Treatment Effect Estimator with Matching¹

If the treatment group and the control group are different in observables \mathbf{x} , then the difference in the outcome y between the two groups may not be attributable to the difference in the treatment status. One solution could be comparing only those individuals with the same or similar values of \mathbf{x} from the two groups—matching on the observables. If \mathbf{x} is high-dimensional, then it can be difficult to find exactly matched individuals. Nonetheless, there is one solution to the dimension problem— $propensity\ score\ matching$ —which demands a $very\ strong\ assumption$ —selection on observables.

1 Balancing Observables Using Propensity Scores

The propensity score $p(\mathbf{x})$ is the probability of receiving the treatment d conditional on observables \mathbf{x} , that is $\Pr(d=1|\mathbf{x})$. The idea of using $p(\mathbf{x})$ to avoid the dimension problem actually has already been applied to inverse probability weighting (IPW) estimators. Using the (generalized version of the) law of iterated expectation, we have the following result:

$$\mathbb{E}(d|p(\mathbf{x})) = \mathbb{E}\left[\mathbb{E}(d|\mathbf{x})|p(\mathbf{x})\right] \text{ (noting that } p(\mathbf{x}) = \mathbb{E}(d|\mathbf{x})\text{)}$$
$$= p(\mathbf{x}).$$

Using this result, we can obtain

$$\Pr(\mathbf{x} \leqslant t | d = 1, p(\mathbf{x})) = \Pr(\mathbf{x} \leqslant t | d = 0, p(\mathbf{x})), \text{ where } 0 < p(\mathbf{x}) < 1 \text{ for all } \mathbf{x}.$$

This means that for the same $p(\mathbf{x})$, the distribution of \mathbf{x} will be the same across the treatment group and the control group.

Proof.

$$\Pr (d = 1, \mathbf{x} \leqslant t | p(\mathbf{x})) = \Pr(d \cdot 1\{\mathbf{x} \leqslant t\} = 1 | p(\mathbf{x})) \\
= \mathbb{E} [d \cdot 1\{\mathbf{x} \leqslant t\} | p(\mathbf{x})] \\
= \mathbb{E} [\mathbb{E} (d \cdot 1\{\mathbf{x} \leqslant t\} | \mathbf{x}) | p(\mathbf{x})] \\
= \mathbb{E} [\mathbb{E} (d | \mathbf{x}) \cdot 1\{\mathbf{x} \leqslant t\} | p(\mathbf{x})] \\
= \mathbb{E} [p(\mathbf{x}) \cdot 1\{\mathbf{x} \leqslant t\} | p(\mathbf{x})] \\
= p(\mathbf{x}) \cdot \Pr(\mathbf{x} \leqslant t | p(\mathbf{x})) \\
= \mathbb{E} (d | p(\mathbf{x})) \cdot \Pr(\mathbf{x} \leqslant t | p(\mathbf{x})) \\
= \Pr(d = 1 | p(\mathbf{x})) \cdot \Pr(\mathbf{x} \leqslant t | p(\mathbf{x})).$$

Thus, we have

$$\frac{\Pr(d=1, \mathbf{x} \leqslant t | p(\mathbf{x}))}{\Pr(d=1 | p(\mathbf{x}))} = \Pr(\mathbf{x} \leqslant t | p(\mathbf{x})),$$

which implies that

$$\Pr\left(\mathbf{x} \leqslant t | d = 1, p(\mathbf{x})\right) = \Pr\left(\mathbf{x} \leqslant t | p(\mathbf{x})\right).$$

Furthermore, note that

$$\Pr\left(\mathbf{x} \leqslant t | p(\mathbf{x})\right) = \Pr(d = 1 | p(\mathbf{x})) \cdot \Pr\left(\mathbf{x} \leqslant t | d = 1, p(\mathbf{x})\right) + \Pr(d = 0 | p(\mathbf{x})) \cdot \Pr\left(\mathbf{x} \leqslant t | d = 0, p(\mathbf{x})\right) \\
= \Pr(d = 1 | p(\mathbf{x})) \cdot \Pr\left(\mathbf{x} \leqslant t | p(\mathbf{x})\right) + \Pr(d = 0 | p(\mathbf{x})) \cdot \Pr\left(\mathbf{x} \leqslant t | d = 0, p(\mathbf{x})\right) \\
\Rightarrow \Pr(d = 0 | p(\mathbf{x})) \cdot \Pr\left(\mathbf{x} \leqslant t | p(\mathbf{x})\right) = \Pr(d = 0 | p(\mathbf{x})) \cdot \Pr\left(\mathbf{x} \leqslant t | d = 0, p(\mathbf{x})\right) \\
\Rightarrow \Pr\left(\mathbf{x} \leqslant t | p(\mathbf{x})\right) = \Pr(\mathbf{x} \leqslant t | d = 0, p(\mathbf{x})\right).$$

¹This section is based on Lee (2005) and my notes from Kenneth Chay.

