Mixed Precision

Christoph Höppke, Daniel Thomaschewsik

TU Dortmund

Version:16. Mai 2016

- 1 What is a Mixed Precision Method?
 - Definition
 - Performance Gains
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- Example Calculation
 - Testresults

- 1 What is a Mixed Precision Method?
 - Definition
 - Performance Gains
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- Example Calculation
 - Testresults

Definition

Definition:

An Algorithm that uses different precisions in its computation

Example: double(a) + float(b)

Goal:

Obtain the same accuracy by using high precision but better performance by utilizing low precision computations

Performance Gains

Bandwidth bound algorithm

- 64 bit = 1 double = 2 floats = 4 halfs
- More variables per bandwidth
- More variables per storage
- Applies to all memory levels: network, disc, main, device, local, register

Computation bound algorithm

- 1 double addition \approx 2 float additions \approx 4 half additions (linear)
- 1 double multip. \approx 4 float multip. \approx 16 half multip. (quadratic)
- ullet up to 16 times better computational efficiency

Roundoff and Cancellation

Definition Machine Precision

The smalles positive number ϵ for wich a floating point calculations evaluates the expression $1+\epsilon>1$ to be true.

Examples:

- $\epsilon_{double} \approx 2.220446049250313 \cdot 10^{-16}$
- $\epsilon_{float} \approx 1.1920929 \cdot 10^{-7}$
- $\epsilon_{half} \approx 9.765625 \cdot 10^{-4}$
- So more precision is usually better

Cancellation

$$\begin{array}{lll} \mbox{additive roundoff} & a = 1 + 0.00000004 = 1.00000004 & =_{fl} \ 1 \\ \mbox{multiplicative roundoff} & b = 1.0002 \cdot 0.9998 = 0.99999996 & =_{fl} \ 1 \\ \mbox{cancellation} & c \in \{a,b\} & \pm 4 = (c-1) \cdot 10^8 & =_{fl} \ 0 \\ \mbox{oder of operations} & 1 + 0.000000004 - 1 =_{fl} \ 0 \\ & 1 - 1 + 0.000000004 =_{fl} \ 0.00000004 \end{array}$$

Computational Precision vs Accuracy of Result

Instructive Example [S.M. Rump, 1988]

$$f(x,y) = (333.75 - x^2)y^6 + x^2(11x^2y^2 - 121y^4 - 2) + 5.5y^8 + 0.5x/y$$

 $x_0 = 77617, y_0 = 33096$

float s23e8 1.1726 double s52e11 1.17260394005318 quad s63e15 1.172603940053178631

The correct result is:

-0.82739605994682136814116509547981629

DataError and Truncation

- Data error occurs when the exact value has to be truncated for storage in the binary format
 - π , $\sqrt{2}$, sin(2), e^2 , 1/3
 - every rational number with a denominator that has a prime factor other than 2
- How can float be better than double?
 - There is no data error in the operands
 - The errors can cancel out themselves favorably

Floating Point Operations. A deeper analysis

- Number representation
 - ullet half s10e5 a=|1 bit sign s_a | 10 bit mantissa m_a | 5 bit exp. e_a
 - lacksquare float s23e8 b = |1 bit sign s_b | 23 bit mantissa m_b | 8 bit exp. e_b
 - \blacksquare double s52e11 c = |1 bit sign s_c | 52 bit mantissa m_c | 11 bit exp. e_c
- Multiplication $float(a) \cdot float(b)$
 - Operations: $s_a \cdot s_b, m_a \cdot m_b, e_a \cdot e_b$
 - Excat format: s46e9 = s23e8 ·s23e8
 - Main error: Mantissa truncated from 46 bit to 23 bit
- Addition float(a) + float(b)
 - Operations: $e_{diff} = e_a e_b$, $m_a + (m_b >> e_{diff})$, normalize
 - Exact format: s278e8 = s23e8+s23e8
 - Main error: Maintissa truncated from 278 bit to 23 bit

- 1 What is a Mixed Precision Method?
 - Definition
 - Performance Gains
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- Example Calculation
 - Testresults

History of GPGPU

1999: NVIDIA GeForce 256

- Term GPU was coined during the launch
- GPGPU calculations were only achievable by "Hacking the GPU"(verry cumbersome and error-prone)

2003-2007 First wave of GPU computing

- Floating point support
- Performance improvements
- Geforce 8800GT Release (29.October 2007)
 first CUDA enabled Consumer GPU
- Double precision was not available on the GPU
- Mixed Precision was the ONLY way to utilize GPU horesepower without precision compromises
- Mixed Precision lead to a speedup of factor 3-5 in FEM applications

Why Mixed Precision is difficult

- Data has to be transferred to the GPU over the relativly slow PCIe interface
- A lot of time is wasted while waiting for data

Unconventional computation Hardware

NVIDIA Jetson TK1 Bord

- CPU and GPU share the same memory and use the same memory interface
- Copying data from CPU to GPU and vice versa is much faster

- 1 What is a Mixed Precision Method?
 - Definition
 - Performance Gains
 - Precision
 - Data Error and Truncation
 - Floting Point Operations. A deeper analysis
- History of Mixed Precision in the context of GPGPU calculations
 - History of GPGPU
 - Why Mixed Precision is difficult
 - Unconventional computation Hardware
- 3 Example Calculation
 - Testresults

Example Calculation

Problem

Solve the Poission problem $-\Delta u=1,\ x\in\Omega$ with dirichlet boundry conditions $u\equiv0,\ x\in\partial\Omega$ using conforming quadrilateral elements for the finite-element discretization of the unit square $\Omega=(-1,1)^2$

- Method 1: Using a CG solver
- Method 2 : Using a more sophisticated MG solver

Testresults pending

Imagine a nice Plot