kafe Documentation

Release 0.3alpha46

Daniel Savoiu

CONTENTS

1	Summary	3
	API documentation 2.1 kafe Package	5 5
Ру	ython Module Index	19
In	dex	21

kafe is a data fitting framework designed for use in undergraduate physics lab courses. It provides a basic *Python* toolkit for fitting and plotting using already available *Python* packages such as *NumPy* and *matplotlib*, as well as *CERN ROOT*'s version of the *Minuit* minimizer.

Contents

- kafe Karlsruhe Fit Environment documentation
 - Summary
 - API documentation

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

SUMMARY

The package provides a simple approach to fitting using variance-covariance matrices, thus allowing for error correlations to be taken into account. This implementation's error model assumes the measurement data (dependent variable) is distributed according to a *Gaussian* distribution centered at its "true" value. The spread of the distribution is given as a (1σ) -error.

An "errors-in-variables" model is also implemented to take uncertainties in the independent variable (x errors) into account. This is done by specifying/constructing a separate variance-covariance matrix for the x axis and "projecting" it onto the y error matrix. If the fit function is approximated in each point by its tangent line, the *Gaussian* errors in the x direction are not warped by this projection.

. . .

For examples on how to use kafe, see the examples folder. Consulting the API can also be helpful.

API DOCUMENTATION

2.1 kafe Package

2.1.1 kafe Package

A Python package for fitting and plotting for use in physics lab courses.

This Python package allows fitting of user-defined functions to data. A dataset is represented by a *Dataset* object which stores measurement data as *NumPy* arrays. The uncertainties of the data are also stored in the *Dataset* as an *error matrix*, allowing for both correlated and uncorrelated errors to be accurately represented.

The constructor of a *Dataset* object accepts several keyword arguments and can be used to construct a *Dataset* out of data which has been loaded into *Python* as *NumPy* arrays. Alternatively, a plain-text representation of a *Dataset* can be read from a file.

Also provided are helper functions which construct a *Dataset* object from a file containing column data (one measurement per row, column order can be specified).

2.1.2 _version_info Module

2.1.3 constants Module

F_SIGNIFICANCE = 2

Set significance for returning results and errors N = rounding error to N significant digits and value to the same order of magnitude as the error.

G_PADDING_FACTOR_X = 1.2

factor by which to expand x data range

$G_PADDING_FACTOR_Y = 1.2$

factor by which to expand y data range

$G_PLOT_POINTS = 200$

number of plot points for plotting the function

M_CONFIDENCE_LEVEL = 0.05

Confidence level for hypythesis test. A fit is rejected it χ^2_{prob} is smaller than this constant

M_MAX_ITERATIONS = 6000

Maximum Minuit iterations until aborting the process

M MAX X FIT ITERATIONS = 2

Number of maximal additional iterations for *x* fit (o disregards *x* errors)

$M_{\text{TOLERANCE}} = 0.1$

Minuit tolerance level

2.1.4 dataset Module

class Dataset(**kwargs)

The *Dataset* object is a data structure for storing measurement and error data. In this implementation, the *Dataset* has the compulsory field *data*, which is used for storing the measurement data, and another field *cov_mats*, used for storing the covariance matrix for each axis.

There are several ways a *Dataset* can be constructed. The most straightforward way is to specify an input file containing a plain-text representation of the dataset:

```
>>> my_dataset = Dataset(input_file='/path/to/file')
or
>>> my_dataset = Dataset(input_file=my_file_object)
```

If an *input_file* keyword is provided, all other input is ignored. The *Dataset* plain-text representation format is as follows:

```
# x data
x_1 sigma_x_1
x_2 sigma_x_2 cor_x_12
... ... ... ...
x_N sigma_x_N cor_x_1N ... cor_x_NN

# y data
y_1 sigma_y_1
y_2 sigma_y_2 cor_y_12
... ... y_N sigma_y_N cor_y_1N ... cor_y_NN
```

Here, the *sigma_...* represents the statistical error of the data point and *cor_..._ij* is the correlation coefficient between the *i*-th and *j*-th data point.

