

FACEBOOK: BOT OR NOT CHALLENGE

ALEKYA PYREDDY (903211489)
HIMADEEP REDDY REDDIVARI (903208781)
KIRTHANA HAMPAPUR (903198301)

Overview of the Presentation

- Problem Statement and Data Description
- Feature Engineering and Pre-processing
- Initial Methods: SVM, Neural Nets, Random Forest, Logistic Regression, AdaBoost
- Model Optimization and Comparison
- Handling Class Imbalance
- Ensemble methods Stacking
- Two-Stage AdaBoost
- Conclusion and Future Scope

Problem Statement and Data

- Predict if an online bid is made by a machine or a human data from <u>Kaggle</u>
- No meaningful data, mostly alphanumeric with transformed features

Bidder Information

- Bidder id –
 91a3c57b13234af24875c56fb7e2b2f4rb56a
- Payment account a3d2de7675556553a5f08e4c88d2c228754av
- Address a3d2de7675556553a5f08e4c88d2c228vt0u4
- Outcome 0 for human, 1 for bot

Bid Information – 7.6 million obsvervations

- Bidder id alphanumeric data
- Auction id alphanumeric data
- Merchandise 10 levels
- Device phone model
- Time time that the bid is made (transformed)
- Country country that the IP belongs
- IP Address IP address of a bidder (transformed)
- URL, which the bidder was referred from url where the bidder was referred from (transformed)

- Create features in order to compete have to be creative
- Obvious features
 - Number of auctions placed by a bidder more frequently place for a bot
 - Number of devices and IP addresses used will be high for a bot
 - Number of distinct countries from which bids are placed – will be high for a bot
- Other features
 - Time difference between consecutive bids low for bot
 - Country crime statistics put in 5 tiers extracted from a database with SQL

```
1: 2351424 17a321c4a0d925ca80507effa52330ac5n5r
                                                                                                            60.82.178.42 8alyseby9wbk3zr
                                                                       phone111 9631917789473684
                                                                                                      ru 113.174.116.199 vasstdc27m7nks3
                                                                      phone229 9631929105263157
                                                                                                      cz 71.132.199.137 7pwsx2e55ckbccw
                                                   hi7or
                                                                                                           96.110.81.233 vasstdc27m7nks3
7: 2368100 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                           6.192.198.142 5roro09tppf5ixp
                                                                                                           6.192.198.142 h26spjh3n5pfxyu
                                                                                                          157.12.54.124 g5r5308duswuqad
                                                   9u186
                                                                                                      uk 117.22.153.104 77piptyiezdptc9
16: 2410890 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                          11.139.116.12 vasstdc27m7nks3
                                                                      phone189 9632047526315789
17: 2412380 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                            133.183.43.4 5roro09tppf5ix
21: 2423117 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                          6.192.198.142 9168a3122fv7v3s
22: 2423532 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                             12.83.18.21 mfbwizdplz3z98;
                                                   dvllu
                                                                                                          167.65.234.108 9168a3122fv7v3s
                                                              jewelry
26: 2433780 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                            81.54.92.252 vasstdc27m7nks3
27: 2433891 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                      bn 167.65.234.108 9168a3122fv7v3s
29: 2436725 17a321c4a0d925ca80507effa52330ac5n5r7
                                                                                                            41.81.80.193 vasstdc27m7nks3
                                                                                                      tr 203.210.192.208 vasstdc27m7nks3
```


• Histograms

Histograms

- Created database schema in SQLite and used RSQLite to get relevant features and statistics
- Bidder ID removed
- Mean, median statistics used, numeric features for merchandise

SVM

ROC curve for SVM

Parameter tuning for SVM

Neural Nets and Random Forest

Logistic Regression and AdaBoost

Parameter tuning for Logistic Regression

Parameter tuning for Adaptive Boosting

Base Models	Parameter 1	Optimal	Parameter 2	Optimal	Training AUC	Submission AUC
SVM	Gamma	0.01	Cost	0.05	0.7881597	0.6019000
Neural Nets	Decay factor	0.00005	Units in hidden layers	2	0.8795238	0.7864244
Random Forests	Number of trees	120			0.9046143	0.8606039
Logistic Regression	К	5	Type of Regression	Both	0.7971601	0.6658645
Adaptive Boosting	Number of trees used	100	Maximum Depth of tree	8	0.9122576	0.8706247

Handling class imbalance

- Dataset is not balanced leads to very bad predictions
- Data distribution has to be taken into consideration
- Standard learners are often biased towards the majority class
- SMOTE Synthetic Minority Oversampling Technique
- SMOTE = under sampling from minority class + over sampling from majority class
- Minority sample
 - Find k-nearest minority neighbors
 - Randomly select j and generate new samples and join to minority sample
- Disadvantage can over generalize, number of sample fixed, no flexibility

Results - SMOTE

- Initial proportion of outcomes 94.8% zeros, and 5.2% ones
- After SMOTE data is equally balance (50:50)
- Results not as expected basic models still fail
- Justified? yes
- The data may not be completely representative of the population
- No better than random guessing
- To avoid over-generalization we can cluster the minority data, or do adaptive sampling techniques

- Generate group of base learners and combine for better accuracy
- Rationale base algorithms might be making assumptions not valid for the dataset
- Useful when there is base models with different kinds of errors

Rule	Fusion function $f(\cdot)$
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$
Median	$y_i = \text{median}_j d_{ji}$
Minimum	$y_i = \min_j d_{ji}$
Maximum	$y_i = \max_j d_{ji}$
Product	$y_i = \prod_j d_{ji}$


```
> load("\\\prism.nas.gatech.edu\\hreddivari3\\vlab\\documents\\cdaproject\\facebook3\\allmodels.RData
        rbind(matrix(1,1,5),matrix(-1,1,5),diag(c(1,1,1,1,1))))
> library(quadprog)
  solution = solve.QP(D,d,A,b,factorized = FALSE)
   [1,] 0.0077389382 7.959216e-05 0.00000000 0.07409190 0.0026699788
```

- Formulate objective function as minimization of sum squared errors from base models on validation sets
- Constrained weights obtained
- Prediction using weighted sum combination rule
- Stacking model improves submission scores from 0.87 to 0.89
- Train a single layer logistic regression model to use as a combiner

- Can we perform better than stacking?
- 2 stage AdaBoost with bagging
- Stage 1 RF and Neural nets on out of bag data (OOB)
- Stage 2 AdaBoost trained on bag data
- Use predictions from stage 1 to train AdaBoost stage 2
- 3:1 split on Bag and OO-Bag data
- 10 fold cross-validation done for 100 runs to check stability

2 stage Ada-Boost – Structure

- Predictions from random forests and neural nets model used as features to train AdaBoost model in stage 2
- Features added is $\sqrt{probability}$ from random forest \times probability from neural nets
- If both probabilities are almost same we add similar feature, and if not product takes care of it

2 stage Ada-Boost – Results


```
pred final = pred final + pred
   #pred final = pred final + rank(pred, ties.method = "random"
             = seq(from=0, to=1, length.out=nrow(valid x))[rank(pred final, ties.method
  auc scores[cv] = evaluation(pred final, valid x[,ncol(valid x)])
cat("mean: ", mean(auc scores), "sd: ", sd(auc scores))
total scores[r] = mean(auc scores)
```

Conclusions and Improvements

