HCI Summary

This document is a comprehensive summary of the key topics from the Human-Computer Interaction (HCI) course in the Informatics and Computing Engineering Bachelor's Degree at FEUP. It was created by Francisco Afonso in collaboration with an AI assistant to provide a structured and accessible overview of the main concepts, principles, and methodologies covered throughout the course. The aim is to serve as a study guide and reference for understanding HCI's theoretical and practical aspects.

1 - Introduction

Introduction to Human-Computer Interaction (HCI)

- Objective Study the interaction between humans and computers, focusing on designing technology that facilitates this interaction.
- Key Questions:
 - What do interfaces have in common?
 - Why are there different solutions for similar purposes?
 - o Are existing solutions efective?

Key Concepts

- User Interface (UI):
 - The visible part of the system (visual, audio, tactile).
 - Purpose: Enable interaction, task execution, and provide feedback to users.
- User Experience (UX):
 - · Encompasses the entire experience with the system, including emotional, aesthetic, and contextual aspects.
 - o UX is designed for users, not directly created.

Design Principles in HCI

- Common Myths:
 - "Good design means good graphics."
 - "Marketing knows the users."
 - "Good design is common sense."
 - "The interface can be designed at the end."
- HCI Mantras:
 - o Know your users: their physical, cognitive, and social context.
 - "The user is not like me": Avoid designing based on personal preferences.

User-Centered Design (UCD) Process

- Iterative process focused on users' needs.
- Combines investigative methods (e.g., interviews) with generative methods (e.g., brainstorming).

Iteration and Prototyping

- Fail Fast Philosophy: Fail early, quickly, and often to improve designs.
- Iterative Process: Ideate -> Prototype -> Test -> Repeat.

2 - User Research

Why User Research?

- Focuses on:
 - o Potential users, their characteristics, tasks, and context.
 - · Expectations and goals.
- Purpose: To design a usable and useful interface by understanding the users.

Types of Participants

- Users: Final users of the product, often unaware of their needs and expectations.
- Stakeholders: Define high-level goals but may misinterpret user needs.
- Designers: Bridge users and stakeholders by designing and iterating on interfaces.

Key Concepts

1. User Characteristics:

- Definition: Knowledge of tasks and tools, mental models, and level of expertise.
- Differences: Personal traits, physical/cognitive abilities, cultural diversity.
- Expertise Evolution:
 - Beginner → Advanced Beginner → Competent → Expert.

2. Task Analysis:

- o Formal: Structured lists or diagrams for existing systems.
- o Informal: Exploratory approach for new designs.

User Research Methods

- Implicit: Eye tracking, observation studies, reaction measurements.
- Explicit: Surveys, self-reports, think-aloud protocols.
- · Qualitative vs. Quantitative:
 - o Qualitative: Subjective insights (e.g., questionnaires).
 - o Quantitative: Numeric data (e.g., task completion time).

Ethnography and Observation

- Ethnography: Long-term analysis of user behavior in context.
- Observation: Monitoring user behavior to understand actions, tools, and breakdown points.

PACT Analysis

- People: Attributes (e.g., physical, cognitive, cultural traits).
- · Activities: Tasks and their frequency, complexity, and goals.
- Context: Physical, social, and organizational environments.
- Technologies: Current tools and how new ones might be applied.

2.1 - Personas

What are Personas?

- Definition: Archetypes of typical users based on patterns in motivations, needs, and frustrations.
- Purpose:
 - Guide product decisions by understanding user behavior and goals.
 - Prevent designing based on designers' personal preferences.

Creating Personas

1. Process:

- o Identify patterns during user interviews.
- o Define groups based on:
 - Motivations.
 - Needs.
 - Pain points.

2. Characteristics:

- Rich descriptions (name, photo, personal traits).
- o Specific details ("owns a dog named Billy").
- Not real people, but realistic and relatable.

Best Practices

- Keep personas simple and goal-focused.
- · Prioritize behavior patterns over job/role descriptions.
- Limit the number of personas to a manageable set.
- Avoid correlating market segments directly with personas.

Context/Activity Scenarios

- Complement personas with scenarios describing tasks in context.
- Example:
 - Paulo wants to check employee expenses. He navigates the system to retrieve the information without UI specifics.

3 - Ideation

Conceptual Model

Definition:

- Represents what users can do with the system and the underlying task-related concepts.
- Includes Objects with attributes, and Actions in the task domain.
- Establishes mappings between these elements to organize ideas before designing the user interface through Relations.

Purpose:

- Helps clarify how the system operates and aligns with user tasks.
- o Incorporates familiar metaphors for the target users.