Alternatively, field data can be set by passing iterables as keyword arguments. Available keywords for this purpose are:

data: tuple/list of tuples/lists/arrays of floats

a tuple/list of measurement data. Each element of the tuple/list must be iterable and be of the same length. The first element of the **data** tuple/list is assumed to be the x data, and the second to be the y data:

```
>>> my_dataset = Dataset(data=([0., 1., 2., 3., 4.], [1.23, 3.45, 5.62, 7.88, 9.64]))
```

Alternatively, x-y value pairs can also be passed as **data**. The following is equivalent to the above:

```
>>> my_dataset = Dataset(data=([0.0, 1.23], [1.0, 3.45], [2.0, 5.62], [3.0, 7.88], [4.0, 9.64]))
```

In case the *Dataset* contains two data points, the ordering is ambiguous. In this case, the first ordering (*x* data first, then *y* data) is assumed.

```
cov_mats : tuple/list of numpy.matrix
```

a tuple/list of two-dimensional iterables containing the covariance matrices for x and y, in that order. Covariance matrices can be any sort of two-dimensional NxN iterables, assuming N is the number of data points.

```
>>> my_dataset = Dataset(data=([0., 1., 2.], [1.23, 3.45, 5.62]), cov_mats=(my_cov_mat_x, my_cov_mat_
    This keyword argument can be omitted, in which case covariance matrices of zero are
     assumed. To specify a covariance matrix for a single axis, replace the other with None.
    >>> my_dataset = Dataset(data=([0., 1., 2.], [1.23, 3.45, 5.62]), cov_mats=(None, my_cov_mat_y))
title: string
     the name of the Dataset. If omitted, the Dataset will be given the generic name 'Untitled
     Dataset'.
axis labels = None
    axis labels
axis units = None
    units to assume for axis
cov_mat_is_regular(axis)
     Returns True if the covariance matrix for an axis is regular and False if it is singular.
     axis ['x' or 'y'] Axis for which to check for regularity of the covariance matrix.
cov_mats = None
    list of covariance matrices
data = None
    list containing measurement data (axis-ordering)
get_axis(axis_alias)
     Get axis id from an alias.
     axis_alias [string or int] Alias of the axis whose id should be returned. This is for example
         either '0' or 'x' for the x-axis (id o).
get_cov_mat(axis, fallback_on_singular=None)
    Get the error matrix for an axis.
     axis ['x' or 'y'] Axis for which to load the error matrix.
    fallback_on_singular [numpy.matrix or string (optional)] What to return if the matrix is
         singular. If this is None (default), the matrix is returned anyway. If this is a numpy.matrix
         object or similar, that is returned istead. Alternatively, the shortcuts 'identity' or 1
         and 'zero' or 0 can be used to return the identity and zero matrix respectively.
get_data(axis)
     Get the measurement data for an axis.
     axis [string] Axis for which to get the measurement data. Can be 'x' or 'y'.
get_data_span(axis, include_error_bars=False)
     Get the data span for an axis. The data span is a tuple (min, max) containing the smallest
     and highest coordinates for an axis.
     axis ['x' or 'y'] Axis for which to get the data span.
     include_error_bars [boolean (optional)] True if the returned span should be enlarged to
         contain the error bars of the smallest and largest datapoints (default: False)
get_formatted(format_string='.o6e', delimiter='t')
     Returns the dataset in a plain-text format which is human-readable and can later be used
     as an input file for the creation of a new Dataset. The format is as follows:
    # x data
    x_1 sigma_x_1
    x_2 sigma_x_2 cor_x_12
```

```
x_N sigma_x_N cor_x_1N ... cor_x_NN

# y data
y_1 sigma_y_1
y_2 sigma_y_2 cor_y_12
... ...
y_N sigma_y_N cor_y_1N ... cor_y_NN
```

Here, the x_i and y_i represent the measurement data, the sigma_?_i are the statistical uncertainties of each data point, and the cor_?_ij are the correlation coefficients between the i-th and j-th data point.

If the x or y errors are not correlated, then the entire correlation coefficient matrix can be omitted. If there are no statistical uncertainties for an axis, the second column can also be omitted. A blank line is required at the end of each data block!

format_string [string (optional)] A format string with which each entry will be rendered. Default is '.06e', which means the numbers are represented in scientific notation with six significant digits.

delimiter [string (optional)] A delimiter used to separate columns in the output.

get_size()

Get the size of the *Dataset*. This is equivalent to the length of the *x*-axis data.

has_correlations(axis)

Returns *True* if the specified axis has correlation data, False if not. singular.

axis ['x' or 'y'] Axis for which to check for correlations.

has errors(axis)

Returns *True* if the specified axis has statistical error data.

axis ['x' or 'y'] Axis for which to check for error data.

n_axes = None

dimensionality of the Dataset. Currently, only 2D Datasets are supported

$n_{datapoints} = None$

number of data points in the Dataset

```
read_from_file(input_file)
```

Reads the Dataset object from a file.

returns [boolean] True if the read succeeded, False if not.

```
set_cov_mat(axis, mat)
```

Set the error matrix for an axis.

axis ['x' or 'y'] Axis for which to load the error matrix.

