Rpackage should be

JMcmprsk: An R Package for Joint Modelling of Longitudinal and Survival Data with Competing Risks

by Hong Wang, Ning Li, Shanpeng Li, and Gang Li*

oint modelling of longitudinal version implements two joint ag risks survival data together noff et al., 2008; Li et al., 2010).

Abstract In this paper, we describe an R package named [Mcmprsk] for joint modelling of longitudinal and survival data with competing risks. The package in its current version implements two joint models of longitudinal and survival data proposed to handle competing risks survival data together with continuous and ordinal longitudinal outcomes respectively (Elashoff et al., 2008; Li et al., 2010). The corresponding R implementations are further illustrated with real examples. The package also provides simulation functions to simulate datasets for joint modelling with continuous or ordinal outcomes under the competing risks scenario, which provide useful tools to validate and evaluate new joint modelling methods.

Introduction

Joint modelling of longitudinal and survival data has drawn a lot of attention over the past two decades. Much of the research has focused on data with a single event time and a single type of failure, usually under the assumption of independent censoring of event times (Tsiatis and Davidian, 2004). However, in some situations interest lies with competing risks data, where there is more than one possible cause of event or where the censoring is informative (Williamson et al., 2008). Typically, a standard linear mixed model or its extensions are used for the longitudinal submodel. Cause-specific hazards models with either unspecified or spline baseline hazards are studied for the competing risk submodels. Various types of random effects are assumed to account for the association between these submodels.

Despite of various theoretical and methodological developments (Hickey et al., 2018b; Papageorgiou et al., 2019), there are still limited software packages to deal with specific problems in the analysis of follow-up data in clinical studies. To our knowledge, currently there are three related CRAN R packages, namely (M) (Rizopoulos, 2012), joine (Williamson et al., 2008) and lcmm (Proust-Lima et al., 2017), which support the modeling of longitudinal and survival data with competing risks.

The JM package provides support for competing risks via the "CompRisk" option in the jointModel() function. In IM, a linear mixed effects submodel is modelled for the longitudinal part and a relative risk submodel is assumed for each competing event. In the current version (1.4-8), only piecewise proportional hazards model, where the log baseline hazard is approximated using B-splines, is supported for the survival component. The joineR package fits the joint model (Williamson et al., 2008) for joint models of longitudinal data and competing risks using the joint() function. In their model, the time-to-event data is modelled using a cause-specific Cox proportional hazards regression model with time-varying covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by a zero-mean shared latent Gaussian process. Parameters in the model are estimated using an Expectation Maximization (EM) algorithm. The *lcmm* package implements the support for competing risks joint modelling in the Jointlcmm() function. Radically different from the above two R packages, the (lcmm) package uses a less well-known framework called the joint latent class model (Proust-Lima et al., 2014), which assumes that dependency between the longitudinal markers and the survival risk can be captured by a latent class structure entirely. However, the *lcmm* package is mainly designed for prediction purpose and may not be suited to evaluate specific assumptions regarding the characteristics of the marker trajectory that are the most influential on the event risk (Proust-Lima et al., 2014).

In all these packages, a time independent shared random effects vector is usually assumed in model ing the longitudinal and survival data. However, they are not capable of fitting more flexible models with separate random effects in these submodels (Elashoff et al., 2008; Li et al., 2010). In many biomedical applications, sometimes, it is necessary to have a model which takes into account longitudinal ordinal outcomes for the longitudinal part. Yet, due to the complex nature of joint model ing, most of the available software does not support longitudinal ordinal variables (Armero et al., 2016; Ferrer, 2017). We fill this gap in our package by implementing a joint model which supports ordinal disease markers based on our previous work (Li et al., 2010).

Both [JM] and [joineR] packages depend heavily on the R name and [survival] packages. In [JM] the linear mixed effects submodel and the survival submodel are first fitted using lme() and coxph() R function in these packages before a joint model ing process. In [joineR] lme() and coxph() functions

are applied to obtain initial values for parameters in the joint model, which are further estimated by an EM algorithm. The major advantage of using available packages such as *curvival* and *nlme* lies that joint modelling R packages can be built quickly with adequate efficiency as most of these base R packages have been optimized for speed. However, if required functionality is not available in these packages, as is the case of Elashoff et al. (2008) and Li et al. (2010), implementing new joint modelling methods is a non-trivial task.

Compared with M and joineR packages, the JMcmprsk package introduced here can be regarded as a "stand-alone" R package, which does not required initial estimates for the linear mixed effects model or survival submodel to compute parameters of the joint model in question. In particular, the Mcmprsk package is built within the Rcpp (Eddelbuettel et al., 2011) and GSL (The GNU Scientific Library) (Galassi et al., 2002) framework, which make R functions have access to a wide range of fast numerical routines such as Monte Carlo integration, numerical integration and differentiation routines.

Joint Models with Competing Risks

A joint model for competing risk data consists of two linked components: the longitudinal submodel, which takes care of repeatedly measured information, and the survival submodel, which deals with multiple failure times. Combination of different longitudinal and survival components leads to a variety of joint models (Hickey et al., 2018a).

In the current version of *JMcmprsk* we have implemented two joint models for competing risk data, namely joint modelling with continuous longitudinal outcomes (Elashoff et al., 2008), and joint modelling with ordinal longitudinal outcomes (Li et al., 2010). Both models have adopted a cause-specific Cox submodel with a frailty term for multiple survival endpoints. The difference between these two models lies in the longitudinal part. The former model applies a linear mixed submodel for the continuous longitudinal outcome, while the latter model includes a partial proportional odds submodel for the ordinal longitudinal outcome.

Different from previous approaches (Rizopoulos, 2012; Williamson et al., 2008), we assume a flexible separate random effects structure for the longitudinal submodel and the survival submodel. Furthermore, the association between both submodels is modeled by the assumption that the random effects in two submodels jointly have a multivariate normal distribution.

Model 1: Joint modelling with continuous longitudinal outcomes

Let $Y_i(t)$ be the longitudinal outcome measured at time t for subject i, $i = 1, 2, \cdots, n_{\lambda}$ and n is the total number of subjects in study. Let $C_i = (T_i, D_i)$ denote the competing risks data on subject i, where T_i is the failure time or censoring time, and D_i takes value in $\{0, 1, \cdots, g\}$, with $D_i = 0$ indicating a censored event and $D_i = k$ showing that subject i fails from the kth type of failure, where $k = 1, \cdots, g$.

