1 The Photon

		$c = 2.998 \cdot 10^8 \left[\frac{\mathrm{m}}{\mathrm{s}} \right]$
		$h = 6.626 \cdot 10^{-34} \left[\frac{\text{m}^2 \text{ kg}}{\text{s}} \right]$
$c\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	speed of light	,
$h\left[\frac{\mathrm{m}^2\mathrm{kg}}{\mathrm{s}}\right]$	planc's constant	$\hbar = rac{h}{2\pi}$
e [C]	electorn charge	$e = 1.602 \cdot 10^{-19} \text{ [C]}$
m_e [kg]	electron mass	$m_e = 9.109 \cdot 10^{-31} \text{ [kg]}$
$k_B \left[\frac{\mathrm{m}^2 \mathrm{kg}}{\mathrm{s}^2 \mathrm{K}} \right]$	bolzmann constant	F
$\epsilon_0 \left[\frac{\mathrm{F}}{\mathrm{m}} \right]$	vacuum permittivity	$k_B = 1.381 \cdot 10^{-23} \left[\frac{\text{m}^2 \text{ kg}}{\text{s}^2 \text{ K}} \right]$
		$\epsilon_0 = 8.854 \cdot 10^{-12} \left[\frac{\mathrm{F}}{\mathrm{m}} \right]$
		$1 \text{ [eV]} = 1.602 \cdot 10^{-19} \text{ [J]}$

1.1 Photon & Electron

$$\lambda \text{ [m]}, \nu \text{ } \left[\frac{1}{\text{s}}\right] \text{ Wavelength, Freq.} \qquad \lambda = \frac{c}{\nu} \quad \nu = \frac{c}{\lambda} \quad \omega = 2\pi\nu$$

$$E \text{ [J]} \qquad \text{Energy} \qquad E = h \cdot \nu = \hbar \cdot \omega$$

$$\vec{F_c} \text{ [N]} \qquad \text{Coulomb Force} \qquad \left|\vec{F_c}\right| = \frac{Q_1 \cdot Q_2}{4\pi\epsilon \alpha r^2}$$

1.2 Photoelectric effect

V [V]	Voltage
ϕ_0 [eV]	Work function
I [A]	Photo-current
$n \left[\text{m}^{-3} \right]$	Volume density of electrons
$A \left[m^2 \right]$	Area
$v\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$	velocity of electrons

$$h\nu - \phi_0 = \frac{1}{2}mv^2 = eV$$
$$V(\nu) = \frac{h}{e}\nu - \frac{\phi_0}{e}$$
$$I = nAve$$

1.3 Blackbody Radiation

$$L$$
 [m] length of blackbody cube k_i wave constants E_x Electric field in x-direction $\langle E \rangle$ Average Energy N Number of states D Density of states U Blackbody radiation U Power radiated

$$E_x(x,y,z) = E_{0x}\cos(k_x x)\sin(k_y y)\sin(k_z z)$$

$$k_x = n\frac{\pi}{L} \quad k_y = m\frac{\pi}{L} \quad k_z = l\frac{\pi}{L} \qquad k = \sqrt{k_x^2 + k_y^2 + k_z^2}$$

$$N(k) = \frac{1}{3\pi^2}k^3L^3 \qquad D(k) = \frac{k^2}{\pi^2}$$

$$u(\omega) = \frac{\omega^2}{\pi^2 c^3} \cdot \frac{\hbar\omega}{\exp\left(\frac{-\hbar\omega}{kT}\right) - 1}d\omega \qquad u(\nu) = \frac{8\pi\hbar\nu^3}{c^3\left(\exp\left(\frac{\hbar\nu}{kT}\right) - 1\right)}d\nu$$

$$I(\omega) = c \cdot u(\omega)$$

Equipartition-Theorem: Each degree of Freedom has an energy of kT

1.4 Johnson-Noise

This is the noise created in a one-dimensional circuit (like a coax-cable).

$$\langle V^2 \rangle$$
 Noise Voltage

 $\Delta \nu$ Bandwidth

 $E = E_0 \cdot \sin(k_x \cdot x)$

$$\langle V^2 \rangle = 4R \cdot k_B T \cdot \Delta \nu$$

1.5 Momentum of a photon

1.6 Absorption, spontaneous and stimulated emission

absorbtion spontaneous emission stimulated emission

 n_1 Number of electrons in the lower energy state

 n_2 Number of electrons in the higher energy state

$$\frac{dn_2}{dt} = \underbrace{n_1 \cdot u(\nu) \cdot B_{12}}_{\text{absorbtion}} - \underbrace{n_2 \cdot u(\nu) \cdot B_{21}}_{\text{stimulated emission}} - \underbrace{n_2 \cdot A_{21}}_{\text{spontaneous emission}}$$

$$\frac{n_2}{n_1} = e^{-\frac{h\nu}{k_BT}} = \frac{u(\nu)B_{12}}{u(\nu)B_{21} + A_{21}}$$

$$B_{21} = B_{12} = B \qquad A_{21} = \frac{8\pi h\nu^3}{c^3}$$

1.7 Laser-optical amplification

Electrons are excited from the ground state "0" to the level "3" by pumping through incoherent radiation. The electrons then fall onto a long-lived state n_2 (State "2") from level "3". The pumping can be done either optically by shining a strong incoherent light or by passing a current. It is also assumed that the lower state is quickly emptied by a fast process with lifetime τ_1 . As a result, the population in state "2" is:

$$n_2 = \frac{R}{A_{21}}$$
 whereas $n_1 \approx 0$ because $A_{21} < \frac{1}{\tau_1}$

