Асимптотический F-критерий для проверки равенства дисперсий в коррелированных выборках

Бакалаврская работа

Явейн Анна Никитична, 422 гр.

Научный руководитель: к. ф.-м. н., доцент В. В. Некруткин Рецензент: к. ф.-м. н., доцент А. И. Коробейников

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

2016

Постановка задачи

(x, y) – случайный вектор; σ_x^2 , σ_y^2 – дисперсии x и y.

 $(\mathbf{X}_n, \mathbf{Y}_n)$ – двумерная повторная выборка.

Нулевая гипотеза

$$H_0: \{\sigma_x^2 = \sigma_y^2\}.$$

- Разработать **асимптотический** критерий со слабыми условиями на (x, y):
 - * Допустимы отклонения от нормальности.
 - * Допустимы отклонения от независимости.
- Исследовать свойства критерия на разных моделях распределений.
- Сравнить с другими критериями.

Некоторые существующие тесты

Для **независимых гауссовских** x и y:

- Критерий Фишера.
- Levene's, Brown-Forsythe's test.
- Bartlett's, Cochran's, Hartley's tests.

Для **гауссовских** (x, y):

• Критерии для коррелированных (x, y) [Kanji, 2006] (рассмотрен **Р-критерий**).

Ранговые:

- Mood's test.
- Ansari-Bradley's, Siegel-Tukey's, Capon's, Klotz's tests.

Построение статистики критерия

$$(\mathbf{X}_n,\mathbf{Y}_n)$$
 – двумерная выборка, $ilde{s}_x^2=rac{1}{n}\sum_{i=1}^n ig(x_i-ar{x}ig)^2.$

$$\widehat{\rho}(\mathbf{X}_n, \mathbf{Y}_n) = \frac{\sqrt{n}}{\widehat{\sigma}_{lim}} \begin{pmatrix} \widetilde{s}_x^2 \\ \widetilde{s}_y^2 - \frac{\sigma_x^2}{\sigma_y^2} \end{pmatrix}.$$

Утверждение (доказано через delta-method [Serfling, 2002])

При любом соотношении $\sigma_{\scriptscriptstyle X}$ и $\sigma_{\scriptscriptstyle Y}$ и $n \to \infty$

$$\mathcal{L}(\widehat{\rho}(\mathbf{X}_n, \mathbf{Y}_n)) \Rightarrow \mathrm{N}(0, 1)$$

при условии, что

- **Четвертые моменты** x и y конечны.

■ Распределение
$$y$$
 непрерывно.

■ $\widehat{\sigma}_{lim}^2$ — состоятельная оценка σ_{lim}^2 = $\frac{\mathbb{D}\Big((x-\mathbb{E}x)^2\sigma_y^2-(y-\mathbb{E}y)^2\sigma_x^2\Big)}{\sigma_v^8}$.

$$\mathbb{P}(\widehat{\sigma}_{lim}^2 = 0) = 0.$$

Построение критерия

(x, y) – случайная величина; $(\mathbf{X}_n, \mathbf{Y}_n)$ – двумерная выборка.

Нулевая гипотеза

$$H_0: \{\sigma_x^2 = \sigma_y^2\}.$$

Статистика:

$$\widehat{\rho}(\mathbf{X}_n, \mathbf{Y}_n) = \frac{\sqrt{n}}{\widehat{\sigma}_{lim}} \left(\frac{\widetilde{\mathbf{s}}_x^2}{\widetilde{\mathbf{s}}_y^2} - 1 \right) .$$

Доверительная область критерия

$$|\widehat{\rho}(\mathbf{X}_n, \mathbf{Y}_n)| < \tau_{1-\frac{\alpha}{2}},$$

где au_{eta} – квантиль уровня eta распределения N(0,1).

Условия

Утверждение

Критерий **асимптотически точен** и **состоятелен** для любой альтернативы $\sigma_{\rm x}^2 \neq \sigma_{\rm v}^2$, если

- Четвертые моменты x и y конечны.
- Распределение у непрерывно.
- $\mathbb{P}(\widehat{\sigma}_{lim}^2 = 0) = 0.$
- lacktriangle $\widehat{\sigma}_{\mathit{lim}}^2$ состоятельная оценка для σ_{lim}^2 .

