波士頓房價預測

金塊隊

406170267 資數四 胡嘉芮 406170279 資數四 王芷涵

流程表

探索數據

- 1. 安裝套件, 抓取資料, 了解資料統計量有哪些?
- 2. 整理dataframe數據集, 透過相關 係數探討房價與變數的相關性 (r>0.5)
- 3. 分出訓練與驗證數據,檢查遺失值

可視化

- 1. 列出房價統計量,分類連續跟非連續
- 2. 畫出散佈圖或盒鬚圖
- 3. 透過圖了解房價與各房子 特徵的關係

特徵工程

- 1. 建立回歸模型,找出閾值
- 2. 將特徵進行標準化, 使執行結果更準確
- 3. 作特徵篩選,將係數與閾 值(True:大於閾值影響大)
- 4. 用圖表呈現出特徵重要性 的排序

流程表

拆分數據

- 前幾項重要性高的特徵, 建立新的分析數據集(7 項)
- 2. 使用決策樹進行拆分工程

建立模型

- 1. 利用新數據計算 r2_train,r2_test 及 r2_adj
- 2. 建立七項變數的迴歸模型
- 3. 建立 XGB 模型

交互驗證

1. 用 k-fold 和 XGboost 的方式 ,將 train 數據拆分進行驗證

流程表

評估修正模型

殘差圖表

- 1. 透過新數據計算判定係數 R square、R square adj、MSE 來 評估修正模型
- 2. 最後得出用來預測的最佳化回歸 模型

顯示觀測的預測值與觀測的殘差之間的關係。 (觀測的殘差為預測回應值與實際回應值之間的 差異)

探索數據

```
#load data from sklearn datasets
import pandas as pd
from sklearn import datasets
boston = datasets.load boston()
X, y = boston.data, boston.target
print(boston.keys())
X, boston.feature names
dict keys(['data', 'target', 'feature names', 'DESCR', 'filename'])
(array([6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
        4.9800e+001,
        [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
         9.1400e+001.
        [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
        4.0300e+00],
        . . . ,
        [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        5.6400e+00],
        [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
         6.4800e+00],
        [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
        7.8800e+0011),
 array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
        'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'))
```

抓取波士頓房價的樣本資料,得到影響房價的參考特徵,並整理dataframe

探索數據

```
# 分出訓練 跟 驗證

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.197, random_state=1)

print("number of test samples :", X_test.shape[0])
print("number of training samples:",X_train.shape[0])

number of test samples : 100
number of training samples: 406
```

traindata.shape

(406, 14)

用506個樣本去解釋13個房子特徵與房價之間的關係。 其中406是訓練樣本,剩下的100組數據是驗證樣本。

探索數據

```
X_train.isnull( ).sum( )
CRIM
        0
ZN
INDUS
CHAS
NOX
                           檢查遺失值, 觀察是
RM
AGE
                           否有問題資料
DIS
RAD
TAX
PTRATIO
В
LSTAT
dtype: int64
```

房子特徵與每月房價相關性

	CRIM	ZN	INDUS	CHAS	NOX	RM	
MEDVprice	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	

	AGE	DIS	RAD	TAX	TRATIO	В	LSTAT
MEDVprice	-0.376955	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.737663

相關係數|r|>0.5表示該特徵與房價的相關程度越大

房子特徵與每月房價相關性

可視化

自用住宅的房價中位數(單位:1,000 美金)與 查理斯河(如果房屋靠近河邊, 則為1;否則 為0)的關係圖。

自用住宅的房價中位數與超過25,000平 方呎的住宅用地所占的比例關係圖。

自用住宅的房價中位數與城鎮的人均犯罪率關係圖。

自用住宅的房價中位數與一氧化氮濃度(以10 ppm 為單位)的關係圖。

自用住宅的房價中位數與某城鎮非零售商業用地的比例(英畝)關係圖。

自用住宅的房價中位數與在1940年之前所建的自用房屋比例關係圖。

自用住宅的房價中位數與每戶住宅平均房間數關係圖。

自用住宅的房價中位數與使用高速公路方便性的指數關係圖。

自用住宅的房價中位數與到波士頓五個中心區域的加權距離關係圖。

自用住宅的房價中位數與城鎮師生比例關係圖。

自用住宅的房價中位數與財產稅率 (單位:10,000 美金)關係圖。

自用住宅的房價中位數與低社經地位的人口比例(低收人口比例)關係圖。

自用住宅的房價中位數與 1000(Bk-0.63)^2, 其中Bk指城鎮中黑 人的比例關係圖。

特徵工程

```
from sklearn.preprocessing import StandardScaler
stdsc = StandardScaler()
X std = stdsc.fit_transform(X_train)
X_test_std = stdsc.fit_transform(X_test)
from sklearn.linear model import LinearRegression
selector = SelectFromModel(estimator=LinearRegression()).fit(X std, y train)
selector.estimator_.coef_
array([-1.01350474, 1.34600685, 0.11557489, 0.57619956, -2.25207327,
      2.13772192, 0.15680574, -3.13809674, 2.62646459, -1.88649713,
      -2.13976217, 0.73920792, -3.90753383])
 將特徵標準化, 避免範圍較大的特徵計算誤差平方距離
 時受到原本特徵尺度的影響,以提高資料的精準度
```

