Normalformen

Zweiter Schritt der Zerlegung der Relation *Filmliste* basierend auf der FD : Kino → Telefonnummer (Tel.)

Kino-Screens

100		
100	479-7	
		М.

Titel	Regisseur
The Hobbit	Jackson
The Lord of the Rings 3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

Kino	Tel.	Zeit	Titel
Cine. City	441111	11:30	The Hobbit
Cine. City	441111	14:30	The Lord of the Rings 3
Odeon	442222	11:30	Adventures of Tintin
Odeon	442222	14:00	War Horse
Odeon	442222	16:30	The Lord of the Rings 3

Kino		
Kino	Tel.	
Cine. City	441111	
Odeon	442222	

Screens

Kino	Zeit	Titel	
Cine. City	11:30	The Hobbit	
Cine. City	14:30	Saving Private Ryan	
Odeon	11:30	Adventures of Tintin	
Odeon	14:00	War Horse	
Odeon	16:30	Saving Private Ryan	

Abhängigkeitsbewahrung

- Idee: Alle FDs, die für die Relation R gelten, sollen *lokal* auf den Relationen R₁,..., R_n aus der Zerlegung überprüfbar sein.
- Die Projektion von F auf α (F_{α}) ist die Menge von FDs aus F⁺ die nur Attribute aus α enthalten:

$$F_{\alpha} = \{ \beta \rightarrow \gamma \in F^+ \mid \beta \gamma \subseteq \alpha \}$$

Abhängigkeitsbewahrung

• Berechnung von FD Projektionen:

```
Input: F, \alpha
Output: F_{\alpha}
Erg = \emptyset
For each \beta \subseteq \alpha do
T = \beta^{+} \text{ (bzgl. } F)
Erg = Erg \cup \{\beta \rightarrow T \cap \alpha\}
Return Erg
```

Hüllentreue Zerlegung

• Definition.

Die Zerlegung der Relation R in Relationen $R_1,...,R_n$ wird als hüllentreue Zerlegung bezeichnet falls:

$$F_R^+ = (F_{R_1} \cup ... \cup F_{R_n})^+$$

• Intuitiv, müssen $F_{R_1} \cup ... \cup F_{R_n}$ und F_R äquivalent sein

Zerlegungbeispiel

- PlzVerzeichnis(Straße, Ort, BLand, PLZ)
- Bedingungen:
 - Orte werden durch Ort und BLand eindeutig charakterisiert
 - Innerhalb einer Straße ändert sich PLZ nicht
 - PLZ-Gebiete gehen nicht über Ortsgrenzen, Orte nicht über Bundeslandgrenzen
- FDs: {PLZ} → {Ort, BLand} und {Straße, Ort, BLand} → {PLZ}
- Die Zerlegung {PLZ, Straße} und {PLZ, Ort, BLand} ist:
 - Verlustlos (Corollary)
 - Nicht abhängigkeitserhaltend (die zweite FD ist lokal nicht überprüfbar)

Fun fact: In Deutschland gibt es über 2000 Goethestraßen!

Zerlegung einer Relation

Ist ok, aber "unschön", da Überprüfung der FDs nur nach der Rekonstruktion von R möglich ist (Effizientverlust)

Ist die Aufspaltung der zugehörigen FDs in FD₁s und FD₂s, die jeweils R₁ und R₂ zugeordnet werden könnten, abhängigkeitserhaltend möglich?

Normalisierung

- Normalformen definieren Qualitätskriterien (Vermeiden von Inkonsistenzen)
- Redundanz ist oft die Ursache von Schemaproblemen (keine FDs, keine Redundanz)
- Normalisierung:
 - Jede Relation entspricht genau einer Objektmenge oder genau einer Relationship-Menge zwischen Objekten
 - Alle Informationen und Integritätsbedingungen (Schlüsselkandidaten und Fremdschlüssel) sind abgebildet
 - Redundanz ist weitgehend eliminiert
 - Es treten keine Änderungsanomalien auf
 - ⇒ Beseitigung von Abhängigkeiten innerhalb der Relation

Normalisierung

- Integritätsregeln, insbesondere FDs, helfen ein schlechtes Schema zu identifizieren
- Die Lösung ist meistens die Zerlegung der Relation
- Fragestellung: wann ist eine Zerlegung möglich, und wann ist sie notwendig?

