Chapitre I

Variabilités environnementales des SNe Ia

\(\lambda \ I \) like to think the moon is there even if I am not looking at it. \(\rangle\rangle\)

Albert Einstein

Dans le chapitre précédent, nous avons vu comment la physique des SNe Ia permettait de les utiliser comme des indicateurs de distance suffisamment précis pour mesurer la quantité d'énergie noire de l'Univers (via le paramètre w), amenant à la découverte de son expansion accélérée. Les SNe Ia permettent également de mesurer le taux d'expansion actuel, nommé H_0 , en se concentrant sur la partie de bas redshift du diagramme de HUBBLE.

Avec l'augmentation rapide du nombre de SNe Ia utilisables pour la cosmologie, la mesure des paramètres cosmologiques (H_0 ou w par exemple) commence à ne plus être limitée par l'incertitude statistique mais par l'incertitude systématique, c'est-à-dire par notre connaissance de leur physique intrinsèque comme celle ayant permis leur standar-disation. De nombreux efforts sont déployés pour étudier la manière dont nous pouvons continuer à corriger les distances des SNe Ia avec d'autres paramètres.

Dans ce chapitre, nous présentons différents paramètres d'environnements galactiques dans lesquels nous pouvons trouver des SNe Ia (Section I.1) avant d'étudier la corrélation de leurs propriétés avec les environnements les plus intéressants (Section I.2). De cette Section découle notre travail de thèse.

Sommaire

I.1 Présentation d'environnements galactiques	2
I.1.1 Morphologie	2
I.1.2 Couleur	3
I.1.3 Masse stellaire	4
I.1.4 Taux de formation stellaire	4
I.1.5 Taux de formation stellaire spécifique et âge	5
I.2 Corrélations des SNe Ia à l'environnement	6
I.2.1 Marche de magnitude basée sur la masse	7
I.2.2 Marche de magnitude basée sur l'âge	7
I.2.3 Implications en cosmologie moderne	8
I.2.4 Ancrage de notre thèse : étude de l'étirement en fonction de l'âge	9

I.1 Présentation d'environnements galactiques

Dans le chapitre précédent, nous avons présenté les caractéristiques des SNe Ia en tant qu'objets individuels; cependant, elles font la plupart du temps partie d'un système bien plus large, les galaxies. Leur étude constitue un pan entier de l'astrophysique et de la cosmologie, et nous n'avons pas prétention à donner ici une zoologie complète de ce que sont les galaxies. Pour suivre le déroulé de cette thèse, nous nous contentons de les décrire comme un ensemble d'astres et de poussières en interaction gravitationnelle, pouvant comporter de 10^8 à 10^{14} étoiles et formant un tout dont le diamètre va de 1000 à $10\,000$ pc.

Comme pour les SNe d'une manière générale (Ia, Ib...), il existe différents types de galaxies et différentes caractéristiques décrivant des types d'environnements, donnant toute une variété de formes, de couleurs et de fonctionnements physiques. Nous présentons dans cette section quelques-unes de ces caractéristiques galactiques.

I.1.1 Morphologie

Au-delà de leur luminosité (qui est inhérente au fait d'être observé), l'aspect visuel des galaxies est le premier facteur utilisé pour les classifier. C'est Hubble (1926) qui commence à les décrire en une classification qui donnera plus tard (Hubble 1936) le graphique présenté Figure I.1, sobrement appelé « séquence de Hubble », depuis revisité et retravaillé.

FIGURE I.1 — Classification morphologique des galaxies d'après Hubble (1936). *De gauche* à droite : galaxies elliptiques (E0-7), lenticulaires (S0) et spirales, barrées en bas (SBa-c) et non-barrées en haut (Sa-c).

Cette étude permet de rapporter trois grandes catégories de galaxies, illustrées Figure I.2 par des images prises par le télescope spatial Hubble ¹:

- Les elliptiques, nommées par leur géométrie apparente, donnant lieu à des astres de luminosité continue ² et diffuse sur leur surface. La classification va de E0 à E7
- 1. https://www.nasa.gov/mission_pages/hubble/story/index.html
- 2. Donc sans sous-structure ou trou, mais cependant pas constante.

