Plots-all plots are available on github.

Part 1 Dirchlet Boundary Conditions

Part 2 Neumann Boundary Conditions

Part 1 Dirchlet Boundary Conditions

Part 2 Neumann Boundary Conditions

Some Table Values-More table values are available on github in an excel file.

Dirchlet, k=1

N=10				
X	0.0909091	0.181818	0.272727	0.363636
u_appx	0.8467099746	0.7086820151	0.5847753946	0.4739660914
u_exact	0.8466702864	0.7086128245	0.5846858575	0.4738644899
N=20) I.e.	
Х	0.047619	0.0952381	0.142857	0.190476
u_appx	0.9177110594	0.83977067	0.7660020962	0.6962380623
u_exact	0.9177049832	0.8397593255	0.765986246	0.6962184273
N=320				
X	0.00311526	0.00623053		***************************************
u_appx	0.9944796278	0.9889786118		***************************************
u_exact	0.994479626	0.9889786082		
N=640				
X	0.00156006	0.00312012	0.00468019	0.00624025
u_appx	0.9972330843	0.9944710295	0.9917138288	0.9889614755
u_exact	0.9972330841	0.994471029	0.9917138281	0.9889614746
b'	(C) 7/E			

Dirchlet, k=10

N=10			
x	0.0909091	0.181818	0.272727
u_appx	0.4087717783	0.1636359354	0.06200086556
u_exact	0.3969201644	0.153946528	0.05605825804
N=20			
X	0.047619	0.0952381	0.142857
u_appx	0.6201160523	0.3831155633	0.2352569253
u_exact	0.617357056	0.3796805169	0.2320493242
N=2560			
X	0.000390472	0.000780945	***************************************
u_appx	0.9960639237	0.9921431868	
u_exact	0.9960639212	0.9921431818	
N=5120			
X	0.000195274	0.000390549	0.000585823
u_appx	0.9980296555	0.9960631547	0.9941004903
u_exact	0.9980296551	0.9960631541	0.9941004894

Neumann, k=1

N=10				
x	0	0.0909091	0.181818	0.272727
u_appx	-1.11244015	-1.021995688	-0.9317330079	-0.8409061382
u_exact	-1.113539882	-1.022975017	-0.9326001582	-0.8416678925
N=20				
х	0	0.047619	0.0952381	0.142857
u_appx	-1.11323782	-1.06574716	-1.018405587	-0.9711057493
u_exact	-1.113539882	-1.06603159	-1.018673058	-0.9713568766
N=1280		25		
Х	0	0.00078064		
u_appx	-1.113539801	-1.112759196		
u_exact	-1.113539882	-1.112759277		
N=2560		27		
х	0	0.000390472	0.000780945	0.00117142
u_appx	-1.113539862	-1.113149398	-1.112758952	-1.112368523
u exact	-1.113539882	-1.113149418	-1.112758972	-1.112368543

Neumann, k=10

N=10				
x	0	0.0909091	0.181818	
u_appx	-0.1010354019	-0.0477442456	-0.02564668076	-(
u_exact	-0.1099990916	-0.05028772179	-0.02622918919	-(
N=20				
X	0	0.047619	0.0952381	
u_appx	-0.1072796253	-0.0706900137	-0.04786230993	-(
u_exact	-0.1099990916	-0.0721135024	-0.0485807782	-(
N=640				
X	0	0.00156006		
u_appx	-0.1099960494	-0.1084481555		-
u_exact	-0.1099990916	-0.108451135		
N=1280				
X	0	0.00078064	0.00156128	
u_appx	-0.1099983298	-0.1092207366	-0.10844919	
u exact	-0.1099990916	-0.1092214905	-0.108449936	

Ipython Console Output

runfile('C:/Users/johna/Desktop/FALL 2020/SCI COMP/HW4 Comp/Anderson_John_HW_4_Computational.py', wdir='C:/Users/johna/Desktop/FALL 2020/SCI COMP/HW4 Comp')

For k = 1

Part 1. Dirchlet Boundary Conditions

320 grid points needed

Doubling the grid points would result in less than 0.001 difference between u values for the closest grid points

