PCT/EP2003/009111

10/524721

CHEMICAL COMPOUNDS

The present invention relates to novel 1,2,3-triazole derivatives which have microbiocidal activity, in particular fungicidal activity. The invention also relates to novel intermediates used in the preparation of these compounds, to agrochemical compositions which comprise at least one of the novel compounds as active ingredient and to the use of the active ingredients or compositions in agriculture or horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.

The present invention provides a compound of formula (I):

where A is an ortho-substituted ring selected from formulae (A1) to (A22);

$$R^{11}, R^{12}$$
 R^{11}, R^{12}
 R^{11}, R^{12}

10

$$R^{6}$$
 R^{6}
 R^{11}
 R^{11}

$$R^{11}, R^{12}$$
 R^{11}, R^{12}
 R^{11}, R^{12}

$$[R^{13}, R^{14}, R^{15}, R^{16}, R^{17}]$$

$$(A16)$$

$$(A17)$$

$$R^{13}$$

$$R^{14}$$

$$R^{13}$$

$$R^{14}$$

$$R^{13}$$

$$R^{14}$$

$$R^{13}$$

$$R^{14}$$

$$R^{13}$$

$$R^{14}$$

$$R^{13}$$

$$R^{14}$$

$$R^{15}$$

$$R^{16}$$

$$R^{17}$$

$$R^{15}$$

$$R^{16}$$

10

15

20

25

(A22)

Q is a single or a double bond; X is O, $N(R^{18})$, S or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$; R^1 is halogen, cyano, nitro, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 haloalkoxy or optionally substituted C2-4 alkenyl, optionally substituted C2-4 alkynyl or optionally substituted SO₂(C₁₋₄) alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C₁₋₄ alkoxy); R² is C₁₋₄ alkyl. C_{1-4} haloalkyl, C_{1-4} alkoxy(C_{1-4})alkyl or C_{1-4} alkylthio(C_{1-4})alkyl or [optionally substituted aryl](C_{1-4})alkyl- or [optionally substituted aryl]oxy(C_{1-4})alkyl- (where the optionally substituted aryl moieties may each have up to 3 substituents, each independently selected from halogen and C_{1-4} alkoxy); R^3 is hydrogen, $CH_2C = CR^4$, $CH_2CR^4 = C(H)R^4$, CH=C=CH₂ or COR⁵ or optionally substituted C₁₋₄ alkyl, optionally substituted C₁₋₄ alkoxy or optionally substituted (C₁₋₄) alkylC(=O)O (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C_{1-4} alkoxy, C_{1-4} alkyl, C_{1-2} haloalkoxy, hydroxy, cyano, carboxyl, methoxycarbonyl. ethoxycarbonyl, methylsulfonyl and ethylsulfonyl); each R⁴ is, independently, hydrogen. halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy or C₁₋₄ alkoxy(C₁₋₄)alkyl; R⁵ is hydrogen or optionally substituted C₁₋₆ alkyl, optionally substituted C₁₋₄ alkoxy, optionally substituted C_{1-4} alkoxy(C_{1-4})alkyl, optionally substituted C_{1-4} alkylthio(C_{1-4})alkyl or optionally substituted aryl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, cyano, hydroxy, methoxycarbonyl and ethoxycarbonyl); R⁶ is phenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkylthio, C(H)=N-OH, $C(H)=N-O(C_{1-6} \text{ alkyl})$, $C(C_{1-6} \text{ alkyl})=N-OH$, $C(C_{1-6} \text{ alkyl})=N-O-(C_{1-6} \text{ alkyl})$, (Z)_pC≡CR²⁵ and (Z)_pCR²⁸=CR²⁶R²⁷], a 5-6 membered heterocyclic ring [in which the ring contains 1 to 3 heteroatoms (each independently chosen from oxygen, sulphur and

nitrogen) and the ring is optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C_{1-4} haloalkoxy, $C(H)=N-O-(C_{1-6}$ alkyl) and $C(C_{1-6}$ alkyl)= $N-O-(C_{1-6}$ alkyl)], C_{3-12} alkyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-(C₁₋₄ alkyl), 5 C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy)], C_{2-12} alkenyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, 10 C₁₋₄ thioalkyl, COO-(C₁₋₄ alkyl), =N-OH, =N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)], C₂₋₁₂ alkynyl [optionally substituted by up to 6 15 substituents, each independently selected from halogen, cyano, C1-4 alkoxy, C1-4 thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C₁₋₄ haloalkoxy), Si(CH₃)₃ and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} 20 haloalkoxy)], C₃₋₈ cycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C_{1-4} haloalkoxy, C_{1-4} thioalkyl, C_{3-6} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected 25 halogen atoms)], C₄₋₈ cycloalkenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C_{1-4} haloalkoxy, C_{1-4} thioalkyl, C_{3-6} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected 30 halogen atoms)], C₆₋₁₂ bicycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl and C₁₋₄ haloalkyl] or an aliphatic,

10

15

20

25

30

saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms]; R⁷, R⁸, R⁹, R¹⁰, R¹¹ and R¹² are each, independently, hydrogen, halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl or C₁₋₄ thiohaloalkyl; R¹³, R¹⁴, R¹⁵, R¹⁶ and R¹⁷ are each, independently, hydrogen, halogen, C₁₋₄ alkyl, C(O)CH₃, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl, C₁₋₄ thiohaloalkyl, hydroxymethyl or C₁₋₄ alkoxymethyl: R^{18} is hydrogen, C_{1-4} alkyl, C_{1-4} alkoxy(C_{1-4})alkyl, formyl, $C(=0)C_{1-4}$ alkyl (optionally substituted by halogen or C_{1-4} -alkoxy) or $C(=O)O-C_{1-6}$ alkyl (optionally substituted by halogen, C₁₋₄ alkoxy or CN); R¹⁹, R²⁰, R²¹, R²², R²³ and R²⁴ are each, independently, C₁₋₆ alkyl, C₁₋₆ alkenyl [both optionally substituted by halogen, hydroxy, =0, C₁₋₄ alkoxy, O-C(O)-C₁₋₄ alkyl, aryl or a 3-7 membered carbocyclic ring (itself optionally substituted by up to three methyl groups)], a 3-7 membered carbocyclic ring (optionally substituted by up to three methyl groups and optionally containing one heteroatom selected from nitrogen and oxygen), hydrogen, halogen, hydroxy or C₁₋₄ alkoxy; or R¹⁹R²⁰ together with the carbon atom to which they are attached form a carbonyl-group, a 3-5 membered carbocyclic ring (optionally substituted by up to three methyl groups), C₁₋₆ alkylidene (optionally substituted by up to three methyl groups) or C₃₋₆ cycloalkylidene (optionally substituted by up to three methyl groups); R²⁵ is hydrogen, halogen, C₁₋₄ alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy(C_{1-4})alkyl, C_{1-4} haloalkoxy(C_{1-4})alkyl or $Si(C_{1-4}$ alkyl)₃; R^{26} and R²⁷ are each, independently, hydrogen, halogen, C₁₋₄ alkyl or C₁₋₄ haloalkyl; R²⁸ is hydrogen, C₁₋₄ alkyl or C₁₋₄ haloalkyl; m is 0 or 1; n is 0 or 1; p is 0 or 1; and Z is C₁₋₄ alkylene.

Halogen is fluoro, chloro, bromo or iodo.

Each alkyl moiety is a straight or branched chain and is, for example, methyl, ethyl, *n*-propyl, *n*-butyl, *n*-pentyl, *n*-hexyl, *iso*-propyl, *sec*-butyl, *iso*-butyl, *tert*-butyl, *neo*-pentyl, *n*-heptyl, 1,3-dimethylbutyl, 1,3-dimethylpentyl, 1-methyl-3-ethyl-butyl or 1,3,3-trimethylbutyl.

Haloalkyl moieties are alkyl moieties which are substituted by one or more of the same or different halogen atoms and are, for example, CF₃, CF₂Cl, CHF₂, CH₂F, CCl₃, CF₃CH₂, CHF₂CH₂, CH₂FCH₂, CH₃CHF or CH₃CF₂.

10

15

20

25

30

Alkenyl and alkynyl moieties can be in the form of straight or branched chains. The alkenyl moieties, where appropriate, can be of either the (\underline{E}) - or (\underline{Z}) -configuration. Examples are vinyl, allyl, ethynyl and propargyl.

Alkylidene moieties can be in the form of straight or branched chains. Alkylidene includes methylidene [CH₂=C], ethylidene [CH₃C(H)=C], n-propylidene, i-propylidene [(CH₃)₂C=C], n-butylidene, i-butylidene, i-butylidene, i-pentylidene, i-pentylidene, i-pentylidene, i-hexylidene and i-pentylidene, i-hexylidene and i-pentylidene.

Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl and cyclooctyl.

Cycloalkenyl includes cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl.

Cycloalkylidene includes cyclopropylidene [$c(C_3H_4)=C$], cyclobutylidene, cyclopentylidene and cyclohexylidene.

Bicycloalkyl includes bicyclo[1,1,1]pentyl, bicyclo[2,1,1]hexyl, bicyclo[2,2,1]heptyl, bicyclo[2,2,2]octyl, bicyclo[3,2,1]octyl and bicyclo[3,2,2]nonyl.

Aryl includes phenyl, naphthyl, anthracyl, fluorenyl and indanyl but is preferably phenyl.

In one aspect of the invention, A is as defined above provided that it is not (A1).

In another aspect of the invention, R⁶ is as defined above provided that it is not an aliphatic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms].

In a further aspect of the invention, A is as defined above provided that it is not (A1) when R⁶ is an aliphatic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms].

Preferably Q is a single bond.

Preferably n is 0.

Preferably m is 0.

15

Preferably A is selected from formulae (A1), (A2), (A3), (A16), (A17), (A18), (A19), (A20) and (A22).

More preferably A is selected from formulae (A1), (A2), (A18), (A19) and (A22). Even more preferably A is selected from one of the following ortho-substituted rings:

$\begin{array}{c|c} & & & & \\ & &$

where R¹³ and R¹⁴ are each, independently, selected from H and C₁₋₄ alkyl.

10 Preferably X is O, NR^{18} or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$.

More preferably X is O or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$.

Even more preferably X is $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$.

Most preferably X is (CR¹⁹R²⁰).

Preferably R¹ is C₁₋₄ alkyl, C₁₋₄ haloalkyl, NO₂, CN or OCF₃.

More preferably R¹ is CHF₂, CF₃, CH₂F, CF₂Cl, CH₃ or C₂H₅.

Even more preferably R¹ is CHF₂, CF₃, CH₂F, CF₂Cl or CH₃.

Most preferably R^1 is CHF_2 , CF_3 or CH_2F .

Preferably R^2 is C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy(C_{1-4})alkyl or C_{1-4} alkylthio(C_{1-4})alkyl.

20 More preferably R² is CH₃, CF₃, C₂H₅, CH₂OCH₃ or CH₂SCH₃.

Even more preferably R² is CH₃ or C₂H₅.

Most preferably R² is CH₃.

Preferably R³ is hydrogen, CH₂C ≡CR⁴, CH₂CR⁴=C(H)R⁴, CH=C=CH₂ or COR⁵.

More preferably R^3 is H, $CH_2C = CH$, $CH = C = CH_2$, $CH_2CH = CH_2$ or $COCH_3$.

25 Still more preferably R³ is H, CH₂C = CH, CH=C=CH₂ or CH₂CH=CH₂.

Even more preferably R³ is H, CH₂C =€H or CH=C=CH₂.

Most preferably R³ is H.

Preferably each R⁴ is, independently, H, halogen, C₁₋₄ alkyl or C₁₋₄ alkoxy.

10

15

20

25

More preferably each R⁴ is, independently, H, Cl, Br, CH₃ or CH₃O.

Still more preferably each R4 is, independently, H, Cl or CH3.

Most preferably each R⁴ is H.

Preferably R^5 is H, C_{1-6} alkyl, C_{1-4} alkoxy or C_{1-4} alkoxy(C_{1-4})alkyl.

More preferably R⁵ is H, methyl, OC(CH₃)₃ or CH₂OCH₃.

Even more preferably R⁵ is H or methyl.

Preferably R^6 is chosen from C_{3-10} alkyl, C_{3-9} haloalkyl, C_{3-7} cycloalkyl [optionally substituted by C_3 cycloalkyl (itself optionally substituted by C_{1-2} alkyl) or by up to two C_{1-4} alkyl groups], an aliphatic group [which contains three to ten carbon atoms and at least one silicon atom and, optionally, one oxygen atom], thienyl [optionally substituted by halo], furyl [optionally substituted by halo], pyridyl [optionally substituted by halo], oxazolyl, isoxazolyl and

where R^c and R^d are, independently, H, Cl, Br, F, I, CN, NO₂, C₁₋₄ alkyl, CF₃, SCF₃, OCF₃, CH=NOH, CH=N-OC₁₋₆ alkyl, C=CH, C=C-Si(CH₃)₃, C(H)=CH₂ or C(H)=CH(C₁₋₄ alkyl).

More preferably R^6 is C_{3-7} alkyl, C_{3-6} cycloalkyl [optionally substituted by C_{1-4} alkyl or a C_3 cycloalkyl (itself optionally substituted by C_{1-2} alkyl)], an aliphatic group (which contains three to eight carbon atoms and at least one silicon atom) or

where R^e is Cl, Br, F, CF₃, OCF₃, CH=N-OC₁₋₄ alkyl, C=CH, C=C-Si(CH₃)₃ or C(H)=CH₂ [in one aspect it is preferred that R^e is Cl, Br, F, CF₃, OCF₃, CH=N-OC₁₋₄ alkyl, C=CH or C(H)=CH₂].

Even more preferably R⁶ is chosen from one of the following moieties:

where R^e is Cl, Br, F, CF₃, C=CH, C=C-Si(CH₃)₃ or CH=N-OC₁₋₄ alkyl [in one aspect it is preferred that R^e is Cl, Br, F, CF₃, C=CH or CH=N-OC₁₋₄ alkyl].

Preferably R⁷ is H, F or CH₃.

Preferably R⁸ is H.

Preferably R⁹ is H.

Preferably R¹⁰ is H.

Preferably R¹¹ is H.

5

25

Preferably R¹² is H.

Preferably R¹³, R¹⁴, R¹⁵, R¹⁶ are each, independently, H, CH₃, C₂H₅, CF₃, CH₃O, C(O)CH₃ or CH₃OCH₂.

More preferably R¹³, R¹⁴, R¹⁵, R¹⁶ are each, independently, H or CH₃.

15 Preferably R¹⁷ is H.

Preferably R^{18} is H, CH_3 , C_2H_5 , $C(O)OC_{1-4}$ alkyl (optionally substituted with halogen or C_{1-4} alkoxy) or COH.

More preferably R^{18} is $C(O)OC_{1-4}$ alkyl (optionally substituted with halogen or C_{1-4} alkoxy) or COH.

Even more preferably R^{18} is $C(O)OC_{1-4}$ alkyl (optionally substituted with halogen or C_{1-4} alkoxy).

Most preferably R¹⁸ is C(O)OC₁₋₄ alkyl.

Preferably R^{19} and R^{20} are each, independently, H, halogen, C_{1-5} alkyl, C_{1-3} alkoxy, CH_2O , C_{3-6} cycloalkyl, CH_2O - $C(=O)CH_3$, CH_2 - C_{3-6} cycloalkyl or benzyl; or R^{19} and R^{20} together with the carbon atom to which they are attached form a carbonyl group, a 3-5 membered carbocyclic ring, C_{1-5} alkylidene or C_{3-6} cycloalkylidene.

More preferably R^{19} and R^{20} are, independently, H, CH₃, C₂H₅, n-C₃H₇, i-C₃H₇, i-C₄H₉, CH(C₂H₅)₂, CH₂-cyclopropyl or cyclopentyl; or R^{19} and R^{20} together with the carbon atom to which they are attached form a 3-membered carbocyclic ring.

Preferably R²¹ is H or CH₃.

Preferably R²² is H or CH₃.

Preferably R²³ is H or CH₃.

Preferably R²⁴ is H or CH₃.

Compounds of formula (II):

10

15

20

25

5

where R^1 and R^2 are as defined above for a compound of formula (I) and Y is halogen, hydroxy or C_{1-5} alkoxy, are useful as intermediates in the preparation of compounds of formula (I).

Some compounds of formula (II) are already known in the literature [B.Iddon et al. *J.Chem. Soc. PerkinTrans. 1*, 1341 (1996); M.Begtrup et al., *Acta Chemica Scand., 19*, 2022 (1965); D.R.Buckle et al., *J.Chem.Res, Syn. 10*, 292 (1982); and A.Peratoner et al., *Sci.Fis.Mat.Nat.Rend 5*, 16 (1907)] but others are novel.

Therefore, in another aspect the present invention provides a compound of formula (II) where R^1 and R^2 are as defined above for a compound of formula (I) and Y is halogen, hydroxy or C_{1-5} alkoxy; provided that when R^1 is chloro and R^2 is 4-CH₃O-C₆H₄-CH₂-, Y is not C_2H_5O ; when R^1 is CH₃O and R^2 is CH₃, Y is not C_2H_5O ; when R^1 is bromo and R^2 is CH₃OCH₂, Y is not CH₃O; and when R^1 is CH₃ and R^2 is C_2H_5 , Y is not OH.

Preferably Y is hydroxy, chloro, fluoro or C₁₋₃ alkoxy.

Some compounds of formula (IIIa) are also novel but some are described in the literature [see, for example, L. A Paquette et al., J. Amer. Chem Soc. 99, 3734 (1977); H. Plieninger et al., Chem. Ber. 109, 2121 (1976); Kasansski et al., Zh. Obshch.Khim. (1959), 29, 2588; and A. J. Kirby et al., J. Chem. Soc., Perkin Trans. 2, 1997, 1081].

WO 2004/018438 PCT/EP2003/009111

- 11 -

Anilines of formula (IIIa) are novel when R^{13} , R^{14} , R^{15} , R^{16} , Q and X are as defined above for a compound of formula (I); provided that when R^{13} , R^{14} , R^{15} and R^{16} are each H then X is not CH₂ when Q is a double bond and X is not CH₂CH₂ when Q is a single bond or a double bond; and when R^{13} is CH₃, R^{14} is OCH₃ and R^{15} and R^{16} are both H then X is not CH₂CH₂ when Q is a single bond.

Therefore, in a further aspect, the present invention provides a compound of formula (IIIa) where R^{13} , R^{14} , R^{15} , R^{16} , Q and X are as defined above for a compound of formula (I); provided that when R^{13} , R^{14} , R^{15} and R^{16} are each H then X is not CH₂ when Q is a double bond and X is not CH₂CH₂ when Q is a single bond or a double bond; and when R^{13} is CH₃, R^{14} is OCH₃ and R^{15} and R^{16} are both H then X is not CH₂CH₂ when Q is a single bond.

The compounds of formula (I), (II) and (IIIa) may exist as different geometric or optical isomers or in different tautomeric forms. This invention covers, for each formula, all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.

The compounds in Tables 1 to 28 below illustrate compounds of the invention.

Table 1 provides 59 compounds of formula (II) wherein R^1 , R^2 and Y are as defined in Table 1.

20

5

10

15

Table 1

Compound Number	R ¹	R ²	Y
1.01	CHF ₂	CH ₃	OH
1.02	CHF ₂	CH ₃	Cl
1.03	CHF ₂	CH ₃	OCH ₃
1.04	CHF ₂	CH ₃	OC ₂ H ₅
1.05	CHF ₂	CH ₃	$OC_3H_7(n)$
1.06	CHF ₂	CH ₃	$OC_3H_7(i)$
1.07	CHF ₂	C ₂ H ₅	OH
1.08	CHF ₂	C ₂ H ₅	Cl
1.09	CHF ₂	C_2H_5	OCH ₃
1.10	CHF ₂	C ₂ H ₅	OC ₂ H ₅
1.11	CHF ₂	C ₂ H ₅	$OC_3H_7(n)$

1.10	T		
1.12	CHF ₂	C ₂ H ₅	$OC_3H_7(i)$
1.13	CF ₃	CH ₃	OH
1.14	CF ₃	CH ₃	Cl
1.15	CF ₃	CH₃	OCH₃
1.16	CF ₃	CH ₃	OC ₂ H ₅
1.17	CF ₃	CH ₃	$OC_3H_7(n)$
1.18	CF ₃	CH ₃	$OC_3H_7(i)$
1.19	CF ₃	C ₂ H ₅	OH
1.20	CF ₃	C ₂ H ₅	Cl
1.21	CF ₃	C ₂ H ₅	OCH ₃
1.22	CF ₃	C ₂ H ₅	OC ₂ H ₅
1.23	CF ₃	C ₂ H ₅	$OC_3H_7(n)$
1.24	CF ₃	C ₂ H ₅	$OC_3H_7(i)$
1.25	CF ₃	CH ₂ OCH ₃	OH
1.26	CF ₃	CH ₂ OCH ₃	Cl
1.27	CF ₃	CH ₂ OCH ₃	OCH ₃
1.28	CF ₃	CH ₂ OCH ₃	OC ₂ H ₅
1.29	CF ₃	CH ₂ OCH ₃	$OC_3H_7(n)$
1.30	CF ₃	CH ₂ OCH ₃	$OC_3H_7(i)$
1.31	CF ₃	CH ₃	F
1.32	CHF ₂	CH ₃	F
1.33	CHF ₂	CH ₂ OCH ₃	OH
1.34	CHF ₂	CH ₂ OCH ₃	OCH ₃
1.35	CHF ₂	CH ₂ OCH ₃	
1.36	CF ₃	CH ₂ SCH ₃	OC ₂ H ₅
1.37	CF ₃	CH ₂ SCH ₃	OCH
1.38	CN CN	CH ₂ SCH ₃	OCH ₃
1.39	OCF ₃	CH ₃	OCH ₃
1.40	NO ₂	CH ₃	OCH₃
1.41	CH ₃	CH ₃	OCH ₃
1.42	CH ₃	CH ₃	OH
1.43	CH ₃	CH ₃	OCH₃
1.44			Cl
1.45	CH ₃	C ₂ H ₅	OH
1.46	C ₂ F ₅	CH₃	OCH ₃
	CF ₃	CF ₃	OCH ₃
1.47	CH ₃	CF ₃	OCH ₃
1.48	CH ₂ F	CH₃	OH
1.49	CH ₂ F	CH ₃	Cl
1.50	CH ₂ F	CH ₃	OCH₃
1.51	CH ₂ F	CH₃	OC ₂ H ₅
1.52	CH ₂ F	CH ₃	$OC_3H_7(n)$
1.53	CH ₂ F	CH ₃	$OC_3H_7(i)$
1.54	CH ₂ F	C_2H_5	OH
1.55	CH ₂ F	C_2H_5	C1
1.56	CH ₂ F	C_2H_5	OCH ₃
1.57	CH ₂ F	C_2H_5	OC ₂ H ₅

1.58	CH ₂ F	C ₂ H ₅	$OC_3H_7(n)$
1.59	CH ₂ F	C ₂ H ₅	$OC_2H_2(i)$

Table X represents Table 2 [when X is 2], Table 3 [when X is 3], Table 4 [when X is 4], Table 5 [when X is 5], Table 6 [when X is 6] and represents Table 7 [when X is 7].

