Розділ 2. Випадкові величини

Величину називають *випадковою*, якщо внаслідок проведення експерименту під впливом випадкових факторів вона набуває того чи іншого можливого числового значення з певною ймовірністю.

Якщо множина можливих значень випадкової величини ϵ скінченною або зліченною, то таку величину називають *дискретною*. В іншому разі її називають *неперервною*.

Приклад 1. Задано множину цілих чисел $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Навмання беруть одне число. Елементарними подіями будуть такі: поява одного з чисел - 1, 2, 3,...,10 з певною ймовірністю. Множина можливих значень є дискретною, а тому й випадкова величина — поява одного з чисел множини Ω — буде дискретною.

Приклад 2. Вимірюють силу струму за допомогою амперметра. Результати вимірювання, зазвичай, округлюють до найближчої поділки на шкалі для вимірювання сили струму. Похибка вимірювання, що виникає внаслідок округлення, є неперервною випадковою величиною.

Випадкові величини позначатимемо літерами грецького алфавіту $\xi, \eta, \zeta...$, а їх можливі значення -x, y, z, ...

Для опису випадкової величини потрібно навести не лише множину можливих її значень, а й зазначити, з якими ймовірностями ця величина набуває того чи іншого можливого значення.

3 цією метою вводять поняття закону розподілу ймовірностей.

Законом розподілу випадкової величининазивають таке співвідношення, яке визначає зв'язок між можливими її значеннями та відповідними їм імовірностями.

Закон розподілу ймовірностей можна подати ще в одній формі, яка придатна і для дискретних, і для неперервних випадкових величин, а саме: як функцію розподілу ймовірностей випадкової величини F(x), так звану інтегральну функцію.

Інтегральною функцією розподілу (функцією розподілу) ймовірностей F(x) випадкової величини ξ називають імовірність того, що ξ набуде значення, не більшого за числох, тобто

$$F(x) = P(\xi \le x). \tag{2.1}$$

Тобто, функцією розподілу випадкової величини ξ є ймовірність події $\xi \le x$, де x – довільне дійсне число.

Функція розподілу випадкової величини ξ має такі загальні *властивості*:

- a) $0 \le F(x) \le 1$;
- б) функція розподілу ϵ неспадною, тобто $F(x_2) \ge F(x_1)$, якщо $x_2 \ge x_1$;
- в) якщо всі можливі значення випадкової величини ξ належать інтервалу (a,b), то F(x)=0 при $x\leq a$ і F(x)=1 при $x\geq b$;
 - г) якщо $x \to +\infty$, то $F(x) \to 1$, і якщо $x \to -\infty$, то $F(x) \to 0$.
 - д) функція розподілу неперервна справа, тобто $\lim_{\varepsilon \to 0} F(x+\varepsilon) = F(x)$ де $\varepsilon > 0$.
 - e) $P(a < \xi \le b) = F(b) F(a)$

Дві випадкові величини називають взаємно незалежними, якщо закон розподілу однієї з них не залежить від того, якого з можливих своїх значень набуває друга величина.

2.1. Дискретна випадкова величина

Основні поняття, означення та відношення

1. Випадкову величину називають**дискретною**, якщо вона може набувати окремих, ізольованих одне від одного, числових значень з певними ймовірностями.

Множина значень дискретної випадкової величини може бути скінченною або зліченною.

2. Законом розподілудискретної випадкової величининазивають відповідність між всіма можливими її значеннями та їхніми ймовірностями. Його записують у вигляді таблиці:

$\xi = x_i$	\mathcal{X}_1	\boldsymbol{x}_2	•••	\mathcal{X}_n
$p = p_i$	$p_{_1}$	$p_{_2}$	•••	$p_{_n}$

де $p_i = P(\xi = x_i)$. Очевидно, що

$$p_1 + p_2 + ... + p_n = 1$$
, so $(\xi = x_1) \cup (\xi = x_2) \cup ... \cup (\xi = x_n) = \Omega$.

3. Функція розподілу $F(x) = P(\xi \le x)$ дискретної випадкової величини $\xi \in p$ озривною у точках $x = x_i \left(i = \overline{1,n} \right)$, i ii аналітичний вираз описують функцією

$$F(x) = \begin{cases} 0, & x < x_1; \\ p_1, & x_1 \le x < x_2; \\ p_1 + p_2, & x_2 \le x < x_3; \\ \dots & \dots & \dots \\ p_1 + \dots + p_{n-1}, & x_{n-1} \le x < x_n; \\ 1, & x \ge x_n. \end{cases}$$

$$(2.2)$$

Графік функції розподілу дискретної випадкової величини ξ ϵ східчастою фігурою. Він зображений на рис. 2.1.

Рис. 2.1. Графік функції розподілу дискретної випадкової величини

Залежно від того за якими формулами обчислюють імовірності набуття дискретною випадковою величиною ξ своїх значень, одержуємо різні закони розподілу. Розглянемо основні з них:

Біномний закон розподілу описує випадкову величину ξ — число появ події A у серії випробувань за схемою Бернуллі, де p = P(A) — ймовірність появи події A в кожному окремому випробуванні.

Якщо число випробувань дорівнює n, тоді випадкова величина ξ може набути значень 0,1,2,...,n, а ймовірність подій $\xi=i$ обчислюють за формулою Бернуллі (1.16):

$$p_{i} = P(\xi = i) = P_{n}(i) = C_{n}^{i} p^{i} q^{n-i}.$$
(2.3)

Записують біномний закон розподілу у вигляді таблиці:

غ	$\xi = i$	0	1	2	 n
P	$p = p_i$	q^{n}	$C_n^1 pq^{n-1}$	$C_n^2 p^2 q^{n-2}$	 p^{n}

Закон розподілу Пуассона також описує випадкову величину ξ — числопояв події A в серії зnвипробувань, якщо ймовірність p = P(A) близька до нуля або до одиниці. У цьому випадку ймовірності $p_i = P(\xi = i)$ обчислюють за формулою Пуассона (1.22):

$$p_i = P(\xi = i) = \frac{\lambda^i}{i!} e^{-\lambda}, \text{ де } \lambda = n \cdot p.$$
 (2.4)

Закон розподілу Пуассона записують у вигляді таблиці:

$\xi = i$	0	1	2	•••	n	•••
p_{i}	$e^{-\lambda}$	$\frac{\lambda}{1!}e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$		$\frac{\lambda^n}{n!}e^{-\lambda}$	

Цей закон використовують у задачах статистичного контролю якості, в теорії масового обслуговування, теорії надійності і т.п.

Зауважимо, що в законі розподілу Пуассона наведена таблиця ϵ нескінченною, бо

$$e^{-\lambda} + \frac{\lambda}{1!}e^{-\lambda} + \frac{\lambda^2}{2!}e^{-\lambda} + \dots + \frac{\lambda^n}{n!}e^{-\lambda} + \dots = e^{-\lambda}\sum_{i=0}^{+\infty}\frac{\lambda^i}{i!} = e^{-\lambda}e^{\lambda} = 1.$$

Якщо число випробувань n ϵ скінченне, то ймовірність p_n обчислюємо за рівністю

$$p_n = 1 - \sum_{i=1}^{n-1} p_i$$
.

Геометричний розподіл описує випадкову величину ξ — число випробувань за схемою Бернуллі до першої появи події A, якщо p = P(A) — ймовірність появи події A в кожному окремому випробуванні. Випадкова величина ξ може набувати значень 1, 2, 3, ..., n, ..., а відповідні їм імовірності обчислюємо за формулою:

$$p_i = P(\xi = i) = pq^{i-1}, \ q = 1 - p,$$
 (2.5)

бо перша поява події A в i — му випробуванні означає, що в попередніх i — 1 випробуваннях вона не з'явилася, а в i — мувипробуванні з'явилася.

Геометричний закон розподілу записують у вигляді таблиці:

$\xi = i$	1	2	3	 n	•••
p_i	p	pq	pq^2	 pq^{n-1}	•••

Коли випробування закінчуються на n – мукроці, то ймовірність $p_n = P(\xi = n)$ не обчислюють за формулою (2.5), а для її знаходження користуються рівністю:

$$p_n = 1 - (p + pq + pq^2 + ... + pq^{n-2}).$$

4. Поряд із законом розподілу дискретну випадкову величину характеризують ще так званими інтегральними ознаками, які називають **числовими характеристиками**. До основних з них належать математичне сподівання, дисперсія і середнє квадратичне відхилення.

Математичним сподіванням E(\xi)дискретної випадкової величини ξ називають число, яке дорівнює сумі добутків можливих значень величини ξ на відповідні їм імовірності, тобто

$$E(\xi) = \sum_{i=1}^{n} x_i p_i .$$

(2.6)

Якщо ξ може набувати нескінченної зліченної кількості значень, то

$$E(\xi) = \sum_{i=1}^{\infty} x_i p_i,$$

(2.6')

при цьому ряд повинен бути збіжним.

Математичне сподівання дискретної випадкової величини ξ характеризує середнє арифметичне значення випадкової величини ξ із врахуванням їхніх імовірностей і є центром розподілу цих значень.

Математичне сподівання дискретної випадкової величини має такі властивості:

- математичне сподівання сталої величини дорівнює цій сталій величині, тобто E(C) = C, якщо C = const;
- математичне сподівання суми випадкових величин дорівнює алгебраїчній сумі їхніх математичних сподівань, тобто

$$E(\sum_{i=1}^{n} \xi_i) = \sum_{i=1}^{n} E(\xi_i);$$

(2.7)

• математичне сподівання добутку декількох взаємно незалежних випадкових величин дорівнює добутку їхніх математичних сподівань, тобто

$$E(\xi_1 \cdot \xi_2 \cdot ... \cdot \xi_n) = E(\xi_1)E(\xi_2)...E(\xi_n);$$

(2.8)

• сталий множник можна виносити за знак математичного сподівання, тобто $E(C\xi) = CE(\xi)$, C=const.

(2.9)

Якщо випадкова величина ξ ϵ число появ події A у серії випробувань за схемою Бернуллі, то

$$E(\xi) = np$$
.

(2.10)

Для розподілу Пуассона $E(\xi) = \lambda = np$.

Дисперсією $D(\xi)$ дискретної випадкової величини ξ називають число, яке дорівнює математичному сподіванню квадрата відхилення величини ξ від її математичного сподівання, тобто

$$D(\xi) = E(\xi - E(\xi))^{2} = \sum_{i=1}^{n} [x_{i} - E(\xi)]^{2} \cdot p_{i}.$$
(2.11)

Формула (2.11) елементарними перетвореннями набуває вигляду:

$$D(\xi) = E(\xi^2) - E^2(\xi) = \sum_{i=1}^n x_i^2 \cdot p_i - E^2(\xi).$$
 (2.11')

Дисперсія дискретної випадкової величини ξ характеризує розсіювання можливих значень величини ξ відносно її центру розподілу — математичного сподівання.

Дисперсія дискретної випадкової величини ξ має такі властивості:

- дисперсія будь-якої дискретної випадкової величини ξ невід'ємна, тобто $D(\xi) \ge 0$;
 - дисперсія сталої величини дорівнює нулю, тобто D(C) = 0, коли C = const;
- дисперсія алгебричної суми дискретних незалежних випадкових величин дорівнює сумі дисперсій цих величин, тобто

$$D(\xi_1 \pm \xi_2 \pm ... \pm \xi_n) = D(\xi_1) + D(\xi_2) + ... + D(\xi_n);$$
(2.12)

• сталий множник можна винести за знак дисперсії, при цьому його треба піднести у квадрат, тобто $D(C\xi) = C^2 D(\xi)$ якщо C=const.

У випадку, коли випадкова величина ξ — число появ події у серії випробувань за схемою Бернуллі, то дисперсію величини ξ обчислюють за простішою формулою:

$$D(\xi) = npq \,, \tag{2.13}$$

де p = P(A) — ймовірність появи події A в кожному окремому випробуванні і $q = 1 - p = P(\overline{A})$.

Для розподілу Пуассона дисперсія дорівнює параметру Пуассона $D(\xi) = \lambda$.

Середнім квадратичним відхиленням $\sigma(\xi)$ дискретної випадкової величини ξ називають число, яке дорівнює квадратному кореню з дисперсії $D(\xi)$, тобто

$$\sigma(\xi) = \sqrt{D(\xi)} \ . \tag{2.14}$$

Середнє квадратичне відхилення $\sigma(\xi)$ також характеризує розсіювання можливих значень величини ξ відносно центру, але на відміну від $D(\xi)$ вимірюється в тих самих одиницях, що й величина ξ .

5. Якщо дискретні випадкові величини $\xi_1, \xi_2, ... \xi_n$ взаємно незалежні й однаково розподілені ($E(\xi_i) = E = const$, $D(\xi_i) = D = const$, $\sigma(\xi_i) = \sigma = const$), а випадкова величина

$$\overline{\xi} = \frac{\xi_1 + \xi_2 + \dots + \xi_n}{n},\tag{2.15}$$

то:

$$E(\overline{\xi}) = E, \quad D(\overline{\xi}) = \frac{D}{n}, \quad \sigma(\overline{\xi}) = \frac{\sigma}{\sqrt{n}}.$$
 (2.16)

Наголосимо, що випадкові величини $\xi_1, \xi_2, ... \xi_n$ взаємно незалежні, якщо закон розподілу кожної з них не залежить від того, якого значення набула інша величина.

Наведені формули для чисельних характеристик середнього арифметичного значення $\overline{\xi}$ випадкових величин $\xi_1, \xi_2,...\xi_n$ мають важливе практичне застосування: якщо вибрати за значення вимірюваної величини середнє арифметичне результатів проведених вимірювань $\xi_1, \xi_2,...\xi_n$, то воно буде ближчим до істинного значення цієї величини, ніж результат кожного вимірювання, тобто надійнішим. Це випливає з того, що розсіювання випадкової величини — середнього арифметичного результатів вимірювання — є меншим, ніж розсіювання кожної випадкової величини — результату кожного вимірювання. При цьому зі збільшенням числа n вимірювань розсіювання їхнього середнього арифметичного зменшується.

Приклад 1.На іспиті з математики, який складали 25 студентів, бал "5" отримали п'ятьстудентів, бал "4" — десять студентів, бал "3" — вісім студентів, бал "2" — два студенти. Написати закон розподілу випадкової величини ξ — число балів навмання вибраного з групи студента. Виконати такі дії:

- а) знайти ймовірність того, що вибраний навмання студент має не менше ніж чотири бали (подія A);
 - б) обчислити числові характеристики $E(\xi), D(\xi), \sigma(\xi)$.

Розв'язання.Випадкова величина ξ може набути значень: $x_1 = 2$ (студент отримав бал "2"), $x_2 = 3$ (студент отримав бал "3"), $x_3 = 4$ (студент отримав бал "4"), $x_4 = 5$ (студент отримав бал "5"). Обчислимо ймовірності, що відповідають цим значенням випадкової величини ξ :

$$p_1 = P(\xi = 2) = \frac{2}{25} = 0,08,$$

$$p_2 = P(\xi = 3) = \frac{8}{25} = 0,32,$$

$$p_3 = P(\xi = 4) = \frac{10}{25} = 0,4,$$

$$p_4 = P(\xi = 5) = \frac{5}{25} = 0,2.$$

Закон розподілу описаної у задачі випадкової величини ξ має вигляд:

$\xi = x_i$	2	3	4	5
p_i	0,08	0,32	0,4	0,2

Зробимо перевірку:

$$p_1 + p_2 + p_3 + p_4 = 0,08 + 0,32 + 0,4 + 0,2 = 1.$$

а) Якщо студент отримає не менше ніж бал "4", то він склав іспит або на чотири або на п'ять. Тому подія A є сумою подій $\xi = 4$ і $\xi = 5$, які несумісні. Тоді за формулою додавання несумісних подій маємо:

$$P(A) = P(\xi = 4 \cup \xi = 5) = P(\xi = 4) + P(\xi = 5) = 0, 4 + 0, 2 = 0, 6.$$

б) Математичне сподівання $E(\xi)$, дисперсію $D(\xi)$ і середнє квадратичне відхилення $\sigma(\xi)$ обчислюємо за формулами відповідно:

$$E(\xi) = 2 \cdot 0.08 + 3 \cdot 0.32 + 4 \cdot 0.4 + 5 \cdot 0.2 = 0.16 + 0.96 + 1.6 + 1 = 3.72$$
.

Середнє арифметичне можливих значень величини ξ дорівнює:

$$\overline{\xi} = \frac{2+3+4+5}{4} = \frac{14}{4} = 3,5$$
.

Отже, $E(\xi) \approx \overline{\xi}$.

$$D(\xi) = E(\xi^2) - E^2(\xi) = \sum_{i=1}^4 x_i^2 \cdot p_i - 3,72^2 =$$

$$2^{2} \cdot 0,08 + 3^{2} \cdot 0,32 + 4^{2} \cdot 0,4 + 5^{2} \cdot 0,2 - 3,72^{2} = 4 \cdot 0,08 + 9 \cdot 0,32 + 16 \cdot 0,4 + 25 \cdot 0,2 - 13,8384 = 0,32 + 2,88 + 6,4 + 5 - 13,8384 = 0,7616$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{0,7616} \approx 0,8727.$$

Приклад 2. Написати закон розподілу ймовірностей випадкової величини ξ — числа сімей з чотирьох навмання вибраних, які мають заборгованості в оплаті комунальних послуг, якщо 70% сімей регіону своєчасно їх сплачують. Виконати такі дії:

а) знайти найімовірніше число сімей серед чотирьох вибраних, які мають заборгованість в оплаті комунальних послуг;

б) написати аналітичний вираз функції розподілу F(x) випадкової величини ξ та накреслити її графік.

Розв'язання. Нехай подія A — вибрана навмання сім'я в регіоні має заборгованість в оплаті комунальних послуг. Тоді подія \overline{A} — вибрана навмання сім'я не має заборгованості в оплаті комунальних послуг. За умовою задачі $q = P(\overline{A}) = 0,7$ і p = P(A) = 0,3.

Випадкова величина ξ може набувати значень: $x_0 = 0$ (жодна сім'я з чотирьох вибраних не має заборгованості), $x_1 = 1$ (одна сім'я має заборгованість), $x_2 = 2$ (дві сім'ї мають заборгованість), $x_3 = 3$ (три сім'ї мають заборгованість), $x_4 = 4$ (чотири сім'ї мають заборгованість).

