Lecture 4: Random finite sets Version May 27, 2019

Multi-Object Tracking

Section 1: Introduction to week 4

Multi-Object Tracking

Random finite sets: introduction

Multi-Object Tracking

PREVIOUS WEEK

State is a matrix

$$X_k = \begin{bmatrix} x_k^1 & x_k^2 & \dots & x_k^n \end{bmatrix}.$$

- Number of objects, n, is known and constant.
- Objects are present at all times.

Measurement is a matrix

$$Z_k = \Pi(O_k, C_k).$$

– Here O_k and C_k are independent matrices representing object and clutter detections.

OBSERVATIONS AND REFLECTIONS (FROM VIDEO)

Properties

- Objects appear and disappear.
- We care about states of present objects.
- Objects are not ordered.

STATE REPRESENTATION

State representation

We use a set

$$\mathbf{x}_k = \left\{x_k^1, \dots, x_k^{n_k}\right\}$$

to represent the state.

- Why sets?
 - sets are invariant to order,
 - easy to add/remove elements,
 - the set of state vectors is our quantity of interest,
 - one-to-one relation between physical reality and the set.

A possible state sequence

- A state sequence in 2D.
- Two objects present from time 3 to 23.

BAYESIAN FILTERING RECURSION FOR MOT

• Both \mathbf{x}_k and \mathbf{z}_k are random finite sets (RFSs).

Bayesian filtering recursions

Prediction:
$$p(\mathbf{x}_k|\mathbf{z}_{1:k-1}) = \int p(\mathbf{x}_k|\mathbf{x}_{k-1})p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1}) \, \delta \mathbf{x}_{k-1}$$
Update:
$$p(\mathbf{x}_k|\mathbf{z}_{1:k}) = \frac{p(\mathbf{z}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{z}_{1:k-1})}{\int p(\mathbf{z}_k|\mathbf{x}_k')p(\mathbf{x}_k'|\mathbf{z}_{1:k-1}) \, \delta \mathbf{x}_k'}.$$

• Pros:

- unified framework to model all aspects of MOT:
 appearing/disappearing objects, object motions and measurements;
- powerful tools for derivations;
- metrics for performance evaluation;
- yields Bayes optimal solutions (in theory).

BAYESIAN FILTERING RECURSION FOR MOT

• Both \mathbf{x}_k and \mathbf{z}_k are random finite sets (RFSs).

Bayesian filtering recursions

Prediction:
$$p(\mathbf{x}_k|\mathbf{z}_{1:k-1}) = \int p(\mathbf{x}_k|\mathbf{x}_{k-1})p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1})\,\delta\mathbf{x}_{k-1}$$
Update:
$$p(\mathbf{x}_k|\mathbf{z}_{1:k}) = \frac{p(\mathbf{z}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{z}_{1:k-1})}{\int p(\mathbf{z}_k|\mathbf{x}_k')p(\mathbf{x}_k'|\mathbf{z}_{1:k-1})\,\delta\mathbf{x}_k'}.$$

- New things to learn about:
 - What is an RFS? Integrals? Distributions? Models? Approximations? MOT algorithms? Metrics? ...

Section 2: Intro to RFSs

Multi-Object Tracking

Random finite sets

Multi-Object Tracking

RANDOM FINITE SETS (RFSs)

Random finite sets: definition

A random variable whose possible outcomes are sets with a finite number of unique elements.

- In an RFS, $\mathbf{x} = \{x^1, \dots, x^n\}$, both the number of elements and the elements themselves may be random.
- The elements of an RFS belong to some space, D, often $D = \mathbb{R}^{n_x}$ or $D = \mathbb{R}^{n_z}$.
- The RFS itself takes values $\mathbf{x} \in \mathcal{F}(D)$, where $\mathcal{F}(D)$ is the set of all finite subsets of D.

RANDOM SETS OF OBJECT STATES

- Let \mathbf{x}_k be an RFS: the set of object states at time k.
- Elements of \mathbf{x}_k belong to \mathbb{R}^{n_x} .

Possible realisations

 $\mathbf{x}=\emptyset$ no objects present $\mathbf{x}=\{x^1\}$ one object, state x^1 $\mathbf{x}=\{x^1,x^2\}$ two objects, states $x^1\neq x^2$:

Example, samples of x_k

RANDOM SETS OF MEASUREMENTS

- Let \mathbf{z}_k be an RFS: the set of measurements at time k.
- Elements of \mathbf{z}_k belong to \mathbb{R}^{n_z} .

Possible realisations

 $\mathbf{z} = \emptyset$ no measurements

 $\mathbf{z} = \{z^1\}$ one measurement, z^1

 $\mathbf{z} = \{z^1, z^2\}$ two measurements, $z^1 \neq z^2$

÷

Example, samples of z_k

A RECAP ON SET PROPERTIES

- Sets are equal if they contain the same elements.
- Sets are invariant to order, e.g., $\{1,2,3\} = \{2,1,3\}$.
- RFSs do not contain repeated elements, i.e., an RFS is never, e.g., {a, b, b, c}.
- A set that does not contain any elements is **empty**, denoted \emptyset or (sometimes) $\{\}$.
- The **union** of two sets **a** and **b** is denoted $\mathbf{a} \cup \mathbf{b} \stackrel{\triangle}{=} \{x : x \in \mathbf{a} \text{ or } x \in \mathbf{b}\}$, e.g., $\mathbf{a} = \{1, 2\}, \mathbf{b} = \{2, 3\} \Rightarrow \mathbf{a} \cup \mathbf{b} = \{1, 2, 3\}.$
- The intersection of two sets **a** and **b** is denoted $\mathbf{a} \cap \mathbf{b} \stackrel{\triangle}{=} \{x : x \in \mathbf{a} \text{ and } x \in \mathbf{b}\}$, e.g., $\mathbf{a} = \{1, 2\}, \mathbf{b} = \{2, 3\} \Rightarrow \mathbf{a} \cap \mathbf{b} = \{2\}.$
- Two sets are **disjoint** if their intersection is empty, e.g., $\mathbf{a} = \{1, 2, 3\}$ and $\mathbf{b} = \{4, 5, 6\}$ are disjoint since $\mathbf{a} \cap \mathbf{b} = \emptyset$.
- The cardinality of a set a is denoted |a|. For a finite set, this is the number of unique elements in a, e.g., a = {4,5,6} ⇒ |a| = 3.

Multiobject pdfs

Multi-Object Tracking

MULTIOBJECT PDFs

Multiobject pdfs

We use the multiobject probability density function (pdf) of an RFS, \mathbf{x} , to describe its distribution.

- A multiobject pdf, $p_{\mathbf{x}}(\{x^1,\ldots,x^n\})$, is a non-negative function on sets that integrates to one.
- It captures both the distribution over cardinality and the distribution over the elements of the set (given the cardinality).
- Since sets are invariant to order so are multiobject pdfs, e.g.,

$$p_{\mathbf{x}}(\{x^1, x^2\}) = p_{\mathbf{x}}(\{x^2, x^1\}).$$

• Whenever we write $\{x^1, \dots, x^n\}$, we assume that $|x^1, \dots, x^n| = n$.

MULTIOBJECT PDFs: EXAMPLES

Example 1

• If $x \sim \mathcal{N}(0,1)$ and $\mathbf{x} = \{x\}$ then

$$p_{\mathbf{x}}(\mathbf{x}) = \begin{cases} \mathcal{N}(v; 0, 1) & \text{if } \mathbf{x} = \{v\} \\ 0 & \text{if } |\mathbf{x}| \neq 1. \end{cases}$$

• For instance, $p_x(\{1, -2\}) = 0$

and $p_{\textbf{x}}(\{-0.6\}) = \mathcal{N}(-0.6; 0, 1) \approx 0.33.$

MULTIOBJECT PDFs: EXAMPLES

Example 2

• If $x^1 \sim \text{unif}(0,1)$ and $x^2 \sim \text{unif}(1,2)$ are independent and $\mathbf{x} = \{x^1, x^2\}$, then

$$p_{\mathbf{x}}(\mathbf{x}) = egin{cases} p_1(v^1)p_2(v^2) + p_1(v^2)p_2(v^1) & ext{if } \mathbf{x} = \{v^1, v^2\} \ 0 & ext{if } |\mathbf{x}|
eq 2, \end{cases}$$

where

$$p_1(x) = egin{cases} 1 & ext{if } 0 < x < 1 \\ 0 & ext{otherwise,} \end{cases}$$
 $p_2(x) = egin{cases} 1 & ext{if } 1 < x < 2 \\ 0 & ext{otherwise.} \end{cases}$

• For instance, $p_x(\{1.5, 0.5\}) = p_1(1.5)p_2(0.5) + p_1(0.5)p_2(1.5) = 0 + 1 = 1$.

INTERPRETATION OF MULTIOBJECT PDFs, $D=\mathbb{R}$

For real valued random variables

$$\Pr\left[x \in (v, v + \Delta v)\right] = \int_{v}^{v + \Delta v} p_x(s) \, \mathrm{d}s \approx p_x(v) \, \Delta v, \qquad (\Delta v \text{ "small"}).$$

Interpretation

• If $\Delta v^1, \ldots, \Delta v^n$ are "small"

$$p_{\mathbf{x}}(\{v^1,\ldots,v^n\})\times\Delta v^1\times\cdots\times\Delta v^n$$

is (approximately) the probability that **x** contains precisely one element in each of the (disjoint) intervals $(v^1, v^1 + \Delta v^1), \dots, (v^n, v^n + \Delta v^n)$.

INTERPRETATION OF MULTIOBJECT PDFs, $D = \mathbb{R}$

Example 2, revisited

• Suppose $v^1 = 1.5$, $v^2 = 0.5$ and $\Delta v^1 = \Delta v^2 = 0.2$. Then,

$$p_{\mathbf{x}}(\{v^1, v^2\}) \Delta v^1 \Delta v^2 = 1 \times 0.2 \times 0.2 = 0.2^2.$$

- Reasonable? Is this the probability that **x** contains precisely one element in (0.5, 0.7) and a second element in (1.5, 1.7)?
- Yes! That probability is

$$\Pr\left[x^1 \in (0.5, 0.7), x^2 \in (1.5, 1.7)\right] = \Pr\left[x^1 \in (0.5, 0.7)\right] \Pr\left[x^2 \in (1.5, 1.7)\right] = 0.2^2.$$

MULTIOBJECT PDFS VS ORDERED DENSITIES

Multiobject pdfs vs ordered densities

• Suppose $\mathbf{x} = \{x^1, \dots, x^n\}$ is an RFS. If $X = \Pi([x^1, \dots, x^n])$, then

$$p_X\left(\left[x^1,\ldots,x^n\right]\right)=\frac{1}{n!}p_{\mathbf{x}}\left(\left\{x^1,\ldots,x^n\right\}\right).$$

- Note: we can order x^1, \ldots, x^n in n! different ways. This gives n! different matrices that correspond to the same set!
- **Example:** if n = 2, $p_X(\{x^1, x^2\}) = p_X([x^1, x^2]) + p_X([x^2, x^1]) = 2p_X([x^1, x^2])$.

Example 2, revisited

• If $x^1 \sim \text{unif}(0,1)$ and $x^2 \sim \text{unif}(1,2)$ are independent and $X = \Pi(x^1,x^2)$, then $p_X(X) = \begin{cases} \frac{1}{2}p_1(v^1)p_2(v^2) + \frac{1}{2}p_1(v^2)p_2(v^1) & \text{if } X = [v^1, v^2] \\ 0 & \text{if } |X| \neq 2. \end{cases}$

where $p_1(x)$ and $p_2(x)$ are the pdfs of x^1 and x^2 , respectively.

