

SÍLABO PROCESAMIENTO DÍGITAL DE SEÑALES

ÁREA CURRICULAR: COMUNICACIONES Y REDES

CICLO VIII SEMESTRE ACADÉMICO 2017-II

I. CÓDIGO DEL CURSO : 09021308040

II. CRÉDITOS : 04

III.REQUISITOS : 09012607050 - Telecomunicaciones I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso tiene carácter científico - aplicativo. Le permite al alumno conocer y analizar los diferentes métodos de digitalización, muestreo, cuantización, codificación y reconstrucción de señales continuas. Asimismo se brindan los conocimientos para diseñar y analizar señales y sistemas discretos en el dominio del tiempo y en el dominio de la frecuencia. Finalmente se estudian los métodos de diseño de los diferentes tipos de filtros digitales (FIR e IIR) y la implementación y análisis de la Transformada Discreta de Fourier (DFT) y su correspondiente Transformada Rápida (FFT). En paralelo a las clases de teoría el alumno es capacitado en la utilización del MATLAB para implementar las experiencias de laboratorio.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Digitalización y reconstrucción de señales. II. Señales discretas y sistemas discretos. III. Diseño de filtros digitales. IV. Transformada discreta de Fourier.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Eden (1989). Discrete-Time Signal Processing. U.S.A: Prentice Hall.
- · Proakis, J. (2006). Digital Signal Processing. U.S.A: Prentice Hall.
- · Oppenheim. (1999). Tratamiento de Señales en Tiempo Discreto. Madrid: Pearson Educación.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: DIGITALIZACIÓN Y RECONSTRUCCIÓN DE SEÑALES

OBJETIVOS DE APRENDIZAJE:

- Interpretar el proceso y los efectos de la digitalización y reconstrucción de señales continuas.
- Analizar, implementar y medir el desempeño de la cuantización y recuantización de señales interpretando los efectos de la distorsión y el ruido introducido.

PRIMERA SEMANA

Primera sesión:

Clase introductoria. Conversión A/D, muestreo y enunciado del teorema del muestreo.

Segunda sesión:

Reconstrucción Ideal y reconstrucción real: análisis en tiempo y frecuencia

SEGUNDA SEMANA

Primera sesión:

Conversión A/D PCM. Filtro antialiasing. Conversión D/A R-2R.

Cuantización: análisis y medición de desempeño a través de la relación Señal/Ruido.

Segunda sesión:

Codificación binaria de muestras.

Tipos de Conversores A/D: Aproximaciones sucesivas y Flash.

TERCERA SEMANA

Primera sesión:

Tasa de bit y recuantización de señales por factor de escala fijo.

Segunda sesión:

Seminario de Ejercicios No. 1.

CUARTA SEMANA

Primera sesión:

Practica Calificada No. 1

Segunda sesión:

Laboratorio dirigido: Adquisición de señales vía tarjeta de sonido utilizando MATLAB.

UNIDAD II: SEÑALES DISCRETAS Y SISTEMAS DISCRETOS LTD

OBJETIVOS DE APRENDIZAJE:

- Interpretar los conceptos básicos que definen y caracterizan a las señales y los sistemas discretas en el dominio del tiempo y en el dominio de la frecuencia.
- Diseñar, analizar e implementar sistemas discretos haciendo uso de la ecuación de diferencias, la respuesta impulsiva, la respuesta en frecuencia, la transformada Z y el diagrama de polos y ceros.

QUINTA SEMANA

Primera sesión:

Señales discretas: conceptos, fundamentos, análisis por frecuencia relativa y periodicidad.

Segunda sesión:

Laboratorio Calificado No. 1: Muestreo y Digitalización.

Laboratorio Calificado No. 2: Recuantización y reconstrucción de Señales.

SEXTA SEMANA

Primera sesión:

Transformada de Fourier de señales discretas: conceptos y análisis por módulo y fase.

Propiedades de la transformada de Fourier de señales discretas.

