1

Sound & Light (1)

1.1 Miscellaneous

$$\% \text{ error} = \frac{\text{observed} - \text{theoretical}}{\text{theoretical}} * 100\%$$

1.2 Kinematics

$$x = \frac{a}{2}(\Delta t)^2 + v_0 \Delta t + x_0 \qquad v = v_0 + a\Delta t$$
$$v^2 = v_0^2 + 2a\Delta x \qquad \Delta x = \frac{v_0 + v}{2} * \Delta t$$

1.3 Simple Harmonic Motion

$$x = A\cos(\omega t + \varphi)$$
 $v = -\omega A\cos(\omega t + \varphi)$ $a = -\omega^2 A\cos(\omega t + \varphi)$
 $x_{\text{max}} = A$ $v_{\text{max}} = \omega A$ $a_{\text{max}} = \omega^2 A$ $F_{\text{max}} = m\omega^2 A$

1.3.1 Springs and Slinkies

x represents the distance from the equilibrium.

If you put a mass on top of the slinky, $\Delta x_{\rm eq}$ represents the difference between the original equilibrium and the new equilibrium.

$$F_s = kx = ma \qquad F_{s_{\text{max}}} = k\Delta x_{\text{eq}} = 9.8\Delta m$$

$$f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \qquad T = 2\pi\sqrt{\frac{m}{k}} \qquad \omega = 2\pi f = \sqrt{\frac{m}{k}}$$

$$SPE = \frac{1}{2}kx^2 \qquad KE = \frac{1}{2}mv^2$$

$$TME = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kA^2 = \frac{1}{2}mv_{\text{max}}^2$$

1.3.2 Springs in parallel and series

Quantity	In Series	In Parallel
Equivalent spring constant	$\frac{1}{k_{\text{eq}}} = \frac{1}{k_1} + \frac{1}{k_2}$	$k_{\rm eq} = k_1 + k_2$
Deflection (elongation)	$x_{\rm eq} = x_1 + x_2$	$x_{\rm eq} = x_1 = x_2$
Force	$F_{\rm eq} = F_1 = F_2$	$F_{\rm eq} = F_1 + F_2$
Stored energy	$E_{\rm eq} = E_1 + E_2$	$E_{\rm eq} = E_1 + E_2$

1.3.3 Pendulums

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{L}} \qquad T = 2\pi \sqrt{\frac{L}{g}}$$

1.4 Waves

$$T = \frac{1}{f}$$
 $v = \lambda f$ $v = \frac{\Delta x}{\Delta t}$

1.4.1 Slinkies and strings with fixed ends

$$F_T = F_s = kx$$
 $\mu = \frac{m}{L}$ $v = \sqrt{\frac{F_T}{\mu}}$

Given mass m_T hanging below a pulley, $F_T = m_T g$.

1.5 Standing waves

1.5.1 Open-open, closed-closed

n is the number of antinodes, or the n^{th} harmonic.

$$f_n = f_1 n = \frac{nv}{2L}$$
 $f_1 = \frac{v}{2L}$ $\lambda_n = \frac{2L}{n}$

1.5.2 Open-closed

$$f_n = f_1 n = \frac{nv}{4L}$$
 $f_1 = \frac{v}{4L}$ $\lambda_n = \frac{2L}{n}$

1.6 Sound

1.6.1 Speed of sound

$$v = 331\sqrt{\frac{T_{^{\circ}\text{C}} + 273}{273}}$$
 $v \approx 331 + 0.59T$

1.6.2 Sound intensity

$$I = \frac{\text{Power (W)}}{\text{Area}} = \frac{\text{Power (W)}}{4\pi r^2}$$

$$I_{\text{dB}} = 10 \log_{10}(\frac{I}{10^{-12}})$$
 $I = 10^{\frac{I_{\text{dB}}}{10} - 12}$

1.6.3 Doppler effect

1.6.4 Constructive and Destructive Interference (2 dimensions)

For a point on the m^{th} antinodal/nodal line playing the same frequency with the same phase:

$$PD = m\lambda$$

where PD is the path length difference.

