Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

- \triangleright Here, S(m, t) is the Stirling number of the second kind.

Def. The Stirling number of the second kind S(m, t) is the number of ways to partition the set [m] into t non-empty subsets.

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

- ▷ i.e., "Too Many" color classes are forbidden.
- \triangleright Here, S(m, t) is the Stirling number of the second kind.

Def. The Stirling number of the second kind S(m, t) is the number of ways to partition the set [m] into t non-empty subsets.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

- ▷ i.e., "Too Many" color classes are forbidden.
- \triangleright Here, S(m, t) is the Stirling number of the second kind.

Def. The Stirling number of the second kind S(m, t) is the number of ways to partition the set [m] into t non-empty subsets.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

- \triangleright Choose any finite families $\mathcal{F}_1, \ldots, \mathcal{F}_p$, where $p = \sup\{S(m, t) : m = m(r^*)\}$.
- \triangleright Apply Key Lemma to the nerve complex $K = N(\bigcup_{i=1}^p \mathcal{F}_i)$ with $t = h(X, \mathcal{C})$.
- \triangleright Contrapositive. Since $p \ge S(m, t)$, there exists some $V_i \in K$.

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

Sketch of Key Lemma.

Assume t=2 and $r_2^*(K)=4$. Note that $S(r,2)=2^{r-1}-1$ and so, S(4,2)=7. We want to make a contradiction when $p\geq 7$.

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

Sketch of Key Lemma.

Assume t=2 and $r_2^*(K)=4$. Note that $S(r,2)=2^{r-1}-1$ and so, S(4,2)=7. We want to make a contradiction when $p\geq 7$. First, consider

$$\begin{split} \mathcal{P}_1 &= \{1\} \cup \{2,3,4\} \quad \mathcal{P}_2 = \{2\} \cup \{1,3,4\} \quad \mathcal{P}_3 = \{3\} \cup \{1,2,4\} \quad \mathcal{P}_4 = \{4\} \cup \{1,2,3\} \\ \mathcal{P}_5 &= \{1,2\} \cup \{3,4\} \quad \mathcal{P}_6 = \{1,3\} \cup \{2,4\} \quad \mathcal{P}_7 = \{1,4\} \cup \{2,3\}. \end{split}$$

elements \ types	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_5	\mathcal{P}_6	\mathcal{P}_7
1	1st	2nd	2nd	2nd	1st	1st	1st
2	2nd	1st	2nd	2nd	1st	2nd	2nd
3	2nd	2nd	1st	2nd	2nd	1st	2nd
4	2nd	2nd	2nd	1st	2nd	2nd	1st

elements \ types	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_5	\mathcal{P}_6	\mathcal{P}_7
1	1st	2nd	2nd	2nd	1st	1st	1st
2	2nd	1st	2nd	2nd	1st	2nd	2nd
3	2nd	2nd	1st	2nd	2nd	1st	2nd
4	2nd	2nd	2nd	1st	2nd	2nd	1st

For each *i*, let $V_i = \{v_{i1}, v_{i2}\}$. Choose colorful subsets $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ as follows.

faces\colors	V_1	V_2	<i>V</i> ₃	V_4	V_5	V_6	V_7
σ_1	V ₁₁	V ₂₂	V ₃₂	V ₄₂	<i>v</i> ₅₁	V ₆₁	<i>v</i> ₇₁
σ_2	V ₁₂	V ₂₁	V32	V42	V ₅₁	V ₆₂	V ₇₂
σ_3	V12	V ₂₂	V ₃₁	V42	V ₅₂	V ₆₁	V ₇₂
σ_4	V ₁₂	V22	V32	V41	V ₅₂	V ₆₂	<i>V</i> 71

In this table, each σ_j is formed by the vertices in the *j*-th row.

elements \ types	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_5	\mathcal{P}_6	\mathcal{P}_7
1	1st	2nd	2nd	2nd	1st	1st	1st
2	2nd	1st	2nd	2nd	1st	2nd	2nd
3	2nd	2nd	1st	2nd	2nd	1st	2nd
4	2nd	2nd	2nd	1st	2nd	2nd	1st

