ISING MODEL

MODOU LAMIN SINGHATEH
SEMINAR
16. MAY 2025

Outline

1. Who was Ernst Ising

2. What is the Ising model

3. 1D Ising model

4. 2D Ising model

5. Summary

MAY 29, 2025

29. MAI 2025

WHAT IS THE ISING MODEL

Ferromagnetism

Binary spins

Interaction energy

Phase transition

Partition function

1D ISING MODEL

3 4 5

29. MAI 2025

Ising's Method

Total # of elementary magnets

$$N = \nu_1 + \nu_2$$
 positive negative

S gap
$$\delta \in \{0,1\}$$

Combinatoric of choosing

$$\binom{\nu_1-1}{s}\cdot\binom{\nu_2-1}{s+\delta-1}$$

Total Energy

$$E = (2s + \delta) \cdot \varepsilon + (v_2 - v_1) \cdot B$$

Partition function

$$Z = \sum_{\nu_1, \nu_2, s, \delta} \left\{ \binom{\nu_1 - 1}{s} \binom{\nu_2 - 1}{s + \delta - 1} + \binom{\nu_2 - 1}{s} \binom{\nu_1 - 1}{s + \delta - 1} \cdot e^{-\beta((2s + \delta)\varepsilon + (\nu_2 - \nu_1)B)} \right\}$$

Ising's Method

$$\alpha = \beta B$$

$$F(x) = \sum_{N=0}^{\infty} Z(N)x^{N}$$

$$F(x) = \frac{2x[\cos\alpha - (1 - \exp(-\beta\epsilon))x]}{1 - 2\cos\alpha \cdot x + (1 - \exp(-2\beta\epsilon))x^{2}}$$

Partial fractional decomposition

$$Z(N) = c_1 \left(\cos(\alpha) + \sqrt{\sin^2(\alpha) + e^{\frac{-2\varepsilon}{k_B T}}} \right)^N + c_2 \left(\cos(\alpha) - \sqrt{\sin^2(\alpha) + e^{\frac{-2\varepsilon}{k_B T}}} \right)^N$$
$$= \left(\cos(\alpha) + \sqrt{\sin^2(\alpha) + e^{\frac{-2\varepsilon}{k_B T}}} \right)^N$$

Magnetisation

$$M = -\frac{\partial}{\partial B} f(B, T) = \frac{N \sin(\alpha)}{\sqrt{\sin^2(\alpha) + e^{\frac{-2\varepsilon}{k_B T}}}}$$

T R A N S F E R F U N C T I O N

Hamiltonian

$$\mathcal{H} = -J\sum_{\langle ij\rangle} S_i S_j - B\mu\sum_i S_i$$

Definition

$$T_{i,i+1} := e^{KS_iS_{i+1} + \frac{1}{2}H(S_i + S_{i+1})}$$

$$K = \beta J$$

$$T = \begin{pmatrix} e^{K+H} & e^{-K} \\ e^{-K} & e^{K-H} \end{pmatrix}$$

Partition function

$$Z_N = \sum_{\{S_i\}} e^{-\beta \mathcal{H}} = \lambda_1^N + \lambda_2^N$$

$$\lambda_{1,2} = e^K \cosh H \pm \sqrt{e^{2K} \cosh^2 H - 2 \sinh 2K}$$

$$Z_N = (2\cosh K)^N$$

Free Energy

$$F = -k_B T N \ln \left(2 \cosh \frac{J}{k_B T} \right)$$

Magnetisation

$$M(T,B) = \frac{1}{Z} \sum_{\{S_i\}} \left(\mu \sum_i S_i \right) e^{-\beta \mathcal{H}} = \mu \partial_H \ln Z_N = \frac{\mu N}{\lambda_1} \partial_H \lambda_1 = \frac{\mu N \sinh H}{\sqrt{\cosh^2 H - 2e^{-2K} \sinh 2K}}$$

$$M^{2} = \mu^{2} N^{2} \lim_{j \to \infty} \left\langle S_{i} S_{i+j} \right\rangle = \begin{cases} \mu^{2} N^{2} & T = 0\\ 0 & T > 0 \end{cases}$$

$$M(T \neq 0, B \rightarrow \pm \infty) \rightarrow \pm \mu N$$

\bigcirc

Spin Correlations

$$\langle S_i S_{i+j} \rangle = \frac{1}{Z_N} \sum_{\{S_i\}} (S_i S_{i+j}) e^{-\beta \mathcal{H}}$$

