Beomkyu KIM

June 19, 2017

OVERVIEW

$$p_{\mathrm{T}}^{\mathrm{jet,ch}}$$
 at $\sqrt{s} = 8 \text{ TeV}$

Charged dijet

Gamma study

Data samples

ALICE data

Type	\sqrt{s}	Period	Trigger	# of events
pp	8	LHC12h	INT7	29.3×10^{6}
			EMCEJE	6.06×10^{6}

Monte Carlo

Туре	\sqrt{s}	Period	$\#$ of $p_{\rm T}$ hard bins	# of events
PYTHIA8	8	LHC16c2	20 [1]	28.1×10^{6}

 $^{^{1}}$ 5-7-9-12-16-21-28-36-45-57-70-85-99-115-132-150-169-190-212-235- GeV/c

$p_{ m T}$ hard-bin normalization

Steps

- ► Follows the official procedure ^[1]
- Weighted by σ /ntirals given by MC header per event
- ► Each hard-bin merged separately
- ► Then divided by # of filled events for the given hard bin
- ► Finally all hard bins are merged
- Observables have the unit, mb (normalised to the cross-section)

¹https://twiki.cern.ch/twiki/bin/view/ALICE/PPEventNormalisation

Corrections

$$\frac{1}{N_{\text{evt}}^{\text{EMCEJE}}} \frac{dN}{dp_{\text{T.raw}}^{\text{jet,ch}}}$$
 is corrected by

► EMCEJE to INT7 trigger efficiency

$$\frac{1}{N_{\mathrm{evt}}^{\mathrm{EMCEJE}}} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,raw}}^{\mathrm{jet,ch}}} \times \frac{\frac{1}{N_{\mathrm{evt}}^{\mathrm{INT}}} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,raw}}^{\mathrm{jet,ch}}}}{\frac{1}{N_{\mathrm{evt}}^{\mathrm{EMCEJE}}} \frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,raw}}^{\mathrm{jet,ch}}}}$$

Detector and vertex efficiency correction by the unfolding

$$\frac{1}{N_{\mathrm{evt}}^{\mathrm{EMCEJE}}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,raw}}^{\mathrm{jet,ch}}} \times \frac{\frac{1}{N_{\mathrm{evt}}^{\mathrm{jet,ch}}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,raw}}^{\mathrm{jet,ch}}}}{\frac{1}{N_{\mathrm{evt}}^{\mathrm{EMCEJE}}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,taw}}^{\mathrm{jet,ch}}}} \times \mathcal{R}^{-1}(\frac{1}{N_{\mathrm{evt}}^{\mathrm{mcrec}}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,mcrec}}^{\mathrm{jet,ch}}}, \frac{1}{N_{\mathrm{evt}}^{\mathrm{mcgen}}}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T,mcgen}}^{\mathrm{jet,ch}}})$$

- Cross-section scaling and INT7 to INEL trigger efficiency
 - ▶ Multiplied by cross-section scaling : 55.8 ± 1.2 mb ^[1]
 - \blacktriangleright Divided by trigger efficiency : 85 %

¹https://aliceinfo.cern.ch/Notes/node/531

EMCEJE TO INT7 SCALING

► Ratio shows

$$\frac{1}{N_{\text{evt}}^{\text{INT7}}} \frac{dN}{dp_{\text{T,raw}}^{\text{jet,ch}}}$$

$$\frac{1}{N_{\text{evt}}^{\text{EMCEJE}}} \frac{dN}{dp_{\text{jet,ch}}^{\text{jet,ch}}}$$

- ► Fitted with $\frac{A}{(B+x^4)^C} + D$
- ▶ 95 % confidence-range
 - Shown with blue
 - Systematic uncertainty
- ► Fit function
 - when on-the-fly filling

Unfolding - Closure test

Detector efficiency is corrected by the unfolding method

► Unfolding process

$$\frac{1}{N_{\text{evt}}^{\text{EMCEJE}}} \frac{\text{d}N}{\text{d}p_{\text{T,raw}}^{\text{jet,ch}}} \times \frac{\frac{N_{\text{evt}}^{\text{NINT}}}{\text{d}v_{\text{T}}^{\text{int}}} \frac{\text{d}N_{\text{jet,ch}}}{\text{d}v_{\text{T,raw}}^{\text{jet,ch}}}}{\frac{1}{N_{\text{evt}}^{\text{EMCEJE}}} \frac{\text{d}N}{\text{d}p_{\text{T,raw}}^{\text{jet,ch}}}} \times \\ \mathcal{R}^{-1} \left(\frac{1}{N_{\text{evt}}^{\text{mcree}}} \frac{\text{d}N}{\text{d}p_{\text{jet,ch}}^{\text{jet,ch}}}, \frac{1}{N_{\text{evt}}^{\text{mcgen}}} \frac{\text{d}N}{\text{d}p_{\text{jet,ch}}^{\text{jet,ch}}} \right)$$

- ► Package : RooUnfold
- ► Algorithm : Iterative(Bayesian)
- ► Regularization parameter : 4

Final result

Ratio of CMS full jet spectra beteen 7 and 8 TeV^[1]

- ► around 0.8
- support the new 8 TeV result

The new 8 TeV result extends to 300 GeV/c (7 TeV, 100 GeV/c)

