

Bancos de Dados

Profa. Patrícia R. Oliveira

Parte 3 – Conceitos e Arquitetura

- Estrutura básica de um SGBD cliente/servidor:
 - Funcionalidades do sistema estão distribuídas entre dois tipos de módulos:
 - Módulo cliente;
 - Módulo servidor.

Introdução

- Módulo cliente: executado em uma estação de trabalho ou computador pessoal.
- O que é processado no módulo cliente:
 - programas de aplicação;
 - interfaces com o usuário que acessa o BD.

Introdução

- Em suma, o <u>módulo cliente</u> trata as interações com usuários e oferece uma interface amigável:
 - baseada em formulários;
 - interfaces gráficas.
- Módulo servidor: trata de:
 - armazenamento de dados;
 - acessos a dados;
 - pesquisas, ...

Modelos de dados

- Modelo de dados: conjunto de conceitos usados para descrever a <u>estrutura de um BD:</u>
 - tipos de dados;
 - relacionamentos entre os dados;
 - restrições que os dados devem suportar.

Categorias de modelos de dados

- Modelos de dados podem ser classificados de acordo com os <u>tipos de conceitos</u> que eles utilizam para descrever a estrutura de um BD:
 - modelos de dados conceituais, ou de alto nível;
 - modelos de dados físicos, ou de baixo nível;
 - modelos de dados representativos, ou de implementação.

Modelos de dados conceituais

- Modelos de dados conceituais: possuem conceitos que descrevem os dados como os usuários os percebem.
 - utilizam conceitos como <u>entidades</u>, <u>atributos</u> e relacionamentos.

Modelos de dados conceituais

- Uma <u>entidade</u> representa um objeto do mundo real, ou um conceito:
 - Ex: funcionário de uma empresa, projeto de uma empresa.
- Um <u>atributo</u> corresponde a uma propriedade de interesse que ajuda a descrever uma entidade:
 - Ex: nome de um funcionário, salário de um funcionário.

Modelos de dados conceituais

- O <u>relacionamento</u> entre duas entidades mostra uma associação entre estas.
 - Ex: o relacionamento `trabalha em´ de funcionário com um projeto.

Modelos de dados representacionais

- Modelos de dados representativos: são os mais usados nos SGBD´s comerciais tradicionais.
- Mostram os dados usando estruturas de registro.
 - modelos de dados relacionais;
 - modelos de rede;
 - modelos de dados hierárquicos.

Modelos de dados representacionais

- Esses modelos de dados representam os dados utilizando estruturas de registros.
 - também chamados de <u>modelos baseados em</u> <u>registros</u>.

Modelo Relacional - exemplo

ALUNO	Nome	Numero	Turma	Curso_Hab
	Smith	17	1	cc
	Brown	8	2	cc

CURSO	NomedoCurso	NumerodoCurso	Creditos	Departamento
	Introdução à Ciência da Computação	CC1310	4	CC
	Estruturas de dados	CC3320	4	СС
	Matemática Discreta	MAT2410	3	MATH
	Banco de dados	CC3380	3	СС

DISCIPLINA	IdentificadordeDisciplina	NumerodoCurso	Semestre	Ano	Instrutor
	85	MAT2410	Segundo Semestre	98	King
	92	CC1310	Segundo Semestre	98	Anderson
	102	CC3320	Primeiro Semestre	99	Knuth
	112	MAT2410	Segundo Semestre	99	Chang
	119	CC1310	Segundo Semestre	99	Anderson
	135	CC3380	Segundo Semestre	99	Stone

HISTORICO_ESCOLAR	NumerodoAluno	Identificador_Disciplinas	Nota
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

PRE_REQUISITO	NumerodoCurso	NumerodoPre_requisito
	CC3380	CC3320
	CC3380	MAT2410
	CC3320	CC1310

Modelos de dados orientados a objetos

- Os <u>modelos de dados orientados a objetos</u> são modelos de implementação de mais alto nível.
 - estão muito próximos dos modelos de conceituais;
 - são bastante aplicados na área de engenharia de software.

Modelos de dados físicos

- Os modelos de dados físicos contém conceitos que descrevem os detalhes de como os dados estão armezados no sistema.
 - formatos de registro;
 - ordenações de registros;
 - caminhos de acesso (por ex., índices).
- Esses detalhes são significativos para especialistas em computadores, mas não são importantes para os usuários finais.

- A descrição do banco de dados é chamada de esquema do banco de dados.
- O esquema é definido durante o <u>projeto do</u> <u>banco de dados</u> e não é esperado que este sofra mudanças frequentes.
- Geralmente, esquemas são exibidos como diagramas esquemáticos.

 Diagrama esquemático para o banco de dados da Universidade.

ALUNO			300 300				
Nome	Numero	doAlund	Turma	Curso_H	lab		
CURSO							
Nomed	oCurso	Numer	odoCurso	Credit	os De	partame	nto
Numero	odoCurso	Nun	nerodoPre_r	requisito			
					1	201 10222120	100000000000000000000000000000000000000
Identific	ador_Dis	ciplina	Numerodo	Curso	Semest	e Ano	Instruto
RELATOR		NOTAS	Numerodo		Semest	re Ano	Instruto

 O diagrama apresenta a estrutura de cada tipo de registro, mas não as suas instâncias reais.

