Curriculum Vitae As of September 26, 2025

Sangjoon "Joon" Lee, Ph.D.

CTR Postdoctoral Fellow at Stanford University

488 Escondido Mall, Bldg. 500 Rm. 500T, Stanford, CA 94305, United States

EDUCATION

University of California, Berkeley – Berkeley, CA, United States

2019/08 - 2024/08

Ph.D. / M.S. in *Mechanical Engineering*

• Designated emphasis: Computational and Data Science and Engineering

Seoul National University – Seoul, South Korea

2012/03 - 2018/08

(involving 21-month military leave)

B.S. in *Mechanical and Aerospace Engineering* & B.B.A. (Bachelor of *Business Administration*)

• Honors: Summa Cum Laude.

RESEARCH **EXPERIENCE**

Postdoctoral Fellow, Stanford University

2024/10 -

Center for Turbulence Research (CTR) (Faculty Sponsor: Dr. B. J. McKeon)

Advanced analysis for physical insights into turbulence and related phenomena

Graduate Student Researcher, University of California, Berkeley Computational Fluid Dynamics (CFD) Lab (Advisor: Dr. P. S. Marcus) 2020/01 - 2024/08

- Numerical examination of destabilizing aircraft wake vortices using both linear and non-linear analyses in association with spectral collocation methods
- Data-driven topology optimization of hydro-/aerodynamic designs based on the Design-by-Morphing (DbM) technique

Researcher, Seoul National University

2017/07 - 2018/08

Energy & Environmental Flow Lab (Director: Dr. W. Hwang)

- Development of conjugate heat transfer codes analyzing heat convection and conduction simultaneously with an efficient interpolation scheme for thermal properties
- Turbulent channel flow visualization via magnetic resonance velocimetry supplemented with large eddy simulations

Research Intern, Seoul National University

2016/09 - 2017/12

Turbulence, Flow Control & CFD Lab (Director: Dr. H. Choi)

• Large eddy simulations of flow around a small rotating vertical axis wind turbine

RESEARCH **INTERESTS**

Thermofluids – High-Fidelity CFD coupled with AI/ML for Cost-Efficient, Physics-Based Optimization

- · Modeling and analyzing fundamental fluid instabilities and vortex/turbulent phenomena
- Pioneering new designs in nonlinear thermal/fluid and energy systems through high performance computing and physically grounded data-driven techniques
- Advancing flow solutions with respect to sustainability and clean environment, across scales (from droplet condensation to wind/gas turbines to aircraft contrails)

GRANTS	NSF ACCESS Allocation: PHY250071 ACCESS by the U.S. National Science Foundation (NSF) PI · 1,500,000 HPC core-hours • Surface topology optimization for thermally-efficient dropwise condenses	2025/03 - 2026/02 sation
FELLOWSHIPS	CTR Postdoctoral Fellowship Center for Turbulence Research (CTR) at Stanford University • Funding granted by the Office of Naval Research (ONR)	2024 - 2025
	Departmental Graduate Fellowship College of Engineering at the University of California, Berkeley • Selective departmental recognition offering stipends with tuition and fe	2023 e waivers
	 Ilju Overseas Ph.D. Scholarship, Study Abroad Doctoral Program Ilju Academy & Culture Foundation Merit-based financial aids, selected as one of 6 recipients in 2019 	2019 - 2023
	National Scholarship for Science and Engineering Korea Student Aid Foundation (KOSAF) • Full-tuition scholarship for undergraduates with strong academic performance.	2012 - 2017
HONORS & AWARDS	Outstanding Graduate Student Instructor (OGSI) Award GSI Teaching & Resource Center at the University of California, Berkeley	2021
	Representative of the Engineering Class of 2018, 72nd Summer Commencer Seoul National University	nent 2018
	Student Paper Award: Bronze , 9th National Fluid Engineering Contest for Undergraduates Fluid Engineering Division of the Korean Society of Mechanical Engineers	
TEACHING & TUTORING	Teaching Assistant, University of California, Berkeley Introduction to Computer Programming for Scientists and Engineers (ENGIN 7)	2024 Sp
	Course Designer / Graduate Student Instructor, University of California, Berkeley Introduction to Aerospace Engineering Design (AERO ENG 10)	2022 Fa - 2023 Sp
	Graduate Student Instructor , University of California, Berkeley Experimentation and Measurements (MEC ENG 103)	2019 Fa - 2022 Sp
PROFESSIONAL SERVICE	Peer Reviewer • Physics of Fluids (AIP Publishing) • Journal of Fluid Mechanics (Cambridge University Press)	2024 - 2025 -
COMMUNITY OUTREACH	Stanford seeME & CTR ² , Stanford University Volunteer (Teaching, Photographing & On-day Assistance) • On-campus hands-on classes for young students to learn various aspect	2025 s of engineering
	SNU Tomorrow's Engineers Membership, Seoul National University Member & Head Manager	2016 - 2018
	• Annual Vision Mentoring events for high school students interested in engineering and science	

