

STATISTICALTHINKING

Research Group: Statistical Diversity Lab

Pl: Amy D Willis PhD, Assistant Professor, Department of Biostatistics, UW

STATISTICS

- Who wants to know more statistics? Why?
- Two different types of statistics
 - Inferential statistics
 - Exploratory statistics

STATISTICS

hypothesis testing modelling

estimation

plotting ordination

PCA

p-values FDR control

STATISTICS

INFERENTIAL STATISTICS

- Inference of parameters
- Prediction
- Estimation
- Uncertainty
- Reproducibility

EXPLORATORY STATISTICS

- What does your data say?
- How do we show what it says?
- How to visualise it?
- Descriptive statistics

POPULATION

- Stat | 0 |
 - "The population of women with breast cancer"
 - "The population of American citizens with graduate degrees"
 - "The voting population of Massachusetts"

What is the population in microbial ecology?

The (A) microbiome is the (a) collection of microbes, and their genes and metabolites

- But which microbiome?
 - Are you interested in the gut microbiome of all folks with IBD?
 - ...white men 25-45y.o. with a clinical diagnosis?
 - ...who also live in the city that your study was conducted in?
 - ...Or are you only interested in their poop?

- Are you interested in microbes living in the ocean?
 - Which ocean?
 - At what depth?
 - What time of year and day?
 - Or only those you can detect with your primers?

The population that you want to study may not be the population that you get to study

- The 4 W's: Who/What? Where? When? Why?
 - Who? What? ...the poop of white men 25-45 y.o. with a clinical diagnosis?
 - Where? ... who also live in the city that your study was conducted in?
 - When? ... between January 2018-March 2018?
 - Such observations can help us answer why certain patterns exist
 - and why certain patterns don't....

EXPERIMENTAL DESIGN

The population that you want to study may not be the population that you get to study

- Before undertaking a microbiome study, think carefully about
 - the question you want to answer,
 - the data you have access to, and
 - the questions you can answer with the data that you have access to

- Group exercise: (2 minutes)
 - Come up with a microbiome-related question that <u>you want</u> <u>to answer</u> considering the following questions:
 - Who/What? Where? When? Why?
 - Come up with a microbiome-related question that <u>you could</u> <u>study</u>
 - How do (sequencing) technology and (bioinformatics) tools influence what populations you can study?

POPULATIONS VERSUS SAMPLES

- The difference between a population and a sample from it is fundamental in statistics
- Deductive logic: the evidence must imply the conclusion
- Inductive logic: the conclusion could be implied by the evidence

POPULATIONS VERSUS SAMPLES

- Inferential statistics: using information about the sample to infer something about the population
 - Use the observed data to estimate the parameters
 - Inductive not deductive logic

"SOMETHING ABOUT THE POPULATION"

- Statisticians have a formal concept of this
- "Parameter": a numerical characteristic of a probability model
 - Can give any examples of a parameter of interest in a microbiome experiment?

PARAMETERS

- The genus-level relative abundance of Streptococcus in your saliva right now
- The proportion of your S. aureus that are methicillin-resistant
- The fraction of #STAMPS18 attendees carrying MRSA in any abundance
- The phylum-level diversity of microbes on your hands

AN IMPORTANT DISTINCTION

- The genus-level relative abundance of Streptococcus in your saliva right now is not the same as the relative abundance of 16S copies from Streptococcus obtained from a sample
 - Does adjusting for copy number fix this?
 - Why not?

"INFORMATION ABOUTTHE SAMPLE"

- Statisticians have a formal concept of this too
- "Estimates": some function of your data
 - Can give any examples of an estimate in a microbiome experiment?

ESTIMATES ESTIMATE PARAMETERS

- Estimates (n, pl) estimate (v) parameters (n)
- e.g. What is an example of a parameter in a microbiome study, and what is an example of an estimate of it?

EXAMPLE

- Motivation: Estimate the genus-level relative abundance of 16S copies from Streptococcus in your saliva
- Relative abundance is commonly estimated by the <u>observed</u> relative abundance of 16S copies from Streptococcus
- Is that the only estimate? Why does it seem like a good one?

