.1.1. Let M be an abelian group. A *semi-norm* on M is a function $\|\cdot\|: M \to \mathbb{R}_+$ such that

- ||0|| = 0;
- $\forall x, y \in M, ||x + y|| \le ||x|| + ||y||.$

If we further have $||x|| = 0 \iff x = 0$, then we say $||\cdot||$ is a norm. A semi-normed abelian group (resp. normed abelian group) is an abelian group equipped with a semi-norm (resp. norm).

Definition 1.1.2. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two semi-norms on an abelian group M. We say $\|\cdot\|_1$ is bounded by $\|\cdot\|_2$ if there exists a constant C>0 such that $\forall x\in M, \|x\|_1\leq C\|x\|_2$.

Remark 1.1.3. If two semi-norms (resp. norms) on an abelian group M are bounded by each other, then they induce the same topology on M.

Definition 1.1.4. Let M be a semi-normed abelian group and $N \subseteq M$ be a subgroup. The *residue semi-norm* on the quotient group M/N is defined as

$$||x + N||_{M/N} = \inf_{y \in N} ||x + y||_M.$$

Remark 1.1.5. The residue semi-norm is a norm if and only if N is closed in M.

Definition 1.1.6. Let M and N be two semi-normed abelian groups. A group homomorphism $f: M \to N$ is called bounded if there exists a constant C > 0 such that $\forall x \in M, \|f(x)\|_N \le C\|x\|_M$. A bounded homomorphism $f: M \to N$ is called admissible if the induced isomorphism $M/\ker f \to \operatorname{Im} f$ is an isometry, i.e., $\forall x \in M, \|f(x)\|_N = \inf_{y \in \ker f} \|x + y\|_M$.

Definition 1.1.7. Let R be a ring (commutative with unity). A *semi-norm* on R is a semi-norm $\|\cdot\|$ on the underlying abelian group of R such that $\forall x,y\in R,\|xy\|\leq \|x\|\|y\|$ and $\|1\|=1$. A *semi-normed ring* is a ring equipped with a semi-norm.

Definition 1.1.8. A semi-norm $\|\cdot\|$ on a ring R is called *multiplicative* if $\forall x, y \in R, \|xy\| = \|x\| \|y\|$. It is called *power-multiplicative* if $\forall x \in R, \|x^n\| = \|x\|^n$ for all integers $n \ge 1$.

Definition 1.1.9. Let $(R, \|\cdot\|_R)$ be a normed ring. A *semi-normed R-module* is a pair $(M, \|\cdot\|_M)$ where M is an R-module and $\|\cdot\|_M$ is a semi-norm on the underlying abelian group of M such that there exists C > 0 with $\forall a \in R, x \in M, \|ax\|_M \le C \|a\|_R \|x\|_M$.

One can talk about boundedness, admissibility and residue semi-norms in the contexts of semi-normed rings and semi-normed modules similar to those in semi-normed abelian groups.

1.1.2 banach rings

Definition 1.1.10. A (semi-)norm on an abelian group M induces a (pseudo-)metric $d(x,y) = \|x - y\|$ on M. A (semi-)normed abelian group M is called *complete* if it is complete as a (pseudo-)metric space.

Definition 1.1.11. A banach ring is a complete normed ring.

Definition 1.1.12. Let $(A, \|\cdot\|_A)$ be a (semi-)normed algebraic structure, e.g., a (semi-)normed abelian group, a (semi-)normed ring, or a (semi-)normed module. The *completion* of A, denoted by \widehat{A} , is the completion of A as a (pseudo-)metric space. Since A is dense in its completion, the algebraic operations and (semi-)norms on A can be uniquely extended to the completion.

Let R be a normed ring and M, N be semi-normed R-modules. There is a natural semi-norm on the tensor product $M \otimes_R N$ defined as

$$\|z\|_{M \otimes_R N} = \inf \left\{ \sum_i \|x_i\|_M \|y_i\|_N \, : \, z = \sum_i x_i \otimes y_i, x_i \in M, y_i \in N \right\}.$$

Definition 1.1.13. Let R be a complete normed ring and M, N complete semi-normed R-modules. The *complete tensor product* $M \widehat{\otimes}_R N$ is defined as the completion of the semi-normed R-module $M \otimes_R N$.

Definition 1.1.14. Let R be a banach ring. For each $f \in R$, the spectral radius of f is defined as

$$\rho(f) = \lim_{n \to \infty} \|f^n\|^{1/n}.$$

Yang: Since , $\rho(f)$ exists.

Definition 1.1.15. A banach ring R is called *uniform* if its norm is power-multiplicative.

| Proof. Yang: To be continued.

