Sistema numérico

Índice

- 1. ¿Qué es un sistema numérico?
- 2. <u>Tipos de sistemas numéricos</u>
- 3. ¿Qué es un dígito?
- 4. ¿Qué es un sistema binario?
- 5. Conversión entre bases

1 ¿Qué es el sistema numérico?

El sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos del sistema.

2 Tipos de sistemas numéricos

Dentro del sistema numérico se pueden hacer dos grandes divisiones:

- Sistema numérico no posicional
- Sistema numérico posicional

Sistema numérico no posicional

Son aquellos en los cual el valor de los símbolos que componen el sistema es fijo, no depende de la posición, por ejemplo, el sistema romano.

Sistema numérico posicional

Son aquellos que el valor del símbolo depende del valor que se les ha asignado y de la posición que ocupa el símbolo.

3 ¿Qué es un dígito?

Se define como dígito a cada uno de los símbolos diferentes que constituyen el sistema de numeración.

Base y dígito

Definimos como base del sistema de numeración a la cantidad de dígitos que lo conforman.

Ejemplo: Este sistema está formado por diez símbolos, los dígitos del 0 al 9. Por lo tanto, estaremos frente a una base 10.

Una vez agotada la cantidad de dígitos que forman al sistema de numeración, las cantidades mayores a la base se obtienen combinando en forma adecuada los diferente dígitos del sistema. Esto hace que cada uno de los dígitos adopte distintos valores según la posición que ocupe.

$$3434_{10} = 3000 + 400 + 30 + 4$$

Una forma más clara es si expresamos en número en función de su base 10.

$$3434_{110} = 3.10^3 + 4.10^2 + 3.10^1 + 4.10^\circ$$

También podemos representar números decimales en sistema posicional.

$$3434.25_{|10} = 3.10^3 + 4.10^2 + 3.10^1 + 4.10^0 + 2.10^{-1} + 5.10^{-2}$$

4 ¿Qué es un sistema binario?

Es un sistema de numeración que está formado por dos símbolos, los dígitos son representados utilizando dos cifras: 0 y 1.

5 Conversión entre bases

Conversión de base 10 a binario

Podemos convertir cualquier número decimal a otra base mediante el siguiente método, lo veremos con un ejemplo 67₁₁₀ a base 2 (binario).

Tomamos el número y calculamos los residuos de sucesivas **divisiones enteras** por la base de llegada:

LSB (Bit menos signif.)

MSB (Bit más significativo)

Al tener en cuenta el sentido (der. a izq.), tenemos: 67 = 1000011₂

Podemos verificarlo:

$$1000011_{|2} = 1.2^{6} + 0.2^{5} + 0.2^{4} + 0.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0} = 67$$

Conversión a otras bases

Siguiendo el ejemplo anterior podemos convertir el 67_{|10} a base 16 (Hexadecimal) y base 8 (octal).

$$1000011_{|2} = 001 - 000 - 011 = 103_{|8}$$

1 0 3

$$1000011_{|2} = 0100 - 0011 = 43_{|16}$$
4 3

Decimal	Binario	Hexadecimal	Octal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	5
5	0101	5	6
6	0110	6	7
7	0111	7	
8	1000	8	
9	1001	9	
10	1010	Α	
11	1011	В	
12	1100	С	
13	1101	D	
14	1110	E	
15	1111	F	

DigitalHouse>