7. Lecture 7

In the previous lecture, we discussed piecewise interpolation with \mathbb{P}^k , $k \geq 1$, polynomial. These approximations are globally continuous if the endpoints of each interval are interpolation points.

We are now contemplating the possibility of constructing globally C^1 interpolant.

Example 7.1 (Globally \mathbb{P}^2 and C^1 interpolant). Find $p \in \mathbb{P}^2$ satisfying

(4)
$$p(-1) = a, \quad p'(0) = b, \quad p(1) = c$$

for given $a, b, c \in \mathbb{R}$.

Let $p(x) = \alpha + \beta x + \gamma x^2$ for α , β and $\gamma \in \mathbb{R}$. The above 3 equations lead to the linear system

$$\underbrace{\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} a \\ b \\ c \end{pmatrix}}_{b}.$$

Note that $\det(A)=1\det\begin{pmatrix}1&1\\1&1\end{pmatrix}=0$ and so A is singular. This means that depending on b, there are either infinitely many solutions or no solutions. To give an example, if p(x) solves (4), so does $p(x)+\eta(x^2-1)$ for any $\eta\in\mathbb{R}$. Also there are no solutions to (4) when a=0, b=1 and c=0 because otherwise both (x-1) and (x+1) would have to divide p(x), i.e. p(x) would have to be a multiple of (x^2-1) and so p'(0)=0!

Exercise 7.1. Consider the interpolation problem, find $p \in \mathbb{P}^3$ satisfying

$$p(-1) = y_0, \quad p(0) = y_1, \quad p'(0) = y_2, \qquad p(1) = y_3.$$

Show that the above problem always as a unique solution.

<u>Hint:</u> Look for a solution $p(x) = \alpha + \beta x + \gamma x^2 + \delta x^3$, derive the matrix system for the unknowns α , β , γ and δ and show that its determinant is non-zero.

A general uniquely solvable interpolation problem. Assume $\{x_0, x_1, ..., x_n\}$ are distinct. Find $p \in \mathbb{P}^N$ satisfying for $j = 0, 1, ..., m_i$ and i = 0, 1, ..., n

$$p^{(j)}(x_i) = y_{i,j},$$

where $y_{i,j}$ are given.

The number of equations is

$$\sum_{i=0}^{n} (m_i + 1)$$

so we must take $N = \sum_{i=0}^{n} (m_i + 1) - 1$.

Theorem 7.1 (Globally Smooth Interpolation). The above interpolation problem has a unique solution given any set $\{y_{i,j}\}_{i=0;j=0}^{n;m_j}$

Notice that if you include a derivative of order j at x_i , you must also include $p^{(l)}(x_i), l = 0, 1, ..., j!$.

The general Hermite interpolation problem. Given $\{x_0,...,x_n\}$ distinct and $f \in C^1[x_0, x_n]$. Find $p \in \mathbb{P}^{2n+1}$ satisfying

$$p(x_i) = f(x_i), p'(x_i) = f'(x_i).$$

According to the previous theorem, this interpolation problem has a unique solu-

Theorem 7.2 (Error with Hermite Interpolation). Suppose that $f \in C^{2n+2}[a,b]$ and that $\{x_i\} \subset [a,b]$. Let p be the Hermite interpolant. Then for $x \in [a,b]$, there is a $\xi_x \in (a,b)$ satisfying

$$f(x) - p(x) = \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!} \prod_{i=0}^{n} (x - x_i)^2.$$

Proof. The formula is valid when $x = x_i$, i = 0, ..., n. Therefore, we assume that $x \notin \{x_0, ..., x_n\}.$ Set $w(t) = \prod_{i=0}^{m} (t - x_i)^2$ and

Set
$$w(t) = \prod_{i=0}^{m} (t - x_i)^2$$
 and

(5)
$$\phi(t) = f(t) - p(t) - \lambda w(t),$$

where

$$\lambda = \frac{f(x) - p(x)}{w(x)}.$$

Note that $\phi'(x_i) = 0$ since $f'(x_i) = p'(x_i)$ and $w'(x_i) = 0$. Now $\phi(x_i) = 0$ for i=0,1,...,n and $\phi(x)=0$ from the definition of λ . Rolles theorem implies that ϕ' has at least n+1 additional zeros which are not in $\{x_0,...,x_n\}$. Therefore, ϕ' has at least 2n+2 distinct zero. Applying Rolles theorem again but to these zeros implies that ϕ'' has at least 2n+1 zero. Repeating this process we find that $\phi^{(2n+2)}$ has at least 1 zero, i.e. $\phi^{(2n+2)}(\xi_x) = 0$ for some $\xi_x \in (a,b)$.

Differentiating (5) 2n + 1 times and evaluating at ξ_x

$$0 = \phi^{(2n+2)}(\xi_x) = f^{(2n+2)}(\xi_x) - \lambda(2n+2)!$$

and the claim follows by simple algebra.

Example 7.2 (Hermite n = 0). Find $p \in \mathbb{P}^1$ satisfying

$$p(x_0) = f(x_0),$$
 $p'(x_0) = f'(x_0).$

The solution is

$$p(x) = f(x_0) + f'(x_0)(x - x_0),$$

i.e. the 2 term Taylor polynomial.

Example 7.3 (Cubic Hermite n=1). Find $p \in \mathbb{P}^3$ satisfying

$$p(x_i) = f(x_i),$$
 $p'(x_i) = f'(x_i),$ $i = 0, 1.$

We use the Newton form solution. From the first example

$$p_1(x) = f(x_0) + f'(x_0)(x - x_0),$$

solves $p_1(x_0) = f(x_0)$ and $p'_1(x_0) = f'(x_0)$. Look for

$$p_2(x) = p_1(x) + c_2(x - x_0)^2$$

satisfying $p_2(x_1) = f(x_1)$, i.e.

$$c_2 = \frac{f(x_1) - p_1(x_1)}{(x_1 - x_0)^2} = \frac{f(x_1) - f(x_0) - f'(x_0)(x_1 - x_0)}{(x_1 - x_0)^2}.$$

Then we look for

$$p_3(x) = p_2(x) + c_3(x - x_0)^2(x - x_1)$$

satisfying $p_3'(x_1) = f'(x_1)$.

Exercise 7.2. Derive an expression for $p_3(x)$ in term of

$$x_0, x_1, f(x_0), f'(x_0), f(x_1), f'(x_1).$$

Piecewise Hermite interpolation. Let $a = x_0 < x_1 < ... < x_m = b$ and consider piecewise Hermite cubic approximation f_h , i.e.

$$f_h(x) = p_i(x)$$
 on $[x_{i-1}, x_i]$

with $p_i \in \mathbb{P}^3$ solving

$$p_i(x_{i-1}) = f(x_{i-1}),$$
 $p'_i(x_{i-1}) = f'(x_{i-1})$
 $p_i(x_i) = f(x_i),$ $p'_i(x_i) = f'(x_i),$

where $h = \max_{i=1,...,N} (x_i - x_{i-1})$. Note that $f_h \in C^1[a,b]$.

Exercise 7.3. Assume that $f \in C^4[a,b]$. Use the previous theorem to prove a 4th order (in h) error bound for $|f_h(x) - f(x)|$.