Quantitative methods and simulation in Finance

Chapter 1 - Introduction

1 / 25

Agenda

- 1 Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect

Introduction (UIBE) Chapter 1 2 / 25

Simple Descriptive Techniques

Decomposition of a time series

$$X_t = egin{array}{cccc} T_t & + & S_t & + & N_t \ & ({\sf Trend}) & ({\sf Seasonality}) & ({\sf Noise}) \end{array}$$

- ullet T_t and S_t are Macroscopic Components
- ullet N_t is Microscopic Component

Series

Trend

Seasonality

Noise

Trends

Examples

- Linear Trend : $T_t = \alpha + \beta t$
- Quadratic Trend : $T_t = \alpha + \beta t + \gamma t^2$

Outline

- 1 Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect

Introduction (UIBE) Chapter 1 5 / 25

Estimation of trends without Seasonality

When $X_t = T_t + N_t$ (no seasonal effect), the trend can be estimated by

- 1) Least Squares Method
 - minimizes $\sum (X_t T_t)^2$
 - T_t is a simple model of trend, e.g. $T_t = \alpha + \beta t$
- 2) Filtering
 - $\widehat{T}_t = S_m(X_t)$
 - ullet S_m is a smoother: an operator that computes weighted average of observations near X_t
- 3) Differencing
 - $\bullet \ \Delta X_t = X_t X_{t-1}$
 - Removing trend instead of estimating trend

Introduction (UIBE)

1. Least Squares Method

ullet Idea : Find lpha , eta_j s in $T_t=lpha+eta_1t+\cdots+eta_kt^k$ such that

$$RSS = \sum_{t=1}^{n} \left(X_t - T_t \right)^2$$
 is minimized

- Method: Regression $Y = \mathbf{X}\beta + e \Rightarrow \hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$
 - Comparing $X_t = \alpha + \beta_1 t + \dots + \beta_k t^k + N_t$ to $Y = \mathbf{X}\beta + e$

$$\Rightarrow Y = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}; \mathbf{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 2^k \\ \vdots & & \vdots \\ 1 & n & \cdots & n^k \end{pmatrix}$$

$$\Rightarrow \widehat{T} = \mathbf{X}\widehat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$$

- R-Implementation:
 - n=100; k=2; Y=3+2*(1:n)+10*rnorm(n)
 - X=rep(1,n); for $(j in 1:k) \{ X=cbind(X,(1:n)\land(j)) \}$
 - Trend.coef=solve(t(X)%*%X,t(X)%*%Y)
 - o Trend=X%*%Trend.coef; ts.plot(Y);points(1:n,Trend,col=2,type='1')
- Drawbacks
 - ullet Only allow simple form of T_t , otherwise the minimization is difficult

Introduction (UIBE) Chapter 1 7 / 25

1. Least Squares Method:

Exercise:

• Given the data $\{1.2, 2.1, 2.9, 3.8\}$, estimate the trend in the form $T_t = \alpha + \beta t$.

8 / 25

Idea: Smooth the series using local data to estimate the trend

$$\widehat{T}_t = S_m(X_t) = \sum_{r=-s}^s a_r X_{t+r}$$

"smoothed" series Weighted average of $\{X_{t-s}, X_{t-s+1}, \dots, X_{t+s}\}$

- Local: Window size s is much smaller than sample size n.
- Conditions on the weight $\{a_r\}$:
 - **1** Symmetric: $a_r = a_{-r}$

Introduction (UIBE)

Examples

1) Moving Average Filter

$$\widehat{T}_t = \frac{1}{2s+1} \sum_{r=-s}^{s} X_{t+r}$$

• What is $\{\widehat{T}_t\}$ if $\{X_t\} = \{1.1, 2.2, 2.7, 4.1, 5.2, 5.8\}$ and s=1?

