Wiktor Murawski, 333255, grupa 3, środa 12:15, Projekt 1, Zadanie 23

Obliczanie całek $\iint_D f(x,y)\,dxdy$ na obszarze $D=\{(x,y)\in\mathbb{R}^2:|x|+|y|\leq 1\}$ poprzez podział obszaru D na $4n^2$ trójkątów przystających oraz zastosowanie na każdym z nich kwadratury rzedu drugiego.

Wyznaczenie analityczne całki z funkcji stopnia 1

Obliczymy analitycznie
$$I=\int\limits_D f(x,y)\,dxdy$$
 gdzie
$$f(x,y)=ax+by+c \qquad a,b,c\in\mathbb{R}$$
 Niech $D_1=\{(x,y)\in D:x\leq 0\}$ oraz $D_2=\{(x,y)\in D:x>0\}$ Oznaczmy $I_1=\int\limits_{D_1} f(x,y)\,dxdy,\ I_2=\int\limits_{D_2} f(x,y)\,dxdy$ Wtedy $D=D_1\cup D_2$ oraz $I=I_1+I_2$
$$I_1=\int\limits_{-1}^0\int\limits_{-x-1}^{x+1}ax+by+c\,dydx$$

$$I_2=\int\limits_0^1\int\limits_{x-1}^{x+1}ax+by+c\,dydx$$

Wyznaczenie analityczne całki z funkcji stopnia 1

$$I_{1} = \int_{-1}^{0} \int_{-x-1}^{x+1} ax + by + c \, dy dx$$

$$I_{2} = \int_{0}^{1} \int_{x-1}^{-x+1} ax + by + c \, dy dx$$

$$I_{1} = \int_{-1}^{0} \left[axy + \frac{by^{2}}{2} + cy \right]_{-x-1}^{x+1} dx$$

$$I_{2} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{1} = \int_{-1}^{0} 2ax^{2} + 2ax + 2cx + 2c \, dx$$

$$I_{2} = \int_{0}^{1} -2ax^{2} + 2ax - 2cx + 2c \, dx$$

$$I_{3} = 2 \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{-1}^{0}$$

$$I_{2} = \frac{a}{3} + c$$

$$I_{3} = \frac{a}{3} + c$$

Ostatecznie otrzymujemy $I = I_1 + I_2 = 2c$

funkcja	wynik	n	wynik	błąd	błąd
podcałkowa	dokładny		uzyskany	bezwzględny	względny
f(x,y) = 1	2.000	1	2.000	1.000×10^{-20}	0.000
		5	2.000	1.332×10^{-15}	6.661×10^{-16}
		10	2.000	2.065×10^{-14}	1.033×10^{-14}
		50	2.000	1.876×10^{-13}	9.381×10^{-14}
		100	2.000	2.008×10^{-12}	1.004×10^{-12}
		500	2.000	1.584×10^{-11}	7.918×10^{-12}
f(x,y) = x + y + 0.5	2.000	1	2.000	0.000	0.000
		5	2.000	8.882×10^{-16}	4.441×10^{-16}
		10	2.000	2.442×10^{-15}	1.221×10^{-15}
		50	2.000	4.663×10^{-15}	2.331×10^{-15}
		100	2.000	4.885×10^{-15}	2.442×10^{-15}
		500	2.000	7.594×10^{-14}	3.797×10^{-14}
f(x,y) = x + 2y + 3	6.000	1	6.000	8.882×10^{-16}	1.480×10^{-16}
		5	6.000	0.000	0.000
		10	6.000	8.882×10^{-16}	1.480×10^{-16}
		50	6.000	8.882×10^{-16}	1.480×10^{-16}
		100	6.000	1.776×10^{-15}	2.961×10^{-16}
		500	6.000	2.665×10^{-14}	4.441×10^{-15}