The joint model is specified in terms of the following two linked submodels:

$$Y_{i}(t) = X_{i}^{(1)}(t)^{\top} \beta + \tilde{X}_{i}^{(1)}(t)^{\top} b_{i} + \epsilon_{i}(t),$$

$$\lambda_{k}(t) = \lambda_{0k}(t) \exp(X_{i}^{(2)}(t)^{\top} \gamma_{k} + \nu_{k} u_{i}), \text{ for } k = 1, \dots, g,$$

where $X_i^{(1)}(t)$, $X_i^{(2)}(t)$ denote the covariates for the fixed-effects β and γ_k , $\tilde{X}_i^{(1)}(t)$ denotes the covariates for the random-effects b_{ik} and $\epsilon_i(t) \sim N(0,\sigma^2)$ for all $t \geq 0$. The parameter ν_1 is set to 1 to ensure identifiability. We assume that b_i is independent of $\epsilon_i(t)$ and that $\epsilon_i(t_1)$ is independent of $\epsilon_i(t_2)$ for any $t_1 \neq t_2$. We further assume the random effects b_i and u_i jointly have a multivariate normal distribution, denoted by $\theta_i \sim N(0,\Sigma)$, where $\Sigma = (\Sigma_b, \Sigma_{bu}^\top; \Sigma_{bu}, \sigma_u)$.

Denote Ψ as the unknown parameters from the joint models. We propose to obtain the maximum likelihood estimate of Ψ through an EM algorithm. The complete data likelihood is

$$\begin{split} &L(\Psi; Y, C, \theta) \\ &\propto \Pi_{i=1}^{n} \left[\Pi_{j=1}^{n_{i}} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp(-\frac{1}{2\sigma^{2}} (Y_{ij} - X_{i}^{(1)}(t_{ij})^{\top} \beta - \tilde{X}_{i}^{(1)}(t_{ij})^{\top} b_{i})^{2}) \right] \\ &\times \Pi_{k=1}^{g} \lambda_{k}(T_{i})^{I(D_{i}=k)} \exp\left\{ -\int_{0}^{T_{i}} \sum_{k=1}^{g} \lambda_{k}(t) dt \right\} \\ &\times \frac{1}{\sqrt{(2\pi)^{d} |\Sigma|}} \exp(-\frac{1}{2} \theta_{i}^{\top} \Sigma^{-1} \theta_{i}). \end{split}$$

In the E-step, we need to calculate the expected value of all the functions of θ . Since, the integral over the random effects does not have a closed-form solution, an iterative numerical method has to be employed.

In Mcmprsk, the integral over time is approximated using a Gauss-Kronrod quadrature, and the computation of the integral over the individual random effects is achieved using a Gauss-Hermite quadrature. The quadrature approximates the integral using a weighted sum of function values, at specified points within the domain of integration; the Gaussian quadrature is based on the use of polynomial functions. Standard option here is the Gaussian quadratic rules. In the M-step, Ψ is updated by maximizing the functions obtained from the E-step.

Model 2: Joint modelling with ordinal longitudinal outcomes

Let Y_{ij} denote the jth response measured on subject i, where $i = 1, \dots, n, j = 1, \dots, n_i$, and Y_{ij} takes values in $\{1, \dots, K\}$. The competing risks failure times on subject i is (T_i, D_i) , and the notations have the same meaning as in Model 1.

we propose the following partial proportional odds model for Y_{ij}

$$P(Y_{ij} \leq k | X_{ij}, \tilde{X}_{ij}, W_{ij}, b_i) = \frac{1}{1 + \exp(-\theta_k - X_{ij}\beta - \tilde{X}_{ij}\alpha_k - W_{ij}^\top b_i)}$$

where $k = 1, \dots, K - 1$, X_{ij} and \tilde{X}_{ij} are $p \times 1$ and $s \times 1$ vectors of covariates for the fixed-effect β and α_k , with $\alpha_1 = 0$, and \tilde{X}_{ij} is a subset of X_{ij} for which the proportional odds assumption may not be satisfied. The $q \times 1$ vector b_i represents random effects of the associated covariates W_{ij} .

The distribution of the competing risks failure times (T_i, D_i) are assumed to take the form of the following cause-specific hazards frailty model:

$$\lambda_d(t|Z_i(t), u_i) = \lambda_{0d}(t) \exp(Z_i(t)^{\top} \gamma_d + \nu_d u_i), \text{ for } d = 1, \dots, g,$$

where the $l \times 1$ vector γ_d and ν_d are cause-specific coefficients for the covariates $Z_i(t)$ and the random effects u_i , respectively.

The parameter v_1 is set to 1 to ensure identifiability. We assume the random effects b_i and u_i jointly have a multivariate normal distribution, denoted by $a_i \sim N(0, \Sigma)$.

Denote Ψ as the unknown parameters from the joint models. We propose to obtain the maximum likelihood estimate of Ψ through an EM algorithm. The complete data likelihood is

$$\begin{split} &L(\Psi;Y,C,a) \\ &\propto \Pi_{i=1}^{n} \Big[\Pi_{j=1}^{n_{i}} \Pi_{k=1}^{K} \big\{ \pi_{ij}(k) - \pi_{ij}(k-1) \big\}^{I(Y_{ij}=k)} \Big] \\ &\times \Pi_{d=1}^{g} \lambda_{d}(T_{i})^{I(D_{i}=d)} \exp \Big\{ - \int_{0}^{T_{i}} \sum_{k=1}^{d} \lambda_{d}(t) dt \Big\} \\ &\times \frac{1}{\sqrt{(2\pi)^{q+1}|\Sigma|}} \exp(-\frac{1}{2} a_{i}^{\top} \Sigma^{-1} a_{i})_{I \setminus K} \end{split}$$

where $\pi_{ij}(k)$ stands for the probability that $Y_{ij} \leq k$ given the covariates and the random effects. The implementation of EM algorithm in this case is similar to the procedure of Model 1.

Package structure and functionality

The R package Mcmprsk implements the above two joint models on the basis of R package Rcpp (Eddelbuettel et al., 2011) and GSL library (Galassi et al., 2002) and is hosted at CRAN. After setting the GSL environment by following the instructions in the INSTALL file from the package, we can issue the following command in R console to install the package:

> install.packages("JMcmprsk")

There are two major functions included in the JMcmprsk package: the function that fits continuous outcomes jmc() and the function that fits ordinal outcomes jmo().

imc() function

As an illustrative example of jmc(), we consider Scleroderma Lung Study (Tashkin et al., 2006), a double-blinded, randomized clinical trial to evaluate reffectiveness of oral cyclophosphamide (CYC) versus placebo in the treatment of lung disease due to scleroderma. This study consists of 158 patients, and the primary outcome is forced vital capacity (FVC, as % predicted) determined at 3-month intervals from the baseline. The event of interest is the time-to-treatment failure or death. We consider two covariates, baseline %FVC (FVC_0) and baseline lung fibrosis (FIB_0) and two risks, informative and noninformative. The model setups are as follows, (

```
\%FVC_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 FVC_{0i} + \beta_3 FIB_{0i} + \beta_4 CYC_i 
 + \beta_5 FVC_{0i} \times CYC_i + \beta_6 FIB_{0i} \times CYC_i + \beta_7 t_{ij} \times CYC_i + b_i t_{ij} + \epsilon,
```

and the cause-specific hazards frailty models are

```
\lambda_{1}(t) = \lambda_{01}(t) \exp(\gamma_{11}FVC_{0i} + \gamma_{12}FIB_{0i} + \gamma_{13}CYC_{i} + \gamma_{14}FVC_{0i} \times CYC_{i} + \gamma_{15}FIB_{0i} \times CYC_{i} + u_{i})
\lambda_{2}(t) = \lambda_{02}(t) \exp(\gamma_{21}FVC_{0i} + \gamma_{22}FIB_{0i} + \gamma_{23}CYC_{i} + \gamma_{24}FVC_{0i} \times CYC_{i} + \gamma_{25}FIB_{0i} \times CYC_{i} + v_{2}u_{i}),
```

