

Sil9136 HDMI Deep Color Transmitter

Data Sheet

Sil-DS-1075-B

June 2017

Contents

	•	s in This Document	
1.	Gene	eral Description	7
	1.1.	Video Input	7
	1.2.	Audio Input	7
	1.3.	HDMI Output	7
	1.4.	Control Capability	7
	1.5.	Packaging	7
2.	Prod	luct Family	8
3.	Func	ctional Description	9
	3.1.	Video Data Input and Conversion	9
	3.1.1	L. Input Clock Multiplier/Divider	10
	3.1.2	2. Video Data Capture	10
	3.1.3	B. Embedded Sync Decoder	10
	3.1.4	1. Data Enable Generator	10
	3.1.5	5. Combiner	10
	3.1.6	5. 4:2:2 to 4:4:4 Upsampler	10
	3.1.7	7. RGB Range Expansion	10
	3.1.8	3. Color Space Converter	11
	3.1.9	9. RGB/YCbCr Range Compression	11
	3.1.1	10. 4:4:4 to 4:2:2 Downsampler	11
	3.1.1	l1. Clipping	11
	3.1.1	12. 18-to-8/10/12/16-Dither	11
	3.2.	Audio Data Capture	11
	3.3.	Framer	11
	3.4.	HDCP Encryption Engine/XOR Mask	11
	3.5.	HDCP Key ROM	11
	3.6.	TMDS Transmitter	12
	3.7.	GPIO	12
	3.8.	Hot Plug Detector	12
	3.9.	CEC Interface	12
	3.10.	DDC Master I ² C Interface	12
	3.11.	Receiver Sense and Interrupt Logic	12
	3.12.	Configuration Logic and Registers	
	3.13.	I ² C Slave Interface	
4.	Elect	trical Specifications	14
	4.1.	Absolute Maximum Conditions	14
	4.2.	Normal Operating Conditions	14
	4.2.1	L. I/O Specifications	15
	4.2.2	2. DC Power Supply Specifications	16
	4.3.	AC Specifications	16
	4.3.1	L. Video/HDMI Timing Specifications	16
	4.3.2	2. Audio AC Timing Specifications	17
	4.3.3		
	4.3.4		
	4.3.5		
		Timing Diagrams	
	4.4.1		
	4.4.2		
	4.4.3	0 0 0	
	4.4.4		
	4.4.5		
5.		Diagram and Descriptions	
		U Prof. 2	_

5.1.	Pin Diagram	22
5.2.	Pin Descriptions	
_	2.1. Video Data Input	
	2.2. TMDS Output	
_	2.3. Audio Input	
_	2.4. DDC, CEC, Configuration, and Control	
_	2.5. Power and Ground	
_	2.6. Not Connected and Reserved	
	eature Information	
6.1.	RGB to YCbCr Color Space Converter	
6.2.	YCbCr to RGB Color Space Converter	
6.3.	I ² C Register Information	
6.4.	I ² S Audio Input	
6.5.	Direct Stream Digital Input	
6.6.	S/PDIF Input	
6.7.	I ² S and S/PDIF Supported MCLK Frequencies	
6.8.	Audio Downsampler Limitations	
6.9.	High-Bit Rate Audio on HDMI	
6.10		
6.11		
6.11		
_		
6.13	• • • • • • • • • • • • • • • • • • • •	
6.14 6.15		
6.16	5	
	16.1. Common Video Input Formats	
	·	
_	16.2. RGB and YCbCr 4:4:4 Separate Sync	
	16.3. YC 4:2:2 Separate Sync Formats	
	16.4. YC 4:2:2 Embedded Syncs Formats	
	16.5. YC Mux 4:2:2 Separate Sync Formats	
	16.6. YC Mux 4:2:2 Embedded Sync Formats	
	•	
	esign Recommendations	
7.1.	Power Supply Decoupling	
7.2.	11, 1	
7.3.	ESD Recommendations	
7.4.	High-Speed TMDS Signals	
	4.1. Layout Guidelines	
	4.2. TMDS Output Recommendation	
	4.3. EMI Considerations	
	ackaging	
8.1.	ePad Requirements	
8.2.	PCB Layout Guidelines	
8.3.	Package Dimensions	
8.4.	Marking Specification	
8.5.	Ordering Information	
	nces	
	dards Documentsdards Crawns	
	dards Groups	
	ce Semiconductor Documents	
	nical Support	
Kevisio	n History	54

Figures

Figure 1.1. Example of System Architecture	7
Figure 3.1. Functional Block Diagram	
Figure 3.2. Transmitter Video Data Processing Path	
Figure 4.1. Test Point VCCTP for VCC Noise Tolerance Spec	
Figure 4.2. IDCK Clock Duty Cycle	19
Figure 4.3. Control and Data Single-Edge Setup and Hold Times—EDGE = 1	19
Figure 4.4. Control and Data Single-Edge Setup and Hold Times—EDGE = 0	
Figure 4.5. Control and Data Dual-Edge Setup and Hold Times	19
Figure 4.6. VSYNC and HSYNC Delay Times Based On DE	20
Figure 4.7. DE HIGH and LOW Times	20
Figure 4.8. Conditions for Use of RESET#	20
Figure 4.9. RESET# Minimum Timings	20
Figure 4.10. Differential Transition Times	20
Figure 4.11. I ² S Input Timings	21
Figure 4.12. S/PDIF Input Timings	21
Figure 4.13. MCLK Timings	21
Figure 4.14. DSD Input Timings	21
Figure 4.15. I ² C Data Valid Delay (Driving Read Cycle Data)	21
Figure 5.1. Pin Diagram (Top View)	22
Figure 6.1. High Speed Data Transmission	
Figure 6.2. High Bitrate Stream Before and after Reassembly and Splitting	29
Figure 6.3. High Bit Rate Stream After Splitting	
Figure 6.4. Simplified Host I ² C Interface Using Master DDC Port	
Figure 6.5. Master I ² C Supported Transactions	
Figure 6.6. Controller Connections Schematic	32
Figure 6.7. 8-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing	35
Figure 6.8. 10-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing	35
Figure 6.9. 12-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing	35
Figure 6.10. 8-Bit Color Depth YC 4:2:2 Timing	37
Figure 6.11. 10-Bit Color Depth YC 4:2:2 Timing	37
Figure 6.12. 12-Bit Color Depth YC 4:2:2 Timing	37
Figure 6.13. 8-Bit Color Depth YC 4:2:2 Embedded Sync Timing	39
Figure 6.14. 10-Bit Color Depth YC 4:2:2 Embedded Sync Timing	
Figure 6.15. 12-Bit Color Depth YC 4:2:2 Embedded Sync Timing	
Figure 6.16. 8-Bit Color Depth YC Mux 4:2:2 Timing	40
Figure 6.17. 10-Bit Color Depth YC Mux 4:2:2 Timing	
Figure 6.18. 12-Bit Color Depth YC Mux 4:2:2 Timing	
Figure 6.19. 8-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing	
Figure 6.20. 10-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing	
Figure 6.21. 12-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing	43
Figure 6.22. 8-Bit Color Depth 4:4:4 Dual Edge Timing	
Figure 6.23. 10-Bit Color Depth 4:4:4 Dual Edge Timing	
Figure 6.24. 12-Bit Color Depth 4:4:4 Dual Edge Timing	
Figure 6.25. 16-Bit Color Depth 4:4:4 Dual Edge Timing	
Figure 7.1. Decoupling and Bypass Schematic	
Figure 7.2. Decoupling and Bypass Capacitor Placement	
Figure 8.1. 100-Pin TQFP Package Diagram	
Figure 8.2. Marking Diagram	
Figure 8.3. Alternate Topside Marking	51

Tables

Table 2.1. Product Selection Guide	8
Table 4.1. Absolute Maximum Conditions	14
Table 4.2. Normal Operating Conditions	14
Table 4.3. DC Digital I/O Specifications	15
Table 4.4. TMDS I/O Specifications	15
Table 4.5. DC Specifications	16
Table 4.6. Video Input AC Specifications	16
Table 4.7. TMDS AC Output Specifications	16
Table 4.8. S/PDIF Input Port Timings	17
Table 4.9. I ² S Input Port Timings	17
Table 4.10. DSD Input Port Timings	17
Table 4.11. Video AC Timing Specifications	18
Table 4.12. Control Signal Timing Specifications	18
Table 6.1. RGB to YCbCr Conversion Formulas	26
Table 6.2. YCbCr-to-RGB Conversion Formula	26
Table 6.3. Control of the Default I ² C Addresses with the CI2CA Pin	27
Table 6.4. Supported MCLK Frequencies	27
Table 6.5. Channel Status Bits Used for Word Length	
Table 6.6. Supported 3D Video Formats	31
Table 6.7. Video Input Formats	
Table 6.8. RGB/YCbCr 4:4:4 Separate Sync Data Mapping	34
Table 6.9. YC 4:2:2 Separate Sync Data Mapping	36
Table 6.10. YC 4:2:2 Embedded Sync Data Mapping	38
Table 6.11. YC Mux 4:2:2 Separate Sync Data Mapping	40
Table 6.12. YC Mux 4:2:2 Embedded Sync Data Mapping	42
Table 6.13. RGB/YCbCr 4:4:4 Separate Sync Dual-Edge Data Mapping	44

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
ACPI	Advanced Configuration and Power Interface
CBUS	Control Bus
CEC	Consumer Electronics Control
СРІ	CEC Programming Interface
CSC	Color Space Converters
DDC	Display Data Channel
DSC	Display Stream Compression
DVI	Digital Visual Interface
EDDC	Enhanced Display Data Channel
EDID	Extended Display Identification Data
EMI	Electromagnetic interference
ESD	Electrostatic Discharge
GPIO	General Purpose Input/Output
HDCP	High-bandwidth Digital Content Protection
HDMI	High-Definition Multimedia Interface
HDTV	High-Definition Television
HPD	Hot Plug Detect
I ² C	Inter-Integrated Circuit
KSV	Key Selection Vector
MCLK	Master Clock
SPDIF	Sony/Philips Digital Interface Format
TMDS	Transition Minimized Differential Signaling
TPI	Transmitter Programming Interface
VSIF	Vendor Specific InfoFrame

1. General Description

The Lattice Semiconductor Sil9136 transmitter is an HDMI® Deep Color transmitter for consumer electronics products such as set-top boxes, Blu-ray players and recorders, A/V Receivers, DVD players and recorders, personal video recorders, home theater-ina-box systems, and home theater PCs.

The Sil9136 transmitter, with the latest generation 225 MHz TMDS core, enables home theater devices to deliver up to 16-bit Deep Color at 1080p/30 resolutions and up to 12-bit Deep Color at 1080p/60 resolutions. On the audio side, High-Bit-Rate (HBR) audio formats (such as Dolby® TrueHD and DTS-HD) are supported for an enhanced digital audio experience.

1.1. Video Input

- Support of most common standard and nonstandard video input formats
- Support of most common 3D formats
- Supports video resolutions up to 12-bit 1080p (60 Hz), 12-bit 720p/1080i (120 Hz), and 16-bit 1080p (30 Hz)

1.2. Audio Input

- S/PDIF input supports PCM and compressed audio formats (Dolby Digital, DTS, AC-3)
- DSD input supports Super Audio CD applications
- I²S input supports PCM, DVD-Audio input (up to 8channel 192 kHz)
- High Bit Rate audio support (for example, DTS HD and Dolby True HD)

1.3. HDMI Output

- DVI 1.0, HDCP 1.4, and HDMI transmitter with xvYCC extended color gamut, Deep Color up to 16bit color, and HBR audio support
- 225 MHz HDMI Transmitter
- Supports all mandatory and some optional 3D modes
- Pre-programmed HDCP key set simplifies the manufacturing process, lowers cost, and provides the highest level of HDCP key security.
- Dynamic cable equalization automatically equalizes the TMDS™ output signal

1.4. Control Capability

- Consumer Electronics Control (CEC) interface that incorporates an HDMI-compliant CEC I/O and the Lattice Semiconductor CEC Programming Interface (CPI) reduces the need for system-level control by the system microcontroller and simplifies firmware overhead
- Four General Purpose I/O (GPIO) pins
- Three power modes defined by the Advanced Configuration and Power Interface specification allows the power consumption of the device with respect to system needs to be dynamically adjusted

1.5. Packaging

• 100-pin, 14 mm x 14 mm, 0.5 mm pitch TQFP package with an ePad

Figure 1.1. Example of System Architecture

2. Product Family

Table 2.1 summarizes the differences between the Sil9136 transmitter and the Sil9134 transmitter.