5 <u>Table X</u>

Cmpd. No.	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^6	\mathbb{R}^7
X.001	CH ₃	Н	phenyl	H
X.002	CH ₃	CH ₂ C≡CH	phenyl	H
X.003	CH ₃	Н	2'-fluorophenyl	H
X.004	CH ₃	Н	3'-fluorophenyl	Н
X.005	CH ₃	H	4'-fluorophenyl	H
X.006	C ₂ H ₅	Н	4'-fluorophenyl	H
X.007	CH ₂ OCH ₃	H	4'-fluorophenyl	H
X.008	CH ₃	COCH ₃	4'-fluorophenyl	H
X.009	CH ₃	COCH ₂ OCH ₃	4'-fluorophenyl	H
X.010	CH ₃	CH ₂ C≡CH	4'-fluorophenyl	H
X.011	CH ₃	CH=C=CH ₂	4'-fluorophenyl	H
X.012	CH ₃	COO-tert-Bu	4'-fluorophenyl	H
X.013	CH ₃	Н	4'-fluorophenyl	F
X.014	CH ₃	Н	4'-fluorophenyl	CH ₃
X.015	CH ₃	H	2'-chlorophenyl	H
X.016	CH ₃	Н	3'-chlorophenyl	H
X.017	CH ₃	Н	4'-chlorophenyl	H
X.018	C ₂ H ₅	Н	4'-chlorophenyl	H
X.019	CH ₂ OCH ₃	Н	4'-chlorophenyl	H
X.020	CH ₃	COCH ₃	4'-chlorophenyl	H
X.021	CH ₃	COCH ₂ OCH ₃	4'-chlorophenyl	H
X.022	CH ₃	CH₂C≡CH	4'-chlorophenyl	H
X.023	CH ₃	CH=C=CH ₂	4'-chlorophenyl	H
X.024	CH ₃	COO-tert-Bu	4'-chlorophenyl	H
X.025	CH ₃	Н	4'-chlorophenyl	F
X.026	CH ₃	Н	4'-chlorophenyl	CH ₃
X.027	CH ₃	Н	2'-bromophenyl	H
X.028	CH ₃	Н	3'-bromophenyl	H
X.029	CH ₃	Н	4'-bromophenyl	H
X.030	C ₂ H ₅	Н	4'-bromophenyl	H
X.031	CH ₂ OCH ₃	Н	4'-bromophenyl	H
X.032	CH ₃	COCH ₃	4'-bromophenyl	H
X.033	CH ₃	COCH ₂ OCH ₃	4'-bromophenyl	H
X.034	CH ₃	CH ₂ C≡CH	4'-bromophenyl	H
X.035	CH ₃	CH=C=CH ₂	4'-bromophenyl	H
X.036	CH ₃	COO-tert-Bu	4'-bromophenyl	H
X.037	CH ₃	Н	4'-bromophenyl	F
X.038	CH ₃	Н	4'-bromophenyl	CH ₃
X.039	CH ₃	H	2'-iodophenyl	H
X.040	CH ₃	H	3'-iodophenyl	H
X.041	CH ₃	H	4'-iodophenyl	H
X.042	CH ₃	H	2'-CF ₃ -phenyl	H
X.043	CH ₃	H	3'-CF ₃ -phenyl	H

A.044 CH3 H 4'-CF ₇ -phenyl H X.045 C,H3 H H 4'-CF ₇ -phenyl H X.046 CH ₉ CCH ₃ H 4'-CF ₇ -phenyl H X.048 CH3 COCH ₃ CCH ₃ 4'-CF ₇ -phenyl H X.048 CH3 COCH ₂ CH 4'-CF ₇ -phenyl H X.049 CH3 COC-dert-Bu 4'-CF ₇ -phenyl H X.051 CH3 H 2'-CCF ₇ -phenyl H X.051 CH3 H 2'-CCF ₇ -phenyl H X.053 CH3 H 4'-CCF ₇ -phenyl H X.053 CH3 H 4'-CCF ₇ -phenyl H X.055 CH ₂ CH3 H 4'-CCF ₇ -phenyl H X.055 CH ₂ CCH3 H 4'-CCF ₇ -phenyl H X.056 CH3 COCH3 4'-CCF ₇ -phenyl H X.057 CH3 COCH ₂ CH3 4'-CCF ₇ -phenyl H X.058 CH3 CH2-C=CH <th>V 044</th> <th>CIT</th> <th></th> <th>······································</th> <th></th>	V 044	CIT		······································	
X.046	X.044	CH ₃	H	4'-CF ₃ -phenyl	H
X.047 CH ₃ COCH ₅ 4°-CF ₃ phenyl H X.048 CH ₃ COCH ₅ CCH ₃ 4°-CF ₃ phenyl H X.059 CH ₃ CB _C CCH 4°-CF ₃ phenyl H X.050 CH ₃ COO-tert-Bu 4°-CF ₃ phenyl H X.051 CH ₃ H 2°-OCF ₃ phenyl H X.052 CH ₃ H 4°-OCF ₃ phenyl H X.053 CH ₃ H 4°-OCF ₃ phenyl H X.054 C ₃ H ₅ H 4°-OCF ₃ phenyl H X.055 CH ₃ OCH ₃ H 4°-OCF ₃ phenyl H X.056 CH ₃ CCH ₃ 4°-OCF ₃ phenyl H X.057 CH ₃ COCH ₃ CCH ₃ 4°-OCF ₃ phenyl H X.058 CH ₃ CH ₃ CCH 4°-OCF ₃ phenyl H X.059 CH ₃ CH ₄ CCH 4°-OCF ₃ phenyl H X.060 CH ₃ CH ² CCH 4°-OCF ₃ phenyl H X.061 CH ₃ <					H
X.048					H
X.049					
X.050					H
X.051 CH ₃ H 2'-OCF ₃ -Phenyl H X.052 CH ₃ H 3'-OCF ₃ -Phenyl H X.053 CH ₃ H 4'-OCF ₃ -Phenyl H X.054 C ₂ H ₃ H 4'-OCF ₃ -Phenyl H X.055 CH ₂ OCH ₃ H 4'-OCF ₃ -Phenyl H X.055 CH ₃ COCH ₃ A'-OCF ₃ -Phenyl H X.055 CH ₃ COCH ₃ COCH ₃ A'-OCF ₃ -Phenyl H X.057 CH ₃ COCH ₃ OCH ₃ A'-OCF ₃ -Phenyl H X.058 CH ₃ COCH ₃ OCH ₃ A'-OCF ₃ -Phenyl H X.059 CH ₃ COO-tert-Bu A'-OCF ₃ -Phenyl H X.050 CH ₃ COO-tert-Bu A'-OCF ₃ -Phenyl H X.060 CH ₃ H A'-SCF ₃ -Phenyl H X.061 CH ₃ H A'-SCF ₃ -Phenyl H X.062 CH ₃ H 2'-CH-NOH-Phenyl H X.063 CH ₃ H 3'-CH-NOH-Phenyl H X.064 CH ₃ H A'-CH-NOH-Phenyl H X.065 CH ₃ H 2'-CH-NOCH ₃ -Phenyl H X.066 CH ₃ H 2'-CH-NOCH ₃ -Phenyl H X.067 CH ₃ H 3'-CH-NOCH ₃ -Phenyl H X.068 CH ₃ H 3'-CH-NOCH ₃ -Phenyl H X.069 CH ₃ H 3'-CH-NOCH ₃ -Phenyl H X.069 CH ₃ H 3'-CH-NOCH ₃ -Phenyl H X.070 CH ₃ H 3'-CH-NOCH ₃ -Phenyl H X.071 CH ₃ H 2'-CH-NOCH ₃ -Phenyl H X.072 CH ₃ H 3'-CH-NOCH ₃ -Phenyl H X.073 CH ₃ H 3'-CN-Phenyl H X.074 CH ₃ H 3'-CN-Phenyl H X.075 CH ₃ H 3'-CN-Phenyl H X.076 CH ₃ H 3'-CN-Phenyl H X.077 CH ₃ H 3'-CN-Phenyl H X.078 CH ₃ H 3'-A'-difluorophenyl H X.079 CH ₃ H 3'-A'-difluorophenyl H X.070 CH ₃ H 3'-A'-difluorophenyl H X.071 CH ₃ H 3'-A'-difluorophenyl H X.072 CH ₃ H 3'-A'-difluorophenyl H X.074 CH ₃ H 3'-A'-difluorophenyl H X.075 CH ₃ H 3'-A'-difluorophenyl H X.076 CH ₃ H 3'-A'-difluorophenyl H X.077 CH ₃ H 3'-A'-difluorophenyl H X.080 CH ₃ COC-tert-Bu 3'-A'-difluorophenyl H X.081 CH ₃ COC-tert-Bu 3'-A'-difluorophenyl H X.082 CH ₃ COC-tert-Bu 3'-A'-difluor					H
X.052					Н
X.053 CH ₃ H 4'-OCF ₃ -phenyl H X.054 C ₃ H ₃ H 4'-OCF ₃ -phenyl H X.055 CH ₃ OCH ₃ H 4'-OCF ₃ -phenyl H X.056 CH ₃ COCH ₃ OCH ₃ 4'-OCF ₃ -phenyl H X.057 CH ₃ COCH ₂ OCH ₃ 4'-OCF ₃ -phenyl H X.058 CH ₃ CHC-CH ₂ 4'-OCF ₃ -phenyl H X.059 CH ₃ CH-C-CH ₂ 4'-OCF ₃ -phenyl H X.060 CH ₃ CH-C-CH ₂ 4'-OCF ₃ -phenyl H X.061 CH ₃ H 4'-SCF ₃ -phenyl H X.061 CH ₃ H 2'-CH-NOH-phenyl H X.062 CH ₃ H 2'-CH-NOH-phenyl H X.063 CH ₃ H 4'-CH-NOH-phenyl H X.064 CH ₃ H 4'-CH-NOH-phenyl H X.065 CH ₃ H 2'-CH-NOH-phenyl H X.066 CH ₃ <td< td=""><td></td><td></td><td></td><td></td><td>H</td></td<>					H
X.054					H
X.055					H
X.056					H
X.057 CH ₃ COCH ₂ CCH ₃ 4'-OCF ₂ -phenyl H X.058 CH ₃ CH ₂ C=CH 4'-OCF ₂ -phenyl H X.059 CH ₃ CH ₂ C=CH 4'-OCF ₂ -phenyl H X.060 CH ₃ CH=C-CH ₂ 4'-OCF ₂ -phenyl H X.061 CH ₃ H 4'-SCF ₂ -phenyl H X.061 CH ₃ H 2'-CH=NOH-phenyl H X.062 CH ₃ H 2'-CH=NOH-phenyl H X.063 CH ₃ H 3'-CH=NOH-phenyl H X.065 CH ₃ H 2'-CH=NOH-phenyl H X.066 CH ₃ H 2'-CH=NOCH ₃ -phenyl H X.067 CH ₃ H 4'-CH=NOCH ₃ -phenyl H X.068 CH ₃ H 2'-CH-NOC ₃ -phenyl H X.070 CH ₃ H 2'-CN-phenyl H X.071 CH ₃ H 4'-CH=NOC ₃ -phenyl H X.072 CH ₃ H				4'-OCF ₃ -phenyl	Н
X.058				4'-OCF ₃ -phenyl	Н
X.059					Н
X.060					Н
X.061				4'-OCF ₃ -phenyl	H
X.062					H
X.063 CH ₃ H 3'-CH=NOH-phenyl H X.064 CH ₃ H 4'-CH=NOH-phenyl H X.065 CH ₃ H 2'-CH=NOCH ₃ -phenyl H X.066 CH ₃ H 3'-CH=NOCH ₃ -phenyl H X.067 CH ₃ H 4'-CH=NOCH ₃ -phenyl H X.068 CH ₃ H 4'-CH=NOCH ₃ -phenyl H X.069 CH ₃ H 2'-CH=NOC ₃ H ₃ -phenyl H X.070 CH ₃ H 3'-CH=NOC ₃ H ₃ -phenyl H X.071 CH ₃ H 2'-CN-phenyl H X.072 CH ₃ H 2'-CN-phenyl H X.073 CH ₃ H 3'-CN-phenyl H X.074 CH ₃ H 2'-NO ₂ -phenyl H X.075 CH ₃ H 3'-NO ₂ -phenyl H X.076 CH ₃ H 3'-NO ₂ -phenyl H X.077 CH ₃ H 3'-NO ₂ -phenyl H X.078 C ₂ H ₃ H 3'-NO ₂ -phenyl H X.079 CH ₃ H 3'-NO ₂ -phenyl H X.070 CH ₃ H 3'-NO ₂ -phenyl H X.071 CH ₃ H 3'-NO ₂ -phenyl H X.072 CH ₃ H 3'-NO ₂ -phenyl H X.074 CH ₃ H 3'-NO ₂ -phenyl H X.075 CH ₃ H 3'-NO ₂ -phenyl H X.076 CH ₃ H 3'-NO ₂ -phenyl H X.077 CH ₃ H 3'-NO ₂ -phenyl H X.078 C ₂ H ₅ H 3'-NO ₂ -phenyl H X.080 CH ₃ CH ₃ COCH ₃ 3'-A'-difluorophenyl H X.080 CH ₃ CH ₃ COCH ₃ 3'-A'-difluorophenyl H X.081 CH ₃ COCH ₃ 3'-A'-difluorophenyl H X.082 CH ₃ CH ₅ CH ₅ CH 3'-A'-difluorophenyl H X.083 CH ₃ COO-tert-Bu 3'-A'-difluorophenyl H X.084 CH ₃ CH ₅ CH ₅ H 3'-A'-difluorophenyl H X.085 CH ₃ H 3'-A'-difluorophenyl H X.086 CH ₃ H 3'-A'-difluorophenyl H X.087 CH ₃ H 3'-A'-difluorophenyl H X.088 C ₁ H ₃ H 3'-A'-difluorophenyl H X.090 CH ₃ COCH ₃ 3'-A'-difluorophenyl H X.091 CH ₃ COCH ₃ 3'-A'-difluorophenyl H X.092 CH ₃ CH ₅ C CH 3'-A'-difluorophenyl H X.093 CH ₃ COCH ₃ 3'-A'-difluorophenyl H X.094 CH ₃ COCH ₂ CH ₂ 3'-A'-difluorophenyl H X.095 CH ₃ CH ₅ C CH 3'-A'-difluorophenyl H				4'-SCF ₃ -phenyl	H
X.064					H
X.065					Н
X.066 CH ₃					Н
X.067				2'-CH=NOCH ₃ -phenyl	H
X.068					H
X.069 CH ₃ H 3'-CH=NOC ₂ H ₅ -phenyl H X.070 CH ₃ H 4'-CH=NOC ₂ H ₅ -phenyl H X.071 CH ₃ H 4'-CH=NOC ₂ H ₅ -phenyl H X.071 CH ₃ H 2'-CN-phenyl H X.072 CH ₃ H 3'-CN-phenyl H X.073 CH ₃ H 2'-NO ₂ -phenyl H X.074 CH ₃ H 2'-NO ₂ -phenyl H X.075 CH ₃ H 3'-NO ₂ -phenyl H X.076 CH ₃ H 3'-NO ₂ -phenyl H X.078 C ₂ H ₃ H 3',4'-difluorophenyl H X.078 C ₂ H ₃ H 3',4'-difluorophenyl H X.080 CH ₃ COCH ₃ 3',4'-difluorophenyl H X.081 CH ₃ COCH ₂ OCH ₃ 3',4'-difluorophenyl H X.082 CH ₃ CH ₂ C=CH 3',4'-difluorophenyl H X.083 CH ₃ <					H
X.070 CH3 H 4'-CH=NOC2H5-phenyl H X.071 CH3 H 2'-CN-phenyl H X.072 CH3 H 3'-CN-phenyl H X.073 CH3 H 4'-CN-phenyl H X.074 CH3 H 2'-NO2-phenyl H X.075 CH3 H 3'-NO2-phenyl H X.076 CH3 H 4'-NO2-phenyl H X.077 CH3 H 3',4'-difluorophenyl H X.078 C,H5 H 3',4'-difluorophenyl H X.079 CH2OCH3 H 3',4'-difluorophenyl H X.080 CH3 COCH3 3',4'-difluorophenyl H X.081 CH3 COCH2OCH3 3',4'-difluorophenyl H X.082 CH3 CH2C=CH 3',4'-difluorophenyl H X.083 CH3 COO-tert-Bu 3',4'-difluorophenyl H X.084 CH3 H 3',4'-difluorophenyl					Н
X.071					H
X.072				4'-CH=NOC ₂ H ₅ -phenyl	H
X.073					H
X.074					H
X.075					Н
X.076 CH3 H 4'-NO2-phenyl H X.077 CH3 H 3',4'-difluorophenyl H X.078 C2H5 H 3',4'-difluorophenyl H X.079 CH2OCH3 H 3',4'-difluorophenyl H X.080 CH3 COCH3 3',4'-difluorophenyl H X.081 CH3 COCH2OCH3 3',4'-difluorophenyl H X.081 CH3 COCH2OCH3 3',4'-difluorophenyl H X.082 CH3 CH2C=CH 3',4'-difluorophenyl H X.083 CH3 COO-tert-Bu 3',4'-difluorophenyl H X.084 CH3 CH=C=CH2 3',4'-difluorophenyl F X.085 CH3 H 3',4'-difluorophenyl F X.086 CH3 H 3',4'-difluorophenyl H X.087 CH3 H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OC					H
X.077					H
X.078 C ₂ H ₅ H 3',4'-difluorophenyl H X.079 CH ₂ OCH ₃ H 3',4'-difluorophenyl H X.080 CH ₃ COCH ₃ 3',4'-difluorophenyl H X.081 CH ₃ COCH ₂ OCH ₃ 3',4'-difluorophenyl H X.082 CH ₃ CH ₂ C ≡ CH 3',4'-difluorophenyl H X.083 CH ₃ COO-tert-Bu 3',4'-difluorophenyl H X.084 CH ₃ CH=C=CH ₂ 3',4'-difluorophenyl H X.085 CH ₃ H 3',4'-difluorophenyl F X.086 CH ₃ H 3',4'-difluorophenyl CH ₃ X.087 CH ₃ H 3',4'-difluorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl					H
X.079				3',4'-difluorophenyl	H
X.080 CH ₃ COCH ₃ 3',4'-difluorophenyl H X.081 CH ₃ COCH ₂ OCH ₃ 3',4'-difluorophenyl H X.082 CH ₃ CH ₂ C ≡CH 3',4'-difluorophenyl H X.083 CH ₃ COO-tert-Bu 3',4'-difluorophenyl H X.084 CH ₃ CH=C=CH ₂ 3',4'-difluorophenyl H X.085 CH ₃ H 3',4'-difluorophenyl F X.086 CH ₃ H 3',4'-difluorophenyl CH ₃ X.087 CH ₃ H 3',4'-difluorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≡ CH 3',4'-dichlorophenyl H X.093 CH ₃ CH ₂ C = CH 3',4'-dichlorophenyl<				3',4'-difluorophenyl	H
X.081 CH ₃ COCH ₂ OCH ₃ 3',4'-diffluorophenyl H X.082 CH ₃ CH ₂ C ≡ CH 3',4'-diffluorophenyl H X.083 CH ₃ COO-tert-Bu 3',4'-diffluorophenyl H X.084 CH ₃ CH=C=CH ₂ 3',4'-diffluorophenyl H X.085 CH ₃ H 3',4'-diffluorophenyl F X.086 CH ₃ H 3',4'-diffluorophenyl CH ₃ X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≡ CH 3',4'-dichlorophenyl H X.093 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlo					H
X.082 CH ₃ CH ₂ C ≡ CH 3',4'-difluorophenyl H X.083 CH ₃ COO-tert-Bu 3',4'-difluorophenyl H X.084 CH ₃ CH=C=CH ₂ 3',4'-difluorophenyl H X.085 CH ₃ H 3',4'-difluorophenyl F X.086 CH ₃ H 3',4'-difluorophenyl CH ₃ X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≅CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl <t< td=""><td></td><td></td><td></td><td>3',4'-difluorophenyl</td><td>H</td></t<>				3',4'-difluorophenyl	H
X.083 CH ₃ COO-tert-Bu 3',4'-difluorophenyl H X.084 CH ₃ CH=C=CH ₂ 3',4'-difluorophenyl H X.085 CH ₃ H 3',4'-difluorophenyl F X.086 CH ₃ H 3',4'-difluorophenyl CH ₃ X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≅CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ <td></td> <td></td> <td></td> <td></td> <td>H</td>					H
X.084 CH ₃ CH=C=CH ₂ 3',4'-difluorophenyl H X.085 CH ₃ H 3',4'-difluorophenyl F X.086 CH ₃ H 3',4'-difluorophenyl CH ₃ X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≅CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 3',4'-dichlorophenyl CH ₃					Н
X.085 CH ₃ H 3',4'-diffuorophenyl F X.086 CH ₃ H 3',4'-diffuorophenyl CH ₃ X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≅CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.098 C.H H 4'-chloro-3'-fluoro-phenyl H <td></td> <td></td> <td></td> <td></td> <td>Н</td>					Н
X.086 CH ₃ H 3',4'-diffuorophenyl CH ₃ X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≅CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichloro-3'-fluoro-phenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C. H H 4'-chloro-3'-fluoro-phenyl H					H
X.087 CH ₃ H 3',4'-dichlorophenyl H X.088 C ₂ H ₅ H 3',4'-dichlorophenyl H X.089 CH ₂ OCH ₃ H 3',4'-dichlorophenyl H X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≡ CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichloro-3'-fluoro-phenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C. H H 4'-chloro-3'-fluoro-phenyl H					F
X.088 C₂H₂ H 3',4'-dichlorophenyl H X.089 CH₂OCH₃ H 3',4'-dichlorophenyl H X.090 CH₃ COCH₃ 3',4'-dichlorophenyl H X.091 CH₃ COCH₂OCH₃ 3',4'-dichlorophenyl H X.092 CH₃ CH₂C≡CH 3',4'-dichlorophenyl H X.093 CH₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH₃ CH=C=CH₂ 3',4'-dichlorophenyl H X.095 CH₃ H 3',4'-dichlorophenyl F X.096 CH₃ H 3',4'-dichloro-3'-fluoro-phenyl CH₃ X.097 CH₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-3'-fluoro-phenyl H					CH ₃
X.089 CH₂OCH₃ H 3',4'-dichlorophenyl H X.090 CH₃ COCH₃ 3',4'-dichlorophenyl H X.091 CH₃ COCH₂OCH₃ 3',4'-dichlorophenyl H X.092 CH₃ CH₂C≡CH 3',4'-dichlorophenyl H X.093 CH₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH₃ CH=C=CH₂ 3',4'-dichlorophenyl H X.095 CH₃ H 3',4'-dichlorophenyl F X.096 CH₃ H 3',4'-dichlorophenyl CH₃ X.097 CH₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-3'-fluoro-phenyl H					H
X.090 CH ₃ COCH ₃ 3',4'-dichlorophenyl H X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≡ CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C. H H 4'-chloro-3'-fluoro-phenyl H				3',4'-dichlorophenyl	H
X.091 CH ₃ COCH ₂ OCH ₃ 3',4'-dichlorophenyl H X.092 CH ₃ CH ₂ C ≡ CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-3'-fluoro-phenyl H				3',4'-dichlorophenyl	H
X.092 CH3 CH2C≡CH 3',4'-dichlorophenyl H X.093 CH3 COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH3 CH=C=CH2 3',4'-dichlorophenyl H X.095 CH3 H 3',4'-dichlorophenyl F X.096 CH3 H 3',4'-dichlorophenyl CH3 X.097 CH3 H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-3'-fluoro-phenyl H					H
X.092 CH ₃ CH ₂ C≡CH 3',4'-dichlorophenyl H X.093 CH ₃ COO-tert-Bu 3',4'-dichlorophenyl H X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-3'-fluoro-phenyl H				3',4'-dichlorophenyl	H
X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-phenyl H					Н
X.094 CH ₃ CH=C=CH ₂ 3',4'-dichlorophenyl H X.095 CH ₃ H 3',4'-dichlorophenyl F X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H X.098 C. H H X.098 X.098 C. H H X.098					
X.095 CH3 H 3',4'-dichlorophenyl F X.096 CH3 H 3',4'-dichlorophenyl CH3 X.097 CH3 H 4'-chloro-3'-fluoro-phenyl H X.098 C.H H 4'-chloro-3'-fluoro-phenyl H					
X.096 CH ₃ H 3',4'-dichlorophenyl CH ₃ X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H					
X.097 CH ₃ H 4'-chloro-3'-fluoro-phenyl H					
1 X 119X C-H. 177 43 13 03 05 1				4'-chloro-3'-fluoro-phenyl	
	A.098	C_2H_5	Н	4'-chloro-3'-fluoro-phenyl	

