Attention, il y avait une erreur d'énoncé... L'algorithme de Hopcroft-Karp doit trouver un ensemble maximal de **PLUS COURTS** chemins augmentants pour C, disjoints deux à deux. Cependant, le code doit être facilement modifiable pour prendre cela en compte.

1. On note $|\sigma|$ le nombre d'arête d'un chemin σ . On commence par montrer un lemme :

Lemme

Soit σ un plus court chemin augmentant pour un couplage C et σ' un plus court chemin augmentant pour $C\Delta\sigma$. Alors $|\sigma| \leq |\sigma'|$. De plus, si $|\sigma| = |\sigma'|$, alors σ et σ' n'ont pas de sommet en commun.

Preuve

On pose $C' = (C\Delta\sigma)\Delta\sigma'$. Alors $(S, C\Delta C')$ a des composantes connexes qui sont soit des cycles alternés (entre C et C'), soit des chemins alternés (entre C et C'). Comme |C'| = |C| + 2, il existe deux composantes connexes de $(S, C\Delta C')$ qui sont des chemins augmentants pour C, σ_1 et σ_2 . De plus, $C\Delta C' = \sigma\Delta\sigma'$, et $|\sigma\Delta\sigma'| \ge |C\Delta C'| \ge |\sigma_1| + |\sigma_2| \ge 2|\sigma|$.

Finalement, sachant que $|\sigma\Delta\sigma'| = |\sigma| + |\sigma'| - |\sigma\cap\sigma'|$, on a $|\sigma'| \ge |\sigma| + |\sigma\cap\sigma'|$. On en déduit le résultat voulu.

Notons $E = \{\sigma_1, \ldots, \sigma_k\}$ un ensemble maximal de plus courts chemins augmentants pour C, tous de longueur ℓ , disjoints deux à deux, lors d'un passage dans la boucle while. Notons $C' = C\Delta\sigma_1\Delta\sigma_2\ldots\Delta\sigma_k$ le nouveau couplage obtenu à la fin de la boucle. Soit σ un plus court chemin augmentant pour C', de longueur ℓ' .

- Si σ est disjoint de tous les σ_i , alors ce n'était pas un plus court chemin augmentant pour C, sinon on aurait dû le rajouter à E. On a donc $\ell' > \ell$.
- Sinon, par le lemme, on a à nouveau $\ell' > \ell$.

Remarque : sachant que les chemins augmentants sont de longueur impaire, on a en fait $\ell' > \ell + 1$.

- 2. Après $\sqrt{|S|}$ passages dans la boucle, tous les chemins augmentants sont de longueur impaire. On en déduit que dans $(S, C^*\Delta C)$, il y a au plus $\sqrt{|S|}$ composantes connexes qui sont des chemins augmentants. Or, $|C^*| |C|$ est exactement le nombre de ces composantes connexes.
- 3. Comme le cardinal de C augmente d'au moins 1 après chaque itération, il y a au plus $2\sqrt{|S|}$ passages dans la boucle (car il ne reste qu'au plus $\sqrt{|S|}$ passages après les $\sqrt{|S|}$ premiers, d'après la question précédente). Chaque passage dans la boucle fait deux parcours de graphe plus les augmentations, soit une complexité en %(|S| + |A|). La complexité totale est en $\%(\sqrt{|S|}(|S| + |A|))$.
- 4. On a:

$$f(C\Delta\sigma) = \sum_{\substack{a \in C\Delta\sigma \\ a \in C\setminus\sigma}} f(a)$$

$$= \sum_{\substack{a \in C\setminus\sigma \\ a \in C}} f(a) + \sum_{\substack{a \in \sigma\setminus C \\ a \in C\cap\sigma}} f(a)$$

$$= \sum_{\substack{a \in C \\ a \in C}} f(a) - \sum_{\substack{a \in C\cap\sigma \\ a \in C\cap\sigma}} f(a) + \sum_{\substack{a \in \overline{C}\cap\sigma \\ a \in \overline{C}\cap\sigma}} f(a)$$

- 5. On note C_k le couplage obtenu après k passages dans la boucle. Montrons que C_k est de coût minimal parmi tous les couplages de cardinal k:
 - $-|C_0| = 0$ donc C_0 est bien de coût minimal (c'est le seul couplage vide);
 - supposons le résultat établi pour $k \in \mathbb{N}$ fixé. Soit C' un couplage de cardinal k+1. Alors il existe un couplage C de cardinal k et un chemin σ augmentant pour C_k tel que $C' = C\Delta\sigma$ (il suffit de considérer un chemin augmentant σ pour C_k dans $(S, C'\Delta C_k)$ et de poser $C = C'\Delta\sigma$. On a bien $C\Delta\sigma = C'\Delta\sigma\Delta\sigma = C'$).

On a alors :

- * $f(C_{k+1}) = f(C_k \Delta \sigma^*) = f(C_k) + f_{C_k}(\sigma^*)$, avec σ^* un chemin augmentant pour C_k de coût minimal;
- * $f_{C_k}(\sigma^*) \leq f_{C_k}(\sigma) = f_C(\sigma)$ (car σ est augmentant pour C et pour C_k);

- * $f(C_k) \leqslant f(C)$;
- * finalement, $f(C_{k+1}) = f(C_k) + f_{C_k}(\sigma^*) \le f(C) + f_C(\sigma) = f(C')$.

On conclut par récurrence. On a le résultat attendu pour k le cardinal d'un couplage maximum.

6. Par construction, un chemin augmentant pour C est de la forme $\sigma = (x_1, y_1, ..., x_k, y_k)$, avec $\sigma' = (s, x_1, y_1, ..., x_k, y_k, t)$ un chemin dans G_C . Par définition de g, on a $g(\sigma') = f_C(\sigma)$. Un chemin augmentant de coût minimal pour C est exactement un chemin de poids minimal de s à t dans G_C , privé de ses extrémités.