

The Tennis Problem

	Outlook	Temperature	Humidity	Wind	Play Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

If(Outlook = sunny AND Humidity = high) then NO

If(Outlook = sunny AND Humidity = normal) then YES

If(Outlook = overcast) then YES

If(Outlook = rain AND Wind = strong) then NO

If(Outlook = rain AND Wind = weak) then YES

Decision Tree Learning Algorithm (sometimes called "ID3")

```
1: function BUILDTREE( subsample, depth )
2:
      //BASE CASE:
3:
      if (depth == 0) OR (all examples have same label) then
          return most common label in the subsample
5:
      end if
6:
7:
        /RECURSIVE CASE:
      for each feature do
9:
          Try splitting the data (i.e. build a decision stump)
10:
          Calculate the cost for this stump
11:
      end for
12:
      Pick feature with minimum cost
13:
14:
      Find left/right subsamples
15:
      Add left branch \leftarrow BUILDTREE( leftSubSample, depth -1 )
16:
      Add right branch \leftarrow BUILDTREE( rightSubSample, depth - 1 )
17:
18:
      return tree
19:
20:
21: end function
```

The Tennis Problem

	Outlook	Temperature	Humidity	Wind	Play Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Partitioning the data...

	Outlook	Temperature	Humidity	Wind	Play Tennis?
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mi l d	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mi l d	Normal	Weak	Yes
11	Sunny	Mi l d	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mi l d	High	Strong	No

	Outlook	Temp	Humid	Wind	Play?
2	Sunny	Hot	High	Strong	No
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
14	Rain	Mild	High	Strong	No

	Outlook	Temp	Humid	Wind	Play?
1	Sunny	Hot	High	Weak	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
13	Overcast	Hot	Normal	Weak	Yes

3 examples say yes, 3 say no.

6 examples say yes, 2 examples say no.

Thinking in Probabilities...

Before the split : 9 'yes', 5 'no', $p('yes') = \frac{9}{14} \approx 0.64$

On the left branch : 3 'yes', 3 'no', $p('yes') = \frac{3}{6} = 0.5$

On the right branch : 6 'yes', 2 'no', $p('yes') = \frac{6}{8} = 0.75$

Remember... p('no') = 1 - p('yes')

The "Information" in a feature

More uncertainty = less information

$$H(X)=1$$

The "Information" in a feature

Less uncertainty = more information

$$H(X) = 0.72193$$

The "Information" in a feature

Entropy

$$H(X) = -\sum_{x \in X} \underline{p(x)} \log \underline{p(x)}$$

$$H(X) = -\left(p(head)\log p(head) + p(tail)\log p(tail)\right)$$

$$= -\left(0.5\log 0.5 + 0.5\log 0.5\right)$$

$$= -\left((-0.5) + (-0.5)\right) = 1$$

Calculating Entropy

The variable of interest is "T" (for tennis), taking on 'yes' or 'no' values. Before the split : 9 'yes', 5 'no', $p('yes') = \frac{9}{14} \approx 0.64$

In the whole dataset, the entropy is:

$$H(T) = -\sum_{i} p(x_{i}) \log p(x_{i})$$

$$= -\left\{ \frac{5}{14} \log \frac{5}{14} + \frac{9}{14} \log \frac{9}{14} \right\} = 0.94029$$

H(T) is the entropy **before** we split.

See worked example in the supporting material.

Information Gain, also known as "Mutual Information"

H(T) is the entropy before we split.

H(T|W = strong) is the entropy of the data on the left branch. H(T|W = weak) is the entropy of the data on the right branch.

H(T|W) is the weighted average of the two.

Choose the feature with maximum value of H(T) - H(T|W).

See worked example in the supporting material.

Why don't we just measure the number of errors?!

<i>X</i> ₁	(X ₂	У
1	1_	_1
1	0 -	0
1	1 –	-1
1	0	1
0	0=	- 0
0	0_	_0
0	0 –	- 0
0	0	1

Errors = 0.25 ... for both!

Mutual information

$$I(X1,Y) = 0.1887$$

$$I(X2;Y) = 0.3113$$

Decision Tree Learning Algorithm (sometimes called "ID3")

```
1: function BUILDTREE( subsample, depth )
      //BASE CASE:
 3:
      if (depth == 0) OR (all examples have same label) then
          return most common label in the subsample
 5:
      end if
 6:
 7:
      //RECURSIVE CASE:
 8:
      for each feature do
          Try splitting the data (i.e. build a decision stump)
10:
          Calculate gain for this stump
11:
      end for
12:
      Pick feature with minimum cost
13:
                          maximum information gain
14:
      Find left/right subsamples
15:
      Add left branch \leftarrow BUILDTREE( leftSubSample, depth -1 )
16:
      Add right branch \leftarrow BUILDTREE( rightSubSample, depth -1 )
17:
18:
      return tree
19:
20:
21: end function
```


