Math-08 Homework #3 Solutions

Reading

• Text book section 0.3 and 0.4.

Problems

- 1). This problem investigates the meaning of a^b when both a and b are irrational.
 - a). Type $\pi^{\sqrt{2}}$ into your calculator and write down the answer to five decimal places.

$$\pi^{\sqrt{2}} = 5.04750$$

b). Build a table like we have done in class to show how finer and finer approximations of π and $\sqrt{2}$ result in an answer that is arbitrarily close to $\pi^{\sqrt{2}}$. The first column should be approximations of π . The second column should be approximations of $\sqrt{2}$. The third column should be a calculation based on your current approximated values. Do this for up to five decimal places.

π	$\sqrt{2}$	$\pi^{\sqrt{2}}$
3	1	3.00000
3.1	1.4	4.87423
3.14	1.41	5.01962
3.141	1.414	5.04492
3.1415	1.4142	5.04721
3.14159	1.41421	5.04747

2). Simplify:

$$\sqrt{75} - \sqrt{27}$$

$$\sqrt{75} - \sqrt{27} = \sqrt{25 \cdot 3} - \sqrt{9 \cdot 3}$$

$$= \sqrt{25}\sqrt{3} - \sqrt{9}\sqrt{3}$$

$$= 5\sqrt{3} - 3\sqrt{3}$$

$$= (5 - 3)\sqrt{3}$$

$$= 2\sqrt{3}$$

3). Simplify:

$$\frac{\sqrt{\sqrt[3]{x+1}xy^2}}{(x+1)x^{-\frac{3}{2}}y^3}$$

Your answer should have no negative exponents each factor should appear only once. Do not rationalize the denominator. Beware of even roots of even powers!

1

The first step is to replace the radicals with fractional exponents. Since we have nested radicals here, let's do the inner one first:

$$\frac{\sqrt{(x+1)^{\frac{1}{3}}xy^2}}{(x+1)x^{-\frac{3}{2}}y^3}$$

Now, let's do the outer one:

$$\frac{[(x+1)^{\frac{1}{3}}xy^2]^{\frac{1}{2}}}{(x+1)x^{-\frac{3}{2}}y^3}$$

We now need to apply the $\frac{1}{2}$ exponent to all factors in the square brackets:

$$\frac{[(x+1)^{\frac{1}{3}}]^{\frac{1}{2}}x^{\frac{1}{2}}(y^2)^{\frac{1}{2}}}{(x+1)x^{-\frac{3}{2}}y^3}$$

Now reduce by *multiplying* the exponents. Note that alarm bells should should go off for the y term!:

$$\frac{(x+1)^{\frac{1}{3}\cdot\frac{1}{2}}x^{\frac{1}{2}}y^{2\cdot\frac{1}{2}}}{(x+1)x^{-\frac{3}{2}}y^3} = \frac{(x+1)^{\frac{1}{6}}x^{\frac{1}{2}}|y|}{(x+1)x^{-\frac{3}{2}}y^3}$$

Now, combine terms with like bases by subtracting exponenets. Note that we cannot combine the |y| in the numerator with the y^3 in the denominator because the bases are different!:

$$\frac{(x+1)^{\frac{1}{6}-1}x^{\frac{1}{2}+\frac{3}{2}}|y|}{y^3} = \frac{(x+1)^{-\frac{5}{6}}x^2|y|}{y^3}$$

Finally, we get rid of the negative exponent in the numerator by moving the factor to the denominator:

$$\frac{x^2 |y|}{(x+1)^{\frac{5}{6}} y^3}$$

4). On your calculator, store the value 1 into the variable x and the value -1 into the variable y. Then type the original expression (not your simplied one) from problem (3) into your calculator. Note that you will need to type $(x+1)^{\frac{1}{3}}$ instead of $\sqrt[3]{x+1}$. Make sure that you do this all in only 3 steps: 2 store operations and then the expression. Turn in a screenshot showing all 3 steps. (Hint: the answer should be -0.56123...)

(See file on canvas)