Normalformen

- Wenn eine Relation in einer Normalform ist, dann wissen wir, dass bestimmte Probleme nicht vorkommen können.
- Es hilft, um zu bestimmen ob eine Zerlegung weiter hilft oder nicht.
- Die Normalformen basierend auf FDs: 1NF, 2NF, 3NF, BCNF

BCNF \subseteq 3NF \subseteq 2NF \subseteq 1NF

1. Normalform

- **Definition.** Eine Relation ist in der ersten Normalform, wenn alle Attribute der Relation **atomar** sind. Zusammengesetzte und mehrwertige Attribute sind nicht erlaubt.
- Nicht atomar: Dictionaries, Listen, Untertabellen, json- o.ä. Strukturen, usw
- Ist bei der benutzten Definition des relationalen Modells normalerweise automatisch eingehalten
- Atomar: String, Integer, etc.
- Bemerkung: Datum / Uhrzeit wird als atomar betrachtet
- Was ist atomar genug?
 - (Name, Vorname) oder (Name und Vorname)
 - (Jahr, Monat, Tag, Stunde, Minute, Sekunde) oder (Timestamp)

Relation nicht in 1NF

Kunden (KundenID, Name, Vorname, Produkte)

Transformation in 1NF durch Zerlegung

KundenID	Name	Vorname	Produkte
K1	Nuhr	Dieter	Asus
K2	Pelzig	Erwin	iPhone, iPad, Vaio
К3	Gruber	Monika	Nexus, Galaxy Tab, Kindle

Kunden (<u>KundenID</u>, Name, Vorname)
Bestellung (<u>KundenID</u>, <u>Produkt</u>)

Referenzielle Integritätsbedingung (Fremdschlüssel): Bestellung. *KundenID* referenziert Kunden. *KundenID*

KundenId	Name	Vorname
K1	Nuhr	Dieter
K2	Pelzig	Erwin
К3	Gruber	Monika

KundenID	<u>Produkt</u>
K1	Asus
K2	iPhone
K2	iPad
K2	Vaio
К3	Nexus
K3	Galaxy Tab
К3	Kindle

2. Normalform

- **Definition.** Eine Relation R mit zugehörigen FDs F ist in zweiter Normalform, genau dann wenn es in 1NF ist und **jedes Nichtschlüssel-Attribut** A ∈ R voll funktional abhängig ist von **jedem Kandidatenschlüssel** der Relation.
- Eine funktionalle Abhängigkeit $X \to Y$ heißt **voll**, wenn es keine echte Teilmengen $Z \subset X$ gibt, s.d. gilt $Z \to Y$
- Intuitiv: Ein Relationenschema verletzt 2NF, wenn in der Relation Informationen über mehr als ein einziges Konzept modelliert werden.
- Selbst bei Erfüllung der 2NF können immer noch Redundanzen im Schema enthlaten sein (durch transitive Abhängigkeiten)

2NF - Beispiel

- StudentenBelegung (MatrNr, VorlNr, Name, Semester)
- Primärschlüssel: {MatrNr, VorlNr}
- FDs welche 2NF verletzen:
 - \circ {MatrNr} \rightarrow {Name}
 - \circ {MatrNr} \rightarrow {Semester}
- Bemerkung. Hier können wir auch die Anomalien wiedererkennen.
- Zerlegung:
 - Enrolled(MatrNr, VorlNr) vllt. auch Note
 - Studenten(MatrNr, Name, Semester) vllt. auch Email, Geburtsdatum, u.a.

