1 Definition: Transition System

A **planning task** is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$

A transition system is a 6-tuple $T = \langle S, L, c, T, s_0, S^* \rangle$ where:

- S: finite set of states
- . L: finite set of transition labels
- $c: L \mapsto \mathbb{R}^+$: label cost function
- $T \subseteq S \times L \times S$: transition relation
- s₀ ∈ S: initial state

• $S^* \subseteq S$: set of goal states 1.1 Forms and Properties

1.1.1 Heuristics

- Admissable: $h(s) < h^*(s)$
- Consistent: $h(s) \le c(s, s') + h(s')$
- Goal aware: $h(s \in S^*) = 0$
- Safe: $h(s) = \infty \rightarrow h^*(s) = \infty$

1.1.2 Task forms and Misc.

- · Positive normal form: All ops and goal are positive and flat
- o is positive if pre(o) and effcond(o) are positive
- ▶ A logical proposition is positive if ¬ doesn't appear (including \leftarrow and \leftrightarrow
- o is flat, if eff(o) is flat (i.e. contains only atomics or (x ▷ y))
- STRIPS: If all ops are STRIPS and goal follows: $\bigwedge_{v \in V} v$
- o is STRIPS if pre(o) follows same form, and eff(o) is atomic.
- i-g Form: STRIPS form. $\{i, g\} \subseteq V$. $I := \{i\}$. $\gamma \coloneqq \{g\}. \ \forall (o \in O)(|\operatorname{pre}(o)| > 0)$
- Any task can be made i-g form trivially, if already STRIPS.
- Transition Normal Form (TNF): $\forall (o \in O)(\text{vars}(\text{eff}(o)) =$ vars(pre(o))) and $vars(\gamma) = V$.
- This can be achieved by 1) add auxiliary u to every $\mathrm{dom}(v)$
- > 2) For each variable and value, add an operator than converts it to u for zero cost
- 3) For all o, if a variable is in pre, but not in eff add it with the same value. If v in eff but not in pre, add v = u in pre
- Algorithm is sound → plans are correct, and "unsolveable" answer is correct

1.2 On-Set and Dominating states

- · The on-set is the set of propositional variables that are true in a interpretation.
- Domainiting interpretations for $on(s) \subseteq on(s'), s, s' \in S$

1.3 Complexity

- $P \subset NP \subset PSPACE = NPSPACE$
- (PlanEx)istance ≤ (B)ounded (C)ost PlanEx
- (PlanEx)istance ∈ PSPACE
- · True for both optimal and satisfycing
- · Planning is P in the number of states.

- · Uninformed: DFS, BFS, Iterative DFS
- · Heuristic: Greedy BFS, A*, W-A*, IDA*
- · Local Heuristic: Hill climbing, Sim. anneling, Beam

```
\varphi satisfiable iff \exists I : I \models \varphi
\varphi valid iff \forall I : I \models \varphi
\varphi \models \psi \text{ iff } \forall I : I \models \varphi \rightarrow I \models \psi
\varphi \equiv \psi \text{ iff } \varphi \models \psi \wedge \psi \models \varphi
```

Let $\varphi=\varphi_1\wedge\ldots\wedge\varphi_n$ be a conjunction of atoms, and o's add effects $T_{V(O)}=\bigvee_{o\in O}t_{V(o)}$ be $\{a_1, ..., a_k\}$, and delete effects $\{d_1, ..., d_l\}$

```
\operatorname{sregr}(\varphi,o) \coloneqq \left\{ \begin{smallmatrix} \bot \text{ if } \exists (i,j)\varphi_i = d_j \\ \operatorname{pre}(o) \land (\{\varphi_1,\ldots,\varphi_n\}/\{a_1,\ldots,a_k\}) \text{ otherwise} \end{smallmatrix} \right.
```

Algorithm 1: SAT Planning

```
procedure satplan("Pi")
   for T in {0, 1, 2, ...} do
       \varphi \leftarrow \text{build sat formula}(\Pi, T)
       I \leftarrow \text{sat\_solver}(\varphi)
      if I != none then
         \textbf{return} \ \text{extract\_plan}(\Pi, T, I)
      end
end
```

