Dataset Combination Logic

This notebook is responsible for dataset normalization, and merging the NOAA weather dataset with the forest fire dataset.

```
1 pip install haversine

Requirement already satisfied: haversine in /usr/local/lib/python3.7/dist-packages (2.5.1)

1 import matplotlib.pyplot as plt
2 from google.colab import drive
3 drive.mount('/content/drive')

Mounted at /content/drive
```

- Data Cleaning and Feature Engineering Utility Functions

```
l import pandas as pd
2 land_temp_by_state = pd.read_csv("/content/drive/Shareddrives/Data Science 303 Group Project/csv/GlobalLandTemperaturesByState.csv")
```

Dataset One: Average Temperature and Average Temperature Uncertainty of California

```
l ca_yearly_average_temp_raw = land_temp_by_state[land_temp_by_state.State == "California"]
2 ca_yearly_average_temp_raw["dt"] = pd. to_datetime(ca_yearly_average_temp_raw["dt"])
3
4 ca_yearly_average_temp["Year"] = ca_yearly_average_temp_raw["dt"].dt.year
5 ca_yearly_average_temp["Year"] = ca_yearly_average_temp_raw["dt"].dt.year
6 ca_yearly_average_temp["Nonth"] = ca_yearly_average_temp_raw["dt"].dt.month
7 ca_yearly_average_temp["AverageTemperature"] = ca_yearly_average_temp_raw["averageTemperature"] = ca_yearly_average_temp["AverageTemperatureUncertainty"] = ca_yearly_average_temp["AverageTemperatureUncertainty"] = ca_yearly_average_temp_raw["AverageTemperatureUncertainty"]
9
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer.co]_indexer.] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy.

	Year	Month	AverageTemperature	AverageTemperatureUncertainty
71058	1849	1	5.591	2.405
71059	1849	2	6.941	2.041
71060	1849	3	9.731	2.294
71061	1849	4	12.294	2.861
71062	1849	5	14.417	2.215
73030	2013	5	17.899	0.228
73031	2013	6	22.513	0.265
73032	2013	7	25.563	0.206
73033	2013	8	23.460	0.369
73034	2013	9	21.924	0.861
73034	2013	9	21.924	0.861

- Dataset Two: Wildfires in the United States 1992 - 2015

