```
In [360...
          # Data Source : https://storage.googleapis.com/dqlab-dataset/data_retail.csv
          # Tools : Google Colaboratory & jupyter notebook
          # require : Python
          # Ferian Ardiansa Junardi (2023)
          # Pada project ini saya melakukan analisis terhadap Customer Churn yang terjadi di salah satu toko yang menjual Baju,Sepatu,Jaket dan Tas
          # tahap tahap yang saya lakukan di antaranya
           # 1. Data Preparation atau persiapan data yandi dalamnya berisi mengenai data cleansing,dan tranformating
          # 2. setelah data bersih maka dilakukan visualisasi data untuk mendapatkan insight dari data tersebut
          # 3. setelah melakukan visualisasi selanjutnya saya mencoba untuk membuat MODEL dengan Metode LOGISTICREGRESSION
           # yang di dalamnya berisi mengenai data train dan test yang akan digunakan untuk memprediksi dari data tersebut
          import Dataset
In [361...
          import pandas as pd
          df = pd.read_csv('https://storage.googleapis.com/dqlab-dataset/data_retail.csv',sep=';')
In [362...
In [363...
          df.head()
Out[363]:
             no Row_Num Customer_ID Product First_Transaction Last_Transaction Average_Transaction_Amount Count_Transaction
           0
              1
                         1
                                   29531
                                            Jaket
                                                    1466304274396
                                                                    1538718482608
                                                                                                      1467681
                                                                                                                             22
               2
                          2
                                   29531
                                           Sepatu
                                                    1406077331494
                                                                    1545735761270
                                                                                                      1269337
                                                                                                                             41
                         3
           2
               3
                                  141526
                                              Tas
                                                    1493349147000
                                                                    1548322802000
                                                                                                       310915
                                                                                                                             30
           3
                                  141526
                                            Jaket
                                                    1493362372547
                                                                    1547643603911
                                                                                                       722632
                                                                                                                             27
           4
              5
                          5
                                  37545
                                           Sepatu
                                                    1429178498531
                                                                    1542891221530
                                                                                                      1775036
                                                                                                                             25
In [364...
          df.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100000 entries, 0 to 99999
        Data columns (total 8 columns):
                                          Non-Null Count Dtype
          #
             Column
         ---
             -----
          0
             no
                                          100000 non-null int64
          1
              Row_Num
                                          100000 non-null int64
          2
              Customer_ID
                                          100000 non-null int64
          3
             Product
                                          100000 non-null object
          4
             First_Transaction
                                          100000 non-null int64
          5
                                          100000 non-null int64
             Last_Transaction
             Average_Transaction_Amount 100000 non-null int64
             Count_Transaction
                                          100000 non-null int64
         dtypes: int64(7), object(1)
        memory usage: 6.1+ MB
          Tranforming datatype for First_Transaction and Last_Transaction columns to be date
          df['First_Transaction'] = pd.to_datetime(df['First_Transaction']/1000,unit='s', origin = '1970-01-01')
In [365...
          df['Last_Transaction'] = pd.to_datetime(df['Last_Transaction']/1000,unit='s', origin = '1970-01-01')
In [366...
          df.dtypes
Out[366]: no
                                                  int64
                                                  int64
          Row_Num
          Customer ID
                                                  int64
          Product
                                                 object
          First_Transaction
                                         datetime64[ns]
                                         datetime64[ns]
           Last_Transaction
          Average Transaction Amount
                                                  int64
                                                  int64
          Count_Transaction
           dtype: object
           Churn Customer
In [367...
          # to check last_transactio
          print(max(df['Last_Transaction']))
         2019-02-01 23:57:57.286000128
          df.loc[df['Last Transaction'] <= '2018-08-01','is churn'] = True</pre>
In [368...
          df.loc[df['Last_Transaction'] > '2018-08-01','is_churn'] = False
In [369...
          df.head()
```

```
Out[369]:
              no Row_Num Customer_ID Product
                                                                                    Last_Transaction Average_Transaction_Amount Count_Transaction is_chum
                                                            First_Transaction
                                                                 2016-06-19
                                                                                         2018-10-05
           0
              1
                           1
                                     29531
                                                                                                                         1467681
                                                                                                                                                 22
                                               Jaket
                                                                                                                                                         False
                                                          02:44:34.396000000
                                                                                  05:48:02.608000000
                                                                 2014-07-23
                                                                                         2018-12-25
                           2
                                                                                                                         1269337
                                                                                                                                                 41
                2
                                     29531
                                              Sepatu
                                                                                                                                                         False
           1
                                                          01:02:11.493999872
                                                                                  11:02:41.269999872
                                                                 2017-04-28