FIGURE I.2 – Exemples de morphologies de galaxies. *De gauche à droite* : elliptique (M87), spirale (NGC3147) et irrégulière (I ZWICKY 18). Images prises avec le télescope spatial Hubblesite.org.

selon leur allongement, de sphérique à plate, respectivement;

- Les spirales, présentant un bulbe central concentré en étoiles autour duquel tourne un disque s'arrangeant en bras spiralés. Elles sont distinguées selon la présence ou non-présence d'une barre (classifiées SB et S respectivement) semblant traverser le bulbe et duquel partent les bras. Elles se voient également sous-classifées « a », « b » ou « c » selon le rapport des surfaces entre le bulbe et le disque, de bulbe proéminent à bulbe peu marqué, respectivement;
- Les particulières, regroupant toutes les autres morphologies ni tout à fait elliptiques ni tout à fait spirales; par exemple les galaxies lenticulaires (S0 sur la Figure I.1), à mi-chemin entre les deux, les irrégulières (inclassables ou en interaction avec d'autres galaxies les déformant), etc.

Ce paramètre n'apparaît cependant pas comme un indicateur précis des propriétés intrinsèques des SNe Ia, comme nous le verrons par la suite.

I.1.2 Couleur

Comme pour les SNe Ia (voir Section ??), nous pouvons caractériser la couleur d'un environnement par une différence de magnitude entre deux bandes photométriques. Cependant, ce paramètre est sujet à de nombreuses contaminations extérieures : dans un premier lieu, de la source à l'observation, le milieu interstellaire présente un effet de rougissement qui peut être non-négligeable selon la direction ; ensuite, la Voie Lactée peut ajouter une extinction non-homogène selon les longueurs d'ondes ; finalement, l'atmosphère a elle aussi un effet de rougissement selon son épaisseur et les conditions météorologiques lors de la (ou des) mesures. En plus de cela, à cause de l'expansion de l'Univers, les longueurs d'ondes subissent un décalage vers le rouge. Les « corrections K » consistent à transposer les mesures pour les placer dans un référentiel au repos, à z=0, ce qui permet de les corriger de cet effet et de comparer les couleurs entre elles.

La multiplicité de ces possibles phénomènes parasites rend compliquées les études utilisant la couleur comme mesure de l'environnement, mais font partie intégrante des efforts de calibration pour la cosmologie observationnelle (FITZPATRICK 1999; SCHLAFLY et FINKBEINER 2011; POPOVIC et al. 2021).

I.1.3 Masse stellaire

La masse stellaire M_* , exprimée en unité de masses solaires $(M_{\odot})^3$, constitue une autre caractéristique des galaxies. N'étant pas une observable directe, elle se déduit par d'autres paramètres. TAYLOR et al. (2011) présentent une méthode de détermination de M_* relativement simple se basant sur la couleur des galaxies via les magnitudes (K corrigées) q et i des galaxies, telle que :

$$\log(M_*[\mathcal{M}_{\odot}]) = 1.16 + 0.70(g - i) - 0.40M_i \tag{I.1}$$

avec M_i la magnitude absolue de la galaxie dans la bande i. D'une manière plus générale, celle-ci est déterminée par un ajustement de distributions spectrales d'énergie 4 (en anglais, spectral energy distributions, SED) générées à partir de modèles d'évolution stellaire (prenant notamment en entrée une masse stellaire initiale et une paramétrisation de l'historique de formation stellaire) avec la SED de la galaxie étudiée (WALCHER et al. 2011). Ce paramètre se trouve être un indicateur très utilisé en cosmologie moderne, de par sa capacité à prédire d'autres caractéristiques des galaxies.

