Based on the sources provided, here is a table format contrasting AI Agents and Agentic AI, suitable for a slide:

Al Agents Versus Agentic Al

Feature	Al Agents	Agentic Al	Source Reference s
Definition	Autonomous software programs that perform specific tasks.	Systems of multiple Al agents collaborating to achieve complex goals.	
Autonomy Level	High autonomy within specific tasks. Function with minimal or no human intervention after deployment.	Broad level of autonomy with the ability to manage multi-step, complex tasks and systems. Manage entire process.	
Task Complexity	Typically handle single, specific tasks. Perform goal-directed task execution within bounded digital environments.	Handle complex, multi-step tasks requiring coordination. Manage complex workflow automation or achieve high-level goals.	
Collaboration	Operate independently. Single-entity systems.	Involve multi-agent information sharing, collaboration and cooperation. Compose of multiple, specialized agents that coordinate, communicate, and dynamically allocate sub-tasks.	
Architecture	Typically based on a single LLM combined with tool(s)/APIs. Composed of Perception, Reasoning, Action, and Learning subsystems.	Composed of multiple LLMs (potentially diverse). Features Multi-agent systems, Persistent Memory, and Orchestration layers/Meta-Agents.	

Operational Mech.	Prompt → Tool Call → LLM → Output. Single task execution. Utilize tool-augmented execution.	Goal → Agent Orchestration → Output. Multi-step workflow coordination. Involve inter-agent communication and collaboration and recursive task reallocation.
Planning Horizon	Single-step . Limited planning horizons.	Multi-step . Enable more complex goal pursuit and flexible behavior.
Memory Usage	Short-term continuity within task. Memory buffers may be included.	Persistent across workflow stages. Access shared global memory to facilitate coordination.
Key Trait	Tool-use.	Collaboration.
Typical Apps	Customer service chatbots, virtual assistants, automated workflows, email filtering, scheduling assistants, content recommendation, basic data reporting.	Supply chain management, business process optimization, virtual project managers, multi-agent research assistants, robotics coordination, medical decision support, adaptive workflow automation.
Challenges	Hallucination, prompt brittleness, lack of causal understanding, limited planning ability, single-pass inference.	Amplified causality issues, communication & coordination bottlenecks, emergent unpredictable behavior, scalability limits, explainability deficits, security risks, ethical/governance concerns, immature foundations.
Solutions/Futur e	Enhanced tool integration, causal inference, continual learning, trust & safety, Programmatic Prompt Engineering.	Multi-Agent Scaling, Unified Orchestration, Persistent Memory, Simulation Planning, Ethical Governance, Causal Modeling.

This table synthesizes key distinctions highlighted throughout the sources, emphasizing the differences in their design philosophies, capabilities, and applications. Agentic AI represents a

conceptual leap from the isolated, task-specific nature of Al Agents to coordinated, multi-agent systems capable of handling more complex, dynamic scenarios.