百度智能手环 ROM 设计

模块名称	百度智能手环 ROM
所属系统	
模块负责人	郑亚军
项目负责人	孙鹤飞
文档提交日期	2014年8月
版本号	1.0

百度在线网络技术(北京)有限公司

目录

1.	智能手环开源介绍	3
2.	开发环境	3
3.	手环 ROM 介绍	3
	3.1 正常模式	3
	3.2 升级模式(OTA 模式)	4
4.	交互设计	6
	4.1 交互设计原则(改交互设计,需要先阅读本节内容)	
5.	功能自定义	6
	5.1 硬件相关修改	6
	5.2 OTA 的客制化	7
6.	ROM 打包与烧写	7
	6.1 打包步骤如下:	
	6.2 烧写步骤	

1. 智能手环开源介绍

智能手环基于 Nordic 公司 nrf51822 蓝牙 soc 芯片开发,使用 LIS3DH 作为加速度 传感器,进行运动和睡眠监测。

开源遵循 Apache License, Version 2.0, 详情参见:

http://www.apache.org/licenses/LICENSE-2.0

2. 开发环境

操作系统: Windows XP, windows7

开发工具: Keil uVision4.0

Nordic 官方网站: https://www.nordicsemi.com/

Nordic SDK 版本: 4.4.2 SoftDevice 版本: 5.2.1

仿真器: J-Link

开发环境的搭建参考 nRF51822_Developer_Kit_User_Guide

3. 手环 ROM 介绍

智能手环有两种工作模式:正常模式和升级模式。

正常模式下,手环提供产品定义中的所有功能;

升级模式下,手环等待手机端把要升级的 ROM 通过蓝牙发过来,然后进行升级。空中升级模式(Over-the-Air)给手环的 bug 修复、产品优化提供了实现的途径,这也是智能设备必备的功能。

3.1 正常模式

智能手环从软件结构上分为应用层、中间件、硬件抽象层,如图所示。

- 其中闹钟、时间、提醒、计步、睡眠等用户可以直接接触的功能属于应用层。
- 中间件为应用层提供支撑,从底层获取数据和事件,然后进行处理分发给不同的应用模块。
- 硬件抽象层包含了底层硬件的驱动和暴露给中间件的调用接口,抽象层的目的硬件设备可以比较容易的更换厂家和型号,只要传递给上层的数据格式不变即可。
- 蓝牙部分硬件抽象层封装在 Nordic 提供的 softdevice 中,在此之上,我们使用了两个标准 profile: Battery profile 来传递电池信息给手机客户端,Device info profile 传递设

备信息给客户端;其他自定义的数据,如步数、睡眠信息,我们按照数据通信私有协议组帧后,通过串口协议发送给手机客户端,手机客户端再依据数据通信私有协议进行解析。

应用层	闹钟	时间	久坐提爾		计步	睡眠		遥控拍照	交互界面	
中间件	交互框架 日历 健康算法		数据通信和 数据存储		私有协议 串口协议		Battery profile	Deviceinfo profile		
硬件抽象层		硬件抽象层					Soft Device			
硬件层	震动马	·····································	速度	传感器	LEC) F	lash		蓝牙	

3.2 升级模式 (OTA 模式)

升级过程如下图所示:

要了解 OTA 模式需要知道 ROM 的内存分布,如下图所示,我们使用 256KB Flash 的 51822 芯片,分为四个区。

进入 OTA 后,系统运行在 DFU BootLoader 中, 它从手机端收到新的 ROM 放在 Swap 区,接收完毕、校验成功后,将新的 ROM 从 Swap 区复制到 Application 区,然后重新启动进入 Application。

OTA 的工程单独提供,编译出来一个 bootloader。其工作流程图如下,具体可以参看 Nordic SDK 的文档。

4. 交互设计

4.1 交互设计原则(改交互设计,需要先阅读本节内容)

交互设计秉承抽象分层的理念,输入设备抽象出来,对应到手环产品的按键事件。也可以对接到敲击识别,语音识别等,这些输入事件发生后传递给输入事件接口层,然后发送给 交互框架。

交互框架负责依据交互定义分派交互事件;

交互定义根据具体的产品形态定义,以手环为例分别定义了以下交互事件,并定义了优先级和优先级的处理规则。这些规则的具体实现可以根据输出设备的选择而不同,比如目前使用的显示设备是 LED 点阵,也可以换成 LCD 或者其他的显示设备。

交互实现参考如下结构图:

5. 功能自定义

5.1 硬件相关修改

公共功能的定义在 config.h,不建议修改。和板子功能相关的定义可以参考下面文件: dvk6310_board_config_pins.h

设备信息可以自定义:

#define DEVICE_NAME "DuLife" /**< Name of device. Will be included in the advertising data. */
#define MANUFACTURER_NAME "Baidu Inc" /**< Manufacturer.

GPIO 引脚定义可根据实际需求修改:

```
#define DISPLAY_SCL_PIN 9//10 /*!< GPIO pin number for display module AS1130 */
#define DISPLAY_SDA_PIN 10//11 /*!< GPIO pin number for display module AS1130 */
```

5.2 OTA 的客制化

OTA 的客制化主要是进入 OTA 模式之后手环上提示灯设计。这部分代码会另外提供, 修改主要在 boot loader 的 main 函数。

如果修改了 IO 定义, 也需要在 bootloader 工程中对应修改。

6.ROM 打包与烧写

开源工程有提供打包烧写工具,在 yunFlash 中。 其中 baidu-ota.hex 由 boot loader 工程生成,简约版和增强版是不同的,需要注意。

6.1 打包步骤如下:

- 1. 把编译出来的 Baidu-Nordic.hex 和 baidu-ota.hex 复制到, yunFlash.exe 同级目录;
- 2. 运行 merge.bat 会把上面的两个 hex 文件和 s110_nrf51822_5.2.1_softdevice.hex 一起 合并生成 merge.hex, 这个就是我们要用的烧入产线的 ROM。
- 3. 如果运行成功可以看到下面的画面:

6.2 烧写步骤

1. 连接 J-Link 调试器和要烧入的电路板

- 2. 打开 YunFlash.exe 点击"写入校验";
- 3. 成功后点击开始,如下图

4. 等待烧写校验完成;

烧写完成后可以用厂测 apk 进行测试。

厂测部分见工厂测试手册。