

Graphing in Stata:

Tips, tricks, and code snippets

Tara Templin

Goals

- The purpose of this document is to:
 - Facilitate graphing in Stata by providing examples
 - Provide detail graphing style guidelines
 - Share code for producing publication-quality graphics

What this is and is not

- What this is: A practical guide of tips and tricks for data analysts, post-bachelor fellows, and researchers coding in Stata. It lays out a style guide for graphs. A likely scenario in which this would be useful is producing figures for a slide deck or publication.
- What this is not: A description of why R, Python, or Javascript would be better than Stata. This document assumes that you are in Stata's environment for better or worse.

Outline

- 1. Graphing Style
- 2. Graphing tips and tricks
- 3. Auxiliary graphing items
- Fonts and Colors

Graphing Style

1. Displaying numerical estimates

2. General graphing principles

Graphing Style: Numerical estimates

- For reporting numbers:
 - No decimal points on per capita values (e.g. \$10 per person)
 - One decimal point on percentages (e.g. 10.5% of GDP)
 - Two decimal points on large absolute values (e.g. \$10.53 billion)

Graphing Style: Graphing principles

- In general, your graphs should have:
 - Readable marker labels and axis values (size 6 or bigger).
 - Non-sideways y-axis titles
 - Non-sideways y-label values [ylab(, angle(90))]
 - No blue backgrounds: set scheme s1color
 - –line– instead of –scatter– for time series data
 - –rarea– instead of –graph bar, stack– for time series data that are not volatile

Outline

Graphing Style

2. Graphing tips and tricks

3. Auxiliary graphing items

Fonts and Colors

Graphing Tips and Tricks

Tips and tricks for the following:

- Bar charts
- Line charts
- 3. Pie charts
- 4. Arrow Diagrams
- 5. Bubble Diagrams with arrows
- 6. Maps
- Overlapping uncertainty intervals

Graphing tips and tricks: Bar charts

- Bar charts
 - Setting up your bar chart
 - Grouped bar plots
 - Overlapping bars
 - Stacked bar plots over age groups

Graphing tips and tricks: Bar chart set up

 Two types of bar charts: –gr bar– and –twoway bar– which require differently structured input data.

A y-axis needs to be defined for –twoway bar–.

 Stacked bar charts can be created using –twoway bar– by appropriately ordering the bars so that the tallest is at the back.

Setting up the y-axis for twoway bar

```
gen n = .
local count = 2
foreach r in HIC UMC LMC LIC G {
      foreach p in dah prepaid oop ghes combo {
             di "region == `r' & payer == `p'"
             replace n = `count' if region == "`r" & payer == "`p"
             local count = 'count' + 2
       local count = `count' + 1
      if ("'r" == "LIC") local count = 'count' + 3
gen m = n + 0.65
```

Graphing tips and tricks: Overlapping bars

Graphing tips and tricks: Overlapping bars

```
twoway (bar meanper1_ m if payer == "combo", color(orange*0.7) horiz barwidth(1.5)) ///
(bar meanper1 m if payer == "ghes", color(emerald*0.7) horiz barwidth(1.5)) ///
(bar meanper1 m if payer == "oop", color(eltblue*0.7) horiz barwidth(1.5)) ///
(bar meanper1 m if payer == "prepaid", color(navy*0.7) horiz barwidth(1.5)) ///
(bar meanper1 m if payer == "dah", color(green*0.3) horiz barwidth(1.5)) ///
(bar meanper n if payer == "combo", color(orange) horiz barwidth(1.5)) ///
(bar meanper n if payer == "ghes", color(emerald) horiz barwidth(1.5)) ///
(bar meanper n if payer == "oop", color(eltblue) horiz barwidth(1.5)) ///
(bar meanper n if payer == "prepaid", color(navy) horiz barwidth(1.5)) ///
(bar meanper n if payer == "dah", color(green*0.5) horiz barwidth(1.5)) ///
(rcap upperper lowerper n, color(black) msize(*0.5) horiz), ///
xlabel(-10 "-10%" -5 "-5%" 0 "0%" 5 "5%" 10 "10%", labsize(vsmall) glcolor(gs8) glwidth(vthin) glpattern(dot) angle(0)) ///
ylabel(4 "HIC" 8 "UMC" 12 "LMC" 16 "LIC" 24 "Global", noticks angle(0) labsize(tiny)) ///
xtitle("Percent Change in Health Spending", size(small)) ytitle("") graphregion(fcolor(white)) legend(col(1) size(tiny) ///
lab(6 "Total Health Spending") lab(7 "Government Health" "Spending") lab(8 "Out-of-pocket" "Health Spending") ///
lab(9 "Prepaid Private" "Insurance") lab(10 "Development Assistance" "for Health") order(6 7 8 9 10) symxsize(1.5) ///
position(3) region(lcolor(white))) xline(0, lcolor(black) lwidth(thin)) aspectratio(0.8)
```


