Quiz 1 2020

Allen Fang and Xu Yuan

1 Exercise 1

1. Recalling definition 2.7, if suffices to compute

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-nx} \frac{\pi}{\sin \pi \alpha} e^{i(\pi - x)\alpha} = \frac{1}{n + \alpha}, \quad n \in \mathbb{Z}.$$

2. Use Parseval's with $c_n = \frac{1}{n+\alpha}$ and $f(x) = \frac{\pi}{\sin \pi \alpha} e^{i(\pi-x)\alpha}$.

2 Exercise 2

We can prove inductively that for $f \in C^k$, $c_n(f^{(\ell)}) = (in)^{\ell} c_n(f)$ for all $\ell < k$. Then, applying Parseval's yields that

$$\sum_{n\in\mathbb{Z}} \left| (in)^{\ell} c_n(f) \right|^2 < \infty$$

which yields the result.

3 Exercise 3

- 1. Using *u*-substitution with $u=x+\frac{\pi}{n}$ and the fact that $1+e^{i\pi}=0$ yields the result.
 - 2. Applying the Holder condition to the formula for c_n derived in part 1,

$$c_n \le C \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(\frac{\pi}{n}\right)^{\alpha} e^{inx} dx.$$

Since α is fixed,

$$\int_{-\pi}^{\pi} \pi^{\alpha} e^{inx} \, dx \in L^{1}$$

and thus, $c_n = O(1/|n|^{\alpha})$.

3. To verify the Holder condition, we write

$$|f(x+h) - f(x)| \le \sum_{k=0}^{\infty} 2^{-k\alpha} \left| e^{i2^k h} - 1 \right|$$

$$\le \sum_{2^k |h| \le 1} 2^{-k\alpha} 2^k |h| + 2 \sum_{2^k |h| > 1} 2^{-k\alpha}.$$

This splitting follows from the fact that $|1 - e^{ix}| \le |x|$ for sufficiently small x and that for any $x, y \in \mathbb{R}$, $|e^{ix} - e^{iy}| \le 2$.

Then, there exists some k_0 , $2^{k_0}|h| > 1$, such that $\sum_{2^k|h|>1} 2^{-k\alpha} = \sum_{k=k_0}^{\infty} 2^{-k\alpha} = \frac{1}{1-2^{-\alpha}} 2^{-k_0\alpha} \le \frac{1}{1-2^{-\alpha}} |h|^{-\alpha}$. To calculate c_{2^k} , it is sufficient to confirm uniform convergence.

1

4 Exercise 4

1. It is a quick calculation to show that,

$$c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| dx$$
$$= \frac{\pi}{2}.$$

and

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| e^{inx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| \cos nx dx$$

$$= -\frac{1}{n\pi} \int_{0}^{\pi} \sin nx dx + \frac{1}{n\pi} x \sin nx \Big|_{0}^{\pi}$$

$$= \frac{1}{n^{2}\pi} \cos nx \Big|_{0}^{\pi}$$

$$= \frac{1}{n^{2}\pi} ((-1)^{n} - 1).$$

2. Evaluating the Fourier series for |x| at x = 0 yields

$$0 = \frac{\pi}{2} - 4 \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2},$$

which immediately shows the first inequality.

The second equality follows from writing

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}.$$

Using the hint, this is equivalent to:

$$\frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2},$$

which yields the second equality.

3. Using Parseval's equality shows that

$$\frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} + \frac{\pi^2}{4} = \frac{\pi^2}{3},$$

which reduces to the first equation.

The second equality follows from writing

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \sum_{n=1}^{\infty} \frac{1}{(2n)^4} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}.$$

This is equivalent to:

$$\frac{15}{16} \sum_{n=1}^{\infty} \frac{1}{n^4} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4},$$

which yields the second equality.

5 Exercise 5

1. The map is clearly invertible, since for v(t) = C(t,s)y, v(s) = y. Moreover, it is linear, as $C(t,s)y_1 + C(t,s)y_2$ solves

$$y'(t) = A(t)y(t), \quad y(s) = y_1 + y_2,$$

which is the defining equation for $C(t,s)(y_1 + y_2)$.

- 2. Plugging in C(t,s) verifies that it is a solution.
- 3. By definition, the map $t \mapsto C(t,u)y_0$ is equal to $C(s,u)y_0$ at the point s, so

$$C(t,u)y_0 = C(t,s)(C(s,u)y_0) = (C(t,s)C(s,u))y_0.$$

Applying this, C(t,s)C(s,t) = C(t,t) = Id.

- 4. $C(t,s) = C(t,u)(C(s,u))^{-1}$. We conclude using the fact that C(t,s) is continuous for fixed s.
- 5. First, it is immediate that $f(t_0) = y_0$. Then, checking that f satisfies the differential equation follows from an application of Leibniz's integration formula and the property in part 2.