Homework 4

EXERCISE 4.1. In \mathbb{R}^2 , consider the vector field X and Y defined by

$$X = e^{x^2 + y^2} \frac{\partial}{\partial x} + \sin(xy) \frac{\partial}{\partial y}$$
$$Y = (x^2 + 3xy) \frac{\partial}{\partial x} + (x + y) \frac{\partial}{\partial y}.$$

Compute the Lie bracket [X, Y].

Solution. We know from general theory that all higher order derivatives while computing [X, Y] must cancel. So we compute while disregarding higher order terms:

$$XY \equiv \left(e^{x^2 + y^2} \frac{\partial}{\partial x} + \sin(xy) \frac{\partial}{\partial y}\right) Y \equiv$$

$$\equiv e^{x^2 + y^2} (2x + 3y) \frac{\partial}{\partial x} + e^{x^2 + y^2} \frac{\partial}{\partial y} + 3x \sin(xy) \frac{\partial}{\partial x} + \sin(xy) \frac{\partial}{\partial y} \equiv$$

$$\equiv \left(e^{x^2 + y^2} (2x + 3y) + 2x \sin(xy)\right) \frac{\partial}{\partial x} + \left(e^{x^2 + y^2} + \sin(xy)\right) \frac{\partial}{\partial y}$$

and

$$YX \equiv \left((x^2 + 3xy) \frac{\partial}{\partial x} + (x + y) \frac{\partial}{\partial y} \right) X \equiv$$

$$\equiv (x^2 + 3xy) 2xe^{x^2 + y^2} \frac{\partial}{\partial x} + (x^2 + 3xy)y \cos(xy) \frac{\partial}{\partial y} + (x + y)2ye^{x^2 + y^2} \frac{\partial}{\partial x} + (x + y)x \cos(xy) \frac{\partial}{\partial y} \equiv$$

$$\equiv e^{x^2 + y^2} (2x(x^2 + 3xy) + 2y(x + y)) \frac{\partial}{\partial x} + \cos(xy)((x^2 + 3xy)y + (x + y)x) \frac{\partial}{\partial y}$$

and therefore

$$[X, Y] = \left(e^{x^2 + y^2}(-2x^3 - 6x^2y - 2xy + 2x - 2y^2 + 3y) + 2x\sin(xy)\right)\frac{\partial}{\partial x} + \left(e^{x^2 + y^2} + \sin(xy) - \cos(xy)(x^2y + x^2 + 3xy^2 + xy)\right)\frac{\partial}{\partial y}$$

EXERCISE 4.2. Consider the vector field $X = x^2 \frac{d}{dx}$ on \mathbb{R} . Compute its integral curves. Explain why X does not admit a global flow $\Phi \colon \mathbb{R} \times (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}$ for any $\varepsilon > 0$.

Solution. Assume $\gamma \colon (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}$ is an integral curve of X with $\gamma(0) = p \in \mathbb{R}$. Let ∂_t be the basis vector field for the tangent bundle of $(-\varepsilon, \varepsilon)$ and write ∂_x for the basis vector field of $T\mathbb{R}$. Then γ being a integral curve of X means

$$\gamma(t)^2 \partial_{x,\gamma(t)} = X_{\gamma(t)} = \gamma_*(\partial_t)_t = \gamma'(t) \partial_{x,\gamma(t)}$$

for all t in the domain of γ . Hence γ satisfies the initial value problem

$$\gamma'(t) = \gamma(t)^2, \quad \gamma(0) = p.$$

This initial value problem is solved by $\gamma(t) = p/(1-pt)$ for t < 1/p if $p \neq 0$ and all $t \in \mathbb{R}$ if p = 0. If X were to admit a global flow $\Phi \colon \mathbb{R} \times (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}$, then we would necessarily have $\Phi(p, t) = p/(1-pt)$. We have $\Phi(p, t) \longrightarrow \infty$ for $t \longrightarrow 1/p$. Hence, Φ cannot be smooth at $(2/\varepsilon, \varepsilon/2) \in \mathbb{R} \times (-\varepsilon, \varepsilon)$, for instance.

