Les limites

Analyse - Cours

I Limite finie d'une fonction en $+\infty$

Définition:

Soit f une fonction. Soit l un réel.

Dire que «f(x) tend vers l quand x tend vers $+\infty$ » signifie $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x > A : l - \varepsilon < f(x) < l + \varepsilon$. On note $\lim_{x \to +\infty} f(x) = l$.

1. Théorème:

Pour toutes fonctions f et g et pour tout réels l et l' :

Si $\lim_{x \to +\infty} f(x) = l$ et $\lim_{x \to +\infty} g(x) = l'$ et l < l' alors $\exists A \in \mathbb{R}, \forall x > A : f(x) < g(x)$.

Remarque : Une conséquence de ce théorème est que la limite d'une fonction est unique si elle existe. En effet, si on applique ce théorème à une fonction f avec elle-même, on obtient f(x) < f(x) ce qui n'a pas de sens.

2. Théorème de comparaison des limites :

Soient f et g deux fonctions. Soit l et l' deux réels.

Si $\lim_{x \to +\infty} f(x) = l$ et $\lim_{x \to +\infty} g(x) = l'$ et $\exists A \in \mathbb{R}, \forall x > A : f(x) \le g(x)$ alors $l \le l'$.

Remarque: Attention, même si f(x) < g(x), leur limites peuvent quand même être égales (ex: $g(x) = \frac{1}{x}$ et $f(x) = \frac{-1}{x}$ tendent toutes les deux vers 0.)

3. Théorème des gendarmes :

Soient f, g et h trois fonctions. Soit l un réel.

 $\mathrm{Si} \lim_{x \to +\infty} f(x) = l \ \mathrm{et} \ \lim_{x \to +\infty} h(x) = l \ \mathrm{et} \ \exists A \in \mathbb{R}, \forall x > A, \ f(x) \leq g(x) \leq h(x) \ \mathrm{alors} \ \lim_{x \to +\infty} g(x) = l.$

4. Théorème des limites de référence :

(i)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

(ii)
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

(iii)
$$\forall n \in \mathbb{N}^*, \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

1/7

5. Théorème de linéarité :

Soient f et g deux fonctions. Soit l et l' deux réels. Si $\lim_{x\to +\infty} f(x) = l$ et $\lim_{x\to +\infty} g(x) = l'$ alors :

(i)
$$\lim_{x \to +\infty} f(x) + g(x) = l + l'$$

(ii)
$$\forall k \in \mathbb{R} \lim_{x \to +\infty} f(x) \times k = k \times l$$

(iii)
$$\lim_{x \to +\infty} f(x) \times g(x) = l \times l'$$

(iv) Si
$$l' \neq 0$$
 et $\exists A \in \mathbb{R}, \forall x > A : g(x) \neq 0$ alors $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{l}{l'}$

II Limites de suites

II. 1 Limites finies: suites convergentes

Définition:

Soit u une suite. Soit l un réel.

On dit que la suite u tend vers l quand n tend vers $+\infty$ lorsque la proposition (P) suivante est vérifiée : (P) : « $\forall \varepsilon \in \mathbb{R}_*^+, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : l - \varepsilon < u_n < l + \varepsilon$ »

On dit que la suite u converge vers l et on note : $\lim_{n\to+\infty} u_n = l$

6. Théorème:

Soient u et v deux suites. Soient l et l' deux réels.

Si
$$\lim_{n \to +\infty} u_n = l$$
 et $\lim_{n \to +\infty} v_n = l'$ et $l < l'$ alors $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n < v_n$

Remarque : Ce théorème a pour corollaire que la limite d'une suite est unique si elle existe.

7. Théorème de comparaison des limites :

Soient u et v deux suites. Soient l et l' deux réels.

Si $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n \leq v_n \text{ et } \lim_{n \to +\infty} u_n = l \text{ et } \lim_{n \to +\infty} v_n = l' \text{ alors } l \leq l'.$

8. Théorème des gendarmes :

Soient u, v et w trois suites. Soient l un réel.

Si
$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n \leq v_n \leq w_n$$
 et $\lim_{n \to +\infty} u_n = l$ et $\lim_{n \to +\infty} w_n = l$ alors $\lim_{n \to +\infty} v_n = l$

Remarque : Comme pour les fonctions, les deux théorèmes précédents permettent de comparer les limites de fonctions simples, appelées « limites de référence », avec des limites de fonctions plus élaborées.

9. Théorème des limites de référence :

(i)
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

(ii)
$$\forall p \in \mathbb{N}, p \ge 1 : \lim_{n \to +\infty} \frac{1}{n^p} = 0$$

10. Théorème de linéarité :

Soient u et v deux suites. Soient l et l' deux réels.

Si
$$\lim_{n \to +\infty} u_n = l$$
 et $\lim_{n \to +\infty} v_n = l'$ alors :

(i)
$$\lim_{n \to +\infty} u_n + v_n = l + l'$$

(ii)
$$\forall k \in \mathbb{R} : \lim_{n \to +\infty} k \times u_n = k \times l$$

11. Théorème produit et quotient :

Soient u et v deux suites. Soient l et l' deux réels.

Si
$$\lim_{n \to +\infty} u_n = l$$
 et $\lim_{n \to +\infty} v_n = l'$ alors :

(i)
$$\lim_{n \to +\infty} u_n \times v_n = l \times l'$$

(ii) Si
$$l' \neq 0$$
 et $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : v_n \neq 0$ alors $\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{l}{l'}$

12. Théorème:

Pour toute suite u:

- (i) Si u est croissante et majorée alors u converge.
- (ii) Si u est décroissante et minorée alors u converge.

II. 2 Limites infinies

Définition:

On dit que la suite u tend vers $+\infty$ quand n tend vers $+\infty$ lorsque la propostion (P) suivante est vérifiée : (P) : « $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n > A$ ».

On dit que la suite u diverge vers $+\infty$ et on note $\lim_{n\to+\infty} u_n = +\infty$.

13. Théorème de comparaison :

Soient u et v deux suites.

Si
$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n \geq v_n \text{ et } \lim_{n \to +\infty} v_n = +\infty \text{ alors } \lim_{n \to +\infty} u_n = +\infty.$$

14. Théorème des suites croissantes :

Soit u une suite. Si u est croissante et non majorée, alors $\lim_{n\to+\infty}u_n=+\infty$.

Remarque : Une suite non majorée ne diverge pas forcément vers $+\infty$ (ex : $\forall n \in \mathbb{N} : u_n = (-1)^n$).

15. Théorème des limites de référence :

(i)
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$

(ii)
$$\forall p \in \mathbb{N}^* : \lim_{n \to +\infty} n^p = +\infty$$

16. Théorème somme et produit :

Soient u et v deux suites. Si $\lim_{n\to+\infty} u_n = +\infty$ et $\lim_{n\to+\infty} v_n = +\infty$ alors :

(i)
$$\lim_{n \to +\infty} u_n + v_n = +\infty$$

(ii)
$$\forall k \in \mathbb{R}_+^* : \lim_{n \to +\infty} k \times u_n = +\infty$$

(iii)
$$\lim_{n \to +\infty} u_n \times v_n = +\infty$$

Remarque : Si $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} v_n = +\infty$, on ne peut rien déduire de la limite de $\frac{u_n}{u_v}$.

17. Théorème des limites de référence :

Soit u une suite à termes strictement positifs.

(i) Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = 0$

(ii) Si
$$\lim_{n \to +\infty} u_n = 0$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = +\infty$

18. Théorème:

Soit u une suite. Soient r et q deux réels.

- (i) Si u est arithmétique de raison r:
 - 1. Si r > 0 alors $\lim_{n \to +\infty} u_n = +\infty$
 - 2. Si r < 0 alors $\lim_{n \to +\infty} u_n = -\infty$
- (ii) Si u est géométrique de raison q et $u_0 > 0$:
 - 1. Si q > 1 alors $\lim_{n \to +\infty} u_n = +\infty$
 - 2. Si -1 < q < 1 alors $\lim_{n \to +\infty} u_n = 0$
 - 3. Si $q \leq -1$ alors u diverge sans limite

II. 3 Complément sur les suites divergeant vers $-\infty$

Définition:

On dit que la suite u tend vers $-\infty$ quand n tend vers $+\infty$ lorsque la propostion (P) suivante est vérifiée : (P) : « $\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n < A$ ».

On dit que la suite u diverge vers $-\infty$ et on note $\lim_{n\to+\infty} u_n = -\infty$.

19. Théorème:

Soit u une suite. $\lim_{n\to +\infty} u_n = -\infty \Leftrightarrow \lim_{n\to +\infty} -(u_n) = +\infty$

20. Théorème de comparaison :

Soient u et v deux suites.

Si $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : u_n \leq v_n$ et $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$.

21. Théorème:

Soit u une suite. Si u est décroissante et non minorée alors $\lim_{n\to +\infty} u_n = -\infty$.

22. Théorème somme et produit :

Soient u et v deux suites.

(i) Si
$$\lim_{n\to +\infty}u_n=-\infty$$
 et $\lim_{n\to +\infty}v_n=-\infty$ alors $\lim_{n\to +\infty}u_n+v_n=-\infty$

(ii)
$$\forall k \in \mathbb{R}_+^*$$
: Si $\lim_{n \to +\infty} u_n = -\infty$ alors $\lim_{n \to +\infty} k \times u_n = -\infty$

(iii) Si
$$\lim_{n\to +\infty}u_n=-\infty$$
 et $\lim_{n\to +\infty}v_n=-\infty$ alors $\lim_{n\to +\infty}u_n\times v_n=+\infty$

(iv) Si
$$\lim_{n\to +\infty}u_n=+\infty$$
 et $\lim_{n\to +\infty}v_n=-\infty$ alors $\lim_{n\to +\infty}u_n\times v_n=-\infty$

23. Théorème de la limite de l'inverse :

Soit u une suite à termes strictement négatifs.

(i) Si
$$\lim_{n \to +\infty} u_n = -\infty$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = 0$

(ii) Si
$$\lim_{n \to +\infty} u_n = 0$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = -\infty$

III Opérations sur les limites

$\lim_{n \to +\infty} u_n =$	$\lim_{n \to +\infty} v_n =$	$\lim_{n \to +\infty} u_n + v_n =$	$\lim_{n \to +\infty} u_n \times v_n =$	$\lim_{n \to +\infty} \frac{u_n}{v_n} =$
$L \neq 0$	0	L	0	$\pm \infty$ (règles des signes)
0	0	0	0	Forme indéterminée
$L \neq 0$	±∞	±∞	$\pm \infty$ (règle des signes)	0
0	±∞	$\pm\infty$	Forme indéterminée	0
+∞	+∞	+∞	+∞	Forme indéterminée
+∞	$0 \text{ avec} \\ \forall n, v_n > 0$	+∞	Forme indéterminée	+∞
+∞	$-\infty$	Forme indéterminée	$-\infty$	Forme indéterminée
$-\infty$	$-\infty$	$-\infty$	+∞	Forme indéterminée
$-\infty$	$0 \text{ avec} \\ \forall n, v_n > 0$	$-\infty$	Forme indéterminée	$-\infty$

Remarques:

- Dans le cas où il existe plusieurs exemples donnant des limites différentes, on parle de forme indéterminée.
- On admet que les règles ci-dessus à propos des opérations sur les limites infinies de suite restent valables pour les limites infinies de fonctions.

IV Compléments sur les limites de fonctions

IV. 1 Limite infinie d'une fonction en $+\infty$

Définitions:

$$-\lim_{x\to +\infty} f(x) = +\infty \text{ signifie } \text{$\langle \forall A\in\mathbb{R},\exists B\in\mathbb{R},\forall x\geq B:f(x)>A$ \rangle} \\ -\lim_{x\to +\infty} f(x) = -\infty \text{ signifie } \text{$\langle \forall A\in\mathbb{R},\exists B\in\mathbb{R},\forall x\geq B:f(x)$$

24. Théorème de comparaison :

Soient f et g deux fonctions. Si $\exists A \in \mathbb{R}, \forall x > A, f(x) \leq g(x)$:

(i) et si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$

(ii) et si
$$\lim_{x\to +\infty} g(x) = -\infty$$
 alors $\lim_{x\to +\infty} f(x) = -\infty$

IV. 2 Limite d'une fonction en $-\infty$

Définitions :

$$\begin{array}{l} --\lim_{x\to -\infty} f(x) = l \text{ signifie } \text{``} \forall \varepsilon \in \mathbb{R}_+^*, \exists A \in \mathbb{R}, \forall x < A : l-\varepsilon < f(x) < l+\varepsilon \text{``} \\ --\lim_{x\to -\infty} f(x) = +\infty \text{ signifie } \text{``} \forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \leq B : f(x) > A \text{``} \\ --\lim_{x\to -\infty} f(x) = -\infty \text{ signifie } \text{``} \forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \leq B : f(x) < A \text{``} \end{array}$$

25. Théorème des limites de référence :

Pour tout entier $p \geq 1$:

(i)
$$\lim_{x \to -\infty} \frac{1}{x^p} = 0$$

(ii) Si p est pair alors $\lim_{x\to -\infty} x^p = +\infty$

(iii) Sip est impair alors $\lim_{x\to -\infty} x^p = -\infty$

Remarque : On admet que tous les théorème de comparaison (ex : théorème des gendarmes) ainsi que toutes les règles à propos des opérations restent valables pour les limites quand x tend vers $-\infty$.

IV. 3 Limite à gauche et à droite d'une fonction en un réel

On considère un réel a et un intervalle I contenant a, ainsi qu'une fonction f définie partout sur I sauf en a. Quand x tend vers a, la limite de f(x) peut être différente si x < a et si x > a.

Définitions :

On peut étudier la limite d'une fonction en un réel a:

- par valeurs inférieures à ce réel. On parle de limite à gauche en a et on note $\,$ lim
- par valeurs supérieures à ce réel. On parle de limite à droite en a et on note $\lim_{x\to a^+}$

IV. 4 Limites de fonctions composées

26. Théorème de composition des limites :

Soient a, b et c les variables désignant soit des réels, soit $-\infty$, soit $+\infty$.

Soit I un intervalle dont l'une des bornes est a. Soit u une fonction définie sur I. Soient f et g deux fonctions telles que $\forall x \in I : f(x) = g(u(x))$.

Si $\lim_{x\to a} u(x) = b$ et $\lim_{x\to b} g(x) = c$ alors $\lim_{x\to a} f(x) = c$.

V Limites des fonctions exponentielle et logarithme népérien

V. 1 Fonction exponentielle

27. Théorème :

(i)
$$\lim_{x \to +\infty} e^x = +\infty$$

(ii)
$$\lim_{x \to -\infty} e^x = 0$$

28. Théorème des croissances comparées :

(i)
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

(ii)
$$\lim_{x \to -\infty} x \times e^x = 0$$

Remarques:

— Ce sont des formes indéterminée.

— On peut généraliser ce théorème à n'importe quelle puissance de x:

$$\forall n \in \mathbb{N}^* : \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \text{ et } \lim_{x \to -\infty} x^n \times e^x = 0$$

V. 2 Fonction logarithme népérien

29. Théorème:

(i)
$$\lim_{x \to +\infty} \ln(x) = +\infty$$

(ii)
$$\lim_{x\to 0} \ln(x) = -\infty$$

30. Théorème des croissances comparées :

(i)
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

(ii)
$$\lim_{x \to 0} x \times \ln(x) = 0$$

Remarques:

— Ce sont des formes indéterminée.

— On peut généraliser ce théorème à n'importe quelle puis sance de \boldsymbol{x} :

$$\forall n \in \mathbb{N}^* : \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0 \text{ et } \lim_{x \to 0} x^n \times \ln(x) = 0$$

— L'ordre des vitesse de croissance des fonctions est le suivant : $\ln(x)$, \sqrt{x} , x, x^2 , x^3 , ..., x^n , e^x .