Macro-Scale Feedbacks

Carey, C.C., K.J. Farrell, and A.G. Hounshell. 1 April 2019.

Macrosystems EDDIE: Macro-Scale Feedbacks.

Macrosystems EDDIE Module 4, Version 1.

http://module4.macrosystemseddie.org

Module development was supported by NSF EF 1702506.

Plan for today:

- Short overview on role of lakes in global carbon cycles, and how we can use a macrosystems ecology and lake modeling approach to study how their role may change with climate warming!
- Activity A: Run and explore a lake ecosystem model in R.
- Activity B: Select a climate scenario, generate hypotheses, and model how lakes respond.
- Activity C: Calculate global warming potentials for lakes, and make predictions about the effects of lake greenhouse gas emissions due to macro-scale feedbacks.

Lakes play a role in global carbon cycles

- Lakes absorb, emit, and bury large quantities of carbon (C)
- Greenhouse gas emissions (CO₂, CH₄) from lakes can be substantial and may be changing due to human activities
- Lakes often not represented in global C cycle, so understudied

Second State of the Carbon Cycle Report (SOCCR), 2018

Greenhouse gases (GHGs) in lakes: three important processes

- #1: Phytoplankton take-up CO₂ (carbon dioxide)
- #2: Aerobic respiration produces CO₂ if there is oxygen
- #3: Anaerobic respiration produces CH₄ (methane) if there is *no* oxygen

GHG fluxes in lakes are driven by diffusion gradient across the air-water interface!

Negative flux

Atmosphere > Lake

Lake is **SINK** of GHG

Positive flux

Atmosphere < Lake

Lake is **SOURCE** of GHG

NOTE: When there is ice on the lake's surface, GHG flux = zero because the air and water are not in contact!

Lake warming may influence CO₂ and CH₄ fluxes: but likely varies among lakes and gases!

- Warmer temperatures may increase phytoplankton growth
- Warmer temperatures also increase respiration rates
- Warming water holds less dissolved oxygen (DO), resulting in lower DO concentrations

BUT, how will all of these processes interact?

How does lake temperature vary seasonally?

Lake Mendota, WI, USA: data from Temperate Lakes Long-Term Ecological Research

Temperature (celsius)

How will warming air temperatures affect water temperatures?

Warmer epilimnetic waters yet cooler hypolimnetic waters

How will warming air temperatures affect dissolved oxygen?

- CO₂ will be produced from respiration when there is oxygen
- CH₄ will be produced from respiration when there is no oxygen

Lake Mendota, WI: data from Temperate Lakes Long-term Ecological Research

Using a macrosystems ecology approach to study greenhouse gas fluxes

- Drivers of fluxes occur at both local and regional scales
 - Local = e.g., lake characteristics
 - Regional = e.g., weather
 - Global = e.g., climate change
- Macrosystems ecologists study ecological dynamics and feedbacks at multiple interacting spatial and temporal scales
- We can study local, regional, and continental drivers using high frequency sensor data + simulation models

Figure modified from: Heffernan et al. 2014

Macro-scale feedback

 Processes occurring at different scales (i.e., local, regional, or global) can either amplify (positive feedback) or diminish (negative feedback) each other

Example:

 Local vegetation both influences, and is dependent on, regional precipitation, creating a feedback loop

Macro-scale feedbacks in lakes

- Lake GHG fluxes are impacted by: Local lake characteristics and Regional air temperatures
- Warming air temperatures, due to climate change, can lead to either an increase or decrease of GHG emissions from lakes
- This will result in a macro-scale feedback by either increasing or decreasing GHG concentrations in the atmosphere, which could subsequently intensify or mitigate global climate warming

Studying macro-scale feedbacks in lakes is needed to predict future climate change

- Lakes play an important role in the global C-cycle
- Under warming conditions, lakes may play an even larger role as either a source or sink of GHGs to the atmosphere, but this remains unquantified
- May be important in either intensifying or mitigating atmosphere GHG concentrations
- BUT, we currently don't know the answers!

Our focal question:

How will warming temperatures and local lake characteristics interact to create macro-scale feedbacks by altering lake greenhouse gas fluxes?

