

Introduction

Définitions

Le transformateur est un circuit qui peut :

- Modifier la valeur d'une tension alternative en maintenant sa fréquence et sa forme inchangées
- □ Modifier la valeur d'un courant alternatif en maintenant sa fréquence et sa forme inchangées
- □ Isoler un circuit électrique d'un courant continu circulant dans un autre circuit électrique
- ☐ Réaliser une adaptation d'impédance

Introduction

Transformateur = deux enroulements appelés «primaire» et «secondaire» couplés par un circuit magnétique fermé

Symboles électronique

Un transformateur = un quadripôle $\frac{V_2}{V_1}$ = rapport de transformation Représentation = deux selfs L_1 et L_2 couplées par une mutuelle inductance M

M peut être positif ou négatif

Equations du transformateur

Transformateur réel : résistances des enroulements

En valeur instantanée

$$\begin{cases} v_1(t) = R_1 i_1(t) + L_1 \frac{di_1(t)}{dt} + M \frac{di_2(t)}{dt} \\ v_2(t) = R_2 i_2(t) + L_2 \frac{di_2(t)}{dt} + M \frac{di_1(t)}{dt} \end{cases}$$

En valeur complexe

$$\begin{cases} V_1 = R_1 I_1 + j \ L_1 \omega I_1 + j \ M \ \omega I_2 \\ V_2 = R_2 I_2 + j \ L_2 \omega I_2 + j \ M \ \omega I_1 \end{cases}$$

Relations entre L_1 , L_2 et n_1 , n_2 , M

Soient

n1 le nombre de spires au primaire n2 le nombre de spires au secondaire

Si les enroulements ont les mêmes caractéristiques géométriques :

$$\frac{L_2}{L_1} = \left(\frac{n_2}{n_1}\right)^2$$

Si M > 0 (sinon |M|):

- lacksquare Si pas de fuites magnétiques $M_0=\sqrt{L_1L_2}$
- lacksquare Si fuites magnétiques $M\!<\!M_0$ et $M\!=\!k\,\sqrt{L_1L_2}=k\,M_0$ avec k coefficient de couplage

Transformateur idéal

Définition

Un transformateur idéal répond aux conditions suivantes :

- $oldsymbol{\square}$ Pas de fuites magnétiques $M=M_0=\sqrt{L_1L_2}$
- \square Pas de pertes par effet Joule $(R_1=R_2=0)$, pas de pertes par hystérésis magnétique ou par courant de Foucault dans le noyau magnétique
- ☐ Pas d'énergie réactive consommée (pas d'inductance de fuites des enroulements,...)

Puissance au primaire = Puissance au secondaire

Relations

Transformateur idéal : exercices

Détermination de la matrice chaîne

<u>Détermination de l'impédance d'entrée d'un transformateur idéal</u> chargé par Z_L