```
l fires_raw = pd.read_csv("/content/drive/Shareddrives/Data Science 303 Group Project/csv/us_wildfire_data/fires.csv")
2 del fires_raw["Shape"] # Deleting this here because the column is causing me issues later and is 99% empty
3 fires_raw = fires_raw[fires_raw.STATE == "CA"] # Only look at the state of california
4 fires = pd.DataFrame()
```

wildfires_and_weather - Colaboratory

/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (8,10,11,12,13,14,15,16,17,18,35,37) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)

1 display(fires_raw)
2 fires_raw.info()

	OBJECTID	FOD_ID	FPA_ID	SOURCE_SYSTEM_TYPE	SOURCE_SYSTEM	NWCG_REPORTING_AGENCY	NWCG_REPORTING_UNIT_ID	NWCG_REPORTING_UNIT_NAME	SOURCE_REPORTING_UNIT	SOURCE_REPORTING_UNIT_NAME	LOCAL_F1
0	1	1	FS-1418826	FED	FS-FIRESTAT	FS	USCAPNF	Plumas National Forest	511	Plumas National Forest	
1	2	2	FS-1418827	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	
2	3	3	FS-1418835	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	
3	4	4	FS-1418845	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	
4	5	5	FS-1418847	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	
				***	***	***					
1880460	1880461	300348363	2015CAIRS29019636	NONFED	ST-CACDF	ST/C&L	USCASHU	Shasta-Trinity Unit	CASHU	Shasta-Trinity Unit	
1880461	1880462	300348373	2015CAIRS29217935	NONFED	ST-CACDF	ST/C&L	USCATCU	Tuolumne-Calaveras Unit	CATCU	Tuolumne-Calaveras Unit	
1880462	1880463	300348375	2015CAIRS28364460	NONFED	ST-CACDF	ST/C&L	USCATCU	Tuolumne-Calaveras Unit	CATCU	Tuolumne-Calaveras Unit	
1880463	1880464	300348377	2015CAIRS29218079	NONFED	ST-CACDF	ST/C&L	USCATCU	Tuolumne-Calaveras Unit	CATCU	Tuolumne-Calaveras Unit	
1880464	1880465	300348399	2015CAIRS26733926	NONFED	ST-CACDF	ST/C&L	USCABDU	San Bernardino Unit	CABDU	CDF - San Bernardino Unit	

189550 rows x 38 columns

<class 'pandas.core.frame.DataFrame'> Int64Index: 189550 entries, 0 to 1880464

Data	columns (total 38 columns):		
#	Column	Non-Null Count	Dtype
0	OBJECTID	189550 non-null	int64
	FOD_ID	189550 non-null	
2	FPA_ID	189550 non-null	object
3	SOURCE_SYSTEM_TYPE	189550 non-null	object
4	SOURCE_SYSTEM	189550 non-null	object
5	NWCG_REPORTING_AGENCY	189550 non-null	object
6	NWCG_REPORTING_UNIT_ID	189550 non-null	object
7	NWCG_REPORTING_UNIT_NAME		
8	SOURCE_REPORTING_UNIT	189550 non-null	object
9	SOURCE_REPORTING_UNIT_NAME	189550 non-null	object
10	LOCAL_FIRE_REPORT_ID	61933 non-null	object
11	LOCAL_INCIDENT_ID	127983 non-null	object
12	FIRE_CODE	55522 non-null	object
13	FIRE_NAME	174555 non-null	object
14	ICS_209_INCIDENT_NUMBER	2838 non-null	object
15	ICS_209_NAME	2838 non-null	object
16	MTBS_ID	1137 non-null	object
17	MTBS_FIRE_NAME		object
18	COMPLEX_NAME	927 non-null	object
19	FIRE_YEAR	189550 non-null	int64
20	DISCOVERY_DATE	189550 non-null	float64
21	DISCOVERY_DOY	189550 non-null	int64
22	DISCOVERY_TIME	110217 non-null	
23	STAT_CAUSE_CODE	189550 non-null	
24	STAT_CAUSE_DESCR	189550 non-null	
25	CONT_DATE	91908 non-null	
26	CONT_DOY	91908 non-null	float64
27	CONT_TIME	91198 non-null	float64
28	FIRE_SIZE	189550 non-null	
29	FIRE_SIZE_CLASS	189550 non-null	object
30	LATITUDE	189550 non-null	float64
31	LONGITUDE	189550 non-null	float64
32	OWNER_CODE	189550 non-null	
33	OWNER_DESCR	189550 non-null	object
34	STATE	189550 non-null	
35	COUNTY	56221 non-null	object
36	FIPS_CODE	56221 non-null	float64

```
1 # Get the names for each cause code
2 causes = fires_raw[("STAT_CAUSE_DESCR"]]
3 code_to_name = {}
4 for row in causes[:-1].values:
5 code_to_name[int(row[0])] = row[1]
6 print(code_to_name)
{9: 'Miscellaneous', 1: 'Lightning', 5: 'Debris Burning', 4: 'Campfire', 2: 'Equipment Use', 8: 'Children', 7: 'Arson', 3: 'Smoking', 6: 'Railroad', 10: 'Fireworks', 12: 'Structure', 11: 'Powerline', 13: 'Missing/Undefined'}
```

- ▼ Dataset Two: Wildfires Cleaning
- ▼ Dataset Two: Wildfires Drop Missing Values

```
1 missing = count_missing_data(fires_raw)
2
3 drops = missing[missing["Missing Ratio"] > 60].index
4 print(f"Dropping columns { drops }")
5 for feature in drops:
6 del fires_raw[feature]
```

