Algebras and Fixpoints: Recursion Non-Recursively!

Who am I?

David Barri. Hi!

Github: japgolly

Twitter: @japgolly

Programming 28 years.

Scala & FP: 4 years. (14%)

What'cha workin' on?

- ShipReq: Software requirements startup.
- Open Source: github.com/japgolly
 - scalajs-react
 - scalajs-benchmark
 - ScalaCSS
 - Test State
 - Nyaya
 - univeq
 - o microlibs

FP = Amazing

Great experience.

My startup & OSS is all FP.

Humbling. Can do so much with so little.

$$S \Rightarrow (S, A)$$

 $F[A] \Rightarrow A$

Quick Foreward

Who knows how to write a red-black tree?

Quick Foreward

- Who knows how to use Map or Set?
- Who finds they get benefit when using Map or Set?

Quick Foreward

Of the things I'll present tonight,

if you leave not understanding **how/why it works**, that's ok. It might take a few attempts; explore later at your leisure.

More important to understand how to use it for your benefit.

Structure

- 1. When/where should I use this stuff?
- 2. Really awesome thing.
- 3. Really awesome thing backwards!
- 4. Two extensions.
- 5. Example & live demo.
- 6. Summary & resources.

Recursive Data

Often pops up in my experience.

What is it?

What are some examples?

Where is this talk applicable?

• Use cases

```
1.0. Create account.
1.0.1. System prompts for username & password.
1.0.2. User enters details.
1.0.2.a. User says "der I'm a user"
1.0.2.b. User mashes keyboard.
1.0.3. System crashes cos actors have no type safety.
Goto 1.0.1.
```

• Filter expression

```
type != blah and (active || foo == bar)
```

• Trie (Prefix tree)

```
com.blah.cool_library
com.blah.cool_library.dao
com.blah.cool_library.lib
com.blah.cool_library.util
```

modeled as:

```
com
blah
cool_library
dao
lib
util
```

• Self-referential many-to-many relationship.

Focus on a node, get a recursive tree of children or parents.

Recursive Data

• Nyaya (OSS): properties

```
eg. P = A \wedge \neg B \wedge (C \rightarrow D)
```

• Test-State (OSS): actions, properties, assertions.

```
eg. getMilk = fridge.open >> take(milk) >>= drink >> fridge.close
```

That's me just recently. Quite common.

Everyday Recursive Data Types

- Linked lists
- Maps, sets
- JSON

Why is recursive data useful?

- Models reality
 - o FriendBook: My friends have friends who have friends who have friends...
 - File system: directories have directories which have directories...

Why is recursive data useful?

- Efficiency
 - Time hashmap, binary search
 - Space trie, interval trees

Typical Recursive Model

Calculator example.

```
sealed trait Calc
case class Number (i: Int) extends Calc
case class Add (a: Calc, b: Calc) extends Calc
case class Multiply(a: Calc, b: Calc) extends Calc
// 1 + 2
Add(
  Number(1),
  Number(2))
// 3 * (1 + 2)
Multiply(
  Number(3),
  Add(
   Number(1),
   Number(2)))
```

Problem #1

No control over the recursion.

It's hardcoded to be always recursive, and always infinitely.

Can't abstract, define depth.

Problem #2

Recursion is usually hard. Often requires practice.

Non-recursion easier than recursion.

Problem #3

Can't annotate nodes.

No annotations

Annotated with IDs

Calculator annotated with logging:

How would we allow **any** annotation to our calculator?

```
sealed abstract class Calc[A] {
 val ann: A
case class Add [A](ann: A, a: Calc[A], b: Calc[A]) extends Calc[A]
case class Multiply[A](ann: A, a: Calc[A], b: Calc[A]) extends Calc[A]
// 3 * (1 + 2)
Multiply("3 * (1 + 2)",
 Number("3", 3),
 Add("(1 + 2)",
   Number("1", 1),
   Number("2", 2)))
```

Is there a better way? 🦻

Step 1: Generalise the recursive-type.