                                                                                         2019-01-24
                           3
           2
                                    141526
                                                 Tas
                                                                                                                          310915
                                                                                                                                                 30
                                                                                                                                                         False
                                                                                  09:40:02.000000000
                                                          03:12:27.000000000
                                                                 2017-04-28
                                                                                         2019-01-16
                           4
                                    141526
                                               Jaket
                                                                                                                          722632
                                                                                                                                                 27
           3
                                                                                                                                                         False
                                                          06:52:52.546999808
                                                                                  13:00:03.911000064
                                                                 2015-04-16
                                                                                         2018-11-22
                           5
                                                                                                                                                 25
                5
                                     37545
                                                                                                                         1775036
                                              Sepatu
                                                                                                                                                         False
                                                          10:01:38.530999808
                                                                                  12:53:41.529999872
In [370...
           # del df['no']
           del df['Row_Num']
           Customer acquisition by year
In [371...
           import matplotlib.pyplot as plt
           import datetime as dt
           df.head()
Out[371]:
                                                                                    {\bf Last\_Transaction} \quad {\bf Average\_Transaction\_Amount} \quad {\bf Count\_Transaction} \quad {\bf is\_churn}
              no Customer_ID Product
                                                      First_Transaction
                                                           2016-06-19
                                                                                         2018-10-05
           0
               1
                          29531
                                    Jaket
                                                                                                                         1467681
                                                                                                                                                 22
                                                                                                                                                         False
                                                    02:44:34.396000000
                                                                                  05:48:02.608000000
                                                           2014-07-23
                                                                                         2018-12-25
                2
                                                                                                                                                 41
           1
                          29531
                                  Sepatu
                                                                                                                         1269337
                                                                                                                                                         False
                                                    01:02:11.493999872
                                                                                  11:02:41.269999872
                                                           2017-04-28
                                                                                         2019-01-24
           2
                3
                        141526
                                      Tas
                                                                                                                          310915
                                                                                                                                                 30
                                                                                                                                                         False
                                                    03:12:27.000000000
                                                                                  09:40:02.000000000
                                                            2017-04-28
                                                                                         2019-01-16
                        141526
                                                                                                                          722632
                                                                                                                                                 27
           3
                4
                                    Jaket
                                                                                                                                                         False
                                                    06:52:52.546999808
                                                                                  13:00:03.911000064
                                                           2015-04-16
                                                                                         2018-11-22
                5
                                                                                                                         1775036
                                                                                                                                                 25
                         37545
                                  Sepatu
                                                                                                                                                         False
                                                                                  12:53:41.529999872
                                                    10:01:38.530999808
In [372...
           df['Year_First_Transaction']= df['First_Transaction'].dt.year
           df['year_Last_Transaction']= df['Last_Transaction'].dt.year
In [373...
           # count Count_Transaksi by year
           df_year = df.groupby(['Year_First_Transaction'])['Customer_ID'].count()
           # make graph bar with different color
           plt.figure(figsize=(10, 6))
           df_year.plot(kind='bar', color='skyblue', edgecolor='black')
           # add title and label
           plt.title('Customer Acquisition Over the Years')
           plt.xlabel('Year of First Transaction')
           plt.ylabel('Number of Customers')
           # add values to each bar
           for i, value in enumerate(df year):
                plt.text(i, value + 0.1, str(value), ha='center', va='bottom')
           # show grid
           plt.grid(axis='y', linestyle='--', alpha=0.7)
```

