

Time Series Analysis

Discussion Section 02

Please log in to **ISIS** (password: Zeit1718) and **download** the following files:

- GNP.dta
- acf_exercise.do

Stationary Stochastic Processes

- Introduction
- Identification
 - Autocorrelation Function
 - Moving Average and Autoregressive Models
 - Partial Autocorrelation Function
 - ARMA Models
- Estimation
- Diagnostic Checking
- Forecasting

Exercise 2.1:

- What is meant by weak stationarity and what is the difference to strict stationarity?
- Does this series look stationary?
- Does it seem like there is serial dependence?

Solution 2.1:

 What is meant by weak stationarity and what is the difference to strict stationarity?

A time series y_t (as a realization of a stochastic process, see Kirchgässner et al. p. 12) is said to be **strictly stationary** if the joint distribution of $(y_t, ..., y_{t+k})$ is identical to that of $(y_t, ..., y_{t+k+m})$ for all t, t, and t. A time series is **weakly stationary** if both the mean and the covariance are time-invariant. If t is strictly stationary, then t is also weakly stationary. The converse is not true in general. However, if the time series t is normally distributed, then weak stationarity is equivalent to strict stationarity.

Does this series look stationary?

YES: There is no trend and the series seems to fluctuate around a constant mean. The (unconditional) variance is roughly constant. But it is hard to judge if the covariance is constant, too.

Does it seem like there is serial dependence?

YES: The series seems not to fluctuate randomly around the mean, it looks rather smooth. If one observation is above the mean then the next is above the mean as well indicating a positive autocorrelation at small lags.

Exercise 2.2:

Create a scatter plot to identify if there is serial dependency for lag k = 1,2,3 in the GNP series. Add the means and the regression line.

Recall:

• Time-series operators: When a command allows a time-series *varlist*, you may include time-series operators.

Operator	Meaning
L.	lag x _{t-1}
L2.	2-period lag x _{t-2}

- [\underline{tw} oway] \underline{sc} atter varlist [if] [in] [weight] [,options] where varlist is y_1 [y_2 [...]] x
- Twoway linear prediction plots: twoway lfit calculates the prediction for yvar based on a linear regression of yvar on xvar and plots the resulting line (Sytax: twoway lfit yvar xvar)
- Use the ||-separator notation to put on top of the scatter plot the prediction from a linear regression (Syntax: [twoway] scatter ... [, scatter_options] || lfit ...)

Exercise 2.2:

. describe

obs: vars: size:	176 1 704			21 Nov 2011 10:58
variable name	storage type	display format	value label	variable label
GNP	float	%9.0g		Quarterly growth rate of U.S. real gross national product (1947q2 to 1991q1)

Sorted by:

Note:

We have quarterly data beginning in the 2nd quarter of 1947 and ending in the 1st quarter of 1991.

However, there is no time variable in our data set.

=> create an appropriate time variable

Solution 2.2-1:

- . gen time = -52 + n
- . format time %tq
- . tsset time
- . summarize GNP

Alternative:

- . gen time = $tq(1947q2) + _n 1$
- . format time %tq
- . tsset time

Variable	•	Mean	Std. Dev.	Max
GNP			.0107275	

. return list

```
r(N) = 176

r(sum_w) = 176

r(mean) = .0077412499703603

r(Var) = .000115080170731

r(sd) = .0107275426231272

r(min) = -.0239100009202957

r(max) = .0398899987339973

r(sum) = 1.362459994783421
```

. display r(mean)

Solution 2.2-2:

```
. display r(mean)
.00774125
. local mean=r(mean)
```

. display `mean'

.00774125

Solution 2.2-3:

Create a scatter plot to identify if there is serial dependency for lag k = 1 in the **GNP** series.

. twoway scatter L.GNP GNP, yline(`mean') xline(`mean') || lfit L.GNP
GNP, legend(off)

There are more points in the upper right corner (first quadrant) and the lower left corner (third quadrant). Therefore the regression line is upward sloping, indicating a positive autocovariance.

Solution 2.2-4:

Create a scatter plot to identify if there is serial dependency for lag k = 2 in the **GNP** series.

. twoway scatter L2.GNP GNP, yline(`mean') xline(`mean') || lfit L2.GNP
GNP, legend(off)

There are slightly more points in the upper right corner (first quadrant) and the lower left corner (third quadrant). Therefore the regression line is upward sloping, indicating a positive autocovariance.

Solution 2.2-5:

Create a scatter plot to identify if there is serial dependency for lag k = 3 in the **GNP** series.

. twoway scatter L3.GNP GNP, yline(`mean') xline(`mean') || lfit L3.GNP
GNP, legend(off)

There is about the same number of points in each quadrant. Therefore the regression line is roughly equivalent to the mean, indicating no autocovariance.

Exercise 2.3:

- What is the autocorrelation function and what is its purpose?
- Consider the formula of the Bravais-Pearson correlation coefficient and compare it to the formula for the autocorrelation coefficient at lag k.
 Explain under which assumptions both formulas yield the same result.

Bravais-Pearson correlation coefficient:

$$r = \frac{E[(x - \mu_x)(y - \mu_y)]}{\sqrt{E[(x - \mu_x)^2] E[(y - \mu_y)^2]}}$$

Autocorrelation coefficient at lag k

$$\rho_{k} = \frac{E[(y_{t} - \mu_{y})(y_{t+k} - \mu_{y})]}{E[(y_{t} - \mu_{y})^{2}]}$$

Solution 2.3:

- What is the autocorrelation function and what is its purpose?

 Correlation between observations separated by *k* periods within the same time series. The estimated autocorrelation function (ACF) may suggest which of the time series models is suitable to reflect the dependence in the data.
- Consider the formula of the Bravais-Pearson correlation coefficient and compare it to the formula for the autocorrelation coefficient at lag *k*. Explain under which assumption(s) both formulas yield the same result. Weak stationarity: (E(y_t) = μ_y) which is a constant, and (Cov(y_t, y_{t-k}) = y_t), which only depends on *k*.

$$r = \frac{E[(x - \mu_x)(y - \mu_y)]}{\sqrt{E[(x - \mu_x)^2] E[(y - \mu_y)^2]}} \qquad \rho_k = \frac{E[(y_t - \mu_y)(y_{t+k} - \mu_y)]}{E[(y_t - \mu_y)^2]}$$

Exercise 2.4:

Calculate the values of the autocorrelation function for the GNP series.

Note: corrgram varname tabulate autocorrelations

Plot the autocorrelation function for the GNP series.

Note: ac varname graph of autocorrelations

Solution 2.4-1:

. corrgram GNP

					-1 0 1	-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
1	0.3769	0.3807	25 . 426	0.0000		
2	0.2539	0.1344	37.034	0.0000		-
3	0.0125	-0.1443	37.062	0.0000	1	-
4	-0.0859	-0.0991	38.407	0.0000		
5	-0.1071	-0.0196	40.507	0.0000		I
6	-0.0575	0.0352	41.116	0.0000		[
7	-0.0182	0.0130	41.177	0.0000		1
8	-0.0772	-0.1113	42.29	0.0000		
9	-0.0702	-0.0446	43.214	0.0000		I
10	0.0104	0.0993	43.234	0.0000		1
11	-0.0230	-0.0371	43.335	0.0000	1	I
12	-0.0967	-0.1541	45.122	0.0000		-
13	-0.1011	-0.0503	47.085	0.0000	1	I
14	-0.1145	-0.0222	49.622	0.0000		I
15	-0.0747	0.0084	50.707	0.0000		[
16	0.0292	0.0644	50.873	0.0000		1
[]						

Solution 2.4-2:

ac GNP

Exercise 2.5-1:

What should the ACF for this series look like?

Quarterly earnings per share for the U.S. company Johnson & Johnson (first quarter of 1960 to last quarter of 1980)

Solution 2.5-1:

The **ACF** for this series is rather slowly declining.

Shumway, Stoffer (2000) "Time series analysis and its applications"

20

Exercise 2.5-2:

What should the ACF for this series look like?

Monthly Australian red wine sales (Jan. 1990 to Oct. 1991)

Solution 2.5-2:

The **ACF** for this series shows a seasonal pattern.

Shumway, Stoffer (2000) "Time series analysis and its applications"

Exercise 2.5-3:

What should the ACF for this series look like?

Monthly Australian red wine sales (Jan. 1990 to Oct. 1991)

Detrended

Solution 2.5-3:

The **ACF** for this series shows a seasonal detrended pattern.

Shumway, Stoffer (2000) "Time series analysis and its applications"

Exercise 2.5-4:

What should the ACF for this series look like?

Monthly Australian red wine sales (Jan. 1990 to Oct. 1991)

Seasonal adjusted and detrended

Solution 2.5-4:

The **ACF** for this series is rather quickly declining, showing some serial correlation at lower lag order.

Shumway, Stoffer (2000) "Time series analysis and its applications"

Exercise 2.6:

Write down the following models in our general notation:

- MA(1)
- MA(2)
- AR(1)
- AR(2).

Calculate the values of the theoretical autocorrelation function for an MA(1) process with $\mu = 0$ for lags k = 1, 2.

Calculate the values of the theoretical autocorrelation function for an AR(1) process with $\delta = 0$ for lags k = 1, 2.

Hint:
$$\rho_k := \frac{\gamma_k}{\gamma_0} = \frac{Cov(y_t, y_{t-k})}{Var(y_t)} = \frac{E[(y_t - \mu)(y_{t-k} - \mu)]}{E[(y_t - \mu)^2]}$$

Solution 2.6-1:

Write down the following models in our general notation:

MA(1):
$$y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

MA(2):
$$y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2}$$

AR(1):
$$\mathbf{y}_t = \varphi_1 \mathbf{y}_{t-1} + \delta + \varepsilon_t$$

AR(2):
$$y_t = \varphi_1 y_{t-1} + \varphi_2 y_{t-2} + \delta + \varepsilon_t$$

with
$$\varepsilon_t \sim \text{i.i.d. } E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2$$

These conditions imply:

•
$$E(\varepsilon_t \varepsilon_{t-k}) = E(\varepsilon_t) E(\varepsilon_{t-k}) = 0$$
 for any t and any $k \neq 0$

•
$$Var(\varepsilon_t) = E[(\varepsilon_t - E(\varepsilon_t))^2] = E[(\varepsilon_t - 0)^2] = E(\varepsilon_t^2) = \sigma_\varepsilon^2$$
 for any t

that means e.g.
$$E(\varepsilon_{t-1}^2) = \sigma_{\varepsilon}^2$$
, $E(\varepsilon_{t-2}^2) = \sigma_{\varepsilon}^2$, $E(\varepsilon_{t-3}^2) = \sigma_{\varepsilon}^2$, etc.

Recall:

$$\rho_k := \frac{\gamma_k}{\gamma_0} = \frac{Cov(y_t, y_{t-k})}{Var(y_t)} = \frac{E[(y_t - \mu)(y_{t-k} - \mu)]}{E[(y_t - \mu)^2]}$$

Solution 2.6-2:

Theoretical ACF for a MA(1) process with $\mu = 0$ for lags k = 1, 2.

MA(1):
$$y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

with $\varepsilon_t \sim i.i.d.$ $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = \sigma_\varepsilon^2$ • $E(\varepsilon_t \varepsilon_{t-k}) = 0$ for any t and any $k \neq 0$

•
$$E(\varepsilon_t^2) = \sigma_\varepsilon^2$$
 for any t

$$\begin{split} \boxed{\gamma_0} &= Var(y_t) = E\left[\left(y_t - \mu\right)^2\right] = E\left(y_t^2\right) = E\left[\left(\varepsilon_t - \theta_1 \varepsilon_{t-1}\right)^2\right] = E\left(\varepsilon_t^2 - 2\theta_1 \varepsilon_t \varepsilon_{t-1} + \theta_1^2 \varepsilon_{t-1}^2\right) \\ &= E\left(\varepsilon_t^2\right) - 2\theta_1 E\left(\varepsilon_t \varepsilon_{t-1}\right) + \theta_1^2 E\left(\varepsilon_{t-1}^2\right) = \sigma_\varepsilon^2 + \theta_1^2 \sigma_\varepsilon^2 = \left[\left(1 + \theta_1^2\right)\sigma_\varepsilon^2\right] \end{split}$$

$$\begin{aligned} \gamma_{1} &= Cov(y_{t}, y_{t-1}) = E[(y_{t} - \mu)(y_{t-1} - \mu)] = E(y_{t}y_{t-1}) = E[(\varepsilon_{t} - \theta_{1}\varepsilon_{t-1})(\varepsilon_{t-1} - \theta_{1}\varepsilon_{t-2})] \\ &= E(\varepsilon_{t}\varepsilon_{t-1} - \theta_{1}\varepsilon_{t}\varepsilon_{t-2} - \theta_{1}\varepsilon_{t-1}^{2} + \theta_{1}^{2}\varepsilon_{t-1}\varepsilon_{t-2}) = -\theta_{1}E(\varepsilon_{t}^{2}) = -\theta_{1}\sigma_{\varepsilon}^{2} \end{aligned}$$

$$\begin{aligned} \boxed{\gamma_2} &= Cov(y_t, y_{t-2}) = E[(y_t - \mu)(y_{t-2} - \mu)] = E(y_t y_{t-2}) = E[(\varepsilon_t - \theta_1 \varepsilon_{t-1})(\varepsilon_{t-2} - \theta_1 \varepsilon_{t-3})] \\ &= E(\varepsilon_t \varepsilon_{t-2} - \theta_1 \varepsilon_t \varepsilon_{t-3} - \theta_1 \varepsilon_{t-1} \varepsilon_{t-2} + \theta_1^2 \varepsilon_{t-1} \varepsilon_{t-3}) = 0 \end{aligned}$$

Solution 2.6-3:

Theoretical acf for a MA(1) process with $\mu = 0$ for lags k = 1, 2.

MA(1):
$$y_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

with $\varepsilon_t \sim \text{i.i.d. } E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2$

$$\gamma_0 = \left(1 + \theta_1^2\right) \sigma_{\varepsilon}^2$$

$$\gamma_1 = -\theta_1 \sigma_{\varepsilon}^2$$

$$\gamma_2 = 0$$

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{-\theta_1 \sigma_{\varepsilon}^2}{\left(1 + \theta_1^2\right) \sigma_{\varepsilon}^2} = \frac{-\theta_1}{\left(1 + \theta_1^2\right)}$$

$$\rho_2 = \frac{\gamma_2}{\gamma_0} = \frac{0}{\left(1 + \theta_1^2\right) \sigma_{\varepsilon}^2} = 0$$

Recall:

$$\rho_k \coloneqq \frac{\gamma_k}{\gamma_0} = \frac{Cov(y_t, y_{t-k})}{Var(y_t)} = \frac{E[(y_t - \mu)(y_{t-k} - \mu)]}{E[(y_t - \mu)^2]}$$

Solution 2.6-4:

Theoretical ACF for an AR(1) process with $\delta = 0$ for lags k = 1, 2.

$$AR(1): \quad \mathbf{y}_t = \varphi_1 \mathbf{y}_{t-1} + \delta + \varepsilon_t$$

with
$$\varepsilon_t \sim i.i.d.$$
 $E(\varepsilon_t) = 0$, $Var(\varepsilon_t) = \sigma_\varepsilon^2$ • $E(\varepsilon_t \varepsilon_{t-k}) = 0$ for any t and any $k \neq 0$

These conditions imply:

•
$$E(\varepsilon_t \varepsilon_{t-k}) = 0$$
 for any t and any $k \neq 0$

•
$$E(\varepsilon_t^2) = \sigma_\varepsilon^2$$
 for any t

Moreover:

stationarity implies

$$E(y_t) = \varphi_1 E(y_{t-1}) + \delta$$

$$\mu = \varphi_1 \mu + \delta$$

$$\mu = \delta/(1 - \varphi_1)$$

therefore

$$\delta = 0 \implies \mu = 0$$

stationarity implies

$$Var(y_t) = Var(y_{t-k})$$
 for any k

• by definition and using $\mu=0$

$$Var(y_t) = E[(y_t - \mu)^2] = E(y_t^2)$$

therefore

$$E(y_t^2) = E(y_{t-k}^2) =: \gamma_0 \text{ for any } k, t$$

for any t

•
$$E(y_t \varepsilon_t) = E[(\varphi_t y_{t-1} + \varepsilon_t) \varepsilon_t]$$

