Concursul de admitere iulie 2018 Domeniul de licență – *Informatică*

- I. Algebră. Fie polinomul $P(X) = X^3 + mX^2 3X + 1$ cu $m \in \mathbb{R}$, care are rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
 - (a) Pentru m = -3 calculați rădăcinile polinomului P.
 - (b) Calculați în funcție de parametrul m expresia $x_1^3 + x_2^3 + x_3^3$.
 - (c) Determinați $m \in \mathbb{R}$ astfel încât rădăcinile polinomului P să fie în progresie geometrică.
 - (d) Pentru m=0 arătați că $2\cos(\frac{2\pi}{9})$ este o rădăcină a lui P.
 - (e) Demonstraţi că $\cos(\frac{2\pi}{9}) + \cos(\frac{4\pi}{9}) + \cos(\frac{8\pi}{9}) = 0.$
- II. Analiză. Fie funcția $f: \mathbb{R} \setminus \{-5\} \to \mathbb{R}$ dată prin $f(x) = (x-1)e^{\frac{-1}{x+5}}$ pentru orice $x \in \mathbb{R} \setminus \{-5\}$.
 - (a) Determinați asimptotele la graficul funcției f.
 - (b) Aflați punctele de extrem local ale lui f.
 - (c) Pentru $m \in \mathbb{R}$ precizați numărul de soluții reale ale ecuației f(x) = m.
 - (d) Calculați $\lim_{n\to\infty} n^2 \int_0^1 x^n f(x) dx$.
- III. Geometrie. În sistemul de coordonate xOy se consideră punctele A(-2,1), B(4,-1) și C(-2,-3).
 - (a) Găsiți ecuația mediatoarei segmentului AB și coordonatele centrului cercului circumscris triunghiului ABC.
 - (b) Arătaţi că $\sin(2\hat{A}) \cdot \overrightarrow{O'A} + \sin(2\hat{B}) \cdot \overrightarrow{O'B} + \sin(2\hat{C}) \cdot \overrightarrow{O'C} = \vec{0}$, unde O' este centrul cercului circumscris triunghiului ABC iar \hat{A}, \hat{B} şi \hat{C} sunt unghiurile triunghiului ABC.
 - (c) Fie D mijlocul segmentului AB și M un punct variabil pe înălțimea din B a triunghiului ABC. Găsiți coordonatele lui M pentru care suma AM + MD este minimă.

IV. Informatică.

(a) Se citeşte un număr natural L ($20 \le L \le 1000$) și un șir de cel mult 10000 de caractere ce conține cuvinte despărțite între ele prin câte un spațiu. Fiecare cuvânt din șirul de caractere citit este format din cel mult L litere mari ale alfabetului englez. Să se scrie un program care afișează aceste cuvinte, în ordinea în care se citesc, pe linii de cel mult L caractere, astfel încât orice linie începe și se termină cu un cuvânt și oricare două cuvinte de pe aceeași linie sunt separate printr-un singur spațiu. Oricare linie este folosită la maxim, adică dacă un cuvânt are loc pe acea linie va fi pus acolo și nu va fi trecut pe linia următoare sau spart pe 2 linii. **Exemplu**: se citește L = 22 și șirul de caractere PROBLEMA DE LA EXAMEN NU MI SE PARE FOARTE GREU DE REZOLVAT IN TIMPUL ACORDAT. Programul va afișa:

PROBLEMA DE LA EXAMEN NU MI SE PARE FOARTE GREU DE REZOLVAT IN TIMPUL ACORDAT

- (b) Într-un text formatat pe linii ca la punctul (a), două spații sunt conectate dacă se învecinează pe verticală sau pe diagonală. Pentru textul formatat mai sus avem mai multe exemple de spații conectate: spațiul de pe poziția 9, linia 1, ce separă literele A și D este conectat cu cel de pe poziția 9, linia 2; spațiul de pe poziția 15, linia 1, este conectat cu cel de pe poziția 14, linia 2. Spațiul de pe poziția 3, linia 2, nu este conectat cu niciun alt spațiu. Să se scrie un program care citește numerele naturale L, N și apoi un text formatat pe N linii de cel mult L caractere ca la punctul (a) și afișează mesajul DA dacă în tot textul există cel puțin o pereche de spații conectate, altfel afișează mesajul NU.
- (c) În arta tipografică un $r\hat{a}u$ este o înşiruire de spații care se întinde pe verticală, pe liniile consecutive ale unui text. Mai precis, un $r\hat{a}u$ este definit ca o secvență de cel puțin 2 spații în care oricare 2 spații de pe linii consecutive sunt conectate. Spre exemplu, pentru textul de la punctul (a), avem un $r\hat{a}u$ de lungime 4 format din: spațiul de pe poziția 9, linia 1; spațiul de pe poziția 9, linia 2; spațiul de pe poziția 8, linia 3 și spațiul de pe poziția 7, linia 4. De remarcat, faptul că de pe poziția 17, linia 3, nu pornește nici un $r\hat{a}u$ întrucât linia 4 se termină pe poziția 14. Să se scrie un program, cu o complexitate de timp cât mai bună, care citește numerele naturale L, N și apoi un text formatat pe N linii de cel mult L caractere ca la punctul (a) și afișează lungimea celui mai lung $r\hat{a}u$ posibil, dacă acesta există sau mesajul NU, dacă nu există niciun $r\hat{a}u$.

