Тригонометрические уравнения на ЕГЭ по математике

Здесь приведены тригонометрические уравнения, которые предлагались на $E\Gamma \Im$ по математике (профильный уровень, сложная часть), а также на диагностических, контрольных и тренировочных работах МИОО начиная с 2009 года.

106. (*МИОО*, *2017*) а) Решите уравнение

$$\frac{1}{\sin^2 x} + \frac{1}{\cos(\frac{7\pi}{2} + x)} = 2.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

a)
$$\frac{\pi}{2} + 2\pi n$$
, $-\frac{\pi}{6} + 2\pi n$, $-\frac{5\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; $n \in \mathbb{Z}$; $n \in \mathbb{Z}$; $n \in \mathbb{Z}$

105. (*МИОО*, *2017*) а) Решите уравнение

$$\frac{\log_2^2(\sin x) + \log_2(\sin x)}{2\cos x - \sqrt{3}} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; 2\pi\right]$.

$$\boxed{ \frac{\pi}{6}, \frac{\pi}{2} (0; \mathbb{Z} \in \mathbb{Z}; n, n \in \mathbb{Z}; \frac{\pi}{6}, n \neq 2 + \frac{\pi}{6}) }$$

104. (*МИОО*, *2017*) а) Решите уравнение

$$\frac{1}{\cos^2 x} + \frac{3}{\sin\left(\frac{\pi}{2} + x\right)} + 2 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2};3\pi\right]$.

$$\pi \xi, \frac{\pi 8}{\xi} \ (3 \quad ; \mathbb{Z} \ni n, n\pi 2 + \frac{2\pi}{\xi} \pm, n\pi 2 + \pi \ (8)$$

103. (*МИОО*, *2017*) а) Решите уравнение

$$\frac{4^{\sin 2x} - 2^{2\sqrt{3}\sin x}}{\sqrt{7\sin x}} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{13\pi}{2}; -5\pi\right]$.

$$\frac{1}{8} \frac{1}{8} - (6 \quad ; \mathbb{Z} \ni n, n\pi + \frac{\pi}{8})$$
 (6)

102. (*МИОО*, *2017*) а) Решите уравнение

$$\frac{\sqrt{3}\operatorname{tg}^2 x - \operatorname{tg} x}{\sqrt{-5\cos x}} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

s)
$$\pi + 2\pi n$$
, $\frac{7\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; (6) -3π , $-\frac{17\pi}{6}$

101. (*МИОО*, 2017) а) Решите уравнение

$$\frac{2\cos^2 x - \sqrt{3}\cos x}{\log_4(\sin x)} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

$$\boxed{\frac{\pi 11}{6} - (6 \quad ; \mathbb{Z} \ni n, n\pi 2 + \frac{\pi}{6} \text{ (s)}}$$

100. (*МИОО*, *2017*) а) Решите уравнение

$$8 \cdot 16^{\sin^2 x} - 2 \cdot 4^{\cos 2x} = 63.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{7\pi}{2}; 5\pi\right]$.

(a)
$$\frac{\pi}{3} + \pi n$$
, $\frac{2\pi}{3} + \pi n$, $n \in \mathbb{Z}$; (b) $\frac{11\pi}{3}$, $\frac{13\pi}{3}$, $\frac{14\pi}{3}$

99. (*МИОО*, *2017*) а) Решите уравнение

$$\frac{5\cos x + 3}{5\sin x - 4} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $[0; 2\pi]$.

a)
$$\pi + \arccos \frac{3}{5} + 2\pi n \ n \in \mathbb{Z}$$
; 6) $\pi + \arccos \frac{3}{5}$

98. (*МИОО*, *2017*) а) Решите уравнение

$$(3 tg^2 x - 1) \sqrt{-5 \cos x} = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

$$\boxed{\frac{5\pi}{6} \pm \frac{10\pi}{6} + 2\pi n \ n \in \mathbb{Z}; \quad 6 - \frac{19\pi}{6} \pm (6 + \frac{10\pi}{6})}$$

97. (*ЕГЭ*, 2016) a) Решите уравнение

$$\sin 2x + 2\cos\left(x - \frac{\pi}{2}\right) = \sqrt{3}\cos x + \sqrt{3}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

(a)
$$\pi + 2\pi n$$
, $\frac{\pi}{3} + 2\pi n$, $\frac{2\pi}{5} + 2\pi n$ $n \in \mathbb{Z}$; $(2\pi - 3\pi + 2\pi n) = 3\pi n$

96. (*ЕГЭ*, *2016*) а) Решите уравнение

$$\frac{\sin 2x}{\sin\left(\frac{7\pi}{2} - x\right)} = \sqrt{2}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

a)
$$-\frac{\pi}{4} + 2\pi n$$
, $-\frac{3\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{13\pi}{4}$

95. (*ЕГЭ*, 2016) a) Решите уравнение

$$8\sin^2 x + 2\sqrt{3}\cos\left(\frac{3\pi}{2} - x\right) = 9.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

a)
$$-\frac{\pi}{3} + 2\pi n$$
, $-\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) $-\frac{7\pi}{3}$

94. (*ЕГЭ*, *2016*) а) Решите уравнение

$$2\sin^2 x + 4 = 3\sqrt{3}\sin\left(\frac{3\pi}{2} + x\right).$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

$$\frac{1}{9} - (6 \quad ; \mathbb{Z} \ni n, n\pi \mathcal{I} + \frac{\pi \delta}{6} \pm (6)$$

