Macromolecules Carbs, Proteins, Lipids, and Nucleic Acids

Presentation by Laurie, Slides by Slidesgo

TABLE OF CONTENTS

Basic Chem

(Of which you don't need to know much)

Carbon is Cool

4 bonds → **diversity**

(a) Structural isomers

Structural isomers differ in the arrangement of covalent bonding partners, as shown in these two isomers of C_5H_{12} .

(b) Cis-trans isomers (also known as geometric isomers)

cis isomer: The two Xs are on the same side.

trans isomer: The two Xs are on opposite sides.

Cis-trans isomers differ in arrangement about a double bond. In these diagrams, X represents an atom or group of atoms attached to a double-bonded carbon.

(c) Enantiomers

Lisome

D isomer

Enantiomers differ in spatial arrangement around an asymmetric carbon, resulting in molecules that are mirror images, like left and right hands. The two isomers here are designated the L and D isomers from the Latin for "left" and "right" (levo and dextro). Enantiomers cannot be superimposed on each other.

Isomers

Structure = Function

Drug	Effects	Effective Enantiomer	Ineffective Enantiomer
Ibuprofen	Reduces inflammation and pain	S-Ibuprofen	R-lbuprofen
Albuterol	Relaxes bronchial (airway) muscles, improving airflow in asthma patients	R-Albuterol	S-Albuterol

Sugars = D

Proteins = L

Functional Groups

Chemical Group	Group Properties and Compound Name	Examples
Hydroxyl group (—OH) OH (may be written HO—)	Is polar due to electronegative oxygen. Forms hydrogen bonds with water, helping dissolve compounds such as sugars. Compound name: Alcohol (specific name usually ends in -ol/)	H – C – C – OH Ethanol, the alcohol present in alcoholic beverages
Carbonyl group (>c =0)	Sugars with ketone groups are called ketoses; those with aldehydes are called aldoses. Compound name: Ketone (carbonyl group is within a carbon skeleton) or aldehyde (carbonyl group is at the end of a carbon skeleton)	H O H H H H O H H C C C C C C C C C C C
Carboxyl group (—COOH)	Acts as an acid (can donate H*) because the covalent bond between oxygen and hydrogen is so polar. Compound name: Carboxylic acid, or organic acid	H H C OH H OH Acetic acid, which gives vinegar its sour taste Conized form of COOH (carboxylate ion), found in cells
Amino group (—NH ₂)	Acts as a base; can pick up an H ⁺ from the surrounding solution (water, in living organisms). Compound name: Amine	Glycine, an amino acid (note its carboxyl group)

Macromolecules

Polymers and Monomers

Condensation reaction

Sugars and Carbs

Sweet + simple

Aldoses (Aldehyde Sugars) Carbonyl group at end of carbon skeleton

Ketoses (Ketone Sugars) Carbonyl group within carbon skeleton

Trioses: three-carbon sugars (C2H6O2)

H-C-OH

Glyceraldehyde An initial breakdown product of alucose

Dihydroxyacetone An initial breakdown product of alucose

Pentoses: five-carbon sugars (C₅H₁₀O₅)

Hexoses: six-carbon sugars (C₆H₁₂O₆)

Monomer = Monosaccharide 1 Carbonyl, Multiple Hydroxyls

(a) Linear and ring forms. Chemical equilibrium between the linear and ring structures greatly favors the formation of rings. The carbons of the sugar are numbered 1 to 6, as shown. To form the glucose ring, carbon 1 (magenta) bonds to the oxygen (blue) attached to carbon 5.

(b) Abbreviated ring structure. Each unlabeled corner represents a carbon. The ring's thicker edge indicates that you are looking at the ring edge-on; the components attached to the ring lie above or below the plane of the ring.

Examples:

Glucose Fructose Galactose

Deoxyribose Ribose

https://www.mun.ca/biology/scarr/iGen3 02-07 Figure-L.ipg https://clinicalnutritionespen.com/cms/attachment/1e7ed9c9-dd29-4c21-879e-abcf97f96fcd/gr1_lrg.ipg

Polymer Examples

Disaccharides (2)

Maltose = glucose + glucose

Sucrose = glucose + fructose

Lactose = glucose + galactose

Oligosaccharides (3-10)

Raffinose = galactose + glucose + fructose

Polysaccharides (10+)

Starch

- Amylose
 - 1-4 linkages (more)
- Amylopectin
 - 1-6 linkages (twist)

Glycogen (most branched)

Cellulose

- β-glucose
- HO OH 104 OH OH OH OH
- Most common organic molecule
- **Chitin** (N-acetylglucosamine)
 - Fungi, insects

https://study.com/cimages/multimages/16/amylopectinpdv13357453928259586804.png
https://upload.wikimedia.org/wikipedia/commons/thumb/2/21/Amylose2.svg/1200px-Amylose2.svg.png
https://media.geeksforgeeks.org/wp-content/uploads/20220824235150/maltosestructure.jpg
https://media.geeksforgeeks.org/wp-content/uploads/20220929115448/lac.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Saccharose2.svg/1200px-Saccharose2.svg.png

