Cognorise Infotech Internship

Name: Anuttama Mondal

Task 2: 80 CEREALS

Problem Statement:

If you like to eat cereal, do yourself a favor and avoid this dataset at all costs. After seeing these data it will never be the same for me to eat Fruity Pebbles again.

Import Libraries:

•	name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
	100% Bran	Ν	С	70	4	1	130	10.0	5.0	6	280	25	3	1.0	0.33	68.402973
	1 100% Natural Bran	Q	С	120	3	5	15	2.0	8.0	8	135	0	3	1.0	1.00	33.983679
	2 All-Bran	K	С	70	4	1	260	9.0	7.0	5	320	25	3	1.0	0.33	59.425505
	3 All-Bran with Extra Fiber	K	С	50	4	0	140	14.0	8.0	0	330	25	3	1.0	0.50	93.704912
	4 Almond Delight	R	С	110	2	2	200	1.0	14.0	8	-1	25	3	1.0	0.75	34.384843
	•															
7	2 Triples	G	С	110	2	1	250	0.0	21.0	3	60	25	3	1.0	0.75	39.106174
7	3 Trix	G	С	110	1	1	140	0.0	13.0	12	25	25	2	1.0	1.00	27.753301
7	1 Wheat Chex	R	С	100	3	1	230	3.0	17.0	3	115	25	1	1.0	0.67	49.787445
7	5 Wheaties	G	С	100	3	1	200	3.0	17.0	3	110	25	1	1.0	1.00	51.592193
7	6 Wheaties Honey Gold	G	С	110	2	1	200	1.0	16.0	8	60	25	1	1.0	0.75	36.187559

77 rows × 16 columns

Checking with the Rows for storing the Length:

In [6]: df.tail()

Out[4]: 77

Displaying first and last rows and columns of the dataset:

]:	name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
0	100% Bran	N	С	70	4	1	130	10.0	5.0	6	280	25	3	1.0	0.33	68.402973
1	100% Natural Bran	Q	С	120	3	5	15	2.0	8.0	8	135	0	3	1.0	1.00	33.983679
2	All-Bran	K	С	70	4	1	260	9.0	7.0	5	320	25	3	1.0	0.33	59.425505
3	All-Bran with Extra Fiber	K	С	50	4	0	140	14.0	8.0	0	330	25	3	1.0	0.50	93.704912
4	Almond Delight	R	C	110	2	2	200	1.0	14.0	8	-1	25	3	1.0	0.75	34.384843

Out[6]:		name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	rating
	72	Triples	G	С	110	2	1	250	0.0	21.0	3	60	25	3	1.0	0.75	39.106174
	73	Trix	G	С	110	1	1	140	0.0	13.0	12	25	25	2	1.0	1.00	27.753301
	74	Wheat Chex	R	С	100	3	1	230	3.0	17.0	3	115	25	1	1.0	0.67	49.787445
	75	Wheaties	G	C	100	3	1	200	3.0	17.0	3	110	25	1	1.0	1.00	51.592193
	76	Wheaties Honey Gold	G	С	110	2	1	200	1.0	16.0	8	60	25	1	1.0	0.75	36.187559

View the information:

```
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 77 entries, 0 to 76
        Data columns (total 16 columns):
         # Column Non-Null Count Dtype
         0
            name
                      77 non-null
                                     object
                      77 non-null
                                     object
         1
                      77 non-null
                                     object
            type
            calories 77 non-null
                                     int64
            protein 77 non-null
                                     int64
                      77 non-null
            fat
                                     int64
            sodium 77 non-null
                                     int64
                      77 non-null
         7
            fiber
                                     float64
                      77 non-null
                                     float64
         8
            carbo
                     77 non-null
                                     int64
         9
            sugars
                    77 non-null
         10
            potass
                                     int64
         11 vitamins 77 non-null
                                     int64
                      77 non-null
         12 shelf
                                     int64
                      77 non-null
         13 weight
                                     float64
                      77 non-null
         14 cups
                                     float64
        15 rating
                     77 non-null
                                     float64
        dtypes: float64(5), int64(8), object(3)
        memory usage: 9.8+ KB
In [8]: df.shape
Out[8]: (77, 16)
```

checking for any null or missing values:

```
In [9]: df.isnull().sum()
Out[9]:
                     0
         type
                     0
         calories
                     0
         protein
                     0
         fat
         sodium
         fiber
         carbo
         sugars
                     0
         potass
                     0
         vitamins
                     0
         shelf
                     0
         weight
         cups
         rating
         dtype: int64
In [10]: df.describe()
```

