# Linear Models for Classification

**Logistic Regression** 

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

# Diagnosing breast cancer biopsies using Logistic Regression

#### Given:

- **Training Data** with known diagnosis
  - 249 benign
  - 149 malignant
- **2 features** from pre-processed images

#### Task:

- - $c_2$ : Benign (**B**)

### Fine needle aspartate biopsy images



 $c_1$ : Malignant (**M**)

 $c_2$ : Benign (**B**)

#### Segmentation of nuclei



#### Features:

#### $x_1$ (concavity\_mean):

Fraction of chords outside nucleus



#### $x_2$ (texture\_mean):

Variance in gray-scale intensities

**Pre-processing** 

## Linear Classification

Use the **training data** to find a **linear decision function** 

$$x_1 w_1 + x_2 w_2 + b = 0$$

to separate the two classes  $c_1 = M$  and  $c_2 = B$ .



## Linear Classification

Use the **training data** to find a **linear decision function** 

$$x_1w_1 + x_2w_2 + b = 0$$

to **separate** the **two classes**  $c_1 = M$  and  $c_2 = B$ .

or equiv. 
$$\mathbf{x}\mathbf{w}=0$$
 where  $\mathbf{x}=\begin{bmatrix}x_1 & x_2 & 1\end{bmatrix}$  feature vector (given) and  $\mathbf{w}=\begin{bmatrix}w_1\\w_2\\b\end{bmatrix}$  weight vector (unknown)

#### Questions we will answer:

Q1. How to deal with samples at the boundary?

**A1:** Predict **probabilities** 
$$0 \le p(y = c_1 | \mathbf{x}) \le 1$$



## Linear Classification

Use the training data to find a linear decision function

$$x_1 w_1 + x_2 w_2 + b = 0$$

to **separate** the **two classes**  $c_1 = M$  and  $c_2 = B$ .

or equiv. 
$$\mathbf{x}\mathbf{w}=0$$
 where  $\mathbf{x}=\begin{bmatrix}x_1 & x_2 & 1\end{bmatrix}$  feature vector (given) and  $\mathbf{w}=\begin{bmatrix}w_1\\w_2\\b\end{bmatrix}$  weight vector (unknown)

#### Questions we will answer:

**Q1.** How to deal with samples at the boundary?

**A1:** Predict probabilities  $0 \le p(y = c_1 | \mathbf{x}) \le 1$ 

**Q2.** How to **compare different** functions?

A2: log-loss

Q3. How to determine the best function?

A3: Use optimization

**Q4.** How to assess the classifier performance?

A4: Quality metrics



**Q1.** How to deal with uncertain predictions?

# Predict probabilities.

The logistic sigmoid:

$$p(y = c_1 | \mathbf{x}) = \pi(\mathbf{x}\mathbf{w})$$
$$= \frac{1}{1 + \exp(-\mathbf{x}\mathbf{w})}$$

By symmetry:

$$p(y = c_2 | \mathbf{x}) = 1 - \pi(\mathbf{x}\mathbf{w})$$



**Q2.** How to **compare different** functions?

# The log-loss function

log-error function for a single sample

$$-\ln p(y = c_{true}|\mathbf{x})$$

- Large, when assigning low probability
- Small, when assigning high probability
- log-loss function for training data set
  - Sum error functions for all data points

$$loss = -\sum_{n \in c_1} \ln(\pi(\mathbf{x}_n \mathbf{w})) - \sum_{n' \in c_2} \ln(1 - \pi(\mathbf{x}_{n'} \mathbf{w}))$$



