

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND STATISTIK LEISTUNGSNACHWEIS

Li, Zonggen

Geboren am 01.10.1998 in Qingdao

Matrikelnummer: 12355870

Studiengang: Bachelor Informatik

Nebenfach: Computerlinguistik

München, den 9. März 2024

Leistungsnachweis gemäß Prüfungsordnung der Ludwig-Maximilians-Universität München für den Studiengang Bachelor Informatik vom 29. September 2010

Modul	Prüfungsleistung	Semester	Note	Status	ECTS	ECTS		
Hauptfach Informatik								
P 1	Einführung in die Programmierung (Vorlesung & Übung, 4+2 SWS)	WS 21/22	1.7	BE	9	9		
P 2	Programmierung und Modellierung (Vorlesung & Übung, 3+2 SWS)	SS 21	1.0	BE	6	6		
P 3	Algorithmen und Datenstrukturen (Vorlesung & Übung, 3+2 SWS)	SS 21	1.0	BE	6	6		
P 4	Rechnerarchitektur (Vorlesung & Übung, 3+2 SWS)	SS 21	1.0	BE	6	6		
P 5	Betriebssysteme (Vorlesung & Übung, 3+2 SWS)	WS 21/22	1.0	BE	6	6		
P 6.1-2	Rechnernetze und verteilte Systeme (Vorlesung & Übung, 3+2 SWS)	SS 22	3.7	BE	6	6		
P 7	Softwaretechnik (Vorlesung & Übung, 3+2 SWS)	WS 23/24	2.7	BE	6	6		
P 8	Formale Sprachen und Komplexität (Vorlesung & Übung, 3+2 SWS)	SS 22	1.7	BE	6	6		
P 9	Formale Spezifikation und Verifikation (Vorlesung & Übung, 3+2 SWS)	WS 22/23	1.0	BE	6	6		
P 10	Datenbanksysteme (Vorlesung & Übung, 3+2 SWS)	WS 21/22	1.0	BE	6	6		
P 12	Logik und Diskrete Strukturen (Vorlesung & Übung, 3+2 SWS)	SS 21	1.0	BE	6	6		
P 6.3	Seminar zu ausgewählten Themen der Informatik							
	Proseminar Evolutionary Algorithms (Seminar, 2 SWS)	WS 22/23	2.3	BE	3	3		
Wahlberei	ch: Praktika							
WP 2	Systempraktikum (Vorlesung & Praktikum, 2+9 SWS)	WS 22/23	1.0	BE	12	12		
Bereich: M	athematik							
WP 10	Analysis für Informatiker (Vorlesung & Übung, 4+2 SWS)	WS 21/22	1.7	BE	9	9		
WP 11	Lineare Algebra für Informatiker (Vorlesung & Übung, 3+2 SWS)	WS 21/22	1.0	BE	6	6		
WP 43	Stochastik und Statistik (Vorlesung & Übung, 4+2 SWS)	SS 22	1.0	BE	9	9		
WP 25	Fachübergreifende Kompetenzen							
WP 25.2	Praktikum im Bereich IT-Support bei Guangzhou HuaHeChen Information Technology Co., Ltd. (China)	SS 22		AK		3		
WP 25.3	Starting Up – From Ideas to Successful Business	WS 22/23		AK		3		
WP 25.4	Scientific Writing (Online-Kurs, 2 SWS)	SS 22		BE	3	3		
Vertiefend	e Themen der Informatik für Bachelor							
	Multimedia-Programmierung (Vorlesung & Übung, 2+3 SWS)	SS 22	3.0	BE	6	6		
	Mensch-Maschine-Interaktion (Vorlesung & Übung, 3+2 SWS)	SS 22	3.7	BE	6	6		
	Data Mining Algorithmen I (Vorlesung & Übung, 3+2 SWS)	WS 23/24	3.3	BE	6	6		
Anwendun	gsfach Computerlinguistik							
WP 40	Einführung in die Computerlinguistik (Vorlesung & Übung, 3+1 SWS)	WS 21/22	1.0	BE	6	6		
WP 41	Programmieren linguistischer Anwendungen							
WP 41.1	Symbolische Programmiersprache (Vorlesung, 2 SWS)	WS 22/23	1.0	BE	3	3		
WP 41.2/3	Computerlinguistische Anwendungen (Vorlesung & Übung, 3+2 SWS)	SS 22	1.3	BE	9	9		
WP 42	Information Retrieval (Kurs & Seminar, 3+1 SWS)	SS 21		BE	6	6		
WP 43	Syntax natürlicher Sprachen (Vorlesung & Übung, 2+2 SWS)	WS 22/23	1.3	BE	6	6		

