Agnieszka Borowska

School of Mathematics and Statistics, University of Glasgow Joint with: Hao Gao, Dirk Husmeier, Xiaoyu Luo

30.08.2018

Outline

- Motivation
- 2 Left ventricular modelling
- Bayesian Optimisation
- 4 Current work
 - Synthetic data
 - Real data
- Conclusions

00000

Motivation

Overall goal

Motivation 00000

> To find and implement a fast, reliable and systematic approach to estimating the material properties of the left ventricular biomechanical model

Motivation

- Central problem in biomechanical studies of personalized human left ventricular (LV) modelling.
- Important: these properties provide insight into heart function or dysfunction and help to inform on the effectiveness of different treatments post heart attack (myocardial infarction).

Motivation 00000

Mathematical modelling

- The myocardium (muscular tissue) of the heart can be described by differential equations represented by the Holzapfel-Ogden constitutive law (HO law, Holzapfel and Ogden, 2009).
- In order to assess LV function, it is necessary to determine HO law parameters (e.g. passive myocardial stiffness) \Rightarrow not in vivo!
- HO law: possible to be solved numerically (finite-element $method) \Rightarrow Problem:$ the numerical solution is computationally expensive (relies on simulating from the LV model).
- Hence: not suitable for designing personalised treatments within clinics (real time decisions).

Motivation 00000

> **Aim**: to find the parameters best matching the observed measurements and the model.

Motivation

Aim: to find the parameters best matching the observed measurements and the model.

- Brute force optimisation"?
 - i.e. using standard gradient based optimisers
 - infeasible: time consuming, identification issues
- ② Gao et al. (2015): optimisation schemes for LV models
 - based on heuristics (expert knowledge)
 - no joint optimisation
 - several steps based on rescaling of the "original parameter" in different directions
 - still time-consuming
- O Idea: use Bayesian Optimisation, a statistical algorithm for global optimisation of expensive "black-box" objectives

Motivation 00000

> **Aim**: to find the parameters best matching the observed measurements and the model.

- "Brute force optimisation"?
 - i.e. using standard gradient based optimisers
 - infeasible: time consuming, identification issues
- 2 Gao et al. (2015): optimisation schemes for LV models
 - based on heuristics (expert knowledge)
 - no joint optimisation
 - several steps based on rescaling of the "original parameter" in different directions
 - still time-consuming

Motivation 00000

> **Aim**: to find the parameters best matching the observed measurements and the model.

- "Brute force optimisation"?
 - i.e. using standard gradient based optimisers
 - infeasible: time consuming, identification issues
- 2 Gao et al. (2015): optimisation schemes for LV models
 - based on heuristics (expert knowledge)
 - no joint optimisation
 - several steps based on rescaling of the "original parameter" in different directions
 - still time-consuming
- 3 Idea: use Bayesian Optimisation, a statistical algorithm for global optimisation of expensive "black-box" objectives

Left ventricle

LV000000

Left ventricle

← Left ventricular disfunction

Left ventricular modelling

Figure 1: From Wang et al., 2013.

The LV fibre structure = fibre-aligned material axes:

- $\mathbf{f_0}$ the fibre axis,
- $\mathbf{s_0}$ the sheet axis,
- n_0 the sheet-normal axis.

Holzapfel-Ogden constitutive law

0000000

- Can give a detailed description of the myocardium response, including the effects of fibre structure (accounts for a layered myofibre architecture).
- The strain energy function for the myocardium:

$$\Psi(I_1, I_{4f}, I_{4s}, I_{8fs}) = \frac{a}{2b} \{ \exp[b(I_1 - 3)] - 1 \}$$

$$+ \sum_{i \in \{f, s\}} \frac{a_i}{2b_i} \{ \exp[b_i(I_{4i} - 1)^2] - 1 \}$$

$$+ \frac{a_{fs}}{2b_{fs}} [\exp(b_{fs}I_{8fs}^2) - 1],$$

Holzapfel-Ogden constitutive law

- Can give a detailed description of the myocardium response, including the effects of fibre structure (accounts for a layered myofibre architecture).
- Responses: circumferential strains and LV cavity volume (end-diastolic).
- The strain energy function for the myocardium:

$$\Psi(I_1, I_{4f}, I_{4s}, I_{8fs}) = \frac{a}{2b} \{ \exp[b(I_1 - 3)] - 1 \}$$

$$+ \sum_{i \in \{f, s\}} \frac{a_i}{2b_i} \{ \exp[b_i(I_{4i} - 1)^2] - 1 \}$$

$$+ \frac{a_{fs}}{2b_{fs}} [\exp(b_{fs}I_{8fs}^2) - 1],$$

where

 I_i , $i \in \{1, 4f, 4s, 8fs\}$ – quantities describing the deformation;

 $\phi = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T - (\text{unknown})$ constitutive

zapiei–Oguen constitutive iaw

- Can give a detailed description of the myocardium response, including the effects of fibre structure (accounts for a layered myofibre architecture).
- Responses: circumferential strains and LV cavity volume (end-diastolic).
- The strain energy function for the myocardium:

$$\Psi(I_1, I_{4f}, I_{4s}, I_{8fs}) = \frac{a}{2b} \{ \exp[b(I_1 - 3)] - 1 \}$$

$$+ \sum_{i \in \{f, s\}} \frac{a_i}{2b_i} \{ \exp[b_i(I_{4i} - 1)^2] - 1 \}$$

$$+ \frac{a_{fs}}{2b_{fs}} [\exp(b_{fs}I_{8fs}^2) - 1],$$

where:

 I_i , $i \in \{1, 4f, 4s, 8fs\}$ – quantities describing the deformation;

 $\phi = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T$ – (unknown) constitutive

- Can give a detailed description of the myocardium response, including the effects of fibre structure (accounts for a layered myofibre architecture).
- Responses: circumferential strains and LV cavity volume (end-diastolic).
- The strain energy function for the myocardium:

$$\Psi(I_1, I_{4f}, I_{4s}, I_{8fs}) = \frac{a}{2b} \{ \exp[b(I_1 - 3)] - 1 \}$$

$$+ \sum_{i \in \{f, s\}} \frac{a_i}{2b_i} \{ \exp[b_i(I_{4i} - 1)^2] - 1 \}$$

$$+ \frac{a_{fs}}{2b_{fs}} [\exp(b_{fs}I_{8fs}^2) - 1],$$

where:

 I_i , $i \in \{1, 4f, 4s, 8fs\}$ – quantities describing the deformation; $\phi = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T$ – (unknown) constitutive parameters to be inferred.

Constitutive parameters

$$\phi = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T$$

E.g. the reference parameters from Wang et al. (2013):

a [kPa]	b	a_f [kPa]	b_f	a_s [kPa]	b_s	a_{fs} [kPa]	b_{fs}
0.236	10.810	20.037	14.154	3.724	5.164	0.411	11.300

Constitutive parameters

$$\phi = (a, b, a_f, b_f, a_s, b_s, a_{fs}, b_{fs})^T$$

E.g. the reference parameters from Wang et al. (2013):

a [kPa]	b	a_f [kPa]	b_f	a_s [kPa]	b_s	a_{fs} [kPa]	b_{fs}
0.236	10.810	20.037	14.154	3.724	5.164	0.411	11.300

Not in vivo!

Data: CMR images

Cardiovascular Magnetic Resonance images

Extracted:

- circumferential strains
- LV cavity volume

(Blue and red lines: LV segmentation)

Objective function

The objective function for **minimisation**: matching the simulated values (depending on the constitutive parameter θ) to the measurements:

$$f_{O2} = \sum_{i=1, 24} (\varepsilon_i - \varepsilon_i^*)^2 + \frac{(V - V^*)^2}{V^*},$$

where ε_i^* , i = 1, ..., 24 and V^* – measurements of the 24 circumferential strains and the volume, respectively.

