In [23]: ▶

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import SelectKBest
from sklearn.linear_model import Lasso
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.decomposition import PCA
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.feature_selection import SelectKBest, chi2
import statsmodels.api as sm
from sklearn.linear_model import Lasso
from sklearn.metrics import r2_score
```

In [24]: ▶

```
df = pd.read_csv(r"C:\Users\thoma\AppData\Local\Programs\Python\Python310\Scripts\PDS\CA
df.head()
```

Out[24]:

	state	sat	takers	income	years	public	expend	rank
0	lowa	1088	3	326	16.79	87.8	25.60	89.7
1	SouthDakota	1075	2	264	16.07	86.2	19.95	90.6
2	NorthDakota	1068	3	317	16.57	88.3	20.62	89.8
3	Kansas	1045	5	338	16.30	83.9	27.14	86.3
4	Nebraska	1045	5	293	17.25	83.6	21.05	88.5

In [25]: ▶

df.describe().T

Out[25]:

	count	mean	std	min	25%	50%	75%	max
sat	50.0	947.9400	70.856397	790.00	889.2500	966.00	998.5000	1088.00
takers	50.0	26.2200	22.022521	2.00	6.2500	16.00	47.7500	69.00
income	50.0	293.9800	43.693034	208.00	261.5000	295.00	325.0000	401.00
years	50.0	16.2092	0.699982	14.39	15.9100	16.36	16.7575	17.41
public	50.0	81.2040	9.830917	44.80	76.9250	80.80	88.2500	97.00
expend	50.0	22.9656	6.144932	13.84	19.5925	21.61	26.3875	50.10
rank	50.0	79.9880	6.523072	69.80	74.0250	80.85	85.8250	90.60

In [26]: ▶

sns.pairplot(data=df, height=2)

Out[26]:

<seaborn.axisgrid.PairGrid at 0x2618e18ad10>


```
In [27]: ▶
```

y = df.iloc[:, 1].values.reshape(-1,1)

In [28]:

Y=sm.add_constant(df.iloc[:,2].values)
out=pd.DataFrame(Y)

In [29]:
out.head()

Out[29]:

```
0 1 0 3.0
```

- **1** 1.0 2.0
- **2** 1.0 3.0
- **3** 1.0 5.0
- **4** 1.0 5.0

In [30]: ▶

X2=sm.add_constant(df.iloc[:, 2:].values)
out1=pd.DataFrame(X2)

In [31]:

out1.head()

Out[31]:

	0	1	2	3	4	5	6
0	1.0	3.0	326.0	16.79	87.8	25.60	89.7
1	1.0	2.0	264.0	16.07	86.2	19.95	90.6
2	1.0	3.0	317.0	16.57	88.3	20.62	89.8
3	1.0	5.0	338.0	16.30	83.9	27.14	86.3
4	1.0	5.0	293.0	17.25	83.6	21.05	88.5

```
H
In [32]:
j = sm.OLS(y,Y).fit()
j.summary(xname=['intercept','takers'])
    Df Residuals:
                             48
                                            BIC:
                                                     508.2
        Df Model:
 Covariance Type:
                       nonrobust
               coef std err
                                  t P>|t|
                                             [0.025
                                                       0.975]
intercept 1020.3062
                     8.139 125.359 0.000 1003.941 1036.671
   takers
            -2.7600
                            -11.563 0.000
                                             -3.240
                                                       -2.280
                     0.239
      Omnibus: 0.370
                         Durbin-Watson: 0.764
Prob(Omnibus): 0.831 Jarque-Bera (JB): 0.144
         Skew: -0.131
                              Prob(JB): 0.931
      Kurtosis: 3.011
                              Cond. No.
                                         53.4
In [33]:
#variance of the model
j.mse_resid
```

Out[33]:

1353.8901619553142

In [34]: ▶

```
#Full Regression Model
s = sm.OLS(y,X2).fit()
s.summary(xname=['intercept','takers', 'income', 'years', 'public','expend','rank'])
```

Out[34]:

OLS Regression Results

Dep. \		у			R-squared:		
			OLS	Adj. R	0.862		
	Lea	st Sq	uares	F	-statistic:	51.91	
	Date:	Fri, 2	Fri, 28 Apr 2023		Prob (F-statistic):		4.16e-18
	Time:		19:42:43		Log-Likelihood:		-230.74
No. Obser	vations:		50		AIC:		475.5
Df Re	siduals:		43		BIC:		488.9
D	f Model:			6			
Covarian	се Туре:		noni	robust			
	coe	f sto	d err	t	P> t	[0.025	0.975]
intercept	-94.659	1 211	.510	-0.448	0.657	-521.209	331.891
takers	-0.480	1 0	.694	-0.692	0.493	-1.879	0.919
income	-0.008	2 0	.152	-0.054	0.957	-0.315	0.299
years	22.610	1 6	.315	3.581	0.001	9.876	35.345
public	-0.464	2 0	.579	-0.802	0.427	-1.632	0.704
expend	2.212	0 0	.846	2.615	0.012	0.506	3.918
rank	8.476	2 2	.108	4.021	0.000	4.225	12.727
Omi	3.692	D	urbin-W	/atson:	1.497		
Prob(Omnibus):		0.158	158 Jarque-Bera (a (JB):	2.957	
	-0.591	1 Prol		ob(JB): 0.228			
Kui	tosis:	3.152	52 Cond			1.82e+04	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.82e+04. This might indicate that there are strong multicollinearity or other numerical problems.

#variance of the model s.mse_resid

METHOD FOR FILTER

```
H
In [35]:
X = df.drop({'state', 'sat'}, axis=1)
In [59]:
                                                                                        M
y = df['sat']
In [60]:
                                                                                        H
def filter_chi_squared(data, target, k=3):
    chi2_selector = SelectKBest(chi2, k=k)
    X_chi2 = chi2_selector.fit_transform(data, target)
    selected_features = data.columns[chi2_selector.get_support()]
    lr = LinearRegression().fit(X_chi2, target)
    y_pred_chi2 = lr.predict(X_chi2)
    r2_chi2 = r2_score(target, y_pred_chi2)
    return selected_features, r2_chi2
In [62]:
                                                                                        H
filter_chi_squared(X, y)
Out[62]:
(Index(['takers', 'income', 'expend'], dtype='object'), 0.775928149731761
```

The Filter method, specifically the Chi-squared Test, identified 'takers', 'income', and 'expend' as the most significant features for the prediction. The resulting model obtained an R^2 score of 0.776, indicating that these features can account for 77.6% of the variability in the outcome variable.

Warppper Methods

```
def backward_elimination(data, target, significance_level=0.05):
    features = data.columns.tolist()
    while len(features) > 0:
        features_with_constant = sm.add_constant(data[features])
        p_values = sm.OLS(target, features_with_constant).fit().pvalues[1:]
        max_p_value = p_values.max()
        if max_p_value >= significance_level:
            excluded_feature = p_values.idxmax()
            features.remove(excluded_feature)
        else:
            break
        return features
```

```
In [64]:

def wrapper_backward_elimination(data, target, significance_level=0.05):
    selected_features = backward_elimination(data, target, significance_level)
    X_backward = data[selected_features]

lr = LinearRegression().fit(X_backward, target)
    y_pred_backward = lr.predict(X_backward)
    r2_backward = r2_score(target, y_pred_backward)

return selected_features, r2_backward
```

```
import warnings
from warnings import simplefilter

# Ignore FutureWarning
simplefilter(action='ignore', category=FutureWarning)
```

```
In [66]:
wrapper_backward_elimination(X,y)
```

```
Out[66]:
(['years', 'expend', 'rank'], 0.8711105337881823)
```

By using the Wrapper method, specifically the Backward Elimination approach, the analysis determined that 'years', 'expend', and 'rank' are the most relevant features for the prediction. The resulting model obtained an R^2 score of 0.871, indicating that these features can account for 87.1% of the variability in the target variable.

Embedded Method

```
In [67]:

def embedded_lasso(data, target, alpha=1.0):
    lasso = Lasso(alpha=alpha)
    lasso.fit(data, target)
    selected_features = data.columns[lasso.coef_ != 0]

    y_pred_lasso = lasso.predict(data[selected_features])
    r2_lasso = r2_score(target, y_pred_lasso)

    return selected_features, r2_lasso
```

```
In [68]:
embedded_lasso(X,y)

Out[68]:
(Index(['takers', 'income', 'years', 'public', 'expend', 'rank'], dtype
='object'),
```

The Lasso Regression method, which is an Embedded method, chose to include all the available features ('takers', 'income', 'years', 'public', 'expend', and 'rank') in the model and achieved an R^2 score of 0.878, indicating that the model, with all the features, can account for 87.8% of the variation in the outcome variable.

Conclusion

0.8781987462097269)

When we prioritize simplicity and interpretability of the model, it is advisable to use the Filter method since it selects a subset of features that are most relevant for the prediction. However, if the main objective is to attain the highest possible accuracy in predictions, it may be better to consider an Embedded method such as Lasso Regression. While the Embedded method has a higher R^2 score, it may not always lead to the best performance due to its assumptions and biases towards certain types of models. Therefore, the choice of feature selection method should depend on several factors, including the complexity of the data, the model being used, interpretability requirements, and the overall objective of the analysis.

Bonus Question (PCA)

```
M
In [69]:
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
X_pca = pca.fit_transform(X)
pca_lr = LinearRegression().fit(X_pca, y)
y_pca_pred = pca_lr.predict(X_pca)
r2_pca = r2_score(y, y_pca_pred)
                                                                                        M
In [71]:
r2_pca
Out[71]:
0.7364738543295739
In [ ]:
                                                                                        M
In [ ]:
                                                                                        M
```