mat [numpy.matrix or None] Error matrix for the axis. Passing None unsets the error matrix.

set_data(axis, data)

Set the measurement data for an axis.

axis ['x' or 'y'] Axis for which to set the measurement data.

data [iterable] Measurement data for axis.

```
write_formatted(file_path, format_string='.o6e', delimiter='t')
```

Writes the dataset to a plain-text file. For details on the format, see get_formatted.

file_path [string] Path of the file object to write. WARNING: overwrites existing files!

format_string [string (optional)] A format string with which each entry will be rendered. Default is '.06e', which means the numbers are represented in scientific notation with six significant digits.

delimiter [string (optional)] A delimiter used to separate columns in the output.

build_dataset(xdata, ydata, **kwargs)

This helper function creates a Dataset from a series of keyword arguments.

Valid keyword arguments are:

xdata and ydata [list/tuple/np.array of floats] These keyword arguments are mandatory and should be iterables containing the measurement data.

error specification keywords [iterable or numeric (see below)] A valid keyword is composed of an axis (*x* or *y*), an error relativity specification (*abs* or *rel*) and error correlation type (*stat* or *syst*). The errors are then set as follows:

1. For statistical errors:

- if keyword argument is iterable, the error list is set to that
- if keyword argument is a number, an error list with identical entries is generated

2. For systematic errors:

• keyword argument *must* be a single number. The global correlated error for the axis is then set to that.

So, for example:

```
>>> myDataset = build_dataset(..., yabsstat=0.3, yrelsyst=0.1)
```

creates a dataset where the statistical error of each y coordinate is set to 0.3 and the overall systematic error of y is set to 0.1.

debug_print(message)

2.1.5 file_tools Module

Parses a file which contains measurement data in a one-measurement-per-row format. The field (column) order can be specified. It defaults to *x,y'*. *Valid field names are 'x, y, xabsstat, yabsstat, xrelstat, yrelstat*. Another valid field name is *ignore* which can be used to skip a field.

Every valid measurement data file *must* have an *x* and a *y* field.

Additionally, a delimiter can be specified. If this is a whitespace character or omitted, any sequence of whitespace characters is assumed to separate the data.

If the measurement errors and correlations are given as covariance matrices (in a separate file), these files can be specified using the *cov_mat_files* argument.

file_to_parse [file-like object or string containing a file path] The file to parse.

field_order [string (optional)] A string of comma-separated field names giving the order of the columns in the file. Defaults to 'x,y'.

delimiter [string (optional)] The field delimiter used in the file. Defaults to any whitespace.

cov_mat_files [None or tuple of strings/file-like objects (optional)] Files which contain x- and y-covariance matrices, in that order. Defaults to None.

return [Dataset] A Dataset built from the parsed file.

parse_matrix_file(file_like, delimiter=None)

Read a matrix from a matrix file. The format of the matrix file should be:

```
# comment row
a_11 a_12 ... a_1M
a_21 a_22 ... a_2M
... ... ...
a_N1 a_N2 ... a_NM
```

file_like [string or file-like object] File path or file object to read matrix from.

delimiter [None or string (optional)] Column delimiter use in the matrix file. Defaults to None, meaning any whitespace.

2.1.6 fit Module

class Fit(dataset, fit_function, external_fcn=<function chi2 at ox28452a8>, function_label=None, function_equation=None)

Object representing a fit. This object references the fitted *Dataset*, the fit function and the resulting fit parameters.

Necessary arguments are a *Dataset* object and a fit function (which should be fitted to the *Dataset*). Optionally, an external function FCN (whose minima should be located to find the best fit) can be specified. If not given, the FCN function defaults to χ^2 .

dataset [Dataset] A Dataset object containing all information about the data

fit_function [function] A user-defined Python function to be fitted to the data. This function's first argument must be the independent variable *x*. All other arguments *must* be named and have default values given. These defaults are used as a starting point for the actual minimization. For example, a simple linear function would be defined like:

```
>>> def linear_2par(x, slope=1, y_intercept=0):
... return slope * x + y_intercept
```

Be aware that choosing sensible initial values for the parameters is often crucial for a succesful fit, particularly for functions of many parameters.

external_fcn [function (optional)] An external *FCN* (function to minimize). This function must have the following call signature:

```
>>> FCN(xdata, ydata, cov_mat, fit_function, param_values)
```

It should return a float. If not specified, the default χ^2 *FCN* is used. This should be sufficient for most fits.

function_label [LATeX-formatted string (optional)] A name/label/short description of the fit function. This appears in the legend describing the fitter curve. If omitted, this defaults to the function's Python name.

function_equation [LATEX-formatted string (optional)] The fit function's equation.

```
call_external_fcn(*param_values)
```

Wrapper for the external *FCN*. Since the actual fit process depends on finding the right parameter values and keeping everything else constant, we can use the *Dataset* object to pass known, fixed information to the external *FCN*, varying only the parameter values.

param_values [sequence of values] the parameter values at which FCN is to be evaluated

```
current_cov_mat = None
```

the current covariance matrix used for the Fit

current_param_errors = None

the current uncertainties of the parameters

current_param_values = None

the current values of the parameters

dataset = None

this Fit instance's child Dataset

do_fit(quiet=False, verbose=False)

Runs the fit algorithm for this Fit object.

