

Distribuições Contínuas

Conteúdo

Principais Distribuições de Probabilidade para Variáveis Quantitativas Contínuas:

Exponencial

Normal

T de Student

Qui-quadrado

F

A Distribuição Exponencial é muito utilizada em problemas em que o objetivo é estudar o intervalo de tempo necessário para a realização de uma determinada tarefa.

A Distribuição Exponencial é muito utilizada em problemas em que o objetivo é estudar o <u>intervalo de tempo necessário para a realização de uma tarefa</u>.

Tempo necessário para a realização de uma cirurgia.

Profa. Dra. Alessandra de Ávila Montini

Tempo necessário para passar por um pedágio em um feriado.

<u>Durabilidade</u> de uma lâmpada (em minutos).

Tempo necessário para montar um automóvel.

<u>Duração do atendimento</u> prestado por um atendente de uma Central de Atendimento Telefônico.

Profa. Dra. Alessandra de Avila Montini

Considere como a variável aleatória de interesse, X, <u>a duração</u> do <u>atendimento prestado por um atendente de uma</u> determinada Central de Atendimento Telefônico.

De experiências passadas sabe-se que, em média, o tempo de atendimento é de 12 minutos ($\lambda = 12$).

Profa. Dra. 1

O tempo de atendimento é uma variável aleatória contínua.

A distribuição do tempo de atendimento pode ser aproximada pela Distribuição Exponencial.

O Gráfico representa uma Distribuição Exponencial com média (λ) igual a 12.

$$f(X) = \frac{1}{\lambda} e^{-\left(\frac{X}{\lambda}\right)}$$

Profa. Dra. Alessandra de Ávila Montini

Qual a probabilidade do tempo de atendimento de um determinado cliente ser inferior a 10 minutos, ou seja, P (X < 10) ?

Como a Distribuição Exponencial é uma distribuição contínua a probabilidade solicitada é obtida por meio da área à esquerda do número 10.

$$P(X \le x) = 1 - e^{-\left(\frac{x}{\lambda}\right)}$$

$$P(X \le 10) = 1 - e^{-\frac{10}{12}} = 0,5654$$

Profa. Dra. Alessandra de Ávila Montini

A probabilidade do tempo de atendimento de um determinado cliente <u>ser inferior a 10 minutos</u>, sabendo se que o tempo de <u>atendimento médio é de 12 minutos</u>, pode ser obtida pelo Microsoft Excel pela fórmula:

=DISTEXPON(x;1/média;VERDADEIRO)

Para este exemplo tem-se que:

=DISTEXPON(10;1/12;VERDADEIRO) = 0,5654

Qual a probabilidade do tempo de atendimento de um determinado cliente ser <u>superior a 10 minutos</u>, <u>ou seja</u>, P (X > 10) ?

Como em uma distribuição de probabilidade a área total sob a curva deve ser igual a 1, ou seja, a soma de todas as probabilidades deve ser igual a 1 a probabilidade solicitada é dada por:

$$P(X > 10) = 1 - P(X < 10) = 1 - 0,5654 = 0,4346$$

Qual a probabilidade do tempo de atendimento de um determinado cliente estar entre <u>8 e 10 minutos</u>, ou seja, P (8 < X < 10) ?

$$P(8 < X < 10) = P(X < 10) - P(X < 8) =$$

$$= 0,5654 - 0,4865 = 0,0789$$

Profa.

ı Montini

Exercício - Tempo de atendimento de uma consulta

Exercício

Suponha que o tempo de atendimento de uma consulta segue uma Distribuição Exponencial.

Sabendo que a duração média de uma consulta é de 15 minutos.

Calcule as probabilidades:

- a) Do tempo de atendimento ser superior a 8 minutos.
- b) Do tempo de atendimento ser inferior a 12 minutos.
- c) Do paciente ser atendido entre 8 e 14 minutos.

Distribuição Normal

Resumo dos Dados – Tabela de Freqüência

Distribuição do Valor do casco de uma carteira de Automóvel

Empresa	Valor do Casco
1	R\$ 51814,00
2	R\$ 52669,70
3	R\$ 51780,30
4	R\$ 51587,90
•	•
_	_
500	R\$ 51752,00

Valor do Casco	Freqüência Absoluta	Freqüência Relativa		
49.500,00 a 49.999,99	2	0.004		
50.000,00 a 50.499,99	16	0.032		
50.500,00 a 50.999,99	52	0.104		
51.000,00 a 51.499,99	101	0.202		
51.500,00 a 51.999,99	133	0.266		
52.000,00 a 52.499,99	110	0.220		
52.500,00 a 52.999,99	54	0.108		
53.000,00 a 53.499,99	26	0.052		
53.500,00 a 53.999,99	6	0.012		
Total	500	1		

Distribuição do Valor do casco de uma carteira de Automóvel

Distribuição Normal

Profa. Dra. Alessandra de Ávila Montini

A Distribuição Normal é a distribuição mais importante da Estatística.

