Quiz time: 17:40-18:15

Please also turn in the early feed back form (ignore the back)

My name is Oscar Chang

Hypothesis Testing

Lecture 5

NRE 538

Outline

- Null VS Alternative Hypothesis
- One- VS two Tail Hypothesis Test
- Type I VS Type II Error
- Hands-on example

What is a "Hypothesis"?

What is a "Hypothesis"?

- An assumption about a parameter

Null VS Alternative Hypothesis

Null VS Alternative Hypothesis

Null Hypothesis (H_0) :

- The belief that the parameter is ≥, =, or ≤ than a specific value
- A general statement or default position that there is no relationship between two measured phenomena, or no association among groups

Null VS Alternative Hypothesis

Null Hypothesis (H_0) :

- The belief that the parameter is ≥, =, or ≤ than a specific value
- A general statement or default position that there is no relationship between two measured phenomena, or no association among groups

Alternative Hypothesis (H_a)

- The opposite of H_0

Null VS Alternative Hypothesis...examples

```
Null Hypothesis (H_0):
```

My average 10K running time (50 min; μ_1) is not different from 55 min 52s (μ_2). OR more statistically,

```
\mu_1 = \mu_2
, where \mu_1 mean of population 1 and \mu_2 mean of population 2
```

Null VS Alternative Hypothesis...examples

```
Null Hypothesis (H_0): My average 10K running time (50 min; \mu_1) is not different from 55 min 52 s (\mu_2). OR more statistically, \mu_1 = \mu_2, where \mu_1 mean of population 1 and \mu_2 mean of population 2
```

Alternative Hypothesis (H_a) :

My average 10K running time (50 min; μ_1) is different from 55 min 52s (μ_2). OR more statistically,

```
\mu_1 \neq \mu_2
, where \mu_1 mean of population 1 and \mu_2 mean of population 2
```

Two Tail Hypothesis Test

 H_0 : $\mu_1 = \mu_2$

 $H_a: \mu_1 \neq \mu_2$

Null VS Alternative Hypothesis...examples

```
Null Hypothesis (H_0):
```

My average 10K running time (50 min; μ_1) is shorter than 55 min 52 s (μ_2).

OR more statistically,

$$\mu_1 \le \mu_2$$

, where μ_1 mean of population 1 and μ_2 mean of population 2

Alternative Hypothesis (H_a) :

My average 10K running time (50 min; μ_1) is longer than 55 min 52s (μ_2).

OR more statistically,

$$\mu_1 > \mu_2$$

, where μ_1 mean of population 1 and μ_2 mean of population 2

One Tail Hypothesis Test

 $H_a: \mu_1 > \mu_2$

		H_0 is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
$\begin{array}{c c} \text{Judgement of} & H_0 \\ \hline & \text{Fail to reject} \end{array}$		True Negative	Type II Error (probability=β)

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

		H_0 is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H_0	Fail to reject	True Negative	Type II Error (probability=β)

What if μ_2 is really one of my records?

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

What if μ_2 is really one of my records?

=> Type I Error

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

What if μ_2 is really one of my records?

=> Orange area

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

 $H_a: \mu_1 \neq \mu_2$

What if μ_2 is actually one of Usain Bolt's records?

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

What if μ_2 is actually one of Usain Bolt's record?

=> Type II Error

		<i>H</i> ₀ is	
		True	False
ludge as and of 11	Reject	Type I Error (probability=α)	True positive
Judgement of H ₀	Fail to reject	True Negative	Type II Error (probability=β)

What is the probability of committing Type II Error?

=> 1 - Orange area

		H_0 is	
		True	False
ludgement of H	Reject	Type I Error (probability=α)	True positive
$\begin{array}{c c} \text{Judgement of} & H_0 \\ \hline & \text{Fail to reject} \end{array}$		True Negative	Type II Error (probability=β)

- There is trade-off between α and β
- α is typically set to be 0.1-0.01 (1% 10%)
 - If α is set to be 0.05, the critical value to reject the H_0 is the 95% CI.

Hands-on exercise

Am I really faster than average US men?

Null Hypothesis (H_0) :

```
\mu_1 = \mu_2
, \mu_1 = 2990.641 (s) and \mu_2 = 3352 (s)
Alternative Hypothesis (H_a):
\mu_1 \neq \mu_2
*Set \alpha to be 0.05.
```

Should we Reject or NOT Reject the null hypothesis (H_0) ? What is the probability of committing Type I error?