JOURNAL PUBLICATIONS

correspondingco-first

- 1. Hong, J., Lee, S.[†], Lee, D., Bae, J. & Hwang, W. (2025). **Experimental and Numerical Investigation of 3D Flow Structures in a Turbulent Channel Flow with Riblets**, In Preparation.
- 2. <u>Lee, S.</u> & Vijay, S. (2025). **Structured Porous Media Design and its Application to Passive Wall-Bounded Turbulence Control**. In Preparation.
- 3. Jung, J., Lee, S. & Gu, G. X. (2025). **Data-Driven Optimization of Novel Morphing Airfoil Designs for Enhanced Flutter Control**, In Preparation.
- 4. Duarte, C., Raftery, P., Lee, S., & Solmaz, A. S. (2025). Effect of Elevated Air Movement on Radiant Cooling Systems. *Journal of Building Performance Simulation*, Submitted.
- Lee, S. & Sheikh, H. M. (2025). Airfoil Optimization using Design-by-Morphing with Minimized Design-Space Dimensionality. Journal of Computational Design and Engineering, Submitted.
- 6. Lee, S., & Marcus, P. S. (2025). **Transient Growth of a Wake Vortex and its Initiation via Inertial Particles**. *Journal of Fluid Mechanics*, 1014, A16, doi:10.1017/jfm.2025.253.
- 7. Lee, S., Baek, S., Ryu, J., Song, M. & Hwang, W. (2025). Flow in Ribbed Cooling Channels with Additive Manufacturing-Induced Surface Roughness. *Physics of Fluids*, 37(6), 065118. doi:10.1063/5.0268180.
- 8. Wang, J., Lee, S., & Marcus, P. S. (2024). **Triadic Resonance in Columnar Vortices**. *arXiv Preprint*. doi:10.48550/arXiv.2402.05287.
- 9. Lee, S.*, Sheikh, H. M., Lim, D. D., Gu, G. X., & Marcus, P. S. (2024). **Bayesian-Optimized Riblet Surface Design for Turbulent Drag Reduction via Design-by-Morphing with Large Eddy Simulation**. *Journal of Mechanical Design*, 146(8), 081701. doi:10.1115/1.4064413.
- 10. Lee, S., & Marcus, P. S. (2023). Linear Stability Analysis of Wake Vortices by a Spectral Method Using Mapped Legendre Functions. *Journal of Fluid Mechanics*, 967, A2. doi:10.1017/jfm.2023.455.
- 11. Sheikh, H. M., Lee, S.[†], Wang, J. & Marcus, P. S. (2023). **Airfoil Optimization using Design-by-Morphing**. *Journal of Computational Design and Engineering*, 10 (4), 1443-1459. doi:10.1093/jcde/qwad059.
- 12. <u>Lee, S.</u>, & Hwang, W. (2019). **Development of an Efficient Immersed-Boundary** Method with Subgrid-Scale Models for Conjugate Heat Transfer Analysis using Large Eddy Simulation. *International Journal of Heat and Mass Transfer*, 134, 198-208. doi:10.1016/j.ijheatmasstransfer.2019.01.019.
- 13. Baek, S., Lee, S., Hwang, W., & Park, J. S. (2019). Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage. *Journal of Turbomachinery*, 141 (1), 011012. doi:10.1115/1.4041868.

