ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ЮРИДИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ. ЛЕКЦИЯ 4: «ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА»

Статистическая обработка числовых данных (1)

Явления, происходящие в природе, в обществе, в человеке, очень сложны и разнообразны. Ученые изучают разные стороны этих явлений, причем каждая наука вырабатывает свои специфические методы исследования. Например, таким важным социальным явлением, как преступность, занимаются не только юристы, но и социологи, психологи, медики и иные специалисты. Есть ту т серьезная работа и для математиков.

Статистическая обработка числовых данных (2)

Их задача состоит в том, чтобы подвергнуть математической обработке огромный статистический материал: отчеты органов внутренних дел и другие документы, содержащие различные числовые данные. Цель этой работы — выделить наиболее существенные сведения об интересующем нас явлении.

Результаты обработки обычно представляют в виде таблиц, графиков, диаграмм и различных числовых характеристик, которые называют параметрами. Важнейшие из них — среднее арифметическое и дисперсия.

Задача

УВД города Дрюково опубликовало сводку о количестве правонарушений, совершенных подростками за первые 20 дней сентября: 8, 6, 13, 4, 13, 13, 12, 9, 7, 6, 12, 14, 13, 12, 17, 6, 8, 12, 7, 12. По этим данным составлена следующая таблица:

\tilde{x}_{i}	4	6	7	8	9	12	13	14	17
m_i	1	3	2	2	1	5	4	1	1

Здесь m_i — число дней с одним и тем же количеством правонарушений, \tilde{x}_i — число правонарушений за день. Найдите среднее число правонарушений за день.

Решение

Согласно приведенным данным, среднее число правонарушений за один день будет равно

$$\overline{x} = \frac{1}{20} (4 \cdot 1 + 6 \cdot 3 + 7 \cdot 2 + 8 \cdot 2 + 9 \cdot 1 + 12 \cdot 5 + 13 \cdot 4 + 14 \cdot 1 + 17 \cdot 1) =$$

$$= \frac{1}{20} \cdot 204 = 10, 2.$$

Мы использовали следующую формулу для подсчета среднего арифметического:

$$\bar{x} = \frac{1}{n} (\tilde{x}_1 m_1 + \tilde{x}_2 m_2 + ... + \tilde{x}_k m_k).$$

Замечание

Часто данные бывают представлены в иной форме. Заменим в предыдущей таблице вторую строку на новую, в которой вместо числа дней m_i поствим долю, которую это число состовляет от числа всех дней. Эта доля называется **относительной частотой** или просто **частотой**.

\tilde{x}_{i}	4	6	7	8	9	12	13	14	17
								1/20	
\tilde{p}_i								= 0.05	
	0,05	U, 15	\cup , \cup	0,10	0,05	U, 2 5	U, Z U	0,05	U,U5

Сумма чисел, стоящих во второй строке, равна единице. Это свойство следует из определения частоты.

Новая формула для среднего арифметического

Среднее арифметическое \bar{x} равно сумме произведений чисел, взятых из первой строки таблицы, на их частоты. Обозначим частоты \tilde{p}_i :

$$\tilde{p}_1 = \frac{m_1}{n}, \ \tilde{p}_2 = \frac{m_2}{n}, ..., \ \tilde{p}_k = \frac{m_k}{n}.$$

В результате формула для среднего арифметического имеет вид

$$\overline{x} = \tilde{x}_1 \tilde{p}_1 + \tilde{x}_2 \tilde{p}_2 + \dots + \tilde{x}_k \tilde{p}_k$$

Пример

В городе Дрюково каждому пассажиру междугороднего автобуса вручают страховой полис на 5 000 рублей, взимая за это один рубль. Какова средняя прибыль страховой компании от продажи одного полиса, если страховые случаи происходят в среднем с одним пассажиром из 10 000? Учтите, что по обычаям города Дрюково страховка выплачивается только в случае гибели пассажира.

