Activity 25 Secant

- 1. As θ changes from 0 to $\frac{\pi}{2}$, $sec(\theta)$ changes from 1 to ∞ .
- 2. $\sec(\theta)$ will be negative for $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$
- 3.
- a) Angle increment is $\frac{2\pi}{24} = \frac{\pi}{12}$
- b) $\sec\left(\frac{\pi}{3}\right) = \frac{1}{\cos\left(\frac{\pi}{3}\right)}$
- c) $\sec\left(\frac{2\pi}{3}\right) = \frac{1}{\cos\left(\frac{2\pi}{3}\right)}$
- d) $\sec(\theta) = \frac{1}{\cos(\theta)}$
- 4.

5. Since $\cos\left(\frac{\pi}{2}\right) = 0$, $\sec\left(\frac{\pi}{2}\right) = \frac{1}{\cos\left(\frac{\pi}{2}\right)} = \frac{1}{0}$ which is undefined.

6.

a) From
$$\triangle OAT$$
, $\cos(\theta) = \frac{1}{\sec(\theta)}$

$$\therefore \sec(\theta) = \frac{1}{\cos(\theta)}$$

b)
$$\tan(\theta) = \frac{AT}{1}$$

i.e. $AT = \tan(\theta)$

c)
$$1 + \tan^2(\theta) = \sec^2(\theta)$$

d) R.T.P:
$$1 + \tan^2(\theta) = \sec^2(\theta)$$

LHS = $1 + \tan^2(\theta)$
 $\sin^2(\theta)$

$$=1 + \frac{\sin^{2}(\theta)}{\cos^{2}(\theta)}$$

$$=\frac{\cos^{2}(\theta) + \sin^{2}(\theta)}{\cos^{2}(\theta)}$$

$$=\frac{1}{\cos^{2}(\theta)}$$

$$=\sec^{2}(\theta)$$

=RHS