Bayesian Optimisation

Bayesian Optimisation

Bayesian Optimisation: a sequential <u>model-based</u> method for performing <u>global optimisation</u> of unknown <u>"black box"</u> objectives, particularly useful when their <u>evaluations</u> are expensive (cf. Shahriari et al., 2016).

Key idea: to approximate the costly objective by a cheaper surrogate function and to evaluate the uncertainly of the approximation to quantify the exploitation—exploration trade-off.

Bayesian approach: to update our initial beliefs (prior distribution) about the object of interest after observing the data (likelihood), with sequential updates possible.

Bayesian Optimisation: a sequential <u>model-based</u> method for performing global optimisation of unknown <u>"black box"</u> objectives, particularly useful when their <u>evaluations</u> are expensive (cf. Shahriari et al., 2016).

Key idea: to approximate the costly objective by a cheaper surrogate function and to evaluate the uncertainly of the approximation to quantify the exploitation—exploration trade-off.

Bayesian approach: to update our initial beliefs (prior distribution) about the object of interest after observing the data (likelihood), with sequential updates possible.

Bayesian Optimisation

Bayesian Optimisation: a sequential model-based method for performing global optimisation of unknown "black box" objectives, particularly useful when their evaluations are expensive (cf. Shahriari et al., 2016).

Key idea: to approximate the costly objective by a cheaper surrogate function and to evaluate the uncertainly of the approximation to quantify the exploitation–exploration trade-off.

Bayesian approach: to update our initial beliefs (prior distribution) about the object of interest after observing the data (likelihood), with sequential updates possible.

- Unknown objective function (expensive!)
- + Data points

Here:

likelihood maximisation

- Surrogate function,
 typically a Gaussian Process
 (GP, cf. Rasmussen and
 Williams, 2006)
 (cheap!)
- Approximation uncertainty: determines the acquisition function

- Surrogate function,
 typically a Gaussian Process
 (GP, cf. Rasmussen and
 Williams, 2006)
 (cheap!)
- Approximation uncertainty: determines the acquisition function
- × Maximum of acquisition function: exploration—exploitation trade-off

- + Query at the previous maximum \times
 - \Rightarrow uncertainty gets reduced

- + Query at the previous maximum ×
 ⇒ uncertainty gets reduced
- × Find a new maximum of acquisition function

Iterate:

- + Evaluate the objective at the current maximum × (expensive!)
- Update the surrogate model (cheap!)
- × Find a new maximum of the acquisition function (cheap!)

Iterate:

- + Evaluate the objective at the current maximum × (expensive!)
- Update the surrogate model (cheap!)
- × Find a new maximum of the acquisition function (cheap!)

Iterate:

- + Evaluate the objective at the current maximum × (expensive!)
- Update the surrogate model (cheap!)
- × Find a new maximum of the acquisition function (cheap!)

LV BayOpt Current work Conclusion 0000000 00•0 000000000000 000

Illustration

Continue until: global maximum \downarrow

- Dictate where to query next (i.e. where to carry out the expensive evaluation step)
- Are being optimised (instead of the true objective function)

- For GPs often available in closed form

• Dictate where to query next

(i.e. where to carry out the expensive evaluation step)

- Are being optimised (instead of the true objective function) (as they are cheap themselves)
- Determine the exploration-exploitation trade-off
- There exist several different types (improvement based, information based, etc.)
 - In the figure: Upper-Confidence Bound (UCB)

 (easy to visualise)
 - In our studies: Expectation of Improvement (EI) ((presumably) most popular but more complex than UCB
- For GPs often available in closed form

- Dictate where to query next (i.e. where to carry out the expensive evaluation step)
- Are being optimised (instead of the true objective function) (as they are cheap themselves)
- Determine the exploration-exploitation trade-off
- There exist several different types (improvement based, information based, etc.)
 - In the figure: Upper-Confidence Bound (UCB)

 (easy to visualise)
 - In our studies: Expectation of Improvement (EI) ((presumably) most popular but more complex than UCB
- For GPs often available in closed form

