105061254 林士平 邏輯設計實驗報告 Lab2

1.

(1) Design specification:

A. Inputs and outputs(表一):

Inputs	x, y, cin				
Outputs	s, cout				
↑表一:Inputs and outputs of 1.					

B. Block diagram(圖一):

↑圖一: The block diagram of 1.

(2) Design implementation:

A. Logic function(圖二):

↑圖二:logic funtion 計算過程

由(圖二)可知 logic function 為:

$$s = x \oplus y \oplus cin$$

 $cout = ycin + xy + xcin$

寫成 verilog 的形式如下:

$$s = x ^ y ^ cin$$

 $cout = (x & y) | (x & cin) | (y & cin)$

B. Logic diagram(圖三):

↑ 圖三: logic diagram of 1.

C. I/O pin assignment(表二):

1/0	х	У	cin	S	cout		
LOC	V17	V16	W16	U16	E19		
↑表二:I/O pin assignment of 1.							

D.功能與做法說明:

本題為一個 full-adder,input 是兩個 1 bit 的資料(x,y)和一個 1 bit 的 carry in(cin),輸出為加總的結果 s 和 carry out(cout)。利用 truth table 以及 k-map 可以將 logic function 給推出來(圖二),並且利用得到的 logic function 可以寫成 verilog code 將 full-adder 的功能實現。最後再將 input 和 output assign 給 FPGA 板的接腳,便能藉操作 FPGA 板上的開關,從 LED 燈得到結果。

(1) Design specification:

2.

A. Inputs and outputs(表三):

Inputs	I[3:0]			
Outputs	outs D_ssd[7:0], d[3:0], ssd_ctl[3:0]			
↑表三:Inputs and outputs of 2.				

B. Block diagram(圖四):

↑圖四: The block diagram of 2.

(2) Design implementation:

A. Logic diagram(圖五):

↑圖五:logic diagram of 2.

B. I/O pin assignment(表四):

1/0	i[3]	i[2]	i[1]	i[0]	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	
LOC	W17	W16	V16	V17	W4	V4	U4	
1/0	ssd_ctl[0]	D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]	
LOC	U2	W7	W6	U8	V8	U5	V5	
1/0	D_ssd[1]	D_ssd[0]	d[3]	d[2]	d[1]	d[0]		
LOC	U7	V7	V19	U19	E19	U16		
↑表四: I/O pin assignment of 2.								

C.功能與做法說明:

本題為輸入一個 BCD,讓它顯示在七段顯示器上(四個七段顯示器顯示相同數字)。我用了兩個.v 檔:top_module 和 display。top_module 負責接收輸入的 BCD(i)和輸出 output(ssd_ctl 用來控制哪個七段顯示器要顯示數值、D_ssd 用來控制七段顯示器要顯示的數值為何、d 用來控制哪個 LED 燈要亮),其中 ssd_ctl = 4′b0000,讓四個七段顯示器均顯示;LED 要能顯示輸入(i)的值,只要將 i 和 LED 的輸出訊號(d)連在一起就可以了。display 則是 BCD to 7-segment display decoder,基本上就是一個 multiplexer,用來判斷輸入 BCD 相對應的 D_ssd,如果輸入不是 BCD 的話則顯示 F。

3.

(1) Design specification:

A. Inputs and outputs(表五):

Inputs	I[3:0]				
Outputs D_ssd[7:0], d[3:0], ssd_ctl[3:0]					
↑表五:Inputs and outputs of 3.					

B. Block diagram(圖六):

↑圖六:The block diagram of 3.

(2) Design implementation:

A. Logic diagram(圖七):

←圖七: logic diagram of 3.

B. I/O pin assignment(表六):

1/0	i[3]	i[2]	i[1]	i[0]	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]
LOC	W17	W16	V16	V17	W4	V4	U4
1/0	ssd_ctl[0]	D_ssd[7]	D_ssd[6]	D_ssd[5]	D_ssd[4]	D_ssd[3]	D_ssd[2]
LOC	U2	W7	W6	U8	V8	U5	V5
1/0	D_ssd[1]	D_ssd[0]	d[3]	d[2]	d[1]	d[0]	
LOC	U7	V7	V19	U19	E19	U16	
↑表六:I/O pin assignment of 3.							

