

Apuntes de la clase del 22 de marzo del 2017

Apuntador: Ariel Montero Monestel Curso: IC5701 Compiladores e Intérpretes-G40 Profesor: Dr Francisco J. Torres-Rojas

Tecnológico de Costa Rica Escuela de Ingeniería en Computación Sede San José I Semestre, 2017

Quiz 05

- Diseñe un DFA que reconozca el lenguaje sobre Σ={A,T,C,G} de hileras que no contengan la subhilera "GCC" y donde toda T está inmediatamente precedida de una G.
- 2. Diseñe un DFA que reconozca el lenguaje sobre Σ ={0,1} de hileras que contengan al menos dos 0s y que terminene en 111.
- 3. Dé un ejemplo de dos hileras no vacías v,w sobre $\Sigma = \{a,b\}$ tales que cumplan todas las siguientes características al mismo tiempo:
 - a. $v \neq w$
 - b. vw = wv
 - c. $(vw)^{-1} \neq vw$

Fechas importantes

La entrega de la tarea corta 1 (DFA's) queda para el 29 de marzo. Se debe enviar por correo ya que puede que quede muy extensa como para imprimirla.

La entrega del Proyecto 1 queda para el miércoles 5 de abril.

El primer parcial será el viernes 7 de abril.

Continuación de ejemplos de DFA

Ejemplo 11

Sea L el lenguaje sobre Σ = {0,1} de hileras que no terminen con el mismo símbolo con el que empezaron. Diseñe un DFA que reconozca a L.

Sea L el lenguaje sobre Σ = {A,T,C,G} de hileras que no contengan la subhilera "CC" y donde toda A es precedida de una T. Diseñe un DFA que reconozca a L.

Ejemplo 13

Sea L el lenguaje sobre Σ = {0,1,2,3,4,5,6,7,8,9} de hileras que representen un número en base 10 divisible entre 3 (se supone que la hilera vacía es equivalente a 0). Diseñe un DFA que reconozca a L.

- Si divido un número entre 3, ¿Cuáles son los posibles residuos?
 - 0,1,2
- ¿Qué significa ser divisible por 3?
 - Ser de la forma 3 x k
 - Residuo 0
 - o Residuo 1 o 2 significa que no es divisible por 3
- ¿Qué significa estar en base 10?
 - Significa que cada posición corresponde a una potencia de 10
- Si el número actual es n y le concateno un nuevo símbolo q a la derecha, valor resultante será (n x 10) + q

- Si a un número divisible por 3 le concateno un 0 a la derecha, ¿Cuál es el residuo?
 - o En un principio: 3 x k
 - \circ Ahora (3 x k) x 10 + 0 = (3 x k) x 10 = 3 x k'
 - El residuo al dividir por 3 sigue siendo 0, por lo que sigue siendo divisible por 3.
- Si el número actual es de la forma (3 x k) +0 (residuo 0) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	(3 x k) x 10 +0	0
1	(3 x k) x 10 +1	1
2	(3 x k) x 10 +2	2
3	(3 x k) x 10 +3	0
4	(3 x k) x 10 +4	1
5	(3 x k) x 10 +5	2
6	(3 x k) x 10 +6	0
7	(3 x k) x 10 +7	1
8	(3 x k) x 10 +8	2
9	(3 x k) x 10 +9	0

• Si el número actual es de la forma (3 x k) +1 (residuo 1) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	((3 x k) + 1) x 10 +0	1
1	((3 x k) + 1) x 10 +1	2
2	((3 x k) + 1) x 10 +2	0
3	((3 x k) + 1) x 10 +3	1
4	((3 x k) + 1) x 10 +4	2
5	((3 x k) + 1) x 10 +5	0
6	((3 x k) + 1) x 10 +6	1
7	((3 x k) + 1) x 10 +7	2

8	((3 x k) + 1) x 10 +8	0
9	((3 x k) + 1) x 10 +9	1

 Si el número actual es de la forma (3 x k) +2 (residuo 2) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	((3 x k) + 2) x 10 +0	2
1	((3 x k) + 2) x 10 +1	0
2	((3 x k) + 2) x 10 +2	1
3	((3 x k) + 2) x 10 +3	2
4	((3 x k) + 2) x 10 +4	0
5	((3 x k) + 2) x 10 +5	1
6	((3 x k) + 2) x 10 +6	2
7	((3 x k) + 2) x 10 +7	0
8	((3 x k) + 2) x 10 +8	1
9	((3 x k) + 2) x 10 +9	2

Sea L el lenguaje sobre Σ = {0,1,2} de hileras que representen un número en base 3 **no divisible entre 5 (en base 10)** . Diseñe un DFA que reconozca a L. Suponga que la hilera vacía es equivalente a 0

- Si divido un número entre 5, ¿Cuáles son los posibles residuos?
 - 0,1,2,3,4
- ¿Qué significa ser divisible por 5?
 - Ser de la forma 5 x k
 - o Tener residuo 0
- Si el residuo es 1,2,3 ó 4 significa que no es divisible por 5
- ¿Qué significa estar en base 3?
 - Cada posición corresponde a una potencia de 3
- Si el número actual es n y le concatenamos un nuevo símbolo a la derecha el nuevo valor será (n x 3) + q
- Si a un número en base 3 y divisible por 5 le concateno un 0 a la derecha, ¿Cuál es el residuo?
 - o En un principio: 5 x k
 - \circ Ahora (5 x k) x 3 + 0 = (15 x k) = 15 x k'
 - El residuo al dividir por 3 sigue siendo 0, por lo que sigue siendo divisible por 3.
- Si el número actual es de la forma (5 x k) +0 (residuo 0) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	(5 x k) x 3 +0	0
1	(5 x k) x 3 +1	1
2	(5 x k) x 3 +2	2

• Si el número actual es de la forma (5 x k) +1 (residuo 1) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	$((3 \times k) + 1) \times 3 + 0$	3
1	((3 x k) + 1) x 3 +1	4
2	((3 x k) + 1) x 3 +2	0

• Si el número actual es de la forma (5 x k) +2 (residuo 2) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	$((3 \times k) + 2) \times 3 + 0$	1
1	$((3 \times k) + 2) \times 3 + 1$	2
2	((3 x k) + 2) x 3 +2	3

 Si el número actual es de la forma (5 x k) +3 (residuo 3) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	$((3 \times k) + 3) \times 3 + 0$	4
1	((3 x k) + 3) x 3 +1	0
2	((3 x k) + 3) x 3 +2	1

 Si el número actual es de la forma (5 x k) +4 (residuo 4) y le concateno un dígito el nuevo residuo será:

Nuevo Dígito	Nuevo Valor	Residuo
0	$((3 \times k) + 4) \times 3 + 0$	2
1	((3 x k) + 4) x 3 +1	3
2	((3 x k) + 4) x 3 +2	4

Sea L el lenguaje sobre Σ = {A,B} de hileras que contengan un número par de As y un número impar de Bs. Diseñe un DFA que reconozca a L.

Sea L el lenguaje sobre Σ = {A,B} de hileras que contengan un número impar de As y un número impar de Bs. Diseñe un DFA que reconozca a L.

Ejemplo 17

Sea L el lenguaje sobre Σ = {A,B} de hileras que contengan un número par de As ${\bf o}$ un número impar de Bs. Diseñe un DFA que reconozca a L.

