TOÁN RỜI RẠC - 0963213087

A, B, C là các tập thỏa mãn hai điều kiện $(A \cap C) \subset (A \cap B)$ $(A \cup C) \subset (A \cup B)$	C ⊂ B
Áp dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ S đến Z trên đồ thị cho dưới đây thì số phải gán cho đỉnh 5 là số nào?	22
Áp dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ S đến Z trên đồ thị cho dưới đây thì số phải gán cho đỉnh 5 là số nào?	24
Áp dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ S đến Z trên đồ thị cho dưới đây thì số phải gán cho đỉnh 3 là số nào?	14
Áp dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ S đến Z trên đồ thị cho dưới đây thì số phải gán cho đỉnh 6 là số nào?	29
Áp dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ S đến Z trên đồ thị cho dưới đây thì số phải gán cho đỉnh 4 là số nào?	24

35 1 20 4 25 7 10 30 30 S 35 9 50 Z 2 20 13 8 30 30	
Áp dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ S đến Z trên đồ thị cho dưới đây thì số phải gán cho đỉnh 4 là số nào?	
3 23 15 23 16 3 25 25 25 25 25 25 25 25 25 25 25 25 25	21
Áp dụng thuật toán Kruskal tìm cây bao trùm ngắn nhất ở đồ thị dưới đây thì cạnh thứ 4 mà chúng ta phải chọn là cạnh nào?	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cạnh (x2, x4).
Áp dụng thuật toán Kruskal, tìm cây bao trùm ngắn nhất trên đồ thị vô hướng cho dưới đây thì cạnh thứ 5 mà chúng ta phải chọn là cạnh nào?	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cạnh (x1, x6)
Áp dụng thuật toán Prim, tìm cây bao trùm ngắn nhất trên đồ thị vô hướng ở hình dưới đây thì đỉnh thứ 2 mà chúng ta phải chọn là đỉnh nào, nếu đỉnh đầu tiên ta chọn là đỉnh x3?	X4

Áp dụng thuật toán Prim, tìm cây bao trùm ngắn nhất trên đồ thị vô hướng dưới đây thì đỉnh thứ 4 mà chúng ta phải chọn là đỉnh nào, nếu đỉnh đầu tiên ta	X1
Áp dụng thuật toán Prim, tìm cây bao trùm ngắn nhất trên đồ thị vô hướng cho dưới đây thì đỉnh thứ 2 mà chúng ta phải chọn là đỉnh nào, nếu đỉnh đầu tiên ta	X4
Áp dụng thuật toán Prim, tìm cây bao trùm ngắn nhất trên đồ thị vô hướng dưới đây thì đỉnh thứ 3 mà chúng ta phải chọn là đỉnh nào, nếu đỉnh đầu tiên ta	
Áp dụng thuật toán Prim, tìm cây bao trùm ngắn nhất trên đồ thị vô hướng cho dưới đây thì đỉnh thứ 3 mà chúng ta phải chọn là đỉnh nào, nếu đỉnh đầu tiên ta	X4

x ₁ 7 x ₂ 9 7 5 6 6 8 8 8 8 7 x ₄ chọn là x1?	
Bài toán liệt kê phải đảm bảo nguyên tắc gì?	Không được bỏ sót một cấu hình và không được lặp lại một cấu hình
Bài toán tồn tại xem như được giải quyết nếu	Chỉ ra một cấu hình hoặc chứng minh không có cấu hình nào thỏa mãn
Biết rằng $A \oplus B = (A \setminus B) \cup (B \setminus A)$ Hệ thức nào dưới đây là đúng?	$\mathbf{A} \oplus \overline{\mathbf{A}} = \mathbf{U}$
Biết rằng $A \oplus B = (A \cup B) \setminus (A \cap B)$ Hệ thức nào dưới đây là đúng?	$\mathbf{A} \oplus \mathbf{A} = \emptyset$
Các đẳng thức $\overline{A \cap B} = \overline{A} \cup \overline{B} \ \overline{A \cup B} = \overline{A} \cap \overline{B}$	Luật De Morgan
Cần phải sắp xếp tối thiểu bao nhiêu sinh viên vào một phòng thi để chắc chắn sẽ có ít nhất 4 sinh viên đạt cùng một điểm thi (điểm thi là các số nguyên từ 0 đến 10)	34
Cần tối thiểu bao nhiêu người để chắc chắn chọn được 5 người cùng cầm tinh một con giáp?	49
Cho 2 ánh xạ $f(x) = x - 1$ và $g(x) = 3x$. Hỏi biểu thức nào dưới đây là đúng?	$(f^*g)(x) = 3x - 1$
Cho 20 đường thẳng trên cùng một mặt phẳng, trong đó không có 2 đường thẳng nào song song và cũng không có 3 đường thẳng nào đồng quy tại một điểm. Hỏi chúng chia mặt phẳng thành bao nhiêu phần?	211 phần
Cho 6 điểm trên mặt phẳng Oxy trong đó không có 3 điểm nào thẳng hàng. Nối tất cả các đỉnh đó bằng các cạnh có màu đỏ hoặc màu đen một cách tùy ý. Khi đó kết luận nào dưới đây là đúng?	Có ít nhất một tam giác có 3 cạnh cùng màu

