Assignment Project Exam Help

https://powcoder.com

Introduction

A Stochastic systems the militeratical study of the operation of the operation occur when current demand for service exceeds the capacity of the service facility.

https://powcoder.com

Standard setup for arrivals

Assignment Project Exame Help telephone calls, computer jobs, information packets, etc.

- Arrival times T_1, T_2, T_3, \cdots . The inter-arrival times are T_1, T_2, T_3, \cdots . The inter-arrival times are T_1, T_2, T_3, \cdots .
- ► The inter-arrival times are assumed to be i.i.d.
- Alternatively, we could use a counting process N_t giving the number of arrives $e^{(0)}$ that 0 powcoder

Standard setup for service

▶ There is a total of *m* spaces for both receiving service and

Assignment Project Exam Help customer immediately.

- The service time $S_i^{(j)}$ of the *i*th customer at the *j*th server is a range parameter $PS_i^{(j)}$ of the *i*th customer at the *j*th server is a
- ► The service times are assumed to be independent (and also identically distributed for each fixed *j*
- ► We grow seng hat mp towe or environments.
- ▶ If all servers are busy, then the arriving customers join a queue if there is enough space, otherwise, the customer is rejected.

Service Disciplines

Assignment Project Exam Help

- Last Come First Served (with or without pre-emption).
- https://powcoder.com
- more complicated disciplines?

We will consider any FIFC in this course.
One can use Cuch queuing systematic photon of Color of Colors and Colors of Colors o by forwarding customers departing from one queue to other queues.

Quantities of interest

Assignment Project Exam Help those in service and those waiting to begin service).

waiting time length of time a customer pends in the queue before her/his server ee comme ces. WCOCCT. COTT

sojourn time: total length of time a customer spends in the system (waiting time plus wrice time) at powcoder

Kendall's notation

Assignment Projects Exam Help

► A describes the arrival process

https://www.pow.coder.com

A = GI or G inter-arrival times have some arbitrary distribution.

Addiwechatepowcoder

Kendall's notation

- ▶ *B* describes the service process
 - ightharpoonup B = M service times are exponentially-distributed.
- Assignment of sever times have for Erbitrary distribution lp
 - n gives the number of servers.
 - p gives the capacity of the system. When $m = \infty$, this is partial power of the system of the power of the system.

Add WeChat powcoder

Most common is $M/M/1/\infty$ (or just M/M/1).

Questions

Assignment Project Exam Help

- Does a queueing system have a steady-state regime or does the queue increase unboundedly?
- ► Witting steadpowerogerstroomit exists?
- ▶ What is the steady-state waiting time distribution if it exists?
- ▶ What fraction of time is the server idle?

M/M/1 queue

Assignment Poisson process with intensity λ Help

- ▶ Infinite space for waiting: $m = \infty$
- The state X_t gives the number of customers at time t:
 - If $K_t = k \ge 1$ one customer is being served and k-1 customers are waiting in the queue.

This is a CIMC (in fact a birth and death process) with hon-zero transition rates $q_{i,i+1}$ and $q_{i+1,1} = p$ and $q_{i+1,1} = p$ and $q_{i+1,1} = p$ and $q_{i+1,1} = p$

Exercise: draw the transition diagram for this CTMC

M/M/1 an interpretation

Assignment ending the local exercises, so $X_{t+\tau_+} = 1$. If $X_t = k > 0$, the process remains at k for a time $\tau = \min(\tau_+, \tau_-)$

wher https://powcoder.com

- au $au_- \sim \exp(\mu)$ is the time until the end of service of the

customer in service at that powereder $X_{t+\tau} = Add r + Add$

M/M/1 stationary distribution

Using our results from CTMCs, we see that a stationary distribution for $(X_t)_{t\geq 0}$ exists if (and only if) the chain is positive recurrent. This is equivalent to $\rho\equiv\lambda/\mu<1$, in which case, for

Assignment Project Exam Help

Using the normalisation condition $\sum_{i=0}^{\infty} \pi_n = 1$, we see that

https://powcoder.com

which tells us that

Add WeChat powcoder

$$\pi_n = (1 - \rho)\rho^n.$$

So the stationary distribution for the number of customers in the system is geometric* $(1-\rho)$. (Note that this geometric takes values in \mathbb{Z}_+).

M/M/1 further questions

Assignishetstitus Projecutoe Examers in Italp

- What is the stationary expected number ℓ_q of customers in just the queue?
- ► What i Plas expected waiting the detrustement in stationarity?
- What is the distribution of the waiting time?

We man to the three that we will be the system might be empty.

M/M/1 waiting times in stationarity

- In the stationary regime, a tagged arriving customer will find a SSI more than to Purporte where Hexagore Help pastal. ((Careful when interpreting this statement, e.g. it's not true for the first customer to arrive after time t))
 - If N = 0, then the customer will go straight into service.
 - If μ , the remaining service time S_1 for the customer being served $\sim \exp(\mu)$.
 - The service times S_2, S_3, \dots, S_N , for those in the queue are independent explanation and labels winder of N.
 - So the waiting time for our tagged customer is $W = \sum_{j=1}^{N} S_j$, where we interpret the empty sum as equal to 0.

M/M/1 waiting times in stationarity

The distribution of a non-negative random variable Y is characterized by its Laplace transform $M_Y(-s)=\mathbb{E}[e^{-sY}]$ for s>0.

Assigning P_{π} Project Exam Help $= \mathbb{E}_{\pi} [(\mathbb{E}_{\pi}[e^{-sS_1}])^{N}]$

https://powcoder.com

$$= (1 - \rho) \sum_{n=0}^{\infty} \rho^n \left(\frac{\mu}{s + \mu} \right)^n$$

Add Wechat powcoder

$$=(1-\rho)+\rho\frac{\mu-\lambda}{5+\mu-\lambda},$$

and we see that the distribution of W is a mixture of a 0-random variable and an exponential $(\mu - \lambda)$ random variable. To be precise,

$$\mathbb{P}(W=0)=1-\rho, \qquad \mathbb{P}(W>x)=\rho e^{-x(\mu-\lambda)}, \quad \text{for } x>0.$$

M/M/1 waiting times in stationarity

Astsilgnment of Problems Exam Help $\mathbb{E}[W] = \frac{\rho}{\mu - \lambda}.$

Once Melta P Se expected witing the Welca Collins the expected total time d in the system via the formula

Little's law:

Assignmented eding of testing am system p while ℓ_q is the expected number of customers waiting for service (both at stationarity).

Little https://powcoder.com

and

Sketch proof of Little's law

Set No and Dependent the comben of coston ensuch have extend p and departed from the system in [0,t] respectively. So the number in the system at time t is $X_t = N_t - D_t$. Denoting the area under the function X_s for $s \le t$ by A_t , we calculate $\mathbb{E}[A_t/t]$ in two different ways Sirst t

 $\underbrace{ Add \, We Chat}_{\text{which approaches the average number}} \underbrace{ \begin{bmatrix} \frac{1}{t} \int_0^t X_u du \end{bmatrix}}_{\text{powcoder}}$

Sketch proof of Little's law

Second, we have,

Assignment Project Exam Help

where D_i is the time spent in the system by the *i*th customer.

Now https://powcoder.com
$$\mathbb{E}\left[\frac{A_t}{t}\right] = \frac{1}{t}\mathbb{E}\left[\sum_{n=1}^{\infty} D_n\right] + o(1)$$
Add WeChat powcoder
$$= \lambda d + o(1)$$

So taking t large we have $\ell = \lambda d$.

