Hypothesis Testing I

In Bayesian inference, hypotheses are represented by prior distributions. There is nothing special about ${\cal H}_0$, and ${\cal H}_0$ and ${\cal H}_1$ need not be nested.

Let $\pi(\theta|H_0)$, $\theta \in \Theta_0$ be the prior distribution of θ under hypothesis H_0 . Here $\pi(\theta|H_0)$ is a pmf/pfd as $\theta|H_0$ is continuous/discrete.

Composite $H_0: \theta \in \Theta_0$, with $\Theta_0 \subset \Theta$,

$$\pi(\theta|H_0) = \frac{\pi(\theta)}{\pi(\theta \in \Theta_0)} \mathbb{I}(\theta \in \Theta_0)$$

If Θ_0 has more than one element then H_0 is a composite hypothesis.

Simple $H_0: \theta=\theta_0$, so that $\pi(\theta_0|H_0)=1$. This is a simple hypothesis.

However, since any statement about the form of the prior amounts to a hypothesis about θ , we are not restricted to statements about set membership (not just simple and composite).

Example 1 In a quality inspection program components are selected at random from a batch and tested. Let θ denote the failure probability. Suppose that we want to test for $H_0: \theta \leq 0.2$ against $H_1: \theta > 0.2$ and that the prior is $\theta \sim \text{Beta}(2,5)$ so that

$$\pi(\theta) = 30\theta(1-\theta)^4, \ 0 < \theta < 1.$$

Now if $\pi(H_0)=\pi(\theta\in\Theta_0)$ then $\pi(H_0)=\int_0^{0.2}30\theta(1-\theta)^4d\theta$ so that $\pi(H_0)\simeq0.345$ and $\pi(H_0)\simeq1-0.345$ so

$$\pi(\theta|H_0) = \frac{30\theta(1-\theta)^4}{\pi(H_0)}, \ 0 < \theta \le 0.2$$

and

$$\pi(\theta|H_1) = \frac{30\theta(1-\theta)^4}{\pi(H_1)}, \ 0.2 < \theta < 1$$

Marginal Likelihood

 $P(x|H_0)$ is called the marginal likelihood (for hypothesis H_0). We can think of a parameter $H \in \{H_0, H_1\}$, with likelihood P(x|H), prior P(H) and posterior P(H|x).

By the partition theorem for probability $(\pi(\theta|H_0))$ a pdf, say)

$$P(x|H_0) = \int_{\Theta_0} P(x|\theta, H_0) P(\theta|H_0) d\theta$$
$$= \int_{\Theta_0} L(\theta; x) \pi(\theta|H_0) d\theta,$$

since, given θ , x is determined by the observation model, and independent of the process (H_0) that generated θ .

In the discrete case

$$P(x|H_0) = \sum_{\theta \in \Theta_0} L(\theta; x) \pi(\theta|H_0).$$

In the special case that H_0 is a simple hypothesis $\Theta_0=\{\theta_0\}$, $\pi(\theta_0|H_0)=1$, and

$$P(x|H_0) = L(\theta_0; x).$$

Example 1 (cont) In the quality inspection program suppose n components are selected for independent testing. The number X that fail is $X \sim \text{Binomial}(n,\theta)$. Recall $H_0: \theta \leq 0.2$ with $\theta \sim \text{Beta}(2,5)$ in the prior.

The marginal likelihood for H_0 is

$$P(x|H_0) = \int_{\Theta_0} L(\theta; x) \pi(\theta|H_0) d\theta$$
$$= {5 \choose x} \int_0^{0.2} \theta^x (1-\theta)^{n-x} \frac{30\theta(1-\theta)^4}{\pi(H_0)} d\theta$$

For one batch of size n=5, X=0 is observed. Recall that

 $\pi(H_0) \simeq 0.345$. Then

$$P(x|H_0) = {5 \choose 0} \int_0^{0.2} \frac{30\theta (1-\theta)^9}{\pi (H_0)} d\theta$$
$$\simeq 0.185/0.345 = 0.536.$$

Similarly, for $H_1: \theta > 0.2$

$$P(x|H_1) = {5 \choose 0} \int_{0.2}^{1} \frac{30\theta(1-\theta)^9}{\pi(H_1)} d\theta$$

\$\sim 0.134.

