```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Subtyping From the Beginning

Last major topic

Build up key ideas from first principles

- In pseudocode because:
 - No time for another language
 - Simple to first show subtyping without objects

Then, a few segments from now:

- How does subtyping relate to types for OOP?
 - Brief sketch only
- What are the relative strengths of subtyping and generics?
- How can subtyping and generics combine synergistically?

A tiny language

- Can cover most core subtyping ideas by just considering records with mutable fields
- Will make up our own syntax
 - ML has records, but no subtyping or field-mutation
 - Racket and Ruby have no type system
 - Java uses class/interface names and rarely fits on a slide

Records (half like ML, half like Java)

Record creation (field names and contents):

Record field access:

e.f

Evaluate **e** to record **v** with an **f** field, get contents of **f** field

Record field update

e1.f = e2

Evaluate e1 to a record v1 and e2 to a value v2; Change v1's f field (which must exist) to v2; Return v2

A Basic Type System

Record types: What fields a record has and type for each field

```
{f1:t1, f2:t2, ..., fn:tn}
```

Type-checking expressions:

- If e1 has type t1, ..., en has type tn,
 then {f1=e1, ..., fn=en} has type {f1:t1, ..., fn:tn}
- If e has a record type containing f: t,
 then e.f has type t
- If e1 has a record type containing f: t and e2 has type t,
 then e1.f = e2 has type t

This is safe

These evaluation rules and typing rules prevent ever trying to access a field of a record that does not exist

Example program that type-checks (in a made-up language):

```
fun distToOrigin (p:{x:real,y:real}) =
   Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin(pythag)
```

Motivating subtyping

But according to our typing rules, this program does not type-check

It does nothing wrong and seems worth supporting

```
fun distToOrigin (p:{x:real,y:real}) =
   Math.sqrt(p.x*p.x + p.y*p.y)

val c : {x:real,y:real,color:string} =
   {x=3.0, y=4.0, color="green"}

val five : real = distToOrigin(c)
```

A good idea: allow extra fields

Natural idea: If an expression has type

```
{f1:t1, f2:t2, ..., fn:tn}
```

Then it can also have a type with some fields removed

This is what we need to type-check these function calls:

```
fun distToOrigin (p:{x:real,y:real}) = ...
fun makePurple (p:{color:string}) = ...

val c :{x:real,y:real,color:string} =
    {x=3.0, y=4.0, color="green"}

val _ = distToOrigin(c)
val _ = makePurple(c)
```

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
    [] => []
    | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

The Subtype Relation

Keeping subtyping separate

A programming language already has a lot of typing rules and we do not want to change them

Example: The type of an actual function argument must
 equal the type of the function parameter

We can do this by adding "just two things to our language"

- Subtyping: Write t1 <: t2 for t1 is a subtype of t2</p>
- One new typing rule that uses subtyping:
 If e has type t1 and t1 <: t2,
 then e (also) has type t2

Now all we need to do is define t1 <: t2

Subtyping is not a matter of opinion

- Misconception: If we are making a new language, we can have whatever typing and subtyping rules we want
- Not if you want to prevent what you claim to prevent [soundness]
 - Here: No accessing record fields that do not exist
- Our typing rules were sound before we added subtyping
 - We should keep it that way
- Principle of substitutability: If t1 <: t2, then any value of type
 t1 must be usable in every way a t2 is
 - Here: Any value of subtype needs all fields any value of supertype has

Four good rules

For our record types, these rules all meet the substitutability test:

- 1. "Width" subtyping: A supertype can have a subset of fields with the same types
- 2. "Permutation" subtyping: A supertype can have the same set of fields with the same types in a different order
- 3. Transitivity: If t1 <: t2 and t2 <: t3, then t1 <: t3
- 4. Reflexivity: Every type is a subtype of itself
- (4) may seem unnecessary, but it composes well with other rules in a full language and "does no harm"

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Depth Subtyping

More record subtyping?

[Warning: I am misleading you ©]

Subtyping rules so far let us drop fields but not change their types

Example: A circle has a center field holding another record

