Criptosistemas basados en el problema de la mochila

Trabajo Fin de Grado del Doble Grado en Ingeniería Informática y Matemáticas

Juan Manuel Mateos Pérez

Universidad de Granada

Curso 2023-2024

Objetivos

- Compresión del problema de la mochila.
- Análisis de los criptosistemas de Merkle-Hellman y Chor-Rivest.
- Estudio de los ataques de Shamir, Lagarias-Odlyzko y Coster et al.

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellman
 - Método básico
 - Método iterativo
- Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al
- Criptosistema de Chor-Rivest
- Conclusiones

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellmar
 - Método básico
 - Método iterativo
- 4 Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al
- 5 Criptosistema de Chor-Rivest
- Conclusiones

Criptografía

Definición

La criptografía (del griego kryptós, «secreto», y graphé, «grafo», literalmente «escritura secreta») es una disciplina que se ocupa de la seguridad de la información en la comunicación a través de canales inseguros.

Desarrollo de la criptografía

Desarrollo de la criptografía

Desarrollo de la criptografía

- Criptografía simétrica
- Criptografía asimétrica

Criptografía simétrica vs asimétrica

Criptografía simétrica

VS

Criptografía asimétrica

- Clave única (necesidad de compartirla)
- Más velocidad
- No se necesita comprobar autenticación

- Dos claves por usuario (existencia de clave pública)
- Menos velocidad
- Se necesita comprobar autenticación

Criptografía simétrica vs asimétrica

Criptografía simétrica

VS

Criptografía asimétrica

- Clave única (necesidad de compartirla)
- Más velocidad
- No se necesita comprobar autenticación

- Dos claves por usuario (existencia de clave pública)
- Menos velocidad
- Se necesita comprobar autenticación

Criptografía simétrica vs asimétrica

Criptografía simétrica

VS

Criptografía asimétrica

- Clave única (necesidad de compartirla)
- Más velocidad
- No se necesita comprobar autenticación

- Dos claves por usuario (existencia de clave pública)
- Menos velocidad
- Se necesita comprobar autenticación

Criptografía simétrica vs asimétrica

Criptografía simétrica

VS

Criptografía asimétrica

- Clave única (necesidad de compartirla)
- Más velocidad
- No se necesita comprobar autenticación

- Dos claves por usuario (existencia de clave pública)
- Menos velocidad
- Se necesita comprobar autenticación

Clasificación de los criptosistemas asimétricos

Algunas metodologías son:

- 1. Basados en el problema de la mochila
- 2. Basados en retículos
- 3. Basados en códigos
- 4. Basados en curvas elípticas
- 5. Basados en funciones hash
- 6. Basados en ecuaciones cuadráticas multivariantes

Clasificación de los criptosistemas asimétricos

Algunas metodologías son:

- 1. Basados en el problema de la mochila
- 2. Basados en retículos
- 3. Basados en códigos
- 4. Basados en curvas elípticas
- 5. Basados en funciones hash
- 6. Basados en ecuaciones cuadráticas multivariantes

Aunque, actualmente:

- 1. Criptosistemas resistentes a ataques cuánticos
- 2. Criptosistemas no resistentes a estos ataques

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellman
 - Método básico
 - Método iterativo
- 4 Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al
- 5 Criptosistema de Chor-Rives
- 6 Conclusiones

Siete problemas del milenio

- 1. La conjetura de Hodge
- 2. La conjetura de Poincaré
- 3. La hipótesis de Riemann
- 4. Las ecuaciones de Navier-Stokes
- 5. Existencia de Yang-Mills y del salto de masa
- 6. La conjetura de Birch y Swinnerton-Dyer
- 7. El problema P vs NP

Siete problemas del milenio

- 1. La conjetura de Hodge
- 2. La conjetura de Poincaré
- 3. La hipótesis de Riemann
- 4. Las ecuaciones de Navier-Stokes
- 5. Existencia de Yang-Mills y del salto de masa
- 6. La conjetura de Birch y Swinnerton-Dyer
- 7. El problema P vs NP

Conjuntos P y NP

Conjunto NP

Denominamos *NP* al conjunto de problemas en los que podemos comprobar si una respuesta dada es correcta o no, en tiempo polinomial.

Conjunto P

Denominamos P al conjunto de problemas en los que podemos encontrar una respuesta al problema, en tiempo polinomial.

