Sprawozdanie – Laboratorium nr 8

Interpolacja funkcjami sklejanymi poprzez wyznaczenie wartości drugich pochodnych w węzłach

Tomasz Rajchel 2019/04/25

Wstęp teoretyczny

Interpolacja funkcjami sklejanymi

W przedziale [a, b] mamy n+1 punktów takich że:

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b \tag{1}$$

Punkty te określają podział przedziału [a, b] na n podprzedziałów tj. [x_i , x_{i+1}].

Funkcję s(x) określoną na przedziale [a,b] nazywamy funkcją sklejaną stopnia m (m≥1) jeżeli:

- 1. s(x) jest wielomianem stopnia conajwyżej m na każdym podprzedziale (x_i, x_{i+1}) , i = 0, $1, \ldots, n-1$
- 2. $s(x) \in C^m$

Punkty x_j nazywamy węzłami funkcji sklejanej. W każdym przedziale (x_i , x_{i+1}) funkcja s(x) jest wielomianem stopnia conajwyżej m:

$$s_i(x) = c_{im} + c_{im-1}x^{m-1} + \dots + c_{i1}x + c_{i0}, \qquad x \in (x_i, x_{i+1})$$
(2)

Funkcja interpolująca jest kombinacją liniową elementów bazy $\{s_i(x)\}$

$$s(x) = \sum_{i=0}^{n-1} c_i s_i(x), \qquad x \in [a,b]$$
(3)

Funkcje sklejane trzeciego stopnia

Funkcję s(x) nazywamy interpolacyjną funkcją sklejaną stopnia trzeciego dla funkcji f(x), jeżeli:

$$s(x_i) = f(x_i) = y_i, i = 0, 1, ..., n; n \ge 2$$
 (4)

Do określenia funkcji s(x) stopnia trzeciego konieczne jest wyznaczenie (n+3) parametrów. Ponieważ ilość węzłów jest równa n+1 pozostają 2 stopnie swobody. Musimy nałożyć dwa dodatkowe warunki. Rodzaj tych warunków zależy od funkcji f(x) lub od znajomości jej zachowania w pobliżu końców przedziału [a,b]:

- 1. rodzaj (1 pochodna) $s^{(1)}(a+0)=\alpha_1$, $s^{(1)}(b-0)=\beta_1$
- 2. rodzaj (2 pochodna) $s^{(2)}(a+0) = \alpha_2$, $s^{(2)}(b-0) = \beta_2$

3. rodzaj (funkcje okresowe) $s^{(i)}(a+0)=s^{(i)}(b-0), i=1,2$

Interpolacja funkcjami sklejanymi poprzez wyznaczenie wartości drugich pochodnych w węzłach

Oznaczamy

$$M_j = s^{(2)}(x_j), j = 0, 1, ..., n$$
 (5)

Zgodnie z założeniem druga pochodna funkcji s(x) jest ciągła i liniowa w każdym z podprzedziałów $[x_{i-1}, x_i]$. Możemy więc zapisać:

$$s_{i-1}^{(2)}(x) = M_{i-1} \frac{x_i - x}{h_i} + M_i \frac{x - x_{i-1}}{h_i}, \quad x \in [x_{i-1}, x_i], \quad h_i = x_i - x_{i-1}$$
(6)

Całkujemy dwuktornie powyższe wyrażenie i otrzymujemy wzór:

$$s_{i-1}(x) = M_{i-1} \frac{(x_i - x)^3}{6h_i} + m_i \frac{(x - x_{i-1})^3}{6h_i} + A_i(x - x_{i-1}) + B_i$$
 (7)

Stałe A_i i B_i wyznaczamy korzystając z warunku interpolacji

$$B_i = y_{i-1} - M_{i-1} \frac{h_i^2}{6} \tag{8}$$

$$A_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} - \frac{h_{i}}{6} (M_{i} - M_{i-1})$$
(9)

W punkcie x_i pochodna musi być ciągła

$$s_{i-1}^{(1)}(x_i) = s_i^{(1)}(x_i), \ i = 1, 2, ..., n$$
(10)

$$s_{i-1}^{(1)}(x_i - 0) = \frac{h_i}{6} M_{i-1} + \frac{h_i}{3} M_i + \frac{y_i - y_{i-1}}{h_i}$$
(11)

$$s_i^{(1)}(x_i + 0) = \frac{-h_{i+1}}{3} M_i - \frac{h_{i+1}}{6} M_{i+1} + \frac{y_{i+1} - y_i}{h_{i+1}}$$
(12)

Porównując prawe strony dwóch powyższych równań dla każdego z węzłów uzyskamy (n-1) równań, które można zapisać w postaci:

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = d_i, i = 1, 2, ..., n-1$$
 (13)

Gdzie:

$$\lambda_i = \frac{h_{i+1}}{h_i + h_{i+1}}, \ \mu_i = 1 - \lambda_i \tag{14}$$

$$d_{i} = \frac{6}{h_{i} + h_{i+1}} \left(\frac{y_{i+1} - y_{i}}{h_{i+1}} - \frac{y_{i} - y_{i-1}}{h_{i}} \right) = 6f(x_{i-1}; x_{i}; x_{i+1})$$
(15)