We first load the package and the data

```
library(JMcmprsk)
set.seed(123)
data(lung)
yread <- lung[, c(1,2:11)]
cread <- unique(lung[, c(1, 12, 13, 6:10)])</pre>
```

The number of rows in "yread" is the total number of measurements for all subjects in the study. For "cread", the survival censoring time is included in the first column, and the failure type coded as 0 (censored events), 1 (risk 1), or 2 (risk 2) is given in the second column. Two competing risks are assumed.

Then, "yread" and "cread" are used as the longitudinal and survival input data for the model specified by the function jmc() as shown below:

where *out* is the name of the outcome variable in the longitudinal submodel, *FE* the list of covariates for the fixed effects in the longitudinal submodel, *ID* the column name of subject id, *cate* the list of categorical variables for the fixed effects in the longitudinal submodel *interpt* the indicator of random intercept coded as 1 (yes, default) or 0(no). The option *quiet* is used to print the progress of function default is TRUE (no printing).

A concise summary of the results can be obtained using jmcfit as shown below ①

```
>jmcfit
Call:
   jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC", "FIB0.CYC", "time.CYC"),
RE = "linear", ID = "ID", cate = NULL, intcpt = 0, quad.points = 20, quiet = FALSE)

Data Summary:
Number of observations: 715
Number of groups: 140

Proportion of competing risks:
Risk 1 : 10 %
Risk 2 : 22.86 %

Numerical intergration:
Method: standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal continuous and competing risks data
```

Model summary:

Longitudinal process: linear mixed effects model

Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -3799.044

Longitudinal sub-model fixed effects: FVC ~ time + FVC0 + FIB0 + CYC + FVC0.CYC + FIB0.CYC + time.CYC

	Estimate	Std. Error	95% CI	Pr(> Z)
Longitudinal:				
Fixed effects:				
intercept	66.0415	0.7541	(64.5634, 67.5196)	0.0000
time	-0.0616	0.0790	(-0.2165, 0.0932)	0.4353
FVC0	0.9017	0.0365	(0.8302, 0.9732)	0.0000
FIB0	-1.7780	0.5605	(-2.8767,-0.6793)	0.0015
CYC	0.0150	0.9678	(-1.8819, 1.9119)	0.9876
FVC0.CYC	0.1380	0.0650	(0.0106, 0.2654)	0.0338
FIB0.CYC	1.7088	0.7643	(0.2109, 3.2068)	0.0254
time.CYC	0.1278	0.1102	(-0.0883, 0.3438)	0.2464
Random effects:				
sigma^2	22.7366	0.6575	(21.4478, 24.0253)	0.0000

Survival sub-model fixed effects: Surv(surv, failure_type) ~ FVC0 + FIB0 + CYC + FVC0.CYC + FIB0.CYC

	Estimate	Std. Error	95% CI	Pr(> Z)		
Survival:						
Fixed effects:						
FVC0_1	0.0187	0.0326	(-0.0452, 0.0826)	0.5660		
FIB0_1	0.1803	0.3521	(-0.5098, 0.8705)	0.6086		
CYC_1	-0.6872	0.7653	(-2.1872, 0.8128)	0.3692		
FVC0.CYC_1	-0.0517	0.0746	(-0.1979, 0.0945)	0.4880		
FIB0.CYC_1	-0.4665	1.1099	(-2.6419, 1.7089)	0.6743		
FVC0_2	-0.0677	0.0271	(-0.1208,-0.0147)	0.0123		
FIB0_2	0.1965	0.3290	(-0.4484, 0.8414)	0.5503		
CYC_2	0.3137	0.4665	(-0.6007, 1.2280)	0.5013		
FVC0.CYC_2	0.1051	0.0410	(0.0248, 0.1854)	0.0103		
FIB0.CYC_2	0.1239	0.4120	(-0.6836, 0.9314)	0.7636		
Association parameter:						
v2	1.9949	2.3093	(-2.5314, 6.5212)	0.3877		
Random effects:						
sigma_b11	0.2215	0.0294	(0.1638, 0.2792)	0.0000		
sigma_u	0.0501	0.0898	(-0.1259, 0.2260)	0.5772		
Covariance:						
sigma_b1u	-0.0997	0.0797	(-0.2560, 0.0565)	0.2109		

The resulting table contains three parts, the fixed effects in longitudinal model, survival model, and random effects. It gives the estimated parameters in the first column standard error in the second column, and 95% confidence interval and p-value for these parameters in the third and forth columns. In our example, there is only one random effect, if there is more than one random effect, the output will include $sigma_b11$, $sigma_b12$, $sigma_b22$, $sigma_b1u$, $sigma_b2u$, and so on.

The supporting function coef() can be used to extract the coefficients of the longitudinal survival process by specifying the argument coeff where beta and gamma denotes the longitudinal and survival submodel fixed effects respectively

The supporting function summary() can be used to extract the point estimate, standard error, 95%CI, and p-values for the coefficients of both submodels with the option coeff) to specify which submodel fixed effects one would like to extract, and digits the number of digits to be printed out. We proceed below to extract the fixed effects for both submodels. •

```
>summary(jmcfit, coeff = "longitudinal", digits = 4)
Longitudinal coef SE 95%Lower 95%Upper p-values
   intercept 66.0415 0.7541 64.5634 67.5196 0.0000
2
       time -0.0616 0.0790 -0.2165 0.0932
                                        0.4353
3
       FVC0 0.9017 0.0365 0.8302 0.9732 0.0000
       FIB0 -1.7780 0.5605 -2.8767 -0.6793
                                        0.0015
5
        CYC 0.0150 0.9678 -1.8819 1.9119 0.9876
6
    FVC0.CYC 0.1380 0.0650 0.0106 0.2654 0.0338
    FIBO.CYC 1.7088 0.7643 0.2109 3.2068 0.0254
7
8
    time.CYC 0.1278 0.1102 -0.0883 0.3438
                                        0.2464
>summary(jmcfit, coeff = "survival", digits = 4)
   Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values
     FVC0_1 0.0187 1.0189 0.0326 -0.0452 0.0826 0.5660
1
     FIBO_1 0.1803 1.1976 0.3521 -0.5098 0.8705 0.6086
2
     3
5 FIB0.CYC_1 -0.4665    0.6272    1.1099 -2.6419    1.7089    0.6743
     7
     FIBO_2 0.1965 1.2172 0.3290 -0.4484 0.8414 0.5503
     CYC_2 0.3137 1.3684 0.4665 -0.6007 1.2280 0.5013
8
9 FVC0.CYC_2 0.1051 1.1108 0.0410 0.0248 0.1854
                                               0.0103
10 FIB0.CYC_2 0.1239 1.1319 0.4120 -0.6836 0.9314
                                               0.7636
```

We proceed to test the global hypothesis for the longitudinal and the survival submodels using linearTest().

