Exemples d'utilisation du théorème de Courant-Fischer

1ère Partie

A- Étude d'une matrice

1.
$$M = U^{\dagger}U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \begin{pmatrix} u_1 & \dots & u_n \end{pmatrix} = \begin{pmatrix} u_1^2 & u_1u_2 & \dots & u_1u_n \\ u_2u_1 & u_2^2 & & u_2u_n \\ \vdots & & & \vdots \\ u_nu_1 & u_nu_2 & \dots & u_n^2 \end{pmatrix}.$$

Donc pour tout couple (i,j) d'éléments de $\{1,\ldots,n\}$, on a : $m_{i,j}=u_iu_j$ et $\mathrm{Tr}(M)=\sum_{i=1}^n u_i^2$.

- 2. La j-ème colonne de M est u_iU .
- 3. On sait que le rang d'une matrice est égal à celui de ses colonnes, or toutes les colonnes de M sont proportionnelles à U, donc leur rang vaut 1, d'où rg(M) = 1.
- 4. $\operatorname{rg}(M)=1\neq n$, donc M n'est pas inversible en particulier 0 est une valeur propre de M, d'autre part $MY=0\Leftrightarrow ^tYU\,^t\!UY=0\Leftrightarrow \|^t\!UY\|=0\Leftrightarrow ^t\!UY=0$ d'où le sous-espace propre associé est égale à $\{Y\in \mathcal{M}_{n,1}(\mathbb{R}), \, ^t\!UY=0\}$. Sa dimension est n-1 car c'est un hyperplan de $\mathcal{M}_{n,1}(\mathbb{R})$ puisque c'est le noyau de la forme linéaire non nulle $\varphi: \mathcal{M}_{n,1}(\mathbb{R}) \longrightarrow \mathbb{R}$.
- 5. MU = U UU, donc UU est une autre valeur propre de U avec U est un vecteur propre, et dont la dimension du sous—espace propre associé ne peut pas dépasser 1, puisque déjà celui associé à U est de dimension U.
- 6. La matrice M est orthogonalement semblable à la matrice diagonale $D = diag({}^t\!UU,0,\dots,0)$, car les sous-espaces associée respectivement aux valeurs propres ${}^t\!UU$ et 0 sont Vect(U) et $\{Y \in \mathcal{M}_{n,1}(\mathbb{R}), {}^t\!UY = 0\} = \text{Vect}(U)^{\perp}$ de dimension 1 et n-1

B- Théorème de Courant-Fischer

1. Parceque toute matrice symétrique est diagonalisable dans une base orthonormée.

2.
$$R_A(e_k) = \frac{\langle Ae_k, e_k \rangle}{\langle e_k, e_k \rangle} = \frac{\langle f(e_k), e_k \rangle}{\langle e_k, e_k \rangle} = \lambda_k$$
, pour tout $k \in \{1, 2, ..., n\}$ car $f(e_k) = \lambda_k e_k$.

3.
$$v = \sum_{i=1}^{n} x_i e_i$$
, donc $f(v) = \sum_{i=1}^{n} \lambda_i x_i e_i$, d'où $< f(v), v > = \sum_{i=1}^{n} \lambda_i x_i^2$ et $< v, v > = \sum_{i=1}^{n} x_i^2$.

4. On a
$$\lambda_1 \leq \lambda_i \leq \lambda_n$$
, d'où $\lambda_1 < v, v >= \sum_{i=1}^n \lambda_1 x_i^2 \leq < f(v), v >= \sum_{i=1}^n \lambda_i x_i^2 \leq \sum_{i=1}^n \lambda_n x_i^2 = \lambda_n < v, v >$, donc $\lambda_1 \leq R_A(v) \leq \lambda_n \quad \forall v \neq 0$, d'où $\lambda_1 \leq \min_{v \neq 0} R_A(v)$ et $\lambda_n \leq \max_{v \neq 0} R_A(v)$, d'autre part $R_A(e_1) = \lambda_1$, d'où $\lambda_1 \geq \min_{v \neq 0} R_A(v)$ et $R_A(e_n) = \lambda_n$ d'où $\lambda_n \geq \max_{v \neq 0} R_A(v)$. Donc: $\lambda_1 = \min_{v \neq 0} R_A(v)$ et $\lambda_n = \max_{v \neq 0} R_A(v)$.

