Rec'd PCT/PTO 25 MAY 2005

SEQUENCE LISTING

<110> Ting, Jenny Linhoff, Michael Harton, Johnathan Williams, Kristi Lich, John O'Connor, William Moore, Christopher Davis, Beckley Brickey, W. Jane Conti, Brian Zhang, Jinghua Zhu, Xin-Sheng <120> CATERPILLER GENE FAMILY <130> 5470-368 <140> US 10/511,989 <141> 2004-10-20 <150> PCT/US03/13562 <151> 2003-04-30 <150> US 60/376,626 <151> 2002-04-30 <160> 187 <170> PatentIn version 3.3 <210> 1 <211> 3731 <212> DNA <213> Homo sapiens <400> 1 attggtgagt ggggcagggc aggagggaac tgaagagtga gaaagcatta tttcagcaaa 60 aggtetttee teeettgete acteeteeaa ceaetggete ageeteteeg eeegetgeet 120 gtgaatgatg caatggaagg tgtgctgggg tcgccctgtg tcccgtgcat aggagcatct 180 cagoctccag gtcctctcct ttggggctta cggcaccccc atgctacgaa ccgcaggcag 240 ggacggcctc tgtcgcctgt ccacctactt ggaagaactc gaggctgtgg aactgaagaa 300 gttcaagtta tacctgggga ccgcgacaga gctgggagaa ggcaagatcc cctggggaag 360 catggagaag gccggtcccc tggaaatggc ccagctgctc atcacccact tcgggccaga 420 ggaggcctgg aggttggctc tcagcacctt tgagcggata aacaggaagg acctgtggga 480 gagaggacag agagaggacc tggtgaggga taccccacct ggtggcccgt cctcacttgg 540

gaaccagtca acatgeette tggaagtete tettgteaet ecaagaaaag ateeccagga

aacctacagg gactatgtcc gcaggaaatt ccggctcatg gaagaccgca atgcgcgcct

aggggaatgt gtcaacctca gccaccggta cacccggctc ctgctggtga aggagcactc

600

660

780 aaaccccatg caggtccagc agcagcttct ggacacaggc cggggacacg cgaggaccgt 840 gggacaccag gctagcccca tcaagataga gaccctcttt gagccagacg aggagcgccc 900 cgagccaccg cgcaccgtgg tcatgcaagg cgcggcaggg ataggcaagt ccatgctggc 960 acacaaggtg atgctggact gggcggacgg gaagctcttc caaggcagat ttgattatct 1020 cttctacatc aactgcaggg agatgaacca gagtgccacg gaatgcagca tgcaagacct 1080 catcttcage tgctggcctg ageccagege geetetecag gageteatee gagtteeega 1140 gegeeteett tteateateg aeggettega tgageteaag eettetttee aegateetea gggaccetgg tgcctetget gggaggagaa acggcccacg gagetgette ttaacagett 1200 1260 aatteggaag aagetgetee etgagetate tttgeteate accacaegge ccaeggettt 1320 ggagaagete cacegtetge tggageacee caggeatgtg gagateetgg gettetetga ggcagaaagg aaggaatact tctacaagta tttccacaat gcagagcagg cgggccaagt 1380 1440 etteaattae gtgagggaea aegageetet etteaceatg tgettegtee eeetggtgtg 1500 ctgggtggtg tgtacctgcc tccagcagca gctggagggt ggggggctgt tgagacagac 1560 gtccaggacc accactgcag tgtacatgct ctacctgctg agtctgatgc aacccaagcc 1620 gggggccccg cgcctccagc ccccacccaa ccagagaggg ttgtgctcct tggcggcaga 1680 tgggctctgg aatcagaaaa tcctatttga ggagcaggac ctccggaagc acggcctaga 1740 cggggaagac gtctctgcct tcctcaacat gaacatcttc cagaaggaca tcaactgtga 1800 gaggtactac agcttcatcc acttgagttt ccaggaattc tttgcagcta tgtactatat 1860 cctggacgag ggggagggcg gggcaggccc agaccaggac gtgaccaggc tgttgaccga 1920 gtacgcgttt tetgaaagga getteetgge acteaceage egetteetgt ttggaeteet 1980 gaacgaggag accaggagcc acctggagaa gagtctctgc tggaaggtct cgccgcacat 2040 caagatggac ctgttgcagt ggatccaaag caaagctcag agcgacggct ccaccctgca 2100 gcagggctcc ttggagttct tcagctgctt gtacgagatc caggaggagg agtttatcca 2160 gcaggccctg agccacttcc aggtgatcgt ggtcagcaac attgcctcca agatggagca 2220 catggtctcc tcgttctgtc tgaagcgctg caggagcgcc caggtgctgc acttgtatgg 2280 cgccacctac agcgcggacg gggaagaccg cgcgaggtgc tccgcaggag cgcacacgct gttggtgcag ctcagaccag agaggaccgt tctgctggac gcctacagtg aacatctggc 2340 2400 ageggeeetg tgeaccaate caaacetgat agagetgtet etgtacegaa atgeeetggg 2460 cagccggggg gtgaagctgc tctgtcaagg actcagacac cccaactgca aacttcagaa cctgaggctg aagaggtgcc gcatctccag ctcagcctgc gaggacctct ctgcagctct 2520

catagccaat	aagaatttga	caaggatgga	tctcagtggc	aacggcgttg	gattcccagg	2580
catgatgctg	ctttgcgagg	gcctgcggca	tccccagtgc	aggctgcaga	tgattcagtt	2640
gaggaagtgt	cagctggagt	ccggggcttg	tcaggagatg	gcttctgtgc	tcggcaccaa	2700
cccacatctg	gttgagttgg	acctgacagg	aaatgcactg	gaggatttgg	gcctgaggtt	2760
actatgccag	ggactgaggc	acccagtctg	cagactacgg	actttgtggc	tgaagatctg	2820
ccgcctcact	gctgctgcct	gtgacgagct	ggcctcaact	ctcagtgtga	accagagcct	2880
gagagagctg	gacctgagcc	tgaatgagct	gggggacctc	ggggtgctgc	tgctgtgtga	2940
gggcctcagg	catcccacgt	gcaagctcca	gaccctgcgg	ttgggcatct	gccggctggg	3000
ctctgccgcc	tgtgagggtc	tttctgtggt	gctccaggcc	aaccacaacc	teegggaget	3060
ggacttgagt	ttcaacgacc	tgggagactg	gggcctgtgg	ttgctggctg	aggggetgea	3120
acatcccgcc	tgcagactcc	agaaactgtg	gctggatagc	tgtggcctca	cagccaaggc	3180
ttgtgagaat	ctttacttca	ccctggggat	caaccagacc	ttgaccgacc	tttacctgac	3240
caacaacgcc	ctaggggaca	caggtgtccg	actgctttgc	aagcggctga	gccatcctgg	3300
ctgcaaactc	cgagtcctct	ggttatttgg	gatggacctg	aataaaatga	cccacagtag	3360
gttggcagcg	cttcgagtaa	caaaacctta	tttggacatt	ggctgctgaa	tggtcctatc	3420
tgctggctct	cccctgagat	ctggacagag	gaagatggga	gggtgctcat	caccccccca	3480
gcataatgat	cagecteett	cctagagaca	gactcatgca	gattgagatc	aaaagtccct	3540
ctgcttggga	tcaaattaat	gtttgacaga	gctggccagg	cgtggtggct	catgtatgta	3600
atcctagcac	ttcgagaggc	cgaggcaggt	ggatcacgag	gtcaggagtt	tgagattagc	3660
ctggccaaga	tggtgaaacc	ctgtctctac	taaaaataaa	aaaaaattag	ccaggaaaaa	3720
aaaaaaaaa	a					3731

<210> 2 <211> 1062 <212> PRT <213> Homo sapiens

<400> 2

Met Leu Arg Thr Ala Gly Arg Asp Gly Leu Cys Arg Leu Ser Thr Tyr 5

Leu Glu Glu Leu Glu Ala Val Glu Leu Lys Lys Phe Lys Leu Tyr Leu

Gly Thr Ala Thr Glu Leu Gly Glu Gly Lys Ile Pro Trp Gly Ser Met

Glu Lys Ala Gly Pro Leu Glu Met Ala Gln Leu Leu Ile Thr His Phe Gly Pro Glu Glu Ala Trp Arg Leu Ala Leu Ser Thr Phe Glu Arg Ile Asn Arg Lys Asp Leu Trp Glu Arg Gly Gln Arg Glu Asp Leu Val Arg Asp Thr Pro Pro Gly Gly Pro Ser Ser Leu Gly Asn Gln Ser Thr Cys Leu Leu Glu Val Ser Leu Val Thr Pro Arg Lys Asp Pro Gln Glu Thr Tyr Arg Asp Tyr Val Arg Arg Lys Phe Arg Leu Met Glu Asp Arg Asn Ala Arg Leu Gly Glu Cys Val Asn Leu Ser His Arg Tyr Thr Arg Leu Leu Leu Val Lys Glu His Ser Asn Pro Met Gln Val Gln Gln Gln Leu Leu Asp Thr Gly Arg Gly His Ala Arg Thr Val Gly His Gln Ala Ser Pro Ile Lys Ile Glu Thr Leu Phe Glu Pro Asp Glu Glu Arg Pro Glu Pro Pro Arg Thr Val Val Met Gln Gly Ala Ala Gly Ile Gly Lys Ser Met Leu Ala His Lys Val Met Leu Asp Trp Ala Asp Gly Lys Leu Phe Gln Gly Arg Phe Asp Tyr Leu Phe Tyr Ile Asn Cys Arg Glu Met Asn Gln Ser Ala Thr Glu Cys Ser Met Gln Asp Leu Ile Phe Ser Cys Trp

Pro Glu Pro Ser Ala Pro Leu Gln Glu Leu Ile Arg Val Pro Glu Arg

Leu Leu Phe Ile Ile Asp Gly Phe Asp Glu Leu Lys Pro Ser Phe His Asp Pro Gln Gly Pro Trp Cys Leu Cys Trp Glu Glu Lys Arg Pro Thr Glu Leu Leu Asn Ser Leu Ile Arg Lys Leu Leu Pro Glu Leu Ser Leu Leu Ile Thr Thr Arg Pro Thr Ala Leu Glu Lys Leu His Arg Leu Leu Glu His Pro Arg His Val Glu Ile Leu Gly Phe Ser Glu Ala Glu Arg Lys Glu Tyr Phe Tyr Lys Tyr Phe His Asn Ala Glu Gln Ala Gly Gln Val Phe Asn Tyr Val Arg Asp Asn Glu Pro Leu Phe Thr Met Cys Phe Val Pro Leu Val Cys Trp Val Val Cys Thr Cys Leu Gln Gln Gln Leu Glu Gly Gly Leu Leu Arg Gln Thr Ser Arg Thr Thr Thr Ala Val Tyr Met Leu Tyr Leu Leu Ser Leu Met Gln Pro Lys Pro Gly Ala Pro Arg Leu Gln Pro Pro Pro Asn Gln Arg Gly Leu Cys Ser Leu Ala Ala Asp Gly Leu Trp Asn Gln Lys Ile Leu Phe Glu Glu Gln Asp Leu Arg Lys His Gly Leu Asp Gly Glu Asp Val Ser Ala Phe Leu Asn Met Asn Ile Phe Gln Lys Asp Ile Asn Cys Glu Arg Tyr Tyr Ser Phe Ile His Leu Ser Phe Gln Glu Phe Phe Ala Ala Met Tyr Tyr Ile Leu

Asp Glu Gly Glu Gly Gly Ala Gly Pro Asp Gln Asp Val Thr Arg Leu

535	540

Leu 545	Thr	Glu	Tyr	Ala	Phe 550	Ser	Glu	Arg	Ser	Phe 555	Leu	Ala	Leu	Thr	Ser 560
Arg	Phe	Leu	Phe	Gly 565	Leu	Leu	Asn	Glu	Glu 570	Thr	Arg	Ser	His	Leu 575	Glu
Lys	Ser	Leu	Cys 580	Trp	Lys	Val	Ser	Pro 585	His	Ile	Lys	Met	Asp 590	Leu	Leu
Gln	Trp	Ile 595	Gln	Ser	Lys	Ala	Gln 600	Ser	Asp	Gly	Ser	Thr 605	Leu	Gln	Gln
Gly	Ser 610	Leu	Glu	Phe	Phe	Ser 615	Cys	Leu	Tyr	Glu	Ile 620	Gln	Glu	Glu	Glu
Phe 625	Ile	Gln	Gln	Ala	Leu 630	Ser	His	Phe	Gln	Val 635	Ile	Val	Val	Ser	Asn 640
Ile	Ala	Ser	Lys	Met 645	Glu	His	Met	Val	Ser 650	Ser	Phe	Cys	Leu	Lys 655	Arg
Cys	Arg	Ser	Ala 660	Gln	Val	Leu	His	Leu 665	Tyr	Gly	Ala	Thr	Tyr 670	Ser	Ala
Asp	Gly	Glu 675	Asp	Arg	Ala	Arg	Cys 680	Ser	Ala	Gly	Ala	His 685	Thr	Leu	Leu
Val	Gln 690	Leu	Arg	Pro	Glu	Arg 695	Thr	Val	Leu	Leu	Asp 700	Ala	Tyr	Ser	Glu
His 705	Leu	Ala	Ala	Ala	Leu 710	Cys	Thr	Asn	Pro	Asn 715	Leu	Ile	Glu	Leu	Ser 720
Leu	Tyr	Arg	Asn	Ala 725	Leu	Gly	Ser	Arg	Gly 730	Val	Lys	Leu	Leu	Cys 735	Gln
Gly	Leu	Arg	His 740	Pro	Asn	Cys	Lys	Leu 745	Gln	Asn	Leu	Arg	Leu 750	Lys	Arg
Cys	Arg	Ile 755	Ser	Ser	Ser	Ala	Cys 760	Glu	Asp	Leu	Ser	Ala 765	Ala	Leu	Ile
Ala	Asn 770	Lys	Asn	Leu	Thr	Arg 775	Met	Asp	Leu	Ser	Gly 780	Asn	Gly	Val	Gly

Arg Leu Gln Met Ile Gln Leu Arg Lys Cys Gln Leu Glu Ser Gly Ala Cys Gln Glu Met Ala Ser Val Leu Gly Thr Asn Pro His Leu Val Glu Leu Asp Leu Thr Gly Asn Ala Leu Glu Asp Leu Gly Leu Arg Leu Leu Cys Gln Gly Leu Arg His Pro Val Cys Arg Leu Arg Thr Leu Trp Leu Lys Ile Cys Arg Leu Thr Ala Ala Cys Asp Glu Leu Ala Ser Thr Leu Ser Val Asn Gln Ser Leu Arg Glu Leu Asp Leu Ser Leu Asn Glu Leu Gly Asp Leu Gly Val Leu Leu Cys Glu Gly Leu Arg His Pro Thr Cys Lys Leu Gln Thr Leu Arg Leu Gly Ile Cys Arg Leu Gly Ser Ala Ala Cys Glu Gly Leu Ser Val Val Leu Gln Ala Asn His Asn Leu Arg Glu Leu Asp Leu Ser Phe Asn Asp Leu Gly Asp Trp Gly Leu Trp Leu Leu Ala Glu Gly Leu Gln His Pro Ala Cys Arg Leu Gln Lys Leu

Phe Pro Gly Met Met Leu Leu Cys Glu Gly Leu Arg His Pro Gln Cys

Phe Thr Leu Gly Ile Asn Gln Thr Leu Thr Asp Leu Tyr Leu Thr Asn 995 1000 1005

Trp Leu Asp Ser Cys Gly Leu Thr Ala Lys Ala Cys Glu Asn Leu Tyr

Asn Ala Leu Gly Asp Thr Gly Val Arg Leu Leu Cys Lys Arg Leu 1010 1015 1020

Ser His Pro Gly Cys Lys Leu Arg Val Leu Trp Leu Phe Gly Met 1025 1030 1035

Asp Leu Asn Lys Met Thr His Ser Arg Leu Ala Ala Leu Arg Val 1040 1045 1050

Thr Lys Pro Tyr Leu Asp Ile Gly Cys 1055 1060

<210> 3

<211> 3563

<212> DNA

<213> Homo sapiens

<400> 3

attggtgagt	ggggcagggc	aggagggaac	tgaagagtga	gaaagcatta	tttcagcaaa	60
aggtctttcc	tcccttgctc	actcctccaa	ccactggctc	agcctctccg	cccgctgcct	120
gtgaatgatg	caatggaagg	tgtgctgggg	tcgccctgtg	tcccgtgcat	aggagcatct	180
cagcctccag	gtcctctcct	ttggggctta	cggcaccccc	atgctacgaa	ccgcaggcag	240
ggacggcctc	tgtcgcctgt	ccacctactt	ggaagaactc	gaggctgtgg	aactgaagaa	300
gttcaagtta	tacctgggga	ccgcgacaga	gctgggagaa	ggcaagatcc	cctggggaag	360
catggagaag	gccggtcccc	tggaaatggc	ccagctgctc	atcacccact	tcgggccaga	420
ggaggcctgg	aggttggctc	tcagcacctt	tgagcggata	aacaggaagg	acctgtggga	480
gagaggacag	agagaggacc	tggtgaggga	taccccacct	ggtggcccgt	cctcacttgg	540
gaaccagtca	acatgccttc	tggaagtctc	tcttgtcact	ccaagaaaag	atccccagga	600
aacctacagg	gactatgtcc	gcaggaaatt	ccggctcatg	gaagaccgca	atgcgcgcct	660
aggggaatgt	gtcaacctca	gccaccggta	cacccggctc	ctgctggtga	aggagcactc	720
aaaccccatg	caggtccagc	agcagcttct	ggacacaggc	cggggacacg	cgaggaccgt	780
gggacaccag	gctagcccca	tcaagataga	gaccctcttt	gagecagaeg	aggagcgccc	840
cgagccaccg	cgcaccgtgg	tcatgcaagg	cgcggcaggg	ataggcaagt	ccatgctggc	900
acacaaggtg	atgctggact	gggcggacgg	gaagctcttc	caaggcagat	ttgattatct	960
cttctacatc	aactgcaggg	agatgaacca	gagtgccacg	gaatgcagca	tgcaagacct	1020
catcttcagc	tgctggcctg	agcccagcgc	gcctctccag	gagctcatcc	gagttcccga	1080
gcgcctcctt	ttcatcatcg	acggcttcga	tgagctcaag	ccttctttcc	acgatcctca	1140
gggaccctgg	tgcctctgct	gggaggagaa	acggcccacg	gagctgcttc	ttaacagctt	1200
aattcggaag	aagctgctcc	ctgagctatc	tttgctcatc	accacacggc	ccacggcttt	1260

1320 ggagaagete caccgtetge tggagcacce caggeatgtg gagateetgg gettetetga ggcagaaagg aaggaatact tctacaagta tttccacaat gcagagcagg cgggccaagt 1380 1440 cttcaattac gtgagggaca acgageetet etteaceatg tgettegtee eeetggtgtg 1500 ctgggtggtg tgtacctgcc tccagcagca gctggagggt ggggggctgt tgagacagac 1560 gtccaggacc accactgcag tgtacatgct ctacctgctg agtctgatgc aacccaagcc 1620 gggggccccg cgcctccagc ccccacccaa ccagagaggg ttgtgctcct tggcggcaga tgggctctgg aatcagaaaa tcctatttga ggagcaggac ctccggaagc acggcctaga 1680 cggggaagac gtctctgcct tcctcaacat gaacatcttc cagaaggaca tcaactgtga 1740 gaggtactac agettcatec acttgagttt ccaggaattc tttgcageta tgtactatat 1800 1860 cctggacgag ggggagggcg gggcaggccc agaccaggac gtgaccaggc tgttgaccga gtacgcgttt tctgaaagga gcttcctggc actcaccagc cgcttcctgt ttggactcct 1920 1980 gaacgaggag accaggagcc acctggagaa gagtctctgc tggaaggtct cgccgcacat 2040 caagatggac ctgttgcagt ggatccaaag caaagctcag agcgacggct ccaccctgca gcagggctcc ttggagttct tcagctgctt gtacgagatc caggaggagg agtttatcca 2100 2160 geaggeeetg agecaettee aggtgategt ggteageaac attgeeteea agatggagea catggtetee tegttetgte tgaagegetg caggagegee caggtgetge acttgtatgg 2220 cgccacctac agcgcggacg gggaagaccg cgcgaggtgc tccgcaggag cgcacacgct 2280 2340 gttggtgcag ctcagaccag agaggaccgt tctgctggac gcctacagtg aacatctggc 2400 ageggeeetg tgeaccaate caaacetgat agagetgtet etgtacegaa atgeeetggg cagccggggg gtgaagctgc tctgtcaagg actcagacac cccaactgca aacttcagaa 2460 2520 cctgaggctg aagaggtgcc gcatctccag ctcagcctgc gaggacctct ctgcagctct 2580 catagccaat aagaatttga caaggatgga tctcagtggc aacggcgttg gattcccagg catgatgctg ctttgcgagg gcctgcggca tccccagtgc aggctgcaga tgattcagtt 2640 2700 gaggaagtgt cagctggagt ccggggcttg tcaggagatg gcttctgtgc tcggcaccaa 2760 cccacatctg gttgagttgg acctgacagg aaatgcactg gaggatttgg gcctgaggtt actatgccag ggactgaggc acccagtctg cagactacgg actttgtggc tgaagatctg 2820 2880 cegecteact getgetgeet gtgacgaget ggeeteaact etcagtgtga accagageet gagagagetg gacetgagee tgaatgaget gggggaeete ggggtgetge tgetgtgtga 2940 gggcctcagg catcccacgt gcaageteca gaccetgegg ttgggcatet geeggetggg 3000 3060 ctctgccgcc tgtgagggtc tttctgtggt gctccaggcc aaccacaacc tccgggagct ggacttgagt ttcaacgacc tgggagactg gggcctgtgg ttgctggctg aggggctgca 3120

acatcccgcc	tgcagactcc	agaaactgtg	gtggttattt	gggatggacc	tgaataaaat	3180
gacccacagt	aggttggcag	cgcttcgagt	aacaaaacct	tatttggaca	ttggctgctg	3240
aatggtccta	tctgctggct	ctcccctgag	atctggacag	aggaagatgg	gagggtgctc	3300
atcacccccc	cagcataatg	atcagcctcc	ttcctagaga	cagactcatg	cagattgaga	3360
tcaaaagtcc	ctctgcttgg	gatcaaatta	atgtttgaca	gagctggcca	ggcgtggtgg	3420
ctcatgtatg	taatcctagc	acttcgagag	gccgaggcag	gtggatcacg	aggtcaggag	3480
tttgagatta	gcctggccaa	gatggtgaaa	ccctgtctct	actaaaaata	aaaaaaaatt	3540
agccaggaaa	aaaaaaaaa	aaa				3563

<210> 4

<211> 1006

<212> PRT

<213> Homo sapiens

<400> 4

Met Leu Arg Thr Ala Gly Arg Asp Gly Leu Cys Arg Leu Ser Thr Tyr 1 5 10 15

Leu Glu Glu Leu Glu Ala Val Glu Leu Lys Lys Phe Lys Leu Tyr Leu 20 25 30

Gly Thr Ala Thr Glu Leu Gly Glu Gly Lys Ile Pro Trp Gly Ser Met $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Glu Lys Ala Gly Pro Leu Glu Met Ala Gln Leu Leu Ile Thr His Phe 50 55 60

Gly Pro Glu Glu Ala Trp Arg Leu Ala Leu Ser Thr Phe Glu Arg Ile 70 75 80

Asn Arg Lys Asp Leu Trp Glu Arg Gly Gln Arg Glu Asp Leu Val Arg 85 90 95

Asp Thr Pro Pro Gly Gly Pro Ser Ser Leu Gly Asn Gln Ser Thr Cys
100 105 110

Leu Leu Glu Val Ser Leu Val Thr Pro Arg Lys Asp Pro Gln Glu Thr
115 120 125

Tyr Arg Asp Tyr Val Arg Arg Lys Phe Arg Leu Met Glu Asp Arg Asn 130 135 140

385					390					395					400
Cys	Phe	Val	Pro	Leu 405	Val	Cys	Trp	Val	Val 410	Cys	Thr	Cys	Leu	Gln 415	Gln
Gln	Leu	Glu	Gly 420	Gly	Gly	Leu	Leu	Arg 425	Gln	Thr	Ser	Arg	Thr 430	Thr	Thr
Ala	Val	Tyr 435	Met	Leu	Tyr	Leu	Leu 440	Ser	Leu	Met	Gln	Pro 445	Lys	Pro	Gly
Ala	Pro 450	Arg	Leu	Gln	Pro	Pro 455	Pro	Asn	Gln	Arg	Gly 460	Leu	Cys	Ser	Leu
Ala 465	Ala	Asp	Gly	Leu	Trp 470	Asn	Gln	Lys	Ile	Leu 475	Phe	Glu	Glu	Gln	Asp 480
Leu	Arg	Lys	His	Gly 485	Leu	Asp	Gly	Glu	Asp 490	Val	Ser	Ala	Phe	Leu 495	Asn
Met	Asn	Ile	Phe 500	Gln	Lys	Asp	Ile	Asn 505	Cys	Glu	Arg	Tyr	Tyr 510	Ser	Phe
Ile	His	Leu 515	Ser	Phe	Gln	Glu	Phe 520	Phe	Ala	Ala	Met	Tyr 525	Tyr	Ile	Leu
Asp	Glu 530	Gly	Glu	Gly	Gly	Ala 535	Gly	Pro	Asp	Gln	Asp 540	Val	Thr	Arg	Leu
Leu 545	Thr	Glu	Tyr	Ala	Phe 550	Ser	Glu	Arg	Ser	Phe 555	Leu	Ala	Leu	Thr	Ser 560
Arg	Phe	Leu	Phe	Gly 565	Leu	Leu	Asn	Glu	Glu 570	Thr	Arg	Ser	His	Leu 575	Glu
Lys	Ser	Leu	Cys 580	Trp	Lys	Val	Ser	Pro 585	His	Ile	Lys	Met	Asp 590	Leu	Leu
Gln	Trp	Ile 595	Gln	Ser	Lys	Ala	Gln 600	Ser	Asp	Gly	Ser	Thr 605	Leu	Gln	Gln
Gly	Ser 610	Leu	Glu	Phe	Phe	Ser 615	Cys	Leu	Tyr	Glu	Ile 620	Gln	Glu	Glu	Glu

Phe Ile Gln Gln Ala Leu Ser His Phe Gln Val Ile Val Val Ser Asn

Ile	Ala	Ser	Lys	Met 645	Glu	His	Met	Val	Ser 650	Ser	Phe	Cys	Leu	Lys 655	Arg
Cys	Arg	Ser	Ala 660	Gln	Val	Leu	His	Leu 665	Tyr	Gly	Ala	Thr	Tyr 670	Ser	Ala
Asp	Gly	Glu 675	Asp	Arg	Ala	Arg	Cys 680	Ser	Ala	Gly	Ala	His 685	Thr	Leu	Leu
Val	Gln 690	Leu	Arg	Pro	Glu	Arg 695	Thr	Val	Leu	Leu	Asp 700	Ala	Tyr	Ser	Glu
His 705	Leu	Ala	Ala	Ala	Leu 710	Cys	Thr	Asn	Pro	Asn 715	Leu	Ile	Glu	Leu	Ser 720
Leu	Tyr	Arg	Asn	Ala 725	Leu	Gly	Ser	Arg	Gly 730	Val	Lys	Leu	Leu	Cys 735	Gln
Gly	Leu	Arg	His 740	Pro	Asn	Cys	Lys	Leu 745	Gln	Asn	Leu	Arg	Leu 750	Lys	Arg
Cys	Arg	Ile 755	Ser	Ser	Ser	Ala	Cys 760	Glu	Asp	Leu	Ser	Ala 765	Ala	Leu	Ile
Ala	Asn 770	Lys	Asn	Leu	Thr	Arg 775	Met	Asp	Leu	Ser	Gly 780	Asn	Gly	Val	Gly
Phe 785	Pro	Gly	Met	Met	Leu 790	Leu	Cys	Glu	Gly	Leu 795	Arg	His	Pro	Gln	Cys 800
Arg	Leu	Gln		Ile 805		Leu	Arg	-	Cys 810		Leu	Glu	Ser	Gly 815	Ala
Cys	Gln	Glu	Met 820	Ala	Ser	Val	Leu	Gly 825	Thr	Asn	Pro	His	Leu 830	Val	Glu
Leu	Asp	Leu 835	Thr	Gly	Asn	Ala	Leu 840	Glu	Asp	Leu	Gly	Leu 845	Arg	Leu	Leu
Cys	Gln 850	Gly	Leu	Arg	His	Pro 855	Val	Cys	Arg	Leu	Arg 860	Thr	Leu	Trp	Leu
Lys 865	Ile	Cys	Arg	Leu	Thr 870	Ala	Ala	Ala	Cys	Asp 875	Glu	Leu	Ala	Ser	Thr 880

Leu Gly Asp Leu Gly Val Leu Leu Cys Glu Gly Leu Arg His Pro 900 905 910

Thr Cys Lys Leu Gln Thr Leu Arg Leu Gly Ile Cys Arg Leu Gly Ser 915 920 925

Ala Ala Cys Glu Gly Leu Ser Val Val Leu Gln Ala Asn His Asn Leu 930 935 940

Arg Glu Leu Asp Leu Ser Phe Asn Asp Leu Gly Asp Trp Gly Leu Trp 945 950 955 960

Leu Leu Ala Glu Gly Leu Gln His Pro Ala Cys Arg Leu Gln Lys Leu 965 970 975

Trp Trp Leu Phe Gly Met Asp Leu Asn Lys Met Thr His Ser Arg Leu 980 985 990

Ala Ala Leu Arg Val Thr Lys Pro Tyr Leu Asp Ile Gly Cys 995 1000 1005

<210> 5

<211> 3395

<212> DNA

<213> Homo sapiens

<400> 5

attggtgagt ggggcagggc aggagggaac tgaagagtga gaaagcatta tttcagcaaa 60 aggtetttee teeettgete acteeteeaa ceaetggete ageeteteeg eeegetgeet 120 gtgaatgatg caatggaagg tgtgctgggg tcgccctgtg tcccgtgcat aggagcatct 180 cageeteeag gteeteteet ttggggetta eggeaeeeee atgetaegaa eegeaggeag 240 ggacggcctc tgtcgcctgt ccacctactt ggaagaactc gaggctgtgg aactgaagaa 300 360 gttcaagtta tacctgggga ccgcgacaga qctgggaqaa ggcaagatcc cctggggaag catggagaag geeggteece tggaaatgge ceagetgete ateaceeact tegggeeaga 420 ggaggcctgg aggttggctc tcagcacctt tgagcggata aacaggaagg acctgtggga 480 gagaggacag agagaggacc tggtgaggga taccccacct ggtggcccgt cctcacttgg 540 600 gaaccagtca acatgccttc tggaagtctc tcttgtcact ccaagaaaag atccccagga aacctacagg gactatgtcc gcaggaaatt ccggctcatg gaagaccgca atgcgcgcct 660

catagccaat	aagaatttga	caaggatgga	tctcagtggc	aacggcgttg	gattcccagg	2580
catgatgctg	ctttgcgagg	gcctgcggca	tccccagtgc	aggctgcaga	tgattcagtt	2640
gaggaagtgt	cagctggagt	ccggggcttg	tcaggagatg	gcttctgtgc	tcggcaccaa	2700
cccacatctg	gttgagttgg	acctgacagg	aaatgcactg	gaggatttgg	gcctgaggtt	2760
actatgccag	ggactgaggc	acccagtctg	cagactacgg	actttgtggc	tgtggctgga	2820
tagctgtggc	ctcacagcca	aggcttgtga	gaatctttac	ttcaccctgg	ggatcaacca	2880
gaccttgacc	gacctttacc	tgaccaacaa	cgccctaggg	gacacaggtg	tccgactgct	2940
ttgcaagcgg	ctgagccatc	ctggctgcaa	actccgagtc	ctctggttat	ttgggatgga	3000
cctgaataaa	atgacccaca	gtaggttggc	agcgcttcga	gtaacaaaac	cttatttgga	3060
cattggctgc	tgaatggtcc	tatctgctgg	ctctcccctg	agatctggac	agaggaagat	3120
gggagggtgc	tcatcacccc	cccagcataa	tgatcagcct	ccttcctaga	gacagactca	3180
tgcagattga	gatcaaaagt	ccctctgctt	gggatcaaat	taatgtttga	cagagctggc	3240
caggcgtggt	ggctcatgta	tgtaatccta	gcacttcgag	aggccgaggc	aggtggatca	3300
cgaggtcagg	agtttgagat	tagcctggcc	aagatggtga	aaccctgtct	ctactaaaaa	3360
taaaaaaaaa	ttagccagga	aaaaaaaaa	aaaaa			3395

<210> 6

<211> 950

<212> PRT

<213> Homo sapiens

<400> 6

Met Leu Arg Thr Ala Gly Arg Asp Gly Leu Cys Arg Leu Ser Thr Tyr 5 10 15

Leu Glu Glu Leu Glu Ala Val Glu Leu Lys Lys Phe Lys Leu Tyr Leu 20 25 30

Gly Thr Ala Thr Glu Leu Gly Glu Gly Lys Ile Pro Trp Gly Ser Met 35 40 45

Glu Lys Ala Gly Pro Leu Glu Met Ala Gln Leu Leu Ile Thr His Phe 50 55 60

Gly Pro Glu Glu Ala Trp Arg Leu Ala Leu Ser Thr Phe Glu Arg Ile 65 70 75 80

Asn Arg Lys Asp Leu Trp Glu Arg Gly Gln Arg Glu Asp Leu Val Arg 85 90 95

Asp	Thr	Pro	Pro 100	Gly	Gly	Pro	Ser	Ser 105	Leu	Gly	Asn	Gln	Ser 110	Thr	Cys
Leu	Leu	Glu 115	Val	Ser	Leu	Val	Thr 120	Pro	Arg	Lys	Asp	Pro 125	Gln	Glu	Thr
Tyr	Arg 130	Asp	Tyr	Val	Arg	Arg 135	Lys	Phe	Arg	Leu	Met 140	Glu	Asp	Arg	Asn
Ala 145	Arg	Leu	Gly	Glu	Cys 150	Val	Asn	Leu	Ser	His 155	Arg	Tyr	Thr	Arg	Leu 160
Leu	Leu	Val	Lys	Glu 165	His	Ser	Asn	Pro	Met 170	Gln	Val	Gln	Gln	Gln 175	Leu
Leu	Asp	Thr	Gly 180	Arg	Gly	His	Ala	Arg 185	Thr	Val	Gly	His	Gln 190	Ala	Ser
Pro	Ile	Lys 195	Ile	Glu	Thr	Leu	Phe 200	Glu	Pro	Asp	Glu	Glu 205	Arg	Pro	Glu
Pro	Pro 210	Arg	Thr	Val	Val	Met 215	Gln	Gly	Ala	Ala	Gly 220	Ile	Gly	Lys	Ser
Met 225	Leu	Ala	His	Lys	Val 230	Met	Leu	Asp	Trp	Ala 235	Asp	Gly	Lys	Leu	Phe 240
Gln	Gly	Arg	Phe	Asp 245	Tyr	Leu	Phe	Tyr	Ile 250	Asn	Cys	Arg	Glu	Met 255	Asn
Gln	Ser	Ala	Thr 260		Cys	Ser	Met		Asp		Ile	Phe	Ser 270	Cys	Trp
Pro	Glu	Pro 275	Ser	Ala	Pro	Leu	Gln 280	Glu	Leu	Ile	Arg	Val 285	Pro	Glu	Arg
Leu	Leu 290	Phe	Ile	Ile	Asp	Gly 295	Phe	Asp	Glu	Leu	Lys 300	Pro	Ser	Phe	His
Asp 305	Pro	Gln	Gly	Pro	Trp 310	Cys	Leu	Cys	Ťrp	Glu 315	Glu	Lys	Arg	Pro	Thr 320
Glu	Leu	Leu	Leu	Asn 325	Ser	Leu	Ile	Arg	Lys 330	Lys	Leu	Leu	Pro	Glu 335	Leu

Ser	Leu	Leu	Ile 340	Thr	Thr	Arg	Pro	Thr 345	Ala	Leu	Glu	Lys	Leu 350	His	Arg
Leu	Leu	Glu 355	His	Pro	Arg	His	Val 360	Glu	Ile	Leu	Gly	Phe 365	Ser	Glu	Ala
Glu	Arg 370	Lys	Glu	Tyr	Phe	Tyr 375	Lys	Tyr	Phe	His	Asn 380	Ala	Glu	Gln	Ala
Gly 385	Gln	Val	Phe	Asn	Tyr 390	Val	Arg	Asp	Asn	Glu 395	Pro	Leu	Phe	Thr	Met 400
Cys	Phe	Val	Pro	Leu 405	Val	Cys	Trp	Val	Val 410	Cys	Thr	Cys	Leu	Gln 415	Gln
Gln	Leu	Glu	Gly 420	Gly	Gly	Leu	Leu	Arg 425	Gln	Thr	Ser	Arg	Thr 430	Thr	Thr
Ala	Val	Tyr 435	Met	Leu	Tyr	Leu	Leu 440	Ser	Leu	Met	Gln	Pro 445	Lys	Pro	Gly
Ala	Pro 450	Arg	Leu	Gln	Pro	Pro 455	Pro	Asn	Gln	Arg	Gly 460	Leu	Cys	Ser	Leu
Ala 465	Ala	Asp	Gly	Leu	Trp 470	Asn	Gln	Lys	Ile	Leu 475	Phe	Glu	Glu	Gln	Asp 480
Leu	Arg	Lys	His	Gly 485	Leu	Asp	Gly	Glu	Asp 490	Val	Ser	Ala	Phe	Leu 495	Asn
Met	Asn		Phe 500		Lys	Asp		Asn 505		Glu	Arg	Tyr	Tyr 510	Ser	Phe
Ile	His	Leu 515	Ser	Phe	Gln	Glu	Phe 520	Phe	Ala	Ala	Met	Tyr 525	Tyr	Ile	Leu
Asp	Glu 530	Gly	Glu	Gly	Gly	Ala 535	Gly	Pro	Asp	Gln	Asp 540	Val	Thr	Arg	Leu
Leu 545	Thr	Glu	Tyr	Ala	Phe 550	Ser	Glu	Arg	Ser	Phe 555	Leu	Ala	Leu	Thr	Ser 560
Arg	Phe	Leu	Phe	Gly 565	Leu	Leu	Asn	Glu	Glu 570	Thr	Arg	Ser	His	Leu 575	Glu

Lys Ser Leu Cys Trp Lys Val Ser Pro His Ile Lys Met Asp Leu Leu Gln Trp Ile Gln Ser Lys Ala Gln Ser Asp Gly Ser Thr Leu Gln Gln Gly Ser Leu Glu Phe Phe Ser Cys Leu Tyr Glu Ile Gln Glu Glu Glu Phe Ile Gln Gln Ala Leu Ser His Phe Gln Val Ile Val Val Ser Asn Ile Ala Ser Lys Met Glu His Met Val Ser Ser Phe Cys Leu Lys Arg Cys Arg Ser Ala Gln Val Leu His Leu Tyr Gly Ala Thr Tyr Ser Ala Asp Gly Glu Asp Arg Ala Arg Cys Ser Ala Gly Ala His Thr Leu Leu Val Gln Leu Arg Pro Glu Arg Thr Val Leu Leu Asp Ala Tyr Ser Glu His Leu Ala Ala Ala Leu Cys Thr Asn Pro Asn Leu Ile Glu Leu Ser Leu Tyr Arg Asn Ala Leu Gly Ser Arg Gly Val Lys Leu Leu Cys Gln 730 735 Gly Leu Arg His Pro Asn Cys Lys Leu Gln Asn Leu Arg Leu Lys Arg Cys Arg Ile Ser Ser Ser Ala Cys Glu Asp Leu Ser Ala Ala Leu Ile. Ala Asn Lys Asn Leu Thr Arq Met Asp Leu Ser Gly Asn Gly Val Gly Phe Pro Gly Met Met Leu Leu Cys Glu Gly Leu Arg His Pro Gln Cys Arg Leu Gln Met Ile Gln Leu Arg Lys Cys Gln Leu Glu Ser Gly Ala

Cys Gln Glu Met Ala Ser Val Leu Gly Thr Asn Pro His Leu Val Glu

825	830

Leu Asp Leu Thr Gly Asn Ala Leu Glu Asp Leu Gly Leu Arg Leu Leu 835 840 845

Cys Gln Gly Leu Arg His Pro Val Cys Arg Leu Arg Thr Leu Trp Leu 850 855 860

Trp Leu Asp Ser Cys Gly Leu Thr Ala Lys Ala Cys Glu Asn Leu Tyr 865 870 875 880

Phe Thr Leu Gly Ile Asn Gln Thr Leu Thr Asp Leu Tyr Leu Thr Asn 885 890 895

Asn Ala Leu Gly Asp Thr Gly Val Arg Leu Leu Cys Lys Arg Leu Ser 900 905 910

His Pro Gly Cys Lys Leu Arg Val Leu Trp Leu Phe Gly Met Asp Leu 915 920 925

Asn Lys Met Thr His Ser Arg Leu Ala Ala Leu Arg Val Thr Lys Pro 930 935 940

Tyr Leu Asp Ile Gly Cys 945 950

820

<210> 7

<211> 3221

<212> DNA

<213> Homo sapiens

<400> 7

attggtgagt ggggcagggc aggagggaac tgaagagtga gaaagcatta tttcagcaaa 60 aggictitec tecetigete acteciceaa ceaetggete agecteteeg eeegetgeet 120 gtgaatgatg caatggaagg tgtgctgggg tcgccctgtg tcccgtgcat aggagcatct 180 caqcetecaq qteeteteet ttggggetta eggcaeceee atgetaegaa eegeaggeag 240 qqacqqcctc tqtcqcctqt ccacctactt qqaaqaactc qaggctgtgg aactgaagaa 300 360 gttcaagtta tacctgggga ccgcgacaga gctgggagaa ggcaagatcc cctggggaag catggagaag gccggtcccc tggaaatggc ccagctgctc atcacccact tcgggccaga 420 ggaggcctgg aggttggctc tcagcacctt tgagcggata aacaggaagg acctgtggga 480 540 gagaggacag agagaggacc tggtgaggga taccccacct ggtggcccgt cctcacttgg gaaccagtca acatgccttc tggaagtctc tcttgtcact ccaagaaaag atccccagga 600

aacctacagg	gactatgtcc	gcaggaaatt	ccggctcatg	gaagaccgca	atgcgcgcct	660
aggggaatgt	gtcaacctca	gccaccggta	cacccggctc	ctgctggtga	aggagcactc	720
aaaccccatg	caggtccagc	agcagcttct	ggacacaggc	cggggacacg	cgaggaccgt	780
gggacaccag	gctagcccca	tcaagataga	gaccctcttt	gagccagacg	aggagcgccc	840
cgagccaccg	cgcaccgtgg	tcatgcaagg	cgcggcaggg	ataggcaagt	ccatgctggc	900
acacaaggtg	atgctggact	gggcggacgg	gaagctcttc	caaggcagat	ttgattatct	960
cttctacatc	aactgcaggg	agatgaacca	gagtgccacg	gaatgcagca	tgcaagacct	1020
catcttcagc	tgctggcctg	agcccagcgc	gcctctccag	gagctcatcc	gagttcccga	1080
gcgcctcctt	ttcatcatcg	acggcttcga	tgagctcaag	ccttctttcc	acgatectca	1140
gggaccctgg	tgcctctgct	gggaggagaa	acggcccacg	gagctgcttc	ttaacagctt	1200
aattcggaag	aagctgctcc	ctgagctatc	tttgctcatc	accacacggc	ccacggcttt	1260
ggagaagctc	caccgtctgc	tggagcaccc	caggcatgtg	gagatcctgg	gcttctctga	1320
ggcagaaagg	aaggaatact	tctacaagta	tttccacaat	gcagagcagg	cgggccaagt	1380
cttcaattac	gtgagggaca	acgagcctct	cttcaccatg	tgcttcgtcc	ccctggtgtg	1440
ctgggtggtg	tgtacctgcc	tccagcagca	gctggagggt	ggggggctgt	tgagacagac	1500
gtccaggacc	accactgcag	tgtacatgct	ctacctgctg	agtctgatgc	aacccaagcc	1560
gggggccccg	cgcctccagc	ccccacccaa	ccagagaggg	ttgtgctcct	tggcggcaga	1620
tgggctctgg	aatcagaaaa	tcctatttga	ggagcaggac	ctccggaagc	acggcctaga	1680
cggggaagac	gtctctgcct	tcctcaacat	gaacatcttc	cagaaggaca	tcaactgtga	1740
gaggtactac	agcttcatcc	acttgagttt	ccaggaattc	tttgcagcta	tgtactatat	1800
cctggacgag	ggggagggcg	gggcaggccc	agaccaggac	gtgaccaggc	tgttgaccga	1860
gtacgcgttt	tctgaaagga	gcttcctggc	actcaccagc	cgcttcctgt	ttggactcct	1920
gaacgaggag	accaggagcc	acctggagaa	gagtctctgc	tggaaggtct	cgccgcacat	1980
caagatggac	ctgttgcagt	ggatccaaag	caaagctcag	agcgacggct	ccaccctgca	2040
gcagggctcc	ttggagttct	tcagctgctt	gtacgagatc	caggaggagg	agtttatcca	2100
gcaggccctg	agccacttcc	aggtgatcgt	ggtcagcaac	attgcctcca	agatggagca	2160
catggtctcc	tcgttctgtc	tgaagcgctg	caggagcgcc	caggtgctgc	acttgtatgg	2220
cgccacctac	agcgcggacg	gggaagaccg	cgcgaggtgc	tccgcaggag	cgcacacgct	2280
gttggtgcag	ctcagaccag	agaggaccgt	tctgctggac	gcctacagtg	aacatctggc '	2340
agcggccctg	tgcaccaatc	caaacctgat	agagctgtct	ctgtaccgaa	atgccctggg	2400
cagccggggg	gtgaagctgc	tctgtcaagg	actcagacac	cccaactgca	aacttcagaa	2460

cctgaggctg	aagaggtgcc	gcatctccag	ctcagcctgc	gaggacctct	ctgcagctct	2520
catagccaat	aagaatttga	caaggatgga	tctcagtggc	aacggcgttg	gattcccagg	2580
catgatgctg	ctttgcgagg	gcctgcggca	tccccagtgc	aggctgcaga	tgattcagtt	2640
gaggaagtgt	cagctggagt	ccggggcttg	tcaggagatg	gcttctgtgc	tcggcaccaa	2700
cccacatctg	gttgagttgg	acctgacagg	aaatgcactg	gaggatttgg	gcctgaggtt	2760
actatgccag	ggactgaggc	acccagtctg	cagactacgg	actttgtggt	ggttatttgg	2820
gatggacctg	aataaaatga	cccacagtag	gttggcagcg	cttcgagtaa	caaaacctta	2880
tttggacatt	ggctgctgaa	tggtcctatc	tgctggctct	cccctgagat	ctggacagag	2940
gaagatggga	gggtgctcat	caccccccca	gcataatgat	cagcctcctt	cctagagaca	3000
gactcatgca	gattgagatc	aaaagtccct	ctgcttggga	tcaaattaat	gtttgacaga	3060
gctggccagg	cgtggtggct	catgtatgta	atcctagcac	ttcgagaggc	cgaggcaggt	3120
ggatcacgag	gtcaggagtt	tgagattagc	ctggccaaga	tggtgaaacc	ctgtctctac	3180
taaaaataaa	aaaaaattag	ccaggaaaaa	aaaaaaaaa	a		3221

