

Causal Data Science

Lecture 5:2 Backdoor adjustment

Lecturer: Sara Magliacane

Identification strategies for causal effects

- Given a causal graph G, an identification strategy is a formula to estimate an interventional distribution from a combination of observational ones
- Backdoor criterion (this class), Adjustment criterion (next class)

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

Frontdoor criterion (next class)

$$p(x_j | do(x_i')) = \int_{x_{\mathbf{M}}} p(x_{\mathbf{M}} | x_i') \int_{x_i} p(x_j | x_{\mathbf{M}}, x_i') p(x_i) dx_i$$

Instrumental variables (next class)

Valid adjustment sets

- Given a causal Bayesian network (G, p) with DAG $G = (\mathbf{V}, \mathbf{E})$
- We call (valid) adjustment sets for the total causal effect of the treatment X_i on the outcome X_j with $i \neq j$, the sets $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i,j\}$ such that:

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

$$P(X_j | \operatorname{do}(X_i = x_i)) = \sum_{x_{\mathbf{Z}}} P(X_j | X_i = x_i, X_{\mathbf{Z}} = x_{\mathbf{Z}}) P(X_{\mathbf{Z}} = x_{\mathbf{Z}})$$

$$(Abj \cup STMENT FORMULA)$$

Additional assumptions for adjustment: Positivity

• Adjustment formula for estimating the causal effect of X_i on X_j with adjustment sets $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i,j\}$:

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

Additional assumptions for adjustment: Positivity

• Adjustment formula for estimating the causal effect of X_i on X_j with adjustment sets $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i,j\}$:

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

- Values in interventional regime should be also possible in the observational regime, specifically: $p(x_i, x_{\mathbf{Z}}) > 0 \text{ for } x_i \in \mathcal{X}_i, x_{\mathbf{Z}} \in \mathcal{X}_{\mathbf{Z}}$
- If all women are treated and men are untreated, we cannot adjust for gender

Valid adjustment sets

- Given a causal Bayesian network (G, p) with DAG G = (V, E)
- We call (valid) adjustment sets for the total causal effect of the treatment X_i on the outcome X_j with $i \neq j$, the sets $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i,j\}$ such that:

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

We will see two graphical criteria for identifying these sets directly from the graph: backdoor and adjustment criterion.

Sometimes less is more

Adjusting for all possible covariates doesn't always help:

```
 \lim_{x \to x_1 + x_2} \lim_{x \to x_1 + x_2} \lim_{x \to x_2 + x_2} \lim_{x \to x_2 + x_3} \lim_{x \to x_1 + x_2 + x_3} \lim_{x \to x_2 + x_3} \lim_{x \to x_2 + x_3} \lim_{x \to x_1 + x_2 + x_3} \lim_{x \to x_2 + x_3} \lim_{x \to x_1 + x_2 + x_3} \lim_{x \to x_2 + x_3 + x_4 + x_3} \lim_{x \to x_1 + x_2 + x_3} \lim_{x \to x_2 + x_3 + x_4 + x_
```


$$E[X_4 | do(X_1 = 1)] - E[X_4 | do(X_1 = 0)] = 30$$

Special case: no causal parents for treatment

• If treatment X_i has no causal parents, then the interventional distribution is the same as the observational distribution conditioned on $X_i = x_i$:

Special case: no causal parents for treatment

• If treatment X_i has no causal parents, then the interventional distribution is the same as the observational distribution conditioned on $X_i = x_i$:

Special case: no causal parents for treatment

• If treatment X_i has no causal parents, then the interventional distribution is the same as the observational distribution conditioned on $X_i = x_i$:

$$p(X_{\mathbf{V}} | \operatorname{do}(X_i = x_i)) = \prod_{j \in \mathbf{V} \setminus \{i\}} p(X_j | X_{\operatorname{Pa}(j)}) |_{X_i = x_i}$$

$$p(X_{\mathbf{V}} | \operatorname{do}(X_i = x_i)) = \prod_{j \in \mathbf{V} \setminus \{i\}} p(X_j | X_{\operatorname{Pa}(j)}) |_{X_i = x_i}$$

$$= \underbrace{P(X_i | X_{\operatorname{Pa}(i)})}_{P(X_i | X_{\operatorname{Pa}(i)})} \underbrace{X_{i = x_i}}_{X_i = x_i}$$

$$p(X_{\mathbf{V}} | \operatorname{do}(X_{i} = x_{i})) = \prod_{j \in \mathbf{V} \setminus \{i\}} p(X_{j} | X_{\operatorname{Pa}(j)}) |_{X_{i} = x_{i}}$$

$$= \underbrace{P(X_{\overline{V}})}_{P(X_{i} | X_{\operatorname{Pa}(i)})} |_{X_{i} = x_{i}}$$

$$= \underbrace{P(X_{\overline{V}})}_{P(X_{i} | X_{\operatorname{Pa}(i)})} |_{X_{i} = x_{i}}$$

