#### **SUMMER-2018**

## UNIT 1

Q.1 a) Show the following equivalence:

ii. 
$$(P \lor Q) \to C \Leftrightarrow (P \to C) \land (Q \to C)$$
 (7)

b) Obtain Principle Conjunctive Normal form of

$$(\overline{P} \to R) \land (Q \rightleftharpoons P) \tag{6}$$

**Q.2 a)** Prove the following equivalent equivalence without using Truth table:

$$( P \wedge ( Q \wedge R)) \vee (Q \wedge R) \vee (P \wedge R) \Leftrightarrow R$$
 (6)

**b)** Explain with example:

(7)

i. Tautology ii. Contradiction iii. Equivalent formulas.

# UNIT 2

Q.3 a) Show that.

(x) 
$$(P(x) \rightarrow Q(x)) \land (x) (Q(x) \rightarrow R(x)) \Rightarrow (x) (P(x) \rightarrow R(x))$$
 (6)

**b)** Show that S<sub>V</sub>R is tautological implied by

$$(P \lor Q) \land (P \to R) \land (Q \to S) \tag{7}$$

**Q.4 a)** Determine whether the conclusion C follows logically from premises  $H_1$  and  $H_2$ :

**i.** 
$$H_1: P \rightarrow Q$$
  $H_2: P C: Q$ 

ii. 
$$H_1: P \rightarrow Q$$
  $H_2: \neg (P \land Q)$   $C: \neg P$  (7)

- **b)** Symbolize the following statements:
  - i. All cars animals ii. Some real number are rational. (6)

### UNIT 3

Q.5 a) Let R and S be the given relations as

$$R = |<1, 2>, <3, 4>, <2, 2>|$$

$$S = \{4, 2\}, \{2, 5\}, \{3, 1\}, \{1, 3\}\}$$

Find RoS, SoR, RoR, Ro(SoR), (RoS)oR, RoR, SoS. (7)

- **b)** Draw Venn Diagram of
  - **i.**  $A \cup B = A \cup C$  but  $B \neq C$
  - **ii.**  $A \cap B = A \cap C$  but  $B \neq C$

iii. 
$$A \cup B \subset A \cup C$$
 but  $B \nsubseteq C$ . (7)

**Q.6 a)** Let  $P = \{<1, 2>, <2, 4>, <3, 3>\}$  and  $Q = \{<1, 3>, <2, 4>, <4, 2>\}$ 

Find  $P \cup Q$ ,  $P \cap Q$ , D(P), D(Q), R(P), R(Q),  $D(P \cup Q)$  and  $R(P \cap Q)$  Also, show that

$$D(P \cup Q) = D(P) \cup D(Q)$$
 and  $R(P \cap Q) \subseteq R(P) \cap R(Q)$ . (7)

**b)** Let  $X = \{1, 2, 3, 4, 5, 6, 7\}$  and  $R = \{\langle x, y \rangle | (x - y) \text{ is divisible by 3} \}$  Show that R is an equivalent relation. Draw the graph of R. (7)

# **UNIT 4**

- **Q.7 a)** What is coset? Find the left coset of  $\{|0|, |3|\}$  in the group  $\langle z_6, +_6 \rangle$  (6)
- **b)** Convert the following infix expression to prefix and postfix:

**i.** 
$$(A + B)/(C - D)$$
 **ii.**  $(A * B) + (C * (D/F))$  (7)

Q.8 a) Write down the composition table for

i. 
$$\langle z_7, +_7 \rangle$$
 ii.  $\langle z_7, *_7 \rangle$  (7)

b) Explain i. Group ii. Semi-Group iii. Monoid. (6)

# UNIT 5

**Q.9 a)** For the following function: F = x + y + z

Give i. Circuit diagram

ii. Truth-Table representation

iii. k-map representation. (7)

**b)** Prove the following Boolean identities,

**i.** 
$$a + (a' * b) = a + b$$
 **ii.**  $a * (a' + b) = a * b$ .

**Q.10 a)** Draw lattice diagram of  $\langle S_n, D \rangle$  for n = 12, 24, 45

(7)

(7)

**b)** Use k-map representation to find minimal sum of product expression for

**i.** 
$$f(a, b, c) = \Sigma(0, 1, 4, 6)$$

**ii.** 
$$f(a, b, c, d) = \Sigma(0, 5, 7, 8, 12, 14)$$
 (7)

#### UNIT 6

**Q.11 a)** Show that in a complete binary tree total number of edges is given by  $2(n_t - 1)$ , where  $n_t$  is the number of terminal nodes. (7)

**b)** Obtain adjacency matrix and path matrix of the diagraph given below (6)



**Q.12 a)** Give the directed tree representation of the following formula  $(P \lor ( P \land Q)) \land (P \land Q) \land R)$  (6)

**b)** Traverse the following with three techniques:

inorder, preorder, postorder (7)