EXAMPLE

- Motivation: Estimate the genus-level relative abundance of 16S copies from Streptococcus in a group of people
 - What if we have 10 people in our study?
 - What does relative abundance of Streptococcus mean now?

RELATIVE ABUNDANCE

- Suppose...
 - \mathbf{n} = samples, indexed by \mathbf{i} = 1, ..., \mathbf{n}
 - $\mathbf{p_i}$ = the relative abundance in each subject
 - W_i = # of observed sequenced copies from Strep
 - M_i = total # of sequenced copies
- Most common estimate of pi is Wi/Mi

RELATIVE ABUNDANCE

- Why?
 - (Seems reasonable)
 - Under a model where each observed copy of the 16S gene is from Strep with probability p_i, and all copies are independent, this estimate is
 - consistent, normally distributed, efficient, unbiased, minimum variance out of all unbiased estimates...

PARAMETERS

- Two key concepts for evaluating estimates of parameters
 - bias: how far?
 - variance: how stable?
- Suppose we have a parameter θ and an estimate $\hat{\theta}$

ESTIMATES: NOTATION

■ The parameter Amy:

ESTIMATES: NOTATION

An estimate of the parameter Amy:

BIAS

• If you care about a parameter θ , then the bias is the expected difference between the parameter any estimate

$$\operatorname{Bias}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$

where

$$\mathbb{E}\hat{\theta}$$
 = "expected value" of $\hat{\theta}$

- Expected value comes from the concept of a "distribution"
- It is the "middle" of the distribution

• Suppose we have a distribution with discrete support on $x_1, ..., x_n$, and the probability of selecting each point is $p(x_1), ..., p(x_n)$. Then

Expected value =
$$x_1p(x_1) + x_2p(x_2) + \cdots + x_np(x_n)$$

• Suppose we have a distribution with continuous support on x_{lower} to x_{upper} , and the density of a point x is f(x). Then

Expected value =
$$\int_{x_{\text{lower}}}^{x_{\text{upper}}} x f(x) dx$$

BIAS

- An estimate is unbiased if its bias is zero
- The fine print:
 - An estimate of a parameter
 - is unbiased if
 - its bias is zero under the model
- The distribution of the estimate depends on the distribution of the data, and thus, on the model!

- Be careful this word is used frivolously
- Before being impressed, ask yourself
 - What is the estimate?
 - What is the model?
 - Is the model reasonable?
 - Why do they think its unbiased?

EXAMPLE

- (I minute)
 - What are the <u>true</u> relative abundances in the community?

EXAMPLE

True abundances:

- (3 minutes)
 - Draw some nets.
 What are the observed relative abundances?

EXAMPLE

Observed abundances:/

$$= 1/5$$

- (I minute)
 - What are the true relative abundances in the community?

- (3 minutes)
 - Draw some nets.
 What are the observed relative abundances?

Truth:

= 6/15

BIAS AND DIVERSITY

- Rarefaction curves are a fantastic illustration of what happens when people who don't understand statistics invent methods
- Rarefying, also called normalising, is a "method" for throwing away data to account for different levels of bias

What's the parameter? What's the estimate?

Now what's the parameter? Now what's the estimate?

What's the bias of each estimate? Which is more biased?

- Some estimates are biased
- Biased estimates are not good, especially if the bias depends on sample size
- There is a solution (and it's not rarefying)
 - More discussion on Thursday when we talk about species richness

BREAK

- Variance is a property of the estimate
- It describes how much the estimate varies
- Variance actually isn't about the parameter
- Definition:

$$Variance(\hat{\theta}) = \mathbb{E}\left(\hat{\theta} - \mathbb{E}(\hat{\theta})\right)^{2}$$

VARIANCE IN REAL LIFE

Definition:

$$Variance(\hat{\theta}) = \mathbb{E}\left(\hat{\theta} - \mathbb{E}(\hat{\theta})\right)^{2}$$

What does this expectation mean in terms of your experiment?