It is NOT:

- o The user interface.
- The system architecture.
- o Specific interactions like key presses, mouse actions, or UI layouts.
- o The user's mental model.

Functional and Usability Requirements

· Functional Requirements:

o Derived from personas and scenarios, focusing on tasks the system should support (e.g., logging in, managing photos, sharing content).

· Task Selection:

- Tasks should be:
 - Real and representative.
 - Focused on "what" (not "how") the system will achieve the task.
 - A mix of simple/common and complex/rare tasks.

• Usability Requirements:

- Evaluate usability through:
 - Efficacy: Achieving goals without errors.
 - Efficiency: Resources and time spent.
 - Satisfaction: Users' subjective feedback.

Ideation Principles

- · Myths and Realities:
 - · Innovation doesn't start with an idea; instead, ideas are the output of understanding customer needs and challenges.
 - Quantity vs. Quality: Generating numerous ideas leads to higher quality solutions due to iterative learning.

• Best Practices:

- Start with individual ideation, then collaborate as a group.
- Share ideas openly and without judgment.
- Generate ideas in parallel to encourage diversity.
- Avoid premature convergence on a single solution.
- Prototype ideas for validation.

Techniques for Ideation:

- o Crazy 8:
 - A Design Sprint technique where each participant sketches 8 ideas in 8 minutes.
 - Objective: Move beyond initial ideas to explore a wide range of solutions.
 - Follow-up: Share ideas and discuss with the team.

4 - Prototyping

What is Prototyping?

- A partial representation of a system, aimed at exploring and validating ideas.
- Goals:
 - o Test concepts early and cost-effectively.
 - o Identify bad ideas quickly.
 - Facilitate user feedback.

Prototyping Techniques

- 1. Experiential Techniques:
 - · Storyboarding:
 - A sequence of drawings to depict settings, context, and events. Focus: Context, task sequence, and user goals (no UI specifics).
 - Bodystorming:
 - Physical enactment of scenarios to ideate and evaluate system functionalities.
 - Wizard of Oz
 - Simulate system functionalities with a human (e.g., mimicking complex AI behavior).

2. Prototype Fidelity:

• Fidelity: Focuses on the visual appearance.

- o Functionality: Focuses on the system's operational aspects.
- Horizontal vs. Vertical:
 - Horizontal: Broad coverage of features with minimal depth.
 - Vertical: In-depth representation of specific features.

Prototype Types

1. Low-Fidelity (Lo-Fi) Prototypes:

- o Characteristics:
 - Quick, easy, and inexpensive to create.
 - Prioritizes conceptual ideas over aesthetics.
 - Examples: Paper sketches, cardboard models.
- o Pros: Encourages iteration, disposable.
- o Cons: Limited scalability, lacks detailed realism.

2. Mock-ups:

- o Characteristics:
 - Digital or printed representations of UI.
 - Can range from wireframes to high-resolution designs.
- Pros: Scalable and supports consistency in design.
- o Cons: Hi-Fi versions may prematurely influence user feedback.

3. Interactive Mock-ups:

- Add interactivity through tools like clickable hotspots.
- o Allows simulation of user flows without actual programming.

4. Functional Prototypes:

- Include partial implementation of system logic.
- May be developed on the final platform or a prototyping tool.
- Typically involve higher fidelity and are closer to the final product.

Prototype Tools

1. Simple Hyperlinking:

- Marvel App:
 - Upload sketches or images and add tappable areas.
 - Suitable for basic flows and mobile testing.

2. Advanced Collaboration:

- Figma:
 - Supports real-time collaboration and interactive flows.
 - Free for students.

3. Testing-Focused:

- Ouant-UX:
 - Advanced widgets and testing tools.
 - Free and open-source.

4. Promising Newcomer:

- Penpot:
 - Open-source, with real-time collaboration features.

5. Commercial Tools:

o Popular options include Webflow, InVision, and JustInMind.

5 - Evaluation

Evaluation in the Design Process

- Purpose: Ensure the product meets user needs and achieves usability goals.
- Approach:
 - Involves interdisciplinary teams with equal contributions.
 - Incorporates iterative design with brainstorming and prototype testing.
 - $\bullet \quad \hbox{Evaluation can occur at any stage: conceptual model, prototypes, or finished product. } \\$

The 5W 1H Framework

- 1. Why: To determine usability and user satisfaction.
- 2. What: Evaluate models, prototypes, or final systems.
- 3. Where: Conduct in natural or controlled environments.
- 4. When: During design or post-release for insights on future designs.
- 5. Who: Involve users or experts.6. How: Use formative or summative methods.