```
fun circleY (c:{center:{x:real,y:real}, r:real}) =
    c.center.y

val sphere: {center:{x:real,y:real,z:real}, r:real} =
    {center={x=3.0,y=4.0,z=0.0}, r=1.0}

val _ = circleY(sphere)
```

For this to type-check, we need:

Do not have this subtyping – could we?

- No way to get this yet: we can drop center, drop r, or permute order, but cannot "reach into a field type" to do subtyping
- So why not add another subtyping rule... "Depth" subtyping:
 If ta <: tb, then {f1:t1, ..., f:ta, ..., fn:tn} <: {f1:t1, ..., f:tb, ..., fn:tn}
- Depth subtyping (along with width on the field's type) lets our example type-check

Stop!

- It is nice and all that our new subtyping rule lets our example type-check
- But it is not worth it if it breaks soundness.
 - Also allows programs that can access missing record fields
- Unfortunately, it breaks soundness S

Mutation strikes again

```
If ta <: tb.
 then {f1:t1, ..., f:ta, ..., fn:tn} <:
     {f1:t1, ..., f:tb, ..., fn:tn}
fun setToOrigin (c:{center:{x:real,y:real}, r:real}) =
   c.center = \{x=0.0, y=0.0\}
val sphere: {center:{x:real,y:real,z:real}, r:real} =
  {center={x=3.0, y=4.0, z=0.0}, r=1.0}
val = setToOrigin(sphere)
val = sphere.center.z (* kaboom! (no z field) *)
```

Moral of the story

- In a language with records/objects with getters and setters, depth subtyping is unsound
 - Subtyping cannot change the type of fields
- If fields are immutable, then depth subtyping is sound!
 - Yet another benefit of outlawing mutation!
 - Choose two of three: setters, depth subtyping, soundness
- Remember: subtyping is not a matter of opinion

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Optional: Java/C# Arrays

Picking on Java (and C#)

Arrays should work just like records in terms of depth subtyping

- But in Java, if t1 <: t2, then t1[] <: t2[]</p>
- So this code type-checks, surprisingly

```
class Point { ... }
class ColorPoint extends Point { ... }
void m1(Point[] pt_arr) {
 pt arr[0] = new Point(3,4);
String m2 (int x) {
  ColorPoint[] cpt arr = new ColorPoint[x];
  for (int i=0; i < x; i++)
     cpt arr[i] = new ColorPoint(0,0,"green");
  m1(cpt arr); //!
  return cpt arr[0].color; // !
```

Why did they do this?

- More flexible type system allows more programs but prevents fewer errors
 - Seemed especially important before Java/C# had generics
- Good news: despite this "inappropriate" depth subtyping
 - e.color will never fail due to there being no color field
 - Array reads e1 [e2] always return a (subtype of) t if e1 is a t[]
- Bad news: to get the good news
 - e1[e2]=e3 can fail even if e1 has type t[] and e3 has type t
 - Array stores check the run-time class of e1's elements and do not allow storing a supertype
 - No type-system help to avoid such bugs / performance cost

So what happens

- Causes code in m1 to throw an ArrayStoreException
 - Even though logical error is in m2
 - At least run-time checks occur only on array stores, not on field accesses like c.color

null

- Array stores probably the most surprising choice for flexibility over static checking
- But **null** is the most *common* one in practice
 - null is not an object; it has no fields or methods
 - But Java and C# let it have any object type (backwards, huh?!)
 - So, in fact, we do not have the static guarantee that evaluating
 e in e.f or e.m(...) produces an object that has an f or m
 - The "or null" caveat leads to run-time checks and errors, as you have surely noticed
- Sometimes null is convenient (like ML's option types)
 - But also having "cannot be null" types would be nice

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Function Subtyping

Now functions

- Already know a caller can use subtyping for arguments passed
 - Or on the result
- More interesting: When is one function type a subtype of another?
 - Important for higher-order functions: If a function expects an argument of type t1 -> t2, can you pass a t3 -> t4 instead?
 - Coming next: Important for understanding methods
 - (An object type is a lot like a record type where "method positions" are immutable and have function types)

Example

No subtyping here yet:

- flip has exactly the type distMoved expects for f
- Can pass in a record with extra fields for p, but that's old news

Return-type subtyping

- Return type of flipGreen is {x:real,y:real,color:string},
 but distMoved expects a return type of {x:real,y:real}
- Nothing goes wrong: If ta <: tb, then t -> ta <: t-> tb
 - A function can return "more than it needs to"
 - Jargon: "Return types are covariant"

This is wrong

- Argument type of flipIfGreen is {x:real,y:real,color:string}, but it is called with a {x:real,y:real}
- Unsound! ta <: tb does NOT allow ta -> t <: tb -> t

The other way works!

- Argument type of flipX_Y0 is {x:real} but it is called with a {x:real, y:real}, which is fine
- If tb <: ta, then ta -> t <: tb -> t
 - A function can assume "less than it needs to" about arguments
 - Jargon: "Argument types are contravariant"

Can do both

flipXMakeGreen has type

