Théorie des graphes.

Exemple 1

Certains sommets sont reliés par des arcs.

Pour définir un graphe, il faut préciser la liste de tous ses sommets et de tous ses arcs.

Les arcs sont *orientés* : dans l'exemple précédent, il existe un arc $a \rightarrow b$, mais pas d'arc $b \rightarrow a$.

On dit donc que ce graphe est orienté.

1. Vocabulaire

l'**origine** d'un arc $x \rightarrow y$ est ...

la **destination** d'un arc $x \rightarrow y$ est ...

une **boucle** est un arc $x \rightarrow ...$

un **successeur** de x est un sommet y tel qu'il existe un arc ... \rightarrow ...

le nombre de successeurs d'un sommet x est appelé « degré sortant de x »

un **prédécesseur** de y est un sommet x tel qu'il existe un arc ... \rightarrow ...

le nombre de prédécesseur d'un sommet y est appelé « degré entrant de y » un sommet **isolé** n'a ni prédécesseur ni successeur.

l'ordre d'un graphe est le nombre total de sommets de ce graphe

Avec le graphe donné en exemple 1 on a :

Tableau des successeurs:

Sommet	a	ь	с	d
Successeurs				

Tableau des prédécesseurs :

Sommet	a	ь	c	d
Prédécesseurs				

2. Matrice d'adjacence

La matrice d'adjacence d'un graphe orienté d'ordre n (dont les sommets sont numérotés de 1 à n) est la matrice carrée de taille n dont le terme $t_{i,j}$ situé à la ligne n°i et à la colonne n°j est égal au **nombre d'arêtes** reliant i à j (c'est à dire d'origine i et d'extrémité j).

La matrice d'adjacence du graphe donné en exemple l est :

Remarques:

La somme des termes de la première ligne donne le nombre de du sommet a

La somme des termes de la première colonne donne le nombre de du sommet a.

3. Chemins et puissances de la matrice d'adjacence

Un chemin est une succession d'arcs consécutifs.

La longueur d'un chemin est le nombre d'arcs qui le composent.

Un chemin de longueur p s'écrit donc avec (p+1) sommets, il est possible qu'un même sommet apparaisse plusieurs fois dans un chemin (on dit alors qu'il y a un circuit).

Un **circuit** est un chemin qui commence et termine au même sommet (« on revient au point de départ »). Une boucle est un cas particulier de circuit de longueur 1!

Vocabulaire: un chemin **hamiltonien** est un chemin qui passe exactement une fois par chaque sommet du graphe.

Avec le graphe de l'exemple1:

Chemins de longueur 2 :

Circuit de longueur 1 :

Circuit de longueur 3 :

Chemin hamiltonien:

Propriété : puissances de la matrice d'adjacence

Soit M la matrice d'adjacence associée à un graphe orienté (dont les sommets sont numérotés de 1 à n). Soit $p \in \mathbb{N}$, $p \ge 2$.

Dans la matrice M^p , le terme $t_{i,j}$ situé à la ligne n°i et à la colonne n°j est égal au **nombre de chemins de longueur p** reliant i à j (c'est à dire d'origine i et d'extrémité j)

Avec le graphe de l'exemple1 :

Nombre total de chemins de longueur 3 :

Nombre total de circuits de longueur 3 :

4. Graphes sans circuits, niveau d'un sommet.

Raisonnement 1 : Un graphe d'ordre 4 contient un chemin de longueur 4

- a) Soit M la matrice d'adjacence de ce graphe, que peut-on dire de la matrice M^4 ?
- b) combien de sommets faut-il pour écrire un chemin de longueur 4?
- c) ces sommets peuvent-ils être tous différents?
- d) que peut-on en conclure?

Raisonnement 2: Un graphe d'ordre 4 ne contient aucun chemin de longueur

a) Soit M la matrice d'adjacence de ce graphe, que peut-on dire de la matrice M^4 ?

b) pourquoi ce graphe ne peut-il pas avoir de circuit?

