Un corrigé de l'interrogation écrite n° 4

Questions de cours

a) Soient X un ensemble, \mathcal{A} une tribu sur X, et μ une mesure sur (X, \mathcal{A}) . Definir $\mathcal{L}^2_{\mathbb{C}}(\mu)$ et $L^2_{\mathbb{C}}(\mu)$.

Pour toute $f \colon X \to \mathbb{C}$ mesurable (\mathbb{C} est muni de $\mathscr{B}(\mathbb{C})$), on pose : $\|f\|_2 := \left(\int_X |f(x)|^2 \,\mathrm{d}\mu(x)\right)^{\frac{1}{2}} \le +\infty$.

On note $\mathcal{L}^2_{\mathbb{C}}(\mu) := \{f : X \to \mathbb{C} \text{ mesurable } | \|f\|_2 < +\infty \}$, \mathcal{N}_{μ} le sous-espace vectoriel de $\mathcal{L}^2_{\mathbb{K}}(\mu)$

formé des fonctions mesurables nulles μ -presque partout, et $L^2_{\mathbb{C}}(\mu) := \mathscr{L}^2_{\mathbb{C}}(\mu)/\mathcal{N}_{\mu}$

[On sait que $L^2_{\mathbb{C}}(\mu)$ muni de $\dot{f}\mapsto \|f\|_2$ est un espace vectoriel normé.]

 $\hbox{\scriptsize (3)}\quad \hbox{\scriptsize b)}\ \ \textit{\'Enoncer le \it{w} th\'eor\`eme de repr\'esentation de Riesz \it{w}: hypoth\`ese? conclusion?}$

Hypothèse.

(4)

(8)

Soit H un espace de Hilbert sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On note $\langle \cdot, \cdot \rangle$ le produit scalaire de H.

(Un espace de Hilbert est un espace vectoriel normé complet dont la norme vient d'un produit scalaire.) Conclusion.

Pour toute $\varphi \colon H \to \mathbb{K}$ linéaire continue, il existe $y \in H$ unique tel que $\varphi(x) = \langle x, y \rangle$ pour tout $x \in H$.

(En notant H' l'espace vectoriel normé des applications linéaires continues de H dans \mathbb{K} , on a plus précisément : l'application \mathbb{R} -linéaire $y \in H \mapsto \langle \cdot, y \rangle \in H'$ est bijective et conserve la norme.)

Exercice 1. On pose $\Omega =]0, +\infty[\times]0, +\infty[$ et $\Omega' =]0, +\infty[\times]0, 1[.$

On considère
$$S: \Omega \longrightarrow \Omega'$$
 et $T: \Omega' \longrightarrow \Omega$
$$(x,y) \longmapsto (u,v) := (x+y, \frac{x}{x+y}) \qquad (u,v) \longmapsto (x,y) := (uv, u(1-v))$$

On admet que les applications S et T sont des bijections réciproques l'une de l'autre.

Calculer $I := \iint_{\Omega} \frac{x^2 y}{x+y} e^{-(x+y)} dxdy$ en utilisant le changement de variable (u,v) = S(x,y).

Indication : on pourra utiliser l'égalité (\star) $\int_0^{+\infty} t^n e^{-t} dt = n!$ valable pour tout $n \in \mathbb{N}$.

• Les parties Ω et Ω' de \mathbb{R}^2 sont des produits de deux ouverts de \mathbb{R} , donc des ouverts de \mathbb{R}^2 . Les applications S et T sont rationnelles, donc de classe \mathbb{C}^1 .

Par conséquent, S est un C¹-difféomorphisme de Ω sur $\Omega'.$

De plus, pour tout $(u, v) \in \Omega'$, en notant (x, y) = T(u, v) = (uv, u(1 - v)) on trouve :

$$(\operatorname{Jac}T)(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} v & u \\ 1-v & -u \end{pmatrix} \quad \text{puis} \quad \frac{D(x,y)}{D(u,v)} := \det\left((\operatorname{Jac}T)(u,v)\right) = -u.$$

- On définit $f: \Omega \to \mathbb{R}$ en posant : $f(x,y) = \frac{x^2y}{x+y} e^{-(x+y)}$ pour tout $(x,y) \in \Omega$. L'application f est continue donc borélienne. Par ailleurs f est positive.
- On effectue le changement de variable $(u,v)=S(x,y)=(x+y,\frac{x}{x+y})$ entre Ω et Ω' .

