K-Nearest Neighbours 'KNN'

Seminar in Advanced Topics in Data Analytics *Dr. Shay Horovitz*

Dor Romano

Time to Play! 21 Questions

K-Nearest Neighbours Topics for discussion

- What is it used for?
- Key principles
- How to Choose the factor 'K'
- Common Uses
- Pros and Cons
- How it works
- Case Study

CATS

Sharp Claws, uses to climb

Smaller length of ears

Meows and purrs

Doesn't love to play around

DOGS

Dull Claws

Bigger length of ears

Barks

Loves to run around

K-Nearest Neighbours Key Principle

- Classifies data points based on how its neighbours are classified.
- Stores all available cases and classifies new cases based on a similarity measure.
- K is a parameter that refers to the number of nearest neighbours to include in the majority voting process.

K-Nearest Neighbours Choosing 'K'

K-Nearest Neighbours Choosing 'K'

K-Nearest Neighbours Choosing 'K'

Sqrt(n), Where `n` is the total number of data points Odd value of *k* is selected to avoid confusion between two classes of data

K-Nearest Neighbours Common Uses

- Labeled Data
- Noise free Data
- Small Dataset

K-Nearest Neighbours Pros and Cons

Pros:

- Very simple.
- Training is trivial.
- Works with any number of classes.
- In case you would like to add more data, the algorithm is easy to use.
- Contains a few parameters:

 - Distance Metric

Cons:

- No data points border line.
- High prediction cost (worse for large data sets).
- Not good with high dimensional data.
- Categorical features don't work well.

K-Nearest Neighbours How it works

Weight(x2)	Height(y2)	Class	
51	167	Underweight	
62	182	Normal	
69	176	Normal	
64	173	Normal	
65	172	Normal	
56	174	Underweight	
58	169	Normal	
57	173	Normal	
55	170	Normal	

K-Nearest Neighbours How it works

Calculate the Euclidean Distance

dist(d)=
$$\sqrt{(x - a)^2 + (y - b)^2}$$

K-Nearest Neighbours How it works

Weight(x2)	Height(y2)	Class	Euclidean Distance	
51	167	Underweight	6.7	
62	182	Normal	13	
69	176	Normal	13.4	
64	173	Normal	7.6	
65	172	Normal	8.2	
56	174	Underweight	4.1	
58	169	Normal	1.4	k = 3
57	173	Normal	3	
55	170	Normal	2	

K-Nearest Neighbours <u>Case Study</u>

Example for Notebook

Questions?

Thank You!

