UNIVERSIDADE FEDERAL DE CAMPINA GRANDE (UFCG) **ALUNO**: ALYSSON MACHADO DE OLIVEIRA BARBOSA

MATRÍCULA: 119110236

DISCIPLINA: INSTRUMENTAÇÃO ELETRÔNICA

PROFESSOR: JAIDILSON JÓ DA SILVA

EXPERIMENTO 1: MEDIÇÃO DE INCLINAÇÃO

1. Introdução

O Experimento 1 tem como objetivo caracterizar o acelerômetro ADXL202 através de seu modelo matemático, utilizando o LabVIEW para a aquisição de dados. O experimento envolve a medição da tensão referente a um nível de inclinação, variando a inclinação da placa de -90° a 90°. Os dados coletados são usados para construir um gráfico do ângulo de inclinação versus a tensão de saída do acelerômetro e para comparar com os valores obtidos na simulação. A plataforma experimental é composta pelo sensor ADXL202, uma base metálica com transferidor, e um circuito de condicionamento de sinal.

2. Descrição Sobre o Sensor Utilizado

O sensor utilizado no experimento foi o acelerômetro ADXL202, um dispositivo baseado em tecnologia MEMS (Micro-Electro-Mechanical Systems) capaz de medir acelerações em dois eixos (X e Y). Ele fornece uma saída em tensão proporcional à inclinação do sensor em relação à gravidade, permitindo a medição precisa de ângulos de inclinação. O ADXL202 é amplamente utilizado em aplicações que envolvem detecção de movimento, estabilização e controle de orientação. No experimento, o sensor foi fixado em uma base metálica com um transferidor para referência angular, e os sinais de saída foram adquiridos e analisados utilizando o software LabVIEW.

3. Aplicações com o Sensor

Os acelerômetros como o ADXL202 possuem uma ampla gama de aplicações em diversos setores da indústria e pesquisa. Na área de eletrônica embarcada, esses sensores são utilizados para detecção de inclinação e movimentação, sendo essenciais em dispositivos como smartphones, controles remotos e joysticks, onde permitem a rotação automática de telas e a interação baseada em gestos. Além disso, encontram aplicação em sistemas de estabilização de imagens em câmeras e drones, garantindo maior precisão na captura de fotos e vídeos ao minimizar os efeitos de tremores e oscilações.

Figura 1 - Diagrama ilustrativo de um acelerômetro.

Na engenharia e na automação, o ADXL202 é empregado em sistemas de monitoramento estrutural, ajudando na detecção de vibrações e desalinhamentos em pontes, edifícios e máquinas industriais. No setor automotivo, é utilizado em sistemas de segurança, como airbags e controle de estabilidade, onde mede a desaceleração do veículo em situações de emergência. Também tem grande relevância em aplicações biomédicas, sendo incorporado a próteses inteligentes e dispositivos de reabilitação, auxiliando no monitoramento do movimento de pacientes e no desenvolvimento de tecnologias assistivas para pessoas com deficiência.

Figura 2 - aplicações de acelerômetro em dispositivos móveis.

4. Descrição do Experimento

O experimento realizado teve como objetivo caracterizar o acelerômetro ADXL202 por meio da medição da inclinação em diferentes ângulos e da análise da relação entre a saída de tensão do sensor e a variação angular. Para isso, o acelerômetro foi fixado em uma base metálica equipada com um transferidor de 180°, permitindo o controle preciso da inclinação. A aquisição dos dados foi feita utilizando um voltímetro ou uma interface desenvolvida no LabVIEW, onde os valores de tensão correspondentes a cada ângulo foram registrados para posterior análise. A partir dessas medições, foi possível construir um gráfico representando a relação entre a inclinação e a saída do sensor, possibilitando a validação de seu modelo matemático e sua aplicação na determinação de ângulos de inclinação com base nas leituras de tensão.

