Convex Optimization: SMAT430C Practice Problem Set-2

- 1. From Boyd's Book, Chapter 2 (Convex Set), Exercises: 2.23, 2.24(a), 2.28, 2.29, 2.30, 2.31 (a, b, d, e).
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^k$ be two maps such that f and g preserve convexity, i.e., if S is a convex subset of **dom** f (or **dom** g), then f(S) (or g(S)) is convex set. Show that $g \circ f: \mathbb{R}^n \to \mathbb{R}^k$ preserves convexity.
- 3. Express linear-fractional function as the composition of a perspective function with an affine function and hence show that the image of a convex set S under a linear fractional function is convex.
- 4. Let $S = \{2, 3, 4, 5, 9, 11\}$. Then find maximal element(s), mamimum element, minimal element(s) and minimal element for the relation \leq :
 - (a) $a \leq b \Leftrightarrow a \leq b$
 - (b) $a \leq b \Leftrightarrow a|b$ (i.e., a divides b).
- 5. Let K be a proper cone with the generalized inequality \leq . For any $a, b \in K$, define $a \leq b \Leftrightarrow b a \in K$. Show that
 - (a) If $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.
 - (b) If $a \leq b$ and $b \leq a$, then a = b.
 - (c) If $a \leq b$, $b \leq c$, then $a \leq c$.
 - (d) $a \prec a \ \forall a \in K$
 - (e) If $a \leq b$ and $\alpha \geq 0$, then $\alpha a \leq \alpha b$
- 6. Let $T: \mathbb{R}^n \to \mathbb{R}$ be a linear functional which is bounded below. Show that $T = \mathbf{0}$ (i.e. T is zero transformation).
- 7. Write the converse of the separating hyperplane theorem. Is it true in general? Justify your answer.
- 8. Define strict separation of two sets. Can we always separate two sets strictly? Justify your answer.
- 9. Find Sup $\{a^Tx: ||x||_2 \le \epsilon\}$.
- 10. Suppose C and D are convex sets, with C open, and there exists an affine function f that is nonpositive on C and nonnegative on D. Then show that $C \cap D = \emptyset$.

Strict separation theorem: Let C and D be two closed convex sets in \mathbb{R}^n with at least one of them is bounded. If $C \cap D = \emptyset$, then $\exists \ a \neq 0$ and b s.t. $a^T x < b \ \forall \ x \in C$ and $a^T x > b \ \forall \ x \in D$.