For each *i*, let $V_i = \{v_{i1}, v_{i2}\}$. Choose colorful subsets $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ as follows.

faces\colors	V_1	V_2	<i>V</i> ₃	V_4	V_5	V_6	<i>V</i> ₇
σ_1	<i>V</i> ₁₁	V ₂₂	V ₃₂	V ₄₂	<i>v</i> ₅₁	V ₆₁	<i>V</i> 71
σ_2	V ₁₂	V ₂₁	V32	V42	V ₅₁	V ₆₂	V ₇₂
σ_3	V ₁₂	V ₂₂	V ₃₁	V42	V ₅₂	V ₆₁	V ₇₂
σ_4	V ₁₂	V ₂₂	V32	V41	V ₅₂	V ₆₂	V ₇₁

In this table, each σ_i is formed by the vertices in the *j*-th row.

- \triangleright Since K contains all possible colorful subsets, $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ are facets of K.
- $\hspace{-0.5cm} \hspace{-0.5cm} \hspace{-$

elements \ types	\mathcal{P}_1	\mathcal{P}_2	\mathcal{P}_3	\mathcal{P}_4	\mathcal{P}_5	\mathcal{P}_6	\mathcal{P}_7
1	1st	2nd	2nd	2nd	1st	1st	1st
2	2nd	1st	2nd	2nd	1st	2nd	2nd
3	2nd	2nd	1st	2nd	2nd	1st	2nd
4	2nd	2nd	2nd	1st	2nd	2nd	1st

For each *i*, let $V_i = \{v_{i1}, v_{i2}\}$. Choose colorful subsets $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ as follows.

faces\colors	V_1	V_2	<i>V</i> ₃	V_4	V_5	V_6	<i>V</i> ₇
σ_1	<i>V</i> ₁₁	V ₂₂	V ₃₂	V ₄₂	<i>v</i> ₅₁	V ₆₁	<i>V</i> 71
σ_2	V ₁₂	V ₂₁	V32	V42	V ₅₁	V ₆₂	V ₇₂
σ_3	V ₁₂	V ₂₂	V ₃₁	V42	V ₅₂	V ₆₁	V ₇₂
σ_4	V ₁₂	V ₂₂	V32	V41	V ₅₂	V ₆₂	V ₇₁

In this table, each σ_i is formed by the vertices in the *j*-th row.

- \triangleright Since K contains all possible colorful subsets, $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ are facets of K.

Suppose that $I_1 = \{1\}$ and $I_2 = \{2, 3, 4\}$ as an example. Then by (*),

$$\sigma_1 \cup (\sigma_2 \cap \sigma_3 \cap \sigma_4) \in K$$
.

Observe that

$$V_1 = \{v_{11}\} \cup \{v_{12}\} \subseteq \sigma_1 \cup (\sigma_2 \cap \sigma_3 \cap \sigma_4) \in K.$$

This is impossible because V_1 is not a face of K.

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

$$\begin{split} \mathcal{P}_1 &= \{1\} \cup \{2,3,4\} \quad \mathcal{P}_2 = \{2\} \cup \{1,3,4\} \quad \mathcal{P}_3 = \{3\} \cup \{1,2,4\} \quad \mathcal{P}_4 = \{4\} \cup \{1,2,3\} \\ \mathcal{P}_5 &= \{1,2\} \cup \{3,4\} \quad \mathcal{P}_6 = \{1,3\} \cup \{2,4\} \quad \mathcal{P}_7 = \{1,4\} \cup \{2,3\}. \end{split}$$

faces\colors	V ₁	V_2	<i>V</i> ₃	V_4	V_5	V_6	V_7
σ_1	V ₁₁	V ₂₂	V32	V42	V ₅₁	V ₆₁	V ₇₁
σ_2	V ₁₂	V ₂₁	V32	V42	V ₅ 1	V ₆₂	V ₇₂
σ_3	V ₁₂	V ₂₂	V ₃₁	V ₄₂	V ₅₂	V ₆₁	V ₇₂
σ_4	V ₁₂	V22	V32	V41	V ₅₂	V ₆₂	V ₇₁

Indeed, we can check that no partition types are possible.