Também é denominada Distribuição de Gauss ou Distribuição Gaussiana.

Foi primeiramente introduzida pelo matemático Abraham de Moivre.

Matemático Francês - Nascido em 26 de maio de 1667 Profa. Dra. Alessandra de Ávila Montini

Em 1809, Gauss assumiu que erros de medida poderiam ser modelados pela Distribuição Normal

Johann Carl Friedrich Gauss

Matemático, astrônomo e físico alemão - Nascido em 30 de abril de 1777

A Figura apresenta uma Distribuição Normal com média $\,\mu\,$ e variância $\sigma^{^2}$

Pode ter valores até o infinito

Pode ter valores até o infinito

Características:

- ✓ A distribuição é simétrica em torno da média.
- ✓ A área sob a curva é 1.

Profa. Dra. Alessandra de Ávila Montini

A <u>média e a variância</u> da distribuição são denominados <u>parâmetros</u> da distribuição.

Considere uma variável aleatória X com Distribuição Normal com média 25 e desvio padrão 10.

Essa variável aleatória X pode ser denotada por:

Profa. Dra. Alessandra de Ávila Montini

Distribuição Normal

A Figura representa uma Distribuição Normal com média igual a 25 e uma Distribuição Normal com média igual a 55. As duas distribuições possuem desvio padrão igual a 10.

Note que quando duas distribuições possuem mesmo desvio padrão elas possuem a mesma forma.

Profa. Dra. Alessandra de Ávila Montini

Distribuição Normal

A Figura representa uma Distribuição Normal com desvio padrão igual a 10 e uma Distribuição Normal desvio padrão igual a 16. As duas distribuições possuem média igual a 40.

Note que quando duas distribuições possuem mesma média e o desvio padrão sofre uma variação elas **NÃO** possuem a mesma forma.

Profa. Dra. Alessandra de Ávila Montini

Calcule:

- A probabilidade de X estar entre R\$ 51.300,00 e R\$ 52.300,00 ?
- A probabilidade de X ser inferior a R\$ 51.300 ?
- A probabilidade de X ser superior a R\$ 51.300 ?

DISTRIBUIÇÃO NORMAL PADRÃO

Distribuição Normal Padrão

A Distribuição Normal Padrão é uma distribuição Normal de média igual a 0 e igual a desvio padrão 1.

A Figura apresenta a Distribuição Normal Padrão.

A Tabela apresentada possui as áreas obtidas da Distribuição Normal Padrão.

Para cada valor selecionado a tabela apresenta a probabilidade de encontrar um valor entre zero e o número selecionado. Neste exemplo é selecionado o número 0,42. No centro da tabela estão as probabilidades.

Profa. Dra. Alessandra de Ávila Montini

O centro da tabela apresenta a probabilidade.

Neste caso a P (0 < Z < 0.42) = 0.1628

z	0,00	0,01	0,02	0,03
0,0	0,0000	0,0040	0,0080	0,0120
0,0	0,0000	0,0040	0,0478	0,0120
0,2	0,0793	0,0832	0,0871	0,0910
0,3	0,1179	0,1217	0,1255	0,1293
0,4	0,1554	0,1591	0,1628	0,1664
0,5	0,1915	0,1950	0,1985	0,2019
0,6	0,2257	0,2291	0,2324	0,2357

Distribuição Normal Padrão – Média Zero e Variância 1

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2518	0,2549
0,7	0,2580	0,2612	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2.3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2.4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2.5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2.6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2.7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2.8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2.9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3.0	0,4986	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

Exercício

Distribuição Normal Padrão – Média Zero e Variância 1

- P(0 < Z < 1,96) =
- P(0 < Z < 1,64) =
- P(Z>1,62)=
- P(Z<-0.84)=
- P(-0.68 < Z < 1.85) =

Distribuição Normal

Uma empresa possui um faturamento mensal médio de 40 milhões de reais com um desvio padrão de 5 milhões de reais. Qual a probabilidade de que em um determinado mês o faturamento seja superior a 50 milhões de reais ?

Distribuição Normal Padrão

Para converter qualquer variável aleatória com distribuição Normal de média μ e variância σ^2 na distribuição Normal Padrão é necessário fazer a seguinte transformação:

$$Z = \frac{(X - \mu)}{\sigma}$$

X: variável aleatória com distribuição Normal de média μ e variância σ^2 .

