

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 2° semestre de 2018 GABARITO

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

1 - Primeira questão (2,0 pontos)

Na figura abaixo temos uma função distribuição de probabilidade com intervalo [-1, ½], sendo numa fora deste intervalo.

a) Demonstre que esta função é uma distribuição de probabilidade (0,5 pontos) **Resolução:**

Observemos que temos área total da função distribuição de probabilidade como a soma da área de um trapézio e de um retângulo. No caso teríamos a área

$$\frac{2/5+4/5}{2} \times 1 + \frac{1}{2} \times \frac{4}{5} = \frac{3}{5} + \frac{2}{5} = 1$$

No entanto, este resultado não nos ajuda a resolver alguns dos demais itens.

Vejamos a função acima como a soma da integral de uma função linear e de uma função constante. A parte linear pode ser encontrada determinando a euqação da reta determinada pelos pontos (-1, 2/5) e (0, 4/5). Substituindo na equação da reta dada por y=ax+b teremos

$$\frac{2}{5} = a \times (-1) + b; \frac{4}{5} = a \times 0 + b$$

que nos dá como solução a = 2/5eb = 4/5 e, portanto, $y = \frac{2}{5}x + \frac{4}{5} = \frac{2}{5}(x+2)$.

b) Calcule o valor médio da distribuição encontrada

(0,5 ponto);

Resolução:

Usemos a definição de valor médio:

$$\mu = \int_{\infty}^{\infty} x f(x) dx = \int_{-1}^{0} x \frac{2}{5} (x+2) dx + \int_{0}^{1/2} x \frac{4}{5} dx = \frac{2}{5} \left[\int_{-1}^{0} x^{2} dx + 2 \int_{-1}^{0} x dx \right] + \frac{4}{5} \int_{0}^{1/2} x dx = \frac{2}{5} \left[\frac{x^{3}}{3} \Big|_{-1}^{0} + 2 \frac{x^{2}}{2} \Big|_{0}^{0} \right] + \frac{4}{5} \frac{x^{2}}{2} \Big|_{0}^{1/2} ,$$

ou

$$\mu = \frac{2}{5} \left[\frac{x^3}{3} \big|_{-1}^0 + 2 \frac{x^2}{2} \big|_{-1}^0 \right] + \frac{4}{5} \frac{x^2}{2} \big|_{0}^{1/2} = \frac{2}{5} \left[\frac{1}{3} - 1 \right] + \frac{4}{5} \frac{(1/2)^2}{2} = -\frac{4}{15} + \frac{1}{10} = -\frac{1}{6} \approx -0,1667 \quad .$$

c) Calcule a variância da distribuição encontrada

(0,5 ponto);

Resolução:

Como a definição de variância é dada por

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

calculemos a integral

$$\int_{-\infty}^{\infty} x^2 f(x) dx = \int_{-1}^{0} \frac{2}{5} x^2 (x+2) dx + \int_{0}^{1/2} x^2 \frac{4}{5} dx = \frac{2}{5} \left[\int_{-1}^{0} x^3 dx + 2 \int_{-1}^{0} x^2 dx \right] + \frac{4}{5} \int_{0}^{1/2} x^2 dx \quad ,$$

desenvolvendo obtemos

$$\int_{\infty}^{\infty} x^2 f(x) dx = \frac{2}{5} \left[\frac{x^4}{4} \Big|_{-1}^0 + 2 \frac{x^3}{3} \Big|_{-1}^0 \right] + \frac{4}{5} \frac{x^3}{3} \Big|_{0}^{1/2} = \frac{2}{5} \left[\frac{-1}{4} + \frac{2}{3} \right] + \frac{4}{5} \frac{(1/2)^3}{3} = \frac{1}{6} + \frac{1}{30} = \frac{1}{5} ,$$

então,

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2 = \frac{1}{5} - \left(-\frac{1}{6} \right)^2 = \frac{31}{180} \approx 0,1722 .$$

d) Calcule a moda desta distribuição encontrada

(0,5 ponto).

Resolução:

A distribuição é multimodal pois todos os valores no intervalo $[0, \frac{1}{2}]$ são os valores para os quais a distribuição tem valor máximo.

