Exercice 1 [id=616] L'équation différentielle y'' - 4y = a|x| + b

Pour tout couple $(a,b) \in \mathbb{R}^2$, on considère l'équation différentielle :

$$(E_{a,b}): y'' - 4y = a|x| + b$$

et on considère les fonctions

$$K: \mathbb{R} \to \mathbb{R}, x \mapsto K(x) = \int_0^{+\infty} \frac{\sin^2(tx)}{t^2} dt$$

et

$$F: \mathbb{R} \to \mathbb{R}; x \mapsto F(x) = \int_0^{+\infty} \frac{\sin^2(tx)}{t^2(t^2+1)} dt$$

et on note $\alpha = K(1)$ (On ne demande pas pour le moment de calculer α .)

- Donner une expression simple de K(x) pour tout $x \in \mathbb{R}$ en fonction de α et x (on pourra commencer par le cas de x > 0.)
- 2 Démontrer que F est une solution de l'équation différentielle $E_{a,b}$ pour des valeurs à préciser de a et b.
- 3 Démontrer que $\forall x \in \mathbb{R}$, $|K(x) F(x)| \leq \frac{\pi}{2}$. En déduire un équivalent simple de F(x), quand x tend vers $\pm \infty$.
- 4 Calculer explicitement K(x) et F(x) pour tout $x \in \mathbb{R}$.

Solution:

- $1 \mid \text{Soit } x \in \mathbb{R}.$
 - $\bullet \text{Si } x>0, \text{ le changement de variable } xt=u \text{ donne } K(x)=\int_0^{+\infty} \frac{\sin^2(u)}{\frac{u^2}{x^2}} \frac{1}{x} \mathrm{d}u, \text{ donc } K(x)=x \int_0^{+\infty} \frac{\sin^2(u)}{u^2} \mathrm{d}u = xK(1)=x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \mathrm{d}u = xK(1)=|x|K(1).$ $\bullet \text{Si } x<0, \text{ le même changement de variable donne } K(x)=\int_0^{-\infty} \frac{\sin^2(u)}{\frac{u^2}{x^2}} \frac{1}{x} \mathrm{d}u = -x \int_{-\infty}^0 frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \frac{1}{x^2} \mathrm{d}u = -x \int_0^{-\infty} frac \sin^2(u) u^2 \mathrm{d}u = x \int_0^{-\infty} \frac{\sin^2(u)}{u^2} \mathrm{d}u = x \int_0$
 - Si x < 0, le même changement de variable donne $K(x) = \int_0^{-\infty} \frac{\sin^2(u)}{\frac{u^2}{x^2}} \frac{1}{x} du = -x \int_{-\infty}^0 frac \sin^2(u) u^2 du$ et comme la fonction $u \mapsto \frac{\sin^2(u)}{u^2}$ est paire, on a finalement $K(x) = -x \int_0^{+\infty} \frac{\sin^2(u)}{u^2} du = -xK(1) = |x|K(1)$.
 - Si x = 0, il est aisé de voir qu'on a toujours F(0) = 0 = |0|K(1), donc finalement, on a prouvé que :

$$\forall x \in \mathbb{R}, F(x) = \int_0^{+\infty} \frac{\sin^2(tx)}{t^2(t^2+1)} dt = |x|K(1), \text{ avec } K(1) = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt.$$

2 F est de classe C^2 sur \mathbb{R} car l'application $u:(x,t)\mapsto u(x,t)=\frac{\sin^2(tx)}{t^2(t^2+1)}$ est de classe C^2 sur $\mathbb{R}\times]0,i[$. On a $\frac{\partial u}{\partial x}(x,t)=\frac{2\sin(tx)\cos(xt)}{t(t^2+1)}=\frac{\sin(2tx)}{t(t^2+1)}$, donc, compte tenu de l'inégalité $\forall \tau\in\mathbb{R}, |\sin(\tau)|\leq |\tau|$, si $a\in]0,+\infty[$ alors

$$\forall (x,t) \in [-a,a] \times]0, +\infty[, \quad \left|\frac{\partial u}{\partial x}(x,t)\right| \leq \frac{2t|x|}{t^2+1} = \frac{2|x|}{t^2+1} \leq \frac{2|a|}{t^2+1} = \psi_a(t).$$