In summary we have

$$\Pr(\mathbf{x} \leqslant t | d = 1, p(\mathbf{x})) = \Pr(\mathbf{x} \leqslant t | p(\mathbf{x})) = \Pr(\mathbf{x} \leqslant t | d = 0, p(\mathbf{x})).$$

Given $p(\mathbf{x})$, the distribution of \mathbf{x} is the same across the two groups.

Next we will discuss another way of removing bias due to selection on observables—an alternative to IPW.

2 Removing Bias due to Selection on Observables

Assume that d is independent of (y_0, y_1) conditional on \mathbf{x} , that is $d \coprod (y_0, y_1) | \mathbf{x}$. This assumption rules out selection bias due to unobservables. Also, this assumption is often referred to as one of the following—
"selection-on-observables," "d is ignorable given \mathbf{x} ," "randomization of d given \mathbf{x} ," "conditional independence," "ignorable treatment assignment," "ignorability," or "unconfoundedness."

Rosenbaum and Rubin (1983) show that, if the conditional independence holds, then d is independent of (y_0, y_1) given just $p(\mathbf{x})$:

$$d \coprod (y_0, y_1) | \mathbf{x} \Rightarrow d \coprod (y_0, y_1) | p(\mathbf{x}).$$

However,

$$d \coprod (y_0, y_1) | p(\mathbf{x}) \Rightarrow d \coprod (y_0, y_1) | \mathbf{x}.$$

A sketch of the proof is the following:

$$\mathbb{E}(d|y_0, y_1, p(\mathbf{x})) = \mathbb{E}\left[\mathbb{E}(d|y_0, y_1, \mathbf{x}) | y_0, y_1, p(\mathbf{x})\right]$$

$$= \mathbb{E}\left[\mathbb{E}(d|\mathbf{x}) | y_0, y_1, p(\mathbf{x})\right]$$

$$= \mathbb{E}\left[p(\mathbf{x}) | y_0, y_1, p(\mathbf{x})\right]$$

$$= p(\mathbf{x})$$

$$= \mathbb{E}\left[d|p(\mathbf{x})\right].$$

Note that d is binary, so the mean-independence is equivalent to independence:

$$\Pr(d = 1|y_0, y_1, p(\mathbf{x})) = \Pr(d = 1|p(\mathbf{x})) \text{ and } \Pr(d = 0|y_0, y_1, p(\mathbf{x})) = \Pr(d = 0|p(\mathbf{x})).$$

Under the assumption $d\Pi(y_0, y_1) | \mathbf{x}$, which implies $d\Pi(y_0, y_1) | p(\mathbf{x})$, we can identify the average treatment effect using $p(\mathbf{x})$:

ATE
$$\equiv \mathbb{E}(y_1 - y_0) = \mathbb{E}[\mathbb{E}(y_1 - y_0|p(\mathbf{x}))],$$

where $y = dy_1 + (1 - d)y_0$ and
 $\mathbb{E}(y_1 - y_0|p(\mathbf{x})) = \mathbb{E}(y_1|p(\mathbf{x})) - \mathbb{E}(y_0|p(\mathbf{x}))$
 $= \mathbb{E}(y_1|p(\mathbf{x}), d = 1) - \mathbb{E}(y_0|p(\mathbf{x}), d = 0)$
 $= \mathbb{E}(y|p(\mathbf{x}), d = 1) - \mathbb{E}(y|p(\mathbf{x}), d = 0).$

For propensity score matching, there must be overlap in the values of $p(\mathbf{x})$ between the treatment group and the control group.

