

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
09/691,632	10/18/2000	Shervin Moloudi	40689/CAG/B600	7054
23363	7590 02/13/2002			
CHRISTIE, PARKER & HALE, LLP 350 WEST COLORADO BOULEVARD SUITE 500			EXAMINER	
			MILORD, MAR	ARCEAU
PASADENA,	, CA 91105		ART UNIT	PAPER NUMBER
			2685	
			DATE MAILED: 02/13/2002	!

Please find below and/or attached an Office communication concerning this application or proceeding.

N

PTO-90C (Rev. 07-01)

Application No. 09/691.632

Applicant(s)

Moloudi et al.

Office Action Summary Examiner

Marceau Milord

Art Unit **2685**

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address -Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136 (a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. - If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely. - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). - Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). 1) X Responsive to communication(s) filed on Oct 18, 2000 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11; 453 O.G. 213. Disposition of Claims 4) X Claim(s) 1-31 is/are pending in the application. 4a) Of the above, claim(s) ______ is/are withdrawn from consideration. 5) Claim(s) 6) X Claim(s) 1-31 is/are rejected. 7) L Claim(s) _____ is/are objected to. 8) Claims ___ are subject to restriction and/or election requirement. **Application Papers** 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are objected to by the Examiner. 11) The proposed drawing correction filed on is: a) approved b) disapproved. 12) The oath or declaration is objected to by the Examiner. Priority under 35 U.S.C. § 119 13) Acknowledgement is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d). a) ☐ All b) ☐ Some * c) ☐ None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). *See the attached detailed Office action for a list of the certified copies not received. 14) Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e). Attachment(s) 15) X Notice of References Cited (PTO-892) 18) Interview Summary (PTO-413) Paper No(s). 16) Notice of Draftsperson's Patent Drawing Review (PTO-948) 19) Notice of Informal Patent Application (PTO-152) 17) Information Disclosure Statement(s) (PTO-1449) Paper No(s). 5 20) Other:

Application/Control Number: 09691632 Page 2

Art Unit: 2683

DETAILED ACTION

Claim Rejections - 35 USC § 103

- 1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 2. Claims 1- 15, 17, 19-31 are rejected under 35 U.S.C. 103(a) as being unpatentable over Rucki et al.

(US Patent No 6006112) in view of Priniski et al. (US Patent No 4055807).

Regarding claim 1, Rucki et al discloses a transceiver (300 of figs. 3- 4), comprising: a transmitter (302 of figs. 3- 4; col. 4, lines 8- 17) having an output to couple a transmission signal (col. 4, lines 18- 26) to an antenna (305 of figs. 3- 4; col. 1, line 47- col. 2, line 63); and a receiver (307 of figs. 3- 4) having an input responsive to a receive signal from the antenna (305 of figs. 3- 4; col. 4, lines 27- 67). However, Rucki et al does not specifically disclose a receiver input being directly connected to the transmitter output.

On the other hand, Priniski et al, from the same field of endeavor, discloses a means for effectively switching an antenna between a receiver and transmitter, which means also provides a simple way to isolate the receiver from the transmitter when the system is in the transmit mode.

The antenna switch is operable in either a transmit or a receive mode, for switching an antenna to

Application/Control Number: 09691632 Page 3

Art Unit: 2683

either a transmitter or a receiver, respectively. Both the transmitter and receiver are operable in a selected frequency band. The switch comprises a filter having an input and an output; the filter input couples to the antenna, with the filter output coupling to the receiver (col. 2, line 4-66). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to apply the antenna switch used in Priniski to the communication system of Rucki in order to match the connected transmitter output and receiver input to the antenna.

Regarding claims 2 and 7, Rucki et al as modified discloses a transceiver (300 of figs. 3-4) wherein the transmitter output is disabled when the receiver input is enabled, and the receiver input is disabled when the transmitter output is enabled (col. 4, lines 42-67).

Regarding claims 3 and 14, Rucki et al as modified discloses a transceiver (300 of figs. 3-4) wherein the transmitter (302 of figs. 3-4; col. 4, lines 8-17) includes a power amplifier (303 of figs. 3-4) having the transmitter output (302 of figs. 3-4), and the receiver (307 of figs. 3-4) comprises a low noise amplifier (308 of figs. 3-4) comprising the receiver input (col. 18-45).

Regarding claims 4, 15, 23, Rucki et al as modified discloses a transceiver (300 of figs. 3-4) wherein the connected transmitter output (302 of figs. 3-4) and receiver input (307 of figs. 3-4) comprise a differential line, the transceiver further comprising a matching circuit to interface the differential line to the antenna (see figs. 3-5), the antenna being single-ended (col. 4, lines 8-26).

