第七章波形发生及信号的转换

- □ 电压比较器
- □ 正弦波振荡电路
- □ 非正弦波发生电路
- □ 信号转换电路

一、电压比较器

1、概述

电压比较器是一种常见的模拟信号处理电路,将一个模拟输入电压与一个参考电压进行比较,并将比较结果输出,输出只有两种可能的状态:高电平和低电平。

比较器电压传输特性:

- ➤ 高电平U_{OH}和低电平U_{OL};
- ▶ 阈值电压U_{T1}、U_{T2};
- > 跃变方向

理想集成运放的电压传输特性

可以利用工作在非线性区的理想集成运放实现电压比较器的功能,即理想集成运放工作在开环或组成正反馈电路。

分析方法:

$$u_{0} = \begin{cases} +U_{OM} & u_{P} > u_{N} \\ -U_{OM} & u_{P} < u_{N} \end{cases}$$
 他和输出

2、单限比较器—只有一个阈值电压U_T

1) 过零比较器, $U_T=0$

$$u_{0} = f(u_{I}) = \begin{cases} U_{0H} = U_{0M} & u_{I} < 0 \\ U_{0L} = -U_{0M} & u_{I} > 0 \end{cases}$$

$$u_0 = f(u_I) = \begin{cases} U_{0H} = U_Z + U_{D(on)} & u_I < 0 \\ U_{0L} = -(U_Z + U_{D(on)}) & u_I > 0 \end{cases}$$

2)一般单限比较器,U_T为任意值

$$u_{0} = f(u_{I}) = \begin{cases} U_{0H} = U_{Z} + U_{D(on)} & u_{I} < -\frac{R_{1}}{R_{2}} u_{R} \\ U_{0L} = -(U_{Z} + U_{D(on)}) & u_{I} > -\frac{R_{1}}{R_{2}} u_{R} \end{cases}$$

-- 三极管 β 值分选电路

分析电路是否满足要求: β < 50 或 β > 100, LED 亮,

 $50 \le \beta \le 100$,LED 不亮。

[解]

$$I_{\rm B} = (15 - 0.7)/1430 = 0.01 \text{ mA}$$

当eta<50时, $I_{\rm C}$ < 0.5 mA, $U_{\rm C}$ < 2.5 V, V_2 导通,LED 亮

当 β >100时, $I_{\rm C}$ >1 mA, $U_{\rm C}$ >5 V $V_{\rm 1}$ 导通,LED 亮

当 $50 \le \beta \le 100$ 时, $2.5 \text{ V} \le U_{\text{C}} < 5 \text{ V}$,LED 不亮

3、迟滞比较器—有两个阈值电压

$$U_{T2} = \frac{U_{R}R_{f} + U_{0H}R_{2}}{R_{2} + R_{f}}$$

$$U_{T1} = \frac{U_{R}R_{f} + U_{0L}R_{2}}{R_{2} + R_{f}}$$

传输特性

当 u_I 逐渐增大时

只要 $u_{\rm I} < U_{\rm T+}$,则 $u_{\rm O} = U_{\rm Z}$

一旦 $u_{\rm I} > U_{\rm T+}$,则 $u_{\rm O} = -U_{\rm Z}$

当 u_I逐渐减小时

只要 $u_{\text{I}} > U_{\text{T-}}$,则 $u_{\text{O}} = U_{\text{Z}} = U_{\text{I}} < U_{\text{T-}}$,则 $u_{\text{O}} = U_{\text{Z}}$

特点:

 $u_{\rm I}$ 上升时与上门限比, $u_{\rm I}$ 下降时与下门限比。

特点:

 $u_{\rm I}$ 上升时与上门限比, $u_{\rm I}$ 下降时与下门限比。

单门限比较

迟滞比较

4、窗口比较器—有两个阈值电压

u_{I}	u_{O1} u_{O2}	V_1 V_2	$u_{\rm O}$
$< U_{ m RL}$	$oldsymbol{U}_{ ext{Omax}}$	截止 导通	$oldsymbol{U_{\mathbf{Z}}}$
$>U_{ m RH}$	U _{Omax} 0	导通 截止	$U_{ m Z}$
$U_2 < u_1 < U_1$	0 0	截止 截止	0

二、RC正弦波振荡电路

1、振荡电路

振荡电路类型

波形: 正弦波振荡电路和非正弦波振荡电路

工作原理: 反馈式振荡电路和负阻式振荡电路

应用: 频率输出型和功率输出型

RC 振荡器(1 kHz~数百 kHz)

正弦波振荡: { LC 振荡器(几百 kHz 以上)

石英晶体振荡器(频率稳定度高)

非正弦波振荡: 方波、三角波、锯齿波等

2、反馈式振荡的基本原理

反馈式放大器

$$\dot{A}_{f} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{A}}{1 - \dot{A} \cdot \dot{F}}$$

