第二章

算法分析的数学基础

参考资料

«Introduction to Algorithms»

- 第三章
- 第四章
- 附 录

«Concrete Mathematics: A Foundation for Computer Science»

Ronald L.Graham, Donald E.Knuth, and Oren Patashnik

提要

- 2.1 计算复杂性函数的阶
- 2.2 和式的计算与估计
- 2.3 递归方程

提要

- 2.1 计算复杂性函数的阶
- 2.2 和式的计算与估计
- 2.3 递归方程

2.1 计算复杂性函数的阶

- 计算复杂性函数的阶
 - 算法执行时间增长的阶(增长率)
 - -执行时间函数的主导项

例如:

$$T(n)=an^2+bn+c$$

主导项: an2

当输入大小n较大时,其它低阶项相对来说意义不大

系数a也相对来说意义不大

即: 函数T(n)的阶为 n^2

2.1 计算复杂性函数的阶

- 2.1.1 同阶函数
- 2.1.2 低阶函数
- 2.1.3 高阶函数
- 2.1.4 严格低阶函数
- 2.1.5 严格高阶函数
- 2.1.6 函数阶的性质

定义2.1.1. 设f(n)和g(n)是正值函数。如果 $\exists c_1, c_2 > 0, n_0, \forall n > n_0, c_1 g(n) \leq f(n) \leq c_2 g(n), 则称<math>f(n)$ 与g(n)同阶,记作 $f(n) = \theta(g(n))$ 。

 $\theta(g(n))$ 可以视为所有与g(n)同阶的函数集合: $\{f(n) \mid \exists c_1, c_2 > 0, n_0, \forall n > n_0, c_1 g(n) \leq f(n) \leq c_2 g(n)\}$

• 例1,证明: $(1/3)n^2-3n=\theta(n^2)$

$$\exists c_1, c_2 > 0, n_0, \forall n > n_0,$$

$$c_1 \mathbf{n}^2 \le (1/3)n^2 - 3n \le c_2 \mathbf{n}^2$$

对于左侧不等式, \m>1, 有:

$$c_1 \le (1/3) - 3/n = (1/6) + (1/6) - 3/n$$

即当n>18, $c_1=1/6$ 时,不等式成立

对于右侧不等式, $\forall n > 1$,有: (1/3) -3/ $n \le c_2$,即当n > 18, $c_2 = 1/3$ 时,不等式成立

例2证明 $6n^3 \neq \theta(n^2)$

证. 如果存在 c_1 、 $c_2>0$, n_0 使得当 $n\geq n_0$ 时, $c_1n^2\leq 6n^3\leq c_2n^2$,即 $c_1\leq 6n\leq c_2$, $n\leq c_2/6$ 。 于是,当 $n>c_2/6$ 时与 $n\leq c_2/6$ 矛盾。

例 3 证明
$$f(n) = an^2 + bn + c = \theta(n^2)$$
, $a>0$

证. 设
$$c_1 n^2 \le a n^2 + b n + c \le c_2 n^2$$
, 令 $c_1 = a/4$, $c_2 = 7a/4$,则
$$\frac{a}{4} n^2 \le a n^2 + b n + c \le \frac{7}{4} a n^2$$
,

命题2.1.1:对于任意正整数d和任意常数 $a_d>0$,有:

$$P(n) = \sum_{i=0}^{d} a_i n^i = \theta(n^d)$$

必果 $f(n)=O(n^k)$,则称f(n)是多项式界限的。

2.1.2 低阶函数集合

定义2.1.2. 设f(n)和g(n)是正值函数。如果 $\exists c>0, n_0$, $\forall n>n_0, f(n)\leq cg(n)$,则称f(n)比g(n)低阶或g(n)是f(n)的上界,记作f(n)=O(g(n))。

O(g(n))可以视为所有比g(n)低阶的函数的集合: $\{f(n) \mid \exists c, n_0, \forall n > n_0, f(n) \leq cg(n)\}$

2.1.2 低阶函数集合

[列]
$$\theta(g(n)) = f(n) \Rightarrow f(n) = O(g(n))$$
 $\theta(g(n)) \subseteq O(g(n))$

例 2 证明 $n=O(n^2)$.

