Data Visualisation with ggplot2

Communicating your data

Daniela Palleschi

2023-04-13

Table of contents

ata communication	3
Load packages and data	. 3
Tables	. 3
Exercise	. 4
lotting reading times	4
lots with ggplot2	5
n example: histogram	5
Start layering	. 5
Add labels	. 6
Add	. 7
Add condition	. 8
Customisation	. 9
theme_bw()	. 9
theme_minimal()	. 10
istributions	11
Density plots	. 12
Grouped density plots	. 13
facet_grid()	. 14
re-ordering factors	. 15
Scatterplots	. 17
Scatterplots	. 18
ummary statistics	19
Boxplots	19

Boxplot explained						. 20	
$Boxplots \dots \dots \dots$. 20	
Grouped boxplots						. 22	
Violin plots						. 23	
Violin boxplots						. 23	
Summary statistics						23	
Interaction plots						. 23	
Binomial data						25	
Bar plot \ldots						. 25	
Grouped bar plots						. 27	
Exercise						. 28	
Grouped bar plots						. 29	
Stacked bar plots						. 29	
Exercise						. 30	
Extra exercise						. 31	
Resources						32	
knitr::opts_chunk\$se	t(eval = T,	# evaluate	e chunks				
	echo = T ,	# 'print o	code chunk	ζ?'			
	message =	F, # 'pri	nt message	es (e.g.	, warnings)	? 1	
	error = F,	_			ered		
	warning =	F) # don'	t print wa	arnings			
## play sound if err ### from: https://se			01/make-n	-heen-wh	en-r-markdo	un – finishes-	-or-when
options(error = func	-		•	ocep with	civ i maribaci	one j universee	or wiver
beepr::beep(sound		_	01101				
Sys.sleep(2) #							
}							
)							
## and when knitting	is complete	2					
.Last <- function()	{ #	Beep on	exiting se	ession			
beepr::beep(sound	= "ping")						
Sys.sleep(6) # all }	ow to play f	or 6 secon	nds				
# Create references.	ison file ba	sed on the	e citation	ns in th	is script		
# make sure you have	0				-		
rbbt::bbt_update_bib			3				

Data communication

Load packages and data

Tables

• we can create summaries of our data

- and print the output with the kable() function from the knitr package
 - for extra customisation you can also use the kableExtra package (e.g., with the kable_styling() function)

```
# install.packages("knitr") # if not yet installed
knitr::kable(summary_ff, digits=1,
```

Table 1: Table with summmary statistics for first-fixation duration at the verb region

condition	lifetime	tense	N	mean.ff	sd	se	ci	lower.ci	upper.ci
deadPP	dead	PP	140	198.9	57.9	4.9	9.7	189.2	208.6
deadSF	dead	SF	139	194.6	67.9	5.8	11.4	183.2	205.9
livingPP	living	PP	140	194.2	77.3	6.5	12.9	181.3	207.1
livingSF	living	SF	140	186.0	57.6	4.9	9.6	176.4	195.6

Exercise

- 1. install the knitr package (install.packages("knitr"))
- 2. create an object with some summary statistics of the variable rt
- call it summary_rt
- 3. use kable() from knitr to print a table

Table 2: Summary of reaction times (ms) per condition

lifetime	tense	condition	N	mean.rt	sd
dead	PP	deadPP	140	3530.5	2915.8
dead	SF	deadSF	139	1747.0	1153.4
living	PP	livingPP	140	2257.7	1346.3
living	SF	livingSF	140	2578.1	1958.7

Plotting reading times

- reading times are (usually) continuous variables
 - as are e.g., reaction times
- they are truncated at 0, meaning they cannot have negative values
 - because of this, they tend to have a skewed distribution

Plots with ggplot2

- ggplot2 is part of the tidyverse (like dplyr)
 - uses a layered grammar of graphics
 - i.e., we build layers

An example: histogram

```
iris |>
  ggplot(aes(x=Sepal.Length)) +
  geom_histogram() +
  labs(title = "A histogram",
        x = "variable")
```


Start layering

```
df_lifetime |> ggplot(aes(ff)) # aes = 'aesthetic'
```


Add labels

Histogram of first fixataion times

Add

Histogram of first fixataion times

Figure 1: Distribution of first fixation times at the verb region (raw milliseconds)

Add condition

Figure 2: Distribution of first fixation times at the verb region (raw milliseconds)

400

First fixation times (ms)

600

800

The colour here is STACKED!! i.e., not layered. Notice the distribution doesn't change from all grey to coloured

Customisation

• we can add arguments to our geoms

200

- e.g., transparency: alpha = takes a value between 0 to 1
- we can use theme() to customise font sizes, legend placement, etc.
- tehre are also popular preset themes, such as theme_bw() and theme_minimal()

theme_bw()

Figure 3: Distribution of first fixation times at the verb region (raw milliseconds).

theme_minimal()

Figure 4: Distribution of first fixation times at the verb region (raw milliseconds).

Distributions

- show the distribution of observations
 - so we can see where the data are clustered
 - and eyeball the shape of the distribution
- we already saw the histogram, which shows the number of observations per variable value
- density plots are another useful plot for visualising distributions

```
iris |>
  ggplot(aes(x=Sepal.Length)) +
  geom_density() +
  labs(title = "A density plot",
      x = "variable")
```


6 variable

Density plots

• below I just replaced geom_histogram() with geom_density()

5

- I also filtered the data to include only values of ff above 0
- what is plotted along the y-axis? how does this differ from a histogram?

Histogram of first fixataion times

Figure 5: Distribution of first fixation times at the verb region (raw milliseconds).