Graphing tips and tricks: Grouped bars

Graphing tips and tricks: Grouped bars

```
twoway (bar percent_ n if payer == "dah" & location_name != "HIC", color(green*0.7) msize(small) barwidth(0.9)) ///
(bar percent_ n if payer == "oop", color(eltblue) msize(small) barwidth(0.9)) ///
(bar percent_ n if payer == "prepaid", color(navy) msize(small) barwidth(0.9)) ///
(bar percent_ n if payer == "ghes", color(emerald) msize(small) barwidth(0.9)), ///
ylabel(0 "0%" 4 "4%" 8 "8%" 12 "12%" 16 "16%", labsize(vsmall) glcolor(gs12) angle(0)) ///
xlabel(`HIC_place' "High-income" `UMC_place' "Upper-middle" `LMC_place' "Lower-middle" ///
`LIC_place' "Low-income", noticks labsize(vsmall)) ///
ytitle("Health Spending per GDP (%)" "", size(small) margin(3 0 0 0)) xtitle("") ///
legend(col(1) lab(1 "DAH") lab(2 "OOP") lab(3 "PPP") lab(4 "GHES") order(1 2 3 4) ///
size(small) symxsize(1.5) position(3) region(lcolor(white))) ///
yline(0, lcolor(black) lwidth(thin)) aspectratio(.8) scheme(s1color)
```

Graphing tips and tricks: Over categories

Graphing tips and tricks: Over categories

```
gr bar (sum) per 1 per 2 per 3 per 4 per5 per 6 per 7 per 8 per 9 per 10 ///
if Age !=99 & year == 2010, over(Age, gap(0) label( labsize(*0.5) angle(45)) ///
relabel(1 "0 - 1" 2 "1 - 4" 3 "5 - 9" 4 "10 - 14" 5 "15 - 19" 6 "20 - 24" 7 "25 - 29" ///
8 "30 - 34" 9 "35 - 39" 10 "40 - 44" 11 "45 - 49" 12 "50 - 54" 13 "55 - 59" 14 ///
"60 - 64" 15 "65 - 69" 16 "70 - 74" 17 "75 - 79" 18 "80+")) stack name(stacked, replace) ///
ysize(3) ylabel(0(20)100, labsize(*0.8) glcolor(gs12) glwidth(vthin) glpattern(blank) angle(90)) ///
ytitle("Percentage of total DALYs" " ", size(*0.7)) graphregion(c(white)) ///
bar(1, c("`cancer"")) bar(2, c("`cardio"")) bar(3, c("`resp"")) bar(4, c("`cirrhosis"")) bar(5, c("`digestive"")) ///
bar(6, c("`neuro"')) bar(7, c("`mental"")) bar(8, c("`diabetes"")) bar(9, c("`musculo"")) bar(10, c("`other"")) ///
legend(row(2) lab(10 "Other non-communicable" "diseases") lab(9 "Musculoskeletal" "disorders") ///
lab(8 "Diabetes, urogenital," "blood, and endocrine" "diseases") lab(7 "Mental and" "behavioral disorders") ///
lab(6 "Neurological disorders") lab(5 "Digestive diseases" "(except cirrhosis)") lab(4 "Cirrhosis of the liver") ///
lab(3 "Chronic respiratory" "disease") lab(2 "Cardiovascular and" "circirculatory disease") ///
lab(1 "Neoplasms (Cancer)") order(1 2 3 4 5 6 7 8 9 10) size(small) region(lcolor(white))) ///
title("All low- and middle-income countries", size(*0.7))
```


