Last lecture Scaling in 2D Rotation in 2D Shear in 2D

Week 9: Scaling, Rotation, Shear in 2D

#### Table of contents

- Last lecture
- 2 Scaling in 2D
- 3 Rotation in 2D
- 4 Shear in 2D

### Linear transformation

- $T: \mathbb{R}^n \to \mathbb{R}^m$  is a linear transformation if it
  - preserves addition

$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$

2 and preserves scalar multiplication

$$T(c\vec{x}) = cT(\vec{x})$$

ullet  $T:\mathbb{R}^n o \mathbb{R}^m$  is linear  $\Leftrightarrow$  each component in  $Tegin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$  is a

linear combination of  $x_1, \ldots, x_n$ .



## Matrix representation of linear transformation

•  $T: \mathbb{R}^n \to \mathbb{R}^m$  is linear  $\Leftrightarrow$  there exists an  $m \times n$  matrix M:

$$T(\vec{x}) = M\vec{x}$$

M is called the **matrix representation** of T.

# Matrix representation of linear transformation

ullet There are 2 ways to determine M

② If  $\vec{e}_1, \dots, \vec{e}_n$  are standard unit vectors of  $\mathbb{R}^n$ , then

$$M = [T(\vec{e}_1) \cdots T(\vec{e}_n)]$$



### Exercise 1

Determine whether T is linear. Find its matrix if it is linear.

(a) 
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 with  $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 + y \\ 2x + y \end{pmatrix}$ 

(b) 
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 with  $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - \sqrt{y} \\ 2x + y + 1 \end{pmatrix}$ 

(c) 
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 with  $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ 2x+y \end{pmatrix}$ 

### Exercise 2

In this exercise, we learn that dot product and cross product can be explained as linear transformations!

(a) Let 
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and let  $T_{\vec{u}} : \mathbb{R}^3 \to \mathbb{R}$  be defined by  $T_{\vec{u}}(\vec{x}) = \vec{u} \cdot \vec{x}$ . Show that  $T_{\vec{u}}$  is a linear transformation. Write out its matrix.

(b) Let 
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and let  $C_{\vec{u}}\mathbb{R}^3 \to \mathbb{R}^3$  be defined by  $C_{\vec{u}}(\vec{x}) = \vec{u} \times \vec{x}$ . Show that  $C_{\vec{v}}$  is a linear transformation. Write out its matrix

Show that  $C_{\vec{u}}$  is a linear transformation. Write out its matrix.

# Projections in $\mathbb{R}^2$

#### Orthogonal projection



$$M = \frac{1}{||\vec{d}||^2} \vec{d}\vec{d}^T$$

#### **Skew projection**



$$M = I_2 - \frac{\vec{v}\vec{n}^T}{\vec{v}\cdot\vec{n}}$$

## Question 1

A point  $\vec{x}$  is called fixed by a map  $T \Leftrightarrow T(\vec{x}) = \vec{x}$ .

Which points are fixed by orthogonal projection and skew projection?

#### Orthogonal projection



#### Skew projection



## Reflections in $\mathbb{R}^2$

#### Orthogonal reflection



$$M = \frac{2}{||\vec{d}||^2} \vec{d}\vec{d}^T - I_2$$

#### **Skew reflection**



$$M = I_2 - \frac{2}{\vec{v} \cdot \vec{n}} \vec{v} \vec{n}^T$$

## Question 2

Which points are fixed by reflections?

#### Orthogonal reflection



#### Skew reflection



## Scaling

ullet A scaling (centered at the origin) is a map  $S:\mathbb{R}^2 o \mathbb{R}^2$  defined by

$$S\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax \\ by \end{pmatrix}$$

for some constants  $a, b \in \mathbb{R}$ .

ullet All x-coordinates are scaled by a, all y-coordinates are scaled by b.

• The small rectangle is scaled into large rectangle





• The red triangle is scaled into blue triangle



## Scaling matrix

#### Theorem 1

The representation matrix of the scaling  $S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax \\ by \end{pmatrix}$  is

$$M = M_{a,b} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

Let  $S: \mathbb{R}^2 \to \mathbb{R}^2$  be the scaling which scale all x-coordinates by 2 and scale all y-coordinates by -1.