First, the *Dataset* is fitted considering only uncertainties in the *y* direction. If the *Dataset* has no uncertainties in the *y* direction, they are assumed to be equal to 1.0 for this preliminary fit, as there is no better information available.

Next, the fit errors in the x direction (if they exist) are taken into account by projecting the covariance matrix for the x errors onto the y covariance matrix. This is done by taking the first derivative of the fit function in each point and "projecting" the x error onto the resulting tangent to the curve.

This last step is repeater until the change in the error matrix caused by the projection becomes negligible.

quiet [boolean (optional)] Set to True if no output should be printed.

verbose [boolean (optional)] Set to True if more output should be printed.

external_fcn = None

the (external) function to be minimized for this Fit

fit function = None

the fit function used for this Fit

fit_one_iteration(verbose=False)

Instructs the minimizer to do a minimization.

$function_equation = None$

LATEX function equation

function_label = None

a label to use in the legend when plotting

get_current_fit_function()

This method returns a function object corresponding to the fit function for the current parameter values. The returned function is a function of a single variable.

returns [function] A function of a single variable corresponding to the fit function at the current parameter values.

get_error_matrix()

This method returns the covariance matrix of the fit parameters which is obtained by querying the minimizer object for this fit

returns [numpy.matrix] The covariance matrix of the parameters.

get_parameter_errors(rounding=False)

Get the current parameter uncertainties from the minimizer.

rounding [boolean (optional)] Whether or not to round the returned values to significance.

returns [tuple] A tuple of the parameter uncertainties

get_parameter_values(rounding=False)

Get the current parameter values from the minimizer.

rounding [boolean (optional)] Whether or not to round the returned values to significance.

returns [tuple] A tuple of the parameter values

minimizer = None

this Fit's minimizer (Minuit)

number_of_parameters = None

the number of parameters

param names = None

the names of the parameters

param_names_latex = None

LATEX parameter names

print_fit_details()

prints some fit goodness details

print_fit_results()

prints fit results

print_rounded_fit_parameters()

prints the fit parameters

project_x_covariance_matrix()

Project the *x* errors from the *x* covariance matrix onto the total matrix.

This is done elementwise, according to the formula:

$$C_{tot,ij} = C_{y,ij} + C_{x,ij} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}$$

xdata = None

the *x* coordinates of the data points used for this *Fit*

ydata = None

the y coordinates of the data points used for this Fit

chi2(xdata, ydata, cov_mat, fit_function, param_values)

A simple χ^2 implementation. Calculates χ^2 according to the formula:

$$\chi^2 = \lambda^T C^{-1} \lambda$$

Here, λ is the residual vector $\lambda = \vec{y} - \vec{f}(\vec{x})$ and C is the covariance matrix.

xdata [iterable] The x measurement data

ydata [iterable] The y measurement data

cov_mat [numpy.matrix] The total covariance matrix

fit_function [function] The fit function f(x)

param_values [list/tuple] The values of the parameters at which f(x) should be evaluated.

round_to_significance(value, error, significance=2)

Rounds the error to the established number of significant digits, then rounds the value to the same order of magnitude as the error.

value [float] value to round to significance

error [float] uncertainty of the value

significance [int (optional)] number of significant digits of the error to consider