Ângulo (°)	Tensão (V)		Ângulo (°)	Tensão (V)	
	х	Υ		Х	Y
-90	-1.5385	1.4596	05	0.0043	-0.1877
-85	-1.5348	1.4563	10	0.1476	-0.3248
-80	-1.5184	1.4459	15	0.2727	-0.4438
-75	-1.4903	1.4169	20	0.4113	-0.5792
-70	-1.4481	1.3761	25	0.5433	-0.6988
-65	-1.3969	1.3283	30	0.6651	-0.8179
-60	-1.3390	1.2742	35	0.7965	-0.9371
-55	-1.2616	1.2002	40	0.9028	-1.0536
-50	-1.1851	1.1128	45	1.0074	-1.1631
-45	-1.0848	1.0248	50	1.1079	-1.2541
-40	-1.0369	0.9317	55	1.2032	-1.3310
-35	-0.8924	0.8293	60	1.2904	-1.4115
-30	-0.9023	0.7154	65	1.3523	-1.4762
-25	-0.7880	0.5992	70	1.4245	-1.5329
-20	-0.6348	0.4726	75	1.5176	-1.5781
-15	-0.5340	0.3448	80	1.5604	-1.6147
-10	-0.3893	0.2151	85	1.5662	-1.6354
-05	-0.2750	0.0805	90	1.5758	-1.6408
0	-0.0257	-0.0528			

Tabela 1 - Dados obtidos do experimento.

5. Modelo Matemático

Para iniciar a análise, vamos primeiramente plotar as duas curvas do Ângulo de inclinação vs os eixos X e Y, respectivamente (em anexo, os códigos serão disponibilizados em um repositório público).

Figura 3 - Variação da inclinação do Ângulo vs Eixo X.

Figura 4 - Variação da inclinação do Ângulo vs Eixo Y.

Primeiramente, vamos realizar uma aproximação por regressão polinomial, na qual podemos descrever matematicamente as curvas para o eixo X e Y representando pelas equações (1) e (2), respectivamente.

Equação do modelo (Eixo X):

$$y = -0.1062 + 0.0259 * x^1 + 0.0000 * x^2 + -0.0000 * x^3$$
 (1)

Equação do modelo (Eixo Y):

$$y = -0.0514 + -0.0266 * x^1 + -0.0000 * x^2 + 0.0000 * x^3$$
 (2)

Figura 5 - Aproximação polinomial para o eixo X.

Figura 5 - Aproximação polinomial para o eixo Y.

Analisando mais a fundo o comportamento gráfico, podemos fazer uma aproximação utilizando uma equação de uma senóide para representar o comportamento desse modelo. Seguindo um padrão:

Tensão(
$$\theta$$
) = A * sin($\omega\theta$ + ϕ) + Offset

Onde:

- A é a amplitude.
- ω é a frequência angular.
- θ é o ângulo de inclinação.
- φ é a fase.
- Offset é o deslocamento vertical.

Segue os parâmetros respectivos para montagem do modelo com comportamento senoidal para os eixos X e Y, respectivamente.

Parâmetros ajustados para o Eixo X:

• Amplitude (A_x): 1.5754

• Frequência Angular (omega x): 0.9559

Fase (phi_x): -0.1044

• Offset (offset x): 0.0543

Parâmetros ajustados para o Eixo Y:

• Amplitude (A_y): 1.5547

• Frequência Angular (omega_y): -0.9915

• Fase (phi y): 0.0268

Offset (offset y): -0.0923

Figura 6 - Aproximação senoidal para o eixo X.

Figura 7 - Aproximação senoidal para o eixo Y.

6. Conclusão

Com a realização do experimento, foi possível caracterizar o comportamento do acelerômetro ADXL202 na medição de inclinação, validando a relação entre a saída de tensão e os ângulos medidos. A partir da coleta e análise dos dados, observou-se que o sensor fornece respostas consistentes dentro da faixa de operação, permitindo sua utilização em aplicações que demandam monitoramento de inclinação com precisão. Além disso, a integração do LabVIEW facilitou a aquisição e visualização dos resultados, demonstrando a importância de ferramentas computacionais no processamento de sinais de sensores. Dessa forma, o experimento reforçou o entendimento sobre o funcionamento de acelerômetros e sua aplicabilidade em diversas áreas, como eletrônica embarcada, automação e monitoramento estrutural.

Códigos de Referência [GitHub]