Z: variável aleatória com distribuição Normal de média 0 e variância 1.

Distribuição Normal Padrão

$$Z = \frac{(X - \mu)}{\sigma}$$

=
$$(2)P(0 < Z < 1) = (2)(0,34) = 0,68$$

Distribuição Normal

$$Z = \frac{(X - \mu)}{\sigma}$$

Calcule:

a)
$$P(30 < X < 50)$$

b)
$$P(X > 25)$$

c)
$$P(X < 55)$$

Distribuição Normal

• Coeficiente de Curtose

$$K = \left(\frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{S}\right)^4\right) - \frac{3(n-1)^2}{(n-2)(n-3)}$$

- K = 0 − os dados são oriundos da distribuição Normal;
- K < 0 − a distribuição dos dados é achatada;
- K > 0 a distribuição é concentrada ao redor da média distribuição com pico;

Exercício

Obtenha o coeficiente de curtose para cada área.

Mês	Área 1	Área 2	
Janeiro	137	130	
Fevereiro	132	136	
Março	148	115	
Abril	123	130	
Maio	119	108	
Junho	154	115	
Julho	140	152	

Teste de Kolmogorov-Smirnov

Conclusão: Os dados parecem oriundos da distribuição Normal

Exercício

Sabendo que os gerentes de marketing possuem salário annual com média 52.500,00 e desvio 800,00. Obter o salário anual de forma que apenas 20 % dos salários são superiores a ele.

Aproximação Normal a Distribuição Binomial

Aproximação Normal à Binomial

Uma variável aleatória X com distribuição Binomial pode ser aproximada por uma distribuição Normal com **Média np** e **Variância np(1-p).**

Em geral, quanto mais simétrica for a função de probabilidade da Binomial, melhor será a aproximação. Quando tivermos assimetria, quanto maior o valor de n melhor será a aproximação.

Profa. Dra. Alessandra de Ávila Montini

Distribuição Binomial

Um fundo de investimento possui probabilidade de 0,05 de apresentar um comportamento de alta. Considere 200 dias de operação e supondo que a alta em um dia independe da alta do dia anterior. Conside a distribuição Binomial.

Seja X o número de dias em que o fundo está em alta. X possui distribuição Binomial.

- a) Probabilidade de alta em EXATAMENTE 5 dias = P(X = 5) = 0.03589
- b) Probabilidade de alta em no máximo 4 dias = $P(X \le 4) = 0.02644$

Considerando a Aproximação Normal

Seja X o número de dias em que o fundo está em alta.

X possui distribuição Binomial e considere Y como sendo uma variável aleatória com distribuição Normal com média 10 e desvio padrão 3,08.

Média =
$$n * p = 200* 0,05 = 10$$

Variância =
$$n * p * (1-p) = 9,5$$

Considerando a Aproximação Normal

Y: Normal com média 10 e desvio padrão 3,08.

a) Probabilidade de alta em EXATAMENTE 5 dias =

$$P(X = 5) = P(4,5 < Y < 5,5) = 0,03497$$
 APROXIMADO

$$P(X = 5) = 0.03589$$

Considerando a Aproximação Normal

Y: Normal com média 10 e desvio padrão 3,08.

b) Probabilidade de alta em no máximo 4 dias =

$$P(X \le 4) = P(Y < 4,5) = 0.03718$$

APROXIMADO

$$P(X \le 4) = 0.02644$$

EXATC

Exercício

Um fundo de investimento possui probabilidade de 0,01 de apresentar um comportamento de alta. Considere 150 dias de operação e supondo que a alta em um dia independe da alta do dia anterior.

Seja X o número de dias em que o fundo está em alta. X possui distribuição Binomial. Obtenha as probabilidades considerando a aproximação Normal.

- a) Probabilidade de alta em EXATAMENTE 3 dias
- b) Probabilidade de alta em EXATAMENTE 2 dias

Distribuição t de Student

A distribuição t tem a forma similar à Distribuição Normal.

Ela é utilizada em testes estatísticos em que é estimada a variância do dados.

Profa. Dra. Alessandra de Ávila Montini

A média e a variância são os parâmetro da Distribuição Normal.

O <u>parâmetro</u> da Distribuição t de Student é denominado <u>grau de</u> liberdade.

A Figura apresenta uma Distribuição t de Student com média zero.

A distribuição é simétrica em torno da média.

A área sob a curva é 1.