证. 令 c=1, $n_0=1$, 则当 $n \ge n_0$ 时, $0 \le n \le cn^2$ 。

2.1.3 高阶函数集合

定义2.1.3. 设f(n)和g(n)是正值函数。如果 $\exists c>0$, n_0 , $\forall n>n_0$, $f(n)\geq cg(n)$,则称f(n)比g(n)高阶或g(n)是f(n)的下界,记作 $f(n)=\Omega(g(n))$ 。

 $\Omega(g(n))$ 可以视为所有比g(n)高阶的函数集合: $\{f(n) \mid \exists c, n_0, \forall n > n_0, f(n) \geq cg(n)\}$

θ 、O、 Ω 之间的关系

- 母表示渐进紧界
- 0表示渐进上界
- ①表示渐进下界
- $\theta(g(n)) \subseteq O(g(n))$
- $f(n) = \theta(g(n)) \Rightarrow f(n) = O(g(n))$
- $f(n) = an^2 + bn + c = \theta(n^2), f(n) = O(n^2)$
- $an+b = O(n^2)$. 为什么?
- $n = O(n^2)$!!!

如果 $f(n)=O(n^k)$,则称f(n)是多项式界限的

θ , O, Ω 之间的关系

•一些讨论:

- 当我们谈到插入排序的最坏运行时间是 $O(n^2)$,这个结论适用于所有的输入,即使对于已经排序的输入也成立,因为 $O(n) \in O(n^2)$.
- 然而插入排序的最坏运行时间 $\theta(n^2)$ 不能应用到每个输入,因为对于已经排序的输入, $\theta(n) \neq \theta(n^2)$.

θ , O, Ω 之间的关系

- Ω用来描述运行时间的最好情况
- •对于插入排序,我们可以说
 - -最好运行时间是 $\Omega(n)$
 - -或者说,运行时间是 $\Omega(n)$
 - -插入排序算法的运行时间在 $\Omega(n)$ 和 $O(n^2)$ 之间
 - -插入排序算法的最坏运行时间是 $\Omega(n^2)$
 - -但说插入排序算法的运行时间是 $\Omega(n^2)$,是错误的!

极少用①来描述算法的运行时间和复杂性

θ , O, Ω 之间的关系

定理 2.1.对于任意 f(n)和 g(n), $f(n) = \theta(g(n))$ iff f(n) = O(g(n)) 而且 $f(n) = \Omega(g(n))$.

证.
$$\Rightarrow$$
 如果 $f(n) = \theta(g(n))$, 则 $\exists c_1, c_2 > 0, n_0 > 0$, 当 $n \ge n_0$ 时,
$$c_1 g(n) \le f(n) \le c_2 g(n)$$
.

显然 $f(n) = \Omega(g(n))$ and f(n) = O(g(n)).

$$\Leftarrow$$
 如果 $f(n) = O(g(n))$ 且 $f(n) = \Omega(g(n))$,则由 $f(n) = O(g(n))$ 可

知,存在
$$c_1, n_1 \ge 0$$
,使得,当 $n \ge n_1$, $f(n) \le c_1 g(n)$ 。由 $f(n) = \Omega(g(n))$ 可知,日 $c_2, n_2 \ge 0$,使得当 $n \ge n_1$, $f(n) \le c_2 g(n)$

2.1.4严格低阶函数集合

定义2.1.4. 设f(n)和g(n)是正值函数。如果 $\forall c>0$, $\exists n_0$, $\forall n>n_0$, f(n)< cg(n), 则称f(n)严格比 g(n)低阶或g(n)是f(n)的严格上界,记作 f(n)=o(g(n))。

o(g(n))可以视为所有比g(n)严格低阶的函数集合: $\{f(n) \mid \forall c, \exists n_0, \forall n > n_0, f(n) < cg(n)\}$

2.1.4严格低阶函数集合

关于低阶O与严格低阶O的进一步说明

- O标记可能是或不是紧的
- 0标记用于标记上界但不是紧的情况
 - $-2n = o(n^2)$, 但是 $2n^2 \neq o(n^2)$.
- 区别:某个正常数c在O标记中,但所有正常数c 在O标记中。