```
8 fires_raw.info()
```

```
COMPLEX_NAME
                                       99.510947
      MTBS_FIRE_NAME
                                       99.400158
           MTBS_ID
                                       99.400158
        ICS_209_NAME
                                       98.502770
 ICS_209_INCIDENT_NUMBER
                                       98.502770
          FIRE_CODE
                                       70.708520
          FIPS_NAME
                                       70.339752
          FIPS CODE
                                       70 339752
                                       70.339752
   LOCAL_FIRE_REPORT_ID
                                       67.326299
          CONT_TIME
                                       51.887101
          CONT_DOY
                                       51.512530
         CONT_DATE
                                       51.512530
      DISCOVERY_TIME
                                       41.853337
     LOCAL_INCIDENT_ID
                                       32.480612
         FIRE_NAME
                                       7.910841
Dropping columns Index(['COMPLEX_NAME', 'MTBS_FIRE_NAME', 'MTBS_ID', 'ICS_209_NAME', 'ICS_209_INCIDENT_NUMBER', 'FIRE_CODE', 'FIPS_NAME', 'FIPS_CODE',
'COUNTY', 'LOCAL FIRE_REPORT_ID',
dtype='object')
<class 'pandas.core.frame.DataFrame'>
Int64Index: 189550 entries, 0 to 1880464
Data columns (total 28 columns):
 # Column
                                         Non-Null Count Dtype
                                         189550 non-null int64
      FOD ID
                                         189550 non-null int64
                                         189550 non-null object
     SOURCE_SYSTEM_TYPE
SOURCE_SYSTEM
                                         189550 non-null object
189550 non-null object
      NWCG REPORTING AGENCY
                                         189550 non-null object
189550 non-null object
      NWCG_REPORTING_UNIT_ID
      NWCG_REPORTING_UNIT_NAME
SOURCE_REPORTING_UNIT
                                        189550 non-null object
189550 non-null object
      SOURCE REPORTING UNIT NAME
                                         189550 non-null object
      LOCAL_INCIDENT_ID
                                         127983 non-null object
 11 FIRE NAME
                                         174555 non-null object
 12 FIRE_YEAR
13 DISCOVERY_DATE
                                         189550 non-null int64
                                         189550 non-null float64
 14 DISCOVERY_DOY
 15 DISCOVERY TIME
                                         110217 non-null float64
 16 STAT_CAUSE_CODE
17 STAT_CAUSE_DESCR
                                         189550 non-null float64
189550 non-null object
 18 CONT_DATE
                                         91908 non-null float64
 19 CONT_DOY
20 CONT_TIME
                                         91908 non-null float64
                                         91198 non-null float64
                                         189550 non-null float64
189550 non-null object
 21 FIRE_SIZE
22 FIRE_SIZE_CLASS
 23 LATITUDE
                                         189550 non-null float64
24 LONGITUDE
25 OWNER_CODE
                                         189550 non-null float64
```

▼ Dataset Two: Impute Remaining Missing Values

```
1 # fires raw["DISCOVERY DATE"]
 2 # pd.to_datetime(fires_raw["DISCOVERY_DATE"]).dt.month.unique()
 3 # fires_raw["DISCOVERY_DOY"].unique()
5 def doy_to_month(doy):
6   if doy <= 31:</pre>
     return 1
 8 elif doy <= 59:
     return 2
     return 3
12 elif doy <= 120:
    return 4
14 elif doy <= 151:
15 return 5
16 elif doy <= 181:
      return 6
18 elif doy <= 212:
     return 7
20 elif doy <= 243: # August
     return 8
    elif doy <= 273:
     return 9
24 elif doy <= 304:
26 elif doy <= 334:
```

