Code compiles and runs: +20

Total 88

Numerical Linear Algebra

Kevin Corcoran

March 17, 2022

Contents

5: Final Project	1
1.2 Iterative Methods	1
5: Final Project	Wed 09 Mar 2022 09:35
1 Part 1	
1.1 SVD for image compression	
The first 10 largest singular values	5VD Fepa 1.2023 5957
663180	.2023 Zb
85706	5957
62129	
34664	6330
31861	7923
21872	7216
19628	4428
18434	9377
13693	8154
12815	2083
The singular value for $k = 20$	
$\sigma_k pprox 7528.024$	16523376873.
The singular value for $k = 40$	\checkmark
$\sigma_k \approx 5489.124$	16638996563.

The singular value for k = 80

 $\sigma_k \approx 3948.7799793164731.$

The singular value for k = 160

 $\sigma_k \approx 2668.2235780120509.$

The singular value for k = 320

 $\sigma_k \approx 1515.8659320175318.$

The singular value for k = 640

 $\sigma_k \approx 821.89312579199247.$

The singular value for k = 1280

 $\sigma_k \approx 513.56803215302216.$

The singular value for k=2560

 $\sigma_k \approx 179.11503509371889.$

The original image

Figure 1: Original

 $compressed\ images$

they inges c should be much luger.

Discussion on extend of 12%

Figure 2: Sigma k

As we increase the number of singular values the image becomes clearer on reconstruction. Plotting the averaged Frobenius norm

$$E_k = \frac{\|A - A_{\sigma_k}\|_F}{mn}.$$

Figure 3: Error

and the value of k, where the error $E_k < 10^{-3}$ is

$$k = 1280$$

Crows words

1.2 Iterative Methods

1.2.1 Gauss-Jacobi and Gauss-Seidel

Both algorithms "split" the matrix into a sum of parts. This split,

$$A = M - N$$
.

assuming M is invertible, induces an iterative method

$$Mx_{k+1} = Nx_k + b$$

$$\Leftrightarrow x_{k+1} = M^{-1}Nx_k + M^{-1}b$$

So we'd like M to be a good approximation for A where Mx = y is cheap and easy to solve. The splitting A = M - N converges to

$$Ax = b$$
.

for A nonsingular and iff the spectral radius $\rho(M^{-1}N) < 1$

The Jacobi method corresponds to the splitting M=D and N=-L-U where D is the diagonal part of A, and L and U are the lower and upper triangular part respectively. For a strictly diagonally dominant matrix A

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$
 for $i = 1, \dots, n$.

Then the iterative scheme,

$$T = M^{-1}N = -D^{-1}(L+U)$$

$$\Rightarrow ||T||_{\infty} < 1$$

$$\Rightarrow \rho(T) \le ||T||_{\infty} < 1$$

converges.

The Gauss-Seidel scheme, on the other hand, corresponds to the splitting M=D+L and N=-U. This algorithm uses updated values as soon as they become available, but has less clear convergence triteria. Though it manages to converge in the cases when Gauss-Jacobi fails. In both I set a maximum iteration of 1000 and exit when the error grows too large. I use the two norm and for trans huge function which returns the largest value for the data inputted data type

$$||Ax - b||_2 < \text{huge}(||Ax - b||_2).$$

Run the code for a 10 x 10 matrix A with D=2,5,10,100,1000 and plot the error $||b-Ax||_2$ for each value of D and for both Jacobi and Gauss-Seidel

Figure 4: Error D = 2

Figure 5: Error D = 5

only plot Great at loved Zoon in to slow it clerly. Figure 6: Error D = 10

Figure 7: Error D = 100

Figure 8: error D = 1000

Jacobi didn't converge for D=2,5 since, in those cases, the matrix A was not diagonally dominant.

Running each algorithm with a matrix A full of ones, except on the diagonal where $a_{ii} = i$, Jacobi does not converge, but Gauss-Seidel converges in 1 step to

The error on a log-linear plot

Figure 9: Aii

• Conjugate Gradient, and other similar algorithms, can be thought of as minimizing the objective function

$$\phi(x) = \frac{1}{2}x^T A x - x^T b.$$

The solution to which converges to Ax = b, and corresponds to the scheme

$$x_{k+1} = x_k + \alpha_k p_k.$$

for some direction p_k . For Steepest Descent (or Gradient Descent) this direction is the residual or the steepest slope. However, with Conjugate Gradient, the direction p_{k+1} is chosen to be A-conjugate to p_k .

$$p_{k+1}Ap_k = 0.$$

Conjugate Gradient converges in at most m steps since the vectors p_k are guaranteed to be linearly independent. Which means our solution x^* can be written as a linear combination of these vectors, and addition directions offer no more information. For well conditioned matrices, Conjugate Gradient can converge in as few as 2 steps

proof:

- Prove the smart conjugate gradient is equivalent to the basic conjugate gradient.
- Table comparing number of iterations until convergence between 3 algorithms.

CG 19

Table 1: Number of Iterations

D	2	5	10	100	1000	
Jacobi	DNC	DNC	145	8	5	/
Gauss-Seidel	58	16	10	5	4	1/
Conjugate Gradient	2	2	2	2	2	

Jacobi doesn't converge until it becomes diagonally dominant at D = 10. Both Jacobi and Gauss-Seidel converge faster for larger diagonal elements. This is because the matrix becomes better conditioned.

• A diagonal pre-conditioner is not very useful for these matrices since they are already well conditioned (ie the maximum and minimum eigenvalues

only differ by a small amount). Since the matrix is symmetric positive definite. $\kappa(A) = \frac{\lambda_1}{\lambda_m}.$ Would discuss DFC.

• Running the algorithm again with a matrix A full of ones, except on the diagonal where $a_{ii} = i$, Conjugate Gradient takes more than 2 steps to converge.

For a 10 x 10 matrix it takes 10 iterations to converge to the solution

$$\begin{pmatrix} -8\\1\\\vdots\\1 \end{pmatrix}$$

For a 100×100 matrix it takes 62 iterations to converge to the solution

$$\begin{pmatrix} -98\\1\\\vdots\\1\end{pmatrix}.$$

These matrices take longer to converge since they are ill-conditioned. For the 10×10 case, the largest eigenvalue $\lambda_{10} \approx 15.3$ and the smallest is $\lambda_1 \approx 0.23$. For the 100×100 case, the largest $\lambda_{100} \approx 157.7$ and the smallest $\lambda_1 \approx 0.15$