plt.tight_layout()

plt.show()

Customer Acquisition Over the Years

KESIMPULAN

Berdasarkan Grafik di atas berikut beberapa insights yang di dapatkan :

- 1. perusahaan mengalami pertumbuhun akuisisi pelanggan yang sangat signifikan , pada tahun 2013 hanya memiliki 1007 pelanggan namun pada tahun 2017 perusahaan sudah memiliki pelanggan sebanyak 31828
- 2. pada tahun 2018 terjadi penurunan akuisisi pelanggan, dan sampe merosot pada tahun 2019. penurunan ini bisa disebabkan oleh beberapa faktor diantaranya
- ada pesaing baru yang muncul karena e-commerce sudah mulai berkembang

Transaction By Year

```
In [374...
          import matplotlib.pyplot as plt
          # count Count_Transaksi by year
          df_by_year = df.groupby(['Year_First_Transaction'])['Count_Transaction'].sum()
          # make graph bar with different color
          plt.figure(figsize=(10, 6))
          df_by_year.plot(kind='bar', color='lightcoral', edgecolor='black')
          # add title and label
          plt.title('Transaction Count Over the Years')
          plt.xlabel('Year of First Transaction')
          plt.ylabel('Number of Transactions')
          # add values to each bar
          for i, value in enumerate(df_by_year):
              plt.text(i, value + 0.1, str(value), ha='center', va='bottom')
          # show grid
          plt.grid(axis='y', linestyle='--', alpha=0.7)
          plt.tight_layout()
          plt.show()
```

Transaction Count Over the Years

Jumlah transaksi mengalami peningkatan yang signifikan pada tahun 2017. Peningkatan ini kemungkinan disebabkan oleh beberapa faktor, seperti:

Perkembangan teknologi digital yang semakin pesat, yang memudahkan masyarakat untuk melakukan transaksi secara online. Pertumbuhan ekonomi Indonesia yang positif, yang meningkatkan daya beli masyarakat. Kebijakan pemerintah yang mendukung pengembangan e-commerce. Jumlah transaksi mengalami penurunan pada tahun 2018 dan 2019. Penurunan ini kemungkinan disebabkan oleh beberapa faktor, seperti:

Persaingan yang semakin ketat di industri e-commerce. Regulasi pemerintah yang semakin ketat, seperti aturan tentang pajak e-commerce. Pelemahan perekonomian global, yang berdampak pada perekonomian Indonesia.

<ipython-input-375-ff7f00554515>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future vers
ion, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.
 sns.pointplot(data = df.groupby(['Product','Year_First_Transaction']).mean().reset_index(),


```
aggfunc='count',
fill_value=0)
df_piv
```

Out[376]: Product Baju Jaket Sepatu Tas

is_churn

 False
 1268
 11123
 16064
 4976

 True
 2144
 23827
 33090
 7508

Proportion Churned Customer

categorize_transaction_count

```
In [378...
          def categorize_transaction_count(row):
            if row['Count_Transaction'] == 1:
              val = '1.1'
             elif row['Count_Transaction'] > 1 and row['Count_Transaction'] <= 3:</pre>
              val = '2.2-3'
            elif row['Count_Transaction'] > 3 and row['Count_Transaction'] <= 6:</pre>
            elif row['Count_Transaction'] > 6 and row['Count_Transaction'] <= 10:</pre>
              val = '4.7-10'
            else:
              val = '4.7-10'
            return val
          df['Count_Transaction_Group'] = df.apply(categorize_transaction_count,axis=1)
          plt.figure(figsize=(10,6))
          df_category_transaction = df.groupby(['Count_Transaction_Group'])['Customer_ID'].count()
          df_category_transaction.plot(x='Count_Transaction_Group',y='Customer_ID',kind='bar',title='Customer Distribution by Count Transaction Group
          plt.xlabel('Count_Transaction_Group')
          plt.ylabel('Num_of_Transaction')
          plt.grid(axis='y', linestyle='--', alpha=0.7)
          plt.tight_layout()
          plt.show()
```