- The variance reflects how far apart the repeated estimates are
- If your estimates (from repeated experiments) are
 - 12, 12, 12, 12, 12... => variance is 0
 - 12, 12, 13, 12... => variance is 0.167
 - 12, 12, 12, 13013, 12... => variance is 28171000
- A large change in the estimates equals a large variance

- Repeat the experiment, calculate the estimate => $\hat{\theta}_1$
- Repeat the experiment again, calculate the same estimate => $\hat{\theta}_2$
- **...**
- Let $\hat{\theta}_j$ be your estimate from the j-th time you do the experiment

Variance = limit of average
$$(\hat{\theta}_{\text{repeat }j} - \text{average } \hat{\theta})^2$$

- Repeating our experiment is expensive, and so we use models to estimate the variance
 - the variance we would get if we repeated the experiment again and again and again...

Variance = limit of average
$$(\hat{\theta}_{\text{repeat }j} - \text{average } \hat{\theta})^2$$

STANDARD DEVIATION

- The standard deviation is the square root of the variance
 - Sometimes it's more convenient to work on the original scale of the data

What is a standard error?

ESTIMATINGTHEVARIANCE

- The variance and standard deviation of an estimate are not known!
 - The data is random
 - The estimate is a function of your data => estimate is random
 - Distribution of the data is not known
 - That's why we're estimating a parameters
 - Distribution of the estimate is not known
 - The variance is therefore not known

STANDARD ERROR

- standard error = estimate of standard deviation
- Distinction:
 - If you have one-dimensional data, it has a standard deviation
 - If you have a one-dimensional estimate, it has a standard error

STANDARD ERRORS

- "Model-based standard errors"
 - are based on models!
 - Your standard error is only as good as your model!

AMODEL

- Model: you have a community of Q microbes, which have relative abundances p₁, ..., p_Q
- You observe them independently
- The probability of observing microbe i on any draw is pi

AMODEL

MICROBE i	-1	2	3	4	5
Wi	5		1	2	- 1

AMODEL

- Invent.... (4 minutes)
 - ...an estimate of Q
 - ...an estimate of p_1 and p_2 (probability of observing microbe 1&2)
 - ...a standard error for your estimate of Q
 - ...standard errors for your estimates of p₁ and p₂

- (to illustrate; don't do this!)
 - You could take your sample and randomly sample Mi individuals from it

MICROBE	- 1	2	3	4	5
ORIGINAL	5		I	2	- 1
RESAMPLE I	4				3
RESAMPLE 2	4	2	2		
RESAMPLE 3	6	0	0	4	0
RESAMPLE 4	6	0	2		

ISTHIS A REASONABLE MODEL?

- This is a reasonable way to generate estimates and standard errors if this is a reasonable model
 - this is (one type of) the bootstrap
- Is this a reasonable model?

REASONABLE MODELS

Is subsampling reasonable here?

REASONABLE MODELS

- What about here?
- Does the parameter that you care about change your answer?

UNREASONABLE MODELS

- Our model from earlier is called a multinomial model
 - microbes observed independently
 - microbes observed in their abundances
 - which of these assumptions doesn't hold if we have a probability-proportional-to-size model?

 Now let's play with the independence assumption of a multinomial model

- Cooccurrence of microbes, community dynamics, spatial structures all lead to non-independence
- Think about your ecology before deciding on a model

MULTINOMIAL MODEL

- Unfortunately the multinomial model has been used almost universally in microbiome data analysis
 - Subsampling
 - Rarefying
 - Bootstrapping
 - are all fancy ways of using getting "model-based standard errors" from the multinomial model

DECEPTION

- Reiterating, seemingly "nonparametric" approaches to variance estimates are highly parametric
- The variance estimates that you get drastically understate the true variance -- the variance if you repeated the experiment
 - This is why every signal appears significant in microbiome science

VARIANCE AND HYPOTHESIS TESTS

- Why is estimating variance important?
- Hypothesis testing
- Most hypothesis tests take the form

$$\frac{\text{estimate}}{\text{standard error}} \sim N(0, 1)$$

VARIANCE AND HYPOTHESIS TESTS

Wald test statistic

$$\frac{\text{estimate}}{\text{standard error}} \sim N(0, 1)$$

- Suppose your variance is half what it should be
- What happens to p-values?

VARIANCE AND HYPOTHESIS TESTS

If your estimate was I, and the (true) standard deviation is I...

