Periféricos y Dispositivos de Interfaz Humana Abril 2018

DEPARTAMENTO DE ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES

NOMBRE: Javier Gómez Luzón

TEMA 3 (almacenamiento óptico) y TEMA 4 (otras tecnologías de almacenamiento, interfaces y redundancia)

1. ¿Qué capacidad lógica debería tener un CD de audio (CD-DA) que almacenase 2 horas y media de música estéreo, con una resolución de 8 bits y una frecuencia de muestreo de 11 KHz? ¿Y qué capacidad física?

Tamaño lógico= Tiempo * Frecuencia de muestreo * resolución* nº de canales=
7200s*11000 muestras/s*8 bits/muestra*2 canales=
=1267200000 b = 158.4 MB

Tamaño físico= 158.4 MB * (3234/2352) = 217.8 MB

2. Una unidad de CD-R obtiene las velocidades de escritura que se muestran en la línea verde de la figura (16X en el primer cuarto del disco, 20X en el segundo cuarto y 24X en el resto). ¿A qué esquema de rotación corresponde? ¿Cuánto tiempo tarda en grabar un CD-R de 80 minutos?

El esquema de rotación corresponde al ZCLV.

Primer cuarto: $80*1/4 \rightarrow 20 \text{ min } \rightarrow 0.25$ Segundo cuarto: $80*1/4 \rightarrow 20 \text{ min } \rightarrow 0.25$

Resto: 80*2/4 -> 40 min -> 0,5

0.25*(80/16) + 0.25*(80/20) + 0.5*(80/24) = 1.25 + 1 + 1.667 = 3.91667 min = 235 s

Tarda 235 segundos.

3. Realiza una búsqueda en internet para averiguar cifras y gráficas de ventas comparadas entre discos Blu-ray y HD-DVD en el periodo en que compitieron (2002-2008). Indica las fuentes documentales empleadas. ¿Cuáles son los competidores actuales del Blu-ray?

Como vemos el HD-DVD estaba en su máximo esplendor a comienzos de 2002 y fue en ese mismo año cuando Blu-Ray salió al mercado de la mano de Sony. No fue hasta 2005 y 2006 cuando se vivió una guerra entre estas dos tecnologías que son similares pero incompatibles. Aquella pelea por el dominio del formato en disco la gano Blu-Ray gracias al impulso que recibió por la Play Station 3 al traer por defecto un reproductor de Blu-Ray.

En la actualidad, ambas tecnologías han "muerto". Ya que sus grandes competidores (las memorias flash) han desbancado a la tecnología DVD y CD. El streaming es también uno de los culpables del declive de esta tecnología ya que podemos ver videos y escuchar música sin necesidad de descargarla.

Referencias:

 $\cdot \underline{http://recursostic.educacion.es/observatorio/web/fr/equipamiento-\\ \underline{tecnologico/hardware/246-eduardo-e-quiroga-gomez}$

·https://www.vidaextra.com/industria/se-acabo-la-guerra-de-los-formatos-toshiba-abandonael-hd-dvd

4. Instala y aprende a utilizar algún software para ejecutar bancos de pruebas (*benchmarks*) sobre unidades de almacenamiento.

Enlaces:

- GSmartControl: Código abierto. http://gsmartcontrol.sourceforge.net/home/
- HDTune: shareware. http://www.hdtune.com

- CrystalDiskMark: Código abierto.
 http://crystalmark.info/software/CrystalDiskMark/
- Cualquier otra propuesta.

Compara <u>al menos 2 tipos de almacenamiento</u> estudiados en estos primeros temas (disco magnético, disco SSD, memoria flash, disco óptico) en cuanto a tiempos de acceso, tasa de transferencia en lectura/escritura, IOPS, etcétera. Resume en una tabla para los resultados especificando, entre otros:

- a) Capacidad
- b) Velocidad de lectura secuencial
- c) Velocidad de escritura secuencial
- d) Velocidad de lectura aleatoria
- e) Velocidad de escritura aleatoria
- f) Tiempo de acceso.

Calcula también los porcentajes de uso que realizan en función de la interfaz de conexión (tasa de transferencia de la unidad / velocidad máxima real del bus de la interfaz %).

	Disco Óptico	Memoria Flash
Capacidad	1 TB	8GB
V. lectura secuencial	120.9MB/s	29.73MB/s
V. escritura secuencial	117.5MB/s	6.16MB/s
V. lectura aleatoria	0.666MB/s	6.876MB/s
V. escritura aleatoria	1.390MB/s	0.012MB/s
Tiempo de acceso	18.2ms	0.671 ms
Tasa de transferencia	0.1 - 114.9 MB/s	0.0 - 28.2 MB/s
V. máxima del bus	168.2 MB/s	28.3 MB/s

5. Describe brevemente la forma en que podrías implementar un RAID básico en un PC utilizando el sistema operativo a tu elección. Utiliza capturas de pantalla.

Yo lo realizare en Ubuntu.

Instalamos mdadm

>sudo apt-get install mdadm

Creamos el RAID 1 con el siguiente comando:

```
>mdadm -create /dev/md0 -level=1 -raid-devices=2 /dev/vdb /dev/vdc
```

Formateamos el disco RAID

>mkfs.ext3 /dev/md0

Y montamos el RAID

>mount /dev/md0 /mnt

- 6. Suponiendo que se aprovecha la totalidad del ancho de banda de las siguientes interfaces de conexión, calcular el tiempo que tardaría en transferirse un archivo MPEG de 1.3GB:
 - a) Ultra-ATA/133 = 1331.2MB / 133MB/s = 10 s
 - b) S-ATA 2 = 1331.2 MB / 384MB/s = 3.46 s
 - c) S-ATA 3 = 1331.2 MB / 768MB/s = 1.73 s
 - d) USB 2.0 = 1331.2 MB /60MB/s = 22.18 s
 - e) USB 3.0 = 1331.2 MB / 409.6MB/s = 3.25 s
 - f) Thunderbolt 3 = 1331.2 MB / 5120MB/s = 0.26 s
 - g) Firewire 800 = 1331.2 MB / 98304 Mb/s = 0.01 s
- 7. Lee detenidamente la presentación de los Tema 3 y 4 en http://swad.ugr.es. Accede a los enlaces, vídeos y material que se facilita.