Package 'sonar'

October 14, 2022

Type Package

Title Fundamental Formulas for Sonar

Version 1.0.2	
Encoding UTF-8	
Description Formulas for calculating sound velocity, water pressure, depth, density, absorption and sonar equations.	
License GPL (>= 3)	
Depends R (>= 2.7.0)	
Author Jose Gama [aut, cre]	
Maintainer Jose Gama <rxprtgama@gmail.com></rxprtgama@gmail.com>	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2016-09-15 15:46:37	
R topics documented:	
AbsorptionAlphaAinslieMcColm	3
AbsorptionAlphaFisherSimmons	4
AbsorptionSoundFreshWaterFrancoisGarrison	5
AbsorptionSoundSeaWaterFrancoisGarrison	6
BandLevelFlatSpectrum	7
BandLevelFromCompleteBand	7
BasicActiveSonarEquation	8
BasicPassiveSonarEquation	9
BasicSonarEquation	10
CavitationThresholdEstimateFunctionOfDepth	10
CavitationThresholdEstimateFunctionOfRadiatedAcousticPowerIntensity	11
	12
CorrectiveTermsPressureFromDepth	12
CutoffFrequencyShallowWater	13
CutoffFrequencyWater	
DepthToPressureLeroyParthiot	15

2

DetectionIndex	16
fuelStabilizer	16
HydrophoneSensitivity	17
InternationalFormulaForGravity	
MaximumRadiatedPowerToAvoidCavitation	
MolecularRelaxationAttenuationCoeficient	
Molecular Relaxation Attenuation Coeficient Approximation	
PeakTS	
PlaneWaveIntensity	
PlaneWavePressure	
PLcylindricalSpreadingLaw	
PLSphericalSpreadingAndAbsorption	
PLsphericalSpreadingLaw	
PowerCylindricalSpreadingLaw	
PowerSphericalSpreadingLaw	
PressureBalticSimplifiedLeroy	
PressureBlackSeaSimplifiedLeroy	28
PressureModifiedSimplifiedLeroy	28
PressureSimplifiedLeroy	29
PressureToDepthLeroyParthiot	
PressureToDepthSaundersFofonoff	
ProjectorSensitivityPower	
ProjectorSensitivityVoltage	
PropagationLoss	
RangeResolutionCHIRP	
RangeResolutionMonotonic	
SLdirectionalProjector	
SLomnidirectionalProjector	
SonarEquation	
SourceLevel	
SourceLevelToAvoidCavitation	
SpeedAlgorithmParameterRanges	
SpeedOfSound	39
SpeedOfSoundAir	
SpeedOfSoundDryAir	
SpeedOfSoundFreshWaterGrossoMader	
SpeedOfSoundHumidAir	
SpeedOfSoundKinslerEtal	43
SpeedOfSoundPureWaterBelogolskiiSekoyanEtal	44
SpeedOfSoundPureWaterBilaniukWong112	45
SpeedOfSoundPureWaterBilaniukWong148	46
	47
SpeedOfSoundPureWaterBilaniukWong36	
SpeedOfSoundPureWaterLubbersandGraaffSEa	48
SpeedOfSoundPureWaterLubbersandGraaffSEb	49
SpeedOfSoundPureWaterMarczak	50
SpeedOfSoundSeaWaterChenAndMillero	51
SpeedOfSoundSeaWaterCoppens	52
SpeedOfSoundSeaWaterDelGrosso	53

72

SpeedOfSoundSeaWaterFryeAndPugh	54
SpeedOfSoundSeaWaterLeroy68	55
SpeedOfSoundSeaWaterLeroy69	56
SpeedOfSoundSeaWaterLeroyEtAl2008	57
SpeedOfSoundSeaWaterLovett1	58
SpeedOfSoundSeaWaterLovett2	58
SpeedOfSoundSeaWaterLovett3	59
SpeedOfSoundSeaWaterMackenzie	50
SpeedOfSoundSeaWaterMedwin	51
SpeedOfSoundSeaWaterSkone	52
SpeedOfSoundSeaWaterWilson	53
TargetStrength	54
TargetStrengthCircularPlateNormal	54
TargetStrengthConvexSurface	55
TargetStrengthCylinderNormal	56
TargetStrengthCylinderThetaToNormal	57
TargetStrengthPlateAnyShape	58
TargetStrengthRectangularPlateNormal	58
TargetStrengthRectangularPlateThetaToNormal	59
TargetStrengthSphere	70
TransmitDirectivityIndex	71

Absorption Alpha Ainslie McColm

Calculation of absorption in sea water from Ainslie and McColm 1998

Description

Returns the absorption in sea water from Ainslie and McColm 1998

Usage

Index

AbsorptionAlphaAinslieMcColm(f, temperatureC, S, D, pH)

Arguments

 $\begin{array}{ll} \mbox{f,} & \mbox{frequency (kHz)} \\ \mbox{temperatureC,} & \mbox{temperature in degrees C} \\ \mbox{S,} & \mbox{salinity in } \% \\ \mbox{D,} & \mbox{depth in meters} \end{array}$

pH, pH

Value

the absorption

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Calculation of absorption of sound in seawater http://resource.npl.co.uk/acoustics/techguides/seaabsorption/

References

Ainslie and McColm 1998 J. Acoust. Soc. Am., Vol. 103, No. 3

Examples

```
AbsorptionAlphaAinslieMcColm(20, 0, 30, 0, 7)
```

AbsorptionAlphaFisherSimmons

Calculation of absorption in sea water from Fisher and Simmons 1977

Description

Returns the absorption in sea water from Fisher and Simmons 1977

Usage

```
AbsorptionAlphaFisherSimmons(f, temperatureC, D)
```

Arguments

f, frequency (kHz)

 $temperature C, \quad temperature \ in \ degrees \ C$

D, depth in meters

Value

the absorption

Author(s)

Jose Gama

Source

Fisher and Simmons, 1977 J. Acoust. Soc. Am., Vol. 62, No. 3, September 1977

Examples

```
AbsorptionAlphaFisherSimmons(20, 0, 1)
```

 $Absorption Sound Fresh Water Franco is {\tt Garrison}$

Calculation of absorption of sound in fresh water From Francois & Garrison 1982

Description

Returns the absorption of sound in fresh water From Francois & Garrison 1982 Total absorption = Pure Water Contrib.

Usage

AbsorptionSoundFreshWaterFrancoisGarrison(SonarFreq, temperatureC, D)

Arguments

```
SonarFreq, sonar frequency (kHz) temperatureC, temperature (degC)
D, depth in meters
```

Value

the absorption of sound

Author(s)

Jose Gama

Source

 $Echoview, 2016 \, Sonar \, calculator \, algorithms \, \texttt{http://support.echoview.com/WebHelp/Reference/Algorithms/Sonar_calculator_algorithms.htm$

References

Francois & Garrison 1982 Sound absorption based on ocean measurements: Part I:Pure water and magnesium sulfate contributions J. Acoust. Soc. Am., Vol. 72, No. 6

Examples

AbsorptionSoundFreshWaterFrancoisGarrison(50, 0, 0)

AbsorptionSoundSeaWaterFrancoisGarrison

Calculation of absorption of sound in sea water From Francois & Garrison 1982

Description

Returns the absorption of sound in sea water From Francois & Garrison 1982 Total absorption = Boric Acid Contrib. + Magnesium Sulphate Contrib. + Pure Water Contrib.

