Фамилия И. О., группа: ______

1	2	3	4	5	6	7	8	9	10	Σ	оценка

Внимание!

- 1. Ответы, включая правильные, при отсутствии решений оцениваются в 0 (ноль) баллов.
- 2. Объекты, полученные «методом внимательного вглядывания», без доказательства корректности построения оцениваются в 0 (ноль) баллов.
- 3. При формулировке вопроса «верно ли, что», в случае положительного ответа приведите доказательство, а в случае отрицательного контрпример. Верное рассуждение без контрпримера оценивается в половину задачи.

Тестовые задачи

Выберите все верные варианты ответов и только их.

Задача 1 (2).Отметьте номера позиций всех символов в РВ $(a_1|b_2)a_3b_4^*(a_5^*a_6|b_7b_8)^*$, входящих в множество followpos(3).

- \Box 1
- \square 2
- \square 3

- □ 8

Задача 2 (3).В каждом пункте укажите, для каких языков ('для любых'= \forall , 'лишь для некоторых' = S, 'ни для каких' = \nexists) из первой части предложения выполняется утверждение из второй части.

- 2. S L: (для L существует бесконечно много классов L-эквивалентности \Rightarrow для L выполняется отрицание леммы о накачке).

'ни для каких'

- 3. L: (L можно распознать ДКА с одним финальным состоянием \Rightarrow классов L-эквивалентности бесконечно много).
- 4. $\bigvee L$ (L распознается НКА с 3 состояниями \Rightarrow существует ДКА с не более чем 10 состояниями, который распознает L).

Задача 3 (4).]Отметьте все верные утверждения и только их для произвольных языков $X,Y\subseteq \Sigma^*$. Через $[w]^L$ обозначим класс эквивалентности Майхила—Нероуда для языка L, через $[w]^L_R$ — правый контекст для слова w (относительно языка L). Напомним, что $[w]^L_R = \{z \mid wz \in L\}$.

- 1. $\Box X = Y$ тогда и только тогда, когда $\forall w \in X \cup Y : [w]^X = [w]^Y$.
- 2. $\square X = Y$ тогда и только тогда, когда $\forall w \in \Sigma^* : [w]^X = [w]^Y$.
- 3. $\square X = Y$ тогда и только тогда, когда $\forall w \in X \cup Y : [w]_R^X = [w]_R^Y$.
- 4. $\square X = Y$ тогда и только тогда, когда $\forall w \in \Sigma^* : [w]_R^X = [w]_R^Y$.

Контрольные вопросы

Обоснованно ответьте на вопрос

Задача 4(2). Предъявите константу леммы о накачке для языка

$$\{a^n \mid 0 \leqslant n \leqslant 2020\}.$$

n=2021, тогда в языке не будет найдено такое, длина которого больше, чем 2021, сл-но лемма о накачке выполняется. доказано

Задача 5(3). Приведите пример последовательности слов w_n , для каждого элемента которой суффиксный автомат содержит n принимающих состояний.

Задача 6(3). Найдите число классов эквивалентности Майхилла-Нероуда для языка $\Sigma^* aaba$.

- 1) $L_1 = \{w \mid w \text{ in } \Sigma * aaba\}$
- 2) $L_2 = \{ w \mid w \text{ in } \Sigma^* \text{aab} \}$
- 3) $L_3 = \{w \mid w \text{ in } \Sigma^*aa\}$
- 4) $L_4 = \{w \mid w \text{ in } \Sigma^* a \text{ and } w \text{ notin } L_1 \text{ and } w \text{ notin } L_3\}$
- 5) $L_5 = \Sigma^* \setminus (L_1 \text{ cup } L_2 \text{ cup } L_3 \text{ cup } L_4)$
- 1) Если мы допищем ε , к словам из всех классов, то слова из первого класса будут содержаться в L_1, а остальные нет
- 2) Если допишем а, к словам из всех классов, то слова из второго класса будут содержаться в L_1, а другие нет.
- Допишем ba, аналогичное получаем, что все слова, кроме слов из L_3 не будут содержаться в L_1.
 Объединение L_1, L_2, L_3, L_4 получат весь алфавит.
 То что слова из одно класса при дописывании z будут либо принадлежать языку или не принадлежать следует из того, что их можно представить, на примере L_2 в виде x=Σ*aab, у = Σ*aab, сл-но дописывании одинаковых слов для них одинаково.

Задачи

Приведите обоснованное решение

Задача 7 (3). Постройте суффиксный автомат для слова aabab.

Сделал на листочке

Задача 8 (3). Пусть $S=\{cab,ab,bca\},\,\Sigma=\{a,b,c\}.$ Постройте ДКА, распознающий слова, не содержащие суффикса из множества S.

Построил на листочке

Задача 9 (5). Отметьте среди перечисленных все регулярные языки (и только их) над алфавитом $\Sigma = \{a, b\}$. (Нужно также привести доказательство регулярности или нерегулярности)

- 1. $\square \{w : |w|_a |w|_b > |w|/2\}$
- 2. $\square \{w : (|w|_a + |w|_b)/2 > |w|/3\}$
- 3. $\square \{w : (|w|_a = |w|_b) \land (|w_{aa}| = 0) \land (|w_{bb}| = 0)\}$
- 4. $\Box \{w : |w|_{aba} = |w|_b\}$

Задача 10 (4). Определим языки L_0 и L над алфавитом $\Sigma = \{a,b\}$:

$$L_0 = \{ w \mid \exists m, k > 0 : |w|_a = 3m \mid w|_b = 5k \}.$$

$$L = \{ w \mid \exists n > 0 : w = w_1 w_2 \dots w_n, w_i \in L_0 \}.$$

Является ли L регулярным?