Senior Safe

Dashboard를 활용한 시니어 맞춤형 종목 선별 시스템 구축

- 부실하체 트레이너
- 발표자 : 김도현
- 팀원: 김지훈, 김도현, 김보윤, 오대한, 정승원

목차 Contents

- 01
 Introduction

 배경 | 목적 | 차별점 | 워크플로우 | 역할 분배
- 02 Data Set 데이터 수집 | 종속변수 라벨링 | EDA | 데이터전처리 | 피처엔지니어링
- 03Modeling모델링 | 성능평가
- 04Utilization필터링 | 백테스팅 | 대시보드 구축

배경

고령 인구 증가로 인해 투자자들의 위험 회피 성향이 강화되고, 자산 의 안정적 운용에 대한 수요가 급증

> 부실 위험이 높은 기업을 사전에 회피하고, 안정적이고 변동성이 낮은 종목에 투자하는 전략이 필수.

한국은행 등 주요 기관에서 제시하는 부실징후 기업 판별 기준 (3년 연속 이자보상배율 1 미만, 영업활동 현금흐름 마이너스)을 참고하여, 실질적이고 신뢰도 높은 위험 분류 체계 적용.

목표

부실 위험 회피 + 안정적·저위험 종목 추천

재무데이터 기반으로 부실 위험이 높은 기업을 체계적 으로 회피하고, 벤치마크 수익률을 이기면서 안정성까지 고려한 종목을 추천.

투자자 맞춤형 종목 선별

투자자가 직접 위험률을 확 인하여 종목을 선택할 수 있 게 대시보드를 제공

차별점

Why?

- 기존 단순 재무비율 스크리닝을 넘어, 부실 위험을 단계별 분류와 시계열·머신러닝 결합으로 조기경보 및 실질적 투자성과 극대화
- 초고령 사회의 투자환경 변화에 맞춘 실질적 투자자 보호 및 자산증식 솔루션 제공

How?

- 공신력 있는 부실 판별 기준(한국은행 등) 기반의 라벨링 → 신뢰성 확보
- ML/통계모형과 시계열 검증 결합 → 실제 투자 환경 반영
- 저위험 종목 내 추가 필터링(베타, 배당 등) → 투자자 맞춤형 추천 실현

워크플로우

EDA

인사이트 도출

변수 선정

데이터 시각화

서브코더

PT 자료 준비

파생변수 선정 파생변수 선정 백테스팅 메인코더 관련자료 수집 대시보드 시각화

정승원

오대한

데이터 수집

분석 대상

2013~2024년 KOSPI, KOSDAQ 상장기업 (12월 결산, 비금융업)

데이터 수집처

TS2000 Dart 전자공시 Krx 정보데이터시스템 등

수집 데이터

재무데이터 시장지수 거시변수

종속변수 라벨링

종속변수 (Y)

• 조건 1: 3년 연속 이자보상배율 1 미만

• 조건 2: 3년 연속 영업활동현금흐름 0 미만

• 고위험(2) : 두 조건 모두 해당

• 중위험(1): 두 조건 중 하나만 해당

• 저위험(0): 두 조건 모두 해당 안됨

※ 종속변수(Y) 산출에 쓰인 변수(이자보상배율, 영업활동현금흐름)는 X에서 제외하여 모형의 예측력과 해석력 확보(동일 변수 반복 사용 방지)

EDA

데이터 구조 및 기초 통계

- 전체 데이터 규모(행/열), 연도별·시장별(코스피/코스닥)·산업별 샘플 분포 파악
- 주요 변수(재무비율, 주가, 거시변수 등)별 기초통계량(평균, 중앙값, 표준편차, 최댓값/최솟값) 산출

변수 분포 및 시각화

- 주요 재무데이터, 시장지수, 거시변수의 전체 분포: 히스토그램, KDE, 박스플롯 활용
- 라벨별(고/중/저위험) 분포 비교: 그룹별 박스플롯·바이올린플롯 등 시각화
- 연도별, 산업별, 시장별 요약통계량 및 분포 변화 시각화

상관관계 탐색

- 피어슨/스피어만 상관계수 행렬로 변수 간 상관성 확인
- 변수 간 관계를 히트맵으로 시각화

데이터 전처리

결측치처리

- 변수별 결측치 비율 집계 및 시각화
- 결측치가 5% 미만인 경우: 평균/중위수/이전값 등으로 대체
- 결측치가 5% 이상인 경우: 해당 변수 또는 관측치 제거