Cho A = {0, 1}; Tập nào dưới đây là A X A?	{(0,0), (0,1), (1,0), (1,1)}
Cho A là một tập có 7 phần tử. Hỏi có bao nhiêu tập con có số phần tử là một số dương và chẵn?	63
Cho A là tập có 6 phần tử. Hỏi có bao nhiêu tập con có số phần tử là số lẻ?	32
Cho A, B, C là 3 tập bất kỳ. Mệnh đề nào dưới đây là đúng?	Nếu $A \cap C = B \cap C$ và $A \cup C = B \cup C$ thì $A = B$
Cho ánh xạ $ \mathbf{f}: \mathbf{R} \longrightarrow \mathbf{R} $ định nghĩa bởi $ \mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{x} + 7 & \mathbf{khi} & \mathbf{x} \leq 0 \\ -2\mathbf{x} + 5 & \mathbf{khi} & 0 < \mathbf{x} < 3 \\ \mathbf{x} - 1 & \mathbf{khi} & 3 \leq \mathbf{x}. \end{cases} $	$f^{-1}(0) = \{-7; \frac{5}{2}\}$
Cho bài toán cái túi $F(x) = 14x1 + 8x2 + 28x3 + 42 x4 + 45x5 + 20x6 + 30x7 + 15x8 \xrightarrow{\bullet} max$ $2x1 + x2 + 4x3 + 7x4 + 8x5 + 9x6 + 5x7 + 3x8 \overset{\leq}{} 20$ $xi \in \{0,1\} \ (i = 1, 2,, 8). \ Tìm F2(10)$	F2(10) = 22
Cho bài toán cái túi $F(x) = 14x1 + 8x2 + 28x3 + 42 x4 + 45x5 + 20x6 + 30x7 + 15x8 \xrightarrow{\bullet} max$ $2x1 + x2 + 4x3 + 7x4 + 8x5 + 9x6 + 5x7 + 3x8 \stackrel{\leq}{} 20$ $xi \in \{0,1\} \ (i = 1, 2,, 8). \ Tìm F2(20)$	F2(20) = 22
Cho bài toán cái túi $F(x) = 14x1 + 8x2 + 28x3 + 42 x4 + 45x5 + 20x6 + 30x7 + 15x8 \xrightarrow{\bullet} \max$ $2x1 + x2 + 4x3 + 7x4 + 8x5 + 9x6 + 5x7 + 3x8 \stackrel{\leq}{} 20$ $xi \in \{0,1\} \ (i = 1, 2,, 8). \ Tìm F3(10)$	F3(10) = 50
Cho bài toán cái túi F(x) = 14x1 + 8x2 + 28x3 +42 x4 + 45x5 + 20x6 +	F3(20) = 50

$30x7 + 15x8 \xrightarrow{\bullet} max$ $2x1 + x2 + 4x3 + 7x4 + 8x5 + 9x6 + 5x7 + 3x8 \stackrel{\leq}{=} 20$	
$xi \in \{0,1\}$ (i = 1, 2,, 8). Tim F3(20)	
Cho bài toán cái túi F(x) = 9x1 + 5x2 + 3x3 + 4x4 → max 6x1 + 4x2 + 3x3 + 2x4 ≤ 10 xi ≥ 0 và nguyên (i = 1, 2, 3, 4). Tìm F3(10)	F3(10) = 14
Cho bài toán cái túi F(x) = 9x1 + 5x2 + 3x3 + 4x4 → max 6x1 + 4x2 + 3x3 + 2x4 ≤ 10 xi ≥ 0 và nguyên (i = 1, 2, 3, 4). Tìm F4(10)	F4(10) = 20.
Cho bài toán cái túi F(x) = 9x1 + 5x2 + 3x3 + 4x4 → max 6x1 + 4x2 + 3x3 + 2x4 ≤ 10 xi ≥ 0 và nguyên (i = 1, 2, 3, 4). Tìm F1(10)	F1(10) = 9.
Cho bài toán cái túi F(x) = 9x1 + 5x2 + 3x3 + 4x4 → max 6x1 + 4x2 + 3x3 + 2x4 ≤ 20 xi ≥ 0 và nguyên (i = 1, 2, 3, 4). Tìm F2(10)	F2(10) = 14.
Cho bài toán cái túi $F(x) = 9x1 + 5x2 + 3x3 + 4x4$ max $6x1 + 4x2 + 3x3 + 2x4 \le 20$ xi ≥ 0 và nguyên (i = 1, 2, 3, 4).	F1(20) = 27