3. Normalform

- **Definition.** Eine Relation mit zugehörigen FDs F ist in der 3. Normalform, wenn für alle Abhängigkeiten A→ B aus F⁺ gilt:
 - $B \subseteq A$ (FD ist trivial) **oder**
 - A enthält einen Schlüssel von R (A ist ein Superschlüssel) oder
 - B ist Teil eines Schlüsselkandidaten (B ist prim)
- Äquivalente Def. Eine Relation R ist in 3NF, wenn sie in der 2NF ist und kein Nichtschlüsselattribut von einem Schlüsselkandidaten transitiv abhängt.
- Bemerkung. 3NF beseitigt Abhängigkeiten von Nicht-Schlüsselattributen.
- Selbst bei Erfüllung der 3NF sind Redundanzen möglich.
- Eine Relation bleibt in 3NF, wenn BCNF nicht erreichbar ist (keine gute Zerlegung oder aus Leistungsgründen)

Relation nicht in 3NF

- Kurs (KursID, Titel, DozentName, Raum) nicht in 3NF
- Es gilt: {DozentName} → {Raum}
- Aber: Dozentname ist kein Schlüssel und Raum ist nicht Teil eines Schlüsselkandidaten
- Folgende Anomalien können auftreten:
 - Dozenten und Raum sind ohne Zuordnung eines Kurses nicht vefügbar
 - Falls ein Dozent keinen Kurs liest, werden alle Informationen über den Dozenten und seinem Raum gelöscht

Titel

Raum

Dozentname

KursID

Dozentname

Schema in 3NF:
 Kurs (<u>KursID</u>, Titel, DozentName)
 Dozent (DozentName, Raum)

Boyce-Codd Normalform

- **Definition.** Eine Relation R mit zugehörigen FDs F ist in der Boyce-Codd Normalform, wenn für alle Abhängigkeiten A→ B aus F⁺ gilt:
 - $B \subseteq A$ (FD ist trivial) **oder**
 - A enthält einen Schlüssel von R (A ist ein Superschlüssel)
- Die BCNF hat also außer den trivialen nur noch funktionalen Abhängigkeiten deren Determinante (linke Seite) ein Superschlüssel ist
- Bemerkung. Wenn R in BCNF ist, ist es automatisch auch in 3NF

Relation in 3NF aber nicht BCNF

- Städte (Ort, BLand, Ministerpräsident, Einw)
- Schlüsselkandidaten:
 - (Ort, BLand)
 - (Ort, Ministerpräsident)
- FDs:
 - BLand → Ministerpräsident
 - $\{Ort, BLand\} \rightarrow Einw$
 - Ministerpräsident → BLand
- Relation ist in 3NF, aber nicht in BCNF
- Anomalien können auftreten, da die Information, wer welches Bundesland regiert, mehrfach abgespeichert wird

Normalformen - Übersicht

- 1. Normalform (1NF)
 - Keine mehrwertigen Attribute
- 2. Normalform (2NF)
 - Keine Vermischung von Sachverhalten in Relationen
- 3. Normalform (3NF)
 - Keine funktionalen Abhängigkeiten von Nichtschlüsselattributen innerhalb von Relationen
- Boyce-Codd-Normalform (BCNF)
- Weitere Normalformen
 - 4. Normalform (4NF)
 - 5. Normalform (5NF)

Normalformen - Zusammenfassung

1NF – alle Attribute sind atomar

2NF – alle Nichtschlüsselattribute sind voll funktional abhängig von jedem Kandidatenschlüssel (keine partiellen Abhängigkeiten)

3NF – in 2NF und alle Nichtschlüsselattribute sind nur von Kandidatenschlüssel abhängig (keine transitiven Abhängigkeiten)

BCNF – jede Determinante ist ein Superschlüssel (alle FDs werden von Kandidatenschlüsseln bestimmt)

3NF vs. BCNF

- Bemerkung. Man kann jede Relation R so in $R_1,...,R_n$ zerlegen, dass gilt:
 - Die Zerlegung ist verlustlos und abhängigkeitsbewahrend
 - R_i ist in **3NF**, $1 \le i \le n$
- Bemerkung. Man kann jede Relation R so in $R_1,...,R_n$ zerlegen, dass gilt:
 - Die Zerlegung ist verlustlos
 - R_i ist in **BCNF**, $1 \le i \le n$
- Aber man kann nicht immer eine BCNF-Zerlegung finden, die auch abhängigkeitsbewahrend ist.

