

密级:密2

任职资格答辩报告

姓 名:何涛

公 司: 舜宇光电

认证岗位: 量产技术

认证等级: 工程师

日 期: 2024年8月

一、个人简介

二、认证周期内主要业绩成果

三、典型项目/关键成果汇报

一、个人简介

	个人信息								
学 历	本科	所学专业	测控技术与仪器						
毕业院校	西安工业大学北方信 息工程学院	入职时间	2018年11月						
参评人员类型	常规申请	现聘任专业	技术管理						
现聘任等级	助理工程师	现聘任等级 开始时间	2020年1月						
现职级	10级	现职级 开始时间	2022年1月						

近三年约	责效考核
年度	考核结果
2023	B+
2022	Α
2021	B+

一、个人简介

工作经历										
时间	公司	部门	岗位	工作特长						
2018.11— 2021.12	宁波舜宇光电信 息有限公司	一工厂前道制造 部	量产技术	制程异常分析 COB良率改善						
2022.1— 2023.12	宁波舜宇光电信 息有限公司	一工厂全流程二 车间	量产技术	COB良率改善 马达线AOI良率提升						
2024.1—至今	宁波舜宇光电信 息有限公司	一工厂全流程制 造二部	量产技术	马达污点改善研究						

近三年主要荣誉

无

f	亍为模块1	行为模块2	行为	g模块3	;	行为模块4	1	模块	步及数量
产前	前规划与准备	量产维护与优化	量产总	结与推广		技术研究	,		4
序号	行为模块	行为要点		项目/ 业绩主题	角色	时间	个人	人贡献	举证材料
1	产前规划与准备	1.1 量产方案策划 ①可以根据产品技术要求及客户项目整体规划如产线布局,设备 具设计,人员需求等内容;满足时在借鉴以往经验的基础上,	备选型,治工 2客户需求同	小米O2潜望马达 工艺流程策划	参与	2024年4月	根据153/ 验,规划 优工艺路 方	N3马达量产经 O2潜望马达最 线,污点改善 案策划	1.1-小米O2潜望马 达工艺流程策划

共同创造 CREATE TOGETHER

1.2工艺流程编制与优化(核心项) 产前规划与准备

的先进性;

①根据产品结构与工艺特性,能够独立编制 工艺文件,并使整体工艺流程具有先进性;

> 主导 123项目策划

2024年6月

153迭代123项目流程 策划,153改善经验合 入,设计优化

1.2-123项目策划 报告

行为模块1	行为模块2	行为模块3	行为模块4	模块涉及数量
产前规划与准备	量产维护与优化	量产总结与推广	技术研究	4

序号	行为模块	行为要点	项目/ 业绩主题	角色	时间	个人贡献	举证材料
3	产前规划与准备	1.3资源配置管理与调试(核心项) ①根据工艺文件要求,从整体产能和效 率、品质角度出发,能够对生产资源输 出合理配置方案,并按照计划进行实施。	153项目底座线 圏热风焊变更 JSBB验证导入	主导	2023年12月	验证底座线圈热风焊接变更为JSBB锡球焊接,可靠性确认,成功量产导入,改善等制度/助焊剂残改善。	1.3-SL15302A底 座线圈热风焊变更 JSBB验证报告
4	产前规划与准备	1.4量产风险预防管理(核心项) ①可以充分识别量产风险,制定系统的解决方案,落实对策并预防发生;	天舟马达量产污 点风险策划	主导	2024年5月	通过对153/N3污点改善经验总结,根据天舟马达结构和工艺流程,策划污点高风险工序管控方案	1.4-天舟马达量产 污点风险策划

