Ensembles et applications

I Théorie intuitive des ensembles

I.1 Définition intuitive

Un ensemble E est une collection d'objets appelés éléments de E.

On dit que x appartient à E et on note $x \in E$ si x est un élément de E.

Il existe plusieurs manières de définir un ensemble :

- Par énumération : $E = \{x_1, ..., x_n\}$
- Par **compréhension** : $E = \{x \in A \mid P(x)\}$ (Tous les éléments de A vérifiant la propriété P)
- Par induction structurelle :
 - On prend des éléments initiaux
 - On prend une manière de construire de nouveaux éléments à partir des éléments initiaux
- Par **construction** : On utilise \cup et \cap pour construire de nouveaux ensembles à partir d'ensembles existants

A noter qu'il est possible de construire des ensembles par induction structurelle de deux manières différentes :

- Par le bas : On prend des éléments initiaux et on construit de nouveaux éléments à partir de ceuxci
- Par le haut : On prend un ensemble E le "plus petit ensemble" contenant $A_1, ..., A_n$ et stable pour les constructions $P_1, ..., P_k$. C'est souvent l'intersection de tous les ensembles possédant une propriété de stabilité.

I.2 Inclusion

On note $F \subset E$ si $\forall x \in F \Longrightarrow x \in E$, et on dit que F est **inclus** dans E.

Si F = G si et seulement si $F \subset G$ et $G \subset F$, on dit que F et G sont **égaux**.

Si $F \subset G$ et $G \subset H$, alors $F \subset H$ (transitivité de l'inclusion).

 \bigwedge Ne pas confondre \subset et \in !

I.3 Petits ensembles, cardinal d'un ensemble

L'ensemble vide est sous ensemble de tous ensemble E. On le note \emptyset .

On appelle **singleton** un ensemble contenant un seul élément $\{a\}$.

On appelle **paire** un ensemble contenant deux éléments distincts $\{a, b\}$.

On appelle intuitivement **cardinal** d'un ensemble E le nombre d'éléments de E. On le note |E|.

I.4 Ensemble des parties d'un ensemble

On note P(E) l'ensemble des parties de E, c'est-à-dire l'ensemble dont les éléments sont les sous-ensembles de E.

Puisque $\emptyset \in P(E)$ et $E \in P(E)$, on a $P(E) \neq \emptyset$.

On note $P_k(E)$ l'ensemble des parties de E à k éléments.

Notation troeschienne:

- P(n) = P([1, n])
- $P_k(n) = P_k([1, n])$

I.5 Opérations sur les parties d'un ensemble

- Intersection : L'intersection de deux ensembles E et F est l'ensemble des éléments appartenant à E et à F. On la note $E \cap F$.
- Union : L'union de deux ensembles E et F est l'ensemble des éléments appartenant à E ou à F. On la note $E \cup F$.
- Différence ensembliste : La différence ensembliste de deux ensembles E et F est l'ensemble des éléments appartenant à E mais pas à F. On la note $E \setminus F$.
- Complémentaire : On a $F\subset E$, Le complémentaire d'un ensemble F dans un ensemble E est la différence ensembliste $E\setminus F$. On le note $E\setminus F=E-F=C_EF=F^c=\overline{F}$
- **Différence symétrique** : La différence symétrique de deux ensembles E et F est l'ensemble des éléments appartenant à E ou à F mais pas aux deux. On la note $E\Delta F$.

Il est important de noter que \cup et \cap sont des opérations **associatives**, **commutatives** et **distribuables** l'une par rapport à l'autre.

Deux ensembles E et F sont **disjoints** si $E \cap F = \emptyset$. On peut alors noter $E \cup F$ sous la forme $E \uplus F$ ou $E \sqcup F$.

On peut appliquer les lois de De Morgan aux opérations sur les ensembles :

$$(E \cup F)^c = E^c \cap F^c$$
 et $(E \cap F)^c = E^c \cup F^c$

Le complémentaire est décroissant, ainsi $\forall A, B \in P(E), A \subset B \Longrightarrow B^c \subset A^c$

 \overline{A} est l'unique sous ensemble B tel que $A \cup B = E$ et $A \cap B = \emptyset$.

On en déduit que :

- $C_E E = \emptyset$
- $C_E\emptyset = E$
- $C_E C_E F = F$

I.6 Union et intersection d'une famille d'ensembles

Une **famille** d'éléments d'un ensemble $E, a_i \in E$ est une fonction $a_i : I \to E$, notée $(a_i)_{i \in I}$

On définit l'union et l'intersection d'une famille d'ensembles $(A_i)_{i\in I}$ par :

$$\bullet \ \bigcup_{i \in I} A_i = \{x \in E \mid \exists i \in I, x \in A_i\}$$

$$^{\bullet}\bigcap_{i\in I}A_{i}=\{x\in E\ |\ \forall i\in I, x\in A_{i}\}$$

Si les A_i sont deux à deux disjoints, on peut écrire $\biguplus_{i \in I} A_i$ ou $\bigsqcup_{i \in I} A_i$

I.7 Partitions

Une **partition** d'un ensemble E est un sous ensemble F de P(E) tel que :

- $\forall A \in F, A \neq \emptyset$
- $\forall A, B \in F, A \neq B \Longrightarrow A \cap B = \emptyset$
- $\bigcup_{A \in F} A = E$

Il est possible de faire une **partition ordonnée** avec un n-uplet, un **recouvrement** soit une famille d'ensembles dont l'union est E et un **recouvrement disjoint** soit une famille d'ensembles dont l'union est E et deux à deux disjoints.

I.8 Produit cartésien

On appelle $A \times V$ le **produit cartésien** de A et V, soit l'ensemble des couples (a,v) avec $a \in A$ et $v \in V$ vérifiant :

$$(a,v)=(a',v') \Longleftrightarrow (a=a' \land v=v')$$

Si
$$A \times V = \emptyset \iff (A = \emptyset \vee V = \emptyset)$$

Il est possible de construire des n-uplets, en effet (a,b,c)=(a,(b,c)), c'est ainsi généralisable.