	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	shelf	weight	cups	ra
count	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000000	77.000
mean	106.883117	2.545455	1.012987	159.675325	2.151948	14.597403	6.922078	96.077922	28.246753	2.207792	1.029610	0.821039	42.665
std	19.484119	1.094790	1.006473	83.832295	2.383364	4.278956	4.444885	71.286813	22.342523	0.832524	0.150477	0.232716	14.047
min	50.000000	1.000000	0.000000	0.000000	0.000000	-1.000000	-1.000000	-1.000000	0.000000	1.000000	0.500000	0.250000	18.042
25%	100.000000	2.000000	0.000000	130.000000	1.000000	12.000000	3.000000	40.000000	25.000000	1.000000	1.000000	0.670000	33.174
50%	110.000000	3.000000	1.000000	180.000000	2.000000	14.000000	7.000000	90.000000	25.000000	2.000000	1.000000	0.750000	40.400
75%	110.000000	3.000000	2.000000	210.000000	3.000000	17.000000	11.000000	120.000000	25.000000	3.000000	1.000000	1.000000	50.828
max	160.000000	6.000000	5.000000	320.000000	14.000000	23.000000	15.000000	330.000000	100.000000	3.000000	1.500000	1.500000	93.704

Using EDA(Exploratory Data Analysis):

```
In [12]: colors= sns.color_palette('Paired')
         labels=df['mfr'].dropna().unique()
         plt.figure(figsize=(10,7))
         plt.subplot(1,2,1)
         plt.title('MRF')
         plt.pie(df['mfr'].value_counts(),labels=labels,colors=colors, autopct='%.2f%%')
Out[12]: ([<matplotlib.patches.Wedge at 0x1b5cf662a60>,
           <matplotlib.patches.Wedge at 0x1b5cf6871c0>,
           <matplotlib.patches.Wedge at 0x1b5cf6878e0>,
           <matplotlib.patches.Wedge at 0x1b5cfd32040>,
           <matplotlib.patches.Wedge at 0x1b5cfd32760>,
           <matplotlib.patches.Wedge at 0x1b5cfd32e80>,
           <matplotlib.patches.Wedge at 0x1b5cfd3e5e0>],
          [Text(0.6501892803051899, 0.8872732948625353, 'N'),
           Text(-1.0266701582556739, 0.39490300853155025, 'Q'),
           Text(-0.6858387877960629, -0.8600146261281998, 'K'),
           Text(0.022438373412025387, -1.0997711213696342, 'R'),
           Text(0.6858387676659675, -0.860014642181415, 'G'),
           Text(1.0419233031728248, -0.352697930679257, 'P'),
           Text(1.0990845779679979, -0.04486747678339531, 'A')],
          [Text(0.35464869834828533, 0.483967251743201, '29.87%'),
           Text(-0.5600019045030948, 0.2154016410172092, '28.57%'),
           Text(-0.37409388425239787, -0.469098886979018, '11.69%'),
           Text(0.012239112770195666, -0.5998751571107095, '10.39%'),
           Text(0.3740938732723459, -0.46909889573531716, '10.39%'),
           Text(0.5683218017306316, -0.19238068946141287, '7.79%'),
           Text(0.599500678891635, -0.02447316915457926, '1.30%')])
                                MRF
```



```
In [16]: custom_palette = sns.color_palette("rocket",6)
    plt.figure(figsize=(10,6))
    sns.barplot(data=df, x='calories', y='fiber' ,palette=custom_palette)

plt.title('Calories vs Fiber')
    plt.xlabel('Calories')
    plt.ylabel('Fiber')
    plt.grid(True)
    plt.show()
```



```
In [31]: plt.figure(figsize=(10,6))
    plt.bar(df['type'].value_counts().index,df['type'].value_counts().values)
    plt.title('Cereals by Cold or Hot')
    plt.xlabel('Type')
    plt.ylabel('Count')
    plt.grid(True)
    plt.show()
```



```
In [32]: custom_palette = sns.color_palette("rocket_r",6)
    plt.figure(figsize=(17,8))
    sns.barplot(data=df, x='name', y='sugars',palette=custom_palette)

plt.title('Name by Sugar')
    plt.xlabel('Name')
    plt.ylabel('Sugars')
    plt.grid(True)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [33]: pd.crosstab(df['type'],df['protein'])
```

```
Out[33]: protein 1 2 3 4 5 6
```

