THERMODYNAMIQUE

$\Delta_r H^\circ$ et $\Delta_r S^\circ sont$ indépendantes de la température.

 $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$

On négligera le volume des solides et des liquides devant celui des gaz. On négligera la pression de vapeur saturante de l'eau

	CaC ₂ (s)	H ₂ O (1)	CaO(s)	C (s)	CO (g)	$C_2H_2(g)$	$Ca(OH)_2(s)$
$\Delta_{\rm f} { m H^{\circ}}_{ m 298}$ / kJ.mol ⁻¹	-62,7	-187,8	-634,9	0	-110,4	?	-986,1
S°/ J.K ⁻¹ .mol ⁻¹	70,2	69,9	39,7	5,7	197,8	200,6	76,1

Elément	Ca	С	0	Н
Masse molaire	40,1	12,0	16,0	1,0

Composé	$\mathrm{CO}_{2}\left(\mathrm{g}\right)$	$H_2O(g)$
Cp°/ J.K-1.mol-1	37,1	33,6

Le carbure de calcium est préparé par réaction du Coke sur la chaux vive suivant la réaction :

$$C \ a \ 0 \ (s) + 3 \ C \ (s)$$
 $C \ a \ C_2 \ (s) + C \ 0 \ (g)$ (1) $A_{1.298} = 461.8 \ kJ.mol^{-1}$

Question 1. Pour la réaction (1), $\sum_{i} v_{i,gaz} = ?$ (0,5 point)

réponse A	réponse B	réponse C	réponse D	réponse E
+ 4	+1	0	1	- 4

Question 2 Pour la réaction (1), $\Delta_R S_{1,298}^0 = ?$ (1 point)

réponse.A	réponse.B	réponse.C	réponse.D	réponse.E
211,2 J.mol ⁻¹ .K ⁻¹	-128 ,2 J.mol ¹ .K ⁻¹	211,2 J.mol ¹ .K ⁻¹	101,2 J.mol ⁻¹ .K ⁻¹	221,2 mol ⁻¹ .K ⁻¹

Question 3. Pour la réaction (1), $\Delta_R G_{1,298}^0 = ?$ (1 point)

réponse.A	réponse.B	réponse.C	réponse.D	réponse.E
+ 398,9 J.mol ⁻¹	+ 395,9 kJ.mol ⁻¹	+ 39,9 kJ.mol ⁻¹	+ 95,9 kJ.mol ⁻¹	+ 398,9 kJ.mol ⁻¹

Question 4. Choisir la bonne réponse. (1,0 points)

- (A) Une augmentation de température, à pression constante, déplacerait l'équilibre (1) dans le sens indirect
- (B) Une augmentation de pression, à température constante, déplacerait l'équilibre (1) dans le sens direct
- (C) L ajout d un gaz inerte, à température et pression constantes, déplacerait l équilibre (1) dans le sens direct.
- (D) L ajout d un gaz inerte, à température et volume constants, déplacerait l équilibre (1) dans le sens indirect.
- (E) L ajout d un gaz inerte, à température et volume constants, déplacerait l équilibre (1) dans le sens direct.

En spéléologie, le carbure de calcium sert à fabriquer l'acétylène C_2H_2 (g) par réaction <u>totale</u> avec 1 eau (2).

Question 5. Pour la réaction (2), 1 expression de K est (0,5 point)

réponse A	réponse B	réponse C	réponse D	réponse E
$ \frac{a_{CaC_{2}} \times (a_{H_{2}O})^{2}}{a_{C_{2}H_{2}} \times a_{Ca(OH)_{2}}} $	$\frac{n_{C_{2}H_{2}} \times n_{Ca(0H)_{2}}}{n_{CaC_{2}} \times (n_{H_{2}0})^{2}}$	$\left \frac{\mathbf{n}_{C_{1}H_{2}} \times \mathbf{n}_{tot}}{\left(\mathbf{n}_{H_{2}0}\right)^{2}} \times \left(\frac{\mathbf{p}}{\mathbf{p}_{tot}}\right)^{2} \right $	$\frac{n_{C_1H_2}}{R.T} \times \left(\frac{V}{P^0}\right)$	P c 1 H 2 P 0

Question 6. Pour la réaction (2), la variance vaut (0,5 point)

réponse A	réponse B	réponse C	réponse D	réponse E
0	1	2	3	4

Le réservoir d un spéléologue contient 320 g de carbure de calcium.

