اختبار دارات اطفال 1 المسألة الأولى:

ثلاث مقاومات موصولة على التسلسل كما في الشكل مع بطارية V_0 = 62V مع مقاومة داخلية $r \approx 0$

باستخدام مقیاس فولط قمنا بالقیاس و تبینت النتائج بالشکل الاتی: $V_{AB} = V_{BC} = V_{CD} = 20V$ اوجد ماذا تکون النتائج عند قیاس V_{AC} , V_{AD} ?

المسألة الثانية:

كل البطاريات في السلسلة اللانهائية لها قوة محركة كهربائية ع و مقاومة داخلية r. اوجد البطارية المكافئة و المقاومة الداخلية المكافئة.

المسألة الثالثة:

اوجد المقاومة المكافئة بين عقدتين متتاليتين في السلك الاوسط

كل مقاومة في الشكل لها مقاومة R و هي تمتد للانهائية افقيا.

المسألة الرابعة:

اوجد المقاومة المكافئة لهذة الشبكة المثلثية اللانهائية بين النقطتين ِ Aو C. كل ضلع من المثلثات لها مقاومة R مع العلم انه تم از الة الضلع AB.

المسألة الخامسة:

لدينا الدارة في الشكل التالي التي تمتلك قاطعة ثنائية سنرمز لها ٤.

عندما تكون الدارة في الوضع "11 يقيس مقياس امبير تيار $6A = I_1$ و عندما نضع القاطعة في المسار "22 يقيس الجهاز تيار $3A = I_2$ ماذا سيقيس مقياس امبير عند وضع القاطعة في المسار "33 ملاحظة ل كلتا البطارتين قوة محركة كهربائية E و المقاومة الداخلية لهما ولمقياس الأمبير مهملة.

المسألة السادسة:

في كابل موجود تحت الأرض يوجد سلكان، وفي مكان ما بين النقطتين A و A تم تطوير مسار موصل بين السلكين (تماس كهربائي). يمكن الوصول إلى الكابل عند الموضعين A و A فقط. و لإيجاد موضع مسار الموصل، يتم أو لأ توصيل السلكين عند A ويتم قياس المقاومة (A) عند A. ثم يتم تكرار القياس بحيث يتم توصيل النقطتين عند A عند A ويتم قياس المقاومة (A) عند A بين النقطتين A و A معروفة (A). ومقاومة السلك بطول بين النقطتين A و A معروفة (A). ومقاومة السلك بطول الوحدة هي A اوم/متر. أوجد موضع مسار الموصل. البيانات الرقمية: A المرامة (A) أوم، A0.01 أوم، A1.01 أوم، A1 أوم، A1