Technische Spezifikation im fachübergreifenden Projekt

Saugroboter

<u>Teammitglieder</u>: Leila Oppermann, Ala Al-Khazzan, Leon Wagner, Marc Zimmermann

Betreuer: Prof. Dr.-Ing. Christian Müller

<u>Produkt</u>: Saugroboter

Ort, Datum: Berlin, 02.08.2022

Inhaltsverzeichnis

Ta	abell	enverz	zeichnis	III
A	bbilc	dungsv	verzeichnis	IV
1	Pro	zessül	berblick	1
	1.1	Fachli	icher Workflow	2
	1.2	Techr	nischer Workflow	3
2	Tec	hnisch	ne Spezifikation SW	4
	2.1	Überb	olick Komponenten	4
	2.2	Klass	endiagramm	6
	2.3	Besch	nreibung der Implementierung	7
		2.3.1	Funktion 1: Saugprozess starten	7
		2.3.2	Funktion 2: Akkustand überprüfen	7
		2.3.3	Funktion 3: Akku aufladen	8
		2.3.4	Funktion 4: Saugroboter einschalten	8
		2.3.5	Funktion 5: Saugroboter ausschalten	8
	2.4	Syste	m-Infrastruktur	9
3	Sch	altplar	n	10
4	Tec	hnisch	ne Spezifikation Konstruktion	11
	4.1	Strukt	turstückliste	11
	4.2	Baugr	ruppen	12
		•	Iteile	
5	Offe	ene Fra	agen	24
6	Mo	dulahh	ängigkeiten	25

Tabellenverzeichnis

Tabelle 1: Verzeichnis vorhandener Dokumente	V
Tabelle 2: Softwarekomponenten	5
Tabelle 3: Funktion 1 - Saugprozess starten	7
Tabelle 4: Funktion 2 - Akkustand überprüfen	7
Tabelle 5: Funktion 3 - Akku aufladen	8
Tabelle 6: Funktion 4 - Saugroboter einschalten	8
Tabelle 7: Funktion 5 - Saugroboter ausschalten	8
Tabelle 8: Bauteile	11
Tabelle 9: Baugruppen	11
Tabelle 10: Modulabhängigkeiten	26

Abbildungsverzeichnis

Abbildung 1: Fachlicher Workflow	2
Abbildung 2: Technischer Workflow	3
Abbildung 3: Komponentendiagramm	4
Abbildung 4: Klassendiagramm	6
Abbildung 5: System-Infrastruktur	9
Abbildung 6: Schaltplan	10
Abbildung 8: Baugruppe 01 - Saugroboter	12
Abbildung 9: Baugruppe 02 - Saugbehälter	13
Abbildung 10: Einzelteil 03 - Bumper	14
Abbildung 11: Einzelteil 10: Button	15
Abbildung 12: Einzelteil 04 - Buttonsupport	16
Abbildung 13: Einzelteil 05 - Auffangbehälter	17
Abbildung 14: Einzelteil 06 - Auffangbehälterdeckel	18
Abbildung 15: Einzelteil 07 - Filtergitter	19
Abbildung 16: Einzelteil 12 - Filtergitterdeckel	20
Abbildung 17: Einzelteil 09 - Sensorhalterung	21
Abbildung 18: Einzelteil 02 - Obere Karosserie	22
Abbildung 19: Einzelteil 01 - Untere Karosserie	23

Verzeichnis vorhandener Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden

Tabelle 1: Verzeichnis vorhandener Dokumente

Dokument	Autor	Datum
Lastenheft_Gruppe1.pdf	Leila, Ala, Leon, Marc	26.04.2022
Lastenheft_Gruppe1_CM.pdf (Kommentiert)	Leila, Ala, Leon, Marc	05.05.2022
	+ Christian Müller	
Pflichtenheft_Gruppe1.pdf	Leila, Ala, Leon, Marc	26.04.2022
Backlog_Gruppe1.xlsx	Leila, Ala, Leon, Marc	24.05.2022
Projektplan_Gruppe1.mpp (Version 1.0)	Leon	24.05.2022
G1_Pflichtenheft_Gruppe1_CM.pdf	Leila, Ala, Leon, Marc	30.05.2022
	+ Christian Müller	
Technische Spezifikation (Version 1.0)	Leila, Ala, Leon, Marc	14.06.2022
G1_Technische_Spezifika-	Leila, Ala, Leon, Marc	27.06.2022
tion_Gruppe1_S1_CM.pdf	+ Christian Müller	
Technische Spezifikation (Version 2.0)	Leila, Ala, Leon, Marc	12.07.2022

1 Prozessüberblick

Die Workflows stellen dar, wie das Programm abläuft (siehe Abbildung 2), mithilfe dessen der Saugroboter den Raum reinigt und wie der Roboter vom User bedient wird (siehe Abbildung 1).