이상치처리

- 박스플롯, 히스토그램, 산점도 등으로 이상치 탐지
- 연속형 변수의 상하위 1~2% winsorizing(극단값 절단) 적용

다중공선성 점검

• VIF(Variance Inflation Factor) 고려

데이터 전처리

데이터 불균형 진단 및 처리

- 라벨(고/중/저위험)별 샘플 비율 확인
- 불균형 심할 경우 SMOTE 등 오버샘플링, 언더샘플링, 클래스 가중치 조정 적용

시계열 데이터 처리

- 결측/이상치 보정 후 시계열 정렬 및 연속성 점검
- 시계열 분할(Sliding/Expanding Window 등) 적용 준비

피처 엔지니어링

라벨별 그룹 간 차이 검정

- 고/중/저위험 그룹별 주요 재무비율 평균 차이: t-test(이원), ANOVA(3그룹 이상)
- 정규성 미충족 시 Mann-Whitney U, Kruskal-Wallis 등 비모수 검정 활용
- 유의미한 차이 확인된 변수는 주요 피처로 우선 선정

변수 중요도 분석 및 선택

- 랜덤포레스트, XGBoost 등 모델 feature importance, SHAP 값 등 활용
- 정보이득(Information Gain), Gain Ratio 등 통계적 변수 선택 기법 병행

시계열 정상성 검정 및 변환

- ADF(Augmented Dickey-Fuller) 테스트로 셀렉된 변수들의 정상성 확인
- 비정상 시 차분(differencing) 등으로 정상화

피처 엔지니어링

라벨별 그룹 간 차이 검정

- 고/중/저위험 그룹별 주요 재무비율 평균 차이: t-test(이원), ANOVA(3그룹 이상)
- 정규성 미충족 시 Mann-Whitney U. Kruskal-Wallis 등 비모수 검정 활용
- 유의미하 차이 위와 같은 체계적인 EDA 및 데이터 전처리 과정을 거쳐,

모델링에 활용될 변수의 품질과 신뢰도가 충분히 확보된 최종 데이터셋을 구축

- 랜덤포레스트, XGBoost 등 모델 feature importance, SHAP 값 등 활용
- 정보이득(Information Gain), Gain Ratio 등 통계적 변수 선택 기법 병행

시계열 정상성 검정 및 변환

- ADF(Augmented Dickey-Fuller) 테스트로 정상성 확인
- 비정상 시 차분(differencing) 등으로 정상화

모델링

- 1. 다항 로지스틱 회귀 (Multinomial Logistic Regression)
 - 다항 로지스틱 회귀는 범주형 종속변수가 3개 이상인 경우에 적합한 선형 분류 모델.
 - 각 클래스에 속할 확률을 직접적으로 추정하며, 회귀계수의 해석이 명확해 변수와 결과 간의 관계를 통계적으로 이해하기 용이함.

- 각 변수의 기여도를 계수로 정량화 가능
- 변수 간 독립성(낮은 다중공선성)만 확보되면 안정적 추정 가능
- IIA(irrelevance of irrelevant alternatives) 가정 하에서 클래스 간 선택 확률을 비교적 단순 하게 모델링

모델링

2. 다변량 판별분석 (Linear Discriminant Analysis, LDA)

- LDA는 각 클래스의 분포가 정규분포이고, 클래스 간 공분산이 동일하다는 가정 하에서 클래스 간 분리도를 극대화하는 선형 결정 경계를 학습함.
- 다중 클래스(3개 이상) 분류에 자연스럽게 확장 가능하며, 차원 축소와 분류를 동시에 수행

- 클래스 간 평균 차이와 분산을 동시에 고려해 효과적인 분류
- 차원 축소(투영) 효과로 해석력 및 계산 효율성 우수
- 데이터가 선형적으로 분리 가능할 때 높은 정확도

모델링

3. 랜덤 포레스트 (Random Forest)

• 랜덤 포레스트는 여러 결정트리를 배깅(bagging) 방식으로 결합하여 예측의 분산을 줄이고, 비선 형적·복잡한 데이터 구조도 효과적으로 학습함

- 변수 간 상호작용, 비선형성, 이상치에 강인함
- 변수 중요도(Feature Importance) 산출로 해석력 제공
- 과적합 위험 감소(앙상블 효과)

모델링

4. XGBoost

- XGBoost는 경사하강법 기반의 부스팅(Boosting) 트리 모델로, 각 단계에서 오차를 줄여가며 강력한 예측 성능을 보입니다.
- 변수 중요도, 결측치 자동 처리, 정규화 등 지원.