Table 2.1. Product Selection Guide

Transmitter	Sil9134	Sil9136
Video Input		-
Digital Video Input Ports	1	1
I/O Voltage	3.3 V	3.3 V
Core Voltage	1.8 V	1.2 V
Input Pixel Clock Multiply/Divide	0.5x, 2x, 4x	0.5x, 2x, 4x
Maximum Pixel Input Clock Rate	165 MHz	165 MHz
Maximum TMDS Output Clock	225 MHz	225 MHz
BTA-T1004 Format Support	Yes	Yes
Video Format Conversion		
36-bit and 30-bit Deep Color	Yes	Yes
48-bit Deep Color	No	Yes
xvYCC	No	Yes
YCbCr → RGB CSC	Yes	Yes
RGB → YCbCr CSC	Yes	Yes
4:2:2 → 4:4:4 Upsampling	Yes	Yes
$4:4:4 \rightarrow 4:2:2$ Decimation	Yes	Yes
16–235 → 0–255 Expansion	Yes	Yes
$0-255 \rightarrow 16-235$ Compression	Yes	Yes
16–235/240 Clipping	Yes	Yes
Audio Input	1.60	1 .00
S/PDIF Input Ports	1	1
I ² S Input Bits	4 (8-channel)	4 (8-channel)
High Bit Rate Audio Support	,	, ,
Compressed DTS-HD and Dolby True-HD	Yes	Yes
One-bit Audio (DSD/SACD)	Yes	Yes¹
One bit Addio (DSD/SACD)	192 kHz on I ² S	192 kHz on I ² S
2-Channel Maximum Sample Rate	192 kHz on S/PDIF	192 kHz on S/PDIF
O Channal Marrian una Cananla Data	,	
8-Channel Maximum Sample Rate	192 kHz	192 kHz
Down Sampling	96 kHz to 48 kHz 192 kHz to 48 kHz	96 kHz to 48 kHz 192 kHz to 48 kHz
Internal MCLK Generator	No	Yes ²
I ² C Address Bus		
Device Address Select	CI2CA Pin	CI2CA Pin
Master DDC Bus	Yes	Yes
Other		
CEC Interface	No	Yes
xvYCC Gamut Data	Yes	Yes
3D Support	Yes	Yes
Programming Interface	No	Yes
HDCP Reset	Software Register	Software Register
Package	100-pin TQFP	100-pin TQFP
Notoci		•

Notes:

- 1. Shared with I²S Input Interface.
- 2. Internal MCLK generation is ON by default.

3. Functional Description

Figure 3.1 shows the functional blocks of the Sil9136 transmitter. Pin descriptions begin on page 23. A description of each of the blocks shown in the diagram follows the figure. The power domains are described in the Power Domains section on page 29.

Figure 3.1. Functional Block Diagram

3.1. Video Data Input and Conversion

Figure 3.2 shows the video data processing stages through the transmitter. Each of the processing blocks can be bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required, except in embedded sync modes. The DE input signal is optional, because it can be created with the DE generator using the HSYNC and VSYNC signals.

Figure 3.2. Transmitter Video Data Processing Path

3.1.1. Input Clock Multiplier/Divider

The input pixel clock can be multiplied by 0.5, 2 or 4. Video input formats which use a 2x clock (such as YC Mux mode) can then be transmitted across the HDMI link with a 1x clock. Similarly, 1x-to-2x, 1x to-4x, and 2x-to-4x conversions are possible.

3.1.2. Video Data Capture

The bus configurations support most standardized video input formats as well as other widely used non-standard formats. Each configuration has four key attributes: data width, input mode, clock mode, and synchronization attributes.

The video input port is a 36-bit wide bus that can be configured to any of the following data widths:

- 8-, 10- or 12-bit input in double-speed clock mode
- 12-, 15-, 18- or 24-bit input in dual-edge clock mode
- 16-, 20-, 24-, 30-, or 36-input in single-speed clock mode

The input mode includes color format (RGB, YCbCr, or xvYCC) and color sampling (4:4:4 or 4:2:2).

Clock mode refers to the input clock rate relative to the pixel clock rate. This device supports 1x mode, 2x mode, or dual-edge mode. 1x mode and 2x mode means the input clock operates at one or two times the pixel clock rate. *Dual-edge mode* means that the input clock rate equals the pixel clock rate, but a sample is captured on both the rising edge and the falling edge of the input clock. Thus, with the Video Input configured for 24 bits with a dual-edge-clock, 48 bits of video data are received per clock cycle. The 24 MSBs of the video data are latched on the first clock edge, and the 24 LSBs are latched on the next clock edge. The first clock edge is programmable and can be either the rising or the falling edge.

Synchronization attributes refer to how the horizontal and vertical sync signals are configured. Separate synchronization involves placing the horizontal sync, vertical sync, and data enable signals on separate input pins. Embedded synchronization combines these signals with one or more of the data inputs.

3.1.3. Embedded Sync Decoder

The transmitter can create DE, HSYNC, and VSYNC signals using the start of active video (SAV) and end of active video (EAV) codes within the ITU-R BT.656-format video stream.

3.1.4. Data Enable Generator

The transmitter includes logic to construct a Data Enable (DE) signal from the incoming HSYNC, VSYNC, and IDCK. This signal is used to correct timing from sync extraction to conform to CEA-861D timing specifications. By programming registers, the DE signal can define the size of the active display region. This feature is particularly useful when the transmitter connects to MPEG decoders that do not provide a specific DE output signal.

3.1.5. Combiner

The clock, data, and sync information is combined into a complete set of signals required for TMDS encoding. From here, the signals are manipulated by the register-selected video processing blocks.

3.1.6. 4:2:2 to 4:4:4 Upsampler

Chrominance upsampling and downsampling increase or decrease the number of chrominance samples in each line of video. Upsampling doubles the number of chrominance samples in each line, converting 4:2:2 sampled video to 4:4:4 sampled video.

3.1.7. RGB Range Expansion

The Sil9334 transmitter can scale the input color range from limited-range into full-range using the range expansion block. When enabled by itself, the range expansion block expands 16–235 (64–943 to 256–3775, 4096-60415 for 30/36/48-bit color depth) limited-range data into 0–255 (0–1023, 0–4095 to 0-65535 for 30/36/48-bit color depth) full-range data for each video channel. When range expansion and the YCbCr to RGB color space converter are both enabled, the input conversion range for the Cb and Cr channels is 16–240 (64–963, 256–3855 to 4096-61695 for 30/36/48-bit color depth).

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

3.1.8. Color Space Converter

Two color space converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video formats supplied by AV processors and to provide full DVI 1.0 backward compatibility. The CSC can be adjusted to perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate registers.

3.1.9. RGB/YCbCr Range Compression

When enabled by itself, the range compression block compresses 0-255/0-1023/0-4095/0-65535 full-range data into 16-235/64-943/256-3775/4096-60415 limited-range data for each video channel. When enabled with the RGB to YCbCr converter, this block compresses to 16-240/64-963/256-3855/4096-61695 for the Cb and Cr channels. The color range scaling is linear.

3.1.10. 4:4:4 to 4:2:2 Downsampler

Downsampling reduces the number of chrominance samples in each line by half, converting 4:4:4 sampled video to 4:2:2 video.

3.1.11. Clipping

The clipping block, when enabled, clips the values of the output video to 16–235 for RGB video or the Y channel, and to 16–240 for the Cb and Cr channels.

3.1.12. 18-to-8/10/12/16-Dither

The 18-to-8/10/12/16-dither block dithers internally processed, 18-bit data to 8, 10, 12, or 16 bits for output on the HDMI link. It can be bypassed to output 10/12-bit modes when supplied by the AV processor or converted in the decimator and CSC.

3.2. Audio Data Capture

The audio capture block supports I²S, Direct Stream Digital, and S/PDIF audio input formats. The appropriate registers must be configured to describe the audio format provided to the SiI9136 transmitter. This information is passed over the HDMI link in the CEA-861D Audio Info (AI) packets.

3.3. Framer

The framer block handles the packetizing and framing of the data stream sent across the HDMI link. Audio and video data packets are inserted into the respective HDMI Video Data and Data Island periods. This block handles the correct insertion of all HDMI packet types.

3.4. HDCP Encryption Engine/XOR Mask

The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key Selection Vector (KSV) stored in the HDCP key ROM to calculate a number that is then applied to an XOR mask. This process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle.

3.5. HDCP Key ROM

The Sil9136 transmitter comes pre-programmed with a set of production HDCP keys stored in an internal ROM. System manufacturers do not need to purchase key sets from the Digital-Content Protection LLC. Lattice Semiconductor handles all purchasing, programming, and security for the HDCP keys. The pre-programmed HDCP keys provide the highest level of security because there is no way to read the keys once the device is programmed. Customers must sign

the HDCP license agreement (<u>www.digital-cp.com</u>) or be under a specific NDA with Lattice Semiconductor before receiving Sil9136 samples.

3.6. TMDS Transmitter

The TMDS digital core performs 8-to-10-bit TMDS encoding on the data received from the HDCP XOR mask, and is then sent over three TMDS data and a TMDS clock differential lines. A resistor connected to the EXT_SWING pin controls the swing amplitude of the TMDS signal.

3.7. **GPIO**

The Sil9136 transmitter has four General Purpose I/O pins. Each pin supports the following functions:

- Input mode: The value can be read through local I²C bus access; an interrupt can be generated on either the falling or the rising edge of the input signal.
- Output mode: The value can be set through the local I²C bus access.

3.8. Hot Plug Detector

When HIGH, the Hot Plug Detection signal indicates to the transmitter that the EDID of the connected receiver is readable. A HIGH voltage is at least 2.0 V, and a LOW voltage is less than 0.8 V.

3.9. CEC Interface

The Consumer Electronics Control (CEC) Interface block provides CEC-compliant signals between CEC devices and a CEC master. A CEC controller compatible with the Lattice Semiconductor CEC API is included on-chip. The controller has a high-level register interface accessible through the I²C interface, and can be used to send and receive CEC commands. This controller makes CEC control easy and straightforward by removing the burden of programming the host processor to perform these low-level transactions on the CEC bus. See the CEC Programming Interface (CPI) Programmer's Reference for details on the API (Refer to Lattice Semiconductor Documents on page 52.) The Programmer's Reference requires an NDA with Lattice Semiconductor.

3.10. DDC Master I²C Interface

The host uses the DDC master logic to read the EDID by programming the target address, offset, and number of bytes. Upon completion, or when the DDC master FIFO becomes full, an interrupt signal is sent to the host so that the host can read data out of the FIFO.

The TPI hardware uses the DDC master logic to carry out HDCP authentication tasks. The arbitration logic arbitrates the access from host and the internal TPI hardware. Refer to the Internal DDC Master section on page 29 for more information.

3.11. Receiver Sense and Interrupt Logic

The Interrupt logic of this block buffers interrupt events from different sources. Receiver Sense and Hot Plug Interrupts are also available in power down mode. The logic for handling these interrupts when all clocks are disabled is also part of this block. The INT pin provides an interrupt signal to the system microcontroller when any of the following occur:

- Monitor Detect (either from the HPD input level or from the Receiver Sense feature) changes
- VSYNC (useful for synchronizing a microcontroller to the vertical timing interval)
- Error in the audio format
- DDC FIFO status change
- HDCP authentication error

3.12. Configuration Logic and Registers

This block contains the configuration registers that control the operation of the transmitter. The registers are accessed via the I^2C interface. This block also contains logic for simplifying the configuration of the transmitter by automatically programming different parameters.

3.13. I²C Slave Interface

The controller I²C interface on the transmitter (signals CSCL and CSDA) is a slave interface with an operating frequency from 3 kHz to 400 kHz and with an input tolerance of up to 4.0 V when all chip operating voltages are present. The host uses this interface to configure the transmitter by reading from and writing to appropriate registers.

4. Electrical Specifications

4.1. Absolute Maximum Conditions

Table 4.1. Absolute Maximum Conditions

Symbol	Parameter	Min	Тур	Max	Units	Note
IOVCC33	I/O Pin Supply Voltage	-0.3	_	4.0	V	2
CVCC12	Digital Core Supply Voltage	-0.5	_	1.5	V	2
AVCC	Analog Supply Voltage 1.2 V	-0.5	_	1.5	V	2
VI	Input Voltage	-0.3	_	IOVCC + 0.3	V	-
Vo	Output Voltage	-0.3	_	IOVCC + 0.3	V	_
Tı	Junction Temperature	_	_	125	°C	_
T _{STG}	Storage Temperature	-65	_	150	°C	_

Notes:

- 1. Permanent device damage can occur if absolute maximum conditions are exceeded.
- 2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.

