(Fall 2021) 1179 Probability

Due: 2021/11/01 (Monday), 9pm

Homework 2: Random Variables and Expected Value

Submission Guidelines: Please combine all your write-ups (photos/scanned copies are acceptable; please make sure that the electronic files are of good quality and reader-friendly) into one single .pdf file and submit the file via E3.

Problem 1 (Special Discrete Random Variables)

(10+10=20 points)

- (a) Consider a Poisson random variable X with parameters λ and T. Let $p_X(k)$ denote the PMF of X and let k^* be the largest integer that is less than or equal to λT . Show that $k^* = \arg\max_{k \in \mathbb{N} \cup \{0\}} p_X(k)$. (Hint: Show that the PMF of X is monotonically non-decreasing with k in the range from 0 to k^* and is monotonically decreasing with k for $k \geq k^*$.)
- (b) Let X_1, X_2, \dots, X_n be n independent Geometric random variables with the same success probability $p \in (0,1)$. Define $X = \min(X_1, \dots, X_n)$. What is the PMF of X? What kind of random variable is X?

Problem 2 (PMFs and Combinatorics)

(10+8=18 points)

Consider a random experiment of distributing r indistinguishable balls to n different cells (for simplicity, let us index the cells as $1, 2, \dots, n$). Suppose that all distinguishable arrangements are equally likely to occur (For example, in the case of r=2 and n=2, then the three arrangements (2,0), (1,1), and (0,2) have equal probabilities). This setting is closely related to the Bose-Einstein statistics in quantum physics.

(a) Let X be the number of balls in the 1st cell (and X is clearly a random variable), and let q_k be the probability of the event that X = k. Show that for any $k \in \mathbb{N} \cup \{0\}$,

$$q_k = C_{r-k}^{n+r-k-2}/C_r^{n+r-1}.$$

Please clearly explain each step of your answer.

(b) Based on the result in (a), show that if the average number of particles per cell r/n tends to λ as $n \to \infty$ and $r \to \infty$, then we have $q_k \to \lambda^k/(1+\lambda)^{k+1}$ as $n \to \infty$ and $r \to \infty$. What kind of random variable is X in the limit?

Problem 3 (Communication Over a Binary Channel and Poisson)

(10+10=20 points)

At each time, the transmitter sends out either a '1' with probability p, or a '0' with probability 1-p. Given that the transmitted bit is '1', the receiver successfully receives the '1' with probability α_1 or it receives an incorrect message of '0' with probability $1-\alpha_1$. Similarly, given that the transmitted bit is '0', the receiver either receives a '0' with probability α_0 , or a '1' with probability $1-\alpha_0$, respectively.

- (a) Suppose the number of transmissions within a given observation window T has a Poisson PMF with average rate λ . Define a random variable X to be the number of 1's transmitted in that time interval. Show that X has a Poisson PMF with average rate λp . (Hint: Define V = total transmitted bits in the given interval. Try to use the total probability theorem $P(X = k) = \sum_{n=0}^{\infty} P(X = k | V = k + n) \cdot P(V = k + n)$)
- (b) By using the setting in (a), we suppose that the number of transmissions within a given observation window T has a Poisson PMF with average rate λ . Define a random variable Y to be the total number of 1's received in that time interval. What is the PMF of Y?

Problem 4 (Expected Value, Variance and Moments)

(8+10+10=28 points)

- (a) Suppose $X \sim \text{Geometric}(p)$. Show that E[X] = 1/p and $\text{Var}[X] = (1-p)/p^2$. (Hint: Write down the PMF and try to reuse the fact that the total probability is 1.)
- (b) Let $n \geq 3$ be a positive integer. Let X and Y be two discrete random variables with the identical set of

possible values $\{a_1, a_2, \dots, a_n\}$, where a_1, a_2, \dots, a_n are n distinct real numbers. Show that if $E[X^m] = E[Y^m]$ for all $m \in \{1, 2, \dots, n-1\}$, then X and Y are identically distributed, i.e., P(X = t) = P(Y = t), for all $t \in \{a_1, \dots, a_n\}$.

(c) Let $z_n = (-1)^n \sqrt{n}$, for $n = 1, 2, 3 \cdots$. Let Z be a discrete random variable with the set of possible values $\{z_n : n = 1, 2, 3 \cdots\}$. The PMF of Z is

$$p_Z(z_n) = P(Z = z_n) = \frac{6}{(\pi n)^2}, \ \forall n \in \mathbb{N}.$$

What is $\operatorname{Var}[Z]$? How about the value of $\sum_{n=1}^{\infty} z_n^3 \cdot p_Z(z_n)$? Does $E[Z^3]$ exist? Moreover, does $E[Z^{10}]$ exist? Please carefully justify each step of your answer.

Problem 5 (Continuous Random Variables)

(10+10=20 points)

- (a) Let X be an exponential random variable with parameter λ . Consider another random variable Y=aX+b, where a,b are real numbers and $a\neq 0$. Please write down the CDF and PDF of Y (Note: we assume that the PDF of Y is continuous everywhere, except at b). Under what condition is Y also an exponential random variable? (Hint: a>0 and a<0 may lead to different characteristics of CDF and PDF)
- (b) Verify that a standard normal random variable X satisfies that Var[X] = 1. (Hint: Use integration by parts)