# Objective function





## Steepest descent

$$L(\mathbf{w}) = -\sum_{n \in c_1} \ln(\pi(\mathbf{x}_n \mathbf{w})) - \sum_{n' \in c_2} \ln(1 - \pi(\mathbf{x}_{n'} \mathbf{w})) + \lambda \cdot 0.5 \cdot \sum_{d=1}^{D} w_d^2$$

$$loss$$

$$regularizer$$

Gradient: 
$$\nabla L\left(\mathbf{w}^{t}\right) = \begin{bmatrix} \frac{\partial L}{\partial w_{1}^{t}} \\ \vdots \\ \frac{\partial L}{\partial w_{D}^{t}} \end{bmatrix} = \underbrace{\mathbf{X}^{T}\left(\pi\left(\mathbf{X}\mathbf{w}^{t}\right) - I\left(\mathbf{y} == c_{1}\right)\right)}_{\nabla loss\left(\mathbf{w}^{t}\right)} + \underbrace{\lambda \cdot \mathbf{w}^{t}}_{\nabla regularizer\left(\mathbf{w}^{t}\right)}$$

direction of largest increase in  $L(\mathbf{w}^t)$ 

#### **Update rule:**

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla L(\mathbf{w}^t)$$
 for a small learning rate  $\alpha$  (here,  $10^{-4}$ )



# Steepest descent

$$L(\mathbf{w}) = -\sum_{n \in c_1} \ln(\pi(\mathbf{x}_n \mathbf{w})) - \sum_{n' \in c_2} \ln(1 - \pi(\mathbf{x}_{n'} \mathbf{w})) + \lambda \cdot 0.5 \cdot \sum_{d=1}^{D} w_d^2$$

$$loss$$
regularizer

Gradient: 
$$\nabla L\left(\mathbf{w}^{t}\right) = \begin{bmatrix} \frac{\partial L}{\partial w_{1}^{t}} \\ \vdots \\ \frac{\partial L}{\partial w_{D}^{t}} \end{bmatrix} = \underbrace{\mathbf{X}^{T}\left(\pi\left(\mathbf{X}\mathbf{w}^{t}\right) - I\left(\mathbf{y} == c_{1}\right)\right)}_{\nabla loss\left(\mathbf{w}^{t}\right)} + \underbrace{\lambda \cdot \mathbf{w}^{t}}_{\nabla regularizer\left(\mathbf{w}^{t}\right)}$$

direction of largest increase in  $L(\mathbf{w}^t)$ 

#### **Update rule:**

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla L(\mathbf{w}^t)$$

 $\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla L(\mathbf{w}^t)$  for a small learning rate  $\alpha$  (here,  $10^{-4}$ )



## Account for the curvature!

$$L(\mathbf{w}) = -\sum_{n \in c_1} \ln(\pi(\mathbf{x}_n \mathbf{w})) - \sum_{n' \in c_2} \ln(1 - \pi(\mathbf{x}_{n'} \mathbf{w})) + \lambda \cdot 0.5 \cdot \sum_{d=1}^{D} w_d^2$$

$$loss$$

$$regularizer$$

#### **Hessian:**

$$\mathbf{H}_{\mathbf{w}^{t}} = \begin{bmatrix} \partial^{2}L/\partial^{2}w_{1} & \partial^{2}L/\partial w_{1}\partial w_{2} & \dots & \partial^{2}L/\partial w_{1}\partial w_{D} \\ \vdots & \ddots & \vdots \\ \partial^{2}L/\partial w_{D}\partial w_{1} & \partial^{2}L/\partial w_{D}\partial w_{2} & \dots & \partial^{2}L/\partial^{2}w_{D} \end{bmatrix}$$
$$= \underbrace{\left(\mathbf{X}\operatorname{diag}\left(\pi\left(\mathbf{X}\mathbf{w}^{t}\right)\cdot\left(\mathbf{1}-\pi(\mathbf{X}\mathbf{w}^{t})\right)\right)^{T}\mathbf{X}}_{\mathbf{H}_{\mathbf{w}^{t}}(\operatorname{loss})}$$

#### **Update rule:**

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \mathbf{H}_{\mathbf{w}^t}^{-1} \nabla L(\mathbf{w}^t)$$
 Newton-Raphson algorithm



