8.02X PSET 3 SOLUTIONS

c) the electric potential doesn't depend on
$$q_1$$
 $V = \frac{U_+}{4} = kQ = \frac{U_-}{4}$

PEOBLEM 2

conservation of energy:

at infinity
$$E_k = \frac{1}{2}mv^2$$

at closest distance $E_p = kR_p^q$
 $E_{km} = E_{p(r)}$

giving
$$V = \sqrt{\frac{2kQ_q}{mr}}$$

take
$$q = 1.6 \times 10^{-19} \text{C}$$

 $m = 1.7 \times 10^{-27} \text{kg}$
 $k = 9.0 \times 10^{-8} \text{Mm}^2$

$$Q = 82q$$
 $1f = 10^{-15}m$

reobtain v≈1.5×108 1/2

a) the prelential of both spheres is constant, because the charge his tribution is static now. If there was a place with lower potential, the charge would flow there friely. It doesn't => V= const.

b) The potentials of the spheres are equal $V_a = K \frac{Q_a}{A}$ $V_b = k \frac{Q_b}{B} \implies \frac{Q_a}{Q_o} = \frac{A}{B}$

$$\frac{Q_A}{Q_B} = \frac{A}{B}$$

The ratio of electric field strengths

$$\frac{B_A}{E_B} = \frac{k \frac{Q_A}{A^2}}{k \frac{Q_A}{Q_B}} = \frac{Q_A}{Q_B} \frac{B^2}{A^2} = \frac{B}{A}$$

The electric field is stronger mean the smaller sphere.