1.1 Fachlicher Workflow

Abbildung 1: Fachlicher Workflow

1.2 Technischer Workflow

Abbildung 2: Technischer Workflow

2 Technische Spezifikation SW

2.1 Überblick Komponenten

Nachfolgend ist das Komponentendiagram des Saugroboters und dessen Beschreibung dargestellt (Abbildung 3 und Tabelle 1).

Abbildung 3: Komponentendiagramm

Tabelle 2: Softwarekomponenten

SW-Komponente	Erfasste Funktion aus dem Pflichtenheft	
Antrieb	F4: Saugroboter einschalten F5: Saugroboter ausschalten	
Batterie	F2: Akkustand überprüfen F3: Akku aufladen	
LED	F2: Akkustand überprüfen	
Motor	F1: Saugprozess starten	
Sensoren	F1: Saugprozess starten	

2.2 Klassendiagramm

In Abbildung 4 ist das Klassendiagramm der Software aufgezeichnet.

Abbildung 4: Klassendiagramm

2.3 Beschreibung der Implementierung

2.3.1 Funktion 1: Saugprozess starten

Tabelle 3: Funktion 1 - Saugprozess starten

#	Komponentendetail	Erforderliche Arbeiten
		Steuert die Bewegung des Saugroboters (vorwärts, links, rechts, rückwärts) oder stoppt den Motor. Input: Motor-PINs und Volt-Signal
Т2	Sensoren	Es wird die Entfernung zu einem Objekt bestimmt oder eine Kollision durch den Bump-Sensor detektiert. Input: Sensor-PINs Output: Abstand zu Objekt und Detektion der Kollision

2.3.2 Funktion 2: Akkustand überprüfen

Tabelle 4: Funktion 2 - Akkustand überprüfen

#	Komponentendetail	Erforderliche Arbeiten	
Т3	Batterie	Hier wird der Ladezustand der Batterie erfasst und bei niedriger Akkukapazität wird dies auch gemeldet. Input: Batterie Ladezustand Output: Niedriger Akku: ja oder nein	
Т4	LED	Hier wird je nach Akkustand die LED entweder grün (genug Energie) oder rot (Energiestand gering) leuchten. Input: Niedriger Akku: ja oder nein Output: LED leuchtet grün oder rot	

2.3.3 Funktion 3: Akku aufladen

Tabelle 5: Funktion 3 - Akku aufladen

#	Komponentendetail	Erforderliche Arbeiten	
		Wenn der Akku vom Benutzer aufgeladen wird, so muss	
T5	Batterie	auch hier wie in Funktion 2 bei Start des Programms der	
		neue Akkustand abgespeichert werden.	

2.3.4 Funktion 4: Saugroboter einschalten

Tabelle 6: Funktion 4 - Saugroboter einschalten

#	Komponentendetail	Erforderliche Arbeiten
Т6	Antrieb	Sobald der An/Aus-Schalter zum Einschalten vom Benutzer getätigt wird, wird der Stromkreis geschlossen, sodass die Aktoren und Sensoren mit Strom versorgt sind. Es werden alle nötigen Instanzen für den Saug-Algorithmus erzeugt.

2.3.5 Funktion 5: Saugroboter ausschalten

Tabelle 7: Funktion 5 - Saugroboter ausschalten

#	Komponentendeta	il Erforderliche Arbeiten
		Sobald der An/Aus-Schalter zum Ausschalten vom Be-
T	7 Antrieb	nutzer getätigt wird, wird die Stromversorgung unter-
1/	Antheo	brochen. Dadurch wird auch das Programm auf dem
		Arduino beendet.

2.4 System-Infrastruktur

Nachfolgend ist die System-Infrastruktur des Saugroboters dargestellt (siehe Abbildung 5).

Abbildung 5: System-Infrastruktur

3 Schaltplan

Nachfolgend ist der Schaltplan (Abbildung 6) der Hardwarekomponenten dargestellt.

