9.27 作业

作业 1

Assignment 2: Let $X_1, \ldots, X_n \sim Exp(\theta)$, i.i.d.. Prove that $T(\mathbf{X}) = X_{(1)}$ is not a sufficient statistic for θ .

$$f(x) = \theta e^{-\theta x} I_{(0,+\infty)}(x)$$
 is the p.d.f of $X_1 \sim Exp(\theta)$,

$$\therefore f_{\mathbf{X},T}(\mathbf{x},t) = \theta^n e^{-\theta \sum_{i=1}^n x_i} \delta_t(x_{(1)}) \prod_{i=1}^n I_{(0,+\infty)}(x_i).$$

$$P(T > t) = P(X_i > t, \forall i) = e^{-n\theta t}, \forall t \ge 0.$$

$$\therefore f_T(t) = n\theta e^{-n\theta t} I_{(0,+\infty)}(t).$$

$$\therefore f_{\mathbf{X}|T}(\mathbf{x}|t) = \frac{f_{\mathbf{X},T}(\mathbf{x},t)}{f_{T}(t)} = \frac{\theta^{n-1}}{n} e^{\theta(nt - \sum_{i=1}^{n} x_i)} \delta_t(x_{(1)}) \prod_{i=1}^{n} I_{(0,+\infty)}(x_i).$$

The conditional distribution is not constant as a function of θ unless n=1. Therefore we conclude that T is not a sufficient statistic.

作业 2

Assignment 3: Let X_1, \ldots, X_n *i.i.d.* with density $f(x; \theta = (a, b)) = c(a, b)\phi(x)I_{(a,b)}(x)$, where $-\infty < a < b < +\infty$ unknown and $\int_a^b \phi(x)dx < +\infty$. Prove that $T = (X_{(1)}, \ldots, X_{(n)})$ is a sufficient statistic for θ .

Hint: Factorization Theorem

42

$$2.42$$
 解: (1) X1, ···, Xn (ind P(λ) , W) $T(X) = \frac{p}{p}X$ $\sim P(n\lambda)$

$$f(\vec{x}|t) = \frac{f(\vec{x},t)}{f_T(t)} = \frac{e^{-n\lambda} \lambda_{in}^{in} x_{in}^{in} x_{in}^{in}}{e^{-n\lambda} (n\lambda)_{in}^{in} x_{in}^{in}} = \frac{(\frac{p}{p}x_{in})!}{n^{\frac{p}{p}x_{in}} \prod_{i=1}^{n} x_{in}^{in}} = \frac{(\frac{p}{p}x_{in})!}{n^{\frac{p}{p}x_$$

2.43 解: (1)
$$\chi_1, \dots, \chi_n$$
 id $Nb(I,p)$, $P(X=x;p)=P(I-p)^{X-I}$, $x \in \mathbb{Z}_+$, $o か $I=\sum_{i=1}^n \chi_i$ ~ $Nb(n,p)$ (九二 成分) , $P(T=t;n,p)=\begin{pmatrix} t^{-1} \\ n & 1 \end{pmatrix}$ $P^n(I-p)^{\frac{1}{2}-N}\chi_i - n$ $I(x_i \in \mathbb{Z}_+, \forall i)$ $I(\sum_{i=1}^n \chi_i = t)$ $I(x_i \in \mathbb{Z}_+, \forall i)$ $I(\sum_{i=1}^n \chi_i = t)$ $I(x_i \in \mathbb{Z}_+, \forall i)$ $I(\sum_{i=1}^n \chi_i = t)$ $I(x_i \in \mathbb{Z}_+, \forall i)$ $I(\sum_{i=1}^n \chi_i = t)$ $I(x_i \in \mathbb{Z}_+, \forall i)$ $I(x_$$

2.46 解: 不足,证明如下:

样本联合 pdf:

$$f(\vec{x};\theta) = \frac{1}{(D^{(i)})^n} e^{-\frac{1}{D^{(i)}}} (\vec{x};\theta)^n = \frac{1}{(D^{(i)})^n} e^{-\frac{1}{D^{(i)}}} (\vec{x};\theta)^n = \frac{1}{(D^{(i)})^n} e^{-\frac{1}{D^{(i)}}} (\vec{x};\theta)^n = \frac{1}{(D^{(i)})^n} e^{-\frac{1}{D^{(i)}}} (\vec{x};\theta)^n = \frac{1}{(D^{(i)})^n} (\vec{x};\theta)^n = \frac{1$$