Note:

- 1. Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive și a instrucțiunilor condiționale.
- 2. Programele vor folosi instrucțiunile de bază ale limbajului de programare ales, funcții din biblioteci de bază (inclusiv cele de intrare/ieșire), dar nu și alte funcții din biblioteci specializate.
- 3. Citirea datelor se poate face de la tastatură sau dintr-un fişier text. Afişarea se va face numai la monitor. Cele 3 subpuncte se pot rezolva independent, dar funcțiile descrise la un subpunct pot fi folosite și la subpunctele următoare.

Universitatea din București Facultatea de Matematică și Informatică

Concursul de admitere iulie 2018 Domeniul de licență - *Matematică*

- I. Algebră. Fie matricea $A(m)=\begin{pmatrix} m+2 & -2 & 3 \\ 0 & m & 3 \\ 0 & 0 & m+3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$, unde m este un parametru real.
 - (a) Determinați $m \in \mathbb{R}$ astfel încât A(m) să fie inversabilă.
 - (b) Arătați că $A(0)^3 5A(0)^2 + 6A(0) = O_3$.
 - (c) Calculați $A(0)^{2018}$ și $A(1)^{2018}$.
 - (d) Fie $B \in \mathcal{M}_{3,2}(\mathbb{R})$ şi $C \in \mathcal{M}_{2,3}(\mathbb{R})$ astfel încât $B \cdot C = A(0)$. Calculați $\det(CB)$ şi $\operatorname{tr}(CB)$, unde am notat cu $\operatorname{tr}(CB)$ suma elementelor de pe diagonala principală a matricei CB.
- II. Analiză. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, definită prin $f(x) = \sqrt{|x^2 6x + 8|}$, pentru orice $x \in \mathbb{R}$.
 - (a) Determinați asimptotele la graficul funcției f.
 - (b) Determinați punctele în care funcția f nu este derivabilă și intervalele de convexitate ale lui f.
 - (c) Calculați $\int_{2}^{4} f^{2}(x)dx$.
 - (d) Pentru orice număr natural $n \geq 1$ notăm $I_n = \int_3^4 (f(x))^n dx$. Demonstrați că șirul $(I_n)_n$ este convergent și calculați $\lim_{n \to \infty} I_n$.
- III. Geometrie. În planul de coordonate xOy se consideră punctele A(3,0) şi M(a,0), unde $a \in (0,3)$. Pe segmentul OA se construiesc triunghiurile echilaterale OMP şi MAQ, de aceeaşi parte a segmentului OA, cu punctele P şi Q situate în cadranul I (ambele coordonate strict pozitive). Fie N mijlocul segmentului PQ.
 - (a) Dacă a=1, găsiți coordonatele punctelor P și Q și arătați că dreptele PQ și QA sunt perpendiculare.
 - (b) Dacă a=1, fie B punctul de intersecție al dreptelor OP și AQ. Arătați că punctele M, N și B sunt coliniare.
 - (c) Găsiți valoarea lui a pentru care dreptele PQ și OP sunt perpendiculare.
 - (d) Arătați că pentru orice valoare a lui $a \in (0,3)$ dreptele MN trec printr-un punct fix.

IV. Informatică. Ionuţ a fost admis la FMI şi tatăl lui i-a făcut cadou o maşină la mâna a doua ca să călătorească cu ea în vacanţă, împreună cu prietena sa Măriuca. Din păcate, maşina este veche şi la scurt timp, acul vitezometrului se rupe. Descurcăreţ de mic, Ionuţ îl lipeşte cu adeziv, dar îşi dă seama că în urma reparaţiei, acul nu mai indică viteza corectă. Făcând mai multe experimente, Ionuţ realizează că viteza pe care o indică acul vitezometrului diferă de viteza reală a maşinii cu un număr real constant c, a cărui valoare absolută e mai mică decât 100 km/oră.

Pentru a calcula constanta c, Ionuț merge pe 3 segmente de drum succesive, pe fiecare dintre ele cu viteză constantă şi își notează viteza indicată de acul defect al vitezometrului pe fiecare segment de drum:

- pe primul segment de drum, de 40 km, acul îi indică o viteză de 50 km/oră;
- pe al doilea segment de drum, tot de 40 km, parcurs la o altă viteză, acul îi indică 60 km/oră;
- pe al treilea segment de drum, de 100 km, acul îi indică 90 km/oră.

În acest timp, Măriuca înregistrează timpii în care sunt parcurse cele 3 segmente de drum, dar pentru că vrea să îl pună la încercare pe Ionuţ, la final nu îi spune decât timpul total t de 5 ore în care a parcurs toate cele 3 segmente de drum cumulate. După ce îşi aduce aminte din liceu că viteza se calculează ca raportul dintre distanţă şi timp, Ionuţ ajunge la concluzia că acul vitezometrului indică întotdeauna cu 30 km/oră mai mult decât viteza reală a maşinii.

Scrieţi un program care citeşte numărul natural n, reprezentând numărul segmentelor succesive de drum pe care Ionuţ le parcurge, numărul real t, reprezentând timpul total (în ore) în care acestea sunt parcurse, precum şi n perechi de numere reale, fiecare reprezentând lungimea unui segment de drum (în km) şi valoarea indicată de acul vitezometrului pe segmentul de drum respectiv (în km/oră), iar apoi afişează valoarea numerică a constantei reale c (în km/oră), calculată cu o precizie de 2 zecimale, cu care viteza indicată de acul defect diferă de viteza reală a maşinii.

Note:

- 1. Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit şi ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive şi a instrucțiunilor condiționale.
- 2. Programele vor folosi instrucțiunile de bază ale limbajului de programare ales, funcții din biblioteci de bază (inclusiv cele de intrare/ieșire), dar nu și alte funcții din biblioteci specializate.

Timp de lucru 3 ore.

