

Agenda

- Why Run Databases In Containers?
- Advantages / Disadvantages Of Different Kubernetes Infrastructure Types
- A Look At DIY Kubernetes Infrastructure
- Persistent Storage For Databases
- MariaDB: Architectural Advantages
- Case Study
 - Fortune 50 Bank Adopts Containerized DBs, Deploys On Bare Metal Infrastructure

♥DIAMANTI ® 2019 DIAMANTI

Why Run Databases On Bare Metal Kubernetes?

- Better performance
- Higher density per node (no VM tax)
- Accelerated time-to-production, updates, fixes
- Easier, more granular scalability
- Leveraging open source technologies eliminates hefty license costs
- Conducive to DBaaS

Where Should You Deploy Your Containerized Databases?

DIY Infrastructure

PROS:

- Low complexity at small scale
- Experience with traditional technology components

CONS:

- Longer time-to-value
- With a VM layer, resource efficiency is reduced and complexity increases
- High complexity and cost at scale
- Difficult to manage at scale

Public Cloud

PROS:

- 100% OPEX means lowest cost at small scale
- Proven, resilient infrastructure as a service

CONS:

- Highest costs at large scale
- Difficult to optimize efficiency
- Security and compliance concerns
- No bare metal support

DIY Bare Metal

PROS:

- Flexible, seamlessly scalable infrastructure
- Better overall performance at scale
- TCO advantages are realized

CONS:

 Specialized skill sets required at different areas of the stack

Do-It-Yourself Approach to Container Infrastructure

Storage Remains a Top Container Adoption Challenge

Container persistent storage for stateful applications has proven particularly difficult for the industry "A modern storage solution must provide DevOps teams with persistent, stateful application data; allow the consumption of storage on-demand; and deliver the same level of availability and performance provided to traditional application infrastructures."

Source: https://containerjournal.com/2019/02/20/new-storage-challenges-emerge-as-container-adoption-increases/

Drilling Down: Storage For Stateful Containers

Local Storage

Host paths can be mounted to containers in Docker and Kubernetes

Traditional SAN Storage

Either connect by iSCSI or FC

Network File System (NFS)

Offers persistent storage

CHALLENGES

- Persistence
- High Availability (HA)
- Who is managing it?

CHALLENGES

Persistence

CHALLENGES

Performance isn't adequate

Connecting The Ecosystem With FlexVolume / CSI

- FlexVolume is Kubernetes plug-in facility for 3rd party storage
- Allows a standard way of integrating 3rd party storage, including storage with enterprise features, into Kubernetes
- Developed and contributed to Kubernetes by Diamanti
- Being supplanted by CSI (Container Storage Interface), which Diamanti continues to contribute to
- Now developers and architects have storage that is accessible and configurable from the K8s API and PodSpecs

Database Container Challenges, According To MariaDB

StatefulSet

- Definition: StatefulSet manages Pods that are based on an identical container spec
- Identical pods: additional scripting required to instantiate different roles
- Complete enterprise cluster requires more StatefulSets (i.e. MaxScale+Master/Slave)

Persistence

- Persistent volumes can add new layers of abstraction (and latency)
- Provisioning / managing of IOPS or throughput is backend storage vendor-specific

Resource Management

DB instances contend with other apps for CPU, RAM, network and storage I/O resources

DBaaS: Sample Architecture

Why MariaDB Is Suited For Kubernetes

- Lightweight, portable database runtime
 - Well-suited for containers
- Implementation in Kubernetes enables load balancing of reads and writes
 - Master DB and Slave DBs can be scaled independently
- Offer different topologies, depending on specific use case
- Offer CPU/Memory usage resources management

♥DIAMANTI • © 2019 DIAMANTI

Containers And Database-as-a-Service

The Goal of DBaaS

 Service model that provides users the ability to provision DBs without the need for setting up physical hardware, installing software or configuring for performance

- Operational advantages with container-based DBaaS
 - App developers can check out DBs without burdening DBAs or IT Admins
 - Scaling capacity on-demand
 - Auto-recovery via Statefulset (in Kubernetes)
 - Built-in resource management for memory and CPU per pod

♥DIAMANTI ® 2019 DIAMANTI

Containers And Database-as-a-Service On Diamanti

- Operational advantages with container-based DBaaS
 - App developers can check out DBs without burdening DBAs or IT Admins
 - Scaling capacity on-demand
 - Auto-recovery via Statefulset (in Kubernetes)
 - Built-in resource management for memory and CPU per pod
 - User defined policy for QoS Network and Storage per pod
 - Out-of-the-box high-performance persistent storage (500k IOPS per node)
 - Plug-n-play networking setup

♥DIAMANTI ® 2019 DIAMANTI

Diamanti Bare-Metal Kubernetes Platform

Complete turnkey Kubernetes stack

- Hyperconverged 1U appliance built on x86 architecture
- Features container-optimized networking and storage models
- 24/7 full-stack support

Built for public cloud experience, on-prem

- Per container pod network and storage QoS
- Enterprise DP/DR features: mirroring/synchronous replication, snapshots/asynchronous replication
- No vendor lock-in: freedom for moving workload between on-perm Diamant to the cloud
- laaS for containers

Benefits:

- High performance
- **Efficient**
- Secure
- Installs in minutes
- Low TCO

⊘DIAMANTI © 2019 DIAMANTI 14

Customer Success: Fortune 50 Bank

Profile:

- Large global bank serving 16M Canadian, American, and international customers
- 81,000 employees, worldwide

Challenge:

- Migration away from Oracle for cost, agility
- ~4 weeks to deploy new DBs on traditional infrastructure

Initial approach:

- DIY infrastructure to support containerized DBaaS
- 2 FTE for 18 months and still cannot operationalize the platform

Minimal Downtime

16x

Footprint reduction

23x

Faster deployment

\$14M

TCO savings over 5 years

Solution:

- Installed and configured 3-node Diamanti D10 cluster
- Deployed PostgreSQL, MongoDB, and MariaDB on Diamanti in a day, vs. weeks
- Added addition Diamanti nodes dynamically with zero service disruption

♥DIAMANTI 15

Next Steps

- Visit www.diamanti.com
- > Follow @diamanticom
- > Email demo@diamanti.com for a briefing and live demo
- > Stop by Diamanti Booth for more detailed discussion