Lipids

They can't swim

Basic Properties

- Hydrophobic
 - Mostly C and H C-H bonds are nonpolar
- Do not have true polymers
- Generally not big
- 3 important categories:
 - Fats
 - Phospholipids
 - Steroids

Functions

- Energy storage
 - 2x as much energy as polysaccharide
 - Useful for animals and seeds
- Cushions vital organs
- Insulation
 - Marine animals

Fats (Triacylglycerol, Triglyceride)

Fat = 1 glycerol + 3 fatty acids, synthesized through dehydration reaction

Saturated fat

- No double bonds
- Most animal fats
 - Lard
 - Butter
- Solid at room temp
 - Packing
- Hydrogenation

Unsaturated fat

- Double bonds
- Plant and fish fats (oils)
 - Olive oil
 - Cod liver oil

Phospholipids

(Source: Albert's Molecular Biology of the Cell)

Steroids

Carbon skeleton made of 4 fused rings

Cholesterol

- Part of cell membranes
- Precursor for other steroids and hormones
- Made in liver and eaten from food

Proteins

Very well-rounded; good at everything

Enzymatic proteins

Function: Selective acceleration of chemical reactions

Example: Digestive enzymes catalyze the hydrolysis of bonds in food

Storage proteins

Function: Storage of amino acids

Examples: Casein, the protein of milk, is the major source of amino acids for baby mammals. Plants have storage proteins in their seeds. Ovalbumin is the protein of egg white, used as an amino acid source

for the developing embryo.

Hormonal proteins

Function: Coordination of an organism's activities

Example: Insulin, a hormone secreted by the pancreas, causes other tissues to take up glucose, thus regulating blood sugar concentration.

Contractile and motor proteins

Function: Movement

Examples: Motor proteins are responsible for the undulations of cilia and flagella. Actin and myosin proteins are responsible for the contraction of muscles.

Functions

Defensive proteins

Function: Protection against disease

Example: Antibodies inactivate and help destroy viruses and bacteria.

Transport proteins

Function: Transport of substances

Examples: Hemoglobin, the iron-containing protein of vertebrate blood, transports oxygen from the lungs to other parts of the body. Other proteins transport molecules across membranes, as shown here.

Receptor proteins

Function: Response of cell to chemical stimuli

Example: Receptors built into the membrane of a nerve cell detect signaling molecules released by other nerve cells.

Structural proteins

Function: Support

Examples: Keratin is the protein of hair, horns, feathers, and other skin appendages. Insects and spiders use silk fibers to make their cocoons and webs, respectively. Collagen and elastin proteins provide a fibrous framework in animal connective tissues.

Monomers (Amino Acids)

Mnemonics

- Hydrophobic: GLAMP FVIW
- Hydrophilic: Santa Never Quits ChrYsTmas
- Acidic: **DE**ath is negative
- Basic: His Lys Arg basic
- Essential: VH MILK? WTF?!
- Phosphorylated: STY
- Aromatic (absorb UV): WhiFfY

Special cases

- Helix breakers Proline and glycine
 - o Proline is an imino acid
 - Glycine is too small
- Cysteine disulfide bridges

Structure

Primary structure – chain of amino acids (polypeptide)
Secondary structure – formed by H-bonds between amino acids

- Alpha helices
- Beta-pleated sheets

Tertiary structure – 3D structure, caused by side chains

- Hydrophobic interaction
- Disulfide bridges

Quaternary structure - multiple subunits

Fibrous vs. Globular

Denaturation

Caused by pH, change in temperature, chemical factors

In general, structure and proper folding is very important for function!

Nucleic Acids

Well-informed

Role

Two types

- Deoxyribonucleic acid (DNA)
- Ribonucleic acid (RNA)

Main role is gene expression

- DNA is what's inherited
- DNA \rightarrow mRNA \rightarrow tRNA translates into protein

Structure

Monomer = nucleotide

- Structure
 - Five-carbon sugar (pentose) ribose or deoxyribose
 - Nitrogenous base
 - Pyrimidine (1 ring) C, T, U
 - Purine (2 rings) A, G Pure As Gold
 - 1-3 phosphate groups (not included in a nucleoside)
- Types
 - Adenine
 - Thymine
 - Uracil
 - Cytosine
 - Guanine

Structure

https://assets.technologynetworks.com/production/dynamic/images/content/296719/what-are-the-key-differences-between-dna-and-rna-296719-960x540.jpq?cb=12377480

DNA vs. RNA

- DNA has 2 strands, RNA has one
 - RNA can pair with itself
- RNA uses uracil instead of thymine

DNA is antiparallel