Notice (skip this slide at first reading) that

(i)

$$P(x|H_0) = \mathbb{E}(L(\vartheta;x)|H_0),$$

that is, the marginal likelihood is the average likelihood given the prior $\pi(\theta|H_0)$, and

(ii) the marginal likelihood is the normalizing constant we often leave off when we write the posterior

$$\pi(\theta|x, H_0) = \frac{L(\theta; x)\pi(x|H_0)}{P(x|H_0)},$$

$$posterior = \frac{likelihood \times prior}{marginal\ likelihood},$$

Prior and Posterior Probabilities for Hypotheses

We have a posterior probability for H_0 itself. This is actually where we started with Bayesian inference. In the simple case where we have two hypotheses H_0 , H_1 , exactly one of which is true,

$$P(H_0 \mid x) = \frac{P(H_0)P(x \mid H_0)}{P(x)},$$

where

$$P(x) = P(H_0)P(x \mid H_0) + P(H_1)P(x \mid H_1)$$
 so that
$$P(H_0 \mid x) + P(H_1 \mid x) = 1.$$

When we estimate the value of a discrete parameter $H \in \{H_0, H_1\}$, we are making a Bayesian hypothesis test.

Example 1 (cont) $X \sim \text{Binomial}(5,\theta)$ with $\theta \sim \text{Beta}(2,5)$ in the prior and $H_0: \theta \leq 0.2$ and $H_1: \theta > 0.2$. The posterior probability for H_0 given we observe X=0 is

$$P(H_0|x) = \frac{P(x|H_0)P(H_0)}{P(x)}$$

$$P(H_0) = \frac{P(\theta \in \Theta_0)}{(P(\theta \in \Theta_0) + P(\theta \in \Theta_1))} = \pi(H_0)$$

$$P(x|H_0)\pi(H_0) \simeq 0.185$$

$$P(x|H_1)\pi(H_1) \simeq 0.088$$

$$P(x) \simeq P(x|H_0)P(H_0) + P(x|H_1)P(H_1)$$

$$\simeq 0.273$$

$$P(H_0|x) \simeq 0.185/0.273$$

$$= 0.678$$

$$P(H_1|x) \simeq 0.322$$

Hypothesis Testing II, Bayes factors: Suppose we have two hypotheses H_0 , H_1 , exactly one of which is true. Data x.

The Prior Odds

$$Q = \frac{P[H_0]}{P[H_1]}$$

These are prior odds since $P[H_1] = 1 - P[H_0]$. Here H_0 is Q times more probable than H_1 , given the prior model.

The Posterior Odds

$$Q^* = \frac{P[H_0 \mid x]}{P[H_1 \mid x]}$$

are the posterior odds, so that H_0 is Q^* times more probable than H_1 , given the data and prior model.

The posterior odds for H_0 against H_1 can be written

$$Q^* = \frac{P[H_0]}{P[H_1]} \times \frac{P(x \mid H_0)}{P(x \mid H_1)} = Q \times B$$

where Q is the prior odds and

$$B = \frac{P(x \mid H_0)}{P(x \mid H_1)}$$

is the Bayes Factor.

The Bayes Factor is a criterion for model comparison since H_0 is B times more probable than H_1 , given the data and a prior model which puts equal probability on H_0 and H_1 . The Bayes factor tells us how the data shifts the strength of belief (measured as a probability) in H_0 relative to H_1 .

Example 1 (cont) $X \sim \text{Binomial}(5, \theta)$ with $\theta \sim \text{Beta}(2, 5)$ in the prior and $H_0: \theta \leq 0.2$ and $H_1: \theta > 0.2$.

The prior odds are

$$Q = P(H_0)/P(H_1)$$

 $\simeq 0.345/(1-0.345) \simeq 0.527$

The posterior odds are

$$Q^* = P(H_0|x)/P(H_1|x)$$

 $\simeq 0.678/(1 - 0.678) \simeq 2.1$

The Bayes factor comparing H_0 and H_1 is

$$B = \frac{P(x|H_0)}{P(x|H_1)}$$

$$\simeq 0.536/0.134 = 4$$

Explicitly, from the beginning,

$$B = \frac{\int_{\Theta_0} L(x;\theta)\pi(\theta|H_0)d\theta}{\int_{\Theta_1} L(x;\theta)\pi(\theta|H_1)d\theta}$$

$$= \frac{\int_{\Theta_0} L(x;\theta)\pi(\theta)d\theta}{\int_{\Theta_1} L(x;\theta)\pi(\theta)d\theta} \times \frac{\pi(H_1)}{\pi(H_0)}$$

$$= \frac{\binom{5}{0}\int_0^{0.2} 30\theta(1-\theta)^9 d\theta}{\binom{5}{0}\int_{0.2}^{1} 30\theta(1-\theta)^4 d\theta}$$

$$= \frac{(5)\int_0^{0.2} 30\theta(1-\theta)^9 d\theta}{\int_0^{0.2} 30\theta(1-\theta)^4 d\theta}$$

