Derivatives of some important functions.

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}\log_a x = \frac{1}{(\ln a)x}$$

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

$$\frac{d}{dx} \sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx} \tan x = \sec^2 x$$

$$\frac{d}{dx} \cot x = -\csc^2 x$$

$$\frac{d}{dx} \sec x = \sec x \tan x$$

$$\frac{d}{dx} \csc x = -\csc x \cot x$$

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}$$

$$\frac{d}{dx} \log_a u = \frac{1}{(\ln a)u} \frac{du}{dx}$$

$$\frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx}$$

$$\frac{d}{dx} \sin u = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}\cos u = -\sin u \, \frac{du}{dx}$$

$$\frac{d}{dx} \tan u = \sec^2 u \, \frac{du}{dx}$$

$$\frac{d}{dx} \cot u = -\csc^2 u \frac{du}{dx}$$

$$\frac{d}{dx} \sec u = \sec u \tan u \frac{du}{dx}$$

$$\frac{d}{dx} \csc u = -\csc u \cot u \frac{du}{dx}$$

Problems:

1.
$$y = \sqrt[3]{x} \sin(x)$$

3.
$$f(z) = \sin^2(z)$$

5.
$$y = x^2 \sec(x)$$

7.
$$y = \tan(x) + \frac{1}{x^2} + e^2 + 3$$

9.
$$f(s) = \tan(s) - \frac{3}{s^2} + 2e^s$$

11.
$$y = \frac{\sqrt{x}\cos(x)}{x^3 + 1}$$

13.
$$y = \frac{x^2 + 5}{x + \sec(x)}$$

2.
$$f(r) = 5r - \cos(r) + \frac{1}{r}$$

4.
$$v = x^4 \tan(x)$$

6.
$$f(r) = 3e^r - \frac{1}{r^2} + \sin(r)$$

8.
$$f(\theta) = 5\theta - \cot(\theta) + \sqrt{\theta}$$

10.
$$y = \tan^2(x)$$

12.
$$y = \frac{x \sin(x)}{e^x}$$

14.
$$y = \frac{x \cos(x)}{\sin(x) + 1}$$

Solutions:

1.
$$y = \sqrt[3]{x} \sin(x) = x^{1/3} \sin(x)$$
 $y' = \frac{1}{3}x^{1/3-1} \sin(x) + x^{1/3} \cos(x) = \frac{\sin(x)}{3\sqrt[3]{x^2}} + \sqrt[3]{x} \cos(x)$

3.
$$f(z) = \sin^2(z) = \sin(z)\sin(z)$$
 $f'(z) = \cos(z)\sin(z) + \sin(z)\cos(z) = 2\sin(z)\cos(z)$

5.
$$y = x^2 \sec(x)$$
 By product rule: $y' = 2x \sec(x) + x^2 \sec(x) \tan(x)$

7.
$$y = \tan(x) + \frac{1}{x^2} + e^2 + 3 = \tan(x) + x^{-2} + e^2 + 3$$
 $y' = \sec^2(x) - 2x^{-3} + 0 + 0 = \sec^2(x) - \frac{2}{x^3}$

9.
$$f(s) = \tan(s) - \frac{3}{s^2} + 2e^s$$
 $f'(s) = \sec^2(s) + \frac{6}{s^3} + 2e^s$

11.
$$y = \frac{\sqrt{x}\cos(x)}{x^3 + 1} = \frac{x^{1/2}\cos(x)}{x^3 + 1}$$

$$y' = \frac{D_x \left[x^{1/2}\cos(x)\right](x^3 + 1) - x^{1/2}\cos(x) \cdot D_x \left[x^3 + 1\right]}{(x^3 + 1)^2}$$
$$= \frac{\left(\frac{1}{2}x^{-1/2}\cos(x) + x^{1/2}(-\sin(x))\right)(x^3 + 1) - x^{1/2}\cos(x)3x^2}{(x^3 + 1)^2}$$
$$= \frac{\left(\frac{\cos(x)}{2\sqrt{x}} - \sqrt{x}\sin(x)\right)(x^3 + 1) - \sqrt{x}\cos(x)3x^2}{(x^3 + 1)^2}$$