Before:

```
sealed trait Calc
case class Number (i: Int) extends Calc
case class Add (a: Calc, b: Calc) extends Calc
case class Multiply(a: Calc, b: Calc) extends Calc
```

After:

Wait...

```
val WHY_YOU_NO_WORK_?! : Calc[Calc] =
   Multiply(
    Number(3),
   Add(
      Number(1),
      Number(2)))
```

Type constructors

- List
- Map
- Future

Types

- Int
- String
- Unit

Type constructors

- List
- Map
- Future

Types

- List[Int]
- Map[Int, String]
- Future[List[Int]]

Type constructors

Calc

Types

- Calc[Unit]
- Calc[List[Int]]
- Calc[Nothing]
- Calc[Calc[Nothing]]
- Calc[Calc[Nothing]]]
- Calc[Calc[Calc[Nothing]]]]
- Calc[Calc[Calc[Calc[Nothing]]]]]

This works but isn't nice.

```
val MaxDepthOf3: Calc[Calc[Nothing]]] =
   Number(456)

val MaxDepthOf3: Calc[Calc[Nothing]]] =
   Multiply(
     Number(3),
     Add(
         Number(1),
         Number(2)))
```

How do we get unlimited recursion back?

Step 2: Fixpoints!

```
final case class Fix[F[_]](unfix: F[Fix[F]])
```

```
final case class Fix[F[_]](unfix: F[Fix[F]])
```

```
Fix[F] = F[ Fix[F] ]

//

= F[F[ Fix[F] ]]

//

= F[F[F[ Fix[F] ]]]

//
```

Before:

```
val calc: Calc =
    Multiply(
        Number(3),
        Add(
            Number(1),
            Number(2)))
```

After:

```
val calc: Fix[Calc] =
  Fix(Multiply(
    Fix(Number(3)),
    Fix(Add(
       Fix(Number(1)),
       Fix(Number(2))))))
```

It goes back and forth.

```
def gimmeFix (c: Calc[Fix[Calc]]):     Fix[Calc] = Fix[Calc](c)
def gimmeCalc(f: Fix[Calc]): Calc[Fix[Calc]] = f.unfix
```

```
Fix[Calc]

| ↑
unfix | Fix

↓ |

Calc[Fix[Calc]]
```

ALL YOU NEED TO KNOW IS:

- Generalise (use an A) in place of a self-reference.
- Wrap your stuff in Fix when you want recursion.

Algebra

F A -> A

type Algebra[F[_], A] = F[A] => A

Scala has many ways of representing the same thing...

```
val listSumAlg: Algebra[List, Int] =
   _.sum

val listSumFn: List[Int] => Int =
   _.sum

def listSumMethod(list: List[Int]): Int =
   list.sum
```

They're all algebras.

```
listSumAlg : Algebra[List, Int]
listSumMethod: Algebra[List, Int]
listSumFn : Algebra[List, Int]
```

Ok...and?

A special function exists...

```
def awesome[F[_]: Functor, A](data: Fix[F], alg: Algebra[F, A]): A
```

```
def awesome[F[_]: Functor, A](data: Fix[F], alg: Algebra[F, A]): A
```

Algebra needs a F[A].

No A in Fix[F].

Like magic!

Let's try it out!

Well, first there's a prerequisite:

```
import scalaz.Functor
implicit val functor: Functor[Calc] =
  new Functor[Calc] {
    override def map[A, B](c: Calc[A])(f: A => B): Calc[B] = ???
}
```

s/Calc/YourDataType/g

```
import scalaz.Functor
implicit val functor: Functor[Calc] =
  new Functor[Calc] {
    override def map[A, B](c: Calc[A])(f: A => B): Calc[B] =
    c match {
```

case Number (i) => Number (i)

case Add $(a, b) \Rightarrow Add$ (f(a), f(b))

case Multiply(a, b) => Multiply(f(a), f(b))

```
}
```

Let's try it out!

```
val eval: Algebra[Calc, Int] = {
  case Number (i) => i
  case Add (a, b) => a + b
  case Multiply(a, b) => a * b
}
```

```
def awesome[F[_]: Functor, A](data: Fix[F], alg : Algebra[F, A]): A

val eval: Algebra[Calc, Int] = {
   case Number (i) => i
   case Add (a, b) => a + b
   case Multiply(a, b) => a * b
}
```

```
val c: Fix[Calc] = ...
awesome(c, eval) // returns 9
```

```
val explain: Algebra[Calc, String] = {
  case Number (i) => i.toString
  case Add (a, b) => s"($a + $b)"
  case Multiply(a, b) => s"($a * $b)"
}
```

```
val explain: Algebra[Calc, String] = ...
val eval : Algebra[Calc, Int] = ...

val explainAndEval: Algebra[Calc, (String, Int)] =
   explain zip eval
```

```
val c: Fix[Calc] = ...
awesome(c, explainAndEval) // returns ("3 * (1 + 2)", 9)
```

Amazing!

