Лекция 5. Спектральная теорема II

1 Общая спектральная теорема

Список праздных фактов:

- supp $\sigma = \bigcup_{\substack{\sigma(X \backslash K) = 0, \\ K \text{замкнуто}}}$
- $\sigma_1 * \sigma_2$ распределение случайной величины $\xi_1 + \xi_2, \xi_1 \bot \xi_2$.
- (абсолютная непрерывность мер) $\nu \ll \mu \Leftrightarrow \nu = p(z)\mu, p \in L^1(\mu)$.
- (сингулярность мер) $\nu\bot\eta\Leftrightarrow \exists$ борелевское $F:\nu(F)=1,\eta(\Omega\setminus F)=1$
- Любые две меры σ_1, σ_2 можно представить как $\sigma_1 = \nu_1 + \omega_1, \sigma_2 = \nu_2 + \omega_2$, притом $\omega_1 \sim \omega_2 \perp \nu_1 \perp \nu_2$.

Теорема 1. $\sigma = \sigma_d + \sigma_s + \sigma_{ac}$ (представляется в виде суммы дискретной составляющей, сингулярной составляющей и абсолютно непрерывной составляющией), притом $(\sigma_d, \sigma_s) \perp \sigma_{ac}$.

При этом $\sigma_d \sim 1_{\Lambda}, \Lambda < S^1 - \partial ucкретная.$

Теорема 2 (*). Если \hat{T} — эргодическое в бесконечномерном $L^2(x,\mu)$, тогда $Sp(\hat{T}) = supp \ \sigma = S^1$.

Если рассматривать системы с кратностью, получается картина, которую можно воспринимать двумя способами:

- Есть меры $\sigma_1, \dots, \sigma_{\infty}$, попарно сингулярные, притом у нас есть по n копий пространства V_n : $\hat{T}\mid_{V_{2,j}}\cong (L^2(\sigma_2),\mu_2)$.
- У нас есть $\sigma_1,\ldots,\sigma_\infty$, притом $\sigma_{k+1}\ll\sigma_k,\sigma_1=\sigma$. В терминах предыдущего случая $\sigma=\frac{\sigma_1}{4}+\ldots+\frac{\sigma_k}{2^{k+1}}+\ldots+\frac{\sigma_\infty}{2}$.

Спектральный инвариант тогда имеет вид $(\sigma, M(z))$, где M(z) — измеримая функция кратности.

2 Семинарская часть

Определение 1. Пусть $T:(X,\mu),S(Y,\nu)$. η есть джойнинг T,S если $\pi_x\eta=\mu,\pi_\eta\eta=\nu,(T\times S)\eta=\eta$.

Диагональный автоджойнинг: $\Delta(A \times B) = \mu(A \cap B)$.

Упражнение 1.

• $\Delta_S(A \times B) = \mu(AS \cap B)$ — джойнинг, если ST = TS, S сохраняет меру. Замечание: $\Delta_{T^k}(A \times B) = \mu(T^k A \cap B) \to \mu(A)\mu(B) \Leftrightarrow \Delta_{T^k} \stackrel{w}{\to} \mu \times \mu$ — джойнинговое определение перемешивания.

• $T:\sigma_1,S:\sigma_2,\sigma_1\bot\sigma_2\Rightarrow T\bot S$ — дизъюнктны, то есть единственный джойнинг — это $\mu\times\nu$.

Если есть $\beta(f(x),g(y))=\int\limits_{X\times X}f(x)g(y)d\eta$, то она представима как $\langle J_{\eta},g\rangle$. Например, $J_{\mu\times\nu}=\Theta$ — ортопроектор на константу, $J_{\Delta}=Id,J_{\Delta_S}=\hat{S}.$