# **Tugas 4 PML**

Angga Fathan Rofiqy 30 November, 2023



DEPARTEMEN STATISTIKA DAN SAINS DATA
FAKULTAS ILMU PENGETAHUAN ALAM
IPB UNIVERSITY
2023

# 1.1. Daftar Isi

## 2. Soal no 1

Sebuah studi tentang kelarutan dua persiapan enzim yang paling umum dilakukan. **Tujuan** dari penelitian ini adalah untuk menentukan efek jenis kapsul dan cairan biologis pada waktu yang diperlukan agar kapsul larut. Dua cairan biologis, lambung, dan duodenum, dan dua jenis kapsul, A dan B, digunakan dalam penelitian ini. Empat sampel identik dari persiapan diperoleh. Dua dipilih secara acak untuk enkapsulasi dalam kapsul tipe A; Yang lain dienkapsulasi dalam tipe B. Salah satu dari masing -masing jenis kapsul kemudian dipilih secara acak dan dilarutkan dalam jus lambung; Yang lain dilarutkan dalam jus duodenum. Data yang diperoleh dengan beberapa kali pengulangan:

|                     |   | Fluid Type<br>(Factor I) |                   |  |
|---------------------|---|--------------------------|-------------------|--|
|                     |   | Gastric                  | Duodenal          |  |
| Capsule             | A | 39 49 63<br>45 50        | 31 36 38<br>33 42 |  |
| Type<br>(Factor II) | В | 47 39 41<br>43 36        | 44 47 42<br>41 45 |  |

## 2.1. Point (a)

Ujilah hipotesis  $H_0: \tau_1 = \tau_2$  dan  $H_0: \beta_1 = \beta_2$  pada taraf nyata 5%

## 2.1.1. Hipotesis

## Faktor 1: Cairan biologis

 $H_0$ : Faktor cairan biologis tidak berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut

 $H_1$ : Faktor cairan biologis berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut

## Faktor 2: Jenis kapsul

 $H_0$ : Faktor jenis kapsul tidak berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut

 $H_1$ : Faktor jenis kapsul berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut

## Faktor 3: Faktor interaksi cairan biologis dan jenis kapsul

 $H_0$ : Faktor interaksi antara cairan biologis dan jenis kapsul tidak berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut

 $H_1$ : Faktor interaksi antara cairan biologis dan jenis kapsul berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut

#### Hasil dari R

| Capsule | Fluid    | y  |
|---------|----------|----|
| A       | Gastric  | 39 |
| A       | Gastric  | 49 |
| A       | Gastric  | 63 |
| A       | Gastric  | 45 |
| A       | Gastric  | 50 |
| A       | Duodenal | 47 |
| A       | Duodenal | 39 |
| A       | Duodenal | 41 |
| A       | Duodenal | 43 |
| A       | Duodenal | 36 |

## 2.1.2. Tabel ANOVA

#### Hasil dari R

| SK                                   | db | JK       | KT       | F.hitung     |
|--------------------------------------|----|----------|----------|--------------|
| Regresi Model Penuh                  | 4  | 36662.60 | 9165.65  | NA           |
| Nilai Tengah                         | 1  | 36210.05 | 36210.05 | NA           |
| Model Hipotesis Tau (cairan bilogis) | 1  | 140.45   | 140.45   | 4.697324415  |
| Model Hipotesis Beta (jenis kapsul)  | 1  | 0.05     | 0.05     | 0.001672241  |
| Model Hipotesis Tau Beta             | 1  | 312.05   | 312.05   | 10.436454849 |

| SK    | db | JK       | KT      | F.hitung |
|-------|----|----------|---------|----------|
| Galat | 16 | 478.40   | 29.90   | NA       |
| Total | 20 | 37141.00 | 1857.05 | NA       |

## 2.1.3. Membandingkan F-hitung dengan F-tabel

| Sumber                 | F.hitung     | F.tabel  | Keputusan    |
|------------------------|--------------|----------|--------------|
| Faktor cairan biologis | 4.697324415  | 4.493998 | Tolak H0     |
| Faktor Kapsul          | 0.001672241  | 4.493998 | Tak Tolak H0 |
| Faktor interaksi       | 10.436454849 | 4.493998 | Tolak H0     |

## 2.1.4. Kesimpulan

- Faktor 1 (cairan biologis) berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut pada taraf nyata 5%
- Faktor 2 (jenis kapsul) tidak berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut pada taraf nyata 5%
- Faktor interaksi antara cairan biologis dengan jenis kapsul berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut pada taraf nyata 5%.