I.1.4 Taux de formation stellaire

En dehors de la masse à l'instant t_0 de l'observation, le taux de formation stellaire (en anglais stellar formation rate, SFR), exprimé en unité de masses solaires formées par année (c'est-à-dire M_{\odot} an⁻¹), se trouve être une caractéristique cruciale pour décrire les propriétés des étoiles d'une galaxie. Son estimation se base sur l'émission de raies $H\alpha$, l'un des indicateurs traditionnellement les plus utilisés pour mesurer le SFR (KENNICUTT 1998). Il repose sur le fait que les étoiles massives ($\gtrsim 20\,\mathrm{M}_\odot$) génèrent des photons ultraviolets (donc à haute énergie) capables d'ioniser les gaz d'hydrogène de leur environnement (Calzetti 2013) en grande quantité. Ces atomes excités vont ensuite se recombiner, produisant diverses raies d'émission dont certaines dans la série de BALMER, fournissant les raies $H\alpha$ dont la longueur d'onde dans le vide est $\lambda_{H\alpha} = 656,5$ nm. L'étude de cette raie permet l'estimation de la formation stellaire du fait que les étoiles massives ont une courte durée de vie, à l'échelle de millions d'années, et que leur capacité à générer de tels photons ionisants décroît très rapidement : le flux généré décroît de deux ordres de grandeur en approximativement 10 Mans. La présence d'hydrogène ionisé est donc un indicateur direct de la présence de « jeunes » étoiles (moins de 100 Mans) et du taux de formation stellaire via la correspondance donnée dans CALZETTI (2013):

$$SFR(H\alpha) [M_{\odot} \text{ an}^{-1}] = 5.45 \times 10^{-42} L(H\alpha) [\text{erg s}^{-1}]$$
 (I.2)

avec $L(H\alpha)$ la luminosité des raies d'émission, obtenue par un ajustement spectral.

^{3.} Nous avons typiquement $10^8 \mathrm{M}_{\odot} < M_* < 10^{12} \mathrm{M}_{\odot}$.

^{4.} C'est-à-dire une mesure de flux lumineux en fonction de la longueur d'onde.

FIGURE I.3 – Évolution de la fraction de jeunes étoiles en fonction du redshift. La fraction est fixée à 50% à z=0.05, représentée par le point noir. Les histogrammes représentent l'évolution du nombre de SNe Ia relevées par différents sondages, montrant l'évolution de l'âge attendu des SNe à l'intérieur même des relevés. Fonction de RIGAULT et al. (2020).

I.1.5 Taux de formation stellaire spécifique et âge

Il est possible de tracer la fraction de jeunes étoiles *via* l'utilisation du taux de formation stellaire *spécifique*, sSFR, tel que :

$$sSFR = \frac{SFR}{M_*} \tag{I.3}$$

Nous l'appelons alors « local », et nous le dénotons LsSFR, quand ce ratio est calculé dans un environnement projeté de 1 kpc autour de l'astre en question. Cette approche locale a pour but de déterminer plus précisément l'âge qu'avec des caractéristiques globales (morphologie, masse stellaire totale...).

Il est attendu que la formation stellaire soit plus élevée à haut redshift (au début de l'histoire de l'Univers) qu'à bas redshift, où les galaxies sont plus vieilles et plus massives. Ainsi, le sSFR est un ordre de magnitude plus élevé à z=1,5 qu'à z=0 (voir Madau et Dickinson 2014, pour une étude complète). En pratique, les mesures de Tasca et al. (2015) trouvent une dépendance en redshift :

$$sSFR \propto (1+z)^{2,8\pm0,2}$$
 (I.4)

Les travaux de RIGAULT et al. (2020) combinent alors la fraction de jeunes étoiles ($\delta(z)$) et de vieilles étoiles ($\psi(z)$, telle que $\delta(z) + \psi(z) = 1$) ainsi que l'équation I.4 pour déduire :

LsSFR
$$(z) \triangleq \frac{\delta(z)}{\psi(z)} = K \times (1+z)^{\phi}$$
 (I.5)

et ainsi
$$\delta(z) = (K^{-1} \times (1+z)^{-\phi} + 1)^{-1}$$
 (I.6)

$$\psi(z) = (K \times (1+z)^{+\phi} + 1)^{-1}$$
 (I.7)

avec K=0.87 en fixant $\delta(0.05)=\psi(0.05)=0.5$ et $\phi=2.8$. Nous donnons Figure I.3 une représentation graphique de l'évolution de la fraction de jeunes étoiles en fonction du redshift.