• If $X_t = \alpha + \beta t + N_t$ (Trend+Noise),

$$\begin{split} \widehat{T}_t &= S_m(X_t) = \frac{1}{2s+1} \sum_{r=-s}^s \left[\alpha + \beta(t+r) + N_{t+r} \right] \\ &\approx \alpha + \beta t \quad \left(\text{ smoothing: } \frac{1}{2s+1} \sum_{r=-s}^s N_{t+r} \approx 0 \right) \end{split}$$

Introduction (UIBE) Chapter 1 10 / 25

Examples

2) Spencer 15-point filter:

$$(a_0, a_1, ..., a_7) = \frac{1}{320} (74, 67, 46, 21, 3, -5, -6, -3) , \quad a_r = a_{-r}$$

- Property: Does not distort a cubic trend:
 - If $X_t = T_t + N_t$, where $T_t = at^3 + bt^2 + ct + d$, then

$$\widehat{T}_{t} = S_{m}(X_{t}) = \sum_{r=-7}^{7} a_{r} T_{t+r} + \sum_{r=-7}^{7} a_{r} N_{t+r}
= at^{3} + bt^{2} + ct + d + \underbrace{\sum_{r=-7}^{7} a_{r} N_{t+r}}_{r=-7}
\approx T_{t} \left(\sum_{r=-7}^{7} a_{r} N_{t+r} \approx 0 \right)$$

ullet We say: the cubic trend T_t "passes through" the filter S_m

Introduction (UIBE) Chapter 1 11 / 25

Exercise: Spencer 15-point filter:

$$(a_0, a_1, ..., a_7) = \frac{1}{320} (74, 67, 46, 21, 3, -5, -6, -3) , \quad a_r = a_{-r}$$

What is the filtered/smoothed series if the input is

• $X_t = ct$?

• $X_t = bt^2$?

• $X_t = at^3$?

Introduction (UIBE)

Theorem 1

A k^{th} order polynomial passes through a filter (i.e., $S_m(X_t) = \sum_{r=-s}^s a_r X_{t+r} = X_t$ for $X_t = c_0 + c_1 t + \cdots + c_k t^k$) if and only if

- $\sum_{r=-s}^{s} r^{j} a_{r} = 0$ for j = 1, 2, ..., k
 - Application: Design a filter that passes through a quadratic trend.
 - Find $\{a_r\}$ such that $\sum_{r=-s}^s a_r = 1$, $\sum_{r=-s}^s ra_r = \sum_{r=-s}^s r^2 a_r = 0$.
 - Three equations \Rightarrow Three unknowns \Rightarrow Try s=1, $\{a_{-1},a_0,a_1\}$.
 - Not satisfied? Try larger s.

3. Differencing

Differencing

First Order:
$$\Delta X_t = X_t - X_{t-1}$$

Second Order: $\Delta^2 X_t = \Delta \left(\Delta X_t \right)$

- Definition: Backshift operator (B):
 - $BX_t = X_{t-1}$
 - $B^k X_t = X_{t-k}, k = 1, 2, ...$
- Definition: Differencing operator (Δ):
 - $\Delta X_t = (1 B)X_t$
 - $\Delta^k X_t = (1 B)^k X_t, k = 1, 2, ...$
- Exercise: What is $\{\Delta X_t\}$ if $\{X_t\} = \{1.1, 2.2, 2.7, 4.1, 5.2, 5.8\}$

3. Differencing removes trend

- If $X_t = \alpha + \beta t$,
 - $\Delta X_t = X_t X_{t-1} = \alpha + \beta t [\alpha + \beta (t-1)] = \beta$ (no Trend!)
- If $X_t = t^p$.
 - $\Delta X_t = X_t X_{t-1} = t^p (t-1)^p = pt^{p-1} C_2^p t^{p-2} + \cdots$
- In general, if $X_t = T_t + N_t$ and $T_t = \sum_{j=0}^p a_j t^j$,

