Brain Network Analysis with HTC

Barry Van Veen
Electrical and Computer Engineering Department
UW-Madison

- Introduction
 - Brain connectivity
 - Measurement of electrical activity

- Introduction
 - Brain connectivity
 - Measurement of electrical activity
- Network and observation model

- Introduction
 - Brain connectivity
 - Measurement of electrical activity
- Network and observation model
- Computational issues

- Introduction
 - Brain connectivity
 - Measurement of electrical activity
- Network and observation model
- Computational issues
- Examples
 - Spina bifida
 - Perception vs imagination
 - Working memory

- Introduction
 - Brain connectivity
 - Measurement of electrical activity
- Network and observation model
- Computational issues
- Examples
 - Spina bifida
 - Perception vs imagination
 - Working memory
- Summary

Measures of Connectivity

- Anatomical physical connections
- Functional correlated activity
- Effective cause and effect

http://pnl.bwh.harvard.edu/dti.html

Measures of Connectivity

- Anatomical physical connections
- Functional correlated activity
- Effective cause and effect

http://www.wbic.cam.ac.uk/~sa428/

Measures of Connectivity

- Anatomical physical connections
- Functional correlated activity
- Effective cause and effect

http://www.medscape.com/viewarticle/581686_3

Only get to observe a game being played

- Only get to observe a game being played
 - ▶ How can pieces move? <-> anatomical connectivity

activityvillage.co.uk

- Only get to observe a game being played
 - How can pieces move? <-> anatomical connectivity
 - What is good strategy? <-> effective connectivity

activityvillage.co.uk

knowledgerush.com

Electric/Magnetic Imaging

- Electro/magneto-encephalography (EEG/MEG)
 - Excellent temporal resolution
 - Limited spatial resolution

EEG Sensor Net

MEG System

Electric/Magnetic Imaging

- Electro/magneto-encephalography (EEG/MEG)
 - Excellent temporal resolution
 - Limited spatial resolution

MEG System

Signal Origin: Biology - Physics

- Trans-membrane ionic currents of neurons (many) generate electric and magnetic fields that can be detected at the scalp
- Generation of the electromagnetic field (EEG or MEG) governed by basic laws of physics

MVAR Network Model

- ▶ Linear model (time index n)
 - **Example:** two signals, $x_1(n)$ and $x_2(n)$

$$x_1(n) = \sum_{k=1}^{p} a_{11}(k)x_1(n-k) + a_{12}(k)x_2(n-k) + w_1(n)$$

$$x_2(n) = \sum_{k=1}^{p} a_{21}(k)x_1(n-k) + a_{22}(k)x_2(n-k) + w_2(n)$$

 $x_2(n)$

MVAR Network Model

- ▶ Linear model (time index n)
 - **Example:** two signals, $x_1(n)$ and $x_2(n)$

$$x_1(n) = \sum_{k=1}^{p} a_{11}(k)x_1(n-k) + a_{12}(k)x_2(n-k) + w_1(n)$$

$$x_2(n) = \sum_{k=1}^{p} a_{21}(k)x_1(n-k) + a_{22}(k)x_2(n-k) + w_2(n)$$

In general, for *M* signals

$$\mathbf{x}(n) = \sum_{k=1}^{p} \mathbf{A}_k \mathbf{x}(n-k) + \mathbf{w}(n)$$

MVAR model for cortical activity - Biology

$$\mathbf{x}(n) = \sum_{k=1}^{p} \mathbf{A}_k \mathbf{x}(n-k) + \mathbf{w}(n)$$

MVAR model for cortical activity - Biology

$$\left(\mathbf{x}(n) = \sum_{k=1}^{p} \mathbf{A}_k \mathbf{x}(n-k) + \mathbf{w}(n)\right)$$

Scalp measurement of cortical signals - Physics

$$\mathbf{y}(n) = \begin{bmatrix} \mathbf{C}_1 \mathbf{d}_1 & \mathbf{C}_2 \mathbf{d}_2 & \dots & \mathbf{C}_M \mathbf{d}_M \end{bmatrix} \begin{bmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_M(n) \end{bmatrix} + \mathbf{v}(n)$$

