I overview

i.) Definition:

Solid Ansle = 12 = surface area of a sphere covered by the detector.

(ie; the detectors area projected and the surface of a sphere

A = surface area of detector

r = distance from interaction point

to detector

$$\Lambda_{\text{max}} = \frac{A}{\Gamma^2} = \frac{4\pi r^2}{\Gamma^2} = 4\pi \text{ storadions}$$

Aspher = 4772 =) if your detector was a hollow ball.

UNITS of
$$\nabla(\theta)$$
 = $\frac{particles}{skradian} = m^2$

$$\frac{particles}{m^2}$$

I Overview 用户 (ross-section)
周记) definition

if all particles are scattered The dNiN = dN

I $(2\pi b)(db) = IT(0) SNO do dd$ $= IT(0) SNO do (2\pi)$ $= IT(0) SNO do (2\pi)$

J(G) = b db : classical relation

This term is calculated from

places phisics description of

process

ii) example.

2)

Find J(0) for an eleastic collision of a imperetrable spheres of rodius "a"

ie U(n) = {0 r2a

- AB France
Before

(m) - (m)

After Sty

I over view

E) X-sect (cross-section)

ii.) example

To solve this elastic scattering problem

we will describe the scattering process in the

center of Moss (C.M.) frame and then reduce

the 2-body problem to a 1-body problem.

b = import parameter = distance between mi: mz during collision

Now Reduce 2-body problem to 1-body problem

The points to the center of Mass

[The distance between ming.]

OVER VIEW E.) X-sect iii) example Now simplify the problem by morny the coordnate system to the C.M.; $\vec{r}=0$ (Note: your coordinate system is nowing of speed von) TR =0 = MIRITINETE =) m, c = - m, c define a new rector = 1 - 12 def of reduced miss comes from stor solving 2 equatrons: min + min = 0 $\frac{7}{7} - \frac{7}{2} = \frac{7}{7}$ $\frac{7}{7} = \frac{7}{1} = \frac{7}{1}$ $\frac{7}{7} = \frac{7}{1} = \frac{7}{1}$ $\mu = \text{reduced moss} = \frac{m_1 m_2}{(m_1 + m_2)} = \tilde{\eta} = \frac{\mu_1}{m_1}$ 72 = 47 How 3 this usefull? you can now cecast the public

For from a 2 body proble to a

1-bidy problem

Then $U(r) = \frac{1}{2} \frac{1}{2} e^{2r} e^{2r}$ Then $U(r) = \frac{1}{2} \frac{1}{2} e^{2r} e^{2r}$ Then $U(r) = \frac{1}{2} \frac{1}{2} e^{2r}$ Collish Thenes $\frac{1}{2} e^{2r}$ Thenes $\frac{$

$$L = \frac{1}{2} m_{1} |\vec{r}_{1}|^{2} + \frac{1}{2} m_{2} |\vec{r}_{2}|^{2} - U(\vec{r})$$

$$\vec{r}_{1} = \mu_{1} \vec{r}_{2} = \left| \left| \frac{1}{r_{1}} \right|^{2} = \left| \frac{\mu_{1}}{m_{1}} \right|^{2} |\vec{r}_{1}|^{2} + \left| \frac{1}{r_{1}} \right|^{2} |\vec{r}_{2}|^{2}$$

$$L = \frac{1}{2} m_{1} \left(\frac{m_{2}}{n_{1} r m_{2}} \right)^{2} |\vec{r}_{2}|^{2} + \frac{1}{2} m_{1} \left(\frac{m_{1}}{n_{1} r m_{2}} \right)^{2} |\vec{r}_{2}|^{2} + U(\vec{r})$$

$$= \frac{1}{2} \frac{m_{1} m_{2}}{n_{1} r m_{2}} |\vec{r}_{1}|^{2} - U(r) = \frac{1}{2} \mu |\vec{r}_{2}|^{2} - U(r)$$

$$= \frac{1}{2} \frac{m_{1} m_{2}}{n_{1} r m_{2}} |\vec{r}_{1}|^{2} - U(r) = \frac{1}{2} \mu |\vec{r}_{2}|^{2} - U(r)$$