```
27 return 11
28 else:
     return 12
1 # We have two output variables of interest: FIRE_SIZE and STAT_CAUSE_CODE.
2 # We also have output variables of interest: CONT_TIME, CONT_DOY, DISCOVERY_TIME
3 # We will drop any rows without a value for these
4 # We already know it is in california
 5 fires_raw = fires_raw.dropna(subset=["FIRE_SIZE", "STAT_CAUSE_CODE", "STATE", "CONT_TIME", "DISCOVERY_TIME"])
 7 # We will drop fire name as you can't learn from it
 8 # Drop local incident id as it isn't relevant either
9 if "FIRE_NAME" in fires_raw.columns:
10 del fires_raw["FIRE_NAME"]
12 if "LOCAL_INCIDENT_ID" in fires_raw.columns:
13 del fires_raw["LOCAL_INCIDENT_ID"]
 1 # Look at remaining missing values.
 2 count_missing_data(fires_raw)
 3 fires_raw.isna().sum()
 5 fires_raw.info()
      Missing Ratio
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 91184 entries, 0 to 1880460 Data columns (total 26 columns): # Column Non-Null Count Dtype OBJECTID 91184 non-null int64 FOD ID 91184 non-null int64 91184 non-null object FPA_ID SOURCE_SYSTEM_TYPE SOURCE_SYSTEM 91184 non-null object 91184 non-null object NWCG_REPORTING_AGENCY NWCG_REPORTING_UNIT_ID 91184 non-null object 91184 non-null object 91184 non-null object 91184 non-null object NWCG REPORTING UNIT NAME SOURCE REPORTING UNIT SOURCE_REPORTING_UNIT_NAME 91184 non-null object FIRE_YEAR 91184 non-null int64 11 DISCOVERY DATE 91184 non-null float64 12 DISCOVERY_DOY 13 DISCOVERY TIME 91184 non-null float64 14 STAT_CAUSE_CODE 15 STAT_CAUSE_DESCR 91184 non-null float64 91184 non-null object 16 CONT_DATE 17 CONT_DOY 91184 non-null float64 91184 non-null float64 18 CONT_TIME 91184 non-null float64 19 FIRE_SIZE 20 FIRE_SIZE_CLASS 21 LATITUDE 91184 non-null float64 91184 non-null object 91184 non-null float64 22 LONGITUDE 23 OWNER CODE 91184 non-null float64 91184 non-null float64 24 OWNER_DESCR 91184 non-null object 25 STATE 91184 non-null object dtypes: float64(10), int64(4), object(12)

```
1 # Value imputation should be complete.
2 count_missing_data(fires_raw)
3 fires_raw.isna().sum()
```

Missing Ratio

OBJECTID FOD ID SOURCE SYSTEM TYPE SOURCE_SYSTEM NWCG_REPORTING_AGENCY NWCG_REPORTING_UNIT_ID NWCG_REPORTING_UNIT_NAME SOURCE_REPORTING_UNIT SOURCE_REPORTING_UNIT_NAME FIRE_YEAR DISCOVERY_DATE DISCOVERY_DOY DISCOVERY TIME STAT CAUSE CODE STAT CAUSE DESCR CONT_DATE CONT_DOY CONT_TIME FIRE SIZE FIRE_SIZE_CLASS LATITUDE LONGITUDE OWNER_CODE OWNER_DESCR STATE

Next, we will add the discovery and containment months.

```
1 fires_raw["DISCOVERY_MONTH"] = fires_raw["DISCOVERY_MONTH"] = fires_raw["DISCOVERY_DOY"].apply(doy_to_month)
2 fires_raw["CONTAINMENT_MONTH"] = fires_raw["CONT_DOY"].apply(doy_to_month)
```

```
3 fires_raw["DISCOVERY_MONTH"].unique()
array([ 2, 5, 6, 7, 3, 9, 10, 11, 4, 8, 1, 12])
```

