Université Mohammed V Faculté des Sciences de Rabat Département de Mathématiques 2022–2023 Filière SMI (S3) Statistique Descriptive et Probabilités

Variables aléatoires continues

1 Définition d'une variable aléatoire continue

Définition 1.1. Une variable aléatoire est dite continue si elle peut prendre toutes les valeurs d'un intervalle fini ou infini.

Exemple 1.1. La variable aléatoire X représentant la durée de vie d'une ampoule est continue.

2 Loi d'une variable aléatoire continue

Définition 2.1 (Densité). Une variable aléatoire est dite continue ou à densité si il existe une fonction f définie de \mathbb{R} dans \mathbb{R} vérifiant

- -f est positive sur \mathbb{R} ,
- f est continue sauf peut-être en un nombre fini de points où elle admet une limite à gauche et une limite à droite,
- $-\int_{-\infty}^{+\infty} f(x)dx = 1.$

On dit que f est une **densité** de X.

Définition 2.2. Pour tous réels $a \leq b$ avec éventuellement $a = -\infty$ et

$$b = +\infty$$

$$\mathbb{P}(a \le X \le b) = \int_a^b f(x)dx.$$

Remarque 2.1. Réciproquement pour toute fonction f vérifiant les propriétés ci dessus, il existe une variable aléatoire X définie sur un espace probabilisé convenable et admettant f comme densité.

Exemple 2.1. Soit X une variable aléatoire réelle continue, de densité f définie par :

 $f(t) = \begin{cases} at^2 & si - 1 \le t \le 1 \\ 0 & sinon \end{cases}.$

Déterminons la constante a, pour que f soit une densité de probabilité : La fonction f est continue positive si $a \ge 0$

$$\int_{-\infty}^{+\infty} f(t)dt = 1 \iff \int_{-1}^{1} at^2 dt = 1 \iff \left[\frac{a}{3}t^3\right]_{-1}^{1} = 1 \iff \frac{2a}{3} = 1 \iff a = \frac{3}{2}.$$

$$D'où$$

$$f(t) = \begin{cases} \frac{3}{2}t^2 & si - 1 \le t \le 1\\ 0 & sinon \end{cases}.$$

Définition 2.3 (Fonction de répartition). Soit X une variable aléatoire de densité f. La fonction de répartition de f notée F_X est définie pour tout réel x par :

$$F_X(x) = \int_{-\infty}^x f(t)dt.$$

La fonction F_X est continue dérivable et on a :

$$F_X'(x) = f(x).$$

Exemple 2.2. Reprenons l'exemple 2.1, soit X la variable aléatoire réelle continue, de densité f définie par :

$$f(t) = \begin{cases} \frac{3}{2}t^2 & si - 1 \le t \le 1\\ 0 & sinon \end{cases}.$$

Déterminons la fonction de répartition de X, On a les cas suivants :

• $si \ x \le -1 \ alors$:

$$F_X(x) = \int_{-\infty}^x f(t)dt = \int_{-\infty}^x 0 \ dt = 0.$$

• $si -1 \le x \le 1 \ alors$:

$$F_X(x) = \int_{-\infty}^x f(t)dt = \int_{-\infty}^{-1} 0 \ dt + \int_{-1}^x \frac{3}{2}t^2dt = \left[\frac{1}{2}t^3\right]_{-1}^x = \frac{1}{2}(x^3 + 1).$$

• $si \ x \ge 1 \ alors$:

$$F_X(x) = \int_{-\infty}^x f(t)dt = \int_{-\infty}^{-1} 0 \ dt + \int_{-1}^1 \frac{3}{2} t^2 dt + \int_1^x 0 \ dt = 1.$$

Donc

$$F_X(x) = \begin{cases} 0 & si \ x \le -1 \\ \frac{1}{2}(x^3 + 1) & si \ -1 \le x \le 1 \\ 1 & sinon \end{cases}.$$

Proposition 2.1. Soit X une variable aléatoire de densité f, pour tout réel x

$$P(X=x)=0.$$

Pour tous réels $a \leq b$:

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b) = F(b) - F(a) = F(b) - F(a) = F(b) - F(a) = F(b) - F(b) F(b$$

Exemple 2.3. Reprenons l'exemple 2.1, calculons les probabilités suivantes : $\mathbb{P}(X \le 0.25), \, \mathbb{P}(-0.5 < X \le 0.75).$

- $\mathbb{P}(X \le 0.25) = F_X(0.25) = \frac{1}{2} \left(\left(\frac{1}{4} \right)^3 + 1 \right) \simeq 0.5078.$
- $\mathbb{P}(-0.5 < X \le 0.75) = F_X(0.75) F_X(-0.5) = \frac{1}{2} \left(\left(\frac{3}{4} \right)^3 + 1 \right) \frac{1}{2} \left(\left(\frac{-1}{2} \right)^3 + 1 \right) \simeq 0.2734.$

3 Fonction d'une variable aléatoire continue

Soit X une variable aléatoire continue de densité f et de fonction de répartition F. Soit ϕ une fonction continue définie sur $X(\Omega)$, alors

$$Y = \phi(X)$$

est une variable aléatoire.

Exemple 3.1. Soit X une variable aléatoire de densité f, calculer la densité de

- 1. Y = aX + b,
- 2. $Z = X^2$,
- 3. $T = e^X$. [Exercice TD]

4 Moments d'une variable aléatoires continue

4.1 Espérance

Définition 4.1. Soit X une variable aléatoire de densité f, telle que $\int_{-\infty}^{+\infty} t f(t) dt$ converge. On appelle espérance ou moyenne de X le réel défini par

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt.$$

 $Si \ \mathbb{E}(X) = 0$, la variable X est dite centrée.

Exemple 4.1. Reprenons l'exemple 2.1, calculons l'espérance de X

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-1}^{+1} t \times \frac{3}{2} t^2 dt = \int_{-1}^{+1} \frac{3}{2} t^3 dt = \left[\frac{3}{8} t^4 \right]_{-1}^{1} = \frac{3}{4}.$$

Proposition 4.1. Soient X et Y deux variables aléatoires continues d'espérances supposées connues, alors

$$\circ \ \mathbb{E}(\lambda X) = \lambda \mathbb{E}(X), \ pour \ tout \ r\acute{e}el \ \lambda.$$

$$\circ \mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

$$\circ X \leq Y \Longrightarrow \mathbb{E}(X) \leq \mathbb{E}(Y)$$

Théorème 4.1 (Théorème de transfert). Soit X une variable aléatoire de densité f et ϕ une fonction continue sur un intervalle contenant $X(\Omega)$ alors $\mathbb{E}(\phi(X))$ existe et

$$E(\phi(X)) = \int_{-\infty}^{+\infty} \phi(t)f(t)dt$$

si et seulement si l'inégrale est absolument convergente.

4.2 Variance

Définition 4.2. Soit X une variable aléatoire de densité f, si la variable aléatoire $(X - \mathbb{E}(X))^2$ admet une espérance on a

$$\mathbb{V}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \int_{-\infty}^{+\infty} (t - \mathbb{E}(X))^2 f(t) dt.$$

L'écart-type est la racine carrée de la variance.

Si la variance vaut 1, on dit que la variable X est réduite.

