

Machine Learning Aplicado à Cartografia Geológica

Aula Prática

lago Costa

IX SimBGf

4 de outubro de 2022

Então, o que iremos aprender neste curso??

1) Treinar modelos de ML para definir quais as características de sensores remotos para cada litologia

2) Utilizar esses modelos treinados em locais que não sabemos a litologia, para averiguar a qual litologia prétreinada eles mais se assemelham

Parte Prática

1) Treinar modelos de ML para definir quais as características de sensores remotos para cada litologia

Parte Prática

1) Treinar modelos de ML para definir quais as características de sensores remotos para cada litologia

- 1º) Definir as variáveis do modelo
- 2º) Definir os dados de treinamento para cada litologia
- 3º) Escolher o algoritmo de ML e treiná-lo

Localização

1º) Definir as variáveis do Modelo

Como selecionar os dados de Treinamento?

Kuhn, S., Cracknell, M. J., & Reading, A. M. (2019). Lithological mapping in the Central African Copper Belt using Random Forests and clustering: Strategies for optimised results. Ore Geology Reviews, 112, 103015.

Caso 1 – Afloramentos Não-balanceados

- Mapa litológico preditivo usando afloramentos não-balanceados levaram o modelo a favor das unidades com maiores quantidades de afloramentos
- O Mapa preditivo teve uma baixa consistência com o mapa geológico (~17 %)

Caso 2 – Afloramentos Balanceados

 Os afloramentos balanceados produziram resultados mais próximos da geometria do mapa geológico

Caso 3 – Pontos extraídos do mapa geológico

 O Mapa Preditivo com os pontos extraídos do mapa geológico mostraram uma consistência de ~67 %

Conclusões

- O Caso 3, onde são utilizadas amostras do mapa geológico, é consideravelmente melhor que as predições utilizando afloramentos (Casos 1 e 2)
- O mapa geológico atual pode ser utilizado para validar a classificação do mapa feito por Machine Learning (ML), enquanto o ML pode ser utilizado como uma forma de "auditoria" do mapa geológico, no qual podem ser sugeridas alterações.

Kuhn, S., Cracknell, M. J., & Reading, A. M. (2019). Lithological mapping in the Central African Copper Belt using Random Forests and clustering: Strategies for optimised results. Ore Geology Reviews, 112, 103015.

3º) Escolher o algoritmo de *Machine Learning* e treiná-lo

	Fast simulations & surrogate models		
Autoencoder Networks Featurization	Deep Generative Models	Inverse problems Dynamic decisions	Recurrent Neural Networks Convolutional Neural Networks
Dictional Feature Learning	ry Learning Learn joint	Reinforcement Learning	Artifical Neural Networks
Clustering & Self-organizing maps	probability distribution	Prediction Detection & classification	Support Vector Machines Random Forests & Ensembles Graphical Models
Sparse representation Feature representation Dimensionality reduction	Semi- Supervised Learning	Determine optimal boundary Domain adaptation Supervised Learning Logistic Regression Supervised Learning	

3º) Escolher o algoritmo de *Machine Learning* e treiná-lo

Naghetini e Silveira. 2021. Utilização de técnicas de aprendizado de máquina supervisionado para mapeamento geológico: um estudo de caso na região de diamantina, minas gerais, brasil. Trabalho de conclusão de curso. UFMG.

Mãos a obra!

lago Costa

Geofísico e Coordenador Executivo da Diretoria de Geologia e Recursos Minerais

Serviço Geológico do Brasil – CPRM

e-mail: iago.costa@sgb.gov.br

Telefone: 61-2108-8413

www.cprm.gov.br

