

Alunos: Luisa Helena Bartocci Liboni Rodrigo de Toledo Caropreso

Redes Neurais Artificiais

EPC-1

A partir da análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza $\{C1 \ e \ C2\}$, mediante a medição de três grandezas $\{x_1, x_2 \ e \ x_3\}$ que representam algumas das propriedades físico-químicas do óleo. A equipe de engenheiros e cientistas pretende utilizar um perceptron para executar a classificação automática destas duas classes.

Assim, baseadas nas informações coletadas do processo, formou-se o conjunto de treinamento em anexo, tomando por convenção o valor –1 para óleo pertencente à classe C1 e o valor +1 para óleo pertencente à classe C2.

Portanto, o neurônio constituinte do perceptron terá três entradas e uma saída, conforme ilustrado na figura abaixo:

Utilizando o algoritmo supervisionado de Hebb (regra de Hebb) para classificação de padrões, e assumindo-se a taxa de aprendizagem igual a 0.01, faça as seguintes atividades:

1. Execute 5 treinamentos para a rede perceptron, inicializando-se o vetor de pesos em cada treinamento com valores aleatórios entre zero e um. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos.

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica

2. Registre os resultados dos 5 treinamentos na tabela seguinte:

Treino	Vetor de Pesos Inicial				Vetor de Pesos Final				Número	
TTCIIIO	\mathbf{W}_0	\mathbf{W}_1	\mathbf{W}_2	W 3	\mathbf{W}_0	\mathbf{W}_1	\mathbf{W}_2	W 3	de Épocas	
1° (T1)	0.5657	0.7165	0.5113	0.7764	-0.0143	0.2656	0.1457	0.3264	105	
2° (T2)	0.4893	0.1859	0.7006	0.9827	-0.0107	0.1952	0.1070	-0.2398	114	
3° (T3)	0.8066	0.7036	0.4850	0.1146	0.0134	0.3981	0.2260	-0.5031	16	
4° (T4)	0.6649	0.3654	0.1400	0.5668	-0.0151	0.2682	0.1489	-0.3282	152	
5° (T5)	0.8230	0.6739	0.9994	0.9616	0.0030	0.2617	0.1488	-0.3307	24	

3. Após o treinamento do perceptron, aplique então o mesmo na classificação automática de novas amostras de óleo, indicando-se na tabela seguinte os resultados das saídas (Classes) referentes aos cinco processos de treinamento realizados no item 1.

Amostra	X ₁	X ₂	X 3	y (T ₁)	y (T ₂)	y (T ₃)	y (T ₄)	y (T ₅)
1	-0.3565	0.0620	5.9891	-1	-1	-1	-1	-1
2	-0.7842	1.1267	5.5912	+1	+1	+1	+1	+1
3	0.3012	0.5611	5.8234	+1	+1	+1	+1	+1
4	0.7757	1.0648	8.0677	+1	+1	+1	+1	+1
5	0.1570	0.8028	6.3040	+1	+1	+1	+1	+1
6	-0.7014	1.0316	3.6005	+1	+1	+1	+1	+1
7	0.3748	0.1536	6.1537	+1	+1	-1	+1	-1
8	-0.6920	0.9404	4.4058	+1	+1	+1	+1	+1
9	-1.3970	0.7141	4.9263	-1	-1	-1	-1	-1
10	-1.8842	-0.2805	1.2548	-1	-1	-1	-1	-1

4. Explique por que o número de épocas de treinamento varia a cada vez que se executa o treinamento do perceptron.

O número de épocas varia porque a inicialização dos pesos é diferente em cada treinamento, colocando o Perceptron em um estado inicial tal que pode demorar mais tempo ou menos tempo para que o treinamento completo seja alcançado. Isso se reflete em uma quantidade maior ou menor de épocas, dependendo do caso.

5. Qual a principal limitação do perceptron quando aplicado em problemas de classificação de padrões.

A principal limitação do perceptron é que ele somente é capaz de classificar conjuntos linearmente separáveis. Caso contrário, ele não irá realizar a classificação dos conjuntos corretamente, gerando uma quantidade de erros muito alta quando estiver em operação.

OBSERVAÇÕES:

1. O EPC pode ser realizado em grupo de três pessoas. Se for o caso, entregar somente um EPC com o nome de todos integrantes.

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica

- 2. As folhas contendo os resultados do EPC devem ser entregue em sequência e grampeadas (não use clips).
- 3. Em se tratando de EPC que tenha implementação computacional, anexe (de forma impressa) o programa fonte referente ao mesmo.

ANEXO - Conjunto de Treinamento.