The results suggest that the hypothesis $\beta_1 = \beta_2 = \cdots = \beta_7 = 0$ be rejected, and the hypothesis $\gamma_{11} = \gamma_{12} = \cdots = \gamma_{15} = \gamma_{21} = \gamma_{22} = \cdots = \gamma_{25} = 0$ not be rejected at the significance level of 0.05.

linearTest() can also be used to test any linear hypothesis about the coefficients for each submodel. For example, if one wants to test $H_0: \beta_1 = \beta_2$ in the longitudinal submodel, then we start with a linear contrast (L_0) and pass it to linearTest().

Note that we don't include intercept for linear hypotheses testing. It is seen that the hypothesis $\beta_1 = \beta_2$ is rejected at level 0.05 in the above example.

Similarly linear hypotheses test can also be performed for the survival sub-model using linearTest(). For example, if we want to test $H_0: \gamma_{11} = \gamma_{21}$, then we start with another linear contrast L_0 and pass it to linearTest().

It is seen that the hypothesis $\gamma_{11} = \gamma_{21}$ is rejected at level 0.05.

For categorical variables (mc) function will create the appropriate dummy variables automatically as needed within the function. The reference group in a categorical variable is specified as the one that comes first alphabetically. Below is an example,

First, we add two categorical variables, "sex" and "race" to the longitudinal data set "yread", in which "sex" is coded as "Female" or "Male", and race is coded as "Asian", "White", "Black", or "Hispanic".

```
#make up two categorical variables and add them into yread
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black", "Asian", "Hispanic"),</pre>
                nrow(cread), replace = TRUE)
ID <- cread$ID
cate_var <- data.frame(ID, sex, race)</pre>
if (require(dplyr)) {
  yread <- dplyr::left_join(yread, cate_var, by = "ID")</pre>
   Second, we rerun the model with the two added categorical variables
# run jmc function again for yread file with two added categorical variables
res2 <- jmc(long_data = yread, surv_data = cread,</pre>
             out = "FVC", cate = c("sex", "race"),
             FE = c("time", "FVC0", "FIB0", "CYC", "FVC0.CYC",
                     "FIB0.CYC", "time.CYC"),
             RE = "time", ID = "ID", intcpt = 0,
             quad.points = 20, quiet = FALSE)
res2
   We can obtain the estimated coefficients of the longitudinal process using coef() ?
> coef(res2, coeff = "beta")
  intercept
                    time
                                  FVC0
                                               FIB0
                                                              CYC
                                                                      FVC0.CYC
                                                                                   FIB0.CYC
                                                                                                time.CYC
67.05760799 -0.07340060 0.91105151 -1.75007966 0.02269507 0.13045588 1.58807248 0.15876200
```

jmo() function

Male

Black Hispanic

-0.77110697 -0.94635182 -0.45873814 -1.19910638

The implementation of jmo() is very similar to that of jmc(). As an illustrative example, we use the data from (rt PA Stroke Study, 1995). In this study, 624 patients are included, and the patients treated with rt-PA were compared with those given placebo to look for an improvement from baseline in the score on the modified Rankin scale, an ordinal measure of degree of disability with categories ranging from no symptoms, no significant disability to severe disability or death, which means in this example, Y_{ij} takes K=4 ordinal values. The following covariates are considered: treatment group (rt-PA or placebo), modified Rankin scale prior stroke onset, time since randomization (dummy variables for 3, 6 and 12 months), and the three subtypes of acute stroke (small vessel occlusive disease, large vessel atherosclerosis or cardioembolic stroke, and unknown reasons). Similarly, we also consider the informative and noninformative risks. The model setups are as follows \bigcirc

White

```
P(Y_{ij} \leq k) = \begin{bmatrix} 1 + \exp(-\theta_k - (\beta_1 Group + \beta_2 \text{Modified Rankin scale prior onset} + \beta_3 time3 \\ + \beta_4 time6 + \beta_5 time12 + \beta_6 \text{Small vessel} + \beta_7 \text{Large vessel or cardioembolic stroke} \\ + \beta_8 \text{Small vessel*group} + \beta_9 \text{Large vessel or cardioembolic stroke*group}) \\ - (\alpha_{k1} \text{Small vessel} + \alpha_{k2} \text{Large vessel or cardioembolic stroke}) - b_i) \end{bmatrix}^{-1}  where k = 1, \cdots, K - 1. \lambda_1(t) = \lambda_{01}(t) \exp(\gamma_{11} Group + \gamma_{12} \text{Modified Rankin scale prior onset} \\ + \gamma_{13} \text{Small vessel} + \gamma_{14} \text{Large vessel or cardioembolic stroke} \\ + \gamma_{15} \text{Small vessel*group} + \gamma_{16} \text{Large vessel or cardioembolic stroke*group} + u_i) \\ \lambda_2(t) = \lambda_{02}(t) \exp(\gamma_{21} Group + \gamma_{22} \text{Modified Rankin scale prior onset} \\ + \gamma_{23} \text{Small vessel} + \gamma_{24} \text{Large vessel or cardioembolic stroke} \\ + \gamma_{25} \text{Small vessel*group} + \gamma_{26} \text{Large vessel or cardioembolic stroke*group} + v_2 u_i)_{k} \end{bmatrix}
```