Solve for A_k directly from y(n) and C_k

MVAR model for cortical activity - Biology

$$\mathbf{x}(n) = \sum_{k=1}^{p} \mathbf{A}_k \mathbf{x}(n-k) + \mathbf{w}(n)$$

Scalp measurement of cortical signals - Physics

$$\mathbf{y}(n) = \begin{bmatrix} \mathbf{C}_1 \mathbf{d}_1 & \mathbf{C}_2 \mathbf{d}_2 & \dots & \mathbf{C}_M \mathbf{d}_M \end{bmatrix} \begin{bmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_M(n) \end{bmatrix} + \mathbf{v}(n)$$

- Solve for A_k directly from y(n) and C_k
- ▶ Measured data: 256 channels by ~ 15,000 time samples

Maximum Likelihood Estimation wise

▶ Unknown parameters $\Theta = \{A_1, ..., A_p, Q, d_1, ..., d_M, R\}$

Maximum Likelihood Estimationws

- Unknown parameters $\Theta = \{\mathbf{A}_1, \dots, \mathbf{A}_p, \mathbf{Q}, \mathbf{d}_1, \dots, \mathbf{d}_M, \mathbf{R}\}$
- MLE

$$\arg\left\{\max_{\Theta} f(\mathbf{Y};\Theta)\right\}$$

• $f(Y; \Theta)$ is the pdf of the observed data Y as a function of Θ

Maximum Likelihood Estimation,

- ▶ Unknown parameters $\Theta = \{\mathbf{A}_1, ..., \mathbf{A}_p, \mathbf{Q}, \mathbf{d}_1, ..., \mathbf{d}_M, \mathbf{R}\}$
- MLE

$$\arg\left\{\max_{\Theta} f(\mathbf{Y};\Theta)\right\}$$

- $f(Y; \Theta)$ is the pdf of the observed data Y as a function of Θ
- No closed form solution: iterate
 - ▶ E-step: Given Θ , we can estimate X fixed interval smoother
 - M-step: Given X, estimate Θ solve a least squares problem
 - Alternate between estimating Θ and X

Maximum Likelihood Estimation,

- ▶ Unknown parameters $\Theta = \{\mathbf{A}_1, ..., \mathbf{A}_p, \mathbf{Q}, \mathbf{d}_1, ..., \mathbf{d}_M, \mathbf{R}\}$
- MLE

$$\arg\left\{\max_{\Theta} f(\mathbf{Y};\Theta)\right\}$$

- $f(Y; \Theta)$ is the pdf of the observed data Y as a function of Θ
- No closed form solution: iterate
 - \blacktriangleright E-step: Given Θ , we can estimate X fixed interval smoother
 - ▶ M-step: Given X, estimate Θ solve a least squares problem
 - Alternate between estimating Θ and X
- Convergence to local max => use multiple initial conditions

Maximum Likelihood Estimation,

- ▶ Unknown parameters $\Theta = \{\mathbf{A}_1, ..., \mathbf{A}_p, \mathbf{Q}, \mathbf{d}_1, ..., \mathbf{d}_M, \mathbf{R}\}$
- MLE

$$\arg\left\{\max_{\Theta} f(\mathbf{Y};\Theta)\right\}$$

- $f(Y; \Theta)$ is the pdf of the observed data Y as a function of Θ
- No closed form solution: iterate
 - \blacktriangleright E-step: Given Θ , we can estimate X fixed interval smoother
 - ▶ M-step: Given X, estimate Θ solve a least squares problem
 - Alternate between estimating Θ and X
- Convergence to local max => use multiple initial conditions

Subject 1 .

Subject j

• • •

Subject J

Workflow

Workflow

Parallel Jobs: J (subjects) x K (exp cond) x M (init cond) $\sim 20 \times 3 \times 50 = 3000$

Each job takes several CPU hours

- Each job takes several CPU hours
- ▶ 6000 hours = 250 days

- Each job takes several CPU hours
- ▶ 6000 hours = 250 days
- ▶ GPU computing?
 - Custom code
 - Hardware

- Each job takes several CPU hours
- ▶ 6000 hours = 250 days
- ▶ GPU computing?
 - Custom code
 - Hardware
- ▶ HTC
 - ▶ Port MATLAB code to HTC environment
 - Code efficiency vs large number of CPUs
 - 3 day typical turnaround
 - ~ 2,400,000 hours last year (274 years!!!)