Amostra	X ₁	X ₂	X 3	d
01	-0.6508	0.1097	4.0009	-1.0000
02	-1.4492	0.8896	4.4005	-1.0000
03	2.0850	0.6876	12.0710	-1.0000
04	0.2626	1.1476	7.7985	1.0000
05	0.6418	1.0234	7.0427	1.0000
06	0.2569	0.6730	8.3265	-1.0000
07	1.1155	0.6043	7.4446	1.0000
08	0.0914	0.3399	7.0677	-1.0000
09	0.0121	0.5256	4.6316	1.0000
10	-0.0429	0.4660	5.4323	1.0000
11	0.4340	0.6870	8.2287	-1.0000
12	0.2735	1.0287	7.1934	1.0000
13	0.4839	0.4851	7.4850	-1.0000
14	0.4089	-0.1267	5.5019	-1.0000
15	1.4391	0.1614	8.5843	-1.0000
16	-0.9115	-0.1973	2.1962	-1.0000
17	0.3654	1.0475	7.4858	1.0000
18	0.2144	0.7515	7.1699	1.0000
19	0.2013	1.0014	6.5489	1.0000
20	0.6483	0.2183	5.8991	1.0000
21	-0.1147	0.2242	7.2435	-1.0000
22	-0.7970	0.8795	3.8762	1.0000
23	-1.0625	0.6366	2.4707	1.0000
24	0.5307	0.1285	5.6883	1.0000
25	-1.2200	0.7777	1.7252	1.0000
26	0.3957	0.1076	5.6623	-1.0000
27	-0.1013	0.5989	7.1812	-1.0000
28	2.4482	0.9455	11.2095	1.0000
29	2.0149	0.6192	10.9263	-1.0000
30	0.2012	0.2611	5.4631	1.0000

CÓDIGO FONTE UTILIZADO

Carregamento dos Dados

```
[DB_X1 DB_X2 DB_X3 DB_D] = Pesos (Press
textread( 'Dados_Treino.dat', '%f continuar)');
%f %f %f', 'headerlines', 1); pesos
pause

[DB_X1 DB_X2 DB_X3] =
textread( 'Dados_Operacao.dat', '%f %inicio do tre
%f %f', 'headerlines', 1); epoca = 0;
```

<u>Normalização</u>

```
NormArray
Normaliza( max_scale, min_scale,
Vetor Amostras )
%Normaliza Faz a normalizacao do
vetor de amostras
% max scale -> valor maximo da
escala (para funcao sgn = 1)
% min scale -> valor minimo da
escala (para funcao sgn = -1)
% Vetor Amostras -> vetor com
amostras
max amostras = max(Vetor Amostras);
min amostras = min(Vetor Amostras);
for k=1:length(Vetor Amostras)
    NormArray(k) = (max scale -
min_scale) * ( Vetor_Amostras(k) -
min_amostras ) / (max_amostras -
min_amostras) + min_scale;
end;
```

Treinamento do Perceptron

```
function pesos = Perceptron_Treino(
eta, entradas, saidas, max_epocas )
%Perceptron_Treino Treinamento de
Perceptron 1 camada
  eta -> coeficiente de
treino
% entradas
               -> matriz com
entradas
% saidas -> vetor com saidas
desejadas
% max epocas -> limite de epocas
de treinamento
sizeW = size(entradas);
N entradas = sizeW(1);
N = sizeW(2);
```

```
pesos = rand(N entradas, 1);
disp('Inicialização do Perceptron -
Pesos (Pressione uma tecla para
pause
%inicio do treinamento
epoca = 0;
erro = 1;
while ( epoca <= max epocas &&
    erro = 0;
    for k=1:N amostras
       u = pesos' * entradas(:, k
       y = sign(u);
        %verifica erro
        if(y \sim = saidas(k))
            %corrige peso
             eta * ( saidas( k ) -
y ) * entradas( k )
            pesos = pesos + eta * (
saidas( k ) - y ) * entradas( :,
k );
            erro = 1;
        end
    end;
    epoca = epoca + 1;
end;
epoca = epoca - 1;
disp( sprintf( 'Fim do treinamento.
Numero de epocas: %d', epoca) );
```

Operação do Perceptron

DB X2);

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica


```
if(y == -1)
                                     DB X3 Norm = Normaliza( 1,
        disp( sprintf( 'Amostra
                                     DB X3 );
pertence a classe C1 (-1)') );
else
                                     x = [];
        disp( sprintf( 'Amostra
                                     %monta matriz de entradas
pertence a classe C2 (+1)') );
                                     for k=1: length(DB X1 Norm)
                                         y = Perceptron Executa (pesos,
end;
                                     [-1 DB X1 Norm(k) DB_X2_Norm(k)
                                     DB X3 Norm(k)]');
                                     end;
Execução do EPC1
%Carrega os dados
Carrega Tabela Treino;
%Monta vetores de amostras
N entradas = 3; %entradas do
perceptron
eta = 0.1; %coeficiente de
treinamento
%Normaliza dados (pre-
processamento)
DB X1 Norm = Normaliza( 1, -1,
DB X1 );
DB_X2_Norm = Normaliza(1, -1,
DB X2 );
DB_X3_{norm} = Normaliza(1, -1,
DB X3 );
x = [];
%monta matriz de entradas
for k=1: length(DB_X1_Norm)
 x(:, k) = [-1 DB_X1_Norm(k)
DB X2 Norm(k) DB X3 Norm(k) ]';
end;
d = [DB D];
max epocas = 1000;
pesos = Perceptron_Treino(eta, x,
d, max_epocas);
disp('Pesos
           do Perceptron
treinado');
pesos
pause
%OPERACAO
%Carrega os dados
Carrega Tabela Operacao;
%Monta vetores de amostras
%Normaliza dados (pre-
processamento)
DB X1 Norm = Normaliza( 1, -1,
DB X1 );
DB X2 Norm = Normaliza( 1, -1,
```