A Scalable Clustering Algorithm for Serendipity in Recommender Systems

Pratheeksha Nair Anup Anand Deshmukh Shrisha Rao

International Institute of Information Technology, Bangalore

Pratheeksha.Nair@iiitb.org Deshmukh.Anand@iiitb.org

17 November 2018

Summary

- Introduction
 - High Sparsity
 - Overspecialization
- 2 Algorithm
 - SPKM || clustering
 - SC-CF algorithm
- Second Second
 - Dataset
 - Results
- 4 Conclusion
- 6 References

- Two main challenges faced by Collaborative Filtering (CF) algorithms in Recommender Systems:
 - High Sparsity of data points
 - Problem of overspecialization
- This paper is novel in two fronts and tackles the above two problems by
 - Using a scalable spherical k-means algorithm for addressing high sparsity.
 - Introducing SC-CF(Serendipitous Clustering for CF) that focuses on the overspecialization problem.

- CF makes recommendations based on interactions between users and items.
- Users are typically represented by the items they have interacted with

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	0	3	0	3	0
User 2	4	0	0	2	0
User 3	0	0	3	0	0
User 4	3	0	4	0	3
User 5	4	3	0	4	0

 Each vector corresponds to a user and each value represents the user's rating for that item.

High Sparsity

High Sparsity

• Over 8,000 titles in the U.S. content library and around 130 million streaming subscribers worldwide.

- Over 8,000 titles in the U.S. content library and around 130 million streaming subscribers worldwide.
- Calculating similarities between users or items then becomes difficult!

Overspecialization

- Recommended items are evaluated based on their alignment to a user's rating information.
- Only those items are recommended that are highly similar to items rated highly previously.
- Users live in a filter bubble failing to explore diverse items
- Serendipitous recommendations come into play.

- Spherical k-means(SPKM) clustering uses normalized data points represented on a unit hyper-sphere
- Cosine similarity is used as a similarity/distance measure whose computation for sparse vectors is easier

$$\textit{cosine_sim}(\mathbf{a},\mathbf{b}) = \langle \mathbf{a},\mathbf{b} \rangle = \frac{\mathbf{a}.\mathbf{b}}{|\mathbf{a}|.|\mathbf{b}|}$$

- Spherical k-means(SPKM) clustering uses normalized data points represented on a unit hyper-sphere
- **Cosine similarity** is used as a similarity/distance measure whose computation for sparse vectors is easier

$$\textit{cosine_sim}(\mathbf{a},\mathbf{b}) = \langle \mathbf{a},\mathbf{b} \rangle = \frac{\mathbf{a}.\mathbf{b}}{|\mathbf{a}|.|\mathbf{b}|}$$

Multiply and add

- Choosing k initial cluster centers is important for clustering quality
- Centers should be such that inter-cluster distances are maximized

SPKM ++

- Samples k points based on a probability distribution that maximizes the inter-cluster distances
- The seeding step here runs for k iterations, sampling one point at a time

SPKM ||

- In each iteration, I centers are chosen as opposed to one center in ++ seeding
- Requires only $\mathcal{O}(\log n)$ number of passes through the data where n is the number of data points

- STEP 1: The I centers in every iteration are chosen based on the probability distribution given below (left side)
- STEP 2: The $(I \times r) + 1$ points in U_x are then re-grouped into k clusters (C) using weighted K-Means (right side)

Algorithm

SPKM || clustering

- STEP 1: The I centers in every iteration are chosen based on the probability distribution given below (left side)
- STEP 2: The $(I \times r) + 1$ points in U_x are then re-grouped into k clusters (C) using weighted K-Means (right side)
- 1: while $i \leq \mathcal{O}(\log n)$ do
- 2: $L \leftarrow \text{sample } I \text{ points from } x \in X \text{ each with probability } p_X = \frac{I.d(x,U_X)}{I(U_X)}$
- 3: $U_x \leftarrow U_x \cup L$
- 4: $i \leftarrow i + 1$
- 5: end while