Definition 1.1.17. Let R be a banach ring. An element $f \in R$ is called *quasi-nilpotent* if $\rho(f) = 0$. All quasi-nilpotent elements of R form an ideal, denoted by $\operatorname{Qnil}(R)$.

Definition 1.1.18. Let R be a banach ring. The *uniformization* of R, denoted by $R \to R^u$, is the banach ring with the universal property among all bounded homomorphisms from R to uniform banach rings. Yang: To be continued.

Proposition 1.1.19. Let R be a banach ring. The completion of $R/\operatorname{Qnil}(R)$ with respect to the spectral radius $\rho(\cdot)$ is the uniformization of R.

Proof. Yang: To be continued.

1.1.3 Complete field

Definition 1.1.20. A multiplicative norm on a field is also called an *absolute value*. A valuation field is a field equipped with an absolute value.

Remark 1.1.21. Let **k** be a field. Recall that a valuation on **k** is a function $v: \mathbf{k}^{\times} \to \mathbb{R}$ such that

- $\forall x, y \in \mathbf{k}^{\times}, v(xy) = v(x) + v(y)$;
- $\forall x, y \in \mathbf{k}^{\times}, v(x+y) > \min\{v(x), v(y)\}.$

We can extend v to the whole field \mathbf{k} by defining $v(0) = +\infty$. Fix a real number $\varepsilon \in (0,1)$. Then v induces an absolute value $|\cdot|_v : \mathbf{k} \to \mathbb{R}_+$ defined by $|x|_v = \varepsilon^{v(x)}$ for each $x \in \mathbf{k}$.

In some literature, the valuation v is called an *additive valuation* and the induced absolute value $|\cdot|_v$ is called a *multiplicative valuation*. In this note, the term *valuation* always refers to the additive valuation.

Definition 1.1.22. A valuation field $(\mathbf{k}, |\cdot|)$ is called *non-Archimedean* if $\forall x, y \in \mathbf{k}, |x+y| \le \max\{|x|, |y|\}$, i.e., the norm satisfies the ultrametric inequality. Otherwise, it is called *Archimedean*.

Definition 1.1.23. A complete field is a valuation field which is complete as a metric space.

Lemma 1.1.24. Let **k** be a non-Archimedean complete field. Then the set $\mathbf{k}^{\circ} = \{x \in \mathbf{k} : |x| \leq 1\}$ is a subring of **k**, which is a local ring. Moreover, the set $\mathbf{k}^{\circ \circ} = \{x \in \mathbf{k} : |x| < 1\}$ is the maximal ideal of \mathbf{k}° .

Definition 1.1.25. Let **k** be a non-Archimedean complete field. The subring **k**° is called the *ring* of integers of **k**. The set $\mathbf{k}^{\circ\circ} = \{x \in \mathbf{k} : |x| < 1\}$ is the maximal ideal of \mathbf{k}° . The residue field $\mathcal{R}_{\mathbf{k}} = \mathbf{k}^{\circ}/\mathbf{k}^{\circ\circ}$ is called the *residue field* of **k**. Yang: To be revised.

1.1.4 Examples

Example 1.1.26. Let R be arbitrary ring. The *trivial norm* on R is defined as ||x|| = 0 if x = 0 and ||x|| = 1 if $x \neq 0$. The ring R equipped with the trivial norm is a normed ring.

Example 1.1.27. The fields \mathbb{C} and \mathbb{R} equipped with the usual absolute value are complete fields.

Example 1.1.28. The field \mathbb{Q}_p of p-adic numbers equipped with the p-adic norm is a complete non-Archimedean field.

Example 1.1.29. Let R be a banach ring and r > 0 be a real number. We define the ring of absolutely convergent power series over \mathbf{k} with radius r as

$$R\left\langle T/r\right\rangle \coloneqq \left\{\sum_{n=0}^{\infty}a_{n}T^{n}\in R[[T]]\,:\,\sum_{n=0}^{\infty}\|a_{n}\|r^{n}<\infty\right\}.$$

Equipped with the norm $\|\sum_{n=0}^{\infty} a_n T^n\| = \sum_{n=0}^{\infty} \|a_n\| r^n$, the ring $R \langle T/r \rangle$ is a banach ring. When $R = \mathbf{k}$ is a Yang: To be checked.

