Answer model Intermediate test Calculus B, version 1a

1. Determine an equation of the line passing through the point (1, 2) that is perpendicular (orthogonal) to the line with equation x + 2y = 5.

Answer: the vector $(1,2)^{\top}$ is perpendicular to the line, so it is a direction vector for any line perpendicular to it, so these lines have slope 2, so an equation is y-2=2(x-1).

Or: Since the vector $(1,2)^{\top}$ is perpendicular to the line, the line connecting the origin with the point (1,2) is perpendicular, with equation y=2x.

2. A triangle ABC is given, with angles α , β and γ and opposite sides of lengths a, b and c. Furthermore $\alpha = \pi/4 = 45^{\circ}$, $\beta = \pi/6 = 30^{\circ}$ and b = 1. Determine a.

Answer: The sine law says $\sin(\alpha)/a = \sin(\beta)/b$, so $\frac{1}{2}\sqrt{2}/a = \frac{1}{2}$, and $a = \sqrt{2}$.

3. It is given that $\lim_{x\to 3} \left(\frac{1}{x-3} + \frac{a}{x^2-9}\right)$ exists (and is finite). Determine a, and the value of the limit.

Answer: Since $\frac{1}{x-3} + \frac{a}{x^2-9} = \frac{x+3+a}{x^2-9}$, the limit can only exist if the numerator of this fraction is also zero for x=3, that is a=-6 and in this case the expression simplifies to 1/(x+3) if $x \neq 3$, so the limit is 1/6.

4. Determine the real zeros (roots) of the polynomial $x^6 + 7x^3 - 8$ and give a factorization of this polynomial in factors of degree 1 and 2.

Answer: Write $w=x^3$, then the polynomial becomes w^2+7w-8 with factorization (w-1)(w+8). Now put back $w=x^3$ and use the fact that $x^3=a$ has only one real solution for all real (nonzero) a so we get the factorization

$$(x^3 - 1)(x^3 + 8) = (x - 1)(x^2 + x + 1)(x + 2)(x^2 - 2x + 4).$$

Answer model Intermediate test Calculus B, version 1b

1. Determine an equation of the line passing through the point (1,3) that is perpendicular (orthogonal) to the line with equation x + 3y = 10.

Answer: the vector $(1,3)^{\top}$ is perpendicular to the line, so it is a direction vector for any line perpendicular to it, so these lines have slope 3, so an equation is y-3=3(x-1).

Or: Since the vector $(1,3)^{\top}$ is perpendicular to the line, the line connecting the origin with the point (1,3) is perpendicular, with equation y = 3x.

2. A triangle ABC is given, with angles α , β and γ and opposite sides of lengths a, b and c. Furthermore $\alpha = \pi/3 = 60^{\circ}$, $\beta = \pi/4 = 45^{\circ}$ and a = 1. Determine b.

Answer: The sine law says $\sin(\alpha)/a = \sin(\beta)/b$, so $\frac{1}{2}\sqrt{3} = \frac{1}{2}\sqrt{2}/b$, and $b = \sqrt{2/3}$.

3. It is given that $\lim_{x\to -3} \left(\frac{1}{x+3} + \frac{a}{x^2-9}\right)$ exists (and is finite). Determine a, and the value of the limit.

Answer: Since $\frac{1}{x+3} + \frac{a}{x^2-9} = \frac{x-3+a}{x^2-9}$, the limit can only exist if the numerator of this fraction is also zero for x=-3, that is a=6 and in this case the expression simplifies to 1/(x-3) if $x \neq -3$, so the limit is -1/6.

4. Determine the real zeros (roots) of the polynomial $x^4 - 5x^2 + 4$ and give a factorization of this polynomial in factors of degree 1.

Answer: Write $w = x^2$, then the polynomial becomes $w^2 - 5w + 4$ with factorization (w-1)(w-4). Now put back $w = x^2$ then we get the factorization

$$(x^{2}-1)(x^{2}-4) = (x-1)(x+1)(x-2)(x+2).$$