Aula 14 - Camada de Rede: Conceitos Básicos

Diego Passos

Universidade Federal Fluminense

Redes de Computadores I

Material adaptado a partir dos slides originais de J.F Kurose and K.W. Ross.

Revisão da Última Aula (I)...

Controle de Congestionamento:

- Evitar congestionamento da rede.
- Limitar taxa de transmissão das fontes.
- ≠ controle de fluxo.

Custos do congestionamento:

- Atrasos altos.
- Retransmissões.
- Queda no goodput.
- Desperdício de recursos.

• Duas abordagens:

- Fim-a-fim (inferido pelos hosts).
- Assistido pela rede: explicitamente avisado.

Controle de congestionamento do TCP:

- Fim-a-fim.
- Dividido em fases: Slow Start, Congestion Avoidance.
- Inferido via perdas.

• Slow Start:

- Taxa começa lenta, mas aumenta exponencialmente.
- Aumento de 1 MSS a cada ACK.
- Executado até que cwnd ≥ ssthresh.

Congestion Avoidance: AIMD.

- Incremento Aditivo: 1 MSS por RTT.
- Decremento multiplicativo: divide pela metade em caso de perda.

Revisão da Última Aula (II)...

• Em caso de perda:

- ssthresh = cwnd/2.
- cwnd = 1 MSS.
- Volta-se ao Slow Start.

• Fast Recovery:

- Otimização do TCP Reno (vs. Tahoe).
- Perda por ACK duplicado.
- Tenta se manter no CA.

Vazão do TCP:

- Eficiência menor que 100%.
- Pior para enlaces com alta capacidade e alto RTT.

• TCP: justiça.

- Objetivo: divisão justa da vazão.
- Sob certas condições, TCP alcança.
- UDP, conexões múltiplas podem interferir.

Camada de Rede: Conceitos Básicos

Camada de Rede

- Transporta segmento do host de origem ao host de destino.
- No lado transmissor, encapsula segmentos em datagramas.
- No lado receptor, entrega segmentos à camada de transporte.
- Protocolos de camada de rede atuam em todos os nós (roteadores, hosts).
- Roteador examina campos de cabeçalho em todos os datagramas IP que passam por ele.

Duas Funções Chave da Camada de Rede

- **Encaminhamento:** mover pacotes da entrada para a saída de um roteador.
- Roteamento: determina rota usada por pacote da origem ao destino.
 - Algoritmos de roteamento.

- Analogia:
 - Roteamento: processo de planejar uma viagem da origem ao destino.
 - **Encaminhamento:** processo de realizar um trecho da viagem.

Sinergia entre Roteamento e Encaminhamento

<u>algoritmo</u> de roteamento determina rota fim-a-fim através da rede

tabela de roteamento determina encaminhamento local neste roteador

Estabelecimento de Conexão

- Terceira função importante em **algumas** redes.
 - e.g., ATM, frame relay, X.25.
- Antes de iniciarem o fluxo de dados, hosts e roteadores intermediários estabelecem uma conexão virtual.
 - Roteadores participam do processo.
- Serviço orientado a conexão na camada de rede vs. na camada de transporte:
 - Rede: conexão entre dois hosts (pode também envolver roteadores intermediários em caso de circuitos virtuais).
 - **Transporte:** entre dois processos.

Modelo de Serviço da Rede

- Pergunta: qual o modelo de serviço para o "canal" que transporta datagramas entre origem e destino?
- Exemplos de serviço para datagramas individuais:
 - Garantia de entrega.
 - Garantia de entrega com menos de 40 ms de atraso.

- Exemplos de serviço para um fluxo de datagramas:
 - Entrega ordenada.
 - Garantia de vazão mínima para o fluxo.
 - Restrições sobre alterações no espaçamento entre pacotes.

Modelos de Serviço da Rede: Exemplos

Arquitetura	Modelo de	Garantias?				Aviso de
da Rede	Serviço	Banda	Perda	Ordenação	Atraso	Congestionamento
Internet	Melhor Esforço	Não	Não	Não	Não	Não (inferida via perdas)
ATM	CBR	Taxa Constante	Sim	Sim	Sim	Não há
ATM	VBR	Taxa Garantida	Sim	Sim	Sim	Não há
ATM	ABR	Mínima Garantida	Não	Sim	Não	Sim
ATM	UBR	Nenhuma	Não	Sim	Não	Não

Redes de Circuitos Virtuais

Serviços Orientados e Não-Orientados a Conexão

- Redes de datagramas proveem serviço não-orientado a conexão na camada de rede.
- Redes de circuitos virtuais proveem serviço orientado a conexão na camada de rede.
- Análogo aos serviços do TCP/UDP com e sem conexão na camada de transporte, mas:
 - **Serviço**: host a host.
 - Não há escolha: rede provê um ou outro.
 - Implementação: no núcleo da rede.