Оскільки вибір чотирьох сімей можна розглядати як послідовність 4 випробувань за схемою Бернуллі, в кожному з яких з'являється подія A або \overline{A} , то закон розподілу випадкової величини ξ є біномним, і ймовірності, що відповідають значенням $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, обчислимо за формулою Бернуллі (2.3):

$$p_{0} = C_{4}^{0} \cdot 0,3^{0} \cdot 0,7^{4} = \frac{4!}{0! \cdot 4!} \cdot 1 \cdot 0,2401 = 1 \cdot 1 \cdot 0,2401 = 0,2406;$$

$$p_{1} = C_{4}^{1} \cdot 0,3^{1} \cdot 0,7^{3} = \frac{4!}{1! \cdot 3!} \cdot 0,3 \cdot 0,343 = 4 \cdot 0,3 \cdot 0,343 = 0,4116;$$

$$p_{2} = C_{4}^{2} \cdot 0,3^{2} \cdot 0,7^{2} = \frac{4!}{2! \cdot 2!} \cdot 0,09 \cdot 0,49 = 6 \cdot 0,09 \cdot 0,49 = 0,2646;$$

$$p_{3} = C_{4}^{3} \cdot 0,3^{3} \cdot 0,7^{1} = \frac{4!}{3! \cdot 1!} \cdot 0,027 \cdot 0,7 = 4 \cdot 0,027 \cdot 0,7 = 0,0756;$$

$$p_{4} = C_{4}^{4} \cdot 0,3^{4} \cdot 0,7^{0} = \frac{4!}{4! \cdot 0!} \cdot 0,0081 \cdot 1 = 1 \cdot 0,0081 \cdot 1 = 0,0081.$$

Зробимо перевірку:

$$p_0 + p_1 + p_2 + p_3 + p_4 = 0,2401 + 0,4116 + 0,2646 + 0,0756 + 0,0081 = 1.$$

Закон розподілу випадкової величини ξ записуємо у вигляді таблиці:

$\xi = x_i$	0	1	2	3	4
p_i	0,2401	0,4116	0,2646	0,0756	0,0081

- а) Із закону розподілу випливає, що найбільшу ймовірність має значення $x_1 = 1$ випадкової величини ξ , тому найімовірніше, що серед чотирьох вибраних сімей заборгованість в оплаті за комунальні послуги має одна сім'я.
 - б) За формулою (2.2) записуємо функцію розподілу F(x) випадкової величини ξ :

якщо x<0 , то $F(x)=P(\xi\leq x)$ дорівнює нулю, бо випадкова величина ξ не має від'ємних значень і подія $\xi<0$ неможлива;

якщо $0 \le x < 1$, то $F(x) = P(\xi \le x) = 0,2401$, бо величина ξ має єдине значення, яке менше за одиницю, і $P(\xi \le 0) = P(\xi = 0) = 0,2401$;

якщо
$$1 \le x < 2$$
, то $F(x) = P(\xi \le x) = P(\xi = 0) + P(\xi = 1) = 0,2401 + 0,4116 = 0,6517$, бо подія $\xi \le x$ є сумою несумісних подій $\xi = 0$ і $\xi = 1$;

якщо $2 \le x < 3$, то $F(x) = P(\xi \le x) = P(\xi = 0) + P(\xi = 1) + P(\xi = 2) = 0,9163$, бо подія $\xi \le x$ єсумою трьох несумісних подій $\xi = 0$, $\xi = 1$ і $\xi = 2$;

якщо
$$3 \le x < 4$$
 , то $F(x) = P(\xi \le x) = P(\xi = 0) + P(\xi = 1) + P(\xi = 2) + P(\xi = 3) = 0,9919$ бо подія $\xi \le x$ є сумою чотирьох несумісних подій $\xi = 0$, $\xi = 1$, $\xi = 2$ і $\xi = 3$;

якщо $x \ge 4$, $F(x) = P(\xi \le x) = 1$, бо подія $\xi \le x$ вірогідна, оскільки є сумою несумісних подій $\xi = 0$, $\xi = 1$, $\xi = 2$ і $\xi = 3$, $\xi = 4$.

Функція F(x) розподілу випадкової величини ξ має вигляд:

$$F(x) = \begin{cases} 0, & x < 0; \\ 0,2401, & 0 \le x < 1; \\ 0,6517, & 1 \le x < 2; \\ 0,9163, & 2 \le x < 3; \\ 0,9919, & 3 \le x < 4; \\ 1, & x \ge 4. \end{cases}$$

Графік цієї функції розподілу зображено на рис. 2.2.

Рис. 2.2. Графік функції розподілу.

Приклад 3. Дискретна випадкова величина ξ характеризується функцією розподілу

$$F(x) = \begin{cases} 0, & x < -4; \\ 0, 2, & -4 \le x < 5; \\ 0, 3, & 5 \le x < 8; \\ 0, 6, & 8 \le x < 9; \\ 0, 8, & 9 \le x < 10; \\ 1, & x \ge 10. \end{cases}$$

Обчислити числові характеристики $E(\xi)$, $D(\xi)$, $\sigma(\xi)$

Розв'язання. Щоб обчислити зазначені числові характеристики, потрібно знайти закон розподілу випадкової величини ξ , можливими значеннями якої є числа: -4, 5, 8, 9, 10, а для цього виходячи з означення функції розподілу $F(x) = P(\xi \le x)$, знайдемо їхні ймовірності:

$$P(\xi=-4)=0,2$$
 , бо при $-4 \le x < 5$ маємо, що $F(x)=P(\xi \le x)=0,2=P(\xi=-4)$; $P(\xi=5)=0,1$, бо при $5 \le x < 8$ функція $F(x)=P(\xi \le x)=P(\xi=-4)+P(\xi=5)=0,3 \Rightarrow P(\xi=5)=0,3-P(\xi=-4)=0,3-0,2=0,1$; $P(\xi=8)=0,3$, бо при $8 \le x < 9$ функція $F(x)=P(\xi \le x)=P(\xi=-4)+P(\xi=5)+P(\xi=8)=0,6 \Rightarrow P(\xi=8)=0,6-P(\xi=-4)-P(\xi=5)=0,6-0,2-0,1=0,3$. Аналогічно знайдемо: $P(\xi=9)=0,8-0,2-0,1-0,3=0,2$; $P(\xi=10)=1-0,2-0,1-0,3-0,2=0,2$.

Таблиця, якою виражений закон розподілу випадкової величини ξ , має вигляд:

$\xi = x_i$	-4	5	8	9	10
p_i	0,2	0,1	0,3	0,2	0,2

За формулами (2.6), (2.11) і (2.14) обчислюємо числові характеристики величини ξ :

$$E(\xi) = \sum_{i=1}^{5} x_i \cdot p_i = -4 \cdot 0.2 + 5 \cdot 0.1 + 8 \cdot 0.3 + 9 \cdot 0.2 + 10 \cdot 0.2 = -0.8 + 0.5 + 2.4 + 1.8 + 2 = 5.9.$$

$$D(\xi) = \sum_{i=1}^{5} (x_i - E(\xi))^2 \cdot p_i = (-9,9)^2 \cdot 0, 2 + 0, 9^2 \cdot 0, 1 + 2, 1^2 \cdot 0, 3 + 3, 1^2 \cdot 0, 2 + 4, 1^2 \cdot 0, 2 = 1, 2 + 1, 3 + 1,$$

$$=19,602+0,081+1,323+1,922+3,362=26,29$$
,

або

$$D(\xi) = \sum_{i=1}^{5} x_i^2 \cdot p_i - E^2(\xi) = (-4)^2 \cdot 0, 2 + 5^2 \cdot 0, 1 + 8^2 \cdot 0, 3 + 9^2 \cdot 0, 2 + 10^2 \cdot 0, 2 - 5, 9^2 = (-4)^2 \cdot 0, 2 + 5^2 \cdot 0, 1 + 8^2 \cdot 0, 3 + 9^2 \cdot 0, 2 + 10^2 \cdot 0, 2 - 5, 9^2 = (-4)^2 \cdot 0, 2 + 5^2 \cdot 0, 1 + 8^2 \cdot 0, 3 + 9^2 \cdot 0, 2 + 10^2 \cdot 0, 2 - 5, 9^2 = (-4)^2 \cdot 0, 2 + 5^2 \cdot 0, 1 + 8^2 \cdot 0, 3 + 9^2 \cdot 0, 2 + 10^2 \cdot 0, 2 - 5, 9^2 = (-4)^2 \cdot 0, 2 + 5^2 \cdot 0, 3 + 9^2 \cdot 0, 3$$

$$=3,2+2,5+19,2+16,2+20-34,81=26,29$$
.

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{26,29} \approx 5,13$$
.

Приклад 4. Імовірність дефекту електролампочки (подія A) дорівнює 0,2. Виконати такі дії:

- а) написати закон розподілу випадкової величини ξ кількості перевірених електролампочок до виявлення дефектної, якщо перевіряють п'ять електролампочок;
- б) знайти ймовірність того, що до виявлення електролампочки з дефектом їх буде перевірено більше ніж три (подія B).

Розв'язання. Імовірність появи події A — перевірена електролампочка має дефект дорівнює p=P(A)=0,2 і $q=P(\overline{A})=1-0,2=0,8$.

Множиною можливих значень випадкової величини ξ є натуральні числа 1, 2, 3 ,4, 5. Обчислимо ймовірності набуття величиною ξ цих значень:

якщо $\xi=1$, то перша перевірена електролампочка має дефект і $p_1=P(\xi=1)=P(A)=0,2$;

якщо $\xi=2$, то перша електролампочка доброї якості, а друга дефектна, тому подія $\xi=2$ є добутком незалежних подій \overline{A} і A і $p_2=P(\xi=2)=P(\overline{A})\cdot P(A)=0, 8\cdot 0, 2=0,16$;

якщо $\xi = 3$, то перша і друга електролампочки дефектів не мають, а третя — має дефект і $p_3 = P(\xi = 3) = P(\overline{A}) \cdot P(\overline{A}) \cdot P(A) = 0, 8 \cdot 0, 8 \cdot 0, 2 = 0,128$;

якщо $\xi=4$, то перші три електролампочки доброї якості, а четвертамає дефект, тому $p_4=P(\xi=4)=P(\overline{A})\cdot P(\overline{A})\cdot P(\overline{A})\cdot P(A)=0, 8^3\cdot 0, 2=0,1024\;;$

якщо $\xi=5$, то у жодній з перших чотирьох перевірених електролампочок дефекту не виявлено, а п'ята має дефект або дефекту не має, тобто подія $\xi=5$ є сумою несумісних подій $\overline{A} \cap \overline{A} \cap \overline{A}$ і тому

$$p_5 = P(\xi = 5) = P(\overline{A}) \cdot P(\overline{A}) = 0.8^4 \cdot 0.2 + 0.8^5 = 0.4096.$$

Закон розподілу випадкової величини ξ геометричний, його записують таблицею:

$\xi = x_i$	1	2	3	4	5
p_i	0,2	0,16	0,128	0,1024	0,4096

Перевірка:

$$p_1 + p_2 + p_3 + p_4 + p_5 = 0,2 + 0,16 + 0,128 + 0,1024 + 0,4096 = 1$$
.
б) Подія B є сумою несумісних подій $\xi = 4$ і $\xi = 5$, тому $P(B) = P(\xi = 4) + P(\xi = 5) = 0,1024 + 0,4096 = 0,512$.

Приклад 5. Визначити математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини ξ , можливі значення якої та їхні частоти задані таблицею:

$\xi = x_i$	- 2	- 1	1	5	10	15
$\overline{n_i}$	4	35	34	20	4	3

Розв'язання. За значення ймовірностей p_i набуття випадковою величиною ξ своїх

значень x_i приймаємо їхні відносні частоти $w_i = \frac{n_i}{n}$, де $n = \sum_{i=1}^6 n_i = 100$:

$$p_1 = \frac{4}{100}$$
, $p_2 = \frac{35}{100}$, $p_3 = \frac{34}{100}$, $p_4 = \frac{20}{100}$, $p_5 = \frac{4}{100}$. $p_6 = \frac{3}{100}$.

Далі за відповідними формулами обчислюємо числові характеристики:

$$E(\xi) = \sum_{i=1}^{6} x_i \cdot p_i = -2 \cdot 0.04 + (-1) \cdot 0.35 + 1 \cdot 0.34 + 5 \cdot 0.2 + 10 \cdot 0.04 + 15 \cdot 0.03 =$$

$$= -0.08 - 0.35 + 0.34 + 1 + 0.4 + 0.45 = 1.76;$$

$$D(\xi) = \sum_{i=1}^{6} x_i^2 \cdot p_i - E^2(\xi) =$$

$$= (-2)^2 \cdot 0.04 + (-1)^2 \cdot 0.35 + 1^2 \cdot 0.34 + 5^2 \cdot 0.2 + 10^2 \cdot 0.04 + 15^2 \cdot 0.03 -$$

$$= -1.76^2 = 16.6 - 3.0976 = 13.5024;$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{13.5024} \approx 3.675.$$

Приклад 6. Імовірність того, що член туристичної групи правильно заповнив митну декларацію (подія A), дорівнює 0,9. Знайти середнє число туристів у групі з 50 осіб, які правильно заповнили митні декларації, а також межі, між якими може коливатися це число туристів.

Розв'язання. У даному випадку випадкова величина ξ — кількість туристів серед 50 осіб, які правильно заповнили митну декларацію, є кількість появ події A у серії з 50 випробувань за схемою Бернуллі. У цьому випадку числові характеристики можемо обчислити за формулами (2.10) і (2.13):

$$E(\xi) = n \cdot p = 50 \cdot 0, 9 = 45;$$

 $D(\xi) = n \cdot p \cdot q = 50 \cdot 0, 9 \cdot 0, 1 = 4, 5;$
 $\sigma(\xi) = \sqrt{D(\xi)} = 2, 12.$

За ймовірнісним змістом $E(\xi)$ наближено дорівнює середньому арифметичному $\overline{\xi}$ значень величини ξ . Тому середнє число туристів у групі з 50 осіб, які правильно заповнили митну декларацію, наближено дорівнює $\overline{\xi} \approx 45$.

Проміжок $(E(\xi) - \sigma(\xi), E(\xi) + \sigma(\xi)) = (45 - 2, 12; 45 + 2, 12) = (42, 88; 47, 12)$ визначає приблизні межі, в яких може коливатися кількість туристів, що правильно заповнили митну декларацію.

Приклад 7. Однаково розподілені випадкові величини $\xi_1, \xi_2, ... \xi_{10}$ задані математичним сподіванням $E(\xi_i) = 4,8$ і дисперсіями $D(\xi_i) = 2,5$. Обчислити $E(\overline{\xi}), D(\overline{\xi}),$ $\sigma(\overline{\xi})$, де $\overline{\xi}$ — середнє арифметичне величин $\xi_1, \xi_2, ... \xi_{10}$.

Розв'язання. Середнє арифметичне $\bar{\xi} = \frac{1}{10} \sum_{i=1}^{10} \xi_i$. Використовуючи властивості

математичного сподівання і дисперсії, отримаємо:

$$\begin{split} E(\overline{\xi}) &= E(\frac{1}{10}\sum_{i=1}^{10}\xi_i) = \frac{1}{10}\sum_{i=1}^{10}E(\xi_i) = \frac{1}{10}\sum_{i=1}^{10}4, 8 = \frac{1}{10}\cdot10\cdot4, 8 = 4, 8\,; \\ D(\overline{\xi}) &= D(\frac{1}{10}\sum_{i=1}^{10}\xi_i) = \frac{1}{10^2}\sum_{i=1}^{10}D(\xi_i) = \frac{1}{100}\sum_{i=1}^{10}2, 5 = \frac{1}{100}\cdot10\cdot2, 5 = 0, 25\,; \\ \sigma(\overline{\xi}) &= \sqrt{D(\overline{\xi})} = \sqrt{0, 25} = 0, 5\,. \end{split}$$

Завдання для самостійної роботи

- 1. У грошовій лотереї розігрують: два квитки по 500 грн, 10 квитків по 50 грн, 20 квитків по 1 грн. Всього ϵ 200 лотерейних квитків. Покупець навмання придбав один з них. Побудувати закон розподілу ймовірностей випадкової величини ξ величини виграшу. Знайти:
 - а) функцію розподілу ймовірностей та побудувати її графік;
 - б) обчислити $E(\xi)$, $D(\xi)$, $\sigma(\xi)$.
- 2. Виконують постріли з двох гармат. Імовірності влучення в мішень, відповідно, дорівнюють 0,55 і 0,6. Знайти закон розподілу випадкової величини ξ загальної кількості влучень у мішень, якщо з кожної гармати здійснено по 1 пострілу. Знайти функцію розподілу випадкової величини ξ та побудувати її графік.
- 3. Імовірність того, що футболіст реалізує пенальті, дорівнює 0,85. Футболіст виконав три таких удари. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ числа реалізованих пенальті. Знайти:
 - а) ймовірність того, що реалізованих пенальті буде не більше двох;
 - б) найімовірніше число реалізованих пенальті.
- 4. Для виконання вправи гімнасту надають можливість зробити до трьох спроб. Імовірність виконати вправу в кожній спробі дорівнює 0,6. Знайти закон розподілу, математичне сподівання, дисперсію і середнє квадратичне відхилення випадкової величини ξ кількості спроб, використаних спортсменом для виконання вправи.
- 5. Єтри ящики. У першому містяться шість стандартних і чотири браковані однотипні деталі, у другому вісім стандартних і двібраковані деталі, а в третьому п'ять стандартних і п'ять бракованих. Із кожного ящика навмання беруть по одній деталі. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ появи кількості стандартних деталей серед трьох навмання взятих; визначити F(x) та побудувати графік цієї функції.
- 6. Троє студентів складають іспит із теорії ймовірностей. Імовірність того, що перший студент складе екзамен, становить 0,9, для другого та третього студентів ця ймовірність дорівнює, відповідно, 0,85; 0,8. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ числа студентів, які складуть іспит з теорії ймовірностей, побудувати F(x) і накреслити її графік.
- 7. У першому ящику міститься сім стандартних і три браковані деталі, у другому шість стандартних і чотири браковані. Навмання з першого ящика беруть чотири деталі, а з другого—одну. Побудувати закон розподілу ймовірностей дискретної випадкової величини ξ появи кількості стандартних деталей серед чотирьох навмання взятихі побудувати F(x).