Real name of awesome is catamorphism.

It goes to the ends of a tree, then calculates its way back up.

Bottom-up.

How does that work?!


```
def cata: Fix[Calc] => A =
   fix => {
     val calc : Calc[Fix[Calc]] = fix.unfix
     val calcA: Calc[A] = calc.map(cata)
     val a : A = alg(calcA)
     a
   }
}
```

```
cata :: Functor f => (Algebra f a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unfix
```

ALL YOU NEED TO KNOW IS:

- Create a functor.
- Create an algebra when you want to fold/reduce a tree.
- Call cata . Done!

Next up: CoAlgebras

Everything in category theory can go backwards - this is called a dual.

Algebra

• F[A] => A

Coalgebra

• A => F[A]

Algebra

- F[A] => A
- squash a structure (F) into a single value (A)

Coalgebra

- A => F[A]
- expand a single value (A) into a structure (F)

Algebra

- F[A] => A
- fold a structure (F) into a single value (A)

Coalgebra

- A => F[A]
- unfold a single value (A) into a structure (F)

```
type CoAlgebra[F[_], A] = A => F[A]
```

```
val factors: CoAlgebra[Calc, Int] = i =>
   if (i > 2 && i % 2 == 0)
      Multiply(2, i / 2)
   else
      Number(i)
```

Another magic function

```
def emosewa[F[_]: Functor, A](data: A, alg: CoAlgebra[F, A]): Fix[F]
```

Notice, there's no A in the result.

Real name is anamorphism.

Dual of catamorphism.

```
cata: Fix f -> (f a -> a ) -> a
ana : a -> (a -> f a) -> Fix f
```

It starts with the at the root, then calculates its way down to the nodes until complete. Top-down.

ALL YOU NEED TO KNOW IS:

- Create a coalgebra when you want to build up a structure, using the seed/instruction/specification as the input.
- Call ana . Done!

Recursion Scheme Basics

- Fixpoints
- (Co)Algebra
- {cata,ana}morphism

Most everything else builds on the above.

Recursion Schemes unfolds (tear down a structure)

algebra $f a \rightarrow Fix f \rightarrow a$

coalgebra $f a \rightarrow a \rightarrow Fix f$

	catamorphism f a → a prepromorphism* after applying a NatTrans	anamorphism a → f a postpromorphism* before applying a NatTrans	g eneralized $(m f \rightarrow f m) \rightarrow (a \rightarrow f (m \beta))$
g eneralized $(f w \rightarrow w f) \rightarrow (f (w a) \rightarrow \beta)$	(f a → a) → (f → f) para morphism* with primitive recursion f (Fix f × a) → a	(a → f a) → (f → f) apomorphism* returning a branch or single level a → f (Fix f ∨ a)	
	zygomorphism* with a helper function $(f b \rightarrow b) \rightarrow (f (b \times a) \rightarrow a)$	g apo morphism $(b \rightarrow f b) \rightarrow (a \rightarrow f (b \lor a))$	
g histo morphism $(f h \rightarrow h f) \rightarrow (f (w a) \rightarrow a)$	histomorphism with prev. answers it has given f (w a) → a	futumorphism multiple levels at a time a → f (m a)	g futu morphism $(h f \rightarrow f h) \rightarrow (a \rightarrow f (m a))$

refolds (build up then tear down a structure) algebra $a b \rightarrow (f \rightarrow g) \rightarrow coalgebra f a \rightarrow a \rightarrow b$

others **synchro**morphism ???

exomorphism

???

mutumorphism

???

