3. Multi-Degree-of-Freedom (MDOF) Systems

Consider the two-degree-of-freedom system below:

If we use Newton's 2nd Law to write the differential equations of motion, we have:

$$\sum_{F} F = M_1 \ddot{x}_1 + (K_1 + K_2)x_1 - K_2 x_2 = 0$$

$$\sum_{F} F = M_2 \ddot{x}_2 + (K_1 + K_2)x_2 - K_2 x_1 = 0$$
(3.1)

These can be written in matrix form:

$$\begin{bmatrix} M_1 & 0 \\ 0 & M_2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} K_1 + K_2 & -K_2 \\ -K_2 & K_1 + K_2 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$
(3.2)

The system at this point is unforced, so the solution will consist only of the homogeneous part, $x_h(t)$. Assuming harmonic motion of the two masses occurring at the same frequency ω gives:

$$X_{h_1} = X_1 e^{i\omega t}$$

$$X_{h_2} = X_2 e^{i\omega t}$$
(3.3)

This results in the matrix equation:

$$\begin{bmatrix} -\omega^{2}M_{1} + (K_{1} + K_{2}) & -K_{2} \\ -K_{2} & -\omega^{2}M_{2} + (K_{1} + K_{2}) \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} e^{i\omega t} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(3.4)

Which has a nontrivial solution when the determinant of the matrix is equal to zero:

$$\begin{vmatrix} -\omega^2 M_1 + (K_1 + K_2) & -K_2 \\ -K_2 & -\omega^2 M_2 + (K_1 + K_2) \end{vmatrix} = 0$$
 (3.5)

At this point, sample numbers will be substituted to illustrate the free vibration solution:

$$M_1 = M_2 = 1$$
 $K_1 = 25$ (consistent units) (3.6)
 $K_2 = 5$

Taking the determinant of the above matrix results in the following quadratic equation:

$$\lambda^2 - 60\lambda + 875 = 0 (3.7)$$

Where $\lambda = \omega^2$. At this point it is interesting to note that when λ is substituted into the original Eqn. (3.4) and terms are rearranged, the following equation results:

$$\begin{bmatrix} (K_{1} + K_{2}) & -K_{2} \\ M_{1} & M_{1} \\ -K_{2} & (K_{1} + K_{2}) \\ M_{2} & M_{2} \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} (3.8)$$

This is the standard form of an eigenvalue problem, hence the choice of $\lambda = \omega^2$.

Solving for
$$\lambda$$
: $\lambda_{1,2} = 25,35$

And the natural frequencies of oscillation are:

$$\omega_1 = \sqrt{\lambda_1} = 5 \text{ rad / sec}$$

$$\omega_2 = \sqrt{\lambda_2} = 5.9 \text{ rad / sec}$$

The eigenvectors are obtained by substituting the eigenvalues into one of the system equations. Substituting the first eigenvalue:

$$\begin{pmatrix} (K_1 + K_2) \\ M_1 \end{pmatrix} X_1 - \begin{pmatrix} K_2 \\ M_1 \end{pmatrix} X_2 - \lambda X_1 = 0
(30 - 25) X_1 - 5 X_2 = 0
X_1 = X_2$$
(3.9)

The first eigenvector is:

$$\phi_1 = \begin{cases} X_1 \\ X_2 \end{cases} = \begin{cases} 1 \\ 1 \end{cases} \tag{3.10}$$

And the second eigenvector is:

$$\phi_2 = \begin{cases} X_1 \\ X_2 \end{cases} = \begin{cases} 1 \\ -1 \end{cases} \tag{3.11}$$

The eigenvectors represent the *modes* of vibration at the natural frequencies. The first mode shape can be shown as:

And the second mode shape is:

Note that the mode shapes are dependent on each other, and the amplitudes can be arbitrarily scaled.

3.1 Orthogonality of Eigenvectors

The system of equations of (3.4) can be equivalently written as:

$$[K]{X} = \lambda [M]{X}$$
(3.12)

Replacing $\{X\}$ with the *i*th eigenvector ϕ_i and substituting the corresponding eigenvalue results in:

$$[K]\phi_i = \lambda_i[M]\phi_i \tag{3.13}$$

Premultiplying by ϕ_j^T results in:

$$\phi_j^T[K]\phi_i = \lambda_i \phi_j^T[M]\phi_i \tag{3.14}$$

Likewise, the eigenvalues / eigenvectors can be switched to obtain:

$$\phi_i^T[K]\phi_j = \lambda_j \,\phi_i^T[M]\phi_j \tag{3.15}$$

For most dynamic systems, [M] and [K] are symmetric, so the following relations can be written:

$$\phi_{i}^{T}[K]\phi_{j} = \phi_{j}^{T}[K]\phi_{i}$$

$$\phi_{i}^{T}[M]\phi_{i} = \phi_{i}^{T}[M]\phi_{i}$$
(3.16)

Equations (3.14) and (3.15) can be rewritten using (3.16):

$$\phi_{j}^{T}[K]\phi_{i} = \lambda_{j} \phi_{i}^{T}[M]\phi_{j}$$

$$\phi_{j}^{T}[K]\phi_{i} = \lambda_{i} \phi_{i}^{T}[M]\phi_{j}$$
(3.17)

And taking the difference of these equations results in:

$$0 = (\lambda_i - \lambda_j) \phi_i^T [M] \phi_j \qquad (3.18)$$

For distinct eigenvalues, this implies that $\phi_i^T[M]\phi_j = 0$. Similarly, it can be shown that $\phi_i^T[K]\phi_j = 0$.

