RSeiz: A Channel Selection based Approach for Rapid Seizure Detection in the IoMT

M. A. Sayeed¹, S. P. Mohanty², E. Kougianos³, L. Rachakonda⁴ University of North Texas, Denton, TX, USA.^{1,2,3,4}

Email: mdsayeed@my.unt.edu¹, saraju.mohanty@unt.edu², elias.kougianos@unt.edu³, rl0286@unt.edu⁴

Outline of the talk

- □ Introduction
- Novel Contributions
- Design of the Proposed System
- Experimental Results
- Conclusions and Future Research

Epilepsy and Seizures

- Epilepsy is characterized by recurrent and spontaneous seizures.
- □ A seizure is defined as an abnormal electrical activity in the brain marked by loss of consciousness and convulsions.
- People with epilepsy are more prone to sudden unexplained death (SUDEP) than healthy people

Consumer Electronics for Seizure

Source: https://spectrum.ieee.org/thehuman-os/biomedical/diagnostics/thisseizuredetecting-smartwatch-couldsave-your-life

Source: https://www.empatica.com/embrace2/

Embrace2: Smartband which uses

Machine learning to detect convulsive

Seizures and notifies caregivers.

Medical grade smart watch: It detects generalized clonic-tonic Seizures and notifies physicians.

Consumer Electronics for Seizure

- U.S regulators have recently approved the first medical grade smart watch, a novel piece of consumer electronics product for neurological health, detects epileptic seizure and sends alert to the physician for proper actions.
- ☐ A significant research needs to be conducted for the detection of partial seizures and efficient drug delivery system.
- □ Consumer electronics is available to ECG, but not to EEG. The proposed system advances consumer electronics by bringing seizure detection and control to smart health care system.

Motivations: Seizure Detection

- □ Almost 1% of the world population and 3 million people in the US are affected by seizures.
- □ Anti-epileptic drugs are used to control seizure, but 30% of patients are refractory to medication.
- Surgery is restricted to cases where there can be no damage to the eloquent cortex.
- ☐ There is a high rate of sudden unexplained death (SUDEP) in epilepsy in comparison to the general population.

Related Prior Research – Types of Detections Methods

Related Prior Research

Several seizure detection methods have been proposed.

The algorithms are based on the following:

- Wavelet Transform Algorithm
- Support Vector Machine (SVM)
- □ Signal Rejection Algorithm (SRA)
- Wrist-worn accelerometer Device
- ☐ Local Mean Decomposition (LMD)
- □ Temporal Synchronization Approach

Research Question Addressed in The Current Paper

- Pattern detection for EEG abnormalities
- Early seizure detection
- Reduction in detection latency

EEG Signal – When a Seizure Occurs

Transient analysis (a) Input EEG signal of 2800-3200 seconds (b) EEG signal of 2975-3050 seconds

Seizure Detection, Prediction, and Early Detection

Significance of Rapid Seizure Detection

- ☐ Smart healthcare is gaining considerable importance to meet the demand of mass population.
- Anti-epileptic drug and surgery can not be a universal choice to control epilepsy, which stipulates alternate methods.
- ☐ As a result, seizure detection is of high importance, as early detection leads to an appropriate and timely treatment.

Novel Contributions

- The proposed algorithm removes unnecessary and less significant channels and features, which eliminates redundant computations and reduces the latency of the system.
- The proposed IoT framework provides remote connectivity, data sharing, and data storage.
- proposed system reduces detection latency considerably while maintaining high sensitivity, which makes it a suitable candidate for practical epilepsy treatment.

Design of the Proposed System

- ☐ Channel Selection: Neighborhood Component Analysis (NCA).
- Statistial Feature Extraction
- ☐ ReliefF optimized *k*-NN classifier

Module of the Proposed Rseiz in the IoT

Architecture of the Proposed RSeiz

IoT Framework for remote data access

Flowchart of the RSeiz

Channel Selection: Neighborhood Component Analysis (NCA)

- Band Pass filter of frequency range 0-32 Hz retains signals of desired range.
- NCA analyzes all the channels and keeps only useful channels.
- The reduction in channels reduces latency associated with the proposed Rseiz.

Moving Window Formation Unit

Feature Extraction Unit

- The statistical features can quantify complex behavior of the EEG signals.
- ❖ The extracted feature values for seizure and non-seizure activity are different, which is effective for identification of biomedical abnormalities.
- Level of variations along a signal can be used as statistical features such as: variance, complexity.

EEG Features

- Variance
- Standard deviation
- Signal Activity
- Signal Complexity

Concatenation and Feature Vector Formation Unit

- Extracted features from non-overlapping segments are concatenated and form the feature vector.
- During offline training, features are concatenated to form a training feature vector.
- In the online classification phase, features are concatenated to form testing feature vectors continuously from the moving window and applied to the machine learning classifier for further analysis

ReliefF Optimized *k*-NN Algorithm

- (RBO) discards irrelevant features and reduces the size of the training and testing feature vectors.
- ❖ In the offline training, the training feature vector is given to the -NN classifier and the classifier is trained.
- In the real time classification phase, the system continuously forms testing feature vectors from the moving window and passes them to the classifier.
- The classifier analyzes the feature vectors and determines the nearest neighbors and finally, a class is assigned to the testing vector by voting among the neighbors.

Characterization of the Proposed System

Parameter	Value	
Sampling Frequency	256 Hz	
Low cut-off Frequency	0 Hz	
High cut-off Frequency	32 HZ	
Best Lamda (NCA)	0.000264 (varies)	
<i>K</i> value	2	
Distance Metric	Euclidean	
Sensitivity	100%	
Latency	1.49 sec	

Experimental Results...

Experimental Results....

Experimental Results...

Comparison with Related Research

Existing Works	Sensitivity	Latency	Power Consumption
Salam, et al. 2012	100%	13.5 sec	51 μW
Yoo, et al. 2013	84.4%	2 sec	1.49 µj/class
Altaf, et al. 2015	95.7%	1 sce	2.73 µj/class
Fan, et al. 2019	96.7%	6 sce	NA
Propoed RSeiz	100%	1.49 sec	~(30-40) µW

Conclusions

- ☐ The proposed IoT based framework reduces latency significantly by eliminating redundant channels and features, while maintaining high classification accuracy.
- ☐ The reduction in computational burden makes it suitable for low latency biomedical applications.

Future Research

- ☐ Future research includes implementing a drug delivery system with the proposed system for seizure detection and simultaneous drug injection.
- □ Proposed idea can be combined with advanced machine learning algorithms to explore seizure prediction before the occurrence of seizure.

Thank You !!!

Slides Will Be Available at:

http://www.smohanty.org