例 1. 证明 $2n = o(n^2)$

证. 对 $\forall c > 0$,欲 $2n < cn^2$,必2 < cn,即 $\frac{2}{c} < n$ 。所以,当 $n_0 = \frac{2}{c}$ 时,

 $2n < cn^2 \forall \forall c > 0, \quad n \geq n_0$

例 2. 证明 $2n^2 \neq o(n^2)$

证. 当 c=1>0时,对于任何 n_0 ,当 $n \ge n_0$, $2n^2 < cn^2$ 都不成立

命题
$$2.1.2$$
 $f(n) = o(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

证.由于
$$f(n)=o(g(n))$$
, 对任意 $\varepsilon>0$,存在 n_0 , 当 $n \ge n_0$ 时, $0 \le f(n) < \varepsilon g(n)$,

即
$$0 \le \frac{f(n)}{g(n)} \le \varepsilon$$
. 于是, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

2.1.5严格高阶函数集合

定义2.1.4. 设f(n)和g(n)是正值函数。如果 $\forall c > 0$, $\exists n_0$, $\forall n > n_0$, f(n) > cg(n), 则称 $f(n) \ne$ 格比g(n) 高阶或g(n)是f(n)的严格下界,记作 $f(n) = \omega(g(n))$ 。

 $\omega(g(n))$ 可以视为所有比g(n)严格高阶的函数集合: $\{f(n) \mid \forall c, \exists n_0, \forall n > n_0, f(n) > cg(n)\}$

命题 2.1.3 $f(n) \in w(g(n))$ iff $g(n) \in o(f(n))$.

证:

⇒ 対 $\forall c > 0$, 1/c > 0. 由 $f(n) \in w(g(n))$ 知, 对 1/c > 0, $\exists n_0$, 当 $n \ge n_0$ 时,(1/c)g(n) < f(n),即 g(n) < cf(n). 于是, $g(n) \in o(f(n))$.

 \Leftrightarrow 对于任意 c>0, 1/c>0. 由 $g(n) \in o(f(n))$ 可知, $\exists n_0 \ge 0$, 当 $n > n_0$ 时,g(n) < (1/c) f(n),即 cg(n) < f(n).于是, $f(n) \in w(g(n))$ 。

命题
$$2.1.4$$
 $f(n) = w(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

证: 对 $\forall c > 0$,由于 f(n) = w(g(n)),必存在 n_0 ,使得当 $n \ge n_0$ 时, f(n) > cg(n),即当 $n \ge n_0$ 时,f(n) / g(n) > c. 于是, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

2.1.6 函数阶的性质

A 传递性:

(a)

(e)

(a)
$$f(n) = \theta(g(n)) \land g(n) = \theta(h(n)) \Rightarrow f(n) = \theta(h(n))$$

(b) $f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
(c) $f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
(d) $f(n) = o(g(n)) \land g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$

 $f(n) = w(g(n)) \land g(n) = w(h(n)) \Rightarrow f(n) = w(h(n))$.

2.1.6 函数阶的性质(续)

B 自反性:

- (a) $f(n) = \theta(f(n))$,
- (b) f(n) = O(f(n)),
- (c) $f(n) = \Omega(f(n))$.

C对称性

$$f(n) = \theta(g(n))$$
 iff $g(n) = \theta(f(n))$.

D 反对称性:

$$f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$

$$f(n) = o(g(n))$$
 iff $g(n) = w(f(n))$

问题

所有函数都是可比的吗?? $f(n) = n = g(n) = n^{1+\sin(n)}$ 可比吗?

提要

- 2.1 计算复杂性函数的阶
- 2.2 和式的计算与估计
- 2.3 递归分程

2.3 和式的估计与界限

1.线性和

命题 2.3.1
$$\sum_{k=1}^{n} (ca_k + b_k) = c\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
 命题 2.3.2
$$\sum_{k=1}^{n} \theta(f(k)) = \theta\left(\sum_{k=1}^{n} f(k)\right)^{n}$$