The convolution formula

Multi-Object Tracking

CONVOLUTION FORMULA FOR DISCRETE RANDOM VARIABLES (1)

Flipping two coins

- Let us flip a fair coin twice and let x be total number of heads.
- Let x_1 be the number of heads in first flip and x_2 in the second: $x = x_1 + x_2$.
- We get, $Pr[x_i = j] = 1/2$ for i = 1, 2 and j = 0, 1. Also,

$$Pr[x = 0] = Pr[x_1 = 0] Pr[x_2 = 0] = 0.5^2 = 0.25,$$

$$Pr[x = 2] = Pr[x_1 = 1] Pr[x_2 = 1] = 0.5^2 = 0.25,$$

$$Pr[x = 1] = Pr[x_1 = 0] Pr[x_2 = 1] + Pr[x_1 = 1] Pr[x_2 = 0] = 0.5^2 + 0.5^2 = 0.5.$$

CONVOLUTION FORMULA FOR DISCRETE RANDOM VARIABLES (2)

Rolling a die twice

- Let x_1 be the number of dots in first roll, x_2 in the second and let $x = x_1 + x_2$.
- We get, e.g.,

$$\Pr\left[x=4\right] = p_{x_1}(3)p_{x_2}(1) + p_{x_1}(2)p_{x_2}(2) + p_{x_1}(1)p_{x_2}(3) = \frac{3}{36}.$$

Convolution formula for discrete random variable.

- Suppose x_1 and x_2 are independent, integer valued, random variables.
- If $x = x_1 + x_2$,

$$\Pr[x = v] = \sum_{s=0}^{\infty} p_{x_1}(s)p_{x_2}(v - s).$$

• This is the **convolution** $Pr[x = v] = p_{x_1} * p_{x_2}(v)$.

UNION OF TWO INDEPENDENT RFSs (1)

Two independent, scalar, RFSs

- Suppose x¹ and x² are independent RFSs.
- If $\mathbf{x} = \mathbf{x}^1 \cup \mathbf{x}^2$: $p_{\mathbf{x}}(\{1.3\}) = p_{\mathbf{x}^1}(\emptyset)p_{\mathbf{x}^2}(\{1.3\}) + p_{\mathbf{x}^1}(\{1.3\})p_{\mathbf{x}^2}(\emptyset).$

Why ignore $x^1 = x^2 = \{1.3\}$? (Brief intuitive argument)

The above multiobject pdfs are related to probabilities, e.g.,:

$$\Pr[\mathbf{x} = \{\tilde{x}\}, \tilde{x} \in (1.2, 1.4)] = \Pr[\mathbf{x}^1 = \emptyset, \mathbf{x}^2 = \{\tilde{x}\}, \tilde{x} \in (1.2, 1.4)] + \Pr[\mathbf{x}^1 = \{\tilde{x}\}, \mathbf{x}^2 = \emptyset, \tilde{x} \in (1.2, 1.4)].$$

• However, since $\Pr[\mathbf{x}^1=\mathbf{x}^2=\{\tilde{x}\},\tilde{x}\in(1.2,1.4)]=0$ the corresponding density is also zero.

UNION OF TWO INDEPENDENT RFSs (2)

Two independent, scalar, RFSs (continued)

- Suppose x¹ and x² are independent RFSs.
- If $\mathbf{x} = \mathbf{x}^1 \cup \mathbf{x}^2$: $p_{\mathbf{x}}(\{1.3, 2.7\}) = p_{\mathbf{x}^1}(\emptyset)p_{\mathbf{x}^2}(\{1.3, 2.7\}) + p_{\mathbf{x}^1}(\{1.3, 2.7\})p_{\mathbf{x}^2}(\emptyset) + p_{\mathbf{x}^1}(\{1.3\})p_{\mathbf{x}^2}(\{2.7\}) + p_{\mathbf{x}^1}(\{2.7\})p_{\mathbf{x}^2}(\{1.3\}).$

Convolution formula for union of two RFSs

• If \mathbf{x}^1 and \mathbf{x}^2 are independent RFSs, then $\mathbf{x} = \mathbf{x}^1 \cup \mathbf{x}^2$ has the multiobject pdf

$$p_{\mathbf{x}}(\mathbf{x}) = \sum_{\mathbf{x}} p_{\mathbf{x}^1}(\mathbf{x}^1) p_{\mathbf{x}^2}(\mathbf{x} \setminus \mathbf{x}^1).$$

SUMS OVER MUTUALLY DISJOINT SETS

To generalize the formula to unions of n RFSs, let

$$\sum_{\mathbf{x}^1 \uplus \cdots \uplus \mathbf{x}^n = \mathbf{x}}$$

denote summation over all mutually disjoint (and possibly empty) sets $\mathbf{x}^1, \dots, \mathbf{x}^n$ whose union is \mathbf{x} . Recall: \mathbf{x}^1 and \mathbf{x}^2 are disjoint if $\mathbf{x}^1 \cap \mathbf{x}^2 = \emptyset$.

Examples of summations

$$\begin{split} \sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 = \{1\}} f(\mathbf{x}^1, \mathbf{x}^2) &= f(\{1\}, \emptyset) + f(\emptyset, \{1\}) \\ \sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 \uplus \mathbf{x}^3 = \{4\}} f(\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3) &= f(\{4\}, \emptyset, \emptyset) + f(\emptyset, \{4\}, \emptyset) + f(\emptyset, \emptyset, \{4\}) \\ \sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 = \{3.5\}} f(\mathbf{x}^1, \mathbf{x}^2) &= f(\{3, 5\}, \emptyset) + f(\emptyset, \{3, 5\}) + f(\{3\}, \{5\}) + f(\{5\}, \{3\}) \end{split}$$

• Note 1: it holds that $\sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 = \mathbf{x}} f(\mathbf{x}^1, \mathbf{x}^2) = \sum_{\mathbf{x}^1 \subset \mathbf{x}} f(\mathbf{x}^1, \mathbf{x} \setminus \mathbf{x}^1)$.

SUMS OVER MUTUALLY DISJOINT SETS

To generalize the formula to unions of n RFSs, let

$$\sum_{\mathbf{x}^1 \uplus \cdots \uplus \mathbf{x}^n = \mathbf{x}}$$

denote summation over all mutually disjoint (and possibly empty) sets $\mathbf{x}^1, \dots, \mathbf{x}^n$ whose union is \mathbf{x} . Recall: \mathbf{x}^1 and \mathbf{x}^2 are disjoint if $\mathbf{x}^1 \cap \mathbf{x}^2 = \emptyset$.

Examples of summations

$$\begin{split} \sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 = \{1\}} f(\mathbf{x}^1, \mathbf{x}^2) &= f(\{1\}, \emptyset) + f(\emptyset, \{1\}) \\ \sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 \uplus \mathbf{x}^3 = \{4\}} f(\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3) &= f(\{4\}, \emptyset, \emptyset) + f(\emptyset, \{4\}, \emptyset) + f(\emptyset, \emptyset, \{4\}) \\ \sum_{\mathbf{x}^1 \uplus \mathbf{x}^2 = \{3.5\}} f(\mathbf{x}^1, \mathbf{x}^2) &= f(\{3, 5\}, \emptyset) + f(\emptyset, \{3, 5\}) + f(\{3\}, \{5\}) + f(\{5\}, \{3\}) \end{split}$$

• Note 2: every term in $\sum_{\mathbf{x}^1 \uplus \cdots \uplus \mathbf{x}^n = \mathbf{x}}$ assigns elements in \mathbf{x} to $\mathbf{x}^1, \dots, \mathbf{x}^n$.

CONVOLUTION FORMULA FOR INDEPENDENT RFSs

Convolution theorem for independent RFSs

• If $\mathbf{x}^1, \dots, \mathbf{x}^n$ are independent RFSs, then $\mathbf{x} = \mathbf{x}^1 \cup \dots \cup \mathbf{x}^n$ has the multiobject pdf

$$\rho_{\mathbf{x}}(\mathbf{x}) = \sum_{\mathbf{x}^1 \uplus \cdots \uplus \mathbf{x}^n = \mathbf{x}} \prod_{i=1}^n \rho_{\mathbf{x}^i}(\mathbf{x}^i),$$

where the summation is taken over all mutually disjoint (and possibly empty) sets $\mathbf{x}^1, \dots, \mathbf{x}^n$ whose union is \mathbf{x} .

Union of three RFSs

- Suppose x^1, x^2, x^3 are independent RFSs.
- The multiobject pdf of $\mathbf{x} = \mathbf{x}^1 \cup \mathbf{x}^2 \cup \mathbf{x}^3$ then satisfies

$$p_{\mathbf{x}}(\{4\}) = p_{\mathbf{x}^1}(\{4\})p_{\mathbf{x}^2}(\emptyset)p_{\mathbf{x}^3}(\emptyset) + p_{\mathbf{x}^1}(\emptyset)p_{\mathbf{x}^2}(\{4\})p_{\mathbf{x}^3}(\emptyset) + p_{\mathbf{x}^1}(\emptyset)p_{\mathbf{x}^2}(\emptyset)p_{\mathbf{x}^3}(\{4\}).$$

CONVOLUTION FORMULA FOR INDEPENDENT RFSs

Example 2, revisited

• Suppose \mathbf{x}^1 and \mathbf{x}^2 are independent singletons, (for i = 1, 2)

$$\rho_{\mathbf{x}^i}(\mathbf{x}^i) = \begin{cases} \rho_i(x^i) & \text{if } \mathbf{x}^i = \{x^i\} \\ 0 & \text{if } |\mathbf{x}^i| \neq 1. \end{cases}$$

• If $x = x^1 \cup x^2$.

$$\rho_{\mathbf{x}}(\{x^{1}, x^{2}\}) = \rho_{\mathbf{x}^{1}}(\emptyset)\rho_{\mathbf{x}^{2}}(\{x^{1}, x^{2}\}) + \rho_{\mathbf{x}^{1}}(\{x^{1}, x^{2}\})\rho_{\mathbf{x}^{2}}(\emptyset)
+ \rho_{\mathbf{x}^{1}}(\{x^{1}\})\rho_{\mathbf{x}^{2}}(\{x^{2}\}) + \rho_{\mathbf{x}^{1}}(\{x^{2}\})\rho_{\mathbf{x}^{2}}(\{x^{1}\})
= \rho_{1}(x^{1})\rho_{2}(x^{2}) + \rho_{1}(x^{2})\rho_{2}(x^{1}).$$

• We also note that $p_{\mathbf{x}}(\mathbf{x}) = 0$ if $|\mathbf{x}| \neq 2$.

Set integrals

Multi-Object Tracking

SET INTEGRALS

Set integrals: definition

• For $f: \mathcal{F}(D) \to \mathbb{R}$, the set integral is defined as

$$\int f(\mathbf{x}) \, \delta \mathbf{x} = \sum_{i=0}^{\infty} \frac{1}{i!} \int f(\{x^1, \dots, x^i\}) \, dx^1 \cdots dx^i$$
$$= f(\emptyset) + \sum_{i=0}^{\infty} \frac{1}{i!} \int f(\{x^1, \dots, x^i\}) \, dx^1 \cdots dx^i.$$

Example 1, revisited

• Any multiobject pdf must integrate to 1. For $p_{\mathbf{x}}(\mathbf{x}) = \begin{cases} \mathcal{N}(x;0,1) & \text{if } \mathbf{x} = \{x\} \\ 0 & \text{if } |\mathbf{x}| \neq 1, \end{cases}$ the set integral is $\int p_{\mathbf{x}}(\mathbf{x}) \, \delta \mathbf{x} = \int p_{\mathbf{x}}(\{x^1\}) \mathrm{d}x^1 = \int \mathcal{N}(x^1;0,1) \, \mathrm{d}x^1 = 1.$

EXAMPLE 2 AND INTUITION FOR 1/i!

• In example 2, we had

$$p_{\mathbf{x}}(\mathbf{x}) = \begin{cases} p_1(v^1)p_2(v^2) + p_1(v^2)p_2(v^1) & \text{if } \mathbf{x} = \{v^1, v^2\} \\ 0 & \text{if } |\mathbf{x}| \neq 2. \end{cases}$$

Set integral of $p_x(x)$

$$\int p_{\mathbf{x}}(\mathbf{x}) \delta \mathbf{x} = \sum_{i=0}^{\infty} \frac{1}{i!} \int p_{\mathbf{x}}(\{v^1, \dots, v^2\}) dv^1 \cdots dv^i$$

$$= \frac{1}{2} \int p_{\mathbf{x}}(\{v^1, v^2\}) dv^1 dv^2$$

$$= \frac{1}{2} \int (p_1(v^1)p_2(v^2) + p_1(v^2)p_2(v^1)) dv^1 dv^2$$

$$= \frac{2}{2} \int p_1(v^1) dv^1 \int p_2(v^2) dv^2 = 1$$

Why ½? integrating over blue and red areas ⇒ account for same set twice.