Models to understand macro-scale feedbacks

- How can we test the effects of warming temperature and local lake characteristics on GHG emissions?
 - Impossible to experimentally manipulate all possible climate drivers in real lakes!
- Simulation modeling allows us to explore what would happen if we changed one driver, or multiple drivers at once:
 - For example, how would GHG emissions change if air temperatures were 2°C warmer than they are now? 4°C? 6°C?
 - How would this change for different lake ecosystems?

Global warming potentials (GWP)

- Provide a way to compare CH₄ and CO₂ fluxes from different ecosystems on global warming
- CH₄ is a more potent GHG (86x more potent than CO₂ over a 20-year time span!)
- GWP can be used to convert CH₄ and CO₂ fluxes to the same warming equivalents
 - Positive GWP = the lake is emitting heat-trapping gases to the atmosphere (intensifying climate change) = NET GHG SOURCE!
 - Negative GWP = the lake is a net sink for heat-trapping gases and is offsetting global warming = NET GHG SINK!

Global warming potentials (GWP)

- We can calculate a lake's GWP by:
 - Summing the mass of CO₂ emitted over one year
 i.e.) mmol m⁻² d⁻¹ → mmol m⁻²
 - Summing the mass of CH₄ emitted over one year
 i.e.) mmol m⁻² d⁻¹ → mmol m⁻²
 - Multiply each mass by lake area
 i.e.) mmol m⁻² x m² = mmol
 - Convert units to kg
 - 5. And scale to GWP
 - a. Multiply CO₂ by 1
 - b. Multiply CH₄ by 86
 - c. Sum CO₂ GWP + CH₄ GWP

NOTE: GWP is unitless!

Pre-module activity: Changing GHG concentrations in lakes

Pre-module activity: Changing GHG concentrations in lakes

GLM: General Lake Model

Authors: Matt Hipsey, Louise Bruce, and David Hamilton

- The General Lake Model (GLM) is an open-access model for simulating lake dynamics. It simulates vertical stratification and mixing and accounts for the effect of inflows/outflows, surface heating and cooling.
- GLM has been designed to be an open-source community model developed in collaboration with members of the Global Lake Ecological Observatory Network (GLEON) to integrate with lake sensor data.
- Available from: http://aed.see.uwa.edu.au/research/models/GLM/

Figure: Hipsey et al. 2019

AED: Aquatic EcoDynamics

- The Aquatic EcoDynamics (AED) module couples with GLM to model changes in water chemistry and biology
- Can model nutrient, phytoplankton, and zooplankton dynamics
- Today, we'll focus on carbon dioxide (CO₂) and methane (CH₄) fluxes at the lake-atmosphere interface

Figure: Hipsey et al. 2013

Basic structure of the model

- You'll create a new folder (directory) on your computer when you unzip the module folder.
- Within this folder, you will have:
 - 1) A meteorological CSV ('met') file that forces the model (e.g., met_hourly.csv)
 - 2) 'nml' text files that act as 'master' scripts for the model (e.g., glm2.nml, aed2.nml)
 - 3) Inflow/outflow CSV files that specify the temperature, flow rate, and nutrient concentrations for streams entering and leaving the lake

Example .nml file

```
  glm2.nml 

  I

91 ! lake details
92 !-----
93
               [string]
94 ! name
95
                 name of the lake
96 ! latitude [float, minimum = -90, maximum = 90, unit = deg North]
97
                  latitude
98 ! longitude [float, minimum = -360, maximum = 360, unit = deg East]
99
                 longitude
              [float]
100 ! base elev
                 base elevation (m)
101
102 ! crest_elev [float]
103 !
                 crest elevation (m)
              [float]
104 ! bsn len
105 !
                 basin length at crest (m)
              [float]
106 ! bsn wid
107
                  basin width at crest (m)
               [integer]
108 ! bsn vals
                 number of depth points on height-area relationship
109 !
110 ! H
                [float]
111 !
                 elevations (m) (comma separated list, len=bsn vals)
112 ! A
                [float]
                 area (m2) (comma separated list, len=bsn vals)
113 !
114
115 !-----
116 &morphometry
117
     lake name = 'Mendota'
118
    latitude = 43
119
     longitude = -89.41
120
     bsn len = 9500
     bsn wid = 7400
121
122
     bsn vals = 15
123
     ! H(m) A(m2 * 1000) V(m3 * 1000)
      124
125
      A = 0.00000, 2827226.39, 5654452.79, 8481679.18, 11308905.58, 14136131.97, 16963358.37, 19790584.76, 226
```