Acquisition functions

- Dictate where to query next (i.e. where to carry out the expensive evaluation step)
- Are being optimised (instead of the true objective function) (as they are cheap themselves)
- Determine the exploration-exploitation trade-off
- There exist several different types (improvement based, information based, etc.)
 - In the figure: Upper-Confidence Bound (UCB)
 - In our studies: Expectation of Improvement (EI)
- For GPs often available in closed form

- Dictate where to query next (i.e. where to carry out the expensive evaluation step)
- Are being optimised (instead of the true objective function) (as they are cheap themselves)
- Determine the exploration-exploitation trade-off
- There exist several different types (improvement based, information based, etc.)
 - In the figure: Upper-Confidence Bound (UCB) (easy to visualise)
 - In our studies: Expectation of Improvement (EI) ((presumably) most popular but more complex than UCB)
- For GPs often available in closed form

- Dictate where to query next (i.e. where to carry out the expensive evaluation step)
- Are being optimised (instead of the true objective function) (as they are cheap themselves)
- Determine the exploration-exploitation trade-off
- There exist several different types (improvement based, information based, etc.)
 - In the figure: Upper-Confidence Bound (UCB) (easy to visualise)
 - In our studies: Expectation of Improvement (EI) ((presumably) most popular but more complex than UCB)
- For GPs often available in closed form

Acquisition functions

- Dictate where to query next (i.e. where to carry out the expensive evaluation step)
- Are being optimised (instead of the true objective function) (as they are cheap themselves)
- Determine the exploration-exploitation trade-off
- There exist several different types (improvement based, information based, etc.)
 - In the figure: Upper-Confidence Bound (UCB) (easy to visualise)
 - In our studies: Expectation of Improvement (EI) ((presumably) most popular but more complex than UCB)
- For GPs often available in closed form

 Motivation
 LV
 BayOpt
 Current work
 Conclusion

 00000
 000000
 000
 ●00000000000
 000

Current work

• The 8 parameters: highly intercorrelated, not identifiable from the data (noisy in vivo measurements), cf. Gao et al. (2015).

- The 8 parameters: highly intercorrelated, not identifiable from the data (noisy in vivo measurements), cf. Gao et al. (2015).
- • ⇒ use a reduced parametrisation to 4-dimensional manifold based on the knowledge of the myocardial properties:

- The 8 parameters: highly intercorrelated, not identifiable from the data (noisy in vivo measurements), cf. Gao et al. (2015).
- • ⇒ use a reduced parametrisation to 4-dimensional manifold based on the knowledge of the myocardial properties:

$$a = x_1 a_0,$$
 $b = x_1 b_0,$ $a_f = x_2 a_{f0},$ $a_s = x_2 a_{s0},$ $b_f = x_3 b_{f0},$ $b_s = x_3 b_{s0},$ $b = x_4 b_{f80}.$

- The 8 parameters: highly intercorrelated, not identifiable from the data (noisy in vivo measurements), cf. Gao et al. (2015).
- • ⇒ use a reduced parametrisation to 4-dimensional manifold based on the knowledge of the myocardial properties:

$$a = x_1 a_0,$$
 $b = x_1 b_0,$ $a_f = x_2 a_{f0},$ $a_s = x_2 a_{s0},$ $b_f = x_3 b_{f0},$ $b_s = x_3 b_{s0},$ $b = x_4 b_{f80}.$

• Meaning: rescaling of the reference parameters (original parameters) from Wang et al. (2013) in 4 dimensions to match the data.

- End-diastolic pressure: set to 8 mmHg (for forward simulation in ABAQUS)
- GP for Bayesian Optimisation (BO)
 - Standard squared exponential kernel
 - Initialised using Latin Hypercube Sampling (at 4 · 10 points)
 - Updated every iteration
- Acquisition function: Expected Improvement
- Comparison with the updated algorithm of Gao et al. (2015) (GLCBL) – 4 Steps:
 - ① Initialisation: grid search $(10 \times 10 \text{ 2-dim scaling of 8 parameters})$
 - 2 Klotz curve fitting
 - 3 fmincon of 2-dim scaling of a_f, b_f
 - fmincon of 2-dim scaling of a, b
- One ABAQUS invocation (forward simulation based on FEM): takes from around 7 to 20 minutes.

