Esercizi di Algebra e Geometria

Contents

Esercizi per il 13 Aprile 2022. Equazioni cartesiane e parametriche, intersezione e somma di sottospazi	4
Esercizi per il 27 Aprile 2022. Somme dirette. Coordinate rispetto ad una base.	(
Esercizi per il 04 Maggio 2022. Applicazioni lineari. Nucleo e immagine di un'applicazione lineare	8
Esercizi per l'11 Maggio 2022. Matrici associate, inverse, composizioni	10
Esercizi per il 18 Maggio 2022. Determinante e inverse	12
Esercizi per il 25 Maggio 2021. Diagonalizzabilità	14

Esercizi per il 13 Aprile 2022. Equazioni cartesiane e parametriche, intersezione e somma di sottospazi

- (1) Siano $U = \langle (1,1,1), (1,2,1) \rangle$ e $V = \{(x,y,z) \in \mathbb{R}^3 : x-y-z=0\}$.
 - (a) È possibile descrivere U con una sola equazione lineare? In caso affermativo determinarla.
 - (b) Determinare una base B di $U \cap V$;
 - (c) Completare B ad una base di U e ad una base di V;
 - (d) Determinare una base di U + V.
- (2) Consideriamo il sottospazio di \mathbb{R}^5

$$U = \langle (1, 2, 1, 4, 5), (2, -1, 3, -1, 3), (0, 5, -1, 9, 7) \rangle.$$

- (a) Determinare delle equazioni parametriche di *U*;
- (b) Determinare delle equazioni cartesiane di U.
- (3) Consideriamo in \mathbb{R}^5 il sottospazio U_k dipendente da un parametro reale k dato da

$$U_k = \langle (1, 2, k, 1, 0), (0, 1, 1, -1, 1) \rangle$$

e W di equazione cartesiana

$$\begin{cases} x_1 - x_2 + x_3 - 2x_5 = 0 \\ x_3 - x_4 = 0 \end{cases}$$

- (a) Determinare $\dim U_k$ al variare del parametro k;
- (b) Determinare una base di W;
- (c) Stabilire per quali valori di k si ha $U_k \cap W = \{0_{\mathbb{R}^n}\}.$
- (4) Si considerino in \mathbb{R}^4 i sottospazi $U = \langle (1, -1, 2, 1), (2, 0, 3, 1) \rangle$ e $W_k = \langle (6, -2, k, 4), (1, 2, 3, 4).$
 - (a) Determinare una base di U e una base di W_k al variare del parametro k.
 - (b) Determinare per quali valori di k si ha $U + W_k = \mathbb{R}^4$.
 - (c) Determinare per quali valori di k si ha $U \cap W_k = \{0_{\mathbb{R}^n}\}.$
- (5) In \mathbb{R}^4 si considerino il sottospazio $U = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ e il sottospazio $W = \langle \mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \rangle$ dove $\mathbf{u}_1 = (1, 1, 1, 1), \mathbf{u}_2 = (2, 0, -4, -4), \mathbf{w}_1 = (1, 2, 0, 0), \mathbf{w}_2 = (2, 3, 3, 3), \mathbf{w}_3 = (3, 3, 2, 5).$
 - (a) Determinare $\dim U$ e $\dim W$ (b) determinare le equazioni cartesiane di U tramite il metodo di eliminazione dei parametri, del rango e ad "occhio"; (c) determinare le equazioni cartesiane di W;
 - (d) determinare una base di $U \cap W$; (e) determinare una base per U + W.
- (6) Consideriamo i vettori $\mathbf{v}_1 = (1, 1, 1, 1, 1), \mathbf{v}_2 = (1, -1, 0, -2, 1), \mathbf{v}_3 = (2, 0, 1, 1, 1)$ in \mathbb{R}^5 .
 - (a) determinare le equazioni cartesiane del sottospazio $V = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$.
 - (b) determinare una base di \mathbb{R}^5 contenente i vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

(7) In \mathbb{R}^5 si consideri il sottospazio V generato dai vettori $\mathbf{v}_1=(1,3,2,0,1)$ e $\mathbf{v}_2=(0,3,1,0,4)$.

