

5

記号の簡単化

■記号の簡単化のため次のように表記する(以下,全てのネットワークでこのように表記する)

$$x_{n+1}=1, \ w_{n+1}=-\theta$$
とすると. . . .
$$\sum_{j=1}^n w_j x_j - \theta = \sum_{j=1}^{n+1} w_j x_j \qquad \qquad \text{S層} \qquad \text{R層}$$
 R層
$$x = (x_1, \cdots, x_n, 1)$$

$$w = (w_1, \cdots, w_n, -\theta)$$
 と表すと
$$0ut = \begin{cases} 1 & (x \cdot w \geq 0) \\ 0 & (x \cdot w < 0) \end{cases}$$
と書ける

(x・wはxとwの内積) 9/6/2023

単純パーセプトロンの学習

S-A層間は学習する要素がない

⇒A-R層間のみを学習

S層 A層 R層 $\frac{S_1}{D}$ $\frac{C_{11}}{D}$ $\frac{W_1}{D}$ $\frac{S_2}{D}$ $\frac{S_2}{D}$

単純パーセプトロンの学習アルゴリズム(1) 1. 入力パターンベクトル $s_p = (s_{p1}, \cdots, s_{pm})$ と教師信号 t_p $(p=1,\cdots,P)$ の組を用意する. (P は学習用データ数) 2. 結合荷重 $\mathbf{w} = (w_1, \cdots, w_n, w_{n+1})$ の初期値をランダムに小さな値に設定する. さらに学習率 η $(0 < \eta \le 1)$ を設定する.

9

単純パーセプトロンの学習アルゴリズム(2)

3. 学習用データから一つの入力ベクトル $s_p = (s_{p1}, \dots, s_{pm})$ を選び, s_p に対するA層の各 ノードの出力 x_{pj} を次の式で計算する.

4. x_v からR層の出力 Out_v を次の式で計算する.

$$Out_p = \begin{cases} 1 & (\mathbf{w} \cdot \mathbf{x}_p \ge 0) \\ 0 & (\mathbf{w} \cdot \mathbf{x}_p < 0) \end{cases}$$

9/6/2023

10

単純パーセプトロンの学習アルゴリズム(3)

5. Out_p と t_p を用いて次の式で w を更新する.

$$\mathbf{w} \leftarrow \mathbf{w} + \eta (t_p - Out_p) \mathbf{x}_p$$

(注) $\mathbf{x}_{n+1} = 1$ なので $\mathbf{x}_p \neq \mathbf{0}$

6. 全ての s_p に対して w が変化しなければ終了. そうでなければ $3.\sim 5$. を繰り返す.

9/6/2023

