Introducción a la estadística Bases indispensables y uso de

Olivier Devineau olivier.devineau@fcdarwin.org.ec

Fundación Charles Darwin

Taller interno, 27-30 abril 2010

Correlación y regresión

Dos categorías de tests estadísticos

Introdución

Correlaciión

Modelo linea

Regresión

Otros tipos regresión

Criticas a los

Tests de comparación : 1 variable, $\geqslant 2$ poblaciones

Tests de relación : $\geqslant 2$ variables, 1 población

≥ 2 variables es común en biología

2 variables para el mismo individuo

- Presión sanguínea X_1 , peso X_2
- Abundancia de una especie de planta X_1 , nivel del pH en el suelo X_2 , temperatura X_3
- Datos bivariados o multivariados
- ⇒ ¿Cuál es la relación entre las variables?

Relación entre ≥ 2 variables

La estadística correlacional

Varios tipos de relación

- No conexión
- Relación |handout: 1 > 0 / < 0, causal / no
- Conexión funcional → predicción

Objetivo de la estadística correlacional

- Determinar validez y fuerza de la relación entre las variables
- Determinar la dirección de la relación

Correlaciión

Modelo line:

Regresión lineal

Otros tipos o

C

modelos

Estadística correlacional

Correlación: ¿Cómo 2 variables varían juntas?

Regresión: Relación entre 1 variable dependiente y

 $\geqslant 1$ variable independiente

Análisis multivariados: Relación entre $\geqslant 2$ variables

independientes / dependientes / ambos

Noción de

correlación Coeficiente de

Noción de correlación

Ejemplo

- 1 población: 2 variables continuas
- Presión sanguínea X_1 , peso X_2
- Cada muestra i:1 valor por cada variable: x_{i_1} y x_{i_2}
- ¿La presión sanguínea y el peso son correlativas?

Noción de correlación

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Noción de correlación (2) Definición

- Varianza de X_1 : $var(X_1)$
- Varianza de X_2 : $var(X_2)$
- ¿Como X_1 y X_2 varian juntas? Covarianza: $cov(X_1, X_2)$
 - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

Criticas a lo

El coeficiente de correlación r

Correlación de Pearson (paramétrica)

- No unidad
- $r \in [-1, 1]$
- Magnitud: fuerza de la relación
- Signo: dirección de la relación
- Muestra: r, Población: ρ

Correlacii

Noción de correlación Coeficiente de

Test

Observacion

Modelo linea

Otros tinos o

regresión

Criticas a los modelos

¿Qué test para chequear la correlación?

 X_1 : Presión sanguínea y X_2 : peso

• ¿Hipótesis nula?

Test

Observacion

Modelo linea

lineal

Otros tipos de regresión

Criticas a los

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso

Test

Observacion

Modelo linea

Pogración

Otros tipos d

regresión

Criticas a los modelos

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$

Criticas a los modelos

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- Cuando H_0 es verdadera, $r \rightsquigarrow \mathcal{N}(\mu, \sigma)$

Test

Observacione

Modelo linea

Otros tipos d

Otros tipos de regresión

Criticas a los

¿Qué test para chequear la correlación?

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- Cuando H_0 es verdadera, $r \rightsquigarrow \mathcal{N}(\mu, \sigma)$
 - \Rightarrow uso de test t de Student

Correlacion

Observaciones

Modelo line

illieai

regresión

Criticas a los modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ρ - de Kendall: au
 - ¡Más conservadores!

Noción de Coeficiente de

Observaciones

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango

 - ¡Más conservadores!

Observaciones

Modelo line

Regresión

Otros tipos d

regresión

Criticas a lo modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ho
 - de Kendall: au
 - ¡Más conservadores!

Observaciones

Modelo line

lineal

Otros tipos de

regresión

Criticas a lo modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ho
 - de Kendall: au
 - ¡Más conservadores!

Observaciones

Modelo line

lineal

Otros tipos de regresión

Criticas a los modelos

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
 - de Spearman: ho
 - de Kendall: au
 - ¡Más conservadores!

Noción de correlación

Correlacion

Observaciones

Modelo line:

Regresión

Otros tipos d

Criticas a los

La correlación depende de la escala

¡Las cosas no son siempre como parecen!