I.2 Corrélations des SNe Ia à l'environnement

Ces indicateurs d'environnement peuvent être utilisés seuls ou conjointement pour tenter de corréler les SNe Ia à d'autres paramètres mesurables ou estimables. Par exemple, il a été démontré que l'étirement d'une SN Ia est corrélé à la morphologie et à la masse de la galaxie hôte (voir Figures I.4a et I.4b, respectivement).

(a) Corrélation entre l'étirement de 330 SNe Ia de l'échantillon Pantheon (SCOLNIC et al. 2018) et la morphologie de leurs galaxies hôtes. Figure de PRUZHINSKAYA et al. (2020).

(b) Corrélation entre l'étirement d'une SN et la masse de sa galaxie hôte. La forme en « L » indique que ces distributions ne sont pas aléatoires. Figure de RIGAULT et al. (2013).

FIGURE I.4 – Corrélations entre l'étirement d'une SN Ia et la morphologie (à gauche) ou la masse de sa galaxie hôte (à droite)

De plus, Mannucci et al. (2005); Scannapieco et Bildsten (2005); Sullivan et al. (2006) avancent l'existence de deux populations de SNe Ia, dont le taux d'apparition de l'une serait proportionnel à la masse stellaire globale et celui des secondes proportionnel au taux de formation stellaire. Cette dichotomie de taux de SNe Ia selon la masse d'une part et le SFR d'autre part a lancé la notion d'âge de SNe Ia, partant d'abord de deux types:

- Les promptes, associées à des étoiles relativement jeunes, entre 100 et 500 Mans, de taux proportionnel au SFR;
- Les tardives, associées à des étoiles vieilles, de plus de 1 Gans, et de taux proportionnel à M_* .

Ainsi, RIGAULT et al. (2020) stipule que le LsSFR serait également un traceur de l'âge des SNe Ia en plus de décrire l'évolution de la fraction de jeunes étoiles avec le redshift. Une étude complète de la capacité de ce traceur à déterminer l'âge d'une SNe Ia a été effectuée dans BRIDAY (2021); BRIDAY et al. (2022).

Cependant, afin d'améliorer la mesure des paramètres cosmologiques, il faut avoir une correction sur leur luminosité qui elle-même améliore la mesure de leurs distances via l'équation de TRIPP. À cet effet, de multiples « marches de magnitudes » ont été implémentées dans les études astrophysiques. Elles se basent sur une différence de luminosité entre deux populations de SNe Ia, discriminées par la valeur d'un paramètre. Nous présentons dans cette section les marches de magnitudes basées sur la masse (Section I.2.1) et sur l'âge (Section I.2.2) avant de motiver l'origine de notre thèse (Section I.2.4).

I.2.1 Marche de magnitude basée sur la masse

La première implémentation d'une correction de magnitude avec l'environnement est celle basée sur la masse de la galaxie hôte. En effet, dès 2010 des études ont observé une dépendance de la magnitude standardisée des SNe Ia avec la masse de leurs galaxies hôtes (voir par exemple Kelly et al. 2010; Betoule et al. 2014). Nous présentons Figure I.5 un récent graphique de cette dépendance.

FIGURE I.5 – Différences entre les magnitudes corrigées des SNe Ia et le modèle cosmologique de référence selon la masse de leurs galaxies hôtes. Nous observons que les SNe Ia pour lesquelles $M_* < 10^{10} M_{\odot}$ sont en moyenne moins lumineuses de $+0,050\,\mathrm{mag}$ que celles de $M_* > 10^{10} M_{\odot}$. Figure de ROMAN et al. (2018).

