

D. Juicy Cake

There are *N* pieces of cake. Each piece has two parameters: "kind of topping" *ti* and "deliciousness" *di*. You are choosing *K* among these *N* pieces to eat. Your "satisfaction" here will be calculated as follows:

- The satisfaction is the sum of the "base total deliciousness" and the "variety bonus".
- The base total deliciousness is the sum of the deliciousness of the pieces you eat.
- The variety bonus is x*x, where x is the number of different kinds of toppings of the pieces you eat.

You want to have as much satisfaction as possible. Find this maximum satisfaction.

Constraints

- $1 \le K \le N \le 10^5$
- 1 ≤ ti ≤ N
- 1 ≤ di ≤ 10^9
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

N K		
tı dı		
t2 d2		
tn dn		

Output

Print the maximum satisfaction that you can obtain.

Sample 1:

	Input	Output
5	3	26
1	9	
1	7	
2	6	
2	5	
3	1	

If you eat Cake 1,2 and 3:

- The base total deliciousness 9+7+6=22.
- The variety bonus is 2*2 = 4.

Thus, your satisfaction will be 26, which is optimal.

Sample 2:

	Input	Output
7	4	25
1	1	
2	1	
3	1	
4	6	
4	5	
4	5	
4	5	

It is optimal to eat Cake 1,2,3 and 4.