Решение

Прибыль может принимать два значения: 1 рубль, если несчастного случая не произошло, и -4999 рублей при автокатастрофе (знак «минус» означает, что компания терпит убыток). Прибыль -4999 рублей появляется в одном случае из 10 000, следовательно, частота этого значения прибыли равна 0,0001. Частота другого значения (1 рубль) равна 0,9999. Получаем следующую таблицу:

Прибыль	1	-4999
Частота	0,9999	0,0001

Теперь подсчитаем среднее значение прибыли:

$$\bar{x} = 1.0,9999 + (-4999).0,0001 = 0,9999 - 0,4999 = 0,5$$
 (pyб.).

Задача

За контрольную работу по математике 50 студентов первого курса получили следующие оценки: 4, 4, 2, 3, 5, 3, 5, 4, 3, 3, 4, 2, 4, 3, 5, 4, 3, 1, 3, 2, 2, 3, 4, 5, 4, 3, 3, 2, 4, 4, 3, 4, 3, 2, 3, 3, 5, 3, 1, 3, 4, 5, 2, 4, 3, 3, 2. Найдите среднее арифметическое этих чисел.

Решение

Расчетная таблица состоит из четырех строк и семи столбцов. В первой строке мы расположим значения оценок \tilde{x}_i в порядке их возрастания от 1 до 5. Во второй строке для каждой оценки укажем число ее повторений, то есть абсолютные частоты m_i . Сумма всех абсолютных частот равна количеству всех оценок, в нашем случае она равна 50. Запишем ее в последний столбец. В третьей строке таблицы будут записаны относительные частоты \tilde{p}_i . Так как у нас n=50, то общая формула для вычисления

частот примет вид $\tilde{p}_i = \frac{m_i}{50}$.

Продолжение решения

В последнем столбце третьей строки записывается сумма всех частот. Она всегда равна единице. Если получилось другое число, то в расчетах допущена ошибка. В последней строке записываются произведения оценок на их частоты — числа $\tilde{x}_i \, \tilde{p}_i$, сумма которых и равна среднему арифметическому $\bar{x} = 3,28$. Она записывается в последнем столбце четвертой строки:

\tilde{x}_{i}	1	2	3	4	5	Сумма
m_i	2	8	20	14	6	50
\tilde{p}_i	0,04	0,16	0,40	0,28	0,12	1
$\tilde{x}_i \tilde{p}_i$	0,04	0,32	1,20	1,12	0,60	3,28

Одна история

Двух студентов юридического факультета послали на практику, одного в город Дрюково, другого — в город Стуково. Практиканты узнали, что в это время года среднесуточная температура в этих городах равна нулю. Тот из них, кто поехал в Стуково, будучи человеком осторожным, взял с собой только теплые вещи. Другой, более легкомысленный, оделся по-летнему.

Продолжение истории

Оказалось, что в течение всей практики в обоих городах температура была стабильной: в Дрюкове +2 днем и -2 ночью, в Стукове +15 днем и -15 ночью. В результате, несмотря на то, что среднесуточная температура действительно была нулевой, оба студента заболели, так как один постоянно перегревался, а другой — постоянно мерз.

Комментарий

Только одно среднее арифметическое результатов измерений или наблюдений не всегда адекватно отражают ситуацию. Помимо средней величины, нужно знать еще и то, как заданные числа рассеяны около их среднего значения. Для этой цели вводятся дисперсия и среднее квадратическое отклонение.

В начало

Определение

Дисперсией величин $x_1, x_2, ..., x_n$ называется число

$$D = \frac{1}{n} ((x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2).$$

Пример

В следующей таблице указано время в минутах, затраченное на обследование каждого из десяти автомобилей. Символом x_i обозначено время, затраченное на обследование автомобиля с номером i. Найдите дисперсию величин x_i .

i	1	2	3	4	5	6	7	8	9	10
X_i	25	30	22	22	54	36	41	45	25	40

Решение

Составим таблицу из трех столбцов: в первом столбце разместим числа x_i ; во втором — отклонения этим величин от их среднего значения; в третьем — квадраты этих отклонений. Второй и третий столбцы заполняются только после вычисления среднего времени обследования x=34 (мин.).