特徵工程

22.47438423645322 [-1.01350474 1.34600685 0.11557489 0.57619956 -2.25207327 2.13772192 0.15680574 -3.13809674 2.62646459 -1.88649713 -2.13976217 0.73920792 -3.90753383]

依照線性迴歸係數,判斷特 徵重要性 將絕對值後的數值用長方圖 表示,並由高到低排列

特徵工程

```
# 畫圖 從高到低 去畫出 特徵重要性
# 使用table 方式進行排序
plt.figure(figsize=(12, 4))
feature_sort = pd.DataFrame( abs(lm.coef_), columns=['score'])
feature_sort['feature'] = feature_names
feature_sort = feature_sort.sort_values(by='score', ascending=False)
# 使用table 方式進行排序
plt.bar(feature_sort['feature'] , feature_sort['score'])
plt.xticks(rotation=-40)
plt.show()
feature_sort
```


	score	feature
12	3.907534	LSTAT
7	3.138097	DIS
8	2.626465	RAD
4	2.252073	NOX
10	2.139762	PTRATIO
5	2.137722	RM
9	1.886497	TAX
1	1.346007	ZN
0	1.013505	CRIM
11	0.739208	В
3	0.576200	CHAS
6	0.156806	AGE
2	0.115575	INDUS

拆分數據

用SelectFromModel選擇特徵 計算每個特徵的coef,將平均訂為閾值進行篩選 將較不重要的特徵去除(小於閾值),能提高模型的解釋力

拆分數據

```
selector.get_support(), boston.feature_names

(array([False, False, False, False, True, True, False, True, True, True, True, False, True]),
array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'))

boston.feature_names[selector.get_support()]
array(['NOX', 'RM', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT'], dtype='<U7')

留下7個篩選結果為True的特徵
```

相較於RFE用疊代的方式進行篩選 , SelectFromModel更簡單直觀, 但也較不可靠

拆分數據

重新定義資料(剩餘7個特徵)

建立模型

對資料所有特徵做回歸模型

建立模型

p=7

```
lm.fit(selector.transform(X_train), y_train) # use train data to create model
r2_train= lm.score(selector.transform(X_train), y_train)
r2_test= lm.score(selector.transform(X_test), y_test)
r2_adj = 1 - ((1 - r2_test) * ((y_test.shape[0] - 1)/(y_test.shape[0] - p-1)))
print(r2 train, r2 test, r2 adi)
0.703109162977364 0.7464748757092425 0.7271849206001633
lm.intercept_ , lm.coef_
(45.6425765715869,
 array([-18.0086473], 3.38104635, -1.08639755, 0.19455093,
         -0.00887728, -1.13665962, -0.58922586]))
```

剩餘七個特徵的回歸模型

交互驗證

在K-fold CV中, 我們在每次疊代後對模型進行評分, 並 計算所有評分的平均值。這樣就可以更好地表示該方法 與只使用一個訓練和驗證集相比,模型的表現是怎樣 的。

```
# k-fold CV (using selected 7 variables)
from sklearn.model selection import cross val score
lm = LinearRegression()
scores = cross_val_score(lm, selector.transform(X_train), y_train, scoring='r2', cv=5)
scores
array([0.74774285, 0.66866317, 0.66579656, 0.63196233, 0.71394953])
# the other way of doing the same thing (more explicit)
from sklearn.model_selection import KFold
# create a KFold object with 5 splits
folds = KFold(n splits = 5, shuffle = True, random state = 100)
scores = cross_val_score(lm, X_train, y_train, scoring='r2', cv=folds)
scores, scores.mean()
(array([0.685874 , 0.73705663, 0.52507792, 0.80110411, 0.71132109]),
0.6920867514736034)
```

