1/5/25, 11:18 PM Students Survey

Students Survey

Statistics Assignment

Instructions

- Analyze the provided dataset using R.
- Answer all questions, supporting your findings with charts, tables, and explanations.
- Submit a well-structured report (PDF format), including all code and outputs.

Part 1: Descriptive Statistics

1. Basic Summary:

- For the following columns: Age, Mid-exam score, and GPA:
 - Calculate the mean, median, standard deviation, range, minimum, and maximum.
 - Identify the most frequent (mode) value.

2. Frequency Distributions:

- Create frequency tables for:
 - Gender
 - Year of study
 - Distance from home to the university

3. Percentile Analysis:

Calculate the 25th, 50th, and 75th percentiles for GPA.

Part 2: Exploratory Data Analysis (EDA)

4. Age Distribution:

- Plot a histogram or density plot for the Age column.
- o Answer:
 - What is the most common age?
 - Are there any outliers?

5. Satisfaction Levels:

- o Compare the satisfaction levels (university experience and BI major) across genders using boxplots.
- Identify which group has the highest and lowest satisfaction ratings.

6. Home Distance vs. Recommendation:

- Investigate the relationship between home distance from the university and the likelihood of recommending the university using:
 - A scatterplot or boxplot
 - Statistical summary (mean and median likelihood by distance group)

7. Correlation Analysis:

- Calculate and visualize correlations between:
 - Mid-exam score
 - GPA

localhost:4660 1/3

- University satisfaction
- Recommendation likelihood
- Highlight the strongest relationships.

Part 3: Inferential Statistics

8. Hypothesis Testing (T-Test):

- Test if there is a significant difference in GPA between:
 - Male and female students
 - Students who work versus those who don't

9. **ANOVA**:

- Analyze if the year of study has a significant effect on:
 - GPA
 - Satisfaction with the university experience

10. **Chi-Square Test**:

- Test if there is an association between:
 - High school education type and GPA categories (e.g., low, medium, high)
 - Working status and satisfaction with the university experience

Part 4: Regression Analysis

11. Simple Linear Regression:

- Build a model predicting GPA using the mid-exam score.
- Assess:
 - R-squared value
 - Significance of the predictor

12. Multiple Linear Regression:

- Extend the model to include:
 - Satisfaction with the university
 - Satisfaction with the BI major
 - Type of work (encoded appropriately if categorical)
- Interpret:
 - Coefficients for each predictor
 - Overall model fit

13. **Logistic Regression**:

- Build a logistic regression model to predict whether students would recommend the university (Yes/No) based on:
 - Satisfaction levels
 - Type of work
 - Year of study

Part 5: Specific Questions

14. Key Insights:

- Answer the following:
 - What is the average GPA for students in each year of study?
 - Which group has the highest average satisfaction with the university?
 - Are students who live closer (<5 KM) more likely to recommend the university compared to those farther away?

15. Outliers:

- Identify potential outliers in:
 - GPA
 - Mid-exam scores
- Use boxplots or IQR methods to justify your findings.

Part 6: Bonus Tasks

16. Clustering:

- Perform clustering (e.g., K-means) on:
 - GPA
 - Mid-exam score
 - Satisfaction levels
- Analyze the clusters:
 - How many clusters are optimal?
 - What characterizes each cluster?

17. Interactive Visualization:

- Create an interactive dashboard (using R's Shiny or Python's Plotly/Dash) to visualize:
 - GPA distributions
 - Satisfaction levels by group
 - Relationships between predictors and outcomes

localhost:4660 3/3