信息与计算科学导论 Number Theory 221502023 沈硕 第三次作业

Problem 24: (Adapted from Problems 777 and 778, [8]) [Difficulty Estimate=1.3] Prove the two propositions below, both of which are about Euler's Totient Function.

- (1) (Recall that a perfect square is simply the square of an integer.) There are infinitely many positive integers n such that $n + \phi(n)$ is a perfect square.
- (2) For $r \ge 1$, there is no positive integer n such that $\phi(n) = 2 \cdot 7^r$

Proof: (1) Note that n = 5 is a valid number.

Consider $n=p^{2k+1}$. If $p+\phi(p)=2p-1$ is a perfect square n^2 , then $p^{2k+1}+\phi(p^{2k+1})=p^{2k+1}+p^{2k}(p-1)=(p^km)^2$ is also a perfect square. Immediately $5,5^3,5^5,\cdots$ is a valid infinite sequence due to $k\in N^+$.

(2) Each n can be denoted by $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$, where p_1, p_2, \cdots, p_m are all primes, and k_1, k_2, \cdots, k_m are all positive integers.

Now apply this to $\phi(n) = 2 \cdot 7^r$, we get $p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m} = 2 \cdot 7^r$.

Since $r \geq 1$, then we must have 7|n.

WLOG, let $p_1 = 7$ and $k_1 \ge 2$. Then immediately we see 6 is a factor in the left hand side but not in the right hand side, i,e, $6 \mid \phi(n)$ but $6 \nmid 2 \cdot 7^r$, so there doesn't exist such n.

Problem 25: (Putnam 1997-B5) [Difficulty Estimate=2.2] Prove that for $n \ge 2$, $2^{2^{...^2}}(n \ terms) \equiv 2^{2^{...^2}}(n-1 \ terms)$ (mod n).

Give up.

Problem 26: (ARMO 2000-Grade 10-Day 1-Problem 1) [Difficulty Estimate=0.7] Evaluate

$$\left\lfloor \frac{2^0}{3} \right\rfloor + \left\lfloor \frac{2^1}{3} \right\rfloor + \left\lfloor \frac{2^2}{3} \right\rfloor + \dots + \left\lfloor \frac{2^{100}}{3} \right\rfloor$$

Solution: $2^{2k} \equiv 1 \pmod{3}$, $2^{2k+1} \equiv 2 \pmod{3}$, where $k \in \mathbb{N}$. So the original formula

$$= \frac{1}{3}(2^{0} + 2^{1} + \dots + 2^{100}) - \frac{1}{3}(51 + 100)$$

$$= \frac{1}{3} \cdot \frac{1 - 2^{101}}{1 - 2} - \frac{152}{3}$$

$$= \frac{2^{101} - 152}{3}$$

Problem 27: (S. Berlov, ARMO 2014-Grade 11-Day 2-Problem 1) [Difficulty Estimate=2.3] Call a natural number n good if for any natural divisor a of n, we have that a+1 is also divisor of n+1. Find all good natural numbers.

Solution: First, notice that 1 and all the prime numbers bigger than 2 are all good numbers.

The next is to show other natural numbers are all not good numbers.

If n is a good number, denote that $n = ab, wherea, b \in N^+$. Then $a+1 \mid ab+1 \Rightarrow a+1 \mid b-1$.

Similarly we can get $b+1 \mid a-1$, so combine these two inequations: a+1 < b-1 and b+1 < a-1 we can immediately draw a contradiction unless a or b is 1.

Problem 28: [Difficulty Estimate=2.5] Write a complete proof for Example 48.

Example 48: (IMO Shortlist 2005-N6) Let a, b be positive integers such that $b^n + n$ is a multiple of $a^n + n$ for all positive integers n. Prove that a = b.

Solution: $a^n + n \mid b^n + n \Rightarrow a^n + n \mid b^n - a^n$, so if for some p, s.t. $a^n \equiv -n \pmod{p}$, then $b^n \equiv a^n$ holds.

Assume $a \neq b$, then there exists a prime p, s.t. $p \nmid b - a$.

Then there definitely exist a positive integer k, s.t. $a \equiv k - 1 \pmod{p}$.

After fixing k, we can let n = k(p-1) + 1. And this is a counterexample.

1.
$$a^n \equiv a^{k(p-1)+1} \equiv a \equiv k-1 \equiv -kp+k-1 \equiv -n \pmod{p}$$
.

2.
$$a^n \equiv a, b^n \equiv b \pmod{p}$$
. Since $p \nmid b - a \Rightarrow b \not\equiv a \pmod{p}$, i,e,

 $b^n \not\equiv a^n \pmod{p}$, then we draw a contradiction.

So there must be a = b.

Problem 29: [Difficulty Estimate=1.7] For what kind of odd primes p, is -3 a quadratic residue mod p? Prove your answer.

Solution: Of course 3 is not a valid odd prime number.

Then we should think of p = 12k + 1, 12k + 5, 12k + 7, 12k + 11, which definitely include all odd primes.

Case 1: p = 12k + 1.

$$\{a \mid a \le \frac{p-1}{2}, -3a \bmod p > \frac{p-1}{2}, a \in \mathbb{Z}_p^+\}$$

$$= \{a \mid 1 \le a \le 2k \text{ or } 4k + 1 \le a \le 6k \text{ or } 8k + 1 \le a \le 10k\}$$

Then this set has 6k elements, and by Gauss Lemma we can get that $-3 \in QR_p$.