Propriété: soit G un graphe d'ordre n, et M sa matrice d'adjacence, Le graphe G est sans circuits si et seulement si M^n est la matrice nulle.

Définition: dans un graphe sans circuit, le **niveau d'un sommet** est la longueur du plus long chemin arrivant à ce sommet.

Il est facile d'ordonner par niveau les sommets d'un graphe dont on connaît le tableau des prédécesseurs (ou la matrice d'adjacence).

Exemple 2 : Soit G_2 le graphe à 7 sommets défini par le tableau des prédecesseurs :

Sommet	a	b	c	d	e	f	g
Prédécesseurs		a	a,b,e	c, e	a	b,c,d	b, c

Niveau	0	1	2	3	4	
Sommets						

Ceci permet de donner une représentation géométrique « simple » de $\ G_2$.

5. Fermeture transitive d'un graphe : accessibilité

La fermeture transitive d'un graphe s'obtient en ajoutant certains arcs au graphe initial : dès que deux sommets sont reliés par un *chemin*, on ajoute un **arc** entre ces deux sommets.

Pour procéder méthodiquement, on peut utiliser la matrice d'adjacence du

graphe. Dans l'exemple, on a
$$M = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

on en déduit

on en deduit
$$M^{2} = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \text{ et } M^{3} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 2 & 1 & 2 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \text{ et } M^{4} = \begin{pmatrix} 4 & 1 & 3 & 0 \\ 3 & 2 & 3 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 2 & 0 \end{pmatrix}$$

on définit les matrices booléennes :

La matrice de la fermeture transitive de G est la matrice booléenne :

Plus généralement :

Soit G un graphe à n sommets, de matrice d'adjacence M.

La fermeture transitive de G, notée \widehat{G} est le graphe de matrice \widehat{M} (appelée matrice d'accessibilité) correspondant au calcul booléen :

$$\widehat{M} = M [+] M^{[2]} [+] ... [+] M^{[n]}$$

Remarque : les opérations entre crochets sont des opérations booléennes, (en particulier : 1[+]1=1).

En effet : un sommet y est accessible à partir d'un sommet x s'il existe un chemin reliant x à y et ayant pour longueur : soit 1, soit 2, soit ..., soit n

6. Recherche d'un chemin optimal dans un graphe pondéré

On donne un graphe G ci-dessous

A chaque arc du graphe, on associe une valeur numérique (positive) donnée dans le tableau suivant :

	A	В	С	D	Е	F	G	Н	I
A		2	3						
В				5	2				
C				1					
D						1			
Е						3	4		
F							4	3	
G									2
Н									3
I									

- 1) Reporter sur chaque arc la valeur correspondante.
- 2) On souhaite déterminer le chemin de valeur minimale allant de A jusqu'à I

On utilise pour cela un algorithme :

Principe : on attribue à chaque sommet la valeur minimale obtenue parmi tous les chemins qui arrivent à ce sommet en partant de A.

Puisque le graphe est ordonné par niveau, <u>on procède par niveaux croissants</u>.

- la valeur du sommet initial (ici le sommet A) est 0.
- on calcule la valeur de chaque sommet de niveau 1,
 - o pour un sommet S n'ayant qu'un seul prédécesseur P, la valeur à calculer est la somme de la valeur du prédécesseur P et de la valeur de l'arc reliant P à S
 - pour un sommet ayant plusieurs prédécesseurs, on effectue le calcul pour chaque prédécesseur (et chaque arc correspondant), et on garde la valeur minimale.
- On procède de même pour les sommets de niveau 2, puis 3...

Un **chemin optimal** s'obtient « à rebours » : à partir du sommet d'arrivée (ici le sommet I) on sélectionne à chaque étape un prédécesseur optimal (entouré dans le tableau, ou indiqué en indice sur le graphe).

Dans l'exemple,	il y a un seu	l chemin	optimal	allant de	A à I

...