Next, we split up columns into types by hand. We find this is the most precise way to do it.

```
1 display(fires_raw)
2
3 # SPECIAL_COLS
4 FIRES_SPECIAL_COLS = ["FOD_ID", "LATITUDE", "LONGITUDE"]
5
6 # FIME RELATED COLS
7 FIRE_THEE_COLS = ["FIRE_YEAR", "DISCOVERY_DOV", "DISCOVERY_TIME", "CONT_DOY", "CONT_TIME", "CONTAINMENT_MONTH"]
8 FIRE_TIME_DATETIME = ["DISCOVERY_DATE", "CONT_DATE"]
9
10 # CATEGORICAL COLS
11 FIRES_CAT_COLS = ["SOURCE_SYSTEM_TYPE", "SOURCE_SYSTEM", "NNCG_REPORTING_AGENCY", "OWNER_DESCR", "NNCG_REPORTING_UNIT_NAME", "SOURCE_REPORTING_UNIT_NAME"]
12 # REDUNDANT COLS
14 FIRES_CAT_COL_REDUNDANT = ["SOURCE_REPORTING_UNIT", "OWNER_CODE", "NNCG_REPORTING_UNIT_ID"]
15 # FEXTRA COLS TO BORD
17 FIRES_DROPS = ["OBJECTIO", "FFA_ID"]
18 # OUTPUT COLS
20 OUTPUT_VALUES = ["FIRE_SIZE_CLASS", "STAT_CAUSE_CODE", "STAT_CAUSE_DESCR", "CONT_DOY", "CONT_TIME"]
```

	OBJECTID	FOD_ID	FPA_ID	SOURCE_SYSTEM_TYPE	SOURCE_SYSTEM	NWCG_REPORTING_AGENCY	NWCG_REPORTING_UNIT_ID	NWCG_REPORTING_UNIT_NAME	SOURCE_REPORTING_UNIT	SOURCE_REPORTING_UNIT_NAME	FIRE_YEA
0	1	1	FS-1418826	FED	FS-FIRESTAT	FS	USCAPNF	Plumas National Forest	511	Plumas National Forest	200
1	2	2	FS-1418827	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	200
2	3	3	FS-1418835	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	200
3	4	4	FS-1418845	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	200
4	5	5	FS-1418847	FED	FS-FIRESTAT	FS	USCAENF	Eldorado National Forest	503	Eldorado National Forest	200
			***				eee		999	***	
1880456	1880457	300348328	2015CAIRS27369138	NONFED	ST-CACDF	ST/C&L	USCATGU	Tehama-Glenn Unit	CATGU	Tehama-Glenn Unit	201
1880457	1880458	300348354	2015CAIRS28234594	NONFED	ST-CACDF	ST/C&L	USCASHU	Shasta-Trinity Unit	CASHU	Shasta-Trinity Unit	201
1880458	1880459	300348361	2015CAIRS27957490	NONFED	ST-CACDF	ST/C&L	USCAHUU	Humboldt-Del Norte Unit	CAHUU	Humboldt-Del Norte Unit	201
1880459	1880460	300348362	2015CAIRS28291374	NONFED	ST-CACDF	ST/C&L	USCALNU	Sonoma-Lake Napa Unit	CALNU	Sonoma-Lake Napa Unit	201
1880460	1880461	300348363	2015CAIRS29019636	NONFED	ST-CACDF	ST/C&L	USCASHU	Shasta-Trinity Unit	CASHU	Shasta-Trinity Unit	201

```
1 # Drop the last irrelevant columns.
2 if "OBJECTID" in fires_raw(columns:
3    del fires_raw("OBJECTID"]
4 if "*PPA_ID" in fires_raw(columns:
5    del fires_raw("FPA_ID")
6
7 # Drop redundant cols
8 for col in FIRES_CAT_COL_REDUNDANT:
9    if col in fires_raw.columns:
10    del fires_raw(col)
```

Docs:

Create a df where we have land temperature for every city in Cali using a dataset that maps lat/long to zipcodes and filters based on that

Create a model that uses knn to predict the acreage of a fire after it has started

Create a model that uses linear regression to predict the acreage of a fire after it has started

Create a model that uses svm to predict

Dataset we can use for city, state, latitude, longitude calculations https://github.com/kelvins/US-Cities-Database

Next, we will load in the third climate data set.