X.099	CH ₂ OCH ₃	Н	4'-chloro-3'-fluoro-phenyl	Н
X.100	CH ₃	COCH ₃	4'-chloro-3'-fluoro-phenyl	H
X.101	CH ₃	COCH ₂ OCH ₃	4'-chloro-3'-fluoro-phenyl	H
X.102	CH ₃	CH ₂ C≡CH	4'-chloro-3'-fluoro-phenyl	H
X.103	CH ₃	COO-tert-Bu	4'-chloro-3'-fluoro-phenyl	H
X.104	CH ₃	CH=C=CH ₂	4'-chloro-3'-fluoro-phenyl	H
X.105	CH ₃	Н	4'-chloro-3'-fluoro-phenyl	F
X.106	CH ₃	Н	4'-chloro-3'-fluoro-phenyl	CH ₃
X.107	CH ₃	Н	3'-chloro-4'-fluoro-phenyl	H H
X.108	C ₂ H ₅	Н	3'-chloro-4'-fluoro-phenyl	H
X.109	CH ₂ OCH ₃	Н	3'-chloro-4'-fluoro-phenyl	H
X.110	CH ₃	COCH ₃	3'-chloro-4'-fluoro-phenyl	H
X.111	CH ₃	COCH ₂ OCH ₃	3'-chloro-4'-fluoro-phenyl	H
X.112	CH ₃	CH ₂ C≡CH	3'-chloro-4'-fluoro-phenyl	H
X.113	CH ₃	COO-tert-Bu	3'-chloro-4'-fluoro-phenyl	H
X.114	CH ₃	CH=C=CH ₂	3'-chloro-4'-fluoro-phenyl	H
X.115	CH ₃	H	3'-chloro-4'-fluoro-phenyl	F
X.116	CH ₃	H	3'-chloro-4'-fluoro-phenyl	CH ₃
X.117	CH ₃	Н	2'-4'-dichloro-phenyl	H
X.118	CH ₂ OCH ₃	Н	2'-4'-dichloro-phenyl	H
X.119	CH ₃	Н	2'-4'-difluoro-phenyl	H
X.120	CH ₂ OCH ₃	H	2'-4'-difluoro-phenyl	H
X.121	CH ₃	H	CH ₂ CH ₂ CH ₃	H
X.122	C ₂ H ₅	Н	CH ₂ CH ₂ CH ₃	H
X.123	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₃	H
X.124	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₃	H
X.125	CH₃	H	CH ₂ CH ₂ CH ₃ CH ₃	H
X.126	C ₂ H ₅	H	CH ₂ CH ₂ CH ₃	H
X.127	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₃	H
X.128	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₃	H
X.129	CH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃	F
X.130	CH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃
X.131	CH ₃	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	H
X.132	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	H
X.133	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	H
X.134	CH ₃	CH ₂ C≡CH	$CH_2CH_2CH_2(C_2H_5)$	H
X.135	CH ₃	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	F
X.136	CH ₃	H	$CH_2CH_2CH_2(C_2H_5)$	CH ₃
X.137	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.138	C ₂ H ₅	H	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.139	CH₂OCH₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.140	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.141	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.142	CH ₃	CH ₂ C≡€H	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.143	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃) ₂	H
X.144	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	H
. X.145	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	F
X.146	CH ₃	Н	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₃
X.147	CH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.148	C ₂ H ₅	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.149	CH₂OCH₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.150	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.151	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.152	CH ₃	CH₂C≡CH	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.153	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H

X.154	CH ₃	CH-C-OH	CYY CYY CYY	
X.155	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.156	CH ₃	<u>H</u>	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	F
X.157	CH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	CH ₃
X.158	C_2H_5	<u>H</u>	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H
X.159	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H
X.160	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H
X.161	CH ₃	COCH3	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H
X.161 X.162	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H
X.162 X.163		CH ₂ C≡CH	$CH_2CH_2CH(C_2H_5)_2$	H
X.164	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H
X.165	CH₃	CH=C=CH ₂	$CH_2CH_2CH(C_2H_5)_2$	H
X.166	CH₃	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	F
	CH₃	<u>H</u>	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	CH ₃
X.167	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃	H
X.168	C ₂ H ₅	H	CH ₂ CH ₂ C(CH ₃) ₃	H
X.169	CH₂OCH₃	H	CH ₂ CH ₂ C(CH ₃) ₃	H
X.170 X.171	CH ₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₃	H
	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ C(CH ₃) ₃	H
X.172	CH₃	CH ₂ C ≡CH	CH ₂ CH ₂ C(CH ₃) ₃	H
X.173 X.174	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃) ₃	H
	CH ₃	CH=C=CH₂	CH ₂ CH ₂ C(CH ₃) ₃	H
X.175	CH₃	H	CH ₂ CH ₂ C(CH ₃) ₃	F
X.176	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃	CH ₃
X.177	CH₃	H	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.178	C ₂ H ₅	<u>H</u>	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.179	CH ₂ OCH ₃	<u>H</u>	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.180	CH ₃	COCH ₃	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.181	CH ₃	COCH ₂ OCH ₃	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.182	CH ₃	CH ₂ C ≡CH	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.183	CH ₃	COO-tert-Bu	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.184	CH ₃	CH=C=CH ₂	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H
X.185	CH ₃	H	$CH_2CH_2C(CH_3)_2(C_2H_5)$	F
X.186	CH ₃	<u> </u>	$CH_2CH_2C(CH_3)_2(C_2H_5)$	CH ₃
X.187	CH₃	<u>H</u>	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H
X.188	C ₂ H ₅	<u>H</u>	$CH_2CH_2C(CH_3)(C_2H_5)_2$	Н
X.189	CH ₂ OCH ₃	<u>H</u>	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H
X.190	CH ₃	COCH ₃	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H
X.191	CH ₃	COCH ₂ OCH ₃	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H
X.192	CH ₃	CH ₂ C ≢CH	$CH_2CH_2C(CH_3)(C_2H_5)_2$	Н
X.193	CH ₃	COO-tert-Bu	$CH_2CH_2C(CH_3)(C_2H_5)_2$	Н
X.194	CH ₃	CH=C=CH ₂	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H
X.195	CH ₃	<u>H</u>	$CH_2CH_2C(CH_3)(C_2H_5)_2$	F
X.196	CH ₃	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$	CH ₃
X.197	CH ₃	H	CH(CH ₃)CH ₂ CH ₃	Н
X.198	CYLOGY	H	CH(CH ₃)CH ₂ CH ₃	H
X.199	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH ₃	H
X.200	CH ₃	CH ₂ C≡CH	CH(CH₃)CH₂CH₃	H
X.201	CH ₃	<u>H</u>	CH(C ₂ H ₅)CH ₂ CH ₃	Н
X.202	C₂H₅	H	CH(C ₂ H ₅)CH ₂ CH ₃	H
X.203	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ CH ₃	Н
X.204	CH ₃	CH₂C≡CH	CH(C ₂ H ₅)CH ₂ CH ₃	Н
X.205	CH ₃	H	CH(CF₃)CH₂CH₃	H
X.206	C ₂ H ₅	H	CH(CF ₃)CH ₂ CH ₃	Н
X.207	CH ₂ OCH ₃	H	CH(CF ₃)CH ₂ CH ₃	Н
X.208	CH ₃	CH₂C≡CH	CH(CF ₃)CH ₂ CH ₃	H

4	-	
-		_

X.209	CIT	7.7		
X.210	CH ₃	H	CH(CH ₃)CH ₂ CH ₂ CH ₃	H
X.210 X.211	CH OCY	<u> </u>	CH(CH ₃)CH ₂ CH ₂ CH ₃	H
X.211 X.212	CH₂OCH₃	H	CH(CH ₃)CH ₂ CH ₂ CH ₃	H
X.212 X.213	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH ₂ CH ₃	H_
X.213 X.214	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H
	C ₂ H ₅	<u>H</u>	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H
X.215	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H
X.216	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H
X.217	CH ₃	H	CH(CF ₃)CH ₂ CH ₂ CH ₃	H
X.218	C ₂ H ₅	<u>H</u>	CH(CF ₃)CH ₂ CH ₂ CH ₃	H
X.219	CH ₃	<u> </u>	CH(CH ₃)CH ₂ CH(CH ₃) ₂	Н
X.220	C ₂ H ₅	<u>H</u>	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H
X.221	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂	Н
X.222	CH ₃	COCH ₃	CH(CH ₃)CH ₂ CH(CH ₃) ₂	Н
X.223	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H
X.224	CH ₃	CH₂C≡CH	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H
X.225	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(CH ₃) ₂	Н
X.226	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H
X.227	CH ₃	<u>H</u>	CH(CH ₃)CH ₂ CH(CH ₃) ₂	F
X.228	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂	CH ₃
X.229	CH ₃	H	$CH(CH_3)CH_2CH(CH_3)(C_2H_5)$	H
X.230	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.231	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.232	CH ₃	COCH ₃	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	Н
X.233	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.234	CH ₃	CH ₂ C ≅CH	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.235	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.236	CH ₃	CH=C=CH ₂	. CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	Н
X.237	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	F
X.238	CH ₃	Н	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	CH ₃
X.239	CH ₃	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.240	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.241	CH ₂ OCH ₃	Н	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.242	CH ₃	COCH₃	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.243	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.244	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.245	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(C ₂ H ₃) ₂	H
X.246	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.247	CH ₃	Н	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	F
X.248	CH ₃	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	CH ₃
X.249	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.250	C ₂ H ₅	Н	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.251	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.252	CH ₃	COCH ₃	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	
X.253	CH ₃	COCH ₂ OCH ₃	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.254	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.255	CH ₃	COO-tert-Bu		H
X.256	CH ₃	CH=C=CH ₂	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.257	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H
X.258	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	F
X.259	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	CH ₃
X.260	C ₂ H ₅	<u>н</u>	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.261	CH ₂ OCH ₃	<u>н</u> Н	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.262	CH ₃		CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.263	CH ₃	CH₂C≡€H H	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
		- П	$CH(C_2H_5)CH_2CH(C_2H_5)_2$	H

	1	0	
-	1	δ	•

X.264	C ₂ H ₅	H	.CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂	Н
X.265	CH ₂ OCH ₃	H	$CH(C_2H_5)CH_2CH(C_2H_5)_2$	H
X.266	CH ₃	CH ₂ C≡CH	$CH(C_2H_5)CH_2CH(C_2H_5)_2$	H
X.267	CH ₃	H	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H
X.268	C ₂ H ₅	H	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H
X.269	CH ₂ OCH ₃	H	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H
X.270	CH₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H
X.271	CH ₃	H	CH(CF ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H
X.272	CH ₃	Н	CH(CF ₃)CH ₂ CH(C ₂ H ₅) ₂	H
X.273	CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.274	C ₂ H ₅	Н	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.275	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.276	CH₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.277	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.278	CH ₃	CH ₂ C ≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.279	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.280	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₃	H
X.281	CH ₃	Н	CH(CH ₃)CH ₂ C(CH ₃) ₃	F
X.282	CH ₃	Н	CH(CH ₃)CH ₂ C(CH ₃) ₃	CH ₃
X.283	CH ₃	Н	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H H
X.284	C ₂ H ₅	Н	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.285	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.286	CH ₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.287	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.288	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.289	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.290	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.291	CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	F
X.292	CH ₃	Н	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	CH ₃
X.293	CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H H
X.294	C ₂ H ₅	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.295	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.296	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.297	CH ₃	Н	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H
X.298	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H
X.299	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H
X.300	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H
X.301	CH₃	Н	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.302	C ₂ H ₅	Н	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.303	CH ₂ OCH ₃	Н	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.304	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.305	CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.306	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.307	CH₂OCH₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.308	CH ₃	CH ₂ C ≡€H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.309	CH ₃	Н	CH(CF ₃)CH ₂ C(CH ₃) ₃	
X.310	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃) ₃	H
X.311	CH₂OCH₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₃	H
X.312	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃) ₃	H
X.313	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.314	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.315	CH₂OCH₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.316	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H
X.317	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
X.318	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H
			- 3/ CAAZC(C113)(C2115)/2	

X.319	CH ₂ OCH ₃	T.	CTY/CD \CY C/CTY \	
X.320	CH ₃	H	$CH(CF_3)CH_2C(CH_3)(C_2H_5)_2$	H
X.321		CH ₂ C≡CH	$CH(CF_3)CH_2C(CH_3)(C_2H_5)_2$	H
X.321 X.322	CH ₃	H	2'-tert-butyl-cyclopropyl	Н
	C ₂ H ₅	H	2'-tert-butyl-cyclopropyl	Н
X.323	CH ₂ OCH ₃	H	2'-tert-butyl-cyclopropyl	H
X.324	CH ₃	CH ₂ C≡CH	2'-tert-butyl-cyclopropyl	Н
X.325	CH₃	H	2'-isobutyl-cyclopropyl	H
X.326	C ₂ H ₅	H	2'-isobutyl-cyclopropyl	H
X.327	CH ₂ OCH ₃	H	2'-isobutyl-cyclopropyl	H
X.328	CH ₃	CH ₂ C≡CH	2'-isobutyl-cyclopropyl	H
X.329	CH₃	H	4',4'-dimethyl-cyclobutyl	H
X.330	C ₂ H ₅	H	4',4'-dimethyl-cyclobutyl	H
X.331	CH ₂ OCH ₃	H	4',4'-dimethyl-cyclobutyl	H
X.332	CH ₃	CH ₂ C≡CH	4',4'-dimethyl-cyclobutyl	H
X.333	CH ₃	Н	cyclopentyl	H
X.334	C ₂ H ₅	Н	cyclopentyl	H
X.335	CH ₂ OCH ₃	Н	cyclopentyl	H
X.336	CH ₃	CH ₂ C≡CH	cyclopentyl	
X.337	CH ₃	H	3'-methyl-cyclopentyl	H
X.338	C ₂ H ₅	H	3'-methyl-cyclopentyl	H
X.339	CH ₂ OCH ₃	H		Н
X.340	CH ₃	CH ₂ C≡CH	3'-methyl-cyclopentyl	H
X.341	CH ₃	H	3'-methyl-cyclopentyl	H
X.342	C ₂ H ₅	H	cyclohexyl	H
X.343	CH ₂ OCH ₃	H	cyclohexyl	H
X.344	CH ₃	CH ₂ C≡CH	cyclohexyl	H
X.345	CH ₃		cyclohexyl	H
X.346	C ₂ H ₅	<u>H</u>	3'-methyl-cyclohexyl	H
X.347	CH ₂ OCH ₃	H	3'-methyl-cyclohexyl	H
X.348		H	3'-methyl-cyclohexyl	H
X.349	CH ₃	CH ₂ C≡CH	3'-methyl-cyclohexyl	H
X.350	CH ₃	H	4'-methyl-cyclohexyl	H
X.351	C ₂ H ₅	<u>H</u>	4'-methyl-cyclohexyl	H
	CH₂OCH₃	H	4'-methyl-cyclohexyl	H
X.352	CH ₃	CH ₂ C≡CH	4'-methyl-cyclohexyl	Н
X.353	CH ₃	H	cycloheptyl	H
X.354	C ₂ H ₅	H	cycloheptyl	H
X.355	CH ₂ OCH ₃	H	cycloheptyl	Н
X.356	CH ₃	CH ₂ C≡CH	cycloheptyl	H
X.357	CH ₃	H	2'-thienyl	Н
X.358	C ₂ H ₅	H	2'-thienyl	Н
X.359	CH₂OCH₃	H	2'-thienyl	Н
X.360	CH ₃	CH ₂ C≡CH	2'-thienyl	H
X.361	CH ₃	H	3'-thienyl	H
X.362	C ₂ H ₅	H	3'-thienyl	Н
X.363	CH ₂ OCH ₃	H	3'-thienyl	H
X.364	CH ₃	CH ₂ C≡CH	3'-thienyl	H
X.365	CH ₃	Н	5'-chloro-2'-thienyl	H
X.366	C ₂ H ₅	H	5'-chloro-2'-thienyl	H
X.367	CH ₂ OCH ₃	Н	5'-chloro-2'-thienyl	H
X.368	CH ₃	CH ₂ C≡€H	5'-chloro-2'-thienyl	
X.369	CH ₃	H	2'-furyl	H
X.370	C ₂ H ₅	H	2'-furyl	H
X.371	CH ₂ OCH ₃	H	2'-furyl	H
X.372	CH ₃	CH ₂ C≡CH	2'-furyl	H
X.373	CH ₃	H	5'-chloro-2'-furyl	H
	·		J -cittoto-2 -turyl	H

