# Síntesis de Dilantín a partir de benzaldehído

Andres Perez Juan Barbosa



# Índice

- Introducción
- Resultados y discusión
- Sección experimental
- Conclusiones

#### Introducción



Esquema 1. Anillo de hidantoina.

#### Introducción

Esquema 2. Síntesis seguida en el laboratorio.

- [1] Pavia, D. L.; Lampman, G. M.; Kriz, G. S. *A small scale approach to organic laboratory techniques: A small-scale approach -* 3rd edition, 3rd ed.; Brooks/Cole Cengage Learning: United States, 2010; pp 266–276.
- [2] Depreux, P.; Bethegnies, G., A. Synthesis of benzil from benzoin with copper(II) acetate. Journal of Chemical Education. June 1988, 65 (6), 553.
- [3] Safari, J.; Moshtael Arani, N.; Ramezan Isfahani, A. Ultrasound-enhanced green synthesis of 5, 5-Diphenylhydantoin derivatives using symmetrical or Unsymmetrical Benzils. *Chinese Journal of Chemistry*. Feb 2010, 28 (2), 255–258.

## Resultados y discusión

Esquema 4. Oxidación de la benzoína usando acetato de cobre.

Wigal, C. T. Modular laboratory program in chemistry, Chemical Education Resources ed.; Jeffers, J., Ed.; H. A. Neidig, 2000.

$$H_{3}C \longrightarrow H_{3}C \longrightarrow H_{2}O \longrightarrow H$$

Esquema 5. Oxidación de la benzoína usando ácido nítrico.

Pavia, D. L.; Lampman, G. M.; Kriz, G. S. *A small scale approach to organic laboratory techniques: A small-scale approach*, 3rd ed.; Brooks/Cole Cengage Learning: United States, 2010; pp 266–276.

#### <sup>1</sup>H-Benzaldehído





| Señal | Int  | Mult. |
|-------|------|-------|
| А     | 1.88 | t     |
| В     | 0.89 | t     |
| С     | 1.77 | d     |
| D     | 1.00 | S     |

Etanol

### <sup>1</sup>H-Benzoína





| Señal | Int  | Mult. |
|-------|------|-------|
| Α     | 1.00 | S     |
| B + C | 4.80 | m     |
| D     | 2.10 | d     |
| E     | 1.08 | S     |
| F     | 2.01 | d     |

Etanol

# <sup>1</sup>H-Benzil





| Señal | Int  | Mult. |
|-------|------|-------|
| Α     | 4.25 | t     |
| В     | 2.00 | t     |
| С     | 3.71 | d     |