For each fire, we want to match it with weather data from the following time periods

- 1. Weather from month prior to fire occuring
- 2. Weather from second month from fire occuring
- 3. Weather from prior year of same month.

TBD How we will handle rows that don't have these matches....

```
1 import pandas as pd
2 noaa_weather = pd.read_csv("/content/drive/Shareddrives/Data Science 303 Group Project/csv/noaa_weather/noaa_CA_1992_2016_weather_2781174_CLEANED.csv")
3 display(noaa_weather)
```

	Unnamed:	STATION	LATITUDE	LONGITUDE	ELEVATION	STATION_NAME	YEAR	MONTH	NUM_COOLING_DEGREE_DAY_CUMULATIVE	NUM_COOLING_DEGREE_DAY	NUM_DAYS_WITH_MIN_TEMP_BELOW_0_FAHRENHEIT N	UM_DAYS_WITH_MIN_1
0	0	USR0000CCOH	39.8717	-121.7689	-0.913217	COHASSET	1992	1	-1.239760	-0.886171	-0.155696	
1	1	USR0000CCOH	39.8717	-121.7689	-0.913217	COHASSET	1992	2	-0.850883	-0.338919	-0.155696	
2	2	USR0000CCOH	39.8717	-121.7689	-0.913217	COHASSET	1992	3	-0.850883	-0.886171	-0.155696	
3	3	USR0000CCOH	39.8717	-121.7689	-0.913217	COHASSET	1992	4	-0.316022	0.351139	-0.155696	
4	4	USR0000CCOH	39.8717	-121.7689	-0.913217	COHASSET	1992	5	0.477971	1.449139	-0.155696	
5774	8394	USR0000CHNM	36.5625	-117.4736	1.197506	HUNTER_MOUNTAIN	2011	11	0.739154	-0.886171	-0.155696	
5775	8199	USR0000CHNM	36.5625	-117.4736	1.197506	HUNTER_MOUNTAIN	1994	12	0.728818	-0.886171	-0.155696	
5776	8386	USR0000CHNM	36.5625	-117.4736	1.197506	HUNTER_MOUNTAIN	2010	12	0.772949	-0.886171	-0.155696	
5777	8386	USR0000CHNM	36.5625	-117.4736	1.197506	HUNTER_MOUNTAIN	2011	12	0.772949	-0.886171	-0.155696	
5778	8386	USR0000CHNM	36.5625	-117.4736	1.197506	HUNTER_MOUNTAIN	2012	12	0.772949	-0.886171	-0.155696	
5770 m	nue v 91 nali	imne										
1												

Here, we add a column indicating the distance of the fire from each station. Be patient, takes about 5 minutes to run!

	FOD_ID	SOURCE_SYSTEM_TYPE	SOURCE_SYSTEM	NWCG_REPORTING_AGENCY	NWCG_REPORTING_UNIT_NAME	SOURCE_REPORTING_UNIT_NAME	FIRE_YEAR	DISCOVERY_DATE	DISCOVERY_DOY	DISCOVERY_TIME	STAT_CAUSE_CODE	STAT_CA
0	1	FED	FS-FIRESTAT	FS	Plumas National Forest	Plumas National Forest	2005	2453403.5	33	1300.0	9.0	Mis
1	2	FED	FS-FIRESTAT	FS	Eldorado National Forest	Eldorado National Forest	2004	2453137.5	133	845.0	1.0	
2	3	FED	FS-FIRESTAT	FS	Eldorado National Forest	Eldorado National Forest	2004	2453156.5	152	1921.0	5.0	Deb
3	4	FED	FS-FIRESTAT	FS	Eldorado National Forest	Eldorado National Forest	2004	2453184.5	180	1600.0	1.0	
4	5	FED	FS-FIRESTAT	FS	Eldorado National Forest	Eldorado National Forest	2004	2453184.5	180	1600.0	1.0	
		***				***				***		
1880456	300348328	NONFED	ST-CACDF	ST/C&L	Tehama-Glenn Unit	Tehama-Glenn Unit	2015	2457187.5	165	1714.0	13.0	Missing
1880457	300348354	NONFED	ST-CACDF	ST/C&L	Shasta-Trinity Unit	Shasta-Trinity Unit	2015	2457295.5	273	2357.0	7.0	
1880458	300348361	NONFED	ST-CACDF	ST/C&L	Humboldt-Del Norte Unit	Humboldt-Del Norte Unit	2015	2457235.5	213	1331.0	1.0	
1880459	300348362	NONFED	ST-CACDF	ST/C&L	Sonoma-Lake Napa Unit	Sonoma-Lake Napa Unit	2015	2457170.5	148	1420.0	9.0	Mis
1880460	300348363	NONFED	ST-CACDF	ST/C&L	Shasta-Trinity Unit	Shasta-Trinity Unit	2015	2457291.5	269	1726.0	13.0	Missing

