Course Type	Course Code	Name of Course	L	Т	P	Credit
DC	GPC508	Earthquake Seismology	3	0	0	9

Course Objective

The course presents fundamental concepts of applied earthquake seismology with the objective to provide the students with a broad overview. The topics are particularly relevant to students that continue with research within earthquake seismology. However, the concepts and methods taught are also relevant to the general geophysics student interested in Earth structure and earthquake physics.

Learning Outcomes

Upon successful completion of this course, students will:

Students will gain a deeper understanding of approaches such as forward modelling and inversion from the topics addressed within the earthquake seismology context. The student can demonstrate how the earthquake mechanism is derived from waveform data. Students will be able to the earthquakes, which will lead to improve Earth models. The student can discuss the different aspects of inverse problems in earthquake seismology.

Unit No.	Details of Lectures	Lecture Hrs.	Learning Outcomes	
1.	Introduction to seismology, fracturing of rocks under	3	Basic knowledge of	
	different stresses, causes of earthquakes, Elastic		earthquakes, causes	
	Rebound Theory for earthquake generation.		and types of	
	Classification of earthquakes. Earthquake, nuclear		earthquakes	
	explosion, rock burst, volcanic earthquake.			
2.	Wadati-Benioff zone, Intra and inter plate earthquakes,	2	Global distribution	
	Intra-plate strain-hardening model and inter-plate		of earthquakes	
	model for mega-earthquakes along subduction zone.		T 1' .1 1	
3.	Temporal and geographical distribution of earthquakes,	2	Indian earthquakes	
	seismicity and seismotectonics of India and the		and its historical	
	Himalaya.	_	perspective	
4.	Effects of earthquake and tsunami. Foreshocks,	2	Impact of	
	Mainshocks, Aftershocks and Earthquake swarm.		earthquakes	
	Omri's Law.		T 1	
5.	Frequency - magnitude relation for b-value estimation.	2	Earthquake	
	Significance of b-values. Micro-earthquakes, induced		magnitude scale and	
	seismicity.		related parameters	
6.	Wadati diagram for computation of origin time.	3	Quantitative	
	Localizing of magnitude scale, various magnitude		analysis of source	
	scales and their limitations, seismic energy, seismic		characteristics	
	moment, slip, slow slip, stress drop and dimension of			
	rupturing of rock during earthquakes.		0 11 1	
7.	MM and MSK intensity scales. Earthquake hazard and	2	Qualitative size of	
	risk. Seismic zonation of India		earthquakes and hazards	

11.	matrices. P-, S- and surface waves, Momentum equation, Derivation of P- and S-wave equations. The effects of gravity on seismic wave propagations.	3	Governing equations of seismic waves
13.	Propagation of various seismic body and surface waves inside the Earth.	2	Nature of seismic waves inside the earth
14.	Dispersion and Attenuation of seismic waves. Determination of phase and group velocities.	2	Characteristics of seismic wave inside the Earth
15.	Ray paths for horizontally and spherically stratified Earth. Travel Time Curves, Delay Time and Triplication, Ray Paths for Low Velocity Zone (LVZ). Velocity structure and V_P/V_S study.	4	wave phenomenon within the earth
16.	Principle and construction of seismometers. Damping, amplitude and phase characteristics.	2	Amplitude and phase characteristics of seismogram
17.	Short-period, Long-period and Broad-band seismometers, and their limitations.	1	Seismograph
18.	Earthquake prediction: dilatancy theory, short-term, middle-term and long-term prediction. Earthquake Early warning System.	2	Earthquake precursors and prediction
19.	Fault plane solutions and their interpretation. Moment tensors for different fault patterns.	2	Source dynamics and kinematics
20.	Introduction to free oscillations of the Earth.	1	Free oscillations of Earth during great earthquake
	Total:	39	

Text books

- 1. Shearer, P. 1999. Introduction to Seismology, Cambridge: Cambridge University Press.
- 2. Lowrie, W., 2007. Fundamental of Geophysics, Cambridge: Cambridge University Press.

Reference books

- 1. Stein, S. and Wysession, M. 2003. An Introduction to Seismology, Earthquakes and Earth Structure, Oxford: Blackwell Publishing.
- 2. Båth, M., 1976. <u>Introduction to Seismology</u>, Birkhäuser Basel.

- 2. Agustin, U., 2000. Principles of Seismology, Cambridge: Cambridge University Press.
- 3. KIyoo Mogi, 1985. Earthquake Prediction, Academic Press.
- 4. Kasara, K., 1981. Earthquake mechanics, Cambridge University Press.
- 5. Bullen, K. E. and Bolt, B. A. 1985. An Introduction to the Theory of Seismology, Cambridge: Cambridge University Press.
- 6. Richter, C. F. 1945. Elementary Seismology, W H Freeman, San Francisco, W. H. Freeman & Co.
- 7. Kulhanek, O. 1970. Anatomy of Seismograms, Seismological section, University of Uppsala, Uppsala, Sweden.
- 8. Leon Reiter, 1991. Earthquake Hazard Analysis, Columbia University Press, 254pp.
- 9. Scholz, C.H., 2019. The mechanics of earthquakes and faulting, Cambridge University Press, 494pp
- 13. Gubins D., 1990. Seismology and Plate Tectonics, Cambridge University Press, 348pp.