

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И
ПРОЦЕССЫ УПРАВЛЕНИЯ
N 1, 2009
Электронный журнал,

Электронный журнал, per. N П2375 от 07.03.97 ISSN 1817-2172

 $http://www.neva.ru/journal \ http://www.math.spbu.ru/diffjournal/ \ e-mail: jodiff@mail.ru$

Бифуркационные Решения В Одномерной Краевой Задаче, Описывающей Распределение Зарядов В Полупроводниках

Е.З.Боревич

Россия, 197376, Санкт-Петербург, ул. Проф. Попова, д. 5 С.-Петербургский государственный электротехнический университет кафедра высшей математики N°1 e-mail: danitschi@mail.ru

Аннотация.

Рассматривается одномерная краевая задача, описывающая распределение зарядов в полупроводниках в случае, когда плотность ионизированной примеси неоднородна. Доказано существование бифуркационных решений данной краевой задачи и их продолжимость по параметру.

Рассматривается краевая задача

$$\begin{cases}
(D(|E|)(n'+nE))' = 0, \\
E' = f - n, & \alpha < x < \beta, \\
E(\alpha) = \gamma_1, & E(\beta) = \gamma_2, \\
D(|E(\alpha)|)(n'(\alpha) + n(\alpha)E(\alpha)) = j > 0,
\end{cases} \tag{1}$$

где E(x), n(x) – напряженность электрического поля и плотность электронов; D>0 – коэффициент диффузии, функция f(x) задает неоднородную плотность ионизированной примеси. В работах [1,2] был изучен случай, когда плотность ионизированной примеси однородна, т. е. функция f постоянна. Будем считать, что $0<\alpha<\beta$ и $0<\gamma_1<\gamma_2$. Задача (1) эквивалентна следующей краевой задаче

$$\begin{cases}
D(|E|)(f'(x) - E'' + (f - E')E) = j, \\
E(\alpha) = \gamma_1, \quad E(\beta) = \gamma_2.
\end{cases}$$
(2)

Предположим, что неоднородная плотность ионизированной примеси f(x) линейно зависит от плотности тока электронов j:

$$f(x) = jg_1(x) + g_0, g_1(x) > 0, g_0 > 0.$$

Перепишем задачу (2) в виде

$$\begin{cases}
E'' + E'E - g_0E = j(g_1'(x) + g_1E - D^{-1}(|E|)), \\
E(\alpha) = \gamma_1, \quad E(\beta) = \gamma_2.
\end{cases}$$
(3)

Определение. Решение краевой задачи (3), не зависящее от параметра j, назовем тривиальным решением задачи (3).

Утверждение 1. Если плотность ионизированной примеси постоянна $u\ f=jg_1,\ a\ maкже \ \gamma_1=\gamma_2,\ mo\ краевая\ задача\ (3)$ имеет тривиальное решение $E(x)\equiv E_0,\ ede\ E_0=\gamma_1=\gamma_2,\ moeda\ u\ monbko\ moeda,\ koeda\ f=j(D(E_0)E_0)^{-1}.$

Этот случай был изучен в работах [1, 2].

Нетрудно видеть. что краевая задача (3) имеет тривиальное решение, если оно является решением следующих двух задач

$$\begin{cases}
E'' + E'E = g_0 E, \\
E(\alpha) = \gamma_1, \quad E(\beta) = \gamma_2;
\end{cases}$$
(4)

$$g_1'(x) + g_1(x)E = D(|E|)^{-1}.$$
 (5)

Обозначим через $a = \frac{\gamma_2 - \gamma_1}{\beta - \alpha}$.

Утверждение 2. Если $0 < \gamma_1 < \gamma_2$ и $0 < g_0 \le a$, то краевая задача (4) имеет монотонно возрастающее решение E(x), причем

$$\widetilde{E}(x) \le E(x) \le \gamma_2,$$

$$e \partial e \ \widetilde{E}(x) = \gamma_1 + a(x - \alpha).$$

Доказательство. Если $g_0=a$, то решение задачи (4) $E(x)\equiv \widetilde{E}(x)$, что проверяется непосредственно. Пусть теперь $0< g_0< a$, тогда функция $E(x)\equiv \gamma_2$ является верхней барьерной для краевой задачи (4), а $\widetilde{E}(x)$ является нижней барьерной. Тогда по теореме Нагумо [3] существует решение краевой задачи (4), причем $\widetilde{E}(x)\leq E(x)\leq \gamma_2$. Осталось показать монотонное возрастание решения E(x). Действительно, предположим противное. Тогда на интервале (α,β) найдется такая точка x_0 , что в ней функция E(x) достигает максимума. Тогда $E''(x_0)\leq 0$, $E'(x_0)=0$, $E(x_0)>0$, что невозможно, так как E(x) удовлетворяет уравнению задачи (4).

