Europäisches Patentamt **European Patent Office**

Office européen des brevets

EP 0 705 842 A2 (11)

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

10.04.1996 Bulletir. 1996/15

(51) Int. Cl.⁶: **C07K 14/00**, C12Q 1/68

(21) Application number: 95115510.0

(22) Date of filing: 02.10.1995

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(30) Priority: 06.10.1994 EP 94115751

(71) Applicant: HOECHST AKTIENGESELLSCHAFT D-65929 Frankfurt am Main (DE)

(72) Inventors:

· Bartnik, Eckart, Dr. D-65205 Wiesbaden (DE)

· Margerie, Daniel, Dipl Biol. D-60320 Frankfurt (DE)

(54)Regulated genes by stimulation of chondrocytes with 1L-1beta

(57)The present invention refers to the novel use of osteopontin, calnexin and TSG-6 gene product in the diagnosis, prophylaxis or therapy of IL-1ß mediated diseases of connective tissues and to novel genes induced or repressed by stimulation of chondrocytes with IL-1 β and their use in the diagnosis, prophylaxis or therapy of IL-1 β mediated diseases of connective tissues.

Descn, Jon

The present invention refers to the novel use of osteopontin and calnexin in the diagnosis, prophylaxis or therapy of IL-1β mediated diseases of connective tissues and to novel genes induced or repressed by stimulation of chondrocytes with IL-1β and their use in the diagnosis, prophylaxis or therapy of IL-1β mediated diseases of connective tissues.

Among the diverse biological effect of interleukin-1 (IL-1), are its actions on the metabolism of many connective tissue cell types including articular chondrocytes. IL-1 inhibits proteoglycan (PG) synthesis by chondrocytes and stimulates production of prostaglandin E₂ and metallo-proteinases capable of degrading matrix macromolecules. From experimental results, and from findings of IL-1, PG fragments and proteolytic enzymes in inflamed joints, it was deduced that IL-1 plays a role in cartilage degradation in osteoarthritis and rheumatoid arthritis (Benton HP & Tyler JA. 1988, Biochem, Biophys. Res. Comm. 154, 421-428; Aydelotte MB et al. Conn. Tiss. Res. 28, 143-159; Wood DD et at., Arthrithis Rheum. 26, 975-983; Lohmander LS et al., Trans Orthrop. Res. Soc. 17, 273). Matrix metalloproteinases are potential candidates for drug interaction at the enzyme level, but relevant molecular targets interfering with earlier processes leading to cartilage degradation are still lacking. Therefore, one objective of the present invention was to identify potential targets for drug modification of IL-1β induced cartilage degradation on the RNA level of human articular chondrocytes from osteoarthritic cartilage.

As an initial attempt to investigate differentially expressed genes in diseased cartilage, total RNA from IL-1ß stimulated and unstimulated human chondrocytes was subjected to differential display of mRNA by reverse transcription and polymerase chain reaction (DDRT-PCR). This method can be used to identify and isolate those genes that are differentially expressed in two cell populations (Liang P & Pardee AB 1992, Science 257, 967-971; Liang P et al., AB 1993, Nucl. Acids Res. 21, 4272-4280). The key element is to use a set of oligonucleotide primers, one hybridizing to the polyadenylated tail of mRNAs, the other being arbitrary decamers that anneal at different positions relative to the first primer. mRNA subpopulations defined by these primer pairs are amplified after reverse transcription and resolved on DNA sequencing gels. Band patterns are created, which are characteristic for each RNA population extracted from the cell population under study. For example, 100 different primer combinations should generate a total of approximately 10,000 PCR products for each population, which should represent about the half of all expressed cellular genes. A comparison of the band pattern obtained from two cell populations reveals differentially displayed bands which correspond to differentially expressed genes. Subsequently, differentially displayed bands can be extracted from the gel, reamplified, subcloned and sequenced.

Due to its extreme sensitivity, the appearance of artifactual bands is an inherent problem of the DDRT-PCR method used according to the present application. An additional problem is also the evaluation of complex gene expression patterns. Yet another problem of the present invention is that only minute amounts of RNA are available.

Therefore, it was particularly surprising that the DNA TAU1/1 with the sequences

35

30

TAU1/1(1)

ACATCACCTC	ACACATGGAA	AGCGAGGAGT	TGAATGGTGC	ATACAAGGCC	ATCCCCGTTT	60
CCCAGGACCT	GAACCCGCCT	TCTGATTGGG	ACAGCCGTGG	GAAGGACAGT	TATGAAACGA	120
GTCAGCTGGA	TGACCAGAGT	GCTGAAACCC	ACAGCCACAA	GCAGTCCAGA	TTATATAAGC	180
GGAAA						185

45

40

and

TAU1/1(2)

CTAAATGCAA AGTGAGAAAT TGTATTTTT CTCCTTTTAA TTGACCTCAG AAGATGCACT 60 ATCTAATTCA TGAGAAATAC GAAATTTCAG GTGTTTATCT TCTTCCTTAC TTTTGGGG 118

55

and the DNA TTU2/2 with the sequence

5

10

35

AACCAGTATT	TCAAAACTAT	TATCTGGATT	CAAGATTAGT	GTGTAAAGAT	TGTTTTCTTA	60
TCAGTA AAT	AGGTCTTCAG	ATCTGCATCT	GGCCTCTTAG	CATGTTTTTC	TTCATAGATA	120
CCCGTTTTGG	GGTTTTTGCG	TCGGAAGATG	AATGGCATTT	ATAGTCCTCT	CCACATTTAT	180
CTG						183

are 100 % identical to human osteopontin cDNA and 97.2 identical to human calnexin, respectively. This demonstrates that the experimental approach of the present invention worked efficiently, i.e. the use of 100 different primer combinations (25 oligodecamer primers, 4T₁₂MN-primers) generated a total of approximately 10.000 PCR products for each population which represent 53 % of all expressed cellular genes. 123 PCR bands out of 10.000 appeared as differentially expressed bands. 53 of the original 123 PCR bands were reproducibly displayed by comparing the PCR band patterns from two patients; of those 68 % arose from IL-1β stimulated chondrocytes.

It was further found that osteopontin which is a secreted highly acidic phosphoprotein of 32 kd (Denhardt and Guo (1993) FASEB J. 7, 1475-1482) is surprisingly downregulated in IL-1 β stimulated human chondrocytes. This means that osteopontin is involved in IL-1 β related diseases of connective tissues, in particular osteoarthritis.

Osteoarthritis is characterized as a slowly progressing matrix degeneration with continuing degradation of collagens and proteoglycans and subsequent release of matrix fragments into the synovial fluid. Any disturbance of the normal chondrocyte matrix interactions, for example through a loss of osteopontin, could cause an altered signaling through the integrin alpha_vbeta₁ and thus changed cellular responses leading to early steps of matrix degradation.

Therefore, one embodiment of the present invention is the use of osteopontin itself or parts thereof, antibodies against it or nucleic acids such as DNA or RNA or parts thereof coding for osteopontin or parts thereof in the diagnoses, prophylaxis or therapy of IL-1β related diseases of connective tissues, in particular osteoarthritis. According to the present application the term "parts" means either at least 8, preferably 12, in particular 15 amino acids in case of proteins or 6-100, preferably 10-40, in particular 12-25 nucleic acids in case of DNA or RNA as hybridization probes. The methods of diagnosing such diseases will be described infra. In addition, quantification on the protein level is possible with osteopontin specific antibodies on Western blots, in immunochemistry, FACS analysis or ELISA based assay systems. The present invention refers also to a diagnosis aid or a pharmaceutical for such use. Osteopontin can be produced for example recombinantly through expression in procayotes, in insect cells in mammalian cells or in mammalian cells using Vaccinia as detailed in Ausubel et al. 1994 [Current protocols in molecular biology, Chapter 16, John Wiley & Sons, Inc]. The cDNA of Osteopontin is e.g. disclosed in Young et al. (1990), Genomics 7, 491 - 502.

Antibodies against osteopontin can be generally produced for example by the method of Neil GA & Urnovitz HB (Trends in Biotechnology, 6, 209-213, 1988) or Köhler G & Milstein C (Nature, 256, 52-53, 1975).

Also calnexin which is an integral membrane protein of 88 kd (Bergeron et al. (1994) TIBS 19, 124-128) is surprisingly downregulated in IL-1β stimulated human chondrocytes compared to unstimulated chondrocytes. This means also that calnexin is involved in IL-1β related diseases of connective tissues, in particular osteoarthritis. In addition, a downregulation of the calnexin synthesis would cause a reduced amount of correctly and completely folded proteoglycans because calnexin is a new type of molecular chaperone that associates with incompletely folded proteins such as proteoglycans. Proteoglycans are highly glycosylated glycoproteins which are of central importance for the maintenance of the cartilage tissue integrity.

Hence, an additional embodiment of the present invention is the use of calnexin itself, or parts thereof antibodies against it or nucleic acids such as DNA or RNA or fragments thereof coding for calnexin or parts thereof in the diagnosis, prophylaxis or therapy of IL-1β related diseases of connective tissues, in particular osteoarthritis. The methods of diagnosing such diseases are already described above. The present invention refers also to a diagnosis aid or a pharmaceutical for such use.

Calnexin can be produced for example recombinantly as described above for osteopontin. The cDNA of Calnexin is e.g. disclosed in Galvin et al. (1992), Proc. Natl. Acad. Sci. USA 89, 8452 - 8456. The production of said antibodies are also generally described above.

Potential role of identified cDNA fragments in IL-1 mediated cellular processes TSG-6

A homology search in the GenBank and EMBL databases revealed a 99.5 % sequence indentity of fragment TAU7/2(c) with the gene coding for human TSG-6. TSG-6 (TNF stimulated gene 6) was originally isolated by differential cDNA library screening as a TNF induced gene sequence from human fibroblasts (Lee et al., 1990). It was further characterized by Lee et al (1992) as a TNF and IL-1 inducible, secretory, 39 kDa glycoprotein with extensive sequence homology with a region implicated in hyaluronate binding, present in cartilage link protein, proteoglycan core proteins,

and the adhesion receptor CD44. With the ability to bind HA and with the most extensive sequence homology to CD44, TSG-6 belongs to the hyaladherin family. Wisniewski et al. (1993) detected high levels of TSG-6 protein in synovial fluids of patients with various forms of arthritis. Six normal control patients did not contain detectable TSG-6 protein in their joint fluid, whereas joint fluids from nine rheumatoid arthritis patients contained high, moderate or low levels of TSG-6. Two patients with osteoarthritis had high levels of TSG-6 in their joint fluids. The apparent local source of TSG-6 in the joints are synoviocytes and chondrocytes (Wisniewski et al., 1993). Lee et al. (1992) speculated that TSG-6 could act as a competitive inhibitor of the interaction between CD44 and its ligand(s) and thus might influence the structural organization of the extracellular matrix of connective tissue, resulting in a destabilization of the proteoglycan aggregates.

Hence, an additional embodiment of the present invention is the use of TSG-6 gene product itself, or parts thereof antibodies against it or nucleic acids such as DNA or RNA or fragments thereof coding for TSG-6 gene product or parts thereof in the diagnosis, prophylaxis or therapy of IL-1β related diseases of connective tissues, in particular osteoarthritis. The methods of diagnosing such diseases are already described above. The present invention refers also to a diagnosis aid or a pharmaceutical for such use.

Fibronectin

35

40

45

50

55

A homology search in the GenBank and EMBL databases revealed a 100 % sequence identity of fragment TTO20/1(c) with the gene coding for human fibronectin.

Fibronectin is a 450 kd glycoprotein with various functions. It acts as an adhesive ligand, as growth or differentiation factor and has chemotactic properties. It is found in the extracellular matrix of most types of cells (Hynes R 1993. Fibronectins, In: Guidebook to the extracellular matrix and adhesion proteins. Editors: Kreis T, Vale R. Oxford University Press. 56-58). An enhanced accumulation of fibronectin and fragments derived from it are found in the synovial fluid and on the inflamed synovial and pannus surfaces in the knee joint of patients with rheumatoid arthritis (Dutu A, Vlaicu-Rus V, Bolosiu HD, Parasca I, Cristea A. 1986. Fibronectin in plasma and synovial fluid of patients with rheumatic diseases. Med. Interne 24, 61-68). Patients with osteoarthritis, as well, have greatly increased levels of fibronectin in their synovial fluid and on cartilage surfaces (Xie D-L, Meyers R, Homandberg GA. 1992. Fibronectin fragments in osteoarthritic synovial fluid. J. Rheumatology 19, 1448-1452). The intraarticular injection of fibronectin fragments causes a severe depletion of cartilage proteoglycans in vivo (Homandberg GA, Meyers R, Williams JM. 1993. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J. of Rheumatology 20, 1378-1382), which is explained by the induced relase of several proteinases, including stromelysin (Xie D-L, Hui F, Meyers R, Homandberg GA. 1994. Cartilage chondrolysis by fibronectin fragments is associated with release of several proteinases: Stromelysin plays a major role in chondrolysis. Arch. Biochem. and Biophysics 311, 205-212). At high concentrations, fibronectin fragments enhance cartilage catabolism through release of cytokines, including IL-1 (Homandberg et al., personal communication).

In respect to these published data, the upregulation of fibronectin by IL-1 can be regarded as a positive feedback regulation, enhancing the self destructive potential of chondrocytes and synoviocytes. With this, fibronectin expression is a direct pharmacological target.

In addition, the sequencing of differentially displayed PCR products discovered also unknown DNA fragments which correspond to differentially expressed genes with or without stimulation of chondrocytes with IL-1β.

Therefore, another embodiment of the present invention is a DNA containing a DNA selected from the group consisting of

5	TA08/2(2)					
	1	CCAAGTTTTT	CCAGCAACCC	CAAGGGAATA	CAGGGAGATC	AATGCACCA
	51	AAATGGGAAA	AGAAAAATAC	TTCGATGCAA	TGAAACAAAG	CCTTTTTCCG
	101	TTCAGTTTCC	ATAATTCAGT	GGTCAGTTTT	AAGGCTGCCA	CTTGGG
10						•
	TA016/1(2)					
	1	GACACGAACA	CCACATATTT	TTATTGGAGG	CCCCATGGCT	CCTTGGAAGC
	51	CATTTTGGAA	CCAAGGGGAC	CCACCTTTTT		
15						
	TA016/2(2)					
	1	CTAAATATAT	TCTCTAACAA	GTTAATCTCT	TTCAAATCTA	TAGATAAAAC
	51	TAAAAGGATA	AGGAACCAAG	GTTTAACCGA	CCTAGCCAAT	TATGGCAATC
20	101	ATACTTGCTT	TTTAG			

	TA017(C)					
-	1	CATGAAATAT	TTCTTGAGGT	AATAAGCTTT	TACCAAGCTT	ATATTTTTGG
5	51	GCAATTCAGT	TACAATGAGA	AAAAAACACA	CCAAAAGACC	ATTTTAAAAA
	101	AAAACTCACT	TTTCTTGCAA	TCATAGACAT	TTGCATTATT	ATAGAACATT
	151	CAAACAAGTT	AGGTGGATAA	TTATTGTCTA	TAGATAAATA	CGATGCAATT
10	201	TTTTTAATGT	ATGACCGATA	CTCCGTATAT	ACTTAGATAA	CTTATCCAGA
	301	AACCTCAACT	GTATTGAACA	TTGCTGAGAG	AAATCAACAA	TAATTTTAAC
	351	AGATATGATG	ACAGNAAAAA	TTGATTGCAT	ATCTTTTTGC	ACTAAAACTT
	401	TTATATTTAT	TT			
15						
	TA019(C)				•	
	1	AGAGCAGGG	TATTTCNCGG	TTCATACCGC	CATGGCTTAA	GAAGCAAAAG
	51	TCATATACCT	TAGTAGTGGC	AAAGATNGAG	GAGATAAAA	AGAGCCTACC
20	101	CAAGCTGTTG	TTGAAGAACA	GGTCTTAGAT	AAAGAGGAAC	CCTTCCAGAA
	151 201	GNACAGAGAC	AGGCTAAGGG	TGATGCTGAG	GAAATGGCTC	AGAAGAAACA
	201	AGAGATTAA				
	TAU 1/1(2)					
25	1	CTAAATGCAA	AGTGAGAAAT	TGTATTTTT	CTCCTTTTAA	TTGDCCTCDC
	- 51	AAGATGCACT	ATCTAATTCA	TGAGAAATAC	GAAATTTCAG	TTGACCTCAG GTGTTTATCT
	101	TCTTCCTTAC	TTTTGGGG	100.1110	ORBITIONS	GIGILIAICI
30	TAU 1/1(1)					
	1	ACATCACCTC	ACACATGGAA	AGCGAGGAGT	TGAATGGTGC	ATACAAGGCC
	51	ATCCCCGTTT	CCCAGGACCT	GAACCCGCCT	TCTGATTGGG	ACAGCCGTGG
	101	GAAGGACAGT	TATGAAACGA	GTCAGCTGGA	TGACCAGAGT	GCTGAAACCC
35	151	ACAGCCACAA	GCAGTCCAGA	TTATATAAGC	GGAAA	
55						
	TAU1/2(2)					
	1	CCGGAATGGG	GAGCAAACTA	TAAGAACCGG	GACCAGTTTC	CTCTCTTTGT
40	51	GCCCTAGTTC	CCCCTCCTTT	GTATACACCC	TCCATCCTGA	ATAGACTCTG
40	101	GTTCTCAGCG	TAACACCGAC	AACATTCAAT	CCTGTAGAGA	AACAAATGTT
	151	AGCTCAGAAG	GACACAGCCT	TTGAATCATC	AGAGAGTT	
	TAU 7/1(2)					
45	1		ACTAAATAAA			
	51 101	TATTAACATT	TAATTTTATA	ACTGTATCTG	CCAAGCAACT	TTAAATATAA
	101	TTTATTTACC				
	TAU 7/1(1)					
50	1	CACGCAATGT	GAAATAGGCA	CATAGGAAGA	ATGGGGAAAG	CATCCCCTCA
	51	AGCATTTATC			AATTACACTC	
	101		ACAGTTAGGT		ANTINUMULU	IIIIAGTTAT
			Indul	****		

•						
	TAU 7/2(C)					
_	1	CCTTGAAGAT	GACCCAGGTT	NCTTGGCTGA	TTATGTTGAA	ATATAGACA
5	51	GTTACGATGA	TGTCCATGGC	TTTGTGGGAA	GATACTGTGG	AGATGAGCTT
	101	CCAGATGACA	TCATCAGTAC	AGGAAATGTC	ATGACCTTGA	AGTTTCTAAG
	151	TGATGCTTCA	GTGACAGCTG	GAGGTTTCCA	AATCAAATAT	GTTGCAATGG
	201	AT				
10						
	TAU10(1)					
	1	GGAGATGACA	TTTGCTTTGG	GCAGAGGCAG	CTAGCCAGGA	CACATTTCCA
	51	CTATAATTTT	ACAAAGTTAA	ATTTATAAGC	TAGCATTAAG	TAAAGTGAAG
15	101	TTCCAGCTCC	CTTGCTAAAA	ATAACTAGAG	GTAATAATTG	GTATTCAGGT
	151	AACTCATTTA	CATCATAATG	TGTTGTGAAA	A	
	TAU12/1(2)					
20	1	TATAAAATAT	AAATTATATT	ATAAATCATG	TATTATTAT	TATATTAAAA
	51	TATAAATTTA	TAAAAATATA	AATTATATTT	TAGGCTTAAT	GTATAAGGAA
	101	TATAAATAT	TAATAAGCAT	ATGA		
25	TAU 12/1(1)				
25	1	TGTAATTAAC	TGTNCTTGTA	GGTCTGTCTT	TTATACATGT	GTGAGTTTTT
	51	CTTTACAATA	GATTCCTAGC	ATTGGGATTG	CTAGGTCAGA	TGGTATGCAC
	101	ATTTGACATT	TTGATTGATA	GCACCAGATT	GCTTTGTTAA	AAAATTTTNN
	151	TTTATAGTTT	ACATTATCTT	TGTACAATAG	ATGTTCTCTT	TCGAC
30						
	TAU 12/2(1)				
	1	GGGAAGTGAA	TTGAAAATAC	TTCTTTNTCA	ACATAATTTT	NGGGTTTTGA
	51	AATTGTGTTT	GGGTTTTCAG	GAAATTGGTG	GTAATCTTGT	ATTAGACTGAA
35	101	AAAAAGTGAA	TTTTAAAATT	CTCAGTGAAG	AAGCAAATGA	TTTATTTTTC
	151	ATAGA				
	TAU12/3(2)					
40	1	TGTTCTGGTA	ACTGTTCTAA	TTGTGTCTTT	GTTACTTCCA	GTGCAACCCT
	51	TTCAGGTAAG				
	TAU12/3(1)					
45	1	CTAAAGAACT	TGGTATCTCT	ATTAAAGCAC	ACGAACCTCC	AAGGAAAATA
	51	GAGCGATTTA	CTCTTCTCAT	ATCAGTGCAT	ATTTATAAGA	AGCACGGAGT
	101	CA				
•						
50	TAU13/1(1)					
	1	AGTCATCAAT	TCCTTTTTAT	CTGTAATTAC	ACATTTGTTT	TTATTTCAAA
	51	GTAATTATAA	GGTGTTATAT	TGCATATAAT	CAGAAAACTA	AATGGAAATA
	101	AAATTTTAGT	AAGCCCGGCC	CCTTTGACCG	ATACAGAAAA	CTTGA

	TAU 13/3(2	2)				
_	1	TATATGGCAG	TCTAAAGCAT	CAAAGATTTG	CATCAACATC	TTTCATTTTA
5	51	GACATCTCCT	TGCAATGTAA	AATATCATGT	ATCAACAACA	TCTGGTGCAA
	101	ATCCATGAGT	CTAACTCGAC	ATTCATCTTA	GCTCGATTAT	TATTCCTTCG
	151	TACAGTCGAT	GTAAACAATA	CAGAAAGAGG	ATTATTAAGA	ACAGTTT
	TAU 13/3(1	L)				
10	1	ATTCATGAAA	TGGTCTATAT	GCATGATATT	GTAAATTCGG	ACTCGAAACC
	51	GAAACCAAGG	ATTCCGTTAC	AAAAATTCCT	TAATGCTGAG	AATGTTCTCA
	101	CGCAAACAAC	ATCATGGACA	TTAAATTCAA	GATATGTGAA	TGTTAATTCT
	151	GTCAATAAAG	TCAACGTAAA	GAGTAAAGTT	AAAAACAGTT	ATATCTNNNC
15	201	TGTCAATGAT	GAGTTTAGTT	TAACAGATGA	TGAATCAATT	CT
	TCO 16/1(C	;)				
	1	CAAAGTGTTT	TTGGTTTTGA	GAGAGAGAGA	GATTGAGAGA	CAGAGAGAGA
20	51	GAGAGAAACC	AAGGGATCAT	GATAGTTATA	GTCAAATACG	AGGTTGGATT
	101	ATCTTTTGAA	AATGTGTTGG	TTCTGTGATA	CAAGAGGAAG	CTAAGACATA
	151	TCGTGGAAAC	ATCTCCCCC	TCCACCTTAA	TATCAAGAAC	AAATTGTGGA
	201	ATCTAATGTT	AATGAGAAGT	AGTTCCCCAC	TGTGTCAGAT	G
25	TC016/2(C)					
	1	NCATCTGACA	CAGTGGGGAA	CTACTTCTCA	TTAACATTAG	ATTCCACAAT
	51	TTNNNCTTGA	TATTAAGGNN	NNNNGGGAG	ATCGTTTCAC	GATATCGTCT
	101	TAGCTTCCTC	TTGTATCACA	GAACCAACAC	ATTTCAAAAG	ATAATCCTTC
30	151	CTCNNTTTGA	CTATAACTAT	CATGATCCCT	TGGTTCTCTC	TCTCTCTCTG
	201	CTCTCTCATC	TCTCTCTCTC	TNAAAACNAA		
	TC017(C)					
35	1	ACAGTAGTTA	GGAGTTTCTT	TACTTACAAA	ATCACTGGAA	1.000 nm 1.1 nm
	51	TGCTTTTCCC	CCTCCCCAGA	GGTGCATTTT	TCTTATTTCC	ATGATTAAAT
	101	GTTGAGCTTT	TACAGTGCAT	AATGTGACAT	TTGGAATGCT	TATCAACTGC
	151	ATGTAAACAT	TAATAACCT	initotonent	TIGGRATGET	TATCAACTGC
40						
	TC018(C)					
	1	GTAAATGGTA	TTANNNGCTG	AAGAAAAAA	ATTTTTCAAG	ACCTCTGTTT
	51	TTTAACTGAA	CTTTATCATT	GGCATTGTGG	GCTTTGAAGT	TGCTGGGATA
45	101	AATTAATATA	ATTAAATAAA		TAATTGCAAA	
45	151	AACAATAAGT	GTGGTGAT			
	TCU2/1(1)					
	1	AAGAAATTAT	CCAGTTATTT	ACAAGGCCAC	TGATATTTTA	AACGTCCAAA
50	51	AGTTTGTTTA				
	101		TTACATTTTA		AAACTTAGAA	ATGAGAATGA
	151		TAAATACAAA			PULLIVIAIN
				·		

	TCU2/2(1)		•			
	1	CGGGTTAATA	TTATCCTCTA	GTATAAGTGA	ATTACTAGTT	TCTCTTTATT
5	51	TAGACAAACA	CACACACACC	AGATAATATA	AACTTAATAA	ATTATCTGTT
	101	AATGTAGATT	TTATTTAAAA	AACTATATTT	GAACATTGGT	CTTTCTTGGA
	151	С				
10						
	TCU9/1(2)					
	1	ACATAACAGC	TTTTATACAA	TGATAAGGAC	ATATCATTTG	TTTACAAAGA
	51	AAGTCTAAAA	TTTCAAGAAC	ATTCAAAGAG	CTARCACAGT	AAAGGTCATG
15	101	CAAGTTCTAG	AATAGTGAAT	CATGACAGAA	CTCATTCATT	TTATCCTTTA
15	151	TCTCC				
	TCU9/2(2)					
	1	AAGTATGGGT	AGCTAAATTT	GCATTAAATT	AAAAGTACAT	ATAATGCAAC
20	51	ACCACTCTAC	ATCTGTATAC	CTACGAATGT	ATGTGTACTA	CACACCCTTA
	101	AAATGTTTTT	CAAAGTCTTA	ATATATTAGA	ACATGTTTTC	ATTTTTTCAT
	151	GGGATGTTAA	TACTATTCTA	TGATTAAGAA	AATACTAG	
25	TCU10(2)					
	1	AATACAGTTA	TTCTAGCTTT	TCATATTCAA	TTTGAATGAT	CAGAAAAGTA
	51	TATTAGTCAC	ACAGAATTAA	ATATTTTAGA	TAGTAAGAAT	С
	mov1 4 (2)					
30	TCU14(2)	6116m61116	T0100000			
	1 51	GAAGTGAAAG	TCAGCCCTTT	AGCTATTATT	TATTGCTTTA	TTAGAGCAGA
	101	GGGAAGTGAC GAGTGGTCAA	ACTCATTGCC	TTCACAGAGC	TCTGCAGAAA	TATATGCACA
	101	GAGIGGICAA	TGCCAACATC	TGAGTAAGTC	TTCCAAA	
35	TGO20(2)					
	1	CAGAACATTA	GGATTTATTC	CTTGATTAGT	TCAAATGATT	TCAACAGCTG
	51	AATTCCTTGA	GATGTGTAAG	GCAGGTTGGT	CCTTTGGATG	GACTGTAGAC
	101	TGAAACTTCC	TATAACTGTA	GTGATATGTA	CACAGCTACA	TAGCAAAGTG
40	151	CTTCATTATG	AAAATGAAGA	A		11100101010
40						
	TG020(1)					
	1	CAGTGTGAGA	GTCTCATTTC	TATGCACAGT	GTTTCTCAGG	AGGATGGAGC
	51	TAGTTAGCTG	TCTGTTGTCT	GTAGCCCAGC	TTGATAATGG	AACTATACAG
45	101	CGAAGAGACA	ATCTCTGGCA	AGTTTTTGTA	GAA	
	TGU5(C)					
	1	TTAGAGTAAA	ATTCCAAATA	AATGCTTTGC	TCCAAAATTA	CACTAACCAG
50	51	GCTGGGTCTC	TATCATACAT	CTTCAATACC	CTCAAACCTA	GATTGTAAAG
	101	TGAAAAAAGT	GATTAGCNNT	TCCATTTGTT	CATTCTGTCA	CTCACATTCT
	151	TAGGCATTTT	AAGGATGAGC	AACCTTTGTT	TCAGAAAGGG	TAAGTAATTA
	201	GCCCCTGGA	GGTTACATAG	TTATAATTTA	GTCTTCAGAA	TCCGTTCGAA
55						

	251	GGGNNNNGTT	ACTATTTTA	AGATAATTAG	AACCCACCTT	GTAGCAATAA
	301	AAGTTTTCTT	GTCTTTG			
5						
	TGU8(2)					
	1	GCGAAAGACT	AATCGAACCA	TCTAGTAGCT	GGTTCCCTCC	GAAGTTTCCC
	51	TCAGGATA				
10						
	TGU9/1(2)					
	1	TTAATGTTTA	AATACTACTT	TTTTTTCAAG	CTTGCCCTAG	ATACCAACTG
	51	TTTATCTAAC	ACACAATTCC	AGTGTTGCCA	AGCCTCATGC	CAATTTGAAG
	101	GGAACAGCCA	AAACTTATGC	ATTCATATAA	AAAGAGTCTC	TAGGCTCTTA
15	151	TATCTACATT	ATAATTTTT			
	TGU9/2(2)					
	1	GGAATAACAT	TTTTTTATGA	GGGAACCCTT	TAAAATGGAT	GCACACAGTG
20	, 51	GCATTTTCTC	CTAGGCTCAA	AGCTGAGTAC	ACTCCCGTAA	TTTTAATAAT
	101	ATTTTAGGCA	AGTCCTATGA	CAATTATACC	AACAAGTTTC	TTCAACCCCA
	151	CCACCACCCC	ACCATCTCTA	TGC		
25	TGU12(C)					
	1	GGAGGAAGCT	TTATTTGGGA	AGAGTGCGGT	TCNNTCGGCC	CTGATCAGCT
	51	CTAGCCTGCC	CACCCCATCT	CAGCCAGGCG	GCTTTACTTC	TTCCTGAGCT
	101	TCAGGTCTTT	CTTCTTCCTG	ATTTCCTTGG	CCAGCTCCCC	AATCAATCTC
	151	CAGTACTCAT	TGAACTTGAG	CTCCGAGNCC	TGATTCACAT	CCAAGCTCTT
30	201	CATCTTCT				
	TGU13/1(C)					
	1	GGATGTGGTA	GTTGATCTTT	AATGCCCATT	CTAGGTCGGA	AAAATCCATG
35	51	ATCCTAACTT	TTAAGAGAAG	GTTGGTAACT	CTACTTAGGA	CTTTTTTTTG
	101	TAAGAGGAAT	AATGTAGCCT	CACCCTTATC	TTTCTGGAAA	TGTTTAAACC
	151	ACTGAAATAT	GGAGATCAAA	TCCAGCTTAC	ACACTGGTAA	CTCAAATACT
	201	ATTTTTTTTT	TAAACTATCT	TTTCTAAACT	AATCACCCCT	CTTGTACATA
40	251	GAACTTTCTA	TCTCAGTGCC	AATTCTTAGA	GGTTGATGCA	AACAGCTCTC
	301	CAGAGAGCCT	GTGCTATTGT	TC		•
	TGU13/2(2)					
	1	GGGGTGTACA	ጥጥጥ አጥጥ ር እ	7.7.CCTT7.7.7.7.) CDCDDDC)	
45	51	CTTCAATCAA	TTTTATTGGA GGTCTTGCCG	AACCTTAAAT AGCCTACACA	ACTGTTCAGA	AAGAATATAT
	101		GGATATATAC	AGTACAGAGG	GAAAAATGAA ACAAAGA	GCTTTTTGGG
				nornendago	ACAAAGA	
	TT016/2(C)					
50	1	ACATTCATTA	AAGATGAACT	TTCAGCATCT	TCACTTGAAG	ATCCATCAGA
	51	TGATTCTGAG	AGGCAGGTCT	CCCCCAAAAA	TCCACCGCAT	GTATTCTTTC
	101	GTTTAGAATC		TTTCTTTTCA	GGCTTGATGA	CTCTTCTAAG
	151	GTATTTGTTA	TGCCTCTCTT	CTGGGTTTTT		TATCAAGTAG
					-	
55						

	201	CTNAAATTCA	AACACCATGG	CAANAGAAAC	TGCTTCTAT	
5	TTO20/1(C)					
	1	CCACCAGCCT	ACTGATCAGC	TGGGATGCTC	CTGCTGTCAC	AGTGAGATAT
	51	TACAGGATCA	CTTACGGAGA	AACAGGAGGA	AATAGCCCTG	TCCAGGAGTT
	101	CACTGTGCCT	GGGAGCAAGT	CTACAGCTAC	CATCAGCGGC	CTTAAACCTG
10	151	GAGTTGATTA	TACCATCACT	GTGTATGCTG	TCACTGGCCG	TGGAGACAGC
	201	CCCGCAAGCA	GCAAGCCAAT	TTCCATTAAT	TACCGAACAG	AAATTGACAA
	251	ACCATCCCAG	ATGCAAGTGA	CCGATGTTCA	AGACAACTGT	AAAATAAAA
	301	GATTTACATT	CCAC			
15						
	TT020/2(2)					
	1	TTGGTACCAC	AGTCACAGAA	CTGGGGGTCA	TTTTCTAGAT	GAAACAAACG
	51	GAACAAGTTC	TCTTCCAACA	AAGAAATGTA	CTGTAGAAAT	TAATTTCCTC
20	101	CATGAATTTT	ATATATTGTG	TACAAATATA	AGGTATGTAT	CTGAATACAA
	151	AG				
	TTU2/1(2)					
25	1	CTAGAACTTC	CAAAGGCTGC	TTGTCATAGA	AGCCATTGCA	TCTATAAAGC
	51	AACGGCTCCT	GTTAAATGGT	ATCTCCTTTC	TGAGGCTCCT	ACTAAAAGTC
	101	ATTTGTTACC	TAAACCTTAT	GTGCCTTAAC	AGGCCAATGC	TTCTCG
30	TTU 2/2(C)					
30	1	AACCAGTATT	TCAAAACTAT	TATCTGGATT	CAAGATTAGT	GTGTAAAGAT
	51	TGTTTTCTTA	TCAGTAAAAT	AGGTCTTCAG	ATCTGCATCT	GGCCTCTTAG
	101	CATGTTTTTC	TTCATAGATA	CCCGTTTTGG	GGTTTTTGCG	TCGGAAGATG
	151	AAGTGCAGTT	TATAGTCCTC	TCCACATTTA	TCTG	
35						
	TTU3(1)					
	1	GGGTAGAAAG	CTGAATAATT	TATGAAGGAG	AGGGGTCAGG	GTTGATTCGG
	51	GAGGACCTAT	TGGTGCGGG	GCTTTGTATG	ATTATGGGCG	TTGATTAGTA
40	101 151	GTAGTTACTG	GTTGAACATT	GTTTGTTGGT	GTATATATTG	TAATTGAGAT
	201	TGCTCGGGGG AAG	AATAGGTTAT	GTGATTAGGA	GTAGGGTTAG	GATGAGTGGG
	201	AAG				
	TTU 5/1(2)					
45	1	GACAAAAAAA	AAAAAACAGG	TTTTAAAGCT	AGAAATGAAA	AGCTACTTAA
	51		GGATAAGTTA		CACTAGAAAC	
	101		TAAAAAATCT			
						
50	TTU5/2(2)					
	1	GCATCCATTG	TACATTGTTT	GGTTTGAGGT	TACCATGAGG	CCTGTAAATA
	51	CTATCTTATA	ATTTATTATT	TCAACCTGAT	AAAACTTAAC	ACTATTTGCA
	101	TAAACAAACA	AACGAAAA			

	TTU9/1(1)					
5	1	TAAAATACT	G GTTCTTTT	AT TCTGCAA	TAT TTTTAA	AAAT CACATTTTCA
	51	GCCAGGCGC	A GTTTCCCA	CA CCTGȚAA	TCC GGCACT	TTGG GAGGCTGAGA
	101	TGGGTGGAT	C ACAAGGTA	GG AGATCAA	ACA TCCTGG	CCAA CATGGTGAAC
	151	CTGTTTACT				
10						
	TTU9/2(2)					
15	1	CAAGTATGGG	TAGCTAAATT	TGCATTAAAT	TAAAAGTACA	TATAATGCAA
	51	CACCACTCTA	CATCTGTATA	CCTACGAATG	TATGTGTACT	ACACACCCTT
	101	AAATGTTTCA	AAGCTTAATA	TATTAGAACA	TGTTTTCATT	TTCAGGGAG
20	TTU13(2)					
	1	GGAAATACAC	TAGCATGTGA	GCACTGTATA	TAAAGCTTGA	GGTTAGGAGG
	51	TAAAATGAAA	GAAATCATTT	TTAACTCCTA	AGATGT	
25	TTU13(1)					
	1	TGAATTAAAT	GGACTCGTTG	AAAGGACAAG	GAGATCGGTA	ATATCTCTCT
	51	AAAGAACTTA	TATACTAAAA	TCTGTAATTG	CCTGTACCAA	AAGTTTTAGT
	101	CTTCTTTT				
30						

or an analog thereof. In accordance with the invention, the term "analog" includes nucleic acids which code for the same protein sequence due to the degeneration of the genetic code, for a protein having conservative amino acids substitutions or deletions that do not eliminate the characteristical feature of this protein, or for a protein having at least about 85 %, and more advantageously at least about 90 %, in particular 95 % amino acid sequence homology.

Other embodiments of the invention provide a vector containing said DNA and a host cell containing said vector.

According to the general knowledge one skilled in the art can also use said nucleic acids of the present invention as a hybridization probe to detect the corresponding genes in an organism or in a sample from on organism or gene mutations thereof.

Therefore, an additional embodiment is a method for isolating a gene which can be induced or repressed by treating chondrocytes that contain this gene by IL-1β containing the steps:

- (a) hybridizing a DNA of the present invention under stringent preferably high stringent conditions against DNA or RNA containing said gene, preferably DNA or RNA isolated originally from chondrocytes, in particular human chondrocytes; and
- (b) isolating this gene by methods known to a skilled person in the art.

45

50

According to the present invention the term "stringent conditions" means hybridization conditions comprising a salt concentration of 4 x SSC (NaCI-citrate buffer) at 62-66°C, and "high stringent conditions" means hybridization conditions comprising a salt concentration of 0,1 x SSC at 68°C. The length of the probes are 6-100, preferably 10-40, in particular 12-25 nucleic acids long.

Yet another embodiment is a process for expressing a gene isolated according to the above-described process containing the steps:

(a) cloning said gene into a suitable expression vector such as the pET series (Studier et al., 1990. Methods in Enzymology 185, 60) for procaryotic expression or the vector CDM8 for mammalian expression (Aruffo and Seed, 1987. Proc. Natl. Acad. Sci. USA 84, 8573) or any other expression system known to one skilled in the art; and

- (b) expressing said gene in a suitable host cell such as BL21 series (Studier et al., 1990, supra) for procaryotic expression or COS, cells for mammalian expression (Aruffo and Seed, 1987, supra) or any other expression system known to one skilled in the art;
- or a method for producing a protein containing the steps:
 - (a) culturing a suitable host cell, in particular the above mentioned, containing a vector, in particular an expression vector such as the vectors mentioned above which contains a DNA or a gene of the present invention; and
 - (b) isolating the expressed protein for example by ultrafiltration, precipitation with chaotropic agents such as urea or column chromatography on e.g. ion exchange chromatography columns as detailed in Ausubel et al. 1994 (supra).

A further embodiment is a diagnostic aid containing a DNA or parts thereof or a gene or parts thereof of the present invention. In particular, quantification of the genes can be achieved on the RNA level by Northern blotting with gene specific probes of the present invention or with gene specific primers in a PCR reaction. Such primers can be synthetically produced using the DNA sequences of the present invention or the sequences of the corresponding genes. Therefore, said nucleic acids are useful for the diagnosis of IL-1β related diseases of connective tissues, in particular osteoarthritis or rheumatoid arthritis.

These nucleic acids can also be used to evaluate the expression of certain genes in small cartilage biopsies and to use these ultimately as disease-specific markers and/or as predictive markers for disease progression of e.g. osteoarthritis. The hybridization conditions can be the same as described above.

Said nucleic acids, however, can also be used for the therapy against the diseases mentioned or for the production of a pharmaceutical.

Therefore, another embodiment of the present invention is also the use of said nucleic acids for the production of a pharmaceutical. For example, as described by Uhlmann & Peyman (Chem. Rev. (1990), 90, 543), Milligan et al. (J. Med. Chem. (1993), 36, 1923) or Stein & Cheng (Science (1993), 261, 1004) such nucleic acids can be used as antisense oligonucleotides or triple helix forming oligonucleotides for the inhibition of gene expression. This is in particular useful if such a disease is caused by the overproduction of a gene product which is directly or indirectly regulated by IL-1 β in chondrocytes. The nucleic acids can additionally be modified in order to increase e.g. the stability against nucleases as described e.g. in the literatures mentioned above.

Finally, also the gene product itself produced by a method of the present invention can be used as a pharmaceutical. In the following the invention is in particular described by the examples and tables:

Description of the Tables

Table 1 gives an overview on used primers and the complexity of the detected differences in expression.

Table 2 summarizes the result of the sequencing of differentially displayed PCR products after their elution from the sequencing gel, reamplification and subcloning into the pCRII vector. The sequences of TAU1/1(1) and TAU1/1(2) are 100 % identical to human osteopontin cDNA, the sequence of TTU2/2 is 97.2 % identical to human calnexin. bp = base pairs, IL-1 = Interleukin-1 stimulation, Stat. sig. score = statistical significance score: a feature of the BLAST database searching program. This score is determined using an implementation of Karlin's significance formula (Karlin, S. and Altschul, S.F. 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA, 87:2264-2268), which calculates the Poisson probability that the observed sequence similarity will occur by chance based on the size and composition of the sequence database as well as on the size and quality of the match. The smaller this number, the more it is likely to see sequence similarities.

Examples

10

35

50

Cell culture

Articular cartilage specimen were obtained from two patients (male 65 years old and female 73 years old) undergoing total joint replacement surgery for osteoarthritis. None of these individuals had received treatment by radiation or chemotherapy. Articular cartilage slices were aseptically dissected from both femoral condyles, tibia plateaus and pattellae and subjected to sequential enzymatic digestion with pronase and collagenase as described (Häuselmann HJ et al. 1992, Matrix 12, 116-129) Since it is known that the alginate gel suspension system retains the chondrogenic phenotype [Lohmander LS et al. 1992, Trans. Orthop. Res. Soc. 17, 273.] 4 x 106 chondrocytes were suspended in low viscosity alginate (4 x 106 cells / ml 1,25 % w/v alginate in an isotonic buffered solution) and expressed through a 22gauche needle into 102 mM CaCl solution to form cell entrapping beads which are 1,5-3 mm in diameter and spherical. Alginate beads containing a total number of 2 x 107 cells were fed daily for the first three days with medium F12 / DMEM (50/50)

and 10 % fetal calf serum (Sigma) with 25 μ g / ml ascorbate and 50 μ g / ml gentamycin and were then subdivided into two populations for further three culture days in the presence or absence of 5U/ml rh IL-1 β (Genzyme). For cell recovery, alginate beads were finally dissolved into dissolution buffer (55 mM sodiumcitrate, 30 mM EDTA, 0,15 M NACI) and placed at room temperature for 10 min. Viability was checked by eosin-red exclusion and cell number was determined.

Primer syntheses

Arbitrary oligodecamer primers OPA6 to OPA10, OPA16 to OPA20 and degenerate anchored oligo-dT primers (T₁₂VN) were synthesized using the 392 DNA synthesizer (Applied Biosystems) and purified by denaturing polyacrylamid gel electrophoresis. Some oligodecamer primers, U1 to U15 were purchased from Biometra (Göttingen, FRG).

EP 0 705 842 A2

List of all degenerate 3' oligo dT-primers [T₁₂VN] used for DDRT-PCR:

Primer	Sequence 5' to 3'			
T ₁₂ VA	5'-TTTTTTTTTTTV A-3'			
T ₁₂ VA	5'-TTTTTTTTTTTT-3'			
T ₁₂ VA	5'-TATTTTTTTTTVG-3'			
T ₁₂ VA	5'-TTTTTTTTTTTV C-3'			
V = dA, dG, dC; N = dA, dT, dG, dC				

List of all arbitrary 5' oligodecamer primers used for DDRT-PCR:

2	?(7	

-	Primer	Sequence 5' to 3'
-	OPA 6	GGTCCCTGAC
-	OPA 7	GAAACGGGTG
	OPA 8	GTGACGGGTG
-	OPA 9	GCGTAACGCC
-	OPA 10	GTGATCGCAG
	OPA 16	AGCCAGCGAA
Ì	OPA 17	GACCGCTTGT
	OPA 18	AGGTGACCGT
	OPA 19	CAAACGTCGG
	OPA 20	GTTGCGATCC
	U1	TACAACGAGG
	U2	TGGATTGGTC
	U3	CTTTCTACCC
	U4	TTTTGGCTCC
	U5	GGAACCAATC
	U6	AAACTCCGTC
	U7	TCGATACAGG
	U8	TGGTAAAGGG
	U9	TCGGTCATAG
	U10	GGTACTAAGG
	U11	TACCTAAGCG
	U12	CTGCTTGATG
	U13	GTTTTCGCAG
	U14	GATCAAGTCC
	U15	GATCCAGTAC

RNA isolation and cDNA synthesis

Total RNA from cultured articular chondrocytes was prepared according to a single step method Chomczynski and Sacchi (Chomczynski P & Sacchi N 1987, Anal. Biochem. 162, 156-159) and incubated with 10 U RNasefree DNasel (Gibco, Eggenstein, FRG) for 30 min at 37°C to remove chromosomal DNA contamination of RNA. After extraction with phenol/choroform (3:1), the supernatant was ethanol precipitated in the presence of 0.3 M NaOAc and RNA was redissolved in DEPC treated water. 0,4 μ g total RNA was then reverse transcribed using 200 U M-MLV (Moloney murine leukemia virus) reverse transcriptase (Gibco, Eggenstein, FRG) in a 40 μ l reaction volume containing 50 mM Tris-HCl (pH 8,3), 75 mM KCl, 10 mM DTT, 3 mM MgCl₂, dNTP mix (dATP, dTTP, dCTP, dGTP) of 200 μ M each, 40 U RNase inhibitor (Boehringer Mannheim, FRG) and 2,5 mM degnerate oligo-dT primer (T₁₂VN) at 37°C for 1 h. Reactions were terminated by heating for 5 min at 95°C.

PCR amplification

cDNAs were amplified in a DNA thermal cycler (Perkin Elmer, model 480) in 20 μ l PCR reactions containing 2.5 μ M of the original T $_{12}$ MN-primer used in cDNA synthesis in combination with 0.5 μ M arbitrary upstream primer, dNTP mix (dGTP, dCTP, dTTP) of 0.5 μ M each, 10 μ Ci α -[35 S]dATP (1000 Ci/mmole, 10 mCi/ml), 10 mM Tris-HCl (pH 8.3) 50 mM KCl, 1.5 mM MgCl, 0.001 % gelatin and 2.5 U AmpliTaq DNA polymerase. Light mineral oil was overlaid and thermal cycling was performed as follows: 94°C for 30 seconds, 40°C for 2 min and 72°C for 30 seconds for 40 cycles followed by 5 min postextension at 72°C. AmliTaq DNA polymerase was purchased from Perkin-Elmer (Weiterstadt, FRG) and α -[35 S]dATP was obtained from Amersham-Buchler (Braunschweig, FRG). After addition of 5 μ l stop buffer (95 % formamide, 20 mM EDTA, 0.05 % bromphenolblue and 0.05 % xylene cyanol) radiolabeled PCR-fragments were then displayed on 6 % acrylamide/7 M Urea high resolution sequencing gels of 35 x 43 cm in size; dried gels were exposed to X-ray film (Kodak X-OMAT) and exposed for 48 h, which allows rapid identification of differentially expressed genes by side by side comparison of DDRT-PCR band patterns.

Elution, reamplification and cloning of PCR fragments

PCR fragments identified as differentially expressed bands were cut from acrylamide gels, transferred into Eppendorf tubes and rehydrated for 10 min with 100 μ l 10 mM Tris-HCl and 1 mM EDTA at room temperature. After boiling the gel slice for 15 min, the PCR fragment was recovered by ethanol precipitation in the presence of 0.3 M NaAc and 20 μ g glycogen as a carrier and redissolved in 10 μ l sterile water. 5 μ l of this volume was used for reamplification by PCR using appropriate primers and conditions described above except for dNTP concentration of 20 μ M and no radioisotope. The reamplified PCR product was visualized by electrophoresis on a 2 % agarose gel and eluted from the gel by ultrafiltration using Ultrafree MC-filters (Millipore). Purified PCR fragments were then cloned into the pCRII-vector (Invitrogen, De Schelp, NL) by the TA cloning method (Kovalic D et al. 1991, Nucleic Acids Research 19, 4640), which allows in-vitro transcription and sequencing from the plasmid.

Sequencing

40

Plasmid DNA sequencing of subcloned PCR fragments with either SP6(2) or T7(1) primer was carried out using the chain-termination DNA sequencing method, as described by Sanger et al. (Sanger F et al. 1977, Proc. Natl. Acad. Sci. USA 74, 5463-5467.).

Sequence analysis

The sequence analysis revealed the sequences of cDNA clones TAO8/2(2), TAO16/1(2), TAO16/2(2), TAO17(c), TAO19(c), TAU1/1(2), TAU1/1(1), TAU1/2(2), TAU7/1(2), TAU7/1(1), TAU7/2(e), TAU10(1), TAU12/1(2), TAU12/1(1), TAU12/2(1), TAU12/3(2), TAU12/3(1), TAU13/3(2), TAU13/3(1), TCO16/1(e), TCO16/2(e), TCO17(e), TCO18(e), TCU2/1(1), TCU2/2(1), TCU9/1(2), TCU9/2(2), TCU10(2), TCU14(1), TCU14(2), TGO20(2), TGU5(e), TGU5/2(e), TTU2/1(e), TTU2/2(e), TTU3(1), TTU5/1(e), TTU5/2(e), TTU9/1(1), TTU9/2(e), TTU13(1) disclosed on pages 7 to 14 of the specification.

Searching for homology between subcloned PCR fragments and sequences already listed in one of the DNA databases (GenBank or EMBL database) was performed using the FASTA program developed by Pearson and Lipman (Pearson W & Lipman DJ 1988, Proc. Natl. Acad. Sci. USA 85, 2444-2448) included in the GCG software package (Genetics Computer Group, Madison, USA).

Northern-blot analysis

Cell culture and isolation of RNA was performed exactly as described above. 10 μ g of total RNA from both IL-1 β stimulated or not stimulated chondrocytes were denatured by heating at 65°C for 10 min in a solution of 50 % formamide, 20 mM MOPS and 2.2 M formaldehyde, separated through a 1 % agarose gel containing 2.2 M formaldehyde in 1 X MOPS and transfered to positively charged nylon membrane (Amersham) by standard blotting procedures [Maniatis et. al 1992]. After UV crosslinking, the blots were prehybridized for 1 h in rapid-hyb-buffer (Amersham) at 65°C. A 330 bp cDNA corresponding to nts 61 to 390 of human osteopontin cDNA (GenBank J04765) and a 340 bp cDNA corresponding to nts 881 to 1220 from human calnexin (GenBank M94859) were radiolabeled for hybridization with α -[32 P]dCTP (3000 Ci/mmol, 10 mCi/ ml) using random nonamer primers (Amersham) up to a specific activity of \sim 1,5 x 109 dpm / μ g DNA. Hybridization was performed for 2,5 h at 65°C in prehybridization solution with 2 ng / ml of labeled probe added. The blot was subsequently washed in 2 X SSC, 0.1 % SDS at 37°C for 15 min (1 X SSC = 0,15 M NaCl, 0.015 M sodium citrate, pH 7,0), followed by two successive washes with 1 X SSC, 0.1 % SDS at 65°C for 10 min respectively. If necessary, a final high stringency wash was performed with 0.1 X SSC, 0.1 % SDS at 65°C for 15 min. The blots were then analysed by autoradiography using Kodak X-Omat films at -80°C with intensifying screeens for 2-7 days and intensity of bands was quantified with a phosphorimager (Biorad, model GS-250). All blots were stripped with boiling 0.5 % SDS solution and reprobed with labeled β -actin to demonstrate equal loading of RNA in each lane.

Northern hybridisations (Results)

Fragment TAU7/2(c), identical to TSG-6, was differentially upregulated in IL-1 stimulated cells. This is in concordance with Lee et al. (1992) which reported for TSG-6 a TNF- α and IL-1 mediated upregulation. Fragment TAU1/1, identical to human osteopontin and fragment TTU2/2, identical to human calnexin, both were weaker expressed in IL-1 stimulated chondrocytes compared with the unstimulated cells. To validate our differential display data, we performed Northern analyses of Osteopontin and calnexin expression in IL-1 stimulated and unstimulated chondrocytes originating from a third patient. Both messages were again downregulated. A phosphorimager quantification revealed an osteopontin downregulation by 79% and a calnexin downregulation by 40% in the RNA population from chondrocytes of the third

patient.

5

10

15

20

25

30

35

40

45

50

55

Current results of differential display reverse transcriptase PCR (DDRT-PCR) to reveal diffential gene expression by chondrocytes with and without IL-1B Table 1:

Overview on used primers and number of analysed bands

DDRT-PCR primercombination	bination						
3'-Oligo dT-primer	5'-Oligodecamer	3'-Oligo dT-primer 5'-Oligodecamer putative differential	reproducibility of DDRT-PCR band eluted from gel and chloned into pCRII	T-PCR band	eluted from gel and		PCR-fragment
(downstreamprimer)	(upstreamprimer)	(downstreamprimer) (upstreamprimer) expressed genes by side pattern from first to second, third or reamplified in PCR vector by TA cloning sequenced using SP6	pattern from first to s	econd, third or	reamplified in PCR	vector by TA cloning	sequenced using SP6
		by side comparison fourth DDRT-PCR	fourth DDRT-PCR			method verified by PCR or T7 promoter	or T7 promoter
		DDRT-PCR band pattern (same patient ¹⁾ (other patient ²)	(same patient ¹⁾ (othe	r patient ²)			
T12M'A	OPA 6 - OPA 10	OPA 6 - OPA 10 25 out of ~ 4000 bands 7	7 not done	one	9	•	-
T,2M*T	OPA 16 - OPA 20	OPA 16 - OPA 20 19 out of ~ 4000 bands 13	13 9		12	12	12
T ₁₂ M*G	01-05	31 out of ~ 4000 bands not done	not done	-	11	10	10
T,2M°C	U 6 - U 10	27 out of ~ 4000 bands not done	not done 13		12	11	11
!	U 11 - U 15	21 out of ~ 4000 bands not done	not done 11		11	10	10
total 4 x	25	total 123	total 55		total 52	total 44	total 44
= 100 combinations							

means threefold degeneracy where M may be dA, dG or dC

patient female 73 years old diagnosis gonarthosis

patient male between 65-75 years old

theoretical consideration:

Suggesting that an arbitrary upstream primer detects 3 % of the total RNAs (Liang 1994), then 97 % of the total mRNAs will not be detected, i.e. with 25 arbitraty oligodecamerprimer and the four degenerate T₁₂VN primers, about half of the mRNAs would be seen (P=1-{0,97})ⁿ=1-{0,97})²⁵=53,3 %) in 100

lanes of high resolution sequencing gels.

Table 2 IL-1 mediated differentially displayed cDNA fragments of human articular chondrocytes

Fragment	bp	IL-1	Features	Stat.sig.score
TAO 8/2(2)	275 bp	+	146 bp sequenced, no homology found	0.999
TAO 16/1(2)	450 bp	+	80 bp sequenced, no homology found	0.69
TAO 16/2(2)	200 Бр	+	115 bp sequenced, no homology found	0.04
TAO 17(c)	412 bp	+	412 bp sequenced, no homology found	0.016
TAO 19(c)	209 bp		209 bp sequenced, no homology found	0.99
TAU 1/1(1,2)	450 bp		100 % sequence identity to human	1.2 x 10-101
	1		osteopontin cDNA in 303 bp overlap (303 bp	
			seq.)	
TAU 1/2(2)	430 bp	+	188 bp sequenced, no homology found	0.82
TAU 7/1(1,2)	500 bp	+	87 % sequence identity to human cDNA clone	8,1 x 10-33
			c-1sd02 in 125 bp overlap (235 bp seq.)	
TAU7/2(c)	202 bp	+	99.5 % sequence id to human	4.8 x 10-76
			TNF stimulated gene-6 in 202 bp overlap	
TAU 10(1)	400 bp	+	181 bp sequenced, no homology found	0,9997
TAU 12/1(1,2)	470 bp		319 bp sequenced, no homology found	3.3 x 10 ⁻¹⁴
TAU 12/2(1)	390 bp		155 bp sequenced, no homology found	0.0078
TAU 12/3(1,2)	250 bp		95 % sequence identity to human cDNA clone	1.0 x 10 ⁻²⁸
			HRBBA21 similar to S10 in 158 bp overlap (162	
			bp seq.)	
TAU 13/1(1)	600 bp	+	145 bp sequenced , no homology found	0.12
TAU 13/3(1,2)	500 bp		439 bp sequenced, no homology found	0.33
TCO 16/1(c)	241 bp	+	241 bp sequenced, no homology found	2.4 x 10 ⁻⁷
TCO 16/2(c)	230 bp	+	230 bp sequenced, no homology found	4.3 x 10 ⁻⁵
TCO 17(c)	169 bp	+	169 bp sequenced, no homology found	0.49
TCO 18(c)	168 bp	+	168 bp sequenced, no homology found	1.3 x 10 ⁻⁶
TCU 2/1(1)	400 bp	+	178 bp sequenced, no homology found	0,66
TCU 2/2(1)	210 bp	+	151 bp sequenced, no homology found	0.0074
TCU 9/1(2)	430 bp	+	99 % sequence identity to human cDNA clone	7,2 x 10 ⁻⁵⁸
			131036 3' in 155 bp overlap (155 bp seq.)	
TCU 9/2(2)	320 bp	••	188 bp sequenced, no homology found	0,22
TCU 10(2)	320 bp		100 % sequence identity to human cDNA clone	2,9 x 10 ⁻²⁸
			26518 3° in 85 bp overlap (91 bp seq.)	

	pb	IL-1	Features	Stat.sig.score
TCU 14(1,2)	280 bp	+	99.3 % sequence identity to human cDNA	3,5 x 10 ⁻⁵¹
			HL60 3'directed Mbol in 249 bp overlap (249 bp	ļ
<u> </u>			seq.)	
TGO 20(1,2)	300 bp	+	304 bp sequenced, no homology found	0.95
TGU 5(c)	317 bp	+	317 bp sequenced, no homology found	0.088
TGU 8(2)	320 bp	+	100 % sequence identity to human	1.4 x 10 ⁻¹⁶
			28S rRNA in 58 bp overlap (58 bp seq.)	
TGU 9/1(2)	280 bp	+	169 bp sequenced, no homology found	0,55
TGU 9/2(2)	220 bp		100 % sequence identity to human cDNA	4.0 x 10 ⁻³⁶
			clone 12A10B in 100 bp overlap (173 bp seq.)	
TGU 12(c)	208 bp		87 % sequence identity to human cDNA clone	5.5 x 10 ⁻⁶³
			113442 3' in 208 bp overlap	
TGU 13/1(c)	322 bp	+	322 bp sequenced, no homology found	6.9 x 10 ⁻¹³
TGU 13/2(2)	300 bp		94.9 % sequence identity to human	2.3 x 10 ⁻⁴³
			F1 ATPase β -subunit in 137 bp overlap (137	
			bp seq.)	
TTO 16/2(c)	239 bp	+	97.5 % sequence identity to human	9.3 x 10 ⁻⁸⁸
110 10/2(c)	239 Up	Т		9.3 x 10
			ERCC5 in 239 bp overlap (239 bp seq.)	
TTO 20/1(c)	314 bp	+	100 % sequence identity to human	1.9 x 10 ⁻¹²¹
			fibronectin in 314bp overlap (314 bp seq.)	
TTO 20/2(2)	400 bp	+	152 bp sequenced, no homology found	0.035
TTU 2/1(2)	300 bp		100 % sequence identity to human cDNA	2,1 x 10 ⁻³⁶
			clone 118470 5' in 146 bp overlap (146 bp	
			seq.)	
TTU 2/2(c)	184 bp		99 % sequence identity to human	2.3 x 10 ⁻⁶⁴
	13.54		calnexin in 184 bp overlap (184 bp seq.)	2.5 % 10
TTU3(1)	100 5-			0.6 - 10-69
1103(1)	400 bp	+	97 % sequence identity to human	8.6 x 10 ⁻⁰
			NADH-DH mtDNA subunit in 203 bp	
			overlap	
			(203 bp seq.)	
TTU 5/1(2)	300 Бр		147 bp sequenced, no homology found	0.0065
TTU 5/2(2)	270 bp		118 bp sequenced, no homology found	0,035

Fragment	bp	IL-1	Features	Stat.sig.score
TTU 9/1(1)	350 bp	+	94 % sequence identity to human cDNA clone 83764 3' in 159 bp overlap (159 bp seq.)	5,9 x 10 ⁻²³
TTU 9/2(2)	320 bp		149 bp sequenced, no homology found	0,22
TTU 13(1,2)	350 bp	+	194 bp sequenced, no homology found	0,57

Thus, the 44 identified fragments can be subdivided as follows:

1) 2 fragments with sequence homologies to known human genes with known roles in IL-1 mediated processes:

identical with human TNF-stimulated gene-6 TAU 7/2

TTO 20/1 identical with human fibronectin

2) 6 fragments with sequence homologies to known human genes, whose function in IL-1 mediated processes can be speculated:

TAU 1/1 identical with human osteopontin TGU 8 identical with human 28S ribosomal RNA gene TGU 13/2 identical with human F1 ATPase β-subunit TTO 16/2 identical with human ERCC5 TTU 2/2 identical with human calnexin TTU 3 identical with human NADH-DH mtDNA subunit

3) 9 fragments with sequence homologies to human genes, identified in human geneome sequencing projects:

IAU //1	identical with human cDNA clone c-1sd02
TAU 12/3	identical with human cDNA done HRBBA21
TCU 9/1	identical with human cDNA done 131036 3'
TCU 10	identical with human cDNA done 26518 3'
TCU 14	identical with human cDNA done HL60 3' directed Mbol
TGU 9/2	identical with human cDNA done 12A10B
TGU 12	identical with human cDNA done 113442 3'
TTU 2/1	identical with human cDNA done 118470 5'
TTU 9/1	identical with human cDNA done 83764 3'

4) 27 fragments without sequence homologies to known human genes The detection of TSG-6 and fibronectin, both genes known to be upregulated by IL-1, points to the importance of those other cDNA fragments in the light of IL-1 mediated processes. Those genes very likely play roles in degenerate joint diseases, including rheumatoid and osteoarthritis and with this are interesting candidates as markers for clinical studies or as drug targets for pharmacological intervention.

Claims

5

10

15

20

25

30

35

40

45

- 1. Use of osteopontin itself or parts thereof, or antibodies against osteopontin or parts thereof or nucleic acids or parts thereof coding for osteopontin or parts thereof in the diagnosis, prophylaxis or therapy of IL-1ß a mediated diseases of connective tissues, in particular osteoarthritis.
- 2. Diagnostic aid for the diagnosis of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing osteopontin itself or parts thereof, or antibodies against osteopontin or parts thereof or nucleic acids or parts thereof coding for osteopontin or parts thereof.

- 3. Pharmaceutical for the prophylaxis or therapy of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing osteopontin itself or parts thereof, or antibodies against osteopontin or parts thereof or nucleic acids or parts thereof coding for osteopontin or parts thereof.
- 5 4. Use of calnexin itself or parts thereof, or antibodies against calnexin or parts thereof or nucleic acids or parts thereof coding for calnexin or parts thereof in the diagnosis, prophylaxis or therapy of IL-1β mediated diseases of connective tissues, in particular osteoarthritis.
- 5. Diagnostic aid for the diagnosis of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing calnexin itself or parts thereof, or antibodies against calnexin or parts thereof or nucleic acids or parts thereof coding for calnexin or parts thereof.
 - Pharmaceutical for the prophylaxis or therapy of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing calnexin itself or parts thereof, or antibodies against calnexin or parts thereof or nucleic acids or parts thereof coding for calnexin or parts thereof.

15

20

30

35

40

45

50

- 7. Use of TSG-6 gene product itself or parts thereof, or antibodies against TSG-6 gene product or parts thereof or nucleic acids or parts thereof coding for TSG-6 gene product or parts thereof in the diagnosis, prophylaxis or therapy of IL-1β mediated diseases of connective tissues, in particular osteoarthritis.
- 8. Diagnostic aid for the diagnosis of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing TSG-6 gene product itself or parts thereof, or antibodies against TSG-6 gene product or parts thereof or nucleic acids or parts thereof coding for TSG-6 gene product or parts thereof.
- 9. Pharmaceutical for the prophylaxis or therapy of IL-1β mediated diseases of connective tissues, in particular osteoarthritis, containing TSG-6 gene product itself or parts thereof, or antibodies against TSG-6 gene product or parts thereof or nucleic acids or parts thereof coding for TSG-6 gene product or parts thereof.

10. DNA containing a DNA selected from the group consisting of

	TAO8/2(2)					
5	1	CCAAGTTTTT	CCAGCAACCC	CAAGGGAATA	CAGGGAGATC	AATGCACCCA
	51	AAATGGGAAA	AGAAAAATAC	TTCGATGCAA	TGAAACAAAG	CCTTTTTCCG
	101	TTCAGTTTCC	ATAATTCAGT	GGTCAGTTTT	AAGGCTGCCA	CTTGGG
10	TAO16/1(2))				
	1	GACACGAACA	CCACATATTT	TTATTGGAGG	CCCCATGGCT	CCTTGGAAGC
	51	CATTTTGGAA	CCAAGGGGAC	CCACCTTTTT		
15	TAO16/2(2))				
	1	CTAAATATAT	TCTCTAACAA	GTTAATCTCT	TTCAAATCTA	TAGATAAAAC
	51	TAAAAGGATA	AGGAACCAAG	GTTTAACCGA	CCTAGCCAAT	TATGGCAATC
	101	ATACTTGCTT	TTTAG			
20						
	TA017(C)					
	1	CATGAAATAT	TTCTTGAGGT	AATAAGCTTT	TACCAAGCTT	ATATTTTTGG
	51	GCAATTCAGT	TACAATGAGA	AAAAAACACA	CCAAAAGACC	AAAAATTTTA
25	101	AAAACTCACT	TTTCTTGCAA	TCATAGACAT	TTGCATTATT	ATAGAACATI
	151			TTATTGTCTA		
	201	TTAATAAGAA	TTTGAAGAAT	GACATTAAAT	GCTGTCTGAA	GCCTTTGTAT
	251	TTTTTAATGT	ATGACCGATA	CTCCGTATAT	ACTTAGATAA	CTTATCCAGA
30	301	AACCTCAACT	GTATTGAACA	TTGCTGAGAG	AAATCAACAA	TAATTTTAAC

	351	AGATATGATG	ACAGNAAAAA	TTGATTGCAT	ATCTTTTTGC	ACTAAAACT
5	401	TTATATTTAT	TT			
	TA019(C)					
	1	AGAGCAGGG	TATTTCNCGG	TTCATACCGC	CATGGCTTAA	GAAGCAAAA
	51		TAGTAGTGGC			
10	101		TTGAAGAACA			
	151		AGGCTAAGGG			
	201	AGAGATTAA				
15	TAU 1/1(2	!)				
	1	CTAAATGCAA	AGTGAGAAAT	TGTATTTTT	CTCCTTTTAA	TTGACCTCAC
		AAGATGCACT				
		TCTTCCTTAC				
20						
	TAU 1/1(1	.)				
	1	ACATCACCTC	ACACATGGAA	AGCGAGGAGT	TGAATGGTGC	ATACAAGGCC
	51	ATCCCCGTTT	CCCAGGACCT	GAACCCGCCT	TCTGATTGGG	ACAGCCGTGG
25	101	GAAGGACAGT	TATGAAACGA	GTCAGCTGGA	TGACCAGAGT	GCTGAAACCC
	151	ACAGCCACAA	GCAGTCCAGA	TTATATAAGC	GGAAA	
	TAU1/2(2)					
30	1	CCGGAATGGG	GAGCAAACTA	TAAGAACCGG	GACCAGTTTC	CTCTCTTTGT
30	51	GCCCTAGTTC	CCCCTCCTTT	GTATACACCC	TCCATCCTGA	ATAGACTCTG
	101	GTTCTCAGCG	TAACACCGAC	AACATTCAAT	CCTGTAGAGA	AACAAATGTT
	151	AGCTCAGAAG	GACACAGCCT	TTGAATCATC	AGAGAGTT	
35	TAU 7/1(2)				
	1	GTTAAGAATA	АСТАЛАТАЛА	AGTTTTAATT	AATTTAGGAA	TATAAAAAAC
	51	TATTAACATT	TAATTTTATA	ACTGTATCTG	CCAAGCAACT	TTAAATATAA
		TTTATTTACC				
40						
	TAU 7/1(1)				
	1	CACGCAATGT	GAAATAGGCA	CATAGGAAGA	ATGGGGAAAC	CATCCCCTCA
	51	AGCATTTATC	CTTTGAGTTA	CAAGCAATCC	AATTACACTC	TTTTAGTTAT
45	101	TTTTAAATGT	ACAGTTAGGT	TATTA		
	TAU 7/2(C)				
	1	CCTTGAAGAT	GACCCAGGTT	NCTTGGCTGA	TTATGTTGAA	ATATATGACA
50	51	GTTACGATGA	TGTCCATGGC	TTTGTGGGAA	GATACTGTGG	AGATGAGCTT
	101	CCAGATGACA	TCATCAGTAC	AGGAAATGTC	ATGACCTTGA	AGTTTCTAAG
	151	TGATGCTTCA	GTGACAGCTG	GAGGTTTCCA	AATCAAATAT	GTTGCAATGG
	201	AT				
55						

	TAU10(1)					
•	1	GGAGATGACA	TTTGCTTTGG	GCAGAGGCAG	CTAGCCAGGA	CACATTTCCA
5	51	CTATAATTTT	ACAAAGTTAA	ATTTATAAGC	TAGCATTAAG	TAAAGTGAAG
	101	TTCCAGCTCC	CTTGCTAAAA	ATAACTAGAG	GTAATAATTG	GTATTCAGGT
	151	AACTCATTTA	CATCATAATG	TGTTGTGAAA	A	
10	mayya 0 / 1 / 0					
	TAU12/1(2	:) TATAAAATAT	* * * * * * * * * * * * * * * * * * * *	3 M 3 3 3 M C 3 M C	M1 MM1 MM11 M	3333MM3M3M
	51					
	1-7	TATAAATTAT			TAGGCTTAAT	GINIANGGAA
15	101	TATAAATTAT	TAATAAGCAT	AIGA		
	TAU 12/1((1)				
	1	TGTAATTAAC	TGTNCTTGTA	GGTCTGTCTT	TTATACATGT	GTGAGTTTTT
	51	CTTTACAATA	GATTCCTAGC	ATTGGGATTG	CTAGGTCAGA	TGGTATGCAC
20	101	ATTTGACATT	TTGATTGATA	GCACCAGATT	GCTTTGTTAA	AAAATTTTNN
	151	TTTATAGTTT	ACATTATCTT	TGTACAATAG	ATGTTCTCTT	TCGAC
	TAU 12/2(11				
25	• •	GGGAAGTGAA	***********	ጥጥርጥጥጥ ነጥር እ	አ ሮኔሞኔ ኔሞሞሞ	NGGGTTTTGA
		AATTGTGTTT				
		AAAAAGTGAA				
		ATAGA	IIIIAAAII	CICAGIGAAG	MGCMAIGA	IIIMIIIIIC
30	131	AIAGA				
	TAU12/3(2	13				
	• •	TGTTCTGGTA	ACTGTTCTAA	TTGTGTCTTT	GTTACTTCCA	GTGCAACCCT
		TTCAGGTAAG				
35						
	TAU12/3(1	.)				
	1	CTAAAGAACT	TGGTATCTCT	ATTAAAGCAC	ACGAACCTCC	AAGGAAAATA
	51	GAGCGATTTA	CTCTTCTCAT	ATCAGTGCAT	ATTTATAAGA	AGCACGGAGT
40	101	CA				
	TAU13/1(1	•				
		AGTCATCAAT				
45		GTAATTATAA				
	101	AAATTTTAGT	AAGCCCGGCC	CCTTTGACCG	ATACAGAAAA	CTTGA
	TAU 13/3(2)				
50	1	TATATGGCAG	TCTAAAGCAT	CAAAGATTTG	CATCAACATC	TTTCATTTTA
	51	GACATCTCCT	TGCAATGTAA	AATATCATGT	ATCAACAACA	TCTGGTGCAA
	101	ATCCATGAGT	CTAACTCGAC	ATTCATCTTA	GCTCGATTAT	TATTCCTTCG
	151	TACAGTCGAT	GTAAACAATA	CAGAAAGAGG	ATTATTAAGA	ACAGTTT
55						

	TAU 13/3(1)				
	•	ATTCATGAAA	TGGTCTATAT	GCATGATATT	GTAAATTCGG	ACTCGAAAC
5		GAAACCAAGG				
		CGCAAACAAC				
		GTCAATAAAG				
		TGTCAATGAT	•			
10						
	TCO 16/1(C)				
	1	CAAAGTGTTT	TTGGTTTTGA	GAGAGAGAGA	GATTGAGAGA	CAGAGAGAG
	51	GAGAGAAACC	AAGGGATCAT	GATAGTTATA	GTCAAATACG	AGGTTGGATT
15	101	ATCTTTTGAA	AATGTGTTGG	TTCTGTGATA	CAAGAGGAAG	CTAAGACATA
		TCGTGGAAAC				
		ATCTAATGTT				
20	TC016/2(C)				
.0	1	NCATCTGACA	CAGTGGGGAA	CTACTTCTCA	TTAACATTAG	ATTCCACAAT
	51	TTNNNCTTGA	TATTAAGGNN	NNNNNGGGAG	ATCGTTTCAC	GATATCGTCT
	101	TAGCTTCCTC	TTGTATCACA	GAACCAACAC	ATTTCAAAAG	ATAATCCTTC
	151	CTCNNTTTGA	CTATAACTAT	CATGATCCCT	TGGTTCTCTC	TCTCTCTCTC
?5	201	CTCTCTCATC	TCTCTCTCTC	TNAAAACNAA		
	TCO17(C)					
	1	ACAGTAGTTA	GGAGTTTCTT	TACTTACAAA	ATCACTGGAA	ATGATTAAAT
30	51	TGCTTTTCCC	CCTCCCCAGA	GGTGCATTTT	TCTTATTTCC	ATATAGTAAA
	101	GTTGAGCTTT	TACAGTGCAT	AATGTGACAT	TTGGAATGCT	TATCAACTGO
	151	ATGTAAACAT	TAATAACCT			
15	TC018(C)					
	1					
	51		CTTTATCATT			
	101	AATTAATATA		AGACTGAATT	TAATTGCAAA	AAAAAAAAA
0	151	AACAATAAGT	GTGGTGAT			
	TCU2/1(1)					
	1	AAGAAATTAT	CCAGTTATTT	ACAAGGCCAC	TGATATTTTA	AACGTCCAAA
5	51	AGTTTGTTTA				
	101				AAACTTAGAA	AATTAATATA
	151	AAGACAGTGA	TAAATACAAA	GAAGATTT		
	mano /o					
0	TCU2/2(1)					
•		CGGGTTAATA				
	51	TAGACAAACA				
		AATGTAGATT	TTATTTAAAA	AACTATATTT	GAACATTGGT	CTTTCTTGGA
	151	C				

	TCU9/1(2)					
5	1	ACATAACAGC	TTTTATACAA	TGATAAGGAC	ATATCATTTG	TTTACAAAGA
5	51	AAGTCTAAAA	TTTCAAGAAC	ATTCAAAGAG	CTAACACAGT	AAAGGTCATG
	101	CAAGTTCTAG	AATAGTGAAT	CATGACAGAA	CTCATTCATT	TTATCCTTTA
	151	TCTCC				
40						
10	TCU9/2(2)					
	1	AAGTATGGGT	AGCTAAATTT	GCATTAAATT	AAAAGTACAT	ATAATGCAAC
	51				ATGTGTACTA	
					ACATGTTTTC	ATTTTTTCAT
15	151	GGGATGTTAA	TACTATTCTA	TGATTAAGAA	AATACTAG	
	TCU10(2)					
	1				TTTGAATGAT	
20	51	TATTAGTCAC	ACAGAATTAA	ATATTTTAGA	TAGTAAGAAT	С
	morra 4 / 2 :					
	TCU14(1)	1 moomm1 om1	1.000.01.000			
	1 51				GCACCTGGGC	
25	21	TTTTGATAAT	ATATAAAATT	ATTCATTATG	AGGTTGCAGT	TGTTTGCAAA
	TCU14(2)					
	1	CARCTCARRO	TO A C C C C C T T T T	A C C M A M M A M M	TATTGCTTTA	mm1 61 661 61
	51				TCTGCAGAAA	
30	101			TGAGTAAGTC		TATATGCACA
			1000.110.110	TONGTANGIC	11ccnnn	
	TG020(2)					
	1	CAGAACATTA	GGATTTATTC	CTTGATTAGT	TCAAATGATT	TCAACAGCTG
35	51				CCTTTGGATG	
	101				CACAGCTACA	
	151	CTTCATTATG				
40	TGO20(1)					
40	1	CAGTGTGAGA	GTCTCATTTC	TATGCACAGT	GTTTCTCAGG	AGGATGGAGC
	51	TAGTTAGCTG	TCTGTTGTCT	GTAGCCCAGC	TTGATAATGG	AACTATACAG
	101	CGAAGAGACA	ATCTCTGGCA	AGTTTTTGTA	GAA	
45	TGU5(C)					
	1	TTAGAGTAAA	ATTCCAAATA	AATGCTTTGC	TCCAAAATTA	CACTAACCAG
	51	GCTGGGTCTC	TATCATACAT	CTTCAATACC	CTCAAACCTA	GATTGTAAAG
	101				CATTCTGTCA	
50	151	TAGGCATTTT	AAGGATGAGC	AACCTTTGTT	TCAGAAAGGG	TAAGTAATTA
	201				GTCTTCAGAA	
	251			AGATAATTAG	AACCCACCTT	GTAGCAATAA
	301	AAGTTTTCTT	GTCTTTG			
55						

	TGU8(2)					
5	1	GCGAAAGACT	AATCGAACCA	TCTAGTAGCT	GGTTCCCTCC	GAAGTTTCCC
5	51	TCAGGATA				
	TGU9/1(2)					
10	1	TTAATGTTTA	AATACTACTT	TTTTTTCAAG	CTTGCCCTAG	ATACCAACTG
10	51				AGCCTCATGC	
	101			ATTCATATAA	AAAGAGTCTC	TAGGCTCTTA
	151	TATCTACATT	ATAATTTTT			
15	TGU9/2(2)					
	1				TAAAATGGAT	
	51				ACTCCCGTAA	
		ATTTTAGGCA			AACAAGTTTC	TTCAACCCCA
20	151	CCACCACCCC	ACCATCTCTA	TGC		
	TGU12(C)					
	1	GGAGGAAGCT	TTATTTGGGA	AGAGTGCGGT	TCNNTCGGCC	СТСАТСАССТ
05	51				GCTTTACTTC	
25	101				CCAGCTCCCC	
	151				TGATTCACAT	
	201	CATCTTCT				00.0.001011
30	TGU13/1(C)				
	1	GGATGTGGTA	GTTGATCTTT	AATGCCCATT	CTAGGTCGGA	AAAATCCATG
	51	ATCCTAACTT	TTAAGAGAAG	GTTGGTAACT	CTACTTAGGA	CTTTTTTTTG
	101	TAAGAGGAAT	AATGTAGCCT	CACCCTTATC	TTTCTGGAAA	TGTTTAAACC
35	151	ACTGAAATAT	GGAGATCAAA	TCCAGCTTAC	ACACTGGTAA	CTCAAATACT
	201	ATTTTTTTTT				
		GAACTTTCTA				
		CAGAGAGCCT				
40						
	TGU13/2(2))				
	1	GGGGTGTACA	TTTTATTGGA	AACCTTAAAT	ACTGTTCAGA	AAGAATATAT
	51	CTTCAATCAA				
1 5		TTAGGGGCAA				
	TTO16/2(C)					
		ACATTCATTA				
50		TGATTCTGAG				
		GTTTAGAATC				
		GTATTTGTTA				TATCAAGTAG
	201	CTNAAATTCA	AACACCATGG	CAANAGAAAC	TGCTTCTAT	

	TT020/1(C)				
_	1	CCACCAGCCT	ACTGATCAGC	TGGGATGCTC	CTGCTGTCAC	AGTGAGATAT
5	51	TACAGGATCA	CTTACGGAGA	AACAGGAGGA	AATAGCCCTG	TCCAGGAGTT
	101	CACTGTGCCT	GGGAGCAAGT	CTACAGCTAC	CATCAGCGGC	CTTAAACCTG
	151	GAGTTGATTA	TACCATCACT	GTGTATGCTG	TCACTGGCCG	TGGAGACAGC
4.0	201	CCCGCAAGCA	GCAAGCCAAT	TTCCATTAAT	TACCGAACAG	AAATTGACAA
10	251	ACCATCCCAG	ATGCAAGTGA	CCGATGTTCA	AGACAACTGT	TTTAATAAAA
	301	GATTTACATT	CCAC			
	TT020/2/2					
15	TTO20/2(2	•	10ma16161	********		
	51			CTGGGGGTCA		
	101			AAGAAATGTA		
	151		ATATATTGTG	TACAAATATA	AGGTATGTAT	CTGAATACAA
20	151	AG				
	TTU2/1(2)					
	1	CTAGAACTTC	CARAGGCTGC	TTGTCATAGA	AGCCATTGCA	TCTATAAAGC
	51			ATCTCCTTTC		
25	101	ATTTGTTACC	TAAACCTTAT	GTGCCTTAAC	AGGCCAATGC	TTCTCG
	mmri 2/2/2					
	TTU 2/2(C					
30	51			TATCTGGATT		
30				AGGTCTTCAG		
				CCCGTTTTGG TCCACATTTA		TCGGAAGATG
	131	ANGIGUAGII	TATAGTCCTC	TCCACATTTA	TCTG	
35	TTU3(1)					
	1	GGGTAGAAAG	CTGAATAATT	TATGAAGGAG	AGGGGTCAGG	GTTGATTCGG
	51	GAGGACCTAT	TGGTGCGGG	GCTTTGTATG	ATTATGGGCG	TTGATTAGTA
	101	GTAGTTACTG	GTTGAACATT	GTTTGTTGGT	GTATATATTG	TAATTGAGAT
40	151	TGCTCGGGGG	AATAGGTTAT	GTGATTAGGA	GTAGGGTTAG	GATGAGTGGG
	201	AAG				
	TTU 5/1(2)					
45	1		AAAAAACAGG	TTTTAAAGCT	ACANAMONNA	ACCORA COMA
45	51			CTTTATTATA		
	101			CACACTGCTG		
						CIGGCIG
50	TTU5/2(2)					
	1	GCATCCATTG	TACATTGTTT	GGTTTGAGGT	TACCATGAGG	CCTGTAAATA
	51	CTATCTTATA	ATTTATTATT	TCAACCTGAT	AAAACTTAAC	ACTATTTGCA
	101	TAAACAAACA	AACGAAAA			

	TTU9/1(1)						
	1	TAAAATACTG	GTTCTTTTAT	TCTGCAATAT	TTTTAAAAAT	CACATTTTCA	
,	51	GCCAGGCGCA	GTTTCCCACA	CCTGTAATCC	GGCACTTTGG	GAGGCTGAGA	
	101	TGGGTGGATC	ACAAGGTAGG	AGATCAAACA	TCCTGGCCAA	CATGGTGAAC	
	151	CTGTTTACT					
10							
	TTU9/2(2)						
	1	CAAGTATGGG	TAGCTAAATT	TGCATTAAAT	TAAAAGTACA	TATAATGCAA	
	51	CACCACTCTA	CATCTGTATA	CCTACGAATG	TATGTGTACT	ACACACCCTT	
5	101	AAATGTTTCA	AAGCTTAATA	TATTAGAACA	TGTTTTCATT	TTCAGGGAG	
	TTU13(2)						
	1	GGAAATACAC	TAGCATGTGA	GCACTGTATA	TAAAGCTTGA	GGTTAGGAGG	
20	51	TAAAATGAAA	GAAATCATTT	TTAACTCCTA	AGATGT		
	TTU13(1)						
	1	TGAATTAAAT	GGACTCGTTG	AAAGGACAAG	GAGATCGGTA	ATATCTCTCT	
25	51	AAAGAACTTA	TATACTAAAA	TCTGTAATTG	CCTGTACCAA	AAGTTTTAGT	
	101	CTTCTTTT					
	or an analog there	of.					
0	44 17 1	D.1.1.					
	11. Vector containing a	DNA according t	o claim 10.				
	12. Host cell containing	g a vector accordi	ng to claim 11.				
5	13. Method for isolating	g a gene inducabl	e by treating cho	ndrocytes with IL	1β containing t	ne steps:	
	(a) hybridizing	a DNA according	ı to claim 10 und	er stringent con	ditions against D	NA or RNA containi	na said
	gene; and		, , , , , , , , , , , , , , , , , , , ,	3			
	(b) isolating sa	id gene.					
0	14. A method according	n to claim 13 wher	ein said DNA or F	RNA has been isc	olated from chord	trocytes particularly	human
	chondrocytes, that	-				arooytoo, par aoalary	mamam
	45. Donner (-•					
5	15. Process for expres	sing a gene isolat	ed according to	claims 13 or 14 o	containing the ste	eps:	
_	(a) cloning said	d gene into a suita	able expression v	ector; and			
		said gene in a su	•				
	16. Method for produci	na a protoin contr	sining the stone:				
0	10. Wethod for product	ng a protein conta	aning the steps.				
	(a) culturing a	suitable host cell	containing a ve	ctor which conta	ins a DNA acco	rding to claim 10 or	a gene
		method according	_	4; and			
	(D) ISOIATING the	e expressed prote	9N.				
5	17. Diagnostic aid cont	aining a DNA acc	ording to claim 1	0 or parts thereo	of or a gene isola	ted according to clair	n 13 or
	14 or parts thereof.					_	

18.	Use of a DNA according to claim 10 or parts thereof or a gene isolated according to claim 13 or 14 or parts thereof for the diagnosis, prophylaxis or therapy of IL-1 β mediated diseases of connective tissues, in particular osteoarthritis or rheumatoid arthritis.
19.	Use of a gene isolated according to claim 13 to 14 for the production of a pharmaceutical.