

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554

Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 01 - Aprendendo a utilizar o programa Quartus

São Carlos - SP

Universidade Federal de São Carlos - UFSCar

Joao Vitor Azevedo Marciano 743554 Lorhan Sohaky de Oliveira Duda Kondo 740951

Experimento 01 - Aprendendo a utilizar o programa Quartus

Relatório Modelo canônico de trabalho monográfico acadêmico em conformidade com as normas ABNT apresentado à comunidade de usuários LATEX.

Orientador: Fredy João Valentes

Universidade Federal de São Carlos - UFSCar

Departamento de Computação

Ciência da Computação

Laboratório de Circuitos Digitais

São Carlos - SP 2017

Lista de ilustrações

Figura 1 –	Desenho do circuito	7
Figura 2 –	Imagem do circuinto no programa Quartus	8
Figura 3 –	Resultado da compilação do circuito	9
Figura 4 –	Resultado da simulação	.0
Figura 5 –	Imagens do circuito na placa	11

Lista de tabelas

Tabela 1 – Tabela verdade da expressão lógica	7
---	---

Lista de abreviaturas e siglas

Sumário

1	RESUMO	6
2	DESCRIÇÃO DA EXECUÇÃO DO EXPERIMENTO	7
3	AVALIAÇÃO DOS RESULTADOS DO EXPERIMENTO	10
4	ANÁLISE CRÍTICA E DISCUSSÃO	12
	REFERÊNCIAS	13

1 Resumo

O experimento serviu para solidificar o conhecimento de desenvolver circuitos digitais utilizando o programa Quartus e o funcionamento deste circuito numa placa *Field Programmable Gate Array* - Arranjo de Portas Programáveis em Campo (FPGA). Para tal, tinha-se que solucionar o problema:

Considere um circuito lógico presente em uma geladeira que deve acionar um indicador de alerta (luz presente na alça de abertura da porta) na seguinte condição:

Se a porta estiver aberta ou o nível de gelo do congelador estiver acima do permitido ou o nível de gás do motor não estiver adequado, então acenda uma luz de advertência.

2 Descrição da execução do experimento

Para a realização deste experimento, foram utilizados o programa Quartus 13.0 SP 1 e a placa FPGA Cyclone II - EP2C20F484C7.

A partir do problema proposto, montou-se a seguinte expressão lógica

$$P + G + \sim V$$

com P representando se a porta estiver aberta, G se nível de gelo do congelador estiver acima do permitido e V se o nível de gás do motor não estiver adequado, após a montagem da expressão, foi elaborada a Tabela 1. Com esta tabela e a expressão lógica, elaborou-se o circuito, conforme a Figura 1. Com tais informações, foi repassado o circuito para o Quartus, depois renomeou-se as entradas e saídas para que, por meio do arquivo tradutor, a placa FPGA reconhecesse os componentes. Para cobrir todos os casos de testes, foi realizada uma simulação, conforme a Figura 4.

Tabela 1 – Tabela verdade da expressão lógica

P	\mathbf{G}	$ \mathbf{V} $	$ m P+G+(\sim V)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Figura 1 – Desenho do circuito

Figura 2 – Imagem do circuinto no programa Quartus

A porta SW[9] representa a P, a SW[8] representa a G, a SW[7] representa a \sim V e a LEDR[1] é um led vermelho que irá indicar o resultado provido da expressão lógica. Uma observação que não merece uma devida atenção é que na Figura 1 foram necessárias a utilização de duas portas OR, enquanto na Figura 2 foi necessária apenas a utilização de uma porta OR. Isso ocorreu pelo fato de que no Quartus existe a possibilidade de utilizar uma porta OR de três entradas.

Por fim, o circuito virtual foi compilado, conforme Figura 3.

© Control Table (Control Table (Con

Figura 3 – Resultado da compilação do circuito

3 Avaliação dos resultados do experimento

Figura 4 – Resultado da simulação

Figura 5 – Imagens do circuito na placa

4 Análise crítica e discussão

Com este experimento foi observado a importância de fazer simulações, já que ao testar o circuito na placa, um dos switchs não estava funcionando, então ao comparar o resultado da placa com o esperado, segundo a simulação, pode-se constatar a falha do equipamento.

Teve-se dificuldade com a utilização do arquivo tradutor, pois ele estav sendo salvo como um arquivo texto e não um arquivo qst. Além disso, sentiu-se dificuldade em gerar a simulação, já que os slides eram do Quartus de uma versão anterior a que estava sendo utilizada.

Referências