Circuitos Virtuais

- Caminho fim-a-fim se comporta de maneira similar a circuito telefônico.
 - Em termos de desempenho.
 - Ações da rede ao longo do caminho fim-a-fim.
- Estabelecimento de chamada para cada conexão antes do fluxo de dados.
- Cada pacote carrega um **identificador de circuito virtual** (ou VC), ao invés de endereço do destinatário.
- Cada roteador no caminho fim-a-fim mantém "estado" para cada conexão passante.
- Recursos de enlaces, roteadores (banda, buffers) podem ser alocados para o VC.
 - Recursos dedicados = serviço previsível.

Implementação de um Circuito Virtual

• Um VC consiste de:

- 1. Caminho entre origem e destino.
- 2. Número(s) de identificação, um para cada enlace no caminho.
- 3. Entradas nas tabelas de roteamento nos roteadores do caminho.
- Pacote pertencente ao VC carrega do número do VC (ao invés do endereço do destinatário).
- Número do VC pode ser alterado a cada salto do caminho.
 - Novo número do VC vem da tabela de roteamento.

Circuitos Virtuais: Tabela de Roteamento

tabela de roteamento no roteador de cima à esquerda:

Interface de entrada	# VC de chegada	Interface de saída	# VC de saída
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
***	•••	•••	•••

Em rede de circuitos virtuais, roteadores mantêm informação de estado da conexão!

Circuitos Virtuais: Protocolos de Sinalização

- Usados para estabelecimento, manutenção e finalização do VC.
- Usados em redes ATM, frame relay, X.25.
- Não são utilizados na Internet atual.

Redes de Datagramas

- Sem estabelecimento de conexão na camada de rede.
- Roteadores: sem estado sobre conexões fim-a-fim.
 - Não há o conceito de "conexão" no nível da rede.
- Pacotes encaminhados usando o endereço de destino do host.

Redes de Datagramas: Tabela de Roteamento (I)

4 bilhões de endereços, então ao invés de listar destinatários individuais, listamos **faixas de endereços** (entradas da tabela são agregadas)

Redes de Datagramas: Tabela de Roteamento (II)

Faixa de	Enlace			
11001000 até	00010111	00010000	0000000	0
11001000	00010111	00010111	11111111	J
11001000 até	00010111	00011000	0000000	1
0	00010111	00011000	11111111	•
11001000 até	00010111	00011001	0000000	2
11001000	00010111	00011111	11111111	
Caso con	3			

• Pergunta: e se os endereços não são divididos de forma tão organizada?

Casamento por Prefixo mais Longo

Casamento por Prefixo mais longo

Ao procurar por uma entrada na tabela de roteamento para um destino, opte sempre pelo **prefixo mais longo** que casa com o endereço do destino.

Faixa de Endereços de Destino	Enlace
11001000 00010111 00010*** ******	0
11001000 00010111 00011000 *****	1
11001000 00010111 00011*** *****	2
Caso contrário	3

• Exemplos:

Destino: 11001000 00010111 00010110 10100001. Qual interface?

Destino: 11001000 00010111 00011000 10101010. Qual interface?

Datagrama ou Circuitos Virtuais: Por Quê?

- Internet (datagrama):
 - Dados trocados entre computadores.
 - Serviço "elástico", sem requisitos temporais estritos.
 - Muitos tipos diferentes de enlaces.
 - Características variadas.
 - Difícil prover serviço uniforme.
 - Dispositivos finais "inteligentes" (computadores).
 - Podem se adaptar, realizar controle, recuperação de erros.
 - Núcleo simples, complexidade nas bordas.

- ATM (VC):
 - Evoluiu da telefonia.
 - Conversação humana:
 - Requisitos temporais estritos.
 - Garantias de serviço necessárias.
 - Sistemas finais "burros".
 - Telefones.
 - Complexidade no núcleo da rede.

Resumo da Aula...

Camada de rede:

- Comunicação fim a fim entre hosts.
- Encapsula segmentos em datagramas.
- Roda em todos os nós.

• Funções chave:

- Encaminhamento: mover datagrama da entrada para saída.
- Roteamento: encontrar **rota** fim-a-fim.

• Tabela de roteamento:

- Montada pelo roteamento.
- Usada pelo encaminhamento.

• Modelos de Serviço:

- O que a rede promete.
- e.g., banda mínima, atraso máximo, entrega ordenada.
- Modelo da Internet: melhor esforço.

• Redes de Circuitos Virtuais:

- Serviço orientado a conexão.
- Pacotes corregam identificador do VC.
 - E não endereço de destino.
- Recursos muitas vezes reservados.
- Tabela de roteamento associa:
 - Interface, # do VC de entrada.
 - Interface, # do VC de saída.

• Redes de datagramas:

- Paradigma usado na Internet.
- Encaminhamento baseado no endereço de destino.
- Agregação de endereço.
- Casamento por prefixo mais longo.

Próxima Aula...

- Continuaremos estudando a camada de rede.
- Em particular, discutiremos o funcionamento interno de um roteador.
 - Arquiteturas.
 - Buffers.
 - Políticas de enfileiramento.