20191230_阳程叉车运动参数标定

版本	作者	日期
v 1.0	焦健	20191230

标定参数生效方法在:

```
roscd to_usun_node

cd launch

vim to_usun_node.launch
```

然后看到launch文件中的参数如下:

按照<u>https://bito.readthedocs.io/en/latest/calibration.html#id15</u>的标定方法, 只不过底层驱动不用启动to_ib_node.launch, 而是要启动to_usun_node.launch.

参数说明

运动模型(英文:motion model),指机器人的体速度与各驱动电机转速的映射关系。

标定配件

卷尺

motion_test/launch文件说明

1.open_loop_pub_vel.launch vx表示线速度, wz表示角速度。

2.open_loop_pub_motor.launch speed表示行走电机转速参数,一般前进设置为500,停止设置为0. angle表示舵轮转动角度,转90度为9000,摆正为0.

标定步骤

- 1) 直线行走
 - 1. 将自动叉车开到开阔空间。复制当前的navigator文件夹到一个位置, 比如复制到~/Documents目录下, 将navigator切换到calibration branch,打开一个命令行窗口,运行roslaunch

navigator_ros lidar_forklift_navigator_ros.launch。

1. 修改

~/yugong_ws/src/navigator/navigator_ros/launch/tool_launch/tool_tasksimplex_singleline.launch 中的参数数值, 其中正值代表前进,负值代表后退。

打开一个命令行窗口,运行roslaunch navigator_ros tool_tasksimplex_singleline.launch, 使得机器人开环直线前进。

打开一个命令行窗口,通过 rosservice call /yg00.../request_finish_singleline_calculation "command: 0 owner: ''" 可以让小车回退回来。

如果运行轨迹横向偏移误差不在纵向距离的2%以内,通过修改

~/yugong_ws/src/to_usn_node/launch/to_usn_node.launch)的/SteeringAngleOffset,并在一个命令行中,重新运行roslaunch to_usn_node to_usn_node.launch。

再次运行上述步骤,直到使得叉车轨迹为直线。

2) 原地旋转

1. 修改 [~/yugong_ws/src/deploy_tool/motion_test/launch/open_loop_pub_vel.launch] 中 的参数,使得机器人开环原地旋转。

目测叉车运动的旋转中心,通过调节

~/yugong_ws/src/to_usn_node/launch/to_usn_node.launch 的/SteeringAngleScale ,并在一个命令行中,重新运行roslaunch to usn node to usn node.launch。

再次运行上述步骤,直到使得叉车旋转中心为两被动轮连线中心处,误差容忍范围在2cm以内。

3) 直线开环距离

修改 ~/yugong_ws/src/deploy_tool/motion_test/launch/open_loop_pub_vel.launch 中的参数,并运行该launch文件,使得机器人开环直线前进一定距离,速度单位为 m/s ,运动时间单位为 s ,测量机器人实际运动的距离。通过调节

~/yugong_ws/src/to_usun_node/launch/to_usun_node.launch 的 /SteeringVelocityScale ,并在一个命令行中,重新运行roslaunch to_usun_node to_usun_node.launch。 反复运行上述步骤,使得叉车前进的距离与控制量的误差在2%以内。

4) 直线反馈行走

修改 ~/yugong_ws/src/deploy_tool/motion_test/launch/open_loop_pub_motor.launch 中的参数speed设置为500,angle设置为0,使得机器人开环直线前进。目测叉车运动的轨迹曲率,通过调节 ~/yugong_ws/src/to_usun_node/launch/to_usun_node.launch 的 //odom_steeringAngleOffset 。 反复运行上述步骤,使得叉车在rviz中的轨迹为直线,横向误差容忍

/odom_steeringAngleOffset 。 反复运行上述步骤,使得叉车在rviz中的轨迹为直线,横向误差容忍 范围在2%以内。

5) 开环原地旋转

修改 ~/yugong_ws/src/deploy_tool/motion_test/launch/open_loop_pub_motor.launch 中的参数speed设置为500,angle设置为9000,使得机器人开环原地旋转。通过调节

~/yugong_ws/src/to_usun_node/launch/to_usun_node.launch 的 /odom_steeringAngleScale 。 反复运行上述步骤,使得rviz中的叉车以起始点为圆心,旋转半径为0,进行旋转,圆心容忍偏移范围在10cm以内。

将navigator切换回proj_USUN_lidar_forklift, 重启机器人。

注:标定机器人旋转和前进时,考虑现场测试场地的大小,每次运行任务时,应该把车开到一个开阔的 位置执行。