KCSE 2024 ANALYSIS

January 10, 2025

0.0.1 Analysis Summary

The dataset represents the distribution of students in KCSE 2024 in Kenya, categorized by gender (boys and girls) and their grades. Here's a brief summary of the analysis:

1. Total Students by Gender:

- A pie chart visualizes the overall proportion of boys and girls in the dataset.
- This shows a near-equal representation of both genders, with slightly more boys than girls.

2. Key Insights:

- **Gender Balance**: Boys and girls have a strong correlation, meaning trends in performance are consistent across genders.
- **Grade Trends**: The dataset indicates that most students fall in lower grades, especially D, D-, and D+, while very few achieve top grades like A and A-.

3. Takeaway:

- The strong gender correlation suggests systemic trends rather than gender-specific issues.
- The visualization highlights areas for targeted intervention, such as improving performance in the lower grades.

The analysis provides a comprehensive view of student performance and gender distribution, which can be used for further planning and decision-making in education policies.

```
[36]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
```

```
'Female': [556, 2840, 8108, 19781, 35397, 50397, 57948, 62606, 68797, U
       ⊶79832, 72181]
      }
      df = pd.DataFrame(data)
[38]: df.head()
[38]:
       Grade Number
                       Male Female
           Α
                 1693
                       1137
                                 556
      1
          A-
                7743
                                2840
                       4903
      2
          B+
                19150 11042
                               8108
      3
           В
                43120 23339
                              19781
           B-
                75347 39950
                              35397
[39]: # Summary statistics
      print(df.describe())
                   Number
                                   Male
                                               Female
     count
                11.000000
                              11.000000
                                            11.000000
             82781.363636 41104.545455 41676.636364
     mean
             56669.545640 27288.853224
                                        29572.959792
     std
     min
              1693.000000
                           1137.000000
                                           556.000000
     25%
             31135.000000 17190.500000
                                        13944.500000
     50%
             99338.000000 48940.000000
                                         50397.000000
                                         65701.500000
     75%
            123833.000000 58131.500000
            153334.000000 79306.000000 79832.000000
     max
[40]: # Highlight grades A to C+ - Direct Entry University
      highlight_grades = ['A', 'A-', 'B+', 'B', 'B-', 'C+']
      colors = ['green' if grade in highlight_grades else 'red' for grade in_

df['Grade']]
      # Plot total number of students per grade
      plt.figure(figsize=(10, 6))
      plt.bar(df['Grade'], df['Number'], color=colors, edgecolor='black')
      plt.title('Total Number of Students per Grade (KCSE 2024)', fontsize=14)
      plt.xlabel('Grade', fontsize=12)
      plt.ylabel('Number of Students', fontsize=12)
      plt.grid(axis='y', linestyle='--', alpha=0.7)
      # Annotate the bars for all grades
      for grade, number in zip(df['Grade'], df['Number']):
         plt.text(grade, number + 3000, f'{number:,}', ha='center', fontsize=10, u
       plt.show()
```



```
[41]: # Bar plot for gender distribution
plt.figure(figsize=(12, 6))
width = 0.35  # Bar width
x = range(len(df['Grade']))

plt.bar(x, df['Male'], width, label='Male', color='blue', alpha=0.7)
plt.bar([i + width for i in x], df['Female'], width, label='Female',
color='pink', alpha=0.7)

plt.title('Gender Distribution Across Grades (KCSE 2024)', fontsize=14)
plt.xlabel('Grade', fontsize=12)
plt.ylabel('Number of Students', fontsize=12)
plt.xticks([i + width/2 for i in x], df['Grade'])
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
[42]: # Calculate percentages
df['Male_Percentage'] = (df['Male'] / df['Number']) * 100
df['Female_Percentage'] = (df['Female'] / df['Number']) * 100

# Line plot for percentage contribution
plt.figure(figsize=(10, 6))
plt.plot(df['Grade'], df['Male_Percentage'], marker='o', label='Male',
color='blue')
plt.plot(df['Grade'], df['Female_Percentage'], marker='o', label='Female',
color='pink')

plt.title('Gender Percentage Contribution by Grade (KCSE 2024)', fontsize=14)
plt.xlabel('Grade', fontsize=12)
plt.ylabel('Percentage (%)', fontsize=12)
plt.legend()
plt.grid(linestyle='--', alpha=0.7)
plt.show()
```


Distribution of Boys and Girls in KCSE 2024

Grade with the highest number of students: D- (153334 students)
Grade with the lowest number of students: A (1693 students)
Mean number of students per grade: 82781.36
Median number of students per grade: 99338.00

```
[45]: # Calculate the correlation between 'Number', 'Male', and 'Female' columns
    correlation_matrix = df[['Number', 'Male', 'Female']].corr()

# Display the correlation matrix
    print(correlation_matrix)

# Create a heatmap of the correlation matrix
    plt.figure(figsize=(8, 6))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Matrix of Numerical Columns')
    plt.show()
```

 Number
 Male
 Female

 Number
 1.000000
 0.996332
 0.996878

 Male
 0.996332
 1.000000
 0.986465

 Female
 0.996878
 0.986465
 1.000000

- 1 1. Gender Parity: Male and female numbers are closely aligned across grades, reflecting balanced gender representation.
- 2 2. Grade Trends Influence All: The strong correlations indicate that trends (increases or decreases) in overall student performance apply equally to both genders.
- 3 3. Strategic Planning: Since male and female numbers move in tandem, strategies to improve student outcomes (e.g., teacher training or additional resources) can be designed for all students rather than gender-specific.