$$\langle S_i S_{i+j} \rangle = (\tanh K)^j = e^{-j/\xi}$$

$$\xi = -(\ln(\tanh(K)))^{-1}$$

Entropy

$$S = -\frac{\partial F}{\partial T} = Nk_B \left[\ln \left(2 \cosh K \right) - K \tanh K \right]$$

$$S \stackrel{T \to \infty, K \to 0}{\to} Nk_B \ln 2$$

$$S \stackrel{T \to 0, K \to \infty}{\to} Nk_B(K - K) = 0$$

Recap

2 D I S I N G M O D E L

Peierls argument

domain walls

Shape fluctuation

Phase transition

Correlation does not quickly decay

$$T > T_c = 2J/(\ln 3k_B)$$

Mean field approximation

Energy

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} s_i s_j - \mu B \sum_i s_i = \frac{1}{2} JNqm^2 - (Jqm + B) \sum_i s_i$$

Partition function

$$Z = e^{-\frac{1}{2}\beta JNqm^2} \left(e^{-\beta B_{\text{eff}}} + e^{\beta B_{\text{eff}}} \right)^N$$

$$= e^{-\frac{1}{2}\beta JNqm^2} 2^N \cosh^N \beta B_{\text{eff}}$$

$$B_{\text{eff}} = B + Jqm$$

Self-Consistency

$$m = \tanh(\beta B + \beta Jqm)$$

B=0

Mean-field self consistency equation

Mean-field self consistency equation

$$m = \tanh(\beta B + \beta Jqm)$$

$$\bigcirc \mathbf{B} \neq \mathbf{0}$$

$$m \approx \beta Jqm - \frac{1}{3}(\beta Jqm)^3 + \dots$$

$$m_0 \sim \pm (T_c - T)^{1/2}$$
 $m \sim B^{1/3}$

$$m \sim B^{1/3}$$

$$\beta = \frac{1}{8}$$

$$\delta = \frac{1}{15}$$

Onsager's 1944 proof

High temperature limit

$$Z = \sum_{\{S_i\}} e^{K\sum_{\langle ij\rangle} S_i S_j} = \sum_{\{S_i\}} \prod_{\langle ij\rangle} e^{KS_i S_j}$$

Taylor expansion

$$e^{KS_iS_j} = \cosh K + S_iS_j \sinh K$$
$$= \cosh K(1 + xS_iS_j)$$

$$x := \tanh K$$

$$\prod_{\langle ij\rangle} e^{KS_iS_j} = (\cosh K)^{N_b} \prod_{\langle ij\rangle} (1 + xS_iS_j)$$

$$Z = (\cosh K)^{N_b} \sum_{\{S_i\}} \prod_{\langle ij \rangle} (1 + x S_i S_j)$$

$$Z = \left(\frac{1}{1 - x^2}\right)^N \sum_{\{S_i\}} \prod_{\langle ij \rangle} (1 + xS_iS_j)$$

Free Energy

Specific heat

$$c = (K)^2 \frac{\partial^2 F}{\partial^2 K}$$

Critical point

$$K_c = \frac{1}{2} \ln(1 + \sqrt{2}) \approx 0.4407$$

Critical temperature

$$T_c = \frac{2J}{k_B \ln(1 + \sqrt{2})} \approx 2.269 J/k_B$$

Dynamics of stock market

Generative neural networks (RBM)

Quantum Annealing for Cancer Classification

DNA

18 MAY 29, 2025

MONTE CARLO SIMULATION OF ISING MODEL

MAY 29, 2025

Summary

Combinatoric and transfer matrix

No phase transition in 1D

Peierls argument

Mean field approximation

Onsagers

$$T_c^{
m Onsager}$$

Application

$$T_c^{
m Peierls} = 1.6 J/k_B$$

$$T_c^{ ext{MF}}=rac{qJ}{k_B}\!=\!rac{4J}{k_B}$$

$$=\frac{2J}{k_B \ln(1+\sqrt{2})} \approx 2.269J/k_B$$

T H A N K Y O U

Kramers-Wannier Duality

$$e^{-2\beta J} \longleftrightarrow \tanh \beta J$$

$$\sinh^2(2\beta_c J) = 1$$

$$\sinh 2\tilde{\beta}J = \frac{1}{\sinh 2\beta J}$$

$$2\beta_c J = \sinh^{-1}(1) = \ln(1 + \sqrt{2})$$

$$T_c = \frac{2J}{k_B \ln(1 + \sqrt{2})} \approx 2.269 J/k_B$$

