Senior Thesis

Econometric implementation

Kyle Coombs (adapted from work by Marc Bellemare and Keith Head)
Bates College | EC/DCS 456

Table of Contents

- 1. Prologue
- 2. Wrangle data
- 3. Transform variables
- 4. Interpret results

Prologue

Prologue

- Today I'm going to give some tips on how to implement the econometric models you've been working on.
- How do you:
 - 1. Pick a model to start
 - 2. Wrangle the data to work
 - 3. Maybe transform your variables
 - 4. Interpret the results

Keep it simple, smartie

- The first thing to remember is that you don't need to use the most complicated model you can think of.
- Start with the simplest version of things because that is likely the easiest to code
- Most complications are just an extension of the simple model

Example

- I have spoken to several people about using a triple difference model
- This is a great idea, but it is also a more complicated model
- It is a way to check for how a treatment effect differs for two groups
- But it is also a more complicated model
- If you cannot estimate a simple difference in differences model, you will not be able to estimate a triple difference model
- So start with DiD, then move on to 3DiD

Models

- What do you think is going on in the data?
- What is the treatment?
- What is the outcome?
- What are the potential confounders? (Things that might be correlated with the treatment and the outcome)
- Is there selection bias?
- Take a minute, discuss these wiht a partner

Can you do anything about that?

- Do the confounders fixed over time and you have panel data? Fixed effects could help!
- Are there time trends? Time fixed effects could help!
- Both? Diff-in-diff might be applicable
- Does treatment turn at a specific point in the data? A sharp regression discontinuity might be the way to go!
- Can you observe and control for all the confounders? Regression could work

Assumptions

- No method is perfect and they all rely on assumptions
- Spend two minutes with a partner and name those assumptions
- Report back to the group

Wrangling the data

- Most of the time, the data you have is not in the format you need
- I don't just mean that you need to get it into a dataframe or merge with another dataset
- I mean you need to recode variables to work in your model

Difference in difference

- Diff-in-diff relies on a treatment and control group and a before and after treatment period
- If you are looking at a change to the EITC on women's labor supply, then you know treatment effects moms after the reform
- I'll mostly present this today cause many of you are using a form of this

\$\$ y{it} = \alpha_i + \delta_t + \beta \delta_t \times Treated_i + \varepsilon{it} \$\$

Look at the data

Is this data in the right form?

```
od ← causaldata::organ_donations
od %>% head(5)
```

Treatment variable

8 Arizona Q12011 0.209

9 Arizona Q22011 0.226

10 Arizona Q32011 0.250

i 152 more rows

```
od ← od %>%
     mutate(Treated = State = 'California' &
            Quarter %in% c('Q32011','Q42011','Q12012'))
od
## # A tibble: 162 × 5
             Quarter Rate Quarter_Num Treated
     State
                                 <int> <lgl>
##
     <chr>
             <chr>
                     <dbl>
   1 Alaska Q42010 0.75
                                    1 FALSE
   2 Alaska Q12011 0.77
                                    2 FALSE
   3 Alaska Q22011 0.77
                                    3 FALSE
   4 Alaska Q32011 0.78
                                    4 FALSE
   5 Alaska Q42011 0.78
                                    5 FALSE
   6 Alaska Q12012 0.79
                                    6 FALSE
   7 Arizona Q42010 0.263
                                    1 FALSE
```

2 FALSE

3 FALSE

4 FALSE

Doing it in R

111

	(1)
TreatedTRUE	-0.022***
	(0.006)
Num.Obs.	162
R2	0.979
R2 Adj.	0.974
R2 Within	0.009
R2 Within Adj.	0.002
AIC	-711.1
BIC	-609.2
RMSE	0.02

Plot it out!

```
# Treatment variable
od ← od %>% mutate(California = State = 'California')

od %>% group_by(California,Quarter) %>%
    summarise(Rate = mean(Rate,na.rm=TRUE)) %>%
    ungroup() %>%
    ggplot(aes(x = Quarter, y = Rate, color = California)) +
    geom_line()
```

$geom_line()$: Each group consists of only one observation. ## i Do you need to adjust the group aesthetic?

Complex way

Remember parallel trends? Let's check for parallel pre-trends

Effect on Rate

Not perfect

- The pre-trends above are not perfect
- They're short!
- That was a quick example I could get on hand that worked
- Ideally you have tons of pre-periods!

Transform variables

- Sometimes you need to transform your variables to make them work in your model
- For example, if you a variable with a long tail, you might want to take the log
 - o If you regress a log on a log, you also get a percentage change, basically an elasticity
- Alternatively, you may want to normalize your data to make it easier to interpret
 - Subtract the mean and divide by the standard deviation
 - Then the coefficient is the number of standard deviations the outcome changes for a one unit change in the treatment
- Sometimes you need to create a new variable
 - For example, if you have a treatment that is a dummy variable, you might want to create a
 variable that is the interaction of the treatment and a continuous variable
- You can and should do these things
- I'll try to show you live now

Next classes: One-on-ones and Student proposal presentation