AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for quantifying a number of identical
2	consecutive digits starting from a fixed position within a string of n digits,
3	comprising:
4	converting the string of n digits into a thermometer code, wherein the
5	thermometer code uses m bits to represent a string of m identical consecutive
6	digits within the string of <i>n</i> digits;
7	wherein converting the string of digits into the thermometer code involves
8	passing the string of digits through [log _m n] layers of m-input AND gates, wherein
9	for the case where m=2, a first layer of AND gates produces thermometer codes
10	for sub-strings of length two, and wherein each consecutive layer produces
11	thermometer codes for sub-strings of length k+1 to 2k by ANDing together
12	thermometer codes for sub-strings of length 1 to k from preceding layers:
13	converting the thermometer code into a one-hot code in which only one bit
14	has a logical one value; and
15	converting the one-hot code into a logarithmic code representing the
16	number of identical consecutive digits.
1	2 (Canceled).
1	3. (Original) The method of claim 1,

2

wherein converting the thermometer code into the one-hot code involves

3	passing the thermometer code through a single layer of two-input comparator
4	gates;
5	wherein a given comparator gate produces a logical one value when a first
6	input of the comparator gate receives a logical one value and a second input
7	receives a logical zero value; and
8	wherein a comparator gate is coupled between each consecutive pair of
9	thermometer code bits, so that only one comparator gate, covering a boundary
10	between consecutive logical ones and consecutive logical zeros, produces a
11	logical one value.
1	4. (Original) The method of claim 1, wherein converting the one-hot code
2	into the logarithmic code involves passing the one-hot code through $\lceil \log_2 n \rceil$ - 1
3	layers of OR gates, wherein a given bit in the logarithmic code is produced by
4	ORing together bits of the one-hot code that cause the given bit in the logarithmic
5	code to be asserted.
1	5. (Original) The method of claim 1, wherein the string of n digits is a
2	string of <i>n</i> binary digits.
1	6. (Original) The method of claim 1, wherein the fixed position in the
1	
2	string of n digits is the beginning of the string, so that the number of leading
3	identical consecutive digits is quantified.
1	7. (Original) The method of claim 6, wherein the number of leading zero
2	values is quantified.
4	rataes is quantitative.

1	8. (Original) The method of claim 7, further comprising using the
2	logarithmic code to normalize a result of a floating-point arithmetic operation.
1	9. (Original) The method of claim 1, further comprising using the
2	logarithmic code to encode or decode a stream of data, wherein the logarithmic
3	code represents a run-length of identical consecutive digits within the stream of
4	data.
1	10. (Original) The method of claim 1, wherein each digit in the string of n
2	digits includes one or more binary digits.
1	11. (Currently amended) An apparatus that quantifies a number of
2	identical consecutive digits starting from a fixed position within a string of n
3	digits, comprising:
4	a thermometer code circuit that converts the string of n digits into a
5	thermometer code, wherein the thermometer code uses m bits to represent a string
6	of m identical consecutive digits within the string of n digits;
7	wherein the thermometer code circuit includes $\lceil \log_m n \rceil$ layers of m-input
8	AND gates, wherein for the case where m=2, a first layer of AND gates produces
9	thermometer codes for sub-strings of length two, and wherein each consecutive
10	layer produces thermometer codes for sub-strings of length k+1 to 2k by ANDing
11	together thermometer codes for sub-strings of length 1 to k from preceding layers;
12	a one-hot code circuit that converts the thermometer code into a one-hot
13	code in which only one bit has a logical one value; and
14	a logarithmic code circuit that converts the one-hot code into a logarithmic
15	code representing the number of identical consecutive digits.

12 (Canceled).

1

1	13. (Original) The apparatus of claim 11,
2	wherein the one-hot-code circuit includes a single layer of two-input
3	comparator gates;
4	wherein a given comparator gate produces a logical one value when a first
5	input of the comparator gate receives a logical one value and a second input
6	receives a logical zero value; and
7	wherein a comparator gate is coupled between each consecutive pair of
8	thermometer code bits, so that only one comparator gate, covering a boundary
9	between consecutive logical ones and consecutive logical zeros, produces a
10	logical one value.
1	14. (Original) The apparatus of claim 11, wherein the logarithmic code
2	circuit includes $\lceil \log_2 n \rceil$ - 1 layers of OR gates, wherein a given bit in the
3	logarithmic code is produced by ORing together bits of the one-hot code that
4	cause the given bit in the logarithmic code to be asserted.
1	15. (Original) The apparatus of claim 11, wherein the string of n digits is a
2	string of <i>n</i> binary digits.
1	16. (Original) The apparatus of claim 11, wherein the fixed position in the
2	string of n digits is the beginning of the string, so that the number of leading
3	identical consecutive digits is quantified.
1	17. (Original) The apparatus of claim 16, wherein the apparatus quantifies
2	the number of leading zero values.

1	18. (Original) The apparatus of claim 17, further comprising a floating-
2	point arithmetic unit that is configured to use the logarithmic code to normalize a
3	result of a floating-point arithmetic operation.
1	19. (Original) The apparatus of claim 11, further comprising an encoder
2	that is configured to use the logarithmic code to encode or decode a stream of
3	data, wherein the logarithmic code represents a run-length of identical consecutive
4	digits within the stream of data.
	20 (Ocioinal) The annuarty of claim 11 whomein each digit in the atting
1	20. (Original) The apparatus of claim 11, wherein each digit in the string
2	of <i>n</i> digits includes one or more binary digits.
1	21. (Currently amended) A computer system including a circuit that
2	quantifies a number of identical consecutive digits, comprising:
3	a processor;
4	a memory;
5	a quantifying circuit that quantifies the number of identical consecutive
6	digits starting from a fixed position within a string of n digits, wherein the
7	quantifying circuit includes,
8	a thermometer code circuit that converts the string of n
9	digits into a thermometer code, wherein the thermometer code uses
0	m bits to represent a string of m identical consecutive digits within
1	the string of n digits,
12	wherein the thermometer code circuit includes $\lceil \log_{m} n \rceil$
13	layers of m-input AND gates, wherein for the case when m=2, a
14	first layer of AND gates produces thermometer codes for sub-
15	strings of length two, and wherein each consecutive layer produces
16	thermometer codes for sub-strings of length $k+1$ to $2k$ by ANDing

17	together thermometer codes for sub-strings of length 1 to k from
18	preceding layers,
19	a one-hot code circuit that converts the thermometer code
20	into a one-hot code in which only one bit has a logical one value,
21	and
22	a logarithmic code circuit that converts the one-hot code
23	into a logarithmic code representing the number of identical
24	consecutive digits.
	22 (O : : D Til
1	22. (Original) The computer system of claim 21, further comprising:
2	a floating-point arithmetic unit of within the processor;
3	wherein the quantifying circuit is located within the floating-point
4	arithmetic unit and is configured to normalize results of floating-point operations.
1	23. (Original) The computer system of claim 21,
2	wherein the computer system includes an encoding circuit for encoding or
3	decoding streams of data; and
4	wherein the quantifying circuit is located within the encoding circuit and is
5	configured to quantify run-lengths of identical consecutive digits for the encoding
6	circuit.