Предположим, что коэффициент диффузии D(y) имеет следующие свойства:

- (a) $D(y) \in C^{(2)}(R_+)$;
- (b) D(y) имеет при y > 0 единственный положительный локальный максимум и единственную точку перегиба;
 - (c) $\lim_{y \to +\infty} D(y) = D_0 > 0$;
- (d) при y>0 функция D(y) удовлетворяет условию отрицательной дифференциальной проводимости, т. е. существует интервал, на котором D(y)+yD'(y)<0.

Утверждение 3. Пусть коэффициент диффузии D(y) имеет свойства (a)-(d). Тогда справедливы следующие утверждения:

- (1) функция G(y) = yD(y) имеет единственный локальный максимум (y_{\max}, G_{\max}) и единственный локальный минимум (y_{\min}, G_{\min}) , причем $0 < y_{\max} < y_{\min}$;
- (2) при условии $y_{\max} < \gamma_1 < \gamma_2 < y_{\min}$ и при условии, что функция $g_1(x)$ удовлетворяет условиям: $g_1'(x) > 0$, $g_1''(x) > 0$ при $x \in [\alpha, \beta]$

$$1 - g_1'(\alpha)D(\gamma_1) = g_1(\alpha)G(\gamma_1), \quad 1 - g_1'(\beta)D(\gamma_2) = g_1(\beta)G(\gamma_2),$$

уравнение (5) имеет ровно три положительных решения $0 < E_1(x) < E_0(x) < E_2(x)$, причем $E_0'(x) > 0$, $E_i'(x) < 0$, i = 1, 2, $x \in [\alpha, \beta]$, причем $E_0(\alpha) = \gamma_1$, $E_0(\beta) = \gamma_2$.

Доказательство. Справедливость утверждения 3 следует из свойств (a)–(d) функции D(y) и теоремы о неявной функции. Перепишем задачу (5) в виде

$$H(E,x) = 0, (6)$$

где $H(E,x)=g_1'(x)+g_1(x)E-D^{-1}(E)$. Используя теорему о неявной функции для уравнения (6) и условия (2) из утверждения 3, получаем, что уравнение (6) имеет ровно три положительных решения $E_1(x) < E_0(x) < E_2(x)$, причем $H'_E(E,x) < 0$ при $E \in (y_{\max},y_{\min})$ и при любом $x \in [\alpha,\beta]$, $H'_x(E,x) > 0$ при любом $x \in [\alpha,\beta]$ и E > 0. Следовательно, $E'_0(x) > 0$, а $E_i(x) < 0$, i=1,2, при $x \in [\alpha,\beta]$, причем $E_0(\alpha) = \gamma_1$, $E_0(\beta) = \gamma_2$.

Основное предположение. Будем считать, что монотонно возрастающее решение $E_0(x)$ уравнения (5) совпадает с решением краевой задачи (4).

В этом случае $E_0(x)$ является тривиальным решением краевой задачи (3).

Сделаем замену $E(x) = E_0(x) + u(x)$, тогда задача (3) эквивалентна следующей краевой задаче

$$\begin{cases}
Lu = jg(x)u + N(x, u), \\
u(\alpha) = u(\beta) = 0,
\end{cases}$$
(7)

где $Lu=-u''-(E_0u)'+g_0u$ – линейный оператор из пространства $X=C_0^{(2)}([\alpha,\beta])$ в $Y=C([\alpha,\beta]),$ $g(x)=-\frac{D'(E_0(x))}{D^2(E_0(x))}-g_1(x),$ и оператор $N(x,u)=j\left[D^{-1}(|E_0+u|)-D^{-1}(E_0)+\frac{D'(E_0)}{D^2(E_0)}u\right]+u'u$ – нелинейный оператор из X в Y, причем N(x,0)=0, $N_u(x,0)=0.$

Обозначим через S замыкание множества всех нетривиальных решений $(j,u) \in R \times X$ задачи (7) и пусть S_k – максимальная компонента связности множества S, содержащая точку $(j_k,0)$, где j_k , k=1,2,..., – собственные числа линейной задачи

$$\begin{cases} Lu = jg(x)u, \\ u(\alpha) = u(\beta) = 0. \end{cases}$$
 (8)

