Assignment 2 Solution

Import necessary libraries

In [1]:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Load the dataset

In [2]:

df =
pd.read_csv("https://drive.google.com/uc?id=1_HcM0K8wt4b7FMLkc1V1dv0y6I_9
ULzy")
df

Out[2]:

	Row Num ber	Cust omer Id	Surn ame	Credi tScor e	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrCa rd	IsActiv eMem ber	Estima tedSala ry	Exi te d
0	1	1563 4602	Harg rave	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Onio	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	1570 1354	Boni	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0
4	5	1573 7888	Mitc hell	850	Spai n	Fe ma le	4	2	125 510. 82	1	1	1	79084. 10	0
9 9 9 5	9996	1560 6229	Obiji aku	771	Fran ce	Ma le	3 9	5	0.00	2	1	0	96270. 64	0

	Row Num ber	Cust omer Id	Surn ame	Credi tScor e	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrCa rd	IsActiv eMem ber	Estima tedSala ry	Exi te d
9 9 9 6	9997	1556 9892	John ston e	516	Fran ce	Ma le	3 5	10	573 69.6 1	1	1	1	101699 .77	0
9 9 9 7	9998	1558 4532	Liu	709	Fran ce	Fe ma le	3	7	0.00	1	0	1	42085. 58	1
9 9 9 8	9999	1568 2355	Sab bati ni	772	Ger man y	Ma le	4	3	750 75.3 1	2	1	0	92888. 52	1
9 9 9	1000	1562 8319	Wal ker	792	Fran ce	Fe ma le	2	4	130 142. 79	1	1	0	38190. 78	0

10000 rows × 14 columns

Visualizations

Uni-Variate Analysis

In [3]:

```
sns.countplot(x=df["Gender"])
plt.show()
```


Bi-Variate Analysis

In [4]:

sns.lineplot(x="Age", y="CreditScore", data=df, ci=None)
plt.show()

Multi-Variate Analysis

In [5]:

sns.scatterplot(x="Age", y="Balance", hue="Geography", data=df)
plt.show()

Descriptive Statistics

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	RowNumber	10000	non-null	int64
1	CustomerId	10000	non-null	int64
2	Surname	10000	non-null	object
3	CreditScore	10000	non-null	int64
4	Geography	10000	non-null	object
5	Gender	10000	non-null	object
6	Age	10000	non-null	int64
7	Tenure	10000	non-null	int64
8	Balance	10000	non-null	float64
9	NumOfProducts	10000	non-null	int64
10	HasCrCard	10000	non-null	int64
11	IsActiveMember	10000	non-null	int64
12	EstimatedSalary	10000	non-null	float64
13	Exited	10000	non-null	int64
dtype	es: float64(2), ir	nt64(9)	, object(3	3)

In [7]:

df.describe(include="all")

memory usage: 1.1+ MB

Out[7]:

	Row Nu mbe r	Cust ome rld	Sur na me	Credi tScor e	Geo gra phy	Ge nd er	Age	Tenu re	Balan ce	Num OfPro ducts	Has CrCa rd	IsActi veMe mber	Estim atedS alary	Exite d	
co un t	100 00.0 000 0	1.00 0000 e+04	10 00 0	1000 0.00 0000	100 00	10 00 0	1000 0.00 0000	1000 0.00 0000	1000 0.000 000	1000 0.000 000	100 00.0 000 0	10000 .0000 00	1000 0.000 000	1000 0.00 0000	
un iq ue	NaN	NaN	29 32	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
to p	NaN	NaN	Sm ith	NaN	Fra nce	M al e	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
fr eq	NaN	NaN	32	NaN	501 4	54 57	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
m ea n	500 0.50 000	1.56 9094 e+07	Na N	650. 5288 00	Na N	Na N	38.9 2180 0	5.01 2800	7648 5.889 288	1.530 200	0.70 550	0.515 100	1000 90.23 9881	0.20 3700	
st d	288 6.89 568	7.19 3619 e+04	Na N	96.6 5329 9	Na N	Na N	10.4 8780 6	2.89 2174	6239 7.405 202	0.581 654	0.45 584	0.499 797	5751 0.492 818	0.40 2769	
mi n	1.00 000	1.55 6570 e+07	Na N	350. 0000 00	Na N	Na N	18.0 0000 0	0.00 0000	0.000	1.000	0.00 000	0.000	11.58 0000	0.00 0000	
25 %	250 0.75 000	1.56 2853 e+07	Na N	584. 0000 00	Na N	Na N	32.0 0000 0	3.00 0000	0.000	1.000	0.00	0.000	5100 2.110 000	0.00 0000	
50 %	500 0.50 000	1.56 9074 e+07	Na N	652. 0000 00	Na N	Na N	37.0 0000 0	5.00 0000	9719 8.540 000	1.000	1.00 000	1.000	1001 93.91 5000	0.00 0000	
75 %	750 0.25 000	1.57 5323 e+07	Na N	718. 0000 00	Na N	Na N	44.0 0000 0	7.00 0000	1276 44.24 0000	2.000	1.00 000	1.000	1493 88.24 7500	0.00 0000	