В начало

Продолжение решения

x_i	25	30	22	22	54	36	41	45	25	40	Σ
$x_i - \bar{x}$	-9	-4	-12	-12	20	2	7	11	9	6	0
$(x_i - \bar{x})^2$	81	16	144	144	400	4	49	121	81	36	1076

Продолжение решения (2)

Последняя строка таблицы содержит суммы чисел по столбцам. В частности, в последней строке первого столбца записано общее время (340 минут) обследования всех автомобилей. Поделив ее на 10, мы и нашли среднее время обследования \bar{x} =34 (мин.). В третьем столбце находятся квадраты отклонений, с помощью которых мы вычисляем дисперсию:

$$D = \frac{1}{10} \cdot 1076 = 107,6 \text{ (MUH.}^2\text{)}.$$

Частоты и дисперсия

Если известны частоты $\tilde{p}_1, \quad \tilde{p}_2, \quad ..., \quad \tilde{p}_k, \quad$ то для вычисления дисперсии можно использовать формулу

$$D = \tilde{p}_1(\tilde{x}_1 - \bar{x})^2 + \tilde{p}_2(\tilde{x}_2 - \bar{x})^2 + ... + \tilde{p}_k(\tilde{x}_k - \bar{x})^2,$$

где, как и выше, \tilde{x}_1 , \tilde{x}_2 , ..., \tilde{x}_k суть различные среди заданных чисел x_1 , x_2 , ..., x_n .

Определение

Средним квадратическим отклонением величин x_1, x_2 , ..., x_n от их среднего значения x называется величина $S = \sqrt{D}$.

Пример

В предыдущем примере

$$S = \sqrt{107,6} = 10,373... \approx 10,4$$
 (MUH.).

Случайная величина

Введем весьма важное понятие **случайной величины**. В рассмотренных ранее примерах случайными величинами являлись время обследования автомобиля, число дорожных происшествий, прибыль страховой компании и др. Математики в таких случаях говорят, что время обследования автомобиля, например, есть переменная (случайна) величина X, принимающая значения $x_1, x_2, ..., x_n$.

В начало

Проблема

Теперь допустим, что нужно обследовать **все** автомобили города Дрюково. Но число автомобилей так велико, что описать все значения величины X (X — время обследования автомобиля) практически невозможно. Однако мы можем, не проводя самого обследования, предсказать его результаты, используя результаты уже решенной задачи.

В начало

Переход к решению

Переделаем немного ранее составленную таблицу:

\tilde{x}_i	22	25	30	36	40	41	45	54
\tilde{p}_i	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1

Напомним, что среднее время обследования x=34 (мин.), а среднеквадратическое отклонение $S \approx 10,4$ (мин.).

Идея решения

Результаты, полученные при обследовании десяти автомобилей, можно распространить на все автомобили города Дрюково. С определенной степенью достоверности можно считать, что в среднем на обследование каждого автомобиля в городе затрачивается 34 мунуты; что время обследования примерно 60% автомобилей заключено в промежутке от 23,6 до 44.4 минут, и так далее. Такие приблизительные расчеты могут весьма пригодиться, например, тому, кто хочет открыть новую станцию техобслуживания, поскольку характеризует рынок в этой сфере бизнеса.

В начало

Терминология

При обработке статистического материала используется специальная терминология. Совокупность всех рассматриваемых объектов называют генеральной совокупностью, а часть объектов, каким-либо способом выбранных для обследования, называют выборкой. В нашем примере с автомобилями генеральную совокупность образуют все автомобили города Дрюково, а выборку — те 10 автомобилей, которые рассматривались в примере.

<u>Замечание</u>

Очень важно сделать выборку правильно. От этого точность и достоверность прогноза. зависит математической статистике изучаются позволяющие сделать выборку так, чтобы полученная с ее помощью информация давала достаточно полное адекватное представление об интересующем нас признаке изучаемой генеральной совокупности. Тогда среднее арифметическое x и дисперсия D будут близки гипотетическим величинам — среднему арифметическому и дисперсии, которые могли бы быть получены при обработке всей генеральной совокупности.

