Answers to Coursebook exercises

9 Expressions and formulae

Simplifying algebraic expressions Exercise 9.1

- a x^9
- **b** y^6
- \mathbf{C} z^{10}
- **d** m^{14}
- n^{12} е

g q⁵

g $3q^4$

- $h r^3$
- i t^5
- \mathbf{j} u^2
- k ν

- **2 a** $6x^5$
- **b** $12y^9$

 $3r^4$

- **c** $30z^7$ $3t^{4}$
- **d** $4m^7$ $2u^5$
- $4n^{13}$ $\mathbf{k} \quad 2v^4$
- **f** $8p^{3}$ **l** 5w

- 3 a D
- c C
- **a** Group 1: all have an x^9 when simplified; $8x^6 \times x^3$, $4x^5 \times 2x^4$, $12x^{10} \div 2x$ Group 2: all have an x^6 when simplified; $6x^3 \times 2x^3$, $12x^8 \div x^2$, $2x^3 \times 3x^3$
 - **b** $3x^2 \times 4x^3$. This card doesn't fit as it has an x^5 when simplified.

Exercise 9.2 Constructing algebraic expressions

- **1 a** 7n
- **b** n + 12

2n - 1

- **c** n-2
- **d** 20 n

- 2n + 9
- $\frac{n}{2}$ f
- **g** $\frac{n}{6} 4$
- $\mathbf{h} n^2$

- <u>100</u>
- **k** 5(n+2)
- 8(n-7)

- **2 a i** 2x + 2yii xy
 - **b** i 8x + 6yii 12xy
 - ii x^2 c i 4x
 - **d** i 8y
- ii $4y^2$
- 3 a P = 2x + 10, A = 3x + 6
- **b** P = 2y 4, A = 4y 24
- $P = 4n + 8, A = n^2 + 4n$
- **d** $P = 10p + 6, A = 4p^2 + 12p$
- **4 a** i 2 red + 2 yellow = 4 green; both = 8x + 4
 - ii 3 red + 3 yellow = 6 green; both = 12x + 6
 - iii 4 red + 4 yellow = 8 green; both = 16x + 8
 - **b** n red + n yellow = 2n green (or similar explanation given in words)
 - **c** i 3 red + 1 yellow = 6 blue; both = 6x + 6
 - ii 6 red + 2 yellow = 12 blue; both = 12x + 12
 - iii 9 red + 3 yellow = 18 blue; both = 18x + 18
 - **d** $3n \operatorname{red} + n \operatorname{yellow} = 6n \operatorname{blue}$ (or similar explanation given in words)

Exercise 9.3 Substituting into expressions

- **a** 9
- b 4
- **c** 9
- **d** 2

- 8 e
- f 0 47
- **g** 8 k - 30
- **h** 30

- 5 **2 a** 21
- b 36
- **c** 10
- **d** 16

- **e** 68 i 18
- f 64 j -25
- **g** 3 **k** −7
- **h** -18 **l** 5
- **3** a For example: Let x = 2; $3x^2 = 3 \times 2^2 = 12$ and $(3x)^2 = (3 \times 2)^2 = 36$, so $3x^2 \neq (3x)^2$ **b** For example: Let y = 4; $(-y)^2 = (-4)^2 = 16$ and $-y^2 = -(4)^2 = -16$, so $(-y)^2 \neq -y^2$
 - **c** For example: Let a = 2 and b = 3; 2(a + b) = 3(2 + 3) = 15 and $2a + b = 2 \times 2 + 3 = 7$, so $2(a + b) \neq 2a + b$

Unit 9 Answers to Coursebook exercises

Exercise 9.4 Deriving and using formulae

- **a** S = 60M
- **b** S = 900
- **c** $M = \frac{S}{60}$
- **d** M = 22.5

- **a** F = 60
- **b** F = -78
- **c** m = 12
- **d** a = -1.75

- **a** v = 87
- **b** v = 125
- **c** u = 27
- **d** u = 46

- **e** t = 10**4 a** x + 2
- **f** a = 2
 - **b** T = 2x + 2 **c** T = 40
- **d** $x = \frac{T-2}{2}$ **e** x = 23

- **5 a** 20%
- **b** 60%
- **c** 125%
- **6 a** 65 kg
- **b** 49.1 kg (1 d.p.) **c** 95.9 kg (1 d.p.) **d** 57.3 kg (1 d.p.)