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V = \bigcup_{i=1}^p V_i$ be the color classes with $|V_i| \geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^* = r^*(K)$ is bounded, then p < S(m,t) for some $m = m(r^*)$.

$$\begin{split} \mathcal{P}_1 &= \{1\} \cup \{2,3,4\} \quad \mathcal{P}_2 = \{2\} \cup \{1,3,4\} \quad \mathcal{P}_3 = \{3\} \cup \{1,2,4\} \quad \mathcal{P}_4 = \{4\} \cup \{1,2,3\} \\ \mathcal{P}_5 &= \{1,2\} \cup \{3,4\} \quad \mathcal{P}_6 = \{1,3\} \cup \{2,4\} \quad \mathcal{P}_7 = \{1,4\} \cup \{2,3\}. \end{split}$$

faces\colors	<i>V</i> ₁	V_2	<i>V</i> ₃	V_4	V_5	V_6	V_7
σ_1	<i>v</i> ₁₁	V ₂₂	V32	V42	V ₅₁	V ₆₁	V ₇₁
σ_2	V ₁₂	V ₂₁	V32	V42	V ₅ 1	V ₆₂	V ₇₂
σ_3	<i>v</i> ₁₂	V ₂₂	V ₃₁	V ₄₂	V ₅₂	V ₆₁	V ₇₂
σ_4	V ₁₂	V22	V32	V41	V ₅₂	V ₆₂	V ₇₁

Indeed, we can check that no partition types are possible.

 \triangleright Suppose $\mathcal{P}_i = I_1 \cup I_2$ satisfies $(\cap_{i \in I_1} \sigma_i) \cup (\cap_{i \in I_2} \sigma_i) \in K$,

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V = \cup_{i=1}^p V_i$ be the color classes with $|V_i| \geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^* = r^*(K)$ is bounded, then p < S(m,t) for some $m = m(r^*)$.

$$\begin{split} \mathcal{P}_1 &= \{1\} \cup \{2,3,4\} \quad \mathcal{P}_2 = \{2\} \cup \{1,3,4\} \quad \mathcal{P}_3 = \{3\} \cup \{1,2,4\} \quad \mathcal{P}_4 = \{4\} \cup \{1,2,3\} \\ \mathcal{P}_5 &= \{\textbf{1},\textbf{2}\} \cup \{3,4\} \quad \mathcal{P}_6 = \{1,3\} \cup \{2,4\} \quad \mathcal{P}_7 = \{1,4\} \cup \{2,3\}. \end{split}$$

faces\colors	V_1	V_2	<i>V</i> ₃	V_4	V_5	V_6	V_7
σ_1	<i>v</i> ₁₁	V22	V32	V42	V ₅ 1	V ₆₁	<i>V</i> 71
σ_2	V ₁₂	V ₂₁	V32	V42	V51	V ₆₂	V ₇₂
σ_3	<i>v</i> ₁₂	V ₂₂	V ₃₁	V ₄₂	V ₅₂	V ₆₁	V ₇₂
σ_4	V ₁₂	V22	V32	V41	V ₅₂	V ₆₂	V71

Indeed, we can check that no partition types are possible.

- \triangleright Suppose $\mathcal{P}_i = I_1 \cup I_2$ satisfies $(\cap_{j \in I_1} \sigma_j) \cup (\cap_{j \in I_2} \sigma_j) \in K$,
- $\triangleright \text{ then } V_i = \{v_{i1}\} \cup \{v_{i2}\} \subseteq (\cap_{j \in I_1} \sigma_j) \cup (\cap_{j \in I_2} \sigma_j) \in K.$

This contradicts to the assumptions.