EXERCISE 4.3. Let $\mathscr{D} = \ker(\mathrm{d}z + (x\,\mathrm{d}y - y\,\mathrm{d}x)) \subset T\mathbb{R}^3$ be the two-dimensional distribution considered in class, called the *(standard) contact distribution* on \mathbb{R}^3 . Verify that \mathscr{D} is not integrable.

Solution. By the Frobenius theorem it is enough to show that \mathscr{D} is not involutive. Write $\omega = \mathrm{d}z + (x\,\mathrm{d}y - y\,\mathrm{d}x)$ and observe that $\omega(\partial_x + y\partial_z) = y - y = 0$ and $\omega(\partial_y - x\partial_z) = x - x = 0$. We therefore conclude that $A = \partial_x + y\partial_z \in \mathscr{D}$ and $B = \partial_y - x\partial_z \in \mathscr{D}$. But

$$[A, B] = [\partial_x + y\partial_z, \partial_y - x\partial_z] = [\partial_x, -x\partial_z] + [y\partial_z, \partial_y] + [y\partial_z, -x\partial_z] = = -\partial_z - \partial_z + 0 = -2\partial_z$$

and $\omega(-2\partial_z) = -2$, so $-2\partial_z \notin \mathcal{D}$. In this calculation we have used that coordinate vector fields commute and that the Lie bracket satisfies a derivation-type identity

$$[X, fY] = X(f)Y + f[X, Y]$$

for vector fields *X* and *Y* and a smooth function *f* .

EXERCISE 4.4. A *Lie group* is a manifold G equipped with a multiplication map $G \times G \longrightarrow G$ which both satisfies the axioms of a group, and is a C^{∞} map, such that the map $G \longrightarrow G$ sending $g \longmapsto g^{-1}$ is also C^{∞} . For an element $g \in G$, let $L_g \colon G \longrightarrow G$ be the left multiplication, defined by $L_g(h) = gh$. A vector field X on G is *left invariant* if $(L_g)_*(X_h) = X_{gh}$ for every $g, h \in G$.

- (i) Show that, if $1 \in G$ denotes the identity element of G, then the map $X \longmapsto X_1$ induces a linear isomorphism between the vector space of all left invariant vector fields and the tangent space T_1G .
- (ii) Suppose G is a group of matrices that is a submanifold of $M_{n\times n}(\mathbb{R})\cong\mathbb{R}^{n^2}$ (for instance $G=\mathrm{GL}_n(\mathbb{R})$, $\mathrm{SL}_n(\mathbb{R})$, $\mathrm{O}_n(\mathbb{R})$, or $\mathrm{SO}_n(\mathbb{R})$). You may take for granted in this exercise that such a group is in fact a Lie group. Let X and Y be two left invariant vector fields. Show that

$$[X, Y]_1 = X_1 Y_1 - Y_1 X_1$$

where, on the right hand side, the product is just the usual multiplication of matrices in $M_{n\times n}(\mathbb{R})$. *Solution.* We first construct an inverse map to $X \longmapsto X_1$. Let $v \in T_1G$ be any tangent vector. Let $f: G \longrightarrow \mathbb{R}$ be a smooth function and let $g \in G$. Let $\gamma: (-\varepsilon, \varepsilon) \longrightarrow G$ be a smooth curve with $\gamma(0) = 1$ and $\gamma'(0) = v$. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} f(L_g(\gamma(t))) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} f(g\gamma(t))$$

depends smoothly on g, so we can define a smooth function $X_{\nu}(f)$ by

$$X_{\nu}(f)(g) = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} f(g\gamma(t)).$$

Observe that $X_{\nu}(f)(g) = \nu(f \circ L_g) = (L_{g,*}\nu)(f)$. Since $L_{g,*}\nu$ is a derivation for each g, this implies that X_{ν} defines a smooth vector field on G which satisfies $X_{\nu,g} = L_{g,*}\nu \in T_gG$ for all $g \in G$. It follows that $L_{h,*}(X_{\nu})_g = L_{h,*}(L_{g,*}\nu) = L_{hg,*}\nu = X_{\nu,hg}$, i. e. X_{ν} is a left invariant vector field on G with $X_{\nu,1} = L_{1,*}\nu = \nu$. Conversely, if X is left invariant, then $X_g = L_{g,*}X_1$ by definition. We conclude that $X \longmapsto X_1$ is an isomorphism.

