Пусть полное множество  $U = \{1; 2; 3; 4; 5\}$  и множество  $M = \{1; 4\}, N = \{2; 5\},$  тогда  $N \cup \overline{M}$  равен

A.  $\{2; 3; 5\}$ 

C.  $\{1; 2; 4; 5\}$ 

B. {1; 3; 4}

D.  $\{2; 3; 4; 5\}$ 

# Задание 2

$$\frac{5(1+i^3)}{(2+i)(2-i)}$$
 равно

A. -1

C. 1 - i

B. 1

D. 1 + i

### Задание 3

Известно, что векторы  $\vec{a}=(3;1), \vec{b}=(2;2)$  и тогда косинус угла между векторами  $\vec{a}+\vec{b}$  и  $\vec{a}-\vec{b}$  равен

A.  $\frac{1}{17}$ 

C.  $\frac{\sqrt{5}}{5}$ 

B.  $\frac{\sqrt{17}}{17}$ 

D.  $\frac{2\sqrt{5}}{5}$ 

# Задание 4

На факультете искусств одной школы учатся 4 человека, по 2 в каждом из двух классов. Вероятность того, что 2 из этих 4 учеников будут случайным образом выбраны из разных классов для организации школьной художественной выставки, равна

A.  $\frac{1}{6}$ 

C.  $\frac{1}{2}$ 

B.  $\frac{1}{3}$ 

D.  $\frac{2}{3}$ 

# Задание 5

Обозначим за  $S_n$  сумму первых n членов арифметической прогрессии  $\{a_n\}$ , если  $a_2+a_6=10$  и  $a_4a_8=45$ , то  $S_5$  равно

A. 25

C. 20

B. 22

D. 15

При выполнении блок-схемы, указанной справа, значение B= на выходе равно:

- A. 21
- B. 34

- C. 55
- D. 89



### Задание 7

Пусть  $F_1, F_2$  – два фокуса эллипса  $C: \frac{x^2}{5} + y^2 = 1$ , а точка P лежит на C. Если  $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = 0$ , то  $|PF_1| \cdot |PF_2| =$ 

A. 1

C. 4

B. 2

D. 5

### Задание 8

Уравнение касательной к кривой  $y=\frac{e^x}{x+1}$  в точке  $\left(1;\frac{e}{2}\right)$  имеет вид

A. 
$$y = \frac{e}{4}x$$

C. 
$$y = \frac{e}{4}x + \frac{e}{4}$$

$$B. \ y = \frac{e}{2}x$$

D. 
$$y = \frac{e}{2}x + \frac{3e}{4}$$

# Задание 9

Известно, что гипербола  $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad (a>0,b>0)$  имеет эксцентриситет  $\sqrt{5}$ , а асимптота C пересекает окружность  $(x-2)^2 + (y-3)^2 = 1$  в точках A,B. Тогда |AB| =

A. 
$$\frac{\sqrt{5}}{5}$$

C. 
$$\frac{3\sqrt{5}}{5}$$

B. 
$$\frac{2\sqrt{5}}{5}$$

D. 
$$\frac{4\sqrt{5}}{5}$$

В треугольной пирамиде PABC,  $\triangle ABC$  – равносторонний треугольник со сторонами по 2,  $PA=PB=2,\,PC=\sqrt{6},\,$  объем пирамиды равен

A. 1

C. 2

B.  $\sqrt{3}$ 

D. 3

## Задание 11

Известна функция  $f(x)=e^{-(x-1)^2}.$  При  $a=f\left(\frac{\sqrt{2}}{2}\right),\ b=f\left(\frac{\sqrt{3}}{2}\right),\ c=f\left(\frac{\sqrt{6}}{2}\right),$  тогда

A. b > c > a

C. c > b > a

B. b > a > c

D. c > a > b

### Задание 12

График функции y=f(x) получен из графика  $y=\cos\left(2x+\frac{\pi}{6}\right)$  смещением на  $\frac{\pi}{6}$  влево, тогда количество точек пересечения графика y=f(x) с прямой  $y=\frac{1}{2}x-\frac{1}{2}$  равно

A. 1

C. 3

B. 2

D. 4

### Задание 13

Пусть S — сумма первых n членов геометрической прогрессии  $b_n$ . Пусть  $8S_6=7S_3$ . Найдите знаменатель прогрессии  $b_n$  \_\_\_\_\_

#### Задание 14

Если  $f(x) = (x-1)^2 + ax + \sin\left(x + \frac{\pi}{2}\right)$  – чётная функция, то  $a = \underline{\hspace{1cm}}$ .