Graphing tips and tricks: Line charts

Graphing tips and tricks: Line charts

Line graphs: build a line graph over a bunch of categories

```
twoway (line combo per cap year if location name == "Burkina Faso", lc(red*0.7)) ///
(line combo per cap year if location name == "Democratic Republic of the Congo", lc(red)) ///
(line combo per cap year if location name == "Ethiopia", lc(eltblue)) ///
(line combo per cap year if location name == "Ghana", lc(navy)) ///
(line combo per cap year if location name == "India", lc(orange)) ///
(line combo per cap year if location name == "Kenya", lc(gs8)) ///
(line combo per cap year if location name == "Nigeria", lc(blue)) ///
(line combo per cap year if location name == "Senegal", lc(black)) ///
(line combo per cap year if location name == "Tanzania", lc(maroon)) ///
(line combo per cap year if location name == "Zambia", lc(green)), ///
legend(off) ytitle("", size(small) margin(3 0 0 0)) ylabel(, angle(0)) ///
graphregion(fcolor(white)) legend(off) xlab(1995 "1995" 2010 "2010" 2025 "2025" 2040 "2040")
```

Graphing tips and tricks: Pie charts

• Pie charts: How to put the percentage on a pie slice

Graphing tips and tricks: Pie charts

```
foreach hfa in ch mh {
	graph pie ghes_`hfa' dah_`hfa' investment_`hfa', name(`hfa'_pie, replace) ///
	pie(1, color(emerald)) pie(2, c(eltblue)) pie(3, c(red)) graphregion(c(white)) legend(col(1) pos(3) ///
	lab(1 "GHES") lab(2 "DAH") lab(3 "Gap") order(1 2 3) size(small) symxsize(1.5) region(lcolor(white))) ///
	title("", size(*0.6)) plotregion(fcolor(white) lcolor(white)) graphregion(fcolor(white) lcolor(white)) ///
	plabel(1 percent, size(smallmed) format(%12.0f)) plabel(2 percent, size(smallmed) format(%12.0f)) ///
	plabel(3 percent, size(smallmed) format(%12.0f))
}
grc1leg ch_pie mh_pie
```

Graphing tips and tricks: Arrow diagrams

Arrow diagrams: Ranking lists and connecting them with arrows or lines

Graphing tips and tricks: Arrow diagrams

```
tw pcarrow rank_DALYS_n_pos x_daly rank_DAH_n_pos x_dah, msymbol(i) mcolor(none) lcolor(midgreen) || /// scatter rank_DAH_n_pos x_dah, mlabel(label_dah) mlabp(9) mlabcolor(black) msymbol(square) mcolor(dkgreen) msize(small) || /// scatter rank_DALYS_n_pos x_daly, mlabel(label_daly) mlabp(3) mlabcolor(black) msymbol(square) mcolor(dkgreen) msize(small) /// text(1 1.15 "Ranking by" "`thing_1_title", place(nw) size(small) just(right)) /// text(1 1.45 "Ranking by" "`thing_2_title", place(ne) size(small) just(left)) /// xsize(5) ysize(7) graphregion(fcolor(white)) xscale(off) yscale(off) ylabel(none) /// xsca(r(0.7 1.9)) ysca(r(2 -30)) legend(off) /// xsca(r(0.7 1.9)) ysca(r(2 -30))
```


