Problem 2

(5 points): How close is the approximation $\sin x = x$ when $|x| < 10^{-2}$?

We know
$$51h x = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
.

From the Atternating Serves Estimation Theorem (p.g.77)

Sin
$$x=x$$
 has herror $\left(\frac{x^3}{3!}\right)$, since $\frac{x^3}{5!}$ is the next term in the series after x .

$$=7 \frac{1}{10^{-2}}$$