Ослабление условий

Утверждение

Критерий **асимптотически точен** и **состоятелен** для любой альтернативы $\sigma_{\rm x}^2 \neq \sigma_{\rm v}^2$, если

- \blacksquare Четвертые моменты x и y конечны.
- Распределение у непрерывно.
- $\mathbb{P}(\widehat{\sigma}_{lim}^2 = 0) = 0.$
- lacktriangle При $\sigma_{\mathbf{x}}=\sigma_{\mathbf{y}}$: $\widehat{\sigma}_{\mathit{lim}}^2$ **состоятельная** оценка для σ_{lim}^2 .
- lacktriangle При $\sigma_{f x}
 eq \sigma_{f y}$: $\exists \; M$ такое, что $\mathbb{P}(\widehat{\sigma}^2_{\it lim} < M)
 ightarrow 1.$

Два критерия

SE-критерий:

$$\widehat{\sigma}_{lim}^2 = \frac{s_{y,n}^4 \sum_{i=1}^n (x_i - \overline{x}_n)^4 + s_{x,n}^4 \sum_{i=1}^n (y_i - \overline{y}_n)^4 - 2s_{x,n}^2 s_{y,n}^2 \sum_{i=1}^n (x_i - \overline{x}_n)^2 (y_i - \overline{y}_n)^2}{n s_{y,n}^8}$$

генеральные моменты заменены на выборочные.
 Удовлетворяет изначальным условиям.

SEM-критерий:

$$\widehat{\sigma}_{lim}^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_n)^4 + \sum_{i=1}^{n} (y_i - \overline{y}_n)^4 - 2\sum_{i=1}^{n} (x_i - \overline{x}_n)^2 (y_i - \overline{y}_n)^2}{n \, s_{y,n}^4}$$

– удовлетворяет ослабленным условиям.

Моделирование

Модели:

(x,y) – двумерный **нормальный** случайный вектор.

$$\mathcal{L}(x,y) = \mathrm{N}(0,\Sigma), \qquad \Sigma = \begin{pmatrix} \sigma_x^2, & \rho \, \sigma_x \sigma_y \\ \rho \, \sigma_x \sigma_y, & \sigma_y^2 \end{pmatrix}.$$

■ (x, y) – равномерно распределен на повернутом эллипсе.

(x,y) – двумерный логнормальный случайный вектор.

$$\mathcal{L}(x,y) = \mathrm{LogN}(\mu,\Sigma), \quad \mu = (\mu_x, \mu_y), \ \Sigma = \begin{pmatrix} s_x^2, & r \, s_x s_y \\ r \, s_x s_y, & s_y^2 \end{pmatrix}.$$

- Для различных пар (n, θ) метод зависимых выборок $(\theta$ вектор параметров распределения).
- Количество повторов N = 10000.

Истинный уровень, гауссовская модель, lpha=0.05

Истинный уровень, эллиптическая модель, lpha = 0.05

Истинный уровень, логнормальная модель, lpha=0.05

Мощность, гауссовская модель, lpha=0.05

SEM-критерий.

Мощность, эллиптическая модель, lpha=0.05

SEM-критерий.

Мощность, логнормальная модель, lpha=0.05

SEM-критерий.

Итог

Результаты:

- Разработан асимптотический аналог критерия Фишера.
- Предложены несколько вариантов статистики критерия.
- Доказаны состоятельность и асимптотическая точность предложенных SE и SEM критериев.
- Проведены численные эксперименты в трех разных моделях.
- Проведено сравнение с некоторыми критериями.

Выводы:

- В рассмотренных **негауссовских** моделях построенные **SE** и **SEM** критерии **превосходят** референсные **по точности**.
- Свойства **SEM** критерия **сравнимы** со свойствами критериев, рассчитанных на **гауссовость** модели.
- Во всех рассмотренных моделях из двух разработанных критериев предпочтительно использование SEM-критерия.