LUCRARE DE LABORATOR NR.1

Tema: Programarea algoritmilor cu structură liniară

Scopul lucrării: Însuşirea, folosirea și obținerea deprinderii practice de elaborare și depanare a programelor liniare.

Sarcina:

Să se elaboreze schema bloc și programul pentru calcularea valorilor expresiilor matematice folosind datele indicate din **Tabelul 1.**

Tabelul 1

Nr. Variante	Expresia matematica	Date
1	$a = \frac{2\cos\left(x - \frac{\pi}{6}\right)}{\frac{1}{2} + \sin^2 y}$ $b = 1 + \frac{z^2}{3 + \frac{z^2}{5}}$	x = 1.426 y = -1.220 z = 3.5
2	$a = x^{\frac{y}{x}} - \sqrt[3]{y/x} $ $b = (y-x)\frac{\frac{y-z}{y-x}}{1+(y-x)^2}$	x = 1.825 $y = 18.225$ $z = -3.298$
3	$s = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$ $z = x(\sin x^3 + \cos^2 y)$	x = 0.335 y = 0.025
4	$w = e^{-bt} \sin(at + b) - \sqrt{ bt + a }$ $s = b\sin(at^2 \cos 2t) - 1$	a = -0.5 $b = 1.7$ $t = 0.44$

5	$w = \sqrt{x^2 + b} - b^2 \sin^3 \frac{x + a}{x}$ $y = \cos^2 x^3 - \frac{x}{\sqrt{a^2 + b^2}}$	a = 1.5 $b = 15.5$ $x = -2.9$
6	$s = x^3 t g^2 (x+b)^2 + \frac{a}{\sqrt{x+b}}$ $Q = \frac{bx^2 - a}{e^{ax} - 1}$	a = 16.5 $b = 3.4$ $x = 0.61$
7	$R = \frac{x^2(x+1)}{b} - \sin^2(x+a)$ $S = \sqrt{\frac{xb}{a}} + \cos^2(x+b)^3$	a = 0.7 $b = 0.05$ $x = 0.5$
8	$y = \sin^3(x^2 + a)^2 - \sqrt{\frac{x}{b}}$ $z = \frac{x^2}{a} + \cos(x + b)^3$	a = 1.1 $b = 0.004$ $x = 0.2$
9	$f = \sqrt[3]{m * tg(t) + c * \sin(t) }$ $z = m * \cos(bt \sin(t)) + c$	m = 2 $b = -1$ $t = 1.2$ $b = 0.7$
10	$y = b * tg^{2}x - a/\sin^{2}\left(\frac{x}{a}\right)$ $d = ae - \sqrt{a * \cos(\frac{bx}{a})}$	a = 3.2 $b = 17.5$ $x = -4.8$
11	$f = \ln(a + x^2) + \sin^2(\frac{x}{b})$ $z = \frac{e^{-cx}(x + \sqrt{x + a})}{x - \sqrt{ x - b }}$	a = 10.2 $b = 9.2$ $x = 2.2$ $c = 0.5$

12	$y = \frac{a^{2x} + b^{-x}\cos(a+b)x}{x+1}$ $R = \sqrt{x^2 + b} - b^2\sin^3\frac{x+a}{x}$	a = 0.3 $b = 0.9$ $x = 0.61$
13	$z = \sqrt{ax \sin 2x + e^{-2x}(x+b)}$ $w = \cos^2 x^3 - \frac{x}{\sqrt{a^2 + b^2}}$	a = 0.5 $b = 3.1$ $x = 1.4$
14	$U = \frac{a^{2}x + e^{-x}\cos(bx)}{bx - e^{-x}\sin(bx) + 1}$ $f = \cos^{2}x^{3} - \frac{x}{\sqrt{a^{2} + b^{2}}}$	a = 0.5 $b = 2.9$ $x = 0.3$
15	$z = \frac{\sin x}{\sqrt{1 + m^2 \sin^2 x}} - cm \ln mx$ $s = e^{-ax} \sqrt{x + 1} + e^{-bx} \sqrt{x + 1.5}$	m = 0.7 $c = 2.1$ $x = 1.7$ $a = 0.5$ $b = 1.08$