$V_{DSM} = 5200 V$

 $I_{TAVM} = 2760 A$

 $I_{TRMS} = 4340 A$

 $I_{TSM} = 42000 A$

 $V_{T0} = 1 V$

 $r_T = 0.225 \,\mathrm{m}\Omega$

Phase Control Thyristor

5STP 25L5200

Doc. No. 5SYA1008-03 Jan. 02

- · Patented free-floating silicon technology
- Low on-state and switching losses
- Designed for traction, energy and industrial applications
- Optimum power handling capability
- · Interdigitated amplifying gate

Blocking

Maximum rated values 1)

Symbol	Conditions	5STP 25L5200	5STP 25L5000	5STP 25L4600
$V_{\text{DSM}}, V_{\text{RSM}}$	f = 5 Hz, t _p = 10ms	5200 V	5000 V	4600 V
$V_{\text{DRM}}, V_{\text{RRM}}$	$f = 50 \text{ Hz}, t_p = 10 \text{ms}$	4400 V	4200 V	4000 V
V_{RSM1}	t_p = 5ms, single pulse	5700 V	5500 V	5100 V
dV/dt _{crit}	Exp. to 0.67 x V_{DRM} , $T_j = 125^{\circ}C$		2000 V/μs	

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
Forwarde leakage current	I _{DSM}	V_{DSM} , $T_j = 125^{\circ}C$			400	mA
Reverse leakage current	I _{RSM}	V_{RSM} , $T_j = 125$ °C			400	mA

 V_{DRM}/V_{RRM} are equal to V_{DSM}/V_{RSM} values up to $T_i = 110$ °C

Mechanical data

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Mounting force	F _M		63	70	84	kN
Acceleration	а	Device unclamped			50	m/s ²
Acceleration	а	Device clamped			100	m/s ²

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
Weight	m			1.45		kg
Surface creepage distance	Ds		36			mm
Air strike distance	Da		15			mm

ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.

¹⁾ Maximum Ratings are those values beyond which damage to the device may occur

On-state

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Max. average on-state current	I _{TAVM}	Half sine wave, T _c = 70°C			2760	Α
RMS on-state current	I _{TRMS}				4340	Α
Max. peak non-repetitive surge current	I _{TSM}	tp = 10 ms, Tj = 125°C, $V_D = V_R = 0 \text{ V}$			42000	Α
Limiting load integral	I ² t				8820	kA ² s
Max. peak non-repetitive surge current	I _{TSM}	tp = 8.3 ms, Tj = 125°C, $V_D = V_R = 0 \text{ V}$			45000	Α
Limiting load integral	I ² t				8404	kA ² s

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
On-state voltage	V _T	I _T = 3000 A, T _j = 125°C			1.7	V
Threshold voltage	V _{T0}	I _T = 1300 A - 4000 A, T _j = 125°C			1	V
Slope resistance	r _T	Tj = 125°C			0.225	mΩ
Holding current	I _H	T _j = 25°C			125	mA
		T _j = 125°C			60	mA
Latching current	IL	T _j = 25°C			500	mA
		T _j = 125°C			250	mA

Switching Maximum rated values 1)

Parameter	Symbol	Conditions		min	typ	max	Unit
Critical rate of rise of on-	di/dt _{crit}		Cont.			250	A/µs
state current		$T_i = 125^{\circ}C$, $I_{TRM} = 3000 A$,	f = 50 Hz				
Critical rate of rise of on- state current	di/dt _{crit}	$V_D \le 0.67 \cdot V_{DRM}$, $I_{FG} = 2 \text{ A, } t_r = 0.5 \mu\text{s}$	Cont.			1000	A/µs
			f = 1Hz				
Circuit-commutated turn-off time	t _q	T_{j} = 125°C, I_{TRM} = 3000 A, V_{R} = 200 V, di_{T}/dt = -5 A/µs $V_{D} \le 0.67 \cdot V_{DRM}$, dv_{D}/dt = 20		700			μs

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
Recovery charge	Q _{rr}	T_j = 125°C, I_{TRM} = 3000 A, V_R = 200 V, di_T/dt = -5 A/ μ s	5500		7500	μAs
Delay time	t _d	$V_D = 0.4 \cdot V_{DRM}, I_{FG} = 2 \text{ A}, t_r = 0.5 \mu\text{s}$			3	μs

Triggering *Maximum rated values* 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Peak forward gate voltage	V_{FGM}				12	V
Peak forward gate current	I _{FGM}				10	Α
Peak reverse gate voltage	V_{RGM}				10	V
Gate power loss	P_{G}	For DC gate current			3	W
Average gate power loss	P _{GAV}			see Fig. 9	9	

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
Gate trigger voltage	V_{GT}	T _j = 25°C			2.6	V
Gate trigger current	I _{GT}	T _j = 25°C			400	mA
Gate non-trigger voltage	V_{GD}	$V_D = 0.4 \text{ x } V_{DRM}, T_{vjmax} = 125^{\circ}C$	0.3			V
Gate non-trigger current	I_{GD}	$V_{\rm D} = 0.4 \text{ x } V_{\rm DRM}, T_{\rm vjmax} = 125^{\circ} \text{C}$	10			mA

Thermal

Maximum rated values 1)

Parameter	Symbol	Conditions	min	typ	max	Unit
Operating junction temperature range	Tj				125	ů
Storage temperature range	T _{stg}		-40		140	°C

Characteristic values

Parameter	Symbol	Conditions	min	typ	max	Unit
Thermal resistance junction to case	R _{th(j-c)}	Double side cooled			7	K/kW
	R _{th(j-c)A}	Anode side cooled			14	K/kW
	R _{th(j-c)C}	Cathode side cooled			14	K/kW
Thermal resistance case to heatsink	R _{th(c-h)}	Double side cooled			1.5	K/kW
	R _{th(c-h)}	Single side cooled			3	K/kW

Analytical function for transient thermal impedance:

$$Z_{thJC}(t) = \sum_{i=1}^{n} R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
$R_i(K/kW)$	4.7	0.853	1.07	0.49
$\tau_i(s)$	0.4787	0.0824	0.0104	0.0041

Fig. 1 Transient thermal impedance junction-to case.

Fig. 3 On-state characteristics.

Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded.

Fig. 5 Max. permissible case temperature vs. mean on-state current.

Fig. 6 Surge on-state current vs. pulse length. Half-sine wave.

Fig. 8 Recommendet gate current waveform.

Fig. 10 Recovery charge vs. decay rate of on-state current.

Fig. 7 Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz.

Fig. 9 Max. peak gate power loss.

Fig. 11 Peak reverse recovery current vs. decay rate of on-state current.

Fig. 12 Device Outline Drawing.

ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.

ABB Switzerland Ltd Semiconductors

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)58 586 1419
Fax +41 (0)58 586 1306
Email abbsem@ch.abb.com
Internet www.abbsem.com

Doc. No. 5SYA1008-03 Jan. 02