Figure #1 contains a visual representation of the terms related to **spur gears** and to the **tooth root stress calculation**.

In figure #2 there is the schema used to generate the **involute profile of the tooth of the gear**.

Figure #3 represents the **rack cutter** used to generate the gear, as defined in ISO 53:1998.

In the following table there are a numerical example and some basic **formulas related to standard spur gears** valid if R/m = 0 and x/m = 0.

Element	Formula	Example
number of teeth	Z Z	30
module	m m	5 mm
pressure angle	lpha $lpha$	20°
rack shift coefficient	x/m x/m	0
coefficient of fillet radius of the rack cutter	R/m R/m	0

static nominal torque	C C	250 Nm
face width	b b	10 mm
	$l_0 = \frac{d}{2} \cdot \sin^2(\alpha)$ $l0=d2 \cdot \sin 2(\alpha)$	8.77 mm
	$\frac{y}{d/2} = \frac{2.5}{z} - \sin^2(\alpha)$ $yd/2=2.5z-\sin^2(\alpha)$	-0.0336
	$1 = 1_0 + y$ 1 = 10 + y	6.25 mm
pitch	$p = m \cdot \pi$ $p=m \cdot \pi$	15.71 mm
reference diameter	$d = m \cdot z$ $d=m \cdot z$	150 mm
base diameter	$d_b = d \cdot \cos(\alpha)$ $db = d \cdot \cos(\alpha)$	140.95 mm
involute tooth limit diameter	$d_{lim} = 2 \cdot \sqrt{(r-l)^{2} + (\frac{1}{\tan(\alpha)})^{2}}$ $dlim=2 \cdot (r-l)2 + (ltan(\alpha))2$	141.72 mm
root diameter	$d_f = d - 2 \cdot 1$ $df = d - 2 \cdot I$	137.5 mm
addendum diameter	$d_t = d + 2 \cdot m$ $dt=d+2 \cdot m$	160 mm

tooth addendum	$t_a = m$ ta=m	5 mm
tooth dedendum	$t_{f} = 1.25 \cdot m$ $tf=1.25 \cdot m$	6.25 mm
circular reference tooth thickness	$s = \frac{m \cdot \pi}{2}$ $s=m \cdot \pi 2$	7.85 mm
	$z_{min} = 1.25 \cdot \frac{2}{\sin^2(\alpha)}$ $zmin=1.25 \cdot 2sin2(\alpha)$	22
rack addendum	$h_a = 1.25 \cdot m$ $ha=1.25 \cdot m$	6.25 mm
rack dedendum	$h_f = 1.25 \cdot m$ hf=1.25·m	6.25 mm
nominal load, normal to the line of contact	$F_{bn} = \frac{C}{d/2 \cdot \cos(\alpha)}$ $Fbn = Cd/2 \cdot \cos(\alpha)$	3547.26 N
	$\frac{\alpha_1}{\alpha_1}$	26.92°
nominal transverse load in plane of action	$F_{bt} = F_{bn} \cdot \cos(\alpha_1)$ $Fbt = Fbn \cdot \cos(\alpha_1)$	3162.85 N
tooth root chord at the critical section	s _{Fn} sFn	9.74 mm
bending moment arm relevant to load application at the tooth tip	h _{Fe} hFe	9.4 mm

tooth form factor - Lewis method	$\begin{aligned} Y_L &= \frac{s_{Fn}^{-2}}{6 \cdot h_{Fe} \cdot m} \\ \text{YL=sFn26·hFe·m} \end{aligned}$	0.3361
tooth root bending stress at point T	$\sigma_f = \frac{F_{bt}}{Y_L \cdot b \cdot m}$ $\sigma f = FbtYL \cdot b \cdot m$	188.21 N/mm ²

Gear ratio

The gear ratio $\tau\tau$ of a gear train is the ratio of the angular velocity of the input gear to the angular velocity of the output gear:

$$\tau = \frac{\omega_1}{\omega_2} = \frac{d_2}{d_1} = \frac{z_2}{z_1}$$
$$\tau = \omega 1 \omega 2 = d2d1 = z2z1$$

where

 $\omega_1\omega 1$ is the angular velocity of the input gear e $\omega_2\omega 2$ is the angular velocity of the output gear; d_1d1 is the reference diameter of the input gear e d_2d2 is the reference diameter of the output gear;

 z_1z_1 is the number of teeth of the input gear e z_2z_2 is the number of teeth of the output gear.

Center distance

For a pinion and a wheel without correction (x/m = 0) or in case of complementary correction (e.g. the pinion with a positive correction x/m = +0.5 and the wheel with a negative correction x/m = -0.5), the center distance it is calculated with the formula:

$$i = \frac{d_1}{2} + \frac{d_2}{2} = \frac{m \cdot (z_1 + z_2)}{2}$$

 $i = d_1 + d_2 = m \cdot (z_1 + z_2)$

In case $x_1 + x_2 \neq 0$ x1+x2 \neq 0, the center distance i'i' is different from ii and may be calculated solving the following formulas:

$$inv(\alpha') = \frac{2 \cdot (x_1 + x_2) \cdot tan(\alpha)}{m \cdot (z_1 + z_2)} + inv(\alpha)$$

$$inv(\alpha') = 2 \cdot (x_1 + x_2) \cdot tan(\alpha) \cdot (z_1 + z_2) + inv(\alpha)$$

$$i' = i \cdot \frac{cos(\alpha)}{cos(\alpha')}$$

$$i' = i \cdot cos(\alpha) \cdot cos(\alpha')$$

where α' a' is the working pressure angle, different from the pressure angle α a of the rack cutter.

Clearance

The pinion-wheel clearance cc depends from the value of (x_1+x_2) (x1+x2) and may be calculated with the formula

$$c = m \cdot [0.25 - \frac{x_1 + x_2}{m} + \frac{z_1 + z_2}{2} \cdot (\frac{\cos(\alpha)}{\cos(\alpha')} - 1)]$$

$$c = m \cdot [0.25 - x1 + x2m + z1 + z22 \cdot (\cos(\alpha)\cos(\alpha') - 1)]$$

For gears with $x_1 + x_2 = 0\,$ x1+x2=0, the clearance is equal to 0.25m (type A basic rack tooth profile - ISO 53:1998).