Example met file

Climate scenarios: +2°C, +4°C, or +6°C

	А	В	С	D	E	F	G	Н
1	time	ShortWave	LongWave	AirTemp	RelHum	WindSpeed	Rain	Snow
2	2011-09-01 00:00:00	34.33	386.25	30.84	50.04	1.90	0	0
3	2011-09-01 01:00:00	0.00	386.25	28.84	55.67	1.31	0	0
4	2011-09-01 02:00:00	0.00	386.24	26.84	62.03	1.21	0	0
5	2011-09-01 03:00:00	0.00	366.02	24.84	69.22	1.70	0	0
6	2011-09-01 04:00:00	0.00	366.02	24.09	71.30	1.33	0	0
7	2011-09-01 05:00:00	0.00	366.02	23.35	73.40	1.26	0	0
8	2011-09-01 06:00:00	0.00	358.33	22.61	75.56	1.54	0	0
9	2011-09-01 07:00:00	0.00	358.33	21.82	78.48	1.91	0.001	0
10	2011-09-01 08:00:00	0.00	358.33	21.03	81.52	2.47	0	0
11	2011-09-01 09:00:00	0.00	359.96	20.24	84.69	3.13	0	0
12	2011-09-01 10:00:00	0.00	359.96	20.17	86.02	3.02	0	0
13	2011-09-01 11:00:00	0.00	359.96	20.10	87.36	2.93	0	0
14	2011-09-01 12:00:00	84.08	391.87	20.04	88.66	2.89	0	0
15	2011-09-01 13:00:00	229.97	391.87	23.59	75.43	3.37	0	0

We will run GLM-AED using R

- R is a statistical environment that can run on different computer operating systems (PC, Mac, Linux)
- R is reproducible, free(!), and easy to download
- R can run stats, make figures, and do a suite of different analyses in many disciplines
- Many packages for R to merge with other tools (including GLM!)
- We'll walk you through each step of the script, so don't worry if you're new to R!

Lakes we're going to model today, using a suite of available continental datasets

Learning objectives

- Understand the concepts of macrosystems ecology and macro-scale feedbacks, and how different ecological processes can interact at local, regional, and continental scales
- Simulate greenhouse gas fluxes in multiple lakes using ecosystem models set up with publicly-available high-frequency sensor datasets (Activity A)
- Test the effects of a climate scenario on the different lake models and examine how the timing and magnitude of greenhouse gas fluxes change with climate warming (Activity B)
- Examine how local conditions may alter the timing and magnitude of greenhouse gas fluxes from lakes to affect global climate change (Activity C)
- Predict how lake greenhouse gas fluxes may both respond to and amplify changing climate

Discussion questions embedded in your handout

- Everyone will need to turn in the completed handout with question answers written out at the end of the module today.
- We encourage you to work with your partner to complete the questions!

Image: newsfrom4j.wikispaces.com

Download the module files

- Navigate to the Macrosystems EDDIE Module 4 website
 - http://module4.macrosystemseddie.org
- Scroll down to Teaching Materials and click Files for Running the Module

Teaching Materials:

Note: We continue to update our lake model calibrations, so check back frequently to make sure you have the most up-to-date zip folder of files to use!

- <u>Files for Running the Module</u> (Zip Archive 2.1MB Nov2 18) Zipped folder of all files needed to run the module in RStudio
- R You Ready for EDDIE? Module 3 (Microsoft Word 2007 (.docx) 23kB Oct4 18) Step-by-step guide to download R, RStudio, and module files
- Save the .zip folder to your Desktop

A few important notes about R

- Lines of code that start with # are not read by R
 - These lines include important notes about how and why the R script is running, so be sure you're reading them!
- Lines with ##!! indicate lines of code where you need to modify something for it to run
- In the glm2.nml file, I indicates lines that are not read by the GLM model (tricky!)
 - When you need to modify your glm2.nml file in Activity B, make sure you're not changing the value in a line that starts with a! or your changes won't be read by GLM

Activity A: Run a lake model!