			•	
X.374	C ₂ H ₅	Н	5'-chloro-2'-furyl	7.7
X.375	CH ₂ OCH ₃	H	5'-chloro-2'-furyl	H
X.376	CH ₃	CH ₂ C≡CH	5'-chloro-2'-furyl	H
X.377	CH ₃	H		H
X.378	C ₂ H ₅	H	2'-pyridyl	H
X.379	CH ₂ OCH ₃	H	2'-pyridyl	H
X.380	CH ₃	CH ₂ C≡CH	2'-pyridyl	H
X.381	CH ₃	H	2'-pyridyl	H
X.382	C ₂ H ₅	H	3'-pyridyl	H
X.383	CH ₂ OCH ₃	H	3'-pyridyl	H
X.384	CH ₃	CH ₂ C≡CH	3'-pyridyl	H
X.385	CH ₃	H	3'-pyridyl	H
X.386	C ₂ H ₅	H	4'-pyridyl	H
X.387	CH ₂ OCH ₃		4'-pyridyl	H
X.388	CH ₃	H	4'-pyridyl	H
X.389	CH ₃	CH ₂ C≡CH	4'-pyridyl	H
X.390	C ₂ H ₅	<u>H</u>	6'-chloro-3'-pyridyl	H
X.391	CH ₂ OCH ₃	<u> </u>	6'-chloro-3'-pyridyl	H
X.392		H	6'-chloro-3'-pyridyl	H
X.392 X.393	CH ₃	CH₂C≡CH	6'-chloro-3'-pyridyl	Н
	CH₃	H	6'-fluoro-3'-pyridyl	H
X.394	C ₂ H ₅	<u>H</u>	6'-fluoro-3'-pyridyl	Н
X.395	CH ₂ OCH ₃	H	6'-fluoro-3'-pyridyl	Н
X.396	CH ₃	CH ₂ C≡CH	6'-fluoro-3'-pyridyl	H
X.397	CH ₃	H	6'-bromo-3'-pyridyl	Н
X.398	C ₂ H ₅	H	6'-bromo-3'-pyridyl	H
X.399	CH ₂ OCH ₃	H	6'-bromo-3'-pyridyl	H
X.400	CH ₃	CH ₂ C≡CH	6'-bromo-3'-pyridyl	H
X.401	CH ₃	H	2'-oxazolyl	H
X.402	CH ₃	H	3'-isoxazolyl	Н
X.403	CH ₃	H	CH(CH ₃) ₂	H
X.404	C ₂ H ₅	H	CH(CH ₃) ₂	H
X.405	CH₂OCH₃	Н	CH(CH ₃) ₂	H
X.406	CH ₃	CH ₂ C≡€H	CH(CH ₃) ₂	H
X.407	CH ₃	H	4'-CH=NO(n)-C ₄ H ₉ -phenyl	H
X.408	CH ₃	Н	4'-CH=NO(iso)-C ₄ H ₉ -phenyl	H
X.409	CH ₃	H	4'-CH=NO(iso)-C ₃ H ₇ -phenyl	H
X.410	CH ₃	H	4'-CH=NO(n)-C ₃ H ₇ -phenyl	H
X.411	CH₃	H	Si(CH ₃) ₃	H
X.412	C_2H_5	H	Si(CH ₃) ₃	H
X.413	CH ₂ OCH ₃	H	Si(CH ₃) ₃	H
X.414	CH3	CH ₂ C ≡CH	Si(CH ₃) ₃	H
X.415	CH₃	H	CH ₂ Si(CH ₃) ₃	H
X.416	C ₂ H ₅	H	CH ₂ Si(CH ₃) ₃	H
X.416	CH ₂ OCH ₃	H	CH ₂ Si(CH ₃) ₃	H
X.418	CH3	CH₂C≡CH	CH ₂ Si(CH ₃) ₃	
X.419	CH ₃	H	CH(CH ₃)Si(CH ₃) ₃	H
X.420	C ₂ H ₅	H	CH(CH ₃)Si(CH ₃) ₃	H
X.421	CH₂OCH₃	Н	CH(CH ₃)Si(CH ₃) ₃	H
X.422	CH3	CH ₂ C≡CH	CH(CH ₃)Si(CH ₃) ₃ CH(CH ₃)Si(CH ₃) ₃	H
X.423	CH ₃	H	$CH_2CH_2Si(CH_3)_3$	H
X.424	C ₂ H ₅	H	CH ₂ CH ₂ Si(CH ₃) ₃ CH ₂ CH ₂ Si(CH ₃) ₃	H
X.425	CH ₂ OCH ₃	H	CH CH S:(CH)	H
X.426	CH3	CH₂C ≡CH	CH ₂ CH ₂ Si(CH ₃) ₃	H
X.427	CH ₃	H	CH2CH2Si(CH3)3	H
X.428	C ₂ H ₅	H	CH(CH ₃)CH ₂ Si(CH ₃) ₃	H
	<u> </u>		CH(CH ₃)CH ₂ Si(CH ₃) ₃	L_H

75.400	T	1		
X.429	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ Si(CH ₃) ₃	H
X.430	CH3	CH₂C≡CH	CH(CH ₃)CH ₂ Si(CH ₃) ₃	Н
X.431	CH ₃	H	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	Н
X.432	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	Н
X.433	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	Н
X.434	CH3	CH₂C≕CH	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	Н
X.435	CH ₃	Н	CH ₂ Si(CH ₃) ₂ C ₂ H ₅	H
X.436	CH ₃	H	CH ₂ Si(CH ₃) ₂ CH(CH ₃) ₂	H
X.437	CH ₃	Н	CH₂Si(CH₃)₂OCH₃	Н
X.438	CH ₃	H	CH ₂ CH ₂ Si(CH ₃) ₂ OCH ₃	Н
X.439	CH ₃	H	CH(CH ₃)Si(CH ₃) ₂ OCH ₃	Н
X.440	CH ₃	H	CH(CH ₃)CH ₂ Si(CH ₃) ₂ OCH ₃	Н
X.441	CH₃	H	2'-cyclopropyl-cyclopropyl	Н
X.442	C ₂ H ₅	H	2'-cyclopropyl-cyclopropyl	Н
X.443	CH₂OCH₃	Н	2'-cyclopropyl-cyclopropyl	H
X.444	CH ₃	CH ₂ C≡CH	2'-cyclopropyl-cyclopropyl	H
X.445	CH ₃	Н	2'-(α-CH ₃ -cyclopropyl)- cyclopropyl	Н
X.446	C₂H₅	Н	2'-(α-CH ₃ -cyclopropyl)- cyclopropyl	н
X.447	CH₂OCH₃	Н	2'-(α-CH ₃ -cyclopropyl)- cyclopropyl	Н
X.448	CH ₃	CH₂C≡€H	2'-(α-CH ₃ -cyclopropyl)- cyclopropyl	Н
X.449	CH ₃	H	2'-cyclobutyl-cyclopropyl	H
X.450	CH ₃	H	2'-cyclopentyl-cyclopropyl	Н
X.451	CH ₃	H	2'-cyclohexyl-cyclopropyl	H
X.452	CH ₃	H	4'-C≡CH-phenyl	Н
X.453	C ₂ H ₅	Н	4'-C≡CH-phenyl	H
X.454	CH ₃	Н	4'-C≡C-Si(CH ₃) ₃ -phenyl	H
X.455	C ₂ H ₅	Н	4'-C≡C-Si(CH ₃) ₃ -phenyl	H
X.456	CH ₃	Н	4'-C(H)=CH ₂ -phenyl	H
X.457	C ₂ H ₅	H	4'-C(H)=CH ₂ -phenyl	H
			· · · · · · · · · · · · · · · · · · ·	,

Table 2 provides 457 compounds of formula (I-2):

$$F_3C \longrightarrow R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^3$$

$$R^2$$

wherein R^2 , R^3 , R^6 and R^7 are as defined in Table 2.

Table 3 provides 457 compounds of formula (I-3):

$$F_{2}HC \xrightarrow{N}_{N} R^{3} \qquad (I-3)$$

wherein R², R³, R⁶ and R⁷ are as defined in Table 3.

Table 4 provides 457 compounds of formula (I-4):

$$FH_{2}C \xrightarrow{O} N \xrightarrow{R^{3}} R^{6}$$

$$N \xrightarrow{N} N$$

$$R^{3}$$

$$R^{6}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

wherein R^2 , R^3 , R^6 and R^7 are as defined in Table 4.

Table 5 provides 457 compounds of formula (I-5):

$$CIF_2C \xrightarrow{N}_{N} \xrightarrow{N}_{R^2} R^6$$
(I-5)

wherein R², R³, R⁶ and R⁷ are as defined in Table 5.

Table 6 provides 457 compounds of formula (I-6):

wherein R², R³, R⁶ and R⁷ are as defined in Table 6.

Table 7 provides 457 compounds of formula (I-7):

wherein R^2 , R^3 , R^6 and R^7 are as defined in Table 7.

Table Y represents Table 8 [when Y is 8], Table 9 [when Y is 9], Table 10 [when Y is 10], Table 11 [when Y is 11], Table 12 [when Y is 12], Table 13 [when Y is 13], Table 14 [when Y is 14], Table 15 [when Y is 15], Table 16 [when Y is 16], Table 17 [when Y is 17], Table 18 [when Y is 18] and represents Table 19 [when Y is 19].

Table Y

Compound No.	R ²	\mathbb{R}^3	R^6
Y.001	CH ₃	Н	phenyl
Y.002	CH ₃	CH ₂ C≡CH	phenyl
Y.003	CH ₃	H	2'-fluorophenyl
Y.004	CH ₃	H	3'-fluorophenyl
Y.005	CH ₃	H	4'-fluorophenyl
Y.006	C ₂ H ₅	Н	4'-fluorophenyl
Y.007	CH ₂ OCH ₃	H	4'-fluorophenyl
Y.008	CH ₃	COCH ₃	4'-fluorophenyl
Y.009	CH ₃	COCH ₂ OCH ₃	4'-fluorophenyl
Y.010	CH ₃	CH ₂ C ≡CH	4'-fluorophenyl
Y.011	CH₃	CH=C=CH ₂	4'-fluorophenyl
Y.012	CH ₃	COO-tert-Bu	4'-fluorophenyl
Y.013	CH ₃	Н	2'-chlorophenyl
Y.014	CH ₃	Н	3'-chlorophenyl
Y.015	CH ₃	Н	4'-chlorophenyl
Y.016	C ₂ H ₅	H	4'-chlorophenyl
Y.017	CH₂OCH₃	H	4'-chlorophenyl
Y.018	CH₃	COCH ₃	4'-chlorophenyl
Y.019	CH₃	COCH ₂ OCH ₃	4'-chlorophenyl
Y.020	CH ₃	CH ₂ C≡CH	4'-chlorophenyl

5

10

77.004			
Y.021	CH ₃	CH=C=CH ₂	4'-chlorophenyl
Y.022	CH ₃	COO-tert-Bu	4'-chlorophenyl
Y.023	CH ₃	H	2'-bromophenyl
Y.024	CH ₃	Н	3'-bromophenyl
Y.025	CH ₃	H	4'-bromophenyl
Y.026	C ₂ H ₅	H	4'-bromophenyl
Y.027	CH₂OCH₃	НН	4'-bromophenyl
Y.028	CH ₃	COCH ₃	4'-bromophenyl
Y.029	CH ₃	COCH ₂ OCH ₃	4'-bromophenyl
Y.030	CH ₃	CH ₂ C ≡CH	4'-bromophenyl
Y.031	CH ₃	CH=C=CH ₂	4'-bromophenyl
Y.032	CH ₃	COO-tert-Bu	4'-bromophenyl
Y.033	CH ₃	H	2'-iodophenyl
Y.034	CH ₃	H	3'-iodophenyl
Y.035	CH ₃	H	4'-iodophenyl
Y.036	CH ₃	H	2'-CF ₃ -phenyl
Y.037	CH ₃	H	3'-CF ₃ -phenyl
Y.038	CH ₃	H	4'-CF ₃ -phenyl
Y.039	C ₂ H ₅	Н	4'-CF ₃ -phenyl
Y.040	CH ₂ OCH ₃	H	4'-CF ₃ -phenyl
Y.041	CH ₃	COCH ₃	4'-CF ₃ -phenyl
Y.042	CH ₃	COCH ₂ OCH ₃	4'-CF ₃ -phenyl
Y.043	CH ₃	CH ₂ C≡CH	4'-CF ₃ -phenyl
Y.044	CH ₃	COO-tert-Bu	4'-CF ₃ -phenyl
Y.045	CH ₃	H	2'-OCF ₃ -phenyl
Y.046	CH₃	H	3'-OCF ₃ -phenyl
Y.047	CH ₃	H	4'-OCF ₃ -phenyl
Y.048	C ₂ H ₅	Н	4'-OCF ₃ -phenyl
Y.049	CH ₂ OCH ₃	Н	4'-OCF ₃ -phenyl
Y.050	CH ₃	COCH ₃	4'-OCF ₃ -phenyl
Y.051	CH ₃	COCH ₂ OCH ₃	4'-OCF ₃ -phenyl
Y.052	CH ₃	CH ₂ C≡CH	4'-OCF ₃ -phenyl
Y.053	CH ₃	COO-tert-Bu	4'-OCF ₃ -phenyl
Y.054	CH ₃	CH=C=CH ₂	4'-OCF ₃ -phenyl
Y.055	CH ₃	Н	4'-SCF ₃ -phenyl
Y.056	CH ₃	H	2'-CH=NOH-phenyl
Y.057	CH ₃	H	3'-CH=NOH-phenyl
Y.058	CH ₃	H	4'-CH=NOH-phenyl
Y.059	CH ₃	H	2'-CH=NOCH ₃ -phenyl
Y.060	CH ₃	Н	3'-CH=NOCH ₃ -phenyl
Y.061	CH ₃	Н	4'-CH=NOCH ₃ -phenyl
Y.062	CH ₃	Н	2'-CH=NOC ₂ H ₅ -phenyl
Y.063	CH ₃	Н	3'-CH=NOC ₂ H ₅ -phenyl
Y.064	CH ₃	Н	4'-CH=NOC ₂ H ₅ -phenyl
Y.065	CH ₃	Н	2'-CN-phenyl
Y.066	CH ₃	H	3'-CN-phenyl
Y.067	CH ₃	Н	4'-CN-phenyl
Y.068	CH ₃	H	2'-NO ₂ -phenyl
Y.069	CH ₃	H	3'-NO ₂ -phenyl
Y.070	CH ₃	Н	4'-NO ₂ -phenyl
Y.071	CH ₃	H	3',4'-difluorophenyl
Y.072	C ₂ H ₅	Н	3',4'-difluorophenyl
Y.073	CH ₂ OCH ₃	H	3',4'-difluorophenyl
Y.074	CH ₃	COCH ₃	3',4'-difluorophenyl
Y.075	CH ₃	COCH ₂ OCH ₃	3',4'-difluorophenyl
			J ,4 -unituoropnenyi

Y.076	CH ₃	CH ₂ C≡CH	3',4'-difluorophenyl
Y.077	CH ₃	COO-tert-Bu	3',4'-difluorophenyl
Y.078	CH ₃	CH=C=CH ₂	3',4'-difluorophenyl
Y.079	CH ₃	Н	3',4'-dichlorophenyl
Y.080	C ₂ H ₅	Н	3',4'-dichlorophenyl
Y.081	CH ₂ OCH ₃	Н	3',4'-dichlorophenyl
Y.082	CH ₃	COCH ₃	3',4'-dichlorophenyl
Y.083	CH ₃	COCH ₂ OCH ₃	3',4'-dichlorophenyl
Y.084	CH ₃	CH ₂ C≡CH	3',4'-dichlorophenyl
Y.085	CH ₃	COO-tert-Bu	3',4'-dichlorophenyl
Y.086	CH ₃	CH=C=CH ₂	3',4'-dichlorophenyl
Y.087	CH ₃	H	4'-chloro-3'-fluoro-phenyl
Y.088	C ₂ H ₅	H	4'-chloro-3'-fluoro-phenyl
Y.089	CH ₂ OCH ₃	H	4'-chloro-3'-fluoro-phenyl
Y.090	CH ₃	COCH ₃	4'-chloro-3'-fluoro-phenyl
Y.091	CH ₃	COCH ₂ OCH ₃	4'-chloro-3'-fluoro-phenyl
Y.092	CH ₃	CH ₂ C ≡€H	4'-chloro-3'-fluoro-phenyl
Y.093	CH ₃	COO-tert-Bu	4'-chloro-3'-fluoro-phenyl
Y.094	CH ₃	CH=C=CH ₂	4'-chloro-3'-fluoro-phenyl
Y.095	CH ₃	H	3'-chloro-4'-fluoro-phenyl
Y.096	C ₂ H ₅	H	3'-chloro-4'-fluoro-phenyl
Y.097	CH ₂ OCH ₃	H	3'-chloro-4'-fluoro-phenyl
Y.098	CH ₃	COCH ₃	3'-chloro-4'-fluoro-phenyl
Y.099	CH ₃	COCH ₂ OCH ₃	3'-chloro-4'-fluoro-phenyl
Y.100	CH ₃	CH ₂ C≡CH	3'-chloro-4'-fluoro-phenyl
Y.101 Y.102	CH ₃	COO-tert-Bu	3'-chloro-4'-fluoro-phenyl
Y.103	CH ₃	CH=C=CH ₂	3'-chloro-4'-fluoro-phenyl
Y.104	CH ₃	H	2'-4'-dichloro-phenyl
Y.105	CH ₂ OCH ₃	H	2'-4'-dichloro-phenyl
Y.106	CH OCH	H	2'-4'-difluoro-phenyl
Y.107	CH ₂ OCH ₃ CH ₃	H	2'-4'-difluoro-phenyl
Y.108	C ₂ H ₅	H	CH₂CH₂CH₃
Y.109	CH ₂ OCH ₃	H	CH₂CH₂CH₃
Y.110	CH ₃	H CH₂C = CH	CH ₂ CH ₂ CH ₃
Y.111	CH ₃		CH ₂ CH ₂ CH ₃
Y.112	C ₂ H ₅	H H	CH ₂ CH ₂ CH ₂ CH ₃
Y.113	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃
Y.114	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₂ CH ₃
Y.115	CH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃
Y.116	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)
Y.117	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)
Y.118	CH ₃	CH ₂ C ≡CH	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)
Y.119	CH ₃	H	$CH_2CH_2CH_2(C_2H_5)$ $CH_2CH_2CH(CH_3)_2$
Y.120	C ₂ H ₅	H	CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃) ₂
Y.121	CH₂OCH₃	H	CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃) ₂
Y.122	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃) ₂
Y.123	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂
Y.124	CH ₃	CH ₂ C≅CH	$CH_2CH_2CH(CH_3)_2$ $CH_2CH_2CH(CH_3)_2$
Y.125	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃) ₂
Y.126	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃) ₂
Y.127	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.128	C ₂ H ₅	H	CH2CH2CH(CH3)(C2H5)
Y.129	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.130	CH ₃	COCH₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)

			
Y.131	CH ₃	COCH ₂ OCH ₃	$CH_2CH_2CH(CH_3)(C_2H_5)$
Y.132	CH ₃	CH₂C≅CH	$CH_2CH_2CH(CH_3)(C_2H_5)$
Y.133	CH ₃	COO-tert-Bu	$CH_2CH_2CH(CH_3)(C_2H_5)$
Y.134	CH ₃	CH=C=CH ₂	$CH_2CH_2CH(CH_3)(C_2H_5)$
Y.135	CH ₃	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂
Y.136	C ₂ H ₅	H	$CH_2CH_2CH(C_2H_5)_2$
Y.137	CH ₂ OCH ₃	H	$CH_2CH_2CH(C_2H_5)_2$
Y.138	CH ₃	COCH ₃	$CH_2CH_2CH(C_2H_5)_2$
Y.139	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(C ₂ H ₅) ₂
Y.140	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH(C ₂ H ₅) ₂
Y.141	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(C ₂ H ₅) ₂
Y.142	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(C ₂ H ₅) ₂
Y.143	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃
Y.144	C_2H_5	H	CH ₂ CH ₂ C(CH ₃) ₃
Y.145	CH₂OCH₃	H	CH ₂ CH ₂ C(CH ₃) ₃
Y.146	CH ₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₃
Y.147	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ C(CH ₃) ₃
Y.148	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ C(CH ₃) ₃
Y.149	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃) ₃
Y.150	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃) ₃
Y.151	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.152	C ₂ H ₅	H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.153	CH ₂ OCH ₃	H	$CH_2CH_2C(CH_3)_2(C_2H_5)$
Y.154	CH ₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.155	CH ₃	COCH ₂ OCH ₃	$CH_2CH_2C(CH_3)_2(C_2H_5)$
Y.156	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.157	CH ₃	COO-tert-Bu	$CH_2CH_2C(CH_3)_2(C_2H_5)$
Y.158	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.159	CH ₃	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$
Y.160	C ₂ H ₅	H	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.161	CH ₂ OCH ₃	H	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.162	CH ₃	COCH₃	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.163	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.164	CH ₃	CH ₂ C≡CH	$CH_2CH_2C(CH_3)(C_2H_5)_2$
Y.165	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.166	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.167	CH ₃	H	CH(CH ₃)CH ₂ CH ₃
Y.168	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH ₃
Y.169	CH₂OCH₃	Н	CH(CH ₃)CH ₂ CH ₃
Y.170	CH₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH ₃
Y.171	CH ₃	Н	CH(C ₂ H ₅)CH ₂ CH ₃
Y.172	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ CH ₃
Y.173	CH ₂ OCH ₃	Н	CH(C ₂ H ₅)CH ₂ CH ₃
Y.174	CH ₃	CH₂C≡€H	CH(C ₂ H ₅)CH ₂ CH ₃
Y.175	CH ₃	Н	CH(CF ₃)CH ₂ CH ₃
Y.176	C_2H_5	H	CH(CF ₃)CH ₂ CH ₃
Y.177	CH ₂ OCH ₃	H	CH(CF ₃)CH ₂ CH ₃
Y.178	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ CH ₃
Y.179	CH ₃	Н	CH(CH ₃)CH ₂ CH ₂ CH ₃
Y.180	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH ₂ CH ₃
Y.181	CH ₂ OCH ₃	Н	CH(CH ₃)CH ₂ CH ₂ CH ₃
Y.182	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH ₂ CH ₃
Y.183	CH ₃	Н	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃
Y.184	C ₂ H ₅	Н	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃
Y.185	CH ₂ OCH ₃	Н	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃

V 106	CIT	OTT 0 ===	
Y.186 Y.187	CH ₃	CH ₂ C ≅CH	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃
Y.187 Y.188	CH ₃	H	CH(CF ₃)CH ₂ CH ₂ CH ₃
Y.189	C ₂ H ₅	H	CH(CF ₃)CH ₂ CH ₂ CH ₃
Y.190	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.191	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂
	CH₂OCH₃	Н	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.192	CH ₃	COCH ₃	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.193	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.194	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.195	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.196	CH₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(CH ₃) ₂
Y.197	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.198	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.199	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.200	CH ₃	COCH ₃	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.201	CH ₃	COCH ₂ OCH ₃	$CH(CH_3)CH_2CH(CH_3)(C_2H_5)$
Y.202	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.203	CH ₃	COO-tert-Bu	$CH(CH_3)CH_2CH(CH_3)(C_2H_5)$
Y.204	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)
Y.205	CH ₃	Н	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂
Y.206	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂
Y.207	CH₂OCH₃	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂
Y.208	CH₃	COCH₃	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂
Y.209	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂
Y.210	CH ₃	CH ₂ C≡CH	$CH(CH_3)CH_2CH(C_2H_5)_2$
Y.211	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂
Y.212	CH₃	CH=C=CH ₂	$CH(CH_3)CH_2CH(C_2H_5)_2$
Y.213	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.214	C ₂ H ₅	<u>H</u>	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.215	CH₂OCH₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.216	CH₃	COCH ₃	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.217	CH ₃	COCH ₂ OCH ₃	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.218	CH ₃	CH ₂ C ≡CH	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.219	CH ₃	COO-tert-Bu	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.220	CH ₃	CH=C=CH ₂	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂
Y.221	CH ₃	Н	$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$
Y.222	C ₂ H ₅	H	$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$
Y.223	CH ₂ OCH ₃	H	$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$
Y.224	CH ₃	CH ₂ C≡CH	$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$
Y.225	CH ₃	н	$CH(C_2H_5)CH_2CH(C_2H_5)_2$
Y.226	C ₂ H ₅	H	$CH(C_2H_5)CH_2CH(C_2H_5)_2$
Y.227	CH₂OCH₃	<u> </u>	$CH(C_2H_5)CH_2CH(C_2H_5)_2$
Y.228	CH ₃	CH ₂ C≡CH	$CH(C_2H_5)CH_2CH(C_2H_5)_2$
Y.229	CH ₃	НН	CH(CF ₃)CH ₂ CH(CH ₃) ₂
Y.230	C ₂ H ₅	Н Н	CH(CF ₃)CH ₂ CH(CH ₃) ₂
Y.231	CH ₂ OCH ₃	Н	CH(CF ₃)CH ₂ CH(CH ₃) ₂
Y.232	CH ₃	CH₂C≡CH	CH(CF ₃)CH ₂ CH(CH ₃) ₂
Y.233	CH ₃	H	$CH(CF_3)CH_2CH(CH_3)(C_2H_5)$
Y.234	CH ₃	Н	$CH(CF_3)CH_2CH(C_2H_5)_2$
Y.235	CH ₃	Н.	CH(CH ₃)CH ₂ C(CH ₃) ₃
Y.236	C ₂ H ₅	H	$CH(CH_3)CH_2C(CH_3)_3$
Y.237	CH₂OCH₃	Н	CH(CH ₃)CH ₂ C(CH ₃) ₃
Y.238	CH ₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃
ı v 220 l	OU	COCTT COTT	
Y.239 Y.240	CH₃ CH₃	COCH ₂ OCH ₃ CH ₂ C ≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₃ CH(CH ₃)CH ₂ C(CH ₃) ₃

Y.241	CTT		
Y.242	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₃
Y.243	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₃
Y.244	CH₃	H	CH(CH3)CH2C(CH3)2(C2H5)
	C ₂ H ₅	H	CH(CH3)CH2C(CH3)2(C2H5)
Y.245	CH ₂ OCH ₃	H	CH(CH3)CH2C(CH3)2(C2H5)
Y.246	CH ₃	COCH ₃	$CH(CH_3)CH_2C(CH_3)_2(C_2H_5)$
Y.247	CH ₃	COCH ₂ OCH ₃	CH(CH3)CH2C(CH3)2(C2H5)
Y.248	CH ₃	CH ₂ C ≡CH	$CH(CH_3)CH_2C(CH_3)_2(C_2H_5)$
Y.249	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.250	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.251	CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.252	C ₂ H ₅	H	$CH(CH_3)CH_2C(CH_3)(C_2H_5)_2$
Y.253	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.254	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.255	CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃
Y.256	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃
Y.257	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃
Y.258	CH₃	CH ₂ C≡€H	$CH(C_2H_5)CH_2C(CH_3)_3$
Y.259	CH ₃	Н	$CH(C_2H_5)CH_2C(CH_3)_2(C_2H_5)$
Y.260	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.261	CH ₂ OCH ₃	H	$CH(C_2H_5)CH_2C(CH_3)_2(C_2H_5)$
Y.262	CH₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.263	CH ₃	H	$CH(C_2H_5)CH_2C(CH_3)(C_2H_5)_2$
Y.264	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.265	CH ₂ OCH ₃	H	$CH(C_2H_5)CH_2C(CH_3)(C_2H_5)_2$
Y.266	CH ₃	CH ₂ C≡€H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.267	CH₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₃
Y.268	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃) ₃
Y.269	CH₂OCH₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₃
Y.270	CH ₃	CH ₂ C≡€H	CH(CF ₃)CH ₂ C(CH ₃) ₃
Y.271	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.272	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)
Y.273	CH ₂ OCH ₃	H	$CH(CF_3)CH_2C(CH_3)_2(C_2H_5)$
Y.274	CH ₃	CH ₂ C≡CH	$CH(CF_3)CH_2C(CH_3)_2(C_2H_5)$
Y.275	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.276	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.277	CH ₂ OCH ₃	H	$CH(CF_3)CH_2C(CH_3)(C_2H_5)_2$
Y.278	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂
Y.279	CH ₃	H	2'-tert-butyl-cyclopropyl
Y.280	C ₂ H ₅	<u> </u>	2'-tert-butyl-cyclopropyl
Y.281	CH ₂ OCH ₃	H	2'-tert-butyl-cyclopropyl
Y.282	CH₃	CH ₂ C≡CH	2'-tert-butyl-cyclopropyl
Y.283	CH ₃	H	2'-isobutyl-cyclopropyl
Y.284	C ₂ H ₅	H	2'-isobutyl-cyclopropyl
Y.285	CH ₂ OCH ₃	H	2'-isobutyl-cyclopropyl
Y.286	CH₃	CH ₂ C≡€H	2'-isobutyl-cyclopropyl
Y.287	CH₃	Н	4',4'-dimethyl-cyclobutyl
Y.288	C ₂ H ₅	H	4',4'-dimethyl-cyclobutyl
Y.289	CH₂OCH₃	H	4',4'-dimethyl-cyclobutyl
Y.290	CH ₃	CH ₂ C≡CH	4',4'-dimethyl-cyclobutyl
Y.291 Y.292	CH ₃	<u>H</u>	cyclopentyl
	C ₂ H ₅	Н	cyclopentyl
Y.293	CH₂OCH₃	H	cyclopentyl
Y.294 Y.295	CH ₃	CH ₂ C≡€H	cyclopentyl
1.293	CH ₃	H	3'-methyl-cyclopentyl

Y.296	0.17		
	C ₂ H ₅	<u>H</u>	3'-methyl-cyclopentyl
Y.297	CH ₂ OCH ₃	H	3'-methyl-cyclopentyl
Y.298	CH ₃	CH ₂ C≡CH	3'-methyl-cyclopentyl
Y.299	CH ₃	H	cyclohexyl
Y.300	C ₂ H ₅	H	cyclohexyl
Y.301	CH ₂ OCH ₃	H	cyclohexyl
Y.302	CH ₃	CH ₂ C≡CH	cyclohexyl
Y.303	CH ₃	H	3'-methyl-cyclohexyl
Y.304	C ₂ H ₅	H	3'-methyl-cyclohexyl
Y.305	CH ₂ OCH ₃	Н	3'-methyl-cyclohexyl
Y.306	CH ₃	CH₂C≡CH	3'-methyl-cyclohexyl
Y.307	CH₃	H	4'-methyl-cyclohexyl
Y.308	C ₂ H ₅	H	4'-methyl-cyclohexyl
Y.309	CH ₂ OCH ₃	H	4'-methyl-cyclohexyl
Y.310	CH₃	CH ₂ C≡CH	4'-methyl-cyclohexyl
Y.311	CH ₃	H	cycloheptyl
Y.312	C ₂ H ₅	H	cycloheptyl
Y.313	CH ₂ OCH ₃	Н	cycloheptyl
Y.314	CH ₃	CH ₂ C≡CH	cycloheptyl
Y.315	CH ₃	Н	2'-thienyl
Y.316	C ₂ H ₅	Н	2'-thienyl
Y.317	CH ₂ OCH ₃	Н	2'-thienyl
Y.318	CH ₃	CH ₂ C ≡CH	2'-thienyl
Y.319	CH ₃	H	3'-thienyl
Y.320	C ₂ H ₅	H	3'-thienyl
Y.321	CH ₂ OCH ₃	H	3'-thienyl
Y.322	CH ₃	CH ₂ C≡CH	3'-thienyl
Y.323	CH ₃	H	
Y.324	C ₂ H ₅	H	5'-chloro-2'-thienyl
Y.325	CH ₂ OCH ₃	H	5'-chloro-2'-thienyl
Y.326	CH ₃	CH ₂ C≡CH	5'-chloro-2'-thienyl
Y.327	CH ₃	H	5'-chloro-2'-thienyl
Y.328	C ₂ H ₅	H	2'-furyl
Y.329	CH ₂ OCH ₃	H	2'-furyl
Y.330	CH ₃	CH ₂ C≡€H	2'-furyl
Y.331	CH ₃	H	2'-furyl
Y.332	C ₂ H ₅	H	5'-chloro-2'-furyl
Y.333	CH ₂ OCH ₃	H	5'-chloro-2'-furyl
Y.334	CH ₃	CH C-CH	5'-chloro-2'-furyl
Y.335		CH₂C≡CH	5'-chloro-2'-furyl
Y.336	CH ₃ C ₂ H ₅	<u> </u>	2'-pyridyl
Y.337	CH ₂ OCH ₃	H	2'-pyridyl
Y.338	CH ₂ OCH ₃	H	2'-pyridyl
Y.339	CH ₃	CH₂C≡CH	2'-pyridyl
Y.340		H	3'-pyridyl
Y.341	CH OCH	H	3'-pyridyl
Y.342	CH₂OCH₃	H	3'-pyridyl
Y.343	CH₃	CH ₂ C≡CH	3'-pyridyl
Y.344	CH₃	<u>H</u>	4'-pyridyl
Y.345	CH OCH	H	4'-pyridyl
Y.345 Y.346	CH₂OCH₃	H	4'-pyridyl
	CH₃	CH ₂ C≡CH	4'-pyridyl
Y.347	CH ₃	<u>H</u>	6'-chloro-3'-pyridyl
Y.348	C ₂ H ₅	H	6'-chloro-3'-pyridyl
1 37.2.40			o omoro-5 -pyridyi
Y.349 Y.350	CH ₂ OCH ₃ CH ₃	H CH₂C <u>≡</u> CH	6'-chloro-3'-pyridyl 6'-chloro-3'-pyridyl

Y.351	CH ₃	Н	6'-fluoro-3'-pyridyl
Y.352	C ₂ H ₅	H	6'-fluoro-3'-pyridyl
Y.353	CH ₂ OCH ₃	H	6'-fluoro-3'-pyridyl
Y.354	CH ₃	CH₂C≡CH	6'-fluoro-3'-pyridyl
Y.355	CH ₃	Н	6'-bromo-3'-pyridyl
Y.356	C_2H_5	H	6'-bromo-3'-pyridyl
Y.357	CH ₂ OCH ₃	H	6'-bromo-3'-pyridyl
Y.358	CH ₃	CH ₂ C≡CH	6'-bromo-3'-pyridyl
Y.359	CH ₃	H	2'-oxazolyl
Y.360	CH ₃	Н	3'-isoxazolyl
Y.361	CH ₃	Н	CH(CH ₃) ₂
Y.362	C ₂ H ₅	Н	CH(CH ₃) ₂
Y.363	CH ₂ OCH ₃	H	CH(CH ₃) ₂
Y.364	CH ₃	CH ₂ C≡CH	CH(CH ₃) ₂

Table 8 provides 364 compounds of formula (I-8):

$$F_3C \xrightarrow{N}_{N} \xrightarrow{R^3} R^6$$

$$| I-8 \rangle$$

wherein R², R³, and R⁶ are as defined in Table 8.

Table 9 provides 364 compounds of formula (I-9):

$$F_2HC \longrightarrow N \qquad R^5$$

$$N \qquad N \qquad R^5$$

$$R^5$$

$$R^5$$

$$R^2$$

wherein R², R³, and R⁶ are as defined in Table 9.

10

Table 10 provides 364 compounds of formula (I-10):

$$FH_2C \xrightarrow{N}_{N} \xrightarrow{N}_{R^3} R^6$$

$$(I-10)$$

wherein R², R³, and R⁶ are as defined in Table 10.

Table 11 provides 364 compounds of formula (I-11):

$$CI_3F_2C \xrightarrow{N}_{N}^{N}_{R^2}$$
 (I-11)

wherein R², R³, and R⁶ are as defined in Table 11.

Table 12 provides 364 compounds of formula (I-12):

$$H_3C \xrightarrow{N}_{N \atop R^2} R^8$$
 (I-12)

wherein R², R³, and R⁶ are as defined in Table 12.

Table 13 provides 364 compounds of formula (I-13):

wherein R², R³, and R⁶ are as defined in Table 13.

Table 14 provides 364 compounds of formula (I-14):

$$F_3C \xrightarrow{N \atop N \atop N \atop N \atop R^2} R^3 \qquad (I-14)$$

wherein R², R³, and R⁶ are as defined in Table 14.

Table 15 provides 364 compounds of formula (I-15):

$$F_{2}HC \longrightarrow N \\ N \longrightarrow N \\ R^{3}$$
 (I-15)

5

10

wherein R², R³, and R⁶ are as defined in Table 15.

Table 16 provides 364 compounds of formula (I-16):

$$FH_2C \longrightarrow N \\ N \\ N \\ R^3$$
 (I-16)

wherein R², R³, and R⁶ are as defined in Table 16.

Table 17 provides 364 compounds of formula (I-17):

$$CIF_2C \longrightarrow R^6 \longrightarrow S$$

$$N \longrightarrow N$$

$$R^3 \longrightarrow (I-17)$$

$$R^3$$

wherein R², R³, and R⁶ are as defined in Table 17.

10

Table 18 provides 364 compounds of formula (I-18):

$$H_3C \longrightarrow N \\ N \longrightarrow N \\ R^3$$
 (I-18)

wherein R², R³, and R⁶ are as defined in Table 18.

Table 19 provides 364 compounds of formula (I-19):

wherein R^2 , R^3 , and R^6 are as defined in Table 19.

Table Z represents Table 20 [when Z is 20], Table 21 [when Z is 21], Table 22 [when Z is 22], Table 23 [when Z is 23], Table 24 [when Z is 24] and represents Table 25 [when Z is 25].

<u>Table Z</u>

Compound No.	R ²	R ³	A
Z.001	CH ₃	Н	R
Z.002	C ₂ H ₅	Н	R
Z.003	CH ₂ OCH ₃	Н	R
Z.004	CH ₃	CH ₂ C ≡ CH	R
Z.005	CH₃	Н	H ₃ C
Z.006	C₂H₅	H	H ₃ C
Z.007	CH ₂ OCH ₃	Н	H ₃ C

			
Z.008	CH₃	CH ₂ C ≡ CH	H ₃ C
- Z.009	CH ₃	Н	Д-сн,
Z.010	C ₂ H ₅	Н	С, сн,
Z.011	CH₂OCH₃	Н	СН,
Z.012	CH ₃	CH ₂ C≡CH	СН,
Z.013	CH ₃	Н	H ₃ C CH ₃
Z.014	C₂H₅	Н	H ₃ C CH ₃
Z.015	CH₂OCH₃	Н	H ₃ C CH ₃
Z.016	СН3	CH₂C = CH	CH ₃
Z.017	СН3	Н	CH ₃ CH ₃
Z.018	C₂H₅	Н	CH ₃ CH ₃
Z.019	CH₂OCH₃	Н	CH ₃ CH ₃
Z.020	CH₃	CH ₂ C ≡ CH	CH ₃ CH ₃
Z.021	CH₃	Н	CH ₃ CH ₃
Z.022	C₂H₅	Н	CH ₃ CH ₃
Z.023	CH₂OCH₃	Н	H ₃ C CH ₃

	T		
Z.024	СН₃	CH ₂ C≡€H	СН, СН,
Z.025	CH₃	Н	н,с сн,
Z.026	C ₂ H ₅	H	н,с сн,
Z.027	CH ₂ OCH ₃	Н	H ₃ C CH ₃
Z.028	CH ₃	CH ₂ C≡CH	H ₃ C CH ₃
Z.029	СН₃	Н	H ₃ C
Z.030	C ₂ H ₅	Н	H ₃ C
Z.031	CH₂OCH₃	Н	H ₃ C
Z.032	СН3	CH₂C≡CH	H ₃ C
Z.033	CH ₃	Н	С , сн,
Z.034	C ₂ H ₅	Н	С, сн,
Z.035	CH₂OCH₃	Н	С, сн,
Z.036	СН₃	CH ₂ C ≡ CH	. CH ₃
Z.037	СН₃	Н	Q.
Z.038	C₂H₅	Н	P.
Z.039	CH₂OCH₃	Н	P.
Z.040	СН₃	CH₂C≡€H	P _o

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Z.043 CH_2OCH_3 H $H_1C^{CH_1}_{I_1C}$ CH_2 CH_3 CH_2C $\equiv CH$ $H_3C^{CH_1}_{I_1C}$ CH_3 CH_2C $\equiv CH$ $H_3C^{CH_1}_{I_1C}$ CH_3 CH_2C $\equiv CH$ $H_3C^{CH_1}_{I_1C}$ CH_3 CH_2C $\equiv CH$ CH_3 CH_4 CH_5 C	Z.041	СН₃	Н	CH,
Z.044 CH ₃ CH ₂ CECH $\frac{1}{H_1C}$ CH ₃ Z.045 CH ₃ H $\frac{1}{H_1C}$ CH ₅ CH ₅ Z.046 C ₂ H ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.047 CH ₂ OCH ₃ H $\frac{1}{H_1C}$ CCH ₅ Z.048 CH ₃ CH ₂ CECH $\frac{1}{H_1C}$ CCH ₅ Z.049 CH ₃ H $\frac{1}{H_1C}$ CCH ₅ Z.050 C ₂ H ₅ H $\frac{1}{H_1C}$ CC Z.051 CH ₂ OCH ₃ H $\frac{1}{H_1C}$ CC Z.052 CH ₃ CH ₂ CECH $\frac{1}{H_1C}$ CCH ₂ CCH Z.053 CH ₃ H $\frac{1}{H_1C}$ CCH ₅ Z.054 C ₂ H ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.055 CH ₂ OCH ₃ H $\frac{1}{H_1C}$ CCH ₅ Z.056 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.057 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.058 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ Z.059 CH ₂ CCH ₅ H $\frac{1}{H_1C}$ CCH ₅ CCH	Z.042	C₂H₅	Н	CH,
Z.045 CH ₃ H $\frac{1}{1+ C } = \frac{1}{1+ C } =$	Z.043	CH₂OCH₃	Н	CH,
Z.046 C_2H_5 H $H_3C^{-\frac{1}{8}}$ $H_3C^{-\frac$	Z.044	СН₃	CH₂C≡€H	' > <u>-</u> 9 '
Z.047 CH_2OCH_3 H H_3C° CH_4 H_3C° CH_5 H_4 H_3C° CH_5 C	Z.045	СН3	Н	1 / _{c}
	Z.046	C₂H₅	Н	
Z.049 CH ₃ H $\frac{1}{H_3C}$ S Z.050 C ₂ H ₅ H $\frac{1}{H_3C}$ S Z.051 CH ₂ OCH ₃ H $\frac{1}{H_3C}$ S Z.052 CH ₃ CH ₂ C ≡ CH $\frac{1}{H_3C}$ S Z.053 CH ₃ H $\frac{1}{H_3C}$ S CH ₃ CH ₃ CH ₃ CH ₄ S CH ₅	Z.047	CH₂OCH₃	Н	l / _{{
Z.050 C_2H_5 H H_3c H	Z.048	CH ₃	CH₂C≡€H	I / _{\}
Z.051 CH_2OCH_3 H H_3C S H_3C S H_3C S H_3C S	Z.049	CH ₃	Н	H ₃ C S
Z.052 CH_3 $CH_2C ≡ CH$ H_3c CH_3 H CH_3 CH_3 H CH_3 CH_3 CH_3 CH_4 CH_5	Z.050	C₂H₅	Н	H ₃ C S
Z.052 CH_3 $CH_2C ≡ CH$ H_3CH_3 $CH_2C ≡ CH$ H_3CH_3 H CH_3CH_3 H CH_3 CH_4 CH_5	Z.051	CH ₂ OCH ₃	Н	H ₃ C S
Z.054 C_2H_5 H C_2H_3 C_2H_4 C_2H_5 C_2H_5 C_3 C_3 C_4 C_5 C_5 C_7 C_8	Z.052	CH ₃	CH ₂ C≡€H	Q.
Z.055 CH ₂ OCH ₃ H	Z.053	CH₃	Н	Сн,
-S	Z.054	C ₂ H ₅	Н	₽,cH₃
Z.056 CH₃ CH₂C≡CH CH₃	Z.055	CH₂OCH₃	Н	₽ _s сн,
	Z.056	СН3	CH₂C≅CH	Д ₋ сн,