Example 1.1.30. Let \mathbf{k} be a non-Archimedean complete field. We define

$$\mathbf{k}\{T_1/r_1, \dots, T_n/r_n\} := \left\{ \sum_{I \in \mathbb{N}^n} a_I T^I \in \mathbf{k}[[T_1, \dots, T_n]] \ : \ \lim_{|I| \to \infty} |a_I| r^I = 0 \right\},$$

where $r=(r_1,\ldots,r_n)$ is an n-tuple of positive real numbers, $T^I=T_1^{i_1}\cdots T_n^{i_n}$ for $I=(i_1,\ldots,i_n)$, and $|I|=i_1+\cdots+i_n$. Equipped with the norm $\|\sum_{I\in\mathbb{N}^n}a_IT^I\|=\sup_{I\in\mathbb{N}^n}|a_I|r^I$, the affinoid **k**-algebra $\mathbf{k}\{T_1/r_1,\ldots,T_n/r_n\}$ is a banach **k**-algebra. This is called the *Tate algebra* over **k** with polyradius r equipped with the *Gauss norm*. We will denote $\mathbf{k}\{T/r\}=\mathbf{k}\{T_1/r_1,\ldots,T_n/r_n\}$ for simplicity.

Yang: To be continued...

1.2 Affinoid algebras

1.2.1 The first properties

Definition 1.2.1. Let \mathbf{k} be a non-archimedean field. A banach \mathbf{k} -algebra A is called a *affinoid* \mathbf{k} -algebra if there exists an admissible surjective homomorphism

$$\varphi: \mathbf{k}\{r_1^{-1}T_1, \dots, r_n^{-1}T_n\} \twoheadrightarrow A$$

for some $n \in \mathbb{N}$ and $r_1, \dots, r_n \in \mathbb{R}_{>0}$.

If one can choose $r_1 = \cdots = r_n = 1$, then we say that A is a strict affinoid **k**-algebra.

Definition 1.2.2. Let \mathbf{k} be a non-archimedean field. We define the *ring of restricted Laurent series* over \mathbf{k} as

$$\mathbf{K}_r = \mathbf{L}_{\mathbf{k},r} = \left\{ \sum_{n \in \mathbb{Z}} a_n T^n : a_n \in \mathbf{k}, \lim_{|n| \to \infty} |a_n| r^n = 0 \right\}$$

equipped with the norm

$$||f|| = \sup_{n \in \mathbb{Z}} |a_n| r^n.$$

Yang: Is \mathbf{K}_r always a field? Yang: Do we have $\mathbf{L}_{\mathbf{k},r} = \operatorname{Frac}(\mathbf{k}\{T/r\})$?

Proposition 1.2.3. Let **k** be a non-archimedean field. If $r \notin \sqrt{|\mathbf{k}^{\times}|}$, then \mathbf{K}_r is a complete non-archimedean field with non-trivial absolute value extending that of **k**.

Proposition 1.2.4. Let A be an affinoid **k**-algebra. Then A is noetherian, and every ideal of A is closed.

Proposition 1.2.5. Let A be an affinoid **k**-algebra. Then there exists a constant C > 0 and N > 0 such that for all $f \in A$ and $n \ge N$, we have

$$||f^n|| \le C\rho(f)^n$$
.

Proposition 1.2.6. Let A be an affinoid **k**-algebra. If and only if $\rho(f) \in \sqrt{|\mathbf{k}|}$ for all $f \in A$, then A is strict. Yang: To be complete.

1.2.2 Finite banach module

There are three different categories of finite modules over an affinoid algebra A:

- The category $Banmod_A$ of finite banach A-modules with A-linear maps as morphisms.
- The category \mathbf{Banmod}_A^b of finite banach A-modules with bounded A-linear maps as morphisms.
- The category \mathbf{mod}_A of finite A-modules with all A-linear maps as morphisms.

Theorem 1.2.7. Let A be an affinoid **k**-algebra. Then the category of finite banach A-modules with bounded A-linear maps as morphisms is equivalent to the category of finite A-modules with A-linear maps as morphisms. Yang: To be revised.

For simplicity, we will just write \mod_A to denote the category of finite banach A-modules with bounded A-linear maps as morphisms.

Chapter 2

Affinoid spaces

2.1 Spectrum

2.1.1 Definition

Definition 2.1.1. Let R be a Banach ring. The *spectrum* $\mathcal{M}(R)$ of R is defined as the set of all multiplicative semi-norms on R that are bounded with respect to the given norm on R. For every point $x \in \mathcal{M}(R)$, we denote the corresponding multiplicative semi-norm by $|\cdot|_x$. We equip $\mathcal{M}(R)$ with the weakest topology such that for each $f \in R$, the evaluation map $\mathcal{M}(R) \to \mathbb{R}_{\geq 0}$, defined by $x \mapsto |f|_x = f(x)$, is continuous.