Graphing tips and tricks: Bubble diagrams

 Bubble diagrams connected with arrows

Bubble diagrams: weights

```
levelsof gbd_analytical_superregion_name, local(gbd_sr)
local sr_count = 1
foreach sr in `gbd_sr' {
      foreach year in 1995 2013 2040 {
             sum combo_per_cap_`year' if gbd_analytical_superregion_name == "`sr'"
             local pop_weight_`sr_count'_`year' = sqrt(`r(mean)') / 7
             di in red `pop_weight_`sr_count'_`year"
             di in red "pop weight 'sr count' 'year'"
      local sr count = 'sr count' + 1
```

Bubble diagrams: graph

```
twoway (scatter hf transition percent 1995 sds score 1995 if gbd analytical superregion name == "Central Europe, Eastern Europe, and Central Asia", mc(eltblue) msize(*`pop weight 1 1995')) ///
(scatter hf transition percent 2013 sds score 2013 if gbd analytical superregion name == "Central Europe, Eastern Europe, and Central Asia", mc(eltblue) msize(*`pop weight 1 2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "Central Europe, Eastern Europe, and Central Asia", mc(eltblue) msize(*`pop weight 1 2040')) ///
(scatter hf transition percent 1995 sds score 1995 if gbd analytical superregion name == "Southeast Asia, East Asia, and Oceania", mc(red) msize(*`pop weight 6 1995')) ///
(scatter hf transition percent 2013 sds score 2013 if gbd analytical superregion name == "Southeast Asia, East Asia, and Oceania", mc(red) msize(*'pop weight 6 2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "Southeast Asia, East Asia, and Oceania", mc(red) msize(*'pop weight 6 2040')) ///
(scatter hf transition percent 1995 sds score 1995 if gbd analytical superregion name == "High-income", mc(navy) msize(*`pop weight 2 1995')) ///
(scatter hf_transition_percent_2013 sds_score_2013 if gbd_analytical_superregion_name == "High-income", mc(navy) msize(*`pop_weight_2_2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "High-income", mc(navy) msize(*`pop weight 2 2040')) ///
(scatter hf transition percent 1995 sds score 1995 if gbd analytical superregion name == "Latin America and Caribbean", mc(midgreen) msize(*`pop weight 3 1995')) ///
(scatter hf_transition_percent_2013 sds_score_2013 if gbd_analytical_superregion_name == "Latin America and Caribbean", mc(midgreen) msize(*`pop_weight_3_2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "Latin America and Caribbean", mc(midgreen) msize(*`pop weight 3 2040')) ///
(scatter hf transition percent 1995 sds score 1995 if gbd analytical superregion name == "North Africa and Middle East", mc(orange*0.8) msize(*'pop weight 4 1995')) ///
(scatter hf transition percent 2013 sds score 2013 if gbd analytical superregion name == "North Africa and Middle East", mc(orange*0.8) msize(*`pop weight 4 2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "North Africa and Middle East", mc(orange*0.8) msize(*`pop weight 4 2040')) ///
(scatter hf transition percent 1995 sds score 1995 if gbd analytical superregion name == "South Asia", mc(dkgreen) msize(*`pop weight 5 1995')) ///
(scatter hf transition percent 2013 sds score 2013 if gbd analytical superregion name == "South Asia", mc(dkgreen) msize(*`pop weight 5 2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "South Asia", mc(dkgreen) msize(*`pop weight 5 2040')) ///
(scatter hf_transition_percent_1995 sds_score_1995 if gbd_analytical_superregion_name == "Sub-Saharan Africa", mc(mint*0.8) msize(*`pop_weight_7_1995')) ///
(scatter hf transition percent 2013 sds score 2013 if gbd analytical superregion name == "Sub-Saharan Africa", mc(mint*0.8) msize(*`pop weight 7 2013')) ///
(scatter hf transition percent 2040 sds score 2040 if gbd analytical superregion name == "Sub-Saharan Africa", mc(mint*0.8) msize(*`pop weight 7 2040')) ///
(pcarrow hf transition percent 1995 sds score 1995 hf transition percent 2013 sds score 2013, mc(black) lc(black) lwidth(medthick) msize(medium)) ///
(pcarrow hf transition percent 2013 sds score 2013 hf transition percent 2040 sds score 2040, mc(black) lv(black) lwidth(medthick) msize(medium)), ///
ylabel(0(10)100, glcolor(gs12) glwidth(vthin) glpattern(dot) angle(0)) xlabel(0(20)100, glcolor(gs12) glwidth(vthin) glpattern(dot) angle(0)) ytitle("Domestic health expenditure that is governmental or private insurance", size(*0.7)) ///
xtitle("Socio-demographic Status", size(*0.7)) graphregion(fcolor(white)) legend(off) yscale(r(0)) caption("Total health expenditure excludes DAH; The size of the dot is scaled to total health expenditure per capita; 2010 PPP", size(*0.7)) ///
xlabel(, labsize(*0.7)) ylabel(, labsize(*0.7)) name(hf transition change, replace) title("Health Financing Transition by GBD Region: 1995 to 2040", size(medsmall)) aspectratio(0.8)
```

Graphing tips and tricks: Maps

- Mapping requires:
 - Reading in .shp files
 - Appropriately binning your data
 - Producing a map

Graphing tips and tricks: Maps

Graphing tips and tricks: Reading in .shp files

rename iso3 iso a3

cd "J:\Project\IRH\NCD\DATA\Maps" // Change directory -- this is where the dta files are for making the maps

** shp2dta using Somalia_Fixed, data(worlddata2) coor(worldcoord1) genid(id) // Note -- have to download the .shp files, use shp2dta and have them in the directory.

merge m:m iso a3 using "worlddata2.dta", keepusing(mapcolor7 mapcolor8 mapcolor9 mapcolor13 id)

replace id = 146 if iso_a3 == "SOM"

drop if id == 146 & iso_a3 == "-99"

Graphing tips and tricks: Binning data

** Save percentiles of your data

sum `thing' if year == 2040, d

local per5 : di %3.1f `r(p5)'

local per10 : di %3.1f `r(p10)'

local per25 : di %3.1f `r(p25)'

local per50 : di %3.1f `r(p50)'

local per75 : di %3.1f `r(p75)'

local per90 : di %3.1f `r(p90)'

local per99 : di %3.1f `r(p99)'

local max : di %3.1f `r(max)' + 100

Graphing tips and tricks: Map legends

```
spmap `thing' using worldcoord1.dta if id!=7 & year == 2040, id(id) name(`thing', replace) /// fcolor(RdYlGn) ocolor(black ..) osize(vvthin ..) clmethod(custom) /// clbreaks(-100, `per5', `per10', `per25', `per50', `per75', `per90', `max') /// legend(on) legend(region(lcolor(white) fcolor(white))) /// legend(title("Government health spending as a share of total") /// col(1) lab(2 "0% to `per5'%") lab(3 "`per5'% to `per10'%") lab(4 "`per10'% to `per25'%") /// lab(5 "`per25'% to `per50'%") lab(6 "`per50'% to `per75'%") lab(7 "`per75'% to `per90'%") /// lab(8 "More than `per90'%") order(8 7 6 5 4 3 2)) /// title("Percent of health spending financed by the government: 2040", size(medsmall))
```

