		RCI	Circ	cuits I	-	
Name:			Section:	4BL	Date perform	med:/
Lab station:	Pa	artners:				
			C	ircuit box :	# Oscil	lloscope #
Part A						
Measurements:						
$R_{ m g}$	en =		L =		$C = \underline{\hspace{1cm}}$ $R_{\mathrm{tot}} = \underline{\hspace{1cm}}$	<u> </u>
F	$R_L = $	(range:)	$R_{\rm tot} = \underline{\hspace{1cm}}$	
Plot V_C vs. t on	the next p	page.				
		calculated	graph	cursors	% difference	
	$\tau \text{ (ms)}$					
	f (kHz)					

Calculations:

(Q-6) Does f depend on generator frequency? Explain.

(Q-7) How does f change with increasing C? Explain.

Draw circuit diagram:

 V_C (Ch___): _____V/div _____ s/div mode: DC / AC

Frequency dial = _____ Hz

Alternative measurement of τ (time permitting...)

The relationship between $V_C^{(\text{peak})}$ (capacitor voltage measured at one of the peaks) vs. time is given by a simple exponential:

$$V_C^{(\text{peak})} = V_0 e^{-t/\tau}$$

This is almost, but not quite, the same equation as the envelope function (slightly different V_0), but the time constant is exactly the same.

Show that the graph $\ln(V_C^{(\text{peak})})$ vs. t is a straight line and determine the slope of this graph in terms of τ :

Determine peak voltage values and times (use cursors):

t (ms)	$V_C^{\text{(peak)}}$ (V)

t (ms)	$V_C^{(\text{peak})}$ (V)

t (ms)	$V_C^{\text{(peak)}}$ (V)

Attach $\ln(V_C^{(\text{peak})})$ vs. t graph from Excel.

$$slope = \underline{\qquad} \pm \underline{\qquad}$$

$$\tau = \underline{\qquad} \pm \underline{\qquad}$$

Calculations: