L'élaboration d'un plan de sondage probabiliste pour une enquête sortie des urnes L'enquête PEOPLE2022 à Roubaix

Thomas Soubiran

CERAPS (UMR 8026 CNRS-Université de Lille)

Séminaire VENDREDIS QUANTI

PACTE, Grenoble, 26 mai 2023

- présentation du plan de sondage
- élaboré pour deux enquêtes sorties des urnes
- réalisées à Roubaix lors des présidentielles de 2022
- ightharpoonup dans le cadre du projet $P_{\text{EOPLE}}2022$

Le plan de sondage des deux enquêtes est un tirage :

- à deux degrés
- par grappes
- coordonné
- équilibré
- par rejet

comme il serait difficile

et par forcément pertinent

- ▶ de passer en revue tous les aspects du plan en détail
- ce qui suit vise plutôt à
 - présenter la démarche en général
 - ▶ c-à-d les problèmes et les solutions qui y ont été apportées
 - et comment la résolution de ces problèmes peut s'appuyer sur les techniques d'enquêtes
 - ▶ fondées dans la théorie des sondages
 - particulièrement dans l'utilisation de l'information auxiliaire et des ressources disponibles

- la préparation d'une enquête nécessite en effet
- ▶ de prendre de nombreuses décisions
- qui auront des conséquences sur le déroulement de l'enquête
- ▶ ainsi que les données en résultant
- et donc les résultat du traitements des données
- en l'occurrence,
 - combien de bureaux de vote enquêtés
 - quels bureaux de votes
 - ▶ combien d'enquêteurs par bureau de vote
- les techniques d'enquête permettent d'étayer ces décisions
- en s'appuyant sur les données pour
- minimiser le biais et la variance des estimateurs

Rappels sur les plans de sondages

Pour commencer,

- ► rappel de quelques aspects
- ▶ de la théorie des plans sondages en général
- ▶ utiles pour la présentation du plan de l'enquête ensuite

Sondage

L'enquête par sondage signifie généralement

- ▶ faire des observations sur un nombre limité d'unités
- ▶ c-à-d recueillir un échantillon
- > pour tirer des conclusions sur la population dont il est issu

inférence

Toutefois,

- ▶ l'inférence à partir d'un échantillon
- ▶ ne caractérise pas un sondage en propre
- c'est p. ex. aussi le cas pour les plans d'expérience
- ▶ et pas seulement
- ightharpoonup parce qu'en général, $n \neq ALL$
- ▶ contrairement à ce qui a pu être affirmé par le passé...

Sondage en population finie

La particularité des sondages,

- ▶ est plutôt de recueillir un échantillon
- d'une population de taille fixe
- ▶ qui se traduit par un taux de sondage

$$f = \frac{n}{N}$$

avec n la taille de l'échantillon et N la taille de la population

- on parle alors d'inférence en population finie
- par opposition à l'inférence en population infinie

comme les plans d'expérience où il n'y a aucune notion de taux de sondage

Sondage en population finie

De plus,

on cherche généralement

mais pas nécessairement

> à ne sélectionner les unités qu'une seule fois au plus

sélection sans remise ou tirage sans remise (si on introduit de l'aléas dans la sélection)

Autre particularité :

▶ utilisation d'informations auxiliaires

c-à-d des informations sur la population connues au préalable de la collecte

- à la fois pour organiser la collecte
- et améliorer la qualité des estimateurs

biais et précision

Coordination d'échantillons

Cas particulier : les suivis dans le temps (panels)

- où des unités sont enquêtées plusieurs fois
- parfois dans le cadre d'une rotation
 - où on planifie la sortie progressive des unités
 - ▶ et leur remplacement
 - pour limiter la charge
 - et tempérer la contraction inéluctable de l'échantillon
- on parle alors de coordination positive
 - qui vise à maintenir des unités dans l'échantillon
 - pour un nombre prédéterminé de fois
- ▶ par opposition à la coordination négative
 - qui vise à exclure de l'échantillon des unités déjà sélectionnées
 - et qui a été appliquée ici à la sélection des lieux de vote au second tour

Plan de sondage

La théorie des sondage est une application de la théorie des probabilité

- un plan de sondage est une loi de probabilités
- un échantillon est la réalisation d'une variable aléatoire
- ▶ comme la population est finie, l'échantillonnage est généralement
- ▶ un tirage sans remise

Ce qui a de profondes conséquences sur les estimateurs

- car la théorie habituelle n'a plus cours
- ▶ le tirage sans remise induit une dépendance entre les tirages
 - les probabilités de sélectionner une unité au t^e tirage
 - b dépendent en effet des t-1 tirages précédents

La théorie des sondage a notamment été développée pour y pallier

- ▶ ce qui a notamment pour conséquence
- que les estimateurs des paramètres d'intérêt et de leur variance est souvent différente comme on le verra plus loin pour les tirages stratifié et par grappes p. 46

Exemple : tirage aléatoire à probabilités égales

SASR

tirage aléatoire à probabilités égales :

tirage où toutes les unités ont la même probabilités d'être sélectionnées

- lorsqu'il est réalisé AVEC remise (SASR) en population infinie
- on a
 - ▶ estimateur de la moyenne :

$$\hat{y} = \sum_{i=1}^{n} \frac{x_i}{n} \tag{1}$$

estimateur de la variance de la moyenne :

$$\widehat{\mathbb{V}(y)_{SASR}} = \frac{s^2}{n} \tag{2}$$

avec
$$s^2 = \sum_{i=1}^n (y_i - \hat{\bar{y}})^2/(n-1)$$

SASSR

Lorsqu'il est réalisé SANS remise (SASSR) en population finie

- ▶ l'estimateur de la moyenne est identique à l'estimateur habituel
- par contre, l'estimateur de la variance a pour expression

$$\widehat{\mathbb{V}(\widehat{y})_{SASSR}} = (1 - f) \frac{s^2}{n}$$
 (3)

Dans ce cas,

- ightharpoonup seule la correction de population de finie (1-f)
 - qu'on retrouve plus ou moins explicitement dans de nombreuses formules d'estimateurs de la variance sous le plan
- distingue la formule de la formule habituelle
- ▶ et qui suggère que la variance d'un SASSR sera plus petite que celle d'un SASR

cf. plus loin DEFF p. 53

SASR et SASSR

Lorsque N est suffisamment grand et f petit,

- \blacktriangleright (1-f) peut être ignoré
- ▶ et on peut donc utiliser les estimateurs habituels

Mais cela vaut seulement pour le SASSR

- p qui, dans les faits, est rarement utilisé
- ▶ en tout cas, pas tout seul
- > parce que trop coûteux pour être mise en œuvre efficacement

C'est pourquoi on doit généralement recourir à des estimateurs propres à chaque plan

Exemple d'estimateur sous le plan : l'estimateur d'Horvitz-Thompson

- ▶ l'estimateur d'Horvitz-Thompson est un estimateur linéaire non-biaisé
- p. ex. pour un total

$$t = \sum_{k \in \mathcal{U}} Y_k \tag{4}$$

avec Y_k la valeur prise par la caractéristique y dans la population

on a

$$\hat{t}_{\mathsf{HT}} = \sum_{k \in \mathcal{S}} \frac{y_k}{\pi_k} = \sum_{\substack{k \in \mathcal{U} \\ \pi_k > 0}} \frac{Y_k \mathbb{1}_k}{\pi_k} \tag{5}$$

avec y_k la valeur prise par la caractéristique y dans l'échantillon , $\mathbb{1}_k$ l'indicatrice de la présence de l'unité k dans l'échantillon et $\pi_k = P(k \in \mathcal{S} \text{ la probabilité de sélection de l'unité } k$ pour un plan donné

 l'estimateur d'Horvitz-Thompson revient donc à diviser les valeurs de l'échantillon par leur probabilités de sélection

Note:

- ▶ v_k1_k est une variable aléatoire
- ▶ mais Y_k ne l'est pas...

▶ pour la moyenne

$$\bar{y} = \frac{1}{N} \sum_{k \in \mathcal{U}} y_k \tag{6}$$

▶ on a

$$\hat{\bar{y}}_{\mathsf{HT}} = \frac{1}{N} \hat{t}_{\pi} = \frac{1}{N} \sum_{k \in \mathcal{S}} \frac{y_k}{\pi_k} \tag{7}$$

- p. ex., pour l'ESU,
 - ▶ sondage à deux degrés
 - ▶ au 1^{er} tour
 - tirage des lieux de vote : 15 LdV sur 30 ($\pi_h = .5$)
 - tirage des votants dans chaque LdV : 1 votant sur 5 ($\pi_{hi} = .2$)
 - > comme les probabilités de sélection sont indépendantes à chaque degré,
 - ▶ il suffit de multiplier les probabilités de sélection à chaque degré
 - \triangleright pour obtenir π_k

$$\pi_k = \left(\frac{15}{30}\right) \left(\frac{1}{5}\right) = .1$$
 pour le 1^{er} tour

(en fait, pas tout à fait pour des raisons développées plus loin p. 89 mais c'est pour l'exemple)

- les probabilités de sélection pour le 1^{ier} tour
- sont donc identiques pour tous les votants
 - ▶ mais ce n'est généralement pas le cas pour les plan de sondage à plusieurs degrés
 - ▶ c-à-d que des unités peuvent se retrouver sur ou sous-représentées
 - mais, en divisant par la probabilité de sélection
 - ▶ l'estimateur HT permet de redonner aux unités leur poids réel dans la population
 - ▶ aussi appelé estimateur par expansion

Probabilités de sélection

lacktriangle les π_k ne doivent remplir que des conditions très générales

$$0 \le \pi_k \le 1 \text{ et } \sum_{k \in IJ} \pi_k = n_{\mathcal{S}} \tag{8}$$

- avec $\pi_k > 0$ en plus pour obtenir des estimateur non-biaisés
 - c-à-d qu'il n'y a pas de défaut de couverture
- ce qui suggère que les estimations sont, dans les faits, souvent biaisées (non-réponse)

Probabilités de sélection

- ▶ autrement dit, le tirage n'a pas à respecter de « quotas »
 - ▶ ou une quelconque similarité entre l'échantillon et la population,
 - y compris pour le tirage équilibré
- c'est une des raisons pour laquelle les statisticiens d'enquête rejettent complètement la « représentativité »
- car,
 - ▶ il n'y a aucune raison théorique de ne pas modifier les probabilités de sélection
 - ▶ il y a toutes les raisons empiriques de modifier les probabilités de sélection
- ne pas sur-représenter des unités peut en effet conduire à des estimations très biaisées ou imprécises

L'enquête selon Hajek

- pour Hajek une enquête est une stratégie composée
 - $\blacktriangleright \ \, \mathrm{d'un\ plan}\ p(\ \cdot\)$
 - ightharpoonup et un estimateur \hat{y}

pas de sondage omniscient, le plan est conçu uniquement pour certaines caractéristiques

- ▶ auxquels on peut ajouter
 - des ressources
 - et des variances

Inférence sous le plan

- ▶ le plan est la seule source de l'aléas
 - ▶ et c'est sur l'aléas du plan que l'estimation se fonde
 - sans postuler de distribution sous-jacente
 - les variables sont des caractéristiques ou des critères fixes
 - \blacktriangleright seules les variables indicatrices $\mathbb{1}_k$ sont aléatoires
- en conséquence de quoi les estimateurs et leur variance dépendent de la façon dont l'échantillon est sélectionné
- ▶ et sont donc propres à chaque plan

Inférence sous le plan

- ▶ la casualisation
 - « randomisation »
- et donc le fondement de l'inférence et non pas la ressemblance
- et revêt une importance d'autant plus grande
- que, plus un échantillon sera aléatoire,
 - c-à-d plus son entropie sera forte
- ▶ et meilleure sera l'inférence

People 2022

- ▶ le plan de sondage des deux enquêtes a été conçu dans le cadre
- ▶ du projet People2022

Pratiques Électorales et OPinions Lors des Élections de 2022

- ▶ associant le Ceraps et Espol
- ▶ et qui vise à
 - explorer la participation des citoyens français aux campagnes électorales et aux élections elles-mêmes,
 - ▶ ainsi que l'influence des médias Web et papier
 - sur leur comportement électoral.

People 2022

- ▶ une partie du projet People2022 visait à réaliser
 - ▶ des enquêtes sortie des urnes
 - lors des présidentielles dans la commune de Roubaix
- ▶ l'ESU est une enquête électorale qui,
- comme son nom l'indique,
- consiste à interroger les votants à la sortie de leur bureau de vote

ESU

- ▶ l'utilisation des ESU s'est développée notamment aux États-Unis à partir des années 1960
- à fin d'estimer le résultat des élections
- ▶ les ESU ont été utilisés plus tardivement en France
 - ▶ et elles y ont connu des fortunes diverses cf. PINA (2019)
 - ▶ jusqu'à leur quasi-disparition
 - ▶ les ESU ont toutefois connu un regain d'intérêt ces dernières années
 - ▶ mais plutôt à des fins d'analyse des comportements électoraux
- ▶ les ESU comportent divers avantages et défauts

mais comme toutes les différents types d'enquêtes électorales

ESU

- ▶ la particularité des ESU est de passer par l'entremise des bureaux de vote
- pour inclure des votants dans l'échantillon
- au moins deux façons de procéder
 - ▶ tirage stratifié
 - tirage par grappe
- recours à un tirage par grappe
- qui nécessite au préalable de sélectionner des bureaux de vote

ou, pour être plus précis des lieux de vote (LdV)

