Knapsack Problem (KP01)

Given:

```
n items, P_j "profit" of item j, j = 1, ..., n (P_j > 0), W_j "weight" of item j, j = 1, ..., n (W_j > 0), one container ("knapsack") with "capacity" C:
```

determine a subset of the n items so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity C.

KP01 is NP-Hard

Knapsack Problem (KP01)

Determine a subset of items so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity *C*.

We assume:

$$n \geq 2$$
 $P_{j} > 0,$
 $J = 1, ..., n$
 $W_{j} > 0, W_{j} \leq C,$
 $J = 1, ..., n$
 $\sum_{j=1, n} W_{j} > C$

Mathematical Model KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$\sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

or

$$0 \le x_j \le 1$$
 integer $(j = 1, ..., n)$

ILP Model (Binary Linear Programming Model)

There exist items j with $P_j < 0$ and $W_j < 0$

Let
$$N = \{j: P_j > 0 \text{ and } W_j > 0, j = 1, ..., n\};$$
Let $R = \{j: P_j < 0 \text{ and } W_j < 0, j = 1, ..., n\}.$
Set $y_j = x_j$, $P'_j = P_j$, $W'_j = W_j$ $j \in N$
Set $y_j = 1 - x_j$, $P'_j = -P_j$, $W'_j = -W_j$ $(x_j = 1 - y_j)$ $j \in R$

$$Z = \sum_{j=1,n} P_j x_j = \sum_{j\in N} P_j y_j + \sum_{j\in R} P_j (1 - y_j) = \sum_{j\in N} P'_j y_j + \sum_{j\in R} P'_j y_j + \sum_{j\in R} P_j = \sum_{j=1,n} P'_j y_j + a$$
where $a = \sum_{i\in R} P_j$

There exist items j with $P_j < 0$ and $W_j < 0$

Let
$$N = \{j: P_j > 0 \text{ and } W_j > 0, j = 1, ..., n\};$$

Let $R = \{j: P_j < 0 \text{ and } W_j < 0, j = 1, ..., n\}.$
Set $y_j = x_j$, $P'_j = P_j$, $W'_j = W_j$ $j \in N$
Set $y_j = 1 - x_j$, $P'_j = -P_j$, $W'_j = -W_j$ $(x_j = 1 - y_j)$ $j \in R$
 $Z = \sum_{j=1,n} P_j x_j = \sum_{j=1,n} P'_j y_j + a$ where $a = \sum_{j \in R} P_j$
 $\sum_{j=1,n} W_j x_j = \sum_{j=1,n} W'_j y_j + b$ where $b = \sum_{j \in R} W_j$

There exist items j with $P_j < 0$ and $W_j < 0$

$$x_j = y_j$$
 $j \in \mathbb{N}$; $x_j = 1 - y_j$ $j \in \mathbb{R}$

Computational Complexity of the Decision and Optimization Problems

- *Decision Problem*: given a problem, determine if at least a solution exists for this problem.
- Example: Feasibility Problem: determine if at least a feasible solution exists for the considered problem.
- Optimization Problem: determine a feasible solution that maximizes (or minimizes) the objective function of the considered problem.

Computational Complexity of the Decision and Optimization Problems (2)

• Size of a problem R: number of "symbols" (bit, bytes, words, ...) needed to represent the input data of an instance of R (by neglecting the proportionality constants).

- Example: KP-01: input data: $n, C, (P_i), (W_i)$:
 - * (P_i) : n values, (W_i) : n values
 - * (2 n + 2) values (symbols): size = n

Computational Complexity of the Decision and Optimization Problems (3)

• Given a problem *R*: Determine the *computing time* (number of *elementary operations*), expressed as a *function of the size* of *R*, to find the solution of *R* in the *worst case*.

• The theory of the *Computational Complexity* of the problems has been analyzed for the *Decision Problems*, but it can be applied to the *Optimization Problems* as well.

Polynomial Problems

A *Problem R* is *Polynomial* if R can be solved through at least one algorithm whose computing time in the worst case grows according to a *polynomial function* of the size of R.

Examples:

```
given an array A_j of n elements (j = 1, ..., n):
```

- Determine the *minimum value* of the n elements: effective algorithm: O(n) time (in the worst case the computing time is proportional to n: "linear" in n).
- *Sort* the *n* elements according to non-decreasing (or non-increasing) values:

```
effective algorithm: O(n \log n) time.
```

Classes P and NP

• CLASS P contains all the Polynomial Problems.

