

SEQUENCE LISTING

<110> Martin, Micehlle
O'Connell, Peter
Allred, D. Craig
Clark, Gary

<120> MTA1 is a predictive and prognostic factor in human breast cancer

<130> P02483US1

<140> Not Assigned
<141> 2003-06-20

<150> US 60/390,794
<151> 2003-06-21

<160> 7

<170> PatentIn version 3.1

<210> 1
<211> 715
<212> PRT
<213> HUMAN

<400> 1

Met Ala Ala Asn Met Tyr Arg Val Gly Asp Tyr Val Tyr Phe Glu Asn
1 5 10 15

Ser Ser Ser Asn Pro Tyr Leu Ile Arg Arg Ile Glu Glu Leu Asn Lys
20 25 30

Thr Ala Asn Gly Asn Val Glu Ala Lys Val Val Cys Phe Tyr Arg Arg
35 40 45

Arg Asp Ile Ser Ser Thr Leu Ile Ala Leu Ala Asp Lys His Ala Thr
50 55 60

Leu Ser Val Cys Tyr Lys Ala Gly Pro Gly Ala Asp Asn Gly Glu Glu
65 70 75 80

Gly Glu Ile Glu Glu Glu Met Glu Asn Pro Glu Met Val Asp Leu Pro
85 90 95

Glu Lys Leu Lys His Gln Leu Arg His Arg Glu Leu Phe Leu Ser Arg
100 105 110

Gln Leu Glu Ser Leu Pro Ala Thr His Ile Arg Gly Lys Cys Ser Val

115 120 125

Thr Leu Leu Asn Glu Thr Glu Ser Leu Lys Ser Tyr Leu Glu Arg Glu
130 135 140

Asp Phe Phe Phe Tyr Ser Leu Val Tyr Asp Pro Gln Gln Lys Thr Leu
145 150 155 160

Leu Ala Asp Lys Gly Glu Ile Arg Val Gly Asn Arg Tyr Gln Ala Asp
165 170 175

Ile Thr Asp Leu Leu Lys Glu Gly Glu Asp Gly Arg Asp Gln Ser
180 185 190

Arg Leu Glu Thr Gln Val Trp Glu Ala His Asn Pro Leu Thr Asp Lys
195 200 205

Gln Ile Asp Gln Phe Leu Val Val Ala Arg Ser Val Gly Thr Phe Ala
210 215 220

Arg Ala Leu Asp Cys Ser Ser Ser Val Arg Gln Pro Ser Leu His Met
225 230 235 240

Ser Ala Ala Ala Ala Ser Arg Asp Ile Thr Leu Phe His Ala Met Asp
245 250 255

Thr Leu His Lys Asn Ile Tyr Asp Ile Ser Lys Ala Ile Ser Ala Leu
260 265 270

Val Pro Gln Gly Gly Pro Val Leu Cys Arg Asp Glu Met Glu Glu Trp
275 280 285

Ser Ala Ser Glu Ala Asn Leu Phe Glu Glu Ala Leu Glu Lys Tyr Gly
290 295 300

Lys Asp Phe Thr Asp Ile Gln Gln Asp Phe Leu Pro Trp Lys Ser Leu
305 310 315 320

Thr Ser Ile Ile Glu Tyr Tyr Tyr Met Trp Lys Thr Thr Asp Arg Tyr
325 330 335

Val Gln Gln Lys Arg Leu Lys Ala Ala Glu Ala Glu Ser Lys Leu Lys
340 345 350

Gln Val Tyr Ile Pro Asn Tyr Asn Lys Pro Asn Pro Asn Gln Ile Ser
355 360 365

Val Asn Asn Val Lys Ala Gly Val Val Asn Gly Thr Gly Ala Pro Gly
