Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Licence ST-A, USTL - API2

2 novembre 2009

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

1 Parcours de listes

- Longueur d'une liste
- Accès à un élément par son rang
- Recherche dans une liste

2 Modification de listes

- Ajout d'un élément en fin de liste
- Insertion d'un élément à un rang donné

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Parcours de listes

Spécification

 $\texttt{longueur} \; : \; \textit{Liste}(\textit{E}) \; \longrightarrow \; \mathbb{N}$ $\ell \longmapsto \mathsf{nbre}\;\mathsf{d'\acute{e}lts}\;\mathsf{de}\;\ell$

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Parcours de listes

Spécification

Exemples

Algorithme récursif

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

longueur(L) =

Algorithme récursif

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

$$L = \square$$

Plan
Parcours de

Modification de listes

listes

■ 0 si L est vide

Algorithme récursif

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $L = \square$

longueur(L) =

■ 0 si L est vide

1+longueur(reste(1))
sinon

Algorithme récursif en Pascal

```
Les listes (2)
```

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

```
// longueur(l) = nombre d'éléments de l
function longueur(l : LISTE) : CARDINAL;
begin
   if estListeVide(l) then
      longueur := 0
   else
      longueur := 1+longueur(reste(l));
end {longueur};
```

Algorithme itératif

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

 $\begin{cases} n = \text{nbre d'élts de L} \\ \text{déjà comptés} \\ \text{L1} = \text{liste des élts de L} \\ \text{restant à compter } \end{cases}$

Algorithme itératif

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification


```
{n = nbre d'élts de L déjà comptés } 

L1 = liste des élts de L 

restant à compter }
```

```
n := n+1
L1 := reste(L1)
{n = nbre d'élts de L
déjà comptés
L1 = liste des élts de L
restant à compter }
```

Algorithme itératif

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification


```
{n = nbre d'élts de L déjà comptés } 

L1 = liste des élts de L 

restant à compter }
```

```
n := n+1
L1 := reste(L1)
```

{n = nbre d'élts de L déjà comptés L1 = liste des élts de L restant à compter }

À faire tant que L1 non vide

Algorithme itératif en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

```
// longueur(l) = nombre d'éléments de l
function longueur(l : LISTE) : CARDINAL;
var
  n : CARDINAL;
   11 : LISTE;
begin
  n := 0;
   11 := 1;
   { n = nbre d'élts de l déjà parcourus}
   while not(estListeVide(11)) do begin
      n := n+1;
      11 := reste(11);
      { n = nbre d'élts de l déjà parcourus}
   end {while};
   longueur := n;
end {longueur};
```

Coût du calcul de la longueur

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $c(\ell)=$ nombre d'additions, ou d'appels récursifs, ou d'étapes du TantQue.

Coût du calcul de la longueur

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $c(\ell)=$ nombre d'additions, ou d'appels récursifs, ou d'étapes du TantQue.

$$c(()) = 0$$

 $c(< x; \ell >) = 1 + c(\ell)$

Coût du calcul de la longueur

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

 $c(\ell)=$ nombre d'additions, ou d'appels récursifs, ou d'étapes du TantQue.

$$c(()) = 0$$

 $c(< x; \ell >) = 1 + c(\ell)$

Conclusion

$$c(\ell) = \texttt{longueur}(\ell)$$

algorithme linéaire en fonction de la longueur de la liste

Rang d'un élément dans une liste

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Définition

Le <u>rang</u> d'un élément (ou d'une cellule) d'une liste est la position de cet élément dans la liste. Les positions sont numérotées à partir de 0.

Rang d'un élément dans une liste

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modificatio de listes

Définition

Le <u>rang</u> d'un élément (ou d'une cellule) d'une liste est la position de cet élément dans la liste. Les positions sont numérotées à partir de 0.

Exemples

Dans la liste (3,1,4,1,5,9,2)

- l'élément de rang 0 est 3,
- l'élément de rang 1 est 1,
- l'élement de rang 2 est 4, ...

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Spécification

acces :
$$\mathbb{N} \times Liste(E) \longrightarrow Liste(E)$$

 $k, \ell \longmapsto \ell'$

 $\ell'=$ sous-liste de ℓ débutant par l'élément de rang k.

CU: ℓ non vide et $k < longueur(\ell)$.

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Spécification

acces :
$$\mathbb{N} \times Liste(E) \longrightarrow Liste(E)$$

 $k, \ell \longmapsto \ell'$

 $\ell'=$ sous-liste de ℓ débutant par l'élément de rang k.

CU: ℓ non vide et $k < \text{longueur}(\ell)$.