Dans ces études, il a été observé que les galaxies les plus massives $(M_* > 10^{10} \rm M_{\odot})$ abritent des SNe Ia en moyenne plus lumineuses de $\gamma = -0.050 \, \rm mag$ que celles ayant un hôte moins massif. Cette corrélation se traduit par l'ajout d'un décalage en magnitude de $+0.025 \, \rm mag$ pour les premières, et de $-0.025 \, \rm mag$ pour les secondes, tel que :

$$\mu = m_B - M + \alpha x_1 - \beta c \pm \gamma / 2 \tag{I.8}$$

L'origine de cette corrélation reste cependant peu motivée autrement qu'empiriquement. Cependant, comme présenté au début de la Section I.1, les galaxies sont des objets larges, et leurs propriétés globales ne peuvent que partiellement décrire la physique de toutes les SNe Ia qui s'y trouveraient.

I.2.2 Marche de magnitude basée sur l'âge

L'utilisation du LsSFR vise à réduire cette incertitude, en utilisant des propriétés environnementales locales plutôt que globales. À cet effet, RIGAULT et al. (2020) rapportent une marche de magnitude basée sur l'âge de $\gamma = 0.16\,\mathrm{mag}$, dont nous présentons un graphique Figure I.6a.

Cette approche de deux populations apporte une dimension supplémentaire à la corrélation environnementale : l'évolution avec le redshift. En effet, étant donné que la fraction de jeunes étoiles évolue selon l'Équation I.6, la marche de magnitude moyenne varie avec le redshift, pouvant mener à des estimations plus précises basées sur l'utilisation

FIGURE I.6 — Marches de magnitudes selon l'âge (à gauche) ou la masse (à droite). Figures de RIGAULT et al. (2020). Pour chacune des figures, nous avons en encadré les différences entre les magnitudes corrigées des SNe Ia et le modèle cosmologique de référence en fonction du paramètre concerné; et à côté les histogrammes pondérés par l'âge ou la masse. Les lignes horizontales représentent les moyennes des deux populations (et leurs erreurs). Les couleurs correspondent à la probabilité qu'une SN Ia soit jeune, voir barre de couleur. Nous observons que les SNe Ia vieilles sont plus lumineuses de -0,16 mag que les jeunes, alors que les SNe dans des environnements massifs ne le sont que de -0,12 mag.

de paramètres plus pertinents (car locaux). Nous notons notamment que RIGAULT et al. (2020) ont mesuré la marche de magnitude trouvée en utilisant la masse des galaxies hôtes de leur échantillons, et trouvent une différence proche d'autres études (KELLY et al. 2010 ; SULLIVAN et al. 2010 ; GUPTA et al. 2011 ; CHILDRESS et al. 2013) avec $\gamma = 0.12\,\mathrm{mag}$ comme le montre la Figure I.6b. Cependant, les auteurs rapportent des valeurs différentes quand l'ajustement des marches est faite de manière conjointe, étant donné que ces deux traceurs sont corrélés puisque le LsSFR est relié à la masse de la galaxie hôte. Les valeurs sont alors $\gamma_{\rm age} = 0.13\,\mathrm{mag}$ et $\gamma_{\rm masse} = 0.06\,\mathrm{mag}$. Cette étude montre la différence d'efficacité d'un paramètre à discriminer deux populations et les conséquences que de telles différences causent sur la mesure d'un même paramètre. Cette question est l'objet principal de la thèse de BRIDAY (2021) qui a montré que le LsSFR se trouve être un meilleur traceur des propriétés des SNe Ia que les autres, réévaluant en même temps la valeur attendue de marche basée sur l'âge à $0.13\,\mathrm{mag}$. C'est cette valeur que nous utiliserons dans la suite.