 $= \varphi_t E[y_{t-1} \varepsilon_t] + E[\varepsilon_t^2]$
 $= \theta + \sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^2$

for any t and k#0

•
$$E(y_{t-k}\varepsilon_t) = E[(\varphi_1y_{t-k-1} + \varepsilon_{t-k})\varepsilon_t]$$

$$= \varphi_1 E[y_{t-k-1}\varepsilon_t] + E[\varepsilon_{t-k}\varepsilon_t]$$

$$= 0 + 0 = 0$$

Solution 2.6-4:

Theoretical acf for an AR(1) process with $\delta = 0$ for lags k = 1, 2.

$$\begin{split} &\text{AR}(1)\colon \quad y_{t} = \varphi_{1}y_{t-1} + \delta + \varepsilon_{t} \\ &\text{with } \varepsilon_{t} \sim \text{i.i.d. } E(\varepsilon_{t}) = 0, Var(\varepsilon_{t}) = \sigma_{\varepsilon}^{2} \\ &\gamma_{0} = \text{Var}(y_{t}) = E(y_{t}^{2}) = E(\phi_{1}y_{t-1} + \varepsilon_{t})^{2} = E(\phi_{1}^{2}y_{t-1}^{2} + \varepsilon_{t}^{2} + 2\phi_{1}y_{t-1}\varepsilon_{t}) \\ &= \phi_{1}^{2}E(y_{t-1}^{2}) + E(\varepsilon_{t}^{2}) + 2\phi_{1}E(y_{t-1}\varepsilon_{t}) = \phi_{1}^{2}\gamma_{0} + \sigma_{\varepsilon}^{2} \Longrightarrow \gamma_{0} = \frac{\sigma_{\varepsilon}^{2}}{1 - \phi_{1}^{2}} \\ &\gamma_{1} = Cov(y_{t}, y_{t-1}) = E(y_{t}y_{t-1}) = E[(\phi_{1}y_{t-1} + \varepsilon_{t})y_{t-1}] = E(\phi_{1}y_{t-1}^{2} + \varepsilon_{t}y_{t-1}) \\ &= \varphi_{1}E(y_{t-1}^{2}) + E(\varepsilon_{t}y_{t-1}) = \varphi_{1}\gamma_{0} = \frac{\varphi_{1}\sigma_{\varepsilon}^{2}}{1 - \varphi_{1}^{2}} \\ &\gamma_{2} = Cov(y_{t}, y_{t-2}) = E[(\phi_{1}y_{t-1} + \varepsilon_{t})y_{t-2}] = E[(\phi_{1}(\phi_{1}y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t})y_{t-2}] \\ &= E[(\phi_{1}^{2}y_{t-2} + \varphi_{1}\varepsilon_{t-1} + \varepsilon_{t})y_{t-2}] = \varphi_{1}^{2}\gamma_{0} = \frac{\varphi_{1}^{2}\sigma_{\varepsilon}^{2}}{1 - \varphi_{1}^{2}} \end{split}$$

Solution 2.6-5:

Theoretical acf for an AR(1) process with $\delta = 0$ for lags k = 1, 2.

AR(1):
$$\mathbf{y}_t = \varphi_1 \mathbf{y}_{t-1} + \delta + \varepsilon_t$$

with $\varepsilon_t \sim \text{i.i.d. } E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2$

$$\gamma_0 = \frac{\sigma_\varepsilon^2}{1 - \varphi_1^2}$$

$$\gamma_1 = \frac{\varphi_1 \sigma_{\varepsilon}^2}{1 - \varphi_1^2}$$

$$\gamma_2 = \frac{\varphi_1^2 \sigma_\varepsilon^2}{1 - \varphi_1^2}$$

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \varphi_1$$

$$\rho_2 = \frac{\gamma_2}{\gamma_0} = \varphi_1^2$$

Exercise 2.7:

Simulate the following processes with 200 observations and $\varepsilon_t \sim \text{i.i.d. N}(0, \sigma_{\varepsilon}^2 = 1)$:

- White noise
- MA(1) with $\theta_1 = -0.8$
- MA(2) with $\theta_1 = -0.6$ and $\theta_2 = 0.3$

Plot in each case the ACF of the series with the help of the do-file (acf_exercise.do) and compare to its theoretical ACF you would expect.

Notice:

Solution 2.7-1:

ACF for **simulated** white noise

Solution 2.7-2:

Theoretical ACF for white noise process

Solution 2.7-3:

ACF for **simulated** MA(1) with $\theta_1 = -0.8$

Solution 2.7-4:

Theoretical ACF for MA(1) with $\theta_1 = -0.8$

Solution 2.7-5:

ACF for **simulated** MA(2) with $\theta_1 = -0.6$, $\theta_2 = 0.3$

Solution 2.7-6:

Theoretical ACF for MA(2) with $\theta_1 = -0.6$, $\theta_2 = 0.3$

Exercise 2.8:

Simulate the following processes with 2000 observations and $\varepsilon_t \sim \text{i.i.d. N}(0, \sigma_{\varepsilon}^2 = 1)$:

- AR(1) with $\varphi_1 = 0.9$
- AR(2) with $\varphi_1 = 0.9$ und $\varphi_2 = -0.7$

Plot in each case the ACF of the series with the help of the do-file (acf_exercise.do) for the last 200 observations and compare to its theoretical ACF you would expect.

Notice:

ACF AR(1)
$$\rho_{k} = \frac{Y_{k}}{Y_{0}} = \varphi_{1}^{k}$$

$$\rho_{1} = \frac{Y_{1}}{Y_{0}} = \frac{\varphi_{1}}{1 - \varphi_{2}}, \quad \rho_{2} = \frac{\varphi_{2}}{Y_{0}} = \frac{\varphi_{1}^{2}}{1 - \varphi_{2}} + \varphi_{2}$$

$$\rho_{k} = \frac{Y_{k}}{Y_{0}} = \varphi_{1} \rho_{k-1} + \varphi_{2} \rho_{k-2}$$

Stochastic first-order difference equation

Date Equation
$$1 \qquad y_1 = \varphi_1 \cdot y_0 + (\delta + \varepsilon_1)$$

$$2 \qquad y_2 = \varphi_1 \cdot y_1 + (\delta + \varepsilon_2)$$

$$= \varphi_1 \cdot [\varphi_1 \cdot y_0 + (\delta + \varepsilon_1)] + (\delta + \varepsilon_2)$$

$$= \varphi_1^2 \cdot y_0 + (\varphi_1 + 1)\delta + \varphi_1\varepsilon_1 + \varepsilon_2$$

$$3 \qquad y_3 = \varphi_1 \cdot y_2 + (\delta + \varepsilon_3)$$

$$= \varphi_1^3 \cdot y_0 + (\varphi_1^2 + \varphi_1 + 1)\delta + \varphi_1^2\varepsilon_1 + \varphi_1\varepsilon_2 + \varepsilon_3$$

$$\vdots$$

$$t \qquad y_t = \varphi_1^t \cdot y_0 + (\varphi_1^{t-1} + \varphi_1^{t-2} + \dots + \varphi_1 + 1) \cdot \delta + \sum_{i=1}^t \varphi_1^{t-j} \varepsilon_j$$

AR(1) as First-order difference equation

$$y_{t} = \varphi_{1}^{t} \cdot y_{0} + (\varphi_{1}^{t-1} + \varphi_{1}^{t-2} + ... + \varphi_{1} + 1) \cdot \delta + \sum_{j=1}^{t} \varphi_{1}^{t-j} \varepsilon_{j}$$

$$E[y_t] = \varphi_1^t \cdot y_0 + (\varphi_1^{t-1} + \varphi_1^{t-2} + ... + \varphi_1 + 1) \cdot \delta$$

$$E[y_{t+s}] = \varphi_1^{t+s} \cdot y_0 + (\varphi_1^{t+s-1} + \varphi_1^{t+s-2} + ... + \varphi_1^{t-1} + ... + \varphi_1 + 1) \cdot \delta$$

$$E[y_t] \neq E[y_{t+s}]$$

To get stationarity, we need to impose conditions.

AR(1) as First-order difference equation:

$$y_t = \varphi_1^t \cdot y_0 + (\varphi_1^{t-1} + \varphi_1^{t-2} + \dots + \varphi_1 + 1) \cdot \delta + \sum_{j=1}^t \varphi_1^{t-j} \cdot \varepsilon_j$$
If $t \to \infty$ and $|\varphi_1| < 1$

$$\lim y_t = \frac{\delta}{(1-\varphi_1)^+} \sum_{j=0}^{\infty} \varphi_1^j \cdot \varepsilon_{t-j} \qquad \Rightarrow E[y_t] = \frac{\delta}{(1-\varphi_1)}$$

t→∞ means: the process has started a long time ago "stochastic initial conditions" → That is why we only use the last 200 observations from our simulated 2000 data points!

 $|\varphi_1|$ <1 means: dependence can't be too strong

Solution 2.8-1:

ACF for **simulated** AR(1) (last 200 observations) with $\varphi_1 = 0.9$

Solution 2.8-2:

Theoretical ACF for an AR(1) with $\varphi_1 = 0.9$

Solution 2.8-3:

ACF for **simulated** AR(2) (last 200 observations) with $\varphi_1 = 0.9$ and $\varphi_2 = -0.7$

Solution 2.8-4:

Theoretical ACF for AR(2) with $\varphi_1 = 0.9$ and $\varphi_2 = -0.7$

Exercise 2.9:

- What is the partial autocorrelation function (PACF) and what is its purpose?
- Which regression should you run to estimate the partial autocorrelation coefficient for y_t at lag k = 3?
- What should the PACFs for the simulated processes from Exercise 2.7 and Exercise 2.8 look like?

Solution 2.9-1:

- It measures how y_t and y_{t+k} are related, but with the effects of the intervening y's accounted for.
- The PACF is useful for determining the order of an AR process.
- Regress y_t on a constant and y_{t-1} , y_{t-2} and y_{t-3} . The last coefficient is the partial autocorrelation coefficient for lag k = 3.

Solution 2.9-2:

PACF for simulated white noise

Solution 2.9-3:

PACF for **simulated** MA(1) with $\theta_1 = -0.8$

Solution 2.9-4:

PACF for simulated MA(2) with $\theta_1 = -0.6$, $\theta_2 = 0.3$

Solution 2.9-5:

PACF for **simulated** AR(1) with $\varphi_1 = 0.9$

Solution 2.9-6:

ACF for **simulated** AR(2) with $\varphi_1 = 0.9$ and $\varphi_2 = -0.7$

Exercise 2.10:

- Summarize the stylized shapes for the autocorrelation and partial autocorrelation functions for the following stochastic processes: white noise, AR(1), AR(2), MA(1) and MA(2).
- Which model in general is more applicable to model strong serial dependence?

Solution 2.10-1:

Process	ACF	PACF
white noise	no spikes	no spikes
AR(1)	Exponential decay • on the positive side if $\varphi_1 > 0$ • alternating in sign if $\varphi_1 < 0$	Spike at lag 1, then cuts off to zero • spike is positive if $\varphi_1 > 0$ • spike is negative if $\varphi_1 < 0$
AR(2)	A mixture of exponential decays or a damped sine wave	Spikes at lags 1 and 2, then cuts off to zero
MA(1)	Spike at lag 1, then cuts off to zero spike is positive if $\theta_1 < 0$ spike is negative if $\theta_1 > 0$	Damps out exponentially • alternating in sign, starting on the positive side, if $\theta_1 < 0$ • starting on the negative side, if $\theta_1 > 0$
MA(2)	Spike at lag 1 and 2, then cuts off to zero	A mixture of exponential decays or a damped sine wave

Solution 2.10-2:

MA(1):

$$\mathbf{y}_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

$$\rho_1 = \frac{-\theta_1}{1 + \theta_1^2}$$

Solution 2.10-3:

MA(2):

$$\mathbf{y}_{t} = \mu + \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t-2}$$

$$\rho_1 = \frac{-\theta_1(1 - \theta_2)}{1 + \theta_1^2 + \theta_2^2}$$

Solution 2.10-4:

MA(2):

$$\mathbf{y}_{t} = \mu + \varepsilon_{t} - \theta_{1} \varepsilon_{t-1} - \theta_{2} \varepsilon_{t-2}$$

$$\rho_1 = \frac{-\theta_1(1 - \theta_2)}{1 + \theta_1^2 + \theta_2^2}$$

Please log in to **ISIS** (password: Zeit1718) and **download** the following file:

inventories.dta

Univariate Box-Jenkins models for stationary time series

General Procedure:

- Identification
- 2. Estimation
 - Solution of the Yule-Walker equations (AR processes)
 - Least Squares Estimation (AR processes)
 - Maximum Likelihood Estimation
 - Conditional Maximum Likelihood Estimation
- 3. Diagnostic Checking
- 4. Forecasting

Business Inventories – Original Series

Y: "Quarterly change in business inventories"

- 60 observations from 1955q1 trough 1969q4
- the data have been seasonally adjusted

Pankratz (1983) "Forecasting with univariate Box-Jenkins models"

Exercise 2.11: Identification

- What is the first step in the Box-Jenkins methodology?
 Examine the original series. Is the series stationary?
 - The observations seem to fluctuate around a constant mean.
 - The variance seems to be constant over time.
- What is the next step in the Box-Jenkins methodology?
 Plot the ACF and PACF and describe their pattern. Use about one-forth of the number of observations. Identify the most appropriate time series process for this data.

Solution 2.11-1: Identification

ACF: Is the series stationary? Which model is appropriate?

- Only the first three autocorrelations are significantly different from zero.
- The autocorrelations decay to statistical insignificance rather quickly.
- An AR or an ARMA model seems appropriate.
- The estimated PACF should help us make the decision.

Solution 2.11-2: Identification

PACF: Which model is appropriate?

- It has one spike at lag 1
 which is significantly different
 from zero then it cuts off to
 zero.
- The estimated PACF suggests an AR(1).
- $\mathbf{y}_t = \boldsymbol{\varphi}_1 \mathbf{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_t$

Exercise 2.12: Estimation

Estimate the parameter of the

AR(1):
$$Y_t = \varphi_1 Y_{t-1} + \delta + \varepsilon_t$$

- Solution of the Yule-Walker equations
- Least Squares Estimation
- Maximum Likelihood Estimation
- Conditional Maximum Likelihood Estimation

Estimation – Solution of the Yule-Walker equations

Yule-Walker equations:

$$\rho_1 = \varphi_1 \rho_0 + \varphi_2 \rho_1 + ... + \varphi_p \rho_{p-1}$$
:

$$\boldsymbol{\rho}_{p} = \boldsymbol{\varphi}_{1} \boldsymbol{\rho}_{p-1} + \boldsymbol{\varphi}_{2} \boldsymbol{\rho}_{p-2} + \ldots + \boldsymbol{\varphi}_{p}$$

If $\rho_1, \rho_2, ..., \rho_p$ are known, the equation can be solved for the autoregressive parameters $\varphi_1, \varphi_2, ..., \varphi_p$.