Usage

```
AbsorptionSoundSeaWaterFrancoisGarrison(SonarFreq, temperatureC, Salinity, D, pH)
```

Arguments

```
SonarFreq, sonar frequency (kHz)
temperatureC, temperature (degC)
Salinity, Salinity (ppt)
D, depth in meters
pH, pH
```

Value

the absorption of sound

Author(s)

Jose Gama

Source

NPL, 2016 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/seaabsorption/

References

Francois & Garrison 1982 Sound absorption based on ocean measurements: Part I:Pure water and magnesium sulfate contributions J. Acoust. Soc. Am., Vol. 72, No. 6

Examples

AbsorptionSoundSeaWaterFrancoisGarrison(50, 0, 35, 0, 6)

BandLevelFlatSpectrum

 ${\tt BandLevelFlatSpectrum} \ \ \textit{band level (BL) for flat spectrum}$

Description

Returns the total intensity of the sound in a band for flat spectrum

Usage

```
BandLevelFlatSpectrum(SpL, deltaf)
```

Arguments

SpL spectrum level deltaf band frequency

Value

band level (BL)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 10.

Examples

```
BandLevelFlatSpectrum( 3, 2 )
```

 ${\tt BandLevelFromCompleteBand}$

band level (BL) from complete band

Description

Returns the band level from integrating the intensity over the complete band

Usage

```
BandLevelFromCompleteBand(I0, f1, f2)
```

Arguments

spectrum levellower frequencyupper frequency

Value

band level (BL)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 10.

Examples

```
BandLevelFromCompleteBand( 10000, 40000, 50000 )
```

BasicActiveSonarEquation

basic active sonar equation

Description

Returns the basic active sonar equation SE = (SL + TS - 2 * PL) - N - DT

Usage

```
BasicActiveSonarEquation(SL, TS, PL, N, DT)
```

Arguments

SL is the source level of the target

TS target strength
PL propagation loss

N noise

DT detection threshold

Value

SE signal excess (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 120.

 ${\tt BasicPassiveSonarEquation}$

basic passive sonar equation

Description

Returns the basic passive sonar equation SE = (SL - PL) - N = DT

Usage

BasicPassiveSonarEquation(SL, PL, N)

Arguments

SL is the source level of the target

PL propagation loss

N noise

Value

SE signal excess (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 120.

BasicSonarEquation

basic sonar equation

Description

Returns the basic sonar equation SE = S - N + DT

Usage

```
BasicSonarEquation(S, N, DT)
```

Arguments

S signal N noise

DT detection threshold

Value

SE signal excess (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 120.

 ${\tt CavitationThresholdEstimateFunctionOfDepth}$

Cavitation threshold estimate as a function of depth

Description

Returns the Cavitation threshold estimate as a function of depth line passing by (5, 2) and (50, 50)

Usage

CavitationThresholdEstimateFunctionOfDepth(d)

Arguments

d, depth (meters)

Value

Cavitation threshold

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 6.

Examples

CavitationThresholdEstimateFunctionOfDepth(1)

 $Cavitation Threshold Estimate Function Of Radiated Acoustic Power Intensity \\ Cavitation\ threshold\ estimate\ as\ a\ function\ of\ radiated\ acoustic\ power\ intensity$

Description

Returns the Cavitation threshold estimate as a function of radiated acoustic power intensity line passing by (2, 5) and (50, 50)

Usage

CavitationThresholdEstimateFunctionOfRadiatedAcousticPowerIntensity(Ir)

Arguments

Ir, radiated acoustic power intensity

Value

Cavitation threshold

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 6.

Examples

CavitationThresholdEstimateFunctionOfRadiatedAcousticPowerIntensity (1000)

 ${\tt Corrective Terms Depth From Pressure}$

Corrective terms to be added for obtaining depth from pressure

Description

Corrective terms to be added for obtaining depth (m) from pressure (MPa)

Usage

 ${\tt Corrective Terms Depth From Pressure}$

Format

dataframe with 13 rows and 5 columns:

No Number

Area.of.applicability Area of applicability

Expression.for.deltaf Expression for deltaf

Latitude Latitude in degrees

Accuracy Accuracy

Author(s)

Jose Gama

References

C. C. Leroy and F Parthiot, 1998 Depth-pressure relationship in the oceans and seas. J. Acoust. Soc. Am. 103(3) pp 1346-1352

 ${\tt Corrective Terms Pressure From Depth}$

Corrective terms to be subtracted for obtaining pressure from depth

Description

Corrective terms to be added for obtaining pressure (MPa) from depth (m)

Usage

 ${\tt Corrective Terms Pressure From Depth}$

Format

dataframe with 14 rows and 5 columns:

No Number

Area.of.applicability Area of applicability

Expression.for.deltaf Expression for deltaf

Latitude Latitude in degrees

Accuracy Accuracy

Author(s)

Jose Gama

References

C. C. Leroy and F Parthiot, 1998 Depth-pressure relationship in the oceans and seas. J. Acoust. Soc. Am. 103(3) pp 1346-1352

CutoffFrequencyShallowWater

Calculation of cutoff frequency in shallow water from Jensen et Al 2011

Description

Returns the cutoff frequency in shallow water from Jensen et Al 2011

Usage

```
CutoffFrequencyShallowWater(Cw, Cb, D)
```

Arguments

Cw, velocity of sound in water

Cb, velocity of sound in homogeneous bottom

D, depth in meters

Value

the cutoff frequency (Hz)

Author(s)

Jose Gama

Source

Finn B. Jensen, William A. Kuperman, Michael B. Porter, Henrik Schmidt, 2011 Computational Ocean Acoustics, 2nd Edition. Springer. pp. 29

Examples

```
CutoffFrequencyShallowWater(3000, 2500, 1)
```

CutoffFrequencyWater Calculation of cutoff frequency in water from Jensen et Al 2011

Description

Returns the cutoff frequency in water from Jensen et Al 2011

Usage

```
CutoffFrequencyWater(Cw, D)
```

Arguments

Cw, velocity of sound in water

D, depth in meters of isothermal surface layer

Value

the cutoff frequency (Hz)

Author(s)

Jose Gama

Source

Finn B. Jensen, William A. Kuperman, Michael B. Porter, Henrik Schmidt, 2011 Computational Ocean Acoustics, 2nd Edition. Springer. pp. 26

Examples

```
CutoffFrequencyWater(3000, 1)
```

DepthToPressureLeroyParthiot

Depth To Pressure from Leroy Parthiot 1998

Description

Returns the Depth To Pressure from Leroy Parthiot 1998

Usage

```
DepthToPressureLeroyParthiot(D, latitude, CorrectiveTerm = NA)
```

Arguments

D, depth in meters

latitude, latitude in degrees

CorrectiveTerm,

optional corrective term

Value

the Pressure

Author(s)

Jose Gama

Source

C. C. Leroy and F Parthiot, 1998 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/soundseawater/

References

C. C. Leroy and F Parthiot, 1998 Depth-pressure relationship in the oceans and seas (1998) J. Acoust. Soc. Am. 103(3) pp 1346-1352

Examples

DepthToPressureLeroyParthiot(0, 0)

16 fuelStabilizer

DetectionIndex

Detection index

Description

Returns the Detection index

Usage

DetectionIndex(S, N)

Arguments

S signal N noise

Value

Detection index

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 120.