BCNF-Zerlegung

- Wenn die funktionale Abhängigkeit $\alpha \to \beta$ die BCNF verletzt, dann können wir die Relation in R β und $\alpha \cup \beta$ zerlegen. Wir können das weitermachen bis alle neuen Relation in BCNF sind (es geht immer zu Ende) (Zerlegung Korollar).
- Diese Zerlegung wird verlustlos, aber nicht unbedingt abhängigkeitsbewahrend sein
- **Bem**. Wenn es mehrere Abhängigkeiten gibt welche die BCNF verletzten, dann macht es einen Unterschied welche wir als erste für die Zerlegung auswählen.

BCNF – Zerlegungsbeispiel

- R(<u>C</u>, S , J, D, P, Q, V)
- $F = \{ JP \rightarrow C, SD \rightarrow P, J \rightarrow S \}$
- SD \rightarrow P verletzt BCNF \Rightarrow Zerlegung (S,D,P) mit $F_1 = \{SD \rightarrow P\}$ und (C,S,J,D,Q,V) mit $F_2 = \{J \rightarrow S\}$
- J → S verletzt BCNF für die zweite Relation ⇒ (C,S,J,D,Q,V) wird in (J, S) und (C, J, D, Q, V) zerlegt
- D.h. R wird in (S,D,P), (J, S) und (C, J, D, Q, V) zerlegt verlustlos, aber nicht abhängigkeitsbewahrend

Kanonische Überdeckung

- Definition (Äquivalenz funktionaler Abhängigkeiten).
 - Zwei Mengen F und G von FDs eines Relationenschemas R sind äquivalent, falls F^+ = G^+ gilt.
- Wunsch: Berechne eine möglichst kleine Menge, die zu F äquivalent ist → geringer Aufwand beim Testen, ob ein neues Tupel eine FD verletzt

Kanonische Überdeckung

Man kann überflüssige Attribute durch Links- und Rechtsreduktion entfernen:

Linksreduktion

• Führe für jede FD A \rightarrow B aus F die Linksreduktion durch, indem für alle X \in A überprüft wird ob das Attribut X überflüssig ist, d.h. ob gilt

```
B ⊂ Hülle(F, A - {X}), also (A - {X})<sup>+</sup> in Beziehung zu F (anders gesagt (F - {A → B} \cup {(A-{X}) → B})<sup>+</sup> = F<sup>+</sup> ) Ist dies der Fall, ersetze A → B durch A - {X} → B
```

Rechtsreduktion

 Führe für jede FD A → B aus F die Rechtsreduktion durch, indem für alle Y ∈ B überprüft wird ob das Attribut Y überflüssig ist, d.h. ob gilt

```
Y \in H\ddot{u}lle(F - (A \rightarrow B) \cup (A \rightarrow B - \{Y\}), A)
(anders gesagt ( F - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{Y\})\} )^+ = F^+)
Ist dies der Fall, ersetze A \rightarrow B durch A \rightarrow B - \{Y\}
```

Kanonische Überdeckung

• Definition (Kanonische Überdeckung).

Die Menge von FDs F_c wird als **kanonische Überdeckung** von F bezeichnet, falls folgende Bedingungen erfüllt sind:

- $F_c^+ = F^+$ (Äquivalenz) (1)
- Für alle FDs A \rightarrow B in F_c gibt es keine überflüssigen Attribute in A und in B, d.h.
 - für alle Attribute C aus A gilt ($F_c \{A \rightarrow B\} \cup \{(A-\{C\}) \rightarrow B\})^+ \neq F^+$ (2)
 - für alle Attribute D aus B gilt (F_c {A \rightarrow B} \cup {A \rightarrow (B {D})}) $^+ \neq F^+$ (3)
 - jede linke Seite der FDs in F_c kommt nur einmal vor, d.h. Falls $A \to B$ und $A \to C$, dann wird in F_c nur die FD $A \to B \cup C$ vrewendet (4)
- Intuitiv: (2) keine überflüssigen Attribute auf der linken Seite von FDs
 - (3) keine überflüssigen Attribute auf der rechten Seite von FDs