13.
$$y = \frac{x^2 + 5}{x + \sec(x)}$$
 $y' = \frac{2x(x + \sec(x)) - (x^2 + 5)(1 + \sec(x)\tan(x))}{(x + \sec(x))^2}$

Differentiate the following:

a.
$$\cos 3x$$
 b. $\sin(4x+5)$ **c.** $\sin^3 x$ **d.** $\sin x \cos x$ **e.** $x^2 \sin x$

f.
$$\cos(x^2 + 1)$$
 g. $\frac{\sin x}{x}$ **h.** $\sin \frac{1}{x}$ **i.** $\tan(\sqrt{x})$ **j.** $\frac{1}{x}\sin \frac{1}{x}$

Solutions to Exercise 1

$$\mathbf{a.} \ \frac{d}{dx}\cos 3x = -3\sin 3x$$

b.
$$\frac{d}{dx}\sin(4x+5) = 4\cos(4x+5)$$

$$\mathbf{c.} \ \frac{d}{dx}\sin^3 x = 3\sin^2 x \cos x$$

$$\mathbf{d.} \ \frac{d}{dx}\sin x \cos x = \cos^2 x - \sin^2 x$$

e.
$$\frac{d}{dx}x^2\sin x = 2x\sin x + x^2\cos x$$

f.
$$\frac{d}{dx}\cos(x^2+1) = -2x\sin(x^2+1)$$

$$\mathbf{g.} \ \frac{d}{dx} \left(\frac{\sin x}{x} \right) = \frac{x \cos x - \sin x}{x^2}$$

$$\mathbf{h.} \ \frac{d}{dx} \sin \frac{1}{x} = -\frac{1}{x^2} \cos \frac{1}{x}$$

i.
$$\frac{d}{dx}\tan\sqrt{x} = \frac{1}{2\sqrt{x}}\sec^2\sqrt{x}$$

j.
$$\frac{d}{dx} \left(\frac{1}{x} \sin \frac{1}{x} \right) = -\frac{1}{x^2} \sin \frac{1}{x} - \frac{1}{x^3} \cos \frac{1}{x}$$

- 1. Find the derivative of each of the following:
- a) $(3x-7)^{12}$ b) $\sin(5x+2)$ c) $\ln(2x-1)$ d) e^{2-3x}

- e) $\sqrt{5x-3}$ f) $(6x+5)^{5/3}$ g) $\frac{1}{(3-x)^4}$ h) $\cos(1-4x)$
- 2. Find the derivative of each of the following:
 - a) $\ln(\sin x)$

- b) $\sin(\ln x)$ c) $e^{-\cos x}$ d) $\cos(e^{-x})$

- e) $(\sin x + \cos x)^3$ f) $\sqrt{1+x^2}$ g) $\frac{1}{\cos x}$ h) $\frac{1}{x^2+2x+1}$
- 3. Find the derivative of each of the following:

- a) $\ln(\sin^2 x)$ b) $\sin^2(\ln x)$ c) $\sqrt{\cos(3x-1)}$ d) $[1+\cos(x^2-1)]^{3/2}$

Answers

1. a)
$$36(3x-7)^{11}$$
 b) $5\cos(5x+2)$ c) $\frac{2}{2x-1}$ d) $-3e^{2-3x}$

e)
$$\frac{5}{2\sqrt{5x-3}}$$
 f) $10(6x+5)^{2/3}$ g) $\frac{4}{(3-x)^5}$ h) $4\sin(1-4x)$

2. a)
$$\frac{\cos x}{\sin x} = \cot x$$
 b) $\frac{\cos(\ln x)}{x}$ c) $\sin x e^{-\cos x}$ d) $e^{-x} \sin(e^{-x})$ e) $3(\cos x - \sin x)(\sin x + \cos x)^2$ f) $\frac{x}{\sqrt{1+x^2}}$

d)
$$e^{-x} \sin(e^{-x})$$
 e) $3(\cos x - \sin x)(\sin x + \cos x)^2$ f) $\frac{x}{\sqrt{1+x^2}}$

g)
$$\frac{\sin x}{\cos^2 x} = \tan x \sec x$$
 h) $\frac{-2(x+1)}{(x^2+2x+1)^4} = \frac{-2}{(x+1)^3}$

3. a)
$$\frac{2\cos x}{\sin x} = 2\cot x$$
 b) $\frac{2\sin(\ln x)\cos(\ln x)}{x}$

c)
$$\frac{-3\sin(3x-1)}{2\sqrt{\cos(3x-1)}}$$
 d) $-3x\sin(x^2-1)[1+\cos(x^2-1)]^{1/2}$

Differentiate the functions with respect to x in Exercises 1 to 8.

