CSE 675.02: Introduction to Computer Architecture

Basics of Digital Logic Design

Presentation D

Study: B.1, B2, B.3

Slides by Gojko Babić

From transistors to chips

- Chips from the bottom up:
 - Basic building block: the transistor = "on/off switch"
 - Digital signals voltage levels high/low
 - Transistors are used to build logic gates
 - Logic gates make up functional and control units
 - Microprocessors contain several functional and control units
- This section provides an introduction into digital logic
 - Combinatorial and sequential logic
 - Boolean algebra and truth tables
 - Basic logic circuits:
 - Decoders, multiplexers, latches, flip-flops
 - · Simple register design

Presentation D

2

Signals, Logic Operations and Gates

• Rather than referring to voltage levels of signals, we shall consider signals that are logically 1 or 0 (or asserted or de-asserted).

Logic operation

OR

Α	В	A or B
0	0	0
0	1	1
1	0	1
1	1	1

XOR

· В

Gates

Output is 1 iff:

Input is 0

Both inputs are 1s

At least on input is 1

Inputs are not equal

- Gates are simplest digital logic circuits, and they implement basic logic operations (functions).
- · Gates are designed using transistors.
- Gates are used to build more complex circuits that implement more complex logic functions.

Classification of Logic Functions/Circuits

- Combinational logic functions (circuits).
 - any number of inputs and outputs
 - outputs y_i depend only on current values of inputs x_i
 Logic equations may be used to define a logic function.

Example: A logic function with 4 inputs and 2 outputs

$$y_1 = (x_1 + (x_2 * x_3)) + ((\overline{x_3} * x_4) * x_1)$$
 "*" used for "and", "+" used for "or" $y_2 = (\overline{x_1} + (x_2 * x_4)) + ((x_1 * x_2) * \overline{x_3})$

- For sequential functions (circuits):
 - outputs depend on current values of inputs and some internal states.
- Any logic function (circuit) can be realized using only and, or and not operations (gates).
- nand and nor operations (gates) are universal.

g. babic

Presentation D

4

Basic Laws of Boolean Algebra

- Identity laws: A + 0 = A A * 1 = A
- Inverse laws: $A + \overline{A} = 1$ $A * \overline{A} = 0$
- Zero and one laws: A + 1 = 1

$$A * 0 = 0$$

• Commutative laws: A + B = B+A

• Associative laws: A + (B + C) = (A + B) + C

$$A * (B * C) = (A * B) * C$$

• Distributive laws : A * (B + C) = (A * B) + (A * C)

$$A + (B * C) = (A + B) * (A + C)$$

• DeMorgan's laws: $(\overline{A + B}) = \overline{A} * \overline{B}$ $(\overline{A * B}) = \overline{A} + \overline{B}$

g. babic

Presentation D

5

Simple Circuit Design: Example

Given logic equations, it is easy to design a corresponding circuit

$$y_1 = (x_1 + (x_2 * x_3)) + ((\overline{x_3} * x_4) * x_1) = x_1 + (x_2 * x_3) + (\overline{x_3} * x_4 * x_1)$$

$$y_2 = (\overline{x}_1 + (x_2^*x_4)) + ((x_1^*x_2)^*\overline{x}_3) = \overline{x}_1 + (x_2^*x_4) + (x_1^*x_2^*\overline{x}_3)$$

g. babic

Presentation D

6

Truth Tables

- Another way (in addition to logic equations) to define functionality
- Problem: their sizes grow exponentially with number of inputs.

inputs			outp	uts →
X ₁	X ₂	Х3	у ₁	у ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

What are logic equations corresponding to this table?

$$y_1 = x_1 + x_2 + x_3$$

$$y_2 = x_1 * x_2 * x_3$$

Design corresponding circuit.

g. babic Presentation D 7

Logic Equations in Sum of Products Form

• Systematic way to obtain logic equations from a given truth table. inputs outputs

		→		
X ₁	X ₂	Х3	y ₁	y ₂
0	0 x ₂	Χ ₃	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