Definition 2.1.2. Let $\varphi : R \to S$ be a bounded ring homomorphism of Banach rings. The *pullback* map $\mathcal{M}(\varphi) : \mathcal{M}(S) \to \mathcal{M}(R)$ is defined by $\mathcal{M}(\varphi)(x) = x \circ \varphi : f \mapsto |\varphi(f)|_x$ for each $x \in \mathcal{M}(S)$.

Definition 2.1.3. Let R be a Banach ring. A *character* of R is a bounded ring homomorphism $\chi: R \to K$, where K is a completed field. Two characters $\chi_1: R \to K_1$ and $\chi_2: R \to K_2$ are said to be *equivalent* if there exists a commutative diagram of bounded ring homomorphisms

$$\begin{array}{cccc}
\chi_1 & & & & \\
& & & & \\
K_1 & & & & K & \longrightarrow K_2
\end{array}$$

for some completed field K.

Proposition 2.1.4. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is in bijection with the equivalence classes of characters of R.

Proof. Yang: To be completed

Proposition 2.1.5. Let R be a Banach ring. For each $x \in \mathcal{M}(R)$, let \mathcal{D}_x be the kernel of the multiplicative semi-norm $|\cdot|_x$. Then \mathcal{D}_x is a closed prime ideal of R, and $x \mapsto \mathcal{D}_x$ defines a continuous map from $\mathcal{M}(R)$ to $\operatorname{Spec}(R)$ equipped with the Zariski topology.

Proof. Yang: To be completed

Definition 2.1.6. Let R be a Banach ring. For each $x \in \mathcal{M}(R)$, the completed residue field at the point x is defined as the completion of the residue field $\kappa(x) = \operatorname{Frac}(R/\wp_x)$ with respect to the multiplicative norm induced by the semi-norm $|\cdot|_x$, denoted by $\mathcal{H}(x)$.

Definition 2.1.7. Let R be a Banach ring. The *Gel'fand transform* of R is the bounded ring homomorphism

$$\Gamma: R \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x), \quad f \mapsto (f(x))_{x \in \mathcal{M}(R)},$$

where the norm on the product $\prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ is given by the supremum norm.

Proposition 2.1.8. The Gel'fand transform $\Gamma: R \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ of a Banach ring R factors through the uniformization R^u of R, and the induced map $R^u \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ is an isometric embedding. Yang: To be checked.

Theorem 2.1.9. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is a nonempty compact Hausdorff space.

Proof. Yang: To be continued.

Lemma 2.1.10. Let $\{K_i\}_{i\in I}$ be a family of completed fields. Consider the Banach ring $R=\prod_{i\in I}K_i$ equipped with the product norm. The spectrum $\mathcal{M}(R)$ is homeomorphic to the Stone-Čech compactification of the discrete space I.

Remark 2.1.11. The Stone-Čech compactification of a discrete space is the largest compact Hausdorff space in which the original space can be densely embedded. Yang: To be checked.

Proposition 2.1.12. Let K/k be a Galois extension of complete fields, and let R be a Banach k-algebra. The Galois group Gal(K/k) acts on the spectrum $\mathcal{M}(R \widehat{\otimes}_k K)$ via

$$g\cdot x: f\mapsto |(1\otimes g^{-1})(f)|_x$$

for each $g \in \operatorname{Gal}(K/k)$, $x \in \mathcal{M}(R \widehat{\otimes}_k K)$ and $f \in R \widehat{\otimes}_k K$. Moreover, the natural map $\mathcal{M}(R \widehat{\otimes}_k K) \to \mathcal{M}(R)$ induces a homeomorphism

$$\mathcal{M}(R\widehat{\otimes}_k K)/\operatorname{Gal}(K/k) \xrightarrow{\sim} \mathcal{M}(R).$$

Yang: To be checked.

2.1.2 Examples

Example 2.1.13. Let $(\mathbf{k}, |\cdot|)$ be a complete valuation field. The spectrum $\mathcal{M}(\mathbf{k})$ consists of a single point corresponding to the given absolute value $|\cdot|$ on \mathbf{k} . Yang: To be checked.

Example 2.1.14. Consider the Banach ring $(\mathbb{Z}, \|\cdot\|)$ with $\|\cdot\| = |\cdot|_{\infty}$ is the usual absolute value norm on \mathbb{Z} . Let $|\cdot|_p$ denote the p-adic norm for each prime number p, i.e., $|n|_p = p^{-\nu_p(n)}$ for each

2. Affinoid spaces

 $n \in \mathbb{Z}$, where $v_p(n)$ is the p-adic valuation of n. The spectrum

$$\mathcal{M}(\mathbb{Z}) = \{|\cdot|_{\infty}^{\varepsilon} : \varepsilon \in (0,1]\} \cup \{|\cdot|_{p}^{\alpha} : p \text{ is prime}, \alpha \in (0,\infty]\} \cup \{|\cdot|_{0}\},$$

where $|a|_p^{\infty} := \lim_{\alpha \to \infty} |a|_p^{\alpha}$ for each $a \in \mathbb{Z}$ and $|\cdot|_0$ is the trivial norm on \mathbb{Z} . Yang: To be checked.