I.2.3 Implications en cosmologie moderne

Cette correction en fonction de la masse est actuellement utilisée pour corriger les SNe Ia qui sont utilisées dans la détermination de H_0 . En effet, la mesure directe de H_0 se base sur la mesure de distances avec les SNe Ia, comme nous avons pu le voir dans le Chapitre ??, mais celle-ci doit être calibrée en premier lieu. Pour cela, l'équipe Supernovae and H_0 for the Equation of State of dark energy (SH0ES, Supernovae et H_0 pour l'équation d'état de l'énergie sombre, RIESS et al. 2021) utilise des Céphéides, de jeunes étoiles parmi les plus brillantes et dont la magnitude absolue varie périodiquement. L'étude de cette loi magnitude-période en permet la calibration et donc l'ancrage d'une première distance.

SH0ES applique cette étude pour des galaxies à la fois hôtes de Céphéides et de SNe Ia, calibrant ainsi la distance des SNe Ia en fonction de leur magnitude. Cependant, l'environnement de ces galaxies est particulier, et est corrigé par l'équipe en utilisant la standardisation en magnitude basée sur la masse; ceci augmente la valeur de H_0 de

 $0.3 \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$ par rapport à une absence de standardisation, pour une valeur finale de $H_0 = [73.04 \pm 1.04] \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$. Ce résultat est en désaccord à $5\sigma^5$ avec la mesure indirecte du programme $Planck + \Lambda \mathrm{CDM}$ (Planck Collaboration et al. 2020), donnant $H_0 = [67.4 \pm 0.5] \,\mathrm{km} \,\mathrm{s}^{-1} \,\mathrm{Mpc}^{-1}$. Cette tension est au cœur de nombreuses discussions sur l'origine des différences.

L'utilisation de la marche de magnitude basée sur l'âge permet de réduire cette incohérence étant donné que dans ces galaxies environ 95% des environnements sont jeunes. Ainsi, RIGAULT et al. (2015) proposent l'utilisation de cette corrélation âge-magnitude qui induirait sur la plus récente valeur une réduction de -1,94 sur la mesure directe, amenant la valeur à $H_0 = [71,10 \pm 1,04] \, \mathrm{km} \, \mathrm{s}^{-1} \, \mathrm{Mpc}^{-1}$ et réduisant la tension. Cet exemple permet de mesurer l'importance de la considération de l'environnement des SNe Ia dans leur correcte utilisation cosmologique.

I.2.4 Ancrage de notre thèse : étude de l'étirement en fonction de l'âge

La mesure de caractéristiques des SNe Ia en fonction de leur âge a également amené RI-GAULT et al. (2020) à étudier la distribution des étirements dans leur échantillon. Cette étude révèle une dépendance de l'étirement en fonction de l'âge des SNe Ia, comme l'indique la Figure I.7, reproduite pour cette thèse.

FIGURE I.7 – Principal : étirement de courbe de lumière (x_1) issu d'un ajustement par SALT2.4 en fonction du LsSFR pour certaines SNe de RIGAULT et al. (2020), figure reproduite. La couleur correspond à la probabilité p_y que la SN Ia soit jeune, voir Figure I.6. À droite : histogramme pondéré par p_y des étirements des SNe. Les contributions de la population jeune et âgée sont indiquées en violet et en jaune, respectivement.

Cette étude permet d'augmenter l'étude du LsSFR comme traceur correct des propriétés intrinsèques des SNe Ia en mettant en lumière la possible existence de distributions sous-jacentes d'étirement différentes selon l'âge d'une SN Ia, et donc appuyer l'existence de deux

^{5.} C'est-à-dire qu'il n'y a qu'une chance sur 1 million que ces deux valeurs soient cohérentes et que les mesures différentes soient le résultat d'une incertitude de calcul.

populations de SNe Ia qui seraient le mieux discriminées par l'âge. En effet, l'histogramme de la Figure I.7 laisse à penser que les SNe Ia vieilles sont distribuées différemment des jeunes, présentant un pic de probabilité fort à $x_1 \approx -1$.