- Sasha is correct as $30 \,^{\circ}\text{C} = 86 \,^{\circ}\text{F}$ and $86 \,^{\circ}\text{F} > 82 \,^{\circ}\text{F}$ (or $82 \,^{\circ}\text{F} = 27.8 \,^{\circ}\text{C}$ and $27.8 \,^{\circ}\text{C} < 30 \,^{\circ}\text{C}$).
- **a** She is not underweight as her BMI is 20.05, which is greater than 18.5.
 - **b** 3.7 kg

Exercise 9.5 Factorising

- **a** 3(x+2)
- **b** 5(2y-3)
- **c** 6y(x+2)
- **d** x(4x+1) **e** 3(3-4y) **f** y(2y-7)

- **2 a** 2(x+2)
- **b** 3(y-6)
- **c** 5(2z+1)
- **d** 4(2a-1) **e** 2(2b+3) **f** 4(4n-5) **j** 6(3+4z) **k** 3(3+5m) **l** 10(3-2k)

- **g** 5(2-x) **h** 7(2+3x)
- **c** 5(2z + 1) **i** 2(4-5y)

- **3 a** x(3x+1) **b** 6y(y-2) **c** z(z+4) **d** 2a(2-a) **e** 3b(1+3b) **f** 3n(4-5n)

- **g** 9(2y-x) **h** 3(4y+3x) **i** 4y(2x-1)
- **j** 5z(3+2y) **k** 2m(7+3n) **l** 13k(2-p)

- 4 a 2(x+3y+4)**d** x(5x + 2 + y)
- **e** y(9-y-x) **f** 3y(y-3+2x)
- **b** 4(y-2+x) **c** 3(3xy+4y-5)
- 5(2x+6) + 2(3x-5) = 10x + 30 + 6x 10 = 16x + 20 = 4(4x+5)
- $6(3y+2)-4(y-2)=18y+12-4y+8=14y+20=2(7y+10)\neq 2(7y+2)$ The mistake he has made is when he has expanded. He has done $-4 \times -2 = -8$ and so his expansion is 18y + 12 - 4y - 8 = 14y + 4 = 2(7y + 2).

Exercise 9.6 Adding and subtracting algebraic fractions

- 1 **a** $\frac{2x}{5}$ **b** $\frac{4x}{7}$ **c** $\frac{x}{4}$ **d** $\frac{x}{3}$ **e** $\frac{2x}{5}$ **f** $\frac{2x}{3}$ **g** $\frac{3y}{4}$ **h** $\frac{7y}{9}$ **i** $\frac{7y}{10}$ **j** $\frac{3y}{8}$ **k** $\frac{9y}{25}$ **l** $\frac{3y}{14}$ 2 **a** $\frac{a}{2} + \frac{a}{5} = \frac{5a}{10} + \frac{2a}{10}$ **b** $\frac{b}{4} + \frac{b}{3} = \frac{3b}{12} + \frac{4b}{12}$ **c** $\frac{5c}{7} \frac{2c}{5} = \frac{25c}{35} \frac{14c}{35}$ $= \frac{5a + 2a}{10}$ $= \frac{7a}{10}$ $= \frac{7b}{12}$ $= \frac{11c}{35}$

- $\mathbf{d} \quad \frac{5d}{6} + \frac{3d}{5} = \frac{25d}{30} + \frac{18d}{30} \qquad \qquad \mathbf{e} \quad \frac{5e}{8} + \frac{2e}{3} = \frac{15e}{24} + \frac{16e}{24} \qquad \qquad \mathbf{f} \quad \frac{9f}{10} + \frac{3f}{4} = \frac{18f}{20} + \frac{15f}{20}$ $= \frac{25d + 18d}{30} \qquad \qquad = \frac{15e + 16e}{24} \qquad \qquad = \frac{18f + 15f}{20}$ $= \frac{31e}{24} \qquad \qquad = \frac{33f}{20}$

- 3 a $\frac{x+y}{5}$ b $\frac{3x+y}{6}$ c $\frac{6x+y}{9}$ d $\frac{4x-y}{10}$ e $\frac{11x-4y}{14}$ f $\frac{9x-8y}{20}$ g $\frac{3a+4b}{12}$ h $\frac{12a+5b}{30}$ i $\frac{10a+9b}{24}$ j $\frac{8a-5b}{40}$ k $\frac{9a-2b}{30}$ l $\frac{20a-27b}{45}$

- **4 a** A, D, F **b** B, C, E **c** G; the answer is $\frac{x}{3}$
 - **d** You can ignore the letter, work out the fractions, then put the letter back in at the end.

