

학습목차

01 결정 트리

02 랜덤 포레스트

1 결정 트리

결정 트리 decision tree?

- 주어진 문제에 관해 결정을 내리는 함수를 트리 형태로 구성
 - □ 분류 문제를 위해 개발
 - → 회귀 문제로 확장 → "CART" Classification And Regression Trees
- 뛰어난 설명력 explainability 제공
 - □ 트리 구조에 각 입력 요소의 역할이 잘 표현되어 학습 결과를 설명
- 과다적합 문제
 - □ 복잡한 함수의 표현 과정에서 데이터의 노이즈에 민감한 문제
 - → 앙상블 학습기법을 결합한 방법("랜덤 포레스트") 등장

결정 트리의 예

- 세탁기 동작 여부(ON, OFF)를 결정하는 결정 트리
 - □ 속성(판단을 내리는 데 사용하는 결정 요인) → 날씨, 습도, 세탁량

결정 트리 vs 규칙 기반의 표현

규칙의 집합으로의 표현

if (Weather == Rainy) then Machine = OFF

개발자가 임의로 정의/표현

if (Weather == Sunny) and (Humidity < 80) then Machine = ON

if (Weather == Sunny) and (Humidity >= 80) then Machine = OFF

if (Weather == Cloudy) and (Amount == Large) then Machine = ON

if (Weather == Cloudy) and (Amount == Small) then Machine = OFF

○ 학습 데이터의 예

날씨	온도	습도	세탁량	
(Weather)	(Temperature)	(Humidity)	(Amount)	세탁기 동작 여부
Cloudy	High	85	Small	OFF
Cloudy	High	82	Large	ON
Rainy	High	90	Small	OFF
Sunny	Medium	80	Small	OFF
Sunny	Low	60	Small	ON
Sunny	Low	52	Large	ON
Rainy	Low	95	Large	OFF
Cloudy	Medium	83	Small	OFF
Cloudy	Low	62	Small	OFF
Sunny	Medium	46	Small	ON
Cloudy	Medium	55	Large	ON
Rainy	Medium	97	Large	OFF
Rainy	High	93	Small	OFF
Sunny	Medium	81	Large	OFF

1. 결정 트리

결정 트리의 학습

○ 학습 과정

날씨 (Weather)	온도 (Temperature)	습도 (Humidity)	세탁량 (Amount)	세탁기 동작 여부
Cloudy	High	85	Small	OFF
Cloudy	High	82	Large	ON
Rainy	High	90	Small	OFF
Sunny	Medium	80	Small	OFF
Sunny	Low	60	Small	ON
Sunny	Low	52	Large	ON
Rainy	Low	95	Large	OFF
Cloudy	Medium	83	Small	OFF
Cloudy	Low	62	Small	OFF
Sunny	Medium	46	Small	ON
Cloudy	Medium	55	Large	ON
Rainy	Medium	97	Large	OFF
Rainy	High	93	Small	OFF
Sunny	Medium	81	Large	OFF

○ 각 노드에 어떤 속성(결정 요인)을 배정할 것인가?

- 속성 선택을 위한 평가 기준
 - \square 지니 불순도 I(N) Gini Impurity
 - ✓ 각 노드에 할당된 클래스 레이블이 얼마나 다른지 그 혼합 정도를 측정

$$I(N) = \sum_{i=1}^K p_i (1-p_i) = 1 - \sum_{i=1}^K (p_i)^2$$
 $K o$ 클래스의 개수 $p_i o$ 노드 N 에 할당된 데이터 그룹에 속한 i 번째 클래스의 비율

- \square 지니 평가지수 $G(R_a)$ Gini criterion
 - \checkmark 속성 a를 갖는 부모 노드 R_a 에서 자식 노드들의 지니 불순도의 가중합