Exemples

$$acces(2, (3, 1, 4, 1, 5, 9, 2)) = (4, 1, 5, 9, 2)$$

 $acces(7, (3, 1, 4, 1, 5, 9, 2)) = Non défini$

Exemple

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

$$L1 := acces(2, (3, 1, 4, 1, 5, 9, 2))$$

Exemple

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

$$L1 := acces(2, (3, 1, 4, 1, 5, 9, 2))$$

Aucune nouvelle cellule créée!

Algorithme récursif en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Algorithme itératif en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

```
// donne la liste débutant au k-ième élément de l
// les éléments étant numérotés à partir de 0
// CU : 0 \le k < long(1)
function acces(k : CARDINAL; 1 : LISTE) : LISTE;
var
  11 : LISTE;
  i : CARDINAL;
begin
  11 := 1;
  i := 0;
   { tete de l1 = élément de rang i de l }
   while i<k do begin
      11 := reste(11);
      i := i+1;
      { tete de l1 = élément de rang i de l }
   end {while};
   acces := 11;
end {acces};
```

Coût de l'accès

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

DI

Parcours de listes

Modification

 $c(k,\ell)=$ nombre d'appels récursifs, ou d'étapes du TantQue.

Coût de l'accès

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

 $c(k,\ell)=$ nombre d'appels récursifs, ou d'étapes du TantQue.

$$c(0,\ell) = 0$$

$$c(k,\ell) = 1 + c(k-1, reste(\ell))$$

Coût de l'accès

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

 $c(k,\ell)=$ nombre d'appels récursifs, ou d'étapes du TantQue.

$$c(0,\ell) = 0$$

$$c(k,\ell) = 1 + c(k-1, reste(\ell))$$

Conclusion

$$c(k,\ell)=k$$

le coût dépend uniquement de k. Algorithme linéaire en fonction de k

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Étant donné un élément $e \in E$ et une liste $\ell \in \mathit{Liste}(E)$, on peut s'intéresser à

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Étant donné un élément $e \in E$ et une liste $\ell \in \mathit{Liste}(E)$, on peut s'intéresser à

 \blacksquare la première occurrence de e dans ℓ ,

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Étant donné un élément $e \in E$ et une liste $\ell \in Liste(E)$, on peut s'intéresser à

- \blacksquare la première occurrence de e dans ℓ ,
- \blacksquare la dernière occurrence de e dans ℓ ,

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Étant donné un élément $e \in E$ et une liste $\ell \in \mathit{Liste}(E)$, on peut s'intéresser à

- \blacksquare la première occurrence de e dans ℓ ,
- \blacksquare la dernière occurrence de e dans ℓ ,
- toutes les occurrences de e dans ℓ .

Différentes issues d'une recherche

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Une recherche d'occurrence d'un élément e dans une liste ℓ peut aboutir à

Différentes issues d'une recherche

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Une recherche d'occurrence d'un élément e dans une liste ℓ peut aboutir à

 \blacksquare un succès lorsque e est dans ℓ ,

Différentes issues d'une recherche

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Une recherche d'occurrence d'un élément e dans une liste ℓ peut aboutir à

- \blacksquare un succès lorsque e est dans ℓ ,
- lacksquare un échec lorsque e n'est pas dans ℓ

Première occurrence

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Spécification

$$\begin{array}{cccc} \texttt{premiereOccur} & : & \textit{E} \times \textit{Liste}(\textit{E}) & \longrightarrow & \textit{Liste}(\textit{E}) \\ & & e, \ell & \longmapsto & \ell' \end{array}$$

 $\ell'=$ la sous-liste de ℓ débutant à la première occurrence de e si $e\in\ell,\ \ell'=()$ sinon

Première occurrence

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Spécification

 $\ell'=$ la sous-liste de ℓ débutant à la première occurrence de e si $e\in\ell$, $\ell'=()$ sinon

Exemples

premiereOccur
$$(1,(3,1,4,1,5)) = (1,4,1,5)$$

premiereOccur $(6,(3,1,4,1,5)) = ()$

Exemple

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

L1 := premiereOccur(1, (3, 1, 4, 1, 5))

Exemple

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

L1 := premiereOccur(1, (3, 1, 4, 1, 5))

Aucune nouvelle cellule créée!