93. (*ЕГЭ*, *2016*) а) Решите уравнение:

$$tg^3 x + tg^2 x - 3tg x - 3 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

$$\mathbb{S} \pm \frac{\pi}{2} + \pi n, \quad \mathbb{S} + \frac{\pi}{4} + \pi n, \quad \mathbb{S} = \mathbb{S} \times \mathbb$$

92. (*МИОО*, *2016*) а) Решите уравнение:

$$\left(\sqrt{2}\sin x + 1\right)\sqrt{-5\cos x} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-5\pi; -\frac{7\pi}{2}\right]$.

$$\frac{\pi}{2} + \pi n, \frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}; \quad (6) \quad (\frac{19\pi}{4}, -\frac{9\pi}{4}, -\frac{3\pi}{4}, -\frac{7\pi}{4})$$

91. (*МИОО*, *2016*) а) Решите уравнение:

$$\sqrt{2}\sin^2\left(\frac{\pi}{2} + x\right) = -\cos x.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

a)
$$\frac{\pi}{2} + \pi n$$
, $\pm \frac{3\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; (a) $-\frac{5\pi}{2} - \frac{\pi}{2}$, $-\frac{3\pi}{4} - \frac{\pi}{4}$ (b)

90. (МИОО, 2016) а) Решите уравнение:

$$\frac{13\sin^2 x - 5\sin x}{13\cos x + 12} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

a)
$$\pi n,$$
 arcsin $\frac{5}{13}+2\pi n,~n\in\mathbb{Z};~~6)~-3\pi,~-2\pi,~-2\pi+\arctan\frac{5}{13}$

89. (*МИОО*, *2016*) а) Решите уравнение:

$$\frac{5\sin x - 3}{5\cos x - 4} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{15\pi}{2}; -6\pi\right]$.

a)
$$\operatorname{arccos}\left(-\frac{4}{5}\right) + 2\pi n, \ n \in \mathbb{Z}; \quad 6) \operatorname{arccos}\left(-\frac{4}{5}\right) - 8\pi$$

88. (*МИОО*, *2016*) а) Решите уравнение:

$$\frac{\sqrt{3} \lg x + 1}{2 \sin x - 1} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{9\pi}{2}; 6\pi\right]$.

$$\boxed{\frac{35\pi}{6} \ (6 \quad ; \mathbb{Z} \ni n, n\pi + \frac{\pi}{6} - (6)}$$

87. (*МИОО*, 2015) a) Решите уравнение:

$$(2\cos^2 x + \sin x - 2)\sqrt{5\operatorname{tg} x} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\pi; \frac{5\pi}{2}\right]$.

a)
$$\pi n$$
, $\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$; 6) π , 2π , π (s)

86. (*ЕГЭ*, *2015*) а) Решите уравнение:

$$16^{\sin x} = \left(\frac{1}{4}\right)^{2\sin 2x}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

a)
$$\pi n, \pm \frac{2\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
; 6) $2\pi, \frac{8\pi}{3}, 3\pi, \frac{10\pi}{3}$

85. (*ЕГЭ*, *2015*) а) Решите уравнение:

$$8\sin^2 x + 2\sqrt{3}\cos x + 1 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

$$\boxed{\frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}; \quad 6 - \frac{19\pi}{6} + \frac{19\pi}{6}} \pm (6 - \frac{19\pi}{6}) + \frac{19\pi}{6} \pm (6 - \frac{19\pi}{6})}$$

84. ($E\Gamma$ Э, 2015) а) Решите уравнение:

$$2\cos 2x + \sqrt{2}\sin x + 1 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

$$\boxed{\frac{\pi}{4} (6 ; \mathbb{Z} \ni n, n\pi \mathcal{L} + \frac{\pi \mathcal{E}}{4} - n\pi \mathcal{L} + \frac{\pi}{4} - (n\pi \mathcal{L} + \frac{\pi}{4} - n\pi \mathcal{L}) }$$

83. (*ЕГЭ*, *2015*) a) Решите уравнение:

$$4\sin^2 x = \operatorname{tg} x.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $[-\pi;0].$

a)
$$\pi n$$
, $\frac{\pi}{12} + \pi n$, $\frac{5\pi}{12} + \pi n$, $n \in \mathbb{Z}$; $\pi n + \frac{11\pi}{12}$, $\pi n + \frac{\pi}{12}$, $\pi n + \frac{\pi}{12}$

82. (*ЕГЭ*, *2015*) а) Решите уравнение:

$$\cos 2x + 2\sqrt{2}\sin\left(\frac{\pi}{2} + x\right) - 2 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; 2\pi\right]$.

a)
$$\pm \frac{\pi}{4}$$
 (6 ; $\mathbb{Z} \ni n$, $n \pi \mathcal{L} + \frac{\pi}{4} \pm$ (6

81. (*ЕГЭ*, 2015) a) Решите уравнение:

$$\frac{\sin 2x}{\sin\left(\frac{3\pi}{2} - x\right)} = \sqrt{2}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

$$\boxed{\frac{13\pi}{4} + 2\pi n, -\frac{3\pi}{4} + 2\pi n, n \in \mathbb{Z}, \quad 6}$$

80. (*ЕГЭ*, *2015*) а) Решите уравнение:

$$2\cos^3 x + \sqrt{3}\cos^2 x + 2\cos x + \sqrt{3} = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.

