Attention-Based Neural Networks for Sentiment Attitude Extraction using Distant Supervision

N.L. Rusnachenko ¹ N.V. Loukachevitch ²

Bauman Moscow State Technical University, Moscow, Russia kolyarus@yandex.ru

Research Computing Center of Moscow State University, Moscow, Russia louk nat@mail.ru

The 10th International Conference on Web Intelligence, Mining and Semantics
June 30 – July 3, 2020
Biarritz. France

Introduction

Microbloging posts (Twitter)

Mostly user reviews ⇒ considered a single object for analysis.

Analytical articles:

- Large amount of named entities (NE): Ukraine, Russia, Russian Federation;
- Has complicated structure:

Trumpe accused Chinae and Russiae of "playing devaluation of currencies"

Related:

- Text Analysis Conference (TAC), Knowledge Base Population (KBP) track¹;
- MPQA 3.0: sentiment attitudes towards entities and events:

¹ https://tac.nist.gov/2014/KBP/Sentiment/index.html

Sentiment Attitude Extraction Task

Output (Extract):

```
Input (Context):
«As is apparent in Washington<sub>subj</sub>, there is no place for objectivity on the subject of Russia<sub>obj</sub>, irrespective of facts and events»
```

Washington \rightarrow Russia, negative

Resources Attention Models Experiments RuSentRel RuSentiLex Lexicon RuAttitudes

Resources

RuSentRel: Contents

- 73 large analytical articles;
- Text attitudes manual annotation, sentiment towards named entities (NE) as triplets (Object, Subject, Label), where:
 - Subject NE or "author"
 - Object NE
 - Label \in {pos, neg}
- Named Entities automatic (CRF based recognizer);
- List S of synonymous NE manually implemented.

Figure 1: Document opinions

RuSentiFrames Lexicon Structure

Describes sentiments and connotations conveyed with a predicate in a verbal or nominal form.

- Role Designation:
 - A0 is an argument exhibiting features of a Prototypical Agent;
 - A1 is a Theme.
- ② Dimentions:
 - the attitude of the author of the text towards mentioned participants;
 - polarity sentiment between participants;
 - effects to participants;
 - mental states of participants related to the described situation.

Frame	"Одобрить" (Approve)					
roles	A0: who approves					
	A1: what is approved					
polarity	AO $ ightarrow$ A1, pos , 1.0					
	A1 $ ightarrow$ A0, pos, 0.7					
effect	A1, pos, 1.0					
state	A0, pos, 1.0					
	A1, pos, 1.0					

Table 1: Example description of frame "Одобрить" (Approve) in RuSentiLex lexicon.

RuAttitudes: Collection of automatically labeled news

- 13.4 K news texts (gathered);
- 2 News structure title and list of sentences;
- Text attitudes annotated with attitudes between participants (positive or negative); sentiment attitude annotation methods, applied to the news title:
 - Pair-Based utilizing the pre-assigned attitudes (list of pairs);
 - Frame-Based utilizing frame entries from the RuSentiFrames lexicon; matching the following pattern:

```
... Subject<sub>e</sub> ... {frame_{A0 \rightarrow A1}}<sub>k</sub> ... Object<sub>e</sub> ...
```

RuAttitudes: News Example

Contexts Attention Attentive Encoders

Attention Models

Sentiment Attitude Extraction

- Introducing context attitude a pair with its named entities (source: Subject, target: Object) in a context
 «Talking about the separation of the Caucasus region_e due to the confrontation between Russia_{subj} and Turkey_{obj} is not necessary, although there is a danger»
- ② We predict a sentiment label of a pair (Subject→Object) in following formats:
 - **Two-scale** positive or negative (classification);
 - Three-scale positive, negative or neutral (extraction).

Context as a sequence of «terms»

Terms:

- Words;
- Entities (Masked);
- Frames;
- Tokens;

Talking about the separation of the Caucasus region_e due to the confrontation between Russia_{subj} and Turkey_{obj} is not necessary, although there is a danger.

Input embedding

- Pretrained Word2Vec model (size of 1000);
- Additional parameters (size of 5 each):
 - Distance embedding is vectorized distance in terms from attitude participants of entry pair (E_{subj} and E_{obj} respectively) to a given term;
 - Closest to synonym distance embedding is a vectorized abs. distance in terms from a given term towards the nearest entity, synonymous to E_{subi} and E_{obi} ;
 - Part-of-speech embedding;
 - A0→A1 polarity embedding is a vectorized «positive» or «negative» value for frame entries in RuSentiFrames;

What is Attention?

Attention embed options

Attention Modules (Types and References)

- Based on input embedding: AttCNN^[1] (PCNN^[2]);
- Based on hidden states: Att-BLSTM^[3] (BiLSTM as an encoder);

^[1] Yatian Shen and Xuanjing Huang. "Attention-Based Convolutional Neural Network for Semantic Relation Extraction". In: *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers* (Dec. 2016), pp. 2526–2536.

^[2] Nicolay Rusnachenko and Natalia Loukachevitch. "Using convolutional neural networks for sentiment attitude extraction from analytical texts". In: *EPiC Series in Language and Linguistics* 4 (2019), pp. 1–10.

^[3] Peng Zhou et al. "Attention-based bidirectional long short-term memory networks for relation classification". In: *Proceedings of the 54th Annual Meeting of the ACL (Volume 2: Short Papers)* (2016), pp. 207–212.

