Série 4 Calculer avec les puissances de 10 -

Exercice corrigé

1. Écris les nombres suivants sous la forme d'une seule puissance de 10.

$$A=10^4\times10^3$$

$$B = 10^{-3} \times 10^{-7}$$

$$C = \frac{10}{10^{-3}}$$

$$D = \frac{10^{-7}}{10^3} \ .$$

$$\mathsf{E} = \left(10^{-3}\right)^{-7} \times \left(10^{2}\right)^{-3}$$

2. Donne l'écriture décimale des nombres $F = 10^3 + 10^2$ et $G = 10^{-2} - 10^{-3}$.

Correction

$$A=10^4\times10^3$$

$$A = 10^{4+3}$$

$$A = 10^7$$

$$B = 10^{-3} \times 10^{-7}$$

$$B = 10^{-3 + (-7)}$$

$$B = 10^{-10}$$

$$C = \frac{10^1}{10^{-3}}$$

$$C = 10^{10^{-3}}$$

$$C = 10$$

 $C = 10^{1+3}$

$$C = 10^4$$

$$D = 10^{-7}$$

$$D = 10^{-10}$$

$$E = 10^{-3 \times (-7)} \times 10^{2 \times (-3)}$$

$$\begin{array}{l} E = 10^{21} \times 10^{-6} \\ E = 10^{21 + (-6)} \end{array}$$

$$E = 10^{15}$$

- **2.** $F = 10^3 + 10^2 = 1000 + 100 =$ **1100**
- $G = 10^{-2} 10^{-3} = 0.01 0.001 = 0.009$
- Écris sous la forme d'une puissance de 10.
- a. $10^2 \times 10^6 =$
- **b.** $10^4 \times 10^{-2} =$
- $10^{-7} \times 10^{-3} =$
- **d.** $10^9 \times 10^{11} = \dots$
- **e.** $10^{-13} \times 10^{-15} = \dots$
- $10^{-8} \times 10^{6} =$
- $10^{12} \times 10^{-10} =$
- 2 Complète par une puissance de 10.

×	10°	10 ⁻⁷	10 ⁻¹⁴	10 ¹⁸
10 ¹²	10 ²¹			
10 ⁻⁹				
10 ¹⁵				
10 ⁻⁸				

- Écris sous la forme d'une puissance de 10.

- e. $\frac{10^8}{10^4} = \dots$
- Complète par une puissance de 10.

÷	10 ¹²	10 ⁻⁷	10 ⁻⁸	10°
10 ¹⁸	10 ⁶			
10 ⁻¹³				
10 ²¹				
10 ⁻¹⁰				

- 5 Écris sous la forme d'une puissance de 10.
- $(10^3)^2 =$
- $(10^{-3})^2 =$
- $(10^{-3})^{-2} =$

- f_{\bullet} (10⁻³³)⁻³ =
- $q. (10^5)^0 = \dots$
- 6 a. Entoure les expressions égales à 109.

$$10^6 + 10^3$$
 $10^3 \times 10^6$ $(10^6)^3$ $\frac{10^6}{10^{-3}}$

b. Entoure les expressions égales à 10^{-7} .

$$\frac{10^{-4}}{10^{-3}} \qquad 10^{-4} \times 10^{3} \qquad \frac{10^{-}}{10^{4}}$$

$$\frac{10^{-3}}{4}$$
 $10^{-2} \times 10^{-5}$

c. Entoure les expressions égales à 10⁸.

$$\frac{10^9}{10}$$
 $10^4 \times 10^2$ $(10^4)^2$

$$(10^4)^2$$
 $(10^{-2})^{-4}$

$$\frac{10^4}{10^4}$$

 $(10^0)^{12}$

d. Entoure les expressions égales à 1.

$$\frac{10^9}{10^{-9}}$$
 $10^7 \times 10^{-7}$ $(10^8)^{-8}$ $\frac{10^{14}}{(10^2)^7}$

e. Entoure les expressions égales à 10.

$$\frac{10^{-9}}{10^{-10}} \quad 10^7 \times 10^{-3} \quad (10^8)^2 \qquad \frac{10^{15}}{(10^2)^8} \qquad (10^1)^1$$

Relie les expressions égales.

 $10^{-5}\times10^{16}\times10^{3}$

$10^{10} \times 10^{-3}$	•	10 ¹⁰
$10^9 \times 10^5$	•	10 ⁻⁹
$(10^2)^5$	•	10 ⁻¹²
$\frac{10^8}{10^{17}}$		10^{-14}
$\frac{10^{-10}}{10^4}$	•	10 ⁷

8 Complète les cases avec des puissances de 10 sachant que le produit de toutes les lignes, colonnes et diagonales vaut 100.

10 ⁵	10^{-4}		10 ⁻⁷
	$(10^{-2})^3$	10^{-4}	
$(10^{-4})^2$			
	10 ⁵		$(10^2)^{-1}$

Écris les expressions suivantes sous la forme d'une puissance de 10.

$$A = 10^5 \times (10^{-3})^4$$

$$A = 10^5 \times 10^{----}$$

$$B = 10 \times (10^{-7})^3 \times 10^9$$

$$C=2^3\times 5^3\times 10^8$$

$$D = \frac{10^{-2} \times 10^{-7}}{10^{6}}$$

$$\mathsf{E} = \frac{10^{-4} \times 10^9}{10^5 \times 10^{-7}}$$

$$F = \frac{(10^4)^{-2} \times 10}{10^{-3}}$$

$$G = \left(\frac{10^{13} \times 10^{-9}}{10^{-14} \times 10^{-8}}\right)^2$$

$$H = \frac{20^6 \times 10^{-9}}{2^6}$$

10 Calcule puis vérifie à la calculatrice.

a.
$$59 \times 2^{-2} \times 5^{-2} = \dots$$

b.
$$5^2 \times 0.742 \times 2^2 = \dots$$

c.
$$2^3 \times 12, 2 \times 5^3 =$$

d.
$$2^{-3} \times 5^{-3} \times 61 = \dots$$

111 Exprime chacune de ces longueurs à l'aide d'une puissance de 10 puis classe-les dans l'ordre décroissant.