电工技术与电子技术

第2章电路的分析方法

主讲教师: 王香婷 教授

电阻的联结及其等效变换

主讲教师: 王香婷 教授

电阻的联结及其等效变换

主要内容:

电阻的串联、并联与混联; 等效电阻的求解。

重点难点:

电阻串联与并联电路的特点及其等效电阻的求解。

电阻的联结及其等效变换

1. 电阻的串联

特点:

- (1) 各电阻一个接一个地顺序相连;
- (2) 各电阻中通过同一电流;
- (3) 等效电阻等于各电阻之和, $R = R_1 + R_2$;
- (4) 串联电阻上电压的分配与电阻成正比。

两电阻串联时的分压公式:

$$U_1 = \frac{R_1}{R_1 + R_2} U$$
 $U_2 = \frac{R_2}{R_1 + R_2} U$

应用:降压、限流、调节电压等。

2. 电阻的并联

特点:

- (1) 各电阻连接在两个公共的结点之间;
- (2) 各电阻两端的电压相同;
- (3)等效电阻的倒数等于各电阻倒数之和;

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

(4) 并联电阻上电流的分配与电阻成反比。 两电阻并联时的分流公式:

$$I_1 = \frac{R_2}{R_1 + R_2} I$$
 $I_2 = \frac{R_1}{R_1 + R_2} I$

分流、调节电流等。

例1: 试估算图示电路中的电流。

解: (a)
$$I \approx \frac{U}{R} = \frac{20\text{V}}{500\text{k}\Omega} = 0.04 \text{ mA}$$

(b)
$$I \approx \frac{U}{R} = \frac{20 \text{V}}{10 \text{k}\Omega} = 2 \text{ mA}$$

3. 电阻的混联

例1: 计算图示电路中a、b间的等效电阻 R_{ab} 。

解: (a) $R_{ab} = 8//8 + 6//3 = 6\Omega$

3. 电阻的混联

例1: 计算图示电路中a、b间的等效电阻 R_{ab} 。

解: (b) $R_{ab} = (4//4 + 10//10)//7 = 3.5\Omega$

小 结

1. 电阻的串联

分压公式
$$U_1 = \frac{R_1}{R_1 + R_2} U$$
 $U_2 = \frac{R_2}{R_1 + R_2} U$

2. 电阻的并联

分流公式
$$I_1 = \frac{R_2}{R_1 + R_2} I$$
 $I_2 = \frac{R_1}{R_1 + R_2} I$

3. 电阻的混联

运用串并联等效规律,解决混联电路的问题。