ORDERED STATES AND INTUITION FOR 1/i!

For the above toy example,

$$\int_{v^1>v^2} p_{\mathbf{x}}(\{v^1,v^2\}) \mathrm{d} v^1 \mathrm{d} v^2 = \frac{1}{2} \int p_{\mathbf{x}}(\{v^1,v^2\}) \mathrm{d} v^1 \mathrm{d} v^2.$$

• Integrating over $\{(v^1, v^2) : v^1 > v^2\}$ means that we integrate over **every set precisely one time**.

More generally, for scalar states, it holds that

$$\int_{x^1 > \cdots > x^i} f(\lbrace x^1, \ldots, x^i \rbrace) \, dx^1 \cdots dx^i = \frac{1}{i!} \int f(\lbrace x^1, \ldots, x^i \rbrace) \, dx^1 \cdots dx^i.$$

What about when the states are vectors?
 Left hand side does not generalize easily. Instead we use the expression with 1/i!.

SET INTEGRALS AND EXPECTED VALUES

Expected values

• For $f: \mathcal{F}(D) \to \mathbb{R}$, the expected value is

$$\mathbb{E}[f(\mathbf{x})] = \int f(\mathbf{x}) \rho_{\mathbf{x}}(\mathbf{x}) \, \delta \mathbf{x} = \sum_{i=0}^{\infty} \frac{1}{i!} \int f(\{x^1, \dots, x^i\}) \rho_{\mathbf{x}}(\{x^1, \dots, x^i\}) \, dx^1 \cdots dx^i.$$

• The expected value appears, e.g., in the Chapman-Kolmogorov equation

$$p(\mathbf{x}_k|\mathbf{z}_{1:k-1}) = \int p(\mathbf{x}_k|\mathbf{x}_{k-1})p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1})\,\delta\mathbf{x}_{k-1}.$$

Note: the expected value of x is undefined.
 Why? We cannot add (average) sets, e.g., {0.3, 0.7} + {1} + {2,0} is not defined.

CARDINALITY DISTRIBUTIONS

Cardinality distributions

• The cardinality distribution of an RFS, $\mathbf{x} \sim p_{\mathbf{x}}(\cdot)$, is

$$p_{\mathbf{x}}(n) = \Pr[|\mathbf{x}| = n].$$

- Let the Kronecker delta function be denoted $\delta_i = \begin{cases} 1 & \text{if } i = 0 \\ 0 & \text{otherwise.} \end{cases}$
- It then holds that

$$\Pr\left[\left|\mathbf{x}\right| = n\right] = \mathbb{E}\left[\delta_{n-|\mathbf{x}|}\right]$$

$$= \sum_{i=0}^{\infty} \frac{1}{i!} \int \delta_{n-i} \rho_{\mathbf{x}}(\{x^{1}, \dots, x^{i}\}) dx^{1} \cdots dx^{i}$$

$$= \frac{1}{n!} \int \rho_{\mathbf{x}}(\{x^{1}, \dots, x^{n}\}) dx^{1} \cdots dx^{n}.$$

• Note: $\mathbb{E}\left[\delta_{n-|\mathbf{x}|}\right] = 0 \times \Pr[\delta_{n-|\mathbf{x}|} = 0] + 1 \times \Pr[\delta_{n-|\mathbf{x}|} = 1] = \Pr\left[\left|\mathbf{x}\right| = n\right].$

CARDINALITY DISTRIBUTIONS, EXAMPLE 1

As a sanity check, let us compute the cardinality distribution in a trivial example.

Example 1

• The cardinality distribution of

$$\mathbf{x} \sim p_{\mathbf{x}}(\mathbf{x}) = \begin{cases} \mathcal{N}(x; 0, 1) & \text{if } \mathbf{x} = \{x\} \\ 0 & \text{if } |\mathbf{x}| \neq 1, \end{cases}$$

is

$$\Pr\left[\left|\mathbf{x}\right| = n\right] = \frac{1}{n!} \int p_{\mathbf{x}}(\left\{x^{1}, \dots, x^{n}\right\}) dx^{1} \cdots dx^{n}$$

$$= \begin{cases} \int \mathcal{N}(x^{1}; 0, 1) dx^{1} = 1 & \text{if } n = 1\\ 0 & \text{if } n \neq 1. \end{cases}$$

Belief mass functions and probability generating functionals

Multi-Object Tracking

BELIEF MASS FUNCTIONS AND p.g.fl.s

- Belief mass functions and probability generating functionals (p.g.fl.s): alternative descriptors of a RFS x.
- They are very useful for deriving expressions for models and filtering recursions:
 - mathematically rigorous,
 - "turn-the-crank" type of derivations,
 - transparent derivations.
- Important argument for using RFSs/point processes!
- On the other hand:
 - initially complicated to understand,
 - less intuitive compared to multiobject pdfs,
 - beyond the scope of this course.

Section 3: Common RFSs

Multi-Object Tracking

Poisson point processes

Multi-Object Tracking

POISSON POINT PROCESSES

Poisson point process pdf

• The multiobject pdf of a Poisson point process (PPP) x is

$$p_{\mathbf{x}}(\mathbf{x}) = \exp\left(-\int \lambda(x')\,\mathrm{d}x'\right) \prod_{\mathbf{x}\in\mathbf{y}} \lambda(\mathbf{x})$$

where $\lambda(x)$ is its intensity function.

• Using the Poisson rate $\bar{\lambda} = \int \lambda(x) dx$ we can write the pdf as

$$p_{\mathbf{x}}(\{x_1,\ldots,x_n\}) = \exp(-\bar{\lambda}) \prod_{i=1}^n \lambda(x_i).$$

- PPPs are commonly used to model:
 - clutter detections, $D = \mathbb{R}^{n_z}$,
 - appearing objects, $D = \mathbb{R}^{n_x}$,
 - measurements from extended objects, $D = \mathbb{R}^{n_z}$.

PPP, CARDINALITY DISTRIBUTION

Let us rederive the cardinality pmf for a PPP:

$$\Pr[|\mathbf{x}| = n] = \frac{1}{n!} \int p_{\mathbf{x}}(\{x_1, \dots, x_n\}) dx_1 \cdots dx_n$$

$$= \frac{1}{n!} \int \exp(-\bar{\lambda}) \lambda(x_1) \cdots \lambda(x_n) dx_1 \cdots dx_n$$

$$= \frac{1}{n!} \exp(-\bar{\lambda}) \prod_{i=1}^n \int \lambda(x_i) dx_i$$

$$= \frac{1}{n!} \exp(-\bar{\lambda}) \bar{\lambda}^n$$

$$= \operatorname{Po}(n; \bar{\lambda})$$

Example:

This confirms that the cardinality is Poisson distributed.

PPP: GENERATING SAMPLES

Algorithm Sampling a PPP

- 1: Initialize $\mathbf{x} = \emptyset$
- 2: Generate $n \sim Po(\bar{\lambda})$
- 3: **for** i = 1 to n **do**
- 4: Generate $x_i \sim \frac{\lambda(\cdot)}{\lambda}$
- 5: Set $\mathbf{x} = \mathbf{x} \bigcup \{x_i\}$
- 6: end for

Example: PPP samples

Suppose

$$\lambda(x) = 4\mathcal{N}\left(x; \begin{bmatrix} 3\\3 \end{bmatrix}, \mathbf{I}\right) + \mathcal{N}\left(x; \begin{bmatrix} -3\\-3 \end{bmatrix}, \mathbf{I}\right).$$

Bernoulli RFSs

Multi-Object Tracking

BERNOULLI RFSs

Bernoulli RFSs

A Bernoulli RFS (or a Bernoulli process)
 x has the multiobject pdf

$$p_{\mathbf{x}}(\mathbf{x}) = \begin{cases} 1 - r & \text{if } \mathbf{x} = \emptyset \\ r \, p_{\mathbf{x}}(\mathbf{x}) & \text{if } \mathbf{x} = \{x\} \\ 0 & \text{if } |\mathbf{x}| > 1, \end{cases}$$

where $0 \le r \le 1$ and $p_x(x)$ is a pdf.

• It is easy to show that

$$\Pr[|\mathbf{x}| = n] = \begin{cases} 1 - r & \text{if } n = 0 \\ r & \text{if } n = 1 \\ 0 & \text{if } n > 1. \end{cases}$$

- Bernoulli RFSs are used to model, e.g.,
 - measurements from a single object, $D = \mathbb{R}^{n_z}$,
 - a potential object, $D = \mathbb{R}^{n_x}$.

BERNOULLI RFSs: GENERATING SAMPLES

Algorithm Sampling Bernoulli RFSs

- 1: Initialize $\mathbf{x} = \emptyset$
- 2: if rand<r then
- 3: $x \sim p_x(\cdot)$
- 4: $\mathbf{x} = \{x\}$
- 5: **end if**

Example: Bernoulli samples

• Suppose **x** is a Bernoulli RFS with r = 0.7 and $p_x(x) = \mathcal{N}(x; \mathbf{0}, \mathbf{I})$.

Multi-Bernoulli RFSs

Multi-Object Tracking

MULTI-BERNOULLI RFSs

Multi-Bernoulli RFSs

- Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent Bernoulli RFSs with multiobject pdfs $p_{\mathbf{x}_1}(\mathbf{x}_1), \dots, p_{\mathbf{x}_N}(\mathbf{x}_N)$, respectively.
- Then $\mathbf{x} = \bigcup_{i=1}^{N} \mathbf{x}_i$ is a multi-Bernoulli (MB) RFS (or a multi-Bernoulli process) with multiobject pdf

$$p_{\mathbf{x}}(\mathbf{x}) = \sum_{\substack{\boldsymbol{y}_{i=1}^{N} \mathbf{x}_{i} = \mathbf{x}}} \prod_{j=1}^{N} p_{\mathbf{x}_{j}}(\mathbf{x}_{j}).$$

- MB RFSs are used to model potential objects, e.g.,
 - according to the posterior, $D = \mathbb{R}^{n_x}$,
 - appearing objects, $D = \mathbb{R}^{n_x}$.

A MULTI-BERNOULLI PROCESS EXAMPLE

• Suppose $p_{\mathbf{x}_i}(\mathbf{x}_i)$ is parametrised by r_i and $p_i(\cdot)$.

Example: a MB modelling potential objects

- Suppose N = 3, $r_1 = 0.7$, $r_2 = 0.9$ and $r_3 = 0.1$.
- Also, let p₁(x), p₂(x) and p₃(x) be Gaussian, see figure.
- The MB RFS x represents that there are three potential objects.

MULTI-BERNOULLI RFSs: GENERATING SAMPLES

Algorithm 3 Sampling a MB RFS

- 1: Initialize $\mathbf{x} = \emptyset$
- 2: **for** i = 1 to N **do**
- 3: **if** rand< r_i **then**
- 4: $x_i \sim p_i(\cdot)$
- 5: $\mathbf{x} = \mathbf{x} \cup \{x_i\}$
- 6: end if
- 7: end for

Example: MB samples

• Suppose N = 2, $r_1 = r_2 = 0.8$, $p_1(x) = \mathcal{N}(x; [2 \quad 2]^T, 0.3 \mathbf{I})$ and $p_2(x) = \mathcal{N}(x; [-2 \quad -2]^T, 0.3 \mathbf{I})$.

MB VS POISSON

$MB \approx PPP$?

- A Bernoulli RFS with r < 0.1 is approximately a PPP.
- ⇒ a MB with r₁,...,r_N < 0.1 is approximately a PPP.
- Any PPP can be approximated by a MB, but it may require a large N.
- Often computationally efficient to use a PPP.

Why use MB instead of PPP?