 ${\tt fuelStabilizer}$

Number of milliliters or drops of stabilizer are needed to stabilize a certain amount of fuel

Description

Returns the number of milliliters or drops of stabilizer are needed to stabilize a certain amount of fuel

Usage

```
fuelStabilizer(Lfuel, mLstabilizer = 25, Lstabilizer2fuel = 20,
   dropml = 0.05)
```

HydrophoneSensitivity 17

Arguments

Lfuel numeric, liters of fuel to stabilize

mLstabilizer numeric, manufacturer's recommended milliliters of stabilizer per liters of fuel

Lstabilizer2fuel

numeric, manufacturer's recommended liters of fuel per mms of stabilizer

dropml numeric, how many milliliters per drop

Value

the number of milliliters or drops of stabilizer

Author(s)

Jose Gama

Examples

```
# liqui moly, petrol stabilizer CNG/LPG gasoline stabilizer
# 25ml of stabilizer are the recommended amount for 20 litres of gasoline
# stabilizer for 1l of gasoline
fuelStabilizer(1)
# stabilizer for 0.5l of gasoline
fuelStabilizer(0.5)
```

HydrophoneSensitivity Hydrophone Sensitivity

Description

Returns the Hydrophone Sensitivity

Usage

```
HydrophoneSensitivity(p, v)
```

Arguments

p sound pressure in micropascals at the hydrophone

v voltage at the open circuit terminals

Value

Hydrophone Sensitivity (dB/V)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 9.

Examples

```
HydrophoneSensitivity( 1000, 2 )
```

InternationalFormulaForGravity

International Formula For Gravity

Description

Returns the average gravity at certain latitude

Usage

```
InternationalFormulaForGravity(latitude, CorrectiveTerm = NA)
```

Arguments

```
latitude, latitude in degrees
CorrectiveTerm,
optional corrective term
```

Value

the average gravity

Author(s)

Jose Gama

Source

Fofonoff and R.C. Millard, 1983 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/soundseawater/

References

Saunders P.M., Fofonoff N.P., 1976 Conversion of pressure to depth in the ocean. Deep Sea Research 23:109-111.

Examples

InternationalFormulaForGravity(0)

 ${\tt MaximumRadiatedPowerToAvoidCavitation}$

Maximum radiated power to avoid cavitation

Description

Returns the Maximum radiated power to avoid cavitation

Usage

 ${\tt MaximumRadiatedPowerToAvoidCavitation(radiatingSurfaceArea, cavitationThreshold)}$

Arguments

```
radiatingSurfaceArea,
Radiating surface area
cavitationThreshold,
Cavitation threshold
```

Value

Maximum radiated power

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 5.

Examples

MaximumRadiatedPowerToAvoidCavitation(50, 0.7)

 ${\tt MolecularRelaxationAttenuationCoeficient}$

Molecular relaxation attenuation coeficient (alpha)

Description

Returns the attenuation coeficient of absorption losses due to molecular relaxation

Usage

 ${\tt MolecularRelaxationAttenuationCoeficient}$

Format

dataframe with 3 rows and 11 columns:

temperatureC numeric, temperature in degrees Celsius

- **0.5** attenuation coeficient for 0.5 kHz
- 1 attenuation coeficient for 1 kHz
- 2 attenuation coeficient for 2 kHz
- 5 attenuation coeficient for 5 kHz
- 10 attenuation coeficient for 10 kHz
- 20 attenuation coeficient for 20 kHz
- 50 attenuation coeficient for 50 kHz
- 100 attenuation coeficient for 100 kHz
- 200 attenuation coeficient for 200 kHz
- 500 attenuation coeficient for 500 kHz

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 47.

 $\label{lem:molecularRelaxationAttenuationCoeficientApproximation} Molecular \ relaxation \ attenuation \ coeficient \ approximation$

Description

Returns the Molecular relaxation attenuation coeficient approximation

Usage

 ${\tt MolecularRelaxationAttenuationCoeficientApproximation(f)}$

Arguments

f, frequency (Hz)

Value

alpha Molecular relaxation attenuation coeficient

PeakTS 21

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 47.

Examples

MolecularRelaxationAttenuationCoeficientApproximation(1000)

PeakTS

peak pressure of the incident and reflected pulses

Description

Returns the peak pressure of the incident and reflected pulses

Usage

```
PeakTS(Pr, Pi)
```

Arguments

Pr pressure of the reflected pulse
Pi pressure of the incident pulse

Value

Target Strength (TS)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 68.

Examples

```
PeakTS( 900, 1000 )
```

22 PlaneWavePressure

PlaneWaveIntensity

Plane wave intensity

Description

Returns the intensity

Usage

```
PlaneWaveIntensity(p, rho, C)
```

Arguments

```
p, pressure (Pa or N/m2)
```

rho, fluid density = 10^3kg/m^3 for sea water

C, velocity of sound wave propagation = $1.5 \times 10^3 \text{m/s}$ in sea water

Value

intensity of the wave (power / unit area) (Watt / m^2)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 3.

Examples

```
PlaneWaveIntensity( 1e3, 1.5e3, 1)
```

PlaneWavePressure

Plane wave pressure

Description

Returns the pressure

Usage

```
PlaneWavePressure(rho, C, u)
```

Arguments

rho, fluid density = 10^3kg/m^3 for sea water

C, velocity of sound wave propagation = 1.5×10^3 m/s in sea water

u particle velocity (m/s)

Value

pressure (Pa or N/m2)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 2.

Examples

```
PlaneWavePressure( 1e3, 1.5e3, 1)
```

PLcylindricalSpreadingLaw

PL to range r cylindrical spreading law in logarithmic form

Description

Returns the PL to range r cylindrical spreading law in logarithmic form

Usage

```
PLcylindricalSpreadingLaw(r)
```

Arguments

r radius (meters)

Value

Propagation loss (PL) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 45.

Examples

PLcylindricalSpreadingLaw(1000)

PLSphericalSpreadingAndAbsorption

PL Spherical Spreading and Absorption

Description

Returns the PL Spherical Spreading and Absorption

Usage

PLSphericalSpreadingAndAbsorption(r, alpha)

Arguments

r radius (meters)

alpha Molecular relaxation attenuation coeficient

Value

Propagation loss (PL) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 48.

Examples

PLSphericalSpreadingAndAbsorption(1000, 0.9)

 ${\bf PLspherical Spreading Law}$

PL to range r spherical spreading law in logarithmic form

Description

Returns the PL to range r spherical spreading law in logarithmic form

Usage

```
PLsphericalSpreadingLaw(r)
```

Arguments

r radius (meters)

Value

Propagation loss (PL) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 44.

Examples

```
PLsphericalSpreadingLaw( 1000 )
```

PowerCylindricalSpreadingLaw

Power cylindrical spreading law

Description

Returns the Power cylindrical spreading law

Usage

```
PowerCylindricalSpreadingLaw(r, h, Ir)
```

Arguments

r radius (meters)

h distance between 2 planes (meters)

Ir intensity at radius r

Value

```
total power (Watts)
```

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 45.

Examples

```
PowerCylindricalSpreadingLaw( 1000, 100, 500 )
```

PowerSphericalSpreadingLaw

Power spherical spreading law

Description

Returns the Power spherical spreading law

Usage

```
PowerSphericalSpreadingLaw(r, Ir)
```

Arguments

r radius (meters)

Ir intensity at radius r

Value

```
total power (Watts)
```

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 44.

Examples

```
PowerSphericalSpreadingLaw( 1000, 500 )
```

 ${\tt Pressure Baltic Simplified Leroy}$

Calculation of pressure in the Baltic from Leroy 1969

Description

Returns the pressure in the Baltic from Leroy 1969

Usage

```
PressureBalticSimplifiedLeroy(Z, lat)
```

Arguments

Z, depth in meters

lat, latitude n degrees

Value

the pressure

Author(s)

Jose Gama

Source

Leroy C. C. 1969 Development of simple equations for accurate and more realistic calculations of the speed of sound in sea water J. Acoust. Soc. Am. 46, 216-226.

Examples

PressureBalticSimplifiedLeroy(0, 0)

 ${\tt PressureBlackSeaSimplifiedLeroy}$

Calculation of pressure in the Black Sea from Leroy 1969

Description

Returns the pressure in the Black Sea from Leroy 1969

Usage

PressureBlackSeaSimplifiedLeroy(Z, lat)

Arguments

Z, depth in meters

lat, latitude n degrees

Value

the pressure

Author(s)

Jose Gama

Source

Leroy C. C. 1969 Development of simple equations for accurate and more realistic calculations of the speed of sound in sea water J. Acoust. Soc. Am. 46, 216-226.