Tìm	F1(20	0)				
Cho			cái tú			
4x4	→m	ax				
6x1 -	+ 4x2	2 + 3	x3 +	2x4	≤ 20	F2(20) = 28
xi ≥	0 và	nguy	rên (i	= 1,	2, 3, 4).	
Tìm	F2(20	0)				
trong	g đó E	3 là t	ập c	ác hà	ịch: Tìm Min F(x), x € B, nh trình được xác định bởi i đây:	
(0	8	6	9	15	20)	
13	0	9	8	15 11	15	
8	7				10	Q(B) = 45
6	9	10	0	9	8	Q(D) = 43
10	11	12	13	0	9	
19		16			0	
	g đó E	là đứ cán N 3 là t	ing? Ngườ ập c			
(0	7	6	9	15	21)	
12	0	9	8	13	15	
9	8	0	13	21	11	Q(B) = 47
7	9	10	0	9	8	
11	14	10	12	0	9	
17	14	16	15	9	0	
Tìm	cận c đây	dưới	Q(B)			
trong	g đó E	3 là t	ập c	ác hà	ịch: Tìm Min F(x), x € B, nh trình được xác định bởi i đây:	Q(B) = 40

0	8	7	9	15	20	
12	0	9	5	10	15	
8	5	0	13	14	10	
7	9	10	0	9	8	
14	11	9	13	0	8	
19	17	9	11	8	0	
	cận d đây l			của F	(x) tr	êı

n tập B. Kết quả nào

Cho bài toán Người du lịch: Tìm Min F(x), x ∈ B, trong đó B là tập các hành trình được xác định bởi ma trận chi phí cho dưới đây:

$$\mathbf{C_{ij}} = \begin{pmatrix} \infty & 3 & 0 & 5 & 10 & 15 \\ 7 & \infty & 3 & 0 & 4 & 8 \\ 3 & 0 & \infty & 7 & 14 & 4 \\ 0 & 4 & 5 & \infty & 3 & 4 \\ 3 & 7 & 4 & 5 & \infty & 0 \\ 10 & 8 & 7 & 6 & 0 & \infty \end{pmatrix}$$

Điểm (6, 5)

Phải chọn điểm phân nhánh là điểm nào?

Cho bài toán Người du lịch: Tìm Min F(x), x ∈ B, trong đó B là tập các hành trình được xác định bởi ma trận chi phí cho dưới đây:

$$\mathbf{C_{ij}} = \begin{pmatrix} \infty & 5 & 0 & 7 & 10 & 15 \\ 7 & \infty & 6 & 0 & 5 & 8 \\ 4 & 0 & \infty & 7 & 14 & 6 \\ 0 & 4 & 5 & \infty & 6 & 3 \\ 5 & 7 & 4 & 6 & \infty & 0 \\ 10 & 8 & 7 & 6 & 0 & \infty \end{pmatrix}$$

Điểm (2,4)

Phải chọn điểm phân nhánh là điểm nào?

Cho bài toán Người du lịch: Tìm Min F(x), x ∈ B, trong đó B là tập các hành trình được xác định bởi ma trận chi phí cho dưới đây:

Điểm (6, 5)

	(00	2	0	4	10	15`)	
C _{ij} =		7	00	2	0	3	8		
C =	_	2	0	00	7	14	4		
∨ _{ij} −		0	4	5	0 0	2	3		
		2	7	4	5	00	0		
			_					_	
Phải									
Cho trong									į
ma t	rận d	chi p	bhí	cho	dướ	yi đây	y:		
C_{ij}		(0	D	9	3	(0	10)	
]]	l	00	0) (3	7	
C	_	۱,	,	4	α) ·	5	6	
~ij		`	•	Α.	6		<u>د</u>	^	
		1		-	0	- 0	K)	v	
		(8	3	3	13	3 (0	∞	
Phải	chọ	n đi	ểm	phá	àn n	hánh	là đ	iểm	
Cho bài toán Người du lịch: Tìm Min F(x), x ∈ B, trong đó B là tập các hành trình được xác định bởi									
ma t								uuç	
(0	15	9	,	6	11	21)			
8	0	7	1	0.	16	19			
6	10	0	1	1	13	17			
10	8	14				13			
16	11			8		16			
(21	16	11	. !	9	8	0)			
Tìm	-			. ,	của	F (x)) trê	n tập	ÒÓ
dướ					i du	liob:	Tìm	Min	
_	g đó	B là	ı tậ	p cá	c hà	anh ti	rình		
ma t	trong đó B là tập các hành trình được xác định bởi ma trận chi phí cho dưới đây:								

(0	7	5	9	15	20)
14	0	9	7	10	15
8	6	0		20	10
5	9	10	0	7	8
10	15	12	13 15	0	8
20	18	16	15	10	0

Tìm cận dưới Q(B) của F (x) trên tập B. Kết quả nào dưới đây là đúng?

