

CLAIMS

- Sub B*
- A wireless communication system comprising:
- 2 a plurality of base stations, each configured to transmit a PN
4 encoded pilot signal at a different time offset than other base stations;
and
- 6 at least one remote unit configured to perform a coarse search of a
PN space and to use the results of the coarse search to select fine search
parameters for use in a second search of selected portions of PN space.
2. The wireless communication system of Claim 1 wherein during
2 the coarse search, a number of non-coherent passes is reduced in comparison
with the second search.
2. The wireless communication system of Claim 1 wherein during
2 the coarse search, an integration interval is reduced in comparison with the fine
search.
2. The wireless communication system of Claim 1 wherein if, during
4 the coarse search, sufficient energy is detected at a first offset corresponding to
a first PN encoded pilot signal of a first base station, a first fine search
4 parameter is selected to specify an expected range of PN offsets over which the
first PN encoded pilot signal is likely to be received.
5. A remote unit in a wireless communication system comprising:
2 a search engine configured to receive search parameters, conduct
4 a search for signals in the wireless communication system and to output
search results;
- 6 a memory configured to receive and store the search results from
the search engine and to output the search results; and

8 a controller configured to pass search parameters to the search
engine, and to receive the search results from the memory;

10 wherein the search engine performs searches using the search
parameters passed by the controller, the search parameters comprising:

12 a set of coarse search parameters used to search a PN space;

14 and

16 a set of fine search parameters used to search portions of
PN space most likely to contain a pilot signal, the likelihood of the space
containing a pilot signal being determined by the controller after
evaluating results of the coarse search.

6. The wireless communication system of Claim 1 wherein a number
2 of non-coherent passes in the set of course search parameters is less than in the
set of fine search parameters.

7. The wireless communication system of Claim 1 wherein an
2 integration interval in the set of course search parameters is less than in the set
of fine search parameters.

8. A method of initially acquiring a base station by a wireless remote
2 unit, the method comprising:

4 selecting a set of coarse search parameters;

6 conducting a course search of an entire PN space for a pilot signal
according to the coarse search parameters;

8 storing results of the coarse search in a memory;

10 examining the results of the coarse search stored in memory to
select portions of the entire PN space upon which to conduct fine
searching according to fine search parameters; and

12 conducting a fine search of the selected portions of the entire PN
space according to the fine search parameters.

9. The wireless communication system of Claim 1 wherein a number
2 of non-coherent passes in the course search is less than in the fine search.

10. The wireless communication system of Claim 1 wherein an
2 integration interval in the course search is less than in the fine search.

11. The wireless communication system of Claim 1 wherein if, during
2 the course search, sufficient energy is detected at a first offset corresponding to
4 a first PN encoded pilot signal of a first base station, a first fine search
parameter is selected to specify an expected range of PN offsets over which the
first PN encoded pilot signal is likely to be received.

Sent AB

b1 DRAFTED CANT DRAFTED

12. The method of Claim 1 further comprising storing all measured
2 signal levels identified during the coarse search which exceed a threshold level
and a corresponding PN offsets.

13. A remote unit in a wireless communication system configured to
2 perform a search for a pilot signal, the remote unit comprising:
4 means for selecting a set of coarse search parameters;
6 means for conducting a course search of an entire PN space for a
pilot signal according to the coarse search parameters;
8 means for storing results of the coarse search;
means for examining the stored results of the coarse search to
select portions of the entire PN space upon which to conduct fine
searching according to fine search parameters; and
10 means for conducting a fine search of the selected portions of the
entire PN space according to the fine search parameters.

14. A method of selecting search parameters used by a remote unit to
2 search for a pilot signal, the method comprising:

selecting a set of coarse search parameters, the act of selecting
4 comprising:
6 dividing a PN space into equal segments;
8 selecting a number of noncoherent passes to between one
and eight; and
10 selecting an integration interval to be within a range of 0.1
to 0.06 milliseconds; and
12 evaluating the search results obtained during the coarse search to
select a set of fine search parameters concentrated on portions of the PN
space that have a higher probability of containing a viable pilot signal
than other portions of the PN space.

15. A method of searching in a wireless communication system the
2 method comprising:
4 transmitting a PN encoded pilot signal from a plurality of base
stations, each base station configured to transmit said PN encoded pilot
signal at a different time offset than other base stations;
6 performing a coarse search of a PN space by at least one remote
unit; and
8 selecting fine search parameters in response to results of the
search, said fine search parameters for use in a second search of selected
10 portions of PN space.

16. The method of Claim 1 wherein during the coarse search, a
2 number of non-coherent passes is reduced in comparison with the second
search.

17. The method of Claim 1 wherein during the coarse search, an
2 integration interval is reduced in comparison with the fine search.

Sub
A4

- Sud A4*
18. The method of Claim 1 wherein if, during the coarse search,
2 sufficient energy is detected at a first offset corresponding to a first PN encoded
pilot signal of a first base station, a first fine search parameter is selected to
4 specify an expected range of PN offsets over which the first PN encoded pilot
signal is likely to be received.