

JUNIOR DATA SCIENTIST - MEXICO

Tech assessment – Nova Edge Customer churn analysis

AGENDA

- 1. Project Introduction & Goal
- 2. Understanding & Preparing the Data
- Exploring Customer Behavior (EDA)
- 4. Our Predictive Modeling Approach
- 5. Key Findings: What Predicts Churn & Who is High Risk?
- 6. Business Recommendations
- 7. Future Work & Improvements
- 8. Conclusion & Q&A

WHY CHURN MATTERS AND WHAT IS OUR GOAL?

- Customer churn (customers leaving) is a big challenge for businesses.
- Losing customers means lost revenue and higher acquisition costs.
- Our Goal: Use data to understand why customers churn and build a model to predict who will churn.

UNDERSTANDING THE DATA

- We used a dataset with information about customer behavior and characteristics.
- Examples: Transaction volume, activity days, services used, customer notes, segment, region, etc.
- Dataset size: 5000 customers/rows and 11 columns (+1 column for the ID)

[13] # Data preview Display the first 5 rows of the dataset df.head()													
	c	customer_id	monthly_txn_volume	avg_days_active	num_services_used	has_mobile_app	complaints_last_3mo	received_retention_offer	churned	segment	region	industry_type	customer_notes
	0 (CUST_00000	2872.42	22.0	1	1	1.0	0	0	Mid	CDMX	Healthcare	no contact
	1 (CUST_00001	1793.36	24.0	4	1	1.0	0	1	Mid	Querétaro	Healthcare	Late Payment
	2 (CUST_00002	1658.74	26.0	2	1	0.0	0	1	Mid	CDMX	Logistics	No recent activity
	3 (CUST_00003	1658.76	19.0	4	0	0.0	1	0	Mid	Jalisco	Services	Late Payment
	4 (CUST_00004	5579.66	22.0	2	0	0.0	0	0	High	CDMX	Logistics	Potential Upsell

CLEANING & PREPARING DATA

- Outlier Handling: We identified and handled extreme values (outliers) in numerical columns by replacing them with the median, as the median is less affected by extremes.
- Missing Values: Some data was missing (e.g., in transaction volume). We filled missing numbers with the median and categorized missing notes.

Before the imputation Show percentage of missing values per column
(df.isnull().sum() / len(df)).sort_values(ascending=False) * 100

	0
customer_notes	8.58
monthly_txn_volume	5.00
complaints_last_3mo	5.00
avg days active	5.00
num_services_used	0.00
customer_id	0.00
received_retention_offer	0.00
has_mobile_app	0.00
churned	0.00
segment	0.00
region	0.00
industry_type	0.00

	0
customer_notes	8.58
monthly_txn_volume	0.00
avg_days_active	0.00
num_services_used	0.00
customer_id	0.00
has mobile app	0.00
complaints_last_3mo	0.00
churned	0.00
churned received_retention_offer	0.00
· · · · · · · · · · · · · · · · · · ·	0.00
received_retention_offer	0.00
received_retention_offer segment	0.00
received_retention_offer segment region	0.00 0.00 0.00 0.00

dtype: float64

CLEANING & PREPARING DATA

- Feature Engineering: We created a new feature from customer notes to make them useful for the model (e.g., categorizing notes like 'Complaint', 'Engagement Issue').
- Preprocessing: Transformed data for the models (e.g., scaling numbers, encoding categories).

	customer_notes	customerNotesCategories
0	no contact	Engagement Status
1	Late Payment	Financial/Payment Related
2	No recent activity	Engagement Status
3	Late Payment	Financial/Payment Related
4	Potential Upsell	Sales/Upsell Opportunities

received_retention_offer	segment_High	segment_Low	segment_Mid	region_Baja California
0.0	0.0	0.0	1.0	0.0
0.0	0.0	0.0	1.0	0.0
0.0	0.0	0.0	1.0	0.0
0.0	0.0	0.0	1.0	0.0
0.0	1.0	0.0	0.0	0.0

DATA EXPLORATION

- We looked at how many customers churned vs. stayed.
- We examined how different features looked for churned vs. retained customers.
- Initial look at individual features didn't show huge differences on their own.

WHY PREDICTIVE MODELING?

- Simple data views didn't show strong individual predictors.
 - Churn is likely caused by *combinations* of factors.
- We need models to find these complex patterns and predict churn likelihood.

ASSESSING OUR PREDICTIVE POWER (MODEL PERFORMANCE)

- Rigorous Testing: Data split into Training (75%) for learning, and unseen Testing (25%) for unbiased evaluation.
 - · Key Metrics: Evaluated models using:
 - Recall (Churners Found): How many actual churners did we correctly identify? (Crucial for early intervention)
 - Precision (Accurate Churn Flags): Of those flagged as churners, how many churned? (Important to avoid wasted efforts)
 - F1-Score: A balanced measure of both Recall and Precision.
 - Accuracy and Confusion Matrix also considered.
- Overall Challenge: Accurately predicting churn with this dataset proved challenging; no model achieved very high F1-scores (e.g., above 0.75).
- Model Strengths:
 - Neural Network: Best at Recall (catching more actual churners) but also had more "false alarms."
 - Random Forest & LightGBM: Offered a better balance of Recall and Precision, making them more practical for targeted actions.

