Lecture 5: Recommendation

Example

Diapers and beer

Examples

Netflix Prize 2009

 Amazon Recommendation Engine

Customers Who Bought This Item Also Bought

30 Rock: Seasons 1-3 DVD ~ Tracy Morgan **対対対対(7)** \$60.49

Desperate Housewives: The Complete Seasons 1-5 DVD ~ Teri Hatcher *** (2)

\$179.99

Scrubs: The Complete Seasons 1-8 DVD ~ Zach Braff **会会会会 (2)**

\$148.49

Examples

Missing sensor data

Collaborative Filtering

- 400,000 users 17,000 movies But only a few ratings (1%)
- User aMovie iRating $Y_{ai} \in \mathbb{R}$ (e.g. 1-5)
- Training data is the incomplete matrix Y
- Goal is to predict unobserved ratings

Collaborative Filtering

- Matrix or tensor completion problems
- Collaborative: cross-users
 Filtering: prediction
- Dimensionality reduction

 5
 5

 3
 5

 4
 2

 5
 4

 4
 4

 5
 4

 4
 4

 4
 4

 5
 4

 5
 4

 5
 4

 5
 5

 3
 5

 4
 4

 5
 4

 5
 5

 5
 3

n users

m movies

A tensor is a multidimensional array. e.g. $n \times m$ 2-tensor e.g. $p \times q \times r$ 3-tensor (2-tensor = matrix)

Users who share similar interests on an item in the past are more likely to hold similar opinions on other items compared with a randomly chosen user.

Types

Model based (Treat Y_{ai} as responses)

• Given training data of the form $((a, i), Y_{ai})$, find a function $f: \{1, ..., n\} \times \{1, ..., m\} \rightarrow \mathbb{R}$.

Memory based (Treat Y_{ai} as features)

• Given (incomplete) user ratings $Y_a \in \mathbb{R}^m$, find structure in the data to predict missing values.

Recommendation is a *task* for which you can use either model based or memory based learning algorithms.

K-Nearest Neighbors

k-Nearest Neighbors

Main Idea.

• Find a few users b_1, \dots, b_k (neighbors) that are similar to user a

• Use information from users b_1, \dots, b_k to predict

ratings of user a

Correlation Coefficient

Cosine Similarity

$$\cos(x,y) = \frac{x^{\mathsf{T}}y}{\|x\| \|y\|}$$

Correlation Coefficient

$$corr(x, y) = cos(x - \bar{x}, y - \bar{y}) = \frac{(x - \bar{x})^{\mathsf{T}}(y - \bar{y})}{\|x - \bar{x}\| \|y - \bar{y}\|}$$

where \bar{x} , \bar{y} are the averages of the entries of x, y.

User Similarity

To compute the similarity between users a and b,

- 1. Find CR(a, b), the set of movies rated by both a and b.
- 2. Let Z_a , Z_b be the vector of ratings in CR(a,b) for each user.
- 3. Compute the correlation coefficient between Z_a and Z_b .

$$sim(a, b) = corr(Z_a, Z_b) \in [-1, 1]$$

CR = "Common Ratings"

Weighted Prediction

Let \overline{Y}_b denote the average of movie ratings by user b.

To predict the rating Y_{ai} of user a for movie i,

- 1. Rank users b who rated movie i according to value of sim(a, b).
- 2. Let kNN(a, i) be the set of highest k users.
- 3. Let $(Y_{ai} \overline{Y}_a)$ be weighted average of $(Y_{bi} \overline{Y}_b)$, $b \in kNN(a, i)$.
- 4. Let weight for $(Y_{bi} \overline{Y}_b)$ be proportional to sim(a, b).

Anti-Correlated Users

If $(Y_{bi} - \overline{Y}_b)$ is strongly anti-correlated with $(Y_{ai} - \overline{Y}_a)$, i.e. $\sin(a,b) \ll 0$,

then $-(Y_{bi} - \overline{Y}_b)$ is strongly correlated with $(Y_{ai} - \overline{Y}_a)$.

We should exploit this information because ratings are rare.

Weighted Prediction

Let \overline{Y}_b denote the average of movie ratings by user b.