- 8. В озері було 15 000 риб, з яких $1\,000$ мічені. Було відловлено 150 риб. Знайти математичне сподівання мічених риб серед відловлених. У яких межах може змінюватися кількість мічених риб?
- 9. Визначити математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини ξ , частоти можливих значень якої задано таблицею:

χ_i	-3	1	7	15	100
n_i	5	34	35	25	1

- 10. Випадкова величина ξ набуває двох можливих значень x_1 та x_2 з ймовірностями, відповідно, p_1 та p_2 . Знайти x_1 та x_2 і записати її закон розподілу,якщо: $x_1 > x_2$, $p_1 = 2/3$, $E(\xi) = -1/3$, $D(\xi) = 8/9$.
- 11. За заданим законом розподілу дискретної випадкової величини ξ :

$\xi = x_i$	-3	-2	1	3	5	7
p_i	а	1,5a	0,5a	3,5 <i>a</i>	2,5 <i>a</i>	a

знайти:

- а) параметр a;
- 6) $P(\xi < 2)$, $P(-4 < \xi \le 6)$;
- в) функцію розподілу ймовірностей та побудувати її графік.
- 12. Обчислити $E(\xi)$, $D(\xi)$, $\sigma(\xi)$, якщо закон розподілу ймовірностей дискретної випадкової величини ξ задано функцією розподілу

$$F(x) = \begin{cases} 0, & x < -5; \\ 0,1, & -5 \le x < -4; \\ 0,3, & -4 \le x < 1; \\ 0,4, & 1 \le x < 2; \\ 0,65, & 2 \le x < 4; \\ 1, & x \ge 4. \end{cases}$$

- 13. Відомо, що однаково розподілені випадкові величини $\xi_1, \xi_2, ... \xi_{25}$ мають математичне сподівання $E(\xi_i) = 12,1$ і дисперсії $D(\xi_i) = 4,11$ $(i = \overline{1,25})$. Обчислити $E(\overline{\xi})$, $D(\overline{\xi})$, $\sigma(\overline{\xi})$, де $\overline{\xi}$ середнє арифметичне величин $\xi_1, \xi_2, ... \xi_{25}$.
- 14. Закон розподілу дискретної випадкової величини ξ задано таблицею:

$\xi = x_i$	-4	- 1	2	6	9	13
p_i	0,1	0,2	0,1	0,3	0,1	0,2

Побудувати функцію розподілу F(x) та її графік.

- 15. Відділ технічного контролю перевіряє вироби на стандартність. Імовірність того, що виріб стандартний, становить 0.9. У кожній партії є п'ять виробів. Знайти математичне сподівання кількості партій, у кожній з яких буде чотири стандартні вироби, якщо всього перевіряють 50 партій.
- 16. Знайти дисперсію дискретної випадкової величини ξ кількості появ події A в 10 незалежних випробуваннях, якщо ймовірності появи події в цих випробуваннях однакові й відоме математичне сподівання $E(\xi)=6$.

2.2. Неперервна випадкова величина

Основні поняття, означення та відношення

- 1. Випадкову величину називають**неперервною**, якщо вона може набувати будь-якого числового значення і скінченного або нескінченного інтервалу (a, b). Множина можливих значень такої величини ϵ нескінченною.
 - **2**. Випадкова величина $\xi \epsilon$ неперервна тоді і тільки тоді, коли її інтегральна функція

розподілу
$$F(x) = P(\xi \le x)$$
 і $F(x) = \int_{-\infty}^{x} f(t)dt$ неперервна.

Графіком функції розподілу неперервної випадкової величини ξ є неперервна лінія. Зокрема, якщо значення неперервної випадкової величини ξ заповнюють інтервал (a, b), то її функція розподілу

$$F(x) = \begin{cases} 0, & x < a; \\ g(x), & a \le x < b; \\ 1, & x \ge b. \end{cases}$$
 (2.17)

Графік такої функції розподілу зображено на рис. 2.3.

Рис 2.3. Графік функції розподілу неперервної випадкової величини ξ , якщо $\xi \in [a,b]$.

Якщо значення неперервної випадкової величини ξ розсіяні по всій числовій осі, тобто її аналітичний вираз описують функцією F(x) = g(x) для $x \in (-\infty, +\infty)$, то її графік є суцільною лінією, яка "надвисає" над всією віссю Ox, і її графік схематично зображений на рис. 2.4.

Рис.2.4. Графік функції розподілу неперервної випадкової величини ξ , якщо $\xi \in (-\infty, +\infty)$

За допомогою функції розподілу неперервної випадкової величини ξ легко обчислюють імовірності попадання її значень у будь-який проміжок (замкнений або відкритий), а саме: ймовірність того, що випадкова величина ξ набуде значення з проміжку [a,b], дорівнює приросту функції розподілу на цьому проміжку:

$$P(a \le \xi \le b) = F(b) - F(a). \tag{2.18}$$

Наголосимо, що імовірність того, що неперервна величина ξ набуде певного числового значення $\xi=x_0$, дорівнює нулю, тобто $P(\xi=x_0)=0$. Це випливає з неперервності функції розподілу F(x).

3. Диференціальною функцією розподілу або щільністю (густиною) розподілу f(x) **ймовірностей**неперервної випадкової величини ξ називають похідну від її функції розподілу, тобто

$$f(x) = F'(x)$$
. (2.19)

Поняття щільності (густини) розподілу ймовірностей вводять для неперервної випадкової величини з кусково-диференційовною функцією розподілу.

Якщо всі значення випадкової величини ξ зосереджені в інтервалі (a,b),то щільність розподілу її імовірностей має такий аналітичний вигляд:

$$f(x) = \begin{cases} 0, & x < a; \\ g'(x), & a \le x < b; \\ 0, & x \ge b. \end{cases}$$

(2.20)

Її графік може мати один із виглядів, які зображено на рис. 2.5.

4. Якщо відома диференціальна функція розподілу f(x) неперервної випадкової величини ξ , то її інтегральну функцію розподілу можна знайти за формулою:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$
 (2.21)

Рис. 2.5. Графік щільності розподілу неперервної випадкової величини

$$F(x) = \begin{cases} \int_{a}^{x} f(t)dt, & a \le x < b; \\ a & 1, & x \ge b. \end{cases}$$
 (2.21')

5. Імовірність того, що неперервна випадкова величина ξ зі щільністю розподілу f(x) набуде значень з проміжку [a, b], обчислюють за формулою:

$$P(a \le \xi \le b) = \int_{a}^{b} f(x)dx. \tag{2.22}$$

Ця ж імовірність може бути обчислена також за допомогою функції розподілу за формулами (2.18).

6. Якщо неперервна випадкова величина ξ характеризується щільністю розподілу f(x), то

$$\int_{a}^{b} f(x)dx = 1,$$
(2.23)

коли ξ набуває значень з проміжку [a, b], і

$$\int_{-\infty}^{+\infty} f(x)dx = 1,$$
(2.23')

коли ξ набуває значень зі всієї числової осі (*умова нормування*).

7. Аналогічно, як і дискретна випадкова величина, неперервна випадкова величина може характеризуватись інтегральними (числовими) характеристиками.

Математичне сподівання $E(\xi)$ неперервної випадкової величини ξ , яка набуває значень з проміжку [a,b], обчислюють за формулою:

$$E(\xi) = \int_{a}^{b} x \cdot f(x) dx.$$
 (2.24)

Якщо неперервна випадкова величина ξ набуває значень зі всієї числової осі Ox, то її математичне сподівання $E(\xi)$ обчислюють за формулою:

$$E(\xi) = \int_{-\infty}^{+\infty} x \cdot f(x) dx. \tag{2.24'}$$

При цьому припускають, що невласний інтеграл ϵ збіжний.

Дисперсію $D(\xi)$ неперервної випадкової величини ξ , яка набуває значень з проміжку[a,b], обчислюють за формулою:

$$D(\xi) = E(\xi - E(\xi))^2 = \int_a^b (x - E(\xi))^2 \cdot f(x) dx = \int_a^b x^2 \cdot f(x) dx - E^2(\xi).$$
 (2.25)

Якщо неперервна випадкова величина ξ набуває значень зі всієї числової осі Ox, то:

$$D(\xi) = \int_{-\infty}^{+\infty} (x - E(\xi))^2 \cdot f(x) dx = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx - E^2(\xi).$$
 (2.25')

 $\it Cepedh\epsilon$ $\it \kappaвадратичне$ $\it відхилення~ \sigma(\xi)$ неперервної випадкової величини $\it \xi$ обчислюють за формулою:

$$\sigma(\xi) = \sqrt{D(\xi)} \ . \tag{2.26}$$

8. Законом розподілу ймовірностейнеперервної випадкової величини ξ називають щільність її розподілу.

Залежно від вигляду щільності розподілу неперервної випадкової величини ξ її закони розподілу класифікують на різні типи. Наведемо основні закони розподілу неперервної випадкової величини.

• **Рівномірний закон розподілу:**випадкову величину ξ називають**рівномірно розподіленою** на проміжку [a,b], якщо усі її можливі значення зосереджені на цьому проміжку, і щільністю розподілу її ймовірностей ϵ стала, тобто

$$f(x) = \begin{cases} C = \frac{1}{b-a}, & x \in [a,b]; \\ 0, & x \notin [a,b]. \end{cases}$$
 (2.27)

Значення $C = \frac{1}{b-a}$ визначають з умови нормування.

Функція рівномірного розподілу неперервної випадкової величини ξ має такий вигляд:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x < b; \\ 1, & x \ge b. \end{cases}$$
 (2.28)

Якщо випадкова величина ξ рівномірно розподілена на проміжку [a,b], то

$$P(\alpha < \xi < \beta) = \frac{\beta - \alpha}{b - a}; \tag{2.29}$$

числові характеристики знаходять за формулами

$$E(\xi) = \frac{a+b}{2}; \quad D(\xi) = \frac{(b-a)^2}{12}; \quad \sigma(\xi) = \frac{b-a}{2\sqrt{3}}$$
 (2.30)

• **Нормальний закон розподілу:**випадкову величину ξ називають **нормально розподіленою**, якщо щільність розподілу її ймовірностей

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}},$$
(2.31)

Функція розподілу нормально розподіленої випадкової величини ξ має вигляд:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(z-a)^2}{2\sigma^2}} dz.$$

(2.32)

Якщо випадкова величина ξ нормально розподілена, то

$$P(\alpha < \xi < \beta) = \Phi(\frac{\beta - a}{\sigma}) - \Phi(\frac{\alpha - a}{\sigma})$$
(2.33)

де $\Phi(x)$ – інтегральна функція Лапласа.

Наголосимо, що на підставі властивостей інтегральної функції Лапласа $\Phi(-x) = -\Phi(x), \Phi(+\infty) = 0,5; \Phi(-\infty) = -0,5)$ маємо рівності:

$$P(\xi < \beta) = 0, 5 + \Phi(\frac{\beta - a}{\sigma}),$$

$$P(\xi > \alpha) = 0, 5 - \Phi(\frac{\alpha - a}{\sigma}).$$
(2.34)

Якщо випадкова величина ξ нормально розподілена, то подія $|\xi-a|<3\sigma$ є вірогідною: $P(|\xi-a|<3\sigma)=0,9973$ (*правило трьох сигм*). На практиці правило трьох сигм використовують так: якщо $|\xi-a|<3\sigma$, то можна припустити, що випадкова величина ξ нормально розподілена.

• **Експонентний закон розподілу:**випадкову величину ξ називають **розподіленою за експонентним законом**, якщо її щільність розподілу ймовірностей

$$f(x) = \begin{cases} 0, & x < 0; \\ \lambda e^{-\lambda x}, & x \ge 0, \end{cases}$$
 (2.35)

де $\lambda > 0$ –параметр розподілу.

Функція експонентного розподілу

$$F(x) = \begin{cases} 0, & x < 0; \\ 1 - e^{-\lambda x}, & x \ge 0. \end{cases}$$
 (2.36)

Якщо випадкова величина ξ розподілена за експонентним законом, то

$$P(\alpha < \xi < \beta) = e^{-\lambda \alpha} - e^{-\lambda \beta} \tag{2.37}$$

$$E(\xi) = \frac{1}{\lambda}, \quad D(\xi) = \frac{1}{\lambda^2}, \quad \sigma(\xi) = \frac{1}{\lambda}. \tag{2.38}$$

Приклад 1. Функція розподілу ймовірностей F(x) неперервної випадкової величини ξ має вигляд:

$$F(x) = \begin{cases} 0, & x < 3; \\ m(x-3)^2, & 3 \le x < 5; \\ 1, & x \ge 5. \end{cases}$$

Виконати такі дії:

- а) визначити коефіцієнт m;
- б) знайти щільність розподілу f(x) та накреслити графіки F(x) і f(x);
- в) обчислити ймовірності потрапляння значень випадкової величини ξ у проміжки [4,6] і(2, 4).

Розв'язання. а) Коефіцієнт m визначаємо з умови неперервності F(x), бо випадкова величина ξ неперервна. Функція F(x) є неперервна на проміжках $(-\infty,3)$, [3,5) і $[5,+\infty)$. Точками розриву функції F(x) можуть бути лише x=3 і x=5.

Щоб функція F(x) була неперервна у точках x=3 і x=5, повинні виконуватися рівності: $\lim_{x\to 3-0} F(x) = \lim_{x\to 5-0} F(x)$ і $\lim_{x\to 5-0} F(x) = \lim_{x\to 5+0} F(x)$. З'ясуємо, для яких m ці рівності виконуються:

 $\lim_{x\to 3-0} F(x) = \lim_{x\to 3-0} 0 = 0; \quad \lim_{x\to 3+0} F(x) = \lim_{x\to 3+0} m(x-3)^2 = 0 \Rightarrow \quad \text{у точці} \quad x=3 \quad \text{функція} \quad F(x)$ неперервна для будь-якого m;

 $\lim_{x\to 5-0} F(x) = \lim_{x\to 5-0} m(x-3)^2 = 4m, \ \lim_{x\to 5+0} F(x) = \lim_{x\to 5+0} 1 = 1 \Rightarrow F(x) \text{ неперервна} \quad \text{y} \quad \text{точці} \quad x = 5,$ якщо $4m = 1 \Rightarrow m = \frac{1}{4}$.

Отже, функція розподілу F(x) неперервної випадкової величини ξ має такий аналітичний вираз:

$$F(x) = \begin{cases} 0, & x < 3; \\ \frac{1}{4}(x-3)^2, & 3 \le x < 5; \\ 1, & x \ge 5. \end{cases}$$

б) За формулою f(x) = F'(x) щільність розподілу має вигляд:

$$f(x) = \begin{cases} 0, & x < 3; \\ \frac{1}{2}(x-3), & 3 \le x < 5; \\ 0, & x \ge 5. \end{cases}$$

Графіки функції розподілу F(x) та щільності розподілу f(x) зображено на рис 2.6 і рис. 2.7.

Рис. 2.6. Графік функції розподілу F(x)

Рис. 2.7. Графік щільності розподілу f(x)

в) Шукані ймовірності можемо обчислити за формулами (2.18) і (2.22). За формулою (2.18) отримуємо:

$$P(4 \le \xi \le 6) = \int_{4}^{6} f(x)dx = \int_{4}^{5} \frac{1}{2}(x-3)dx + \int_{5}^{6} 0dx = \frac{1}{2} \int_{4}^{5} (x-3)d(x-3) = \frac{1}{2} \frac{(x-3)^{2}}{2} \Big|_{4}^{5} = \frac{1}{4}(4-1) = 0,75.$$

За формулою (2.22)

$$P(4 \le \xi \le 6) = F(6) - F(4) = 1 - \frac{1}{4}(4 - 3)^2 = 1 - \frac{1}{4} = 0,75$$
.

Аналогічно,
$$P(2 < \xi < 4) = F(4) - F(2) = \frac{1}{4}(4-3)^2 - 0 = \frac{1}{4} = 0,25$$
.

Приклад 2. Щільність розподілу f(x) неперервної випадкової величини ξ задана формулою

$$f(x) = \begin{cases} 0, & x < 0; \\ m \cdot \cos x, & 0 \le x < \frac{\pi}{2}; \\ 0, & x \ge \frac{\pi}{2}. \end{cases}$$

Виконати такі дії:

- а) визначити коефіцієнт m;
- б) знайти функцію розподілу F(x) випадкової величини ξ ;
- в) побудувати графіки густини і функції розподілу;
- г) знайти ймовірності потрапляння значень випадкової величини ξ у проміжки $(\frac{\pi}{4}, \frac{\pi}{2})$ і $(\frac{\pi}{6}, \pi)$;

д) обчислити числові характеристики випадкової величини ξ : математичне сподівання, дисперсію і середнє квадратичне відхилення.

Розв'язання. а) Коефіцієнт *m* знаходимо з умови $\int_{-\infty}^{+\infty} f(x) dx = 1$. Підставивши f(x) у цю рівність, отримаємо:

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} 0 \cdot dx + \int_{0}^{\frac{\pi}{2}} m \cos x dx + \int_{\frac{\pi}{2}}^{+\infty} 0 \cdot dx = m \int_{0}^{\frac{\pi}{2}} \cos x dx =$$

$$m\sin x\Big|_0^{\pi/2} = m(\sin\frac{\pi}{2} - \sin 0) = m = 1.$$

Щільність розподілу випадкової величини ξ дорівнює

$$f(x) = \begin{cases} 0, & x < 0; \\ \cos x, & 0 \le x < \frac{\pi}{2}; \\ 0, & x \ge \frac{\pi}{2}. \end{cases}$$

б) Функція розподілу $F(x) = \int\limits_{-\infty}^{x} f(t) dt$ (див. формулу (2.21)). Щоб обчислити F(x), розглянемо випадки:

якщо
$$x < 0$$
 , то $F(x) = \int_{-\infty}^{x} 0 dt = 0$;
якщо $0 \le x < \frac{\pi}{2}$, то $F(x) = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} \cos t dt = \sin t \Big|_{0}^{x} = \sin x - \sin 0 = \sin x$;
якщо $x \ge \frac{\pi}{2}$, то $F(x) = \int_{-\infty}^{0} 0 dt + \int_{0}^{\frac{\pi}{2}} \cos t dt + \int_{\frac{\pi}{2}}^{x} 0 dt = \sin t \Big|_{0}^{\frac{\pi}{2}} = 1$.

У результаті,

$$F(x) = \begin{cases} 0, & x < 0; \\ \sin x, & 0 \le x < \frac{\pi}{2}; \\ 1, & x \ge \frac{\pi}{2}. \end{cases}$$

в) Графік щільності розподілу f(x) "простягається " на всю вісь Ox і складається з частини косинусоїди на проміжку $[0,\frac{\pi}{2})$, а за межами цього проміжку — з прямих, які є частинами осі Ox (рис. 2.8). Він має розрив у точці x=0.

Рис.2.8. Графік щільності розподілу ймовірностей до прикладу 2

Графік функції розподілу також простягається на всю вісь Ox і складається з частини синусоїди на проміжку $[0,\frac{\pi}{2})$, а за межами цього проміжку — з двох півпрямих y=0 таy=1 (рис. 2.9). Він є неперервною лінією, що відповідає неперервності функції розподілу.