Proposition 4.2. On a

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Exemple 4.2. Reprenons l'exemple 2.1, calculons la variance de X

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} t f(t) dt = \int_{-1}^{+1} t^2 \times \frac{3}{2} t^2 dt = \int_{-1}^{+1} \frac{3}{2} t^4 dt = \left[\frac{3}{10} t^5 \right]_{-1}^{1} = \frac{3}{5}.$$

On a

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = 0.0375.$$

Proposition 4.3. Soit X une variable aléatoire de densité f, alors

- $\circ V(X) \ge 0$ (égale à zéro si la variable est constante),
- $\circ V(aX) = a^2V(X)$, pour tout réel a,
- $\circ V(X + b) = V(X)$, pour tout réel b,

Proposition 4.4. Soit X une variable aléatoire d'espérance μ et d'écarttype $\sigma > 0$, alors la variable aléatoire $Y = \frac{X-\mu}{\sigma}$ est centrée réduite. (i.e. $\mathbb{E}(Y) = 0$ et $\mathbb{V}(Y) = 1$).

Proposition 4.5. Si X et Y deux variables aléatoires indépendantes qui admettent une variance, alors

$$\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y).$$

De manière générale, on a, pour toutes variables aléatoires $X,\,Y$ et tous réels a,b,

$$\mathbb{V}(aX + bY) = a^2 \mathbb{V}(X) + b^2 \mathbb{V}(Y) + 2abCov(X, Y),$$

avec

$$Cov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

4.3 Moment d'ordre r et moment centré d'ordre r

Définition 4.3. Soit X une variable aléatoire d'espérance $\mathbb{E}(X) = \mu$ et de densité f. Soit r un entier naturel ≥ 1 .

On appelle moment d'ordre r

$$\mathbb{E}(X^r) = \int_{-\infty}^{+\infty} t^r f(t) dt.$$

On appelle moment centré d'ordre r

$$\mathbb{E}((X-\mu)^r) = \int_{-\infty}^{+\infty} (t-\mu)^r f(t) dt.$$

5 Lois continues usuelles

5.1 Loi uniforme

Définition 5.1. On dit qu'une variable aléatoire continue X suit une loi **uniforme** sur [a,b] $(-\infty < a < b < +\infty)$ si sa densité de probabilité est :

$$f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

On note $X \sim \mathcal{U}_{[a,b]}$.

Proposition 5.1. Si $X \sim \mathcal{U}_{[a,b]}$, alors sa fonction de répartition est :

$$F(x) = \begin{cases} 0 & si \ x < a \\ \frac{x-a}{b-a} & si \ x \in [a,b] \\ 1 & sinon \end{cases}$$

Proposition 5.2. Si $X \sim \mathcal{U}_{[a,b]}$, alors

$$\mathbb{E}(X) = \frac{a+b}{2} \ et \ \mathbb{V}(X) = \frac{(b-a)^2}{12}.$$

FIGURE 1 – Fonction de répartition (F) et fonction de densité (f) de $X \sim \mathcal{U}_{[0,1]}$.

5.2 Loi Exponentielle

Définition 5.2. La loi exponentielle de paramètre λ décrit la distribution d'une variable continue X qui ne prend que des valeurs positives selon

la fonction de densité

$$f(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}^+}(x).$$

On la note $\mathcal{E}(\lambda)$.

Proposition 5.3. Si $X \sim \mathcal{E}(\lambda)$, alors

$$\mathbb{E}(X) = \frac{1}{\lambda} \ et \ \mathbb{V}(X) = \frac{1}{\lambda^2}.$$

Proposition 5.4. Si $X \sim \mathcal{E}(\lambda)$, alors

$$F(x) = 1 - e^{-\lambda x} \mathbb{1}_{\mathbb{R}^+}(x).$$

FIGURE 2 – Fonction de répartition (F) et fonction de densité (f) de $X \sim \mathcal{E}(\lambda)$, $\lambda = 1, 1/2$ et 1/4.

Cette distribution est souvent utilisée pour modéliser la durée de vie de certains composants.

La distribution exponentielle est "sans mémoire", dans le sens où, pour h > 0, on a

$$P(X > t + h|X > t) = P(X > h).$$

En effet si X suit une loi exponentielle de paramètre λ , alors

$$P(X > t) = e^{-\lambda t},$$

donc

$$P(X > t + h|X > t) = \frac{P(X > t + h, X > t)}{P(X > t)} = \frac{P(X > t + h)}{P(X > t)} = \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}} = e^{-\lambda h} = \frac{e^{-\lambda t}}{e^{-\lambda t}} = \frac{e^{-\lambda$$

La probabilité que le composant survive h unités de temps supplémentaires ne dépend donc pas de l'âge du composant (le composant "ne vieillit pas").

5.3 Loi de Cauchy

Définition 5.3. Une variable aléatoire X suit une loi de Cauchy si elle admet une densité f dépendant des deux paramètres x_0 et a (a > 0) et définie par

$$f(x) = \frac{1}{\pi a \left[1 + \left(\frac{x - x_0}{a} \right)^2 \right]}$$
$$= \frac{1}{\pi} \left[\frac{a}{(x - x_0)^2 + a^2} \right]$$

 x_0 est un paramètre de position et a est un paramètre d'échelle, c'est-àdire d'étalement.

On note $X \sim \mathcal{C}(x_0, a)$.

Remarque 5.1. $\circ x_0$ est le mode et la médiane.

- o L'espérance et la variance de cette loi n'existent pas.
- o On peut en déduire une expression centrée et réduite (par la médiane et par l'étalement)

$$f(x) = \frac{1}{\pi \left(1 + x^2\right)}$$

et on note $X \sim \mathcal{C}(1)$

Proposition 5.5. Si $X \sim \mathcal{C}(x_0, a)$, alors sa fonction de répartition est de la forme

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x - x_0}{a}\right) + \frac{1}{2}.$$

FIGURE 3 – Fonction de répartition et densité de $X \sim \mathcal{C}(x_0, \gamma)$

5.4 Loi Normale (un cas spécial)

On rencontre souvent des phénomènes complexes qui sont le résultat de causes nombreuses, d'effet faible, et plus ou moins indépendantes.

Un exemple typique est celui de l'erreur commise sur la mesure d'une grandeur physique. Cette erreur résulte d'un grand nombre de facteurs tels que : variations incontrôlables de la température ou de la pression, turbulence atmosphérique, vibrations de l'appareil de mesure, etc. Chacun des facteurs a un effet faible, mais l'erreur résultante peut ne pas être négligeable. Deux mesures faites dans des conditions que l'expérimentateur considère comme identiques pourront alors donner des résultats différents.

Donc dès que nous seront dans une situation où la distribution dépend de causes

- o en grand nombre et indépendantes,
- o dont les effets s'additionnent,
- o dont aucune n'est prépondérante,

alors nous serons en présence de la distribution normale.

C'est le cas, par exemple en

o *Métrologie*, pour la distribution des erreurs d'observation ou pour la

distribution de phénomènes aléatoires tels que la température et la pression.

- o **Biologie**, pour la distribution de caractères biométriques comme la taille ou le poids d'individus appartenant à une population homogène.
- o **Technologie**, pour la distribution des cotes des pièces usinées.
- o **Economie**, pour les fluctuations accidentelles d'une grandeur économique (production, ventes) autour de sa tendance.

Définition 5.4. On dit qu'une variable aléatoire continue suit une loi normale ¹ si l'expression de sa fonction de densité de probabilités est de la forme :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \quad x \in \mathbb{R}.$$

La loi dépend des deux réels μ et σ appelés paramètres de la loi normale. On la note $\mathcal{N}(\mu, \sigma^2)$.