To predict the rating Y_{ai} of a user a for a movie i,

- 1. Rank users b who rated movie i according to value of $|\sin(a,b)|$.
- 2. Let kNN(a, i) be the set of highest k users.
- 3. Let $(Y_{ai} \overline{Y}_a)$ be weighted average of $\pm (Y_{bi} \overline{Y}_b)$, $b \in \text{kNN}(a, i)$.
- 4. Let weight for $\pm (Y_{bi} \overline{Y}_b)$ be proportional to $|\sin(a, b)|$.

$$\widehat{Y}_{ai} - \overline{Y}_{a} = \frac{\sum_{b \in \text{kNN}(a,i)} \text{sim}(a,b)(Y_{bi} - \overline{Y}_{b})}{\sum_{b \in \text{kNN}(a,i)} |\text{sim}(a,b)|}$$

Discussion

$$\widehat{Y}_{ai} - \overline{Y}_a = \frac{\sum_{b \in \text{kNN}(a,i)} \text{sim}(a,b) (Y_{bi} - \overline{Y}_b)}{\sum_{b \in \text{kNN}(a,i)} |\text{sim}(a,b)|}$$

- Formula is not sensitive to the bias (mean) of each user, but it is sensitive to the spread (variance) of each user.
- There is no training loss, no training algorithm for kNN.

Matrix Factorization

Subspace Learning

 $k \ll m$ means k is much smaller than m

Main idea.

- Completed rating vectors $\hat{Y}_1, ..., \hat{Y}_n \in \mathbb{R}^m$ lie in some k-dimensional subspace, $k \ll m$.
- i.e. there exists vectors $V_{:1}, ..., V_{:k} \in \mathbb{R}^m$ such that for all users a,

$$\hat{Y}_a = U_{a1} V_{:1} + U_{a2} V_{:2} + ... + U_{ak} V_{:k}$$

for some coefficients $U_{a1}, ..., U_{ak} \in \mathbb{R}$.

Matrix Factorization

where $U_{:1}, ..., U_{:k}$ are the columns of $U \in \mathbb{R}^{n \times k}$, and $V_{:1}, ..., V_{:k}$ are the columns of $V \in \mathbb{R}^{m \times k}$.

Matrix Rank

outer product!

Definition. A matrix $Y \in \mathbb{R}^{n \times m}$ is of rank-one if $Y = ab^{\top}$ for some non-zero vectors $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

Definition. The rank of a matrix Y is the smallest number k of rank-one matrices required in the sum

$$Y = Y^{(1)} + \dots + Y^{(k)}$$
.

If $Y = UV^{T}$ with $U \in \mathbb{R}^{n \times k}$, $V \in \mathbb{R}^{m \times k}$, i.e.

$$Y = UV^{\mathsf{T}} = U_{:1} V_{:1}^{\mathsf{T}} + U_{:2} V_{:2}^{\mathsf{T}} + \dots + U_{:k} V_{:k}^{\mathsf{T}},$$

then the rank Y is at most k.

Low-Rank Approximation

Main Idea.

- Find low-rank complete matrix \hat{Y} that is closest to incomplete matrix Y.
- \hat{Y} is called a *low-rank* approximation of Y.

Overall idea – movie recommendation

- $\hat{Y}_{ai} = U_a^{\mathsf{T}} V_i$
- When watching movies, user a has preferences on
 - Comedy, sci-fi, action, romance (k factors)
 - $U_a \in \mathbb{R}^k$ characterizes user a's preference on these k factors
- Movie i can also be described by
 - Comedy, sci-fi, action, romance (k factors)
 - $V_i \in \mathbb{R}^k$ describes how the k factors distribute in movie i
- When we do the multiplication $U_a^{\mathsf{T}}V_i$, we obtain how much user a like movie i

Prediction

For an unknown rating Y_{ai} of user a for movie i, we predict

$$\widehat{Y}_{ai} = (UV^{\mathsf{T}})_{ai} = U_a V_i^{\mathsf{T}}$$

where U_a is the a-th row of U and V_i is the i-th row of V.

 U_a : factor vector of user a.

 V_i : factor vector of movie i.

Compare this with

$$\hat{Y} = U_{:1} V_{:1}^{\mathsf{T}} + U_{:2} V_{:2}^{\mathsf{T}} + \dots + U_{:k} V_{:k}^{\mathsf{T}}$$

where $U_{:j}$ is the j-th column of U and $V_{:j}$ is the j-th column of V.

Training Loss

We regularize because there are infinitely many solutions $U'=cU, V'=c^{-1}V$

Apply squared loss to each observed rating Y_{ai} .

$$\mathcal{L}_{n,k,\lambda}(U,V;Y) = \sum_{(a,i)\in D} \frac{1}{2} (Y_{ai} - (UV^{\mathsf{T}})_{ai})^2 + \frac{\lambda}{2} ||U||^2 + \frac{\lambda}{2} ||V||^2$$
$$= \sum_{(a,i)\in D} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i)^2 + \frac{\lambda}{2} \sum_{a} ||U_a||^2 + \frac{\lambda}{2} \sum_{i} ||V_i||^2$$

where D is the set of (a, i) where Y_{ai} is observed.