$$\boxed{\begin{array}{ccc} \frac{5\pi}{6} - \frac{7\pi}{6} - (6 & \mathbb{Z}; & 6 \end{array} + 2\pi n, n + 2\pi \frac{7\pi}{6} + (6 - 6\pi) + (6\pi) \end{array}}$$

79. ($E\Gamma$ Э, 2015) а) Решите уравнение:

$$2\cos^3 x - \cos^2 x + 2\cos x - 1 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

s)
$$\pm \frac{\pi}{8} + 2\pi n$$
, $n \in \mathbb{Z}$; (6)

78. (*МИОО*, *2015*) а) Решите уравнение:

$$\cos 2x - 3\cos x + 2 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

a)
$$2\pi n$$
, $\pm \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6) -4π , $-\frac{11\pi}{3}$

77. (*МИОО*, *2015*) а) Решите уравнение:

$$\frac{\cos 2x + \sqrt{3}\sin x - 1}{\operatorname{tg} x - \sqrt{3}} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[2\pi; \frac{7\pi}{2}\right]$.

$$\boxed{ \pi 8, \frac{8\pi}{8}, \pi 7 \ (8 - \mathbb{Z}; \quad 6) \ 2\pi, \frac{8\pi}{8}, 3\pi }$$

76. (*МИОО*, 2015) а) Решите уравнение:

$$2\sin^2 x - \sqrt{3}\sin 2x = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\frac{3\pi}{2}; 3\pi\right]$.

a)
$$\pi n$$
, $\frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$; 6) 2π , $\frac{7\pi}{3}$, 3π

75. (*МИОО*, *2015*) а) Решите уравнение:

$$2\cos\left(\frac{\pi}{2} - x\right) = \operatorname{tg} x.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-2\pi; -\frac{\pi}{2}\right]$.

a)
$$\pi n, \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}; \quad 6$$
 $-2\pi, -\pi$ $= \pi$

74. (*ЕГЭ*, 2014) а) Решите уравнение:

$$\cos 2x + \sqrt{2}\sin\left(\frac{\pi}{2} + x\right) + 1 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

a)
$$\frac{\pi}{2} + \pi n$$
, $\pm \frac{3\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; 6 $-\frac{11\pi}{4}$, $-\frac{5\pi}{2}$, $-\frac{3\pi}{2}$

73. ($E\Gamma$ Э, 2014) а) Решите уравнение:

$$2\sin^2 x - \sqrt{3}\cos\left(\frac{\pi}{2} - x\right) = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

a)
$$\pi n$$
, $\frac{\pi}{3} + 2\pi n$, $\frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 6 $(5 \times 10^{-5})^{-5}$, $(5 \times 10^{-5})^{-5}$

72. (*ЕГЭ*, *2014*) а) Решите уравнение:

$$\frac{1}{\sin^2 x} - \frac{3}{\sin x} + 2 = 0.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

$$s) \ \frac{\pi}{2} + 2\pi n, \ \frac{\pi}{6} + 2\pi n, \ \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}, \quad 6) - \frac{11\pi}{6}, -\frac{3\pi}{2}, -\frac{7\pi}{6}$$

71. (*ЕГЭ*, *2014*) а) Решите уравнение:

$$9^{\sin x} + 9^{-\sin x} = \frac{10}{3}.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

$$\boxed{ \frac{\pi \Omega}{8} - \frac{\pi \Omega}{8}} + (8)$$

70. (МИОО, 2014) а) Решите уравнение:

$$\frac{5\cos x + 4}{4\tan x - 3} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-4\pi; -\frac{5\pi}{2}\right]$.

a)
$$\pi - \arccos \frac{4}{5} + 2\pi n$$
, $n \in \mathbb{Z}$; 6) $-3\pi - \arccos \frac{4}{5}$

69. (*Санкт-Петербург*, *пробный ЕГЭ*, *2014*) а) Решите уравнение:

$$6\sin^2 x + 5\sin\left(\frac{\pi}{2} + x\right) - 2 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-5\pi; -\frac{7\pi}{2}\right]$.

s)
$$\pm \frac{2\pi}{3} + 2\pi n$$
, $n \in \mathbb{Z}$; 6 s) $\pm \frac{2\pi}{3} \pm \frac{2\pi}{3}$

68. (*МИОО*, *2014*) а) Решите уравнение:

$$4\cos^4 x - 4\cos^2 x + 1 = 0.$$

8

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi; -\pi]$.

a)
$$\frac{\pi}{4} - \frac{\pi\pi}{2} - \frac{\pi}{4} - (6)$$
 $\mathbb{Z} \ni n \cdot \frac{\pi\pi}{2} + \frac{\pi}{4}$ (a)

67. (*МИОО*, *2014*) а) Решите уравнение:

$$\frac{2\sin^2 x - \sin x}{2\cos x - \sqrt{3}} = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2};3\pi\right]$.

a)
$$\pi n$$
, $\frac{5\pi}{6}$, $\pi 2$ (6 \mathbb{Z} ; $\pi 3\pi$ (7) $\pi \pi 4$ (8) $\pi 7\pi$ (8) $\pi 7\pi$ (8) $\pi 7\pi$ (9) $\pi 7\pi$ (10) $\pi 7\pi$ (11) $\pi 7\pi$ (12) $\pi 7\pi$ (13) $\pi 7\pi$ (13)

66. (*МИОО*, *2013*) а) Решите уравнение:

$$2\sin^4 x + 3\cos 2x + 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $[\pi; 3\pi]$.

