

UFABC - Universidade Federal do ABC

Sistemas de Controle II

Procedimento para Construção dos Diagramas de Bode

Prof^a Dra. Heloise Assis Fazzolari

heloise.fazzolari@ufabc.edu.br Sala 717-1, 7º andar, Torre 1, Bloco A - Campus Santo André

1º Quadrimestre de 2021

Vantagens da Utilização de Diagramas de Bode

Uma vantagem de trabalharmos com gráficos em escala logarítmica é que a multiplicação dos módulos é convertida em adição.

Além disso, esboçar os diagramas de Bode através de aproximações assintóticas é uma maneira fácil de determinar a resposta em frequência de uma função de transferência.

A modificação das curvas quando se adiciona compensadores também é uma razão pela qual os diagramas de Bode são frequentemente utilizados na prática.

Procedimento para construção dos Diagramas de Bode

Há um método para traçar de forma aproximada os D.B. utilizando-se assíntotas.

- **1** Escrever $G(j\omega)$ na forma de um produto de fatores dos tipos apresentados anteriormente;
- 2 Identificar as frequências de canto (ou quina ou quebra) associadas a cada fator;
- Desenhar as aproximações assintóticas das curvas de ganho em dB para cada fator;
- Somar as assíntotas do passo anterior;
- **S**e houver fatores de segunda ordem, esboçar as curvas de ganho nas vizinhanças de ω_n ;
- Desenhar as curvas de fase para cada fator;
- Somar as curvas do passo anterior.

Exemplos

Exemplo 1

Esboçar os D.B. de módulo e fase do seguinte sistema:

$$G(s) = \frac{100(s+10)}{s^2 + 100s}$$

Exemplo 2

Desenhe o D.B. da seguinte F.T.:

$$G(j\omega) = \frac{1000(j\omega + 30)}{j\omega(j\omega + 10)((j\omega)^2 + j0, 4\omega + 400)}$$

990

990

Exemplos

Exemplo 2

Desenhe o D.B. da seguinte F.T.:

$$G(j\omega) = \frac{1000(j\omega + 30)}{j\omega(j\omega + 10)((j\omega)^2 + j0, 4\omega + 400)}$$

19/45

990

Exemplos

Exemplo 3

Desenhe o D.B. da seguinte F.T.:

$$G(j\omega) = \frac{5(1+j0,1\omega)}{(j\omega)^2(1+j0,5\omega)\left(1+\frac{0,6}{50}j\omega+\left(\frac{j\omega}{50}\right)^2\right)}$$

```
% Exemplo 3 da Aula 1 Exercicios
clear all:
close all:
clc:
pkg load control % carrega pacote de controle (nao e
      necessario no Matlab)
n =5.[0.1 1];% Numerador da F.T. do sistema
% Como o denominador e composto por varios fatores
f1 = [1 \ 0];
f2 = [0.5 \ 1]:
f3 = [1/50^2 \ 0.6/50 \ 1];
d= conv (f1 . conv (f2 .f3)):% Denominador da F.T. do sistema
ftma =tf(n,d); Definicao da F.T.M.A do sistema
bode (ftma);% Diagrama de Bode
arid:
ftmf = feedback(ftma.1):% Defining a F.T.M.F. do sistema
figure (2): % Resposta ao degrau do sistema em M.F.
t = [0:0.01:3.51:
lu = 1.02* ones (length (t) ,1);
II = 0.98* ones (length (t) .1);
Imp = 1.21* ones (length (t) .1);
[y,x]= step(ftmf,t);
plot(t,y,t,lmp,t,lu,t,ll);
arid:
```

```
% Diagrama de Bode indicando as margens de estabilidade relativa
% Margem de fase (MF) e Margem de ganho (MG)
figure (3)
margin(ftma);
grid;
% Diagrama de Bode da FT.M.F.
figure (4)
bode(ftmf);% Neste grafico podemos observar: Mr , wr e BW.
grid on
```


Exercícios

Exercício 1

Desenhe o D.B. da seguinte F.T.:

$$G(j\omega) = \frac{5(1+j0,1\omega)}{(j\omega)(1+j0,5\omega)\left(1+\frac{0.6}{50}j\omega+\left(\frac{j\omega}{50}\right)^2\right)}$$

Exercício 2

Considere o sistema de controle com retroação unitária mostrado na figura abaixo. Traçar o D.B. da função de transferência de malha aberta.

Exercícios

Exercício 3

Desenhe o D.B. da seguinte F.T.:

$$G(j\omega) = \frac{10(j\omega + 3)}{j\omega(j\omega + 2)((j\omega)^2 + j\omega + 2)}$$