Obliczenia naukowe Lista 4

Szymon Janiak

December 2, 2023

Zadanie 1

Opis problemu

Napisać funkcję obliczającą ilorazy różnicowe dla podanych węzłów oraz wartości danej funkcji w tych węzłach.

Dane wejściowe

- x wektor długości n+1 zawierający węzły x_0,\ldots,x_n
- f wektor długości n+1 zawierający wartości interpolowanej funkcji w węzłach $f(x_0), \ldots, f(x_n)$

Dane wyjściowe

 \bullet fx — wektor długości n+1 zawierający obliczone ilorazy różnicowe

Opis użytego algorytmu

Zadanie 2

Opis problemu

Napisać funkcję obliczającą wartość wielomianu interpolacyjnego stopnia n w postaci Newtona $N_n(x)$ w punkcie x = t za pomocą algorytmu uogólnionego Hornera w czasie O(n).

Dane wejściowe

- $\bullet\,$ x wektor długości n+1 zawierający węzły x_0,\ldots,x_n
- fx wektor długości n+1 zawierający ilorazy różnicowe $f[x_0], \ldots, f[x_0, \ldots, x_n]$
- t punkt, w którym należy obliczyć wartość wielomianu

Dane wyjściowe

• nt — wartość wielomianu w punkcie t

Opis użytego algorytmu

Zadanie 3

Opis problemu

Napisać funkcję obliczającą współczynniki postaci naturalnej wielomianu interpolacyjnego stopnia n w postaci Newtona $N_n(x)$.

Dane wejściowe

- x wektor długości n+1 zawierający węzły x_0, \ldots, x_n
- fx wektor długości n+1 zawierający ilorazy różnicowe $f[x_0], \ldots, f[x_0, \ldots, x_n]$

Dane wyjściowe

• a — wektor długości n+1 zawierający obliczone współczynniki postaci naturalnej $(a_nx^n+a_{n-1}x^{n-1}+\cdots a_1x+a_0)$

Opis użytego algorytmu

Zadanie 5

Przetestować metodę draw_Nnfx na kilku zadanych poniżej funkcjach.

Wyniki

Wnioski

Zadanie 6

Przetestować metodę draw_Nnfx na kilku zadanych poniżej funkcjach.

Wyniki

 $f(x) = \frac{1}{1+x^2} \text{ w przedziale } [-5;5] \text{ dla } n = 5, 10, 15$

Wnioski