Рис. 2.9. Графік функції розподілу ймовірностей до прикладу 2

г) Шукані ймовірності можна знайти за допомогою щільності і функції розподілу ймовірностей.

За формулою (2.22) обчислюємо

$$P(\frac{\pi}{4} < \xi < \frac{\pi}{2}) = \int_{\pi/4}^{\pi/2} f(x) dx = \int_{\pi/4}^{\pi/2} \cos x dx = \sin x \Big|_{\pi/4}^{\pi/2} = \sin \frac{\pi}{2} - \sin \frac{\pi}{4} = 1 - \frac{\sqrt{2}}{2} \approx 1 - 0, 7 = 0, 3;$$

$$P(\frac{\pi}{6} < \xi < \pi) = \int_{\pi/2}^{\pi} f(x) dx = \int_{\pi/2}^{\pi/2} \cos x dx + \int_{\pi/2}^{\pi} 0 dx = \sin x \Big|_{\pi/2}^{\pi/2} + 0 = \sin \frac{\pi}{2} - \sin \frac{\pi}{6} = 1 - \frac{1}{2} = 0, 5.$$

За формулою (2.18) отримаємо

$$P(\frac{\pi}{4} < \xi < \frac{\pi}{2}) = F(\frac{\pi}{2}) - F(\frac{\pi}{4}) = \sin\frac{\pi}{2} - \sin\frac{\pi}{4} = 1 - \frac{\sqrt{2}}{2} \approx 0,3;$$

$$P(\frac{\pi}{6} < \xi < \pi) = F(\pi) - F(\frac{\pi}{6}) = 1 - \sin\frac{\pi}{6} = 1 - \frac{1}{2} = 0,5.$$

д) Числові характеристики обчислюємо за формулами (2.24)–(2.26), застосовуючи інтегрування частинами:

$$E(\xi) = \int_{0}^{\frac{\pi}{2}} x \cos x dx = \int_{0}^{\frac{\pi}{2}} x d(\sin x) = x \cdot \sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x dx = \frac{\pi}{2} \sin \frac{\pi}{2} - 0 \cdot \sin 0 - (-\cos x) \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} + (\cos \frac{\pi}{2} - \cos 0) = \frac{\pi}{2} - 1 \approx 0,57;$$

$$D(\xi) = \int_{0}^{\frac{\pi}{2}} x^{2} f(x) dx - E^{2}(\xi) = \int_{0}^{\frac{\pi}{2}} x^{2} \cos x dx - (\frac{\pi}{2} - 1)^{2} = \int_{0}^{\frac{\pi}{2}} x^{2} d(\sin x) - (\frac{\pi}{2} - 1)^{2} = x^{2} \cdot \sin x \Big|_{0}^{\frac{\pi}{2}} - \frac{\pi}{2} + 2 \int_{0}^{\frac{\pi}{2}} x d(\cos x) - (\frac{\pi}{2} - 1)^{2} = \frac{\pi^{2}}{4} + 2 (x \cos x) \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos x dx - (\frac{\pi}{2} - 1)^{2} = \frac{\pi^{2}}{4} + 2 (x \cos x) \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos x dx - (\frac{\pi}{2} - 1)^{2} = \frac{\pi^{2}}{4} - 2 \sin x \Big|_{0}^{\frac{\pi}{2}} - (\frac{\pi^{2}}{4} - \pi + 1) = \frac{\pi^{2}}{4} - 2 (\sin \frac{\pi}{2} - \sin 0) - \frac{\pi^{2}}{4} + \pi - 1 = \pi - 3 \approx 0,14;$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{0,14} \approx 0,37.$$

Приклад 3. Випадкова величина ξ рівномірно розподілена на проміжку [1,5]. Виконати такі дії:

- а) записати щільність і функцію розподілу та накреслити їхні графіки;
- б) обчислити ймовірності, що значення випадкової величини ξ потраплять у проміжки (0,3) і (2,4);
 - в) обчислити $E(\xi), D(\xi), \sigma(\xi)$.

Розв'язання. а) За формулою (2.27)

$$f(x) = \begin{cases} \frac{1}{4}, & x \in (1,5); \\ 0, & x \notin (1,5), \end{cases}$$

а за формулою (2.28)

$$F(x) = \begin{cases} 0, & x < 1; \\ \frac{x-1}{4}, & 1 \le x < 5; \\ 1, & x \ge 5. \end{cases}$$

Графіки щільності та функції розподілу зображено на рис. 2.10 і рис. 2.11.

Рис. 2.10. Графік щільності розподілу до *прикладу 3*.

Рис. 2.11. Графік функції розподілу до *прикладу 3*.

б) Шукані ймовірності обчислюємо за формулою (2.29):

$$P(0 < \xi < 3) = \frac{3 - 0}{5 - 1} = \frac{3}{4} = 0,75;$$

$$P(2 < \xi < 4) = \frac{4 - 2}{5 - 1} = \frac{2}{4} = 0,5.$$

в) Числові характеристики $E(\xi)$, $D(\xi)$, $\sigma(\xi)$ обчислюємо за формулами (2.30):

$$E(\xi) = \frac{5+1}{2} = 3$$
, $D(\xi) = \frac{(5-1)^2}{12} = \frac{16}{12} = 1$, $G(\xi) = \frac{(5-1)}{2\sqrt{3}} = \frac{2}{\sqrt{3}} \approx 1$, 15.

Приклад 4. Статистичні дані про дохід на душу населення показали, що річний дохід мешканців регіону має нормальний розподіл із середнім значенням доходу 9 тис. грн і середнім квадратичним відхиленням 1,5 тис. грн. Записати щільність розподілу ймовірностей випадкової величини ξ — розміру середнього доходу на душу населення та обчислити ймовірності, що річний дохід навмання вибраного мешканця регіону є:

- а) більш ніж 6 тис. грн;
- б) менше ніж 10,6 тис. грн;
- в) між 8,5 та 12,2 тис. грн;
- г) між 12,4 та 13 тис. грн.

Розв'язання. Щільність нормального розподілу випадкової величини ξ

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

де $a=E(\xi), \sigma=\sigma(\xi)$. Оскільки $E(\xi)\approx\overline{\xi}$ — середньому арифметичному величини ξ , то треба прийняти $a=9, \sigma=1,5$, і щільністю розподілу величини ξ , описаної у даній задачі, є функція

$$f(x) = \frac{1}{1.5\sqrt{2\pi}}e^{-\frac{(x-9)^2}{2\cdot 1.5^2}}.$$

Шукані ймовірності обчислюємо за формулою

$$P(\alpha < \xi < \beta) = \Phi(\frac{\beta - a}{\sigma}) - \Phi(\frac{\alpha - a}{\sigma}),$$

де $\Phi(x)$ – інтегральна функція, яка табульована в таблиці $\partial o \partial am \kappa y$ 2 :

$$P(\xi > 6) = P(6 < \xi < +\infty) = \Phi(\frac{+\infty - 9}{1,5}) - \Phi(\frac{6 - 9}{1,5}) = \Phi(+\infty) + \Phi(2) = 0, 5 + 0, 4772 = 0,9772;$$

$$P(\xi < 10, 6) = P(-\infty < \xi < 10, 6) = \Phi(\frac{10, 6 - 9}{1, 5}) - \Phi(\frac{-\infty - 9}{1, 5}) = \Phi(1, 07) - \Phi(-\infty) = \Phi(1, 07$$

= 0.3577 + 0.5 = 0.8577;

$$P(8,5 < \xi < 12,2) = \Phi(\frac{12,2-9}{1.5}) - \Phi(\frac{8,5-9}{1.5}) = \Phi(2,13) + \Phi(0,33) = 0,4973 + 0,1293 = 0,6266;$$

$$P(12, 4 < \xi < 13) = \Phi(\frac{13-9}{1.5}) - \Phi(\frac{12, 4-9}{1.5}) = \Phi(2, 67) + \Phi(2, 27) = 0,4967 + 0,4884 = 0,9846.$$

Приклад 5. Середній місячний прибуток однотипних приватних підприємств регіону становить $10\,000$ грн. і є нормально розподіленою випадковою величиною із середнім квадратичним відхиленням 250 грн. У яких межах можна практично гарантувати прибуток цих підприємств?

Розв'язання. За правилом "трьох сигм" подія $|\xi-a| < 3\sigma$ майже вірогідна і $P(|\xi-a| < 3\sigma) = 0,9973$. Використовуючи це правило,отримаємо:

$$|\xi - 10000| < 3.250 \Leftrightarrow -750 < \xi - 10000 < 750 \Leftrightarrow 9250 < \xi < 10750$$
.

Отже, можна гарантувати (з імовірністю 0,9973), що прибуток підприємств коливається у межах від 9 250 грн до 10 750 грн.

Приклад 6. Неперервна випадкова величина розподілена за експонентним законом з параметром $\lambda = 3$. Виконати такі дії:

- а) написати щільність та функцію розподілу і накреслити їхні графіки;
- б) обчислити ймовірність того, що її значення потрапить в інтервал (0,5; 1,5);
- в) обчислити $E(\xi), D(\xi), \sigma(\xi)$.

Розв'язання. а) За формулою (2.35) аналітичний вираз щільності розподілу описуютьфункцією

$$f(x) = \begin{cases} 0, & x < 0; \\ 3e^{-3x}, & x \ge 0, \end{cases}$$

а за формулою (2.36) функція розподілу

$$F(x) = \begin{cases} 0, & x < 0; \\ 1 - e^{-3x}, & x \ge 0. \end{cases}$$

Графіки щільності і функції розподілу зображено на рис. 2.12 і рис. 2.13

1

Рис. 2.12. Графік щільності розподілу до *прикладу* 6.

Рис. 2.13. Графік функції розподілу до *прикладу 6*.

б) Шукану ймовірність можна обчислити за допомогою щільності і функції розподілу за формулою (2.37):

$$P(0,5 < \xi < 1,5) = \int_{0,5}^{1,5} f(x)dx = \int_{0,5}^{1,5} 3e^{-3x}dx = -e^{-3x}\Big|_{0,5}^{1,5} = e^{-3\cdot0.5} - e^{-3\cdot1.5} = e^{-1.5} - e^{-4.5} = e^{-1.5} - e^{-1.5} = e^{-1.5} =$$

(прийнято, що $e \approx 2,7$), а за формулою (2.38):

$$P(0,5 < \xi < 1,5) = e^{-3.0,5} - e^{-3.1,5} = 0,212.$$

в) Обчислимо числові характеристики за формулами (2.39): $E(\xi) = \frac{1}{\lambda} = \frac{1}{3}$,

$$D(\xi) = \frac{1}{\lambda^2} = \frac{1}{9}, \ \sigma(\xi) = \frac{1}{\lambda} = \frac{1}{3}.$$

Завдання для самостійної роботи

1. Щільність розподілу ймовірностей f(x) випадкової величини задано формулами:

$$f(x) = \begin{cases} a(x-3)^2, & 3 \le x \le 5; \\ 0, & x < 3 \text{ a foo } x > 5. \end{cases}$$

Виконати такі дії:

- 1) знайти коефіцієнт a;
- 2) знайти функцію розподілу випадкової величини ξ ;
- 3) побудувати графіки щільності розподілу ймовірностей та функції розподілу;
- 4) знайти ймовірність потрапляння випадкової величини ξ в інтервал:

a)
$$I = [0; 0, 5]; 6)$$
 $I = (3; 4); B)$ $I = [0; 5]; \Gamma)$ $I = [\pi/4; \pi/3];$

- 5) знайти математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини ξ .
- 2. Функцію розподілу ймовірностей F(x)неперервної випадкової величини ξ задано формулою:

$$F(x) = \begin{cases} 0, & x < -2\pi; \\ a + a \cos \frac{x}{2}, & -2\pi \le x < 0; \\ 1, & x \ge 0. \end{cases}$$

Виконати такі дії:

1) знайти коефіцієнт a;

- 2) знайти щільність розподілу f(x);
- 3) побудувати графіки функції розподілу та щільності розподілу;
- 4) знайти математичне сподівання, дисперсію та середнє квадратичне відхилення;
- 5) знайти ймовірність потрапляння випадкової величини ξ в інтервал $I = (-\pi/2; 0)$.
- 3. Випадкова величина ξ рівномірно розподілена на проміжку [-3, 2]. Знайти:
- а) вираз для щільності розподілу ймовірностей і функції розподілу випадкової величини ξ та побудувати їхні графіки;
 - б) імовірність нерівностей: $0 < \xi < 3$; $-2 < \xi < 1$;
- в) математичне сподівання, дисперсію та середн ϵ квадратичне відхилення випадкової величини ξ .
- 4. Випадкова величина ξ має рівномірний розподіл із математичним сподіванням $E(\xi)=3$ і дисперсією $D(\xi)=\frac{4}{3}$. Знайти функцію розподілу випадкової величини ξ .
- 5. Банк виконав дослідження про наявність річних заощаджень в осіб, вік яких є не менший ніж 21 рік. Дослідження показали, що річні заощадження на одну особу нормально розподіляються із середнім числом 1 850 грн і середнім квадратичним відхиленням 350 грн. Визначити ймовірність того, що навмання вибрана особа має заощадження:
 - а) більше ніж 2 200 грн;
 - б) менше ніж 1 500 грн;
 - в) у межах від 1 080 грн до 2 375 грн;
 - г) менше ніж 800 грн.
- 6. Верстат-автомат виготовляє вироби, які вважаються придатними, якщо відхилення ξ від проектного розміру за абсолютним значенням не перевищує 0,8 мм. Яка ймовірність такого відхилення? Яке найімовірніше число придатних виробів із 200, якщо ξ має нормальний розподіл із параметром $\sigma = 0,4$ мм?
- 7. Помилки в обчисленнях, допущені бухгалтером під час складання балансу, розподілені у відсотках за нормальним законом з параметрами a=1,5і σ =0,01. Написати щільність і функцію розподілу цих помилок та накреслити їхні графіки. У яких межах містяться помилки обчислень з імовірністю 0,9973?
- 8. Час безвідмовної роботи елемента деякого приладу T розподілений за показниковим законом розподілу з $\lambda = \frac{1}{540}$. Виконати такі дії:
 - а) знайти щільність та функцію розподілу ймовірностей випадкової величини T та накреслити їхні графіки;
 - б) обчислити $E(\xi)$, $D(\xi)$, $\sigma(\xi)$;
 - в) знайти ймовірності подій: A {елемент безвідмовно працюватиме не менше 648 год}, B {елемент відмовив протягом 700 год}, C {елемент безвідмовно працюватиме не менше трьох діб}.
- 9. Закон розподілу неперервної випадкової величини ξ такий:

$$F(x) = \begin{cases} 0, & x < -1; \\ \frac{(x+1)^2}{64}, & -1 \le x < 3; \\ 1, & x \ge 3. \end{cases}$$

Знайти f(x) і побудувати графіки функцій f(x), F(x). Обчислити $P(0 < \xi < 2)$.

10. Задано щільність розподілу ймовірностей неперервної випадкової змінної

$$f(x) = \begin{cases} 0, & x < -2; \\ a\sqrt{x+2}, & -2 \le x < 7; \\ 0, & x \ge 7. \end{cases}$$

Знайти значення сталої a та функцію F(x). Побудувати графіки функцій f(x), F(x).

11. Випадкова величина ξ має закон розподілу ймовірностей Коші:

$$f(x) = \frac{a}{1+x^2}, \quad -\infty < x < +\infty$$

Знайти a i F(x).

12. За заданими функціями

$$f(x) = \begin{cases} 0, & x < 0; \\ 5\sqrt{x}, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases} \qquad f(x) = \begin{cases} 0, & x < 0; \\ \frac{3}{5}\sqrt[5]{x}, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases} \qquad f(x) = \begin{cases} 0, & x < 0; \\ \frac{8}{5}\sqrt[5]{x^3}, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases}$$

визначити, яка з них ϵ щільністю випадкової величини ξ , визначеної на проміжку [0;1].

2.3. Граничні теореми теорії ймовірності: закон великих чисел і центральна гранична теорема

Основні поняття, означення та відношення.

- 1. Суть закону великихчисел полягає в тому, що в разі великого числа випадкових явищ усереднений їхній результат перестає бути випадковим і може бути передбачений з великою часткою вірогідності. Наприклад, відносна частота події при великому числі nекспериментів, середнє значення великого числа n випадкових величин збільшеннямистабілізуються і по суті перестають бути випадковими величинами.
 - 2. Зміст закону великих чисел охоплює такі основні відношення:
- *нерівність Маркова*: якщо випадкова величина ξ набуває тільки невід'ємних значень і $E(\xi) < \infty$, то для будь-якого K > 0 виконується нерівність:

$$P(\xi \ge K) \le \frac{\mathrm{E}(\xi)}{K} \tag{2.40}$$

Нерівність Маркова встановлює оцінку зверху для імовірності події $\xi \geq K$. Вона також може бути тривіальною, коли $\frac{\mathrm{E}(\xi)}{\mathit{K}} \ge 1$;

нерівність Чебишева: якщо випадкова величина ξ має скінченні математичне сподівання і дисперсію, то для довільного числа $\varepsilon > 0$ виконується нерівність:

$$P(\left|\xi - E(\xi)\right| < \varepsilon) \ge 1 - \frac{D(\xi)}{\varepsilon^2} \tag{2.41}$$

Нерівність Чебишева встановлює оцінку знизу для імовірності події $|\xi - E(\xi)| < \varepsilon$. Вона може виявитися тривіальною у випадку, коли $1-\frac{D(\xi)}{\varepsilon^2} \le 0$, бо ймовірність будь-якої події ε невід'ємною;

теорема Чебишева: нехай $\xi_1, \xi_2, ... \xi_n$ – незалежні випадкові величини, які мають обмежені математичні сподівання і дисперсії. Розглянемо середнє арифметичне цих величин: $\overline{\xi} = \frac{\xi_1 + \xi_2 + ... + \xi_n}{\xi_1 + \xi_2 + ... + \xi_n}$

і середнє арифметичне їхніх математичних сподівань
$$E(\overline{\xi}) = \frac{E(\xi_1) + E(\xi_2) + ... + E(\xi_n)}{n}$$

Тоді для будь-якого числа $\varepsilon > 0$

$$\lim_{n \to \infty} P(\left| \overline{\xi} - E(\overline{\xi}) \right| < \varepsilon) = 1. \tag{2.42}$$

Тобто, подія $|\overline{\xi} - E(\overline{\xi})| < \varepsilon$ є вірогідною для великої кількості випробувань n.