Abbildung 6: Schaltplan

4 Technische Spezifikation Konstruktion

In dieser Konstruktion besteht die Baugruppe "Saugroboter" aus der Baugruppe "Saugbehälter" und dem Bauteil "Bumper_2". Die restlichen Bauteile werden im Zusammenhang mit den noch kommenden Elektrobauteilen (für Sprint 2) benötigt, weshalb Sie in der Baugruppe "Saugroboter" noch nicht vorhanden sind.

4.1 Strukturstückliste

In Abbildung 8 befindet sich die Stückliste der Bauteile und in Abbildung 9 die Stückliste der Baugruppen. Die Baugruppe Saugroboter ist allen Bauteilen und anderen Baugruppen übergeordnet.

Der Rohstoff, der für die Bauteile verwendet wird, ist PLA (Polylactide).

Tabelle 8: Bauteile

Objekt	Anzahl	Bauteilnummer	Baugruppennummer
Vaccum_Robot_bottom	1	01	1
Vaccum_Robot_top_9	1	02	1
Bumper_2	1	03	1
ButtonSupport	1	04	1
Con_3_bottom_58mm	1	05	1.1
Con_3_Top	1	06	1.1
FilterCover1.1	1	07	1.1
ButtonSupport_2	1	08	1
Sharp_Support	2	09	1
Button_1mmbasewidth	1	10	1
Button_2mmbasewidth	1	11	1
FilterTap	1	12	1.1

Tabelle 9: Baugruppen

Objekt	Anzahl	Baugruppennummer
Baugruppe_Saugroboter	1	1
Baugruppe_Saugbehälter	1	1.1

4.2 Baugruppen

In Abbildung 8 und 9 ist die gesamte Baugruppe des Saugroboters dargestellt.

Abbildung 7: Baugruppe 01 - Saugroboter

Abbildung 8: Baugruppe 02 - Saugbehälter

4.3 Einzelteile

Abbildung 9: Einzelteil 03 - Bumper

Abbildung 10: Einzelteil 10: Button

Abbildung 11: Einzelteil 04 - Buttonsupport

Abbildung 12: Einzelteil 05 - Auffangbehälter

Abbildung 13: Einzelteil 06 - Auffangbehälterdeckel

Abbildung 14: Einzelteil 07 - Filtergitter

Abbildung 15: Einzelteil 12 - Filtergitterdeckel

Abbildung 16: Einzelteil 09 - Sensorhalterung

Abbildung 17: Einzelteil 02 - Obere Karosserie

Abbildung 18: Einzelteil 01 - Untere Karosserie

Offene Fragen

#	Issue	Status	Owner	Deadline
1	keine	-	Müller	-

6 Modulabhängigkeiten

Die Abhängigkeiten der Hardwaremodule voneinander sind im Folgenden (siehe Tabelle 8, Seite 26) tabellarisch dargestellt. Es wird das Modul benannt, die Anzahl der Abhängigkeiten angegeben sowie die Module genannt, zu denen die Abhängigkeit besteht. Des Weiteren wird die Art der Abhängigkeit kurz benannt.

Tabelle 10: Modulabhängigkeiten

#	Name	Anzahl	Abhängig von
1	Arduino Uno Board	1	 Stromversorgung der Module Stromversorgung durch Akku steuert und regelt die Sensoren & Aktoren Ein- und Ausschalter aktiviert /deaktiviert Arduino
2	IRF520 MOSFET Driver Module	2	Steuert MOSFET für Motor über Ardu- ino an
3	H-bridge L298 Dual Motor Driver	2	Ansteuerung des Motors über Arduino
4	Micro Metall Getriebemotor HP	4	 MOSFET & Motortreiber regeln Strom & Spannung & Kommunikation mit Arduino Arduino gibt Signale zu Start, Stopp & Geschwindigkeit
5	Ventilator AVC BA10033B12G	2	Arduino versorgt mit 3 V & gibt Signal zum Ein- und Ausschalten
6	IR-Bereichs Sensor GP2Y0A41SK0F (4 – 30 cm)	2	Arduino versorgt mit 3 V und nimmt Daten entgegen
7	ZIPPY Compact 1.300 mAh Lipo Pack	1	Netzteil versorgt mit Strom
8	Filter / Auffangbehälter	2	 Ventilator erzeugt Luftstrom, der Parti- kel in Filter gibt, User (zum Wechseln des Filters)
9	Pushbutton	2	Akku, Arduino -> registriert Hinder- nisse, die Infrarot-Sensor nicht sehen kann & gibt Information an Arduino
10	Ein/Aus Schalter	1	Akku aufgeladen