CZ2007 Introduction to Database Systems (Week 6)

Topic 5: Relational Algebra (3)

Copyright Notice

All course materials (including and not limited to lecture slides, handouts, recordings, assessments and assignments), are solely for your own educational purposes at NTU only. All course materials are protected by copyright, trademarks or other rights.

All rights, title and interest in the course materials are owned by, licensed to or controlled by the University, unless otherwise expressly stated. The course materials shall not be uploaded, reproduced, distributed, republished or transmitted in any form or by any means, in whole or in part, without written approval from the University.

You are also not allowed to take any photograph, video recording, audio recording or other means of capturing images and/or voice of any of the course materials (including and not limited to lectures, tutorials, seminars and workshops) and reproduce, distribute and/or transmit in any form or by any means, in whole or in part, without written permission from the University.

Appropriate action(s) will be taken against you (including and not limited to disciplinary proceedings and/or legal action) if you are found to have committed any of the above or infringed copyright.

Last Lecture

- Assignment: $T_1 := \sigma_{A > 100} R_1$
- Rename: p_{test(A', B', C')} R₁
- Duplicate Elimination δ
- Extended Projection II
- Grouping and Aggregation γ

This Lecture

- Division: ÷
- Left Outerjoin: $\overset{\circ}{\bowtie}_{\overset{L}{L}}$ condition
- Right Outerjoin: $\overset{\circ}{\bowtie}_{R \text{ condition}}$
- Full Outerjoin: ⋈

Owns

Name Product
Alice iPad
Alice iPhone
Bob iPhone
Cathy iPad

AppleP

Product iPhone iPad

Results

Name Alice

- Query: "Find each person that owns all Apple products"
- Owns ÷ AppleP
- In general, $R_1(A, B) \div R_2(B)$ returns a table that contains only A
- The table contains each A value in R₁ that is associated with every B value in R₂
- Intuitive interpretation: "Find the A that R_1 all the B in R_2 "
- Example: "Find the Name that Owns all the Product in AppleP"

Joins

Name Club
Alice ABC
Bob DEF
Bob ABC
Cathy DEF

Clubs

Club ABC DEF

Results

Name Bob

- Query: "Find each person that has joined all clubs"
- Joins ÷ Clubs

Joins

Name Club
Alice ABC
Bob DEF
Bob ABC
Cathy DEF

Clubs

Name ABC DEF

- Joins ÷ Clubs ?
- No result.
- In general, $R_1(A, B) \div R_2(B)$ returns a table that contains only A

Owns

Name	Product
Alice	iPad
Alice	iPhone
Bob	iPhone
Cathy	iPad

AppleP

Product	Price
iPhone	999
iPad	699

Name Alice

- Query: "Find each person that owns all Apple products"
- Owns ÷ AppleP ?
- Wrong, since "Price" does not appear in "Owns"
- In general, R₁(A, B) ÷ R₂(B) returns a table that contains only A
- Correct answer: Owns \div ($\Pi_{Product}$ AppleP)

Owns

Name	Since	Product
Alice	2013	iPhone
Alice	2013	iPad
Bob	2013	iPhone
Bob	2010	iPad

AppleP

Product iPhone iPad Results
Name Since
Alice 2013

- Owns ÷ AppleP
- The result is a table with attributes in Owns but not in AppleP, i.e., Name and Since
- The table contains every {Name, Since} combination that is associated with all Product in AppleP

Exercise

Grades

<u>Name</u>	Course	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	NN	В
Cathy	SP	В
Cathy	NN	Α

CrsSch

Course	School
DB	SCSE
DM	SCSE
NN	EEE
SP	EEE

- Query: "Find the students who have taken all courses from SCSE"
- R1 := $\sigma_{School} = '_{SCSE'}$ CrsSch
- \blacksquare R2 := Π_{Course} R1
- R3 := $\Pi_{\text{Name, Course}}$ (Grades)
- $R4 := R3 \div R2$

Exercise

Grades

<u>Name</u>	<u>Course</u>	Grade
Alice	DB	Α
Alice	DM	С
Bob	DB	В
Bob	NN	В
Cathy	SP	В
Cathy	NN	Α

CrsSch

Course	School
DB	SCSE
DM	SCSE
NN	EEE
SP	EEE

- Query: "Find the students who have taken all courses from SCSE but not all courses from EEE"
- R1 := Π_{Course} ($\sigma_{\text{School}} = '_{\text{SCSE}}$ CrsSch)
- R2 := $\Pi_{\text{Name, Course}}$ (Grades)
- R3 := R2 ÷ R1
- R4 := Π_{Course} ($\sigma_{\text{School}} = '_{\text{EEE}}$ CrsSch)
- R5 := $\Pi_{\text{Name, Course}}$ (Grades)
- $R6 := R3 (R5 \div R4)$

Left Outerjoin $\bowtie_{L \text{ condition}}$

Students

<u>Name</u>	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

Name	School	Amount
Alice	SCSE	NULL
Bob	EEE	NULL
Cathy	CEE	100
David	SCSE	200

- Query: "For each student, find the amount of his/her donation"
- Students ⋈ Donations
- All tuples in Students are retained in the results
- For each student who has not made a donation, a "NULL" value is given as his/her Amount