For an AR(1) process it reduces to:

$$\rho_1 = \varphi_1 \rho_0$$

Solution 2.12-1: Estimation (Solution of the Yule-Walker equations)

AR(1):
$$y_t = \varphi_1 y_{t-1} + \delta + \varepsilon_t$$

For an AR(1) process: $\hat{\rho}_1 = \hat{\varphi}_1 \hat{\rho}_0$

. corrgram inventories

LAG	AC	PAC	Q 		-1 0 1 [Partial Autocor]
1 2		0.6898 0.1067			
[]					

$$\hat{\pmb{\varphi}}_1 = \frac{\hat{\pmb{\rho}}_1}{\hat{\pmb{\rho}}_0} = 0.6897$$

. sum inventories

Variable	Obs	Mean	Std. Dev.	Min	Max
inventories	60	6.095	4.597362	-5.1	17.4

$$\hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1) = 6.095(1 - 0.6897) = 1.8913$$

Estimation – Least Squares Estimation

We can estimate δ , φ_1 , φ_2 , ..., φ_p by ordinary least squares (these estimates minimize the sum of squared residuals):

$$y_{t} = \varphi_{1}y_{t-1} + \varphi_{2}y_{t-2} + ... + \varphi_{p}y_{t-p} + \delta + \varepsilon_{t}$$

Under the following **assumption** OLS provides consistent estimators:

$$E(y_{t-j}\varepsilon_t) = 0$$
 for $j = 1,2,3,...,p$

For an AR(1) process it reduces to:

$$\mathbf{y}_{t} = \boldsymbol{\varphi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$$

Solution 2.12-2: Estimation (Least Squares Estimation)

AR(1):
$$y_t = \varphi_1 y_{t-1} + \delta + \varepsilon_t$$

. regress inventories L1.inventories

Source	SS	df	MS		Number of obs	
Model Residual		1 59 57 11.	3.26957 4178458 		F(1, 57) Prob > F R-squared Adj R-squared Root MSE	
inventories			t	P> t	[95% Conf.	Interval]
inventories L1. _cons	.6897525 1.920915	.0956884	7.21 2.63	0.000 0.011	.4981398 .4583325	.8813652 3.383497
	÷ .	10000				

$$\hat{\boldsymbol{\varphi}}_1 = 0.69 \quad \hat{\boldsymbol{\mu}} = \frac{\hat{\boldsymbol{\delta}}}{(1 - \hat{\boldsymbol{\varphi}}_1)} = \frac{1.9209}{1 - 0.6898} = 6.1925 \quad \hat{\boldsymbol{y}}_t = \hat{\boldsymbol{\varphi}}_1 \boldsymbol{y}_{t-1} + \hat{\boldsymbol{\delta}} = 0.69 \, \boldsymbol{y}_{t-1} + 1.92$$

Solution 2.12-3: Estimation (Least Squares Estimation)

AR(1):
$$\hat{y}_t = \hat{\varphi}_1 y_{t-1} + \hat{\delta} = 0.69 y_{t-1} + 1.92$$

+		+
time	inv~s	inv~S
1955q1	4.4	
1955q2	5.8	4.96
1955q3	6.7	5.92
1955q4	7.1	6.54
1956q1	5.7	6.82
1956q2	4.1	5.85
1956q3	4.6	4.75
1956q4	4.3	5.09
+		+

$$\hat{y}_2 = 0.69 y_1 + 1.92$$
$$= 0.69 \cdot 4.4 + 1.92$$
$$= 4.96$$

Exercise (inventories.dta)

Solution 2.12-4: Estimation (Least Squares Estimation)

AR(1):
$$\hat{y}_t = \hat{\varphi}_1 y_{t-1} + \hat{\delta} = 0.69 y_{t-1} + 1.92$$
 $\hat{\varepsilon}_t = y_t - \hat{y}_t$

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{\left(T^{*} - p - 1\right)} \sum_{t=1}^{I-p} \hat{\boldsymbol{\varepsilon}}_{t}^{2}$$
$$= 11.4178$$

$$\hat{\sigma}_{\varepsilon} = 3.379$$

Number of obs =
$$59$$

F(1, 57) = 51.96
Prob > F = 0.0000
R-squared = 0.4769
Adj R-squared = 0.4677
Root MSE = 3.379

Calculate the probability density:

$$f_{Y_{T},Y_{T-1},...,Y_{1}}(y_{T},y_{T-1},...,y_{1};\boldsymbol{\theta})$$

"probability of having observed the particular sample $y_1, y_2, ..., y_7$ "

The maximum likelihood estimate (MLE) of θ is the value of θ that maximizes this probability.

Assumption: $\varepsilon_t \sim \text{i.i.d. } N(0, \sigma_{\varepsilon}^2)$

The joint density is a product of **conditional densities**:

$$f_{Y_{T},Y_{T-1},...,Y_{1}}(y_{T},y_{T-1},...,y_{1}|\boldsymbol{\theta}) = f_{Y_{1}}(y_{1};\boldsymbol{\theta}) \cdot \prod_{t=2}^{T} f_{Y_{t}|Y_{t-1},Y_{t-2},...,Y_{1}}(y_{t}|y_{t-1},y_{t-2},...,y_{1};\boldsymbol{\theta})$$

For an AR(1) process each factor (t = 2, ..., T) reduces to:

$$f_{Y_t|Y_{t-1},Y_{t-2},...,Y_1}(y_t|y_{t-1},y_{t-2},...,y_1;\boldsymbol{\theta}) = f_{Y_t|Y_{t-1}}(y_t|y_{t-1};\boldsymbol{\theta})$$

Likelihood function for an AR(1) process:

$$f_{Y_{T},Y_{T-1},...,Y_{1}}(y_{T},y_{T-1},...,y_{1};\boldsymbol{\theta}) = f_{Y_{1}}(y_{1};\boldsymbol{\theta}) \cdot \prod_{t=2}^{T} f_{Y_{t}\mid Y_{t-1}}(y_{t}\mid y_{t-1};\boldsymbol{\theta})$$

Log likelihood function for an AR(1) process:

$$L(\mathbf{\theta}) = \log[f_{Y_1}(y_1; \mathbf{\theta})] + \sum_{t=2}^{T} \log[f_{Y_t|Y_{t1}}(y_t | y_{t-1}; \mathbf{\theta})]$$

$$L(\boldsymbol{\theta}) = \log \left[\frac{1}{\sqrt{2\pi} \sqrt{\sigma_{\varepsilon}^{2} / (1 - \varphi_{1}^{2})}} \exp \left[\frac{-\left\{ y_{1} - \left[\delta / 1 - \varphi_{1} \right] \right\}^{2}}{2\sigma_{\varepsilon}^{2} / (1 - \varphi_{1}^{2})} \right] \right] + \sum_{t=2}^{T} \log \left[\frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \exp \left[\frac{-\left\{ y_{t+1} - \delta - \varphi_{1} y_{t} \right\}^{2}}{2\sigma_{\varepsilon}^{2}} \right] \right]$$

Log likelihood function for an AR(1) process:

$$L(\mathbf{\theta}) = \log \left[\frac{1}{\sqrt{2\pi} \sqrt{\sigma_{\varepsilon}^{2} / (1 - \varphi_{1}^{2})}} \exp \left[\frac{-\{y_{1} - [\delta/1 - \varphi_{1}]\}^{2}\}}{2\sigma_{\varepsilon}^{2} / (1 - \varphi_{1}^{2})} \right] \right]$$

$$+ \sum_{t=2}^{T} \log \left[\frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \exp \left[\frac{-\{y_{t+1} - \delta - \varphi_{1}y_{t}\}^{2}\}}{2\sigma_{\varepsilon}^{2}} \right] \right]$$

$$L(\mathbf{\theta}) = -\frac{1}{2} \log(2\pi) - \frac{1}{2} \log \left[\sigma_{\varepsilon}^{2} / (1 - \varphi_{1}^{2}) \right] - \frac{\{y_{1} - [\delta/1 - \varphi_{1}]\}^{2}}{2\sigma_{\varepsilon}^{2} / (1 - \varphi_{1}^{2})}$$

$$- \left[\frac{(T - 1)}{2} \right] \cdot \log(2\pi) - \left[\frac{(T - 1)}{2} \right] \cdot \log(\sigma_{\varepsilon}^{2}) - \sum_{t=2}^{T} \left[\frac{\{y_{t} - \delta - \varphi_{1}y_{t-1}\}^{2}}{2\sigma_{\varepsilon}^{2}} \right]$$

In principle, the maximization requires differentiating and setting the result equal to zero. In praxis, it requires iterative or numerical procedures.

arima varname, ar(numlist) ma(numlist) estimates an AR(p) MA(q) model using the maximum likelihood method.

Example:

arima varname, ar(1) ma(1/3) estimates an ARMA(1,3) model, because numlist 1/3 denotes three numbers: 1, 2, 3

Notation in Stata:

$$\mathbf{y}_{t} = \sum_{i=1}^{p} \varphi_{i} \mathbf{y}_{t-i} + \sum_{j=1}^{q} \theta_{j} \boldsymbol{\varepsilon}_{t-j} + \boldsymbol{\varepsilon}_{t}$$

Solution 2.12-5: Estimation (Maximum Likelihood Estimation)

```
AR(1): y_t = \varphi_1 y_{t-1} + \delta + \varepsilon_t
. arima inventories, ar(1)
```

```
(setting optimization to BHHH)
Iteration 0: \log \text{ likelihood} = -157.05066
Iteration 1: \log \text{likelihood} = -157.04196
Iteration 2: \log \text{ likelihood} = -157.04145
Iteration 3: \log \text{ likelihood} = -157.04135
               log likelihood = -157.04132
Iteration 4:
(switching optimization to BFGS)
Iteration 5: \log \text{ likelihood} = -157.04132
ARIMA regression
                                                   Number of obs
Sample: 1955q1 to 1969q4
                                                                                 60
                                                                           60.23
                                                   Wald chi2(1)
                                                   Prob > chi2
Log likelihood = -157.0413
                                                                             0.0000
[...]
```


Solution 2.12-6: Estimation (Maximum Likelihood Estimation)

AR(1):
$$y_t = \varphi_1 y_{t-1} + \delta + \varepsilon_t$$

[]						
inventories	 Coef.	OPG Std. Err.	Z	P> z	[95% Conf.	Interval]
inventories _cons	 6.040731	1.379228	4.38	0.000	3.337493	8.743969
ARMA ar L1.	.6803345	.0876654	7.76	0.000	.5085135	.8521554
/sigma	3.297332 	.3331842	9.90	0.000	2.644303	3.950361

$$\hat{\phi}_1 = 0.6803$$

$$\hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1) = 6.0407(1 - 0.6803) = 1.93$$

$$\hat{\mathbf{y}}_{t} = \hat{\mathbf{\phi}}_{1} \mathbf{y}_{t-1} + \hat{\mathbf{\delta}} = 0.68 \mathbf{y}_{t-1} + 1.93$$

$$\hat{\sigma}_{\varepsilon}^2 = 3.2973^2 = 10.8722$$

Solution 2.12-7: Estimation (Maximum Likelihood Estimation)

$\hat{\mu} = 6.04$
 +

+		+
time	inv~s	inv~L
1955q1 1955q2 1955q3	4.4 5.8 6.7	6.04 4.92 5.88
1955q4 1956q1 	7.1 5.7	6.49 6.76
1956q2 1956q3 1956q4 +	4.1 4.6 4.3	5.81 4.72 5.06

$$\hat{y}_2 = 0.68 y_1 + 1.93$$
$$= 0.68 \cdot 4.4 + 1.93$$
$$= 4.92$$

Solution 2.12-8: Estimation (Maximum Likelihood Estimation)

AR(1): $\hat{y}_t = \hat{\varphi}_1 y_{t-1} + \hat{\delta} = 0.68 y_{t-1} + 1.93$ $\hat{\varepsilon}_t = y_t - \hat{y}_t$

Estimation – Conditional ML Estimation

Treat the value of y_1 as deterministic and maximize the likelihood conditioned of the first observation:

$$f_{Y_T, Y_{T-1},...,Y_2|Y_1}(y_T, y_{T-1},...,y_2|y_1, \boldsymbol{\theta})$$

For an AR(1) process:

$$L(y_{T}, y_{T-1}, ..., y_{2} | y_{1}; \boldsymbol{\theta}) = -\left[\frac{(T-1)}{2}\right] \cdot \log(2\pi) - \left[\frac{(T-1)}{2}\right] \cdot \log(\sigma_{\varepsilon}^{2}) - \sum_{t=2}^{T} \left[\frac{\{y_{t} - \delta - \varphi_{1}y_{t-1}\}^{2}}{2\sigma_{\varepsilon}^{2}}\right]$$

Maximization with respect to δ and φ_1 is equivalent to minimize:

$$\sum_{t=2}^{T} \{ y_{t} - \delta - \varphi_{1} y_{t-1} \}^{2}$$

This can be achieved by an OLS regression of y_t on a constant and it's own lagged values.

Estimation – Conditional ML Estimation

For an AR(1) process:

$$L(y_{T}, y_{T-1}, ..., y_{2}|y_{1}; \boldsymbol{\theta}) = -\left[\frac{(T-1)}{2}\right] \cdot \log(2\pi) - \left[\frac{(T-1)}{2}\right] \cdot \log(\sigma_{\varepsilon}^{2}) - \sum_{t=2}^{T} \left[\frac{\{y_{t} - \delta - \varphi_{1}y_{t-1}\}^{2}\}}{2\sigma_{\varepsilon}^{2}}\right]$$

The conditional MLE of the variance is found by differentiating the log likelihood with respect to σ_{ϵ}^2 :

$$\hat{\sigma}_{\varepsilon}^{2} = \sum_{t=2}^{T} \left[\frac{\left\{ y_{t} - \hat{\delta} - \hat{\varphi}_{1} y_{t-1} \right\}^{2}}{T - 1} \right]$$

The conditional MLE is the average squared residuals from the OLS regression.

Exercise 2.13: Diagnostic Checking

Do diagnostic checking for the ML estimation of the

AR(1):
$$\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$$

- Is the series stationary?
- Are the estimated coefficients significant?
- Is the AR(1) model appropriate?

Solution 2.13-1: Diagnostic Checking

. arima invent	cories, ar(1)					
	•				[95% Conf.	-
inventories _cons		1.379228	4.38	0.000	3.337493	
ARMA ar	.6803345		7.76	0.000	.5085135	.8521554
	3.297332				2.644303	3.950361

Is the series stationary? YES $|\hat{\varphi}_1| < 1$

Are the estimated coefficients significant? YES p-value ≤ 0.05

Solution 2.13-2: Diagnostic Checking

If you want to save the coefficients you can do so after you have run the ML-Estimation:

- . generate AR_phi1=_b[ARMA:L1.ar]
- . display AR_phi1
- .68033445
- . generate AR_delta=_b[_cons]
- . display AR delta
- 6.040731

Diagnostic Checking – Residual ACF and PACF

How should the residuals "behave"?

- They are estimates of the "true" residuals.
- The "true" residuals ε_t of an ARMA model are white noise, i.e. their ACF and PACF are zero for all lags. Hence, if we estimated the correct model for y_t , the ACF and PACF of the estimated residuals should be zero.

Test $\rho_k = 0$ for a particular k

Bartlett's result: For a white noise process, the sample (partial) autocorrelation coefficients (for k > 0) are distributed approximately according to a normal distribution with zero mean and variance:

$$Var(\hat{\rho}_k) = \begin{cases} \frac{1}{T} & k = 1\\ \frac{1}{T} \left\{ 1 + 2 \sum_{i=1}^{k-1} \hat{\rho}_i^2 \right\} & k > 1 \end{cases} \qquad Var(\hat{\rho}_k) \approx \frac{1}{T}$$

Solution 2.13-3: Diagnostic Checking

ACF of the residuals

 None of the autocorrelations of the residuals is significantly different from zero.

Solution 2.13-4: Diagnostic Checking

PACF of the residuals

 None of the partial autocorrelations of the residuals at lower lags is significantly different from zero.

Diagnostic Checking – Joint Hypothesis Test

 H_0 : All autocorrelation coefficients are zero

Box and Pierce

$$Q = T \sum_{k=1}^{K} \hat{\rho}_{k}^{2}$$
 $\sim \chi^{2}$ with $K - p - q$ degrees of freedom

Box and Ljung (refined test)

$$Q = T(T+2)\sum_{k=1}^{K} \frac{1}{T-k} \hat{\rho}_{k}^{2} \sim \chi^{2} \text{ with } K-p-q \text{ degrees of freedom}$$

Exercise (inventories.dta)

Solution 2.13-5: Diagnostic Checking

. corrgram res AR1

LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	±
1	-0.0580	-0.0604	.21226	0.6450		
2	-0.0031	-0.0049	.21288	0.8990		
3	0.1351	0.1474	1.4044	0.7045	-	-
[]						
14	-0.0238	0.1566	8.9945	0.8314		-
15	-0.0771	-0.0653	9.4865	0.8507		

- . di 60*62*((1/59)*(-0.0580)^2+(1/58)*(-0.0031)^2)
 .21271942
- . di 1-chi2(2,.21288)
- .89902899

$$Q = T(T+2)\sum_{k=1}^{K} \frac{1}{T-k} \hat{p}_k^2 \quad \sim \chi^2 \quad \text{with } K - p - q \text{ degrees of freedom}$$

- . di 1-chi2(1,.21288)
- .64451939

```
. wntestq res_AR1, lags(15)
Portmanteau test for white noise

Portmanteau (Q) statistic = 9.4865
Prob > chi2(15) = 0.8507

. di 1-chi2(15,9.4865)
.85073869

. di 1-chi2(14,9.4865)
.79868101
```

Solution 2.13-6: Diagnostic Checking

Exercise 2.14: Forecasting

- Estimate the AR(1) model by OLS with only the first 56 observations.
- What is the optimal forecast? In which sense is it optimal? What "assumptions" are part of the information set?
- Calculate forecasts for 1969q1 to 1969q4.
- Compare these forecasts to the actual values and compute percentage forecast errors.
- What is the forecast for December 2010?