4.1 SAT: Operator Selection Clauses

- oⁱ_i (operator chosen at step i)
- $o_1^i \vee ... \vee o_n^i$ for 1 < i < T
- $\neg o_i^i \lor \neg o_k^i$ for $1 \le i \le T$, $1 \le j < k \le n$ (at most one operator per step)
- This is equal to ¬(oⁱ_i ∧ oⁱ_k)

Precondition:

• $\neg o^i \lor \operatorname{pre}(o)^{i-1}$ for $1 \le i \le T$, $o \in O$

Positive/Negative Effects Clauses:

- $\bullet \ \neg o^i \vee \neg \alpha^{i-1} \vee v^i$
- $\neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

Positive/Negative Frame Clauses:

- $\neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$
- $\neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$

where $\alpha = \text{effcond}(v, \text{eff}(o)) \delta = \text{effcond}(\neg v, \text{eff}(o))$

	Hash table	Formula	BDD	
s ∈ 5?	O(k)	0(5)	O(k)	
$S := S \cup \{s\}$	O(k)	O(k)	O(k)	
$S := S \setminus \{s\}$	O(k)	O(k)	O(k)	
S∪S'	O(k S + k S')	0(1)	0(s s')	
s ∩ s'	O(k S + k S')	0(1)	0(s s')	
S \ S'	O(k S + k S')	0(1)	0(s s')	
s `	O(k2 ^k)	0(1)	0(s)	
$\{s \mid s(v) = T\}$	O(k2k)	0(1)	0(1)	
S = Ø?	0(1)	co-NP-complete	0(1)	
S = S'?	O(k S)	co-NP-complete	0(1)	
S	0(1)	#P-complete	o(IIsII)	

6 BDD Operators

6.1 Conditioning

Conditioning variable v in formula φ to T or F:

- φ [T/n] or φ [F/n]: restrict v to a given value
- Time: O(|φ|)

6.2 Forgetting

Forgetting (existential abstraction): allow both v=T and v=Fand eliminate v.

- On formulas: $\exists v\varphi = \varphi\left[\frac{T}{v}\right] \vee \varphi\left[\frac{F}{v}\right]$
- On sets: $\exists vS = S\left[\frac{T}{v}\right] \cup S\left[\frac{F}{v}\right]$
- Time: $O(|\varphi|)$

6.3 Renaming

Renaming X to Y in formula φ , written $\varphi[X \to Y]$: replace all Xby Y in φ (Y not present in φ).

• Time: $O(|\varphi|)$

7 BDD Transitions

7.1 Transition BDD

$$T_{reso} = V = t_{res}$$

 $t_{V(O)} = \operatorname{pre}(o) \land \bigwedge_{v \in V} (\operatorname{effcond}(v, e) \lor (v \land \neg \operatorname{effcond}(\neg v, e)) \leftrightarrow v')$

7.2 Apply

Algorithm 2: BDD Apply

```
procedure Apply(reached, O)
   \begin{array}{l} B \leftarrow T_{V(O)} \\ B \leftarrow \text{bdd-intersection}(B, \text{reached}) \end{array}
   for v \in V do
      B \leftarrow \text{bdd-forget}(B, v)
   end
   for v \in V do
      B \leftarrow \text{bdd-rename}(B, v', v)
   end
   return B
end
```

By then taking the union of the out and the previous reached, you get the reached for the following timestep.

8 Relaxed Task Graph (RTG)

```
o_1 = \langle c \lor (a \land b), c \land ((c \land d) \triangleright e), 1 \rangle
o_2 = \langle \top, f, 2 \rangle
o_3 = \langle f, g, 1 \rangle
o_4 = \langle f, h, 1 \rangle
```


8.1 Simplified RTG

· This is just the RTG without effect nodes

8.2 h^{max} & h^{add}

- $h^{\max} \le h^+ \le h^{\mathrm{FF}} \le h^{\mathrm{add}}$
- $h^{\max(s)} = \infty \leftrightarrow h^{+(s)} = \infty \leftrightarrow h^{\mathrm{FF}(s)} = \infty \leftrightarrow h^{\mathrm{add}(s)} = \infty$
- h^{\max} and $h^+ \to$ admissible and consistent
- h^{add} and $h^{\mathrm{FF}} \to \mathrm{NOT}$ admissible and consistent
- · All are safe and goal-aware.