And similarly we can deal with the other 3 conditions. The conclution is that $-3 \in QR_p \iff p = 12k + 1 \text{ or } 12k + 7.$

Problem 30: (adapted from [9]) [Difficulty Estimate=2.5] Suppose $m=2^ap^b$, where p is an odd prime, and $a\leq 3$ and $b\leq 2$ are integers. What is $\prod_{r^2\equiv 1 \pmod{m}} r$? Prove your answer.

Give up.

Problem 31: Give up.

Problem 32: [9] [Difficulty Estimate=2.3] Suppose p is an odd prime and $a,b,c\not\equiv 0 (mod\ p)$. Prove that the equation $ax^2 + by^2 + cz^2 \equiv 0 (mod\ p)$ has at least p solutions $(x,y,z)\in Z_p^3$.

Solution: Recall the Example 57 [12]: For any prime p, any $a \in \mathbb{Z}_p^*$, there exists an integer $b(1 \le b \le p-1)$ such that the equation $x^2 + y^2 + a = bp$ has an integer solution.

We can see this Example from a new perspective. That is to say, $\forall a \in \mathbb{Z}_p^*$, a can be displayed as the sum of two quadratic residues.

Even better, we can similarly reach that $\forall a \in \mathbb{Z}_p^*$, a can be displayed as the sum of two quadratic non-residues.

Armed with this powerful conclution, we can deal with the original problem with great ease.

Obviously, x^2 is a quadratic residue. If a is a quadratic residue, then ax^2 is still a quadratic residue. After fixing a, with x traversing all elements in Z_p^* , we can see ax^2 traverse all elements in quadratic residue.

If a is not a quadratic residue, similarly we can get that ax^2 traverse all quadratic non-residues. And this is the same to by^2 and cz^2 .

Examine the original equation. There definitely are two elements, which are both quadratic residues or both quadratic non-residues. WLOG, they are ax^2

and by^2 , and the equation change to $u + v \equiv w \pmod{p}$. w can traverse quadratic residues or quadratic non-residues, both of which has (p-1)/2 elements. And for each w choosed, by the conclution mentioned before, there must exists a solution (u,v). Since ax^2 and by^2 both can traverse all elements, the solution must can be shown by x, y, i,e, it is valid. And (v,u) is also a valid solution, so now for each w, we have 2 solutions. Summing up them leads to p-1 solutions, while the remaining one is (0,0,0), so there are at least p solutions.

Problem 33: (USA TST 2008, Problem 4) [Difficulty Estimate=3.2] Recall that a perfect square is simply the square of an integer. Prove that, for any integer n, $n^7 + 7$ is not a perfect square. (Hint from [2]: Use Lemma 2.)

Solution: Prove this by contradiction. Assume that $n^7+7=a^2$. Apply mod 4 to each side. $a^2\equiv 0$ or $1\pmod 4$, $n^7+7\equiv n^7+3\equiv 3$ or 0 or $2\pmod 4$, so the only possibility is that $n^7+7\equiv a^2\equiv 0$, $n\equiv 1$, $a\equiv 0$ or $2\pmod 4$. To draw a contradiction, there must be a form that the left hand side can be factorized, and the right hand side can be show as two perfect square numbers' sum. And that is $n^7+2^7=a^2+11^2$, where the left hand side can be displayed as $(n+2)(n^6-2n^5+4n^4-\cdots+2^6)$. Use Lemma 2. Since $\gcd(a,11)=1$, each odd factor of a^2+11^2 has the form of 4k+1. However, $n+2\equiv 3$, $n^6-2n^5+4n^4-\cdots+2^6\equiv 3\pmod 4$, this is the contradiction. Then n^7+7 is not a perfect square.

Problem 34: [Difficulty Estimate=1.8] Suppose $\{S_1, S_2\}$ is a partition of Z_p^* , for an odd prime p. For any $x, y \in S_1$, and any $z, u \in S_2$, we always have $xy, zu \in S_1$ and $xz, yu \in S_2$. Prove $S_1 = QR_p$ and $S_2 = QNR_p$.

Solution: We can choose y=x, then $x^2 \in S_1$, so S_1 contains all the quadratic residues, and S_2 can only contain quadratic non-residue. Take $z \in S_2$, then $zk^2 \in S_2$ for all k, so S_2 contains all the quadratic non-residues.

Since all the quadratic residues and quadratic non-residues can form the Z_p^* , we get $S_1 = QR_p$ and $S_2 = QNR_p$.

Problem 35: (Spring 2022, Quiz 3-2) [Difficulty Estimate=2.5] Prove that the equation $4xy - x - y = z^2$ has no solution in positive integers.

Solution: $4xy - x - y = z^2 \implies (4x - 1)(4y - 1) = (2z)^2 + 1$. Since gcd(2z, 1) = 1, so all the odd factors of $(2z)^2 + 1$ has the form of 4k + 1. But both 4x - 1 and 4y - 1 don't have that form, so this equation cannot hold, i,e, it has no solution in positive integers.

Problem 36: (IMO 2020 Shortlist-N2, adpated) [Difficulty Estimate=3.2] Please prove the following two propositions. Feel free to use (1) in the proof of (2).

(1) For any prime p such that $p \equiv 1 \pmod{3}$, for any $x \in \mathbb{Z}_p^*$, either x has three cube roots, or it has none.

Give up.

Others give up too.