Pode ter valores até o infinito

Pode ter valores até o infinito

Exemplo 1

Considere uma variável aleatória X com t de Student com 10 graus de liberdade, ou seja, X ~ t(10)

Obtenha a probabilidade: P(X > 1,372)

Profa. Dra. Alessandra de Ávila Montini

Distribuição t de Student

Considere uma variável aleatória X com t de Studentaus com 10 graus de liberdade, ou seja, X ~ t(10)

Obtenha a probabilidade: P(X > 1,372)

$$P(X > 1,372) = DISTT(1,372;10;1) = 0,10$$

Exemplo 2

Considere uma variável aleatória X com t de Student com 10 graus de liberdade, ou seja, X ~ t(10).

$$P(X > 2) = DISTT(2;10;1) = 0,03669$$

Exercício

- 1) Considerar uma distribuição t de Student com 8 graus de liberdade. Calcular as probabilidades:
- a) P(X > 1,397)
- a) P(X > 2,306)
- 2) Considerar uma distribuição t de Student com 20 graus de liberdade. Calcular as probabilidades:
- a) P(X > 0.86)
- b) P(X > 2,086)

DISTRIBUIÇÃO QUI-QUADRADO

A Distribuição Qui-Quadrado pode ser obtida a partir da Distribuição Normal (0,1) elevada ao quadrado.

O <u>parâmetro</u> da Distribuição Qui-Quadrado é denominado <u>grau de</u> <u>liberdade</u> (gl).

Note que a Distribuição Normal pode assumir qualquer valor e a Distribuição Qui-Quadrado possui apenas valores positivos.

Exemplo 1

Considere X uma variável aleatória com Distribuição Qui-Quadrado com 3 graus de liberdade - χ_3^2 . Obtenha o valor de **x** tal que P(X>x)=0,90.

Distribuição Qui-Quadrado

Grau de liberdade do denominador	0,99	0,95	0,90
1	0,00	0,00	0,02
2	0,02	0,10	0,21
(3)	0,11	0,35	0,58
4	0,30	0,71	1,06
5	0,55	1,15	1,61

e Ávila Montini

Considerando uma Distribuição Qui-Quadrado com 3 graus de liberdade - χ_3^2

O valor de \mathbf{x} tal que P(X> \mathbf{x})=0,90, pode ser obtido no Excel pela expressão:

Profa. Dra. Alessandra de Ávila Montini

Exercício

1-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 8 graus de liberdade. Obtenha o valor de x tal que P(X>x)=0,025. Responder com 2 casas decimais.

2-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 20 graus de liberdade. Obtenha o valor de **x** tal que P(X>**x**)=0,30. Responder com 2 casas decimais.

3-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 7 graus de liberdade. Obtenha o valor de \mathbf{x} tal que $P(X>\mathbf{x})=0,01$. Responder com 2 casas decimais.

4-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 6 graus de liberdade. Obtenha o valor de x tal que P(X<x)=0,04. Responder com 2 casas decimais.

5-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 18 graus de liberdade. Obtenha o valor de x tal que P(X<x)=0,10. Responder com 2 casas decimais.

6-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 27 graus de liberdade. Obtenha o valor de **x** tal que P(X<**x**)=0,05. Responder com 2 casas decimais.

Considere uma variável aleatória X com Distribuição Qui-Quadrado com 3 graus de liberdade - χ_3^2

Obtenha P(X>2,25)

Considere X ~ χ_3^2

A P(X>2,25) pode ser obtida no Excel pela expressão:

=1-DIST.QUIQUA(2,25;3;VERDADEIRO)=0,5222

Grau de liberdade

Considere X ~ χ_3^2

A P(X < 2,25) pode ser obtida no Excel pela expressão:

=DIST.QUIQUA(2,25;3;VERDADEIRO)=0,4778

Profa. Dra. Alessandra de Ávila Montini

Considere X $\sim \chi_{35}^2$

P(25 < X < 35) pode ser obtida pela expressão:

$$P(X < 35) - P(X < 25) = 0,4263$$

Exercício

1-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 8 graus de liberdade. Obtenha P(X>1,23). Responder com 4 casas decimais.

2-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 20 graus de liberdade. Obtenha P(X>25). Responder com 4 casas decimais.

3-Considere X uma variável aleatória com Distribuição Qui-Quadrado com 35 graus de liberdade. Obtenha P(X>32). Responder com 4 casas decimais.

4 -Considere X uma variável aleatória com Distribuição Qui-Quadrado com 8 graus de liberdade. Obtenha P(X<3,5). Responder com 4 casas decimais.

5 -Considere X uma variável aleatória com Distribuição Qui-Quadrado com 20 graus de liberdade. Obtenha P(X<28). Responder com 4 casas decimais.

