MA 450 Homework 13

Josh Park

Fall 2024

Exercise 13.4

List all zero-divisors of \mathbb{Z}_{20} . Can you see a relationship between the zero-divisors of \mathbb{Z}_{20} and the units of \mathbb{Z}_{20} ?

Solution. By def zero-divisor, we wish to find all $a_{\neq 0} \in R = \mathbb{Z}_{20}$ such that $\exists b_{\neq 0} \in R$ where $ab \equiv 0 \pmod{20}$. That is, we wish to find all $a_{\neq 0} \in R$ such that ab = 20n for some $n \in \mathbb{Z}$ where $b_{\neq 0} \in R$. We can rewrite this as

$$ab = 20n \implies \frac{ab}{20} = n.$$

Suppose a is coprime to 20. Then by def coprime, a and 20 share no common factors. So $2 \nmid a$ and $5 \nmid a$ which implies $2p + 5q \nmid a \forall p, q \in \mathbb{Z}$. That is, a is not divisible by any linear combination of 2 and 5 with integer coefficients, and consequently by any divisor (nor by any multiple) of 20. We know a is an integer, so

$$n = \frac{ab}{20} = a \cdot \frac{b}{20} \in \mathbb{Z} \iff \frac{b}{20} \in \mathbb{Z}.$$

Then $b \equiv 0 \pmod{20}$, but $b \not\equiv 0$ by def $b \ (\Longrightarrow)$. Thus a must not be coprime to 20.

Suppose a is not coprime to 20. Then by def coprime, a shares at least one common factor with 20. Let this factor be p. Then a = pq and 20 = pr for some $q, r \in \mathbb{Z}_{20}$. Suppose b = r. Then,

$$ab = 20n \iff pqr = prn \iff r = n$$

We know $r \in \mathbb{Z}$, so all numbers not coprime to 20 in \mathbb{Z}_{20} are zero-divisors.

So we have that a coprime to $20 \implies a$ not zero-divisor and a not coprime to $20 \implies a$ is zero-divisor. That is, $a \in \mathbb{Z}_{20}$ is a zero divisor $\iff a$ is not coprime to 20. Thus the set of all zero divisors of \mathbb{Z}_{20} is $\{2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18\}$.

The set of zero-divisors of \mathbb{Z}_{20} and the set of units of \mathbb{Z}_{20} are disjoint and form a partition of \mathbb{Z}_{20} .

Exercise 13.24

Find a zero-divisor in $\mathbb{Z}_5[i] = \{a + bi \mid a, b \in \mathbb{Z}_5\}.$

Solution. Let $R = \mathbb{Z}_5[i]$. By def zero-divisor, $r_{\neq 0} \in R$ is a zero-divisor of R if there exists some $s_{\neq 0} \in R$ such that $rs \equiv 0 \pmod{5}$. Consider the elements r = 2 + i and $s = \overline{r} = 2 - i$. Notice

$$rs = (2+i)(2-i) = 4-2i+2i+1 = 5+0i \equiv 0 \pmod{5}$$

Thus r is a zero-divisor of $\mathbb{Z}_5[i]$.

Exercise 13.30

Let d be a positive integer. Prove that $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$ is a field.

Solution. Viewed as an element of \mathbb{R} , the multiplicative inverse of any element of the form $a+b\sqrt{d}$ is $1/(a+b\sqrt{d})$. To verify that $\mathbb{Q}[\sqrt{d}]$ is a field, we must show $1/(a+b\sqrt{d})$ can be written in the form $\alpha+\beta\sqrt{d}$.

$$\frac{1}{a+b\sqrt{d}} = \frac{1}{a+b\sqrt{d}} \cdot \frac{a-b\sqrt{d}}{a-b\sqrt{d}} = \frac{a-b\sqrt{d}}{a^2-ab\sqrt{d}+ab\sqrt{d}-b^2d} = \frac{a}{a^2-b^2d} - \frac{b}{a^2-b^2d}\sqrt{d}$$

Thus $\mathbb{Q}[\sqrt{d}]$ is a field.

Exercise 13.31

Let R be a ring with unity 1. If the product of any pair of nonzero elements of R is nonzero, prove that ab = 1 implies ba = 1.

Solution. We have that $a_{\neq 0}, b_{\neq 0} \in R \implies ab \neq 0$. Suppose ab = 1. Then

$$ab = 1$$

$$aba = a$$

$$aba - a = 0$$

$$a(ba - 1) = 0$$

$$\implies ba = 1$$

by properties of multiplication. Thus $ab = 1 \implies ba = 1$.

Exercise 13.32

Let $R = \{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10. Prove that R is a field.

Solution. By def field, we need only verify each nonzero element of R has a multiplicative inverse. The nonzero elements of R are $\{2, 4, 6, 8\}$. By Exercise 12.2, we know the unity of R is 6. Thus, we must find some $b \in R$ for each $a \in \mathbb{R}$ such that ab = 6. Then, we can see that

$$2 \cdot 8 = 16 \equiv 6 \pmod{10},$$
 $4 \cdot 4 = 16 \equiv 6 \pmod{10},$ $6 \cdot 6 = 36 \equiv 6 \pmod{10},$ $8 \cdot 2 = 16 \equiv 6 \pmod{10}.$

Thus R is a field.

Exercise 13.42

Construct a multiplication table for $\mathbb{Z}_2[i]$, the ring of Gaussian integers modulo 2. Is this ring a field? Is it an integral domain?

Solution. We know $\mathbb{Z}_2[i] = \{a + bi \mid a, b \in \mathbb{Z}_2\} = \{0, i, 1, 1 - i, 1 + i\}$

Then the multiplication table is

	0	i	1	1+i
0	0	0	0	0
i	0	1 i	i	1+i
1	0	i	1	1+i
1+i	0	1+i	1+i	0

Exercise 13.43

The nonzero elements of $\mathbb{Z}_3[i]$ form an abelian group of order 8 under multiplication. Is it isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$?

Solution. \Box

Exercise 14.4

Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.

Solution. \Box

Exercise 14.6

Find all maximal ideals in

a. \mathbb{Z}_8 b. \mathbb{Z}_{10} c. \mathbb{Z}_{12} d. \mathbb{Z}_n

Solution. \Box

Exercise 14.10

If A and B are ideals of a ring, show that the sum of A and B, $A + B = \{a + b \mid a \in A, b \in B\}$, is an ideal.

Solution. \Box

Exercise 14.11

In the ring of integers, find a positive integer a such that

a. $\langle a \rangle = \langle 2 \rangle + \langle 3 \rangle$ b. $\langle a \rangle = \langle 6 \rangle + \langle 8 \rangle$ c. $\langle a \rangle = \langle m \rangle + \langle n \rangle$

Solution. \Box

Exercise 14.12

If A and B are ideals of a ring, show that the product of A and B, $AB = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n \mid a_i \in A, b_i \in B, n \in \mathbb{Z}_{>0}\}$, is an ideal.

 \Box

Exercise 14.13

Find a positive integer a such that

1. $\langle a \rangle = \langle 3 \rangle \langle 4 \rangle$ 2. $\langle a \rangle = \langle 6 \rangle \langle 8 \rangle$ 3. $\langle a \rangle = \langle m \rangle \langle n \rangle$

 \Box

Exercise 14.14

Let A and B be ideals of a ring. Prove that $AB \subseteq A \cap B$.

Solution. \Box