Types of Evaluation

1. Formative:

- Conducted during design.
- Focus on identifying problems and refining designs.
- o Example: Observing user interactions.

2. Summative:

- o Post-design evaluation of overall success.
- o Focus on performance metrics like time, errors, and satisfaction.

Users or Not?

1. User Involvement:

- o Field Studies: Natural settings to observe real-world use.
- o Usability Testing: Controlled tests of user performance and satisfaction.

2. Without User Involvement:

- Heuristic Evaluation: Expert reviews based on usability heuristics, good for evaluating initial designs and prototypes, it's fast, sort of cheap and easy to use
- Predictive Evaluation: Predicts performance using models (e.g., GOMS, KLM).

Nielsen's Usability Heuristics

- 1. Visibility of system status.
- 2. Match between the system and the real world.
- 3. User control and freedom.
- 4. Consistency and standards.
- 5. Error prevention.
- 6. Recognition rather than recall.
- 7. Flexibility and efficiency of use.
- 8. Aesthetic and minimalist design.
- 9. Help users recognize, diagnose, and recover from errors.
- 10. Help and documentation.

Testing with Users

- Participants: Should represent the target audience.
- Number of Users:
 - Formative Testing:
 - 1 user -> 33% of problems.
 - 5 users -> 85%
 - 15 users -> 99%
 - 3 iterations with 5 users -> better than 1 x 15

o Summative Testing:

■ Larger samples (10-20+) for statistical validity.

· Methods:

- o A/B Testing: Compare versions within or between groups.
- Variables:
 - **Dependent**: Time, errors, satisfaction (linked to prototype purpose).
 - Independent: User demographics, design characteristics.

Data Collection

- 1. Types of Data:
 - o Quantitative: Measurable (e.g., time taken, errors).
 - Qualitative: Open-ended insights (e.g., "What did you like?").
- 2. Objectivity:
 - Objective: Measurable, bias-free (e.g., time, errors).
 - Subjective: User perceptions (e.g., preferences, satisfaction).
- 3. System Usability Scale (SUS): A widely-used method to assess user satisfaction and usability.

6 - Experimental Design and Ethics

Experimental Design

- · Methods:
 - 1 Formative Assessment

- Identifies usability issues using:
 - Direct observation.
 - Think-aloud protocols.
 - Wizard-of-Oz.
 - Interviews or questionnaires.

2. Summative Assessment:

- Measures performance using:
 - Usability tests.
 - A/B tests.

Tasks:

- Should be real and representative, focusing on what rather than how.
- Example:
 - Wrong: "Select Uber and type 'Aliados.'"
 - Right: "Book a ride to Aliados using Uber."
- o Maintain consistency for summative evaluations to ensure fairness.

Usability Measures

- · Examples of metrics:
 - o Time to complete tasks.
 - · Number of errors or help requests.
 - o Completed tasks percentage.
 - · User satisfaction.

Data Collection

- Direct Observation:
 - o Observing users in real-time or through video recordings.
- Indirect Observation:
 - o Diaries (manual tracking).
 - · Automated interaction logs.
- Pilot Tests:
 - o Conducted with 2-3 individuals to validate: Instructions, tasks, questionnaires, duration, etc.

Challenges in Experimental Design

- Side Effects:
 - Reward Limits Creativity: Users may focus on rewards.
 - o Observer Effect: Users behave differently when observed.
 - Novelty Effect: Initial excitement for a new system may fade.
 - Survivor Bias: Ignoring failed solutions can lead to incomplete insights.

Ethical Considerations

- Assumptions:
 - Scientists are ethical? Not always (e.g., Tuskegee Syphilis Study, Milgram Experiment).
- Participant Welfare:
 - Avoid stress or discomfort.
 - Obtain informed consent.
 - Ensure voluntary participation and anonymity.
 - Emphasize system testing, not user evaluation.
- Special considerations for: Children, individuals with disabilities, minorities, etc.

Principles of Ethics

- 1. Respect for People:
 - Respect autonomy and choices.
 - Use informed consent.
 - o Protect vulnerable individuals.
- 2. Charity (Doing Good):
 - o Prevent harm and minimize risks.
 - Act kindly beyond duty.
 - Balance risks and benefits.
- 3. Justice:
 - Ensure fairness in recruitment and distribution of risks/benefits.
- Consider participants' time, comfort, privacy, and control throughout the evaluation process.

7 - Qualitative Analysis

What is Qualitative Data?

- Non-numeric data such as text, images, audio, and video.
- · Focuses on:
 - o Attitudes, behaviors, motivations, and experiences.
 - · Describing and explaining events and opinions.