Fortsetzung der Auflistung auf nächster Seite

Modul	Prüfungsleistung	Semester	Note	Status	ECTS	ECTS
P 13	Bachelormodul					
P 13.1	Bachelorarbeit: Exploring the Gap between Unsupervised, Semi- Supervised, and Active Domain Adaptation Methods	WS 23/24	2.3	BE	12	12
P 13.2	Disputation	WS 23/24	3.0	BE	3	3
Ende der Auflistung – Gesamtnote / Summe der ECTS-Punkte:			1.34		174	180

Erläuterungen zur Leistungstabelle

Modul: Bezeichnung des Moduls oder Teilmoduls gemäß Prüfungsordnung

Prüfungsleistung: Bezeichnung der Prüfungsleistung

Semester: Semester des Leistungserwerbs bzw. der Leistungsverbuchung

Note: Die Leistungen in den einzelnen Prüfungsgebieten werden bezeichnet mit 1=sehr gut; 2=gut; 3=befriedigend; 4=ausreichend; 5=nicht ausreichend; keine Angabe = ohne Benotung. Zur differenzierteren Bewertung der Leistung können die Notenziffern erniedrigt oder erhöht werden. Bewertungen kleiner als 1,0 und größer als 5,0 sind ausgeschlossen. Die Gesamtnote ergibt sich als arithmetisches Mittel der verbuchten Modul- bzw. Teilmodulnoten gewichtet nach ECTS-Punkten, wobei nur die fettgedruckten Noten in vollem Umfang berücksichtigt sind.

Status: BE=bestanden; AK=anerkannte Leistung; AN=angemeldet; NB=nicht bestanden; EN=endgültig nicht bestanden **ECTS**: Punkteanzahl nach dem European credit transfer system. Die letzte Spalte (fettgedruckt) gibt den gegenwärtigen Stand der im Studiengang verbuchten Punkteanzahl an, die vorletzte Spalte die Punkteanzahl der eingebrachten Leistungen unabhängig vom Studiengang. Eingeklammerte ECTS-Punkte dienen lediglich der rechnerischen Zuordnung.

Alle erforderlichen Prüfungen im Studiengang Bachelor Informatik sind erfolgreich absolviert. Die Gesamtnote ist 1.34. Eine Kopie dieses Ausdrucks ist unter der links unten stehenden ID beim zuständigen Prüfungsamt hinterlegt.

Florian Lang Sachbearbeiter Prüfungsamt Informatik

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

FACULTY OF MATHEMATICS, COMPUTER SCIENCE AND STATISTICS LEISTUNGSNACHWEIS

Munich, 9. März 2024

Li, Zonggen born 01.10.1998 in Qingdao Student ID: 12355870

Program: Bachelor Computer Science

Minor: Computational linguistics

Transcript of Records in accordance with the examination regulations for the Bachelor's program in Computer Science issued on September 29, 2010

