Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

Real-Time Systems

3c-Deadline Monotonic

Antonio Camacho Santiago antonio.camacho.santiago@upc.edu

Objective

To understand deadline monotonic (DM) schedulers...

To design deadline monotonic schedulers...

To analyze deadline monotonic ...

To evaluate the pros and cons of deadline monotonic schedulers...

To compare rate monotonic and deadline monotonic schedulesrs...

```
at design stage:
   assign higher priorities to shorter deadlines tasks

at runtime each Sys_Tick:
   for each active task
   dispatch the task with higher priority
```

Deadline monotonic (DM) is a variation of RM suited for tasks where deadlines are less or equal than periods.

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)	Priority RM	Priority DM
τ_1	4	10	10	3	2
τ_2	3	15	15	2	1
τ_3	3	8	20	1	3

During the design of the system, each task has a priority according to its deadline

$$\forall \tau_i, \tau_j : D_i < D_j \Rightarrow P_i > P_j$$

It can also be used the following rule saying that priorities are assigned proportionally to the inverse of the period

$$P_i \propto \frac{1}{D_i}$$

At each system tick, the scheduler looks for the existing active tasks to dispatch the task with higher priority. Thus, preemption is allowed at each system tick

Requisites

The first approach for the rate monotonic scheduler is based on periodic tasks as follows:

1 microprocessor

Static tasks

Periodic tasks

No precedence among tasks

The WCET for each tasks is known, fitted and less than its deadline

Deadlines of each task are less or equal to their periods

Tasks can be preempted

RT kernel uses fixed priorities

The schedulability analysis tries to know in advance if all the release times for each task occurs before its deadline.

The analysis is performed at the critical time (not during the whole hiperperiod): for a system of periodic independent tasks scheduled with fixed priorities, each instant in which a task is activated at the same time that each one of the higher priority tasks is called a critical time

Methodology

3c-Deadlime Monotonic

Assign priorities based on deadlines

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)	Priority RM	Priority DM
τ_1	4	10	10	3	2
τ_2	3	15	15	2	1
τ_3	3	8	20	1	3

Sufficient condition is not valid

$$U_{\text{total}} = \sum_{i=1}^{n} U_i = \sum_{i=1}^{n} \frac{c_i}{T_i} = \frac{2}{T_i} + \dots + \frac{c_n}{T_n} \le n(2^{1/n} - 1)$$

Necessary and sufficient condition: check response time analysis for the critical instant This condition applies to $D_i \le T_i$

$$\forall \tau_i : R_i = C_i + \sum_{j \in hp(i)} \left[\frac{R_i}{T_j} \right] C_j \le D_i$$

$$hp(i) = \{j : 1 ... n \mid P_j > P_i\}$$

Example RM vs DM

3c-Deadlime Monotonic

RATE MONOTONIC SCHEDULER

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)	Priority RM	Priority DM
τ_1	4	10	10	3	2
τ ₂	3	15	15	2	1
τ_3	3	8	20	1	3

Example RM vs DM

3c-Deadlime Monotonic

DEADLINE MONOTONIC SCHEDULER

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)	Priority RM	Priority DM
τ ₁	4	10	10	3	2
τ ₂	3	15	15	2	1
τ_3	3	8	20	1	3

Priority

RM

Priority

DM

3

Period

 T_i (ms)

10

15

20

Example RM vs DM

Response Time Analysis for RM

$$W_i^{n+1} = C_i + \sum_{j \in hp(i)} \left[\frac{W_i^n}{T_j} \right] C_j$$

$$i = 1$$
: $W_1^0 = C_1 + 0 = 4 \le 10 = D_i$

$$i = 2$$
: $W_2^0 = C_2 + 0 = 3 \le 15 = D_i$

$$W_2^1 = C_2 + \left[\frac{3}{10}\right] 4 = 3 + 4 = 7 \le 15 = D_i$$

$$W_2^2 = C_2 + \left[\frac{7}{10}\right] 4 = 3 + 4 = 7 \le 15 = D_i$$

$$W_2^2 = W_2^1 \rightarrow R_2 = 7$$

$$i = 3$$
: $W_3^0 = C_3 + 0 + 0 = 3 \le 8 = D_i$

$$W_3^1 = C_3 + \left[\frac{3}{10}\right] 4 + \left[\frac{3}{15}\right] 3 = 3 + 4 + 3 = 10 \ge 8 = D_i$$
 (Deadline missed)

Task τ_i

 τ_1

 T_2

Computing

time c_i (ms)

3

Deadline

D_i (ms)

10

15

Example RM vs DM

Response Time Analysis for DM

$$W_i^{n+1} = C_i + \sum_{j \in hp(i)} \left[\frac{W_i^n}{T_j} \right] C_j$$

$$i = 3$$
: $W_3^0 = C_3 + 0 = 3 \le 8 = D_i$

$$i = 1$$
: $W_1^0 = C_1 + 0 = 4 \le 10 = D_i$

$$W_1^1 = C_1 + \left[\frac{4}{20}\right] 3 = 4 + 3 = 7 \le 10 = D_i$$

$$W_1^2 = C_1 + \left[\frac{7}{20}\right] 3 = 4 + 3 = 7 \le 10 = D_i$$

$$W_1^2 = W_1^1 \rightarrow R_1 = 7$$

$$i = 2$$
: $W_2^0 = C_2 + 0 + 0 = 3 \le 15 = D_i$

$$W_2^1 = C_2 + \left[\frac{3}{20}\right] 3 + \left[\frac{3}{10}\right] 4 = 3 + 3 + 4 = 10 \le 15 = D_i$$

$$W_2^2 = C_2 + \left[\frac{10}{20}\right] 3 + \left[\frac{10}{10}\right] 4 = 3 + 4 + 3 = 10 \le 15 = D_i$$

$$W_2^2 = W_2^1 \rightarrow R_2 = 10$$

Task τ _i	Computing time c _i (ms)	Deadline D _i (ms)	Period T _i (ms)	Priority RM	Priority DM
τ_1	4	10	10	3	2
τ ₂	3	15	15	2	1
τ_3	3	8	20	1	3

Rate Monotonic scheduler

Pros:

The deadline monotonic scheduler is based on fixed priorities configured at design stage according to the deadline of each task

Response time analysis is the necessary and sufficient condition

$$\forall \tau_i : R_i = C_i + \sum_{j \in hp(i)} \left[\frac{R_i}{T_j} \right] C_j \le D_i$$

Optimality: among all the fixed priorities policies with deadlines less or equal to periods, DM is optimal, i.e. if some priority assignment ensures schedulability, then DM will also ensure it (converse is not truth).

On the limit, when periods are equal to deadlines, RM coincides with DM

Cons:

Preemption

Performance depends on the system tick

Sufficient condition $U_{\text{total}} \leq n(2^{1/n} - 1)$ is not valid