IM 60002/Advanced Decision Modeling HW Assignment#1

Due Date: Feb 12, 2025 (in-class)

- (1) Which of the following functions is convex, concave or neither? Why?
 - a. $f(x_1, x_2) = 2x_1^2 4x_1x_2 8x_1 + 3x_2$
 - b. $f(x_1, x_2) = x_1 e^{-(x_1 + 3x_2)}$
 - c. $f(x_1, x_2) = -x_1^2 + 10x_1 3x_2^2 + 4x_1x_2 10x_2$
 - d. $f(x_1, x_2) = x_1 x_2$
 - e. $f(x) = e^x 1$
 - f. $Q = K^{\alpha}L^{\beta}$ with $\alpha, \beta > 0$ and $\alpha + \beta < 1$.
- (2) Let $f_1, f_2, ..., f_k: \mathbb{R}^n \to \mathbb{R}$ be the convex functions. Consider the function defined by $f(x) = max\{f_1(x), f_2(x), ..., f_k(x)\}$, show that f is convex.
- (3) Let $h: E_n \to E_1$ be a quasi-convex function and let $g: E_1 \to E_1$ be a non-decreasing function, then show that the composite function $f: E_n \to E_1$ defined as f(x) = g[h(x)] is a quasi-convex.
- (4) We want to design a cone-shaped paper drinking cup of volume V that requires a minimum of paper to make. That in we want to minimize its surface area $\pi r \sqrt{r^2 + h^2}$ where r is the radius of the open end and h is height. Find the radius r at which surface area is minimized (in terms of V and r).
- (5) Minimize $2x_1^2 + x_2^2$

S.t
$$x_1 + x_2 = 1$$

If we change the RHS from 1 to 1.05, compute the value of the objective function.

- (6) Suppose we have a refinery that must ship finished goods to some strange tanks. Suppose further that there are two pipelines, A & B, to do the shipping. The cost of shipping x units on A in ax^2 ; and on B in by^2 , a > 0, b > 0. How can we ship Q units that minimizes the cost? What happens to the cost if Q increases by r%.
- (7) Solve the following constrained optimization problem using the method of Lagrange multiplier.

$$\operatorname{Max} \quad \ln x + 2 \ln y + 3 \ln z$$

s.t
$$x + y + z = 60$$

Estimate the change in the optimal objective function value if the RHS increases from 60 to 65.

(8) Minimize $f(x) = x_1^2 + x_2^2 + x_3^2$

s.t
$$2x_1 + x_2 - 5 \le 0$$
; $x_1 + x_3 - 2 \le 0$; $1 - x_1 \le 0$; $2 - x_2 \le 0$; $-x_3 \le 0$

Write the necessary KKT conditions and find the optimal solution.

- (9) Write the necessary condition for optimality for the following problems
 - a. Maximize $f(x) = x_1^3 x_2^2 + x_1x_3^2$

s.t
$$x_1 + x_2^2 + x_3 = 5$$
; $5x_1^2 - x_2^2 - x_3 \ge 2$; $x_1, x_2, x_3 \ge 0$

b. Minimize $f(x) = x_1^4 + x_2^2 + 5x_1x_2x_3$

s.t
$$x_1^2 - x_2^2 + x_3^3 \le 10$$
; $x_1^3 + x_2^2 + 4x_3^2 \ge 10$