INTRODUCTION

[MSB: Please take a full pass through for consistent terminology. In the intro, we align on on-demand work and call it the union of crowd work and gig work. But then, in the title and the research questions, everything is crowd work, crowd work, crowd work. I suggest either using crowd work in the introduction and explaining that you're using that to mean both traditional crowd work as well as modern gig work, or using on-demand work in the title and in the research questions. I see the point "(which we will refer to as *crowd work* subsequently, for consistency with prior literature)", but it feels like a cop out. Which one do we want to use, really? Let's pick one and be consistent throughout.]

[al2: On-demand work is more "correct", but I'm worried that crowdsourcing researchers will skim it and feel there's nothing relevant to them. Is that giving them too little credit?]

[MSB: I think this is a question of which community you want to be influencing. Do you want people who study crowdsourcing to be the primary readers+citers of this paper? Or people who study Uber and algorithms at work? One way to decide this is to name five people who you really hope will read and like this paper, and note which community they are a part of.]

The past decade has seen a flourishing of on-demand work driven by the reformulation of work as constituent parts of larger tasks. This framing of work into modular components has enabled the computational hiring & management of workers at scale [12, 3, 17]. Distributed workers then engage in work whenever their schedules allow, often with little to no awareness of the broader context of the work, and often with fleeting identities and associations [23, 21]. In this paper, we use "on-demand work" to capture a pair of related phenomena: first, crowd work, on platforms such as Amazon Mechanical Turk (AMT) and other sites of (predominantly) information work; and second, gig work, often as platforms for one-off jobs, like driving, courier services, or administrative support. The realization that complex goals can be accomplished by directing and managing crowds of workers spurred industry to flock to sites of labor such as AMT to explore the limits of this distributed, on-demand workforce. Researchers have also taken to the space in earnest, developing systems and designs that enable new forms of production (e.g. [1, 2, 27]).

As on-demand work has grown far beyond information work, it has given rise to scholarship exploring myriad facets of on-demand work. Howe first described crowdsourcing as "outsourcing to an undefined, generally large group of people in the form of an open call" [12]. However, for years its instantiation was limited to the utilization of human intelligence to process data, participate in scientific studies, and perform information work [16, 36, 39, 8, 28]. More recently, crowdsourcing of physically embodied work — driving and cleaning, for instance — has become a focus for on-demand labor markets [21, 35, 11, 34]. This growth prompted efforts to understand not just the work, but also the workers on these platforms [30, 32]. Some of this research has been motivated by the identification of the sociality of gig work [9], and the frustration and disenfranchisement that these systems embody [14, 23, 24]. Other work has focused on the outcomes

of this frustration, reflecting on the resistance workers express against digitally mediated labor markets [21, 31].

This body of research has broadly sought to answer one central question: What does the future hold for on-demand work and those who do it? Researchers have offered insights on this question along three major threads: First, What are the complexity limits of on-demand work? Specifically, (a) How complex are the goals that crowd work can accomplish?, and (b) What kinds of goals and industries may eventually utilize it? [29, 33, 15, 38, 37, 25, 10]. Second, How far can work be decomposed into smaller microtasks [18, 1, 6, 22, 19, 20, 5, 7, 26]. And third, What will work and the place of work look like for workers? [14, 13, 31, 9, 4, 24].

This research has largely sought to answer these questions by examining extant on-demand work phenomena. So far, it has not offered a framing for holistically explaining the developments in worker processes that researchers have developed, or the emergent phenomena in social environments; nor has any research gone so far as to directly predict future developments.

Piecework as a lens to understand crowdsourcing

In this paper, we offer a framing for on-demand work as a contemporary instantiation of *piecework*, a work and payment structure which breaks tasks down into discrete jobs, wherein payment is made for work *output*, rather than for *time*. Piecework use as a lens on on-demand work is not new. Kittur in 2013 referenced crowd work as piecework briefly as a loose analogy [17]. But more than this, the framing of on-demand labor as a re-instantiation of piecework gives us years of historical material to make sense of this new form of work, and allows us to reflect on-demand work through a mature theoretical lens, informed by decades of rigorous, empirical research.

More concretely, by looking at on-demand work as an instantiation (or even a continuation) of piecework, and by interrogating patterns that the corresponding literature predicts on this basis, we can first, make sense of past events as part of a much larger series of an interrelated phenomenon; second, reflect on differences in the factors that impacted piecework historically and their impact on-demand work today; and third, to some extent, offer predictions of what on-demand work researchers, and workers themselves, might expect to see on the horizon. For example, we will draw on the piecework literature regarding task decomposition, which was historically limited by shortcomings in measurement and instrumentation, and leverage that understanding to suggest how modern technology affects this mechanism in on-demand work — namely, by enabling precise tracking and measurement of workers via algorithms and software. By doing so, on-demand labor will find ways to decompose tasks to unprecedented levels.

