Feature Learning from Spectrograms for Assessment of Personality Traits

Published in: IEEE Transactions on Affective Computing (Volume: 11, Issue: 1, Jan.-March 1 2020)

What is this research paper about?

To classify five personality traits (the *Big-Five*) using Speech Analysis:

- 1. openness
- 2. conscientiousness
- 3. extroversion
- 4. agreeableness
- 5. neuroticism

Source: J. M. Digman

Personality Structure: Emergence of the Five-Factor Model

Block diagram for the prediction of a Personality Trait.

Training Dataset

- 640 audio clips randomly extracted from French News
- Frequency of audio = 8 kHz
- Time = 10 sec
- 322 different speakers

Patches are extracted at regular Interval

4.

Dictionary Learning

Flatten

рхр

Sparse Coding

$$l(\mathbf{c}_i) \triangleq \min_{\mathbf{c}_i \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{p_i} - \mathbf{D}\mathbf{c}_i\|_2^2 + \lambda \|\mathbf{c}_i\|_1$$

LARS-Lasso algorithm

Patch set $\{\mathbf{p}_1, ..., \mathbf{p}_k\}$

Dictionary Learning

- Code Words

$$\{\mathbf c_1,...,\mathbf c_k$$

Histogram feature vectors

Encoding Personality Traits and SVM

where g_i and h_i are the i^{th} bins of histograms \mathbf{g} and \mathbf{h} , and m corresponds to the number of words in the dictionary.

How Does SVM Work?

The basics of Support Vector Machines and how it works are best understood with a simple example. Letâ \in TM s imagine we have two tags: red and blue, and our data has two features: x and y. We want a classifier that, given a pair of (x,y) coordinates, outputs if is either red or blue. We plot our already labeled training data on a plane:

SVM working with different parameters

Testing the model

Thank You!

Arindam Jain 2K16/EE/27