통계학의 이해 11

이원배치 분산분석: 반복이 없는 경우

-고정효과모형

☑ 이원배치 분산분석: 반복이 없는 경우

- 요인이 두 개이고 각 처리에 하나의 관측값이 있는 경우, 각 요인의 처리효과를 확인하기 위해 어떻게 모형을 설정하는지 알아본다.
- ◆ 고정효과 모형 하에서의 통계적 추론을 알아본다.

🖹 이원배치 분산분석

- ♦ 실험설계
 - arphi 요인 A의 수준 수는 p, 요인 B의 수준 수는 q
 - arphi p imes q 처리를 완전 확률화 하여 실험을 진행

❖ 자료구조

	요인 B				
요인 A	1	2	•••	q	
1	Y ₁₁	Y ₁₂	•••	Y_{1q}	
2	Y_{21}	Y_{22}	•••	Y_{2q}	
:	:	:	·.	:	
p	Y_{p1}	Y_{p2}	•••	Y_{pq}	

- 🔷 요인의 수준 선택
 - **♡** 두 요인 모두 실험자가 결정 ⇒ 고정효과모형
 - **♡** 두 요인 모두 무작위 선택 ⇒ 변량효과모형
- ◇ 동일 개체를 반복측정하는 경우 ⇒ 상관관계가 존재할 수 있음∅ 변량효과로 처리: ICC

🖺 고정효과모형

🔦 고정효과모형식

- arnothing 1-요인 설계: $Y_{ij} = \mu + (\mu_i \mu) + \varepsilon_{ij} = \mu + \alpha_i + \varepsilon_{ij}$
- - \circ μ : 전체평균, $arepsilon_{ij} \sim iid \ Nig(0,\sigma^2ig)$
 - \circ μ_{i+} : 요인 A의 i번째 수준 평균, μ_{+i} : 요인 B의 j번째 수준 평균
 - $\circ lpha_i = \mu_{i+} \mu$: 요인 A의 i번째 처리 효과, $\sum lpha_i = 0$
 - \circ $oldsymbol{eta}_j = \mu_{+j} \mu$: 요인 B의 j번째 처리 효과, $\sum oldsymbol{eta}_j = \mathbf{0}$

☆ 변동분해

$$arnothing$$
 모형식: $Y_{ij}=\mu+(\mu_{i+}-\mu)+(\mu_{+j}-\mu)+arepsilon_{ij}$

$$arnothing$$
 TSS: $\sum_{i=1}^p \sum_{j=1}^q (Y_{ij} - \overline{Y})^2$, 자유도 $= N-1$

$$arnothing$$
 SSA: $\sum_{i=1}^p q(\overline{Y}_{i+} - \overline{Y})^2$, 자유도 $= p-1$

$${orall}$$
 SSB: $\sum_{i=1}^q pig(\overline{Y}_{+i} - \overline{Y}ig)^2$, 자유도 $= q-1$

$$extstyle extstyle ex$$

♦ 가설검정

arnothing 요인 A의 처리효과 유무: H_{A0} : $lpha_1=$ $\,\cdots\,=lpha_p=0$

arnothing 요인 B의 처리효과 유무: H_{B0} : $oldsymbol{eta}_1 = \ \cdots \ = oldsymbol{eta}_q = oldsymbol{0}$

◆ 분산분석표

변인	자유도	SS	MS	F
처리 A	p-1	SSA	MSA	MSA/MSE
처리 B	q-1	SSB	MSB	MSB/MSE
오차	(p-1)(q-1)	SSE	MSE	
전체	N-1	TSS		

♡ 유의하지 않는 요인의 처리효과는 오차에 흡수시켜 다시 분석

☆ 처리 평균 추정

$$arphi$$
 $\mu(A_i)$ 의 구간추정: $\overline{Y}_{i+} \pm t_{rac{lpha}{2}(p-1)(q-1)}\sqrt{MSE/q}$

- \circ 요인B의 처리효과가 없는 경우: $\overline{Y}_{i+} \pm t_{rac{lpha}{2},(p-1)q}\sqrt{MSE_A/q}$
- arnothing $\mu(B_j)$ 의 구간추정: $\overline{Y}_{+j} \,\pm t_{rac{lpha}{2'}(p-1)(q-1)}\sqrt{MSE/p}$
 - \circ 요인A의 처리효과가 없는 경우: $\overline{Y}_{i+} \pm t_{\frac{\alpha}{2},p(q-1)} \sqrt{MSE_B/p}$
- ◇ 각 요인의 수준에 대한 다중비교 가능
 - ♡ 두 요인의 처리효과가 있는 경우
 - $|\overline{Y}_{i+} \overline{Y}_{j+}| > A\sqrt{MSE}\sqrt{2/q} \implies$ 처리 A_i 와 A_j 간 유의한 차이
 - $|\overline{Y}_{+i} \overline{Y}_{+j}| > A\sqrt{MSE}\sqrt{2/p} \implies$ 처리 B_i 와 B_j 간 유의한 차이

- ☆ 예제】 원료와 반응온도에 따른 제품의 생산량 비교
 - ⊗ 원료(A): 미국 M사, 일본 Q사, 한국 P사
 - - 온도에 따라 차이가 있는지를 확인하는 것이 목적

	요인 B			
요인 A	180	190	200	210
M	97.6	98.6	99.0	98.0
Q	97.3	98.2	98.0	97.7
Р	96.7	96.9	97.9	96.5

♦ 분산분석표

변인	자유도	SS	MS	F	p-값
처리 A	2	3.44	1.72	18.43	0.0027
처리 B	3	2.22	0.74	7.93	0.0165
오차	6	0.56	0.093		
전체	11	6.22			

ジ 두 요인 모두 처리효과가 있음⇒ 원료사와 반응온도에 따라 생산량에 차이가 있음

☑ 이원배치 분산분석: 반복이 없는 경우

 요인이 두 개이고 각 처리에 하나의 관측값이 있는 경우, 각 요인의 처리효과를 확인하기 위해 어떻게 모형을 설정하는지 알아본다.

- arphi 2-요인 설계: $Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$
 - \circ $lpha_i$: 요인 A의 i번째 처리 효과, $\sum lpha_i = 0$
 - $\circ \beta_{j}$: 요인 B의 j번째 처리 효과, $\sum \beta_{j} = 0$
- ◆ 고정효과 모형 하에서의 통계적 추론을 알아본다.
 - arnothing 요인 A의 처리효과 유무: H_{A0} : $lpha_1 = \cdots = lpha_p = 0$
 - arnothing 요인 B의 처리효과 유무: H_{B0} : $oldsymbol{eta}_1 = \ \cdots \ = oldsymbol{eta}_q = oldsymbol{0}$