Game Playing *Alpha–Beta Pruning*

Minimax: Properties

- Depth-first traversal (branching factor b, depth m)
- Complete? Yes if tree is finite
- Optimal? Yes against an optimal opponent
- Time complexity? $O(b^m)$
- Space complexity? O(bm)
- Time cost is not practical for real games (Chess: $m \approx 100, b \approx 35$)

Minimax Problems

- The number of game states it has to examine is exponential in the depth of the tree
- Can we ignore some nodes?
- Can eliminate large parts of the tree using pruning
 - eliminating possibilities from consideration without having to examine them
 - allows us to ignore portions of the search tree that make no difference to the final choice

Minimax: Are There Shortcuts?

- Minimax problem: Number of game states it has to examine is exponential in the depth of the tree
- We can cut it in half by <u>pruning</u>, i.e. ignore portions of the search tree that makes
 no difference to the final choice (reduce the number of evaluations and
 branching)
- Calculation of optimal decision by considering what we already know at each point in the process could lead to minimax decision without evaluating some nodes
- Remove the nodes that don't have to be evaluated removing redundancy

Node Evaluation

- $B \le 3$ MIN the biggest value that I can have is 3
- $A \ge 3$ MAX the smallest value that I can have is 3

8. Alpha-Beta Pruning

- Main idea: If Player has a choice to move to node n for consideration, and if there is already a better choice of value for Player from previously processed nodes, then n can be ignored
- Alpha (α) is concerning what is the minimum, >= that I can take (worst-case scenario), i.e. the first player who is trying to maximise the score
- Beta (β) is concerning what is the maximum, <= that I have to give (worst-case scenario), i.e. the second player who is trying to minimise the score
- Pruning (termination of the recursive call) happens when the value of the current node is worse than the current alpha (Max) or beta (Min)

Alpha-Beta: Pseudocode

```
function ALPHA-BETA-SEARCH(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in ACTIONS(state) with value v
function MAX-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
     if v \geq \beta then return v
      \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
     if v < \alpha then return v
      \beta \leftarrow \text{MIN}(\beta, v)
   return v
```

- 2 main functions with 3 parameters s (current state), α (best explored option for Max from root to s) and β (best explored option for Min from root to s) and an output value, v
- At the start node:
 - Smallest value that I can have, $\alpha = -\infty$
 - Biggest value that I can have, $\beta = +\infty$
- Keep track of alpha & beta globally and locally (lower and upper bounds)
- v is the value used to manipulate α and β and it is passed back from the function

$\alpha-\beta$ Pruning Walkthrough

12

8

function **Alpha-Beta-Search**(s) returns an action

 $s \leftarrow \text{root} \# \text{start from root}$

 $v \leftarrow \mathbf{Minimax-ab}(s, -\infty, +\infty)$ # initialise alpha and beta return the action in Actions(s) with value v

function **Minimax-ab**(s, α , β) returns a value v if Terminal-test(s) then **return** Utility(s) # base case

else if (Player == Max)

 $v \leftarrow -\infty$ # reset v to $-\infty$ at every Max Player node for each child, c of s

 $v \leftarrow \max(v, \mathbf{Minimax-ab}(c, \alpha, \beta))$ if $v \ge \beta$ then **return** v # Pruningelse $\alpha \leftarrow \max(\alpha, v)$

else if (Player == Min)

 $v \leftarrow +\infty \# reset \ v \ to +\infty \ at \ every \ Min \ Player \ node$ for each child, c of s

 $v \leftarrow \min(v, \mathbf{Minimax-ab}(c, \alpha, \beta))$ if $v \leq \alpha$ then **return** $v \neq Pruning$ else $\beta \leftarrow \min(\beta, v)$

return v

12

Alpha-beta Pruning Points

- α and β are inherited from the parent and they are manipulated locally at the current node for its own use
 - but they are not passed back up. Only v is passed back up (via return)
- At every node, v is reset to $-\infty$ if it is the node is a Max player or $+\infty$ if it is a Min Player
- At Max, **pruning** happens when v is bigger than β Min Player above will ignore this path because it is worse (bigger) than the best that they have so far, β
- At Min, **pruning** happens when v is smaller than α Max Player above will ignore this path because it is worse (smaller) than the best they have so far, α

9

Alpha-Beta: Properties

- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
- With perfect ordering, time complexity = $O(b^{\frac{m}{2}})$
 - doubles solvable depth
 - can easily reach depth 8 and play good chess

