

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester Examination 2023-24

Date of Examination: 18/09/2023	Session:	AN	Duration: 2 Hrs	Full Marks: 50
Subject No. Al61005 Subject: <u>Artificial Intelligence: Foundations and Applications</u>				
Department/Center/School: Centre of Excellence in Artificial Intelligence				
Specific charts, graph paper, log book etc., required			N	0
Special Instructions (if any) : Answer all the parts of a question in same place				

- 1) [5] Given a maximization problem, prove that the tree-search version of A* is optimal, if the heuristic function is admissible.
- 2) [5 + (3+2+5+5)]
 - a) Discuss the key differences between A* search and the 'Depth First Branch and Bound (DFBB)' strategy?
 - b) You are given a set of *n* coins having denominations: c_1 , c_2 , ..., c_n , and you wish to give a change of sum *S* using a minimum number of coins. You need to design a DFBB solution strategy for this problem. [Example: Suppose, you are given four coins having denominations: Re. 1, Rs. 2, Rs. 2 and Rs. 10. To give a change of S = 5, you will need three coins]
 - i) Describe how you can represent a 'state' in this problem.
 - ii) Define the 'start' and 'goal' states.
 - iii) Define your 'state transformation rules' to explore the whole state space.
 - iv) Propose an efficient heuristic in order to prune the state space.
- 3) Prove the following goal (G) from the given premises (F1, F2, F3, F4, F5, F6) using Resolution-Refutation. Show the steps in detail. [6]
 - F1: Anyone who rides Harley is a rough character
 - F2: Every biker rides either Harley or BMW
 - F3: Anyone who rides BMW is a yuppie
 - F4: Every yuppie is a lawyer
 - F5: Any nice girl does not like anyone who is a rough character
 - F6: Mary is a nice girl and John is a biker
 - G: If John is not a lawyer then Mary does not like John
- 4) Convert the following logic formula to CNF. Show step by step computations: [6] $\forall x \ (P(x) \to (\forall y (P(y) \to P(f(x,y))) \land \neg \forall y (Q(x,y) \to P(y))))$
- 5) Write a Prolog program to count the number of times an integer element appears in a list of integers. Explain execution with an example. [5]
- 6) Prove logical equivalence in the following formula using proposition logic without truth table. [3] P↔Q≡(P∧Q)∨(~P∧~Q)
- 7) Convert following sentences in predicate logic [2+2+1]
 - a) At most one Republican candidate can win the election.
 - b) Some boys in the class are taller than all the girls.
 - c) No person is perfect.