Introduction to Deep Learning

H M Sabbir Ahmad
Phd, Systems Engineering.
09/12/2024

Multi-Layer Perception Issue

- Can recognize patterns in data
 - E.g. digits
 - Or any other vector data

A new problem

- Does this signal contain the word "Welcome"?
- Compose an MLP for this problem.
 - Assuming all recordings are exactly the same length..

Finding a Welcome

• Trivial solution: Train an MLP for the entire recording

Finding a Welcome

- Problem with trivial solution: Network that finds a "welcome" in the top recording will not find it in the lower one
 - Unless trained with both
 - Will require a very large network and a large amount of training data to cover every case

Finding a Welcome

- Need a *simple* network that will fire regardless of the location of "Welcome"
 - and not fire when there is none

Flowers

• Is there a flower in any of these images

A problem

• Will an MLP that recognizes the left image as a flower also recognize the one on the right as a flower?

A problem

 Need a network that will "fire" regardless of the precise location of the target object

> BOSTON UNIVERSITY

The need for *shift invariance*

- In many problems the *location* of a pattern is not important
 - Only the presence of the pattern
- Conventional MLPs are sensitive to the location of the pattern
 - Moving it by one component results in an entirely different input that the MLP won't recognize
- Requirement: Network must be *shift invariant*

BOSTON UNIVERSITY

11

The 2-d analogue: Does this picture have a flower?

- *Scan* for the desired object
 - "Look" for the target object at each position

Solution: Scan

- *Scan* for the desired object
- At each location, the entire region is sent

through the MLP Boston University School/college name here

Advantages of convolutions

Drastically reduces the parameter count

 256x256 grayscale image ⇒ 256x256 single-channel hidden layer: 4 billion parameters in fully connected network to 9 parameters in 3x3 convolution

Captures (some) "natural" invariances

 Shifting input image one pixel to the right shifts creates a hidden shifts the hidden unit "image"

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

32x32x3 image

32x32x3 image

Boston University School/college name here

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Boston University School/college name here

activation map

Slide credit: Fei-Fei Li, Andrej Karpathy and Justin Johnson

consider a second, green filter

activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps: activation maps

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Slide credit: Fei-Fei Li, Andrej Karpathy and Justin Johnson

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so $32x32x10$

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

Convolutions in image processing

Convolutions (typically with *prespecified* filters) are a common operation in many computer vision applications: convolution networks just move to *learned* filters

Original image x

Gaussian blur

Image gradient

$$x * \begin{bmatrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 4 & 4 & 1 \end{bmatrix} / 273 \qquad \left(\left(x * \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \right)^{2} + \left(x * \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \right)^{2} \right)^{\frac{1}{2}}$$

Preview

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

Z ₁₁	Z ₁₂	Z ₁₃	Z ₁₄	Z ₁₅
Z ₂₁	Z ₂₂	Z ₂₃	Z ₂₄	Z ₂₅
Z ₃₁	Z ₃₂	Z ₃₃	Z ₃₄	Z ₃₅
Z ₄₁	Z ₄₂	Z ₄₃	Z ₄₄	Z ₄₅
Z ₅₁	Z ₅₂	Z ₅₃	Z ₅₄	Z ₅₅

	W ₁₁	W ₁₂	W ₁₃
*	W ₂₁	W ₂₂	W ₂₃
	W ₃₁	W ₃₂	W ₃₃

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

Z ₁₁	Z ₁₂	Z ₁₃	Z ₁₄	Z ₁₅
z ₂₁	Z ₂₂	Z ₂₃	Z ₂₄	Z ₂₅
<i>z</i> ₃₁	Z ₃₂	Z ₃₃	Z ₃₄	Z 35
<i>z</i> ₄₁	Z ₄₂	Z 43	Z ₄₄	Z 45
<i>z</i> ₅₁	Z 52	Z 53	Z 54	Z 55

$$y_{11} = z_{11}w_{11} + z_{12}w_{12} + z_{13}w_{13} + z_{21}w_{21} + \dots$$

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

<i>z</i> ₁₁	<i>z</i> ₁₂	Z ₁₃	Z ₁₄	Z ₁₅
z ₂₁	Z ₂₂	Z ₂₃	Z ₂₄	Z 25
z ₃₁	Z ₃₂	Z 33	Z ₃₄	Z 35
Z ₄₁	Z ₄₂	Z 43	Z ₄₄	Z 45
<i>z</i> ₅₁	Z 52	Z 53	Z 54	Z 55