- 5. Soit $k \in \{1, \ldots, n\}$, $w \in V_k \implies w = \sum_{i=1}^k x_i e_i \implies \langle f(w), w \rangle = \sum_{i=1}^k \lambda_i x_i^2 \leq \lambda_k \sum_{i=1}^k x_i^2$ et $\langle w, w \rangle = \sum_{i=1}^k x_i^2$, d'où $R_A(w) = \frac{\langle f(w), w \rangle}{\langle w, w \rangle} \leq \lambda_k \quad \forall w \in V_k \setminus \{0\}$, d'où $\lambda_k \geq \max_{v \in V_k \setminus \{0\}} R_A(v)$ or $e_k \in V_k \setminus \{0\}$ et $R_A(e_k) = \lambda_k$, d'où $\lambda_k = \max_{v \in V_k \setminus \{0\}} R_A(v)$.
- 6. (a) Supposons $\dim (F_1 \cap \operatorname{Vect}(e_k, \dots, e_n) = 0$, alors $\dim (F_1 \oplus \operatorname{Vect}(e_k, \dots, e_n) = k + (n k + 1) = n + 1$, impossible puisque $(F_1 \oplus \operatorname{Vect}(e_k, \dots, e_n))$ est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$ qui est de dimesnion n, d'où $\dim (F_1 \cap \operatorname{Vect}(e_k, \dots, e_n) \neq 0$ et par suite $\dim (F_1 \cap \operatorname{Vect}(e_k, \dots, e_n) \geq 1$.
 - (b) $w \in F_1 \cap \operatorname{Vect}(e_k, \dots, e_n) \implies w = \sum_{i=k}^n x_i e_i \implies \langle f(w), w \rangle = \sum_{i=k}^n \lambda_i x_i^2 \ge \lambda_k \sum_{i=k}^n x_i^2 \text{ et}$ $\langle w, w \rangle = \sum_{i=k}^n x_i^2, \text{d'où } R_A(w) = \frac{\langle f(w), w \rangle}{\langle w, w \rangle} \ge \lambda_k.$
 - (c) D'aprés 5.) on a : $\lambda_k = \max_{v \in V_k \setminus \{0\}} R_A(v)$ et $V_k \in \mathcal{F}_k$, d'où $\lambda_k \geq \min_{F \in \mathcal{F}_k} \left(\max_{v \in F \setminus \{0\}} R_A(v) \right)$, et d'aprés 6.b) $\lambda_k \leq R_A(w) \leq \max_{v \in F \setminus \{0\}} R_A(v)$ $\forall F \in \mathcal{F}_k$, d'où $\lambda_k \leq \min_{F \in \mathcal{F}_k} \left(\max_{v \in F \setminus \{0\}} R_A(v) \right)$, d'où l'égalité.
- 7. (a) L'application $\psi_A: v \longmapsto \langle Av, v \rangle$ est continue sur $\mathcal{M}_{n,1}(\mathbb{R})$ en tant que produit scalaire de deux fonctions continues car linéaires $v \mapsto Av$ et $v \mapsto v$ et on en déduit la continuité de l'application R_A sur $\mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ car rapport de deux fonctions continues $v \mapsto \langle Av, v \rangle$ et $v \mapsto \langle v, v \rangle$ avec un dénominateur qui ne s'annulle jamais.
 - (b) Soient A et B deux éléments de $\mathcal{M}_{n,1}(\mathbb{R})\setminus\{0\}$, on cherche à les relier par un chemin qui ne passe pas par l'origine.
 - 1èr cas $0 \notin [A, B]$ alors le chemin $\gamma : [0, 1] \longrightarrow \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ fera bien l'affaire. $t \longmapsto tA + (1 t)B$
 - 1èr cas $0 \in [A, B]$, on se fixe un élément $C \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ tel que : $0 \notin [A, C]$ et $0 \notin [C, B]$, on relie alors A à C puis C à B.

D'où l'ensemble $\mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ est connexe par arcs et l'image de l'application R_A est aussi un ensemble connexe par arcs de \mathbb{R} , donc un intervalle car les seuls connexes par arcs de \mathbb{R} sont ses intervalles.

(c) D'aprés ce qui précède $\{R_A(v), v \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\} \}$ est un intervalle, or $\lambda_1 = \min_{v \neq 0} R_A(v)$ et $\lambda_n = \max_{v \neq 0} R_A(v)$. D'où $\{R_A(v), v \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\} \} = [\lambda_1, \lambda_n]$

2^{ème} Partie

1. Soit B une matrice symétrique réelle d'ordre n.

supposons B definie positive et soit λ une valeur propre de B et X un vecteur propre associé, alors ${}^tXBX=\lambda\|X\|^2>0$ d'où $\lambda>0$

Inversemnt, supposons B admet deux valeurs propres $\lambda > 0$ et $\mu > 0$, comme B est symetrique alors elle orthogonalement diagonalisable, c'est à dire $\exists P$ inversible telle que

$$B = {}^{t} P \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} P, \text{d'où } \forall X \neq 0 \text{ on a } : {}^{t} X B X = {}^{t} X {}^{t} P \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\mu} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\mu} \end{pmatrix} P X = {}^{t} Y Y > 0$$

où $Y = \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\mu} \end{pmatrix} PX \neq 0$ car $X \neq 0$, d'où B est définie positive.