Question 7. Quelle est la masse d eau (minimale) que le spéléologue doit utiliser pour que tout le carbure de calcium réagisse ? (1 point)

réponse A	réponse B	réponse C	réponse D	réponse E
251,1 g	325,6 g	168,9 g	179,8 g	147,3 g

Question 8 . Quel volume d'acétylène, mesuré dans les conditions normales de température et de pression (P = 1 atm ; T = 0°C) peut-on former à partir des 320 g de carbure de calcium ? (*I point*)

réponse A	réponse B	réponse C	réponse D	réponse E
112 L	112 m ³	212 L	212 m ³	56 m ³

Question 9. Calculer l'enthalpie de référence de formation de C_2H_2 (g) : $\Delta_f H^0_{CaC_2,s,298}$ sachant que $\Delta_r H^0_{2,298} = 321,3$ kJ.mol⁻¹ (1 point)

réponse A	réponse B	réponse C	réponse D	réponse E
+ 226,5 kJ.mol ⁻¹	256,7 kJ.mol ¹	+ 256,7 kJ.mol ⁻¹	- 226,5 kJ.mol ⁻¹	+ 56,3 kJ.mol ⁻¹

L acétylène fabriqué par réaction du carbure de calcium avec l eau est enflammé au niveau du casque du spéléologue par une étincelle.

$$\Delta_{R}H_{3.298}^{0} = -461.8 \text{ kJ.mol}^{-1}$$

Question 10 : Calculer la quantité de chaleur mise en jeu lors de la réaction de combustion de 1 mol d acétylène avec 2,5 mol de dioxygène sous pression constante.(0,5 point)

réponse A	réponse B	réponse C	réponse D	réponse E
230,9 kJ	256,7 kJ.mol ¹	+ 256,7 kJ.mol ⁻¹	+ 226,7 kJ.mol ⁻¹	+ 556,3 kJ.mol ⁻¹

Question 11 : L énergie dégagée par la réaction de combustion sert à chauffer les produits formés par la réaction, d une température $T_F = 298 \text{ K}$ jusqu à une température T_F (température de flamme ou finale). Calculer T_F . (on supposera que l énergie dégagée par la réaction de combustion est entièrement transférée aux produits). (2,0 points)

réponse A	réponse B	réponse C	réponse D	réponse E
2440 K	244 K	3450 K	1580 K	1220 K

ATOMES ET MOLECULES

Effets d écran de Slater

1s	0,3										
2s 2p	0,85	0,35									
3s 3p	1	0,85	0,35								
3d	1	1	1	0,35							
4s 4p	1	1	0,85	0,85	0,35						
4d	1	1	1	1	1	0,35					
4f	1	1	1	1	1	1	0,35				
5s 5p	1	1	1	1	0,85	0,85	0,85	0,35			
5d	1	1	1	1	1	1	1	1	0,35		
5f	1	1	1	1	1	1	1	1	1	0,35	
6s 6p	1	1	1	1	1	1	1	0,85	0,85	0,85	0,35
	1s	2s 2p	3s 3p	3d	4s 4p	4d	4f	5s 5p	5d	5f	6s 6p

Question 12: (0,5 point)

Soit la configuration électronique suivante : (Ar) 3d¹0 4s² 4p³ Quelle est l'affirmation exacte ?

Proposition A: Il s'agit d un chalcogène.

Proposition B: Il s'agit de l'atome neutre de Germanium Ge

Proposition C: Il peut s'agir de l'ion Se²⁺ **Proposition D**: Il s'agit de l'ion Se⁻

Proposition E: Il s'agit de l'atome neutre d'arsenic As

Question 13: La charge nucléaire effective Z* ressentie par un électron de la couche de valence de l'atome neutre de calcium Ca est de : (1 point)

Proposition A: Z*= 1,75 Proposition B: Z*= 2,85 Proposition C: Z*= 3,65 Proposition D: Z*= 4,3 Proposition E: Z*= 5,85

Question 14: (0,5 point)

Ouelle est l'affirmation exacte?

Proposition A: Le rayon atomique et l'affinité électronique varient dans le même sens.

Proposition B: Le rayon atomique et l'électronégativité varient dans le même sens.

Proposition C: L'énergie de quatrième ionisation d'un élément A correspond à l'énergie de la réaction $A^{2+}(g) = A^{3+}(g) + 1 e^{-}(g)$

Proposition D: La charge nucléaire effective Z* augmente de gauche à droite sur une ligne de la classification périodique.