370 375 380

Gln Ser Pro Gly Ala Gly Arg Ala Cys Glu Ser Cys Tyr Thr Thr Gln
385 390 395 400

Ser Tyr Gln Trp Tyr Ser Trp Gly Pro Pro Asn Met Gln Cys Arg Leu
405 410 415

Cys Ala Ser Cys Trp Thr Tyr Trp Lys Lys Tyr Gly Gly Leu Lys Met
420 425 430

Pro Thr Arg Leu Asp Gly Glu Arg Pro Gly Pro Asn Arg Ser Asn Met
435 440 445

Ser Pro His Gly Leu Pro Ala Arg Ser Ser Gly Ser Pro Lys Phe Ala
450 455 460

Met Lys Thr Arg Gln Ala Phe Tyr Leu His Thr Thr Lys Leu Thr Arg
465 470 475 480

Ile Ala Arg Arg Leu Cys Arg Glu Ile Leu Arg Pro Trp His Ala Ala
485 490 495

Arg Asn Pro Tyr Leu Pro Ile Asn Ser Ala Ala Ile Lys Ala Glu Cys
500 505 510

Thr Ala Arg Leu Pro Glu Ala Ser Gln Ser Pro Leu Val Leu Lys Gln
515 520 525

Ala Val Arg Lys Pro Leu Glu Ala Val Leu Arg Tyr Leu Glu Thr His
530 535 540

Pro Arg Pro Pro Lys Pro Asp Pro Val Lys Ser Val Ser Ser Val Leu
545 550 555 560

Ser Ser Leu Thr Pro Ala Lys Val Ala Pro Val Ile Asn Asn Gly Ser
565 570 575

Pro Thr Ile Leu Gly Lys Arg Ser Tyr Glu Gln His Asn Gly Val Asp
580 585 590

Gly Asn Met Lys Lys Arg Leu Leu Met Pro Ser Arg Gly Leu Ala Asn
595 600 605

His Gly Gln Thr Arg His Met Gly Pro Ser Arg Asn Leu Leu Leu Asn
610 615 620

Gly Lys Ser Tyr Pro Thr Lys Val Arg Leu Ile Arg Gly Gly Ser Leu
625 630 635 640

Pro Pro Val Lys Arg Arg Arg Met Asn Trp Ile Asp Ala Pro Gly Asp
645 650 655

Val Phe Tyr Met Pro Lys Glu Glu Thr Arg Lys Ile Arg Lys Leu Leu
660 665 670

Ser Ser Ser Glu Thr Lys Arg Ala Ala Arg Arg Pro Tyr Lys Pro Ile
675 680 685

Ala Leu Arg Gln Ser Gln Ala Leu Pro Pro Arg Pro Pro Pro Pro Ala
690 695 700

Pro Val Asn Asp Glu Pro Ile Val Ile Glu Asp
705 710 715

<210> 2
<211> 2662
<212> DNA
<213> HUMAN

<400> 2
ccggacatg gcccacaaca tgtacagggt cggagactac gtctactttg agaactcctc 60
cagcaaccca tacctgatcc ggagaatcga ggagctcaac aagacggcca atggAACGT 120
ggaggccaaa gtgggtgtct tctaccggag gcgggacatc tccagcaccc tcatacgccct 180
ggccgacaag cacgcaaccc tgcgtctg ctataaggcc ggaccggggg cggacaacgg 240
cgaggaaggg gaaatagaag aggaaatgga gaatccggaa atggtgacc tgcccgagaa 300
actaaagcac cagctgcggc atcgggagct gttccctctcc cggcagctgg agtctctgcc 360
cgccacgcac atcaggggca agtgcagcgt caccctgctc aacgagaccc agtcgctcaa 420