Feature-Attentive context encoder

• Feature f: attitude ends, frames;

$$h_i = [x_i, f]$$

Weight calculation:

$$u_i = W_a \left(anh (W_{we} \cdot h_i + b_{we}) \right) + b_a$$

Attention Embedding:

$$\alpha = softmax(u)$$

$$\hat{s} = \sum_{i=1}^{n} x_i \cdot \alpha_i$$

$$s_f = avg_{i=1..k}(\hat{s})$$

Self-Attentive context encoder

Hidden state w.

$$h_i = \overrightarrow{h_i} + \overleftarrow{h_i}, i \in \overline{1..n}.$$

Weight calculation:

$$m_i = \tanh(h_i)$$

$$u_i = m_i^T \cdot \mathbf{w}$$

Attention Embedding:

$$\alpha = softmax(u)$$

$$s = \tanh(H \cdot \alpha)$$

Output Class Probabilities

s – is a context embedding;

$$r = W_r \cdot \tanh(s) + b_r$$

$$o = softmax(r)$$

$$label = argmax(o)$$

Resources Attention Models Experiments Results Weight Distribution Analysis Conclusion

Experiments

Experiment Details

- Experiment formats:
 - Two-scale pos/neg (classification);
 - Three-scale pos/neg + neutral (extraction).
- Output: document level opinions;
- Evaluation:
 - Using F1-score measure;
 - F_{avg} 3-Fold CV average results;
 - F_{test} Fixed Test sep. of RuSentRel.

- Training Formats:
 - **SL** RuSentRel;
 - DS RuSentRel + RuAttitudes for fine-tuning.
- Model groups:
 - BiLSTM;
 - PCNN;
 - CNN.

Results

		2-scale		3-scale	
Model	DS	$F1_{avg}$	F1 _{test}	$F1_{avg}$	$F1_{test}$
Att-BLSTM	√	0.67	0.68	0.33	0.38
BiLSTM	\checkmark	0.65	0.70	0.31	0.39
Att-BLSTM		0.64	0.68	0.31	0.32
BiLSTM		0.63	0.67	0.29	0.34
$AttPCNN_e$	√	0.65	0.66	0.31	0.41
PCNN	\checkmark	0.60	0.63	0.32	0.40
$AttPCNN_e$		0.62	0.67	0.30	0.35
PCNN		0.61	0.66	0.29	0.32
$AttCNN_e$	√	0.63	0.66	0.32	0.41
CNN	\checkmark	0.63	0.68	0.31	0.40
$AttCNN_e$		0.64	0.62	0.27	0.30
CNN		0.55	0.59	0.27	0.31

Weight Distribution Analysis

- Considering models of 3-scale experiment;
- Term groups presented in analysis:
 - Frames;
 - Words → Nouns, Verbs, Prepositions, Sentiment²;
- Context-level weight of a particular term group is a weighted sum of terms which both appear in the context and belong to the corresponding term group.
- We utilize distributions (ρ_S, ρ_N) of context-levels weights across:
 - Sentiment contexts (S) contexts labeled with positive or negative labels;
 - Neutral contexts (N) contexts labeled as neutral;

² Contains words and expressions of the Russian language with sentiment labels

Weight Distribution Analysis (AttCNN)

Weight Distribution Analysis (Att-BLSTM)

Weight distribution visualization on sentiment contexts

Att-BLSTM (Supervised Learining)

leading such a game , \mathbf{E}_{subj} will finally $lose_{pos}$ $trust-in_{pos}$ \mathbf{E}_{obj} and country \mathbf{E}

But \mathbf{E}_{subj} consequently emphasizes its $interest_{pos}$ in $normalizing_{pos}$ relationships with \mathbf{E}_{obj} (<NUM> february <NUM> year <DOT> took place the visit E at E and its $conversation_{pos}$ with the spiritual leader E and with president E)

Att-BLSTM (Supervised Learining + Distant Supervision)

leading such a game , \mathbb{E}_{subj} will finally $lose_{pos}$ $trust-in_{pos}$ \mathbb{E}_{obj} and country \mathbb{E}

But \mathbf{E}_{subj} consequently emphasizes its $interest_{pos}$ in $normalizing_{pos}$ relationships with \mathbf{E}_{obj} (<NUM> february <NUM> year <DOT> took place the visit \mathbf{E} at \mathbf{E} and its $conversation_{pos}$ with the spiritual leader \mathbf{E} and with president \mathbf{E})

... Subject_e ... {
$$frame_{A0 \rightarrow A1}$$
}_k ... Object_e ...

Conclusion

- We consider sentiment attitude extraction task as two-scale and three-scale classification tasks.
- We study the attention-based neural networks. Application of Distant Supervision results in 10% increase by F1 for models that with non-attentive encoders; replacing the latter with attentive encoders results in 3% increase by F1.
- Model with self-attentive encoders (Att-BLSTM) illustrates the greatest discrepancy in weight distributions on sentiment and neutral contexts across all the term groups presented in the analysis;

Links

- Resources:
 - RuSentRel: https://github.com/nicolay-r/RuSentRel/tree/v1.1
 - RuSentiFrames: https://github.com/nicolay-r/RuSentiFrames/tree/v1.0
 - RuAttitudes: https://github.com/nicolay-r/RuAttitudes/tree/v1.0
- Word2Vec News embedding³;
- Seperiments⁴ (Based on AREkit⁵ framework)

³ http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000_20_2015.bin.gz

⁴ https://github.com/nicolay-r/attitude-extraction-with-attention-and-ds

⁵ https://github.com/nicolay-r/AREkit/blob/0.20.3-wims-rc