

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

AEC-II PROJECT REPORT

- 9)Design and implement single phase Half-bridge Sinusoidal PWM inverter using MOSFET subject to following conditions:
 - 1. Vout=9V, 50Hz, Fs=18kHz. Assume the load to be the secondary terminals of 9-0-9 transformer (IL=120mA at the primary).
 - 2. Design the PWM circuit (using 555 timer) to drive the above converter.

TEAM:

<u>NAME</u>	<u>USN</u>
Rithesh	NNM22EC133
Rohith Shettigar	NNM22EC135
S Pancham Pai	NNM22EC136
Sai Janani	NNM22EC140
Salman Farish	NNM22EC141
Sammedh S Jain	NNM22EC142

Date of submission: 19-04-2024

CIRCUIT DIAGRAM:

PWM Circuit

Inverter Circuit

CIRCUIT DESIGN:

SPECIFICATIONS:

• RC Phase shift:

In RC phase shift oscillator, sine wave is generated.

Frequency of circuit (sine) = f =
$$\frac{1}{(2\pi RC\sqrt{2N})}$$

Where, N=No. of RC Pairs

R=resistor value

C=capacitor value

To obtain 50Hz,

Assume C=0.47µF

$$50 = \frac{1}{2\pi R(0.47\mu)\sqrt{2N}}$$

$$R = \frac{1}{(2\pi 500.47 \mu \sqrt{2})}$$

 $R=2.764k\Omega$

But due to the tolerance in the components and by applying the concept of trial and error we get, 'R=2.2k Ω ' (Practically).

3

• Sawtooth using 555 timer:

$$f \approx \frac{3}{RC}$$

To obtain f=18kHz and C=0.01μF

$$R≈ \frac{3}{fe}$$

$$R \approx \frac{3}{18k \times 0.01 \text{ µ}} = 16.66 \text{k}\Omega$$

Frequency was changing due to the cascading of circuits. So we connected (10k+10k(pot)) = R, to change the frequency as required.

R=10k + 10k(potentiometer)

• <u>Difference Amplifier</u>:

Vout=
$$\left[1 + \frac{Rf}{R1}\right] \left[\frac{R3Vin1}{R2+R3} + \frac{R2Vin2}{R2+R3}\right] - \frac{Rf}{R1}Vin2$$

To obtain gain of 1.5 for Vin1:

Vout = 1.5Vin1 - Vin2

$$\frac{Rf}{R1} = 1$$

Rf = R1

(1+1)
$$\left(\frac{Vin1R3}{R2+R3}\right)$$
 = 1.5 Vin1

$$2R3 = 1.5R2 + 1.5R3$$

$$0.5R3 = 1.5R2$$

$$R3 = 3R2$$

Assume,

R1=10k Ω , Rf=10k Ω , R3=12k Ω

$$R2 = \frac{R2}{3} = 3.33k\Omega$$

• Inverting Amplifier:

Assume Rf=R1=R2=10kΩ

$$Vout = -\frac{Rf}{R1}Vin1$$

- o Using Op-amp as an inverting amplifier.
- o To obtain inverted sine wave of same frequency and amplitude.

EXPECTED RESULT:

The circuit should must be able to produce:

- 18kHz frequency modulated pulse from PWM
- 9V, 50Hz input to the secondary terminals of a 9-0-9 transformer.

HARDWARE CIRCUIT:

SIMULATION RESULTS:

Inverting Amplifier:

Sine wave:

Sawtooth:

Comparator:

Hardware model:

Inverter:

PWM Circuit:

Hardware output:

RESULT:

The generated output waveform closely matches the desired output.