Using $p(\mathbf{x})$ as opposed to \mathbf{x} in the conditioning implies a considerable dimension reduction because $p(\mathbf{x})$ is a scalar. However, when matching is based on the estimated rather than the true propensity scores, we should correct for the error $\hat{p}(\mathbf{x}) - p(\mathbf{x})$, which will affect the asymptotic variance of the treatment effect matching estimator. In practice, $p(\mathbf{x})$ is often estimated by logit or probit, and the error $\hat{p}(\mathbf{x}) - p(\mathbf{x})$ is simply ignored. Alternatively, bootstrap can be used.

References

Lee, M.-j. (2005). *Micro-Econometrics for Policy, Program, and Treatment Effects*. Oxford; New York: Oxford University Press.

Rosenbaum, P. R. and D. B. Rubin (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects." *Biometrika* 70(1): 41-55.

Lecture: Selection on Observables

Evaluation/Selection Problem:

Ex. Linear additive model

$$y_i = \alpha + \theta \cdot T_i + X_i' \beta + \varepsilon_i$$

Focus on binary (0-1) treatment, homogeneous treatment effects

$$T_i = \begin{cases} 1, & \text{if treated} \\ 0, & \text{otherwise} \end{cases}$$
$$\theta_i = \theta \ \forall i$$

i has 2 potential outcomes

$$y_{0i} \text{ if } T_i = 0$$

$$y_{1i} \text{ if } T_i = 1$$

Fundamental problem of causal inference ≡ unobserved counterfactual

Latent var.: $y_i^* = (y_{0i}, y_{1i})$

Observe: $y_i = (1 - T_i)y_{0i} + T_i y_{1i}$

$\mathbf{E}\mathbf{x}$.

$$y_{0i} = \gamma_0 + g_0(X_i) + u_{0i}, \text{ if } T_i = 0$$

$$y_{1i} = \gamma_1 + g_1(X_i) + u_{1i}, \text{ if } T_i = 1$$

$$T_i = 1(T_i^* > 0), T_i^* = f(X_i, w_i) + v_i, w_i = I.V.$$

If
$$g_0(X_i) = X_i' \beta_0$$
, $g_1(X_i) = X_i' \beta_1$, $\beta_0 = \beta_1$

Then Average T.E.: ATE $\equiv E(y_{1i} - y_{0i}) = \gamma_1 - \gamma_0 = \theta$ "causal effect"

For now, assume constant additive T.E. (fixed coeffs)

 $y_{1i} = y_{0i} + \theta \rightarrow$ strong homogeneous T.E. assumption

"Gold standard" solution: Random Assignment of T_i $T_i \coprod (y_{0i}, y_{1i})$

- By definition of R.A., this identifies ATE
- Control group provides correct counterfactual as $N \to \infty$

$$\overline{y}_1 - \overline{y}_0 \xrightarrow{p} \theta$$

- Indirect test of R.A.: $\overline{X}_1 \approx \overline{X}_0 \ \forall x_{ik}$

Linear model:

$$y_{i} = \theta \cdot T_{i} + X_{i}'\beta + u_{i}$$

$$T_{i}^{*} = X_{i}'\Pi_{1} + w_{i}'\Pi_{2} + v_{i}$$

$$T_{i} = 1(T_{i}^{*} \ge 0)$$
Usually assume $E(u_{i} \cdot T_{i}) = 0 \implies E(u_{i} \cdot v_{i}) = 0$

Comparing mean of y_i by T_i

$$E(y_i|T_i = 1) - E(y_i|T_i = 0) = E(y_{1i} - y_{0i}|T_i = 1) + [E(y_{0i}|T_i = 1) - E(y_{0i}|T_i = 0)]$$

= ATE if = 0 if T_i R.A. constant T.E.

$$y_i = \alpha + \theta \cdot T_i + \varepsilon_i$$

$$E(y_i|T_i = 1) - E(y_i|T_i = 0) = \theta + \left[E(\varepsilon_{1i}|T_i = 1) - E(\varepsilon_{0i}|T_i = 0)\right]$$

without R.A., observed correlation between (y_i, T_i) likely biased by omitted variables

$\underline{Random\ assignment\ conditional\ on\ observables} \equiv \underline{Selection\ on\ observables}$

$$T_i \coprod (y_{0i}, y_{1i}) X_i$$

 T_i independent of potential outcomes conditional on X_i

$$\Rightarrow E(y_{0i}|T_i=1,X_i)-E(y_{0i}|T_i=0,X_i)=0$$

- only source of bias due to X_i
- remove this bias

Ex. Use as many X_i as possible and "kitchen sink" the regression Problem: Data mining, can sometimes accentuate omitted variables bias (OVB)

