6. 体の拡大次数

K を体とする。実ベクトル空間や複素ベクトル空間と同様にして,K の元をスカラーとするベクトル空間を定義することができる。これを K-ベクトル空間(または「K 上のベクトル空間」)という。例えば,K を可換環,K をその部分体とすると,K は自然に K-ベクトル空間になる。線形独立,線形従属,基底,次元(\dim_K と書く)などの概念や線形写像についても,これまで学んできた線形代数と同様に考えることができる。

問題 ${\bf 6.1.}\ R$ を整域, K をその部分体とする. もし $\dim_K R < \infty$ ならば, R は体であることを示せ. (

L を体, K をその部分体とする. このとき K から見た場合, L は K の拡大体であるという. またこの状況を L/K と表すこともある. L を K-ベクトル空間とみたときの次元 $\dim_K L$ を [L:K] と書き, L/K の拡大次数という.

問題 **6.2.** 自然数 n について、もし $a^2 \mid n$ かつ a > 1 なる自然数 a が存在しないなら、n は無平方 (square-free) であるという.

- (1) n を 1 より大きい無平方な自然数とするとき, $[\mathbb{Q}(\sqrt{n}):\mathbb{Q}]=2$ となることを示せ. (1)
- (2) n,m を 1 より大きい無平方な自然数, n と m は互いに素とするとき, $[\mathbb{Q}(\sqrt{n},\sqrt{m}):\mathbb{Q}]=4$ となることを示せ. (
 - (3) [$\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}$] を求めよ. ()
 - $(4) [\mathbb{Q}(\sqrt{2},\sqrt[3]{2}):\mathbb{Q}]$ を求めよ. ()

L を体 K の拡大体とする. $a \in L$ について、あるゼロでない K 係数多項式 $f(x) \in K[x] \setminus \{0\}$ が存在して f(a) = 0 となるとき、a は K 上代数的であるという. 特に、 $\mathbb Q$ 上代数的な複素数を代数的数と呼び、そうでないものを超越数と呼ぶ.

体拡大 L/K について, L のすべての元が K 上代数的であるとき, L/K は代数拡大であるという.

問題 6.3. $[L:K]<\infty$ ならば L/K は代数拡大であることを示せ. ()

問題 ${\bf 6.4.}~L$ を体, M を L の部分体, K を M の部分体とする (つまり $K\subset M\subset L$). このとき, L/M と M/K が共に代数拡大ならば L/K も代数拡大であることを示せ.