

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes

Sharon Yixuan Li University of Wisconsin-Madison

March 2, 2021

Today's outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes

Part I: K-nearest neighbors

Example 1: Predict whether a user likes a song or not

Example 1: Predict whether a user likes a song or not

Example 1: Predict whether a user likes a song or not 1-NN

- DisLike
- Like

Example 1: Predict whether a user likes a song or not 1-NN

- DisLike
- Like

K-nearest neighbors for classification

- Input: Training data $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \dots, (\mathbf{x}_n,y_n)$ Distance function $d(\mathbf{x}_i,\mathbf{x}_i)$; number of neighbors k; test data \mathbf{x}^*
- 1. Find the k training instances $\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under $d(\mathbf{x}_i, \mathbf{x}_j)$
- 2. Output y^* as the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

Example 2: 1-NN for little green man

- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height

The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

K-NN for regression

What if we want regression?

- Instead of majority vote, take average of neighbors' labels
 - Given test point \mathbf{x}^* , find its k nearest neighbors $\mathbf{X}_{i_1},\ldots,\mathbf{X}_{i_k}$
 - Output the predicted label $\frac{1}{k}(y_{i_1} + \ldots + y_{i_k})$

How can we determine distance?

suppose all features are discrete

 Hamming distance: count the number of features for which two instances differ

How can we determine distance?

suppose all features are discrete

 Hamming distance: count the number of features for which two instances differ

suppose all features are continuous

• Euclidean distance: sum of squared differences

$$d(x_i, x_j) = \sum_f (x_{if} - x_{jf})^2$$
, where x_{if} is the f -th feature

Manhattan distance:

$$d(x_i, x_j) = \sum_f |x_{if} - x_{jf}|$$
, where x_{if} is the f -th feature

How to pick the number of neighbors

- Split data into training and tuning sets (validation sets)
- Classify tuning set with different k
- Pick k that produces least tuning-set error

Effect of k

What's the predicted label for the black dot using 1 neighbor? 3 neighbors?

Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

Learning algorithm

Classifier \hat{f}

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption) select \hat{f} from a pool of models \mathcal{F} that **minimizes** label disagreement of the training data

How to select $\hat{f} \in \mathcal{F}$?

- Maximum likelihood (best fits the data)
- Maximum a posteriori (best fits the data but incorporates prior assumptions)
- Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate $\theta = p(\text{Head})$?

Intuitively, $\theta = 4/10 = 0.4$

How good is θ ?

It depends on how likely it is to generate the observed data

$$\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$$

Likelihood function
$$L(\theta) = \prod_i p(\mathbf{x}_i \mid \theta)$$

Under i.i.d assumption

Interpretation: How **probable** (or how likely) is the data given the probabilistic model p_{θ} ?

How good is θ ?

It depends on how likely it is to generate the observed data $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$

Likelihood function $L(\theta) = \Pi_i p(\mathbf{x}_i \mid \theta)$

Log-likelihood function

$$L_D(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$$
$$= \theta^{N_H} \cdot (1 - \theta)^{N_T}$$

Log-likelihood function

$$\ell(\theta) = \log L(\theta)$$

$$= N_H \log \theta + N_T \log(1 - \theta)$$

Maximum Likelihood Estimation (MLE)

Find optimal θ^* to maximize the likelihood function (and log-likelihood)

$$\theta^* = \arg \max N_H \log \theta + N_T \log(1 - \theta)$$

$$\frac{\partial l(\theta)}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} = 0 \quad \Longrightarrow \quad \theta^* = \frac{N_H}{N_T}$$

which confirms your intuition!

Maximum Likelihood Estimation: Gaussian Model

Fitting a model to heights of females

Observed some data (in inches): 60, 62, 53, 58,... $\in \mathbb{R}$

$$\{x_1, x_2, \ldots, x_n\}$$

Model class: Gaussian model

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

So, what's the MLE for the given data?

Estimating the parameters in a Gaussian

Mean

$$\mu = \mathbf{E}[x] \text{ hence } \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance

$$\sigma^2 = \mathbf{E} \left[(x - \mu)^2 \right] \text{ hence } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Why?

Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Fitting parameters is maximizing likelihood w.r.t μ , σ^2 (maximize likelihood that data was generated by model)

MLE

$$\underset{\mu, \sigma}{\operatorname{arg\,max}} \prod_{i=1}^{n} p(x_i; \mu, \sigma^2)$$

Maximum Likelihood

Estimate parameters by finding ones that explain the data

$$\underset{\mu, \sigma}{\operatorname{arg\,max}} \prod_{i=1}^{n} p(x_i; \mu, \sigma^2) = \underset{\mu, \sigma}{\operatorname{arg\,min}} - \log \prod_{i=1}^{n} p(x_i; \mu, \sigma^2)$$

• Decompose likelihood

$$\sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - \mu)^2 = \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Minimized for
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Maximum Likelihood

Estimating the variance

$$\frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Take derivatives with respect to it

$$\partial_{\sigma^2}[\cdot] = \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Longrightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Classification via MLE

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg\max_{y} p(y \mid \mathbf{x})$$
 (Posterior) (Prediction)

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg\max_{y} p(y \mid \mathbf{x}) \quad \text{(Posterior)}$$

$$(Prediction)$$

$$= \arg\max_{y} \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad \text{(by Bayes' rule)}$$

$$= \arg\max_{y} p(\mathbf{x} \mid y) p(y)$$

Using labelled training data, learn class priors and class conditionals

Part II: Naïve Bayes

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

• Step 1: Convert the data to a frequency table of Weather and Play

Weather	Play	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Sunny	Yes	
Sunny	Yes	
Overcast	Yes	
Rainy	No	
Rainy	No	
Sunny	Yes	
Rainy	Yes	
Sunny	No	
Overcast	Yes	
Overcast	Yes	
Rainy	No	

Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$p(Play = Yes) = 0.64$$

$$p(|Yes| Yes) = 3/9 = 0.33$$

Step 3: Based on the likelihoods and priors, calculate posteriors

Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes)
=P( Yes)*P(Yes)/P( Yes)
 =0.33*0.64/0.36
 =0.6
P(No
=P( No)*P(No)/P( )
 =0.4*0.36/0.36
 =0.4
```

P(Yes| ***) > P(No| ***) go outside and play!

= arg max $p(\mathbf{x} | y)p(y)$

$$\hat{y} = \arg\max p(y \mid \mathbf{x}) \qquad \text{(Posterior)}$$

$$(Prediction)$$

$$= \arg\max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \qquad \text{(by Bayes' rule)}$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

Independent of y

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \underset{y}{\operatorname{arg}} \max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \underset{y}{\operatorname{arg\,max}} p(X_1, \dots, X_k | y) p(y)$$

Class conditional likelihood

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption

Thanks!

Based on slides from Xiaojin (Jerry) Zhu and Yingyu Liang (http://pages.cs.wisc.edu/~jerryzhu/cs540.html), and James McInerney