```
{x:real} -> {x:real,y:real,color:string}
```

• Fine to pass a function of such a type as function of type

```
{x:real,y:real} -> {x:real,y:real}
```

If t3 <: t1 and t2 <: t4, then t1 -> t2 <: t3 -> t4

Conclusion

- If t3 <: t1 and t2 <: t4, then t1 -> t2 <: t3 -> t4
 - Function subtyping contravariant in argument(s) and covariant in results
- Also essential for understanding subtyping and methods in OOP
- The most unintuitive concept in this course
 - Smart people often forget and convince themselves that covariant arguments are okay
 - These smart people are always mistaken
 - At times, you or your boss or your friend may do this
 - Remember: A guy with a PhD in PL jumped out and down insisting that function/method subtyping is always contravariant in its argument -- covariant is unsound

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman 2013

Subtyping for OOP

Now...

Use what we learned about subtyping for records and functions to understand subtyping for class-based OOP

Like in Java/C#

Recall:

- Class names are also types
- Subclasses are also subtypes
- Substitution principle: Instance of subclass should usable in place of instance of superclass

An object is...

- Objects: mostly records holding fields and methods
 - Fields are mutable
 - Methods are immutable functions that also have access to self
- So could design a type system using types very much like record types
 - Subtypes could have extra fields and methods
 - Overriding methods could have contravariant arguments and covariant results compared to method overridden
 - Sound only because method "slots" are immutable!

Actual Java/C#...

Compare/contrast to what our "theory" allows:

- 1. Types are class names and subtyping are explicit subclasses
- 2. A subclass can add fields and methods
- 3. A subclass can override a method with a covariant return type
 - (No contravariant arguments; instead makes it a nonoverriding method of the same name)
- (1) Is a subset of what is sound (so also sound)
- (3) Is a subset of what is sound and a different choice (adding method instead of overriding)

Classes vs. Types

- A class defines an object's behavior
 - Subclassing inherits behavior and changes it via extension and overriding
- A type describes an object's methods' argument/result types
 - A subtype is substitutable in terms of its field/method types
- These are separate concepts: try to use the terms correctly
 - Java/C# confuse them by requiring subclasses to be subtypes
 - A class name is both a class and a type
 - This confusion is convenient in practice

Optional: More details

Java and C# are sound: They do not allow subtypes to do things that would lead to "method missing" or accessing a field at the wrong type

Confusing (?) Java example:

- Subclass can declare field name already declared by superclass
- Two classes can use any two types for the field name
- Instance of subclass have two fields with same name
- "Which field is in scope" depends on which class defined the method

Optional: self/this is special

- Recall our Racket encoding of OOP-style
 - "Objects" have a list of fields and a list of functions that take
 self as an explicit extra argument
- So if **self/this** is a function argument, is it contravariant?
 - No, it is *covariant*: a method in a subclass can use fields and methods only available in the subclass: essential for OOP

