第 3 节 抛物线小题的综合运算 (★★★)

内容提要

本节主要涉及三类抛物线有关的小题:

- 1. 简单的运算求值:一些抛物线小题中,我们可以联立直线和抛物线去求交点坐标,用坐标参与运算,也可以结合图形的几何特征来解决问题.
- 2. 抛物线上的动点问题:设点 P 在抛物线 $y^2 = 2px(p > 0)$ 上运动,点 P 的坐标常用两种设法.
- ①设 $P(x_0,y_0)$,这种设法引入了2个变量,没有体现点P在抛物线上,可用 $y_0^2 = 2px_0$ 建立变量间的关系.
- ②设 $P(\frac{y_0^2}{2p},y_0)$,这种设法只引入 1 个变量,已经体现了点 P 在抛物线上,单动点问题用此设法往往比较方便.
- 3. 设而不求韦达定理:设直线 l 与抛物线 C 交于 A ,B 两点,由此产生的诸多问题中,需要将直线 l 与抛物线 C 的方程联立,但联立后我们往往不去解方程组,求交点 A ,B 的坐标,而是消去 y (或 x)整理得出关于 x (或 y)的一元二次方程,结合韦达定理来计算一些目标量,如数量积、斜率、弦长、面积等.

典型例题

类型 I: 简单的运算求值问题

【例 1】(2020・新课标III卷)设 O 为坐标原点,直线 x=2 与抛物线 $C: y^2 = 2px(p>0)$ 交于 D,E 两点,若 $OD \perp OE$,则 C 的焦点坐标为()

(A)
$$(\frac{1}{4},0)$$
 (B) $(\frac{1}{2},0)$ (C) $(1,0)$ (D) $(2,0)$

解法 1:如图, $OD \perp OE$ 可用斜率翻译,求斜率需要 D,E 坐标,联立直线 x = 2 和抛物线可求得坐标,

联立
$$\begin{cases} x = 2 \\ y^2 = 2px \end{cases}$$
 解得: $y = \pm 2\sqrt{p}$, 所以 $D(2, 2\sqrt{p})$, $E(2, -2\sqrt{p})$,

因为 $OD \perp OE$,所以 $k_{OD} \cdot k_{OE} = \frac{2\sqrt{p}}{2} \times \frac{-2\sqrt{p}}{2} = -1$,解得: p = 1,故C的焦点为 $(\frac{1}{2},0)$.

解法 2: 如图,观察发现由 ΔDOE 的几何特征可分析出点 D 坐标,代入抛物线方程也能求 p,设直线 x=2 与 x 轴交于点 T,则 |OT|=2,由题意, $OD \perp OE$,

结合对称性可得 ΔDOE 为等腰直角三角形, ΔDOT 也为等腰直角三角形,所以 |DT| = |OT| = 2,

从而点 D 的坐标为(2,2),代入 $y^2=2px$ 得: $2^2=2p\cdot 2$,解得: p=1,故 C 的焦点为($\frac{1}{2}$,0).

答案: B

【**反思**】在简单的抛物线求值问题中,用直线的方程、点的坐标等直接翻译已知条件可以解决问题,但若能结合条件的几何特征分析,往往计算量更小.

【例 2】(2021・新高考 I 卷) 已知 O 为坐标原点,抛物线 $C: y^2 = 2px (p > 0)$ 的焦点为 F,P 为 C 上一点, PF 与 PF 知垂直,PF 知 PF 为 PF 和垂直,PF 和 PF 为 PF 和 PF

解法 1: 如图,由 $PF \perp x$ 轴和 |FQ| = 6可分别求出 P,Q 的坐标,再翻译 $PQ \perp OP$ 即可建立方程求 p,

由题意,
$$F(\frac{p}{2},0)$$
, 将 $x = \frac{p}{2}$ 代入 $y^2 = 2px$ 解得: $y = \pm p$, 不妨设 $P(\frac{p}{2},p)$, $|FQ| = 6 \Rightarrow Q(\frac{p}{2} + 6,0)$,

因为
$$PQ \perp OP$$
,所以 $k_{OP} \cdot k_{PQ} = \frac{p}{\frac{p}{2}} \cdot \frac{p}{\frac{p}{2} - (\frac{p}{2} + 6)} = -1$,解得: $p = 3$,故 C 的准线方程为 $x = -\frac{3}{2}$.