1.6.5 Beats

$$f_B = \Delta f$$

1.7 Light

1.7.1 Speed of light

$$c = 299 792 458 \frac{\text{m}}{\text{s}} \approx 3 * 10^8 \frac{\text{m}}{\text{s}}$$

1.7.2 Two-slit experiment

$$PD = \frac{dy}{L} = m\lambda$$

1.7.3 Mirror

$$r=2f$$
 $\frac{1}{f}=\frac{1}{p}+\frac{1}{q}$ $M=\frac{h}{h_o}=\frac{-q}{p}$

In a plane mirror, p = -q.

1.7.4 Lenses

$$\frac{1}{f} = (n-1)(\frac{1}{r_1} - \frac{1}{r_2})$$
 $\frac{1}{f} = \frac{1}{p} + \frac{1}{q}$ $M = \frac{h}{h_o} = \frac{-q}{p}$

Multiple lenses

$$p_2 = \Delta x - q_1$$

1.7.5 Mirrors and Lenses

Real \iff inverted, virtual \iff upright.

1.7.6 Refraction / Snell's Law

The **normal line** is the line perpendicular to the surface which touches the intersection of the surface and the light ray.

The **incident angle** is the angle between the ray of light and the normal line.

 θ_1 and θ_2 are both measured from the normal line, not the surface.

Refraction occurs when the speed of light in two media are different and light hits the boundary of the two media. The frequency of the light will stay the same, but the speed, wavelength, and direction will change.

$$n = \frac{c}{v} \qquad n_1 \sin \theta_1 = n_2 \sin \theta_2$$

1.7.7 Ray diagrams

Mathematics (2)

2.1 Logarithms

$$\log_b(MN) = \log_b(M) + \log_b(N)$$

$$\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$$

$$\log_b(M^p) = p \cdot \log_b(M)$$

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}$$

$$\log_b(b) = 1$$

2.2 Notation

deg p(x) means the degree of polynomial p.

LC p(x) means the leading coefficient of polynomial p.

2.3 Rational functions

For a rational function $f(x) = \frac{p(x)}{q(x)}$, cancel out any common factors, then:

- For all rational functions:
 - VA: roots of q(x)
 - Roots: roots of p(x)
- When deg p(x) = deg q(x):
 - HA: $y = \frac{\text{LC } p(x)}{\text{LC } q(x)}$
- When deg p(x) < deg q(x):
 - HA: y = 0
- When deg $p(x) > \deg q(x)$:
 - HA: none
 - slant asymptote: $\frac{p(x)}{q(x)}$ excluding remainder

2.4 Polynomials

2.4.1 Linear equations

Slope-intercept form: y = mx + b

Point-slope form: $y - y_1 = m(x - x_1)$ for point (x, y)

Standard form: ax + by = c

2.4.2 Quadratic equations

Standard form: $y = ax^2 + bx + c$

Vertex form: $y = a(x - h)^2 + k$ for vertex (h, k)

Sum of roots: $\frac{-b}{a}$

Product of roots: $\frac{c}{a}$

2.4.3 Higher-degree polynomials

In a polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

, with roots

$$r_1, r_2, r_3, \ldots, r_n$$

then:

$$r_1 + r_2 + r_3 + \dots + r_n = \sum_{k=1}^n n r_k = -\frac{a_{n-1}}{a_n}$$

2.5 Sequences and Series

2.5.1 Explicit formulas

Aritmetic sequence: $a_n = a_1 + r(n-1)$ Geometric sequence: $a_n = a_1 * r^{n-1}$

Harmonic sequence: $a_n = \frac{1}{a_1 + r(n-1)}$

2.5.2 Arithmetic and Geometric Series

In the following equations, substituting j=1 with j=0, j-1 with j, and a_1 with a_0 will produce the same result.

$$\sum_{j=1}^{n} (a_1 + r(j-1)) = \frac{n}{2} (2a_1 + (n-1)d)$$

$$\sum_{j=1}^{n} (a_1 * r^{j-1}) = \frac{a_1(1-r^n)}{1-r}$$

$$\sum_{j=1}^{\infty} (a_1 * r^{j-1}) = \frac{a_1}{1-r} \text{ for } r \in [-1, 1]$$