Bureaux et lieux de vote

- ▶ distinction importante pour l'organisation de ESU
 - ▶ les bureaux de vote (BdV)
 - ▶ les lieux de vote (LdV)
- en effet, plusieurs bureaux peuvent correspondre au même lieu
 - p. ex. le même réfectoire d'une école primaire
- ▶ ce qui complique la sélection des votants
- c'est pourquoi, les 45 bureaux ayant le même lieu de vote
- ont été fusionnés en 30 lieux de vote
- compliquant d'autant le tirage en réduisant la taille de l'univers du plan de sondage

Bureaux et lieux de vote à Roubaix

Sélection des votants

- pour présenter la sélection des LdV,
- ▶ il faut d'abord présenter la sélection des votants
- ainsi que les ressources mobilisables
- ▶ la sélection des LdV dépendant du nombre d'enquêteurs disponibles
- ▶ mais aussi des modalités de collecte dans les LdV

Le tirage des votants

- ▶ du fait de moyens limités
- l'enquête a reposé sur le volontariat étudiant
 - avec la difficulté supplémentaire que les deux tours tombaient en plein pendant les révisions

les partiels commencant pour certains le lendemain du 2nd tour

- ▶ ce qui renforcait d'autant plus l'incertitude sur le nombre d'enquêteurs
- ▶ et repoussait d'autant la conception du plan de sondage
- ▶ le nombre d'enquêteurs disponible étant littéralement fondamental
- et laissait planer un doute sur la possibilités même de concevoir un plan de sondage

nombre minimal en-dessous duquel la sélection aurait dû être réalisée de façon ad hoc

Les enquêteurs

- diffusion d'un appel en janvier auprès de différentes filières de sciences sociales
- ▶ de l'Université de Lille et de la FUPL ainsi que SciencePo Lille

Fédération universitaire et pluridisciplinaire de Lille

- on a été fixé environ début février avec
 - $ightharpoonup \simeq 80$ volontaires pour le 1^{ier} tour
 - $ightharpoonup \simeq 40$ volontaires pour le 2^{nd}
 - ▶ au final, 101 enquêteurs en tout
- lacktriangle ce qui, au final, a laissé \simeq un mois pour la conception du plan
- ▶ la liste des bureaux devant être transmise à l'avance

mairie de Roubaix, préfecture

▶ il a donc fallu faire vite

Tirage systématique

- sélection des votants par un tirage systématique
- ▶ en l'absence de plus d'informations
- ▶ le tirage systématique (SY) consiste à
 - compter les votants qui se présentent
 - ▶ et à prendre tous les G^{ièmes} votants
- ▶ soit plus formellement :
 - ▶ on génère un nombre h entre 1 et G
 - on sélectionne les unités avec le n° d'ordre :

$$h, h + G, h + 2G, ..., h + (n-1)G, ...$$

c–à–d les unités dont les indices sont congruents modulo G — $(k-h)\equiv 0 \pmod{G}$ — (arithmétique modulaire)

- ce qui revient à
 - utiliser l'ordre d'arrivée
 - pour le diviser en intervalles
 - puis à sélectionner une unité dans chaque intervalles

Tirage systématique

- intérêt du SY : facile à mettre en œuvre pour obtenir un tirage sans remise à probabilités égales
- mais c'est bien le seul
- il existe en effet une littérature conséquente pour souligner la multiplicité de ses défauts
 - ▶ tirage à faible entropie
 - alors que ce qu'on veut, c'est un tirage à forte entropie
 - > ses performances dépendent de l'aléas dans l'ordre des unités
 - si on peut permuter les unités avant, le SY est équivalent à un SASSR
 - ▶ entre autres problèmes
 - imputables à la périodicité de l'ordre des unités
 - difficultés aussi à définir un estimateur non-biaisé de la variance
 - les probabilités d'inclusion de second ordre valent zéro

Mise en œuvre du tirage systématique

Motivation du SY:

- > pas de liste des votants disponible au préalable
- ▶ le tirage devait donc être réalisé
- ▶ immédiatement par les enquêteurs eux-même

Mise en œuvre du tirage systématique

- ▶ le tirage systématique implique au moins trois enquêteurs par LdV
 - ▶ un qui compte et sélectionne
 - ▶ un qui prend contact
 - un autre pour le cas où un autre électeur dans la pas se présenterait alors que l'autre enquêteur est occupé
- le troisième enquêteur est là pour pallier le flot irrégulier des électeurs
 le tirage systématique repose sur l'ordre d'arrivée et ne prend pas en compte les durées inter-événements
- ▶ les intervalles peuvent donc se chevaucher
 particulièrement à certains moments de la journée —fin de la matinée et le début de l'après—midi—
- et risque de faire perdre la cadence

Graphique : Tirage systématique

Taux de sondage

 le nombre total d'enquêteurs était ensuite déterminé au pro rata du nombre d'inscrits

entre 3 et 7 enquêteurs

- ▶ un minimum de deux enquêteurs disponibles
- ▶ était aussi motivé par le choix d'un taux de sondage élevé
- du fait de la faible participation aux élections dans la commune

38% d'abstention aux présidentielle de 2017 et 41% en 2022

- ▶ au final, un taux de ¹/₅ a été appliqué
 - ▶ soit 20% des votants
 - ▶ c-à-d que tous les 5^{ièmes} votants étaient interrogés
 - taux identique pour tous les LdV
- Note : les électeurs souhaitant participer spontanément à l'enquête se sont vus remis un questionnaire non−numéroté

Refus de répondre

- ▶ en cas de refus
 - ▶ la personne suivante était interrogée
 - ▶ en cas de refus
 - ▶ la personne suivante était interrogée
 - **>** ...
 - ▶ jusqu'à la 5^{ième} où le tirage systématique reprenait
 - > si la personne répondait
 - ▶ dans le cas contraire, la personne suivante était interrogée
 - **...**
- ▶ l'idée étant de prendre quelqu'un dans l'intervalle
- qui visait à ne pas trop être pénalisé par la non-réponse
- qu'on ne pouvait pas estimer a priori
- ▶ et qui constitue une entorse au plan
- ▶ Note : sous le plan, la non-réponse n'existe pas

- petite digression : la sélection des votants permet d'illustrer certains problèmes de la méthode des quotas
- ▶ à partir des listes électorales,
 - on peut déterminer les distributions marginales
 - ▶ ainsi que la distribution jointe sexe-âge par LdV
 - ▶ mais il s'agit des inscrits et non des votants
 - distorsions au moins sur l'âge
- plus généralement, dans ce cas
 - ▶ ce sont les enquêteurs qui « échantillonnent » les votants
 - mais de façon non aléatoire

pas de casualisation

 et ça, d'autant plus que la sélection devient alors une interaction sociale comme une autre

avec, notamment, ce que ça implique « d'affinités électives » entre enquêteurs et enquêtés

de plus,

- les quotas font reposer une charge très lourde sur les enquêteurs
- > avec notamment des difficultés cognitives

deviner l'âge des votants

- remplir la feuille de quotas devient de plus en plus difficile au fur et mesure du déroulement de l'enquête
- ▶ or, le taux de sondage étant conséquent
- la sélection devait être opérée rapidement
- ▶ d'où l'avantage du SY dans ce cas

- souligner les défauts ne veut pas dire invalider
 - rien ni personne n'est parfait en ce bas monde
- > car même si la liste des défauts connus des quotas est longue
- c'est aussi une façon d'intégrer l'information auxiliaire
 - ce qui généralement bénéfique à l'estimation
 - en tout cas lorsque les informations auxiliaires sont corrélées aux caractéristiques d'intérêt
- en calant la sélection sur des distributions marginales
 - ▶ idée que l'on retrouve dans différentes méthodes
 - comme la méthode du cube qui sera présentée plus loin p. 82

mais pour des raisons très différentes de celles généralement avancées pour les quotas

- car, à l'inverse du cas de la sélection des votants
 - ▶ dans certains cas, les méthodes reposant sur des sélections aléatoires
 - peuvent être difficiles voir impossible à mettre en œuvre
 - p. ex. lorsqu'il faut sélectionner un petit nombre d'unités dans un univers de taille réduite
- ▶ et, plus généralement,
 - des méthodes de sélection sans aléas
 - > peuvent aussi être fondées théoriquement
 - inférence par le modèle
 - qui ne dispense de planifier la collecte
- l'aléas a toutefois des propriétés intéressantes
- ▶ et devrait être introduit dès que possible
- ou, pour le moins, ne pas être exclu d'office comme une impossibilité

Le tirage des lieux de vote

- ▶ maintenant qu'on a une idée
- ▶ du déroulement de la collecte lors de la 2^{nde} étape
- on peut désormais envisager la 1ière
- pour déterminer à la fois
 - ▶ le nombre de LdV enquêtés
 - quels sont les LdV enquêtés
 - ▶ et le nombre d'enquêteurs y étant affectés

- ▶ comme indiqué précédemment, un ESU
- peut correspondre à deux plans de sondage différents :
 - ▶ tirage stratifié
 - ▶ tirage par grappe

▶ dans les deux cas, la population est répartie en groupes mutuellement exclusifs

$$\bigcup_{i=1}^{M} \mathcal{U}_i = \mathcal{U} \text{ et } \mathcal{U}_i \cap \mathcal{U}_j = \emptyset, i \neq j$$

▶ tirage stratifié :

on interroge une fraction —pas nécessairement identique— dans chaque strate h

$$S = \bigcup_{h=1}^{H} S_h$$

avec S_h un échantillon aléatoire tiré dans la strate h avec un plan $p_h()$ et $p_h(s_h) = Pr(S_h = s_h)$. Le tirage des strates est donc indépendant.

- tirage par grappes :
 - ▶ on sélectionne une partie des grappes

$$\mathcal{S} = \bigcup_{i \in \mathcal{S}_I} \mathcal{U}_i$$

avec s_l un échantillon aléatoire de grappes tiré selon un plan $p_l(s_l)$ et S_l un échantillon aléatoire tel que $Pr(S_l=s_l)=p_l(s_l)$ et $m=\#S_l$ le nombre de grappes sélectionnées

puis on interroge toutes les unités dans chaque grappe

- les deux tirages procèdent donc de façon très différentes
 - ▶ tirage stratifié : l'échantillon est l'union de H tirages indépendants
 - ▶ tirage par grappes : l'échantillon est un tirage de *m* grappes
- ▶ ce qui a d'importantes conséquences sur les propriétés des plans

Plans complexes

Dans les faits,

- ▶ tirages stratifiés et par grappes sont souvent combinés
- ▶ à d'autres méthodes tirages

Exemple: une approche courante consiste à

- d'abord réaliser un tirage stratifié
- puis un tirage par grappes à l'intérieur des strates
- tirage à deux degrés ou plus
- > sans nécessairement utiliser le SASSR pour sélectionner les strates ou les grappes
- ▶ la stratification vise ici à réduire la variance d'échantillonnage dûe au tirage par grappes

Tirage à deux degrés

- p. ex., pour les deux ESU,
 - ▶ du fait de l'absence d'effectifs d'enquêteurs suffisant
 - pour interroger tous les votants dans les grappes,
 - ▶ on procède à un tirage par grappes à deux degrés :
 - on sélectionne une partie des LdV
 par un tirage équilibré avec coordination négative rejectif
 - puis on interroge une fraction des votants

avec un tirage systématique

- ▶ au de-là des différences d'estimateurs
- les deux plans ne sont pas équivalents
- ▶ mais représentent deux façons différentes d'utiliser l'information auxiliaire
 - ▶ tirage stratifié : améliorer la précision
 - ▶ tirage par grappes : faciliter l'organisation de la collecte

parfois au détriment de la précision comme on va le voir

L'effet de plan

- différents plans de sondages peuvent être comparés au moyen de l'effet de plan (Design Effect)
- qui consiste à diviser la variance de l'estimateur
- ▶ par la variance d'un estimateur SASSR de même taille

$$\mathsf{DEFF} = \frac{\mathbb{V}_{p(s)}(\hat{\theta})}{\mathbb{V}_{\mathsf{SASSR}}(\hat{\theta})} \tag{9}$$

le DEFF estime dans quelle mesure la variance d'un estimateur est sous ou sur estimé par rapport à un SAS

▶ en divisant la taille de l'échantillon par le DEFF

$$n_{\rm eff} = \frac{n}{{\sf DEFF}} \tag{10}$$

on obtient la taille effective de l'échantillon, c-à-d le nombre d'observations nécessaires pour obtenir le même niveau de précision qu'un SASSR

Effet de plan du SASR

▶ pour le SASR on a,

$$\mathsf{DEFF}(\hat{t}_{SASR}) = \frac{\mathbb{V}(\hat{t}_{SASR})}{\mathbb{V}(\hat{t}_{SASSR})} = \frac{N^2 \left(1 - \frac{1}{N}\right) \frac{S^2}{n}}{N^2 \left(1 - \frac{n}{N}\right) \frac{S^2}{n}} = \frac{N-1}{N-n}$$

- ▶ le DEFF est donc toujours > 1 si n > 2
- ▶ ce qui confirme que le SASSR est plus précis que le SASR (cf. p. 14)
- ▶ dans ce cas, le DEFF dépend seulement de N et n
- et quand f est faible, le DEFF tend vers 1

