

۳- بینایی کامپیوتر (Computer Vision)

بینایی کامپیوتر

• بینایی کامپیوتر: استخراج اطلاعات معنی دار از تصاویر و ویدیوهای دیجیتال

• مدل مناسب برای آنالیز تصاویر \rightarrow شبکه عصبی کانولوشنی (CNN)

Convolutional Neural Network

ویژگیهای مدلهای CNN

استفاده از لایههای کانولوشن (conv) و کاهش اندازه استفاده از وزنهای پنجرهای (فیلترها / کرنلها) استفاده از چند فیلتر در هر لایه (ایجاد چند خروجی متفاوت) مناسب برای پردازش دادههای تصویری

- کانولوشن تصویر ورودی و فیلتر
- مثال اعمال فیلتر بر روی تصاویر: http://aishack.in/tutorials/image-convolution-examples

- کانولوشن تصویر ورودی و فیلتر
- لغزاندن پنجره بر روی تصویر و محاسبه کانولوشن

- یک فیلتر ← یک خروجی
- نمایش نحوه کانولوشن: https://github.com/vdumoulin/conv_arithmetic

• چند فیلتر در یک لایه

• چند فیلتر در یک لایه

• ویژگیهای مختلف از هر نقطه

لایه کاهش اندازه

هدف ← کاهش حجم محاسبات / استفاده از فیلترهای بیشتر

روشهای کاهش اندازه:

- استفاده از گام (Stride) برای فیلتر کانولوشن
 - استفاده از لایه Pooling
 - استفاده از Dilation در فیلتر کانولوشن

كاهش اندازه

• با استفاده از گام (stride)

Conv + stride

سایز خروجی ≈ نصف سایز ورودی

كاهش اندازه

• با استفاده از pooling

Input

7	3	5	2
8	7	1	6
4	9	3	9
	9	ر	9

سایز خروجی = نصف سایز ورودی

كاهش اندازه

• با استفاده از dilation

فیلتر 3 x 3 Dilation rate = 2 سایز خروجی \approx نصف سایز ورودی

تابع غير خطى

(<u>Re</u>ctified <u>L</u>inear <u>U</u>nit) ReLu تابع

$$y = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \iff \text{ReLU} \\ ax & x < 0 \iff \text{PReLU / Leaky ReLU} \\ a(e^x - 1) & x < 0 \iff \text{ELU} \end{cases}$$

نحوه نمایش مدل کانولوشنی

ترکیب لایههای Conv، Pooling و Fully Connected

کاربرد

(Classification) کلاسبندی

کار عملی با شبکه CNN: <u>https://poloclub.github.io/cnn-explainer/</u>

نحوه نمایش مدل کانولوشنی

نحوه نمایش مدل کانولوشنی

معماریهای مختلف CNN

Classification

- LeNet
- VGG
- GoogLeNet
- ResNet
- ...

Object Detection

- R CNN
- YOLO
- MTCNN
- •

Segmentation

- Mask R CNN
- U Net
- •

(Classification) کلاسبندی

مدل LeNet

• اولین نمونه موفق

مدل GoogLeNet

• با معرفی ماژولهای Inception

مدل ResNet

• قابلیت استفاده از تعداد لایههای زیاد

تشخیص اشیا / چهره (Object / Face Detection)

- تشخیص کلاس سوژههای موجود در تصویر + محل قرارگیری آنها
 - خروجی مدل: کلاس سوژه + مختصات کادر

مدل R - CNN

تشخیص اشیا (Classification) + محل قرارگیری در تصویر (Regression)

مدلهای ارتقایافته:

- Fast R CNN •
- Faster R CNN •

مدل YOLO

• سرعت بالا ← مناسب برای تشخیص سریع (Realtime detection)

مدل MTCNN

• کاربرد: تشخیص چهره

(Segmentation) بخشبندی

خروجی مدل خروجی مدل ← مرزبندی دقیق سوژه عصویر • تصویر

مدل Mask R - CNN

• تشخیص اشیا + بخشبندی (Segmentation)

مدل U - Net