Algorithme récursif en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

```
// premiereOccur(e,1) =
// la liste débutant à la première occurrence
// de e dans l si elle existe
// la liste vide sinon
function premiereOccur(const e : ELEMENT;
                       const 1 : LISTE) : LISTE;
begin
  if estListeVide(1) then
    premiereOccur := LISTEVIDE
  else
    if tete(1)=e then
      premiereOccur := 1
    else
      premiereOccur := premiereOccur(e,reste(1));
end {premiereOccur};
```

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Parcours de listes

Modification

 $c(e, \ell)$ = nombre d'appels récursifs (ou d'accès à la tête d'une liste).

lacksquare dépend de e et de ℓ

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Parcours de listes

Modification

- lacksquare dépend de e et de ℓ
- pour une recherche qui échoue $c(e, \ell) = \text{longueur}(\ell)$

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plai

Parcours de listes

Modification

- lacksquare dépend de e et de ℓ
- pour une recherche qui échoue $c(e, \ell) = \text{longueur}(\ell)$
- pour une recherche avec succès

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modificatio de listes

- lacksquare dépend de e et de ℓ
- pour une recherche qui échoue $c(e, \ell) = \text{longueur}(\ell)$
- pour une recherche avec succès
 - dans le meilleur des cas $c(e, \ell) = 1$

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plar

Parcours de

Modificatio de listes

- lacksquare dépend de e et de ℓ
- pour une recherche qui échoue $c(e, \ell) = \text{longueur}(\ell)$
- pour une recherche avec succès
 - dans le meilleur des cas $c(e, \ell) = 1$
 - dans le pire des cas $c(e, \ell) =$ longueur (ℓ)

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modificatio de listes

 $c(e, \ell)$ = nombre d'appels récursifs (ou d'accès à la tête d'une liste).

- lacksquare dépend de e et de ℓ
- pour une recherche qui échoue $c(e, \ell) = \text{longueur}(\ell)$
- pour une recherche avec succès
 - dans le meilleur des cas $c(e, \ell) = 1$
 - dans le pire des cas $c(e, \ell) =$ longueur (ℓ)

Conclusion

Coût de la recherche compris entre 0 (liste vide) et $longueur(\ell)$

Algorithme linéaire (dans le pire des cas) en fonction de la longueur.

Dernière occurrence

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes **Spécification**

 $\ell'=$ la sous-liste de ℓ débutant à la dernière occurrence de e si $e\in\ell$, $\ell'=$ () sinon

Dernière occurrence

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Spécification

$$\begin{array}{cccc} \mathtt{derniere0ccur} & : & E \times \mathit{Liste}(E) & \longrightarrow & \mathit{Liste}(E) \\ & & e, \ell & \longmapsto & \ell' \end{array}$$

 $\ell'=$ la sous-liste de ℓ débutant à la dernière occurrence de e si $e\in\ell$, $\ell'=$ () sinon

Exemples

derniereOccur
$$(1, (3, 1, 4, 1, 5)) = (1, 5)$$

derniereOccur $(6, (3, 1, 4, 1, 5)) = ()$

Exemple

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $\textit{L}1 := \texttt{derniereOccur} \big(1, (3, 1, 4, 1, 5)\big)$

Exemple

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

L1 := derniereOccur(1, (3, 1, 4, 1, 5))

Aucune nouvelle cellule créée!

Algorithme récursif en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de

Modification de listes

```
// dernereOccur(e,1) =
// la liste débutant à la dernière occurrence
        de e dans l si elle existe
// la liste vide sinon
function derniereOccur(const e : ELEMENT:
                       const 1 : LISTE) : LISTE;
var
  11 : LISTE:
begin
  if estListeVide(1) then
     derniereOccur := LISTEVIDE:
  else begin
     11 := derniereOccur(e, reste(l));
     if estListeVide(11) and (tete(1) = e) then
        derniereOccur := 1
     else
        derniereOccur := 11;
  end {if};
end {derniereOccur};
```

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes $c(e, \ell)$ = nombre d'appels récursifs (ou d'accès à la tête d'une liste).

■ dans tous les cas $c(e, \ell) = \text{longueur}(\ell)$

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

- dans tous les cas $c(e, \ell) =$ longueur (ℓ)
- ne dépend donc pas de *e*

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $c(e,\ell)=$ nombre d'appels récursifs (ou d'accès à la tête d'une liste).

- dans tous les cas $c(e, \ell) =$ longueur (ℓ)
- ne dépend donc pas de *e*

Conclusion

Coût de la recherche égal à $longueur(\ell)$ Algorithme linéaire en fonction de la longueur.

