

Bernoulli	X~Ber(P)	P_(x)=P($(X=x)=\rho^{x}(1-$	p) - x // { x & { 0,	137
			= 6 (1-6	1 x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
			(1-1		
			$=\frac{p}{(1-p)^{x}}$	(1-p) 1/{xE}0,4/	
			$=e^{\times l}$	(1-P) 1/3×	{0,1}}
			(x)	c(e) A(e)	h(x)
			Y	es Familia	
				es ramilia	exponencial
Pascal	X~ Pas(4,1	2)	(x) = (x-1)/1-6	x-4 p4 1/{x>	1 }
		, , , ,			
				x-4 py 11 { x > 4 }	
			= (3) è	1h(1-4) py 1/2 x243 4)-4h(1-4) (x-1) /	116
			= P' e	3)	13×24)
			C1(2	() (2(x)) (n)	
			\(\cdot\)	$x) = x - 4$ $x = \ln(1 - 4)$	
Poisso	X~Por(u)	$\rho_{\chi}(x) = \frac{\mu e^{x}}{x!}$ $= e^{-\mu}$	1{x20}		
		-m	×1n(M)		
		A(0)	(x) / (x)		
			C(0)		
Expone	icial X~	$\mathcal{E}(\lambda)$	$\rho_{x}(x) = \lambda e^{-\lambda x}$	1/{x20}	

9.5 Una moneda tiene una probabilidad de cara $p, p \in \{2/5, 4/5\}$. En 10 lanza-
mientos de la moneda se observaron exactamente 3 caras. Estimar por máxima
verosimilitud la probabilidad de que en otros tres lanzamientos se observe exacta-
mente una cara.

$$P_1 = \frac{2}{5}$$
 $X = \frac{1}{5}$
 $X = \frac{1}{5}$
 $X = \frac{1}{5}$
 $X \sim B \cdot n(n \cdot p) = B \cdot n(10, p)$
 $P_0(x) = \frac{10}{2} p^2 (1 - p)^{10 - x} 1/5 x \ge 0$
 $P_1 = \frac{10}{5}$
 $P_2 = \frac{10}{5}$
 $P_3 = \frac{10}{5}$
 $P_4 = \frac{10}{5}$
 $P_5 = \frac{10}{5}$
 $P_6(x) = \frac{10}{5}$
 $P_6(x) = \frac{10}{5}$
 $P_7 = \frac{$

Función similitud
$$\left[\left(\frac{x=3}{5}, \frac{2}{5} \right) = \frac{1}{2}(3) = \left(\frac{10}{3} \right) \left(\frac{2}{5} \right)^{\frac{3}{2}} \left(\frac{3}{5} \right)^{\frac{1}{2}} = 0,21 \right] \longrightarrow \max \text{ werosimilitud}$$

de verosimilitud

$$L(x,0) - \Pi f_{\theta}(x)$$
 $L(x=3,4) = f_{4}(3) = {10 \choose 3} {4 \choose 5} {1 \choose 5}^{4} = 0,48 \cdot 10^{-3}$

es un solo experimento

$$=) P("1c or 3 intertos") = (3) (2) (3)^2 = 54$$

$$= (3) (3)^2 = 54$$
Fue estimado

- 9.6 Da cantidad de accidentes de tránsito por semana en la intersección de Paseo Colón y Estados Unidos tiene una distribución de Poisson de media λ .
- (a) Hallar el estimador de máxima verosimilitud de λ basado en una muestra aleatoria de la cantidad de accidentes durante n semanas. Mostrar que se trata de un estimador insesgado para λ y hallar la expresión de su error cuadrático medio.
- (b) En una muestra de 100 semanas se observaron las frecuencias:

En virtud de la información muestral calcular el estimador de máxima verosimilitud de λ y estimar la probabilidad de que en la semana del 24 de diciembre de 2017 no ocurra ningún accidente en la mencionada esquina.

$$L(x,\mu) = \max_{x \in \mathbb{N}} P_{(x)} = \widehat{\Pi} \frac{\mu^{x} e^{-M}}{\pi^{x}} 1|\{x \ge 0\} \longrightarrow \text{es una Fam (equial)}$$

$$= \mu^{x} x e^{-n\mu} 1|\{x \le 0\} \longrightarrow \widehat{\Pi} x i$$

$$\longrightarrow 2 \ln \left(\ln \left(\mu^{x} x \right) + \ln \left(e^{n\mu} \right) + \ln \left(\frac{\pi}{\pi} \frac{1|x > 0}{x i} \right) \right)$$

$$= \left(x \times \ln \left(\mu \right) - n\mu + \ln \left(\frac{\pi}{\pi} \frac{1|x > 0}{x i} \right) \right)$$

$$= \frac{x \times \mu}{\pi} - n = 0$$

$$= \frac{2 \times 1}{4} - 0 = 0$$

(b) En una muestra de 100 semanas se observaron las frecuencias:

Cantidad de accidentes	0	1	2	3	4	5
Frecuencia	10	29	25	17	13	6

En virtud de la información muestral calcular el estimador de máxima verosimilitud de λ y estimar la probabilidad de que en la semana del 24 de diciembre de 2017 no ocurra ningún accidente en la mencionada esquina.

Semanas valor de
$$\lambda$$
 est, mado $\lambda = \frac{2}{2} \times \frac{100}{100}$

en 10 sonas — 1 accidentes

en 19 " " — 2 accidentes

cada sonana es ind a la otra

en 100 " " — 5 accidentes

$$\chi_{c} = cant de accidentes Por Senana$$

$$\lambda_{mv} = \frac{2}{2} \times \frac{1}{100} = \frac{100}{100}$$

- (a) Hallar el estimador de máxima verosimilitud de θ basado en una muestra aleatoria de los tamaños de n archivos.
- (b) Hallar expresiones para la esperanza y la varianza del estimador de máxima verosimilitud de θ .
- (c) Mostrar que el estimador de máxima verosimilitud de θ converge en media cuadrática al verdadero valor de θ.

$$\frac{\partial}{\partial x} = \frac{\partial^3}{\partial x} \frac{\partial x}{\partial x} = \frac{\partial^3}{\partial x} =$$

$$E(\widehat{\Theta}_{mv}) \quad \widehat{\Theta} = \min(X)$$

$$E(\widehat{\Theta}_{mv}) \quad \widehat{\Theta} = \min(X)$$

$$E(-1) = \mathbb{P}(\min(X) \le t)$$

$$= 1 - \mathbb{P}(\min(X) \le t)$$

$$= 1 - \mathbb{P}(x_1 > t) \cdot \mathbb{P}(x_2 > t) \quad \mathbb{P}(x_n > t)$$

$$= 1 - \mathbb{P}(x_1 > t) \cdot \mathbb{P}(x_1 > t)$$

$$= 1 - \mathbb{P}(x_1 < t) = 1 -$$

- 9.10 La duración en años de cierto tipo de dispositivos es una variable aleatoria X con función intensidad $\lambda(x) = 3\theta^{-3}x^2\mathbf{1}\{x > 0\}$.
- (a) Hallar un estadístico suficiente para θ basado en una muestra aleatoria de la duración de n dispositivos.