$$\boxed{\frac{\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2} \text{ (6)} \quad \text{(8)}}$$

65. (*МИОО*, *2013*) а) Решите уравнение:

$$(25^{\cos x})^{\sin x} = 5^{\cos x}.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

$$\boxed{\frac{\pi}{2} + \pi n, \frac{\pi}{6} + 2\pi n, \frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}; \quad 6) - \frac{5\pi}{2}, -\frac{11\pi}{6}, -\frac{3\pi}{2}, -\frac{7\pi}{6}}$$

64. (*МИОО*, *2013*) а) Решите уравнение:

$$12^{\sin x} = 4^{\sin x} \cdot 3^{-\sqrt{3}\cos x}.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.

a)
$$\frac{\pi}{5}$$
, $\frac{\pi}{8}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{8}$ (d) $\frac{\pi}{8}$

63. (*ЕГЭ*, *2013*) a) Решите уравнение:

$$3 \operatorname{tg}^2 x - \frac{5}{\cos x} + 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

$$\boxed{\frac{\pi}{8} + 2\pi n, n \in \mathbb{Z}; \quad 6 \text{ (a)}}$$

62. (*ЕГЭ*, *2013*) а) Решите уравнение:

$$\sin 2x = \sqrt{3}\cos\left(\frac{3\pi}{2} - x\right).$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-3\pi; -2\pi]$.

8)
$$\pi n$$
, $\pm \frac{5\pi}{6} \pm 2\pi n$, $n \in \mathbb{Z}$; 6) -3π , $-2\pi = 4\pi n$ (8)

61. (*ЕГЭ*, *2013*) а) Решите уравнение:

$$15^{\cos x} = 3^{\cos x} \cdot 5^{\sin x}.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[5\pi; \frac{13\pi}{2}\right]$.

$$\boxed{\frac{\pi \Delta}{4}, \frac{\pi L}{\hbar}, (3 + \frac{\pi L}{\hbar})} (6) \quad (3 + \frac{\pi L}{\hbar}) (8)$$

60. (*ЕГЭ*, *2013*) а) Решите уравнение:

$$-\sqrt{2}\sin\left(-\frac{5\pi}{2} + x\right) \cdot \sin x = \cos x.$$

б) Найдите корни этого уравнения, принадлежащие промежутку $\left[\frac{9\pi}{2}; 6\pi\right]$.

(a)
$$\frac{\pi}{4} + \pi n$$
, $\frac{\pi}{4} + 2\pi n$, $\frac{3\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; (b) $\frac{9\pi}{4}$, $\frac{11\pi}{4}$, $\frac{19\pi}{4}$

59. (*ЕГЭ*, *2013*) а) Решите уравнение:

$$\frac{1}{\lg^2 x} - \frac{1}{\sin x} - 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

$$\boxed{\frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}; \quad 6 - 2\pi n, \ n \in \mathbb{Z}$$

58. (*МИОО*, *2013*) а) Решите уравнение:

$$2\sin^2\left(\frac{3\pi}{2} - x\right) = \cos x.$$

б) Найдите корни этого уравнения, принадлежащие промежутку $\left[-\frac{3\pi}{2};0\right]$.

(a)
$$\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$$
 (b) $\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} = 0$

57. (*ФЦТ*, *2013*) а) Решите уравнение:

$$\cos\left(\frac{\pi}{2} + 2x\right) = \sqrt{2}\sin x.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-5\pi; -4\pi]$.

56. (*МИОО*, *2013*) а) Решите уравнение:

$$\sin x + \sin^2 \frac{x}{2} = \cos^2 \frac{x}{2} \,.$$

б) Найдите корни этого уравнения, принадлежащие промежутку $\left[-2\pi; -\frac{\pi}{2}\right]$.

a)
$$\frac{\pi}{4} - \frac{\pi 7}{4} - (3) = \mathbb{Z}; \quad (3) = \frac{\pi}{4}$$
 (a)

55. (*МИОО*, *2013*) а) Решите уравнение:

$$\sqrt{3}\sin 2x + 3\cos 2x = 0.$$

б) Найдите корни этого уравнения, принадлежащие промежутку $\left[\frac{3\pi}{2}; 3\pi\right]$.

54. (*МИОО*, *2013*) а) Решите уравнение:

$$\cos 2x = \sin\left(\frac{3\pi}{2} - x\right).$$

б) Найдите корни этого уравнения, принадлежащие промежутку $\left[\frac{3\pi}{2}; \frac{5\pi}{2}\right]$.

a)
$$\pi + 2\pi n$$
, $\pm \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; (6) $\pm \frac{\pi}{3}$, $\pm \frac{\pi}{3}$

53. (*МИОО*, *2012*) а) Решите уравнение:

$$2\sin^2\left(\frac{3\pi}{2} + x\right) = \sqrt{3}\cos x.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{7\pi}{2}; -2\pi\right]$.

$$\boxed{ \frac{\pi}{2} + \pi n, \pm \frac{\pi}{6} + 2\pi n, n \in \mathbb{Z}; \quad 6) - \frac{7\pi}{2}, -\frac{5\pi}{2}, -\frac{5\pi}{2}, -\frac{13\pi}{6} }$$

52. (*МИОО*, *2012*) а) Решите уравнение:

$$7 \operatorname{tg}^2 x - \frac{1}{\cos x} + 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right]$.