## Account for the **curvature**!

$$L(\mathbf{w}) = -\sum_{n \in c_1} \ln(\pi(\mathbf{x}_n \mathbf{w})) - \sum_{n' \in c_2} \ln(1 - \pi(\mathbf{x}_{n'} \mathbf{w})) + \lambda \cdot 0.5 \cdot \sum_{d=1}^{D} w_d^2$$

$$loss$$

$$regularizer$$

#### **Hessian:**

$$\mathbf{H}_{\mathbf{w}^{t}} = \begin{bmatrix} \partial^{2}L/\partial^{2}w_{1} & \partial^{2}L/\partial w_{1}\partial w_{2} & \dots & \partial^{2}L/\partial w_{1}\partial w_{D} \\ \vdots & \ddots & \vdots \\ \partial^{2}L/\partial w_{D}\partial w_{1} & \partial^{2}L/\partial w_{D}\partial w_{2} & \dots & \partial^{2}L/\partial^{2}w_{D} \end{bmatrix}$$

$$= \underbrace{\left(\mathbf{X}\operatorname{diag}\left(\pi\left(\mathbf{X}\mathbf{w}^{t}\right)\cdot\left(\mathbf{1}-\pi(\mathbf{X}\mathbf{w}^{t})\right)\right)^{T}\mathbf{X}}_{\mathbf{H}_{\mathbf{w}^{t}}\left(\operatorname{regularizer}\right)} + \underbrace{\lambda\cdot\mathbf{I}_{D\times D}}_{\mathbf{H}_{\mathbf{w}^{t}}\left(\operatorname{regularizer}\right)}$$

#### **Update rule:**

$$\mathbf{w}^{t+1} = \mathbf{w}^{t} - \mathbf{H}_{\mathbf{w}^{t}}^{-1} \nabla L(\mathbf{w}^{t})$$
 Newton-Raphson algorithm



#### **Q4.** How to evaluate the model?

# Quality measures

**accuracy** = 
$$\frac{1}{N}$$
 # correct

$$\mathbf{recall} = \frac{TP}{TP + FN}$$

$$\mathbf{precision} = \frac{TP}{TP + FP}$$

|          | <b>Predicted Positive</b> | Predicted Negative      |
|----------|---------------------------|-------------------------|
| Positive | True Positive ( $TP$ )    | False Negative ( $FN$ ) |
| Negative | False Positive ( $FP$ )   | True Negative ( $TN$ )  |

- Accept  $p(y_1|\mathbf{x}) < 0.5$  to increase sensitivity
- Require  $p(y_1|\mathbf{x})>0.5$  to increase specificity



#### **Q4.** How to evaluate the model?

## train vs. test

**accuracy** = 
$$\frac{1}{N}$$
 # correct

$$\mathbf{recall} = \frac{TP}{TP + FN}$$

$$\mathbf{precision} = \frac{TP}{TP + FP}$$

#### 398 training samples



predicted diagnosis
accuracy 90%
recall 83%
precision 90%





## train vs. test

**accuracy** = 
$$\frac{1}{N}$$
 # correct

$$\mathbf{recall} = \frac{TP}{TP + FN}$$

$$\mathbf{precision} = \frac{TP}{TP + FP}$$

#### 398 training samples



predicted diagnosis
accuracy 90%
recall 83%
precision 90%



#### 171 test samples





#### **Observation:**

- Lower performance on test data
- Overfitting to training data
- Test errors yield **unbiased** performance estimates

## Recap:

Diagnosing breast cancer using Logistic Regression

#### **Logistic Regression model**

- Linear classification
- Predicting probabilities







#### **Model fitting**

- log-loss
- Optimizing the log-loss



#### **Model evaluation**

- Precision vs. recall
- train vs. test

# Predicted PositivePredicted NegativePositiveTrue Positive (TP)False Negative (FN)NegativeFalse Positive (FP)True Negative (TN)