- If **x** is a PPP, both the mean and variance of $|\mathbf{x}|$ is $\bar{\lambda}$.
- Problematic if we are certain that there are, say, 10 objects present.
- The MB distribution is better at expressing the posterior in such situations.
- MB RFSs are not restricted to i.i.d. states
 ⇒ "there is one object in each

lane"

Multi-Bernoulli mixture RFSs

Multi-Object Tracking

MULTI-BERNOULLI MIXTURE RFSs

Multi-Bernoulli mixture RFSs

- Suppose $p_{\mathbf{x}_i}^h(\mathbf{x}_i)$ are Bernoulli multiobject pdfs for $i=1,\ldots,N$ and $h=1,\ldots,\mathcal{H}$.
- Then x is a multi-Bernoulli mixture (MBM) RFS (or a MBM process) if it has the multiobject pdf

$$p_{\mathbf{x}}(\mathbf{x}) = \sum_{h=1}^{\mathcal{H}} w_h p_{\mathbf{x}}^h(\mathbf{x}),$$

where $p_{\mathbf{x}}^{h}(\mathbf{x})$ is multi-Bernoulli pdf

$$p_{\mathbf{x}}^{h}(\mathbf{x}) = \sum_{\substack{\bigcup_{j=1}^{N} \mathbf{x}_{i} = \mathbf{x}}} \prod_{j=1}^{N} p_{\mathbf{x}_{j}}^{h}(\mathbf{x}_{j}),$$

and w_1, \ldots, w_H are non-negative weights such that $\sum_{h=1}^H w_h = 1$.

POSTERIOR UNCERTAINTIES AND MBMs

- MBM RFSs are used to model, e.g.,
 - posterior distribution of set of detected objects, $D = \mathbb{R}^{n_x}$, where $h = 1, \dots, \mathcal{H}$ representation association hypotheses.

Example: an MBM modelling potential objects

The MBM visualised below could model a posterior distribution with two hypotheses.

MBM RFSs: GENERATING SAMPLES (1)

• Suppose $w = [w_1, \ldots, w_{\mathcal{H}}]^T$.

Categorical distribution

 A random variable h is categorical, h ~ Cat(w), if
 Pr [h = i] = w_i.

- **Example:** for $w = [1/6, ..., 1/6]^T$, $h \sim \text{Cat}(w)$ is rolling a fair dice.
- Sometimes easier to generate multinomial variables.

• Suppose $p_{\mathbf{x}_i}^h(\mathbf{x}_i)$ is parametrised by r_i^h and $p_i^h(\cdot)$.

Algorithm Sampling a MBM RFS

1: Initialize $\mathbf{x} = \emptyset$

2: Generate $h \sim \text{Cat}(w)$

3: **for** i = 1 to N **do**

4: **if** rand< r_i^h then

5: $x_i \sim p_i^h(\cdot)$

6: $\mathbf{x} = \mathbf{x} \cup \{x_i\}$

7: **end if**

8: end for

MBM RFSs: GENERATING SAMPLES (2)

Example: MBM samples

- Suppose $\mathcal{H} = 2$, $w_1 = 0.75$, $w_2 = 1 w_1 = 0.25$ and that $r_i^h = 0.8$ for $i, h \in \{1, 2\}$.
- Also assume that

$$h = 1 : \begin{cases} p_1^1(x) = \mathcal{N}(x; [2 \ 2]^T, 0.3I) \\ p_2^1(x) = \mathcal{N}(x; [-2 \ -2]^T, 0.3I) \end{cases}$$
$$h = 2 : \begin{cases} p_1^2(x) = \mathcal{N}(x; [2 \ -2]^T, 0.3I) \\ p_2^2(x) = \mathcal{N}(x; [-2 \ 2]^T, 0.3I) \end{cases}.$$

Section 4: Standard models in MOT

Multi-Object Tracking

Bayesian filtering recursions and models

Multi-Object Tracking

MULTIOBJECT TRACKING

Objective

• Recursively compute $p(\mathbf{x}_k|\mathbf{z}_{1:k})$.

• The posterior can be used, e.g., to estimate \mathbf{x}_k .

A visualization

 Both states and measurements are in 2D (uncommon).

BAYESIAN FILTERING RECURSION FOR MOT

Bayesian filtering recursions

• The Chapman-Kolmogorov equation for prediction and Bayes' rule for update:

prediction:
$$p(\mathbf{x}_k|\mathbf{z}_{1:k-1}) = \int p(\mathbf{x}_k|\mathbf{x}_{k-1})p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1})\,\delta\mathbf{x}_{k-1}$$
 update:
$$p(\mathbf{x}_k|\mathbf{z}_{1:k}) = \frac{p(\mathbf{z}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{z}_{1:k-1})}{\int p(\mathbf{z}_k|\mathbf{x}_k')p(\mathbf{x}_k'|\mathbf{z}_{1:k-1})\,\delta\mathbf{x}_k'}.$$

We need models for

motion:
$$p(\mathbf{x}_k | \mathbf{x}_{k-1})$$

measurements: $p(\mathbf{z}_k|\mathbf{x}_k)$.

Measurement models – object detections

Multi-Object Tracking

STANDARD MEASUREMENT MODEL

- Measurement model is as before.
- We assume

$$\mathbf{z}_k = \mathbf{o}_k \cup \mathbf{c}_k$$

where \mathbf{o}_k are object detections and \mathbf{c}_k clutter detections.

 In this video, we present the standard model for

$$\mathbf{g}_k(\mathbf{o}_k|\mathbf{x}_k) = p(\mathbf{o}_k|\mathbf{x}_k).$$

Example, samples of z_k

• Two objects, $P^{\rm D}=0.95$, Gaussian $g_k(\cdot|x^1)$ and $g_k(\cdot|x^2)$ (see dashed ellipsoids), and $\bar{\lambda}=2$.

OBJECT MEASUREMENTS: STANDARD ASSUMPTIONS

Single object measurement model

- An object with state x is detected with probability $P^{D}(x)$.
- If detected, it generates a measurement from the single object measurement density $g_k(o|x)$.

In the presence of other objects:

- Conditioned on the object states, each object measurement is independent of all other objects and measurements (including clutter detections).
- Each measurement is the result of at most one object.

SINGLE OBJECT MEASUREMENT MODEL

Case 1: $\mathbf{x}_k = \emptyset$

$$\mathbf{g}_k(\mathbf{o}|\emptyset) = egin{cases} 1 & ext{if } \mathbf{o} = \emptyset \ 0 & ext{otherwise} \end{cases}$$

• Note: $\mathbf{o}_k | \mathbf{x}_k = \emptyset$ is a Bern. RFS with r = 0.

Case 2: $x_k = \{x\}$

$$\mathbf{g}_k(\mathbf{o}|\{x\}) = \begin{cases} 1 - P^{\mathbf{D}}(x) & \text{if } \mathbf{o} = \emptyset \\ P^{\mathbf{D}}(x)g_k(o|x) & \text{if } \mathbf{o} = \{o\} \\ 0 & \text{if } |\mathbf{o}| > 1. \end{cases}$$

• Note: $\mathbf{o}_k | \mathbf{x}_k = \{x\}$ is a Bernoulli RFS with $r = P^D(x)$ and pdf $g_k(\cdot | x)$.

Example, samples of o_k

• Suppose $\mathbf{x}_k = \{x\}, P^D(x) = 0.85$ and $g_k(o|x) = \mathcal{N}(o; [3,2]^T, 0.3I)$.

MULTI-OBJECT MEASUREMENT MODEL (1)

Basic result

- The set of object measurements from a single object is a Bernoulli RFS.
- The set of object measurements from multiple objects is therefore a multi-Bernoulli RFS.
- Suppose $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$ and let $\mathbf{o}_k(x_k^i)$ be an RFS representing the set of object measurements from x_k^i .
- Given $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$ we have

$$\mathbf{o}_k = \mathbf{o}_k(x_k^1) \cup \mathbf{o}_k(x_k^2) \cup \cdots \cup \mathbf{o}_k(x_k^{n_k}).$$

MULTI-OBJECT MEASUREMENT MODEL (2)

• Given $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$, $\mathbf{o}_k(x_k^1), \dots, \mathbf{o}_k(x_k^{n_k})$ are independent Bernoulli RFSs, $\mathbf{o}_k(x_k^i) \big| x_k^i \sim \mathbf{g}_k(\cdot \big| \{x_k^i\}).$

• To understand the general expression, we introduce the shorthand notation $\mathbf{o}^i = \mathbf{o}_k(x_k^i)$:

General multi-object measurement model,
$$\mathbf{x}_k = \{x^1, x^2, \dots, x^{n_k}\}$$

• The convolution formula yields

$$\mathbf{g}_k(\mathbf{o}_k\big|\{x^1,\ldots,x^{n_k}\}) = \sum_{\mathbf{o}^1 \uplus \ldots \uplus \mathbf{o}^{n_k} = \mathbf{o}_k} \prod_{i=1}^{n_k} \mathbf{g}_k(\mathbf{o}^i\big|\{x^i\}).$$

In short, $\mathbf{o}_k | \mathbf{x}_k$ is a multi-Bernoulli RFS.

OBJECT MEASUREMENT SAMPLES

Samples of o_k when $x_k = \{x^1, x^2\}$

• Suppose $P^{\rm D}=0.85$ and that

$$g_k(o|x) = \mathcal{N}(o; x, 0.31).$$

• When $\mathbf{x}_k = \{x^1, x^2\}$, where

$$x^1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad x^2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix},$$

we get

$$\mathbf{g}_k(\mathbf{o}_k \big| \mathbf{x}_k) = \sum_{\mathbf{o}^1 \uplus \mathbf{o}^2 = \mathbf{o}_k} \mathbf{g}_k \Big(\mathbf{o}^1 \Big| \{ x^1 \} \Big) \, \mathbf{g}_k \Big(\mathbf{o}^2 \Big| \{ x^2 \} \Big) \,.$$

Measurement models – complete model

Multi-Object Tracking

MEASUREMENT DISTRIBUTION (1)

• Given \mathbf{x}_k , we have

$$\mathbf{z}_k = \mathbf{c}_k \cup \mathbf{o}_k$$

where \mathbf{o}_k and \mathbf{c}_k are independent:

$$\rho(\mathbf{z}_k | \mathbf{x}_k) = \sum_{\mathbf{c} \uplus \mathbf{o} = \mathbf{z}_k} \rho_{\mathbf{c}_k}(\mathbf{c}) \mathbf{g}_k(\mathbf{o} | \mathbf{x}_k).$$

Clutter model

We assume clutter is a Poisson RFS

$$p_{\mathbf{c}_k}(\mathbf{c}) = \exp\left(-\int \lambda_c(c') \,\mathrm{d}c'\right) \prod_{c \in \mathbf{c}} \lambda_c(c),$$

where $\lambda_c(c)$ is its intensity function.

• We say that $\mathbf{z}_k | \mathbf{x}_k$ is a **Poisson multi-Bernoulli RFS**, since it is the union of a Poisson RFS \mathbf{c}_k and a multi-Bernoulli RFS $\mathbf{o}_k | \mathbf{x}_k$.

MEASUREMENT DISTRIBUTION (2)

• Given $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$, we have $\mathbf{z}_k = \mathbf{c}_k \cup \mathbf{o}_k(x_k^1) \cup \dots \cup \mathbf{o}_k(x_k^{n_k})$.

Measurement multiobject pdf

• For $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$, the measurement model is

$$p(\mathbf{z}_k|\mathbf{x}_k) = \sum_{\mathbf{c} \uplus \mathbf{o}^1 \uplus \cdots \uplus \mathbf{o}^{n_k} = \mathbf{z}_k} p_{\mathbf{c}_k}(\mathbf{c}) \prod_{i=1}^{n_k} \mathbf{g}_k(\mathbf{o}^i | \{x_k^i\})$$

where

$$p_{\mathbf{c}_k}(\mathbf{c}) = \exp\left(-\bar{\lambda}_c\right) \prod_{c \in \mathbf{c}} \lambda_c(c)$$

$$\mathbf{g}_k(\mathbf{o} | \{x\}) = \begin{cases} P^{\mathrm{D}}(x) g_k(o|x) & \text{if } \mathbf{o} = \{o\} \\ 1 - P^{\mathrm{D}}(x) & \text{if } \mathbf{o} = \emptyset \\ 0 & \text{if } |\mathbf{o}| > 1. \end{cases}$$

ASSOCIATION HYPOTHESES (1)

In the formula

$$p(\mathbf{z}_k | \{x_k^1, \dots, x_k^{n_k}\}) = \sum_{\mathbf{c} \uplus \mathbf{o}^1 \uplus \dots \uplus \mathbf{o}^{n_k} = \mathbf{z}_k} p_{\mathbf{c}_k}(\mathbf{c}) \prod_{i=1}^{n_k} \mathbf{g}_k(\mathbf{o}^i | \{x_k^i\}),$$

we sum over all possible association hypotheses.