C.功能與做法說明:

本題和 2_2 題非常像,差別在於輸入(i)是 binary number,要讓七段顯示器能顯示 a, b, c, d, E, F。因此兩題只差在 display module 中的 multiplexer,只要多加幾個判斷式即可。

4.

(1) Design specification:

A. Inputs and outputs(表七):

Inputs	A[3:0], B[3:0]				
Outputs	LED_A[3:0], LED_B[3:0], X				
↑表七:In	↑表七:Inputs and outputs of 4.				

B. Block diagram(圖八):

↑圖八:The block diagram of 4.

(2) Design implementation:

A. Logic diagram(圖九)

↑圖九:logic diagram of 4.

B. I/O pin assignment(表八):

1/0	A[3]	A[2]	A[1]	A[0]	B[3]	B[2]	B[1]
LOC	W13	W14	V15	W15	W17	W16	V16
1/0	B[0]	LED_A[3]	LED_A[2]	LED_A[1]	LED_A[0]	LED_B[3]	LED_B[2]
LOC	V17	V14	U14	U15	W18	V19	U19
1/0	LED_B[1]	LED_B[0]	Х				
LOC	E19	U16	V13				
↑表八:I/O pin assignment of 4.							

C.功能與做法說明:

本題是一個 comparator,如果 A>B 就輸出 X=1;如果 A<=B 就輸出 X=0。基本上只要用一個 MUX 來做判斷即可,判斷式為 A 和 B 比大小,由判斷式的 true,false 來決定輸出的 X 值。LED 要能顯示輸入(A 和 B)的值,只要將 A, B 和他們各自的 LED 輸出訊號(LED_A, LED_B)連在一起就可以了。

5. Discussion

第 2_1 題要將 lab1 做的 full-adder 燒到 FPGA 版上實現,過程中可能會遇到的問題有:忘記更改 I/O Std 到 LVCMOS33、接腳選錯。不過基本上只要夠細心、按照講義上的步驟,就能做出來。

BIOT

RECEIVED

↑圖十(左): 1.的實作結果(x = 1, y = 0, cin = 1 所以 cout = 1, s = 0)

个圖十(右): 1.的實作結果(x = 1, y = 1, cin = 1所以 cout = 1, s = 1

第 2_2 題是輸入一個 BCD,讓它顯示在七段顯示器上(四個七段顯示器顯示相同數字)。過程中最需要注意的是 7-seg Display 是 low active control,如果搞反結果會完全相反,還有要注意選擇七段顯示器接腳的時候,最高位元和最低位元對應的接腳為何,如果搞反顯示出來的結果也會不如預期。

↑圖十一(左): 2.的實作結果(i[3:0] = 4'b0101 所以顯示 5)

个圖十一(右): 2.的實作結果(i[3:0] = 4'b1101 所以顯示 F(i is outside the range))

第 2_3 題和 2_2 題非常像,差別在於輸入(i)是 binary number,要讓七段顯示器能顯示 a, b, c, d, E, F。基本上這題可以將 2 2 題的.xdc 檔完全複製過來,.v 檔也幾乎一樣,所以不會很困難。

↑圖十二(左): 3.的實作結果(i[3:0] = 4'b0111 所以顯示 7)

个圖十二(右): 3.的實作結果(i[3:0] = 4'b1101 所以顯示 d

最後第 2_4 題主體其實就是一個 mux,在寫完 2_2 和 2_3 題之後,2_4 題寫起來沒甚麼困難。

↑ 圖十三(左): 4.的實作結果(A = 3, B = 11,所以 X = 0)

↑圖十三(右): 4.的實作結果(A = 16, B = 11,所以 X = 1)

6. Conclusion

這次的實驗讓我熟悉如何將 verilog code 燒到 FPGA 版上實現。從 I/O pin assignment 到產生 bitstream,我覺得自己更了解 verilog 在做甚麼。能實際看到成果感覺很有成就感。