Cho bài toán Người du lịch: Tìm Min F(x), x ∈ B, trong đó B là tập các hành trình được xác định bởi ma trận chi phí cho dưới đây:

$$\mathbf{C_{ij}} = \begin{pmatrix} \infty & 4 & 0 & 5 & 11 & 14 \\ 7 & \infty & 4 & 0 & 3 & 8 \\ 3 & 0 & \infty & 7 & 10 & 9 \\ 0 & 6 & 5 & \infty & 4 & 7 \\ 4 & 7 & 5 & 6 & \infty & 0 \\ 9 & 8 & 6 & 5 & 0 & \infty \end{pmatrix}$$

Phải chọn điểm phân nhánh là điểm nào?

Điểm (5, 6)

					y < z
Cho bảng giá	trị chá	ân lý	của hàm l	F(x, y, z):	x < y <
x	у	z	F(x, y, z)		
0	0	0	1		_ x v y v z; T ₃
0	0	1	0		>
0	1	0	1		Α,
0	1	1	0		
1	0	0	1		II
1	0	1	1		\mathbf{T}_2
1	1 1	0	1		Ř
		1	1		$\overline{\mathbf{v}} \mathbf{v} \mathbf{z}$; \mathbf{T}_2
Các tuyển sơ cấp	1à:				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					- =
					<u> </u>
					Tz
Cho hảng giá	tri obi	ân lý	oùa hàm l	=(v v z)·	T v v v Z T
Cho bảng giá	trị cha	ân lý	của hàm l	F(x, y, z):	T × × × × Z T
Cho bảng giá	trị cha	ân lý	của hàm l		$\mathbf{z} = \mathbf{x} \wedge \mathbf{y} \wedge \mathbf{z}$
	T				$\mathbf{z} = \mathbf{x} \wedge \mathbf{y} \wedge \mathbf{z}$
x	у	z	F(x, y, z)		$\mathbf{z} = \mathbf{x} \wedge \mathbf{y} \wedge \mathbf{z}$
x 0	у 0	z 0	F(x, y, z)		$\mathbf{z} = \mathbf{x} \wedge \mathbf{y} \wedge \mathbf{z}$
x 0 0	y 0 0	z 0 1	F(x, y, z) 0 1		$\mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
x 0 0	y 0 0	z 0 1	0 1 0		$= \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
x 0 0 0	y 0 0 1 1 1	z 0 1 0	0 1 0		$= \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
x 0 0 0 0	y 0 0 1 1 1 0	z 0 1 0 1 0	F(x, y, z) 0 1 0 1 1		$= \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
x 0 0 0 0 1	y 0 0 1 1 1 0 0	z 0 1 0 1 0	F(x, y, z) 0 1 0 1 1 1		$= \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
0 0 0 1 1	y 0 0 1 1 0 0 1 1 1	z 0 1 0 1 0 1	F(x, y, z) 0 1 0 1 1 0 1		$= \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
x 0 0 0 0 1 1 1	y 0 0 1 1 0 0 1 1 1	z 0 1 0 1 0 1	F(x, y, z) 0 1 0 1 1 0 1		$\mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{\bar{z}}; \mathbf{H}_3 = \mathbf{x} \wedge \mathbf{\bar{y}} \wedge \mathbf{z}$
x 0 0 0 0 1 1 1	y 0 0 1 1 0 0 1 1 1	z 0 1 0 1 0 1	F(x, y, z) 0 1 0 1 1 0 1		$\bar{\mathbf{x}} \wedge \bar{\mathbf{y}} \wedge \mathbf{z}$; $\mathbf{H}_2 = \mathbf{x} \wedge \bar{\mathbf{y}} \wedge \bar{\mathbf{z}}$; $\mathbf{H}_3 = \mathbf{x} \wedge \bar{\mathbf{y}} \wedge \mathbf{z}$

A là tập số thực ≥ 0; B là tập các số thực ≥ trị số tuyệt đối của chính nó; C là tập các số thực ≤ trị số tuyệt đối của chính nó.	
Hỏi trong các hệ thức sau, hệ thức nào là đúng?	
	F(x, y, z)
	$\wedge y \wedge \bar{z}$
Cho dạng hội chuẩn tắc của hàm F(x, y, z): F(x, y, z)) ^ (x ·
$= (x \lor y \lor z) \land (x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor z)$	z <
Đâu là dạng chỉ chứa phép hội và phủ định của hàm F(x, y, z)?	$\wedge (\bar{x} \wedge \bar{y})$
	$= (\bar{x} \wedge \bar{y} \wedge \bar{z}) \wedge (\bar{x} \wedge \bar{y} \wedge z) \wedge (x \wedge y \wedge \bar{y} \wedge \bar{y}) \wedge (x \wedge \bar{y} \wedge y$
Cho đồ thị vô hướng, đủ và có 10 đỉnh. Hỏi đồ thị có bao nhiêu cây có độ dài < 5?	35265 cây.
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Có bao nhiêu đồ thị con không là đồ thị Euler?	520
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Có bao nhiêu đồ thị con là đồ thị Euler?	502
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Hỏi có bao nhiêu đồ thị bộ phận khác nhau?	245-1
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Hỏi có bao nhiêu đồ thị con khác nhau ?	1022
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Hỏi đồ thị có bao nhiêu cạnh?	45 cạnh
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Hỏi đồ thị có bao nhiêu cây bao trùm?	100 triệu cây
Cho đồ thị vô hướng, đủ, có 10 đỉnh. Hỏi đồ thị có bao nhiêu cây có độ dài > 7 ?	10.97 + 108 cây