Proposition 5.6. Si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors

$$\mathbb{E}(X) = \mu, \quad \mathbb{V}(X) = \sigma^2, \quad \sigma(X) = \sigma.$$

Propriétés 5.1. La densité de probabilités de la loi normale a la forme

^{1.} Les lois normales sont aussi appelées lois de Gauss ou lois gaussiennes, ou encore lois de Laplace-Gauss (de Moivre-Laplace-Gauss)

d'une "courbe en cloche". Elle est symétrique par rapport à la droite verticale d'abscisse $x = \mu$. Son allure dépend de σ (figure 4).

Figure 4 – Densités de la loi normale pour différentes valeurs d'espérances et pour différentes valeurs d'écart-types

Remarque 5.2. L'axe des abscisses est une asymptote et l'aire sous la courbe à l'extérieur de l'intervalle $[\mu - 3\sigma, \mu + 3\sigma]$ est négligeable. On a

$$\mathbb{P}(\mu - \sigma < X < \mu + \sigma) = 0.6826$$

$$\mathbb{P}(\mu - 2\sigma < X < \mu + 2\sigma) = 0.9544$$

$$\mathbb{P}(\mu - 3\sigma < X < \mu + 3\sigma) = 0.9974.$$

(cas particulier $\mu = 0, \sigma = 1$, voir figure 5)

FIGURE 5 – Densité de $X \sim \mathcal{N}(0,1)$

Proposition 5.7. Soient X_1 et X_2 deux variables indépendantes. Si X_1 suit $\mathcal{N}(\mu_1, \sigma_1^2)$ et X_2 suit $\mathcal{N}(\mu_2, \sigma_2^2)$, alors $X_1 + X_2$ suit $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Proposition 5.8 (Loi normale centrée réduite). Si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

On utilise le résultat de la proposition 5.8 pour calculer les probabilités. En effet la loi normale centrée et réduite $(\mathcal{N}(0,1))$ est tabulée à l'aide de sa fonction de répartition. Elle donne les valeurs de

$$\Phi(t) = \mathbb{P}(Z \le t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du, \qquad t \in \mathbb{R}.$$

Voir la table de la loi normale centrée réduite.

5.5 Lois dérivées de la loi normale

5.5.1 La loi du χ^2 de Pearson

Définition 5.5 (loi du χ^2). Si X_1, X_2, \ldots, X_n sont n variables aléatoires indépendantes qui suivent toute la loi normale centrée réduite, alors la quantité $X = X_1^2 + X_2^2 + \cdots + X_n^2$ est une variable aléatoire distribuée selon la loi du χ^2 à n degrés de liberté. On note $X \sim \chi^2(n)$. n est appelé nombre de degrés de liberté

Proposition 5.9. Si $X \sim \chi^2(n)$, alors

$$\mathbb{E}(X) = n, \qquad \mathbb{V}(X) = 2n.$$

Proposition 5.10 (Somme de deux variables qui suivent une loi du χ^2). Si $X_1 \sim \chi^2(n_1)$ et $X_2 \sim \chi^2(n_2)$ sont indépendantes, alors $X_1 + X_2 \sim \chi^2(n_1 + n_2)$.

FIGURE 6 – densité de $X \sim \chi^2(n)$ pour n = 1, 2, ..., 6.

5.5.2 La loi de Fisher-Snedecor

Définition 5.6 (Loi de Fisher). Si X_1 et X_2 sont deux variables aléatoires indépendantes qui suivent toutes les deux une loi de khi-deux de degrés de liberté respectifs n_1 et n_2 , alors la quantité $F = \frac{X_1/n_1}{X_2/n_2}$ est une variable aléatoire qui suit la loi de Fisher-Snedecor à n_1 et n_2 degrés de liberté. On note $F \sim F(n_1, n_2)$.

Remarque 5.3. Cette variable ne prend que des valeurs positives.

FIGURE 7 – Densité de F pour $(n_1, n_2) = (2, 6), (4, 6), (10, 10).$

5.5.3 La loi de Student

Définition 5.7 (Loi de Student). Soient X et Y deux variables aléatoires indépendantes, la première étant distribuée selon une loi normale centrée réduite $\mathcal{N}(0,1)$ et la deuxième selon une loi de khi-deux à n degrés de liberté.

La quantité $T = \frac{X\sqrt{n}}{\sqrt{Y}}$ est une variable aléatoire qui suit une **loi de Student à** n **degrés de liberté**. On note $T \sim T(n)$.

FIGURE 8 – Densité de T(n) pour n = 1, 3 et densité de la loi normale standard.

Proposition 5.11. Si $T \sim T(n)$, alors

$$E(T) = 0$$
 $si n > 1$

,

$$Var(T) = \frac{n}{n-2} \quad si \ n > 2.$$

6 Approximation des lois par la loi normale

Théorème 6.1 (Théorème central limite). Hypothèses : Soit une suite de variables aléatoires X_1, X_2, \ldots, X_n indépendantes et identiquement distribuées (iid). Leurs espérances mathématiques $m_1 = m_2 = \ldots = m_n = m$ et leurs variances $\mathbb{V}(X_1) = \mathbb{V}(X_2) = \ldots = \mathbb{V}(X_n) = \sigma^2$ existent toutes. Alors quand n'est assez grand, on a

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(nm, n\sigma^2).$$

Démonstration. Admis.

On admet les approximations suivante :

6.1 Approximation de la loi binomiale par la loi normale

Résultat 6.1. On approche la loi $\mathcal{B}(n,p)$ par la loi $\mathcal{N}(np,npq)$ dès que

$$\begin{cases} n \ge 30 \\ np \ge 5 \\ npq \ge 5 \end{cases}$$

6.2 Approximation de la loi de Poisson par la loi normale

Résultat 6.2. On approche la loi $\mathcal{P}(\lambda)$ par la loi $\mathcal{N}(\lambda, \lambda)$ dès que $\lambda \geq 16$.

6.3 Approximation de la loi de Khi-deux par la loi normale

Résultat 6.3. On approche la loi $\chi^2(n)$ par la loi $\mathcal{N}(n,2n)$ dès que $n \geq 30$.

6.4 Approximation de la loi de Student par la loi normale

Résultat 6.4. On approche la loi T(n) par la loi $\mathcal{N}(0,1)$ dès que $n \geq 30$.

6.5 Correction de continuité

La correction de continuité se fait en passant d'une variable aléatoire discrète vers une variable aléatoire continue. En effet, si on a pas ce passage on pourra pas calculer la valeur de la probabilité en un point précis. Soit X_D une variable aléatoire discrète dont la probabilité en un point x_0 n'est pas nulle :

 $\mathbb{P}(X_D = x_0) \neq 0$; alors si on approxime la loi de X_D vers une loi continue, c'est-à-dire on aura une variable aléatoire continue X_C (cette variable suit d'après le TCL une loi normale), alors $\mathbb{P}(X_C = x_0) = 0$, ce qui contredit les résultats. D'où l'utilisation de la correction de continuité et on calcule cette probabilité par la formule :

$$\mathbb{P}(X_D = x_0) = \mathbb{P}\left(x_0 - \frac{1}{2} \le X_C \le x_0 + \frac{1}{2}\right)$$

Si, par exemple, X suit la loi $\mathcal{B}(n,p)$, X prend des valeurs entières entre 0 et n, On approxime la loi de X vers la loi normale $\mathcal{N}(np,npq)$ (sous certaines conditions).