(a) What is the matrix representation M of S?

(b) What are the images of the points  $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$  and  $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ ?

(c) Check that S maps the red triangle into the blue triangle below.



(d) Can you compare the areas of these 2 triangles?



#### Matrix of rotation

#### Theorem 2

The counter-clockwise rotation  $R: \mathbb{R}^2 \to \mathbb{R}^2$  around the origin over the angle  $\theta$  has matrix representation

$$M = M(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$



# Proof (sketch)

The matrix is  $M = [R(\vec{e}_1) \ R(\vec{e}_2)]$ 





(a) What is the counter-clockwise rotation (around O) matrix over  $90^{\circ}$ ?

(b) What is the counter-clockwise rotation (around O) matrix over  $135^{\circ}$ ?

(c) Find the images of  $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$  and  $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$  by  $135^\circ$  rotation about O.

(d) Find the image of the line 3x-2y=16 by  $135^{\circ}$  rotation about O.



Last lecture Scaling in 2D Rotation in 2D Shear in 2D

(a) What is matrix M of the rotation by  $60^{\circ}$ ?

(b) Computation the matrix of rotation by  $120^0, 180^0, 360^0$  by computing  $M^2, M^3, M^6$ . Check that  $M^6 = I_2$ .

Last lecture Scaling in 2D Rotation in 2D Shear in 2D

#### Shear

• A **shear** is a map which transforms a square into a parallelogram.



### Shear

• The shear with respect to the line  $l: \vec{n} \cdot \vec{x} = 0$  in the direction of the shearing vector  $\vec{v}$  (  $\vec{v} \parallel l$ ) is a map  $S: \mathbb{R}^2 \to \mathbb{R}^2$  defined by

$$S(\vec{x}_0) = \vec{x}_0 + \frac{\vec{n} \cdot \vec{x}_0}{||\vec{n}||} \vec{v}$$

#### Remark

$$S(\vec{x}_0) = \vec{x}_0 + \frac{\vec{n} \cdot \vec{x}_0}{||\vec{n}||} \vec{v}$$

ullet must be parallel to l for the shear S to be defined. So

$$\vec{v} \cdot \vec{n} = 0$$

### Remark

$$S(\vec{x}_0) = \vec{x}_0 + \frac{\vec{n} \cdot \vec{x}_0}{||\vec{n}||} \vec{v}$$

• l has equation  $\vec{n} \cdot \vec{x} = 0$ . The distance from the point  $\vec{x}_0$  to l is

$$d(\vec{x}_0, l) = \frac{|\vec{n} \cdot \vec{x}_0|}{||\vec{n}||}$$

### Remark

$$S(\vec{x}_0) = \vec{x}_0 + \frac{\vec{n} \cdot \vec{x}_0}{||\vec{n}||} \vec{v}$$

• l has equation  $\vec{n} \cdot \vec{x} = 0$ . The distance from the point  $\vec{x}_0$  to l is

$$d(\vec{x}_0, l) = \frac{|\vec{n} \cdot \vec{x}_0|}{||\vec{n}||}$$

• The shear S shifts  $\vec{x}_0$ 

in the direction  $\vec{v}$  by the factor  $\pm d(\vec{x}_0, l)$ .

 $\bullet$  A shear is defined based on a line l through O and a vector  $\vec{v} \parallel l.$ 



ullet A shear is defined based on a line l through O and a vector  $\vec{v} \parallel l$ .



• Points at distance 1 are shifted by  $\vec{v}$ . Points at distance 2 are shifted by  $2\vec{v}$ .



Consider the shear S w.r.t. the **x-axis** in the direction of  $\vec{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ .

(a) Check that

$$S\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + y_0 \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$

that is, S shifts any point  $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$  parallel to the x-axis by  $y_0\vec{v}.$ 

(b) Check that in the figure below, all "yellow" points are shifted to "red" points. Could you explain why the points above x-axis are shifted to the right and the points below x-axis are shifted to the left?