Comme nous l'avons vu au début de la Section I.2, une telle corrélation est intéressante mais n'impactera pas directement la détermination des distances des SNe Ia, n'agissant pas directement sur la magnitude. Cependant, comme pour la marche de magnitude basée sur l'âge, la fraction de jeunes étoiles varie avec le redshift selon l'Équation I.6, et avec elle l'importance d'une distribution d'étirement par rapport à l'autre. Nous pourrions ainsi déterminer l'évolution de la distribution de l'étirement des SNe Ia en fonction du redshift. Ce phénomène n'est, à notre connaissance, pas étudié sous cette forme à ce jour mais joue pourtant un rôle important dans les simulations numériques de SNe Ia, celles-ci utilisant des distributions de probabilité desquelles tirer des valeurs d'étirement pour reproduire ce que les sondages observent.

C'est dans ce contexte que s'ancre notre thèse. Afin de réaliser cette étude, nous allons présenter les sondages dont nous allons utiliser les données (Chapitre ??) afin de constituer un échantillon correspondant à nos restrictions (Chapitre ??); celui-ci sera utilisé pour déterminer la possible évolution de l'étirement avec le redshift (Chapitre ??). Le modèle qui en découle sera injecté dans un programme de simulation (Chapitre ??) qui nous permettra de sonder le biais attendu sur la valeur de w si cette dépendance environnementale est incorrectement prise en compte dans les études sur les paramètres cosmologiques (Chapitre ??).

Figures

I.1	Classification morphologique des galaxies	2
I.2	Exemples de morphologies de galaxies	3
I.3	Évolution de la fraction de jeunes étoiles en fonction du redshift	5
I.4	Corrélations entre l'étirement d'une SN Ia et la morphologie ou la masse de sa galaxie hôte	6
I.5	Marche de magnitude basée sur la masse	7
I.6	Marches de magnitudes selon l'âge et la masse	8
I.7	Dispersion de l'étirement en fonction du LsSFR	9

Bibliographie

- BETOULE M., KESSLER R., GUY J. et al. 2014, « Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples », A&A, 568, A22 ↑ Page 7
- BRIDAY M. 2021, « Étude de l'impact de l'environnement galactique sur la standardisation des Supernovae de Type Ia », Thèse, Université Claude Bernard Lyon I, HAL thèses † Page 6, † Page 8
- BRIDAY M., RIGAULT M., GRAZIANI R. et al. 2022, « Accuracy of environmental tracers and consequences for determining the Type Ia supernova magnitude step », A&A, 657, A22 ↑ Page 6
- Calzetti D. 2013, « Star Formation Rate Indicators », in Secular Evolution of Galaxies, ed. J. Falcón-Barroso & J. H. Knapen, 419 ↑ Page 4
- CHILDRESS M., ALDERING G., ANTILOGUS P. et al. 2013, « Host Galaxy Properties and Hubble Residuals of Type Ia Supernovae from the Nearby Supernova Factory », ApJ, 770, $108 \uparrow Page 8$
- FITZPATRICK E. L. 1999, « Correcting for the Effects of Interstellar Extinction », PASP, 111, 63 ↑ Page 4
- GUPTA R. R., D'ANDREA C. B., SAKO M. et al. 2011, « Improved Constraints on Type Ia Supernova Host Galaxy Properties Using Multi-wavelength Photometry and Their Correlations with Supernova Properties », ApJ, 740, 92 ↑ Page 8
- Hubble E. P. 1926, « Extragalactic nebulae. », ApJ, 64, 321 ↑ Page 2
- Hubble E. P. 1936, « Realm of the Nebulae », Realm of the Nebulae ↑ Page 2
- Kelly P. L., Hicken M., Burke D. L., Mandel K. S. et Kirshner R. P. 2010, « Hubble Residuals of Nearby Type Ia Supernovae are Correlated with Host Galaxy Masses », ApJ, 715, 743 ↑ Page 7, ↑ Page 8
- Kennicutt R. 1998, « Emission-Line Diagnostics of Galaxy Evolution with NGST », in ESA Special Publication, Vol. 429, *LIA Colloq. 34: The Next Generation Space Telescope: Science Drivers and Technological Challenges*, ed. B. Kaldeich-Schürmann, 81 ↑ Page 4
- MADAU P. et DICKINSON M. 2014, « Cosmic Star-Formation History », ARA&A, 52, 415 ↑ Page 5
- MANNUCCI F., DELLA VALLE M., PANAGIA N. et al. 2005, « The supernova rate per unit mass », A&A, 433, 807 ↑ Page 6
- PLANCK COLLABORATION, AGHANIM N., AKRAMI Y. et al. 2020, « Planck 2018 results. VI. Cosmological parameters », A&A, 641, A6 ↑ Page 9