P vs NP

Tomar varios de estos números tal que su suma sea 0

P vs NP

$$\{-3, +7, -4\}$$
 \downarrow
 $-3 + 7 - 4 = 0$

P vs NP

$$\{-3, +7, -4\}$$
 ψ
 $-3+7-4=0$

Es claro que $P \subset NP$, pero $\geq NP \subset P$?

Problema P vs NP

Problemas NP-Completos (I)

Reducción

Llamamos *reducción* a una transformación en tiempo polinomial, de un problema de decisión en otro equivalente. Esto es, sea A el conjunto de instancias del primer problema, y B el conjunto de instancias del segundo, definimos una reducción r como $r:A\to B$ tal que:

$$a \in A$$
 es sí $\iff r(a) \in B$ es sí

Problema NP-Completo

Diremos que un problema es *NP-completo* si es un problema de decisión perteneciente a *NP*, que además verifica que existe una reducción de cada problema de *NP* a él.

Problemas NP-Completos (II)

Problema de la mochila (I)

Tamaño = 7Peso = 2

Tamaño = 6Peso = 4

Problema de la mochila (I)

Tamaño = 6Peso = 4

Problema de la mochila (II)

Definición

Sean $a = \{a_1, ..., a_n\} \subseteq \mathbb{N}^*$ un conjunto de pesos y $S \in \mathbb{N}^*$ la capacidad total, el problema de la mochila busca encontrar el vector de soluciones $x = \{x_1, ..., x_n\} \subseteq \mathbb{N}^*$ que maximice el valor de la mochila y verifique:

$$\sum_{i=1}^n a_i \cdot x_i \le S$$

En particular, nosotros nos centraremos en:

$$\sum_{i=1}^{n} a_i \cdot x_i = S$$

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellman
 - Método básico
 - Método iterativo
- 4 Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al
- 5 Criptosistema de Chor-Rivest
- 6 Conclusiones

Sucesión supercreciente

Definición

Diremos que una sucesión $\{a_i\}_{i=1}^n$ es supercreciente si verifica que:

$$a_i > \sum_{j=1}^{i-1} a_j$$
 , para $i = 2, ..., n$

Por ejemplo, $\{a_n\} = 1, 3, 8, 16, ...$ es supercreciente ya que:

$$a_2 = 3 > a_1 = 1$$
 $a_3 = 8 > \sum_{i=1}^{2} a_i = 3 + 1 = 4$
 $a_4 = 16 > \sum_{i=1}^{3} a_i = 4 + 8 = 12$

Idea del método básico

$$S' = a' \cdot mensaje$$
 \Downarrow
 $S = a \cdot mensaje$

Idea del método básico

$$S' = a' \cdot mensaje$$

$$\uparrow S = a \cdot mensaje$$

Generación claves

Alice

Generación de claves

■ Generación de clave privada

■ Generación de clave pública

Generación de claves

Generación de clave privada

- Valores coprimos m y w, esto es, mcd(m, w) = 1
- Sucesión supercreciente a[']

$$sk = (m, w, a')$$

■ Generación de clave pública

Generación de claves

- Generación de clave privada
 - Valores coprimos m y w, esto es, mcd(m, w) = 1
 - Sucesión supercreciente a'

$$sk = (m, w, a')$$

Generación de clave pública

$$a_i \equiv w \cdot a'_i \pmod{m}$$
, con $i = 1, ..., n$
 $pk = a$

Cifrado

Se necesita:

- Clave pública $pk = (a_1, ..., a_n)$
- Mensaje $m = (m_1, ..., m_n)$

Cálculo del mensaje cifrado:

$$S = pk \cdot m = \sum_{i=1}^{n} a_i \cdot m_i$$

Descifrado (I)

Se necesita:

- Clave privada sk = (m, w, a')
- Mensaje cifrado *S*

Cálculo del mensaje descifrado:

$$S' = w^{-1} \cdot S \pmod{m}$$

Descifrado (II)

Conseguir el mensaje $x = (x_1, ..., x_n)$ descifrado a partir de S':

$$x_n = 1 \iff S' \ge a'_n$$

 $x_i = 1 \iff S' \ge a'_i + \sum_{j=i+1}^n a'_j \cdot x_j$

con i = n - 1, ..., 1.