### Question

For what points  $\vec{x}_0$  do we have  $S(\vec{x}_0) = \vec{x}_0$ , that is,  $\vec{x}_0$  is fixed by the shear?



### Matrix of shear

#### Theorem 3

The shear w.r.t.  $l: \vec{n} \cdot \vec{x} = 0$  in the direction of the shearing vector  $\vec{v}$  for which  $\vec{n} \cdot \vec{v} = 0$  has matrix

$$M = M_{\vec{n}, \vec{v}} = I_2 + \frac{1}{||\vec{n}||} \vec{v} \vec{n}^T$$

#### Matrix of shear

#### Theorem 3

The shear w.r.t.  $l: \vec{n} \cdot \vec{x} = 0$  in the direction of the shearing vector  $\vec{v}$  for which  $\vec{n} \cdot \vec{v} = 0$  has matrix

$$M = M_{\vec{n}, \vec{v}} = I_2 + \frac{1}{||\vec{n}||} \vec{v} \vec{n}^T$$

**Question**. Why is there condition  $\vec{n} \cdot \vec{v} = 0$ ?



#### Proof

Let  $\vec{x}_0$  be any point

$$S(\vec{x}_0) = \vec{x}_0 + \frac{\vec{n} \cdot \vec{x}_0}{||\vec{n}||} \vec{v}$$

$$= \vec{x}_0 + \frac{1}{||\vec{n}||} (\vec{n} \cdot \vec{x}_0) \vec{v}$$

$$= \vec{x}_0 + \frac{1}{||\vec{n}||} \vec{v} \vec{n}^T \vec{x}_0$$

$$= \left( I_2 + \frac{\vec{v} \vec{n}^T}{||\vec{n}||} \right) \vec{x}_0$$

# Example 5

Let 
$$l:3x+4y=0$$
 and  $\vec{v}=\begin{bmatrix} 8\\-6 \end{bmatrix}$ .

(a) What is  $M_{\vec{n},\vec{v}}$ ?

(b) What are the images of 
$$\begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
 and  $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ ?

### Example 5

(c) What is the image of the line n:3x-y=5?

### Example 5

(d) Show that the image of m:3x+4y=5 is itself (note that  $m\parallel l$ ).

# Exercise 2 (Horizontal shear)

(a) Consider the shear w.r.t. l:y=0 (the x-axis) in direction  $\vec{i}=\begin{bmatrix}1\\0\end{bmatrix}$  Show that the image of the unit square is the parallelogram as below. What is the area of the resulting parallelogram?





# Exercise 2 (Vertical shear)

(b) Consider the shear w.r.t. y-axis in direction  $\vec{j} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ . Show that the image of the unit square is the parallelogram as below. What is the area of the resulting parallelogram?





### Exercise 2

(c) Consider the shear w.r.t. l: x-y=0 in direction  $\vec{v}=\begin{bmatrix} 1\\1 \end{bmatrix}$ . Sketch the image of the unit square in part a and compute its area.

## Composition of linear transformation

• Let  $\mathbb{R}^m \xrightarrow{S} \mathbb{R}^n \xrightarrow{T} \mathbb{R}^k$  be a sequence of linear transformations. The composition  $T \circ S : \mathbb{R}^m \to \mathbb{R}^k$  is defined by

$$T\circ S(\vec{x})=T(S(\vec{x}))$$

• We will see that  $T \circ S$  is another linear transformation. Further, if  $M_T, M_S$  are matrices of T, S, the matrix of  $T \circ S$  is

$$M_{T \circ S} = M_T M_S.$$



### Exercise 3

Let P be the projection onto  $l:\sqrt{3}x-y=0$  and let R be the reflection through  $m:x-\sqrt{3}y=0.$ 

(a) Describe  $P \circ R$ , that is, find a formula for  $P \circ R\left(\vec{x}\right)$ .

(b) Find the matrices of  $M_P, M_R, M_{P \circ R}$  of  $P, R, P \circ R$ .

(c) Find the points which are fixed by  $P \circ R$ .