Segunda sesión:

Seminario de Ejercicios No. 2

SÉPTIMA SEMANA

Primera sesión:

Practica Calificada No. 2

Segunda sesión:

Laboratorio Calificado No. 3: Señales Discretas

OCTAVA SEMANA

Semana de exámenes parciales

NOVENA SEMANA

Primera sesión:

Practica Calificada No. 3

Segunda Sesión:

Conceptos de sistemas discretos y propiedades. Sistemas LTD: Ecuación de diferencias Sistemas LTD: Diagrama de bloques

DECIMA SEMANA

Primera sesión

Sistemas LTD: Respuesta Impulsiva. Respuesta en frecuencia.

Segunda Sesión

Introducción a la Transformada Z.

Obtención de la transformada Z. El plano Z. Región de convergencia. Transformada Z inversa.

DECIMOPRIMERA SEMANA

Primera sesión:

Propiedades de la transformada Z. Función de Sistema y diagrama de polos y ceros.

Segunda sesión:

Propiedades del diagrama de polos y ceros.

Seminario de Ejercicios No. 3.

UNIDAD III: DISEÑO DE FILTROS DIGITALES

OBJETIVOS DE APRENDIZAJE:

- Aplicar e implementar diferentes métodos de diseño de filtros digitales FIR e IIR.
- Reconocer las ventajas y desventajas de los métodos de diseño y de los diferentes tipos de filtros.

DECIMOSEGUNDA SEMANA

Primera sesión:

Practica Calificada No. 4

Segunda sesión:

Laboratorio Calificado No. 4. Sistemas LTD: Convolución, Respuesta Impulsiva y Respuesta en Frecuencia

Laboratorio Calificado No. 5. Diseño de sistemas LTD por Diagrama de Polos y Ceros.

DECIMOTERCERA SEMANA

Primera sesión:

Estructuras de filtros digitales. Diseño de filtros digitales FIR: Método de la ventana.

Segunda sesión:

Practica Calificada No. 5

DECIMOCUARTA SEMANA

Primera sesión:

Diseño de filtros digitales IIR: Método de la transformación bilineal.

Segunda sesión:

Laboratorio Calificado No. 6: Filtros Digitales

UNIDAD IV: TRANSFORMADA DISCRETA DE FOURIER (DFT)

OBJETIVOS DE APRENDIZAJE:

- Interpretar la transformada discreta de Fourier y su implementación.
- •Implementar la transformada rápida de Fourier (FFT).

DECIMOQUINTA SEMANA

Primera sesión:

Transformada Discreta de Fourier (DFT): Conceptos, obtención y análisis en módulo y fase Implementación de la DFT vía la FFT. Seminario de Ejercicios No. 4.

Segunda sesión:

Laboratorio Calificado No. 7: DFT y FFT.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

• Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor. Una computadora personal para cada grupo de trabajo, ecran y proyector de multimedia.

Materiales: MATLAB, editor de texto, cables de audio, micrófonos, parlantes multimedia, CDs de audio, osciloscopio, generadores de señal, libros, separatas y guías.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+PL+EF)/4

PE= (P1+P2+P3+P4+P4-MN)/4

PL= (Lb1+Lb2+Lb3+Lb4+Lb5+Lb6+Lb7-MN)/6

Dónde: P1 .. P5 : Practica calificada escritas

PE: Promedio de evaluaciones **PL** : Promedio de laboratorios calificados,

EF: Examen final escrito **Lb1...Lb7**: Laboratorio calificado

PP: Promedio de prácticas calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Electrónica, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería.	K	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas.	K	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario.		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería.		
(f)	Comprensión de lo que es la responsabilidad ética y profesional.		
(g)	Habilidad para comunicarse con efectividad.		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería electrónica dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida.		
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería electrónica.		

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
1	2	4

b) Sesiones por semana: dos sesiones

c) **Duración**: 7 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Dr. Guillermo Kemper Vásquez.

XV. FECHA

La Molina, agosto de 2017.