2.1.2. Let x be a vector in a given vector space X. Then $0x = (\alpha - \alpha)x = \alpha x - \alpha x = \theta$ where α is a scalar. Further, $\alpha(\theta) = \alpha(0x) = (\alpha 0)x = 0x = \theta$.

Lastly, (-1)x = (1-2)x = x - 2x = -x.

- **2.1.4.** Which of the following subsets of \mathbb{R}^3 constitutes a subspace? (Here $x = (\xi_1, \xi_2, \xi_3)$)).
- 1. All x with $\xi_1 = \xi_2$ and $\xi_3 = 0$. Note that θ is in this space as it satisfies all properties therein. So the set is non-empty. Let x, y be elements of this space where $x = (x_1, x_1, 0)$ and $y = (y_1, y_2, 0)$. Then for scalars α and β

$$\alpha x + \beta y = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, 0).$$

So this is a subspace.

- 2. All x with $\xi_1 = \xi_2 + 1$. Note that the zero vector is not in this space so it cannot be a subspace.
- 3. All x with positive ξ_1, ξ_2, ξ_3 . This cannot be a subspace since -x is not in the space.
- 4. All x with $\xi_1 \xi_2 + \xi_3 = k$ where k is some constant. Then we see θ is in this space since 0 0 + 0 = 0. So k = 0. Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ be in this space. Then for some α and β scalars,

$$\alpha x + \beta y = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + betay_3).$$

We see that $\alpha x_1 + \beta y_1 - \alpha x_2 - \beta y_2 + \alpha x_3 + \beta y_3 = \alpha(x_1 - x_2 + x_3) + \beta(y_1 - y_2 + y_3) = \alpha(0) + \beta(0) = 0$. So this is a subspace when k = 0.

2.1.5. Consider $\{x_1,...,x_n\}$ where $x_i(t)=t^j$ in the space C[a,b]. Assume that

$$\alpha_1 x_1 + \dots + \alpha_n x_n = 0.$$

Then applying t to the function finds

$$(\alpha_1 x_1 + \dots + \alpha_n x_n)(t) = 0(t) \tag{1}$$

$$\alpha_1 x_1(t) + \dots + \alpha_n x_n(t) = 0 \tag{2}$$

$$\alpha_1 t + \alpha_2 t^2 + \dots + \alpha_n t^n = 0. \tag{3}$$

By way of contradiction, assume that not all α_i are 0 for some t^* . So $\alpha_i \neq 0$. Then

$$\alpha_1 t^* + \alpha_2 (t^*)^2 + \dots + \alpha_n (t^*)^n = 0.$$

Solving for α_i , we get that $\alpha_i = -(\sum_{j=1 \neq i}^{n-1} \alpha_{j+1} (t^*)^j$. However, then α_i has a different value for a different t. Since the constants α_i cannot change, this is a contradiction. Hence, $\{x_1, ..., x_n\}$ is linearly independent.

2.1.10. Let Y and Z be subspaces of a vector space X. Thus, $0 \in Y$ and $0 \in Z$. So $Y \cap Z$ is non-empty. Let $y, z \in Y \cap Z$ and α and β be scalars. Then $\alpha y + \beta z \in Y$ since both αy and βz are in Y and Y is a subspace. Similarly, $\alpha y + \beta z \in Z$. So $\alpha y + \beta z \in Y \cap Z$. So $Y \cap Z$ is a subspace.

Let Y be the subspace of the form $x = (x_1, 2x_1)$ in \mathbb{R}^2 and let Z be the subspace of the form $y = (3y_2, y_2)$. Then both x and y as defined are in the union of Y and Z. However, $x + y = (x_1 + 3y_2, 2x_1 + y_2)$ which is neither Y or Z and thus not in $Y \cup Z$. So $Y \cup Z$ is not a vector space.

However, considering $Y \cap Z$ in the example above, we get that $Y \cap Z = \{\theta\}$ which is a vector space.

2.2.3. Let x, y be vectors in a vector space X. Then

$$|||y|| - ||x||| = ||y - x + x|| - ||x - y + y||$$

$$\tag{4}$$

$$\leq \|y - x\| + \|x\| - \|x\| - \|y - y\| \tag{5}$$

$$= \|y - x\|,\tag{6}$$

by the triangle inequality.

