Lecture 11 The MOS Transistor as an Amplifier – part II

Low-frequency MOS small signal "circuit" model

Capacitors are short for low fre signal when draw the equivalent circuit.

The internal capacitance and high fre model

- Internal capacitances
 - > The gate capacitive effect
 - Triode region
 - Saturation region
 - Cut-off region
 - Overlap capacitance
 - > The junction capacitances
 - Source-body depletion-layer capacitance
 - Drain-body depletion-layer capacitance
- ☐ High frequency model

The gate capacitive effect

MOSFET operates at triode region

$$C_{gs} = C_{gd} = \frac{1}{2}WLC_{ox}$$

MOSFET operates at saturation region

$$\begin{cases} C_{gs} = \frac{2}{3} WLC_{ox} \\ C_{gd} = 0 \end{cases}$$

MOSFET operates at cutoff region

$$\begin{cases} C_{gs} = C_{gd} = 0 \\ C_{gb} = WLC_{ox} \end{cases}$$

Overlap capacitance

- Overlap capacitance results from the fact the source and drain diffusions extend slightly under the gate oxide.
- ightharpoonup The expression for overlap capacitance $C_{ov} = WL_{ov}C_{ox}$
- ightharpoonup Typical value $L_{ov} = 0.05 0.1L$
- This additional component should be added to C_{gs} and C_{gd} in all preceding formulas

The junction capacitances

Source-body depletion-layer capacitance

$$C_{sb} = \frac{C_{sb 0}}{\sqrt{1 + \frac{V_{SB}}{V_o}}}$$

Drain-body depletion-layer capacitance

$$C_{db} = \frac{C_{db \ 0}}{\sqrt{1 + \frac{V_{DB}}{V_o}}}$$

High-frequency model

High-frequency model

The equivalent circuit model with C_{db} neglected (to simplify analysis)

The MOSFET unity-gain frequency

Current gain

$$\frac{I_o}{I_i} = \frac{g_m}{s(C_{gs} + C_{gd})}$$

Unity-gain frequency

$$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd})}$$

 $f_T = \frac{g_m}{2\pi (C_{ss} + C_{sd})}$ Frequency at which magnitude the short-circuit current gain of Frequency at which magnitude of CS configuration becomes 1

$$f_T \sim 5 - 50 \; GHz$$

Summary of MOSFET high-frequency model

Table 9.1 The MOSFET High-Frequency Model

Model

Model Parameters

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} |V_{OV}| = \sqrt{2\mu_{n} C_{ox} \frac{W}{L}} I_{D} = \frac{2I_{D}}{|V_{OV}|}$$

$$C_{sb} = \frac{C_{sb0}}{\sqrt{1 + \frac{|V_{SB}|}{V_{0}}}}$$

$$g_{mb} = \chi g_{m}, \quad \chi = 0.1 \text{ to } 0.2$$

$$C_{db} = \frac{C_{db0}}{\sqrt{1 + \frac{|V_{DB}|}{V_{0}}}}$$

$$C_{gs} = \frac{2}{3} W L C_{ox} + W L_{ov} C_{ox}$$

$$C_{gd} = W L_{ov} C_{ox}$$

$$f_{T} = \frac{g_{m}}{2\pi (C_{gs} + C_{gd})}$$

Example

For an *n*-channel MOSFET with $t_{ox}=10$ nm, L=1.0 µm, W=10 µm, $L_{ov}=0.05$ µm, $C_{sb0}=C_{db0}=10$ fF, $V_0=0.6$ V, $V_{SB}=1$ V, and $V_{DS}=2$ V, calculate the following capacitances when the transistor is operating in saturation: C_{ox} , C_{ov} , C_{gs} , C_{gd} , C_{sb} , and C_{db} .

Ans. 3.45 fF/µm²; 1.72 fF; 24.7 fF; 1.72 fF; 6.1 fF; 4.1 fF

Calculate f_T for the n-channel MOSFET whose capacitances were found as above eration at $100~\mu A$, and that $k_n'=160~\mu A/V^2$.

Frequency Response of a CS amplifier

DC-coupled CS amplifier

Bandwidth is the frequency range over which gain is flat. Here, bandwidth is f_H for DC-coupled CS amplifier.

At high frequencies, gain drops due to effects of internal capacitances of the device

Frequency Response of a CS amplifier (cont'd)

Bandwidth is the frequency range over which gain is flat. Here, bandwidth is f_H - f_L for AC-coupled CS amplifier.

three frequency bands of interest

At low frequency, gain drops due to impedance from coupling capacitances increasing for low frequencies

Low Frequency Response

Analysis of the CS amplifier to determine its low-frequency transfer function. For simplicity, $r_{\rm o}$ is neglected

Low Frequency Response

low-frequency magnitude response of a CS amplifier for which the three break frequencies are sufficiently separated for their effects to appear distinct.