• *теорема Бернуллі*: якщо в кожному з n незалежних випробувань за схемою Бернуллі ймовірність p = P(A) є однаковою, то для будь-якого числа $\varepsilon > 0$

$$\lim_{n \to \infty} P(|W_n(A) - p| < \varepsilon) = 1, \qquad (2.43)$$

де $W_n(A)$ – відносна частота події A.

Тобто, при великій кількості пвипробувань подія $|W_n(A) - p| < \varepsilon$ є майже вірогідною.

Нерівність Чебишева в умовах послідовності незалежних випробувань за схемою Бернуллі має такий вигляд:

$$P(|W_n(A)-p|<\varepsilon) \ge 1-\frac{pq}{n\varepsilon^2}.$$

(2.44)

- **3.** Суть центральної граничної теореми полягає в тому, що вона встановлює граничні закони розподілу суми великого числа випадкових величин.
- **4.** Зміст центральної граничної теореми охоплює різні умови, за яких граничний закон розподілу суми великого числа випадкових величин є близьким до нормального і містить такі основні твердження:
 - центральна гранична теорема: нехай $\xi_1, \xi_2, ... \xi_n$ незалежні однаково розподілені випадкові величини і $E(\xi_i) = 0, D(\xi_i) = D$. Розглянемо випадкову величину

$$\eta_n = \sum_{i=1}^n \xi_i,$$

для якої, очевидно, виконуються рівності: $E(\eta_n) = 0, D(\eta_n) = n \cdot D$.

При $n \to \infty$ функція розподілу

$$F_{\eta_n}(x) = P(\eta_n < x) \to \frac{1}{\sqrt{2\pi nD}} \int_{-\infty}^{x} e^{-\frac{z^2}{2nD}} dz$$
, (2.45)

тобто випадкова величина η_n розподілена за законом, близьким до нормального, з математичним сподіванням $E(\eta_n) = 0$ і середнім квадратичним відхиленням $\sigma(\eta_n) = \sqrt{nD}$

• *теорема Ляпунова*: нехай $\xi_1, \xi_2, ... \xi_n$ – незалежні випадкові величини такі, що $E(\xi_i) = 0, D(\xi_i) = D_i^2$. Розглянемо суму цих випадкових величин

$$\eta_n = \sum_{i=1}^n \xi_i.$$

Якщо
$$\frac{1}{D_n^3} \sum_{i=1}^n E^3(\xi_i) \to 0$$
 при $n \to \infty$, де $D_n = \sqrt{\sum_{i=1}^n D_i^2}$, то сума η_n має закон розподілу,

який ϵ близьким до нормального, з математичним сподіванням $E(\eta_n)=0$ і середнім квадратичним відхиленням $\sigma(\eta_n)=D_n$.

Використовуючи інтегральну теорему Лапласа і враховуючи, що у випадку схеми Бернуллі $E(\xi)=np, \quad D(\xi)=npq, \quad \sigma(\xi)=\sqrt{npq}$, для обчислення ймовірності події $\alpha<\sum_{i=1}^{n}\xi_{i}<\beta$ скористаємося формулою Муавра–Лапласа:

$$P(\alpha < \sum_{i=1}^{n} \xi_i < \beta) = \Phi(\frac{\beta - np}{\sqrt{npq}}) - \Phi(\frac{\alpha - np}{\sqrt{npq}}), \qquad (2.46)$$

яку читаємо так: якщо виконують пнезалежних випробувань за схемою Бернуллі, і ймовірність події A в кожному випробуванні однакова, то ймовірність того, що сумарна кількість появ події A потрапить в інтервал (α,β) дорівнює приросту інтегральної функції Лапласа $\Phi(x)$

на проміжку
$$\frac{\alpha - np}{\sqrt{npq}} \le x \le \frac{\beta - np}{\sqrt{npq}}$$
 .

Нагадаємо, що значення функції $\Phi(x)$ знаходимо за таблицею *додатка*2.

Приклад 1. Банк кредитує агрофірми, і середній обсяг кредитів дорівнює 100 тис. грн, а їх середнє квадратичне відхилення -20 тис. грн. У яких межах коливаються обсяги кредитів з імовірністю, не меншою ніж 0.75?

Розв'язання. Нехай випадкова величина ξ — обсяг кредиту, виданий агрофірмі. За умовою задачі $E(\xi)$ = 100, $D(\xi)$ = $\sigma^2(\xi)$ = 400 . Застосуємо нерівність Чебишева (2.41):

$$P(\left|\xi-100\right|<\varepsilon)\geq 1-\frac{400}{\varepsilon^2}$$

Оскільки $P(\left|\xi-100\right|<\varepsilon)\geq 0,75$, то можемо прийняти, що

$$1 - \frac{400}{\varepsilon^2} = 0,75 \Rightarrow 0,25\varepsilon^2 = 400 \Rightarrow \varepsilon^2 = 1600 \Rightarrow \varepsilon = 40.$$

Тоді отримаємо: $|\xi-100| < 40 \Leftrightarrow -40 < \xi-100 < 40 \Leftrightarrow 60 < \xi < 140$.

Приклад 2. Середня кількість опадів у регіоні протягом місяця становить 80 см. Оцінити ймовірність того, що в регіоні місячна кількість опадів буде не більшою ніж 100 см.

Розв'язання. Позначимо через ξ — місячну кількість опадів у регіоні. За умовою задачі $E(\xi) = 80$.

Подія $\xi \le 100$ є протилежною до події $\xi > 100$, тому $P(\xi \le 100) = 1 - P(\xi > 100)$.

Для оцінки ймовірності $P(\xi > 100)$ використовуємо нерівність Маркова (2.40), за якою

$$P(\xi > 100) \le \frac{80}{100} = 0.8$$
.

Звідси

$$P(\xi \le 100) \ge 1 - 0.8 = 0.2$$
.

Приклад 3. Імовірність того, що навмання вибрана деталь якісна, дорівнює 0,9. Скільки потрібно перевірити деталей, щоб з імовірністю, не меншою ніж 0,95, можна було стверджувати, що відхилення відносної частоти якісних деталей від їхньої імовірності не перевищує 0,1?

Розв'язання. Нехай подія A — вибрана навмання деталь якісна. За умовою задачі p = P(A) = 0,9 і $q = P(\overline{A}) = 1 - 0,9 = 0,1$.

Оскільки у даній ситуації ϵ послідовність випробувань за схемою Бернуллі, то використаємо нерівність Чебишева (2.44) в умовах схеми Бернуллі, за якою

$$P(|W_n(A) - 0.9| < 0.1) \ge 1 - \frac{0.9 \cdot 0.1}{n \cdot 0.1^2}$$

Сформульована в умові задачі нерівність

$$P(|W_n(A) - 0.9| < 0.1) \ge 0.95$$

буде виконана, якщо

$$1 - \frac{0.9 \cdot 0.1}{n \cdot 0.1^{2}} \ge 0.95 \Rightarrow \frac{0.9}{0.1n} \le 1 - 0.95 = 0.05 \Rightarrow \frac{1}{n} \le \frac{0.05}{9} \approx 0.00556$$
$$n \ge \frac{1}{0.00556} = 179.9.$$

Приклад 4. Кожна з незалежних випадкових величин $\xi_i, i = \overline{1,50}$ має показниковий розподіл з параметром $\lambda = 0,2$. Написати наближено щільність і функцію розподілу випадкової величини $\eta = \sum_{i=1}^{50} \xi_i$.

Розв'язання. Щільність розподілу випадкової величини ξ_i описують функцією

$$f_i(x) = \begin{cases} 0, & x < 0 \\ 0, 2e^{-0.2x}, & x \ge 0 \end{cases}$$

Обчислимо числові характеристики випадкових величин ξ_i :

$$E(\xi_i) = \frac{1}{\lambda} = \frac{1}{0,2} = 5$$
.

Оскільки $\eta = \sum_{i=1}^{50} \xi_i$ є сумою досить великого числа однаково розподілених випадкових

величин, то закон розподілу випадкової величини $\eta \epsilon$ близький до нормального (див. (2.45)) з параметрами розподілу $a=5, \sigma=5$. Тому

$$f(x) \approx \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-a)^2}{2\sigma^2}} = \frac{1}{5\sqrt{2\pi}} e^{\frac{-(x-5)^2}{2\cdot 5^2}} = \frac{1}{5\sqrt{2\pi}} e^{\frac{-(x-5)^2}{50}},$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-(t-a)^2}{2\sigma^2}} dt = \frac{1}{5\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-(t-5)^2}{50}} dt.$$

Завдання для самостійної роботи

1. Дискретна випадкова величина ξ задана законом розподілу

x_i	0,3	0,6
p_i	0,49	0,51

Використовуючи нерівність Чебишева, оцінити ймовірність того, що $|\xi - E(\xi)| < 0, 2$.

- **2.** Дано: $P(|\xi E(\xi)| < \varepsilon) \ge 0,9$; $D(\xi) = 0,004$. Використовуючи нерівність Чебишева, знайти ε .
- **3.** Сума чека, виписаного на банк, підпорядковується нормальному закону розподілу із середньою сумою 84 екю і стандартним (середнім квадратичним) відхиленням 12 екю. Якщо вибрано чек навмання, то яка ймовірність, що сума цього чека ϵ :
 - а) більшою ніж 70 екю?
 - б) між 60 та 90 екю?
- в) оцінити ймовірність того, що сума цього чека ϵ більшою, ніж 70 екю за нерівністю Маркова.
- г) оцінити ймовірність того, що сума цього чека ϵ в проміжку [24, 144], використовуючи нерівність Чебишева.
- **4.** Школа в зимовий період споживає для опалення щоденно в середньому 250 м³ газу. Яку можна очікувати спожити кількість газу за один день з імовірністю, не меншою ніж 0,96, якщо середнє квадратичне відхилення споживання газу становить 16 м³?
- **5.** Унаслідок медичного огляду 900 допризовників було виявлено, що середня маса кожного з них на 1,2 кг більша від середньої маси попереднього призову. Чи можна це констатувати як випадковість, якщо середнє відхилення маси допризовника дорівнює 8 кг?
- **6.** Імовірність вчасної реалізації продукції дорівнює 0,4. Оцінити ймовірність того, що в 100 незалежно реалізованих одиниць продукції відхилення відносної частоти реалізації від імовірності 2/5 за абсолютним значенням буде не меншим від 0,1 та порівняти з точним значенням.
- 7. Імовірність виготовлення нестандартної радіолампи дорівнює 0,04. Яку найменшу кількість радіоламп треба відібрати, щоб з імовірністю 0,88 можна було б стверджувати, що частка нестандартних радіоламп серед них буде відрізнятися від імовірності виготовлення нестандартної радіолампи за абсолютним значенням не більше ніж на 0,02?
- **8.** Добові витрати води в населеному пункті є випадковою величиною із середнім квадратичним відхиленням 10 000 літрів. Знайти ймовірність того, що витрати води в цьому пункті протягом дня відхиляються від математичного сподівання за абсолютною величиною не більше, ніж на 25 000 літрів.
- 9. Середнє добове споживання електроенергії в населеному пункті дорівнює 12 000 кВт·год. Оцінити ймовірність того, що протягом даної доби споживання електроенергії буде більше ніж 50 000 кВт·год.

10. У касі певного закладу в наявності ϵ 6 500 грн. У черзі стоїть 25 працівників. Сума ξ , яку потрібно виплатити кожному, ϵ випадковою величиною з математичним сподіванням, що дорівнює 250 грн, і середнім квадратичним відхиленням σ = 50 грн. Знайти ймовірність того, що суми, яка ϵ в касі, не вистачить усім людям, які стоять у черзі.

2.4. Двовимірна випадкова величина

Основні поняття, означення та відношення

1. Якщо на тому самому просторі елементарних подій $\Omega = \{\omega_i\}$ задано дві одновимірні випадкові величини ξ і η , то їхню упорядковану сукупність (ξ, η) називають двовимірною випадковою величиною або системою двох випадкових величин.

Аналогічно вводять поняття n - вимірної випадкової величини, яка ϵ упорядкованою сукупністю ($\xi_1, \xi_2, ... \xi_n$) n одновимірних випадкових величин.

2. Двовимірну випадкову величину (ξ , η) називають **дискретною**, якщо її складові ξ і η ϵ дискретними, і **неперервною**, якщо її складові ξ і η ϵ неперервними одновимірними випадковими величинами.

Складові ξ і η двовимірної випадкової величини (ξ,η) називають ще її **компонентами**.

3. Законом розподілу ймовірностей (законом розподілу) двовимірної дискретної випадкової величини (ξ, η) називають перелік її можливих значень (x_i, y_j) , $i = \overline{1, n}$, $j = \overline{1, m}$ та відповідних їм ймовірностей $p(x_i, y_j) = P(\xi = x_i \cap \eta = y_j)$.

Закон розподілу дискретної випадкової величини (ξ, η) записують у вигляді таблиці:

$\xi = x_i$ $\eta = y_j$	x_1	x_2		X_n	$p(y_j)$
\mathcal{Y}_1	$p(x_1,y_1)$	$p(x_2, y_1)$	•••	$p(x_n, y_1)$	$p(y_1)$
y_2	$p(x_1, y_2)$	$p(x_2, y_2)$	•••	$p(x_n, y_2)$	$p(y_2)$
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
${\cal Y}_m$	$p(x_1, y_m)$	$p(x_2, y_m)$		$p(x_n, y_m)$	$p(y_m)$
$p(x_i)$	$p(x_1)$	$p(x_2)$	•••	$p(x_n)$	1

де

$$p(x_i) = \sum_{i=1}^{m} p(x_i, y_j), \quad i = 1, 2, ...n;$$

$$p(y_j) = \sum_{i=1}^n p(x_i, y_j), \quad j = 1, 2, \dots m;$$
 (2.47)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = \sum_{i=1}^{n} p(x_i) = \sum_{j=1}^{m} p(y_j) = 1.$$

Зазначимо, що закон розподілу дискретної випадкової величини (ξ,η) має вигляд частини таблиці, яка виділена жирними лініями.

Перелік значень x_i та відповідних їм імовірностей $p(x_i)$ становить закон розподілу одновимірної випадкової величини ξ , а перелік значень y_i та відповідних їм імовірностей $p(y_i)$ – закон розподілу одновимірної випадкової величини η .

4. Функцією розподілу ймовірностейдвовимірної випадкової величини (ξ, η) називають функцію F(x, y), яка для будь-яких чисел x і y визначає ймовірність сумісної появи подій $\xi < x$ і $\eta < y$, тобто

$$F(x, y) = P(\xi < x \cap \eta < y). \tag{2.48}$$

Отже, функція розподілу F(x, y) двовимірної випадкової величини $(\xi, \eta) \epsilon$ ймовірністю того, що її складова ξ набуде значення, меншого за число x і складова η набуде одночасно значення меншого за число y.

Геометрично рівність (2.48) тлумачимо так: функція розподілу F(x, y) є ймовірністю того, що значення двовимірної випадкової величини (ξ, η) потрапляють у безмежний прямокутник з вершиною (x, y), який розміщений нижче і лівіше від цієї вершини (рис. 2.14)

Рис. 2.14 Геометричне тлумачення функції розподілу F(x, y)

Функція розподілу F(x, y) має такі властивості:

- значення функції розподілу задовольняють подвійну нерівність $0 \le F(x,y) \le 1;$ (2.49)
- F(x, y) ϵ неспадною функцією за кожним аргументом, тобто:

$$F(x_2, y) \ge F(x_1, y) \ npu \ x_2 \ge x_1;$$

$$F(x, y_2) \ge F(x, y_1) \text{ npu } y_2 \ge y_1;$$
 (2.50)

• для функції F(x,y) виконуються граничні співвідношення:

$$F(-\infty, y) = 0, \quad F(x, -\infty) = 0,$$

 $F(-\infty, -\infty) = 0, \quad F(+\infty, +\infty) = 1;$ (2.51)

• при $y \to \infty$ функція розподілу F(x,y) двовимірної випадкової величини (ξ,η) наближається до функції розподілу $F_1(x)$ складової ξ , а при $x \to \infty$ — до функції розподілу $F_2(y)$ складової η , тобто:

$$\lim_{y \to \infty} F(x, y) = F(x, \infty) = F_1(x)$$
$$\lim_{x \to \infty} F(x, y) = F(\infty, y) = F_2(y)$$

• ймовірність потрапляння значень двовимірної випадкової величини (ξ,η) у прямокутник $Q = \{(x,y): a < \xi < b, c < \eta < d\}$ обчислюють за формулою:

$$P(a < \xi < b, c < \eta < d) = [F(b,d) - F(a,d)] - [F(b,c) - F(a,c)]$$
(2.53)

Зрозуміло, що у лівій частині формули (2.53) знак "<" може бути замінений знаком " \leq ", а права її частина при цьому не зміниться.

5. Щільністю (густотою) розподілу ймовірностей f(x, y) двовимірної неперервної випадкової величини (ξ, η) називають другу мішану похідну від її функції розподілу, тобто:

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}.$$
 (2.54)

Щільність розподілу ймовірностей двовимірної випадкової величини ще називають *двовимірною щільністю розподілу*.

Щільність розподілу ймовірностей f(x, y) має властивості:

- щільність розподілу ймовірностей невід 'ємна: $f(x,y) \ge 0$;
- подвійний невласний інтеграл з безмежними межами інтегрування від двовимірної щільності розподілу дорівнює одиниці:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1; \qquad (2.55)$$

• якщо всі значення (x, y) двовимірної випадкової величини (ξ, η) містяться у прямокутнику $\Omega = \{a < x < b, c < y < d\}$ і f(x, y) — щільність її розподілу, то

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy = 1;$$
(2.55')

• функцію розподілу F(x,y) двовимірної неперервної випадкової величини (ξ,η) визначають за двовимірною щільністю f(x,y) цієї величини за допомогою рівності:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(z,t)dzdt = \int_{-\infty}^{x} dz \int_{-\infty}^{y} f(z,t)dt;$$
(2.56)

Якщо можливі значення двовимірної неперервної випадкової величини (ξ, η) розміщені у прямокутнику $Q = \{(\xi, \eta) : a < \xi < b, c < \eta < d\}$, то формула (2.56) набуває вигляду:

$$F(x,y) = \int_{a}^{x} \int_{c}^{y} f(z,t)dzdt = \int_{a}^{x} dz \int_{c}^{y} f(z,t)dt;$$
 (2.56')

• ймовірність потрапляння значень двовимірної неперервної випадкової величини (ξ, η) у прямокутник $Q = \{(\xi, \eta) : a < \xi < b, c < \eta < d\}$ виражають формулою:

$$P(a < \xi < b, c < \eta < d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy.$$
 (2.57)

Зауважимо, що знак "<" у лівій частині рівності можна на кожному окремому місці замінити знаком " \leq ".