0 = 0

I overview E.) X-sut ii) example IN the Lograngian formalism, the equations of notron are given by de = d de whe 9- reprosuts one of the coardinates (conversal renables) To get a X-sect we are interested in finding an exposision for db (the depurdence at the import parameter on the scattering angle (in this case the CM scattering angle) so Let's redraw the collision in terms of the reduced mass (pr) Rta: a= rodivo of m2 = rodivo For Leadon collision 5=0 821 O: IT for glovery collision by a + redus of m, = 2a

Observation: O gets smoller as b gets bigger db &1: we will take magnitude in the end

I Overview

Using place polar coordinates
$$(R, \phi)$$
 (not θ yet)

 $\vec{r} = \dot{r} \hat{e}_{R} + R \hat{e}_{\phi} \hat{e}_{\phi}$
 $T = \frac{1}{2} \mu \left(\dot{R}^{2} + R \dot{\phi}^{2} \right)$

$$L = T - V$$

$$U(R) = \begin{cases} 0 & R \ge a \\ \infty & R \le a \end{cases}$$

$$L = \int \mu(\hat{R}^2 + \hat{R}^2 \hat{\phi}^2) - U(R)$$

$$O = \int_{\mathcal{X}} \left[\mu \, \mathcal{C}^{\dagger} \phi \right]$$

det st constant angular nombra = constant = constant =
$$2 \times \vec{p}$$
 = $2 \times \vec{p}$ = 2

substitue e mto L

$$L = \frac{1}{2} \mu \dot{R}^{2} + \mu \dot{R}^{2} \left(\frac{l}{\mu R^{2}}\right)^{2} - U(r)$$

$$= \frac{1}{2} \mu \dot{R}^{2} + \frac{1}{2} \frac{l^{2}}{\mu R^{2}} - U(r)$$

I overnew F.) X sect

summy: we have the Lugrangion $L = \frac{1}{2} \mu \dot{R}^2 + \frac{1}{2\mu R^2} - V(r)$ $\dot{\xi}$ $\dot{\xi}$ $\dot{\xi}$ $\dot{\xi}$ $\dot{\xi}$ $\dot{\xi}$

we want do since RES b

or should by and find expussions

or do fin types of R(b)

1= pp 4; Trick = dd = dd de

=) l= MR2 dd dR = MR2 do R

or de= l de firition pred expression for is

return to the Lossangian experement except this tippes write thanklais the Hamiltonian

H= T+V = 1/2/2 + 12 + U(r) = constant = E

or
$$\dot{R} = \pm \frac{1}{2(E-U(r))} - \frac{12}{\mu^2 R^2}$$

UNITO Check:
$$\begin{cases} 2^{2} \\ 4^{2} R^{2} \end{cases} = \frac{|\zeta_{5}^{2} m^{4}|_{5^{2}}}{|\zeta_{5}^{2} m^{2}} = \left(\frac{m}{5}\right)^{2} - \left(\frac{m}{5}\right)^{2} = \frac{N \cdot m}{|\zeta_{5}^{2}|} = \left(\frac{m}{5}\right)^{2} - \left(\frac{m}{5}\right)^{2} - \left(\frac{m}{5}\right)^{2} = \left(\frac{m}$$

NOU sobotiNe è mto de equation

$$\int dq = \int dR = \left(\frac{1}{\mu R^2}\right) \left(\frac{1}{\pi R^2}\right$$

$$-\frac{1}{2} \Delta \phi = \frac{1}{4} \int_{0}^{\infty} \frac{1 dR}{R^{2} \sqrt{2 \mu E - \ell^{2}}}$$