• In earlier lectures we used $\theta_k = [\theta_k^1, \theta_k^2, \dots, \theta_k^{n_k}]$, where

$$\theta_k^i = \begin{cases} j & \text{if object } i \text{ is associated to measurement } j \\ 0 & \text{if object } i \text{ is undetected,} \end{cases}$$

and we summed over all hypotheses θ_k .

• For $\mathbf{z}_k = \{z_k^1, \dots, z_k^{m_k}\}$, summing over $\mathbf{c} \uplus \mathbf{o}^1 \uplus \dots \uplus \mathbf{o}^{n_k} = \mathbf{z}_k$ or θ_k is analogous:

$$\mathbf{o}^i = egin{cases} \emptyset & ext{if } heta_k^i = 0 \ \{z_k^{ heta_k^i}\} & ext{if } heta_k^i > 0, \end{cases}$$
 $\mathbf{c} = \mathbf{z}_k \setminus \cup_{i=1}^{n_k} \mathbf{o}^i.$

ASSOCIATION HYPOTHESES (2)

Example: Poisson Bernoulli measurement RFSs

• If $\mathbf{x}_k = \{x^1\}$ and $\mathbf{z}_k = \{z^1\}$ we get

$$\begin{aligned} & p(\mathbf{z}_k \big| \mathbf{x}_k) = \sum_{\mathbf{c} \in \mathbf{o}^1 = \mathbf{z}_k} p_{\mathbf{c}_k}(\mathbf{c}) \mathbf{g}_k(\mathbf{o}^1 \big| \{x^1\}) \\ &= p_{\mathbf{c}_k}(\{z^1\}) \mathbf{g}_k(\emptyset \big| \{x^1\}) + p_{\mathbf{c}}(\emptyset) \mathbf{g}_k(\{z^1\} \big| \{x^1\}) \\ &= \exp(-\bar{\lambda}_c) \lambda_c(z^1) (1 - P^{D}(x^1)) + \exp(-\bar{\lambda}_c) P^{D}(x^1) g_k(z^1 \big| x^1). \end{aligned}$$

• Using $\theta_k = [\theta_k^1]$, we get

$$p(\mathbf{z}_{k}|\mathbf{x}_{k}) = \sum_{\theta_{k}^{1}=0}^{1} \exp(-\bar{\lambda}_{c}) \lambda_{c}(z^{1}) \prod_{i:\theta_{k}^{i}=0} (1 - P^{D}(x^{i})) \prod_{i:\theta_{k}^{i}>0} \frac{P^{D}(x^{i}) g_{k}(z^{\theta_{k}^{i}}|x^{i})}{\lambda_{c}(z^{\theta_{k}^{i}})}.$$

A GENERAL MEASUREMENT MODEL (1)

A general measurement model (in terms of RFSs)

• For $\mathbf{z}_k = \{z_k^1, \dots, z_k^{m_k}\}$ and $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$:

$$\rho(\mathbf{z}_k|\mathbf{x}_k) = \sum_{\theta_k} \exp(-\bar{\lambda}_c) \prod_{j=1}^{m_k} \lambda_c(z_k^j) \prod_{i:\theta^i = 0} (1 - P^{\mathrm{D}}(x_k^i)) \prod_{i:\theta^i > 0} \frac{P^{\mathrm{D}}(x_k^i) g_k(z_k^{\theta_k^i}|x_k^i)}{\lambda_c(z_k^{\theta_k^i})}.$$

Measurement models: multiobject pdf vs matrix distribution

• If $\mathbf{z}_k = \{z_k^1, \dots, z_k^{m_k}\}$, $Z_k = [z_k^1, \dots, z_k^{m_k}]$, $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$ and $X_k = [x_k^1, \dots, x_k^{n_k}]$: $p(\mathbf{z}_k | \mathbf{x}_k) = m_k! \, p(Z_k | X_k)$.

A GENERAL MEASUREMENT MODEL (2)

A general measurement model – alternative form

• For $\mathbf{z}_k = \{z_k^1, \dots, z_k^{m_k}\}$ and $\mathbf{x}_k = \{x_k^1, \dots, x_k^{n_k}\}$:

$$\rho(\mathbf{z}_k \big| \mathbf{x}_k) = \rho_{\mathbf{c}_k}(\mathbf{z}_k) \mathbf{g}_k(\emptyset \big| \mathbf{x}_k) \sum_{\theta_k} \prod_{i: \theta_k^i > 0} \frac{P^{\mathrm{D}}(x_k^i) g_k(z_k^{\theta_k^i} \big| x_k^i)}{\lambda_c(z_k^{\theta_k^i})(1 - P^{\mathrm{D}}(x_k^i))}$$

where

$$p_{\mathbf{c}_k}(\mathbf{z}_k) = \exp(-\bar{\lambda}_c) \prod_{s=1}^{m_k} \lambda_c(\mathbf{z}_k^s)$$

$$\mathbf{g}_k(\emptyset | \mathbf{x}_k) = \prod_{j=1}^{n_k} (1 - P^{\mathrm{D}}(x_k^j)).$$

CONCLUSIONS

- The measurement model has not changed.
- We found that $\mathbf{z}_k | \mathbf{x}_k$ is a Poisson multi-Bernoulli (PMB) RFS.
- Simple to derive the measurement model using the convolution formula (no need to condition on m_k).
- Also: same derivation can be used for extended objects.
- It holds that $p(\mathbf{z}_k|\mathbf{x}_k) = m_k! p(Z_k|X_k)$: derivations give the same result.

Motion models – surviving objects

Multi-Object Tracking

Lennart Svensson

STANDARD MOTION MODEL

- Objects appear/disappear with time.
- Given \mathbf{x}_{k-1} , we assume

$$\mathbf{x}_k = \mathbf{s}_k \cup \mathbf{b}_k$$

where \mathbf{s}_k and \mathbf{b}_k are independent,

- \mathbf{s}_k : objects present also at time k-1.
- \mathbf{b}_k : objects that have appeared since time k-1.
- In this video, we present the **standard** model for $\pi_k(\mathbf{s}_k|\mathbf{x}_{k-1})$.

Example: a sequence of x_k

• Note: some similarities to measurement model ($\mathbf{s}_k \leftrightarrow \mathbf{o}_k$, $\mathbf{b}_k \leftrightarrow \mathbf{c}_k$).

MOTION MODEL: STANDARD ASSUMPTIONS (SURVIVING OBJECTS)

Single object motion model (for already present objects)

- An object with state x survives/persists with probability $P^S(x)$.
- If it survives, it moves according to a single object motion model $\pi_k(s|x)$.

In the presence of other objects:

 Conditioned on its state, each object moves independently of all other objects.

SINGLE OBJECT MOTION MODEL

Case 1: $x_{k-1} = \emptyset$

$$m{\pi}_{k}(\mathbf{s}ig|\emptyset) = egin{cases} 1 & ext{if } \mathbf{s} = \emptyset \ 0 & ext{otherwise} \end{cases}$$

• Note: $\mathbf{s}_k | \mathbf{x}_{k-1} = \emptyset$ is a Ber. RFS with r = 0.

Case 2: $\mathbf{x}_{k-1} = \{x\}$

$$\pi_k(\mathbf{s}|\{x\}) = \begin{cases} 1 - P^{S}(x) & \text{if } \mathbf{s} = \emptyset \\ P^{S}(x)\pi_k(s|x) & \text{if } \mathbf{s} = \{s\} \\ 0 & \text{if } |\mathbf{s}| > 1. \end{cases}$$

• Note: $\mathbf{s}_k | \mathbf{x}_{k-1} = \{x\}$ is a Bernoulli RFS with $r = P^{\mathbf{S}}(x)$ and pdf $\pi_k(\cdot | x)$.

Example, samples of s_k

• Suppose $\mathbf{x}_{k-1} = \{x\}$, $P^{S}(x) = 0.85$ and $\pi_{k}(s|x) = \mathcal{N}(s; [3,2]^{T}, 0.3I)$.

MULTI-OBJECT SURVIVING MODEL (1)

Basic result

- The set of surviving objects from a single object is a Bernoulli RFS.
- The set of surviving objects from multiple objects is therefore a multi-Bernoulli RFS.
- Suppose $\mathbf{x}_{k-1} = \{x_{k-1}^1, \dots, x_{k-1}^{n_{k-1}}\}$ and let $\mathbf{s}_k(x_{k-1}^i)$ be an RFS representing the set of surviving objects from x_{k-1}^i .
- Given $\mathbf{x}_{k-1} = \{x_{k-1}^1, \dots, x_{k-1}^{n_{k-1}}\}$ we have

$$\mathbf{s}_k = \mathbf{s}_k(x_{k-1}^1) \cup \mathbf{s}_k(x_{k-1}^2) \cup \cdots \cup \mathbf{s}_k(x_{k-1}^{n_{k-1}}).$$

MULTI-OBJECT SURVIVING MODEL (2)

• Given $\mathbf{x}_{k-1} = \{x_{k-1}^1, \dots, x_{k-1}^{n_{k-1}}\}$, $\mathbf{s}_k(x_{k-1}^1), \dots, \mathbf{s}_k(x_{k-1}^{n_{k-1}})$ are independent Bernoulli RFSs, $\mathbf{s}_k(x_{k-1}^i) \big| x_{k-1}^i \sim \pi_k(\cdot \big| \{x_{k-1}^i\}).$

• To understand the general expression, we introduce the shorthand notation $\mathbf{s}^i = \mathbf{s}_{k-1}(x_{k-1}^i)$:

$$\mathbf{s}_k = \mathbf{s}^1 \cup \mathbf{s}^2 \cup \cdots \cup \mathbf{s}^{n_{k-1}}.$$

General multi-object surviving model, $\mathbf{x}_{k-1} = \{x^1, x^2, \dots, x^{n_{k-1}}\}$

• The convolution formula yields:

$$\pi_k(\mathbf{s}_k\big|\{x^1,\ldots,x^{n_{k-1}}\}) = \sum_{\mathbf{s}^1 \mid \mathbf{s} \mid \ldots \mid \mathbf{s}^{n_{k-1}} = \mathbf{s}_k} \prod_{i=1}^{n_{k-1}} \pi_k(\mathbf{s}^i\big|\{x^i\}).$$

In short, $\mathbf{s}_k | \mathbf{x}_{k-1}$ is a multi-Bernoulli RFS.

SAMPLES OF SURVIVING OBJECTS

Samples of s_k when $x_{k-1} = \{x^1, x^2\}$

Suppose P^S = 0.9 and that

$$\pi_k(s|x) = \mathcal{N}(s; x, 0.31).$$

• When $\mathbf{x}_{k-1} = \{x^1, x^2\}$, where

$$x^1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad x^2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix},$$

we get

$$\pi_k(\mathbf{s}_k|\mathbf{x}_{k-1}) = \sum_{\mathbf{s}_1 \cup \mathbf{s}_2 - \mathbf{s}} \pi_k(\mathbf{s}^1 | \{x^1\}) \pi_k(\mathbf{s}^2 | \{x^2\}).$$

Complete motion model

Multi-Object Tracking

Lennart Svensson

MOTION MODEL (1)

• Given \mathbf{x}_{k-1} , we have

$$\mathbf{x}_k = \mathbf{s}_k \cup \mathbf{b}_k$$

where \mathbf{s}_k and \mathbf{b}_k are independent:

$$\rho(\boldsymbol{x}_{k}\big|\boldsymbol{x}_{k-1}) = \sum_{\boldsymbol{b} \uplus \boldsymbol{s} = \boldsymbol{x}_{k}} \rho_{\boldsymbol{b}_{k}}(\boldsymbol{b}) \pi_{k}(\boldsymbol{s}\big|\boldsymbol{x}_{k-1}).$$

Birth model

We assume the birth process is a Poisson RFS

$$p_{\mathbf{b}_k}(\mathbf{b}) = \exp\left(-\int \lambda_b(b') \,\mathrm{d}b'\right) \prod_{b \in \mathbf{b}} \lambda_b(b),$$

where $\lambda_b(b)$ is its intensity function.

• We say that $\mathbf{x}_k | \mathbf{x}_{k-1}$ is a **Poisson multi-Bernoulli RFS**, since it is the union of a Poisson RFS \mathbf{b}_k and a multi-Bernoulli RFS $\mathbf{s}_k | \mathbf{x}_{k-1}$.

