

Application de guidage

Halle aux Farines

Scénarios d'utilisation

Étudiants

Trouver un itinéraire optimal

Enseignants

Gain de temps

Visiteurs

Repérer les points d'intérêts

Architecture, conception et gestion de projet (1/4)

2023-2024 E.Sriguru 3

Architecture, conception et gestion de projet (2/4)

Module	Tâches
Module d'interface utilisateur	 - Modélisation du plan des étages en utilisant les plans vectoriels SVG - Modélisation des plans sous forme de graphe stocké dans un fichier CSV - Mise en place de l'interface Web - Implémentation de l'algorithme de Dijkstra pour trouver le plus court chemin - Implémentation d'un espace administrateur
Module de localisation	- Implémentation du code dans le matériel ESP32 (émetteurs et récepteurs)
Module de transmission de données	- Implémentation du programme de traitement de signaux en Python
Module de traitement de données	- Implémentation du serveur NodeJS - Implémentation de l'algorithme de trilatération

Architecture, conception et gestion de projet (3/4)

Calendrier de Jalon

Compétences techniques

Architecture, conception et gestion de projet (4/4)

Tests Unitaires

Module de localisation :

Anchor 1	Tag
7D, 0.99	84,0.99
7D, 1.01	84,1.01
7D, 1.00	84,1.00
7D, 0.97	84,0.97

Module de traitement de données et d'Interface Web :

```
1) Coordonnées estimées de l'utilisateur : { x: 0.6, y: 0.9 }
```


Test d'Intégration

Module de transmission de données :

```
1) Data successfully sent to the server. {'links': [{'A': '85', 'R': '1.1'}, {'A': '84', 'R': '1.1'}]} {'A': '85', 'R': '1.1'} {'A': '84', 'R': '1.1'}
```


Les difficultés rencontrées et leurs solutions

- Localisation sur plusieurs étages
 - **Problème** : Impossible d'implémenter la localisation sur deux étages avec la triangulation en 3D en raison des variations de hauteur des étages et des obstacles.
 - **Solution** : Utilisation de la trilatération en 2D pour la localisation sur un seul étage.
- Portée limitée des ESP32
 - **Problème** : Les ESP32 avaient une portée limitée à 30 mètres, insuffisante pour une couverture complète.
 - **Solution** : Ajout de deux bornes supplémentaires à 30 mètres des premières pour assurer une couverture continue :

Programmation

Algorithme de trilatération

```
function tagPos(a, b, c) {
    // Calculer le cosinus de l'angle A en utilisant la loi des cosinus
    const cosA = (b * b + c * c - a * a) / (2 * b * c);

    // Calculer les coordonnées x et y du point C
    const x = b * cosA;
    const y = b * Math.sqrt(1 - cosA * cosA);

    // Retourner les coordonnées arrondies à une décimale
    return [parseFloat(x.toFixed(1)), parseFloat(y.toFixed(1))];
}
```


Conclusion

- À quoi ressemblerait la version 2 de votre logiciel ?
 - Extension de la localisation à plusieurs étages.
 - Amélioration de l'interface utilisateur avec des notifications en temps réel.
 - Optimisation des performances de l'algorithme de recherche du plus court chemin en utilisant par exemple l'algorithme A*.
- Que changeriez-vous si vous deviez refaire votre projet ?
 - Choix de matériel avec une meilleure portée et précision.
 - Planification anticipée de la gestion des obstacles physiques.