ARANMORE CATHOLIC COLLEGE

		YEAR 12 CHEMISTRY - 2012 TEST: ORGANIC CHEMISTRY	
NAME:		DATE:	
1			Test
INST	INSTRUCTIONS		
i,	Time Allowed:	.50 minutes·····	
2.	Total marks:	50 marks	
'n	Part 1 is to be ansy	Part 1 is to be answered on the Multiple Choice Answer Sheet provided.	
4.	Parts 2 and 3 are t	Parts 2 and 3 are to be answered on the question paper.	
<u>.</u> 5	A Chemical data sheet is provided.	heet is provided.	
6.	Graphics calculators are permitted	ors are permitted.	

PART 1

Graphics calculators are permitted.

What is the systematic name for the following?

MULTIPLE CHOICE

[5 Marks]

오₃ㅡ CH₃--CH--CH₂ $-CH_2-$ - COOH

- 3-ethylbutanoic acid
- (e) (e) 2-methylpentanoic acid
- *€ £* 3-methylpentanoic acid
- 1,2-dimethylbutanoic acid
- 5 permanganate solution? Which of the following would not be expected to decolourise an acidified potassium
- CH₃OH
- **E** 0 0 0 CH₃CH₂OH
 - CH₃CH₂CHO
- CH3COCH3

The structure drawn here represents one of the isomers of formula $C_2H_2Cl_2$. What is the total number of isomers possible for C₂H₂Cl₂?

ന

- Which of the following molecules is a structural isomer of 3-methyl-1-butene? 4.

(a)
$$H - C - C - C - H$$

<u>(C</u>

Which of the following structures represents a tertiary alcohol? υ,

(CH₃)₃COH

- СН₃СН₂СНОНСН₃
- CH₃CH₂CH₂CH₂OH
- CH₃CH₂CH₂C(OH)₃ (C) (E)

W/

Ġ name of the major organic product you expect to form. For each of the following reactions **draw** the structural formula and write the IUPAC

2-butanol and acidified potassium permanganate butanone

b) 1-propanol and acidified potassium dichromate

#-C-C-C/O

C 1-pentanol and propanoic acid with concentrated sulfuric acid Name: Propanoic acia

Name: pentyl propanoate

(6 marks)

7. Butan-1-ol has a boiling point of 117°C while butan-1-amine boils at 78°C. Explain.

-C-C-C-C- \ H-bond H-bond butan-1-01 >> 14 -bond "H" more positive because š 10 more electronegative butanol -1-butacamico

(4 marks)

than a.

For each of the following pairs of solutions describe a simple **chemical** test that could be used to distinguish between the two substances. State the observation that you would make with each solution. ∞

SHOUNDE IO SHIP	Describe the Test	Observation for each
	acdified	2-methyl-2-propanol
2-methyl-2-propanol	}	,
and	08 Na,020,03	
1-butanol	3	1-butanol
		purple -> pak
		orange -> arees
	_	cthanoic NVR
ethanoic acid		
and	4	
ethanal		ethanal See Aboux

(4 marks)

9. Draw the structure of each of the following:

	ethylmethanoate H - C - G - C - C - H H + H	2-methylbutanal ##################################
(2 marks)	‡ 1-(;-t	£ ,0:

10. Give the IUPAC name of the following structures.

	(2 marks)	
•	propanoic acid	H-C-C-C H H O
<u> </u>	3-methy pentan-1-01	H

- Citric acid, is a carboxylic acid responsible for the sour taste of lemon juice, contains only carbon, hydrogen and oxygen. 11.
- $1.383~\mathrm{g}$ of anhydrous (dry) citric acid is burned in dry oxygen to give $1.900~\mathrm{g}$ of CO_2 and 0.518 g of H₂O.
- Calculate the empirical formula of citric acid. ιĠ

3.84 g of citric acid vaporized at 150 $^{\rm o}{\rm C}$ was found to occupy 0.700L at 100.0 ь.

(3 marks) Given that one mole of citric acid reacts with three moles of potassium hydroxide, suggest a structural formula for citric acid. kPa. Determine the molecular formula of citric acid. ပ

(2 marks)

$$n(c) = n(cO_2) = \frac{1.900}{44.01} = 0.04317$$
 mol

 ∞

9

(b)
$$PV = nRT$$

$$M = \frac{PV}{(150+273:15)} \times 8.314$$

$$M = \frac{3.84}{0.01489}$$

$$M = \frac{192}{0.01489}$$

$$EF = MF$$

$$C_6 + 807$$

$$C_6 + 807$$

$$C_7 - C - C - C - C$$

Show with the aid of diagrams how ethanol is soluble in water but not in ethane. 12.

(8 marks)

CH2CH2-0: 11 :0 -C4,C43

Water H-bong

(2)

ethane- non-polar - dispusion only

when water forms H-boads is enough to break the ethanol molecules and H-bonds between * energy released With ethanol whater molecules. Energy released when water forms dispussion bonds with ethane molecules is not enough to break the H-bonds between ethanol molecules or the dispusion forces between ethang molegies

¥