K-Fold

得到最後平均分為 0.69, 以及它的95%信賴區間

```
# k-fold CV (using selected 7 variables)
from sklearn.model selection import cross val score
lm = LinearRegression()
scores = cross val_score(lm, selector.transform(X train), y train, scoring='r2', cv=5)
scores
array([0.74774285, 0.66866317, 0.66579656, 0.63196233, 0.71394953])
# the other way of doing the same thing (more explicit)
from sklearn.model selection import KFold
# create a KFold object with 5 splits
folds = KFold(n splits = 5, shuffle = True, random state = 100)
scores = cross_val_score(lm, X train, y train, scoring='r2', cv=folds)
scores, scores.mean()
(array([0.685874 , 0.73705663, 0.52507792, 0.80110411, 0.71132109]),
 0.6920867514736038)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.69 (+/-0.18)
```

XGBoost

比線性模型複雜, 但效能更高

	train-rmse-mean	train-rmse-std	test-rmse-mean	test-rmse-std	26	0.993135	0.090643	3.879844	0.951537
0	17.046801	0.096223	17.159788	0.473955	27	0.962149	0.086815	3.878045	0.946217
1	12.331832	0.068324	12.558894	0.443266	28	0.929707	0.078199	3.874896	0.942713
2	9.004968	0.050496	9.387201	0.542747	29	0.895529	0.084123	3.873548	0.940599
3	6.677148	0.054352	7.334745	0.633012	30	0.873665	0.084904	3.872613	0.943250
4	5.051480	0.038922	5.992695	0.735889	31	0.846827	0.075256	3.870729	0.944514
5	3.925740	0.045741	5.185162	0.819386	32	0.830217	0.073670	3.867038	0.943611
6	3.166202	0.041303	4.688294	0.906837		0.799343	0.065691	3.862166	0.931849
7	2.638451	0.049779	4.405766	0.902513	33				
8	2.284351	0.064361	4.229275	0.957267	34	0.785035	0.067773	3.862822	0.930553
9	2.045978	0.062345	4.137344	0.998519	35	0.763113	0.061503	3.870465	0.930171
10	1.859652	0.059843	4.056482	1.013251	36	0.741708	0.059159	3.869296	0.927247
11	1.733284	0.068948	4.008922	0.997367	37	0.723735	0.058800	3.865906	0.922912
12	1.634825	0.065845	3.984649	1.000362	38	0.703929	0.053401	3.866582	0.915793
13	1.531494	0.073246	3.939119	0.996170	39	0.681665	0.048338	3.870768	0.914173
14	1.456438	0.060329	3.922042	0.994029	40	0.662913	0.049121	3.870494	0.910114
15	1.397617	0.070542	3.913014	0.993313	200	0.646489	0.048591	3.865731	0.911476
16	1.337569	0.068718	3.896540	0.989177	41				
17	1.296587	0.074616	3.891016	0.983825	42	0.631817	0.049539	3.869065	0.912785
18	1.255413	0.081516	3.881532	0.993321	43	0.619386	0.051972	3.870595	0.910304
19	1.220525	0.074765	3.870574	0.980936	44	0.607160	0.054227	3.869764	0.911252
20	1.178313	0.083890	3.880990	0.968491	45	0.586053	0.051267	3.874236	0.908324
21	1.145032	0.086378	3.872632	0.971874	46	0.569952	0.048865	3.870530	0.907625
22	1.111806	0.088689	3.872202	0.974266	47	0.555036	0.051424	3.870704	0.910043
23	1.080893	0.094263	3.879527	0.973883					
24	1.051113	0.088156	3.871909	0.960404	48	0.541221	0.052907	3.871662	0.912995
25	1.019080	0.086842	3.869594	0.957166	49	0.533422	0.051747	3.870832	0.912225

Final MSE test: 49 14.983343

Name: test-rmse-mean, dtype: float64

用test來看出來,到第13層的時候mse的平方根數值就基本固定了

評估修正模型

```
# final muti-linear regression model
new_X_train = X_train[['NOX', 'RM', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT']]
new X test = X test[['NOX', 'RM', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'LSTAT']]
lm = LinearRegression()
# fit the model
lm.fit(new X train, y train) #建立 model
print('intercept =', lm.intercept_ )
print('Coef =', lm.coef )
# Find the R^2
r2 train = lm.score(new_X_train, y_train)
r2 test = lm.score(new X test, y test)
print('The R-square for train is: ', r2 train )
print('The R-square for test is: ', r2 test )
r2_adj = 1 - ((1 - r2_test) * ((y_test.shape[0] - 1)/(y_test.shape[0] - 7-1)))
print('The Adjusted R^2 for test is: ' + str(r2_adj))
#預測
Y hat = lm.predict(new X test)
from sklearn.metrics import mean squared error
print('The mean square error of price and predicted value using multifit is: ', \
      mean squared error(y test, Y hat))
```

