Value Sets Of A Class Of Trinomials

Christian A. Rodriguez Alex D. Santos

Department of Computer Science University of Puerto Rico, Rio Piedras

December 2, 2013

Table of Contents

- Introduction
- Our Problem
- Results

Polynomials in Finite Fields

A **finite field** \mathbb{F}_q , $q = p^r$, p prime, is a field with $q = p^r$ elements.

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . This is $f: \mathbb{F}_q \to \mathbb{F}_q$.

Example

Consider the polynomial f(x) = x + 3 defined over \mathbb{F}_5 . We have that the domian of f is $\{0, 1, 2, 3, 4\}$.

Value Sets

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . Then the value set of f is defined as $V_f = \{f(a) \mid a \in \mathbb{F}_q\}$

Example

Consider the polynomial $f(x) = x^2$ defined over \mathbb{F}_5 . We have that f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 4, f(4) = 1, so $V_f = \{0, 1, 4\}$.

Permutation Polynomials

Definition

A polynomial f(x) defined over \mathbb{F}_q is a permutation polynomial if and only if $V_f = \mathbb{F}_q$.

Example

Consider the polynomial f(x) = x + 3 defined over \mathbb{F}_7 . We have that f(0) = 3, f(1) = 4, f(2) = 5, f(3) = 6, f(4) = 0, f(5) = 1, f(6) = 2, so f(x) is a permutation polynomial over \mathbb{F}_7

Applications:

Primitive Roots

Definition

A **primitive root** $\alpha \in \mathbb{F}_q$ is a generator for the multiplicative group \mathbb{F}_q^{\times}

Example

Consider the finite field \mathbb{F}_7 . We have that:

$$3^1=3, 3^2=2, 3^3=6, 3^4=4, 3^5=5, 3^6=1,$$
 so 3 is a primitive root of \mathbb{F}_7 .

Table of Contents

- Introduction
- Our Problem
- Results

Our Polynomial

Let $d_1, d_2 \in \mathbb{F}_q$ such that $d_1 \mid q - 1$ y $d_2 \mid q - 1$. We are interested in the polynomial:

$$F_{a,b}(x) = x(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$$

with $a, b \in \mathbb{F}_q^{\times}$.

Denote the value set of this polynomial $V_{a,b}$.

Our Polynomial

Let $d_1, d_2 \in \mathbb{F}_q$ such that $d_1 \mid q - 1$ y $d_2 \mid q - 1$. We are interested in the polynomial:

$$F_{a,b}(x) = x(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$$

with $a, b \in \mathbb{F}_q^{\times}$.

Denote the value set of this polynomial $V_{a,b}$.

The class of equivalence (a, b)

Let
$$a=\alpha^i, b=\alpha^j$$
 and \sim the relation defined as $(a,b)\sim(a',b')$ $<=>a'=\alpha^{i+h(\frac{q-1}{d_1}-\frac{q-1}{d_2})}, b'=\alpha^{j+h(\frac{q-1}{d_1})}$ Example

The class of equivalence (a, b)

Proposition

The relation \sim defined above is an equivalence relation.

Problem

Our Problem

Study the value set of polynomials of the form

 $F_{a,b}(x) = x(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$ and determine conditions in a, b such that they are permutation polynomials.

Table of Contents

- Introduction
- Our Problem
- Results

Value set correspondence

Proposition

Let [a,b] be the class of equivalence of (a,b). If $(a',b') \in [a,b]$, then $|V_{a',b'}| = |V_{a,b}|$.

Size of equivalence classes

Proposition

 $|[a,b]| = lcm(d_1, d_2)$ where lcm(x, y) is the least common multiple of x and y.

Polynomials with Value sets of the same size

Proposition

The number of polynomials of the form $F_{a,b}(x)$ with $|V_{a,b}| = n$ is a multiple of |[a,b]|

Future Work

- Find necessary and sufficient conditions such that $V_{a,b} = \mathbb{F}_a$
- Study our results on the family of polynomials of the form

$$F_{a,b}(x) = x^m(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$$