TECNICAS DIGITALES I

KIT CPLD XC9572XL

Kit de desarrollo

Características Electricas

Absolute Maximum Ratings(2)

Symbol	Description	Value	Units	
V _{cc}	Supply voltage relative to GND	-0.5 to 4.0	V	
VIN	Input voltage relative to GND ⁽¹⁾	-0.5 to 5.5	V	
V _{TS}	Voltage applied to 3-state output ⁽¹⁾	-0.5 to 5.5	V	
T _{STG}	Storage temperature (ambient)(3)	-65 to +150	°C	
TJ	Junction temperature	+150	°C	

Notes:

- Maximum DC undershoot below GND must be limited to either 0.5V or 10 mA, whichever is easier to achieve. During transitions, the
 device pins may undershoot to -2.0 V or overshoot to +7.0V, provided this over- or undershoot lasts less than 10 ns and with the
 forcing current being limited to 200 mA. External I/O voltage may not exceed V_{CCINT} by 4.0V.
- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
 ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
 is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
- For soldering guidelines and thermal considerations, see the <u>Device Packaging</u> information on the Xilinx website. For Pb-free packages, see <u>XAPP427</u>.

Recommended Operation Conditions

Symbol	Parameter		Min	Max	Units
V _{CCINT}	Supply voltage for internal logic and input buffers	Commercial T _A = 0°C to 70°C	3.0	3.6	V
		Industrial T _A = -40°C to +85°C	3.0	3.6	V
V _{CCIO}	Supply voltage for output drivers for 3.3V operation		3.0	3.6	V
	Supply voltage for output drivers for 2.5V operation		2.3	2.7	V
V _{IL}	Low-level input voltage		0	0.80	V
V _{IH}	High-level input voltage		2.0	5.5	V
Vo	Output voltage		0	V _{CCIO}	V

Reprogramación y Condiciones de operación

Quality and Reliability Characteristics

Symbol	Parameter	Min	Max	Units Years Cycles	
T _{DR}	Data Retention	20	<u>19</u>		
N _{PE}	Program/Erase Cycles (Endurance)	10,000	2		
V _{ESD}	Electrostatic Discharge (ESD)	2,000	<u>u</u>	Volts	

DC Characteristic Over Recommended Operating Conditions

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{OH}	Output high voltage for 3.3V outputs	I _{OH} = -4.0 mA	2.4	-	٧
	Output high voltage for 2.5V outputs	I _{OH} = -500 μA	90% V _{CCIO}	+	V
V _{OL}	Output low voltage for 3.3V outputs	I _{OL} = 8.0 mA	878	0.4	V
	Output low voltage for 2.5V outputs	I _{OL} = 500 μA	8.78	0.4	V
IIL	Input leakage current	V _{CC} = Max; V _{IN} = GND or V _{CC}	7720	±10	μΑ
I _{IH}	I/O high-Z leakage current	V _{CC} = Max; V _{IN} = GND or V _{CC}		±10	μΑ
I _{IH}	I/O high-Z leakage current	V _{CC} = Max; V _{CCIO} = Max; V _{IN} = GND or 3.6V	3723	±10	μА
		V _{CC} Min < V _{IN} < 5.5V	22	±50	μА
C _{IN}	I/O capacitance	V _{IN} = GND; f = 1.0 MHz	3743	10	pF
I _{CC}	Operating supply current (low power mode, active)	V _{IN} = GND, No load; f = 1.0 MHz	20 (Typic	20 (Typical)	

Arquitectura del CPLD

DS057_02_082800

Figure 2: XC9572XL Architecture

Bloque Funcional

Figure 2: XC9500XL Function Block

Macrocelda

Figure 3: XC9500XL Macrocell Within Function Block

Circuito SET-RESET

Figure 4: Macrocell Clock and Set/Reset Capability

Figure 6: Product Term Allocation With 15 Product Terms

Figure 7: Product Term Allocation Over Several Macrocells

Lógica

Figure 8: Product Term Allocator LogIc

Matriz de interconexión

Figure 9: FastCONNECT II Switch Matrix

Bloque de I/O

Figure 10: I/O Block and Output Enable Capability

Puerto de grabación

Circuito CPLD

Circuito de Prueba

UCF

```
#PACE: Start of Constraints generated by PACE
#PACE: Start of PACE I/O Pin Assignments
NET "clk1" LOC = "P5"
NET "clk2" LOC = "P7"
NET "clk3" LOC = "P6"
NET "led_tx_prog" LOC = "P8" ;
NET "leds<0>" LOC = "P1"
NET "leds<1>" LOC = "P2"
NET "leds<2>" LOC = "P3"
NET "leds<3>" LOC = "P4" ;
NET "leds<4>" LOC = "P11"
NET "leds<5>" LOC = "P12"
NET "leds<6>" LOC = "P13" ;
NET "leds<7>" LOC = "P14" ;
#NET "pulsador1" LOC = "P27";
#NET "pulsador2" LOC = "P33" ;
NET "pulsador_rx_prog" LOC = "P9"
```

Placa Expansión

Display