We first load the package and the data.

```
library(JMcmprsk)
set.seed(123)
data(ninds)
yread <- ninds[, c(1, 2:14)]</pre>
cread <- ninds[, c(1, 15, 16, 6, 10:14)]</pre>
cread <- unique(cread)</pre>
and the other arrangements are the same with those in jmc(),
jmofit <- jmo(yread, cread, out = "Y"</pre>
              cate = NULL,RE = "intercept", NP = c("smlves", "lvORcs"),
              ID = "ID",intcpt = 1, quad.points = 20,
              max.iter = 1000, quiet = FALSE, do.trace = FALSE)
where (N_F^2) is the list of non-proportional odds covariates and (F_E) the list of proportional odds covariates.
   To see a concise summary of the result, we can type (5)
>jmofit
Call:
 jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior", "smlves", "lvORcs", "smlves.group", "lvORcs.group"), RE = "intercept", NP = c("smlves", "lvORcs"), ID = "ID", cate = NULL, intcpt = 1,
quad.points = 20, max.iter = 1000, quiet = FALSE, do.trace = FALSE)
Data Summary:
Number of observations: 1906
Number of groups: 587
Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %
Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20
Model Type: joint modeling of longitudinal ordinal and competing risks data
Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard
Loglikelihood: -2292.271
Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + time12 + mrkprior + smlves +
lvORcs + smlves.group + lvORcs.group
Longitudinal sub-model non-proportional odds: smlves_NP + lvORcs_NP
                  Estimate Std. Error
                                               95% CI
                                                                 Pr(>|Z|)
Longitudinal:
 Fixed effects:
  proportional odds:
                            0.1905
                                        (1.2319, 1.9786)
  group 1.6053
                                                                  0.0000
                2.5132
                            0.1934
  time3
                                         ( 2.1341, 2.8923)
                                                                  0.0000
  time6
                2.6980
                             0.1962
                                         ( 2.3134, 3.0825)
                                                                  0.0000
                2.9415
                              0.2004
  time12
                                         ( 2.5486, 3.3344)
                                                                  0.0000
                -2.1815
  mrkprior
                              0.2167
                                         (-2.6063, -1.7567)
                                                                  0.0000
                6.4358
                              0.4228
                                         (5.6072, 7.2644)
                                                                  0.0000
  smlves
                                         (-1.8515,-0.7300)
                -1.2907
  1v0Rcs
                              0.2861
                                                                  0.0000
  smlves.group 0.4903
                              0.7498
                                          (-0.9793, 1.9598)
                                                                  0.5132
  1vORcs.group -3.2277
```

0.4210

(-4.0528, -2.4026)

0.0000

```
Non-proportional odds:
smlves_NP_2
               0.2725
                             0.4485
                                          (-0.6066, 1.1515)
                                                                  0.5435
lvORcs_NP_2
               -0.4528
                             0.2466
                                          (-0.9362, 0.0305)
                                                                  0.0663
smlves_NP_3
               1.7844
                                          (-0.2958, 3.8645)
                             1.0613
                                                                  0.0927
1vORcs_NP_3
               -0.1364
                             0.4309
                                          (-0.9809, 0.7081)
                                                                  0.7516
{\tt Logit-specific\ intercepts:}
theta1
               -6.2336
                             0.1722
                                          (-6.5712, -5.8960)
                                                                  0.0000
theta2
               -4.1911
                             0.1561
                                          (-4.4971, -3.8851)
                                                                  0.0000
theta3
               3.9806
                             0.1896
                                          (3.6091, 4.3522)
                                                                  0.0000
```

Survival sub-model fixed effects: Surv(surv, comprisk) \sim group + mrkprior + smlves + 1vORcs + smlves.group + 1vORcs.group

	Estimate	Std. Error	95% CI	Pr(> Z)	
Survival:					
Fixed effects:					
group_1	-0.4630	0.2434	(-0.9400, 0.0140)	0.0571	
mrkprior_1	0.5874	0.1371	(0.3187, 0.8560)	0.0000	
smlves_1	-2.5570	0.7223	(-3.9728,-1.1413)	0.0004	
lvORcs_1	0.5992	0.2485	(0.1120, 1.0863)	0.0159	
smlves.group_1	-0.4990	1.4257	(-3.2934, 2.2955)	0.7264	
lvORcs.group_1	1.1675	0.4692	(0.2479, 2.0871)	0.0128	
group_2	0.2087	0.4834	(-0.7388, 1.1562)	0.6659	
mrkprior_2	0.0616	0.4277	(-0.7766, 0.8998)	0.8854	
smlves_2	0.7758	0.6217	(-0.4428, 1.9943)	0.2121	
lvORcs_2	-0.3256	0.5120	(-1.3291, 0.6778)	0.5247	
smlves.group_2	-0.0437	1.1573	(-2.3120, 2.2245)	0.9699	
lvORcs.group_2	0.0991	1.0718	(-2.0015, 2.1998)	0.9263	
Association prameter:					
v2	0.0101	0.1595	(-0.3025, 0.3227)	0.9496	
Random effects:					
sigma_b11	55.6404	5.6560	(44.5547, 66.7261)	0.0000	
sigma_u Covariance:	6.6598	1.7196	(3.2894, 10.0303)	0.0001	
sigma_b1u	-19.2452	0.7730	(-20.7602,-17.7302)	0.0000	

The usage of function coef() is similar to those in Model 1. More specifically, coef() can extract the coefficients of non-proportional odds fixed effects and logit-specific intercepts. For example,

```
alpha <- coef(jmofit, coeff = "alpha")
>alpha
        smlves_NP lvORcs_NP
[1,] 0.2724605 -0.4528214
[2,] 1.7843743 -0.1363731

theta <- coef(jmofit, coeff = "theta")
> theta
[1] -6.233618 -4.191114 3.980638
```

The useage of function summary() is the same as in Model 1. It extracts the point estimate, standard error, 95%CI, and p-values of the coefficients for both submodels as demonstrated below, 0

```
> summary(jmofit, coeff = "longitudinal")
  Longitudinal
                 coef
                          SE 95%Lower 95%Upper p-values
         group 1.6053 0.1905 1.2319 1.9786
                                                0.0000
         time3 2.5132 0.1934
2
                               2.1341
                                        2.8923
                                                 0.0000
         time6 2.6980 0.1962
3
                               2.3134
                                       3.0825
                                                 0.0000
        time12 2.9415 0.2004
                              2.5486
                                                 0.0000
                                       3.3344
      mrkprior -2.1815 0.2167 -2.6063
                                      -1.7567
                                                 0.0000
        smlves 6.4358 0.4228 5.6072
                                       7.2644
6
                                                 0.0000
        lvORcs -1.2907 0.2861 -1.8515 -0.7300
                                                 0.0000
8 smlves.group 0.4903 0.7498 -0.9793
                                      1.9598
                                                 0.5132
 lvORcs.group -3.2277 0.4210 -4.0528 -2.4026
                                                 0.0000
```

```
smlves_NP_2 0.2725 0.4485 -0.6066
                                         0.5435
                                 1.1515
   lvORcs_NP_2 -0.4528 0.2466 -0.9362 0.0305
11
                                         0.0663
   smlves_NP_3 1.7844 1.0613 -0.2958 3.8645
12
                                         0.0927
13 lvORcs_NP_3 -0.1364 0.4309 -0.9809 0.7081
                                         0.7516
       theta1 -6.2336 0.1722 -6.5712 -5.8960
14
                                         0.0000
       theta2 -4.1911 0.1561 -4.4971 -3.8851
15
                                         0.0000
       theta3 3.9806 0.1896 3.6091 4.3522
16
                                         0.0000
> summary(jmofit, coeff = "survival")
       Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values
       2
     mrkprior_1 0.5874 1.7993 0.1371 0.3187 0.8560 0.0000
3
       lvORcs_1 0.5992 1.8206 0.2485 0.1120 1.0863 0.0159
5 smlves.group_1 -0.4990    0.6072    1.4257    -3.2934    2.2955    0.7264
6 lvORcs.group_1 1.1675 3.2140 0.4692 0.2479 2.0871 0.0128
7
       group_2 0.2087 1.2321 0.4834 -0.7388 1.1562 0.6659
8
     mrkprior_2 0.0616 1.0636 0.4277 -0.7766 0.8998
                                                    0.8854
                                            1.9943
9
       smlves_2 0.7758 2.1722 0.6217 -0.4428
                                                     0.2121
       lvORcs_2 -0.3256
                       0.7221
                              0.5120 -1.3291
                                             0.6778
                                                     0.5247
11 smlves.group_2 -0.0437
                       0.9572
                              1.1573 -2.3120
                                             2.2245
                                                     0.9699
12 lvORcs.group_2 0.0991
                       1.1042
                              1.0718 -2.0015 2.1998
                                                     0.9263
```