2.5.3 Special Sums

$$\sum_{j=1}^{n} c = nc$$

$$\sum_{j=1}^{n} ca_{j} = c \sum_{j=1}^{n} a_{j}$$

$$\sum_{j=1}^{n} (a_{j} + b_{j}) = \sum_{j=1}^{n} a_{j} + \sum_{j=1}^{n} b_{j}$$

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

$$\sum_{j=1}^{n} j^{2} = \frac{n(n+\frac{1}{2})(n+1)}{3}$$

$$\sum_{j=1}^{n} j^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

2.6 Trigonometry

0	rad	sin	cos	tan
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\tilde{\pi}}{2}$	1	Ō	undef

2.6.1 Law of Sines and Cosines

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
 $c^2 = a^2 + b^2 - 2ab\cos(C)$

2.6.2 Triangle area

$$K = \frac{1}{2}bh \qquad K = \frac{1}{2}bc\sin(A) \qquad K = \sqrt{s(s-a)(s-b)(s-c)}$$

2.6.3 More identities

$$(\sin A)^2 + (\cos A)^2 = 1$$
 $(\tan A)^2 + 1 = (\sec A)^2$
 $\sin(\frac{\pi}{2} - x) = \cos(x)$ $(\cot A)^2 + 1 = (\csc A)^2$

$$cos(-x) = cos(x)$$
 $sin(-x) = sin(x)$ $tan(-x) = tan(x)$

2.6.4 Slope

Where α is the angle between the line and the x-axis, and m is the slope of the line:

$$m = \tan \alpha$$

2.6.5 Sum and difference formulas

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

$$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

$$\sin(2A) = 2\sin(A)\cos(A)$$

$$\cos(2A) = (\cos A)^2 - (\sin A)^2 = 2(\cos A)^2 - 1 = 1 - 2(\sin A)^2$$

$$\tan(2A) = \frac{2\tan(A)}{1 - (\tan A)^2}$$

2.7 Vectors

$$\vec{v} + \vec{w} = \begin{bmatrix} v_x + w_x \\ v_y + w_y \\ v_z + w_z \end{bmatrix} \qquad c * \vec{v} = \begin{bmatrix} c * v_x \\ c * v_y \\ c * v_z \end{bmatrix}$$

$$\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z = |\vec{v}| |\vec{w}| \cos(\theta)$$

$$|\vec{v} \times \vec{w}| = |\vec{v}| |\vec{w}| \sin(\theta) = \text{area of parallelogram}$$

$$\vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} \qquad \vec{v} \times \vec{w} \perp \vec{v} \qquad \vec{v} \times \vec{w} \perp \vec{w}$$

$$\vec{v} \perp \vec{w} \iff \vec{v} \times \vec{w} = \vec{0} \qquad \vec{v} \parallel \vec{w} \iff \vec{v} \cdot \vec{w} = 0$$

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|} \quad \text{proj}_{\vec{b}} \vec{v} = \frac{\vec{v} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} * \vec{b} = (|\vec{v}| \cos(\theta))$$

Right-hand rule

To determine the direction of $\vec{v} \times \vec{w}$, put the side of the right hand on \vec{v} and curl the fingers toward \vec{w} . The direction the thumb is pointing is the direction of $\vec{v} \times \vec{w}$.

2.8 Polar

2.8.1 Polar and Cartesian sytems

With point $(x,y)=(r;\theta)=(r;\beta)$, where θ is CCW from the x-axis and β is a bearing, CW from the y-axis:

$$\begin{split} x &= r \cos(\theta) = r \sin(\beta) & y &= r \sin(\theta) = r \cos(\beta) \\ r &= \sqrt{x^2 + y^2} & \theta &\equiv \arctan(\frac{y}{x}) & \beta &\equiv \arctan(\frac{x}{y}) \end{split}$$

2.8.2 Converting functions

Try these substitutions in order:

$$x^{2} = x^{2} + y^{2}$$
 $\tan \theta = \frac{y}{x}$ $x = r \cos \theta$ $y = r \sin \theta$

2.8.3 Limaçons and Petals

The function $y = A\cos(B(\theta + C)) + D$ is equivalent to $y = A\cos(B\theta) + D$ rotated C degrees/radians clockwise.

