

Studiengang Elektrotechnik und Informationstechnologie

Projektarbeit P6: für die Herren Nando Spiegel und Bastian van Dijke

NETZRÜCKWIRKUNGEN VON THYRISTORSTELLERN MIT OHMSCHER LAST BEI VERSCHIEDENEN STEUERVERFAHREN

Auftraggeber: intern

Betreuung: Felix Jenni

Experte: wird bekannt gegeben

1. Einleitung

Ein- und dreiphasige Thyristorsteller werden seit vielen Jahrzehnten für verschiedenste Anwendungen eingesetzt. Bei ohmschen Lasten sind dem Betrieb mit Phasenanschnitt-Steuerung von den Netzbetreibern Grenzen gesetzt, wegen der dabei auftretenden Harmonischen (Vielfache der Netzfrequenz). Deshalb wird in diesen Fällen auf Schwingungspaket-Steuerung ausgewichen. Dabei wird die Leistung während mehrerer Netzperioden voll bezogen und anschliessend wieder weggeschaltet. Dieses harte Zu- und Wegschalten der Last zum Netz erzeugt neben Harmonischen der Netzfrequenz auch Subharmonische (Bruchteile der Netzfrequenz).

Grundsätzliche ist eine dritte Variante der Steuerung denkbar: Ein sanftes Hochfahren mit Phasenanschnitt auf volle Leistung, während einer Anzahl Pakete volle Leistung und dann wieder sanft auf null. Dabei interessiert, mit welchem Verfahren welche Harmonischen auftreten und welche Leistungen in Bezug auf die Wirkleistung auftreten (Blindleistung, Verzerrungsblindleistung, Leistungsfaktor, ...). Zusammengefasst: Welches Verfahren, welche Kombination von Verfahren ergibt den grössten Leistungsfaktor?

2. Aufgabenstellung

- a) Informieren Sie sich über die gängigen Steuerverfahren für ein- und dreiphasige Wechselspannungssteller.
- b) Bestimmen Sie analytisch die Strom-Harmonischen und den Leistungsfaktor in Funktion des Zündwinkels für Phasenanschnitt-Steuerung (ein- und dreiphasig...).
- c) Bestimmen Sie analytisch die Strom-Harmonischen und den Leistungsfaktor in Funktion des Ein- Ausschalt-Verhältnisses für Schwingungspaket-Steuerung.
 Was ändert, wenn nicht darauf geachtet wird, dass die Ströme DC-frei werden?
- d) Überprüfen Sie die Resultate mit Plecs-Simulationen und Messungen an einem Laboraufbau.
- e) Untersuchen Sie ein Verfahren mit sanftem Hoch-und Runterfahren der Leistung. Wie muss die Rampensteilheit in Bezug auf die Schwingungspacket-Periode für den bestmöglichen Leistungsfaktor gewählt werden?
- f) Simulieren und implementieren Sie die gefundene Lösung und verifizieren Sie das Ganze messtechnisch.

- g) Klären Sie, ob sich mit dem gefundenen Verfahren die Netzvorschriften einhalten lassen.
- h) Kaufen Sie nach Absprache mit dem Betreuer einen ein- und/oder dreiphasige Steller und realisieren Sie das gefundene optimale Steuerverfahren auf einem UniPi-Steuergerät. Bauen Sie das Ganze so auf, dass es «im Feld» betrieben werden kann.

3. Allgemeines

Die Arbeit ist ausführlich in einem Bericht zu dokumentieren. Dieser ist so zu verfassen, dass sämtliche eigenen Arbeiten beschrieben werden. Was von einer anderen Stelle übernommen wird, soll nicht nochmals dokumentiert, sondern mit Quellenangabe beigefügt werden. Eine Übersicht der Arbeit (mit den erreichten Resultaten) ist auf einem "Poster" der Grösse A1 abzugeben. Ebenso soll eine Zusammenfassung (abstract) im HTML-Format erstellt werden, die zur Einbindung auf einer Internet-Seite geeignet ist. Die erreichten Resultate sind anlässlich einer mündlichen Präsentation / Verteidigung an der FHNW vorzustellen. Der Bericht, sowie erstellte Software, Simulationen usw., sollen auch in elektronischer Form abgegeben werden. Ebenso sollen Datenblätter verwendeter Bauteile, soweit vorhanden, in elektronischer Form abgegeben werden.

Im Weiteren gilt der 'Leitfaden für die Abfassung von Semester- und Diplomarbeiten'.

Beginn: Montag, 18. Februar 2019; 08:00 **Abgabe: Freitag, 16. August 2019; 12:00**

Präsentation: Woche 36 / 37

(Der genaue Termin wird später bekannt gegeben.)

Windisch, den 13.08.2019; Felix Jenni