4.2. Normal Operating Conditions

Table 4.2. Normal Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units	Note
IOVCC33	I/O Pin Supply Voltage	3.0	3.3	3.6	V	_
CVCC12	Digital Core Supply Voltage	1.14	1.2	1.26	V	_
AVCC	Analog Supply Voltage, 1.2 V	1.14	1.2	1.26	V	_
V _{CCN}	Supply Voltage Noise Tolerance	_	_	100	mV_{P-P}	*
T _A	Ambient Temperature (with power applied)	0	25	70	°C	_
Θ_{ja}	Thermal Resistance (Theta JA)	_	_	29.3	°C/W	_
Θ_{jc}	Junction to case resistance (Theta JC)	_	_	12.8	°C/W	_

*Note: The supply voltage noise is measured at test point VCCTP. See Figure 6. The ferrite bead provides filtering of power supply noise. The figure is representative and applies to the IOVCC33, CVCC12, and AVCC pins.

Figure 4.1. Test Point VCCTP for VCC Noise Tolerance Spec

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.2.1. I/O Specifications

Under normal operating conditions unless otherwise specified.

Table 4.3. DC Digital I/O Specifications

Symbol	Parameter	Signal Type	Conditions	Min	Тур	Max	Units	Notes
V _{IH}	HIGH-level Input Voltage	11/771		2.0	_	_	V	*
V _{IL}	LOW-level Input Voltage	LVTTL	_	_	_	0.6	V	*
VTH+	LOW to HIGH Threshold	Calana itt	DECET# CCC CCD 4	1.9	_	_	V	_
VTH-	HIGH to LOW Threshold	Schmitt	RESET#, CSCL, CSDA	_	_	0.7	V	_
V _{TH+}	LOW to HIGH Threshold	Calana itt	DCCI DCDA	3.0	_	_	V	_
V _{TH-}	HIGH to LOW Threshold	Schmitt	DSCL, DSDA	_	_	1.5	V	_
V _{TH+}	LOW to HIGH Threshold	Calana itt			_	_	V	_
V _{TH-}	HIGH to LOW Threshold	Schmitt	CEC_A	_	_	0.8	V	_
V _{OH}	HIGH-level Output Voltage	13/771		2.4	_	_	V	_
V _{OL}	LOW-level Output Voltage	LVTTL	_	_	_	0.4	V	_
I _{oz}	High impedance Output Leakage Current	_	@ V ₀ = 3.3 V or 0 V	-10	-	10	μА	_
Іон	HIGH level output current	_	@ V _{OH} {Min}	_	_	8	mA	_
I _{OL}	LOW level output current	_	@ V _{OL} {Max}	_	_	8	mA	_

^{*}Note: All unused input signals should be tied LOW.

Table 4.4. TMDS I/O Specifications

Symbol	Parameter	Signal Type	Conditions	Min	Тур	Max	Units	Notes	
V _{OD}	Differential outputs: single-ended swing amplitude	TMDS	$R_{LOAD} = 50 \Omega$ R_{EXT_SWING} as defined in the Pin Descriptions section	400	500	600	mV	*	
V _{ODD}	Differential outputs: differential swing amplitude	TMDS	_	800	1000	1200	mV	_	
V	Differential HIGH level output voltage	Differential HIGH	TMDS	≤ 165 MHz TMDS clock	AVCC – 10 mV	ı	AVCC + 10 mV	٧	_
V _{DOH}		output voltage	> 165 MHz TMDS clock	AVCC – 200 mV	ı	AVCC + 10 mV	٧	_	
V	Differential LOW	TMDC	≤ 165 MHz TMDS clock	AVCC – 600 mV	1	AVCC – 400 mV	٧	_	
V _{DOL}	level output voltage	TMDS	> 165 MHz TMDS clock	AVCC – 700 mV	_	AVCC – 400 mV	V	_	
I _{DOS}	Differential output short circuit current	TMDS	V _{OUT} = 0 V	_	_	5	μΑ	_	

^{*}Note: Single-ended swing amplitude limits are defined by the HDMI Specification.

4.2.2. DC Power Supply Specifications

Table 4.5 shows the power consumption in the three power modes.

Table 4.5. DC Specifications

Cumphal	Parameter	Mode	Frequency*	IOVCC33		AVCC		CVCC12		CAVCC33		Units
Symbol				Тур	Max	Тур	Max	Тур	Max	Тур	Max	Units
I _{POFF}	Power Off current	D3	_		4.50	_	0.50	ı	3.30	1	2.30	mA
I _{PSTBY}	Power Standby Current	D2	_		4.50	_	0.50	ı	7.40	1	2.30	mA
	Power On Current		74.25 MHz	2.4	2.60	10.0	10.5	36.2	37.5	2.3	2.6	mA
I _{PON}		D0	148.5 MHz	4.3	4.6	17.1	18.0	68.3	71.2	2.3	2.7	mA
			225 MHz	4.4	4.6	24.3	25.5	78.3	81.7	2.3	2.6	mA

^{*}Note: TMDS clock frequency. Clock frequency doesn't matter in the D3 and D2 modes.

4.3. AC Specifications

4.3.1. Video/HDMI Timing Specifications

Under normal operating conditions unless otherwise specified.

Table 4.6. Video Input AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure
T _{DDF}	VSYNC and HSYNC Delay from DE falling edge	_	1	ı	ı	T _{CIP}	Figure 4.6
T _{DDR}	VSYNC and HSYNC Delay to DE rising edge	_	1	_	_	T _{CIP}	Figure 4.6
T _{HDE}	DE HIGH Time	_	_	_	8191	T _{CIP}	Figure 4.7
T _{LDE}	DE LOW Time	_	138*	_	_	T _{CIP}	Figure 4.7

^{*}Note: T_{LDE} minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138 pixel clock cycles of blanking to carry the audio packets. If only HDCP is running, the minimum DE LOW time is 58 clock cycles, according to the HDCP Specification. If neither HDCP nor audio are running, the minimum DE LOW time is 12 clock cycles for TMDS. The minimum vertical blanking time is 3 horizontal line times.

Table 4.7. TMDS AC Output Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Notes
S _{LHT}	Differential Swing LOW-to-HIGH Transition Time	R_{EXT_SWING} = 3.83 k Ω Internal Source Termination On	95.5	1	181.81	ps	Figure 4.10	1, 2
S _{HLT}	Differential Swing HIGH-to-LOW Transition Time	R_{EXT_SWING} = 3.83 k Ω Internal Source Termination On	86.5	_	172.3	ps	Figure 4.10	1, 2

Notes:

- 1. These limits are defined by the HDMI 1.4 Specification.
- 2. Refer to the Source Termination section on page 31 for information about internal source termination.

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.3.2. Audio AC Timing Specifications

Table 4.8. S/PDIF Input Port Timings

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Notes
F _{S_SPDIF}	Sample Rate	2 Channel	32	_	192	kHz	_	_
T _{SPCYC}	S/PDIF Cycle Time	C _L = 10 pF	_	_	1.0	UI	Figure 4.12	1
T _{SPDUTY}	S/PDIF Duty Cycle	C _L = 10 pF	90%	_	110%	UI	Figure 4.12	1
$T_{MCLKCYC}$	MCLK Cycle Time	C _L = 10 pF	13.3	_	_	ns	Figure 4.13	3
F _{MCLK}	MCLK Frequency	C _L = 10 pF	_	_	75	MHz	_	3
T _{MCLKDUTY}	MCLK Duty Cycle	C _L = 10 pF	40%	_	60%	T _{MCLKCYC}	Figure 4.13	3
T _{AUDDLY}	Audio Pipeline Delay	_	_	30	70	μs	_	4

Note: Refer to the notes for Table 4.10.

Table 4.9. I²S Input Port Timings

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Notes
F _{S_I2S}	Sample Rate	_	32	_	192	kHz	_	_
T _{SCKCYC}	I ² S Cycle Time	CL = 10 pF	_	_	1.0	UI	Figure 4.11	1
T _{SCKDUTY}	I ² S Duty Cycle	CL = 10 pF	90%	_	110%	UI	Figure 4.11	_
T _{I2SSU}	I ² S Setup Time	CL = 10 pF	15	_	_	ns	Figure 4.11	2
T _{I2SHD}	I ² S Hold Time	CL = 10 pF	0	_	_	ns	Figure 4.11	2

Note: Refer to the notes for Table 4.10.

Table 4.10. DSD Input Port Timings

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Notes
F _{S_DSD}	Sample Rate	_	_	44.1	88.2	kHz	_	_
T _{DCKCYC}	DSD Cycle Time	CL = 10 pF	_	_	2.0	UI	Figure 4.14	1
T _{DCKDUTY}	DSD Duty Cycle	CL = 10 pF	90%	_	110%	UI	Figure 4.14	1
T _{DSDSU}	DSD Setup Time	CL = 10 pF	20	_	_	ns	Figure 4.14	
T _{DSDHD}	DSD Hold Time	CL = 10 pF	20	_	_	ns	Figure 4.14	

Notes:

- 1. Proportional to unit time (UI) according to sample rate. Refer to the I2S, S/PDIF, or DSD Specifications.
- Setup and hold minimum times are based on 13.388 MHz sampling, which is adapted from Figure 3 of the Philips I²S Specification.
- 3. If a separate master clock input (MCLK) is used for time-stamping purposes, it has to be coherent with the audio input. *Coherent* means that the MCLK and audio input have been created from the same clock source. This requirement usually uses the original MCLK to strobe the audio out from the sourcing chip.
- 4. Audio pipeline delay is measured from the transmitter input pins to the TMDS output.

4.3.3. Video AC Timing Specifications

Under normal operating conditions unless otherwise specified.

Table 4.11. Video AC Timing Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Notes
T _{CIP}	IDCK period, one pixel per clock	_	6.1	_	40	ns	Figure 4.2	1
F _{CIP}	IDCK frequency, one pixel per clock	_	25	_	165	MHz	_	1
T _{CIP12}	IDCK period, dual-edge clock	_	12.3	_	40	ns	Figure 4.2	2
F _{CIP12}	IDCK frequency, dual-edge clock	_	25	_	82.5	MHz	_	2
T _{DUTY}	IDCK duty cycle	_	40%	_	60%	T _{CIP}	Figure 4.2	_
T _{IJIT}	Worst case IDCK clock jitter	_	_	_	1.0	ns	_	3, 4
T _{SIDF}	Setup time to IDCK falling edge	EDGE 0	1.75	_	_	ns	Fig 4. 4	-
T _{HIDF}	Hold time to IDCK falling edge	EDGE = 0	1.25	_	_	ns	Figure 4.4	5
T _{SIDR}	Setup time to IDCK rising edge	EDGE 1	2.00	_	_	ns	Figure 4.2	-
T _{HIDR}	Hold time to IDCK rising edge	EDGE = 1	1.50	_	_	ns	Figure 4.3	5
T _{SIDD}	Setup time to IDCK rising or falling edge	Dual-edge	2.00	_	_	ns	Figure 4 F	
T _{HIDD}	Hold time to IDCK rising or falling edge	clocking	1.50	_	_	ns	Figure 4.5	6

Notes:

- 1. T_{CIP} and F_{CIP} apply in single-edge clocking modes. T_{CIP} is the inverse of F_{CIP} and is not a controlling specification.
- 2. T_{CIP12} and F_{CIP12} apply in dual-edge mode. T_{CIP12} is the inverse of F_{CIP12} and is not a controlling specification.
- 3. Input clock jitter is estimated by triggering a digital scope at the rising edge of the input clock, and measuring peak-to-peak time spread of the rising edge of the input clock 1 microsecond after the triggering.
- 4. Actual jitter tolerance can be higher depending on the frequency of the jitter.
- 5. Setup and hold time specifications apply to Data, DE, VSYNC, and HSYNC input pins, relative to IDCK input clock.
- 6. Setup and hold limits are not affected by the setting of the EDGE bit for 12/15/18/24-bit dual-edge clocking mode.

4.3.4. Control Signal Timing Specifications

Under normal operating conditions unless otherwise specified.