Approaches: Multivariate matching, Propensity score, Regression discontinuity design

Regression analogy:

1)
$$y_i = \theta \cdot T_i + X_i' \beta + u_i, \qquad E(T_i \cdot u_i | X_i' \beta) = 0$$

- low dimension problem, just control for $X_i'\beta$

2)
$$y_i = \theta \cdot T_i + g(X_i) + u_i$$
, $E(T_i \cdot u_i | g(X_i)) = 0$

- $g(X_i)$ may include polynomials and interactions \rightarrow high dimension

More generally,
$$T_i \coprod (y_{0i}, y_{1i}) | X_i \Rightarrow E(T_i \cdot u_i | X_i) = 0$$

- Misspecify $g(X_i) \rightarrow O.V.B.$
- Bias-efficiency trade-off
- "Problem" with linear regression: arbitrary specification of $g(X_i) = X_i'\beta$

Multivariate Matching:

 $\dim(X_i) = K$

- For each treatment observation, match control case with "identical" $X_i \rightarrow$ Design problem if X_i , T_i collinear
- Fitting flexible functional form with K arguments "Nonparametric" regression \equiv computational burden N^K
- "Curse of dimensionality" Reduce "partial" variation in T_i substantially

Ex. case-control method

- i) Match each treatment to one control based on the "closeness" of X_i using some "distance metric"
- ii) Using the matched pairs, run a regression controlling for "pair identifier" fixed effects.

How to reduce the dimension of problem and remove bias due to X_i ?

Propensity Score Theorem:

If T_i R.A. conditional on X_i , then T_i R.A. conditional on the propensity score.

$$p_i \equiv \Pr(T_i = 1 | X_i) = \operatorname{E}(T_i | X_i) \equiv p(x_i) = \operatorname{Prob.}$$
 of treatment conditional on X_i

$$(y_{0i}, y_{1i}) \coprod T_i | X_i \Rightarrow (y_{0i}, y_{1i}) \coprod T_i | p(x_i)$$

Very strong assumption!

Idea: Since T_i binary, $E(T_i|X_i)$, $Var(T_i|X_i)$ determined by $p(x_i)$ $\rightarrow p(x_i)$ sufficient statistic for T_i , X_i relation $T_i \coprod X_i | p(x_i)$

Reduced dimension: Just control for flexible form of single index $p(x_i)$, instead of all X_i

2 steps:

- 1. Estimate pscore, $\hat{p}(x_i)$ such that it "balances" x_i
- 2. Estimate $\theta = \text{ATE}$ controlling for $\hat{p}(x_i)$

Ex. match treated and control cases with similar $\hat{p}(x_i)$

1. Estimate $\hat{p}(x_i)$ by logit

$$Pr(T_i = 1|X_i) = \frac{e^{h(X_i)}}{1 + e^{h(X_i)}}$$

- $h(X_i)$ contains linear and maybe higher order terms
- include enough terms such that Treatments and Controls with similar $\hat{p}(x_i)$ have similar X_i (balanced)
- pscore reduces dimensionality $p(x_i)$ single-index that balances X_i : "Match" $p_i \approx p_j$ $y_i = \theta \cdot T_i + g(X_i) + \varepsilon_i$ $y_i = \theta \cdot T_i + g^0(p(x_i)) + \varepsilon_i^0$
- Adjusts for selection bias due to X_i in descriptive 2-step way

Algorithm for estimating pscore:

- 1) parsimonious logit \rightarrow estimate $\hat{p}(x_i)$
- 2) stratify data into quintile blocks of $\hat{p}(x_i)$
- 3) Test $\overline{X}_1 = \overline{X}_0$ in T and C groups within each block t-tests (F-tests) of significant difference in sample means of each x_k within each block
 - i) If X_i "balanced" in each block, stop
 - ii) If x_k not balanced in some blocks, divide block into 2 blocks and reevaluate
 - iii) If x_k not balanced in all blocks, add interaction and/or polynomial of x_k to logit and reevaluate

Goal: Balance of X_i in Treat and Control groups

Overlap in
$$\hat{p}(x_i)$$
 for $T_i = 1$ and $T_j = 0 \Rightarrow$ overlap in X_i

$$T_i \coprod X_i | p(x_i)$$

Example of stopping rule:

Stop when fail to reject $\bar{x}_{1k} = \bar{x}_{0k}$ for over 90% of t-tests within a block

Examining $\hat{p}(x_i)$ by T_i gives sense of "nonrandomness" of T_i assignment Example: Box-Plot – 5%-tile, 25%-tile, 50%-tile, 75%-tile, 95%-tile of treatment and control distributions of predicted propensity scores.