On peut avoir les situations suivantes :

Résultat 6.5.
$$\mathbb{P}(X_D < k)$$
 s'obtient avec $\mathbb{P}\left(X_C < k - \frac{1}{2}\right)$ $\mathbb{P}(X_D > k)$ s'obtient avec $\mathbb{P}\left(X_C > k + \frac{1}{2}\right)$ $\mathbb{P}(X_D \le k)$ s'obtient avec $\mathbb{P}\left(X_C < k + \frac{1}{2}\right)$ $\mathbb{P}(X_D \ge k)$ s'obtient avec $\mathbb{P}\left(X_C > k - \frac{1}{2}\right)$ $\mathbb{P}(X_D < k)$ s'obtient avec $\mathbb{P}\left(X_C < k - \frac{1}{2}\right)$ $\mathbb{P}(a < X_D \le b)$ s'obtient avec $\mathbb{P}\left(a + \frac{1}{2} < X_C < b + \frac{1}{2}\right)$

Exemple 6.1. Soit X une variable aléatoire suivant la loi binomiale $\mathcal{B}(50,0.5)$. Les condition d'approximation de la loi de X par une loi normale sont remplies, et l'on peut considérer que X suit à peu près la loi normale $\mathcal{N}(25,12.5)$.

Évaluons alors de deux façons $\mathbb{P}(24 \leq X \leq 26)$.

• En valeur exacte avec la loi binomiale :

$$\mathbb{P}(X = 24) + \mathbb{P}(X = 25) + \mathbb{P}(X = 26) \simeq 0.3282.$$

• En valeur approchée avec la loi normale (sans correction par continuité) :

$$\mathbb{P}(24 \le X \le 26) \simeq 0.2222.$$

• En valeur approchée avec la loi normale (avec correction par continuité) :

$$\mathbb{P}(23, 5 \le X \le 26, 5) \simeq 0.3286.$$

Le résultat est bien meilleur en tenant compte de la correction par continuité.

7 Exercices corrigés

Exercice

Soit X une variable aléatoire continue qui suit une loi de probabilité ayant une fonction de densité définie par :

$$f(x) = \begin{cases} ce^{-x} & si \quad x \ge 1\\ 0 & si \quad x < 1 \end{cases}$$

où c est une constante réelle.

- 1. Déterminer la constante c.
- 2. Chercher la loi de probabilité de la variable aléatoire Y définie par Y=X-1.
- 3. Donner l'espérance et la variance de Y.
- 4. En déduire l'espérance et la variance de X.
- 5. Déterminer la fonction de répartition de X.
- 6. Calculer les probabilités $\mathbb{P}(X < 5)$, $\mathbb{P}(X \ge 3)$, $\mathbb{P}(X \ge 8)$ et $\mathbb{P}(2 \le X < 5)$.
- 7. Calculer la probabilité conditionnelle $\mathbb{P}(X \geq 8/X \geq 3)$. Conclure.

Corrigé

1. On doit avoir $\int_{-\infty}^{+\infty} f(x)dx = 1 \Leftrightarrow c \int_{1}^{+\infty} e^{-x}dx = 1 \Leftrightarrow c \left[-e^{-x}\right]_{0}^{1} = 1 \Leftrightarrow ce^{-1} = 1$. On obtient c = e. D'où $f(x) = e^{-(x-1)}1(x)_{[1,+\infty[}$, avec

$$1(x)_{[1,+\infty[} \begin{cases} 1 & \text{si } x \in [1,+\infty[\\ 0 & sinon \end{cases}$$

2. La loi de probabilité de Y = X - 1 $\forall x \in \mathbb{R}$, on a

$$F_Y(x) = P(Y \le x)$$

$$= P(X \le x + 1).$$

$$= F_X(x + 1)$$

En dérivant, on obtient $\forall x \in \mathbb{R}$, $f_Y(x) = f_X(x+1) = e^{-(x+1-1)} 1_{[1,+\infty[}(x+1) = e^{-x} 1_{[0,+\infty[}(x) \text{ car on } 1 \le x+1 \le +\infty, \text{ donc } 0 \le x \le +\infty$... la densité de la loi Exp(1), ... $Y \sim Exp(1)$.

- 3. Puisque $Y \sim Exp(1), E(Y) = 1 = V(Y),$
- 4. par conséquent

$$E(X) = E(Y + 1) = E(Y) + 1 = 2$$

 $V(X) = V(Y + 1) = V(Y) = 1$

5. On a:

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x f(t)dt$$

 $-\sin x < 1$:

$$F_X(x) = \mathbb{P}(X \le x) = \int_{-\infty}^x 0dt = 0$$

 $-\sin x > 1$:

$$F_X(x) = \int_{-\infty}^{1} 0dt + \int_{1}^{x} e^{-(t-1)}dt = \left[-e^{-(t-1)}\right]_{1}^{x} = 1 - e^{-(x-1)}$$

Donc,

$$F_X(x) = \begin{cases} 0 & \text{si } x \le 1\\ 1 - e^{-(x-1)} & \text{si } x > 1 \end{cases}$$

6. Calculons les probabilités :

$$\mathbb{P}(X<5)=F_X(5)$$

$$\mathbb{P}(X \ge 3) = F_X(3)$$

$$\mathbb{P}(X \ge 8) = 1 - F_X(8)$$

$$\mathbb{P}(2 \le X < 5) = F_X(5) - F_X(2)$$

7. Calculons:

$$\mathbb{P}(X \ge 8/X \ge 3) = \frac{\mathbb{P}(X \ge 8, X \ge 3)}{\mathbb{P}(/X \ge 3)} = \frac{\mathbb{P}(X \ge 8)}{\mathbb{P}(/X \ge 3)} = \frac{1 - F_X(8)}{1 - F_X(3)} = \frac{e^{-(8-1)}}{e^{-(3-1)}} = e^{-(5-1)} = 1 - F_X(5) = \mathbb{P}(X \ge 5)$$

Il s'agit d'une loi sans mémoire.

Exercice

Les notes d'un concours représentées par la variable X suivent une loi normale de moyenne $\mu=7$ et d'écart-type $\sigma=6$. On posera

$$Z = \frac{X - \mu}{\sigma}$$

et on se servira des tables pour répondre aux questions suivantes :

- (1) Quelle est la probabilité qu'un candidat obtienne une note supérieure ou égale à 10?
- (2) Comment doit être choisie la note n de la barre de façon à ce que seuls les 10% des notes les plus élevées soient admissibles?