<210> 8

<211> 892

<212> PRT

<213> Homo sapiens

<400> 8

Met Leu Arg Thr Ala Gly Arg Asp Gly Leu Cys Arg Leu Ser Thr Tyr 1 5 10 15

Leu Glu Glu Leu Glu Ala Val Glu Leu Lys Lys Phe Lys Leu Tyr Leu 20 25 30

Gly Thr Ala Thr Glu Leu Gly Glu Gly Lys Ile Pro Trp Gly Ser Met $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Lys Ala Gly Pro Leu Glu Met Ala Gln Leu Leu Ile Thr His Phe 50 55 60

Gly Pro Glu Glu Ala Trp Arg Leu Ala Leu Ser Thr Phe Glu Arg Ile 65 70 75 80

Asn Arg Lys Asp Leu Trp Glu Arg Gly Gln Arg Glu Asp Leu Val Arg 85 90 95

Asp Thr Pro Pro Gly Gly Pro Ser Ser Leu Gly Asn Gln Ser Thr Cys 100 105 110 Leu Leu Glu Val Ser Leu Val Thr Pro Arg Lys Asp Pro Gln Glu Thr Tyr Arg Asp Tyr Val Arg Arg Lys Phe Arg Leu Met Glu Asp Arg Asn Ala Arg Leu Gly Glu Cys Val Asn Leu Ser His Arg Tyr Thr Arg Leu Leu Leu Val Lys Glu His Ser Asn Pro Met Gln Val Gln Gln Gln Leu Leu Asp Thr Gly Arg Gly His Ala Arg Thr Val Gly His Gln Ala Ser Pro Ile Lys Ile Glu Thr Leu Phe Glu Pro Asp Glu Glu Arg Pro Glu Pro Pro Arg Thr Val Val Met Gln Gly Ala Ala Gly Ile Gly Lys Ser Met Leu Ala His Lys Val Met Leu Asp Trp Ala Asp Gly Lys Leu Phe Gln Gly Arg Phe Asp Tyr Leu Phe Tyr Ile Asn Cys Arg Glu Met Asn Gln Ser Ala Thr Glu Cys Ser Met Gln Asp Leu Ile Phe Ser Cys Trp . 260 Pro Glu Pro Ser Ala Pro Leu Gln Glu Leu Ile Arg Val Pro Glu Arg Leu Leu Phe Ile Ile Asp Gly Phe Asp Glu Leu Lys Pro Ser Phe His Asp Pro Gln Gly Pro Trp Cys Leu Cys Trp Glu Glu Lys Arg Pro Thr Glu Leu Leu Leu Asn Ser Leu Ile Arg Lys Lys Leu Leu Pro Glu Leu Ser Leu Leu Ile Thr Thr Arg Pro Thr Ala Leu Glu Lys Leu His Arg

Leu	Leu	Glu 355	His	Pro	Arg	His	Val 360	Glu	Ile	Leu	Gly	Phe 365	Ser	Glu	Ala
Glu	Arg 370	Lys	Glu	Tyr	Phe	Tyr 375	Lys	Tyr	Phe	His	Asn 380	Ala	Glu	Gln	Ala
Gly 385	Gln	Val	Phe	Asn	Туг 390	Val	Arg	Asp	Asn	Glu 395	Pro	Leu	Phe	Thr	Met 400
Cys	Phe	Val	Pro	Leu 405	Val	Cys	Trp	Val	Val 410	Cys	Thr	Cys	Leu	Gln 415	Gln
Gln	Leu	Glu	Gly 420	Gly	Gly	Leu	Leu	Arg 425	Gln	Thr	Ser	Arg	Thr 430	Thr	Thr
Ala	Val	Tyr 435	Met	Leu	Tyr	Leu	Leu 440	Ser	Leu	Met	Gln	Pro 445	Lys	Pro	Gly
Ala	Pro 450	Arg	Leu	Gln	Pro	Pro 455	Pro	Asn	Gln	Arg	Gly 460	Leu	Cys	Ser	Leu
Ala 465	Ala	Asp	Gly	Leu	Trp 470	Asn	Gln	Lys	Ile	Leu 475	Phe	Glu	Glu	Gln	Asp 480
Leu	Arg	Lys	His	Gly 485	Leu	Asp	Gly	Glu	Asp 490	Val	Ser	Ala	Phe	Leu 495	Asn
Met	Asn	Ile	Phe 500	Gln	Lys	Asp	Ile	Asn 505	Cys	Glu	Arg	Tyr	Tyr 510	Ser	Phe
Ile	His	Leu 515	Ser	Phe	Gln	Glu	Phe 520	Phe	Ala	Ala	Met	Tyr 525	Tyr	Ile	Leu
Asp	Glu 530	Gly	Glu	Gly	Gly	Ala 535	Gly	Pro	Asp	Gln	Asp 540	Val	Thr	Arg	Leu
Leu 545	Thr	Glu	Tyr	Ala	Phe 550	Ser	Glu	Arg	Ser	Phe 555	Leu	Ala	Leu	Thr	Ser 560
Arg	Phe	Leu	Phe	Gly 565	Leu	Leu	Asn	Glu	Glu 570	Thr	Arg	Ser	His	Leu 575	Glu
Lys	Ser	Leu	Cys 580	Trp	Lys	Val	Ser	Pro 585	His	Ile	Lys	Met	Asp 590	Leu	Leu

Gln Trp Ile Gln Ser Lys Ala Gln Ser Asp Gly Ser Thr Leu Gln Gln Gly Ser Leu Glu Phe Phe Ser Cys Leu Tyr Glu Ile Gln Glu Glu Glu Phe Ile Gln Gln Ala Leu Ser His Phe Gln Val Ile Val Val Ser Asn Ile Ala Ser Lys Met Glu His Met Val Ser Ser Phe Cys Leu Lys Arg Cys Arg Ser Ala Gln Val Leu His Leu Tyr Gly Ala Thr Tyr Ser Ala Asp Gly Glu Asp Arg Ala Arg Cys Ser Ala Gly Ala His Thr Leu Leu Val Gln Leu Arg Pro Glu Arg Thr Val Leu Leu Asp Ala Tyr Ser Glu His Leu Ala Ala Leu Cys Thr Asn Pro Asn Leu Ile Glu Leu Ser Leu Tyr Arg Asn Ala Leu Gly Ser Arg Gly Val Lys Leu Leu Cys Gln Gly Leu Arg His Pro Asn Cys Lys Leu Gln Asn Leu Arg Leu Lys Arg Cys Arg Ile Ser Ser Ser Ala Cys Glu Asp Leu Ser Ala Ala Leu Ile Ala Asn Lys Asn Leu Thr Arg Met Asp Leu Ser Gly Asn Gly Val Gly Phe Pro Gly Met Met Leu Leu Cys Glu Gly Leu Arg His Pro Gln Cys Arg Leu Gln Met Ile Gln Leu Arg Lys Cys Gln Leu Glu Ser Gly Ala Cys Gln Glu Met Ala Ser Val Leu Gly Thr Asn Pro His Leu Val Glu

Leu Asp Leu Thr Gly Asn Ala Leu Glu Asp Leu Gly Leu Arg Leu Leu

835 840 845

Cys Gln Gly Leu Arg His Pro Val Cys Arg Leu Arg Thr Leu Trp Trp 850 860

Leu Phe Gly Met Asp Leu Asn Lys Met Thr His Ser Arg Leu Ala Ala 865 870 875 880

Leu Arg Val Thr Lys Pro Tyr Leu Asp Ile Gly Cys 885 890

<210> 9

<211> 3102

<212> DNA

<213> Mus musculus

<400> 9

atgttgccgt ctacagccag ggatggcctc tatcgactgt ctacctacct ggaagaactc 60 gaggctgggg aactgaagaa attcaaatta ttcctgggga ttgcagagga cctgagccag 120 gacaaaattc cctggggacg aatggagaag gctggtcctc tggaaatggc tcagctgatg 180 gtggcccaca tggggacaag ggaggcttgg cttctggctc tcagcacctt tcagaggatt 240 cacaggaagg acctgtggga gcgaggacag ggagaagacc tggtgagggg taaggagggc 300 aagggagatc tacagacaac ctacaaagac tatgtccgaa ggaaattcca gctaatggaa 360 gaccgcaatg cacgattagg cgaatgtgtg aacctgagca atcgttacac tcggcttctc 420 480 ctagtaaaag aacactcaaa tcctatctgg acacagcaga aatttgtaga tgtagagtgg gaacgeteca gaaccaggeg teaccagaet agtectatee aaatggagae eetetttgag 540 ccagacgaag aacgccccga gccaccacac acagtggtat tacaaggggc agcggggatg 600 gggaagtcca tgctggccca caaagtgatg ttggactggg ccgatgggag gctcttccaa 660 ggccggtttg attatgtctt ctatatcagc tgcagggagt tgaatagaag ccacacccag 720 tgcagtgtac aagacctcat ctccagctgc tggccggagc gtggtatatc cctcgaagac 780 ctcatgcagg ctcctgaccg tctcctattc atcattgatg gcttcgataa actccatcct 840 tettteeatg atgeteaggg teeetggtge etetgetggg aggagaaaca acetaetgaa 900 gtectecteg gaagtetgat teggaggttg ettetgeece aggtetetet geteateace 960 acacgaccct gtgcactgga gaagctgcac ggcttgctag aacaccccag gcacgtggag 1020 atcctgggct tctccgagga agctaggaag gaatatttct acagatattt ccacaacact 1080 ggacaagcaa gccgggtgtt aagcttcttg atggactatg agcccctctt taccatgtgt 1140 tttgttccca tggtgtcctg ggtggtctgc acctgcctaa agcagcagct ggaaagtggg 1200 gagettttaa gacaaacaee taggaeeace acagetgttt atatgtteta eettetgage 1260 1320 ctgatgcagc ccaagccagg gactccaacc ttcaaagtcc cagccaacca gagaggcctg 1380 gtctctctgg ctgcagaggg cctctggaat cagaagattc tatttgatga acaggatctt gggaaacacg gcctagatgg agcagatgtg tccactttcc tcaacgtgaa catattccag 1440 1500 aagggtatca aatgtgagaa attctacagc ttcatccacc tgagtttcca ggaattcttc 1560 gcagccatgt actgtgcact gaatggcaga gaggcggtga ggagagcgct ggctgagtat 1620 ggtttttcgg aaaggaactt cttggccctc acggtccact ttctgtttgg cctcctcaac gaagagatga gatgctacct tgagaggaat ctcggctgga gcatctcccc tcaggtgaag 1680 gaggaagtgt tggcatggat ccaaaacaag gctgggagtg aaggctccac cctgcagcat 1740 1800 ggctccctgg agctactcag ctgcttgtat gaggtccagg aggaggactt catccagcag gccctgagcc actttcaagt ggttgtagtc agaagcatct caacaaagat ggagcacatg 1860 gtctgctcgt tttgtgcgag gtattgcaga agtacagaag tgcttcactt gcatgggagt 1920 1980 gettatagta caggeatgga ggacgaccca ceagaacett caggagteca gacteagtee acatacttac aggaaaggaa catgctgcct gatgtctaca gtgcatacct ttcagcagct 2040 2100 gtctgtacca actccaacct gatcgagctg gccttatacc gaaatgcctt gggcagccag ggtgtaaggc tgctctgtca aggcctccga catgccagct gcaagctgca gaacctgagg 2160 ctgaagaggt gtcagatctc cggatcagcc tgccaggacc tcgcagccgc tgtcatcgcc 2220 2280 aacaggaatt taatcaggct ggacctcagt gacaacagca ttggggtgcc aggcctggag 2340 ctgctctgtg aggggctgca gcaccccagg tgtaggctgc agatgatcca gctgaggaag tgtctgttgg aggctgcagc tggccgatcc ctggcttctg ttctcagcaa caactcatat 2400 ctggtagaac tggatctgac aggaaacccc ttggaagatt cggggctgaa gttactgtgt 2460 caagggctaa ggcaccctgt ctgcaggctg cgtaccctgt ggctgaagat ctgccacctt 2520 ggacaagett cetgegaaga tetggeetet aeteteaaaa tgaaceagag eetgetggag 2580 ctggacctgg gtctgaatga tcttggagat tctggggtgc ttctgctgtg tgaaggcctc 2640 agtcatccag attgcaaact ccagaccctt cggttgggca tttgccgact gggctcagtc 2700 gcgtgtgtgg ggatcgccag tgtgctccag gtcaacacat gcctccaaga gctggacctg 2760 2820 agetteaatg aettgggaga caggggeetg cagetgetgg gggaaggeet gaggeaccag acctgcagac tccagaagct gtggctggac aactgcggac tcacctccaa agcatgtgag 2880 2940 gacctttctt ctatcctggg aatcagccag accctgcatg agctttattt gaccaataat 3000 gctctggggg acacaggtgt ctgtctgctg tgcaagaggc tgaggcatcc aggctgcaag 3060 cttcgagtcc tgtggctgtt tgggatggac ctgaataaaa agactcacag gaggatggca

gcacttcgag tcacaaaacc gtacctggat attgggtgtt ga

- <210> 10
- <211> 1033
- <212> PRT
- <213> Mus musculus
- <400> 10
- Met Leu Pro Ser Thr Ala Arg Asp Gly Leu Tyr Arg Leu Ser Thr Tyr 1 5 10 15
- Leu Glu Glu Leu Glu Ala Gly Glu Leu Lys Lys Phe Lys Leu Phe Leu 20 25 30
- Gly Ile Ala Glu Asp Leu Ser Gln Asp Lys Ile Pro Trp Gly Arg Met
 35 40 45
- Glu Lys Ala Gly Pro Leu Glu Met Ala Gln Leu Met Val Ala His Met 50 55 60
- Gly Thr Arg Glu Ala Trp Leu Leu Ala Leu Ser Thr Phe Gln Arg Ile 65 70 75 80
- His Arg Lys Asp Leu Trp Glu Arg Gly Gln Gly Glu Asp Leu Val Arg 85 90 95
- Gly Lys Glu Gly Lys Gly Asp Leu Gln Thr Thr Tyr Lys Asp Tyr Val
- Arg Arg Lys Phe Gln Leu Met Glu Asp Arg Asn Ala Arg Leu Gly Glu
 115 120 125
- Cys Val Asn Leu Ser Asn Arg Tyr Thr Arg Leu Leu Leu Val Lys Glu 130 135 140
- His Ser Asn Pro Ile Trp Thr Gln Gln Lys Phe Val Asp Val Glu Trp 145 150 155 160
- Glu Arg Ser Arg Thr Arg Arg His Gln Thr Ser Pro Ile Gln Met Glu 165 170 175
- Thr Leu Phe Glu Pro Asp Glu Glu Arg Pro Glu Pro Pro His Thr Val 180 185 190
- Val Leu Gln Gly Ala Ala Gly Met Gly Lys Ser Met Leu Ala His Lys 195 200 205

Val	Met 210	Leu	Asp	Trp	Ala	Asp 215	Gly	Arg	Leu	Phe	Gln 220	Gly	Arg	Phe	Asp
Tyr 225	Val	Phe	Tyr	Ile	Ser 230	Cys	Arg	Glu	Leu	Asn 235	Arg	Ser	His	Thr	Gln 240
Cys	Ser	Val	Gln	Asp 245	Leu	Ile	Ser	Ser	Cys 250	Trp	Pro	Glu	Arg	Gly 255	Ile
Ser	Leu	Glu	Asp 260	Leu	Met	Gln	Ala	Pro 265	Asp	Arg	Leu	Leu	Phe 270	Ile	Ile
Asp	Gly	Phe 275	Asp	Lys	Leu	His	Pro 280	Ser	Phe	His	Asp	Ala 285	Gln	Gly	Pro
Trp	Cys 290	Leu	Cys	Trp	Glu	Glu 295	Lys	Gln	Pro	Thr	Glu 300	Val	Leu	Leu	Gly
Ser 305	Leu	Ile	Arg	Arg	Leu 310	Leu	Leu	Pro	Gln	Val 315	Ser	Leu	Leu	Ile	Thr 320
Thr	Arg	Pro	Cys	Ala 325	Leu	Glu	Lys	Leu	His 330	Gly	Leu	Leu	Glu	His 335	Pro
Arg	His	Val	Glu 340	Ile	Leu	Gly	Phe	Ser 345	Glu	Glu	Ala	Arg	Lys 350	Glu	Tyr
Phe	Tyr	Arg 355	Tyr	Phe	His	Asn	Thr 360	Gly	Gln	Ala	Ser	Arg 365	Val	Leu	Ser
Phe	Leu 370	Met	Asp	Tyr	Glu	Pro 375	Leu	Phe	Thr	Met	Cys 380	Phe	Val	Pro	Met
Val 385	Ser	Trp	Val	Val	Cys 390	Thr	Cys	Leu	Lys	Gln 395	Gln	Leu	Glu	Ser	Gly 400
Glu	Leu	Leu	Arg	Gln 405	Thr	Pro	Arg	Thr	Thr 410	Thr	Ala	Val	Tyr	Met 415	Phe
Tyr	Leu	Leu	Ser 420	Leu	Met	Gln	Pro	Lys 425	Pro	Gly	Thr	Pro	Thr 430	Phe	Lys
Val	Pro	Ala 435	Asn	Gln	Arg	Gly	Leu 440	Val	Ser	Leu	Ala	Ala 445	Glu	Gly	Leu

Trp	Asn 450	Gln	Lys	Ile	Leu	Phe 455	Asp	Glu	Gln	Asp	Leu 460	Gly	Lys	His	Gly
Leu 465	Asp	Gly	Ala	Asp	Val 470	Ser	Thr	Phe	Leu	Asn 475	Val	Asn	Ile	Phe	Gln 480
Lys	Gly	Ile	Lys	Cys 485	Glu	Lys	Phe	Tyr	Ser 490	Phe	Ile	His	Leu	Ser 495	Phe
Gln	Glu	Phe	Phe 500	Ala	Ala	Met	Tyr	Cys 505	Ala	Leu	Asn	Gly	Arg 510	Glu	Ala
Val	Arg	Arg 515	Ala	Leu	Ala	Glu	Tyr 520	Gly	Phe	Ser	Glu	Arg 525	Asn	Phe	Leu
Ala	Leu 530	Thr	Val	His	Phe	Leu 535	Phe	Gly	Leu	Leu	Asn 540	Glu	Glu	Met	Arg
Cys 545	Tyr	Leu	Glu	Arg	Asn 550	Leu	Gly	Trp	Ser	Ile 555	Ser	Pro	Gln	Val	Lys 560
Glu	Glu	Val	Leu	Ala 565	Trp	Ile	Gln	Asn	Lys 570	Ala	Gly	Ser	Glu	Gly 575	Ser
Thr	Leu	Gln	His 580	Gly	Ser	Leu	Glu	Leu 585	Leu	Ser	Cys	Leu	Tyr 590	Glu	Val
Gln	Glu	Glu 595	Asp	Phe	Ile	Gln	Gln 600	Ala	Leu	Ser		Phe 605	Gln	Val	Val
Val	Val 610	Arg	Ser	Ile	Ser		Lys			His	Met 620	Val	Cys	Ser	Phe
Cys 625	Ala	Arg	Tyr	Cys	Arg 630	Ser	Thr	Glu	Val	Leu 635	His	Leu	His	Gly	Ser 640
Ala	Tyr	Ser	Thr	Gly 645	Met	Glu	Asp	Asp	Pro 650	Pro	Glu	Pro	Ser	Gly 655	Val
Gln	Thr	Gln	Ser 660	Thr	Tyr	Leu	Gln	Glu 665	Arg	Asn	Met	Leu	Pro 670	Asp	Val
Tyr	Ser	Ala 675	Tyr	Leu	Ser	Ala	Ala 680	Val	Cys	Thr	Asn	Ser 685	Asn	Leu	Ile

930	935	940

Gln Lys Leu Trp Leu Asp Asn Cys Gly Leu Thr Ser Lys Ala Cys Glu 945 950 955 960

Asp Leu Ser Ser Ile Leu Gly Ile Ser Gln Thr Leu His Glu Leu Tyr 965 970 975

Leu Thr Asn Asn Ala Leu Gly Asp Thr Gly Val Cys Leu Leu Cys Lys 980 985 990

Arg Leu Arg His Pro Gly Cys Lys Leu Arg Val Leu Trp Leu Phe Gly 995 1000 1005

Met Asp Leu Asn Lys Lys Thr His Arg Arg Met Ala Ala Leu Arg 1010 1015 1020

Val Thr Lys Pro Tyr Leu Asp Ile Gly Cys 1025 1030

<210> 11

<211> 3039

<212> DNA

<213> Homo sapiens

<400> 11

atggcagatt catcatcatc ttctttcttt cctgattttg ggctgctatt gtatttggag 60 gagctaaaca aagaggaatt aaatacattc aagttattcc taaaggagac catggaacct 120 gagcatggcc tgacaccctg gaatgaagtg aagaaggcca ggcgggagga cctggccaat 180 ttgatgaaga aatattatcc aggagagaaa gcctggagtg tgtctctcaa aatctttggc 240 aagatgaacc tgaaggatct gtgtgagaga gcgaaagaag agatcaactg gtcggcccag 300 actataggac cagatgatgc caaggctgga gagacacaag aagatcagga ggcagtgctg 360 ggtgatggaa cagaatacag aaatagaata aaggaaaaat tttgcatcac ttgggacaag 420 aagtetttgg etggaaagee tgaagattte cateatggaa ttgeagagaa agatagaaaa 480 ctgttggaac acttgttcga tgtggatgtc aaaaccggtg cacagccaca gatcgtggtg 540 600 cttcagggag ctgctggagt tgggaaaaca accttggtga gaaaggcaat gttagattgg gcagagggca gtctctacca gcagaggttt aagtatgttt tttatctcaa tgggagagaa 660 attaaccagc tgaaagagag aagctttgct caattgatat caaaggactg gcccagcaca 720 gaaggeeeca ttgaagaaat catgtaceag ceaagtagee tettgtttat tattgaeagt 780 ttcgatgaac tgaactttgc ctttgaagaa cctgagtttg cactgtgcga agactggacc 840

caagaacacc	cagtgtcctt	cctcatgagt	agtttgctga	ggaaagtgat	gctccctgag	900
gcatccttat	tggtgacaac	aagactcaca	acttctaaga	gactaaagca	gttgttgaag	960
aatcaccatt	atgtagagct	actaggaatg	tctgaggatg	caagagagga	gtatatttac	1020
cagttttttg	aagataagag	gtgggccatg	aaagtattca	gttcactaaa	aagcaatgag	1080
atgctgttta	gcatgtgcca	agtcccccta	gtgtgctggg	ccgcttgtac	ttgtctgaag	1140
cagcaaatgg	agaagggtgg	tgatgtcaca	ttgacctgcc	aaacaaccac	agctctgttt	1200
acctgctata	tttctagctt	gttcacacca	gtagatggag	gctctcctag	tctacccaac	1260
caagcccagc	tgagaagact	gtgccaagtc	gctgccaaag	gaatatggac	tatgacttac	1320
gtgttttaca	gagaaaatct	cagaaggctt	gggttaactc	aatctgatgt	ctctagtttt	1380
atggacagca	atattattca	gaaggacgca	gagtatgaaa	actgctatgt	gttcacccac	1440
cttcatgttc	aggagttttt	tgcagctatg	ttctatatgt	tgaaaggcag	ttgggaagct	1500
gggaaccctt	cctgccagcc	ttttgaagat	ttgaagtcat	tacttcaaag	cacaagttat	1560
aaagaccccc	atttgacaca	gatgaagtgc	tttttgtttg	gccttttgaa	tgaagatcga	1620
gtaaaacaac	tggagaggac	ttttaactgt	aaaatgtcac	tgaagataaa	atcaaagtta	1680
cttcagtgta	tggaagtatt	aggaaacagt	gactattctc	catcacagct	gggatttctg	1740
gagttgtttc	actgtctgta	tgagactcaa	gataaagcgt	ttataagcca	ggcaatgaga	1800
tgtttcccaa	aggttgccat	taatatttgt	gagaaaatac	atttgcttgt	atcttctttc	1860
tgccttaagc	actgccggtg	tttgcggacc	atcaggctgt	ctgtaactgt	ggtatttgag	1920
aagaagatat	taaaaacaag	cctcccaact	aacacttggt	tgaaatttat	cactttccct	1980
gatggttgtc	aggatatctc	tacttctttg	attcataaca	agaatctgat	gcatcttgac	2040
ctaaaaggga	gtgatatagg	ggataatgga	gtaaagtcat	tgtgtgaggc	cttgaaacac	2100
ccagagtgta	aactacagac	tctcaggctg	gaatcttgca	acctaactgt	attttgttgt	2160
ctaaatatat	ctaatgctct	catcagaagc	cagagcctga	tatttctgaa	tctgtcaacc	2220
aataatctgt	tggatgatgg	agtgcagctt	ttgtgtgagg	ccttaagaca	tccaaagtgt	2280
tatctagaga	gactgtcctt	agaaagctgt	ggtctcacag	aggctggctg	tgagtatctt	2340
tctttggctc	tcatcagcaa	taaaagactg	acacatttgt	gcttggcaga	caatgtcttg	2400
ggtgatggtg	gagtaaagct	tatgagtgat	gccctgcaac	atgcacaatg	tactctgaag	2460
agccttgtgc	tgaggcgttg	ccatttcact	tcacttagca	gtgaatatct	gtcaacttct	2520
cttctacaca	acaagagcct	gacgcatctg	gatctaggat	caaactggct	acaagacaat	2580
ggagtgaagc	ttctgtgtga	tgtctttcgg	catccaagct	gtaatcttca	ggacttggaa	2640
ttgatgggct	gtgttctcac	taatgcatgt	tgtctggatc	tggcttctgt	tattttgaat	2700

aacccaaacc	tgaggagcct	ggaccttggg	aacaacgatt	tgcaggatga	tggagtgaaa	2760
attctgtgtg	atgctttgag	atatccaaac	tgtaacattc	agaggctcgg	gttggaatac	2820
tgtggtttga	catctctctg	ctgtcaagat	ctctcctctg	ctcttatctg	caacaaaaga	2880
ctgataaaaa	tgaatctgac	acagaatacc	ttaggatatg	aaggaattgt	gaagttatat	2940
aaagtcttga	agtctcctaa	gtgtaaacta	caagttctag	gacaacagga	tttccaagct	3000
gcccaaggaa	aactccaaca	aagagctggc	tctggatga			3039

<210> 12

<211> 1012

<212> PRT

<213> Homo sapiens

<400> 12

Met Ala Asp Ser Ser Ser Ser Phe Phe Pro Asp Phe Gly Leu Leu 1 5 10 15

Leu Tyr Leu Glu Glu Leu Asn Lys Glu Glu Leu Asn Thr Phe Lys Leu 20 25 30

Phe Leu Lys Glu Thr Met Glu Pro Glu His Gly Leu Thr Pro Trp Asn 35 40 45

Glu Val Lys Lys Ala Arg Arg Glu Asp Leu Ala Asn Leu Met Lys Lys 50 55 60

Tyr Tyr Pro Gly Glu Lys Ala Trp Ser Val Ser Leu Lys Ile Phe Gly 65 70 75 80

Lys Met Asn Leu Lys Asp Leu Cys Glu Arg Ala Lys Glu Glu Ile Asn 85 90 95

Trp Ser Ala Gln Thr Ile Gly Pro Asp Asp Ala Lys Ala Gly Glu Thr
100 105 110

Gln Glu Asp Gln Glu Ala Val Leu Gly Asp Gly Thr Glu Tyr Arg Asn 115 120 125

Arg Ile Lys Glu Lys Phe Cys Ile Thr Trp Asp Lys Lys Ser Leu Ala 130 135 140

Gly Lys Pro Glu Asp Phe His His Gly Ile Ala Glu Lys Asp Arg Lys 145 150 155 160

_			
			_
			4
			_
_			

Ser Leu Pro Asn Gln Ala Gln Leu Arg Arg Leu Cys Gln Val Ala Ala Lys Gly Ile Trp Thr Met Thr Tyr Val Phe Tyr Arg Glu Asn Leu Arg Arg Leu Gly Leu Thr Gln Ser Asp Val Ser Ser Phe Met Asp Ser Asn Ile Ile Gln Lys Asp Ala Glu Tyr Glu Asn Cys Tyr Val Phe Thr His Leu His Val Gln Glu Phe Phe Ala Ala Met Phe Tyr Met Leu Lys Gly Ser Trp Glu Ala Gly Asn Pro Ser Cys Gln Pro Phe Glu Asp Leu Lys Ser Leu Leu Gln Ser Thr Ser Tyr Lys Asp Pro His Leu Thr Gln Met Lys Cys Phe Leu Phe Gly Leu Leu Asn Glu Asp Arg Val Lys Gln Leu Glu Arg Thr Phe Asn Cys Lys Met Ser Leu Lys Ile Lys Ser Lys Leu Leu Gln Cys Met Glu Val Leu Gly Asn Ser Asp Tyr Ser Pro Ser Gln Leu Gly Phe Leu Glu Leu Phe His Cys Leu Tyr Glu Thr Gln Asp Lys Ala Phe Ile Ser Gln Ala Met Arg Cys Phe Pro Lys Val Ala Ile Asn Ile Cys Glu Lys Ile His Leu Leu Val Ser Ser Phe Cys Leu Lys His Cys Arg Cys Leu Arg Thr Ile Arg Leu Ser Val Thr Val Val Phe Glu Lys Lys Ile Leu Lys Thr Ser Leu Pro Thr Asn Thr Trp Leu Lys Phe

Asp Leu Gln Asp Asp Gly Val Lys Ile Leu Cys Asp Ala Leu Arg Tyr 915 920 925

Pro Asn Cys Asn Ile Gln Arg Leu Gly Leu Glu Tyr Cys Gly Leu Thr 930 935 940

Ser Leu Cys Cys Gln Asp Leu Ser Ser Ala Leu Ile Cys Asn Lys Arg 945 950 955 960

Leu Ile Lys Met Asn Leu Thr Gln Asn Thr Leu Gly Tyr Glu Gly Ile 965 970 975

Val Lys Leu Tyr Lys Val Leu Lys Ser Pro Lys Cys Lys Leu Gln Val 980 985 990

Leu Gly Gln Gln Asp Phe Gln Ala Ala Gln Gly Lys Leu Gln Gln Arg 995 1000 1005

Ala Gly Ser Gly 1010

<210> 13

<211> 2808

<212> DNA

<213> Homo sapiens

<400> 13

atggcagatt catcatcatc ttctttcttt cctgattttg ggctgctatt gtatttggag 60 gagctaaaca aagaggaatt aaatacattc aagttattcc taaaggagac catggaacct 120 gagcatggcc tgacaccctg gaatgaagtg aagaaggcca ggcgggagga cctggccaat 180 ttgatgaaga aatattatcc aggagagaaa gcctggagtg tgtctctcaa aatctttggc 240 300 aagatgaacc tgaaggatct gtgtgagaga gcgaaagaag agatcaactg gtcggcccag actataggac cagatgatgc caaggetgga gagacacaag aagatcagga ggcagtgetg 360 ggtgatggaa cagaatacag aaatagaata aaggaaaaat tttgcatcac ttgggacaag 420 480 aagtetttgg etggaaagee tgaagattte catcatggaa ttgcagagaa agatagaaaa ctgttggaac acttgttcga tgtggatgtc aaaaccggtg cacagccaca gatcgtggtg 540 cttcagggag ctgctggagt tgggaaaaca accttggtga gaaaggcaat gttagattgg 600 gcagagggca gtctctacca gcagaggttt aagtatgttt tttatctcaa tgggagagaa 660 attaaccage tgaaagagag aagetttget caattgatat caaaggactg geecaacaca 720 780 aaagccccca ttgaagaaat catgtaccag ccaagtagcc tcttgtttat tatagacagt 840 ttcgatgaac tgaactttgc ctttgaagaa cctgagtttg cactgtgcga agactggacc 900 caagacaacc cagtgtcctt cctcatgagt agtttgctga ggaaagtgat gctccctgag 960 gcatcettat tggtgacaac aagactcaca acttetaaga gactaaagca gttgttgaag 1020 aatcaccatt atgtagagct actaggaatg tctgaggatg caagagagga gtatatttac 1080 cagttttttg aagataagag gtgggccatg aaagtattca gttcactaaa aagcaatgag atgctgttta gcatgtgcca agtcccccta gtgtgctggg ccgcttgtac ttgtctgaag 1140 1200 cagcaaatgg agaagggtgg tgatgtcaca ttgacctgcc aaacaaccac agctctgttt 1260 acctgctata tttctagctt gttcacacca gtagatggag gctctcctag tctacccaac caagcccagc tgagaagact gtgccaagtc gctgccaaag gaatatggac tatgacttac 1320 1380 gtgttttaca gagaaaatct cagaaggctt gggttaactc aatctgatgt ctctagtttt 1440 atggacagca atattattca gaaggacgca gagtatgaaa actgctatgt gttcacccac 1500 cttcatgttc aggagttttt tgcagctatg ttctatatgt tgaagggcag ttgggaagct gggaaccett cetgecagee ttttgaagat ttgaagteat taetteaaag cacaagttat 1560 aaagaccccc atttgacaca gatgaagtgc tttttgtttg gccttttgaa tgaagatcga 1620 gtaaaacaac tggagaggac ttttaactgt aaaatgtcac tgaagataaa atcaaagtta 1680 1740 cttcagtgta tggaagtatt aggaaacagt gactattctc catcacagct gggatttctg gagttgtttc actgtctgta tgagactcaa gataaagcgt ttataagcca ggcaatgaga 1800 1860 tgtttcccaa aggttgccat taatatttgt gagaaaatac attggcttgt atcttctttc 1920 tgccttaagc actgccgatg tttgcagacc atcaggctgt ctgtaactgt gctatttgag 1980 aagaagacat taaaaacaag cctcccaact aacacttggg atggtgatcg cattactcac tgttggaaag atctctgttc tgtgcttcat acaaatgaac acttgagaga attggacctg 2040 2100 taccatagca accttgataa atcagcaatg aatatcctgc atcatgaact aagccaccca 2160 aactgtaaac tacaaaaact actgttgaaa tttatcactt tccctgatgg ttgtcaggat atetetaett etttgattea taacaagaat etgatgeate ttgacetaaa agggagtgat 2220 ataggggata atggagtaaa gtcattgtgt gaggccttga aacacccaga gtgtaaacta 2280 2340 cagactetea gettagaaag etgtggtete acagaggetg getgtgagta tetttetttg gctctcatca gcaataaaag actgacacat ttgtgcttgg cagacaatgt cttgggtgat 2400 ggtggagtaa agcttatgag tgatgccctg caacatgcac aatgtactct gaagagcctt 2460 gtgctgaggc gttgccattt cacttcactt agcagtgaat atctgtcaac ttctcttcta 2520

cacaacaaga	gcctgacgca	tctggatcta	ggatcaaact	ggctacaaga	caatggagtg	2580
aagcttctgt	gtgatgtctt	tcggcatcca	agctgtaatc	ttcaggactt	ggaattgatg	2640
ggctgtgttc	tcactaatgc	atgttgtctg	gatctggctt	ctgttatttt	gaataaccca	2700
aacctgagga	gcctggacct	tgggaacaac	gatttgcagg	atgatggagt	gaaaattctg	2760
tgtgatgctt	tgagatatcc	aaactgtaac	attcagaggc	tcgggtga		2808

<211> 935

<212> PRT

<213> Homo sapiens

<400> 14

Met Ala Asp Ser Ser Ser Ser Phe Phe Pro Asp Phe Gly Leu Leu 1 5 10 15

Leu Tyr Leu Glu Glu Leu Asn Lys Glu Glu Leu Asn Thr Phe Lys Leu 20 25 30

Phe Leu Lys Glu Thr Met Glu Pro Glu His Gly Leu Thr Pro Trp Asn 35 40 45

Glu Val Lys Lys Ala Arg Arg Glu Asp Leu Ala Asn Leu Met Lys Lys 50 55 60

Tyr Tyr Pro Gly Glu Lys Ala Trp Ser Val Ser Leu Lys Ile Phe Gly 70 75 80

Lys Met Asn Leu Lys Asp Leu Cys Glu Arg Ala Lys Glu Glu Ile Asn 85 90 95

Trp Ser Ala Gln Thr Ile Gly Pro Asp Asp Ala Lys Ala Gly Glu Thr
100 105 110

Gln Glu Asp Gln Glu Ala Val Leu Gly Asp Gly Thr Glu Tyr Arg Asn 115 120 125

Arg Ile Lys Glu Lys Phe Cys Ile Thr Trp Asp Lys Lys Ser Leu Ala 130 135 140

Gly Lys Pro Glu Asp Phe His His Gly Ile Ala Glu Lys Asp Arg Lys 145 150 155 160

Leu Leu Glu His Leu Phe Asp Val Asp Val Lys Thr Gly Ala Gln Pro 165 170 175

Gln	Ile	Val	Val 180	Leu	Gln	Gly	Ala	Ala 185	Gly	Val	Gly	Lys	Thr 190	Thr	Leu
Val	Arg	Lys 195	Ala	Met	Leu	Asp	Trp 200	Ala	Glu	Gly	Ser	Leu 205	Tyr	Gln	Gln
Arg	Phe 210	Lys	Tyr	Val	Phe	Tyr 215	Leu	Asn	Gly	Arg	Glu 220	Ile	Asn	Gln	Leu
Lys 225	Glu	Arg	Ser	Phe	Ala 230	Gln	Leu	Ile	Ser	Lys 235	Asp	Trp	Pro	Asn	Thr 240
Lys	Ala	Pro	Ile	Glu 245	Glu	Ile	Met	Tyr	Gln 250	Pro	Ser	Ser	Leu	Leu 255	Phe
Ile	Ile	Asp	Ser 260	Phe	Asp	Glu	Leu	Asn 265	Phe	Ala	Phe	Glu	Glu 270	Pro	Glu
Phe	Ala	Leu 275	Cys	Glu	Asp	Trp	Thr 280	Gln	Asp	Asn	Pro	Val 285	Ser	Phe	Leu
Met	Ser 290	Ser	Leu	Leu	Arg	Lys 295	Val	Met	Leu	Pro	Glu 300	Ala	Ser	Leu	Leu
Val 305	Thr	Thr	Arg	Leu	Thr 310	Thr	Ser	Lys	Arg	Leu 315	Lys	Gln	Leu	Leu	Lys 320
Asn	His	His	Tyr	Val 325	Glu	Leu	Leu	Gly	Met 330	Ser	Glu	Asp	Ala	Arg 335	Glu
Glu	Tyr	Ile	Tyr 340	Gln	Phe	Phe	Glu	Asp 345	Lys	Arg	Trp	Ala	Met 350	Lys	Val
Phe	Ser	Ser 355	Leu	Lys	Ser	Asn	Glu 360	Met	Leu	Phe	Ser	Met 365	Cys	Gln	Val
Pro	Leu 370	Val	Cys	Trp	Ala	Ala 375	Cys	Thr	Cys	Leu	Lys 380	Gln	Gln	Met	Glu
Lys 385	Gly	Gly	Asp	Val	Thr 390	Leu	Thr	Cys	Gln	Thr 395	Thr	Thr	Ala	Leu	Phe 400
Thr	Cys	Tyr	Ile	Ser 405	Ser	Leu	Phe	Thr	Pro 410	Val	Asp	Gly	Gly	Ser 415	Pro

Ser	Leu	Pro	Asn 420	Gln	Ala	Gln	Leu	Arg 425	Arg	Leu	Cys	Gln	Val 430	Ala	Ala
Lys	Gly	Ile 435	Trp	Thr	Met	Thr	Tyr 440	Val	Phe	Tyr	Arg	Glu 445	Asn	Leu	Arg
Arg	Leu 450	Gly	Leu	Thr	Gln	Ser 455	Asp	Val	Ser	Ser	Phe 460	Met	Asp	Ser	Asn
Ile 465	Ile	Gln	Lys	Asp	Ala 470	Glu	Tyr	Glu	Asn	Cys 475	Tyr	Val	Phe	Thr	His 480
Leu	His	Val	Gln	Glu 485	Phe	Phe	Ala	Ala	Met 490	Phe	Tyr	Met	Leu	Lys 495	Gly
Ser	Trp	Glu	Ala 500	Gly	Asn	Pro	Ser	Сув 505	Gln	Pro	Phe	Glu	Asp 510	Leu	Lys
Ser	Leu	Leu 515	Gln	Ser	Thr	Ser	Tyr 520	Lys	Asp	Pro	His	Leu 525	Thr	Gln	Met
Lys	Cys 530	Phe	Leu	Phe	Gly	Leu 535	Leu	Asn	Glu	Asp	Arg 540	Val	Lys	Gln	Leu
Glu 545	Arg	Thr	Phe	Asn	Cys 550	Lys	Met	Ser	Leu	Lys 555	Ile	Lys	Ser	Lys	Leu 560
Leu	Gln	Cys	Met	Glu 565	Val	Leu	Gly	Asn	Ser 570	Asp	Tyr	Ser	Pro	Ser 575	Gln
Leu	Gly	Phe	Leu 580		Leu	Phe			Leu	-	Glu	Thr	Gln 590		Lys
Ala	Phe	Ile 595	Ser	Gln	Ala	Met	Arg 600	Cys	Phe	Pro	Lys	Val 605	Ala	Ile	Asn
Ile	Cys 610	Glu	Lys	Ile	His	Trp 615	Leu	Val	Ser	Ser	Phe 620	Cys	Leu	Lys	His
Cys 625	Arg	Cys	Leu	Gln	Thr 630	Ile	Arg	Leu	Ser	Val 635	Thr	Val	Leu	Phe	Glu 640
Lys	Lys	Thr	Leu	Lys 645	Thr	Ser	Leu	Pro	Thr 650	Asn	Thr	Trp	Asp	Gly 655	Asp