REFEREED ARTICLES

- 1. Lee, S., Song, H., & Lele, S. K. (2025). Global Instability of Shock Trains in Supersonic Isolator Ducts. CTR Annual Research Briefs 2025 (In Preparation). Center for Turbulence Research.
- 2. <u>Lee, S.</u>, Vijay, S. (2025). **Topology-Aware Drag–Permeability Modeling in Architected Porous Structures**. *CTR Annual Research Briefs* 2025 (In Preparation). Center for Turbulence Research.

DISSERTATION

1. Lee, S. (2024). Linear Stability of a Wake Vortex and its Transient Growth: Numerical Analysis in Light of Critical-Layer Eigenmodes and Spectra (Publication No. 31483920) [Doctoral Dissertation, University of California, Berkeley]. *ProQuest Dissertations & Theses*.

CONFERENCE PAPERS & PRESENTATIONS

- 1. Lee, S., & Vijay, S. (2025, Nov 23-25). **Topological Design of Porous Structures for Flow Control: A Design-by-Morphing Approach**. 78th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Houston, TX, United States (no. J32.3). American Physical Society.
- 2. Hong, J., Lee, S., Lee, D., Bae, J. & Hwang, W. (2025, Sep 15-19). Experimental and Numerical Investigation of 3D Flow Structures in a Turbulent Channel Flow with Riblets. 16th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows (ISAIF), Prague, Czech Republic (no. C7.1). Institute of Thermomechanics, Czech Academy of Sciences.
- 3. Lee, S., Wang, J. & Marcus, P. S. (2024, Nov 24-26). Modernized and Parallelized Mapped Legendre Spectral Method Code for Unbounded Vortical Flow Simulations. 77th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Salt Lake City, UT, United States (no. L16.7). American Physical Society.
- 4. Wang, J., Lee, S. & Marcus, P. S. (2024, Nov 24-26). Stability Analysis of the Q-Vortex: Critical Swirling Parameter Determination via Perturbation Theories and Resonant Triadic Perturbations in the Sub-Critical Region. 77th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Salt Lake City, UT, United States (no. J38.5). American Physical Society.
- Lee, S., & Marcus, P. S. (2024, Aug 25-30). Particle-Initiated Transient Growth of a Wake Vortex in Consideration of Condensation Trails. 26th International Congress of Theoretical and Applied Mechanics (ICTAM), Daegu, South Korea (pp. 2009-2010). International Union of Theoretical and Applied Mechanics.
- 6. <u>Lee, S.</u>, & Marcus, P. S. (2023, Nov 19-21). **Investigation of Triggering Vortex Instabilities** with **Inertial Particles**. 76th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Washington, DC, United States (no. ZC38.5). American Physical Society.
- 7. Wang, J., Lee, S., & Marcus, P. S. (2023, Nov 19-21). **Three-Wave Resonance in Neutrally Stable Wake Vortices**. 76th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Washington, DC, United States (no. ZC38.2). American Physical Society.
- 8. Lee, S., & Marcus, P. S. (2022, Nov 20-22). Viscous Perturbation to Inviscid Wake Vortices Perturbation Theory in Vortex Stability. 75th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Indianapolis, IN, United States (no. Q11.7). American Physical Society.
- 9. Marcus, P. S., Wang, J. & Lee, S. (2022, Nov 20-22). **A General Framework for Destabilizing Neutrally-Stable Flows Applied to Aircraft Wake Vortices**. 75th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Indianapolis, IN, United States (no. L18.1). American Physical Society.
- Lee, S., & Marcus, P. S. (2021, Nov 21-23). Linear Instability Analysis of Wake Vortices by a Spectral Method using Mapped Legendre Functions. 74th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Pheonix, AZ, United States (no. E24.1). American Physical Society.
- 11. Wang, J., Lee, S., & Marcus, P. S. (2021, Nov 21-23). **Destabilizing Neutrally Stable Wake Vortices Using Degenerate Eigenmodes**. 74th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD), Pheonix, AZ, United States (no. E24.3). American Physical Society.