Above, only nodes where h^{\max} (left) and h^{add} (right) differ are recorded

- · hmax: Pick the max predecessor at AND node, and the min at OR
- h^{add} : Add the predecessors at AND node, and pick the min at OR
- · Both can be computed efficently by expanding the minimum/ newest node that CAN be updated

8.3 h^{FF} and Best Achiever Graphs (G)

- · BAG can be achieved by removing all incoming edges into a OR node, except the minimum cost one
- h^{FF} can be achieved by adding all operators participating in the G^{add} for h^{add}

- G are also useful for analysis when h^{add} overapprox and when h^{\max} under approx.

9 Invariant/Mutex/FDR

- · Validating invariant is AS HARD as planning.
- · Mutex group is a set of variables where AT MOST one can be true
- · A Mutex cover is a set of mutex groups where each variable occurs in exactly one group
- · A mutex group is positive if it contains no negations of variables

9.1 Mutex-based Reformulation of Propositional

Given a conflict-free propositional planning task Π w/ positive mutex cover $\{G_1, ..., G_N\}$

- In all condition where variable v ∈ G_i occurs, replace v with
- In all effects e where variable v ∈ G occurs,
- Replace all atomic add effects v with v_G := v
- Replace all atomic delete effects ¬v with:
- $\left(v_{G_i} = v \land \neg \bigvee_{v' \in G_i \setminus \{v\}} \operatorname{effcond}(v', e)\right) \triangleright v_{G_i} := \text{none}$
- Practically, this means, if v_G is being deleted AND IS NOT BEING SET TO ANOTHER VARIABLE, set it to none. This is keep it conflict-free.

The consistency condition consist(e) prohibits two simultaneous assignments to the same mutex group.

I.e. $\neg (\text{effcond}(v := d, e) \land \text{effcond}(v := d', e))$

9.2 SAS+

An operator of an FDR operator is a SAS+ operator if

- pre(o) is a satisfiable conjunction of atoms, and
- eff(o) is a conflict-free conjunction of atomic effects.

An FDR task is a SAS+ task if all operators are SAS+ and the goal is a satisfiable conjunction of atoms

10 Abstraction

- $s \in \gamma \rightarrow \alpha(s) \in \gamma_{\alpha}$
- $\langle s, o, s' \rangle \in \mathcal{T} \rightarrow \langle \alpha(s), o, \alpha(s') \rangle \in \mathcal{T}_{\alpha}$
- Abstraction are composable, i.e. (β ∘ α) is a valid abstraction.
- · Abstraction are surjective.
- · Abstraction uses coarsening/refinement terminology.
- h^{β∘α} ≤ h^α ≤ h*
- h^α is safe, goal-aware, admissible and consistent.

 $h^{\alpha}(\{p \mapsto L, t_A \mapsto R, t_B \mapsto R\}) = 3$

10.1 Additivity

- Orthogonal α_1 & α_2 : If $\forall (t \in \mathcal{T})(\alpha_1(s) = \alpha_2(t)) \lor (\alpha_2(s) =$ $\alpha_2(t)$), where $t = \langle s, \ell, t \rangle$
- Affect α for ℓ, if ⟨α(s), ℓ, α(t)⟩, where α(s) ≠ α(t)
- · Also ortogonal if no label affects both abstractions.
- The sum of orthogonal h^{α} is safe, goal-aware, admissible and consistent

10.2 Projections & Pattern Databases

- A projection (π_P) is a special kind of abstraction
- $\pi_P : S \to S'$ is defined as $\pi_{P(s)} := s|_P$ (where $s|_{P(v)} :=$ s(v) for all v)
- . I.e. we condition a state on a single variable assignment.
- The heuristic induced by π_P , we call a PDB heuristic (h^P)

