

COMPLEX ARITHMETIC

Why

We want to add and multiply complex numbers.¹

Definition

Let $z_1, z_2 \in \mathbf{C}$ with $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$. The complex product of z_1 and z_2 is the complex number $(x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$.

Notation

Properties

We have the following desirable properties.²

Proposition 1 (Commutativity). For all $z_1, z_2 \in \mathbb{C}$, we have $z_1 + z_2 = z_2 + z_1$ and $z_1 z_2 = z_2 z_2$.

Proposition 2 (Commutativity). For all $z_1, z_2, z_3 \in \mathbb{C}$, we have $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ and $z_1(z_2z_3) = (z_1z_2)z_3$.

Proposition 3 (Distributivity). For all $z_1, z_2, z_3 \in \mathbb{C}$, we have $z_1(z_2 + z_3)$ and $z_1z_2 + z_1z_3$

Relation to R²

Addition in C corresponds to the usual addition of the corresponding vectors in the plane R^2 . On the other hand, multiplication

 $^{^{1}\}mathrm{Future}$ editions will expand in the genetic account for introducing complex numbers.

²Future editions will include accounts.

However multiplication in ${\bf C}$

