Appendix

1. Omitted Variables Bias

True model:
$$Y = X_1\beta_1 + X_2\beta_3 + \xi$$

$$E(\xi|X_1,X_2) = 0$$

$$X_2 = X_1\beta_1 + U$$

$$Omit X_2: Y = X_1\beta_1 + \widetilde{\xi}$$

$$E(\beta_1) = \beta_1 + \delta_1\beta_2$$

$$No problem: \beta_2 = 0 \text{ or } \delta_1 = 0$$

$$Problem: \beta_2 \neq 0 \text{ and } \delta_1 \neq 0$$

2. Measurement Error

(i) $Y = Y^* + e$ (Y^* true value, e: ME, Y: observed value)

True model: $Y^* = X:\beta + E$, E(E|X) = 0With $ME: Y = X:\beta + \widetilde{E}$ $Y = X:\beta + E + e$

If E(e|X)=0. ① unbiased and consistent 第 (e5)相关,5/*不相类)② Inforence problem: Var(Ete) > Var(E) If E(e|X) ‡o ① blased and inconsistent 第 (e5/*相关,5/不相类)② 、、

(ii)
$$X = X^* + e$$
 (X^* true value, $e: ME$, $X: observed$ value)
True model: $Y = X^*\beta + E$
With $ME: Y = X\beta + E$
 $Y = (X-e)\beta + E$
 $Y = X\beta + (E-e\beta)$

If E(e|x)=0 ① unbiased and consistent $\hat{\beta}$ ($E5 \times \Lambda$ 相美, $5 \times *$ 相美)② Inference problem

If $E(e|x) \neq v$. [Classical Errors-in-Variables (CEV) problem] $(e5 \times \Lambda$ 相美, $5 \times$ 相美) $\hat{\beta} = \frac{cov(Y,x)}{Var(x)} = \frac{cov(x\beta+\xi-e\beta,x)}{Var(x)} = \beta(1-\frac{cov(e,x)}{Var(x)})$ $= \beta(1-\frac{v_e^2}{\sigma_x^2+\sigma_e^2})$ $\hat{\beta} < |\beta|$ attenuation bias

3. Power (in lab / field experiment)

Power=1-type I error 滋拉饱矿拒绝的概率

Data:
$$\{y_1, y_{12}, \dots, y_{1i}, \dots y_{in}\}$$
, $\{y_{2i}, \dots, y_{2i}, \dots, y_{2n}\}$, $Var(y_{ji}) = o_{\overline{g}}^2$
 $Var(\Delta \overline{y}) = Var(\overline{y_1} - \overline{y_2}) = Var(\overline{y_1}) + Var(\overline{y_2}) = \frac{2}{n} o_{\overline{y}}^2$
 $\therefore \widehat{SD}(\Delta \overline{y}) = \int_{\overline{h}}^{2n} \overline{y_2}$

$$:= E(t \leq tat) = E(\frac{\Delta \hat{y}}{SD(\Delta \hat{y})}) = \sqrt{\frac{h}{2}} \frac{\Delta \hat{y}}{O_{\hat{y}}} \xrightarrow{p} Normal distr.$$

4. Regression table

Source	SS	df	MS	∑ Ŷi² k-1	Number of obs		
Model	144754063	2 72	2377031.7		F(2, 66) Prob > F	= 11.06 = 0.0001	
Residual	432042896	66 65	2377031.7 546104.48→	$\frac{\sum e_i}{n-(k-i)}$	R-squared	= 0.2510	
Total	576796959	68 84	182308.22		Adj R-squared Root MSE	= 0.2283 = 2558.5	
price	coef.	Std. Err	. t	P> t	[95% conf.	Interval]	
mpg	-271.6425	57.77115	-4.70	0.000	-386.9864	-156.2987	
гер78	666.9568	342.3559	1.95	0.056	-16.5789	1350.492	
_cons	9657.754	1346.54	7.17	0.000	6969.3	12346.21	