- 截距:45.6425
- train 的 R-square: 0.7031
- test 的 R-square: 0.7464
- 調整後test的 R-square: 0.7271
- 使用multifit的價格和預測值的均 方誤差(MSE)為:25.02792

對test data進行預測

```
import sklearn.metrics as sklm
import math
def print metrics(y true, y predicted, n parameters):
    ## First compute R^2 and the adjusted R^2
    r2 = sklm.r2_score(y_true, y_predicted)
    r2\_adj = 1 - ((1 - r2) * ((y\_true.shape[0] - 1)/(y\_true.shape[0] - n\_parameters -1)))
    ## Print the usual metrics and the R^2 values
    print('Mean Square Error = ' + str(sklm.mean squared error(y true, y predicted)))
    print('Root Mean Square Error = ' + str(math.sqrt(sklm.mean squared error(y true, y predicted))))
    print('Mean Absolute Error = ' + str(sklm.mean absolute error(y true, y predicted)))
    print('Median Absolute Error = ' + str(sklm.median absolute error(y true, y predicted)))
    print('R^2 = ' + str(r2))
print('Adjusted R^2 = ' + str(r2_adj))
# prediction for valid data
y hat = xgb mod.predict(X valid3)
print metrics(y valid3, y hat, 12)
Mean Square Error = 1.4108700132548766
```

Mean Square Error = 1.4108700132548766
Root Mean Square Error = 1.1878004938771816
Mean Absolute Error = 0.8647940682201849
Median Absolute Error = 0.6576441764831547
R^2 = 0.9794469184338032
Adjusted R^2 = 0.9758724694657689

使用train拆分出來的20%資料來算出mse...等

對test data進行預測

```
print_metrics(AW_answer.MEDVprice, y_hat_test, 12)
```

```
Mean Square Error = 1.3444889189018034
Root Mean Square Error = 1.1595209868311154
Mean Absolute Error = 0.8063692665100097
Median Absolute Error = 0.5593993186950685
R^2 = 0.9863807434696236
Adjusted R^2 = 0.9845022253275026
```

評估test資料的MSE,R-square...

用test data進行預測

	Unnamed: 0	MEDVprice	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	y_hat_test
0	0	28.2	0.04932	33.0	2.18	0.0	0.472	6.849	70.3	3.1827	7.0	222.0	18.4	396.90	7.53	30.240660
1	1	23.9	0.02543	55.0	3.78	0.0	0.484	6.696	56.4	5.7321	5.0	370.0	17.6	396.90	7.18	24.838207
2	2	16.6	0.22927	0.0	6.91	0.0	0.448	6.030	85.5	5.6894	3.0	233.0	17.9	392.74	18.80	18.287056
3	3	22.0	0.05789	12.5	6.07	0.0	0.409	5.878	21.4	6.4980	4.0	345.0	18.9	396.21	8.10	21.392822
4	4	20.8	3.67822	0.0	18.10	0.0	0.770	5.362	96.2	2.1036	24.0	666.0	20.2	380.79	10.19	19.048323
			***		14.4			44.	***	444						
95	95	18.9	0.11747	12.5	7.87	0.0	0.524	6.009	82.9	6.2267	5.0	311.0	15.2	396.90	13.27	18.895651
96	96	22.4	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67	21.635185
97	97	22.9	0.04203	28.0	15.04	0.0	0.464	6.442	53.6	3.6659	4.0	270.0	18.2	395.01	8.16	23.218956
98	98	44.8	0.31533	0.0	6.20	0.0	0.504	8.266	78.3	2.8944	8.0	307.0	17.4	385.05	4.14	45.837471
99	99	21.7	0.10793	0.0	8.56	0.0	0.520	6.195	54.4	2.7778	5.0	384.0	20.9	393.49	13.00	21.297445

100 rows x 16 columns

標準化殘差散佈圖

預測值與實際值的殘差大多集中在2.5~-2.5之間

```
# Instantiate the XGBRegressor: xg reg
xg_reg = xgb.XGBRegressor(objective = "reg:squarederror"
                          ,n estimators=10
                          , seed = 123
                          , booster="gbtree"
                            , max depth =6
# Fit the regressor to the training set
xg reg.fit(X train, y train)
# Predict the labels of the test set: preds
y train pred = xg reg.predict(X train)
y test pred = xg reg.predict(X test)
# Compute the mse & R2
print('MSE train: %.3f, test: %.3f' % (
        mean squared error(y train, y train pred),
        mean_squared_error(y_test, y_test_pred)))
print('R^2 train: %.3f, test: %.3f' % (
        r2 score(y train, y train pred),
        r2 score(y test, y test pred)))
print(xg reg)
```

MSE train: 2.808, test: 9.084 R^2 train: 0.965, test: 0.908

心得、未來方向