## 2.2. Point(b)

Ujilah interaksi antara Faktor 1 dan 2 menggunakan metode  ${\it matriks}$  kebalikan umum pada taraf nyata 5%

## 2.2.1. Hipotesis

$$H_0: ((\tau\beta)_{11} - (\tau\beta)_{12}) - ((\tau\beta)_{21} - (\tau\beta)_{22}) = 0$$
  
$$H_1: ((\tau\beta)_{11} - (\tau\beta)_{12}) - ((\tau\beta)_{21} - (\tau\beta)_{22}) \neq 0$$

## 2.2.2. Penyelesaian

## Hasil dari R

```
## Vektor y :
##
          [,1]
##
    [1,]
            39
            49
##
    [2,]
##
            63
    [3,]
##
            45
    [4,]
##
            50
    [5,]
##
            47
    [6,]
##
    [7,]
            39
    [8,]
            41
##
##
   [9,]
            43
            36
## [10,]
```

```
## [11,]
             31
## [12,]
             36
## [13,]
             38
## [14,]
             33
## [15,]
             42
## [16,]
             44
## [17,]
             47
             42
## [18,]
## [19,]
             41
             45
## [20,]
##
##
## Matriks X :
           [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
    [1,]
##
              1
                     1
                           0
                                 1
                                       0
                                             1
                                                   0
##
    [2,]
              1
                     1
                           0
                                 1
                                       0
                                             1
                                                   0
                                                          0
                                                                0
                                       0
                                                   0
                                                                0
##
    [3,]
              1
                     1
                           0
                                 1
                                             1
                                                          0
##
    [4,]
                     1
                           0
                                 1
                                       0
                                             1
                                                   0
                                                          0
                                                                0
              1
##
     [5,]
              1
                     1
                           0
                                 1
                                       0
                                             1
                                                   0
                                                          0
                                                                0
                                       1
##
                     1
                           0
                                 0
                                                   1
                                                          0
                                                                0
              1
                                             0
    [6,]
##
    [7,]
                           0
                                 0
                                       1
                                                   1
                                                          0
                                                                0
              1
                     1
                                             0
##
                     1
                           0
                                 0
                                       1
                                                   1
                                                          0
                                                                0
     [8,]
              1
                                             0
##
    [9,]
                     1
                           0
                                 0
                                       1
                                             0
                                                   1
                                                          0
                                                                0
              1
## [10,]
              1
                     1
                           0
                                 0
                                       1
                                             0
                                                   1
                                                          0
                                                                0
## [11,]
              1
                     0
                           1
                                 1
                                       0
                                             0
                                                   0
                                                          1
                                                                0
## [12,]
              1
                     0
                           1
                                 1
                                       0
                                             0
                                                   0
                                                          1
                                                                0
## [13,]
              1
                     0
                           1
                                 1
                                       0
                                             0
                                                   0
                                                          1
                                                                0
## [14,]
              1
                     0
                           1
                                 1
                                       0
                                             0
                                                   0
                                                          1
                                                                0
## [15,]
              1
                     0
                           1
                                 1
                                       0
                                             0
                                                   0
                                                          1
                                                                0
## [16,]
                     0
                                       1
                                                                1
              1
                           1
                                 0
                                             0
                                                   0
                                                          0
## [17,]
              1
                     0
                           1
                                 0
                                       1
                                             0
                                                   0
                                                          0
                                                                1
                     0
                                 0
                                       1
                                                   0
                                                          0
                                                                1
## [18,]
              1
                           1
                                             0
## [19,]
              1