gtcctacctg gagcgggagg atttcttctt ctattctcta gtctacgacc cacagcagaa	480
gaccctgctg gcagataaag gagagattcg agtaggaaac cggtaccagg cagacatcac	540
cgacttgtta aaagaaggcg aggaggatgg ccgagaccag tccaggttgg agacccaggt	600
gtggaggcg cacaacccac tcacagacaa gcagatcgac cagttcctgg tggtgcccg	660
ctctgtggc accttcgcac gggccctgga ctgcagcagc tccgtccgac agcccagcct	720
gcacatgagc gccgcagctg cctcccgaga catcaccctg ttccacgcca tggatactct	780
ccacaagaac atctacgaca tctccaaggc catctcgcg ctggtgcgc agggcggcc	840
cgtgctctgc agggacgaga tggaggagtg gtctgcatca gaggccaacc ttttcgagga	900
agccctggaa aaatatgggaa aggatttcac ggacattcag caagatttc tcccgtggaa	960
gtcgctgacc agcatcattt agtactacta catgtggaag accaccgaca gatacgtgca	1020
gcagaaaacgc ttgaaagcag ctgaagctga gagcaagtta aagcaagttt atattccaa	1080
ctataacaag ccaaatccga accaaatcag cgtcaacaac gtcaaggccg gtgtggtaaa	1140
cggcacgggg gcgccggcc agagccctgg ggctggccgg gcctgcgaga gctgttacac	1200
cacacagtct taccagtgg attcttgggg tccccctaac atgcagtgtc gtctctgcgc	1260
atcttggg acatattgga agaaatatgg tggctgaaa atgccaaccc ggtagatgg	1320
agagaggcca ggaccaaacc gcagtaacat gagtccccac ggcctccag cccggagcag	1380
cgggagcccc aagtttgcga tgaagaccag gcaggcttc tatctgcaca cgacgaagct	1440
gacgcggatc gcccggcgcc tgtgccgtga gatcctgcgc ccgtggcacg ctgcgcggaa	1500
ccccctacctg cccatcaaca gcgcggccat caaggccgag tgcacggcgc ggctgcccga	1560
agcctcccag agcccgtgg tgctgaagca ggcgttacgc aagccgttgg aagccgtgt	1620
tcggtatctt gagaccacc cccgcccccc caagcctgac cccgtaaaaa gcgtgtccag	1680
cgtgctcagc agcctgacgc ccgccaagg ggccccgtc atcaacaacg gtcffffcac	1740
catcctggc aagcgcagct acgagcagca caacgggtg gacggcaaca tgaagaagcg	1800
cctttatgt cccagtaggg gtctggcaaa ccacggacag accaggcaca tgggaccaag	1860
ccggaacctc ctgctcaacg ggaagtccta ccccacccaa gtgcgcctga tccggggggg	1920
ctccctgccc ccagtcaagc ggcggcgat gaactggatc gacgccccgg gtgacgtgtt	1980
ctacatgccc aaagaggaga ccaggaagat ccgcaagctg ctctcatcct cgaaaccaa	2040
gcgtgctgcc cgccggccct acaagcccat cgcctgcgc cagagccagg ccctgcccgc	2100
gcggccacccg ccacctgcgc ccgtcaacga cgagccatc gtcacgtgagg actagggcc	2160

gcccccacct	gcggccgccc	cccgccccctc	gcccggccac	acggccccctt	cccagccagc	2220
ccgcccggccg	cccctcagtt	tggtagtgcc	ccaccccccgg	ccctcacctg	aagagaaacg	2280
cgttccttgg	cggacactgg	gggaggagag	gaagaagcgc	ggctaactta	ttccgagaat	2340
gccgaggagt	tgtcgaaaa	agctttgtgt	ttacttttg	gctggagcgg	agatgaggggg	2400
ccaccccggt	cccctgtgct	gcggggcctt	ttgcccggag	gccggggcct	aaggtttgt	2460
tgtgttctgt	tgaaggtgcc	attttaaatt	ttatTTTtat	tactttttt	gtagatgaac	2520
ttgagctctg	taacttacac	ctggaatgtt	aggatcgtgc	ggccgcggcc	ggccgagctg	2580
cctggcgggg	ttggcccttg	tctttcaag	taattttcat	attaaacaaa	aacaaagaaaa	2640
aaaaatctta	taaaaaggaa	aa				2662

<210> 3
<211> 668
<212> PRT
<213> Human

<400> 3

Met	Ala	Ala	Asn	Met	Tyr	Arg	Val	Gly	Asp	Tyr	Val	Tyr	Phe	Glu	Asn
1				5				10				15			

Ser	Ser	Ser	Asn	Pro	Tyr	Leu	Val	Arg	Arg	Ile	Glu	Glu	Leu	Asn	Lys
				20			25				30				

Thr	Ala	Asn	Gly	Asn	Val	Glu	Ala	Lys	Val	Val	Cys	Leu	Phe	Arg	Arg
				35			40				45				

Arg	Asp	Ile	Ser	Ser	Leu	Asn	Ser	Leu	Ala	Asp	Ser	Asn	Ala	Arg
	50				55				60					

Glu	Phe	Glu	Glu	Glu	Ser	Lys	Gln	Pro	Gly	Val	Ser	Glu	Gln	Gln	Arg
65					70			75			80				

His	Gln	Leu	Lys	His	Arg	Glu	Leu	Phe	Leu	Ser	Arg	Gln	Phe	Glu	Ser
				85			90				95				