Conclusion : B est définie positive si et seulement si ses valeurs propres sont strictement positives.

- 2. (a) A est définie positive, donc pour ${}^tX=(1,0)\neq 0$ on a : $a={}^tXAX>0$ d'autre part $\det(A)=ac-b^2>0$ car c'est le produit des valeurs propres de A.
 - (b) Tout calcul fait : ${}^tXAX = ax^2 + 2bxy + cy^2 = a\left((x + \frac{b}{a}y)^2 + (\frac{c}{a} \frac{b^2}{a^2})y^2\right) = a\left((x + \frac{b}{a}y)^2 + (\frac{ac-b}{a^2})y^2\right) > 0$. Donc A est définie positive.
- 3. (a) Montrer que < g(x), y> = = < f(x), p(y)> = < f(x), y> car p projecteur orthogonal sur H et $y \in H$ et de même < x, g(y)> = < x, f(y)> or f est symétrique d'où < f(x), y> = < x, f(y)>, donc < g(x), y> = < x, g(y)>, et alors g est un endomorphisme autoadjoint de H.
 - (b) Soit (e'_1,\ldots,e'_{n-1}) base propre orthonormée de H associée à g dont les valeurs propres sont μ_1,\ldots,μ_{n-1} , pour tout $k\in\{1,\ldots,n-1\}$ on pose : $V'_k=Vect(e'_1,\ldots,e'_k)$, comme précédement on montre que $\mu_k=\max_{v\in V'_k\setminus\{0\}}R_A(v)$, or $V'_k\in\mathcal{F}_k$ et

$$\lambda_k = \min_{F \in \mathcal{F}_k} \left(\max_{v \in F \setminus \{0\}} R_A(v) \right), d'$$
où $\lambda_k \leqslant \mu_k$.

- (c) Soit $k \in \{1, ..., n-1\}$.
 - i. Supposons $\dim(F \cap H) < k$, donc $\dim(F + H) = \dim F + \dim H \dim(F \cap H) = n + k \dim(F \cap H) > n$, impossible puisque $F \cap H$ est un sous–espace vectoriel de $\mathcal{M}_{(n-1),1}(\mathbb{R})$ qui est de dimension n d'où $\dim(F \cap H) \geq k$.
 - $$\begin{split} &\text{ii. } g(v) = p(f(v)), \text{donc } g(v) f(v) \in H^{\perp}, \text{ or } v \in H, \text{d'où} < g(v) f(v), v >= 0 \text{ et donc} \\ &< g(v), v >= < h(v), v >, \text{ en particulier} \\ &< g(v), v > \leq \max_{v \in F \setminus \{0\}} \frac{\langle f(v), v \rangle}{\langle v, v \rangle} \quad \forall v \in G \setminus \{0\}, \text{d'où} \\ &\max_{v \in G \setminus \{0\}} \frac{\langle g(v), v \rangle}{\langle v, v \rangle} \leqslant \max_{v \in F \setminus \{0\}} \frac{\langle f(v), v \rangle}{\langle v, v \rangle}. \end{split}$$
 - iii. En passant au min dans l'inégalité précèdente et en utilisant le théorème de Courant–Fischer à gauche pour g et à droite pour f et vu que G est de dimension k et F de dimension k+1, on conclut que $\mu_k \leqslant \lambda_{k+1}$.
- 4. (a) A_{n-1} n'est autre que la matrice de g, elle est symétrique car g est auto-adjoint.
 - (b) Application directe de ce qui précède on a $\lambda_k \leq \mu_k' \leq \lambda_{k+1}$ puisque les μ_k' sont aussi valeurs propres de g.
 - (c) Si la matrice A est définie positive, alors toutes ses valeurs propres λ_k sont strictement positives il en sera de même pour les valeurs propres μ_k' de la matrice A_{n-1} , or A_{n-1} est symétrique donc orthogonlement diagonalisable, d'où $\exists P$ inversible telle que $A_{n-1} = t$

symétrique donc orthogonlement diagonalisable, d'où
$$\exists P$$
 inversible telle que A
$$\begin{pmatrix} \mu'_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & & & 0 \\ 0 & \dots & & \mu'_n \end{pmatrix} P$$
, d'où $\forall X \neq 0$ on a :
$${}^t X A_{n-1} X = {}^t X^t P \begin{pmatrix} \mu'_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & & & 0 \\ 0 & \dots & & \mu'_n \end{pmatrix} P X = {}^t Y Y > 0$$
 où
$$Y = \begin{pmatrix} \sqrt{\mu'_1} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & & & 0 \\ 0 & \dots & & \sqrt{\mu'_n} \end{pmatrix} P X \neq 0$$
 car $X \neq 0$, d'où A_{n-1} est définie positive.