 - If the trend is a p^{th} degree polynomial, then the trend can be eliminated in differencing p times.
- Example:
 - n=100; t=1:n; $x=5-2*t+3*t \land 2-4*t \land 3+10*rnorm(n)$
 - d1=diff(x);d2=diff(d1);d3=diff(d2);d4=diff(d3);d5=diff(d4)
 - par(mfrow=c(2,3))
 - ts.plot(x);ts.plot(d1);ts.plot(d2);ts.plot(d3);ts.plot(d4);ts.plot(d5)

Outline

- Simple Descriptive Techniques
 - Trend Only
 - Trend and Seasonal Effect

Introduction (UIBE) Chapter 1 16 / 25

Seasonal Cycles

General Decomposition

$$X_t = T_t + S_t + N_t$$

• Seasonal component S_t : period=d

- Requirements
 - ① $S_{t+d} = S_t$ (period d: repeating itself after time d)
- e.g. season: d=4, month: d=12, week: d=7

Estimating/Removing Seasonal effect

Difficulties when both T_t and S_t exist:

ullet Need to separate the effect of trend T_t and seasonal effect S_t

Available Methods:

- Least Squares Method
- Filtering using Moving Average
- Seasonal Differencing

Introduction (UIBE) Chapter 1 18 / 25

1. Least Squares Method

- Idea :
 - Modeling seasonal effect: $S_t = \alpha_1 1_{\{s=1\}} + \alpha_2 1_{\{s=2\}} + \cdots + \alpha_d 1_{\{s=d\}}$
 - Modeling trend: $T_t = \beta_1 t + \cdots + \beta_k t^k$ (no constant term)
 - ullet Find $lpha_i$ s , eta_j s such that

$$RSS = \sum_{t=1}^{n} (X_t - S_t - T_t)^2$$
 is minimized

- Method: $X_t = \alpha_1 1_{\{s=1\}} + \dots + \alpha_d 1_{\{s=d\}} + \beta_1 t + \dots + \beta_k t^k + N_t$
 - ullet Regression: e.g. d=3, n=kd+2 for some integer k

$$Y = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ \vdots \\ X_n \end{pmatrix}; \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 0 & 2 & \cdots & 2^k \\ 0 & 0 & 1 & 3 & \cdots & 3^k \\ 1 & 0 & 0 & 4 & \cdots & 4^k \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & n & \cdots & n^k \end{pmatrix}$$

- $\Rightarrow \widehat{S} + \widehat{T} = \mathbf{X}\widehat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$
- Let $\bar{\alpha} = \sum_{i=1}^d \hat{\alpha}_i / d$
- Estimated Trend \widehat{T}_t : $\bar{\alpha} + \hat{\beta}_1 t + \cdots + \hat{\beta}_k t^k$
- Estimated Seasonal Effect \widehat{S}_i : $\hat{\alpha}_i \bar{\alpha}$ (so that $\sum_{i=1}^d \hat{S}_i = 0$)

1. Least Squares Method

$$X_t = \alpha_1 1_{\{s=1\}} + \dots + \alpha_d 1_{\{s=d\}} + \beta_1 t + \dots + \beta_k t^k + N_t$$

$$\bullet \quad Y = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ \vdots \\ X_n \end{pmatrix}; \quad \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 0 & 2 & \cdots & 2^k \\ 0 & 0 & 1 & 3 & \cdots & 3^k \\ 1 & 0 & 0 & 4 & \cdots & 4^k \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & n & \cdots & n^k \end{pmatrix}$$

- $\Rightarrow \widehat{S} + \widehat{T} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'Y$
- Let $\bar{\alpha} = \sum_{i=1}^d \hat{\alpha}_i / d$
- Estimated Trend \widehat{T}_t : $\bar{\alpha} + \hat{\beta}_1 t + \cdots + \hat{\beta}_k t^k$
- ullet Estimated Seasonal Effect \widehat{S}_i : $\hat{lpha}_i ar{lpha}$

R-Implementation:

- s1=rep(c(1,0,0),33);s2=rep(c(0,1,0),33);s3=rep(c(0,0,1),33)
- n=99;k=2;d=3; Y=3+2*(1:n)+9*s1-9*s3+10*rnorm(n)
- X=cbind(s1,s2,s3); for (j in 1:k){ $X=cbind(X,(1:n)\land(j))$ }
- Reg.coef=solve(t(X)%*%X,t(X)%*%Y); a0=mean(Reg.coef[1:3])
- Trend=a0+X[,4:5]%*%Reg.coef[4:5]
- Season=X[,1:3]%*%Reg.coef[1:3]-a0
- ts.plot(cbind(Y,Trend,Season,Trend+Season),col=1:4)

2. Filtering by Moving Average

- ullet STEP 1: Estimate the trend T_t by a special moving average filter
 - ullet the filter must cover a complete cycle (length d) with equal weights
 - \Rightarrow the estimated trend is free from seasonal effect because $\sum_{j=1}^d S_j = 0$

$$\widehat{T}_t = \left\{ \begin{array}{ll} \frac{1}{d} \left(\frac{1}{2} X_{t-q} + X_{t-q+1} + \ldots + \frac{1}{2} X_{t+q} \right) &, & \text{if } d = 2q \\ \frac{1}{d} \sum_{r=-q}^q X_{t+r} &, & \text{if } d = 2q+1 \end{array} \right.$$

• STEP 2: Estimate the seasonal component (j = 1, ..., d)

$$\widehat{S}_i = \frac{\sum_{t=i,d+i,2d+i,\dots} (D_t - \overline{D})}{n_i}, \ D_t = X_t - \widehat{T}_t, \ \overline{D} = \frac{1}{n_d} \sum D_t,$$

- $n_i = \text{number of season } i \text{ observed}$
- $n_d = \text{total number of } D_t s$
- RESULT: $X_t = \widehat{T}_t + \widehat{S}_t + \widehat{N}_t$, $(\widehat{N}_t = X_t \widehat{T}_t \widehat{S}_t)$
- REMARK: May apply a better filter to $X_t \widehat{S}_t$ to get an improved \widetilde{T}_t , then iterate Step 2 and improved filter until they converge.

2. Filtering by Moving Average

Example 2

Consider the data set

$$(X_1, \dots, X_{11}) = (2.1, 3.9, 0.5, 2.8, 6.1, 8.2, 4.5, 6.9, 9.3, 11.9, 9.4)$$

- What is d?
- $\textbf{ 9} \ \text{Find} \ \widehat{T}$

 \widehat{S}_i for $i=1,\ldots,d$

3. Seasonal Differencing

Seasonal Differencing

$$\Delta^d X_t = (1 - B^d) X_t$$
$$= X_t - X_{t-d}$$

• Seasonal differencing removes seasonal effects: If $X_t = S_t + N_t$ and period= d, then $\Delta^d X_t = S_t - S_{t-d} + N_t - N_{t-d} = N_t - N_{t-d}$. (Recall $S_t = S_{t-d}$)

Seasonal differencing also reduce polynomial trend by one degree:

$$\Delta^d t^p = t^p - (t - d)^p = dt^{p-1} + \cdots$$

$$\Delta^d t = t - (t - d) = d(\text{no } t)$$

- Drawbacks
 - lacktriangle Lose d data points
 - data = $(X_1, X_2, ..., X_n) \Rightarrow$ differenced data = $(\Delta X_{d+1}, ..., \Delta X_n)$
 - ② No estimated seasonal effect \widehat{S}_t is obtained.

Introduction (UIBE) Chapter 1 23 / 25

3. Seasonal Differencing

Example 3

Consider the data set

$$(X_1, \dots, X_{11}) = (2.1, 3.9, 0.5, 2.8, 6.1, 8.2, 4.5, 6.9, 9.3, 11.9, 9.4)$$

• Draw the seasonal differenced series.