With a partner (work in pairs):

- Find your lake on a satellite map, and examine land use in the watershed
- 2) Download the zipped folder of R scripts and other files to run this module. Extract to your desktop
- 3) Download GLM-AED files and R packages onto your computer
- 4) Run the model and look at the output for water temperature and fluxes of CO₂ and CH₄ for your lake (make sure you save your plots as you go!)

Activity B: Climate change scenario

- Working with your partner, select one of the pre-made climate change scenarios for air temperature. Develop hypotheses about how changing air temperatures may affect water temperatures and greenhouse gas fluxes in your model lakes
- 2) Modify your glm2.nml file to test your hypothesis
 - Analyze the model output to determine how the scenario changed water temperature and fluxes of CO₂ and CH₄
- 3) Create a few figures (save them as you go!) to examine your climate scenario:
 - Does the model output support or contradict your hypothesis?
 - How does the output from CO₂ and CH₄ compare?
 - Would you predict more or less warming in the future based on the CO₂ and CH₄ output? Why?

Activity C: Global warming potential

- 1) Working with your partner, you will now calculate the global warming potentials (GWPs) of your model lake under baseline and warming conditions to assess the relative effect of CH₄ and CO₂ fluxes.
- Following the directions in the R script, calculate the mass of CO₂ and CH₄ flux and the GWP of your model lake for baseline and warming conditions. Record these values on your handout.
- 3) Create a few figures (save them as you go!) to highlight your 2 scenarios & share with the class!
 - Do these data support or contradict your hypotheses about the relative importance of CO₂ and CH₄ fluxes on global warming?
 - What is the net effect of the lake on the atmosphere in the baseline scenario? How might this change with climate warming?
- 4) Predict how lake GHG emissions will change future GHG concentrations in the atmosphere. How will this further effect GHG emissions from lakes in the future?

Evidence for Macro-Scale Feedbacks?

 GHG emissions from lakes at the local scale interact with regional scale warming conditions.

- Lake GHG emissions can further alter global atmospheric GHG concentrations by exacerbating or mitigating a warming climate.
- Do you see:
- Changing GHG emissions from lakes under the warming scenario?
- Changing GWP of lake emissions under the warming scenario?

Given the changes in lake GHG emissions you observed in this module due to macro-scale feedbacks, how do you expect lakes will affect global climate change in the future?

Thank you for participating!

Additional slides for instructors to use

Model lake descriptions

Lake Name	Falling Creek	Mendota	Sunapee	Toolik	
State (USA)	Blue Ridge, Virginia	Madison, Wisconsin	Sunapee, New Hampshire	Alaska	
	<u> </u>	40.44 00.40	•		
Latitude & Longitude	37.30, -79.84	43.11, -89.42	43.38, -72.05	68.63, -149.61	
Mean annual	+13.9	+7.9	+7.5	-8.0	
temperature (°C)	+13.9	+1.9	+7.5		
Surface area (km²)	0.12	39.39	16.74	1.46	
	Eutrophic (high	Eutrophic (high	Oligotrophic (low	Oligotrophic (low	
Water quality	nitrogen &	nitrogen &	nitrogen &	nitrogen &	
	phosphorus)	phosphorus)	phosphorus)	phosphorus)	
DOC (mg L ⁻¹)	2.59	4.87	2.00	5.02	
		P. Hanson, North	K. Weathers, Lake	G. Kling, Toolik	
Data providora	C. Carey &	Temperate Lakes	Sunapee Protective	Long-Term	
Data providers	GLEON	Long-Term Ecological	Association, &	Ecological	
		Research, & GLEON	GLEON	Research, & NEON	

Presentation guidelines

- Please put together a quick, 5-minute presentation on your baseline + climate scenario results for your individual lake and selected climate scenario
- We suggest you include:
 - A temperature heatmap of your baseline + climate scenario
 - A DO heatmap of your baseline + climate scenario
 - Ice thickness for your baseline + climate scenario
 - CO₂ and CH₄ flux for your baseline + climate scenario
 - GWP for your baseline + climate scenario
- We'll use question #15 in the student handout to guide discussion about your results!

Activity C: Lake GWPs

Activity C: Lake Greenhouse gases

Sunapee

Baseline

Falling Creek

Baseline