Grouped density plots

- just like with histograms, we can look at the density plots of different subsets of the data with aes(fill =)
 - like region

Figure 6: Distribution of first fixation times at the verb region (raw milliseconds).

facet_grid()

• there are a lot of overlapping density curves, let's try to separate them with facet_grid(x~y)

Density plot of first fixataion times by region

Figure 7: Distribution of first fixation times at the verb region (raw milliseconds).

• how would you describe the density plots of the different regions?

re-ordering factors

- by default, factors will be ordered alphabetically
 - but we don't always want that
 - here, verb-1 should be before verb

```
verb-1 verb verb+1 verb+2 verb+3 verb+4 559 559 559 559 559 182
```

Exercise

- 1. create a density plot with the fill colour set to condition, but:
- subset the data to only include the verb region
- you can decide if you want to use facets or to have the density curves overlayed
- your plot should look something like A or B:

Extra exercise

2. Can you produce these plots?

Scatterplots

- histograms and density plots plot a single variable along the x-axis
 - in most other plots the dependent (measure) variable is plotted along the y-axis by convention
- scatterplots plot the relationship between two variables

```
iris |>
  ggplot(aes(x=Sepal.Length, y=Sepal.Width)) +
  geom_point() +
  labs(title = "A scatterplot",
        x = "variable X",
        y = "variable Y")
```


Scatterplots

- the figure below plots total reading times (verb region) to the verb region (x-axis) and reaction times to the critical sentence (y-axis)
 - what does each point represent?
 - how would you describe the relationship between the two variables?

Scatter plot of total reading times (verb region) and reaction times (critical sentence)

Exercise

- 1. Generate a scatterplot of total reading times and reaction times, with:
 - colour and shape set to condition
 - tip: these both belong in aes()
- 2. What information does this plot suggest?

Summary statistics

- measures of location: mean, median, mode
- measures of spread: (interquartile) range, standard deviation

Boxplots

- boxplots provide information about the distribution of a *continuous* variable
 - but includes information like *median* (dark line) and *quartiles* (box and whiskers)
 - and outliers (dots)
- like scatterplots, require x and y variables

- but one of them needs to be **categorical**

```
iris |>
  ggplot(aes(x = Species, y = Sepal.Length)) +
  labs(title = "A scatterplot",
        x = "Categorical variable",
        y = "Continuous variable") +
  geom_boxplot()
```

A scatterplot

Figure 8: A scatterplot. Median (50th percentile): thick black lines; interquartile range (IQR; 25th and 75th percentile): box limits; minimum (0th percentile) and maximum (100th percentile) excluding outliers: : whiskers; outliers: points

Boxplot explained

Boxplots

• let's change our scatterplot to a boxplot

```
df_lifetime |>
filter(ff > 0,
```


Figure 3.4. A histogram of the emotional valence rating data

Figure 9: Image source: (winter_statistics_2019?) (all rights reserved)

First-fixation duration (verb region)

Grouped boxplots

Exercise

- 1. Create a group boxplot (x = tense, fill = lifetime) for
- first-pass reading time (verb region)
- regression path duration (verb region)
- total reading time (verb region)
- reaction times (use the distinct() verb to have a single observation per participant and per trial)

Violin plots

Violin boxplots

Summary statistics

Interaction plots

- common for **factorial** designs, i.e., comparing *categorical* predictors
- there are 2 ways of producing them:
 - with your data frame and stat_summary()

condition	lifetime	tense	N	mean.ff	sd	se	ci	lower.ci	upper.ci
deadPP	dead	PP	140	198.9	57.9	4.9	9.7	189.2	208.6
deadSF	dead	SF	139	194.6	67.9	5.8	11.4	183.2	205.9
livingPP	living	PP	140	194.2	77.3	6.5	12.9	181.3	207.1
livingSF	living	SF	140	186.0	57.6	4.9	9.6	176.4	195.6

- or with a summary table and ggplot geoms geom_point(), geom_errorbar(), and geom_line()
- we'll need our summary table to plot an interaction plot

Binomial data

- binomial data are those with 2 categories, for example
 - present, absent
 - yes, no
- in our dataset, each trial ended with a binary naturalness judgement task
 - how might we plot such data?

Bar plot

• be sure to read in accept as a factor!

```
df_lifetime |>
  distinct(px,trial,.keep_all=T) |>
  ggplot(aes(x = as.factor(accept) )) +
  geom_bar() +
  theme_bw()
```


Grouped bar plots

Exercise

- 1. Generate a grouped bar plot (i.e., dodge) with:
 - a facet grid for tense
 - plots lifetime on the x-axis
 - and fills the bars based on accept
 - change the labels accordingly
 - customise as you like

Grouped bar plots

Grouped and faceted barplot

Stacked bar plots

```
fill = "Response") +
geom_bar(position = "stack") +
theme_bw()
```

Stacked and faceted barplot

Exercise

- 1. Choose the barplot you like best for binary data
- 2. Reproduce that barplot, but with ${\tt reg_in}$ at the ${\tt verb1}$ region

Regressions in (yes/no, verb region)

Extra exercise

- 1. Create another bar plot, but for reg_out for all sentence regions
- Use facet_grid()
- to have facets by region (columns) and by tense (in 2 rows)

Regressions in (yes/no, verb region)

Resources

Nordmann et al. (2022)

Nordmann & DeBruine (2022)

Wickham et al. (n.d.), Chapter 2

References

Nordmann, E., & DeBruine, L. (2022). Applied data skills (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.6365078

Nordmann, E., McAleer, P., Toivo, W., Paterson, H., & DeBruine, L. M. (2022). Data Visualization Using R for Researchers Who Do Not Use R. Advances in Methods and Practices in Psychological Science, 5(2), 251524592210746. https://doi.org/10.1177/25152459221074654

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (n.d.). R for Data Science (2nd ed.). https://r4ds.hadley.nz/