

TEMA 2. ALMACENAMIENTO (2° PARTE)

Centro de procesamiento de datos

Departamento de Arquitectura y Tecnología de Computadores, Universidad de Granada

Sistemas de ficheros

- Permiten almacenar datos en forma de ficheros de forma jerarquizada.
- Gestión del dispositivo de almacenamiento.
- □ Acceso desde el Sistema Operativo
- □ Metadatos
 - Información de fichero: fechas, tamaño, atributos, permisos, localización de los datos...
- □ Datos
 - Información a almacenar
 - Acceso aleatorio
 - Acceso: lectura, lectura/escritura

Sistemas de ficheros locales

- □ Ext3/Ext4/BTRFS/XFS/ReiserFS/ NTFS
 - Orientados a almacenamiento local
 - Journal
 - Estado coherente del FS
 - Recuperación rápida en caídas del sistema
 - Optimizados para gran rendimiento
 - Cache
 - Algoritmos de acceso: elevator
 - Extents
 - Bloqueos

¿Por qué no se utilizan estos sistemas de ficheros directamente en red?

- □ Acceso a bloques
- Incoherencia entre las caches de ambos equipos

Sistemas de ficheros en red (NAS: Network Attached Storage)

- □ Compartir ficheros entre computadores y usuarios
- Ofrecer mayor capacidad que un computador básico
- Mayor protección frente a fallos del sistema
- □ Aspectos a considerar:
 - Prestaciones
 - Recuperación
 - Caída del servidor en mitad de una escritura
 - Caída de los clientes
 - Consistencia
 - Acceso simultáneo

NFS: Network File System

- NFS permite a los clientes montar directorios de un servidor remoto y los utilizan como si fueran sistemas de archivos locales. Esto permite almacenar recursos en un lugar central en la red proporcionando a los usuarios autorizados el acceso continuo a los mismos.
- Disponible en múltiples sistemas operativos.
- □ Versiones de NFS: v2 (UDP), v3(64-bits), v4
- □ Creado en 1985 por Sun Microsystems
 - Fue el primer sistema de ficheros distribuido ampliamente utilizado

NFS: Características principales

- Protocolo NFS diseñada sin estados.
 - Es fácil de recuperar servidor o cliente, ya que no existen estados para ellos.
- Semántica archivos UNIX.
- Los mecanismos de seguridad y de verificación de acceso basados en Unix UID y GID.
- Diseño del protocolo NFS no depende de los protocolos de transporte.
 - TCP, UDP, RDMA/Ib
 - Basado en RPC (remote procedure call)

Problemas de NFS

- Soporta bloqueos en red limitado (Ver.4)
 - Ver 3. Sin bloqueos
- Problemas de incoherencia de ficheros abiertos simultáneamente por varios ordenadores.
- Limitaciones al borrar un fichero mientras otro nodo lo mantiene abierto.
- □ Escrituras lentas

Sistemas de ficheros (FS:FileSystem)

FS. Local

Acceso local

ext3, ext4 \rightarrow Linux

NTFS, FAT → Windows

HFS → MacOS

FS. Distribuido

Acceso remoto múltiples ficheros en paralelo Eficiencia, tolerancia a fallos, disponibilidad, escalabilidad NFS -> Centralizado

Ceph → Distribuido

Google File System → Centralizado

Sorrento → Distribuido

Hadoop → Centralizado

FS. Paralelo

Acceso remoto múltiples ficheros en paralelo

Acceso a un fichero remoto en

paralelo

GPFS →

PVFS → Centralizado

Lustre → Centralizado

Panasas → Distribuido

GlusterFS

Lustre

- Open source. FS paralelo basado en objetos
- Diseño asimétrico (servidor de metadatos separado
- MDS modelo (activo/pasivo)
- □ MDT sobre RAID
 - controladoras RAID doble puerto

Si pensamos en almacenamiento en la nube

- □ Innumerables ventajas
 - □ Fácil de utilizar
 - Multiplataforma
 - Compartir carpetas
- □ Pero ...
 - □ ¿Almacenas ficheros con claves poco seguras?
 - Guardas ficheros con datos personales,
 - actas, Números de DNI, ...

... entonces tienes un problema "Dropbox"

- El imparable crecimiento del volumen de datos
- Empresas y usuarios necesitan soluciones que resuelvan sus demandas de almacenamiento que crecen de forma continua
- Necesitan disponer de sistemas de almacenamiento seguros
 - Generalmente basados en soluciones RAID locales
 - Planificar operaciones de copias de seguridad (backups)
 - Migrar a nuevas plataformas
 - ... y recuperar de un posible desastre

Una solución: Almacenamiento en la nube

- El almacenamiento en la nube es una tecnología emergente que ofrece servicios de almacenamiento a un menor coste mediante un modelo virtualizado.
- □ La externalización del almacenamiento tiene ventajas:
 - □ Ubicación física de los sistemas: Discos, servidores, red, ...
 - Escalabilidad en capacidad y acceso
 - Mantenimiento de los equipos: Reparaciones, consumo
 - Respaldo de los datos
 - Tasas elevadas de disponibilidad

...pero también tiene inconvenientes

- No conviene perder el control de los datos
- □ Dependencia de acceso a red
- □ Seguridad:
 - Cumplir con la Ley de Protección de Datos
 - □ ¿Quién más puede acceder a los datos?
- ☐ Gran confianza en el proveedor
- □ ¿Por qué hay tanto interés en externalizar?

¿Qué opina Richard Stallman sobre el Cloud Computing?

- □ http://www.guardian.co.uk/technology/2008/sep/29/clou d.computing.richard.stallman
 - "It's stupidity. It's worse than stupidity: it's a marketing hype campaign"
 - "Somebody is saying this is inevitable and whenever you hear somebody saying that, it's very likely to be a set of businesses campaigning to make it true."
- http://www.stallman.org/archives/2013-may-aug.html
 - European companies may stop hosting their data in US servers, thanks to Snowden's disclosures.
 - □ The purpose of the term "cloud" is to create a cloud in your mind, that you will use Internet services indiscriminately without posing crucial questions such as, "Which companies and countries would I be trusting this data to? What data would they get? Would they get control over how my computing is done?" If you think about Internet services with your mind in a "cloud", you will surely make bad choices.

¿Por qué ha crecido la demanda de almacenamiento en la nube?

- Más dispositivos interconectados a Internet
- □ Redes más rápidas y fiables
- Aplicaciones que facilitan el intercambio de información

- □ Cambio de concepto: Pagar por servicio
- Soporte a CDN: Content Delivery Network
- Gran cantidad de proveedores

Muchas nubes pero... ¿dónde están almacenados realmente los datos?

- □ Infraestructuras: ANSI/TIA-942 (Uptime Institute)
 - □ Tier I: Componentes sin redundancia. Disp: 99,671%
 - Tier II: Componentes con redundancia. Única línea eléctrica + generadores + UPS. Disp: 99,741%
 - □ Tier III: Componentes con redundancia + alimentación doble y varios enlaces de datos. Disp: 99,982%
 - Tier IV: Todos los equipos de aire acondicionado con alimentación doble. Infraestructura tolerante a fallos con capacidad autónoma de generación de energía. Accesos biométricos. Disp: 99,995%
- Centros de Datos geográficamente distribuidos
 - Nirvanix: US (Los Angeles, Las Vegas, Dallas), Alemania (Frankfurt), Japón (Tokio)
 - Tier III +Acceso biométrico, control de apertura de cabinas, cámaras, seguridad 24x7
 - Certificación: SAS 70 Tipo II
 - Amazon: UE (Irlanda), EEUU(3), América del Sur, Asía(3)
 - **Equinix:** 95 Centros de datos en 15 países, + de 900 redes de interconexión

Cuando la nube no es realmente nube...

- Algunas empresas utilizan el término Cloud pero, ¿y si tienen un único Centro de Datos en una única ciudad?
- □ "Hurricane Sandy is a a data disaster", BetaNews
 - http://betanews.com/2012/11/02/hurricane-sandy-is-a-a-data-disaster/
- Una combinación de fallos también puede afectar a grandes CPDs.
- "Multiple Generator Failures Caused Amazon Outage",
 - http://www.datacenterknowledge.com/archives/2012/07/ 03/multiple-generator-failures-caused-amazon-outage/

SLA: Service Level Agreement

- □ Los proveedores garantizan el funcionamiento del servicio.
 - Tasa de disponibilidad del servicio y tasa de pérdida de datos
 - Mayor disponibilidad → mayor precio
 - Diversos niveles: Google Cloud Storage, Amazon S3, Nirvanix, ...
- Disponibilidad: 100%-(Fallos/Peticiones) en un periodo de facturación
 - Fallo: 3 peticiones consecutivas erróneas
- Si la disponibilidad se reduce por debajo de un umbral en el siguiente pago se reduce una cantidad por compensación
 - Ej: Nirvanix:
 - 99% < Disponibilidad < **99,9%** → 10%
 - Disponibilidad < 99% → 25%
 - 2 Nodos:99,99% SLA 3 Nodos: 99,999% SLA

Clasificación de almacenamiento en la nube

- □ Tipo de nube
 - Pública
 - Privada
 - Híbrida
 - Fog Computing
- □ Por protocolo de acceso
 - Sincronización de ficheros
 - Google Drive
 - Acceso ficheros NFS, CIFS
 - Acceso API
 - Google Cloud Storage
 - □ FTP, WEBDAV,...

- Qué datos se almacenan
 - Ficheros
 - Acceso ficheros NFS, CIFS
 - Objetos
 - Almacenamiento de bloques
 - Bases de datos
- □ Acceso
 - Lento: < Coste (\$3 Glaciar)</p>
- Modelo de gestión
 - Personal
 - Corporativo

Tipos de almacenamiento

- Almacenamiento orientado a aplicaciones
 - □ Flickr, Netflix
- Almacenamiento orientado a usuarios
 - Dropbox, Mega
- □ Almacenamiento como servicio
 - Amazon S3, Nirvanix
- □ Almacenamiento corporativo
 - Nubes privadas, públicas e híbridas

Tipos de almacenamiento en la nube

Almacenamiento orientado a aplicaciones

- □ Gmail, Outlook (hotmail), Yahoo, ...
- □ Google Docs, Microsoft SharePoint
- □ iTunes
- □ YouTube
- □ Flickr: Almacenamiento de fotografías
 - Basado en Amazon S3.
 - 🗖 ¿1 TB gratuito? Sí, pero ancho de banda
- □ NetFix:
 - Basado en Amazon S3
 - Streaming

Almacenamiento orientado a usuario

El usuario controla los archivos con datos.

- Explosión de servicios para compartir archivos
 - Restricciones en aplicaciones P2P
 - Se separan las páginas web de donde están almacenados los contenidos (con posibles derechos de autor)
 - Megaupload, Megavideo → Mega
 - RapidShare, MediaFire, Uploaded, 4shared
 - Soluciones económicas y eficientes para compartir profesionalmente: Vídeos, fotografías, grandes ficheros
- □ Servicios para compartir fácilmente:
 - Dropcanvas, Gett, Pastelink, Snaggy, ...

Soluciones de almacenamiento de ficheros

¿Qué hay que tener en cuenta para elegir una solución de almacenamiento?

- □ Uso
 - Personal
 - Corporativo
 - Precio por usuarios o computadores
 - Administración
- Tipo
 - Almacenamiento de ficheros en la nube
 - Múltiples computadores/dispositivos sincronizados
 - Copias de seguridad online
 - ¿Soporte de discos en red, externos o removibles? Ej: Zipcloud
 - Acceso NAS
 - CIFS, NFS, FTP. Ej: Nirvanix CloudNAS
- □ Precio
 - SLA
 - Cifrado, confidencialidad
 - ¿Gratis? Sí, pero limitan el ancho de banda de subida (Ej. Carbonite: 2Mbit/s primeros 200GB, el resto a 100kbit/s)

Comparativa uso personal

Proveedor	precio/mes	Capacidad	Proveedor	Comentario
<u>ab</u> zip cloud	\$4,95	250GB	GoCS	
just cloud com	Gratis.T.lim	llimitado	GoCS	
myPC Backup .com	Gratis.T.lim	llimitado	GoCS	
Backup Genie	6,95€	250GB	GoCS	
cubby	\$3,99	100GB		Gratis 5 GB, DirectSync
STRATO	4,9 €	100GB	Strato	
SugarSync	\$9,99	100GB	AmS3	
Dropbox	\$9,99	100GB	AmS3	Gratis 2 GB
CARBÔNITE	\$5	llimitado		1 computador

Comparativa uso corporativo

Proveedor	precio/mes	Capacidad	Proveedor	Comentario
<u>ab</u> zip cloud	\$49,95	500GB	GoCS	20 licencias
just cloud .com	\$49,95	500GB	GoCS	20 licencias
myPC Backup .com	\$49,95	500GB	GoCS	20 licencias
Backup Genie	\$66	500GB	GoCS	20 licencias
cubby	\$39,9	1TB		10 usuarios
STRATO	34,9€	1TB	Strato	20 usuarios
SugarSync	\$55	1TB	AmS3	3 usuarios
Dropbox	\$49,95	\$1TB?	AmS3	5 usuarios
CARBONITE BOOK TO COMPANY	\$19	250GB		Ilimitado nodos, NAS

Dropbox está muy extendido pero... ¿es seguro?

- Incidentes de seguridad con Dropbox
 - "Dropbox gets hacked ... Again", (Agosto 2012)
 - In a post on the Dropbox blog, VP of Engineering Aditya Agarwal acknowledged that the worst-case scenario had occurred
 - http://www.zdnet.com/dropbox-gets-hacked-again-7000001928/
 - Dropbox puede acceder a tu información.
 - https://www.dropbox.com/help/27/es
 - Dropbox almacena en Amazon S3 donde cifra los datos y utiliza comunicaciones SSL para transmitir los datos.
- Activar verificación en dos pasos:
 - Solicita un código de acceso (ó dígitos) cada vez que se inicia sesión o se vincula un nuevo equipo.
 - Mediante mensaje al móvil
 - Aplicación: Contraseña única con caducidad temporal (TOTP)
 - Google Authenticator, Amazon AWS MFA
 - Código de recuperación de emergencia

Algunas soluciones de seguridad para almacenamiento en la nube

- □ AxCrypt
 - http://www.axantum.com/axcrypt/
 - Cifra/descifra y comprime ficheros individuales.
 - Open Source. Puede utilizarse con Dropbox, SkyDrive, ...
- Cloudfogger:
 - http://www.cloudfogger.com/en/
 - Versiones Windows, Mac, Android, iOS, no Linux
- □ Viivo
 - http://www.viivo.com/
 - Versiones Windows, Mac, Android, iOS, no Linux
- Boxcryptor
 - https://www.boxcryptor.com/es
 - Solución para cifrar ficheros y carpetas en gran cantidad de proveedores: Dropbox, Google Drive,
 SkyDrive, ... o basados WebDAV: Cubby, Strato HiDrive, ownCloud
 - Crea una unidad virtual con AES-256, boxcryptor cifra/descrifa accediendo a la carpeta de almacenamiento en la nube
 - Versión gratuita y de pago
- □ Truecrypt
 - No es una solución fácilmente utilizable con almacenamiento en la nube
 - Problemas de sincronización con grandes contenedores

Soluciones privadas

- Sparkleshare
 - http://sparkleshare.org/
 - Sincronización de ficheros
 - Basada en GIT (servidor)
 - Multiplataforma
- OwnCloud
 - http://owncloud.org/
 - Versión gratuita y comercial
 - Interfaz Web, contactos, calendarios, reproducción de música
 - Copias de respaldo, API
 - Soporte usuarios LDAP
 - Hosting Partner: Net.de, vBoxx, A2 Hosting, ...

Una aplicación de sincronización sencilla basada en rsync + GIT

- Permite sincronizar múltiples equipos. Linux, Windows (Cygwin).
- Crear en el servidor una carpeta de sincronización
- □ Crear repositorio GIT
 - cd carpeta_sincro
 - git --bare init
- rsync –Cutrvz –exclude '~*' usuario@servidor:carpeta_sincro directorio_local
- rsync -Cutrvz -exclude '~*' directorio_local/carpeta_sincro
 usuario@servidor:.
- ssh usuario@servidor git_sincro
 - cd carpeta_sincro
 - git add . –A
 - □ git commit —m "Copia de seguridad. `date +%Y-%m-%d_%H:%M`"

UCS: Unified Cloud Storage AbFS: Abierto FileSystem

- Sistemas de almacenamiento desarrollados en UGR (Dept. Arquitectura y Tecnología de Computadores) en colaboración con CATÓN Sistemas Alternativos.
 - UCS: Orientado a almacenamiento en la nube
 - Solución multiplataforma de acceso compartido de ficheros
 - Servicio escalable basado en AbFS
 - AbFS: Orientado a almacenamiento en cluster

Escalabilidad, redundancia, altas prestaciones, múltiples

configuraciones

Almacenamiento orientado a servicio

- □ Protocolos
 - SSH/SCP
 - RSYNC
 - FTP
 - NFS o CIFS
 - Web Distributed Authoring and Versioning (WebDAV)
 - HSI
 - TAHOE-LAFS
 - □ REST o
 - Cloud Data Management Interface (CDMI)

Proveedores de almacenamiento

- Otros proveedores compatibles con S3 o CDMI
 - Google Cloud Storage, Connectria, Constant Cloud Storage, Nifty Cloud Storage

CDMI (Cloud Data Management Interface)

- Cloud Data Management Interface define la API para crear, recuperar, actualizar y borrar elementos del Cloud
- Estándar SNIA (Storage Networking Industry Association)
- □ Operaciones RESTful HTTP (GET, PUT, DELETE)
- □ Acceso a :
 - Contenedores
 - OID (Object ID) o URL
- □ Soluciones CDMI:
 - NetAPP: StorageGRID
 - Amazon: \$3

CDMI

Servicios de almacenamiento en Amazon

- □ Amazon Simple Storage Service (S3)
 - Almacenamiento de objetos
- Amazon Elastic Block Store (EBS)
 - Volúmenes persistentes para utilizar con EC2
- □ Amazon Storage Gateway
 - Conexión de dispositivos con almacenamiento en la nube
- Cross-Origin Resource Sharing (CORS)
 - Alojamiento WEB compartido
- □ Almacenamiento de BBDD
 - BBDD no SQL distribuidas

Cómo funciona Amazon Storage S3:

- □ Almacenamiento de objetos: 1 byte ... 5 TB
 - Públicos o privados. Control de acceso
 - Cifrado: En el cliente (AS3 Encryption Client) o en el servidor (Server Side Encryption)
- □ **Regiones:** UE (Irlanda), EEUU(3), América del Sur, Asía(3)
- □ Interfaz: REST y SOAP
- Control de versiones y de integridad de los datos
- □ Control automático del ciclo de vida de los datos
- Coherencia
- □ Bucket: Nombre y región
- □ proxy

Cluster Storage Solutions: Amazon S3

Diversas soluciones: (duración y disponibilidad por año)

Standard:

duración: 99.99999999 %, disponibilidad: 99,99 %

Reduced Redundancy Storage (RRS):

duración: 99,99 %, disponibilidad: 99,99 %, pérdida: 0,01%

Amazon Glacier:

- Solución Backup: bajo coste: 0,01 USD/GB/mes ficheros, acceso lento: tareas: 3 o 4 horas.
- duración: 99.99999999 %, disponibilidad: 99,99 %

Amazon Elastic Block Store (EBS)

- □ Diseñado para utilizarse con instancias EC2
- □ Permite crear volúmenes que pueden montarse como dispositivos de EC2. Pueden tener formato ext3, NTFS, ...
- □ Tamaño máximo 1TB
- Duplicación automática
- □ Tasa anual de fallos (AFR): 0,1% ... 0,5%
- Copias de seguridad diferenciales
- Instancias EC2 optimizadas para mayor IOPS.
- □ Amazon CloudWatch para controlar el rendimiento

Amazon Storage Gateway

- Permite conectar fácilmente recursos locales y mantener copias en la nube
- □ Acceso rápido a datos frecuentes en caché local

Gestor de ficheros para acceder a S3

- Dragondisk (http://www.dragondisk.com/)
 - Explorador para Amazon S3, Google Cloud Storage, y proveedores compatibles con la API de S3.
 - Windows, Mac, Linux

Cloud Turtle

- http://www.genie9.com/cloudturtle/home.aspx
- Explorador para múltiples proveedores
- Amazon S3, Nirvanix, Timeline Cloud (no operativo)

Aplicaciones de Cloudberry para S3, Windows Azure, ...

- □ Cloudberry Explorer
 - http://www.cloudberrylab.com

- Amazon S3 y Glaciar
- Compartir con otros usuarios
- □ Ficheros: hasta 5 GB
- Versión Pro: + cifrado, compresión, ficheros has 5TB,...
- □ Otras aplicaciones Cloudberry:
 - Discos, Copias de seguridad de ficheros, MS SQL Server, MS Exchange Server

Ej: API para acceder a S3 en Python

□ http://boto.readthedocs.org/en/latest/#

```
>>> from boto.s3.connection import S3Connection
>>> conn = S3Connection('<aws access key>', '<aws secret key>')
>>> bucket = conn.create bucket('mi bucket', location=Location.EU)
>>> from boto.s3.key import Key
■ >>> k = Key(bucket)
>>> k.key = 'prueba'
■ >>> k.set contents from string('Este es un test de S3')
>>> import boto
\square >>> c = boto.connect s3()
>>> b = c.get bucket('mi bucket')
>>> from boto.s3.key import Key
\square >>> k = Key(b)
>>> k.key = 'prueba'
>>> k.get contents as string()
'Este es un test de S3'
```

Zoolz

- □ https://www.zoolz.com/
- □ Cold Storage:
 - Para almacenar discos ya sin uso.
 - Marcar ficheros. Recuperación en 3-5 horas. Correo con enlace.
 - Utiliza Amazon Glacier S3
 - Copy, Encrypt and Ship
 - Copia y cifra todos los datos a un disco externo.
- □ Instant storage:
 - Servicio como Dropbox:
 - 100 GB→ \$11,95 /mes (+ gratis 100 GB Cold Storage)

Windows Azure

- Almacenamiento de blobs
 - Permiten almacenar grandes cantidades de texto no estructurado o datos binarios tales como vídeo, audio e imágenes.
 - Bloques: BlockID, Hasta 4 MB
 - Block blobs: Hasta 50.000 bloques, 200GB
 - Page blobs: páginas de 512 bytes, hasta 1TB
 - Snapshots de blobs, versiones de blog: ETag
 - □ Hasta 200 TB.
 - Acceso API REST
 - Storage Analytics
 - Un blob puede almacenar un volumen NTFS como disco duro virtual.
- □ Almacenamiento de bases de datos SQL

Comparativa precios (GB / mes)

Amazon S3, Google Cloud Storage y Windows Azure

	S3 estándar	S3 RRS	S3 Glaciar
1 < TB	\$0,095	\$0,076	\$0,011
< 50 TB	\$0,080	\$0,064	\$0,011
< 500 TB	\$0,070	\$0,056	\$0,011
< 1000 TB	\$0,065	\$0,052	\$0,011

□ Amazon	\$3	(Irlanda)
----------	-----	-----------

RRS: Reduced Redundancy Storage

Windows Azure:

RG: Redundancia Geográfica

RL: Redundancia Local

Planes 6 o 12 meses, descuento 20-32%

	Google Cloud Storage	Durable Reduced Availability Storage
< 1TB	\$0,085	\$0,063
< 10 TB	\$0,076	\$0,054
< 100 TB	\$0,067	\$0,049
< 500 TB	\$0,063	\$0,045

	Windows Azure RG	Windows Azure RL
1 < TB	\$0,0708	\$0,0522
< 50 TB	\$0,0596	\$0,0485
< 500 TB	\$0,0522	\$0,0447
< 1000 TB	\$0,0485	\$0,041

Comparativa precios transferencias

	Amazon \$3
Sol PUT, COPY POST o LIST	\$0,005 (1000 solic.)
Sol. GET	\$0,004 (10000 solic.)
Transf. Entrada	\$0
Transf.Salida EC2	\$0
Transf. Salida Internet < GB	\$0
Transf.Salida Internet < 10TB	\$0,12 / GB/mes

	Windows Azure
100.000 Transacciones	\$0,0075

	HP Cloud	
1.000.000 peticiones	\$0,1	
10,000 peticiones obj.	\$0,01	
Trans.Entrada	\$0	
Hasta 10TB	\$0,12 (GB/mes)	
Hasta 50TB	\$0,09 (GB/mes)	

Comparativa precios (GB / mes) Constant, Nirvanix, livedrive, HP Cloud, Acens

	Constant	
< 100GB	\$5	
+1GB	\$0,12 / GB \$0,08 / GB transf. Datos	

	livedrive
< 2TB	25€ (3 usuarios)
< 10 TB	83€ (10 usuarios)

	Acens		
< 10TB	0,12€ (min 1TB)		
< 50 TB	0,1€		
< 200 TB	0,08€		

	HP Cloud		
Bloque	\$0,1 (\$0,05 prom. 50%)		
Objetos	\$0,09		

Nirvanix	2CSN	3CSN
\$0,25	\$0,48	\$0,7 1

Pero, ¿es realmente caro?

