KERNEL METHODS

Chih-Wei Chang Chung-Yen Hung January 8, 2015

Department of Mathematics, National Taiwan University

INTRODUCTION

MOTIVATION

Linear Model

- 1. Simple and Well Studied
- 2. Computationally Feasible

Real-world Problems

- 1. Non Linear
- 2. Sophisticated Interdependencies

Question Can we apply Linear Model on Real-world Problems?

How about Feature Transform?

Mapping features to higher dimensional space. For example, the quadratic transformation from \mathbb{R}^2 to \mathbb{R}^6

$$\Phi: (x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

Line in \mathbb{R}^6 corresponds to quadratic curve in \mathbb{R}^2 . Common techniques in the machine learning world.

Learning Stage Fit linear model $h : \mathbb{R}^6 \to \{0,1\}$ on $\Phi(\mathbf{x})$.

3

How about Feature Transform?

Mapping features to higher dimensional space. For example, the quadratic transformation from \mathbb{R}^2 to \mathbb{R}^6

$$\Phi: (x_1, x_2) \mapsto (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

Line in \mathbb{R}^6 corresponds to quadratic curve in \mathbb{R}^2 . Common techniques in the machine learning world.

Learning Stage Fit linear model $h : \mathbb{R}^6 \to \{0,1\}$ on $\Phi(x)$. Testing Stage $h(\Phi(x_{test}))$ gives the prediction.

3

However ...

Pros Fitting complicated underlying rules – the higher the dimension, the more powerful the model.

However ...

- **Pros** Fitting complicated underlying rules the higher the dimension, the more powerful the model.
- **Cons** Extra computational costs, e.g., inner products the higher the dimension, the harder the computation.

KERNEL TRICK

Luckily, **Kernel Trick** comes to rescue ...

1. Mathematical shortcut for preventing computing inner product directly.

KERNEL TRICK

Luckily, **Kernel Trick** comes to rescue ...

- 1. Mathematical shortcut for preventing computing inner product directly.
- 2. Combine the favors of Linearity and Non-Linearity.

KERNEL TRICK CONT.

Kernel Trick

Consider the inner product in the previous example

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle = \Phi(\mathbf{x})^{\mathsf{T}} \Phi(\mathbf{y})$$

$$= x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2 + 2x_1 y_1 + 2x_2 y_2 + 1$$

$$= (\mathbf{x}^{\mathsf{T}} \mathbf{y} + 1)^2 = (\langle \mathbf{x}, \mathbf{y} \rangle + 1)^2$$

It implies we can define a special function

$$\textit{K}(x_1,x_2) = \langle \Phi(x_1), \Phi(x_2) \rangle,$$

which is the so-called kernel function.

COMMON KERNEL

POLYNOMIAL KERNEL

Polynomial Kernel

Suppose we use the polynomial feature transformation $\Phi_d(x)$, which collects all the possible coefficients in the d-degree polynomial.

We then have the polynomial kernel

$$K_{\Phi_d}(x,y) = (\langle x,y \rangle + \alpha)^d$$

POLYNOMIAL KERNEL CONT.

Quadratic Transformation as An Special Case

Let d = 2, the transformation

$$\Phi_{2}(x) = (x_{n}^{2}, \dots, x_{1}^{2}, \sqrt{2}x_{n}x_{n-1}, \dots, \sqrt{2}x_{n}x_{1}, \sqrt{2}x_{n-1}x_{n-2}, \dots, \sqrt{2c}x_{n}, \dots, \sqrt{2c}x_{1}, c)$$

And the kernel function

$$K(x,y) = (\sum_{i=1}^{n} x_i y_i + \alpha)^2 = \sum_{i=1}^{n} (x_i^2)(y_i^2) + \sum_{i=2}^{n} \sum_{j=1}^{i-1} (\sqrt{2}x_j x_j)(\sqrt{2}y_i y_j) + \sum_{i=1}^{n} (\sqrt{2c}x_i)(\sqrt{2c}y_i)$$

GAUSSIAN KERNEL

Gaussian Kernel

The Gaussian Kernel is defined as

$$K(x, y) = \exp(-\gamma ||x - y||^2)$$
, with $\gamma > 0$

GAUSSIAN KERNEL CONT.

As An Extreme Case of Polynomial Kernel

For
$$\gamma = 1$$

$$K(x,y) = \exp(\|x - y\|^{2})$$

$$= \exp(-(x)^{2}) \exp(-(y)^{2}) \exp((2xy))$$

$$\stackrel{*}{=} \exp(-(x)^{2}) \exp(-(y)^{2}) (\sum_{i=0}^{\infty} \frac{(2xy)^{i}}{i!})$$

$$= \sum_{i=0}^{\infty} (\exp(-(x)^{2} \sqrt{\frac{2^{i}}{i!}})(x)^{i}) (\exp(-(y)^{2} \sqrt{\frac{2^{i}}{i!}})(y)^{i})$$

$$= \Phi(x)^{T} \Phi(y)$$
(1)

It implies
$$\Phi(x) = \exp(-(x)^2)(1, \sqrt{\frac{2}{1!}}x, \sqrt{\frac{2^2}{2!}}x^2, \dots).$$

KERNEL RIDGE REGRESSION

Ridge Regression

Minimize the quadratic cost as well as the regularization term

$$C(\mathbf{w}) = \frac{1}{2} \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \frac{1}{2} \lambda ||\mathbf{w}||^2$$

We have analytic solution

$$\mathbf{w} = (\lambda \mathbf{I} + \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}})^{-1} (\sum_{j} y_{j} \mathbf{x}_{j})$$

KERNEL RIDGE REGRESSION CONT.

Plug the Kernel Function In

Note that

$$(P^{-1} + B^{T}R^{-1}B)^{-1}B^{T}R^{-1} = PB^{T}(BPB^{T} + R)^{-1}$$

Therefore,

$$\mathbf{w} = (\lambda \mathbf{I} + \sum_{i} \phi(\mathbf{x}_{i}) \phi(\mathbf{x}_{i})^{\mathsf{T}})^{-1} (\sum_{j} y_{j} \phi(\mathbf{x}_{j}))$$
$$= (\lambda \mathbf{I} + \Phi \Phi^{\mathsf{T}})^{-1} \Phi \mathbf{y}$$
$$= \Phi (\Phi^{\mathsf{T}} \Phi + \lambda I)^{-1} \mathbf{y}$$

KERNEL RIDGE REGRESSION CONT.

Prediction

In the prediction stage, we first transform $\phi(\mathbf{x}_{test})$

$$y = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_{\mathsf{test}}) = \mathbf{y}^{\mathsf{T}} (\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} + \lambda I)^{-\mathsf{T}} \mathbf{\Phi}^{\mathsf{T}} \phi(\mathbf{x}_{\mathsf{test}})$$

All the calculation can be done in terms of inner product, and hence we can apply the kernel trick.

CONCLUSION

SUMMARY

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

