- Recalling that the gain of a common emitter amplifier can be approximated by R_C/R_E, sketch an approximate magnitude frequency response for the circuit below. Label the following:
 - a. Midband gain(s) in dB
 - b. Frequency rolloff rates in dB/decade

It is not necessary to label the frequency breakpoints

2. Determine the midband gain and the high and low frequency breakpoints for the small signal model of an amplifier shown below.

3. Determine the *two* midband break frequencies for the amplifier shown below. You do not need to determine any other break frequencies or gain values.

$$f_{m_1} = \frac{1}{2\pi (2k)(10nF)} = \frac{7.96kHz}{-1}$$

$$f_{m_2} = \frac{1}{2\pi (348)(10nF)} = \frac{45.7kHz}{-1}$$

4. For the common gate circuit below, determine the midband gain and the low frequency breakpoint. Assume the coupling capacitor on the output is very large.

V=Z,37(Vi)(1)=Z,37.22=>Av=Z,37

 $= \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ $= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} =$

$$I_{X} = \frac{1V}{2k} + 9m$$

$$I_{Z} = \frac{2k}{||9m|} = 34852$$

$$\therefore I_{Z} = \frac{1}{2\pi (348)(|0,F|)} = 45.7 \text{ Hz}$$