Regarding claims 5- 8, 24- 27, Rucki et al as applied to claims 4-5, 23, 25, 26 differs from claims 5- 8, 24- 27 in that Rucki fails to disclose the feature of a matching circuit

Application/Control Number: 09691632 Page 4

Art Unit: 2683

comprises a series capacitor and shunt inductor coupled to one of the differential lines, and a series inductor and shunt capacitor coupled to a second one of the differential lines.

However, Priniski discloses a low pass filter 14 which is comprised of a sequence of shunt capacitors 18, 20, 22 in a pi circuit configuration with corresponding series inductor 24 and 26. In addition, the high pass filter network 32 is a "T" type filter having a pair of series capacitor 34, 36 with a shunt inductor 38. Furthermore, the antenna switch is operable in either a transmit or a receive mode, for switching an antenna to either a transmitter or a receiver, respectively. Both the transmitter and receiver are operable in a selected frequency band. The switch comprises a filter having an input and an output; the filter input couples to the antenna, with the filter output coupling to the receiver (col. 2, line 4-66). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to apply the antenna switch used in Priniski to the communication system of Rucki in order to match the connected transmitter output and receiver input to the antenna.

Regarding claims 9-12, 28-31, Rucki as applied to claims 9-12, 23, 28, 30, differs from claims 9-12, 28-31 in that Rucki fails to disclose the features of transmitter output comprises a differential transistor pair each having a drain coupled to a different one of the differential lines; and a receiver input comprises a second differential transistor pair each having a gate coupled to a different one of the differential lines.

However, Priniski discloses a transmitter 62 which drives an output power stage comprised of transistor 64, whose collector connects both through an inductor load 66 to a bias

Page 5

Art Unit: 2683

potential 68 and through a coupling capacitor 70 to the input port 30 of the high pass filter network 32. Furthermore, the antenna switch is operable in either a transmit or a receive mode, for switching an antenna to either a transmitter or a receiver, respectively. Both the transmitter and receiver are operable in a selected frequency band. The switch comprises a filter having an input and an output: the filter input couples to the antenna, with the filter output coupling to the receiver (col. 2, line 4-66). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to apply the antenna switch used in Priniski to the communication system of Rucki in order to match the connected transmitter output and receiver input to the antenna.

Regarding claim 13, Rucki et al discloses a method of coupling a transceiver (300 of figs. 3-4) to an antenna (305 of figs. 3-4), the transceiver (300 of figs. 3-4; col. 4, lines 8-17) having a transmitter output (302 of figs. 3-4) and a receiver input (307 of figs. 3-4) connected directly together (col. 4, lines 18-26), the method comprising: disabling (311 of figs. 3-4 such as S4) the receiver input; transmitting a transmission signal from the transmitter output (302 of figs. 3-4) to the antenna (305 of figs. 3-4) with the receiver disabled (311 of figs. 3-4 such as S4; col. 4, lines 21-32); disabling (311 of figs. 3-4 such as S1-S4; col. 4, lines 34-41) the transmitter and enabling the receiver (col. 4, lines 42-67). However, Rucki et al does not specifically disclose the steps of disabling the transmitter and enabling the receiver; and receiving a receive signal from the antenna at the receiver with the transmitter disabled.

Page 6

Art Unit: 2683

On the other hand, Priniski et al, from the same field of endeavor, discloses a means for effectively switching an antenna between a receiver and transmitter, which means also provides a simple way to isolate the receiver from the transmitter when the system is in the transmit mode. The antenna switch is operable in either a transmit or a receive mode, for switching an antenna to either a transmitter or a receiver, respectively. Both the transmitter and receiver are operable in a selected frequency band. The switch comprises a filter having an input and an output; the filter input couples to the antenna, with the filter output coupling to the receiver (col. 2, line 4-66). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to apply the antenna switch used in Priniski to the communication system of Rucki in order to match the connected transmitter output and receiver input to the antenna.

Claims 17 and 19 contain similar limitations addressed in respective claims 13, 20-21, and therefore, are rejected under a similar rationale.

Regarding claim 20, Rucki et al discloses a transceiver (300 of figs. 3- 4; col. 4, lines 8-17), comprising: a transmitter (302 of figs. 3- 4) having an output to couple a transmission signal (col. 4, lines 18- 26) to an antenna (305 of figs. 3- 4; col. 1, line 47- col. 2, line 63); a receiver (307 of figs. 3- 4) having an input responsive to a receive signal from the antenna (305 of figs. 3- 4; col. 4, lines 14- 32), the receiver input (307 of figs. 3- 4) being directly connected to the transmitter output (302 of figs. 3- 4; col. 4, lines 27- 67). However, Rucki et al does not specifically disclose a matching means for matching the connected transmitter output and receiver input to the antenna.