900 905 910

Gln Asp Asp Gly Val Lys Ile Leu Cys Asp Ala Leu Arg Tyr Pro Asn 915 920 925

Cys Asn Ile Gln Arg Leu Gly 930 935

<210> 15

<211> 2612

<212> DNA

<213> Homo sapiens

<400> 15

aagctataca	gcggcaccgc	cggaacctgg	ctgagtggtt	cagccggctg	cccagggagg	60
agcgccagtt	tggcccaacc	tttgccctag	acacggtcca	cgttgaccct	gtgatccgcg	120
agagtacccc	tgatgagcta	cttcgcccac	ccgcggagct	ggccttggag	catcagccac	180
cccaggccgg	gctccccca	ctggccttgt	ctcagctctt	taacccggat	gcctgtgggc	240
gccgggtgca	gacagtggtg	ctgtatggga	cagtgggcac	aggcaagagc	acgctggtgc	300
gcaagatggt	tctggactgg	tgttatgggc	ggctgccggc	cttcgagctg	ctcatcccct	360
tctcctgtga	ggacctgtca	tccctgggcc	ctgccccagc	ctccctgtgc	caacttgtgg	420
cccagcgcta	cacgcccctg	aaggaggttc	tgcccctgat	ggctgctgct	gggtcccacc	480
tcctctttgt	gctccatggc	ttagagcatc	tcaacctcga	cttccggctg	gcaggcacgg	540
gactttgtag	tgacccggag	gaaccgcagg	aaccagctgc	tatcatcgtc	aacctgctgc	600
gcaaatacat	gctgcctcag	gccagcattc	tggtgaccac	teggeeetet	gccattggcc	660
gtatccccag	caagtacgtg	ggccgctatg	gtgagatctg	cggtttctct	gataccaacc	720
tgcagaagct	ctacttccag	ctccgcctca	accagccgta	ctgcgggtat	gccgttggcg	780
gttcaggtgt	ctctgccaca	ccagctcagc	gtgaccacct	ggtgcagatg	ctctcccgga	840
acctggaggg	gcaccaccag	atagccgctg	cctgcttcct	gccgtcctat	tgctggctcg	900
tttgtgccac	cttgcacttc	ctgcatgccc	ccacgcctgc	tgggcagacc	cttacaagca	960
tctataccag	cttcctgcgc	ctcaacttca	gcggggaaac	cctggacagc	actgacccct	1020
ccaatttgtc	cctgatggcc	tatgcagccc	gaaccatggg	caagttggcc	tatgaggggg	1080
tgtcctcccg	caagacctac	ttctctgaag	aggatgtctg	tggctgcctg	gaggctggca	1140
tcaggacgga	ggaggagttt	cagctgctgc	acatcttccg	tcgggatgcc	ctgaggtttt	1200
teetggeece	atgtgtggag	ccagggcgtg	caggcacctt	cgtgttcacc	gtgcccgcca	1260
tgcaggaata	cctggctgcc	ctctacattg	tgctgggttt	gcgcaagacg	accctgcaaa	1320

aggtgggcaa	ggaagtggct	gagctcgtgg	gccgtgttgg	ggaggacgtc	agcctggtac	1380
tgggcatcat	ggccaagctg	ctgcctctgc	gggctctgcc	tetgetette	aacctgatca	1440
aggtggttcc	acgagtgttt	gggcgcatgg	tgggtaaaag	ccgggaggcg	gtggctcagg	1500
ccatggtgct	ggagatgttt	cgagaggagg	actactacaa	cgatgatgtt	ctggaccaga	1560
tgggcgccag	tatcctgggc	gtggagggcc	cccggcgcca	cccagatgag	ccccctgagg	1620
atgaagtctt	cgagctcttc	cccatgttca	tgggggggct	tetetetgee	cacaaccgag	1680
ctgtgctagc	tcagcttggc	tgccccatca	agaacctgga	tgccctggag	aatgcccagg	1740
ccatcaagaa	gaagctgggc	aagctgggcc	ggcaggtgct	gcccccatca	gagctccttg	1800
accacctctt	cttccactat	gagttccaga	accagcgctt	ctccgctgag	gtgctcagct	1860
ccctgcgtca	gctcaacctg	gcaggtgtgc	gcatgacacc	agtcaagtgc	acagtggtgg	1920
cagctgtgct	gggcagcgga	aggcatgccc	tggatgaggt	gaacttggcc	tcctgccagc	1980
tagatcctgc	tgggctgcgc	acactcctgc	ctgtcttcct	gcgtgcccgg	aagctgggct	2040
tgcaactcaa	cagcctgggc	cctgaggcct	gcaaggacct	ccgagacctg	ttgctgcatg	2100
accagtgcca	aattaccaca	ctgcggctgt	ccaacaaccc	gctgacggcg	gcaggcctgg	2160
agctgctggc	tgcccagctg	gaccgcaacc	ggcagctgca	ggagctgaac	gtggcgtaca	2220
acggtgctgg	tgacacagcg	gccctggccc	tggccagagc	tgcccgggag	caccettece	2280
tggaactgct	acaagctcta	ctgaatggca	tcgactttct	ctctcctgcc	agcctctact	2340
tcaatgagct	gageteagag	ggccgccagg	tcttgcgaga	cttggggggt	gctgctgaag	2400
gtggtgcccg	ggtggtggtg	tcactgacag	aggggacggc	ggtgtcagaa	tactggtcag	2460
tgatcctcag	tgaagtccag	cggaacctca	atagctggga	tegggeeegg	gttcagcgac	2520
accttgagct	cctactgcgg	gatctggaag	atagccgggg	tgccaccctt	aatccttggc	2580
gcaaggccca	gctgctgcga	gtggagggcg	ag			2612

<211> 870

<212> PRT

<213> Homo sapiens

<400> 16

Ala Ile Gln Arg His Arg Arg Asn Leu Ala Glu Trp Phe Ser Arg Leu 1 5 10 15

Pro Arg Glu Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val 20 25 30

His Val Asp Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg

		35					40					45			
Pro	Pro 50	Ala	Glu	Leu	Ala	Leu 55	Glu	His	Gln	Pro	Pro 60	Gln	Ala	Gly	Leu
Pro 65	Pro	Leu	Ala	Leu	Ser 70	Gln	Leu	Phe	Asn	Pro 75	Asp	Ala	Cys	Gly	Arg 80
Arg	Val	Gln	Thr	Val 85	Val	Leu	Tyr	Gly	Thr 90	Val	Gly	Thr	Gly	Lys 95	Ser
Thr	Leu	Val	Arg 100	Lys	Met	Val	Leu	Asp 105	Trp	Cys	Tyr	Gly	Arg 110	Leu	Pro
Ala	Phe	Glu 115	Leu	Leu	Ile	Pro	Phe 120	Ser	Cys	Glu	Asp	Leu 125	Ser	Ser	Leu
Gly	Pro 130	Ala	Pro	Ala	Ser	Leu 135	Cys	Gln	Leu	Val	Ala 140	Gln	Arg	Tyr	Thr
Pro 145	Leu	Lys	Glu	Val	Leu 150	Pro	Leu	Met	Ala	Ala 155	Ala	Gly	Ser	His	Leu 160
Leu	Phe	Val	Leu	His 165	Gly	Leu	Glu	His	Leu 170	Asn	Leu	Asp	Phe	Arg 175	Leu
Ala	Gly	Thr	Gly 180	Leu	Cys	Ser	Asp	Pro 185	Glu	Glu	Pro	Gln	Glu 190	Pro	Ala
Ala	Ile	Ile 195	Val	Asn	Leu	Leu	Arg 200	Lys	Tyr	Met	Leu	Pro 205	Gln	Ala	Ser
Ile	Leu 210	Val	Thr	Thr	Arg	Pro 215	Ser	Ala	Ile	Gly	Arg 220	Ile	Pro	Ser	Lys
Tyr	Val	Gly	Arg	Tyr	Gly	Glu	Ile	Cys	Gly	Phe	Ser	Asp	Thr	Asn	Leu

40

45

35

225

Ala Val Gly Gly Ser Gly Val Ser Ala Thr Pro Ala Gln Arg Asp His 260 265 270 Leu Val Gln Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala

280

Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Tyr Cys Gly Tyr

230

245

275

235

250

240

255

285

Ala	Ala 290	Cys	Phe	Leu	Pro	Ser 295	Tyr	Cys	Trp	Leu	Val 300	Cys	Ala	Thr	Leu
His 305	Phe	Leu	His	Ala	Pro 310	Thr	Pro	Ala	Gly	Gln 315	Thr	Leu	Thr	Ser	Ile 320
Tyr	Thr	Ser	Phe	Leu 325	Arg	Leu	Asn	Phe	Ser 330	Gly	Glu	Thr	Leu	Asp 335	Ser
Thr	Asp	Pro	Ser 340	Asn	Leu	Ser	Leu	Met 345	Ala	Tyr	Ala	Ala	Arg 350	Thr	Met
Gly	Lys	Leu 355	Ala	Tyr	Glu	Gly	Val 360	Ser	Ser	Arg	Lys	Thr 365	Tyr	Phe	Ser
Glu	Glu 370	Asp	Val	Cys	Gly	Cys 375	Leu	Glu	Ala	Gly	Ile 380	Arg	Thr	Glu	Glu
Glu 385	Phe	Gln	Leu	Leu	His 390	Ile	Phe	Arg	Arg	Asp 395	Ala	Leu	Arg	Phe	Phe 400
Leu	Ala	Pro	Cys	Val 405	Glu	Pro	Gly	Arg	Ala 410	Gly	Thr	Phe	Val	Phe 415	Thr
Val	Pro	Ala	Met 420	Gln	Glu	Tyr	Leu	Ala 425	Ala	Leu	Tyr	Ile	Val 430	Leu	Gly
Leu	Arg	Lys 435	Thr	Thr	Leu	Gln	Lys 440	Val	Gly	Lys	Glu	Val 445	Ala	Glu	Leu
Val	Gly 450	Arg	Val	Gly	Glu	Asp 455	Val	Ser	Leu	Val	Leu 460	Gly	Ile	Met	Ala
Lys 465	Leu	Leu	Pro	Leu	Arg 470	Ala	Leu	Pro	Leu	Leu 475	Phe	Asn	Leu	Ile	Lys 480
Val	Val	Pro	Arg	Val 485	Phe	Gly	Arg	Met	Val 490	Gly	Lys	Ser	Arg	Glu 495	Ala
Val	Ala	Gln	Ala 500	Met	Val	Leu	Glu	Met 505	Phe	Arg	Glu	Glu	Asp 510	Tyr	Tyr
Asn	Asp	Asp 515	Val	Leu	Asp	Gln	Met 520	Gly	Ala	Ser	Ile	Leu 525	Gly	Val	Glu

Gly	Pro 530	Arg	Arg	His	Pro	Asp 535	Glu	Pro	Pro	Glu	Asp 540	Glu	Val	Phe	Glu
Leu 545	Phe	Pro	Met	Phe	Met 550	Gly	Gly	Leu	Leu	Ser 555	Ala	His	Asn	Arg	Ala 560
Val	Leu	Ala	Gln	Leu 565	Gly	Cys	Pro	Ile	Lys 570	Asn	Leu	Asp	Ala	Leu 575	Glu
Asn	Ala	Gln	Ala 580	Ile	Lys	Lys	Lys	Leu 585	Gly	Lys	Leu	Gly	Arg 590	Gln	Val
Leu	Pro	Pro 595	Ser	Glu	Leu	Leu	Asp 600	His	Leu	Phe	Phe	His 605	Tyr	Glu _.	Phe
Gln	Asn 610	Gln	Arg	Phe	Ser	Ala 615	Glu	Val	Leu	Ser	Ser 620	Leu	Arg	Gln	Leu
Asn 625	Leu	Ala	Gly	Val	Arg 630	Met	Thr	Pro	Val	Lys 635	Cys	Thr	Val	Val	Ala 640
Ala	Val	Leu	Gly	Ser 645	Gly	Arg	His	Ala	Leu 650	Asp	Glu	Val	Asn	Leu 655	Ala
Ser	Cys	Gln	Leu 660	Asp	Pro	Ala	Gly	Leu 665	Arg	Thr	Leu	Leu	Pro 670	Val	Phe
Leu	Arg	Ala 675	Arg	Lys	Leu	Gly	Leu 680	Gln	Leu	Asn	Ser	Leu 685	Gly	Pro	Glu
	Cys 690		Asp	Leu		Asp 695		Leu	Leu		Asp 700		Cys	Gln	Ile
Thr 705	Thr	Leu	Arg	Leu	Ser 710	Asn	Asn	Pro	Leu	Thr 715	Ala	Ala	Gly	Leu	Glu 720
Leu	Leu	Ala	Ala	Gln 725	Leu	Asp	Arg	Asn	Arg 730	Gln	Leu	Gln	Glu	Leu 735	Asn
Val	Ala	Tyr	Asn 740	Gly	Ala	Gly	Asp	Thr 745	Ala	Ala	Leu	Ala	Leu 750	Ala	Arg
Ala	Ala	Arg 755	Glu	His	Pro	Ser	Leu 760	Glu	Leu	Leu	Gln	Ala 765	Leu	Leu	Asn

Gly Ile Asp Phe Leu Ser Pro Ala Ser Leu Tyr Phe Asn Glu Leu Ser 770 780

Ser Glu Gly Arg Gln Val Leu Arg Asp Leu Gly Gly Ala Ala Glu Gly 785 790 795 800

Gly Ala Arg Val Val Ser Leu Thr Glu Gly Thr Ala Val Ser Glu 805 810 815

Tyr Trp Ser Val Ile Leu Ser Glu Val Gln Arg Asn Leu Asn Ser Trp 820 825 830

Asp Arg Ala Arg Val Gln Arg His Leu Glu Leu Leu Arg Asp Leu 835 840 845

Glu Asp Ser Arg Gly Ala Thr Leu Asn Pro Trp Arg Lys Ala Gln Leu 850 855 860

Leu Arg Val Glu Gly Glu 865 870

<210> 17

<211> 3017

<212> DNA

<213> Homo sapiens

<400> 17

atqaqqtqqq qccaccattt qcccagggcc tcttggggct ctggttttag aagagcactc 60 cagegaccag atgategtat eccetteetg atceaetgga gttggceeet teaaggggag 120 cgtccctttg ggccccctag ggcctttata cgccaccacg gaagctcggt agatagcgct 180 cccccatccg ggaggcatgg acggetgttc cccagcgcct ctgcaactga agctatacag 240 300 eggeacegee ggaacetgge tgagtggtte ageeggetge ceagggagga gegeeagttt ggcccaacct ttgccctaga cacggtccac gttgaccctg tgatccgcga gagtacccct 360 gatgagetae ttegeceaee egeggagetg geeetggage ateageeaee eeaggeeggg 420 ctecececae tggeettgte teagetettt aacceggatg cetgtgggeg eegggtgeag 480 acagtgqtgc tgtatgggac agtgggcaca ggcaagagca cgctggtgcg caagatggtt 540 ctggactggt gttatgggcg gctgccggcc ttcgagctgc tcatcccctt ctcctgtgag 600 660 gacctqtcat ccctqqqccc tqccccaqcc tccctqtqcc aacttqtqqc ccaqcqctac acgecectga aggaggttet geceetgatg getgetgetg ggteecacet cetetttgtg 720 ctccatggct tagagcatct caacctcgac ttccggctgg caggcacggg actttgtagt 780 gacccggagg aaccgcagga accagctgct atcatcgtca acctgctgcg caaatacatg 840

ctgcctcagg	ccagcattct	ggtgaccact	cggccctctg	ccattggccg	tatccccagc	900
aagtacgtgg	gccgctatgg	tgagatctgc	ggtttctctg	ataccaacct	gcagaagctc	960
tacttccagc	tccgcctcaa	ccagccgtac	tgcgggtatg	ccgttggcgg	ttcaggtgtc	1020
tctgccacac	cagctcagcg	tgaccacctg	gtgcagatgc	tctcccggaa	cctggagggg	1080
caccaccaga	tageegetge	ctgcttcctg	ccgtcctatt	gctggctcgt	ttgtgccacc	1140
ttgcacttcc	tgcatgcccc	cacgcctgct	gggcagaccc	ttacaagcat	ctataccagc	1200
ttcctgcgcc	tcaacttcag	cggggaaacc	ctggacagca	ctgacccctc	caatttgtcc	1260
ctgatggcct	atgcagcccg	aaccatgggc	aagttggcct	atgagggggt	gtcctcccgc	1320
aagacctact	tctctgaaga	ggatgtctgt	ggctgcctgg	aggctggcat	caggacggag	1380
gaggagtttc	agctgctgca	catcttccgt	cgggatgccc	tgaggttttt	cctggcccca	1440
tgtgtggagc	cagggcgtgc	aggcaccttc	gtgttcaccg	tgcccgccat	gcaggaatac	1500
ctggctgccc	tctacattgt	gctgggtttg	cgcaagacga	ccctgcaaaa	ggtgggcaag	1560
gaagtggctg	agctcgtggg	ccgtgttggg	gaggacgtca	gcctggtact	gggcatcatg	1620
gccaagctgc	tgcctctgcg	ggctctgcct	ctgctcttca	acctgatcaa	ggtggttcca	1680
cgagtgtttg	ggcgcatggt	gggtaaaagc	cgggaggcgg	tgactcaggc	catggtgctg	1740
gagatgtttc	gagaggagga	ctactacaac	gatgatgttc	tggaccagat	gggcgccagt	1800
atcctgggcg	tggagggccc	ccggcgccac	ccagatgagc	cccctgagga	tgaagtcttc	1860
gagctcttcc	ccatgttcat	gggggggctt	ctctctgccc	acaaccgagc	tgtgctagct	1920
cagcttggct	gccccatcaa	gaacctggat	gccctggaga	atgcccaggc	catcaagaag	1980
aagctgggca	agctgggccg	gcaggtgctg	cccccatcag	agctccttga	ccacctcttc	2040
ttccactatg	agttccagaa	ccagcgcttc	tccgctgagg	tgctcagctc	cctgcgtcag	2100
ctcaacctgg	caggtgtgcg	catgacacca	gtcaagtgca	cagtggtggc	agctgtgctg	2160
ggcagcggaa	ggcatgccct	ggatgaggtg	aacttggcct	cctgccagct	agatcctgct	2220
gggctgcgca	cactcctgcc	tgtcttcctg	cgtgcccgga	agctgggctt	gcaactcaac	2280
agcctgggcc	ctgaggcctg	caaggacctc	cgagacctgt	tgctgcatga	ccagtgccaa	2340
attaccacac	tgcggctgtc	caacaacccg	ctgacggagg	caggtgttgc	cgtgctaatg	2400
gaggggctgg	caggaaacac	ctcagtgacg	cacctgtccc	tgctgcacac	gggccttggg	2460
gacgaaggcc	tggagctgct	ggctgcccag	ctggaccgca	accggcagct	gcaggagctg	2520
aacgtggcgt	acaacggtgc	tggtgacaca	gcggccctgg	ccctggccag	agctgcccgg	2580
gagcaccctt	ccctggaact	gctacacctc	tacttcaatg	agctgagctc	agagggccgc	2640

caggtcttgc	gagacttggg	gggtgctgct	gaaggtggtg	cccgggtggt	ggtgtcactg	2700
acagagggga	cggcggtgtc	agaatactgg	tcagtgatcc	tcagtgaagt	ccagcggaac	2760
ctcaatagct	gggatcgggc	ccgggttcag	cgacaccttg	agctcctact	gcgggatctg	2820
gaagatagcc	ggggtgccac	ccttaatcct	tgacgcaagg	cccagctgct	gcgagtggag	2880
ggcgaggtca	gggccctcct	ggagcagctg	ggaagctctg	gaagctgaga	cactggcggc	2940
aggcacctag	ctatgtgacc	actggcccta	aaccttttcc	ctctgtggcc	tcctggcttg	3000
cactgctccc	tctagaa					3017

<211> 950

<212> PRT

<213> Homo sapiens

<400> 18

Met Arg Trp Gly His His Leu Pro Arg Ala Ser Trp Gly Ser Gly Phe 1 5 10 15

Arg Arg Ala Leu Gln Arg Pro Asp Asp Arg Ile Pro Phe Leu Ile His 20 25 30

Trp Ser Trp Pro Leu Gln Gly Glu Arg Pro Phe Gly Pro Pro Arg Ala 35 40 45

Phe Ile Arg His His Gly Ser Ser Val Asp Ser Ala Pro Pro Ser Gly 50 55 60

Arg His Gly Arg Leu Phe Pro Ser Ala Ser Ala Thr Glu Ala Ile Gln 65 70 75 80

Arg His Arg Arg Asn Leu Ala Glu Trp Phe Ser Arg Leu Pro Arg Glu 85 90 95

Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val His Val Asp
100 105 110

Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg Pro Pro Ala 115 120 125

Glu Leu Ala Leu Glu His Gln Pro Pro Gln Ala Gly Leu Pro Pro Leu 130 135 140

Ala Leu Ser Gln Leu Phe Asn Pro Asp Ala Cys Gly Arg Arg Val Gln 145 150 155 160

Thr Val Val	Leu Tyr 165	Gly Thr	Val	Gly	Thr 170	Gly	Lys	Ser	Thr	Leu 175	Val
Arg Lys Met	Val Leu 180	Asp Trp	Cys	Tyr 185	Gly	Arg	Leu	Pro	Ala 190	Phe	Glu
Leu Leu Ile 195	Pro Phe	Ser Cys	Glu 200	Asp	Leu	Ser	Ser	Leu 205	Gly	Pro	Ala
Pro Ala Ser 210	Leu Cys	Gln Leu 215		Ala	Gln	Arg	Tyr 220	Thr	Pro	Leu	Lys
Glu Val Leu 225	Pro Leu	Met Ala 230	Ala	Ala	Gly	Ser 235	His	Leu	Leu	Phe	Val 240
Leu His Gly	Leu Glu 245	His Leu	Asn	Leu	Asp 250	Phe	Arg	Leu	Ala	Gly 255	Thr
Gly Leu Cys	Ser Asp 260	Pro Glu	Glu	Pro 265	Gln	Glu	Pro	Ala	Ala 270	Ile	Ile
Val Asn Leu 275	Leu Arg	Lys Tyr	Met 280	Leu	Pro	Gln	Ala	Ser 285	Ile	Leu	Val
Thr Thr Arg 290	Pro Ser	Ala Ile 295	_	Arg	Ile	Pro	Ser 300	Lys	Tyr	Val	Gly
Arg Tyr Gly 305	Glu Ile	Cys Gly 310	Phe	Ser	Asp	Thr 315	Asn	Leu	Gln	Lys	Leu 320
Tyr Phe Gln	Leu Arg 325				Tyr 330	_	Gly	Tyr	Ala	Val 335	
Gly Ser Gly	Val Ser 340	Ala Thr	Pro	Ala 345	Gln	Arg	Asp	His	Leu 350	Val	Gln
Met Leu Ser 355	Arg Asn	Leu Glu	Gly 360	His	His	Gln	Ile	Ala 365	Ala	Ala	Cys
Phe Leu Pro 370	Ser Tyr	Cys Trp 375		Val	Cys	Ala	Thr 380	Leu	His	Phe	Leu
His Ala Pro 385	Thr Pro	Ala Gly 390	Gln	Thr	Leu	Thr 395	Ser	Ile	Tyr	Thr	Ser 400

_

Ala Ile Lys Lys Leu Gly Lys Leu Gly Arg Gln Val Leu Pro Pro Ser Glu Leu Leu Asp His Leu Phe Phe His Tyr Glu Phe Gln Asn Gln Arg Phe Ser Ala Glu Val Leu Ser Ser Leu Arg Gln Leu Asn Leu Ala Gly Val Arg Met Thr Pro Val Lys Cys Thr Val Val Ala Ala Val Leu Gly Ser Gly Arg His Ala Leu Asp Glu Val Asn Leu Ala Ser Cys Gln Leu Asp Pro Ala Gly Leu Arg Thr Leu Leu Pro Val Phe Leu Arg Ala Arg Lys Leu Gly Leu Gln Leu Asn Ser Leu Gly Pro Glu Ala Cys Lys Asp Leu Arg Asp Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu Arg Leu Ser Asn Asn Pro Leu Thr Glu Ala Gly Val Ala Val Leu Met Glu Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His Thr Gly Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp Arg Asn Arg Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly

Arg Asn Arg Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly Asp Thr Ala Ala Leu Ala Leu Ala Arg Ala Ala Arg Glu His Pro Ser Ser Glu Leu Glu Leu His Leu Tyr Phe Asn Glu Leu Ser Ser Glu Gly Arg 8865

Gln Val Leu Arg Asp Leu Gly Gly Ala Ala Glu Gly Gly Ala Arg Val 885

Val Val Ser Leu Thr Glu Gly Thr Ala Val Ser Glu Tyr Trp Ser Val 900 905 910

Ile Leu Ser Glu Val Gln Arg Asn Leu Asn Ser Trp Asp Arg Ala Arg 915 920 925

Val Gln Arg His Leu Glu Leu Leu Arg Asp Leu Glu Asp Ser Arg 930 935 940

Gly Ala Thr Leu Asn Pro 945 950

<210> 19

<211> 2800

<212> DNA

<213> Homo sapiens

<400> 19 atgagatggg gccaccattt gcccagggcc tcttggggct ctggttttag aagagcactc 60 cagegaceag atgategtat eccetteetg atceaetgga gttggeeeet teaaggggag 120 cgtccctttg ggccccctag ggcctttata cgccaccacg gaagctcggt agatagcgct 180 cccccatccg ggaggcatgg acggctgttc cccagcgcct ctgcaactga agctatacag 240 eggeacegee ggaacetgge tgagtggtte ageeggetge ceagggagga gegeeagttt 300 ggcccaacct ttgccctaga cacggtccac gttgaccctg tgatccgcga gagtacccct 360 gatgagetae ttegeceaee egeggagetg gecetggage ateageeaee eeaggeeggg 420 ctcccccac tggccttgtc tcagctcttt aacccggatg cctgtgggcg ccgggtgcag 480 acagtggtgc tgtatgggac agtgggcaca ggcaagagca cgctggtgcg caagatggtt 540 ctggactggt gttatgggcg gctgccggcc ttcgagctgc tcatcccctt ctcctgtgag 600 gacctgtcat ccctgggccc tgccccagcc tccctgtgcc aacttgtggc ccagcgctac 660 acgecectga aggaggttet geceetgatg getgetgetg ggteecacet cetetttgtg 720 ctccatggct tagagcatct caacctcgac ttccggctgg caggcacggg actttgtagt 780 gacceggagg aacegeagga accagetget ateategtea acctgetgeg caaatacatg 840 900 ctgcctcagg ccagcattct ggtgaccact cggccctctg ccattggccg tatccccagc 960 aagtacgtgg geegetatgg tgagatetge ggtttetetg ataccaacet geagaagete tacttccage tecgeeteaa ecageegtae tgegggtatg eegttggegg tteaggtgte 1020 1080 tetgecacae cageteageg tgaceacetg gtgeagatge teteceggaa cetggagggg caccaccaga tagccgctgc ctgcttcctg ccgtcctatt gctggctcgt ttgtgccacc 1140

ttgcacttcc	tgcatgcccc	cacgcctgct	gggcagaccc	ttacaagcat	ctataccagc	1200
ttcctgcgcc	tcaacttcag	cggggaaacc	ctggacagca	ctgacccctc	caatttgtcc	1260
ctgatggcct	atgcagcccg	aaccatgggc	aagttggcct	atgagggggt	gtcctcccgc	1320
aagacctact	tctctgaaga	ggatgtctgt	ggctgcctgg	aggctggcat	caggacggag	1380
gaggagtttc	agctgctgca	catcttccgt	cgggatgccc	tgaggttttt	cctggcccca	1440
tgtgtggagc	cagggcgtgc	aggcaccttc	gtgttcaccg	tgcccgccat	gcaggaatac	1500
ctggctgccc	tctacattgt	gctgggtttg	cgcaagacga	ccctgcaaaa	ggtgggcaag	1560
gaagtggctg	agctcgtggg	ccgtgttggg	gaggacgtca	gcctggtact	gggcatcatg	1620
gccaagctgc	tgcctctgcg	ggctctgcct	ctgctcttca	acctgatcaa	ggtggttcca	1680
cgagtgtttg	ggcgcatggt	gggtaaaagc	cgggaggcgg	tgactcaggc	catggtgctg	1740
gagatgtttc	gagaggagga	ctactacaac	gatgatgttc	tggaccagat	gggcgccagt	1800
atcctgggcg	tggagggccc	ccggcgccac	ccagatgagc	cccctgagga	tgaagtcttc	1860
gagetettee	ccatgttcat	gggggggctt	ctctctgccc	acaaccgagc	tgtgctagct	1920
cagettgget	gccccatcaa	gaacctggat	gccctggaga	atgcccaggc	catcaagaag	1980
aagctgggca	agctgggccg	gcaggtgctg	cccccatcag	agctccttga	ccacctcttc	2040
ttccactatg	agttccagaa	ccagcgcttc	teegetgagg	tgctcagctc	cctgcgtcag	2100
ctcaacctgg	caggtgtgcg	catgacacca	gtcaagtgca	cagtggtggc	agctgtgctg	2160
ggcagcggaa	ggcatgccct	ggatgaggtg	aacttggcct	cctgccagct	agatcctgct	2220
gggctgcgca	cactcctgcc	tgtcttcctg	cgtgcccgga	agctgggctt	gcaactcaac	2280
agcctgggcc	ctgaggcctg	caaggacctc	cgagacctgt	tgctgcatga	ccagtgccaa	2340
attaccacac	tgcggctgtc	caacaacccg	ctgacggagg	caggtgttgc	cgtgctaatg	2400
gaggggctgg	caggaaacac	ctcagtgacg	cacctgtccc	tgctgcacac	gggccttggg	2460
gacgaaggcc	tggagctgct	ggctgcccag	ctggaccgca	accggcagct	gcaggagctg	2520
aacgtggcgt	acaacggtgc	tggtgacaca	gcggccctgg	ccctggccag	agctgcccgg	2580
gagcaccctt	ccctggaact	gctacagggt	gtcgccatcc	agatgtgttg	gaagcttccc	2640
ctcctgcctt	atgctcacct	gtggacaccg	aggatgccct	cacattggtg	ctttctcctc	2700
atcctcatgc	cccctttgcc	acaatggtat	gatggcttgg	tagcccctcg	aggcagatgc	2760
acctgacttg	ctgctattaa	aaagccgtgt	gccttctacc			2800

<210> 20 <211> 932

<212> PRT

<213> Homo sar	oiens
----------------	-------

<400> 20

Met Arg Trp Gly His His Leu Pro Arg Ala Ser Trp Gly Ser Gly Phe 1 5 10 15

Arg Arg Ala Leu Gln Arg Pro Asp Asp Arg Ile Pro Phe Leu Ile His
20 25 30

Trp Ser Trp Pro Leu Gln Gly Glu Arg Pro Phe Gly Pro Pro Arg Ala 35 40 45

Phe Ile Arg His His Gly Ser Ser Val Asp Ser Ala Pro Pro Ser Gly 50 55 60

Arg His Gly Arg Leu Phe Pro Ser Ala Ser Ala Thr Glu Ala Ile Gln 65 70 75 80

Arg His Arg Arg Asn Leu Ala Glu Trp Phe Ser Arg Leu Pro Arg Glu 85 90 95

Glu Arg Gln Phe Gly Pro Thr Phe Ala Leu Asp Thr Val His Val Asp
100 105 110

Pro Val Ile Arg Glu Ser Thr Pro Asp Glu Leu Leu Arg Pro Pro Ala 115 120 125

Glu Leu Ala Leu Glu His Gln Pro Pro Gln Ala Gly Leu Pro Pro Leu 130 135 140

Ala Leu Ser Gln Leu Phe Asn Pro Asp Ala Cys Gly Arg Arg Val Gln 145 150 155 160

Thr Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser Thr Leu Val 165 170 175

Arg Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro Ala Phe Glu 180 185 190

Leu Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu Gly Pro Ala 195 200 205

Pro Ala Ser Leu Cys Gln Leu Val Ala Gln Arg Tyr Thr Pro Leu Lys 210 215 220

Glu Val Leu Pro Leu Met Ala Ala Gly Ser His Leu Leu Phe Val

225					230					235					240
Leu	His	Gly	Leu	Glu 245	His	Leu	Asn	Leu	Asp 250	Phe	Arg	Leu	Ala	Gly 255	Thr
Gly	Leu	Cys	Ser 260	Asp	Pro	Glu	Glu	Pro 265	Gln	Glu	Pro	Ala	Ala 270	Ile	Ile
Val	Asn	Leu 275	Leu	Arg	Lys	Tyr	Met 280	Leu	Pro	Gln	Ala	Ser 285	Ile	Leu	Val
Thr	Thr 290	Arg	Pro	Ser	Ala	Ile 295	Gly	Arg	Ile	Pro	Ser 300	Lys	Tyr	Val	Gly
Arg 305	Tyr	Gly	Glu	Ile	Cys 310	Gly	Phe	Ser	Asp	Thr 315	Asn	Leu	Gln	Lys	Leu 320
Tyr	Phe	Gln	Leu	Arg 325	Leu	Asn	Gln	Pro	Tyr 330	Cys	Gly	Tyr	Ala	Val 335	Gly
Gly	Ser	Gly	Val 340	Ser	Ala	Thr	Pro	Ala 345	Gln	Arg	Asp	His	Leu 350	Val	Gln
Met	Leu	Ser 355	Arg	Asn	Leu	Glu	Gly 360	His	His	Gln	Ile	Ala 365	Ala	Ala	Cys
Phe	Leu 370	Pro	Ser	Tyr	Cys	Trp 375	Leu	Val	Cys	Ala	Thr 380	Leu	His	Phe	Leu
His 385	Ala	Pro	Thr	Pro	Ala 390	Gly	Gln	Thr	Leu	Thr 395	Ser	Ile	Tyr	Thr	Ser 400
_					_		_	_	_						

Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser Thr Asp Pro 405 410 415

Ser Asn Leu Ser Leu Met Ala Tyr Ala Ala Arg Thr Met Gly Lys Leu 420 425 430

Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser Glu Glu Asp 435 440 445

Val Cys Gly Cys Leu Glu Ala Gly Ile Arg Thr Glu Glu Glu Phe Gln 450 455 460

Leu Leu His Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe Leu Ala Pro 465 470 475 480

Gly Ser Gly Arg His Ala Leu Asp Glu Val Asn Leu Ala Ser Cys Gln

Leu Asp Pro Ala Gly Leu Arg Thr Leu Leu Pro Val Phe Leu Arg Ala

Arg Lys Leu Gly Leu Gln Leu Asn Ser Leu Gly Pro Glu Ala Cys Lys 760

Asp Leu Arg Asp Leu Leu His Asp Gln Cys Gln Ile Thr Thr Leu 775 780

Arg Leu Ser Asn Asn Pro Leu Thr Glu Ala Gly Val Ala Val Leu Met 785 790

Glu Gly Leu Ala Gly Asn Thr Ser Val Thr His Leu Ser Leu Leu His 810

Thr Gly Leu Gly Asp Glu Gly Leu Glu Leu Leu Ala Ala Gln Leu Asp 825

Arg Asn Arg Gln Leu Gln Glu Leu Asn Val Ala Tyr Asn Gly Ala Gly 840 845

Asp Thr Ala Ala Leu Ala Leu Ala Arg Ala Arg Glu His Pro Ser 855

Leu Glu Leu Leu Gln Gly Val Ala Ile Gln Met Cys Trp Lys Leu Pro 865 870 875 880

Leu Leu Pro Tyr Ala His Leu Trp Thr Pro Arg Met Pro Ser His Trp 885 890 895

Cys Phe Leu Leu Ile Leu Met Pro Pro Leu Pro Gln Trp Tyr Asp Gly 900 905 910

Leu Val Ala Pro Arg Gly Arg Cys Thr Leu Ala Ala Ile Lys Lys Pro 915 920 925

Cys Ala Phe Tyr 930

<210> 21

<211> 3464 <212> DNA

<213> Homo sapiens

<400> 21 atgctgcaga	attttaagta	cccaaagttt	ctcaacaagt	tgattttcaa	gcaagctcac	60
cggttcccca	gctcatcttc	cttccagttc	ccctgtcccc	cagctcaact	gcctgccctc	120
agttcacctg	tcccccagtt	catcttcctc	ctagctcccc	tgtcccctag	ctcacctgtg	180
ccccagctcc	cctgtccccc	aggctggctc	ctcatggacc	ccgttggcct	ccagctcggc	240
aacaagaacc	tgtggagctg	tcttgtgagg	ctgctcacca	aagacccaga	atggctgaac	300
gccaagatga	agttcttcct	ccccaacacg	gacctggatt	ccaggaacga	gaccttggac	360
cctgaacaga	gagtcatcct	gcaactcaac	aagctgcatg	tccagggttc	ggacacctgg	420
cagtetttea	ttcattgtgt	gtgcatgcag	ctggaggtgc	ctctggacct	ggaggtgctg	480
ctgctgagta	cttttggcta	tgatgatggg	ttcaccagcc	agctgggagc	tgaggggaaa	540
agccaacctg	aatctcagct	ccaccatggc	ctgaagcgcc	cacatcagag	ctgtgggtcc	600
tcaccccgcc	ggaagcagtg	caagaagcag	cagctagagt	tggccaagaa	gtacctgcag	660
ctcctgcgga	cctctgccca	gcagcgctac	aggagccaaa	tccctgggtc	agggcagccc	720
cacgccttcc	accaggtcta	tgtccctcca	atcctgcgcc	gggccacagc	atccttagac	780
actccggagg	gggccattat	gggggacgtc	aaggtggaag	atggtgctga	cgtgagcatc	840
tcggacctct	tcaacaccag	ggttaacaag	ggcccgaggg	tgaccgtgct	tttggggaag	900
gctggcatgg	gcaagaccac	gctggcccac	cggctctgcc	agaagtgggc	agagggccat	960
ctgaactgtt	tccaggccct	gttccttttt	gaattccgcc	agctcaactt	gatcacgagg	1020
ttcctgacac	cgtccgagct	cctttttgat	ctgtacctga	gccctgaatc	ggaccacgac	1080
actgtcttcc	agtacctgga	gaagaacgct	gaccaagtcc	tgctgatctt	tgatgggcta	1140
gatgaggccc	tccagcctat	gggtcctgat	ggcccaggcc	cagtcctcac	ccttttctcc	1200
catctctgca	atgggaccct	cctgcctggc	tgccgggcag	ccatggtcca	catgttgggc	1260
tttgatgggc	cacgggtgga	agaatatgtg	aatcacttct	tcagcgccca	gccatcgcgg	1320
gagggggccc	tggtggagtt	acagacaaat	ggacgtctcc	gaagcctgtg	tgcggtgccc	1380
gcactgtgcc	aagtcgcctg	tctctgcctc	caccatctgc	ttcctgacca	cgccccaggc	1440
cagtctgtgg	ccctcctgcc	caacatgact	cagctctata	tgcagatggt	gctcgccctc	1500
agcccccctg	ggcacttgcc	cacctcgtcc	ctactggacc	tgggggaggt	ggccctgagg	1560
ggccctggag	acagggaagg	ccctgggcac	cagcagacag	gctatgcttt	cacccacctc	1620
agcctgcagg	agtttcttgc	tgccctgcac	ctgatggcca	gccccaaggt	gaacaaagac	1680
acacttaccc	agtatgttac	cctccattcc	cgctgggtac	agcggaccaa	agctagactg	1740
ggcctctcag	accacctccc	caccttcctg	gegggeetgg	catcctgcac	ctgccgcccc	1800

ttccttagcc	acctggcgca	gggcaatgag	gactgtgtgg	gtgccaagca	ggctgctgta	1860
gtgcaggtgt	tgaagaagtt	ggccacccgc	aagctcacag	ggccaaaggt	tgtagagctg	1920
tgtcactgtg	tggatgagac	acaggagcct	gagctggcca	gtctcaccgc	acaaagcctc	1980
ccctatcaac	tgcccttcca	caatttccca	ctgacctgca	ccgacctggc	caccctgacc	2040
aacatcctag	agcacaggga	ggcccccatc	cacctggatt	ttgatggctg	tcccctggag	2100
ccccactgcc	ctgaggctct	ggtaggctgt	gggcagatag	agaatctcag	ctttaagagc	2160
aggaagtgtg	gggatgcctt	tgcagaagcc	ctctccagga	gcttgccgac	aatggggagg	2220
ctgcagatgc	tggggttagc	aggaagtaaa	atcactgccc	gaggcatcag	ccacctggtg	2280
aaagctttgc	ctctctgtcc	acagctgaaa	gaagtcagtt	ttcgggacaa	ccagctcagt	2340
gaccaggtgg	tgctgaacat	tgtggaggtt	ctccctcacc	taccacggct	ccggaagctt	2400
gacctctcag	ggaaccagct	ggaagatgaa	ggctgtcggc	tgatggcaga	ggctgcatcc	2460
cagctgcaca	tcgccaggaa	gctggacctc	agtaacaacg	ggctttctgt	ggccggggtg	2520
cattgtgtgc	tgagggccgt	gagtgcgtgc	tggaccctgg	cagagetgea	catcaggctg	2580
acacattgtg	gcctccaaga	aaagcaccta	gagcagctct	gcaaggctct	gggaggaagc	2640
tgccacctcg	gtcacctcca	cctcgacttc	tcaggcaatg	ctctggggga	tgaaggtgca	2700
gcccggctgg	ctcagctgct	cccagggctg	ggagctctgc	agtccttgaa	cctcagtgag	2760
aacggtttgt	ccctggatgc	cgtgttgggt	ttggttcggt	gcttctccac	tctgcagtgg	2820
ctcttccgct	tggacatcag	cctcagtgag	tgtcctctgg	agcccccaag	cctcacccgc	2880
ctctgtgcca	ctctgaagga	ctgcccggga	cccctggaac	tgcaattgtc	ctgtgagttc	2940
ctgagtgacc	agagcctgga	gactctactg	gactgcttac	ctcaactccc	tcagctgagc	3000
ctgctgcagc	tgagccagac	gggactgtcc	ccgaaaagcc	ccttcctgct	ggccaacacc	3060
ttaagcctgt	gtccacgggt	taaaaaggtg	gatctcaggt	tcacaggctg	cagcctcagc	3120
caggagcacg	tagagtcact	ctgctggttg	ctgagcaagt	gtaaagacct	cagccaggtg	3180
gatctctcag	caaacctgct	gggcgacagc	ggactcagat	gccttctgga	atgtctgccg	3240
caggtgccca	tctccggttt	gcttgagagc	ttggtcacgg	cctgtgggac	tgtgtcgccg	3300
atcgcgcccg	gcaaccccca	atggccaccg	aagtgtgcca	tccgcgtgcg	atgggggaca	3360
ccgtgctgcg	ggctgtcgtt	caggacatct	tatgtggggt	attgcggcgc	caatacccgg	3420
tcacccctat	tgcagggggg	gatatggcat	tctcctctat	gtgg		3464

<210> 22 <211> 1154 <212> PRT

<213> Homo sapiens

<400> 22

Met Leu Gln Asn Phe Lys Tyr Pro Lys Phe Leu Asn Lys Leu Ile Phe 1 5 10 15

Lys Gln Ala His Arg Phe Pro Ser Ser Ser Phe Gln Phe Pro Cys
20 25 30

Pro Pro Ala Gln Leu Pro Ala Leu Ser Ser Pro Val Pro Gln Phe Ile 35 40 45

Phe Leu Leu Ala Pro Leu Ser Pro Ser Ser Pro Val Pro Gln Leu Pro 50 55 60

Cys Pro Pro Gly Trp Leu Leu Met Asp Pro Val Gly Leu Gln Leu Gly 65 70 75 80

Asn Lys Asn Leu Trp Ser Cys Leu Val Arg Leu Leu Thr Lys Asp Pro 85 90 95

Glu Trp Leu Asn Ala Lys Met Lys Phe Phe Leu Pro Asn Thr Asp Leu 100 105 110

Asp Ser Arg Asn Glu Thr Leu Asp Pro Glu Gln Arg Val Ile Leu Gln
115 120 125

Leu Asn Lys Leu His Val Gln Gly Ser Asp Thr Trp Gln Ser Phe Ile 130 135 140

His Cys Val Cys Met Gln Leu Glu Val Pro Leu Asp Leu Glu Val Leu 145 150 155 160

Leu Leu Ser Thr Phe Gly Tyr Asp Asp Gly Phe Thr Ser Gln Leu Gly
165 170 175

Ala Glu Gly Lys Ser Gln Pro Glu Ser Gln Leu His His Gly Leu Lys 180 185 190

Arg Pro His Gln Ser Cys Gly Ser Ser Pro Arg Arg Lys Gln Cys Lys 195 200 205

Lys Gln Gln Leu Glu Leu Ala Lys Lys Tyr Leu Gln Leu Leu Arg Thr 210 215 220

Ser Ala Gln Gln Arg Tyr Arg Ser Gln Ile Pro Gly Ser Gly Gln Pro

225	230	235	240
His Ala Phe His Gl	_	Pro Ile Leu Arg	Arg Ala Thr
24		250	255
Ala Ser Leu Asp Th	r Pro Glu Gly Ala	Ile Met Gly Asp	Val Lys Val
260	265		270
Glu Asp Gly Ala As	p Val Ser Ile Ser	Asp Leu Phe Asn	Thr Arg Val
275	280	285	
Asn Lys Gly Pro Ar	g Val Thr Val Leu	Leu Gly Lys Ala	Gly Met Gly
290	295	300	
Lys Thr Thr Leu Al	a His Arg Leu Cys	Gln Lys Trp Ala	Glu Gly His
305	310	315	320
Leu Asn Cys Phe Gl		Phe Glu Phe Arg	Gln Leu Asn
32		330	335
Leu Ile Thr Arg Ph	e Leu Thr Pro Ser		Asp Leu Tyr
340	345		350
Leu Ser Pro Glu Se	r Asp His Asp Thr	Val Phe Gln Tyr	Leu Glu Lys
355	360	365	
Asn Ala Asp Gln Va	l Leu Leu Ile Phe	Asp Gly Leu Asp	Glu Ala Leu
370	375	380	
Gln Pro Met Gly Pr	o Asp Gly Pro Gly	Pro Val Leu Thr	Leu Phe Ser
385	390	395	400
His Leu Cys Asn Gl		Gly Cys Arg Ala	Ala Met Val
40		410	415

