

Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13), Bellevue, Washington, USA, July 14-18, 2013

Liberal Safety for Answer Set Programs with External Sources

Michael Fink Thomas Krennwallner Thomas Eiter Christoph Redl {eiter,fink,tkren,redl}@tuwien.ac.at

1. Motivation

- HEX-programs extend ASP by external sources
- Rule bodies may contain external atoms of the form

$$\&p[q_1,\ldots,q_k](t_1,\ldots,t_l),$$

p ... external predicate name

 q_i ... predicate names or constants: $\tau(\mathcal{P}, i) \in \{\text{pred}, \text{const}\}$

 t_i ... terms

Semantics:

1 + k + l-ary Boolean oracle function f_{\aleph_n} :

 $p[q_1,\ldots,q_k](t_1,\ldots,t_l)$ is true under assignment A

iff $f_{\&p}(A, q_1, \ldots, q_k, t_1, \ldots, t_l) = 1$.

- Traditional safety not sufficient due to value invention
- Current notion of strong safety is unnecessarily restrictive

Example

$$\Pi = \begin{cases} r_1 \colon t(a). & r_3 \colon s(Y) \leftarrow t(X), \&at[X, a](Y). \\ r_2 \colon dom(aa). & r_4 \colon t(X) \leftarrow s(X), dom(X). \end{cases}$$

Goal:

- New more liberal safety criteria
- Still guarantee finite groundability
- Future extensibility

Main result:

Flexible framework which subsumes other notions and allows for combination of syntactic and semantic safety criteria

2. Grounding Operator

We use the following canonical grounding operator:

$$G_{\Pi}(\Pi') = \bigcup_{r \in \Pi} \{r_{\theta} \mid A \subseteq \mathcal{A}(\Pi'), A \not\models \bot, A \models B^{+}(r_{\theta})\},$$
 where $\mathcal{A}(\Pi') = \{Ta, Fa \mid a \in A(\Pi')\} \setminus \{Fa \mid a \leftarrow . \in \Pi\}$ and r_{θ} is the instance of r under variable substitution $\theta : \mathcal{V} \to \mathcal{C}$.

For liberally domain-expansion safe programs, the fixpoint of this operator is reached after finitely many steps and preserves all answer sets.

Example

Program Π :

$$r_1:s(a)$$
. $r_2:dom(ax)$. $r_3:dom(axx)$. $r_4:s(Y) \leftarrow s(X), &cat[X,x](Y), dom(Y)$.

Least fixpoint of G_{Π} :

$$r'_1$$
: $s(a)$. r'_2 : $dom(ax)$. r'_3 : $dom(axx)$. r'_4 : $s(ax) \leftarrow s(a)$, & $ax[a,x](ax)$, $ax[ax)$, $ax[ax]$. $ax[ax]$: $ax[ax]$:

3. Two Key Concepts

- ightharpoonup A term is bounded if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for this term
- An attribute (=argument position of a predicate or external predicate) is (liberally) de-safe if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position

A program is de-safe iff all its attributes are de-safe

4. How to Check Safety

- 1. Start with empty set of bounded terms B_0 and de-safe attributes S_0
- 2. For all $n \geq 0$ until B_n and S_n did not change
 - a Declare additional terms as bounded $\Rightarrow B_{n+1}$ (assuming that B_n are bounded and S_n are de-safe)
 - b Identify additional de-safe attributes $\Rightarrow S_{n+1}$ (assuming that B_{n+1} are bounded and S_n are de-safe)

Identification of bounded terms in 2a by term bounding functions (TBFs) Concrete safety criteria can be plugged in by specific TBF $b(\Pi, r, S, B)$ ⇒ TBFs are easily exchangeable but must fulfill certain preconditions

5. Example: Syntactic Term Bounding Function

 $t \in b_{syn}(\Pi, r, S, B)$ iff

- (i) t is a constant in r; or
- (ii) there is an ordinary atom $q(s_1,\ldots,s_{ar(q)})\in B^+(r)$ s.t. $t=s_j$, for some $1 \le j \le ar(q)$ and $q \mid j \in S$; or
- (iii) for some external atom $\&[ec{X}](ec{Y}) \in B^+(r)$, we have that $t=Y_i$ for some $Y_i \in \vec{Y}$, and for each $X_i \in \vec{X}$,

$$Y_i \in \vec{Y}$$
, and for each $X_i \in \vec{X}$, $X_i \in B$, $if \ au(\&g,i) = const, \ X_i \ X_i \ X_i \ X_i \ X_i \ S, \ if \ \au(\&g,i) = pred.$

6. Key Propositions

Proposition 1:

If $b_i(\Pi, r, S, B)$, $1 \le i \le \ell$, are TBFs, then $\bigcup_{1 \le i \le \ell} b_i(\Pi, r, S, B)$ is a TBF. ⇒ Easy combination of multiple TBFs

Proposition 2:

If Π is a de-safe program, then $G^{\infty}_{\Pi}(\emptyset)$ is finite.

Proposition 3:

A de-safe program Π is finitely restrictable and $G^{\infty}_{\Pi}(\emptyset) \equiv^{pos} \Pi$.

 \Rightarrow Operator G is a witness for finite groundability

Note: The results hold for any TBF!

7. Advantages

- Strictly more liberal than strongly safe [Eiter et al., 2006], VI- [Calimeri et al., 2007] and ω -restricted [Syrjänen, 2001] programs.
- Modularity of the approach
- Extensible due to easy combination of multiple TBFs

8. References

► Calimeri, F., Cozza, S., and Ianni, G. (2007).

External Sources of Knowledge and Value Invention in Logic Programming Ann. Math. Artif. Intell. 50(3-4):333-361.

► Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2006). Effective Integration of Declarative Rules with External Evaluations for Semantic-Web Reasoning ESWC'06 volume 4011, pages 273-287.

► Syrjänen, T. (2001).

Omega-restricted logic programs, LPNMR'01, volume 2173 of LNCS, pages 267–279.

➤ Zantema, H. (1994).

Termination of term rewriting: Interpretation and type elimination, J. Symb. Comp., 17(1):23–50.

