Time Series

Overview

Content

- Time series: definition & examples
- Univariate time series
- Multiple time series
- Regular vs irregular time series
- Stationary vs non-stationary
- Components of a time series.

Time Series - definition

• Time series are data points indexed in time order.

 Time series data is a collection of observations obtained through repeated measurements over time.

Time Series – examples

- Stock and shares price
- Sales, revenue
- Income through donations
- Energy demand & production
- Air quality (particle concentration)
- Temperature
- Ocean tides
- Electrocardiograms, encephalograms

Time Series – examples

Airline passenger traffic

Electrocardiogram

Univariate Time Series

Time series have values and a time index.

Time	Sales	
30/03/20	200	i I m I was known
31/03/20	220	molandandan Jandandan
01/04/20	230	Mass No at Mass Mass Mass Mass Mass Mass Mass M
02/04/20	235	2001 2003 2005 2007

- Mean hourly temperature in London.
- Hourly energy demand in Buenos Aires.
- Weekly sales revenue in our family store.

Multiple Time Series

Wide format

	Sales revenue				
Time	Item 1	Item 2	Item 3	Item 4	
30/03/20	200	100	330	120	
31/03/20	220	120	300	135	
01/04/20	230	150	335	133	
02/04/20	235	175	340	200	

- Sales revenue multiple products
- Energy consumption multiple households
- Temperature multiple districts

Image taken from:

https://cienciadedatos.net/documentos/py44-multiseries-forecasting-skforecast.html

Multiple Time Series

Long format

Time	Sales	Item
30/03/20	200	1
31/03/20	220	1
01/04/20	230	1
02/04/20	235	1
30/03/20	100	2
31/03/20	120	2
01/04/20	150	2
02/04/20	175	2
30/03/20	330	3
31/03/20	300	3
01/04/20	335	3
02/04/20	340	3

https://cienciadedatos.net/documentos/py44-multi-seriesforecasting-skforecast.html

- Item is a time series ID
- Dates are not unique.

Time Series - types

Stationary vs Non-stationary

Most time series are non-stationary.

Time Series - components

- Trend: long term change in the mean of the time series.
- Seasonality: regular, repetitive fluctuations.
- Cyclicity: irregular fluctuations over longer time periods.
- Residuals: error term, irregular fluctuations.

Decomposition is not always possible.

Time series are data points indexed in time order.

Summary

Time series can be regular or irregular.

Time series can be stationary, or more commonly, non-stationary.

Time series can be decomposed into defined components.