Modelo Matematico CBR

P.N. de Lima, D. B. Goldmeyer, L. F. R. Camargo, A. Dresch, D. P. Lacerda, T. Kunrath junho de 2017

Contents

1	Modelo M	Iatemático - Razão Benefício-Custo
	1.1 CBR	- Razão Benefício-Custo
	1.1.1	Fluxo de Caixa em Valor Presente
	1.1.2	Calculo dos Benefícios
		1.1.2.1 Despesas com Absenteísmo
		1.1.2.2 Despesas com Turnover
		1.1.2.3 FAP, RAT e SAT
		1.1.2.3.1 Rat Ajustado
		1.1.2.3.2 FAP
		1.1.2.3.3 Índice de Frequência
		1.1.2.3.4 Índice de gravidade
		1.1.2.3.5 Índice de Custo
	1.1.3	Variáveis Intermediárias
		1.1.3.1 Dias de Absenteísmo
		1.1.3.2 Número de Afastamentos
	1.1.4	Custos
		1.1.4.1 Custos de Implementação

1 Modelo Matemático - Razão Benefício-Custo

Este documento contém uma definição do modelo matemático que suporta a calculadora de custos e benefícios de inciativas em SST.

1.1 CBR - Razão Benefício-Custo

A razão benefício-custo α corresponde à razão do somatório dos custos C_i onde i representa o índice de custos e B_j os benefícios a valor presente.

$$\alpha = \frac{\sum_{i=1}^{I} B_i}{\sum_{j=1}^{J} C_j}$$

1.1.1 Fluxo de Caixa em Valor Presente

Os fluxos de caixa devem ser ajustados a valor presente utilizando-se uma taxa de atratividade θ definida pelo usuário do modelo. Tal taxa será utilizada para trazer os valores de fluxo de caixa a valor presente.

$$B_i(t) = \frac{b_i}{(1+\theta)^t}$$

1.1.2 Calculo dos Benefícios

Em todos os casos, o benefício será calculado a partir da diferença em valores monetários de uma variável financeira sem a iniciativa em SST e com a iniciativa em SST. Exemplificando, o benefício gerado pela redução de absenteísmo B_{abs} será calculado a partir da seguinte equação.

$$B_i = D_{i,ci} - D_{i,si}$$

Exemplificando, se uma empresa, sem uma iniciativa em SST terá 20000 reais em desepesas com absenteísmo, e com esta iniciativa terá 15000, o benefício oriúndo desta iniciativa, apenas relacionado a absenteísmo será:

$$B_{abs} = D_{abs,ci} - D_{abs,si} = (-15000) - (-20000) = 5000$$

1.1.2.1 Despesas com Absenteísmo

As despesas com Absenteísmo D_{abs} serão calculadas com base no número de dias de absenteísmo por problemas relacionados à SST d_{abs} , no número de horas trabalhadas por dia h e no custo em mão de obra médio horário c_{mdo} .

$$D_{abs} = d_{abs} * h * c_{mdo}$$

Dias de Absenteísmo

$$d_{abs} = p_{<15} * f * n_{daf} + p_{falta} * f * n_{falta}$$

1.1.2.2 Despesas com Turnover

As despesas com Turnover D_{tur} serão calculadas com base no número de funcionários afastados por problemas relacionados à SST n_{afast} e no custo médio de substituição dos funcionários c_{sub} .

$$D_{tur} = n_{a fast} * c_{sub}$$

Número de Afastamentos é calculado de acordo com a probabilidade de morte p_{morte} e a probabilidade de afastamento por período menor que 15 dias $p_{>15}$

$$n_{afast} = p_{morte} * f + p_{>15} * f$$

1.1.2.3 FAP, RAT e SAT

As despesas com seguro acidentário do trabalho D_{sat} serão calculadas de acordo com as estimativas do FAP (0,005-0,02) e RAT.

$$D_{sat} = RAT_{ajust} * F$$

1.1.2.3.1 Rat Ajustado

$$RAT_{ajust} = (FAP * RAT)$$

O RAT varia entre 1 e 3, de acordo com o cnae da empresa em questão.

$$RAT \in {1, 2, 3}$$

1.1.2.3.2 FAP

O FAP, por sua vez, é calculado de acordo com os percentis de gravidade p_g , frequência p_f e custo p_c :

$$FAP = (0, 5 * p_q + 0, 35 * p_f + 0, 15 * p_c)0, 02$$

Percentis são calculados de acordo com os índices nos dois anos anteriores.* Os percentis dependem do posicionamento da empresa em relação às demais. Específicamente a função $Pos(I_{t-1},I_{t-2})$ é calculada pela previdência de acordo com os índices de todas as empresas no mesmo subgrupo do CNAE da empresa em questão. Ainda não foi definida uma maneira de estimar esta função.

$$p_t = \frac{100 * (Pos(I_{t-1}, I_{t-2}) - 1)}{n - 1}$$

1.1.2.3.3 Índice de Frequência

$$I_f = \frac{(n_{cats} + n_{b92} + n_{b91} + n_{b93})}{f} * 1000$$

1.1.2.3.4 Índice de gravidade

$$I_g = \frac{(0.1 * n_{b91} + 0.3 * n_{b92} + 0.5 * n_{b93} + 0.1 * n_{b94})}{f} * 1000$$

1.1.2.3.5 Índice de Custo

$$I_c = \frac{c_{beneficiosinss}}{folhamedia} / *1000$$

Custos de Benefícios: Considerar tempo médio de afastamento por tipo de afastamento (b91, b92, b93, b94) e o "ticket médio" de cada um destes benefícios.

1.1.3 Variáveis Intermediárias

1.1.3.1 Dias de Absenteísmo

Os dias de absenteísmo d_{abs} serão estimados de acordo com a probabilidade de absenteísmo ρ_{abs} , número de funcionários f e número de dias úteis do ano d:

$$d_{abs} = \rho_{abs} * f * d$$

1.1.3.2 Número de Afastamentos

O número de afastamentos n_{afast} será estimado de acordo com a probabilidade de afastamento ρ_{afast} e número de funcionários f:

$$n_{afast} = \rho_{afast} * f$$

1.1.4 Custos

1.1.4.1 Custos de Implementação