Exercise (inventories.dta)

Solution 2.14-1: Forecasting

Recall:

$$\hat{\varphi}_1 = 0.6977864$$
 $\hat{\delta} = 1.810721$

. regress inventories L1.inventories
[...]

inventories		Std. Err.	t	P> t	[95% Conf.	Interval]
inventories						
L1.	. 6897525	.0956884	7.21	0.000	.4981398	.8813652
_cons	1.920915	.7303908	2.63	0.011	.4583325	3.383497

Solution 2.14-2: Forecasting

The optimal predictor (minimal MSE) is the conditional mean

$$\mathcal{J}_{T+1} \mid \Omega_T = E(Y_{T+1} \mid \Omega_T)$$

it minimizes the expected squared forecast error

$$\min_{\mathcal{I}_{T+I}} MSE(\mathcal{I}_{T+I}) = E[(y_{T+I} - \mathcal{I}_{T+I})^2 | \Omega_T]$$

Information set Ω_T at period T:

- true model
- known parameters
- all past observations y_T, ..., y₂, y₁, y₀, y₋₁, ...

Forecasting - AR(1)

Forecasting an AR(1) Process 1 and 2 periods ahead

$$\begin{split} & \mathcal{J}_{T+1} = E(y_{T+1}|\Omega_{T}) \\ & y_{T+1} = \varphi_{1}y_{T} + \delta + \varepsilon_{T+1} \\ & \mathcal{J}_{T+1} = E(y_{T+1}|\Omega_{T}) = E(\varphi_{1}y_{T} + \delta + \varepsilon_{T+1}|\Omega_{T}) \\ & = \varphi_{1}E(y_{T}|\Omega_{T}) + E(\delta|\Omega_{T}) + E(\varepsilon_{T+1}|\Omega_{T}) \\ & = \varphi_{1}y_{T} + \delta + \underbrace{E(\varepsilon_{T+1})}_{=0} = \varphi_{1}y_{T} + \delta \end{split}$$

$$& \mathcal{J}_{T+2} = E(y_{T+2}|\Omega_{T}) = E(\varphi_{1}y_{T+1} + \delta + \varepsilon_{T+2}|\Omega_{T}) \\ & = \varphi_{1}E(y_{T+1}|\Omega_{T}) + \delta + \underbrace{E(\varepsilon_{T+2})}_{=0} = \varphi_{1}\mathcal{J}_{T+1} + \delta \end{split}$$

$$& \mathcal{J}_{T+1} = \varphi_{1}y_{T} + \delta + \underbrace{E(\varepsilon_{T+1})}_{=0} \quad \text{and} \quad \mathcal{J}_{T+2} = \varphi_{1}\mathcal{J}_{T+1} + \delta + \underbrace{E(\varepsilon_{T+2})}_{=0} \end{split}$$

Solution 2.14-3: Forecasting

One-period ahead forecast of an AR(1): $\hat{\varphi}_1 = 0.6977864$ $\hat{\delta} = 1.810721$

$$y_t = \varphi_1 y_{t-1} + \delta + \varepsilon_t \implies y_{T+1} = \varphi_1 y_T + \delta + \varepsilon_{T+1}$$

$$\widetilde{y}_{T+1} = E(y_{T+1}|\Omega_T)$$

$$\mathcal{G}_{T+1} = E(\boldsymbol{\varphi}_1 \boldsymbol{y}_T + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{T+1} \mid \Omega_T)$$

$$\mathcal{J}_{T+1} = \varphi_1 y_T + \delta$$

$$\Omega_T = \{ \mathbf{y}_T, \dots, \mathbf{y}_1; \ \mathbf{y}_t = \boldsymbol{\varphi}_1 \mathbf{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon} \}$$

$$\hat{y}_t = 0.6977864 y_{t-1} + 1.810721$$

$$\mathcal{J}_{1969\,q1} = 1.810721 + 0.6977864 \cdot y_{1968\,q4}$$

$$\boldsymbol{\tilde{y}}_{1969\,q1} = 1.810721 + 0.6977864 \cdot 7.1$$

$$\tilde{y}_{1969\,q1} = 6.765004$$

. list time inventories in 52/60

	+	+
	time	invent~s
52.	1967q4	11.7
53.	1968q1	5.0
54.	1968q2	10.0
55.	1968q3	8.9
56.	1968q4	7.1
57.	1969q1	8.3
58.	1969q2	10.2
59.	1969q3	13.3
60.	1969q4	6.2
	+	+

Solution 2.14-4: Forecasting

Two-period ahead forecast of an AR(1): $\hat{\varphi}_1 = 0.6977864$ $\hat{\delta} = 1.810721$

$$y_t = \varphi_1 y_{t-1} + \delta + \varepsilon_t \implies y_{T+2} = \varphi_1 y_{T+1} + \delta + \varepsilon_{T+2}$$

$$\mathfrak{F}_{T+2} = E(y_{T+2}|\Omega_T)$$

$$\mathcal{G}_{T+2} = E(\boldsymbol{\varphi}_1 \boldsymbol{y}_{T+1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{T+2} \mid \Omega_T)$$

$$\mathcal{G}_{T+2} = \boldsymbol{\varphi}_1 \mathcal{G}_{T+1} + \boldsymbol{\delta}$$

$$\hat{\mathbf{y}}_t = 0.6977864 \, \mathbf{y}_{t-1} + 1.810721$$

$$\mathcal{J}_{1969\,q2} = 1.810721 + 0.6977864 \cdot \mathcal{J}_{1969\,q1}$$

$$\mathcal{F}_{1969\,q2} = 1.810721 + 0.6977864 \cdot 6.765004$$

$$\mathcal{J}_{1969\,q2} = 6.531249$$

list time inventories in 52/60

	+	+
	time	invent~s
52.	1967q4	11.7
53.	1968q1	5.0
54.	1968q2	10.0
55.	1968q3	8.9
56.	1968q4	7.1
57.	1969q1	8.3
58.	1969q2	10.2
59.	1969q3	13.3
60.	1969q4	6.2
	+	+

Solution 2.14-5: Forecasting

. list time inventories forecast_OLS in 57/60

	+		+
	time	invent~s	foreca~S
57.	1969q1	8.3	6.765004
58.	1969q2	10.2	6.531249
59.	1969q3	13.3	6.368138
60.	1969q4	6.2	6.254321
	+		+

[.] di (8.3-6.7650)/8.3

.18493976

Time	Inventories	Forecast	Percent Forecast Error
1969q1	8.3	6.7650	18.49%
1969q2	10.2	6.5312	35.97%
1969q3	13.3	6.3681	52.12%
1969q4	6.2	6.2543	-0.88%

Solution 2.14-6: Forecasting

The forecast **decays geometrically** toward μ as I increases.

Please log in to **ISIS** (password: Zeit1718) and **download** the following file:

coal_production.dta

Univariate Box-Jenkins models for stationary time series

General Procedure:

- 1. Identification
- 2. Estimation
 - Solution of the Yule-Walker equations
 - Least Squares Estimation
 - Maximum Likelihood Estimation
- 3. Diagnostic Checking
 - Significance of estimated coefficients
 - Test of individual values of residual ACF and PACF
 - Joint test that residuals are white noise (Box and Ljung)
 - Comparison of different candidate models (AIC and BIC)
- 4. Forecasting

Some helpful formulas

Yule-Walker equations:

$$\rho_1 = \varphi_1 \rho_0 + \varphi_2 \rho_1 + ... + \varphi_p \rho_{p-1}$$

$$\vdots$$

$$\rho_p = \varphi_1 \rho_{p-1} + \varphi_2 \rho_{p-2} + ... + \varphi_p$$

Box and Ljung (refined test):

$$Q = T(T+2) \sum_{k=1}^{K} \frac{1}{T-k} \hat{\rho}_{k}^{2} \sim \chi^{2} \text{ with } K-p-q \text{ degrees of freedom}$$

Akaike's Information Criterion (AIC):

$$AIC = \log \hat{\sigma}^2 + 2\frac{p+q}{T}$$

Bayesian Information Criterion (BIC):

$$BIC = \log \hat{\sigma}^2 + \frac{p+q}{T} \log T$$

Some helpful Stata commands

- generate newvar = exp
 creates a new variable, the values of the variable are specified by =exp. It allows you to
 create a new variable that is an algebraic expression of other variables.
- _n contains the number of the current observation; it can be used with mathematical operators.
- format timevar %fmt
 allows you to specify the display format for variables.

Format (fmt)	Description	Coding
%td	daily	0 = 01jan1960, 1 = 02jan1960
%tw	weekly	0 = 1960w1, 1 = 1960w2
%tm	monthly	0 = 1960m1, 1 = 1960m2
%tq	quarterly	0 = 1960q1, 1 = 1960q2
%th	halfyearly	0 = 1960h1, 1 = 1960h2
%ty	yearly	1960 = 1960, 1961 = 1961

- tsset timevar
 declares the data to be a time series and designates that timevar represents time.
- tsline varname
 draws line plots for time-series data.

Some helpful Stata commands

- ac varname, <u>lags(#)</u>
 produces a graph of # autocorrelations with pointwise confidence intervals based on Bartlett's formula.
- pac varname, <u>lags</u>(#)
 produces a graph of # partial autocorrelations with confidence intervals calculated using a standard error of 1/sqrt(n).
- corrgram varname, <u>lags</u>(#)
 produces a table of # autocorrelations, partial autocorrelations, and Portmanteau (Q) statistics.
- <u>summarize</u> varlist calculates and displays a variety of univariate summary statistics.
- <u>display</u>
 can be used as a substitute for a hand calculator.
- <u>regress depvar [indepvars]</u> fits a model of depvar on indepvars using linear regression.
- L. varname refers to the lagged value of variable varname.

Some helpful Stata commands

- arima varname, ar (numlist) ma (numlist) estimates an AR(p) MA(q) model using the maximum likelihood method.
- numlist
 is a list of numbers; example: 1/3 three numbers: 1, 2, 3.
- predict newvar, residuals predicts the residuals from the last estimation.
- chi2 (n,x)
 returns the cumulative chi-squared distribution with n degrees of freedom for n > 0.
- log(x)
 returns the natural logarithm of x if x>0. This is a synonym for ln(x).

Exercise 2.15: Coal Production

Follow the **Univariate Box-Jenkins models for stationary time series** to estimate an **appropriate** model (if necessary consider different candidate models).

Describe the data

. describe

```
obs: 96
vars: 1 1 Dec 2011 13:59
size: 384

storage display value
variable name type format label variable label

coal_production long %12.0g Monthly bituminous coal production in the US (Jan. 1952 to Dec. 1959)

Sorted by:
```

Franziska Plitzko

Generate time variable

- . generate time = $-97 + _n$
- . format time %tm

Alternative:

- . generate time=tm(1952m1) + n-1
- . format time %tm
- . tsset time

Declare data to be time-series data

. tsset time

Coal Production – Original Series

. tsline coal_production, lwidth(thick)

- "Monthly bituminous coal production in the US"
- 96 observations from January 1952 through December 1959
- the data have been seasonally adjusted
- Is the series stationary?

Pankratz (1983) "Forecasting with univariate Box-Jenkins models"

Identification

ACF: . ac coal_production, lags(24)

Identification

PACF: . pac coal_production, lags(24)

Estimation: Solution of the Yule-Walker equations

In general:

$$\rho_{1} = \varphi_{1}\rho_{0} + \varphi_{2}\rho_{1} + ... + \varphi_{p}\rho_{p-1}
\vdots
\rho_{p} = \varphi_{1}\rho_{p-1} + \varphi_{2}\rho_{p-2} + ... + \varphi_{p}$$

In case of an AR(2) process: $y_t = \varphi_1 y_{t-1} + \varphi_2 y_{t-2} + \delta + \varepsilon_t$

$$\rho_1 = \varphi_1 \rho_0 + \varphi_2 \rho_1$$
$$\rho_2 = \varphi_1 \rho_1 + \varphi_2 \rho_0$$

Solving this system of equations for ϕ_1 and ϕ_2 yields:

$$\hat{\varphi}_2 = \frac{\hat{\rho}_2 - \hat{\rho}_1^2}{\left(1 - \hat{\rho}_1^2\right)}$$
 and $\hat{\varphi}_1 = \hat{\rho}_1 \left(1 - \frac{\hat{\rho}_2 - \hat{\rho}_1^2}{\left(1 - \hat{\rho}_1^2\right)}\right)$

Estimation – Solution of the Yule-Walker equations

AR(2) process

$$\hat{\boldsymbol{\varphi}}_{2} = \frac{\hat{\boldsymbol{\rho}}_{2} - \hat{\boldsymbol{\rho}}_{1}^{2}}{\left(1 - \hat{\boldsymbol{\rho}}_{1}^{2}\right)} \quad \hat{\boldsymbol{\varphi}}_{1} = \hat{\boldsymbol{\rho}}_{1} \left(1 - \frac{\hat{\boldsymbol{\rho}}_{2} - \hat{\boldsymbol{\rho}}_{1}^{2}}{\left(1 - \hat{\boldsymbol{\rho}}_{1}^{2}\right)}\right)$$

. corrgram coal production, lags(24)

LAG	AC	PAC	Q			[Partial Autocor]
1	0.6663	0.6663	43.961	0.0000		
2	0.5977	0.3113	79.711	0.0000		

$$\hat{\boldsymbol{\varphi}}_1 = 0.4821 \quad \hat{\boldsymbol{\varphi}}_2 = 0.2765$$

$$\hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1 - \hat{\varphi}_2) = 9045.19$$

Estimation – Least Squares Estimation

AR(2) process

$$\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\varphi}_{2} \boldsymbol{y}_{t-2} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$$

. regress coal	_production	L1.coal	_production	L2.coal_r	production		
Source	SS	df	MS		Number of obs	=	94
+					F(2, 91)	=	46.12
Model	856796006	2	428398003	3	Prob > F	=	0.0000
Residual	845317521	91	9289203.52		R-squared	=	0.5034
+					Adj R-squared	=	0.4925
Total	1.7021e+09	93	18302296		Root MSE	=	3047.8
coal_produ~n	Coef.	Std.	Err. t	P> t	[95% Conf.	Int	terval]
+							
coal_produ~n							
L1.	.4317794	.0992	874 4.3	0.000	.2345572	•	6290015
L2.	.3112845	.0966	694 3.2	0.002	.1192626	• \	5033064
_cons	9461.016	291	3.8 3.2	0.002	3673.11	15	5248.92
		_			δ		

 $\hat{\boldsymbol{\varphi}}_1 = 0.4318$ $\hat{\boldsymbol{\varphi}}_2 = 0.3113$ $\hat{\boldsymbol{\delta}} = 9461.016$ $\hat{\boldsymbol{\mu}} = \frac{\hat{\boldsymbol{\delta}}}{(1 - \hat{\boldsymbol{\varphi}}_1 - \hat{\boldsymbol{\varphi}}_2)} = 36822.447$

Estimation – Maximum Likelihood Estimation

AR(2) process

```
. arima coal production, ar(1/2)
[...]
Sample: 1952m1 to 1959m12
                                                  Number of obs =
                                 OPG
\label{eq:coal_produon} \verb| coal_produon| & Coef. Std. Err. z P>|z| [95\% Conf. Interval]
coal produ~n |
       cons | 37981.21 1409.507 26.95 0.000 35218.63
ARMA
          ar |
         L1. | .4839235 .0815506 5.93 0.000 .3240873 .6437597
         L2. | .3223401 .0719627 4.48 0.000 .1812958
                                                                            .4633844
      /sigma | 3066.34 186.4115 16.45 0.000 2700.98 3431.7
\hat{\boldsymbol{\varphi}}_1 = 0.4839 \hat{\boldsymbol{\varphi}}_2 = 0.3223 \hat{\mu} = 37981.21 \hat{\sigma}_{\varepsilon} = 3066.34
\hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1 - \hat{\varphi}_2) = 7358.3429
```

Estimation – Maximum Likelihood Estimation

ARMA(1,1) process

```
. arima coal production, ar(1) ma(1)
                                OPG
coal_produ~n | Coef. Std. Err. z P>|z| [95% Conf. Interval]
coal produ~n |
      _cons | 37982.71 1463.531 25.95 0.000 35114.24
ARMA
          ar |
         L1. | .8860966 .0591459 14.98 0.000 .7701727 1.00202
          ma l
         L1. | -.3690676 .0956238 -3.86 0.000 -.5564868 -.1816484
      /sigma | 3084.761 196.4155 15.71 0.000 2699.794 3469.729
\hat{\boldsymbol{\varphi}}_1 = 0.8861 \hat{\boldsymbol{\theta}}_1 = 0.3691 \hat{\boldsymbol{\mu}} = 37982.71 \hat{\boldsymbol{\sigma}}_{\varepsilon} = 3084.761
```

$$\hat{\boldsymbol{\varphi}}_1 = 0.8861$$
 $\hat{\boldsymbol{\theta}}_1 = 0.3691$ $\hat{\boldsymbol{\mu}} = 37982.71$ $\hat{\boldsymbol{\sigma}}_{\varepsilon} = 3084.761$ $\hat{\boldsymbol{\delta}} = \hat{\boldsymbol{\mu}}(1 - \hat{\boldsymbol{\varphi}}_1) = 4326.3598$

Estimation – Summary

AR(2) process:

$$\hat{\boldsymbol{y}}_{t} = \hat{\boldsymbol{\varphi}}_{1} \boldsymbol{y}_{t-1} + \hat{\boldsymbol{\varphi}}_{2} \boldsymbol{y}_{t-2} + \hat{\boldsymbol{\delta}}$$

- Solution of the Yule-Walker equations $\hat{y}_t = 0.4821y_{t-1} + 0.2765y_{t-2} + 9045.19$
- Least Squares Estimation $\hat{y}_t = 0.4318 y_{t-1} + 0.3113 y_{t-2} + 9461.016$
- Maximum Likelihood Estimation $\hat{y}_t = 0.4839 y_{t-1} + 0.3223 y_{t-2} + 7358.3429$

ARMA(1,1) process:

$$\hat{\mathbf{y}}_{t} = \hat{\varphi}_{1}\mathbf{y}_{t-1} - \hat{\theta}_{1}\varepsilon_{t-1} + \hat{\delta}$$

• Maximum Likelihood Estimation $\hat{y}_t = 0.8861 y_{t-1} - 0.3691 \varepsilon_{t-1} + 4326.3598$

ACF of the AR(2) residuals

ACF of the AR(2) residuals, whereas the AR(2) was estimated by the ML Method.