			0,5		Pour	r Z de lo	i $\mathcal{N}(0,1),$			
			$\Phi(t)$		$\Phi(t)$	$=F_Z(t)$	$=P(Z\leq$	$\leq t) = \int$	$e^{-\frac{x^2}{2}} \frac{d}{\sqrt{dx}}$	$\frac{dx}{2\pi}$
			+ + +	1 4	+	-		J -	·∞ v	211
t	0,00	$\begin{array}{c c} -2 \\ \hline 0,01\end{array}$	$\begin{array}{c c} -1 & 0 \\ \hline 0,02 \end{array}$	$\frac{1}{0.03} \frac{t}{}$	$\begin{array}{ c c c }\hline 2 & 3 \\\hline 0,04 \\\hline \end{array}$	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
$\begin{vmatrix} 0,0\\0,1 \end{vmatrix}$	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,1	0,5793	0,5832	0,5470	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,7	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,8	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,9	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Exen	$ ext{oples}:\Phi$	$(0,25) \simeq$	0,5987,	$\Phi(-0.32)$	(2) = 1 -	$\Phi(0,32)$ =	= 1 - 0.6	255 = 0,3	3745	

FIGURE 9 – Fonction de répartition (Φ) de la loi normale centrée réduite

	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0	-∞	-3.090	-2.878	-2.748	-2.652	-2.576	-2.512	-2.457	-2.409	-2.366
0.01	-2.326	-2.290	-2.257	-2.226	-2.197	-2.170	-2.144	-2.120	-2.097	-2.075
0.02	-2.054	-2.034	-2.014	-1.995	-1.977	-1.960	-1.943	-1.927	-1.911	-1.896
0.03	-1.881	-1.866	-1.852	-1.838	-1.825	-1.812	-1.799	-1.787	-1.774	-1.762
0.04	-1.751	-1.739	-1.728	-1.717	-1.706	-1.695	-1.685	-1.675	-1.665	-1.655
0.05	-1.645	-1.635	-1.626	-1.616	-1.607	-1.598	-1.589	-1.581	-1.572	-1.563
0.06	-1.555	-1.546	-1.538	-1.530	-1.522	-1.514	-1.506	-1.498	-1.491	-1.483
0.07	-1.476	-1.468	-1.461	-1.454	-1.447	-1.440	-1.433	-1.425	-1.419	-1.412
0.08	-1.405	-1.398	-1.392	-1.385	-1.379	-1.372	-1.366	-1.359	-1.353	-1.347
0.09	-1.341	-1.335	-1.329	-1.323	-1.316	-1.311	-1.305	-1.299	-1.293	-1.287
0.9	1.282	1.287	1.293	1.299	1.305	1.311	1.316	1.323	1.329	1.335
0.91	1.341	1.347	1.353	1.359	1.366	1.372	1.379	1.385	1.392	1.398
0.92	1.405	1.412	1.419	1.425	1.433	1.440	1.447	1.454	1.461	1.468
0.93	1.476	1.483	1.491	1.498	1.506	1.514	1.522	1.530	1.538	1.546
0.94	1.555	1.563	1.572	1.581	1.589	1.598	1.607	1.616	1.626	1.635
0.95	1.645	1.655	1.665	1.675	1.685	1.695	1.706	1.717	1.728	1.739
0.96	1.751	1.762	1.774	1.787	1.799	1.812	1.825	1.838	1.852	1.866
0.97	1.881	1.896	1.911	1.927	1.943	1.960	1.977	1.995	2.014	2.034
0.98	2.054	2.075	2.097	2.120	2.144	2.170	2.197	2.226	2.257	2.290
0.99	2.326	2.366	2.409	2.457	2.512	2.576	2.652	2.748	2.878	3.090

Figure 10 – Fonction quantile (Φ^{-1}) de la loi normale centrée réduite

α	0.01	0.05	0.10	0.90	0.95	0.99	α	0.01	0.05	0.10	0.90	0.95	0.99
1	0.0002	0.0039	0.0158	2.7055	3.8415	6.6349	16	5.8122	7.9616	9.3122	23.5418	26.2962	31.9999
2	0.0201	0.1026	0.2107	4.6052	5.9915	9.2103	17	6.4078	8.6718	10.0852	24.7690	27.5871	33.4087
3	0.1148	0.3518	0.5844	6.2514	7.8147	11.3449	18	7.0149	9.3905	10.8649	25.9894	28.8693	34.8053
4	0.2971	0.7107	1.0636	7.7794	9.4877	13.2767	19	7.6327	10.1170	11.6509	27.2036	30.1435	36.1909
5	0.5543	1.1455	1.6103	9.2364	11.0705	15.0863	20	8.2604	10.8508	12.4426	28.4120	31.4104	37.5662
6	0.8721	1.6354	2.2041	10.6446	12.5916	16.8119	21	8.8972	11.5913	13.2396	29.6151	32.6706	38.9322
7	1.2390	2.1673	2.8331	12.0170	14.0671	18.4753	22	9.5425	12.3380	14.0415	30.8133	33.9244	40.2894
8	1.6465	2.7326	3.4895	13.3616	15.5073	20.0902	23	10.1957	13.0905	14.8480	32.0069	35.1725	41.6384
9	2.0879	3.3251	4.1682	14.6837	16.9190	21.6660	24	10.8564	13.8484	15.6587	33.1962	36.4150	42.9798
10	2.5582	3.9403	4.8652	15.9872	18.3070	23.2093	25	11.5240	14.6114	16.4734	34.3816	37.6525	44.3141
11	3.0535	4.5748	5.5778	17.2750	19.6751	24.7250	26	12.1981	15.3792	17.2919	35.5632	38.8851	45.6417
12	3.5706	5.2260	6.3038	18.5493	21.0261	26.2170	27	12.8785	16.1514	18.1139	36.7412	40.1133	46.9629
13	4.1069	5.8919	7.0415	19.8119	22.3620	27.6882	28	13.5647	16.9279	18.9392	37.9159	41.3371	48.2782
14	4.6604	6.5706	7.7895	21.0641	23.6848	29.1412	29	14.2565	17.7084	19.7677	39.0875	42.5570	49.5879
15	5.2293	7.2609	8.5468	22.3071	24.9958	30.5779	30	14.9535	18.4927	20.5992	40.2560	43.7730	50.8922

 ${\tt Figure}~11$ – Fonction quantile de la loi du Khi deux

α	0.900	0.950	0.975	0.990	0.995	α	0.900	0.950	0.975	0.990	0.995
1	3.0777	6.3138	12.7062	31.8205	63.6567	16	1.3368	1.7459	2.1199	2.5835	2.9208
2	1.8856	2.9200	4.3027	6.9646	9.9248	17	1.3334	1.7396	2.1098	2.5669	2.8982
3	1.6377	2.3534	3.1824	4.5407	5.8409	18	1.3304	1.7341	2.1009	2.5524	2.8784
4	1.5332	2.1318	2.7764	3.7469	4.6041	19	1.3277	1.7291	2.0930	2.5395	2.8609
5	1.4759	2.0150	2.5706	3.3649	4.0321	20	1.3253	1.7247	2.0860	2.5280	2.8453
6	1.4398	1.9432	2.4469	3.1427	3.7074	21	1.3232	1.7207	2.0796	2.5176	2.8314
7	1.4149	1.8946	2.3646	2.9980	3.4995	22	1.3212	1.7171	2.0739	2.5083	2.8188
8	1.3968	1.8595	2.3060	2.8965	3.3554	23	1.3195	1.7139	2.0687	2.4999	2.8073
9	1.3830	1.8331	2.2622	2.8214	3.2498	24	1.3178	1.7109	2.0639	2.4922	2.7969
10	1.3722	1.8125	2.2281	2.7638	3.1693	25	1.3163	1.7081	2.0595	2.4851	2.7874
11	1.3634	1.7959	2.2010	2.7181	3.1058	26	1.3150	1.7056	2.0555	2.4786	2.7787
12	1.3562	1.7823	2.1788	2.6810	3.0545	27	1.3137	1.7033	2.0518	2.4727	2.7707
13	1.3502	1.7709	2.1604	2.6503	3.0123	28	1.3125	1.7011	2.0484	2.4671	2.7633
14	1.3450	1.7613	2.1448	2.6245	2.9768	29	1.3114	1.6991	2.0452	2.4620	2.7564
15	1.3406	1.7531	2.1314	2.6025	2.9467	30	1.3104	1.6973	2.0423	2.4573	2.7500