 $\dot{A} \cdot \dot{F} = 1$ 时, $\dot{X}_f = \dot{X}_i'$ 此时产生振荡

1) 平衡条件(振荡条件)

$$\dot{A} \cdot \dot{F} = 1$$

振幅平衡条件:

$$A \cdot F = 1$$

$$X_f = X_i'$$

相位平衡条件:

$$\varphi_{\rm A} + \varphi_{\rm F} = 2 \, {\rm m} \, \pi$$

$$n = 0,1,2,...$$

2) 起振条件

$$A \cdot F > 1$$
 $X_f > X_i'$ $\varphi_A + \varphi_F = 2n\pi$

$$A_{u} = \frac{u_{o}}{u_{i}}$$

$$F_{u} = \frac{u_{f}}{u_{o}}$$

3、正弦波振荡电路

1) 振荡电路框图

2) 正弦波振荡电路组成

放大电路

选频网络

正反馈网络

稳幅环节

RC正弦波振荡电路

LC正弦波振荡电路

石英晶体正弦波振荡电路

判断:

- 1. 检查电路组成
- 2."Q"是否合适
- 3. 是否满足起振条件

LC正弦波振荡电路

考毕兹电路

哈特来电路

RC正弦波振荡电路

文氏电桥振荡器

4、RC正弦波振荡电路

1)RC选频网络

$$F = \frac{1}{3}$$

$$\varphi_F = 0^\circ$$

相频特性

$$\dot{F} = \frac{1}{3}$$

利RC 频络成荡路

文氏电桥振荡器

$$\omega_0 = \frac{1}{RC}$$

$$f_0 = \frac{1}{2\pi RC}$$

$$\frac{R_t}{R_1} \ge 2$$
 满足起振条件

R_t: 负温度系数的热敏电阻,实现稳幅功能

振荡频率连续可调的RC串并联选频网络

RC移相式振荡电路

一节
$$RC$$
 环节 移相 \rightarrow 90° 二节 RC 环节 移相 \rightarrow 180° 三节 RC 环节 移相 \rightarrow 270°

对于
$$f_0 = \frac{1}{2\pi\sqrt{6}RC}$$
 的信号, $\varphi_F = 180^\circ$

$$: \varphi_A = -180^\circ$$
 $: \varphi_{AF} = 0^\circ$ — 满足相位平衡条件

优点:结构简单

缺点: 选频特性差,输出波形差

三、非正弦波发生电路

矩形波发生电路 三角波发生电路 锯齿波发生电路 波形变换电路

1、矩形波发生电路

1) 方波发生电路

$$T = 2RC \ln(1 + \frac{2R_2}{R_f})$$

$$T = 2RC \ln(1 + \frac{2R_2}{R_f})$$

2) 矩形波发生电路

$$T = R'C \ln(1 + \frac{2R_2}{R_f}) + RC \ln(1 + \frac{2R_2}{R_f})$$

$$T = R'C \ln(1 + \frac{2R_2}{R_f}) + RC \ln(1 + \frac{2R_2}{R_f})$$

2、三角波发生电路

三角波发生电路

$$U_T = \frac{R_1}{R_2} U_Z$$

$$T = \frac{4R_1R_3C}{R_2}$$

$$U_T = \frac{R_1}{R_2}U_Z$$

3、锯齿波发生电路

四、变换电路

- > 波形变换电路
 - o 不同波形之间的变换
- ▶信号变换电路
 - o不同信号之间的变换

1、波形变换电路

✓方波→三角波 积分电路

✓矩形波→锯齿波 积分电路

✓ 方波或矩形波→正弦波 滤波电路

✓ 正弦波→方波或矩形波 电压比较器

✓三角波**→**方波 微分电路

✓三角波→锯齿波

✓三角波→正弦波

1) 三角波到锯齿波的变换

三角波与锯齿波的波形关系

三角波-锯齿波的转换电路

2) 三角波到正弦波的变换

2、信号转换电路

电压 ⇔电流转换电路 交流信号 ➡ 直流信号的转换电路 电压 ➡ 频率转换电路

1、电压—电流转换电路

电压—电流转换电路:

互导放大器: 电压到电流的转换电路

互阻放大器: 电流到电压的转换电路

2、整流电路

整流电路---将交流信号变成单极性信号

半波整流

全波整流

ωt

二极管半波整流电路

二极管全波整流电路

精密整流电路

精密全波整流电路

波形

3、电压-频率转换电路

- 电压-频率转换电路(VFC)
 - 功能
 - 电压-频率
 - VCO
 - 特性
 - 输入直流电压
 - 输出频率随输入电压变化的电压信号
 - 类型
 - 电荷平衡式、复位式、集成VFC

电荷平衡式VFC电路原理

电荷平衡式VFC实现电路

复位式VFC电路原理

复位式电路实现