Теорема 1. Предположим, что выполнены все условия утверждения 3. Тогда справедливы следующие утверждения:

- (i) для любого $k \in N$ множество S_k неограничено в $R \times X$;
- (ii) если $(f, u) \in S_k$ и $u \not\equiv 0$, то решение u(x) имеет ровно (k+1) нулей на $[\alpha, \beta]$, причем все нули простые;
- (iii) для любого $k \in N$ существуют константы $s_k > 0$, окрестность $U_k \subset R \times X$ решения $(j_k,0)$ и два $C^{(1)}$ отображения \hat{j}_k : $(-s_k,s_k) \to R$, \hat{u}_k : $(-s_k,s_k) \to X$, такие, что $\hat{j}_k(s) = j_k + O(s)$, $\hat{u}_k(s) = su_k(x) + O(s^2)$ при $s \to 0$ и $S \cap U_k = \{(\hat{j}_k(s), \hat{u}_k(s)) : |s| < s_k\}$, где $u_k(x)$ собственные функции линейной краевой задачи (8);

(Эти решения называются бифуркационными [4].)

Доказательство. Теорема доказывается так же, как теорема 1 из [1] с использованием теоремы 2.3 из [4]. Заметим, что условие отрицательной дифференциальной проводимости функции D(y) и положительность функций $g'_1(x)$ и $E_0(x)$ гарантируют положительность функции g(x) на $[\alpha, \beta]$. Утверждение (iii) следует из теоремы 2.3 [4] о бифуркациях в случае алгебраически простых собственных значениях. Докажем (ii). Обозначим через M_k множество всех $u \in X$, таких, что u имеет ровно (k+1) нулей на $[\alpha, \beta]$ и все нули простые. Мы должны показать, что

$$\{(j, u) \in S_k : u \neq 0\} \subset R \times M_k. \tag{9}$$

Согласно (iii) для произвольного $l \in N$ имеем $S_l \neq \emptyset$ и

$$\{(j, u) \in S \cap U_l : u \neq 0\} \subset R \times M_l, \tag{10}$$

если окрестность U_l достаточно мала. Более того, M_l открыто в X. Следовательно, существует пара $(j,u) \in S_k \cap (R \times \partial M_k)$, причем

$$(j,u) \neq (j_k,0), \tag{11}$$

если не выполнено (9). Для $u \in S_k$ имеем

$$Lu = jg(x)u + N(x, u), \quad x \in [\alpha, \beta]. \tag{12}$$

Из условия $u \in \partial M_k$ следует, что $u(x_0) = u'(x_0) = 0$ для некоторого $x_0 \in [\alpha, \beta]$. В силу единственности задачи Коши для уравнения (12) имеем $u(x) \equiv 0$ на $[\alpha, \beta]$. Следовательно, существуют нетривиальные решения задачи (7) достаточно близкие к $(j_l, 0)$ и, следовательно, $j \in \operatorname{spec} L$. Из (11) мы получаем, что $j = j_l$, $l \neq k$. Таким образом, существуют решения задачи (7) достаточно близкие к $(j_l, 0)$, которые принадлежат $R \times M_k$. Но это противоречит (10).

Докажем (*i*). Предположим противное. Тогда согласно теореме 2.3 [4] имеем, что $(j_l, 0) \in S_k$, $k \neq l$. Но это противоречит (9) и (10).

Покажем теперь, что каждое бифуркационное решение продолжимо по параметру $j>j_k,\,k=1,2,...,$ для чего докажем следующее.

Утверждение 4. Существует такая непрерывная положительная функция $\mu(j)$: $R_+ \to R_+$, что для любого решения (j,u) задачи (7) выполняется неравенство

$$||u||_X(j) \le \mu(j). \tag{13}$$

Доказательство. Запишем задачу (3) в виде

$$\begin{cases}
-E'' + E(f(x) - E') = j(D^{-1}(|E|) - g'_1(x)), \\
E(\alpha) = \gamma_1, \quad E(\beta) = \gamma_2.
\end{cases}$$

Сделаем замену $E(x) = E_0(x) + u(x)$, тогда получим

$$\begin{cases}
-u'' - E_0 u' = -ur(u) + jh(u), \\
u(\alpha) = u(\beta) = 0,
\end{cases}$$
(14)

где $r(u) = f(x) - E'_0(x) - u'(x)$, $h(u) = D^{-1}(|E_0 + u|) - D^{-1}(E_0)$. Заметим, что поскольку плотность электронов n(x) неотрицательна, то при любом $x \in [\alpha, \beta]$ $r(u) \ge 0$, а в силу свойств (a)–(d) коэффициента диффузии D функция h(u) – ограниченная функция от u.