a)
$$2\pi n$$
, $n \in \mathbb{Z}$; 6) -2π

51. (*ЕГЭ*, *2012*) а) Решите уравнение:

$$2\cos^3 x = \sin\left(\frac{5\pi}{2} - x\right).$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi; -\pi]$.

a)
$$\frac{\pi}{4}$$
, $\frac{\pi}{4}$

50. (*ЕГЭ*, *2012*) а) Решите уравнение:

$$\log_5(\cos x - \sin 2x + 25) = 2.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

$$\boxed{\frac{\pi}{6} + \pi n, \frac{\pi}{6} + 2\pi n, \frac{5\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{5}, \frac{7\pi}{6}, \frac{7\pi}{6}, \frac{7\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}}$$

49. (*ЕГЭ*, *2012*) а) Решите уравнение:

$$4\cos^2 x - 8\sin x + 1 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

$$\frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}; \quad 6 - \frac{\pi}{6}, \ n \neq 2 + \frac{\pi}{6}$$
 (a)

48. (*ЕГЭ*, *2012*) а) Решите уравнение:

$$\cos 2x + \sin^2 x = 0.25.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[3\pi; \frac{9\pi}{2}\right]$.

a)
$$\pm \frac{\pi}{3} + \pi n$$
, $n \in \mathbb{Z}$; 6) $\frac{10\pi}{8}$, $\frac{11\pi}{3}$, $\frac{13\pi}{3}$

47. ($E\Gamma$ Э, 2012) а) Решите уравнение:

$$36^{\sin 2x} = 6^{2\sin x}.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{7\pi}{2}; -\frac{5\pi}{2}\right]$.

a)
$$\pi n, \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}; \quad 6$$
) -3π

46. (*ЕГЭ*, *2012*) а) Решите уравнение:

$$6\sin^2 x + 5\sin\left(\frac{\pi}{2} - x\right) - 2 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-5\pi; -\frac{7\pi}{2}\right]$.

$$\boxed{\frac{14\pi}{\xi} - (6 \quad ; \mathbb{Z} \ni n, n\pi + \frac{2\pi}{\xi} \pm (6)}$$

45. (*ЕГЭ*, *2012*) а) Решите уравнение:

$$\sqrt{2}\sin^3 x - \sqrt{2}\sin x + \cos^2 x = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

$$\boxed{ \mathbf{a} + \pi n, \ \frac{\pi}{4} + 2\pi n, \ \frac{3\pi}{4} - \frac{7\pi}{4}, \ -\frac{5\pi}{2}, \ \frac{5\pi}{4} - \frac{5\pi}{4}, \ -\frac{5\pi}{4}, \$$

44. (*МИОО*, *2012*) а) Решите уравнение:

$$\sin 2x - 2\sqrt{3}\cos^2 x - 4\sin x + 4\sqrt{3}\cos x = 0.$$

б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\pi; \frac{5\pi}{2}\right]$.

Simplified By
$$\frac{\pi}{8}$$
, $\frac{\pi}{8}$ (8) $\frac{\pi}{8}$, $\frac{\pi}{8}$ (8)

43. (*МИОО*, *2012*) а) Решите уравнение:

$$\sin^2\frac{x}{2} - \cos^2\frac{x}{2} = \cos 2x.$$

б) Найдите корни этого уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; 2\pi\right]$.

$$\boxed{\frac{\pi}{8}, \pi \text{ (6)} : \mathbb{Z} \ni n, \frac{\pi}{8} + \frac{\pi}{8} - (8)}$$

42. (*Репетиционный ЕГЭ, 2012*) а) Решите уравнение:

$$-21\cos\frac{4\pi}{67} - 20\sin\left(-\frac{36\pi}{31}\right) + 16^{\sin x - 0.25} - 3\cdot 4^{\sin x - 0.5} + 1 = -21\cos\frac{4\pi}{67} - 20\sin\left(-\frac{36\pi}{31}\right).$$

б) Укажите все корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right]$.

$$\boxed{\frac{\pi}{6}, \frac{\pi}{6}, \frac{13\pi}{6}, \frac{5\pi}{6}, \pi, 3\pi, \frac{13\pi}{6}, \frac{13\pi}{6}, \pi, 3\pi, \frac{13\pi}{6}, \pi, 3\pi, \frac{13\pi}{6}, \frac{17\pi}{6}, \frac{13\pi}{6}, \frac{$$

41. (*Репетиционный ЕГЭ, 2012*) Дано уравнение

$$2\cos^2 x + 2\sin 2x = 3$$
.

а) Решите данное уравнение. б) Укажите корни данного уравнения, принадлежащие промежутку $\left[-\frac{3\pi}{2}; -\frac{\pi}{2}\right]$.

$$\boxed{ \pi - \frac{1}{4\pi} \text{ arctg } \frac{1}{2} + \pi n, \text{ arctg } \frac{1}{2} + \pi n, n \in \mathbb{Z}; \quad 6 \text{ odd } \frac{3\pi}{4}, \text{ arctg } \frac{1}{2} + \pi n, n \in \mathbb{Z}; \quad 6 \text{ odd } \frac{1}{4\pi} \text{ odd } \frac{1}$$

40. (Федеральный центр тестирования, 2012) а) Решите уравнение:

$$\sin 2x + \sin x = 2\cos x + 1.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\pi; \frac{3\pi}{2}\right]$.