Nice, now that we have distances, we will make a quick model / sanity check for this data.

Eventually, we want to include all the details of the nearest stations, but we might be able to learn on distance alone right now.

Here we reload our file to avoid expensive computation

1 fires_with_distance = pd.read_csv("/content/drive/Shareddrives/Data Science 303 Group Project/csv/cleaned_fires_data_with_distance_to_each_station_2.csv")

Plot the normalized distances from each fire to each station

```
import math
# Normalize distance to the stations
num_stations = len(station_lat_long pairs.index)
nr = nc = math.ceil(num_stations ** .5)
fig, ax = plt.subplots(nr, nc, figsize=(10,10))
```

```
7 count = 0
8 for station in station_lat_long_pairs.index:
9 row = count // nr
10 col = count % nc
11 fires_with_distance[station] = (fires_with_distance[station].mean()) / fires_with_distance[station].std()
12 ax[row][col].hist(fires_with_distance[station])
13 count += 1
```


Next, we iterate over every fire and pair it with its prior month's weather

```
display(noaa_weather["MONTH"].unique())
    display(fires_with_distance["DISCOVERY_MONTH"].unique())
    # display(fires_with_distance)
    # print(fires_with_distance.info())
# Get the closest station for each fire.
    station_names = station_lat_long_pairs.index
    REDUNDANT LABELS = ["STATION", "STATION NAME", "YEAR", "MONTH", "Unnamed: 0"]
    NUM_MONTHS_PRIOR = 16 # Given the closest station, how many months back do we want to record in our vector?
    NUM_CLOSEST_STATIONS = 0 # How many of the closest stations do we want to consider?
    #get_matching_station = lambda weather_table, station, month, year: (weather_table["YEAR"] == station) & (weather_table["MONTH"] == month) & (weather_table["YEAR"] == year))])
    def get_matching_station(weather_table, station, month, year):
     return (weather_table[((weather_table["STATION_NAME"] == station) & (weather_table["MONTH"] == month) & (weather_table["YEAR"] == year))])
    def prior_month_and_year(month, n, year):
      Given a month and year pair, return the month and year pair for n months prior
      p_month = ((month - n - 1) % 12) + 1
      p_year = year
if p month > month: # Indicates that the prior month occured in the prior year
         p_year += -1
      return p_month, p_year
    # Make sure this function is working correctly
    assert(prior_month_and_year(5, 3, 2012) == (2, 2012))
assert(prior_month_and_year(5, 5, 2012) == (12, 2011))
    assert(prior_month_and_year(1, 1, 2012) == (12, 2011))
    assert(prior_month_and_year(2, 7, 2012) == (7, 2011))
    def find_n_closest_stations(fire_row):
      # We can do this faster than O(n \log(n)), but it isn't really worth it.
      # print(fire row)
      distance = fire_row[station_names].sort_values()
42
      fire_month = fire_row["DISCOVERY_MONTH"]
      fire_year = fire_row["FIRE_YEAR"]
primary_station = distance.index[0]
       # GET WEATHER FROM THE ONE CLOSEST STATION, FOR THE NUM MONTHS PRIOR MONTHS
       for j in range(1, NUM_MONTHS_PRIOR + 1):
         p_month, p_year = prior_month_and_year(fire_month, j, fire_year)
         prefix = f"PRIMARY_STATION_{j}_MONTHS_PRIOR_"
         weather_j_months_prior = get_matching_station(noaa_weather, primary_station, p_month, p_year)