5. (a) Si A est définie positive alors toutes les matrices A_k sont aussi définie positive d'aprés la question précèdente, donc leurs déterminants sont tous strictement positifs.

TD : Matrices Lundi le 21 Mars 2005

(b) Le résultat est déja vérifié pour n=2. Supposons le resultat vrai pour n-1, on peut donc déjà affirmer que A_{n-1} est définie positive, d'où $\mu_k'>0 \quad \forall 1\leq k\leq n-1$, en particulier $\lambda_2>0,\ldots,\lambda_n>0$, or $\det A=\prod_{i=1}^n\lambda_i>0$, d'où $\lambda_1>0$, ainsi A est une matrice symétrique dont toutes les valeurs propres sont strictement positives, donc définie positive.

6. Un exemple d'utilisation :

- (a) Montrer que, pour tout $t \in [0, 1]$, la matrice M(t) est symétrique définie positive.
- (b) En déduire que la matrice $\forall X \neq 0^t X M_1 X = t X (\int_0^1 M(t) dt) X = \int_0^1 t X M X dt > 0$ car t X M X > 0, d'où M_1 est définie positive.

3ème Partie

A- Une deuxième application

- 1. (a) $\forall F \in \mathcal{F}_k, \quad \forall v \in F \setminus \{0\} \text{ on a}: R_{A'}(v) = R_A(v) + R_E(v) \text{ d'où} \\ \max_{v \in F \setminus \{0\}} R_{A'}(v) = \max_{v \in F \setminus \{0\}} (R_A(v) + R_E(v)) \leq \max_{v \in F \setminus \{0\}} R_A(v) + \max_{v \in F \setminus \{0\}} R_E(v) \leq \\ \max_{v \in F \setminus \{0\}} R_A(v) + \max_{v \neq 0} R_E(v) = \max_{v \in F \setminus \{0\}} R_A(v) + \mu_n \text{ d'où} \\ \min_{v \in F \setminus \{0\}} \max_{v \in F \setminus \{0\}} R_{A'}(v) \leq \min_{v \in F \setminus \{0\}} \max_{v \in F \setminus \{0\}} R_A(v) + \mu_n \text{ et donc } \lambda'_k \leq \lambda_k + \mu_n, \text{ d'autre part,} \\ \forall F \in \mathcal{F}_k, \quad \forall v \in F \setminus \{0\} \text{ on a}: R_{A'}(v) = R_A(v) + R_E(v) \geq R_A(v) + \mu_1, \text{ en passant} \\ \text{une première fois au max sur } v \in F \setminus \{0\} \text{ puis une deuxième fois au min sur } F \in \mathcal{F} \text{ on obtient l'autre égalité d'où pour tout } k \in \{1, 2, \dots, n\}, \text{ on a}: \lambda_k + \mu_1 \leq \lambda'_k \leq \lambda_k + \mu_n.$
 - (b) D'aprés la question précèdente on a : $\mu_1 \leq \lambda_k' \lambda_k \leq \mu_n$, d'où $|\lambda_k' \lambda_k| \leq \max(|\mu_1|, |\mu_n|)$, montrons alors que $\|A A'\| = \max_{X \neq 0} \frac{\|(A A')X\|}{\|X\|} = \max(|\mu_1|, |\mu_n|)$, en effet A A' = E est symétrique, donc diagonalisable dans une base orthonormale, (e_1', \dots, e_n') associée aux valeurs propres $\mu_1 \leq \dots \leq \mu_n$, d'où $|\mu_k| \leq \max(|\mu_1|, |\mu_n|) = r$, et $\forall X \neq 0$ on a $X = \sum_{k=1}^n x_k e_k'$, d'où $X = \sum_{k=1}^n \mu_k x_k e_k'$ en particulier $\|EX\|^2 = \sum_{k=1}^n \mu_k^2 x_k^2 \leq r^2 \sum_{k=1}^n x_k^2 = r^2 \|X\|^2$, d'où $\|A A'\| = \max_{X \neq 0} \frac{\|EX\|}{\|X\|} \leq r$, d'autre part $\|A A'\| = \max_{X \neq 0} \frac{\|EX\|}{\|X\|} \geq \frac{\|Ee_1'\|}{\|e_1'\|} = |\mu_1|$ et $\|A A'\| = \max_{X \neq 0} \frac{\|EX\|}{\|X\|} \geq \frac{\|Ee_n'\|}{\|e_n'\|} = |\mu_n|$, d'où $\|A A'\| \geq \max(|\mu_1|, |\mu_n|)$ d'où l'égalité.
- 2. Soit $A \in S_n^+$, on cherche $\varepsilon > 0$ tel que : $\|A A'\| \le \varepsilon \implies A' \in S_n^+$, en effet : $\|A A'\| \le \varepsilon \implies |\lambda_k' \lambda_k| \le \varepsilon \varepsilon \ge \lambda_k' \lambda_k \implies \lambda_k \varepsilon \ge \lambda_k' \implies \min_{1 \le k \le n} \lambda_k \varepsilon \ge \lambda_k'$, si on prend $\varepsilon = \frac{1}{2} \min_{1 \le k \le n} \lambda_k > 0$, alors $\lambda_k' \ge \frac{1}{2} \min_{1 \le k \le n} > 0$, $\forall 1 \le k \le n$, ainsi toutes les valeurs propres de A' qui est symétrique sont strictement positives, d'où A' est définie positive.

