Adaboost

Isaac

Overview

- Adative boosting base on three ideas :
 - 1. Aggregation multiple weak learners
 - 2. For each weak learner have different weight
 - 3. Resample
- Advantage
 - Reduce Bias
 - 2. Models for Low Variance & High Bias

Algorithm

Algorithm: Adaboost $(S, D_1, T, Weak)$

Input: $S = \{x_i, y_i\}_{i=1}^m$, D_1 , T, $Weak(\cdot, \cdot)$

Output: $H(\cdot)$

for t = 1 to T do

Obtain a weak hypothesis using D_t .

 $h_t \leftarrow Weak(S, D_t)$.

Select $\alpha_t \in \mathbb{R}$. Usually:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - R_{emp}(h_t, S, D_t)}{R_{emp}(h_t, S, D_t)} \right). \quad (4)$$

Update:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}.$$
 (5)

where Z_t is a normalization factor so that D_{t+1} will be a distribution. end

Return final hypothesis:

$$H(x) = sign \left(\sum_{t=1}^{T} \frac{\alpha_t}{\sum_t \alpha_t} h_t(x) \right).$$
 (6)

Fig. 1: Algoritmo Adaboost.

Example of AdaBoosting

The training data

For example, there is one dimension 10 points, some of show others show the want to use AdaBoosting to classify those 10 points.

Running the algorithm(1)

We start with the following probabilities:

(t means iter)

p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8	p_9
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

t = 1. The best threshold is between 2 and 3.

$$h_1(x) = I(x < 2.5)$$

 $\epsilon_1 = 0.3$
 $\alpha_1 = 0.423649$

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:	у	y	у	у	y	у	n	n	n	У
old p_i	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
pre-normalized p_i	.06547	.06547	.06547	.06547	.06547	.06547	.15	.15	.15	.06547
$Z_1 = 0.916515$										
new p_i	.07143	.07143	.07143	.07143	.07143	.07143	.16667	.16667	.16667	.07143

 $f_1(x) = 0.423649 I(x < 2.5)$

3 mistakes

If x < 2.5 then I = 1 else I = -1And if f(x) > 0 will classify to

else f(x) < 0 will classify to #

Running the algorithm(2)

The training data

t=2

t=2. Now a threshold between 2 and 3 gives error of 0.5, the threshold between 5 and 6 gives 0.28, the threshold between 8 and 9 gives 0.214, best.

$$h_2(x) = I(x < 8.5)$$

 $\epsilon_2 = 0.214$
 $\alpha_2 = 0.6496$

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:	у	y	У	n	n	n	У	У	У	у
pre-normalized p_i $Z_2 = 0.82$.037	.037	.037	.137	.137	.137	.087	.087	.087	.037
new p_i	.045	.045	.045	.167	.167	.167	.106	.106	.106	.045

 $f_2(x) = 0.423649 I(x < 2.5) + 0.6496 I(x < 8.5),$ 3 mistakes

Running the algorithm(3)

t = 3. The best threshold is between 5 and 6.

$$h_3(x) = I(x > 5.5)$$

 $\epsilon_3 = 0.1818$
 $\alpha_3 = 0.7520$

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:	n	n	n	У	У	У	У	У	У	n
pre-normalized p_i $Z_3 = 0.77139$.0964	.0964	.0964	.078	.078	.078	.05	.05	.05	.0964
new p_i	.125	.125	.125	.102	.102	.102	.064	.064	.064	.125

$$f_3(x) = 0.423649 I(x < 2.5) + 0.6496 I(x < 8.5) + 0.752 I(x > 5.5),$$
 0 mistakes

Running the algorithm(4)

For example: we want to decide point 4 is or we need to follow

f₃(x) = 0.423649 * (-1) + 0.6496 * (-1) + 0.752 * 1

= -0.321249

So, point 4 will classify to **

Updating the probabilities:

index:	0	1	2	3	4	5	6	7	8	9
correct:	n	n	n	У	У	У	у	у	у	n
pre-normalized p_i $Z_3 = 0.77139$.0964	.0964	.0964	.078	.078	.078	.05	.05	.05	.0964
new p_i	.125	.125	.125	.102	.102	.102	.064	.064	.064	.125

$$f_3(x) = 0.423649 I(x < 2.5) + 0.6496 I(x < 8.5) + 0.752 I(x > 5.5),$$

Benifit

- Adaboost is a high precise classifier
- 2. We can use many models to build subclassifier
- 3. When using simple classifier the calculated result is easy to understand
- 4. No need to do feature selection
- No need to worry about overfitting

Disadvantages

1. Very sensitive to outlier(means outlier may do big influence)