

Aula 03: Computação Evolutiva e Conexionista – Algoritmos Genéticos

Prof. Hugo Puertas de Araújo hugo.puertas@ufabc.edu.br Sala: 509.2 (5º andar / Torre 2)

Agenda

- Algoritmos genéticos
- Operadores genéticos
 - * ex.: Maximização de função
 - * ex.: Caixeiro viajante
- Efeito da mutação nas populações
- Bibliotecas de GA em Python

Meta-heurísticas evolucionárias

- Algoritmos Genéticos: proposto por Holland com o objetivo de estudar os fenômenos de adaptação
- Estratégias Evolutivas: introduzido por Rechenberg com o intuito de otimizar parâmetros de uma função não-linear
- Programação Evolutiva: representação de uma solução como uma máquina de estados finitos, proposta por Fogel et al.
- Programação Genética: Proposta por Koza com o intuito de evoluir programas de computador

O algoritmo genético

Características necessárias p/ uma população

- Autorreplicação (Self-replication) Reprodução / Recombinação
- Plano interno (Blueprint) Genótipo vs Fenótipo
- Herança (Inherit blueprint)
- Mutação (Mutation)
- Seleção (Selection) Baseada em Fitness

- Recombinação: seleciona dois indivíduos parentais e os combina para gerar filhos com características mistas. Baseado no fitness de cada pai
- Mutação: altera aleatoriamente uma característica de um indivíduo selecionado aleatoriamente
- Seleção: escolhe um indivíduo de uma geração para compor a próxima geração (diretamente ou via recombinação) com base em seu fitness

Recombinação

Mutação

■ Seleção

GA: Localizar máximo da função

Usando GA, determinar o ponto de máximo da função ao lado, definida para x inteiro.

https://colab.research.google.com/drive/1_GqNkGffp_qbWglS6lD4VMmObq_l1vuZ?usp=sharing

Problema prático: Caixeiro viajante

#	[(n-1)!]/2
3	1
4	3
5	12
6	60
7	360
8	2520
9	20160
10	181440
11	1814400
12	19958400
13	239500800
14	3113510400
15	43589145600
16	653837184000
17	10461394944000
18	177843714048000
19	3201186852864000
20	6,08225502044E+16
25	3,10224200867E+23
30	4,42088099687E+30

Conceitos dentro do contexto: TSP

- Gene: uma cidade (representada como coordenadas (x, y))
- Indivíduo (aka "cromossomo"): uma rota satisfazendo as condições
- População: uma coleção de possíveis rotas (i.e., coleção de indivíduos)
- Pais: duas rotas a serem combinadas para criar uma nova rota (fiho)
- Mating pool: uma coleção de pais que são usados para criar a próxima população (nova geração de rotas)
- Fitness: uma função que avalia o quão boa cada rota é (o quão curta é a distância)
- Mutação: uma forma de introduzir variação na população ao trocar aleatoriamente duas cidades em uma rota
- Elitismo: uma forma de carregar os melhores indivíduos para a próxima geração

Representação cromossomial

[0, 1, 2, 3, 4]

[0, 2, 1, 4, 3]

Seleção de indivíduos (cromossomos)

- Sorteio por roleta
 - O fitness de cada indivíduo determina sua probabilidade de seleção
- Sorteio por torneio
 - Sorteiam-se alguns indivíduos da população e daí escolhe-se o de maior fitness
- Elitismo
 - Selecionam-se os indivíduos de maior fitness para integrarem a nova população

Seleção de indivíduos (cromossomos)

- Sorteio por roleta
 - O fitness de cada indivíduo determina sua probabilidade de seleção

Seleção de indivíduos (cromossomos)

- Sorteio por torneio
 - Sorteiam-se alguns indivíduos da população e daí escolhe-se o de major fitness

Crossover

6 5 3 1 0 7 4 2

Mutação

2 7 0 3 6 5 1 4

TSP & GA

https://colab.research.google.com/drive/1aN7KDJaqKGX1yGKhNyHvlLbltenXlDs8?usp=sharing

Introdução de inovações

■ Recombinação e <u>Mutação</u>

Bibliotecas de GA em Python

DISTRIBUTED
EVOLUTIONARY
ALGORITHMS IN
PYTHON