证.对 n用数学归纳法证明。

当
$$n = 1$$
 时, $\theta(f(1)) = \theta(f(1))$ 显然成立。 假设 $n \le m$ 时成立。 令 $n = m + 1$, 则 $\sum_{k=1}^{m+1} \theta(f(k)) = \sum_{k=1}^{m} \theta(f(k)) + \theta(f(m+1))$

$$= \theta \left(\sum_{k=1}^{m} f(k) \right) + \theta (f(m+1))$$

$$= \theta \left(\sum_{k=1}^{m} f(k) + f(m+1) \right)$$

$$= \theta \left(\sum_{k=1}^{m+1} f(k) \right) \circ$$

2. 级数

命题 2.3.3
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2)$$

命题 2.3.4
$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} \qquad (x \neq 1)$$
$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x} \quad |x| < 1$$

命题 2.3.5
$$H_n = \sum_{k=1}^n \frac{1}{k} = \ln \mathbf{n} + O(1)$$

$$\sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0.$$

$$\sum_{k=0}^{n-1} \left(a_k - a_{k+1} \right) = a_0 - a_n$$

$$\sum_{k=1}^{n-1} \frac{1}{k(k+1)} = \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n}$$

$$\lg(\prod_{k=1}^{n} a_k) = \sum_{k=1}^{n} \lg a_k$$

3. 直接求和的界限

$$|\mathcal{D}| \mathbf{1}. \qquad \sum_{k=1}^{n} k \leq \sum_{k=1}^{n} n = n^2$$

例 2.
$$\sum_{i=1}^{n} a_i \leq n \times \max\{a_k\}.$$

例 3. 设对于所有
$$k \ge 0$$
, $a_{k+1}/a_k \le r < 1$, 求 $\sum_{k=1}^{\infty} a_k$ 的上界.

解:
$$a_1/a_0 \le r \Rightarrow a_1 \le a_0 r$$
,
$$a_2/a_1 \le r \Rightarrow a_2 \le a_1 r \le a_0 r^2$$
,
$$a_3/a_2 \le r \Rightarrow a_3 \le a_2 r \le a_0 r^3 \dots$$

$$a_k/a_{k-1} \le r \Rightarrow a_k \le a_{k-1} r \le a_0 r^k$$
于是,
$$\sum_{k=0}^n a_k \le \sum_{k=0}^\infty a_0 r^k = a_0 \sum_{k=0}^\infty r^k = \frac{a_0}{1-r}$$
.

3

例 4. 求 $\sum_{k=1}^{\infty} (k/3^k)$ 的界

解. 使用例 3 的方法. $\frac{k+1}{3^{k+1}} / \frac{k}{3^k} = \frac{1}{3} \cdot \frac{k+1}{k} = \frac{1}{3} \left(1 + \frac{1}{k} \right) \le \frac{2}{3} = r$. 于是

$$\sum_{k=1}^{\infty} \frac{k}{3^k} \le \sum_{k=1}^{\infty} a_1 r^k = \sum_{k=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^{k-1} = \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 1.$$

例 5. 用分裂和的方法求 $\sum_{k=1}^{n} k$ 的下界.

解:
$$\sum_{k=1}^{n} k = \sum_{k=1}^{n/2} k + \sum_{k=n/2+1}^{n} k \ge \sum_{k=1}^{n/2} 0 + \sum_{k=n/2+1}^{n} n/2 \ge \left(\frac{n}{2}\right)^2 = \Omega(n^2).$$

例 6. 求
$$\sum_{k=0}^{\infty} \frac{k^2}{2^k}$$
 的上界

解: 当
$$k \ge 3$$
 时, $\frac{(k+1)^2}{2^{k+1}} = \frac{(k+1)^2}{2k^2} \le \frac{8}{9}$

于是
$$\sum_{k=0}^{\infty} \frac{k^2}{2^k} = \sum_{k=0}^{2} \frac{k^2}{2^k} + \sum_{k=3}^{\infty} \frac{k^2}{2^k} \le \theta(1) + \sum_{k=3}^{\infty} \frac{9}{8} \cdot \left(\frac{8}{9}\right)^k = \mathbf{0}(1)$$
.

例 7. 求
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
 的上界

$$\frac{1}{k} : \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{1} + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) \\
+ \left(\frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15}\right) + \cdots \\
\leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{i=0}^{2^{i}-1} \frac{1}{2^{i} + j} \leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{i=0}^{2^{i}-1} \frac{1}{2^{i}} \leq \sum_{i=0}^{\lfloor \lg n \rfloor} 1 \leq \lg n + 1$$

例 8. 如果 f(k) 单调递增,则 $\int_{m-1}^{n} f(x) dx \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x) dx$.