Теперь легко получается оценка

$$c_1 ||u||_{L_2}^2 \le (Lu, u) \le jc_2 ||u||_{L_2} + c_3 ||u||_{L_2}, \quad c_i \ge 0, \quad i = 1, 2, 3,$$

где $Lu = -u'' - E_0u'$. Следовательно, $||u||_{L_2} \le j\widetilde{c}_2 + \widetilde{c}_3$. Из последних двух оценок следует, что норма $||u'||_{L_2}$ ограничена, а значит, есть аналогичная оценка в $C^{(0)}([\alpha,\beta])$ -норме. Далее, используя (14) и ограниченность $||u||_{L_2}$, $||u'||_{L_2}$, получим ограниченность $||u''||_{L_2}$. Эта же оценка справедлива для u(x) в $C^{(1)}([\alpha,\beta])$ -норме. Оценивая теперь равномерную норму u''(x) из (14), получим требуемую оценку (13).

Из утверждения (i) теоремы 1 и утверждения 4 следует, что бифуркационные решения, полученные в утверждении (iii) теоремы 1, продолжимы по параметру j при любом $j > j_k$, k = 1, 2, ...

Исследуем теперь поведение бифуркационных решений при $j \to +\infty$, т. е. при больших концентрациях примеси. Пусть $u_k(x,j)$ – бифуркационные решения задачи (7), тогда $E_k(x,j) = u_k(x,j) + E_0(x)$ назовем бифуркационными решениями задачи (3), k=1,2,...

Утверждение 5. При любом $x \in [\alpha, \beta]$ и любом $j > j_k$, k = 1, 2, ..., выполняется неравенство $0 < E_k(x, j) < E_2(x)$, т. е. все бифуркационные решения задачи (3) остаются в некотором компактном множестве.

Доказательство. Перепишем задачу (3) в виде

$$\begin{cases} E'' + E'E - g_0E = jH(E, x), \\ E(\alpha) = \gamma_1, \quad E(\beta) = \gamma_2, \end{cases}$$

где

$$H(E,x) = g_1'(x) + g_1 E - D^{-1}(|E|).$$
(15)

Пусть $E_k(x,j)$ – бифуркационное решение задачи (3). Предположим противное. Тогда найдется такая точка $x_0 \in (\alpha,\beta)$, что x_0 – локальный максимум решения $E_k(x,j)$ и $E_k(x_0,j) = E_2(x_0)$. Следовательно, $E_k''(x_0,j) \leq 0$, $E_k'(x_0,j) = 0$, е $E_k(x_0,j) > 0$, но $H(E_2(x_0),x_0) = 0$, что невозможно в силу уравнения (15). Тем самым доказана оценка $E_k(x,j) < E_2(x)$ при любом $x \in [\alpha,\beta]$.

Докажем теперь оценку $0 < E_k(x,j)$ при любом $x \in [\alpha,\beta]$. Предположим противное. Тогда найдется такая точка $x_1 \in (\alpha,\beta)$, что x_1 – локальный минимум решения $E_k(x,j)$ и $E_k(x_1,j) = 0$. Следовательно, $E_k''(x_1,j) \geq 0$, $E_k'(x_1,j) = 0$, но $H(0,x_1) < 0$, что невозможно в силу уравнения (15).

Список литературы

- [1] L.Reche, "An example for bifurcation of solutions of the basic equations for carrier distribution in semiconductors", Z. Angew. Math. Mech., 67 (1987), 269–271.
- [2] E.Z.Borevich, V.M.Chistyakov, "Nonlinear boundary value problems describing mobile carrier transport in semiconductor devices", *J. Appl. Math.*, **46** (2001), no. 5, 383–400.
- [3] К. Чанг, Ф. Хауэс, *Нелинейные сингулярно возмущенные краевые задачи*, М.: Мир (1988).
- [4] P. H. Rabinowitz, "Some global results for nonlinear eigenvalue problems", J. Funct. Anal. 7 (1971), 487–513.