STAT 339: Statistical Theory

Introduction to Statistical Theory

Anthony Scotina

Some "Fun" Stats Games

Game 1: (name withheld)

I'm going to private message each of you some code to run in R!

Run the code and private message me your output.

Game 1: (Spies versus Agents)

Surprise! I choose N of us at random to be spies!

- The remaining 10 N of us are agents.
- Spies and Agents had different success probabilities (i.e., probability of "1")!

Agent success probability: 2/3

Spy success probability: 1/3

If we pool all 10 results, will the combined success probability be...

- 2/3? 😲
- 1/3? 🧐

Game 1: (Spies versus Agents)

It turns out that the combined success probability is (2-p)/3, where p is the proportion of spies.

• How can we use our **DATA** to find p?

Game 2: Cell Phone Battery Life

Suppose we have a random sample of n=10 cell phones, and we record their battery life (in minutes), Y_1,Y_2,\ldots,Y_{10} .

 We assume that the sample comes from an Exponential distribution with density function

$$f(y\mid heta)=rac{1}{ heta}e^{-y/ heta},\quad y>0,$$

where θ is unknown.

• Note: If $Y \sim Exp(heta)$, then the expected value E(Y) = heta.

Using the information provided to your group (I'll message you), try to estimate θ .

- Group 1: The Raw Data $\{393, 21, 211, 514, 73, 108, 116, 708, 387, 241\}$
- ullet Group 2: Sample Minimum $Y_{(1)}=21$
- ullet Group 3: Sample Mean $ar{Y}=277.2$

Random Variables and Statistics

(Some Probability Review)

1. Random Variables

A random variable (RV) is a function from the sample space S to the real numbers, \mathbb{R} .

- ullet Random variables are typically denoted by capital letters, for example, Y.
- Observed values of random variables are typically denoted by *lower-case* letters, for example, y.

Discrete RVs: Numerical variables that can take whole, non-negative numbers

• Number of calls to a call center (0, 1, 2, ...)

Continuous RVs: Numerical variables that can take an infinite range of numbers

ullet Lengths of calls to a call center: $c\in [0,\infty)$

2. Probability Functions

Probability functions are theoretical models for some frequency distribution of a population.

- For example, we might choose to model cell phone battery life times, Y_1, Y_2, \ldots, Y_n with an Exponential distribution that has scale parameter, θ :
 - $\circ Y_i \sim Exponential(\theta)$
- ullet Under this model, Y_i has probability density function (PDF)

$$f(y_i \mid heta) = rac{1}{ heta} e^{-y_i/ heta}, \quad y > 0.$$

A valid probability function has the following properties:

Continuous RVs

1.
$$f(y \mid \theta) \ge 0$$
 for all y

2.
$$\int_{-\infty}^{\infty} f(y) \, dy = 1$$

Discrete RVs

$$1.0 \le p(Y = y \mid \theta) \le 1$$
 for all y

2.
$$\sum_{y} p(Y=y\mid heta)=1$$

3. Linear Combinations of RVs

Let Y_1,Y_2,\ldots,Y_n denote a random sample of independent and identically distributed observations with finite mean $E(Y_i)=\mu$ and variance $Var(Y_i)=\sigma^2$.

Then for a linear combination

$$U = a_1 Y_1 + a_2 Y_2 + \dots + a_n Y_n,$$

- $E(U) = a_1 \mu + a_2 \mu + \cdots + a_n \mu = \sum_{i=1}^n a_i \mu$
- $Var(U) = a_1^2 \sigma^2 + a_2^2 \sigma^2 + \dots + a_n^2 \sigma^2 = \sum_{i=1}^n a_i^2 \sigma^2$

What does this say about the **sample mean,** $ar{Y} = rac{1}{n} \sum_{i=1}^n Y_i$?

4. Order Statistics

For random variables Y_1, Y_2, \ldots, Y_n , the **order statistics** are the random variables $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$, where:

- $Y_{(1)} = \min(Y_1, Y_2, \dots, Y_n)$
- ullet $Y_{(2)}=$ the second-smallest of Y_1,Y_2,\ldots,Y_n
- . . .
- ullet $Y_{(n-1)}=$ the second-largest of Y_1,Y_2,\ldots,Y_n
- $Y_{(n)} = \max(Y_1, Y_2, \dots, Y_n)$
- ${\color{red} f \& }$ For now, we'll assume that the Y_i are iid and ${\color{red} f continuous}$ RVs with:
 - Distribution function $F(y) = P(Y \leq y)$
 - Density function f(y) = F'(Y)

4. Order Statistics

PDF for Minimum

In STAT 338, we derived the PDF for

$$Y_{(1)}=\min(Y_1,Y_2,\ldots,Y_n)$$

by first finding the distribution function, $P(Y_{(1)} \leq y)$.

• Because $Y_{(1)}$ is the minimum of Y_1,Y_2,\ldots,Y_n , the event $(Y_{(1)}>y)$ occurs if and only if each of the $(Y_i>y)$ events occur for $i=1,2,\ldots,n$:

$$egin{aligned} P(Y_{(1)} > y) &= P(Y_1 > y, Y_2 > y, \dots, Y_n > y) \ &= P(Y_1 > y) P(Y_2 > y) \cdots P(Y_n > y) \end{aligned}$$

It turns out that the PDF for $Y_{(1)}$ is given by

$$f(1)(y) = n[1 - F(y)]^{n-1}f(y)$$

4. Order Statistics

Exponential Minimum Order Statistic

Let Y_1,Y_2,\ldots,Y_n denote a random sample of cell phone battery lifetimes from an $Exponential(\theta)$ distribution with PDF

$$f(y_i \mid heta) = rac{1}{ heta} e^{y_i/ heta}, \quad y_i > 0.$$

Let's show that $Y_{(1)} \sim Exponential(heta/n)$.

A Note on Notation

In STAT 338, we would often write probability functions as follows:

$$f(y_i) = rac{1}{ heta} e^{-y_i/ heta}, \quad y>0,$$

rather than using $f(y_i \mid \theta)$.

• In STAT 339, we'll often add the

 $|\theta$

to the $f(y_i)$ to emphasize that the probability function depends explicitly on the value of the parameter θ .

- \circ A goal in this class will be to gather insight on the parameter, θ .
- Each named probability distribution (e.g., Exponential, Binomial, Normal, ...) has a different probability function with different parameter(s).
 - See the probability distribution cheatsheet!