National Cheng Kung University
上週提到 ang n'+ an-1 g'n-1)+ ··· + aog = r(x).
其中 a. ~ a. & const, VIX) + o (常像牧非在性 0.0.2)
我們說其餅 $3=3$ + 3 .
Je: {代ex 解入
1 D (降階尋根)
了p: {未定像枚法
降階法.⇒ 3,=(··· I, SI, [I, SI, rdx]dx····)
5 I,, I, 具氧配是由
$(b+\lambda,)(b+\lambda_2)\beta_p = r$ $= c\sqrt{\lambda}dx - c\sqrt{\lambda}x + c\sqrt{\lambda} = r$
上,一直一直一直一直一直一直一直一直一直一直一直一直一直一直一直一直一直一直一直
$I_{z}=e^{\int 2edx}=e^{2iX}$ 互换(結果同)
······································
Method 3. 纖性微分運算子法
$ (D = \frac{d}{dx}, D' = \frac{d}{dx}, D' = \int dx \cdot) $
1-3"+ a, 3"+"+ a, 3" = r(x).
其特性方程式· (1) + a, 1 + ··· + an = 0
⇒球出入,~刀、即回得到了。
当 改 册 特 性 方 程 式
$\Rightarrow (p^n + a, p^{n-1} + \dots + a_n) = r(x)$
其中乳必能满足上述式子.
$\Rightarrow (D^n + a_1 D^{n-1} + \cdots + a_n), \forall p = r(x)$
L Linear differential operator 线性微分運算子
定义為L(D)
其特性·
$O. L(\mathbf{D})e^{ax} = L(a)e^{ax}$
ex. y"+6y"+11y'+by=exx
之前群出了= zye

用现在的方法 ⇒ (D3+60°+110+6) 3p = ex ⇒ yp = 53+60+110+6 e = $L(D) \cdot e^{x} = L(1) \cdot e^{x} = 4 e^{x}$ pf:特性 Φ Llo)e~ = (D"+ a, D"+ + 1" + an) e ax $(= D^{n}e^{ax} + a, D^{n-1}e^{ax} + \dots + a_n e^{ax}$ $(= a^{n}e^{ax} + a, D^{n-1}e^{ax} + \dots + a_n e^{ax}$ 依D的定义· $D^n = \frac{d^n}{dx^n}$ $\Rightarrow D^n \cdot e^{ax} = \frac{d^n}{dx^n} e^{ax} = a^n e^{ax}.$ ex. $y'' + 3y' + 2y = e^{2x}$ $3R = C_1 e^{-x} + C_2 e^{-2x}$. $3P = \frac{1}{D+3D+2} e^{2x}$. $= L(D)e^{2x} = L(z)e^{2x} = \frac{1}{12}e^{2x}$ ex. $3'-23=e^{2x}$ $\frac{3h^{2} C_{1}e^{2X}}{3h^{2} \frac{1}{D-2}e^{2X}} = \frac{1}{2-2}e^{2X}$? ⇒丝λ(x) 每e^{a,x}相同時或重根時.都要乘ケx°之类的 使其不相等 $\Rightarrow \bigcirc L(D)[e^{ax}.f(x)] = e^{ax}.L(D+a)[f(x)].$

中国到上面的蚁.

$$\frac{1}{2} = \frac{1}{D-2} e^{2X}$$

$$= \frac{1}{D-2} [e^{2X} \cdot 1] + \frac{1}{12} = e^{2X} \cdot \frac{1}{12} \cdot \frac{1}{12}$$

$$= e^{2X} \cdot \frac{1}{D-2} \cdot \frac{1}{12}$$

$$= e^{2X} \cdot \frac{1}{D-1} \cdot \frac{1}{D-1}$$

 $y_p = \frac{1}{p^2 + a^2} copax = \frac{1}{a^2 + a^2} copax$ 又遇到类似狀況。這次引進Lint => gp = lim - (a+x)2+a2 cox(a+x)x = $\lim_{\Delta \to 0} \frac{1}{\Delta(-2\alpha-\Delta)} (ON(\alpha+\Delta)X)$ fit)於七二a之Taylor級較展開式 $f(t) = f(a) + f'(a)(t-a) + \frac{1}{2!} f''(a)(t-a)^{2} + \frac{1}{n!} f''(a)(t-a)^{n} + \dots$ ⇒ coxt 於大=ax 之 Taylor展開. $cost = cosax - sinax(t-ax) - \frac{1}{2!}cosax(t-ax) + \frac{1}{3!}sinax(t-ax) + ...$ 後 大= (a+ △)X. - sin ax ((a+a)x - ax) > coalata) x = coa ax 1 conax ((ata) x -ax) + toinax ((a+a) x-ax)3 = con ax - Amax. Ax - 1 con ax . (AX) + i sin ax · (ax) coaax - ainax. Ax - I CODAX · (AX) + I sin ax · (AX)} "引尼含有con ax 》于忽略 ata) . A [- sin ax · x - 1! CODAX · A· X2 => 3p = lim - 2(2a+a) + 1 sinax . 2. x3+ ...

= (sinax).x #. ex. 3"+43 = coo2x Th = C, coolx + C, sin 2X $3p = \frac{1}{2a} \times \sin \alpha \times = \frac{1}{4} \times \sin \alpha \times 4$ 3"+ a=g = sinax 自己練習. Jp = - Da X · CONAX 3"+9y=0003x 3 = c, coo 3 x + Cz sin 3 x + t X sin 3 x. $5'' + 65' + 93 = x^2$ 多項式. $3x = c_1 e^{-3x} + c_2 \cdot x \cdot e^{-3x}$ 0 = k,x²+ k,x + k, } - 起代回原式: ⇒ 3p´, 3p° ⇒得 k, k, k, ⇒ 得 3p. (D+6D+9) 3, = x2 => (D+3)(D+3)gp = x2

(3)
$$(D+6D+9) \mathcal{J}_{P} = X^{2}$$

 $\Rightarrow (D+3)(D+3) \mathcal{J}_{P} = X^{2}$
 $\Rightarrow \mathcal{J}_{P} = e^{-3x} \int e^{3x} \left[e^{-3x} \right] e^{3x} \cdot x^{2} dx dx$

, , , , , , , , , , , , , , , , , , , ,
$=\frac{1}{9}\left[1-\frac{D^2+6D}{9}+\left(\frac{D^2+6D}{9}\right)^2-\ldots\right]\times^2$
$= \frac{1}{9} \left[1 - \frac{\cancel{D} + 60}{9} + \frac{\cancel{D}^{4} + 12\cancel{D}^{3} + 36\cancel{D}^{2}}{81} - \dots \right] \cancel{\chi}^{2}$
只部到第三项是因为之後的微分次数已大过 x 项 → 都是 o :
$= \frac{1}{9} \left[x^{2} - \frac{1}{9} \left(2 + 6 \cdot 2x \right) + \frac{1}{81} \left(36 \cdot 2 \right) \right]$ $= \frac{1}{9} \left(x^{2} - \frac{4}{5}x + \frac{2}{5} \right) + \frac{1}{81} \left(36 \cdot 2 \right)$
· · · · · · · · · · · · · · · · · · ·