$$y_{12} = z_{12}w_{11} + z_{13}w_{12} + z_{14}w_{13} + z_{22}w_{21} + \dots$$

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

	z ₁₁	<i>Z</i> ₁₂	Z ₁₃	Z ₁₄	<i>Z</i> ₁₅
	z ₂₁	Z ₂₂	Z ₂₃	Z ₂₄	Z ₂₅
	z ₃₁	Z ₃₂	Z ₃₃	Z ₃₄	Z 35
	Z 41	Z ₄₂	Z 43	Z ₄₄	Z 45
Boston Univers	ity^ZS åho	ol /c5 21e(je ₹√5 33ne	heT564	Z 55

 $y_{13} = z_{13}w_{11} + z_{14}w_{12} + z_{15}w_{13} + z_{23}w_{21} + \dots$

BOSTON UNIVERSITY

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

z ₁₁	Z ₁₂	<i>z</i> ₁₃	Z ₁₄	<i>Z</i> ₁₅
z ₂₁	Z ₂₂	Z ₂₃	z ₂₄	Z ₂₅
z ₃₁	Z ₃₂	Z ₃₃	Z 34	Z 35
Z ₄₁	Z ₄₂	Z 43	Z 44	Z 45
<i>z</i> ₅₁	Z ₅₂	Z 53	Z 54	Z 55

		<u> </u>		. <i>-</i> .			
	<i>W</i> ₁₁	<i>W</i> ₁₂	<i>W</i> ₁₃		<i>y</i> ₁₁	y ₁₂	<i>y</i> ₁₃
*	W ₂₁	W ₂₂	W ₂₃	=	y ₂₁	y 22	<i>y</i> ₂₃
	W ₃₁	W ₃₂	W ₃₃		<i>y</i> ₃₁	y ₃₂	33

$$y_{21} = z_{21}w_{11} + z_{22}w_{12} + z_{23}w_{13} + z_{31}w_{21} + \dots$$

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

Z ₁₁	Z ₁₂	<i>z</i> ₁₃	Z ₁₄	Z ₁₅
z ₂₁	Z ₂₂	Z ₂₃	Z ₂₄	Z ₂₅
z ₃₁	Z ₃₂	Z ₃₃	Z ₃₄	Z 35
Z ₄₁	Z ₄₂	Z 43	Z ₄₄	Z 45
<i>Z</i> ₅₁	Z ₅₂	Z 53	Z 54	Z 55

<i>w</i> ₁₁	<i>W</i> ₁₂	<i>W</i> ₁₃		<i>y</i> ₁₁	<i>y</i> ₁₂	y ₁₃
<i>W</i> ₂₁	W ₂₂	W ₂₃	=	y 21	y 22	y 23
<i>W</i> ₃₁	W ₃₂	W ₃₃		y ₃₁	y ₃₂	33

$$y_{22} = z_{22}w_{11} + z_{23}w_{12} + z_{24}w_{13} + z_{32}w_{21} + \dots$$

- Convolutions are a basic primitive in many computer vision and image processing algorithms
- Idea is to "slide" the weights $h \times h$ weight m (called a filter, with kernel size h) over the image to produce a new image, written y = x * m

z ₁₁	<i>z</i> ₁₂	z ₁₃	Z ₁₄	Z ₁₅
z ₂₁	Z 22	Z ₂₃	Z ₂₄	Z 25
z ₃₁	Z ₃₂	Z 33	Z ₃₄	Z 35
Z ₄₁	Z ₄₂	Z 43	Z ₄₄	Z 45
<i>z</i> ₅₁	Z 52	Z 53	Z 54	Z 55

$$y_{23} = z_{23}w_{11} + z_{24}w_{12} + z_{25}w_{13} + z_{33}w_{21} + \dots$$

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Fully Connected Layer (FC layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Case Study: ResNet

[He et al., 2015]

Slide credit: Fei-Fei Li, Andrej Karpathy and Justin Johnson

CIFAR-10 experiments

The End

Thanks for your attention.

I would be glad if you have any question.

