$$f(x) = 4x^4 - 3x^3 + 2x - 2$$
. Solve for $f(2)$, $f(-2)$, $f(1/2)$, and $(-x)$.

4) =
$$f(2)$$
 = $4(2)^4 - 3(2)^3 + 2(2) - 2$
= $4(16) - 3(8) + 4 - 2$

=
$$f(2) = 4(-2)^4 - 3(-2)^3 + 2(-2) - 2$$

$$= 4(-2)^4 - 3(-2)^3 - 2(2) - 2$$

=
$$-2(-2(-2)^4-3(-8)^2+2+1)$$

$$=$$
 -2 (-2(24)-3(22)+2+1)

$$f(-2) = 82$$

=
$$f(1/2) = 4(1/2)^4 - 3(1/2)^3 + 2(1/2) - 2$$

$$f(1/2) = -9/8$$

$$f(-x) = 4(-x)^4 - 3(-x)^3 + 2(-x) - 2$$

= 4x4 - 3(-x) - 2x - 2

$$= 4x^4 - 3(x^3) - 2x - 2$$

Marvin B. Waro BSCS 1B

Given the function:

$$f(x) = x^4 - 2x^3 - 7x^2 + 8x + 16$$
. Solve for $f(-1)$, $f(-2)$, $f(2)$ and $f(3)$

Marvin	B.	waro	BSCS	110

Solve for the limit of the function

3.
$$\lim_{x \to 7^{-1}} 2x^2 - x - 3$$
 $x \to 7^{-1} 3x^2 + 5x + 2$
 $\lim_{x \to 7^{-1}} 3x^2 + 2x - 3x - 3$
 $\lim_{x \to 7^{-1}} 3x^2 + 3x + 2x + 2$
 $\lim_{x \to 7^{-1}} 3x (x + 1) - 3(x + 1)$
 $\lim_{x \to 7^{-1}} 3x (x + 1) + 2(x + 1)$
 $\lim_{x \to 7^{-1}} (x + 1) (2x - 3)$
 $\lim_{x \to 7^{-1}} (x + 1) (3x + 2)$
 $\lim_{x \to 7^{-1}} (x + 1) (3x + 2)$
 $\lim_{x \to 7^{-1}} (x + 1) (3x + 2)$
 $\lim_{x \to 7^{-1}} (x + 1) (3x + 2)$
 $\lim_{x \to 7^{-1}} (x + 1) - 3$
 $\lim_{x \to 7^{-1}} (x + 1) - 3$

= 5

Marvin	B. Waro BSCS IB
Solve	for the limit of the function.
4) Llm	x3-x2-x-2
X-72	2x3-5x2 +5x-6
Lim	$x^{3}-2x^{2}+x^{2}-2x+x-2$
X-72	$2x^3 - 4x^2 - x^2 + 2x + 3x - 6$
Lìm	x2(x-2)+ x(x-2) +1 (x2)
X-72	2 x2(x-2)-x(x-2)+3(x-2)
Lim	(*2) (x2+x+1)
X-72	(x2)(2x2-x+3)
lim	22+2+1
X-72	2(2)2-2+3
Lim	4+2+1
4-72	2(4)-2+3
T	> 7
	9

Morvin B. Waro BSCS \B

6)
$$y = (x^2-1)^2$$
 x^2+1

$$= x^4 - 2x^2 + 1$$

$$x^2+1$$

$$dx = (x^2+1)(\frac{dx}{dx} \times 4 - 2x^2+1) - (x^4 - 2x^2+1)(\frac{d}{dx}x^2+1)$$

$$= (x^2+1)(4x^3-4x) - (x^4-2x^2+1)(2x)$$

$$(x^2+1)^2$$

$$= 4x^5 - 4x^2 + 4x^3 - 4x - (x^4 - 2x^2 + 1)(2x)$$

$$(x^2+1)^2$$

$$= 4x^5 - 4x - (x^4 - 2x^2 + 1)2x$$

$$(x^2+1)^2$$

$$= 4x^5 - 4x - 2x (x^2-1)^2$$

$$(x^2+1)^2$$

$$= 4x^5 - 4x - 2x (x^2-1)^2$$

$$(x^2+1)^2$$

6.

$$f(x) = (1x^2 + x^4)^2$$
 $g(x) = (3^2 x^{-1})^3$

$$fx = 2(1+x^2+x^4)(2x+4x^3)$$

=
$$(2 + 2x^{2} + 2x^{4})(2x + 4x^{5})$$

$$g'(x) = 3(3x^2-1)^{3-1}(6x)$$

= $18 \times (3x^2-1)^2$

$$= 18 \times (1 + x^2 + x^4)^2 (3x^2 - 1)^2 + 3x - 1)^3 (2 + 2x^2 + 2x^4) (2x + 4x^3)$$

Marvin B. Ware BSCS 1B $(4 \times -1)^{3} (x^{2}-1)^{3/2}$ $= (4 \times -1)^{-3} (x^{2}-1)^{-3/2}$ u = 4x -1 z = x2 -1 $dx = -3u^{-3-1}(4) - 3/2 = \frac{-3/2-1}{2}$ dy = -34-4 (4) - 3/2 2 -5/2 (2x) = (-12) u-4(-3x) = -5/2 $= (-12)(4x-1)^{-4}(-3x)(x^2-1)^{-5/2}$ $= -3x(4x-1)^{-3}(x^2-1)^{-5/2}-12(4x-1)^{-4}(x^2-1)^{-3/2}$

Marvin B. waro BSCS 18
8) $y = 2x^3$ $\sqrt{5x^2 + 1}$
$U = 2x^3$ $V = (3x^2 + 1)^{1/2}$
$\frac{dy}{(3x^2+1)^{\frac{1}{2}}}(2(3)x^{3-1})-2x^3\left[\frac{1}{2}(3x^2+1)^{-\frac{1}{2}}\right](3(2)x^{2-1}+0)$
dx $\sqrt{3}x^2+1$
$= (3x^{2}+1)^{1/2} (6x^{2}+2x^{3})^{-1/2} [(6x)$ $\sqrt{3x^{2}+1}^{2}$
$= (3x^2+1)^{1/2} (6x^2) - 6x^4 (3x^2+1)^{-1/2}$
3×2+1
$= 6x^{2}(3x^{2}+1)^{1/2}-6x^{4}(3x^{2}+1)^{-1/2}$
3x2+1