Example

Assignment Project Exam Help

A repairperson is assigned to service a bank of machines in a shop. Assume that failure times occur according to a Poisson process with at 19512 per prior to a Poisson process with a 19512 per prior to a 19512 per prior

Example

▶ The traffic intensity is $\rho = 2/3 < 1$, so a stationary

Assignificant Project Exam Help

- ▶ The repairperson is idle with prob $1 \rho = 1/3$.
- The posted humber of machines dequiring repairing
- ▶ The expected time that a machine spends with the repair
- person is $d = \ell/\lambda$ (or $1/(\mu \lambda)$) = 24 minutes.

 The operated time waiting following to Devil CO $1/(\mu \lambda)$ = 16 minutes.
- Also, e.g. $\mathbb{P}(W > 10) = \rho e^{-(\mu \lambda)10} \approx 0.44$.

Example

As Suppose that the faitine rate of machines increases (e.g. the last dafficient of points) is $\rho' = 4/5$, and $\ell' = 4$ with d' = 40 and $\mathbb{E}[W'] = 32$.

- A 16% increase in arrival rate has drastically increased the expectation wher project that they have to wait before getting repaired.
- We see that, when ρ is close to 1, the effect of small changes of ρ is profound; if a queleing system has long waiting times and lines, a rather modest increase in the service rate can bring about a dramatic reduction in waiting times.

Costs example

Assignment now find the following method of the repair rate from $\mu=1/8$ to $\mu^*=1/6$, that is, decrease the expected repair time from 8 minutes to 6 minutes.

- The increase in printenance cost of the new equipment is $c_M = 30$ per minute.
- The cost of lost production when a machine is out of order is $c_D = \$5$ per minute.
- > shaud a pulchase the had uippen? Wcoder

Costs example solution

Assignment Project Exam Help

- ▶ The expected number of failed machines is $\ell = \rho/(1-\rho) = 2$.
- The expected cost of lost production is $\ell c_D = \$10$ per minute.

 Multiplies we are production is $\ell c_D = \$10$ per minute. $\ell^* c_D + c_M = 11 per minute.
- We should buy the equipment if $\ell^*c_D+c_M<\ell c_D$, so we should buy the quipment powcoder

Another costs example

Assignment Project Exam Help At a service station the rate of service is μ cars per hour, and the

rate of arrivals of cars is λ per hour. The cost incurred by the service station due to/delaying cars is β per car per hour and the operating and service dosts are β control parameter. Determine the value of μ so that the least expected cost is achieved and find the value of the latter.

Another costs example solution

Assignment i Projectio Exam Help

- ▶ In the stationary regime, $\mathbb{E}[Y] = \rho/(1-\rho)$.
- The targeted total post very long is cap = $c\rho(11 \rho) + \mu c_2$ • To find the minimum, we find μ such that $c'(\mu) = 0$ and since
- To find the minimum, we find μ such that $c'(\mu) = 0$ and since $\mu > \lambda$, we have a solution $\mu_0 = \lambda + \sqrt{\lambda c_1/c_2}$.
- Carlie Powcoder

Assignment Project Exam Help

- \triangleright a Poisson arrival process with rate λ ,
- * Interpreted to the service times, * Independent exp(*) service times,
- when an arrival finds more than one idle server, it chooses one when k servers are working, the topal service rate is kp.

Assignment Project Exam Help The transition rates are $q_{i,i+1} = \lambda$, for $i \ge 0$ and

The transition rates are $q_{i,i+1} = \lambda$, for $i \ge 0$ and $q_{i,i-1} = \mu \times \min(a,i)$ for $i \ge 1$.

Exercistings: //powender.com

This is a birth-and-death process with $\nu_i = \lambda$ for i = 0, 1, 2, ... and $\mu_i = i\mu$ for i = 1, 2, ..., a and $\mu_i = a\mu$ for i > a.

M/M/a ergodicity

Assignment Project Exam Help

 $https: \cancel{\sum}_{j=0}^{\infty} poweoder.com$

This occurs if
$$\lambda$$
 which case $\sum_{j=0}^{\infty} \kappa_j = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!\mu^k} + \frac{\lambda^a}{a!\mu^a} \frac{a\mu}{a\mu - \lambda}$.