(a) Determinare le equazioni cartesiane di V (b) determinare le equazioni cartesiane di un sottospazio W di dimensione 3 tale che dim $(V\cap W)=0$; (c) determinare le equazioni cartesiane di un sottospazio U di dimensione 3 tale che dim $(V\cap U)=1$.

Esercizi per il 27 Aprile 2022.

Somme dirette. Coordinate rispetto ad una base.

- (1) Consideriamo in \mathbb{R}^4 i tre sottospazi $U = \langle (1, -1, 0, 1), (2, 3, 1, 0) \rangle$, $V = \langle (3, 2, 1, 2) \rangle$ e $W = \langle (0, 0, 0, 1) \rangle$.
 - (a) Stabilire se le somme U + V, U + W e V + W sono dirette.
 - (b) Mostrare che la somma U+V+W non è diretta nel senso che è possibile trovare $u_1,u_2\in U,$ con $u_1\neq u_2,\,v_1,v_2\in V$ e $w_1,w_2\in W$ tali che

$$u_1 + v_1 + w_1 = u_2 + v_2 + w_2.$$

(2) In \mathbb{R}^4 si considerino i sottoinsiemi

$$U_1 = \{(x, y, z) : (x, x + 2y, x + y + 3z) = (x, y, z)\}$$

$$U_2 = \{(x, y, z) : (x, x + 2y, x + y + 3z) = (2x, 2y, 2z)\}$$

e

$$U_3 = \{(x, y, z) : (x, x + 2y, x + y + 3z) = (3x, 3y, 3z)\}.$$

- (a) Mostrare che U_1, U_2, U_3 sono sottospazi di \mathbb{R}^3 .
- (b) Mostrare che $U_1 \oplus U_2$ e che $(U_1 \oplus U_2) \oplus U_3$.
- (3) In \mathbb{R}^4 consideriamo il sottospazio $U=\langle (1,2,1,3),(1,3,1,2)\rangle$ e il sottospazio W_k dipendente dal parameto reale k di equazioni cartesiane

$$\begin{cases} x + kz = 0 \\ x + y - 3t = 0 \end{cases}$$

- (a) Determinare per quali valori di k la somma $U + W_k$ è diretta;
- (b) nei casi in cui la somma non è diretta determinare, se possibile, due vettori \mathbf{v}_1 e \mathbf{v}_2 linearmente indipendenti che si possano scrivere in due modi diversi come somma di un vettore di U e uno di W_k .
- (c) determinare al variare di k una base (più semplice possibile) di $U+W_k$
- (4) (a) In \mathbb{R}^4 mostrare che

$$B = ((1, -1, 2, 0), (2, 0, 1, 1), (5, -1, -1, 2))$$

е

$$C = ((1, -3, 1, -1), (-1, 5, -2, 2), (1, 1, 4, 1))$$

sono entrambe basi (ordinate) di un sottospazio vettoriale U.

- (b) Mostrare che $u=(5,5,5,5)\in U$ e determinare le coordinate di u sia rispetto alla base B che alla base C.
- (c) Determinare il vettore $(1, -1, 0)_B$;
- (d) Quali sono le coordinate rispetto alla base C del vettore $(11/5, -13/5, 4/5)_B$?

Soluzione. B e C sono basi dello spazio U di equazione x+y-2t=0 ed é quindi chiaro che $u\in U.$

Abbiamo
$$u = (-3, 9, -2)_B = (9, 6, 2)_C$$

Questo vettore é (-1, -1, 1, -1)

Si ha semplicemente $(11/5, -13/5, 4/5)_B = (1, 0, 0)_C$. (5) Consideriamo il sottospazio U di \mathbb{R}^3 di equazione 2x - y + 3z = 0. Si considerino le due basi di Udate da

$$B = ((1, 2, 0), (-1, 1, 1)), C = ((1, 5, 1), (0, 3, 1))$$

Determinare il cambio di coordinate dalla base B alla base C e viceversa, cioè determinare le coordinate rispetto a C di un generico elemento $(a,b)_B$ e viceversa.

(6) In \mathbb{R}^3 consideriamo le base canonica E e la base $\mathbb{R} = ((1,1,1),(1,1,0),(1,0,0))$. Determinare la matrice del cambio di base ${\cal M}^E_B$ e la matrice del cambio di base ${\cal M}^B_E.$

Esercizi per il 04 Maggio 2022.