Z.057	CH₃	Н	Rs
Z.058	C ₂ H ₅	Н	Rs
Z.059	CH₂OCH₃	Н	Rs
Z.060	CH₃	CH₂C = CH	Q _s
Z.061	СН3	Н	R
Z.062	C ₂ H ₅	Н	8
Z.063	CH₂OCH₃	Н	B
Z.064	CH ₃	CH₂C≡CH	R
Z.065	СН3	• Н	H,c
Z.066	C ₂ H ₅	Н	H,c
Z.067	CH₂OCH₃	Н	H ₃ C
Z.068	СН3	CH₂C≡CH	H _s c
Z.069	СН₃	н	€ СН ₃
Z.070	C ₂ H ₅	Н	₽ сн₃
Z.071	CH₂OCH₃	Н	Сн,
Z.072	CH₃	CH ₂ C≡CH	€ cн,
Z.073	CH ₃	Н	н,с сн,

Z.074	C ₂ H ₅	н	H ₃ C CH ₃
Z.075	CH ₂ OCH ₃	н	H ₃ C CH ₃
Z.076	CH ₃	CH ₂ C ≅ CH	н,с сн,
Z.077	CH ₃	н	CH ₃ CH ₃
Z.078	C ₂ H ₅	Н	CH ₃ CH ₃
Z.079	CH ₂ OCH ₃	н	CH ₃ CH ₃
Z.080	CH₃	CH₂C≡€H	H ₃ C CH ₃
Z.081	CH₃	н	H ₃ C CH ₃
Z.082	C ₂ H ₅	Н	н,с сн,
Z.083	CH₂OCH₃	H	н,с сн,
Z.084	СН₃	CH₂C ≡€H	н,с
Z.085	CH₃	Н	H ₃ C
Z.086	C₂H₅	Н	H ₃ C
·Z.087	CH ₂ OCH ₃	Н	H ₃ C
Z.088	СН3	CH₂C≡€H	H ₃ C
Z.089	СН₃	Н	CH ₃

Z.090	C ₂ H ₅	Н	€ сн,
Z.091	CH ₂ OCH ₃	Н	Д сн _₃
Z.092	CH₃	CH₂C = CH	Сн,
Z.093	СН₃	Н	B
Z.094	C ₂ H ₅	н	B
Z.095	CH₂OCH₃	Н	B
Z.096	CH₃	CH ₂ C ≅ CH	B
Z.097	CH₃	Н	S
Z.098	C ₂ H ₅	Н	S
Z.099	CH₂OCH₃	·H	S
Z.100	CH ₃	CH₂C ≅ CH	B
Z.101	СН3	Н	B
Z.102	C₂H₅	Н	S
Z.103	CH₂OCH₃	Н	S
Z.104	СН3	CH ₂ C ≡CH	B
Z.105	CH ₃	Н	8
Z.106	СН₃	Н	9

	T		
Z.107	CH ₃	Н	8
Z.108	CH₃	Н	Q.
Z.109	CH₃	Н	B
Z.110	CH ₃	Н	CH ₃
Z.111	СН₃	Н	Syn or anti
Z.112	СН₃	Н	CH ₃ CH ₃
Z.113	CH₃	Н	CH ₃
Z.114	СН₃	Н	Pa
Z.115	СН3	Н	20
Z.116	C₂H₅	Н	Po
Z.117	CH₂OCH₃	Н	Q ₀
Z.118	CH₃	CH ₂ C = CH	P _o
Z.119	СН₃	Н	G
Z.120	СН₃	Н	95
Z.121	C₂H₅	· H	9
Z.122	CH₂OCH₃	Н	9

Z.123	CH ₃	CH₂C ≡€H	95
Z.124	СН3	н	B
Z.125	СН3	н	R
Z.126	CH ₃	Н	Por
Z.127	СН₃	Н	Pa
Z.128	СН₃	Н	Pa
Z.129	CH ₃	Н	95
Z.130	СН3	H	Q ₃
Z.131	CH ₃	Н	(5)
Z.132	C ₂ H ₅	Н	(s)
Z.133	CH₂OCH₃	Н	Q _s
Z.134	CH ₃	CH ₂ C = CH	Q _s
Z.135	CH ₃	Н	Q3
Z.136	СН₃	Н	S _S
Z.137	C₂H₅	Н	S
Z.138	CH₂OCH₃	Н	Jej
Z.139	CH₃	CH₂C≅€H	J.J

Z.140	CH₃	Н	Ps
Z.141	CH ₃	Н	Q5/
Z.142	CH ₃	Н	95
Z.143	СН3	Н	S
Z.144	СН3	Н	
Z.145	СН3	Н	5
Z.146	СН₃	Н	CH ₃
Z.147	CH ₃	Н	сн,
Z.148	СН3	Н	H ₂ CH ₃
Z.149	СН3	Н	E.º
Z.150	СН3	Н	E,°°
Z.151	СН3	Н	CH ₃
Z.152	·CH ₃	Н	CH ₃
Z.153	СН₃	Н	0-CH ₃
Z.154	СН3	H	o-ch,
Z.155	СН3	Н	CH ₂

Z.156	CH₃	Н	CH ₂ O-CH ₂
Z.157	СН₃	Н	P.N.S.
Z.158	СН₃	Н	Jul .
Z.159	СН₃	Н	C _N
Z.160	СН₃	Н	NY OF
Z.161	CH₃	Н	Park.
Z.162	CH ₃	Н	Gy ox
Z.163	СН3	Н	NN CO
Z.164	СН3	н	, Sold of the second of the se
Z.165	CH ₃	Н	
Z.166	СН3	Н	Syn or anti
Z.167	СН₃	Н	
Z.168	СН₃	Н	Syn or anti

Z.169	СН₃	Н	Syn or anti
Z.170	СН₃	·H	syn or anti
Z.171	СН₃	Н	syn or anti
Z.172	СН₃	Н	
Z.173	CH₃	Н	syn or anti C ₃ H ₇ -(i)-O OC ₃ H ₇ -(i)
Z.174	СН₃	Н	
Z.175	СН3	Н	
Z.176	CH₃	Н	syn or and
Z.177	CH ₃	Н	syn or anti
Z.178	CH ₃	Н	
Z.179	СН₃	Н	syn or anti
Z.180	СН₃	Н	
Z.181	СН₃	Н	

Z.182	CH₃	Н	H ₃ C ₁ , C ₂ H ₅
			In either configuration

Table 20 provides 182 compounds of formula (I-20):

wherein R², R³ and A are as defined in Table 20.

Table 21 provides 182 compounds of formula (I-21):

wherein R², R³ and A are as defined in Table 21.

Table 22 provides 182 compounds of formula (I-22):

wherein R², R³ and A are as defined in Table 22.

Table 23 provides 182 compounds of formula (I-23):

wherein R², R³ and A are as defined in Table 23.

Table 24 provides 182 compounds of formula (I-24):

wherein R², R³ and A are as defined in Table 24.

Table 25 provides 182 compounds of formula (I-25):

wherein R², R³ and A are as defined in Table 25.

Table 26 provides 133 compounds of formula (IIIa) where R^{13} , R^{14} , R^{15} , R^{16} , Q and X are as defined in Table 26. Q is shown to be either a single bond (-) or a double bond (=).

10

5

Table 26

<u> 1 abie 20</u>						
Compound. No.	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Q	X
26.001	CH ₃	CH ₃	H	H	=	0
26.002	CH ₃	H	H	H	=	0
26.003	H	CH ₃	H	Н	=	0
26.004	CH ₃ ·	CH ₃	C(O)CH ₃	H	=	0
26.005	CH ₃	CH ₃	H	C(O)CH ₃	=	0
26.006	CH ₃	C(O)CH ₃	H	H	=	0
26.007	H	H	H	Н	=	0
26.008	CF₃	CF₃	H	· H	=	0
26.009	OCH ₃	OCH ₃	H	H	=	0
26.010	Н	H	CH ₃	CH ₃	=	0
26.011	C_2H_5	C ₂ H ₅	H	H	=	0
26.012	CH ₃	H	CH ₃	H	=	0
26.013	H	CH ₃	H	CH ₃	=	0
26.014	CH ₃	CH ₃	H	H	_	0
26.015	CH ₃	H	H	Н		0
26.016	H	CH ₃	H	H	_	0
26.017	CH ₃	CH ₃	C(O)CH ₃	Н	-	0
26.018	CH ₃	CH ₃	H	C(O)CH ₃	_	0
26.019	CH ₃	C(O)CH ₃	H	H	_	0
26.020	H	H	H	H	_	0
26.021	CF ₃	CF ₃	H	H	_	0
26.022	OCH ₃	OCH ₃	H	Н	_	0

26000						
26.023	H	H	CH ₃	CH ₃		0
26.024	C ₂ H ₅	C ₂ H ₅	H	H	:	0
26.025	CH ₃	H	CH ₃	Н	-	0
26.026	H	H	H	H	_	CH ₂
26.027	CH ₃	H	CH ₃	H	_	CH ₂
26.028	CH₃	H	CH ₃	H	=	CH ₂
26.029	H	CH ₃	H	CH ₃	_	CH ₂
26.030	H	CH ₃	H	CH ₃	=	CH ₂
26.031	CH₃	CH ₃	CH ₃	CH ₃	=	CH ₂
26.032	CH ₃	CH₃	CH ₃	CH ₃	_	CH ₂
26.033	CH ₃	CH₃	CH ₃	CH ₃	=	CH(CH ₃) syn or anti
26.034	CH ₃	CH₃	CH₃	CH ₃	_	CH(CH ₃) syn or anti
26.035	Н	H	Н	Н	=	CH(CH ₃) syn or anti
26.036	H	H	Н	Н	_	CH(CH ₃) syn or anti
26.037	Н	Н	H	Н	_	CH(C ₂ H ₅) syn or anti
26.038	Н	Н	Н	Н	 _ 	CH ₂ CH ₂
26.039	CH ₃	CH ₃	H	Н	=	CH ₂ CH ₂
26.040	CH ₃	CH ₃	H	H	 	CH ₂ CH ₂
26.041	Н	H	CH ₃	CH ₃	=	CH ₂ CH ₂
26.042	Н	Н	CH ₃	CH ₃	_	CH ₂ CH ₂
26.043	Н	H	OCH ₃	H	_	CH ₂ CH ₂ CH ₂ CH ₂
26.044	Н	H	H	OCH ₃	_	CH ₂ CH ₂ CH ₂ CH ₂
26.045	Н	H	H	H		
26.046	Н	H	H	H		CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂
26.047	H	H	CH ₃	CH ₃		C(CH ₃) ₂
26.048	Н	H	CH ₃	CH ₃	├─	
26.049	CH ₃	CH ₃	CH ₃	CH ₃	=	C(CH ₃) ₂
26.050	CH ₃	CH ₃	CH ₃	CH ₃		C(CH ₃) ₂
26.051	CH ₃	H	CH ₃	H		C(CH ₃) ₂
26.052	H	CH ₃	H	CH ₃	-	C(CH ₃) ₂
26.053	CH ₃	· H	CH ₃	H H		C(CH ₃) ₂
26.054	Н	CH ₃	H	CH ₃	=	C(CH ₃) ₂
26.055	CH ₃	CH ₃	CH ₃	CH ₃		C(CH ₃) ₂
26.056	H	H	H	H H	 - -	C(CH ₃)(C ₂ H ₅)
26.057	H	H	H	H	-	C(CH ₃) ₂
26.058	CH ₃	CH ₃	H	H		C(CH ₃) ₂
26.059	CH ₃	CH ₃	H	H	=	C(CH ₃) ₂
26.060	H	H	H	Н		C(CCH ₃) ₂
26.061	H	H	H		=	C(OCH ₃) ₂
26.062	H	H	H	H	 -	CH(OCH ₃)
26.063	H	H	H	H		<u>S</u>
26.064	CH ₃	CH ₃	H	H	-	S
26.065	CH ₃		H H	H	=	S
26.066	H	CH ₃		H		S
26.067	H	H	CH ₃	CH ₃	=	S
26.068	OCH ₃		CH ₃	CH ₃	 _ _	S
26.069	OCH ₃	OCH ₃	H H	H	=	S
26.070	H	OCH ₃		H		S
26.071	H	CH ₃	H	H	=	S
26.072		CH ₃	H	H		S
20.072	CH ₃	H	H	H	=	S

26.073	CH ₃	H	H	H	T -	S
26.074	CH ₃	H	CH ₃	Н	=	S
26.075	CH ₃	H	CH ₃	Н	_	S
26.076	H	CH₃	H	CH ₃	=	S
26.077	H	CH ₃	H	CH ₃	-	S
26.078	H	OCH ₃	Н	H	=	S
26.079	H	OCH ₃	H	H	 	S
26.080	OCH ₃	H	H	H	=	S
26.081	OCH ₃	H	H	H	-	S
26.082	CH ₃	H	CH ₃	CH ₃	=	S
26.083	CH ₃	H	CH ₃	CH ₃	1-	S
26.084	H	CH ₃	CH ₃	CH ₃	=	S
26.085	H	CH ₃	CH ₃	CH ₃	_	S
26.086	H	H	CH ₃	H	=	S
26.087	H	H	CH ₃	Н	_	S
26.088	H	H	H	CH ₃	=	S
26.089	H	H	H	CH ₃	_	S
26.090	H	H	OCH ₃	H	=	S
26.091	H	H	OCH₃	Н	_	S
26.092	H	H	H	OCH ₃	=	S
26.093	H	H	H	OCH ₃	_	S
26.094	H	H	H	Н	=	N(CH ₃)
26.095	H	H	H	Н	_	N(CH ₃)
26.096	CH₃	CH ₃	H	Н	=	N(CH ₃)
26.097	CH ₃	CH ₃	Н	Н	_	N(CH ₃)
26.098	H	H	H	Н	=	$N(C_2H_5)$
26.099	H	H	Н	H	-	$N(C_2H_5)$
26.100	H	H	H	H	-	NH
26.101	H	H	H	H		NC(O)OC(CH ₃) ₃
26.102	CH ₃	CH ₃	H	H	_	NC(O)OC(CH ₃) ₃
26.103	· · H	H	H	H	_	N(CHO)
26.104	H	H	H	H	_	N(C(O)CH ₃)
26.105	CH ₃	CH ₃	H	H	-	N(C(O)CH ₃
26.106	H	H	Н	H	_	N(C(O)OCH ₃)
26.107	CH ₃	CH ₃	H	H	_	N(C(O)OCH ₃)
26.108	H	H	H	H	_	N(C(O)OC ₂ H ₅)
26.109	CH ₃	CH ₃	H	H	_	N(C(O)OC ₂ H ₅)
26.110	H	H	H	H	_	N(C(O)OCH2CH2CI)
26.111	CH ₃	CH ₃	H	H	_	N(C(0)OCH2CH2CI)
26.112	H	H	H	H	-	N(C(O)OC ₄ H ₉ -(n)
26.113	CH₃	CH ₃	H	H	_	N(C(O)OC ₄ H ₉ -(n)
26.114	<u>H</u>	H	Н	H	_	N(C(O)OC ₄ H ₉ -(i)
26.115	CH ₃	CH ₃	H	H	_	N(C(O)OC ₄ H ₉ -(i)
26.116	<u>H</u>	H	H	H		CH(C ₃ H ₇ -(i)) syn or anti
26.117	H	H	H	н	_	$CH(C_3H_7-(n))$ syn or anti
26.118	H	H	H	H	_	CH(C ₄ H ₉ -(i)) syn or anti
26.119	H	<u>H</u>	H	H		$C(C_2H_4-(c))$
26.120	H	H	H	H	_	$C(C_4H_8-(c))$
26.121	H	H	H	H		CHCH(C ₂ H ₅) ₂ syn or anti
26.122	H	H	H	H		CHCH ₂ (C ₃ H ₅ -(c)) syn or anti

26.123	H	H	H	Н	T -	CH(C ₅ H ₉ -(c)) syn or anti
26.124	H	H	Н	Н	-	CHCH ₂ OC(=O)CH ₃
26.125	H	Н	Н	Н	-	syn or anti CH(CH=O)
26.126	H	H	Н	Н	+	syn or anti CHCH2OH
26.127	H	H	Н	H	+	$C(OC_3H_{7}(n))_2$
26.128	H	Н	Н	H	+	C=0
26.129	H	H	Н	H	1_	CHCH ₂ -C ₆ H ₅ syn or anti
26.130	H	H	H	H	1_	C=C(CH ₃) ₂
26.131	H	H	H	Н	+	C=C(C ₂ H5) ₂
26.132	H	H	Н	H	1_	cyclopentylidene
26.133	Н	Н	Н	Н	_	C(CH ₃)(C ₂ H ₅) In either configuration

Table ZZ represents Table 27 (when ZZ is 27) and represents Table 28 (when ZZ is 28).

5

Table ZZ

Compound	\mathbb{R}^3	R ⁶	\mathbb{R}^2	R ¹
No.				
ZZ.1	H	SiMe ₃	Me	CF ₃
ZZ.2	H	SiMe ₃	Me	CF ₂ H
ZZ.3	H	CH ₂ SiMe ₃	Me	CF ₃
ZZ.4	H	CH ₂ SiMe ₃	Me	CF ₂ H
ZZ.5	propargyl	CH ₂ SiMe ₃	Me	CF ₃
ZZ.6	H	CHMeSiMe ₃	Me	CF ₃
ZZ.7	H	CHMeSiMe ₃	Me	CF ₂ H
ZZ.8	propargyl	CHMeSiMe ₃	Me	CF ₃
ZZ.9	allenyl	CHMeSiMe ₃	Me	CF ₃
ZZ.10	COMe	CHMeSiMe ₃	Me	CF ₃
ZZ.11	H	CHMeSiMe ₃	Me	Me
ZZ.12	Н	(CH ₂) ₂ SiMe ₃	Me	CF ₃
ZZ.13	H	(CH ₂) ₂ SiMe ₃	Me	CF ₂ H
ZZ.14	propargyl	(CH ₂) ₂ SiMe ₃	Me	CF ₃
ZZ.15	H	(CH ₂) ₂ SiMe ₃	Me	Me
ZZ.16	H	(CH ₂) ₂ SiMe ₃	CF ₃	CF ₃
ZZ.17	H	CHMeCH ₂ SiMe ₃	Me	CF ₃
ZZ.18	HH	CHMeCH ₂ SiMe ₃	Me	CF ₂ H
ZZ.19	propargyl	CHMeCH ₂ SiMe ₃	Me	CF ₃
ZZ.20	propargyl	CHMeCH ₂ SiMe ₃	Me	CF ₂ H
ZZ.21	H	CHMeCH ₂ SiMe ₃	Me	Me
ZZ.22	H	CHMeCH ₂ SiMe ₃	CF ₃	CF ₃
ZZ.23	COMe	CHMeCH ₂ SiMe ₃	Me	CF ₃
ZZ.24	H	(CH ₂) ₃ SiMe ₃	Me	CF ₃
ZZ.25	H	(CH ₂) ₃ SiMe ₃	Me	CF ₂ H
ZZ.26	H	CH ₂ Si(Me ₂)Et	Me	CF ₃

				
ZZ.27	H	CH ₂ Si(Me ₂)Et	Me	CF ₂ H
ZZ.28	H	CH ₂ Si(Me ₂)CHMe ₂	Me	CF ₃
ZZ.29	H	CH ₂ Si(Me ₂)CHMe ₂	Me	CF ₂ H
ZZ.30	H	CH ₂ CHMeSiMe ₃	Me	CF ₃
ZZ.31	H	CH ₂ CHMeSiMe ₃	Me	CF ₂ H
ZZ.32	H	CMe ₂ CH ₂ SiMe ₃	Me	CF ₃
ZZ.33	H	CMe ₂ CH ₂ SiMe ₃	Me	CF ₂ H
ZZ.34	Н	CHMeCHMeSiMe ₃	Me	CF ₂ H
ZZ.35	H	CHMeCHMeSiMe ₃	Me	CF ₃
ZZ.36	Н	CH ₂ CMe ₂ SiMe ₃	Me	CF ₃
ZZ.37	H	CH ₂ CMe ₂ SiMe ₃	Me	CF ₂ H
ZZ.38	H	CHMe(CH ₂) ₂ SiMe ₃	Me	CF ₂ H
ZZ.39	H	CHMe(CH ₂) ₂ SiMe ₃	Me	CF ₃
ZZ.40	H	(CH ₂) ₂ SiMe ₃	CH ₂ OMe	CH ₂ Me
ZZ.41	Н	(CH ₂) ₂ SiMe ₃	CH ₂ OCH ₂ Me	CH ₂ Me
ZZ.42	H	SiMe ₂ CH ₂ CHMe ₂	Me	CF ₃

Table 27 provides 42 compounds of formula (I-27) where R^1 , R^2 , R^3 and R^6 are as defined in Table 9.

$$\begin{array}{c|c}
R^1 & & \\
N & N & \\
N & N & \\
R^3 & \\
R^4 & \\
R^2 & \\
\end{array} (I-27)$$

Table 28 provides 42 compounds of formula (I-28) where R¹, R², R³ and R⁶ are as defined in Table 10.

$$R^{6}$$
 R^{6}
 R^{3}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{2}

Throughout this description, temperatures are given in degrees Celsius; "NMR" means nuclear magnetic resonance spectrum; MS stands for mass spectrum; "%" is percent by weight, unless corresponding concentrations are indicated in other units; "syn" refers to a syn configuration of the relevant substituent with respect to the annellated

benzene ring; and "anti" refers to an anti configuration of the relevant substituent with respect to the anellated benzene ring.