	Row Nu mbe r	Cust ome rId	Sur na me	Credi tScor e	Geo gra phy	Ge nd er	Age	Tenu re	Balan ce	Num OfPro ducts	Has CrCa rd	IsActi veMe mber	Estim atedS alary	Exite d
m ax	100 00.0 000 0	1.58 1569 e+07	Na N	850. 0000 00	Na N	Na N	92.0 0000 0	10.0 0000 0	2508 98.09 0000	4.000 000	1.00 000	1.000	1999 92.48 0000	1.00 0000

Handle missing values

In [8]:

df.isnull().sum()

Out[8]:

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Handle Outliers

In [9]:

```
sns.boxplot(x=df['Age'])
plt.show()
```


In [10]:

df = df[df["Age"] < 60].copy(deep=False)</pre>

In [11]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9474 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	9474 non-null	int64
1	CustomerId	9474 non-null	int64
2	Surname	9474 non-null	object
3	CreditScore	9474 non-null	int64
4	Geography	9474 non-null	object
5	Gender	9474 non-null	object
6	Age	9474 non-null	int64
7	Tenure	9474 non-null	int64
8	Balance	9474 non-null	float64
9	NumOfProducts	9474 non-null	int64
10	HasCrCard	9474 non-null	int64
11	IsActiveMember	9474 non-null	int64
12	EstimatedSalary	9474 non-null	float64
13	Exited	9474 non-null	int64
d+1170	os: float6/(2) i	n+6/(9) object (37

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

Categorical label encoding

In [12]:

from sklearn.preprocessing import LabelEncoder

encoder = LabelEncoder()

df["Geography"] = encoder.fit_transform(df["Geography"])
df["Gender"] = encoder.fit_transform(df["Gender"])

df

Out[12]:

	Row Num ber	Cust omer Id	Surn ame	Credi tScor e	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrCa rd	IsActiv eMem ber	Estima tedSala ry	Exi te d
0	1	1563 4602	Harg rave	619	0	0	4	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	2	0	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Onio	502	0	0	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	1570 1354	Boni	699	0	0	3 9	1	0.00	2	0	0	93826. 63	0
4	5	1573 7888	Mitc hell	850	2	0	4	2	125 510. 82	1	1	1	79084. 10	0
•••														
9 9 9 5	9996	1560 6229	Obiji aku	771	0	1	3 9	5	0.00	2	1	0	96270. 64	0
9 9 9 6	9997	1556 9892	John ston e	516	0	1	3 5	10	573 69.6 1	1	1	1	101699 .77	0
9 9 9 7	9998	1558 4532	Liu	709	0	0	3	7	0.00	1	0	1	42085. 58	1

	Row Num ber	Cust omer Id	Surn ame	Credi tScor e	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrCa rd	IsActiv eMem ber	Estima tedSala ry	Exi te d
9 9 9 8	9999	1568 2355	Sab bati ni	772	1	1	4 2	3	750 75.3 1	2	1	0	92888. 52	1
9 9 9	1000	1562 8319	Wal ker	792	0	0	2	4	130 142. 79	1	1	0	38190. 78	0

9474 rows × 14 columns

Split data into dependent and independent variables

In [13]:

X = df.iloc[:, 3:13]

Out[13]:

	CreditSc ore	Geogra phy	Gend er	Ag e	Tenu re	Balanc e	NumOfPro ducts	HasCrC ard	IsActiveMe mber	EstimatedS alary
0	619	0	0	42	2	0.00	1	1	1	101348.88
1	608	2	0	41	1	83807. 86	1	0	1	112542.58
2	502	0	0	42	8	159660 .80	3	1	0	113931.57
3	699	0	0	39	1	0.00	2	0	0	93826.63
4	850	2	0	43	2	125510 .82	1	1	1	79084.10
99 95	771	0	1	39	5	0.00	2	1	0	96270.64

	CreditSc ore	Geogra phy	Gend er	Ag e	Tenu re	Balanc e	NumOfPro ducts	HasCrC ard	IsActiveMe mber	EstimatedS alary
99 96	516	0	1	35	10	57369. 61	1	1	1	101699.77
99 97	709	0	0	36	7	0.00	1	0	1	42085.58
99 98	772	1	1	42	3	75075. 31	2	1	0	92888.52
99 99	792	0	0	28	4	130142 .79	1	1	0	38190.78
9474	rows × 10	columns								In [14]:
у = У	df.iloc	[: , 13]								Out[14]:
0 1 2 3 4	1 0 1 0 0									
	0 0 1 1 0 Exited				dtype:	int64				In [15]:
scal	n sklear er = Mi	nMaxSca	ler()			. MinMaː	xScaler			
Χ										Out[15]:
arra <u>v</u>	[0.51	8 , 673489] 6 , 270874]	1.				,, (,

```
[0.304 , 0. , 0. , ..., 1. , 0. , ..., 0. , 0.56965435],
...,
[0.718 , 0. , 0. , ..., 0. , 1. , 0.21039009],
[0.844 , 0.5 , 1. , ..., 1. , 0. , 0.46442905],
[0.884 , 0. , 0. , ..., 1. , 0. , ..., 0. , 0.19091423]])
```

Split the data into train and test data

In [16]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```