We organize this paper as follows: first, we review the definition and history of piecework to make clear the analogy to on-demand work (which we'll call *crowd work* hereon for consistency with the existing literature); second, we interrogate the three major research questions above using the lens of piecework. We will identify similarities and differences between piecework as historically understood and on-demand work as we know it today; third, we will make predictions of

future developments based on how those similarities and differences influenced piecework; finally, we will offer implications for researchers and practitioners based on our results.

References

- [1] Little Greg and Miller Robert C. and Hartmann Björn and Ackerman Mark S. and-Karger David R. and Crowell David and Panovich Katrina Bernstein Michael S. and. "Soylent: A Word Processor with a Crowd Inside". In: *Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology*. UIST '10. New York, New York, USA: ACM, 2010, pp. 313–322. ISBN: 978-1-4503-0271-5. DOI: 10.1145/1866029.1866078. URL: http://doi.acm.org/10.1145/1866029.1866078.
- [2] Jayant Chandrika and Ji Hanjie and Little Greg and Miller Andrew and Miller Robert C. and Miller Robin and Tatarowicz Aubrey and White Brandyn and White Samual and Yeh Tom Bigham Jeffrey P. and. "VizWiz: Nearly Real-time Answers to Visual Questions". In: *Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology.* UIST '10. New York, New York, USA: ACM, 2010, pp. 333–342. ISBN: 978-1-4503-0271-5. DOI: 10.1145/1866029.1866080. URL: http://doi.acm.org/10.1145/1866029.1866080.
- [3] Jeffrey P. Bigham, Michael S. Bernstein, and Eytan Adar. "Human-Computer Interaction and Collective Intelligence". In: *Handbook of Collective Intelligence*. MIT Press, 2015, pp. 57–84. ISBN: 9780262029810. URL: http://repository.cmu.edu/cgi/viewcontent.cgi? article=1264{\&}context=hcii.
- [4] Robin Brewer, Meredith Ringel Morris, and Anne Marie Piper. ""Why Would Anybody Do This?": Understanding Older Adults' Motivations and Challenges in Crowd Work". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 2246–2257. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858198. URL: http://doi.acm.org/10.1145/2858036.2858198.
- [5] Carrie J. Cai, Shamsi T. Iqbal, and Jaime Teevan. "Chain Reactions: The Impact of Order on Microtask Chains". In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI '16. ACM, 2016, pp. 3143–3154. ISBN: 978–1-4503–3362–7. DOI: 10.1145/ 2858036.2858237. URL: http://doi.acm.org/10.1145/ 2858036.2858237.
- [6] L. Elisa Celis et al. "Assignment Techniques for Crowdsourcing Sensitive Tasks". In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. CSCW '16. ACM, 2016, pp. 836–847. ISBN: 978–1-4503–3592–8. DOI: 10.1145/2818048.2835202. URL: http://doi.acm.org/10.1145/2818048.2835202.
- [7] Joseph Chee Chang, Aniket Kittur, and Nathan Hahn. "Alloy: Clustering with Crowds and Computation". In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI '16. ACM, 2016, pp. 3180–3191. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858411. URL: http://doi.acm.org/10.1145/2858036.2858411.
- [8] David Geiger et al. "Managing the Crowd: Towards a Taxonomy of Crowdsourcing Processes." In: AMCIS. 2011.