- 강한 비선형성, 변수 간 상호작용, 이상치/결측치 자동 처리
- 학습 과정에서 과적합 제어(정규화)
- 변수 중요도 산출로 해석력 제공

모델링

5. LightGBM

- LightGBM은 XGBoost와 유사한 트리 기반 부스팅 모델이나, 더 빠르고 효율적으로 대용량·고 차원 데이터를 처리함.
- leaf-wise 성장 방식으로 더 깊은 트리를 빠르게 생성, 높은 정확도를 달성

- 빠른 학습 속도, 메모리 효율성, 대규모 데이터 적합성
- 희소 데이터, 범주형 변수 처리에 강점
- 변수 중요도 산출 및 해석 가능

모델링

6. 앙상블 / 스태킹 (Ensemble / Stacking)

- 앙상블과 스태킹 기법은 여러 개의 서로 다른 머신러닝 모델의 예측을 결합해 단일 모델보다 더 높은 예측 성능과 일반화 능력을 확보할 수 있다.
- 스태킹은 특히 다양한 모델의 예측 결과를 메타 모델이 종합적으로 학습해, 데이터의 복잡한 패턴까지 효과적으로 반영할 수 있다.
- 여러 모델의 강점을 결합함으로써, 데이터의 다양한 특성과 불확실성에 유연하게 대응할 수 있다.

- 다양한 모델의 예측을 결합해 단일 모델보다 더 높은 정확도와 신뢰도 확보
- 모델 간 약점을 상호 보완해 과적합 위험 감소, 새로운 데이터에 대한 예측력 강화
- 다양한 알고리즘(선형, 비선형, 트리 기반 등) 조합으로 데이터의 복잡한 패턴 효과적 반영

성능 평가

평가지표

- 정확도(Accuracy)
- 재현율(Recall), 정밀도(Precision)
- F1-score 등 다양한 분류 성능 지표 활용

Utilization

필터링

- 베타(β): 시장 변동성에 대한 민감도(저변동/고변동 분류)
- 안정성: 수익률 변동성, 재무 건전성 등
- **배당:** 배당수익률 등

WHY?

위험등급별 투자성과 분석

- 고·중·저위험 분류별로 **과거 수익률**, 변동성, 배당수익률 등 실질적 투자성과와의 연관성 분석
 - → 투자자 성향별 종목 추천의 신뢰성 확보

투자자 성향 반영

- 대시보드에서 투자자 성향(위험회피/수익추구 등) 입력 시,
- 저위험+저변동+고배당, 저위험+고변동 등 맞춤형 종목 추천

Utilization

백테스팅

저위험 종목군 선정 근거

- 베타, 안정성, 배당 등의 지표를 반영해 필터링된 저위험 종목군을 대상으로 백테스팅을 실시
- 국고채 3년물 이상의 수익률을 목표로, 절대적 안정성과 실질적 투자 대안으로서의 성과를 검증

슬라이딩 윈도우(sliding window) 방식

- 과거 5년 데이터를 학습(포트폴리오 구성) 후, 직후 구간에서 실제 투자성과를 검증합니다.
- 이후 윈도우를 일정 간격만큼 이동시키며 반복 수행
- 전략의 일관성과 시장 환경 변화에 대한 적응력을 평가

Utilization

대시보드 구축

투자자 성향 입력 및 진단 기능

- 위험 선호도(저위험/고위험), 변동성 선호(저변동/ 고변동), 배당 선호 등 투자자 성향 설문 입력
- 입력값 기반으로 최적의 포트폴리오 추천 로직 자동 적용

위험등급별 종목 필터링 기능

- 고/중/저위험 등급별로 종목 자동 분류
- 저위험군 내에서 베타(변동성), 배당수익률, 재무 건전성 등 추가 필터링 옵션 제공
- 저위험-저변동, 저위험-고변동 등 맞춤형 조합 선 택 가능

대시보드 예시

Time Table

타임테이블

Plan B

06/09 (월) 논문발표

06/13 (금) 기획발표

06/24 (화) 중간발표 07/08 (화) 최종발표

Reference

참고문헌

- 이자보상배율 취약기업 증가 배경 및 시사점_한국은행_금융안정보고서(202106)
- 지현미 (2015). 낮은 현금기준 이자보상배율이 영업이익의 가치관련성에 미치는 영향. Journal of The Korean Data Analysis Society, 17(6), 3197 3210.
- 고령화 사회, 경제성장 전망과 대응방향_KDI정책포럼 제273호(2019-02)(2019. 4. 18)
- 박희정, 강호정 (2009), "로지스틱회귀분석을 이용한 코스닥기업의 부실예측모형 연구" 한 국콘텐츠학회논문지, 제9권제3호
- 김종훈, 박규일, 김민철 (2011), "상장폐지기업의 재무적 특성과 예측에 관한 연구" 회계연구, 제16권 제2호, pp.l25-l42

감사합니다 Thank you

■ 부실하체 트레이너 ■ 발표자 : 김도현

김지훈 김도현 김보윤 오대한 정승원