Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison
Introduction to
Double-DOP and

Comparison Experiments

Results

Parsing Performance

Summary

Doubling DOP*

A comparison of Double-DOP and DOP*

Benno Kruit Sara Veldhoen

Supervised by:
Andreas van Cranenburg Khalil Sima'an

University of Amsterdam (UvA)

Project AI, January 2014

Outline

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison

Introduction to Double-DOP and DOP* Comparison Experiments

Results

Parsing Performance Analyzing grammars

$\mathsf{Doubling}\;\mathsf{DOP}^*$

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP^* : a

Introduction to Double-DOP and

DOP " Comparison Experiments

Results

Parsing Performance

ummarv

Introduction to DOP

Double-DOP and

Data Oriented Parsing Introduction to DOP

Parsing

▶ input: sentence

John Loves Mary

output: constituent tree

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison

Double-DOP DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Parsing

input: sentence

John Loves Mary

output: constituent tree

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and

comparison

Double-DOP DOP*

Comparison Experiments

Resul

Parsing Performance Analyzing grammars

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP^* : a

comparison
Introduction to
Double-DOP and

DOP*
Comparison

Experime

Result

Parsing Performance

Summary

A grammar describes:

- how trees can be built
 - CFG's elementary rules
 - ► TSG's larger units: fragments
- ▶ how likely constructions are: *probabilistic* grammars
 - ► PCFG's independence
 - PTSG's derivations

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

comparison

Double-DOP a

Comparison Experiments

Reculto

Parsing Performance

ummarv

 $S \rightarrow NP \ VP$ $VP \rightarrow V \ NP$ $NP \rightarrow John$

 $NP \rightarrow Mary$ $V \rightarrow loves$

Grammar: Tree fragments

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and

comparison

Double-DOP a DOP* Comparison

Comparison Experiments

Result

Parsing Performance Analyzing grammars

Bias and Consistency

Double-DOP and

Data Oriented Parsing

Bias and Consistency

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

Comparison Experiments

Dagulta

Results

Parsing Performance

- Assumption
 - Language is an infinite parse tree distribution
 - ► Treebank is a finite sample
- Estimate the true distribution
- Expected estimation should improve when the treebank grows → expected *loss* should decline
- ▶ Consistency: Expected loss becomes 0 when the sample size approaches ∞

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and

DOP* Comparison

Experiments

Results

Parsing Performance

- Assumption
 - An estimator should approach any distribution
 - Even finite distributions!
- ▶ If there's a distribution that doesn't match its expected estimate, the estimator is **biased**.
- What about unseen data?
- Bias is good

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

Comparison

Recult

Parsing Performance

Summary

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison Introduction to Double-DOP and DOP*

Comparison Experiments

Results

Parsing Performance Analyzing grammars

Double-DOP

Extraction: Maximal Overlap

► Estimation: relative frequency

► Coverage: PCFG rules

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison Introduction to

Double-DOP and DOP*

Comparison Experiments

Recult

Parsing Performance

Double-DOP and

Introduction to Double-DOP and DOP*

▶ Held-out estimation - HC and EC

Extraction: Shortest derivations

Estimation: relative frequency in shortest derivations

Coverage: smoothing PCFG rules with probability p_{unkn}

Double-DOP and

Double-DOP and

Comparison

Comparison

Double-DOP and DOP*: a comparison

Comparison

- Shortest derivations or Maximal overlap
- Split or full estimation
- Consistency