Analogous to jmcfit, linearTest() can be used to the global hypothesis for the longitudinal and the survival submodels.

```
> linearTest(jmofit,coeff="beta")
Chisq df Pr(>|Chi|)
L*beta=Cb 1096.991 9 0.0000
> linearTest(jmofit,coeff="gamma")
Chisq df Pr(>|Chi|)
L*gamma=Cg 47.15038 12 0.0000
> linearTest(jmofit,coeff="alpha")
Chisq df Pr(>|Chi|)
L*alpha=Ca 8.776262 4 0.0669
```

According to the <u>p</u>-values, the hypothesis $\beta_1 = \beta_2 = \cdots = \beta_9 = 0$ is rejected, $\gamma_{11} = \gamma_{12} = \cdots = \gamma_{16} = \gamma_{21} = \gamma_{22} = \cdots = \gamma_{26} = 0$ is rejected, but the hypothesis $\alpha_{11} = \alpha_{12} = \alpha_{21} = \alpha_{22} = 0$ is not rejected at the nominal level of 0.05.

Similarly, linearTest() can be used to test a linear hypothesis for non-proportional odds fixed effects in the longitudinal submodel. For example, if we want to test $H_0: \alpha_{11} = \alpha_{21}$, then we can simply type (:)

It is seen that the hypothesis $\alpha_{11} = \alpha_{21}$ is not rejected at level 0.05.

Likewise, jmo() function allows for categorical variables. Moreover, categorical variables are allowed for setting up non-proportional odds covariates. As an illustration, we consider the "sex" and "race" variables and use them as two of the non-proportional odds covariates. Below is another example $f(\cdot)$

```
#Create two categorical variables and add them into yread
ID <- cread$ID
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black", "Asian", "Hispanic"), nrow(cread), replace = TRUE)
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {
   yread <- dplyr::left_join(yread, cate_var, by = "ID")
   }
res2 <- jmo(yread, cread, out = "Y",</pre>
```

```
FE = c("group", "time3", "time6", "time12", "mrkprior",
            "smlves", "lvORcs", "smlves.group", "lvORcs.group"), cate = c("race", "sex"), RE = "intercept", NP = c("smlves", "lvORcs", "race", "sex"), ID = "ID", intcpt = 1,
            quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)
res2
Call:
 jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group", "time3", "time6", "time12", "mrkprior", "smlves", "lvORcs", "smlves.group", "lvORcs.group"),
RE = "intercept", NP = c("smlves", "lvORcs", "race", "sex"), ID = "ID", cate = c("race", "sex"),
intcpt = 1, quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)
Data Summary:
Number of observations: 1906
Number of groups: 587
Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %
Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20
Model Type: joint modeling of longitudinal ordinal and competing risks data
Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard
Loglikelihood: -2271.831
Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + time12 + mrkprior + smlves +
lvORcs + smlves.group + lvORcs.group + Black + Hispanic + White + Male
Longitudinal sub-model non-proportional odds: smlves_NP + lvORcs_NP + Black_NP + Hispanic_NP +
White_NP + Male_NP
                            Std. Error
                                              95% CT
                                                                Pr(>|Z|)
                  Estimate
Longitudinal:
 Fixed effects:
  proportional odds:
                                         ( 0.7532, 1.5328)
  group
                1.1430
                              0.1989
                                                                 0.0000
                                         ( 2.0758, 2.8455)
                                                                 0.0000
  time3
                2.4607
                              0.1963
  time6
                2.6310
                             0.1986
                                                                 0.0000
                                         ( 2.2416, 3.0203)
  time12
                2.8717
                             0.2111
                                         ( 2.4579, 3.2854)
                                                                 0.0000
  mrkprior
                -2.3329
                             0.1855
                                         (-2.6965, -1.9693)
                                                                 0.0000
                                         (3.1292, 4.8589)
  smlves
                 3.9941
                             0.4413
                                                                 0.0000
                            0.3219
  1v0Rcs
                -0.9469
                                         (-1.5778, -0.3160)
                                                                 0.0033
  smlves.group -4.3940
                            0.7560
                                         (-5.8758, -2.9123)
                                                                 0.0000
  lvORcs.group -3.6954
                                         (-4.6299, -2.7608)
                            0.4768
                                                                 0.0000
  Black
                0.8235
                            0.3162
                                         ( 0.2038, 1.4433)
                                                                 0.0092
  Hispanic
                -0.0218
                            0.3289
                                         (-0.6665, 0.6229)
                                                                 0.9471
                                         (-0.6253, 0.7299)
  White
                0.0523
                             0.3457
                                                                 0.8797
  Male
                -0.3528
                             0.2323
                                         (-0.8080, 0.1025)
                                                                 0.1288
  Non-proportional odds:
  smlves_NP_2 0.3314
                             0.4310
                                         (-0.5133, 1.1761)
                                                                 0.4419
  lvORcs_NP_2 -0.3148
                             0.2696
                                         (-0.8432, 0.2136)
                                                                 0.2429
  Black_NP_2
                             0.2936
                                         (-0.1973, 0.9535)
                0.3781
                                                                 0.1978
  Hispanic_NP_2 -0.0303
                             0.3176
                                         (-0.6528, 0.5923)
                                                                 0.9241
  White_NP_2
                -0.3802
                             0.3034
                                         (-0.9748, 0.2144)
                                                                 0.2102
  Male_NP_2
                0.0531
                             0.2221
                                         (-0.3822, 0.4884)
                                                                 0.8110
  smlves_NP_3
                2.2743
                             1.0748
                                         ( 0.1677, 4.3809)
                                                                 0.0343
  lvORcs_NP_3 0.0033
                             0.4632
                                         (-0.9045, 0.9111)
                                                                 0.9943
  Black_NP_3
                 -0.2274
                              0.5419
                                          (-1.2896, 0.8349)
                                                                 0.6748
  Hispanic_NP_3 -0.5070
                              0.5087
                                          (-1.5040, 0.4901)
                                                                 0.3190
```