Interpretation: Amount of "overlap" in plots \approx similarity of X's in treatment and controls.

A lot of overlap → very little selection on the X's (good research design) Little overlap → pure selection on X's (bad design) → extrapolating across non-comparable populations.

Box-Plot if Random Assignment?

2. Estimate θ controlling for $\hat{p}(x_i)$

i) Most general (informative) use of $\hat{p_i}$ – Graphical analysis

Estimate
$$E\left(y_i \middle| \hat{p}_i, T_i = 0\right) = f_0\left(\hat{p}_i \middle| T_i = 0\right)$$

$$E\left(y_i \middle| \hat{p}_i, T_i = 1\right) = f_1\left(\hat{p}_i \middle| T_i = 1\right)$$

- Can estimate by bivariate nonparametric regression (e.g., kernel regression, local linear regression "ksm" STATA command).
- More transparently, calculate means of outcome for 100+ blocks of $\hat{p_i}$, separately for treatment and controls, and plot against $\hat{p_i}$.
- Plot \hat{f}_0 and \hat{f}_1 against \hat{p}_i bias summarized by single index \hat{p}_i \rightarrow no dimensionality problem.
- Useful if N_T , N_C are large.

Example: Smoking during pregnancy and infant birth weight (grams)

- Slope m_1 gives union selection on observables unadjusted $\overline{y}_1 \overline{y}_0$ biased since $m_1, m_0 \neq 0$
- $(m_1 m_0)$ gives differential selection into 2 sectors
- $\bar{y}_1^j \bar{y}_0^j$ fixed p_j = union wage gap adjusted for selection on X_i
- "Unrestricted" description of selection process and heterogeneity in "treatment effects" with the probability of observable selection under <u>very strong</u> initial assumption.

ii) Regression analog

$$y_i = \alpha + \theta \cdot T_i + \delta_1 \hat{p}_i + \delta_2 T_i \left(\hat{p}_i - \hat{\mu}_p \right) + u_i, \quad \hat{\mu}_p = \frac{1}{N} \sum \hat{p}_i$$

control for selection bias

- $\delta_1 = m_0$, $\delta_2 = (m_1 m_0)$
- restrictive linear specification prone to misspecification $\operatorname{plim}\left(\hat{\theta}\right) = \theta \text{ if and only if } E\left(y_{1i} \middle| T_{1i} = 1, p(x_i)\right) \text{ linear in } p(x_i)$

test by including polynomials of $\hat{p}(x_i)$

- Simple summary (use bootstrap to calculate standard errors)
- Control for $X_i'\beta$ to gauge quality of balance through $\hat{p}(x_i)$

Example – maternal smoking during pregnancy, birth weight, and the propensity score for smoking during pregnancy

req	bweight	tobacco

Source	SS +	df	MS		Number of obs F(1.514452)		
Model Residual	6.7965e+09 1.8509e+11	1 6.' 514452 359	7965e+09 9787.703		Prob > F R-squared Adj R-squared	= 0 = 0	.0000
Total	1.9189e+11		72998.22		Root MSE		99.82
bweight	Coef.			P> t	[95% Conf.	Inte	rval]
tobacco _cons	-283.1877 3394.513	2.060408	-137.443 3612.346	0.000	-287.226 3392.671		.1494

. reg bweight tobacco pscore smkpscre

Source	SS	df	MS		Number of obs = F(3.514450) =	514454 8524.20
Model Residual	9.0869e+09 3 3.0290e+09 1.8280e+11514450 355337.074		Prob > F = R-squared = Adj R-squared =	0.0000 0.0474 0.0473		
Total	1.9189e+11	514453 372	2998.22		Root MSE =	
bweight	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
tobacco pscore smkpscre _cons	-194.4738 -373.1682 -91.66314 3456.679	2.434303 6.585591 10.49604 1.440737	-79.889 -56.664 -8.733 2399.244	0.000 0.000 0.000 0.000	-386.0758 -: -112.235 -	189.7026 360.2607 71.09124 3459.503

(Should have added "robust" to the regression; also need to correct for sampling error in estimated/generated regressor = propensity score)