• CLASS NP contains all the problems that can be solved in polynomial time in the best case (through a "non deterministic Turing Machine").

Class NP

From an operational point of view, a problem *R* belongs to *Class NP* if it can be solved through a *Decisional Tree* such that:

- 1) the number of "levels";
- 2) the number of "descendent nodes" of each node;
- 3) the computing time required to consider each node

are polynomial functions of the size of R.

Class P is contained in Class NP

Class P = Class NP ?

Example of a Problem in Class NP

Knapsack Problem in Decision Version:

Given an instance of KP-01, determine if there exists at least one feasible solution whose profit is not smaller than a given value K: KP-01(K)

Binary Decision Tree

- * at each level j (j = 1, 2, ..., n) consider item j and fix the value of x_i to 0 or to 1:
 - $^{\circ}$ *n* levels;
 - ° 2 descendent nodes for each node;
 - $^\circ$ constant computing time for each node.

$$KP-01(K) \in Class NP$$

Knapsack Problem in Decision Version Binary Decision Tree for KP-01(K)

* at each level j (j = 1, 2, ..., n) consider item j and fix the value of x_j to 0 or to 1.

In the worst case, the algorithm requires a computing time proportional to the global number of nodes of the binary decision tree (exponential time with respect to the size of KP-01(K)).

Also $KP-01 \in Class NP$

Complexity of the Problems

From a "practical" point of view, the Feasibility and Optimization Problems can be subdiveded in three main classes:

- 1) Polynomial Problems (Class P);
- 2) NP-Hard Problems (also called NP-Complete Problems): belong to Class NP, but no polynomial algorithm has been proposed for their solution in the worst case (example: KP-01);
- 3) Surely Difficult Problems: do not belong to Class NP (example: determine all the optimal solutions of KP-01; the number of such solutions could be exponential with respect to the size n).

NP-Hard Problems

A problem *R* is *NP-Hard* if:

1) $R \in Class NP$;

2) There exists an *NP-Hard Problem T* which is "reducible" to R ($T \propto R$):

for any instance t of T, it is possible to define, in a computing time polynomial in the size of t, an instance r of R such that, determined the solution of the instance r of R, the solution of the instance t of T can be obtained in a computing time polynomial in the size of t.

Partition Problem (PP)

Given: m positive values: a_j (j = 1, ..., n), one positive value b

determine if there exists a subset of the m values whose sum is exactly equal to the given value b.

Feasibility Problem

Size: m + 2: m

PP is known to be **NP-Hard**

(even if
$$b = \sum_{j=1,m} a_j / 2$$
)

KP-01 is NP-Hard

- 1) $KP-01 \in Class NP$
- 2) $PP \propto KP-01$

Given any instance of $PP: m, (a_i), b:$

- 1) Define (in time O(m)) an instance $(n, (P_j), (W_j), C)$ of KP-01:
 - * n = m
 - * C = b
 - * $P_i = a_i \quad (j = 1, ..., n),$
 - * $W_j = a_j \quad (j = 1, ..., n).$
- 2) Determine the optimal solution $(x_1, x_2, ..., x_n, z)$ of *KP-01*.
- 3) If z = C: PP has a feasible solution $(x_1, x_2, ..., x_n)$

If z < C: PP has no feasible solution

Computing time O(m)

Particular Cases of KP01

a) Constant Profits: the Problem is Polynomial

$$P_{j} = K \quad (j = 1, ..., n)$$

- 1) Sort the n items according to non-decreasing values of the weights W_j : $(O(n \log n) \text{ time})$;
- 2) Insert the items until the first item s is found such that:

$$\sum_{j=1,s} W_j > C$$
 (items $s, s+1, ..., n$ are not inserted):
$$O(n) \text{ time.}$$

Global computing time: $O(n \log n) + O(n)$: $O(n \log n)$

Particular Cases of KP01 (2)

b) Constant Weights: the Problem is Polynomial

$$W_j = K \qquad (j = 1, ..., n)$$

- 1) Sort the n items according to non-increasing values of the profits P_i : $(O(n \log n) \text{ time})$;
- 2) Insert the items until the first item s is found such that:

$$\sum_{j=1,s} W_j > C \quad \text{(items } s, s+1, ..., n \text{ are not inserted):}$$

$$O(n) \text{ time.}$$

Global computing time: $O(n \log n) + O(n)$: $O(n \log n)$