FIGURE 12 – Fonction quantile de la loi de Student

χ λ	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45
0	0,9512	0,9048	0,8607	0,8187	0,7788	0,7408	0,7047	0,6703	0,6376
1	0,0476	0,0905	0,1291	0,1637	0,1947	0,2222	0,2466	0,2681	0,2869
2	0,0012	0,0045	0,0097	0,0164	0,0243	0,0333	0,0432	0,0536	0,0646
3	0,0000	0,0002	0,0005	0,0011	0,0020	0,0033	0,0050	0,0072	0,0097
4		0,0000	0,0000	0,0001	0,0001	0,0003	0,0004	0,0007	0,0011
5				0,0000	0,0000	0,0000	0,0000	0,0001	0,0001
χ λ	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90
0	0,6065	0,5769	0,5488	0,5220	0,4966	0,4724	0,4493	0,4274	0,4066
1	0,3033	0,3173	0,3293	0,3393	0,3476	0,3543	0,3595	0,3633	0,3659
2	0,0758	0,0873	0,0988	0,1103	0,1217	0,1329	0,1438	0,1544	0,1647
3	0,0126	0,0160	0,0198	0,0239	0,0284	0,0332	0,0383	0,0437	0,0494
4	0,0016	0,0022	0,0030	0,0039	0,0050	0,0062	0,0077	0,0093	0,0111
5	0,0002	0,0002	0,0004	0,0005	0,0007	0,0009	0,0012	0,0016	0,0020
6	0,0000	0,0000	0,0000	0,0001	0,0001	0,0001	0,0002	0,0002	0,0003
$\frac{\lambda}{x}$	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
0	0,3679	0,2231	0,1353	0,0821	0,0498	0,0302	0,0183	0,0111	0,0067
1	0,3679	0,3347	0,2707	0,2052	0,1494	0,1057	0,0733	0,0500	0,0337
2	0,1839	0,2510	0,2707	0,2565	0,2240	0,1850	0,1465	0,1125	0,0842
3	0,0613	0,1255	0,1804	0,2138	0,2240	0,2158	0,1954	0,1687	0,1404
4	0,0153	0,0471	0,0902	0,1336	0,1680	0,1888	0,1954	0,1898	0,1755
5	0,0031	0,0141	0,0361	0,0668	0,1008	0,1322	0,1563	0,1708	0,1755
6	0,0005	0,0035	0,0120	0,0278	0,0504	0,0771	0,1042	0,1281	0,1462
7	0,0001	0,0008	0,0034	0,0099	0,0216	0,0385	0,0595	0,0824	0,1044
8		0,0001	0,0009	0,0031	0,0081	0,0169	0,0298	0,0463	0,0653
9			0,0002	0,0009	0,0027	0,0066	0,0132	0,0232	0,0363
10				0,0002	0,0008	0,0023	0,0053	0,0104	0,0181
11					0,0002	0,0007	0,0019	0,0043	0,0082
12					0,0001	0,0002	0,0006	0,0016	0,0034
13						0,0001	0,0002	0,0006	0,0013
							0,0001	0.0002	0,0005
14							0,0001	0,0002	
							0,0001	0,0002	0,0003

FIGURE 13 – Tables de la loi de Poisson $\mathcal{P}(\lambda)$: $\mathbb{P}(X=x) = \frac{\lambda^x}{x!}e^{-\lambda}$

χ λ	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5
0	0,0041	0,0025	0,0015	0,0009	0,0006	0,0003	0,0002	0,0001	0,0001
1	0,0225	0,0149	0,0098	0,0064	0,0041	0,0027	0,0017	0,0011	0,0007
2	0,0618	0,0446	0,0318	0,0223	0,0156	0,0107	0,0074	0,0050	0,0034
3	0,1133	0,0892	0,0688	0,0521	0,0389	0,0286	0,0208	0,0150	0,0107
4	0,1558	0,1339	0,1118	0,0912	0,0729	0,0573	0,0443	0,0337	0,0254
5	0,1714	0,1606	0,1454	0,1277	0,1094	0,0916	0,0752	0,0607	0,0483
6	0,1571	0,1606	0,1575	0,1490	0,1367	0,1221	0,1066	0,0911	0,0764
7	0,1234	0,1377	0,1462	0,1490	0,1465	0,1396	0,1294	0,1171	0,1037
8	0,0849	0,1033	0,1188	0,1304	0,1373	0,1396	0,1375	0,1318	0,1232
9	0,0519	0,0688	0,0858	0,1014	0,1144	0,1241	0,1299	0,1318	0,1300
10	0,0285	0,0413	0,0558	0,0710	0,0858	0,0993	0,1104	0,1186	0,1235
11	0,0143	0,0225	0,0330	0,0452	0,0585	0,0722	0,0853	0,0970	0,1067
12	0,0065	0,0113	0,0179	0,0263	0,0366	0,0481	0,0604	0,0728	0,0844
13	0,0028	0,0052	0,0089	0,0142	0,0211	0,0296	0,0395	0,0504	0,0617
14	0,0011	0,0022	0,0041	0,0071	0,0113	0,0169	0,0240	0,0324	0,0419
15	0,0004	0,0009	0,0018	0,0033	0,0057	0,0090	0,0136	0,0194	0,0265
16	0,0001	0,0003	0,0007	0,0014	0,0026	0,0045	0,0072	0,0109	0,0157
17		0,0001	0,0003	0,0006	0,0012	0,0021	0,0036	0,0058	0,0088
18			0,0001	0,0002	0,0005	0,0009	0,0017	0,0029	0,0046
19				0,0001	0,0002	0,0004	0,0008	0,0014	0,0023
20					0,0001	0,0002	0,0003	0,0006	0,0011
21						0,0001	0,0001	0,0003	0,0005
22							0,0001	0,0001	0,0002
23									0,0001

FIGURE 14 – Tables de la loi de Poisson $\mathcal{P}(\lambda)$: $\mathbb{P}(X=x) = \frac{\lambda^x}{x!}e^{-\lambda}$