行为模块1	行为模块2	行为模块3	行为模块4	模块涉及数量
产前规划与准备	量产维护与优化	量产总结与推广	技术研究	4

序号	行为模块	行为要点	项目/ 业绩主题	角色	时间	个人贡献	举证材料
5	量产维护与优化	2.1量产过程的日常监督和异常处理 ①根据产线工艺规格要求以及产品特性,主导 建立各岗位日常数据的汇总形式,建立管理机 制,有效对异常发生起到预防以及改善; ②主导对复杂、困难异常分析,并根据异常原 因给出对应措施,并确认相应对策的落实效果、 收益。	马达制程污点 checklist制定	主导	2023年5月	根据污点制程风险排查结果,制定污点制程管控 checklist,IPQC每班稽查监控	2.1-马达制程污点 checklist
6	量产维护与优化	2.2量产工艺能力管理与提升(核心项) ①能够对所负责的产品或工艺过程,主导对生产过程的绩效(良率、损金、异常等)进行分析研究,对其中TOP级的问题进行原因分析和改善推进,并实现持续绩效的提升。 ②能够对系统梳理影响工程能力的各因素,并建立有效控制计划,使工程能力稳定并提升。 ③根据工艺变更需求,制定整体的变更方变更计划和技术验证计划,输出整体的验证资源配置,完成变更处置和关联变更内容。	天璇成品马达 离心清洗验证 导入	主导	2023年11月	主导验证天璇成品马达离 心水洗可行性,清洗治具 设计,清洗参数制定,可 靠性确认,离心水洗成功 导入	2.2-天璇成品马达 离心水洗验证导入 报告

行为模块1	行为模块2	行为模块3	行为模块4	模块涉及数量
产前规划与准备	量产维护与优化	量产总结与推广	技术研究	4

序号	行为模块	行为要点	项目/ 业绩主题	角色	时间	个人贡献	举证材料
7	量产维护与优化	2.3制造成本管理与改善(核心项) ①对所负责的产品或工艺过程制订效率提升方案,能够主导组织方案的实施验证,并对实施过程中出现的问题进行协调和优化,最终能够有效达成目标。	成品马达外观 检验导入六面 检AOI	主导	2023年6月	成品马达外观检验导入六 面检AOI,人员particle引 入减少,精简外观检验人 力20人/天	2.3-外观检验 <u>六面</u> 检AOI导入
8	量产维护与优化	2.4技术支持及管理(核心项) ①能够独立对供应链端或客户端出现的问题进行分析,找到问题产生的根因,提出建设性建议,帮助供应链端或客户解决现实困难。	天璇马达客户 端异物改善	主导	2024年3月	客户端反馈马达异物,异常原因分析排查,制定改善对策,异物不良比例由20%下降至5%以内	2.4-天璇客户端马达异物改善报告

共同创造 CREATE TOGETHER --

行为模块1	行为模块2	行为模块3	行为模块4	模块涉及数量
产前规划与准备	量产维护与优化	量产总结与推广	技术研究	4

序号	行为模块	行为要点	项目/ 业绩主题	角色	时间	个人贡献	举证材料
9	量产总结与推广	3.1量产经验总结(核心项) ①能够组织定期对现场工艺改善点进行汇总整 理和归纳,形成知识和经验。	自研马达污点管理经验总结	主导	2024年3月	整理自研马达污点管理改善经验,横向展开至N3/天璇项目,新项目策划改善对策同步导入	3.1-自研马达污点 管理经验总结
10	量产总结与推广	3.2标准化制定标准与推广(核心项) ①能够对现场工艺改善点的一些共性的工序形成标准化的规范和要求。 ②能够进行技术成果推广并优化标准,同时明确推广的应用范围。	成品马达测试假镜头清洁方式评估	主导	2023年5月	成品马达测试假镜头清洁 方式评估,清洁方式标准 化	3.2-成品马达测试 假镜头清洁方式评 估

共同创造 CREATE TOGETHER ---

行为模块1	行为模块2	行为模块3	行为模块4	模块涉及数量
产前规划与准备	量产维护与优化	量产总结与推广	技术研究	4

序号	行为模块	行为要点	项目/ 业绩主题	角色	时间	个人贡献	举证材料
11	技术研究	4.1新设备、治工具研究分析(核心项) ①根据企业的发展要求,能够主导在现有设备 的基础上,进行研究分析和提出改善方案,并 推进实施验证。	马达离心吹尘 导流治具验证 导入	主导	2023年9月	离心吹尘导流吹尘盖、导流底座治具验证导入, 导流底座治具验证导入, 马达覆膜振动异物不良 率降低1%	4.1-马达离心吹尘 治具优化
12	技术研究	4.2新工艺、新材料等研究分析 ①根据企业的发展要求,能够主导在现有工艺、 材料的基础上,进行研究分析和提出最优化的 改善方案,并推进实施验证。	天璇POG改善, 涂油工艺验证 导入	主导	2024年1月	天璇马达载体/底座摩擦 起屑,通过验证导入底 座/侧壁/磁石涂油工艺, 模组可靠性污点比例由 10/20降低至1/20	4.2-天璇POG改善 涂油工艺验证导入