解法 2:如图,|OF|,|PF|都好求,|FQ|又已知,可直接抓住 $\angle POF = \angle FPQ$ 建立方程求解 p,

由题意,
$$F(\frac{p}{2},0)$$
,将 $x=\frac{p}{2}$ 代入 $y^2=2px$ 解得: $y=\pm p$,所以 $|PF|=p$,

因为 $PQ \perp OP$, $PF \perp OQ$,所以 $\angle POF + \angle OPF = \angle FPQ + \angle OPF = 90^{\circ}$,故 $\angle POF = \angle FPQ$,

所以
$$\tan \angle POF = \tan \angle FPQ$$
 ,从而 $\frac{|PF|}{|OF|} = \frac{|FQ|}{|PF|}$,即 $\frac{p}{\frac{p}{2}} = \frac{6}{p}$,解得: $p = 3$,故 C 的准线方程为 $x = -\frac{3}{2}$.

答案: $x = -\frac{3}{2}$

《一数•高考数学核心方法》

类型Ⅱ: 动点类问题

【例 3】已知 A 是抛物线 $y = x^2$ 上的点,点 B(0,2),则 AB 的最小值为()

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{7}{4}$ (D) $\frac{\sqrt{7}}{2}$

解析: A 是抛物线上的动点,可根据其方程设单变量形式的坐标,用于计算 |AB|,

曲题意,可设
$$A(x_0, x_0^2)$$
,则 $|AB| = \sqrt{(x_0 - 0)^2 + (x_0^2 - 2)^2} = \sqrt{x_0^4 - 3x_0^2 + 4} = \sqrt{(x_0^2 - \frac{3}{2})^2 + \frac{7}{4}}$,

所以当
$$x_0 = \pm \frac{\sqrt{6}}{2}$$
时, $|AB|$ 取得最小值 $\frac{\sqrt{7}}{2}$.

答案: D

【**反思**】对于抛物线上的动点问题,可先设动点坐标(设法参考内容提要),并用该坐标计算题目中求最值的量,再借助函数、不等式等方法来求解最值.

【变式】抛物线 $y^2 = 2px(p > 0)$ 上任意一点 P 到点 M(5,0) 的距离的最小值为 4,则 p 的值为_____.

解析: 若将点 P 的坐标设为 $P(\frac{y_0^2}{2n}, y_0)$, 则求得的 |PM| 的结果较复杂,于是设双变量的形式,

设
$$P(x_0, y_0)$$
,则 $|PM| = \sqrt{(x_0 - 5)^2 + (y_0 - 0)^2} = \sqrt{x_0^2 - 10x_0 + 25 + y_0^2}$ ①,

有 x_0 和 y_0 两个变量,可利用抛物线方程来消元,因为点P在抛物线上,所以 $y_0^2 = 2px_0$,

代入式①入可得
$$|PM| = \sqrt{x_0^2 - 10x_0 + 25 + 2px_0} = \sqrt{x_0^2 - (10 - 2p)x_0 + 25}$$
, $x_0 \ge 0$,

设
$$f(x) = x^2 - (10 - 2p)x + 25(x \ge 0)$$
,则 $|PM| = \sqrt{f(x)}$,

由于p是未知量,所以求f(x)的最小值需讨论对称轴x=5-p和区间 $[0,+\infty)$ 的位置关系,

当
$$5-p \ge 0$$
 时, $0 ,如图 1, $f(x)_{min} = f(5-p) = (5-p)^2 - (10-2p)(5-p) + 25 = 25 - (5-p)^2$,$

因为
$$|PM|_{min} = 4$$
,所以 $f(x)_{min} = 16$,令 $25 - (5 - p)^2 = 16$,解得: $p = 2$ 或 8(不满足 $0 ,舍去);$

当 5-p<0 时, p>5 ,如图 2, $f(x)_{\min}=f(0)=25$,所以 $|PM|_{\min}=5$,不合题意;

综上所述,p的值为 2.