- A product term is included for each row where y_i has value 1
- A product term includes all input variables.
- At the end, all product terms are ored

$$y_1 = \overline{x_1} * \overline{x_2} * \overline{x_3} + \overline{x_1} * \overline{x_2} * x_3 + \overline{x_1} * x_2 * x_3 + x_1 * x_2 * x_3$$

$$y_2 = \overline{x_1} * \overline{x_2} * \overline{x_3} + \overline{x_1} * \overline{x_2} * x_3 + \overline{x_1} * x_2 * \overline{x_3} + x_1 * \overline{x_2} * \overline{x_3} + x_1 * \overline{x_2} * x_3$$

Programmable Logic Array - PLA

• PLA – structured logic implementation

g. babic Presentation D

Circuit → **Logic** Equation → **Truth Table**

• For the given logic circuit find its logic equation and truth table.

y	=	X ₁	* X 2	+	X ₂	* X 3
---	---	-----------------------	--------------	---	-----------------------	--------------

X ₁	X ₂	Х3	у	
X ₁	0	0 X ₃	1	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

9

- Note that y column above is identical to y₁ column Slide 8.
- Thus, the given logic function may be defined with different logic equations and then designed by different circuits.

Minimization Using Boolean Laws

• Consider one of previous logic equations:

$$y_1 = \overline{x_1} * \overline{x_2} * \overline{x_3} + \overline{x_1} * \overline{x_2} * x_3 + \overline{x_1} * x_2 * x_3 + \overline{x_1} * x_2 * x_3$$

$$= \overline{x_1} * \overline{x_2} * (\overline{x_3} + x_3) + x_2 * x_3 * (\overline{x_1} + x_1)$$

$$= \overline{x_1} * \overline{x_2} + x_2 * x_3$$

But if we start grouping in some other way we may not end up with the minimal equation.

g. babic Presentation D 11

Gray codes

• a.k.a. reflected code – binary numeral system in which two successive values differ by only one digit

		4-bit Gray code	
	3-bit Gray code	0000	
2-bit Gray code		0001	
2-bit Gray code	000	0011	
00	001	0010	
01	011	0110	
11	010	0111	
10	110	0101	
10	111	0100	
	101	1100	
	100	1101	
		1111	
		1110	
		1010	
		1011	
		1001	
	Presentation D	1000	12

Minimization Using Karnaugh Maps (1/4)

- Provides more formal way to minimization
- Includes 3 steps
- 1. Form Karnaugh maps from the given truth table. There is one Karnaugh map for each output variable.
- 2. Group all 1s into as few groups as possible with groups as large as possible.
- 3. each group makes one term of a minimal logic equation for the given output variable.

Forming Karnaugh maps – using "Gray code"

 The key idea in forming the map is that horizontally and vertically adjacent squares correspond to input variables that differ in one variable only. Thus, a value for the first column (row) can be arbitrary, but labeling of adjacent columns (rows) should be such that those values differ in the value of only one variable.

g. babic Presentation D 13

Minimization Using Karnaugh Maps (2/4)

Grouping (This step is critical)

When two adjacent squares contain 1s, they indicate the possibility of an algebraic simplification and they may be combined in one group of two. Similarly, two adjacent pairs of 1s may be combined to form a group of four, then two adjacent groups of four can be combined to form a group of eight, and so on. In general, the number of squares in any valid group must be equal to 2^k. Note that one 1 can be a member of more than one group and keep in mind that you should end up with as few groups as possible, which are as large as possible.

Finding Product Terms

The product term that corresponds to a given group is the product of variables whose values are constant in the group. If the value of input variable x_i is 0 for the group, then $\overline{x_i}$ is entered in the product, while if x_i has value 1 for the group, then x_i is entered in the product.

Minimization Using Karnaugh Maps (3/4)

Example 1: Given truth table, find minimal circuit

X ₁	X ₂	Х3	у
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$y = \overline{x_1} \cdot \overline{x_2} + x_2 \cdot x_3$$

15