Customer Distribution by Count Transaction Group

Distribusi kategorisasi average transaction amount

```
import matplotlib.pyplot as plt
In [410...
          # Fungsi untuk kategorisasi jumlah transaksi
           def categorize_transaction_amount(row):
               if row['Average_Transaction_Amount'] >= 10000 and row['Average_Transaction_Amount'] <= 250000:</pre>
                   return '1. 10000-250000'
               elif row['Average_Transaction_Amount'] > 250000 and row['Average_Transaction_Amount'] <= 500000:</pre>
                   return '2. >250000-500000'
               elif row['Average_Transaction_Amount'] > 500000 and row['Average_Transaction_Amount'] <= 750000:</pre>
                   return '3. >500000-750000'
               elif row['Average_Transaction_Amount'] > 750000 and row['Average_Transaction_Amount'] <= 1000000:</pre>
                   return '4. 750000-1000000'
               elif row['Average_Transaction_Amount'] > 1000000 and row['Average_Transaction_Amount'] <= 2500000:</pre>
                   return '5. 1000000-2500000'
               elif row['Average_Transaction_Amount'] > 2500000 and row['Average_Transaction_Amount'] <= 5000000:</pre>
                   return '6. 2500000-5000000'
               elif row['Average_Transaction_Amount'] >= 5000000 and row['Average_Transaction_Amount'] <= 100000000:</pre>
                   return '7. 5000000-10000000'
               else:
                   return '8. >10000000'
          # Menerapkan fungsi untuk membuat kolom kategori
          df['Average_Transaction_Amount_Group'] = df.apply(categorize_transaction_amount, axis=1)
          # Menghitung jumlah pelanggan untuk setiap kelompok
          df_grouped = df.groupby(['Average_Transaction_Amount_Group'])['Customer_ID'].count()
          # Plot bar chart
          plt.figure(figsize=(10, 6))
           df_grouped.plot(kind='bar', color='skyblue', edgecolor='black')
           plt.title('Customer Distribution by Average Transaction Amount Group')
          plt.xlabel('Average Transaction Amount Group')
          plt.ylabel('Number of Customers')
          plt.xticks(rotation=45, ha='right') # Untuk memutar Label sumbu x agar lebih mudah dibaca
          plt.tight layout()
          plt.show()
```

Customer Distribution by Average Transaction Amount Group

MODELLING

Train, predict dan evaluate

Langkah selanjutnya akan membuat model menggunakan Logistic Regression, inisialisasilah model, fit, dan kemudian evaluasi model dengan menggunakan confusion matrix.

```
In [403...
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import confusion_matrix
In [404...
          # Inisiasi model logreg
          logreg = LogisticRegression()
          # fit the model with data
          logreg.fit(X_train,y_train)
          # Predict model
          y_pred = logreg.predict(X_test)
          # Evaluasi model menggunakan confusion matrix
          cnf_matrix = confusion_matrix(y_test, y_pred)
          print('Confusion Matrix:\n', cnf_matrix)
        Confusion Matrix:
              1 8330]
              3 16666]]
```

Visualisasi Confusion Matrix

```
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix),annot=True,cmap='YlGnBu',fmt='g')
ax.xaxis.set_label_position('top')
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.tight_layout()
plt.show()
```

Confusion matrix


```
from sklearn.metrics import accuracy_score,precision_score,recall_score
accuracy_score(y_test,y_pred)
precision_score(y_test,y_pred,average='micro')
recall_score(y_test,y_pred,average='micro')
```

Out[413]: 0.66668

In [413...