答案: 2

【例 4】设 O 为坐标原点,点 A(0,4),动点 P 在抛物线 $x^2 = 4y$ 上,且位于第二象限,M 是线段 PA 的中点, 则直线 OM 的斜率的取值范围是()

(A)
$$(2,+\infty)$$
 (B) $[2,+\infty)$ (C) $(-\infty,-2)$ (D) $(-\infty,-2]$

(B)
$$[2, +\infty)$$

(C)
$$(-\infty, -2)$$

(D)
$$(-\infty - 2)^{-1}$$

解法 1: 点 P 在抛物线上运动,可将其坐标设为单变量的形式,由题意,可设 $P(a, \frac{a^2}{4})$,其中 a < 0,

因为
$$M$$
是 PA 中点,所以 $M(\frac{a}{2},\frac{a^2}{8}+2)$,故 $k_{OM} = \frac{\frac{a^2}{8}+2}{\frac{a}{2}} = \frac{a^2+16}{4a} = \frac{1}{4}(a+\frac{16}{a})$,

虽然a和 $\frac{16}{a}$ 积为定值,但这两项均为负,不能直接用均值不等式,可先添负号,化负为正,

所以
$$k_{OM} = \frac{1}{4}(a + \frac{16}{a}) = -\frac{1}{4}[(-a) + \frac{16}{-a}] \le -\frac{1}{4} \times 2\sqrt{(-a) \cdot \frac{16}{-a}} = -2$$

当且仅当 $-a = \frac{16}{2}$,即 a = -4 时取等号,所以 k_{OM} 的取值范围是 $(-\infty, -2]$.

解法 2: 涉及中点,想到中位线,题干只有M一个中点,所以再构造一个中点出来,

如图,记B(0,-4),则O为AB的中点,又M为PA的中点,所以OM//PB,故 $k_{OM}=k_{PB}$,

于是只需求当P运动时, k_{PR} 的取值范围,如图所示的相切的情形即为 k_{PR} 最大的情况,

设图中切线 PB 的方程为 y=kx-4,代入 $x^2=4y$ 整理得: $x^2-4kx+16=0$,

判别式 $\Delta = (-4k)^2 - 4 \times 1 \times 16 = 0$,解得: $k = \pm 2$,由图可知 k = -2,所以 $k_{PB} \in (-\infty, -2]$,故 $k_{OM} \in (-\infty, -2]$.

答案: D

【例 5】已知 $\triangle ABC$ 的三个顶点都在抛物线 $y^2=4x$ 上,F 为抛物线的焦点,若 $\overrightarrow{AF}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,则

$$\left| \overrightarrow{AF} \right| + \left| \overrightarrow{BF} \right| + \left| \overrightarrow{CF} \right| = \tag{}$$

(A) 3 (B) 6 (C) 9 (D) 12

解析: 由 $\overrightarrow{AF} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$ 可建立坐标关系, $|\overrightarrow{AF}|$, $|\overrightarrow{BF}|$, $|\overrightarrow{CF}|$ 也能用A,B,C的横坐标来算,故设坐标,

由题意,F(1,0),设 $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$,

因为 $\overrightarrow{AF} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$,利用横坐标相等有 $1 - x_1 = \frac{1}{3}(x_2 - x_1 + x_3 - x_1)$,整理得: $x_1 + x_2 + x_3 = 3$,

故
$$|\overrightarrow{AF}| + |\overrightarrow{BF}| + |\overrightarrow{CF}| = (x_1 + 1) + (x_2 + 1) + (x_3 + 1) = (x_1 + x_2 + x_3) + 3 = 6.$$

答案: B

【总结】可发现设点的方式要由题目来定,当设单变量形式复杂时,就考虑双变量(如例 3 变式);而涉及抛物线上的点到焦点的距离时,常根据前面小节用过的方法,即用定义转到与准线的距离(如例 5).

