Homework 5. Predicate Logic: Syntax and Semantics

Ayyappa Reddy Maramreddy - R11888944

Submit your solution in PDF file (and Latex source file if you use Latex) to the folder of "assignment" of Piazza by 11:59pm Sun Nov 19. (If you need more time, no later than 3pm Monday Nov 20.).

1. Consider the following sentence.

Every number greater than or equal to 4 can be written as the sum of two prime numbers.

(a) Write *a language* (as defined in Def 2.1) such that some formula of the language can be used to represent the sentence above.

Answer:

Variables: x, y, z

Constants: 4

Connectives: $\lor, \land, \rightarrow, \iff, \lnot$

Quantifiers: \forall , \exists

Predicate Symbols: P, R, S

Function Symbols: *f*

Punctuation: , .)(

(b) Write a formula of your language that should reflect the meaning of the sentence above.

Answer:

$$((\forall z)(P(z,4)))$$
 where z is a number.
$$((\forall x)(\forall y)(R(x) \land R(y)) \text{ where } R(x) and R(y) \text{ are primes.}$$

$$((\forall x)(\forall y)(R(x) \land R(y)) \rightarrow (S(f(x,y),z) \land P(z,4)))$$

(c) In terms of your language, write two example terms, two example atomic formulas, and two example formulas.

Answer:

Terms: x, y, z

Atomic Formulas: S(f(x,y),z), R(x), R(y), P(z,4)

Formulas:
$$((\forall x)(\forall y)(R(x) \land R(y))), (S(f(x,y),z) \land P(z,4)), ((\forall x)(\forall y)(R(x) \land R(y)) \rightarrow (S(f(x,y),z) \land P(z,4)))$$

- 2. Write a formula to represent the following information. Your formula should be as close as possible to the intended meaning of these sentences.
 - (a) There is a mother to all children.

Answer: $((\exists m)(\forall c)Mother(m,c)$

(b) ALL ITEMS NOT AVAILABLE AT ALL STORES.

Answer: $((\forall i)(\forall s)notAvailable(i, s))$

Note, the sentence above is a disclaimer in the weekly flyer of specials of a grocery store chain.

- 3. Given the language defined in Def 2.1, which of the following are formulas by Def 2.5 (i.e., follow the definition strictly)?
 - (a) f(x,c)
 - (b) R(c, f(d, z))
 - (c) $\forall x(P(x))$
 - (d) $((\exists x)(((\forall y)P(z)) \rightarrow R(x,y)))$

Answer:

(b) R(c, f(d, z)) and (d) $((\exists x)(((\forall y)P(z)) \rightarrow R(x, y)))$ are the formulas defined by Def 2.5.

4. Given

$$((\exists x)(((\forall y)P(z)) \to R(x,y))),$$

(a) Draw its formation tree.

Answer:

$$((\exists x)(((\forall y)P(z)) \to R(x,y)))$$

$$|$$

$$(((\forall y)P(z)) \to R(x,y))$$

$$((\forall y)P(z)) \quad R(x,y)$$

$$|$$

$$P(z) \quad x \quad y$$

$$|$$

$$z$$

(b) List two of its subformulas.

Answer:

- i. $((\forall y)P(z))$
- ii. P(z)
- iii. R(x,y)
- iv. $(((\forall y)P(z)) \rightarrow R(x,y))$
- v. $((\exists x)(((\forall y)P(z)) \rightarrow R(x,y)))$

- 5. Which of the following terms are substitutable for *x* in the corresponding formulas?
 - (a) f(z, y) in $((\exists y)(P(y) \land R(x, z)))$.

Answer: Not Substitutable.

Because after substitution the variables of term are getting bounded.

(b) g(f(z,y),a) in $((\exists x)(P(x) \land R(x,y)))$.

Answer: Not substitutable.

Because X is not a free variable and it is bounded by $\exists x$.

6. Let $A = \{1, 2\}$. a) List all functions from A to A in the form of sets of pair. For example, one function is $\{(1, 1), (2, 2)\}$. If we let the function be named g. Then in the example function, g(1) is 1 and g(2) is 2. b) List all unary relations on A. Your relations must be represented as sets.

Answer:

- (a) List all functions from A to A in the form of sets of pair
 - i. $g = \{(1, 1), (2, 2)\}$. where g(1) = 1 and g(2) = 2
 - ii. $g = \{(1, 2), (2, 1)\}$. where g(1) = 2 and g(2) = 1
- (b) List all unary relations on A. Your Relations must be represented as sets.
 - i. {}
 - ii. {1}
 - iii. $\{2\}$
 - iv. $\{1, 2\}$
- 7. Prove that $A \models \neg \exists x \varphi(x)$ if and only if $A \models \forall x \neg \varphi(x)$. You have to follow the proof format we used earlier. Follow the working backward methodology. You have to be able to apply the definitions.

Answer:

- (a) Assume that the sentence φ of language L satisfies structure \mathcal{A} for $L^{\mathcal{A}}$ to define $\mathcal{A} \models \varphi$ for sentences φ of L. (From Definition 4.3)
- (b) $\mathcal{A} \models \neg \exists x \varphi(x)$ for some ground term t, $A \neg \varphi$ i.e., $A \iff \varphi(t)$. (From Definition 4.3 (ii) and (vii))
- (c) $\mathcal{A} \models \forall x \neg \varphi(x)$ for some ground term t, $A \models \neg \varphi(t)$ (i.e., $\mathcal{A} \models \varphi(t)$). (From Definition 4.3 (ii) and (viii))
- (d) we can conclude that; $\mathcal{A} \models \neg \exists x \varphi(x) \iff \mathcal{A} \models \forall x \neg \varphi(x)$. (By (2) and (3))