• Якщо f(x,y) — щільність розподілу двовимірної випадкової величини (ξ,η) , то щільності розподілів $f_1(x)$ і $f_2(y)$ одновимірних випадкових величин, відповідно, ξ і η визначають за формулами

$$f_1(x) = \int_{-\infty}^{+\infty} f(x, y) dy \ f_2(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$
 (2.58)

6. Дві випадкові величини називаються **незалежними**, якщо закон розподілу кожної з них не залежить від того, якого значення набула інша.

Незалежність дискретних випадкових величин ξ і η рівносильна тому, що

$$P(\xi = x_i \cap \eta = y_i) = P(\xi = x_i) \cdot P(\eta = y_i)$$

або

$$p(x_i, y_j) = p(x_i) \cdot p(y_j). \tag{2.59}$$

Незалежність дискретних або неперервних випадкових величин ξ і η рівносильна тому, що

$$F(x,y) = F_1(x) \cdot F_2(y), \tag{2.60}$$

де F(x, y) – функція розподілу двовимірної випадкової величини (ξ, η) , $F_1(x)$ – функція розподілу складової ξ , $F_2(y)$ – функція розподілу складової η .

Незалежність неперервних випадкових ξ і η рівносильна тому, що

$$f(x,y) = f_1(x) \cdot f_2(y),$$
 (2.61)

де f(x,y) — щільність розподілу двовимірної випадкової величини (ξ,η) , $f_1(x)$ — щільність розподілу складової ξ , $f_2(y)$ — щільність розподілу складової η .

7. Для з'ясування залежності випадкових величин ξ і η та взаємозв'язку між ними використовують *коваріацію і коефіцієнт кореляції*.

Коваріацією (кореляційним моментом) К $_{xy}$ випадкових величин ξ і η називають математичне сподівання добутку відхилень цих величин від їхніх сподівань, тобто

$$K_{xy} = E\left\{ \left[\xi - E(\xi) \right] \cdot \left[\eta - E(\eta) \right] \right\}. \tag{2.62}$$

Формулу для обчислення K_{xy} дискретної випадкової величини можна записати ще у вигляді

$$K_{xy} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j p(x_i, y_j) - E(\xi) E(\eta), \qquad (2.62')$$

а для неперервної випадкової величини – у вигляді

$$K_{xy} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \, f(x, y) \, dx \, dy - E(\xi) E(\eta). \tag{2.63}$$

Недоліком коваріації ϵ те, що її величина ма ϵ різні значення залежно від того, в яких одиницях вимірюють випадкові величини. Це створю ϵ труднощі під час порівняння випадкових величин.

Коефіцієнтом кореляції r_{xy} випадкової величини ξ і η називають відношення коваріації K_{xy} до добутку середніх квадратичних відношень σ_x і σ_y цих величин, тобто

$$r_{xy} = \frac{K_{xy}}{\sigma_x \cdot \sigma_y}. (2.64)$$

Коефіцієнт кореляції задовольняє нерівність: $|r_{xy}| \le 1 \Leftrightarrow -1 \le r_{xy} \le 1$.

Коефіцієнт кореляції ϵ безрозмірною випадковою величиною і він ϵ зручніший під час порівняння випадкових величин.

Правильне таке **твердження**: якщо випадкові величини ξ і η незалежні, то коваріація K_{xy} =0 (коефіцієнт кореляції r_{xy} =0); якщо коваріація $K_{xy} \neq 0$ (коефіцієнт кореляції $r_{xy} \neq 0$), то випадкові величини ξ і η залежні.

Наголосимо, що коли $K_{xy} = 0$ ($r_{xy} = 0$), то випадкові величини можуть бути як незалежними, так і залежними.

Дві випадкові величини ξ і η називають корельованими, якщо їхня коваріація $K_{xy} \neq 0$ (коефіцієнт кореляції $r_{xy} \neq 0$). Дві корельовані величини завжди є залежні. Однак залежні випадкові величини можуть бути як корельованими, так і некорельованими.

8. Якщо відомий сумісний закон розподілу випадкових величин ξ і η , тобто закон розподілу двовимірної випадкової величини (ξ,η) , то за формулами (2.47), (2.52), (2.58) завжди можна знайти закони розподілу, функції розподілу і щільності розподілу складових ξ і η . Якщо ж відомі закони розподілу складових ξ і η , які ε незалежними випадковими величинами, то закон розподілу, функцію розподілу і щільність розподілу випадкової величини (ξ,η) можна знайти за формулами (2.59), (2.60), (2.61).

Щоб знайти закон розподілу, функцію розподілу, щільність розподілу двовимірної випадкової величини (ξ,η) , знаючи закони розподілу, функцію розподілу чи щільності розподілу залежних складових ξ і η , потрібно ще знати *умовні закони розподілу* або *умовні щільності розподілу цих складових*.

9. Позначимо через $p(x_i | y_j)$ — імовірність того, що випадкова величина ξ набуде значення x_i за умови, що випадкова величина η набула значення y_j , і через $p(y_j | x_i)$

імовірність того, що випадкова величина η набуде значення y_j за умови, що випадкова величина ξ набула значення x_i . Імовірності $p(x_i | y_j)$ і $p(y_i | x_i)$ назвемо **умовними**.

Умовним закономрозподілу дискретної випадкової величини ξ при фіксованому значенні $\eta = y_j$ називають перелік усіх можливих значень x_i величини ξ та їх умовних ймовірностей $p(x_i \mid y_j)$, і його записують у вигляді таблиці:

$\xi = x_i$	x_1	x_2	•••	\mathcal{X}_n
$p(x_i y_j)$	$p(x_1 y_j)$	$p(x_2 y_j)$	•••	$p(x_n y_j)$

Умовні ймовірності $p(x_i | y_i)$ обчислюють за формулами

$$p(x_i | y_j) = \frac{p(x_i, y_j)}{p(y_i)}$$
 (2.65)

$$i \sum_{i=1}^{n} p(x_i | y_j) = 1.$$

Умовним закономрозподілу дискретної випадкової величини η при фіксованому значенні $\xi = x_i$ називають перелік всіх можливих значень y_j величин η та їхніх умовних ймовірностей $p(y_j | x_i)$, і його записують у вигляді таблиці:

$\eta = y_j$	\mathcal{Y}_1	\mathcal{Y}_2	•••	\mathcal{Y}_n
$p(y_j x_i)$	$p(y_1 x_i)$	$p(y_2 \mid x_i)$	•••	$p(y_n x_i)$

Умовні ймовірності $p(y_i | x_i)$ обчислюють за формулами

$$p(y_j | x_i) = \frac{p(x_i, y_j)}{p(x_i)}$$
 (2.65')

$$i \sum_{j=1}^{m} p(y_{j} | x_{i}) = 1.$$

3 формул (2.65) і (2.65′) отримаємо:

$$p(x_i, y_j) = p(y_j) \cdot p(x_i | y_j) \text{ i } p(x_i, y_j) = p(x_i) \cdot p(y_j | x_i).$$

Звідси випливає, що, знаючи закони розподілу складових ξ і η двовимірної випадкової величини (ξ,η) та їхні умовні закони розподілу, можна знайти закон розподілу системи випадкових величин (ξ,η) .

Умовні закони розподілу складових ξ і η двовимірної випадкової величини (ξ,η) зумовлюють *умовні числові характеристики*

• умовні математичні сподівання:

$$E(\xi \mid \eta = y_{j}) = \sum_{i=1}^{n} x_{i} p(x_{i} \mid y_{j}) = \sum_{i=1}^{n} x_{i} \frac{p(x_{i}, y_{j})}{p(y_{j})} = \frac{1}{p(y_{j})} \sum_{i=1}^{n} x_{i} \cdot p(x_{i}, y_{j});$$

$$E(\eta \mid \xi = x_{i}) = \sum_{j=1}^{m} y_{j} p(y_{j} \mid x_{i}) = \sum_{j=1}^{m} y_{j} \frac{p(x_{i}, y_{j})}{p(x_{i})} = \frac{1}{p(x_{i})} \sum_{j=1}^{m} y_{j} \cdot p(x_{i}, y_{j});$$
(2.66)

умовні дисперсії:

$$D(\xi \mid \eta = y_j) = \sum_{i=1}^{n} x_i^2 p(x_i \mid y_j) - E^2(\xi \mid \eta = y_j) = \sum_{i=1}^{n} x_i^2 \frac{p(x_i, y_j)}{p(y_j)} - E^2(\xi \mid \eta = y_j) = \frac{1}{p(y_i)} \sum_{i=1}^{n} x_i^2 p(x_i, y_j) - E^2(\xi \mid \eta = y_j);$$

$$D(\eta \mid \xi = x_{i}) = \sum_{j=1}^{m} y_{j}^{2} p(y_{j} \mid x_{i}) - E^{2}(\eta \mid \xi = x_{i}) = \sum_{j=1}^{m} y_{j}^{2} \frac{p(x_{i}, y_{j})}{p(x_{i})} - E^{2}(\eta \mid \xi = x_{i}) =$$

$$= \frac{1}{p(x_{i})} \sum_{j=1}^{m} y_{j}^{2} p(y_{j}, x_{i}) - E^{2}(\eta \mid \xi = x_{i});$$
(2.67)

• умовні середні квадратичні відхилення:

$$\sigma(\xi \mid \eta = y_j) = \sqrt{D(\xi \mid \eta = y_j)};$$

$$\sigma(\eta \mid \xi = x_i) = \sqrt{D(\eta \mid \xi = x_i)}$$
(2.68)

10. Нехай (ξ, η) – двовимірна випадкова величина, f(x, y) – щільність її сумісного розподілу, $f_1(x)$ – щільність розподілу складової ξ , $f_2(y)$ – щільність розподілу складової η .

Умовною щільністю $\varphi(x|y)$ розподілу складової ξ двовимірної випадкової величини (ξ,η) при фіксованому значенні $\eta=y$ називають відношення щільності її сумісного розподілу f(x,y) до щільності розподілу $f_2(y)$ складової η , тобто

$$\varphi(x \mid y) = \frac{f(x, y)}{f_2(y)}.$$
 (2.69)

Умовною щільністю $\psi(y|x)$ розподілу складової η двовимірноївипадкової величини (ξ,η) при фіксованому значенні $\xi=x_i$ називають відношення щільності її сумісного розподілу f(x,y) до щільності розподілу $f_1(x)$ складової ξ , тобто

$$\psi(y \mid x) = \frac{f(x, y)}{f_1(x)}.$$
 (2.70)

3 формул (2.69) і (2.70) отримуємо:

$$f(x,y) = f_2(y) \cdot \varphi(x|y) \text{ i } f(x,y) = f_1(x) \cdot \psi(y|x).$$
 (2.71)

Звідси випливає, що, знаючи щільність розподілу складових ξ і η двовимірної випадкової величини (ξ,η) та їхні умовні щільностірозподілу, можна знайти щільність сумісного розподілу системи випадкових величин (ξ,η) .

Аналогічно, як у випадку дискретної випадкової величини, для неперервних випадкових величин ϵ :

• умовні математичні сподівання:

$$E(\xi \mid \eta = y) = \int_{-\infty}^{+\infty} x \varphi(x \mid y) dx,$$

$$E(\eta \mid \xi = x) = \int_{-\infty}^{+\infty} y \psi(y \mid x) dy;$$

■ умовні дисперсії:

$$D(\xi | \eta = y) = \int_{-\infty}^{+\infty} x^2 \varphi(x | y) dx - E^2(\xi | \eta = y)$$

$$D(\eta | \xi = x) = \int_{+\infty}^{+\infty} y^2 \psi(y | x) dy - E^2(\eta | \xi = x),$$
(2.73)

• умовні середні квадратичні відхилення

$$\sigma(\xi \mid \eta = y) = \sqrt{D(\xi \mid \eta = y)} \ \sigma(\eta \mid \xi = x) = \sqrt{D(\eta \mid \xi = x)}.$$
(2.74)

Умовне математичне сподівання $E(\eta \mid \xi = x)$ є функцією від x:

$$E(\eta \mid \xi = x) = f(x), \tag{2.75}$$

яку називають функцією регресії η відносно ξ , а умовне математичне сподівання $E(\xi \mid \eta = y)$ ϵ функцією від y:

$$E(\xi | \eta = y) = g(y),$$
 (2.76)

яку називають **функцією регресії** ξ відносно η .

Приклад 1. Одночасно кидають на підлогу дві монети. Написати закон розподілу випадкової величини (ξ,η) , де ξ – кількість випадань герба на першій монеті, η – кількість випадань герба на другій монеті. Обчислити $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$, $K_{\xi\eta}$, $r_{\xi\eta}$.

Розв'язання. ξ і η – одновимірні випадкові величини, кожна з яких набуває значень 0,1, причому кожного свого значення ξ і η набувають з імовірністю 0,5:

$$P(\xi = 0) = P(\xi = 1) = P(\eta = 0) = P(\eta = 1) = 0.5$$
.

Двовимірна випадкова величина (ξ,η) може набувати значень (0,0), (0,1), (1,0), (1,1). Для складання закону розподілу двовимірної випадкової величини (ξ,η) потрібно обчислити ймовірності $p(x_i,y_i)$, де i=1,2 і j=1,2.

Оскільки випадковівеличини ξ і η незалежні, то шуканіймовірності обчислюємо за формулою

$$p(x_i, y_j) = p(x_i) \cdot p(y_j).$$

За цією формулою отримаємо:

 $p(x_1, y_1) = P(\xi = 0 \cap \eta = 0) = P(\xi = 0) \cdot P(\eta = 0) = 0,5 \cdot 0,5 = 0,25$ – імовірність того, що герб не випав ні на першій, ні на другій монетах;

 $p(x_2, y_1) = P(\xi = 1 \cap \eta = 0) = P(\xi = 1) \cdot P(\eta = 0) = 0.5 \cdot 0.5 = 0.25$ — імовірність того, що на першій монеті випав герб, а на другій не випав.

 $p(x_1, y_2) = P(\xi = 0 \cap \eta = 1) = P(\xi = 0) \cdot P(\eta = 1) = 0.5 \cdot 0.5 = 0.25$ – імовірність того, що на першій монеті герб не випав, а на другій випав;

 $p(x_2, y_2) = P(\xi = 1 \cap \eta = 1) = P(\xi = 1) \cdot P(\eta = 1) = 0.5 \cdot 0.5 = 0.25$ імовірність того, що на першій і другій монетах випав герб.

Отже, закон розподілу двовимірної випадковоївеличини записують у вигляді таблиці:

$\xi = x_i$ $\eta = y_j$	0	1	$p(y_j)$
0	0,25	0,25	0,5
1	0,25	0,25	0,5
$p(x_i)$	0,5	0,5	

Обчислимо числові характеристики складових ξ і η :

$$E(\xi) = \sum_{i=1}^{2} x_i \cdot p(x_i) = 0.0, 5 + 1.0, 5 = 0.5;$$

$$E(\eta) = \sum_{j=1}^{2} y_j \cdot p(y_j) = 0.0,5 + 1.0,5 = 0,5;$$

$$D(\xi) = \sum_{i=1}^{2} x_{i}^{2} \cdot p(x_{i}) - E^{2}(\xi) = 0^{2} \cdot 0.5 + 1^{2} \cdot 0.5 - 0.5^{2} = 0.5 - 0.25 = 0.25;$$

$$D(\eta) = \sum_{j=1}^{2} y_{j}^{2} \cdot p(y_{j}) - E^{2}(\eta) = 0^{2} \cdot 0.5 + 1^{2} \cdot 0.5 - 0.5^{2} = 0.5 - 0.25 = 0.25;$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{0.25} = 0.5;$$

$$\sigma(\eta) = \sqrt{D(\eta)} = \sqrt{0.25} = 0.5.$$

Точка $(E(\xi), E(\eta)) = (0,5;0,5)$ на площині Oxy є центром ваги можливих значень випадкових величин ξ і η .

Коваріацію обчислюємо за формулою (2.62′):

$$K_{xy} = \sum_{i=1}^{2} \sum_{j=1}^{2} x_i y_j p(x_i, y_j) - E(\xi) \cdot E(\eta) = 0 \cdot 0 \cdot 0.25 + 1 \cdot 0 \cdot 0.25 + 0 \cdot 1 \cdot 0.25 + 0 \cdot 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.25 + 0.$$

$$+1 \cdot 1 \cdot 0,25 - 0,5 \cdot 0,5 = 0;$$

а за формулою (2.64) знайдемо коефіцієнт кореляції:

$$r_{xy} = \frac{K_{xy}}{\sigma(\xi) \cdot \sigma(\eta)} = \frac{0}{0.5 \cdot 0.5} = 0.$$

Приклад 2. Закон розподілу двовимірної дискретної випадкової величини заданий таблицею:

$\eta = y_j$	$=x_i$ 2	4	6	8
-6	0,1	a = 0.5 a	0,4 a	а
-4	0,9	a 0,4 a	0,5 a	0,2 a
-2	а	2,1 a	1,1 a	1,8 a

Виконати такі дії:

- а) визначити параметр a;
- б) записати закони розподілу складових ξ і η ;
- в) обчислити $E(\xi)$, $\sigma(\xi)$, $E(\eta)$, $\sigma(\eta)$;
- г) знайти $P(4 \le \xi < 8 \cap -6 \le \eta < -2)$;
- д) з'ясувати чи величини ξ і η ϵ залежні або незалежні.