2.1.7 function_library Module

is a vector \mathbf{x} , this returns $\mathbf{x}\mathbf{x}^{\mathsf{T}}$.

```
constant_1par(x, constant=1.0)
exp_2par(x, growth=1.0, constant_factor=0.0)
exp_3par(x, growth=1.0, constant_factor=0.0, y_offset=0.0)
exp_3par2(x, growth=1.0, constant_factor=0.0, x_offset=0.0)
exp\_4par(x, growth=1.0, constant\_factor=0.0, x\_offset=0.0, y\_offset=0.0)
gauss(x, mean=0.0, sigma=1.0, scale=1.0)
linear_1par(x, slope=1.0)
linear_2par(x, slope=1.0, y_intercept=0.0)
linear_2par_2(x, slope=1.0, x_offset=0.0)
poisson(x, mean=0.0, scale=1.0)
poly3(x, coeff3=1.0, coeff2=0.0, coeff1=0.0, coeff0=0.0)
poly4(x, coeff4=1.0, coeff3=0.0, coeff2=0.0, coeff1=0.0, coeff0=0.0)
poly5(x, coeff5=1.0, coeff4=0.0, coeff3=0.0, coeff2=0.0, coeff1=0.0, coeff0=0.0)
quadratic_1par(x, quad_coeff=1.0)
quadratic_2par(x, quad_coeff=1.0, constant=0.0)
quadratic_2par2(x, quad_coeff=1.0, x_offset=0.0)
quadratic_3par(x, quad_coeff=1.0, lin_coeff=0.0, constant=0.0)
\verb"quadratic_3par2" (x, quad\_coeff=1.0, x\_offset=0.0, constant=0.0)"
2.1.8 function_tools Module
derivative(func, derive_by_index, variables_tuple, derivative_spacing)
     Gives \frac{\partial f}{\partial x_k} for f = f(x_0, x_1, ...). func is f, variables_tuple is \{x_i\} and derive_by_index is k.
derive_by_parameters(func, x_o, param_list, derivative_spacing)
     Returns the gradient of func with respect to its parameters, i.e. with respect to every variable of
     func except the first one.
derive_by_x(func, x_o, param_list, derivative_spacing)
     If x_0 is iterable, gives the array of derivatives of a function f(x, par_1, par_2, ...) around x = x_1 at
     every x_i in \vec{x}. If x_0 is not iterable, gives the derivative of a function f(x, par_1, par_2, ...) around
     x = x_0.
get_function_property(func, prop)
     Returns a specific property of the function. This assumes that the function is defined as
     >>> def func(x, par1=1.0, par2=3.14, par3=2.71, ...): ...
     func [function] A function object from which to extract the property.
     prop [any of 'name', 'parameter names', 'parameter defaults', 'number of parameters']
           A string representing a property.
outer_product(input_array)
```

2.1. kafe Package 13

Takes a *NumPy* array and returns the outer (dyadic, Kronecker) product with itself. If *input_array*

2.1.9 minuit Module

D_MATRIX_ERROR = {o: 'Error matrix not calculated', 1: 'Error matrix approximate!', 2: 'Error matrix forced positive d Error matrix status codes

A class for communicating with ROOT's function minimizer tool Minuit.

FCN_wrapper(number_of_parameters, derivatives, f, parameters, internal_flag)

This is actually a function called in *ROOT* and acting as a C wrapper for our *FCN*, which is implemented in Python.

This function is called by *Minuit* several times during a fit. It doesn't return anything but modifies one of its arguments (*f*). This is *ugly*, but it's how *ROOT*'s TMinuit works. Its argument structure is fixed and determined by *Minuit*:

number_of_parameters [int] The number of parameters of the current fit

derivatives [??] Computed gradient (??)

f [C array] The desired function value is in f[o] after execution.

parameters [C array] A C array of parameters. Is cast to a Python list

internal_flag [int] A flag allowing for different behaviour of the function. Can be any integer from 1 (initial run) to 4(normal run). See *Minuit's* specification.

function_to_minimize = None

the actual FCN called in FCN_wrapper

get_chi2_probability(n_deg_of_freedom)

Returns the probability that an observed χ^2 exceeds the calculated value of χ^2 for this fit by chance, even for a correct model. In other words, returns the probability that a worse fit of the model to the data exists. If this is a small value (typically <5%), this means the fit is pretty bad. For values below this threshold, the model very probably does not fit the data.

 n_{ext} m_extdatapoints $-n_{ext}$ are typically n_{ext} matter than the second n_{ext} matter that n_{ext} matter than the second n_{ext} matter than the

get_contour(parameter1, parameter2, n_points=20)

Returns a list of points (2-tuples) representing a sampling of the 1σ contour of the TMinuit fit. The FCN has to be minimized before calling this.

parameter1 [int] ID of the parameter to be displayed on the *x*-axis.

parameter2 [int] ID of the parameter to be displayed on the *y*-axis.

n_points [int (optional)] number of points used to draw the contour. Default is 20.

returns [2-tuple of tuples] a 2-tuple (x, y) containing n_points+1 points sampled along the contour. The first point is repeated at the end of the list to generate a closed contour.

get_error_matrix()

Retrieves the parameter error matrix from TMinuit.

return: numpy.matrix

get_fit_info(info)

Retrieves other info from Minuit.

info [string]