- . arima coal-production, ar(1/2)
- . predict res AR2, residuals
- . ac res AR2, lags(24)

PACF of the AR(2) residuals

PACF of the AR(2) residuals, whereas the AR(2) was estimated by the ML Method.

. pac res_AR2, lags(24)

Exercise (coal_production.dta)

Diagnostic Checking

Box-Ljung test for AR(2) residuals

Remember:

H₁: at least one AC-coefficient of the residuals is not equal to zero, i.e. formally

$$\rho_1 \neq 0$$
 or $\rho_2 \neq 0$ or ... or $\rho_{24} \neq 0$

H₀: All autocorrelation coefficients up to lag K=24 are zero, i.e. formally

$$\rho_1 = \rho_2 = \dots = \rho_{24} = 0$$

. corrgram res AR2, lags(24)

Partial Autocor	O I ocorrelation]	_		Q 	PAC	AC	LAG
t if the first 24 autocorre of the residuals of the			0.6376 0.7432		-0.0484 -0.0676		1 2 []
qual to zero. nb: K=(T/4)=96/4=24	model are equinoction Rule of thumb		0.9532 0.9387	12.942 14.337	-0.0795 -0.1071	0.0082 -0.1033	23 24

Here we test if the first 24 autocorrelation coefficients of the residuals of the AR(2) model are equal to zero.

1 -1 0

di $96*98*(((1/95)*(0.0473^2))+((1/94)*(0.0609^2)))$.592759

Difference in Q-Values du to rounding, STATA uses more decimal place than given in output.

. di 1-chi2(24, 14.337) .93866913

. di 1-chi2(22, 14.337)

88908811

On $\alpha=5\%(\alpha=0.05)$ with the correctly calculated p-value we can not reject the null hypothesis as the p-value of 0.88908811 is greater than **0.05**.

Percentiles of the chi-squared distribution

Percentiles of the χ ² Distribution											
Percent Percent											
df	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995	
1	0.000039	0.000157	0.000982	0.003932	0.015791	2.705544	3.841459	5.023886	6.634897	7.879439	
2	0.010025	0.020101	0.050636	0.102587	0.210721	4.605170	5.991465	7.377759	9.210340	10.596635	
3	0.071722	0.114832	0.215795	0.351846	0.584374	6.251388	7.814728	9.348404	11.344867	12.838156	
4	0.206989	0.297109	0.484419	0.710723	1.063623	7.779440	9.487729	11.143287	13.276704	14.860259	
5	0.411742	0.554298	0.831212	1.145476	1.610308	9.236357	11.070498	12.832502	15.086272	16.749602	
6	0.675727	0.872090	1.237344	1.635383	2.204131	10.644641	12.591587	14.449375	16.811894	18.547584	
7	0.989256	1.239042	1.689869	2.167350	2.833107	12.017037	14.067140	16.012764	18.475307	20.277740	
8	1.344413	1.646497	2.179731	2.732637	3.489539	13.361566	15.507313	17.534546	20.090235	21.954955	
9	1.734933	2.087901	2.700390	3.325113	4.168159	14.683657	16.918978	19.022768	21.665994	23.589351	
10	2.155856	2.558212	3.246973	3.940299	4.865182	15.987179	18.307038	20.483177	23.209251	25.188180	
11	2.603222	3.053484	3.815748	4.574813	5.577785	17.275009	19.675138	21.920049	24.724970	26.756849	
12	3.073824	3.570569	4.403789	5.226029	6.303796	18.549348	21.026070	23.336664	26.216967	28.299519	
13	3.565035	4.106915	5.008751	5.891864	7.041505	19.811929	22.362032	24.735605	27.688250	29.819471	
14	4.074675	4.660425	5.628726	6.570631	7.789534	21.064144	23.684791	26.118948	29.141238	31.319350	
15	4.600916	5.229349	6.262138	7.260944	8.546756	22.307130	24.995790	27.488393	30.577914	32.801321	
16	5.142205	5.812213	6.907664	7.961646	9.312236	23.541829	26.296228	28.845351	31.999927	34.267187	
17	5.697217	6.407760	7.564186	8.671760	10.085186	24.769035	27.587112	30.191009	33.408664	35.718466	
18	6.264805	7.014911	8.230746	9.390455	10.864936	25.989423	28.869299	31.526378	34.805306	37.156451	
19	6.843971	7.632730	8.906517	10.117013	11.650910	27.203571	30.143527	32.852327	36.190869	38.582257	
20	7.433844	8.260398	9.590778	10.850812	12.442609	28.411981	31.410433	34.169607	37.566235	39.996846	
21	8.033653	8.897198	10.282898	11.591305	13.239598	29.615089	32.670573	35.478876	38.932173	41.401065	
22	8.642716	9.542492	10.982321	12.338015	14.041493	30.813282	33.924439	36.780712	40.289360	42.795655	
23	9.260425	10.195716	11.688552	13.090514	14.847956	32.006900	35.172462	38.075627	41.638398	44.181275	
24	9.886234	10.856362	12.401150	13.848425	15.658684	33.196244	36.415028	39.364077	42.979820	45.558512	
25	10.519652	11.523975	13.119720	14.611408	16.473408	34.381587	37.652484	40.646469	44.314105	46.927890	
26	11.160237	12.198147	13.843905	15.379157	17.291885	35.563171	38.885139	41.923170	45.641683	48.289882	
27	11.807587	12.878504	14.573383	16.151396	18.113896	36.741217	40.113272	43.194511	46.962942	49.644915	
28	12.461336	13.564710	15.307861	16.927875	18.939243	37.915923	41.337138	44.460792	48.278236	50.993376	
29	13.121149	14.256455	16.047072	17.708366	19.767744	39.087470	42.556968	45.722286	49.587885	52.335618	
30	13.786720	14.953457	16.790772	18.492661	20.599235	40.256024	43.772972	46.979242	50.892181	53.671962	

AR(2) residuals: interpretation of the p-value for the test statistics Q=14.337

ACF of the ARMA(1,1) residuals

119

Raum: H 5103 D, Tel.: 314-78734, E-Mail: franziska.plitzko@tu-berlin.de

PACF of the ARMA(1,1) residuals

Exercise (coal_production.dta)

Diagnostic Checking

Box-Ljung test for ARMA(1,1) residuals

Remember:

H₁: at least one AC-coefficient of the residuals is not equal to zero, i.e. formally

$$\rho_1 \neq 0$$
 or $\rho_2 \neq 0$ or ... or $\rho_{24} \neq 0$

H₀: All autocorrelation coefficients up to lag K=24 are zero, i.e. formally

$$\rho_1 = \rho_2 = \dots = \rho_{24} = 0$$

. corrgram res_ARMA11, lags(24)

LAG	AC	PAC	Q		-1 0 1 [Autocorrelation]	-1 0 1 [Partial Autocor]
1 2		-0.0692 0.0321				
[]	0.0390	0.0321	.01512	0.7500	l	I
23	-0.0043	-0.0666	13.238	0.9466	I	1
24	-0.0938	-0.1058	14.387	0.9374		I

. di 1-chi2(22, 14.387)

.88717669

On $\alpha=5\%(\alpha=0.05)$ with the correctly calculated p-value we can not reject the null hypothesis as the p-value of **0.88717669** is greater than **0.05**.

MA(1) residuals, as an example for an inappropriate model

. corrgram res_MA1, lags(24)

					-1 0	1 -1	0	1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelat	cion] [Pa:	rtial Auto	cor]
1	0.1822	0.1822	3.2866	0.0698	-		-	
2	0.4894	0.4795	27.261	0.0000				_
[]					. di 1-	chi2(23,	76.81)	
23	-0.1920	-0.0708	69.903	0.0000		07 => rej	· ·	
24	-0.2299	-0.1163	76.81	0.0000	1.0556	->16	001110	

Comparison of the two candidate models AR(2) and ARMA(1,1)

$$AIC = \log \hat{\sigma}^2 + 2\frac{p+q}{T}$$

AIC of AR(2)

. di log(3066.34^2)+2*(2+0)/96 16.098147

AIC of ARMA(1,1)

. di $log(3084.761^2) + 2*(1+1)/96$ 16.110126

$$BIC = \log \hat{\sigma}^2 + \frac{p+q}{T} \log T$$

BIC of AR(2)

. di log(3066.34^2)+((2+0)/96)*log(96)
16.15157

BIC of ARMA(1,1)

. di $log(3084.761^2) + ((1+1)/96) * log(96)$ 16.16355

Exercise 2.16: Forecasting

- Estimate an AR(2) model by means of the ML Method using only the first
 84 observations, i.e. exclude completely the last year.
- Calculate forecasts for all months from 1959m1 to 1961m12.
 Hint:

Previously increase the number of observations form 96 to 120 in order to create the additional time periods, i.e. from 1960m1 to 1961m12 (24 additional time periods). To this end you can use the following STATA-code:

```
. set obs 120
. replace time = tm(1952m1)+_n-1
. format time %tm
. tsset time
```

 Plot the original series together with the predicted values. Add to the plot the unconditional mean of the original series.
 What can you conclude?

Dynamic forecasts in Stata

dynamic (time_constant) specifies how lags of y_t in the model are to be handled. If dynamic() is not specified, actual values are used everywhere that lagged values of y_t appear in the model to produce one-step-ahead forecasts.

dynamic (time constant) produces dynamic (also known as recursive) forecasts. time constant specifies when the forecast is to switch from one step ahead to dynamic. In dynamic forecasts, references to y_t evaluate to the prediction of y_t for all periods at or after time constant; they evaluate to the actual value of y_t for all prior periods.

For example, **dynamic** (10) would calculate predictions in which any reference to y_t with t < 10 evaluates to the actual value of y_t and any reference to y_t with $t \ge 10$ evaluates to the prediction of y_t . This means that one-step-ahead predictions are calculated for t < 10 and dynamic predictions thereafter.

Stata manual "arima postestimation"

Forecasting: Estimation of AR(2) (without the last year, i.e. without 1959)

. arima coal_p	production if	ar(1/2)					
Sample: 1952m	1 to 1958m12	Number of obs Wald chi2(2)		84 88.28			
Log likelihood	l = -794.6504			Prob > ch	i2 =	0.0000	
I		OPG					
coal_produ~n	Coef.		Z	P> z	[95% Conf.	Interval]	
coal_produ~n							
_cons	38395.6	1560.675	24.60	0.000	35336.73	41454.47	
ARMA							
ar							
L1.	. 4574245	.0965237	4.74	0.000	.2682415	.6466076	
L2.	.3493262	.0759875	4.60	0.000	.2003935	.4982589	
/sigma 	3089.115	221.8593	13.92	0.000	2654.279	3523.951	

Pankratz (1983) "Forecasting with univariate Box-Jenkins models"

 $\hat{\varphi}_1 = 0.4574$ $\hat{\varphi}_2 = 0.3493$ $\hat{\mu} = 38395.6$ $\hat{\sigma}_{\varepsilon} = 3089.115$ $\hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1 - \hat{\varphi}_2) = 7419.92$

Forecasting:

Adjust time periods in order to be able to perform forecasting:

Perform forecasting:

. predict forecast AR2, xb dynamic(tm(1959m1))

Stata help "arima postestimation"

Forecasting: Plot the original series and the forecasted values

. tsline coal production forecast AR2, yline(38395.6) xline(-13)

Pankratz (1983) "Forecasting with univariate Box-Jenkins models"

Exercise 2.17:

Consider the following true model for a time series

$$y_t = 0.3 + 0.5 \ y_{t-1} - 0.4 \ \varepsilon_{t-1} + \varepsilon_t$$

where ε_t is a zero mean error process.

What is the (unconditional) mean of the series, y_t ?

- (1) 0.6
- (2) 0.3
- (3) 0.0
- (4) 0.4

Review Univariate ARIMA Time Series Analysis

Solution 2.17

Constant term is the constant of the regression and NOT the (unconditional) mean of the series!

$$E[y_t] = \mu = \frac{\delta}{1 - (\sum_{i=1}^{p} \varphi_i)}$$

$$E[y_t] = \frac{0.3}{1 - 0.5} = 0.6$$

Exercise 2.18:

Which of the following sets of characteristics would usually best describe an autoregressive process of order 3 (i.e. an AR(3))?

- (1) A slowly decaying acf and pacf
- (2) An acf and a pacf with 3 significant spikes
- (3) A slowly decaying acf, and a pacf with 3 significant spikes
- (4) A slowly decaying pacf and an acf with 3 significant spikes

Raum: H 5103 D, Tel.: 314-78734, E-Mail: franziska.plitzko@tu-berlin.de

Exercise 2.19:

A process, x_t , which has a zero mean, a constant variance, and zero autocovariance for all non-zero lags is best described as

- (1) A white noise process
- (2) A covariance stationary process
- (3) An autocorrelated process
- (4) A moving average process

Lag-operator notation

Any stationary **ARMA**(**p**,**q**) model

$$\mathbf{y}_{t} = \mathbf{\delta} + \mathbf{\varepsilon}_{t} + \underbrace{\varphi_{1}\mathbf{y}_{t-1} + \ldots + \varphi_{p}\mathbf{y}_{t-p}}_{\text{"AR-part"}} - \underbrace{\Theta_{1}\mathbf{\varepsilon}_{t-1} + \ldots - \Theta_{q}\mathbf{\varepsilon}_{t-q}}_{\text{"MA-part"}}$$

can be written in lag-operator notation, i.e.

$$\underbrace{(1-\varphi_{1}L+...-\varphi_{p}L^{p})}_{:=a_{p}(L)}\widetilde{y}_{t} = \underbrace{(1-\Theta_{1}L+...-\Theta_{q}L^{q})}_{:=b_{q}(L)}\varepsilon_{t}, \text{ with } \widetilde{y}_{t} := y_{t}-\mu$$

Lag-operator polynomial of order p with AR-coefficients.

Lag-operator polynomial of order q with MA-coefficients.

Time series y_t written as deviation form the mean.

In short:
$$a_p(L)\widetilde{y}_t = b_q(L)\varepsilon_t$$
, with $\widetilde{y}_t := y_t - \mu$

Lag-operator notation $a_p(L)\tilde{y}_t = b_q(L)\varepsilon_t$

How to write any stationary ARMA(p,q) in lag operator notation ?

Proceed as follows:

- 1. Write y_t in deviations from its mean: $\tilde{y}_t := y_t \mu$
- 2. Multiply the result from step 1 by the **appropriate** lag-operator polynomial $\mathbf{a_p(L)}$, whose general form is $(1 \varphi_1 L \varphi_2 L^2 ... \varphi_n L^p)$.
- 3. Multiply the random shock, ε_t , by the **appropriate** lag-operator polynomial $\mathbf{b_q(L)}$, whose general form is $(1 \theta_1 L \theta_2 L^2 \dots \theta_q L^q)$.
- 4. Equate the results from steps 2 and 3.