Leu	Pro	Ala	Thr	His	Ile	Arg	Gly	Lys	Cys	Ser	Val	Thr	Leu	Leu	Asn
				100			105				110				

Glu	Thr	Asp	Ile	Leu	Ser	Gln	Tyr	Leu	Glu	Lys	Glu	Asp	Cys	Phe	Phe
				115			120				125				

Tyr Ser Leu Val Phe Asp Pro Val Gln Lys Thr Leu Leu Ala Asp Gln
130 135 140

Gly Glu Ile Arg Val Gly Cys Lys Tyr Gln Ala Glu Ile Pro Asp Arg
145 150 155 160

Leu Val Glu Gly Glu Ser Asp Asn Arg Asn Gln Gln Lys Met Glu Met
165 170 175

Lys Val Trp Asp Pro Asp Asn Pro Leu Thr Asp Arg Gln Ile Asp Gln
180 185 190

Phe Leu Val Val Ala Arg Ala Val Gly Thr Phe Ala Arg Ala Leu Asp
195 200 205

Cys Ser Ser Ser Ile Arg Gln Pro Ser Leu His Met Ser Ala Ala Ala
210 215 220

Ala Ser Arg Asp Ile Thr Leu Phe His Ala Met Asp Thr Leu Gln Arg
225 230 235 240

Asn Gly Tyr Asp Leu Ala Lys Ala Met Ser Thr Leu Val Pro Gln Gly
245 250 255

Gly Pro Val Leu Cys Arg Asp Glu Met Glu Glu Trp Ser Ala Ser Glu
260 265 270

Ala Met Leu Phe Glu Glu Ala Leu Glu Lys Tyr Gly Lys Asp Phe Asn
275 280 285

Asp Ile Arg Gln Asp Phe Leu Pro Trp Lys Ser Leu Ala Ser Ile Val
290 295 300

Gln Phe Tyr Tyr Met Trp Lys Thr Thr Asp Arg Tyr Ile Gln Gln Lys
305 310 315 320

Arg Leu Lys Ala Ala Glu Ala Asp Ser Lys Leu Lys Gln Val Tyr Ile
325 330 335

Pro Thr Tyr Thr Lys Pro Asn Pro Asn Gln Ile Ile Ser Val Gly Ser
340 345 350

Lys Pro Gly Met Asn Gly Ala Gly Phe Gln Lys Gly Leu Thr Cys Glu
355 360 365

Ser Cys His Thr Thr Gln Ser Ala Gln Trp Tyr Ala Trp Gly Pro Pro
370 375 380

Asn Met Gln Cys Arg Leu Cys Ala Ser Cys Trp Ile Tyr Trp Lys Lys
385 390 395 400

Tyr Gly Gly Leu Lys Thr Pro Thr Gln Leu Glu Gly Ala Thr Arg Gly
405 410 415

Thr Thr Glu Pro His Ser Arg Gly His Leu Ser Arg Pro Glu Ala Gln
420 425 430

Ser Leu Ser Pro Tyr Thr Thr Ser Ala Asn Arg Ala Lys Leu Leu Ala
435 440 445

Lys Asn Arg Gln Thr Phe Leu Leu Gln Thr Thr Lys Leu Thr Arg Leu
450 455 460

Ala Arg Arg Met Cys Arg Asp Leu Leu Gln Pro Arg Arg Ala Ala Arg
465 470 475 480

Arg Pro Tyr Ala Pro Ile Asn Ala Asn Ala Ile Lys Ala Glu Cys Ser
485 490 495

Ile Arg Leu Pro Lys Ala Ala Lys Thr Pro Leu Lys Ile His Pro Leu
500 505 510

Val Arg Leu Pro Leu Ala Thr Ile Val Lys Asp Leu Val Ala Gln Ala
515 520 525

Pro Leu Lys Pro Lys Thr Pro Arg Gly Thr Lys Thr Pro Ile Asn Arg
530 535 540

Asn Gln Leu Ser Gln Asn Arg Gly Leu Gly Gly Ile Met Val Lys Arg
545 550 555 560

Ala Tyr Glu Thr Met Ala Gly Ala Gly Val Pro Phe Ser Ala Asn Gly
565 570 575

Arg Pro Leu Ala Ser Gly Ile Arg Ser Ser Ser Gln Pro Ala Ala Lys
580 585 590

Arg Gln Lys Leu Asn Pro Ala Asp Ala Pro Asn Pro Val Val Phe Val
595 600 605

Ala Thr Lys Asp Thr Arg Ala Leu Arg Lys Ala Leu Thr His Leu Glu
610 615 620

Met Arg Arg Ala Ala Arg Arg Pro Asn Leu Pro Leu Lys Val Lys Pro
625 630 635 640

Thr Leu Ile Ala Val Arg Pro Pro Val Pro Leu Pro Ala Pro Ser His
645 650 655

Pro Ala Ser Thr Asn Glu Pro Ile Val Leu Glu Asp
660 665

<210> 4
<211> 3060
<212> DNA
<213> HUMAN

<400> 4
tccggaagga ggcgaacctt gaggcgggcc cggcaagcct tccctgcggc cggcagagcc 60
