- · Q-1 Select a dataset/datasets of your choice. Apply/Fit MLP Classification Evaluate the results
- Q-2 Select a multi-label dataset/datasets of your choice. Apply/Fit MLP Classification Call the predict function to get a multi label value for your test data

```
In [3]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   from sklearn import metrics
   from sklearn.preprocessing import StandardScaler
   from sklearn.metrics import confusion_matrix
   from sklearn.model_selection import train_test_split

pd.set_option('display.max_columns', 100)
```

In [4]: from sklearn.neural_network import MLPClassifier

```
In [5]: df = pd.read_csv('winequality-red.csv')
    df['overfive'] = (df.quality > 5).astype(int)

df['alcohol_overten'] = (df.alcohol > 10).astype(int)
```

In [6]: df.sample(5)

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
1512	6.4	0.790	0.04	2.2	0.061	11.0	17.0	0.99588	3.53	0.65	10.4
105	8.1	0.575	0.22	2.1	0.077	12.0	65.0	0.99670	3.29	0.51	9.2
169	7.5	0.705	0.24	1.8	0.360	15.0	63.0	0.99640	3.00	1.59	9.5
1447	6.8	0.670	0.00	1.9	0.080	22.0	39.0	0.99701	3.40	0.74	9.7
1490	7.1	0.220	0.49	1.8	0.039	8.0	18.0	0.99344	3.39	0.56	12.4

```
In [21]: scX = StandardScaler()
scy = StandardScaler()

clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10,), random_state=1)

X=df.iloc[:,0:10].values.tolist()
y=list(map(list,zip(df.alcohol_overten, df.overfive)))
#y=list(map(list,zip(df.alcohol.values, df.quality.values)))
```

```
In [22]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_s
         tate = 0)
         X_train = scX.fit_transform(X_train)
         X_test = scX.transform(X_test)
In [28]: clf.fit(X_train,y_train)
Out[28]: MLPClassifier(activation='relu', alpha=1e-05, batch size='auto', beta 1=0.9,
                beta_2=0.999, early_stopping=False, epsilon=1e-08,
                hidden_layer_sizes=(10,), learning_rate='constant',
                learning_rate_init=0.001, max_iter=200, momentum=0.9,
                nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                warm_start=False)
In [29]: y_pred = clf.predict(X_test)
In [30]: pd.Series(list(map(lambda x: all(x),(y_test == y_pred)))).value_counts()
Out[30]: True
                  265
         False
                  135
```

dtype: int64