Let $x^{ij}: G \longrightarrow \mathbb{R}$ be the canonical coordinate functions of $M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$ restricted to G. The associated coordinate vector fields on $M_{n \times n}(\mathbb{R})$ will be denoted by \mathfrak{d}_{ij} . Let X and Y be left invariant vector fields on G and write

$$X_1 = \sum_{ij} a^{ij} \partial_{ij,1}$$
 and $Y_1 = \sum_{k\ell} b^{k\ell} \partial_{k\ell,1}$.

For a matrix $g = (g^{ij}) \in G$ we have

$$X_g(x^{ij}) = (L_{g,*}X)_g(x^{ij}) = X_1(x^{ij} \circ L_g) = X_1\left(\sum_k g^{ik}x^{kj}\right) = \sum_k g^{ik}a^{kj} = \sum_k x^{ik}(g)a^{kj}.$$

We conclude that

$$X(x^{ij}) = \sum_{k} x^{ik} a^{kj}$$
 and $Y(x^{ij}) = \sum_{k} x^{ik} b^{kj}$

for $g \in G$. Therefore

$$\begin{split} [X,Y](x^{ij}) &= X\Big(Y(x^{ij})\Big) - Y\Big(X(x^{ij})\Big) = \sum_k X(b^{kj}x^{ik}) - \sum_k Y(a^{kj}x^{ik}) = \\ &= \sum_{k\ell} x^{i\ell}a^{\ell k}b^{kj} - \sum_{k\ell} x^{i\ell}b^{\ell k}a^{kj} \end{split}$$

and

$$[X, Y]_{\mathbf{1}}(x^{ij}) = \sum_{k} a^{ik} b^{kj} - \sum_{k} b^{ik} a^{kj} = (X_{\mathbf{1}} Y_{\mathbf{1}} - Y_{\mathbf{1}} X_{\mathbf{1}})(x^{ij}).$$

Exercise 4.5. Write out a proof of the Frobenius theorem in the general case.

Solution. First, let \mathscr{D} be a rank k distribution of \mathbb{R}^n . Let X_1, \ldots, X_k be a local frame for \mathscr{D} in an open neighborhood U of 0. Suppose first that $[X_i, X_j] = 0$ and let $\varepsilon > 0$ and $\delta > 0$ be small enough such that each X_i admits a flow φ_i : $(-\varepsilon, \varepsilon)^n \times (-\delta, \delta) \longrightarrow (-\varepsilon, \varepsilon)^n$. Define

$$\varphi_{i_1,\ldots,i_k}(s^1,\ldots,s^k) = \varphi_{i_1}(_,s^1) \circ \cdots \circ \varphi_{i_k}(_,s^k)$$

for any permutation (i_1, \ldots, i_k) of $(1, \ldots, k)$. Set

$$\Phi \colon (-\delta, \delta)^k \times (-\varepsilon, \varepsilon)^{n-k} \longrightarrow (-\varepsilon, \varepsilon)^n; \ (s^1, \dots, s^n) \longmapsto \varphi_{1\dots k}(s^1, \dots, s^k)(0, \dots, 0, s^{k+1}, \dots, s^n)$$

and compute

$$d\Phi_{p}\left(\frac{\partial}{\partial s^{i}}\Big|_{p}\right)(f) = \frac{\partial}{\partial s^{i}}\Big|_{p}f(\Phi(s^{1},\ldots,s^{n})) =$$

$$= \frac{\partial}{\partial s^{i}}\Big|_{p}f(\varphi_{1\ldots k}(s^{1},\ldots,s^{k})(0,\ldots,0,s^{k+1},\ldots,s^{n})) =$$

$$= \frac{\partial}{\partial s^{i}}\Big|_{p}f(\varphi_{i,1,\ldots,\widehat{i},\ldots,k}(s^{1},\ldots,s^{k})(0,\ldots,0,s^{k+1},\ldots,s^{n})) =$$

$$= X_{i,\Phi(p)}(f)$$

for all $p \in (-\delta, \delta)^k \times (-\varepsilon, \varepsilon)^{n-k}$ because the flows of the X_j commute. Since the vector fields X_j are linearly independent at 0 the differential $d\Phi_0$ is an isomorphism. Therefore, for small enough neighborhoods V of 0, the restriction $\Phi|_V$ is a diffeomorphism $V \longrightarrow \Phi(V)$ and the image of $(-\delta, \delta)^k \times \{0\} \cap V$ is an integral submanifold of \mathscr{D} near 0.