Examples

PressureBlackSeaSimplifiedLeroy(0, 0)

PressureModifiedSimplifiedLeroy

Calculation of pressure in water (Leroy modified) from Lovett 1978

Description

Returns the pressure in water (Leroy simplified modified) from Lovett 1978

Usage

PressureModifiedSimplifiedLeroy(Z, lat)

Arguments

Z, depth in meters

lat, latitude n degrees

Value

the pressure

Author(s)

Jose Gama

Source

Lovett, J.R. 1978 Merged seawater sound-speed equations J. Acoust. Soc. Am., 63, 1713-18.

Examples

PressureModifiedSimplifiedLeroy(0, 0)

 ${\tt Pressure Simplified Leroy}$

Calculation of pressure in water simplified from Leroy 1969

Description

Returns the pressure in water simplified from Leroy 1969

Usage

PressureSimplifiedLeroy(Z, lat)

Arguments

Z, depth in meters

lat, latitude n degrees

Value

the pressure

Author(s)

Jose Gama

Source

Leroy C. C. 1969 Development of simple equations for accurate and more realistic calculations of the speed of sound in sea water J. Acoust. Soc. Am. 46, 216-226.

Examples

```
PressureSimplifiedLeroy(0, 0)
```

 ${\tt Pressure To Depth Leroy Parthiot}$

Pressure To Depth from Leroy Parthiot 1998

Description

Returns the Pressure To Depth from Leroy Parthiot 1998

Usage

```
PressureToDepthLeroyParthiot(P, latitude, CorrectiveTerm = NA)
```

Arguments

```
P, pressure in MPa (relative to atmospheric pressure)
latitude, latitude in degrees
CorrectiveTerm,
optional corrective term
```

Value

the depth

Author(s)

Jose Gama

Source

C. C. Leroy and F Parthiot, 1998 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/soundseawater/

References

C. C. Leroy and F Parthiot, 1998 Depth-pressure relationship in the oceans and seas (1998) J. Acoust. Soc. Am. 103(3) pp 1346-1352

Examples

```
PressureToDepthLeroyParthiot(0.1, 0)
```

 ${\tt Pressure To Depth Saunders Fo fon off}$

Pressure To Depth from Saunders and Fofonoff 1976

Description

Returns the Pressure To Depth from Saunders and Fofonoff 1992 CHECKVALUE: DEPTH = 9712.653 M FOR P=10000 DECIBARS, LATITUDE=30 DEG ABOVE FOR STANDARD OCEAN: T=O DEG. CELSIUS; S=35 (PSS-78)

Usage

PressureToDepthSaundersFofonoff(P, latitude)

Arguments

P, pressure in MPa (relative to atmospheric pressure)

latitude, latitude in degrees

Value

the depth

Author(s)

Jose Gama

Source

Unesco, 1983 Algorithms for computation of fundamental properties of seawater, 1983. Unesco Tech. Pap. in Mar. Sci., No. 44, 53 pp.

References

Saunders P.M., Fofonoff N.P., 1976 Conversion of pressure to depth in the ocean. Deep Sea Research 23:109-111

Examples

PressureToDepthSaundersFofonoff(0.1, 0)

ProjectorSensitivityPower

Projector Sensitivity Power

Description

Returns the Projector Sensitivity Power

Usage

```
ProjectorSensitivityPower(I1, Ir, P)
```

Arguments

I1 intensity of source at standard range

Ir reference intensity
P power (Watt)

Value

```
response Sv (dB/V)
```

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 9.

Examples

```
ProjectorSensitivityPower( 10000, 15000, 0.7 )
```

 ${\tt Projector Sensitivity Voltage}$

Projector Sensitivity Voltage

Description

Returns the Projector Sensitivity Voltage

Usage

```
ProjectorSensitivityVoltage(I1, Ir, v)
```

PropagationLoss 33

Arguments

I1 intensity of source at standard range

Ir reference intensity

v Voltage

Value

```
response Sv (dB/V)
```

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 9.

Examples

```
ProjectorSensitivityVoltage( 10000, 15000, 0.7 )
```

PropagationLoss

Propagation loss (PL)

Description

Returns the Propagation loss (PL)

Usage

```
PropagationLoss(I0, Ir)
```

Arguments

10 intensity of the source to a point one metre from its acoustic centre

Ir is the intensity at the receiver

Value

Propagation loss (PL) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 43.

Examples

```
PropagationLoss( 1000, 500 )
```

 ${\tt RangeResolutionCHIRP}$

Sonar Range Resolution CHIRP

Description

Returns the Sonar Range Resolution CHIRP

Usage

```
RangeResolutionCHIRP(SonarBandwidth, Cw)
```

Arguments

SonarBandwidth,

Sonar Bandwidth

Cw,

Velocity of sound

Value

the Sonar Range Resolution

Author(s)

Jose Gama

Examples

```
RangeResolutionCHIRP(1, 343)
```

RangeResolutionMonotonic

Sonar Range Resolution for monotonic acoustic systems

Description

Returns the Sonar Range Resolution for monotonic acoustic systems

Usage

RangeResolutionMonotonic(SonarPulseDuration, Cw)

SLdirectionalProjector 35

Arguments

SonarPulseDuration,

Sonar Pulse Duration

Cw, Velocity of sound

Value

the Sonar Range Resolution

Author(s)

Jose Gama

Examples

```
RangeResolutionMonotonic(1, 343)
```

 ${\sf SLdirectionalProjector}$

SL of a directional projector

Description

Returns the SL of a directional projector

Usage

```
SLdirectionalProjector(P, DIt)
```

Arguments

P, power output (watts)

DIt, transmit directivity index (dB)

Value

SL of a directional projector

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 4.

Examples

```
SLdirectionalProjector( 700, 0.7 )
```

36 SonarEquation

```
{\tt SLomnidirectional Projector}
```

SL of an omnidirectional projector

Description

Returns the SL of an omnidirectional projector

Usage

```
SLomnidirectionalProjector(P)
```

Arguments

```
P, omnidirectional power output (watts)
```

Value

```
source level (SL)
```

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 4.

Examples

```
SLomnidirectionalProjector( 1000 )
```

SonarEquation

sonar equation

Description

Returns the sonar equation EL = SL - 2PL + TS

Usage

```
SonarEquation(SL, PL, TS)
```

SourceLevel 37

Arguments

SL source level
PL propagation loss
TS target strength

Value

EL echo level

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 68.

SourceLevel

source level (SL)

Description

Returns the source level (SL)

Usage

```
SourceLevel(I1, Ir)
```

Arguments

I1, intensity of source at standard range

Ir, reference intensity

Value

source level (SL)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 4.

```
SourceLevel( 1000, 1100)
```

 ${\tt SourceLevelToAvoidCavitation}$

source level to avoid cavitation

Description

Returns the source level to avoid cavitation

Usage

```
SourceLevelToAvoidCavitation(f, DIt)
```

Arguments

```
f, frequency (Hz)
```

DIt, transmit directivity index (dB)

Value

```
source level SL (dB)
```

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 5.