Applicazioni lineari. Nucleo e immagine di un'applicazione lineare

(1) Sia $F: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare di equazione

$$F(x, y, z) = (x - z, 2x - y + 3z).$$

Determinare la matrice $M_{E_2}^{E_3}(F)$ associata ad F rispetto alla base canonica E_3 di \mathbb{R}^3 e alla base canonica E_2 di \mathbb{R}^2 .

(2) Sia U il sottospazio di \mathbb{R}^3 di equazione cartesiana x+y+z=0. Consideriamo l'applicazione lineare $F:U\to U$ data da

$$F(x, y, z) = (x - y, 3y + 2z, -y - z).$$

- (a) Mostrare che B = ((1, -1, 0), (0, 1, -1)) è una base di U
- (b) Determinare la matrice associata $M_B^B(F)$.
- (c) Sia $\mathbf{u} = (2,3)_B$. Determinare $F(\mathbf{u})$.
- (3) Sia $F: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare determinata da f(1,1) = (1,2) e f(1,-1) = (3,4). Determinare f(1,0) e f(0,1). Determinare inoltre le equazioni di f rispetto alle coordinate canoniche.
- (4) Scrivere le equazioni di due diverse applicazioni lineari $f, g : \mathbb{R}^3 \to \mathbb{R}^3$ tali che f(1, 2, 1) = g(1, 2, 1) = (2, 1, 3) e f(1, 2, 3) = g(1, 2, 3) = (0, 0, 0).
- (5) Stabilire se esiste un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che f(1,2,1) = (2,3), f(0,1,1) = (1,2), f(1,0,-1) = (2,2).
- (6) Siano $S, T \in \mathbb{R}^3$ dati da $S = \{(x, y, z) : x + y = 0\}$ e $T = \langle C \rangle$ dove $C = \{(1, 1, 1), (2, 3, 1)\}$. Sia B = ((1, -1, 0), (-2, 2, 1)). Sia $f : S \to T$ data da $f((x, y)_B) = (x + 2y, y 2x)_C$. Determinare f(3, -3, 3).
- (7) Sia U il sottospazio di \mathbb{R}^3 di equazione x+y-z=0. Stabilire quante sono le applicazioni lineari $F:U\to\mathbb{R}^2$ tali che $F(1,-1,0)=(3,-2),\,F(0,1,1)=(-1,2),\,F(1,1,2)=(1,2))$. Se possibile scrivere le equazioni di una tale applicazione lineare rispetto a delle basi scelte.
- (8) Sia h un parametro reale e $f: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che f(1,1,1) = (3,h,h), f(1,0,1) = (2,0,2), f(1,1,0) = (2,h+1,h-1).
 - (a) Giustificare il fatto che tale applicazione lineare esiste ed è unica.
 - (b) determinare, al variare di h, la matrice $M_E^E(f)$ associata ad f rispetto alla base canonica sia nel dominio che nel codominio;
 - (c) mostrare che per ogni h esiste un vettore \mathbf{v}_h tale che $f(\mathbf{v}_h) = 2\mathbf{v}_h$.
- (9) Sia $W_k \subseteq \mathbb{R}^3$ il sottospazio dipendente da un parametro reale k dato da

$$W_k = \langle (1,2,k), (1,k,1), (2,4,3) \rangle.$$

- (a) Al variare del parametro reale k determinare una base \mathcal{B}_k di W_k .
- (b) Stabilire per quali valori di k il vettore v = (1, 2, 2) appartiene a W_k ;
- (c) Determinare per quali valori del parametro k esiste un'applicazione lineare $F_k: \mathbb{R}^3 \to \mathbb{R}^3$ tale che $\operatorname{Im}(F_k) = W_k$ e $\ker(F_k) = \langle v \rangle$. Per questi valori di k descrivere un tale endomorfismo F_k esplicitamente (cioè dandone le equazioni rispetto alla base canonica).
- (10) Sia U il sottospazio di \mathbb{R}^5

$$U = \langle (1, 3, 2, 0, 0), (0, 2, 0, 2, 1), (0, 1, 1, 0, 0) \rangle$$

- (a) Mostrare che B = ((1,3,2,0,0), (0,2,0,2,1), (0,1,1,0,0)) è una base di U.
- (b) Consideriamo l'applicazione lineare $F: U \to \mathbb{R}^3$ data da

$$F((x_1, x_2, x_3)_B) = (x_1 + x_2, x_2 - x_3, x_1 + x_3).$$

Determinare la matrice

$$M_E^B(F)$$

dove E indica la base canonica di \mathbb{R}^3 .