                     0
                           1
                                 0
                                       1
                                             0
                                                   0
                                                          0
                                                                1
              1
                     0
                           1
                                 0
                                       1
                                             0
                                                   0
                                                          0
                                                                1
## [20,]
##
##
## X'X :
##
           [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
##
     [1,]
             20
                   10
                         10
                                10
                                      10
                                             5
     [2,]
                                 5
                                       5
                                             5
                                                    5
                                                          0
##
                           0
                                                                0
             10
                   10
                                 5
                                       5
##
     [3,]
             10
                     0
                         10
                                             0
                                                   0
                                                          5
                                                                5
                     5
                                                          5
##
                           5
                                       0
                                             5
                                                   0
                                                                0
             10
                                10
     [4,]
                     5
                           5
                                                   5
                                                                5
##
     [5,]
             10
                                 0
                                      10
                                             0
                                                          0
                     5
                           0
                                 5
                                             5
                                                   0
                                                                0
##
     [6,]
              5
                                       0
                                                          0
##
              5
                     5
                           0
                                 0
                                       5
                                                   5
                                                          0
                                                                0
    [7,]
                                             0
##
    [8,]
              5
                     0
                           5
                                 5
                                       0
                                             0
                                                   0
                                                          5
                                                                0
                           5
                                       5
                                                                5
    [9,]
              5
                     0
                                 0
                                                   0
                                                          0
##
                                             0
```

```
##
##
## X'y :
##
          [,1]
##
    [1,]
          851
##
    [2,]
          452
##
    [3,]
          399
##
    [4,]
          426
##
    [5,]
          425
##
          246
    [6,]
##
    [7,]
          206
##
   [8,]
          180
##
   [9,]
          219
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
##
## (X'X)^c :
##
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
##
    [1,]
                 0
                      0
                            0
                                 0
                                       0
           0
##
    [2,]
            0
                 0
                       0
                            0
                                 0
                                       0
                                            0
                                                  0
                                                       0
##
                                                       0
    [3,]
            0
                 0
                       0
                            0
                                 0
                                       0
                                            0
                                                  0
##
                            0
                                 0
                                                       0
    [4,]
           0
                 0
                      0
                                       0
                                            0
                                                  0
##
           0
                 0
                      0
                            0
                                 0
                                       0
                                                  0
                                                       0
    [5,]
##
           0
                 0
                      0
                            0
                                 0
                                    1/5
                                                  0
                                                       0
    [6,]
                                            0
##
    [7,]
           0
                 0
                      0
                            0
                                 0
                                       0
                                          1/5
                                                  0
                                                       0
                      0
                                               1/5
##
           0
                 0
                            0
                                 0
                                       0
                                                       0
    [8,]
                                            0
   [9,]
           0
                 0
                      0
                            0
                                 0
                                       0
                                            0
                                                 0
##
                                                    1/5
##
## b :
##
          [,1]
##
    [1,]
          0.0
##
    [2,]
          0.0
##
    [3,]
          0.0
##
          0.0
    [4,]
##
    [5,]
          0.0
##
    [6,] 49.2
##
    [7,] 41.2
##
   [8,] 36.0
## [9,] 43.8
## SSres : 478.4
```

Keputusan :  $F_{hit} = 0.6523 < F_{tabel} = 161.45$  maka tak tolak  $H_0$ 

## 2.2.3. Kesimpulan

Tak tolak  $H_0$  (terima  $H_0$ ). Artinya, faktor interaksi antara cairan biologis dan jenis kapsul tidak berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut pada taraf nyata 5%.