Table 4.12. Control Signal Timing Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Figure	Note
T _{RESET}	RESET# signal LOW time required for reset	_	50	ı	ı	μs	Figure 4.8 Figure 4.9	1, 5
T _{I2CDVD}	SDA Data Valid Delay from SCL falling edge on READ command	CL = 400pF	ı	ı	700	ns	Figure 4.15	2, 6
T _{HDDAT}	I ² C data hold time	0 – 400 kHz	2.0	_	_	ns	_	3, 6
T _{INT}	Response time for INT output pin from change in input condition (HPD, Receiver Sense, VSYNC change, etc.).	RESET# = HIGH	ı	1	100	μs	_	ı
F _{SCL}	Frequency on master DDC SCL signal	_	40	70	100	kHz	_	4
F _{CSCL}	Frequency on master CSCL signal	_	40	_	400	kHz	_	_

Notes:

- Reset on RESET# signal can be LOW as the supply becomes stable (shown in Figure 4.8), or pulled LOW for at least T_{RESET} (shown in Figure 4.9).
- All standard-mode (100 kHz) I²C timing requirements are guaranteed by design. These timings apply to the slave I²C port (pins CSDA and CSCL) and to the master I²C port (pins DSDA and DSCL).
- 3. This minimum hold time is required by CSCL and CSDA signals as an I²C slave. The device does not include the 300-ns internal delay required by the I²C Specification (Version 2.1, Table 5, note 2).
- 4. The master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I²C Standard Mode or 100 kHz. Use of the Master DDC block does not require an active IDCK.
- 5. Not a Schmitt trigger.
- 6. Operation of I²C pins above 100 kHz is defined by LVTTL levels V_{IH}, V_{IL}, V_{OH}, and V_{OL} (see Table 4.3 on page 15). For these levels, I²C speeds up to 400 kHz are supported.

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.3.5. CEC Timing Specifications

See the HDMI 1.4 specification – Supplement 1 Consumer Electronics Control (CEC).

4.4. Timing Diagrams

4.4.1. Input Timing Diagrams

Figure 4.2. IDCK Clock Duty Cycle

Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications.

Figure 4.3. Control and Data Single-Edge Setup and Hold Times—EDGE = 1

Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications.

Figure 4.4. Control and Data Single-Edge Setup and Hold Times—EDGE = 0

Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications.

Figure 4.5. Control and Data Dual-Edge Setup and Hold Times

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 4.6. VSYNC and HSYNC Delay Times Based On DE

Figure 4.7. DE HIGH and LOW Times

4.4.2. Reset Timing Diagrams

VCC must be stable between its limits for Normal Operating Conditions for T_{RESET} before RESET# goes HIGH, as shown in Figure 4.8. Before accessing registers, RESET# must be pulled LOW for T_{RESET}. This can be done by holding RESET# LOW until T_{RESET} after stable power, as described above, or by pulling RESET# LOW from a HIGH state for at least T_{RESET}, as shown in Figure 4.9.

Figure 4.8. Conditions for Use of RESET#

Figure 4.9. RESET# Minimum Timings

4.4.3. TMDS Timing Diagram

Figure 4.10. Differential Transition Times

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

4.4.4. Audio Timing Diagrams

Figure 4.11. I²S Input Timings

Figure 4.12. S/PDIF Input Timings

Figure 4.13. MCLK Timings

Figure 4.14. DSD Input Timings

4.4.5. I²C timing Diagrams

Figure 4.15. I²C Data Valid Delay (Driving Read Cycle Data)

5. Pin Diagram and Descriptions

5.1. Pin Diagram

Figure 5.1 shows the pin diagram for the Sil9136 transmitter. A description of the pin functions begins on page 23.

Figure 5.1. Pin Diagram (Top View)

5.2. Pin Descriptions

5.2.1. Video Data Input

5.2.1. Video				
Name	Pin	Туре	Dir	Description
D0	20			
D1	19			
D2	18			
D3	17			
D4	15			
D5	14			
D6	13			
D7	11			
D8	10			
D9	9			
D10	8			
D11	7			
D12	6			
D13	4			
D14	3			
D15	2			
D16	99			Video Data Inputs.
D17	98	LVTTL	lana.ak	The video data inputs can be configured to support a wide variety of input
D18	97	5-V tolerant	Input	formats, including multiple RGB and YCbCr bus formats, using the VID_CONFIG registers.
D19	96			See the Common Video Input Formats section on page 33 for details.
D20	95			
D21	94			
D22	93			
D23	92			
D24	90			
D25	89			
D26	87			
D27	86			
D28	85			
D29	84			
D30	83			
D31	82			
D32	81			
D33	80			
D34	79			
D35	78			
IDCK	22	LVTTL 5-V tolerant	Input	Input Data Clock. Input configurable using the VID_CONFIG registers.
DE	25	LVTTL 5-V tolerant	Input	Data Enable. This signal is HIGH when the transmitter input pixel data is valid and LOW otherwise. DE is optional for some input formats, such as ITU-R BT.656.
HSYNC	24	LVTTL 5-V tolerant	Input	Horizontal Sync input control signal. HSYNC is optional for some input formats, such as ITU-R BT.656.
VSYNC	23	LVTTL 5-V tolerant	Input	Vertical Sync input control signal. VSYNC is optional for some input formats, such as ITU-R BT.656.

5.2.2. TMDS Output

Name	Pin	Туре	Dir	Description
TX0+	58			
TX0-	57			
TX1+	60	TMDC	0	HDMI Transmitter Output Port Data.
TX1-	59	TMDS	Output	TMDS low voltage differential signal output data pairs.
TX2+	63			
TX2-	62			
TXC+	55	TMDS	Output	HDMI Transmitter Output Port Clock.
TXC-	54	TIVIDS	Output	TMDS low voltage differential signal output clock pair.
EXT_SWING	52	Analog	Input Output	External Swing Voltage Control. Recommended values (actual value depends on board design): 5.6 k Ω resistor to ground without using internal termination. 4.7 k Ω resistor to ground using internal termination.

5.2.3. Audio Input

Nomes	Dim	Tuna	Dir	Description	
Name	Pin	Туре	DIF	I ² S Mode; S/PDIF Mode	DSD Mode
MCLK	36	LVTTL 5-V tolerant	Input	Audio Input Master Clock.	_
SCK	35	LVTTL 5-V tolerant	Input	I ² S Serial Clock.	DSD Clock.
WS_DR0	34	LVTTL 5-V tolerant	Input	I ² S Word Select.	DSD Data Right Bit 0.
SD0_DL0	33	LVTTL 5-V tolerant	Input	I ² S Data 0.	DSD Data Left Bit 0.
SD1_DR1	32	LVTTL 5-V tolerant	Input	I ² S Data 1.	DSD Data Right Bit 1.
SD2_DL1	31	LVTTL 5-V tolerant	Input	I ² S Data 2.	DSD Data Left Bit 1.
SD3_DR2	30	LVTTL 5-V tolerant	Input	I ² S Data 3.	DSD Data Right Bit 2.
SPDIF_IN_DL2	29	LVTTL 5-V tolerant	Input	S/PDIF Input.	DSD Data Left Bit 2.
DR3	28	LVTTL 5-V tolerant	Input	_	DSD Data Right Bit 3.
DL3	27	LVTTL 5-V tolerant	Input	_	DSD Data Left Bit 3.

5.2.4. DDC, CEC, Configuration, and Control

Name	Pin	Туре	Dir	Description
INT	46	LVTTL	Output	Interrupt Output.
RESET#	47	Schmitt	Input	Reset signal. Active LOW asynchronous reset input for entire chip.
HPD	76	LVTTL	Input	Hot Plug Detect.
GPIO0	26	LVTTL	Input Output	General Purpose I/O Data 0.
GPIO1	77	LVTTL	Input Output	General Purpose I/O Data 1.
GPIO2	39	LVTTL	Input Output	General Purpose I/O Data 2.
GPIO3	49	LVTTL	Input Output	General Purpose I/O Data 3.
DSCL	42	Schmitt Open drain 5-V tolerant	Input Output	DDC I ² C Clock. HDCP KSV, An, and Ri values are exchanged over this I ² C port during authentication. True open drain, so does not pull to ground if power not applied.
DSDA	41	Schmitt Open drain 5-V tolerant	Input Output	DDC I ² C Data. HDCP KSV, An, and Ri values are exchanged over this I ² C port during authentication. True open drain, so does not pull to ground if power not applied.
CI2CA	43	LVTTL 5-V tolerant	Input	Selects base address group for CSCL/CSDA interface. See Table 6.3 on page 27.
CSCL	45	Schmitt 5-V tolerant	Input	Local Configuration/Status I ² C Clock. Chip configuration/status registers are accessed through this I ² C port.
CSDA	44	Schmitt Open drain 5-V tolerant	Input Output	Local Configuration/Status I ² C Data. Chip configuration/status registers are accessed through this I ² C port.
CEC_A	40	CEC Compliant 5-V tolerant	Input Output	HDMI compliant CEC I/O. As an input, this pin acts as a LVTTL Schmitt-triggered input and is 5-V tolerant. As an output, the pin acts as an NMOS driver with resistive pull-up. This pin has an internal pull-up resistor.

5.2.5. Power and Ground

Name	Pin	Туре	Description	Supply
CVCC12	5, 16, 21, 38, 88	Power	Digital Core VCC.	1.2 V
IOVCC33	1, 12, 37, 91	Power	I/O VCC.	3.3 V
AVCC	56, 61	Power	Analog VCC.	1.2 V
GND	48, 53, 100	Ground	These pins must be connected to ground.	Ground

5.2.6. Not Connected and Reserved

Name	Pin	Туре	Description	Supply
NC	50, 51, 64–75	Not connected	These pins should be left unconnected.	None

6. Feature Information

6.1. RGB to YCbCr Color Space Converter

The RGB—YCbCr color space converter can convert from video data RGB to standard definition or to high definition YCbCr formats. Table 6.1 shows the conversion formulas that are used. The HDMI AVI packet defines the color space of the incoming video.

Table 6.1. RGB to YCbCr Conversion Formulas

Video Format	Conversion	Formulas				
video Format	Conversion	CE Mode 16-235 RGB				
640 x 480	ITU-R BT.601					
480i	ITU-R BT.601					
576i	ITU-R BT.601	Y = 0.299R' + 0.587G' + 0.114B'				
480p	ITU-R BT.601	Cb = -0.172R' - 0.339G' + 0.511B' + 128 Cr = 0.511R' - 0.428G' - 0.083B' + 128				
576p	ITU-R BT.601					
240p	ITU-R BT.601					
288p	ITU-R BT.601					
720p	ITU-R BT.709	Y = 0.213R' + 0.715G' + 0.072B'				
1080i	ITU-R BT.709	Cb = -0.117R' - 0.394G' + 0.511B' + 128				
1080p	ITU-R BT.709	Cr = 0.511R' - 0.464G' - 0.047B' + 128				

6.2. YCbCr to RGB Color Space Converter

The YCbCr→RGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. Refer to the detailed formulas in Table 6.2. Note the difference between RGB range for CE modes and PC modes.

Table 6.2. YCbCr-to-RGB Conversion Formula

Format change	Conversion	YCbCr Input Color Range ^{2, 3}
YCbCr 16-235 Input ^{2, 3, 4}	601 ¹	R' = Y + 1.371(Cr - 128) G' = Y - 0.698(Cr - 128) - 0.336(Cb - 128) B' = Y + 1.732(Cb - 128)
to RGB 16-235 Output ^{2, 3, 4}	709 ¹	R' = Y + 1.540(Cr - 128) G' = Y - 0.459(Cr - 128) - 0.183(Cb - 128) B' = Y + 1.816(Cb - 128)
YCbCr 16-235 Input ^{2, 3, 4}	601	R' = 1.164((Y-16) + 1.371(Cr - 128)) G' = 1.164((Y-16) - 0.698(Cr - 128) - 0.336(Cb - 128)) B' = 1.164((Y-16) + 1.732(Cb - 128))
RGB 0-255 Output ^{2, 3, 4}	709	R' = 1.164((Y-16) + 1.540(Cr - 128)) G' = 1.164((Y-16) - 0.459(Cr - 128) - 0.183(Cb - 128)) B' = 1.164((Y-16) + 1.816(Cb - 128))

Notes:

- No clipping can be done.
- 2. For 10-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 by 4.
- 3. For 12-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 by 16.
- 4. For 16-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 256.