.

Noción de correlación

Test

Observaciones

Modelo line

_ ..

iineai

Otros tipos d regresión

Criticas a los

La correlación depende de la escala

¡Las cosas no son siempre como parecen!

.

Noción de correlación

Test

Observaciones

Modelo line

D 1/

Otros tipos o

regresión

La correlación depende de la escala

¡Las cosas no son siempre como parecen!

• Se puede identificar:

- Se puede identificar:
 - 1 variable respuesta / dependiente Y

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - ≥ 1 variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots

¿Lineal?

Regresió: lineal

Otros tipos d regresión

Criticas a los

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - $\geqslant 1$ variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots
- Cada unidad de muestra: $y_i, x_{1_i}, x_{2_i} \dots$

- Se puede identificar:
 - 1 variable respuesta / dependiente Y
 - ≥ 1 variable explicativa / predictiva / independiente / covariable X_1, X_2, \ldots
- Cada unidad de muestra: y_i, x_{1i}, x_{2i}...
- Explicar el patrón de Y con X

Modelo line

Generalidades

Regresiór

Otros tipos regresión

Criticas a lo

Modelo lineal

Forma general de los modelos estadísticos

ullet $Variable\ dependiente = modelo + error$

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros

Otros tipos d

Criticas a lo modelos

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos

Otros tipos o

Criticas a los

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo

Otros tipos d regresión

Criticas a lo modelos

Modelo lineal

- $Variable\ dependiente = modelo + error$
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo
- ullet Se supone una distribución para el componente del error, y de ahi para la variable dependiente Y

Generalidades ¿Lineal?

¿Qué significa lineal?

Relación de línea recta entre 2 variables.

Introducción a la estadística

Introdución

Correlaciió

Generalidade

¿Lineal?

lineal

Otros tipos d regresión

Criticas a los

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros

¿Lineal?

Otros tipos

Criticas a los

¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro

¿Qué significa lineal?

- Relación de línea recta entre 2 variables.
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro
- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

Regresión

Regresión

Estimación
Evaluación del
ajuste
Comparación de
modelos
Condiciones

Otros tipos

Criticas a lo

Análisis de regresión lineal

 Usar datos de una muestra para estimar valores de parámetros y sus errores estándar

lineal Regresión

Estimación Evaluación del ajuste Comparación de modelos

Otros tipos o

Criticas a lo

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?

lineal Regresión

Estimación Evaluación del ajuste Comparación de modelos

Otros tipos o regresión

Criticas a los

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas

lineal Regresión

Estimación Evaluación del ajuste Comparación de modelos Condiciones

regresión

Criticas a los

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura . . .

lineal Regresión

Estimación
Evaluación del
ajuste
Comparación de
modelos
Condiciones

regresión

Criticas a los

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura ...
- Nube de puntos → regresión lineal

Regresió

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos o regresión

Criticas a lo

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

Regresió

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos d

Criticas a los

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

Regresión

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

Otros tipos d regresión

Criticas a lo

Análisis de regresión lineal Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

iviodeio linea

lineal Regresión

Estimación
Evaluación del
ajuste
Comparación de
modelos
Condiciones

regresión

Criticas a los

Análisis de regresión lineal

Varios tipos de regresión

- Regresión lineal: lo más simple y frecuente
- Regresión polinomial: chequear si una relación es no lineal
- Regresión no lineal
- Regresión no parámetrica: si no hay forma funcional

lineal

Regresión

Estimación Evaluación del ajuste

Comparación de modelos

Otros tipos

Criticas a los

Regresión lineal

Regresión

Estimación Evaluación del

Comparación de modelos

Condiciones

regresión

Criticas a los

• Modelo:
$$y = a + bx$$

Regresión

Estimación Evaluación del

Comparación de modelos

Condiciones

regresión

- Datos
- Modelo: y = a + bx
- ¿Cambio en y?

Regresión

Estimación Evaluación del ajuste Comparación de

modelos

Condiciones

regresión

Criticas a los

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$

Evaluación del

Comparación de

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x?

lineal

Regresión

Estimación Evaluación del ajuste Comparación de

modelos Condiciones

regresión

Criticas a los

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$

lineal

Regresión

Estimación Evaluación del ajuste Comparación de

modelos Condiciones

regresión

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$

- **Datos**
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- i Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y / \delta x = -1.25$
- ¿Ordenada al origen?

