

Microwave imaging for breast cancer detection: A non-contacting approach

Ihsan Haidari Joel Josefsson Märta Krönström Dennis Landré Filip Lindhe Jiantao Shen Samuel Wågbrant

Motivation

- In Sweden breast cancer is the most common form of cancer among women
- Statistics for women in Sweden 2021:
 - 11 327 diagnosed
 - Incidence of 218,9
 - Prevalence was 122 166
 - Number of deaths 1 326
 - Since 1980 the number of cases has been increasing every year
- It is important to develop safe and comfortable methods for early detection

Breast cancer screening methods

X-ray mammography:

- + Primary method
- + High spatial resolution
- + Live imaging during biopsies
- Uncomfortable/painful breast compression
- Ionizing radiation
- Accuracy of result depending on radiologist experience
- Difficulty in distinguishing between tissues due to low contrast

2023-12-14

Microwave imaging (MWI)

- + Possible complement for mammography
- Early detection
- Non-contacting
- Non-ionizing radiation
- + Fairly high contrast among different tissues
- No widely adopted systems for routine clinical use
- Many years of research + engineering
- Signal nature
- Computationally expensive

Incident field

Scattered field 2023-12-14

breast phantom

- Electromagnetic microwaves
- Microwaves penetrate, scatter, and reflect within the breast
- Scattered and reflected signals are received
- An internal breast image is constructed
- Dielectric properties of tumorous breast tissue differ from healthy tissue

Resulting images

Our project

Receiver

- Microwave sensors for breast cancer detection
- Developed by researchers at MDU
- Goal: Automated measurements on a simple breast phantom with known/unknown geometry
- Problem: Need to find a way to move the microwave sensors automatically to various positions around the breast
- Laser-based surface estimation for unknown, irregular geometry
- Collaborative robot:
 - ✓ Different from current approaches
 - ✓ Safe
 - ✓ Flexible
 - ✓ High accuracy and repeatability
- Second iteration

Transmitter

Last year's iteration

System overview

Robot arm Sender platform

MATLAB GUI

Hardware – System overview

Frame

2023-12-14

- Frame
- Single-arm YuMi with controller

- Frame
- Single-arm YuMi with controller
- Breast phantom

- Frame
- Single-arm YuMi with controller
- Breast phantom
- Transmitter platform

universitet

- Frame
- Single-arm YuMi with controller
- Breast phantom
- Transmitter platform
- Robot end effector

2023-12-14

- Frame
- Single-arm YuMi with controller
- Breast phantom
- Transmitter platform
- Robot end effector
- Control box

- Frame
- Single-arm YuMi with controller
- Breast phantom
- Transmitter platform
- Robot end effector
- Control box
- Network analyzer

Software components

Safety

YuMi movement

Software – YuMi Positioning

- Main control system using a Raspberry Pi
- Raspberry Pi determines the position of the YuMi
- Network Analyzer samples
 Microwave data once Raspberry
 Pi confirms the position of the
 YuMi

2023-12-14

Positioning

Safety

YuMi movement

2023-12-14

1. Simulation

Position and Safety

High precision

Software – Position and Safety

- Done with *RobotStudio* and *Python*
- Test system functionality before deployment
- Create logical zones to avoid collisions

Positioning

Safety

YuMi movement

1. Simulation

Position and Safety

2. Physical YuMi

Position and Safety

Max Error: 10.75 mm

Low precision

Calibration

Software – YuMi Calibration

- Done by creating a new user frame
 - 1. Measure three points in the ceiling
 - 2. Compute the difference in height of the of the three points
 - 3. Rotate the three axes of the user frame to adjust for the measured error

2023-12-14

1. Simulation

Position and Safety

Max Error: 0.42 mm

High precision

2. Physical YuMi

Position and Safety

Max Error: 10.75 mm

Low precision

Positioning

Safety

YuMi movement

Software components

Software - Laser

- OptoNCDT1402
 - 50 150 mm
 - Serial
- Shoots laser
- Sensor at an angle
- Triangulation
- Two bytes
- Concatenate to 14-bit number
- Convert to a distance

Software - Laser

Software – Robot movement

Software – Robot movement

Software – Scanning procedure

- Moves in User Frame
- Distance measurement
- Project along User Frame Z-axis
- Transform to Laser TCP
- Repeat

Software – Scanning procedure

Software – Point cloud

Software – Point cloud

Software – Surface reconstruction

Surface reconstruction - evaluation

- Ball pivoting
 - Ball with fixed radius
 - Triangles
 - Not watertight
- Alpha shape
 - Ball with flexible radius
 - Triangles
 - Not watertight

Ball pivoting

Alpha shape

Surface reconstruction - evaluation

- New metric
- Surface reconstruction inside known object
- Measure distance between points

Surface reconstruction - Result

Software – Surface reconstruction

Software components

Software – Microwave Measurements

Software components

Software – Graphical User Interface (GUI) result

Software components

Conclusion and future work

- Goals:
 - Automated measurements on a breast phantom
 - **☑** With **known** geometry
 - With unknown geometry
 - Distance measurements using a laser
 - Surface reconstruction from the laser-based measurements
 - Microwave measurements based on the surface reconstruction
 - GUI to control the measurements and visualize the results
- System can be used to acquire more data
- The data can be processed, and images can be reconstructed to potentially find tumors

Thank you for listening!

