Седмица на олимпийската математика 2019

Контролно по Алгебра януари 2019

Този материал е изготвен със съдействието на школа Sicademy

Задача А1. Нека $f(x) = x^2 + ax + 1$, $f_1(x) = f(x)$, $f_{n+1}(x) = f(f_n(x))$, $n \ge 1$. Да се намерят всички естествени числа a, за които уравнението $f_a(x) = 0$ има поне един реален корен.

Задача А2. Дадена е редицата $\{a_k\}$, за която $a_1=1$ и $a_k=a_{k-1}+a_{\lfloor k/2\rfloor}$ при k>1. Възможно ли е някой член на тази редица да се дели на 4?

Задача А3. Нека M е медицентърът на $\triangle ABC$. Да се докаже, че

$$\sin \angle MBC + \sin \angle MCA + \sin \angle MAB \leq \frac{3}{2}$$

•