Phe Phe Ser Ala Gln Pro Ser Arg Glu Gly Ala Leu Val Glu Leu Gln 435 440 445

His Met Leu Gly Phe Asp Gly Pro Arg Val Glu Glu Tyr Val Asn His

Thr Asn Gly Arg Leu Arg Ser Leu Cys Ala Val Pro Ala Leu Cys Gln 450 455 460

Val Ala Cys Leu Cys Leu His His Leu Leu Pro Asp His Ala Pro Gly 465 470 475 480

Gln Ser Val Ala Leu Leu Pro Asn Met Thr Gln Leu Tyr Met Gln Met Val Leu Ala Leu Ser Pro Pro Gly His Leu Pro Thr Ser Ser Leu Leu Asp Leu Gly Glu Val Ala Leu Arg Gly Pro Gly Asp Arg Glu Gly Pro Gly His Gln Gln Thr Gly Tyr Ala Phe Thr His Leu Ser Leu Gln Glu Phe Leu Ala Ala Leu His Leu Met Ala Ser Pro Lys Val Asn Lys Asp Thr Leu Thr Gln Tyr Val Thr Leu His Ser Arg Trp Val Gln Arg Thr Lys Ala Arg Leu Gly Leu Ser Asp His Leu Pro Thr Phe Leu Ala Gly Leu Ala Ser Cys Thr Cys Arg Pro Phe Leu Ser His Leu Ala Gln Gly Asn Glu Asp Cys Val Gly Ala Lys Gln Ala Ala Val Val Gln Val Leu Lys Lys Leu Ala Thr Arg Lys Leu Thr Gly Pro Lys Val Val Glu Leu Cys His Cys Val Asp Glu Thr Gln Glu Pro Glu Leu Ala Ser Leu Thr Ala Gln Ser Leu Pro Tyr Gln Leu Pro Phe His Asn Phe Pro Leu Thr 660 665 670 Cys Thr Asp Leu Ala Thr Leu Thr Asn Ile Leu Glu His Arg Glu Ala Pro Ile His Leu Asp Phe Asp Gly Cys Pro Leu Glu Pro His Cys Pro Glu Ala Leu Val Gly Cys Gly Gln Ile Glu Asn Leu Ser Phe Lys Ser

Leu Cys Ala Thr Leu Lys Asp Cys Pro Gly Pro Leu Glu Leu Gln Leu

Ser Cys Glu Phe Leu Ser Asp Gln Ser Leu Glu Thr Leu Leu Asp Cys 985

Leu Pro Gln Leu Pro Gln Leu Ser Leu Leu Gln Leu Ser Gln Thr Gly 1000 995

Leu Ser Pro Lys Ser Pro Phe Leu Leu Ala Asn Thr Leu Ser Leu 1010 1015 1020

Cys Pro Arg Val Lys Lys Val Asp Leu Arg Phe Thr Gly Cys Ser 1025 1030

Leu Ser Gln Glu His Val Glu Ser Leu Cys Trp Leu Leu Ser Lys 1040

Cys Lys Asp Leu Ser Gln Val Asp Leu Ser Ala Asn Leu Leu Gly 1055 1060

Asp Ser Gly Leu Arg Cys Leu Leu Glu Cys Leu Pro Gln Val Pro 1070 1075 1080

Ile Ser Gly Leu Leu Glu Ser Leu Val Thr Ala Cys Gly Thr Val 1085 1090 1095

Ser Pro Ile Ala Pro Gly Asn Pro Gln Trp Pro Pro Lys Cys Ala 1100 1105 1110

Ile Arg Val Arg Trp Gly Thr Pro Cys Cys Gly Leu Ser Phe Arg 1115 1120 1125

Thr Ser Tyr Val Gly Tyr Cys Gly Ala Asn Thr Arg Ser Pro Leu 1130 1135 1140

Leu Gln Gly Gly Ile Trp His Ser Pro Leu Cys 1145 1150

<210> 23

<211> 4464 <212> DNA

<213> Homo sapiens

<400> 23

ggcccagtcc tcaccctttt ctcccatctc tgcaatggga ccctcctgcc tggctgccgg 60

gtgatggcta cetecegtee agggaagetg cetgeetgee tgeetgeaga ggeagecatg 120

180 gtccacatgt tgggctttga tgggccacgg gtggaagaat atgtgaatca cttcttcagc 240 gcccagccat cgcgggaggg ggccctggtg gagttacaga caaatggacg tctccgaagc 300 ctgtgtgcgg tgcccgcact gtgccaagtc gcctgtctct gcctccacca tctgcttcct 360 gaccacgece caggecagte tgtggecete etgeccaaca tgaetcaget etatatgeag 420 atggtgeteg eecteageee eeetgggeae ttgeteacet egteeetaet ggaeetgggg gaggtggccc tgaggggcct ggagacaggg aaggttatct tctatgcaaa agatattgct 480 540 ccaccettga tagettttgg ggccacteac ageetgetga etteettetg egteegeaca ggccctgggc accagcagac aggctatgct ttcacccacc tcagcctgca ggagtttctt 600 660 getgeeetge acetgatgge eageeecaag gtgaacaaag acacaettae ecagtatgtt accetecatt ceegetgggt acageggace aaagetagae tgggeetete agaecacete 720 780 cccaccttcc tggcgggcct ggcatcctgc acctgccgcc ccttccttag ccacctggcg 840 cagggcaatg aggactgtgt gggtgccaag caggctgctg tagtgcaggt gttgaagaag 900 ttggccaccc gcaagctcac agggccaaag gttgtagagc tgtgtcactg tgtggatgag 960 acacaggage etgagetgge cagteteace geacaaagee teceetatea aetgecette 1020 cacaatttcc cactgacctg caccgacctg gccaccctga ccaacatcct agagcacagg 1080 gaggeeecca tecacetgga ttttgatgge tgteeectgg ageeecaetg ceetgagget ctggtaggct gtgggcagat agagaatctc agctttaaga gcaggaagtg tggggatgcc 1140 1200 tttgcagaag ccctctccag gagcttgccg acaatgggga ggctgcagat gctggggtta 1260 gcaggaagta aaatcactgc ccgaggcatc agccacctgg tgaaagcttt gcctctctgt 1320 ccacagctga aagaagtcag ttttcgggac aaccagctca gtgaccaggt ggtgctgaac 1380 attgtggagg ttctccctca cctaccacgg ctccggaagc ttgacctgag cagcaacagc 1440 atctgcgtgt caaccctact ctgcttggca agggtggcag tcacgtgtcc taccgtcagg 1500 atgetteagg ceagggageg gaceateate tteettettt eeeegeeeac agagacaact 1560 gcagagctac aaagagctcc agacctgcag gaaagtgacg gccagaggaa aggggctcag 1620 agcagaaget tgacgetcag getgeagaag tgteagetce aggteeacga tgeggaggee 1680 ctcatagece tgctccagga aggecetcae etggaggaag tggacetete agggaaccag ctggaagatg aaggctgtcg gctgatggca gaggctgcat cccagctgca catcgccagg 1740 1800 aagctggacc tcagcgacaa cgggctttct gtggccgggg tgcattgtgt gctgagggcc 1860 gtgagtgcgt gctggaccct ggcagagctg cacatcagcc tgcagcacaa aactgtgatc 1920 ttcatgtttg cccaggagcc agaggagcag aaggggcccc aggagagggc tgcatttctt

gacctctcag ggaatagcat	cagctcagcc	gggggagtgc	agttggcaga	gtctctcgtt	3840
ctttgcaggc gcctggagga	gttgatgctt	ggctgcaatg	ccctggggga	tcccacagcc	3900
ctggggctgg ctcaggagct	gccccagcac	ctgagggtcc	tacacctacc	attcagccat	3960
ctgggcccag gtggggccct	gagcctggcc	caggccctgg	atggatcccc	ccatttggaa	4020
gagatcagct tggcggaaaa	caacctggct	ggaggggtcc	tgcgtttctg	tatggagctc	4080
ccgctgctca gacagataga	cctggtttcc	tgtaagattg	acaaccagac	tgccaagctc	4140
ctcacctcca gcttcacgag	ctgccctgcc	ctggaagtaa	tcttgctgtc	ctggaatctc	4200
ctcggggatg aggcagctgc	cgagctggcc	caggtgctgc	cgaagatggg	ccggctgaag	4260
agagtggacc tggagaagaa	tcagatcaca	gctttggggg	cctggctcct	ggctgaagga	4320
ctggcccagg ggtctagcat	ccaagtcatc	cgcctctgga	ataaccccat	tccctgcgac	4380
atggcccagc acctgaagag	ccaggagccc	aggctggact	ttgccttctt	tgacaaccag	4440
ccccaggccc cttggggtac	ttga				4464

<211> 1487

<212> PRT

<213> Homo sapiens

<400> 24

Gly Pro Val Leu Thr Leu Phe Ser His Leu Cys Asn Gly Thr Leu Leu 1 5 10 15

Pro Gly Cys Arg Val Met Ala Thr Ser Arg Pro Gly Lys Leu Pro Ala 20 25 30

Cys Leu Pro Ala Glu Ala Ala Met Val His Met Leu Gly Phe Asp Gly 35 40 45

Pro Arg Val Glu Glu Tyr Val Asn His Phe Phe Ser Ala Gln Pro Ser 50 55 60

Arg Glu Gly Ala Leu Val Glu Leu Gln Thr Asn Gly Arg Leu Arg Ser 70 75 80

Leu Cys Ala Val Pro Ala Leu Cys Gln Val Ala Cys Leu Cys Leu His
85 90 95

His Leu Leu Pro Asp His Ala Pro Gly Gln Ser Val Ala Leu Leu Pro 100 105 110

Asn	Met	Thr 115	Gln	Leu	Tyr	Met	Gln 120	Met	Val	Leu	Ala	Leu 125	Ser	Pro	Pro
Gly	His 130	Leu	Leu	Thr	Ser	Ser 135	Leu	Leu	Asp	Leu	Gly 140	Glu	Val	Ala	Leu
Arg 145	Gly	Leu	Glu	Thr	Gly 150	Lys	Val	Ile	Phe	Tyr 155	Ala	Lys	Asp	Ile	Ala 160
Pro	Pro	Leu	Ile	Ala 165	Phe	Gly	Ala	Thr	His 170	Ser	Leu	Leu	Thr	Ser 175	Phe
Arg	Val	Cys	Thr 180	Gly	Pro	Gly	His	Gln 185	Gln	Thr	Gly	Tyr	Ala 190	Phe	Thr
His	Leu	Ser 195	Leu	Gln	Glu	Phe	Leu 200	Ala	Ala	Leu	His	Leu 205	Met	Ala	Ser
Pro	Lys 210	Val	Asn	Lys	Asp	Thr 215	Leu	Thr	Gln	Tyr	Val 220	Thr	Leu	His	Ser
Arg 225	Trp	Val	Gln	Arg	Thr 230	Lys	Ala	Arg	Leu	Gly 235	Leu	Ser	Asp	His	Leu 240
Pro	Thr	Phe	Leu	Ala 245	Gly	Leu	Ala	Ser	Cys 250	Thr	Cys	Arg	Pro	Phe 255	Leu
Ser	His	Leu	Ala 260	Gln	Gly	Asn	Glu	Asp 265	Cys	Val	Gly	Ala	Lys 270	Gln	Ala
Ala	Val	Val 275	Gln	Val	Leu	Lys	Lys 280	Leu	Ala	Thr	Arg	Lys 285	Leu	Thr	Gly
Pro	Lys 290	Val	Val	Glu	Leu	Cys 295	His	Cys	Val	Asp	Glu 300	Thr	Gln	Glu	Pro
Glu 305	Leu	Ala	Ser	Leu	Thr 310	Ala	Gln	Ser	Leu	Pro 315	Tyr	Gln	Leu	Pro	Phe 320
His	Asn	Phe	Pro	Leu 325	Thr	Cys	Thr	Asp	Leu 330	Ala	Thr	Leu	Thr	Asn 335	Ile
Leu	Glu	His	Arg 340	Glu	Ala	Pro	Ile	His 345	Leu	Asp	Phe	Asp	Gly 350	Cys	Pro
Leu	Glu	Pro	His	Cys	Pro	Glu	Ala	Leu	Val	Gly	Cys	Gly	Gln	Ile	Glu

355	360	365

Asn	Leu 370	Ser	Phe	Lys	Ser	Arg 375	Lys	Cys	Gly	Asp	Ala 380	Phe	Ala	Glu	Ala
Leu 385	Ser	Arg	Ser	Leu	Pro 390	Thr	Met	Gly	Arg	Leu 395	Gln	Met	Leu	Gly	Leu 400
Ala	Gly	Ser	Lys	Ile 405	Thr	Ala	Arg	Gly	Ile 410	Ser	His	Leu	Val	Lys 415	Ala
Leu	Pro	Leu	Cys 420	Pro	Gln	Leu	Lys	Glu 425	Val	Ser	Phe	Arg	Asp 430	Asn	Gln
Leu	Ser	Asp 435	Gln	Val	Val	Leu	Asn 440	Ile	Val	Glu	Val	Leu 445	Pro	His	Leu
Pro	Arg 450	Leu	Arg	Lys	Leu	Asp 455	Leu	Ser	Ser	Asn	Ser 460	Ile	Суз	Val	Ser
Thr 465	Leu	Leu	Cys	Leu	Ala 470	Arg	Val	Ala	Val	Thr 475	Cys	Pro	Thr	Val	Arg 480
Met	Leu	Gln	Ala	Arg 485	Glu	Arg	Thr	Ile	Ile 490	Phe	Leu	Leu	Ser	Pro 495	Pro
Thr	Glu	Thr	Thr 500	Ala	Glu	Leu	Gln	Arg 505	Ala	Pro	Asp	Leu	Gln 510	Glu	Ser
Asp	Gly	Gln 515	Arg	Lys	Gly	Ala	Gln 520	Ser	Arg	Ser	Leu	Thr 525	Leu	Arg	Leu
Gln	Lys 530	Cys	Gln	Leu	Gln	Val 535	His	Asp	Ala	Glu	Ala 540	Leu	Ile	Ala	Leu
Leu 545	Gln	Glu	Gly	Pro	His 550	Leu	Glu	Glu	Val	Asp 555	Leu	Ser	Gly	Asn	Gln 560
Leu	Glu	Asp	Glu	Gly 565	Cys	Arg	Leu	Met	Ala 570	Glu	Ala	Ala	Ser	Gln 575	Leu
His	Ile	Ala	Arg 580	Lys	Leu	Asp	Leu	Ser 585	Asp	Asn	Gly	Leu	Ser 590	Val	Ala
Gly	Val	His 595	Cys	Val	Leu	Arg	Ala 600	Val	Ser	Ala	Cys	Trp 605	Thr	Leu	Ala

Glu Leu His Ile Ser Leu Gln His Lys Thr Val Ile Phe Met Phe Ala Gln Glu Pro Glu Glu Gln Lys Gly Pro Gln Glu Arg Ala Ala Phe Leu Asp Ser Leu Met Leu Gln Met Pro Ser Glu Leu Pro Leu Ser Ser Arg Arg Met Arg Leu Thr His Cys Gly Leu Gln Glu Lys His Leu Glu Gln Leu Cys Lys Ala Leu Gly Gly Ser Cys His Leu Gly His Leu His Leu Asp Phe Ser Gly Asn Ala Leu Gly Asp Glu Gly Ala Ala Arg Leu Ala Gln Leu Leu Pro Gly Leu Gly Ala Leu Gln Ser Leu Asn Leu Ser Glu Asn Gly Leu Ser Leu Asp Ala Val Leu Gly Leu Val Arg Cys Phe Ser Thr Leu Gln Trp Leu Phe Arg Leu Asp Ile Ser Phe Glu Ser Gln His 745 750 Ile Leu Leu Arg Gly Asp Lys Thr Ser Ser Leu Ser Glu Cys Pro Leu 760 765 Glu Pro Pro Ser Leu Thr Arg Leu Cys Ala Thr Leu Lys Asp Cys Pro Gly Pro Leu Glu Leu Gln Leu Ser Cys Glu Phe Leu Ser Asp Gln Ser Leu Glu Thr Leu Leu Asp Cys Leu Pro Gln Leu Pro Gln Leu Ser Leu Leu Gln Leu Ser Gln Thr Gly Leu Ser Pro Lys Ser Pro Phe Leu Leu Ala Asn Thr Leu Ser Leu Cys Pro Arg Val Lys Lys Val Asp Leu Arg

Gly Val Cys Cys Gly Arg Phe Thr Gly Cys Ser Leu Ser Gln Glu His Val Glu Ser Leu Cys Trp Leu Leu Ser Lys Cys Lys Asp Leu Ser Gln Val Asp Leu Ser His Asn Ser Ile Ser Gln Glu Ser Ala Leu Tyr Leu Leu Glu Thr Leu Pro Ser Cys Pro Arg Val Arg Glu Ala Ser Val Asn Leu Gly Ser Glu Gln Ser Phe Arg Ile His Phe Ser Arg Glu Asp Gln Ala Gly Lys Thr Leu Arg Leu Ser Glu Cys Ser Phe Arg Pro Glu His Val Ser Arg Leu Ala Thr Gly Leu Ser Lys Ser Leu Gln Leu Thr Glu Leu Thr Leu Thr Gln Cys Cys Leu Gly Gln Lys Gln Leu Ala Ile Leu Leu Ser Leu Val Gly Arg Pro Ala Gly Leu Phe Ser Leu Arg Val Gln 995 . Glu Pro Trp Ala Asp Arg Ala Arg Val Leu Ser Leu Leu Glu Val Cys Ala Gln Ala Ser Gly Ser Val Thr Glu Ile Ser Ile Ser Glu Thr Gln Gln Leu Cys Val Gln Leu Glu Phe Pro Arg Gln Glu Glu Asn Pro Glu Ala Val Ala Leu Arg Leu Ala His Cys Asp Leu

Ser Leu His His Ala Thr Leu His Phe Arg Ser Asn Glu Glu Glu

Gly Ala His His Ser Leu Leu Val Gly Gln Leu Met Glu Thr Cys

Ala	Arg 1085	Leu	Gln	Gln	Leu	Ser 1090	Leu	Ser	Gln	Val	Asn 1095	Leu	Cys	Glu
Asp	Asp 1100	Asp	Ala	Ser	Ser	Leu 1105	Leu	Leu	Gln	Ser	Leu 1110	Leu	Leu	Ser
Leu	Ser 1115	Glu	Leu	Lys	Thr	Phe 1120	Arg	Leu	Thr	Ser	Ser 1125	Cys	Val	Ser
Thr	Glu 1130	Gly	Leu	Ala	His	Leu 1135	Ala	Ser	Gly	Leu	Gly 1140	His	Cys	His
His	Leu 1145	Glu	Glu	Leu	Asp	Leu 1150	Ser	Asn	Asn	Gln	Phe 1155	Asp	Glu	Glu
Gly	Thr 1160	Lys	Ala	Leu	Met	Arg 1165	Ala	Leu	Glu	Gly	Lys 1170	Trp	Met	Leu
Lys	Arg 1175	Leu	Asp	Leu	Ser	His 1180	Leu	Leu	Leu	Asn	Ser 1185	Ser	Thr	Leu
Ala	Leu 1190	Leu	Thr	His	Arg	Leu 1195	Ser	Gln	Met	Thr	Cys 1200	Leu	Gln	Ser
Leu	Arg 1205	Leu	Asn	Arg	Asn	Ser 1210	Ile	Gly	Asp	Val	Gly 1215	Cys	Cys	His
Leu	Ser 1220	Glu	Ala	Leu	Arg	Ala 1225	Ala	Thr	Ser	Leu	Glu 1230	Glu	Leu	Asp
	Ser 1235					-	_		-		Gln 1245		Leu	Ala
Thr	Ile 1250	Leu	Pro	Gly	Leu	Pro 1255	Glu	Leu	Arg	Lys	Ile 1260	Asp	Leu	Ser
Gly	Asn 1265	Ser	Ile	Ser	Ser	Ala 1270	Gly	Gly	Val	Gln	Leu 1275		Glu	Ser
Leu	Val 1280	Leu	Cys	Arg	Arg	Leu 1285	Glu	Glu	Leu	Met	Leu 1290	_	Cys	Asn
Ala	Leu 1295	Gly	Asp	Pro	Thr	Ala 1300	Leu	Gly	Leu	Ala	Gln 1305	Glu	Leu	Pro
Gln	His	Leu	Arg	Val	Leu	His	Leu	Pro	Phe	Ser	His	Leu	Gly	Pro

-3			_		_		~3		•	3	G 3		_		
GIY	1325		Leu	ser	Leu	Ala 1330	GIn	Ala	Leu	Asp	1335	ser	Pro	HIS	
Leu	Glu 1340		Ile	Ser	Leu	Ala 1345		Asn	Asn	Leu	Ala 1350	Gly	Gly	Val	
Leu	Arg 1355	Phe	Cys	Met	Glu	Leu 1360	Pro	Leu	Leu	Arg	Gln 1365	Ile	Asp	Leu	
Val	Ser 1370	•	Lys	Ile	Asp	Asn 1375		Thr	Ala	Lys	Leu 1380	Leu	Thr	Ser	
Ser	Phe 1385		Ser	Cys	Pro	Ala 1390		Glu	Val	Ile	Leu 1395	Leu	Ser	Trp	
Asn	Leu 1400		Gly	Asp	Glu	Ala 1405		Ala	Glu	Leu	Ala 1410	Gln	Val	Leu	
Pro	Lys 1415		Gly	Arg	Leu	Lys 1420	_	Val	Asp	Leu	Glu 1425	_	Asn	Gln	
Ile	Thr 1430		Leu	Gly	Ala	Trp 1435		Leu	Ala	Glu	Gly 1440		Ala	Gln	
Gly	Ser 1445		Ile	Gln	Val	Ile 1450	_	Leu	Trp	Asn	Asn 1455		Ile	Pro	
Cys	Asp 1460		Ala	Gln	His	Leu 1465	_	Ser	Gln	Glu	Pro 1470	_	Leu	Asp	
Phe	Ala 1475	Phe	Phe	Asp	Asn	Gln 1480	Pro	Gln	Ala	Pro	Trp 1485	Gly	Thr		
<21 <21		5 230													
<21: <21:	2 > D	NA omo	sapie	ens											
<40			agag	gtgc	g ga	cgggc	agg (gagg	ccgg	cc a	gggcc	acgg	tac	gggctcc	60
cca	gccga	gc a	ggtga	aaag	c cci	tcatg	gat (ctgc	tggc	tg g	gaagg	gcag	tca	aggctcc	120
cag	gcccc	gc a	ggcc	ctgga	a tag	ggaca	ccg (gatg	cccc	gc t	ggggc	cctg	cag	caatgac	180
tca	aggat	ac a	gagg	cacc	g caa	aggcc	ctg	ctga	gcaa	gg t	gggag	gt g g	ccc	ggagctg	240

tctcctgcct cagcctc	cct agtagctggg	g attacaggtg	cccgccatca tgcc	tggcta 2160
atttttgtgt ttttagt	aga gacggggttt	caccatgttg	gccaggctgc tctc	aaactc 2220
ctgacctcag				2230
<210> 26 <211> 743 <212> PRT <213> Homo sapien	S			
<400> 26				
Met Arg Lys Gln Gl 1 5	u Val Arg Thr	Gly Arg Glu 10	Ala Gly Gln Gly 15	/ His
Gly Thr Gly Ser Pr 20	o Ala Glu Gln	Val Lys Ala 25	Leu Met Asp Leu 30	ı Leu
Ala Gly Lys Gly Se 35	r Gln Gly Ser 40	Gln Ala Pro	Gln Ala Leu Asp 45	o Arg
Thr Pro Asp Ala Pr 50	o Leu Gly Pro 55	Cys Ser Asn	Asp Ser Arg Ile	e Gln
Arg His Arg Lys Al 65	a Leu Leu Ser 70	Lys Val Gly 75	Gly Gly Pro Glu	ı Leu 80
Gly Gly Pro Trp Hi 85	s Arg Leu Ala	Ser Leu Leu 90	Leu Val Glu Gly 95	y Leu
Thr Asp Leu Gln Le	u Arg Glu His	Asp Phe Thr 105	Gln Val Glu Ala	a Thr
Arg Gly Gly Gly Hi 115	s Pro Ala Arg 120	Thr Val Ala	Leu Asp Arg Let 125	ı Phe
Leu Pro Leu Ser Ar 130	g Val Ser Val 135	Pro Pro Arg	Val Ser Ile Th: 140	r Ile
Gly Val Ala Gly Me 145	t Gly Lys Thr 150	Thr Leu Val 155	Arg His Phe Va	l Arg 160
Leu Trp Ala His Gl 16	_	Lys Asp Phe 170	Ser Leu Val Let	
Leu Thr Phe Arg As	p Leu Asn Thr	His Glu Lys 185	Leu Cys Ala As 190	o Arg

	Cys Ser Va .95	l Phe Pro	His Va 200	l Gly Glu	Pro Ser 205		Val
Ala Val P 210	Pro Ala Ar	g Ala Leu 215		e Leu Asp	Gly Leu 220	Asp Glu	Cys
Arg Thr P 225	Pro Leu As	Phe Ser 230	Asn Th	r Val Ala 235		Asp Pro	240
Lys Glu I	le Pro Va 24		Leu Il	e Thr Asn 250	Ile Ile	Arg Gly 255	
Leu Phe P	Pro Glu Va 260	l Ser Ile	e Trp Il 26		Arg Pro	Ser Ala 270	Ser
	le Pro Gl	y Gly Leu	Val As 280	p Arg Met	Thr Glu 285	-	d Gly
Phe Asn G 290	slu Glu Gl	ı Ile Lys 295		s Leu Glu	Gln Met 300	Phe Pro	Glu
Asp Gln A 305	ala Leu Le	ı Gly Trp 310	Met Le	u Ser Gln 315		Ala Asp	320
Ala Leu T	yr Leu Me 32	_	Val Pr	o Ala Phe 330	Cys Arg	Leu Thi	_
Met Ala L	eu Gly Hi	s Leu Trp	Arg Se 34	_	Gly Pro	Gln Asr 350	Ala
	rp Pro Pro 555	Arg Thr	Leu Cy 360	s Glu Leu	Tyr Ser 365		Phe
Arg Met A 370	ala Leu Se	c Gly Glu 375	_	n Glu Lys	Gly Lys 380	Ala Sei	Pro
Arg Ile G 385	Glu Gln Va	l Ala His 390	Gly Gl	y Arg Lys 395		Gly Thi	Leu 400
Gly Arg L	eu Ala Pho 40	_	Leu Le	u Lys Lys 410	Lys Tyr	Val Phe	_
Glu Gln A	asp Met Ly: 420	s Ala Phe	Gly Va		Ala Leu	Leu Gli 430	n Gly

Trp Ser Leu Ala Leu Ser Pro Arg Leu Glu Tyr Ser Gly Ala Ile Ser 675 680 685

Ala His Cys Lys Arg Cys Leu Leu Gly Ser Ser Asp Ser Pro Ala Ser 690 695 700

Ala Ser Leu Val Ala Gly Ile Thr Gly Ala Arg His His Ala Trp Leu 705 710 715 720

Ile Phe Val Phe Leu Val Glu Thr Gly Phe His His Val Gly Gln Ala 725 730 735

Ala Leu Lys Leu Leu Thr Ser 740

<210> 27

<211> 3489

<212> DNA

<213> Homo sapiens

<400> attcccaggg catctaccac cacgcagctg gagcagggct gagcccagga gcatggagat 60 qqacqccccc aggcccccca gtcttgctgt ccctggagca gcatcgaggc ccgggagaac 120 tqtqqacaac qqaaqqctga qccccatcca ttgagttcct ggggccccac tggaggggct 180 gctgtggcca gggtgcacgg tcacaaatga agacaccaag gcgcagagag gtgactcagc 240 300 ctgccctcag tcacctatct gctcctggag gtgatccccg actccatgag gaagcaagag gtgcggacgg gcagggaggc cggccagggc cacggtacgg gctccccagc cgagcaggtg 360 420 aaagccctca tggatctgct ggctgggaag ggcagtcaag gctcccaggc cccgcaggcc ctggatagga caccggatgc cccgctgggg ccctgcagca atgactcaag gatacagagg 480 caccgcaagg ccctgctgag caaggtggga ggtggcccgg agctgggcgg accctggcac 540 aggetggeet eceteetget ggtggaggge etgaeggaee tgeagetgag ggaacaegae 600 660 ttcacacagg tggaggccac ccgcgggggc gggcaccccg ccaggaccgt cgccctggac eggetettee tgeetetete eegggtgtet gteecaceee gggteteeat cactateggg 720 780 gtggccggca tgggcaagac caccetggtg aggcaetteg tecgcetetg ggcccatggg 840 caggteggea aggaettete getggtgetg cetetgaeet teegggatet caacacceae gagaagetgt gtgeegaeeg aeteatetge teggtettee egeaegtegg ggageeeage 900 ctggcggtgg cagtcccagc cagggccctc ctgatcctgg acggcttgga tgagtgcagg 960 acqcctctqq acttctccaa caccgtggcc tgcacggacc caaagaagga gatcccggtg 1020 1080 qaccacctqa tcaccaacat catccqtqqc aacctctttc cggaagtttc catctggatc

acctecegte ceagtgeate tggecagate ceagggggee tggtggaeeg gatgaeggag 1140 atccggggct ttaacgagga ggagatcaag gtgtgtttgg agcagatgtt ccccgaggac 1200 caggecette tgggetggat getgagecaa gtgeaggetg acagggeeet gtacetgatg 1260 1320 tgcaccgtcc cagccttctg caggctcacg gggatggcgc taggccacct gtggcgcagc 1380 aggacggggc cccaggatgc agagctgtgg cccccgagga ccctgtgcga gctctactca tggtacttta ggatggccct cagcggggag gggcaggaga agggcaaggc aagccctcgc 1440 ategageagg tggcccatgg tggccgcaag atggtgggga cattgggccg tctggccttc 1500 1560 catgggctgc tcaagaagaa atacgtgttt tacgagcaag acatgaaggc gtttggtgta 1620 gacctcgctc tgctgcaggg cgccccgtgc agctgcttcc tgcagagaga ggagacgttg gcatcgtcag tggcctactg cttcacccac ctgtccctgc aggagtttgt ggcagccgcg 1680 tattactatg gcgcatccag gagggccatc ttcgacctct tcactgagag cggcgtatcc 1740 tggcccaggc tgggcttcct cacgcatttc aggagcgcag cccagcgggc catgcaggca 1800 gaggacggga ggctggacgt gttcctgcgc ttcctctccg gcctcttgtc tccgagggtc 1860 1920 aatgeeetee tggeeggete eetgetggee eaaggegage accaggeeta eeggaeeeag 1980 gtggctgagc tcctgcaggg ctgcctgcgc cccgatgccg cagtctgtgc acgggccatc aacgtgttgc actgcctgca tgagctgcag cacaccgagc tggcccgcag cgtggaggag 2040 2100 gecatggaga geggggeeet ggecaggetg accggteeeg egcacegege tgeeetggee tacctcctgc aggtgtccga cgcctgtgcc caggaggcca acctgtccct gagcctcagc 2160 cagggegtee tteagageet getgeeceag etgetetaet geeggaaget caggetggae 2220 2280 accaaccagt tccaggaccc cgtgatggag ctgctgggca gcgtgctgag tgggaaggac 2340 tgtcgcattc agaagatcag cttggcggag aaccagatca gtaacaaagg ggccaaagct etggecagat ecetettggt caacagaagt etgacetete tggaceteeg eggtaactee 2400 2460 attggaccac aaggggccaa ggcgctggca gacgctttga agatcaaccg caccctgacc 2520 tecetgagee tecagggeaa cacegttagg gatgatggtg ceaggteeat ggetgaggee 2580 ttggcctcca accggaccct ctccatgctg cacctgcaga agaacagcat cgggcccatg 2640 ggagcccagc ggatggcaga tgccttgaag cagaacagga gtctgaaaga gctcatgttc 2700 tccagtaata gtattggtga tggaggtgcc aaggccctgg ctgaggccct gaaggtgaac cagggcctgg agagcctgga cctgcagagc aattccatca gtgacgcagg agtggcagca 2760 2820 ctgatggggg ccctctgcac caaccagacc ctcctcagcc tcagccttcg agaaaactcc atcagteceg agggageeca ggeeateget catgeeetet gegeeaacag caecetgaag 2880

aacctggacc	tgacagccaa	cctcctccac	gaccagggtg	cccgggccat	cgcagtggca	2940
gtgagagaaa	accgcaccct	cacctccctt	cacctgcagt	ggaacttcat	ccaggccggc	3000
gctgcccagg	ccctgggaca	agcactacag	ctcaacagga	gcctcaccag	cttagattta	3060
caggagaacg	ccatcgggga	tgacggagcg	tgtgcggtgg	cccgtgcact	gaaggtcaac	3120
acagccctca	ctgctctcta	tctccaggtg	gcctcaattg	gtgcttcagg	cgcccaggtg	3180
ctaggggaag	ccttggctgt	gaacagaacc	ttggagattc	tcgacttaag	aggaaatgcc	3240
attggggtgg	ctggagccaa	agccctggca	aatgctctga	aggtaaactc	aagtctccgg	3300
agactcaatc	ttcaagagaa	ttctctgggg	atggacgggg	cgatatgcat	tgccacagca	3360
ctgtctggaa	accacaggct	ccagcatatc	aatctccagg	gaaaccacat	tggggactcc	3420
ggggccagga	tgatctcaga	ggccatcaag	acaaatgctc	ccacgtgcac	tgttgaaatg	3480
tgatcctgg						3489

<210> 28

<211> 1065

<212> PRT

<213> Homo sapiens

<400> 28

Met Arg Lys Gln Glu Val Arg Thr Gly Arg Glu Ala Gly Gln Gly His

1 10 15

Gly Thr Gly Ser Pro Ala Glu Gln Val Lys Ala Leu Met Asp Leu Leu 20 25 30

Ala Gly Lys Gly Ser Gln Gly Ser Gln Ala Pro Gln Ala Leu Asp Arg 35 40 45

Thr Pro Asp Ala Pro Leu Gly Pro Cys Ser Asn Asp Ser Arg Ile Gln 50 55 60

Arg His Arg Lys Ala Leu Leu Ser Lys Val Gly Gly Pro Glu Leu 65 70 75 80

Gly Gly Pro Trp His Arg Leu Ala Ser Leu Leu Leu Val Glu Gly Leu 85 90 95

Thr Asp Leu Gln Leu Arg Glu His Asp Phe Thr Gln Val Glu Ala Thr 100 105 110

Arg Gly Gly His Pro Ala Arg Thr Val Ala Leu Asp Arg Leu Phe 115 120 125

Leu	Pro 130	Leu	Ser	Arg	Val	Ser 135	Val	Pro	Pro	Arg	Val 140	Ser	Ile	Thr	Ile
Gly 145	Val	Ala	Gly	Met	Gly 150	Lys	Thr	Thr	Leu	Val 155	Arg	His	Phe	Val	Arg 160
Leu	Trp	Ala	His	Gly 165	Gln	Val	Gly	Lys	Asp 170	Phe	Ser	Leu	Val	Leu 175	Pro
Leu	Thr	Phe	Arg 180	Asp	Leu	Asn	Thr	His 185	Glu	Lys	Leu	Cys	Ala 190	Asp	Arg
Leu	Ile	Cys 195	Ser	Val	Phe	Pro	His 200	Val	Gly	Glu	Pro	Ser 205	Leu	Ala	Val
Ala	Val 210	Pro	Ala	Arg	Ala	Leu 215	Leu	Ile	Leu	Asp	Gly 220	Leu	Asp	Glu	Cys
Arg 225	Thr	Pro	Leu	Asp	Phe 230	Ser	Asn	Thr	Val	Ala 235	Cys	Thr	Asp	Pro	Lys 240
Lys	Glu	Ile	Pro	Val 245	Asp	His	Leu	Ile	Thr 250	Asn	Ile	Ile	Arg	Gly 255	Asn
Leu	Phe	Pro	Glu 260	Val	Ser	Ile	Trp	Ile 265	Thr	ser	Arg	Pro	Ser 270	Ala	Ser
Gly	Gln	Ile 275	Pro	Gly	Gly	Leu	Val 280.		Arg	Met	Thr	Glu 285	Ile	Arg	Gly
Phe	Asn 290	Glu	Glu			Lys 295		_			Gln 300	Met	Phe	Pro	Glu
Asp 305	Gln	Ala	Leu	Leu	Gly 310	Trp	Met	Leu	Ser	Gln 315	Val	Gln	Ala	Asp	Arg 320
Ala	Leu	Tyr	Leu	Met 325	Cys	Thr	Val	Pro	Ala 330	Phe	Cys	Arg	Leu	Thr 335	Gly
Met	Ala	Leu	Gly 340	His	Leu	Trp	Arg	Ser 345	Arg	Thr	Gly	Pro	Gln 350	Asp	Ala
Glu	Leu	Trp 355	Pro	Pro	Arg	Thr	Leu 360	Cys	Glu	Leu	Tyr	Ser 365	Trp	Tyr	Phe

Arg	Met 370	Ala	Leu	Ser	Gly	Glu 375	Gly	Gln	Glu	Lys	Gly 380	Lys	Ala	Ser	Pro
Arg 385	Ile	Glu	Gln	Val	Ala 390	His	Gly	Gly	Arg	Lys 395	Met	Val	Gly	Thr	Leu 400
Gly	Arg	Leu	Ala	Phe 405	His	Gly	Leu	Leu	Lys 410	Lys	Lys	Tyr	Val	Phe 415	Tyr
Glu	Gln	Asp	Met 420	Lys	Ala	Phe	Gly	Val 425	Asp	Leu	Ala	Leu	Leu 430	Gln	Gly
Ala	Pro	Cys 435	Ser	Cys	Phe	Leu	Gln 440	Arg	Glu	Glu	Thr	Leu 445	Ala	Ser	Ser
Val	Ala 450	Tyr	Cys	Phe	Thr	His 455	Leu	Ser	Leu	Gln	Glu 460	Phe	Val	Ala	Ala
Ala 465	Tyr	Tyr	Tyr	Gly	Ala 470	Ser	Arg	Arg	Ala	Ile 475	Phe	Asp	Leu	Phe	Thr 480
Glu	Ser	Gly	Val	Ser 485	Trp	Pro	Arg	Leu	Gly 490	Phe	Leu	Thr	His	Phe 495	Arg
Ser	Ala	Ala	Gln 500	Arg	Ala	Met	Gln	Ala 505	Glu	Asp	Gly	Arg	Leu 510	Asp	Val
Phe	Leu	Arg 515	Phe	Leu	Ser	Gly	Leu 520	Leu	Ser	Pro	Arg	Val 525	Asn	Ala	Leu
Leu	Ala 530	Gly	Ser	Leu	Leu	Ala 535	Gln	Gly	Glu	His	Gln 540	Ala	Tyr	Arg	Thr
Gln 545	Val	Ala	Glu	Leu	Leu 550	Gln	Gly	Cys	Leu	Arg 555	Pro	Asp	Ala	Ala	Val 560
Cys	Ala	Arg	Ala	Ile 565	Asn	Val	Leu	His	Cys 570	Leu	His	Glu	Leu	Gln 575	His
Thr	Glu	Leu	Ala 580	Arg	Ser	Val	Glu	Glu 585	Ala	Met	Glu	Ser	Gly 590	Ala	Leu
Ala	Arg	Leu 595	Thr	Gly	Pro	Ala	His 600	Arg	Ala	Ala	Leu	Ala 605	Tyr	Leu	Leu
Gln	Val	Ser	Asp	Ala	Cys	Ala	Gln	Glu	Ala	Asn	Leu	Ser	Leu	Ser	Leu

		•
615	620	

Ser 625	Gln	Gly	Val	Leu	Gln 630	Ser	Leu	Leu	Pro	Gln 635	Leu	Leu	Tyr	Cys	Arg 640
Lys	Leu	Arg	Leu	Asp 645	Thr	Asn	Gln	Phe	Gln 650	Asp	Pro	Val	Met	Glu 655	Leu
Leu	Gly	Ser	Val 660	Leu	Ser	Gly	Lys	Asp 665	Cys	Arg	Ile	Gln	Lys 670	Ile	Ser
Leu	Ala	Glu 675	Asn	Gln	Ile	Ser	Asn 680	Lys	Gly	Ala	Lys	Ala 685	Leu	Ala	Arg
Ser	Leu 690	Leu	Val	Asn	Arg	Ser 695	Leu	Thr	Ser	Leu	Asp 700	Leu	Arg	Gly	Asn
Ser 705	Ile	Gly	Pro	Gln	Gly 710	Ala	Lys	Ala	Leu	Ala 715	Asp	Ala	Leu	Lys	Ile 720
Asn	Arg	Thr	Leu	Thr 725	Ser	Leu	Ser	Leu	Gln 730	Gly	Asn	Thr	Val	Arg 735	Asp
Asp	Gly	Ala	Arg 740	Ser	Met	Ala	Glu	Ala 745	Leu	Ala	Ser	Asn	Arg 750	Thr	Leu
Ser	Met	Leu 755	His	Leu	Gln	Lys	Asn 760	Ser	Ile	Gly	Pro	Met 765	Gly	Ala	Gln
Arg	Met 770	Ala	Asp	Ala	Leu	Lys 775	Gln	Asn	Arg	Ser	Leu 780	Lys	Glu	Leu	Met
Phe 785	Ser	Ser	Asn	Ser	Ile 790	Gly	Asp	Gly	Gly	Ala 795	Lys	Ala	Leu	Ala	Glu 800
Ala	Leu	Lys	Val	Asn 805	Gln	Gly	Leu	Glu	Ser 810	Leu	Asp	Leu	Gln	Ser 815	Asn
Ser	Ile	Ser	Asp 820	Ala	Gly	Val	Ala	A la 8 25	Leu	Met	Gly	Ala	Leu 830	Cys	Thr
Asn	Gln	Thr 835	Leu	Leu	Ser	Leu	Ser 840	Leu	Arg	Glu	Asn	Ser 845	Ile	Ser	Pro
Glu	Gly 850	Ala	Gln	Ala	Ile	Ala 855	His	Ala	Leu	Cys	Ala 860	Asn	Ser	Thr	Leu