- (c) Determinare $\ker F \in \operatorname{Im} F$.
- (11) Siano $U \subseteq \mathbb{R}^3$ di equazione x-2y+3z=0 e $W \subseteq \mathbb{R}^4$ di equazione $x_1+2x_2-3x_3+4x_4=0$. Denotiamo con E_3 ed E_4 le basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 rispettivamente. (a) Determinare se esiste un'applicazione lineare $F: \mathbb{R}^3 \to \mathbb{R}^4$ con ker F=U e ImF=W. In caso

 - affermativo scrivere la matrice associata $M_{E_4}^{E_3}(F)$; (b) Determinare se esiste un'applicazione lineare $F: \mathbb{R}^3 \to \mathbb{R}^4$ con ker F = U. In caso affermativo scrivere la matrice associata $M_{E_4}^{E_3}(F)$;
 - (c) Determinare se esiste un'applicazione lineare $F: \mathbb{R}^4 \to \mathbb{R}^3$ con $\ker F = W$ e $\operatorname{Im} F = U$. In caso affermativo scrivere la matrice associata $M_{E_4}^{E_4}(F)$; (d) Determinare se esiste un'applicazione lineare iniettiva $F: U \to W$. In caso affermativo scrivere
 - la matrice associata $M_C^B(F)$ dove B e C sono basi scelte di U e W rispettivamente.
 - (e) Determinare se esiste un'applicazione lineare $F: \mathbb{R}^4 \to \mathbb{R}^3$ con Im F=U e ker(F)= $\langle (1,0,1,0),(0,0,0,1)\rangle$. In caso affermativo scrivere la matrice associata $M_{E_3}^{E_4}(F)$.

Esercizi per l'11 Maggio 2022. Matrici associate, inverse, composizioni

(1) Si considerino la base B=((0,1,1),(1,1,0),(0,0,1)) e la base canonica E di \mathbb{R}^3 e f l'endomorfismo di \mathbb{R}^3 determinato da

$$M_E^B(f) = \begin{pmatrix} 1 & 3 & -1 \\ 4 & 4 & -5 \\ 3 & 1 & -6 \end{pmatrix}.$$

- (a) Verificare che $M_B^B(f) = \begin{pmatrix} 3 & 1 & -4 \\ 1 & 3 & -1 \\ 0 & 0 & -2 \end{pmatrix}$.
- (b) Determinare la matrice $M_E^E(f)$ associata ad f rispetto alla base canonica.
- (c) Determinare se esistono due vettori non nulli $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ tali che $f(\mathbf{v}) = 2\mathbf{v}$ e $f(\mathbf{u}) = 3\mathbf{u}$.
- (2) Sia V uno spazio vettoriale di dimensione 3 e B una sua base costituita dai vettori $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$. Consideriamo l'applicazione lineare $F:V\to V$ definita da

$$F(\mathbf{b_1}) = (k+1)\mathbf{b_1} - \mathbf{b_3}, \ F(\mathbf{b_2}) = k\mathbf{b_2} + (k+1)\mathbf{b_3}, \ F(\mathbf{b_3}) = k\mathbf{b_3}.$$

- (a) stabilire per quali valori di k l'endomorfismo F è invertibile;
- (b) per i valori per cui F è invertibile determinare le equazioni di F^{-1} ;
- (3) Sia B la base di \mathbb{R}^3 data da $B = \{(1,0,0),(1,1,0),(1,1,1)\}$ ed E la base canonica di \mathbb{R}^4 . Si consideri la funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^4$ data da

$$M_E^B(f) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & -1 \end{array}\right).$$

