ECE2 Mathématiques

EML 2016

EXERCICE I

On note I et A les matrices de $\mathcal{M}_3(\mathbb{R})$ définies par :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

et \mathcal{E} l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ défini par :

$$\mathcal{E} = \left\{ \begin{pmatrix} a+c & b & c \\ b & a+2c & b \\ c & b & a+c \end{pmatrix} ; (a,b,c) \in \mathbb{R}^3 \right\}$$

PARTIE I : Étude de la matrice A

- 1. Calculer A^2 .
- 2. Montrer que la famille (I, A, A^2) est libre.
- 3. a) Justifier, sans calcul, que A est diagonalisable.
 - b) Déterminer une matrice P de $\mathcal{M}_3(\mathbb{R})$ inversible dont tous les coefficients de la première ligne sont égaux à 1 et une matrice D de $\mathcal{M}_3(\mathbb{R})$ diagonale dont tous les coefficients diagonaux sont dans l'ordre croissant telles que : $A = PDP^{-1}$.
- 4. Montrer : $A^3 = 2A$.

PARTIE II : Étude d'une application définie sur ${\mathcal E}$

- 5. Montrer que \mathcal{E} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et que la famille (I, A, A^2) est une base de \mathcal{E} . En déduire la dimension de \mathcal{E} .
- 6. Montrer que, pour toute matrice M de \mathcal{E} , la matrice AM appartient à \mathcal{E} .

On note f l'application de \mathcal{E} dans \mathcal{E} qui, à toute matrice M de \mathcal{E} , associe AM.

- 7. Vérifier que f est un endomorphisme de l'espace vectoriel \mathcal{E} .
- 8. Former la matrice F de f dans la base (I, A, A^2) de \mathcal{E} .
- 9. a) Montrer: $f \circ f \circ f = 2f$.
 - b) En déduire que toute valeur propre λ de f vérifie : $\lambda^3 = 2\lambda$.
 - c) Déterminer les valeurs propres et les sous-espaces propres de f.
- 10. L'endomorphisme f est-il bijectif? diagonalisable?
- 11. Déterminer une base de Im(f) et une base de Ker(f).
- 12. a) Résoudre l'équation $f(M) = I + A^2$, d'inconnue $M \in \mathcal{E}$.
 - b) Résoudre l'équation $f(N) = A + A^2$, d'inconnue $N \in \mathcal{E}$.

ECE2 Mathématiques

EXERCICE II

On considère l'application $f:[0,+\infty[\to\mathbb{R}$ définie, pour tout t de $[0,+\infty[$, par :

$$f(t) = \begin{cases} t^2 - t \ln(t) & \text{si } t \neq 0 \\ 0 & \text{si } t = 0 \end{cases}$$

On admet: $0, 69 < \ln(2) < 0, 70$.

PARTIE I : Étude de la fonction f

- 1. Montrer que f est continue sur $[0, +\infty[$.
- 2. Justifier que f est de classe C^2 sur $]0, +\infty[$ et calculer, pour tout t de $]0, +\infty[$, f'(t) et f''(t).
- 3. Dresser le tableau des variations de f. On précisera la limite de f en $+\infty$.
- 4. On note C la courbe représentative de f dans un repère orthonormal $(0, \vec{i}, \vec{j})$.
 - a) Montrer que C admet une tangente en 0 et préciser celle-ci.
 - b) Montrer que C admet un point d'inflexion et un seul, noté I, et préciser les coordonnées de I.
 - c) Tracer l'allure de C.
- 5. Montrer que l'équation f(t) = 1, d'inconnue $t \in [0, +\infty[$, admet une solution et une seule et que celle-ci est égale à 1.

PARTIE II : Étude d'une fonction F de deux variables réelles

On considère l'application $F:]0, +\infty[^2 \to \mathbb{R}$ de classe \mathcal{C}^2 , définie, pour tout (x, y) de $]0, +\infty[^2, par]$

$$F(x,y) = x \ln(y) - y \ln(x)$$

- 6. Calculer les dérivées partielles premières de F en tout (x,y) de $]0,+\infty[^2]$.
- 7. a) Soit $(x,y) \in]0,+\infty[^2$. Montrer que (x,y) est un point critique de F si et seulement si :

$$x > 1$$
, $y = \frac{x}{\ln(x)}$ et $f(\ln(x)) = 1$

- b) Établir que F admet un point critique et un seul et qu'il s'agit de (e, e).
- 8. La fonction F admet-elle un extremum local en (e, e)?

PARTIE III : Étude d'une suite récurrente

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = \frac{1}{2}$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

- 9. Montrer: $\forall n \in \mathbb{N}, u_n \in \left[\frac{1}{2}, 1\right].$
- 10. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 11. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite. (on pourra étudier les variations de la fonction $t\mapsto t-\ln(t)$)
- 12. Écrire un programme en Scilab qui calcule et affiche un entier naturel N tel que $1 u_N < 10^{-4}$.

ECE2 Mathématiques

EXERCICE III

PARTIE I : Étude d'une variable aléatoire

On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie, pour tout t de \mathbb{R} , par $: f(t) = \frac{e^{-t}}{(1 + e^{-t})^2}$.

- 1. Vérifier que la fonction f est paire.
- 2. Montrer que f est une densité d'une variable aléatoire réelle.

Dans toute la suite de l'exercice, on considère une variable aléatoire réelle X à densité, de densité f.

- 3. Déterminer la fonction de répartition de X.
- 4. a) Montrer que l'intégrale $\int_0^{+\infty} t f(t) dt$ converge.
 - b) En utilisant l'imparité de la fonction $\mathbb{R} \to \mathbb{R}$, $t \mapsto t f(t)$, montrer que X admet une espérance et que l'on a : $\mathbb{E}(X) = 0$.

PARTIE II. Étude d'une autre variable aléatoire

On considère l'application $\varphi: \mathbb{R} \to \mathbb{R}$ définie, pour tout x de \mathbb{R} , par : $\varphi(x) = \ln(1 + e^x)$.

- 5. Montrer que φ est une bijection de \mathbb{R} sur un intervalle I à préciser.
- 6. Exprimer, pour tout $y \text{ de } I, \varphi^{-1}(y)$.

On considère la variable aléatoire réelle Y définie par : $Y = \varphi(X)$.

- 7. Justifier : $\mathbb{P}([Y \leq 0]) = 0$.
- 8. Déterminer la fonction de répartition de Y.
- 9. Reconnaître alors la loi de Y et donner, sans calcul, son espérance et sa variance.

PARTIE III : Étude d'une convergence en loi

On considère une suite de variables aléatoires réelles $(X_n)_{n\in\mathbb{N}^*}$, mutuellement indépendantes, de même densité f, où f a été définie dans la partie I.

On pose, pour tout n de \mathbb{N}^* : $T_n = \max(X_1, \dots, X_n)$ et $U_n = T_n - \ln(n)$.

- 10. a) Déterminer, pour tout n de \mathbb{N}^* , la fonction de répartition de T_n .
 - **b)** En déduire : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \mathbb{P}([U_n \leqslant x]) = \left(1 + \frac{e^{-x}}{n}\right)^{-n}$.
- 11. En déduire que la suite de variables aléatoires $(U_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire réelle à densité dont on précisera la fonction de répartition et une densité.