caacgactag tggactccg cggggggcggg gtagcttggaa gcctggctct ggcctggcag 120
gagccgagct tgcccgaa gaagccgagc ggacgggggc cagcctcagc gtcccgggag 180
tgaggcgata gctgcggcgg cgacagcgcg ggccggatg aaccgcgacg gctgaggcag 240
cggaggtgcc ggctgcgcgg gccccagtga gactccctcg aacgcggcagc ccaccgttcg 300
gggcttgcc tcgagccgag ccctgccccc gcgagcctcc cggacccctt tgtgcggccg 360
gaggcggcgg cgggaacggc catggcggcc aacatgtacc ggtgggaga ttacgtctat 420
tttggaaact cttccagcaa tccttacctg gtagacgga ttgaggagct caacaagact 480
gcaaattggaa atgtggaggc aaagggttgc tgtctttcc ggcgcaggaa catttctagt 540
agcctaaca gcctggctga tagtaatgcc agggagttt aagaggaatc aaagcagcca 600
ggggtgtctg agcagcagcg ccatcaactg aagcacccggg aacttttct ttctcggcaa 660
tttgaatcat taccagccac ccacatacgg gggaaatgca gtgtgaccct cttgaatgag 720
acagatatct tgagccagta cctggaaaag gaggactgct tttttactc actgggtttt 780
gaccccggtgc agaagacact tctcgctgat cagggcgaga ttagagttgg ttgcaaatac 840

caagctgaga tcccagatcg cctagtagag ggagaatctg ataatcgaa ccagcagaag	900
atggagatga aggtctggga cccagacaac cctctcacag accggcagat cgaccagttt	960
cttgtggtgg cccgagctgt gggAACCTTT gcaagagccc tagattgttag cagctccatt	1020
cggcagccaa gcttcacat gagtgcagct gctgcctccc gagatatcac tctgtttcac	1080
gccatggata ccttgcaaag gaacggctac gacctggcta aggccatgtc gaccctggta	1140
ccccagggag gcccggtgct gtgtcggat gagatggagg aatggtcagc ctcagaggcc	1200
atgctatttgcaggagccct agagaagtat gggaaaggact tcaatgatat tcgcccaggat	1260
tttctaccct ggaagtcact tgccagcata gtccagttt attacatgtg gaaaaccaca	1320
gaccggata ttcagcagaa aaggttgaaa gctgctgaag cagacagcaa actgaaacag	1380
gtctacattc ccacctacac taagccaaac cctaaccaga tcatttctgt gggttcaaaa	1440
cctggcatga atggggctgg atttcagaag ggcctgactt gtgagagttg ccacaccaca	1500
cagtctgctc agtggatgc ctggggccca cctaacatgc agtggccct ctgtgcttcc	1560
tgttggatct actggaagaa gtatgggggatctgaagaccc caactcagct tgagggggcc	1620
actcggggca ccacggagcc acactcaagg ggtcatttccat ccagacctga agctcaaagt	1680
ctctctcctt acacaaccag cgccaaacagg gccaaagctac tggctaagaa cagacaaact	1740
ttcctgcttc agaccacaaa gctgaccctgtt cttgccagac gcatgtgcag ggacctatta	1800
cagccaaaggaa gggccgcccc acggcatttat gtcctatca atgccaatgc catcaaagca	1860
gagtgctcca ttgcacttcc taaggccgccc aagactccat tgaagattca ccctctggtg	1920
cggctgcccc tggcaactat cgtcaaagat ctggggccca aggccacccct gaaaccaaaaa	1980
acacccctgggtt gtaccaagac accgatcaac agaaaccagc tgtcccagaa ccggggactg	2040
gggggcatta tggtaaacgc ggcctatgag actatggcag gggcaggggt tcctttctct	2100
gccaaatggaa ggcctctggc ttcaaggattt cgttcaagct cacagccagc agccaagcgt	2160
cagaaactaa acccagctga tgcccccaat cctgtgggtgt ttgtggccac aaaggatacc	2220
agggccctac ggaaggctct gacccatctg gaaatgcggc gagctgctcg ccgacccaaac	2280
ttgccccctga aggtgaagcc aacgctgatt gcagtgcggc cccctgtccc tctacctgca	2340
ccctcacatc ctgcccacac caatgagcctt attgtccctgg aggactgagc acctgtgggg	2400
aaggggaggtg ggctgagagg tagagggtgg atgcccaggg cacccaaacc tccctccct	2460
ttcgtgtcga agggagtgag gagtgaattt aggaagagag caagtgagtg tgtgtccctg	2520

