TERMODINÁMICA

Examen Intersemestral

Nombre	Grupo

El dispositivo de la figura consta de un cilindro-pistón (B) que contiene un gas ideal (R = 319 J/kg-K) y de un cilindro hueco y rígido (A) que contiene 300 gramos del mismo gas ideal. En el estado inicial A y B están desacoplados, estando todas las superficies aisladas térmicamente con excepción de la base

del dispositivo B. Dicho estado inicial es de equilibrio. La temperatura ambiente es de 27°C y la presión ambiente de 1 bar. El pistón del dispositivo B tiene una masa de 100 kg y desliza sin rozamiento. El diámetro de ambos cilindros es de 250 mm.

Sobre el pistón, tal como se muestra en la figura, actúa un muelle cuando el pistón ha ascendido una cierta cantidad. En el estado inicial el muelle está en su longitud natural. Dicho muelle se comporta de forma lineal mientras sus espiras estén separadas, pasando a ser una barra rígida cuando sus espiras hacen contacto entre ellas.

En un momento dado se retira el aislante de la tapa del cilindro A y se pone el cilindro B sobre él (tal como se recoge en la figura). A partir de entonces se verifica un proceso cuasiestático, terminando cuando se alcanza el equilibrio. La tabla muestra las coordenadas del proceso, siendo el estado (2) el momento en que el pistón hace contacto con el muelle y (3) el momento en el que las espiras del muelle han hecho contacto entre ellas (muelle como barra rígida).

	A			В				
estado	1	2	3	4	1	2	3	4
p [bar]	14,36	13,89	13,14	12,6	р _{в1} 1,2	р _{в1} 1, 2	1,80	2,29
T [K]	1500	1452	1373	1317	300	600	1034	1317
V [dm³]	100	100	100	100	50	100	V _{B3}	V _{B3}

Se pide:

- a) Diagrama p V del gas de cada recinto
- b) Rellenar la tabla
- c) Constante de rigidez del muelle

Tablas de la sustancia como gas ideal

T [K]	u [kJ/kg]	h [kJ/kg]		T [K]	u [kJ/kg]	h [kJ/kg]
280	8644	8733	-	920	9841	10134
300	8671	8767		940	9885	10185
320	8699	8801		960	9930	10237
340	8728	8837		980	9976	10289
360	8758	8873		1000	10022	10341
380	8789	8911		1020	10068	10393
400	8821	8949		1040	10114	10446
420	8853	8988		1060	10160	10499
440	8887	9027		1080	10207	10552
460	8921	9067		1100	10255	10606
480	8955	9108		1120	10302	10660
500	8990	9150		1140	10350	10714
520	9026	9192		1160	10398	10768
540	9062	9235		1180	10446	10823
560	9099	9278		1200	10494	10878
580	9137	9322		1220	10543	10933
600	9175	9366		1240	10592	10988
620	9213	9411		1260	10641	11044
640	9252	9456		1280	10691	11100
660	9291	9502		1300	10741	11156
000	2224	05.40		1000	40700	44040
680	9331	9548		1320	10790	11212
700	9372	9595		1340	10841	11268
720	9412	9642		1360	10891	11325
740	9453	9690		1380	10942	11382
760	9495	9738		1400	10992	11439
780 780	9493	9786		1420	11043	11439
800	9537 9579	9835		1440	11043	11554
820	9622	9884		1460	11146	11612
020	9022	900 4		1400	11140	11012
840	9665	9933		1480	11198	11670
860	9708	9983		1500	11250	11728
880	9752	10033		1520	11302	11787
000	3. JL	. 5 5 5 5		.020		
900	9796	10083				

a) Tol como re describe en la Tobla y el texto el gas en el cilindro B rique un mocero de expansión:

Pare que se modura tel expansión contro les fuerras exteriores el moterno B recibe color les fuerras exteriores el moterno a volu del A, que por tombo ve un proceso a volu men constante dondo brejo un temperatura al men constante dondo brejo un que ideal.

b) Paux rellevan la table es preciso ir conhectando la diterentes process.

Proceso 1-2

$$P_{1A} = \frac{0.3 \times 0.319 \times 1500}{0.1} = 1435, 5 \times fa$$

$$P_{1B} = 100 + \frac{100 \times 9'8 \times 10^{-3}}{\frac{70.25^2}{4}} = 119,964 \text{ WPa}$$

TAB = 300 K

$$m_{B} = \frac{119,964 \times 0'05}{0,319 \times 300} = 0,062677 \text{ kg}$$

$$T_{B2} = P_{B1} = 141, 101$$

$$T_{B2} = \frac{119,964 \times 0.1}{0.062677 \times 0.319} = 599,998 \times 600 \text{ K}$$

UA1 = 11250KJ/Kg

$$TAZ = \frac{1451,65 \text{ K}}{0.319 \times 1451,65} = 1389,23 \text{ kPe}$$

$$PAZ = \frac{0.3 \times 0.319 \times 1451,65}{0.1} = 1389,23 \text{ kPe}$$

Proces 2-3

$$P_{43} = \frac{0.3 \times 0.319 \times 1373}{0.1} = 1313,96 \text{ KPa}$$

UA3 = 10924, 15 KJ/kg

Como en el posen 2-3 le presión crea linealmente por acción del muelle el trobojo se puede evoluar portir del àvec del trapecio:

$$W_{23} = \left[\frac{180 + 119,964}{2}\right] \left[\sqrt{83} - 0.1\right]$$

operando con la ecuación de estodo:

180 JB3 = 0.06 26 77×0,319× TB3

Lo VBR = 1,110776x104TB3

sustitujendo en W23:

Aplicando el Primer Principio:

+ 0, 062677 (UB3 - 9175)

operando la ecuación anterior:

Para resolves la ecuación outerior se itema parl TB3 > TB2

T_{B3}	UB3	f (Tis 3)
1.2.2	10068	-131,37
1020	10 114	+ 61,69
1040		

buscondo el volor unho de f:

$$T_{B3} - 1020 = \frac{20}{61,69 + 131,37} (0 + 131,37)$$

$$U_{B3} - 10068 = \frac{10114 - 10068}{61,69 + 131,37} \times 131,37$$

Process 3-4

$$0 = 0.3 \left(u_4 - 10924, 15 \right) + 0'062677 \left(u_4 - 10099, 3 \right)$$

$$P_{B4} = \frac{0.062677 \times 0.319 \times 1316.57}{0.114811} = 229,28 \text{ KPa}$$

$$P_{B4} = \frac{0.3 \times 0.319 \times 1316.57}{0.1} = 1259,96 \text{ KPa}$$

c) constante del revorte

Se plantee le ley de la presión en el
proceso 2-3:

kd Mpg

PB = Po + Mpg

PB2

PB2

PB2

PB2

PB3 = PB2 +
$$\frac{k}{42}$$
 ($\frac{\sqrt{83}}{4}$ - $\sqrt{82}$)

180 = 119, 964 + $\frac{k}{\sqrt{100}}$ (0,114811-0.1)