- [9] Mary L. Gray et al. "The Crowd is a Collaborative Network". In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. CSCW '16. ACM, 2016, pp. 134–147. ISBN: 978–1-4503–3592–8. DOI: 10.1145/2818048.2819942. URL: http://doi.acm.org/10.1145/2818048.2819942.
- [10] Nathan Hahn et al. "The Knowledge Accelerator: Big Picture Thinking in Small Pieces". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 2258–2270. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858364. URL: http://doi.acm.org/10.1145/2858036.2858364.
- [11] House Cleaning, Handyman, Lawn Care Services in Austin, Denver, Kansas City, Minneapolis and San Francisco Zaarly. Sept. 2015. URL: https://www.zaarly.com/.
- [12] Jeff Howe. Crowdsourcing: How the power of the crowd is driving the future of business. Random House, 2008.
- [13] Lilly C. Irani and M. Six Silberman. "Stories We Tell About Labor: Turkopticon and the Trouble with "Design"". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 4573–4586. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858592. URL: http://doi.acm.org/10.1145/2858036.2858592.
- [14] Lilly C. Irani and M. Six Silberman. "Turkopticon: Interrupting Worker Invisibility in Amazon Mechanical Turk". In: *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. CHI '13. ACM, 2013, pp. 611–620. ISBN: 978–1-4503–1899–0. DOI: 10.1145/2470654.2470742. URL: http://doi.acm.org/10.1145/2470654.2470742.
- [15] Joy Kim and Andrés Monroy-Hernández. "Storia: Summarizing Social Media Content Based on Narrative Theory Using Crowdsourcing". In: *Proceedings of the 19th ACM Conference on Computer–Supported Cooperative Work & Social Computing*. CSCW '16. ACM, 2016, pp. 1018–1027. ISBN: 978–1-4503–3592–8. DOI: 10.1145/2818048.2820072. URL: http://doi.acm.org/10.1145/2818048.2820072.
- [16] Aniket Kittur, Ed H. Chi, and Bongwon Suh. "Crowd-sourcing User Studies with Mechanical Turk". In: *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. CHI '08. ACM, 2008, pp. 453–456. ISBN: 978–1-60558–011–1. DOI: 10.1145/1357054. 1357127. URL: http://doi.acm.org/10.1145/1357054. 1357127.
- [17] Nickerson Jeffrey V. and Bernstein Michael and Gerber Elizabeth and Shaw Aaron and Zimmerman John and Lease Matt and Horton John Kittur Aniket and. "The Future of Crowd Work". In: *Proceedings of the 2013 Conference on Computer Supported Cooperative Work.* CSCW '13. ACM, 2013, pp. 1301–1318. ISBN: 978–1-4503–1331–5. DOI: 10.1145/2441776.2441923. URL: http://doi.acm.org/10.1145/2441776.2441923.

- [18] Hata Kenji and Chen Stephanie and Kravitz Joshua and Shamma David A. and Fei-Fei Li and Bernstein Michael S. Krishna Ranjay A. and. "Embracing Error to Enable Rapid Crowdsourcing". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 3167–3179. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858115. URL: http://doi.acm.org/10.1145/2858036.2858115.
- [19] Pavel Kucherbaev et al. "ReLauncher: Crowdsourcing Micro-Tasks Runtime Controller". In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. CSCW '16. ACM, 2016, pp. 1609–1614. ISBN: 978–1-4503–3592–8. DOI: 10.1145/2818048.2820005. URL: http://doi.acm.org/10.1145/2818048.2820005.
- [20] Edith Law et al. "Curiosity Killed the Cat, but Makes Crowdwork Better". In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI '16. ACM, 2016, pp. 4098–4110. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858144. URL: http://doi.acm.org/10.1145/2858036.2858144.
- [21] Min Kyung Lee et al. "Working with Machines: The Impact of Algorithmic and Data-Driven Management on Human Workers". In: *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*. CHI '15. ACM, 2015, pp. 1603–1612. ISBN: 978–1-4503–3145–6. DOI: 10.1145/2702123.2702548. URL: http://doi.acm.org/10.1145/2702123.2702548.
- [22] Ioanna Lykourentzou et al. "Personality Matters: Balancing for Personality Types Leads to Better Outcomes for Crowd Teams". In: *Proceedings of the 19th ACM Conference on Computer–Supported Cooperative Work & Social Computing*. CSCW '16. ACM, 2016, pp. 260–273. ISBN: 978–1-4503–3592–8. DOI: 10.1145/2818048. 2819979. URL: http://doi.acm.org/10.1145/2818048. 2819979.
- [23] David Martin et al. "Being a Turker". In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing. CSCW '14. Baltimore, Maryland, USA: ACM, 2014, pp. 224–235. ISBN: 978-1-4503-2540-0. DOI: 10.1145/2531602.2531663. URL: http://doi.acm.org/10.1145/2531602.2531663.
- [24] Brian McInnis et al. "Taking a HIT: Designing Around Rejection, Mistrust, Risk, and Workers' Experiences in Amazon Mechanical Turk". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 2271–2282. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858539. URL: http://doi.acm.org/10.1145/2858036.2858539.
- [25] To Alexandra and Guo Anhong and de Freitas Adrian A. and Teevan Jaime and Dow-Steven P. and Bigham Jeffrey P. Nebeling Michael and. "WearWrite: Crowd-Assisted Writing from Smartwatches". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 3834–3846. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036. 2858169. URL: http://doi.acm.org/10.1145/2858036. 2858169.