- ☐ Coste equipos:
 - 2 NAS (Netgear RND4000-200) + 4 discos 2TB =
 - 2 x 450 € + 4 x 95 € = 1280 €
- □ Coste consumo:
 - Precio KW/h: 0,15094 €
 - 2 equipos x 0,2 KW/h x 24 h x 365 días x 4 años = 14016 KW/h
 - PUE (Power Usage Effectiveness) = $\frac{Consumo\ Total}{Consumo\ TI}$ = \sim = 1,5
 - □ Coste = 14016 KW/h x 1,5 x 0,15094 \in = 3173 \in
- □ Amortización: 4 años
 - 1280 € + 3173 € = 4453 € → 93 € /mes
 - 4TB (redundancia:2): €/GB = 4453€ / 4000GB = 1,1 €/GB en 4 años
 - 1,1 €/GB en 4 años → 0,023€/GB x mes
- No se incluye: Equipos de red, coste conexión red, personal, reparaciones, ...

Modelos de servicio en la nube

	Modelo	Cliente: Acceso	Cliente: conocimiento almacenamiento	Proveedor
SaaS	Software como servicio			
PaaS	Plataforma como servicio	Programación API	Normal	Software base + API
laaS	Infraestruc tura como servicio	Programación Administración de sistemas	Completo	CPD Herramientas de configuración y administración de sistemas Sistemas Operativos Base

Nube pública + aplicaciones Servidor

Nube privada

RedHat: Open Hybrid Cloud

Ventajas de los modelos híbridos

- Seguridad absoluta en los datos
- □ Acceso rápido
- Control total de los recursos críticos
- Las copias de respaldo cifrado en nubles públicas
- Datos de menos frecuencia de acceso o menos críticos en seguridad en nubes públicas

Nube híbrida: Nirvanix

Nubes híbridas: HP Converged Cloud

- Solución completa: HW & SW
 - Amplía recursos con otras empresas
 - HP Cloud Storage
- Herramientas potentes de control
 - Cloud Service Automation
- Virtualización: Vmware
- Gran énfasis en la seguridad

Y después de la nube...¿la niebla?

- □ Fog Computing
 - Modelo descentralizado
- □ http://www.symform.com/
 - No Centro de Datos masivo
 - En vez de pagar con dinero, puedes compartir tu almacenamiento.
 - La información queda cifrada (AES-256), fragmentada y almacenada de forma redundante (RAID96: Subdivide cada bloque en 96 fragmentos con información redundante. Sólo son necesarios 64 fragmentos para recuperar la información.

Soluciones "Open"

- OPEN DATA
 CENTER
 ALLIANCE
- Open Data Center Alliance
 - Definición de estándares abiertos orientados a computación en la nube
- OCCI (Open Cloud Computing Interface)
 - Orientado a laaS
 - Compatible con Open Virtualization Format (OVF) y CDMI
 - Soporte para:
 - OpenNebula
 - OpenStack
 - Rackspace http://www.rackspace.com/es/cloud/files/
 - Almacenamiento distribuidos mediante CDN (Akamai)
- Red Hat Open hybrid Cloud
- TAHOE-LAFS
 - https://tahoe-lafs.org/trac/tahoe-lafs
 - Sistema de almacenamiento en la nube. Distribuye datos entre múltiples servidores.

CDN: Content Delivery Network (Red de distribución de contenidos)

- Múltiples servidores con la misma copia de los datos.
- Distribución de archivos multimedia o de cualquier contenido con amplia difusión global.
- La información se propaga a los CDN para que el acceso
 Web o multimedia sea más rápido evitando el acceso directo a los servidores principales.
- □ Estudio de patrones de acceso.
- □ MetaCDN
 - Content Management Systems (CMS)
- □ Proveedores de CDN
 - Akamai: 213 ubicaciones para cubrir principales áreas mundiales.
 - Proveedores gratuitos: Cloudflare, Free CDN, Speedy Mirror, ...

Estadísticas sobre almacenamiento en la nube

- □ Según un estudio publicado en CRN (febrero 2013)
 - http://www.crn.com/slideshows/cloud/240148574/6-revealing-cloud-storagestatistics.htm

Estadísticas (II)

 Beneficios clave de utilizar almacenamiento en nube pública

Estadísticas (III)

Mayor preocupación del almacenamiento en la

□ Factor de importancia en el uso de la nube

63