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

6.3. I²C Register Information

I²C registers monitor and control all functions of the transmitter. The four local I²C slave addresses can be altered by setting the CI2CA signal LOW or HIGH as shown in Table 6.3. An external pull-up or pull-down resistor (depending on the desired set of I²C addresses) is used to set the level on the CI2CA pin. Refer to the Programmer's Reference (see Lattice Semiconductor Documents) for complete information. *The Programmer's Reference requires an NDA with Lattice Semiconductor.*

Table 6.3. Control of the Default I²C Addresses with the CI2CA Pin

Block	CI2CA = 0	CI2CA = 1
Configuration Registers	0x7A	0x7E
TPI	0x72	0x76
СРІ	0xC0	0xC4

6.4. I²S Audio Input

The I²S input has four I²S data signals to support up to 8 channels of linear pulse code modulation (LPCM) audio. The I²S interface also supports high bit-rate audio formats like Dolby[®] TrueHD and DTS HD Master Audio. Two-channel PCM audio can be downsampled by a factor of 2 or 4 to support 32, 44.1, or 48 kHz basic sample rates as required by the HDMI standard.

6.5. Direct Stream Digital Input

Nine pins are used for the Direct Stream Digital interface that provides 8-channel one-bit audio data (DSD). This interface is for SACD applications. Seven of the nine pins of this interface (4 data left, 4 data right, and 1 clock) share the I²S and S/PDIF pins.

The one-bit audio inputs are sampled on the positive edge of the DSD clock, assembled into 56-bit packets, and mapped to the appropriate FIFO. The Audio InfoFrame, instead of the Channel Status bits, carries the sampling information for one-bit audio. The one-bit audio interface supports an input clock frequency of 2.882 MHz (64 • 44.1 kHz).

6.6. S/PDIF Input

The Sony/Philips Digital Interface Format (S/PDIF) interface is usually associated with compressed audio formats such as Dolby® Digital (AC-3), DTS, and the more advanced variants of these formats.

6.7. I²S and S/PDIF Supported MCLK Frequencies

The transmitter includes an integrated MCLK generator for operation without an external clock PLL, although an external MCLK can be used. The I²S and S/PDIF interfaces support sampling frequencies of 32, 44.1, 48, 64, 88.2, 96, 128, 176.4, and 192 kHz. (The 64 and 128 kHz sampling rates are not part of the HDMI standard; they need to be downsampled to 32 kHz before transmitting across the HDMI link.) Table 6.4 on the next page lists the supported MCLK frequencies.

Table 6.4. Supported MCLK Frequencies

	Audio Sample Rate, Fs									
Multiple of Fs	I ² S and S/PDIF Supported Rates									
	32 kHz	44.1 kHz	48 kHz	88.2 kHz	96 kHz	176.4 kHz	192 kHz			
128	4.096 MHz	5.645 MHz	6.144 MHz	11.290 MHz	12.288 MHz	22.579 MHz	24.576 MHz			
192	6.144 MHz	8.467 MHz	9.216 MHz	16.934 MHz	18.432 MHz	33.868 MHz	36.864 MHz			
256	8.192 MHz	11.290 MHz	12.288 MHz	22.579 MHz	24.576 MHz	45.158 MHz	49.152 MHz			
384	12.288 MHz	16.934 MHz	18.432 MHz	33.864 MHz	36.864 MHz	67.737 MHz	73.728 MHz			
512	16.384 MHz	22.579 MHz	24.576 MHz	45.158 MHz	49.152 MHz					
768	24.576 MHz	33.869 MHz	36.864 MHz	67.738 MHz	73.728 MHz					
1024	32.768 MHz	45.158 MHz	49.152 MHz							
1152	36.864 MHz	50.803 MHz	55.296 MHz							

3

6.8. Audio Downsampler Limitations

The Sil9136 transmitter has an audio downsampler function that downsamples the incoming two-channel audio data and sends the result over the HDMI link. The audio data can be downsampled by one-half or one-fourth with register control. Conversions from 192 to 48 kHz, 176.4 to 44.1 kHz, 96 to 48 kHz, and 88.2 to 44.1 kHz are supported. Some limitations in the audio sample word length when using this feature may need special consideration in a real application.

When enabling the audio downsampler, the Channel Status registers for the audio sample word lengths sent over the HDMI link always indicate the maximum possible length. For example, if the input S/PDIF stream was in 20-bit mode with 16 bits valid, after enabling the downsampler the Channel Status indicates 20-bit mode with 20 bits valid.

Audio sample word length is carried in bits 33 through 35 of the Channel Status register over the HDMI link, as shown in Table 6.5. These bits are always set to 0b101 when enabling the down-sampler feature. Audio data is not affected because 0s are placed into the LSBs of the data, and the wider word length is sent across the HDMI link.

14510 0.5. (Table 6.5. Chaimer Status bits Osed for Word Length								
		Bit							
Audio	Audio Sample Word Length		Maximum Word Length ¹	Sample Word Length (bits)	Note				
35	34	33	32						
0	0	0	0	Not indicated					
0	0	1	0	16	2				
0	1	0	0	18	2				
1	0	0	0	19	2				
1	0	1	0	20	2, 4				
1	1	0	0	17	2				
0	0	0	1	Not indicated	3				
0	0	1	1	20	3				
0	1	0	1	22	3				
1	0	0	1	23	3				
1	0	1	1	24	3, 4				
				1					

21

Table 6.5. Channel Status Bits Used for Word Length

Notes:

1

1. Maximum audio sample word length (MAXLEN) is 20 bits if MAXLEN = 0 and 24 bits if MAXLEN = 1.

1

- 2. Maximum audio sample word length is 20.
- 3. Maximum audio sample word length is 24.
- 4. Bits [35:33] are always 0b101 when the down-sampler is enabled

6.9. High-Bit Rate Audio on HDMI

The high-bit-rate compression standards, such as Dolby TrueHD and DTS-HD, transmit data at bit rates as high as 18 or 24 Mbps. Because these bit rates are so high, DVD decoders and HDMI transmitters (as source devices), and DSP and HDMI receivers (as sink devices) must carry the data using four I²S lines rather than using a single very-high-speed S/PDIF interface or I²S bus (see Figure 6.1).

Figure 6.1. High Speed Data Transmission

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

The high-bit-rate audio stream is originally encoded as a single stream. To send the stream over four I²S lines, the DVD decoder splits it into four streams. Figure 6.2 shows the high-bit-rate stream before it has been split into four I²S lines, and Figure 6.3 shows the same audio stream after being split. Each sample requires 16 cycles of the I²S clock (SCK).

Figure 6.2. High Bitrate Stream Before and after Reassembly and Splitting

Figure 6.3. High Bit Rate Stream After Splitting

6.10. Power Domains

To reduce standby power, the Sil9136 transmitter supports three power modes. Each mode complies with the Advanced Configuration and Power Interface (ACPI) specification.

- Power-On mode (D0): The System is powered up and running completely. All functions are available.
- Power-Standby mode (D2): Some sub-systems are enabled, but the audio and video processing pipelines are disabled. The configuration interface, CEC, GPIO, and DDC master are active. The TMDS core is configured independently. The Host is able to perform the following functions during this mode:
 - a. CEC: send and receive messages
 - b. DDC: read EDID from HDMI receiver
 - c. optional: TMDS core enabled for generating receiver-sense interrupt requests.
- Power-Off mode (D3): The chip is in its lowest power-state. All clocks are disabled. No register access is possible. The only active function is the interrupt request generation for Hot-plug events, if that function has been configured before entering this mode. An IRQ will be asserted in this mode, but cannot be deasserted, as register access is not possible. The host must assert RESET# to the chip to properly leave Power-Off mode.

6.11. Internal DDC Master

The transmitter contains a master I²C port for direct connection to the HDMI cable (refer to Figure 6.4). A pass-through mechanism is used, which allows direct control of the DDC lines by the host I²C controller.

Figure 6.4. Simplified Host I²C Interface Using Master DDC Port

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice Sil-DS-1075-B 29

The DDC Master Interface supports the I²C transactions specified by the VESA Enhanced Display Data Channel Standard. The DDC master block complies with the 100 kHz Standard Mode timing of the I²C specification and supports slave clock stretching, as required by E-DDC. Figure 6.5 shows the supported transactions and timing sequences.

Figure 6.5. Master I²C Supported Transactions

6.12. 3D Video Formats

The Sil9136 transmitter has support for the 3D video modes described in the HDMI 1.4 Specification. All modes support RGB 4:4:4, YCbCr 4:2:2, and YCbCr 4:4:4 color formats and 8-, 10-, and 12-bit data width per color component. External separate HSYNC, VSYNC, and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV sequences in the video stream. Table 6.6 shows only the maximum possible resolution with a given frame rate; for example, Side-by-Side mode is defined for 1080p60, which implies that 720p60 and 480p60 are also supported. Furthermore, a frame rate of 24 Hz also means that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz also means a frame rate of 59.94 Hz is supported. Input pixel clock changes accordingly.

When using Side-by-Side format, 4:4:4 to 4:2:2 down-sampling and 4:2:2 dithering and upsampling to 4:4:4 should be avoided because these combinations may result in visible artifacts. Dithering should also be avoided when using frame packing formats.

Video processing should be bypassed in the case of L + depth format. Transmission of the Vendor Specific InfoFrame (VSIF), which carries 3D information to the receiver, is supported by the Sil9136 device.

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Table 6.6.	Supported	3D Video	Formats
------------	-----------	----------	----------------

3D Format	Extended Definition	Resolution	Frame Rate (Hz)	Input Pixel Clock (MHz)
		1080p	24	
Frame Packing	_	720p	50 / 60	
	interlaced	1080i	50 / 60	
		1080p	24	148.5
L + depth	_	720p	50 / 60	148.5
Side-by-Side	full	1080p	24	
	Tull	720p	50 / 60	
	half	1080p	50 / 60	
	Hall	1080i	50 / 60	74.25

6.13. Deep Color Support

The Sil9136 transmitter provides support for Deep Color video data up to the maximum specified link speed of 2.25 Gbps (225 MHz internal clock rate for the Deep Color packetized data). It supports 30-bit, 36-bit, and 48-bit video input formats, and converts the data to 8-bit packets for encryption and encoding for transferring across the TMDS link.

When the input data width is wider than desired, the device can be programmed to dither or truncate the video data to the desired size. For instance, if the input data width is 12 bits per pixel component, but the sink device only supports 10 bits, the transmitter can be programmed either to dither or to truncate the 12-bit input data to the desired 10-bit output data. Dither processing is the final block in the video processing path and occurs after all other video processing has been performed; refer to the Video Data Input and Conversion section on page 9.

6.14. Source Termination

TMDS transmitters use a current source to develop the low-voltage differential signal at the receiver end of the DC-coupled TMDS transmission line, which constitutes open termination for reflected waveforms. Thus, signal reflections created by traces, packaging, connectors, and the cable can arrive at the transmitter with increased amplitude.

To reduce these reflections, the transmitter chip has an internal termination option of $150~\Omega$ for single-ended termination and $300~\Omega$ for differential termination. This termination reduces the amplitude of the reflected signal, but it also lowers the common-mode input voltage at the sink. As a result, Lattice Semiconductor recommends turning internal source termination off when the transmitter operates less than or equal to 165~MHz and turning it on for frequencies above 165~MHz. Using internal source termination at the higher frequencies while still maintaining conformance to the HDMI Specification is possible because the sink input voltage range tolerance is wider above 165~MHz.

6.15. Control Signal Connections

The general bus interconnection between the host processor and the transmitter is shown in Figure 6.6. The INT output can be connected as an interrupt to the processor, or the processor can poll a register to determine if any of the enabled interrupts have occurred.

Figure 6.6. Controller Connections Schematic

6.16. Input Data Bus Mapping

6.16.1. Common Video Input Formats

The video data capture block receives uncompressed 8- to 16-bit color depth (bits per color component) digital video from the digital video input interface and provides a data path width of from 8 to 36 bits. The data path is divided internally into three 16-bit data channels, which are configured for one of the video formats listed in Table 6.7.

