Relation: Part 2 - Representation

Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

Reference: Rosen, Discrete Mathematics and Its Applications, 8ed, 2019, Sec. 9.3

Representation of relation

Different ways relations are represented:

- The standard mathematical notation (already discussed earlier).
- Table/tabular form, i.e., list of tuples.
- Matrix (only for binary relations)
- Graph (only for binary relations)

Tabular representation

- Table = list of tuples in the relation.
- Number of columns = arity of relation.
- Columns may have names (as commonly seen in relational databases).
- Infinite relation → infinite table. Practical table is normally finite.

$$R_1 = \{(a, b) \in \mathbb{N}^2 \mid a + b = 5\}$$
 R_1

101		
a	b	
0	5	
1	4	
2	3	
3	2	
4	1	
5	0	

$$R_2 = \{(a, b, c) \in (\mathbb{Z}^+)^3 \mid a^2 + b^2 = c^2\}$$

R_2			
a	b	c	
3	4	5	
5	12	13	
6	8	10	
7	24	25	
8	15	17	
:	:	:	

List, using a table, all 4-tuples in the relation $\{(a,b,c,d) \in (\mathbb{Z}^+)^4 \mid abcd = 6\}$.

Matrix representation

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$ be two finite sets.

- We pick a particular ordering of the elements of A and B, and consistently stick to it, say a_1, \ldots, a_m for elements of A and b_1, \ldots, b_n for elements of B.
- Let $R \subseteq A \times B$ be a binary relation over A, B.
- R can be represented by a **zero-one matrix** \mathbf{M}_R where
 - Element $m_{i,j}$ at the position (i,j) satisfies $m_{i,j}=1$ iff $(a_i,b_j)\in R$.
 - Also, $m_{i,j} = 0$ iff $(a_i, b_j) \notin R$.
- If A=B, then by convention, we use the same ordering of elements for A and B.

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} = 4 & b_{2} = 5 \\ & & \\ a_{1} = 4 \\ a_{2} = 5 \\ a_{3} = 6 \end{bmatrix}$$

Let $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2, b_3, b_4, b_5\}$ with the matrix \mathbf{M}_R below representing $R \subseteq A \times B$. What is R?

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

 $R = \{$

$$\mathbf{M}_R = \begin{bmatrix} b_1 = 4 & b_2 = 5 \\ 0 & 0 \\ & & \\ a_2 = 5 \\ a_3 = 6 \end{bmatrix}$$

$$\mathbf{M}_R = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} = 4 & b_{2} = 5 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{array}{c} a_{1} = 4 \\ a_{2} = 5 \\ a_{3} = 6 \end{array}$$

Let $A = \{a_1, a_2, a_3\}, B = \{b_1, b_2, b_3, b_4, b_5\}$ with the matrix \mathbf{M}_R below representing $R \subseteq A \times B$. What is R?

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

6/11

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} = 4 & b_{2} = 5 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{array}{c} a_{1} = 4 \\ a_{2} = 5 \\ a_{3} = 6 \end{array}$$

Let $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2, b_3, b_4, b_5\}$ with the matrix \mathbf{M}_R below representing $R \subseteq A \times B$. What is R?

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

6/11

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} = 4 & b_{2} = 5 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{array}{c} a_{1} = 4 \\ a_{2} = 5 \\ a_{3} = 6 \end{array}$$

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} a_{1} \qquad R = \{(a_{1}, b_{2}),$$

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} = 4 & b_{2} = 5 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{array}{c} a_{1} = 4 \\ a_{2} = 5 \\ a_{3} = 6 \end{array}$$

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix}$$

$$R = \{(a_{1}, b_{2}), (a_{2}, b_{1}), (a_{2}, b_{3}), (a_{2}, b_{4}), (a_{2}, b_{4}), (a_{2}, b_{4}), (a_{3}, b_{4}), (a_{4}, b_{5}), (a_{5}, b_{4}), (a_{5}, b_{5}), (a$$

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} = 4 & b_{2} = 5 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{array}{c} a_{1} = 4 \\ a_{2} = 5 \\ a_{3} = 6 \end{array}$$

$$\mathbf{M}_{R} = \begin{bmatrix} b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}$$

$$R = \{(a_{1}, b_{2}), (a_{2}, b_{1}), (a_{2}, b_{3}), (a_{2}, b_{4}), (a_{3}, b_{1}), (a_{3}, b_{3}), (a_{3}, b_{5})\}$$

Give a matrix representation of the relation R on $\{1,2,3,4\}$ where $R = \{(1,2),(2,1),(2,3),(3,3),(4,1),(4,3)\}$

Give the relation R on $\{1,2,3,4\}$ whose matrix representation is below where the rows and columns correspond to the integers listed in increasing order.

$$\mathbf{M}_R = egin{bmatrix} 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 \end{bmatrix}$$

Directed graph (digraph) representation

- Digraph consists of nodes/vertices and edges/arrows, which connects one node to another (hence can only represent binary relation).
 - An edge may connect one node to itself: it is called a **loop**.
- Given binary relation $R \subseteq A \times B$, the graph representation is constructed as follows:
 - The nodes are all unique elements of $A \cup B$.
 - Construct an edge from node a to node b iff $(a,b) \in R$.

Let $A=\{4,5,6\}$, $B=\{4,5\}$, and $R=\{(a,b)\in A\times B\mid a>b\}$. Give its graph representation.

Let $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2, b_3, b_4, b_5\}$ with the matrix \mathbf{M}_R below representing $R \subseteq A \times B$. Give the graph representation for R.

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Give a graph representation of the relation R on $\{1,2,3,4\}$ where $R = \{(1,2),(2,1),(2,3),(3,3),(4,1),(4,3)\}$

Give a graph representation of the relation R on $\{1,2,3,4\}$ whose matrix representation is below where the rows and columns correspond to the integers listed in increasing order.

$$\mathbf{M}_R = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$