Examples

```
SourceLevelToAvoidCavitation( 20000, 0.7 )
```

SpeedAlgorithmParameterRanges

Data on Speed of Sound Algorithm Parameter Ranges

Description

Data on Speed of Sound Algorithm Parameter Ranges

Usage

SpeedAlgorithmParameterRanges

SpeedOfSound 39

Format

dataframe with 10 rows and 10 columns:

Reference Reference

TemperatureRangeMin Temperature Range (C) Min

TemperatureRangeMax Temperature Range (C) Min

SalinityRangeMin Salinity Range (ppt) min SalinityRangeMax Salinity Range (ppt) max

PressureOrDepthRangeMin Pressure or Depth Range min

PressureOrDepthRangeMax Pressure or Depth Range max

PressureOrDepthRangeUnits Pressure or Depth Range units

StandardError Standard Error

NumberOfTerms Number of Terms

Author(s)

Jose Gama

References

Paul C. Etter, 2013 Underwater Acoustic Modeling and Simulation, Fourth Edition pp. 28. CRC Press

SpeedOfSound

Speed of sound

Description

Returns the speed of sound from wavelength and frequency

Usage

```
SpeedOfSound(lambda, f)
```

Arguments

lambda numeric, wavelength (meters)
f numeric, frequency (Hz)

Value

the speed of sound (m/s)

40 SpeedOfSoundAir

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 1.

Examples

```
SpeedOfSound(5, 70)
```

SpeedOfSoundAir

speed of sound in humid air at sea level air density and known atmospheric pressure

Description

Returns the speed of sound in humid air at sea level air density and known atmospheric pressure

Usage

```
SpeedOfSoundAir(temperatureC, Hr, pressurekPa)
```

Arguments

temperatureC numeric, temperature in degrees Celsius in the range -30 C to 43 C numeric, relative humidity, accurate to within 0.1% for temperatures

pressurekPa numeric, atmospheric pressure in kPa

Value

the speed of sound (m/s)

Author(s)

Jose Gama

References

Kleeman L. & Kuc R., 2008 Springer Handbook of Robotics, Bruno Siciliano, Oussama Khatib (Eds.) Springer-Verlag Berlin Heidelberg, pp.496 eq (21.8).

```
#Speed of sound (Humid air, at sea level air density)
#temperature 20 C, 90\% relative humidity, 101 kPa atmosphere pressure
SpeedOfSoundAir(20, 0.9, 101)
```

SpeedOfSoundDryAir 41

SpeedOfSoundDryAir	Speed of sound in dry air at sea level air density and one atmosphere
	pressure

Description

Returns the speed of sound in dry air at sea level air density and one atmosphere pressure

Usage

```
SpeedOfSoundDryAir(temperatureC)
```

Arguments

temperatureC numeric, temperature in degrees Celsius accurate to within 1%

Value

the speed of sound (m/s)

Author(s)

Jose Gama

References

Kleeman L. & Kuc R., 2008 Springer Handbook of Robotics, Bruno Siciliano, Oussama Khatib (Eds.) Springer-Verlag Berlin Heidelberg, pp.496 eq (21.6).

Examples

```
#Speed of sound (dry air, at sea level air density, one atmosphere pressure)
#temperature 20 C
SpeedOfSoundDryAir(20)
```

 ${\tt SpeedOfSoundFreshWaterGrossoMader}$

speed of sound (m/s) in fresh water from Grosso and Mader

Description

Returns the speed of sound (m/s) Range of validity: 0-95C, D = 0, error +-0.015

Usage

SpeedOfSoundFreshWaterGrossoMader(temperatureC)

Arguments

```
temperatureC, temperatureC in Celsius
```

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water http://support.echoview.com/WebHelp/Reference/Algorithms/Sonar_calculator_algorithms.htm

References

Del Grosso, VA and Mader C.W., 1972 Speed of sound in pure water. J. acoust. Soc. Am., 52, 1442-6.

Examples

SpeedOfSoundFreshWaterGrossoMader(25)

SpeedOfSoundHumidAir Speed of sound in Humid air at sea level air density and one atmosphere pressure

Description

Returns the speed of sound in Humid air at sea level air density and one atmosphere pressure

Usage

```
SpeedOfSoundHumidAir(temperatureC, Hr)
```

Arguments

temperatureC numeric, temperature in degrees Celsius in the range -30 C to 43 C

Hr numeric, relative humidity, accurate to within 0.1% for temperatures

Value

the speed of sound (m/s)

Author(s)

Jose Gama

References

Kleeman L. & Kuc R., 2008 Springer Handbook of Robotics, Bruno Siciliano, Oussama Khatib (Eds.) Springer-Verlag Berlin Heidelberg, pp.496 eq (21.7).

Examples

```
\#Speed of sound (Humid air, at sea level air density, one atmosphere pressure) \#temperature 20 C, 90\% relative humidity SpeedOfSoundHumidAir(20, 0.9)
```

SpeedOfSoundKinslerEtal

Speed of sound (m/s) from Kinsler et al

Description

Returns the speed of sound (m/s) from Kinsler et al accurate to within 0.05% for $0 \le T \le 100$ C and $0 \le P \le 200$ bar

Usage

```
SpeedOfSoundKinslerEtal(PressureBar, temperatureC)
```

Arguments

```
PressureBar, Pressure in bars (1 bar = 100 kPa) temperatureC, temperatureC in Celsius
```

Value

```
the speed of sound (m/s)
```

Author(s)

Jose Gama

References

L. Kinsler, A. Frey, A. Coppens, J. Sanders, 1982 Fundamentals of Acoustics, Third Edition New York: John Wiley & Sons. pp. 121 (5.6.8)

```
SpeedOfSoundKinslerEtal(1, 20)
```

SpeedOfSoundPureWaterBelogolskiiSekoyanEtal speed of sound (m/s) from Belogolskii, Sekoyan et al

Description

Returns the speed of sound (m/s) Range of validity: 0-40C, 0.1 - 60 MPa

Usage

SpeedOfSoundPureWaterBelogolskiiSekoyanEtal (temperatureC, pressureMegaPascals)

Arguments

```
temperatureC, temperatureC in Celsius pressureMegaPascals, pressure in mega Pascals
```

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content. html#LUBBERS

References

Belogolskii, Sekoyan et al, 1999 Pressure dependence of the sound velocity in distilled water, Measurement Techniques, Vol 42, No 4, pp 406-413.

Examples

SpeedOfSoundPureWaterBelogolskiiSekoyanEtal(25, 1)

SpeedOfSoundPureWaterBilaniukWong112

speed of sound (m/s) from Bilaniuk and Wong 112 point equation

Description

Returns returns the speed of sound (m/s) Range of validity: 0-100 OC at atmospheric pressure

Usage

SpeedOfSoundPureWaterBilaniukWong112(temperatureC)

Arguments

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water $http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content. \\ html \#LUBBERS$

References

Bilaniuk and Wong 1993 Speed of sound in pure water as a function of temperature, J. Acoust. Soc. Am. 93(3) pp 1609-1612 Bilaniuk and Wong 1996 Erratum: Speed of sound in pure water as a function of temperature [J. Acoust. Soc. Am. 93, 1609-1612 (1993)], J. Acoust. Soc. Am. 99(5), p 3257.

Examples

SpeedOfSoundPureWaterBilaniukWong112(20)

SpeedOfSoundPureWaterBilaniukWong148

speed of sound (m/s) from Bilaniuk and Wong 148 point equation

Description

Returns returns the speed of sound (m/s) Range of validity: 0-100 OC at atmospheric pressure

Usage

SpeedOfSoundPureWaterBilaniukWong148(temperatureC)

Arguments

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content. html#LUBBERS

References

Bilaniuk and Wong 1993 Speed of sound in pure water as a function of temperature, J. Acoust. Soc. Am. 93(3) pp 1609-1612 Bilaniuk and Wong 1996 Erratum: Speed of sound in pure water as a function of temperature [J. Acoust. Soc. Am. 93, 1609-1612 (1993)], J. Acoust. Soc. Am. 99(5), p 3257.

