DS4003 Optimization Method Assignment 1 — 2022 Spring

- 1. Express $(2,2)^T$ as a convex combination of $(0,0)^T$, $(1,4)^T$, and $(3,1)^T$.
- 2. Let f be a convex function on a convex set $S \subseteq \mathbb{R}^n$. Let k be a non-zero scalar; and define g(x) = kf(x). Prove that if k > 0 then g is a convex function on S; and if k < 0 then g is a concave function on S.
- 3. Let g be a concave function; and let f be a convex function. Let both g and f be defined on R^n ; and let μ be a positive-valued constant. Prove that the function $\beta(x) = f(x) \mu \log(g(x))$ is convex on the set $S = \{x : g(x) > 0\}$.
- 4. Let $\mathbf{x} \in \mathbb{R}^n$, and $f(x) = ||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}$. Calculate the gradient of f.
- 5. Consider the function $f(x) = x_1^2 + x_2^2 + 2x_3^2 x_1x_2 x_2x_3 x_1x_3, x \in \mathbb{R}^3$
 - (a) Write the function into the form $f(x) = \mathbf{x}^T A \mathbf{x}$, where $\mathbf{x} = (x_1, x_2, x_3)^T$ and A is a 3×3 matrix.
 - (b) Find the $\nabla f(x)$.
 - (c) Find the $\nabla^2 f(x)$.
 - (d) Test the convexity of function f(x).
- 6. Let $A \in \mathbb{R}^{m \times n}$, \mathbf{x} , $\mathbf{b} \in \mathbb{R}$, $Q(\mathbf{x}) = ||A\mathbf{x} \mathbf{b}||_2^2$.
 - (a) Find the gradient of $Q(\mathbf{x})$.
 - (b) When there is a unique stationary point for $Q(\mathbf{x})$. (Hint: stationary point is where gradient equals to zero)
- 7. Take the symmetric matric of order 2,

$$A = \left(\begin{array}{cc} 4 & \alpha \\ \alpha & 2 \end{array}\right)$$

with α a real parameter. Determine when the matrix A is positive definite, positive semi-definite and indefinite.