Model Checking and Strategy Synthesis for Multi-Agent Systems for Resource Allocation – Proofs

Nils Timm and Josua Botha

Department of Computer Science, University of Pretoria, Pretoria, South Africa ntimm@cs.up.ac.za

1 Theorems

Theorem 1 (Model Checking). Let $[M, s \models_k \langle\!\langle A, \Sigma \rangle\!\rangle \varphi]$ be a strategic bounded model checking problem and let $[M, \langle\!\langle A, \Sigma \rangle\!\rangle \varphi, k]$ be its encoding over Vars. Then:

$$[M, s \models_k \langle\!\langle A, \Sigma \rangle\!\rangle \varphi] \equiv \mathbf{sat}([M, \langle\!\langle A, \Sigma \rangle\!\rangle \varphi, k])$$

Lemma 1. Bla

Theorem 2 (Strategy Synthesis). Let $[M, s \models_k \langle \langle A, \Sigma \rangle \rangle \varphi]$ be a strategic bounded model checking problem, let $[M, \langle \langle A, \Sigma \rangle \rangle \varphi, k]$ be its encoding over Vars and let $\alpha : Vars \to \{0, 1\}$ with $\alpha([M, \langle \langle A, \Sigma \rangle \rangle \varphi, k]) = 1$. Then for the strategy

$$\alpha_A = (\{(s_a, act^a) \mid s_a \in S_a \land act^a \in Act \land \alpha([s_a.act^a]) = \mathbf{1}\}_{a \in A})$$

the following holds: $\forall \pi \in \Pi(s, \alpha_A, \Sigma) : [M, \pi \models_k \varphi].$

Thus, from a truth assignment α that satisfies the encoding we can directly derive a corresponding uniform strategy α_A that guarantees φ . The correctness of Theorem 1 and Theorem 2 is closely linked.

Proof Sketch.

It can be shown that every satisfying truth assignment of [M,k] characterises a k-bounded path in the state space of M that is conform with the evolution. Yet, such a path may not be conform with the protocol. $[M,k] \wedge [\varphi,k]$ is satisfied for assignments that characterise paths of M for which the property φ holds. The conjunction of this encoding with $[M,\langle\langle A\rangle\rangle,k]$ adds the constraint that the agents in A must follow a uniform strategy that is conform with the protocol. Assuming that β is a protocol-conform strategy for the opposition $B = Agt \setminus A$ and by adding $[\beta,k]$ to the encoding we restrict the paths to those where the opposition adheres to β . This can be generalised to having a set Σ of possible strategies for B. We finally get that the overall propositional formula is satisfiable if and only if the encoded model checking problem holds. Moreover, the strategic decision encodings $[s_a.act^a]$ that evaluate to true for a satisfying assignment α are exactly those that characterise the winning strategy for the coalition A. \square

References