Concursul de admitere iulie 2018 Domeniul de licentă - *Informatică*

Barem

Ι	\mathbf{Alg}	ebră.	Oficiu	1 p
	(a)		–1	
		Descon	ompunerea $(x+1)(x^2-4x+1)$	1 p
		$x_{2,3} = 3$	$=2\pm\sqrt{3}$	$^{\ldots0,5}$ p
	(b)	Scriere	rea relațiilor lui Viète (cel puțin o relație)	0,5 p
		Finaliz	izarea și obținerea expresiei $x_1^3 + x_2^3 + x_3^3 = -m^3 - 9m - 3$	1,5 р
	(c)	$x_2^3 = -$	−1 sau sistem în care apare raţia	1 p
		Finaliz	izarea şi $m=-3$	1 p
	(d)	Verifica	carea faptului că $2\cos(\frac{2\pi}{9})$ este o rădăcină a lui P	1 p
	(e)	Demon	onstrarea egalității	2 p
II.	An	aliză.	Oficiu	1 p
	(a)	Calculu	llul pantei asimptotei oblice la $\pm \infty$: $m=1$	0,5 р
		Calculi	llul ordonatei la origine a asimptotei oblice la $\pm \infty$: $n = -2$	1 p
			rea explicită a ecuaței $y = x - 2$	
		Calculu	ılul limitelor laterale în -5	0,5 p
		Explici	citarea ecuației asimptotei verticale și a tipului ei	0,5 p
	(b)	Calculı	ılul derivatei	0,5 р
	` '	Tabelu	ul de variație al funcției/semnul derivatei	1 p
			luzia: punctele de extrem local ale lui f sunt: -8 (maxim) și -3 (minim)	
	(c)	Trasare	rea graficului/ Şirul lui Rolle	1 p
	` '	Conclu	luzia: numărul de soluții ale ecuației $f(x) = m$ este:	
		2 soluţ	ıţii pentru $m \in (-\infty, -9\sqrt[3]{e}) \cup (\frac{-4}{\sqrt{e}}, 0)$	
			uție petru $m \in \left\{-9\sqrt[3]{e}, \frac{-4}{\sqrt{e}}\right\} \cup [0, \infty)$	
		0 soluţ	ıţii pentru $m \in \left(-9\sqrt[3]{e}, \frac{-4}{\sqrt{e}}\right)$	1 p
	(d)		rarea prin pârți (aplicare corectă a formulei)	
		Calculu	llul limitei $\lim_{n \to \infty} \frac{n^2}{(n+1)(n+2)} \int_0^1 x^{n+2} f''(x) dx = 0$	1 p
		Finaliz	izare: limita este $-f'(1) = -e^{-\frac{1}{6}}$	0,5 р

III. Geometrie. Oficiu	1 p
(a) Determinarea ecuației mediatoarei segmentului AB : $3x-y-$	$3 = 0 \dots 1 p$
Dreapta de ecuație $y=-1$ este mediatoarea segmentului AC .	1 p
Coordonatele centrului cercului circumscris $O'(\frac{2}{3}, -1)$	1 p
(b) Demonstrarea relației	3 p
(c) $AM + MD = CM + MD \dots$	2 p
Finalizare $M(0,-1)/\text{centrul}$ de greutate al triunghiului ABC	1 p
IV. Informatică. Oficiu	1 p
(a) Citirea şirului de caractere	0,25 p
Găsirea cuvintelor separate prin spațiu	0,75 p
Distribuirea cuvintelor pe o linie cu cel mult L caractere \ldots	0,5 p
Încărcarea liniei la maxim	0,5 p
Cuvintele sunt conținute integral pe o linie	0,25 p
Afișarea corectă a liniilor	0,25 p
Corectitudinea limbajului	0,5 p
Explicaţii	0,25 p
(b) Utilizarea unei structuri de date pentru menținerea informație	i necesare0,5 p
Verificarea conectivității pe cazul general (cu 3 vecini)	0,5 p
Verificarea conectivității pe cazurile particulare (cu 0, 1, 2 vec	ini)0,5 p
Tratarea cazului pentru DA	0,5 p
Tratarea cazului pentru NU	0,5 p
Corectitudinea limbajului	0,5 p
Explicaţii	0,25 p
(c) Corectitudinea soluţiei	1 p
Optimalitatea soluției corecte $\mathcal{O}(L \cdot N)$	1 p
Deducerea complexității soluției prezentate	0,25 p
Explicații	0,25 p