$$\boxed{ \frac{\pi}{2} + 2\pi n, \frac{2\pi}{3} + 2\pi n, n \in \mathbb{Z}; \quad 6 - \frac{2\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{4\pi}{3} }$$

39. (*Юг., пробный ЕГЭ, 2012*) Решите уравнение:

$$2\cos 2x + 4\sin\left(\frac{3\pi}{2} + x\right) - 1 = 0$$

и укажите те из его корней, которые принадлежат отрезку $[-3\pi; -\pi]$.

$$\boxed{\frac{8}{8} - \frac{8}{5} - \frac{1}{5}} = \frac{1}{5} - \frac{1}{5} - \frac{1}{5} = \frac{1}{5} - \frac{1}{5} = \frac$$

38. (*МИОО*, *2011*) а) Решите уравнение:

$$\sin x + \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right) \left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) = 0.$$

14

б) Укажите корни этого уравнения, принадлежащие промежутку $\left[\pi; \frac{5\pi}{2}\right]$.

$$\frac{\pi}{4}$$
 (8) $\mathbb{Z} \ni n$, $n\pi + \frac{\pi}{4}$ (8)

37. (*МИОО*, *2011*) Дано уравнение:

$$\cos\left(\frac{3\pi}{2} + 2x\right) = \cos x.$$

а) Решите уравнение. б) Укажите корни уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.

$$\boxed{\frac{\pi}{6} + \pi n, \frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}, (6 ; \mathbb{Z}) \in \mathbb{Z}; \quad (6 ; \pi \times 1) \in \mathbb{Z}; \quad$$

36. (*МИОО*, *2011*) Дано уравнение:

$$2\sin 2x = 4\cos x - \sin x + 1.$$

а) Решите уравнение. б) Укажите корни уравнения, принадлежащие отрезку $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$.

a)
$$\frac{\pi}{2} + 2\pi n$$
, $\pm \arccos\left(-\frac{1}{4}\right) + 2\pi n$, $n \in \mathbb{Z}$; 6) $\frac{\pi}{2}$, $\arccos\left(-\frac{1}{4}\right)$, $2\pi - \arccos\left(-\frac{1}{4}\right)$

35. (*МИОО*, *2011*) а) Решите уравнение:

$$6\cos^2 x - 7\cos x - 5 = 0.$$

б) Укажите корни, принадлежащие отрезку $[-\pi; 2\pi]$.

s
$$\pm \frac{1}{8}$$
, $\pm \frac{1}{8}$ $\pm \frac{1}{8}$ $\pm \frac{1}{8}$ $\pm \frac{1}{8}$ $\pm \frac{1}{8}$ $\pm \frac{1}{8}$

34. (*ЕГЭ*, *2011*) Решите уравнение: $\frac{6 \sin^2 x + 7 \sin x - 5}{\sqrt{3} \operatorname{tg} x - 1} = 0.$

$$\boxed{\mathbb{Z}\ni n \ , n\pi\mathbb{2}+\frac{5\pi}{6}}$$

33. (*ЕГЭ*, 2011) Решите уравнение: $(6\sin^2 x + 5\sin x - 4) \cdot \sqrt{-7\cos x} = 0$.

$$\boxed{\mathbb{Z}\ni n\ , n\pi\mathbb{2}+\frac{\pi\overline{\delta}}{6}\ , n\pi+\frac{\pi}{2}}$$

32. (*ЕГЭ*, 2011) Решите уравнение: $(4\cos^2 x - 4\cos x - 3) \cdot \log_{14}(-\sin x) = 0$.

$$\boxed{\mathbb{Z}\ni n, n\pi 2 + \frac{2\pi}{8} - n\pi n, n \in \mathbb{Z}}$$

31. (*ЕГЭ*, 2011) Решите уравнение: $(2\cos^2 x + \sqrt{3}\cos x) \cdot \log_3(\operatorname{tg} x) = 0$.

$$\boxed{\mathbb{Z}\ni n\ , n\pi\mathbb{2}+\frac{5\pi}{6}-\ , n\pi+\frac{\pi}{4}}$$

30. (*ЕГЭ*, 2011) Решите уравнение: $(\sqrt{3} \lg^2 x - \lg x) \cdot \sqrt{3 \cos x} = 0$.

$$\mathbb{Z}
ightharpoons = \mathbb{Z}$$
 , $n\pi + 2\pi$, $n\pi = 2\pi$

29. (*ЕГЭ*, 2011) Решите уравнение:
$$\sqrt{2\cos x + 1} \cdot \log_2(2\sin x) = 0$$
.

$$\boxed{\mathbb{Z}\ni n \ , n\pi\mathbb{Z}+\frac{\pi}{6} \ , n\pi\mathbb{Z}+\frac{\pi\mathbb{Z}}{8}}$$

28. (Репетиционный
$$E\Gamma \ni$$
, 2011) Решите уравнение: $(\sqrt{-\operatorname{tg} x} - \sqrt[4]{3})(2\cos^2 x + 3\cos x - 2) = 0.$

$$\boxed{\mathbb{Z}\ni n \ , n\pi+\frac{\pi}{8}-}$$

27. (*Репетиционный ЕГЭ*, *2011*) Решите уравнение:
$$\frac{2\sin^2 x + 2\sin x \cos 2x - 1}{\sqrt{\cos x}} = 0$$
.

$$\boxed{\mathbb{Z}\ni n, n\pi\mathbb{Z}+\frac{\pi}{6}, n\pi\mathbb{Z}+\frac{\pi}{4}\pm}$$