Table 6.7. Video Input Formats

		Clock	Bus		Input Pixel Clock (MHz)									
Color Space	Color Video	Edge Mode	Width/ Color Depth	SYNC ⁶	480i ^{2, 3}	VGA/ 480p ²	XGA	720p	1080i	SXGA	1080p	UXGA	Notes	Page
		Single	36/12	Sep	27	25/27	65	74.25	74.25	108	148.5	1	1	34
		Single	30/10	Sep	27	25/27	65	74.25	74.25	108	148.5	162	1	34
		Single	24/8	Sep	27	25/27	65	74.25	74.25	108	148.5	162	1	34
RGB	4:4:4	Dual	12/8	Sep	27	25/27	65	74.25	74.25	-	_	1	4	44
		Dual	15/10	Sep	27	25/27	65	74.25	74.25	_	_	_	4	44
		Dual	18/12	Sep	27	25/27	65	74.25	74.25	_	_	_	4	44
		Dual	24/16	Sep	27	25/27	65	74.25	74.25	_	_	_	4	44
		Single Single	36/12	Sep	27	25/27	65	74.25	74.25	108	148.5	_	1	34
			30/10	Sep	27	25/27	65	74.25	74.25	108	148.5	162	1	34
		Single	24/8	Sep	27	25/27	65	74.25	74.25	108	148.5	162	1	34
	4:4:4	Dual	12/8	Sep	27	25/27	65	74.25	74.25	_	_	_	4	44
		Dual	15/10	Sep	27	25/27	65	74.25	74.25	-	_	1	4	44
YCbCr		Dual	18/12	Sep	27	25/27	65	74.25	74.25	1	_	1	4	44
xvYCC		Dual	24/16	Sep	27	25/27	65	74.25	74.25	1	_	1	4	44
		a: 1	16/8	Sep	27	25/27	65	74.25	74.25	108	148.5	162	1	36
		Single	20/10 24/12	Emb	27	25/27	65	74.25	74.25	108	148.5	162	1, 4	38
	4:2:2	C:	8/8	Sep	ı	50/54	130	148.5	148.5	-	_	-	1	40
		Single/ YC Mux	10/10	Emb	1	50/54	130	148.5	148.5	_	_	-	1, 4	42
		TOTVION	12/12	T1004	ı	50/54	130	_	_	-	_	_	1, 4, 5	_

Notes:

- 1. Latching edge is programmable.
- 2. 480i/p support also encompasses 576i/p support.
- 3. 480i must be provided at 27 MHz, using pixel replication, to be transmitted across the HDMI link.
- 4. If embedded syncs are provided, DE is generated internally from SAV/EAV sequences. Embedded syncs use ITU-R BT.656 SAV/EAV sequences of FF, 00, 00, XY.
- 5. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus.
- 6. Sep = separate sync; Emb = embedded sync; T1004 = BTA-T1004 encoded sync.

The system configures registers that set the bus width, video format, and rising or falling edge latching, according to the format of the video data received by the transmitter. The logic also supports dual-edge clocking.

Relevant format information must also be programmed into registers to be formed into AVI InfoFrame packets for passing over the HDMI link.

In the tables which follow, shaded cells labeled *LOW* should be held LOW when not used for a selected video format. If they will never be used in a given application, they should be tied to ground.

In the timing diagrams which follow, data bits labeled *val* do not convey pixel information and will values defined by the relevant specification. In the diagrams showing embedded sync, the SAV and EAV sequence *FF*, *00*, *00*, *XY* is specified by ITU-R BT.656.

6.16.2. RGB and YCbCr 4:4:4 Separate Sync

The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. Each column in Table 6.8 shows the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces $\{\}$.

Table 6.8. RGB/YCbCr 4:4:4 Separate Sync Data Mapping

Pin Name		Data Bus lor Depth	30-bit D 10-bit Co			36-bit Data Bus 12-bit Color Depth		
	RGB	YCbCr	RGB	YCbCr	RGB	YCbCr		
D0	LOW	LOW	LOW	LOW	B0[0]	Cb0[0]		
D1	LOW	LOW	LOW	LOW	B0[1]	Cb0[1]		
D2	LOW	LOW	B0[0]	Cb0[0]	B0[2]	Cb0[2]		
D3	LOW	LOW	B0[1]	Cb0[1]	B0[3]	Cb0[3]		
D4	B0[0]	Cb0[0]	B0[2]	Cb0[2]	B0[4]	Cb0[4]		
D5	B0[1]	Cb0[1]	B0[3]	Cb0[3]	B0[5]	Cb0[5]		
D6	B0[2]	Cb0[2]	B0[4]	Cb0[4]	B0[6]	Cb0[6]		
D7	B0[3]	Cb0[3]	B0[5]	Cb0[5]	B0[7]	Cb0[7]		
D8	B0[4]	Cb0[4]	B0[6]	Cb0[6]	B0[8]	Cb0[8]		
D9	B0[5]	Cb0[5]	B0[7]	Cb0[7]	B0[9]	Cb0[9]		
D10	B0[6]	Cb0[6]	B0[8]	Cb0[8]	B0[10]	Cb0[10]		
D11	B0[7]	Cb0[7]	B0[9]	Cb0[9]	B0[11]	Cb0[11]		
D12	LOW	LOW	LOW	LOW	G0[0]	Y0[0]		
D13	LOW	LOW	LOW	LOW	G0[1]	Y0[1]		
D14	LOW	LOW	G0[0]	Y0[0]	G0[2]	Y0[2]		
D15	LOW	LOW	G0[1]	Y0[1]	G0[3]	Y0[3]		
D16	G0[0]	Y0[0]	G0[2]	Y0[2]	G0[4]	Y0[4]		
D17	G0[1]	Y0[1]	G0[3]	Y0[3]	G0[5]	Y0[5]		
D18	G0[2]	Y0[2]	G0[4]	Y0[4]	G0[6]	Y0[6]		
D19	G0[3]	Y0[3]	G0[5]	Y0[5]	G0[7]	Y0[7]		
D20	G0[4]	Y0[4]	G0[6]	Y0[6]	G0[8]	Y0[8]		
D21	G0[5]	Y0[5]	G0[7]	Y0[7]	G0[9]	Y0[9]		
D22	G0[6]	Y0[6]	G0[8]	Y0[8]	G0[10]	Y0[10]		
D23	G0[7]	Y0[7]	G0[9]	Y0[9]	G0[11]	Y0[11]		
D24	LOW	LOW	LOW	LOW	R0[0]	Cr0[0]		
D25	LOW	LOW	LOW	LOW	R0[1]	Cr0[1]		
D26	LOW	LOW	R0[0]	Cr0[0]	R0[2]	Cr0[2]		
D27	LOW	LOW	R0[1]	Cr0[1]	R0[3]	Cr0[3]		
D28	R0[0]	Cr0[0]	R0[2]	Cr0[2]	R0[4]	Cr0[4]		
D29	R0[1]	Cr0[1]	R0[3]	Cr0[3]	R0[5]	Cr0[5]		
D30	R0[2]	Cr0[2]	R0[4]	Cr0[4]	R0[6]	Cr0[6]		
D31	R0[3]	Cr0[3]	R0[5]	Cr0[5]	R0[7]	Cr0[7]		
D32	R0[4]	Cr0[4]	R0[6]	Cr0[6]	R0[8]	Cr0[8]		
D33	R0[5]	Cr0[5]	R0[7]	Cr0[7]	R0[9]	Cr0[9]		
D34	R0[6]	Cr0[6]	R0[8]	Cr0[8]	R0[10]	Cr0[10]		
D35	R0[7]	Cr0[7]	R0[9]	Cr0[9]	R0[11]	Cr0[11]		
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC		
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC		
DE	DE	DE	DE	DE	DE	DE		

Figure 6.7. 8-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing

Figure 6.8. 10-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing

Figure 6.9. 12-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing

6.16.3. YC 4:2:2 Separate Sync Formats

The YC 4:2:2 formats receive one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the chroma values (Cb and Cr) change only every second pixel. The data bus can be 16, 20, or 24 bits. HSYNC and VSYNC are driven explicitly on their own signals. Each pair of columns in Table 6.9 shows the first and second pixel of n + 1 pixels in the line of video. The DE HIGH time must contain an even number of pixel clocks.

Table 6.9. YC 4:2:2 Separate Sync Data Mapping

Pin Name		Data Mapping Data Bus lor Depth	20-bit D 10-bit Co		24-bit Data Bus 12-bit Color Depth		
Name	Pixel #0	Pixel #1	Pixel #0	Pixel #1	Pixel #0	Pixel #1	
D[3:0]	LOW	LOW	LOW	LOW	LOW	LOW	
D4	LOW	LOW	LOW	LOW	Y0[0]	Y1[0]	
D5	LOW	LOW	LOW	LOW	Y0[1]	Y1[1]	
D6	LOW	LOW	Y0[0]	Y1[0]	Y0[2]	Y1[2]	
D7	LOW	LOW	Y0[1]	Y1[1]	Y0[3]	Y1[3]	
D8	LOW	LOW	LOW	LOW	Cb0[0]	Cr0[0]	
D9	LOW	LOW	LOW	LOW	Cb0[1]	Cr0[1]	
D10	LOW	LOW	Cb0[0]	Cr0[0]	Cb0[2]	Cr0[2]	
D11	LOW	LOW	Cb0[1]	Cr0[1]	Cb0[3]	Cr0[3]	
D[15:12]	LOW	LOW	LOW	LOW	LOW	LOW	
D16	Y0[0]	Y1[0]	Y0[2]	Y1[2]	Y0[4]	Y1[4]	
D17	Y0[1]	Y1[1]	Y0[3]	Y1[3]	Y0[5]	Y1[5]	
D18	Y0[2]	Y1[2]	Y0[4]	Y1[4]	Y0[6]	Y1[6]	
D19	Y0[3]	Y1[3]	Y0[5]	Y1[5]	Y0[7]	Y1[7]	
D20	Y0[4]	Y1[4]	Y0[6]	Y1[6]	Y0[8]	Y1[8]	
D21	Y0[5]	Y1[5]	Y0[7]	Y1[7]	Y0[9]	Y1[9]	
D22	Y0[6]	Y1[6]	Y0[8]	Y1[8]	Y0[10]	Y1[10]	
D23	Y0[7]	Y1[7]	Y0[9]	Y1[9]	Y0[11]	Y1[11]	
D[27:24]	LOW	LOW	LOW	LOW	LOW	LOW	
D28	Cb0[0]	Cr0[0]	Cb0[2]	Cr0[2]	Cb0[4]	Cr0[4]	
D29	Cb0[1]	Cr0[1]	Cb0[3]	Cr0[3]	Cb0[5]	Cr0[5]	
D30	Cb0[2]	Cr0[2]	Cb0[4]	Cr0[4]	Cb0[6]	Cr0[6]	
D31	Cb0[3]	Cr0[3]	Cb0[5]	Cr0[5]	Cb0[7]	Cr0[7]	
D32	Cb0[4]	Cr0[4]	Cb0[6]	Cr0[6]	Cb0[8]	Cr0[8]	
D33	Cb0[5]	Cr0[5]	Cb0[7]	Cr0[7]	Cb0[9]	Cr0[9]	
D34	Cb0[6]	Cr0[6]	Cb0[8]	Cr0[8]	Cb0[10]	Cr0[10]	
D35	Cb0[7]	Cr0[7]	Cb0[9]	Cr0[9]	Cb0[11]	Cr0[11]	
HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	HSYNC	
VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	VSYNC	
DE	DE	DE	DE	DE	DE	DE	

Figure 6.10. 8-Bit Color Depth YC 4:2:2 Timing

Figure 6.11. 10-Bit Color Depth YC 4:2:2 Timing

Figure 6.12. 12-Bit Color Depth YC 4:2:2 Timing

6.16.4. YC 4:2:2 Embedded Syncs Formats

The Embedded Sync format is identical to the YC 4:2:2 Formats with Separate Syncs format, except that the syncs are embedded and not explicit. The data bus can be 16, 20, or 24 bits. Each pair of columns in Table 6.10 shows the first and second pixel of n + 1 pixels in the line of video.

