Assignment -2

Assignment Date	17 September 2022	
Team ID	PNT2022TMID38853	
Project Name	Virtual Eye-lifeguard for swimming pools to	
	detect active drowning	
Student Name	Sadhana B	
Student Roll Number	421219104013	
Maximum Marks	2 Marks	

IMPORT LIBRARIES

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

LOADING THE DATASET

df = pd.read_csv('Churn_Modelling.csv', encoding='latin-1') df

	RowNumber	Custo	omerId	Surnan	ne Credi	tScore G	eograph	ny Gende	er Age	\	
0		1		15634		Hargray		619	_	Female	
42						C					
1		2	2	15647	311	Hill	608	Spain 1	Female		
41								•			
2		3	;	15619	304	Onio	502	France	Female	e	
42											
3		4		15701	354	Boni	699	France	Female	e	
39											
4		5	i	15737	888	Mitchel	11	850	Spain	Female	
43											
											•••
 999	95	9996	156062	229	Obijiak	:u	771	France	Male		
39					3						
999	96	9997	155698	392	Johnsto	one	516	France	Male		
35											
999	97	9998	155845	532	Liu	709	France	Female			
36											
999	98	9999	156823	355	Sabbati	ini	772	German	ıy	Male	
42											
999	99	10000)	15628	319	Walker	792	France	Female	e	
28											
	Tenu	re	Balan	ice	NumOfF	Products	Н	asCrCard	i Is	ActiveMember	\
0	TOHU			1	1	1	11	user eare	. 15	2 1001 (01(10111001	`

	Tenure	Balance	NumC)fProducts	I	HasCrCard	IsActiveMember	\
0	2	0.00 1	1	1				
1	1	83807.86	1	0	1 2	8		
	1590	660.80 3	1	0				

3	1 0.0	00 2 0 0 4 2 12	5510.82	1111.	
9995	5	0.00 2	1	0	
9996	10	57369.61	1	1	1
9997	7	0.00 1	0	1	
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

	EstimatedSalary	Exited		
0	101348.88	1		
1	112542.58	0		
2	113931.57	1 3	93826.63	0
4	79084.10	0		
9995	96270.64	0		
9996	101699.77	0		
9997	42085.58	1		
9998	92888.52	1		
9999	38190.78	0		

[10000 rows x 14 columns]

VISUALIZATIONS

```
#visualization of categorical features fig, ax = plt.subplots(3, 2, figsize = (15, 12)) plt.title("Visualization") sns.countplot('Geography', hue = 'Exited', data = df, ax = ax[0] [0],palette='spring') sns.countplot('Gender', hue = 'Exited', data = df, ax = ax[0] [1],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1] [0],palette='spring') sns.countplot('NumOfProducts', hue = 'Exited', data = df, ax = ax[1] [1],palette='spring') sns.countplot('HasCrCard', hue = 'Exited', data = df, ax = ax[2] [0],palette='spring') sns.countplot('IsActiveMember', hue = 'Exited', data = df, ax = ax[2] [1],palette='spring')
```

ax[0][0].set_title('Count Plot of Geography',color='red',fontsize=15) ax[0][1].set_title('Count Plot of Gender',color='red',fontsize=15) ax[1][0].set_title('Count Plot of Tenure',color='red',fontsize=15) ax[1][1].set_title('Count Plot of NumOfProducts',color='red',fontsize=15) ax[2][0].set_title('Count Plot of HasCrCard',color='red',fontsize=15) ax[2][1].set_title('Count Plot of IsActiveMember',color='red',fontsize=15)

```
plt.tight layout() plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation. FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

DESCRIPTIVE STATISTICS

df.dtypes

RowNumber int64

CustomerId int64

Surname object

CreditScore int64

Geography object

Gender object

Age int64

Tenure int64

Balance float64

NumOfProducts int64

HasCrCard int64

IsActiveMember int64 EstimatedSalary

float64 Exited int64

dtype: object

```
df num = df[['RowNumber','Tenure','CustomerId','CreditScore','Age','NumOfProduc
     ts','HasCrCard','IsActiveMember','Exited']]
    df cat = df[['Surname', 'Geography', 'Gender']] df num.head()
         RowNumber Tenure CustomerId CreditScore Age NumOfProducts HasCrCard \
                             15634602
                                            619
                                                    42
                2
                      1
                             15647311
                                            608
                                                    41
                                                           1
 2
                3
                      8
                             15619304
                                            502
                                                    42
                                                           3
 3
                                            699
                                                    39
                4
                      1
                             15701354
                                                           2
                                                    2
   0
                                            5
                                                           15737888
                                                                          850
                                                                                 43
                                                                                         1
          IsActiveMember Exited
       1
              1
       1
       0
               1
       0
              04
                      1
                             0
   df cat.head()
   Surname Geography Gender
                      France Female
         Hargrave
         Hill Spain Female
         Onio France Female
         Boni France Female 4
                                     Mitchell
                                                    Spain Female
   df num.describe()
                                                                    CreditScore
              RowNumber
                                     Tenure
                                                   CustomerId
   Age \
   count 10000.00000 10000.000000 1.000000e+04 10000.000000
   10000.000000
            5000.50000
                                   5.012800 1.569094e+07
                                                                        650.528800
mean
   38.921800
            2886.89568
                                   2.892174 7.193619e+04
                                                                          96.653299
   10.487806
```

0.000000 1.556570e+07

350.000000

0

1 1

0

1

1

0

1

2

3

0

1

2

3

std

min

1.00000

18.000 25%	000 2500.75000	3.000000 1.562853e+07	584.000000			
32.000000 50%	5000.50000	5.000000 1.569074e+07	652.000000			
37.000000						
75%	7500.25000	7.000000 1.575323e+07	718.000000			
44.000000						
max	10000.00000	10.000000 1.581569e+07	850.000000			
92.000000						

	NumOfProducts	HasCrCard	IsActiveMember	Exited
count	10000.000000	10000.00000	10000.000000	10000.000000
mean	1.530200	0.70550	0.515100	0.203700
std	0.581654	0.45584	0.499797	0.402769
min	1.000000	0.00000	0.000000	0.000000
25%	1.000000	0.00000	0.000000	0.000000
50%	1.000000	1.00000	1.000000	0.000000
75%	2.000000	1.00000	1.000000	0.000000
max	4.000000	1.00000	1.000000	1.000000

df_cat.describe(exclude = ['int64','float64']) Surname Geography Gender

count 10000 10000 10000 unique

2932 3 2 top Smith France Male

HANDLEfreq THE MISSING32 VALUES5014 5457

print("Column Missing values") print("") df.isnull().sum()

Column Missing values

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0

```
Exited 0 dtype: int64
 print(f"Our target variable is Exited. We can observe that it has only two possible variables:
  {df['Exited'].unique().tolist()}")
     Our target variable is Exited. We can observe that it has only two possible variables: [1, 0]
 df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)
     new names = \{
          'CreditScore': 'credit score', 'Geography':
          'country', 'Gender': 'gender',
          'Age': 'age',
          'Tenure': 'tenure', 'Balance':
          'balance',
          'NumOfProducts': 'number products', 'HasCrCard':
          'owns credit card', 'IsActiveMember': 'is active member',
          'EstimatedSalary': 'estimated salary', 'Exited': 'exited'
     }
     df.rename(columns=new names, inplace=True) df.head()
                                                        tenure balance number products
        credit score
                        country
                                        gender age
 0
                      619
                                                        42
                                France Female
                                                                2
                                                                         0.00
1
  1
                      608
                                Spain Female 41
                                                                83807.86
1
 2
                      502
                                France Female 42
                                                        8
                                                                159660.80
3
 3
                      699
                                France Female 39
                                                                0.00
                                                        1
2
 4
                      850
                                Spain Female
                                                        43
                                                                2
                                                                         125510.82
1
        owns credit card is active member estimated salary exited 0
                                                                                              1
                            1
                                                       101348.88
                                                                      1
1
                             0 1
                                        112542.58
                                                        0
2
                             1 0
                                        113931.57
                                                        1
3
                             0 0
                                        93826.63
                                                        0
4
                                        79084.10
                                                        0
                             1 1
     REPLACE OUTLIERS
        detect outlier(df): outlier =
   [] threshold = 3 mean =
   np.mean(df) std = np.std(df) for
   i in df:
            z \text{ score} = (i - \text{mean})/\text{std}
      if np.abs(z score)>threshold:
           outlier.append(i)
```

```
return outlier
      CreditScore list = df['CreditScore'].tolist() Balance list = df['Balance'].tolist()
      EstimatedSalary list
                                      df cat['EstimatedSalary'].tolist()
                                                                             CreditScore outlier
       = detect outlier(CreditScore_list) CreditScore_outlier
   Output-[359, 350, 350, 358, 351, 350, 350, 350]
      Balance outlier = detect outlier(Balance list) Balance outlier
   EstimatedSalary outlier
                                      detect outlier(EstimatedSalary list)
 EstimatedSalary outlier print("Shape of Data before removing outliers: {}".format(df.shape)) Shape
 of Data before removing outliers: (10000, 11)
    ENCODING
    # Encoding Categorical variables into numerical variables # One Hot
 Encoding x = pd.get dummies(x) x.head() x.shape
     (10000, 13)
    SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIALBLES
     # splitting the dataset into x(independent variables) and y(dependent variables)
 x = df.iloc[:,0:10]
 y = df.iloc[:,10]
     print(x.shape) print(y.shape)
     print(x.columns) #print(y)
     (10000, 10)
     (10000,)
     Index(['credit score', 'country', 'gender', 'age', 'tenure', 'balance',
            'number products', 'owns credit card',
                                                      'is active member',
                                                                             'estimated salary'],
          dtype='object')
    SCALE THE INDEPENDENT VARIABLES
     from sklearn.preprocessing import StandardScaler sc = StandardScaler()
 x train = pd.DataFrame(x train) x train.head()
           credit score country gender
                                         age tenure
                                                                            balance
     number products \
                                                                     5
2967
                        579 Germany
                                                        39
                                             Female
                                                                            117833.30
3
700
                        750
                                             Female
                                                        32
                                                                     5
                                                                                  0.00
                               France
2
                                                                     9
3481
                        729
                                 Spain
                                             Female
                                                        34
                                                                             53299.96
2
                                                                     5
1621
                        689
                                 Spain
                                               Male
                                                        38
                                                                             75075.14
```

```
1
800 605 France Male 52 7 0.00
2
```

	owns_credit_card	is_active_member	estimated_salary
2967	0	0	5831.00
700	1	0	95611.47
3481	1	1	42855.97
1621	1	1	8651.92
800	1	1	173952.50

SPLIT THE DATA INTO TRAINING AND TESTING

splitting the data into training and testing set

```
from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 0)

print(x_train.shape)

print(y_train.shape)

print(y_test.shape)

(7500, 10)

(7500,)

(2500, 10)

(2500,)
```