Ejemplo de descifrado

Ejemplo

Para el mensaje = (0,0,0,1,1), generamos:

$$S' = 744$$
, $n = 5$, $y \ a' = (3, 42, 105, 249, 495)$
 $S' = 744 \ge a'_5 = 495 \Rightarrow x_5 = 1$
 $S' = 744 \ge a'_5 + a'_4 = 744 \Rightarrow x_4 = 1$
 $S' = 744 \not \ge a'_5 + a'_4 + a'_3 = 849 \Rightarrow x_3 = 0$
 \vdots

Finalmente, obtenemos x = (0, 0, 0, 1, 1).

Datos generados

- Valores coprimos: m, w
- Sucesión supercreciente: a'

Datos recibidos

■ Mensaje cifrado: *S*

Datos objetivo

- Clave pública: a
- Mensaje transformado: *S'*

$$S' = a' \cdot mensaje$$

$$S = a \cdot mensaje$$

Datos generados

- Valores coprimos: m, w
- Sucesión supercreciente: a'

Datos recibidos

■ Mensaje cifrado: S

Datos objetivo

- Clave pública: a
- Mensaje transformado: *S'*

$$S'' = a'' \cdot mensaje$$

$$\Downarrow$$

$$S' = a' \cdot mensaje$$

$$\Downarrow$$

$$S = a \cdot mensaje$$

Datos generados

- Valores coprimos: *m*, *w*
- Sucesión supercreciente: a'

Datos recibidos

■ Mensaje cifrado: *S*

Datos objetivo

- Clave pública: a
- Mensaje transformado: *S'*

$$S''' = a''' \cdot mensaje$$
 $\downarrow \downarrow$
 $S'' = a'' \cdot mensaje$
 $\downarrow \downarrow$
 $S' = a' \cdot mensaje$
 $\downarrow \downarrow$

 $S = a \cdot mensaje$

Datos generados

- Valores coprimos: m, w
- Sucesión supercreciente: a'

Datos recibidos

■ Mensaje cifrado: *S*

Datos objetivo

- Clave pública: a
- Mensaje transformado: S'

...

 \downarrow

 $S''' = a''' \cdot mensaje$

 \Downarrow

 $S'' = a'' \cdot mensaje$

 \Downarrow

 $S' = a' \cdot mensaje$

 \Downarrow

 $S = a \cdot mensaje$

Método iterativo

Método Iterativo

Cálculo de la clave pública:

$$a = w^{-1} \cdot a' \pmod{m}$$

Cálculo del mensaje transformado:

$$S' = w \cdot S \pmod{m}$$

Método Básico

Cálculo de la clave pública:

$$a = w \cdot a' \pmod{m}$$

Cálculo del mensaje transformado:

$$S' = w^{-1} \cdot S \pmod{m}$$

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellman
 - Método básico
 - Método iterativo
- Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al
- 5 Criptosistema de Chor-Rivest
- Conclusiones

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad

Idea de Shamir

Objetivo Shamir

1. Encontrar m y w para generar a'

$$a_i' \equiv w \cdot a_i \mod m$$

2. Obtener S' usando m, w y S:

$$S' = w^{-1} \cdot S \pmod{m}$$

3. Usar S' y a' para obtener el mensaje

Figura: Gráfica de la función $W \cdot a_i \pmod{M_0}$

■ Eje horizontal: W

■ Eje vertical: *M*₀

■ Pendiente: *a_i*

$$d(W_0, minimo \ a_1) \approx 2^{-n+1}$$

 $a_1' = W_0 \cdot a_1 \pmod{M_0}$

Figura: Gráfica de la función $W \cdot a_i \pmod{M_0}$

$$d(W_0, minimo \ a_2) \approx 2^{-n+1}$$

 $a_2' = W_0 \cdot a_2 \pmod{M_0}$

Figura: Gráfica de la función $W \cdot a_i \pmod{M_0}$

Figura: Gráfica de la función $W \cdot a_i \pmod{M_0}$

Puntos de acumulación

Figura: Gráfica de la función $W \cdot a_i \pmod{M_0}$

Dividir por M_0

- /: n^o curvas superpuestas
- k: nº puntos acumulación

Figura: Gráfica de la función $V \cdot a_i \pmod{1}$

Shamir

$$\begin{array}{ll} \text{Sean } p,q,r,..., \text{ enteros,} & 1 \leq p \leq a_1-1 \\ -\epsilon_2 \leq \frac{p}{a_1} - \frac{q}{a_2} \leq \epsilon_2' & 1 \leq q \leq a_2-1 \\ -\epsilon_3 \leq \frac{p}{a_1} - \frac{r}{a_3} \leq \epsilon_3' & 1 \leq r \leq a_3-1 \\ & \qquad \qquad \downarrow \\ & \qquad \qquad -\delta_2 \leq pa_2 - qa_1 \leq \delta_2' \\ & \qquad \qquad -\delta_3 \leq pa_3 - ra_1 \leq \delta_3' \\ & \qquad \qquad \vdots \end{array}$$

