# Homework 4

MATH 263: Discrete Mathematics 2

Dr. Petrescu

Due: March 31, 2023 Denny Cao

## Question 1.

- (i) How many nonisomorphic non rooted trees are there with 4 vertices?
- (ii) How many nonisomorphic rooted trees are there with 4 vertices?
- (iii) How many nonisomorphic **non rooted** trees are there with 5 vertices?

## Answer 1.

(i) 2



(ii) 4



(iii) 3



### Question 2.

- a) How many edges does a tree with 10,000 vertices have?
- b) How many vertices does a full 5-ary tree with 100 internal vertices have?
- c) How many edges does a full binary tree with 1,000 internal vertices have?
- d) How many leaves does a full 3-ary tree with 100 vertices have?

## Answer 2.

- a) A tree with n vertices has n-1 edges. Thus, a tree with 10,000 vertices has 10,000-1=9,999 edges.
- b) A full m-ary tree with i internal vertices has n = mi + 1 vertices. Thus, a full 5-ary tree with 100 internal vertices has  $n = 5 \times 100 + 1 = 501$  vertices.
- c) A binary tree is a full 2-ary tree. Thus, a full binary tree with 1,000 internal vertices has  $n = 2 \times 1,000 + 1 = 2,001$  vertices.
- d) A full m-ary tree with n vertices has  $\ell = \frac{(m-1)n+1}{m}$  leaves. Thus, a full 3-ary tree with 100 vertices has  $\ell = \frac{(3-1)\times 100+1}{3} = 67$  leaves.

Question 3. Suppose that the address of the vertex v in the ordered rooted tree T is 3.4.5.2.4.

- a) At what level is v?
- b) What is the address of the parent of v?
- c) What is the least number of siblings v can have?
- d) What is the smallest possible number of vertices in T if v has this address?

#### Answer 3.

- a) 5
- b) 3.4.5.2
- c) 3
- d) 15

Question 4. Use depth- first search to find a spanning tree of each of these graphs.

- a)  $W_6$ , starting at the vertex of degree 6
- b)  $K_5$
- c)  $K_{3,4}$ , starting at a vertex of degree 3
- d)  $Q_3$

#### Answer 4.



Question 5. Prove Kruskal's Theorem.

#### Answer 5.

**Theorem 1.** Kruskal's Algorithm produces a minimal spanning tree of a connected simple graph.

*Proof.* The proof consists of two parts. The first part is to show that the algorithm produces a spanning tree. The second part is to show that the algorithm produces a minimal spanning tree.

Kruskal's Algorithm produces a spanning tree. A spanning tree is a tree that is connected and contains no cycles. Let S be the subgraph of a connected simple graph G which is the output of Kruskal's Algorithm. S must be connected because otherwise, the algorithm would not have terminated. S must also contain no cycles because each time an edge is added to S, the algorithm checks to see if the edge creates a cycle. If the edge creates a cycle, the edge is not added to S. Therefore, S is a spanning tree.

The spanning tree produced by Krushal's Algorithm is minimal. We will prove by contradiction. Assume for purposes of contradiction that S is not minimal. Then, there must be an MST with edges not in S. Let T be the MST with the least number of edges. Consider the first edge added to S by Krushal's Algorithm but not to T, e. Then,  $T \cup \{e\}$  must contain a circuit, and, since S has no circuits, one of the edges in the circuit must not be in S. Let this edge be c. Then, a graph  $T' = (T \cup \{e\}) \setminus \{c\}$  is a spanning tree of G. As T is an MST,  $w(e) \geq w(c)$ . Also, as e was selected by Kruskal's Algorithm, it must be of minimal weight, meaning  $w(e) \leq w(c)$ , which implies w(e) = w(c). Therefore, T' is also an

MST of G, but it has one more edge in common with S than T.  $\otimes$ 

We arrive as a contradiction, as T has the most edges in common with S of any MST of G. Therefore, S is a minimal spanning tree.

Question 6. Use Prim-Jarnik's or Kruskal's algorithm to find, step by step, the minimal spanning tree from the graph below. State what method you are using.



## Answer 6.

**Question 7.** Describe the tree produced by breadth-first search and depth-first search for the n-cube graph  $Q_n$ , where n is a positive integer.

#### Answer 7.

**Question 8.** Build a binary search tree for the words: *oenology*, *phrenology*, *campanology*, *ornithology*, *ichthyology*, *limnology*, *alchemy*, and *astrology* using alphabetical order.

## Answer 8.



**Question 9.** For the tree in Question 8 determine the order in which a inorder traversal visits the vertices of the given ordered rooted tree.

**Answer 9.** astrology, alchemy, campanology, limnology, ichthyology, oenology, ornithology, phrenology

Question 10. For the tree in Question 8 determine the order in which a postorder traversal visits the vertices of the given ordered rooted tree.

**Answer 10.** astrology, alchemy, limnology, ichthyology, campanology, ornithology, phrenology, oenology

Question 11. How many nonisomorphic unrooted trees are there with six vertices?

Answer 11.

Question 12. How many nonisomorphic rooted trees are there with six vertices

**Answer 12.** There are 20 nonisomorphic rooted trees with six vertices.

There is only 1 rooted tree with 6 vertices with a path of length 5.



With a path of length 4, there are 4 possibilities as we can attach the last leaf of the rooted tree with a path of length 5 to one of the top four vertices.



With a path of length 3, there are 8 possibilities.

We can attach 2 leaves to the first 3 vertices (not the last, as that would create a path of length 4).



We can also choose 2 places from 3 vertices to place the last 2 leaves, giving us another 3 possibilities.



We can also attach the last two vertices in a path of length 2 to one of the top two vertices (we cannot attach to the bottom 2, as that would create a path greater than 3).



With a path of length 2, there are 6 possibilities.

We can place 3 leaves on the first 2 vertices (not the last, as that would create a path of length 3).



We can also attach 2 leaves to the root and 1 to the second vertex, or 1 to the root and 2 to the second vertex.



We can also attach the last two vertices as a path of length 1 to the root, leaving the last leaf to be attached to a root at level 1 or to the root of the tree.



With a path of length 1, there is 1 possibility.



Altogether, there are 1+4+8+6+1=20 non-isomorphic trees with 6 vertices.