Indian Institute of Technology Bombay

MA 105 Calculus

Solution to Short Quiz 1

by Adway Girish, D1-T3

Date: August 7, 2019

Time: 2:00 PM - 2:05 PM

Day: Wednesday

Max. Marks: 5

Question. State whether the following statement is true or false. Justify your answer. If S is a non-empty subset of \mathbb{R} such that S is bounded above and if $c := \sup S$, then there exists a sequence (x_n) of elements of S such that (x_n) is convergent and $x_n \to c$. (2 marks for correct alternative; 3 marks for correct justification)

Solution. The given statement is true.

For $n \in \mathbb{N}$, $c - \frac{1}{n} < c$. Since c is the supremum (least upper bound), $c - \frac{1}{n}$ is not an upper bound.

Consider the sequence (x_n) with $c - \frac{1}{n} < x_n \le c$, such that $x_n \in S$ for all $n \in \mathbb{N}$, which is possible since S is non-empty, and $c - \frac{1}{n}$ is not an upper bound.

Then, it follows immediately from Sandwich Theorem that as n goes to ∞ , as both $c - \frac{1}{n}$ and c go to c, x_n will also converge to c.

Hence, there does indeed exist a sequence (x_n) of elements of S such that (x_n) is convergent and converges to c.

General observations:

- 1. Some students have shown that for some particular S there is a sequence which does not converge to the supremum of the set, and have incorrectly concluded that the statement is false. The statement given to us reads, "...there exists a sequence...", which means that all we have to show is the existence of some sequence in S which converges to its supremum. Note that it does not say that all sequences in S will converge to its supremum.
- 2. Some students have taken the sequence to be $x_n = c \frac{1}{n}$. However, we cannot guarantee that $c \frac{1}{n}$, while lesser than c, will necessarily lie in S. This is why in the solution, we take the sequence (x_n) , with each term forced to be in S.
- 3. Some students have stated that an increasing sequence in a set with a supremum will converge to its supremum, but this is an incorrect statment. For example, let S = [0, 2), and let the increasing sequence be $1 \frac{1}{n}$. This sequence clearly converges to 1, while the supremum of S in \mathbb{R} is 2.