지니 불순도
$$I(N) = 1 - \sum_{i=1}^{K} (p_i)^2$$

$$I(C_1) = 1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48 \qquad I(C_2) = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0 \qquad I(C_3) = 1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = 0.48$$

$$I(C_2) = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$$

$$I(C_3) = 1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = 0.48$$

지니 평가지수
$$G(R_a) = \sum_{i=1}^{M} \frac{|C_i|}{|R_a|} I(C_i)$$

$$G(R_{w \, eather}) = \frac{5}{14} \times 0.48 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.48 = 0.3429$$

$$G(R_{Tem\ perature}) = 0.4405$$

$$G(R_{Am\ ount}) = 0.4048$$

속성 노드 선택을 위한 다양한 평가지수

- O 정보 이득 information gain
 - □ 데이터 집합의 분할 전후의 엔트로피의 차이
 - ✓ 엔트로피 → 데이터의 혼잡도. 낮을수록 데이터의 순도가 높음
- 분산 감소량 reduction in variance
 - □ 모든 노드에 대한 분산의 가중 평균
 - ✓ 분산 → 데이터의 동질성을 표시. 데이터가 완전히 같으면 분산은 0
 - □ 회귀 문제에서 주로 사용
- Chi-square
 - □ 부모 노드와 하위 노드 간 차이의 통계적 유의성을 활용

결정 트리를 이용한 분류

○ 2차원 데이터의 예: $x_1, x_2 \in (0,1)$

결정 트리를 이용한 분류

결정 트리를 이용한 분류

회귀를 위한 결정 트리

○ 회귀 문제 $\rightarrow y = f(x_1, x_2) y \in \{0,1\}$

회귀 문제로 접근한 경우의 결정 트리

회귀를 위한 결정 트리

○ 문제 유형에 따른 결정 트리의 출력: 분류 문제의 경우

결정 트리

회귀를 위한 결정 트리

○ 문제 유형에 따른 결정 트리의 출력: 회귀 문제의 경우

1. 결정 트리

일반적인 회귀 문제의 결정 트리

결정 트리의 문제

- 과다적합
 - □ 모든 학습 데이터에 대해 완벽한 학습
- 간단한 해결책
 - □ 조기종료 early stopping
 - ✓ 데이터를 더 분할해도 성능이 향상되지 않을 때 노드의 분할을 종료
 - □ 가지치기 pruning
 - ✓ 전체 트리를 만든 후 불필요한 노드들을 제거
- 발전된 해결책 → "랜덤 포레스트" random forest

2 랜덤 포레스트

랜덤 포레스트?

- 결정 트리와 앙상블 학습기법을 결합한 방법
 - □ 배깅 방법으로 데이터를 리샘플링하여 M개의 결정 트리를 학습하고 결합하는 방법
 - ✓ 결합 방법 → 주로 보팅법(분류 문제), 출력값의 평균(회귀 문제)
 - "포레스트" → M개의 서로 다른 결정 트리의 결합
 "랜덤" → 결정 트리 간의 차이가 랜덤으로 추출된 데이터 샘플에 기인
 - 장점
 - ✓ 간단한 학습기의 결합으로 복잡한 함수 표현 및 일반화 성능 향상
 - ✓ 높은 설명 능력, 빠른 학습

랜덤 포레스트의 생성 과정

랜덤 포레스트의 학습

- ① N개의 데이터로 이루어진 학습 데이터 집합 X를 준비하고, 각 결정 트리의 학습에 사용될 데이터 집합의 크기 \widetilde{N} 을 정한다. $(\widetilde{N} \leq N)$
- ② i번째 결정 트리를 학습하기 위해 트리의 깊이를 결정하고, 학습 데이터 집합 X로부터 \widetilde{N} 개의 데이터를 랜덤하게 선출하여 데이터 집합 X_i 를 만든다. 이때 같은 데이터가 중복해서 선출되는 것도 허락한다(복원추출).
- ③ 데이터 집합 X_i 를 이용하여 결정 트리를 학습하여 i번째 판별함수(또는 회귀함수) $h_i(x)$ 를 얻는다.
- ④ ②~③ 과정을 M번 반복하여 서로 다른 M개의 결정 트리를 생성하고, 이들을 결합하여 최종 판별함수(또는 회귀함수) $f(h_1, h_2, \cdots, h_M)$ 을 찾는다.

<u>랜덤 포레스트를 이용한 분류</u>

2. 랜덤 포레스트

랜덤 포레스트를 이용한 회귀

다음시간안내

제8강

SVM과 커널법