This is 'positive' evidence for $\theta \leq 0.2$. Notice that the Bayes factor is 'more positive' than the posterior odds, as the prior odds were weighted against H_0 .

Adrian Raftery gives this table (values are approximate, and adapted from a table due to Jeffreys) interpreting B.

$P(H_0 x)$	В	$2\log(B)$	evidence for $H_{ m 0}$
< 0.5	< 1	< 0	negative (supports H_1)
0.5 to 0.75	1 to 3	0 to 2	barely worth mentioning
0.75 to 0.92	3 to 12	2 to 5	positive
0.92 to 0.99	12 to 150	5 to 10	strong
> 0.99	> 150	> 10	very strong

I added the leftmost column (posterior for prior odds equal one). We sometimes report $2\log(B)$ because it is on the same scale as the familiar deviance and likelihood ratio test statistic.

Simple-Simple and Simple-Composite hypothesis

If both hypotheses are simple $H_0: \theta=\theta_0;\ H_1: \theta=\theta_1$, with priors $P(H_0)$ and $P(H_1)$ for the two hypotheses, the posterior probability for H_0 is

$$P(H_0|x) = \frac{P(x|H_0)P(H_0)}{P(x)}$$

$$= \frac{L(\theta_0; x)P(H_0)}{L(\theta_0; x)P(H_0) + L(\theta_1; x)P(H_1)},$$

since $P(x|H_0)$ is just $L(\theta_0;x)$. The Bayes factor is then just likelihood ratio

$$B = \frac{L(\theta_0; x)}{L(\theta_1; x)}.$$

If one hypothesis is simple and the other composite, for example, $H_0: \theta = \theta_0$; $H_1: \pi(\theta|H_1), \ \theta \in \Theta$, with priors $P(H_0)$ and $P(H_1)$ for the two hypotheses, the Bayes factor is

$$B = \frac{L(x; \theta_0)}{\int_{\Theta} L(x; \theta) \pi(\theta | H_1) d\theta}$$

The denominator is just $\int_{\Theta} L(x;\theta)\pi(\theta)d\theta$ when $\pi(\theta|H_1)$ is a pdf.

Exercise Show that the posterior probability for H_0 is

$$P(H_0|x) = \frac{L(\theta_0; x) P(H_0)}{P(H_0) L(\theta_0; x) + P(H_1) \int_{\Theta} L(x; \theta) \pi(\theta) d\theta}$$

when $\pi(\theta|H_1)$ is a pdf, in this simple-composite comparison.

Example X_1, \ldots, X_n are iid $N(\theta, \sigma^2)$, with σ^2 known. $H_0: \theta = 0, H_1: \theta | H_1 \sim N(\mu, \tau^2)$. Bayes factor is P_0/P_1 , where

$$P_{0} = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum x_{i}^{2}\right)$$

$$P_{1} = (2\pi\sigma^{2})^{-n/2} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}} \sum (x_{i} - \theta)^{2}\right)$$

$$\times (2\pi\tau^{2})^{-1/2} \exp\left(-\frac{(\theta - \mu)^{2}}{2\tau^{2}}\right) d\theta.$$

Completing the square in P_1 and integrating d heta,

$$P_{1} = (2\pi\sigma^{2})^{-n/2} \left(\frac{\sigma^{2}}{n\tau^{2} + \sigma^{2}} \right)^{1/2}$$

$$\times \exp\left[-\frac{1}{2} \left\{ \frac{n}{n\tau^{2} + \sigma^{2}} (\bar{x} - \mu)^{2} + \frac{1}{\sigma^{2}} \sum (x_{i} - \bar{x})^{2} \right\} \right]$$

so that

$$B = \left(1 + \frac{n\tau^2}{\sigma^2}\right)^{1/2} \exp\left[-\frac{1}{2}\left\{\frac{n\bar{x}^2}{\sigma^2} - \frac{n}{n\tau^2 + \sigma^2}(\bar{x} - \mu)^2\right\}\right]$$