 Syntatic projections (Π|_P), gives the projected planning task, by practically, removing the variables in the projection, from $\langle P, I|_P, \{o|_P, o \in O\}, \gamma|_P \rangle$

10.3 PDB Lookup

- · PDBs are precomputed before search.
- · Is effective done via perfect hashing.
- $N_i := \prod_{i=1}^{i-1} |\text{dom}(v_i)|$
- PDB-index(s) := $\sum_{i=1}^{k} N_i \cdot s(v_i)$

- ▶ 1) Project ∏ to atomic projection
- 2) Merge two of the resulting transition systems (T | p)
- → 3) Shrink combined T' by abstracting more states
- 4) Pick the result as the first transition system and go to step (2)

Algorithm 3: Merge and Shrink

```
procedure Merge-and-Shrink(\Pi,B)
                   while |F| > 1 do
                        "type" \leftarrow pick-merge-or-shrink(F)
                       if type = merge then
                            \mathcal{T}_1 \leftarrow \operatorname{pick}(\bar{F})
                            \mathcal{T}_2 \leftarrow \operatorname{pick}(F \setminus \{\mathcal{T}_1\})
                            \vec{F} \leftarrow (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
                       if type = shrink then
                               \leftarrow \operatorname{pick}(F)
                            \beta \leftarrow \text{pick-abstraction(B)}
                            F \leftarrow (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
                 return F[0]
17:
```

 $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$

 $S_{\infty} = S_1 \times S_2$

- A finite set F = {T₁, ..., T_n}, where all share ℓ and cost(s).
- FTS induced by Π is $F(\Pi) = \{\mathcal{T}^{\pi_v} \mid v \in V\}$ • $\bigotimes F \sim \mathcal{T}(\Pi)$ is the transition system that induced it.

11.2 Shrinking Strategies

- · f-preserving strategy ightharpoonup Combine nodes with identical g and h value
- Rational: Preserves h and overall graph shape
- Tie-breaking criterion, prefer merging high g + h
- Rational: High values heuristic estimates are less likely to be explored by A*, so it can be more inprecise.

11.3 Merge and Shrink - Effective Shrink

· This is done by first converting the combined table (which is a cross product of two abstractions) into a linked list. And then..

11.4 Merge and Shrink Lookup

· Looking up the heuristic value in a MAS system requires looking up from first single variables and then into the larger merge, i.e.

At the end, our heuristic is represented by six tables:

- three one-dimensional tables for the atomic abstractions: Tpackage L R A B Ttruck A L R Ttruck B L R
- 0 1 2 3 0 1 two tables for the two merge and subsequent shrink steps:

T _{m&s}	s ₂ = 0	s ₂ = 1	T ² _{m&s}	s ₂ = 0	s ₂ = 1
s ₁ = 0	0	1	$s_1 = 0$	1	1
$s_1 = 1$	2	2	$s_1 = 1$	1	0
$s_1 = 2$	3	3	$s_1 = 2$	2	2
$s_1 = 3$	3	3	$s_1 = 3$	3	3

one table with goal distances for the final transition system:

11.5 Label Reduction

11.5.1 Definition

- A label reduction (λ : L → L', c' : L → ℝ⁺), such that ℓ ∈ $L, c'(\lambda(\ell)) \le c(\ell)$
- The label-reduced transition system $\mathcal{T}^{\langle \lambda,c'\rangle}=$ $\langle S, L', c', \{\langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t, \rangle \in T\}, s_0, S_* \rangle$

- ℓ is alive in F if all $\mathcal{T}' \in F$ have ℓ , dead otherwise
- ℓ locally subsumes ℓ' in $\mathcal T$ if for all transition $\langle s,\ell',t\rangle$ there is
- It also globally subsumes if this is true in all $\mathcal{T} \in F$
- ℓ and ℓ' are locally equivilant if ℓ locally subsumes ℓ' and vice
- + ℓ and ℓ' are $\mathcal{T}\text{-combinable}$ if there are locally equivilant in all transition systems $\mathcal{T}' \in F \setminus \{\mathcal{T}\}$

11.5.3 Exact Label Reduction

- · The label reduction is exact (No loss in information), if for all $\ell_1, \ell_2 \in L$:
- Either ℓ_1 or ℓ_2 globally subsumes the other
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in F$

- Fact landmark: This must be visited at least once
- · Disjunctive Action: One action from the set must be performed
- · Network flow: Fact consumption should be balanced.