6 -Considere X uma variável aleatória com Distribuição Qui-Quadrado com 35 graus de liberdade. Obtenha P(X<25). Responder com 4 casas decimais.

7 - Considere X uma variável aleatória com Distribuição Qui-Quadrado com 8 graus de liberdade. Obtenha P(5<X<10). Responder com 4 casas decimais.

8 -Considere X uma variável aleatória com Distribuição Qui-Quadrado com 20 graus de liberdade. Obtenha P(10<X<15). Responder com 4 casas decimais.

9 - Considere X uma variável aleatória com Distribuição Qui-Quadrado com 5 graus de liberdade. Obtenha P(2<X<3). Responder com 4 casas decimais.

DISTRIBUIÇÃO F de Fisher-Snedecor

A Distribuição F é gerada por meio de uma divisão entre duas variáveis aleatórias independentes com Distribuição Qui-Quadrado, considerando os respectivos graus de liberdade.

O <u>parâmetro</u> da Distribuição F é denominado <u>grau de liberdade</u>.

A Distribuição F foi criada por Snedecor. Snedecor foi aluno do estatístico inglês Ronald A. Fisher.

Ele denominou a distribuição de F em homenagem a seu orientador.

Ronald Aylmer Fisher

Considerando uma Distribuição F com 2 graus de liberdade no numerador e 3 grau de liberdade no denominador ($\mathbf{F}_{2,3}$). Obtenha o valor de \mathbf{x} tal que $P(X>\mathbf{x})=0,05$

,				1			,		
Grau de				Grau de liberade do numerador					
liberdade do									
denominador	1	(2)	3	4	5	6	7		
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77		
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35		
(3)	10,13	9,55	9,28	9,12	9,01	8,94	8,89		
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09		
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88		
,	F 00	E 4.4	4.70	4.50	4.20	4.20	4.34		

Considerando $\mathbf{F}_{2,3}$, o valor de \mathbf{x} tal que $\mathbf{F}_{2,3}$ $\mathbf{$

Grau de liberdade do denominador

Grau de				Grau de liberade do numerador				
liberdade do								
denominador	1	(2)	3	4	5	6	7	
1	161,45	199,50	215,71	224,58	230,16	233,99	236,77	
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	
3	10,13	(9,55)	9,28	9,12	9,01	8,94	8,89	
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	
,	F 00	E 4.4	4 70	4.50	4.30	4.30	4.04	

89

Exercício

 Considerando uma Distribuição F com 4 graus de liberdade no numerador e 5 grau de liberdade no denominador (F_{4,5}). Obtenha o valor de x tal que P(X>x)=0,05. Responder com 2 casas decimais.

2) Considerando uma Distribuição F com 3 graus de liberdade no numerador e 4 grau de liberdade no denominador (F_{3,4}). Obtenha o valor de x tal que P(X>x)=0,10. Responder com 2 casas decimais.

3) Considerando uma Distribuição F com 2 graus de liberdade no numerador e 6 grau de liberdade no denominador ($\mathbf{F}_{2,6}$). Obtenha o valor de \mathbf{x} tal que $P(X < \mathbf{x}) = 0,10$. Responder com 2 casas decimais.

4) Considerando uma Distribuição F com 5 graus de liberdade no numerador e 10 grau de liberdade no denominador ($\mathbf{F}_{5,10}$). Obtenha o valor de \mathbf{x} tal que $P(X < \mathbf{x}) = 0,05$. Responder com 2 casas decimais.

Considere a variável aleatória X uma variável com Distribuição F com 2 graus de liberdade no numerador e 1 grau de liberdade no denominador $(\mathbf{F}_{2,1})$.

Obtenha P(X>3,5)

Considere X ~ F_{2,1}

A P(X>3,5) pode ser obtida no Excel pela expressão:

= 1 - DIST.F(3,5;2;1;VERDADEIRO) = 0,3536

3,5Profa. Dra. Alessandra de Ávila Montini

Considere X ~ F_{2,1}

A P(X < 1,1) pode ser obtida no Excel pela expressão:

= DIST.F(1,1;2;1;VERDADEIRO) = 0,4410

Grau de liberdade do numerador

Considere X ~ F_{2,1}

A P(2 < X < 3) pode ser calculada da seguinte forma:

$$P(X < 3) - P(X < 2) = 0.1032$$

Exercício

1) Considerando uma Distribuição F com 4 graus de liberdade no numerador e 5 grau de liberdade no denominador ($\mathbf{F}_{4,5}$). Calcule as probabilidades com 4 casas decimais.

- a) P(X>1,25)
- b) P(X>2,25)
- c) P(X < 0.78)
- d) P(0.25 < X < 1.5)