Log2(Error N/Error 2N) = 2.0

Part 2. Neumann Boundary Conditions

1280 grid points needed

Doubling the grid points would result in less than 0.001 difference between u values for the closest grid points

Log2(Error N/Error 2N) = 2.02

For k = 10

Part 1. Dirchlet Boundary Conditions

2560 grid points needed

Doubling the grid points would result in less than 1e-05 difference between u values for the closest grid points

Log2(Error N/Error 2N) = 2.0

Part 2. Neumann Boundary Conditions

640 grid points needed

Doubling the grid points would result in less than 1e-05 difference between u values for the closest grid points

```
Log2(Error_N/Error_2N) = 2.0
```

Python Code

```
# -*- coding: utf-8 -*-
Created on Fri Oct 9 14:07:44 2020
@author: johna
#https://github.com/jeander5/MECE 6397 HW4 Computational
# MECE 6397, SciComp, Problem 4, Computational
#Solve the Helmholtz's equation for 1. Dirchlet. 2. Neumann
#imports
from math import sinh as sinh
from math import cosh as cosh
from math import log2 as log2
import numpy as np
import matplotlib.pyplot as plt
#Constants given in problem statement, constant for both boundary conditions
#Interval length, u(x=0) for Dirchlet, v is constant for the Neumann, A is exact solution of f(x)
L = 1
U 0 = 1
v = 1
A = 1
K = [1, 10]
#The N INITIAL value must be greater than 2
#N is defined in the for loop and changes during the grid convergence study
N INITIAL = 10
#Helmholtz Thomas Algorithm Function, for Dirchlet part 1
def thomas alg one(N, h, lamda, U 0, A):
  """returns exact u values for the function from Part 1"""
#inputs are N, lamda, U 0=u(x=0), and for this problem A.
#Pre Thomas Algorithm set up. for this problem these values are all constant
  a = -(2-lamda*h**2)
  b = 1
  c = 1
```

```
#Right hand side, the f*h**2 from the pseudocode
  rhs = A*h**2
  alpha = [0]*N
  g = [0]*N
  u appx = [0]*N
#Following the pseudocode
#Zeroth element of this list corresponds to the first subscript in Thomas Algorithm
  alpha[0] = a
  g[0] = rhs-U 0
  for i in range(1, N):
     alpha[j] = a-(b/alpha[j-1])*c
     g[j] = rhs-(b/alpha[j-1])*g[j-1]
  u appx[N-1] = g[N-1]/alpha[N-1]
  for j in range(1, N):
     u_appx[-1-j] = (g[-1-j]-c*u_appx[-j])/alpha[-1-j]
  return u appx
#Helmholtz Thomas Algorithm Function, for Neumann part 2
def thomas alg two(N, h, lamda, v, A):
  """returns approximate u values for the function from Part 2"""
#Pre Thomas Algorithm set up.
#I now need to make N one point larger to incorporate the ghost node method for
\#u(x=0) which is unknown. But I am still keeping h the same
  N = N+1
#These values are constant but the c's are not
  a = -(2-lamda*h**2)
  b = 1
#I now need c to be a list because they are now not all the same
#Or I could use some conditinal statements but I wanna still follow the
#Pseudocode for the algorithm closely
  c = [1]*N
  c[0] = 2
#This line is added because of the ghost node method
#Right hand side, initial equation
  rhs = A*h**2
  alpha = [0]*N
  g = [0]*N
  u appx = [0]*N
#Following the psuedo code
#Zeroth element of this list does in fact correspond to subscript zero in Thomas Algorithm
```

```
#Because of the ghost node method
  alpha[0] = a
  g[0] = rhs + 2*h*v
  for i in range(1, N):
     alpha[j] = a-(b/alpha[j-1])*c[j-1]
     g[j] = rhs-(b/alpha[j-1])*g[j-1]
  u \operatorname{appx}[N-1] = g[N-1]/\operatorname{alpha}[N-1]
  for j in range(1, N):
     u appx[-1-i] = (g[-1-i]-c[-1-i]*u appx[-i])/alpha[-1-i]