2 – Segunda questão (1,5 pontos)

Verifique se as expressões abaixo são funções de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

a)
$$f(x) = \frac{2}{15} \times (x^2 - 4x + 2); x \in [-1; 1/2]$$
 (0,5 ponto);

Resolução:

A função toma valores não negativos em todo o intervalo. Integremos a função.

$$\int_{-1}^{1/2} \frac{2}{15} \times (x^2 - 4x + 2) dx = \frac{2}{15} \left[\int_{-1}^{1/2} x^2 dx - 4 \int_{-1}^{1/2} x dx + 2 \int_{-1}^{1/2} dx \right] = \frac{2}{15} \left[\frac{x^3}{3} \Big|_{-1}^{1/2} - 4 \frac{x^2}{2} \Big|_{-1}^{1/2} + 2 x \Big|_{-1}^{1/2} \right]$$

$$\int_{-1}^{1/2} \frac{2}{15} \times (x^2 - 4x + 2) dx = \frac{2}{15} \left[\frac{1/8 + 1}{3} - 2(1/4 - 1) + 2(1/2 + 1) \right] = \frac{2}{15} \left(\frac{3}{8} + \frac{3}{2} + 3 \right) = \frac{13}{20} .$$

Assim, para termos a função normalizada teremos que fazer

$$\frac{20}{13} \times f(x) = \frac{20}{13} \frac{2}{15} \times (x^2 - 4x + 2) = \frac{8}{39} \times (x^2 - 4x + 2); x \in [-1; 1/2] .$$

b)
$$f(x)=3(x^3-4x^2+2); x \in [-1/2; 1/2]$$
 (0,5 ponto);

Resolução:

Um exame desta função mostra que ela não toma valores negativos. Integremos a função.

$$\int_{-1/2}^{1/2} 3(x^3 - 4x^2 + 2) dx = 3 \left[\int_{-1/2}^{1/2} x^3 dx - 4 \int_{-1/2}^{1/2} x^2 dx + 2 \int_{-1/2}^{1/2} dx \right] = 3 \left[\frac{x^4}{4} \Big|_{-1/2}^{1/2} - 4 \frac{x^3}{3} \Big|_{-1/2}^{1/2} + 2 x \Big|_{-1/2}^{1/2} \right]$$

ou ainda

$$\int_{-1/2}^{1/2} 3(x^3 - 4x^2 + 2) dx = 3 \left[\frac{1/16 - 1/16}{3} - \frac{4}{3} (1/8 + 1/8) + 2(1/2 + 1/2) \right] = 3 \left(0 - \frac{1}{3} + 2 \right) = 5 .$$

Para termos a função normalizada faremos

$$\frac{1}{5}f(x) = \frac{3}{5}(x^3 - 4x^2 + 2); x \in [-1/2; 1/2] .$$

c)
$$f(x) = -sen(x)cos(x); x \in [-\pi/3; 0]$$
 (0,5 ponto).

Resolução:

Novamente, um estudo cuidadoso da função mostra que neste intervalo a função é não negativa. Integremos.

$$\int_{-\pi/3}^{0} f(x) dx = \int_{-\pi/3}^{0} -\sin(x)\cos(x) dx = \frac{1}{2}\cos^{2}(x)|_{-pi/3}^{0} = \frac{1}{2} \left[\cos^{2}(0) - \cos^{2}(-\pi/3)\right] = \frac{1}{2} \left[1^{2} - (1/2)^{2}\right] = \frac{3}{8} .$$

A função normalizada será

$$\frac{8}{3}f(x) = -\frac{8}{3}sen(x)cos(x); x \in [-\pi/3; 0]$$
.

3 – Terceira questão (2,0 pontos)

Um produto estava em avaliação para lançamento. A questão era que não se sabia se o número de amostras era relevante. Assim foi feita uma amostragem prévia escolhendo por conveniência 10 amostras que estão apresentadas abaixo.

P	9,4	13,7	11,2	13,9	13,1	28,9	24,9	18,1	30,4	19,6
---	-----	------	------	------	------	------	------	------	------	------

a) Usando estimadores não viciados e coeficiente de confiança igual a 90%, estime qual deveria ser o tamanho da amostra para que a amplitude do intervalo de confiança seja igual ou menor a 7,3. (1,5 ponto)

Resolução:

Calculemos a estimativa para a média e a variância usando

$$\bar{X} = \sum_{i=1}^{n} X_i$$
 para a média e $var = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right)$ para a variância.

$$\bar{X} = \frac{9,4+13,7+11,2+13,9+13,1+28,9+24,9+18,1+30,4+19,6}{10} = 18,32$$
 ,

o somatório dos quadrados será

$$\sum_{i=1}^{10} X_{i}^{2} = 9.4^{2} + 13.7^{2} + 11.2^{2} + 13.9^{2} + 13.1^{2} + 28.9^{2} + 24.9^{2} + 18.1^{2} + 30.4^{2} + 19.6^{2} = 3857.46$$

Teremos para a variância

$$var = \frac{1}{9}(3857,46 - 10 \times 18,32^2) \approx 55,6929$$

e assim podemos achar a amplitude do intervalo de confiança que é dada por

$$2z_{\gamma/2}\frac{\sigma}{\sqrt{n}}$$
.

