Namen: _____

Aufgabe	6.1	6.2	6.3	Z6.1	\sum
Punkte					

Höhere Analysis – Übungsblatt 6

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer

Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 6.1 (Satz von Lusin)

5 Punkte

Sei $\Omega \subset \mathbb{R}$ offen und es gelte $\mathscr{L}^1(\Omega) < \infty$. Sei $f \in L^{\infty}(\Omega)$.

- a) Zeigen Sie, dass für alle $\varepsilon > 0$ eine kompakte Menge $K \subset \Omega$ existiert, so dass $\mathscr{L}^1(\Omega \setminus K) < \varepsilon$ und $f|_K$ ist stetig.
- b) Sei $\Omega = (0,1)$ und $f := \chi_{\mathbb{Q} \cap \Omega}$. Warum widerspricht f nicht a)? Begründen Sie Ihre Antwort.

Hinweis: Sie dürfen verwenden, dass für alle $f \in L^1(\Omega)$ eine Folge $f_k \in C^0(\Omega) \cap L^1(\Omega)$ existiert, so dass $f_k \to f$ in $L^1(\Omega)$.

Aufgabe 6.2 5 Punkter

Wir betrachten den Maßraum ($\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathscr{L}^1$). Zu $k \in \mathbb{N}$ definiere $I_k := [2^{-(k+1)}, 2^{-k}]$. Sei $f_k : \mathbb{R} \longrightarrow \mathbb{R}$ definiert durch

$$f_k(x) \coloneqq \frac{1}{\sqrt{x}} \chi_{I_k}(x)$$
 für alle $x \in \mathbb{R}$. (2.1)

- a) Untersuchen Sie die Folge auf punktweise, Maß– und gleichmäßige Konvergenz. Geben Sie gegebenenfalls die Grenzfunktion an. Begründen Sie Ihre Antwort.
- b) Bestimmen Sie alle $1 \leq p < \infty$, so dass die Folge in $L^p(\mathbb{R})$ konvergiert. Bgründen Sie Ihre Antwort.

Aufgabe 6.3 (Borel– und Lebesgue– σ –Algebra)

5 Punkte

Sei $n \in \mathbb{N}$ und \mathcal{L}^n das n-dimensionale Lebesgue-Maß.

- a) Zeigen Sie, dass $\mathscr{B}(\mathbb{R}^n) = (\mathscr{B}(\mathbb{R}))^n$.
- b) Sei $n \geq 2$. Sei $N \in \mathcal{B}(\mathbb{R})$ eine \mathcal{L}^1 -Nullmenge und $\Omega \in \mathcal{B}(\mathbb{R}^{n-1})$. Zeigen Sie, dass $N \times \Omega \in \mathcal{B}(\mathbb{R}^n)$ und $\mathcal{L}^n(N \times \Omega) = 0$.
- c) Sei \mathcal{L}_n die Menge der Lebesgue-Mengen in \mathbb{R}^n . Zeigen Sie, dass $(\mathcal{L}_1)^n \subsetneq \mathcal{L}_n$.

Hinweis: Zu c): Nutzen Sie die Vollständigkeit von \mathcal{L}_n . Aufgabe 1.1 und Aufgabe 3.3 erweisen sich als nützlich.

Zusatzufgabe 6.1 3 Punkte

Wir betrachten den Maßraum ($\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathscr{L}^1$). Seien $f_k, f \colon \mathbb{R} \longrightarrow \mathbb{R}$ messbare Funktionen. Zeigen oder widerlegen Sie die folgenden Aussagen:

a) Seien $f_k, f \in L^1(\mathbb{R})$ und es gelte $f_k \to f$ punktweise fast-überall. Dann gilt

$$\int_{\mathbb{R}} f_k \, \mathrm{d}\mathcal{L}^1 \xrightarrow{k \to \infty} \int_{\mathbb{R}} f \, \mathrm{d}\mathcal{L}^1. \tag{4.1}$$

b) Sei $f_k \geq 0$ und es gelte $f_k \searrow f$ punktweise fast-überall. Es gelte $f \in L^1(\mathbb{R})$. Dann gilt

$$\int_{\mathbb{R}} f_k \, \mathrm{d}\mathcal{L}^1 \xrightarrow{k \to \infty} \int_{\mathbb{R}} f \, \mathrm{d}\mathcal{L}^1. \tag{4.2}$$

Abgabe bis spätestens 17.12.2020, 14:00 Uhr in Moodle.

c) Sei $f_k \ge 0$ und es gelte $f_1 \in L^1(\mathbb{R})$, und $f_k \searrow f$ punktweise fast-überall. Dann ist $f \in L^1(\mathbb{R})$ und es gilt

$$\int_{\mathbb{R}} f_k \, \mathrm{d}\mathcal{L}^1 \xrightarrow{k \to \infty} \int_{\mathbb{R}} f \, \mathrm{d}\mathcal{L}^1. \tag{4.3}$$

d) Seien $f_k, f \in L^1(\mathbb{R})$ und es gelte $f_k \to f$ in $L^1(\mathbb{R})$. Dann gilt $f_k \to f$ punktweise fast–überall.