#### ゼロから学ぶ、ラズパイAI実装 ハンズオンセミナー

~セットアップから画像認識AI実装まで~

2018年1月27日名古屋校 2011期 越智 由浩



#### 今日の心がまえ、スタンス

- •他人の知見(ブログや記事)を参考に"真似ながら動かしてみる" を実践できるようになることを目指します
- コマンドや各種ツールなど次々に新しいことが出てくると思いますが、手順はgithubに掲載しますので、いきなり全部覚えようとせず、まずは進みましょう
- AIを実装して動かすまでの一通りを体感してもらうことで、どのような要素で成り立っているのか、これからどういったことを深掘りして学べばよいかを考えるきっかけになればと思います

# 今日の時間配分

| 10:00 – 12:00 | <ul><li>ラズパイ基本セットアップ</li><li>カメラを使った画像配信</li></ul>         |
|---------------|------------------------------------------------------------|
| 13:00 – 15:00 | <ul><li>ニューラルネットワーク概説</li><li>手書き文字認識システムの実装とテスト</li></ul> |
| 15:30 – 16:30 | • 物体識別システムの実装とテスト                                          |
| 16:30 – 17:00 | <ul><li>学びの振り返り</li></ul>                                  |

# 今日の時間配分

| 10:00 – 12:00 | <ul><li>ラズパイ基本セットアップ</li><li>カメラを使った画像配信</li></ul>         |
|---------------|------------------------------------------------------------|
| 13:00 – 15:00 | <ul><li>ニューラルネットワーク概説</li><li>手書き文字認識システムの実装とテスト</li></ul> |
| 15:30 – 16:30 | • 物体識別システムの実装とテスト                                          |
| 16:30 – 17:00 | <ul><li>学びの振り返り</li></ul>                                  |

#### 基本セットアップ/カメラを使った画像配信



https://github.com/yoshihiroo/programming-workshop/tree/master/rpi\_ai\_handson

# 今日の時間配分

| 10:00 – 12:00 | <ul><li>ラズパイ基本セットアップ</li><li>カメラを使った画像配信</li></ul>         |
|---------------|------------------------------------------------------------|
| 13:00 – 15:00 | <ul><li>ニューラルネットワーク概説</li><li>手書き文字認識システムの実装とテスト</li></ul> |
|               |                                                            |
| 15:30 – 16:30 | • 物体識別システムの実装とテスト                                          |
|               |                                                            |

# ニューラルネットワークモデルの計算ルール



#### 活性化関数

ステップ関数

シグモイド関数

ReLU関数 (Rectified Linear Unit)







$$h(x) = \begin{cases} 0 & (x \le 0) \\ 1 & (x > 0) \end{cases}$$

$$h(x) = \frac{1}{1 + \exp(-x)}$$

$$h(x) = \begin{cases} x & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

#### ニューラルネットワーク、計算練習

1.214

0.771

sig():シグモイド関数





#### このくらいの数のニューラルネットワークを使うと、 手書きの文字認識ができちゃいます。



#### 手書き文字(数字)認識をさせてみる



人間が文字認識する、をホワイトボードでやってみる

# ディープラーニングの全体の流れ

データの準備



MNIST手書き文字データ

http://yann.lecun.com/exdb/mnist/

- 6万文字分の学習用データ
- 1万文字分の検証用データ



学習



b2 b3 b1 W1 W2 50x784 100x50 10x100

6万文字分の学習用データを使って、入力した手書き文字に対応した出力が得られるようにパラメータW1, W2, W3, b1, b2, b3 を調整



学習済(うまくパラメータが調整された 状態)のニューラルネットに検証用データを入力し、うまく認識されることを 検証する



#### ディープラーニングにおける学習とは

手書き文字を数値化し、

ニューラルネットに食わせ・・



28x28=784個の格子(ピクセル) ごとに $0\sim1$ の255段階の値で明 るさを示すことで手書き文字を 表現 パラメータ(W1, W2, W3, b1, b2, b3 –全部で 45,350個の数字)を少し ずつ変えながら、入力に 対応した箇所が大きな数 値を示すような**絶妙な組 み合わせを探す**プロセス



#### 具体的にどうアプローチするか―指標の定義

目指す姿

完璧に数字を判別できる状態

ギャップを示す指標(<u>損失関数</u>)を定義する $\rightarrow$  W2, W3, b1, b2, b3 の

この損失関数が最小 となるパラメータW1, W2, W3, b1, b2, b3 の 組み合わせを探す

現状

学習の途中段階

# 損失関数~当たってなさ具合の指標





y=-log(x) 正解箇所の値 のエントロピ--logを計算

100枚分計算して平均を求める。 これが<u>損失関数の値</u>となる。

パラメータW1, W2, W3, b1, b2, b3 のある組み合わせ(学習の途中段階) における当たってなさ具合

#### (補足) 指数関数を用いた正規化

$$y_k = \frac{\exp(a_k)}{\sum\limits_{i=1}^{n} \exp(a_i)}$$

正規化の様子を数直線で表現すると、 大小さまざまな数字について、それぞれの 位置関係は保ったままで、

- 0から1のあいだにギュッと押し込む
- 且つ、値の総和が1になる



#### Excelシートで実際に試してみた例



#### 損失関数が最小となるパラメータを探す



$$W \leftarrow W - \alpha \frac{\partial E}{\partial W}$$

$$b \leftarrow b - \alpha \frac{\partial E}{\partial b}$$

足元の坂の傾きを調べて、 その傾きの大きさに従って一歩進む。 それを繰り返して、*E*の一番低いところに たどり着く

#### 実際の学習の過程を見てみる



#### ディープラーニングの学習~奥深い世界

- 学習をいかに効率よく行うかが、実際にディープラー ニングを使う上で大きな課題
- 学習(コンピューターの数値計算)の手法はそれ自体が奥深い研究テーマであり、誤差逆伝搬法(バックプロパゲーション)、SGD、Momentum、AdaGrad、Adam、いなど、専門用語がバンバン出てくる領域。今日はそのあたりの深入りはやめときます

#### 学習済のパラメータを使って、文字認識 が正しく行われていることを確かめる



#### digit\_recognition\_NN.pyの概要



#### さらに精度を上げる ~畳み込みニューラルネットワーク~

アニメーションでざっくりとしたイメージを理解する http://cs231n.github.io/convolutional-networks/



### 評価に用いる畳み込みニューラルネット ワークの構成



# digit\_recognition\_CNN.pyの概要



# 今日の時間配分

| 10:00 – 12:00 | <ul><li>ラズパイ基本セットアップ</li><li>カメラを使った画像配信</li></ul>         |
|---------------|------------------------------------------------------------|
| 13:00 – 15:00 | <ul><li>ニューラルネットワーク概説</li><li>手書き文字認識システムの実装とテスト</li></ul> |
| 15:30 – 16:30 | • 物体識別システムの実装とテスト                                          |
| 16:30 – 17:00 | • 学びの振り返り                                                  |

# image\_classification\_resnet50.pyの概要



50-layer ResNet: We replace each 2-layer block in the 34-layer net with this 3-layer bottleneck block, resulting in a 50-layer ResNet

https://keras.io/applications/



上記サイトで公開されているKerasライブラリを用いた ResNet50の実装コードをベースに、カメラ画像を取り込 むように変更。