- Lys Asn Leu Asp Leu Thr Ala Asn Leu Leu His Asp Gln Gly Ala Arg 865 870 875 880
- Ala Ile Ala Val Ala Val Arg Glu Asn Arg Thr Leu Thr Ser Leu His 885 890 895
- Leu Gln Trp Asn Phe Ile Gln Ala Gly Ala Ala Gln Ala Leu Gly Gln
 900 905 910
- Ala Leu Gln Leu Asn Arg Ser Leu Thr Ser Leu Asp Leu Gln Glu Asn 915 920 925
- Ala Ile Gly Asp Asp Gly Ala Cys Ala Val Ala Arg Ala Leu Lys Val 930 935 940
- Asn Thr Ala Leu Thr Ala Leu Tyr Leu Gln Val Ala Ser Ile Gly Ala 945 950 955 960
- Ser Gly Ala Gln Val Leu Gly Glu Ala Leu Ala Val Asn Arg Thr Leu 965 970 975
- Glu Ile Leu Asp Leu Arg Glý Asn Ala Ile Gly Val Ala Gly Ala Lys 980 985 990
- Ala Leu Ala Asn Ala Leu Lys Val Asn Ser Ser Leu Arg Arg Leu Asn 995 1000 1005
- Leu Gln Glu Asn Ser Leu Gly Met Asp Gly Ala Ile Cys Ile Ala 1010 1015 1020
- Thr Ala Leu Ser Gly Asn His Arg Leu Gln His Ile Asn Leu Gln 1025 1030 1035
- Gly Asn His Ile Gly Asp Ser Gly Ala Arg Met Ile Ser Glu Ala 1040 1045 1050
- Ile Lys Thr Asn Ala Pro Thr Cys Thr Val Glu Met 1055 1060 1069
- <210> 29
- <211> 282
- <212> DNA
- <213> Homo sapiens
- <400> 29
- atggcaagca cccgctgcaa gctggccagg tacctggagg acctggagga tgtggacttg 60

aagaaattta agatgcactt agaggactat cctccccaga agggctgcat ccccctcccg	120
aggggtcaga cagagaaggc agaccatgtg gatctagcca cgctaatgat cgacttcaat	180
ggggaggaga aggcgtgggc catggccgtg tggatcttcg ctgcgatcaa caggagagac	240
ctttatgaga aagcaaaaag agatgagccg aagtggggtt ag	282
<210> 30 <211> 93 <212> PRT <213> Homo sapiens	
<pre><400> 30 Met Ala Ser Thr Arg Cys Lys Leu Ala Arg Tyr Leu Glu Asp Leu Glu</pre>	
1 5 10 15	
Asp Val Asp Leu Lys Lys Phe Lys Met His Leu Glu Asp Tyr Pro Pro 20 25 30	
Gln Lys Gly Cys Ile Pro Leu Pro Arg Gly Gln Thr Glu Lys Ala Asp 35 40 45	
His Val Asp Leu Ala Thr Leu Met Ile Asp Phe Asn Gly Glu Glu Lys 50 55 60	
Ala Trp Ala Met Ala Val Trp Ile Phe Ala Ala Ile Asn Arg Arg Asp 65 70 75 80	
Leu Tyr Glu Lys Ala Lys Arg Asp Glu Pro Lys Trp Gly 85 90	
<210> 31 <211> 2154 <212> DNA <213> Homo sapiens	
<400> 31 atggcaagca cccgctgcaa gctggccagg tacctggagg acctggagga tgtggacttg	60

aagaaattta agatgcactt agaggactat cctccccaga agggctgcat ccccctcccg

aggggtcaga cagagaaggc agaccatgtg gatctagcca cgctaatgat cgacttcaat

ggggaggaga aggcgtgggc catggccgtg tggatcttcg ctgcgatcaa caggagagac

ctttatgaga aagcaaaaag agatgagccg aagtggggtt cagataatgc acgtgtttcg

aatcccactg tgatatgcca ggaagacagc attgaagagg agtggatggg tttactggag

tacctttcga gaatctctat ttgtaaaatg aagaaagatt accgtaagaa gtacagaaag

120

180

240

300

360

				_		
tacgtgagaa	gcagattcca	gtgcattgaa	gacaggaatg	cccgtctggg	tgagagtgtg	480
agcctcaaca	aacgctacac	acgactgcgt	ctcatcaagg	agcaccggag	ccagcaggag	540
agggagcagg	agcttctggc	catcggcaag	accaagacgt	gtgagagccc	cgtgagtccc	600
attaagatgg	agttgctgtt	tgaccccgat	gatgagcatt	ctgagcctgt	gcacaccgtg	660
gtgttccagg	gggcggcagg	gattgggaaa	acaatcctgg	ccaggaagat	gatgttggac	720
tgggcgtcgg	ggacactcta	ccaagacagg	tttgactatc	tgttctatat	ccactgtcgg	780
gaggtgagcc	ttgtgacaca	gaggagcctg	gggġacctga	tcatgagctg	ctgccccgac	840
ccaaacccac	ccatccacaa	gatcgtgaga	aaaccctcca	gaatcctctt	cctcatggac	900
ggcttcgatg	agctgcaagg	tgcctttgac	gagcacatag	gaccgctctg	cactgactgg	960
cagaaggccg	agcggggaga	cattctcctg	agcagcctca	tcagaaagaa	gctgcttccc	1020
gaggcctctc	tgctcatcac	cacgagacct	gtggccctgg	agaaactgca	gcacttgctg	1080
gaccatcctc	ggcatgtgga	gatcctgggt	ttctccgagg	ccaaaaggaa	agagtacttc	1140
ttcaagtact	tctctgatga	ggcccaagcc	agggcagcct	tcagtctgat	tcaggagaac	1200
gaggtcctct	tcaccatgtg	cttcatcccc	ctggtctgct	ggatcgtgtg	cactggactg	1260
aaacagcaga	tggagagtgg	caagagcctt	gcccagacat	ccaagaccac	caccgcggtg	1320
tacgtcttct	tcctttccag	tttgctgcag	ccccggggag	ggagccagga	gcacggcctc	1380
tgcgcccacc	tetggggget	ctgctctttg	gctgcagatg	gaatctggaa	ccagaaaatc	1440
ctgtttgagg	agtccgacct	caggaatcat	ggactgcaga	aggcggatgt	gtctgctttc	1500
ctgaggatga	acctgttcca	aaaggaagtg	gactgcgaga	agttctacag	cttcatccac	1560
atgactttcc	aggagttctt	tgccgccatg	tactacctgc	tggaagagga	aaaggaagga	1620
aggacgaacg	ttccagggag	tcgtttgaag	cttcccagcc	gagacgtgac	agtccttctg	1680
gaaaactatg	gcaaattcga	aaaggggtat	ttgatttttg	ttgtacgttt	cctctttggc	1740
ctggtaaacc	aggagaggac	ctcctacttg	gagaagaaat	taagttgcaa	gatctctcag	1800
caaatcaggc	tggagctgct	gaaatggatt	gaagtgaaag	ccaaagctaa	aaagctgcag	1860
atccagccca	gccagctgga	attgttctac	tgtttgtacg	agatgcagga	ggaggacttc	1920
gtgcaaaggg	ccatggacta	tttccccaag	attgagatca	atctctccac	cagaatggac	1980
cacatggttt	cttccttttg	cattgagaac	tgtcatcggg	tggagtcact	gtccctgggg	2040
tttctccata	acatgcccaa	ggaggaagag	gaggaggaaa	aggaaggccg	acaccttgat	2100
atggtgcagt	gtgtcctccc	aagctcctct	catgctgcct	gttctcatgg	atag	2154

<210> 32 <211> 717

12.	125	PRT

<213> Homo sapiens

<400> 32

Met Ala Ser Thr Arg Cys Lys Leu Ala Arg Tyr Leu Glu Asp Leu Glu 1 5 10 15

Asp Val Asp Leu Lys Lys Phe Lys Met His Leu Glu Asp Tyr Pro Pro 20 25 30

Gln Lys Gly Cys Ile Pro Leu Pro Arg Gly Gln Thr Glu Lys Ala Asp 35 40 45

His Val Asp Leu Ala Thr Leu Met Ile Asp Phe Asn Gly Glu Glu Lys
50 55 60

Ala Trp Ala Met Ala Val Trp Ile Phe Ala Ala Ile Asn Arg Asp 65 70 75 80

Leu Tyr Glu Lys Ala Lys Arg Asp Glu Pro Lys Trp Gly Ser Asp Asn 85 90 95

Ala Arg Val Ser Asn Pro Thr Val Ile Cys Gln Glu Asp Ser Ile Glu
100 . 105 110

Glu Glu Trp Met Gly Leu Leu Glu Tyr Leu Ser Arg Ile Ser Ile Cys 115 120 125

Lys Met Lys Lys Asp Tyr Arg Lys Lys Tyr Arg Lys Tyr Val Arg Ser 130 135 140

Arg Phe Gln Cys Ile Glu Asp Arg Asn Ala Arg Leu Gly Glu Ser Val 145 150 155 160

Ser Leu Asn Lys Arg Tyr Thr Arg Leu Arg Leu Ile Lys Glu His Arg 165 170 175

Ser Gln Glu Arg Glu Gln Glu Leu Leu Ala Ile Gly Lys Thr Lys 180 185 190

Thr Cys Glu Ser Pro Val Ser Pro Ile Lys Met Glu Leu Leu Phe Asp 195 200 205

Pro Asp Asp Glu His Ser Glu Pro Val His Thr Val Val Phe Gln Gly 210 215 220

Ala 225	Ala	Gly	Ile	Gly	Lys 230	Thr	Ile	Leu	Ala	Arg 235	Lys	Met	Met	Leu	Asp 240
Trp	Ala	Ser	Gly	Thr 245	Leu	Tyr	Gln	Asp	Arg 250	Phe	Asp	Tyr	Leu	Phe 255	Tyr
Ile	His	Cys	Arg 260	Glu	Val	Ser	Leu	Val 265	Thr	Gln	Arg	Ser	Leu 270	Gly	Asp
Leu	Ile	Met 275	Ser	Cys	Cys	Pro	Asp 280	Pro	Asn	Pro	Pro	Ile 285	His	Lys	Ile
Val	Arg 290	Lys	Pro	Ser	Arg	Ile 295	Leu	Phe	Leu	Met	Asp 300	Gly	Phe	Asp	Glu
Leu 305	Gln	Gly	Ala	Phe	Asp 310	Glu	His	Ile	Gly	Pro 315	Leu	Cys	Thr	Asp	Trp 320
Gln	Lys	Ala	Glu	Arg 325	Gly	Asp	Ile	Leu	Leu 330	Ser	Ser	Leu	Ile	Arg 335	Lys
Lys	Leu	Leu	Pro 340	Glu	Ala	Ser	Leu	Leu 345	Ile	Thr	Thr	Arg	Pro 350	Val	Ala
Leu	Glu	Lys 355	Leu	Gln	His	Leu	Leu 360	Asp	His	Pro	Arg	His 365	Val	Glu	Ile
Leu	Gly 370	Phe	Ser	Glu	Ala	Lys 375	Arg	Lys	Glu	Tyr	Phe 380	Phe	Lys	Tyr	Phe
Ser 385	Asp	Glu	Ala	Gln	Ala 390	Arg	Ala	Ala	Phe	Ser 395	Leu	Ile	Gln	Glu	Asn 400
Glu	Val	Leu	Phe	Thr 405	Met	Cys	Phe	Ile	Pro 410	Leu	Val	Cys	Trp	Ile 415	Val
Cys	Thr	Gly	Leu 420	Lys	Gln	Gln	Met	Glu 425	Ser	Gly	Lys	Ser	Leu 430	Ala	Gln
Thr	Ser	Lys 435	Thr	Thr	Thr	Ala	Val 440	Tyr	Val	Phe	Phe	Leu 445	Ser	Ser	Leu
Leu	Gln 450	Pro	Arg	Gly	Gly	Ser 455	Gln	Glu	His	Gly	Leu 460	Cys	Ala	His	Leu
Trp	Gly	Leu	Cys	Ser	Leu	Ala	Ala	Asp	Gly	Ile	Trp	Asn	Gln	Lys	Ile

465					470					475					480
Leu	Phe	Glu	Glu	Ser 485	Asp	Leu	Arg	Asn	His 490	Gly	Leu	Gln	Lys	Ala 495	Asp
Val	Ser	Ala	Phe 500	Leu	Arg	Met	Asn	Leu 505	Phe	Gln	Lys	Glu	Val 510	Asp	Cys
Glu	Lys	Phe 515	Tyr	Ser	Phe	Ile	His 520	Met	Thr	Phe	Gln	Glu 525	Phe	Phe	Ala
Ala	Met 530	Tyr	Tyr	Leu	Leu	Glu 535	Glu	Glu	Lys	Glu	Gly 540	Arg	Thr	Asn	Val
Pro 545	Gly	Ser	Arg	Leu	Lys 550	Leu	Pro	Ser	Arg	Asp 555	Val	Thr	Val	Leu	Leu 560
Glu	Asn	Tyr	Gly	Lys 565	Phe	Glu	Lys	Gly	Tyr 570	Leu	Ile	Phe	Val	Val 575	Arg
Phe	Leu	Phe	Gly 580	Leu	Val	Asn	Gln	Glu 585	Arg	Thr	Ser	Tyr	Leu 590	Glu	Lys
Lys	Leu	Ser 595	Суз	Lys	Ile	Ser	Gln 600	Gln	Ile	Arg	Leu	Glu 605	Leu	Leu	Lys
Trp	Ile 610	Glu	Val	Lys	Ala	Lys 615	Ala	Lys	Lys	Leu	Gln 620	Ile	Gln	Pro	Ser
Gln 625	Leu	Glu	Leu	Phe	Tyr 630	Cys	Leu	Tyr	Glu	Met 635	Gln	Glu	Glu	Asp	Phe 640
Val	Gln	Arg	Ala	Met 645	Asp	Tyr	Phe	Pro	Lys 650	Ile	Glu	Ile	Asn	Leu 655	Ser
Thr	Arg	Met	Asp 660	His	Met	Val	Ser	Ser 665	Phe	Cys	Ile	Glu	Asn 670	Cys	His
Arg	Val	Glu 675	Ser	Leu	Ser	Leu	Gly 680	Phe	Leu	His	Asn	Met 685	Pro	Lys	Glu

Glu Glu Glu Glu Lys Glu Gly Arg His Leu Asp Met Val Gln Cys

Val Leu Pro Ser Ser His Ala Ala Cys Ser His Gly

<210>	33	
<211>	2835	
<212>	DNA	
<213>	Homo	sapiens

<400> 33 60 atggcaagca cccgctgcaa gctggccagg taccccactg tgatatgcca ggaagacagc attgaagagg agtggatggg tttactggag tacctttcga gaatctctat ttgtaaaatg 120 180 aagaaagatt accgtaagaa gtacagaaag tacgtgagaa gcagattcca gtgcattgaa gacaggaatg cccgtctggg tgagagtgtg agcctcaaca aacgctacac acgactgcgt 240 ctcatcaagg agcaccggag ccagcaggag agggagcagg agcttctggc catcggcaag 300 accaagacgt gtgagagccc cgtgagtccc attaagatgg agttgctgtt tgaccccgat 360 gatgagcatt ctgagcctgt gcacaccgtg gtgttccagg gggcggcagg gattgggaaa 420 acaatcctgg ccaggaagat gatgttggac tgggcgtcgg ggacactcta ccaagacagg 480 tttgactatc tgttctatat ccactgtcgg gaggtgagcc ttgtgacaca gaggagcctg 540 ggggacctga tcatgagctg ctgccccgac ccaaacccac ccatccacaa gatcgtgaga 600 660 aaacceteca gaatcetett eeteatggae ggettegatg agetgeaagg tgeetttgae gagcacatag gaccgctctg cactgactgg cagaaggccg agcggggaga cattctcctg 720 agcagcetca teagaaagaa getgetteee gaggeetete tgeteateae caegagaeet 780 840 gtggccctgg agaaactgca gcacttgctg gaccatcctc ggcatgtgga gatcctgggt 900 ttctccgagg ccaaaaggaa agagtacttc ttcaagtact tctctgatga ggcccaagcc 960 agggcagcct tcagtctgat tcaggagaac gaggtcctct tcaccatgtg cttcatcccc 1020 ctggtctgct ggatcgtgtg cactggactg aaacagcaga tggagagtgg caagagcctt gcccagacat ccaagaccac caccgcggtg tacgtcttct tcctttccag tttgctgcag 1080 ccccggggag ggagccagga gcacggcctc tgcgcccacc tctgggggct ctgctctttg 1140 1200 gctgcagatg gaatctggaa ccagaaaatc ctgtttgagg agtccgacct caggaatcat 1260 ggactgcaga aggcggatgt gtctgctttc ctgaggatga acctgttcca aaaggaagtg gactgcgaga agttctacag cttcatccac atgactttcc aggagttctt tgccgccatg 1320 1380 tactacctgc tggaagagga aaaggaagga aggacgaacg ttccagggag tcgtttgaag cttcccagcc gagacgtgac agtccttctg gaaaactatg gcaaattcga aaaggggtat 1440 ttgatttttg ttgtacgttt cctctttggc ctggtaaacc aggagaggac ctcctacttg 1500 gagaagaaat taagttgcaa gatctctcag caaatcaggc tggagctgct gaaatggatt 1560 gaagtgaaag ccaaagctaa aaagctgcag atccagccca gccagctgga attgttctac 1620

tgtttgtacg	agatgcagga	ggaggacttc	gtgcaaaggg	ccatggacta	tttccccaag	1680
attgagatca	atctctccac	cagaatggac	cacatggttt	cttccttttg	cattgagaac	1740
tgtcatcggg	tggagtcact	gtccctgggg	tttctccata	acatgcccaa	ggaggaagag	1800
gaggaggaaa	aggaaggccg	acaccttgat	atggtgcagt	gtgtcctccc	aagctcctct	1860
catgctgcct	gttctcatgg	attggtgaac	agccacctca	cttccagttt	ttgccggggc	1920
ctcttttcag	ttctgagcac	cagccagagt	ctaactgaat	tggacctcag	tgacaattct	1980
ctgggggacc	cagggatgag	agtgttgtgt	gaaacgctcc	agcatcctgg	ctgtaacatt	2040
cggagattgt	ggttggggcg	ctgtggcctc	tcgcatgagt	gctgcttcga	catctccttg	2100
gtcctcagca	gcaaccagaa	gctggtggag	ctggacctga	gtgacaacgc	cctcggtgac	2160
ttcggaatca	gacttctgtg	tgtgggactg	aagcacctgt	tgtgcaatct	gaagaagctc	2220
tggttggtca	gctgctgcct	cacatcagca	tgttgtcagg	atcttgcatc	agtattgagc	2280
accagccatt	ccctgaccag	actctatgtg	ggggagaatg	ccttgggaga	ctcaggagtc	2340
gcaattttat	gtgaaaaagc	caagaatcca	cagtgtaacc	tgcagaaact	ggggttggtg	2400
aattctggcc	ttacgtcagt	ctgttgttca	gctttgtcct	cggtactcag	cactaatcag	2460
aatctcacgc	acctttacct	gcgaggcaac	actctcggag	acaaggggat	caaactactc	2520
tgtgagggac	tcttgcaccc	cgactgcaag	cttcaggtgt	tggaattaga	caactgcaac	2580
ctcacgtcac	actgctgctg	ggatctttcc	acacttctga	cctccagcca	gagcctgcga	2640
aagctgagcc	tgggcaacaa	tgacctgggc	gacctggggg	tcatgatgtt	ctgtgaagtg	2700
ctgaaacagc	agagctgcct	cctgcagaac	ctggggttgt	ctgaaatgta	tttcaattat	2760
gagacaaaaa	gtgcgttaga	aacacttcaa	gaagaaaagc	ctgagctgac	cgtcgtcttt	2820
gagccttctt	ggtag					2835

<210> 34

Met Ala Ser Thr Arg Cys Lys Leu Ala Arg Tyr Pro Thr Val Ile Cys

1 10 15

Gln Glu Asp Ser Ile Glu Glu Glu Trp Met Gly Leu Leu Glu Tyr Leu 20 25 30

Ser Arg Ile Ser Ile Cys Lys Met Lys Lys Asp Tyr Arg Lys Lys Tyr 35 40 45

<211> 944

<212> PRT

<213> Homo sapiens

<400> 34

Arg Lys Tyr Val Arg Ser Arg Phe Gln Cys Ile Glu Asp Arg Asn Ala 55 Arg Leu Gly Glu Ser Val Ser Leu Asn Lys Arg Tyr Thr Arg Leu Arg Leu Ile Lys Glu His Arg Ser Gln Gln Glu Arg Glu Gln Glu Leu Leu 85 Ala Ile Gly Lys Thr Lys Thr Cys Glu Ser Pro Val Ser Pro Ile Lys 100 105 110 Met Glu Leu Phe Asp Pro Asp Glu His Ser Glu Pro Val His 115 120 Thr Val Val Phe Gln Gly Ala Ala Gly Ile Gly Lys Thr Ile Leu Ala 130 135 Arg Lys Met Met Leu Asp Trp Ala Ser Gly Thr Leu Tyr Gln Asp Arg 150 Phe Asp Tyr Leu Phe Tyr Ile His Cys Arg Glu Val Ser Leu Val Thr 170 Gln Arg Ser Leu Gly Asp Leu Ile Met Ser Cys Cys Pro Asp Pro Asn Pro Pro Ile His Lys Ile Val Arg Lys Pro Ser Arg Ile Leu Phe Leu 195 200 Met Asp Gly Phe Asp Glu Leu Gln Gly Ala Phe Asp Glu His Ile Gly 210 215 Pro Leu Cys Thr Asp Trp Gln Lys Ala Glu Arg Gly Asp Ile Leu Leu 225 230 235 240 Ser Ser Leu Ile Arg Lys Lys Leu Leu Pro Glu Ala Ser Leu Leu Ile 245 250 Thr Thr Arg Pro Val Ala Leu Glu Lys Leu Gln His Leu Leu Asp His 260 265 Pro Arg His Val Glu Ile Leu Gly Phe Ser Glu Ala Lys Arg Lys Glu 275 280 285

Tyr Phe Phe Lys Tyr Phe Ser Asp Glu Ala Gln Ala Arg Ala Ala Phe Ser Leu Ile Gln Glu Asn Glu Val Leu Phe Thr Met Cys Phe Ile Pro Leu Val Cys Trp Ile Val Cys Thr Gly Leu Lys Gln Gln Met Glu Ser Gly Lys Ser Leu Ala Gln Thr Ser Lys Thr Thr Ala Val Tyr Val Phe Phe Leu Ser Ser Leu Leu Gln Pro Arg Gly Gly Ser Gln Glu His Gly Leu Cys Ala His Leu Trp Gly Leu Cys Ser Leu Ala Ala Asp Gly Ile Trp Asn Gln Lys Ile Leu Phe Glu Glu Ser Asp Leu Arg Asn His Gly Leu Gln Lys Ala Asp Val Ser Ala Phe Leu Arg Met Asn Leu Phe Gln Lys Glu Val Asp Cys Glu Lys Phe Tyr Ser Phe Ile His Met Thr Phe Gln Glu Phe Phe Ala Ala Met Tyr Tyr Leu Leu Glu Glu Glu Lys Glu Gly Arg Thr Asn Val Pro Gly Ser Arg Leu Lys Leu Pro Ser Arg Asp Val Thr Val Leu Leu Glu Asn Tyr Gly Lys Phe Glu Lys Gly Tyr Leu Ile Phe Val Val Arg Phe Leu Phe Gly Leu Val Asn Gln Glu Arg Thr Ser Tyr Leu Glu Lys Lys Leu Ser Cys Lys Ile Ser Gln Gln Ile Arg Leu Glu Leu Leu Lys Trp Ile Glu Val Lys Ala Lys Ala Lys Lys

Glu Lys Ala Lys Asn Pro Gln Cys Asn Leu Gln Lys Leu Gly Leu Val 785 790 795 800	
Asn Ser Gly Leu Thr Ser Val Cys Cys Ser Ala Leu Ser Ser Val Leu 805 810 815	
Ser Thr Asn Gln Asn Leu Thr His Leu Tyr Leu Arg Gly Asn Thr Leu 820 825 830	
Gly Asp Lys Gly Ile Lys Leu Leu Cys Glu Gly Leu Leu His Pro Asp 835 840 845	
Cys Lys Leu Gln Val Leu Glu Leu Asp Asn Cys Asn Leu Thr Ser His 850 855 860	
Cys Cys Trp Asp Leu Ser Thr Leu Leu Thr Ser Ser Gln Ser Leu Arg 865 870 875 880	
Lys Leu Ser Leu Gly Asn Asn Asp Leu Gly Asp Leu Gly Val Met Met 885 890 895	
Phe Cys Glu Val Leu Lys Gln Gln Ser Cys Leu Leu Gln Asn Leu Gly 900 905 910	
Leu Ser Glu Met Tyr Phe Asn Tyr Glu Thr Lys Ser Ala Leu Glu Thr 915 920 925	
Leu Gln Glu Glu Lys Pro Glu Leu Thr Val Val Phe Glu Pro Ser Trp 930 935 940	
<210> 35 <211> 993 <212> DNA <213> Homo sapiens	
<400> 35	
atggcaagca cccgctgcaa gctggccagg taccatggat tggtgaacag ccacctcact 60 tccagttttt gccggggcct cttttcagtt ctgagcacca gccagagtct aactgaattg 120	•
gacctcagtg acaattetet gggggaccca gggatgagag tgttgtgtga aacgetecag 180	
catcetgget gtaacatteg gagattgtgg ttggggcget gtggcetete gcatgagtge 240	
tgcttcgaca tctccttggt cctcagcagc aaccagaagc tggtggagct ggacctgagt 300	

gacaacgccc teggtgactt eggaatcaga ettetgtgtg tgggactgaa gcacetgttg

tgcaatctga	agaagctctg	gttggtcagc	tgctgcctca	catcagcatg	ttgtcaggat	420
cttgcatcag	tattgagcac	cagccattcc	ctgaccagac	tctatgtggg	ggagaatgcc	480
ttgggagact	caggagtcgc	aattttatgt	gaaaaagcca	agaatccaca	gtgtaacctg	540
cagaaactgg	ggttggtgaa	ttctggcctt	acgtcagtct	gttgttcagc	tttgtcctcg	600
gtactcagca	ctaatcagaa	tctcacgcac	ctttacctgc	gaggcaacac	tctcggagac	660
aaggggatca	aactactctg	tgagggactc	ttgcaccccg	actgcaagct	tcaggtgttg	720
gaattagaca	actgcaacct	cacgtcacac	tgctgctggg	atctttccac	acttctgacc	780
tccagccaga	gcctgcgaaa	gctgagcctg	ggcaacaatg	acctgggcga	cctgggggtc	840
atgatgttct	gtgaagtgct	gaaacagcag	agctgcctcc	tgcagaacct	ggggttgtct	900
gaaatgtatt	tcaattatga	gacaaaaagt	gcgttagaaa	cacttcaaga	agaaaagcct	960
gagctgaccg	tcgtctttga	gccttcttgg	tag			993

<210> 36

<211> 330

<212> PRT

<213> Homo sapiens

<400> 36

Met Ala Ser Thr Arg Cys Lys Leu Ala Arg Tyr His Gly Leu Val Asn 1 5 10 15

Ser His Leu Thr Ser Ser Phe Cys Arg Gly Leu Phe Ser Val Leu Ser 20 25 30

Thr Ser Gln Ser Leu Thr Glu Leu Asp Leu Ser Asp Asn Ser Leu Gly 35 40 45

Asp Pro Gly Met Arg Val Leu Cys Glu Thr Leu Gln His Pro Gly Cys 50 55 60

Asn Ile Arg Arg Leu Trp Leu Gly Arg Cys Gly Leu Ser His Glu Cys 65 70 75 80

Cys Phe Asp Ile Ser Leu Val Leu Ser Ser Asn Gln Lys Leu Val Glu 85 90 95

Leu Asp Leu Ser Asp Asn Ala Leu Gly Asp Phe Gly Ile Arg Leu Leu 100 105 110

Cys Val Gly Leu Lys His Leu Leu Cys Asn Leu Lys Lys Leu Trp Leu 115 120 125 Val Ser Cys Cys Leu Thr Ser Ala Cys Cys Gln Asp Leu Ala Ser Val Leu Ser Thr Ser His Ser Leu Thr Arg Leu Tyr Val Gly Glu Asn Ala 150 Leu Gly Asp Ser Gly Val Ala Ile Leu Cys Glu Lys Ala Lys Asn Pro 170 Gln Cys Asn Leu Gln Lys Leu Gly Leu Val Asn Ser Gly Leu Thr Ser Val Cys Cys Ser Ala Leu Ser Ser Val Leu Ser Thr Asn Gln Asn Leu 200 Thr His Leu Tyr Leu Arg Gly Asn Thr Leu Gly Asp Lys Gly Ile Lys 215 Leu Leu Cys Glu Gly Leu Leu His Pro Asp Cys Lys Leu Gln Val Leu 225 230 235 Glu Leu Asp Asn Cys Asn Leu Thr Ser His Cys Cys Trp Asp Leu Ser 245 250 Thr Leu Leu Thr Ser Ser Gln Ser Leu Arg Lys Leu Ser Leu Gly Asn 260 265 Asn Asp Leu Gly Asp Leu Gly Val Met Met Phe Cys Glu Val Leu Lys 275 280 285 Gln Gln Ser Cys Leu Leu Gln Asn Leu Gly Leu Ser Glu Met Tyr Phe 290 295 300 Asn Tyr Glu Thr Lys Ser Ala Leu Glu Thr Leu Gln Glu Glu Lys Pro

Glu Leu Thr Val Val Phe Glu Pro Ser Trp 325 330

310

<210> 37

<211> 8

305

<212> PRT

<213> Homo sapiens

<400> 37

Gly Ala Ala Gly Ile Gly Lys Thr

```
<210> 38
<211> 8
<212> PRT
<213> Homo sapiens
<400> 38
Gly Asp Ala Gly Val Gly Lys Ser
            5
<210> 39
<211> 8
<212> PRT
<213> Homo sapiens
<400> 39
Gly Ser Ala Gly Thr Gly Lys Thr
<210> 40
<211> 8
<212> PRT
<213> Homo sapiens
<400> 40
Gly Ala Ala Gly Val Gly Lys Thr
1 5
<210> 41
<211> 8
<212> PRT
<213> Homo sapiens
<400> 41
Gly Pro Ala Gly Thr Gly Lys Thr
<210> 42
<211> 8
<212> PRT
<213> Homo sapiens
<400> 42
Gly Thr Val Gly Thr Gly Lys Ser
<210> 43
<211> 8
<212> PRT
```

```
<213> Homo sapiens
<400> 43
Gly Lys Ala Gly Gln Gly Lys Ser
<210> 44
<211> 8
<212> PRT
<213> Homo sapiens
<400> 44
Gly Glu Ala Gly Ser Gly Lys Ser
<210> 45
<211> 8
<212> PRT
<213> Homo sapiens
<400> 45
Gly Lys Ala Gly Met Gly Lys Thr
               5
<210> 46
<211> 8
<212> PRT
<213> Homo sapiens
<400> 46
Gly Val Ala Gly Met Gly Lys Thr
<210> 47
<211> 8
<212> PRT
<213> Homo sapiens
<400> 47
Gly Ala Ala Gly Ile Gly Lys Ser
1 5
<210> 48
<211> 8
<212> PRT
<213> Homo sapiens
<400> 48
Gly Pro Ala Gly Leu Gly Lys Thr
               5
```

```
<210> 49
<211> 8
<212> PRT
<213> Homo sapiens
<400> 49
Gly Pro Asp Gly Ile Gly Lys Thr
<210> 50
<211> 8
<212> PRT
<213> Homo sapiens
<400> 50
Gly Ala Pro Gly Ile Gly Lys Thr
    5
<210> 51
<211> 8
<212> PRT
<213> Homo sapiens
<400> 51
Gly Ala Ala Gly Ile Gly Lys Ser
<210> 52
<211> 8
<212> PRT
<213> Homo sapiens
<400> 52
Gly Pro Ala Gly Val Gly Lys Thr
                5
<210> 53
<211> 8
<212> PRT
<213> Homo sapiens
<400> 53
Gly Pro Gln Gly Ile Gly Lys Thr
<210> 54
<211> 8
<212> PRT
<213> Homo sapiens
```

```
<400> 54
Gly Glu Arg Ala Ser Gly Lys Thr
<210> 55
<211> 8
<212> PRT
<213> Homo sapiens
<400> 55
Gly Arg Ala Gly Val Gly Lys Thr
     5
<210> 56
<211> 8
<212> PRT
<213> Homo sapiens
<400> 56
Gly Lys Ser Gly Ile Gly Lys Ser
<210> 57
<211> 8
<212> PRT
<213> Homo sapiens
<400> 57
Ala Cys Ala Gly Thr Gly Lys Thr
1 5
<210> 58
<211> 8
<212> PRT
<213> Homo sapiens
<400> 58
Gly Met Ala Gly Cys Gly Lys Ser
<210> 59
<211> 8
<212> PRT
<213> Homo sapiens
<400> 59
Gly Met Gly Gly Ser Gly Lys Thr
```

```
<210> 60
<211> 8
<212> PRT
<213> Homo sapiens
<400> 60
Gly Glu Ala Gly Ser Gly Lys Thr
<210> 61
<211> 8
<212> PRT
<213> Homo sapiens
<400> 61
Gly Asp Pro Gly Lys Gly Lys Thr
<210> 62
<211> 8
<212> PRT
<213> Homo sapiens
<400> 62
Gly Gln Ser Gly Gln Gly Lys Thr
     5
<210> 63
<211> 8
<212> PRT
<213> Homo sapiens
<400> 63
Gly Ala Gly Glu Ser Gly Lys Ser
<210> 64
<211> 4
<212> PRT
<213> Homo sapiens
<400> 64
Asp Ala Tyr Gly
<210> 65
<211> 4
<212> PRT
<213> Homo sapiens
```

```
<400> 65
Asp Glu Pro Gly
<210> 66
<211> 4
<212> PRT
<213> Homo sapiens
<400> 66
Asp Glu Leu Gly
<210> 67
<211> 4
<212> PRT
<213> Homo sapiens
<400> 67
Asp Ile Cys Gly
<210> 68
<211> 4
<212> PRT
<213> Homo sapiens
<400> 68
Asp Asp Leu Gly
<210> 69
<211> 4
<212> PRT
<213> Homo sapiens
<400> 69
Asp Pro Val Gly
1
<210> 70
<211> 4
<212> PRT
<213> Homo sapiens
<400> 70
Asp Lys Ser Gly
```

```
<210> 71
<211> 4
<212> PRT
<213> Homo sapiens
<400> 71
Asp His Ala Gly
<210> 72
<211> 4
<212> PRT
<213> Homo sapiens
<400> 72
Asp Gln Asn Gly
<210> 73
<211> 4
<212> PRT
<213> Homo sapiens
<400> 73
Asp Lys Leu Gly
<210> 74
<211> 5
<212> PRT
<213> Homo sapiens
<400> 74
Leu Phe Leu Met Asp
1
<210> 75
<211> 5
<212> PRT
<213> Homo sapiens
<400> 75
Leu Phe Thr Phe Asp
                5
<210> 76
<211> 5
<212> PRT
<213> Homo sapiens
```

<400> 76

```
Leu Phe Ile Leu Asp
<210> 77
<211> 5
<212> PRT
<213> Homo sapiens
<400> 77
Leu Phe Ile Ile Asp
                5
<210> 78
<211> 5
<212> PRT
<213> Homo sapiens
<400> 78
Leu Phe Ile Met Asp
<210> 79
<211> 5
<212> PRT
<213> Homo sapiens
<400> 79
Leu Leu Ile Leu Asp
1 5
<210> 80
<211> 5
<212> PRT
<213> Homo sapiens
<400> 80
Leu Leu Thr Phe Asp
<210> 81
<211> 5
<212> PRT
<213> Homo sapiens
<400> 81
Leu Leu Ile Phe Asp
```

<210> 82

```
<211> 5
<212> PRT
<213> Homo sapiens
<400> 82
Leu Phe Val Ile Asp
<210> 83
<211> 5
<212> PRT
<213> Homo sapiens
<400> 83
Leu Leu Leu Asp
<210> 84
<211> 6
<212> PRT
<213> Homo sapiens
<400> 84
Leu Phe Ile Leu Glu Asp
      5
<210> 85
<211> 5
<212> PRT
<213> Homo sapiens
<400> 85
Ile Val Val Leu Asp
<210> 86
<211> 5
<212> PRT
<213> Homo sapiens
<400> 86
Leu Phe Leu Leu Asp
1
<210> 87
<211> 5
<212> PRT
<213> Homo sapiens
```

<400> 87

```
Tyr Leu Ile Ile Asp
<210> 88
<211> 5
<212> PRT
<213> Homo sapiens
<400> 88
Val Leu Ile Ile Asp
               5
<210> 89
<211> 4
<212> PRT
<213> Homo sapiens
<400> 89
Ser Lys Ala Asp
<210> 90
<211> 4
<212> PRT
<213> Homo sapiens
<400> 90
Thr Lys His Asp
<210> 91
<211> 4
<212> PRT
<213> Homo sapiens
<400> 91
Ser Lys Gln Asp
1
<210> 92
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus P-Loop Motif
<220>
<221> MISC_FEATURE
<222> (2)..(5)
<223> "Xaa" denotes any amino acid residue
```

```
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> "Xaa" denotes Serine or Threonine.
<400> 92
Gly Xaa Xaa Xaa Gly Lys Xaa
              5
<210> 93
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Mg+2 Site (G3)
<220>
<221> MISC FEATURE
<222> (2)..(4)
<223> "Xaa" denotes any amino acid residue
<400> 93
Asp Xaa Xaa Gly
<210> 94
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Mg+2 Site (Kinase2)
<220>
<221> MISC_FEATURE
<222> (1)..(4)
<223> "Xaa" denotes a hydrophobic amino acid residue
<400> 94
Xaa Xaa Xaa Asp
      5
<210> 95
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Guanine-binding site (G3)
```

```
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> "Xaa" denotes Asn, Ser, or Thr
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> "Xaa" denotes any amino acid residue
<400> 95
Xaa Lys Xaa Asp
<210> 96
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer
<400> 96
tgctacaagt ccgggacaaa
                                                                      20
<210> 97
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer
<400> 97
                                                                      19
gcccagttct gggtcattt
<210> 98
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic probe
<400> 98
                                                                      23
cagcagagcc tcagagtgct tcg
<210> 99
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer
<400> 99
```

getgetggea ceagaett 18			
.2105	100		
<210> <211>	100 18		
<212>			
	Artificial Sequence		
<220>			
<223>	Synthetic primer		
<400>	100		
cggctad	ccac atccaagg	18	
	101		
<211>	22		
<212>			
(213>	Artificial Sequence		
<220>			
<223>	Synthetic probe		
<400>	101		
caaatta	accc actcccgacc cg	22	
<210>	102		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic primer		
<400>	102		
	tgcc gcgctact	18	
<210>	103		
<211>	21		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic primer		
<400>	103		
tccacto	ggag ggtgtgagaa c	21	
<210>	104		
<211>	15		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic probe		
<400>	104		
aaccagageg aggec 15			

<210>	105	
<211>	19	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
	·	
<400>	105	
qqqacc	ggga gacacagat	19
-		
<210>	106	
<211>		
<212>		
	Artificial Sequence	
12107	interretur bequence	
<220>		
	Synthetic primer	
(223)	Synchecic primer	
-100-	106	
<400>	106	20
gegeag	gttc tctcggtaag	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic probe	
<400>	107	
caagac	caac acacag	16
<210>	108	
<211>	19	
<212>		
	Artificial Sequence	
	<u></u>	
<220>		
	Synthetic primer	
12237	by monetic primer	
<400>	108	
	gggc tattgctta	19
geegea	ggge tattgetta	19
.010	100	
<210>	109	
<211>	·	
<212>		
<213>	Artificial Sequence	
	4.7	
<220>		
<223>	Synthetic primer	
	·	
<400>	109	
catatte	raca acgcctccag aa	22

<210>	110	
<211>	17	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic probe	
<400>	110	
cactca	caga gacagct	17
<210>	111	
<211>		
<211>		
	Artificial Sequence	
(213)	Artificial Sequence	
<220>		
	Synthetic primer	
12237	byneneero primer	
<400>	111	
	acta catggtttac	20
<210>	112	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	112	
gaagat	ggtg atgggatttc	20
010		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic probe	
\223 /	Synthetic probe	
<400>	113	
	tece gtteteagee	20
· · · · · · · · · · · · · · · · · · ·		
<210>	114	
<211>		
<212>		
<213>	Artificial Sequence	
	_	
<220>		
<223>	Synthetic primer	
<400>	114	
ggggta	ccgc tacgaaccgc aggcagggac g	31

<210> <211> <212>	115 23 DNA	
<213>	Artificial Sequence	
<220> <223>	Synthetic primer	
<400> cagccto	115 ggtc acgtcctggt ctg	23
<210>	116	
<211>		
<212>		
<213>	Artificial Sequence	
<220> <223>	Synthetic primer	
<400>	116	
cagaagg	gaca tcaactgtga gag	23
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	117	
gctctag	gaca gcagatagga ccattcagca g	31
	118	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	118	
ttgagcg	ggat aaacaggaag gac	23
<210>	119	
<211>	24	
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	119	
atctcc	etge agttgatgta gaag	24
<210>	120	

<211>	26	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	120	
cgtctg	gctc aaagagggtc tctatc	26
<210>	121	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
	121	
ctgcgg	acat agteeetgta ggttte	26
<210>	122	
<211>		
<212>		
	Homo sapiens	
	122	
gtccat	gctg gcacacaag	19
-210-	100	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic oligonucleotide	
-100>	123	
	gcta acacacaag	19
geceae	geta acacacaag	
<210>	124	
<211>	21	
	DNA	
<213>	Artificial Sequence	
(213)	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	124	
agagga	cctg gtgagggata c	21
<210>	125	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	

<223>	Synthetic primer	
<400>	125	
cttccag	gaag gcatgttgac	20
	126	
<211>		
<212>	Artificial Sequence	
(213)	Artificial Sequence	
<220>		
<223>	Synthetic probe	
<400>	126	
cccgtc	ctca cttgggaacc a	21
<210>	127	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	127	
cagaagg	gaca tcaactgtga gag	23
<210>	128	
<211>	31	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	128	
gctctag	gaca gcagatagga ccattcagca g	31
<210>	129	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	129	
	gcct ttgaagaacc tgag	24
<210>	130	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223>	Synthetic primer	
<400>	130	
	aggt gggygaacac atag	24
<210>	131	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic primer	
-4005	121	
	131 gatt catcatcatc atcttc	26
acggcag	gace caccaccacc access	
<210>	132	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic primer	
12237	bynonecte primer	
<400>	132	
tcacccc	gage etetgaatgt tacag	25
-010-	122	
<210> <211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	133	
	gaa gagatcaact ggtcggttca agagaccgac cagttgatct cttctttttg	60
J		
gaaaggg	gett etetagttga ecagecaegt tetetggetg gteaactaga gaagaaaaac 🤍 🗓	L20
ctttago		L28
<210>	134	
<211>	57	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Control of the contro	
<223>	Synthetic primer	
<400>	134	
	acca tggactacaa agacgatgac gataaaggtg gcaggtgggg gcaccat	57
<210>	135	
<211> <212>	24 DNA	
~414>	DNA.	