White_NP_3	0.4205	0.5722	(-0.7010, 1.5420)	0.4624
Male_NP_3	-0.8489	0.3911	(-1.6155,-0.0824)	0.0300
${\tt Logit-specific}$	intercepts:			
theta1	-6.0565	0.2868	(-6.6186, -5.4945)	0.0000
theta2	-4.0881	0.2379	(-4.5545,-3.6217)	0.0000
theta3	4.1340	0.3437	(3.4602, 4.8077)	0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) \sim group + mrkprior + smlves + lvORcs + smlves.group + lvORcs.group

	Estimate	Std. Error	95% CI	Pr(> Z)	
Survival:					
Fixed effects:					
group_1	-0.2815	0.2545	(-0.7802, 0.2173)	0.2687	
mrkprior_1	0.6404	0.1549	(0.3367, 0.9440)	0.0000	
smlves_1	-1.8107	0.8252	(-3.4280, -0.1934)	0.0282	
lvORcs_1	0.4894	0.2450	(0.0092, 0.9696)	0.0458	
smlves.group_1	1.2608	1.6390	(-1.9517, 4.4733)	0.4417	
lvORcs.group_1	1.4503	0.4901	(0.4898, 2.4108)	0.0031	
group_2	0.2073	0.4831	(-0.7396, 1.1542)	0.6678	
mrkprior_2	0.0617	0.4343	(-0.7896, 0.9129)	0.8871	
smlves_2	0.7871	0.6026	(-0.3940, 1.9683)	0.1915	
1vORcs_2	-0.3266	0.5085	(-1.3233, 0.6701)	0.5207	
smlves.group_2	-0.0374	1.1600	(-2.3110, 2.2362)	0.9743	
lvORcs.group_2	0.0952	1.0591	(-1.9807, 2.1711)	0.9284	
Association prame	eter:				
v2	0.0036	0.1577	(-0.3056, 0.3128)	0.9818	
Random effects:					
sigma_b11	49.0241	5.0606	(39.1053, 58.9430)	0.0000	
sigma_u	6.3475	1.5884	(3.2343, 9.4607)	0.0001	
Covariance:					
sigma_b1u	-17.6331	0.7415	(-19.0864,-16.1797)	0.0000	
coef(res2, coeff	= "beta")				
group	time3	time6	time12 mrkprior	smlves	lv0Rcs
1.14302264 2.	. 46065107	2.63095850	2.87165209 -2.33288371	3.99407491	-0.94689649
smlves.group lvOF	Rcs.group	Black	Hispanic White	e Male	
-4.39403193 -3	. 69535020	0.82353645	-0.02181286 0.05232005	-0.35276916	

Older versions of jmc() and jmo()

In the previous versions of Mcmprsk, both the previous <code>jmc()</code> and <code>jmc()</code> functions require the longitudinal input data "yfile" to be in a specific format regarding the order of the outcome variable and the random and fixed effects covariates. It also requires users to create an additional "mfile" for the longitudinal data. At the suggestions of the reviewers, in the most recent version, we focus and develop user-friendly versions of these functions.

However, for both package consistency and user's convenience, we still keep older versions of these functions in the package, and rename these functions to $jmc_0()$ and $jmo_0()$, respectively. Supporting functions of jmo() and jmc(), such as coef(), summary(), linearTest(), also apply to $jmc_0()$ and $jmo_0()$ functions.

Here, we show the usage of $jmc_0()$ with some simulated data and the "lung" data used in presenting jmc() functions.

If the data are provided as files, the function $jmc_0()$ has the following usage:

```
library(JMcmprsk)
yfile=system.file("extdata", "jmcsimy.txt", package = "JMcmprsk")
cfile=system.file("extdata", "jmcsimc.txt", package = "JMcmprsk")
mfile=system.file("extdata", "jmcsimm.txt", package = "JMcmprsk")
jmc_0fit = jmc_0(p=4, yfile, cfile, mfile, point=20, do.trace = FALSE)
```

where p is the dimension of fixed effects (including intercept) in y file, the option p is the number of points used to approximate the integral in the E-step, default is 20, and do.trace is used to control

whether the program prints the iteration details. Additionally, the option type_file controls the type of data input.

<u>If d</u>ata frames or matrices are provided as input, we set the above type_file option as type_file =

```
Ibrary(JMcmprsk)
data(lung)
lungY <- lung[, c(2:11)]
lungC <- unique(lung[, c(1, 12, 13, 6:10)])
lungC <- lungC[, -1]
## return a vector file with the number of repeated measurements as lungM
lungM <- data.frame(table(lung$ID))
lungM <- as.data.frame(lungM[, 2])
jmc_0fit2=jmc_0(p=8, lungY, lungC, lungM, point=20, do.trace = FALSE, type_file = FALSE)</pre>
```

Computational Complexity

To understand the computational complexity of both jmc() and jmo() models, we carried out a variety of simulations with different sample size and different proportions of events. However, there was no clear trend observed between proportions of events and running times. Hence, only one event distribution with different sample sizes are given here for illustration purpose. According to Figures 1 and 2, we can easily see that the run time grows much faster as sample size increases, which implies that the computational complexity does not follow a linear order. In this case, it will limit joint models to handling large and even moderate sample size data. To make the joint modeling more scalable, it is necessary to carry out a novel algorithm to reduce its computational complexity to a linear order.

Figure 1: Run time comparison under different sample sizes for jmc() function (from 500 to 5000). Data setup: p = 4, $n_q = 6$, 10.4% censoring, 51.4% risk 1, and 38.2% risk 2. The run time under each sample size was based on one random sample.

Data Simulation

A simulation can generate datasets with an exact ground truth for evaluation. Hence, the simulation of longitudinal and survival data with multiple failures associated by random effects is an important measure to assess the performance of joint modelling approaches dealing with competing risks. In *JMcmprsk*, simulation tools are based on the data models proposed in Elashoff et al. (2008) and Li et al. (2010), which can be used for testing joint models with continuous and ordinal longitudinal outcomes, respectively.

The main function for simulation data continuous longitudinal outcomes and survival data with multiple event outcomes is called SimDataC(), which has the following usage:

```
SimDataC(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truegamma,
  randeffect, yfn, cfn, mfn)
```

We briefly explain some of the important options. k_val denotes the number of subjects in study p1_val and p1a_val denote the dimension of fixed effects and random effects in longitudinal measurements, respectively; p2_val and g_val denotes the dimension of fixed effects and number to competing risks in

Figure 2: Run time comparison under different sample sizes for jmo() function (from 500 to 5000). Data setup: p = 4, $n_q = 10$, 22.4% censoring, 57.2% risk 1, and 20.4% risk 2. The run time under each sample size was based on one random sample.

survival data true true values of fixe effects in the longitudinal and the survival submodels, respectively. (and effect) sets the true values for random effects in longitudinal and competing risks parts namely in the order of σ , σ _b, ν ₂, and σ _u.