#### Задание 15

Если x, y удовлетворяют ограничениям

$$\begin{cases} 3x - 2y \leqslant 3, \\ -2x + 3y \leqslant 3, \\ x + y \geqslant 1, \end{cases}$$

Тогда максимальное значение z = 3x + 2y равно \_\_\_\_\_\_.

#### Задание 16

В кубе  $ABCDA_1B_1C_1D_1$ , AB=4, O – середина  $AC_1$ . Дан шар с центром в точке O. Найдите в каком диапазоне находится радиус шара, если поверхность сферы и ребра куба имеют хотя бы одну общую точку. \_\_\_\_\_\_.

В  $\triangle ABC$  стороны a, b и c лежат напротив углов A, B и C соответственно. Известно, что  $\frac{b^2+c^2-a^2}{\cos A}=2.$ 

- а) Найдите bc.
- б) Дополнительно известно, что  $\frac{a\cos B b\cos A}{a\cos B + b\cos A} \frac{b}{c} = 1$ . Найдите площадь  $\triangle ABC$ .

#### Задание 18

Отрезок соединяющий вершины  $A_1$  и C треугольной призмы  $ABCA_1B_1C_1$ ,  $A_1C$  перпендикулярен плоскости ABC. Основанием призмы является  $\triangle ABC$  с прямым углом C.

- а) Докажите, что плоскость  $ACC_1A_1$  перпендикулярна плоскости  $BB_1C_1C$ .
- б) Пусть  $AB = A_1 B$  и  $AA_1 = 2$ . Найдите высоту четырёхугольной пирамиды  $A_1 B B_1 C_1 C$ .



### Задание 19

Был проведен эксперимент по изучению воздействия озона со следующим протоколом: отобрали 40 мышей, 20 из которых были случайным образом распределены в тестовую группу и 20 – в контрольную. Мышей в тестовой группе содержали в сильно озонированной среде, а мышей в контрольной группе – в нормальной среде, и через некоторое время подсчитали увеличение массы тела каждой мыши в граммах. Результаты были следующими.

Прирост веса мышей контрольной группы в порядке убывания составил

Прирост веса мышей в тестовой группе, в порядке убывания, был следующим

а) Рассчитайте среднее арифметическое значение для тестовой группы.

б)

1. Найдите медиану m увеличения массы тела 40 мышей, а затем подсчитайте количество данных меньше m и не меньше m в двух выборках соответственно, чтобы заполнить таблицу, как показано ниже

|                    | < m | $\geqslant m$ |
|--------------------|-----|---------------|
| контрольная группа |     |               |
| тестовая группа    |     |               |

2. На основании списка, приведенного в пункте 1, можно ли с уверенностью в 95% сделать вывод о том, что существует разница в приросте массы тела между мышами, находящимися в среде с высокой концентрацией озона и в нормальной среде? Приложение:

$$K^{2} = \frac{n(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$$

### Задание 20

Дана функция

$$f(x) = ax - \frac{\sin x}{\cos^2 x}, x \in \left(0; \frac{\pi}{2}\right)$$

- а) Пусть a = 1, докажите, что функция f(x) монотонна;
- б) При каких значениях параметра a неравенство  $f(x) + \sin x < 0$  выполнено при всех  $x \in \left(0; \frac{\pi}{2}\right)$

#### Задание 21

Прямая x-2y+1=0 и парабола  $y^2=2px\ (p>0)$  пересекаются в двух точках A и B, причем  $|AB|=4\sqrt{15}.$ 

- а) Найдите p.
- б) Пусть F фокус параболы , M и N две точки на параболе, такие что  $\overrightarrow{FM} \cdot \overrightarrow{FN} = 0$ . Найдите минимальное значение площади  $\triangle MFN$ .

#### Задание 22

Прямая  $l: \begin{cases} x=2+t\cos\alpha, \\ y=1+t\sin\alpha. \end{cases}$  пересекает положительную полуось x и положительную полуось y в точках A и B, соответственно. Так же известно, что  $|PA|\cdot |PB|=4$ , где P(2,1) .

- а) Найдите  $\alpha$ .
- б) Как будет выглядеть уравнение прямой l в полярной системе координат, центр которой находится в точке (0;0) и полярная ось совпадает с положительным направлением оси x?

#### Задание 23

Пусть a > 0 и функция f(x) = 2|x - a| - a.

- а) Найдите множество решений неравенства f(x) < x.
- б) Найдите a, если область, ограниченная кривой y = f(x) и осью x, имеет площадь 2.