$\begin{array}{c} Introduction\ to\ Modern\ Cryptography\\ \text{Homework}\ 2 \end{array}$

Jie Feng*

jokerfeng2010@gmail.com Information Security Institute Johns Hopkins University

September 24, 2013

^{*}I'm getting loving cryptography

Ex 3.1 Prove Proposition 3.7

Proof of Proposition 3.7-1:

Given polynomial p(n), we have that $h(n) = p(n) \cdot 2$ is polynomial too. Since $negl_1(n)$ and $negl_2(n)$ are negligible functions, by **DEFINITION 3.5**, we get:

- there exists an N_1 such that for all integers $n > N_1$ it holds that $\operatorname{negl}_1(n) < \frac{1}{h(n)}$.
- there exists an N_2 such that for all integers $n > N_2$ it holds that $\operatorname{negl}_2(n) < \frac{1}{h(n)}$.

Let $N = max(N_1, N_2)$, we have: for all integers n > N it holds that $\mathsf{negl}_1(n) < \frac{1}{h(n)} \ and \ \mathsf{negl}_2(n) < \frac{1}{h(n)}.$

Hence we get: for all integers n > N it holds that $\mathsf{negl}_1(n) + \mathsf{negl}_2(n) < \infty$ $\frac{1}{h(n)} \cdot 2 = p(n).$

Finally, we have: $\operatorname{\mathsf{negl}}_3(n) = \operatorname{\mathsf{negl}}_1(n) + \operatorname{\mathsf{negl}}_2(n)$ is negligible.

Proof of Proposition 3.7-2:

Given polynomial q(n), we have that $h(n) = q(n) \cdot p(n)$ is polynomial too. Since $negl_1(n)$ is negligible functions, by **DEFINITION 3.5**, we get:

• there exists an N such that for all integers n > N it holds that $negl_1(n) <$ $\frac{1}{h(n)}$.

Hence we get: for all integers n > N it holds that $negl_4(n) = p(n) \cdot negl_1(n) < p(n)$ $\begin{array}{c} p(n) \cdot \frac{1}{h(n)} = p(n) \cdot \frac{1}{q(n) \cdot p(n)} = p(n). \\ \text{Finally, we have: } \mathsf{negl_4}(n) = p(n) \cdot \mathsf{negl_1}(n) \end{array}$

Ex 3.3 Prove that Definition 3.9 cannot be satisfied if Π can encrypt arbitrary length messages and the adversary is not restricted to output equal length messages in experiment $\mathsf{PrivK}_{A\Pi}^{eav}$.

Proof:

In **DEFINITION 3.8**, we have:

A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms (Gen, Enc, Dec).

Since Enc is polynomial-time algorithm, we know that it can only produce polynomial-length output if given polynomial-length input. Otherwise, the algorithm of Enc is not a polynomial one.

Suppose Enc is used to encrypt a single bit, then the length of the ciphertext is polynomial. Let q(n) be a polynomial upper-bound on the length of the ciphertext.

If Π can encrypt arbitrary length messages and the adversary is not restricted to output equal length messages in experiment $\mathsf{PrivK}_{\mathcal{A},\Pi}^{eav}$, then consider an adversary who outputs $m_0 \in \{0,1\}$ and $m_1 \in \{0,1\}^{q(n)+2}$.

In the third step of the adversarial indistinguishability experiment $\mathsf{PrivK}^{eav}_{A\Pi}(n)$, the adversary can guess b' in the following means:

- 1. if *ciphtertext* c's length is bigger than or equal to q(n) then output b' = 1.
- 2. if ciphtertext c's length is smaller than q(n) then output b'=0.

So, how is the probability of that guess? Let's calculate.

There are $2^{q(n)+2}$ different plaintexts of length q(n) + 2.

Since it holds that $Dec_k(Enc_k(m)) = m$, thus it should hold that $Enc(m_0) \neq m$ $Enc(m_1), \forall m_0, m_1 \in 0, 1^*.$

So, there are at most $2^1 + 2^2 + \cdots + 2^{q(n)-1}$ different ciphertexts which are encrypted from plaintext $m \in \{0,1\}^{q(n)+2}$ with length smaller than q(n).

Let P be the probability that a plaintext of length q(n) + 2 is encrypted to a ciphertext with length smaller to q(n). So $P \leq \frac{2^1+2^2+\cdots+2^{q(n)-1}}{2^{q(n)+2}} = \frac{2^{q(n)}-2}{2^{q(n)+2}} < \frac{1}{4}$. By definition of **the adversarial indistinguishability experiment**, m_0 and m_1

So
$$P \le \frac{2^1 + 2^2 + \dots + 2^{q(n)-1}}{2^{q(n)+2}} = \frac{2^{q(n)} - 2}{2^{q(n)+2}} < \frac{1}{4}$$

are both get encrypted at probability $\frac{1}{2}$.

1. If m_0 gets encrypted.

Since the upper-bound on the length of the ciphertext when Enc is used to encrypt a single bit is q(n), so the probability of that the length of ciphtertext is smaller than q(n) is 1.

At this situation, we will always guess b'=0, thus the probability to win the guess is 1 when m_0 gets encrypted.

2. If m_1 gets encrypted.

When the length of the ciphertext is bigger than or equal to q(n), we will always guess b'=1, and we are right. When the length of the ciphertext is smaller than q(n), we will always guess b'=0, and we are wrong.

Since the length of the ciphertext which is bigger than or equal to q(n) is at probability of 1-P. So, the probability to win the guess is 1-P when m_1 gets encrypted.

So, the probability to win the game is $Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{eav}(n)=1]=\frac{1+1-p}{2}=1-\frac{p}{2}>$ $1 - \frac{1}{4} = \frac{3}{4} > \frac{1}{2} + \text{negl(n)}.$ Thus Definition 3.9 cannot be satisfied.

Ex 3.4 Answer:

Let $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ be a fixed-length private-key encryption scheme. Let $\Pi' = (\mathsf{Gen'}, \mathsf{Enc'}, \mathsf{Dec'})$ be the scheme we need, define Π' as follows:

- 1. Gen' takes as input the security parameter n and outputs a key $k, k \leftarrow \mathsf{Gen}(1^{\mathsf{n}})$.
- 2. Enc' takes as input a key k and a plaintext message $m \in \{0,1\}^l$ where l < l(n). Then generate message m' by first padding m with a single bit 1, then padding with bits 0 until the length reaches l(n). After that, encrypt the new message m' with Gen from Π and output ciphertext c.
- 3. Dec' takes as input a key k and a ciphertext c. First uses Dec and key k to decrypt the ciphtertext and get padded message m', then removes the zeros together with the first 1 at the tail of the m' and output the message m.

In the adversarial indistinguishability experiment $\mathsf{PrivK}^{eav}_{\mathcal{A},\Pi}(n)$. The adversary can output messages m_0 and m_1 where $|m_0| < l(n)$ and $|m_1| < l(n)$.

Then the adversary receives the ciphertext c which is encrypted by one of the two padded messages m_0 and m_1 of the same length.

Thus the scheme satisfies Definition 3.9.