- [26] Edward Newell and Derek Ruths. "How One Microtask Affects Another". In: *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. CHI '16. ACM, 2016, pp. 3155–3166. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036.2858490. URL: http://doi.acm.org/10.1145/2858036.2858490.
- [27] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. "Running experiments on amazon mechanical turk". In: *Judgment and Decision making* 5.5 (2010), pp. 411–419.
- [28] Alexander J. Quinn and Benjamin B. Bederson. "Human Computation: A Survey and Taxonomy of a Growing Field". In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI '11. ACM, 2011, pp. 1403–1412. ISBN: 978–1-4503–0228–9. DOI: 10.1145/1978942.1979148. URL: http://doi.acm.org/10.1145/1978942.1979148.
- [29] Robaszkiewicz Sébastien and To Alexandra and Lasecki Walter S. and Patel Jay and Rahmati Negar and Doshi Tulsee and Valentine Melissa and Bernstein Michael S. Retelny Daniela and. "Expert Crowdsourcing with Flash Teams". In: *Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology*. UIST '14. ACM, 2014, pp. 75–85. ISBN: 978–1-4503–3069–5. DOI: 10.1145/2642918.2647409. URL: http://doi.acm.org/10.1145/2642918.2647409.
- [30] Joel Ross et al. "Who Are the Crowdworkers?: Shifting Demographics in Mechanical Turk". In: *CHI '10 Extended Abstracts on Human Factors in Computing Systems*. CHI EA '10. ACM, 2010, pp. 2863–2872. ISBN: 978–1-60558–930–5. DOI: 10.1145/1753846.1753873. URL: http://doi.acm.org/10.1145/1753846.1753873.
- [31] Irani Lilly C. and Bernstein Michael S. and Alkhatib Ali and Ogbe Eva and Milland Kristy and Clickhappier Salehi Niloufar and. "We Are Dynamo: Overcoming Stalling and Friction in Collective Action for Crowd Workers". In: *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*. CHI '15. ACM, 2015, pp. 1621–1630. ISBN: 978–1-4503–3145–6. DOI: 10.1145/2702123.2702508. URL: http://doi.acm.org/10.1145/2702123.2702508.
- [32] Six Silberman. Stop citing Ross et al. 2010, "Who are the crowdworkers?". Mar. 2015. URL: https://medium.com/@silberman/stop-citing-ross-et-al-2010-who-are-the-crowdworkers-b3b9b1e8d300.
- [33] Ryo Suzuki et al. "Atelier: Repurposing Expert Crowd-sourcing Tasks As Micro-internships". In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI '16. ACM, 2016, pp. 2645–2656. ISBN: 978–1-4503–3362–7. DOI: 10.1145/2858036. 2858121. URL: http://doi.acm.org/10.1145/2858036. 2858121.
- [34] TaskRabbit connects you to safe and reliable help in your neighborhood. Sept. 2015. URL: https://www.taskrabbit.com/.

- [35] Uber. Sept. 2015. URL: https://www.uber.com/.
- [36] Shao-Yu Wu, Ruck Thawonmas, and Kuan-Ta Chen. "Video Summarization via Crowdsourcing". In: CHI '11 Extended Abstracts on Human Factors in Computing Systems. CHI EA '11. ACM, 2011, pp. 1531–1536. ISBN: 978–1-4503–0268–5. DOI: 10.1145/1979742.1979803. URL: http://doi.acm.org/10.1145/1979742.1979803.
- [37] Lixiu Yu, Aniket Kittur, and Robert E. Kraut. "Encouraging "Outside—The—Box" Thinking in Crowd Innovation Through Identifying Domains of Expertise". In: Proceedings of the 19th ACM Conference on Computer—Supported Cooperative Work & Social Computing. CSCW '16. ACM, 2016, pp. 1214—1222. ISBN: 978—1-4503—3592—8. DOI: 10.1145/2818048.2820025. URL: http://doi.acm.org/10.1145/2818048.2820025.
- [38] Alvin Yuan et al. "Almost an Expert: The Effects of Rubrics and Expertise on Perceived Value of Crowdsourced Design Critiques". In: *Proceedings of the 19th ACM Conference on Computer–Supported Cooperative Work & Social Computing.* CSCW '16. ACM, 2016, pp. 1005–1017. ISBN: 978–1-4503–3592–8. DOI: 10.1145/2818048.2819953. URL: http://doi.acm.org/10.1145/2818048.2819953.
- [39] M. C. Yuen, I. King, and K. S. Leung. "A Survey of Crowdsourcing Systems". In: *Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on.* Oct. 2011, pp. 766–773. DOI: 10.1109/PASSAT/SocialCom.2011.203.