例 8. 如果 f(k) 单调递增,则 $\int_{m-1}^{n} f(x) dx \leq \sum_{k=1}^{n} f(k) \leq \int_{m}^{n+1} f(x) dx$.

38

例 9. 当
$$f(x)$$
 单调递减时, $\int_{m}^{n+1} f(x)dx \leq \sum_{k=0}^{n} f(k) \leq \int_{m-1}^{n} f(x)dx$.

$$\boxed{51 \ 10.} \quad \sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1) , \quad \sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{dx}{x} = \ln n .$$

提要

- 2.1 计算复杂性函数的阶
- 2.2 和式的计算与估计
- 2.3 递归方程

2.2 递归方程

 递归方程: 递归方程是使用具有小输入值的相同 方程来描述一个方程。

用自身来定义自身

• 递归方程例: Merge-sort排序算法的复杂性方程 $T(n)=2T(n/2)+\theta(n) \quad \text{if } n>1.$

 $T(n) = \theta(1)$ if n = 1(边界条件)

T(n)的解是 $\theta(n\log n)$

边界条件是根据问题的不同而不同的!

求解递归方程的三个主要方法

- 替换方法:
 - 先猜测方程的解,
 - -然后用数学归纳法证明.
- 迭代方法:
 - 把方程转化为一个和式
 - -然后用估计和的方法来求解.
- Master 方法:
 - 求解型为T(n)=aT(n/b)+f(n)的递归方程

2.3.1 替换(Substitution)方法

Substitution方法I: 联想已知的T(n)

例1. 求解
$$T(n)=2T(n/2+17)+n$$

解: 猜测:
$$T(n) = 2T\left(\frac{n}{2} + 17\right) + n 与 T(n) = 2T\left(\frac{n}{2}\right) + n 只相差一个 17.$$

当
$$n$$
 充分大时 $T\left(\frac{n}{2}+17\right)$ 与 $T\left(\frac{n}{2}\right)$ 的差别并不大,因为

$$\frac{n}{2}$$
+17与 $\frac{n}{2}$ 相差小. 我们可以猜 $T(n) = O(n \lg n)$.

证明:用数学归纳法

Substitution方法II: 猜测上下界, 减少不确定性范围

例 3. 求解
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
.

解: 首先证明 $T(n) = \Omega(n)$, $T(n) = O(n^2)$

然后逐阶地降低上界、提高下界。

 $\Omega(n)$ 的上一个阶是 $\Omega(n\log n)$, $0(n^2)$ 的下一个阶是 $0(n\log n)$ 。

细微差别的处理

- 问题:猜测正确,数学归纳法的归纳步似乎证不出来
- ·解决方法:从guess中减去一个低阶项,可能work.

例 4. 求解
$$T(n) = T(\lfloor n/2 \rfloor) + T(\lfloor \frac{n}{2} \rfloor) + 1$$

解: (1) 我们猜T(n) = O(n)

(2) 减去一个低阶项,猜 $T(n) \le cn - b$, $b \ge 0$ 是常数证: 设当 $\le n - 1$ 时成立

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil \frac{n}{2} \rceil) + 1 \le c \lfloor \frac{n}{2} \rfloor - b + c \lceil \frac{n}{2} \rceil - b + 1$$
$$= cn - 2b + 1 = cn - b - b + 1 \le cn - b \quad (\cancel{\cancel{P}} \cancel{\cancel{B}} b \ge 1).$$

避免陷阱

例 5. 求解 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ 。

解: 猜 T(n) = O(n)

证:用数学归纳法证明 $T(n) \leq cn$ 。

$$T(n) \le 2(c \mid n/2 \mid) + n \le cn + n = O(n)$$

--错!!

错在哪里? 过早使用了O(n)而陷入了陷阱!

应该在证明了 $T(n) \le cn$ 后才可使用。 从 $T(n) \le cn + n$ 不可能得到 $T(n) \le cn$ 因为对于 $\forall c > 0$,我们都得不到 $cn + n \le cn$ 。

Substitution方法III: 变量替换

经变量替换把递归方程变换为熟悉的方程.