Dernier élément

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

Spécification

$$\begin{array}{cccc} \operatorname{dernier} : & \mathit{Liste}(E) & \longrightarrow & \mathit{Liste}(E) \\ & \ell & \longmapsto & \ell' \end{array}$$

 $\ell'=$ la sous-liste de ℓ débutant au dernier élément de ℓ si ℓ n'est pas vide, $\ell'=$ () sinon

Dernier élément

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Spécification

$$\begin{array}{cccc} \operatorname{dernier} : & \mathit{Liste}(E) & \longrightarrow & \mathit{Liste}(E) \\ & \ell & \longmapsto & \ell' \end{array}$$

 $\ell'=$ la sous-liste de ℓ débutant au dernier élément de ℓ si ℓ n'est pas vide, $\ell'=$ () sinon

Exemples

$$dernier(()) = ()$$

 $dernier((3,1,4,1,5)) = (5)$

Algorithme récursif en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

```
// derner(1) =
// la liste débutant au dernier élément
// de l si l n'est pas vide
// la liste vide sinon
function dernier(const 1 : LISTE) : LISTE;
begin
 if estListeVide(1) then
     dernier := LISTEVIDE
 else if estListeVide(reste(1)) then
         dernier := 1
       else
         dernier := dernier(reste(1)):
end {dernier};
```

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $c(\ell) = \mathsf{nombre} \ \mathsf{d'appels} \ \mathsf{r\'ecursifs}$

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification

 $c(\ell)$ = nombre d'appels récursifs

 $c(\ell) = 0$ si ℓ est vide

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

 $c(\ell)$ = nombre d'appels récursifs

- $c(\ell) = 0$ si ℓ est vide
- dans tous les autres cas $c(\ell) = \text{longueur}(\ell) 1$

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

 $c(\ell)$ = nombre d'appels récursifs

- $c(\ell) = 0$ si ℓ est vide
- lacksquare dans tous les autres cas $c(\ell) = \mathtt{longueur}(\ell) 1$

Conclusion

Coût de la recherche égal à longueur $(\ell)-1$ Algorithme linéaire en fonction de la longueur.

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

Parcours de listes

Modification de listes

Spécification

ajouteEnFin :
$$E \times Liste(E) \longrightarrow Liste(E)$$

 $e, \ell \longmapsto \ell'$

 $\ell'=$ liste ℓ modifiée par l'ajout d'un nouvel élément e à la fin

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Spécification

ajouteEnFin :
$$E \times Liste(E) \longrightarrow Liste(E)$$

 $e, \ell \longmapsto \ell'$

 $\ell'=$ liste ℓ modifiée par l'ajout d'un nouvel élément e à la fin

Exemples

ajouteEnFin(1,()) = (1)
ajouteEnFin(9,(3,1,4,1,5)) =
$$(3,1,4,1,5,9)$$

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Algorithme en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

'arcours de stes

Modification de listes

```
// ajouteEnFin(e,1) : ajoute un nouvel
// élément e à la fin de l
// la liste l est modifiée
procedure ajouteEnFin(const e : ELEMENT;
                      var 1 : LISTE);
var
   11,12 : LISTE;
begin
 11 := dernier(1);
  12 := ajouteEnTete(e,LISTEVIDE);
 if estListeVide(11) then
    1 := 12
  else
     modifierReste(11,12);
end {ajouterEnFin};
```

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

Spécification

inserer :
$$E \times Liste(E) \times \mathbb{N} \longrightarrow Liste(E)$$

 $e, \ell, k \longmapsto \ell'$

 $\ell'=$ liste ℓ modifiée par l'insertion d'un nouvel élément e au rang k.

CU: $1 \le k \le longueur(\ell)$

Spécification

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Modification de listes

Spécification

inserer :
$$E \times Liste(E) \times \mathbb{N} \longrightarrow Liste(E)$$

 $e, \ell, k \longmapsto \ell'$

 $\ell' =$ liste ℓ modifiée par l'insertion d'un nouvel élément e au rang k.

CU: $1 \le k \le longueur(\ell)$

Exemples

inserer
$$(4,(3,1,1,5),2) = (3,1,4,1,5)$$

inserer $(9,(3,1,4,1,5),5) = (3,1,4,1,5,9)$
inserer $(9,(3,1,4,1,5),6) = \text{Non défini}!$

Algorithme en Pascal

Les listes (2)

Nour-Eddine Oussous, Éric Wegrzynowski

Plan

arcours de stes

Modification de listes

```
// inserer(e,l,k): insere un nouvel élément e au
// rang k dans l
// la liste l est modifiée
// CU : 1 \le k \le longueur(1)
procedure inserer(const e : ELEMENT;
                   const 1 : LISTE:
                   const k : CARDINAL);
var
   11,12 : LISTE;
begin
  11 := acces(k-1,1);
  12 := ajouteEnTete(e,reste(l1));
  modifierReste(11,12);
end {inserer};
```