	10.0	11.0	12.0	12.0	14.0	15.0	16.0	17.0	10.0
χ λ	10,0	11,0	12,0	13,0	14,0	15,0	16,0	17,0	18,0
0									
1	0,0005	0,0002	0,0001						
2	0,0023	0,0010	0,0004	0,0002	0,0001				
3	0,0076	0,0037	0,0018	0,0008	0,0004	0,0002	0,0001		
4	0,0189	0,0102	0,0053	0,0027	0,0013	0,0006	0,0003	0,0001	0,0001
5	0,0378	0,0224	0,0127	0,0070	0,0037	0,0019	0,0010	0,0005	0,0002
6	0,0631	0,0411	0,0255	0,0152	0,0087	0,0048	0,0026	0,0014	0,0007
7	0,0901	0,0646	0,0437	0,0281	0,0174	0,0104	0,0060	0,0034	0,0019
8	0,1126	0,0888	0,0655	0,0457	0,0304	0,0194	0,0120	0,0072	0,0042
9	0,1251	0,1085	0,0874	0,0661	0,0473	0,0324	0,0213	0,0135	0,0083
10	0,1251	0,1194	0,1048	0,0859	0,0663	0,0486	0,0341	0,0230	0,0150
11	0,1137	0,1194	0,1144	0,1015	0,0844	0,0663	0,0496	0,0355	0,0245
12	0,0948	0,1094	0,1144	0,1099	0,0984	0,0829	0,0661	0,0504	0,0368
13	0,0729	0,0926	0,1056	0,1099	0,1060	0,0956	0,0814	0,0658	0,0509
14	0,0521	0,0728	0,0905	0,1021	0,1060	0,1024	0,0930	0,0800	0,0655
15	0,0347	0,0534	0,0724	0,0885	0,0989	0,1024	0,0992	0,0906	0,0786
16	0,0217	0,0367	0,0543	0,0719	0,0866	0,0960	0,0992	0,0963	0,0884
17	0,0128	0,0237	0,0383	0,0550	0,0713	0,0847	0,0934	0,0963	0,0936
18	0,0071	0,0145	0,0255	0,0397	0,0554	0,0706	0,0830	0,0909	0,0936
19	0,0037	0,0084	0,0161	0,0272	0,0409	0,0557	0,0699	0,0814	0,0887
20	0,0019	0,0046	0,0097	0,0177	0,0286	0,0418	0,0559	0,0692	0,0798
21	0,0009	0,0024	0,0055	0,0109	0,0191	0,0299	0,0426	0,0560	0,0684
22	0,0004	0,0012	0,0030	0,0065	0,0121	0,0204	0,0310	0,0433	0,0560
23	0,0002	0,0006	0,0016	0,0037	0,0074	0,0133	0,0216	0,0320	0,0438
24	0,0001	0,0003	0,0008	0,0020	0,0043	0,0083	0,0144	0,0226	0,0328
25		0,0001	0,0004	0,0010	0,0024	0,0050	0,0092	0,0154	0,0237
26			0,0002	0,0005	0,0013	0,0029	0,0057	0,0101	0,0164
27			0,0001	0,0002	0,0007	0,0016	0,0034	0,0063	0,0109
28				0,0001	0,0003	0,0009	0,0019	0,0038	0,0070
29				0,0001	0,0002	0,0004	0,0011	0,0023	0,0044
30					0,0001	0,0002	0,0006	0,0013	0,0026
31						0,0001	0,0003	0,0007	0,0015
32						0,0001	0,0001	0,0004	0,0009
33							0,0001	0,0002	0,0005
34								0,0001	0,0002
35				4	1				0,0001
36				-4	1				0,0001

FIGURE 15 – Tables de la loi de Poisson $\mathcal{P}(\lambda)$: $\mathbb{P}(X=x) = \frac{\lambda^x}{x!}e^{-\lambda}$

X	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45
0	0,9512	0,9048	0,8607	0,8187	0,7788	0,7408	0,7047	0,6703	0,6376
1	0,9988	0,9953	0,9898	0,9825	0,9735	0,9631	0,9513	0,9384	0,9246
2	1,0000	0,9998	0,9995	0,9989	0,9978	0,9964	0,9945	0,9921	0,9891
3		1,0000	1,0000	0,9999	0,9999	0,9997	0,9995	0,9992	0,9988
4				1,0000	1,0000	1,0000	1,0000	0,9999	0,9999
5									1,0000
χ λ	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90
0	0,6065	0,5769	0,5488	0,5220	0,4966	0,4724	0,4493	0,4274	0,4066
1	0,9098	0,8943	0,8781	0,8614	0,8442	0,8266	0,8088	0,7907	0,7725
2	0,9856	0,9815	0,9769	0,9717	0,9659	0,9595	0,9526	0,9451	0,9371
3	0,9982	0,9975	0,9966	0,9956	0,9942	0,9927	0,9909	0,9889	0,9865
4	0,9998	0,9997	0,9996	0,9994	0,9992	0,9989	0,9986	0,9982	0,9977
5	1,0000	1,0000	1,0000	0,9999	0,9999	0,9999	0,9998	0,9997	0,9997
6				1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
									-
_									
χ λ	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
$\frac{\lambda}{0}$	1,0 0,3679	1,5 0,2231	2,0 0,1353	2,5 0,0821	3,0 0,0498	3,5 0,0302	0,0183	4,5 0,0111	5,0 0,0067
_		0,2231 0,5578							
0	0,3679	0,2231	0,1353	0,0821	0,0498	0,0302	0,0183 0,0916 0,2381	0,0111	0,0067
0	0,3679 0,7358 0,9197 0,9810	0,2231 0,5578 0,8088 0,9344	0,1353 0,4060	0,0821 0,2873 0,5438 0,7576	0,0498 0,1991	0,0302 0,1359	0,0183 0,0916	0,0111 0,0611 0,1736 0,3423	0,0067 0,0404 0,1247 0,2650
0 1 2 3 4	0,3679 0,7358 0,9197 0,9810 0,9963	0,2231 0,5578 0,8088 0,9344 0,9814	0,1353 0,4060 0,6767 0,8571 0,9473	0,0821 0,2873 0,5438 0,7576 0,8912	0,0498 0,1991 0,4232 0,6472 0,8153	0,0302 0,1359 0,3208 0,5366 0,7254	0,0183 0,0916 0,2381 0,4335 0,6288	0,0111 0,0611 0,1736 0,3423 0,5321	0,0067 0,0404 0,1247 0,2650 0,4405
0 1 2 3 4 5	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160
0 1 2 3 4 5 6	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622
0 1 2 3 4 5 6 7	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666
0 1 2 3 4 5 6 7	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319
0 1 2 3 4 5 6 7 8	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9989 0,9997	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682
0 1 2 3 4 5 6 7 8 9	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9999 0,9997	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967 0,9990	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829 0,9933	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863
0 1 2 3 4 5 6 7 8 9	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9989 0,9997	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997 0,9999	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967 0,9990 0,9997	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919 0,9972 0,9991	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829 0,9933 0,9976	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945
0 1 2 3 4 5 6 7 8 9 10 11 12	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9999 0,9997	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967 0,9990 0,9997 0,9999	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919 0,9972 0,9991	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829 0,9933 0,9976 0,9992	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945 0,9980
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9989 0,9997 0,9999 1,0000	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997 0,9999 1,0000	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967 0,9990 0,9997	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919 0,9972 0,9991 0,9997	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829 0,9933 0,9976 0,9992	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945 0,9980 0,9993
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9989 0,9997 0,9999 1,0000	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997 0,9999	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967 0,9990 0,9997 0,9999	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919 0,9972 0,9991	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829 0,9933 0,9976 0,9992 0,9997	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945 0,9980 0,9993 0,9998
0 1 2 3 4 5 6 7 8 9 10 11 12 13	0,3679 0,7358 0,9197 0,9810 0,9963 0,9994 0,9999	0,2231 0,5578 0,8088 0,9344 0,9814 0,9955 0,9991 0,9998	0,1353 0,4060 0,6767 0,8571 0,9473 0,9834 0,9955 0,9989	0,0821 0,2873 0,5438 0,7576 0,8912 0,9580 0,9858 0,9958 0,9989 0,9997 0,9999 1,0000	0,0498 0,1991 0,4232 0,6472 0,8153 0,9161 0,9665 0,9881 0,9962 0,9989 0,9997 0,9999 1,0000	0,0302 0,1359 0,3208 0,5366 0,7254 0,8576 0,9347 0,9733 0,9901 0,9967 0,9990 0,9997 0,9999	0,0183 0,0916 0,2381 0,4335 0,6288 0,7851 0,8893 0,9489 0,9786 0,9919 0,9972 0,9991 0,9997	0,0111 0,0611 0,1736 0,3423 0,5321 0,7029 0,8311 0,9134 0,9597 0,9829 0,9933 0,9976 0,9992	0,0067 0,0404 0,1247 0,2650 0,4405 0,6160 0,7622 0,8666 0,9319 0,9682 0,9863 0,9945 0,9980 0,9993