类型III: 设直线, 联立, 韦达

【例 6】已知过点 P(4,0)的动直线 l 与抛物线 $C: y^2 = 2px(p>0)$ 交于点 A 和 B,且 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$,其中 O 为原点,则 $P = _____$.

解析: $\overrightarrow{OA} \cdot \overrightarrow{OB}$ 可用 A, B 的坐标来算, 于是设坐标,

设 $A(x_1,y_1)$, $B(x_2,y_2)$, 则 $\overrightarrow{OA} = (x_1,y_1)$, $\overrightarrow{OB} = (x_2,y_2)$, 所以 $\overrightarrow{OA} \cdot \overrightarrow{OB} = x_1x_2 + y_1y_2$ ①,

涉及 x, x, 和 y, y, 可再设直线的方程,并代入抛物线方程,结合韦达定理来算,

直线 l 不与 y 轴垂直,可设其方程为 x = my + 4,代入 $y^2 = 2px$ 消去 x 整理得: $y^2 - 2pmy - 8p = 0$,

判别式 $\Delta = 4p^2m^2 + 32p > 0$ 恒成立,由韦达定理, $y_1y_2 = -8p$,

再算 x_1x_2 ,可以用点在线上(即 $\begin{cases} x_1 = my_1 + 4 \\ x_2 = my_2 + 4 \end{cases}$ 化为 y_1 和 y_2 来算,但用点在抛物线上来算更简单,

因为 A, B 在抛物线上,所以 $y_1^2 = 2px_1$,故 $x_1 = \frac{y_1^2}{2p}$,同理, $x_2 = \frac{y_2^2}{2p}$,

所以
$$x_1x_2 = \frac{y_1^2}{2p} \cdot \frac{y_2^2}{2p} = (\frac{y_1y_2}{2p})^2 = 16$$
,代入①得: $\overrightarrow{OA} \cdot \overrightarrow{OB} = 16 - 8p$,

由题意, $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$, 所以16 - 8p = 0, 故p = 2.

答案: 2

【反思】设直线与抛物线交于 $A(x_1,y_1)$, $B(x_2,y_2)$ 两点,若要用到 x_1+x_2 , x_1x_2 , y_1+y_2 , y_1y_2 这些量,我们常把直线和抛物线联立得到一个关键方程,用韦达定理来算它们,而不是通过求 A,B 的坐标来算.

【例 7】过点 M(2,0) 的直线 l 与抛物线 $C: y^2 = 4x$ 交于 A, B 两点, O 为原点,若 ΔAOB 的面积为 $4\sqrt{3}$,则 直线 l 的方程为 .

解析: 如图,可将 $\triangle AOB$ 拆成上下两个小三角形来算面积,以 OM 为公共底,高之和为 $|y_1-y_2|$,于是想到 联立直线和抛物线,结合韦达定理推论来算,

由题意,直线 l 不与 y 轴垂直,可设其方程为 x = my + 2,设 $A(x_1, y_1)$, $B(x_2, y_2)$,

$$S_{\Delta AOB} = \frac{1}{2} |OM| \cdot |y_1 - y_2| = \frac{1}{2} \times 2 \times |y_1 - y_2| = |y_1 - y_2|$$
 ①,
 联立
$$\begin{cases} x = my + 2 \\ v^2 = 4x \end{cases}$$
 消去 x 整理得: $y^2 - 4my - 8 = 0$,判别式 $\Delta = (-4m)^2 - 4 \times 1 \times (-8) = 16m^2 + 32$,

由韦达定理推论,
$$|y_1-y_2|=\frac{\sqrt{\Delta}}{|1|}=\sqrt{16m^2+32}=4\sqrt{m^2+2}$$
,代入①得: $S_{\Delta AOB}=4\sqrt{m^2+2}$,

由题意, $S_{\triangle AOB} = 4\sqrt{3}$,所以 $4\sqrt{m^2 + 2} = 4\sqrt{3}$,解得: $m = \pm 1$,

故直线 l 的方程为 $x=\pm y+2$,即 $x\pm y-2=0$.

