USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Examinations April/May-2023

Computer Science and Engineering

FOUNDATIONS OF COMPUTER SYSTEMS DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Define clock and clock rate	02
	1.2	Write a program that can be evaluate the expression $A * B + C * D$ in a	
		single-accumulator processor. Assume that the processor has Load,	
		Store, Multiply and Add instructions, and that all values fit in the	
		accumulator.	02
	1.3	Derive the characteristic equation of <i>SR</i> flip flop.	01
	1.4	> ah	
		cd ab 00 01 11 10	
		$00 \boxed{1 X X 1}$	
		01 X 1	
		11 1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		What is the minimal form of the Karnaugh map shown above? Assume	
		that <i>X</i> denotes a don't care term.	02
	1.5	Simplify the equation $F = AB + A(B + C) + B(B + C)$ into SOP form.	01
	1.6	With respect to cache memories, differentiate between write back	
		protocol and write through protocol.	02
	1.7	Realize the function $f(a, b, c, d) = \Sigma m(1,4,5,7,9,12,13)$ using a 4 to 1 mux.	02
	1.8	List down the different assembler directives.	01
	1.9	Convert the following pairs of decimal numbers to 5-bit, signed, 2's	
		complement, and binary and add them. State whether or not overflow	
		occurs in each case.	
		i) -14 and 11	
		ii) -10 and -13	02
	1.10	Write sum and carry Boolean expressions for a full adder.	02
	1.11	Summarize the algorithm for non restoring division	02
	1.12	List various conditional codes.	01

PART-B

2	а	Compare the performance of array multiplication with sequential circuit				
		binary multiplier in terms of combinational logic. Also explain how				
		Multiplicand = 1101 and Multiplier= 1011 can be multiplied using				
		sequential binary multiplier.	10			

	b	Demonstrate the multiplication process in bit-pair recoding for the values given 010111 and 110110	06
3	a b	With a neat diagram explain SR flip-flop as an switch debouncer application Describe race around condition problem faced by JK flip-flop. Give solution for the same using master slave JK flip flop. OR	06
4	a b	Design mod-10 synchronous counter using <i>JK</i> flip-flops. Draw the neat state diagram and circuit diagram with Flip-Flops. Show with logic and timing diagrams how an asynchronous counter can be implemented having a modulus of 12 with a straight binary sequence from 0000 through 1011.	10
5	a	For the state diagram shown in Fig 5a, using <i>JK</i> flip flop draw the logic diagram of sequential circuit using <i>JK</i> flip flops.	
		$\begin{array}{c} 00 \\ 0 \\ 1 \\ 0 \\ 0 \\ 10 \\ 0 \\ 10 \\ 0 \\ $	
	b	Fig 5a A sequential circuit has two JK flip-flops A and B . Two inputs x and y and one output z . The flip-flop input functions and the circuit output functions are as follows: $JA = Bx + B'y'$ $JB = A'x$ $KA = B'xy'$ $KB = A + xy'$ $z = Axy + Bx'y'$ i) Draw the logic diagram of the circuit. ii) Tabulate the state table. iii) Derive next state equations for A and B . OR	08
6	a	Derive the next state, the output table and state diagram for the sequential circuit shown in Fig 6a	
		CIK DO FF2 DO	
	b	Fig 6a With a neat block diagram explain the connections between the processor and memory.	08

7	а	Define addressing modes. Explain any 5 addressing modes with					
		examples	04				
	b	Write the subroutines for a safe pop operation and safe push operations					
		to check stack full and stack empty respectively.					
	c	Discuss the different ways in which parameters are passed to					
		subroutines with illustrative examples.	06				
8	а	Design $2M * 32$ memory module using $512k * 8$ memory chip and explain					
		various external connections	06				
	b	With the neat diagram of three bus organization of the data path,					
		demonstrate the control sequence for the instruction Add R4, R5, R6.	10				