Information about the fit to retrieve. This can be any of the following:

• 'fcn': FCN value at minimum,

- 'edm': estimated distance to minimum
- 'err_def': Minuit error matrix status code
- 'status_code': *Minuit* general status code

get_parameter_errors()

Retrieves the parameter errors from TMinuit.

return [tuple] Current Minuit parameter errors

get_parameter_info()

Retrieves parameter information from TMinuit.

return [list of tuples] (param_name, param_val, param_error)

get_parameter_name(param_nr)

Gets the name of parameter number param_nr

param_nr [int] Number of the parameter whose name to get.

get parameter values()

Retrieves the parameter values from TMinuit.

return [tuple] Current Minuit parameter values

$max_iterations = None$

maximum number of iterations until TMinuit gives up

minimize(log_print_level=3)

Do the minimization. This calls *Minuit's* algorithms MIGRAD for minimization and HESSE for computing/checking the parameter error matrix.

$number_of_parameters = None$

number of parameters to minimize for

reset()

set_err(up_value=1.0)

Sets the UP value for Minuit.

up_value [float (optional, default: 1.0)] This is the value by which *FCN* is expected to change.

set_parameter_errors(param_errors=None)

Sets the fit parameter errors. If param_values='None', sets the error to 1% of the parameter value.

set_parameter_names(param_names)

Sets the fit parameters. If param_values='None', tries to infer defaults from the function_to_minimize.

set_parameter_values(param_values)

Sets the fit parameters. If param_values='None', tries to infer defaults from the function to minimize.

set_print_level(print_level=1)

Sets the print level for Minuit.

print_level [int (optional, default: 1 (frugal output))] Tells TMinuit how much output to generate. The higher this value, the more output it generates.

set_strategy(strategy_id=1)

Sets the strategy Minuit.

strategy_id [int (optional, default: 1 (optimized))] Tells TMinuit to use a certain strategy.
Refer to TMinuit's documentation for available strategies.

tolerance = None

TMinuit tolerance

2.1.10 numeric_tools Module

cor_to_cov(cor_mat, error_list)

Converts a correlation matrix to a covariance matrix according to the formula

$$Cov_{ij} = Cor_{ij} \sigma_i \sigma_j$$

cor_mat [numpy.matrix] The correlation matrix to convert.

error_list [sequence of floats] A sequence of statistical errors. Must be of the same length as the diagonal of *cor_mat*.

cov_to_cor(cov_mat)

Converts a covariance matrix to a correlation matrix according to the formula

$$Cor_{ij} = \frac{Cov_{ij}}{\sqrt{Cov_{ii}\,Cov_{jj}}}$$

cov_mat The covariance matrix to convert. Type: numpy.matrix

```
extract_statistical_errors(cov_mat)
```

Extracts the statistical errors from a covariance matrix. This means it returns the (elementwise) square root of the diagonal entries

cov_mat The covariance matrix to extract errors from. Type: numpy.matrix

```
make_symmetric_lower(mat)
```

Copies the matrix entries below the main diagonal to the upper triangle half of the matrix. Leaves the diagonal unchanged. Returns a *NumPy* matrix object.

mat [numpy.matrix] A lower diagonal matrix.

returns [numpy.matrix] The lower triangle matrix.

```
zero_pad_lower_triangle(triangle_list)
```

Converts a list of lists into a lower triangle matrix. The list members should be lists of increasing length from 1 to N, N being the dimension of the resulting lower triangle matrix. Returns a *NumPy* matrix object.

For example:

triangle_list [list] A list containing lists of increasing length.

returns [numpy.matrix] The lower triangle matrix.

2.1.11 plot Module

```
class Plot(*fits, **kwargs)
```

```
axis_labels = None
    axis labels
```

```
compute_plot_range(include_error_bars=True)
          Compute the span of all child datasets and sets the plot range to that
     draw_fit_parameters_box(plot_spec=o)
          Draw the parameter box to the canvas
          plot_spec [int, list of ints, string or None (optional, default: 0)] Specify the plot id of the
              plot for which to draw the parameters. Passing o will only draw the parameter box for
              the first plot, and so on. Passing a list of ints will only draw the parameters for plot
              ids inside the list. Passing 'all' will print parameters for all plots. Passing None will
              return immediately doing nothing.
     draw_legend()
          Draw the plot legend to the canvas
     extend_span(axis, new_span)
          Expand the span of the current plot.
          This method extends the current plot span to include new_span
     fits = None
          list of 'Fit's to plot
     init_plots()
          Initialize the plots for each fit.
     plot(p_id, show_data=True)
          Plot the Fit object with the number p\_id to its figure.
     plot_all(show_info_for='all', show_data_for='all')
          Plot every Fit object to its figure.
     plot_range = None
          plot range
     plot_style = None
          plot style
     save(output file)
          Save the Plot to a file.
          Show the Plot in a matplotlib interactive window.
     show_legend = None
          whether to show the plot legend (True) or not (False)
class PlotStyle
     Class for specifying a style for a specific plot. This object stores a progression of marker and
     line types and colors, as well as preferences relating to point size and label size. These can be
     overriden by overwriting the instance variables directly. A series of get_... methods are provided
     which go through these lists cyclically.
     get_line(idm)
          Get a specific line type. This runs cyclically through the defined defaults.
     get_linecolor(idm)
          Get a specific line color. This runs cyclically through the defined defaults.
     get_marker(idm)
          Get a specific marker type. This runs cyclically through the defined defaults.
     get markercolor(idm)
          Get a specific marker color. This runs cyclically through the defined defaults.
```

```
get_pointsize(idm)
```

