Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Двумерная случайная величина: выборочные коэффициенты корреляции и эллипсы рассеивания

По дисциплине «Теория вероятностей и Математическая статистика»

Выполнил Студент гр. 3630201/80101		М. Д. Маляренко
Руководитель к.фм.н., доцент		А. Н. Баженов
	*	» 2020г.

Содержание

1	Пос	тановка задачи	5
2	Teo	рия	6
	2.1	Двумерное нормальное распределение	6
	2.2	Корреляционный момент (ковариация) и коэффициент корреляции	6
	2.3	Выборочные коэффициенты корреляции	6
		2.3.1 Выборочный коэффициент корреляции Пирсона	6
		2.3.2 Выборочный коэффициент ранговой корреляции Спирмена	6
		2.3.3 Выборочный квадрантный коэффициент корреляции	7
	2.4	Эллипсы рассеивания	7
3	Pea	лизация	8
4	Рез	ультаты	9
	4.1	Выборочные коэффициенты корреляции	9
	4.2	Эллипсы рассеивания	9
3 a	ключ	чение	11
Сг	іисок	илитературы	12
П1	рилох	жение А. Репозиторий с исходным кодом	13

Список иллюстраций

1	Эллипсы рассеивания для выборок нормального распределения с $ ho=0$	10
2	Эллипсы рассеивания для выборок нормального распределения с $ ho=0.5$	10
3	Эллипсы рассеивания для выборок нормального распределения с $a=0.9$	10

Список таблиц

1	Выборочные коэффициенты корреляции для двумерного нормального рас-	
	пределения	Ĉ
2	Выборочные коэффициенты корреляции для смеси двумерных нормальных	
	распределений	C

1 Постановка задачи

Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x,y,0,0,1,1,\rho)$ с коэффициентами корреляции $\rho=0,\ 0.5,\ 0.9.$ Изобразить сгенерированные точки на плоскости и нарисовать эллипс рассеивания. Каждую выборку сгенерировать 1000 раз и вычислить среднее значение, среднее значение квадрата и дисперсию

- 1. Выборочных коэффициентов корреляции Пирсона
- 2. Выборочных коэффициентов корреляции Спирмена
- 3. Выборочных квадратных коэффициентов

Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9)$$
(1)

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} \right] \right\}$$
(2)

Компоненты X,Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями $\overline{x},\overline{y}$ и средними квадратическими отклонениями σ_x,σ_y соответственно [1]. Параметр ρ называется коэффициентом корреляции.

2.2 Корреляционный момент (ковариация) и коэффициент корреляции

Корреляционный момент, иначе ковариация, двух случайных величин X и Y:

$$K = cov(X, Y) = M\left[(X - \overline{x})(Y - \overline{y}) \right] \tag{3}$$

Коэффициент корреляции ρ двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_x \sigma_y} \tag{4}$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n}\sum(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n}\sum(x_i - \overline{x})^2 \frac{1}{n}\sum(y_i - \overline{y})^2}} = \frac{K}{s_X s_Y},\tag{5}$$

где K, s_X^2, s_Y^2 – выборочные ковариация и дисперсии с.в. X и Y .

2.3.2 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\frac{1}{n} \sum (u_i - \overline{u})^2 \frac{1}{n} \sum (v_i - \overline{v})^2}},$$
(6)

где $\overline{u}=\overline{v}=\frac{1+2+\ldots+n}{n}=\frac{n+1}{2}$ – среднее значение рангов.

2.3.3 Выборочный квадрантный коэффициент корреляции

Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{7}$$

где n_1, n_2, n_3, n_4 – количества точек с координатами (x_i, y_i) , попавшими соответственно в I, II, III и IV квадранты декартовой системы с осями $x' = x - med \ x, y' = y - med \ y$ и с центром в точке с координатами $(med \ x, med \ y)$.

2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = const.$$
 (8)

Центр эллипса (8) находится в точке с координатами $(\overline{x}, \overline{y})$; оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$tg2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (9)$$

3 Реализация

Расчёты и построение графиков производились в среде аналитических вычислений Махіта. Для построения выборок двумерного нормального распределения, вычисления выборочных коэффициентов корреляции Пирса, Спирмена и квадратного выборочного коэффициента корреляции были написаны функции соответственно random2_normal, r, r_S и r_Q.