- a) Si dica se la funzione f è iniettiva e/o suriettiva.
- b) Si determini, se possibile, un sottospazio di W di \mathbb{R}^3 di dimensione 2 la cui immagine tramite f abbia dimensione 1.
- c) Si determinino, se possibile, due vettori linearmente indipendenti di \mathbb{R}^4 non appartenenti all'immagine di f.
- d) Si determini la controimmagine mediante f del vettore (1,1,0,1), cioè l'insieme

$$\{\mathbf{v} \in \mathbb{R}^4 : f(\mathbf{v}) = (1, 1, 0, 1)\}.$$

(4) Si consideri il sottospazio W di \mathbb{R}^4 dato da

$$W = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$$

e le applicazioni lineari $f:W\to\mathbb{R}^2$ e $g:\mathbb{R}^2\to W$ date da

$$\begin{split} f(x,y,z,t) &= (x+y,z), & \forall (x,y,z,t) \in W \\ g(x,y) &= (x,0,-y,y-x) & \forall (x,y) \in \mathbb{R}^2 \end{split}$$

- a) Determinare una base B di W;
- a) Determinare una base B di W;
 b) Determinare le matrici associate M_E^B(f) e M_B^E(g), dove B è la base determinata nel punto precedente e E è la base canonica di R²;
 c) Stabilire se f ∘ g : R² → R² è invertibile ed in tal caso determinarne l'inversa.
 d) Stabilire se g ∘ f : W → W è invertibile ed in tal caso determinarne l'inversa.
 (5) Consideriamo il sottospazio U di R⁴ di equazioni cartesiane x + y + z = 0, y + z + t = 0.
- - (a) Determinare una base $B = (\mathbf{b}_1, \mathbf{b}_2)$ di U;
 - (b) Descrivere l'applicazione lineare iniettiva $F: U \to U$ tale che $F(\mathbf{b}_1) = 2\mathbf{b}_1 + 3\mathbf{b}_2$ e $F(\mathbf{b}_2) =$ $3\mathbf{b}_1 + 2\mathbf{b}_2$.
 - (c) Determinare F(3, 5, -8, 3).
 - (d) Mostrare che F è invertibile
 - (e) Determinare $M_B^B(F^{-1})$.

Esercizi per il 18 Maggio 2022. Determinante e inverse

(1) Determinare, se esiste, l'inversa A^{-1} della matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 2 & 3 \end{array}\right).$$

(2) Determinare per quali valori del parametro reale t la seguente matrice è invertibile. In tali casi determinarne l'inversa

$$A = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & -1 & k+1 \\ 0 & 1 & 2 \end{array}\right).$$

(3) Calcolare il determinante delle seguenti matrici al variare del parametro reale k.

$$A = \begin{pmatrix} 1 & 0 & k \\ k+1 & 2k+2 & -k-1 \\ k & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 12 & 25 & -34 & 41 \\ -k & -2k & -3k & -4k \end{pmatrix}$$

(4) Sappiamo che se A e B sono due matrici ottenute l'una dall'altra scambiando due righe allora det $A = -\det B$. Provate a dimostrare questa affermazione nel caso di matrici 2×2 e 3×3 (sugg.: usare vari sviluppi di Laplace).

(5) Utilizzando l'algoritmo di Gauss mostrare che

$$\det \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix} = (b-a)(c-a)(c-b)$$

Extra (difficile)Quanto fa

$$\det \begin{pmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{pmatrix}?$$

(6) Sia

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{array}\right)$$

(a) Mostrare che A è invertibile e determinare $\det(A^{-1})$.

(b) Sia
$$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 0 \end{pmatrix}$$
. Determinare

$$\det(H^{-1}AH)$$
.

- (7) Esibire una matrice B simile alla matrice A dell'esercizio precedente (ma diversa da A).
- (8) Questo esercizio ha dei numeri grandi (addirittura a due cifre! :-) Per risolverlo non è comunque necessario fare molti conti se si ha un po' di attenzione)

Sia W il sottospazio di \mathbb{R}^4 di equazioni cartesiane 3x+3y-z=0, y-t=0. Consideriamo l'endomorfismo di W $F:W\to W$ dato da

$$F(x, y, z, t) = (-27x - 27y + 3z, 43x + 39y - z, 66x + 54y, 43x + 36y - z + 3t)$$

- (a) Mostrare che questa funzione effettivamente definisce un endomorfismo di W.
- (b) Mostrare che B = ((1, -1, 0, -1), (1, 0, 3, 0)) e C = ((-1, 0, -3, 0), (1, -1, 0, -1) sono due basi di W.
- (c) Mostrare che esiste un vettore $w \in W$, $w \neq 0_W$, tale che F(w) = 6w.
- (d) Mostrare che $det(M_B^B(F) 6I) = 0$.
- (e) Mostrare che $\det(M_C^{C}(F) 6I) = 0$.