Defining $t=\sqrt{n}\bar{x}/\sigma, \eta=-\mu/\tau, \rho=\sigma/(\tau\sqrt{n})$, this can be written as

$$B = \left(1 + \frac{1}{\rho^2}\right)^{1/2} \exp\left[-\frac{1}{2} \left\{ \frac{(t - \rho \eta)^2}{1 + \rho^2} - \eta^2 \right\} \right]$$

This example illustrates a problem choosing the prior. If we take a diffuse prior, for ρ so that $\rho \to 0$, then $B \to \infty$, giving overwelming support for H_0 .

This is an instance of Lindley's paradox. The point here is that B compares the models $\theta=\theta_0$ and $\theta\sim\pi(\cdot|H_1)$, not the sets

 θ_0 against $\theta \setminus \{\theta_0\}$. If the $\pi(\theta|H_1)$ -prior becomes very diffuse then the *average* likelihood (ie $P(H_1|x)$, the marginal likelihood, which is the denominator of B) goes to zero, while $P(H_0|x) = L(\theta_0;x)$ is fixed.

Decision Theory (see Young and Smith 2005, Ch 2, GJJ Ch 6)

Decision Theory sits 'above' Bayesian and classical statistical inference and gives us a basis to compare different approaches to statistical inference.

We make decisions by applying rules to data. Decisions are subject to risk. A risk function specifies the expected loss which follows from the application of a given rule, and this is a basis for comparing rules. We may choose a rule to minimize the maximum risk, or we may choose a rule to minimize the average risk.

Decision Theory Terminology (examples from Point Estimation)

 θ is the 'true state of nature', $X \sim f(x;\theta)$ is the data.

The Decision rule is δ . If X=x, adopt the action $\delta(x)$ given by the rule.

Example: A single parameter θ is estimated from data X=x by $\widehat{\theta}(x)$. The rule $\widehat{\theta}$ is the functional form of the estimator, it's value, the action.

The Loss function $L_S(\theta,\delta(x))$ measures the loss from action $\delta(x)$ when θ holds.

Example: $L_S(\theta, \widehat{\theta}(x))$ is the loss function which increases for $\widehat{\theta}(x)$ being away from θ . Here are three common loss functions.

1. Zero-One loss

$$L_S(\theta, \widehat{\theta}(x)) = \begin{cases} 0 & |\widehat{\theta}(x) - \theta| < b \\ a & |\widehat{\theta}(x) - \theta| \ge b \end{cases}$$

where a, b are constants.

2. Absolute error loss

$$L_S(\theta, \widehat{\theta}(x)) = a|\widehat{\theta}(x) - \theta|$$

where a > 0.

3. Quadratic loss

$$L_S(\theta, \widehat{\theta}(x)) = (\widehat{\theta}(x) - \theta)^2.$$

Definition The risk function $R(\theta, \delta)$ is defined as

$$R(\theta, \delta) = \int L_S(\theta, \delta(x)) f(x; \theta) dx,$$

ie, the expected loss.

Example: in the context of point estimation, with Quadratic Loss, the risk function is the mean square error,

$$R(\theta, \widehat{\theta}) = \mathbb{E}[(\widehat{\theta}(X) - \theta)^2].$$

Definition A procedure δ_1 is inadmissible if there exists another procedure δ_2 such that

$$R(\theta, \delta_1) \ge R(\theta, \delta_2)$$
, for all $\theta \in \Theta$

with $R(\theta, \delta_1) > R(\theta, \delta_2)$ for at least some θ . A procedure which is not inadmissible is admissible.

Example: suppose $X \sim U(0,\theta)$. Consider estimators of the form $\widehat{\theta}(x) = ax$ (this is a family of decisions rules indexed by a). Show that a=3/2 is a necessary condition for the rule $\widehat{\theta}$ to be admissible for quadratic loss.

$$R(\theta, \widehat{\theta}) = \int_0^{\theta} (ax - \theta)^2 \frac{1}{\theta} dx$$
$$= (a^2/3 - a + 1)\theta^2$$

and R is minimized at a=3/2. This does not show $\widehat{\theta}(x)=3x/2$ is admissible here. It does show that if a takes any other value then $\widehat{\theta}(x)=ax$ is not admissible.