HOMEWORK 1

SAI SIVAKUMAR

Show, if $s \in \mathbb{Q}$, that $s^3 \neq 5$.

Proof. Let $s \in \mathbb{Q}$, and assume via contradiction that $s^3 = 5$. We cannot have that $s \leq 0$, since non-positive quantities cubed could not produce 5, as 5 is positive. Thus s must be a strictly positive rational number.

Since s is a positive rational number, there exists $n, m \in \mathbb{N}$ such that we may write s = n/m, where without loss of generality we may also choose n and m so that gcd(n, m) = 1.

Then since $s^3 = n^3/m^3 = 5$, $n^3 = 5m^3$, and from the definition of divisibility $5 \mid n^3$. Since 5 is a prime number, we can use the fact that integers have unique prime factorizations to find that $5 \mid n$, so that there exists $k \in \mathbb{Z}$ such that 5k = n. So then $n^3 = 125k^3 = 5m^3$ implies that $25k^3 = m^3$, from which we find that $25 \mid m^3$. But $5 \mid 25$, and because divisibility is transitive, $5 \mid m^3$ and like before we find that $5 \mid m$. We have arrived at a contradiction, since $\gcd(n,m) \geq 5$.