HTC Transforms Science

HTC Transforms Science

Without HTC

- Still writing code?
- Limited attempts to get algorithms right...
- Would it ever work?

HTC Transforms Science

Without HTC

- Still writing code?
- Limited attempts to get algorithms right...
- Would it ever work?

With HTC

- Minimal up front investment
- No need to optimize code (factor of 2?)
- Many chances to get algorithms right
- Four major human studies so far
- Demonstrate value of our algorithms

Corpus callosum connects L and R hemispheres

Huble. Eye, brain and vision. (1988)

- Corpus callosum connects L and R hemispheres
- Back portion thin/anomolous in children with spina bifida

vision. (1988)

- Corpus callosum connects L and R hemispheres
- Back portion thin/anomolous in children with spina bifida

Does reduced anatomical connectivity imply reduced

effective connectivity?

Huble. Eye, brain and vision. (1988)

SB vs Control Effective Connectivity wis

SB vs Control Effective Connectivity w

▶ Five controls, five spina bifida

SB vs Control Effective Connectivity,

- Five controls, five spina bifida
- Resting eyes closed MEG ~3 mins @ 45
 Hz sampling frequency

SB vs Control Effective Connectivity

- Five controls, five spina bifida
- Resting eyes closed MEG ~3 mins @ 45
 Hz sampling frequency
- MVAR 4 region model
 - Rostral middle frontal and inferior+superior parietal in each hemisphere
 - ▶ EM based estimates with p = 12

SB vs Control Effective Connectivity

- Five controls, five spina bifida
- Resting eyes closed MEG ~3 mins @ 45
 Hz sampling frequency
- MVAR 4 region model
 - Rostral middle frontal and inferior+superior parietal in each hemisphere
 - ▶ EM based estimates with p = 12

Conditional Granger causality (cGC)

between/within hemispheres

R Rostral Middle Frontal

L Rostral Middle Frontal

L Inf & Sup Parietal Parietal

Frontal

- ▶ Reversal of information flow ?
 - ▶ Watch short video clips ~ 5 mins
 - ▶ Imagine scenes ~ 5 mins

- ▶ Reversal of information flow ?
 - ▶ Watch short video clips ~ 5 mins
 - ▶ Imagine scenes ~ 5 mins
 - ▶ 20 subjects, 5 conditions

- ▶ Reversal of information flow ?
 - ▶ Watch short video clips ~ 5 mins
 - ▶ Imagine scenes ~ 5 mins
 - ▶ 20 subjects, 5 conditions

- ▶ Reversal of information flow?
 - ▶ Watch short video clips ~ 5 mins
 - ▶ Imagine scenes ~ 5 mins
 - ▶ 20 subjects, 5 conditions

Top Down – Bottom Up

- ▶ Reversal of information flow?
 - ▶ Watch short video clips ~ 5 mins
 - ▶ Imagine scenes ~ 5 mins
 - ▶ 20 subjects, 5 conditions

Top Down – Bottom Up

- ▶ Contextual top down control?
- Frequency bands?

- ▶ Contextual top down control?
- Frequency bands?
- ▶ 30 subjects, 3+ tasks

- Contextual top down control?
- Frequency bands?
- ▶ 30 subjects, 3+ tasks

- Contextual top down control?
- Frequency bands?
- ▶ 30 subjects, 3+ tasks

- Contextual top down control?
- Frequency bands?
- ▶ 30 subjects, 3+ tasks

Brain network analysis is of great interest

- Brain network analysis is of great interest
- State-space approach involves iterative algorithms

- Brain network analysis is of great interest
- State-space approach involves iterative algorithms
- High level of parallelism subjects, conditions, initial conditions

- Brain network analysis is of great interest
- State-space approach involves iterative algorithms
- High level of parallelism subjects, conditions, initial conditions
- Interesting scientific conclusions from several studies

- Brain network analysis is of great interest
- State-space approach involves iterative algorithms
- High level of parallelism subjects, conditions, initial conditions
- Interesting scientific conclusions from several studies
- Impossible without high throughput computing

- Brain network analysis is of great interest
- State-space approach involves iterative algorithms
- High level of parallelism subjects, conditions, initial conditions
- Interesting scientific conclusions from several studies
- ▶ Impossible without high throughput computing
- Support of Bill Taylor and the CHTC team