OncoSimulR: simulating interventions and adaptive therapy

Andrea Sánchez de la Cruz Daniel Prieto Cebollero Marta Lozano Prieto

Introduction

- Fitness
- Frequency-dependent fitness
- Evolutionary game theory
- Therapy

Classical vs adaptive therapy

Classical therapy

Adaptive therapy

Adaptive therapy simulations

- 1. General, theoretical case
- 2. Bacterial population -
- 3. Resistant prostate cancer

RESEARCH ARTICLE

Exploiting evolutionary trade-offs for posttreatment management of drug-resistant populations

Sergey V. Melnikov, David L. Stevens, © Xian Fu, © Hui Si Kwok, Jin-Tao Zhang, © Yue Shen, Jeffery Sabina, Kevin Lee, Harry Lee, and © Dieter Söll

PNAS July 28, 2020 117 (30) 17924-17931; first published July 13, 2020; https://doi.org/10.1073/pnas.2003132117

Contributed by Dieter Söll, June 2, 2020 (sent for review February 24, 2020; reviewed by Michael Ibba and Babak Javid)

https://doi.org/10.1073/pnas.2003132117

Convergence and Technologies

Towards Multidrug Adaptive Therapy

Jeffrey West, Li You, Jingsong Zhang, Robert A. Gatenby, Joel S. Brown, Paul K. Newton, and Alexander R.A. Anderson Add to Cart (\$50)

DOI: 10.1158/0008-5472.CAN-19-2669 Published April 2020

https://doi.org/10.1158/0008-5472.CAN-19-2669

1. Fitness equations

```
cS = 0.2 \rightarrow cohabit cost
cR = 0.1 \rightarrow resistance cost
```

```
S_fitness = 1 - cS * (f_SM + f_RM)

R_fitness = 1 - cS * (f_SM + f_RM) - cR
```

2. Dataframe of the genotypes

3. allFitnessEffects function

4. oncoSimulIndiv

5. Graphics

5. Graphics

Resistant bacterial subpopulations

https://doi.org/10.1073/pnas.2003132117

Resistant bacterial subpopulations

```
cS = 0.2 → cohabit cost

cR = 0.1 → resistance cost of EcoR

cMR = 0.4 → resistance cost of EcoMR
```

```
WT_fitness = 1 - cS * (f_ + f_ EcoR + f_ EcoMR)

EcoR_fitness = 1 - cS * (f_ + f_ EcoR + f_ EcoMR) - cR

EcoMR_fitness = 1 - cS * (f_ + f_ EcoR + f_ EcoMR) - cRM
```

Resistant bacterial subpopulations

https://doi.org/10.1073/pnas.2003132117

Bacterial subpopulations: adaptive therapy

Standard therapy

10000 -Genotypes **EcoMR** EcoR 1000 Number of cells 100 10 60 Time units

Adaptive therapy

Resistant prostate cancer

Convergence and Technologies

Towards Multidrug Adaptive Therapy

Jeffrey West, Li You, Jingsong Zhang, Robert A. Gatenby, Joel S. Brown, Paul K. Newton, and Alexander R.A. Anderson

Add to Cart (\$50)

DOI: 10.1158/0008-5472.CAN-19-2669 Published April 2020

Testosterone resistant (TR)

Testosterone

producing (TP)

https://doi.org/10.1158/0008-5472.CAN-19-2669

Resistant prostate cancer

Convergence and Technologies

Towards Multidrug Adaptive Therapy

Jeffrey West, Li You, Jingsong Zhang, Robert A. Gatenby, Joel S. Brown, Paul K. Newton, and Alexander R.A. Anderson

Add to Cart (\$50)

DOI: 10.1158/0008-5472.CAN-19-2669 Published April 2020

producing (TP)

https://doi.org/10.1158/0008-5472.CAN-19-2669

Resistant prostate cancer

```
    bT = 0.7 → Benefit of TP producing testosterone
    cS = 0.2 → Cohabit cost
    cT = 0.3 → Cost of producing testosterone
    cR = 0.3 → Cost of resistance
```

```
WT_fitness = 1 + bT * (f_TP) - cS * (f_ + f_TP + f_TR)

TP_fitness = 1 + bT * (f_TP) - cS * (f_ + f_TP + f_TR) - cT

TR_fitness = 1 - cS * (f_ + f_TP + f_TR) - cR
```

Resistant prostate cancer: no treatment

Without therapy

Prostate cancer: adaptive therapy cycle

Adaptive therapy

Adaptive therapy

Modified from: West J, et al. Towards Multidrug Adaptive Therapy. Cancer Res 2020-04-01;80(7):1578-1589.

Modified from: West J, et al. Towards Multidrug Adaptive Therapy. Cancer Res 2020-04-01;80(7):1578-1589.

Adaptive therapy

Modified from: West J, et al. Towards Multidrug Adaptive Therapy. Cancer Res 2020-04-01;80(7):1578-1589.

Adaptive therapy