- 1: $\mathbf{C} \leftarrow \text{sample a single } \mathbf{c} \in U_{\mathbf{x}} \text{ with probability } w_{\mathbf{x}} / \sum_{\mathbf{c}' \in U_{\mathbf{x}}} w_{\mathbf{c}'}$
- 2: **for** i = 2, ... k **do**
- 3: Sample $\mathbf{c} \in U_X$ with probability $\frac{w_X(\mathbf{c}, \mathbf{C})}{\sum_{\mathbf{c}' \in U_X} w_{\mathbf{c}'}(\mathbf{c}', \mathbf{C})}$ 4: $\mathbf{C} \leftarrow \mathbf{C} \cup \{\mathbf{c}\}$
- 5: end for
- 6: return C

Algorithm SC-CF

- Goal is to give *unexpected*, *diverse*, yet *relevant* recommendations.
- Apart from regular clusters, data points are assigned to serendipitous clusters.
- Both serendipitous and conventional clusters are together considered as the "neighbourhood" in the prediction ,

$$r_{uj} = \mu_u + \frac{\sum_{v \in N} \langle u, v \rangle . (r_{vj} - \mu_u)}{\sum_{v \in N} |\langle u, v \rangle|}$$

 r_{uj} is the predicted rating for item j by user u μ_u is the average of all ratings given by user u N is the neighbourhood of users taken into consideration

Algorithm SC-CF

- Apart from user-item interactions, a user profile is generated consisting of a genre profile and a cast profile.
- For each cluster, a *concept* vector is obtained data point closest to the cluster center (mean of all points in the cluster).
- This concept vector will have an associated genre and cast profile.
- The serendipitous cluster a user belongs to is constituted of:
 - Top p concept vectors whose genre profiles are least similar to that of the user.
 - Top q concept vectors whose cast profiles are most similar to that of the user.

Algorithm SC-CF

Experimental Analysis Dataset

• Real-world dataset description

Data Set	# documents	# words in the	max # words in	
		vocab (dimension)	a document (sparsity)	
KOS blogs	3430	6906	457	
ENRON emails	7000	28102	2021	

- Serendipity 2018 dataset
 - 5000 users, 49000 movies
 - Contains users' responses/ratings to serendipitous recommendations

Results

- ullet Table shows the relative improvement in the SPKM || with respect to the cost of SPKM ++
- \bullet Graph shows the comparison between the seeding time of SPKM || and SPKM ++

k	SPKM++	SPKM (Clustering cost)			
		I = k/2	I = k	I = 2k	
20	0.00%	3.33%	-6.79%	3.3%	
50	0.00%	0.04%	0.08%	-0.12%	
100	0.00%	0.11%	0.19%	0.08%	
150	0.00%	0.06%	0.09%	-0.03%	
200	0.00%	0.12%	0.08%	0.04%	

Results

• The algorithms must consider only those users who have a positive correlation with the target user – The neighbourhood selection!

Results

 The algorithms must consider only those users who have a positive correlation with the target user – The neighbourhood selection!

• The best performing algorithm, SC-CF (I = 2k and k = 150) achieves 0.757 RMSE and 0.576 of MAE.

Results

• The SC-CF (I=2k and k=150) reduces the average prediction error by 31% compared to the other clustering methods. technique.

Conclusion

- Apart from user-item interaction profile similarity, diversity and unexpectedness are also important.
- SPKM || gives improved clustering quality with lower number of rounds compared to the widely used ++ seeding technique.
- SC-CF includes serendipitous clusters in the neighbourhood while making predictions and consistently outperforms the popular existing methods by reducing the average prediction error by 9%.
- Results provide empirical evidence that recommendations generated by SC-CF account for diversity and unexpectedness, and thus bear an intrinsic added value.
- Collaborative filtering algorithms can be enriched with serendipity in recommendations.

References

Dhillon, Inderjit S and Modha, Dharmendra S, (2001)

Concept decompositions for large sparse text data using clustering Machine learning Volume 42, 143 - 175, Springer

Arthur, David and Vassilvitskii, Sergei (2007)

k-means++: The advantages of careful seeding

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms 1027–1035, Society for Industrial and Applied Mathematics

Endo, Yasunori and Miyamoto, Sadaaki (2015)

Spherical k-means++ clustering

Modeling Decisions for Artificial Intelligence 103 - 114, Springer

Bahmani, Bahman and Moseley, Benjamin and Vattani, Andrea and Kumar, Ravi and Vassilvitskii, Sergei (2012)

Scalable k-means++

Proceedings of the VLDB Endowment 5, 7, 622 - 633, VLDB Endowment

Questions/Comments?

Thank You