<213>	Artificial Sequence	
<220>		
	Synthetic primer	
<400>	135	
atcttc	tgaa tgcgacagtc cttc	24
<210>	136	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	136	
	tgtc gcattcagaa gatc	24
95	- 5 55555	
<210>	137	
<211>		
<212>		
	Artificial Sequence	
(213)		
<220>		
<223>	Synthetic primer	
<400>	137	
atagga	tccc caggatcaca tttcaacagt g	31
33		
<210>	138	
<211>	18	
<212>		
	Artificial Sequence	
-220-		
<220>	Combbatia mainas	
<223>	Synthetic primer	
<400>	138	
ctggga	aggg cagtcaag	18
<210>	139	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	139	
	tgta tccttgagtc	20
<u> </u>		
<210>	140	
<211>	24	
<212>	DNA	
	Artificial Sequence	

<220> <223>	Synthetic probe	
<400>	140	
cccgca	ggcc ctggatagga cacc	24
<210>	141	
<211>		
<212>		
	Artificial Sequence	
<220>	Complete the continues	
<223>	Synthetic primer	
<400>	141	
	aagt ccgggacaaa	20
.010.	140	
<210> <211>	142 19	
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400>	142	
	ttct gggtcattt	19
-210-	142	
<210>	143 23	
<212>		
	Artificial Sequence	
<220>		
<223>	Synthetic probe	
<400>	143	
	agec teagagtget teg	23
<210>	144	
<211>	19	
<212>	DNA	
<213>		
<400>	144	19
ggagat	cccg gtggaccac	13
<210>	145	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic oligonucleotide	

<400> ggagato	145 ectg	gtggaccac					19
<210><211><211><212>	146 20 DNA	ficial Sequ	Jongo				
<220>	ALCI	riciai sequ	ience				
<223>	Synt	hetic prime	er				
<400>	146 cac	agtgggattc					20
33		3 333	•				
<210>	147						
<211>	19						
<212> <213>	DNA Arti	ificial Sequ	ience				
12132	111 01	criciar sequ					
<220>							
<223>	Synt	hetic prime	er				
<400>	147						
		gcgatcaac					19
J	_	5 5					
<210>	148	•					
<211><212>	2934 DNA	•					
<213>		musculus					
<400>	148					L - L L	-
atggcaa	agca	cccgctgcaa	gctggccagg	tacctggagg	acctggagga	tgtggaettg	60
aagaaat	tta	agatgcactt	agaggactat	cctccccaga	agggctgcat	cccctcccg	120
aggggto	caga	cagagaaggc	agaccatgtg	gatctagcca	cgctaatgat	cgacttcaat	180
ggggagg	gaga	aggcgtgggc	catggccgtg	tggatcttcg	ctgcgatcaa	caggagagac	240
ctttate	gaga	aagcaaaaag	agatgagccg	aagtggggtt	cagataatgc	acgtgtttcg	300
aatccca	actg	tgatatgcca	ggaagacagc	attgaagagg	agtggatggg	tttactggag	360
taccttt	cga	gaatctctat	ttgtaaaatg	aagaaagatt	accgtaagaa	gtacagaaag	420
tacgtga	agaa	gcagattcca	gtgcattgaa	gacaggaatg	cccgtctggg	tgagagtgtg	480
agcctca	aaca	aacgctacac	acgactgcgt	ctcatcaagg	agcaccggag	ccagcaggag	540
agggago	cagg	agcttctggc	catcggcaag	accaagacgt	gtgagagccc	cgtgagtccc	600
attaaga	atgg	agttgctgtt	tgaccccgat	gatgagcatt	ctgagcctgt	gcacaccgtg	660
gtgttco	cagg	gggcggcagg	gattgggaaa	acaatcctgg	ccaggaagat	gatgttggac	720
tgggcgt	cgg	ggacactcta	ccaagacagg	tttgactatc	tgttctatat	ccactgtcgg	780
gaggtga	aggg	ttgtgacaca	gaggagggtg	ggggacctga	tcatgagetg	ctqccccqac	840

900 ccaaacccac ccatccacaa gatcgtgaga aaaccctcca gaatcctctt cctcatggac 960 ggettegatg agetgeaagg tgeetttgae gageacatag gaeegetetg eactgaetgg cagaaggccg agcggggaga catteteetg agcageetea teagaaagaa getgetteee 1020 1080 gaggeetete tgeteateae caegagaeet gtggeeetgg agaaaetgea geaettgetg gaccatcctc ggcatgtgga gatcctgggt ttctccgagg ccaaaaggaa agagtacttc 1140 1200 ttcaagtact tetetgatga ggeecaagee agggeageet teagtetgat teaggagaae gaggtcctct tcaccatgtg cttcatcccc ctggtctgct ggatcgtgtg cactggactg 1260 aaacagcaga tggagagtgg caagagcctt gcccagacat ccaagaccac caccgcggtg 1320 1380 tacgtettet teettteeag tttgetgeag eeceggggag ggageeagga geaeggeete 1440 tgcgcccacc tctgggggct ctgctctttg gctgcagatg gaatctggaa ccagaaaatc 1500 ctgtttgagg agtccgacct caggaatcat ggactgcaga aggcggatgt gtctgctttc 1560 ctgaggatga acctgttcca aaaggaagtg gactgcgaga agttctacag cttcatccac atgactttcc aggagttctt tgccgccatg tactacctgc tggaagagga aaaggaagga 1620 1680 aggacgaacg ttccagggag tcgtttgaag cttcccagcc gagacgtgac agtccttctg gaaaactatg gcaaattcga aaaggggtat ttgatttttg ttgtacgttt cctctttggc 1740 1800 ctggtaaacc aggagaggac ctcctacttg gagaagaaat taagttgcaa gatctctcag caaatcaggc tggagctgct gaaatggatt gaagtgaaag ccaaagctaa aaagctgcag 1860 1920 atccagecca gecagetgga attgttetae tgtttgtaeg agatgeagga ggaggaette 1980 gtgcaaaggg ccatggacta tttccccaag attgagatca atctctccac cagaatggac 2040 cacatggttt cttccttttg cattgagaac tgtcatcggg tggagtcact gtccctgggg 2100 tttctccata acatgcccaa ggaggaagag gaggaggaaa aggaaggccg acaccttgat atggtgcagt gtgtcctccc aagctcctct catgctgcct gttctcatgg gttggggcgc 2160 tgtggcctct cgcatgagtg ctgcttcgac atctccttgg tcctcagcag caaccagaag 2220 2280 etggtggage tggaeetgag tgaeaaegee eteggtgaet teggaateag aettetgtgt gtgggactga agcacctgtt gtgcaatctg aagaagetet ggttggtcag etgetgeete 2340 2400 acatcagcat gttgtcagga tcttgcatca gtattgagca ccagccattc cctgaccaga 2460 ctctatgtgg gggagaatgc cttgggagac tcaggagtcg caattttatg tgaaaaagcc 2520 aagaatccac agtgtaacct gcagaaactg gggttggtga attctggcct tacgtcagtc tgttgttcag ctttgtcctc ggtactcagc actaatcaga atctcacgca cctttacctg 2580 2640 cgaggcaaca ctctcggaga caaggggatc aaactactct gtgagggact cttgcacccc

gactgcaagc	ttcaggtgtt	ggaattagac	aactgcaacc	tcacgtcaca	ctgctgctgg	2700
gatctttcca	cacttctgac	ctccagccag	agcctgcgaa	agctgagcct	gggcaacaat	2760
gacctgggcg	acctgggggt	catgatgttc	tgtgaagtgc	tgaaacagca	gagctgcctc	2820
ctgcagaacc	tggggttgtc	tgaaatgtat	ttcaattatg	agacaaaaag	tgcgttagaa	2880
acacttcaag	aagaaaagcc	tgagctgacc	gtcgtctttg	agccttcttg	gtag	2934

<210> 149

<211> 977

<212> PRT

<213> Mus musculus

<400> 149

Met Ala Ser Thr Arg Cys Lys Leu Ala Arg Tyr Leu Glu Asp Leu Glu 1 5 10 15

Asp Val Asp Leu Lys Lys Phe Lys Met His Leu Glu Asp Tyr Pro Pro 20 25 30

Gln Lys Gly Cys Ile Pro Leu Pro Arg Gly Gln Thr Glu Lys Ala Asp 35 40 45

His Val Asp Leu Ala Thr Leu Met Ile Asp Phe Asn Gly Glu Glu Lys 50 55 60

Ala Trp Ala Met Ala Val Trp Ile Phe Ala Ala Ile Asn Arg Arg Asp 65 70 75 80

Leu Tyr Glu Lys Ala Lys Arg Asp Glu Pro Lys Trp Gly Ser Asp Asn 85 90 95

Ala Arg Val Ser Asn Pro Thr Val Ile Cys Gln Glu Asp Ser Ile Glu
100 105 110

Glu Glu Trp Met Gly Leu Leu Glu Tyr Leu Ser Arg Ile Ser Ile Cys 115 120 125

Lys Met Lys Lys Asp Tyr Arg Lys Lys Tyr Arg Lys Tyr Val Arg Ser 130 135 140

Arg Phe Gln Cys Ile Glu Asp Arg Asn Ala Arg Leu Gly Glu Ser Val 145 150 155 160

Ser Leu Asn Lys Arg Tyr Thr Arg Leu Arg Leu Ile Lys Glu His Arg 165 170 175 Ser Gln Gln Glu Arg Glu Gln Glu Leu Leu Ala Ile Gly Lys Thr Lys Thr Cys Glu Ser Pro Val Ser Pro Ile Lys Met Glu Leu Leu Phe Asp Pro Asp Asp Glu His Ser Glu Pro Val His Thr Val Val Phe Gln Gly Ala Ala Gly Ile Gly Lys Thr Ile Leu Ala Arg Lys Met Met Leu Asp Trp Ala Ser Gly Thr Leu Tyr Gln Asp Arg Phe Asp Tyr Leu Phe Tyr Ile His Cys Arg Glu Val Ser Leu Val Thr Gln Arg Ser Leu Gly Asp Leu Ile Met Ser Cys Cys Pro Asp Pro Asn Pro Pro Ile His Lys Ile Val Arg Lys Pro Ser Arg Ile Leu Phe Leu Met Asp Gly Phe Asp Glu Leu Gln Gly Ala Phe Asp Glu His Ile Gly Pro Leu Cys Thr Asp Trp Gln Lys Ala Glu Arg Gly Asp Ile Leu Leu Ser Ser Leu Ile Arg Lys Lys Leu Leu Pro Glu Ala Ser Leu Leu Ile Thr Thr Arg Pro Val Ala Leu Glu Lys Leu Gln His Leu Leu Asp His Pro Arg His Val Glu Ile Leu Gly Phe Ser Glu Ala Lys Arg Lys Glu Tyr Phe Phe Lys Tyr Phe Ser Asp Glu Ala Gln Ala Arg Ala Phe Ser Leu Ile Gln Glu Asn Glu Val Leu Phe Thr Met Cys Phe Ile Pro Leu Val Cys Trp Ile Val

660	665	670

Arg	Val	Glu 675	Ser	Leu	Ser	Leu	Gly 680	Phe	Leu	His	Asn	Met 685	Pro	Lys	Glu
Glu	Glu 690	Glu	Glu	Glu	Lys	Glu 695	Gly	Arg	His	Leu	Asp 700	Met	Val	Gln	Cys
Val 705	Leu	Pro	Ser	Ser	Ser 710	His	Ala	Ala	Cys	Ser 715	His	Gly	Leu	Gly	Arg 720
Cys	Gly	Leu	Ser	His 725	Glu	Cys	Cys	Phe	Asp 730	Ile	Ser	Leu	Val	Leu 735	Ser
Ser	Asn	Gln	Lys 740	Leu	Val	Glu	Leu	Asp 745	Leu	Ser	Asp	Asn	Ala 750	Leu	Gly
Asp	Phe	Gly 755	Ile	Arg	Leu	Leu	Cys 760	Val	Gly	Leu	Lys	His 765	Leu	Leu	Cys
Asn	Leu 770	Lys	Lys	Leu	Trp	Leu 775	Val	Ser	Cys	Cys	Leu 780	Thr	Ser	Ala	Cys
Cys 785	Gln	Asp	Leu	Ala	Ser 790	Val	Leu	Ser	Thr	Ser 795	His	Ser	Leu	Thr	Arg 800
Leu	Tyr	Val	Gly	Glu 805	Asn	Ala	Leu	Gly	Asp 810	Ser	Gly	Val	Ala	Ile 815	Leu
Cys	Glu	Lys	Ala 820	Lys	Asn	Pro	Gln	Cys 825	Asn	Leu	Gln	Lys	Leu 830	Gly	Leu
Val	Asn	Ser 835	Gly	Leu	Thr	Ser	Val 840	Cys	Cys	Ser	Ala	Leu 845	Ser	Ser	Val
Leu	Ser 850	Thr	Asn	Gln	Asn	Leu 855	Thr	His	Leu	Tyr	Leu 860	Arg	Gly	Asn	Thr
Leu 865	Gly	Asp	Lys	Gly	Ile 870	Lys	Leu	Leu	Cys	Glu 875	Gly	Leu	Leu	His	Pro 880
Asp	Cys	Lys	Leu	Gln 885	Val	Leu	Glu	Leu	Asp 890	Asn	Cys	Asn	Leu	Thr 895	Ser
His	Cys	Cys	Trp 900	Asp	Leu	Ser	Thr	Leu 905	Leu	Thr	Ser	Ser	Gln 910	Ser	Leu

Arg Lys Leu Ser Leu Gly Asn Asn Asp Leu Gly Asp Leu Gly Val Met 915 920 925

Met Phe Cys Glu Val Leu Lys Gln Gln Ser Cys Leu Leu Gln Asn Leu 930 935 940

Gly Leu Ser Glu Met Tyr Phe Asn Tyr Glu Thr Lys Ser Ala Leu Glu 945 950 955 960

Thr Leu Gln Glu Glu Lys Pro Glu Leu Thr Val Val Phe Glu Pro Ser 965 970 975

Trp

- <210> 150
- <211> 30
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Consensus Motif I
- <220>
- <221> MISC FEATURE
- <222> (1)..(1)
- <223> "Xaa" denotes any amino acid residue.
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> "Xaa" denotes any amino acid residue.
- <220>
- <221> MISC_FEATURE
- <222> (8)..(8)
- <223> "Xaa" denotes any amino acid residue.
- <220>
- <221> MISC_FEATURE
- <222> (11)..(11)
- <223> "Xaa" denotes a hydrophobic amino acid residue.
- <220>
- <221> MISC_FEATURE
- <222> (18)..(19)
- <223> "Xaa" denotes a basic amino acid residue.
- <220>
- <221> MISC_FEATURE
- <222> (20)..(21)
- <223> "Xaa" denotes a hydrophobic amino acid residue.

```
<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (26)..(26)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (28)..(28)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (30)..(30)
<223> "Xaa" denotes an aromatic amino acid residue.
<400> 150
Xaa Thr Val Val Leu Xaa Gly Xaa Ala Gly Xaa Gly Lys Thr Thr Leu
                                    10
                                                       15
                5
Ala Xaa Xaa Xaa Leu Xaa Trp Ala Xaa Gly Xaa Leu Xaa
                                25
            20
<210> 151
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif II
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (3)..(3)
<223> "Xaa" denotes an aromatic amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (4)..(4)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> "Xaa" denotes an aromatic amino acid residue.
<220>
<221> MISC_FEATURE
```

```
<222>
      (7)..(7)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (8)..(8)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> "Xaa" denotes a basic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (13)..(18)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (20)..(20)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (22)..(22)
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (25)..(27)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (28)..(28)
<223> "Xaa" denotes an aromatic amino acid residue.
<400> 151
Phe Xaa Xaa Yaa Yaa Xaa Xaa Cys Xaa Glu Xaa Xaa Xaa Xaa
                5
                                   10
Xaa Xaa Ser Xaa Xaa Xaa Leu Leu Xaa Xaa Xaa Pro
<210> 152
<211> 19
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Consensus Motif III
<220>
<221> MISC FEATURE
<222> (1)..(1)
<223> "Xaa" denotes any amino acid residue.
<220>
<221>
      MISC_FEATURE
<222>
      (3)..(3)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (4)..(5)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (7)..(7)
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC FEATURE
      (13)..(13)
<222>
<223> "Xaa" denotes a hydrophobic amino acid residue.
<400> 152
Xaa Leu Xaa Xaa Yaa Pro Xaa Arg Leu Leu Phe Leu Xaa Asp Gly Phe
                                    10
Asp Glu Leu
<210> 153
<211> 25
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif IV
<220>
<221> MISC FEATURE
<222> (3)..(3)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> "Xaa" denotes a basic amino acid residue.
<220>
```

```
<221> MISC_FEATURE
<222> (9)..(9)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (20)..(20)
<223> "Xaa" denotes serine or threonine.
<220>
<221> MISC FEATURE
<222> (23)..(23)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (25)..(25)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<400> 153
Leu Leu Xaa Ser Leu Leu Xaa Lys Xaa Leu Leu Pro Glu Ala Ser Leu
Leu Leu Thr Xaa Arg Pro Xaa Ala Xaa
            20
<210> 154
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif V
<220>
<221> MISC_FEATURE
<222>
      (2)..(3)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (4)..(4)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (6)..(8)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> "Xaa" denotes a basic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (10)..(10)
```

<223> "Xaa" denotes any amino acid residue. <220> <221> MISC_FEATURE <222> (11)..(11) <223> "Xaa" denotes a hydrophobic amino acid residue. <220> <221> MISC_FEATURE <222> (12)..(12) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC FEATURE <222> (13)..(13) <223> "Xaa" denotes a hydrophobic amino acid residue. <220> <221> MISC FEATURE <222> (14)..(14) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC FEATURE <222> (19)..(19) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC FEATURE <222> (20)..(20) <223> "Xaa" denotes an acidic amino acid residue. <220> <221> MISC FEATURE <222> (21)..(22) <223> "Xaa" denotes a basic amino acid residue. <220> <221> MISC_FEATURE <222> (23)..(24) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC FEATURE <222> (27)..(28) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC FEATURE <222> (29)..(29) <223> "Xaa" denotes an aromatic amino acid residue. <220> <221> MISC_FEATURE <222> (30)..(30) "Xaa" denotes any amino acid residue. <220> <221> MISC_FEATURE <222> (31)..(31) <223> "Xaa" denotes an acidic amino acid residue.

Leu Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Ser Glu Xaa Xaa Xaa Xaa Xaa Tyr Phe Xaa Xaa Xaa Xaa 25 <213> Artificial Sequence <223> Consensus Motif VI <221> MISC FEATURE <222> (2)..(2) <223> "Xaa" denotes any amino acid residue. <221> MISC FEATURE <222> (3)..(3) <223> "Xaa" denotes a basic amino acid residue. <221> MISC FEATURE <222> (5)..(5) <223> "Xaa" denotes a hydrophobic amino acid residue. <221> MISC_FEATURE <222> (6)..(7) <223> "Xaa" denotes any amino acid residue. <221> MISC_FEATURE (8)..(8) <223> "Xaa" denotes a hydrophobic amino acid residue. <221> MISC_FEATURE <222> (9)..(9) <223> "Xaa" denotes a basic amino acid residue. <221> MISC FEATURE (10)..(10) <223> "Xaa" denotes any amino acid residue.

<221> MISC_FEATURE <222> (12)..(13)

"Xaa" denotes any amino acid residue. <223>

<220>

<400> 154

<210> 155 <211> 38 <212> PRT

<220>

<220>

<220>

<220>

<220>

<220>

<222>

<220>

<220>

<222>

<220>

```
<221> MISC_FEATURE
      (15)..(15)
<222>
<223> "Xaa" denotes an aromatic amino acid residue.
<220>
<221> MISC FEATURE
<222> (16)..(16)
<223> "Xaa" denotes any amino acid residue.
<220>
     MISC_FEATURE
<221>
<222> (17)..(17)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (19)..(19)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (22)..(22)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (23)..(23)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (29)..(29)
<223> "Xaa" denotes serine or threonine.
<220>
<221> MISC FEATURE
<222> (30)..(30)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (32)..(32)
<223> "Xaa" denotes a basic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (33)..(33)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (35)..(35)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
```

```
<222> (36)..(36)
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC FEATURE
<222> (37)..(37)
<223> "Xaa" denotes any amino acid residue.
<400> 155
Ala Xaa Xaa Ser Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Leu Xaa Xaa
              5
                                    10
Xaa Cys Xaa Val Pro Xaa Xaa Cys Trp Xaa Val Cys Xaa Xaa Leu Xaa
                                25
Xaa Gln Xaa Xaa Gly
       35
<210> 156
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif VII
<220>
<221> MISC FEATURE
<222> (2)..(2)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (4)..(4)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (5)..(5)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (6)..(6)
      "Xaa" denotes an aromatic amino acid residue.
<223>
<220>
<221> MISC FEATURE
<222> (7)._(8)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> "Xaa" denotes an aromatic amino acid residue.
```

```
<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (11)..(13)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (14)..(14)
<223> "Xaa" denotes a hydrophobic acid residue.
<400> 156
<210> 157
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif VIII
<220>
<221> MISC FEATURE
<222>
      (2)..(2)
<223> "Xaa" denotes a basic amino acid residue.
<220>
<221> MISC FEATURE
<222> (3)..(3)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (6)..(6)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (12)..(12)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (14)..(17)
      "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (18)..(18)
<223>
      "Xaa" denotes a hydrophobic amino acid residue.
<220>
```

```
<221> MISC_FEATURE
<222>
      (20)..(21)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (25)..(27)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (30)..(33)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (34)..(34)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (35)..(36)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (39)..(41)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (42)..(43)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<400> 157
Leu Xaa Xaa Leu Cys Xaa Leu Ala Ala Glu Gly Xaa Trp Xaa Xaa Xaa
Xaa Xaa Phe Xaa Xaa Xaa Asp Leu Xaa Xaa Gly Leu Xaa Xaa
           20
                               25
Xaa Xaa Xaa Phe Leu Xaa Xaa Xaa Xaa
       35
                           40
<210> 158
<211>
      19
<212>
      PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif IX
```

```
<220>
<221> MISC_FEATURE
<222>
      (2)..(2)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> "Xaa" denotes serine or threonine.
<220>
<221> MISC FEATURE
<222> (8)..(8)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (12)..(12)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (16)..(16)
<223> "Xaa" denotes an aromatic acid residue.
<220>
<221> MISC FEATURE
<222> (18)..(18)
<223> "Xaa" denotes a hydrophobic acid residue.
<400> 158
Tyr Xaa Phe Xaa His Leu Xaa Xaa Gln Glu Phe Xaa Ala Ala Xaa Xaa
                                    10
Tyr Xaa Leu
<210> 159
<211>
      26
<212> PRT
<213> Artificial Sequence
<220>
<223>
     Consensus Motif X
<220>
```

```
<221> MISC_FEATURE
      (7)..(7)
<222>
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (8)..(8)
<223> "Xaa" denotes any amino acid residue and is variable in length.
<220>
     MISC_FEATURE
<221>
<222> (10)..(10)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> "Xaa" denotes a basic amino acid residue.
<220>
<221> MISC FEATURE
<222> (12)..(12)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (15)..(16)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (19)..(20)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (21)..(21)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (23)..(24)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (25)..(25)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (26) . . (26)
<223> "Xaa" denotes a basic amino acid residue.
<400> 159
Phe Leu Phe Gly Leu Leu Xaa Xaa Asn Xaa Xaa Leu Glu Xaa Xaa
                                    10
```

Phe Ser Xaa Xaa Xaa Ser Xaa Xaa Xaa

```
<210> 160
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif XI
<220>
<221> MISC FEATURE
<222>
      (1)..(1)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
      (2)..(2)
<222>
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (5)..(5)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (8)..(8)
<223> "Xaa" denotes an aromatic amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (9)..(9)
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (10)..(10)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (13)..(13)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (14)..(14)
<223>
      "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (16)..(16)
      "Xaa" denotes a hydrophobic amino acid residue.
<223>
<220>
<221> MISC_FEATURE
<222> (17)..(19)
<223> "Xaa" denotes any amino acid residue.
```

```
<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222> (21)..(25)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC FEATURE
<222> (27)..(27)
<223> "Xaa" denotes any amino acid residue.
<220>
<221> MISC FEATURE
<222> (28)..(28)
<223> "Xaa" denotes a hydrophobic amino acid residue.
<400> 160
Xaa Xaa Leu Phe Xaa Cys Leu Arg Ala Xaa Gln Glu Xaa Ala Phe His
                5
                                    10
                                                        15
Xaa Xaa Xaa His Xaa Xaa Xaa Xaa His Xaa His
                                25
            20
<210> 161
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Consensus Motif XII
<220>
<221> MISC FEATURE
<222>
      (1)..(1)
<223> "Xaa" denotes an acidic amino acid residue.
<220>
<221> MISC FEATURE
<222>
      (2)..(3)
<223>
      "Xaa" denotes a hydrophobic amino acid residue.
<220>
<221> MISC_FEATURE
<222>
      (5)..(5)
<223>
      "Xaa" denotes any amino acid residue.
<220>
```

<221> MISC_FEATURE <222> (6)..(6) <223> "Xaa" denotes serine or threonine. <220> <221> MISC FEATURE <222> (10)..(11) <223> "Xaa" denotes a basic amino acid residue. <220> <221> MISC FEATURE <222> (13)..(14) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC FEATURE <222> (15)..(15) <223> "Xaa" denotes a hydrophobic amino acid residue. <220> <221> MISC_FEATURE <222> (16)..(17) <223> "Xaa" denotes any amino acid residue. <220> <221> MISC_FEATURE <222> (19)..(19) <223> "Xaa" denotes any amino acid residue. <400> 161 Xaa Xaa Xaa Val Xaa Xaa Phe Cys Leu Xaa Xaa Cys Xaa Xaa Xaa Xaa 10 Xaa Leu Xaa Leu 20 <210> 162 <211> 479 <212> PRT <213> Homo sapiens <400> 162 Met Glu Leu Leu Phe Asp Pro Asp Glu His Ser Glu Pro Val His 5 10 15 Thr Val Val Phe Gln Gly Ala Ala Gly Ile Gly Lys Thr Ile Leu Ala 25 Arg Lys Met Met Leu Asp Trp Ala Ser Gly Thr Leu Tyr Gln Asp Arg 40 Phe Asp Tyr Leu Phe Tyr Ile His Cys Arg Glu Val Ser Leu Val Thr 50 55

Gln 65	Arg	Ser	Leu	Gly	Asp 70	Leu	Ile	Met	Ser	Cys 75	Cys	Pro	Asp	Pro	Asn 80
Pro	Pro	Ile	His	Lys 85	Ile	Val	Arg	Lys	Pro 90	Ser	Arg	Ile	Leu	Phe 95	Leu
Met	Asp	Gly	Phe 100	Asp	Glu	Leu	Gln	Gly 105	Ala	Phe	Asp	Glu	His 110	Ile	Gly
Pro	Leu	Cys 115	Thr	Asp	Trp	Gln	Lys 120	Ala	Glu	Arg	Gly	Asp 125	Ile	Leu	Leu
Ser	Ser 130	Leu	Ile	Arg	Lys	Lys 135	Leu	Leu	Pro	Glu	Ala 140	Ser	Leu	Leu	Ile
Thr 145	Thr	Arg	Pro	Val	Ala 150	Leu	Glu	Lys	Leu	Gln 155	His	Leu	Leu	Asp	His 160
Pro	Arg	His	Val	Glu 165	Ile	Leu	Gly	Phe	Ser 170	Glu	Ala	Lys	Arg	Lys 175	Glu
Tyr	Phe	Phe	Lys 180	Tyr	Phe	Ser	Asp	Glu 185	Ala	Gln	Ala	Arg	Ala 190	Ala	Phe
Ser	Leu	Ile 195	Gln	Glu	Asn	Glu	Val 200	Leu	Phe	Thr	Met	Cys 205	Phe	Ile	Pro
Leu	Val 210	Cys	Trp	Ile	Val	Cys 215	Thr	Gly	Leu	Lys	Gln 220	Gln	Met	Glu	Ser
Gly 225	Lys	Ser	Leu	Ala	Gln 230	Thr	Ser	Lys	Thr	Ser 235	Thr	Ala	Val	Tyr	Val 240
Phe	Phe	Leu	Ser	Ser 245	Leu	Leu	Gln	Pro	Arg 250	Gly	Gly	Ser	Gln	Glu 255	His
Gly	Leu	Cys	Ala 260	His	Leu	Trp	Gly	Leu 265	Cys	Ser	Leu	Ala	Ala 270	Asp	Gly
Ile	Trp	Asn 275	Gln	Lys	Ile	Leu	Phe 280	Glu	Glu	Ser	Asp	Leu 285	Arg	Asn	His
Gly	Leu 290	Gln	Lys	Ala	Asp	Val 295	Ser	Ala	Phe	Leu	Arg 300	Met	Asn	Leu	Phe

Gln Lys Glu Val Asp Cys Glu Lys Phe Tyr Ser Phe Ile His Met Thr 310 Phe Gln Glu Phe Phe Ala Ala Met Tyr Tyr Leu Leu Glu Glu Glu Lys 325 Glu Gly Arg Thr Asn Val Pro Gly Ser Arg Leu Lys Leu Pro Ser Arg Asp Val Thr Val Leu Leu Glu Asn Tyr Gly Lys Phe Glu Lys Gly Tyr 355 360 Leu Ile Phe Val Val Arg Phe Leu Phe Gly Leu Val Asn Gln Glu Arg 370 375 Thr Ser Tyr Leu Glu Lys Lys Leu Ser Cys Met Ile Ser Gln Gln Ile 390 Arg Leu Glu Leu Leu Lys Trp Ile Glu Val Lys Ala Lys Ala Lys Lys 405 415 Leu His Asp Gln Pro Ser Gln Leu Glu Leu Phe Tyr Cys Leu Tyr Glu 420 425 430 Met Gln Glu Glu Asp Phe Val Gln Arg Ala Met Asp Tyr Phe Pro Lys 435 440 445 Ile Glu Ile Asn Leu Ser Thr Arg Met Asp His Met Val Ser Ser Phe 450 455 460 Cys Ile Glu Asn Cys His Arg Val Glu Ser Leu Ser Leu Gly Phe 465 470 <210> 163 <211> 472 <212> PRT <213> Homo sapiens <400> 163 Ile Glu Thr Leu Phe Glu Pro Asp Glu Glu Arg Pro Glu Pro Pro Arg 1 5 10 Thr Val Val Met Gln Gly Ala Ala Gly Ile Gly Lys Ser Met Leu Ala 20 25 30

His Lys Val Met Leu Asp Trp Ala Asp Gly Lys Leu Phe Gln Gly Arg
35 40 45

Phe	Asp 50	Tyr	Leu	Phe	Tyr	Ile 55	Asn	Cys	Arg	Glu	Met 60	Asn	Gln	Ser	Ala
Thr 65	Glu	Cys	Ser	Met	Gln 70	Asp	Leu	Ile	Phe	Ser 75	Cys	Trp	Pro	Glu	Pro 80
Ser	Ala	Pro	Leu	Gln 85	Glu	Leu	Ile	Arg	Val 90	Pro	Glu	Arg	Leu	Leu 95	Phe
Ile	Ile	Asp	Gly 100	Phe	Asp	Glu	Leu	Lys 105	Pro	Ser	Phe	His	Asp 110	Pro	Gln
Gly	Pro	Trp 115	Cys	Leu	Cys	Trp	Glu 120	Glu	Lys	Arg	Pro	Thr 125	Glu	Leu	Leu
Leu	Asn 130	Ser	Leu	Ile	Arg	Lys 135	Lys	Leu	Leu	Pro	Glu 140	Leu	Ser	Leu	Leu
Ile 145	Thr	Thr	Arg	Pro	Thr 150	Ala	Leu	Glu	Lys	Leu 155	His	Arg	Leu	Leu	Glu 160
His	Pro	Arg	His	Val 165	Glu	Ile	Leu	Gly	Phe 170	Ser	Glu	Ala	Glu	Arg 175	Lys
Glu	Tyr	Phe	Tyr 180	Lys	Tyr	Phe	His	Asn 185	Ala	Glu	Gln	Ala	Gly 190	Gln	Val
Phe	Asn	Tyr 195	Val	Arg	Asp	Asn	Glu 200	Pro	Leu	Phe	Thr	Met 205	Cys	Phe	Val
Pro	Leu 210	Val	Cys	Trp	Val	Val 215	Cys	Thr	Cys	Leu	Gln 220	Gln	Gln	Leu	Glu
Gly 225	Gly	Gly	Leu	Leu	Arg 230	Gln	Thr	Ser	Arg	Thr 235	Thr	Thr	Ala	Val	Tyr 240
Met	Leu	Tyr	Leu	Leu 245	Ser	Leu ,	Met	Gln	Pro 250	Lys	Pro	Gly	Ala	Pro 255	Arg
Leu	Gln	Pro	Pro 260	Pro	Asn	Gln	Arg	Gly 265	Leu	Cys	Ser	Leu	Ala 270	Ala	Asp
Gly	Leu	Trp 275	Asn	Gln	Lys	Ile	Leu 280	Phe	Glu	Glu	Gln	Asp 285	Leu	Arg	Lys

His Gly Leu Asp Gly Glu Asp Val Ser Ala Phe Leu Asn Met Asn Ile 290 Phe Gln Lys Asp Ile Asn Cys Glu Arg Tyr Tyr Ser Phe Ile His Leu 300 Ser Phe Ile His Ser Phe Ile His Man Se

Ser Phe Gln Glu Phe Phe Ala Ala Met Tyr Tyr Ile Leu Asp Glu Gly 325 330 335

Glu Gly Gly Ala Gly Pro Asp Gln Asp Val Thr Arg Leu Leu Thr Glu 340 345 350

Tyr Ala Phe Ser Glu Arg Ser Phe Leu Ala Leu Thr Ser Arg Phe Leu 355 360 365

Phe Gly Leu Leu Asn Glu Glu Thr Arg Ser His Leu Glu Lys Ser Leu 370 375 380

Cys Trp Lys Val Ser Pro His Ile Lys Met Asp Leu Leu Gln Trp Ile 385 390 395 400

Gln Ser Lys Ala Gln Ser Asp Gly Ser Thr Leu Gln Gln Gly Ser Leu 405 410 415

Glu Phe Phe Ser Cys Leu Tyr Glu Ile Gln Glu Glu Glu Phe Ile Gln 420 425 430

Gln Ala Leu Ser His Phe Gln Val Ile Val Val Ser Asn Ile Ala Ser 435 440 445

Lys Met Glu His Met Val Ser Ser Phe Cys Leu Lys Arg Cys Arg Ser 450 460

Ala Gln Val Leu His Leu Tyr Gly 465 470

<210> 164

<211> 468

<212> PRT

<213> Homo sapiens

<400> 164

Glu Tyr Lys Glu Leu Asn Asp Ala Tyr Thr Ala Ala Ala Arg Arg His
1 10 15

Thr Val Val Leu Glu Gly Pro Asp Gly Ile Gly Lys Thr Thr Leu Leu

25 30

Arg Lys Val Met Leu Asp Trp Ala Glu Gly Asn Leu Trp Lys Asp Arg Phe Thr Phe Val Phe Phe Leu Asn Val Cys Glu Met Asn Gly Ile Ala Glu Thr Ser Leu Leu Glu Leu Leu Ser Arg Asp Trp Pro Glu Ser Ser Glu Lys Ile Glu Asp Ile Phe Ser Gln Pro Glu Arg Ile Leu Phe Ile Met Asp Gly Phe Glu Gln Leu Lys Phe Asn Leu Gln Leu Lys Ala Asp Leu Ser Asp Asp Trp Arg Gln Arg Gln Pro Met Pro Ile Ile Leu Ser Ser Leu Leu Gln Lys Lys Met Leu Pro Glu Ser Ser Leu Leu Ile Ala Leu Gly Lys Leu Ala Met Gln Lys His Tyr Phe Met Leu Arg His Pro Lys Leu Ile Lys Leu Gly Phe Ser Glu Ser Glu Lys Lys Ser Tyr Phe Ser Tyr Phe Phe Gly Glu Lys Ser Lys Ala Leu Lys Val Phe Asn Phe Val Arg Asp Asn Gly Pro Leu Phe Ile Leu Cys His Asn Pro Phe Thr Cys Trp Leu Val Cys Thr Cys Val Lys Gln Arg Leu Glu Arg Gly Glu Asp Leu Glu Ile Asn Ser Gln Asn Thr Thr Tyr Leu Tyr Ala Ser Phe Leu Thr Thr Val Phe Lys Ala Gly Ser Gln Ser Phe Pro Pro Lys

Val Asn Arg Ala Arg Leu Lys Ser Leu Cys Ala Leu Ala Ala Glu Gly

Ile Trp Thr Tyr Thr Phe Val Phe Ser His Gly Asp Leu Arg Asp

Gly Leu Ser Glu Ser Glu Gly Val Met Trp Val Gly Met Arg Leu Leu

Gln Arg Arg Gly Asp Cys Phe Ala Phe Met His Leu Cys Ile Gln Glu

Phe Cys Ala Ala Met Phe Tyr Leu Leu Lys Arg Pro Lys Asp Asp Pro

Asn Pro Ala Ile Gly Ser Ile Thr Gln Leu Val Arg Ala Ser Val Val

Gln Pro Gln Thr Leu Leu Thr Gln Val Gly Ile Phe Met Phe Gly Ile

Ser Thr Glu Glu Ile Val Ser Met Leu Glu Thr Ser Phe Gly Phe Pro

Leu Ser Lys Asp Leu Lys Gln Glu Ile Thr Gln Cys Leu Glu Ser Leu

Ser Gln Cys Glu Ala Asp Arg Glu Ala Ile Ala Phe Gln Glu Leu Phe

Ile Gly Leu Phe Glu Thr Gln Glu Lys Glu Phe Val Thr Lys Val Met

Asn Phe Phe Glu Glu Val Phe Ile Tyr Ile Gly Asn Ile Glu His Leu

Val Ile Ala Ser Phe Cys Leu Lys His Cys Gln His Leu Thr Thr Leu

Arg Met Cys Val

<210> 165

<211> 297 <212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE <222> (74)(74) <223> "Xaa" denotes any amino acid residue.
<220> <221> MISC_FEATURE <222> (136)(136) <223> "Xaa" denotes any amino acid residue.
<220> <221> MISC_FEATURE <222> (232)(232) <223> "Xaa" denotes any amino acid residue.
<400> 165
His Phe Phe Pro Gln Pro Glu Gln Ile Leu Phe Ile Met Asp Gly Phe 1 5 10 15
Glu Gln Leu Lys Phe Asp Leu Glu Leu Lys Ala Asp Leu Cys Asp Asp 20 25 30
Trp Arg Gln Gln Gln Pro Thr Gln Ile Ile Leu Ser Ser Leu Leu Gln 35 40 45
Lys Lys Met Ile Pro Glu Ser Ser Leu Leu Ile Ala Leu Gly Lys Val 50 55 60
Gly Met Gln Lys Asn Tyr Phe Met Leu Xaa His Pro Lys Leu Ile Lys 70 75 80
Leu Pro Gly Phe Thr Glu Leu Glu Arg Lys Leu Tyr Phe Ser Tyr Phe 85 90 95
Phe Ser Glu Lys Asn Thr Phe Ile His Leu Leu Lys Met Asn Ala Ser 100 105 110
Phe Leu Thr Asn Val Phe Lys Ala Gly Ser Gln Ser Phe Pro Pro Lys 115 120 125
Gly Met Lys Leu Leu Gln Arg Xaa Gly Glu Cys Phe Thr Phe Ile His 130 135 140
Val Cys Ile Gln Glu Phe Cys Ala Thr Met Phe Tyr Leu Leu Lys Arg 145 150 155 160
Pro Lys Asp Asp Pro Asn Pro Thr Ile Gly Ser Ile Thr Gln Leu Val 165 170 175

Arg Ala Ser Val Ala Gln Pro Gln Thr His Ser Thr Gln Val Gly Val

180	185	190

Phe Val Phe Gly Ile Ser Thr Glu Glu Ile Ile Ser Leu Leu Glu Thr 195 200 205

Ser Phe Gly Phe Pro Leu Leu Lys Asp Leu Lys Lys Glu Ile Thr Gln 210 215 220

Cys Leu Lys Ser Leu Ser Gln Xaa Glu Ala Asp Arg Glu Val Ile Gly 225 230 235 240

Phe Gln Glu Leu Phe His Asp Leu Phe Ala Thr Gln Glu Lys Glu Phe 245 250 255

Val Thr Glu Val Ile Asn Phe Phe Glu Glu Val Phe Ile Cys Thr Gly 260 265 270

Asn Ile Glu His Leu Val Val Ser Ser Phe Cys Arg Lys His Cys Gln 275 280 285

Asn Leu Thr Thr Leu Arg Met Cys Val 290 295

<210> 166

<211> 458

<212> PRT

<213> Homo sapiens

<400> 166

Ile Arg Asp Leu Phe Gly Pro Gly Leu Asp Thr Gln Glu Pro Arg Ile
5 10 15

Val Ile Leu Gln Gly Ala Ala Gly Ile Gly Lys Ser Thr Leu Ala Arg 20 25 30

Gln Val Lys Glu Ala Trp Gly Arg Gly Gln Leu Tyr Gly Asp Arg Phe 35 40 45

Gln His Val Phe Tyr Phe Ser Cys Arg Glu Leu Ala Gln Ser Lys Val 50 55 60

Val Ser Leu Ala Glu Leu Ile Gly Lys Asp Gly Thr Ala Thr Pro Ala 65 70 75 80

Pro Ile Arg Gln Ile Leu Ser Arg Pro Glu Arg Leu Leu Phe Ile Leu 85 90 95

Asp	Gly	Val	Asp 100	Glu	Pro	Gly	Trp	Val 105	Leu	Gln	Glu	Pro	Ser 110	Ser	Glu
Leu	Cys	Leu 115	His	Trp	Ser	Gln	Pro 120	Gln	Pro	Ala	Asp	Ala 125	Leu	Leu	Gly
Ser	Leu 130	Leu	Gly	Lys	Thr	Ile 135	Leu	Pro	Glu	Ala	Ser 140	Phe	Leu	Ile	Thr
Ala 145	Arg	Thr	Thr	Ala	Leu 150	Gln	Asn	Leu	Ile	Pro 155	Ser	Leu	Glu	Gln	Ala 160
Arg	Trp	Val	Glu	Val 165	Leu	Gly	Phe	Ser	Glu 170	Ser	Ser	Arg	Lys	Glu 175	Tyr
Phe	Tyr	Arg	Tyr 180	Phe	Thr	Asp	Glu	Arg 185	Gln	Ala	Ile	Arg	Ala 190	Phe	Arg
Leu	Val	Lys 195	Ser	Asn	Lys	Glu	Leu 200	Trp	Ala	Leu	Cys	Leu 205	Val	Pro	Trp
Val	Ser 210	Trp	Leu	Ala	Cys	Thr 215	Cys	Leu	Met	Gln	Gln 220	Met	Lys	Arg	Lys
Glu 225	Lys	Leu	Thr	Leu	Thr 230	Ser	Lys	Thr	Thr	Thr 235	Thr	Leu	Cys	Leu	His 240
Tyr	Leu	Ala	Gln	Ala 245	Leu	Gln	Ala	Gln	Pro 250	Leu	Gly	Pro	Gln	Leu 255	Arg
Asp	Leu	Cys	Ser 260	Leu	Ala	Ala		Gly 265	Ile	Trp	Gln	Lys	Lys 270	Thr	Leu
Phe	Ser	Pro 275	Asp	Asp	Leu	Arg	Lys 280	His	Gly	Leu	Asp	Gly 285	Ala	Ile	Ile
Ser	Thr 290	Phe	Leu	Lys	Met	Gly 295	Ile	Leu	Gln	Glu	His 300	Pro	Ile	Pro	Leu
Ser 305	Tyr	Ser	Phe	Ile	His 310	Leu	Cys	Phe	Gln	Glu 315	Phe	Phe	Ala	Ala	Met 320
Ser	Tyr	Val	Leu	Glu 325	Asp	Glu	Lys	Gly	Arg 330	Gly	Lys	His	Ser	Asn 335	Cys

Ile Ile Asp Leu Glu Lys Thr Leu Glu Ala Tyr Gly Ile His Gly Leu Phe Gly Ala Ser Thr Thr Arg Phe Leu Leu Gly Leu Leu Ser Asp Glu 355 360 Gly Glu Arg Glu Met Glu Asn Ile Phe His Cys Arg Leu Ser Gln Gly 370 375 380 Arg Asn Leu Met Gln Trp Val Pro Ser Leu Gln Leu Leu Gln Pro 390 His Ser Leu Glu Ser Leu His Cys Leu Tyr Glu Thr Arg Asn Lys Thr 405 410 415 Phe Leu Thr Gln Val Met Ala His Phe Glu Glu Met Gly Met Cys Val 420 425 430 Glu Thr Asp Met Glu Leu Leu Val Cys Thr Phe Cys Ile Lys Phe Ser 435 440 445 Arg His Val Lys Lys Leu Gln Leu Ile Glu 450 455 <210> 167 <211> 474 <212> PRT <213> Homo sapiens <400> 167 Leu Glu His Leu Phe Asp Val Asp Val Lys Thr Gly Ala Gln Pro Gln Ile Val Val Leu Gln Gly Ala Ala Gly Val Gly Lys Thr Thr Leu Val 20 25 Arg Lys Ala Met Leu Asp Trp Ala Glu Gly Ser Leu Tyr Gln Gln Arg Phe Lys Tyr Val Phe Tyr Leu Asn Gly Arg Glu Ile Asn Gln Leu Lys 50 Glu Arg Ser Phe Ala Gln Leu Ile Ser Lys Asp Trp Pro Ser Thr Glu

90

Gly Pro Ile Glu Glu Ile Met Tyr Gln Pro Ser Ser Leu Leu Phe Ile

75

70

Ile	Asp	Ser	Phe 100	Asp	Glu	Leu	Asn	Phe 105	Ala	Phe	Glu	Glu	Pro 110	Glu	Phe
Ala	Leu	Cys 115	Glu	Asp	Trp	Thr	Gln 120	Glu	His	Pro	Val	Ser 125	Phe	Leu	Met
Ser	Ser 130	Leu	Leu	Arg	Lys	Val 135	Met	Leu	Pro	Glu	Ala 140	Ser	Leu	Leu	Val
Thr 145	Thr	Arg	Leu	Thr	Thr 150	Ser	Lys	Arg	Leu	Lys 155	Gln	Leu	Leu	Lys	Asn 160
His	His	Tyr	Val	Glu 165	Leu	Leu	Gly	Met	Ser 170	Glu	Asp	Ala	Arg	Glu 175	Glu
Tyr	Ile	Tyr	Gln 180	Phe	Phe	Glu	Asp	Lys 185	Arg	Trp	Ala	Met	Lys 190	Val	Phe
Ser	Ser	Leu 195	Lys	Ser	Asn	Glu	Met 200	Leu	Phe	Ser	Met	Cys 205	Gln	Val	Pro
Leu	Val 210	Cys	Trp	Ala	Ala	Cys 215	Thr	Cys	Leu	Lys	Gln 220	Gln	Met	Glu	Lys
Gly 225	Gly	Asp	Val	Thr	Leu 230	Thr	Cys	Gln	Thr	Thr 235	Thr	Ala	Leu	Phe	Thr 240
Cys	Tyr	Ile	Ser	Ser 245	Leu	Phe	Thr	Pro	Val 250	Asp	Gly	Gly	Ser	Pro 255	Ser
Leu	Pro	Asn	Gln 260	Ala	Gln	Leu	Arg	Arg 265	Leu	Cys	Gln	Val	Ala 270	Ala	Lys
Gly	Ile	Trp 275	Thr	Met	Thr	Tyr	Val 280	Phe	Tyr	Arg	Glu	Asn 285	Leu	Arg	Arg
Leu	Gly 290	Leu	Thr	Gln	Ser	Asp 295	Val	Ser	Ser	Phe	Met 300	Asp	Ser	Asn	Ile
Ile 305	Gln	Lys	Asp	Ala	Glu 310	Tyr	Glu	Asn	Cys	Tyr 315	Val	Phe	Thr	His	Leu 320
His	Val	Gln	Glu	Phe 325	Phe	Ala	Ala	Met	Phe	Tyr	Met	Leu	Lys	Gly 335	Ser