You can **check the correctness** of your result by multiplying out both sides of the equation $a_p(L)\widetilde{y}_t = b_q(L)\varepsilon_t$ and comparing it to model written in our usual notation.

Pankratz (1983) "Forecasting with univariate Box-Jenkins models", p. 99

Exercise 2.20:

Estimated ARMA(p,q) with T = 60 observations:

$$\hat{\mu} = 101.26$$
 $\hat{\phi}_1 = 0.62$ $\hat{\theta}_1 = -0.58$ $\hat{\sigma}_{\varepsilon} = 1.6$

- a) Determine the order of the estimated ARMA model.
- b) Write down the estimated model in our usual notation.
- c) Write down the model in lag operator notation.

The last observation in this data series is $y_{60} = 96.91$ and the predicted value (using the model from above) is $\hat{y}_{60} = 98.28$.

- d) With forecast origin T = 60 calculate the first three forecasts from this model.
- e) Construct confidence intervals around the three point forecasts.

Hint:
$$\left[\tilde{y}_{T+l} / \Omega_{T} \pm z_{l-\frac{a}{2}} (1 + \psi_{1}^{2} + ... + \psi_{l-1}^{2})^{\frac{1}{2}} \sigma_{\varepsilon} \right] = \left[\tilde{y}_{T+l} / \Omega_{T} \pm z_{l-\frac{a}{2}} \left(1 + \sum_{j=1}^{l-1} \psi_{j}^{2} \right)^{\frac{1}{2}} \sigma_{\varepsilon} \right]$$

Solution 2.20-1:

a) Determine the order (i.e. p and q) of the estimated ARMA model.

Given the estimates
$$\hat{\mu} = 101.26$$
 $\hat{\varphi}_1 = 0.62$ $\hat{\theta}_1 = -0.58$ $\hat{\sigma}_{\varepsilon} = 1.6$

we conclude:
$$p=1$$
, $q=1 \Rightarrow ARMA(1,1)$

Solution 2.20-2:

b) Write down the estimated model in our usual notation.

ARMA(1,1) in general:
$$\mathbf{y}_{t} = \delta + \varepsilon_{t} + \varphi_{1}\mathbf{y}_{t-1} - \theta_{1}\varepsilon_{t-1}$$

Given the estimates $\hat{\mu} = 101.26$ $\hat{\varphi}_1 = 0.62$ $\hat{\theta}_1 = -0.58$ $\hat{\sigma}_{\varepsilon} = 1.6$

$$\Rightarrow \hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1) = 101.26(1 - 0.62) = 38.4788$$

$$\Rightarrow \hat{\varphi}_1 = 0.62, \hat{\theta}_1 = -0.58$$

=> Estimated model: $\hat{y}_t = 38.4788 + 0.62 y_{t-1} + 0.58 \varepsilon_{t-1}$

Solution 2.20-3:

c) Write down the model in lag-operator notation.

Given the estimated parameters we should write:

$$\hat{\mathbf{y}}_t = 38.4788 + 0.62\mathbf{y}_{t-1} + 0.58\mathbf{\varepsilon}_{t-1}$$

However, here we use the slightly different form to show (and only for that), that our usual notation and the lagoperator notation yield to the same result, given we know the true model and the true parameters!

Our model:
$$y_t = 38.4788 + 0.62y_{t-1} + 0.58\varepsilon_{t-1} + \varepsilon_t$$

Lag-operator notation in general: $a_p(L)\tilde{y}_t = b_q(L)\varepsilon_t$

Step 1:
$$y_t$$
 as deviation from the mean: $\tilde{y}_t = y_t - 101.26$

Step 2:
$$a_1(L) = (1 - \phi_1 L) = (1 - 0.62L) = (1 - 0.62L)\tilde{y}_t$$

Step 3:
$$b_1(L) = (1 - \Theta_1 L) = (1 + 0.58L) = (1 + 0.58L)\varepsilon_t$$

Step 4:
$$(1-0.62L)y_t = (1+0.58L)\varepsilon_t$$
 with $y_t = y_t - 101.26$

Please, check whether your result is correct.

Solution 2.20-4:

Checking the correctness of the result:

$$(1-0.62L)y_t = (1+0.58L)\varepsilon_t$$
 with $y_t = y_t - 101.26$

$$\Leftrightarrow (1-0.62L)(y_t-101.26) = (1+0.58L)\varepsilon_t$$

$$\Leftrightarrow y_t - 0.62y_{t-1} - 101.26 + 0.62 \cdot 101.26 = (1 + 0.58L)\varepsilon_t$$

$$\Leftrightarrow \mathbf{y}_{t} - 0.62\mathbf{y}_{t-1} - 38.4788 = \varepsilon_{t} + 0.58\varepsilon_{t-1}$$

$$\Leftrightarrow \mathbf{y}_t = 38.4788 + 0.62\mathbf{y}_{t-1} + \mathbf{\varepsilon}_t + 0.58\mathbf{\varepsilon}_{t-1}$$

Recall:

Our model:
$$y_t = 38.4788 + 0.62y_{t-1} + 0.58\varepsilon_{t-1} + \varepsilon_t$$

The tilde (\sim) is usually used for forecasting. Here, however, it is a local definition for the deviation from the mean. You are allowed to use other definitions (e.g. \dot{y}_t or y_t') if you clearly state, what those mean.

Solution 2.20-5:

d) With forecast origin T = 60 calculate the first three forecasts from this model.

Recall:

The optimal predictor (minimal MSE) is the conditional mean

$$\tilde{Y}_{T+1} / \Omega_T = E(Y_{T+1} / \Omega_T), I = 1, 2, ...$$

it minimizes the expected squared forecast error

$$\min_{\widetilde{y}_{T+l}} MSE(\widetilde{y}_{T+l}) = E[(y_{T+l} - \widetilde{y}_{T+l})^2 / \Omega_T]$$

 Ω_T is the information set at period T, i.e. true model, known parameters, all past observations y_T , ..., y_2 , y_1 , y_0 , y_{-1} , ...

Remember:

$$\tilde{y}_{T+1} / \Omega_T = E(Y_{T+1} / \Omega_T), I = 1, 2, ...$$

Solution 2.20-6:

With forecast origin T = 60 calculate the first three forecasts from this model.

Our model: $y_t = 38.4788 + 0.62y_{t-1} + 0.58\varepsilon_{t-1} + \varepsilon_t$

One period ahead forecast: $\tilde{y}_{60+1} / \Omega_{60} = E(y_{60+1} / \Omega_{60})$

Given our model: $y_{61} = 38.4788 + 0.62y_{60} + 0.58\varepsilon_{60} + \varepsilon_{61}$

$$= > \tilde{Y}_{60+1} / \Omega_{60} = E(Y_{60+1} / \Omega_{60})$$

$$= E(38.4788 + 0.62Y_{60} + 0.58E_{60} + E_{61} / \Omega_{60})$$

$$= 38.4788 + 0.62Y_{60} + 0.58E(E_{60} / \Omega_{60}) + E(E_{61} / \Omega_{60})$$

$$= \hat{y}_{60} = 96.91$$

$$\hat{y}_{60} = 98.28$$

Recall:

$$y_{60} = 96.91$$

with
$$\hat{\varepsilon}_{60} = (y_{60} - \hat{y}_{60}) = (96.91 - 98.28) = -1.37$$

$$= 38.4788 + 0.62 \cdot 96.91 + 0.58 \cdot (-1.37) = 97.7684 \approx 97.77$$

Remember:

$$\tilde{Y}_{T+1} / \Omega_T = E(Y_{T+1} / \Omega_T), I = 1, 2, ...$$

Solution 2.20-7:

d) With forecast origin T = 60 calculate the first three forecasts from this model.

Our model: $y_t = 38.4788 + 0.62y_{t-1} + 0.58\varepsilon_{t-1} + \varepsilon_t$

Two periods ahead forecast: \tilde{y}_{60+2} / $\Omega_{60} = E(y_{60+2} / \Omega_{60})$

Given our model: $y_{62} = 38.4788 + 0.62y_{61} + 0.58\varepsilon_{61} + \varepsilon_{62}$

=>
$$\tilde{y}_{60+2} / \Omega_{60} = E(y_{60+2} / \Omega_{60})$$

= $E(38.4788 + 0.62y_{61} + 0.58\varepsilon_{61} + \varepsilon_{62} / \Omega_{60})$

$$\tilde{y}_{60+1} / \Omega_{60} = E(y_{60+1} / \Omega_{60})$$
 ≈ 97.77

Recall:

$$= 38.4788 + 0.62E(y_{61} | \Omega_{60}) + 0.58E(\varepsilon_{61} | \Omega_{60}) + E(\varepsilon_{62} | \Omega_{60})$$

$$= 38.4788 + 0.62 \cdot \tilde{y}_{61} | \Omega_{60}$$

$$= 38.4788 + 0.62 \cdot 97.77 = 99.0962 \approx 99.1$$

Remember:

$$\tilde{Y}_{T+1} / \Omega_T = E(Y_{T+1} / \Omega_T), I = 1, 2, ...$$

Recall:

 $\widetilde{y}_{60+2} / \Omega_{60} = E(y_{60+2} / \Omega_{60})$

Solution 2.20-8:

d) With forecast origin T = 60 calculate the first three forecasts from this model.

Our model: $y_t = 38.4788 + 0.62y_{t-1} + 0.58\varepsilon_{t-1} + \varepsilon_t$

Three periods ahead forecast: $\tilde{y}_{60+3} / \Omega_{60} = E(y_{60+3} / \Omega_{60})$

Given our model: $y_{63} = 38.4788 + 0.62y_{62} + 0.58\varepsilon_{62} + \varepsilon_{63}$

$$=> \tilde{y}_{60+3} / \Omega_{60} = E(y_{60+3} / \Omega_{60})$$

$$= E(38.4788 + 0.62y_{62} + 0.58\varepsilon_{62} + \varepsilon_{63} / \Omega_{60})$$

$$\approx 99.1$$

$$= 38.4788 + 0.62E(y_{62} / \Omega_{60}) + 0.58\underbrace{E(\varepsilon_{62} / \Omega_{60})}_{= 0} + \underbrace{E(\varepsilon_{63} / \Omega_{60})}_{= 0}$$

$$= 38.4788 + 0.62 \cdot \widetilde{y}_{62} / \Omega_{60}$$

 $=38.4788+0.62\cdot99.1 = 99.9208 \approx 99.92$

Solution 2.20-9:

e) Construct confidence intervals around the three point forecasts.

$$\left[\widetilde{\mathbf{y}}_{T+I}/\Omega_{T} \pm \mathbf{z}_{1-\frac{a}{2}}(\mathbf{1}+\boldsymbol{\psi}_{1}^{2}+...+\boldsymbol{\psi}_{I-1}^{2})^{\frac{1}{2}}\boldsymbol{\sigma}_{\varepsilon}\right] = \left[\widetilde{\mathbf{y}}_{T+I}/\Omega_{T} \pm \mathbf{z}_{1-\frac{a}{2}}(\mathbf{1}+\sum_{j=1}^{I-1}\boldsymbol{\psi}_{j}^{2})^{\frac{1}{2}}\boldsymbol{\sigma}_{\varepsilon}\right]$$

Recall: Wolds Decomposition

Any stationary ARMA(p,q) process can be written as the linear combination of all shocks, i.e.

$$\mathbf{y}_{t} - \mathbf{\mu} = \mathbf{\mathcal{E}}_{t} + \mathbf{\psi}_{1}\mathbf{\mathcal{E}}_{t-1} + \mathbf{\psi}_{2}\mathbf{\mathcal{E}}_{t-2} + \mathbf{\psi}_{3}\mathbf{\mathcal{E}}_{t-3} + \dots$$

$$= \sum_{j=0}^{\infty} \mathbf{\psi}_{j}\mathbf{\mathcal{E}}_{t-j} \quad \textit{with} \quad \mathbf{\psi}_{0} = \mathbf{1}$$

Solution 2.20-10:

e) Construct confidence intervals around the three point forecasts.

Wolds Decomposition:

$$y_t - \mu = \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \psi_3 \varepsilon_{t-3} + \dots = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$
 with $\psi_0 = 1$

⇒for any I = 1, 2, ...

$$y_{T+/} = \mu + \underbrace{\mathcal{E}_{T+/} + \psi_1 \mathcal{E}_{T+/-1} + \dots + \psi_{/-1} \mathcal{E}_{T+1}}_{\text{linear combinatio n of future shocks}} + \underbrace{\psi_{/} \mathcal{E}_{T} + \psi_{/+1} \mathcal{E}_{T-1} + \dots}_{\text{linear combinatio n of past shocks}}$$

 \Rightarrow and

$$\widetilde{y}_{T+I} / \Omega_T := E(y_{T+I} / \Omega_T) = \mu + \underbrace{\psi_I \mathcal{E}_T + \psi_{I+1} \mathcal{E}_{T-1} + \dots}_{\text{linear combination of past shocks}}$$

Solution 2.20-11:

e) Construct confidence intervals around the three point forecasts.

$$\Rightarrow$$
and $\widetilde{\gamma}_{T+I} / \Omega_T := E(\gamma_{T+I} / \Omega_T) = \mu + \underbrace{\psi_I \mathcal{E}_T + \psi_{I+1} \mathcal{E}_{T-1} + \dots}_{\text{linear combinatio n of past shocks}}$

⇒ forecast error:

$$e_{T+/} := y_{T+/} - \widetilde{y}_{T+/} / \Omega_T$$

$$= \underbrace{\mathcal{E}_{T+/} + \psi_1 \mathcal{E}_{T+/-1} + \ldots + \psi_{/-1} \mathcal{E}_{T+1}}_{\text{linear combination of future shocks}}$$

Solution 2.20-12:

- e) Construct confidence intervals around the three point forecasts.
- ⇒ forecast error:

$$e_{T+l} := y_{T+l} - \widetilde{y}_{T+l} / \Omega_T$$

$$= \underbrace{\varepsilon_{T+l} + \psi_1 \varepsilon_{T+l-1} + \ldots + \psi_{l-1} \varepsilon_{T+1}}_{\text{linear combination of future shocks}}$$

Hence:

$$E(e_{T+1}) = E(\varepsilon_{T+1} + \psi_1 \varepsilon_{T+1-1} + \dots + \psi_{1-1} \varepsilon_{T+1}) = 0$$

$$Var[e_{T+1}] = E[e_{T+1}^2] - (E[e_{T+1}])^2$$

$$= E[(\varepsilon_{T+1} + \psi_1 \varepsilon_{T+1-1} + \dots + \psi_{1-1} \varepsilon_{T+1})^2]$$

$$= (1 + \psi_1^2 + \dots + \psi_{1-1}^2)\sigma_{\varepsilon}^2$$

Remember:

By definition:

$$Var(X) = E(X^2) - [E(X)]^2$$

By assumption:

$$E(\varepsilon_t \varepsilon_{t-k}) = 0$$

for any t and any $k \neq 0$

$$E(\varepsilon_t^2) = Var(\varepsilon_t) = \sigma_\varepsilon^2$$
 for any t

Solution 2.20-13:

- e) Construct confidence intervals around the three point forecasts.
- ⇒ forecast error:

$$e_{T+1} := \underbrace{\mathcal{E}_{T+1} + \psi_1 \mathcal{E}_{T+1-1} + \dots + \psi_{l-1} \mathcal{E}_{T+1}}_{\text{linear combination of future shocks}}$$

with
$$E(e_{T+1}) = 0$$
 and $Var[e_{T+1}] = (1 + \psi_1^2 + ... + \psi_{l-1}^2)\sigma_{\varepsilon}^2$

Prediction interval:

$$\left[\tilde{y}_{T+1}/\Omega_{T} \pm z_{1-\frac{a}{2}}(1+\psi_{1}^{2}+...+\psi_{l-1}^{2})^{\frac{1}{2}}\sigma_{\varepsilon}\right] = \tilde{y}_{T+1}/\Omega_{T} \pm z_{1-\frac{a}{2}}(1+\sum_{j=1}^{l-1}\psi_{j}^{2})^{\frac{1}{2}}\sigma_{\varepsilon}$$

Solution 2.20-14:

e) Construct confidence intervals around the three point forecasts.

How do we find $\psi_1, ..., \psi_{l-1}$?

The ψ_1 , ψ_2 , ... coefficients in c(L), can be found by equating coefficients of L^j , j = 1, 2, ... in a(L)c(L) = b(L).