Esercizi per il 25 Maggio 2022. Autovalori, autospazi, diagonalizzabilità

(1) Sia

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

Mostrare che -1 è un autovalore di A. Determinare tutti gli autovettori corrispondenti.

(2) Sia

$$A = \left(\begin{array}{ccc} 1 & -1 & -1 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array}\right).$$

- (a) Stabilire se la matrice A è diagonalizzabile.
- (b) Determinare tutte le matrici D diagonali simili ad A.
- (c) Per ogni matrice D trovata nel punto precedente determinare una matrice H tale che $D = H^{-1}AH$.
- (3) Siano $\mathbf{v}_1 = (1, 0, 1), \mathbf{v}_2 = (1, 3, 0), \mathbf{v}_3 = (0, 1, -1).$
 - (a) Mostrare che esiste un unico endomorfismo F di \mathbb{R}^3 che abbia $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ come autovettori di autovalori rispettivamente 0, -1, 2.
 - (b) Determinare $M_E^E(F)$.
 - (c) Determinare $\ker F$.
- (4) Consideriamo l'endomorfismo F_A di \mathbb{R}^4 dove

$$A = \begin{pmatrix} 1 & 2 & 2 & 2 \\ -1 & -1 & -1 & -2 \\ 2 & 2 & 3 & 4 \\ -1 & -2 & -3 & -3 \end{pmatrix}$$

- (a) Stabilire se ${\cal F}_A$ è diagonalizzabile
- (b) Determinare gli autospazi di F_A .
- (5) Trovare un endomorfismo f di \mathbb{R}^2 tale che (2,2) e (-1,3) siano autovettori e f(0,1)=(2,1).
- (6) Sia W il sottospazio di \mathbb{R}^3 di equazioni x y + 3z = 0.
 - (a) Determinare una base $B = (\mathbf{b}_1, \mathbf{b}_2)$ di W.
 - (b) Scrivere le equazioni (nelle coordinate rispetto alla base B scelta) di un endomorfismo f di W che abbia \mathbf{b}_1 e \mathbf{b}_2 come autovettori di autovalore 1 e -2 rispettivamente.
 - (c) Determinare un endomorfismo g di \mathbb{R}^3 che ristretto a W sia uguale a f (cioè tale che f(w) = g(w) per ogni $w \in W$).
- (7) Consideriamo il seguente endomorfismo F di \mathbb{R}^3 :

$$F(x, y, z) = (x - y - z, -2x + y - 2z, 2z + y + 4z.$$

- (a) Determinare gli autovalori di F.
- (b) Stabilire se F è diagonalizzabile.

- (c) Determinare una base di autovettori.
- (8) Sia V uno spazio vettoriale di dimensione 3 avente per base $B=(\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3)$. Sia k un parametro reale e consideriamo l'unico endomorfismo ${\cal F}_k$ tale che
 - $F(\mathbf{b}_1) = \mathbf{b}_1 2\mathbf{b}_2 + 2\mathbf{b}_3$

 - $F(\mathbf{b}_2) = (k+1)\mathbf{b}_1 + (k+2)\mathbf{b}_2 (k+1)\mathbf{b}_3$ $F(\mathbf{b}_3) = (k+1)\mathbf{b}_1 + (k-1)\mathbf{b}_2 + (-k+2)\mathbf{b}_3$
 - (a) Determinare gli autovalori di F_k (al variare di k)
 - (b) Stabilire per quali valori di k l'endomorfismo F_k è diagonalizzabile.
 - (c) Determinare gli autospazi di F_k .
 - (d) Per i valori di k per cui è possibile determinare una matrice invertibile H_k tale che

$$H_k^{-1} M_B^B(F_k) H_k$$

sia diagonale.