Integral table =>

$$\int \frac{dx}{x \left[ax^2 + bx + c \right]} = \int -c^{-1} \sin \left(\frac{bx + 2c}{|x| \sqrt{b^2 + 4ac}} \right)$$
so let $x=2$ $a=1$, $b=0$, $c=-b^2$

$$\Delta \phi = b \frac{1}{[-(-b)^2]} \sin^{-1} \left(\frac{-2b^2}{R[0-4(1)(-b^2)]} \right) \Big|_{\alpha}$$

$$= sm'(a) - sm'(-b) = sm'(b)$$

or
$$Sm(\frac{pq}{\phi}) = \frac{b}{a}$$

$$3iw\left(\frac{7}{2}-\frac{\theta}{2}\right)=\frac{b}{a}$$

$$\cos(\frac{b}{2}) = \frac{b}{a} \Rightarrow b = a\cos(\frac{b}{2})$$

$$T_{rig} idw W_g$$
:
 $s_{iW}(\frac{9}{2} + \frac{1}{2}) = cos(\frac{1}{2}) s_{iW}(\frac{1}{2}) + cos(\frac{1}{2}) s_{iW}(\frac{1}{2})$
 $s_{iW} \Theta = 2 cos(\frac{1}{2}) s_{iW}(\frac{1}{2})$

T=
$$\frac{a^2}{2}(\frac{1}{2}) = \frac{a^2}{4} - \frac{a^2}{6}$$
 - cross-section in the C.M. frame for 2 bills colliding improvemble

I overview

E.) X-sect cii.) TCH): cross-section in LAB France

The C.M. Frame is often chosen to theartreally calculate cross-section, however, the experients are done in the lab Frame: Sometimes you wild to coopere data with theory that is transformed between 2 Frames (Jacob ion).

IN either France Northwar = IST(0) de = constant

OF T(0) de = T(4) de 1

France France

2) $T(Y) = \frac{51NB}{51NY} \frac{d\Theta}{dY} T(\Theta)$ Sin Y de to know depuduree

Bot of Θ on Y

I overview E.) X-sect. (ii.) (4) Lets return back to our picture of the & scattery process Initial Lab Fram! C.M. Fran: Is 9 superimose pictures! V, SIND = V, SINY try ide titres V (cost = vcm + V/cos 0) NON-relativistro (Galled) = SANO (0) 0 + (Vin)

For an elastic collision:
$$U_1' = V_1'$$
; $U_2' = V_2''$

$$iv \quad c.m. \quad from: directions clarge$$

$$\vec{V}_{cm} = \frac{n_1 \vec{U}_1}{n_1 + m_2} \vec{U}_3 = \left(\frac{m_1}{n_1 + m_2}\right) \vec{U}_1 : \text{ Def.}$$

coordwale transformation:

$$U_1 = \overline{U}_1' + \overline{V}_{con} = \overline{U}_1' + \left(\frac{m_1}{n_2 + m_2}\right)U_1$$

$$=) U_1' = \left[1 - \left(\frac{m_1}{r_1 + n_2} \right) \right] U_1 = \frac{m_2}{n_1 + n_2} U_1$$

$$=) \frac{N_{cm}}{V_{i}} = \frac{\left(\frac{m_{i}}{m_{i}rm_{i}}\right)U_{i}}{\left(\frac{r_{i}}{r_{i}rm_{i}}\right)U_{i}} = \frac{m_{i}}{m_{i}}$$

or
$$tan Y = \frac{sm\theta}{tan}$$

$$= \frac{s_{1N}\Theta}{t_{2N}} - \frac{s_{1N}\Theta}{t_{2N}} - \frac{s_{2N}\Theta}{t_{2N}}$$

$$= \frac{s_{1N}\Theta\cos t}{s_{2N}} - \frac{s_{2N}\Theta}{s_{2N}}$$

$$= \frac{s_{2N}\Theta\cos t}{s_{2N}\Theta} - \frac{s_{2N}\Theta}{s_{2N}}$$

$$= \frac{s_{2N}\Theta\cos t}{s_{2N}\Theta\cos t} - \frac{s_{2N}\Theta\cos t}{s_{2N}\Theta\cos t}$$

$$= \frac{s_{2N}\Theta\cos t}{s_{2N}\Theta\cos t} - \frac{s_{2N}\Theta\cos t}{s_{2N}\Theta\cos t}$$