General settings

- End-diastolic pressure: set to 8 mmHg (for forward simulation in ABAQUS)
- GP for Bayesian Optimisation (BO)
 - Standard squared exponential kernel
 - Initialised using Latin Hypercube Sampling (at 4 · 10 points)
 - Updated every iteration
- Acquisition function: Expected Improvement
- Comparison with the updated algorithm of Gao et al. (2015) (GLCBL) – 4 Steps:
 - ① Initialisation: grid search $(10 \times 10 \text{ 2-dim scaling of 8 parameters})$
 - 2 Klotz curve fitting
 - 3 fmincon of 2-dim scaling of a_f, b_f
 - fmincon of 2-dim scaling of a, b
- One ABAQUS invocation (forward simulation based on FEM): takes from around 7 to 20 minutes.

General settings

- End-diastolic pressure: set to 8 mmHg (for forward simulation in ABAQUS)
- GP for Bayesian Optimisation (BO)
 - Standard squared exponential kernel
 - Initialised using Latin Hypercube Sampling (at 4 · 10 points)
 - Updated every iteration
- Acquisition function: Expected Improvement
- One ABAQUS invocation (forward simulation based on FEM):

ierai settiligs

- End-diastolic pressure: set to 8 mmHg (for forward simulation in ABAQUS)
- GP for Bayesian Optimisation (BO)
 - Standard squared exponential kernel
 - Initialised using Latin Hypercube Sampling (at 4 · 10 points)
 - Updated every iteration
- Acquisition function: Expected Improvement
- Comparison with the updated algorithm of Gao et al. (2015) (GLCBL) 4 Steps:
 - Initialisation: grid search (10 × 10 2-dim scaling of 8 parameters)
 - Klotz curve fitting
 - **3** fmincon of 2-dim scaling of a_f, b_f
 - \bullet fmincon of 2-dim scaling of a, b
- One ABAQUS invocation (forward simulation based on FEM): takes from around 7 to 20 minutes.

- End-diastolic pressure: set to 8 mmHg (for forward simulation in ABAQUS)
- GP for Bayesian Optimisation (BO)
 - Standard squared exponential kernel
 - Initialised using Latin Hypercube Sampling (at 4 · 10 points)
 - Updated every iteration
- Acquisition function: Expected Improvement
- Comparison with the updated algorithm of Gao et al. (2015) (GLCBL) - 4 Steps:
 - Initialisation: grid search $(10 \times 10 \text{ 2-dim scaling of 8 parameters})$
 - Klotz curve fitting
 - **3** fmincon of 2-dim scaling of a_f, b_f
 - fmincon of 2-dim scaling of a, b
- One ABAQUS invocation (forward simulation based on FEM): takes from around 7 to 20 minutes.

Synthetic data

Ground truth values:

• Parameters (realistic for the chosen mesh):

$$\theta = (0.1000, 1.2443, 2.0059, 3.1184, 0.3356, 0.9928, 0.1000, 1.3007)^{T}$$

- Volume: 142.588 mL
- Mean strain (std): -0.195 (0.052)

Results:

• After 7 iterations of BO [8 hrs] (excl. 40 initial invocations):

```
f_{O2}^{\text{min,BO}} = 0.0037
\theta^{\text{min,BO}} = (0.040, 1.816, 1.449, 3.540, 0.269, 1.292, 0.084, 2.318)^T
\Rightarrow RMSE(\theta^{min,BO}) = 0.493
```

• After 74 + 26 + 51 = 151 iterations of GLCBL [31.5 hrs] (excl. 100 initial invocations):

```
f_{O2}^{\text{min,GLCBL}} = 0.0054
\theta^{\text{min,GLCBL}} = (0.100, 1.693, 1.305, 3.2586, 0.243, 1.189, 0.100, 2.602)^T
\Rightarrow RMSE(\theta^{min,GLCBL}) = 0.554
```

