EECS 489 Computer Networks

Winter 2025

Mosharaf Chowdhury

Material with thanks to Aditya Akella, Sugih Jamin, Philip Levis, Sylvia Ratnasamy, Peter Steenkiste, and many other colleagues.

Recap

- Delay refers to the time to send data from src to dst
 - It has four components: transmission, propagation, queueing, and processing
- Bandwidth is the characteristics of a link
- Throughput is the rate at which a src and dst can communicate
 - Bounded by the bottleneck link on the path

Agenda

How is communication organized?

What we want

http://123.xyz

123.xyz server

(Some of) What happens...

(More of) What happens

What we get

123.xyz server

Inspiration...

CEO A writes letter to CEO B

Dear John,

Your days are numbered.

--Pat

Inspiration...

CEO A writes letter to CEO B

Folds letter and hands it to administrative aide

Aide:

- > Puts letter in envelope with CEO B's full name
- Takes to FedEx

FedEx Office

- Puts letter in larger envelope
- Puts name and street address on FedEx envelope
- Puts package on FedEx delivery truck
- FedEx delivers to other company

The path of the letter

The path of the letter

- "Peers" in same layer understand each other
- No one else needs to
- Lowest level has most packaging

CEO	Semantic Content	CEO
Aide	Identity	Aide
FedEx	Location	FedEx

Three steps

- Decompose the problem into tasks
- Organize these tasks
- Assign tasks to entities (who does what)

Back to the Internet: Decomposition

Applications

in built on

Reliable or unreliable transport

in built on

Best-effort global packet delivery

in built on

Best-effort local packet delivery

in built on

Physical transfer of bits

Communication organization

Applications in built on Reliable or unreliable transport in built on Best-effort global packet delivery in built on Best-effort local packet delivery in built on

Physical transfer of bits

L7 Application

L4 Transport

L3 Network

L2 Data link

L1 Physical

OSI layers

OSI stands for Open Systems Interconnection model

Developed by the ISO

Session and presentation layers are often implemented as part of the application layer

- L7 Application
- **L6** Presentation
- L5 Session
- L4 Transport
- L3 Network
- L2 Data link
- L1 Physical

Layers

- Layer: a part of a system with well-defined interfaces to other parts
- One layer interacts only with layer above and layer below
- Two layers interact only through the interface between them

Layers and protocols

Communication between peer layers on different systems is defined by protocols

What is a Protocol?

January 13, 2025 EECS 489 – Lecture 2

What is a Protocol?

- An agreement between parties (in the same later) on how to communicate
- Defines the syntax of communication
 - → Header → instructions on how to process payload
 - Each protocol defines the format of its headers
 »e.g., "the first 32 bits carry the destination address"

Header Payload

What is a Protocol?

- An agreement between parties on how to communicate
- Defines the syntax of communication
- And semantics
 - "First a hello, then a request..."
 - We will study many protocols later in the semester
- Protocols exist at many levels, hardware, and software
 - Defined by standards bodies like IETF, IEEE, ITU

Protocols at different layers

ONE network layer protocol

Layer encapsulation: Protocol headers

5-MINUTE BREAK!

Announcements

Assignment 1 is out today!

Three steps

- Decompose the problem into tasks
- Organize these tasks
- Assign tasks to entities (who does what)

What gets implemented where?

What gets implemented at the end systems?

Bits arrive on wire, must make it up to application

Therefore, all layers must exist at host!

What gets implemented in the network?

- Bits arrive on wire → physical layer (L1)
- Packets must be delivered across links and local networks → datalink layer (L2)
- Packets must be delivered between networks for global delivery → network layer (L3)
- The network does not support reliable delivery
 - Transport layer (and above) not supported

Simple Diagram

- Lower three layers implemented everywhere
- Top two layers implemented only at hosts

A closer look: End system

Application

Web server, browser, mail, game

Transport and network layer

typically part of the operating system

Datalink and physical layer

hardware/firmware/drivers

What gets implemented in the network?

- Bits arrive on wire → physical layer (L1)
- Packets must be delivered across links and local networks → datalink layer (L2)
- Packets must be delivered between networks for global delivery → network layer (L3)
- Switches implement only physical and datalink layers (L1, L2)
- Routers implement the network layer too (L1, L2, L3)

January 13, 2025 EECS 489 – Lecture 2 32

A closer look at the network

33

A closer look at the network

Switches vs. Routers

- Switches do what routers do but don't participate in global delivery, just local delivery
 - Switches only need to support L1, L2
 - Routers support L1-L3

- Won't focus on the router/switch distinction
 - Almost all boxes support network layer these days

Logical communication

A layer interact with its peers corresponding layer

Physical communication

- Communication goes down to physical network
- Then up to relevant layer

A protocol-centric diagram

Pros and cons of layering

Why layers?

- Reduce complexity
- Improve flexibility
- Better manageability

Why not?

- Higher overheads
- Cross-layer information is often useful

IP is the narrow waist of the layering hourglass

Implications of hourglass

- Single network-layer protocol (IP)
- Allows arbitrary networks to interoperate
 - Any network that supports IP can exchange packets
- Decouples applications from low-level networking technologies
 - Applications function on all networks
- Supports simultaneous innovations above and below IP
- But changing IP itself is hard (e.g., IPv4 → IPv6)

Placing network functionality

- End-to-end arguments by Saltzer, Reed, and Clark
 - Dumb network and smart end systems
 - Functions that can be completely and correctly implemented only with the knowledge of application end host, should not be pushed into the network
 - Sometimes necessary to break this for performance and policy optimizations
 - Fate sharing: fail together or don't fail at all

Fate sharing

Fail together or don't fail at all

- "it is acceptable to lose the state information associated with an entity if, at the same time, the entity itself is lost"
- e.g., state information (like browser session data) is kept only at the endpoints of a communication system (i.e., browser and server), rather than within the network itself
 - »If a failure occurs, it affects only the endpoints and not the entire network

Summary

- Layering is a good way to organize networks
- Unified Internet layer decouples applications from networks
- E2E argument encourages us to keep IP simple