Concursul de admitere iulie 2018Domeniul de licență - Matematică

\mathbf{Barem}

$ \begin{array}{c} \text{(d)} \ \operatorname{tr}(CB) = 5 \\ \operatorname{det}(CB) = 6 \end{array} \qquad \qquad$	I.	Algebră. Oficiu	p
$\begin{split} m &\in \mathbb{R} \setminus \{-3, -2, 0\} & .0.5 \text{ p} \\ \text{(b) Calculul puterilor } A(0)^2 \text{ şi } A(0)^3 \text{ ale matricei } A(0) & .1 \text{ p} \\ \text{Verificarea egalității} & .1 \text{ p} \\ \text{(c) } A(0)^{2018} &= \begin{pmatrix} 2^{2018} & -2^{2018} & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \end{pmatrix}, & .1.5 \text{ p} \\ A(1)^{2018} &= \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \end{pmatrix} & .1.5 \text{ p} \\ \text{(d) } \text{tr}(CB) = 5 & & .1 \text{ p} \\ \text{det}(CB) = 6 & & .1 \text{ p} \\ \text{(a) } y = x - 3 \text{ asimptotă oblică spre} + \infty & .0.5 \text{ p} \\ y = -x + 3 \text{ asimptotă oblică spre} - \infty & .1 \text{ p} \\ \text{f nu are asimptote verticale} & .0.5 \text{ p} \\ \text{f in are asimptote verticale} & .0.5 \text{ p} \\ \text{Studiul derivabilității în } x = 2 & .0.75 \text{ p} \\ \text{Studiul derivabilității în } x = 4 & .0.75 \text{ p} \\ \text{Calculul derivabilității în } x = 4 & .0.75 \text{ p} \\ \text{Calculul integralei } I = \frac{4}{3} & .0.5 \text{ p} \\ \text{Concluzia: } f \text{ concavă pe } (-\infty, 2], [2, 4], [4, \infty) & .0.5 \text{ p} \\ \text{(in)}_{n} \text{ mărginit} & .0.5 \text{ p} \\ \text{Im}_{n} I_{n} = 0 & & .0.5 \text{ p} \\ \text{Im}_{n} I_{n} = 0 & & .0.5 \text{ p} \\ \text{Demonstrarea perpendicularității} & .0.5 \text{ p} \\ \text{Demonstrarea perpendicularității} & .1 \text{ p} \\ \text{Demonstrarea perpendicularității} & .2 \text{ p} \\ \text{Expresiile pantelor } m_{OP} = \sqrt{3} \text{ şi } m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} & .1 \text{ p} \\ \text{Expresiile pantelor } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & .1 \text{ p} \\ \text{(d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & .1 \text{ p} \\ \text{(d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & .1 \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & .1 \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & .1 \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & .1 \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & \text{ p} \\ \text{(d)} \text{ Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & $		(a) $A(m)$ inversabilă dacă și numai dacă det $A(m) \neq 0$	p
$ \begin{array}{c} \text{(b) Calculul puterilor } A(0)^2 \ \text{si } A(0)^3 \ \text{ale matricei} \ A(0) & 1 \ \text{p} \\ \text{Verificarea egalității} & 1 \ \text{p} \\ \text{(c) } A(0)^{2018} = \begin{pmatrix} 2^{2018} & 2^{2018} & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \\ \end{array} \right) & 1,5 \ \text{p} \\ A(1)^{2018} = \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \\ \end{array} \right) & 1,5 \ \text{p} \\ \text{(d) } \text{tr}(CB) = 5 & 1 \ \text{p} \\ \text{det}(CB) = 6 & 1 \ \text{p} \\ \text{det}(CB) = 6 & 1 \ \text{p} \\ \text{II. Analiză. Oficiu} & 1 \ \text{p} \\ \text{(a) } y = x - 3 \ \text{asimptotă oblică spre} + \infty & 0.5 \ \text{p} \\ y = -x + 3 \ \text{asimptotă oblică spre} + \infty & 0.5 \ \text{p} \\ y = -x + 3 \ \text{asimptotă oblică spre} + \infty & 0.5 \ \text{p} \\ \text{(b) } f \ \text{ntu are asimptote verticale} & 0.5 \ \text{p} \\ \text{(b) } f \ \text{este derivabili tății în } x = 2 & 0.5 \ \text{p} \\ \text{Studiul derivabilității în } x = 2 & 0.75 \ \text{p} \\ \text{Studiul derivabilității în } x = 4 & 0.75 \ \text{p} \\ \text{Calculul derivatei a doua} & 0.5 \ \text{p} \\ \text{Concluzia: } f \ \text{concavă pe} \ (-\infty, 2], [2, 4], [4, \infty) & 0.5 \ \text{p} \\ \text{(c) calculul integralei } I = \frac{4}{3} & 2 \ \text{p} \\ \text{(d) } (I_n)_n \ \text{mărginit} & 0.5 \ \text{p} \\ \text{lim} \ I_n = 0 & 1 \ \text{p} \\ \text{III. Geometrie. Oficiu} & 1 \ \text{p} \\ \text{Demonstrarea perpendicularității} & 1 \ \text{p} \\ \text{Demonstrarea perpendicularității} & 2 \ \text{p} \\ \text{Expresiile pantelor} \ m_Op = \sqrt{3} \ \text{si} \ m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} & 1 \ \text{p} \\ \text{Concliția de perpendicularitătei si calculul lui a = 2 1 1 p} \\ \text{(d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3-2a) = 0 & 1 \ \text{p} \\ \text{(d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3-2a) = 0 & 1 \ \text{p} \\ \text{(d)} \ \text{(d)} \ \text{Ecuația dreptei} MN: (x - a)3\sqrt{3} - y(3-2a) = 0 & 1 \ \text{p} \\ \text{(d)} \ \text{(d)} \ \text{Ecuația dreptei} MN: (x - a)3\sqrt{3} - y(3-2a) = 0 & 1 \ \text{p} \\ \text{(d)} \ \text{(d)}$		Calculul determinantului: $m(m+2)(m+3)$	p