MOTION MODEL (2)

• Given $\mathbf{x}_{k-1} = \{x_{k-1}^1, \dots, x_{k-1}^{n_{k-1}}\}$, we have $\mathbf{x}_k = \mathbf{b}_k \cup \mathbf{s}_k(x_{k-1}^1) \cup \dots \cup \mathbf{s}_k(x_{k-1}^{n_{k-1}})$.

Motion model

The motion model is

$$\pi_k(\mathbf{x}_k \big| \{x_{k-1}^1, \dots, x_{k-1}^{n_{k-1}}\}) = \sum_{\mathbf{b} \uplus \mathbf{s}^1 \uplus \dots \uplus \mathbf{s}^{n_{k-1}} = \mathbf{x}_k} p_{\mathbf{b}_k}(\mathbf{b}) \prod_{i=1}^{n_{k-1}} \pi_k(\mathbf{s}^i \big| \{x_{k-1}^i\})$$

where

$$\rho_{\mathbf{b}_k}(\mathbf{b}) = \exp\left(-\bar{\lambda}_b\right) \prod_{b \in \mathbf{b}} \lambda_b(b)
\pi_k(\mathbf{s}|\{x\}) = \begin{cases}
P^{S}(x)\pi_k(\mathbf{s}|x) & \text{if } \mathbf{s} = \{s\} \\
1 - P^{S}(x) & \text{if } \mathbf{s} = \emptyset \\
0 & \text{if } |\mathbf{s}| > 1.
\end{cases}$$

CONCLUDING REMARKS

- Objects can appear and disappear with time.
- We assume that
 - $-\mathbf{s}_{k}|\mathbf{x}_{k-1}=\{x\}$ is a Bernoulli RFS,
 - **b**_k is a Poisson point process,
 - given \mathbf{x}_{k-1} , $\mathbf{x}_k = \mathbf{s}_k \cup \mathbf{b}_k$ is a Poisson multi-Bernoulli RFS.
- We can use the convolution formula to express $p(\mathbf{x}_k|\mathbf{x}_{k-1})$.

Section 5: Probability hypothesis density filtering

Multi-Object Tracking

Lennart Svensson

PHD filtering – introduction

Multi-Object Tracking

Lennart Svensson

PHD FILTERING: BASIC IDEA

Assumed density filtering

• To obtain a recursive algorithm both $p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1})$ and $p(\mathbf{x}_k|\mathbf{z}_{1:k})$ should belong to the same family of distributions.

PHD filtering

• Both $p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1})$ and $p(\mathbf{x}_k|\mathbf{z}_{1:k})$ are approximated as Poisson multi-object pdfs.

APPROXIMATING MULTI-OBJECT PDFS AS POISSON

- Suppose $p(\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1})$ is a Poisson multi-object pdf.
- How can we approximate $p(\mathbf{x}_k|\mathbf{z}_{1:k-1})$ and $p(\mathbf{x}_k|\mathbf{z}_{1:k})$ as Poisson multi-object pdfs?

Poisson RFS approximations

• To approximate a RFS $\mathbf{x} \sim p(\cdot)$ as a Poisson RFS, we set the Poisson intensity to

$$\lambda(x)=D(x),$$

where D(x) is the **probability hypothesis density (PHD)** of $\mathbf{x} \sim p(\mathbf{x})$.

The above is optimal in the Kullback-Leibler sense.

OVERVIEW OF PHD FILTERING

PHD filtering: basic principles

- Recursively compute the PHDs $D_{k|k-1}(x)$ of $p(\mathbf{x}_k|\mathbf{z}_{1:k-1})$ and $D_{k|k}(x)$ of $p(\mathbf{x}_k|\mathbf{z}_{1:k})$.
- Approximate $p(\mathbf{x}_k|\mathbf{z}_{1:k-1})$ and $p(\mathbf{x}_k|\mathbf{z}_{1:k})$ as Poisson multi-object pdfs with intensity functions $D_{k|k-1}(x)$ and $D_{k|k}(x)$, respectively.
- Note: It turns out that p(x_k|z_{1:k-1}) is a Poisson multi-object pdf
 ⇒ no approximations needed.

CONCLUDING REMARKS

- The PHDs $D_{k|k-1}(x)$ and $D_{k|k}(x)$ are functions in **single object state**.
- The PHDs parametrise the multiobject pdfs, e.g.,

$$p(\mathbf{x}_k|\mathbf{z}_{1:k}) = \exp\left(-\int D_{k|k}(x')\mathrm{d}x'\right) \prod_{x \in \mathbf{x}_k} D_{k|k}(x).$$

That is, we approximate $p(\mathbf{x}_k|\mathbf{z}_{1:k})$ as a Poisson point process (PPP) with intensity function $D_{k|k}(x)$.

- Elements in a PPP are independent and identically distributed (given its cardinality)
 often a rough approximation of the posterior.
- The PHD filter is a simple and efficient algorithm that performs well in simple scenarios.

The PHD and its properties

Multi-Object Tracking

Lennart Svensson

PHD: DEFINITION

PHD definition

• The probability hypothesis density (PHD) function, $D_x(x)$, of a RFS x is

$$D_{\mathbf{x}}(x) = \int p_{\mathbf{x}}(\mathbf{x}) \sum_{x' \in \mathbf{x}} \delta(x - x') \delta \mathbf{x}$$
$$= \int p_{\mathbf{x}}(\{x\} \cup \mathbf{x}) \, \delta \mathbf{x}.$$

- The PHD is a first-order statistical moment of the RFS.
- We sometimes refer to $D_{\mathbf{x}}(x)$ as the **intensity function** of \mathbf{x} .

INTEGRATING THE PHD

Expected cardinality in region

• If $A \subseteq \mathbb{R}^{n_x}$, then

$$\int_A D_{\mathbf{x}}(x) \, \mathrm{d}x = \mathbb{E}\left[|\mathbf{x} \cap A|\right].$$

- That is, D(x)dx is the expected number of objects in dx and $\int D(x) dx = \mathbb{E}[|\mathbf{x}|]$.
- Proof: The integral of a PHD is

$$\int_{A} D_{\mathbf{x}}(x) \, \mathrm{d}x = \int_{A} \int p_{\mathbf{x}}(\mathbf{x}) \sum_{x' \in \mathbf{x}} \delta(x - x') \delta \mathbf{x} \, \mathrm{d}x$$

$$= \int p_{\mathbf{x}}(\mathbf{x}) \sum_{x' \in \mathbf{x}} \underbrace{\int_{A} \delta(x - x') \, \mathrm{d}x}_{=1 \text{ if } x' \in A} \delta \mathbf{x}$$

$$= \mathbb{E} [|\mathbf{x} \cap A|].$$

THE PHD OF A BERNOULLI RFS

The PHD of a Bernoulli RFS

Consider a Bernoulli RFS x

$$p_{\mathbf{x}}(x) = \begin{cases} 1 - r & \text{if } \mathbf{x} = \emptyset \\ r p_{x}(x) & \text{if } \mathbf{x} = \{x\} \\ 0 & \text{if } |\mathbf{x}| \ge 2. \end{cases}$$

• The PHD of **x** is

$$D_{\mathbf{x}}(x) = \int p_{\mathbf{x}}(\{x\} \cup \mathbf{x}) \, \delta \mathbf{x}$$
$$= p_{\mathbf{x}}(\{x\} \cup \emptyset) + 0$$
$$= r \, p_{\mathbf{x}}(\mathbf{x})$$

• That is, $D_{\mathbf{x}}(x) = r p_{\mathbf{x}}(x)$.

THE PHD OF A POISSON RFS

- Suppose **x** is a Poisson RFS with intensity $\lambda(x)$.
- What is the PHD of x?

PHD of Poisson RFS

• The PHD of a Poisson RFS with intensity $\lambda(x)$ is

$$D_{\mathbf{x}}(\mathbf{x}) = \lambda(\mathbf{x}).$$

• Useful sanity check! To "approximate" **x** as a Poisson RFS with intensity $D_{\mathbf{x}}(x)$, the best choice is $D_{\mathbf{x}}(x) = \lambda(x)$.

PHDs AND UNION OF RFSs

Union of RFSs

• If **x** is the union of the independent RFSs $\mathbf{x}_1, \dots, \mathbf{x}_N$, then

$$D_{\mathbf{x}}(x) = D_{\mathbf{x}_1}(x) + \cdots + D_{\mathbf{x}_N}(x).$$

• For $A \in \mathbb{R}^{n_x}$, it follows that $\mathbb{E}[|\mathbf{x} \cap A|] = \sum_{i=1}^{N} \mathbb{E}[|\mathbf{x}_i \cap A|]$.

PHD of multi-Bernoulli RFS

• If **x** is a multi-Bernoulli RFS whose *N* Bernoulli components are parametrised by $(r_1, p_1(x)), \ldots, (r_N, p_N(x))$:

$$D_{\mathbf{x}}(x) = \sum_{i=1}^{N} r_i \, p_i(x).$$

PHD filter prediction

Multi-Object Tracking

Lennart Svensson

GAUSSIAN MIXTURE PHD FILTERING

Gaussian mixture (GM) parametrisation

We assume the PHDs are parametrised as

$$D_{k-1|k-1}(x) = \sum_{h=1}^{\mathcal{H}_{k-1|k-1}} w_{k-1|k-1}^h \mathcal{N}(x; \mu_{k-1|k-1}^h, P_{k-1|k-1}^h)$$

$$D_{k|k-1}(x) = \sum_{h=1}^{\mathcal{H}_{k|k-1}} w_{k|k-1}^h \mathcal{N}(x; \mu_{k|k-1}^h, P_{k|k-1}^h).$$

• Note 1: the weights do not have to sum to 1, e.g., $\mathcal{H}_{k|k-1}$

$$\mathbb{E}\left[|\mathbf{x}_{k}||\mathbf{z}_{1:k-1}\right] = \int D_{k|k-1}(x) \, \mathrm{d}x = \sum_{k=1}^{H_{k|k-1}} w_{k|k-1}^{h}.$$

- Note 2: the GM form may introduce additional approximations (apart from the PPP approximation).
- **Prediction step:** find parameters in $D_{k|k-1}(x)$ given $D_{k-1|k-1}(x)$.

MOTION MODEL

Standard motion models with linear and Gaussian π_k

• We assume the standard motion model, with

$$\begin{split} \lambda_{b,k}(x) &= \sum_{h=1}^{\mathcal{H}_k^b} w_{b,k}^h \mathcal{N}(x; \mu_{b,k}^h, P_{b,k}^h) \\ \pi_k(\mathbf{x}_k \big| \{x_{k-1}\}) &= \begin{cases} P^{\mathrm{S}} \mathcal{N}(x_k; F_k x_{k-1}, Q_{k-1}) & \text{if } \mathbf{x}_k = \{x_k\} \\ 1 - P^{\mathrm{S}} & \text{if } \mathbf{x}_k = \emptyset. \end{cases} \end{split}$$

Remarks:

- The $\lambda_{b,k}(x)$ captures where we expect objects to appear.
- Probability of survival is constant.
- Surviving objects move according to a linear and Gaussian model.

PPP PREDICTION

PPP prediction

• Suppose $\mathbf{x}_{k-1}|\mathbf{z}_{1:k-1}$ is a PPP with PHD (intensity function)

$$D_{k-1|k-1}(x) = \sum_{h=1}^{\mathcal{H}_{k-1|k-1}} w_{k-1|k-1}^h \mathcal{N}(x; \mu_{k-1|k-1}^h, P_{k-1|k-1}^h).$$

• It follows that $\mathbf{x}_k | \mathbf{z}_{1:k-1}$ is a PPP with PHD

$$D_{k|k-1}(x) = D_{k|k-1}^{S}(x) + \lambda_{b,k}(x),$$

where $D_{k|k-1}^{S}(x)$ is a Gaussian mixture with parameters

$$\mathcal{H}_{k|k-1}^{s} = \mathcal{H}_{k-1|k-1} \qquad \qquad w_{k|k-1}^{s,h} = P^{S} w_{k-1|k-1}^{h}$$

$$\mu_{k|k-1}^{s,h} = F_{k-1} \mu_{k-1|k-1}^{h} \qquad P_{k|k-1}^{s,h} = F_{k-1} P_{k-1|k-1}^{h} F_{k-1}^{T} + Q_{k-1}.$$

• Note: $\mathbf{x}_k | \mathbf{z}_{1:k-1}$ is a PPP with GM-PHD \Rightarrow no new approximations needed!