Розв'язання. а) Значення параметра *а* знаходимо з умови

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = 1,$$

(формула (2.47)). У даному випадку

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = 0.1a + 0.5a + 0.4a + a + 0.9a + 0.4a + 0.5a + 0.5a + 0.4a + 0.5a + 0.4a + 0.5a + 0.4a + 0.5a + 0.4a + 0.5a + 0.5a + 0.4a + 0.5a +$$

$$+0.2a + a + 2.1a + 1.1a + 1.8a = 10a = 1 \Rightarrow a = \frac{1}{10}$$

3 урахуванням значення параметра a закон розподілу має вигляд:

$\xi = x_i$ $\eta = y_j$	2	4	6	8	$p(y_j)$
-6	0,01	0,05	0,04	0,1	0,2
-4	0,09	0,04	0,05	0,02	0,2
-2	0,1	0,21	0,11	0,18	0,6

$p(x_i)$	0,2	0,3	0,2	0,3	

б) Закон розподілу складових ξ і η виписуємо з останньої таблиці:

$\xi = x_i$	2	4	6	8
$p(x_i)$	0,2	0,3	0,2	0,3

$\eta = y_j$	-6	-4	-2
$p(y_j)$	0,2	0,2	0,6

в) Обчислимо числові характеристики:

$$E(\xi) = \sum_{i=1}^{4} x_i p(x_i) = 2 \cdot 0, 2 + 4 \cdot 0, 3 + 6 \cdot 0, 2 + 8 \cdot 0, 3 = 5, 2;$$

$$D(\xi) = \sum_{i=1}^{4} x_i^2 p(x_i) - E^2(\xi) = 2^2 \cdot 0, 2 + 4^2 \cdot 0, 3 + 6^2 \cdot 0, 2 + 8^2 \cdot 0, 3 - 5, 2^2 = 0, 8 + 4, 8 + 7, 2 + 19, 2 - 27, 04 = 4, 96;$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{4, 96} \approx 2, 23;$$

$$E(\eta) = \sum_{j=1}^{3} y_j p(y_j) = -6 \cdot 0, 2 - 4 \cdot 0, 2 - 2 \cdot 0, 6 = -3, 2;$$

$$D(\eta) = \sum_{j=1}^{3} y_j^2 p(y_j) - E^2(\eta) = (-6)^2 \cdot 0.2 + (-4)^2 \cdot 0.2 + (-2)^2 \cdot 0.6 - (-3.2)^2 = 7.2 + 3.2 + 2.4 - 10.24 = 2.56;$$

$$=7,2+3,2+2,4-10,24=2,56,$$

 $\sigma(n) = \sqrt{D(n)} = \sqrt{2.56} = 1,6.$

г) Шукана ймовірність

$$P(4 \le \xi \le 8 \cap -6 \le \eta \le -2) = P(\xi = 4 \cap \eta = -6) + P(\xi = 6 \cap \eta = -6) + P(\xi = 4 \cap \eta = -4) + P(\xi = 6 \cap \eta = -4) = 0.05 + 0.04 + 0.04 + 0.05 = 0.18.$$

д) Для з'ясування залежності чи незалежності випадкових величин ξ і η обчислимо $K_{\xi\eta}(r_{\xi\eta})$. За формулами (2.62′), (2.64) отримаємо:

$$\begin{split} K_{\xi\eta} &= 2\cdot(-6)\cdot0,01+4\cdot(-6)\cdot0,05+6\cdot(-6)\cdot0,04+8\cdot(-6)\cdot0,1+2\cdot(-4)\cdot0,09+\\ &+4\cdot(-4)\cdot0,04+6\cdot(-4)\cdot0,05+8\cdot(-4)\cdot0,02+2\cdot(-2)\cdot0,1+4\cdot(-2)\cdot0,21+6\cdot(-2)\cdot0,11+\\ &+8\cdot(-2)\cdot0,18-5,2\cdot(-3,2)-6\cdot(2\cdot0,01+4\cdot0,05+6\cdot0,04+8\cdot0,1)-\\ &-4\cdot(2\cdot0,09+4\cdot0,04+6\cdot0,05+8\cdot0,02)-2\cdot(2\cdot0,1+4\cdot0,21+6\cdot0,11+8\cdot0,18)+\\ &+5,2\cdot3,2=-0,4\\ &r_{\xi\eta} = \frac{-0,4}{2,23\cdot1,6} \approx -0,11. \end{split}$$

Оскільки $K_{\xi\eta}=-0.4\neq 0\ (r_{\xi\eta}\approx -0.11\neq 0)$, то випадкові величини залежні і корельовані.

Приклад 3. Закон розподілу двовимірної випадкової величини заданий таблицею:

$\xi = x_i$ $\eta = y_j$	2	5
10	0,25	0,10
12	0,15	0,05
14	0,32	0,13

Знайти:

- а) безумовні закони розподілу складових ξ і η ;
- б) умовний закон розподілу випадкової величини ξ за умови, що випадкова величина η набула значення $\eta=10$;
- в) умовний закон розподілу складової η за умови, що випадкова величина ξ набула значення $\xi=5$;
- г) умовні числові характеристики $E(\xi \mid \eta = 10)$, $E(\eta \mid \xi = 5)$, $D(\xi \mid \eta = 10)$, $D(\eta \mid \xi = 5)$, $\sigma(\xi \mid \eta = 10)$, $\sigma(\eta \mid \xi = 5)$.

Розв'язання. а) Щоб записати безумовні закони розподілу складових ξ і η , потрібно за формулою (2.47) обчислити ймовірності $p(x_i)$, $p(y_i)$:

$$p(x_1) = p(\xi = 2) = 0.25 + 0.15 + 0.32 = 0.72;$$

$$p(x_2) = p(\xi = 5) = 0.10 + 0.05 + 0.13 = 0.28;$$

$$p(y_1) = p(\eta = 10) = 0.25 + 0.10 = 0.35;$$

$$p(y_2) = p(\eta = 12) = 0.15 + 0.05 = 0.2;$$

$$p(y_3) = p(\eta = 14) = 0.32 + 0.13 = 0.45.$$

Закон розподілу складових ξ і η запишемо такими таблицями:

$\xi = x_i$	2	5
$p(x_i)$	0,72	0,28

$\eta = y_j$	10	12	14
$p(y_j)$	0,35	0,2	0,45

Перевірка:
$$p(x_1) + p(x_2) = 0.72 + 0.28 = 1;$$

 $p(y_1) + p(y_2) + p(y_3) = 0.35 + 0.2 + 0.45 = 1.$

б) Щоб скласти умовний закон розподілу складової ξ за умови, що складова $\eta=10$, потрібно обчислити відповідні умовні ймовірності. За формулою (2.65) отримуємо:

$$p(x_1|y_1) = \frac{p(x_1, y_1)}{p(y_1)} = \frac{0.25}{0.35},$$

$$p(x_2|y_1) = \frac{p(x_2, y_1)}{p(y_1)} = \frac{0.10}{0.35}.$$

Умовний закон розподілу складової ξ за умови, що $\eta = 10$, має такий вигляд:

$\xi = x_i \eta = 10$	2	5
$p(x_i y_1)$	$\frac{0.25}{0.35}$	$\frac{0,10}{0,35}$

Перевірка:
$$p(x_1|y_1) + p(x_2|y_1) = \frac{0.25}{0.35} + \frac{0.10}{0.35} = 1.$$

в) Для запису умовного закону розподілу складової η за умови, що ξ = 5 , також потрібно обчислити відповідні умовні ймовірності. За формулою (2.65′) знаходимо:

$$p(y_1|x_2) = \frac{p(x_2, y_1)}{p(x_2)} = \frac{0.10}{0.28},$$

$$p(y_2|x_2) = \frac{p(x_2, y_2)}{p(x_2)} = \frac{0.05}{0.28},$$

$$p(y_3|x_2) = \frac{p(x_2,y_3)}{p(x_2)} = \frac{0.13}{0.28}.$$

Шуканий умовний закон розподілу складової η за умови, що $\xi = 5$ має вигляд такої таблиці:

$\eta = y_j \xi = 5$	10	12	14
$p(y_j x_2)$	$\frac{0,10}{0,28}$	$\frac{0.05}{0.28}$	$\frac{0.13}{0.28}$

Перевірка:

$$p(y_1|x_2) + p(y_2|x_2) + p(y_3|x_2) = \frac{0.10}{0.28} + \frac{0.05}{0.28} + \frac{0.13}{0.28} = 1.$$

г)Умовні числові характеристики обчислюємо за формулами (2.66), (2.67), (2.68):

$$E(\xi | \eta = 10) = 2 \cdot \frac{0.25}{0.35} + 5 \cdot \frac{0.10}{0.35} = \frac{0.5 + 0.5}{0.35} = \frac{1}{0.35} \approx 2.86;$$

$$E(\eta | \xi = 5) = 10 \cdot \frac{0.10}{0.28} + 12 \cdot \frac{0.05}{0.28} + 14 \cdot \frac{0.13}{0.28} = \frac{1 + 0.6 + 1.82}{0.28} \approx 12.21;$$

$$D(\xi | \eta = 10) = 2^2 \cdot \frac{0.25}{0.35} + 5^2 \cdot \frac{0.10}{0.35} - 2.86^2 = 1.82;$$

$$D(\eta | \xi = 5) = 10^2 \cdot \frac{0.10}{0.28} + 12^2 \cdot \frac{0.05}{0.28} + 14^2 \cdot \frac{0.13}{0.28} - 12.21^2 \approx 3.34;$$

$$\sigma(\xi | \eta = 10) = \sqrt{D(\xi | \eta = 10)} \approx 1.35;$$

$$\sigma(\eta | \xi = 5) = \sqrt{D(\eta | \xi = 5)} \approx 1.83.$$

Приклад 4. Функцію розподілу неперервної двовимірної випадкової величини (ξ,η) описують функцією

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ a fo } y < 0; \\ \sin x, & 0 \le x \le \frac{\pi}{2}, y > \frac{\pi}{2}; \\ \sin x \sin y, & 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}; \\ \sin y, & x > \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}; \\ 1, & x > \frac{\pi}{2}, y > \frac{\pi}{2}. \end{cases}$$

Виконати такі дії:

- а) визначити щільність розподілу величини (ξ, η) ;
- б) знайти функції і щільності розподілу складових ξ і η ;

в) обчислити
$$P(0 \le \xi \le \frac{\pi}{3} \cap 0 \le \eta \le \frac{\pi}{4})$$
.

Розв'язання. а) Щільність розподілу f(x,y) двовимірної випадкової величини (ξ,η) є другою мішаною похідною від функції розподілу F(x,y), тобто

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}$$

(див формулу 2.54).

Якщо x < 0 або y < 0, то f(x, y) = 0, бо F(x, y) = 0;

якщо
$$0 \le x \le \frac{\pi}{2}$$
 і $0 \le y \le \frac{\pi}{2}$, то $f(x,y) = (\sin x \sin y)_{xy}^{''} = (\cos x \sin y)_{y}^{'} = \cos x \cos y$; якщо $0 \le x \le \frac{\pi}{2}$ і $y > \frac{\pi}{2}$, то $f(x,y) = (\sin x)_{xy}^{''} = (\cos x)_{y}^{'} = 0$;

якщо
$$x > \frac{\pi}{2}$$
 і $0 \le y \le \frac{\pi}{2}$, то $f(x, y) = (\sin y)_{xy}^{''} = 0_y^{'} = 0$.

Звідси випливає, що щільність розподілу описують функцією

$$f(x,y) = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right] a \text{ fo } y \notin \left[0, \frac{\pi}{2}\right]; \\ \cos x \cos y, & x \in \left[0, \frac{\pi}{2}\right] i \text{ } y \in \left[0, \frac{\pi}{2}\right]. \end{cases}$$

Зазначимо, що частинні похідні функції двох змінних обчислюють за таким правилом: при диференціюванні по одній змінній другу змінну вважаємо сталою. Крім того,

$$F''_{xy} = (F'_{x}(x,y))'_{y}$$
.

б) Якщо $F_1(x)$ – функція розподілу складової ξ і $F_2(y)$ – функція розподілу складової η , то за формулою (2.52) отримаємо:

$$F_{1}(x) = \lim_{y \to +\infty} F(x, y) = \begin{cases} 0, & x < 0; \\ \sin x, & 0 \le x \le \frac{\pi}{2}; \\ 1, & x > \frac{\pi}{2}. \end{cases}$$

$$F_2(y) = \lim_{x \to +\infty} F(x, y) = \begin{cases} 0, & y < 0; \\ \sin y, & 0 \le y \le \frac{\pi}{2}; \\ 1, & y > \frac{\pi}{2}. \end{cases}$$

Щільності розподілу $f_1(x)$ і $f_2(y)$ складових ξ і η обчислюємо за формулами (2.58):

$$f_{1}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \\ \frac{\pi}{2} \cos x \cos y dy, & x \in \left[0, \frac{\pi}{2}\right] \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \\ \cos x \cdot \sin y \Big|_{0}^{\frac{\pi}{2}}, & x \in \left[0, \frac{\pi}{2}\right] \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \\ \cos x, & x \in \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & y \notin \left[0, \frac{\pi}{2}\right]; \\ \frac{\pi}{2} \cos x \cos y dx, & y \in \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left[0, \frac{\pi}{2}\right]; \end{cases} = \begin{cases} 0, & x \notin \left$$

$$= \begin{cases} 0, & y \notin \left[0, \frac{\pi}{2}\right]; \\ \cos y \cdot \sin x \Big|_{0}^{\frac{\pi}{2}}, & y \in \left[0, \frac{\pi}{2}\right] \end{cases} = \begin{cases} 0, & y \notin \left[0, \frac{\pi}{2}\right]; \\ \cos y, & y \in \left[0, \frac{\pi}{2}\right] \end{cases}$$

в) Шукану ймовірність обчислюємо за формулою (2.53) або за формулою (2.57):

$$P(0 \le \xi \le \frac{\pi}{3} \cap 0 \le \eta \le \frac{\pi}{4}) = \left[F(\frac{\pi}{3}, \frac{\pi}{4}) - F(0, \frac{\pi}{4}) \right] - \left[F(\frac{\pi}{3}, 0) - F(0, 0) \right] = 0$$

$$(\sin\frac{\pi}{3}\cdot\sin\frac{\pi}{4}-\sin0\cdot\sin\frac{\pi}{4})-(\sin\frac{\pi}{3}\cdot\sin0-\sin0\cdot\sin0)=$$

$$= (\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - 0) - (0 - 0) = \frac{\sqrt{6}}{4} \approx 0.61,$$

або за формулою (2.57):

$$P(0 \le \xi \le \frac{\pi}{3} \cap 0 \le \eta \le \frac{\pi}{4}) = \int_{0}^{\frac{\pi}{3}} \int_{0}^{\frac{\pi}{4}} \cos x \cos y dx dy = \int_{0}^{\frac{\pi}{3}} \cos x dx \cdot \int_{0}^{\frac{\pi}{4}} \cos y dy =$$

$$= \sin x \Big|_{0}^{\frac{\pi}{3}} \cdot \sin y \Big|_{0}^{\frac{\pi}{4}} = (\sin \frac{\pi}{3} - \sin 0) \cdot (\sin \frac{\pi}{4} - \sin 0) = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} \approx 0,61.$$

Приклад 5. Щільність розподілу двовимірної випадкової величини (ξ, η) задана функцією

$$f(x,y) = \begin{cases} 0, & (x,y) \notin Q; \\ m, & (x,y) \in Q, \end{cases}$$

де
$$Q = \{(x, y) : 0 \le x \le 2, 1 \le y \le 4\}$$
.

Виконати такі дії:

- а) визначити параметр m;
- б) знайти функцію розподілу;
- в) знайти функції розподілів складових ξ і η ;
- г) обчислити числові характеристики $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$, $K_{\xi\eta}$, $r_{\xi\eta}$;
- д) з'ясувати, чи величини ξ і η ϵ залежні чи незалежні

Розв'язання. а) Параметр *m* обчислюємо з умови, що
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dy dx = 1 \Rightarrow \int_{0}^{2} \int_{1}^{4} m dx dy = 1 \Rightarrow m \int_{0}^{2} dx \int_{0}^{4} dy = 1 \Rightarrow m \cdot x \Big|_{0}^{2} \cdot y \Big|_{1}^{4} = 1 \Rightarrow m \cdot 2 \cdot 3 = 1 \Rightarrow m = \frac{1}{6} .$$

Щільність розподілу двовимірної випадкової величини (ξ, η) описують функцією:

$$f(x,y) = \begin{cases} 0, & (x,y) \notin Q; \\ \frac{1}{6}, & (x,y) \in Q, \end{cases}$$

б) Функція розподілу F(x,y) виражається через щільністьрозподілу формулою

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(\xi,\eta) d\xi d\eta.$$

Для обчислення F(x, y) накреслимо прямокутник Q і поділимо частину площини Oxy, розміщену за межами цього прямокутника, на сектори Q_1, Q_2, Q_3, Q_4 (рис. 2.15)

$$Q_1$$
 Q_2
 Q_4

Розглянемо такі випадки:

1) якщо
$$(x,y) \in Q_1 = \{(x,y) : x \le 0 \quad a o \quad y \le 1\}$$
, то
$$F(x,y) = \int_0^x \int_0^y f(\xi,\eta) d\xi d\eta = \int_0^x \int_0^y 0 d\xi d\eta = 0;$$

2) якщо
$$(x,y) \in Q = \{(x,y) : 0 < x \le 2 \quad i \quad 1 < y \le 4\}$$
, то
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(\xi,\eta) d\xi d\eta = \int_{-\infty}^{0} \int_{-\infty}^{1} 0 d\xi d\eta + \int_{0}^{x} \int_{1}^{y} \frac{1}{6} d\xi d\eta = 0 + \frac{1}{6} \int_{0}^{x} d\xi \int_{1}^{y} d\eta = 0 + \frac{1}{6} \int_{0}^{x} d\xi \int_{0}^{y} d\eta = 0 + \frac{1}{6} \int_{0}^{y} d\xi \int_{$$

3) якщо
$$(x,y) \in Q_2 = \{(x,y) : 0 < x \le 2 \quad i \quad 4 < y < +\infty \}$$
, то
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(\xi,\eta) d\xi d\eta = \int_{-\infty}^{0} \int_{-\infty}^{1} 0 d\xi d\eta + \int_{0}^{x} \int_{1}^{4} \frac{1}{6} d\xi d\eta + \int_{0}^{x} \int_{4}^{y} 0 d\xi d\eta = \frac{1}{6} \int_{0}^{x} d\xi \int_{1}^{4} d\eta = \frac{1}{6} \xi \Big|_{0}^{x} \cdot \eta \Big|_{1}^{4} = \frac{1}{6} \cdot x \cdot (4-1) = \frac{1}{2} x;$$

4) якщо
$$(x,y) \in Q_3 = \{(x,y) : 2 < x < +\infty \quad i \quad 1 < y \le 4\}$$
, то
$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(\xi,\eta) d\xi d\eta = \int_{-\infty}^{0} \int_{-\infty}^{1} 0 d\xi d\eta + \int_{0}^{2} \int_{1}^{2} \frac{1}{6} d\xi d\eta + \int_{2}^{4} \int_{1}^{4} 0 d\xi d\eta = \frac{1}{6} \int_{0}^{2} d\xi \int_{1}^{y} d\eta = \frac{1}{6} \xi \Big|_{0}^{2} \cdot \eta \Big|_{1}^{y} = \frac{1}{6} \cdot 2 \cdot (y-1) = \frac{1}{3} (y-1);$$

$$5) \text{ якщо}(x,y) \in Q_4 = \{(x,y): x > 2 \quad i \quad y > 4\}, \text{ то}$$

$$F(x,y) = \int_{-\infty}^x \int_{-\infty}^y f(\xi,\eta) d\xi d\eta = \int_{-\infty}^0 \int_{-\infty}^1 0 d\xi d\eta + \int_0^2 \int_1^4 \frac{1}{6} d\xi d\eta + \int_0^2 \int_4^y 0 d\xi d\eta + \int_0^2 \int_1^y 0 d\xi d\eta + \int_0^2 \int_0^y 0 d\xi d\eta + \int_0^2 \int_0^$$

