Eric Elmoznino

Artificial Intelligence Cognitive Neuroscience

Contact

eric.elmoznino@gmail.com

Websites

Education -

PhD | Computer Science Mila (Université de Montréal) 2022-Now

MA | Cognitive Science Johns Hopkins University 2019-2020

BASc | Computer Engineering University of Toronto 2014-2019

DCS | Health Sciences Dawson College 2012-2014

Skills —

Languages/Frameworks

Python, PyTorch, TensorFlow, sklearn, Matlab, C++, C, C#, Swift/iOS, JavaScript, HTML, CSS, Flask, LaTeX

Subjects/Techniques

ML, Deep learning, MVPA, Computational modeling, Human vision, Linguistics, Full-stack web

Spoken Languages

English, French (Fluent in both)

Interests –

Mind, Brain, and AI

Consciousness, Compositionality, In-context learning, Causality, Knowledge representation, OOD generalization, Lifelong learning, Vision

Public Speaking

Technical presentations, Teaching

Other Disciplines

Data Science, Genetics, Astrophysics, Philosophy of mind, Epistemology

Hobbies

Reading, Piano, Meditation, Snowboarding, Tennis, Basketball

Researc	h Positions & Work Experience
2022-Now	AI Researcher (PhD) Mila (Université de Montréal), Montreal, QC Development of AI with inductive biases from conscious high-level cognition, supervised by Profs. Guillaume Lajoie and Yoshua Bengio
2020-Now	Data Science Instructor Teach lectures on machine learning topics at a full-time data science bootcamp to students with no prior coding experience
2019-2022	Cognitive Science Researcher (MA) Johns Hopkins University, Baltimore, MD Research on information representation and algorithms in the visual system of the human brain with Prof. Michael Bonner
2021	Computational Neuroscience TA Neuromatch Academy, Remote Lead groups of students through tutorial exercises ○ Review lecture material and answer student questions
2017-2019	Machine Learning Researcher ModiFace, Toronto, ON Work on computer vision machine learning models for the beauty industry ∘ Research papers on makeup rendering and skin condition diagnostics using deep learning
2018	Computer Vision Contractor Work on computer vision machine learning models related to facial perception for a mobile app that automatically makes photo albums of babies for new parents
2016	Software Developer Intern Orbis Investments, Vancouver, BC Full-stack web development using AngularJS, Angular Material, ASP.NET MVC, Web API, and SQL Server in order to improve internal workflow efficiency for financial reporting
2012-2014	Private, Infantry Division Canadian Armed Forces (Reserves), Valcartier, QC Discipline and weapons training ∘ Participation in combat and reconnaissance exercises
Highligh	ted projects
2023-Now	Representational complexity and compositionality Deriving a formal quantitative definition of compositionality using ideas from algorithmic complexity theory
2023-Now	Compositional attractor models of human thought Learning discrete and compositional models of conscious human thought using neural network attractor dynamics o Accounting for ineffability in explaining away the "hard problem" of consciousness
2024-Now	In-context learning and Occam's Razor A normative theory of in-context learning as a meta-learning algorithm for fitting the simplest model that explains the training data
2022-2023	Sampling compositions of modular neural networks Jointly learning a set of neural network modules and how to sample context-conditioned compositions of them using GFlowNets

2021-2022 Dimensionality and Manifold Geometry of Visual Representations Quantifying the relationship between the geometry of neural network

representations and their similarities to visual cortex

2020-2021 Multiplicative Feature Interactions as Neural Computations

Investigation into multiplicative interactions between features as a canonical neural computation o Use in models of neural data

2019-2020 Stimulus Synthesis for Brain Region Manipulation

Generative model of images that would elicit a desired pattern of brain activity in a given region o Behavioural experiments

2020 **Language Model With Inductive Bias For Compositional Grammar**

Tree-RNN provided part-of-speech tags and sentence parses in order to learn compositional representations of language

Eric Elmoznino | CV page 2

Publications

2024	Amortizing intractable inference in large language models. Edward J. Hu, Moksh Jain, <u>Eric Elmoznino</u> , Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, Nikolay Malkin <i>ICLR talk – best paper honorable mention</i>
2024	Sources of Richness and Ineffability for Phenomenally Conscious States. <u>Eric Elmoznino</u> , Xu Ji, George Deane, Axel Constant, Guillaume Dumas, Guillaume Lajoie, Jonathan Simon, Yoshua Bengio <i>Neuroscience of Consciousness</i>
2024	High-performing neural network models of visual cortex benefit from high latent dimensionality. Eric Elmoznino & Michael F. Bonner PLOS Computational Biology
2024	Does learning the right latent variables necessarily improve in-context learning? <u>Eric Elmoznino,</u> Sarthak Mittal, Leo Gagnon, Sangnie Bhardwaj, Dhanya Sridhar, Guillaume Lajoie <i>ICLR Workshop poster</i>
2024	Convolutional architectures are cortex-aligned de novo Atlas Kazemian, <u>Eric Elmoznino</u> , Michael F. Bonner <i>Preprint</i>
2023	Discrete, compositional, and symbolic representations through attractor dynamics. Andrew Nam, Eric Elmoznino, Nikolay Malkin, Chen Sun, Yoshua Bengio, Guillaume Lajoie <i>NeurIPS Workshop talk</i>
2023	Consciousness in Artificial Intelligence: Insights from the Science of Consciousness. Patrick Butlin, Robert Long, <u>Eric Elmoznino</u> , Yoshua Bengio, Jonathan Birch, Axel Constant, George Deane, Stephen M. Fleming, Chris Frith, Xu Ji, Ryota Kanai, Colin Klein, Grace Lindsay, Matthias Michel, Liad Mudrik, Megan A. K. Peters, Eric Schwitzgebel, Jonathan Simon, Rufin VanRullen <i>Preprint</i>
2023	Scene context is predictive of unconstrained object similarity judgments. Caterina Magri, Eric Elmoznino, Michael F. Bonner Cognition
2023	Learning Macro Variables with Auto-encoders. Maitreyi Swaroop, <u>Eric Elmoznino</u> , Dhanya Sridhar <i>Neurips Workshop poster</i>
2020	Visual representations derived from multiplicative interactions. <u>Eric Elmoznino</u> & Michael F. Bonner NeurIPS Workshop poster
2019	A new procedure, free from human assessment that automatically grades some facial skin structural signs. Comparison with assessments by experts, using referential atlases of skin ageing. Jiang R., Kezele I., Levinshtein A., Flament F., Zhang J., Elmoznino E., Ma J., Ma J., Coquide J., Arcin V., Omoyuri E.,