Pour un tirage stratifié

▶ estimateur d'un total

$$\hat{t} = N \sum_{h=1}^{H} \frac{N_h}{N} \bar{y}_h \tag{11}$$

estimateur de la variance d'un total

$$\mathbb{V}(\hat{t})_{STRAT} = \sum_{h=1}^{H} \mathbb{V}(\hat{t}_h)_{SASSR}$$
 (12)

$$=\sum_{h=1}^{H} \left(1 - \frac{n_h}{N_h}\right) N_h^2 \frac{S_h^2}{n_h} \tag{13}$$

- dans le cas d'une allocation proportionnelle des strates (pour simplifier)
 - le nombre d'unités sélectionné est proportionnel à la taille de chaque strates
 - on a donc $n_h = n \times (N_h/N)$ et $n = \sum_{h=1}^H n_h$
 - ▶ et la variance vaut alors

$$\mathbb{V}(\hat{\mathbf{t}})_{STRAT-P} = N^2 \left(n - \frac{1}{N} \right) \sum_{h=1}^{H} \frac{N_h}{N} \frac{S_h^2}{n} \tag{14}$$

 en ré-exprimant la variance du SASSR (3) pour faire apparaître explicitement les strates

$$\mathbb{V}(\hat{t})_{SASSR} = N^{2} \left(n - \frac{1}{N} \right) \left[\sum_{h=1}^{H} \frac{N_{h}}{N} \frac{S_{h}^{2}}{n} + \sum_{h=1}^{H} \frac{N_{h}}{N} \frac{\bar{Y}_{h} - \bar{Y}}{n} \right] / n$$
 (15)

on obtient le DEFF_{STRAT-P}

$$DEFF(\hat{t}_{STRAT-P}) = \frac{\sum_{h=1}^{H} \frac{N_h}{N} \frac{S_h^2}{n}}{\frac{N_h}{N} \left[\sum_{h=1}^{H} \frac{S_h^2}{n} + \sum_{h=1}^{H} \frac{\bar{Y}_h - \bar{Y}}{n} \right]}$$
(16)

$$= \frac{S_{y(intra)}^2}{S_y^2} = \frac{\text{variance intra strate}}{\text{variance totale}}$$
 (17)

Pour un plan stratifié à allocation proportionnelle,

- ightharpoonup le DEFF tendra donc à être < 1
- ▶ parce que la variance totale se réduit à la variance intra-strate

puisqu'on collecte des informations dans toutes les strates

- et la stratification produit une variance plus faible sauf si
- ▶ les moyennes des strates sont égales
- ▶ ce qui se produit rarement dans les faits

et d'autant moins que le nombre de strates est grand

- ▶ la stratification améliore donc d'autant plus la précision que les strates sont homogènes de façon générale
- ▶ et que la variance inter-strate augmente

De façon, plus générale

- > plus les strates sont homogènes et plus le tirage stratifié sera précis
- ▶ c'est pourquoi ne nombreux plans stratifient le tirage
- ▶ avec une variable liée à la variable d'intérêt
- la précision pouvant toutefois varier
- ▶ en fonction de la facon de déterminer la taille des strates
- lacksquare on a en effet $V_{STRAT-P} < V_{opt}$
- ▶ lorsqu'on utilise l'allocation optimale de Neyman

- pour le tirage par grappes, les choses sont très différentes
- ▶ et même complétement inverses

Notations pour le tirage par grappes

- ▶ N : nombre de grappes
- ▶ M_i : nombre d'unités dans la grappe i
- ▶ dans ce qui suit, on suppose

pour simplifier

lacktriangle que la taille est la même pour toues les grappes $M_i=M$

 pour le DEFF du tirage par grappes, on utilise le coefficient de corrélation intra-classe

$$\rho = \frac{\mathbb{E}(y_{ij} - \bar{Y})(y_{ik} - \bar{Y}_{\mathcal{U}})}{\mathbb{E}(y_{ij} - \bar{Y}_{\mathcal{U}})}$$
$$= \frac{2\sum_{i}\sum_{k < k}(y_{ij} - \bar{Y}_{\mathcal{U}})(y_{ik} - \bar{Y}_{\mathcal{U}})}{(M - 1)(NM - 1)S^{2}}$$

avec
$$S^2=rac{\sum_{i,j}(y_{ij}-ar{Y}_{\mathcal{U}})^2}{NM-1}$$
 et $ar{Y}_{\mathcal{U}}=1/(NM)\sum_{i=1}^N y_i$

- soit le coefficient de corrélation de Pearson
- ▶ pour les (M-1)(NM-1) paires y_{ij} et y_{ik}

- ▶ l'ICC mesure la similarité des éléments de chaque grappe et n'est défini que pour des grappes de taille identique
- ▶ l'ICC peut aussi être exprimé en terme de l'ANOVA de la population

$$\rho = 1 - \frac{M}{M-1} \frac{S_{y(intra)}}{S^2}$$

avec

$$-\frac{1}{M-1} \le \rho \le 1$$

variance de l'estimateur de la moyenne du tirage par grappes :

$$\mathbb{V}(\hat{y}_{GRP}) = \left(1 - \frac{1}{N}\right) \frac{\sum_{i} (y_i - \bar{y})^2 / (N - 1)}{nM^2}$$
 (18)

$$= \left(1 - \frac{1}{N}\right) \frac{S^2}{nM} [1 + (M - 1)\rho] \tag{19}$$

avec $\bar{Y} = 1/N \sum_{i=1}^{N} y_i$ la moyenne des grappes **Note** : on passe de (18) à (18) en reformulant la variance inter en terme de le variance totale et de ρ

dans ce cas

$$\mathbb{V}(\hat{\bar{y}}_{SASSR}) = \left(1 - \frac{1}{\textit{N}}\right) \frac{\textit{S}^2}{\textit{nM}}$$

le DEFF vaut donc

$$\mathsf{DEFF}_\mathsf{GRP} = [1 + (\mathit{M} - 1)\rho]$$

- pour le tirage stratifié, la variabilité de l'estimateur dépend essentiellement de la variance INTRA
- ▶ pour le tirage par grappe, la variabilité de l'estimateur dépend essentiellement de la variance INTER
 - ▶ comme les grappes tendent à être homogènes
 - ▶ et hétérogènes entre elles
 - ightharpoonup
 ho est généralement >0
 - ▶ et le tirage par grappes est généralement moins précis que le SASSR

la perte de précision dépendant de ρ

Effets de grappes

- pour le tirage stratifié, la variance inter a moins d'importance car on recueille des informations dans toutes les strates
- ce qui, par définition, n'est pas le cas dans le tirage par grappes
- ▶ le tirage par grappes produit des situations où
 - les unités des grappes sont homogènes
 - ▶ et les grappes sont hétérogènes entre elles
- cet effet de grappe a des conséquences très concrètes sur l'organisation d'une enquête