答案: $x \pm y - 2 = 0$

【反思】①如图,设 AM 和 BN 分别为水平线和竖直线,在解析几何中,除了用 $S = \frac{1}{2} \times$ 底×高来算 ΔABC 的面积外,还常用 $S = \frac{1}{2} |AM| \cdot |y_B - y_C| = \frac{1}{2} |BN| \cdot |x_A - x_C|$ 来算;②韦达定理推论:设 x_1 , x_2 是一元二次方程

$$ax^2 + bx + c = 0$$
 $(a \ne 0)$ 的两个解,则 $|x_1 - x_2| = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \sqrt{(-\frac{b}{a})^2 - 4 \cdot \frac{c}{a}} = \sqrt{\frac{b^2 - 4ac}{a^2}} = \frac{\sqrt{\Delta}}{|a|}$.

【例 8】(2022 •新高考 I 卷)(多选)已知 O 为坐标原点,点 A(1,1) 在抛物线 $C: x^2 = 2py(p > 0)$ 上,过点 B(0,-1)的直线交 $C + P \setminus Q$ 两点,则()

(A) C 的准线为 y = -1 (B) 直线 AB = C 相切 (C) $|OP| \cdot |OQ| > |OA|^2$ (D) $|BP| \cdot |BQ| > |BA|^2$

解析: A 项,点 A(1,1) 在抛物线 $C \perp \Rightarrow 1^2 = 2p \cdot 1 \Rightarrow p = \frac{1}{2} \Rightarrow C$ 的准线为 $y = -\frac{1}{4}$,故 A 项错误;

 \mathbf{B} 项,如图,可用导数求出抛物线在点 \mathbf{A} 处的切线方程,再验证点 \mathbf{B} 是否在该切线上即可,

 $x^2 = y \Rightarrow y' = 2x \Rightarrow y'|_{x=1} = 2 \Rightarrow$ 抛物线 C 在点 A 处的切线方程为 y-1=2(x-1),整理得: y=2x-1,

经检验,点B(0,-1)在该切线上,所以直线AB与C相切,故B项正确;

C 项,|OP| 和 |OQ| 可用 P,Q 的坐标来算,故先设坐标,设 $P(x_1,x_1^2)$, $Q(x_2,x_2^2)$,

 $||OP| \cdot |OQ| = \sqrt{x_1^2 + x_1^4} \cdot \sqrt{x_2^2 + x_2^4} = \sqrt{x_1^2 x_2^2 (1 + x_1^2)(1 + x_2^2)} = \sqrt{x_1^2 x_2^2 (1 + x_1^2 + x_2^2 + x_1^2 x_2^2)}$ (1),

式①可通过设直线的方程,并与抛物线联立,结合韦达定理来计算,

由题意,直线 PQ 的斜率存在,可设其方程为 y = kx - 1,代入 $x^2 = y$ 消去 y 整理得: $x^2 - kx + 1 = 0$,

判别式 $\Delta = k^2 - 4 > 0 \Rightarrow |k| > 2$,由韦达定理, $x_1 + x_2 = k$, $x_1 x_2 = 1$,

代入式①可得 $|OP| \cdot |OQ| = \sqrt{2 + x_1^2 + x_2^2} = \sqrt{2 + (x_1 + x_2)^2 - 2x_1x_2} = |k| > 2$

又 $|OA|^2 = 2$,所以 $|OP| \cdot |OQ| > |OA|^2$,故 C 项正确;

D 项,已知点 B,用弦长公式算 |BP| 和 |BQ| 较方便,由题意, $|BP| = \sqrt{1+k^2} \cdot |0-x_1| = \sqrt{1+k^2} \cdot |x_1|$,

同理, $|BQ| = \sqrt{1+k^2} \cdot |x_2|$,所以 $|BP| \cdot |BQ| = \sqrt{1+k^2} \cdot |x_1| \cdot \sqrt{1+k^2} \cdot |x_2| = (1+k^2)|x_1x_2|$,

将 C 项得到的|k| > 2和 $x_1x_2 = 1$ 代入上式可得 $|BP| \cdot |BQ| = 1 + k^2 > 5$,

又 $|BA|^2 = (0-1)^2 + (-1-1)^2 = 5$,所以 $|BP| \cdot |BQ| > |BA|^2$,故 D 项正确.