Cho đồ thị vô hướng, đủ, có 7 đỉnh. Có bao nhiêu cây bao trùm có 1 đỉnh bậc 5?	7.6.5 =210
Cho đồ thị vô hướng, đủ, có 7 đỉnh. Có bao nhiêu cây bao trùm có 1 đỉnh bậc 6?	7
Cho đồ thị vô hướng, đủ, có 7 đỉnh. Có bao nhiêu cây bao trùm không có đỉnh bậc 6?	75 - 7
Cho đồ thị vô hướng, đủ, có 7 đỉnh. Có bao nhiêu đồ thị con có số đỉnh là lẻ?	63
Cho đồ thị vô hướng, đủ, có 8 đỉnh. Có bao nhiêu cây bao trùm chứa 1 cạnh cho trước?	65536 cây
Cho đồ thị vô hướng, đủ, có 8 đỉnh. Có bao nhiêu cây bao trùm có 1 đỉnh bậc 5?	2520 cây
Cho đồ thị vô hướng, đủ, có 9 đỉnh. Nếu bớt 1 cạnh thì sẽ xảy ra điều gì?	Bớt đi 1 chu trình
Cho đồ thị vô hướng, đủ, có 9 đỉnh. Nếu bớt 1 đỉnh thì sẽ bớt đi bao nhiêu cạnh?	Bớt đi 8 cạnh
Cho đồ thị vô hướng, đủ, có 9 đỉnh. Nếu bớt 1 đỉnh thì sẽ bớt đi bao nhiêu chu trình độc lập?	Bớt đi 7 chu trình
Cho đồ thị vô hướng, liên thông, có 9 đỉnh và 10 cạnh.Có bao nhiêu chu trình độc lập?	2
Cho đồ thị vô hướng, liên thông, có 9 đỉnh và 8 cạnh.Nếu bớt 1 cạnh thì sẽ xảy ra điều gì?	Đồ thị mất liên thông.
Cho đồ thị vô hướng, liên thông, có 9 đỉnh, 8 cạnh.Hỏi đồ thị có bao nhiêu chu trình ?	0
Cho mạng vận tải biểu thị bởi đồ thị có hướng ở hình dưới đây. Nếu đường đi (S, 1, 4, 7, Z) là đầy thì cung nào là cung bão hòa?	(1, 4)
Cho mạng vận tải biểu thị bởi đồ thị dưới đây. Nếu đường đi (S, 2, 5, 8, Z) là đầy thì cung nào là cung bão hòa?	(2, 5)
Cho mạng vận tải biểu thị bởi đồ thị dưới đây. Nếu	(3, 6)

đường đi (S, 3, 6, 9, Z) là đầy thì cung nào là cung bão hòa?	
Cho mạng vận tải biểu thị bởi đồ thị dưới đây. Nếu đường đi (S, 3, 5, 6, 8, 9, Z) là đầy thì cung nào là cung bão hòa ?	(6,8)
Cho mệnh đề p: "A yêu B"; mệnh đề q: "B yêu A".	
Khi đó mệnh đề: "B yêu A nhưng A không yêu B" là mệnh đề nào?	$\mathbf{p} \wedge \mathbf{q}$
Cho mệnh đề thuận: "Số có tận cùng bằng 5 thì chia hết cho 5".	"Số không chia hết cho 5 thì có tận cùng khác 5"
Cho n là số nguyên lớn hơn 1 thỏa mãn	
$2P_n + 6A_n^2 - P_nA_n^2 = 12$	n = 2 và n = 3
Cho P(A) là tập lũy thừa của A. Mệnh đề nào dưới đây là đúng?	$P(A \cap B) = P(A) \cap P(B)$
Cho phương trình truy hồi cấp hai : Tn = 3Tn-1 + 4Tn-2. Với T1 = 2, T2 = 18. Hỏi kết quả nào dưới đây là đúng?	Tn = 2.(-1)n + 4n
Cho S = 1.1! + 2.2! + + n.n! . Hỏi kết quả nào dưới đây là đúng?	S = (n+1)! - 1.
Cho S = 1.2 + 2.3 ++ n(n + 1). Hỏi kết quả nào dưới đây là đúng?	$\frac{n(n+1)(n+2)}{3}$
Cho S = $1.2.3 + 2.3.4 + + n(n+1)(n+2)$.	n(n+1)(n+2)(n+3)
Hỏi kết quả nào dưới đây là đúng?	4
Cho S = 12 + 22 ++ n2. Hỏi kết quả nào dưới đây là đúng?	S = 1/6n(n+1)(2n+1).
Cho S = 12 + 32 ++ (2n+1)2. Hỏi kết quả nào dưới đây là đúng?	. S = 1/3(n+1)(2n+1)(2n+3)
Cho S = 13 + 23 ++ n3. Hỏi kết quả nào dưới đây là đúng?	$S = (\frac{1}{4})n2(n+1)2$
Cho S = 22 + 42 + + (2n)2 Hỏi kết quả nào dưới đây là đúng?	S = (2/3) n(n+1)(2n+1

