Non-Transitive Dice

Consider a set of three dice, A, B and C such that

- die A has sides {2,2,4,4,9,9},
- die B has sides {1,1,6,6,8,8}, and
- die C has sides {3,3,5,5,7,7}.

Then:

- the probability that A rolls a higher number than B is 5/9
- the probability that B rolls a higher number than C is 5/9
- the probability that C rolls a higher number than A is 5/9

Thus A is more likely to roll a higher number than B,

- B is more likely to roll a higher number than C,
- C is more likely to roll a higher number than A.

The relation "is more likely to roll a higher number" is not transitive so we say this is a set of non-transitive dice

Questions to consider

- •Are there any more interesting sets of 3 non-transitive dice with equal probability?
- •What is the largest set of non-transitive dice you can find?
- •What other questions can you answer about non-transitive dice using CP techniques?

Assignment

You should undertake some experiments to find our what the best model and solving method for this non-transitive dice problem is. In particular, you should experiment with some of the techniques discussed in lectures including:

- Eliminating Symmetry
- Adding Implied Constraints
- Reformulating Constraints
- Changing the Variable and Value Ordering
- Preprocessing

Suggested Schedule

Week beginning Monday 26th of January

In the lab I suggest that you try to get a basic model of the problem working.

Week beginning Monday 2nd of February

In the lab I suggest you start considering which problems you are going to try to solve in relation to non-transitive dice. The questions above should give you a starting point in this.

Week beginning Monday 9th of February

In the lab I suggest you try out some of the more advanced techniques such as symmetry and variable and value ordering. In the lecture we will discuss how the assignment will be marked.

Week beginning Monday 16th of February

There are no lectures or labs this week so you can concentrate on finishing your programming and writing the report.

Hand in

This assignment should be done in groups of up to 5 people.

You should write a report of at most 12 pages on the investigations you have undertaken. It should be in the style of the research paper Scheduling a Rehearsal by Barbara M. Smith.

In particular, I would expect your paper to contain lots of tables of the following type.

Problem Instance	Method 1		Method 2	
	Backtracks	Time (in seconds)	Backtracks	Time (in seconds)
Non-transitive dice instance 1				
Non-transitive dice instance 2				
Non-transitive dice instance 3				

This table can be extended down to contain more instances and extended across to provide comparison between more methods.

Please hand in a copy of the report through Blackboard by 5pm on Monday the 23rd of February, all the code should be submitted as an appendix to the report.