GM-PHD PREDICTION

Algorithm GM-PHD prediction.

- 1: Set $\mathcal{H}_{k|k-1} = \mathcal{H}_k^b + \mathcal{H}_{k-1|k-1}$.
- 2: for h = 1 to \mathcal{H}_k^b do
- 3: Set $w_{k|k-1}^h = w_{b,k}^h$, $\mu_{k|k-1}^h = \mu_{b,k}^h$ and $P_{k|k-1}^h = P_{b,k}^h$.
- 4: end for
- 5: **for** h = 1 **to** $\mathcal{H}_{k-1|k-1}$ **do**
- 6: Set

$$\begin{split} \mathbf{w}_{k|k-1}^{h+\mathcal{H}_{k}^{b}} &= \mathbf{P}^{\mathrm{S}} \ \mathbf{w}_{b,k}^{h}, \qquad \mu_{k|k-1}^{h+\mathcal{H}_{k}^{b}} &= \mathbf{F}_{k-1} \mu_{k-1|k-1}^{h}, \\ \mathbf{P}_{k|k-1}^{h+\mathcal{H}_{k}^{b}} &= \mathbf{F}_{k-1} \mathbf{P}_{k-1|k-1}^{h} \mathbf{F}_{k-1}^{T} + \mathbf{Q}_{k-1}. \end{split}$$

7: end for

GM-PHD PREDICTION: VISUALIZATION

A GM-PHD prediction example

• Suppose $\mathcal{H}_{k-1|k-1} = 2$, and that

$$\begin{aligned} w_{k-1|k-1}^1 &= w_{k-1|k-1}^2 = 0.04 \\ P_{k-1|k-1}^1 &= P_{k-1|k-1}^2 = 0.1 \\ \mu_{k-1|k-1}^1 &= -2, \qquad \mu_{k-1|k-1}^2 = 2. \end{aligned}$$

- Also, suppose $P^S = 0.9$, $F_{k-1} = 1$, $Q_{k-1} = 0.3^2$ and let $\lambda_{b,k}(x)$ be a GM with two components.
- The predicted PHD, $D_{k|k-1}(x)$ is then a GM with 4 components.

PHD filter update – part 1

Multi-Object Tracking

Lennart Svensson

GM-PHD UPDATE

GM parametrisation

• We assume that $\mathbf{x}_k | \mathbf{z}_{1:k-1}$ is a PPP with PHD (intensity function)

$$D_{k|k-1}(x) = \sum_{k=1}^{n-1} w_{k|k-1}^h \mathcal{N}(x; \mu_{k|k-1}^h, P_{k|k-1}^h).$$

GM-PHD filter update (conceptual description)

- 1) Find $p(\mathbf{x}_k | \mathbf{z}_{1:k})$.
- 2) Find the GM-PHD, $D_{k|k}(x)$, of $p(\mathbf{x}_k|\mathbf{z}_{1:k})$, and its parameters $\left\{w_{k|k}^h, \mu_{k|k}^h, P_{k|k}^h\right\}_{h=1}^{\mathcal{H}_{k|k}}$.
- 3) Approximate $\mathbf{x}_k | \mathbf{z}_{1:k}$ as a PPP with PHD $D_{k|k}(x)$.

MEASUREMENT MODEL

Measurement model

We assume the standard measurement model, with

$$\mathbf{g}_k(\mathbf{z}_k | \{x_k\}) = egin{cases} P^{\mathrm{D}} \mathcal{N}(z_k; H_k x_k, R_k) & \text{if } \mathbf{z}_k = \{z_k\} \\ 1 - P^{\mathrm{D}} & \text{if } \mathbf{z}_k = \emptyset \\ 0 & \text{if } |\mathbf{z}_k| > 1, \end{cases}$$

whereas we can handle general clutter intensities $\lambda_{c,k}(z)$.

Remarks:

- Probability of detection is constant and g_k is linear and Gaussian.
- We observe $\mathbf{z}_k = \{z_k^1, \dots, z_k^{m_k}\}.$

EXACT POSTERIOR, $p(\mathbf{x}_k|\mathbf{z}_{1:k})$

Posterior multi-Bernoulli posterior

• Given above assumptions, $\mathbf{x}_k | \mathbf{z}_{1:k}$ is a Poisson multi-Bernoulli (PMB) RFS, where the PPP has intensity

$$\lambda_{k|k}(x) = (1 - P^{D}) D_{k|k-1}(x),$$

and the MB process has m_k components, for $i = 1, ..., m_k$:

$$\begin{split} r_{k|k}^i &= \frac{P^{\mathrm{D}} \int \mathcal{N}(z_k^i; H_k x', R_k) D_{k|k-1}(x') \, \mathrm{d}x'}{\lambda_c(z_k^i) + P^{\mathrm{D}} \int \mathcal{N}(z_k^i; H_k \tilde{x}, R_k) D_{k|k-1}(\tilde{x}) \, \mathrm{d}\tilde{x}} \\ p_{k|k}^i(x) &\propto \mathcal{N}(z_k^i; H_k x, R_k) D_{k|k-1}(x). \end{split}$$

Remarks:

- The posterior has the PHD

$$D_{k|k}(x) = \lambda_{k|k}(x) + \sum_{i=1}^{m_k} r_{k|k}^i \, p_{k|k}^i(x).$$

 $-D_{k|k-1}(x)$ is a GM with $\mathcal{H}_{k|k-1}$ components $\Rightarrow \mathcal{H}_{k|k} = \mathcal{H}_{k|k-1} \times (m_k + 1)$.

PHD filter update – part 2

Multi-Object Tracking

Lennart Svensson

GM-PHD UPDATE: PPP

The exact posterior contains a PPP with PHD

$$(1-P^{\mathrm{D}})D_{k|k-1}(x) = \sum_{k=1}^{\mathcal{H}_{k|k-1}} (1-P^{\mathrm{D}})w_{k|k-1}^{h} \mathcal{N}(x; \mu_{k|k-1}^{h}, P_{k|k-1}^{h}).$$

- This PPP represents objects that are undetected at time k.
- We store these as the first $\mathcal{H}_{k|k-1}$ components in $D_{k|k}(x)$.

Algorithm GM-PHD update (1).

1: for h = 1 to $\mathcal{H}_{k|k-1}$ do

2:
$$w_{k|k}^{h} = (1 - P^{D}) w_{k|k-1}^{h}$$

3: $\mu_{k|k}^{h} = \mu_{k|k-1}^{h}$
4: $P_{k|k}^{h} = P_{k|k-1}^{h}$

4:
$$P_{k|k}^{h} = P_{k|k-1}^{h}$$

5: end for

GM-PHD UPDATE: MB (1)

- The posterior also contains m_k Bernoulli components.
- These represent the set of detected objects at time k.

 ∴ One potential (detected) object for each measurement.
- We can write

$$r_{k|k}^{i}p_{k|k}^{i}(x) = \sum_{h=1}^{\mathcal{H}_{k|k-1}} w_{k}^{h,i}\mathcal{N}(x; \mu_{k}^{h,i}, P_{k}^{h,i}),$$

where

$$\mathcal{N}(x; \mu_k^{h,i}, P_k^{h,i}) \propto \mathcal{N}(z_k^i; H_k x, R_k) \mathcal{N}(x; \mu_{k|k-1}^h, P_{k|k-1}^h).$$

• That is, $(\mu_k^{h,i}, P_k^{h,i})$ are given by a Kalman filter update of $\mathcal{N}(x; \mu_{k|k-1}^h, P_{k|k-1}^h)$ using $\mathcal{N}(z_k^i; H_k x, R_k)$.

GM-PHD UPDATE: MB (2)

• First compute parameters for the $\mathcal{H}_{k|k-1}$ Kalman filters.

Algorithm GM-PHD update (2).

1: for h = 1 to $\mathcal{H}_{k|k-1}$ do

2: $\hat{z}_{k|k-1}^h = H_k \mu_{k|k-1}^h$ 3: $S_k^h = R_k + H_k P_{k|k-1}^h H_k^T$

4: $K_k^h = P_{k|k-1}^h H_k^T (S_k^h)^{-1}$

5: $P_k^h = (I - K_k^h H_k) P_{k|k-1}^h$

6: end for

We now compute and store the GM-variables.

Algorithm GM-PHD update (3).

1: **for** i = 1 **to** m_k **do**

2: for h = 1 to $\mathcal{H}_{k|k-1}$ do

3: $\mu_{k|k}^{i\mathcal{H}_{k|k-1}+h} = \mu_{k|k-1}^h + K_k^h(z_k^i - \hat{z}_{k|k-1}^h)$

4: $P_{k|k}^{i\mathcal{H}_{k|k-1}+h} = P_k^h$ 5: $\tilde{W}_{k|k}^{i\mathcal{H}_{k|k-1}+h} = P^{D}W_{k|k-1}^{h}\mathcal{N}(z_k^i; \hat{z}_{k|k-1}^h, S_k^h)$

end for

for h = 1 to $\mathcal{H}_{k|k-1}$ do

 $w_{k|k}^{i\mathcal{H}_{k|k-1}+h} = \frac{\tilde{w}_{k|k}^{i\mathcal{H}_{k|k-1}+h}}{\lambda_{c}(z_{k}^{i}) + \sum_{k'=1}^{\mathcal{H}_{k|k-1}} \tilde{w}_{k|k}^{i\mathcal{H}_{k|k-1}+h'}}$

end for

10: end for

6:

8:

9:

GM-PHD UPDATE: VISUALIZATION

A GM-PHD update example

- Suppose $\mathbf{z}_k = \{-1, 0, 1\}.$ and $D_{k|k-1}(x)$ is a GM with four components.
- Also, suppose $P^{\mathrm{D}}=$ 0.7, and that $H_k=$ 1, $R_k=$ 0.2 2 and $\lambda_c(c)= egin{cases} 0.3 & ext{if } |c| \geq 5, \ 0 & ext{otherwise}. \end{cases}$
- Posterior PHD is dominated by two peaks due to measurements at ± 1 .

CONCLUDING REMARKS

- The GM-PHD update step is very simple.
- We perform m_k different updates for each of the $\mathcal{H}_{k|k-1}$ predicted Gaussian densities.
- GM grows as $\mathcal{H}_{k|k} = (m_k + 1) \times \mathcal{H}_{k|k-1}$ regardless of

$$\hat{n}_{k|k-1} = \mathbb{E}_{p(\mathbf{x}_k|\mathbf{z}_{1:k-1})}[|\mathbf{x}_k|] = \sum_{h=1}^{\mathcal{H}_{k|k-1}} w_{k|k-1}^h.$$

• The factor $m_k + 1$ corresponds $N_A(m_k, 1)$, which is generally much smaller than $N_A(m_k, \text{round}(\hat{n}_{k|k-1}))$.

GM-PHD: mixture reduction and estimation

Multi-Object Tracking

Lennart Svensson

MIXTURE REDUCTION FOR THE GM-PHD

Without approximations, the number of terms in the GM grows as

$$\mathcal{H}_{k|k-1} = \mathcal{H}_{k-1|k-1} + \mathcal{H}_k^b$$

$$\mathcal{H}_{k|k} = (m_k + 1) \times \mathcal{H}_{k|k-1}.$$

- Clearly, $\mathcal{H}_{k|k}$ grows quickly with time!
- How can we reduce the number of terms?
 - As usual: using **pruning** and **merging**.
 - Note: we do not normalize weights after pruning.

A common reduction strategy

- 1) Remove components with weights $< \gamma$.
- 2) Merge similar components.
- 3) Cap the number of components at N_{max} .

ESTIMATING THE SET OF OBJECTS

An estimator for GM-PHD

• Estimate the number of objects:

$$\hat{n}_{k|k} = \text{round}\left(\sum_{h=1}^{\mathcal{H}_{k|k}} w_{k|k}^h\right).$$

• Include $\mu_{k|k}^h$ for the $\hat{n}_{k|k}$ largest weights in the set $\hat{\mathbf{x}}_k$.

Algorithm Forming a set of estimates.