Trp Glu Ala Gly Asn Pro Ser Cys Gln Pro Phe Glu Asp Leu Lys Ser 340 345 350

Leu Leu Gln Ser Thr Ser Tyr Lys Asp Pro His Leu Thr Gln Met Lys 355 360 365

Cys Phe Leu Phe Gly Leu Leu Asn Glu Asp Arg Val Lys Gln Leu Glu 370 380

Arg Thr Phe Asn Cys Lys Met Ser Leu Lys Ile Lys Ser Lys Leu Leu 385 390 395 400

Gln Cys Met Glu Val Leu Gly Asn Ser Asp Tyr Ser Pro Ser Gln Leu 405 410 415

Gly Phe Leu Glu Leu Phe His Cys Leu Tyr Glu Thr Gln Asp Lys Ala 420 425 430

Phe Ile Ser Gln Ala Met Arg Cys Phe Pro Lys Val Ala Ile Asn Ile 435 440 445

Cys Glu Lys Ile His Leu Leu Val Ser Ser Phe Cys Leu Lys His Cys 450 460

Arg Cys Leu Arg Thr Ile Arg Leu Ser Val 465 470

<210> 168

<211> 472

<212> PRT

<213> Homo sapiens

<400> 168

Leu Asp Arg Leu Phe Ala Pro Lys Glu Thr Gly Lys Gln Pro Arg Thr
1 5 10 15

Val Ile Ile Gln Gly Pro Gln Gly Ile Gly Lys Thr Thr Leu Leu Met
20 25 30

Lys Leu Met Met Ala Trp Ser Asp Asn Lys Ile Phe Arg Asp Arg Phe 35 40 45

Leu Tyr Thr Phe Tyr Phe Cys Cys Arg Glu Leu Arg Glu Leu Pro Pro 50 55 60

Thr Ser Leu Ala Asp Leu Ile Ser Arg Glu Trp Pro Asp Pro Ala Ala

65				_	70					75					80
Pro	Ile	Thr	Glu	Ile 85	Val	Ser	Gln	Pro	Glu 90	Arg	Leu	Leu	Phe	Val 95	Ile

Asp	Ser	Phe	Glu	Glu	Leu	Gln	Gly	Gly	Leu	Asn	Glu	Pro	Asp	Ser	Asp
			100					105					110		

Leu Cys Gly Asp Leu Met Glu Lys Arg Pro Val Gln Val Leu Leu Ser 115 120 125

Ser Leu Leu Arg Lys Lys Met Leu Pro Glu Ala Ser Leu Leu Ile Ala 130 135 140

Ile Lys Pro Val Cys Pro Lys Glu Leu Arg Asp Gln Val Thr Ile Ser 145 150 155 160

Glu Ile Tyr Gln Pro Arg Gly Phe Asn Glu Ser Asp Arg Leu Val Tyr 165 170 175

Phe Cys Cys Phe Phe Lys Asp Pro Lys Arg Ala Met Glu Ala Phe Asn 180 185 190

Leu Val Arg Glu Ser Glu Gln Leu Phe Ser Ile Cys Gln Ile Pro Leu 195 200 205

Leu Cys Trp Ile Leu Cys Thr Ser Leu Lys Gln Glu Met Gln Lys Gly 210 215 220

Lys Asp Leu Ala Leu Thr Cys Gln Ser Thr Thr Ser Val Tyr Ser Ser 225 230 235

Phe Val Phe Asn Leu Phe Thr Pro Glu Gly Ala Glu Gly Pro Thr Pro 245 250 255

Gln Thr Gln His Gln Leu Lys Ala Leu Cys Ser Leu Ala Ala Glu Gly
260 265 270

Met Trp Thr Asp Thr Phe Glu Phe Cys Glu Asp Asp Leu Arg Asp 275 280 285

Gly Val Val Asp Ala Asp Ile Pro Ala Leu Leu Gly Thr Lys Ile Leu 290 295 300

Leu Lys Tyr Gly Glu Arg Glu Ser Ser Tyr Val Phe Leu His Val Cys 305 310 315 320

Ile Gln Glu Phe Cys Ala Ala Leu Phe Tyr Leu Leu Lys Ser His Leu

Asp His Pro His Pro Ala Val Arg Cys Val Gln Glu Leu Leu Val Ala

Asn Phe Glu Lys Ala Arg Arg Ala His Trp Ile Phe Leu Gly Cys Phe

Leu Thr Gly Leu Leu Asn Lys Lys Glu Gln Glu Lys Leu Asp Ala Phe

Phe Gly Phe Gln Leu Ser Gln Glu Ile Lys Gln Gln Ile His Gln Cys

Leu Lys Ser Leu Gly Glu Arg Gly Asn Pro Gln Gly Gln Val Asp Ser

Leu Ala Ile Phe Tyr Cys Leu Phe Glu Met Gln Asp Pro Ala Phe Val

Lys Gln Ala Val Asn Leu Leu Gln Glu Ala Asn Phe His Ile Ile Asp

Asn Val Asp Leu Val Val Ser Ala Tyr Cys Leu Lys Tyr Cys Ser Ser

Leu Arg Lys Leu Cys Phe Ser Val

<210> 169

<211> 477 <212> PRT

<213> Homo sapiens

<400> 169

Leu Gln Arg Leu Leu Asp Pro Asn Arg Thr Arg Ala Gln Ala Gln Thr

Ile Val Leu Val Gly Arg Ala Gly Val Gly Lys Thr Thr Leu Ala Met

Arg Ala Met Leu His Trp Ala Asn Gly Val Leu Phe Gln Gln Arg Phe

Ser Tyr Val Phe Tyr Leu Ser Cys His Lys Ile Arg Tyr Met Lys Glu Thr Thr Phe Ala Glu Leu Ile Ser Leu Asp Trp Pro Asp Phe Asp Ala Pro Ile Glu Glu Phe Met Ser Gln Pro Glu Lys Leu Phe Ile Ile Asp Gly Phe Glu Glu Ile Ile Ser Glu Ser Arg Ser Glu Ser Leu Asp Asp Gly Ser Pro Cys Thr Asp Trp Tyr Gln Glu Leu Pro Val Thr Lys Ile Leu His Ser Leu Leu Lys Lys Glu Leu Val Pro Leu Ala Thr Leu Leu Ile Thr Ile Lys Thr Trp Phe Val Arg Asp Leu Lys Ala Ser Leu Val Asn Pro Cys Phe Val Gln Ile Thr Gly Phe Thr Gly Asp Asp Leu Arg Val Tyr Phe Met Arg His Phe Asp Asp Ser Ser Glu Val Glu Lys Ile Leu Gln Gln Leu Arg Lys Asn Glu Thr Leu Phe His Ser Cys Ser Ala Pro Met Val Cys Trp Thr Val Cys Ser Cys Leu Lys Gln Pro Lys Val Arg Tyr Tyr Asp Leu Gln Ser Ile Thr Gln Thr Thr Ser Leu Tyr Ala Tyr Phe Phe Ser Asn Leu Phe Ser Thr Ala Glu Val Asp Leu Ala Asp Asp Ser Trp Pro Gly Gln Trp Arg Ala Leu Cys Ser Leu Ala Ile Glu Gly Leu Trp Ser Met Asn Phe Thr Phe Asn Lys Glu Asp

Thr Glu Ile Glu Gly Leu Glu Val Pro Phe Ile Asp Ser Leu Tyr Glu

295	300

Phe Asn I	le Leu	Gln Lys 310	Ile Ası	n Asp	Cys	Gly 315	Gly	Cys	Thr	Thr	Phe 320
Thr His I		Phe Gln 325	Glu Phe	e Phe	Ala 330	Ala	Met	Ser	Phe	Val 335	Leu
Glu Glu F	Pro Arg 340	Glu Phe	Pro Pro	His 345	Ser	Thr	Lys	Pro	Gln 350	Glu	Met
Lys Met I	Leu Leu 355	Gln His	Val Let		Asp	Lys	Glu	Ala 365	Týr	Trp	Thr
Pro Val V 370	/al Leu	Phe Phe	Phe Gly	/ Leu	Leu	Asn	Lys 380	Asn	Ile	Ala	Arg
Glu Leu G 385	Glu Asp	Thr Leu 390	His Cy	s Lys	Ile	Ser 395	Pro	Arg	Val	Met	Glu 400
Glu Leu I	_	Trp Gly 405	Glu Gl	ı Leu	Gly 410	Lys	Ala	Glu	Ser	Ala 415	Ser
Leu Gln E	Phe His 420	Ile Leu	Arg Le	ı Phe 425	His	Cys	Leu	His	Glu 430	Ser	Gln
Glu Glu A	Asp Phe 135	Thr Lys	Lys Me		Gly	Arg	Ile	Phe 445	Glu	Val	Asp
Leu Asn I 450	lle Leu	Glu Asp	Glu Gli 455	ı Leu	Gln	Ala	Ser 460	Ser	Phe	Cys	Leu
Lys His (465	Cys Lys	Arg Leu 470	Asn Ly	s Leu	Arg	Leu 475	Ser	Val			
<210> 17 <211> 47 <212> PF <213> Ho	73	ens									
<400> 17	70										
Leu Pro (Cys Leu	Leu Leu 5	Pro Ly	s Arg	Pro 10	Gln	Gly	Arg	Gln	Pro 15	Lys

Thr Val Ala Ile Gln Gly Ala Pro Gly Ile Gly Lys Thr Ile Leu Ala 20 2530

Lys Lys Val Met Phe Glu Trp Ala Arg Asn Lys Phe Tyr Ala His Lys Arg Trp Cys Ala Phe Tyr Phe His Cys Gln Glu Val Asn Gln Thr Thr Asp Gln Ser Phe Ser Glu Leu Ile Glu Gln Lys Trp Pro Gly Ser Gln Asp Leu Val Ser Lys Ile Met Ser Lys Pro Asp Gln Leu Leu Leu Leu Asp Gly Phe Glu Glu Leu Thr Ser Thr Leu Ile Asp Arg Leu Glu Asp Leu Ser Glu Asp Trp Arg Gln Lys Leu Pro Gly Ser Val Leu Leu Ser Ser Leu Leu Ser Lys Thr Met Leu Pro Glu Ala Thr Leu Leu Ile Met Ile Arg Phe Thr Ser Trp Gln Thr Cys Lys Pro Leu Leu Lys Cys Pro Ser Leu Val Thr Leu Pro Gly Phe Asn Thr Met Glu Lys Ile Lys Tyr Phe Gln Met Tyr Phe Gly His Thr Glu Glu Gly Asp Gln Val Leu Ser Phe Ala Met Glu Asn Thr Ile Leu Phe Ser Met Cys Arg Val Pro Val Val Cys Trp Met Val Cys Ser Gly Leu Lys Gln Gln Met Glu Arg Gly Asn Asn Leu Thr Gln Ser Cys Pro Asn Ala Thr Ser Val Phe Val Arg Tyr Ile Ser Ser Leu Phe Pro Thr Arg Ala Glu Asn Phe Ser Arg Lys Ile His Gln Ala Gln Leu Glu Gly Leu Cys His Leu Ala Ala Asp

Ser Met Trp His Arg Lys Trp Val Leu Gly Lys Glu Asp Leu Glu Glu 275 280 Ala Lys Leu Asp Gln Thr Gly Val Thr Ala Phe Leu Gly Met Ser Ile 295 290 Leu Arg Arg Ile Ala Gly Glu Glu Asp His Tyr Val Phe Thr Leu Val 305 310 Thr Phe Gln Glu Phe Phe Ala Ala Leu Phe Tyr Val Leu Cys Phe Pro 330 Gln Arg Leu Lys Asn Phe His Val Leu Ser His Val Asn Ile Gln Arg Leu Ile Ala Ser Pro Arg Gly Ser Lys Ser Tyr Leu Ser His Met Gly 355 360 365 Leu Phe Leu Phe Gly Phe Leu Asn Glu Ala Cys Ala Ser Ala Val Glu 370 375 380 Gln Ser Phe Gln Cys Lys Val Ser Phe Gly Asn Lys Arg Lys Leu Leu 385 390 395 400 Lys Val Ile Pro Leu Leu His Lys Cys Asp Pro Pro Ser Pro Gly Ser 405 410 415 Gly Val Pro Gln Leu Phe Tyr Cys Leu His Glu Ile Arg Glu Glu Ala 420 425 430 Phe Val Ser Gln Ala Leu Asn Asp Tyr His Lys Val Val Leu Arg Ile 435 440 445 Gly Asn Asn Lys Glu Val Gln Val Ser Ala Phe Cys Leu Lys Arg Cys

Gln Tyr Leu His Glu Val Glu Leu Thr 465 470

455

<210> 171 <211> 470

450

<212> PRT

<213> Homo sapiens

<400> 171

Val Glu Ala Leu Phe Asp Ser Gly Glu Lys Pro Ser Leu Ala Pro Ser 1 10 15

Leu	Val	Val	Leu 20	Gln	Gly	Ser	Ala	Gly 25	Thr	Gly	Lys	Thr	Thr 30	Leu	Ala
Arg	Lys	Met 35	Val	Leu	Asp	Trp	Ala 40	Thr	Gly	Thr	Leu	Tyr 45	Pro	Gly	Arg
Phe	Asp 50	Tyr	Val	Phe	Tyr	Val 55	Ser	Cys	Lys	Glu	Val 60	Val	Leu	Leu	Leu
Glu 65	Ser	Lys	Leu	Glu	Gln 70	Leu	Leu	Phe	Trp	Cys 75	Cys	Gly	Asp	Asn	Gln 80
Ala	Pro	Val	Thr	Glu 85	Ile	Leu	Arg	Gln	Pro 90	Glu	Arg	Leu	Leu	Phe 95	Ile
Leu	Asp	Gly	Phe 100	Asp	Glu	Leu	Gln	Arg 105	Pro	Phe	Glu	Glu	Lys 110	Leu	Lys
Lys	Arg	Gly 115	Leu	Ser	Pro	Lys	Glu 120	Ser	Leu	Leu	His	Leu 125	Leu	Ile	Arg
Arg	His 130	Thr	Leu	Pro	Thr	Cys 135	Ser	Leu	Leu	Ile	Thr 140	Thr	Arg	Pro	Leu
Ala 145	Leu	Arg	Asn	Leu	Glu 150	Pro	Leu	Leu	Lys	Gln 155	Ala	Arg	His	Val	His 160
Ile	Leu	Gly	Phe	Ser 165	Glu	Glu	Glu	Arg	Ala 170	Arg	Tyr	Phe	Ser	Ser 175	Tyr
Phe	Thr	Asp	Glu 180	Lys	Gln	Ala	Asp	Arg 185	Ala	Phe	Asp	Ile	Val 190	Gln	Lys
Asn	Asp	Ile 195	Leu	Tyr	Lys	Ala	Cys 200	Gln	Val	Pro	Gly	Ile 205	Cys	Trp	Val
Val	Cys 210	Ser	Trp	Leu	Gln	Gly 215	Gln	Met	Glu	Arg	Gly 220	Lys	Val	Val	Leu
Glu 225	Thr	Pro	Arg	Asn	Ser 230	Thr	Asp	Ile	Phe	Met 235	Ala	Tyr	Val	Ser	Thr 240
Phe	Leu	Pro	Pro	Asp 245	Asp	Asp	Gly	Gly	Cys 250	Ser	Glu	Leu	Ser	Arg 255	His

Arg Val Leu Arg Ser Leu Cys Ser Leu Ala Ala Glu Gly Ile Gln His Gln Arg Phe Leu Phe Glu Glu Ala Glu Leu Arg Lys His Asn Leu Asp 280 Gly Pro Arg Leu Ala Ala Phe Leu Ser Ser Asn Asp Tyr Gln Leu Gly 295 300 Leu Ala Ile Lys Lys Phe Tyr Ser Phe Arg His Ile Ser Phe Gln Asp 310 315 Phe Phe His Ala Met Ser Tyr Leu Val Lys Glu Asp Gln Ser Arg Leu Gly Lys Glu Ser Arg Arg Glu Val Gln Arg Leu Leu Glu Val Lys Glu Gln Glu Gly Asn Asp Glu Met Thr Leu Thr Met Gln Phe Leu Leu Asp 355 360 Ile Ser Lys Lys Asp Ser Phe Ser Asn Leu Glu Leu Lys Phe Cys Phe 370 375 380 Arg Ile Ser Pro Cys Leu Ala Gln Asp Leu Lys His Phe Lys Glu Gln 390 385 395 Met Glu Ser Met Lys His Asn Arg Thr Trp Asp Leu Glu Phe Ser Leu 405 410 Tyr Glu Ala Lys Ile Lys Asn Leu Val Lys Gly Ile Gln Met Asn Asn 425 420 430 Val Ser Phe Lys Ile Lys His Ser Asn Glu Lys Lys Ser Gln Ser Gln 440 435 445 Asn Leu Phe Ser Val Lys Ser Ser Leu Ser His Gly Pro Lys Glu Glu 450 455 460

<210> 172 <211> 466 <212> PRT <213> Homo sapiens

465

Gln Lys Cys Pro Ser Val

<400> 172

Leu Ile Pro Phe Ser Asn Pro Arg Val Leu Pro Gly Pro Phe Ser Tyr 1 5 10 15

Thr Val Val Leu Tyr Gly Pro Ala Gly Leu Gly Lys Thr Thr Leu Ala 20 25 30

Gln Lys Leu Met Leu Asp Trp Ala Glu Asp Asn Leu Ile His Lys Phe 35 40 45

Lys Tyr Ala Phe Tyr Leu Ser Cys Arg Glu Leu Ser Arg Leu Gly Pro 50 55 60

Cys Ser Phe Ala Glu Leu Val Phe Arg Asp Trp Pro Glu Leu Gln Asp 65 70 75 80

Asp Ile Pro His Ile Leu Ala Gln Ala Arg Lys Ile Leu Phe Val Ile 85 90 95

Asp Gly Phe Asp Glu Leu Gly Ala Ala Pro Gly Ala Leu Ile Glu Asp 100 105 110

Ile Cys Gly Asp Trp Glu Lys Lys Lys Pro Val Pro Val Leu Leu Gly 115 120 125

Ser Leu Leu Asn Arg Val Met Leu Pro Lys Ala Ala Leu Leu Val Thr 130 135 140

Thr Arg Pro Arg Ala Leu Arg Asp Leu Arg Ile Leu Ala Glu Glu Pro 145 150 155 160

Ile Tyr Ile Arg Val Glu Gly Phe Leu Glu Glu Asp Arg Arg Ala Tyr 165 170 175

Phe Leu Arg His Phe Gly Asp Glu Asp Gln Ala Met Arg Ala Phe Glu 180 185 190

Leu Met Arg Ser Asn Ala Ala Leu Phe Gln Leu Gly Ser Ala Pro Ala 195 200 205

Val Cys Trp Ile Val Cys Thr Thr Leu Lys Leu Gln Met Glu Lys Gly 210 215 220 \cdot

Glu Asp Pro Val Pro Thr Cys Leu Thr Arg Thr Gly Leu Phe Leu Arg 225 230 235 240 Phe Leu Cys Ser Arg Phe Pro Gln Gly Ala Gln Leu Arg Gly Ala Leu Arg Thr Leu Ser Leu Leu Ala Ala Gln Gly Leu Trp Ala Gln Thr Ser Val Leu His Arg Glu Asp Leu Glu Arg Leu Gly Val Gln Glu Ser Asp Leu Arg Leu Phe Leu Asp Gly Asp Ile Leu Arg Gln Asp Arg Val Ser Lys Gly Cys Tyr Ser Phe Ile His Leu Ser Phe Gln Gln Phe Leu Thr Ala Leu Phe Tyr Thr Leu Glu Lys Glu Glu Glu Asp Arg Asp Gly His Thr Trp Asp Ile Gly Asp Val Gln Lys Leu Leu Ser Gly Val Glu Arg Leu Arg Asn Pro Asp Leu Ile Gln Ala Gly Tyr Tyr Ser Phe Gly Leu Ala Asn Glu Lys Arg Ala Lys Glu Leu Glu Ala Thr Phe Gly Cys Arg Met Ser Pro Asp Ile Lys Gln Glu Leu Leu Arg Cys Asp Ile Ser Cys Lys Gly Gly His Ser Thr Val Thr Asp Leu Gln Glu Leu Leu Gly Cys Leu Tyr Glu Ser Gln Glu Glu Leu Val Lys Glu Val Met Ala Gln Phe Lys Glu Ile Ser Leu His Leu Asn Ala Val Asp Val Val Pro Ser Ser Phe Cys Val Lys His Cys Arg Asn Leu Gln Lys Met Ser Leu

Gln Val

<210> 17 <211> 47 <212> PF <213> Ho	6	s				
<400> 17	'3					
Thr Leu A	la Gly Al 5	a Phe Asp	Ser Asp	Arg Trp 10	Gly Phe	Arg Pro Arg 15
Thr Val V	al Leu Hi 20	s Gly Lys	Ser Gly 25	Ile Gly	Lys Ser	Ala Leu Ala 30
	le Val Le 5	u Cys Trp	Ala Gln 40	Gly Gly	Leu Tyr 45	Gln Gly Met
Phe Ser 7	'yr Val Ph	e Phe Leu 55	Pro Val	Arg Glu	Met Gln 60	Arg Lys Lys
Glu Ser S 65	er Val Th	r Glu Phe 70	Ile Ser	Arg Glu 75	Trp Pro	Asp Ser Gln 80
Ala Pro N	al Thr Gl 85	u Ile Met	Ser Arg	Pro Glu 90	Arg Leu	Leu Phe Ile 95
Ile Asp (ly Phe As	p Asp Leu	Gly Ser 105		Asn Asn	Asp Thr Lys
_	ys Asp Tr .15	p Ala Glu	Lys Gln 120	Pro Pro	Phe Thr 125	Leu Ile Arg
Ser Leu I 130	eu Arg Ly	s Val Leu 135		Glu Ser	Phe Leu 140	Ile Val Thr
Val Arg A	sp Val Gl	y Thr Glu 150	. Lys Leu	Lys Ser 155	Glu Val	Val Ser Pro 160
Arg Tyr I	eu Leu Va 16		lle Ser	Gly Glu 170	Gln Arg	Ile His Leu 175
Leu Leu (lu Arg Gl 180	y Ile Gly	Glu His 185	-	Thr Gln	Gly Leu Arg 190
	let Asn As .95	n Arg Glu	Leu Leu 200	Asp Gln	Cys Gln 205	Val Pro Ala

Val Gly Ser Leu Ile Cys Val Ala Leu Gln Leu Gln Asp Val Val Gly

210	215	220

Glu 225	Ser	Val	Ala	Pro	Phe 230	Asn	Gln	Thr	Leu	Thr 235	Gly	Leu	His	Ala	Ala 240
Phe	Val	Phe	His	Gln 245	Leu	Thr	Pro	Arg	Gly 250	Val	Val	Arg	Arg	Cys 255	Leu
Asn	Leu	Glu	Glu 260	Arg	Val	Val	Leu	Lys 265	Arg	Phe	Cys	Arg	Met 270	Ala	Val
Glu	Gly	Val 275	Trp	Asn	Arg	Lys	Ser 280	Val	Phe	Asp	Gly	Asp 285	Asp	Leu	Met
Val	Gln 290	Gly	Leu	Gly	Glu	Ser 295	Glu	Leu	Arg	Ala	Leu 300	Phe	His	Met	Asn
Ile 305	Leu	Leu	Pro	Asp	Ser 310	His	Cys	Glu	Glu	Tyr 315	Tyr	Thr	Phe	Phe	His 320
Leu	Ser	Leu	Gln	Asp 325	Phe	Cys	Ala	Ala	Leu 330	Tyr	Tyr	Val	Leu	Glu 335	Gly
Leu	Glu	Ile	Glu 340	Pro	Ala	Leu	Cys	Pro 345	Leu	Tyr	Val	Glu	Lys 350	Thr	Lys
Arg	Ser	Met 355	Glu	Leu	Lys	Gln	Ala 360	Gly	Phe	His	Ile	His 365	Ser	Leu	Trp
Met	Lys 370	Arg	Phe	Leu	Phe	Gly 375	Leu	Val	Ser	Glu	Asp 380	Val	Arg	Arg	Pro
Leu 385	Glu	Val	Leu	Leu	Gly 390	_	Pro	Val	Pro	Leu 395	Gly	Val	Lys	Gln	Lys 400
Leu	Leu	His	Trp	Val 405	Ser	Leu	Leu	Gly	Gln 410	Gln	Pro	Asn	Ala	Thr 415	Thr
Pro	Gly	Asp	Thr 420	Leu	Asp	Ala	Phe	His 425	Cys	Leu	Phe	Glu	Thr 430	Gln	Asp
Lys	Glu	Phe 435	Val	Arg	Leu	Ala	Leu 440	Asn	Ser	Phe	Gln	Glu 445	Val	Trp	Leu
Pro	Ile 450	Asn	Gln	Asn	Leu	Asp 455	Leu	Ile	Ala	Ser	Ser 460	Phe	Cys	Leu	Gln

His Cys Pro Tyr Leu Arg Lys Ile Arg Val Asp Val 465 470 475

<210> 174

<211> 496

<212> PRT

<213> Homo sapiens

<400> 174

Thr Phe Asn Arg Leu Phe Arg Arg Asp Glu Glu Gly Arg Arg Pro Leu
1 5 10 15

Thr Val Val Leu Gln Gly Pro Ala Gly Ile Gly Lys Thr Met Ala Ala 20 25 30

Lys Lys Ile Leu Tyr Asp Trp Ala Ala Gly Lys Leu Tyr Gln Gly Gln
35 40 45

Val Asp Phe Ala Phe Phe Met Pro Cys Gly Glu Leu Leu Glu Arg Pro 50 55 60

Gly Thr Arg Ser Leu Ala Asp Leu Ile Leu Asp Gln Cys Pro Asp Arg 65 70 75 80

Gly Ala Pro Val Pro Gln Met Leu Ala Gln Pro Gln Arg Leu Leu Phe 85 90 95

Ile Leu Asp Gly Ala Asp Glu Leu Pro Ala Leu Gly Gly Pro Glu Ala
100 . 105 . 110

Ala Pro Cys Thr Asp Pro Phe Glu Ala Ala Ser Gly Ala Arg Val Leu 115 120 125

Gly Gly Leu Leu Ser Lys Ala Leu Leu Pro Thr Ala Leu Leu Leu Val 130 135 140

Thr Thr Arg Ala Ala Pro Gly Arg Leu Gln Gly Arg Leu Cys Ser 145 . 150 155 160

Pro Gln Cys Ala Glu Val Arg Gly Phe Ser Asp Lys Asp Lys Lys Lys 165 170 175

Tyr Phe Tyr Lys Phe Phe Arg Asp Glu Arg Arg Ala Glu Arg Ala Tyr 180 185 190 Arg Phe Val Lys Glu Asn Glu Thr Leu Phe Ala Leu Cys Phe Val Pro Phe Val Cys Trp Ile Val Cys Thr Val Leu Arg Gln Gln Leu Glu Leu Gly Arg Asp Leu Ser Arg Thr Ser Lys Thr Thr Thr Ser Val Tyr Leu Leu Phe Ile Thr Ser Val Leu Ser Ser Ala Pro Val Ala Asp Gly Pro Arg Leu Gln Gly Asp Leu Arg Asn Leu Cys Arg Leu Ala Arg Glu Gly Val Leu Gly Arg Arg Ala Gln Phe Ala Glu Lys Glu Leu Glu Gln Leu Glu Leu Arg Gly Ser Lys Val Gln Thr Leu Phe Leu Ser Lys Lys Glu Leu Pro Gly Val Leu Glu Thr Glu Val Thr Tyr Gln Phe Ile Asp Gln Ser Phe Gln Glu Phe Leu Ala Ala Leu Ser Tyr Leu Leu Glu Asp Gly Gly Val Pro Arg Thr Ala Ala Gly Gly Val Gly Thr Leu Leu Arg Gly Asp Ala Gln Pro His Ser His Leu Val Leu Thr Thr Arg Phe Leu Phe Gly Leu Leu Ser Ala Glu Arg Met Arg Asp Ile Glu Arg His Phe Gly Cys Met Val Ser Glu Arg Val Lys Gln Glu Ala Leu Arg Trp Val Gln Gly Gln Gly Gln Gly Cys Pro Gly Val Ala Pro Glu Val Thr Glu Gly Ala Lys Gly Leu Glu Asp Thr Glu Glu Pro Glu Glu Glu Glu Gly Glu Glu Pro Asn Tyr Pro Leu Glu Leu Leu Tyr Cys Leu Tyr Glu Thr 440 445

Gln Glu Asp Ala Phe Val Arg Gln Ala Leu Cys Arg Phe Pro Glu Leu 450 455 460

Ala Leu Gln Arg Val Arg Phe Cys Arg Met Asp Val Ala Val Leu Ser 465 470 475 480

Tyr Cys Val Arg Cys Cys Pro Ala Gly Gln Ala Leu Arg Leu Ile Ser 485 490 495

<210> 175

<211> 467

<212> PRT

<213> Homo sapiens

435

<400> 175

Leu Gln Leu Ala Tyr Asp Ser Thr Ser Tyr Tyr Ser Ala Asn Asn Leu

5 10 15

Asn Val Phe Leu Met Gly Glu Arg Ala Ser Gly Lys Thr Ile Val Ile 20 25 30

Asn Leu Ala Val Leu Arg Trp Ile Lys Gly Glu Met Trp Gln Asn Met 35 40 45

Ile Ser Tyr Val Val His Leu Thr Ser His Glu Ile Asn Gln Met Thr 50 55 60

Asn Ser Ser Leu Ala Glu Leu Ile Ala Lys Asp Trp Pro Asp Gly Gln 65 70 75 80

Ala Pro Ile Ala Asp Ile Leu Ser Asp Pro Lys Lys Leu Leu Phe Ile 85 90 95

Leu Glu Asp Leu Asp Asn Ile Arg Phe Glu Leu Asn Val Asn Glu Ser 100 105 110

Ala Leu Cys Ser Asn Ser Thr Gln Lys Val Pro Ile Pro Val Leu Leu 115 120 125

Val Ser Leu Leu Lys Arg Lys Met Ala Pro Gly Cys Trp Phe Leu Ile 130 135 140

Ser Ser Arg Pro Thr Arg Gly Asn Asn Val Lys Thr Phe Leu Lys Glu 145 150 155 160

Val	Asp	Cys	Cys	Thr 165	Thr	Leu	Gln	Leu	Ser 170	Asn	Gly	Lys	Arg	Glu 175	Ile
Tyr	Phe	Asn	Ser 180	Phe	Phe	Lys	Asp	Arg 185	Gln	Arg	Ala	Ser	Ala 190	Ala	Leu
Gln	Leu	Val 195	His	Glu	Asp	Glu	Ile 200	Leu	Val	Gly	Leu	Cys 205	Arg	Val	Ala
Ile	Leu 210	Cys	Trp	Ile	Thr	Cys 215	Thr	Val	Leu	Lys	Arg 220	Gln	Met	Asp	Lys
Gly 225	Arg	Asp	Phe	Gln	Leu 230	Cys	Cys	Gln	Thr	Pro 235	Thr	Asp	Leu	His	Ala 240
His	Phe	Leu	Ala	Asp 245	Ala	Leu	Thr	Ser	Glu 250	Ala	Gly	Leu	Thr	Ala 255	Asn
Gln	Tyr	His	Leu 260	Gly	Leu	Leu	Lys	Arg 265	Leu	Cys	Leu	Leu	Ala 270	Ala	Gly
Gly	Leu	Phe 275	Leu	Ser	Thr	Leu	Asn 280	Phe	Ser	Gly	Glu	Asp 285	Leu	Arg	Cys
Val	Gly 290	Phe	Thr	Glu	Ala	Asp 295	Val	Ser	Val	Leu	Gln 300	Ala	Ala	Asn	Ile
Leu 305	Leu	Pro	Ser	Asn	Thr 310	His	Lys	Asp	Arg	Tyr 315	Lys	Phe	Ile	His	Leu 320
Asn	Val	Gln	Glu	Phe 325	Cys	Thr	Ala	Ile	Ala 330	Phe	Leu	Met	Ala	Val 335	Pro
Asn	Tyr	Leu	Ile 340	Pro	Ser	Gly	Ser	Arg 345	Glu	Tyr	Lys	Glu	Lys 350	Arg	Glu
Gln	Tyr	Ser 355	Asp	Phe	Asn	Gln	Val 360	Phe	Thr	Phe	Ile	Phe 365	Gly	Leu	Leu
Asn	Ala 370	Asn	Arg	Arg	Lys	Ile 375	Leu	Glu	Thr	Ser	Phe 380	Gly	Tyr	Gln	Leu
Pro 385	Met	Val	Asp	Ser	Phe 390	Lys	Trp	Tyr	Ser	Val 395	Gly	Tyr	Met	Lys	His 400

Leu Asp Arg Asp Pro Glu Lys Leu Thr His His Met Pro Leu Phe Tyr
405 410 415

Cys Leu Tyr Glu Asn Arg Glu Glu Glu Phe Val Lys Thr Ile Val Asp 420 425 430

Ala Leu Met Glu Val Thr Val Tyr Leu Gln Ser Asp Lys Asp Met Met 435 440 445

Val Ser Leu Tyr Cys Leu Asp Tyr Cys Cys His Leu Arg Thr Leu Lys 450 455 460

Leu Ser Val 465

<210> 176

<211> 454

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (178)..(178)

<223> "Xaa" denotes any amino acid residue.

<220>

<221> MISC_FEATURE

<222> (347)..(347)

<223> "Xaa" denotes any amino acid residue.

<400> 176

Val Val Leu Gln Ala Cys Ala Gly Thr Gly Lys Thr Ala Val Val His
5 10 15

Lys Phe Met Phe Asp Trp Ala Ala Gly Thr Val Thr Pro Gly Arg Cys 20 25 30

Asp Tyr Leu Ile Tyr Val Asn Cys Ile Glu Ile Ser His Ile Ala Asn 35 40 45

Leu Ser Ser Ala Asp Leu Ile Leu Thr Leu Phe Lys Ile Asn Gly Pro 50 55 60

Ile Leu Asp Thr Ile Leu Ile Tyr Pro Lys Ile Leu Leu Ile Leu Asp 70 75 80

Arg Phe Pro Glu Leu Gln Asp Pro Val Gly Asp Gln Glu Glu Asp Leu 85 90 95 Ser Val His Pro Gln Glu Arg Arg Pro Val Glu Ser Leu Leu Cys Ser Phe Val Arg Lys Lys Leu Phe Pro Glu Ser Ser Leu Leu Ile Thr Ala Arg Pro Thr Ala Met Lys Lys Leu His Ser Leu Leu Lys Gln Pro Ile Gln Ala Glu Ile Leu Trp Phe Thr Asp Thr Glu Lys Arg Ala Tyr Leu Leu Ser Gln Phe Ser Gly Ala Asn Thr Thr Met Lys Val Phe Tyr Asp Leu Xaa Glu Asn Glu Asp Leu Asp Ile Met Ser Ser Leu Pro Ile Val Ser Trp Met Ile Cys Asn Val Leu Gln Ser Gln Gly Asp Gly Asp Arg Thr Leu Leu Arg Ser Leu Gln Thr Met Thr Asp Val Tyr Leu Phe Tyr Phe Ser Lys Cys Leu Lys Thr Leu Thr Gly Ile Ser Val Trp Glu Gly Gln Ser Cys Leu Trp Gly Leu Cys Arg Leu Ala Ala Glu Gly Leu Gln Asn His Gln Val Leu Phe Ala Val Ser Asp Leu Arg Arg His Gly Ile Gly Val Cys Asp Thr Asn Cys Thr Phe Leu Ser Arg Phe Leu Lys Lys Ala Glu Gly Ala Val Ser Val Tyr Thr Phe Leu His Phe Ser Phe Gln Glu Phe Leu Thr Ala Val Phe His Ala Leu Lys Asn Asp Asn Ser Trp

Met Phe Phe Tyr Gln Ala Glu Lys Met Trp Gln Glu Met Phe Gln Gln

Tyr Gly Lys Gly Phe Ser Ser Leu Met Ile Xaa Phe Leu Phe Gly Leu Leu His Lys Gly Lys Gly Lys Ala Val Glu Thr Thr Phe Gly Arg Lys 360 Val Ser Pro Gly Leu Gln Glu Glu Leu Leu Lys Trp Thr Glu Arg Glu 375 Ile Lys Asp Lys Ser Ser Arg Leu Gln Ile Glu Pro Val Asp Leu Phe 390 His Cys Leu Tyr Glu Ile Gln Glu Glu Tyr Ala Lys Arg Ile Ile 405 410 Asp Asp Leu Gln Ser Ile Ile Leu Leu Gln Pro Thr Tyr Thr Lys Met 420 425 Asp Ile Leu Val Met Ser Phe Cys Val Lys Ser Ser His Ser His Leu 440 435 Ser Val Ser Leu Lys Cys 450 <210> 177 <211> 588 <212> PRT <213> Homo sapiens <400> 177 Leu Ser Gln Leu Phe Asn Pro Asp Ala Cys Gly Arg Arg Val Gln Thr 10 Val Val Leu Tyr Gly Thr Val Gly Thr Gly Lys Ser Thr Leu Val Arg 20 25 Lys Met Val Leu Asp Trp Cys Tyr Gly Arg Leu Pro Ala Phe Glu Leu 35 40 Leu Ile Pro Phe Ser Cys Glu Asp Leu Ser Ser Leu Gly Pro Ala Pro 50 55 Ala Ser Leu Cys Gln Leu Val Ala Gln Arg Tyr Thr Pro Leu Lys Glu

90

Val Leu Pro Leu Met Ala Ala Gly Ser His Leu Leu Phe Val Leu

His Gly Leu Glu His Leu Asn Leu Asp Phe Arg Leu Ala Gly Thr Gly Leu Cys Ser Asp Pro Glu Glu Pro Gln Glu Pro Ala Ala Ile Ile Val Asn Leu Leu Arg Lys Tyr Met Leu Pro Gln Ala Ser Ile Leu Val Thr Thr Arg Pro Ser Ala Ile Gly Arg Ile Pro Ser Lys Tyr Val Gly Arg Tyr Gly Glu Ile Cys Gly Phe Ser Asp Thr Asn Leu Gln Lys Leu Tyr Phe Gln Leu Arg Leu Asn Gln Pro Tyr Cys Gly Tyr Ala Val Gly Gly Ser Gly Val Ser Ala Thr Pro Ala Gln Arg Asp His Leu Val Gln Met Leu Ser Arg Asn Leu Glu Gly His His Gln Ile Ala Ala Cys Phe Leu Pro Ser Tyr Cys Trp Leu Val Cys Ala Thr Leu His Phe Leu His Ala Pro Thr Pro Ala Gly. Gln Thr Leu Thr Ser Ile Tyr Thr Ser Phe Leu Arg Leu Asn Phe Ser Gly Glu Thr Leu Asp Ser Thr Asp Pro Ser Asn Leu Ser Leu Met Ala Tyr Ala Ala Arg Thr Met Gly Lys Leu Ala Tyr Glu Gly Val Ser Ser Arg Lys Thr Tyr Phe Ser Glu Glu Asp Val Cys Gly Cys Leu Glu Ala Gly Ile Arg Thr Glu Glu Glu Phe Gln Leu Leu His Ile Phe Arg Arg Asp Ala Leu Arg Phe Phe Leu Ala Pro Cys

Ser Gly Arg His Ala Leu Asp Glu Val Asn Leu Ala 580 585

<210> 178 <211> 467 <212> PRT <213> Homo sapiens <400> 178 Glu Val Leu Leu Ala Ala Lys Glu His Arg Arg Pro Arg Glu Thr Arg Val Ile Ala Val Leu Gly Lys Ala Gly Gln Gly Lys Ser Tyr Trp Ala Gly Ala Val Ser Arg Ala Trp Ala Cys Gly Arg Leu Pro Gln Tyr Asp Phe Val Phe Ser Val Pro Cys His Cys Leu Asn Arg Pro Gly Asp Ala Tyr Gly Leu Gln Asp Leu Leu Phe Ser Leu Gly Pro Gln Pro Leu Val 70 75 Ala Ala Asp Glu Val Phe Ser His Ile Leu Lys Arg Pro Asp Arg Val 85 Leu Leu Ile Leu Asp Ala Phe Glu Glu Leu Glu Ala Gln Asp Gly Phe 105 100 Leu His Ser Thr Cys Gly Pro Ala Pro Ala Glu Pro Cys Ser Leu Arg 115 120 125 Gly Leu Leu Ala Gly Leu Phe Gln Lys Lys Leu Leu Arg Gly Cys Thr 130 135 140 Leu Leu Thr Ala Arg Pro Arg Gly Arg Leu Val Gln Ser Leu Ser 145 150 155 160 Lys Ala Asp Ala Leu Phe Glu Leu Ser Gly Phe Ser Met Glu Gln Ala 165 170

Gln Asp Arg Ala Leu Thr Leu Leu Arg Asp Arg Pro Leu Leu Ser 195 200 205

Gln Ala Tyr Val Met Arg Tyr Phe Glu Ser Ser Gly Met Thr Glu His

185

His	Ser 210	His	Ser	Pro	Thr	Leu 215	Cys	Arg	Ala	Val	Cys 220	Gln	Leu	Ser	Glu
Ala 225	Leu	Leu	Glu	Leu	Gly 230	Glu	Asp	Ala	Lys	Leu 235	Pro	Ser	Thr	Leu	Thr 240
Gly	Leu	Tyr	Val	Gly 245	Leu	Leu	Gly	Arg	Ala 250	Ala	Leu	Asp	Ser	Pro 255	Pro
Gly	Ala	Leu	Ala 260	Glu	Leu	Ala	Lys	Leu 265	Ala	Trp	Glu	Leu	Gly 270	Arg	Arg
His	Gln	Ser 275	Thr	Leu	Gln	Glu	Asp 280	Gln	Phe	Pro	Ser	Ala 285	Asp	Val	Arg
Thr	Trp 290	Ala	Met	Ala	Lys	Gly 295	Leu	Val	Gln	His	Pro 300	Pro	Arg	Ala	Ala
Glu 305	Ser	Glu	Leu	Ala	Phe 310	Pro	Ser	Phe	Leu	Leu 315	Gln	Cys	Phe	Leu	Gly 320
Ala	Leu	Trp	Leu	Ala 325	Leu	Ser	Gly	Glu	Ile 330	Lys	Asp	Lys	Glu	Leu 335	Pro
Gln	Tyr	Leu	Ala 340	Leu	Thr	Pro	Arg	Lys 345	Lys	Arg	Pro	Tyr	Asp 350	Asn	Trp
Leu	Glu	Gly 355	Val	Pro	Arg	Phe	Leu 360	Ala	Gly	Leu	Ile	Phe 365	Gln	Pro	Pro
Ala	Arg 370	Cys	Leu	Gly	Ala	Leu 375	Leu	Gly	Pro	Ser	Ala 380	Ala	Ala	Ser	Val
Asp 385	Arg	Lys	Gln	Lys	Val 390	Leu	Ala	Arg	Tyr	Leu 395	Lys	Arg	Leu	Gln	Pro 400
Gly	Thr	Leu	Arg	Ala 405	Arg	Gln	Leu	Leu	Glu 410	Leu	Leu	His	Cys	Ala 415	His
Glu	Ala	Glu	Glu 420	Ala	Gly	Ile	Trp	Gln 425	His	Val	Val	Gln	Glu 430	Leu	Pro
Gly	Arg	Leu 435	Ser	Phe	Leu	Gly	Thr 440	Arg	Leu	Thr	Pro	Pro 445	Asp	Ala	His