B- Une dernière application

1. Les matrices R et S sont orthogonales, d'où

$${}^{t}RR = I_{n} \text{ et } {}^{t}SS = I_{n-1}, \text{ d'où } {}^{t}QQ = \begin{pmatrix} 1 & 0 \\ 0 & {}^{t}S \end{pmatrix}^{t}RR\begin{pmatrix} 1 & 0 \\ 0 & S \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & {}^{t}S \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & S \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & {}^{t}S \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & {}^{t}S \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & {}^{t}S \end{pmatrix} = I_{n}, \text{ d'où la matrice } Q \text{ est orthogonale.}$$

2. Simple calcul, en utilisant les relations : ${}^t\!RMR = \begin{pmatrix} {}^t\!UU & 0 \\ 0 & 0 \end{pmatrix}, {}^t\!RAR = \begin{pmatrix} \alpha & {}^t\!a \\ a & A_{n-1} \end{pmatrix}$ et ${}^t\!SA_{n-1}S = diag(\alpha_2, \ldots, \alpha_n)$.

- 3. On a $A_{\varepsilon} A = \varepsilon M$, donc A_{ε} jouera le rôle de A' et εM celui de E, dont les valeurs propres sont $\mu_1 = 0$ et $\mu_n = \varepsilon^t U U$.
- 4. (a) C'est un résultat du cours puisque la matrice *Q* est orthogonale.
 - (b) le coefficient d'indice (i,j) de tQAQ s'obtient en faisant le produit scalaire de la i-ème ligne de tQ avec la j-ème colonne de $AQ = AC_j$, donc ce coefficient est

$${}^tC_iAC_j = \underset{\alpha_i}{\alpha} \quad \text{si } i = j = 1 \\ \underset{\beta_i}{\alpha_i} \quad \text{si } i = j \geq 2 \\ \underset{\beta_i}{\beta_i} \quad \text{si } i = 1, j \geq 2 \text{ ou } j = 1, i \geq 2 \\ \underset{0}{0} \quad \text{sinon}$$
 Soit $X = \sum_{i=1}^n y_i C_i \in \mathcal{M}_{n,1}(\mathbb{R})$ alors ${}^tXAX = \sum_{i=1}^n \sum_{j=1}^n y_i y_j^t C_iAC_j = \alpha y_1^2 + \sum_{i=2}^n \alpha_i y_i^2 + 2 \sum_{i=1}^n \beta_j y_1 y_j.$

(c) De manière analogue on a : ${}^tXA_{\varepsilon}X=(\alpha+\varepsilon^tUU)y_1^2+\sum_{i=2}^n\alpha_iy_i^2+2\sum_{j=2}^n\beta_jy_1y_j={}^t$

$$\begin{split} XAX + \varepsilon^t UUy_1^2. \\ \text{Ainsi } R_{A_{\mathcal{E}}}(X) &= \frac{{}^t XA_{\varepsilon}X}{<\!X,X\!>} = \\ \frac{{}^t XAX + \varepsilon^t UUy_1^2}{<\!X,X\!>} &= R_A(X) + \varepsilon^t\!U\,U\frac{y_1^2}{<\!X,X\!>}. \end{split}$$

(d) Choisir $X \in F$ tel que : $F \in \mathcal{F}_2$ avec $y_1 = 0$.

FIN DE L'ÉPREUVE