type

C 13 25 27 7 0 2

H 0 0 1 1 1 0

```
In [37]: pd.crosstab(df['type'],df['protein']).plot(kind='bar',stacked='True')
plt.show()
```



```
In [38]: custom_palette = sns.color_palette("rocket_r",6)
    plt.figure(figsize=(17,8))
    sns.barplot(data=df, x='name', y='vitamins',palette=custom_palette)

plt.title('Name by Vitamins')
    plt.xlabel('Name')
    plt.ylabel('Vitamins')
    plt.grid(True)
    plt.xticks(rotation=90)
    plt.show()
```


In [40]: pd.crosstab(df['name'],df['weight'])

Out[40]:	weight	0.50	0.83	1.00	1.25	1.30	1.33	1.50
	name							
	100% Bran	0	0	1	0	0	0	0
	100% Natural Bran	0	0	1	0	0	0	0
	All-Bran	0	0	1	0	0	0	0
	All-Bran with Extra Fiber	0	0	1	0	0	0	0
	Almond Delight	0	0	1	0	0	0	0
	Triples	0	0	1	0	0	0	0
	Trix	0	0	1	0	0	0	0
	Wheat Chex	0	0	1	0	0	0	0
	Wheaties	0	0	1	0	0	0	0

0

77 rows \times 7 columns

Wheaties Honey Gold

```
In [43]: plt.figure(figsize=(16,7))
  pd.crosstab(df['fat'],df['weight']).plot(kind='bar',stacked='True')
  plt.show()
```

0

0

0

<Figure size 1600x700 with 0 Axes>


```
In [44]: custom_palette = sns.color_palette("rocket_r",6)
    plt.figure(figsize=(17,8))
    sns.barplot(data=df, x='protein', y='cups',palette=custom_palette)

plt.title('Protein by Cups')
    plt.xlabel('Protein')
    plt.ylabel('Cups')
    plt.grid(True)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [47]: sns.scatterplot(x = 'potass', y = 'fat',color='orange',data = df)
plt.title("Potass Vs Fat")
plt.xlabel("Potass")
plt.ylabel("Fat")
```

Out[47]: Text(0, 0.5, 'Fat')

```
Potass Vs Fat
   5 ·
   4
   3 -
Fat
   2 -
   1 ·
   0
                                               200
                                                          250
        0
                  50
                           100
                                      150
                                                                    300
                                       Potass
```

```
In [48]: sns.scatterplot(x = 'calories', y = 'rating',color='green',data = df)
plt.title("Calories Vs Rating")
plt.xlabel("Calories")
plt.ylabel("Rating")
```

Out[48]: Text(0, 0.5, 'Rating')

Calories Vs Rating 90 80 70 Rating 20 50 40 30 20 60 80 100 120 140 160 Calories

```
In [50]: custom_palette = sns.color_palette("rocket_r",6)
    plt.figure(figsize=(17,8))
    sns.boxplot(data=df, x='sugars', y='mfr',palette=custom_palette)

plt.title('Sugar by Manufacturer')
    plt.xlabel('Sugar')
    plt.ylabel('Manufacturer')

plt.xticks(rotation=90)
    plt.show()
```



```
In [51]: sns.histplot(df['calories'],color='red',bins=10);
    plt.xlabel("Calories")
    plt.ylabel("Frequency")
    plt.title("Distribution of Calories per Serving")
```

Out[51]: Text(0.5, 1.0, 'Distribution of Calories per Serving')

THANK YOU