Examples

SpeedOfSoundPureWaterBilaniukWong148(20)

SpeedOfSoundPureWaterBilaniukWong36

speed of sound (m/s) from Bilaniuk and Wong 36 point equation

Description

Returns returns the speed of sound (m/s) Range of validity: 0-100 OC at atmospheric pressure

Usage

SpeedOfSoundPureWaterBilaniukWong36(temperatureC)

Arguments

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water $http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content. \\ html \#LUBBERS$

References

Bilaniuk and Wong 1993 Speed of sound in pure water as a function of temperature, J. Acoust. Soc. Am. 93(3) pp 1609-1612 Bilaniuk and Wong 1996 Erratum: Speed of sound in pure water as a function of temperature [J. Acoust. Soc. Am. 93, 1609-1612 (1993)], J. Acoust. Soc. Am. 99(5), p 3257.

Examples

SpeedOfSoundPureWaterBilaniukWong36(20)

 ${\tt SpeedOfSoundPureWaterLubbers} and {\tt GraaffSEa}$

speed of sound (m/s) from Lubbers and Graaff's simplified equations a and b

Description

Returns returns the speed of sound (m/s) temperature interval 15-35 C at atmospheric pressure, maximum error 0.18 m/s Lubbers and Graaff's simplified equation a)

Usage

SpeedOfSoundPureWaterLubbersandGraaffSEa(temperatureC)

Arguments

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content.html#LUBBERS

References

J. Lubbers and R. Graaff, 1998 A simple and accurate formula for the sound velocity in water, Ultrasound Med. Biol. Vol 24, No 7, pp 1065-1068.

Examples

SpeedOfSoundPureWaterLubbersandGraaffSEa(20)

 ${\tt SpeedOfSoundPureWaterLubbers} and {\tt GraaffSEb}$

speed of sound (m/s) from Lubbers and Graaff's simplified equations a and b

Description

Returns returns the speed of sound (m/s) temperature interval 10-40C at atmospheric pressure, maximum error 0.18 m/s Lubbers and Graaff's simplified equation b)

Usage

SpeedOfSoundPureWaterLubbersandGraaffSEb(temperatureC)

Arguments

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content.html#LUBBERS

References

J. Lubbers and R. Graaff, 1998 A simple and accurate formula for the sound velocity in water, Ultrasound Med. Biol. Vol 24, No 7, pp 1065-1068.

Examples

SpeedOfSoundPureWaterLubbersandGraaffSEb(20)

 ${\tt SpeedOfSoundPureWaterMarczak}$

speed of sound (m/s) from Marczak

Description

Returns returns the speed of sound (m/s) Range of validity: 0-95C at atmospheric pressure

Usage

SpeedOfSoundPureWaterMarczak(temperatureC)

Arguments

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

National Physical Laboratory, 2015 Underwater Acoustics Technical Guides - Speed of Sound in Pure Water http://resource.npl.co.uk/acoustics/techguides/soundpurewater/content. html#LUBBERS

References

Marczak, 1997 Water as a standard in the measurements of speed of sound in liquids J. Acoust. Soc. Am. 102(5) pp 2776-2779.

Examples

SpeedOfSoundPureWaterMarczak(20)

 ${\tt SpeedOfSoundSeaWaterChenAndMillero}$

speed of sound (m/s) in sea water from Chen and Millero 1977

Description

Returns the speed of sound (m/s) Range of validity: temperature 0 to 40 C, salinity 0 to 40 parts per thousand, pressure 0 to 1000 bar

Usage

```
SpeedOfSoundSeaWaterChenAndMillero(S, temperatureC, P)
```

Arguments

```
S, salinity in parts per thousand temperatureC, temperature in degrees Celsius P, pressure in kg/cm^2
```

Value

```
the speed of sound (m/s)
```

Author(s)

Jose Gama

Source

C-T. Chen and F.J. Millero, 1977 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/soundseawater/

References

C-T. Chen and F.J. Millero, 1977 Speed of sound in seawater at high pressures J. Acoust. Soc. Am. 62(5) pp 1129-1135

```
SpeedOfSoundSeaWaterChenAndMillero(30, 0, 1.019716)
```

SpeedOfSoundSeaWaterCoppens

speed of sound (m/s) in sea water from Coppens 1981

Description

Returns the speed of sound (m/s) Range of validity: temperature 0 to 35 C salinity 0 to 45 parts per thousand and depth 0 to 4000 m $\,$

Usage

SpeedOfSoundSeaWaterCoppens(D, S, temperatureC)

Arguments

D, depth in meters

S, salinity in parts per thousand

temperatureC, temperature in degrees Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

A.B. Coppens, 1981 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/soundseawater/

References

A.B. Coppens, 1981 Simple equations for the speed of sound in Neptunian waters J. Acoust. Soc. Am. 69(3), pp 862-863

Examples

SpeedOfSoundSeaWaterCoppens(0, 35, 25)

 ${\tt SpeedOfSoundSeaWaterDelGrosso}$

speed of sound (m/s) in sea water from Del Grosso 1974

Description

Returns the speed of sound (m/s) Range of validity: temperature 0 to 30 C, salinity 30 to 40 parts per thousand pressure 0 to 1000 kg/cm^2 , where $100 \text{ kPa}=1.019716 \text{ kg/cm}^2$

Usage

```
SpeedOfSoundSeaWaterDelGrosso(S, temperatureC, P)
```

Arguments

```
S, salinity in parts per thousand temperatureC, temperature in degrees Celsius P, pressure in kg/cm^2
```

Value

```
the speed of sound (m/s)
```

Author(s)

Jose Gama

Source

V.A. Del Grosso, 1974 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://resource.npl.co.uk/acoustics/techguides/soundseawater/

References

V.A. Del Grosso, 1974 New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am 56(4) pp 1084-1091.

```
SpeedOfSoundSeaWaterDelGrosso(30, 0, 1.019716)
```

SpeedOfSoundSeaWaterFryeAndPugh

Calculation of speed of sound in sea water from Frye and Pugh 1971

Description

Returns the speed of sound in sea water from Frye and Pugh 1971

Usage

SpeedOfSoundSeaWaterFryeAndPugh(temperatureC, S, P)

Arguments

```
temperatureC, temperature from -3C to 30C
```

S, salinity from 33.1 to -36.6 per 1000

P, hydrostatic pressure from 1.033 to 984.3 kg/cm²

Value

the speed of sound

Author(s)

Jose Gama

Source

Frye, H.W. and Pugh, J.D. 1971 A new equation for the speed of sound in seawater J. Acoust. Soc. Am., 50, 384-6.

References

Frye, H.W. and Pugh, J.D. 1971 A new equation for the speed of sound in seawater J. Acoust. Soc. Am., 50, 384-6.

Examples

SpeedOfSoundSeaWaterFryeAndPugh(0, 30, 1.033)

 ${\tt SpeedOfSoundSeaWaterLeroy68}$

speed of sound (m/s) in sea water from Leroy 1968

Description

Returns the speed of sound (m/s)

Usage

SpeedOfSoundSeaWaterLeroy68(D, latitude)

Arguments

D, depth in meters

latitude, latitude in degrees

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

Lurton, X, 2002 An Introduction to Underwater Acoustics, 1st ed. London, Praxis Publishing LTD, p37.

References

Lurton, X, 2002 An Introduction to Underwater Acoustics, 1st ed. London, Praxis Publishing LTD, p37.