When C is 0 and B is 1, the x-intercepts are $A \pm D$ and the y-intercepts are $\pm D$, and it forms a limaçon.

When C is 0, but $B \neq 1$, then this sometimes still holds. The x-intercepts may also be $\pm A \pm D$.

There are B petals, with the axis of the first petal on the positive x-axis.

When B is even and |D| < 1, then the number of petals is 2B.

Using sin instead of cos, limaçons have their axes on the positive y-axis, while for petals, the first petal starts from the positive x-axis and curves upwards.

2.9 Complex

$$cis(\theta) = e^{i\theta} = cos(\theta) + i sin(\theta)$$

To find the n^{th} root of $x_r \operatorname{cis}(x_\theta)$, solve the equation $z_r^n \operatorname{cis}(nz_\theta) = x_r \operatorname{cis}(x_\theta + 360^\circ k)$ for $k \in \mathbb{R}$.

2.10 Function domain

Function	Domain x	Range y
$\log(x)$	$(0,\infty)$	\mathbb{R}
\sqrt{x}	$[0,\infty)$	$[0,\infty)$
$\arcsin(x)$	[-1, 1]	$[-\frac{\pi}{2}, \frac{\pi}{2}]$
$\arccos(x)$	[-1, 1]	$[0,\pi]$
$\arctan(x)$	\mathbb{R}	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Calculus Theorems (3)

1 Completeness

Theorem (Completeness of the Real Numbers). Every nonempty subset S of \mathbb{R} which is bounded above has a least upper bound $\sup S$.

Definition of Supremum ($\sup S$). A number such that

- (1) $s \leq \sup S$ for every $s \in S$ (which just says that $\sup S$ is an upper bound for S)
- (2) If u is any upper bound for S, then $\sup S \leq u$ (which says that $\sup S$ is the least upper bound for S).

Definition of Infimum (inf S). A number such that

- (1) inf $S \leq s$ for every $s \in S$ (i.e. inf S is an lower bound for S)
- (2) If l is any upper bound for S, then $l \leq \inf S$ (i.e. $\inf S$ is the greatest lower bound for S).

Theorem. Every nonempty subset S of \mathbb{R} which is bounded below has a greatest lower bound.

Theorem. If min S exists, then min $S = \inf S$.

Theorem. If $A \subset R$ and $c \ge 0$, and $cA := ca : a \in A$, $\sup cA = c \sup A$.

Theorem (Rationals between Reals). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Nested Intervals Theorem.

If $I_n = [a_n, b_n] = \{x \in R : a_n \le x \le b_n\}$ s.t. $a_n \le a_{n+1}$ and $b_{n+1} \le b_n$ for $n \in \mathbb{N}$, so that $I_1 \subseteq I_2 \subseteq I_3 \subseteq I_4 \subseteq \ldots$, then $\bigcap_{n \in \mathbb{N}} I_n \ne \emptyset$.

If
$$\inf\{b_n - a_n\} = 0$$
, then $\bigcap_{n=1}^{\infty} I_n\{x\}$, where $x = \sup\{a_n\} = \inf\{b_n\}$.

Capture Theorem. If A is a nonempty subset of \mathbb{R} , then:

- (i) If A is bounded above, then any open interval containing sup A contains an element of A.
- (ii) Similarly, if A is bounded below, then any open interval containing inf A contains an element of A.

Theorem (Binary Search (Bisection Method)). If we binary-search for x over $I_1 = [a_1, b_1]$ for $a_1, b_1 \in \mathbb{Q}$, we define I_n s.t. either $I_n := [a_{n-1}, \frac{a_{n-1}+b_{n-1}}{2}]$ or $I_n := [\frac{a_{n-1}+b_{n-1}}{2}, a_{n+1}]$, and we define $a_n := \inf I_n$ and $b_n := \sup I_n$. We define A to be the set of all a_n , and B to be the set of all b_n .

