RAPPORT TECHNIQUE DE PROJET DE FIN D'ÉTUDES PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE DANS LE CADRE DU COURS GTI795 PROJET DE FIN D'ÉTUDES EN TI

DÉTECTION DE MODÈLE HUMAIN POUR APPLICATION DE RÉALITÉ AUGUMENTÉE

Vincent BOITEAU-ROBERT BOIV14029409 Marc-Antoine HÉBERT HEBM14019401 Julien LEMONDE LEMJ20059208 Alexandre MALO MALA0702940

DÉPARTEMENT DE GÉNIE LOGICIEL ET TI

Professeur-superviseur Carlos Vazquez

MONTRÉAL, 25 AVRIL 2018 HIVER 2018 UNIVERSITÉ DU QUÉBEC

Résumé

RÉSUMÉ

DÉTECTION DE MODÈLE HUMAIN POUR APPLICATION DE RÉALITÉ AUGUMENTÉE

Vincent BOITEAU-ROBERT BOIV14029409 Marc-Antoine HÉBERT HEBM14019401 Julien LEMONDE LEMJ20059208 Alexandre MALO MALA0702940

text résumé ici

Table des matières

INTRODUCTION	1
REVUE DE LA DOCUMENTATION	4
MÉTHODOLOGIE DE TRAVAIL	5
PROCESSUS DE CONCEPTION	6
DISCUSSION	7
CONCLUSION	8

Liste des tableaux

Table des figures

LISTE DES ABBRÉVIATIONS

ÉTS - École de Technologie Supérieure

INTRODUCTION

La perforamnce des caméras des appareils mobiles est en constance croissance depuis quelques années. Ce qui permet d'envisager l'usage de ces appareils dans des nouveaux domaines d'activités. Un de ces domaine est la réalité augmentée, où la superposition d'éléments virtuels sur une capture de l'environnement réel en temps réel. Une démocratisation du développement d'application utilisant cette technologie c'est fait au cours de l'année précédente, 2017. En effet, la nouvelle interface de programmation applicative ARKit conçu par appel offre un environnement de développement simplifié au développur d'applications (Statt, N. 2017.) Toutefois, ces technologies permettent l'interaction avec des modèles généré de façon synthétique. Un défi qui n'a pas encore de solution reconnue est l'usage de modèles provenant de l'environnement de l'utilisateur dans la réalité augmentée. Certaines technologies offrent des pistes de solution, mais leur taux d'adoption et le nivewu de compatibilité avec les autres outils de l'environnement de développement Apple sont limités.

Une des technologies les plus intéressante est le Structure Sensor (Molitch-Hou, M. 2016.) Celle-ci consiste en un périphérique qui doit être attacher à l'appareil. Le périphérique ajoute une caméra et un senseur 3D. Avec l'usage de la caméra de l'appareil, celui de l'appareil ont peut avoir une meilleur compréhension de l'environnemetn 3D. L'outils vient avec une trousse de développement logiciel permettant de prendre les coordonées d'un objets sous quatres dimensions, x, y, z et la couleur. Toutefois cette solution n'est pas très connu et a un nombre de ressources limités.

Les deux technologies décrites plus haut apporte chacune des possibilités très intéressantes pour le développement d'application de réalité augmentée. L'usage des fonctionnalité d'une dans l'autre serait très intéressante. Toutefois au moment où l'équipe a débuté le projet, il n'y a pas d'interface une telle combinaison. Les deux interfaces utilisent la caméra, par contre chacun utilise un utilitaire différent pour le contrôle de celle-ci. Les deux utilisent des modèles numériques 3D, mais chacun a choisi une norme différente. En effet, le Structure Sensor permet l'extraction en Modèle I/O. Alors que le ARKit utilise les modèles de type scène qui est un format propriètaire à Apple. Le principal défi du projet consistera à la combinaison de plusieurs interfaces de programmation

pour créer un outils fonctionnel.

Comme décrit dans la section précédente, le principal objectif du projet est la création d'une interface entre deux technologies mobiles, soit un périphérique d'acquisition de modèle 3D, le Structure Sensor (Molitch-Hou, M. 2016.), et la trousse de développement de réalité augmentée d'Apple (Statt, N. 2017.). Autrement dit, l'équipe s'attend en fin de session d'avoir produit une application mobile permettant la prise de modèle à l'aide du senseur. L'application permettra d'ajouter un modèle extrait sur une surface plane. L'application permet cette chaîne d'action avec une expérience utilisateur agréable et naturelle à l'utilisateur.

L'application décrite ci-haut représente les attentes pessimistes par rapport aux résultats finaux. Toutefois, une telle application apporte un éventail de possibilités sur la manipulation de l'environnement augmentée. Par exemple, une des retombées envisageables et commercialisable est la numérisation de catalogue de magasin comme lkea. L'usager peut donc ajouter un item dans une pièce de sa maison. Si plusieurs couleurs sont disponibles pour un modèle, chacune des variantes seront disponibles à la modélisation.

Une autre ouverture technologique, qu'une telle application apporterait, est dans un contexte d'animation 3D. En effet, la création d'un modèle permettrait l'ajout d'un squelette dans celui-ci. Une fois le squelette créé l'animation du modèle pourrait être fait. Cette possibilité est particulièrement intéressante pour l'équipe en charge du projet. Dans l'éventualité où la vision de base du projet sera complétée avant la fin de la session d'Hiver 2018, l'équipe compte se concentrer sur la création de ce squelette et possiblement la manipulation de celui-ci. La création de positionnement clé des noueds du squelette pourra être enregistrer afin de permettre l'animation. L'animation libre est un trop grand défi étant donné les contraintes de temps.

L'objectif principal semble réaliste pour l'équipe de développement étant donné les interfaces déjà présente pour chacune des technologies. Toutefois, le défi reste important étant donné le manque de cohérence entre les différentes technologies. Le manque de documentation et de support pour le Structure Sensor risque d'amener un ensemble de défi supplémentaire.

Par contre, l'équipe de développement considère le temps disponible à la résolution d'un tel enjeu adéquat. L'expérience en recherche d'information et apprentissage autonome acquis au cours des formations et stages des membres de l'équipe laisse envisager un succès

Pour ce qui est en la complétion des objectifs accessoire, les limitations de temps rendent l'estimation de succès plus difficile. Par contre, il est clair que la réalisation de ceux est apporterait un plus considérable à l'expérience de chacun des membres. La motivation de l'équipe face à l'enjeu améliore les

propabilité de terminer ces objectifs.

Ce rapport consite donc en un suivi des étapes qui permettront de valider ou invalider les hypothèses décrite si haut. Afin de résoudre un tel défi, l'équipe a du se fier sur les documentations disponibles en lien avec les technologies ciblés. Un résumé de celles qui ont été utiles à la résolution du problème sera présenté.

Par la suite, une présentation de la méthodologie utilisée par l'équipe sera décrite. Les étapes ayant permis la conception de la solution seront par la suite présentées. Une analyse sur le produit obtenue sera explorer. Afin de clore le projet, les possibilité que la solution apporte à un groupe voulant poursuivre ou implémenter un projet semblables seront expliquées. L'équipe fera s'est recommandation en fonction de l'expérience acquise lors du développement.

REVUE DE LA DOCUMENTATION

revue text

MÉTHODOLOGIE DE TRAVAIL

méthodologie text

PROCESSUS DE CONCEPTION

processus text

DISCUSSION

discussion text

CONCLUSION

conclusion text