SPARC - SQ

Spectral Quadrature method User guide

Material Physics & Mechanics Group
PI: Phanish Suryanarayana

Main Developers: Xin Jing, Abhiraj Sharma, Phanisri P. Pratapa Collaborators: J.E. Pask (LLNL)

Georgia Institute of Technology

Comments

The code will fail with the following options and the related input options are listed.

- Polarized calculation: SPIN_TYP.
- K-point calculation: KPOINT_GRID, KPOINT_SHIFT.
- Dirichlet boundary condition in any direction: BC
- Define number of states/orbitals: NSTATES
- CS and SQ3 method: CS_FLAG, SQ3_FLAG
- Hybrid functionals: EXCHANGE_CORRELATION
- Print eigenvalues into file: PRINT_EIGEN

Input file options

Spectral Quadrature

 $\label{eq:sq_row} \mbox{SQ_FLAG} \mid \mbox{SQ_RCUT} \mid \mbox{SQ_NPL_G} \mid \mbox{SQ_GAUSS_MEM} \mid \mbox{SQ_TOL_OCC} \mid \\ \mbox{NP_DOMAIN_SQ_PARAL}$

Spectral Quadrature

SQ_FLAG

Type Intege

Integer

Default

U

Unit

No unit

Example

SQ_FLAG: 1

Description

Flag to turn on SQ method

Remark

SQ method can not be turned on simultaneously with CS, SQ3, hybrid functionals.

SQ_RCUT

Type

Double

Unit

Bohr

Default

None

Example

SQ_RCUT: 2.0

Description

Truncation or localization radius

Remark

SQ_RCUT must be specified if SQ is turned on.

SQ_NPL_G

Type

Integer

Default

None

Unit

No unit

Example

SQ_NPL_G: 24

Description

 $\label{eq:definition} \mbox{Degree of polynomial for Gauss Quadrature}.$

Remark

SQ_NPL_G must be specified if SQ is turned on.

SQ_GAUSS_MEM

Type String

Default

LOW

Unit

No unit

Example

SQ_GAUSS_MEM: HIGH

Description

Flag for memory option when using Gauss quadrature for density matrix.

SQ_TOL_OCC

Type

Double

Unit

No unit

Default

 10^{-6}

Example

SQ_TOL_OCC: 1E-5

Description

Tolerance for occupation corresponding to maximum eigenvalue.

NP_DOMAIN_SQ_PARAL

Type

Integer

Default

Automatically optimized

Unit

No unit

Example

NP_DOMAIN_SQ_PARAL: 3 3 2

Description

Dimensions of the 3D Cartesian topology for SQ method.

Remark

This option is for development purpose. It's better to let SPARC choose the parallization parameters in practice.