共同创造 CREATE TOGETHER -

共同创造 CREATE TOGETHER --

二、认证周期内主要业绩成果概述

■ **业绩来源:**天璇模组可靠性污点改善

■ **难点/技术点:**涂油工艺无相关案例,属于新工艺

■ 过程简述:

TX项目,模组机械可靠性后10/20污点,拆解确认为马达底座侧壁剐蹭、UV槽侧壁剐蹭起屑;

通过在底座挡墙孔位贴附麦拉,在9个位置涂润滑油,来改善摩擦起屑

■ **价值贡献:**通过验证导入底座/侧壁/磁石涂油工艺, 模组可靠性污点比例由10/20降低至1/20;

■ 专业影响力:

为POG改善提供新的研究方向,可横向展开至同类型产品可靠性污点改善;

■ 业绩来源:153项目污点改善

■ **难点/技术点**:焊接参数评估

■ 过程简述:

153项目,底座线圈热风焊,工序复杂,流转时间长,客户端存在锡膏/助焊剂污点成分,需评估导入JSBB锡球焊接;

原工艺流程:

锡膏涂布 → 预固化 · 热风焊 · 超声波 / 洪烤 →

问题点:1.工序多,流转时间长;2.锡膏涂布存在点偏导致污点;3.锡膏助焊剂需超声波溶液清洗,且存在残留;

改善工 艺流 程:

改善后:1.取消锡膏涂布\预固化\超声波后烘烤工序,产品流转时间加快,particle引入减少;

2.离心清洗代替超声波清洗,提升清洗良率,节省溶液成本;

- **价值贡献:**通过导入JSBB工艺,解决锡膏、助焊剂 残留污点问题,工序精简,减少particle引入;
- 专业影响力:

为新项目选择焊接方式提供参考,新项目减少锡膏热风焊工艺;

同创造 CREATE TOGETHER ---

二、认证周期内主要业绩成果概述

■ **业绩来源:**制程particle改善,主动发现可优化改善点

■ **难点/技术点:** 吹尘方案评估,风速仿真

■ 过程简述:

现有离心吹尘机台,喷嘴间距和喷嘴高度无法调节

所有型号都使用相同间距/高度吹尘,吹尘效果不理想

改善前:喷嘴与产品未对准,喷嘴距离产品高度3cm

改善后:喷嘴与产品对准, 喷嘴距离产品高度1.5cm

改善前:每个喷嘴单独固定,无法调节间距,喷嘴高度无法调节;

改善后:①喷嘴使用U形槽固定,可以根据不同产品进行间距调节②可以调整喷头高度;

- **价值贡献:**在未新购机台的前提下,提升吹尘能力, 马达覆膜振动异物不良率降低1%;
- 专业影响力:

为其他项目,其他车间同步改善提供参考;

共同创造 CREATE TOGETHER -

三、典型项目/关键事件举证—自研马达污点改善研究

● 项目背景

舜宇首款自研OIS马达,制程良率已达到行业平均水平,客户端上线污点3500dppm,马达成分占比超过50%,与友商平均水平1000dppm,存在较大差距,厂内无相关改善经验,需系统性研究马达污点改善方案。

TOP1 线加载94HT 47% TOP2 皮肤(共性成分) 16%		马达成分	占比
TOP2 皮肤(共性成分) 16%	TOP1	线加载94HT	47%
	TOP2	皮肤(共性成分)	16%
TOP3 锡膏/助焊剂 11%	ТОР3	锡膏/助焊剂	11%

◆ 根据马达成分TOP3 , 进行改善。

职责分工:

工艺:工艺风险点识别,主导拉通并改善;工序精简、加快产品流转周期;评估先进工艺替代;

设备:设备产尘源改善;设备保养清洁规范制定及实施;

