解答 2.2.6

R の反射的閉包を $R^=$ として, $R^=\subseteq R'$ かつ $R'\subseteq R^=$ を示す. $R'=R\cup\{(s,s)\mid s\in S\}$ を① とおく.

• $R^{=} \subset R'$ の証明

① より、すべての $s \in S$ に対して $(s,s) \in R'$ であるから R' は反射的である. また、R' は R を含む、 $R^=$ は R を含む最小の反射的関係であるため、 $R^= \subseteq R'$ である.

R' ⊂ R= の証明

 $(s,t) \in R'$ とすると、①より、 $(s,t) \in R$ または s = t $(s \in S)$ である.

- $-(s,t) \in R$ のとき、 $R \subseteq R^{=}$ より、 $(s,t) \in R^{=}$ である.
- $-s = t (s \in S)$ のとき, $(s,t) = (s,s) \in R^{=}$ である.

したがって, $R' \subseteq R^=$ である.

以上から、 $R' = R^{=}$ である.

Ans 2.2.6

Let $R^{=}$ be the reflexive closure of R. We show that $R^{=} \subseteq R'$ and $R' \subseteq R^{=}$. Let $R' = R \cup \{(s, s) \mid s \in S\}$ be ①.

• Proof of $R^= \subseteq R'$

By ①, since $(s, s) \in R'$ for all $s \in S$, R' is reflexive.

Moreover, R' contains R. Since $R^=$ is the minimal reflexive relation containing R, we have $R^- \subseteq R'$.

• Proof of $R' \subseteq R^=$

Suppose $(s,t) \in R'$. Then by ①, either $(s,t) \in R$ or s = t $(s \in S)$.

- If $(s,t) \in R$, then $(s,t) \in R^{=}$ since $R \subseteq R^{=}$.
- If $s = t \ (s \in S)$, then $(s, t) = (s, s) \in R^{=}$.

Therefore, $R' \subseteq R^=$.

Hence, $R' = R^{=}$.

解答 2.2.7

 R^T を R の推移的閉包とする. $R^T \subset R^+$ と $R^+ \subset R^T$ を示す.

 $\bullet \ R^T \subseteq R^+$

 $(s,t),(t,u)\in R^+$ とすると、ある i,j が存在して $(s,t)\in R_i$ かつ $(t,u)\in R_j$ である. R^+ の定義より $(s,u)\in R_{\max(i,j)+1}$ であるから $(s,u)\in R^+$. よって、 R^+ は推移的である.

また, R^+ は R を含む. R^T は R を含む最小の推移的関係であるため, $R^T \subseteq R^+$ である.

• $R^+ \subseteq R^T$

任意の i について $R_i \subseteq R^T$ であることを数学的帰納法で示す.

- -i=0 のとき、 $R_0=R\subseteq R^T$.
- -i=n のとき $R_i\subseteq R^T$ が成り立つと仮定して,i=n+1 のとき $(s,u)\in R_{n+1}$ とすると,S の定義より,ある $t\in S$ が存在して $(s,t),(t,u)\in R_n$ である. $R_n\subseteq R^T$ (帰納法の仮定) より $(s,t),(t,u)\in R^T$ であり, R^T が推移的であることから $(s,u)\in R^T$.

したがって、 $R^+ \subset R^T$ である.

以上から、 $R^+ = R^T$ である.

Ans 2.2.7

Let R^T be the transitive closure of R. We show that $R^T \subseteq R^+$ and $R^+ \subseteq R^T$.

• $R^T \subseteq R^+$

If $(s,t), (t,u) \in R^+$, then there exist some i,j such that $(s,t) \in R_i$ and $(t,u) \in R_j$. By definition of R^+ , we have $(s,u) \in R_{\max(i,j)+1}$, thus $(s,u) \in R^+$.

Therefore, R^+ is transitive.

Moreover, R^+ contains R. Since R^T is the minimal transitive relation containing R, we have $R^T \subseteq R^+$.

• $R^+ \subseteq R^T$

We prove that $R_i \subseteq R^T$ holds for all i by mathematical induction.

- When i = 0, $R_0 = R \subseteq R^T$.
- Assuming $R_i \subseteq R^T$ holds for i = n, we prove for i = n + 1. If $(s, u) \in R_{n+1}$, then by definition of S, there exists some $t \in S$ such that $(s, t), (t, u) \in R_n$. By the induction hypothesis $R_n \subseteq R^T$, we have $(s, t), (t, u) \in R^T$, and since R^T is transitive, $(s, u) \in R^T$.

Therefore, $R^+ \subseteq R^T$.

Hence, $R^+ = R^T$.