## 2.3. Point (c)

Ujilah interaksi antara Faktor 1 dan 2 menggunakan metode reparameterisasi pada taraf nyata 5%

## 2.3.1. Hipotesis

$$H_0: (\tau\beta)_{ij}^* = 0$$
$$H_1: (\tau\beta)_{ij}^* \neq 0$$

## 2.3.2. Penyelesaian

$$JK_{regresi(penuh)} = \sum_{i=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{y_{ij}}{n} = 36662,6$$

$$JK_{regresi(residual)} = \sum_{i=1}^{2} \frac{y_{i..}}{bn} + \sum_{i=1}^{2} \frac{y_{ij}}{an} + \sum_{i=1}^{2} \frac{y_{ij}}{abn} = 36350,55$$

$$JK_{regresi(hipotesis)} = JK_{regresi(penuh)} - JK_{regresi(residual)} = 36662,6 - 36350,5 = 312,05$$

$$s^{2} = \frac{JK_{residual}}{abn - ab} = \frac{\sum_{i=1}^{20} y_{ijk}^{2} / JK_{regresi(penuh)}}{20 - 4} = 29,9$$

$$F_{hitung} = \frac{JK_{regresi(hipotesis)} / (a - 1)(b - 1)}{s^{2}} = 10,436$$

Titik kritis :  $F_{(a-1)(b-1),\alpha bn-ab} = F_{(1,16)0,05} = 4,494$ 

Karena  $F_{hittung} = 10,436 > F_{tabel} = 4,494$  maka tolak  $H_0$ .

Ini sesuai dengan tabel sebelumnya.

| SK                                   | db | JK       | KT       | F.hitung     |
|--------------------------------------|----|----------|----------|--------------|
| Regresi Model Penuh                  | 4  | 36662.60 | 9165.65  | NA           |
| Nilai Tengah                         | 1  | 36210.05 | 36210.05 | NA           |
| Model Hipotesis Tau (cairan bilogis) | 1  | 140.45   | 140.45   | 4.697324415  |
| Model Hipotesis Beta (jenis kapsul)  | 1  | 0.05     | 0.05     | 0.001672241  |
| Model Hipotesis Tau Beta             | 1  | 312.05   | 312.05   | 10.436454849 |
| Galat                                | 16 | 478.40   | 29.90    | NA           |
| Total                                | 20 | 37141.00 | 1857.05  | NA           |

## 2.3.3. Kesimpulan

Tolak  $H_0$ . Artinya, faktor interaksi antara cairan biologis dan jenis kapsul berpengaruh nyata terhadap waktu yang diperlukan agar kapsul larut pada taraf nyata \$5\_%\$.

## 3. Soal no 2

Sebuah studi terkait metode belajar siswa dilakukan dengan perlakuan berupa penerapan 4 metode belajar yang berbeda yaitu konvensional, auditori, kinestetik, dan visual. Sementara respon berupa nilai ujian akhir semester (UAS) dari masing-masing siswa tersebut dan diberikan pula covariate berupa nilai ujian tengah semester (UTS). Berikut adalah datanya.

| Metode | $\mathbf{D}_{\alpha}$ | laiar |
|--------|-----------------------|-------|
| wence  | 50                    | เลเลเ |

| konvensional | У | 60 | 68 | 68 | 67 | 64 | 62 |
|--------------|---|----|----|----|----|----|----|
|              | X | 65 | 65 | 65 | 62 | 65 | 65 |
|              |   |    |    |    |    |    |    |
| kinestetik   | y | 94 | 90 | 96 | 91 | 94 | 90 |
|              | X | 66 | 68 | 64 | 62 | 61 | 69 |
|              |   |    |    |    |    |    |    |
| visual       | у | 89 | 82 | 82 | 85 | 83 | 83 |
|              | X | 64 | 67 | 62 | 60 | 64 | 67 |
|              |   |    |    |    |    |    |    |
| auditori     | у | 79 | 74 | 77 | 76 | 70 | 76 |
|              | X | 60 | 70 | 69 | 67 | 70 | 65 |
|              |   |    |    |    |    |    |    |