Spectrum of Tate algebra in one variable Let **k** be a complete non-archimedean field, and let $A = \mathbf{k}\{T/r\}$. We list some types of points in the spectrum $\mathcal{M}(A)$.

For each $a \in \mathbf{k}$ with $|a| \le r$, we have the *type I* point x_a corresponding to the evaluation at a, i.e., $|f|_{x_a} := |f(a)|$ for each $f \in A$. For each closed disk $E = E(a, s) := \{b \in \mathbf{k} : |b - a| \le s\}$ with center $a \in \mathbf{k}$ and radius $s \le r$, we have the point $x_{a,s}$ corresponding to the multiplicative semi-norm defined by

$$|f|_{x_E} := \sup_{b \in E(a,s)} |f(b)|$$

for each $f \in A$. If $s \in |\mathbf{k}^{\times}|$, then the point x_E is called a *type II* point; otherwise, it is called a *type III* point.

Let $\{E^{(s)}\}_s$ be a family of closed disks in **k** such that $E^{(s)}$ is of radius s, $E^{(s_1)} \subseteq E^{(s_2)}$ for any $s_1 < s_2$ and $\bigcap_s E^{(s)} = \emptyset$. Then we have the point $x_{\{E^{(s)}\}}$ corresponding to the multiplicative semi-norm defined by

$$|f|_{x_{\{E^{(s)}\}}} := \inf_{s} |f|_{x_{E^{(s)}}}$$

for each $f \in A$. Such a point is called a type IV point.

Yang: To be completed.

Proposition 2.1.15. Let **k** be a complete non-archimedean field, and let r > 0 be a positive real number. Consider the Tate algebra $\mathbf{k}\{r^{-1}T\}$ equipped with the Gauss norm. The points in the spectrum $\mathcal{M}(\mathbf{k}\{r^{-1}T\})$ can be classified into four types as described above. Yang: To be checked

Proof. Yang: To be completed.

Proposition 2.1.16. Let **k** be a complete non-archimedean field, and let r > 0 be a positive real number. Consider the Tate algebra $\mathbf{k}\{r^{-1}T\}$ equipped with the Gauss norm. The completed residue fields of the four types of points in the spectrum $\mathcal{M}(\mathbf{k}\{r^{-1}T\})$ are described as follows:

- For a type I point x_a with $a \in \mathbf{k}$ and $|a| \leq r$, the completed residue field $\mathcal{H}(x_a)$ is isomorphic to \mathbf{k} .
- For a type II point $x_{a,s}$ with $a \in \mathbf{k}$ and $s \in |\mathbf{k}^{\times}|$, the completed residue field $\mathcal{H}(x_{a,s})$ is isomorphic to the field of Laurent series over the residue field $\mathcal{K}_{\mathbf{k}}$, i.e., $\mathcal{K}_{\mathbf{k}}((t))$.
- For a type III point $x_{a,s}$ with $a \in \mathbf{k}$ and $s \notin |\mathbf{k}^{\times}|$, the completed residue field $\mathcal{H}(x_{a,s})$ is isomorphic to a transcendental extension of $\mathcal{K}_{\mathbf{k}}$ of degree one.
- For a type IV point $x_{\{E^{(s)}\}}$, the completed residue field $\mathcal{H}(x_{\{E^{(s)}\}})$ is isomorphic to a transcendental extension of $\mathcal{K}_{\mathbf{k}}$ of infinite degree.

Yang: To be checked.

Example 2.1.17. The completed residue field $\mathcal{H}(x_a)$ for a type I point x_a with $a \in \mathbf{k}$ and $|a| \leq r$ is isomorphic to \mathbf{k} . Yang: To be complete.

2.2 Affinoid domains

14

Chapter 3

Analytic spaces

References

- [Ber90] Vladimir G Berkovich. Spectral theory and analytic geometry over non-Archimedean fields. 33. American Mathematical Soc., 1990 (cit. on p. 3).
- [BGR84] Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert. "Non-Archimedean Analysis". In: Grundlehren der mathematischen Wissenschaften 261 (1984), p. xii (cit. on p. 3).