	Model	F1-Score (Churn)	Recall (Churn)	Precision (Churn)	False Positives
0	Logistic Regression	0.296954	0.211191	0.500000	117
1	Random Forest	0.416490	0.355596	0.502551	195
2	LightGBM	0.403361	0.346570	0.482412	206
3	Neural Network	0.451253	0.438628	0.464627	280

WHAT PREDICTS CHURN?

- Insights from Top Models: Analysis based on the robust Random Forest and LightGBM models, which provide clear insights into feature importance.
- Dominant Behavioral Predictors:
 - Low Usage Volume: Customers with significantly lower monthly transaction volumes are the strongest indicator of churn risk.
 - Activity Levels: Infrequent engagement and fewer active days on the service are highly predictive.
 - Services Utilized: A lower number of different services actively used also signals increased risk.
 - Critical Customer Interaction Signals:
 - Recent Complaints: The presence of recent customer complaints serves as a strong, immediate warning sign.
 - Specific Customer Note Categories: What is recorded in customer notes, particularly concerning 'Engagement Status' (e.g., indicating inactivity or disinterest) and 'Financial/Payment Issues', are highly influential churn predictors.
- Less Impactful Factors (on their own): General demographic or static information like Industry, Segment, or Region showed less direct predictive power when analyzed in isolation.

IDENTIFYING OUR MOST CHURNABLE CUSTOMERS

- •Individual Churn Probability: Our models assign a churn probability score to every customer.
- •Actionable High-Risk Lists: We can now identify and prioritize customers with the highest predicted risk (e.g., the top 10-20% most likely to churn).
- •Consistent Profile: High-risk customers consistently exhibit the key churn drivers:
- Subdued Activity: Low usage volume and infrequent activity.
- Expressed Dissatisfaction: Presence of recent complaints.
- Documented Concerns: Customer notes indicating low engagement or financial challenges.
- •Cross-Model Validation: While different models might highlight slightly different customers, there's significant overlap among the top-risk individuals, especially those with multiple warning signs.

 Top 20 Churn Risk Customers (based on average predicted probability from RF, LGBM, NN):

customer id average churn probability churn probability rf churn probability lgbm churn probability nn

	cascomer_ra	average_enarn_probability	charn_probability_rr	charm_probability_igom	charn_probability_iiii
1861	CUST_01861	0.806659	0.910	0.907343	0.602635
725	CUST_00725	0.797225	0.950	0.864956	0.576718
2397	CUST_02397	0.796225	0.925	0.867762	0.595913
76	CUST_00076	0.787710	0.870	0.861192	0.631939
4762	CUST_04762	0.781201	0.880	0.833599	0.630005
4811	CUST_04811	0.777833	0.900	0.836401	0.597098
2518	CUST_02518	0.776511	0.870	0.810896	0.648638
3737	CUST_03737	0.771708	0.910	0.824669	0.580455
4304	CUST_04304	0.771672	0.920	0.815788	0.579229
3023	CUST_03023	0.770679	0.870	0.794342	0.647696
3514	CUST_03514	0.770060	0.920	0.767161	0.623020
222	CUST_00222	0.766319	0.920	0.858272	0.520685
3476	CUST_03476	0.765546	0.880	0.829309	0.587330
1315	CUST_01315	0.760888	0.880	0.847515	0.555148
1283	CUST_01283	0.760736	0.860	0.792612	0.629594
1088	CUST_01088	0.758619	0.890	0.720457	0.665398
2166	CUST_02166	0.757706	0.880	0.857356	0.535762
2179	CUST_02179	0.756067	0.860	0.836970	0.571232
2481	CUST_02481	0.755803	0.890	0.796299	0.581111
2449	CUST_02449	0.752428	0.800	0.878805	0.578479

TURNING INSIGHT INTO ACTION

- Target Low Users & Inactive: Proactively engage customers with low transaction volume and activity. (eg: offer incentives to boost usage.)
- Address Service Gaps: Help customers use more services; highlight benefits they might be missing.
- Improve Complaint Handling: Make resolving issues for customers with complaints a top priority; follow up quickly.
- Act on Customer Notes: Use the categories from notes (engagement, financial, issues) to personalize outreach and solve specific problems.
- Build Alert System: Implement an automated system to notify Sales/CS teams immediately when a customer is flagged as high risk.

WHAT'S NEXT?

- Implement & Measure: Put recommendations into practice and measure impact (A/B testing).
- Better Data: Get more granular transaction/interaction data, time-series data to capture trends.
- Model Enhancement: Tune models further, explore other advanced techniques or model ensembles.

Cluster Analysis: Explore customer groups using clustering for new insights into churn causes.

CONCLUSION & KEY TAKEAWAYS

- We used data and ML models to predict churn.
- Key churn drivers identified: low usage, complaints, engagement/financial notes
- We can identify **high-risk customers** to focus on.
- Targeted actions based on these insights are recommended to improve retention.
- Success requires implementing actions and **measuring their impact**.