algebra g b ' (1 -> g)		coalgebra ra · a	- 0	
hylo mo		rphism		
	cata	ana		
dyna morphism		codynamorphism		generalized apply the generalizations for both
histo	; ana	cata; futu		the relevant fold and unfold
chronom		norphism		the relevant lold and diffold
	histo; futu			
Elgot algebra		coElgot algebra		
may short-circuit while building		may short-circuit while tearing		
cata; a → b ∨ f a		$a \times g b \rightarrow b$; ana		
				•

reunfolds (tear down then build up a structure)

coalgebra $g b \rightarrow (a \rightarrow b) \rightarrow algebra f a \rightarrow Fix f \rightarrow Fix g$

metamorphism	g eneralized	
ana; cata	apply both [un]fold	

combinations (combine two structures)

algebra $f a \rightarrow Fix f \rightarrow Fix f \rightarrow a$

zippamorphism fa → a

mergamorphism

... which may fail to combine $(f(Fix f) \times f(Fix f)) \vee fa \rightarrow a$

These can be combined in various ways. For example, a "zygohistomorphic prepromorphism" combines the zygo, histo, and prepro aspects into a signature like $(f b \rightarrow b) \rightarrow (f \rightarrow f) \rightarrow (f (w (b \times a)) \rightarrow a) \rightarrow Fix f \rightarrow a$

Stolen from Edward Kmett's http://comonad.com/reader/ 2009/recursion-schemes/

* This gives rise to a family of related recursion schemes, modeled in recursion-schemes with distributive law combinators

Two very useful extensions...

1. Operation Fusion

Combine catamorphism & anamorphism into a single operation (called a hylomorphism).

Hylomorphism sounds scary...

...but it's really simple. Pass the same arguments to 1 method instead of 2.

```
def ana[F[_]: Functor, A]
      (coalg: Coalgebra[F, A])(a: A): Fix[F]

def cata[F[_]: Functor, B]
      (alg: Algebra[F, B])(f: Fix[F]): B
```

```
def hylo[F[_]: Functor, A, B]
    (coalg: Coalgebra[F, A], alg: Algebra[F, B])(a: A): B
```

...but it's really simple. Pass the same arguments to 1 method instead of 2.

```
def unfold[F[_]: Functor, A]
      (coalg: Coalgebra[F, A])(a: A): Fix[F]

def fold[F[_]: Functor, B]
      (alg: Algebra[F, B])(f: Fix[F]): B
```

```
def unfoldIntoFold[F[_]: Functor, A, B]
     (coalg: Coalgebra[F, A], alg: Algebra[F, B])(a: A): B
```

Build-up & tear-down in one pass.

Generate & consume without actually creating the whole tree.

 $\Theta(n)$ instead of $\Theta(2n)$.

2. Monadic versions

Algebras can return monads.

What's a monad?

Oh god...

That's a separate talk *but*, speaking *extremely* loosely:

- A composable wrapper around data or intent.
- Something with map and flatMap methods.
- Something you can use in for comprehensions.

Some monads you've probably already used:

- Option[A]
- List[A]
- Future[A]
- Either[A, B] / Scalaz's disjunction A \/ B

```
val eval: Calc[Int] => Either[String, Int] = {
  case Num(i) => Right(i)
  case Div(_, 0) => Left("Division by zero: Australia says no!")
  case Div(a, b) => Right(a / b)
}
```

```
type Algebra [F[_], A] = F[A] => A
type CoAlgebra[F[_], A] = A => F[A]
```

```
type AlgebraM [M[_], F[_], A] = F[A] => M[A]
type CoAlgebraM[M[_], F[_], A] = A => M[F[A]]
```

```
def unfold[F[_]: Functor, A]
        (coalg: Coalgebra[F, A])(a: A): Fix[F]

def fold[F[_]: Functor, B]
        (alg: Algebra[F, B])(f: Fix[F]): B
```

```
def monadicUnfold[M[_]: Monad, F[_]: Traverse, A]
        (coalg: CoalgebraM[M, F, A])(a: A): M[Fix[F]]

def monadicFold[M[_]: Monad, F[_]: Traverse, B]
        (alg: AlgebraM[M, F, B])(f: Fix[F]): M[B]
```