Then, the size of $I_n = \frac{b_1 - a_1}{2^n} = b_n - a_n$, and $\bigcap_{n=1}^{\infty} I_n\{x\}$, where $x = \sup\{a_n\} = \inf\{b_n\}$.

2 Limits

Definition of **Limit**. If $\lim_{x\to a} f(x) = L$, then for any $\varepsilon > 0$, there exists $\delta > 0$ s.t. for any $x \in (a - \delta, a) \cup (a, a + \delta)$, $f(x) \in (L - \varepsilon, L + \varepsilon)$.

Alternatively,

Definition of Limit. If $\lim_{x\to a} f(x) = L$, then for any $\varepsilon > 0$, there exists $\delta > 0$ s.t. for any $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$.

Theorem (Limit Laws). Let $c \in R$ be a constant and suppose the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

•
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

- $\lim_{x \to a} (cf(x)) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\lim_{x\to a} f(x)g(x) = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$, provided that $\lim_{x\to a} g(x) \neq 0$
- $\lim_{x \to a} x^n = (\lim_{x \to a} x)^n$
- $\lim_{x \to a} \frac{a(x)b(x)}{c(x)b(x)} = \lim_{x \to a} \frac{a(x)}{c(x)}$

These laws also apply to one-sided limits.

Theorem (L'Hopital's Rule). If f and g are differentiable and $g'(x) \neq 0$ on an open interval I that surrounds a, and $\lim_{x \to a} \frac{f(x)}{g(x)} \in \{\frac{0}{0}, \pm \frac{\infty}{\infty}\}$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Theorem (Composition of Limits). If f is continuous at L and $\lim_{x\to a} g(x) = L$, then $\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x))) = f(L)$

Theorem (Operations on infinity). For $x \in \mathbb{R}$,

$$\infty + x = \infty \qquad -\infty + x = -\infty \qquad \frac{x}{\pm \infty} = 0$$

$$x * \infty = \begin{cases} \infty & \text{if } x > 0 \\ -\infty & \text{if } x < 0 \end{cases}$$

$$x * -\infty = \begin{cases} -\infty & \text{if } x > 0 \\ \infty & \text{if } x < 0. \end{cases}$$

Definition of Indeterminate forms. The following forms are indeterminate and you cannot evaluate them.

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, 0 * \pm \infty, \infty - \infty$$

Squeeze Theorem. Let f, g, and h be defined for all $x \neq a$ over an open interval containing a. If

$$f(x) \le g(x) \le h(x)$$

for all $x \neq a$ in an open interval containing a and

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$$

where $L \in \mathbb{R}$, then $\lim_{x \to a} g(x) = L$.

3 Continuity

Definition of Continuity at a point. Function f is continuous at point a if $\lim_{x\to a} f(x) = f(a)$.

Definition. f has a **removable discontinuity** if $\lim_{x\to a} f(x) = L \in \mathbb{R}$ (in this case either f(a) is undefined, or f(a) is defined by $L \neq f(a)$).

Definition. f has a **jump discontinuity** if $\lim_{x\to a^-} f(x) = L_1 \in \mathbb{R}$ and $\lim_{x\to a^+} f(x) = L_2 \in \mathbb{R}$ but $L1 \neq L2$.

Definition. f has an **infinite discontinuity** at a if $\lim_{x\to a^-} f(x) = \pm \infty$ or $\lim_{x\to a^+} f(x) = \pm \infty$

Intermediate Value Theorem. If f is continuous on [a, b], then for any real number L between f(a) and f(b) there exists at least one $c \in [a, b]$ such that f(c) = L. In other words, if f is continuous on [a, b], then the graph must cross the horizontal line y = L at least once between the vertical lines x = a and x = b.

Aura Theorem. If f(x) is continuous and f(a) is positive, then there exists an open interval containing a such that for all x in the interval, f(x) is positive.