1 1 1	(7)
Cho S = $\overline{1.2.3}$ + $\overline{2.3.4}$ + + $\overline{n(n+1)(n+2)}$	$\frac{n(n+3)}{(n+1)(n+2)}$
Hỏi kết quả nào dưới đây là đúng?	1/4 (n+1)(n+2)
Cho S=1.2.3.4+2.3.4.5++ n(n+1)(n+2)(n+3).	n(n+1)(n+2)(n+3)(n+4)
Hỏi kết quả nào dưới đây là đúng?	5
Cho X là tập có 5 phần tử, Y là tập có 6 phần tử. Gọi S là số đơn ánh từ X vàoY.	S = 6!.
Cho Z là tập các số nguyên	
$A = \{ 4n: nZ \}$	
$B = \{3m: mZ\}$	$A \subset C$
$C = \{2p : pZ\}$	
Hỏi trong các hệ thức sau, hệ thức nào là đúng?	
Cho Z là tập các số nguyên; các tập A, B, C được định nghĩa như sau:	
$A = \{3m+2: m Z\}$	
$B = \{2n+1: n Z\}$	A = C
$C = \{3p+5: p Z\}$	
Hỏi trong các hệ thức sau, hệ thức nào là đúng?	
Có 10 người vào một hiệu kem có bán 5 loại kem khác nhau. Mỗi người mua một cốc kem. Hỏi có bao nhiêu sự lựa chọn khác nhau nếu loại kem nào cũng được mua?	S = R55 = 126
Có 3 đề thi khác nhau được phát cho 6 sinh viên dự thi ngồi quanh một bàn tròn.	
Hỏi có bao nhiêu cách phát đề khác nhau, biết rằng 2 sinh viên ngồi gần nhau thì nhận được 2 đề thi khác nhau ? Kết quả nào dưới đây là đúng?	Tn = (-1)n + 4n
Có 6 bộ quần áo TDTT đánh số từ 1 đến 6. Huấn luyện viên phát cho 6 cầu thủ mỗi người một quần và một áo. Hỏi có bao nhiều cách phát quần áo như thế để cho tất cả 6 cầu thủ đều nhận được quần và áo có số khác nhau?	265.6!
Có 8 đội tham gia giải bóng đá. Hỏi có thể có bao nhiêu trận bán kết khác nhau?	C84 x C42 = 70 x 6 = 420 trận
Có bao nhiêu cách chia bộ bài 52 quân thành 4 phần	52!/(4!)(13!)4

có số quân bằng nhau?	
Có bao nhiêu cách phát 10 quyển vở như nhau cho 5 em bé ?	S = R510 (số tổ hợp lặp chập 10 của 5)
Có bao nhiêu cách xếp 5 nam và 5 nữ thành một hàng ngang sao cho nam nữ đứng xen kẽ nhau?	2.5!5! cách.
Có bao nhiêu con số hàng nghìn mà các chữ số của chúng tạo thành một dãy tăng?	C94 (tổ hợp chập 4 của 9 phần tử)
Có bao nhiêu con số hàng nghìn mà các chữ số của chúng tạo thành một dãy giảm?	C ⁴ (tổ hợp chập 4 của 10 phần tử)
Có bao nhiêu hàm đại số logic khác nhau của n biến?	2 ^{2ⁿ}
Dạng tuyển chuẩn tắc là	tuyển của các hội sơ cấp
Đâu không phải là một mệnh đề logic	"Hãy cố gắng lên"
Đâu là khẳng định đúng?	$(x \oplus y) = (\overline{x \leftrightarrow y})$
Đâu là luật phần tử bù?	$\mathbf{x} \wedge \mathbf{x} = 0; \mathbf{x} \vee \mathbf{x} = 1$
Đâu là mạch logic thực hiện hàm F(x, y, z)	x x y y z y z y z
	y N X Y Y Y Z
Đâu là nội dung của luật De Morgan?	$\overline{\mathbf{x} \wedge \mathbf{y}} = \overline{\mathbf{x}} \vee \overline{\mathbf{y}}; \overline{\mathbf{x}} \vee \overline{\mathbf{y}} = \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}$
Đâu là nội dung của luật De Morgan? Dãy nhị phân nào dưới đây có dãy nhị phân kế tiếp theo thứ tự từ điển là dãy b=11001100?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dãy nhị phân nào dưới đây có dãy nhị phân kế tiếp	$\overline{\mathbf{x} \wedge \mathbf{y}} = \overline{\mathbf{x}} \vee \overline{\mathbf{y}}; \overline{\mathbf{x}} \vee \overline{\mathbf{y}} = \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}$
Dãy nhị phân nào dưới đây có dãy nhị phân kế tiếp theo thứ tự từ điển là dãy b=11001100? Dãy nhị phân nào dưới đây là dãy nhị phân kế tiếp	$\overline{\mathbf{x} \wedge \mathbf{y}} = \overline{\mathbf{x}} \vee \overline{\mathbf{y}}; \overline{\mathbf{x}} \vee \overline{\mathbf{y}} = \overline{\mathbf{x}} \wedge \overline{\mathbf{y}}$ 11001011
Dãy nhị phân nào dưới đây có dãy nhị phân kế tiếp theo thứ tự từ điển là dãy b=11001100? Dãy nhị phân nào dưới đây là dãy nhị phân kế tiếp theo thứ tự tự nhiên của dãy b = 101011111? Gặp 1 nhóm 10 thí sinh bất kỳ. Khi đó khẳng định	$\overline{x} \wedge \overline{y} = \overline{x} \vee \overline{y}; \overline{x} \vee \overline{y} = \overline{x} \wedge \overline{y}$ 11001011 101100000 Luôn tìm được 1 nhóm 6 thí sinh thi đỗ hoặc 5 thí