1.
$$\sin(x^2 + 5)$$
 2. $\cos(\sin x)$ 3. $\sin(ax + b)$

Differentiate the functions with respect to
$$x$$
 in Exercises 1 to 8.
1. $\sin(x^2 + 5)$ 2. $\cos(\sin x)$ 3. $\sin(ax + b)$
4. $\sec(\tan(\sqrt{x}))$ 5. $\frac{\sin(ax + b)}{\cos(cx + d)}$ 6. $\cos x^3 \cdot \sin^2(x^5)$
7. $2\sqrt{\cot(x^2)}$ 8. $\cos(\sqrt{x})$

7.
$$2\sqrt{\cot(x^2)}$$
 8. $\cos(\sqrt{x})$

Answers: Set. I

- 1. $2x \cos(x^2+5)$
- 2. cosx. sin(sin)
- 3. a.cos (arctb)
- 4. Sec(tanta) tan (tanta). sec(va) 21x
- 5. a.cos(axtb).cos(cxtd) + c. sin(axtb).sin(cxtd) cos(cxtd)
- 6. -3x2. sin x3. sin2x5+10x4. cosx2. sinx5. cosx5
- $\frac{7 \cdot -2x \cdot \csc^2 x^2}{\sqrt{\cot x^2}}$
- 8. Sin Vic

Find $\frac{dy}{dx}$ in the following:

1.
$$2x + 3y = \sin x$$

2.
$$2x + 3y = \sin y$$

1.
$$2x + 3y = \sin x$$
 2. $2x + 3y = \sin y$ 3. $ax + by^2 = \cos y$

4.
$$xy + y^2 = \tan x + y$$

5.
$$x^2 + xy + y^2 = 100$$

4.
$$xy + y^2 = \tan x + y$$
 5. $x^2 + xy + y^2 = 100$ **6.** $x^3 + x^2y + xy^2 + y^3 = 81$

$$7. \quad \sin^2 y + \cos xy = \kappa$$

8.
$$\sin^2 x + \cos^2 y = 1$$

7.
$$\sin^2 y + \cos xy = \kappa$$
 8. $\sin^2 x + \cos^2 y = 1$ 9. $y = \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$

1.
$$\frac{dy}{dx} = \frac{\cos x - 2}{3}$$
 2. $\frac{dy}{dx} = \frac{2}{\cos y - 3}$ 3. $\frac{dy}{dx} = \frac{-a}{2by + \sin y}$

4.
$$\frac{dy}{dx} = \frac{\sec^2 x - y}{(x+2y-1)}$$
 5. $\frac{dy}{dx} = \frac{-(2x+y)}{(x+2y)}$ 6. $\frac{dy}{dx} = \frac{-(3x^2+2xy+y^2)}{(x^2+2xy+3y^2)}$

7.
$$\frac{dy}{dx} = \frac{y \sin xy}{\sin 2y - x \sin xy}$$
 8. $\frac{dy}{dx} = \frac{\sin 2x}{\sin 2y}$

9.
$$\frac{dy}{dx} = \frac{2(1-x^2)}{\sqrt{1-(\frac{2x}{1+x^2})^2}}$$
 or $\frac{dy}{dx} = \frac{2}{1+x^2}$

Differentiate the following w.r.t. x:

1.
$$\frac{e^x}{\sin x}$$

2.
$$e^{\sin^{-1} x}$$

3.
$$e^{x^2}$$

4.
$$\sin (\tan^{-1} e^{-x})$$

5.
$$\log(\cos e^x)$$

1.
$$\frac{e^{x}}{\sin x}$$
2. $e^{\sin^{-1} x}$
3. $e^{x^{3}}$
4. $\sin (\tan^{-1} e^{-x})$
5. $\log (\cos e^{x})$
6. $e^{x} + e^{x^{2}} + ... + e^{x^{5}}$

$$7. \quad \sqrt{e^{\sqrt{x}}}, \ x > 0$$

8.
$$\log(\log x), x > 1$$

8.
$$\log(\log x), x > 1$$
 9. $\frac{\cos x}{\log x}, x > 0$

1.
$$e^{x} (\sin x - \cos x)$$
 2. $e^{\sin x}$ 3. $3 \cdot e^{x} \propto^{2}$

4.
$$\frac{e^{x} \cos(\tan^{1} e^{x})}{1+e^{2x}}$$
 5. $-e^{x} \tan e^{x}$

Logarithmic differentiation.

Differentiate the functions given in Exercises 1 to 11 w.r.t. x.

1.
$$\cos x \cdot \cos 2x \cdot \cos 3x$$

$$3. \quad (\log x)^{\cos x}$$

5.
$$(x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$$

7.
$$(\log x)^x + x^{\log x}$$

9.
$$x^{\sin x} + (\sin x)^{\cos x}$$

11.
$$(x \cos x)^x + (x \sin x)^{\frac{1}{x}}$$

2.
$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

4.
$$x^x - 2^{\sin x}$$

6.
$$\left(x+\frac{1}{x}\right)^x+x^{\left(1+\frac{1}{x}\right)}$$

8.
$$(\sin x)^x + \sin^{-1} \sqrt{x}$$

10.
$$x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Logarithmic differentiation:

$$\frac{1 \cdot dy}{dx} = \cos x \cdot \cos 2x \cdot \cos 3x \left[-\tan x - 2\tan 2x - 3\tan 3x \right]$$

2.
$$\frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[\frac{1}{(x-1)} + \frac{1}{(x-2)} - \frac{1}{(x-4)} - \frac{1}{(x-4)} \right]$$

3.
$$\frac{dy}{dx} = (\log x)^{\cos x} \left[\frac{\cos x}{x \log x} - \sin x \log(\log x) \right]$$

4.
$$\frac{dy}{dx} = x^{2}(1+\log x) - 2^{\sin x}(\cos x \cdot \log 2)$$

5.
$$\frac{dy}{dx} = (x+3) \cdot (x+4)^2 \cdot (x+5)^3 \cdot (9x^2+70x+133)$$

6.
$$\frac{dy}{dx} = \left(x + \frac{1}{x}\right) \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right] + x^{\left(1 + \frac{1}{x}\right)} \frac{(1 + x) - \log x}{x^2}$$

10.
$$\frac{dy}{dx} = x \frac{x \cos x}{\left[\cos x - x \sin x \log x + \cos x \log x\right] - \frac{4x}{\left(x^2 - 1\right)^2}}$$

Functions in parametric form

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\frac{dy}{dx}$.

1.
$$x = 2at^2, y = at^4$$

2.
$$x = a \cos \theta, y = b \cos \theta$$

3.
$$x = \sin t, y = \cos 2t$$

4.
$$x = 4t, y = \frac{4}{t}$$

5.
$$x = \cos \theta - \cos 2\theta$$
, $y = \sin \theta - \sin 2\theta$

6.
$$x = a (\theta - \sin \theta), y = a (1 + \cos \theta)$$
 7. $x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$

Find the second order derivatives of the functions given in Exercises

1.
$$x^2 + 3x + 2$$

$$2. x^{20}$$

$$3. x \cdot \cos x$$

4.
$$\log x$$

$$5. x^3 \log x$$

6.
$$e^x \sin 5x$$

Answers:

Parametric form

1. t^2 2. bla 3. -4 sint 4. -1/ t^2 5. $\cos 0 - 2\cos 20$ 6. - $\cot 92$ 7. - $\cot 3t$ - $\sin 0 + 2\sin 20$ Second order derivatives

1. 2 2. $380 \cdot x^{18}$ 3. - $(x \cdot \cos x + 2\sin x)$ 4. -1/ x^2 5. $x \cdot (5 + 6\log x)$ 6. $e^x \cdot (\cos x - 24\sin x)$