We have rherefore a population inversion between the two states. The likelihood of a stimulated emission process is larger than the one of absorbtion. If we enclose the system in an optical cavity, we can achieve self-sustained oscillation at the frequency ν .

2 Wave mechanics

	frequency	wavelength	momentum	energy
Particle		$\lambda_b = \frac{h}{p}$	p = mv	$E = \frac{1}{2}mv^2$
Wave	ω	$\lambda = \frac{2\pi c}{\omega}$	$p = \frac{\hbar\omega}{c}$	$E=\hbar\omega$

Compton Scattering

$p_1 = \frac{h\nu_1}{c} \qquad p' = \frac{h\nu_2}{c}$ $e^{-\frac{h\nu_1}{c}} \qquad \nu_2 = \nu_1 - \frac{P_e^2}{2m_e h}$ $\lambda_2 - \lambda_1 = \frac{h}{m_e c} (1 - \cos \theta);$

Bragg diffraction

2.3Single slit

Bohr-Sommerfeld equalization

Every single particle must satisfy the following equation. The quantized energy levels below relate to the hydrogen atom

$$p$$
 Momentum of particle E_n Energy of the nth state E_{ry} Rydberg Energy

$$a_0$$
 Bohr-radius

$$\int_{length} p \cdot ds = n \cdot h \qquad n \in \mathbb{N}$$

$$E_n = -\frac{Z}{n^2} \cdot \frac{m_e e^4}{8\epsilon_0^2 h^2} = -\frac{Z}{n^2} \cdot E_{ry}$$

$$r_n = \frac{n^2}{Z} \cdot \frac{2\epsilon_0 h}{m_e e^2} = \frac{n^2}{Z} \cdot a_0$$

$$E_{ry} = 13.6 \text{ [eV]}$$

$$a_0 = 5.292 \cdot 10^{-11} \text{ [m]}$$

Quantum Mechanics

Wave function

$$\psi(\vec{r},t) : \mathbb{R}^4 \to \mathbb{C} \qquad \iiint |\psi(\vec{r},t)|^2 d^3r = 1$$

 $\psi(\vec{r},t) = a\psi_1(\vec{r},t) + b\psi_2(\vec{r},t), \qquad |a|^2 + |b|^2 = 1$

3.2The Schrödinger equation

$$V(x,t) \quad \text{potential} \quad m \quad \text{mass}$$

$$i\hbar \cdot \frac{\partial \psi}{\partial t}(\vec{x},t) = -\frac{\hbar^2}{2m} \cdot \nabla^2 \psi(\vec{x},t) + V(\vec{x},t)\phi(\vec{x},t)$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\psi = A \cdot e^{i(\vec{k}\vec{x} - \omega t)} \qquad \vec{k} = \begin{bmatrix} k_x & k_y & k_z \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$E = \omega \hbar = \frac{\hbar^2 k^2}{2m}, \qquad k^2 = |k|^2$$

3.2.1 Phase and Group Velocity

The phase velocity v_{φ} describes how fast the phase of the wave moves forward. The group velocity v_q describes how fast the energy is moving forward.

$$v_{\varphi} = \frac{\omega}{k}$$
 $v_{g} = \frac{\partial \omega}{\partial k}$

For a particle wave, the phase velocity v_{φ} is half the group velocity v_q

$$v_{\varphi} \cdot 2 = v_q$$

3.2.2 Stationary States

In a stationary state, the wave function is a product of a function $\varphi(\vec{x})$ independent of time and a function $\chi(t)$ independent of space.

$$\psi_n(\vec{x},t) = \varphi_n(\vec{x}) \cdot \chi_n(t) = \varphi_n(\vec{x}) \cdot e^{-i\frac{E_n}{\hbar}t}$$

$$-\frac{\hbar}{2m} \nabla^2 \varphi_n(\vec{x}) + V(\vec{x}) \varphi_n(\vec{x}) = \varphi_n(\vec{x}) \cdot E_n$$

$$\iiint |\psi|^2 d^3 \vec{x} = \iiint |\varphi|^2 d^3 \vec{x} = 1$$

$$\psi(\vec{x},t) = \sum a_n \varphi_n(\vec{x}) \cdot e^{-i\frac{E_n}{\hbar}t} \sum |a_n|^2 = 1$$