Lycée Chateaubriand MPSI 3 • 2025 - 2026 William GREGORY

Colle 3 • INDICATIONS **Techniques algébriques**

Exercice 3.1

Soit $n \in \mathbb{N}$. Calculer la somme :

$$\sum_{k=0}^{n} k^2 \binom{n}{k}.$$

Calculer $\sum_{k=0}^{n} k \binom{n}{k}$ et $\sum_{k=0}^{n} k(k-1) \binom{n}{k}$. On pourra s'aider de la fonction $x \longmapsto (1+x)^n$ et de ses

$$\sum_{k=0}^{n} k^{2} \binom{n}{k} = n(n+1)2^{n-2}.$$

Exercice 3.2

Soit
$$n \in \mathbb{N}^*$$
. Déterminer $u_n \in \mathbb{R}$ tel que :
$$\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\cdots\left(\frac{1}{2}-(n-1)\right)}{n!} = u_n\binom{2n}{n}.$$

- indication -

Développer le numérateur, faire apparaître les quantités (2n)!, n! et factoriser par une puissance de

$$\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\cdots\left(\frac{1}{2}-(n-1)\right)}{n!}=\frac{(-1)^{n-1}}{2^{2n+2}\left(n-\frac{1}{2}\right)}\binom{n}{2n}.$$

Exercice 3.3

 $\overline{\mathsf{Soit}}\ n \in \mathbb{N}^*$. Soient $x_1, \dots, x_n \in \mathbb{R}$.

1. Écrire $\left(\sum_{k=1}^{n} x_{k}\right)^{2}$ en fonction de

$$\sum_{k=1}^n x_k^2 \text{ et } \sum_{\substack{(k,\ell) \in [\![1,n]\!]^2 \\ k < \ell}} x_k x_\ell.$$

2. On suppose que :

$$\forall k, \ell \in [1, n], \quad x_k x_\ell \geqslant 0.$$

Quelle inégalité peut-on en déduire?

— indication

1. Voir ce qu'il se passe dans le cas n=2 et raisonner par récurrence.

1.
$$\left(\sum_{k=1}^{n} x_{k}\right)^{2} = \sum_{k=1}^{n} x_{k}^{2} + 2 \sum_{\substack{(k,\ell) \in [[1,n]]^{2} \\ k < \ell}} x_{k} x_{\ell}.$$
2. $\left(\sum_{k=1}^{n} x_{k}\right)^{2} \geqslant \sum_{k=1}^{n} x_{k}^{2}.$

Exercice 3.4

Soit $n \in \mathbb{N}^*$. On pose $S_n := \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.

- **1.** Montrer que $S_{2n} = \sum_{k=1}^{n} \frac{1}{n+k}$.
- 2. En admettant que

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{k=1}^n\frac{1}{1+\frac{k}{n}}=\ln(2),$$

calculer:

$$\lim_{n\to +\infty} \mathsf{S}_{2n} \quad \text{et} \quad \lim_{n\to +\infty} \mathsf{S}_{2n+1}.$$

— indication

- 1. Sommer sur les termes pairs et impairs, puis faire des décalages d'indices.
- **2.** On a $S_{2n+1} = S_{2n} + \frac{1}{2n+1}$

--- résultat -

2.
$$\lim_{n\to+\infty} S_{2n} = \lim_{n\to+\infty} S_{2n+1} = \ln(2).$$

Exercice 3.5

Soit $n \in \mathbb{N}^*$. Soient $a_0, a_1, \dots, a_n \in \mathbb{R}$.

On définit la fonction $P: x \longmapsto \sum_{k=0}^{n} a_k x^k$. Soit $c \in \mathbb{R}$ tel que P(c) = 0.

Montrer que

$$\exists b_0, b_1, \dots, b_{n-1} \in \mathbb{R} : \forall x \in \mathbb{R}, \quad P(x) = (x - c) \sum_{k=0}^{n-1} b_k x^k.$$

indication

Pour $x \in \mathbb{R}$, $P(x) = P(x) - P(c) = (x - c) \sum_{k = ...}^{...}$... (formule $a^n - b^n = ...$). Il faut ensuite intervertir les deux symboles de sommation pour obtenir les coefficients b_0 , ..., b_{n-1} .

Exercice 3.6

Soit $n \in \mathbb{N}^*$. Calculer la somme :

$$\sum_{k=1}^n \frac{1}{(k+1)\sqrt{k}+k\sqrt{k+1}}.$$

indication -

Multiplier par la quantité conjuguée pour faire apparaître une somme télescopique.

résultat

$$\sum_{k=1}^{n} \frac{1}{(k+1)\sqrt{k} + k\sqrt{k+1}} = \sum_{k=1}^{n} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) = 1 - \frac{1}{\sqrt{n+1}}.$$

Exercice 3.7

Soit $n \in \mathbb{N}$. Montrer que le nombre

$$\left(1-\sqrt{2}\right)^{2n}+\left(1+\sqrt{2}\right)^{2n}$$

est un entier naturel pair.

indication

À l'aide la formule du binôme de Newton, montrer que :

$$(1-\sqrt{2})^{2n}+(1+\sqrt{2})^{2n}=2\sum_{\ell=0}^{n}\binom{2n}{2\ell}2^{p}.$$

Exercice 3.8

1. Soient $x, y \in \mathbb{R}$. Calculer :

$$\left(x^2 + xy + \frac{y^2}{2}\right)\left(x^2 - xy + \frac{y^2}{2}\right).$$

2. Soit $n \in \mathbb{N}^*$. Calculer la somme :

$$\sum_{k=1}^n \frac{4k}{4k^4+1}.$$

indication

- 1. Développer l'expression donnée.
- 2. La première question permet d'écrire $4k^4+1$ comme un produit. Il faut ensuite écrire 4k comme une différence entre les deux termes du produit. Enfin, il s'agit de reconnaître, après une dernière manipulation, une somme télescopique :

$$\sum_{k=1}^{n} \frac{4k}{4k^4 + 1} = \sum_{k=1}^{n} \left(\frac{1}{2k^2 - 2k + 1} - \frac{1}{2(k+1)^2 - 2(k+1) + 1} \right).$$

1.
$$\left(x^2 + xy + \frac{y^2}{2}\right) \left(x^2 - xy + \frac{y^2}{2}\right) = x^4 + \frac{1}{4}y^4$$
.

2.
$$\sum_{k=1}^{n} \frac{4k}{4k^4 + 1} = 1 - \frac{1}{2n^2 + 2n + 1}.$$