Next, if the X_i don't commute, let $\mathscr{D}_0 = \langle X_{1,0}, \dots, X_{k,0} \rangle \subset \mathbb{R}^n$ be the subspace spanned by X_1, \dots, X_k at 0 and let Y be a subspace of \mathbb{R}^n complementary to \mathscr{D}_0 . Let $\pi \colon \mathbb{R}^n \longrightarrow \mathscr{D}_0$ be the linear projection with kernel Y. This induces a smooth bundle map $d\pi \colon T\mathbb{R}^n \longrightarrow \mathbb{R}^n \times \mathscr{D}_0$. Observe that $(d\pi|_{\mathscr{D}})_0 = d\pi_0|_{\mathscr{D}_0}$ is bijective by construction. It follows that, for some open neighborhood $U \subset \mathbb{R}^n$ of 0, the restriction $d\pi|_{\mathscr{D}} \colon \mathscr{D}|_U \longrightarrow U \times \mathscr{D}_0$ is a vector bundle isomorphism. Consider $X_{i,0}$ as constant section of $U \times \mathscr{D}_0$. Then, setting $V_{i,p} := d\pi_p^{-1}(X_{i,0})$ defines smooth vector fields V_i on U which form a frame for $\mathscr{D}|_U$. By the naturality of the Lie bracket we have

$$d\pi_q([V_i, V_j]_q) = [X_{i,0}, X_{j,0}]_{\pi(q)} = 0$$

because the $X_{i,0}$ are constant. But if \mathscr{D} is involutive, $[V_i, V_j]_q \in \mathscr{D}_q$ and $d\pi_q$ is injective on \mathscr{D}_q for $q \in U$. Therefore $[V_i, V_j] = 0$ on U and we conclude that \mathscr{D} is integrable at 0 by our first argument. The case of general manifolds follows by taking charts.

EXERCISE 4.6. Let $f: M^m \longrightarrow \mathbb{R}^N = \mathbb{R}^p \times \mathbb{R}^{N-p}$ be an embedding of an m-dimensional manifold into Euclidean space.

- (i) Show that every horizontal subspace $\mathbb{R}^p \times \{z_0\}$ is arbitrarily close to a subspace $\mathbb{R}^p \times \{z\}$ whose preimage $f^{-1}(\mathbb{R}^p \times \{z\})$ is an (m-N+p)-dimensional submanifold of M.
- (ii) Show that, for $z \in \mathbb{R}^{N-p}$ as in the previous part, the intersection $f(M) \cap \mathbb{R}^p \times \{z\}$ is a submanifold of \mathbb{R}^N .

Solution. Consider the orthogonal projection $\pi \colon \mathbb{R}^N \longrightarrow \mathbb{R}^{N-p}$ and observe that $\pi \circ f \colon M^m \longrightarrow \mathbb{R}^{N-p}$ is smooth. By Sard's theorem the set of regular values of $\pi \circ f$ is dense and therefore any $z_0 \in \mathbb{R}^{N-p}$ is arbitrarily close to a regular value $z \in \mathbb{R}^{N-p}$. But then $(\pi \circ f)^{-1}(z) = f^{-1}(\mathbb{R}^p \times \{z\})$ is an (m-N+p)-dimensional submanifold of M.

If f is an embedding, then $f(f^{-1}(\mathbb{R}^p \times \{z\})) = f(M) \cap \mathbb{R}^p \times \{z\}$ is a submanifold of \mathbb{R}^N as well.

EXERCISE 4.7. Let $f: M^m \longrightarrow \mathbb{R}^N$ be an immersion from a smooth manifold of dimension m to \mathbb{R}^N .

(i) Let $T^1M \subset TM$ be the locus

$$T^{1}M = \{(x, v) \in TM : ||df_{x}(v)|| = 1\}.$$

Show that T^1M is a smooth manifold of dimension 2m-1.

