# Project A: Titanic - Likely Survival

Owner: Reema Lad

IMS ID No.: IMSPRO143500 Tuesday, August 25, 2020

### **Project Case**



# Titanic: The Ship that Sinked

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.

One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.

In this challenge, we ask you to complete the analysis of what sorts of people were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy.

The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the "ground truth") for each passenger. Your model will be based on "features" like passengers' gender and class.

#### **Understanding Data And EDA** Pelass Fare Cabin Embarked Survived SibSp 891.000000 891 714.000000 891.000000 • Features: 12 Raw Data NaN NaN 1 577 • Observations: 891 0.383838 2.308642 0.486592 3 000000 •77% missing values in Cabin and 19% in Age. No. of Missing Rows Missing % Instead of direct Value 77.10 Cabin 687 imputation will have 177 19.87 engineered feature for the Age **Imputation** same as amount of Embarked 0.22 missing data is too high -0.005 Survived -0.035 -0.34 Priass -0.37 0.037 -0.077 Age •Features like Pclass - Fare Correlation & Age; Age - SibSp & -0.058 -0.035 0.083 -0.31 SibSp Parch, Fare – fairly with all other features shows Analysis -0.0017 0.082 0.018 -0.19 0.41 Parch considerable Correlation; which is logical too. 0.16 Fare Pclass Passengerid Survived SibSp Parch Input Variable Feature Importance 32.882742 Cat Gender Input and 18.046956 Cat\_Age • Response Variable – Cat\_Deck 11.977153 Survived Output Fare\_Group 9.954160 • Predictors - Gender. Pclass 8.929249 Age, PClass Variable 8.598435 FamilySize

PREPARED BY: REEMA LAD

Cat\_Family

6 Cat\_Embarked

4.908613

4.702693





# **Approach For Accurate Prediction**

### Feature Engineering

 Generated new features basis Age – which gave us 'Age Groups'. This also handled the missing values problem.

## Feature Engineering





# Cleaned Data & Feature Finalization

- 80% 20% Train & Test Split
- With Predictors Pclass, Age, Gender and Response Variable Survived

Feature Finalization

How many Men and Women Survived by Passenger Class

# Model Building

- Logistic Regression
- Gaussian Naive Bayes
- Decision Tree Classifier
- Random Forest Classifier
- KNN Classifier
- Gradient Boost
- Ada Boost

#### Recommendation

 Models with best accuracy is Decision Tree considering both the Test and Train accuracy score

# Model Building

|  | _ Ke | COL | nme | ena | au |
|--|------|-----|-----|-----|----|
|  |      |     |     |     |    |

| 0.8 |  |  |  |
|-----|--|--|--|
| 0.6 |  |  |  |
| 0.4 |  |  |  |
| 0.2 |  |  |  |

| 1 | ccla | I de        |                  |         |
|---|------|-------------|------------------|---------|
| ı |      | ss pandas.c | ore.frame.DataFr | ame'>   |
| ı | Int6 | 4Index: 712 | entries, 151 to  | 595     |
| ı | Data | columns (to | tal 3 columns):  |         |
| ı | #    | Column      | Non-Null Count   | Dtype   |
| ı |      |             |                  |         |
| ı | 0    | Pclass      | 712 non-null     | int64   |
| ı | 1    | Cat_Age     | 712 non-null     | float64 |
| ı | 2    | Cat_Gender  | 712 non-null     | int32   |

| Y_Tr                                                                               | ain Info   |                  |         |
|------------------------------------------------------------------------------------|------------|------------------|---------|
| <cla< th=""><th>ss 'pandas</th><th>.core.frame.Data</th><th>Frame'&gt;</th></cla<> | ss 'pandas | .core.frame.Data | Frame'> |
| Int6                                                                               | 4Index: 71 | 2 entries, 151 t | o 595   |
| Data                                                                               | columns (  | total 1 columns) | :       |
| #                                                                                  | Column     | Non-Null Count   | Dtype   |
|                                                                                    |            |                  |         |
| a                                                                                  | Survived   | 712 non-null     | int64   |

(<a href="class"></a> (lass 'pandas.core.frame.DataFrame'>
Int64Index: 179 entries, 727 to 829
Data columns (total 3 columns):
# Column Non-Null Count Dtype

0 Pclass 179 non-null int64 1 Cat\_Age 179 non-null float64 2 Cat\_Gender 179 non-null int32 Y\_Test Info

|   | Model                          | Train Accuracy | Test Accuracy |
|---|--------------------------------|----------------|---------------|
| 3 | Decision Tree                  | 78.79          | 82.12         |
| 4 | Random Forest                  | 78.65          | 82.12         |
| 6 | Gradient Boosting              | 78.65          | 82.12         |
| 0 | Logistic Regression - All Fea. | 76.97          | 80.45         |
| 5 | KNN                            | 71.77          | 79.89         |
| 7 | Ada Boost                      | 76.97          | 79.89         |
| 2 | Naive Bayes                    | 77.67          | 78.77         |
| 1 | Logistic Regression            | 79.07          | 78.21         |



# **Error Analysis**

-1:Predicted Survived & 1:Predicted Not Survived & 0:Correct Prediction



PREPARED BY: REEMA LAD

# Thank You