Töluleg Greining Verkefni 7

Bjarki Geir Benediktsson, Haukur Óskar Þorgeirsson, Matthías Páll Gissurarson Kennari: Máni Maríus Viðarsson

20. febrúar 2013

1 Dæmi 7

Við notuðum það sem gefið var og fengum út eftirfarandi mismunakvótatöflu.

i	x_i	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}, x_i+4]$
0	-1	0.5	0	0.5	-0.3125	0.125
1	-1	0.5	0.5	-0.125	-0.0625	
2	0	1	0.25	-0.25		
3	1	1.25	0			
4	1	1.25				

en út frá henni fæst að

$$p(x) = 0.5 + 0.5(x+1)^2 - (5/16)(x+1)^2x + (1/8)(x+1)^2x(x-1)$$

$$=\frac{x^4}{8} - \frac{3x^3}{16} - 0.25x^2 + 0.5625x + 1,$$

og

$$p(0.3) = 0.5 + 0.5 \cdot 1.3^2 - (5/16)(1.3^2) \cdot 0.3 + 0.125 \cdot 1.3^2 \cdot 0.3 \cdot -0.7 = 1.422.$$

Við fáum svo út frá ójöfnunni $-1 \le f^{(5)}(x) \le 4$ að $-0.00207025 \le f(0.3) - p(0.3) \le 0.008281$, en lengd bilsin er |0.008281 - 0.00207025| = 0.00621075. Ef við notum miðpunkt bilsins til að nálga f(0.3) og rúnum af miðað við leng bilsins fáum við fáum við þá $f(0.3) = 1.422 + 0.003105375 = 1.4251 \pm 0.0031$.

2 Dæmi 8