制造:人员particle引入风险监控;改善措施有效实施;

品质:建立工厂内部基线标准,识别改善方向;改善对策监督执行,跟进改善项目进度;数据及成分分析;

模组:跟进马达在模组上线良率,跟进客户上线数据,不良分析;

六同创造 CREATE TOGETHER --

三、典型项目/关键事件举证—自研马达污点改善研究

● 难点剖析

舜宇首款自研OIS马达,工艺设计不成熟

自研马达属于新业务,厂内无相关改善经验

起量时间短,工序多,量产工艺流程不是最优工艺路线

涂润滑油工艺,成品马达无法水洗

共同创造 CREATE TOGETHER --

三、典型项目/关键事件举证—自研马达污点改善研究

● 主要影响因素

● 风险识别与方案策划:

◆ 小结:针对高风险项,展开排查验证;

● 风险识别与方案策划:

马达污点评价方式介绍

异物评价方法	应用对象	输出项	优点	缺点	图示
浸水过滤法 (萃取)	各种元器件 (内外表面)、 设备水源	元器件洁净度、水源 洁净度、清洗去污率、 制程引入率、制程激 发率	应用范围广、测试 准度高、操作效率 快、干扰因子少、 风险成本低	操作相对复杂	
覆膜振动法	马达单体	马达洁净度	操作简单	测试准度低,应用 范围小	
显微观察法	各种元器件 (外表面)	元器件外表面洁净度	操作简单	测试准度低 , 只能 观察外表面	
小lot实验法	模组成品	污点不良率	实验结果更直观	消耗时间长,干扰 因子多	

◆ **小结:**马达污点评价方式根据不同场景选择不同评价方式;

● 异常分析:TOP1线加载碎屑

客户上线污点马达碎屑成分占比47%,拆解9pcs马达碎屑成分模组,8pcs存在不同程度的凸台起屑现象;

上线污点马达碎屑成分拆解

出货前模组/马达各5pcs拆解确认

- ◆ 小结:上线污点主要为马达碎屑成分,马达凸台存在起屑,**出货前马达未起屑,确认起屑为模组制程影响**;
- ◆ 下步计划:排查模组制程起屑原因;

● 异常分析:

马达全检无损伤产品,模拟模组各段激发工序,拆解是否存在起屑,确认模组是否存在过激发;

模组工序:

振动

AA 振动

MINI

振动

DCC

烧录

成品振动

成品测 试

◆ 模组25pcs,模组5个激发工序分别做5pcs验证,拆解确认是否存在激发起屑现象;

同类型马达激发验证

物料状态	一次振动(5pcs)	二次振动(5pcs)	三次振动(5pcs)	四次振动(5pcs)	车间运检(5pcs)
模组	<mark>2</mark> /5	<mark>3</mark> /5	3/5	<mark>3</mark> /5	5/5
模组起屑 图片					
起屑程度	严重	严重	严重	轻微	严重

验证	SL15302A	SL15301A
验证 条件	模组振动20min	模组振动20min
结果	4/5 NG	5pcs OK
程度	严重	OK
线加 载		

- ◆ 小结:模组制程振动激发会造成马达凸台起屑,模组制程激发条件下SL15301A马达不易起屑;
- ◆ 下步计划:分析SL15301A马达相比SL15302A马达不易起屑的原因;

● 异常分析:

相同激发条件, SL15301A马达相比SL15302A马达激发不易起屑, 对比马达结构是否存在差异;

	SL15301A	SL15302A
镜头重量(mg)	380	350
弹片K值(mN/mm)	85	81
弹片预压段差(um)	100	100
AF下行程(µm)	最小行程140 实测机械行程200	最小行程130 实测机械行程190
载体Stopper材料	94HT	94HT
载体Stopper设计面积(mm^2)	0.529	0.718
载体Stopper设计外侧R角(mm)	0.08	0.05
实物特征		
小结	SL15302A凸台R角相比SL15301A凸台R角明显小;	

◆ 小结: SL15302A马达线加载凸台R角比SL15301A小;

分析运动

①V1垂直撞击面:将表面的微 观凸起压平 (particle低风险)

②V2平行撞击面:相对运动带动 表面材料转移(particle高风险)