  return u appx
#u exact function, for the Helmhotlz Dirchlet part 1 problem
def u exact func(k, L, x, A, U 0):
  """returns exact u values for the function from Part1"""
  func vals = [((\sinh(k^*(L-x))+\sinh(k^*x))/\sinh(k^*L)-1)^*A/k^{**}2+
           U 0*\sinh(k*(L-x))/\sinh(k*L) for x in x[1:-1]]
\#x[1:-1] I dont need u(x=0) or u(x=L) because they are given
  return func vals
#u exact function, for the Helmhotlz Neumann Part 2 problem
def u exact func2(k, L, x, A, v):
  """returns exact u values for the function from Part 2"""
  func vals = [((\cosh(k*x)/\cosh(k*L))-1)*(A/k**2)]
           -(v/k)*(sinh(k*(L-x))/cosh(k*L)) for x in x[0:-1]]
\#x[0:-1] I dont need u(x=L) because it is given
  return func vals
#Pre-loop Plot formatting
#Turning on grid, and setting up subplots, titles, and labels.=
#Legends are defined inside the for loop
plt.rcParams['axes.grid'] = True
fig1, (ax1, ax2) = plt.subplots(2)
fig1.suptitle('Part 1 Dirchlet Boundary Conditions')
fig2, (ax3, ax4) = plt.subplots(2)
fig2.suptitle('Part 2 Neumann Boundary Conditions')
ax1.title.set text('k = \%s'\%(K[0]))
ax1.set xlabel('x')
ax1.set ylabel('u(x)')
ax2.title.set text('k = \%s'\%(K[1]))
ax2.set xlabel('x')
```

```
ax2.set ylabel('u(x)')
ax3.title.set text('k = \%s'\%(K[0]))
ax3.set xlabel('x')
ax3.set ylabel('u(x)')
ax4.title.set text('k = \%s'\%(K[1]))
ax4.set xlabel('x')
ax4.set ylabel('u(x)')
#Changing this number right here changes my results!
#Note! Very Important!
#Difference between N and 2N approximation
CLOSE ENOUGH = 1*10**-3
#This is really the number the controls the grid convergence study
#As in "how close is close enough?"
#Outer for loop for the different k values
LEN K = len(K)
for n in range(LEN K):
  k = K[n]
  print('\nFor k = \%s \n'\%(k))
#Using a different value here for k=10
  if n == 1:
     CLOSE ENOUGH = 1*10**-5
#Note: lamda in the Helmholtz equation is defined here
  lamda = -k**2
#Part 1, Dirchlet
  print('Part 1. Dirchlet Boundary Conditions \n')
#Grid Convergence Study
#Resetting the N value. Needs to come before both grid convergence studies
  N = N INITIAL
#I am using the Flag so I dont have to call the function before and inside the while statement
  Flag = 0
  while Flag == 0:
#Comparing values near the middle of the interval
     check val = round(N/2)
```

```
#Calling the functions
            h = L/(N+1)
            u appx = thomas alg one(N, h, lamda, U 0, A)
            N2 = 2*N
            h2 = L/(N2+1)
            u appx next = thomas alg one(N2, h2, lamda, U 0, A)
#I still need to be comparing u values for the closest x points, hence 2*check val+1
            if abs(u appx[check val]-u appx next[2*check val+1]) < CLOSE ENOUGH:
                  Flag = 1
                  print('%s grid points needed' %(N))
                  print('Doubling the grid points would result in less than %s'
                           'difference between u values for the closest grid points \n'
                           %(CLOSE ENOUGH))
            else:
                  N = N + N
#ls for legend string. This is here so I dont need to store this N and N2 value.
#I am storing the string instead
            ls1 = ('Approximate values with %s grid points'%(N))
            ls2 = ('Approximate values with %s grid points'%(N2))
#Note: here are the exact value function calls. x values are also defined here
      x1 = \text{np.linspace}(0, L, N+2)