Shamir

Algoritmo de programación entera de Lenstra

$$\uparrow \\ -\delta_2 \leq pa_2 - qa_1 \leq \delta_2' \\ -\delta_3 \leq pa_3 - ra_1 \leq \delta_3'$$

$$\vdots$$

Shamir

Algoritmo de programación entera de Lenstra

 $\downarrow \downarrow$

Obtiene las soluciones enteras de un sistema de desigualdades, consiguiendo así M y W

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad
 - Ataque Lagarias-Odlyzko
 - Ataque Coster et al

Densidad

Definición

Sea $a = (a_1, ..., a_n)$ un vector de pesos, definimos la *densidad del vector a* como:

$$d(a) = \frac{n}{log_2(max \ a_i)} \text{, con } i = 1, ..., n$$

Este valor es una medida aproximada de la tasa de información a la que se transmiten los bits. Así, definimos la *densidad de un problema* como la densidad de su vector solución.

Retículo

Definición

Un *retículo de enteros L* es un subgrupo aditivo de \mathbb{Z}^n , que contiene n vectores linealmente independientes sobre \mathbb{R}^n .

Definición

Una base $(v_1, ..., v_n)$ de un retículo de enteros L es un conjunto de elementos de L que verifica:

$$L = \sum_{i=1}^{n} \mathbb{Z} v_i = \mathbb{Z} v_1 \oplus \cdots \oplus \mathbb{Z} v_n$$

Algoritmo L³

Base
$$b=(b_1,...,b_n)$$
 del retículo $L\subset \mathbb{R}^n$

Base lpha-reducida del retículo $L \subset \mathbb{R}^n$

Ataques por baja densidad

Ataques por baja densidad

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad
 - Ataque Lagarias-Odlyzko
 - Ataque Coster et al

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad
 - Ataque Lagarias-Odlyzko
 - Ataque Coster et al

Reducción de Lagarias-Odlyzko

Sea la clave pública $a = (a_1, ..., a_n)$, y M la capacidad máxima de la mochila, esto es, el mensaje cifrado.

$$b_1 = (1, 0, ..., 0, -a_1)$$

$$b_2 = (0, 1, ..., 0, -a_2)$$

$$\vdots$$

$$b_n = (0, 0, ..., 1, -a_n)$$

$$b_{n+1} = (0, 0, ..., 0, M)$$

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad
 - Ataque Lagarias-Odlyzko
 - Ataque Coster et al

Ataques a Merkle-Hellman

- Ataque de Shamir
- Ataques por baja densidad
 - Ataque Lagarias-Odlyzko
 - Ataque Coster et al

Reducción de Coster et al

Sea la clave pública $a=(a_1,...,a_n)$, M la capacidad máxima de la mochila y un valor $N>\frac{1}{2}\sqrt{n}$.

$$b_1 = (1, 0, ..., 0, N \cdot a_1)$$

$$b_2 = (0, 1, ..., 0, N \cdot a_2)$$

$$\vdots$$

$$b_n = (0, 0, ..., 1, N \cdot a_n)$$

$$b_{n+1} = (0, 0, ..., 0, N \cdot M)$$

Resultados experimentales

Figura: Relación tamaño-densidad

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellmar
 - Método básico
 - Método iterativo
- 4 Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al.
- 6 Criptosistema de Chor-Rivest
- 6 Conclusiones

Chor-Rivest

- Método de generación de claves
- Cifrado
- Descifrado

Chor-Rivest

- Método de generación de claves
- Cifrado
- Descifrado

Generación de claves (I)

Debemos tener en cuenta:

- Requiere computar logaritmos discretos en cuerpos finitos
- No se conoce un método para todos los casos, pero si para algunos (Pohlig-Hellman)

Comenzamos tomando:

- Potencia de un primo $q = p^{\lambda}$
- Entero positivo $h \le q$

tal que sea fácil trabajar con logaritmos discretos en $\mathbb{F}_{q^h}.$

Generación de claves (II)

A continuación:

- 1. Elegir una raiz $t \in \mathbb{F}_{q^h}$ de un polinomio mónico irreducible de grado $h, F(x) \in \mathbb{F}_q[x]$.
- 2. Seleccionar un generador g, del grupo multiplicativo $\mathbb{F}_{q^h}^*$.
- 3. Calcular $a_i = log_g(t + \alpha_i)$, para todo $\alpha_i \in \mathbb{F}_q$.
- 4. Reordenar los elementos aplicando una permutación π .
- 5. Generar ruido aplicando:

$$c_i \equiv (b_i + r) \bmod (q^h - 1)$$

con $0 \le r \le q^h - 2$.

Generación de claves (III)

Obtendremos así:

■ Clave privada

$$sk = (t, g, \pi, r)$$

Clave pública

$$pk = (c_0, ..., c_{q-1}, q, h)$$

Chor-Rivest

- Método de generación de claves
- Cifrado
- Descifrado

Chor-Rivest

- Método de generación de claves
- Cifrado
- Descifrado

Cifrado

Se necesita:

- Clave pública $pk = (c_0, ..., c_{q-1}, q, h)$
- Mensaje $m = (m_0, ..., m_{q-1})$ con h unos.

Cálculo del mensaje cifrado:

$$y = \sum_{i=0}^{q-1} x_i \cdot c_i \pmod{q^h - 1}$$

Chor-Rivest

- Método de generación de claves
- Cifrado
- Descifrado

Chor-Rivest

- Método de generación de claves
- Cifrado
- Descifrado

Descifrado (I)

Se necesita:

- Clave privada $sk = (t, g, \pi, r)$
- Mensaje cifrado *y*

Descifrado (II)

Cálculo del mensaje descifrado:

1. Calcular:

$$y' \equiv y - h \cdot r \pmod{q^h - 1}.$$

2. Obtener $g^{y'}$ escrito como polinomio en x:

$$g^{y'} = g^y \cdot g^{-hr} = \dots = \prod_{i \in I} (t + \alpha_{\pi(i)})$$

3. Obtener:

$$F(x) + Q(x) = \prod_{i \in I} (x + \alpha_{\pi(i)})$$

4. Sustituir los valores $\alpha_0, ..., \alpha_{q-1} \in \mathbb{F}_q$ para obtener las h raices de ese polinomio, que forman el mensaje.

Análisis de Chor-Rivest

Ataques principales

- Goldreich y Odlyzko
- Brickell
- Lagarias-Odlyzko
- Schnorr y Hörner
- Vaudenay

Análisis de Chor-Rivest

Ataques principales

- Goldreich y Odlyzko
- Brickell
- Lagarias-Odlyzko
- Schnorr y Hörner
- Vaudenay

Tabla de contenidos

- Criptografía básica
 - Introducción a la criptografía
 - Criptografía simétrica vs asimétrica
- Problema de la mochila
- 3 Criptosistema de Merkle-Hellmar
 - Método básico
 - Método iterativo
- 4 Ataques a este criptosistema
 - Shamir
 - Lagarias-Odlyzko
 - Coster et al
- 5 Criptosistema de Chor-Rives
- Conclusiones

Conclusiones

- Hemos analizado los fundamento teóricos de diversos criptosistemas y sus ataques principales, y destacado su relevancia práctica mediante su implementación, plasmando el conocimiento estudiado en aplicaciones concretas.
- No se puede garantizar la total seguridad de un sistema criptográfico.
- Primer acercamiento profesional, y como tal, queda abierto ante futuras investigaciones en criptografía y computación cuántica.

Bibliografía fundamental

- Joachim von zur Gathen. CryptoSchool. Springer, 2016. pages 13-56
- Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE Transactions on Information Theory, IT-24(5), Septiembre 1978.
- Adi Shamir. A polynomial-time algorithm for breaking the basic merkle-hellman cryptosystem. IEEE Transactions on Information Theory, IT-30(5), Septiembre 1984.
- Raul Durán Díaz, Luis Hernández-Álvarez, Luis Hernández Encinas, and Araceli Queiruga-Dios. Chor-rivest knapsack cryptosystem in a post-quantum world. Springer Nature Switzerland, Agosto 2021.