Get a specific point size. This runs cyclically through the defined defaults.

```
label_to_latex(label)
```

Generates a simple LaTeX-formatted label from a plain-text label. This treats isolated characters and words beginning with a backslash as mathematical expressions and surround them with \$ signs accordingly.

label [string] Plain-text string to convert to LaTeX.

```
pad_span(span, pad_coeff=1, additional_pad=None)
```

Enlarges the interval *span* (list of two floats) symmetrically around its center to length *pad_coeff*. Optionally, an *additional_pad* argument can be specified. The returned span is then additionally enlarged by that amount.

additional_pad can also be a list of two floats which specifies an asymmetric amount by which to enlarge the span. Note that in this case, positive entries in additional_pad will enlarge the span (move the interval end away from the interval's center) and negative amounts will shorten it (move the interval end towards the interval's center).

2.1.12 stream Module

```
class StreamDup(out_file)
    Bases: object
    Object for simultaneous logging to stdout and a file.
    fileno()
    flush()
    write(message)
    write_timestamp(prefix)
    write_to_file(message)
    write_to_stdout(message)
```

2.1.13 Indices and tables

- genindex
- modindex
- search

PYTHON MODULE INDEX

```
С
constants (Unix), 5
dataset (Unix), 6
f
file_tools (Unix), 9
fit (Unix), 10
function_library (Unix), 13
function_tools (Unix), 13
k
kafe, 1
kafe.__init__,5
kafe._version_info,5
kafe.constants, 5
kafe.dataset, 6
kafe.file_tools, 9
kafe.fit, 10
kafe.function_library, 13
kafe.function_tools, 13
kafe.minuit, 14
kafe.numeric_tools, 16
kafe.plot, 16
kafe.stream, 18
m
minuit (Unix), 14
numeric_tools (Unix), 16
plot (Unix), 16
stream (Unix), 18
```

20 Python Module Index

INDEX

A axis_labels (Dataset attribute), 7 axis_labels (Plot attribute), 16 axis_units (Dataset attribute), 7	external_fcn (Fit attribute), 11 extract_statistical_errors() (in module kafe.numeric_tools), 16			
B build_dataset() (in module kafe.dataset), 9 C call_external_fcn() (Fit method), 10 chi2() (in module kafe.fit), 12 compute_plot_range() (Plot method), 16 constant_1par() (in module kafe.function_library),	F_SIGNIFICANCE (in module kafe.constants), 5 FCN_wrapper() (Minuit method), 14 file_tools (module), 9 fileno() (StreamDup method), 18 Fit (class in kafe.fit), 10 fit (module), 10 fit_function (Fit attribute), 11 fit_one_iteration() (Fit method), 11 fits (Plot attribute), 17 flush() (StreamDup method), 18 function_equation (Fit attribute), 11 function_label (Fit attribute), 11 function_library (module), 13 function_to_minimize (Minuit attribute), 14 function_tools (module), 13			
current_param_values (Fit attribute), 11	G G_PADDING_FACTOR_X (in module kafe.constants), 5			
D_MATRIX_ERROR (in module kafe.minuit), 14 data (Dataset attribute), 7 Dataset (class in kafe.dataset), 6 dataset (Fit attribute), 11 dataset (module), 6 debug_print() (in module kafe.dataset), 9 derivative() (in module kafe.function_tools), 13 derive_by_parameters() (in module	get_current_fit_function() (Fit method), 11 get_data() (Dataset method), 7 get_data_span() (Dataset method), 7 get_error_matrix() (Fit method), 11 get_error_matrix() (Minuit method), 14 get_fit_info() (Minuit method), 14 get_formatted() (Dataset method), 7			
exp_2par() (in module kafe.function_library), 13 exp_3par() (in module kafe.function_library), 13 exp_3par2() (in module kafe.function_library), 13 exp_4par() (in module kafe.function_library), 13 extend_span() (Plot method), 17	get_function_property() (in module kafe.function_tools), 13 get_line() (PlotStyle method), 17 get_linecolor() (PlotStyle method), 17 get_marker() (PlotStyle method), 17			

