1 Hoare triples

Triple assertion, usually writen as:

$$(\phi)P(\psi)$$

Which (roughly) means:

If the program P is run in a stat that satisfies ϕ , then the state resulting from P's execution will satisfy ψ .

 ϕ - Is called precondition of P and ψ is called postcondition

Often, we do not want to put any constraints on the initial state; we simply wish to say that, no matter what state we start the program in, the resulting state should satisfy ψ . In that case the precondition can be set to \top .

$$(\top)P(\psi)$$

We need a way of remembering the initial value of x, to cope with the fact that it is modified by the program. Logical variables achieve just that: in the specification

$$(x = x_0 \land x > 0) Fac2 (y = x_0!)$$

The x_0 is a logical variable and we read it as being universally quantified in the precondition. Therefore, this specification reads: for all integers x_0 , if x equals x_0 , $x \ge 0$ and we run the program such that it terminates, then the resulting state will satisfy y equals x_0 !.

2 Proof rules

$$\frac{(\phi)\ C_1\ (\eta)\qquad (\eta)\ C_2\ (\psi)}{(\phi)\ C_1;C_2\ (\psi)} \ \text{Composition}$$

$$\overline{(\psi[E/x])\ x=E\ (\psi)} \ \text{Assignment}$$

$$\frac{(\phi\wedge B)\ C_1\ (\psi)\qquad (\phi\wedge\neg B)\ C_2\ (\psi)}{(\phi)\ \text{if}\ B\ \{C_1\}\ \text{else}\ \{C_2\}\ (\psi)} \ \text{If-statement}$$

$$\frac{(\psi\wedge B)\ C\ (\psi)}{(\psi)\ \text{while}\ B\ \{C\}\ (\psi\wedge\neg B)} \ \text{Partial-while}$$

$$\frac{\vdash_{\text{AR}}\phi'\to\phi\qquad (\phi)\ C\ (\psi)\qquad \vdash_{\text{AR}}\psi\to\psi'}{(\phi')\ C\ (\psi')} \ \text{Implied}$$

Figure 4.1. Proof rules for partial correctness of Hoare triples.

2.1 Composition

Composition given specifications for the program fragments C_1 and C_2 say

$$(\![\phi]\!] C_1 (\![\eta]\!]$$
 and $(\![\eta]\!] C_1 (\![\psi]\!]$

where the postcondition of C_1 is also precondition of C_2 , the proof rule allows us to derive a specification for C_1 ; C_2

$$(\phi) C_1; C_2 (\psi)$$

2.2 Assignment

Assignment rule has no premises and so is an axiom of logic. It states that we want to show that ψ holds in the state following the assignment x = E, we must show that $\psi[E/x]$ holds before the assignment. We obtain $\psi[E/x]$ by taking ψ and replacing all (free) occurrences of x in ψ with E

2.3 If then else

If then else proof rule allows us to prove a triple by decomposing it into two triples on in which B evaluates to true, and one where B evaluates to false.

2.4 While

The key idea of While rule is the *invariant* ψ . In general, the body of the loop C changes the values of the variables. The *invariant* expresses a relationship between the values of these variables that is preserved by executing C.

It states that (provided B is true) if ψ is true before C is executed, and C terminates, then ψ will be true in the resulting state.

2.5 Implied

If we have proved $(\phi) C (\psi)$ and we have formula ϕ , which implies ϕ and another formula ψ , which implies ψ . Then we can also prove that

$$(\phi') C (\psi')$$

Reference section

 $\begin{array}{c} \textbf{placeholder} \\ \textbf{placeholder} \end{array}$