Examples

SpeedOfSoundSeaWaterLeroy68(25, 0)

SpeedOfSoundSeaWaterLeroy69

speed of sound (m/s) in sea water from Leroy 1969

Description

Returns the speed of sound (m/s) Range of validity: -2:23 C, Error +-0.1

Usage

SpeedOfSoundSeaWaterLeroy69(D, S, temperatureC)

Arguments

D, depth in meters

S, salinity in parts per thousand

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

Leroy C.C. 1969 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://support.echoview.com/WebHelp/Reference/Algorithms/Sonar_calculator_algorithms.htm

References

Leroy C.C. 1969 Development of simple equations for accurate and more realistic calculation of the speed of sound in sea water. J. acoust. Soc. Am., 46, 216-26.

Examples

SpeedOfSoundSeaWaterLeroy69(0, 35, 25)

SpeedOfSoundSeaWaterLeroyEtAl2008

Calculation of speed of sound in sea water from Leroy et Al 2008

Description

Returns the speed of sound in sea water from Leroy et Al 2008

Usage

```
SpeedOfSoundSeaWaterLeroyEtAl2008(temperatureC, S, D, L)
```

Arguments

temperatureC, temperature in degrees C 1990 universal temperature scale

S, salinity in %

D, depth in meters

L, latitude in degrees

Value

```
the speed of sound (m/s)
```

Author(s)

Jose Gama

Source

Leroy, C.C., Robinson, S.P., and Goldsmith, M.J. 2008 A new equation for the accurate calculation of sound speed in all oceans J. Acoust. Soc. Am., 124, 2774-82.

```
SpeedOfSoundSeaWaterLeroyEtAl2008(0, 30, 0, 0)
```

SpeedOfSoundSeaWaterLovett1

Calculation of speed of sound in sea water from Lovett 1978

Description

Returns the speed of sound in sea water from Lovett 1978 Check value: at T=2C, S=34.7; P=6000 dbar; C = 1559.462 m/s.

Usage

```
SpeedOfSoundSeaWaterLovett1(temperatureC, S, P)
```

Arguments

```
temperatureC, temperature in degrees C T48
```

S, salinity in %

P, pressure in decibars (0 at surface)

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

Lovett, J.R. 1978 Merged seawater sound-speed equations J. Acoust. Soc. Am., 63, 1713-18.

Examples

```
SpeedOfSoundSeaWaterLovett1(2, 34.7, 6000)
```

 ${\tt SpeedOfSoundSeaWaterLovett2}$

Calculation of speed of sound in sea water from Lovett 1978b

Description

Returns the speed of sound in sea water from Lovett 1978b Check value: at T=2C, S=34.7; P=6000 dbar; C=1559.393 m/s.

Usage

```
SpeedOfSoundSeaWaterLovett2(temperatureC, S, P)
```

Arguments

temperatureC, temperature in degrees C T48

S, salinity in %

P, pressure in decibars (0 at surface)

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

Lovett, J.R. 1978 Merged seawater sound-speed equations J. Acoust. Soc. Am., 63, 1713-18.

Examples

```
SpeedOfSoundSeaWaterLovett2(2, 34.7, 6000)
```

 ${\tt SpeedOfSoundSeaWaterLovett3}$

Calculation of speed of sound in sea water from Lovett 1978c

Description

Returns the speed of sound in sea water from Lovett 1978c Check value: at T=2C, S=34.7; P=6000 dbar; C = 1559.499 m/s.

Usage

```
SpeedOfSoundSeaWaterLovett3(temperatureC, S, P)
```

Arguments

temperatureC, temperature in degrees C T48

S, salinity in %

P, pressure in decibars (0 at surface)

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

Lovett, J.R. 1978 Merged seawater sound-speed equations J. Acoust. Soc. Am., 63, 1713-18.

Examples

```
SpeedOfSoundSeaWaterLovett3(2, 34.7, 6000)
```

 ${\tt SpeedOfSoundSeaWaterMackenzie}$

speed of sound (m/s) in sea water from Mackenzie 1981

Description

Returns the speed of sound (m/s)

Usage

SpeedOfSoundSeaWaterMackenzie(D, S, temperatureC)

Arguments

D, depth in meters

S, salinity in parts per thousand

temperatureC, temperatureC in Celsius

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

Mackenzie K.V., 1981 Underwater Acoustics Technical Guides - Speed of Sound in Sea Water http://support.echoview.com/WebHelp/Reference/Algorithms/Sonar_calculator_algorithms.htm

References

Mackenzie K.V., 1981 Nine-term equation for sound speed in the ocean. J. acoust. Soc. Am., 70, 807-12.

Examples

SpeedOfSoundSeaWaterMackenzie(0, 35, 25)

SpeedOfSoundSeaWaterMedwin

speed of sound (m/s) in sea water from Medwin 1975

Description

Returns the speed of sound (m/s) (approximation) Range of validity: limited to 1000 meters in depth

Usage

```
SpeedOfSoundSeaWaterMedwin(temperatureC, D, S)
```

Arguments

temperatureC, temperature in degrees Celsius

D, depth in meters

S, salinity in parts per thousand

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

X Lurton, 2002 An Introduction to Underwater Acoustics, 1st ed. London, Praxis Publishing LTD

References

Medwin H, 1975 Speed of sound in water: A simple equation for realistic parameters Journal of the Acoustical Society of America, 58, 1318-1319, 1975

```
SpeedOfSoundSeaWaterMedwin(0, 1, 30)
```

SpeedOfSoundSeaWaterSkone

speed of sound (m/s) in sea water from Skone et al 2002

Description

Returns the speed of sound (m/s) modelled using empirical formulae

Usage

```
SpeedOfSoundSeaWaterSkone(temperatureC, D, S)
```

Arguments

temperatureC, temperature in degrees Celsius

D, depth in meters

S, salinity in parts per thousand

Value

the speed of sound (m/s)

Author(s)

Jose Gama

Source

de Jong, C.D., Lachapelle, G., Skone, S. and Elema, I. A., 2002 Hydrography. Delft University Press (The Netherlands). pp.194

References

de Jong, C.D., Lachapelle, G., Skone, S. and Elema, I. A., 2002 Hydrography. Delft University Press (The Netherlands). pp.194

```
SpeedOfSoundSeaWaterSkone(0, 1, 30)
```

SpeedOfSoundSeaWaterWilson

Calculation of speed of sound in sea water from Wilson 1960

Description

Returns the speed of sound in sea water from Wilson 1960

Usage

```
SpeedOfSoundSeaWaterWilson(temperatureC, S, P)
```

Arguments

```
temperatureC, temperature from -4C to 30C
S, salinity from 0 to 37 per 1000
P, hydrostatic pressure from 0.1 MPa to 100 MPa
```

Value

the speed of sound

Author(s)

Jose Gama

Source

```
N. N. Andreyev Acoustics Institute, 2015 The speed of sound in sea water http://www.akin.ru/spravka_eng/s_i_svel_e.htm
```

References

Wilson W D, 1960 Equation for the speed of sound in sea water J. Acoust. Soc. Amer., vol.32, N 10, p. 1357

```
SpeedOfSoundSeaWaterWilson(0, 30, 0.1)
```

 ${\tt TargetStrength}$

Target Strength (TS)

Description

Returns the Target Strength (TS), the echo returned by an underwater target

Usage

```
TargetStrength(Ir, Ii)
```

Arguments

Ir reflected intensity referred to 1 m from the acoustic centre of the target

Ii incident intensity

Value

Target Strength (TS)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 67.