- 12. <u>Lee, S.</u>, & Hwang, W. (2018, Jul 4-6). **Validation of a Conjugate Heat Transfer Code with Subgrid-scale Models for Turbulent Flow**. KSFM 2018 Summer Conference, Jeju, South Korea (pp. 197-198). Korean Society for Fluid Machinery.
- 13. Baek, S., Lee, S., Hwang, W. & Park, J. S. (2018, Jun 11-15). Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage. ASME 2018 Turbo Expo: Turbomachinery Technical Conference and Exposition, Lillestrøm, Norway (no. GT2018-76741). American Society of Mechanical Engineers. doi:10.1115/GT2018-76741. Journal-Quality Appraisal and Transferred to J. Turbomach.
- 14. Lee, S. (2017, Nov 1-3). **2D Simulation of an Unsteady Flow around a Small Vertical Axis Wind Turbine Using an Immersed Boundary Method**. KSME 2017 Annual Conference, Jeju, South Korea (pp. 741-745). Korean Society of Mechanical Engineers. *Student Paper Award: Bronze*.
- 15. Baek, S., Lee, S. & Hwang, W. (2017, Nov 1-3). Investigation of Fully Developed Turbulent Pipe Flow Using Magnetic Resonance Velocimetry (MRV) and Large Eddy Simulation (LES). KSME 2017 Annual Conference, Jeju, South Korea (pp. 581-583). Korean Society of Mechanical Engineers.

INVITED TALKS & SEMINARS

- 1. Lee, S. (2025, Aug 19). **Topology Optimization of Complex Nonlinear Systems Using High-Performance Simulations and Data-Driven Approaches**. GTR Technical Research Society Seminar, Suwon, South Korea. Global Technology Research, Samsung Electronics.
- 2. <u>Lee, S.</u> (2025, Jan 10). **Unmasking Hidden Physics and Bridging Data Sparsity: Two Paths to Tackling Fluid Problems**. CTR Tea Seminar, Stanford, CA, United States. Center for Turbulence Research, Stanford University.
- 3. Lee, S. (2024, Sep 10). **Physics-Based Computation in the Modern Era of Data-Driven Fluid Mechanics**. SNU Mechanical Engineering Seminar, Seoul, South Korea. Department of Mechanical Engineering, Seoul National University.
- 4. Lee, S. (2023, Aug 8). **Design-by-Morphing (DbM): A Novel Design Methodology for Aerodynamic Optimization**. 2023 Hyundai Vision Conference, Seoul, South Korea. Hyundai Motor Company.
- 5. <u>Lee, S.</u> (2022, Nov 16). **Modern Applications of Computational Fluid Dynamics (CFD)**. 2022 Online Special Lecture Series: Research Reinforcement for Sustainable Buildings and Urban Systems in Future, Online. Department of Architectural and Urban Systems Engineering, Ewha Womans University.
- Lee, S. (2018, Aug 8). An Introduction to In-House LES Applications to Turbine Internal Cooling and Recent Improvements for Conjugate Heat Transfer Analysis. KARI Computational Fluid Dynamics Seminar, Daejeon, South Korea. Korea Aerospace Research Institute.

SOFTWARE & CODES

- 1. <u>Lee, S.</u>, Wang, J. (2025). **MLegS: Modernized and Parallelized Mapped Legendre Spectral Method Code** (v1.0.2). https://github.com/ucbCFD/MLegS. doi:10.5281/zenodo.14976470.
- 2. <u>Lee, S.</u> (2025). **roughSurfaceGen: Artificial Rough Surface Generator that Fits Prescribed Surface Roughness Parameters** (v1.0.1). https://github.com/jun9303/roughSurfaceGen.