Max Wisniewski, Alexander Steen

Tutor: David Müßig

Aufgabe 1 (Untergruppen von Primzahlindex)

Geben Sie für jede Primzahl p>2 endliche Gruppen G und H an, so dass #(G/H)=p und H kein Normalteiler von G ist.

Lösung:

tbd

Aufgabe 2 (Die orthogonale Gruppe)

a) Zeigen Sie, dass die orthogonale Gruppe O(2) von Spiegelungen erzeugt wird.

Lösung:

tbd

b) Es sei $N \triangleleft O(2)$ eine normale Untergruppe, die eine Spiegelung enthält. Beweisen Sie N = O(2).

Lösung:

 tbd

c) Es seien $r \in O(2)$ eine Drehung und $G = \langle r \rangle$. Weise Sie nach, dass N eine normale Untergruppe ist.

Lösung:

tbd

d) Wann ist die untergruppe G aus Teil c) endlich?

Lösung:

 tbd

Aufgabe 3 (Die Kommutatorenuntergruppe von S_n)

Satz: Für n > 2 gilt:

$$[S_n, S_n] = A_n.$$

Bew.:

tbd

Aufgabe 4 (Die alternierende Gruppe A_4)

a) Zeigen Sie, dass e zusammen mit den Permutationen vom Zykeltyp (2,2) eine normale Untergruppe $H \lhd A_4$ bildet.

Lösung:

 tbd

b) Geben Sie einen Homomorphismus $\varphi: A_4 \to \mathbb{Z}_3$ mit $Ker(\varphi) = H$ an, H die Untergruppe aus Teil a).

Lösung:

 tbd