Example

We wish to select appropriate values for the coupling capacitors C_{c1} and C_{c2} and the bypass capacitor C_S for a CS amplifier for which $R_G = 4.7 \text{ M}\Omega$, $R_D = R_L = 15 \text{ k}\Omega$, $R_{\text{sig}} = 100 \text{ k}\Omega$, and $g_m = 1 \text{ mA/V}$. It is required to have f_L at 100 Hz and that the nearest break frequency be at least a decade lower.

Solution:

We select CS so that

$$f_{P2} = \frac{1}{2\pi (C_S/g_m)} = f_L$$

Thus,

$$C_S = \frac{g_m}{2\pi f_L} = \frac{1 \times 10^{-3}}{2\pi \times 100} = 1.6 \ \mu\text{F}$$

For $f_{P1} = f_{P3} = 10$ Hz, we obtain

$$10 = \frac{1}{2\pi C_{C1}(0.1 + 4.7) \times 10^6}$$

which yields

$$C_{C1} = 3.3 \text{ nF}$$

$$C_{C1} = 3.3 \text{ nF}$$
 and $10 = \frac{1}{2\pi C_{C2}(15+15)\times 10^3}$

which results in

$$C_{C2} = 0.53 \, \mu \text{F}$$

High Frequency Response

High Frequency Response

equivalent circuit with C_{gd} replaced at the input side with the equivalent capacitance C_{eq}

$$C_{\text{in}} = C_{gs} + C_{eq} = C_{gs} + C_{gd}(1 + g_m R_L')$$

$$f_H = \frac{1}{2\pi C_{\rm in} R'_{\rm sig}}$$

frequency response of a low-pass single-time-constant circuit.

Example

Find the midband gain A_M and the upper 3-dB frequency f_H of a CS amplifier fed with a signal source having an internal resistance $R_{\rm sig}=100~{\rm k}\Omega$. The amplifier has $R_G=4.7~{\rm M}\Omega$, $R_D=R_L=15~{\rm k}\Omega$, $g_m=1~{\rm mA/V}$, $r_o=150~{\rm k}\Omega$, $C_{gs}=1~{\rm pF}$, and $C_{gd}=0.4~{\rm pF}$.

Solution:
$$A_M = -\frac{R_G}{R_G + R_{\text{sig}}} g_m R_L'$$

where
$$R'_L = r_o \| R_D \| R_L = 150 \| 15 \| 15 = 7.14 \text{ k}\Omega$$
.
 $g_m R'_I = 1 \times 7.14 = 7.14 \text{ V/V}$

Thus,
$$A_M = -\frac{4.7}{4.7 + 0.1} \times 7.14 = -7 \text{ V/V}$$

The equivalent capacitance, C_{eq} , is found as $C_{eq} = (1 + g_m R_L) C_{gd}$ = $(1 + 7.14) \times 0.4 = 3.26 \text{ pF}$

The total input capacitance C_{in} can be now obtained as

$$C_{\text{in}} = C_{gs} + C_{eq} = 1 + 3.26 = 4.26 \text{ pF}$$

The upper 3-dB frequency f_H is found from

$$f_H = \frac{1}{2\pi C_{\text{in}}(R_{\text{sig}} \parallel R_G)} = \frac{1}{2\pi \times 4.26 \times 10^{-12} (0.1 \parallel 4.7) \times 10^6} = 382 \text{ kHz}$$

Differential amplifier

Disadvantages of single ended/stage transistor amplifier:

- □ Bias and gain sensitive to device parameters (μC_{ox} , V_T); sensitivity can be mitigated but often paying price in performance or cost (gain, power, device area, etc.)
- □ Vulnerable to ground and power-supply noise (in dense IC's there is cross-talk, 60 Hz coupling, substrate noise, etc.)
- Many signal sources exhibit "common-mode" drift that gets amplified.

Differential amplifier

How to address the disadvantages of single-ended amplifier?

Represent signal by difference between two voltages:

Differential amplifier:

amplifies difference between two voltages rejects components common to both voltages

Differential amplifier!