例 6. 求解
$$T(n) = 2T(\sqrt{n}) + \lg n$$

解:
$$\Leftrightarrow m = \lg n$$
, 则 $n = 2^m$, $T(2^m) = 2T(2^{\frac{m}{2}}) + m$.

令
$$S(m) = T(2^m)$$
则 $T(2^{\frac{m}{2}}) = S(\frac{m}{2})$. 于是, $S(m) = 2S(\frac{m}{2}) + m$.

显然,
$$S(m) = O(m \lg m)$$
, 即 $T(2^m) = O(m \lg m)$

由于
$$2^m = n$$
, $m = \lg n$, $T(n) = O(\lg n \times \lg(\lg n))$.

2.3.2 迭代(Iteration) 方法

方法:

循环地展开递归方程, 把递归方程转化为和式, 然后可使用求和技术解之。

$$= n + 3 \left\lfloor \frac{n}{4} \right\rfloor + 3^2 \left\lfloor \frac{n}{4^2} \right\rfloor + 3^3 \left(\left\lfloor \frac{n}{4^3} \right\rfloor \right) + \dots + 3^i T \left(\left\lfloor \frac{n}{4^i} \right\rfloor \right)$$

$$\Rightarrow \frac{n}{4^{i}} = 1 \Rightarrow 4^{i} = n \Rightarrow i = \log_{4} n$$

$$= n + 3 \left\lfloor \frac{n}{4} \right\rfloor + 3^{2} \left\lfloor \frac{n}{4^{2}} \right\rfloor + 3^{3} \left(\left\lfloor \frac{n}{4^{3}} \right\rfloor \right) + \dots + 3^{\log_{4} n} T \left(\lfloor 1 \right)$$

$$\leq \sum_{i=0}^{\log_{4} n} 3^{i} \frac{n}{4^{i}} \cdot \leq n \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^{i} = n \times \frac{1}{1 - 3} = 4n = O(n)$$

2.3.3 Master method

目的: 求解 $T(n) = aT\binom{n}{b} + f(n)$ 型方程, $a \ge 1, b > 1$ 是常数, f(n) 是正函数

一般的分治递归:把问题分成一些更小(或许有重叠)的子问题,递归地求解这些子问题,然后用所得到的子问题的解去求解原始问题。

 $T(n) = aT\binom{n}{b} + f(n)$: 将一个大小为n的问题分成大小为n/b的a个子问题,递归地求解这些子问题,然后用所得到的子问题的解以f(n)的代价求解原始问题。

51

Master 定理

定理 **2.4.1** 设 $a \ge 1$ 和b > 1是常数,f(n)是一个函数,T(n)是定义在非负整数集上的函数 $T(n) = aT\binom{n}{b} + f(n)$. T(n)可以如下求解:

- (1). 若 $f(n) = O(n^{\log_b a \varepsilon})$, $\varepsilon > 0$ 是常数,则 $T(n) = \theta(n^{\log_b a})$.
- (2). 若 $f(n) = \theta(n^{\log_b a})$, 则 $T(n) = \theta(n^{\log_b a} \lg n)$.
- (3). 若 $f(n) = \Omega(n^{\log_b a + \varepsilon})$, $\varepsilon > 0$ 是常数,且对于所有充分大的 \mathbf{n} $af(n/b) \le cf(n)$, c < 1 是常数,则 $T(n) = \theta(f(n))$.

*直观地:我们用 f(n)与 $n^{\log_b a}$ 比较

(1). 若
$$n^{\log_b a}$$
大,则 $T(n) = \theta(n^{\log_b a})$

- (2). 若 f(n) 大,则 $T(n) = \theta(f(n))$
- (3). 若f(n)与 $n^{\log_b a}$ 同阶,则 $T(n) = \theta(n^{\log_b a} \lg n) = \theta(f(n) \lg n)$.

对于红色部分,Master定理无能为力

更进一步:

- (1). 在第一种情况, f(n) 不仅小于 $n^{\log_b a}$, 必须多项式地小于,即对于一个常数 $\varepsilon > 0$, $f(n) = O(\frac{n^{\log_b a}}{n^{\varepsilon}})$.
- (2). 在第三种情况, f(n) 不仅大于 $n^{\log_b a}$, 必须多项式地大于,即对一个常数 $\varepsilon > 0$, $f(n) = \Omega(n^{\log_b a} \cdot n^{\varepsilon})$.