14 Bibliographie

POPOVIC B., BROUT D., KESSLER R. et SCOLNIC D. 2021, « The Pantheon+ Analysis: Forward-Modeling the Dust and Intrinsic Colour Distributions of Type Ia Supernovae, and Quantifying their Impact on Cosmological Inferences », arXiv e-prints, arXiv:2112.04456 ↑ Page 4

- PRUZHINSKAYA M. V., NOVINSKAYA A. K., PAUNA N. et ROSNET P. 2020, « The dependence of Type Ia Supernovae SALT2 light-curve parameters on host galaxy morphology », MNRAS, 499, 5121 ↑ Page 6
- RIESS A. G., YUAN W., MACRI L. M. et al. 2021, « A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team », arXiv e-prints, arXiv:2112.04510 ↑ Page 8
- RIGAULT M., ALDERING G., KOWALSKI M. et al. 2015, « Confirmation of a Star Formation Bias in Type Ia Supernova Distances and its Effect on the Measurement of the Hubble Constant », ApJ, 802, 20 ↑ Page 9
- RIGAULT M., BRINNEL V., ALDERING G. et al. 2020, « Strong dependence of Type Ia supernova standardization on the local specific star formation rate », A&A, 644, A176

 † Page 5, † Page 6, † Page 7, † Page 8, † Page 9
- RIGAULT M., COPIN Y., ALDERING G. et al. 2013, « Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local $H\alpha$ », A&A, 560, $A66 \uparrow Page 6$
- ROMAN M., HARDIN D., BETOULE M. et al. 2018, « Dependence of Type Ia supernova luminosities on their local environment », A&A, 615, A68 ↑ Page 7
- SCANNAPIECO E. et BILDSTEN L. 2005, « The Type Ia Supernova Rate », ApJ, 629, L85 ↑ Page 6
- SCHLAFLY E. F. et FINKBEINER D. P. 2011, « Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD », ApJ, 737, 103 ↑ Page 4
- SCOLNIC D. M., JONES D. O., REST A. et al. 2018, « The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample », ApJ, 859, 101 ↑ Page 6
- Sullivan M., Conley A., Howell D. A. et al. 2010, « The dependence of Type Ia Supernovae luminosities on their host galaxies », MNRAS, 406, 782 ↑ Page 8
- Sullivan M., Le Borgne D., Pritchet C. J. et al. 2006, « Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies », ApJ, 648, 868 ↑ Page 6
- TASCA L. A. M., LE FÈVRE O., HATHI N. P. et al. 2015, « The evolving star formation rate: M_{\star} relation and sSFR since $z \simeq 5$ from the VUDS spectroscopic survey », A&A, 581, $A54 \uparrow Page 5$
- TAYLOR E. N., HOPKINS A. M., BALDRY I. K. et al. 2011, « Galaxy And Mass Assembly (GAMA): stellar mass estimates », MNRAS, 418, 1587 ↑ Page 4

Nora NICOLAS 14/15 Thèse de doctorat

Bibliographie 15

Walcher J., Groves B., Budavári T. et Dale D. 2011, « Fitting the integrated spectral energy distributions of galaxies », Ap&SS, 331, $1 \uparrow Page 4$

Nora NICOLAS 15/15 Thèse de doctorat