Els estadístics de simetria i apuntament donen una mesura de la "forma" d'una distribució de freqüències (només per a dades quantitatives)

Tipus de simetria

Tipus d'apuntament

- Mesura de simetria: coeficient de simetria

$$g_1 = \frac{m_3}{s^3}$$

$$m_3 = \frac{(x_1 - \bar{x})^3 \cdot n_1 + (x_2 - \bar{x})^3 \cdot n_2 + \dots + (x_k - \bar{x})^3 \cdot n_k}{n}$$

s = desviació típica

 \overline{x} = mitjana

Tipus de simetria:

distribució simètrica $g_{_{I}}$ =0

distribució asimètrica per la dreta (asimetria positiva)

$$g_{l} > 0$$

distribució asimètrica per l'esquerra (asimetria negativa)

$$g_{I} < 0$$

– Mesura de simetria:

Relació entre la simetria i les mesures de tendència central:

distribució simètrica

Moda ≈ Mediana ≈ Mitjana

distribució asimètrica per la dreta (asimetria positiva)

Moda < Mediana < Mitjana

distribució asimètrica per l'esquerra (asimetria negativa)

Moda > Mediana > Mitjana

Mesura de simetria: Exemple

Dades brutes

10 valors

Mesura de simetria: Exemple

Taula de freqüències

X_{i}	n_{i}
4	1
5	1
6	1
7	2
8	4
9	1

$$\bar{x} = \frac{4 \cdot 1 + 5 \cdot 1 + \dots + 9 \cdot 1}{10} = 7$$

$$Var \, x = \frac{4^2 \cdot 1 + 5^2 \cdot 1 + \dots + 9^2 \cdot 1}{10} - 7^2 = 2,2$$

$$s = \sqrt{2,2} = 1,48$$

$$m_3 = \frac{(4-7)^3 \cdot 1 + (5-7)^3 \cdot 1 + \dots + (9-7)^3 \cdot 1}{10} = -2,4$$

$$g_1 = \frac{m_3}{s^3} = \frac{-2.4}{1.48^3} = -0.74 < 0 \rightarrow \text{asimetria negativa (per l'esquerra)}$$

Mesura d'apuntament: coeficient d'apuntament (curtosis)

$$g_2 = \frac{m_4}{s^4} - 3$$

$$m_4 = \frac{(x_1 - \overline{x})^4 \cdot n_1 + (x_2 - \overline{x})^4 \cdot n_2 + \dots + (x_k - \overline{x})^4 \cdot n_k}{n}$$

s = desviació típica

 \overline{x} = mitjana

Tipus d'apuntament:

distribució normal (mesocúrtica) $g_{,}$ =0

distribució punxeguda (leptocúrtica) g,>0

distribució aplatada (platicúrtica) g < 0

- Mesura d'apuntament: Exemple

Dades brutes

7	
5	$_{=}$ 7+5+···+8 $_{=}$ 7
9	$\bar{x} = \frac{7+5+\dots+8}{10} = 7$
7	$Var x = \frac{7^2 + 5^2 + \dots + 8^2}{10} - 7^2 = 2,2$
8	
6	$s = \sqrt{2,2} = 1,48$
8	$m_4 = \frac{(7-7)^4 + (5-7)^4 + \dots + (8-7)^4}{10} = 11,8$
8	$m_4 = \frac{10}{10} = 11.8$
4	$a = m_4$ $a = 11.8$ $a = 0.54$ $c = 0$ distribution
8	$g_2 = \frac{m_4}{s^4} - 3 = \frac{11.8}{1.48^4} - 3 = -0.54 < 0 \rightarrow \text{distribució platicúrtica}$

10 valors

- Mesura d'apuntament: Exemple

Taula de freqüències

X_{i}	n_{i}
4	1
5	1
6	1
7	2
8	4
9	1

$$\bar{x} = \frac{4 \cdot 1 + 5 \cdot 1 + \dots + 9 \cdot 1}{10} = 7$$

$$Var x = \frac{4^2 \cdot 1 + 5^2 \cdot 1 + \dots + 9^2 \cdot 1}{10} - 7^2 = 2,2$$

$$s = \sqrt{2,2} = 1,48$$

$$m_4 = \frac{(4 - 7)^4 \cdot 1 + (5 - 7)^4 \cdot 1 + \dots + (9 - 7)^4 \cdot 1}{10} = 11,8$$

$$g_2 = \frac{m_4}{s^4} - 3 = \frac{11.8}{1.48^4} - 3 = -0.54$$
 < 0 distribució platicúrtica