Chama-se cada item no esquema – como um
ALUNO ou CURSO – de um construtor do esquema.

ALUNO								
Nome	Numero	doAlund	Curso_H	ab				
CURSO								
Nomed	oCurso	Numer	odoCurso	Credito	os De	epai	rtamen	to
DISCIPLI	odoCurso NA	Ivan	nerodoPre_	requisito	J			
Identific	ador Dic	ciplina	Numerodo	Cureo	Semest	re	Ano	Instrutor
Identific	audi_Dis	oipiiiia	radificious	Jourso	Comicon		7 1110	moti ato.
RELATOR		•	Traincroad	Jourso	Comoo		7110	, mountain

- Um diagrama esquemático mostra somente alguns aspectos do sistema, como:
 - os nomes dos tipos de registros;
 - os nomes dos itens de dados;
 - alguns tipos de restrições.

- Aspectos que não são especificados em um diagrama esquemático:
 - os tipos de dados de cada item nos registros;
 - os relacionamentos entre diversos arquivos;
 - vários tipos de restrições.

- Os dados armazenados no banco de dados podem mudar com frequência.
 - Ex: adição de um aluno, registro da nota de um aluno.

 Os dados de um BD em um certo momento são chamados de <u>estado do</u> <u>banco de dados</u>.

 Representado pelo conjunto corrente de instâncias no banco de dados.

- Em um dado estado do BD, cada construtor do esquema terá seu próprio conjunto corrente de instâncias.
 - EX: O construtor ALUNO terá um conjunto de registros individuais de alunos como suas instâncias.

ALUNO					
Nome	Numero	odoAluno	Turma	Curso_Hab	
CURSO	(c	2.5			
Nomed	oCurso	Numeroo	loCurso	Creditos	Departamento

- Exemplos de ações que podem modificar o estado de um BD:
 - remoção de um registro;
 - inclusão de um registro;
 - alteração do valor de um item de dado em um registro.

 Ao definir um novo BD, especificamos o seu esquema somente para o SGBD.

 O estado correspondente do BD é o estado vazio.

 Após a definição do BD, este será carregado com os seus dados iniciais.

 O estado correspondente do BD é o estado inicial.

 A partir do estado inicial do BD, todas as vezes que houver uma operação de atualização nos dados armazenados

 ... o estado corrente do BD é modificado.

 O SGBD deve garantir que cada estado do BD seja um <u>estado</u> válido

 estado que satisfaz a estrutura e as restrições definidas no esquema.

Moral da história: o projeto do esquema de um BD deve ser executado com cuidado para que resulte em definições corretas.

Descrições dos construtores do esquema

+ Restrições

Metadados

armazenados no catálogo do SGBD.

- Arquitetura de três-esquemas: arquitetura para SBD´s que auxilia a visualização das seguintes características:
 - separação de programas e dados;
 - suporte a múltiplas visões de usuários;
 - uso de catálogo para armazenar a descrição do BD.

- O <u>objetivo</u> da arquitetura de três-esquemas é separar o usuário da aplicação do banco de dados físico.
- Os esquemas são definidos por três níveis:
 - nível interno;
 - nível conceitual;
 - nível externo.

- 1) Nível interno:
 tem um esquema
 interno que
 descreve a
 estrutura de
 armazenamento
 físico do BD.
 - utiliza um modelo de dados físico

- 2) <u>Nível</u>
 conceitual: tem
 um <u>esquema</u>
 conceitual que
 descreve a
 estrutura de todo
 BD.
 - descrições de entidades, tipos de dados, restrições.

3) Nível externo
 ou visão: abrange
 os esquemas
 externos ou
 visões de
 usuários.

Cada visão externa descreve a parte do BD que um grupo de usuários tem interesse e oculta o resto do BD para esse grupo.

- Os três esquemas são apenas descrições dos dados.
 - os dados que existem, de fato, estão no nível físico.

Cada usuário refere-se somente ao seu próprio esquema externo

- A arquitetura de três-esquemas reforça o conceito de independência de dados.
 - capacidade de mudar o esquema em um nível do SBD, sem alterar o esquema no próximo nível mais alto.
 - Independência de dados lógica
 - Independência de dados física

- 1) Independência de dados lógica
 - capacidade de mudar o esquema conceitual sem mudar o esquema externo
 - O esquema conceitual pode mudar para:
 - expandir o BD (adicionar registros ou tipos de dados);
 - variar as restrições de dados;
 - reduzir o BD (remover registros ou tipos de dados).

- 2) Independência de dados física
 - capacidade de mudar o esquema interno sem mudar o esquema conceitual
 - o esquema interno pode mudar para:
 - organizar arquivos físicos (ex: criar estruturas de acessos adicionais);
 - melhorar o desempenho da recuperação e atualização dos dados.

Linguagens do SGBD

- Linguagem de Definição de Dados (DDL Data Definition Language)
 - usada para especificar o esquema do banco de dados.
- O compilador DDL irá processar os comandos e armazenar o esquema no catálogo do SGBD.

Linguagens do SGBD

- Linguagem de Manipulação de Dados (DML Data Manipulation Language)
 - usada para manipular os dados armazenados.
- Operações típicas:
 - recuperação de dados (consultas);
 - inserção de dados;
 - exclusão de dados;
 - alteração de dados.