

ES-205 CEP S&P 500

Team

Student Name	Registration Number
Ahmed Musharaf	2022067
Muhammad Arsal	2022350
Wardah Haya	2022622

Abstract:

This report explores the development of a predictive model for the S&P500 Index, employing both traditional linear regression and advanced matrix factorization techniques. The dataset spans from 1950 to 2015, providing a comprehensive historical context for model training and evaluation.

i. Introduction

The S&P500 Index, representing 500 large companies, serves as a vital indicator of overall stock market performance. This report focuses on combining linear regression and matrix factorization to predict S&P500 movements. Feature engineering, matrix factorization, and model evaluation are discussed in detail.

ii. Dataset Description

We utilized the `all_stocks_5yr.csv` dataset containing daily records of stock prices. Key columns include 'open,' 'high,' 'low,' 'close,' and 'volume.' The dataset was preprocessed, and features were engineered to enhance model performance.

```
# Dataset loading and preprocessing
data = pd.read_csv('all_stocks_5yr.csv')

# Highlight dropped column in red
data.drop("Name", axis=1, inplace=True)

# Emphasize date conversion with italics
data['date'] = pd.to_datetime(data['date'])

# Bold grouping and summing operation
data = data.groupby('date').sum()

# Underline reset index operation
data.reset_index(inplace=True)
```

iii. Feature Engineering

To capture temporal dependencies, we engineered features such as the 5-day and 30-day averages, yearly averages, and their ratios. Standard deviations were also calculated to provide insights into price volatility.

```
# Feature engineering

data['5_day_avg'] = data['close'].rolling(window=5).mean().shift(1)

data['30_day_avg'] = data['close'].rolling(window=30).mean().shift(1)

data['year_avg'] = data['close'].rolling(window=365).mean().shift(1)

data['avg_ratio'] = data['5_day_avg'] / data['year_avg']

data['5_day_std'] = data['close'].rolling(window=5).std().shift(1)

data['year_std'] = data['close'].rolling(window=365).std().shift(1)

data['std_ratio'] = data['5_day_std'] / data['year_std']

data = data.dropna(axis=0)
```

iv. Matrix Factorization

Truncated Singular Value Decomposition (SVD) was employed for matrix factorization, extracting hidden patterns within the dataset.

```
# Highlight desired number of components in green
n_components = 3

# Emphasize TruncatedSVD class with italics
svd = TruncatedSVD(n_components=n_components)

# Bold the fit_transform operation
matrix_factors = svd.fit_transform(df_numeric_standardized)

# Underline dot product operation
reconstructed_matrix = np.dot(matrix_factors, svd.components_)

# Highlight reconstructed data frame with blue
reconstructed_df = pd.DataFrame(reconstructed_matrix, columns=numerical_columns)

# Indicate date column with pink
reconstructed_df['date'] = dates
```

v. Visualization of Matrix Factorization

A 3D scatter plot was generated to visualize the three components obtained from matrix factorization.

```
wimport matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Extract the first three components
component_1 = reconstructed_df.iloc[:, 0]
component_2 = reconstructed_df.iloc[:, 1]
component_3 = reconstructed_df.iloc[:, 2]

# Create a 3D scatter plot
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(component_1, component_2, component_3, c='purple', marker='o', alpha=0.5)

# Set axis labels
ax.set_xlabel('Component 1')
ax.set_ylabel('Component 2')
ax.set_zlabel('Component 3')
ax.set_title('3D Scatter Plot of Matrix Factorization Results')

# Show the plot
plt.show()
```

3D Scatter Plot of Matrix Factorization Results

vi. Linear Regression Model

A linear regression model was trained using the generated features and evaluated on a test set.

```
# Highlight features list in green
features = ['5_day_avg', '30_day_avg', 'year_avg', 'avg_ratio', '5_day_std', 'year_std', 'std_ratio']
# Emphasize dependent variables with yellow
y_train = train['close']
y_test = test['close']
model = LinearRegression()
model.fit(train[features], y_train)
predictions = model.predict(test[features])
# Underline the error metric and value
mae = mean_absolute_error(test['close'], predictions)
print(f"Mean Absolute Error: {mae:.2f}")
plt.figure(figsize=(40, 15))
plt.scatter(test['date'], test['close'], c='blue', marker='o', alpha=0.5)
plt.scatter(test['date'], predictions, c='red', marker='x', alpha=0.5)
plt.title('Stock Predictions', fontsize=60, color='orange')
# Highlight axis labels for clarity
plt.xlabel('Date', fontsize=40, color='green')
plt.ylabel('Stock Price', fontsize=40, color='green')
plt.grid(True)
plt.show()
```

The Mean Absolute Error (MAE) was calculated to assess the model's performance.

vii. Model Evaluation

The linear regression model demonstrated key outcomes and insights from the model. Visualizations and model performance metrics provide a comprehensive understanding of the model's effectiveness in predicting S&P500 Index movements.

viii. Conclusion

In conclusion, the combined approach of linear regression and matrix factorization offers a robust framework for predicting stock prices. The feature engineering process captures temporal dependencies, while matrix factorization extracts hidden patterns. Further refinement can enhance predictive accuracy.

ix. References

NumPy	https://numpy.org/doc/stable/
Documentation:	
Pandas	https://pandas.pydata.org/pandas-docs/stable/
Documentation:	
Scikit-Learn	https://scikit-learn.org/stable/documentation.html.
Documentation:	
Matplotlib	https://matplotlib.org/stable/contents.html
Documentation:	
mpl_toolkits.	https://matplotlib.org/stable/mpl_toolkits/mplot3d/index.html
mplot3d	
Documentation:	