

■ 主要内容:

- 4.1 数据库安全性概述
- 4.2 数据库安全性控制
- 4.3 视图机制
- 4.4 安全审计

第4章 数据库的安全性

4.1 数据库安全性概述

数据库安全性:是指保护数据库以防止非法用户的越权使用、窃取、更改或破坏数据。

- 数据库的安全性可以划分为三个层次:
 - ✔ 网络系统的安全
 - ✓ 操作系统的安全
 - ✓ 数据库管理系统的安全

4.1 数据库安全性概述

◆ 安全标准

- ✓ TCSEC: 可信计算机系统评估准则, 美国国防部
- ✓ ITSEC: 信息技术安全评估准则, 欧洲
- ✓ CTCPSEC:加拿大可信计算机产品评估准则,加拿大
- ✓ CC: 通用准则, ISO (我国采用)

第4章 数据库的安全性

4.2 数据库安全性控制

◆ 数据库系统安全模型

4.2 数据库安全性控制

◆ 数据库安全性控制的常用方法

- ✓用户标识和鉴定
- ✓访问控制
- √视图
- ✓审计
- ✓数据加密

4.2 数据库安全性控制

4.2.1 用户标识与鉴别

用户标识:每个合法用户均被赋予一个身份标识。 身份鉴别:鉴别用户的合法身份。

□身份鉴别方法

- ✓ 静态口令鉴别
- ✔ 动态口令鉴别
- ✓生物特征鉴别
- ✔ 智能卡鉴别

4.2 数据库安全性控制

4.2.2 存取控制

- ◆访问控制机制的组成
 - 定义用户权限
 - 合法权限检查
- ◆常用访问控制方法
 - ●自主访问控制 DAC: C2级、灵活
 - ●强制访问控制 MAC: B1级、严格

4.2 数据库安全性控制

4.2.3 自主访问控制方法 DAC

- ✓ 主体与客体直接关联;
- ✓ 主体的权限需要授权;
- ✓ 具有授权资格的用户 均可实现授权。

计算机与信息学院

4.2 数据库安全性控制

■ 关系数据库系统中的存取权限

对象类型	象类型 对象 操作类型		
	模式	CREATE SCHEMA	
数据库	数据库 基本表 CREATE TABLE, ALTER TABLE		
模式	视图	CREATE VIEW	
	索引	CREATE INDEX	
数据	基本表和视图	SELECT, INSERT, UPDATE, DELETE, REFERENCES, ALL PRIVILEGES	
	属性列	SELECT, INSERT, UPDATE, REFERENCES	of Goraco in Such

4.2 数据库安全性控制

4.2.4 授权: 授予与收回

- 通过 SQL 的 GRANT 语句和 REVOKE 语句实现;
- 用户权限组成:数据对象、操作类型;
- 定义用户访问权限: 定义用户可以在哪些数据库对象上进行哪些类型的

■ 授权GRANT语句

GRANT < 权限 > [,< 权限>] ... [ON < 对象类型 > < 对象名 >] TO <用户>[,<用户>] ... [WITH GRANT OPTION];

Hefei University of Technology 计算机与信息学院

4.2 数据库安全性控制

- 谁可以发出GRANT
 - DBA、对象创建者(Owner)、拥有该权限的用户。
- 可接受权限的用户
 - 一个或多个具体用户、PUBLIC(全体用户)。
- WITH GRANT OPTION子句
- 不允许循环授权:

/* 将t_st表的查询权限授予用户test1 */ Grant select on t st to test1;

/* 将t_c的查询权限授予public */ Grant select on t c to public;

/* 将sc表修改成绩的权限授予test1 grant update(grade) on sc to test1;

/* 将t st插入数据的权限授予test1 grant insert on t st to test1;

4.2 数据库安全性控制

■ 撤销 (收回) 权限 REVOKE REVOKE <权限>[,<权限>] ... [ON <对象类型> <对象名>] FROM <用户> [,<用户>] ...;

4.2 数据库安全性控制

■ 创建用户时初始角色授权

CREATE USER <username>

[WITH] [DBA | RESOURCE | CONNECT]

拥有的权限	可否执行的操作				
	CREATE USER	CREATE SCHEMA	CREATE TABLE	登录数据库 执行数据查询 和操纵	
DBA	可以	可以	可以	可以	
RESOURCE	不可以	不可以	可以	可以	
CONNECT	不可以	不可以	不可以	可以,但必须拥有相应权 限	

计算机与信息学院

4.2 数据库安全性控制

4.2.5 数据库角色

- √ 数据库角色:被命名的一组与数据库操作相关的权限。
- √ 角色是权限的集合。
- ✓ 可以为一组具有相同权限的用户创建一个角色。
- √ 简化授权的过程。
- ✓ **角色的创建:** CREATE ROLE <角色名>;
- ✓ 给角色授权:

GRANT <权限> [, <权限>]... ON <对象类型> 对象名 TO <角色> [, <角色>]...;

4.2 数据库安全性控制

● 将一个角色授予其他的角色或用户:

GRANT <角色1> [, <角色2>]... TO <角色3> [, <用户1>]... [WITH ADMIN OPTION];

● 角色权限的收回:

REVOKE <权限> [, <权限>]... ON <对象类型> <对象名> FROM <角色> [, <角色>]...;

4.2 数据库安全性控制

√ 級底盘标化 (Label)

- 主体的敏感度标记称为许可证级别;
- ●客体的敏感度标记称为密级;

√ 预制存取控制规则

- (1) 仅当主体的许可证级别大于或等于客体的密级时,该主体才能读 取相应的客体;
- (2) 仅当主体的许可证级别等于客体的密级时,该主体才能写相应的 客体;

修正规则: 当主体的许可证级别 <= 客体的密级时, 主体能写客体

第4章 数据库的安全性

4.3 视图机制

◆ 作用: 把要保密的数据对无权存取这些数据的用户隐藏起来, 对数据提供一定程度的安全保护。

CREATE VIEW CS_Student AS

SELECT * FROM Student WHERE Sdept='CS';

GRANT SELECT ON CS_Student TO $\pm \Psi$; GRANT ALL PRIVILIGES ON CS_Student TO 张明;

Hefei University of Technology 计算机与信息学院

4.4 审计

■ AUDIT和NOAUDIT语句

AUDIT 语句:设置审计功能 NOAUDIT 语句: 取消审计功能

- 用户级审计: 一般用户使用,对自己的数据对象进行审计。
- 系统级审计: DBA设置,监测成功或失败的登录、授权或收回操作,以 及其他系统级权限的操作。

● 审计设置示例

AUDIT ALTER, UPDATE ON SC:

