RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/535.005A
Source:	P.G.
Date Processed by STIC:	3/6/06

ENTERED

PCT

RAW SEQUENCE LISTING DATE: 03/06/2006
PATENT APPLICATION: US/10/535,005A TIME: 15:25:01

Input Set : A:\WCM 93B PCT.ST25.txt

Output Set: N:\CRF4\03062006\J535005A.raw

```
3 <110> APPLICANT: UNIVERSITY OF WALES COLLEGE OF MEDICINE
             COOPER, David N
     5
             LEWIS, Mark
     6
             ULIED, Angeles
     7
             PROCTER, Anne M
     8
             GREGORY, John
     9
             MILLAR, David S
    11 <120> TITLE OF INVENTION: Growth Hormone Variation in Humans and its uses
    13 <130> FILE REFERENCE: WCM 93B PCT
C--> 15 <140> CURRENT APPLICATION NUMBER: US/10/535,005A
C--> 16 <141> CURRENT FILING DATE: 2005-05-12
    18 <150> PRIOR APPLICATION NUMBER: GB 0226441.4
    19 <151> PRIOR FILING DATE: 2002-11-12
    21 <150> PRIOR APPLICATION NUMBER: PCT/GB2002/005112
    22 <151> PRIOR FILING DATE: 2002-11-12
    24 <150> PRIOR APPLICATION NUMBER: GB 0308242.7
    25 <151> PRIOR FILING DATE: 2003-04-10
    27 <160> NUMBER OF SEO ID NOS: 2
    29 <170> SOFTWARE: PatentIn version 3.1
    31 <210> SEO ID NO: 1
    32 <211> LENGTH: 3700
    33 <212> TYPE: DNA
    34 <213> ORGANISM: human
    36 <400> SEOUENCE: 1
    37 ctgtttcttg gtttgtgtct ctgctgcaag tccaaggagc tggggcaata ccttgagtct
                                                                            60
    39 gggttcttcg tccccaggga cctgggggag ccccagcaat gctcagggaa aggggagagc
                                                                           120
    41 aaagtgtggg gttggttctc tctagtggtc agtgttggaa ctgcatccag ctgactcagg
                                                                           180
    43 ctgacccagg agtcctcagc agaagtggaa ttcaggactg aatcgtgctc acaaccccca
                                                                           240
    45 caatctattg gctgtgcttg gccccttttc ccaacacaca cattctgtct ggtgggtgga
                                                                           300
    47 ggttaaacat gcggggagga ggaaagggat aggatagaga atgggatgtg gtcggtaggg
                                                                           360
    49 ggtctcaagg actggctatc ctgacatcct tctccgcgtt caggttggcc accatggcct
                                                                           420
    51 geggecagag ggeacceacg tgaccettaa agagaggaca agttgggtgg tatetetgge
                                                                           480
    53 tgacactetg tgcacaacce tcacaacact ggtgacggtg ggaagggaaa gatgacaage
                                                                           540
                                                                           600
    55 cagggggcat gatcccagca tgtgtgggag gagcttctaa attatccatt agcacaagcc
    57 cgtcagtggc cccatgcata aatgtacaca gaaacaggtg ggggcaacag tgggagagaa
                                                                           660
    59 ggggccaggg tataaaaagg gcccacaaga gaccagctca aggatcccaa ggcccaactc
                                                                           720
    61 cccgaaccac tcagggtcct gtggacagct cacctagcgg caatggctac aggtaagcgc
                                                                           780
    63 ccctaaaatc cctttgggca caatgtgtcc tgaggggaga ggcagcgacc tgtagatggg
                                                                           840
    65 acgggggcac taaccetcag gtttggggct tetgaatgtg agtategeca tgtaageeca
                                                                           900
    67 gtatttggcc aatctcagaa agctcctggt ccctggaggg atggagaga aaaaacaaac
                                                                           960
    69 ageteetgga geagggagag tgetggeete ttgeteteeg geteeetetg ttgeeetetg
                                                                          1020
    1080
    73 ggcttcaaga gggcagtgcc ttcccaacca ttcccttatc caggcttttt gacaacgcta
                                                                          1140
```

RAW SEQUENCE LISTING DATE: 03/06/2006
PATENT APPLICATION: US/10/535,005A TIME: 15:25:01

Input Set : A:\WCM 93B PCT.ST25.txt

Output Set: N:\CRF4\03062006\J535005A.raw

```
75 tgctccgcgc ccatcgtctg caccagctgg cctttgacac ctaccaggag tttgtaaqct
                                                                        1200
77 cttggggaat gggtgcgcat caggggtggc aggaaggggt gactttcccc cgctgggaaa
                                                                        1260
79 taagaggagg agactaagga gctcagggtt tttcccgaag cgaaaatgca ggcagatgag
                                                                        1320
81 cacacgctga gtgaggttcc cagaaaagta acaatgggag ctggtctcca gcgtagacct
                                                                        1380
83 tggtgggcgg tccttctcct aggaagaagc ctatatccca aaggaacaga agtattcatt
                                                                        1440
85 cctgcagaac ccccagacct ccctctgttt ctcagagtct attccgacac cctccaacag
                                                                        1500
87 ggaggaaaca caacagaaat ccgtgagtgg atgccttctc cccaggcggg gatgggggag
                                                                        1560
89 acctgtagtc agageceeg ggeageaeag ceaatgeeg teetteeeet geagaaceta
                                                                        1620
91 gagetgetee geateteest getgeteate eagtegtgge tggageeegt geagtteete
                                                                        1680
93 aggagtgtct tcgccaacag cctggtgtac ggcgcctctg acagcaacgt ctatgacctc
                                                                        1740
95 ctaaaggacc tagaggaagg catccaaacg ctgatggggg tgagggtggc gccaggggtc
                                                                        1800
97 cccaatcctg gagccccact gactttgaga gctgtgttag agaaacactg ctgccctctt
99 tttagcagtc aggccctgac ccaagagaac tcaccttatt cttcatttcc cctcgtgaat
                                                                        1920
101 cctccaggcc tttctctaca ccctgaaggg gagggaggaa aatgaatgaa tgagaaaggg
                                                                        1980
103 agggaacagt acccaagege ttggeetete ettetettee tteaetttge agaggetqga
                                                                        2040
105 agatggcage ecceggactg ggcagatett caagcagace tacagcaagt tegacacaaa
                                                                         2100
107 ctcacacaac gatgacgcac tactcaagaa ctacgggctg ctctactgct tcaggaagga
                                                                        2160
109 catggacaag gtcgagacat tcctgcgcat cgtgcagtgc cgctctgtgg agggcagctg
                                                                        2220
111 tggcttctag ctgcccgggt ggcatccctg tgacccctcc ccagtgcctc tcctqqccct
                                                                        2280
113 ggaagttgcc actccagtgc ccaccagcct tgtcctaata aaattaagtt gcatcatttt
                                                                         2340
115 gtctgactag gtgtccttct ataatattat ggggtggagg ggggtggtat ggagcaaggg
                                                                         2400
117 gcaagttggg aagacaacct gtagggcctg cggggtctat tcgggaacca agctggagtg
                                                                         2460
119 cagtggcaca atcttggctc actgcaatct cogcetectg ggttcaageg attetectge
                                                                         2520
121 ctcagcctcc cgagttgttg ggattccagg catgcatgac caggctcagc taatttttgt
                                                                        2580
123 ttttttggta gagacggggt ttcaccatat tggccaggct ggtctccaac tcctaatctc
                                                                        2640
125 aggtgateta eccaecttgg ecteecaaat tgetgggatt acaggegtga accaetgete
                                                                        2700
127 cettecetgt cettetgatt ttaaaataac tataccagca ggaggacgte cagacacage
                                                                        2760
129 ataggetace tgccatgece aaceggtggg acatttgagt tgcttgettg gcactgteet
                                                                        2820
131 ctcatgcgtt gggtccactc agtagatgcc tgttgaattc ctgggcctag ggctgtgcca
                                                                        2880
133 getgeetegt eeegteacet tetggettet teteteeete catatettag etgtttteet
                                                                        2940
135 catgagaatg ttccaaattc gaaatttcta tttaaccatt atatatttac ttgtttgcta
                                                                         3000
137 ttatctctgc ccccagtaga ttgttagctc cagaagagaa aggatcatgt cttttgctta
                                                                        3060
139 totagatatg cocatotgcc tggtacaatc totggcacat gttacaggca acaactactt
                                                                        3120
141 gtggaattgg tgaatgcatg aatagaagaa tgagtgaatg aatgaataga caaaaggcag
                                                                        3180
143 aaatccaqcc tcaaaqaact tacaqtctqq taaqaqqaat aaaatqtctq caaataqcca
                                                                        3240
145 caggacaggt caaaggaagg aggggctatt tccagctgag ggcaccccat caggaaagca
                                                                        3300
147 ccccagactt cctacaacta ctagacacat ctcgatgctt ttcacttctc tatcaatgga
                                                                        3360
149 tegteteeet ggagaataat eeccaaagtg aaattaetta geaegteeag ttaggtagat
                                                                        3420
151 ccttgtgtac ttcttggttg ttcagagatc atcaaccagt gcaaacaatc cccccatcaa
                                                                        3480
153 tacacageag tgcctgcccc tctccccccg aggtcttccg aggcccttcc tccgtgcctg
                                                                        3540
155 aaccccctgg acatatcata tggcaaactg aagtgtccaa cgagatatag gaagtgaaac
                                                                        3600
157 acgatgtaca ctgaaacgtg caatacaaat atgcagcatg aagtgcctcg gttcactaac
                                                                        3660
159 ccgagctacg ctgggtgctt cttttctacc actttcctta
                                                                        3700
162 <210> SEQ ID NO: 2
163 <211> LENGTH: 191
164 <212> TYPE: PRT
165 <213> ORGANISM: human
167 <400> SEQUENCE: 2
```

169 Phe Pro Thr Ile Pro Leu Ser Arg Leu Phe Asp Asn Ala Met Leu Arg

RAW SEQUENCE LISTING DATE: 03/06/2006
PATENT APPLICATION: US/10/535,005A TIME: 15:25:01

Input Set : A:\WCM 93B PCT.ST25.txt
Output Set: N:\CRF4\03062006\J535005A.raw

170 1	5		10		15
173 Ala His 174	Arg Leu His 20	Gln Leu Ala	Phe Asp Thr T	yr Gln Glu 30	Phe Glu
177 Glu Ala 178	Tyr Ile Pro 35	Lys Glu Gln 40	Lys Tyr Ser F	he Leu Gln 45	Asn Pro
181 Gln Thr 182 50	Ser Leu Cys	Phe Ser Glu 55	Ser Ile Pro 7	hr Pro Ser	Asn Arg
185 Glu Glu 186 65	Thr Gln Gln	Lys Ser Asn 70	Leu Glu Leu I 75	eu Arg Ile	Ser Leu 80
189 Leu Leu 190	Ile Gln Ser 85	Trp Leu Glu	Pro Val Gln F	he Leu Arg	Ser Val 95
193 Phe Ala 194	Asn Ser Leu 100	Val Tyr Gly	Ala Ser Asp S	Ser Asn Val	Tyr Asp
197 Leu Leu 198	Lys Asp Leu 115	Glu Glu Gly 120	Ile Gln Thr I	eu Met Gly 125	Arg Leu
201 Glu Asp 202 130	_	Arg Thr Gly 135	Gln Ile Phe I	ys Gln Thr .40	Tyr Ser
205 Lys Phe 206 145	Asp Thr Asn	Ser His Asn 150	Asp Asp Ala I 155	eu Leu Lys	Asn Tyr 160
209 Gly Leu 210	Leu Tyr Cys 165	Phe Arg Lys	Asp Met Asp I 170	ys Val Glu	Thr Phe 175
213 Leu Arg 214	lle Val Gln 180	Cys Arg Ser	Val Glu Gly S 185	Ser Cys Gly 190	Phe

VERIFICATION SUMMARY

DATE: 03/06/2006 TIME: 15:25:02

PATENT APPLICATION: US/10/535,005A

Input Set : A:\WCM 93B PCT.ST25.txt

Output Set: N:\CRF4\03062006\J535005A.raw

L:15 M:270 C: Current Application Number differs, Replaced Current Application Number

L:16 M:271 C: Current Filing Date differs, Replaced Current Filing Date