Vu que x + y = u, x = uv et y = u(1 - v), on obtient : $f(x, y) = \frac{(uv)^2 u(1 - v)}{u} e^{-u} = u^2 v^2 (1 - v) e^{-u}$. De plus : $dx dy = \left| \frac{D(x, y)}{D(u, v)} \right| du dv = u du dv$.

On utilise le théorème de changement de variable pour les fonctions boréliennes positives :

$$I = \iint_{\Omega} f(x, y) \, dx \, dy = \iint_{\Omega'} f(T(u, v)) \, \left| \frac{D(x, y)}{D(u, v)} \right| \, du \, dv = \iint_{\Omega'} u^3 \, v^2 \, (1 - v) \, e^{-u} \, du \, dv.$$

On applique ensuite le théorème de Fubini-Tonelli (fonction positive, continue donc borélienne) :

ensure le theoreme de Fubini-Tohem (fonction positive, continue donc
$$I = \iint_{\Omega'} u^3 v^2 (1-v) e^{-u} du dv = \left(\int_0^{+\infty} u^3 e^{-u} du \right) \left(\underbrace{\int_0^1 v^2 (1-v) dv}_{\frac{1}{12}} \right).$$
The de l'égalité (+) de l'indication avec $n=3$: $I=\frac{1}{12}$

D'où, à l'aide de l'égalité (*) de l'indication avec n=3 : $I=\frac{1}{2}$.

Exercice 2. On note λ la mesure de Lebesgue sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ et $L^2_{\mathbb{R}}(\mathbb{R})$ l'espace $L^2_{\mathbb{R}}(\lambda)$ muni de $\| \|_2$. Soit $\alpha \in \mathbb{R}$. On pose : $f_n(x) = \frac{1}{n} \mathbb{1}_{[0,n^{\alpha}]}(x)$ pour $n \in \mathbb{N} \setminus \{0\}$ et $x \in \mathbb{R}$.

(3) a) Pour quels $\alpha \in \mathbb{R}$ a-t-on: $||f_n||_2 \underset{n \to +\infty}{\longrightarrow} 0$?

On a : $||f_n||_2 = \frac{1}{n} ||\mathbbm{1}_{[0,n^{\alpha}]}||_2 = \frac{1}{n} \left(\int_0^{n^{\alpha}} \mathrm{d}x \right)^{\frac{1}{2}} = n^{\frac{\alpha}{2}-1} \text{ donc} \quad ||f_n||_2 \underset{n \to +\infty}{\longrightarrow} 0 \iff \frac{\alpha}{2} - 1 < 0.$ D'où : $\left[||f_n||_2 \underset{n \to +\infty}{\longrightarrow} 0 \iff \alpha < 2 \right].$

b) Pour quels $\alpha \in \mathbb{R}$ la suite $(f_n)_{n\geq 1}$ converge t-elle au sens de $L^2_{\mathbb{R}}(\mathbb{R})$?

Si (les classes d'équivalences des termes de) la suite $(f_n)_{n\geq 1}$ converge(nt) vers une (classe de) fonction(s) f dans $L^2_{\mathbb{R}}(\mathbb{R})$, alors la suite de fonctions $(f_n)_{n\geq 1}$ a une suite extraite $(f_{n_k})_{k\geq 0}$ qui converge simplement presque partout vers f. Or la suite $(f_n)_{n\geq 1}$ converge simplement vers 0 car $||f_n||_{\infty} = \frac{1}{n}$. Ainsi la seule limite possible pour la suite $(f_n)_{n\geq 1}$ dans $L^2_{\mathbb{R}}(\mathbb{R})$ est la fonction nulle.

Compte tenu du (a), on obtient : $(f_n)_{n\geq 1}$ converge dans $L^2_{\mathbb{R}}(\mathbb{R})$ si et seulement si $\alpha < 2$.