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison Introduction t

DOP*
Comparison

Comparison

Experiments

Result

Parsing Performance

ummarv

Figure: A toy treebank

хУ

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction t Double-DOP : DOP*

Comparison Experiments

Result

Parsing Performance Analyzing grammars

Figure : Some extracted fragments

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP* Comparison

Comparison Experiments

Result

Parsing Performance Analyzing grammars

Double-DOP and DOP*

Comparison

Experiments

Results

Parsing Performance Analyzing grammars

ımmary

	Maximal overlap	weight	Shortest deriv. ¹	weight
f1	(t1,t3),(t2,t4)	4/12	=	0
f2	(t1,t2)	2/12	1b, 2a	1/4
f3	(t2,t3)	2/12	2b, 3b	1/4
f4	(t3,t4)	2/12	3a, 4b	1/4
f5	(t1,t4)	2/12	1a, 4a	1/4
f6	(t1,t3),(t1,t4),	4/6	1a, 2b	1/2
	(t2,t3),(t2,t4)			·
f7	-	0	3b, 4a	1/2
f8	CFG rule	2/6	-	0
f9	(t2,t3),(t2,t4),	4/6	2a, 3a	1/2
	(t3,t4)	•		·
f10	-	0	1b, 4b	1/2
f11	CFG rule	2/6	-	0
f12	CFG rule	2/2	-	0
f13	CFG rule	2/2	-	0
	ı	•	1	'

Table : Weight assignment of MO and SD, full estimation

Double-DOP and

Experiments

Experiments

Double-DOP and DOP*: a comparison

Experiments

Estimation and Parsing with the Disco-Dop framework. Three grammars:

- Maximal Overlap Full (Double-DOP)
- Maximal Overlap Split
- ► Shortest Derivtion Split (DOP*)

$\mathsf{Doubling}\;\mathsf{DOP}^*$

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP

Comparison Experiments

_ .

Result

Parsing Performance

- Removing functions
- ▶ Binarizing by Markovization (h=1 v=1)

 $\mathsf{Doubling}\;\mathsf{DOP}^*$

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP a DOP*

Experiments

Results

Parsing Performance

Algorithm

Estimation

► Full: Maximal Overlap

Split: 10 random folds, interpolating results

- Maximal Overlap
- Shortest Derivation
- Smoothing
- Parsing
 - Input: sentences with sentences with a POS-tag attached to each word
 - ▶ Output: Parsing accuracy scores

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

Comparison Experiments

Resul

Parsing Performance

Kruit, Veldhoen

Data Oriented Parsing

Double-DOP and

Results

4□ → 4□ → 4 □ → 1 □ → 9 Q P

Figure: The grammars and their size

$$p_{unkn} = 1.41 \times 10^{-3}$$

Double-DOP and DOP*: a

comparison Introduction

DOP*
Comparison

Comparison Experiments

Result

Parsing Performance

Summarv

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison Introduction to Double-DOP and DOI Comparison

Results

Parsing Performance

Analyzing grammars

labeled recall

exact match

labeled precision

labeled f-measure

Kruit, Veldhoen

Data Oriented Parsing

Double-DOP and

Shortest Deriv

Split

79.20 79.32

79.26

16.52

Parsing Performance

Table: Results for 1229 sentences of length < 40

Maximal Overlap

Full

86.17

86.05

86.11

28.32

Maximal Overlap

Split

85.11

85.50

85.31

25.87

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

Introduction Double-DOP

DOP*
Comparison

Experiments

Result

Parsing Performance

Summary

Data Oriented Parsing Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a comparison Introduction to Double-DOP and DOP Comparison

Results

Parsing Performance

Analyzing grammars

$\mathsf{Split} \leftrightarrow \mathsf{Full}$

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

Introduction to Double-DOP and DOP*

experiments

Results

Parsing Performance Analyzing grammars

Maximal overlap ↔ shortest derivation

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Introduction to DOP Bias and Consistency

Double-DOP and DOP*: a

omparison

Introduction to Double-DOP and DOP* Comparison

Result

Parsing Performance Analyzing grammars

Double-DOP and

Double-DOP and

Summary

Outlook

Further analysis

Shortest Derivation moves weight to larger fragments

Performance is not necessarily related to consistency:

Split moves weight to smaller fragments

DOP* has bad parsing performance

Other estimators

Acknowledgments

- Andreas van Cranenburgh
- ► Khalil Sima'an

Doubling DOP*

Kruit, Veldhoen

Data Oriented Parsing

Bias and Consistency

Double-DOP and DOP*: a

comparison

Double-DOP a

Comparison Experiments

Results

Parsing Performance