ECEN321: Engineering Statistics

Assignment 6

Due: 9:00 a.m., Wednesday 20 May 2020

Normal Distribution

1. (Navidi 4.5.4) If $X \sim \mathcal{N}(2,9)$, compute

(a) $P(X \ge 2)$

[1 mark]

(b) $P(1 \le X < 7)$

[2 marks]

(c) $P(-2.5 \le X < -1)$

[2 marks]

(d) $P(-3 \le (X-2) < 3)$

[2 marks]

- 2. (Navidi 4.5.22) The molarity of a solute in solution is defined to be the number of moles of solute per litre of solution (1 mole = 6.02×10^{23} molecules). If X is the molarity of a solution of sodium chloride (Na₂CO₃), the molarity of sodium ion (Na⁺) in a solution made of equal parts NaCl and Na₂CO₃ is given by M = 0.5X + Y. Assume X and Y are independent and normally distributed, and that X has mean 0.450 and standard deviation 0.050, and Y has mean 0.250 and standard deviation 0.025.
 - (a) What is the distribution (class and parameter(s)) of M?

[3 marks]

(b) Calculate P(M > 0.5)

[1 mark]

Exponential Distribution

- 3. (Navidi 4.7.10) The distance between consecutive flaws on a roll of sheet aluminium is exponentially distributed with mean distance $3 \, \text{m}$. Let X be the distance, in metres, between flaws.
 - (a) What is the mean number of flaws per metre?

[1 mark]

(b) What is the probability that a 5 m length of aluminium contains exactly two flaws?

[2 marks]

Estimation

- 4. (Navidi 4.9.2) Choose the best completion. The variance of an estimator measures...
 - (a) how close the estimator is to the true value
 - (b) how close repeated values of the estimator are to each other
 - (c) how close the mean of the estimator is to the true value
 - (d) how close repeated values of the mean of the estimator are to each other

1

[1 mark]

P.T.O.

- 5. (Navidi 4.9.4) Let X_1, \ldots, X_N be a simple random sample from a $\mathcal{N}(\mu, \sigma^2)$ population. For any constant k > 0, define $\hat{\sigma}_k^2 = \left(\sum_{i=1}^N (X_i \bar{X})^2\right)/k$. Consider σ_k^2 as an estimator of σ^2 .
 - (a) Compute the bias of $\hat{\sigma}_k^2$ in terms of k. [Hint: The sample variance s^2 is unbiased, and $\hat{\sigma}_k^2=(N-1)s^2/k$.]

[2 marks]

- (b) Compute the variance of $\hat{\sigma}_k^2$ in terms of k. [Hint: $\sigma_{s^2}^2 = 2\sigma^4/(N-1)$, and $\hat{\sigma}_k^2 = (N-1)s^2/k$.] [2 marks]
- (c) Compute the mean squared error of $\hat{\sigma}_k^2$ in terms of k.

[2 marks]

(d) For what value of k is the mean squared error of $\hat{\sigma}_k^2$ minimised?

[2 marks]

6. (Navidi 4.9.8) Let X_1, \ldots, X_n be a random sample from a $\mathcal{N}(\mu, 1)$ population. Find the MLE of

[4 marks]