gaggggttgg	gcccctctg	gtgttaccac	ctcgagactt	gtctcatgcc	tccatgcttg	2580
ccgatggagg	acagactgca	ggaacttggc	ccatgtggga	acctagcctg	ttttgggggg	2640
taggaccac	agatgtctt	gacagtttg	gggggagggt	tttttaattt	tttaaaagtt	2700
ttgcctccct	ttgtgaaagg	ggatggggag	gggaagagta	aacagataac	aggtggtggt	2760
acctggttgg	gggagggggg	cgtgcactgc	catgtcttt	ttttttttt	ttttttttt	2820
tttcctaatt	gggggtttct	ctttctgtcc	ggtgtccgga	cttcctaatt	tggagtttga	2880
ggccccctaag	ctggcatcaa	ccccaggcca	cgctcgctct	ttcctccct	cccccccccc	2940
tctgcctttt	gtacgccagt	tctcagaaat	aaagatcttt	tgtccgtttt	tttaacctcg	3000
gattctgtaa	ttggttctta	tagtaacaaa	taaaaagctg	ttttcttcag	cttctcctgg	3060

<210> 5
<211> 718
<212> DNA
<213> HUMAN

<400> 5	tacatgtgga	aaactactga	cagatatgtg	caacagaaac	gtctaaaagc	agcagaagct	60
	gagagtaaac	tgaaacaagt	atatatccca	acctacaaac	caaatccaa	ccaaatatcc	120
	actagtaatg	ggaaggctgg	tgctgtgaat	ggagctgtgg	ggaccacgtt	ccagcctcag	180
	aatcctctct	tagggagagc	ctgtgagagc	tgctatgcta	cacagtctca	ccagtggtat	240
	tcttggggcc	cacctaataat	gcagtgtaga	ttatgtgcaa	tttggggct	ttattggaaa	300
	aaatatggag	gcttgaaaat	gcccacccag	tcagaagaag	agaagttatc	tcctagccca	360
	actacagagg	accctcgtgt	tagaagtcac	gtgtccgccc	aggccatgca	ggaaatgcca	420
	gtccgaaaca	ctgggagtcc	aaagtctgca	gtgaagaccc	gccaagctt	cttccttcat	480
	actacatatt	tcacaaaatt	tgctcgtcag	gtctgcaaaa	ataccctccg	gctgcggcag	540
	gcagcaagac	ggccgttgt	tgctattaat	tatgctgcca	ttagggcaga	atgtaagatg	600
	cttttaaatt	cttaacctta	tatgttgtgc	ttctgaccat	tttctttttt	cctcttttc	660
	ctttttttt	tgttgtttt	tttgcataaa	acataagttc	ttgtgtacaa	aaaaaaaa	718

<210> 6
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 6

Glu Asn Pro Glu Met Val Asp Leu Pro Glu Lys Leu Lys His Gln Leu
1 5 10 15

Arg

<210> 7
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<400> 7

Ile Asp Ala Pro Gly Asp Val Phe Tyr Met Pro Lys Glu Glu Thr Arg
1 5 10 15

Lys Ile Arg Lys
20