Examenul de bacalaureat național 2018 Proba E. c) Matematică *M șt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n(n+2) < 14$ și $n \in \mathbb{N} \Rightarrow n = 0$ sau $n = 1$ sau $n = 2$	3 p
	Suma elementelor mulțimii este egală cu $0+1+2=3$	2p
2.	<i>b</i> = 1	2p
	$a(x+1)+1=ax+1+2$, pentru orice număr real $x \Rightarrow a=2$	3p
3.	(x+2)(x+8) > 0	2p
	Mulţimea soluţiilor inecuaţiei este $(-\infty, -8) \cup (-2, +\infty)$	2p
4.	Numărul submulțimilor ordonate cu două elemente din $\{1, 3, 5, 7, 9\}$ este egal cu $A_5^2 =$	3 p
	= 20	2p
5.	M(1,4) este mijlocul segmentului BC	2p
	Coordonatele simetricului punctului A față de punctul M sunt $x = 2$ și $y = 6$	3 p
6.	EF = 3	2p
	ΔDEF este dreptunghic în E , deci $\sin D = \frac{3}{5}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)		
	$\det A = \begin{vmatrix} 0 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 0 + 0 + 0 - (-1) - (-1) - 0 =$	3 p
	$\begin{vmatrix} 1 & -1 & 0 \end{vmatrix}$	
	=1+1=2	2p
b)	$A \cdot A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}, \ A \cdot A \cdot A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$	2p
	$\begin{pmatrix} 3 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = x \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix} + y \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow x = 1, y = 2$	3p
c)	$\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$	
	$B = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \Rightarrow \det B = 2$	2p
	$B^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & -1\\ 0 & 1 & 0 \end{pmatrix}$	3р

2.a)	$2 \circ 9 = 2^{2\log_3 9} = 2^{2 \cdot 2} =$	3 p
	$=2^4=16$	2p
b)	$x^{2\log_3 3} = 25 \Leftrightarrow x^2 = 25$	2p
	x = -5 care nu convine, $x = 5$ care convine	3 p
c)	$x \circ y = x^{2\log_3 y} = x^{\log_3 y^2} = (y^2)^{\log_3 x} =$	3p
	$=y^{2\log_3 x}=y\circ x$, pentru orice $x,y\in M$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{\left(e^x\right)' \cdot (x-1) - e^x \cdot (x-1)'}{(x-1)^2} =$	2p
	$= \frac{e^{x}(x-1)-e^{x}}{(x-1)^{2}} = \frac{e^{x}(x-2)}{(x-1)^{2}}, x \in (1,+\infty)$	3p
b)	$f'(x) = 0 \Leftrightarrow x = 2$	2p
	$x \in (1,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(1,2]$ și $x \in [2,+\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2,+\infty)$	3 p
c)	$f(x) \ge f(2)$, pentru orice $x \in (1, +\infty)$	2p
	$f(2) = e^2$, deci $\frac{e^x}{x-1} \ge e^2 \Leftrightarrow \frac{e^{x-2}}{x-1} \ge 1 \Leftrightarrow e^{x-2} - x + 1 \ge 0$, pentru orice $x \in (1, +\infty)$	3 p
2.a)	$\int_{0}^{\frac{\pi}{3}} f(x)dx = \int_{0}^{\frac{\pi}{3}} \sin x dx = -\cos x \left \frac{\pi}{3} \right = 0$	3p
	$=-\frac{1}{2}+1=\frac{1}{2}$	2p
b)		3p
	$= -\frac{\pi}{2} \cdot \cos \frac{\pi}{2} + 0 \cdot \cos 0 + \sin x \begin{vmatrix} \frac{\pi}{2} \\ 0 \end{vmatrix} = \sin \frac{\pi}{2} - \sin 0 = 1$	2p
c)	$V = \pi \int_{0}^{\frac{\pi}{4}} g^{2}(x) dx = \pi \int_{0}^{\frac{\pi}{4}} \sin^{2} x dx = \pi \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2} dx =$	2p
	$= \frac{\pi}{2} x \begin{vmatrix} \frac{\pi}{4} - \frac{\pi}{4} \sin 2x \end{vmatrix} = \frac{\pi^2}{4} = \frac{\pi^2}{8} - \frac{\pi}{4} = \frac{\pi(\pi - 2)}{8}$	3p