

Sketch-based Network Measurement in P4: Identify Heavy Hitter Flows with Software Defined Measurement

Swaroop Thool, Peilong Li, Yan Luo Department of Electrical and Computer Engineering **University of Massachusetts Lowell**

BACKGROUND

- Basic Problem: Identify most frequent items in data stream.
- Count-Minimum (CM) Sketch: Data structure with precise characterization of the dependence on the input parameters.
- Figure below shows data structure of CM sketch where counter value is updated at location of hash function values for each row.

MOTIVATIONS

- Network Measurement: Extend P4 with network measurement functionalities for heavy hitters identification.
- Accuracy: CM sketch have significant accuracy in keeping summary of different flows in limited storage space.
- **Debugging**: Extend P4 with debugging capability for any application of sketch.

THE DESIGN OF SKETCH

Overview of the design

- Step 1,2 and 7 refer to simple router design which forms our structure.
- Step 3 refers to cloning of packets at ingress which makes second instance of original packet.
- Step 4 refers to setting hash values from hash functions and reading of counter values from hash location of registers, if available.
- Step 5 refers to applying tables depending on conditions like old packet or new packet.
- Step 6 refers to redirecting cloned packet having custom headers with required hash and counter values matched on instance type for cloned packets.

EXPERIMENTATION AND EVALUATION

- CONTRIBUTIONS Software Define Measurement: We sketch is done are the first to demonstrate the design of network measurement sketch in P4, through which can be readily leveraged in P4 switch. switches based network and
- **Different Category:** This work extends example P4 applications with a different category, which requires substantial metadata processing and registers manipulation.

middleboxes

- **D-packet:** The special debug packet "D-packet" called enhances debugging support to the existing P4 tool chain, facilitating the design of new applications among the P4 community.
- Demo application of P4 implementing CM by passing synthetic traffic the software
- PINGs sends synthetic traffic of IP addresses. The network simple topology is created by integrating P4 module with mininet environment.

Demonstration environment

 Testing through different number of hosts which pings among themselves through script.

Flow	Src->Dest	No. of packets	C[w1][d1]	C[w2][d2]	C[w3][d3]	Min(C)					
F1	h1->h2	14	14	14	14	14					
F2	h2->h4	14	14	14	14	14					
F3	h1->h3	drop	-	-	-	-					
F1	h1->h2	11	25	25	25	25					
F4	h4->h6	unknown	-	-	-	-					
F2	h2->h4	7	21	21	21	21					
F5	h4->h1	8	8	8	8	8					
F6	h3->h2	drop	-	-	-	-					
F7	h2->h8	unknown	-	-	-	-					
F1	h1->h2	11	36	36	36	36					
F2	h2->h4	7	28	28	28	28					
F5	h4->h1	3	11	11	11	11					
Table 1 Demo traffic with w=544 d=3 (host=4)											

Table 2. Demo traffic with w=1000, d=4 (host=9)

Flow	Src->Dest	No. of packets	C[w1][d1]	C[w2][d2]	C[w3][d3]	C[w4][d4]	C[w5][d5]	Min(C)				
F1	h1->h2	14	14	14	14	14	14	14				
F2	h2->h4	8	8	8	8	8	8	8				
F1	h1->h2	<mark>17</mark>	<mark>31</mark>	<mark>31</mark>	<mark>31</mark>	<mark>31</mark>	<mark>31</mark>	<mark>31</mark>				
F3	h4->h5	14	14	14	14	14	14	14				
F4	<mark>h7->h8</mark>	<mark>5</mark>	<mark>5</mark>	<mark>36</mark>	<mark>36</mark>	<mark>36</mark>	5	<mark>5</mark>				
F5	h9->h2	14	14	14	14	14	14	14				
F6	h5->h9	15	15	15	15	15	15	15				
F3	h4->h5	8	22	22	22	22	22	22				
F2	h2->h4	9	17	17	17	17	17	17				
F1	<mark>h1->h2</mark>	<mark>20</mark>	<mark>51</mark>	<mark>56</mark>	<mark>56</mark>	<mark>56</mark>	<mark>51</mark>	<mark>51</mark>				
F6	h5->h9	9	24	24	24	24	24	24				
F3	h4->h5	21	43	43	43	43	43	43				
	Table 3. Demo traffic with w=1000, d=5 (host=9)											

- Table 1. shows demo traffic evaluation table which correctly gives counter values and also shows drop of nonentry IP address in P4 table.
- Table 2. and Table 3. shows correct minimum count values in fact of hash values conflicts among two flows F1 and F4.

Simple Parser with 3 headers: Custom header, Ethernet header and IPV4 header.

Simple Sketch Parser

CONCLUSION

- Software defined measurement to identify heavy hitter flows by programming forwarding data plane in P4 through sketch can be done.
- Different sketches and algorithm can be implemented for traffic monitoring.

FUTURE WORK

- Other sketches such as AGMS.
- Hardware acceleration with network processors.