Best (=min) value of the objective function in subsequent iterations

Errors in parameter estimates (wrt the ground truth)

Stress-strain curves

Response errors

ivation LV BayOpt **Current work** Conclusion
00 000000 0000 0000 0000000000 0000

Real data

Measurements:

• Volume: 116.134 mL

• Mean strain (std): −0.162 (0.047)

Results:

• After 58 iterations of BO [14 hrs] (excl. 40 initial invocations):

$$f_{O2}^{\text{min,BO}} = 0.0559$$

• After 38 + 56 + 30 = 124 iterations of GLCBL [25.5 hrs] (excl. 100 initial invocations):

$$f_{O2}^{\text{min,GLCBL}} = 0.0585$$

Best (=min) value of the objective function in subsequent iterations

Stress-strain curves

Response errors

 Motivation
 LV
 BayOpt
 Current work
 Conclusions

 00000
 000000
 00000000000000
 ●00

- Personalised treatment of LV requires inferring of the myocardium properties in a viable clinical time frame using in-vivo LV data.
- Previous methods: infeasible for real time problems.
- Bayesian Optimisation provides a fast, reliable and systematic approach to parameter inference in LV models.
- With Bayesian Optmisation: slightly better results but obtained in much shorter time.

- Personalised treatment of LV requires inferring of the myocardium properties in a viable clinical time frame using in-vivo LV data.
- Previous methods: infeasible for real time problems.
- Bayesian Optimisation provides a fast, reliable and systematic
- With Bayesian Optmisation: slightly better results but obtained

- Personalised treatment of LV requires inferring of the myocardium properties in a viable clinical time frame using in-vivo LV data.
- Previous methods: infeasible for real time problems.
- Bayesian Optimisation provides a fast, reliable and systematic approach to parameter inference in LV models.
- With Bayesian Optmisation: slightly better results but obtained in much shorter time.

- Previous methods: infeasible for real time problems.
- Bayesian Optimisation provides a fast, reliable and systematic approach to parameter inference in LV models.
- With Bayesian Optmisation: slightly better results but obtained in much shorter time.

Further research

- Extend the synthetic data study to more datasets (to quantify the uncertainty)

Further research

- Extend the synthetic data study to more datasets (to quantify the uncertainty)
- Investigate the impact of the choice of the acquisition function and explicitly control the exploration—exploitation trade-off (better to be greedy or not?).
- Bayesian Optimisation with unknown constraints of Gelbart et al (2014): exclude implausible parameter regions within the modelling framework.

Further research

- Extend the synthetic data study to more datasets (to quantify the uncertainty)
- Investigate the impact of the choice of the acquisition function and explicitly control the exploration-exploitation trade-off (better to be greedy or not?).
- 3 Bayesian Optimisation with unknown constraints of Gelbart et al. (2014): exclude implausible parameter regions within the modelling framework.

000

References I

- Gao, H., W. G. Li, L. Cai, C. Berry, and X. Y. Luo. (2015), "Parameter Estimation of the Holzapfel-Ogden Law for Healthy Myocardium." *Journal of Engineering Mathematics*, 95.
- Gelbart, M. A., J. Snoek, and R. P. Adams (2014), "Bayesian Optimization with Unknown Constraints." arXiv preprint arXiv:1403.5607.
- Holzapfel, G. A. and R. W. Ogden (2009), "Constitutive Modelling of Passive Myocardium: a Structurally Based Framework for Material Characterization." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367, 3445–3475.
- Rasmussen, C. E. and C. K. Williams (2006), Gaussian Processes for Machine Learning, volume 1. MIT press Cambridge.
- Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas (2016), "Taking the Human Out of the Loop: A Review of Bayesian Optimization." Proceedings of the IEEE, 104.
- Wang, H. M., H. Gao, X. Y. Luo, C. Berry, B. E. Griffith, R. W. Ogden, and T. J. Wang (2013), "Structure Based Finite Strain Modelling of the Human Left Ventricle in Diastole." International Journal for Numerical Methods in Biomedical Engineering, 29, 83–103.