Invited Talks & Podcasts

Aarabi P. International Journal of Cosmetic Science

2024	Consciousness, ineffability, and AI safety — Mila AI Safety Reading Group
2023	Sampling discrete objects through continuous attractor dynamics — Mila GFlowNet Reading Group
2023	Why can't we describe our conscious experiences? An information theoretic attractor dynamics perspective
	of ineffability — Computational Phenomenology Group
2023	Why can't we describe our conscious experiences? An information theoretic attractor dynamics perspective
	of ineffability — Active Inference Institute podcast
2023	Why can't we describe our conscious experiences? An attractor dynamics perspective of the ineffability of
	qualia — University of Toronto guest lecture
2020	How does the brain work? Cognitive science research — SABES
2020	Introduction to Programming with Python — <i>UofTHacks</i>

Eric Elmoznino | CV page 3

Supervision

2023 Maitreyi Swaroop Mila, Montreal, QC Masters (Mathematics and Computing) 2021-22 **Atlas Kazemian** Johns Hopkins University, Baltimore, MD Masters (Cognitive Science) 2020-21 Adyant Balaji Johns Hopkins University, Baltimore, MD Undergraduate (Computer Engineering & Cognitive Science) 2019-20 **Maro Maged Doce** Johns Hopkins University, Baltimore, MD Undergraduate (Neuroscience)

Patents

- System and method for image processing using deep neural networks. Levinshtein A., Chang C., Phung E., Kezele I., Guo W., Elmoznino E., Jiang R., Aarabi P. U.S. Patent No. 11216988. Washington, DC: U.S. Patent and Trademark Office
 Image-to-image translation using unpaired data for supervised learning. Elmoznino E., Kezele I., Aarabi
- Image-to-image translation using unpaired data for supervised learning. Elmoznino E., Kezele I., Aarabi P. *U.S. Patent Application No. 17096774*. Washington, DC: U.S. Patent and Trademark Office
- System and method for augmented reality using conditional cycle-consistent generative image-to-image translation models. Elmoznino E., Ma H., Kezele I., Phung E., Levinshtein A., Aarabi P. *U.S. Patent Application No. 16683398*. Washington, DC: U.S. Patent and Trademark Office
- 2020 Machine image colour extraction and machine image construction using an extracted colour.

 Elmoznino E., Aarabi P., Zhang Y. U.S. Patent Application No. 16854975. Washington, DC: U.S. Patent and Trademark Office
- Automatic image-based skin diagnostics using deep learning. Jiang R., Ma J., Ma H., Elmoznino E., Kezele I., Levinshtein A., Charbit J., Despois J., Perrot M., Antoinin F., Flament R.S., Parham A. *U.S. Patent Application No. 16702895*. Washington, DC: U.S. Patent and Trademark Office

Other Activities

Instructor for ECE1780

Taught lectures for a graduate course on DNNs deployed to mobile devices under Prof. Parham Aarabi

University of Toronto, Toronto, ON Taught lectures for a graduate course on DNNs deployed to mobile devices under Prof. Parham Aarabi

Electrical and Computer Engineering Club, Toronto, ON Elected by peers at the University of Toronto to manage the club budget and plan social activities

Class Representative

Electrical and Computer Engineering Club, Toronto, ON Elected by peers at the University of Toronto to represent student interest at faculty meetings

Scholarships & Awards

2023	Vanier Canadian Graduate Scholarship (\$150,000 value)
2022	UNIQUE Neuro-AI Excellence Scholarship (\$15,000 value)
2016	Class of 4T3 Engineering James Ham Award (\$10,000 value)
2015	Class of 5T6 Award of Merit (\$15,000 value)
2013	First Choice Science Award
2012	McGill Science Award and Scholarship
2012	A.J. Grant Shield and Scholarship
2012	Quebec English Public Speaking (Provincial Finals) — Bronze Medal
2012	Governor General of Canada Academic Medal
2012	Royal Bank of Canada Shield
2012	Davies Family Shield
2012	Eakeley Shield
2011	Quebec French Public Speaking (Provincial Finals) — Silver Medal