Para um coeficiente de confiança de 90%, γ =0,45 o que implica em $z_{\gamma/2}$ =1,65 . Daí teremos

$$7,3 = \frac{2 \times 1,65 \times \sqrt{55,6929}}{\sqrt{n}} \Rightarrow \sqrt{n} = \frac{2 \times 1,65 \times \sqrt{55,6929}}{7,3} \approx 3,3736$$

ou seja, $n=3,3736^2\approx11,3812\approx12$ pois o número de amostras é inteiro.

b) Compare o número obtido com o usado inicialmente, ou seja, dez. A que conclusão você chega? (0,5 ponto)

Resolução:

Claramente a amostragem prévia é insuficiente para o coeficiente de confiança proposto.

4 – Quarta questão (1,0 ponto)

Uma área de uma fazenda foi contaminada por uma grande quantidade de um veneno conhecido como chumbinho. Sabe-se que a distribuição Exponencial modela o tempo necessário para a descontaminação da área. Devido a alta toxidade para todos os animais e forte contaminação de águas subterrâneas, o parâmetro usado é de $\alpha = 1.6$ dado em anos.

a) Dê ainda a média e a variância;

Resolução:

Por definição a média da distribuição Exponencial é dada por

$$\mu = \frac{1}{\alpha}$$
 portanto a média para este caso será $\mu = \frac{1}{1,6} = \frac{1}{8/5} = \frac{5}{8} = 0,625$.

Também por definição a variância para a distribuição Exponencial é dada por

$$\sigma^2 = \frac{1}{\alpha^2}$$
 e portanto o valor para a variância será $\sigma^2 = \frac{1}{8/5^2} = \frac{25}{64} = 0,390625$.

b) Calcule a probabilidade desta área estar contaminada após 2 anos.

Resolução:

A probabilidade no caso da distribuição Exponencial é dada portanto

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

Para os valores dados será o complementar de

$$1-e^{1.6\times2}\approx1-0.0407\approx0.9592$$

teremos 0,0407, ou seja, 4,07% de probabilidade da contaminação persistir.

5 – Quinta questão (1,0 ponto)

Examinava-se uma sequência de medidas de um parâmetro de uma amostra de rochas:

Tal parâmetro está associado à viabilidade de exploração de um minério. Para tal é necessário que a média seja superior a 3,7 com um nível de significância de 25%. Verifique esta hipótese baseado na tabela acima e usando estimadores não viciados.

Resolução:

Usaremos os seguintes estimadores não viciados

$$\bar{X} = \sum_{i=1}^{n} X_i$$
 para a média e $var = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right)$ para a variância.

Usando os valores da tabela teremos

$$\bar{X} = \frac{3,31+4,93+2,95+2,67+3,73+2,98+3,02+5,12+3,98+6,32+3,45+3,08}{12} = 3,795$$
.

Quanto ao cálculo da variância, vejamos primeiro o somatório

$$\sum_{i=1}^{12} X_{i}^{2} = 3,31^{2} + 4,93^{2} + 2,95^{2} + 2,67^{2} + 3,73^{2} + 2,98^{2} + 3,02^{2} + 5,12^{2} + 3,98^{2} + 6,32^{2} + 3,45^{2} + 3,08^{2} = 186,3922$$

A variância será

$$var = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n \, \bar{X}^2 \right) = \frac{1}{11} \left(186,3922 - 12 \times 3,795^2 \right) \approx 1,2334 \quad .$$

Podemos agora avaliar a média com o nível de significância de 25% fazendo um teste de hipótese unilateral.

$$0.25 = P(\bar{X} < x_c | \mu = 3.7) = P\left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < \frac{x_c - 3.7}{\sqrt{1,2334} / \sqrt{12}}\right) \approx P\left(Z < \frac{x_c - 3.7}{0.3206}\right) = P(Z < z_c)$$

Procuremos na tabela de distribuição Normal o complementar de 0,25 que é este mesmo valor. Assim, verificando na tabela teremos para z_c o que nos dá z_c =-0,68. Isto resulta que o valor do crítico será

$$\frac{x_c - 3.7}{0.3206} = z_c \Rightarrow x_c = 3.7 - 0.68 \times 0.3206 \approx 3.482$$

ou seja, as amostras não estão dentro do padrão exigido de média 3,7.