If f(x) is continuous and f(a) is negative, then there exists an open interval containing a such that for all x in the interval, f(x) is negative.

Bolzano's Theorem. Let f be a continuous function defined on [a, b]. If 0 is between f(a) and f(b), then there exists $x \in [a, b]$ such that f(x) = 0.

4 Derivatives

The derivative is the instantaneous rate of change, and the slope of the tangent line to the point.

Definition of **Derivative** (f'(a)).

$$\frac{d}{da}f(a) = f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Theorem (Tangent line to a point). The equation of the tangent line to the point (a, f(a)) is

$$y = f'(a)(x - a) + f(a)$$

Derivative Rules

Theorem (Difference Rule).

$$\frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

Theorem (Sum Rule).

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

Theorem (Constant Multiple Rule).

$$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$$

Theorem (Product Rule).

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}(f(x)g(x)h(x)) = f'(x)g(x)h(x) + f(x)g'(x)h(x)$$

$$+ f(x)g(x)h'(x)$$

and so on.

Theorem (Quotient Rule).

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Theorem (Power Rule).

$$\frac{d}{dx}x^n = nx^{n-1}$$

for $n \in \mathbb{R}$

Theorem (Chain Rule).

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \qquad \frac{dy}{dx} = \frac{dy}{dh}\frac{db}{dx}$$

Theorem (Derivative of inverse functions). Let $x \in \mathbb{R}$ and f be a differentiable, one-to-one function at x. Then if $f'(x) \neq 0$, then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)}$$

Theorem (Derivatives of exponentials and logs).

$$\frac{d}{dx}e^x = e^x \qquad \frac{d}{dx}\ln x = \frac{1}{x}$$
$$\frac{d}{dx}a^x = a^x\ln(a) \quad \frac{d}{dx}\log_a x = \frac{1}{x\ln(a)}$$

Theorem (Derivatives of trig functions). Warning: x must be an angle in radians!

$$\sin'(x) = \cos(x) \qquad \cos'(x) = -\sin(x)$$

$$\sec'(x) = \sec(x)\tan(x) \qquad \csc'(x) = -\csc(x)\cot(x)$$

$$\tan'(x) = \sec(x)^{2} \qquad \cot'(x) = -\csc(x)^{2}$$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^{2}}} \qquad \arccos'(x) = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\arccos'(x) = \frac{1}{|x|\sqrt{x^{2} - 1}} \qquad \arccos'(x) = -\frac{1}{|x|\sqrt{x^{2} - 1}}$$

$$\arctan'(x) = \frac{1}{1 + x^{2}} \qquad \arccos'(x) = -\frac{1}{1 + x^{2}}$$

5 Derivative Applications

5.7 Mean Value Theorem

Theorem (Mean Value Theorem). If the function f is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{\Delta f(x)}{\Delta x}$$
 on $[a, be]$

Theorem (Some colloraries to the MVT). If f(x) is differentiable on I, then:

- f'(x) > 0 for $x \in I \iff f(x)$ is strictly increasing for $x \in I$.
- $f'(x) \ge 0$ for $x \in I \iff f(x)$ is increasing or constant for $x \in I$.
- f'(x) = 0 for $x \in I \iff f(x)$ is constant for $x \in I$.
- $f'(x) \le 0$ for $x \in I \iff f(x)$ is decreasing or constant for $x \in I$.
- f'(x) < 0 for $x \in I \iff f(x)$ is strictly decreasing for $x \in I$.

5.3, 5.10, 5.11, 5.16 Extrema

Definition of Critical point of f. A number c in the domain of f where f'(c) = 0 or f'(c) does not exist.

Definition of Stationary point of f. A number c in the domain of f where f'(c) = 0

Fermat's Theorem. The local maxima and minima of f are critical points of f.

Exteme Value Theorem. If f is continuous on [a, b], then it has an absolute max and an absolute min.

Theorem (Method to find absolute minima and maxima). Store the critical points of f in the array C. Then, the absolute maximum is $\max\{f(c):c\in C\}$ and the absolute minimum is $\min\{f(c):c\in C\}$.