¹arXiv:1609.05331v2 [hep-ex] 4 Apr 2017

Final result v.s models

Systematic uncertainty

- ► Jet to INT7 trigger scaling : 10 %
- ► INT7 to INEL normalisation : 2.95% (0.7718±0.0228 (2.95%))
- ► Unfolding: 3 %

OVERVIEW

$$p_{\mathrm{T}}^{\mathrm{jet,ch}}$$
 at $\sqrt{s}=8~\mathrm{TeV}$

Charged dijet

Gamma study

Motivation for the $k_{\rm T}$ measurement

The goal of the $k_{\rm T}$ ($p_{\rm T,pair}$) analysis

- ► Net pair momentum of charged dijets $\sqrt{\langle p_{\mathrm{T,pair}}^2 \rangle}$ (M_{jj})
- ▶ partonic Fermi motion + initial state gluon radiation

ALICE published

- $ightharpoonup k_{\mathrm{Ty}}$ of $\mathrm{jet_{trig}^{ch+ne}} + \mathrm{jet_{asso}^{ch}}$
- for different $p_{T,jet}^{ch+ne}$ bins
- ► for p-Pb and PYTHIA8
- ▶ biased towards the trigger p^{ch+ne}_{T,jet}

This topic

- ▶ Unbiased $p_{T,pair}$ measurement with jet^{ch}_{leading} + jet^{ch}_{sub-leading}
- ▶ for Pb-Pb, p-Pb, pp and PYTHIA8

$\Delta\phi_{\rm dijet}$ for PP and P-PB collisions

Unfolding

Detector efficiency is corrected by multi-dimensional unfolding method

- ► Package : RooUnfold
- ► Algorithm : Iterative

$$(M_{jj}^{\text{raw}}, p_{\text{T}, jj}^{\text{raw}}) \times \mathcal{R}(M_{jj}^{\text{mcrec}}, M_{jj}^{\text{mctrue}}, p_{\text{T}, jj}^{\text{mcrec}}, p_{\text{T}, jj}^{\text{mctrue}})$$
(1)

Corrected $(M_{ij}^{corrected}, p_{T,ij}^{corrected})$

- ▶ projection on M_{ij} axis
- ▶ projection on $p_{T,ij}$ axis for different M_{ij} bin ranges

Unfolding - Closure test

Closure test for the unfolding with MC samples

Charged Dijet Mass

Motivation

- ► To see medium effect of dijet invariant mass
- ► In medium, high virtuality
 - \rightarrow Broad jet profile
 - \rightarrow jet mass increases
 - \rightarrow dijet mass increases

p-Pb v.s pp

Finalizing study

Pb-Pb v.s pp

Study ongoing

Charged dijet $k_{\rm T}$

Motivation

- ► To see medium effect of dijet acoplanarity
- ► In medium, dijet imbalance increases (increasing *k*_T)

p-Pb v.s pp

► Finalizing study

Pb-Pb v.s pp

Study ongoing

Pв-Pв ат
$$\sqrt{s} = 5.02$$
 TeV

- ► Data: LHC15o
- ► Trigger selection : INT7
- ▶ # of events scanned : 17 millions
- ▶ Underlying events have to be subtracted

Correction for the underlying event

In Pb-Pb, bkg from underlying events is considered!

- ► Bkg densities are measured with kT cones by median
 - ► $p_{\text{T,patch}} = \sum_{i \in \text{patch}} p_{\text{T,i}}, m_{\delta,patch} = \sum_{i \in \text{patch}} (\sqrt{m_i^2 + p_{\text{T,i}}^2} p_{\text{T,i}})$
 - ρ =median_{patches} $\{\frac{p_{\text{T,patch}}}{A_{\text{patch}}}\}$, ρ_m =median_{patches} $\{\frac{m_{\delta,\text{patch}}}{A_{\text{patch}}}\}$
- anti-kT jets are recalculated by this bkg density with kT cones
 - $p_{\text{corr}}^{\mu} = (p^x \rho A^x, p^y \rho A^y, p^z (\rho + \rho_m) A^z, E (\rho + \rho_m) A^E)$

Inclusive $p_{\mathrm{T,jet}}$ before and after the correction

INCLUSIVE JET MASS BEFORE AND AFTER THE CORRECTION

$\Delta\phi_{ m dijet}$ for PB-PB collisions

- ► Bugs were fixed
- ► 14 millions MB events scanned
- $\Delta \phi$ dist. show good shapes

Raw $M_{\rm ii}$ for PB-PB collisions

► More central → higher dijet mass

Raw $p_{\mathrm{T,pair}}$ for PB-PB collisions

► More central \rightarrow higher $p_{\text{T,pair}}$

OVERVIEW

$$p_{\mathrm{T}}^{\mathrm{jet,ch}}$$
 at $\sqrt{s}=8~\mathrm{TeV}$

Charged dijet

Gamma study

$\Delta\phi$ of leading iso γ and leading ch jet

- $\Delta \phi$ of leading jet and leading iso γ
- Nominal cluster cuts applied
- Nominal isolation cuts applied

x_E for iso γ and h^\pm

- ► Raw yield without any correction
- Nominal cluster cuts applied
- Nominal isolation cuts applied