Effets de grappes

- ▶ de façon générale, il est préférable
 - ▶ de ne retenir qu'un nombre limité d'unités enquêtées dans chaque grappe
 - ▶ et d'enquêter dans le plus grand nombre possible de grappe
 - ▶ et non pas concentrer les enquêteurs dans un nombre limité de BdV
- ▶ soit l'inverse de ce qui est spontanément fait...
- car
 - plus les unités des grappes sont homogènes et plus le gain d'information de chaque unité enquêtées se réduit
 - plus les grappes sont hétérogènes et plus on perd de l'information en interrogeant pas d'autres grappes

Remarques supplémentaires

- ▶ de plus, la variation de la taille des grappes a aussi un effet sur la précision
 - ▶ cet effet peut être atténué par un tirage proportionnel à la taille
 - ▶ ce qui est approximativement le cas pour le tirage équilibré présenté après
- ▶ dans le cas du tirage à deux degrés, si m/M est faible
 - le poids de la variance intra devient négligeable
 - ▶ mais ce n'est pas le cas ici

▶ lorsque $\rho > 0$, les grappes

dans le plan ou dans les données

peuvent avoir des effets négatifs sur les tests

comme le
$$\chi^2$$
 ou \emph{G}^2

- > plus les grappes sont homogènes et plus leur variance décroît
- ▶ de ce fait, la « vraie » valeur de p sera plus grande
- que celle calculée en ignorant les grappes

- ▶ et donc accepter H₀ alors qu'elle devrait être rejetée
- dit autrement, le nombre effectif d'observations est plus petit que la taille de l'échantillon
- la stratification a l'effet exactement inverse

rejet de H_0 alors qu'elle est vraie

Tirages des BdV par grappe

- ▶ au regard de l'échantillonnage à la 2nd étape
- le tirage stratifié était inenvisageable
 pas assez d'enquêteurs
- de plus, comme une enquête était prévue pour chaque tour
- ▶ il y avait une probabilité non-nulle de réinterroger les mêmes personnes renforcé par le taux de sondage
- et donc un risque de refus plus élevé
- ▶ donc le tirage de LdV est différent pour le premier et le 2nd tour

Détermination du nombre de grappes retenues

- reste maintenant à déterminer le nombre de grappes retenues
- ▶ ce qui précède suggère de répartir
- ▶ en fonction de
 - **▶** *β*
 - et des ressources disponibles
- ▶ le nombre optimal de grappe peut être obtenu
- ▶ à partir de la formule en utilisant la fonction de coût C suivante

$$C = c_1 n + c_2 nm \tag{20}$$

 c_1 est donc proportionnel au nombre de LdV et c_2 est proportionnel au nombre de votants

 d'autres formules existent pour intégrer p. ex. le coût de déplacement qui est à peu près constant ici

Détermination du nombre de grappes retenues (notation)

$$\bar{y} = \sum_{i=1}^{m} \frac{y_{ij}}{m} \tag{21}$$

$$\bar{\bar{y}} = \sum_{i=1}^{n} \frac{\bar{y}_i}{n} \tag{22}$$

$$S_1^2 = \frac{\sum_{i=1}^{N} (\bar{y}_i - \bar{\bar{y}})^2}{N-1} \text{ (variance des LdV)}$$
 (23)

$$S_2^2 = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} (y_{ij} - \bar{y}_i)^2}{N(M-1)}$$
 (variance des votants) (24)

Détermination du nombre de grappes retenues

lacktriangle pour un sondage par grappes à deux degrés, $\mathbb{V}(ar{ar{y}})$ a pour expression

$$V(\bar{\bar{y}}) = \frac{1}{n} \left(S_1^2 - \frac{S_2^2}{M} \right) + \frac{1}{mn} S_2^2 - \frac{1}{N} S_1^2$$
 (25)

▶ minimiser V pour C fixe (ou C pour V fixe) revient à minimiser

$$\left(V(\bar{y}) + \frac{1}{N}S_1^2\right)C = \left[\left(S_1^2 - \frac{S_2^2}{M}\right) + \frac{S_2^2}{m}\right](c_1 + c_2 m)$$
 (26)

d'où il vient que

$$m_{\rm opt} = \frac{S_2}{\sqrt{S_1^2 - S_2^2/M}} \sqrt{c_1/c_2} \tag{27}$$

à la condition que $\mathcal{S}_1^2 > \mathcal{S}_2^2$ (division par 0)

Détermination du nombre de grappes retenues

- ▶ (27) a été estimé avec le nombre de voix de J. L. Mélenchon
- ▶ au 1^{ier} tour des présidentielles de 2017
- ▶ en utilisant un budget-temps
- ▶ combiné aux tests présentés après
- et en prenant en compte qu'il fallait laisser un peu de place pour le tirage du 2nd tour
- ▶ et en faisant attention à ne pas trop réduire le nombre d'enquêteurs par LdV
- m a été fixé à 15 pour le 1^{ier} tour

Bilan d'étape

- ▶ pour l'instant, le plan consiste dans
 - un tirage de 15 grappes

```
pour le 1<sup>ier</sup> tour
```

- ▶ à deux degrés
- ▶ se pose maintenant la question de la sélection des grappes proprement dites
- un SASSR semble exclu
- du fait de la variabilité des résultats électoraux d'un BdV à l'autre

Graphique : Résultats de E. Macron au premier tour des présidentielles de 2017 et 2022

Graphique : Hétérogénéité inter et intra des résultats au présidentielles

Hétérogénéité du vote et des habitants

- diversité du vote à l'échelle de la commune
- mais aussi diversité des populations
- ▶ p. ex.,
 - ▶ du point de vue des revenus
 - ▶ et du niveau de vie
- ▶ Roubaix présentant des différences particulièrement marquées
 - à l'image de ce qui peut être observé à l'échelle de la métropole

Graphique : Niveau de vie moyen par carreau (MEL) Source : INSEE données carroyées

Graphique : Niveau de vie moyen lissé par carreau (MEL) Source : INSEE données carroyées

Graphique : Niveau de vie moyen lissé par carreau (Roubaix)

Source : Insee données carroyées

Couleurs primaires

Note:

- le dégradé de couleur tend à forcer le trait
- ▶ en opposant les plus aisés au reste des habitants
- parce qu'il est difficile de trouver un dégradé
- ▶ qui fasse correctement ressortir les différentes nuances de la distribution
- ▶ ce qui homogénéise la majorité du territoire de la commune
- qui présente toutefois des niveaux de vie plus contrastés
- ▶ que la carte ne le montre
- le lissage atténue aussi les ruptures