3; C là tập các số nguyên có bình phương chia 12 dư 1	
Hỏi trong các hệ thức sau, hệ thức nào là đúng?	
Khẳng định nào là đúng?	$(x \rightarrow y) = (x \lor y)$
Khi áp dụng thuật toán Kruskal tìm cây bao trùm ngắn nhất trên đồ thị vô hướng ở hình sau thì cạnh thứ 3 mà chúng ta phải chọn là cạnh nào?	
9 7 5 6 6 8 8 5 4 x ₄	cạnh (x1, x3)
Ký hiệu C8(3,5) và C8(4,4) là số cách chia 8 phần tử thành 2 nhóm gồm 3 và 5 phần tử và số cách chia 8 phần tử thành 2 nhóm, mỗi nhóm 4 phần tử. Hỏi hệ thức nào dưới đây là đúng?	C8(3,5) > C8(4,4)
Ký hiệu D5 là số cách bỏ 5 bức thư vào 5 phong bì có địa chỉ khác nhau sao cho tất cả 5 bức thư đó đều sai địa chỉ. Hỏi kết quả nào dưới đây là đúng?	D5 = 44.
Ký hiệu Pn và Tn là số hoán vị ngang và hoán vị vòng tròn của n phần tử khác nhau (n là số nguyên dương). Hỏi hệ thức nào sau đây là đúng?	Pn > Tn
Ký hiệu S là số cách xếp 7 nam sinh viên và 3 nữ sinh viên thành một hàng ngang sao cho các nữ sinh không đứng gần nhau. Hỏi hệ thức nào dưới đây là đúng?	S = 7!.A83.
Ký hiệu S là số dãy nhị phân có độ dài 10, trong đó có 5 số 1. Kết quả nào dưới đây là đúng?	$S = P(5,5) = \frac{10!}{5!.5!}$
Ký hiệu Tn là số phần không gian tạo nên bởi bởi n mặt phẳng có vị trí tổng quát trong không gian đó (nghĩa là mọi bộ 3 mặt phẳng đều cắt nhau tại một điểm và không có 4 mặt phẳng nào cùng cắt nhau tại một điểm). Hỏi công thức nào dưới đây là đúng?	Tn = $(1/6)(n+1)(n2 - n + 6)$
Ký hiệu Tn là số phần mặt phẳng tạo nên bởi n đường tròn nằm trên mặt phẳng đó, biết rằng mọi cặp đường tròn đều cắt nhau và không có 3 đường	Tn = 2 + n(n-1)