La fonction $t\mapsto \psi_a(t)=\frac{2|a|}{t^2+1}$ est continue et intégrable sur $]0,+\infty[$. On peut donc appliquer le théorème de dérivation sous le signe intégrale et dire que F est de classe C^1 sur $\mathbb R$ et on a la formule de Leibnitz : $\forall x\in\mathbb R, F'(x)=\int_0^{+\infty}\frac{\partial u}{\partial x}(x,t)\mathrm{d}t=\int_0^{+\infty}\frac{\sin(2tx)}{t(t^2+1)}.$ On a aussi $\frac{\partial^2 u}{\partial x^2}(x,t)=\frac{2\cos(xt)}{t^2+1}$ et $\left|\frac{\partial^2 u}{\partial x^2}(x,t)\right|\leq \frac{2}{t^2+1}=\psi(t)$ et $t\mapsto \psi(t)$ est continue intégrable sur $]0,+\infty[$, donc encore avec le théorème de dérivation on a F de classe C^2 sur $\mathbb R$ et la formule de Leibnitz $\forall x\in\mathbb R, F''(x)=\int_0^{+\infty}\frac{\partial^2 u}{\partial x^2}(x,t)\mathrm{d}t=2\int_0^{+\infty}\frac{\cos(xt)}{t^2+1}\mathrm{d}t.$ Il en découle que pour tout $x\in\mathbb R$, on a $F''(x)-4F(x)=\int_0^{+\infty}\left(2\frac{\cos(2xt)}{t^2+1}-\frac{4\sin^2(xt)}{t^2(t^2+1)}\right)\mathrm{d}t=\int_0^{+\infty}\left(2\frac{1-2\sin^2(xt)}{t^2+1}-\frac{4\sin^2(xt)}{t^2(t^2+1)}\right)\mathrm{d}t,$ donc $F''(x)-4F(x)=2\int_0^{+\infty}\frac{1}{t^2+1}\mathrm{d}t-4\int_0^{+\infty}\sin^2(tx)\left(\frac{1}{t^2+1}+\frac{1}{t^2(t^2+1)}\right)\mathrm{d}t=\pi-4K(x)$ car

Mohamed Ait Lhoussain page 1 SPÉ MP

 $\left(\frac{1}{t^2+1}+\frac{1}{t^2(t^2+1)}\right)=\frac{1}{t^2}\left(\frac{t^2}{t^2+1}+\frac{1}{t^2+1}\right)=\frac{1}{t^2}.$ On a compte tenu de la première question $F''(x)-4F(x)=\pi-4C|x|$ où C=K(1). En posant a=-4K(1) et $b=\pi$, on voit que F est une solution de l'équation différentielle y''-4y=a|x|+b.

3 Pour tout $x \in \mathbb{R}$, on a :

$$|K(x) - F(x)| = \left| \int_0^{+\infty} \frac{\sin^2(tx)}{t^2} dt - \int_0^{+\infty} \frac{\sin^2(tx)}{t^2(t^2 + 1)} dt \right|$$

$$= \left| \int_0^{+\infty} \sin^2(tx) \left(\frac{1}{t^2} - \frac{1}{t^2(t^2 + 1)} \right) dt \right|$$

$$= \left| \int_0^{+\infty} \frac{\sin^2(tx)}{t^2 + 1} dt \right|$$

Par l'inégalité triangulaire pour les intégrales, on a

$$|K(x) - F(x)| \le \int_0^{+\infty} \frac{|\sin^2(tx)|}{1 + t^2} dt \le \int_0^{+\infty} \frac{1}{1 + t^2} = [\arctan(t)]_0^{+\infty} = \frac{\pi}{2}.$$

Il en découle que $\forall x \in]0, +\infty[$, $\left|K(1) - \frac{F(x)}{x}\right| \leq \frac{\pi}{2x}$, donc que $K(1) - \frac{F(x)}{x} = o(K(1))$, donc $K(1) \sim \frac{F(x)}{x}$ quand x tend vers $+\infty$, ce qui se traduit par $F(x) \sim K(1)x$.

Résolvons l'équation différentielle y''-4y=a|x|+b sur $[0,+\infty[$ où elle s'écrit y''-4y=ax+b. On a aisément $y(x)=\lambda e^{-2x}+\mu e^{2x}$ la solution générale de l'équation homogène associée et on peut chercher une solution particulière de (E) sous la forme $y(x)=\alpha x+\beta$, c'est une solution si et seulement si $\forall x\in\mathbb{R}_+, -4y(x)=ax+b$ si et seulement si $\alpha=-\frac{1}{4}a$ et $\beta=-\frac{1}{4}b$. Il en découle que la solution générale de (E) sur \mathbb{R}_+ est

$$y(x) = \lambda e^{-2x} + \mu e^{2x} - \frac{1}{4}(ax+b), (\lambda, \mu) \in \mathbb{R}^2$$

Comme F est une solution pour a=-4K(1) et $b=\pi$. D'après la question 3) ci-dessus on a $F(x)\sim K(1)x$ au voisinage de $+\infty$, donc $\mu=0$ et il reste :

$$F(x) = \lambda e^{-2x} - \frac{1}{4}(ax+b), (\lambda, \mu) \in \mathbb{R}^2$$

avec $\lambda \in \mathbb{R}$. Il est aisé de voir que F(0) = F'(0) = 0, donc $\lambda = \frac{\pi}{4}$ et $a = -8\lambda = -2\pi$ et comme a = -4K(1), on déduit que $K(1) = \frac{\pi}{2}$. Au final on obtient :

$$K(1) = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} = \frac{\pi}{2}, \forall x \in \mathbb{R}, F(x) = \frac{\pi}{4}e^{-2x} + \frac{\pi}{2}x - \frac{\pi}{4}.$$

a

planche 54

Une ancienne épreuve des années 70