Math 174 Homework 3

Aniruddh V.

September 2023

1 Excercise 1.3.iii

Solution Consider a category C, with four objects a,b,c and d, with morphisms $f:a\to b$ and $g:c\to d$, and a category D with objects x,y,z, and morphims $x\to y,\ y\to z$, and $z\to x$. Consider the functor $F:C\to D$ which maps $F(a)=x,\ F(b)=F(c)=y,$ and F(d)=z. Since categories are closed under composition of morphisms, and there is no morphism $a\to d$, the image of F cannot be a category.

2 Exercise 1.3.iv

Solution Let C be a locally samll catgeory. Let the functor $Mor(c,-): C \to \text{Set}$ have the following assignments. Given an object $x \in C$, $x \mapsto Mor(c,x)$. Next, given a morphism $f: x \to y$ in C, Mor(c,-) acting on the morphism gives a new map $f_*: Mor(c,x) \to Mor(c,y)$. We now check the Functoriality axioms. First, $F(id_c) = id_{F(c)}$. So given the identity morphism $id_x: x \to x$, Mor(c,-) maps id_x to the map $Mor(c,x) \to Mor(c,x)$. That is $id_x \mapsto id_{Mor(c,x)}$, and the first axiom of functoriality is satisfied. Next, given two morphisms $a: x \to y$ and $b: y \to z$ in C, we want to show that F(ab) = F(a)F(b). Indeed, ab is a morphism from $x \to z$, and so F(ab) must be a morphism from $Mor(c,x) \to Mor(c,z)$. But F(a)F(b) is the morphism $Mor(c,x) \to Mor(c,y) \to Mor(c,z)$, which when composed together gives the same as F(ab). Thus F(ab) = F(a)F(b), and so the axioms of functoriality are satisfied for Mor(c,-)

Now consider the contravariant functor Mor(-,c). This behaves similarly to Mor(c,-), except now a morphism $f: x \to y$ in C is mapped to a morphism $f^*: Mor(y,c) \to Mor(y,c)$. The idenity law of functoriality remains the same as for Mor(c,-), now the only thing left to be checked is F(gf) = F(f)F(g) for morphisms $f: x \to y$ and $g: y \to z$. But gf is a morphism from $x \to z$ and since F(f)F(g) also maps $z \to x$, we have equality.

Thus Mor(c, -) and Mor(-, c) are both functors

3 Exercise 1.4.i

Solution Let $\alpha: C \Longrightarrow D$. Then for all morphisms $f: x \to y$ in C, the following diagram commutes

Further, α_x and α_y are isomorphisms. This tells us that $Gf \circ \alpha_x = \alpha_y \circ Ff$. But since α is an isomorphism, it has an inverse for x and y, so we also have $\alpha_y^{-1} \circ Gf = Ff \circ \alpha_x$. So we have the following commutative diagram as well.

This shows $\alpha^{-1}: G \implies F$ is a natural isomorphism.