R角增大, 凸台棱边撞击底座接触面积越大

应变
$$ε = \frac{\dot{\omega} \, \dot{\sigma}}{\dot{\varphi} \, t \, t \, t \, t \, t \, e}$$
 , $\dot{\omega} \, \dot{\sigma} = \frac{\dot{\Xi} \, \dot{D} \, F}{\dot{\varpi} \, t \, t \, t \, e}$

面积A增大,应力 σ 减小,应变 ϵ 减小,变形量减小

凸台应力仿真,R角加大棱边应力减小

小结:R角加大,载体撞击底座时,棱边应力减小,起屑风险降低;

● 改善验证:

载体凸台R角加大,凸台平面面积减小,底座撞击应力增大,客户研发要求凸台平面面积需 > 0.45mm²,满足要求最大R角为0.12mm;

R角大小 (mm)	0.05	0.08	0.1	0.12	0.13	0.15
凸台平面面积(mm²)	0.718	0.609	0.54	0.473	0.441	0.378

变更点

△ 凸台R角加大:由R0.05→R0.12mm

▶ R角加大,平面部分的面积变小:由0.718→0.473 mm²

◆ 下步计划:载体凸台R角由0.05mm加大至0.12mm,打样进行验证;

● 改善效果确认:

R角加大可靠性拆 解

凸台R角改善前后物料,进行定频振动激发,拆解对比凸台起屑情况;

打	辰动时间	20min	30min	40min	50min	60min
	起屑比例	2/5	3/5	5/5	5/5	5/5
R角改善前	图片			and A Parish and A		
	起屑比例	0/5	0/5	0/5	0/5	0/5
R角改善后	图片					

◆ 小结:**线加载凸台R角加大激发60min无起屑**,改善效果明显,可靠性无异常,可靠性微跌、定跌后拆解凸台未起屑;

● 改善效果确认:

线加载凸台R角加大,小批验证

验证事项	验证数量	AA otp	测试	检验点	上线
正常物料	2000	0.39%	0.41%	0.44%	0.36%
凸台R角改善物料	2000	0.38%	0.35%	0.32%	0.25%

位置	改善前污点拆解	图片	改善后污点拆解	图片
上凸台	有撞击痕迹,起屑		有撞击痕迹, 无起屑	
下凸台	有撞击痕迹,起屑		有撞击痕迹, 无起屑	

◆ 小结:凸台R角验证物料相比正常物料上线数据从0.36%下降至0.25%,下降0.11%,小批验证改善有效;

● 改善效果确认:

- ◆ 小结:凸台R角改善物料上线污点从0.34%下降至0.25%,下降0.09%;上线污点马达碎屑成分由47%下降至14%;
- ◆ 下步计划:凸台R角改善后,马达污点成分TOP1为皮肤,针对皮肤成分进行排查改善;

● 制程工艺优化---TOP2皮肤改善

离线工序

倒盘工序

□ Frame组装 (工序:9)

◆ 153共75道工序,离线工序27个,倒盘工序10个,AF半成品和底座半成品都有清洗工序**,总装无清洗工序,优先改善总装制程**;

● 总装制程mapping

◆ 总装制程mapping,脏污引入高风险岗位:侧壁点胶、外壳热压、熔点封胶、马达振动、外观检验;

● 总装工艺优化---工序精简

问题点:底座侧壁点胶/外壳热压脏污引入10%;

盖板将pin熔接位 置裸露出来

卡扣按压装置锁 住,使产品处于 保压状态

底部增加弹 簧按压块

改善前

御点、 焊点封 胶

余料 分离 底座侧 壁点胶 外壳 安装 外壳 热压 成品 下料 摆盘

PIN 熔接

熔接点 封胶 成品 烘烤

改善后

御点、 焊点封 胶

余料 分离

外壳 安装 加压pin 熔接 成品 下料 <u>摆盘</u>

熔接点 上 封胶

成品 烘烤

外观 检验

□ 可靠性:加压PIN熔接,取消侧壁点胶,可靠性无异常;

◆ **小结:**导入加压PIN熔接,精简2道工序(底座侧壁点胶/外壳热压),产品流转时间减少,脏污引入降低;