Hétérogénéité inter et intra

- on peut donc noter
 - ▶ l'homogénéité (variable) des résultats au BdV
 - ▶ l'hétérogénéité (elle aussi variable) entre les BdV
- mais aussi que
 - ▶ les scrutins antérieurs contiennent de l'information sur les scrutins postérieurs
 - qui suggère que l'utilisation du scrutin précédent comme information auxiliaire
 - peut permettre d'aider au tirage des LdV
- toutefois, même si les scrutins contiennent de l'information sur les scrutins, ils ne les déterminent pas complètement
 - ce qui illustre un autre intérêt des tirages aléatoires
 - qui est de ne pas faire dépendre la sélection de la seule information auxiliaire
 - et de laisser la place à des facteurs inobservés
 - « the uncontrolled causes which may influence the result are always strictly innumerable » - R. A. Fisher

Tirage équilibré

- différentes méthodes existent pour intégrer l'information auxiliaire
 en plus des tirages stratifié et par grappes
- comme le tirage équilibré
- ▶ un sondage est dit équilibré s'il satisfait aux équations d'équilibrage suivantes :

$$\hat{t}_{z\pi} = \sum_{k \in \mathcal{S}} \frac{z_k}{\pi_k} = \sum_{k \in \mathcal{U}} z_k \tag{28}$$

avec $\mathbf{z}_k = \{z_k, ..., z_{kP}\}$ est un vecteur de P variables auxiliaires mesurées pour l'unité k

- ▶ un tirage équilibré consiste donc
 - à sélectionner un échantillon aléatoire
 - dont les estimateurs d'Horvitz-Thompson d'un vecteurs de totaux
 - ▶ sont —approximativement— identiques dans l'échantillon et dans la population
- ▶ permet notamment de réduire la variance des estimateurs HT

$$\operatorname{car} \mathbb{V}(\hat{t}_{z\pi}) = 0$$

- ▶ le tirage équilibré a été mis en œuvre au moyen de la méthode du cube proposée par J.-C. Deville et Y. Tillé 2004
- le cube est une méthode itérative de scission
- qui consiste à scinder progressivement l'échantillon en deux
- ▶ en partant du vecteurs des probabilités d'inclusion
- ightharpoonup à chaque étape le vecteurs des π_k est modifié aléatoirement
- ▶ de façon à ce qu'on moins un composant prenne la valeur 0 ou 1
- ▶ tout en respectant les équation d'équilibrage (28)
- ▶ l'algorithme produit donc un échantillon en plus ou moins *n* itérations

- ▶ l'algorithme doit son nom à la représentation géométrique des plans de sondage
- en effet, les 2^N échantillons possibles en incluant l'ensemble vide ∅ et le recensement
- correspondent au sommet d'un un N-cube

hypercube
$$C = [0, 1]^N$$

- ▶ la méthode du cube peut être définie comme
- une marche aléatoire vers un des sommets du cube satisfaisant aux équations d'équilibrage
- \blacktriangleright en arrondissant aléatoirement les π_k vers 0 ou 1

- pour arrondir dans la bonne direction
- ▶ on sélectionne un vecteur dans le noyau Q de la matrice Ž
- ▶ ce vecteur forme un plan dont l'intersection le cube
- qui permet « d'orienter » la marche aléatoire
- en effet, un échantillon équilibré consiste à choisir un sommet du N-cube se trouvant dans le sous-espace Q
- ▶ (28) peut être réécrite comme

$$\sum_{k \in \mathcal{U}} \frac{\mathbf{x}_k \mathbb{1}_{sk}}{\pi_k} = \sum_{k \in \mathcal{U}} \frac{\mathbf{x}_k \pi_k}{\pi_k}$$
 (29)

$$\check{\mathbf{Z}}^{\top} \mathbb{1}_{s} = \check{\mathbf{Z}}^{\top} \boldsymbol{\pi} \tag{30}$$

avec
$$\boldsymbol{\check{Z}} = \{\frac{z_1}{\pi_1} ... \frac{z_k}{\pi_k} ... \frac{z_N}{\pi_N}\}$$

▶ ce système d'équations définit l'application affine

$$Q = \{1_s \in \mathbb{R}^N | \mathbf{\check{Z}}^\top 1_s = \mathbf{\check{Z}}^\top \boldsymbol{\pi}\} = \boldsymbol{\pi} + \text{Ker } \mathbf{\check{Z}}^\top$$
(31)

avec Ker
$$oldsymbol{\check{\mathbf{Z}}}^ op = \{ oldsymbol{u} \in \mathbb{R}^N | oldsymbol{\check{\mathbf{Z}}}^ op oldsymbol{u} = \mathbf{0} \}$$

- l'intérêt de la méthode du cube est de permettre d'introduire plusieurs caractéristiques auxiliaires
- et des tests réalisés dans le cadre de la préparation d'une ESU lors des municipales de 2020

qui n'a pas eu lieu pour des raisons assez évidentes

- montraient qu'un nombre limité de caractéristiques
- ▶ permettaient de réduire l'REQM des estimations

```
racine carrée de l'erreur quadratique moyenne, cf. (32) p. 91
```

- ▶ toutefois, pour des raisons développées plus loin
- ▶ l'équilibrage a dû être limité aux voix de J. L. Mélenchon

Le 2nd tour

- ▶ comme indiqué précédemment (cf. p. 67),
- ▶ le choix a été fait de ne pas interroger les mêmes LdV au 1^{ier} et 2nd tour
- ▶ de ce fait, 15 LdV étaient exclus de fait du tirage au 2nd tour
- cas particulier de coordination d'échantillon

Coordination des tirages

- ▶ les méthodes de coordination d'échantillons ont été développées par différents organismes de statistique publique nationaux à partir du début des années 1970
- au fil des années, ces organismes ont en effet été confrontés à la complexité grandissante de la gestion de leurs bases de sondage et à la multiplicité grandissante de leur usage
 - mises à jour fréquente pour préserver la qualité des échantillons.
 - utilisation de mêmes bases de sondages pour des enquêtes utilisant des plans différents

y compris panels

 visaient aussi à diminuer la charge sur les ménages et les entreprises en minimisant la probabilité d'interrogation multiple

Tirage équilibré avec coordination négative

- ▶ technique proposée par Y. Tillé et A.–C. Favre 2004
- ▶ dans le cadre de l'enquête annuelle de recensement qui est un cas complexe de coordination négative
- et qui consiste à modifier les probabilités de sélection
- voir l'article pour plus de détails

- ▶ la méthode du cube a rencontré des difficultés pour trouver une solution
- ▶ du fait de
 - ▶ l'hétérogénéité inter et intra des LdV
 - ► taille de l'univers limité
 - et cela même si le nombre d'échantillons possibles demeurait conséquent
 - ▶ la sélection des LdV de 15 et 8 LdV revenait à tirer à un échantillon parmi

$$\binom{30}{15}\binom{15}{8} = 998\ 181\ 241\ 200 \simeq 10^{12}$$

avec
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

▶ le nombre d'échantillon satisfaisant aux équations d'équilibrage étant clairement beaucoup réduit

même s'il est impossible à estimer a priori

- ▶ ce qui explique aussi pourquoi l'équilibrage à été limité aux voix de
 - J. L. Mélenchon