Theorem (First Derivative Test). If f is continuous over I, and $c \in I$ is a critical point of f, and f is differentiable over $I \setminus c$, then:

- If f'(x) is decreasing at c, then f(c) is a local max.
- If f'(x) is increasing at c, then f(c) is a local min.
- If f'(x) has the same sign before and after c, then f(c) is neither a local max nor a local min.

Definition of Concavity. f is concave up on I if the tangent line to f at each point in I is lower than the graph of f.

f is concave down on I if the tangent line to f at each point in I is higher than the graph of f.

Theorem (Test for Concavity). If f''(x) > 0 for all $x \in I$, then f is concave up on I.

If f''(x) < 0 for all $x \in I$, then f is concave down on I.

Theorem (Second Derivative Test). If f'' is continuous on an interval containing c, where c is the x-value of a stationary point of f. Then,

- If f''(c) > 0, then f(c) is a local max.
- If f''(c) < 0, then f(c) is a local min.

Trimm's Single Extremum Theorem. If f is continuous on an interval I, and f has a single local extremum (max or min), then that extremum is a global max or min.

5 Integrals

Antiderivative

Definition of Antiderivative / Indefinite Integral. The antiderivative F of a function f is the function such that F'(x) = f(x).

$$F(x) = \int f(x)dx$$

Theorem (Antiderivative plus a constant). If F is the antiderivative of a function f, then G(x) = F(x) + c where $c \in \mathbb{R}$ is also an antiderivative.

Definition of Integral.

$$(f_1[a,b]) \mapsto \int_a^b f(x)dx \in \mathbb{R}$$

such that the Properties of the Integral are true.

The definite integral takes in a function and a range [a, b], and returns a number. The indefinite integral takes in a function and returns an infinitely large set of functions (the antiderivatives).

If
$$a > b$$
, then $\int_a^b f := - \int_b^a f$.

Let $\mathcal{R}([a,b])$ be the set of integrable functions, $\mathcal{C}([a,b])$ be the set of continuous functions, and $\mathcal{B}([a,b])$ be the set of bounded functions on [a,b]. Then

$$C([a,b]) \subset \mathcal{R}([a,b]) \subset \mathcal{B}([a,b])$$

Theorem (Properties of the Integral). The integral is defined such that the following are true:

- (I0) Every continuous function is integrable.
- (I1) If f(x) = c, then $\int_a^b f(x)dx = c(b-a)$
- (I2) If $f_1(x) \leq f_2(x)$, then $\int_{a}^{b} f_1(x) dx \leq \int_{a}^{b} f_2(x) dx$.

(I3) For any
$$a, b, c, \int_a^b f(x)dx = \int_a^c f(x)dx + \int_b^b f(x)dx$$
.

Theorem (Fundamental Theorem of Calculus). Let $f \in \mathcal{R}([a,b])$ be some integrable function, where $a,b \in \mathbb{R}$. Let $\mathcal{F}(x) = \int_a^x f$ for $x \in [a,b]$. Then:

- (a) \mathcal{F} is continuous for every $c \in [a, b]$.
- (b) If f is continuous at $c \in [a.b]$, then \mathcal{F} is diffentiable at c, and $\mathcal{F}'(c) = f(c)$.
- (c) If f is continuous on [a, b], and F is an antiderivative of f, then $\int_a^b f = F(b) F(a)$, or

$$\int_{a}^{b} f(x)dx = F(x) \bigg|_{a}^{b} = F(b) - F(a)$$

Theorem (Substitution Rule). If g is a function that has a continuous derivative on an interval, another function f is continuous on the range of g, and F is an antiderivative of f on the range of g, then

$$\int f(g(x))g'(x)dx = F(g(x)) + C$$

For $a, b \in \mathbb{R}$,

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du = F(g(b)) - F(g(a))$$

Let u := g(x). Then, if du = E(g'(x)dx), where $E \in \mathbb{R}$, then

$$\int Ef(u)du = E \int f(u)du = F(u) + C$$

Theorem (Anti-Power Rule).

$$\int x^a = \frac{x^{a+1}}{a+1}$$