tròn nào cắt nhau tại một điểm. Hỏi công thức nào dưới đây là đúng?	
Ký hiệu C_{10}^4 ; C_{10}^5 và C_{10}^6 là các số tổ hợp chập 4, chập 5 và chập 6 của 10 phần tử. Hỏi hệ thức nào sau đây là đúng?	$C_{10}^4 = C_{10}^6 < C_{10}^5$
Ký hiệu $\mathbf{L_n^k}$ và $\mathbf{A_n^k}$ là số chỉnh hợp và chỉnh hợp lặp chập k của n phần tử trong đó $0 < k < n$. Hỏi hệ thức nào dưới đây là đúng?	$L_{n}^{k} > A_{n}^{k}$
Ký hiệu $\mathbf{C_n^k}$ và $\mathbf{R_n^k}$ là số tổ hợp và tổ hợp lặp chập k của n phần tử trong đó 1< k< n. Hỏi hệ thức nào dưới đây là đúng?	$C_{n}^{k} < R_{n}^{k}$
Ký hiệu () là tập rỗng; U là tập vũ trụ. Ta luôn có $\mathbf{A} \cup \emptyset = \mathbf{A}$; $\mathbf{A} \cap \mathbf{U} = \mathbf{A}$ Người ta gọi tính chất trên là luật gì?	Luật đồng nhất
Lấy 25 số nguyên dương nhỏ hơn 50. Khi đó sẽ tìm được ít nhất mấy cặp có tổng bằng nhau?	4
Mệnh đề $\mathbf{p} ightharpoonup \mathbf{q}$ có giá trị	sai khi và chỉ khi p đúng, q sai
Mệnh đề P ∧ q có giá trị	đúng khi và chỉ khi cả p và q cùng sai
Mệnh đề p ∨ q có giá trị	đúng khi và chỉ khi cả p và q cùng đúng
Một lớp có 75 sinh viên. Khẳng định nào sau đây là đúng?	Có nhiều nhất lia sinh viên có cùng tháng sinh
Một nhóm 10 người mặc áo có gắn số từ 1 đến 10 đứng ngẫu nhiên thành 1 vòng tròn. Khi đó khẳng định nào dưới đây là đúng?	Luôn tìm được ít nhất 1 nhóm 4 người đứng liền nhau mà tổng các số gắn trên áo của 4 người 23 đó
Một phiếu trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 3 phương án trả lời, trong đó có một phương án là đúng. Ký hiệu S là số cách điền vào phiếu, hỏi kết quả nào dưới đây là đúng?	S = (3)10
Một tòa nhà có 10 tầng, mỗi tầng có 10 buồng. Có bao nhiêu cách chọn 4 tầng liền kề nhau và trên mỗi tầng chọn 4 buồng liền kề nhau?	C71. (C71)4 = 7.(7)4 = 16807

N* = {1, 2, 3,}. Đưa vào N* quan hệ R như sau: a, b N*: aRb ⇔ a và b nguyên tố cùng nhau. Hỏi R có tính chất nào dưới đây?	Đối xứng
N* là tập các số nguyên dương. Đưa vào N* quan hệ R như sau: a, b N*: aRb ⇔ a không chia hết cho b. Hỏi kết luận nào dưới đây là chính xác?	R không có tính chất phản xạ và không có tính chất đối xứng
Nội dung chính của thuật toán quay lui là	Xây dựng dần các thành phần của cấu hình bằng cách thử tất cả các khả năng
Nội dung của bài toán liệt kê là gì?	Chỉ ra danh sách tất cả các cấu hình tổ hợp có thể có
Nội dung của nguyên lý Dirichlet tổng quát là gì?	Nếu nhốt n con chim vào k chiếc lồng (n > k) thì có ít nhất một lồng chứa ít nhất là con chim.
Phương pháp phản chứng là phương pháp	Giả sử điều cần chứng minh là sai, từ đó suy ra mâu thuẫn
Phương pháp sinh có thể áp dụng để giải bài toán liệt kê nếu có điều kiện nào sau đây?	. Có thể xác định được một thứ tự trên tập các cấu hình tổ hợp cần liệt kê, xác định được cấu hình đầu tiên và cuối cùng theo thứ tự đã xác định. Xây dựng được thuật toán sinh kế tiếp
Ta luôn có $(A \cup B) \cup C = A \cup (B \cup C)(A \cap B) \cap C = A \cap (B \cap C)$ Người ta gọi tính chất trên là luật gì?	Luật kết hợp.
Tên một con sông ở Nam Mỹ gồm 10 chữ cái MISSISSIPI. Hỏi chúng tạo ra được bao nhiều hoán vị khác nhau?	P= 10! 4!.4!
Theo luật De Morgan: hệ thức nào dưới đây là đúng?	$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

Trong 27 từ tiếng Anh bất kỳ luôn tìm được	Ít nhất 2 từ cùng bắt đầu bằng một chữ cái
Trong lớp có 40 sinh viên, có bao nhiều cách chia thành 2 nhóm, mỗi nhóm 20 người ?	C40(20,20) = 40!/(2!.20!x20!)
Trong lớp có 40 sinh viên, có bao nhiêu cách chia thành 2 nhóm, mỗi nhóm 20 người ?	S = C215 - (C135 + C145 + C155) + C65 + C75 + C85
Trong mặt phẳng Oxy, cho 5 điểm có tọa độ nguyên. Khi đó khẳng định nào dưới đây là đúng?	có ít nhất 1 đoạn thẳng mà trung điểm của nó cũng có tọa độ nguyên
Trong số 10 người bất kỳ, khẳng định nào dưới đây là đúng?	Luôn tìm được 1 nhóm 5 nam hoặc 1 nhóm 6 nữ
Trong số 12 cầu thủ bất kỳ, khẳng định nào sau đây là đúng?	Luôn tìm được 2 người có tổng số tuổi chia hết cho 20 hoặc 2 người có hiệu số tuổi chia hết cho 20
Z là tập các số nguyên. Tập nào dưới đây là tập không rỗng?	$A = \{x \in Z : 2x + 7 = 3\}$
Z+ là tập các số nguyên dương. Đưa vào Z+ quan hệ R như sau:	
a, b Z+ : aRb ⇔ a đồng dư với b theo mô đun m ⇔ (a – b) -m	Quan hệ tương đương
Hỏi R là quan hệ gì?	