- pour y pallier à ces difficultés,
- ▶ ajout d'une (dernière) étape : l'échantillonnage par rejet FULLER (2009)
- ▶ qui consiste à
 - ▶ générer un grand nombre d'échantillons

ici avec la méthode du cube avec coordination négative

▶ puis sélectionner celui qui satisfait le mieux aux contraintes

▶ choix du tirage minimisant la racine carrée de l'erreur quadratique moyenne

$$\mathsf{REQM}[\hat{\theta}(\mathcal{S})] = \sqrt{\mathbb{E}\left[\{\hat{\theta}(s) - \theta\}^2\right]}$$
 (32)

$$= \sqrt{\mathbb{B}[\hat{\theta}(\mathcal{S})]^2 + \mathbb{V}[\hat{\theta}(\mathcal{S})]}$$
 (33)

- qui permet de trouver un compromis entre
 - ▶ le biais
 - et la variance
 - des estimateurs
- d'autres métriques sont bien sûr envisageables
- ▶ la sélection a été réalisée en se calant sur les résultats de trois candidats en 2017 :
 - J. L. Mélenchon
 - ► E. Macron
 - ▶ M. Le Pen

- par rapport au tirage équilibré par la méthode du cube,
 - le tirage par rejet permet de contrôler l'erreur
 - mais il présente un gros désavantage
 - parce que, à la différence du cube
 - ▶ il peut modifier les probabilités d'inclusion
 - ▶ ce qui peut conduire à biaiser les estimateurs

en fonction de la proportion d'échantillons rejetés

- des tests sur les scrutins intermédiaires
 - à Lille et Roubaix
- suggèrent toutefois que le biais est faible ici

Note

- les tests sur les scrutins intermédiaires à Roubaix mais aussi à Lille
- suggèrent aussi que
- même s'il paraît préférable d'équilibrer sur le scrutin de même type précédent présidentielles,...
- ▶ le tirage peut être réalisé à partir d'autres scrutins
- utile si le découpage des BdV à changé entre temps
- ▶ le tirage semble aussi « résilient » aux pandémies mondiales...

Graphique : Bureaux de vote sélectionnés au premier et second tours Source : mairie de Roubaix —fond de carte—

Fazit

- ▶ au final, l'enquête a permis de recueillir :
 - ▶ 1^{ler} tour : 15 LdV —23 BdV— et 2 372 questionnaires dans le plan 2 795 en tout
 - ▶ 2nd tour : 8 LdV —12 BdV— et 1 236 questionnaires dans le plan 1 471 en tout
- ▶ le taux de non-réponse à l'enquête est de 3,4% pour le premier tour

1^{ier} tour

Candidat	Roubaix	Roubaix (LdV)	ESU	Δ_{LdV}	$\Delta_{\it ESU}$
Jean-Luc MÉLENCHON	0.515	0.512	0.521	0.003	0.006
Emmanuel MACRON	0.194	0.198	0.200	-0.004	0.006
Marine LE PEN	0.142	0.142	0.090	0.000	-0.052
Éric ZEMMOUR	0.032	0.033	0.030	-0.001	-0.002
Yannick JADOT	0.025	0.027	0.037	-0.001	0.011
Valérie PÉCRESSE	0.019	0.020	0.021	-0.002	0.002
Fabien ROUSSEL	0.013	0.011	0.014	0.003	0.001
Nicolas DUPONT-AIGNAN	0.010	0.010	0.010	0.000	-0.000
Jean LASSALLE	0.010	0.009	0.015	0.001	0.005
Anne HIDALGO	0.010	0.010	0.018	-0.001	0.008
Nathalie ARTHAUD	0.005	0.005	0.004	0.001	-0.001
Philippe POUTOU	0.005	0.005	0.008	0.000	0.003
Blancs et nuls	0.018	0.019	0.031	-0.001	0.013

2nd tour

Candidat	Roubaix	Roubaix (LdV)	ESU
Emmanuel MACRON	.65	.671	.713
Marine LE PEN	.274	.256	.173
Blancs et nuls	.075	.073	.112
Blancs et nuls	.075	.073	

- ce qui précède visait à illustrer
- certains aspects pratiques de la théorie des sondages
- ▶ permettant de mobiliser l'information auxiliaire
- pour l'élaboration de plans de sondages
- ainsi que l'effet de différents plans tirages stratifié et par grappes
- sur les estimateurs

- ▶ l'approche par le plan permet de prendre explicitement en compte que
- les données ne sont seulement générées par des processus extérieurs à la collecte
- mais aussi par la sélection des observations
- ▶ avec la limite que le plan prend le parti inverse
- car, dans ce cadre, les variables sont fixes
- et le plan est la seule source de l'aléas
- de plus, l'approche par le plan a plutôt été conçue pour estimer des statistiques descriptives

totaux, moyennes, médianes,...

que, p. ex., des modèles de régression

- ▶ ce cadre un peu étroit peut toutefois être étendu
- pour l'estimation
- en combinant le plan avec une approche par le modèle
- p. ex. avec les modèles de superpopulation
- qui permet d'ajouter d'autres sources d'aléas
- et donc d'estimer des modèles

- ▶ l'approche par le plan présente d'autres limites
- > car c'est un cadre général
- ▶ mais largement développé pour les enquêtes de la statistique publique
- p. ex., la méthode du cube a d'abord servi à réaliser des tirages
- dans des fichiers de millions d'adresses
- donc il faut parfois faire preuve d'un peu d'imagination...

Bibliographie I

- COCHRAN, William G. (1977), Sampling Techniques, 3rd Edition. New York, John Wiley & Sons.
- DEVILLE, Jean–Claude et Yves TILLÉ (2004), « Efficient balanced sampling : The cube method », *Biometrika*, nº 4, vol. 91, p. 893-912.
- Fuller, Wayne (2009), « Some design properties of a rejective sampling procedure », *Biometrika*, nº 4, vol. 96, p. 933-944.
- LOHR, Sharon L. (2019), Sampling Design and Analysis, New York, Chapman et Hall/CRC.
- PINA, Christine (2019), « Que sont les SSU devenus ? Les sondages 'sortie des urnes' en France et aux États-Unis », *Genèses*, vol. 1, p. 117-133.
- TILLÉ, Yves (2001), Théorie des sondages. Échantillonnage et estimation en populations finies. Cours et exercices avec solution, Paris, Dunod.
- TILLÉ, Yves et Anne–Catherine FAVRE (2004), « Coordination, combination and extension of balanced samples », *Biometrika*, nº 4, vol. 91, p. 913-927.

Merci pour votre attention Des questions?