12.1 Relaxed Task Graph Landmarks

- Causal Landmark λ : for I if $\gamma \models \lambda$ OR if for all plans $\langle o_1, ..., o_n \rangle$ at least one $pre(o_i) \models \lambda$
- Causal fact landmark: Same as above, but $\lambda \coloneqq v$
- · To calculate the RTG landmarks, first instantiate all nodes with all potential landmarks. Then perform this on the simplified RTG

$$\begin{split} \operatorname{LM}(n) &= \{n\} \bigcap_{n' \to n \in A} \operatorname{LM}(n') \ \text{ if } \operatorname{type}(n) = \vee \\ \operatorname{LM}(n) &= \{n\} \bigcup_{n' \to n \in A} \operatorname{LM}(n') \ \text{ if } \operatorname{type}(n) = \wedge \end{split}$$

 $LM(d) = \{d\} \cup LM(o_1)$

12.2 Minimum Hitting Set

- · The minimum hitting set, the minimal cost set of operators such that a for a set of set of operators, each set contains one of the operators selected.
- This is relevant for combining disjunctive action landmarks, which is not admissible if additively combined.

12.3.1 Justification Graph

- Precondition choice function: P: O → V, maps any operator in a An LP can serve as an upper bound to an IP (LP relaxation).problem task Π to one of it's preconditions.
- Justification graph: $\langle V, E := \{ \langle P(o), a \rangle \mid o \in O, a \in add(o) \} \rangle$

Example (Precondition Choice Function) $P(o_{blue}) = P(o_{green}) = P(o_{black}) = i, P(o_{red}) = b, P(o_{orange}) = a$

 Cut (C ⊆ E): A subset of edges, such that ALL paths i → g contains $e \in C$. Doesn't have to include all.

Initialize $h^{\text{LM-Cut}}(I) := 0$. Then iterate:

- Compute h^{\max} using a RTG. Stop if $h^{\max}(q) = 0$
- · Compute Justification graph for the P/pcf that chooses the precondition with the MAXIMAL h^{\max} value.
- Determine goal zone V_q (i.e. all nodes with a zero cost path to q).
- Compute the cut L that contains labels of all edges $\langle v, o, v' \rangle$ such that $v \notin V_a, v' \in V_a$, and v CAN be reached from i without
- traversing V_o . It is guaranteed that cost(L) > 0Increase h^{LM-Cut}(I) by cost(L) (i.e. the cost of the cut).
- Decrease cost(o) by cost(L) for all $o \in L$.

round P(o_{orange}) P(o_{red}) landmark cost {O_{red}} h^{LM-cut}(I)

Algorithm

-Iterate

• Pick a heuristic h_i that hasn't been picked. Terminate if none is

Solving is an NP-hard problem.

- · finite set of integer variables V
- finite set of linear inequalities (constraints) over ${\cal V}$
- an objective function, which is a linear combination of V
- · Whether it should be minimized or maximized.

Example:

- minimize $3X_{O_1} + 4X_{O_2} + 5X_{O_3}$ subject to
- X_{O4} ≥ 1
- $X_{O_1} + X_{O_2} \ge 1$
- $X_{O_1} + X_{O_2} = 1$ $X_{O_1} + X_{O_3} \ge 1$ $X_{O_2} + X_{O_3} \ge 1$
- $X_{O_1}, X_{O_2}, X_{O_3}, X_{O_4} \ge 0$

Consist of the same as Integer programs, but with real valued variables and constraints.