$ \begin{array}{c} \text{Verificarea egalității} & 1 \text{ p} \\ \text{(c) } A(0)^{2018} = \begin{pmatrix} 2^{2018} & -2^{2018} & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 0 & 4^{2018} - 1 \\ 0 & 0 & 0 & 4^{2018} - 1 \\ 0 $		$m \in \mathbb{R} \setminus \{-3, -2, 0\}$	p
$ \begin{array}{c} \text{(c) } A(0)^{2018} = \begin{pmatrix} 2^{2018} & -2^{2018} & 3^{2018} \\ 0 & 0 & 3^{2018} \\ 0 & 0 & 3^{2018} \\ \end{pmatrix}, & 1,5 \text{ p} \\ \\ A(1)^{2018} = \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \\ \end{pmatrix} & 1,5 \text{ p} \\ \\ \text{(d) } \text{ tr}(CB) = 5 & 1 \text{ p} \\ \text{ det}(CB) = 6 & 1 \text{ p} \\ \text{ det}(CB) = 6 & 1 \text{ p} \\ \text{ (a) } y = x - 3 \text{ asimptotă oblică spre} + \infty & 0,5 \text{ p} \\ y = -x + 3 \text{ asimptotă oblică spre} + \infty & 1 \text{ p} \\ f \text{ nu are asimptote verticale} & 0,5 \text{ p} \\ y = -x + 3 \text{ asimptotă oblică spre} - \infty & 1 \text{ p} \\ \text{ fu are asimptote verticale} & 0,5 \text{ p} \\ \text{ Studiul derivabilității în } x = 2 & 0,75 \text{ p} \\ \text{ Studiul derivabilității în } x = 2 & 0,75 \text{ p} \\ \text{ Studiul derivabilității în } x = 4 & 0,75 \text{ p} \\ \text{ Calculul derivatei a doua} & 0,5 \text{ p} \\ \text{ Concluzia: } f \text{ concavă pe} (-\infty,2], [2,4], [4,\infty) & 0,5 \text{ p} \\ \text{ (c) calculul integralei } I = \frac{4}{3} & 2 \text{ p} \\ \text{ (d) } (I_n)_n \text{ descrescător} & 0,5 \text{ p} \\ \text{ (m) mărginit} & 0,5 \text{ p} \\ \text{ (m) } I_n = 0 & 1 \text{ p} \\ \text{ (m) } I_n = 0 & 1 \text{ p} \\ \text{ (m) } \text{ (moretrie. Oficiu} & 1 \text{ p} \\ \text{ (b) Demonstrarea perpendicularității} & 1 \text{ p} \\ \text{ (b) Demonstrarea perpendicularității} & 2 \text{ p} \\ \text{ (c) } P\left(\frac{x}{2},\frac{x^2}{2}\right) \text{ si } Q\left(\frac{x^2}{2},\frac{(3-\alpha)\sqrt{3}}{2}\right) & 1 \text{ p} \\ \text{ Expresiile pantelor } m_{OP} = \sqrt{3} \text{ si } m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} & 1 \text{ p} \\ \text{ Condiția de perpendicularitates ii calculul lui } a = 2 & 1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 & 1 \text{ p} \\ \end{array}$		(b) Calculul puterilor $A(0)^2$ şi $A(0)^3$ ale matricei $A(0)$	p
$A(1)^{2018} = \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \end{pmatrix} \qquad \qquad 1,5 \text{ p}$ $(d) \ \operatorname{tr}(CB) = 5 \qquad \qquad 1 \text{ p}$ $\det(CB) = 6 \qquad \qquad 1 \text{ p}$ $\det(CB) = 6 \qquad \qquad 1 \text{ p}$ $II. \ \mathbf{Analiz\bar{a}}. \ \mathrm{Oficiu} \qquad \qquad 1 \text{ p}$ $(a) \ y = x - 3 \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ + \infty \qquad \qquad 0,5 \text{ p}$ $y = -x + 3 \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{pre} \ \mathbb{R} \setminus \{2,4\} \qquad \qquad 0,5 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{ii} \ \mathrm{n} \ x = 2 \qquad \qquad 0,75 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{calculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{calculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{colculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,5 \text{ p}$ $C \ \mathrm{colculul} \ \mathrm{integralei} \ I \ = \frac{4}{3} \qquad \qquad \qquad 2 \text{ p}$ $(d) \ (I_n)_n \ \mathrm{descrescator} \qquad \qquad 0,5 \text{ p}$ $(I_n)_n \ \mathrm{merginit} \qquad \qquad 0,5 \text{ p}$ $\lim_{n \to \infty} I_n = 0 \qquad \qquad 1 \text{ p}$ $\mathrm{III.