Image Processing and Visual Communications

Overview II

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

New Directions in Image Processing and Understanding

The Driving Forces

From Application Side

- Visual communications
- Information retrieval applications
- Medical/geology/astronomy/military/security applications

• From Theory Side

- Image transforms
- Image models (specifically statistical models)
- Human visual system models
- Knowledge-driven → data-driven approaches (machine learning, data mining)

Why Image Transforms?

Why Statistical Image Models?

Strong PRIOR: typical (natural) images occupy an extremely tiny space in the space of all images. Why?

Why Human Visual System Models? Which distorted images have better quality?

[Wang & Bovik '02]

A and B – the same shade of gray

A and B – the same shade of gray

Find the black dot

Which horizontal lines are straight?

What is this?

- Disadvantages of knowledge-driven approaches
 - Require deep domain knowledge
 - Too difficult for complex problems
- Data-driven approaches
 - Collect sufficient (big) data and learn rules from data

- Deep neural networks (DNN)
 - Rules learned and embedded in weights of networks

- DNN applicable to different scenarios
 - Image to feature mapping object detection, recognition, ...
 - Image to image mapping segmentation, compression, ...

- Limitations of data-driven approaches
 - Weak interpretability
 - Weak transferability
 - The data challenge

-

Visual Communications

Shannon's Picture of Communication (1948)

The goal of communication is to move information from here to there and from now to then

Examples of source:

Human speeches, photos, text messages, videos ...

Examples of channel:

storage media, wired network cables, wireless transmission ...

Traditional Problems in Visual Communication

Compression-Distortion Tradeoff

Complexity/Cost

- Encoder/decoder speed and power consumption; memory requirement; software/hardware implementation complexity

19

Image Compression

20

Image Compression

Lossless image compression

- Information preserving original image can be exactly recovered
- Low compression ratio
- JPEG-LS, JBIG ...

Lossy image compression

- Lose information
 original image can be recovered, but not the same
- High compression ratio
- JPEG, JPEG2000 ...

From JPEG to JPEG 2000

discrete cosine transform based JPEG (CR=64)

wavelet transform based JPEG2000 (CR=64)

Quality

- Quality-of-Service (QoS) vs. Quality-of-Experience (QoE)

QoS factors: bitrate, error rate, package loss, delay, etc.

QoE factors: visual quality, freezing, display factor, etc.

Robustness

• Robustness

- Error-resilient streaming
- Adaptive bitrate (ABR) video steaming

Scalability

- Goal: meet variable bandwidth requirement
- Solutions:

Repeated encoding

Layered video

Continuously scalable coding (research in progress)

Security

- Copyright protection
- Data authentication

image watermarking data hiding cryptograph

Distributability

- Networking

Searchability

- Image annotation
- Feature-based image/video retrieval/hashing

Editability

- Object-based coding
- Image rendering