Смесь двумерных нормальных распределений происходила по следующей схеме: генерировалась выборка равномерно распределённых непрерывных случайных чисел в диапазоне [0,1]. В цикле по элементам этой выборки происходила генерация двумерного нормального распределения с нужными параметрами. В случае, если элемент выборки равномерного распределения < 0.1, то генерировалась пара чисел двумерного нормального распределения с весовым коэффициентом 0.1, в обратном случае – с весовым коэффициентом 0.9 (см. (1)).

Для построения графиков использовалась интегрированная в среду утилита gnuplot. Полный текст скрипта для среды Maxima представлен в репозитории GitHub.

4 Результаты

4.1 Выборочные коэффициенты корреляции

В Таблице 1 представлены выборочные коэффициенты корреляции Прирса (5), Спирмена (6) и квадратный коэффициент корреляции (7) для выборок размера 20, 60 и 100 элементов двумерного нормального распределения $N(x,y,0,0,1,1,\rho)$ с коэффициентами корреляции $\rho=0,\ 0.5,\ 0.9.$

Таблица 1: Выборочные коэффициенты корреляции для двумерного нормального распределения

		r			r_Q			r_S		
		E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)
	N = 20	0.0	0.05	0.05	0.0	0.05	0.05	0.0	0.05	0.05
$\rho = 0$	N = 60	0.0	0.02	0.02	0.0	0.02	0.02	0.0	0.02	0.02
	N = 100	0.0	0.01	0.01	0.0	0.01	0.01	0.0	0.01	0.01
	N = 20	0.5	0.27	0.03	0.3	0.16	0.05	0.5	0.25	0.03
$\rho = 0.5$	N = 60	0.5	0.25	0.01	0.33	0.12	0.01	0.5	0.24	0.01
	N = 100	0.49	0.253	0.006	0.33	0.120	0.009	0.48	0.234	0.006
	N = 20	0.89	0.800	0.003	0.68	0.50	0.03	0.87	0.749	0.005
$\rho = 0.9$	N = 60	0.89	0.809	0.007	0.70	0.505	0.009	0.88	0.782	0.001
	N = 100	0.90	0.806	0.004	0.71	0.506	0.005	0.88	0.7837	0.0007

В Таблице 2 представлены выборочные коэффициенты корреляции Пирса, Спирмена и квадратный коэффициент корреляции для выборок смеси двумерных нормальных распределений (1) размера 20, 60 и 100 элементов.

Таблица 2: Выборочные коэффициенты корреляции для смеси двумерных нормальных распределений

	r				r_Q		r_S		
	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)	E(z)	$E(z^2)$	D(z)
N=20	-0.3	0.5	0.4	0.5	0.32	0.04	0.5	0.29	0.08
N = 60	-0.6	0.49	0.09	0.6	0.34	0.01	0.5	0.26	0.03
N = 100	-0.7	0.52	0.03	0.56	0.318	0.007	0.5	0.24	0.02

4.2 Эллипсы рассеивания

На Рис. 1 - 3 представлены графики выборок размера 20, 60 и 100 двумерного нормального распределения $N(x,y,0,0,1,1,\rho)$ с коэффициентом корреляции $\rho=0,\ 0.5,\ 0.9,$ а также теоретические эллипсы рассеивания, рассчитанными по формуле (8), где за константу из правой части уравнения взято число $(2.5\sigma_x)^2=(2.5\sigma_y)^2=(2.5)^2$

Рис. 1: Эллипсы рассеивания для выборок нормального распределения с ho=0

Рис. 2: Эллипсы рассеивания для выборок нормального распределения с $\rho=0.5$

Рис. 3: Эллипсы рассеивания для выборок нормального распределения с $\rho=0.9$

Заключение

В результате выполнения лабораторной работы были построены выборки двумерного нормального распределения с коэффициентами корреляции $\rho=0,\ 0.5,\ 0.9$ и для смеси нормальных распределений. По оценкам выборочных коэффициентов корреляции можно сказать, что квадратный выборочный коэффициент имеет наибольшее отклонение от теоретического коэффициента корреляции, с увеличением мощности выборки все выборочные коэффициенты корреляции стремятся к своему теоретическому значению.

По графикам двумерного нормального распределения видно, что чем больше коэффициент корреляции, тем более узкий эллипс рассеивания, в пределе при модуле коэффициента корреляции равном единице эллипс вырождается в прямую.

Список литературы

[1] Теоретическое приложение к лабораторным работам №5-8 по дисциплине «Математическая статистика». – СПб.: СПбПУ, 2020. – 19 с

Приложение А. Репозиторий с исходным кодом

Исходный код скрипта для среды аналитических вычислений Maxima находится в репозитории GitHub-URL https://github.com/malyarenko-md/TeorVer