The following example generates the datasets used in simulation study in Elashoff et al. (2008):

The output of function SimDataC() contains additional censoring rate information and newly generated files names for further usage (.)

```
$`censoring_rate`
[1] 0.21
$rate1
[1] 0.45
$rate2
[1] 0.34
$yfn
[1] "jmcsimy1.txt"
$cfn
[1] "jmcsimc1.txt"
$mfn
[1] "jmcsimm1.txt"
```

The main function for simulation data ordinal longitudinal outcomes and survival data with multiple event outcomes is called SimDataO(), the usage of which is very similar to SimDataO():

```
SimDataO(k_val, p1_val, p1a_val, p2_val, g_val, truebeta, truetheta,
  truegamma, randeffect, yfn, cfn, mfn)
```

All options have the same meanings as in SimDataC() while SimDataO() has one more option truetheta which sets the true values of the non-proportional odds longitudinal coefficients subset.

The following example generates the datasets used in simulation study in Li et al. (2010):

```
require(JMcmprsk)
set.seed(123)
yfn="jmosimy1.txt";
cfn="jmosimc1.txt";
mfn="jmosimm1.txt";
```

```
k_val=500;p1_val=3;p1a_val=1; p2_val=2;g_val=2;
truebeta=c(-1,1.5,0.8); truetheta=c(-0.5,1); truegamma=c(0.8,-1,0.5,-1); randeffect=c(1,0.5,0.5);
#writing files
SimDataO(k_val, p1_val, p1a_val, p2_val, g_val,
      truebeta, truetheta, truegamma, randeffect, yfn, cfn, mfn)
The output of the above function is
$`censoring_rate`
[1] 0.218
$rate1
[1] 0.414
$rate2
[1] 0.368
$yfn
[1] "jmosimy1.txt"
$cfn
[1] "jmosimc1.txt"
$mfn
[1] "jmosimm1.txt"
```

Conclusions and Future Work

In this paper, we have illustrated the capabilities of package [Mcmprsk] for fitting joint models of time-to-event data with competing risks for two types of longitudinal data. We also presents simulation tools to generate joint model datasets under different settings. Several extensions of [Mcmprsk] package are planned to further expand on what is currently available. First, as the integral over the random effects becomes computationally burdensome integral of high dimensionality, Laplace approximations or other Gauss-Hermite quadrature rules would be applied to the E-M step to speed up the computation procedure. Second, withincreasing need of predictive tools for personalized medicine, dynamic predictions for the aforementioned joint models will be added. Third, other new joint models such as joint analysis for bivariate longitudinal ordinal outcomes will be included.

Acknowledgements

We thank the reviewers for their insightful and constructive comments that led to significant improvements of our paper. The research of Hong Wang was partly supported by National Social Science Foundation of China (17BTJ019). The research of Gang Li was partly supported by National Institute of Health Grants P30 CA-16042, UL1TR000124-02, and P01AT003960.

Bibliography

- C. Armero, C. Forné, M. Rué, A. Forte, H. Perpiñán, G. Gómez, and M. Baré. Bayesian joint ordinal and survival modeling for breast cancer risk assessment. *Statistics in medicine*, 35(28):5267–5282, 2016. [p1]
- D. Eddelbuettel, R. François, J. Allaire, K. Ushey, Q. Kou, N. Russel, J. Chambers, and D. Bates. Rcpp: Seamless r and c++ integration. *Journal of Statistical Software*, 40(8):1–18, 2011. [p2, 3]
- R. M. Elashoff, G. Li, and N. Li. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. *Biometrics*, 64(3):762–771, 2008. [p1, 2, 13, 14]
- P. L. Ferrer. *Joint modelling and prediction of several risks of cancer progression from repeated measurements of biomarkers*. PhD thesis, University of Bordeaux, 2017. [p1]
- M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich. *GNU scientific library*. Network Theory Limited, 2002. [p2, 3]
- G. L. Hickey, P. Philipson, A. Jorgensen, and R. Kolamunnage-Dona. A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 181(4):1105–1123, 2018a. [p2]

- G. L. Hickey, P. Philipson, A. Jorgensen, and R. Kolamunnage-Dona. Joint models of longitudinal and time-to-event data with more than one event time outcome: a review. *The international journal of biostatistics*, 14(1), 2018b. [p1]
- N. Li, R. M. Elashoff, G. Li, and J. Saver. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the ninds rt-pa stroke trial. *Statistics in medicine*, 29(5):546–557, 2010. [p1, 2, 13, 14]
- G. Papageorgiou, K. Mauff, A. Tomer, and D. Rizopoulos. An overview of joint modeling of time-to-event and longitudinal outcomes. *Annual review of statistics and its application*, 6:223–240, 2019. [p1]
- C. Proust-Lima, M. Séne, J. M. Taylor, and H. Jacqmin-Gadda. Joint latent class models for longitudinal and time-to-event data: A review. *Statistical methods in medical research*, 23(1):74–90, 2014. [p1]
- C. Proust-Lima, V. Philipps, and B. Liquet. Estimation of extended mixed models using latent classes and latent processes: The r package lcmm. *Journal of Statistical Software*, 78(1):1–56, 2017. [p1]
- D. Rizopoulos. *Joint models for longitudinal and time-to-event data: With applications in R*. Chapman and Hall/CRC, 2012. [p1, 2]
- N. rt PA Stroke Study. Tissue plasminogen activator for acute ischemic stroke. *New England Journal of Medicine*, 333(24):1581–1588, 1995. [p7]
- D. P. Tashkin, R. Elashoff, P. J. Clements, J. Goldin, M. D. Roth, D. E. Furst, E. Arriola, R. Silver, C. Strange, M. Bolster, et al. Cyclophosphamide versus placebo in scleroderma lung disease. *New England Journal of Medicine*, 354(25):2655–2666, 2006. [p4]
- A. A. Tsiatis and M. Davidian. Joint modeling of longitudinal and time-to-event data: an overview. *Statistica Sinica*, pages 809–834, 2004. [p1]
- P. Williamson, R. Kolamunnage-Dona, P. Philipson, and A. Marson. Joint modelling of longitudinal and competing risks data. *Statistics in medicine*, 27(30):6426–6438, 2008. [p1, 2]

Hong Wang School of Mathematics & Statistics, Central South University Changsha, Hunan Provinice, 410075 China wh@csu.edu.cn

Ning Li UCLA Biomathematics Los Angeles, CA 90095-1772 USA nli@biomath.ucla.edu

Shanpeng Li Department of Biostatistics,UCLA School of Public Health Los Angeles, CA 90095-1772 USA lishanpeng0913@ucla.edu

Gang Li*
Department of Biostatistics, UCLA School of Public Health
Los Angeles, CA 90095-1772
USA
(Corresponding Author)
vli@ucla.edu