- (Co)Algebra -> (Co)AlgebraM
- Result is now M[_]
- Functor -> Traverse

```
type AlgebraM [M[_], F[_], A] = F[A] => M[A]
type CoAlgebraM[M[_], F[_], A] = A => M[F[A]]
```

```
val eval: Calc[Int] => String \/ Int = {
   case Num(i) => \/-(i)
   case Div(_, 0) => -\/("Division by zero detected.")
   case Div(a, b) => \/-(a / b)
}
```

```
// Calc[Int] => String \/ Int
// F [A] => M [A]

type StringOr[A] = String \/ A

val eval: AlgebraM[StringOr, Calc, Int] = {
```

Great! We've just added error handling and short-circuiting.

Real Example

Random JSON generator.

Random Data

Generating random data is important.

It's the secret sauce of property testing that ensures that, (asymptotically), you test your code with every possible, legal or desirable value.

Also useful for:

- load testing
- stress testing
- benchmarking (if generator supports determinism)

Nyaya

```
import nyaya.gen._
val genWhatever: Gen[Whatever] =
  for {
    enabled <- Gen.boolean
    position <- Gen.chooseInt(-128, 128).pair
    stuff <- Gen.long.mapTo(Gen.string.option)
  } yield Whatever(enabled, position, stuff)</pre>
```

```
println(genWhatever.sample())

// Whatever(
// true,
// (-30, 83),
// Map(
// 2340946662719216224 -> Some("!XM91u"),
// 7161527918171176759 -> None
// )
// )
```

Hint: Gen is a monad.

```
for {
   enabled <- Gen.boolean
   position <- Gen.chooseInt(-128, 128).pair
   stuff <- Gen.long.mapTo(Gen.string.option)
} yield Whatever(enabled, position, stuff)</pre>
```

Our imaginary app uses Play JSON.

Play JSON (like everything else) has hardcoded recursion.

We need to abstract over recursion and use fixpoints...

Fixpoint JSON

Fixpoint JSON

Traverse (skeleton)

s/JsonF/YourDataType/g

Traverse (body)

1x A: Use G.apply .
2x A: Use G.apply2 .
3x A: Use G.apply3 .
...
Collection of A s: Use .traverse then .map .

Done:

- Custom JSON data type
- Traverse & Functor instance

TODO:

- Generate JSON (using custom data type)
- Convert custom JSON into Play JSON

Live code time...

In summary...

Recursive data types:

- Trees, indented lists
- Tries
- DSLs, expression languages
- Anything self-referential
- Logical propositions, assertions
- Composable actions/data

- Allows you to not think about, or implement recursion.
- Where there'd normally be recursion, just declare what you want.
 Magic will grant your wish.
- Traditionally high barrier to entry. It's needless.
 You don't need to be a pilot to catch a plane.
 You don't need to understand Greek or category theory to use this.
- It wasn't discovered simply but now that it is, it's simple to use.

ALL YOU NEED TO KNOW TO BENEFIT IS:

- Use a library or copy-and-paste little snippets that you need. They're tiny.
- Parametise your data; use Fix instead of self-referencing.
- When writing your logic, use plain old functions--just use the right shapes.

Libraries:

My recursion micro-library

- https://github.com/japgolly/microlibs-scala
- Minimalistic: Few algebras & morphisms. Only supports Fix.
- Fast.
- Beginner focused.
 - Contains an EasyRecursion module with English instead of Greek.
 - Hopefully less intimidating for non-FP teams.
 - Nice stepping-stone before graduating to Matryoshka.

Libraries:

Matryoshka

- https://github.com/slamdata/matryoshka
- Very comprehensive. Kitchen-sink of recursion.
- Will become part of Typelevel suite.
- Currently undergoing a lot of change.
- Super-smart people seriously working on it.
- Going to be awesome.

Resources

- Youtube: Any talks by Greg Pfeil.
- Youtube: "Pure functional database programming with fixpoint types" by Rob Norris.
- Google: "recursion scheme cheatsheets".
- Paper: "Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire"

All done; Thank you!

Huge thanks to Rob Norris & Greg Pfeil for teaching me!

Github: japgolly

Twitter: @japgolly