Lab3 report

- Introduction about the overall system
 - What is FIR
 The term FIR abbreviation is "Finite Impulse Response" and it is one of two main types of digital filters used in DSP applications. This is its formula:

$$y[t] = \sum (h[i] * x[i-t])$$

- Overall design
 - Block diagram

Overall view

Block design in FIR

Finite state machine

ap_control

sm_state

Address generator

Address generator for tap RAM

Address generator for data RAM

How do data and tap RAM read and write data? If EN is 1 and WE is 1, then we can write the data to RAM(stage 3 and 7 in waveform below). If EN is 1 and WE is 0, then we can read the data in RAM(stage 2, 4 and 6 in waveform below). If EN is 0, we can't read and write the data in RAM.

Waveform

How to input data and receive the answer? To receive the data in testbench, we set the ss_tvalid to 1, so when ss_tready is trigger, data will pass to our design in next cycle. To pass back the answer to testbench to check answer correct or not, we set sm_tready to 1, so when ss_tvalid is trigger, data will pass to testbench in next cycle.

AXI_stream design

How does the pipeline operation processing?

Look in the design of RAM, we can receive data in next cycle after the address input. And we use a flipflop to save data output, multiplication result(m[i] = h[i] * x[t-i]), sigma result (y[t] = $\sum m[i]$), and then finally output answer.

Pipeline operation

• Screen dump

o Resources usage

Site Type		Used l	Fixed	+ Prohibite	+ ed	Available	-++ Util%
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Register as Latc F7 Muxes F8 Muxes		175 175 0 201 201 0 0	0 0 0 0 0 0 0 0 0	 	0 0 0 0 0 0 0 0 0 0	53200 53200 17400 106400 106400 106400 26600 13300	0.33 0.00 0.19 0.19 0.00
Site Type	Used	Fixe	d Pro	ohibited	ΙΑν	ailable	Util%
Block RAM Tile RAMB36/FIFO* RAMB18	0 0	 	0 0 0	0 0 0	+ 	140 140 140 280	0.00 0.00 0.00

o Timing report

Design Timin	g Summary					
WNS(ns)	TNS(ns)	TNS Failing Endpoints	TNS Total	Endpoints	WHS(ns)	THS(ns)
0.168	0 000	0		473	0.142	0 000

Timing summary

Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
	IBUF (Prop_ibuf_I_0) net (fo=1, unplaced) BUFG (Prop_bufg_I_0) net (fo=201, unplaced) FDPE	0.000 0.000 0.972 0.800 0.101 0.584	0.000 r 0.000 0.972 r 1.771 1.872 r 2.456 r	axis_clk (IN) axis_clk axis_clk_IBUF_inst/0 axis_clk_IBUF axis_clk_IBUF_BUFG_inst/0 axis_clk_IBUF_BUFG cnt_y_reg[0]/C
	LUT6 (Prop_lut6_12_0) net (fo=5, unplaced) LUT6 (Prop_lut6_13_0) net (fo=1, unplaced) LUT6 (Prop_lut6_15_0) net (fo=1, unplaced)	0.124 0.477 0.124 0.449 0.124	4.738 r 5.215 5.339 r 5.788 5.912 r 5.912 6.292 r 7.238 7.362 r 8.162 10.797 r	<pre>cnt_y_reg[0]/Q cnt_y[0] sm_tvalid_OBUF_inst_i_1/0 sm_tvalid_OBUF tlast_cnt[0] i 2/0</pre>
	(clock FIR_clk rise edge) clock pessimism clock uncertainty output delay	0.000 -0.035 1.000	10.000 9.965 10.965	
	required time arrival time slack		10.965 -10.797	

Slack

o Simulation waveform

Coefficient read back

Data in stream in and data out stream out

RAM access control

FSM

Clock cycles from ap_start to ap_done:

$$\frac{done\ timing-start\ timing}{clock\ period} = \frac{66625ns-595ns}{10ns} = 6603cycls$$

• 遲交原因:自己的時間管理不當,加上清大停電導致工作站無法使用,影響 其他科目像是類比設計與分析與積體電路設計導論的進度,進而影響 SOC 的 進度。還有即將完成時,電腦當機送修一個禮拜,由於檔案上外上傳,於是 借了朋友的電腦重做了一次,導致無法預期完成,相當抱歉。