# DIGITAL DESIGN SCRIBE

05/11/2013

ADARSH KUMAR 120123002

B VIKASH 120123010

ABHIJEET SINGH 120101083

# Continued from Previous Scribe

Q. Given two flip-flops E and F and a four bit binary counter ( $A_4$   $A_3$   $A_2$   $A_1$ ), develop an ASM chart such that if  $A_3$ =0, E is cleared (E=0) and count continues if  $A_3$ =1, E is set to 1 and then if  $A_4$ =0, count continues but if  $A_4$ =1, F set to 1 on next clock so stop counting. Then, if S=0, stay in initial state but if S=1, repeat operation cycle where S is another start signal i.e. if S=1 reset to: A=0, F=0.

To Design the ASM for the given question :-

- 1. Draw the ASM Chart.
- 2. Make the ASM transition table.
- 3. Design the F.S.M for the Control Logic Box.
- 4. List the register transfer operations.
- 5. Put together the above components to design the ASM.



### ASM Transition Table

| Counter |            |    |    | Flip-Flops |   | Conditions |      | State |
|---------|------------|----|----|------------|---|------------|------|-------|
| A4      | <b>A</b> 3 | A2 | A1 | Е          | F |            |      | T1    |
| 0       | 0          | 0  | 0  | 1          | 0 | A3=0       | A4=0 | T1    |
| 0       | 0          | 0  | 1  | 0          | 0 | A3=0       | A4=0 | T1    |
| 0       | 0          | 1  | 0  | 0          | 0 | A3=0       | A4=0 | T1    |
| 0       | 0          | 1  | 1  | 0          | 0 | A3=0       | A4=0 | T1    |
| 0       | 1          | 0  | 0  | 0          | 0 | A3=0       | A4=0 | T1    |
| 0       | 1          | 0  | 1  | 1          | 0 | A3=1       | A4=0 | T1    |
| 0       | 1          | 1  | 0  | 1          | 0 | A3=1       | A4=0 | T1    |
| 0       | 1          | 1  | 1  | 1          | 0 | A3=1       | A4=0 | T1    |
| 1       | 0          | 0  | 0  | 1          | 0 | A3=1       | A4=0 | T1    |
| 1       | 0          | 0  | 1  | 0          | 0 | A3=0       | A4=1 | T1    |
| 1       | 0          | 1  | 0  | 0          | 0 | A3=0       | A4=1 | T1    |
| 1       | 0          | 1  | 1  | 0          | 0 | A3=0       | A4=1 | T1    |
| 1       | 1          | 0  | 0  | 0          | 0 | A3=0       | A4=1 | T1    |
| 1       | 1          | 0  | 1  | 1          | 0 | A3=1       | A4=1 | T1    |
| 1       | 1          | 0  | 1  | 1          | 1 | N/A        |      | T2    |

# State Diagram for Control Logic



# State Table for Control Logic Box

| PS  | S | $A_3A_4$ | NS  | T <sub>0</sub> | T <sub>1</sub> | T <sub>2</sub> |
|-----|---|----------|-----|----------------|----------------|----------------|
|     |   |          |     |                |                |                |
| 0 0 | 0 | хх       | 0 0 | 1              | 0              | 0              |
| 0 1 | х | 10       | 0 1 | 0              | 1              | 0              |
| 10  | X | хх       | 0 0 | 1              | 0              | 0              |
| 0 0 | 1 | хх       | 0 1 | 0              | 1              | 0              |
| 0 1 | X | 0 x      | 0 1 | 0              | 1              | 0              |
| 0 1 | X | 11       | 10  | 0              | 0              | 1              |
|     |   |          |     |                |                |                |

$$T_0$$
=00  
 $T_1$ =01  
 $T_2$ =10

- $D_1 = T_1.A_3.A_4$ ,  $D_0 = T_0 + T_1.\bar{A}_3 + T1.\bar{A}_4$
- The flip flop inputs depend on  $A_3$ ,  $A_4$  and the present state (PS).
- Note that we have used  $T_0$ ,  $T_1$ ,  $T_2$  to represent the states.
- So we need a decoder to get the outputs.
- Thus we use **sequence register and decoder** logic to design the Control Logic Box.

### **CONTROL LOGIC BOX**



## Register Transfer Representation

Mention only about the data operations occurring in a state.

• 
$$T_0$$
: if (S = 1)  
then A = 0, F = 0

- $T_1: A \leftarrow A+1$ if  $(A_3 = 0)$  then  $E \leftarrow 0$ if  $(A_3 = 1)$  then  $E \leftarrow 1$
- $T_2: F \leftarrow 1$

#### Note:

We didn't mention about  $A_4$ , as no data operations are taking place there .

### **ASM** Design

- The input to the control logic box comprises of  $A_3$ ,  $A_4$  from the Binary counter, and control signal (S).
- The output from the control logic box denotes the present state (either  $T_0$  or  $T_1$  or  $T_2$ ).
- The counter increments in state  $T_1$  thus connect  $T_1$  to the increment input (similar to enable) in the binary counter.
- Connect  $T_0$ . S to the clear input of the binary counter since we have to clear the binary counter in state  $T_0$  when S = 1.

- We connect  $T_0$ . S to the K input of F flip flop so that when the control signal (S) is 1 and we are in state  $T_0$ , F has to be reset.
- Connect T<sub>2</sub> to the J input of F flip flop because we have to set
  F in state T<sub>2</sub>.
- Note that  $T_0$  and  $T_2$  are never simultaneously 1 so F is set in state  $T_2$  and Reset in state  $T_0$  if control signal (S) is 1.
- In state T1: if  $A_3$  is 1 we have to set E, hence connect  $T_1.A_3$  to the J input of the E flip flop and if  $A_3$  is 0 we have to reset E thus connect  $T_1.\bar{A}_3$  to the K input of the E flip flop.

### **ASM**