Condiciones

regresión

Criticas a los modelos

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$
- ¿Ordenada al origen? a = 12

meroducion

Modelo linea

Regresión

Estimación Evaluación del ajuste Comparación de modelos

Condiciones

regresión

Introdución

- Datos
- Modelo: y = a + bx
- ¿Cambio en y? $\delta y = -10$
- ¿Cambio en x? $\delta x = +8$
- Pendiente $b = \delta y/\delta x = -1.25$
- ¿Ordenada al origen? a = 12
- y = 12 1.25x

Evaluación del Comparación de

- Ajustar un modelo a los datos
- Probar varios valores de parámetros hasta encontrar el
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Evaluación del Comparación de

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Regresió

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos d regresión

Criticas a los

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Regresió

Regresión

Evaluación del ajuste Comparación de modelos

Otros tipos de regresión

Criticas a los modelos

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Regresió

Regresión

Evaluación del ajuste Comparación de modelos Condiciones

Otros tipos de regresión

Criticas a los modelos

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

Introducción a la estadística

Introdución

Correlaciión

Modelo linea

Regresió

Regresión

Estimación

Evaluación del

ajuste Comparación de

modelos

Condiciones

regresión

Criticas a los

Cuadrados mínimos: principio

Estimación

Evaluación del ajuste Comparación de

modelos

Condiciones

regresión

Criticas a los

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x

Criticas a los

Cuadrados mínimos: principio

• Modelo
$$y = 10 + 1/6x$$

Condiciones

Otros tipos d regresión

Criticas a los

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$

modelos Condiciones

Otros tipos o

Criticas a los

Cuadrados mínimos: principio

- Datos
 - Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$
- $SS = \sum (y_i \hat{y}_i)^2 = 79.85$

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$
- $SS = \sum_{i} (y_i \hat{y}_i)^2 =$ 79.85
- SS = 30.85

Cuadrados mínimos: principio

- Datos
- Modelo y = 10 + 1/6x
- Residual $e_i = y_i \hat{y}_i$
- $SS = \sum (y_i \hat{y}_i)^2 =$ 79.85
- SS = 30.85
- Modelo seleccionado: SS = 19.58y = 2.03 + 0.48x

Regresión

Regresión

Evaluación del

ajuste Comparación de

modelos Condicione

Otros tipos

regresion

Criticas a lo

Hipótesis nula en regresión

• ¿Cuál seria H_0 ?

Evaluación del ajuste

Comparación de

Hipótesis nula en regresión

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables

Evaluación del

ajuste Comparación de

Hipótesis nula en regresión

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b=0

Evaluación del

ajuste Comparación de

Hipótesis nula en regresión

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b=0
 - \rightarrow Test de Fisher: F

Evaluación del ajuste

Comparación de

Hipótesis nula en regresión

- ¿Cuál seria H_0 ?
- No hay una relación lineal entre las variables
- Pendiente b=0
 - \rightarrow Test de Fisher: F
 - \rightarrow Test de Student: t

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0, 1]$
- ¿Como se mejora el ajuste del modelo con pendiente
- r^2 inadecuado para comparar modelos con números de

Evaluación del ajuste Comparación de

Varianza explicada

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0, 1]$
- ¿Como se mejora el ajuste del modelo con pendiente
- r^2 inadecuado para comparar modelos con números de

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente
- r^2 inadecuado para comparar modelos con números de

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de

- Variación de Y explicada por la relación con X
- (coeficiente de correlación)²
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- r^2 inadecuado para comparar modelos con números de parámetros diferentes

Regresió lineal

Estimación
Evaluación del
ajuste
Comparación de

modelos Condiciones

Otros tipos

regresión

Comparar varios modelos

- Evaluar varias hipótesis → varios modelos
- H_0 : modelo simple, H_1 : modelo más complejo
- Hay que comparar los modelos