Отже,

$$F(x,y) = \begin{cases} 0, & x \le 0 \text{ abo } y \le 1; \\ \frac{1}{2}x, & 0 < x \le 2, y > 4; \\ \frac{1}{6}x(y-1), & 0 < x \le 2, 1 < y \le 4; \\ \frac{1}{3}(y-1), & x > 2, 1 < y \le 4; \\ 1, & x > 2, y > 4. \end{cases}$$

в) За формулою (2.52) і з вигляду функції розподілу F(x,y) одержуємо, що функції розподілу $F_1(x)$ і $F_2(y)$ складових ξ і η мають вигляд:

$$F_{1}(x) = \lim_{y \to +\infty} F(x, y) = \begin{cases} 0, & x \le 0; \\ \frac{1}{2}x, & 0 < x \le 2; \\ 1, & x > 2. \end{cases}$$

$$F_{2}(y) = \lim_{x \to +\infty} F(x, y) = \begin{cases} 0, & y \le 1; \\ \frac{1}{3}(y-1), & 1 < y \le 4; \\ 1, & y > 4. \end{cases}$$

За формулами (2.58) обчислюємо щільності розподілу $f_1(x)$ і $f_2(y)$ складових ξ і η , відповідно:

$$f_{1}(x) = \int_{-\infty}^{+\infty} f(x,y)dy = \begin{cases} 0, & x \notin [0,2]; \\ \int_{1}^{4} \frac{1}{6} dy, & x \in [0,2] \end{cases} = \begin{cases} 0, & x \notin [0,2]; \\ \frac{1}{2}, & x \in [0,2]; \end{cases}$$
$$f_{2}(y) = \int_{-\infty}^{+\infty} f(x,y)dx = \begin{cases} 0, & y \notin [1,4]; \\ \int_{0}^{2} \frac{1}{6} dx, & y \in [1,4] \end{cases} = \begin{cases} 0, & y \notin [1,4]; \\ \frac{1}{3}, & y \in [1,4]. \end{cases}$$

г) Обчислюємо числові характеристики складових ξ і η :

$$E(\xi) = \int_{-\infty}^{+\infty} x \cdot f_1(x) dx = \int_{0}^{2} x \cdot \frac{1}{2} dx = \frac{1}{2} \cdot \frac{x^2}{2} \Big|_{0}^{2} = 1;$$

$$E(\eta) = \int_{-\infty}^{+\infty} y \cdot f_2(y) dy = \int_{1}^{4} y \cdot \frac{1}{3} dy = \frac{1}{3} \cdot \frac{y^2}{2} \Big|_{1}^{4} = \frac{1}{6} (4^2 - 1^2) = \frac{15}{6} = 2,5;$$

$$D(\xi) = \int_{-\infty}^{+\infty} x^2 \cdot f_1(x) dx - E^2(\xi) = \int_{0}^{2} x^2 \cdot \frac{1}{2} dx - 1 = \frac{1}{2} \cdot \frac{x^3}{3} \Big|_{0}^{2} - 1 = \frac{8}{6} - 1 = \frac{1}{3};$$

$$D(\eta) = \int_{-\infty}^{+\infty} y^2 \cdot f_2(y) dy - E^2(\eta) = \int_{1}^{4} y^2 \cdot \frac{1}{3} dy - (\frac{5}{2})^2 = \frac{1}{3} \cdot \frac{y^3}{3} \Big|_{1}^{4} - \frac{25}{4} = \frac{(4^3 - 1^3)}{9} - \frac{25}{4} = \frac{3}{4} = 0,75;$$

$$\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{\frac{1}{3}} \approx 0,58;$$

$$\sigma(\eta) = \sqrt{D(\eta)} = \sqrt{\frac{3}{4}} \approx 0,87.$$

Коваріацію $K_{\xi\eta}$ і коефіцієнт кореляції $r_{\xi\eta}$ обчислюємо за формулами (2.63) і (2.64):

$$\begin{split} K_{\xi\eta} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \, f(x,y) \, dx dy - E(\xi) \, E(\eta) = \frac{1}{6} \int_{0}^{2} \int_{1}^{4} xy \, dx dy - 1 \cdot \frac{5}{2} = \frac{1}{6} \int_{0}^{2} x dx \int_{1}^{4} y \, dy - \frac{5}{2} = \frac{1}{6} \left[\frac{x^{2}}{2} \right]_{0}^{2} \cdot \frac{y^{2}}{2} \Big|_{1}^{4} - \frac{5}{2} = \frac{1}{6} \cdot \frac{4}{2} \cdot \frac{16 - 1}{2} - \frac{5}{2} = \frac{15}{6} - \frac{5}{2} = 0. \\ r_{\xi\eta} &= \frac{K_{\xi\eta}}{\sigma(\xi) \cdot \sigma(\eta)} = 0. \end{split}$$

Оскільки $K_{\xi\eta}=0$ ($r_{\xi\eta}=0$), то випадкові величини ξ і η є не корельованими, але можуть бути як залежними, так і незалежними.

д) Оскільки двовимірна функція розподілу ϵ добутком функцій розподілу компонент, тобто виконується співвідношення (2.60), то випадкові величини ξ і η справді ϵ незалежними.

Приклад 6. Двовимірна випадкова величина (ξ, η) задана щільністю розподілу

$$f(x,y) = \begin{cases} 0, & (x,y) \notin Q; \\ x \cdot y, & (x,y) \in Q, \end{cases}$$
 де $Q = \{(x,y) : 0 \le x \le 1, 0 \le y \le 2\}$.

Виконати такі дії:

- а) знайти умовні щільності розподілу складових ξ і η ;
- б) обчислитихарактеристики $E(\xi | \eta = y)$, $E(\eta | \xi = x)$, $D(\xi | \eta = y)$, $D(\eta | \xi = x)$;
- в) записати функції регресії η відносно ξ та ξ відносно η .

Розв'язання.а) Для обчислення умовних щільностей розподілу обчислимо спочатку щільності розподілу $f_1(x)$ і $f_2(y)$ складових ξ і η , відповідно.

За формулою (2.58) знаходимо:

$$f_1(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{2} xy dy = x \int_{0}^{2} y dy = x \frac{y^2}{2} \Big|_{0}^{2} = x \cdot \frac{4}{2} = 2x;$$

$$f_2(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} xy dx = y \int_{0}^{1} x dx = y \frac{x^2}{2} \Big|_{0}^{1} = \frac{y}{2}.$$

Наголосимо, що $f(x,y) = f_1(x) \cdot f_2(y)$ і складові ξ і η незалежні.

За формулами (2.69) і (2.70) знаходимо умовні щільності розподілу складових:

$$\varphi(x|y) = \frac{f(x,y)}{f_2(y)} = \begin{cases} 0, & x \notin [0,1]; \\ \frac{xy}{2} = 2x, & x \in [0,1]; \\ \frac{y}{2} = 2x, & y \notin [0,2]; \\ \frac{y}{2} = \frac{y}{2}, & y \in [0,2]. \end{cases}$$

б) Числові характеристики обчислюємо за формулами (2.72), (2.73):

$$E(\xi | \eta = y) = \int_{-\infty}^{+\infty} x \cdot \varphi(x | y) dx = \int_{0}^{1} x \cdot 2x dx = 2 \int_{0}^{1} x^{2} dx = 2 \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{2}{3};$$

$$E(\eta | \xi = x) = \int_{-\infty}^{+\infty} y \cdot \psi(y | x) dy = \int_{0}^{2} y \cdot \frac{y}{2} dy = \frac{1}{2} \int_{0}^{2} y^{2} dy = \frac{1}{2} \frac{y^{3}}{3} \Big|_{0}^{2} = \frac{1}{2} \cdot \frac{8}{3} = \frac{4}{3};$$

$$D(\xi | \eta = y) = \int_{-\infty}^{+\infty} x^2 \cdot \varphi(x|y) dx - E^2(\xi | \eta = y) = \int_{0}^{1} x^2 \cdot 2x dx - \left(\frac{2}{3}\right)^2 = 2\int_{0}^{1} x^3 dx - \frac{4}{9} =$$

$$= 2\frac{x^4}{4}\Big|_{0}^{1} - \frac{4}{9} = \frac{1}{2} - \frac{4}{9} = \frac{1}{18};$$

$$D(\eta | \xi = x) = \int_{-\infty}^{+\infty} y^2 \cdot \psi(y|x) dy - E^2(\eta | \xi = x) = \int_{0}^{2} y^2 \cdot \frac{y}{2} dy - \left(\frac{4}{3}\right)^2 = \frac{1}{2} \int_{0}^{2} y^3 dy - \frac{16}{9} =$$

$$= \frac{1}{2} \frac{y^4}{4}\Big|_{0}^{2} - \frac{16}{9} = 2 - \frac{16}{9} = \frac{2}{9}.$$

в) У нашому випадку $E(\eta|\xi=x)$ не залежить від x і $E(\xi|\eta=y)$ не залежить від y, тому функції регресії η відносно ξ (2.75) і ξ відносно η (2.76) є сталими величинами:

$$E(\eta | \xi = x) = \frac{4}{3} = f(x), E(\xi | \eta = y) = \frac{2}{3} = g(y).$$

Завдання для самостійної роботи

1. Дано дві дискретні випадкові величини ξ та η

$\xi = x_i$	-1	0
$p(x_i)$	0,1	0,9

$\eta = y_i$	0	2	4
$p(y_i)$	0,2	0,4	0,4

Побудувати закон розподілу двовимірної випадкової величини (ξ,η) , якщо випадкові величини ξ та η незалежні.

- 2.У першій партії 75%, а в другій 50% виробів високої якості. З першої партії навмання виймають три вироби, а з другої один. ξ кількість високоякісних виробів, узятих із першої партії, η з другої. Написати закон розподілу двовимірної випадкової величини (ξ, η) . Обчислити числові характеристики складових ξ та η .
- 3.Задано дискретну двовимірну випадкову величину (ξ, η) :

$\xi = x_i$ $\eta = y_j$	2	5	8
0,4	0,15	0,30	0,35
0,8	0,05	0,12	0,03

Знайти:

- а) безумовні закони розподілу випадкових величин ξ і η ;
- б) умовний закон розподілу випадкової величини ξ за умови, що випадкова величина η набула значення v_l =0.4:
- в) умовний закон розподілу випадкової величини η за умови, що випадкова величина ξ набула значення $x_2=5$;
 - Γ) $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$;
 - $_{\rm I}$ Д) $P(5 \le \xi < 8 \cap 0.4 \le \eta \le 0.6)$;
 - е) з'ясувати чи величини ξ та η залежні чи незалежні.
- 4. Закон розподілу системи двох дискретних випадкових величин (ξ, η) задано таблицею:

$\xi = x_i$ $\eta = y_j$	5,2	10,2	15,2
2,4	0,1 <i>a</i>	2 <i>a</i>	0,9a
4,4	2 <i>a</i>	0,2 <i>a</i>	1,8 <i>a</i>
6,4	1,9 <i>a</i>	0,8 <i>a</i>	0,3 <i>a</i>

Виконати такі дії:

a) знайти *a*;

- б) обчислити $E(\xi),\ E(\eta),D(\xi),\ D(\eta),\ \sigma(\xi),\ \sigma(\eta),\ K_{\xi\eta},\ r_{\xi\eta};$
- в) обчислити умовні числові характеристики $E(\xi | \eta = 4,4)$, $E(\eta | \xi = 5,2)$, $\sigma(\xi | \eta = 4,4)$, $\sigma(\eta | \xi = 5,2)$;

$$\Gamma$$
) $P(5,2 \le \xi < 15,2 \cap 2,4 < \eta \le 6,4)$.

5. Задано функцію розподілу двовимірної випадкової величини (ξ, η) :

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ abo } y < 0; \\ 1 - 3^{-x} - 3^{-y} + 3^{-x-y}, & x \ge 0 \text{ i } y \ge 0. \end{cases}$$

Знайти:

- а) двовимірну щільністьрозподілу ймовірностей системи (ξ, η) ;
- б) функції розподілів та щільності розподілів складових ξ та η ;
- в) числові характеристики її складових ξ та η ;

$$\Gamma$$
) $P(1 < \xi < 2 \cap 3 < \eta < 5)$.

6.Задано
$$f(x,y) = \begin{cases} 0, & (x,y) \notin Q; \\ a, & (x,y) \in Q, \end{cases}$$

де
$$Q = \{(x; y) : -6 \le x \le 2; -3 \le y \le 5\}$$
. Знайти:

- а) параметр a;
- б) функцію розподілу двовимірної випадкової величини (ξ, η) ;
- в) функції щільності розподілів складових;
- г) коефіцієнт кореляції r_{xv} ;
- д) $P(-4 < \xi < 1 \cap -2 < \eta < 4)$;
- е) з'ясувати залежні чи незалежні випадкові величини ξ та η .
- 7. Неперервні випадкові величини ξ та η незалежні, їхні густини розподілу ймовірностей, відповідно, дорівнюють:

$$f_1(x) = \begin{cases} 0, & |x| > 2; \\ \frac{1}{4}, & |x| \le 2; \end{cases} f_2(y) = \begin{cases} 0, & y \le 0; \\ e^{-y}, & y > 0. \end{cases}$$

Визначити види законів розподілу випадкових величин ξ та η . Записати щільність розподілу двовимірної випадкової величини (ξ,η) та обчислити числові характеристики її складових $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$, $r_{\xi\eta}$.

8. Двовимірну випадкову величину (ξ, η) задано щільністю розподілу ймовірностей:

$$f(x,y) = \begin{cases} a\cos \pi \ x \cdot \cos \pi \ y, & 0 \le x \le 0,5, \quad 0 \le y \le 0,5; \\ 0, & y \text{ peumi випадків }. \end{cases}$$

Знайти:

- а) сталу a;
- б) умовні щільності розподілів складових та їхні умовні математичні сподівання.

2.5. Анаморфоза розподілу

Нехай відомий розподіл випадкового вектора $\xi = (\xi_1, \xi_2, ..., \xi_n)$ і координати випадкового вектора $\eta = (\eta_1, \eta_2, ..., \eta_n)$ пов'язані з кооординатами вектора ξ за допомогою відомих співвідношень

$$\begin{cases}
\eta_1 = \eta_1(\xi_1, \dots \xi_n); \\
\dots \\
\eta_n = \eta_n(\xi_1, \dots \xi_n).
\end{cases}$$
(2.77)

Анаморфозою розподілу випадкового вектора ξ називають перетворення розподілу цього випадкового вектора в результаті перетворення його координат за співвідношеннями (2.77).

Приклад 1.Випадкова змінна ξ має функцію розподілу (кумуляту) $F_{\varepsilon}(x) = e^{-e^{-x}}, x \in (-\infty; +\infty)$. Знайти кумуляту і щільність випадкової змінної $\eta = e^{\xi}$.

Розв'язання.Згідно з означенням функції розподілу $G_{\eta}(y) = P(\eta \le y)$. Враховуючи залежність η від ξ , отримаємо $G_{\eta}(y) = P(e^{\xi} \le y) = P(\xi \le \ln y); \ y \in (0; +\infty)$, а це згідно з означенням є кумулятою випадкової змінної ξ : $P(\xi \le \ln y) = F_{\xi}(\ln y) = e^{-e^{-hy}} = e^{-\frac{1}{y}}$. Отже, функція розподілу випадкової змінної η має вигляд $G_{\eta}(y) = e^{-\frac{1}{y}}, \ y \in (0; +\infty)$. Для того, щоб відшукати щільність цієї випадкової змінної, скористаємось співвідношенням (2.19):

$$g(y) = G_{\eta}'(y) = \frac{1}{y^2} e^{-\frac{1}{y}}; y \in (0; +\infty).$$

Приклад 2.Випадкова змінна ξ має щільність $f(x) = \frac{1}{2}e^{-\frac{x}{2}}, 0 \le x \le +\infty$. Знайти щільність випадкової змінної $\eta = \ln \xi$.

Розв'язання.Знайдемо спочатку функцію розподілу випадкової змінної ξ , скориставшись (2.21):

$$F_{\xi}(x) = \int_{0}^{x} f(t)dt = \int_{0}^{x} \frac{1}{2}e^{-\frac{t}{2}}dt = -\int_{0}^{-x/2} e^{z}dz = 1 - e^{-\frac{x}{2}}.$$

Кумулята випадкової змінної η

$$G_{\eta}(y) = P(\eta \le y) = P(\ln \xi \le y) = P(\xi \le e^{y}) = 1 - e^{-\frac{e^{y}}{2}}, -\infty \le y \le +\infty,$$

а щільність відповідно

$$g(y) = G_{\eta}'(y) = (1 - e^{\frac{-e^{y}}{2}})_{y}' = -e^{\frac{-e^{y}}{2}} \cdot (-\frac{1}{2}e^{y}) = \frac{1}{2}e^{y - \frac{e^{y}}{2}}; y \in (-\infty; +\infty)$$

Завдання для самостійної роботи

- 1. Випадкова змінна ξ має функцію розподілу $F_{\xi}(x) = 1 e^{-2x}$, $x \in (0; +\infty)$. Знайти функцію розподілу і щільність випадкової змінної $\eta = \frac{1}{\xi}$.
- 2. Випадкова змінна ξ має функцію розподілу $F_{\xi}(x) = 1 e^{-x}, x \in (0; +\infty)$. Знайти кумуляту і щільність випадкової змінної $\eta = e^{-\xi}$.
- 3. Випадкова змінна ξ має щільність $f(x) = e^{-x}$, $0 \le x \le +\infty$. Знайти щільність випадкової змінної $\eta = \sqrt{\xi}$.

- 4. Випадкова змінна ξ має щільність $f(x) = 3e^{-3x}$, $0 \le x \le +\infty$. Знайти щільність і функцію розподілу випадкової змінної $\eta = 3\xi$.
- 5. Випадкова змінна ξ має щільність $f(x), 0 \le x \le +\infty$. Знайти щільність випадкової змінної $\eta = \xi^3$.