Observation: The eigenvectors are orthogonal with respect to the mass and stiffness matrices.

When the same eigenvector is used to pre- and post-multiply the mass and stiffness matrices, the resulting mass and stiffness values are referred to as the *modal* or *generalized* mass and stiffness:

$$\phi_i^T[M]\phi_i = m_{ii}$$

$$\phi_i^T[K]\phi_i = k_{ii}$$
(3.19)

A matrix of mode shapes can be created, $\left[\left\{\phi_1\right\} \quad \left\{\phi_2\right\}\right] = \left[\phi\right]$, and when this matrix is used to pre- and post-multiply the mass and stiffness matrices, diagonal mass and stiffness matrices are obtained:

$$[\phi] = [\{\phi_1\} \quad \{\phi_2\}] = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$$

$$[\phi]^T [M] [\phi] = \begin{bmatrix} m_{ii} \\ k_{ii} \end{bmatrix}$$

$$[\phi]^T [K] [\phi] = \begin{bmatrix} k_{ii} \\ k_{ii} \end{bmatrix}$$

$$(3.20)$$

Inputting the actual mass and stiffness values results in:

$$\begin{bmatrix} m_{ii} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$\begin{bmatrix} k_{ii} \end{bmatrix} = \begin{bmatrix} 50 & 0 \\ 0 & 70 \end{bmatrix}$$

Once this is determined, the eigenvectors can be redefined to be *mass normalized eigenvectors*:

$$\hat{\phi}_i = \frac{1}{\sqrt{m_{ii}}} \phi_i \tag{3.21}$$

And when the original mass and stiffness matrices are pre- and post-multiplied by the mass normalized eigenvector matrix, the result is:

$$\left[\hat{\phi}\right]^{T} \left[M\right] \left[\hat{\phi}\right] = \left[\begin{array}{c} I \\ I \end{array}\right]$$

$$\left[\hat{\phi}\right]^{T} \left[K\right] \left[\hat{\phi}\right] = \left[\begin{array}{c} \lambda \\ I \end{array}\right]$$

$$(3.22)$$

3.1 Harmonically Forced Vibration of a Multi-Degree-Of-Freedom System

If a harmonic forcing function is added to the first mass in the figure below, the response is found in a manner similar to that for the free vibration case:

$$f(t) = F_1 e^{i\omega t}$$

$$x_1(t) = X_1 e^{i\omega t}$$

$$x_2(t) = X_2 e^{i\omega t}$$
(3.23)

In this case, the frequency ω corresponds to the forcing frequency and not the natural frequency of vibration.

Using the above form of the solution and writing the equations in matrix form:

$$\left(\begin{bmatrix} -\omega^2 M_1 & & \\ & -\omega^2 M_2 \end{bmatrix} + \begin{bmatrix} (K_1 + K_2) & -K_2 \\ -K_2 & (K_1 + K_2) \end{bmatrix} \right) \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} e^{i\omega t} = \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix} e^{i\omega t} \quad (3.24)$$

Recall that we can diagonalize the mass and stiffness matrices by using the modal matrix. This will be accomplished by substituting a new variable into the equation:

$$[\phi]\{Y\} = \{X\} \tag{3.25}$$

Where $\{Y\}$ consists of new coordinates Y_1 and Y_2 which are called modal or generalized coordinates.

These values represent the amount of mode 1 and mode 2 that are contained in the motion of the system.

Substituting into Eqn. 3.24:

$$\left(-\omega^{2}[M] + [K]\right)[\phi] \begin{Bmatrix} Y_{1} \\ Y_{2} \end{Bmatrix} e^{i\omega t} = \begin{Bmatrix} F_{1} \\ 0 \end{Bmatrix} e^{i\omega t}$$
(3.26)

And pre-multiplying by $\left[\phi\right]^T$ results in:

$$[\phi]^{T} (-\omega^{2}[M] + [K]) [\phi] \begin{Bmatrix} Y_{1} \\ Y_{2} \end{Bmatrix} e^{i\omega t} = [\phi]^{T} \begin{Bmatrix} F_{1} \\ 0 \end{Bmatrix} e^{i\omega t}$$

$$(-\omega^{2}[m] + [k]) \begin{Bmatrix} Y_{1} \\ Y_{2} \end{Bmatrix} e^{i\omega t} = [\phi]^{T} \begin{Bmatrix} F_{1} \\ 0 \end{Bmatrix} e^{i\omega t}$$

$$(3.27)$$

With the diagonal left-hand matrix, it becomes easy to solve for the Y vector:

$$\begin{Bmatrix} Y_1 \\ Y_2 \end{Bmatrix} = \left(-\omega^2 \begin{bmatrix} \cdots m \\ \cdots \end{bmatrix} + \begin{bmatrix} \cdots k \\ \cdots \end{bmatrix} \right)^{-1} \begin{bmatrix} \phi \end{bmatrix}^T \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix}$$
(3.28)