Evaluación del Comparación de

modelos

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual

iviodelo line

lineal

Regresión Estimación Evaluación del

ajuste Comparación de modelos

modelos Condiciones

Otros tipos regresión

Criticas a lo

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Modelo linea

Dogración

Regresión

Estimación Evaluación del ajuste

Comparación de modelos

Condiciones

Otros tipos o regresión

Criticas a lo

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Evaluación del

Comparación de modelos

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud

Modelo linea

Regresión

Estimación Evaluación del ajuste Comparación de

modelos Condiciones

Otros tipos de regresión

regresión

Criticas a los

Comparar modelos de regresión

Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud
- ⇒ Prueba de la razón de verosimilitud (Likelihood Ratio Test o AIC)

Regres

Evaluación del ajuste Comparación de modelos

Condiciones

regresión

Criticas a los

Comparar modelos de regresión (2) Siempre la misma lógica

- Medir el ajuste de cada modelo
- Comparar los ajustes de diferente modelos para examinar hipótesis sobre los parámetros

Ejemplo: presión sanguínea y peso

- Modelo 1: $P = \beta_0 + \varepsilon$
- Modelo 2: $P = \beta_0 + \beta_1 * peso + \varepsilon$
- Comparar M_1 y M_2 es equivalente a evaluar $H_0: \beta_1 = 0$

Introducción a la estadística

Introdución

Correlaciió

Modelo linea

Regresión

Regresión Estimación Evaluación del

ajuste
Comparación de

Condiciones

Otros tipos de regresión

Criticas a los

Condiciones del análisis de regresión (1)

- Involucran de los términos de errores (ε_i)
- ullet De la variable dependiente Y
- Importantes para intervalos de confianza
- Importantes para tests de hipótesis con distribución t o F
- Residuales importantes para chequear condiciones

Regresió lineal

Regresión Estimación Evaluación del ajuste Comparación de

Condiciones

regresión

Criticas a los modelos

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x

Evaluación del Comparación de

Condiciones

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_s^2$

Criticas a los modelos

Condiciones del análisis de regresión (2)

- Normalidad: ε tiene una distribución normal
- Homogeneidad de la varianza: ε tiene la misma varianza por cada x_i : $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_\varepsilon^2$
- Independencia: ε son independientes: Los valores de Y para cualquier x_i no influyen los valores de Y para otra x_i

Regre lineal

Estimación Evaluación del

Comparación de modelos

Condiciones

Otros tipos d regresión

Criticas a los

Homogeneidad de la varianza

No tendencia

la estadística

Evaluación del Comparación de

Condiciones

Homogeneidad de la varianza

No tendencia

Heteroscedasticidad

Lancia de la Car

Correlaciión

Modelo linea

Regresio

Regresión Estimación Evaluación del ajuste Comparación de modelos

Otros tipos o

Criticas a los

Homogeneidad de la varianza

Heteroscedasticidad

• Test de Levene, test de Barttlett

Introdución

A COLUMN TO SECURE

Regresión

lineal

Regresión

Estimación Evaluación del

Evaluación d

Comparación de

Condiciones

Otros tipos o

Criticas a los

Normalidad de los residuales

Introducción a la estadística

Introdución

c

Modelo linea

5 1/

lineal

Regresión Estimación

Evaluación del

Comparación de modelos

Condiciones

Otros tipos

Criticas a los

Normalidad de los residuales

• Test de Shapiro-Wilk

Modelo linea

Regresió

Regresión
Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos

Criticas a lo

¿Qué hacer si las condiciones no cumplen?

Residuales no son independentes:

Modelo lines

Regresión

Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos o regresión

Criticas a lo

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)

Regresión

Regresión
Estimación
Evaluación del
ajuste
Comparación de

modelos Condiciones

Otros tipos o

Criticas a lo

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:

Modelo line

Regresión

Regresión Estimación Evaluación del ajuste Comparación de

Condiciones

Otros tipos d

Criticas a los

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica

Introdución

Correlaciió

Modelo line

Regresió

Regresión
Estimación
Evaluación del
ajuste
Comparación de
modelos

Condiciones

Otros tipos d

Criticas a los

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .

Modelo linea

Regresión

Regresión Estimación Evaluación del ajuste Comparación de modelos

Condiciones

regresión

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)

Regresión

Regresión Estimación Evaluación del ajuste Comparación de modelos

Condiciones

regresión

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:

Regresión

Regresión Estimación Evaluación del ajuste Comparación de modelos

Condiciones

Otros tipos de regresión

Criticas a los modelos

- Residuales no son independentes:
 - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
 - Alternativa no parámetrica
 - Transformación de los datos log, sqrt, exp . . .
 - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:
 - GLM

Introducción a la estadística

Introdución

Correlaciió

Modelo line

Regresio

Estimación
Evaluación del
ajuste
Comparación de

Condiciones

Otros tipos de regresión

Criticas a los

Si el modelo es inadecuado, se puede. . .

- Transformar variable dependiente
- Transformar $\geqslant 1$ variable explicativa
- Probar otras variables explicativas
- Usar una estructura de error diferente (GLM)
- Usar alternativa no parámetrica (smoothing)
- ullet Usar pesos diferentes por diferentes valores de y

Modelo linea

Otros tipos d

regresión

Regresión polinomial

lineal Modelos lineale generalizados

Criticas a lo

Regresión polinomial

Ejemplo: Desintegración radioactiva

Wiodelo iiile

Otros tipos de

Regresión

Regresión no lineal

Modelos lineales generalizados

Criticas a lo

Regresión polinomial

Ejemplo: Desintegración radioactiva

Regresión lineal:

$$y = ax + b$$

Regresión

Otros tipos de

Regresión

Regresión no lineal

Modelos lineales generalizados

Criticas a lo

Regresión polinomial

Ejemplo: Desintegración radioactiva

- Regresión lineal: y = ax + b
- Regresión polinómica

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$

Regresión polinomial

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$
- $y = ax^2 + bx + c$

Regresión polinomial

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$
- $y = ax^2 + bx + c$
- $y = ae^{-bx}$

Regresión polinomial

Regresión polinomial

- Regresión lineal: y = ax + b
- Regresión polinómica
- $X_2 = X^2$
- $y = ax^2 + bx + c$
- $y = ae^{-bx}$
- ¡Descripción, no explicación!

Regresión no lineal

generalizados

Regresión no lineal

generalizados

Regresión no lineal

generalizados

Regresión no lineal

generalizados

Regresión no lineal y GAM

(R: nls()

$$y = a - be^{-cx}$$

ia estadisti

Introdución

Wodelo IIIlea

Otros tipos de

regresión

Regresión no lineal

lineal Modelos lineale generalizados

Criticas a lo modelos

- (R: nls()
- Teoría: $y = a be^{-cx}$
- No información:
 Modelos Aditivos
 Generalizados
 (Generalized Additive
 Models GAM)

Otros tipos regresión

Regresión no lineal Modelos lineales

generalizados

Cuiting

Criticas a los modelos

Recordatorio de vocabulario

- Normalidad de los errores:
 - Modelos lineales
- Normalidad + var. descriptivas continuas/categóricas:
 - Modelos lineales generales
- Errores no normales y/o varianza no homogénea:
 - Modelos lineales generalizados (GLM)

Regresión lineal

Otros tipos regresión

Regresión polinomial Regresión lineal

Modelos lineales generalizados

Criticas a lo

Modelos lineales generalizados (2)

Varianza no constante / residuales no normales

⇒ Se puede especificar la distribución de los errores

- Proporciones (regresión logistica) → Binomial
- Conteos (modelo log-lineal) → Poisson
- Variable dependiente binaria (vivo/muerto) → Binomial
- Tiempo hasta muerte (varianza aumenta) \rightarrow Exponencial

Regresión lineal

Otros tipos regresión

Regresión polinomia Regresión

Modelos lineales generalizados

Criticas a lo

Modelos lineales generalizados (2)

Varianza no constante / residuales no normales

- ⇒ Se puede especificar la distribución de los errores
- Proporciones (regresión logistica) → Binomial
- Conteos (modelo log-lineal) → Poisson
- Variable dependiente binaria (vivo/muerto) → Binomial
- Tiempo hasta muerte (varianza aumenta) \rightarrow Exponencial

Modelo linea

Regresión

Otros tipos o regresión

Criticas a los modelos

(No) enamorarse de su modelo . . .

- Todos los modelos son incorrectos
- Algunos modelos son mejores que otros
- El modelo correcto nunca se puede conocer con certeza
- Cuanto mas simple el modelo mejor