Summary

- Game playing as adversarial search
 - zero-sum games
 - utility values
- Search in games with perfect information:
 - Minimax
 - Alpha-beta pruning
 - Alpha-Beta has been used by popular programs like Deep Blue to efficiently play against Chess Grandmasters

References

- Russel and Norvig, Chapter 5, until 5.3
- J. Schrum, Alpha-beta pruning intuition [Video]
- S. Kambhapati, Alpha-beta intuition [Video]
- Historical reading:
 - Computer considers possible lines of play (Babbage, 1846)
 - Algorithm for perfect play (Zermelo, 1912; Von Neumann 1944)
 - Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon 1950)
 - First chess program (Turing, 1950)
 - Machine learning to improve evaluation accuracy (Samuel, 1952–57)
 - Pruning to allow deeper search (McCarthy, 1956)

Exercise: $\alpha - \beta$ Pruning

- Order the evaluations by nodes and α, β and ν values
- First step:

1.
$$A: \alpha = -\infty, \beta = +\infty, v = -\infty$$

function Alpha-Beta-Search(s) returns an action $s \leftarrow \text{root} \# start from root$ $v \leftarrow \mathbf{Minimax-ab}(s, -\infty, +\infty)$ # initialise alpha and beta return the action in Actions(s) with value vfunction **Minimax-ab**(s, α, β) returns a value vif Terminal-test(s) then **return** Utility(s) # base case else if (Player == Max) $v \leftarrow -\infty$ # reset v to $-\infty$ at every Max Player node for each child, c of s $v \leftarrow \max(v, \mathbf{Minimax-ab}(c, \boldsymbol{\alpha}, \boldsymbol{\beta}))$ if $v \ge \beta$ then **return** v # Pruningelse $\alpha \leftarrow \max(\alpha, v)$ else if (Player == Min) $v \leftarrow +\infty$ # reset v to $+\infty$ at every Min Player node for each child, c of s $v \leftarrow \min(v, \mathbf{Minimax-ab}(c, \boldsymbol{\alpha}, \boldsymbol{\beta}))$ if $v \le \alpha$ then **return** v # Pruningelse $\beta \leftarrow \min(\beta, v)$ return v

function **Alpha-Beta-Search**(s) returns an action

 $s \leftarrow \text{root} \# start from root$

 $v \leftarrow \mathbf{Minimax-ab}(s, -\infty, +\infty)$ # initialise alpha and beta return the action in Actions(s) with value v

function **Minimax-ab**(s, α , β) returns a value v if Terminal-test(s) then **return** Utility(s) # base case

else if (Player == Max)

 $v \leftarrow -\infty$ # reset v to $-\infty$ at every Max Player node for each child, c of s

 $v \leftarrow \max(v, \mathbf{Minimax-ab}(c, \alpha, \beta))$ if $v \ge \beta$ then **return** v # Pruningelse $\alpha \leftarrow \max(\alpha, v)$

else if (Player == Min)

 $v \leftarrow +\infty$ # reset v to $+\infty$ at every Min Player node for each child, c of s

 $v \leftarrow \min(v, \mathbf{Minimax-ab}(c, \alpha, \beta))$ if $v \le \alpha$ then **return** v # Pruningelse $\beta \leftarrow \min(\beta, v)$

return v

2. B:
$$\alpha=-\infty$$
, $\beta=+\infty$, $\nu=+\infty$

3. E:
$$\alpha = -\infty$$
, $\beta = +\infty$, $v = 2$

7. F:
$$\alpha=-\infty$$
, $\beta=2$, $\nu=-\infty$ (L ignored)

9. A:
$$\alpha = -\infty$$
, $\beta = +\infty$, $v = -\infty$

MAX

MIN

MAX

MIN

MAX

14. M:
$$\alpha=2$$
, $\beta=+\infty$, $\nu=+\infty$ (R ignored)

18. C:
$$\alpha=2$$
, $\beta=+\infty$, $\nu=+\infty$

A

C

N

R

10

G

 \mathbf{M}

Q

В

Ε

K

6

Η

21. A:
$$\alpha = 2$$
, $\beta = +\infty$, $v = 2$

22. D:
$$\alpha=6$$
, $\beta=+\infty$, $\nu=+\infty$

24. D:
$$\alpha=6$$
, $\beta=+\infty$, $\nu=+\infty$ (J,O,P ignored)

Q: Which move should Max take? A→C

Q. Which move should Min take after that? $C \rightarrow H$

20

20

0

Poll Results