         if not weather_j_months_prior.empty:
          weather_j_months_prior = weather_j_months_prior.iloc[0]
weather_j_months_prior = weather_j_months_prior.drop(REDUNDANT_LABELS)
           weather_j_months_prior = weather_j_months_prior.add_prefix(prefix)
           fire_row = fire_row.append(weather_j_months_prior)
```

```
print(f"Failed to find weather for j=\{j\} months prior. Searched for \{primary\_station\}: \{p\_month\}: \{p\_year\}")
60
           # print(weather_j_months_prior)
           # assert(False)
63
      # GET WEATHER FOR NUM CLOSEST STATIONS STATIONS
      p_month, p_year = prior_month_and_year(fire_month, 1, fire_year)
for i in range(1, NUM_CLOSEST_STATIONS + 1):
64
        station_name = distance.index[i]
        closest_station_prefix = f"CLOSEST_STATION_{i + 1}_"
       fire_row[closest_station_prefix] = station_name
        # Get the weather for that month, year, and station
        # weather = noaa_weather[((noaa_weather["YEAR") == station_name) & (noaa_weather["MONTH"] == month) & (noaa_weather["YEAR"] == year))]
         weather = get matching station(noaa weather, station name, p month, p year)
        if not weather.empty:
           weather = weather.iloc[0]
           weather = weather.drop(REDUNDANT LABELS)
           weather = weather.add_prefix(closest_station_prefix)
           fire_row = fire_row.append(weather)
        else:
print(f"Failed to find closest station match for {station_name}:{p_month}:{p_year}")
           # print(weather)
           # print(get_matching_station(noaa_weather, station_name, p_month, p_year))
           # assert(False)
      return fire_row
    fires_with_full_weather = fires_with_distance.apply(find_n_closest_stations, axis=1)
    fires_with_full_weather = fires_with_full_weather.dropna() # Drop any records that we couldn't find past matches for. # fires_with_full_weather = fires_raw[:5].apply(find_n_closest_stations, axis=1)
    display(fires_with_full_weather)
1 get_matching_station(noaa_weather, "HELL_HOLE", 4, 2004)
                          STATION LATITUDE LONGITUDE ELEVATION STATION NAME YEAR MONTH NUM_COOLING DEGREE DAY_CUMULATIVE NUM_COOLING DEGREE DAY NUM_DAYS_WITH_MIN_TEMP_BELOW_O_FAHRENHEIT NUM_DAYS_WITH_MIN_TEMP_E
               2316 USR0000CHEL 39.0717 -120.4217 0.525056 HELL_HOLE 2004
1 fires_with_full_weather.to_csv("/content/drive/Shareddrives/Data Science 303 Group Project/csv/cleaned_fires_data_with_four_closest_stations_nov21_dont_use_this.csv")
 1 import seaborn as sns
 2 corr = fires_with_full_weather.iloc[:10000].select_dtypes(include = "number").corr()
 4 plt.figure(figsize=(10, 10))
 5 sns.heatmap(corr.
 6 cmap='viridis', vmax=1.0, vmin=-1.0, linewidths=0.1, square=True);
More cleaning to do!
1 # We want to get a list of all the columns that are numerical and havent been normalized yet
```

```
1 # We want to get a list of all the columns that are numerical and havent been normalized yet
2 numeric_features = fires_with_full_weather.select_dtypes(include="number")
3 categorical_features = fires_with_full_weather.select_dtypes(include="object")
4 print(numeric_features.info(verbose="True))
5 print(categorical_features.info(verbose="True))
```