Problem 2

Let $\{U_i\}_{i\in I}$ be an open cover of [a,b]. Since the open intervals are a base for τ_{st} on \mathbb{R} , we may assume that all the U_i are open intervals. There are then $U_1, U_2 \subseteq \mathbb{R}$ open such that $a \in U_1$ and $b \in U_2$.

Let $c_1 = \sup(U_1 \cap [a,b])$ and $d_1 = \inf(U_2 \cap [a,b])$. If $c_1 < d_1$, we may apply a similar procedure to the case of $[c_1,d_1] \subseteq [a,b]$, choosing U_3,U_4 such that $c_2 \in U_3 \cap [c_1,d_1]$ and $d_2 \in U_4 \cap [c_1,d_1]$, and so on and so forth. We claim that this process must stop eventually.

If this process were not to stop, we then have a collection of nested closed intervals

$$[a,b] \supseteq [c_1,d_1] \supseteq [c_2,d_2] \supseteq \cdots$$

so by the nested intervals property, there would be some $x \in [a,b]$ such that $x \in [a,b] \cap \bigcap_{i=1}^{\infty} [c_i,d_i]$. This x is necessarily not covered by any such $U_i \in \{U_i\}_{i \in I}$, contradicting the assumption that $\{U_i\}_{i \in I}$ is an open cover of [a,b].

Problem 17

Write

$$\sum_{i=1}^{m} |x_i + y_i|^p = \sum_{i=1}^{m} |x_i| |x_i + y_i|^{p-1} + |y_i| |x_i + y_i|^{p-1}.$$

Then, by applying Hölder's Inequality, we have

$$\begin{split} &\sum_{i=1}^{m} |x_i| |x_i + y_i|^{p-1} \leqslant \left(\sum_{i=1}^{m} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{m} |x_i + y_i|^{(p-1)q}\right)^q \\ &\sum_{i=1}^{m} |y_i| |x_i + y_i|^{p-1} \leqslant \left(\sum_{i=1}^{m} |y_i|^p\right)^{1/p} \left(\sum_{i=1}^{m} |x_i + y_i|^{(p-1)q}\right)^q. \end{split}$$

Since (p-1)q = p, we then have

$$\sum_{i=1}^{m} |x_i + y_i|^p \le \left(\sum_{i=1}^{m} |x_i + y_i|^p\right)^q \left(\left(\sum_{i=1}^{m} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{m} |y_i|^p\right)^{1/p}\right),$$

and dividing, we get

$$\left(\sum_{i=1}^{m} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{m} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{m} |y_i|^p\right)^{1/p}.$$

Problem 19

(i) We see that

$$\sup_{i \in \mathbb{N}} |x_i| = 0$$

if and only if $|x_i| \le 0$ for all i, meaning that $(x_i)_i$ is the zero sequence. Similarly,

$$\|\alpha x\| = \sup_{i \in \mathbb{N}} |\alpha x_i|$$

$$= |\alpha| \sup_{i \in I} |x_i|$$
$$= |\alpha| ||x||.$$

Finally,

$$||x + y|| = \sup_{i \in \mathbb{N}} |x_i + y_i|$$

$$\leq \sup_{i \in \mathbb{N}} (|x_i| + |y_i|)$$

$$\leq \sup_{i \in \mathbb{N}} |x_i| + \sup_{j \in \mathbb{N}} |y_j|$$

$$= ||x|| + ||y||,$$

meaning that $\|\cdot\|$ is a bona fide norm.

(ii) Let $B = \{x \in X \mid ||x|| \le 1\}$. Let $(x_n)_n \subseteq B$ converge to $x \in \ell_\infty$ in the ℓ_∞ norm.

Note that for all n, $\sup_{i \in \mathbb{N}} |x_n(i)| \le 1$, meaning that since

$$\sup_{i \in \mathbb{N}} |x(i) - x_n(i)| \to 0,$$

we have that

$$|x(i) - x_n(i)| \rightarrow 0$$

for each i, so

$$\chi_n(i) \to \chi(i)$$

for all i. Thus, $|x(i)| \le 1$ for all i, meaning $\sup_{i \in \mathbb{N}} |x(i)| \le 1$, so $||x|| \in \mathbb{B}$.

(iii) Let $\varepsilon=1/2$, and consider the collection $(e_n)_n$ of sequences in ℓ_∞ consisting of 1 at position n and zero elsewhere. Then, $(e_n)_n\subseteq B$, but since $\sup_{i\in N}|e_n(i)-e_m(i)|=1$ for all $n\neq m$, we cannot have balls of radius 1/2 cover the family $(e_n)_n$ with finitely many such balls, meaning that B is not totally bounded.

Problem 20

(i) We see that d(x, y) = 0 if and only if $x_n = y_n$ for each n, since each d_n is a metric; therefore, d(x, y) = 0 if and only if x = y.

Furthermore, we have that for all $x = (x_n)_n$, $y = (y_n)_n$, and $z = (z_n)_n$, $\frac{1}{2^n} d(x_n, z_n) \le \frac{1}{2^n} d(x_n, y_n) + \frac{1}{2^n} d(y_n, z_n)$. Therefore, we get

$$d(x,z) = \sum_{n=1}^{\infty} \frac{1}{2^n} d(x_n, z_n)$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{2^n} d(x_n, y_n) + \frac{1}{2^n} d(y_n, z_n)$$

$$\leq d(x, y) + d(y, z).$$

Since $d(x_n, y_n)$, $d(y_n, z_n) \le 1$, these sums must converge, so d(x, y) is indeed a metric.

(ii) We will show that a sequence $(y_n)_n \subseteq X$ converges to $y \in X$ with the given distance metric if and only if it does so pointwise. This will show that the metric d induces the topology of pointwise convergence, which is exactly the topology τ_{prod} .^I

To start, let $(y_n)_n \to y$ in the given distance metric. Then, for all $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that for all $n \ge N$, we have

$$d(y_n, y) = \sum_{j=1}^{\infty} \frac{1}{2^j} d_j(y_n(j), y(j))$$

$$< \varepsilon,$$

so we see that for each j, $d(y_n(j), y(j)) < \varepsilon$, meaning that $y_n(j) \to y(j)$ for each j.

Let $(y_n)_n \to y$ pointwise. If $\epsilon > 0$, convergence of series gives some J such that $\sum_{j=J+1}^{\infty} \frac{1}{2^j} < \epsilon/2$, meaning that

$$\sum_{j=I+1}^{\infty} \frac{1}{2^j} d_j(y_n(j), y(j)) < \epsilon/2$$

For $j=1,\ldots,J$, we find N_1,\ldots,N_J such that for all $n\geqslant N_j$, $d_j(y_n(j),y(j))<\epsilon/2$. Therefore, for $n\geqslant \max(N_1,\ldots,N_J)$, we have

$$\begin{split} d(y_n,y) &= \sum_{j=1}^{\infty} \frac{1}{2^j} d_j(y_n(j),y(j)) \\ &= \sum_{j=1}^{J} \frac{1}{2^j} d_j(y_n(j),y(j)) + \sum_{j=J+1}^{\infty} \frac{1}{2^j} d_j(y_n(j),y(j)) \\ &< \sum_{j=1}^{J} \frac{\epsilon}{2^{j+1}} + \frac{\epsilon}{2} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \end{split}$$

Therefore, $(y_n)_n \to y$ in our given distance metric.

Since convergence of sequences in our given distance metric is given by pointwise convergence, the induced topologies must be equal, so $\tau_d = \tau_{prod}$.

(iii) We prove that X is complete if and only if X_n is complete for all n.

To see this, note that $(y_n)_n \subseteq X$ is Cauchy if and only if $(y_n(j))_n \subseteq X_j$ is Cauchy for each j, as for all $\varepsilon > 0$ and $m, n \ge N$ with $d(y_n, y_m) < \varepsilon$, then

$$\sum_{j=1}^{\infty} \frac{1}{2^{j}} d_{j}(y_{n}(j), y_{m}(j)) < \varepsilon,$$

meaning this holds for all j, and in the reverse direction, we use the same $\frac{\varepsilon}{2}$ method from part (ii).

The sequence $(y_n)_n$ thus converges in X if and only if every $y_n(j)$ converges in X_j (as τ_d is the topology of pointwise convergence), meaning that X is complete if and only if each X_j is complete.

Technically we need to show this for all nets in X rather than sequences, but since all nets are sequences as X has been established to be a metric space, this is sufficient.

Problem 21

Let X be complete, and let $(C_n)_n \subseteq P(X)$ be nonempty, decreasing, closed sets with diam $(C_n) \to 0$.

Let $(x_n)_n$ be defined by $x_n \in C_n$ for each n. Then, for any $\varepsilon > 0$, we may find C_N such that $diam(C_N) < \varepsilon$, meaning that for all $n, m \ge N$, we have that $x_n, x_m \in C_N$, so $d(x_n, x_m) < \varepsilon$, meaning that $(x_n)_n$ is Cauchy. Since X is complete, $(x_n)_n \to x$ for some $x \in X$. This point must be in all such C_n , meaning that

$$\bigcap_{n=1}^{\infty} C_n = \{x\}.$$

Now, let X be a metric space such that for any $(C_n)_n \subseteq P(X)$ nonempty, decreasing, and closed with $\operatorname{diam}(C_n) \to 0$, there is some $x \in X$ with $\bigcap_{n=1}^{\infty} C_n = \{x\}$. Let $(x_n)_n$ be a Cauchy sequence in X.

Define a family of closed sets by

$$C_n = \overline{\{x_n, x_{n+1}, \ldots\}}.$$

We note the following:

- each of the C_n is closed;
- $C_n \supseteq C_{n+1}$ by construction, since $\{x_n, x_{n+1}, ...\} \supseteq \{x_{n+1}, x_{n+2}, ...\}$, and closures respect set inclusion;
- diam $(C_n) \to 0$, as $(x_n)_n$ is Cauchy, so if $\varepsilon > 0$, there is some N such that for all $n, m \ge N$, $d(x_n, x_m) < \varepsilon$, meaning that the diameter of the closure of the set $\{x_N, x_{N+1}, \ldots\}$ is no more than ε .

Therefore, there is some $x \in X$ such that

$$\bigcap_{n=1}^{\infty} C_n = \{x\},\,$$

meaning that $(x_n)_n \to x$, and X is complete.