12.2

EX(1) 注意到对于任意的 $f \neq 0, k[x]$ 在 k[f] 上整, 于是 k[x] 在 A 上整, 所以 A 为有限生成 k-代数, 对 A 使用 Noether 正规化引理可知 $\dim A \geq 1$, 否则 A 在 k 上整, 这是不可能的. 而由于 k[x] 在 A 上整显然有 $\dim A \leq 1$ EX(2) 1), 取 $(x+ty), t \in k$, 按素理想的定义可以验证为素理想. 而 ht $(x+ty) = \dim k[x,y] - \dim k[x,y]/(x+ty) = 1$

2) 对 (A, \mathfrak{p}) 使用 Noether 正规化引理,可以得到 $N = k[y_1, \cdots, y_n]$. 而 $\mathfrak{p} \cap k[y_1, \cdots, y_n] = (y_{\delta+1}, \cdots, y_n)$, 由于 $ht \mathfrak{p} \geq 2$, 取 $\mathfrak{p}_2 \subset \mathfrak{p}_1 \subset \mathfrak{p}$, 则它们在 N 中的限制为长度为 2 的包含在 $(y_{\delta+1}, \cdots, y_n)$ 中的素理想链,这说明 $n - \delta \geq 2$,使用第一问的结论可以在 N 中找到无限个包含在 $(y_{\delta+1}, \cdots, y_n)$ 高度为 1 的素理想,它们自然也是包含在 \mathfrak{p} 中高度为 1 的素理想.

1. 由 A 和 B 的定义我们有 $A = \bigoplus_{n \geq 0} \mathbb{Z}/p\mathbb{Z}, B = \bigoplus_{n \geq 0} \mathbb{Z}/p^n\mathbb{Z}$. 这说明 pA = 0, 由此 $\hat{A} = \varprojlim_{k \geq 0} A/p^k A = \varprojlim_{k \geq 0} A/(0) = A$; 这说明 A 的完备化 \hat{A} 就是 A.

对于第二个假设. 考虑 B 在 p-adic 拓扑下的邻域基; 它们正是 $p^k B, k \ge 0, B$ 的拓扑在 A 上诱导出的拓扑. 而邻域基为 $A_k = \alpha^{-1}(p^k B)$, 明确地被

$$A_k = \alpha^{-1}(0 \oplus 1 \cdots \oplus 0 \bigoplus_{n>k} \mathbb{Z}/p^n\mathbb{Z}) = \bigoplus_{n>k} \mathbb{Z}/p\mathbb{Z}$$

因此,A 在限制拓扑下的完备化为

$$\hat{A} = \varprojlim_{k \ge 0} (A/A_k) = \varprojlim_{k \ge 0} (\mathbb{Z}/p\mathbb{Z})^k = \prod_{n \ge 0} \mathbb{Z}/p\mathbb{Z}$$

考虑下面的序列

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{p} B \to 0$$

是正合的. 而完备化不是.

2. 所给的正合列实际上如下

$$0 \to \bigoplus_{k > n} \mathbb{Z}/p\mathbb{Z} \to \bigoplus_{k \ge 0} \mathbb{Z}/p\mathbb{Z} \to \bigoplus_{n \ge k \ge 0} \mathbb{Z}/\mathbb{Z} \to 0$$

由之前的练习, 我们有

$$\varprojlim_{k\geq 0} A/A_n = \prod_{n>0} \mathbb{Z}/p\mathbb{Z}, \varprojlim_{n\geq 0} A_n = 0$$

因此, 完备化序列不可能是满的.

而 $\lim_{n \to \infty} A = 0$,并且有下列长正合列

$$0 \to \bigoplus_{n \ge 0} \mathbb{Z}/p\mathbb{Z} \to \prod_{n \ge 0} \mathbb{Z}/p\mathbb{Z} \to \varprojlim^{1} A_n \to 0$$

于是 $\varprojlim^1 A_n = (\prod \mathbb{Z}/p\mathbb{Z})/(\oplus \mathbb{Z}/p\mathbb{Z}).$

3. 由 Krull 定理, 我们知道子模 $E = \bigcap_{n=1}^{\infty} \mathfrak{a}^n M$ 被 $1 + \mathfrak{a}$ 中某些元素 1 + a 零化. 对于任意包含 \mathfrak{a} 的极大理想当 1 + a 为 $A_{\mathfrak{m}}$ 中单位元, 所以此时 $A_{\mathfrak{m}} = 0$. 因此

$$\bigcap_{i=1}^{\infty} \mathfrak{a}^n M = E \subseteq \bigcap_{\mathfrak{m} \supseteq \mathfrak{a}} \ker(M \to M_{\mathfrak{m}})$$

另一方面,记

$$K = \bigcap_{\mathfrak{m} \supset \mathfrak{a}} \ker(M \to M_{\mathfrak{m}})$$

那么. 对于那些 $\mathfrak{a} \subseteq \mathfrak{a}$ 有 $K_{\mathfrak{m}} = 0$. 这说明 $K = \mathfrak{a}K$. 因此

$$K = \mathfrak{a}K = \mathfrak{a}^2K = \dots = \mathfrak{a}^nK = \dots = \bigcap_{n=1}^{\infty} \mathfrak{a}^nM$$

对于第二个问题, 注意到 $\hat{M}=0 \Leftrightarrow \hat{M}=\mathfrak{a}\hat{M} \Leftrightarrow M=\mathfrak{a}M$ 也等价于

$$M = \bigcap_{n=1}^{\infty} \mathfrak{a}^n M = \bigcap_{n=1}^{\infty} \ker(M \to M_{\mathfrak{m}})$$

而显然当 $\mathfrak{a} \subseteq \mathfrak{m}$ 时 $M_{\mathfrak{m}} = 0$. 这等价于 $Supp(M) \cap V(\mathfrak{a})$ 不包含任何极大理想. 因此 $Supp(M) \cap V(\mathfrak{a}) = \emptyset$.

4. 由于 x 不为 A 中零因子, 那么序列

$$0 \to A \xrightarrow{x \cdot} A \to A/xA \to 0$$

是正合的. 而完备化是一个正合函子, 上述序列的完备化

$$0 \to \hat{A} \xrightarrow{\hat{x} \cdot} \hat{A} \to \hat{A}/\hat{x}\hat{A} \to 0$$

也是正合的, 这说明 â 不为零因子.

1. 使用 11.18 我们知道 $\dim A_{\mathfrak{m}} = n-1$,而 $\mathfrak{m}/\mathfrak{m}^2 \cong (x_1, x_2, \cdots, x_n)/(x_1, x_1, x_2, \cdots, x_n)/(x_1, x_1, x_1, \cdots, x_n)/(x_1, x_1, x$