Architettura dell'elaboratore Esercizi risolti

1 Esercizio

Un hard-disk è costituito da 8 dischi, 2048 cilindri, 1024 settori per traccia, 4096 byte per ciascun settore. Sapendo che vengono utilizzate entrambe le facce di ciascun disco, si indichi la capacità del disco stesso.

Soluzione

La capacità del disco può essere calcolata come segue:

capacità =
$$8 \cdot 2 \cdot 2048 \cdot 1024 \cdot 4096 \ Byte$$

= $2^{3} \cdot 2^{1} \cdot 2^{11} \cdot 2^{10} \cdot 2^{12} \ Byte$
= $2^{37} \ Byte$
= $2^{7} \cdot 2^{30} \ Byte$
= $128 \ GByte$

2 Esercizio

Un calcolatore ha un bus indirizzi (A-Bus) costituito da 24 fili e un bus dati (D-Bus) costituito da 16 fili. Si indichi, in KByte e in MByte, la quantità di memoria indirizzabile dal calcolatore. Supponendo tale memoria sia composta da banchi di memoria di 2MByte, in quale banco di memoria (numerando i banchi a partire da zero) si trova la cella di memoria di indirizzo $37AB00_{16}$

Soluzione

Un A-Bus di 24 permette di indirizzare 2^{24} celle di memoria. Essendo ogni cella costituita da 16 bit, ne segue che la quantità di memoria è uguale a:

$$2^{24} celle \cdot 16 \ bit/cella = 2^{24} \cdot 2 \ Byte = 2^{25} \ Byte$$

da cui

$$2^{25} \ Byte = \frac{2^{25}}{2^{10}} \ KByte = 2^{15} \ KByte = 32768 \ KByte$$

= $\frac{2^{25}}{2^{20}} \ MByte = 2^{5} \ MByte = 32 \ MByte$

Dato che ogni cella è costituita da 16 bit, ovvero 2 Byte, ogni banco contiene un numero di celle uguale a

$$\frac{2 \ MByte}{2 \ Byte} = \frac{2 \cdot 2^{20}}{2} = 2^{20}$$

Ogni indirizzo è quindi logicamente suddivisibile in due parti: i 20 bit meno significativi individueranno la cella all'interno del banco in cui la cella stessa di trova e i bit successivi individueranno il numero del banco:

```
37AB00_{16} = 0011 \ 0111 \ 1010 \ 1011 \ 0000 \ 0000_2
= 0011 . 0111 \ 1010 \ 1011 \ 0000 \ 0000 \cdot \ 2^{20}
```

La cella di indirizzo $37AB00_{16}$ sarà quindi la cella numero 01111010110100000000 del banco numero 0011_2 . Dato che $0011_2 = 3_{10}$, la cella si trova nel banco numero 3 e quindi nel quarto banco.

3 Esercizio

Un calcolatore ha un bus indirizzi (A-Bus) e un bus dati (D-Bus) entrambi con parallelismo pari a 32. Indicare, in MByte e GByte, la quantità di memoria centrale indirizzabile dal calcolatore. Con le stesse ipotesi si supponga quindi che tale memoria sia composta da banchi di memoria di 1 GByte. In quale banco di memoria (numerando i banchi a partire da zero) si trova la cella di memoria di indirizzo $AFFFFFFF_{16}$.

Soluzione

Dato che

$$\begin{array}{rcl} 1 \; MByte & = & 2^{20} \; Byte \\ 1 \; GByte & = & 2^{30} \; Byte \end{array}$$

la quantità di memoria è uguale a:

$$2^{32} celle \cdot 4 \ Byte/cella = 2^{34} \ Byte$$

$$= 2^{14} \ MByte = 16384 \ MByte$$

$$= 2^{4} \ GByte = 16 \ GByte$$

Ogni banco di memoria composto da 1 GByte contiene in realtà 1 $GByte/4 = 2^{28}$ celle. Segue che i primi 28 bit dell'indirizzo determinano la cella all'interno del banco, gli ultimi 4 bit determinano uno tra i 16 banchi. Nel nostro caso gli ultimi 4 bit corrispondono a A_{16} quindi il banco è il numero 10, cioé l'undicesimo.

4 Esercizio

Un video a colori può visualizzare 65536 colori e ha una risoluzione di $1024 \cdot 1024$ pixel. Quali sono le dimensioni minime della memoria video se si vogliono contenere tutti i dati necessari per creare un'intera immagine?

Soluzione

Ogni pixel dello schermo può assumere 65536 diversi colori; occorrono quindi 16 bit $(2^{16} = 65536)$ per memorizzare il colore di ogni punto. Il numero di punti totali dello schermo è uguale a:

$$1024 \cdot 1024 = 2^{10} \cdot 2^{10} = 2^{20}$$

Quindi la capacità minima richiesta sarà data dal numero di punti totali per la memoria necessaria per rappresentare il colore di ogni singolo punto

$$2^{20} \cdot 16 \ bit = 2 \cdot 2^{20} \ Byte = 2 \ MByte$$

5 Esercizio

Un hard-disk è costituito da settori di 2 MByte. Sapendo che il tempo di accesso a un settore (tempo di posizionamento e latenza) è uguale a 10 msec e la velocità di scrittura uguale a 100 MByte/sec, quanto tempo occorre per scrivere sull'hard-disk 100 MByte.

Soluzione

Il numero di settori che occorre scrivere è uguale a

$$\frac{100 \ MByte}{2 \ MByte} = 50 \ settori$$

Nel caso peggiore la scrittura di ciascun settore richiede un accesso al disco, di 10 msec, e un tempo di scrittura dipendente dalla velocità di scrittura. Per ciascun settore il tempo di scrittura è uguale a:

$$T_{scrittura\ 1\ settore}$$
 = $T_{accesso}$ + $T_{scrittura}$
= $T_{accesso}$ + $\frac{\#\ Dati}{V_{trasferimento}}$
= $10\ msec$ + $\frac{1\ MByte}{100\ MByte/sec}$
= $10\ msec$ + $0.01\ sec$
= $10\ msec$ + $10\ msec$
= $20\ msec$

Il tempo di scrittura totale è quindi uguale a:

$$T_{scrittura} = \#settori \cdot T_{scrittura\ 1\ settore}$$

= 50 settori \cdot 20 msec
= 1000 msec
= 1 sec