Assignment

- Your task: write a program that can guess from a review what kind of wine is being talked about (*Cabernet Sauvignon, Merlot, Chardonnay, Sauvignon Blanc*)
- See 09-wine-project on github
- Subtask 1:
 - Read texts
 - Tokenize texts using spaCy
- Subtask 2:
 - Build baseline classifier using DummyClassifier
 - Evaluate using 10-fold cross-validation

Assignment

• Subtask 3:

- Build a logistic regression classifier using LogisticRegression
- Evaluate using 10-fold cross-validation over the same training/validation splits as you used for the baseline

• Subtask 4:

- Build the best classifier you can using any method
- Use GridSearchCV to find optimal settings for hyperparameters
- Again, evaluate using 10-fold cross-validation over the same training/validation splits as you used for the baseline

Assignment

- Subtask 4:
 - Error analysis
 - What kinds of reviews is your classifier bad at classifying, and why?
 - Discussion
 - What have you learned about the task?
 - Is guessing the wine variety from a review hard or easy? What are the hard parts?
 - What would you need to do to score better than 90% accuracy?
- Turn in notebook via github by next Friday 3/23

- A distance metric d(x, y) must satisfy:
 - non-negative: $d(x, y) \ge 0$
 - d(x, y) = 0 iff x and y are the same
 - symmetric: d(x, y) = d(y, x)
 - triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$
- Jaccard distance

$$J(X,Y) = 1 - \frac{|X \cap Y|}{|X \cup Y|}$$

- Documents as term vectors
- Inner product or 'dot product' of two vectors is defined as

$$X \cdot Y = \sum_{i=1}^{m} x_i y_i$$

• Jaccard distance (for binary term vectors):

$$d(X,Y) = 1 - \frac{X \cdot Y}{X^2 + Y^2 - X \cdot Y}$$

• Documents as term vectors

• Euclidean distance

$$d(X,Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Cosine distance

$$d(X,Y) = 1 - \frac{X \cdot Y}{\|X\| \|Y\|}$$

$$= 1 - \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

- Euclidean distance
 - ranges from 0 to ∞
 - depends on absolute term frequencies and the total number of words in document
- Cosine distance
 - ranges from 0 to 1
 - only depends on relative word frequencies
- If document vectors are pre-normalized to length 1, then cosine distance is just the dot product $X \cdot Y$
- Distance and similarity are related, but not the same!

Clustering

- Classification is **supervised** = useful for when you want to automate a known task
- Clustering is **unsupervised** = useful for when you don't know what you want to do
 - Forensic document analysis
 - Intelligence
 - Social media

Clustering

- Silhouette Coefficient
 - a = the mean distance between a sample and all other points in the same class.
 - b = The mean distance between a sample and all other points in the next nearest cluster.
 - The Silhouette Coefficient *s* for a single sample is then given as:

$$s = \frac{b - a}{max(a, b)}$$

• The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample

K Means

- K Means clustering organizes items into *k* clusters represented by centroids
- Each item is in the cluster with the closest centroid
- Start with randomly distributed centroids
- http://stanford.edu/class/ee103/visualizations/kmeans/kme

K Means

- Lloyd's algorithm
 - 1. Choose *k* centroids at random
 - 2. Repeat until converged:
 - i. Assign documents to cluster whose centroid is closest
 - ii. Recompute cluster centroids
- Results depend (a lot) on initial guess
 - Not guaranteed to converge
 - Won't find an optimal solution
 - Run multiple times and average the solutions?

Agglomerative clustering

- Weaknesses of K-means:
 - Depends on knowing the number of clusters there are in the data
 - Each item is assigned to one (and only one) cluster
 - No relations among clusters
- Agglomerative clustering starts with an initial cluster assignment (maybe each item is a cluster of one) and progressively merges clusters until

Agglomerative clustering

- **Distance** metrics (cosine, Euclidean, etc) relate pairs of items
- **Linkage** functions determine which clusters to merge at each step
 - **Complete** = merge clusters with the smallest maximum distance
 - **Average** = merge clusters with the smallest average distance
 - **Centroid** = merge clusters with the closest centroids
 - Ward's = merge clusters such that the variance within all clusters increases the least (encourages balanced clusters)

Agglomerative clustering

 A dendrogram visualizes the hierarchical structure produced by agglomerative clustering

- We clustered texts on the basis of a document-term matrix
- We can cluster names using a **term-term matrix**
- Start with a binary document vector **d**:

	t_1	t_2	t_3	t_4
d_1	1	0	0	1

- We clustered texts on the basis of a document-term matrix
- We can cluster names using a **term-term matrix**
- Take the outer product $\mathbf{d} \otimes \mathbf{d}$

		ι1	ι_2	L 3	L 4
		1	0	0	1
t_1	1	1	0	0	1
t_2	0	0	0	0	0
t_3	0	0	0	0	0
t_4	1	1	0	0	1

- We clustered texts on the basis of a document-term matrix
- We can cluster names using a **term-term matrix**
- Sum for all the documents in the collection
- Or, use matrix multiplication: $D^{T}D$