答案: BCD

【反思】弦长公式:设直线 l 的斜率为 k, $A(x_1,y_1)$, $B(x_2,y_2)$ 是 l 上任意两点,则 $|AB| = \sqrt{1+k^2 \cdot |x_1-x_2|}$.

强化训练

1. (★★) 已知 O 为坐标原点,垂直于抛物线 $C: y^2 = 2px(p > 0)$ 的对称轴的直线 l 交 C 于 A, B 两点,

 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$, $\mathbb{E}|AB| = 4$, $\mathbb{M}|p = ($

 $(B) 3 \qquad (C) 2$ (A) 4(D) 1

- 2. (2022 镇远模拟 ★★) 已知 A, B 是抛物线 C: $y^2 = 4x$ 上关于 x 轴对称的两点,D 是 C 的准线与 x轴的交点,若直线 BD 与 C 的另一个交点是 E(4,4) ,则直线 AE 的方程为()

- (A) 2x-y-4=0 (B) 4x-3y-4=0 (C) x-2y+4=0 (D) 4x-5y+4=0
- 3. $(2022 \cdot 上饶模拟 \cdot ★★)$ 已知抛物线 $y^2 = 2px(p>0)$ 的焦点为 F(1,0),则抛物线上的动点 N 到点 M(3p,0)的距离的最小值为()

- (A) 4 (B) 6 (C) $2\sqrt{5}$ (D) $4\sqrt{5}$
- 4. (2022 湖北模拟改 ★★★)已知 F 为抛物线 $y^2 = 2x$ 的焦点, $A(x_0, y_0)(x_0 \neq 0)$ 为抛物线上的动点,

点 B(-1,0),则 $\frac{2|AB|}{\sqrt{4|AF|-2}}$ 的最小值为 ()

- (A) $\frac{1}{2}$ (B) $\sqrt{2}$ (C) $\sqrt{6}$ (D) $\sqrt{5}$

- 5. $(2022 \cdot 唐山一模 \cdot ★★★)(多选)已知直线 l: x = my + 4 和抛物线 C: y^2 = 4x 交于 <math>A(x_1, y_1)$, $B(x_2, y_2)$ 两 点,O 为原点,直线 OA,OB 的斜率分别为 k_1 , k_2 ,则()

- (A) y_1y_2 为定值 (B) k_1k_2 为定值 (C) $y_1 + y_2$ 为定值 (D) $k_1 + k_2 + m$ 为定值

6.	(2022 • 哈尔海	宾模拟・★★	★)直线 <i>l</i> :y	y=x-2与抛物线	$EC: y^2 = 2x$ 交子 A ,	B两点,	线段 AB 的中垂线
与:	x轴交于点 D ,	O 为原点,	则四边形 OA	DB 的面积为	•		

7. (2022 • 长沙月考 • ★★★★)已知直线l: x-2y+1=0与抛物线 $C: y^2 = 4x$ 交于 A,B 两点,与x 轴交 于点 D, N 为 B 关于 x 轴的对称点,则 ΔDAN 的面积为_____.

8. $(2022 \cdot \text{北京模拟} \cdot \bigstar \star \star \star \star)$ 设 A, B 是抛物线 $y^2 = 2x$ 上的两个不与原点 O 重合的动点,且 $OA \perp OB$, 则 $|OA| \cdot |OB|$ 的最小值是()

(A)
$$\frac{5}{4}$$
 (B) 4 (C) 8 (D) 64

- 9. $(2022 \cdot 新高考 Ⅱ 卷 \cdot ★★★★)$ (多选)已知 O 为坐标原点,过抛物线 $C: y^2 = 2px(p > 0)$ 的焦点 F 的 直线与C交于A、B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则()
- (A) 直线 AB 的斜率为 $2\sqrt{6}$ (B) |OB| = |OF| (C) |AB| > 4|OF| (D) $\angle OAM + \angle OBM < 180^{\circ}$