MAT1011	Calculus for Engineers			T	P	J	C
			3	0	2	0	4
Pre-requisite		Syllabus Version					
			1.0)			

Course Objectives:

- 1. To provide the requisite and relevant background necessary to understand the other important engineering mathematics courses offered for Engineers and Scientists.
- 2. To introduce important topics of applied mathematics, namely Single and Multivariable Calculus and Vector Calculus etc.
- 3. To impart the knowledge of Laplace transform, an important transform technique for Engineers which requires knowledge of integration

Expected Course Outcomes:

At the end of this course the students should be able to

- 1. apply single variable differentiation and integration to solve applied problems in engineering and find the maxima and minima of functions
- 2. understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution
- 3. evaluate partial derivatives, limits, total differentials, Jacobians, Taylor series and optimization problems involving several variables with or without constraints
- 4. evaluate multiple integrals in Cartesian, Polar, Cylindrical and Spherical coordinates.
- 5. understand gradient, directional derivatives, divergence, curl and Greens', Stokes, Gauss theorems
- 6. demonstrate MATLAB code for challenging problems in engineering

Student Learning Outcome (SLO): 1, 2, 9

Module:1 Application of Single Variable Calculus 9 hours

Differentiation- Extrema on an Interval-Rolle's Theorem and the Mean Value Theorem-Increasing and Decreasing functions and First derivative test-Second derivative test-Maxima and Minima-Concavity. Integration-Average function value - Area between curves - Volumes of solids of revolution - Beta and Gamma functions-interrelation

Module:2 Laplace transforms 7 hours

Definition of Laplace transform-Properties-Laplace transform of periodic functions-Laplace transform of unit step function, Impulse function-Inverse Laplace transform-Convolution.

Modulo:3	Multivariable Calculus	4 hours
wiodule:5	MIDILIVALIADIE CAICUIUS	4 110015

Functions of two variables-limits and continuity-partial derivatives –total differential-Jacobian and its properties.

Module:4 Application of Multivariable Calculus 5 hours Taylor's expansion for two variables-maxima and minima-constrained maxima and minima-Lagrange's multiplier method. **Module:5** | **Multiple integrals** 8 hours Evaluation of double integrals-change of order of integration-change of variables between Cartesian and polar co-ordinates - Evaluation of triple integrals-change of variables between Cartesian and cylindrical and spherical co-ordinates- evaluation of multiple integrals using gamma and beta functions. **Module:6** | Vector Differentiation 5 hours Scalar and vector valued functions - gradient, tangent plane-directional derivativedivergence and curl-scalar and vector potentials-Statement of vector identities-Simple problems **Module:7** | **Vector Integration** 5 hours line, surface and volume integrals - Statement of Green's, Stoke's and Gauss divergence theorems -verification and evaluation of vector integrals using them. Module:8 **Contemporary Issues:** 2 hours **Industry Expert Lecture** Total Lecture hours: 45 hours Text Book(s) [1] Thomas' Calculus, George B.Thomas, D.Weir and J. Hass, 13th edition, Pearson, 2014. [2] Advanced Engineering Mathematics, Erwin Kreyszig, 10th Edition, Wiley India, 2015. **Reference Books** 1. Higher Engineering Mathematics, B.S. Grewal, 43rd Edition, Khanna Publishers, 2. Higher Engineering Mathematics, John Bird, 6th Edition, Elsevier Limited, 2017. 3. Calculus: Early Transcendentals, James Stewart, 8th edition, Cengage Learning, 2017. 4. Engineering Mathematics, K.A.Stroud and Dexter J. Booth, 7th Edition, Palgrave Macmillan (2013) **Mode of Evaluation** Digital Assignments, Quiz, Continuous Assessments, Final Assessment Test **List of Challenging Experiments (Indicative)** Introduction to MATLAB through matrices, and general Syntax 3 hours 2 Plotting and visualizing curves and surfaces in MATLAB – 3 hours

	Symbolic computations using MA						
3.	Evaluating Extremum of a single	3 hours					
4.	Understanding integration as Arc	3 hours					
5.	Evaluation of Volume by Integral	3 hours					
6.	6. Evaluating maxima and minima of functions of several			3 hours			
	variables						
7.	7. Applying Lagrange multiplier optimization method			2 hours			
8. Evaluating Volume under surfaces			2 hours				
9. Evaluating triple integrals			2 hours				
10. Evaluating gradient, curl and divergence			2 hours				
11.	11. Evaluating line integrals in vectors			2 hours			
12.	12. Applying Green's theorem to real world problems			2 hours			
		30 hours					
Mode of Assessment:							
Weekly assessment, Final Assessment Test							
Recommended by Board of Studies 12-06-2015							
Approved by Academic Council		No. 37	Date	16-06-2015			