5

Assignment:. X_1, X_2 独立同分布于 $N(0, \sigma^2)$, 用 Basu 定理证明统计量 $\frac{X_1}{X_2}$ 和 $\sqrt{X_1^2 + X_2^2}$ 独立。

令 $Y_i=X_i/\sigma$,则 Y_1,Y_2 同分布于 $N(0,1).\frac{X_1}{X_2}=\frac{Y_1}{Y_2}$,其分布与 σ^2 无关,故 $\frac{X_1}{X_2}$ 是辅助统计量。

 (X_1, X_2) 的联合 p.d.f. 为

$$f(x_1, x_2 | \sigma^2) = \frac{1}{2\pi\sigma^2} \exp\{-\frac{1}{2\sigma^2}(\sqrt{x_1^2 + x_2^2})^2\}$$

它是指数族,且由因子分解定理知 $\sqrt{X_1^2+X_2^2}$ 是充分统计量。令 $\eta=-\frac{1}{2\sigma^2}$,则自然参数空间 $\Theta^*=(-\infty,0)$ 作为 $\mathbb R$ 的子集有内点,故 $X_1^2+X_2^2$ 是完全统计量,从而 $\sqrt{X_1^2+X_2^2}$ 也是完全统计量。

由 Basu 定理,
$$\sqrt{X_1^2 + X_2^2}$$
 和 $\frac{X_1}{X_2}$ 独立。

48

[Wei] 2.48.

$$f(\mathbf{x}; \theta) = \left(\frac{1}{2\theta}\right)^n \exp\left\{-\frac{\sum_{i=1}^n |x_i|}{\theta}\right\}.$$

令 $\eta := -\frac{1}{\theta} \in \Theta^*$,自然参数空间 $\Theta^* = \mathbf{R}_-$ 在 \mathbf{R} 中有内点. 由因子分解定理及定理 2.8.1 知 $T = \sum_{i=1}^{n} |X_i|$ 是充分完全统计量.

49

[Wei] 2.49.

$$f(\mathbf{x}; \theta) = \exp\left\{n\theta - \sum_{i=1}^{n} x_i\right\} I_{(\theta, +\infty)}(x_{(1)}).$$

由因子分解定理, $T = X_{(1)}$ 是充分统计量.

$$\therefore f_T(t) = ne^{-n(t-\theta)}I_{(\theta,+\infty)}(t)$$

$$\therefore E_{\theta}(\phi(T)) = \int_{\theta}^{+\infty} \phi(t)ne^{-n(t-\theta)}dt,$$

$$\therefore \int_{\theta}^{+\infty} \phi(t)e^{-nt}dt = 0$$

对上式关于 θ 求导, 得 $\phi(\theta)e^{-n\theta}=0$, 故 $\phi\stackrel{a.s.}{=}0$. 由定义知 T 是完全统计量.

51

[Wei] 2.51.

$$f(\mathbf{x}; \theta) = \left(\frac{1}{\theta}\right)^n I\left(\theta < x_{(1)} \le x_{(n)} < 2\theta\right).$$

由因子分解定理知 $T=(X_{(1)},X_{(n)})$ 是充分统计量.。由于 $Y_i:=\frac{X_i}{\theta}\stackrel{i.i.d.}{\sim}U(1,2)$,故 $\frac{X_{(n)}}{X_{(1)}}=\frac{Y_{(n)}}{Y_{(1)}}$ 是辅助统计量. 故 T 不是完全统计量.

[Wei] 2.54. Hint:

From the factorization and that the natural parameter space is

$$\left\{\left(\frac{na}{\sigma_1^2},\frac{nb}{\sigma_2^2},-\frac{1}{2\sigma_1^2},-\frac{1}{2\sigma_2^2}\right)\right\}=\mathbb{R}^2\times\mathbb{R}_-^2$$

(which has inner point in \mathbb{R}^4), $T(\mathbf{X}, \mathbf{Y})$ is **sufficient complete** for $(a, b, \sigma_1^2, \sigma_2^2)$. Rescaling $\tilde{X}_i = \frac{X_i - a}{\sigma_1} \sim N(0, 1)$, $\tilde{Y}_i = \frac{Y_i - b}{\sigma_2} \sim N(0, 1)$ to find that r is **auxiliary**. Derive independence from **Basu** theorem.