回创造 CREATE TOGETHER ---

三、典型项目/关键事件举证—自研马达污点改善研究

- 总装工艺优化---减少倒盘次数
- ▶ 问题点: PIN熔接到熔接封胶,需4次倒盘,人工作业皮肤引入风险高,存在与治具摩擦产尘;

■ 改善措施:导入PIN熔接浮压盖板,使用PIN熔接治具进行全流程流转

Pin熔接倒盘

- ◆ 方案优势:
- ①减少3次倒盘动作,减少3次摩擦;
- ②减少人员作业皮肤引入风险;

● 总装工艺优化---工艺流程优化

▶ 问题点:成品马达外观检验后物料,白点比例27%;

▶ 改善方案: 吹尘工序移至整合扫描后;

分类	抽检数量	异物	不良率
成品吹尘前	200	68	34.00%
成品吹尘后	200	26	13.00%

现有流程:

X-RAY

马达振动

性能测试

吹尘

外观检验

整合入库

OQC

11 .

改善流程: X-RAY

马达振动

性能测试

外观检验

整合入库

吹尘

OQC

◆ **结论:**吹尘后移可以有效减少出货马达脏污,**吹尘后还有13%白点,吹尘能力需进行提升**;

◆ **下步计划:**成品马达吹尘能力研究;

● 成品马达吹尘能力研究

插入式吹尘

优势:可插入马达内部,

内部除尘效果好

风险:风速过高,存在润

滑油吹出风险

离心吹尘

优势:效率高,成本低,

风险小

风险:除尘效果相比集尘

器和插入式吹尘要差

◆ **小结:**综合评估,离心吹尘风险较小,吹尘效果需进行提升;

- 马达离心吹尘优化---喷嘴间距调整
- ▶ 问题点:1.离心吹尘相比插入式吹尘,喷嘴未对准产品,产品内部风速小;

改善措施: 离心吹尘喷嘴固定件改为可调结构, 根据产品间距调整喷嘴间距;

● 马达离心吹尘优化---喷嘴高度调整

2、喷嘴高度影响:统一喷嘴气压为0.5MPa,验证1cm、2cm、3cm不同喷嘴高度对马达内部风速影响

喷嘴距离马达 高度	1cm	2cm	3cm
仿真			
马达内壁最小风速	1.286m/s	1.071m/s	0.857m/s

▶ 小结:喷嘴高度越低,马达内部风速越大,理论吹尘效果越好;

● 马达离心吹尘优化

改善前:喷嘴与产品未对准, 喷嘴距离产品高度3cm

改善后:喷嘴与产品对准,喷嘴距离产品高度1.5cm

改善前:每个喷嘴单独固 定,无法调节间距,喷嘴高 度无法调节;

改善后:①喷嘴使用U形槽固定,可以根据不同产品进行间距调节②可以调整喷头高度;

◆ 小结:吹尘喷头优化,马达萃取下降0.2,覆膜下降1%,153项目已全部导入;

公同创造 CREATE TOGETHER

共同创造 CREATE TOGETHER

三、典型项目/关键事件举证—自研马达污点改善研究

● 马达离心吹尘治具优化

◆ 小结: 离心吹尘喷嘴优化,导入导流吹尘盖,吹尘后物料白点不良率降低至5%以内;

● 底座焊接工艺优化---TOP3 锡膏/助焊剂成分改善

底座工艺优化

问题点:1.工序多;2.锡膏涂布存在点偏\散点污染;3.锡膏助焊剂需超声波溶液清洗,且存在残留;

◆ 小结: 1.底座线圈导入JSBB锡球焊接代替热风焊,可改善锡膏和助焊剂污点; 2.精简锡膏涂布、预固化、超声波清洗后烘烤3道工序,产品流转时间缩短; 3.离心清洗代替超声波清洗,节省超声波溶液成本,清洗良率提升;

- 1、第二款自研OIS马达N3项目,马达设计优化,载体使用96AC材质,凸台R角0.15mm,焊接工序使用JSBB工艺,引线封胶使用带捕尘功能胶水,上线污点500dppm以内,污点马达成分占比<10%;
- 2、天舟项目底座增加防撞软性Damper,可靠性无起屑;

THANKS

