Topology Notes

John Doe

August 13, 2021

Copy from Munkres

Definition 0.1. A **topology** on a set is a collection \mathcal{T} of subsets of X having the following properties

- 1. \emptyset and X are in \mathcal{T}
- 2. The union of the elements of any subcollection of \mathcal{T} is in T
- 3. The intersection of the elements of any finite subcollection of $\mathcal T$ is in $\mathcal T$

A set X for which a topology \mathcal{T} has been specified is called a **topological space**

Definition 0.2. If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis element**) s.t.

- 1. for each $x \in X$, there is at least one basis element B s.t. $x \in B$
- 2. if $x \in B_1 \cap B_2$, then there is a basis element B_3 s.t. $x \in B_3 \subset B_1 \cap B_2$

If $\mathcal B$ satisfies these conditions, then we define the **topology** $\mathcal T$ **generated by** $\mathcal B$ as follows: A subset U of X is said to be open in X if for each $x \in U$, there is a basis $B \in \mathcal B$ s.t. $x \in B \subset U$.

Definition 0.3. A collection \mathcal{A} of subsets of a space X is said to **cover** X, or to be a **covering** of X, if $\bigcup \mathcal{A} = X$. It is called an **open covering** of X if its elements are open subsets of X

Definition 0.4. A space X is said to be **compact** if every open covering A of X contains a finite subcollection that also covers X.

Definition 0.5. A collection A of subsets of the space X is said to have **order** m+1 if some point of X lies in m+1 elements of A, and no point of X lies in more than m+1 elements of A.

Given a collection $\mathcal A$ of subsets of X, a collection $\mathcal B$ is said to **refine** $\mathcal A$, or to be a **refinement** of $\mathcal A$, if for each element $\mathcal B$ of $\mathcal B$ there is an element $\mathcal A$ of $\mathcal A$ s.t. $\mathcal B \subset \mathcal A$

Definition 0.6. A space X is said to be **finite dimensional** if there is some integer m s.t. for every open covering $\mathcal A$ of X, there is an open covering $\mathcal B$ of X that refines $\mathcal A$ and has order at most m+1. The **topological dimension** of X is defined to be the smallest value of m for which this statement holds; we denote it by dim X.