```
class A {
  int m() { return 0; }
}
class B extends A {
  int x;
  int m() { return x; }
}
```

- Sound because calls always use the "whole object" for self
- This is why coding up your own objects manually works much less well in a statically typed languages

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Generics Versus Subtyping

What are generics good for?

Some good uses for parametric polymorphism:

Types for functions that combine other functions:

```
fun compose (g,h) = fn x => g (h x)
(*compose: ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)
```

Types for functions that operate over generic collections

```
val length : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
val swap : ('a * 'b) -> ('b * 'a)
```

- Many other idioms
- General point: When types can "be anything" but multiple things need to be "the same type"

Generics in Java

- Java generics a bit clumsier syntactically and semantically, but can express the same ideas
 - Without closures, often need to use (one-method) objects
 - See also earlier optional lecture on closures in Java/C
- Simple example without higher-order functions (optional):

```
class Pair<T1,T2> {
   T1 x;
   T2 y;
   Pair(T1 _x, T2 _y) { x = _x; y = _y; }
   Pair<T2,T1> swap() {
      return new Pair<T2,T1>(y,x);
   }
   ...
}
```

Subtyping is not good for this

- Using subtyping for containers is much more painful for clients
 - Have to downcast items retrieved from containers
 - Downcasting has run-time cost
 - Downcasting can fail: no static check that container holds the type of data you expect
 - (Only gets more painful with higher-order functions like map)

```
class LamePair {
  Object x;
  Object y;
  LamePair(Object _x, Object _y) { x=_x; y=_y; }
  LamePair swap() { return new LamePair(y,x); }
}
// error caught only at run-time:
String s = (String) (new LamePair("hi",4).y);
```

What is subtyping good for?

Some good uses for subtype polymorphism:

- Code that "needs a Foo" but fine to have "more than a Foo"
- Geometry on points works fine for colored points
- GUI widgets specialize the basic idea of "being on the screen" and "responding to user actions"

Awkward in ML

ML does not have subtyping, so this simply does not type-check:

```
(* {x:real, y:real} -> real *)
fun distToOrigin ({x=x,y=y}) =
    Math.sqrt(x*x + y*y)

val five = distToOrigin {x=3.0,y=4.0,color="red"}
```

Cumbersome workaround: have caller pass in getter functions:

And clients still need different getters for points, color-points

```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

Bounded Polymorphism

Wanting both

- Could a language have generics and subtyping?
 - Sure!
- More interestingly, want to combine them
 - "Any type T1 that is a subtype of T2"
 - This is bounded polymorphism
 - Lets you do things naturally you cannot do with generics or subtyping separately

Example

Method that takes a list of points and a circle (center point, radius)

Return new list of points in argument list that lie within circle

Basic method signature:

Optional: Java implementation straightforward assuming Point has a distance method

```
List<Point> result = new ArrayList<Point>();
for(Point pt: pts)
  if(pt.distance(center) <= r)
    result.add(pt);
return result;</pre>
```

Subtyping?

- Would like to use inCircle by passing a List<ColorPoint>
 and getting back a List<ColorPoint>
- Java rightly disallows this: While inCircle would "do nothing wrong" its type does not prevent:
 - Returning a list that has a non-color-point in it
 - Modifying pts by adding non-color-points to it

Generics?

We could change the method to be

- Now the type system allows passing in a List<Point> to get a List<Point> returned or a List<ColorPoint> to get a List<ColorPoint> returned
- But we cannot implement inCircle properly because method body should have no knowledge of type T

Bounds

What we want:

- Caller uses it generically, but must instantiate T with a subtype of Point (including Point)
- Callee can assume T <: Point so it can do its job
- Callee must return a List<T> so output will contain only list elements from input

Optional: Real Java

The actual Java syntax

- For backward-compatibility and implementation reasons, in Java there is actually always a way to use casts to get around the static checking with generics
 - With or without bounded polymorphism