Proposition E: Le rayon d'un cation A⁺ est toujours plus élevé que le rayon de covalence de son atome neutre d'origine A.

L'Aluminium Al a une masse molaire atomique de 26,98 g.mol⁻¹, cet élément ne possède qu'un seul isotope stable.

Question 15: Quelle est l'affirmation exacte? (0,5 point)

Proposition A: L'isotope ²⁸Al est un émetteur radioactif de type β^+ . **Proposition B**: L'isotope ²⁹Al est l'isotope stable de l'aluminium.

Proposition C: L'isotope ²⁶Al est un émetteur en modulation de fréquence.

Proposition D: L'isotope stable de l'aluminium possède 15 protons dans son noyau. **Proposition E**: L'isotope stable de l'aluminium possède 14 neutrons dans son noyau.

Question 16 : L énergie de troisième ionisation de l aluminium est de (2 points)

Proposition A: 5 eV **Proposition B**: 11 eV **Proposition C**: 28 eV **Proposition D**: 136 eV **Proposition E**: 958 eV

Question 17: Quelle est 1 affirmation exacte? (0,5 point)

Proposition A: L aluminium est un alcalinoterreux

Proposition B: L ion le plus stable de l aluminium est A²t. **Proposition C**: L aluminium est un élément de transition.

Proposition D: Dans son état fondamental 1 atome d aluminium possède trois électrons

célibataires.

Proposition E: L ion Al^{*+} possède la structure électronique d un gaz rare.

Question 18: Quelle est 1 affirmation exacte? (0,5 point)

Proposition A : L aluminium est un atome plus électronégatif que le gallium Ga.

Ga.

Proposition D: L aluminium est un atome plus électronégatif que le bore B.

Proposition E: L aluminium et le soufre forment un composé ionique de formule A\subsetsS2

Soient les molécules ou ions suivants: AlCl₃ SO₄²· ICl₄· H₃O⁺ PCl₃

Question 19 : (1 point)

Parmi les schémas de Lewis suivants quel est le seul correctement écrit :

Question 20 : (0,5 point)

Quelle est l affirmation exacte

Proposition A: PCl₃ possède une géométrie de type AX₃ **Proposition B**: H₃O⁺ possède une géométrie de type AX₃ **Proposition C**: AlCl₃ possède une géométrie de type AX₃ **Proposition D**: ICl₄⁻ possède une géométrie de type AX₄ **Proposition E**: SO₄²⁻ possède une géométrie de type AX₄E₂

Question 21 : (0,5 point)

Ouelle est l affirmation exacte

Proposition A: Dans PCl₃1 atome de phosphore porte une charge formelle positive

Proposition B: Dans H₃O⁺ l atome d oxygène est hybridé s²p

Proposition C: Dans AlCl₃ les angles **ClAlCl** valent approximativement 109°.

Proposition D: Dans ICl_4 : 1 atome d iode possède 2 doublets libres **Proposition E**: Dans SO_4 ²⁻ 1 atome de soufre possède un doublet libre

Molécule CN

Modèle de Lewis

Question 22: Quelle est 1 affirmation exacte? (0,5 point)

Proposition A : Le schéma E est une représentation possible de CN.
Proposition B : Le schéma F est une représentation possible de CN.
Proposition C : CN est intermédiaire entre les représentations B et C
Proposition D : CN est intermédiaire entre les représentations A et C
Proposition A : CN est intermédiaire entre les représentations D et E

Modèle C.L.O.A-O.M:

Combinaison Linéaire d'Orbitales Atomiques - Orbitales Moléculaires

Question 23: Dans le modèle C.L.O.A-O.M, l'indice de liaison pour CN est de: (1,5 point)

Proposition A: 1**Proposition B**: 1,5**Proposition C**: 2**Proposition D**: 2,5 **Proposition E** : 3

Question 24 : Le modèle C.L.O.A-O.M, prévoit que : (0,5 point)

Proposition A: Dans l anion CN la longueur de liaison est plus élevée que dans CN. **Proposition B**: Dans le cation CN⁺ la longueur de liaison est plus élevée que dans CN.

Proposition C: Le cation CN⁺ est plus stable que CN. **Proposition D**: L anion CN est moins stable que CN.

Proposition E: Dans CN les électrons peuvent facilement se transformer en isotopes

radioactifs.