The following abbreviations are used throughout this description:

m.p. = melting point

s = singlet

d = doublet

t = triplet

b.p.= boiling point.

br = broad

dd = doublet of doublets

q = quartet

m = multiplet ppm = parts per million

Table 29 shows selected melting point data for compounds of Tables 1 to 28.

Table 29

m.p. / (°C)
56-57
176-177
liquid
64-66
146-147
148
148-149
165-166
139-142
94.6-95.4
125-126
124-125
117-118
103-105
105
98-99
123-125
161-163
122-123
143-145
155-156
154-155
144-145
136-137
71-73
87-88
121-122
83-85
91-93
75-76

	T
3.423	121-122
3.445	94-95
3.452	161-162
3.454	144-145
3.456	133-135
4.017	158-159
4.273	89-91
4.411	84-86
4.445	. 84-85
4.452	143-144
4.456	122-124
8.189	104-106
9.189	82-83
20.017	167-169
20.021	121-122
20.065	144-145
20.073	157-158
20.097	108-109
20.101	155-157
20.115	137-139
20.120	160-161
20.147	159-162 (decomposition)
20.148	133-139
20.149	amorphous
20.161	amorphous
20.166 (syn:anti 90:10)	150-153
20.166 (syn:anti 34:66)	111-116
20.168 (syn:anti 40:60)	102-120
20.169 (syn:anti 86:14)	105-109
20.170 (syn:anti 74:26)	amornhoud
20 171 (17 16 04)	amorphous
20.171 (syn:anti 16: 84)	106-107
20.171 (syn:anti 81:19)	106-107 amorphous
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20)	106-107 amorphous 126-129
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179	106-107 amorphous 126-129 187-189
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180	106-107 amorphous 126-129 187-189 109-110
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097	106-107 amorphous 126-129 187-189 109-110 107-109
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101	106-107 amorphous 126-129 187-189 109-110 107-109 120-122
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021 21.065	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126 114-116
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021 21.065 21.073	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126 114-116 135-137
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021 21.065 21.073 21.105	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126 114-116 135-137 140-143
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021 21.065 21.073 21.105 21.114	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126 114-116 135-137 140-143 189-191
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021 21.065 21.073 21.105 21.114 21.115	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126 114-116 135-137 140-143 189-191 164-166
20.171 (syn:anti 81:19) 20.176 (syn:anti 80:20) 20.179 20.180 21.097 21.101 21.017 21.021 21.065 21.073 21.105 21.114	106-107 amorphous 126-129 187-189 109-110 107-109 120-122 175-177 125-126 114-116 135-137 140-143 189-191

21.152	170-172
21.153	amorphous
21.154	120-122
21.155	amorphous
21.161	amorphous
21.165(syn)	106-108
21.166 (syn:anti 90:10)	148-149
22.101	97-98
22.115	135-138
22.147	viscous
22.148	130-132
22.149	amorphous
22.161	amorphous
26.001	92-96
26.007	121-124
26.014	92-93
26.015	115-116
26.016	92-93
26.020	75-76
26.026	63-64
26.038	74-75
26.095	139-140
26.099	viscous
	viscous
26.101	89-90
26.102	94-95
26.103	176-177
26.105	110-111
26.106	104-105
26.107	114-115
26.108	viscous
26.110	viscous
26.112	viscous
26.114	viscous
26.116 (syn:anti 86:14)	waxy solid
26.116 (syn:anti 35:65)	oil
26.118 (syn:anti 10:90)	viscous
26.118 (syn:anti 82:18)	viscous
26.119	oil
26.121 (syn:anti 50:50)	oil
26.122 (syn:anti 84:14)	oil
26.123 (syn:anti 75:25)	73-78
26.128 (syn:anti 74:26)	
26.129 26.130	81-82
26 120	~ <u>* * 1</u>

oil

26.130

15

20

The compounds according to formula (I) may be prepared according to the following reaction schemes.

(a) Preparation of a compound of formula (II).

Schemes 1, 2 and 3 demonstrate that a compound of formula \underline{E} , \underline{H} , \underline{K} , \underline{L} , \underline{N} , \underline{O} , \underline{P} , \underline{R} , \underline{S} , \underline{T} , \underline{U} , \underline{V} , \underline{W} , \underline{Y} or \underline{Z} [where R^1 and R^2 are as defined above for formula (II); and R' is C_{1-5} alkyl] {each of which is a compound of formula (II), as defined above} may be prepared by a reaction sequence starting with a 1,2,3-triazole-4,5-dicarboxylic acid diester of formula \underline{A} [Y.Tanaka et al., *Tetrahedron*, 29, 3271 (1973)] [where each R' is, independently, C_{1-5} alkyl] (preferably the dimethyl ester).

Scheme 1

Treatment of $\underline{\mathbf{A}}$ with an alkylating agent [such as \mathbb{R}^2 -halo (where \mathbb{R}^2 is as defined above for formula (II); and halo is preferably iodo) or an appropriate sulphate, sulphonate or carbonate ester] in the presence of a base [such as K_2CO_3 , Na_2CO_3 or NEt_3] in a suitable solvent [such as acetonitrile, DMF or dimethylacetamide] at ambient to elevated temperatures furnishes a mixture of regioisomers, of formulae $\underline{\mathbf{B}}$ and $\underline{\mathbf{C}}$, which may be separated by conventional methods. Saponification of a compound of formula $\underline{\mathbf{B}}$ with up to one equivalent of a base [such as KOH, NaOH or LiOH] in a protic solvent [such as methanol], preferably under reflux conditions, provides a mono-ester of formula $\underline{\mathbf{D}}$. Subsequent reaction of a compound of formula $\underline{\mathbf{D}}$ with a fluorinating agent [such as DAST (diethylamino sulphur trifloride) or, preferably, SF_4] in the presence of hydrofluoric acid gives a 5- CF_3 -1,2,3-triazole-4-carboxylic acid ester of formula $\underline{\mathbf{E}}$.

WO 2004/018438 PCT/EP2003/009111 - 55 -

Alternatively, treatment of a compound of formula $\underline{\mathbf{D}}$ with a chlorinating agent [such as thionyl chloride or phosgene] under standard conditions results in an acid chloride of formula $\underline{\mathbf{F}}$ which may be reduced catalytically in an inert solvent [for example ethyl acetate or THF] in the presence of a base [for example Hünig base] to give an aldehyde-ester of formula $\underline{\mathbf{G}}$ (modified *Rosenmund* conditions). Fluorination of a compound of formula $\underline{\mathbf{G}}$ by means of DAST, dimethoxy-DAST or SF₄ in the presence of hydrofluoric acid, optionally with solvent, preferably at elevated temperatures, forms a 5-difluoromethyl-1,2,3-triazole-4-carboxylic acid ester of formula $\underline{\mathbf{H}}$.

5

10

15

20

Metal hydride reduction of a compound of formula \underline{G} [for example by NaBH₄ or LiBH₄] in methanol provides a 5-hydroxymethyl-1,2,3-triazole of formula \underline{J} , from which a 5-fluoromethyl derivative of formula \underline{K} may be obtained by fluorination under mild conditions, preferably with DAST at low temperatures (0 to -78° C) in an inert solvent [such as dichloromethane].

Alternatively, hydride reduction of a compound of formula \underline{J} by conventional methods [for example via its mesylate, tosylate or iodide] results in a 5-methyl-1,2,3-triazole of formula \underline{L} .

Chlorination of compound of formula $\underline{\mathbf{D}}$ [for example by thionyl chloride] followed by treatment with ammonia, preferably in a protic solvent [such as water, methanol or ethanol] furnishes an amide of formula $\underline{\mathbf{M}}$ from which a 5-cyano-1,2,3-triazole of formula $\underline{\mathbf{N}}$ may be obtained by means of a dehydrating agent [such as phosphorylchloride].

10

15

20

Further transformations to prepare a compound of formula (II) [where R^1 and R^2 are as defined above for formula (I); Y is OR' and R' is C_{1-5} alkyl] include a *Hofmann* rearrangement of an amide of formula $\underline{\mathbf{M}}$ with NaOBr or NaOCl in the presence of NaOH to give a 5-amino-1,2,3-triazole of formula $\underline{\mathbf{O}}$.

Diazotation of a compound of formula $\underline{\mathbf{O}}$ by means of sodium nitrite under aqueous acidic conditions [for example sulphuric acid] or with a nitrite ester [for example (i)-amyl nitrite] in an organic solvent [for example acetone, dichloromethane or THF] in the presence of a halogenide [such as CuCl or CuBr] gives a 5-halo-1,2,3-triazole of formula $\underline{\mathbf{P}}$ [where halo is Cl or Br] which on treatment with a fluorinating agent [such as KF or CsF], preferably in DMF or N-methylpyrrolidone at elevated temperatures, results in a 5-fluoro-1,2,3-triazole of formula $\underline{\mathbf{V}}$.

By diazotation of a compound of formula $\underline{\mathbf{Q}}$ and subsequent acidic aqueous hydrolysis under heating, a 5-hydroxy-1,2,3-triazole of formula $\underline{\mathbf{Q}}$ may be obtained. Treatment of a compound of formula $\underline{\mathbf{Q}}$ with an alkylating agent [such as methyl iodide, dimethylsulphate or dimethylcarbonate] and a base [for example NaH, K_2CO_3 or Na_2CO_3] in a polar solvent [for example DMF, DMSO or CH_3CN] gives a 5-methoxy-1,2,3-triazole of formula $\underline{\mathbf{R}}$ which may be converted to a trichloromethoxy derivative of formula $\underline{\mathbf{S}}$ with a chlorinating agent [such as chlorine] in the presence of azoisobutyronitrile (AIBN) or ultra-violet irradiation at elevated temperature. By treatment of a compound of formula $\underline{\mathbf{S}}$ with a fluorinating agent [for example KF or SbF_3] a 5-trifluoromethoxy-1,2,3-triazole of formula $\underline{\mathbf{T}}$ may be prepared.

10

15

20

Oxidation of a compound of formula $\underline{\mathbf{O}}$ with [for example sodium perborate] or treatment according to A. Sudalai et al. [Angew. Chem. Int. Ed. 40, 405 (2001)] leads to a 5-nitro derivative of formula $\underline{\mathbf{U}}$. Alternatively, a compound of formula $\underline{\mathbf{U}}$ may also be obtained by treatment of a compound of formula $\underline{\mathbf{P}}$ or $\underline{\mathbf{V}}$ with NaNO₂ in an polar solvent [such as DMF, sulpholane or N-methylpyrrolidone] at elevated temperatures.

Scheme 3

Transformations of a compound of formula (II') [where R^1 and R^2 are as defined in formula (I); Y is OR'; and R' is C_{1-5} alkyl] to give a compound of formula (II) [where R^1 and R^2 are as defined in formula (I) and Y is halo or hydroxy] includes saponification with a base [such as KOH or NaOH] in a protic solvent [such as methanol, ethanol or water], at ambient or elevated temperature to give a 1,2,3-triazole-4-carboxylic acid of formula $\underline{\mathbf{W}}$. Chlorination of a compound of formula $\underline{\mathbf{W}}$ under standard conditions [for example with thionyl chloride, phosgene or oxalyl chloride] yields an acid chloride of formula $\underline{\mathbf{Y}}$.

Fluorination of a compound of formula $\underline{\mathbf{W}}$ with DAST or SF₄ under mild conditions [low to ambient temperatures], preferably in an inert solvent [such as dichloromethane] gives an acid fluoride of formula $\underline{\mathbf{Z}}$.

(b) Preparation of a compound of formula (III).

A compound of formula (III)

$$H_2N-A$$
 (III)

where A is as defined above for a compound of formula (I), is useful as an intermediate in the preparation of a compound of formula (I).

10

15

20

Most o-substituted amino-aryls and amino-heteroaryls of formula (III) are known from the literature, but some are novel.

A compound of formula (IIIa) may be obtained according to scheme 4:

Scheme 4

Scheme 4

$$NH_2$$
 R^{14}
 R^{15}
 R^{16}
 R

Treatment of an *ortho*-substituted nitrobenzonorbornadiene of formula AA (where R¹³, R¹⁴, R¹⁵, R¹⁶ and X are as defined above for a compound of formula (I)) [obtained through *Diels-Alder* addition of an *in situ* generated benzyne, for example, starting from a 6-nitroanthranilic acid as described by L.Paquette et al, *J. Amer. Chem. Soc. 99*, 3734 (1977) or from other suitable benzyne precursers (see H. Pellissier et al. *Tetrahedron*, 59, 701 (2003) with a 5-7 membered cyclic 1,4-diene according to, or by analogy to, L.Paquette et al, *J. Amer. Chem. Soc. 99*, 3734 (1977), D. Gravel et al. *Can. J. Chem. 69*, 1193 (1991), J.R. Malpass et al. *Tetrahedron*, 48, 861 (1992), D.E. Lewis et al. *Synthetic Communications*, 23, 993 (1993), R.N. Warrener et al. *Molecules*, 6, 353 (2001), R.N. Warrener et al. *Molecules*, 6, 194 (2001) or I. Fleming et al. *J. Chem. Soc.*, *Perkin Trans.1*, 2645 (1998)] with Zn, in the presence of ammonium chloride or an aluminium amalgam, in a protic solvent [such ethanol or water] gives an aniline of formula CC, whilst catalytic hydrogenation of a compound of formula AA with, for example, RaNi, Pd/C or Rh/C in the presence of a solvent [for example THF, ethyl acetate, methanol or ethanol] affords an aniline of formula BB.

Compounds of formula (IIIb)

10

15

20

25

where R⁶ is an aliphatic or alicyclic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms] and R⁷⁻¹⁰ are as defined in formula (I) may be prepared by analogy with literature examples. References include e.g. E.A.Chernyshew et al., Bull. Acad. Sci. USSR, 1960, 1323; K.T.Kang et al., Tetrahedron Letters, 32, 4341 (1991), Synthetic Comm., 24, 1507 (1994); M.Murata et al., Tetrahedron Letters 40, 9255 (1999); A.Falcou et al., Tetrahedron 56, 225 (2000); A.Arcadi et al., Tetrahedron Letters 27, 6397 (1986); K.C.Nicolaou et al., Chem.Eur. J. 1, 318 (1995); N.Chatani et al., J.Org. Chem. 60, 834 (1995); T. Stuedemann et al., Tetrahedron 54, 1299 (1998); P.F.Hurdlik et al., J. Org. Chem. 54, 5613 (1989); K.Karabelas et al., J. Org. Chem. 51, 5286 (1986); T.Jeffery, Tetrahedron Letters 40, 1673 (1999) and Tetrahedron Letters 41, 8445 (2000); K.Olofson et al., J. Org. Chem. 63, 5076 (1998); H.Uirata et al., Bull. Chem. Soc. Jap. 57, 607 (1984); and G.Maas et al., Tetrahedron 49, 881 (1983); and references cited therein.

Recent reviews for the introduction of Si-containing functionalities into phenyl derivatives can be found in "The Chemistry of Organosilicon Compounds", Vols. 1-3, S.Patai, Z.Rappaport and Z.Rappaport, Y.Apeloid eds., Wiley 1989, 1998, 2001 and "Houben-Weyl Science and Synthesis", Organometallics Vol. 4, I.Fleming ed., G.Thieme 2002.

Another group of anilines comprises compounds of formula (IIIc)

where R' represents C_{2-4} alkyl, C_{2-4} haloalkyl or C_{3-6} cycloalkyl (itself optionally substituted by up to 3 substituents, independently selected from halo, C_{1-3} alkyl, C_{1-3} haloalkyl and C_{1-4} haloalkoxy).

A compound of formula (IIIc) may be prepared by a reaction sequence starting with a crossed aldol condensation of benzaldehyde with a ketone of formula CH₃C(O)R' [where R' is as defined above for a compound of formula (IIIc)] in the presence of NaOH

10

20

or KOH in a solvent (such as water or ethanol) and usually under reflux conditions or alternatively by reaction of benzaldehyde with a Wittig reagent under standard conditions. The resulting α,β -unsaturated ketone of formula (IV) [where R' is as defined above for a compound (IIIc)]:

may then be converted into a compound of formula (V') [where R' is as defined above for a compound (IIIc)]:

by reacting first with hydrazine hydrate in ethanol under reflux conditions and then heating (in the range of from 150 to 250°C) in the presence of KOH (distilling off the solvent). After nitration with HNO_3-H_2O or HNO_3 -acetic anhydride in a cooled vessel (in the range of from -30°C to 0°C), the resulting o/p-mixture of a nitrobenzene of formula (VI) [where R' is as defined above for a compound (IIIc)]:

may then be separated and catalytically reduced (Pt/C/ H₂ or Ra-Ni/H₂) in a solvent (such as methanol, ethanol of THF) at ambient temperature to give a compound of formula (IIIc).

Alternatively the synthesis of a compound of formula (IIId) [where R'2 is hydrogen or methyl]

10

15

20

may be accomplished by a reaction sequence started by a Wittig reaction of o-nitrobenzaldehyde with an ylide, prepared from a cyclopropylmethyltriphenylphosphonium bromide in the presence of a strong base [such as NaH] in a solvent [such as DMSO], in the range of 0-85°C. The resulting E/Z-mixture of a compound of formula (VII)

[where R'a is hydrogen or methyl] may be converted to a compound of formula (VIII)

by the application of the Simmons Smith reaction (Zn-Cu, CH_2I_2 , ether as a solvent) to the olefin group of a compound of formula (VII) to give a compound of formula (VIII). The reduction of the nitro moiety of a compound of formula (VIII) to give a compound of formula (IIIc) may be performed by using the same conditions as described above for a compound of formula (VI).

(c) Preparation of a compound of formula (I).

Scheme 5

A compound of formula (I) [where A, R¹ and R² are as defined above and R³ is H] may be synthesized by reacting a compound of formula (II') [where R¹ and R² are as defined above and R' is C₁₋₅ alkyl] with an aniline of formula (III) [where A is as defined above for a compound of formula (I)] in the presence of NaN(TMS)₂ at -10 °C to ambient temperature, preferably in dry THF, as described by J. Wang et al., Synlett, 2001, 1485.

10

15

20

Scheme 6

Alternatively, a compound of formula (I) [where A, R¹ and R² are as defined above and R³ is H] may be prepared by reacting a compound of formula (II) [where R¹ and R² are as defined above and Y is OH] with a compound of formula (III) [where A is as defined above for a compound of formula (I)] in the presence of an activating agent [such as BOP-Cl] and two equivalents of a base [such as NEt₃] or by reacting a compound of formula (II) [where Y is Cl, Br or F] with a compound of formula (III) in the presence of one equivalent of a base [such as NEt₃, NaHCO₃, KHCO₃, Na₂CO₃ or K₂CO₃] in a solvent [such as dichloromethane, ethyl acetate or DMF] preferably at -10 to 30°C.

Scheme 7

$$\begin{array}{c} R \\ N \\ N \\ N \\ R^2 \\ (I) [R^3 = H] \end{array}$$

(I) [R3 as defined above but not H]

A compound of formula (I) [where R³ is as defined above for formula (I), except that it is not hydrogen] may be prepared by reacting a compound of formula (I) [where R³ is hydrogen] with a species Y-R³ [where R³ is as defined for formula (I), except that it is not hydrogen; and Y is halogen, preferably Cl, Br or I; or Y is such that Y-R³ is an anhydride: that is, when R³ is COR*, Y is OCOR*] in the presence of a base [for example NaH, NEt₃, NaHCO₃ or K₂CO₃] in an appropriate solvent [such as ethyl acetate] or in a biphasic mixture [such as dichloromethane/water mixturte], at -10 to 30°C.

Surprisingly, it has now been found that the novel compounds of formula (I) have, for practical purposes, a very advantageous spectrum of activities for protecting plants against diseases that are caused by fungi as well as by bacteria and viruses.

The compounds of formula (I) can be used in the agricultural sector and related fields of use as active ingredients for controlling plant pests. The novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by

plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous cultivated plants. The compounds of formula I can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later, for example from phytopathogenic microorganisms.

5

10

15

20

25

30

It is also possible to use compounds of formula (I) as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.

Furthermore the compounds according to present invention may be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene management, etc.

The compounds of formula (I) are, for example, effective against the phytopathogenic fungi of the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia). Additionally, they are also effective against the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and of the Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara). Outstanding activity has been observed against powdery mildew (Erysiphe spp.). Furthermore, the novel compounds of formula I are effective against phytopathogenic bacteria and viruses (e.g. against Xanthomonas spp, Pseudomonas spp, Erwinia amylovora as well as against the tobacco mosaic virus).

Within the scope of present invention, target crops to be protected typically comprise the following species of plants: cereal (wheat, barley, rye, oat, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, drupes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (pumpkins, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus,

cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado, cinnamomum, camphor) or plants such as tobacco, nuts, coffee, eggplants, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamentals.

5

10

15

20

25

30

The compounds of formula (I) are used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they are conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.

Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO97/33890.

The compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be e.g. fertilizers or micronutrient donors or other preparations which influence the growth of plants. They can also be selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.

The compounds of formula (I) can be mixed with other fungicides, resulting in some cases in unexpected synergistic activities. Mixing components which are particularly preferred are azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon,

15

20

25

30

triadimenol, triflumizole, triticonazole; pyrimidinyl carbinole, such as ancymidol, fenarimol, nuarimol; 2-amino-pyrimidines, such as bupirimate, dimethirimol, ethirimol; morpholines, such as dodemorph, fenpropidine, fenpropimorph, spiroxamine, tridemorph; anilinopyrimidines, such as cyprodinil, mepanipyrim, pyrimethanil; pyrroles, such as fenpiclonil, fludioxonil; phenylamides, such as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim, debacarb, fuberidazole, thiabendazole; dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline; carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; guanidines, such as guazatine, dodine, iminoctadine; strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin, picoxystrobin, BAS 500F (proposed name pyraclostrobin), BAS 520; dithiocarbamates, such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb, ziram; N-halomethylthiotetrahydrophthalimides, such as captafol, captan, dichlofluanid, fluoromides, folpet, tolyfluanid; Cu-compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxine-copper; nitrophenol-derivatives, such as dinocap, nitrothal-isopropyl; organo-p-derivatives, such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos, tolclofos-methyl; various others, such as acibenzolar-S-methyl, anilazine, benthiavalicarb, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, SYP-LI90 (proposed name: flumorph), dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxanil, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, IKF-916 (cyazofamid), kasugamycin, methasulfocarb, metrafenone, nicobifen, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, zoxamide (RH7281).

A preferred method of applying a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen. However, the compounds of formula I can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil,

10

15

20

30

e.g. in granular form (soil application). In crops of water rice such granulates can be applied to the flooded rice field. The compounds of formula I may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.

A formulation [that is, a composition containing the compound of formula (I)] and, if desired, a solid or liquid adjuvant, is prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).

The agrochemical formulations will usually contain from 0.1 to 99% by weight, preferably from 0.1 to 95% by weight, of the compound of formula I, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant, and from 0 to 25% by weight, preferably from 0.1 to 25% by weight, of a surfactant.

Advantageous rates of application are normally from 5g to 2kg of active ingredient (a.i.) per hectare (ha), preferably from 10g to 1kg a.i./ha, most preferably from 20g to 600g a.i./ha. When used as seed drenching agent, convenient dosages are from 10mg to 1g of active substance per kg of seeds.

Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.

The following non-limiting Examples illustrate the above-described invention in more detail.

EXAMPLE 1

This Example illustrates the preparation of Compound No. 1.15 [2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester] and Compound No. 1.13 [2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid].

a) <u>Preparation of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester and 1-methyl-1H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester.</u>

1,2,3-Triazole-4,5-dicarboxylic acid dimethyl ester (Y. Tanaka et al. *Tetrahedron* 29, 3271 (1973)) (74.06g; 0.40mol), potassium carbonate (110.57g; 0.80mol) and methyl iodide (73.81g; 0.52mol) were reacted in acetonitrile (1000ml) at 40°C for 20minutes and then for 20hours at ambient temperature. The mixture was poured onto ice-water and extracted with ether to give the crude product (70.66g) as a mixture of isomers. Separation on silica gel in ethyl acetate-hexane (2:3) yielded 36.51g (46%) of 2-methyl-

10

15

20

25

30

2H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester [m.p. 86-87°C; 1 H-NMR (300 MHz, DMSO-d₆), δ (ppm): 4.27(s,3H), 3.88(s,6H)] and 26.92g (34%) of 1-methyl-1H-1,2,3-triazole-4,5-dicarboxylic dimethylester [m.p. 63-64°C; 1 H-NMR (300MHz, DMSO-d₆), δ (ppm): 4.19(s,3H), 3.93(s,3H), 3.87(s,3H)].

b) Preparation of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid monomethyl ester

To a solution of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester (1.2g; 6mmol) in 30ml methanol was added 358mg KOH (assay 86%; 5.5mmol). The mixture was heated at reflux temperature for 48hours. The solvent was evaporated and the residue was then taken into water and extracted with ethyl acetate (3 times). The combined organic phases contained non-reacted starting material. The aqueous phase was acidified with 2N HCl (pH2-3) and extracted with ethyl acetate (3 times). The extracts were combined, dried (anhydrous MgSO4) and evaporated to dryness to give 803mg (72%) of the desired compound (m.p. $125-126^{\circ}$ C; 1 H-NMR (300 MHz, DMSO- 1 d₆), 1 d(ppm): 13.7(br.s,1H, exchangable with D₂O), 4.24(s,3H), 3.84(s,3H).

c) Preparation of 2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester [Compound Number 1.15].

2-Methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid monomethyl ester (2.9g; 15.66mmol) and dichloromethane (160ml) were placed in an 0.3litre monel autoclave. Under an inert atmosphere and cooling with dry ice, gaseous HF (27g) was introduced at -50°C followed by gaseous SF₄ (distilled, 6.9g; 64.23mmol). The autoclave was heated to 80°C for 6hours. The maximum pressure amounted 9.8bar. After cooling to ambient temperature the reaction mixture was poured onto ice-dichloromethane and adjusted to pH7 with aqueous NaHCO₃. Extraction with dichloromethane (3 times), drying over Na₂SO₄ and evaporation under reduced pressure afforded the crude product. Purification by Kugelrohr-distillation at 3mbar and ca.180°C gave 2.8g (85%) of Compound No.1.15 as a yellowish liquid.

¹H-NMR (300 MHz, CDCl₃), δ (ppm): 4.29(s,3H), 3.97(s,3H);

 19 F-NMR (235 MHz, CDCl₃), δ (ppm): -61.7.

¹³C-NMR (125 MHz, CDCl₃), δ (ppm): 159.05, 139.65 (q, $J_{C(5)F}$ = 40.8 Hz), 137.20, 119.63 (q, J_{CF} = 269.4 Hz, CF₃), 52.96, 43.01.

10

15

20

25

30

d) Preparation of 2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid [Compound Number 1.13]

A solution of 2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester [Compound Number 1.15] (2.09g; 0.01mol) and KOH (86 %; 0.783g; 1.2eq.) in THF (50ml) was heated at reflux temperature for 3.5 hours. The solution was evaporated, the residue was dissolved in water and acidified to pH 1-2 with HCl (1M). Evaporation of the aqueous solution followed by continuous extration in ethylacetate for 20 hours gave of Compound No 1.13 (2.11g; 100%) as a crystalline solid.

¹H-NMR (400 MHz, DMSO-d₆), δ (ppm): 4.19(s,3H).

¹⁹F-NMR (235 MHz, DMSO-d₆), δ (ppm): -59.3.

¹³C-NMR (125 MHz, DMSO-d₆), δ (ppm): 160.74, 144.08, 135.81 (q, $J_{C(5)F}$ = 38.1 Hz), 120.63 (q, J_{CF} = 268.4 Hz, CF₃), 42.20.

EXAMPLE 2

This Example illustrates the preparation of Compound No.1.03 [2-methyl-5-difluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester].

a) Preparation of 5-Chlorocarbonyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester.

Methyl 2-methyl-1,2,3-triazole-4,5-dicarboxylate (2.3g; 0.011mol) was reacted with oxalyl chloride (1.46ml; 0.014mol) plus two drops of DMF in dichloromethane (20ml) at 20°C. When the vigourous reaction ceased the temperature was raised to reflux for 15hours. The mixture was evaporated to dryness to give 2.7g of the acid chloride as a solid. 1 H-NMR (300 MHz, CDCl₃), δ (ppm): 4.48(s, H), 4.0(s,3H).

b) Preparation of 5-formyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester.

To a solution of freshly prepared 5-Chlorocarbonyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (2.7g; ca.13mmol) in THF (270 ml) was added ethyl-diisopropyl-amine (1.88g; 1.1eq.). The mixture was hydrogenated in the presence of 2.7g 10% Pd/C at 0-5°C at normal pressure for $2\frac{1}{2}$ hours and subsequently filtered from the catalyst. The clear solution was evaporated to give the crude as a solid which was dissolved again in ethyl acetate and stirred for a couple of minutes with silica gel. After filtration and evaporation 1.77 g (84%) of pure product as off-white crystals were obtained [m.p. 107-108°C; ¹H-NMR (300 MHz, CDCl₃), δ (ppm): 10.43(s,1H), 4.33(s,3H), 4.01(s,3H)].

10

15

20

25

30

c) Preparation of 2-methyl-5-difluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester. [Compound No.1.03.]

5-Formyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (600mg; 3.5mmol) in 0.5ml CHCl₃ were reacted with (bis(2-methoxyethyl)amino) sulfurtrifluoride (1350mg; 6.1mmol) at ambient temperature to 50°C for 6days. The resulting orange solution was carefully quenched with 6ml of a saturated aqueous NaHCO₃ solution (vigorous reaction) and extracted with ethyl acetate (twice). The combined organic phases were washed with aqueous NaHCO₃-solution, dried over anhydrous MgSO₄ and evaporated to give 351mg (52%) of colourless crystals.

¹H-NMR (300MHz, CDCl₃), δ (ppm): 7.15(t, J_{HF} = 53.5 Hz, 1H, H-CF₂), 4.30(s,3H), 3.98(s,3H); ¹⁹F-NMR (235 MHz, CDCl₃), δ (ppm): -116.1; ¹³C-NMR (125MHz, CDCl₃), δ (ppm): 160.0, 143.6(t, $J_{C(5)F}$ = 25.6 Hz), 137.2, 108.0(t, $J_{(CF)}$ = 237.8 Hz, CHF₂), 52.6, 42.7].

EXAMPLE 3

This Example illustrates the preparation of Compound No.1.50 [2-methyl-5-fluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester].

a) Preparation of 5-hydroxymethyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester.

2.6g (13.3mmol) of 5-formyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (see Example 2a) in methanol (100ml) was treated with NaBH₄ (601mg) under stirring for 1hour at ambient temperature. The reaction mixture was quenched with saturated aqueous ammonium chloride solution, extracted with ethyl acetate, dried with Na₂SO₄ and evaporated to give the crude as an oil. Purification on silica gel in ethyl acetate: hexane (2:1) yielded 1.85g (81%) of the crystalline product,m.p. 112-113°C.

¹H-NMR (300MHz, CDCl₃), δ (ppm): 4.86(d, J = 6.9 Hz, 1H), 4.22(s,3H), 3.98(s,3H), 3.53(t; J = 6.9 Hz, exchangeable with D₂O).

b) Preparation of 2-methyl-5-fluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester. [Compound No.1.50.]

A solution of 5-hydroxymethyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (200mg; 1.1mmol) in CH₂Cl₂ (15ml) was reacted with 0.26ml diethylamino sulfur trifluoride (2mmol) for 15minutes at -40°C followed by 15hours at ambient

25

30

temperature. After evaporation, the crude product was purified on silica gel in ethyl acetate: hexane (3:1) to give 181mg (95%) of the desired product, m.p. 64-66°C.

¹H-NMR (300MHz, CDCl₃), δ (ppm): 5.66(d, J_{HF} = 47.5 Hz, 2H, H₂-CF), 4.26(s,3H), 3.96(s,3H).

 19 F-NMR (235 MHz, CDCl₃), δ (ppm): -214.

¹³C-NMR (125MHz, CDCl₃), δ (ppm): 161.6, 145.86 (d, $J_{C(5)F}$ = 18.7 Hz), 137.09, 74.82(d, J_{CF} = 166.6 Hz, CH₂F), 52.2, 42.3.

EXAMPLE 4

This Example illustrates the preparation of Compound No.3.017

[5-difluoromethyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid (4'-chloro-biphenyl-2-yl)-amide].

To a solution of 2-methyl-5-difluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester (300mg; 1.57mmol) and 4'-chloro-biphenyl-2-ylamine (320mg; 1.57mmol) in THF (3ml) was added sodium bis(trimethylsilyl)-amide (0.88ml 2M in THF; 1.76mmol; 1.12eq.) by syringe at 0°C over 1.5minutes. The reaction mixture was stirred at 0°C for 15minutes and then at ambient temperature for 22 hours. It was then poured on cold saturated NH₄Cl solution and extracted with ethyl acetate. After washing with brine it was dried (anhydrous MgSO₄) and evaporated to dryness to give a solid, which was triturated with hexane. The colourless crystalline product was filtered and dried: 300mg (53%) [m.p. 155-156°C; 1H-NMR (300MHz, CDCl₃), δ (ppm): 8.5(br, exchangeable with D₂O, 1H), 8.4 (d, 1H), 7.5-7.2(m,7H), 7.38 (t, J_{HF} = 52.5 Hz,1H, CHF₂), 4.2(s,3H), LC-MS: 363(M+H)].

EXAMPLE 5

This Example illustrates the preparation of Compound No.2.219 [2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid [2-(1,3-dimethyl-butyl)-phenyl]-amide].

To a solution of 2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (150mg; 0.75mmol) and 2-(1,3-dimethyl-butyl)-phenylamine (133mg; 0.75mmol) in 1.5ml THF was added sodium bis(trimethylsilyl)-amide (0.638ml 2M in THF; 1.7eq.) by syringe at ambient temperature. The reaction mixture was stirred for 20hours and was then poured on cold saturated NH₄Cl solution and extracted with ethyl

WO 2004/018438 PCT/EP2003/009111

acetate. After washing with brine it was dried (anhydrous MgSO₄) and evaporated to dryness to give the crude product, which was purified on silica gel in cyclohexane-ethyl acetate (18:1) The crystalline product was triturated in hexane, filtered and dried *in vacuo* to yield 130mg (49%) of Compound No. 2.219 [mp 94.6-95.4°C; 1H-NMR (300MHz, CDCl₃), δ (ppm): 8.5(br.s, exchangeable with D₂O,1H), 8.0(d,1H), 7.3-7.15(m,3H), 4.33(s,3H), 3.0(m,1H), 1:55-1.35(m,3H), 1.26(d,3H), 0.9(2d,6H); LC-MS: 355.6(M+H)].

- 71 -

EXAMPLE 6

This Example illustrates the preparation of Compound No.26.014 [1,8-Dimethyl-11-oxa-tricyclo[6.2.1.0*2.7*]undeca-2,4,6-trien-3-yl-amine].

A solution of 1,4-dimethyl-5-nitro-1,4-dihydro-1,4-epoxynaphthalene (5.49g; 25.27mmol) (see T. Nishiyama et al., *Rikagaku-hen*, 28, 37-43 (2000)) in 55ml THF was hydrogenated in the presence of RaNi (1.1g) at ambient temparature. Hydrogen uptake was 2.23litre (97%) after 18hours. After filtering off the catalyst, the filtrate was evaporated and taken into ether, washed with aqueous NaHCO₃-solution and dried (NaSO₄) to give 4.60g of crude product, as an oil. Trituration with hexane and a trace of ether furnished a total of 4.5g (94%) of reddish crystalline product, m.p.92-93°C.

¹H-NMR (300 MHz, CDCl₃), δ (ppm): 7.05(t,1H), 6.7(t,2H), ca.5(br.,exchangeable with D₂O, 2H), 2.0(s,3H), 1.9(m,2H), 1.8(s,3H), 1.7(m,1H), 1.5(m,1H).

EXAMPLE 7

5

10

15

20

25

30

This Example illustrates the preparation of Compound No.26.001 [1,8-Dimethyl-11-oxa-tricyclo[6.2.1.0*2.7*]undeca-2,4,6,9-tetraen-3-yl-amine].

To 1,4-dimethyl-5-nitro-1,4-dihydro-1,4-epoxynaphthalene (4.22g; 19.43mmol) (see Example 6) in ethanol (60ml) was added a solution of ammoniumchloride (2.08g) in H₂O (5.2ml) at 47°C. Under vigorous stirring, zinc powder (9.10g; 0.14mol) was added in portions over a period of 5minutes. The suspension was heated to reflux for 5½hours followed by filtration through HyfloTM to give a clear yellow filtrate. After evaporation, the crude product amounted 4.57g, as a viscous oil. Column chromatography on silica gel in ethyl acetate-hexane (1:4) gave 1.24g (34%) of the desired product, as brownish crystals, m.p. 92-96°C.

10

15

20

30

¹H-NMR (300 MHz, CDCl₃), δ (ppm): 6.85 and 6.7(two m, 2x2H), 6.47(t,1H), ca.5-3 (br., exchangeable with D₂O,2H), 2.07(s,3H), 1.85(s,3H).

FORMULATION EXAMPLES FOR COMPOUNDS OF FORMULA (I)

Working procedures for preparing formulations of the compounds of formula I such as Emulsifiable Concentrates, Solutions, Granules, Dusts and Wettable Powders are described in WO97/33890.

BIOLOGICAL EXAMPLES: FUNGICIDAL ACTIONS

Example B-1: Action against Puccinia recondita / wheat (Brownrust on wheat)

1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the wheat plants are inoculated by spraying a spore suspension (1x10⁵uredospores/ml) on the test plants. After an incubation period of 2 days at 20°C and 95%r.h. the plants are kept in a greenhouse for 8days at 20°C and 60%r.h. The disease incidence is assessed 10days after inoculation.

Infestation is prevented virtually completely (0-5% infestation) with each of Compounds 2.273, 3.219, 3.273, 3.321, 8.189, 9.189, 20.017, 20.022, 21.017 and 21.022.

Example B-2: Action against Podosphaera leucotricha / apple (Powdery mildew on apple)

5 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after, the application apple plants are inoculated by shaking plants infected with apple powdery mildew above the test plants. After an incubation period of 12 days at 22°C and 60%r.h. under a light regime of 14/10hours (light/dark) the disease incidence is assessed.

Compounds 2.005, 3.017, 3.219 and 9.189 each exhibit strong efficacy (<20% infestation).

25 Example B-3: Action against Venturia inaequalis / apple (Scab on apple)

4 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the apple plants are inoculated by spraying a spore suspension (4x10⁵conidia/ml) on the test plants. After an incubation period of 4 days at 21°C and 95%r.h. the plants are placed for 4 days at 21°C and 60%r.h. in a greenhouse. After another 4 day incubation period at 21°C and 95%r.h. the disease incidence is assessed.

Compounds 3.017, 3.219 and 9.189 each exhibit strong efficacy (<20% infestation).

10

15

20

25

30

Example B-4: Action against Erysiphe graminis / barley (Powdery mildew on barley)

1 week old barley plants cv. Regina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the barley plants are inoculated by shaking powdery mildew infected plants above the test plants. After an incubation period of 6 days at 20°C / 18°C (day/night) and 60%r.h. in a greenhouse the disease incidence is assessed.

Compounds 2.017, 2.029, 2.273, 3.005, 3.017, 3.029, 3.067, 3.070, 3.219, 3.273, 3.321, 3.407, 8.189, 9.189 and 21.017 each exhibit strong efficacy (<20% infestation). Example B-5: Action against Botrytis cinerea / grape (Botrytis on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the grape plants are inoculated by spraying a spore suspension (1x10⁶ conidia/ml) on the test plants. After an incubation period of 4 days at 21°C and 95%r.h. in a greenhouse the disease incidence is assessed.

Compounds 2.029, 3.017 and 3.219 each show good activity in this test (<50% disease incidence).

Example B-6: Action against Botrytis cinerea / tomato (Botrytis on tomatoes)

4 week old tomato plants cv. Roter Gnom are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the tomato plants are inoculated by spraying a spore suspension (1x10⁵conidia/ml) on the test plants. After an incubation period of 4 days at 20°C and 95%r.h. in a growth chamber the disease incidence is assessed.

Compounds 2.029, 3.005, 3.029, 3.067, 3.070, 3.219, 3.273, 9.189 and 20.017 each exhibit good efficacy (<50% disease incidence).

Example B-7: Action against Septoria nodorum / wheat (Septoria leaf spot on wheat)

1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the wheat plants are inoculated by spraying a spore suspension (5x10⁵conidia/ml) on the test plants. After an incubation period of 1 day at 20°C and 95%r.h. the plants are kept for 10 days at 20°C and 60%r.h. in a greenhouse. The disease incidence is assessed 11 days after inoculation.

Compounds 3.273 and 9.189 each show good activity in this test (<50% disease incidence).

Example B-8: Action against Helminthosporium teres / barley (Net blotch on barley)

1 week old barley plants cv. Regina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the barley plants are inoculated by spraying a spore suspension $(3x10^4\text{conidia/ml})$ on the test plants.

After an incubation period of 4 days at 20°C and 95%r.h. in a greenhouse the disease incidence is assessed.

Compounds 2.005, 2.017, 2.029, 2.067, 2.070, 2.273, 3.005, 3.017, 3.029, 3.067, 3.070, 3.219, 3.407, 9.189 and 21.017 each show good activity in this test (<20% disease incidence).

Example B-9: Action against Alternaria solani / tomato (Early blight on tomatoes)

10

15

20

25

4 week old tomato plants cv. Roter Gnom are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the tomato plants are inoculated by spraying a spore suspension (2x10⁵conidia/ml) on the test plants. After an incubation period of 3 days at 20°C and 95%r.h. in a growth chamber the disease incidence is assessed.

Compounds 2.005, 2.029, 3.005, 3.017, 3.029 and 9.189 each show good activity in this test (<20% disease incidence).

Example B-10: Action against Uncinula necator / grape (Powdery mildew on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the grape plants are inoculated by shaking plants infected with grape powdery mildew above the test plants. After an incubation period of 7 days at 26°C and 60%r.h. under a light regime of 14/10hours (light/dark) the disease incidence is assessed.

Compounds 3.017, 3.219 and 9.189 each show good activity in this test (<20% disease incidence).