6 – Sexta questão (2,5 pontos) Calcule as seguintes probabilidades.

a) P(-0,5<X<0,3) para a distribuição de probabilidade da primeira questão; **Resolução:**

$$P(-0.5 < X < 0.3) = \int_{-0.5}^{0} \frac{2}{5}(x+2) dx + \int_{0}^{0.3} \frac{4}{5} dx = \frac{2}{5} \left[\int_{-0.5}^{0} x dx + 2 \int_{-0.5}^{0} dx \right] + \frac{4}{5} \int_{0}^{0.3} dx = \frac{2}{5} \left[\frac{x^{2}}{2} \Big|_{-0.5}^{0} + 2 x \Big|_{-0.5}^{0} \right] + \frac{4}{5} x \Big|_{0}^{0.3}$$

ou ainda,

$$P(-0.5 < X < 0.3) = \frac{2}{5} \left[\frac{-(1/2)^2}{2} + 2\frac{1}{2} \right] + \frac{4}{5} \times 0.3 = \frac{7}{20} + 0.24 = 0.59$$
.

b) P(-0,5<X<0,8) para a distribuição Normal de média -1,2 e variância 5,29;

Resolução:

Usemos

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

$$P(-0.5 < X < 0.8) = P\left(\frac{-0.5 + 1.2}{\sqrt{5.29}} < Z < \frac{0.8 + 1.2}{\sqrt{5.29}}\right) = P\left(\frac{0.7}{2.3} < Z < \frac{2}{2.3}\right) \approx P(0.3043 < Z < 0.8696)$$

ou

$$P(-0.5 < X < 0.8) \approx P(0.30 < Z < 0.87) = P(Z < 0.87) - P(Z < 0.30) = 0.3078 - 0.1179 = 0.1899$$
.

c) P(-1,3<X<2,9) para a distribuição Normal de média 1,2 e desvio padrão 6,2;

Resolução:

Como no item anterior, calculemos

$$P\left(-1,3 < X < 2,9\right) = P\left(\frac{-1,3-1,2}{6,2} < Z < \frac{2,9-1,2}{6,2}\right) \approx P\left(\frac{-2,5}{6,2} < Z < \frac{1,7}{6,2}\right) \approx P\left(-0,4032 < Z < 0,2742\right)$$

e então

$$P(-1,3< X<2,9) \approx P(-0,40< Z<0,27) = P(Z<0,40) + P(Z<0,27) = 0,1554+0,1064=0,2618$$
.

d) P(0,5>X>2,9) para uma distribuição de Exponencial com α =0,39 ;

Resolução:

Usemos

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}$$

que no nosso caso será calculado pelo complementar. Calculemos primeiro

$$P(0,5 < X < 2,9) = e^{-0,39 \times 0,5} - e^{-0,39 \times 2,9} = e^{-0,195} - e^{-1,131} = 0,5001$$

o seu complementar sendo 1-0,5001=0,4999 .

e) P(0,5<X<13,2) para uma distribuição uniforme no intervalo [0, 15].

Resolução:

A distribuição uniforme é dada por

$$f(x) = \frac{1}{b-a}; a \le x \le b$$

e calculamos a probabilidade solicitada como

$$P(0.5 < X < 13.2) = \int_{0.5}^{13.2} f(x) dx = \int_{0.5}^{13.2} \frac{dx}{15} = \frac{1}{15} \int_{0.5}^{13.2} dx = \frac{1}{15} (13.2 - 0.5) = \frac{12.7}{15} \approx 0.847 .$$

Atenção:

- I) Não haverá formulário na segunda avaliação presencial.
- II) As respostas da AD serão digitadas no editor de sua conveniência e após isto gerado um arquivo de formato pdf que será enviado como resposta de suas questões. Digitalizações de material escrito não serão aceitos e terão nota zero como resultado;
- II) Todos os cálculos deverão ser feitos com pelo menos quatro casas decimais e arrendondados para duas APENAS ao final, seja na lista ou na prova.
- III) Tenha cuidado quanto a notação. Caso não a siga, você terá pontos descontados, seja na lista ou na prova.

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{C}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
٥, ٠	0,1001	0,1551	0,1020	0,1001	0,1700	0,1750	0,1772	0,1000	0,1011	0,1075
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
	.,.	-,-	-,-	-,	-,-	-,-	-,	-,	-,	-,
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
	·									
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.