WHAT IS A PHENOMENON?

WHATISA PHENOMENON?

A lightning strike

WHATISA PHENOMENON?

A Country

WHATISA PHENOMENON?

A Coastline

WHATISAPHENOMENON?

A dog on a kayak!

Anything and everything are phenomena!

Discrete Objects: Distinct boundaries

Continuous Fields: Lack Distinct boundaries

Discrete Objects: Distinct boundaries

- -Dimensions can be exactly measured
- -Countable

Continuous Fields: Lack Distinct boundaries

- -Everywhere has a value
- -Infinitely divisible

Whether a phenomenon is **discrete** or **continuous** depends on our *perspective* and the *scale* of our analysis. Many phenomenon are a bit of both.

LIGHTNING

- A **strike** is a discrete object
- A lighting bolt ...?

LIGHTNING

- A **strike** is a discrete object
- A lighting bolt ...?
- Strike **frequency** is a continuous field

COASTLINE

• Continuous field at **large** scale

COASTLINE

- Continuous field at **large** scale
- Discrete object at **small scale**

COASTLINE

- Continuous field at **large** scale
- Discrete object at **small scale**
- Unless you change the <u>time</u> <u>scale</u>

That said, it is a helpful framework as long as we recognize the discrete vs. continuous dichotomy is not a perfect classification.

DISCRETE OBJECTS

Buildings

- Concrete Boundaries
- Countable
- Real Physical Object

DISCRETE OBJECTS

Political Boundaries

- Distinct Boundaries
- Countable
- Not a Physical Object

CONTINUOUS FIELDS

Elevation

- Everywhere on Earth
- No "number of elevations"
- A physical property

CONTINUOUS FIELDS

Density of tweets

- Everywhere has this too
- Derived from something countable
- Not a physical property

WORKING TOGETHER

In Module 1, you used discrete data (deaths) to calculate a continuous field (Kernel Density).

WORKING TOGETHER

In this Module: You sample a continuous field (NDVI) with discrete objects (census units).

