MATH 2270: Midterm 3 Practice Problems

The following are practice problems for the third exam.

1. Consider the following matrix:

$$A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) Compute the characteristic polynomial of A. Then factor it to find the eigenvalues of A. $p(\lambda) = (\lambda 2)(\lambda 3)^2$
- (b) For each eigenvalue, λ , find a basis for the corresponding eigenspace, $V^{(\lambda)}$. Answer: $\mathcal{B} = \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$
- (c) Use the computations from parts (a) and (b) to write $A = PDP^{-1}$, where D is a diagonal matrix, and P is an invertible matrix. You do not need to compute P^{-1} . Answer:

$$P = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- 2. Let H be the subspace of $C(\mathbb{R})$ (continuous functions $\mathbb{R} \to \mathbb{R}$) spanned by $\{\sinh x, \cosh x\}$. Recall (if you don't already know) that $\frac{\mathrm{d}}{\mathrm{d}x}(\sinh x) = \cosh x$ and $\frac{\mathrm{d}}{\mathrm{d}x}(\cosh x) = \sinh x$ (note the lack of a minus sign). Consider the linear transformation $D: H \to H$ defined by D(f) = f', where f' denotes the derivative of f.
 - (a) Compute the matrix of D with respect to the basis, $\mathcal{B} = \{\sinh x, \cosh x\}$. You do not need to show that \mathcal{B} is a basis for H. Answer: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - (b) Use the techniques of Chapter 5 to find a basis for H in which the matrix for D is diagonal. Answer: $\{\sinh x + \cosh x, \sinh x \cosh x\}$
- 3. Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by T(x) = Ax where A is a 3×3 matrix whose eigenvalues are $1, \sqrt{3}$, and -2. Does there exist a basis \mathcal{B} for \mathbb{R}^3 such that the matrix for T with respect to \mathcal{B} is diagonal? Why or why not? Answer: The matrix A is diagonalizable because it has 3 distinct eigenvalues. Thus, there is a basis in which the matrix for T is diagonal.
- 4. Give an example of a 2×2 matrix that is not diagonalizable. Answer: There are many correct answers. For example $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$
- 5. Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by T(x) = Ax, where $A = \begin{bmatrix} -6 & -2 \\ 4 & 0 \end{bmatrix}$. Find the matrix for T with respect to the basis $\mathcal{B} = \{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \}$ Answer: $\begin{bmatrix} -4 & 0 \\ 2 & -2 \end{bmatrix}$

1

- 6. §4.9 Exercises 4 & 14.
- 7. §5.6 Exercises 1 & 10.
- 8. §5.7 Exercises 4 & 10.
- 9. Find two vectors u, v in \mathbb{R}^3 such that $u \cdot v = 7$. Answer: $\begin{bmatrix} 6 \\ -3 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$

- 10. Determine if $\left\{ \begin{bmatrix} \frac{5}{-4} \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} \frac{4}{1} \\ -3 \\ 8 \end{bmatrix}, \begin{bmatrix} \frac{3}{3} \\ \frac{5}{-1} \end{bmatrix} \right\}$ is an orthogonal set. Answer: No.
- 11. Find a vector \vec{v} pointing in the same direction as $\begin{bmatrix} 5-4 & 0 & 3 \end{bmatrix}^T$ with a length of 3. Answer: $\begin{bmatrix} 15/\sqrt{50} \\ -12/\sqrt{50} \\ 0 \\ 9/\sqrt{50} \end{bmatrix}$

$$\begin{bmatrix}
15/\sqrt{50} \\
-12/\sqrt{50} \\
0 \\
9/\sqrt{50}
\end{bmatrix}$$

- 12. Let $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \right\}$.
 - (a) Give a description of W^{\perp} in parametric vector form. Answer: $W^{\perp} = \text{span}\{\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}\}$
 - (b) Compute $\operatorname{proj}_W \vec{v}$ where $v = \left[egin{array}{c} 2\\5\\-3 \end{array} \right]$. Answer: $rac{21}{14} \left[egin{array}{c} 1\\2\\-3 \end{array} \right]$
 - (c) Compute $\operatorname{proj}_{W^{\perp}} \vec{v}$. Answer: Take $\begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix}$ and subtract your answer to (b) from it.