$$= \underbrace{P(X_{\overline{V}})}_{P(X_{i} | X_{\operatorname{Pa}(i)})} |_{X_{i} = x_{i}}$$

$$p(X_{\mathbf{V}} | \operatorname{do}(X_{i} = x_{i})) = \prod_{j \in \mathbf{V} \setminus \{i\}} p(X_{j} | X_{\operatorname{Pa}(j)}) |_{X_{i} = x_{i}}$$

$$= \underbrace{P(X_{\overline{V}})}_{P(X_{i} | X_{\operatorname{Pa}(i)})} |_{X_{i} = x_{i}} \underbrace{P(X_{\overline{V}}) \cdot P(X_{\operatorname{Pa}(i)})}_{X_{i} = x_{i}} |_{X_{i} = x_{i}}$$

$$= \underbrace{P(X_{\overline{V} \setminus \{i\}}, \operatorname{Pa}(i))}_{P(X_{i} | X_{\operatorname{Pa}(i)})} |_{X_{i} = x_{i}} |_{X_{i} = x_{i}}$$

$$p(X_{\mathbf{V}} | \operatorname{do}(X_{i} = x_{i})) = \prod_{j \in \mathbf{V} \setminus \{i\}} p(X_{j} | X_{\operatorname{Pa}(j)}) |_{X_{i} = x_{i}}$$

$$= P\left(X_{\mathbf{V} \setminus \{i, \operatorname{Pa}(i)\}} | X_{i} | X_{\operatorname{Pa}(i)}\right) \cdot P\left(X_{\operatorname{Pa}(i)}\right)$$

$$= p(X_{\mathbf{V} \setminus \{i, \operatorname{Pa}(i)\}} | X_{i} = x_{i}, X_{\operatorname{Pa}(i)}) p(X_{\operatorname{Pa}(i)})$$

 The set of causal parents of the treatment allow us to estimate the interventional distribution:

$$p(X_{\mathbf{V}} | do(X_i = x_i)) = p(X_{\mathbf{V} \setminus \{i, Pa(i)\}} | X_i = x_i, X_{Pa(i)}) p(X_{Pa(i)})$$

• We can marginalise out the other variables which are not X_i, X_i or $X_{\mathrm{Pa}(i)}$

$$p(X_j | \operatorname{do}(X_i = x_i)) = \int_{x_{\operatorname{Pa}(i)}} p(X_j | X_i = x_i, X_{\operatorname{Pa}(i)}) p(X_{\operatorname{Pa}(i)}) dx_{\operatorname{Pa}(i)}$$

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\operatorname{Z}}} p(x_j | x_i, x_{\operatorname{Z}}) p(x_{\operatorname{Z}}) dx_{\operatorname{Z}}$$
The parents of the treatment are a valid adjustment

The parents of the treatment are a valid adjustment set

- The causal parents of the treatment are a valid adjustment set
- Sometimes some of the parents might not be observed
- We want to list all valid adjustment sets

Identifiability of an interventional distribution

- We say an interventional distribution $p(X_i | do(X_j = x_j))$ is identifiable, if we can rewrite it using observational distributions
 - For example if a valid adjustment set exists
 - But also, front door criterion, instrumental variables

$$P(X_4 | d_o(X_2)) = ?$$

Backdoor criterion intuition

- Directed path from i to j are causal (both directly and indirectly)
- Backdoor paths (all paths that start with an arrow into $i \leftarrow \dots j$) induce spurious associations
- If we block the spurious associations, we only get the causal effect

Backdoor criterion intuition

- Directed path from i to j are causal (both directly and indirectly)
- Backdoor paths (all paths that start with an arrow into $i \leftarrow \dots j$) induce spurious associations
- If we block the spurious associations, we only get the causal effect
- Including descendants of i that are also ancestors of j (mediators) would block causal paths
- Including descendants of i that are also descendants of j would create collider bias

- Given a CBN (G, p) with $G = (\mathbf{V}, \mathbf{E})$, a set $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i, j\}$ satisfies the backdoor criterion for estimating the causal effect of X_i on X_j with $i \neq j$:
 - Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and

- Given a CBN (G, p) with $G = (\mathbf{V}, \mathbf{E})$, a set $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i, j\}$ satisfies the backdoor criterion for estimating the causal effect of X_i on X_j with $i \neq j$:
 - Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
 - \mathbf{Z} blocks all backdoor paths from i to j (all paths that start with an arrow into $i \leftarrow \ldots j$)

- Given a CBN (G, p) with $G = (\mathbf{V}, \mathbf{E})$, a set $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i, j\}$ satisfies the backdoor criterion for estimating the causal effect of X_i on X_j with $i \neq j$:
 - Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
 - \mathbf{Z} blocks all backdoor paths from i to j (all paths that start with an arrow into $i \leftarrow \ldots j$)

