PSZT - Uczenie Maszynowe

Stawczyk Przemysław 293153, Piotr
 Zmyślony 268833 $\,$

Contents

1	Opis zagadnienia								
	1.1 Treść zadania								
	1.2 Narzędzia								
2	Opis preprocesingu i modelowania								
	2.1 Opis danych wejściowych								
	2.2 Analiza zbioru danych								
	2.2.1 Brakujące dane								
	2.2.2 Zbalansowanie danych								
	2.3 Przepływ Danych								
	2.3.1 Wizualizacja Przepływu Danych								
3	\mathbf{Modele}								
	3.1 Parametry Modeli								
4	Wyniki Eksperymentu								
	4.1 Wykresy								
	4.2 Interpretacja								

1 Opis zagadnienia

1.1 Treść zadania

Przedstawić wyniki analizy zbioru Bankruptcy, opisać procedurę eksperymentalną uczenia maszynowego z wykorzystaniem algorytmów random forest i k-najbliższych sąsiadów oraz opisać wyniki strojenia parametrów powyższych algorytmów.

1.2 Narzędzia

Skrypty oraz algorytm zostały zaimplementowane w Pythonie 3. Wykorzystano biblioteki: imblearn.over sampling.SMOTE, sklearn, numpy, matplotlib, scipy.io, impyute.

2 Opis preprocesingu i modelowania

2.1 Opis danych wejściowych

Jako dane wejściowe posiadamy 5 plików .arff, z których każdy zawiera ekonomiczne wskaźniki z systemu EMIS na temat polskich firm i ich klasyfikację względem tego, czy firmy zbankrutowały po n latach od roku, w którym zostały zebrane dane. Liczba n lat jest różna dla każdego z plików, od 1 do 5, a każda firma opisana jest przez 64 atrybuty, od X1 do X64.

2.2 Analiza zbioru danych

2.2.1 Brakujące dane

Zaczęliśmy od analizy brakujących danych w wierszach. Jak widać w poniższych wynikach w większości zbiorów około połowa wierszy ma brakujące pola.

	1 rok	2 lata	3 lata	4 lata	5 lat
$dlugo\acute{s}\acute{c}$	7027	10173	10503	9792	5910
pełne wiersze	3194	4088	4885	4769	3031
wiersze wybrakowane	3833	6085	5618	5023	2879

Następnie przeprowadziliśmy analizę rozkładu brakujących danych w kolumnach i wierszach korzystając z biblioteki pythona missingno [fig 1-5]

Figure 1: 1 rok

Figure 2: 2 lata

Figure 3: 3 lata

Figure 4: 4 lata

Figure 5: 5 lat

Jak widać większość brakujących danych jest w kolumnie X37. Kolumna X21 ma brakujące w niektórych ale nie wszystkich latach.

Trudno nam było ocenić jaki charakter mają braki w tych danych, czy są skorelowane w wartościami w innych kolumnach czy zupełnie losowe. Wierszy z brakującymi danymi jest około połowy lub więcej. Aby nie odrzucać tak dużej liczby krotek zdecydowaliśmy się interpolować brakujące dane.

W tym celu wybraliśmy 4 metody:

- 1. Wstawianie średniej w danej kolumnie (Jako punkt odniesienia)
- 2. K najbliższych krotek
- 3. Spodziewanej Maksymalizacji (Expected Maximalisation)
- 4. Algorytm MICE

2.2.2 Zbalansowanie danych

Dokonaliśmy analizy ile z poszczególnych rekordów należy do klas klasyfikacyjnych

Czy zbankrutowano:	rok 1	rok 2	rok 3	rok 4	rok 5
Nie	6756	9773	10008	9277	5500
Tak	271	400	495	515	410
procent większości	3.857 %	3.932 %	4.713 %	5.259 %	6.937 %

Dane w zbiorach są mocno niezbalansowane dlatego zdecydowaliśmy się na interpolację korzystając z metody SMOTE (Synthetic Minority Over Sampling Technique)

2.3 Przepływ Danych

Po powyższej analizie zdecydowaliśmy o następującym przepływie oryginalnych danych do konstrukcji modeli.

Walidacji modeli planujemy dokonać korzystając K-krotnej walidacji krzyżowej.

2.3.1 Wizualizacja Przepływu Danych

3 Modele

Zgodnie z poleceniem wykorzystaliśmy algorytmy tworzenia modeli:

- Las Losowy [RF Random Forrest]
- K Najbliższych sąsiadów /KNN K Nearest Neighbors/

Implementacje wymienionych algorytmów pochodzą z biblioteki sklearn.

Dataset Imput... Overs... Models Generati... Output Analysis

Figure 6: Przepływ Danych

3.1 Parametry Modeli

4 Wyniki Eksperymentu

- 4.1 Wykresy
- 4.2 Interpretacja