26. (*МИОО*, 2011) Решите уравнение:
$$\frac{2\sin^2 x + 3\cos x}{2\sin x - \sqrt{3}} = 0.$$

$$\boxed{\mathbb{Z}\ni n \text{ ,} n\pi \mathtt{L} + \frac{\mathtt{L}}{\mathtt{E}} -}$$

25. (*MИОО*, 2011) Решите уравнение:
$$\sqrt{\sin x \cos x} \left(\frac{1}{\operatorname{tg} 2x} + 1 \right) = 0.$$

$$\mathbb{Z}\ni n, n\pi+\frac{\pi \mathcal{E}}{8}$$

24. (*MИОО*, 2011) Решите уравнение:
$$(\sin 2x - \sin x) (\sqrt{2} + \sqrt{-2 \operatorname{ctg} x}) = 0$$
.

$$\mathbb{Z} \ni n , n\pi \mathcal{I} + \frac{\pi}{\mathcal{E}} -$$

23. (*MИОО*, 2011) Решите уравнение:
$$\frac{(\sin x - 1)(2\cos x + 1)}{\sqrt{\lg x}} = 0.$$

$$\mathbb{Z}\ni n \ , n\pi 2 + \frac{\pi 2}{\xi} -$$

22. (*MИОО*, 2011) Решите уравнение:
$$(\cos x - 1)(\operatorname{tg} x + \sqrt{3})\sqrt{\cos x} = 0$$
.

$$\mathbb{Z} \ni n \ , n\pi \mathcal{I} + \frac{\pi}{8} - n\pi \mathcal{I}$$

21. (*МИОО*, 2010) Решите уравнение:
$$\frac{\sin 2x + 2\sin^2 x}{\sqrt{-\cos x}} = 0$$
.

$$\mathbb{Z}\ni n\ ,n\pi\mathbb{2}+\frac{\pi\mathbb{2}}{4}\ ,n\pi\mathbb{2}+\pi$$

20. (*MUOO*, 2010) Решите уравнение:
$$(2\cos x - 1)(\sqrt{-\sin x} - 1) = 0$$
.

$$\boxed{\mathbb{Z}\ni n \ , n\pi\mathbb{2}+\frac{\pi}{2}-, n\pi\mathbb{2}+\frac{\pi}{8}-}$$

19. (MUOO, 2010) Решите уравнение: $(2\sin x - 1)(\sqrt{-\cos x} + 1) = 0$.

$$\boxed{\mathbb{Z}\ni n \ , n\pi\mathfrak{L}+\frac{\pi\eth}{\partial}}$$

18. (*МИОО*, 2010) Решите уравнение: $\frac{2\sin^2 x - 5\sin x - 3}{\sqrt{x + \frac{\pi}{6}}} = 0.$

...,
$$\xi$$
, ζ , $1 = n$, $n\pi + \frac{\pi}{6}^{1+n}(1-)$

17. (*ЕГЭ*, 2010) Решите систему уравнений: $\begin{cases} 9^{\lg x} + 5 \cdot 3^{\lg x} - 6 = 0, \\ 4^{3y+1} - 2\cos x = 0. \end{cases}$

$$\exists \exists n , \left(\frac{1}{6} - ; n\pi \mathcal{I}\right)$$

16. (*ЕГЭ*, 2010) Решите систему уравнений: $\begin{cases} y - \cos x = 0, \\ (2\sqrt{\cos x} - 1)(2y - 4) = 0. \end{cases}$

$$\boxed{\exists \exists \arccos \frac{1}{4} : n\pi 2 + \frac{1}{4} \operatorname{socos} \pm)}$$

15. (*ЕГЭ*, 2010) Решите систему уравнений: $\begin{cases} 81^{\lg x} - 8 \cdot 9^{\lg x} - 9 = 0, \\ \sqrt{y-2} + 8\cos x = 0. \end{cases}$

$$\boxed{\mathbb{Z}\ni n \cdot \left(\mathbb{A}\xi ; n\pi\mathbb{I} + \frac{\pi}{4} - \right)}$$

14. (*МИОО*, 2010) Решите систему уравнений: $\begin{cases} y \operatorname{ctg} x = -9, \\ y \operatorname{tg} x = -3. \end{cases}$

$$\boxed{\mathbb{Z}\ni n\;, \left(\overline{\mathbb{E}} \sqrt{\mathbb{E}- ; n\pi + \frac{\pi}{\partial}}\right)\;, \left(\overline{\mathbb{E}} \sqrt{\mathbb{E}} \;; n\pi + \frac{\pi}{\partial} - \right)}$$

13. (*МИОО*, 2010) Решите систему уравнений: $\begin{cases} y^2 = x, \\ \sin y^2 = \cos x. \end{cases}$

$$\boxed{\ldots,2,1,0=n,\left(n\pi+\frac{\pi}{4}\right)\pm n\pi+\frac{\pi}{4}}$$

12. (*МИОО*, 2010) Решите систему уравнений: $\begin{cases} 2\cos^2 x - \cos x - 1 = 0, \\ \sqrt{y^2 - y - 3} + 2\sin x = 0. \end{cases}$

$$\boxed{ \mathbb{Z}\ni n, \left(\mathbb{E}; n\pi\mathbb{2} + \frac{\pi\mathbb{2}}{\mathbb{E}} - \right), \left(\mathbb{2} - \pi\pi\mathbb{2} + \frac{\pi\mathbb{2}}{\mathbb{E}} - \right), \left(\frac{1}{\mathbb{E}} + \mathbb{E}\pi\mathbb{2}, n\pi\mathbb{2}\right), \left(\frac{2\pi}{\mathbb{E}} + \mathbb{E}\pi\mathbb{2}, n\pi\mathbb{2}\right), \left(\frac{1}{\mathbb{E}} + \mathbb{E}\pi\mathbb{2}, n\pi\mathbb{2}\right) }$$