Table 6.10. YC 4:2:2 Embedded Sync Data Mapping

Pin Name		Data Bus lor Depth		ata Bus Ior Depth	24-bit Data Bus 12-bit Color Depth		
	Pixel #0	Pixel #1	Pixel #0	Pixel #1	Pixel #0	Pixel #1	
D[3:0]	LOW	LOW	LOW	LOW	LOW	LOW	
D4	LOW	LOW	LOW	LOW	Y0[0]	Y1[0]	
D5	LOW	LOW	LOW	LOW	Y0[1]	Y1[1]	
D6	LOW	LOW	Y0[0]	Y1[0]	Y0[2]	Y1[2]	
D7	LOW	LOW	Y0[1]	Y1[1]	Y0[3]	Y1[3]	
D8	LOW	LOW	LOW	LOW	Cb0[0]	Cr0[0]	
D9	LOW	LOW	LOW	LOW	Cb0[1]	Cr0[1]	
D10	LOW	LOW	Cb0[0]	Cr0[0]	Cb0[2]	Cr0[2]	
D11	LOW	LOW	Cb0[1]	Cr0[1]	Cb0[3]	Cr0[3]	
D[15:12]	LOW	LOW	LOW	LOW	LOW	LOW	
D16	Y0[0]	Y1[0]	Y0[2]	Y1[2]	Y0[4]	Y1[4]	
D17	Y0[1]	Y1[1]	Y0[3]	Y1[3]	Y0[5]	Y1[5]	
D18	Y0[2]	Y1[2]	Y0[4]	Y1[4]	Y0[6]	Y1[6]	
D19	Y0[3]	Y1[3]	Y0[5]	Y1[5]	Y0[7]	Y1[7]	
D20	Y0[4]	Y1[4]	Y0[6]	Y1[6]	Y0[8]	Y1[8]	
D21	Y0[5]	Y1[5]	Y0[7]	Y1[7]	Y0[9]	Y1[9]	
D22	Y0[6]	Y1[6]	Y0[8]	Y1[8]	Y0[10]	Y1[10]	
D23	Y0[7]	Y1[7]	Y0[9]	Y1[9]	Y0[11]	Y1[11]	
D[27:24]	LOW	LOW	LOW	LOW	LOW	LOW	
D28	Cb0[0]	Cr0[0]	Cb0[2]	Cr0[2]	Cb0[4]	Cr0[4]	
D29	Cb0[1]	Cr0[1]	Cb0[3]	Cr0[3]	Cb0[5]	Cr0[5]	
D30	Cb0[2]	Cr0[2]	Cb0[4]	Cr0[4]	Cb0[6]	Cr0[6]	
D31	Cb0[3]	Cr0[3]	Cb0[5]	Cr0[5]	Cb0[7]	Cr0[7]	
D32	Cb0[4]	Cr0[4]	Cb0[6]	Cr0[6]	Cb0[8]	Cr0[8]	
D33	Cb0[5]	Cr0[5]	Cb0[7]	Cr0[7]	Cb0[9]	Cr0[9]	
D34	Cb0[6]	Cr0[6]	Cb0[8]	Cr0[8]	Cb0[10]	Cr0[10]	
D35	Cb0[7]	Cr0[7]	Cb0[9]	Cr0[9]	Cb0[11]	Cr0[11]	
HSYNC	LOW	LOW	LOW	LOW	LOW	LOW	
VSYNC	LOW	LOW	LOW	LOW	LOW	LOW	
DE	LOW	LOW	LOW	LOW	LOW	LOW	

D[7:6]

IDCK Active video 00

XY

Y0[1:0]

Y1[1:0]

Figure 6.14. 10-Bit Color Depth YC 4:2:2 Embedded Sync Timing

Y2[1:0]

Y3[1:0]

Y*n*[1:0]

00

Figure 6.15. 12-Bit Color Depth YC 4:2:2 Embedded Sync Timing

6.16.5. YC Mux 4:2:2 Separate Sync Formats

The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on page 36. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.11 shows the four clock cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the rest of the pixels in a video line of n + 1 pixels.

Table 6.11. YC Mux 4:2:2 Separate Sync Data Mapping

Pin		8-bit Da 8-bit Col	ata Bus or Depth			10-bit Data Bus 10-bit Color Depth			12-bit Data Bus 12-bit Color Depth			
Name		Clock	cycle			Clock	cycle		Clock cycle			
	First	Second	Third	Fourth	First	Second	Third	Fourth	First	Second	Third	Fourth
D[3:0]		LC	W			LC	W			LC	W	
D4		LO	W			LC	W		Cr0[0]	Y0[0]	Cb0[0]	Y1[0]
D5		LC	W			LC	W		Cr0[1]	Y0[1]	Cb0[1]	Y1[1]
D6		LC	W		Cr0[0]	Y0[0]	Cb0[0]	Y1[0]	Cr0[2]	Y0[2]	Cb0[2]	Y1[2]
D7		LC	W		Cr0[1]	Y0[1]	Cb0[1]	Y1[1]	Cr0[3]	Y0[3]	Cb0[3]	Y1[3]
D[15:8]		LO	W			LC	W		LOW			
D16	Cr0[0]	Y0[0]	Cb0[0]	Y1[0]	Cr0[2]	Y0[2]	Cb0[2]	Y1[2]	Cr0[4]	Y0[4]	Cb0[4]	Y1[4]
D17	Cr0[1]	Y0[1]	Cb0[1]	Y1[1]	Cr0[3]	Y0[3]	Cb0[3]	Y1[3]	Cr0[5]	Y0[5]	Cb0[5]	Y1[5]
D18	Cr0[2]	Y0[2]	Cb0[2]	Y1[2]	Cr0[4]	Y0[4]	Cb0[4]	Y1[4]	Cr0[6]	Y0[6]	Cb0[6]	Y1[6]
D19	Cr0[3]	Y0[3]	Cb0[3]	Y1[3]	Cr0[5]	Y0[5]	Cb0[5]	Y1[5]	Cr0[7]	Y0[7]	Cb0[7]	Y1[7]
D20	Cr0[4]	Y0[4]	Cb0[4]	Y1[4]	Cr0[6]	Y0[6]	Cb0[6]	Y1[6]	Cr0[8]	Y0[8]	Cb0[8]	Y1[8]
D21	Cr0[5]	Y0[5]	Cb0[5]	Y1[5]	Cr0[7]	Y0[7]	Cb0[7]	Y1[7]	Cr0[9]	Y0[9]	Cb0[9]	Y1[9]
D22	Cr0[6]	Y0[6]	Cb0[6]	Y1[6]	Cr0[8]	Y0[8]	Cb0[8]	Y1[8]	Cr0[10]	Y0[10]	Cb0[10]	Y1[10]
D23	Cr0[7]	Y0[7]	Cb0[7]	Y1[7]	Cr0[9]	Y0[9]	Cb0[9]	Y1[9]	Cr0[11]	Y0[11]	Cb0[11]	Y1[11]
D[35:24]		LO	W		LOW				LC	W		
HSYNC	HSYNC HSYNC		HSYNC HSYNC		HSYNC HSYNC		NC					
VSYNC	VSY	′NC	VS\	/NC	VSYNC VSYNC		VSYNC VSYN		NC			
DE	D	E	D	Ε	D	E	DE		DE DE		E	

Figure 6.16. 8-Bit Color Depth YC Mux 4:2:2 Timing

Figure 6.18. 12-Bit Color Depth YC Mux 4:2:2 Timing

6.16.6. YC Mux 4:2:2 Embedded Sync Formats

This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Formats section on page 40, except the syncs are embedded. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.12 shows the four clock cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figures following this table show only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but the remaining pixels are similar to those shown in the figures of the previous section.

Table 6.12. YC Mux 4:2:2 Embedded Sync Data Mapping

Pin	8-bit Data Bus 8-bit Color Depth					10-bit Data Bus 10-bit Color Depth			12-bit Data Bus 12-bit Color Depth			
Name		Clock	cycle			Clock	cycle		Clock cycle			
	First	Second	Third	Fourth	First	Second	Third	Fourth	First	Second	Third	Fourth
D[3:0]		LO	W			LC	W			LO	W	
D4		LO	W			LC	W		Cr0[0]	Y0[0]	Cb0[0]	Y1[0]
D5		LC	W			LC	W		Cr0[1]	Y0[1]	Cb0[1]	Y1[1]
D6		LO	W		Cr0[0]	Y0[0]	Cb0[0]	Y1[0]	Cr0[2]	Y0[2]	Cb0[2]	Y1[2]
D7		LO	W		Cr0[1]	Y0[1]	Cb0[1]	Y1[1]	Cr0[3]	Y0[3]	Cb0[3]	Y1[3]
D[15:8]	LOW				LOW			LOW				
D16	Cr0[0]	Y0[0]	Cb0[0]	Y1[0]	Cr0[2]	Y0[2]	Cb0[2]	Y1[2]	Cr0[4]	Y0[4]	Cb0[4]	Y1[4]
D17	Cr0[1]	Y0[1]	Cb0[1]	Y1[1]	Cr0[3]	Y0[3]	Cb0[3]	Y1[3]	Cr0[5]	Y0[5]	Cb0[5]	Y1[5]
D18	Cr0[2]	Y0[2]	Cb0[2]	Y1[2]	Cr0[4]	Y0[4]	Cb0[4]	Y1[4]	Cr0[6]	Y0[6]	Cb0[6]	Y1[6]
D19	Cr0[3]	Y0[3]	Cb0[3]	Y1[3]	Cr0[5]	Y0[5]	Cb0[5]	Y1[5]	Cr0[7]	Y0[7]	Cb0[7]	Y1[7]
D20	Cr0[4]	Y0[4]	Cb0[4]	Y1[4]	Cr0[6]	Y0[6]	Cb0[6]	Y1[6]	Cr0[8]	Y0[8]	Cb0[8]	Y1[8]
D21	Cr0[5]	Y0[5]	Cb0[5]	Y1[5]	Cr0[7]	Y0[7]	Cb0[7]	Y1[7]	Cr0[9]	Y0[9]	Cb0[9]	Y1[9]
D22	Cr0[6]	Y0[6]	Cb0[6]	Y1[6]	Cr0[8]	Y0[8]	Cb0[8]	Y1[8]	Cr0[10]	Y0[10]	Cb0[10]	Y1[10]
D23	Cr0[7]	Y0[7]	Cb0[7]	Y1[7]	Cr0[9]	Y0[9]	Cb0[9]	Y1[9]	Cr0[11]	Y0[11]	Cb0[11]	Y1[11]
D[35:24]	LOW			LOW			LOW					
HSYNC	LOW			LOW			LOW					
VSYNC	LOW				LOW LOW			W				
DE	LOW					LC	W		LOW			

Figure 6.19. 8-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing

Figure 6.21. 12-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing

6.16.7. RGB and YCbCr 4:4:4 Dual Edge Mode Formats

The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.13 shows the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the *first* edge of IDCK as defined by the setting of the Edge Select bit (see the Programmer's Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). Refer to Table 4.11 on page 18 for the required timing relationships.