Module	List of credit courses	Semester	Grade	Status	СР	СР
Major: Cor	nputer Science					
P 1	Introduction to programming (lecture & exercise)	WS 21/22	1.7	PA	9	9
P 2	Programming and modeling (lecture & exercise)	SS 21	1.0	PA	6	6
P 3	Algorithms and data structures (lecture & exercise)	SS 21	1.0	PA	6	6
P 4	Computer architecture (lecture & exercise)	SS 21	1.0	PA	6	6
P 5	Operating systems (lecture & exercise)	WS 21/22	1.0	PA	6	6
P 6.1-2	Computer networks and distributed systems (lecture & exercise)	SS 22	3.7	PA	6	6
P 7	Software engineering (lecture & exercise)	WS 23/24	2.7	PA	6	6
P 8	Formal languages and complexity (lecture & exercise)	SS 22	1.7	PA	6	6
P 9	Formal specification and verification (lecture & exercise)	WS 22/23	1.0	PA	6	6
P 10	Database systems (lecture & exercise)	WS 21/22	1.0	PA	6	6
P 12	Logic and discrete structures (lecture & exercise)	SS 21	1.0	PA	6	6
P 6.3	Seminar on General Topics of Computer Science					
	Basic seminar on evolutionary algorithms (seminar)	WS 22/23	2.3	PA	3	3
Elective Do	omain: Practical Training					
WP 2	Practical course operating systems (lecture & practical)	WS 22/23	1.0	PA	12	12
Domain: M	lathematics					
WP 10	Analysis for computer scientists (lecture & exercise)	WS 21/22	1.7	PA	9	9
WP 11	Linear algebra for computer scientists (lecture & exercise)	WS 21/22	1.0	PA	6	6
WP 43	Stochastics and statistics (lecture & exercise)	SS 22	1.0	PA	9	9
WP 25	Soft- and Hardskills					
WP 25.2	Internship (IT Support) at Guangzhou HuaHeChen Information Technology Co., Ltd. (China)	SS 22		TR		3
WP 25.3	Starting Up – From Ideas to Successful Business	WS 22/23		TR		3
WP 25.4	Scientific Writing (online course)	SS 22		PA	3	3
Advanced	topics in computer science for bachelor					
	Multimedia programming (lecture & exercise)	SS 22	3.0	PA	6	6
	Human-computer interaction (lecture & exercise)	SS 22	3.7	PA	6	6
	Data mining algorithmen 1 (lecture & exercise)	WS 23/24	3.3	PA	6	6
Minor: Cor	nputational Linguistics					
WP 40	Introduction to computational linguistics (lecture & exercise)	WS 21/22	1.0	PA	6	6
WP 41	Programming of linguistic applications					
WP 41.1	Symbolic programming (lecture)	WS 22/23	1.0	PA	3	3
WP 41.2/3	Computational linguistic applications (lecture & exercise)	SS 22	1.3	PA	9	9
WP 42	Information retrieval (course & seminar)	SS 21		PA	6	6
WP 43	Syntax of natural languages (lecture & exercise)	WS 22/23	1.3	PA	6	6

Listing continued on next page

Module	List of credit courses continued	Semester	Grade	Status	СР	СР
P 13	Examination module					
P 13.1	Bachelor's Thesis: Exploring the Gap between Unsupervised, Semi- Supervised, and Active Domain Adaptation Methods	WS 23/24	2.3	PA	12	12
P 13.2	Viva Voce	WS 23/24	3.0	PA	3	3
End of transcript – Overall grade / Total of credit points:			1.34		174	180

Explanations of the listing

Grades on each piece of work are indicated as: 1 = very good; 2 = good; 3 = satisfactory; 4 = sufficient; 5 = not sufficient. To guarantee a higher degree of differentiation, grades may be decreased or increased. Grades better than 1.0 and worse than 4.0 (except 5.0) are not possible. The overall grade is computed as the arithmetic mean of the graded courses weighted according to credit points; only the grades in bold face are fully considered.

Status: PA = passed; TR = transferred; SU = signed up; FA = failed; TF = totally failed

CP: credit points according to the ECTS (European Credit Transfer System). In the second last column the credit points of each listed course is given, the last column (bold face) displays the credit points imputed according to the underlying degree program.

The student has passed all required examinations in the program. The overall grade is 1.34.

A copy of this print-out is kept by the examination office in charge under the ID given bottom left.