      u = xact = u = xact =
      x2 = np.linspace(0, L, N2+2)
      u exact next = u exact func(k, L, x2, A, U_0)
#formal order of accuracy, fooa
#Finding max absolute error, this method proved to be faster than others
      stored val = (u \text{ appx}[0]-u \text{ exact}[0])
      for i in range(1, N):
            next val = u appx[j]-u exact[j]
            if next val > stored val:
                  stored val = next val
      stored val2 = (u \text{ appx}[0]-u \text{ exact}[0])
      for j in range(1, N*2):
            next val2 = u appx next[i]-u exact next[i]
            if next val2 > stored val2:
                  stored val2 = next val2
```

```
fooa1 = round(log2(stored val/stored val2), 2)
  print('Log2(Error N/Error 2N) = \%s'\%(fooa1))
#Part 2, Neumann
  print('\nPart 2. Neumann Boundary Conditions \n')
#Grid Convergence Study
  N = N INITIAL
  Flag = 0
  while Flag == 0:
#Comparing values near the middle
     check val = round(N/2)
#Calling the functions
    h3 = L/(N+1)
    u2 \text{ appx} = \text{thomas alg two}(N, h3, lamda, v, A)
    N2 = 2*N
    h4 = L/(N2+1)
     u2 appx next = thomas alg two(N2, h4, lamda, v, A)
# I still need to be comparing u values for the closest x points, hence 2*check val+1
    if abs(u2 appx[check val]-u2 appx next[2*check val+1]) < CLOSE ENOUGH:
       Flag = 1
       print('%s grid points needed' %(N))
       print('Doubling the grid points would result in less than %s'
           'difference between u values for the closest grid points \n'
           %(CLOSE ENOUGH))
     else:
       N = N + N
#Note: here are the exact value function calls. x values are also defined here
  x3 = \text{np.linspace}(0, L, N+2)
  u2 \text{ exact} = u \text{ exact func2}(k, L, x3, A, v)
  x4 = np.linspace(0, L, N2+2)
  u2 exact next = u exact func2(k, L, x4, A, U 0)
#formal order of accuracy, fooa
#Finding max absolute error, this method proved to be faster than others
```

```
stored val3 = (u2 \text{ appx}[0]-u2 \text{ exact}[0])
  for i in range(1, N):
     next val3 = u2 \operatorname{appx}[i]-u2 \operatorname{exact}[i]
     if next val3 > stored val3:
        stored val3 = next val3
  stored val4 = (u2 \text{ appx } next[0]-u2 \text{ exact } next[0])
  for j in range(1, N*2):
     next val4 = u2 appx next[i]-u2 exact next[i]
     if next val4 > stored val4:
        stored val4 = next val4
  fooa2 = round(log2(stored val3/stored val4), 2)
  print('Log2(Error N/Error 2N) = \%s'\%(fooa2))
#Plotting, inside the for loop still
\#k==1 plots
  if n == 1:
     ax1.plot(x2[1:-1], u exact next, 'k')
     ax1.plot(x1[1:-1], u appx, '-.r')
     ax1.plot(x2[1:-1], u appx next, ':b')
     ax1.legend(['Exact values', ls1, ls2])
     ax3.plot(x4[0:-1], u2 exact next, 'k')
     ax3.plot(x3[0:-1], u2 appx, '-.r')
     ax3.plot(x4[0:-1], u2 appx next, ':b')
     ax3.legend(['Exact values', 'Approximate values with %s grid points'%(N),
             'Approximate values with %s grid points'%(N2)])
\#k==10 \text{ plots}
  else:
     ax2.plot(x2[1:-1], u exact next, 'k')
     ax2.plot(x1[1:-1], u appx, '-.r')
     ax2.plot(x2[1:-1], u appx next, ':b')
     ax2.legend(['Exact values', ls1, ls2])
     ax4.plot(x4[0:-1], u2 exact next, 'k')
     ax4.plot(x3[0:-1], u2 appx, '-.r')
     ax4.plot(x4[0:-1], u2 appx next, ':b')
     ax4.legend(['Exact values', 'Approximate values with %s grid points'%(N),
             'Approximate values with %s grid points'%(N2)])
```