11. (*МИОО*, 2010) Решите систему уравнений:
$$\begin{cases} x^2 = 8 \sin y + 1, \\ x + 1 = 2 \sin y. \end{cases}$$

10. (*МИОО*, 2010) Решите систему уравнений:
$$\begin{cases} 3^y + 2\cos x = 0, \\ 2\sin^2 x - 3\sin x - 2 = 0. \end{cases}$$

$$\boxed{\mathbb{Z}\ni n, \left(\frac{1}{2}; n\pi\mathbb{1} + \frac{\pi}{6} - \right)}$$

9. (*МИОО*, 2010) Решите систему уравнений:
$$\begin{cases} 25^{\lg x} + 5^{\lg x + 1} - 50 = 0, \\ \sqrt{2\cos x} + 2y = 3\sqrt[4]{2}. \end{cases}$$

$$\boxed{\mathbb{Z}\ni n\, \left(\overline{\zeta}\sqrt{\chi}\, ; n\pi \zeta + \frac{\pi}{\underline{\mu}}\right)}$$

8. (*МИОО*, 2010) Решите систему уравнений:
$$\begin{cases} \sqrt{\cos y} \sqrt{6x - x^2 - 8} = 0, \\ \sqrt{\sin x} \sqrt{2 - y - y^2} = 0. \end{cases}$$

$$\left(\frac{\pi}{2} - \pi\right), (1;2)$$

7. (МИОО, 2010) Решите систему уравнений:
$$\begin{cases} 2\cos 2x + 3\sin x = 1, \\ y^2\cos x + y\cos x + \frac{\sqrt{15}}{2} = 0. \end{cases}$$

$$\boxed{ \mathbb{Z} \ni n \ \left(\mathbb{I} : n\pi\mathbb{Z} + \frac{1}{4} \operatorname{missin} + \pi\right) \ \left(\mathbb{Z} - : n\pi\mathbb{Z} + \frac{1}{4} \operatorname{missin} + \pi\right) }$$

6. (*МИОО*, 2009) Решите систему уравнений:
$$\begin{cases} \cos(x+y) = -\frac{1}{2}, \\ \sin x + \sin y = \sqrt{3}. \end{cases}$$

$$\sin x + \sin y = \sqrt{3}.$$

$$\boxed{\mathbb{Z}\ni n,\lambda,\left(n\pi\mathbb{Z}+\frac{\pi}{8};2\pi\mathbb{Z};\frac{2\pi}{8}+2\pi\mathbb{Z};\frac{2\pi}{8};\frac{2\pi}{8}+2\pi\mathbb{Z};\frac{\pi}{8};\frac{\pi}{8}+2\pi\mathbb{Z};\frac{\pi}{8}\right)}$$

5. (*МИОО*, 2009) Решите систему уравнений:
$$\begin{cases} \sin x + \sin y = 1, \\ |x - y| = \frac{2\pi}{3}. \end{cases}$$

$$|x-y| = \frac{1}{2} \cdot \left(n\pi^2 + \frac{n^2}{3} : n\pi^2 + \frac{n}{3} \right) \cdot \left(n\pi^2 + \frac{n}{3} : n\pi^2 + \frac{n^2}{3} \right)$$

4. (*МИОО*, 2009) Решите систему уравнений:
$$\begin{cases} 16^{\cos x} - 10 \cdot 4^{\cos x} + 16 = 0, \\ \sqrt{y} + 2\sin x = 0. \end{cases}$$

$$+ 2\sin x = 0.$$

$$\mathbb{Z} \ni u \cdot \left(\varepsilon : u + \frac{\varepsilon}{\mu} - \right)$$

3. (*МИОО*, 2009) Решите систему уравнений:
$$\begin{cases} \frac{2\sin^2 x - 3\sin x + 1}{\sqrt{y}} = 0, \\ y - \cos x = 0. \end{cases}$$

$$\boxed{\mathbb{Z}\ni n\ , \left(\frac{\overline{\xi}\vee}{2}\, ; n\pi\mathbb{Z}+\frac{\pi}{\partial}\right)}$$

2. (*МИОО*, 2009) Решите систему уравнений:
$$\begin{cases} \sin x - \sin y = 1, \\ \sin^2 x + \cos^2 y = 1. \end{cases}$$

$$\boxed{\mathbb{Z}\ni \lambda, n, \left(\lambda \pi + \frac{\pi}{6}^{1+\lambda}(1-); n\pi + \frac{\pi}{6}^{n}(1-)\right)}$$

1. (*МИОО*, 2009) Решите систему уравнений:
$$\begin{cases} (2x^2 - 5x - 3)\sqrt{\cos y} = 0, \\ \sin y = x. \end{cases}$$

$$\boxed{\mathbb{Z}\ni n\ . \left(n\pi\mathbb{S}+\frac{\pi}{6}-;\frac{1}{2}-\right)\ . \left(n\pi+\frac{\pi}{2};^{n}(\mathbb{I}-)\right)}$$