The backdoor criterion finds some (not necessarily all) valid adjustment sets

- Given a CBN (G, p) with $G = (\mathbf{V}, \mathbf{E})$, a set $\mathbf{Z} \subseteq \mathbf{V} \setminus \{i, j\}$ satisfies the backdoor criterion for estimating the causal effect of X_i on X_j with $i \neq j$:
 - Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
 - ${f Z}$ blocks all backdoor paths from i to j (all paths that start with an arrow

into
$$i \leftarrow \dots j$$

The adjustment criterion is an extension of backdoor that finds all of them - next class

The backdoor criterion finds some (not necessarily all) valid adjustment sets

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

• X_2 doesn't have descendants except X_4

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

= {X3}

- A path between i and j is blocked by $A \subseteq V \setminus \{i, j\}$ if at least one condition holds:
- There is a non-collider on the path that is in ${f A}$, or
 - There is a collider k on the path, but $k \notin A$ and $\operatorname{Desc}(k) \cap A = \emptyset$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

7={X3}

- A path between i and j is blocked by $A \subseteq V \setminus \{i, j\}$ if at least one condition holds:
- There is a non-collider on the path that is in ${f A}$, or
 - There is a collider k on the path, but $k \notin A$ and $\operatorname{Desc}(k) \cap A = \emptyset$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

= {X3}

- A path between i and j is blocked by $A \subseteq V \setminus \{i, j\}$ if at least one condition holds:
- There is a non-collider on the path that is in ${f A}$, or
 - There is a collider k on the path, but $k \notin A$ and $\operatorname{Desc}(k) \cap A = \emptyset$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

7={X3}

- A path between i and j is blocked by $A \subseteq V \setminus \{i, j\}$ if at least one condition holds:
 - There is a non-collider on the path that is in A, or
- There is a collider k on the path, but $k \notin \mathbf{A}$ and $\mathrm{Desc}(k) \cap \mathbf{A} = \emptyset$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

- A path between i and j is blocked by $A \subseteq V \setminus \{i, j\}$ if at least one condition holds:
- There is a non-collider on the path that is in ${f A}$, or
 - There is a collider k on the path, but $k \notin A$ and $\operatorname{Desc}(k) \cap A = \emptyset$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

- A path between i and j is blocked by $A \subseteq V \setminus \{i, j\}$ if at least one condition holds:
 - There is a non-collider on the path that is in A, or
 - There is a collider k on the path, but $k \notin A$ and $\operatorname{Desc}(k) \cap A = \emptyset$

Is $Z = \{X_1, X_3\}$ an adjustment set that satisfies the backdoor criterion?

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

$$\bar{z} = \{X_{3}, X_{4}\}$$
 $\bar{z} = \{X_{3}, X_{5}\}$
 $\bar{z} = \{X_{3}, X_{5}\}$
 $\bar{z} = \{X_{3}, X_{5}\}$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

Does $Z=\emptyset$ satisfy the backdoor criterion for $P(X_4 \mid do(X_2))$?

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

$$P(X_4 \mid do(X_2 = x_2)) = \sum_{x_z} P(X_4 \mid X_2 = x_2, X_z = x_z) P(X_z = x_z) = P(X_4 \mid X_2 = x_2)$$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

$$P(X_4 \mid do(X_2 = x_2)) = P(X_4 \mid X_2 = x_2) = P(X_4)$$

- Z does not contain any descendant of i, $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

Linear SCMs - adjustment can be done with regression

One can prove that in linear SCMs (not just Gaussian) the formula:

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

is equivalent to the coefficient of X_i for the linear regression of X_j on X_i , $X_{\mathbf{Z}}$

Linear SCMs - adjustment can be done with regression

One can prove that in linear SCMs (not just Gaussian) the formula:

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

is equivalent to the coefficient of X_i for the linear regression of X_j on $X_i, X_{\mathbf{Z}}$

Example - effect of smoking on adult asthma?

 Pretreatment variables are not always ok to adjust for

- Childhood asthma unblocks backdoor path
 - M-bias
 - Cannot adjust only on that

Backdoor criterion exercise in Canvas

- Z does not contain any descendant of i, i.e. $Desc(i) \cap Z = \emptyset$, and
- \mathbf{Z} blocks all backdoor paths from i to j, i.e. $i \leftarrow \dots j$

$$P(X_5|do(X_1)) = ?$$

Identification strategies for causal effects

- Given a causal graph G, an identification strategy is a formula to estimate an interventional distribution from a combination of observational ones
- Backdoor criterion (this class), Adjustment criterion (next class)

$$p(x_j | \operatorname{do}(x_i)) = \int_{x_{\mathbf{Z}}} p(x_j | x_i, x_{\mathbf{Z}}) p(x_{\mathbf{Z}}) dx_{\mathbf{Z}}$$

Frontdoor criterion (next class)

$$p(x_j | do(x_i')) = \int_{x_{\mathbf{M}}} p(x_{\mathbf{M}} | x_i') \int_{x_i} p(x_j | x_{\mathbf{M}}, x_i') p(x_i) dx_i$$

Instrumental variables (next class)

Questions?