## 3.1. Point (a)

Ujilah Hipotesis pengaruh metode belajar terhadap nilai UAS pada taraf nyata 5%

## 3.1.1. Hipotesis

 ${\it H}_{0}$  : Metode belajar tidak berpengaruh nyata terhadap nilai UAS

 $H_1$ : Metode belajar berpengaruh nyata terhadap nilai UAS

3.1.2. Penyelesaian

| Metode               | y  | x          |              |
|----------------------|----|------------|--------------|
| konvensional         | 60 | 65         |              |
| konvensional         | 68 | 65         |              |
| konvensional         | 68 | 65         |              |
| konvensional         | 67 | 62         |              |
| konvensional         | 64 | 62         |              |
| konvensional         | 62 | 65         |              |
| kinestetik           | 94 | 66         |              |
| kinestetik           | 90 | 68         |              |
| kinestetik           | 96 | 64         |              |
| kinestetik           | 91 | 62         |              |
| Sum Sq               | Df | F value    | Pr(>F)       |
| 431.03047            | 1  | 59.536836  | 2.854757e-07 |
| 2542.88466           | 3  | 117.080128 | 1.972966e-12 |
| 34.11184             | 1  | 4.711758   | 4.283562e-02 |
| 137.55482            | 19 | NA         | NA           |
| ## F.tabel = 3.12735 |    |            |              |

## 3.1.3. Rata-rata perlakuan metode belajar

```
##
           autidori kinestetik konvensional
                                              visual
## ybar
           75.33333
                      92.50000
                                   64.83333 84.00000
## xbar
           66.83333
                      65.00000
                                   64.00000 64.00000
## mu.adj.x 76.15700
                    92.51845
                                   64.41257 83.57924
```

## 3.1.4. Kesimpulan

Diperoleh nilai  $F_{hitung} = 117.0801 > F_{tabel} = 3.12735$  atau  $p-value = 1.973 \times 10^{-12} < 0.05$ . Maka, Tolak  $H_0$ . Artinya Metode belajar berpengaruh nyata terhadap nilai UAS.

#### Point (b) 3.2.

Ujilah Hipotesis pengaruh covariate pada model ANCOVA pada taraf nyata 5%

## 3.2.1. Hipotesis

 $H_0$ : Nilai UTS (covariate) tidak berpengaruh nyata terhadap nilai UAS

 $H_1$ : Nilai UTS (covariate) berpengaruh nyata terhadap nilai UAS

## 3.2.2. Penyelesaian

| Sum Sq     | Df | F value    | Pr(>F)       |
|------------|----|------------|--------------|
| 431.03047  | 1  | 59.536836  | 2.854757e-07 |
| 2542.88466 | 3  | 117.080128 | 1.972966e-12 |
| 34.11184   | 1  | 4.711758   | 4.283562e-02 |
| 137.55482  | 19 | NA         | NA           |

#### ## F.tabel = 3.12735

Diperoleh nilai  $F_{hitung}=4.7118>F_{tabel}=3.12735$  atau p-value=0.04284<0.05. Maka, Tolak  $H_0$ . Artinya Nilai UTS (covariate) berpengaruh nyata terhadap nilai UAS.

## 3.3. Point (c)

Estimasikan rata-rata perlakuan metode belajar

$$\hat{\beta} = \frac{E_{xy}}{E_{xx}} = -0.46518$$

$$\mu_1(\widehat{adj}) = \bar{y_1} - \hat{\beta}(\bar{x_1} - \bar{x_1}) = 64.833 - (-0.46518 * (64.5 - 65.0833)) = 64.562$$

$$\mu_2(\widehat{adj}) = \bar{y_2} - \hat{\beta}(\bar{x_2} - \bar{x_1}) = 92.5 - (-0.46518 * (65 - 65.0833)) = 92.4612$$

$$\mu_3(\widehat{adj}) = \bar{y_3} - \hat{\beta}(\bar{x_3} - \bar{x_1}) = 84 - (-0.46518 * (64 - 65.0833)) = 83.4960$$

$$\mu_4(\widehat{adj}) = \bar{y_4} - \hat{\beta}(\bar{x_4} - \bar{x_1}) = 75.333 - (-0.46518 * (66.833 - 65.0833)) = 76.147$$