Übungen zu Einführung in die Algebra

Jendrik Stelzner

25. Januar 2017

Inhaltsverzeichnis

1 Körpertheorie 2

1 Körpertheorie

Übung 1.

Zeigen Sie, dass für einen kommutativen Ring K die folgenden Bedingungen äquivalent sind:

- 1. K ist ein Körper.
- 2. K hat genau zwei Ideale.
- 3. Das Nullideal in K ist maximal.

Lösung 1.

(1 \Longrightarrow 2) Da K ein Körper ist gilt $0 \neq K$, also hat K mindestens zwei Ideale. Ist $I \subseteq K$ ein Ideal mit $I \neq 0$, so gibt es ein $x \in I$ mit $x \neq 0$. Dann ist x eine Einheit in K, somit $K = (x) \subseteq I$ und deshalb I = K. Also sind 0 und K die einzigen Ideale in K.

 $(2 \implies 3)$ Es muss $0 \neq K$, denn sonst wäre 0 das einzige Ideal in K. Also sind 0 und K die einzigen beiden Ideale in K. Ist $I \subseteq K$ ein Ideal mit $0 \subsetneq I$, so muss bereits I = K. Also ist 0 ein maximales Ideal.

(3 \Longrightarrow 1) Da $0 \subseteq K$ maximal ist, ergibt sich, dass $K \cong K/0$ ein Körper ist.

Übung 2.

Es sei K ein algebraisch abgeschlossener Körper. Zeigen Sie, dass K unendlich ist.

Lösung 2.

Wäre K endlich, so wäre

$$p(T) := 1 + \prod_{\lambda \in K} (T - \lambda) \in K[T]$$

ein Polynom positiven Grades ohne Nullstellen (denn p(x) = 1 für alle $x \in K$). Dies stünde im Widerspruch zur algebraischen Abgeschlossenheit von K.

Übung 3.

Es seien $p, q \in K[T]$ zwei normierte irreduzible Polynome mit $p \neq q$. Zeigen Sie, dass p und q in \overline{K} keine gemeinsamen Nullstellen haben.

Lösung 3.

Gebe es eine gemeinsame Nullstelle $\alpha \in \overline{K}$ von p und q, so wären p und q beide das Minimalpolynom von α über K, und somit p=q.

Übung 4.

Es sei $K(\alpha)/K$ eine endliche, zyklische Körpererweiterung von ungeraden Grad. Zeigen Sie, dass $K(\alpha)=K(\alpha^2)$.

Lösung 4.

Da $K(\alpha^2)\subseteq K(\alpha)$ gilt, genügt es zu zeigen, dass $\alpha^2\in K(\alpha)$. Wir nehmen an, dass $\alpha^2\notin K(\alpha)$. Dann ist das normierte quadratische Polynom $P(T):=T^2-\alpha^2\in K(\alpha^2)[T]$ irreduzibel mit $P(\alpha)=0$, und deshalb das Minimalpolynom von α über $K(\alpha^2)$. Es ist also $[K(\alpha):K(\alpha^2)]=2$. Damit gilt

$$[K(\alpha):K] = [K(\alpha):K(\alpha^2)][K(\alpha^2):K] = 2[K(\alpha^2):K],$$

was im Widerspruch dazu steht, dass $[K(\alpha):K]$ ungerade ist.

Übung 5.

Es sei K ein algebraisch abgeschlossener Körper und L/K eine algebraische Körpererweiterung. Zeigen Sie, dass bereits L=K gilt.

Lösung 5.

Es sei $\alpha \in L$. Da L/K algebraisch ist, gibt es ein normiertes Polynom $P \in K[T]$ mit $P \neq 0$ und $P(\alpha) = 0$. Da K algebraisch abgeschlossen ist zerfällt P in Linearfaktoren, also $P(T) = (T - a_1) \cdots (T - a_n)$ mit $a_1, \ldots, a_n \in K$ und $n = \deg P$. Da

$$0 = P(\alpha) = (\alpha - a_1) \cdots (\alpha - a_n)$$

muss bereits $\alpha = a_i$ für ein $1 \le i \le n$, und somit $\alpha \in K$.

Übung 6

Zeigen Sie, dass endliche Körpererweiterungen algebraisch sind.

Lösung 6.

Es sei L/K eine endliche Körpererweiterung und $x\in L$. Für den K-Untervektorraum $(\{x^n\mid n\in\mathbb{N}\})_K\subseteq L$ gilt

$$\dim_K \langle \{x^n \mid n \in \mathbb{N}\} \rangle_K \le \dim_K L = [L:K] < \infty,$$

weshalb die Potenzen x^n mit $n\in\mathbb{N}$ linear abhängig über K sind. Also gibt es eine nichttriviale Linearkombination

$$a_n x^n + \dots + a_1 x + a_0 = 0$$

mit $n \ge 1$ und $a_n, \ldots, a_0 \in K$ mit $a_n \ne 0$. Für das Polynom

$$P(T) := a_n T^n + \dots + a_1 T + a_0 \in K[T]$$

gilt also P(x) = 0, weshalb x algebraisch über K ist.

