UNIVERSIDAD DE SAN ANDRÉS – Introducción al Razonamiento Matemático Otoño 2021

Práctica 0: Propiedades básicas. Ecuaciones e Inecuaciones

- 1. Para cada uno de los siguientes enunciados: expresar el problema en términos de ecuaciones y resolver:
 - (a) El triple de un número es igual al número aumentado en 8. ¿Cuál es el número?
 - (b) La suma de tres números enteros consecutivos es 63. ¿Cuáles son esos números?
 - (c) La diferencia de los cuadrados de dos números naturales consecutivos es 61. ¿Cuáles son esos números?
 - (d) La suma de los cuadrados de dos números enteros consecutivos es 41. ¿Cuáles son esos números?
 - (e) ¿Cuál es el número que disminuido en sus dos terceras partes equivale a su doble disminuido en 25?
- 2. Un libro de Geografía cuesta el doble de lo que cuesta el de Matemática y éste $\frac{2}{3}$ del de Historia. Se pagaron \$45 por los tres libros. ¿Cuánto cuesta cada libro?
- 3. Dos personas tienen 27 y 15 años de edad. ¿Cuántos años deben transcurrir para que la edad de la mayor sea los $\frac{4}{3}$ de la edad de la menor?
- 4. Hallar los lados de un rectángulo cuya área es 24 sabiendo que la diferencia entre la base y la altura es 2.
- 5. Dados los conjuntos $A = \{x \in \mathbb{R} : 0 < x < 12\}$ y $B = \{x \in \mathbb{R} : x \le 19\}$,
 - (a) Dar 3 números irracionales que pertenezcan al conjunto A.
 - (b) Dar 3 números mayores a 11 que pertenezcan al conjunto B.
 - (c) Calcular $A \cup B$ y $A \cap B$.
 - (d) Expresar A y B como intervalos.
- 6. Expresar los siguientes conjuntos de números reales como intervalos o como unión de intervalos:
 - (a) $A = \{x \in \mathbb{R} : x < 12 \land 0 \le x \le 38 \land x \ne 5\}.$
 - (b) $B = \{x \in \mathbb{R} : x > \sqrt{8} \land \frac{14}{5} < x < \sqrt{23} \}.$
 - (c) $C = \mathbb{R} \setminus [0, 3]$.
 - (d) $D = \{x \in \mathbb{R} : x < -\sqrt{2} \land x^2 \ge 0 \land x < 7\}.$
 - (e) $E = \{x \in \mathbb{R} : 0 \le x \le 5 \lor x < 5\}.$
 - (f) $F = \{x \in \mathbb{R} : 0 \le x \le 3 \lor -2 < x < 5\}.$
 - (g) $G = \{x \in \mathbb{R} : 0 \le x \le 3 \land x < 5\}.$
- 7. Dados los conjuntos
 - $A = \{x \in \mathbb{R} : x > 0\},$ C = [-2, 13], D = (4, 20],
 - $B = \{x \in \mathbb{R} : x < -3\},$
 $E = \{x \in \mathbb{R} : 2 < x < 7\}.$

Averiguar los siguientes conjuntos y representarlos como intervalos o unión de intervalos.

- \bullet $A \cup D$.
- $A \cup B \cup C$.
- $A \cup C$.

- $(C \cap D) \cup E$.
- $C \cap (D \cup E)$.
- $A \setminus E$.

- \bullet $A \setminus B$.
- $A \setminus (C \cap D)$.
- $(C \cap E) \setminus B$.

8. Resolver las siguientes ecuaciones

(a)
$$\frac{2}{3} + 3x = 2x - \frac{1}{5}$$
.

(b)
$$\frac{2x-4}{x-1} = 4$$
.

(c)
$$\frac{-10x+2}{5} = \frac{2-8x}{4} - \frac{1}{10}$$
.

(d)
$$\frac{6x^2 + 2x - 4}{3x + 1} = 2x.$$

(e)
$$\frac{5}{x+3} + \frac{4}{x} = 3$$
.

(f)
$$\frac{1}{\frac{x-2}{x}} + \frac{5}{2(x-2)} = \frac{5x+3}{4x-8}.$$

- 9. Analizar la siguiente lista de propiedades y errores comunes. ¿Cuáles son verdaderas? ¿Cuáles son falsas? En aquellos casos que crea que es verdadera, justifique porqué. En aquellos casos que crea que es falsa, explique porqué y muestre un contraejemplo. Analícelas con detenimiento.
 - $(a+b)^2 = a^2 + b^2 \quad \forall a, b \in \mathbb{R}$
 - $(a+b)^2 = a^2 + 2ab + b^2 \quad \forall a, b \in \mathbb{R}$
 - $a^2 b^2 = (a+b)(a-b) \quad \forall a, b \in \mathbb{R}$
 - $(a-b)^2 = (a+b)(a-b) \quad \forall a, b \in \mathbb{R}$
 - $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d} \quad \forall a, c \in \mathbb{R}, b, d, b+d \in \mathbb{R} \{0\}$
 - $\bullet \ \frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$
 - $\bullet \ \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ac}{bd}$

- $\bullet \ \frac{\frac{a}{\overline{b}}}{\frac{c}{d}} = \frac{ad}{bc}$
- $\bullet \ \sqrt{a^2 + b^2} = a + b$
- $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$
- $\bullet \sqrt{a^2} = a$
- $\bullet \ \sqrt{a^2} = -a$
- $\sqrt{a^2} = |a|$
- $\bullet \sqrt{a}^2 = a$
- |a + b| = |a| + |b|
- |a b| = |a| |b|
- 10. Calcular el cociente y el resto de la división de P(x) por Q(x) en cada uno de los casos.
 - (a) $P(x) = 2x^4 6x^2 16x$, $Q(x) = -x^2 + 2x$.
 - (b) $P(x) = 3x^4 2x$, $Q(x) = 3x^3 4$.
 - (c) $P(x) = x^5 + 3x^2 2x + 1$, Q(x) = x 3.
 - (d) $P(x) = x^4 x^2 + 1$, Q(x) = 2x + 1.
- 11. Factorizar los siguientes polinomios
 - (a) $P(x) = x^2 3x + 2$.

(e) $P(x) = x^3 - 3x^2 + 4$.

(b) $P(x) = -x^2 - 3x + 10$.

(f) $P(x) = x^3 - 1$.

(c) $P(x) = 2x^2 + 5x - 3$.

(g) $P(x) = x^3 + 1$.

(d) $P(x) = x^3 - 6x^2 + 11x - 6$.

- (h) $P(x) = 6x^4 + 5x^3 15x^2 + 4$.
- 12. Para cada una de las siguientes inecuaciones, resolver analíticamente y expresar la solución como unión de intervalos y representar la solución en la recta real.

- (a) 2x 10 < 6
- (b) -2x 10 < 6
- (c) x + 3 < x + 5
- (d) x + 3 < x + 2
- (e) x 10 > 2 2x
- (f) $7x 1 \le 2x + 1$

- (g) -5 < x 4 < 2 x
- (h) $2x 5 \le x 4 \le 2 x$
- (i) $2x 5 \le x 4 \le 3x 2$
- (j) (x-1)(x+2) > 0
- (k) $x^2 36 \ge 0$.
- (1) $x^2 9 \leqslant x 3$