Examples

```
TargetStrength( 900, 1000 )
```

 ${\tt TargetStrengthCircularPlateNormal}$

target strength Circular Plate normal

Description

Returns the target strength Circular Plate normal

Usage

TargetStrengthCircularPlateNormal(r, lambda)

Arguments

r radius (meters) lambda wavelength

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

Examples

TargetStrengthCircularPlateNormal(10, 500)

 ${\tt TargetStrengthConvexSurface}$

target strength Convex surface

Description

Returns the target strength Convex surface

Usage

TargetStrengthConvexSurface(r1, r2)

Arguments

r1 principal radii (meters) r2 principal radii (meters)

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

Examples

TargetStrengthConvexSurface(100, 50)

 ${\tt TargetStrengthCylinderNormal}$

target strength Cylinder normal

Description

Returns the target strength Cylinder normal

Usage

TargetStrengthCylinderNormal(r, L, lambda)

Arguments

r radius (meters)
L length (meters)

lambda wavelength

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

```
TargetStrengthCylinderNormal( 10, 5, 500 )
```

TargetStrengthCylinderThetaToNormal target strength Cylinder, theta to normal

Description

Returns the target strength Cylinder, theta to normal

Usage

```
TargetStrengthCylinderThetaToNormal(r, L, lambda, theta)
```

Arguments

r radius (meters)

L length (meters)

lambda wavelength

theta angle to normal

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

```
TargetStrengthCylinderThetaToNormal( 10, 5, 500, 45 )
```

 ${\tt TargetStrengthPlateAnyShape}$

target strength Plate of any shape

Description

Returns the target strength Plate of any shape

Usage

TargetStrengthPlateAnyShape(A, lambda)

Arguments

A area (meters)
lambda wavelength

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

Examples

TargetStrengthPlateAnyShape(10, 500)

 ${\tt TargetStrengthRectangularPlateNormal}$

target strength Rectangular Plate normal

Description

Returns the target strength Rectangular Plate normal

Usage

TargetStrengthRectangularPlateNormal(A, B, lambda)

Arguments

```
A side, A >= B (meters)
```

B side (meters)
lambda wavelength

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

Examples

```
TargetStrengthRectangularPlateNormal( 10, 500, 500 )
```

 ${\tt TargetStrengthRectangularPlateThetaToNormal}$

target strength Rectangular Plate, theta to normal

Description

Returns the target strength Rectangular Plate, theta to normal

Usage

TargetStrengthRectangularPlateThetaToNormal(A, B, lambda, theta)

Arguments

A side, A >= B (meters)

B side (meters)
lambda wavelength
theta angle to normal

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 70.

Examples

TargetStrengthRectangularPlateThetaToNormal(10, 500, 500, 45)

TargetStrengthSphere target strength sphere

Description

Returns the target strength sphere

Usage

TargetStrengthSphere(r)

Arguments

r radius (meters)

Value

Target Strength (TS) (dB)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 69.

```
PeakTS( 900, 1000 )
```

TransmitDirectivityIndex

transmit directivity index

Description

Returns the transmit directivity index (DIt)

Usage

TransmitDirectivityIndex(Idir, Iomni)

Arguments

Idir, intensity along the axis of the beam pattern

Iomni, intensity of the equivalent non-directional projector

Value

transmit directivity index (DIt)

Author(s)

Jose Gama

References

Waite A. D., 2002 Sonar for Practising Engineers, 3rd Edition Chichester: Wiley. pp. 4.

Examples

TransmitDirectivityIndex(700, 1000)

Index

```
* data
                                               MolecularRelaxationAttenuationCoeficient,
    CorrectiveTermsDepthFromPressure,
        12
                                               {\tt MolecularRelaxationAttenuationCoeficientApproximation},
    CorrectiveTermsPressureFromDepth,
        12
    MolecularRelaxationAttenuationCoeficient, PeakTS, 21
                                               PlaneWaveIntensity, 22
    SpeedAlgorithmParameterRanges, 38
                                               PlaneWavePressure, 22
                                               PLcylindricalSpreadingLaw, 23
AbsorptionAlphaAinslieMcColm, 3
                                               PLSphericalSpreadingAndAbsorption, 24
AbsorptionAlphaFisherSimmons, 4
                                               PLsphericalSpreadingLaw, 25
AbsorptionSoundFreshWaterFrancoisGarrison,
                                               PowerCylindricalSpreadingLaw, 25
                                               PowerSphericalSpreadingLaw, 26
AbsorptionSoundSeaWaterFrancoisGarrison,
                                               PressureBalticSimplifiedLeroy, 27
        6
                                               PressureBlackSeaSimplifiedLeroy, 28
                                               PressureModifiedSimplifiedLeroy, 28
BandLevelFlatSpectrum, 7
                                               PressureSimplifiedLeroy, 29
BandLevelFromCompleteBand, 7
                                               PressureToDepthLeroyParthiot, 30
BasicActiveSonarEquation, 8
                                               PressureToDepthSaundersFofonoff, 31
BasicPassiveSonarEquation, 9
                                               ProjectorSensitivityPower, 32
BasicSonarEquation, 10
                                               ProjectorSensitivityVoltage, 32
                                               PropagationLoss, 33
CavitationThresholdEstimateFunctionOfDepth,
CavitationThresholdEstimateFunctionOfRadiatedA2868R18PbWEighCHIRPIt34
                                               RangeResolutionMonotonic, 34
CorrectiveTermsDepthFromPressure, 12
                                               SLdirectionalProjector, 35
CorrectiveTermsPressureFromDepth, 12
                                               SLomnidirectional Projector, 36
CutoffFrequencyShallowWater, 13
                                               SonarEquation, 36
CutoffFrequencyWater, 14
                                               SourceLevel, 37
                                               SourceLevelToAvoidCavitation, 38
DepthToPressureLeroyParthiot, 15
                                               SpeedAlgorithmParameterRanges, 38
DetectionIndex, 16
                                               SpeedOfSound, 39
fuelStabilizer, 16
                                               SpeedOfSoundAir, 40
                                               SpeedOfSoundDryAir, 41
HydrophoneSensitivity, 17
                                               SpeedOfSoundFreshWaterGrossoMader, 41
                                               SpeedOfSoundHumidAir, 42
InternationalFormulaForGravity, 18
                                               SpeedOfSoundKinslerEtal, 43
MaximumRadiatedPowerToAvoidCavitation,
                                               SpeedOfSoundPureWaterBelogolskiiSekoyanEtal,
        19
                                                       44
```

INDEX 73

```
SpeedOfSoundPureWaterBilaniukWong112,
        45
SpeedOfSoundPureWaterBilaniukWong148,
SpeedOfSoundPureWaterBilaniukWong36,
SpeedOfSoundPureWaterLubbersandGraaffSEa,
SpeedOfSoundPureWaterLubbersandGraaffSEb,
        49
SpeedOfSoundPureWaterMarczak, 50
SpeedOfSoundSeaWaterChenAndMillero, 51
SpeedOfSoundSeaWaterCoppens, 52
SpeedOfSoundSeaWaterDelGrosso, 53
SpeedOfSoundSeaWaterFryeAndPugh, 54
SpeedOfSoundSeaWaterLeroy68, 55
SpeedOfSoundSeaWaterLeroy69, 56
SpeedOfSoundSeaWaterLeroyEtAl2008, 57
SpeedOfSoundSeaWaterLovett1, 58
SpeedOfSoundSeaWaterLovett2, 58
SpeedOfSoundSeaWaterLovett3, 59
SpeedOfSoundSeaWaterMackenzie, 60
SpeedOfSoundSeaWaterMedwin, 61
SpeedOfSoundSeaWaterSkone, 62
SpeedOfSoundSeaWaterWilson, 63
TargetStrength, 64
TargetStrengthCircularPlateNormal, 64
TargetStrengthConvexSurface, 65
TargetStrengthCylinderNormal, 66
TargetStrengthCylinderThetaToNormal,
        67
TargetStrengthPlateAnyShape, 68
TargetStrengthRectangularPlateNormal,
{\tt TargetStrengthRectangularPlateThetaToNormal},
        69
TargetStrengthSphere, 70
TransmitDirectivityIndex, 71
```