Graphing tips and tricks: Overlapping Uls

How to create the illusion of overlapping UIs

Graphing tips and tricks: Overlapping Uls

```
twoway (rarea oop_gdp_upper oop_gdp_lower year if iso3=="CHN", col(red) fintensity(30)) ///
    (rarea ghes_gdp_upper ghes_gdp_lower year if iso3=="CHN", col(blue) fintensity(30)) ///
    (rarea ghes_gdp_lower oop_gdp_upper year if iso3=="CHN" & ///
    ghes_gdp_lower < oop_gdp_upper & year > 2012, col(purple) fintensity(30)) ///
    (line oop_gdp year if iso3 == "CHN", lc(red) lwidth(medthick)) ///
    (line ghes_gdp year if iso3 == "CHN", lc(navy) lwidth(medthick)), ///
    ylabel(#4, labsize(*0.6) glcolor(gs12) glwidth(vthin) glpattern(blank) angle(0)) ///
    ytitle("% of GDP", size(*0.7)) xtitle("Year", size(*0.7)) graphregion(c(white)) ///
    legend(off) xlabel(1995(5)2040, labs(small)) ///
    name(GHES, replace) yscale(range(0 6)) title("")
```

Outline

- 1. Graphing Style
- 2. Graphing tips and tricks
- 3. Auxiliary graphing items
- 4. Fonts and Colors

Auxiliary graphing items

- Combining plots
- Parallelizing graphs on the cluster

Auxiliary graphing items: Combining Plots

- –graph combine– has some useful options for ensuring the graphs' aspect ratios remain acceptable:
 - ysize(10)
 - xsize(10)
 - altshrink

The user written –grc1leg– is useful if there is one common legend for all graphs

Auxiliary graphing items: Parallelizing graphs

I/O error when attempting to write parallelized PDFs on the computing cluster

Way around it using –pdfappend–

Dealing with country names can be burdensome, see example

Auxiliary graphing items: Parallelizing graphs

```
levelsof name if iso3 == "`c", local(temp1)
local y = subinstr(`temp1',`""","",.)
local country title: list clean temp1
di 'temp1'
di `"`country title'"
pdfstart using `"$path/check countries `y'.pdf"'
<graph commands>
graph combine ghes oop prepaid dah combo total, row(2) title("Preliminary Estimates: `y'", size(*0.8))
pdfappend
pdffinish
```

Auxiliary graphing items: Parallelizing graphs

Name	Date modified	Туре	Size
check_countries_Afghanistan	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Albania	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Algeria	5/9/2016 6:31 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Andorra	5/9/2016 6:30 PM	Adobe Acrobat D	10 KB
🔁 check_countries_Angola	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Antigua and Barbuda	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Argentina	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Armenia	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Australia	5/9/2016 6:30 PM	Adobe Acrobat D	10 KB
🔁 check_countries_Austria	5/9/2016 6:30 PM	Adobe Acrobat D	10 KE
🔁 check_countries_Azerbaijan	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Bahrain	5/9/2016 6:30 PM	Adobe Acrobat D	10 KB
🔁 check_countries_Bangladesh	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Barbados	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Belarus	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Belgium	5/9/2016 6:30 PM	Adobe Acrobat D	10 KB
🔁 check_countries_Belize	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB
🔁 check_countries_Benin	5/9/2016 6:30 PM	Adobe Acrobat D	11 KB

Outline

- 1. Graphing Style
- 2. Graphing tips and tricks
- 3. Auxiliary graphing items
- 4. Fonts and Colors

Fonts and Colors

- Fonts
 - Installing custom fonts and exporting them to PDF/EPS

- Colors
 - FGH Health Focus Areas
 - GBD

Fonts and colors

- There may be a custom font required for graphing (eg Haarlemmer)
- To install it:
 - Open the file and copy the entirety of its contents
 - Navigate to Control Panel -> Fonts
 - Paste the contents into the Fonts folder

To export graphs with the font:

```
graph export "file.eps", fontface("Haarlemmer MT") orientation(landscape) replace
```

Fonts and Colors

Health focus area	STATA color used
HIV/AIDS	emerald
Maternal/Child	eltblue
Malaria	purple*0.9
Tuberculosis	purple*0.2
Noncommunicable	orange_red*0.5
Other	midgreen*0.8

GBD Level 1	STATA color used
Communicable	red
NCDs	blue
Injuries	green

Graphing in Stata:

Tips, tricks, and code snippets