get_markercolor() (PlotStyle method), 17	N
get_parameter_errors() (Fit method), 11 get_parameter_errors() (Minuit method), 15 get_parameter_info() (Minuit method), 15 get_parameter_name() (Minuit method), 15 get_parameter_values() (Fit method), 11 get_parameter_values() (Minuit method), 15 get_pointsize() (PlotStyle method), 17	n_axes (Dataset attribute), 8 n_datapoints (Dataset attribute), 8 number_of_parameters (Fit attribute), 12 number_of_parameters (Minuit attribute), 15 numeric_tools (module), 16 O
get_size() (Dataset method), 8	outer_product() (in module kafe.function_tools),
Н	13
has_correlations() (Dataset method), 8 has_errors() (Dataset method), 8	P pad_span() (in module kafe.plot), 18
I	param_names (Fit attribute), 12
init_plots() (Plot method), 17	param_names_latex (Fit attribute), 12
K kafe (module), 1 kafeinit (module), 5 kafeversion_info (module), 5 kafe.constants (module), 5 kafe.dataset (module), 6 kafe.file_tools (module), 9 kafe.fit (module), 10 kafe.function_library (module), 13 kafe.function_tools (module), 13 kafe.minuit (module), 14 kafe.numeric_tools (module), 16 kafe.plot (module), 16 kafe.stream (module), 18 L label_to_latex() (in module kafe.plot), 18 linear_1par() (in module kafe.function_library), 13	parse_column_data() (in module kafe.file_tools), 9 parse_matrix_file() (in module kafe.file_tools), 9 Plot (class in kafe.plot), 16 plot (module), 16 plot() (Plot method), 17 plot_all() (Plot method), 17 plot_style (Plot attribute), 17 PlotStyle (class in kafe.plot), 17 poisson() (in module kafe.function_library), 13 poly3() (in module kafe.function_library), 13 poly4() (in module kafe.function_library), 13 print_fit_details() (Fit method), 12 print_fit_results() (Fit method), 12 print_rounded_fit_parameters() (Fit method), 12 project_x_covariance_matrix() (Fit method), 12
linear_1par() (in module kafe.function_library), 13 linear_2par() (in module kafe.function_library), 13 linear_2par2() (in module kafe.function_library),	quadratic_1par() (in module kafe.function_library), 13
13	quadratic_2par() (in module kafe.function_library), 13
M	quadratic_2par2() (in module kafe.function_library), 13
M_CONFIDENCE_LEVEL (in module kafe.constants), 5	quadratic_3par() (in module kafe.function_library), 13
M_MAX_ITERATIONS (in module kafe.constants), 5	quadratic_3par2() (in module kafe.function_library), 13
M_MAX_X_FIT_ITERATIONS (in module kafe.constants), 5 M_TOLERANCE (in module kafe.constants), 5 make_symmetric_lower() (in module kafe.numeric_tools), 16	R read_from_file() (Dataset method), 8 reset() (Minuit method), 15 round_to_significance() (in module kafe.fit), 12
max_iterations (Minuit attribute), 15 minimize() (Minuit method), 15	S
minimizer (Fit attribute), 12 Minuit (class in kafe.minuit), 14 minuit (module), 14	save() (Plot method), 17 set_cov_mat() (Dataset method), 8 set_data() (Dataset method), 8 set_err() (Minuit method), 15

22 Index

```
set_parameter_errors() (Minuit method), 15
set_parameter_names() (Minuit method), 15
set_parameter_values() (Minuit method), 15
set_print_level() (Minuit method), 15
set_strategy() (Minuit method), 15
show() (Plot method), 17
show_legend (Plot attribute), 17
stream (module), 18
StreamDup (class in kafe.stream), 18
Т
tolerance (Minuit attribute), 15
W
write() (StreamDup method), 18
write_formatted() (Dataset method), 8
write_timestamp() (StreamDup method), 18
write_to_file() (StreamDup method), 18
write_to_stdout() (StreamDup method), 18
Χ
xdata (Fit attribute), 12
Y
ydata (Fit attribute), 12
Ζ
zero_pad_lower_triangle()
                                        module
                                (in
        kafe.numeric_tools), 16
```

Index 23