At
$$f = \frac{sm(\theta-4)}{sm4} = constant$$

then $JF = 0 = \frac{df}{d4} \frac{d4}{d\theta} + \frac{df}{d\theta} \frac{d\theta}{d\theta} = \frac{chevin rule}{d4}$

or $\frac{d\theta}{d4} = \frac{-\frac{df}{d4}}{\frac{df}{d\theta}}$

$$\frac{\partial f}{\partial \psi} = \frac{1}{2} \left[\frac{s_{1} w (\theta - \psi)}{s_{1} w \psi} \right] = -\frac{co_{2} (\theta - \psi)}{s_{1} w \psi} - \frac{s_{1} w (\theta - \psi)}{s_{1} w \psi} + \frac{s_{1} w (\theta - \psi)}{s_{1} w \psi} +$$

$$\frac{1}{3} = \frac{\cos(\theta-4) + \sin(\theta-4)}{\sin^2 4} = 1 + \frac{\sin(\theta-4)\cos(4)}{\cos(\theta-4)\sin 4}$$

$$T(4) = \frac{5 \times 6}{5 \times 4} \frac{10}{04} T(6)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \sin 4} \right] T(0)$$

$$= \frac{5 \times 6}{5 \times 4} \left[1 + \frac{5 \times (0-4) \cos 4}{\cos (0-4) \cos 4} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times (0-4) \cos 4} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{5 \times (0-4) \cos 4}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right] T(0)$$

$$= \frac{1}{5 \times 6} \left[\frac{1}{5 \times 6} \right$$

for a sefull egration we need to recort the c.m. angle 0 in terms of things we can neasure in the lab tomps (4, m, m2)

This will be a lot of tedious algebra

iets (ocus an the numerou of 1 tom)
$$T(+) = \sum_{sw\theta} \left[\frac{\cos(\theta - t)\sin t + \sin(\theta - t)\cos t}{\sin t} - \sigma(\theta) \right]$$

$$\cos(\theta-4)\sin\psi + \sin(\theta-4)\cos\psi =$$

$$\left[\cos\theta\cos\psi + \sin\theta\sin\psi\right]\sin\psi + \left[\sin\theta\cos\psi - \cos\theta\sin\psi\right]\cos\psi$$

$$ID$$

$$=) \quad T(+) = \frac{s_{10}^{2}\theta}{s_{10}^{2}\Psi} \quad Cos(\theta-4) \xrightarrow{\text{suff}} \quad T(\theta)$$

as shown on 19 26-27

$$\frac{m_1}{m_2} = \frac{\text{Sw}(\theta - 4)}{\text{Sw} 4}$$

$$= \frac{\text{Iike}}{\text{Sw} 4}$$

$$cos(4)$$
 $(m_2) = cos(4) \frac{sw(\theta-4)}{sw(4)}$: multiply both $sw(4)$

udd cas(0-4) to Lot sides

$$cos(\theta-4) + cos(4) \frac{m_1}{m_2} = cos(\theta-4) \frac{t}{acos} + s \frac{m(\theta-4)}{sm4}$$

$$\frac{m_1}{m_2}\cos(4) + \cos(6-4) = \frac{\sin(4)\cos(6-4) + \cos(4)\sin(6-4)}{\sin 4}$$

I overview citi.)
$$\sigma(\psi)$$

Now we have :
$$\nabla(\psi) = \left(\frac{m_1}{m_2}\cos(\psi) + \cos(\theta - \psi)\right)^2 \frac{\nabla(\theta)}{\cos(\theta - \psi)}$$

Now we need to get rid of cos(0-4) term and everything is in terms of Lob France observables

Sin(
$$\Theta-4$$
) = $\frac{m_1}{m_2}$ Sin $\frac{4}{m_2}$
Sides Sin $\frac{2}{(\Theta-4)} = \frac{m_1}{m_2}$ Sin $\frac{2}{4}$
 $1-\cos^2(\Theta-4) = \frac{m_1}{m_2}$ sin $\frac{4}{m_2}$
Finally!

$$T(4) = \left[\frac{m_1}{m_2}\cos4 + \left[1 - \left(\frac{m_1}{m_2}\right)^2\sin^24\right]^2\right] T(\theta)$$

we can now transform TOO) to T(4) and compare with experiment