

Chrono::SolidWorks

Add-In for Pre-Processing in SolidWorks

Chrono::SolidWorks

- Developed in C# for SolidWorks API (based on COM architecture)
- Exports models: translates SW parts + constraints into Chrono bodies + links
- Exports the Chrono model as a .py file (requires Chrono::Python unit to parse it from your C++ program)
- Prerequisites
 - SolidWorks (v. 2013 or later) must be installed on your workstation
 - Chrono::PyEngine (python API) must be built/installed
 - Chrono (C++ API) is optional

Add-in installation

METHOD A (easiest, preferred)

- Download the latest installer from http://www.projectchrono.org/download/
- Install it (it should detect you SolidWorks installation)

Add-in installation

METHOD B

- Clone the C# source from GIT: https://github.com/projectchrono/chrono-solidworks
- Open VisualStudio as administrator
- Load the .sln in VisualStudio
- Set the Output path to your SolidWorks binaries in the Build tab:
- You may need to edit the dll paths by hand in the References editor:
- Run "Build/Build solution" menu, (Note: at the end of build, the add-in assembly will be automatically installed to your SolidWorks)

Add-in installation

Check if the add-in is correctly installed:

• See if this panel is visible:

• If not, check if the add-in is registered and actived, using the menu "Tools/Add-ins.."

DHONO

Example

Create falling columns

• Make a part in SolidWorks:

• Make a simplified collision shape: a cylinder.

It is 'overlapping' to the visualization surface (use the 'solid body' feature of SolidWorks)

 Select the cylinder as collision shape using the SolidWorks Chrono Add-In panel:

+

- Same procedure for capitols, where the collision shape is one or more simplified primitives
 - Cube
 - Sphere
 - Cylinder
 - ..

• Replicate parts:

• Export to Python file:

- Import the .py file from your C++ program
- Modify object properties, if needed (ex. friction coeff.)
- Add additional objects, if needed (ex a ChLink to make earthquakes)
- Run the Chrono simulation and postprocess the results

BROVO

Notes:

- Mass properties are automatically computed and exported from SolidWorks
- Most relevant mate constraints are exported as ChLink objects in Chrono