(ii) Show, adapting arguments given in class, that if N > 2m, then there exists $v \in S^{N-1}$ such that $\pi_v \circ f$ is still an immersion, where π_v is the orthogonal projection from \mathbb{R}^N to $H_v = \{w \in \mathbb{R}^N : \langle w, v \rangle = 0\}$. Conclude that, at least if M is compact, that there exists an immersion $g \colon M \longrightarrow \mathbb{R}^{2m}$.

Solution. Consider the smooth map $\psi \colon TM \longrightarrow \mathbb{R}$ given by $\psi(x, v) = \|\mathrm{d}f_x(v)\|^2$. Let $p \in M$ and let $\varphi \colon U \longrightarrow \mathbb{R}^m$ be a chart centered at p in M. Then $\mathrm{d}\varphi \colon TU \longrightarrow \mathbb{R}^m \times \mathbb{R}^m$ is an isomorphism of vector bundles over U. The map $\psi \circ \mathrm{d}\varphi^{-1} \colon \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}$ is given by

$$\Psi(d\varphi^{-1}(x,\nu)) = \|d(f \circ \varphi^{-1})_x(\nu)\|^2$$

and its derivative can be computed as

$$\mathrm{d}(\Psi\circ\mathrm{d}\phi^{-1})_{(x,\nu)}(\xi,\zeta)=2\left\langle\mathrm{d}(f\circ\phi^{-1})_x(\nu),\mathrm{d}^2(f\circ\phi^{-1})_x(\nu,\xi)+\mathrm{d}(f\circ\phi^{-1})_x(\zeta)\right\rangle$$

for $(\xi, \zeta) \in \mathbb{R}^m \times \mathbb{R}^m$, where $d^2(f \circ \varphi^{-1})_x(\nu, \xi)$ is the vector in \mathbb{R}^N with components

$$\left(\mathrm{d}^2(f\circ\varphi^{-1})_x(\nu,\xi)\right)^i = \sum_{j,k} \frac{\partial^2(f\circ\varphi^{-1})^i(x)}{\partial x^j \partial x^k} \nu^k \xi^j.$$

If $\|d(f \circ \varphi^{-1})_x(v)\|^2 = 1$, then

$$d(\Psi \circ d\phi^{-1})_{(x,\nu)}(0,\nu) = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu,0) + d(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) + d(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle = 2 \left\langle d(f \circ \phi^{-1})_x(\nu), d^2(f \circ \phi^{-1})_x(\nu) \right\rangle$$

and we can conclude that $d(\Psi \circ d\varphi^{-1})_{(x,\nu)} \colon \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}$ is a surjective linear map. Therefore 1 is a regular value of $\Psi \circ d\varphi^{-1}$. By varying the chart φ and $p \in M$ it follows that 1 is also a regular value of Ψ . This makes $T^1M = \Psi^{-1}(1)$ a (2m-1)-dimensional submanifold of TM.

If N > 2m, denote the projection $T\mathbb{R}^N \longrightarrow \mathbb{R}^N$ mapping (x, ξ) to ξ by π and let $v \in S^{N-1}$ be a regular value of $\pi \circ \mathrm{d} f|_{T^1M} \colon T^1M \longrightarrow S^{N-1}$. Such a v exists by Sard's theorem. Because of the inequality $\dim(T^1M) = 2m - 1 < N - 1 = \dim(S^{N-1})$ this means that there is no $(x, \xi) \in T^1M$ with $\mathrm{d} f_x(\xi) = v$. We check that $\pi_v \circ f$ is an immersion of M into \mathbb{R}^{N-1} . Because π_v is linear we can compute

$$d(\pi_v \circ f)_x(\xi) = \pi_v(df_x(\xi)) \in H_v$$

for $(x, \xi) \in TM$. Now, if $d(\pi_v \circ f)_x(\xi) = 0$ for $\xi \neq 0$, then $df_x(\xi) \neq 0$ because f is an immersion and we must have $df_x(\xi) \parallel v$. But our choice of $v \in S^{N-1}$ ensures that this is impossible. Hence, $d(\pi_v \circ f)_x$ is injective for all $x \in M$, i. e. $\pi_v \circ f \colon M \longrightarrow H_v \cong \mathbb{R}^{N-1}$ is an immersion. Repeating this procedure yields an immersion $M \longrightarrow \mathbb{R}^{2m}$.