CSE 331: Automata & Computability Prepared By: KKP

Practice Sheet: Equivalence between Regular Expressions and Finite Automata

Converting DFAs to Regular Expressions Using State Elimination Method

Notes:

- a. If you use any other method apart from the State Elimination Method, you will be awarded 0 points
- b. If you don't follow the order of elimination mentioned in the question, you will be awarded 0 points.

Practice

The parenthesis is a must (q3-q1)

Book's Example

In this example, we begin with a three-state DFA. The steps in the conversion are shown in the following figure.

Problem 1:

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q_1 , then q_2 , next q_3 and then finally q_4 . You must show work.

Problem 2:

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q2, q1 and finally q3. You must show work.

Problem 3:

Convert the following DFA into an equivalent regular expression using the state elimination method. First eliminate q3, q1 and finally q2. You must show work.

Converting Regular Expressions to NFAs

Problem 4:

$$(a*b* + (ac+b*c)b*a)*$$

Problem 5:

$$a (bca^*)^* + (ba+ca) a^+ (ab+ac) + ((c^*a) ab)^*b^*$$