Page 7

Art Unit: 2683

On the other hand, Priniski et al, from the same field of endeavor, discloses a means for effectively switching an antenna between a receiver and transmitter, which means also provides a simple way to isolate the receiver from the transmitter when the system is in the transmit mode. The antenna switch is operable in either a transmit or a receive mode, for switching an antenna to either a transmitter or a receiver, respectively. Both the transmitter and receiver are operable in a selected frequency band. The switch comprises a filter having an input and an output; the filter input couples to the antenna, with the filter output coupling to the receiver (col. 2, line 4-66). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to apply the antenna switch used in Priniski to the communication system of Rucki in order to match the connected transmitter output and receiver input to the antenna.

Regarding claim 21, Rucki et al as modified discloses a transceiver (300 of figs. 3- 4; col. 4, lines 8- 17) wherein the transmitter (302 of figs. 3- 4) further comprises means (311 of figs. 3- 4 such as S1- S4; col. 4, lines 34- 41) for disabling the transmitter output (302 of figs. 3- 4) when the receiver input (307 of figs. 3- 4) is responsive to the receive signal from the antenna (305 of figs. 3- 4), and the receiver (307 of figs. 3- 4) further comprises means (311 of figs. 3- 4 such as S4) for disabling the receiver input (col. 4, lines 21- 32) when the transmitter output is coupling the transmission signal to the antenna (col. 4, lines 42- 67).

Regarding claim 22, Rucki et al as modified discloses a transceiver (300 of figs. 3- 4; col. 4, lines 8- 17) wherein the transmitter (302 of figs. 3- 4) includes a power amplifier (303 of figs. 3- 4) having the transmitter output (302 of figs. 3- 4; col. 4, lines 27- 67), and the receiver (307

Page 8

Art Unit: 2683

of figs. 3-4) comprises a low noise amplifier (308 of figs. 3-4) comprising the receiver input (col. 4, lines 14-41).

Claim Rejections - 35 USC § 103

3. Claims 16 and 18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Rucki et al. (US Patent No 6006112) in view of Priniski et al. (US Patent No 4055807) as applied to claims 1- 15 above, and further in view of Lampen (US Patent No 5375257).

Regarding claims 16 and 18, Rucki and Priniski disclose everything claimed above except the features of a transmitter that is enabled comprising shifting a first signal on one of the differential lines by 90 degrees, shifting a second signal on a second one of the differential lines by 90 degrees in an opposite direction, and combining the shifted first and second signals.

However, such a technique is common as shown by Lampen in figure 2 where a transmitted signal from the transmitter 18 is fed, via port 100_4 , to the port 28_1 of the coupler 28 wherein a portion of the transmitted signal is fed to the phase shifter 102 and another portion of the transmitted is fed to the phase shifter 108. The phase of the signal at the input of the phase shifter 108 lags the phase of the signal at the input of the phase shifter 102 by 90 degrees (figs. 1-2; col. 6, line 24- col. 7, line 47; col. 9, line 26- col. 10, line 35). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to apply the phase shifters used in Lampen to the modified system of Priniski and Rucki in order to shift the first

Art Unit: 2683

signal by 90 degrees and match the connected transmitter output and receiver input to the antenna.

Conclusion

4. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Klomsdorf et al discloses a power amplifying circuit with load adjust for control of adjacent and alternate channel power.

Mobach US Patent No 5574986 discloses a telecommunication system, and a first station, a second station, and a transceiver for use in such a system.

Yamamoto et al. US Patent No 6308047 B1 discloses a radio-frequency integrated circuit for a radio-frequency wireless transmitter-receiver with reduced influence by radio-frequency power leakage.

Kommrusch US Patent No 5778306 discloses a low high frequency transmitting/receiving switching module having an input and output port, that may be connected to an antenna or external port by applying an appropriate bias potential to a switching circuit.

Yamamoto et al. US Patent No 5878331 discloses an integrated circuit including a single pole double throw switch including a transmitting and receiving port, a transmitting port, and a receiving port.

Sawai et al. US Patent No 5590412 discloses a communication apparatus for use in a portable telephone which has a transmit-receive common amplifier for amplifying a transmitted

Page 10

Art Unit: 2683

signal or received signal, and a mixer for frequency mixing the transmitted signal or the received signal with a local oscillator output.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Edward F. Urban, can be reached on (703) 305-4385. The FAX phone number for this Group is (703) 872-9314.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the Group receptionist whose telephone number is (703) 306-0377.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Marceau Milord whose telephone number is (703) 306-3023. The examiner can normally be reached on Monday through Thursday from 9:30 A.M. to 7:00 P.M.

January 22, 2002