} \ \mathrm{Geometrie} \mathrm{Oficiu} \qquad \qquad 1 \text{ p}$ $\mathrm{(a)} \ P \ (\frac{1}{2}, \frac{\sqrt{3}}{2}) \ \mathrm{si} \ Q(2, \sqrt{3}) \qquad \qquad 1 \text{ p}$ $\mathrm{Demonstrarea} \ \mathrm{perpendicularit} \ \mathrm{ati} \ \mathrm{ii} \qquad 2 \text{ p}$ $(c) \ P \ (\frac{n}{2}, \frac{\sqrt{3}}{2}) \ \mathrm{si} \ Q(\frac{n+3}{2}, \frac{(3-a)\sqrt{3}}{2}) \qquad \qquad 1 \text{ p}$ $\mathrm{Expresiile} \ \mathrm{pantelor} \ m_O = \sqrt{3} \ \mathrm{si} \ m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} \qquad \qquad 1 \text{ p}$ $\mathrm{Condiția} \ \mathrm{de} \ \mathrm{perpendicularit} \ \mathrm{ate} \ \mathrm{si} \ \mathrm{calculul} \ \mathrm{lui} \ a = 2 \qquad \qquad 1 \text{ p}$ $\mathrm{(d)} \ \mathrm{Euația} \ \mathrm{derptei} \ MN: \ (x - a) 3\sqrt{3} - y(3 - 2a) = 0 \qquad \qquad 1 \text{ p}$		Verificarea egalității	p
$A(1)^{2018} = \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \end{pmatrix} \qquad \qquad 1,5 \text{ p}$ $(d) \ \operatorname{tr}(CB) = 5 \qquad \qquad 1 \text{ p}$ $\det(CB) = 6 \qquad \qquad 1 \text{ p}$ $\det(CB) = 6 \qquad \qquad 1 \text{ p}$ $II. \ \mathbf{Analiz\bar{a}}. \ \mathrm{Oficiu} \qquad \qquad 1 \text{ p}$ $(a) \ y = x - 3 \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ + \infty \qquad \qquad 0,5 \text{ p}$ $y = -x + 3 \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{pre} \ \mathbb{R} \setminus \{2,4\} \qquad \qquad 0,5 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{ii} \ \mathrm{n} \ x = 2 \qquad \qquad 0,75 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{calculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{calculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{colculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,5 \text{ p}$ $C \ \mathrm{colculul} \ \mathrm{integralei} \ I \ = \frac{4}{3} \qquad \qquad \qquad 2 \text{ p}$ $(d) \ (I_n)_n \ \mathrm{descrescator} \qquad \qquad 0,5 \text{ p}$ $(I_n)_n \ \mathrm{merginit} \qquad \qquad 0,5 \text{ p}$ $\lim_{n \to \infty} I_n = 0 \qquad \qquad 1 \text{ p}$ $\mathrm{III.} \ \mathrm{Geometrie} \mathrm{Oficiu} \qquad \qquad 1 \text{ p}$ $\mathrm{(a)} \ P \ (\frac{1}{2}, \frac{\sqrt{3}}{2}) \ \mathrm{si} \ Q(2, \sqrt{3}) \qquad \qquad 1 \text{ p}$ $\mathrm{Demonstrarea} \ \mathrm{perpendicularit} \ \mathrm{ati} \ \mathrm{ii} \qquad 2 \text{ p}$ $(c) \ P \ (\frac{n}{2}, \frac{\sqrt{3}}{2}) \ \mathrm{si} \ Q(\frac{n+3}{2}, \frac{(3-a)\sqrt{3}}{2}) \qquad \qquad 1 \text{ p}$ $\mathrm{Expresiile} \ \mathrm{pantelor} \ m_O = \sqrt{3} \ \mathrm{si} \ m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} \qquad \qquad 1 \text{ p}$ $\mathrm{Condiția} \ \mathrm{de} \ \mathrm{perpendicularit} \ \mathrm{ate} \ \mathrm{si} \ \mathrm{calculul} \ \mathrm{lui} \ a = 2 \qquad \qquad 1 \text{ p}$ $\mathrm{(d)} \ \mathrm{Euația} \ \mathrm{derptei} \ MN: \ (x - a) 3\sqrt{3} - y(3 - 2a) = 0 \qquad \qquad 1 \text{ p}$		$\left(\begin{array}{cccc}2^{2018} & -2^{2018} & 3^{2018}\end{array}\right)$	
$A(1)^{2018} = \begin{pmatrix} 3^{2018} & 1 - 3^{2018} & 4^{2018} - 1 \\ 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \end{pmatrix} \qquad \qquad 1,5 \text{ p}$ $(d) \ \operatorname{tr}(CB) = 5 \qquad \qquad 1 \text{ p}$ $\det(CB) = 6 \qquad \qquad 1 \text{ p}$ $\det(CB) = 6 \qquad \qquad 1 \text{ p}$ $II. \ \mathbf{Analiz\bar{a}}. \ \mathrm{Oficiu} \qquad \qquad 1 \text{ p}$ $(a) \ y = x - 3 \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ + \infty \qquad \qquad 0,5 \text{ p}$ $y = -x + 3 \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $f \ \mathrm{nu} \ \mathrm{are} \ \mathrm{asimptot\bar{a}} \ \mathrm{oblic\bar{a}} \ \mathrm{spre} \ - \infty \qquad \qquad 1 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{pre} \ \mathbb{R} \setminus \{2,4\} \qquad \qquad 0,5 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{ii} \ \mathrm{n} \ x = 2 \qquad \qquad 0,75 \text{ p}$ $S \ \mathrm{tudiul} \ \mathrm{derivabil\bar{a}} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{calculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{calculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,75 \text{ p}$ $C \ \mathrm{colculul} \ \mathrm{derivabili} \ \mathrm{ii} \ \mathrm{in} \ x = 4 \qquad \qquad 0,5 \text{ p}$ $C \ \mathrm{colculul} \ \mathrm{integralei} \ I \ = \frac{4}{3} \qquad \qquad \qquad 2 \text{ p}$ $(d) \ (I_n)_n \ \mathrm{descrescator} \qquad \qquad 0,5 \text{ p}$ $(I_n)_n \ \mathrm{merginit} \qquad \qquad 0,5 \text{ p}$ $\lim_{n \to \infty} I_n = 0 \qquad \qquad 1 \text{ p}$ $\mathrm{III.