Do układu równań należy dołączyć jeszcze 2 równania wynikające z dodatkowych warunków. Dla warunków z jedną pochodną:

$$2M_0 + M_1 = d_0, d_0 = \frac{6}{h_1} \left(\frac{y_1 - y_0}{h_1} - \alpha_1 \right) (16)$$

$$M_{n-1} + M_n = d_n, \qquad d_n = \frac{6}{h_1} \left(\beta_1 - \frac{y_n - y_{n-1}}{h_n} \right)$$
 (17)

Dla warunków z drugą pochodną:

$$M_0 = \alpha_2, \qquad M_n = \beta_2 \tag{18}$$

Otrzymujemy układ równań który można przedstawić w postaci macierzowej:

$$\begin{bmatrix} 2 & 1 & 0 & \cdots & 0 \\ \mu_{1} & 2 & \lambda_{1} & \cdots & 0 \\ 0 & \mu_{2} & 2 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & & 2 & \lambda_{n-1} \\ 0 & \cdots & & 1 & 2 \end{bmatrix} \begin{bmatrix} M_{0} \\ M_{1} \\ \vdots \\ \vdots \\ M_{n-1} \\ M_{n} \end{bmatrix} = \begin{bmatrix} d_{0} \\ d_{1} \\ \vdots \\ \vdots \\ d_{n-1} \\ d_{n} \end{bmatrix}$$

$$(19)$$

Układ ten ma jednoznaczne rozwiązanie – istnieje dokładnie jedna interpolacyjna funkcja sklejana stopnia trzeciego spełniająca przyjęte warunki dodatkowe.

Po rozwiązaniu układu równań wyznaczamy funkcję sklejaną według wzoru (7).

Opis zadania

Naszym zadaniem będzie napisanie programu do interpolacji przy pomocy funkcji sklejanych będących wielomianami 3 stopnia poprzez wyznaczenie wartości drugich pochodnych w węzłach.

Mamy do wykonania następujące czynności:

1. Napisać procedurę do wyznaczania wartości drugich pochodnych w węzłach.

void wyznaczM(double* xw, double* yw, double* m, int n, double alfa, double beta)

 x_w – wektor z położeniami węzłów

y_w – wektor z wartościami funkcji

m - wektor do którego procedura zapisze wartości drugich pochodnych

n – liczba węzłów

alfa, beta – wartości drugich pochodnych w skrajnych węzłach

2. Napisać procedurę do wyznaczania wartości funkcji w położeniu międzywezłowym.

double wyznaczSx(double* xw, double* yw, double* m, int n, double x)

x – aktualna wartość argumentu

Reszta argumentów identycznie jak powyżej.

3. Napisać program do interpolacji funkcjami sklejanymi, który będzie korzystał z dwóch powyższych procedur. Przeprowadzić interpolację funkcji:

$$f_1(x) = \frac{1}{1+x^2} \tag{20}$$

$$f_2(x) = \cos(2x) \tag{21}$$

Przyjąć warunki z drugą pochodną równą 0 na obu krańcach przedziału interpolacji ($\alpha = \beta = 0$)

4. Dla funkcji f₁(x) oraz n = 10 węzłów w przedziale x ∈ [−5, 5] należy wyznaczyć wartości drugich pochodnych i porównać je z "dokładniejszymi" wartościami liczonymi zgodnie z wzorem:

$$\frac{d^2 f}{dx^2} \approx \frac{f(x - \Delta x) - 2f(x) + f(x + \Delta x)}{(\Delta x)^2}$$
(22)

Przyjąć $\Delta x = 0.01$

5. Wykonać interpolację dla $f_1(x)$ oraz $f_2(x)$ w przedziale $x \in [-5, 5]$, dla liczby węzłów: n = 5, 8, 21.

Sporządzić wykresy funkcji interpolowanej [f(x)] i interpolującej [s(x)] dla każdego przypadku na jednym rysunku.

Wyniki

Ad 4 - Druga pochodna funkcji f₁

Rysunek 1: Wartości drugich pochodnych wyznaczone algorytmem interpolacji funkcji $f_1(x)$ kubicznymi funkcjami sklejanymi dla n = 10 węzłów porównane z wartościami wynikającymi z ilorazu różnicowego oraz z pochodną wyprowadzoną analitycznie.

Jak widać na powyższym obrazku wartości drugiej pochodnej funkcji f_1 wyznaczone algorytmem interpolacji dla n = 10 węzłów znacznie odbiegają od tych dokładniejszych (wyznaczonych analitycznie). Im dalej od krańców przedziału tym błąd jest większy.

Ad 5 – interpolacja dla funkcji f₁

Ad 5 – interpolacja dla funkcji f₂

Wnioski

Interpolacja funkcjami kubicznymi dla równoodległych węzłów daje bardzo dobre rezultaty dla funkcji hiperbolicznych i trygonometrycznych. Warunkiem dobrej jakości interpolacji jest odpowiednia ilość węzłów i ich właściwy dobór. Dobrze jeżeli węzły pokryją się z ekstremami funkcji.

Dla funkcji f_1 uzyskaliśmy dobrą jakość dla n = 21 węzłów. Trudno odróżnić gołym okiem funkcję interpolującą od interpolowaną.

Dla funkcji f_2 , dla n = 5 węzłów funkcja interpolująca składała się z niewystarczającej liczby funkcji składowych by dokładnie odwzorować kształt funkcji trygonometrycznej. Po zwiększeniu liczby węzłów do n = 21 otrzymaliśmy o wiele dokładniejszą interpolację,