Can be solved in polynomial time wrt, the number of constraints with SIMPLEX.

13.3 Standard Maximization/Minimization Problem

 Given a vector of objective coefficience c = R^{N×1}, bounds b = $\mathbb{R}^{N \times 1}$, and coefficients $A = \mathbb{R}^{M \times N}$

Optimize: Maximize $c^T x$ subset to $Ax \leq b$ and $x \geq 0$

• The dual to the maximization problem is the minimization (These are equal).

Optimize: Minimize $b^T x$ subject to $A_T x \ge c$ and $x \ge 0$

- · Is admissible.
- Principal: Distribute cost of operators between h such that $\sum_{n=1}^{i=1} \operatorname{cost}_{i(o)} \le \operatorname{cost}(o)$ for all $o \in O$
- Also called the cost partitioning constraint
- · A general cost partitioning the upholds this constraint is admissible.

Example:

- · zero-one cost partitioning: Set cost to one in one abstraction and zero everywhere else
- · uniform cost partitioning: Distribute the cost equally among

Heuristic value: 2 + 2 = 4

- · mscf: minimum saturated cost function
- It is the DIFFERENCE in heuristic estimation for state s and state

$$\mathrm{mscf}(o) = \max \left(0, \max_{\substack{o \\ \alpha(s) \rightarrow \alpha(t)}} \left(h^{\alpha}(s) - h^{\alpha}(t)\right)\right)$$

left.

- · Compute h, given current cost
- Compute scf_i (ideally mscf_i) for h_i
- Decrease cost(o) by scf_i(o) for all o
- · Heuristic is the sum of all scf. I.e. sum all decreases.

Compute minimum saturated cost function mscf; for h;

LM-Cut computes SCP over disjunctive action landmarks

abstraction

 Let Π be a planning task and L be a disjunctive action landmark. The minimum saturated cost function for \mathcal{L} is:

$$\operatorname{mscf} = \begin{cases} \min_{o' \in \mathcal{L}} \operatorname{cost}(o') & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

- · The Optimal Cost Partitioning can be calculated as an LP for disjunctive action landmarks.
- The bound is the cost(o) as defined by the cost partitoning constraint.
- · The variables are the cost of the landmark.

. The goal is to maximize their sum.

- . This can be converted to the dual. · Instead the variables is whether an operator has been applied.
- · The goal is to minimize the sum of applied operators times their cost
- ∑ Applied · cost(o) The constrain is that all landmarks must be hit.
- $\sum_{c \in I} \text{Applied}_o \ge 1$ for all landmarks L.

• $h^G < h^{PhO} < h^{OCP}$

Assuming that you have a PDB, you can optimize them even further with LPs. Operators can be included if they affect an abstraction α i.e., the ℓ moves into a new abstract state ($s \neq t$)

Linear Program Minimize $X_A + X_B + X_C$ subject to abst1 $X_A + X_B$ $\geq h^{\{A,B\}}(s) = 6$ abst2 X_A $+X_C \ge h^{\{A,C\}}(s) = 6$ abst3 $X_B + X_C \ge h^{\{B,C\}}(s) = 6$ non-negative constraints $X_{\Delta} \ge 0, X_{R} \ge 0, X_{C} \ge 0$

⇒ any plan has at least cost 9.

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a task in transition normal form. The flow constraint for atom a in state s is

$$[a \in s] + \sum_{o \in O: a \in eff(o)} \mathsf{Count}_o = [a \in \gamma] + \sum_{o \in O: a \in pre(o)} \mathsf{Count}_o$$

- Count -: LP variable for the number of occurrences of operator of
- Neutral operators either appear on both sides or on none

16 Operator Counting

The operator-counting integer program IPc for a set C of operator-counting constraints for state s is

Minimize
$$\sum_{o \in O} cost(o) \cdot Count_o$$
 subject to $C \text{ and } Count_o \ge 0 \text{ for all } o \in O$,

where O is the set of operators.

The IP heuristic hip is the objective value of IPthe LP heuristic h_c^{LP} is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is ∞.