FIGURE 16 – Tables de la fonction de répartition loi de Poisson $\mathcal{P}(\lambda)$: $\mathbb{P}(X \leq x) = \sum_{i=1}^{x} \frac{\lambda^{i}}{i!} e^{-\lambda}$

χ λ	5,5	6,0	6,5	7,0	7,5	8,0	8,5	9,0	9,5
0	0,0041	0,0025	0,0015	0,0009	0,0006	0,0003	0,0002	0,0001	0,0001
1	0,0266	0,0174	0,0113	0,0073	0,0047	0,0030	0,0019	0,0012	0,0008
2	0,0884	0,0620	0,0430	0,0296	0,0203	0,0138	0,0093	0,0062	0,0042
3	0,2017	0,1512	0,1118	0,0818	0,0591	0,0424	0,0301	0,0212	0,0149
4	0,3575	0,2851	0,2237	0,1730	0,1321	0,0996	0,0744	0,0550	0,0403
5	0,5289	0,4457	0,3690	0,3007	0,2414	0,1912	0,1496	0,1157	0,0885
6	0,6860	0,6063	0,5265	0,4497	0,3782	0,3134	0,2562	0,2068	0,1649
7	0,8095	0,7440	0,6728	0,5987	0,5246	0,4530	0,3856	0,3239	0,2687
8	0,8944	0,8472	0,7916	0,7291	0,6620	0,5925	0,5231	0,4557	0,3918
9	0,9462	0,9161	0,8774	0,8305	0,7764	0,7166	0,6530	0,5874	0,5218
10	0,9747	0,9574	0,9332	0,9015	0,8622	0,8159	0,7634	0,7060	0,6453
11	0,9890	0,9799	0,9661	0,9467	0,9208	0,8881	0,8487	0,8030	0,7520
12	0,9955	0,9912	0,9840	0,9730	0,9573	0,9362	0,9091	0,8758	0,8364
13	0,9983	0,9964	0,9929	0,9872	0,9784	0,9658	0,9486	0,9261	0,8981
14	0,9994	0,9986	0,9970	0,9943	0,9897	0,9827	0,9726	0,9585	0,9400
15	0,9998	0,9995	0,9988	0,9976	0,9954	0,9918	0,9862	0,9780	0,9665
16	0,9999	0,9998	0,9996	0,9990	0,9980	0,9963	0,9934	0,9889	0,9823
17	1,0000	0,9999	0,9998	0,9996	0,9992	0,9984	0,9970	0,9947	0,9911
18		1,0000	0,9999	0,9999	0,9997	0,9993	0,9987	0,9976	0,9957
19			1,0000	1,0000	0,9999	0,9997	0,9995	0,9989	0,9980
20					1,0000	0,9999	0,9998	0,9996	0,9991
21						1,0000	0,9999	0,9998	0,9996
22							1,0000	0,9999	0,9999
23								1,0000	0,9999
24									1,0000

FIGURE 17 – Tables de la fonction de répartition loi de Poisson $\mathcal{P}(\lambda)$: $\mathbb{P}(X \leq x) = \sum_{i=1}^{x} \frac{\lambda^{i}}{i!} e^{-\lambda}$

_ ^	10,0	11,0	12,0	13,0	14,0	15,0	16,0	17,0	18,0
$x \lambda$									
1	0,0005	0,0002	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,0028	0,0012	0,0005	0,0002	0,0001	0,0000	0,0000	0,0000	0,0000
3	0,0103	0,0049	0,0023	0,0011	0,0005	0,0002	0,0001	0,0000	0,0000
4	0,0293	0,0151	0,0076	0,0037	0,0018	0,0009	0,0004	0,0002	0,0001
5	0,0671	0,0375	0,0203	0,0107	0,0055	0,0028	0,0014	0,0007	0,0003
6	0,1301	0,0786	0,0458	0,0259	0,0142	0,0076	0,0040	0,0021	0,0010
7	0,2202	0,1432	0,0895	0,0540	0,0316	0,0180	0,0100	0,0054	0,0029
8	0,3328	0,2320	0,1550	0,0998	0,0621	0,0374	0,0220	0,0126	0,0071
9	0,4579	0,3405	0,2424	0,1658	0,1094	0,0699	0,0433	0,0261	0,0154
10	0,5830	0,4599	0,3472	0,2517	0,1757	0,1185	0,0774	0,0491	0,0304
11	0,6968	0,5793	0,4616	0,3532	0,2600	0,1848	0,1270	0,0847	0,0549
12	0,7916	0,6887	0,5760	0,4631	0,3585	0,2676	0,1931	0,1350	0,0917
13	0,8645	0,7813	0,6815	0,5730	0,4644	0,3632	0,2745	0,2009	0,1426
14	0,9165	0,8540	0,7720	0,6751	0,5704	0,4657	0,3675	0,2808	0,2081
15	0,9513	0,9074	0,8444	0,7636	0,6694	0,5681	0,4667	0,3715	0,2867
16	0,9730	0,9441	0,8987	0,8355	0,7559	0,6641	0,5660	0,4677	0,3751
17	0,9857	0,9678	0,9370	0,8905	0,8272	0,7489	0,6593	0,5640	0,4686
18	0,9928	0,9823	0,9626	0,9302	0,8826	0,8195	0,7423	0,6550	0,5622
19	0,9965	0,9907	0,9787	0,9573	0,9235	0,8752	0,8122	0,7363	0,6509
20	0,9984	0,9953	0,9884	0,9750	0,9521	0,9170	0,8682	0,8055	0,7307
21	0,9993	0,9977	0,9939	0,9859	0,9712	0,9469	0,9108	0,8615	0,7991
22	0,9997	0,9990	0,9970	0,9924	0,9833	0,9673	0,9418	0,9047	0,8551
23	0,9999	0,9995	0,9985	0,9960	0,9907	0,9805	0,9633	0,9367	0,8989
24	1,0000	0,9998	0,9993	0,9980	0,9950	0,9888	0,9777	0,9594	0,9317
25	1,0000	0,9999	0,9997	0,9990	0,9974	0,9938	0,9869	0,9748	0,9554
26	1,0000	1,0000	0,9999	0,9995	0,9987	0,9967	0,9925	0,9848	0,9718
27	1,0000	1,0000	0,9999	0,9998	0,9994	0,9983	0,9959	0,9912	0,9827
28	1,0000	1,0000	1,0000	0,9999	0,9997	0,9991	0,9978	0,9950	0,9897
29	1,0000	1,0000	1,0000	1,0000	0,9999	0,9996	0,9989	0,9973	0,9941
30	1,0000	1,0000	1,0000	1,0000	0,9999	0,9998	0,9994	0,9986	0,9967
31	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9997	0,9993	0,9982
32	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9996	0,9990
33	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9998	0,9995
34	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999	0,9998
35	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	0,9999
36	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

FIGURE 18 – Tables de la fonction de répartition loi de Poisson $\mathcal{P}(\lambda)$: $\mathbb{P}(X \leq x) = \sum_{i=1}^{x} \frac{\lambda^{i}}{i!} e^{-\lambda}$