Single-Ended and Differential Operation

Single-ended signal

Signal measured with respect to a fixed potential (e.g. gnd)

Differential signal

Signal measured between two nodes that have equal and opposite signal excursions around a fixed potential

Dotted line -> common-mode level

Common Mode

$$v_c = \frac{v_1 + v_2}{2}$$

Differential Mode

$$v_d = v_2 - v_1$$

Basic Differential Pair

- ➤ Two identical transistor M₁ and M₂, whose sources are connected together, are biased by a constant current source I_{SS}, which makes I_{D1} + I_{D2} independent of V_{in,CM}
- If $V_{in1} = V_{in2}$, the bias current of both M_1 and M_2 is $I_{SS}/2$ and the output CM level is $V_{DD} R_D I_{SS}/2$
- Assume that M₁ and M₂ are always biased in the saturation region.

Differential Pair – Qualitative Analysis

- □ Assume $-\infty < V_{in1} V_{in2} < \infty$
- □ Case 1: V_{in1} more –ve than V_{in2} M_1 off, M_2 on -> I_{D2} = I_{SS}
 - $V_{out1} = V_{DD}$
 - $V_{out2} = V_{DD} I_{SS}R_{D2}$

- Case 2: As V_{in1} brought closer to V_{in2}
 - M₁ gradually turns on
 - Draws a fraction of I_{SS} from R_{D1} (I_{SS}=I_{D1}+I_{D2}), lowering V_{out1}
- Eventually, V_{in1} more +ve than V_{in2}

 I_{SS} flows through M_1 (on), none through M_2 (off)

$$V_{out2} = V_{DD}$$

$$V_{out1} = V_{DD} - I_{SS}R_{D1}$$

For $V_{in1}=V_{in2}$, $V_{out1}=V_{out2}=V_{DD}-R_DI_{SS}/2$, which is the output CM level.

Cont'd ...

Two important characteristics:

- Char 1: output's maximum and minimum levels well-defined (V_{DD} and V_{DD}-R_DI_{SS}), independent of input CM level
- Char 2: small-signal gain (slope of V_{out1}-V_{out2} vs. V_{in1}-V_{in2}) is maximum for V_{in1}=V_{in2}
 - Gradually falling to zero as |V_{in1}-V_{in2}| increases
 - i.e. circuit becomes more nonlinear as input voltage swing increases
 - Circuit is in equilibrium when V_{in1}=V_{in2}

Small-signal (input) differential voltage gain

□ For $|\Delta V_{in}|\approx 0$ (sufficiently small) we have:

$$|A_V| = \frac{\Delta V_{out}}{\Delta V_{in}} = G_{m,\max} R_D = \sqrt{\mu_n C_{ox} \frac{W}{L} I_{SS}} R_D = g_m R_D$$

where $G_m = \frac{\partial \Delta I_D}{\partial \Delta V_{in}}$ and g_m is that of a NMOS with a current of $I_{SS}/2$.

Single-ended differential voltage gain

$$A_{V,SE} = \frac{V_X}{V_{in1} - V_{in2}} = -\frac{g_m}{2} R_D$$

$$A_{V,SE} = \frac{V_Y}{V_{in1} - V_{in2}} = \frac{g_m}{2} R_D$$

Common-mode (input) gains

 $V_{in1} - V_{in2} = 0$ or $V_{in1} = V_{in2} = V_{CM}$

 $A_{V,CM}$: Single-ended output due to CM signal.

$$A_{V,CM} = \frac{V_X}{V_{in,CM}} = \frac{V_Y}{V_{in,CM}}$$

A_{V,CM-DM}: Differential output due to CM signal.

Common mode (CM)
$$A_{V,CM-DM} = \frac{V_X - V_Y}{V_{in,CM}}$$

Common-mode rejection ratio (CMRR)

□ Common mode rejection ratio (*CMRR*) $CMRR = \left| \frac{A_{vD}}{A_{vC}} \right|$

CMRR is a measure of how well the differential amplifier rejects the common-mode input voltage in favor of the differential-input voltage.

Single ended: $CMRR = CMRR_{SE} = \left| \frac{A_{DM}}{A_{CM}} \right|$

Differential: $CMRR = CMRR_{diff} = \left| \frac{A_{DM}}{A_{CM-DM}} \right|$

In both cases we want CMRR to be as large as possible, and it translates into small matching errors and $R_{\rm SS}$ as large as possible

Differential pair with active loads

M₃ and m₄ are PMOS current sources (active loads)

$$A_{v} = -g_{mN}(r_{oN} || r_{oP}) = -g_{m1}(r_{o1} || r_{o3})$$

Acknowledgments

- Lecture slides are based on lecture materials from various sources, including book "Microelectronic Circuits" by Sedra and Smith (Oxford Publishing), and, Nikolay Tchamov and Ivan Uzunov (Tampere University of Technology).
- Credit is acknowledged where credit is due.
 Please refer to the full list of references.