В начало

Статистические характеристики

Кроме среднего значения и среднеквадратического отклонения основными характеристиками являются: весь диапазон значений величины, интервал ее наиболее вероятных значений и частоты больших и малый значений исследуемеой величины.

Замечание 1

Чаще всего в качестве диапазона наиболее вероятных значений величины берут интервал $(\bar{x}-S;\bar{x}+S)$. Однако, если его частота оказывается меньше чем 1/2, то его каким-нибудь образом расширяю; если же частота больше 1/2, то интервал можно сузить.

Замечание 2

Мы сами определяем, что такое малые и большие значения случайной величины. Если такие понятия вообще требуются для описания конкретного материала, то их вводят, сообразуясь со спецификой задачи.

Пример

Комиссия изучала состояние борьбы с преступностью в регионе. Случайным образом выбрано 20 районов (вообще-то их больше двадцати) и по ним были представлены данные о числе раскрытых убийств: 11, 6, 12, 1, 3, 1, 6, 20, 10, 1, 1, 3, 3, 1, 23, 11, 3, 6, 10, 3. Составьте по этим данным прогноз для всего региона.

Решение

Совокупность всех районов данного региона — это генеральная совокупность. Изучается величина X, которая представляет собой число раскрытых в районе убийств. Для изучения используется выборка из 20 объектов генеральной совокупности (районов региона). Для них получены значения величины X — выборочные данные. Мы обработаем выборочные данные по приведенной выше схеме и на этом основании составим прогноз для всего региона в целом. Иными словами, по выборочным данным мы опишем свойство всей генеральной совокупности, то есть составим представление о борьбе с преступностью во всех районах региона.

В начало

Продолжение решения

\tilde{x}_{i}	m _i	\tilde{p}_i	$\tilde{x}_i \tilde{p}_i$	$\tilde{x}_i - \bar{x}$	$(\tilde{x}_i - \bar{x})^2$	$(\tilde{x}_i - \bar{x})^2 \tilde{p}_i$
1	5	0,25	0,25	-5,75	33,0625	8,265625
3	5	0,25	0,75	-3,75	14,0625	3,515625
6	3	0,15	0,90	-0,75	0,5625	0,084375
10	2	0,10	1,00	3,25	10,5625	1,056250
11	2	0,10	1,10	4,25	18,0625	1,806250
12	1	0,05	0,60	5,25	27,5625	1,378125
20	1	0,05	1,00	13,25	175,5625	8,778125
23	1	0,05	1,15	16,25	264,0625	13,203125
Σ	20	1	6,75	_	_	38,09

Найдем дисперсию и среднеквадратическое отклонение:

$$D=38,0875$$
, $S=\sqrt{38,0875}=6,1715071...\approx6,17$.

Выводы (1)

- 1) Число убийств, раскрытых в одном районе, принимает значения от 1 до 23.
- 2) Наиболее вероятными значениями являются числа 1 и 3, так как они имеют наибольшую частоту 0,25.
- 3) Среднее значение числа убийств (среднее арифметическое) равно 6,75.
 - 4) Среднеквадратическое отклонение составляет 6,17.

Выводы (2)

- 5) В интервал $(\bar{x}-S;\bar{x}+S)=(0,58;12,92)$ попадают 7 значений случайной величины: 1, 3, 5, 6, 10, 11, 12; сумма из частот равна 0,25+0,25+0,15+0,10+0,10+0,05=0,90; этот интервал будет интервалом наивероятнейших значений величины X, так как он содержит 90% значений величины.
- 6) Частота малых значений числа X, то есть таких, которые меньше 0,58, равна нулю.
- 7) Частота больших значений (тех, которые больше 12,92) равна 0.05 + 0.05 = 0.10; иными словами, число случаев, когда раскрытых убийств больше 12, составляет всего 10% от их общего числа.

Замечание

До сих пор мы предполагали, что все выкладки выполняются «вручную» или с помощью калькулятора. Для решения подобных задач можно использовать и компьютер.