Left Outerjoin $\bowtie_{L \text{ condition}}$

Students

<u>SName</u>	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

SName	Name	School	Amount
Alice	NULL	SCSE	NULL
Bob	NULL	EEE	NULL
Cathy	Cathy	CEE	100
David	David	SCSE	200

- Query: "For each student, find the amount of his/her donation"
- Students $\bowtie_{L \text{Sname}} = \text{Name}$ Donations
- Similar to theta joins in that all attributes are retained

Right Outerjoin $\bowtie_{R \text{ condition}}$

Students

<u>Name</u>	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

Name	School	Amount
Cathy	CEE	100
David	SCSE	200
Eddie	NULL	300
Fred	NULL	400

- Query: "For each donator, find the school he/she is in"
- Students $\stackrel{\circ}{\bowtie}_R$ Donations
- All tuples in Donations are retained in the results
- For each donator who is not students, a "NULL" value is given as his/her School

Right Outerjoin $\bowtie_{R \text{ condition}}$

Students

SName	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

SName	Name	School	Amount
Cathy	Cathy	CEE	100
David	David	SCSE	200
NULL	Eddie	NULL	300
NULL	Fred	NULL	400

- Query: "For each donator, find the school he/she is in"
- Students $\bowtie_{R \text{ Sname}} = \text{Name}$ Donations
- Similar to theta joins in that all attributes are retained

Full Outerjoin ⋈ condition

Students

<u>Name</u>	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

Name	School	Amount
Alice	SCSE	NULL
Bob	EEE	NULL
Cathy	CEE	100
David	SCSE	200
Eddie	NULL	300
Fred	NULL	400

- The combination of left and right outerjoins
- Students

 Donations

Full Outerjoin ⋈ condition

Students

<u>SName</u>	School
Alice	SCSE
Bob	EEE
Cathy	CEE
David	SCSE

Donations

<u>Name</u>	Amount
Cathy	100
David	200
Eddie	300
Fred	400

Results

SName	Name	School	Amount
Alice	NULL	SCSE	NULL
Bob	NULL	EEE	NULL
Cathy	Cathy	CEE	100
David	David	SCSE	200
NULL	Eddie	NULL	300
NULL	Fred	NULL	400

■ Students $\stackrel{\circ}{\bowtie}_{Sname} = Name$ Donations

CastIn

Name	Movie	Year
John	Batman	2012
Steve	Batman	2012
Meg	The Women	2008

Stars

<u>Name</u>	Gender	Birth
John	Male	1980
Meg	Female	1981
Steve	Male	1990

- For each movie, count the number of male movie stars that were cast in the movie
- \blacksquare R1 := $\sigma_{Gender = 'Male'}$ Stars
- R2 := CastIn ⋈ R1
- Incomplete!

Name	Movie	Year	Gender	Birth
John	Batman	2012	Male	1980
Steve	Batman	2012	Male	1990

"All female cast" movies not included

CastIn

Name	Movie	Year
John	Batman	2012
Steve	Batman	2012
Meg	The Women	2008

Stars

<u>Name</u>	Gender	Birth
John	Male	1980
Meg	Female	1981
Steve	Male	1990

- For each movie, count the number of male movie stars that were cast in the movie
- R1 := $\sigma_{Gender = 'Male'}$ Stars
- R2 := CastIn \bowtie_L R1
- R3 := $\gamma_{\text{Movie, COUNT(Gender)}} \rightarrow_{\text{MaleStars}}$ (R2)

CastIn

Name	Movie	Year
John	Batman	2012
Steve	Batman	2012
Meg	The Women	2008

R2

Name	Movie	Year	Gender	Birth
John	Batman	2012	Male	1980
Steve	Batman	2012	Male	1990
Meg	The Women	2008	NULL	NULL

Stars

<u>Name</u>	Gender	Birth
John	Male	1980
Meg	Female	1981
Steve	Male	1990

R3

Movie	MaleStars
Batman	2
The Women	1

- R2 := CastIn \bowtie_L R1
- R3 := $\gamma_{\text{Movie, COUNT(Gender)}} \rightarrow_{\text{MaleStars}}$ (R2)

- For each movie, count the number of male movie stars that were cast in the movie
- R1 := $\sigma_{Gender = 'Male'}$ Stars
- R2 := $\gamma_{\text{Name, COUNT(Gender)}} \rightarrow_{\text{Male}}$ (R1)
- R3 := CastIn \bowtie_I R2
- R4 := $\gamma_{\text{Movie, SUM(Male)}} \rightarrow_{\text{MaleStars}}$ (R3)

R2

Name	Male
John	1
Steve	1

R3

Name	Movie	Year	Male
John	Batman	2012	1
Steve	Batman	2012	1
Meg	The Women	2008	NULL

R4

Movie	MaleStars
Batman	2
The Women	0

The End