- 1: Input: $\hat{n}, w^h, \mu^h, h = 1, \dots, \mathcal{H}$.
- 2: Output: $\hat{\mathbf{x}}$
- 3: $[out, ind] = sort([w^1, ..., w^H], 'descend').$
- 4: Initialize $\hat{\mathbf{x}} = \emptyset$
- 5: **for** i = 1 **to** \hat{n} **do**
- 6: Set $\hat{\mathbf{x}} = \hat{\mathbf{x}} \cup \{\mu^{\mathsf{ind}(i)}\}.$
- 7: end for

A SIMULATION EXAMPLE (1)

A GM-PHD simulation example

• State sequence is generated deterministically.

A SIMULATION EXAMPLE (1)

A GM-PHD simulation example

- State sequence is generated deterministically.
- The PHD filter assumes:
 - CV motion: T = 1, $Q_k = 4$.
 - Observations: $R_k = 4 \times I_{2\times 2}$,

$$H_k = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- $-P^{D} = 0.98, P^{S} = 0.99,$ $\lambda_{c}(c) = 1.25 \times 10^{-4}.$
- $-\lambda_{b,k}$ is a GM with 4 components, means where objects appear.
- Measurements: generated from model.

A SIMULATION EXAMPLE (2)

A GM-PHD simulation example

• Recall the true sequences.

• The PHD filter yields the estimates:

A SIMULATION EXAMPLE (3)

A GM-PHD simulation example

 The PHD filter outputs fairly reasonable estimates.

 Still, the filter yields many missed/false objects.

Section 6: Metrics in MOT

Multi-Object Tracking

Lennart Svensson

Metrics for performance evaluation

Multi-Object Tracking

Lennart Svensson

METRICS ON SETS (1)

- Our MOT algorithms output estimates $\hat{\mathbf{x}}_k$ of \mathbf{x}_k .
- How can we evaluate how accurate an estimator $\hat{\mathbf{x}}_k$ is?
 - → Which algorithm is the best?

Key question

- How close is x̂_k to x_k?
- Note: both $\hat{\mathbf{x}}_k$ and \mathbf{x}_k are sets.

Objective

 Find a metric d(x,x), suitable for MOT.

METRICS ON SETS (2)

- Objective: find a metric that grows with
 - localisation error for "properly detected objects",
 - # missed objects,
- We use the generalised optimal sub-pattern assignment (GOSPA) metric.

Informal definition

 $\mathsf{GOSPA} = \mathsf{localisation} \; \mathsf{error} + \frac{c}{2} \, (\sharp \mathsf{missed} \; \mathsf{objects} + \sharp \mathsf{false} \; \mathsf{objects})$

METRICS AND NORMS

Metrics: definition

- A metric (on some space) is a distance function that satisfies
 - 1. d(x, y) > 0
 - 2. d(x, y) = 0 if and only if x = y
 - 3. d(x, y) = d(y, x)
 - 4. $d(x, y) \le d(x, z) + d(z, y)$
- For $x, y \in \mathbb{R}^n$, the L^p-norm,

$$||x||_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$$

can be used to define metrics.

• In our examples below, we use the Euclidean distance

$$d(x,y) = ||x - y||_2 = \sqrt{(x - y)^T (x - y)}.$$

HOW TO COMPUTE GOSPA?

- Computing GOSPA (p = 1):
 - 1) Find optimal assignments between sets.

Remark 1: pairs are left unassigned if $d(x, \hat{x}) > c$.

Remark 2: we refer to unassigned elements as false/missed objects.

- 2) Assigned pairs cost $d(x, \hat{x})$.
- 3) Unassigned elements cost c/2.

• If c = 40, GOSPA= $15 + 3 \times c/2 = 75$.

Formal definition, GOSPA, $\alpha = 2$

$$d_{p}^{(c,2)}(\mathbf{x},\hat{\mathbf{x}}) = \left[\min_{\gamma \in \Gamma} \left(\sum_{(i,j) \in \gamma} d(x^{i},\hat{x}^{j})^{p} + \frac{c^{p}}{2} \left(\underbrace{|\mathbf{x}| - |\gamma|}_{\text{\#missed}} + \underbrace{|\hat{\mathbf{x}}| - |\gamma|}_{\text{\#false}} \right) \right) \right]$$

where Γ is the set of possible assignment sets.

Examples of GOSPA

Multi-Object Tracking

Lennart Svensson

GOSPA, EXAMPLES (1)

• Recall the definition of GOSPA, p = 1:

$$d_1^{(c,2)}(\mathbf{x}, \hat{\mathbf{x}}) = \min_{\gamma \in \Gamma} \left(\sum_{(i,j) \in \gamma} d(x^i, \hat{x}^j) + \frac{c}{2} \left(\underbrace{|\mathbf{x}| - |\gamma|}_{\text{\sharpmissed}} + \underbrace{|\hat{\mathbf{x}}| - |\gamma|}_{\text{\sharp false}} \right) \right)$$

where Γ is the set of possible assignment sets.

Example: GOSPA, one missed object

- Suppose p = 1 and c = 40.
- Optimal assignment: $\gamma^* = \{(2, 1)\}.$
- GOSPA is

$$d_1^{(40,2)}(\mathbf{x},\hat{\mathbf{x}}) = d(x^2,\hat{x}^1) + c/2$$

= 10 + 20 = 30.

GOSPA, EXAMPLES (2)

Recall the definition of GOSPA, p = 1:

$$d_1^{(c,2)}(\mathbf{x}, \hat{\mathbf{x}}) = \min_{\gamma \in \Gamma} \left(\sum_{(i,j) \in \gamma} d(x^i, \hat{x}^j) + \frac{c}{2} \left(\underbrace{|\mathbf{x}| - |\gamma|}_{\text{\#missed}} + \underbrace{|\hat{\mathbf{x}}| - |\gamma|}_{\text{\#false}} \right) \right)$$

where Γ is the set of possible assignment sets.

Example: GOSPA, two properly detected objects

- Suppose p = 1 and c = 40.
- Optimal assign.: $\gamma^* = \{(2, 1), (1, 2)\}.$
- GOSPA is

$$d_1^{(40,2)}(\mathbf{x},\hat{\mathbf{x}}) = d(x^2,\hat{x}^1) + d(x^1,\hat{x}^2)$$

= 10 + 10 = 20.

GOSPA, EXAMPLES (3)

Recall the definition of GOSPA, p = 1:

$$d_1^{(c,2)}(\mathbf{x}, \hat{\mathbf{x}}) = \min_{\boldsymbol{\gamma} \in \Gamma} \left(\sum_{(i,j) \in \boldsymbol{\gamma}} d(x^i, \hat{x}^j) + \frac{c}{2} \left(\underbrace{|\mathbf{x}| - |\boldsymbol{\gamma}|}_{\text{\#missed}} + \underbrace{|\hat{\mathbf{x}}| - |\boldsymbol{\gamma}|}_{\text{\#false}} \right) \right)$$

where Γ is the set of possible assignment sets.

Example: GOSPA, missed and false object

- Suppose p = 1 and c = 40.
- Optimal assignment: $\gamma^* = \{(2,1)\}.$
- GOSPA is

$$d_1^{(40,2)}(\mathbf{x},\hat{\mathbf{x}}) = d(x^2,\hat{x}^1) + 2 \times \frac{c}{2}$$

= 10 + 40 = 50.

CONCLUSIONS FROM EXAMPLES

- We used GOSPA to compare three estimates for the same set x.
- The true set **x** contained two objects.
- We obtained the smallest metric when both objects were properly detected.
- GOSPA took a larger value when one object was missed and an even larger value when we also had a false object.

GOSPA for RFSs

Multi-Object Tracking

Lennart Svensson

GOSPA FOR RFSs (1)

- In tracking, the set of objects and estimates are (often) RFSs.
- To evaluate tracking algorithms we need metrics between RFSs!

Key result: GOSPA metrics for RFSs

• For $1 \le p, p' < \infty$

$$\sqrt[p']{\mathbb{E}\left[d_{\mathcal{D}}^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})^{p'}
ight]},$$

where \mathbf{x} and $\hat{\mathbf{x}}$ are RFSs, is a metric.

• We are particularly interested in cases where p = p'.

GOSPA FOR RFSs (2)

• We know that $\sqrt[p']{\mathbb{E}\left[d_p^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})^{p'}\right]}$ is a metric for $1 \leq p,p' < \infty$.

Mean GOSPA

• Setting p = p' = 1 gives that **mean GOSPA**

$$\mathbb{E}\left[d_1^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})\right]$$

is a metric.

Root mean squared GOSPA (RMS-GOSPA)

• Setting p = p' = 2 gives that root mean squared GOSPA

$$\sqrt{\mathbb{E}\left[d_2^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})^2\right]}$$

is a metric. Note: mean squared GOSPA is not a metric.

DECOMPOSING GOSPA FOR RFSs

• Let γ^* denote the optimal assignment in the GOSPA metric (a RFS).

Decomposing GOSPA

• For any $1 \le p < \infty$, the following is a metric

$$\sqrt[\rho]{\mathbb{E}\left[d_{p}^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})^{p}\right]} = \sqrt[\rho]{\mathbb{E}\left[\sum_{(i,j)\in\gamma^{*}}d(x^{i},\hat{x}^{j})^{p}\right]} + \underbrace{\frac{c^{p}}{2}\mathbb{E}\left[|\mathbf{x}|-|\gamma^{*}|\right]}_{\text{missed}^{p}} + \underbrace{\frac{c^{p}}{2}\mathbb{E}\left[|\hat{\mathbf{x}}|-|\gamma^{*}|\right]}_{\text{false}^{p}}.$$

- **Proof:** Setting $p = p' \Rightarrow$ the left hand side is a metric.
- The result then follows from

$$d_{p}^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})^{p} = \sum_{(i,j)\in\gamma^{*}} d(x^{i},\hat{x}^{j})^{p} + \frac{c^{p}}{2}(|\mathbf{x}| - |\gamma^{*}|) + \frac{c^{p}}{2}(|\hat{\mathbf{x}}| - |\gamma^{*}|)$$

DECOMPOSING GOSPA FOR RFSs

• Let γ^* denote the optimal assignment in the GOSPA metric (a RFS).

Decomposing GOSPA

• For any $1 \le p < \infty$, the following is a metric

$$\sqrt[p]{\mathbb{E}\left[d_{p}^{(c,2)}(\mathbf{x},\hat{\mathbf{x}})^{p}\right]} = \sqrt[p]{\mathbb{E}\left[\sum_{(i,j)\in\gamma^{*}}d(x^{i},\hat{x}^{j})^{p}\right]} + \underbrace{\frac{c^{p}}{2}\mathbb{E}\left[|\mathbf{x}|-|\gamma^{*}|\right]}_{\text{missed}^{p}} + \underbrace{\frac{c^{p}}{2}\mathbb{E}\left[|\hat{\mathbf{x}}|-|\gamma^{*}|\right]}_{\text{false}^{p}}.$$

- In particular, both mean GOSPA and RMS-GOSPA decompose as above.
- This enables us to analyse error sources!

GOSPA FOR RFSs: SIMULATION EXAMPLE

RMS-GOSPA for two MBs

Suppose x is a MB RFS with

$$r_1 = r_2 = 1$$

 $p_1(x) = \mathcal{N}(x; [3, 3]^T, 0.1 I)$
 $p_2(x) = \mathcal{N}(x; [-1, -1]^T, 0.2 I)$

• Also, suppose $\hat{\mathbf{x}}$ is a MB RFS with $\hat{r}_1 = \hat{r}_2 = 0.7$ $\hat{p}_1(x) = \mathcal{N}(x; [2.5, 2.5]^T, 0.7 I)$ $\hat{p}_2(x) = \mathcal{N}(x; [-1.5, -1.4]^T, 0.8 I)$

- Using p=2 and c=3, we get RMS-GOSPA ≈ 2.4 , false ≈ 0.3 , localisation ≈ 1.7 , missed ≈ 1.7 .
- Note: RMS-GOSPA = $\sqrt{\text{localisation}^2 + \text{missed}^2 + \text{false}^2}$.

SUMMARY

• GOSPA is a metric between sets of points. For p = 1,

GOSPA = localisation error
$$+\frac{c}{2}$$
 (\sharp missed objects $+\sharp$ false objects)

- GOSPA penalises false and missed object estimates.
- Efficiently computed using Hungarian/auction algorithms.
- Both mean GOSPA and RMS-GOSPA are metrics on RFSs.