} \ \mathrm{Geometrie} \mathrm{Oficiu} \qquad \qquad 1 \text{ p}$ $\mathrm{(a)} \ P \ (\frac{1}{2}, \frac{\sqrt{3}}{2}) \ \mathrm{si} \ Q(2, \sqrt{3}) \qquad \qquad 1 \text{ p}$ $\mathrm{Demonstrarea} \ \mathrm{perpendicularit} \ \mathrm{ati} \ \mathrm{ii} \qquad 2 \text{ p}$ $(c) \ P \ (\frac{n}{2}, \frac{\sqrt{3}}{2}) \ \mathrm{si} \ Q(\frac{n+3}{2}, \frac{(3-a)\sqrt{3}}{2}) \qquad \qquad 1 \text{ p}$ $\mathrm{Expresiile} \ \mathrm{pantelor} \ m_O = \sqrt{3} \ \mathrm{si} \ m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} \qquad \qquad 1 \text{ p}$ $\mathrm{Condiția} \ \mathrm{de} \ \mathrm{perpendicularit} \ \mathrm{ate} \ \mathrm{si} \ \mathrm{calculul} \ \mathrm{lui} \ a = 2 \qquad \qquad 1 \text{ p}$ $\mathrm{(d)} \ \mathrm{Euația} \ \mathrm{derptei} \ MN: \ (x - a) 3\sqrt{3} - y(3 - 2a) = 0 \qquad \qquad 1 \text{ p}$		(c) $A(0)^{2018} = \begin{bmatrix} 0 & 3^{2018} \\ 0 & 3^{2018} \end{bmatrix}$,	p
$ \begin{array}{c} \text{(d)} \ \operatorname{tr}(CB) = 5 \\ \operatorname{det}(CB) = 6 \end{array} \qquad \qquad$		$\begin{pmatrix} 0 & 0 & 3^{2018} \end{pmatrix}$	
$ \begin{array}{c} \text{(d)} \ \operatorname{tr}(CB) = 5 \\ \operatorname{det}(CB) = 6 \end{array} \qquad \qquad$		$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} \text{(d)} \ \operatorname{tr}(CB) = 5 \\ \operatorname{det}(CB) = 6 \end{array} \qquad \qquad$		$A(1)^{2018} = \begin{bmatrix} 0 & 1 & 4^{2018} - 1 \\ 0 & 0 & 4^{2018} \end{bmatrix} \dots $	р
$\det(CB) = 6 \qquad \qquad \qquad 1 \text{ p}$		$\begin{pmatrix} 0 & 0 & 4^{2010} \end{pmatrix}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ (a) \ y = x - 3 \ \text{asimptotă oblică spre} \ + \infty \qquad \qquad 0,5 \ p \\ y = -x + 3 \ \text{asimptotă oblică spre} \ - \infty \qquad \qquad 1 \ p \\ f \ \text{nu are asimptote verticale} \qquad \qquad 0,5 \ p \\ (b) \ f \ \text{este derivabilă pe} \ \mathbb{R} \setminus \{2,4\} \qquad \qquad 0,5 \ p \\ \text{Studiul derivabilității în} \ x = 2 \qquad \qquad 0,75 \ p \\ \text{Studiul derivabilității în} \ x = 4 \qquad \qquad 0,75 \ p \\ \text{Calculul derivatei a doua} \qquad \qquad 0,5 \ p \\ \text{Concluzia:} \ f \ \text{concavă pe} \ (-\infty,2], [2,4], [4,\infty) \qquad \qquad 0,5 \ p \\ \text{Col calculul integralei} \ I = \frac{4}{3} \qquad \qquad 2 \ p \\ \text{(d)} \ (I_n)_n \ \text{descrescător} \qquad \qquad 0,5 \ p \\ (I_n)_n \ \text{mărginit} \qquad \qquad 0,5 \ p \\ (I_n)_n \ \text{mărginit} \qquad \qquad 0,5 \ p \\ Imm \ I_n = 0 \qquad \qquad 1 \ p \\ \text{III.} \ \textbf{Geometrie.} \ \text{Oficiu} \qquad \qquad 1 \ p \\ \text{Ob Demonstrarea perpendicularității} \qquad 1 \ p \\ \text{(b)} \ \text{Demonstrarea coliniarității} \qquad 2 \ p \\ \text{(c)} \ P\left(\frac{\alpha}{2}, \frac{a\sqrt{3}}{2}\right) \ \text{si} \ Q\left(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2}\right) \qquad 1 \ p \\ \text{Expresiile pantelor} \ m_{OP} = \sqrt{3} \ \text{si} \ m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} \qquad 1 \ p \\ \text{Condiția de perpendicularitate si calculul lui} \ a = 2 \qquad 1 \ p \\ \text{(d)} \ \text{Ecuația dreptei} \ MN: \ (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad 1 \ p \\ \text{Demonstrarea} \ $			
$y = -x + 3 \text{ asimptotă oblică spre} - \infty \qquad \qquad 1 \text{ p} \\ f \text{ nu are asimptote verticale} \qquad \qquad .0,5 \text{ p} \\ \text{ (b) } f \text{ este derivabilă pe } \mathbb{R} \setminus \{2,4\} \qquad .0,5 \text{ p} \\ \text{ Studiul derivabilității în } x = 2 \qquad .0,75 \text{ p} \\ \text{ Studiul derivabilității în } x = 4 \qquad .0,75 \text{ p} \\ \text{ Calculul derivatei a doua} \qquad .0,5 \text{ p} \\ \text{ Concluzia: } f \text{ concavă pe } (-\infty,2],[2,4],[4,\infty) \qquad .0,5 \text{ p} \\ \text{ (c) calculul integralei } I = \frac{4}{3} \qquad .2 \text{ p} \\ \text{ (d) } (I_n)_n \text{ descrescător} \qquad .0,5 \text{ p} \\ (I_n)_n \text{ mărginit} \qquad .0,5 \text{ p} \\ \lim_{n \to \infty} I_n = 0 \qquad .1 \text{ p} \\ \text{III. Geometrie. Oficiu} \qquad 1 \text{ p} \\ \text{ (a) } P(\frac{1}{2}, \frac{\sqrt{3}}{2}) \text{ și } Q(2, \sqrt{3}) \qquad .1 \text{ p} \\ \text{ Demonstrarea perpendicularității} \qquad .2 \text{ p} \\ \text{ (c) } P(\frac{a}{2}, \frac{a\sqrt{3}}{2}) \text{ și } Q(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2}) \qquad .1 \text{ p} \\ \text{ Expresiile pantelor } m_{OP} = \sqrt{3} \text{ și } m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} \qquad .1 \text{ p} \\ \text{ Condiția de perpendicularitate si calculul lui } a = 2 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) Ecuația dreptei } MN: (x - a)3\sqrt{3} - y(3 - 2a) = 0 \qquad .1 \text{ p} \\ \text{ (d) } $	II	Analiză. Oficiu	p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) $y = x - 3$ asimptotă oblică spre $+\infty$	р
(b) f este derivabilă pe $\mathbb{R}\setminus\{2,4\}$		$y=-x+3$ asimptotă oblică spre $-\infty$	p
Studiul derivabilității în $x=2$		· · · · · · · · · · · · · · · · · · ·	_
Studiul derivabilității în $x=4$			
Calculul derivatei a doua			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-
(c) calculul integralei $I=\frac{4}{3}$		•	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$(I_n)_n \text{ mărginit} \qquad 0,5 \text{ p}$ $\lim_{n \to \infty} I_n = 0 \qquad 1 \text{ p}$ $\text{III. Geometrie. Oficiu} \qquad 1 \text{ p}$ $(a) \ P(\frac{1}{2}, \frac{\sqrt{3}}{2}) \text{ şi } Q(2, \sqrt{3}) \qquad 1 \text{ p}$ $\text{Demonstrarea perpendicularităţii} \qquad 1 \text{ p}$ $(b) \ \text{Demonstrarea coliniarităţii} \qquad 2 \text{ p}$ $(c) \ P(\frac{a}{2}, \frac{a\sqrt{3}}{2}) \text{ şi } Q(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2}) \qquad 1 \text{ p}$ $\text{Expresiile pantelor } m_{OP} = \sqrt{3} \text{ şi } m_{PQ} = \frac{\sqrt{3}(3-2a)}{3} \qquad 1 \text{ p}$ $\text{Condiţia de perpendicularitate si calculul lui } a = 2 \qquad 1 \text{ p}$ $(d) \ \text{Ecuația dreptei } MN: \ (x-a)3\sqrt{3} - y(3-2a) = 0 \qquad 1 \text{ p}$			
$\lim_{n\to\infty} I_n = 0 \qquad 1 \text{ p}$ III. Geometrie. Oficiu 1 p (a) $P(\frac{1}{2}, \frac{\sqrt{3}}{2})$ şi $Q(2, \sqrt{3})$ 1 p Demonstrarea perpendicularității 1 p (b) Demonstrarea coliniarității 2 p (c) $P(\frac{a}{2}, \frac{a\sqrt{3}}{2})$ şi $Q(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2})$ 1 p Expresiile pantelor $m_{OP} = \sqrt{3}$ şi $m_{PQ} = \frac{\sqrt{3}(3-2a)}{3}$ 1 p Condiția de perpendicularitate si calculul lui $a = 2$ 1 p (d) Ecuația dreptei MN : $(x-a)3\sqrt{3} - y(3-2a) = 0$ 1 p			-
III. Geometrie. Oficiu 1 p (a) $P(\frac{1}{2}, \frac{\sqrt{3}}{2})$ şi $Q(2, \sqrt{3})$ 1 p Demonstrarea perpendicularității 1 p (b) Demonstrarea coliniarității 2 p (c) $P(\frac{a}{2}, \frac{a\sqrt{3}}{2})$ şi $Q(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2})$ 1 p Expresiile pantelor $m_{OP} = \sqrt{3}$ şi $m_{PQ} = \frac{\sqrt{3}(3-2a)}{3}$ 1 p Condiția de perpendicularitate si calculul lui $a = 2$ 1 p (d) Ecuația dreptei MN : $(x - a)3\sqrt{3} - y(3 - 2a) = 0$ 1 p		$(I_n)_n$ marginit	· р
(a) $P(\frac{1}{2}, \frac{\sqrt{3}}{2})$ şi $Q(2, \sqrt{3})$		$\lim_{n \to \infty} I_n = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	р
Demonstrarea perpendicularității	II	Geometrie. Oficiu	p
Demonstrarea perpendicularității		(a) $P(\frac{1}{2}, \frac{\sqrt{3}}{2})$ si $Q(2, \sqrt{3})$	р
(b) Demonstrarea coliniarității			
(c) $P(\frac{a}{2}, \frac{a\sqrt{3}}{2})$ şi $Q(\frac{a+3}{2}, \frac{(3-a)\sqrt{3}}{2})$			
Expresiile pantelor $m_{OP}=\sqrt{3}$ și $m_{PQ}=\frac{\sqrt{3}(3-2a)}{3}$			
Condiția de perpendicularitate si calculul lui $a=2$		Expresiile pantelor $m_{OR} = \sqrt{3}$ si $m_{PO} = \frac{\sqrt{3}(3-2a)}{2}$	n
(d) Ecuația dreptei MN : $(x-a)3\sqrt{3}-y(3-2a)=0$			
Identificarea punctului fix $D(\frac{1}{2},\frac{1}{2})$		Identificarea punctului fix $B(\frac{3}{2},\frac{3\sqrt{3}}{2})$	

IV. Informatică. Oficiu	1 p
Găsirea relației care permite aflarea constantei c	2 p
Considerarea unui interval de căutare pentru constanta c care conține și valori negative	1 p
Găsirea constantei c prin căutare	3 p
Respectarea aproximării de 2 zecimale	1 p
Corectitudinea limbajului	1 p
Explicații	1 p