Definition. The *Frobenius* norm ||U|| of a matrix $U \in \mathbb{R}^{n \times k}$ is

$$||U|| = \sqrt{\sum_{a=1}^{n} \sum_{b=1}^{k} U_{ab}^{2}}.$$

Alternating Least Squares

Coordinate Descent (optimization).

Repeat until convergence:

- 1. Fix V and minimize $\mathcal{L}_{n,k,\lambda}(U,V;Y)$ over U.
- 2. Fix U and minimize $\mathcal{L}_{n,k,\lambda}(U,V;Y)$ over V.

Alternating Least Squares

- 1. Initialize $V_1, V_2, ..., V_m \in \mathbb{R}^k$ randomly.
- 2. Repeat until convergence:

For each user
$$a$$
, find U_a that minimizes
$$\sum_{i: (a,i) \in D} \frac{1}{2} (Y_{ai} - U_a^\mathsf{T} V_i)^2 + \frac{\lambda}{2} ||U_a||^2$$

For each movie
$$i$$
, find V_i that minimizes
$$\sum_{a: (a,i) \in D} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i)^2 + \frac{\lambda}{2} ||V_i||^2$$

These are standard linear regression problems.

Discussion

User Bias

Do we subtract the average ratings of each user?

Optimization.

- Like k-means, the algorithm converges to a local minimum.
- Perform multiple initializations, and pick best result.

Generalization.

• Use validation to pick right hyperparameters k and λ .

Validation Set

Split the data into

- Test set S_* For evaluating, reporting performance at the end
- Training set S_n For training optimal parameters in a model
- Validation set S_{val} For model selection, e.g. picking k in k-means, picking λ in ridge regression. Acts as a proxy for test set.

Validation Loss

The validation error is the test loss applied to the validation set.

The training error is the test loss applied to the training set, and it may be different from the training loss used for optimization.

Example. Ridge Regression

Test loss/error
$$\mathcal{R}(\widehat{\theta};\mathcal{S}_*) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_*} \frac{1}{2} \left(y - \widehat{\theta}^\top x \right)^2$$
 Validation loss/error
$$\mathcal{R}(\widehat{\theta};\mathcal{S}_{\text{val}}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_{\text{val}}} \frac{1}{2} \left(y - \widehat{\theta}^\top x \right)^2$$
 Training error
$$\mathcal{R}(\widehat{\theta};\mathcal{S}_n) = \frac{1}{n} \sum_{(x,y) \in \mathcal{S}_n} \frac{1}{2} \left(y - \widehat{\theta}^\top x \right)^2$$
 Training loss
$$\mathcal{L}_{n,\lambda}(\theta;\mathcal{S}_n) = \frac{1}{n} \sum_{\text{data}(x,y)} \frac{1}{2} \left(y - \widehat{\theta}^\top x \right)^2 + \frac{\lambda}{2} \|\theta\|^2$$

Model Selection

Netflix Results

Plot each movie i according to first two coordinates of $V_i \in \mathbb{R}^k$, i.e. V_{i1} , V_{i2} .

Netflix Results

Wining team Bellkor's **Pragmatic Chaos** essentially used a matrix factorization model with additional parameters for biases, user attributes and time dependencies.

Summary

- Matrix Completion
 - Recommender Systems
 - Collaborative Filtering
- k-Nearest Neighbors
 - Correlation Coefficient
 - Weighted Prediction
- Matrix Factorization
 - Subspace Learning
 - Low-rank Approximation
 - Regularized Training Loss
 - Alternating Least Squares

Intended Learning Outcomes

Matrix Completion

- Recognize that the key problem in collaborative filtering is matrix completion. Give examples of collaborative filtering.
- Explain how dimensionality reduction helps matrix completion.

k-Nearest Neighbors

- Compute the user similarity using the correlation coefficient.
- Compute the k-nearest neighbors ranked by user similarity.
- Predict an unknown rating using weighted prediction.

Intended Learning Outcomes

Matrix Factorization

- Describe the relationship between subspace learning, low-rank approximation and matrix factorization.
- Write down the regularized training loss. Explain why regularization is necessary for matrix factorization.
- Describe the alternating least squares algorithm, and explain why it minimizes the training loss.
 Apply the algorithm in a recommendation problem.
- Describe how validation can be used to select suitable hyperparameters k and λ for good generalization.