QM Problem: Derwation of Probability Current.

11/16/85

7. A wave function $\psi = \psi(\vec{r},t)$ obeys the Schrodinger equation

$$i\hbar(\partial\psi/\partial t) = [-(\hbar^2/2m)\nabla^2 + V(\vec{r})]\psi$$

for a particle of mass m in appotential $V(\vec{r})$. Show that the probability density $p = \psi * \psi$ then obeys a continuity equation

$$\partial \rho / \partial t + \nabla \cdot \vec{J} = 0$$

where \vec{J} is a "probability current" density. Find \vec{J} explicitly in terms of ψ and its derivatives. Also: comment on what happens to \vec{J} when ψ is a purely real function. What kind of quantum-mechanical problems can be done with ψ = pure real?

Solution

Take 4*x (original Schr. extn) and (original Schr. extn) *x 4, i.e.

it
$$\psi^*\left(\frac{\partial \Psi}{\partial t}\right) = -(t^2/2m) \, \psi^*(\nabla^2 \psi) + \, \nabla(\vec{\tau}) \, \psi^* \psi$$

$$-i\hbar\left(\frac{\partial\psi^{*}}{\partial t}\right)\psi=-(\hbar^{2}/2m)(\nabla^{2}\psi^{*})\psi+V(\vec{r})\psi^{*}\psi$$

... Subtract, and the potential term drops out...

$$i\hbar \left[\frac{\psi^* \left(\frac{\partial \psi}{\partial t} \right) + \left(\frac{\partial \psi^*}{\partial t} \right) \psi}{\frac{\partial}{\partial t} (\psi^* \psi)} \right] = -\frac{\hbar^2}{2m} \left[\frac{\psi^* (\nabla^2 \psi) - (\nabla^2 \psi^*) \psi}{\nabla \cdot \left[\psi^* \overrightarrow{\nabla} \psi - \psi \overrightarrow{\nabla} \psi^* \right]} \right]$$

... rearrange terms ...

$$\frac{\partial}{\partial t} (\psi^* \psi) + \vec{\nabla} \cdot \left[\frac{\hbar}{2mi} (\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*) \right] = 0$$

$$pro t. density prob. current density \vec{J}$$

$$\rho = \psi^* \psi$$

$$\vec{J} = \frac{\hbar}{2\pi i} (\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*)$$

Have shown p= 4*4 does obey a continuity extr., with probability current density I as written.

If $\psi = \text{pure real}$, $\psi^* = \psi$, and $\vec{J} = 0$. There is no probability current density when $\psi = \text{pure real}$.

What kind of QM problems? Define the velocity operator... $\vec{V} = \vec{P}/m = -(\frac{i\hbar}{m}) \vec{\nabla} \leftarrow \vec{a} \text{ pure imaginary operator}$

$$\vec{J} = \frac{1}{2} \left(\frac{-i\hbar}{m} \right) \left[\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right]$$

$$= \frac{1}{2} \left[\psi^* \vec{\nabla} \psi + \psi \vec{\nabla}^* \psi^* \right] = \text{Re} \left[\psi^* \vec{\nabla} \psi \right].$$

When $\Psi = pwu real$, $\vec{J} = 0$, and expectation value $\langle \vec{J} \rangle = 0$. The particle m cannot be moving, and we can only so we problems involving standing waves for $\Psi - i.e.$ Statics problems.