Übung 7.

Es sei L/K eine Körpererweiterung und es seien $\alpha, \beta \in L$. Zeigen Sie, dass α und β genau dann beide algebraisch über K sind, wenn $\alpha + \beta$ und $\alpha\beta$ beide algebraisch über K sind.

Bemerkung. Da π und e transzenent (über \mathbb{Q}) sind, muss $\pi + e$ oder $\pi \cdot e$ transzendent sein. Es ist nicht bekannt, welches von beiden.

Lösung 7.

Sind α und β algebraisch über K, so ist $K(\alpha, \beta)/K$ eine algebraische Körpererweiterung. Da $\alpha + \beta, \alpha\beta \in K(\alpha, \beta)$ sind $\alpha + \beta$ und $\alpha\beta$ dann algebraisch über K.

Es seien nun $\alpha+\beta$ und $\alpha\beta$ algebraisch über K. Dann ist $K(\alpha+\beta,\alpha\beta)/K$ eine algebraische Erweiterung. Auch die Erweiterung $K(\alpha,\beta)/K(\alpha+\beta,\alpha\beta)$ ist algebraisch, da α und β Nullstellen des Polynoms

$$P(T) := (T - \alpha)(T - \beta) = T^2 - (\alpha + \beta)T + \alpha\beta \in K(\alpha + \beta, \alpha\beta)[T]$$

sind. Wegen der Transitivität von Algebraizität folgt, dass auch $K(\alpha,\beta)/K$ algebraisch ist, also α und β algebraisch über K sind.

Übung 8.

Es sei L/K eine Körpererweiterung, so dass p := [L:K] endlich und prim ist. Zeigen Sie, dass L/K ein zyklische Erweiterung ist, und bestimmen Sie alle $\alpha \in L$ mit $L = K(\alpha)$.

Lösung 8.

Für alle $\alpha \in K$ ist $K(\alpha) = K$. Ist $\alpha \in L$ mit $\alpha \notin K$, so ist $K(\alpha)/K$ eine echte Körperweiterung, weshalb $[K(\alpha):K] \neq 1$ gilt. Aus

$$p = [L:K] = [L:K(\alpha)] \underbrace{[K(\alpha):K]}_{\neq 1}$$

folgt, dapprim ist, dass $[L:K(\alpha)]=1$ (und $[K(\alpha):K]=p$), und somit $K(\alpha)=L.$ Also ist L eine zyklische Körpererweiterung, und die möglichen Elemente sind genau die $\alpha\in L,$ für die $\alpha\notin K.$

Übung 9.

Es sei L/K eine endliche Körpererweiterung mit $[L:K]=2^k$ für ein $k\geq 0$. Es sei $P\in K[T]$ ein kubisches Polynom, das eine Nullstelle in L hat. Zeigen Sie, dass f bereits eine Nullstelle in K hat.

Lösung 9.

Es sei $\alpha \in L$ eine Nullstelle von P. Wir können o.B.d.A. davon ausgehen, dass P normiert ist. Hätte P keine Nullstelle in K, so wäre P irreduzibel in K[T], da P kubisch ist. Damit wäre dann P das Minimalpolynom von α über K, und somit $[K(\alpha):K]=\deg P=3$. Dann wäre aber

$$3 = [K(\alpha) : K] \mid [L : K(\alpha)][K(\alpha) : K] = [L : K] = 2^k,$$

was nicht gilt.

Übung 10.

Zeigen Sie, dass eine Körpererweiterung L/K genau dann algebraisch ist, wenn jeder Zwischenring $K \subseteq R \subseteq L$ bereits ein Körper ist.

Lösung 10.

Es sei L/K algebraisch und $K\subseteq R\subseteq L$ ein Zwischenring. Für $\alpha\in R$ ist dann α algebraisch über K, und somit $K(\alpha)=K[\alpha]$. Da R ein Ring ist, der α und R enthält, gilt $K[\alpha]\subseteq R$. Somit ist $K(\alpha)=K[\alpha]\subseteq R$. Ist $\alpha\neq 0$, so ist inbesondere $\alpha^{-1}\in K(\alpha)\subseteq R$. Das zeigt, dass jedes Element $\alpha\in R$ mit $\alpha\neq 0$ in R invertierbar ist. Somit ist R ein Körper. (Die Kommutativität von R ist klar, es sich um einen Unterring von L handelt, und L als Körper kommutativ ist.)

Es sei nun L/K nicht algebraisch. Dann gibt es ein Element $\alpha \in L$, das transzendent über K ist. Der Zwischenring $K \subseteq K[\alpha] \subseteq L$ ist dann kein Körper: Für den Polynomring K[T] ist der Einsetzhomorphismus $K[T] \to K[\alpha]$, $P(T) \to P(\alpha)$ surjektiv, und wegen der Transzendenz von α auch injektiv, und somit ein Isomorphismus. Der Polynomring K[T], und somit auch $K[\alpha]$, ist aber kein Körper.