Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: Practice Questions for Date: 04/20/22 Course: Math 101 A04 Spring 2022 Sections 11.4 & 11.5 [Not f

Find the length of the spiral, $r = 5\theta^2$, $0 \le \theta \le \sqrt{21}$.

If $r = f(\theta)$ has a continuous first derivative for $\alpha \le \theta \le \beta$ and if the point $P(r,\theta)$ traces the curve $r = f(\theta)$ exactly once as θ runs

from α to β , then the length of the curve is L = $\int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$. For this problem, it is given that $\beta = \sqrt{21}$ and $\alpha = 0$.

For
$$r = 5\theta^2$$
, $\frac{dr}{d\theta} = 10\theta$.

$$L = \int_0^{\sqrt{21}} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

$$= \int_0^{\sqrt{21}} \sqrt{\left(5\theta^2\right)^2 + \left(10\theta\right)^2} d\theta \text{ Each squared term has factor of } (5\theta)^2.$$

$$= \int_0^{\sqrt{21}} 5\theta \sqrt{\theta^2 + 4} d\theta$$

Using
$$\int f(v)d\theta = \int \frac{f(v)}{\frac{dv}{d\theta}} dv$$
, substitute $v = \theta^2 + 4$, so that $\frac{dv}{d\theta} = 2\theta$.

Also, if $\theta = 0$, then v = 4, and if $\theta = \sqrt{21}$, then v = 25.

The length, L, transforms into the following integral.

$$L = \int_{0}^{\sqrt{21}} 5\theta \sqrt{\theta^2 + 4} \, d\theta$$
$$= \int_{4}^{25} \frac{5\theta \sqrt{v}}{2\theta} \, dv$$
$$= \frac{5}{2} \int_{4}^{25} \sqrt{v} \, dv$$

Integrate.

$$L = \frac{5}{2} \int_{4}^{25} \sqrt{v} \, dv$$

$$= \frac{5}{2} \left[\frac{2}{3} v^{3/2} \right]_{4}^{25}, \text{ using } \int v^{n} \, dv = \frac{v^{n+1}}{n+1}$$

$$= \frac{5}{3} \left(25^{3/2} - 4^{3/2} \right)$$

Simplify to solve for the length.

$$L = \frac{5}{3} \left(25^{3/2} - 4^{3/2} \right)$$
$$= \frac{5}{3} \left(5^3 - 2^3 \right)$$
$$= \frac{585}{3}$$