Math 531 Homework 6

Theo Koss

March 2021

1 Section 3.5

• Problem 3: Give the subgroup diagrams of the following groups.

(b) \mathbb{Z}_{36}

• Problem 4: Give the subgroup diagram of \mathbb{Z}_{60} .

• Problem 11: Which of the multiplicative groups, \mathbb{Z}_7^{\times} , \mathbb{Z}_{10}^{\times} , \mathbb{Z}_{12}^{\times} , \mathbb{Z}_{14}^{\times} are isomorphic?

Remark. Two finite cyclic groups of the same order are isomorphic. *Proof.*

- 1. \mathbb{Z}_7^{\times} is cyclic with generator 3, $|(\mathbb{Z}_7^{\times})| = 6$.
- 2. \mathbb{Z}_{10}^{\times} is cyclic with generator 3. $|\mathbb{Z}_{10}^{\times}| = 9$.
- 3. \mathbb{Z}_{12}^{\times} is isomorphic to the klein 4-group, which is noncyclic. $|\mathbb{Z}_{12}^{\times}| = 4$.

4. \mathbb{Z}_{14}^{\times} is cyclic with generator 3. $|\mathbb{Z}_{14}^{\times}| = 6$.

Therefore, by our remark, $\mathbb{Z}_{14}^{\times} \cong \mathbb{Z}_{7}^{\times}$, since they are both cyclic groups of the same order.

• Problem 21: Prove that if p and q are different odd primes, then \mathbb{Z}_{pq}^{\times} is not a cyclic group.

Proof. By the Chinese Remainder Theorem, since $\gcd(p,q)=1$, it follows that \mathbb{Z}_{pq}^{\times} is isomorphic to $\mathbb{Z}_p^{\times} \times \mathbb{Z}_q^{\times}$. Of course, $\mathbb{Z}_p^{\times} \mathbb{Z}_q^{\times}$ are finite abelian groups, of order p-1 and q-1, respectively. And since p,q are odd primes, p-1 and q-1 are both divisible by 2, therefore they are not coprime. By the Fundamental Theorem of Finitely Generated Abelian Groups, the product of two finite abelian groups of non-coprime orders is never cyclic.

2 Section 3.6

- Problem 1: Find the orders of each of these permutations.
 - (a) (1,2)(2,3)(3,4) = (1,2,3,4), order 4.
 - (b) (1,2,5)(2,3,4)(5,6) = (1,2,3,4,5,6) order 6.
 - (c) (1,3)(2,6)(1,4,5) = (1,4,5,3)(2,6) order lcm(4,2) = 4.
 - (d) (1,2,3)(2,4,3,5)(1,3,2) = (1,5,3,4)(2) order lcm(4,1) = 4.
- Problem 3: Write out the addition table for $\mathbb{Z}_4 \times \mathbb{Z}_2$.

• Problem 5: Show that no proper subgroup of S_4 contains both (1, 2, 3, 4) and (1, 2).

Proof.

Remark. The group S_n is generated by (1, 2, ..., n) and (1, 2). Proof. Consider some subgroup $H \subseteq S_4$, such that $H \ni (1, 2, 3, 4), (1, 2)$. By our remark, any subgroup containing these two cycles must be exactly equal to S_n . Since both $(1, 2, 3, 4), (1, 2) \in H$, this proves that $H = S_4$ and thus $H \not\subset S_4$.

• Problem 10: Show that the following matrices form a subgroup of

$$GL_2(\mathbb{C})$$
 isomorphic to D_4 .
 $\pm \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \pm \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad \pm \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \pm \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}.$

Proof. We first check, for G = The matrices, $|G| = |D_4| = 8$. This is true. Therefore there can exist an isomorphism between the two. To show there must, $\forall a \in D_4$ we must find some $x \in G$ such that |a| = |x|. This will define the isomorphism $\phi: D_4 \to G$.

$$-\rho_0 = e \in D_4$$
 has order 1. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in G$ also has order 1.

$$-\rho_{90} \in D_4$$
 has order 4. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in G$ also has order 4.

$$-\rho_{180} \in D_4$$
 has order 2. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in G$ also has order 2.

$$-\rho_{270} \in D_4$$
 has order 4. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in G$ also has order 4.

$$-\mu_1 \in D_4$$
 has order 2. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in G$ also has order 2.

$$-\mu_1 \in D_4$$
 has order 2. $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \in G$ also has order 2.

$$-\mu_2 \in D_4$$
 has order 2. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in G$ also has order 2.

$$-\mu_3 \in D_4$$
 has order 2. $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in G$ also has order 2.

$$-\mu_4 \in D_4$$
 has order 2. $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \in G$ also has order 2.

Where ρ_{θ} defines a rotation by θ degrees, and $\mu_1, \mu_2, \mu_3, \mu_4$, define a flip vertically, horizontally, diagonally about $\overline{13}$, and diagonally about $\overline{24}$, respectively. Therefore, for every element of D_4 , there exists exactly one element of G with the same order, thus, $D_4 \cong G$. QED