Exercise 9.7 Expanding the product of two linear expressions

1 a
$$(x+4)(x+1) = x^2 + 1x + 4x + 4$$

= $x^2 + 5x + 4$

b
$$(x-3)(x+6) = x^2 + 6x - 3x - 18$$

= $x^2 + 3x - 18$

c
$$(x+2)(x-8) = x^2 - 8x + 2x - 16$$

= $x^2 - 6x - 16$

d
$$(x-4)(x-1) = x^2 - x - 4x + 4$$

= $x^2 - 5x + 4$

a
$$x^2 + 10x + 21$$
 b $x^2 + 11x + 10$

b
$$x^2 + 11x + 10$$

c
$$x^2 + 2x - 15$$

d
$$x^2 + 4x - 32$$

e
$$x^2 - 9x + 14$$

f
$$x^2 - 14x + 24$$

3 **a**
$$y^2 + 6y + 8$$

b
$$z^2 + 14z + 48$$

c
$$m^2 + m - 12$$

d
$$a^2 - 7a - 18$$

e
$$p^2 - 11p + 30$$

f
$$n^2 - 30n + 200$$

5 a
$$(x+2)^2 = (x+2)(x+2)$$

= $x^2 + 2x + 2x + 4$
= $x^2 + 4x + 4$
b $(x-3)^2 = (x-3)(x-3)$
= $x^2 - 3x - 3x + 4$
= $x^2 - 6x + 9$

b B

b
$$(x-3)^2 = (x-3)(x-3)$$

= $x^2 - 3x - 3x + 9$
= $x^2 - 6x + 9$

6 a
$$y^2 + 10y + 25$$

b
$$z^2 + 2z + 1$$

c
$$m^2 + 16m + 64$$

d
$$a^2 - 4a + 4$$

e
$$p^2 - 8p + 16$$

f
$$n^2 - 18n + 81$$

7 **a** i
$$x^2 - 4$$
 ii $x^2 - 25$

iii
$$x^2 - 49$$

c
$$x^2 - 100$$

d
$$x^2 - y^2$$

8 a ①
$$33 \times 29 = 957$$
, ② $28 \times 34 = 952$, ③ $957 - 952 = 5$

b ①
$$16 \times 12 = 192$$
, ② $11 \times 17 = 187$, ③ $192 - 187 = 5$

c The answer is always 5.

		•
d	n	n + 1
	n + 5	n + 6

e ① $(n+5)(n+1) = n^2 + 6n + 5$, ② $n(n+6) = n^2 + 6n$, ③ $n^2 + 6n + 5 - (n^2 + 6n) = 5$ The answer is always 5.

End-of-unit review

1 a
$$x^5$$

b
$$y^{12}$$

$$\mathbf{c}$$
 z^{10}

e
$$6n^{11}$$
 k $3v^6$

$$\mathbf{g} \quad q^6$$

$$h r^3$$

$$\mathbf{i}$$
 t^5

$$\mathbf{j} = 2u^2$$

2 a 3*a*

b
$$2b + 16$$

c
$$5c + 2d$$

d
$$16z - 2$$

3 a *ab*

$$\mathbf{c}$$
 w^2

d
$$9e^2$$

a 13

e 3 **i** 89 **f** 48

g -8

h 21

j 0

k 84

-42

5 **a** x = 19

b x = -4

d y = 60

e z = 2 **f** z = 6

6 a 2(x+3) **b** 4(y-3)

c y = 65**c** 3(a-1)

d 10(2-x)

e 6(4+5z) **f** 10(5-3b)

g x(5x+1) **h** a(3-5a)

i 8(4y - x)

j 3y(2x-1)

k 2m(9+4n) **l** 3n(8-9n)

 $\frac{15a + 8b}{1}$

8 a $x^2 + 7x + 10$ **d** $x^2 - 14x + 40$

b $x^2 + x - 12$ **e** $x^2 - 64$

c $x^2 - 3x - 54$ **f** $x^2 - 12x + 36$

9 4(2x+5) + 3(8x-4) = 8x + 20 + 24x - 12 = 32x + 8 = 8(4x+1)