

CMSC 128

Introduction to Software Engineering Second Semester AY 2007-2008

jachermocilla@uplb.edu.ph

Software Project Planning

- Project planning marks the start of the project management process
- Estimation is the first activity in project planning
- When estimates are made, we look into the future and accept some degree of uncertainty
- Estimation is both science and art
 - Need not be conducted haphazardly

Software Project Planning

- What to estimate?
 - resources, cost, and schedule
- Factors affecting estimation
 - Project complexity
 - Project size
 - Structural uncertainty
 - Availability of historical data

Software Project Planning

Objective

- Provide a framework that enables the manager to make reasonable estimates of resources, cost, and schedule within a limited time frame at the beginning of the project.
- Define best-case and worst-case scenarios so that outcomes can be bounded

Software Scope

- Function and performance allocated to software during system engineering must be assessed to establish a project scope
- Software scope describes function, performance, constraints, interfaces, and reliability
- Software scope must be unambiguous and understandable at management and technical levels

Obtaining Info for Scope

- Must communicate with customer
- First set of context-free questions
 - Who is behind the request for this work?
 - Who will use the solution?
 - What will be the economic benefit of a successful solution?
 - Is there another source for the solution?

Obtaining Info for Scope

- Second set of context-free questions
 - How would you characterize good output of the successful solution?
 - What problems will this solution address?
 - Can you show me the environment in which the solution will be used?
 - Are there special performance issues that will affect the way solution is approached?

Obtaining Info for Scope

- Third set of context-free questions
 - Are your answers official?
 - Are my questions relevant to the problem that you have?
 - Am I asking too many questions?
 - Is there anyone else who can provide additional information?
 - Is there anything else that I should be asking you?

- After defining the scope, resources must be estimated
- Each resource is characterized by
 - Description
 - Statement of availability
 - Chronological time that the resource will be required
 - Duration of time that the resource will be applied

FIGURE 5.2

Project resources

Human Resources

- Skills required are identified
- Both organizational(ex. manager) and specialty(ex. DBA) positions are specified

Reusable Resources

- Off-the-shelf components
- Full-experience components
- Partial-experience components
- New components

- Environmental Resources
 - Supports the project: both hardware and software
 - Software Engineering Environment
 - Development Environment

Estimation

- Options to obtain reliable estimates
 - Delay estimation until late in the project
 - Base estimates on similar projects that have already been completed
 - Use decomposition techniques
 - Use one or more empirical models for software cost and effort estimation

Decomposition

- Can use problem or process decomposition
- Understand the scope and generate an estimate of 'size'

Software Sizing

- Factors affecting project estimates
 - Estimate of the size of product
 - Ability to translate size estimate into effort, time, and cost
 - Degree to which project plan reflects the ability of the team
 - Stability of requirements and SEE
- In project planning, size refers to the quantifiable outcome of the software project (LOC or FP)

Software Sizing

- Approaches
 - 'Fuzzy-logic' sizing
 - Function point Sizing
 - Standard component sizing
 - Some software have 'standard components'
 - Modules, reports, screens, etc
 - Change sizing
 - When using existing software that must be modified
 - Estimates the number and type of modifications(adding, deleting, reuse, etc.)

Problem-based Estimation

- Use of LOC and FP in estimation
 - Estimation variable that is used to 'size' each element of software
 - Baseline metrics collected from past projects and used together with estimation variables to develop cost and effort projections
- Planner begins with bounded statement of software scope, then decompose software into problem functions that can each be estimated individually using LOC or FP

Problem-based Estimation

- Baseline productivity metrics (LOC/pm or FP/pm) are applied to the estimation variable and cost or effort for the function is derived
- In using LOC as estimation variable, decomposition is essential to obtain more accurate estimates
- In using FP as estimation variable, countable information domain and complexity adjustment values are used

Problem-based Estimation

- When estimating (based on historical data or intuition), specify optimistic, pessimistic, and most likely size
- Three point value or expected value is computed
 - -EV = (opt + 4*most likely + pess)/6

Process-based Estimation

- Identify framework activities and tasks for the selected process then estimate the effort required for each
 - Unit of effort is person-month, the amount of work that a person can do in one month
- Decompose software into problem functions
- Meld the product and the process

2nd Sem 2007-2008 Lecture 6

20

Empirical Models

- Use empirically derived formulas to predict *effort* as a function of LOC or FP
- General structure
 - Effort = A + B x (estimation var)^C, where A, B, and C are empirically derived constants
- Examples
 - Walston-Felix, E=5.2 x KLOC^{0.91}
 - Bailey-Basili, $E=5.5 \times 0.73 \times KLOC^{1.16}$

COCOMO

- COnstructive COst MOdel, by Boehm
- Hierarchy of models
 - Model 1 basic
 - Effort(and cost) as function of size (LOC)
 - Model 2 intermediate
 - Same as Model 1 but includes 'cost drivers'
 - Model 3 advanced
 - Same as Model 2 but includes assessment of cost drivers impact on each step

COCOMO

- Three classes of software projects
 - Organic
 - Relatively small, small teams, less rigid requirements
 - Semi-detached
 - Intermediate in size and complexity
 - Teams with mixed experience
 - Embedded
 - Tight constraints

COCOMO

- Basic
 - E=a*KLOCb, D=c*Ed
- Semi-detached
 - E=a*KLOC^b x Effort_Adjustment_Factor

Software Equation

- $E = [LOC \times B^{0.333}/P]^3 \times (1/t^4)$
 - E effort
 - T duration in years
 - B special skills factor, min=0.16, max=0.39
 - P productivity parameter

Make or Buy?

Guidelines

- Develop specification of function and performance
- Estimate internal cost to develop and delivery date
- Select three or four candidates applications
- Select reusable components
- Develop comparison matrix
- Evaluate
- Contact other users for opinion

Summary

- Planner must estimate time, effort, and resources (hardware, people, resource)
- Estimation techniques: decomposition and empircal
- Automated tools can be used
- Estimates derived from one technique must be revonciled with other techniques

27

Reference

 Roger S. Pressman.Software Engineering: A Practitioner's Approach, 4th Ed.McGraw-Hill,1997. Chapter 5

28