Table 6.13. RGB/YCbCr 4:4:4 Separate Sync Dual-Edge Data Mapping

Pin		12-bit D	ata Bus			15-bit D	ata Bus			18-bit C	ata Bus				ata Bus		
Name		8-bit Col				0-bit Co				2-bit Co							
		GB		bCr		GB		bCr		GB .		bCr		GB		bCr	
		Second	First	Second		Second		Second		Second		Second		Second		Second	
D0	Edge	Edge LOW	Edge LOW	Edge LOW	Edge	Edge	Edge LOW	Edge LOW	Edge	Edge	Edge	Edge	Edge	Edge	Edge	Edge Y081	
D0	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	B0[0] B0[1]	G0[6]	Cb0[0] Cb0[1]	Y0[6] Y0[7]	B0[0] B0[1]	G0[8] G0[9]	Cb0[0] Cb0[1]	Y09]	
D2	LOW	LOW	LOW	LOW	B0[0]	G0[5]	Cb0[0]	Y0[5]	B0[1]	G0[8]	Cb0[1]	Y0[8]	B0[1]		Cb0[1]		
D3	LOW	LOW	LOW	LOW	B0[0]	G0[6]	Cb0[0]	Y0[6]	B0[2]	G0[9]	Cb0[2]	Y0[9]	B0[2]		Cb0[2]		
D3	B0[0]	G0[4]	Cb0[0]	Y0[4]	B0[2]	G0[7]	Cb0[1]	Y0[7]	B0[4]		Cb0[3]	Y0[10]	B0[4]	- '	Cb0[3]		
D5	B0[1]	G0[5]	Cb0[1]	Y0[5]	B0[3]	G0[8]	Cb0[3]	Y0[8]	B0[5]		Cb0[5]		B0[5]		Cb0[5]		
D6	B0[2]	G0[6]	Cb0[2]	Y0[6]	B0[4]	G0[9]	Cb0[4]	Y0[9]	B0[6]	R0[0]	Cb0[6]	Cr0[0]	B0[6]	- '	Cb0[6]		
D7	B0[3]	G0[7]	Cb0[3]	Y0[7]	B0[5]	R0[0]	Cb0[5]	Cr0[0]	B0[7]	R0[1]	Cb0[7]	Cr0[1]	B0[7]	G0[15]	Cb0[7]	Y015]	
D8	B0[4]	R0[0]	Cb0[4]	Cr0[0]	B0[6]	R0[1]	Cb0[6]	Cr0[1]	B0[8]	R0[2]	Cb0[8]	Cr0[2]	B0[8]	R0[0]	Cb0[8]	Cr00]	
D9	B0[5]	R0[1]	Cb0[5]	Cr0[1]	B0[7]	R0[2]	Cb0[7]	Cr0[2]	B0[9]	R0[3]	Cb0[9]	Cr0[3]	B0[9]	R0[1]	Cb0[9]	Cr01]	
D10	B0[6]	R0[2]	Cb0[6]	Cr0[2]	B0[8]	R0[3]	Cb0[8]	Cr0[3]	B0[10]	R0[4]	Cb0[10]	Cr0[4]	B0[10]	R0[2]	Cb0[10]	Cr02]	
D11	B0[7]	R0[3]	Cb0[7]	Cr0[3]	B0[9]	R0[4]	Cb0[9]	Cr0[4]	B0[11]	R0[5]	Cb0[11]	Cr0[5]	B0[11]	R0[3]	Cb0[11]	Cr03]	
D12	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[0]	R0[6]	Y0[0]	Cr0[6]	B0[12]	R0[4]	Cb0[12]	Cr04]	
D13	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[1]	R0[7]	Y0[1]	Cr0[7]	B0[13]	R0[5]	Cb0[13]	Cr05]	
D14	LOW	LOW	LOW	LOW	G0[0]	R0[5]	Y0[0]	Cr0[5]	G0[2]	R0[8]	Y0[2]	Cr0[8]	B0[14]	R0[6]	Cb0[14]	Cr06]	
D15	LOW	LOW	LOW	LOW	G0[1]	R0[6]	Y0[1]	Cr0[6]	G0[3]	R0[9]	Y0[3]	Cr0[9]	B0[15]	R0[7]	Cb0[15]	Cr07]	
D16	G0[0]	R0[4]	Y0[0]	Cr0[4]	G0[2]	R0[7]	Y0[2]	Cr0[7]	G0[4]	R0[10]	Y0[4]	Cr0[10]	G0[0]	R0[8]	Y0[0]	Cr08]	
D17	G0[1]	R0[5]	Y0[1]	Cr0[5]	G0[3]	R0[8]	Y0[3]	Cr0[8]	G0[5]	R0[11]	Y0[5]	Cr0[11]	G0[1]	R0[9]	Y0[1]	Cr09]	
D18	G0[2]	R0[6]	Y0[2]	Cr0[6]	G0[4]	R0[9]	Y0[4]	Cr0[9]	LOW	LOW	LOW	LOW	G0[2]	R0[10]	Y0[2]	Cr010]	
D19	G0[3]	R0[7]	Y0[3]	Cr0[7]	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[3]	R0[11]	Y0[3]	Cr011]	
D20	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[4]	R0[12]	Y0[4]	Cr012]	
D21	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[5]	R0[13]	Y0[5]	Cr013]	
D22	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[6]	R0[14]	Y0[6]	Cr014]	
D23	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	G0[7]	R0[15]	Y0[7]	Cr015]	
HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	HS	
VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	VS	
DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	DE	

Figure 6.24. 12-Bit Color Depth 4:4:4 Dual Edge Timing

Figure 6.25. 16-Bit Color Depth 4:4:4 Dual Edge Timing

7. Design Recommendations

7.1. Power Supply Decoupling

Designers should include decoupling and bypass capacitors at each power pin in the layout. Figure 7.1 shows this schematically. Figure 7.2 shows a representative layout of the various types of power connections on the transmitter. Connections in any one group (such as all the CVCC12 pins) can share C2, C3, and the ferrite. Locate a separate C1 as close as possible to the VCC pin. The recommended impedance of the ferrite is $10~\Omega$ or more in the frequency range of 1–2 MHz.

Figure 7.1. Decoupling and Bypass Schematic

Figure 7.2. Decoupling and Bypass Capacitor Placement

7.2. Power Supply Sequencing

All power supplies in the Sil9136 transmitter are independent. However; identical supplies must be provided at the same time. Independent supplies don't have any sequencing requirements.

7.3. ESD Recommendations

The Sil9136 transmitter can withstand electrostatic discharges due to handling during manufacture up to 4 kV HBM. In applications where higher protection levels are required, ESD-limiting components can be placed on the pins of the chip. These components typically have a capacitive effect that reduces the signal quality on the differential lines at higher clock frequencies, so use the lowest capacitance devices possible on these lines. In no case should the capacitance value exceed 1 pF.

7.4. High-Speed TMDS Signals

7.4.1. Layout Guidelines

The layout guidelines below help to ensure signal integrity. Lattice Semiconductor encourages the board designer to follow them as closely as possible.

- Locate the output connector that carries the TMDS signals as close as possible to the chip.
- Route the differential lines as directly as possible from the connector to the device pins.
- Route the two traces of each differential pair together.
- Minimize the number of vias through which the signal lines pass.
- Lay out the two traces of each differential pair with a controlled differential impedance of 100 Ω.

Because Lattice Semiconductor devices are tolerant of skews between differential pairs, spiral skew compensation for path length differences is not required.

7.4.2. TMDS Output Recommendation

The Sil9136 transmitter is capable of sending frequencies of up to 225 MHz over the TMDS clock line.

If the output of the transmitter is connected to an HDMI connector, the output port must be HDMI-compliant. The TMDS output is designed to give the maximum horizontal eye opening by speeding up the rise and fall time to the minimum value of 75 ps allowed by the HDMI specification. Depending on the design layout and with light loading, it is possible to see rise times slightly faster than 75 ps. Adding components such as common mode filters and ESD suppression devices slows down the rise and fall time to well within the specification. If these components are not in the design, adding a discrete capacitor of approximately 1 pF from each of the differential signal traces to ground can solve this compliance issue.

The following external components have been tested for output compliance. Components with similar capacitance can also be used:

- Common mode filter: TDK ACM2012H
- ESD suppression diode: Semtech RClamp0524P. Semtech also makes a pin-compatible device (Semtech SRV05) that Lattice Semiconductor has not tested but for which similar compliance performance is expected.

7.4.3. EMI Considerations

Electromagnetic interference is a function of board layout, shielding, operating voltage and frequency, and so on. When attempting to control emissions, do not place any passive components on the differential signal lines (except for the ESD protection described earlier). The differential signals used in HDMI are inherently low in EMI if the routing recommendations noted in the Layout Guidelines section above are followed.

The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as possible, with all ground signals of the chip using a common ground.

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8. Packaging

8.1. ePad Requirements

The Sil9136 HDMI Deep Color Transmitter chip is packaged in a 100-pin, 14 mm x 14mm TQFP package with an ePad that is used for the electrical ground of the device and for improved thermal transfer characteristics. The ePad dimensions are 5 mm x 5 mm ±0.20 mm. Soldering the ePad to the ground plane of the PCB is **required** to meet package power dissipation requirements at full speed operation, and to correctly connect the chip circuitry to electrical ground. A clearance of at least 0.25 mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid the possibility of electrical shorts.

The thermal land area on the PCB may use thermal vias to improve heat removal from the package. These thermal vias also double as the ground connections of the chip and must attach internally in the PCB to the ground plane. An array of vias should be designed into the PCB beneath the package. For optimum thermal performance, the via diameter should be 12 mils to 13 mils (0.30 mm to 0.33 mm) and the via barrel should be plated with 1-ounce copper to plug the via. This design helps to avoid any solder wicking inside the via during the soldering process, which may result in voids in solder between the pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be tented with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The solder mask diameter should be at least 4 mils (0.1 mm) larger than the via diameter.

Package stand-off when mounting the device also needs to be considered. For a nominal stand-off of approximately 0.1 mm the stencil thickness of 5 mils to 8 mils should provide a good solder joint between the ePad and the thermal land.

8.2. PCB Layout Guidelines

PCB layout designers should refer to Lattice Semiconductor application note *PCB Layout Guidelines: Designing with Exposed Pads* (Sil-AN-0129) for basic design guidelines when designing with thermally enhanced packages using an Exposed Pad.

8.3. Package Dimensions

These drawings are not to scale.

Figure 8.1. 100-Pin TQFP Package Diagram

JEDEC Package Code MS-026

Item	Description	Min	Тур	Max		
Α	Thickness	ı	1	1.20		
A1	Stand-off	0.05	_	0.15		
A2	Body thickness	0.95	1.00	1.05		
D	Footprint	16.00 BSC				
E	Footprint		16.00 BSC			
D ₁	Body size		14.00 BSC			
E ₁	Body size 14.00 BSC					
b	Lead width	0.17	0.22	0.27		

Item	Description	Min	Тур	Max
С	Lead thickness	0.09	1	0.20
е	Lead pitch		0.50 BSC	
L	Lead foot length	0.45	0.60	0.75
L ₁	Total lead length		1.00 REF	
R ₁	Lead radius, inside	0.08	1	_
R ₂	Lead radius, outside	0.08	_	0.20
S	Lead horizontal run	0.20	_	
ссс	Lead coplanarity		0.08	·

Dimensions given in mm.

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

8.4. Marking Specification

This marking drawing is not to scale.

Figure 8.2. Marking Diagram

Figure 8.3. Alternate Topside Marking

8.5. Ordering Information

Production Part Numbers:

Device	Part Number
Standard	Sil9136CTU

The universal package can be used in lead-free and ordinary process lines.

References

Standards Documents

This is a list of the abbreviations for standards mentioned in this document. Contact the responsible standards groups for more information on a specific standard.

Abbreviation	Standards publication, organization, and date
HDMI	High Definition Multimedia Interface, Revision 1.4, HDMI Consortium, June 2009
HCTS	HDMI Compliance Test Specification, Revision 1.4, HDMI Consortium, November 2009
HDCP	High-bandwidth Digital Content Protection, Revision 1.4, Digital-Content Protection, LLC; July 2009
E-EDID	Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000
E-DID IG	VESA EDID Implementation Guide, VESA, June 2001
CEA-861-D	A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA; July 2006
EDDC	Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004
ITU-R BT.601	Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, International Telecommunications Union, January 2007
ITU-R BT.656	Interface for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601, International Telecommunications Union, December 2007
ITU-R BT.709	Parameter values for the HDTV standards for production and international programme exchange, International Telecommunications Union, April 2002
IEC 61966-2-4	Multimedia systems and equipment - Colour measurement and management - Part 2-4: Colour management - Extended-gamut YCC colour space for video applications – xvYCC, International Electrotechnical Commission, January 2006
ACPI	Advanced Configuration and Power Interface, Revision 4.0, Hewlett-Packard/Intel/Microsoft/Phoenix/ Toshiba, June, 2009
BTA T-1004	Video Signal Interfaces for EDTV-II Studio Equipment, Version 1.0, ARIB; June 1995

Standards Groups

Standards Organization	Web URL
ANSI/EIA/CEA	http://global.ihs.com
VESA	http://www.vesa.org
HDCP	http://www.digital-cp.com
DVI	http://www.ddwg.org
HDMI	http://www.hdmi.org
ITU	http://www.itu.int
IEC	http://www.iec.org
ARIB	http://www.arib.or.jp

Lattice Semiconductor Documents

This is a list of Lattice Semiconductor documents that are available from your Lattice Semiconductor sales representative. *The Programmer's Reference requires an NDA with Lattice Semiconductor.*

Document	Title
SiI-PR-1032	Transmitter Programming Interface (TPI) Programmer's Reference
SiI-PR-0041	CEC Programming Interface (CPI)Programmer's Reference
Sil-AN-1029	PCB Layout Guidelines: Designing with Exposed Pads

© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Technical Support

For technical support questions, contact your regional sales manufacturer representative or distributor. For contact information, visit the Lattice Semiconductor web site at www.latticesemi.com.

Revision History

Revision B, June 2017

Marking spec changed as per PCN13A16. Added Figure 8.3. Alternate Topside Marking.

Revision A02, March 2016

Formatted to latest template

Revision A02, September 2010

Removed Patent information from DB, rolled the revision

Revision A01, August 2010

Inserted Export Control paragraph, corrected HDCP organization name.

Revision A, March 2010

First Production release.

7th Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com