STANDARD ERROR		0.5	0.33	0.25
P-VALUE	0.318	0.046	0.002	< 0.001

PVALUES AND CONFIDENCE INTERVALS

- Common adage: don't quote p-values, give confidence intervals
 - (I actually agree with this)
 - BUT confidence intervals almost never overlap

REPLICATION WITH YOUR EXPERIMENT

- Amy's recommendations for how to deal with this
 - Use the most reasonable models you can
 - We will discuss in more detail on Thursday
 - Be skeptical
 - Don't be sucked in by flashy math or machine learning or methods
 - If you don't understand it, it may not make sense
 - Take biological replicates, and use them effectively

BIOLOGICAL REPLICATES

- Using biological replicates effectively
 - Validate your own findings before someone else can't

BIOLOGICAL REPLICATES

- Validation using biological replicates involves
 - Carefully considering the parameter you care about
 - Splitting your data into 2 sections
 - Constructing a confidence interval for your parameter using I section
 - Repeating with the second section
 - Confirming that your interval estimates are at least close

IN PRACTICE

Example:

- 12 patients, before/after antibiotics, strain-level diversity
- Use 8 to estimate the difference in before/after, construct a confidence interval
- Use the remaining 4 to construct another confidence interval
 - If they overlap, your model seems reasonable
 - If they don't, your model may not be reasonable

REALISTICALLY

- No, unfortunately this is not how papers get published
- Even if you use all 12 patients for your paper, as a responsible scientist you should be doing some sort of validation of your results

STATISTICAL MODELS

- Statisticians generally don't believe their models
 - Models are simple approximations to complex realities
 - They turn unsolvable problems into solvable ones
- Parameters can be useful descriptions of biology
 - e.g., diversity and relative abundance

3 BIG QUESTIONS

- I. What is a reasonable model?
- 2. How do we estimate the parameters?
- 3. How reasonable are those estimates?

Today's lecture was intended to give you some high-level understanding of how to evaluate models and estimates

REPLICATES

- Technical replicates help you assess technical variation (important!),
 but are useless for assessing biological variation
 - Samples from different patients help you understand patient-topatient variability
 - Samples from different sites help you understand within-patient variability
 - Samples from different instances of the same protocol help you understand within-protocol variability
- Technical variability is only one source of variability

REMINDERS ABOUT PVALUES

If there is no accompanying plot, it's probably not interesting

REMINDERS ABOUT PVALUES

- Small p-values tell you about "statistical significance," and nothing about "biological significance"
 - Prediction is a totally different problem
 - which we currently have no ability to solve

WHAT CAN WE DO?

- Take replicates
 - Independently repeating the experiment is the gold standard for confirming the study is reproducible
 - independently = in a different lab
 - Dependence is induced by using the same lab
- Think critically
- Use plots, not p-values

A NOTE ON WORDS

- Efficient, optimal, uninformative, admissible, best, unbiased...
- These words have extremely precise meanings. Do not mislead your with statistical words!

WHAT ELSE CAN WE DO?

- Be honest
 - Keep all analyses that you ran, not just the final one
- Write down all of the hypotheses that you care about
 - Before doing the experiment
 - Before doing the analysis
- Your university might house a statistician; try to involve them...
 - ...in the entire process, not just calculating p-values

MANYTHANKS

- Pauline Trinh and Bryan Martin TAs @ #STAMPS2018
 - For their help with this presentation!!!
- Tracy & Mihai
 - For all of their organisation of this wonderful workshop
- YOU!
 - For engaging in reproducible and ethical science

ACTIVITY & PRESENTATIONS

- Pick a microbiome paper where a sequencing experiment was performed to make a claim about the microbiology/ecology
 - Read the abstract/intro and write down what parameters the authors were interested in
 - Read the experimental design and data collection and write down whether this was reasonable and why
 - Were the tools/methods/claims convincing? Why/not?
- Explain the idea of the paper to the person next to you, and talk through your answers to the above questions.

STATISTICALTHINKING

Research Group: Statistical Diversity Lab

Pl: Amy D Willis PhD, Assistant Professor, Department of Biostatistics, UW

