Kugeloberfläche 2D:

 x^{μ}

 $x^0 = \theta.$ $x^1 = \phi.$

 $g_{\mu
u}$

 $g_{00} = r^2.$ $g_{01} = 0.$ $g_{10} = 0.$ $g_{11} = r^2 \sin(\theta)^2.$

 $\sqrt{-\det(g_{\mu\nu})}$

 $\sqrt{=\sqrt{-r^4\sin(\theta)^2}}.$

 $g^{\mu
u}$

 $g^{00} = \frac{1}{r^2}.$ $g^{01} = 0.$ $g^{10} = 0.$ $g^{11} = \frac{1}{r^2 \sin(\theta)^2}.$

 $\Gamma^{\sigma}_{\mu\nu}$ $\Gamma^{0}_{00} = 0.$ $\Gamma^{0}_{01} = 0.$ $\Gamma^{0}_{10} = 0.$ $\Gamma^{0}_{11} = -\cos(\theta)\sin(\theta).$

 $\Gamma_{00}^{1} = 0.$ $\Gamma_{01}^{1} = \frac{\cos(\theta)}{\sin(\theta)}.$ $\Gamma_{10}^{1} = \frac{\cos(\theta)}{\sin(\theta)}.$ $\Gamma_{11}^{1} = 0.$

 $R_{\mu\nu}$

 $R_{00} = -1.$ $R_{01} = 0.$ $R_{10} = 0.$ $R_{11} = -\sin(\theta)^2.$

 $R^{\mu}_{\ \nu}$ $R^{0}_{\ 0} = -\frac{1}{r^{2}}.$ $R^{0}_{\ 1} = 0.$ $R^{0}_{\ 0} = 0.$

 $R^{1}_{\ 1} = -\frac{1}{r^{2}}.$ $oxed{R}$

 $R = -2\frac{1}{r^2}.$

 $oxed{G^{\mu}_{\
u}}$

 $G_{0}^{0} = 0.$ $G_{1}^{0} = 0.$ $G_{0}^{1} = 0.$ $G_{1}^{1} = 0.$

G = 0.

 $G^{\mu}_{\nu:\mu} = 0$ $G^{\mu}_{0:\mu} = 0.$ $G^{\mu}_{1:\mu} = 0.$

 $g^{\mu\nu} \Gamma^{\lambda}_{\mu\nu} = 0?$ $g^{\mu\nu} \Gamma^{0}_{\mu\nu} = -\cos(\theta)r^{2}\sin(\theta)^{3}.$ $g^{\mu\nu} \Gamma^{1}_{\mu\nu} = 0.$