- **2.2.7.** We verify that $||x|| \left(\sum_{j=1}^{\infty} |\xi_j|^p \right)^{1/p}$.
- 1. Note that $|\xi_j|$ is non-negative since it is an absolute value. Non-negative numbers raised to a power are still non-negative. The sum of non-negative numbers is non-negative. The the p^{th} root of a non-negative number is non-negative. Hence $||x|| \ge 0$.
- 2. Assume that ||x|| = 0. So

$$0 = ||x|| \tag{7}$$

$$= \left(\sum_{j=0}^{\infty} |\xi_j|^p\right)^{1/p} \tag{8}$$

$$0^p = 0 (9)$$

$$=\sum_{j=0}^{\infty} |\xi_j|^p \tag{10}$$

Then since all the numbers in the sum are non-negative, the only way the summation is zero is if every ξ_j is 0. Hence, x = 0.

Now assume that x = 0. Then

$$||x|| = \left(\sum_{j=1}^{\infty} |\xi_j|^p\right)^{1/p} \tag{11}$$

$$= \left(\sum_{i=1}^{\infty} 0\right)^{1/p} \tag{12}$$

$$=0. (13)$$

So condition 2 is satisfied.

3.

$$\|\alpha x\| = \left(\sum_{j=0}^{\infty} |\alpha \xi_j|^p\right)^{1/p} \tag{14}$$

$$= \left(\sum_{j=0}^{\infty} |\alpha|^p |\xi_j|^p\right)^{1/p} \tag{15}$$

$$= \left(|\alpha|^p \sum_{j=0}^{\infty} |\xi_j|^p\right)^{1/p} \tag{16}$$

$$= \left(|\alpha|^p\right)^{1/p} \left(\sum_{j=0}^{\infty} |\xi_j|^p\right)^{1/p} \tag{17}$$

$$= |\alpha| \left(\sum_{j=0}^{\infty} |\xi_j|^p\right)^{1/p} \tag{18}$$

$$= |\alpha| \|x\|. \tag{19}$$

4. Let $x = (x_i)$ and $y = (y_i)$ be element of the vector space. Then

$$||x+y|| = \left(\sum_{j=0}^{\infty} |x_j + y_j|^p\right)^{1/p}$$
 (20)

$$\leq \left(\sum_{j=0}^{\infty} |x_j|^p + |y_j|^p\right)^{1/p} \tag{21}$$

$$\leq \left(\sum_{j=0}^{\infty} |x_j|^p + \sum_{j=0}^{\infty} |y_j|^p\right)^{1/p} \tag{22}$$

$$\leq \left(\sum_{j=0}^{\infty} |x_j|^p\right)^{1/p} + \left(\sum_{j=0}^{\infty} |y_j|^p\right)^{1/p} \tag{23}$$

$$= ||x|| + ||y||. (24)$$

So ||x|| is a norm.

2.2.10. The sphere

$$S(0;1) = \{x \in X \mid ||x|| = 1\}$$

in a normed space is called the unit sphere.

- 1. If $||x|| = ||x||_1$, then $x \in S(0;1)$ when $|x_1| + |x_2| = 1$. This happens on the lines $x_2 = -x_1 + 1, x_2 = x_1 + 1, x_2 = -x_1 1, x_2 = x_1 1$. These are the lines drawn in the picture.
- 2. If $||x|| = ||x||_2$, then $x \in S(0; 1)$ when $(|x_1|^2 + |x_2|^2)^{1/2} = 1$. This happens when $|x_1|^2 + |x_2|^2 = 1$. This is true for the unit circle (that is the lines $x_2 = -\sqrt{x_1} + 1$, $x_2 = \sqrt{x_1} 1$.
- 3. If $|x|| = ||x||_{\infty}$, the $x \in S(0; 1)$ if $\max\{|x_1|, |x_2|\} = 1$. This is true for the lines $x_2 = \pm 1$ and $x_1 = \pm 1$.
- 4. If $||x|| = ||x||_4$, then $x \in S(0;1)$ if $x_1^4 + x_2^4 = 1$. This is true for the equations $x_2 = -x_1^{1/4} + 1$ and $x_2 = x_1^{1/4} + 1$. This is the circle shown below.
- **2.2.13.** Let x, y be in a discrete metric space X where $x \neq y$. Then $2x \neq 2y$. Thus, d(2x, 2y) = 1 but |2|d(x,y) = 2. So $d(\alpha x, \alpha y) \neq |\alpha|d(x,y)$. So by the translation invariance lemma, the discrete metric is not induced by a norm.