Recall:

$$\begin{bmatrix} \widetilde{y}_{T+l} / \Omega_T \pm z_{1-\frac{a}{2}} (1 + \psi_1^2 + ... + \psi_{l-1}^2)^{\frac{1}{2}} \sigma_{\varepsilon} \end{bmatrix}$$

and: $C(L) = (1 + \psi_1 L + \psi_2 L^2 + \psi_3 L^3 + ...)$

Solution 2.20-15:

$$\underbrace{(1-0.62L)}_{a(L)}\mathfrak{F}_{t} = \underbrace{(1+0.58L)}_{b(L)}\boldsymbol{\varepsilon}_{t}$$

$$a(L)c(L) = b(L)$$

$$(1-0.62L)(1+\hat{\psi}_1L+\hat{\psi}_2L^2+\hat{\psi}_3L^3+\ldots)=1+0.58L$$

$$1 - \underline{0.62L} + \hat{\psi}_{1}\underline{L} - \underline{0.62\hat{\psi}_{1}}\underline{L}^{2} + \hat{\psi}_{2}\underline{L}^{2} - \underline{0.62\hat{\psi}_{2}}\underline{L}^{3} + \hat{\psi}_{3}\underline{L}^{3} + \dots = 1 + \underline{0.58L}$$

$$\rightarrow L^1: -0.62 + \hat{\psi}_1 = 0.58 \qquad \Rightarrow \quad \hat{\psi}_1 = 0.58 + 0.62 = 1.2$$

$$\rightarrow L^2: -0.62\hat{\psi}_1 + \hat{\psi}_2 = 0 \implies \hat{\psi}_2 = 0.62 \cdot 1.2 = 0.744 \approx 0.74$$

$$\rightarrow$$
 L^3 : $-0.62\hat{\psi}_2 + \hat{\psi}_3 = 0 \Rightarrow \hat{\psi}_3 = 0.62 \cdot 0.74 = 0.62 \cdot 0.62 \cdot 1.2 = 0.4588 \approx 0.46$

$$L^{j}: -0.62\hat{\psi}_{j-1} + \hat{\psi}_{j} = 0 \implies \hat{\psi}_{j} = 0.62^{j-1} \cdot 1.2$$

Solution 2.20-16:

Estimated parameters:
$$\hat{\mu}=101.26$$
, $\hat{\varphi}_1=0.62$, $\hat{\theta}_1=-0.58$, $\hat{\sigma}_{\varepsilon}=1.6$

Predictions:
$$\hat{y}_{61} = 97.77$$
, $\hat{y}_{62} = 99.1$, $\hat{y}_{63} = 99.92$,

$$\hat{\psi}$$
 - Coefficients: $\hat{\psi}_1 = 1.2, \ \hat{\psi}_2 = 0.74, \ \hat{\psi}_3 = 0.46$

The interval:
$$\left[\widetilde{y}_{T+l}/\Omega_{T} \pm z_{1-\frac{a}{2}}(1+\psi_{1}^{2}+...+\psi_{l-1}^{2})^{\frac{1}{2}}\sigma_{\varepsilon}\right]$$

$$\begin{bmatrix}
\hat{y}_{61} \pm z_{1-\frac{\alpha}{2}}(1)^{\frac{1}{2}}\hat{\sigma}_{\varepsilon} \\
 \rightarrow \begin{bmatrix} 97.77 \pm 1.96 \cdot (1)^{\frac{1}{2}} \cdot 1.6 \end{bmatrix}$$

$$\rightarrow [97.77 \pm 3.14]$$

$$\rightarrow [94.63,100.91]$$

Solution 2.20-17:

Estimated parameters:
$$\hat{\mu} = 101.26$$
, $\hat{\varphi}_1 = 0.62$, $\hat{\theta}_1 = -0.58$, $\hat{\sigma}_{\varepsilon} = 1.6$

Predictions:
$$\hat{y}_{61} = 97.77$$
, $\hat{y}_{62} = 99.1$, $\hat{y}_{63} = 99.92$,

$$\hat{\psi}$$
 - Coefficients : $\hat{\psi}_1 = 1.2, \ \hat{\psi}_2 = 0.74, \ \hat{\psi}_3 = 0.46$

The interval:
$$\left[\widetilde{y}_{T+l}/\Omega_{T} \pm z_{1-\frac{a}{2}}(1+\psi_{1}^{2}+...+\psi_{l-1}^{2})^{\frac{1}{2}}\sigma_{\varepsilon}\right]$$

$$\begin{bmatrix} \hat{y}_{62} \pm z_{1-\frac{\alpha}{2}} (1 + \hat{\psi}_{1}^{2})^{\frac{1}{2}} \hat{\sigma}_{\varepsilon} \end{bmatrix} \rightarrow \begin{bmatrix} 99.1 \pm 1.96 \cdot (1 + 1.2^{2})^{\frac{1}{2}} \cdot 1.6 \end{bmatrix} \\
\rightarrow [99.1 \pm 4.9] \\
\rightarrow [94.2,104]$$

Solution 2.20-18:

Estimated parameters:
$$\hat{\mu} = 101.26$$
, $\hat{\varphi}_1 = 0.62$, $\hat{\theta}_1 = -0.58$, $\hat{\sigma}_{\varepsilon} = 1.6$

Predictions:
$$\hat{y}_{61} = 97.77$$
, $\hat{y}_{62} = 99.1$, $\hat{y}_{63} = 99.92$,

$$\hat{\psi}$$
 - Coefficients: $\hat{\psi}_1 = 1.2, \ \hat{\psi}_2 = 0.74, \ \hat{\psi}_3 = 0.46$

The interval:
$$\left[\widetilde{y}_{T+l}/\Omega_{T} \pm z_{1-\frac{a}{2}}(1+\psi_{1}^{2}+...+\psi_{l-1}^{2})^{\frac{1}{2}}\sigma_{\varepsilon}\right]$$

$$\begin{bmatrix}
\hat{y}_{63} \pm z_{1-\frac{\alpha}{2}} (1 + \hat{\psi}_{1}^{2} + \hat{\psi}_{2}^{2})^{\frac{1}{2}} \hat{\sigma}_{\varepsilon}
\end{bmatrix} \rightarrow \begin{bmatrix}
99.92 \pm 1.96 \cdot (1 + 1.2^{2} + 0.74^{2})^{\frac{1}{2}} \cdot 1.6
\end{bmatrix}$$

$$\rightarrow [99.92 \pm 5.42]$$

$$\rightarrow [94.5,105.34]$$

Exercise 2.21:

Write down the following stationary ARMA(2,1) in lag operator notation:

$$y_t = 3 + 0.6y_{t-1} + 0.2y_{t-2} + \varepsilon_t - 0.4\varepsilon_{t-1}$$

• Write down the first difference operator, Δ , in lag operator notation.

Hint:
$$\Delta y_t := y_t - y_{t-1}$$

- Write down the simple four-period moving average in lag operator notation.
- Multiply the first difference operator and the simple four-period moving average (both in lag operator notation). Describe the result.

Solution 2.21-1:

$$y_t = 3 + 0.6y_{t-1} + 0.2y_{t-2} + \varepsilon_t - 0.4\varepsilon_{t-1}$$

$$\mathcal{J}_t = \mathbf{y}_t - \mathbf{\mu}$$

$$\mu = \frac{\delta}{(1 - \varphi_1 - \varphi_2)} = \frac{3}{(1 - 0.6 - 0.2)} = 15$$

$$(1-0.6L-0.2L^2)y_t = (1-0.4L)\varepsilon_t$$

First difference operator:

$$\Delta = (1-L)$$

Simple four-period moving average:

$$\frac{1}{4}(1+L+L^2+L^3)y_t$$

Solution 2.21-2:

Multiply the first difference operator and the simple four-period moving average (both in lag operator notation).

$$(1-L)\cdot (1+L+L^2+L^3)y_t = [(1+L+L^2+L^3)-(L+L^2+L^3+L^4)]y_t$$
$$= (1-L^4)y_t$$
$$= y_t - y_{t-4}$$

Solution 2.21-3:

Original series (tsline lohnsumme)

Solution 2.21-4:

Differenced series (tsline D.lohnsumme)

Solution 2.21-5:

Smoothed series (tsline lohnsumme ma4)

Solution 2.21-6:

Differenced and smoothed series (tsline D.lohnsumme ma4)

Solution 2.21-7:

Seasonal differenced series (tsline S4.lohnsumme)

Please log in to **ISIS** (password: Zeit1718) and **download** the following file:

ahp.dta

Data set

Monthly observations from January 1991 to May 2007 of UK average house prices (ahp.dta)

-].generate time = $tm(1991m1) + _n-1$
- .format time %tm
- .tsset time
- .tsline ahp

Exercise 2.22:

- Does this series look stationary?
- What would the autocorrelation function (ACF) for this series look like?

Solution 2.22:

- Does this series look stationary? NO –
- What would the autocorrelation function for this series look like?

Exercise 2.23:

- Based on the PACF which model seems suitable for the ahp series?
- Estimate the model (maximum likelihood).
- Round the estimated coefficients to two decimal places and write down the estimated model in our usual notation and in lag operator notion (both in deviations from the mean).
- Show that the AR polynomial has a unit root.

Solution 2.23-1:

PACF

Solution 2.23-2:

AR(3)

ARIMA regression

Sample: Jan 91 to May 07					of obs i2(3)	=	197 404294.78
Log likelihood = -1632.543					Prob > chi2 =		
ahp	 Coef.	OPG Std. Err.	Z	P> z	[95%	Conf.	Interval]
ahp _cons	117008.8	63528.48	1.84	0.065	-7504.	. 699	241522.4
ARMA ar	 						
L1.	1.341992	.0482209	27.83	0.000	1.24	1748	1.436503
L2.	.0691889	.084424	0.82	0.412	096	5279	.2346568
L3.	4116066	.0550892	-7.47	0.000	5195	5795	3036337
/sigma	•	37.79098	24.84	0.000	864.7	7651	1012.903

Solution 2.23-3:

Estimated AR(3) model in our usual notation:

$$\hat{\delta} = \hat{\mu}(1 - \hat{\varphi}_1 - \hat{\varphi}_2 - \hat{\varphi}_3) = 117008.8(1 - 1.34 - 0.07 + 0.41) = 0$$

$$y_t = 1.34y_{t-1} + 0.07y_{t-2} - 0.41y_{t-3} + \hat{\varepsilon}_t$$

Estimated AR(3) model in lag-operator notation:

$$\widetilde{y}_t = (y_t - \hat{\mu}) = (y_t - 117008.8)$$
 - deviation from the mean $(1 - 1.34L - 0.07L^2 + 0.41L^3)\widetilde{y}_t = \hat{\varepsilon}_t$

Checking the correctness of the lag-operator representation:

$$(1-1.34L-0.07L^{2}+0.41L^{3})(y_{t}-\hat{\mu}) = \hat{\varepsilon}_{t}$$

$$y_{t}-1.34y_{t-1}-0.07y_{t-2}+0.41y_{t-3}-\hat{\mu}(1-1.34-0.07+0.41) = \hat{\varepsilon}_{t}$$

$$y_{t}=1.34y_{t-1}+0.07y_{t-2}-0.41y_{t-3}+\hat{\varepsilon}_{t}$$

Note:

The expression in parentheses is equal to 0, indicating that "there is something wrong" with our model as normally it should hold

$$\mu = \frac{\delta}{(1 - \varphi_1 - \varphi_2 - \varphi_3)}$$

Recall:

$$\underbrace{\left(1-1.34L-0.07L^2+0.41L^3\right)}_{=a_3(L)}\widetilde{y}_t = \hat{\varepsilon}_t$$

Solution 2.23-4:

The lag order polynomial has a unit root if

 $\Rightarrow a_3(L) = (1-0.34L-0.41L^2)(1-L)$

$$a_{p}(z) = (1 - \varphi_{1}z - \varphi_{2}z^{2} + ... - \varphi_{p}z^{p}) = 0$$
 for $z = 1$

Here, if:
$$a_3(z) = (1 - 1.34z - 0.07z^2 + 0.41z^3) = 0$$
 for $z = 1$

$$=> a_3(1)=(1-1.34-0.07+0.41)=0$$
 => the AR polynomial has a **unit root**

Rearrange
$$a_3(z) = (1 - 1.34z - 0.07z^2 + 0.41z^3)$$

$$= (1 - 1z - 0.34z + 0.34z^2 - 0.41z^2 + 0.41z^3)$$

$$= (1 - z) - 0.34z(1 - z) - 0.41z^2(1 - z)$$

$$= (1 - z)(1 - 0.34z - 0.41z^2)$$

Solution 2.23-5:

Recall:

$$\underbrace{(1-1.34L-0.07L^{2}+0.41L^{3})}_{=a_{3}(L)}\widetilde{y}_{t} = \varepsilon_{t} \qquad \& \qquad a_{3}(L) = (1-0.34L-0.41L^{2})(1-L)$$

$$\underbrace{(1-0.34L-0.41L^{2})}_{=\Delta \tilde{y}_{t}}(1-L)\widetilde{y}_{t} = \varepsilon_{t}$$

Polynomial of order two and such that the roots of the quadratic equation $(1-0.34z-0.41z^2)=0$ are $z_1=1.2012$, $z_2=-2.031$.

Note: $|z_j| > 1$, j = 1, 2

Conclusion: The original process, y_t , was not stationary but the new process, $x_t:=\Delta y_t$, seems to be stationary.

Exercise 2.24:

Calculate the monthly percentage change (dhp).

$$dhp_{t} = 100 \cdot \frac{ahp_{t} - ahp_{t-1}}{ahp_{t-1}}$$

- Plot the dhp series.
- Is this series stationary?
- Identify candidate models and estimate them.
- Which of the candidate models is the best in terms of AIC (BIC)?

$$AIC = \log \hat{\sigma}^2 + 2 \frac{p+q}{T}$$
 $BIC = \log \hat{\sigma}^2 + \frac{p+q}{T} \log T$

Solution 2.24-1:

Monthly percentage change

- . gen dhp = 100*((ahp L.ahp)/L.ahp)
- . tsline dhp, lwidth(thick)

Solution 2.24-2:

ACF and **PACF** of monthly percentage change

Solution 2.24-3:

Estimation of an AR(2) model:

Sample: Feb	91 to May 07			Number o		=	196
Log likelihoo		Wald chi2(2) = Prob > chi2 =			40.65		
dhp	 Coef.				-	Conf.	Interval]
dhp _cons	İ	.1490444				3641	.9278843
ARMA ar L1. L2.		.0598291	2.81 5.88	0.005 0.000	.0510		.2856098
/sigma	1.043935	.0528492	19.75	0.000	.9403	3523	1.147517

$$\begin{split} \hat{y}_t &= \hat{\delta} + \hat{\varphi}_1 y_{t-1} + \hat{\varphi}_2 y_{t-2} \\ &= 0.6358 \left(1 - 0.1683 - 0.3297 \right) + 0.1683 y_{t-1} + 0.3297 y_{t-2} \\ &= 0.3191 + 0.1683 y_{t-1} + 0.3297 y_{t-2} \end{split}$$

Solution 2.24-4:

Estimation of an **ARMA(1,1)** model:

Sample	e: Feb 9	1 to May 07				of obs		196
Log likelihood = -290.2579					Wald chi2(2) = 455 $Prob > chi2 = 0.0$			
	 dhp	Coef.	OPG Std. Err.	Z	P> z	[95% Con	f.	Interval]
dhp	_cons	. 6341564	.2159352	2.94	0.003	.2109312		1.057382
ARMA	į							
	ar L1. ma	.9181099	.0489344	18.76	0.000	.8222002		1.01402
	- 1	7645817	.082139	-9.31	0.000	9255711		6035923
	/sigma	1.063106	.0507664	20.94	0.000	.9636055		1.162606
$\hat{\boldsymbol{y}}_{t} = \hat{\delta} + \hat{\varphi}_{1} \boldsymbol{y}_{t-1} - \hat{\theta}_{1} \boldsymbol{\varepsilon}_{t-1}$								
$= 0.6342(1-0.9181) + 0.9181y_{t-1} - 0.7646\varepsilon_{t-1}$								
$= 0.0519 + 0.9181 y_{t-1} - 0.7646 \varepsilon_{t-1}$								

Solution 2.24-5: ACF and PACF of the residuals of the AR(2) model:

- . arima dhp, ar(1/2)
- . predict res_AR2, residuals
 - . ac res AR2

Solution 2.24-6:

. corrgram res AR2

LAG	AC	PAC	Q	Prob>Q	-1 0 1 [Autocorrelation]	-1 0 1 [Partial Autocor]
1	-0.0074	-0.0074	.01091	0.9168		
2	0.0052	0.0052	.01623	0.9919		I
3	0.0271	0.0274	.1635	0.9833		I
4	-0.0468	-0.0470	.60594	0.9624		I
5	0.0140	0.0128	.64553	0.9858	I	I
6	0.0034	0.0043	.64794	0.9955		I
7	-0.0634	-0.0606	1.4732	0.9832	1	I
8	0.0190	0.0142	1.5478	0.9919		I
9	0.1113	0.1184	4.1171	0.9035	1	I
10	-0.0433	-0.0384	4.5089	0.9215	1	I
11	0.1478	0.1426	9.0923	0.6134	-	-
12	0.2403	0.2535	21.267	0.0466	[-	1
13	0.1601	0.2133	26.705	0.0136	-	-
[]						
40	0.1028	0.1321	71.429	0.0016		-

. wntestq res_AR2, lags(12)

Portmanteau test for white noise

Portmanteau (Q) statistic = 21.2675 Prob > chi2 (12)

 $Q = T(T+2)\sum_{k=1}^{K} \frac{1}{T-k} \hat{\rho}_{k}^{2} \sim \chi^{2} \text{ with } K-p-q \text{ degrees of freedom}$

di 1-chi2(12, 21.2675) .0465979

. di 1-chi2(10, 21.2675) .01930359

Solution 2.24-7: ACF and PACF of the residuals of ARMA(1,1) model:

- . arima dhp, ar(1) ma(1)
- . predict res_ARMA11, residuals
 - . ac res ARMA11

. pac res ARMA11

Solution 2.24-8:

Estimation of an **ARMA(2,1)** model:

Sample: Feb 91 to May 07 Log likelihood = -286.6366					of obs hi2(3) chi2		196 42.49 0.0000
	 	OPG					
dhp	Coef.	Std. Err.			[95%	Conf.	Interval]
dhp _cons	+ .635991 +	.1524713	4.17		.3372	1529	.9348292
ARMA ar	' 						
L1. L2. ma	.2253722		1.04 4.69		199 ⁻ .1836	7353 6026	.6504797 .447012
L1.	0640492	.2266843	-0.28	0.778	5083	3422	.3802439
/sigma	+ 1.04366 	.0528459	19.75	0.000	.9400	0841 	1.147236

Solution 2.24-9:

Estimation of the "restricted" **ARMA(2,1)** model: $\varphi_1 = 0$

Sample: Feb 91 to May 07 Log likelihood = -287.3739					of obs ni2(2) chi2	= 38.42
dhp	Coef.	OPG Std. Err.	z	P> z	[95% Con:	f. Interval]
dhp _cons	•	.1350888			.3704725	.9000107
ARMA ar L2. ma L1.	.3555611 .3586386	.0575959	6.17	0.000		
	1.047677 	.0532038	19.69	0.000	.9433994	1.151954

Solution 2.24-10: ACF and PACF of the residuals of the

"restricted" ARMA(2,1) model:

- . arima dhp, ar(2) ma(1)
- . predict res_ARMA21_r, residuals
 - . ac res_ARMA21_r

Solution 2.24-11:

Estimation of an AR(2) model:

AIC =
$$\log \hat{\sigma}^2 + 2 \frac{p+q}{T} = \log(1.043935^2) + 2 \frac{2+0}{196} = 0.10640231$$

$$BIC = \log \hat{\sigma}^2 + \frac{p+q}{T} \log T = \log(1.043935^2) + \frac{2+0}{196} \log(196) = 0.13985246$$

Estimation of the "restricted" **ARMA(2,1)** model:

/sigma | **1.047677** .0532038 19.69 0.000 .9433994 1.151954

$$AIC = \log \hat{\sigma}^2 + 2\frac{p+q}{T} = \log(1.047677^2) + 2\frac{1+1}{196} = 0.11355855$$

$$BIC = \log \hat{\sigma}^2 + \frac{p+q}{T} \log T = \log (1.047677^2) + \frac{1+1}{196} \log (196) = 0.1470087$$

Solution 2.24-12:

	AR(2)	AR(1) MA(1)	AR(1/2) MA(1)	AR(2) MA(1)	AR(1) MA(1/2)	AR(1) MA(2)
AIC	.10640231	14279733	.11608015	.11355855	.11804919	.1173732
BIC	.13985246	.17624748	.16625538	.1470087	.16822441	.15082335

Additional Information

You can use STATA to calculate the general AIC and BIC After the estimation of the "restricted" ARMA(2,1) you would get:

. estat ic						
Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	196	•	-287.3739	4	582.7479	595.8603

STATA uses the general formulas (k=# of parameters and N=# of obs):

$$AIC = -2 \cdot \ln(likelihood) + 2 \cdot k$$

$$BIC = -2 \cdot \ln(likelihood) + \ln(N) \cdot k$$

For the AIC it would be (k=4, since 4 Parameters were estimated [$\hat{\mu}, \hat{\theta}_1, \hat{\varphi}_2, \hat{\sigma}_{\varepsilon}$]):

. di
$$(-2)*-287.3739 +2*4$$

582.7478

The general AIC by Akaike from 1973 was stated as: $AIC = -\frac{2}{\tau} \cdot \ln(likelihood) + \frac{2}{\tau} \cdot (\#parameters)$

$$AIC = -\frac{2}{T} \cdot \ln(likelihood) + \frac{2}{T} \cdot (\# parameters)$$

If we assume Gaussian White Noise for the residuals (what we do, if we estimate our model with the Maximum Likelihood Method), it is shown that the AIC reduces to our formular:

$$AIC = \log \hat{\sigma}^2 + 2\frac{p+q}{T}$$

Exercise 2.25:

- Estimate an AR(2) model for the dhp series (ML-Estimation).
- Estimate an AR(2) model for the dhp series (ML-Estimation) without observations from 2007 (i.e. exclude the last five observations from your analysis sample).
- What is the optimal forecast? In which sense is it optimal? What "assumptions" are part of the information set?
- Calculate forecasts for January up to May 2007.
- Compare these forecasts to the actual values and compute the forecast errors.
- What is the forecast for May 2010?

Solution 2.25-1:

ML-Estimation of an AR(2) model for the dhp series:

```
. arima dhp, ar(1/2)
[...]
Sample: Feb 91 to May 07
                                     Number of obs = 196
                                     Wald chi2(2) = 40.65
Log likelihood = -286.69
                                     Prob > chi2
                        OPG
       dhp | Coef. Std. Err. z  P>|z|  [95% Conf. Interval]
dhp
           .6357626 .1490444 4.27 0.000 .343641 .9278843
ARMA
       ar I
      L1. | .1683468 .0598291 2.81 0.005 .0510839 .2856098
                      .0560706 5.88 0.000 .2198106
       L2. |
           .329707
                                                       .4396034
    /sigma | 1.043935 .0528492 19.75 0.000 .9403523
```

 $\hat{y}_t = 0.3191 + 0.1683 y_{t-1} + 0.3297 y_{t-2}$

Solution 2.25-2:

ML-Estimation of an AR(2) model for the dhp series (2007 excluded):

```
. arima dhp if time < 564, ar(1/2) Or . arima dhp if time < tm(2006m12), ar(1/2)
[...]
Sample: Feb 91 to Dec 06
                                      Number of obs = 191
                                      Wald chi2(2) = 41.24
Log likelihood = -280.1191
                                      Prob > chi2 = 0.0000
                        OPG
       dhp | Coef. Std. Err. z > |z| [95% Conf. Interval]
dhp
     _cons | .6291755 .1536857 4.09 0.000 .327957
ARMA
      ar l
       L1. | .1665986 .0604824 2.75 0.006 .0480552 .285142
       L2. | .3380952 .05664 5.97 0.000 .2270828
                                                        .4491076
    /sigma | 1.047946 .0536005 19.55 0.000 .9428913
```

 $\hat{\mathbf{y}}_{t} = 0.3116 + 0.1666 \mathbf{y}_{t-1} + 0.3381 \mathbf{y}_{t-2}$

Solution 2.25-3:

Optimal forecast:

$$\mathcal{J}_{T+1} \mid \Omega_T = E(Y_{T+1} \mid \Omega_T)$$

it minimizes the expected squared forecast error $\min E(e_{T+1}^2)$

$$\mathbf{e}_{T+1} = \mathbf{y}_{T+1} - \mathbf{\tilde{y}}_{T+1} \mid \Omega_T$$

Information set Ω_T :

- true model
- known parameters
- all past observations

Additional assumption:

$$E[\varepsilon_{T+k}] = 0$$

$$\forall k \ge 1$$

 $\tilde{y}_{Jan2007} = 0.9733$

Solution 2.25-4:

One-period ahead forecast of an AR(2):

$$y_{t} = \varphi_{1}y_{t-1} + \varphi_{2}y_{t-2} + \delta + \varepsilon_{t} \implies y_{T+1} = \varphi_{1}y_{T} + \varphi_{2}y_{T-1} + \delta + \varepsilon_{T+1}$$

$$\mathcal{F}_{T+1} = E(y_{T+1}|\Omega_{T})$$

$$\mathcal{F}_{T+1} = E(\varphi_{1}y_{T} + \varphi_{2}y_{T-1} + \delta + \varepsilon_{T+1} | \Omega_{T})$$

$$\mathcal{F}_{T+1} = \varphi_{1}y_{T} + \varphi_{2}y_{T-1} + \delta$$

$$\Omega_{T} = \{y_{T}, ..., y_{1}; y_{t} = \varphi_{1}y_{t-1} + \varphi_{2}y_{t-2} + \delta + \varepsilon\}$$

$$\mathcal{F}_{T+1} = 0.3116 + 0.1666y_{T} + 0.3381y_{T-1}$$

$$\mathcal{F}_{Jan2007} = 0.3116 + 0.1666y_{Dec2006} + 0.3381y_{Nov2006}$$

$$\mathcal{F}_{Jan2007} = 0.3116 + 0.1666 \cdot 0.9066 + 0.3381 \cdot 1.5104$$

. list time dhp in 188/197

	+	+
	time	dhp
188.	Aug 06	0071542
189.	Sep 06	1.008818
190.	Oct 06	.1239574
191.	Nov 06	1.510408
192.	Dec 06	.906583
193.	Jan 07	299863
194.	Feb 07	.8549574
195.	Mar 07	1.360572
196.	Apr 07	1.824568
197.	May 07	.7043269
	+	+

Solution 2.25-5:

Two-period ahead forecast of an AR(2):

$$y_t = \varphi_1 y_{t-1} + \varphi_2 y_{t-2} + \delta + \varepsilon_t \implies y_{T+2} = \varphi_1 y_{T+1} + \varphi_2 y_T + \delta + \varepsilon_{T+2}$$

$$\mathfrak{F}_{T+2} = E(y_{T+2}|\Omega_T)$$

$$\mathcal{G}_{T+2} = E(\boldsymbol{\varphi}_1 \boldsymbol{y}_{T+1} + \boldsymbol{\varphi}_2 \boldsymbol{y}_T + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{T+2} \mid \Omega_T)$$

$$\mathcal{G}_{T+2} = \varphi_1 \mathcal{G}_{T+1} + \varphi_2 y_T + \delta$$

$$\mathcal{F}_{Feb2007} = 0.3116 + 0.1666 \cdot 0.9733 + 0.3381 \cdot 0.9066$$

$$\mathcal{F}_{Feb2007} = 0.7803$$

. list time dhp in 188/197

	+		+
	t	ime	dhp
188.	Aug	06	0071542
189.	Sep	06	1.008818
190.	Oct	06	.1239574
191.	Nov	06	1.510408
192.	Dec	06	.906583
193.	Jan	07	299863
194.	Feb	07	.8549574
195.	Mar	07	1.360572
196.	Apr	07	1.824568
197.	May	07	.7043269
	+		+

Solution 2.25-6:

Three-period ahead forecast of an AR(2):

$$y_{t} = \varphi_{1}y_{t-1} + \varphi_{2}y_{t-2} + \delta + \varepsilon_{t} \implies y_{T+3} = \varphi_{1}y_{T+2} + \varphi_{2}y_{T+1} + \delta + \varepsilon_{T+3}$$

$$\widetilde{y}_{T+3} = E(y_{T+3}|\Omega_T)$$

$$\mathcal{G}_{T+3} = E(\boldsymbol{\varphi}_1 \boldsymbol{y}_{T+2} + \boldsymbol{\varphi}_2 \boldsymbol{y}_{T+1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{T+3} \mid \Omega_T)$$

$$\mathcal{G}_{T+3} = \boldsymbol{\varphi}_1 \mathcal{G}_{T+2} + \boldsymbol{\varphi}_2 \mathcal{G}_{T+1} + \boldsymbol{\delta}$$

$$\mathcal{J}_{Mar\,2007} = 0.7707$$

Four- and five-period ahead forecast of an AR(2):

$$\mathcal{G}_{T+4} = \boldsymbol{\varphi}_1 \mathcal{G}_{T+3} + \boldsymbol{\varphi}_2 \mathcal{G}_{T+2} + \boldsymbol{\delta}$$

$$\mathcal{J}_{Apr2007} = 0.7039$$

$$\mathcal{G}_{T+5} = \boldsymbol{\varphi}_1 \mathcal{G}_{T+4} + \boldsymbol{\varphi}_2 \mathcal{G}_{T+3} + \boldsymbol{\delta}$$

$$\mathcal{F}_{May 2007} = 0.6895$$

Solution 2.25-7:

I-period ahead forecast of an AR(2): $\hat{y}_t = 0.3116 + 0.1666 y_{t-1} + 0.3381 y_{t-2}$

Solution 2.25-8:

- . predict forecast AR2, xb
- . predict forecast AR2 dyn, xb dynamic(564)
- . list time dhp forecast AR2 forecast AR2 dyn in 193/197

	+				+
		time	dhp	foreca~2	foreca~n
193.		Jan 07	299863	.9733318	.9733318
194.		Feb 07	.8549574	.5681891	.7803016
195.		Mar 07	1.360572	.352687	.7707105
196.		Apr 07	1.824568	.8273608	.70385
197.		May 07	.7043269	1.075608	.6894684
	+				+
194. 195. 196.	+	Feb 07 Mar 07 Apr 07	.8549574 1.360572 1.824568	.5681891 .352687 .8273608	.7803016 .7707105 .70385

Recall:

 $\mathcal{J}_{Jan2007} = 0.9733$

 $\mathcal{F}_{Mar\,2007} = 0.7707$

 $\mathcal{J}_{Apr2007} = 0.7039$ $\mathcal{J}_{May2007} = 0.6895$

Solution 2.25-9:

- . gen forecast_error_AR2 = $(dhp-forecast_AR2_dyn) / dhp in 193/197$
- . list time dhp forecast_AR2_dyn forecast_error_AR2 in 193/197

					上
	time	dhp		fo~r_AR2	
193.	 Jan 07	299863	.9733318	4.245922	
194.	Feb 07	.8549574	.7803016	.087321	
195.	Mar 07	1.360572	.7707105	.4335392	
196.	Apr 07	1.824568	.70385	.6142375	
197.	May 07	.7043269	.6894684	.0210959	
	+				+

Solution 2.25-10:

. list time xb AR2 dyn long in 193/233

•			·	130,200	1
	time	xb_AR2~g	213.	Sep 08	.6292692
			214.	Oct 08	.6292383
193.	Jan 07	.9733318	215.	Nov 08	.6292176
194.	Feb 07	.7803016	216.	Dec 08	.6292037
195.	Mar 07	.7707105	217.	Jan 09	.6291944
196.	Apr 07	.70385			
197.	May 07	.6894684	218.	Feb 09	.6291882
			219.	Mar 09	.629184
198.	Jun 07	.6644673	220.	Apr 09	.6291812
199.	Jul 07	.6554398	221.	May 09	.6291793
200.	Aug 07	.6454831	222.	Jun 09	.629178
201.	Sep 07	.6407721			
202.	Oct 07	.636621	223.	Jul 09	.6291772
			224.	Aug 09	.6291766
203.	Nov 07	.6343367	225.	Sep 09	.6291763
204.	Dec 07	.6325526	226.	Oct 09	.629176
205.	Jan 08	.6314831	227.	Nov 09	.6291758
206.	Feb 08	.6307017			
207.	Mar 08	.6302099	228.	Dec 09	.6291757
			229.	Jan 10	.6291756
208.	Apr 08	.6298638	230.	Feb 10	.6291755
209.	May 08	.6296399	231.	Mar 10	.6291755
210.	Jun 08	.6294855	232.	Apr 10	.6291755
211.	Jul 08	.6293842			
212.	Aug 08	.6293151	233.	May 10	.6291755

Recall:

 $\hat{\mu} = 0.6291755$