Techniques for Qualitative Analysis

- 1. Word Clouds:
 - · Represent word frequency but lack content analysis.
- 2. Thematic Analysis:
 - A systematic approach involving:
 - Codes: Labels for meaning (e.g., "password").
 - Themes: Patterns in data formed by groups of codes (e.g., "security").
- 3. Affinity Diagrams:
 - Use collaborative tools (e.g., post-its) to group data into themes.
 - o Applicable in ideation, synthesizing research, or team consensus.
- 4. Other Techniques:
 - o Sentiment Analysis: Evaluating emotional tone.
 - o Factorial Analysis: Examining interrelations among variables.

8 - Quantitative Analysis

What is Quantitative Analysis?

- Focuses on statistical methods for measurable data.
- Includes:
 - Descriptive Statistics: Summarizing sample characteristics.
 - Statistical Inference: Drawing conclusions about populations from samples.

Key Concepts in Statistics

- Variables:
 - Dependent: Measured outcomes (e.g., number of errors).
 - o Independent: Conditions or groups being tested (e.g., user age).
- Measures:
 - Nominal: Categories (e.g., color).
 - o Ordinal: Ranked scales (e.g., satisfaction levels).
 - o Continuous: Numeric values (e.g., time, errors).
- Descriptive Statistics:
 - o Mean: Average value.
 - Standard Deviation: Variability in data.
 - Median: Middle value.
 - o Quartiles: Data distribution segments.
 - Mode: Most frequent value.

Statistical Inference

- 1. Hypothesis Testing:
 - Null Hypothesis (H0): Assumes no relationship (e.g., "No performance difference").
 - Confidence Level (1-α): Probability of not making a false assumption (e.g., 95%).
- 2. Common Tests:
 - T-Student: Compare means (e.g., trackpad vs. mouse time).
 - o Chi-Square: Compare expected vs. observed frequencies (e.g., preferences).
 - Pearson's Correlation: Measure relationship between variables (e.g., height vs. shoe size).

Using Statistical Methods

- T-Student:
 - · Assumes normal distribution.
 - o Tests if two means are significantly different.
- Confidence Intervals:

- Define a range within which the true population mean likely lies.
- · Chi-Square:
 - Tests if observed distributions differ from expected ones.
- · Pearson's Correlation:
 - Measures the strength and direction of a relationship between two variables.

9 - Help and Documentation

User Strategies for Seeking Information

- 1. Browsing:
 - · Casual exploration of information.
 - Requires clear structure (e.g., breadcrumbs, anchors to familiar locations).
- 2. Search:
 - Users know their target and seek help finding it (e.g., using a search bar).
- 3. Query:
 - · Users have a general idea but lack specifics.
 - Good systems offer flexible criteria, examples, and effective result displays.
- 4. Structured Search:
 - · Uses categories/subcategories to refine focus dynamically.
- 5. Guided Search:
 - Step-by-step process for limited, sequenced options (e.g., purchase wizards).

Documentation Types

- 1. Manuals:
 - User Manual: Step-by-step guidance for task-oriented learning.
 - o Quick Start Guide: Basic instructions for initial use.
 - Reference Manual: Exhaustive functional details for expert users.
 - o Quick Reference Guide: Compact cheat sheets for frequent tasks.
- 2. Interactive Help:
 - o Directly integrated with the system, often context-sensitive.
 - o Features:
 - Availability throughout the system.
 - Consistency and flexibility.
 - Robustness in failure scenarios

Key Features of Good Documentation

- · Learning Facilitation:
 - Build user mental models using relatable examples and visual cues.
 - Present information incrementally, from general to specific.
 - Avoid technical jargon; use user-friendly language.
- Ease of Navigation:
 - o Organized by user goals and tasks.
 - · Visual aids for motivation, concepts, and procedures.
 - Simplified table of contents and task-oriented indexing.

Interactive Help Guidelines

- 1. Accessible in all contexts.
- 2. Provide task-oriented and minimalist content.
- 3. Avoid irrelevant images or over-indexing topics.
- 4. Write content addressing user questions/problems.
- Heuristics for Writing Help Content:
 - Focus on tasks, not technology or functions.
 - Use minimalist designs and small file sizes.
 - o Optimize for mobile users (e.g., reduced clicks/touches).
 - Collaborate with users during the process.

Additional Help Formats

- Tutorials:
 - Descriptive: Step-by-step guides.
 - In-App: Contextual and interactive.
 - Video/Animation: Visual demonstrations.
- FAQs:
 - o Address common questions succinctly.