Val Leu Gly Lys Ala Leu Glu Ala Ala Gly Gln Asp Phe Ser Leu Asp 450 455 460

Leu Arg Ser 465

<210> 179

<211> 465

<212> PRT

<213> Homo sapiens

<400> 179

Val Ser Ile Ser Asp Leu Phe Asn Thr Arg Val Asn Lys Gly Pro Arg

1 10 15

Val Thr Val Leu Leu Gly Lys Ala Gly Met Gly Lys Thr Thr Leu Ala 20 25 30

His Arg Leu Cys Gln Lys Trp Ala Glu Gly His Leu Asn Cys Phe Gln 35 40 45

Ala Leu Phe Leu Phe Glu Phe Arg Gln Leu Asn Leu Ile Thr Arg Phe 50 55 60

Leu Thr Pro Ser Glu Leu Leu Phe Asp Leu Tyr Leu Ser Pro Glu Ser 65 70 75 80

Asp His Asp Thr Val Phe Gln Tyr Leu Glu Lys Asn Ala Asp Gln Val 85 90 95

Leu Leu Ile Phe Asp Gly Leu Asp Glu Ala Leu Gln Pro Met Gly Pro
100 105 110

Asp Gly Pro Gly Pro Val Leu Thr Leu Phe Ser His Leu Cys Asn Gly
115 120 125

Thr Leu Leu Pro Gly Cys Arg Val Met Ala Thr Ser Arg Pro Gly Lys 130 135 140

Leu Pro Ala Cys Leu Pro Ala Glu Ala Ala Met Val His Met Leu Gly 145 150 155 160

Phe Asp Gly Pro Arg Val Glu Glu Tyr Val Asn His Phe Phe Ser Ala 165 170 175

Gln Pro Ser Arg Glu Gly Ala Leu Val Glu Leu Gln Thr Asn Gly Arg

180	185	190

Leu	Arg	Ser 195	Leu	Cys	Ala	Val	Pro 200	Ala	Leu	Cys	Gln	Val 205	Ala	Cys	Leu
Cys	Leu 210	His	His	Leu	Leu	Pro 215	Asp	His	Ala	Pro	Gly 220	Gln	Ser	Val	Ala
Leu 225	Leu	Pro	Asn	Met	Thr 230	Gln	Leu	Tyr	Met	Gln 235	Met	Val	Leu	Ala	Leu 240
Ser	Pro	Pro	Gly	His 245	Leu	Pro	Thr	Ser	Ser 250	Leu	Leu	Asp	Leu	Gly 255	Glu
Val	Ala	Leu	Arg 260	Gly	Leu	Glu	Thr	Gly 265	Lys	Val	Ile	Phe	Tyr 270	Ala	Lys
Asp	Ile	Ala 275	Pro	Pro	Leu	Ile	Ala 280	Phe	Gly	Ala	Thr	His 285	Ser	Leu	Leu
Thr	Ser 290	Phe	Суз	Val	Cys	Thr 295	Gly	Pro	Gly	His	Gln 300	Gln	Thr	Gly	Tyr
Ala 305	Phe	Thr	His	Leu	Ser 310	Leu	Gln	Glu	Phe	Leu 315	Ala	Ala	Leu	His	Leu 320
Met	Ala	Ser	Pro	Lys 325	Val	Asn	Lys	Asp	Thr 330	Leu	Thr	Gln	Tyr	Val 335	Thr
Leu	His	Ser	Arg 340	Trp	Val	Gln	Arg	Thr 345	Lys	Ala	Arg	Leu	Gly 350	Leu	Ser
Asp	His	Leu 355	Pro	Thr	Phe	Leu	Ala 360	Gly	Leu	Ala	Ser	Cys 365	Thr	Cys	Arg
Pro	Phe 370	Leu	Ser	His	Leu	Ala 375	Gln	Gly	Asn	Glu	Asp 380	Cys	Val	Gly	Ala
Lys 385	Gln	Ala	Ala	Val	Val 390	Gln	Val	Leu	Lys	Lys 395	Leu	Ala	Thr	Arg	Lys 400
Leu	Thr	Gly	Pro	Lys 405	Val	Val	Glu	Leu	Cys 410	His	Cys	Val	Asp	Glu 415	Thr
Gln	Glu	Pro	Glu 420	Leu	Ala	Ser	Leu	Thr 425	Ala	Gln	Ser	Leu	Pro 430	Tyr	Gln

Leu Pro Phe His Asn Phe Pro Leu Thr Cys Thr Asp Leu Ala Thr Leu 435 440 445

Thr Asn Ile Leu Glu His Arg Glu Ala Pro Ile His Leu Asp Phe Asp 450 455 460

Gly 465

<210> 180

<211> 501

<212> PRT

<213> Homo sapiens

<400> 180

Leu Asp Arg Leu Phe Leu Pro Leu Ser Arg Val Ser Val Pro Pro Arg

1 10 15

Val Ser Ile Thr Ile Gly Val Ala Gly Met Gly Lys Thr Thr Leu Val 20 25 30

Arg His Phe Val Arg Leu Trp Ala His Gly Gln Val Gly Lys Asp Phe 35 40 45

Ser Leu Val Leu Pro Leu Thr Phe Arg Asp Leu Asn Thr His Glu Lys 50 55 60

Leu Cys Ala Asp Arg Leu Ile Cys Ser Val Phe Pro His Val Gly Glu 65 70 . 75 80

Pro Ser Leu Ala Val Ala Val Pro Ala Arg Ala Leu Leu Ile Leu Asp 85 90 95

Gly Leu Asp Glu Cys Arg Thr Pro Leu Asp Phe Ser Asn Thr Val Ala 100 105 110

Cys Thr Asp Pro Lys Lys Glu Ile Pro Val Asp His Leu Ile Thr Asn 115 120 125

Ile Ile Arg Gly Asn Leu Phe Pro Glu Val Ser Ile Trp Ile Thr Ser 130 135 140

Arg Pro Ser Ala Ser Gly Gln Ile Pro Gly Gly Leu Val Asp Arg Met 145 150 155 160

05 410

415

Gln Ala Tyr Arg Thr Gln Val Ala Glu Leu Leu Gln Gly Cys Leu Arg 420 425 430

Pro Asp Ala Ala Val Cys Ala Arg Ala Ile Asn Val Leu His Cys Leu 435 440 445

His Glu Leu Gln His Thr Glu Leu Ala Arg Ser Val Glu Glu Ala Met 450 455 460

Glu Ser Gly Ala Leu Ala Arg Leu Thr Gly Pro Ala His Arg Ala Ala 465 470 475 480

Leu Ala Tyr Leu Leu Gln Val Ser Asp Ala Cys Ala Gln Glu Ala Asn 485 490 495

Leu Ser Leu Ser Leu 500

<210> 181

<211> 522

<212> PRT

<213> Homo sapiens

<400> 181

Leu Glu Glu Leu Phe Ser Thr Pro Gly His Leu Asn Asp Asp Ala Asp 1 5 10 15

Thr Val Leu Val Val Gly Glu Ala Gly Ser Gly Lys Ser Thr Leu Leu 20 25 30

Gln Arg Leu His Leu Leu Trp Ala Ala Gly Gln Asp Phe Gln Glu Phe 35 40 45

Leu Phe Val Phe Pro Phe Ser Cys Arg Gln Leu Gln Cys Met Ala Lys 50 55 60

Pro Leu Ser Val Arg Thr Leu Leu Phe Glu His Cys Cys Trp Pro Asp 70 75 80

Val Gly Gln Glu Asp Ile Phe Gln Leu Leu Asp His Pro Asp Arg
85 90 95

Val Leu Leu Thr Phe Asp Gly Phe Asp Glu Phe Lys Phe Arg Phe Thr

Asp Arg Glu Arg His Cys Ser Pro Thr Asp Pro Thr Ser Val Gln Thr Leu Leu Phe Asn Leu Leu Gln Gly Asn Leu Leu Lys Asn Ala Arg Lys Val Val Thr Ser Arg Pro Ala Ala Val Ser Ala Phe Leu Arg Lys Tyr Ile Arg Thr Glu Phe Asn Leu Lys Gly Phe Ser Glu Gln Gly Ile Glu Leu Tyr Leu Arg Lys Arg His His Glu Pro Gly Val Ala Asp Arg Leu Ile Arg Leu Leu Gln Glu Thr Ser Ala Leu His Gly Leu Cys His Leu Pro Val Phe Ser Trp Met Val Ser Lys Cys His Gln Glu Leu Leu Leu Gln Glu Gly Gly Ser Pro Lys Thr Thr Thr Asp Met Tyr Leu Leu Ile Leu Gln His Phe Leu Leu His Ala Thr Pro Pro Asp Ser Ala Ser Gln Gly Leu Gly Pro Ser Leu Leu Arg Gly Arg Leu Pro Thr Leu Leu His Leu Gly Arg Leu Ala Leu Trp Gly Leu Gly Met Cys Cys Tyr Val Phe Ser Ala Gln Gln Leu Gln Ala Ala Gln Val Ser Pro Asp Asp Ile Ser Leu Gly Phe Leu Val Arg Ala Lys Gly Val Val Pro Gly Ser Thr Ala Pro Leu Glu Phe Leu His Ile Thr Phe Gln Cys Phe Phe Ala Ala Phe Tyr Leu Ala Leu Ser Ala Asp Val Pro Pro Ala Leu Leu Arg His Leu

Phe Asn Cys Gly Arg Pro Gly Asn Ser Pro Met Ala Arg Leu Leu Pro Thr Met Cys Ile Gln Ala Ser Glu Gly Lys Asp Ser Ser Val Ala Ala Leu Leu Gln Lys Ala Glu Pro His Asn Leu Gln Ile Thr Ala Ala Phe Leu Ala Gly Leu Leu Ser Arg Glu His Trp Gly Leu Leu Ala Glu Cys Gln Thr Ser Glu Lys Ala Leu Leu Arg Arg Gln Ala Cys Ala Arg Trp Cys Leu Ala Arg Ser Leu Arg Lys His Phe His Ser Ile Pro Pro Ala Ala Pro Gly Glu Ala Lys Ser Val His Ala Met Pro Gly Phe Ile Trp Leu Ile Arg Ser Leu Tyr Glu Met Gln Glu Glu Arg Leu Ala Arg Lys Ala Ala Arg Gly Leu Asn Val Gly His Leu Lys Leu Thr Phe Cys Ser Val Gly Pro Thr Glu Cys Ala Ala Leu Ala Phe Val Leu Gln His Leu Arg Arg Pro Val Ala Leu Gln Leu Asp Tyr <210> 182 <211> 532 <211> 332 <212> PRT

<213> Homo sapiens

<400> 182

Ala Cys Leu Leu Asp His Thr Thr Gly Ile Leu Asn Glu Gln Gly Glu

Thr Ile Phe Ile Leu Gly Asp Ala Gly Val Gly Lys Ser Met Leu Leu

Gln Arg Leu Gln Ser Leu Trp Ala Thr Gly Arg Leu Asp Ala Gly Val

Lys Phe Phe His Phe Arg Cys Arg Met Phe Ser Cys Phe Lys Glu Ser Asp Arg Leu Cys Leu Gln Asp Leu Leu Phe Lys His Tyr Cys Tyr Pro Glu Arg Asp Pro Glu Glu Val Phe Ala Phe Leu Leu Arg Phe Pro His Val Ala Leu Phe Thr Phe Asp Gly Leu Asp Glu Leu His Ser Asp Leu Asp Leu Ser Arg Val Pro Asp Ser Ser Cys Pro Trp Glu Pro Ala His Pro Leu Val Leu Leu Ala Asn Leu Leu Ser Gly Lys Leu Leu Lys Gly Ala Ser Lys Leu Leu Thr Ala Arg Thr Gly Ile Glu Val Pro Arg Gln Phe Leu Arg Lys Lys Val Leu Leu Arg Gly Phe Ser Pro Ser His Leu Arg Ala Tyr Ala Arg Arg Met Phe Pro Glu Arg Ala Leu Gln Asp Arg Leu Leu Ser Gln Leu Glu Ala Asn Pro Asn Leu Cys Ser Leu Cys Ser Val Pro Leu Phe Cys Trp Ile Ile Phe Arg Cys Phe Gln His Phe Arg Ala Ala Phe Glu Gly Ser Pro Gln Leu Pro Asp Cys Thr Met Thr Leu Thr Asp Val Phe Leu Leu Val Thr Glu Val His Leu Asn Arg Met Gln Pro Ser Ser Leu Val Gln Arg Asn Thr Arg Ser Pro Val Glu Thr Leu His Ala Gly Arg Asp Thr Leu Cys Ser Leu Gly Gln Val Ala His

Z	Arg	Gly 290	Met	Glu	Lys	Ser	Leu 295	Phe	Val	Phe	Thr	Gln 300	Glu	Glu	Val	Gln
	Ala 305	Ser	Gly	Leu	Gln	Glu 310	Arg	Asp	Met	Gln	Leu 315	Gly	Phe	Leu	Arg	Ala 320
I	Leu	Pro	Glu	Leu	Gly 325	Pro	Gly	Gly	Asp	Gln 330	Gln	Ser	Tyr	Glu	Phe 335	Phe
F	His	Leu	Thr	Leu 340	Gln	Ala	Phe	Phe	Thr 345	Ala	Phe	Phe	Leu	Val 350	Leu	Asp
I	Asp	Arg	Val 355	Gly	Thr	Gln	Glu	Leu 360	Leu	Arg	Phe	Phe	Gln 365	Glu	Trp	Met
I	Pro	Pro 370	Ala	Gly	Ala	Ala	Thr 375	Thr	Ser	Cys	Tyr	Pro 380	Pro	Phe	Leu	Pro
	Phe 385	Gln	Cys	Leu	Gln	Gly 390	Ser	Gly	Pro	Ala	Arg 395	Glu	Asp	Leu	Phe	Lys 400
1	Asn	Lys	Asp	His	Phe 405	Gln	Phe	Thr	Asn	Leu 410	Phe	Leu	Cys	Gly	Leu 415	Leu
S	Ser	Lys	Ala	Lys 420	Gln	Lys	Leu	Leu	Arg 425	His	Leu	Val	Pro	Ala 430	Ala	Ala
I	Leu	Arg	Arg 435	Lys	Arg	Lys	Ala	Leu 440	Trp	Ala	His	Leu	Phe 445	Ser	Ser	Leu
7	Arg	Gly 450	Tyr	Leu	Lys	Ser	Leu 455	Pro	Arg	Val	Gln	Val 460	Glu	Ser	Phe	Asn
	Gln 465	Val	Gln	Ala	Met	Pro 470	Thr	Phe	Ile	Trp	Met 475	Leu	Arg	Cys	Ile	Tyr 480
C	Glu	Thr	Gln	Ser	Gln 485	Lys	Val	Gly	Gln	Leu 490	Ala	Ala	Arg	Gly	Ile 495	Cys
2	Ala	Asn	Tyr	Leu 500	Lys	Leu	Thr	Tyr	Cys 505	Asn	Ala	Cys	Ser	Ala 510	Asp	Cys
٤	Ser	Ala	Leu 515	Ser	Phe	Val	Leu	His 520	His	Phe	Pro	Lys	Arg 525	Leu	Ala	Leu

Asp Leu Asp Asn 530

<210> 183

<211> 312

<212> PRT

<213> Homo sapiens

<400> 183

Arg Val Glu Gln Leu Thr Leu Asn Gly Leu Leu Gln Ala Leu Gln Ser

1 10 15

Pro Cys Ile Ile Glu Gly Glu Ser Gly Lys Gly Lys Ser Thr Leu Leu 20 25 30

Gln Arg Ile Ala Met Leu Trp Gly Ser Gly Lys Cys Lys Ala Leu Thr 35 40 45

Lys Phe Lys Phe Val Phe Phe Leu Arg Leu Ser Arg Ala Gln Gly Gly 50 55 60

Leu Phe Glu Thr Leu Cys Asp Gln Leu Leu Asp Ile Pro Gly Thr Ile 65 70 75 80

Arg Lys Gln Thr Phe Met Ala Met Leu Leu Lys Leu Arg Gln Arg Val 85 90 95

Leu Phe Leu Leu Asp Gly Tyr Asn Glu Phe Lys Pro Gln Asn Cys Pro
100 105 110

Glu Ile Glu Ala Leu Ile Lys Glu Asn His Arg Phe Lys Asn Met Val 115 120 125

Ile Val Thr Thr Thr Glu Cys Leu Arg His Ile Arg Gln Phe Gly 130 135 140

Ala Leu Thr Ala Glu Val Gly Asp Met Thr Glu Asp Ser Ala Gln Ala 145 150 155 160

Leu Ile Arg Glu Val Leu Ile Lys Glu Leu Ala Glu Gly Leu Leu Leu 165 170 175

Gln Ile Gln Lys Ser Arg Cys Leu Arg Asn Leu Met Lys Thr Pro Leu 180 185 190

Phe Val Val Ile Thr Cys Ala Ile Gln Met Gly Glu Ser Glu Phe His 195 200 205 Gln Lys Asn Lys His Lys His Lys Gly Val Ala Ala Ser Asp Phe Ile Arg Ser Leu Asp His Cys Gly Asp Leu Ala Leu Glu Gly Val Phe Ser 245 250 His Lys Phe Asp Phe Glu Leu Gln Asp Val Ser Ser Val Asn Glu Asp 260 265 Val Leu Leu Thr Thr Gly Leu Leu Cys Lys Tyr Thr Ala Gln Arg Phe Lys Pro Lys Tyr Lys Phe Phe His Lys Ser Phe Gln Glu Tyr Thr Ala 290 295 Gly Arg Arg Leu Ser Ser Leu Leu 305 310 <210> 184 <211> 312 <212> PRT <213> Homo sapiens <400> 184 Val Gln Glu Pro Leu Val Leu Pro Glu Val Phe Gly Asn Leu Asn Ser 10 Val Met Cys Val Glu Gly Glu Ala Gly Ser Gly Lys Thr Val Leu Leu 20 25 Lys Lys Ile Ala Phe Leu Trp Ala Ser Gly Cys Cys Pro Leu Leu Asn 35 40 Arg Phe Gln Leu Val Phe Tyr Leu Ser Leu Ser Ser Thr Arg Pro Asp 55 Glu Gly Leu Ala Ser Ile Ile Cys Asp Gln Leu Leu Glu Lys Glu Gly

Ser His Thr Gln Thr Thr Leu Phe His Thr Phe Tyr Asp Leu Leu Ile

90

Ser Val Thr Glu Met Cys Met Arg Asn Ile Ile Gln Gln Leu Lys Asn

85

Gln Val Leu Phe Leu Leu Asp Asp Tyr Lys Glu Ile Cys Ser Ile Pro

Gln Val Ile Gly Lys Leu Ile Gln Lys Asn His Leu Ser Arg Thr Cys

Leu Leu Ile Ala Val Arg Thr Asn Arg Ala Arg Asp Ile Arg Arg Tyr

Leu Glu Thr Ile Leu Glu Ile Lys Ala Phe Pro Phe Tyr Asn Thr Val

Cys Ile Leu Arg Lys Leu Phe Ser His Asn Met Thr Arg Leu Arg Lys

Phe Met Val Tyr Phe Gly Lys Asn Gln Ser Leu Gln Lys Ile Gln Lys

Thr Pro Leu Phe Val Ala Ala Ile Cys Ala His Trp Phe Gln Tyr Pro

Phe Asp Pro Ser Phe Asp Asp Val Ala Val Phe Lys Ser Tyr Met Glu

Arg Leu Ser Leu Arg Asn Lys Ala Thr Ala Glu Ile Leu Lys Ala Thr

Val Ser Ser Cys Gly Glu Leu Ala Leu Lys Gly Phe Phe Ser Cys Cys

Phe Glu Phe Asn Asp Asp Leu Ala Glu Ala Gly Val Asp Glu Asp

Glu Asp Leu Thr Met Cys Leu Met Ser Lys Phe Thr Ala Gln Arg Leu

Arg Pro Phe Tyr Arg Phe Leu Ser Pro Ala Phe Gln Glu Phe Leu Ala

Gly Met Arg Leu Ile Glu Leu Leu

<210> 185

<211> 5601 <212> DNA

<213> Homo sapiens

<400> 185						
	ttggcctcca	gctcggcaac	aagaacctgt	ggagctgtct	tgtgaggctg	60
ctcaccaaag	acccagaatg	gctgaacgcc	aagatgaagt	tetteeteee	caacacggac	120
ctggattcca	ggaacgagac	cttggaccct	gaacagagag	tcatcctgca	actcaacaag	180
ctgcatgtcc	agggttcgga	cacctggcag	tctttcattc	attgcgtgtg	catgcagctg	240
gaggtgcctc	tggacctgga	ggtgcttctg	ctaagtactt	ttggctatga	tgatgggttc	300
accagccagc	tgggagctga	ggggaaaagc	caacctgaat	ctcagctcca	ccatggcctg	360
aagcgcccac	atcagagetg	tgggtcctca	ccccgccgga	agcagtgcaa	gaagcagcag	420
ctagagttgg	ccaagaagta	cctgcagctc	ctgcggacct	ctgcccagca	gcgctacagg	480
agccaaatcc	ctgggtcagg	gcagccccac	gccttccacc	aggtctatgt	ccctccaatc	540
ctgcgccggg	ccacagcatc	cttagacact	ccggaggggg	ccattatggg	ggacgtcaag	600
gtggaagatg	gtgctgacgt	gagcatctcg	gacctcttca	acaccagggt	taacaagggc	660
ccgagggtga	ccgtgctttt	ggggaaggct	ggcatgggca	agaccacgct	ggcccaccgg	720
ctctgccaga	agtgggcaga	gggccatctg	aactgtttcc	aggccctgtt	cctttttgaa	780
ttccgccagc	tcaacttgat	cacgaggttc	ctgacaccgt	ccgagetect	ttttgatctg	840
tacctgagcc	ctgaatcgga	ccacgacact	gtcttccagt	acctggagaa	gaacgctgac	900
caagtcctgc	tgatctttga	tgggctagat	gaggccctcc	agcctatggg	tcctgatggc	960
ccaggcccag	tcctcaccct	tttctcccat	ctctgcaatg	ggaccctcct	gcctggctgc	1020
cgggtgatgg	ctacctcccg	tccagggaag	ctgcctgcct	gcctgcctgc	agaggcagcc	1080
atggtccaca	tgttgggctt	tgatgggcca	cgggtggaag	aatatgtgaa	tcacttcttc	1140
agcgcccagc	catcgcggga	gggggccctg	gtggagttac	agacaaatgg	acgtctccga	1200
agcctgtgtg	cggtgcccgc	actgtgccaa	gtcgcctgtc	tctgcctcca	ccatctgctt	1260
cctgaccacg	ccccaggcca	gtctgtggcc	ctcctgccca	acatgactca	gctctatatg	1320
cagatggtgc	tcgccctcag	ccccctggg	cacttgccca	cctcgtccct	actggacctg	1380
ggggaggtgg	ccctgagggg	cctggagaca	gggaaggtta	tcttctatgc	aaaagatatt	1440
gctccaccct	tgatagcttt	tggggccact	cacagcctgc	tgacttcctt	ctgcgtctġc	1500
acaggccctg	ggcaccagca	gacaggctat	gctttcaccc	acctcagcct	gcaggagttt	1560
cttgctgccc	tgcacctgat	ggccagcccc	aaggtgaaca	aagacacact	tacccagtat	1620
gttaccctcc	attcccgctg	ggtacagcgg	accaaagcta	gactgggcct	ctcagaccac	1680
ctccccacct	tcctggcggg	cctggcatcc	tgcacctgcc	gccccttcct	tagccacctg	1740
gcgcagggca	atgaggactg	tgtgggtgcc	aagcaggctg	ctgtagtgca	ggtgttgaag	1800

aagttggcca	cccgcaagct	cacagggcca	aaggttgtag	agctgtgtca	ctgtgtggat	1860
gagacacagg	agcctgagct	ggccagtctc	accgcacaaa	gcctccccta	tcaactgccc	1920
ttccacaatt	teccaetgae	ctgcaccgac	ctggccaccc	tgaccaacat	cctagagcac	1980
agggaggccc	ccatccacct	ggattttgat	ggctgtcccc	tggagcccca	ctgccctgag	2040
gctctggtag	gctgtgggca	gatagagaat	ctcagcttta	agagcaggaa	gtgtggggat	2100
gcctttgcag	aagccctctc	caggagcttg	ccgacaatgg	ggaggctgca	gatgctgggg	2160
ttagcaggaa	gtaaaatcac	tgcccgaggc	atcagccacc	tggtgaaagc	tttgcctctc	2220
tgtccacagc	tgaaagaagt	cagttttcgg	gacaaccagc	tcagtgacca	ggtggtgctg	2280
aacattgtgg	aggttctccc	tcacctacca	cggctccgga	agcttgacct	gagcagcaac	2340
agcatctgcg	tgtcaaccct	actctgcttg	gcaagggtgg	cagtcacgtg	tcctaccgtc	2400
aggatgcttc	aggccaggga	gcggaccatc	atcttccttc	tttccccgcc	cacagagaca	2460
actgcagagc	tacaaagagc	tccagacctg	caggaaagtg	acggccagag	gaaaggggct	2520
cagagcagaa	gcttgacgct	caggetgeag	aagtgtcagc	tccaggtcca	cgatgcggag	2580
gccctcatag	ccctgctcca	ggaaggccct	cacctggagg	aagtggacct	ctcagggaac	2640
cagctggaag	atgaaggctg	tcggctgatg	gcagaggctg	catcccagct	gcacatcgcc	2700
aggaagctgg	acctcagcga	caacgggctt	tctgtggccg	gggtgcattg	tgtgctgagg	2760
gccgtgagtg	cgtgctggac	cctggcagag	ctgcacatca	gcctgcagca	caaaactgtg	2820
atcttcatgt	ttgcccagga	gccagaggag	cagaaggggc	cccaggagag	ggctgcattt	2880
cttgacagcc	tcatgctcca	gatgccctct	gagctgcctc	tgagctcccg	aaggatgagg	2940
ctgacacatt	gtggcctcca	agaaaagcac	ctagagcagc	tctgcaaggc	tctgggagga	3000
agctgccacc	teggteacet	ccacctcgac	ttctcaggca	atgctctggg	ggatgaaggt	3060
gcagcccggc	tggctcagct	gctcccaggg	ctgggagctc	tgcagtcctt	gaacctcagt	3120
gagaacggtt	tgtccctgga	tgccgtgttg	ggcttggttc	ggtgcttctc	cactctgcag	3180
tggctcttcc	gcttggacat	cagctttgaa	agccaacaca	tcctcctgag	aggggacaag	3240
acaagcaggg	atatgtgggc	cactggatct	ttgccagact	tcccagctgc	agccaagttc	3300
ttagggttcc	gtcagcgctg	catccccagg	agcctctgcc	tcagtgagtg	tcctctggag	3360
cccccaagcc	tcacccgcct	ctgtgccact	ctgaaggact	gcccgggacc	cctggaactg	3420
caattgtcct	gtgagttcct	gagtgaccag	agcctggaga	ctctactgga	ctgcttacct	3480
caactccctc	agctgagcct	gctgcagctg	agccagacgg	gactgtcccc	gaaaagcccc	3540
ttcctgctgg	ccaacacctt	aagcctgtgt	ccacgggtta	aaaaggtgga	tctcaggtcc	3600
ctgcaccatg	caactttgca	cttcagatcc	aacgaggagg	aggaaggcgt	gtgctgtggc	3660

3720 aggttcacag getgeageet cagecaggag caegtagagt caetetgetg gttgetgage 3780 aagtgtaaag acctcagcca ggtggatctc tcagcaaacc tgctgggcga cagcggactc 3840 agatgeette tggaatgtet geegeaggtg cecateteeg gtttgettga tetgagteae 3900 aacagcattt ctcaggaaag tgccctgtac ctgctggaga cactgccctc ctgcccacgt 3960 gtccgggagg cctcagtgaa cctgggctct gagcagagct tccggattca cttctccaga 4020 gaggaccagg ctgggaagac actcaggcta agtgagtgca gcttccggcc agagcacgtg 4080 tccaggetgg ccaceggett gageaagtee etgeagetga eggageteae getgaeeeag tgctgcctgg gccagaagca gctggccatc ctcctgagct tggtggggcg acccgcaggg 4140 4200 ctgttcagcc tcagggtgca ggagccgtgg gcggacagag ccagggttct ctccctgtta 4260 gaagtetgeg cecaggeete aggeagtgte actgaaatea geateteega gacceageag cagetetgtg tecagetgga attteetege caggaagaga atceagaage tgtggeacte 4320 4380 aggttggctc actgtgacct tggagcccac cacagccttc ttgtcgggca gctgatggag 4440 acatgtgcca ggctgcagca gctcagcttg tctcaggtta acctctgtga ggacgatgat 4500 gccagttccc tgctgctgca gagcctcctg ctgtccctct ctgagctgaa gacatttcgg 4560 etgaceteca getgtgtgag cacegaggge etegeceace tggcatetgg tetgggeeac tgccaccact tggaggagct ggacttgtct aacaatcaat ttgatgagga gggcaccaag 4620 gcgctgatga gggcccttga ggggaaatgg atgctaaaga ggctggacct cagtcacctt 4680 4740 ctgctgaaca gctccacctt ggccttgctt actcacagac taagccagat gacctgcctg 4800 cagageetea gaetgaacag gaacagtate ggtgatgteg gttgetgeea eetttetgag gctctcaggg ctgccaccag cctagaggag ctggacttga gccacaacca gattggagac 4860 4920 gctggtgtcc agcacttagc taccatcctg cctgggctgc cagagctcag gaagatagac 4980 eteteaggga atageateag eteageeggg ggagtgeagt tggeagagte tetegttett tgcaggcgcc tggaggagtt gatgcttggc tgcaatgccc tggggggatcc cacagccctg 5040 gggctggctc aggagctgcc ccagcacctg agggtcctac acctaccatt cagccatctg 5100 5160 ggcccaggtg gggccctgag cctggcccag gccctggatg gatcccccca tttggaagag atcagettgg eggaaaacaa eetggetgga ggggteetge gtttetgtat ggageteeeg 5220 5280 ctgctcagac agatagacct ggtttcctgt aagattgaca accagactgc caagctcctc 5340 acctccaget teaegagetg ecetgeeetg gaagtaatet tgetgteetg gaateteete 5400 ggggatgagg cagetgeega getggeeeag gtgetgeega agatgggeeg getgaagaga 5460 gtggacctgg agaagaatca gatcacagct ttgggggcct ggctcctggc tgaaggactg

gcccaggg	ıgt ct	tago	atco	a ag	ıtcat	ccgc	cto	tgga	ata	accc	catt	cc c	tgcg	acatg
gcccagcacc tgaagagcca ggagcccagg ctggactttg ccttctttga caaccagccc														
caggcccctt ggggtacttg a														
<210> 186 <211> 1866 <212> PRT - <213> Homo sapiens														
<400> 186														
Met Asp 1	Pro V	Val	Gly 5	Leu	Gln	Leu	Gly	Asn 10	Lys	Asn	Leu	Trp	Ser 15	Cys
Leu Val	_	Leu 20	Leu	Thr	Lys	Asp	Pro 25	Glu	Trp	Leu	Asn	Ala 30	Lys	Met
Lys Phe	Phe 1	Leu	Pro	Asn	Thr	Asp 40	Leu	Asp	Ser	Arg	Asn 45	Glu	Thr	Leu
Asp Pro 50	Glu (Gln	Arg	Val	Ile 55	Leu	Gln	Leu	Asn	Lys 60	Leu	His	Val	Gln
Gly Ser 65	Asp '	Thr	Trp	Gln 70	Ser	Phe	Ile	His	Cys 75	Val	Cys	Met	Gln	Leu 80
Glu Val	Pro 1	Leu	Asp 85	Leu	Glu	Val	Leu	Leu 90	Leu	Ser	Thr	Phe	Gly 95	Tyr
Asp Asp		Phe 100	Thr	Ser	Gln	Leu	Gly 105	Ala	Glu	Gly	Lys	Ser 110	Gln	Pro
Glu Ser	Gln :	Leu	His	His	Gly	Leu 120	Lys	Arg	Pro	His	Gln 125	Ser	Cys	Gly
Ser Ser 130	Pro 2	Arg	Arg	Lys	Gln 135	Cys	Lys	Lys	Gln	Gln 140	Leu	Glu	Leu	Ala
Lys Lys 145	Tyr :	Leu	Gln	Leu 150	Leu	Arg	Thr	Ser	Ala 155	Gln	Gln	Arg	Tyr	Arg 160
Ser Gln	Ile	Pro	Gly 165	Ser	Gly	Gln	Pro	His 170	Ala	Phe	His	Gln	Val 175	Tyr
Val Pro		Ile	Leu	Arg	Arg	Ala	Thr	Ala	Ser	Leu	Asp	Thr	Pro	Glu

180 185

Gly Ala Ile Met Gly Asp Val Lys Val Glu Asp Gly Ala Asp Val Ser Ile Ser Asp Leu Phe Asn Thr Arg Val Asn Lys Gly Pro Arg Val Thr Val Leu Leu Gly Lys Ala Gly Met Gly Lys Thr Thr Leu Ala His Arg Leu Cys Gln Lys Trp Ala Glu Gly His Leu Asn Cys Phe Gln Ala Leu Phe Leu Phe Glu Phe Arg Gln Leu Asn Leu Ile Thr Arg Phe Leu Thr Pro Ser Glu Leu Leu Phe Asp Leu Tyr Leu Ser Pro Glu Ser Asp His Asp Thr Val Phe Gln Tyr Leu Glu Lys Asn Ala Asp Gln Val Leu Leu Ile Phe Asp Gly Leu Asp Glu Ala Leu Gln Pro Met Gly Pro Asp Gly Pro Gly Pro Val Leu Thr Leu Phe Ser His Leu Cys Asn Gly Thr Leu Leu Pro Gly Cys Arg Val Met Ala Thr Ser Arg Pro Gly Lys Leu Pro Ala Cys Leu Pro Ala Glu Ala Ala Met Val His Met Leu Gly Phe Asp Gly Pro Arg Val Glu Glu Tyr Val Asn His Phe Phe Ser Ala Gln Pro Ser Arg Glu Gly Ala Leu Val Glu Leu Gln Thr Asn Gly Arg Leu Arg Ser Leu Cys Ala Val Pro Ala Leu Cys Gln Val Ala Cys Leu Cys Leu His His Leu Leu Pro Asp His Ala Pro Gly Gln Ser Val Ala Leu Leu

Pro Asn Met Thr Gln Leu Tyr Met Gln Met Val Leu Ala Leu Ser Pro Pro Gly His Leu Pro Thr Ser Ser Leu Leu Asp Leu Gly Glu Val Ala Leu Arg Gly Leu Glu Thr Gly Lys Val Ile Phe Tyr Ala Lys Asp Ile Ala Pro Pro Leu Ile Ala Phe Gly Ala Thr His Ser Leu Leu Thr Ser Phe Cys Val Cys Thr Gly Pro Gly His Gln Gln Thr Gly Tyr Ala Phe Thr His Leu Ser Leu Gln Glu Phe Leu Ala Ala Leu His Leu Met Ala Ser Pro Lys Val Asn Lys Asp Thr Leu Thr Gln Tyr Val Thr Leu His Ser Arg Trp Val Gln Arg Thr Lys Ala Arg Leu Gly Leu Ser Asp His Leu Pro Thr Phe Leu Ala Gly Leu Ala Ser Cys Thr Cys Arg Pro Phe Leu Ser His Leu Ala Gln Gly Asn Glu Asp Cys Val Gly Ala Lys Gln Ala Ala Val Val Gln Val Leu Lys Lys Leu Ala Thr Arg Lys Leu Thr Gly Pro Lys Val Val Glu Leu Cys His Cys Val Asp Glu Thr Gln Glu Pro Glu Leu Ala Ser Leu Thr Ala Gln Ser Leu Pro Tyr Gln Leu Pro Phe His Asn Phe Pro Leu Thr Cys Thr Asp Leu Ala Thr Leu Thr Asn Ile Leu Glu His Arg Glu Ala Pro Ile His Leu Asp Phe Asp Gly Cys

Pro Leu Glu Pro His Cys Pro Glu Ala Leu Val Gly Cys Gly Gln Ile

675 680 685

Glu	Asn 690	Leu	Ser	Phe	Lys	Ser 695	Arg	Lys	Cys	Gly	Asp 700	Ala	Phe	Ala	Glu
Ala 705	Leu	Ser	Arg	Ser	Leu 710	Pro	Thr	Met	Gly	Arg 715	Leu	Gln	Met	Leu	Gly 720
Leu	Ala	Gly	Ser	Lys 725	Ile	Thr	Ala	Arg	Gly 730	Ile	Ser	His	Leu	Val 735	Lys
Ala	Leu	Pro	Leu 740	Cys	Pro	Gln	Leu	Lys 745	Glu	Val	Ser	Phe	Arg 750	Asp	Asn
Gln	Leu	Ser 755	Asp	Gln	Val	Val	Leu 760	Asn	Ile	Val	Glu	Val 765	Leu	Pro	His
Leu	Pro 770	Arg	Leu	Arg	Lys	Leu 775	Asp	Leu	Ser	Ser	Asn 780	Ser	Ile	Cys	Val
Ser 785	Thr	Leu	Leu	Cys	Leu 790	Ala	Arg	Val	Ala	Val 795	Thr	Cys	Pro	Thr	Val 800
Arg	Met	Leu	Gln	Ala 805	Arg	Glu	Arg	Thr	Ile 810	Ile	Phe	Leu	Leu	Ser 815	Pro
Pro	Thr	Glu	Thr 820	Thr	Ala	Glu	Leu	Gln 825	Arg	Ala	Pro	Asp	Leu 830	Gln	Glu
Ser	Asp	Gly 835	Gln	Arg	Lys	Gly	Ala 840	Gln	Ser	Arg	Ser	Leu 845	Thr	Leu	Arg
Leu	Gln 850	Lys	Cys	Gln	Leu	Gln 855	Val	His	Asp	Ala	Glu 860	Ala	Leu	Ile	Ala
Leu 865	Leu	Gln	Glu	Gly	Pro 870	His	Leu	Glu	Glu	Val 875	Asp	Leu	Ser	Gly	Asn 880
Gln	Leu	Glu	Asp	Glu 885	Gly	Cys	Arg	Leu	Met 890	Ala	Glu	Ala	Ala	Ser 895	Gln
Leu	His	Ile	Ala 900	Arg	Lys	Leu	Asp	Leu 905	Ser	Asp	Asn	Gly	Leu 910	Ser	Val
Ala	Gly	Val 915	His	Cys	Val	Leu	Arg 920	Ala	Val	Ser	Ala	Cys 925	Trp	Thr	Leu

Ala Glu Leu His Ile Ser Leu Gln His Lys Thr Val Ile Phe Met Phe 930 935 940

Ala Gln Glu Pro Glu Glu Gln Lys Gly Pro Gln Glu Arg Ala Ala Phe 945 950 955 960

Leu Asp Ser Leu Met Leu Gln Met Pro Ser Glu Leu Pro Leu Ser Ser 965 970 975

Arg Arg Met Arg Leu Thr His Cys Gly Leu Gln Glu Lys His Leu Glu 980 985 990

Gln Leu Cys Lys Ala Leu Gly Gly Ser Cys His Leu Gly His Leu His 995 1000 1005

Leu Asp Phe Ser Gly Asn Ala Leu Gly Asp Glu Gly Ala Ala Arg 1010 1015 1020

Leu Ala Gln Leu Leu Pro Gly Leu Gly Ala Leu Gln Ser Leu Asn 1025 1030 1035

Leu Ser Glu Asn Gly Leu Ser Leu Asp Ala Val Leu Gly Leu Val 1040 1045 1050

Arg Cys Phe Ser Thr Leu Gln Trp Leu Phe Arg Leu Asp Ile Ser 1055 1060 1065

Phe Glu Ser Gln His Ile Leu Leu Arg Gly Asp Lys Thr Ser Arg 1070 1075 1080

Asp Met Trp Ala Thr Gly Ser Leu Pro Asp Phe Pro Ala Ala Ala 1085 1090 1095

Lys Phe Leu Gly Phe Arg Gln Arg Cys Ile Pro Arg Ser Leu Cys 1100 1105 1110

Leu Ser Glu Cys Pro Leu Glu Pro Pro Ser Leu Thr Arg Leu Cys 1115 1120 1125

Ala Thr Leu Lys Asp Cys Pro Gly Pro Leu Glu Leu Gln Leu Ser 1130 1135 1140

Cys Glu Phe Leu Ser Asp Gln Ser Leu Glu Thr Leu Leu Asp Cys 1145 1150 1155

Leu Arg Val Gln Glu Pro Trp Ala Asp Arg Ala Arg Val Leu Ser 1390 1385 1395 Leu Leu Glu Val Cys Ala Gln Ala Ser Gly Ser Val Thr Glu Ile 1405 1400 Ser Ile Ser Glu Thr Gln Gln Leu Cys Val Gln Leu Glu Phe 1415 1420 Pro Arg Gln Glu Glu Asn Pro Glu Ala Val Ala Leu Arg Leu Ala 1435 1430 His Cys Asp Leu Gly Ala His His Ser Leu Leu Val Gly Gln Leu 1450 1445 Met Glu Thr Cys Ala Arg Leu Gln Gln Leu Ser Leu Ser Gln Val 1460 1465 1470 Asn Leu Cys Glu Asp Asp Asp Ala Ser Ser Leu Leu Leu Gln Ser 1475 1480 1485 Leu Leu Leu Ser Leu Ser Glu Leu Lys Thr Phe Arg Leu Thr Ser 1490 1495 1500 Ser Cys Val Ser Thr Glu Gly Leu Ala His Leu Ala Ser Gly Leu 1505 1510 1515 Gly His Cys His His Leu Glu Glu Leu Asp Leu Ser Asn Asn Gln 1520 1525 1530 Phe Asp Glu Glu Gly Thr Lys Ala Leu Met Arg Ala Leu Glu Gly 1535 1540 Lys Trp Met Leu Lys Arg Leu Asp Leu Ser His Leu Leu Leu Asn 1550 1555 Ser Ser Thr Leu Ala Leu Leu Thr His Arg Leu Ser Gln Met Thr 1565 1570 Cys Leu Gln Ser Leu Arg Leu Asn Arg Asn Ser Ile Gly Asp Val 1580 1585 1590 Gly Cys Cys His Leu Ser Glu Ala Leu Arg Ala Ala Thr Ser Leu 1595 1600 Glu Glu Leu Asp Leu Ser His Asn Gln Ile Gly Asp Ala Gly Val

1610 1615 1620

Gln His 1625		Ala	Thr	Ile	Leu 1630	Pro	Gly	Leu	Pro	Glu 1635	Leu	Arg	Lys
Ile Asp 1640		Ser	Gly	Asn	Ser 1645		Ser			Gly 1650	Gly	Val	Gln
Leu Ala 1655		Ser	Leu	Val	Leu 1660	-	Arg	Arg	Leu	Glu 1665	Glu	Leu	Met
Leu Gly 1670	_	Asn	Ala	Leu	Gly 1675		Pro	Thr	Ala	Leu 1680	Gly	Leu	Ala
Gln Glu 1685		Pro	Gln	His	Leu 1690	_	Val	Leu	His	Leu 1695	Pro	Phe	Ser
His Leu 1700	_	Pro	Gly	Gly	Ala 1705	Leu	Ser	Leu	Ala	Gln 1710	Ala	Leu	Asp
Gly Ser 1715		His	Leu	Glu	Glu 1720	Ile	Ser	Leu	Ala	Glu 1725	Asn	Asn	Leu
Ala Gly 1730	-	Val	Leu	Arg	Phe 1735	Cys	Met	Glu	Leu	Pro 1740	Leu	Leu	Arg
Gln Ile 1745	_	Leu	Val	Ser	Cys 1750	_	Ile	Asp	Asn	Gln 1755	Thr	Ala	Lys
Leu Leu 1760		Ser	Ser	Phe	Thr 1765	Ser	Cys	Pro	Ala	Leu 1770		Val	Ile
Leu Leu 1775		Trp	Asn	Leu	Leu 1780	Gly	Asp	Glu	Ala	Ala 1785	Ala	Glu	Leu
Ala Gln 1790		Leu	Pro	Lys	Met 1795	_	Arg	Leu	Lys	Arg 1800	Val	Asp	Leu
Glu Lys 1805		Gln	Ile	Thr	Ala 1810	Leu	Gly	Ala	Trp	Leu 1815		Ala	Glu
Gly Leu 1820		Gln	Gly	Ser	Ser 1825	Ile	Gln	Val	Ile	Arg 1830	Leu	Trp	Asn
Asn Pro 1835		Pro	Cys	Asp	Met 1840	Ala	Gln	His	Leu	Lys 1845		Gln	Glu

Trp Gly Thr 1865

<210> 187

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer

<400> 187

tctcagcttt aagagcagg

19