ПОРТФОЛИО К ЛАБОРАТОРНОЙ РАБОТЕ №6

Елкиной Галины, студентки 1 курса 2 группы ИВТ

РЕЗЮМЕ

Данную лабораторную работу представляет студентка 1 курса направления «Информатика и вычислительная техника» Елкина Галина

СПРАВОЧНИК

• Информация об атмосфере (понятие, строение и состав)

https://xn----8sbiecm6bhdx8i.xn--p1ai/%D0%B0%D1%82%D0%BC%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%B0.html

• Статья о составе воздуха

http://opace.ru/a/himicheskiy sostav vozduha

• Молекулярная физика. Основные формулы

http://fizikazadachi.ru/molekulyarnaya_fizika/

Во время выполнения лабораторной работы мною были использованы материалы лекции, информационные технологии в виде электронных таблиц **Excel**, а также полезная информация из сети **Internet**.

 Для выявления зависимости давления газа от высоты и вычисления полного числа молекул в атмосфере я нашла и вычислила все необходимые данные с использованием формул из материалов лекции.

μ (кг/моль)	0,029					
g (км/c^2)	9800					
R (Дж/моль	8,31					
T (K)	300					
р0 (кПа)	101					
S (км^2)	510072000					
Na (моль^-1 6E+23						
r+h (км) 6500						
$p(h) = p0 \exp(-\mu g h / RT)$						
Nn=(4π(r+h)^2 p0/μ g)NA						

- Для вычисления давления я использовала формулу из материалов лекции. Данные тоже были взяты из лекции. Но значение р0 в лекции дано не было. Его я взяла, исходя из информации взятой в интернете.
- За «нормальные условия» у поверхности Земли приняты: плотность 1,225 кг/м3, барометрическое давление 101,325 кПа, температура +15 °C, влажность 0 %. Эти условные показатели имеют чисто инженерное значение.
- Поэтому р0=101 кПа

- Также нужно было определить, на какой высоте заканчивается атмосфера, для решения этой задачи. Эти данные я также нашла в интернете.
- Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.
- Отсюда максимальная высота равна 100 км

Я вычислила полное число молекул воздуха в атмосфере:

Полное число молекул в атмосфере								
1,13E+32								

Далее для визуализации зависимости я построила таблицу значений и получила график

h (км)	0	2	4	6	8	10	12	14	16	18	20	22	24	26	
р (кПа)	101	80,40868	64,0154	50,9643	40,57398	32,30198	25,71643	20,47351	16,29948	12,97643	10,33087	8,22467	6,54787	5,212926	4,150

ИТОГ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

При исследовании графика зависимости давления от высоты можно сказать, что с высотой давление снижается. В итоге на высоте 100 км, где предположительно заканчивается атмосфера, давление практически становится равно нулю.