Master定理的使用

55

例 **1**. 求解
$$T(n) = 9T(n/3) + n$$
.

解:
$$a = 9$$
, $b = 3$, $f(n) = n$, $n^{\log_b a} = \theta(n^2)$

$$f(n) = n = O(n^{\log_b a^{-\varepsilon}}), \quad \varepsilon = 1$$

$$T(n) = \theta(n^{\log_b a}) = \theta(n^2)$$

例 2. 求解
$$T(n) = T(2n/3) + 1$$
.

解:
$$a = 1$$
, $b = (\frac{3}{2})$, $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$,
$$f(n) = 1 = \theta(1) = \theta(n^{\log_{b^a}}), T(n) = \theta(n^{\log_{b^a}} \lg n) = \theta(\lg n)$$

例 **3**. 求解
$$T(n) = 3T(n/4) + n \lg n$$

解:
$$a = 3$$
, $b = 4$, $f(n) = n \lg n$, $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$

- (1) $f(n) = n \lg n \ge n = n^{\log_b a + \varepsilon}$, $\varepsilon \approx 0.2$
- (2) 对所有 n, $af(n/b) = 3 \times \frac{n}{4} \lg \frac{n}{4} = \frac{3}{4} n \lg \frac{n}{4} \le \frac{3}{4} n \lg n = cf(n)$, $c = \frac{3}{4}$. 于是, $T(n) = \theta(f(n)) = \theta(n \lg n)$

例 4. 求解
$$T(n) = 2^n T(\frac{n}{2}) + n^n$$

解: *a*=2ⁿ,非常数项,不满足master定理条件,故master定理不适用。

例 5. 求解 $T(n) = 0.5T(\frac{n}{2}) + \frac{1}{n}$

解: a<1,不满足master定理条件,故master定理不适用。

例 6. 求解 $T(n) = 64T(\frac{n}{8}) - n^2 \log n$

解: f(n)非正函数,不满足master定理条件,故master定理不适用。

扩展master定理

定理 2.4.2 设 $a \ge 1$ 和b > 1是常数,f(n)是一个函数,T(n)是定义在非负整数集上的函数 $T(n) = aT\binom{n}{b} + f(n)$. T(n)可以如下求解:

- (1). 若 $f(n) = O(n^{\log_b a \varepsilon})$, $\varepsilon > 0$ 是常数,则 $T(n) = \theta(n^{\log_b a})$.
- (2). 若 $f(n) = \theta(n^{\log_b a} \log^k n), k \ge 0$,则 $T(n) = \theta(n^{\log_b a} \log^{k+1} n)$
 - (3). 若 $f(n) = \Omega(n^{\log_b a + \varepsilon})$, $\varepsilon > 0$ 是常数,且对于所有充分大的 \mathbf{n} $af(n/b) \le cf(n)$, c < 1 是常数,则 $T(n) = \theta(f(n))$.

(2). 若
$$f(n) = \theta(n^{\log_b a} \log^k n), k \ge 0$$
,则 $T(n) = \theta(n^{\log_b a} \log^{k+1} n)$

例 7. 求解
$$T(n) = 2T(n/2) + n \lg n$$
.

解: $f(n) = n \lg n$

$$a = 2, b = 2$$
,根据原始的master定理, $n^{\log_b a} = n$

 $\log n$ 和 n^{ε} 的大小关系: 对于任意 $\varepsilon > 0$, $\log n \in o(n^{\varepsilon})$

显然无法找到大于零的 ε 使得:

$$n\log n = O(n^{1-\varepsilon})$$
 或者 $n\log n = \Omega(n^{1+\varepsilon})$ 成立

但根据扩展的master定理:

$$a = 2, b = 2, k = 1,$$
 故: $n^{\log_b a} \log^k n = n \lg n = f(n)$

$$T(n) = n \lg^2 n$$

本章总结

- 计算复杂性函数的阶
 - 同阶、低阶、高阶、严格低阶、严格高阶
 - 算法的复杂性与问题的复杂性
- 递归方程
 - 定义
 - 求解方法:替换法、迭代展开、master方法等