Florian Lang
Official in Charge
Examination Office Computer Science

Zonggen Li

🌙 (+49) 015221361513 | 🗷 Zonggen.Li@campus.lmu.de | 🛠 https://kidlanli.github.io/ | 🗘 KidlanLi | 😾 @00000000013556B3

Education _____

University of Munich (LMU Munich)

Munich, Germany

Bachelor of Science in Computer Science (Minor: Computational Linguistics)

Apr. 2021 - Present

GPA: 1.3/1.0 (Highest Honours)

German intensive course (A2 - C1)

Technical University of Dresden

Dresden, Germany

Nov. 2019 - Mar. 2021

Skills

Domain Java, C/C++, Python, Haskell, SQL, C#, R, Git, Shell, LATEX, Markdown

ML/AI Frameworks NLTK, Scikit-Learn, TensorFlow, Keras, PyTorch

Languages Mandarin (native); English (fluent); German (fluent); Japanese (elementary)

Publications _____

[1] Xu Gu, Peng Lu, **Zonggen Li**, et al. "AGCVT-Prompt: A Prompt Learning Method for Automatically Generating Chain of Thought and Verbalize", Engineering Applications of Artificial Intelligence. [Link]

[2] Kunlin Xie, **Zonggen Li**, Yuhang Dai, et al. "Sweeping Robot Path Planning Based on Heuristic Search Algorithm", Journal of Xihua University (Natural Science Edition). [Link]

Academic Experience _____

Exploring the Gap between Unsupervised, Semi-Supervised, and Active Domain Adaptation Methods

University of Munich

Undergraduate Dissertation; Advisor: Prof. Dr. Thomas Seidl (Chair of Database Systems and Data Mining)

Aug. 2023 - Jan. 2024

 The efficiency gap between the two in different scenarios is explored by experimentally quantifying some of the current mainstream active and unsupervised domain adaptation methods.

A Review of Differential Evolution

University of Munich

Seminar Report; Advisor: Prof. Dr. Eyke Hüllermeier (Chair of AI and Machine Learning)

Oct. 2022 - Mar. 2023

• Researched the procedures and applications of evolutionary algorithms, in particular Differential Evolution algorithm.

Symbolic Programming & Computational Linguistic Applications

University of Munich

Term Project; Advisor: Prof. Dr. Barbara Plank (Chair of AI and Computational Linguistics)

Apr. 2022 - Apr. 2023

 Tackled NLP tasks, such as Sentiment Analysis, Parsing/Chunking, Relation Extraction, Named Entity Recognition, Semantic Analysis, Word Sense Disambiguation and Coreference Resolution.

Effects of the choice of information retrieval models on ranking

Bundeswehr University Munich

Curriculum Paper; Advisor: Prof. Dr. phil. Michaela Geierhos (Professor of Data Science)

Apr. 2021 - Aug. 2021

By analyzing the advantages and disadvantages of different models (i.e.: boolean, vector space and probabilistic models), their applicable ranking is discussed. And the future direction of information retrieval models is discussed based on the characteristics of each model.

Awards and Honors

Oct. 2023	Scholarship: Deutschlandstipendium (Germany National Scholarship, 1.5%)	Germany
Oct. 2022	Scholarship: Deutschlandstipendium (Germany National Scholarship, 1.5%)	Germany
Jun. 2019	Contest: The 3rd Prize in the "9th MathorCup University Mathematical Modelling Challenge"	China
Sept. 2018	Honorary Title: "Outstanding Volunteer of Advanced Seminar Series on Intelligent Automation (ASSIA)"	China
May. 2018	Contest: The 3rd Prize in the "8th MathorCup University Mathematical Modelling Challenge"	China

Additional ____

Teaching & Research Assistant

Munich AI & NLP Research Lab

Aug. 2023 - Present

Assisted Prof. Dr. Barbara Plank in NLP-related courses and seminars:

WS 23/24: Formal Language, Symbolic Programming

SS 2024: Computer-assisted Morphology, Linquistic Annotation Frameworks & Lexical Semantics

Peer Reviwer

Journal: Data Intelligence Jun. 2023 - Present

offered suggestions for improvement and revision

Amazon Future Engineer Mentoring-Programm

Mentee Feb. 2023 - Present

LAST UPDATED: MAY 16, 2024 <ZONGGEN> · CURRICULUM VITAE 1/1