M/M/a ergodicity

A so the M/M/a queue is argodic if and only if arrival rate λ is less 1 gently in this case, the stationary distribution is given by

 $https: \sqrt[k]{powoodeir} \stackrel{\text{if } k < a}{\text{com}}$

where

Add We (powcoder powcoder

M/M/a busy servers

For what proportion of time δ_q are all the servers busy? This is the SS1eS1eRO1111 that FG1imCust meXv11Ne to $\frac{1}{2}$ (recall the PASTA principle).

We have

https://powcoaler.com

The expected queue length is

 $Add_{\ell_q}W_{[e,C,hat]}pow_{au-\lambda}coder$

M/M/a busy servers

Assignment Project be server in Help $\mathbb{E}_{\pi}[\min(X_t,a)] = \frac{\lambda}{\mu}.$ Note hat posicy throughout the expected number of customers in the system is

M/M/a waiting times

Assignmente Project Exam Help $\mathbb{E}_{\pi}[W] = \frac{\ell_q}{\lambda} = \frac{\delta_q}{au - \lambda}.$

(can https://powgooder.com
The expected delay is

M/M/a Example

An incorrect property habiteting adjusters in its branch of ice. I possible against the company arrive according to a Poisson process at an average rate of 20 per 8 hour day. The amount of time an adjuster spends with a claimant is exponentially-distributed with mean several feet 40 in the WCOGET. COM

- How many hours a week can an adjuster expect to spend with claimants?
- Have duch til Woe verder altes politik rend ette

M/M/a example solution

▶ The arrival rate is $\lambda = 20/8 = 2.5$ per hour.

Assignment Project Exam Help $f(a\mu) = 5/9 < 1$, so a stationary distribution exists.

• We get \mathbb{P}_{π} (adjuster is busy) by noticing that


```
= 3\mathbb{P}_{\pi}(a given adjuster is busy).
```

M/M/a example solution

Substituting the parameter values, we calculate that each adjuster specifically specified that $\frac{27710}{6}$ $\frac{247139}{6}$, $\frac{47139}{6}$, $\frac{47139}{6}$, $\frac{47139}{6}$, $\frac{47139}{6}$, $\frac{49}{6}$ minutes).

If there were only two adjusters, we could similarly calculate

- ► https://spiowcagelerocommimants.
- We can calculate that $\pi_0=1/11$, $\delta_q=25/33$ and d=2.18 hours.

We cannot his income that if petweef the cost of an extra adjuster and the extra level of service that is produced.

Single or multiple servers?

Which is better? A single fast server or several smaller ones with A street same "cumulative service rate" compare. That the arriva Help process is Poisson with rate x, and compare.

- ▶ A single server with service rate $a\mu$, and
- A heuristic righment this ds that Coder.com
 - ightharpoonup if $X_t \geq a$, both systems work with the same rate, but
 - if $K_t = k_t < x$ the rate for the a server queue is $k\mu$, which is less than the for the digle between COCCT

So we might conclude that the single server is better. This is "easy" to prove via the technique of *coupling*.

Single or multiple servers?

We saw that, for the M/M/a queue, the expected number in the system is

Assignment Project Exam Help

 $\frac{\text{https://powcoder.com}}{\text{For the } \textit{M/M/1} \text{ queue with service rate } \textit{a}\mu\text{, the expected number in the}}$

system is

Add WeChat powcoder and the expected time in the system is

$$=\frac{1}{a\mu-\lambda}.$$

Single or multiple servers?

Assignment Project Exam Help With some work, we can show that $\delta_q + (a\mu - \lambda)/\mu > 1$, so both

the expected number in the system and the expected time in the system are smaller for the M/M/1 queut, which proves our conjectule PS.//POWCOGET.COM

As an exercise, think about the waiting time, rather than the time in the system, for each of the systems.

What if our queue is not Markovian??

Assignment Project Exam Help

Then hettps://powcoder.com