And obtaining the X vector is a matter of returning to the original transformation of Eqn. 3.25:

$$\begin{cases}
X_1 \\
X_2
\end{cases} = \left[\phi\right] \left(-\omega^2 \begin{bmatrix} \cdots m \\ \cdots \end{bmatrix} + \begin{bmatrix} \cdots k \\ \cdots \end{bmatrix}\right)^{-1} \left[\phi\right]^T \begin{Bmatrix} F_1 \\ 0 \end{Bmatrix}$$
(3.29)

This can be simplified:

$$X = HF (3.30)$$

Where **H** is the frequency response function (FRF) matrix.

Writing out the mode vectors and solving for X_1 results in:

$$X_{1} = \left(\phi_{11} \left(\frac{1}{-\omega^{2} m_{11} + k_{11}}\right) \phi_{12} \left(\frac{1}{-\omega^{2} m_{22} + k_{22}}\right) \left[\begin{pmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{pmatrix}\right] \left\{\begin{matrix} F_{1} \\ 0 \end{matrix}\right\}$$

$$X_{1} = \left(\phi_{11}^{2} \left(\frac{1}{-\omega^{2} m_{11} + k_{11}}\right) + \phi_{12}^{2} \left(\frac{1}{-\omega^{2} m_{22} + k_{22}}\right)\right) F_{1}$$
(3.31)

Recall that the indices of the mode vector components are identified by ϕ_{kr} , where k is the spatial coordinate and r is the mode number. This allows a general definition of the response at the ith degree of freedom (position) to a force at the jth degree of freedom:

$$\frac{X_i}{F_j} = \sum_{r=1}^n \left(\frac{\phi_{ir}\phi_{jr}}{-\omega^2 m_r + k_r} \right)$$
 (3.32)

Where the number of modes n is equal to the number of discrete degrees of freedom.

Returning to the original example and using the mode shapes derived:

$$\frac{X_1}{F_1} = \sum_{r=1}^{2} \left(\frac{\phi_{1r}\phi_{1r}}{-\omega^2 m_r + k_r} \right) = \frac{1}{-\omega^2(2) + 50} + \frac{1}{-\omega^2(2) + 70}$$
(3.33)

A plot of this frequency response function (FRF) as a magnitude and phase angle is shown below:

Some notes about the plot:

- 1. Typically, FRF's are presented as magnitude and phase to indicate how the degree of freedom behaves relative to the force. A zero-phase angle indicates that the response coincides with the force; a 180-degree phase indicates the force is always directed *against* the direction of the motion.
- 2. The magnitude at the natural frequencies of the system (5.0 and 5.9 rad/sec) is infinite. The plot resolution has limited the amplitude.
- 3. This is called a *driving point* FRF, because the point being measured is coincident with the force. A characteristic of a driving point FRF is the antiresonance, seen at approximately 5.5 rad/sec. The FRF for mass 2 does not show a zero amplitude point.

There are two common variations of equation (3.32):

1. The mass-normalized eigenvectors are frequently used in this equation, resulting in a simpler form:

$$\frac{X_i}{F_i} = \sum_{r=1}^n \left(\frac{\hat{\phi}_{ir} \hat{\phi}_{jr}}{-\omega^2 + \omega_r^2} \right) = \sum_{r=1}^n \left(\frac{\hat{\phi}_{ir} \hat{\phi}_{jr}}{-\omega^2 + \lambda_r} \right)$$
(3.34)

The term ω_r is recognized as the r^{th} natural frequency.

Using the specific example above, this becomes:

$$\frac{X_1}{F_1} = \sum_{r=1}^{2} \left(\frac{\hat{\phi}_{1r} \hat{\phi}_{1r}}{-\omega^2 + \omega_r^2} \right) = \frac{\frac{1}{2}}{-\omega^2 + 25} + \frac{\frac{1}{2}}{-\omega^2 + 35}$$
(3.35)

2. If the FRF is obtained from experimental measurements, then it may not be possible to identify the individual mode vector components, so one term is used to describe both:

$$\frac{X_i}{F_j} = \sum_{r=1}^n \left(\frac{\hat{\phi}_{ir} \hat{\phi}_{jr}}{-\omega^2 + \lambda_r} \right) = \sum_{r=1}^n \left(\frac{r A_{ij}}{-\omega^2 + \lambda_r} \right)$$
(3.36)

The term A is called a *residue*, or *modal constant*. The term residue comes from pole-zero terminology where the *zero*th order numerator term is a residue of the function.

Note that we have now bridged analysis with measurement, through the use of the mode shapes. A discrete system can be experimentally measured and its actual parameters determined from the measurements.