Sprawozdanie 2 Obliczenia Naukowe

Piotr Zapała

November 2023

Spis treści

1	Zadanie 1	
	1.1 Opis problemu	
	1.2 Rozwiązanie	
	1.3 Wyniki	
	1.4 Wnioski	
2	Zadanie 2	
	2.1 Opis problemu	
	2.2 Rozwiązanie	
	2.3 Wyniki	
	2.4 Wnioski	
3	Zadanie 3	
J	3.1 Opis problemu	
	3.2 Rozwiązanie	
	3.3 Wyniki	
	3.4 Wnioski	
	VIIIODAI	• • •
4	Zadanie 4	
	4.1 Opis problemu	
	4.2 Rozwiązanie	
	4.3 Wyniki	
	4.4 Wnioski	
5	Zadanie 5	
	5.1 Opis problemu	
	5.2 Rozwiązanie	
	5.3 Wyniki	
	5.4 Wnioski	
6	Zadanie 6	
Ū	6.1 Opis problemu	
	6.2 Rozwiązanie	
	6.3 Wyniki	
	6.4 Whicelia	1.

1 Zadanie 1

1.1 Opis problemu

W zadaniu pierwszym jesteśmy proszeni, aby powtórz eksperyment z pierwszej listy laboratoryjnej. Różnica polega na małej modyfikacji danych, należało usuniąć ostatniej 9 z x_4 oraz ostatniej 7 z x_5 . W ramach przypomnienia, w zadaniu piątym z pierwszej listy mieliśmy zaimplementować, na cztery różne sposoby, algorytm obliczania iloczynu skalarnego wektorów, a następnie należało obliczyć ten iloczyn dla następującej pary wektorów:

$$x = \begin{bmatrix} 2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995 \end{bmatrix}$$
$$y = \begin{bmatrix} 1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049 \end{bmatrix}$$

(a) "w przód"
$$\sum_{i=1}^{n} x_i y_i$$
, tj. algorytm $S := 0$ for i:=1 to n do $S := S + x_i * y_i$ end for

(b) "w tył"
$$\sum_{i=n}^{1} x_i y_i$$
, tj. algorytm $S := 0$ for i:=n downto 1 do $S := S + x_i * y_i$ end for

- (c) dodatnie dodajemy w porządku od największego do najmniejszego, a ujemne w porządku od najmniejszego do największego, następnie dodajemy do siebie obliczone sumy częściowe.
- (d) przeciwnie do metody (c).

1.2 Rozwiązanie

Rozwiązanie polega na zaimplementowaniu podanych algorytmów, a następnie obliczeniu iloczynu skalarnego dla każdego z osobna.

1.3 Wyniki

type	Float32	Float64
example1	-0.4999443	1.0251881368296672e-10
example2	-0.4543457	-1.5643308870494366e-10
example3	-0.5	0.0
example4	-0.5	0.0

Tabela 1: iloczyn skalarny.

type	Float32	Float64
example1	-0.4999443	-0.004296342739891585
example2	-0.4543457	-0.004296342998713953
example3	-0.5	-0.004296342842280865
example4	-0.5	-0.004296342842280865

Tabela 2: iloczyn skalarny z modyfikacją.

Analizując powyższe wyniki można łatwo zauważyć, że nie zmieniły się dla Float32 względem zadania 5 z listy 1. Jest to spowodowane niewielką precyzją arytmetyki. Porównując z arytmetyką Float64 można dojść do wniosku, że pomimo nie wprowadzenia zmian w algorytmach struktura Float32 dała zgoła inne wyniki niż Float64. Tutaj niewielka zmiana rzutowała na wynik iloczynu skalarnego bardzo mocno. Do rozwiązywania takich zadań należy używać maksymalnej precyzji. Zadanie jest źle uwarunkowane, małe decyzje w danych wejściowych powodują większe zaburzenia. Wgłębiając się bardziej w strukturę problemu błędu możemy dojść do wniosku, że modyfikacja danych wejściowych o najmniejszą cyfrę znaczącą w tym wypadku rzędu 10⁻¹⁰ jest inaczej zapamiętywana przez różne standardy. Właśnie ze względu na różnicę liczby bitów przeznaczonych na zapamiętanie mantysy. Mamy sytuację, w której Float32 nie widzi różnicy bo wszystkie zmiany zachodzą poza zakresem mantysy. Zaś Float64 ma większą precyzję, większą liczbę bitów na zapamiętanie mantysy co za tym idzie obejmuje swoim obszarem mantysy zmiany, co widać w wynikach.

2 Zadanie 2

2.1 Opis problemu

W zadaniu drugim jesteśmy proszeni o narysowanie wykresu funkcji $f(x) = e^x * ln(1 + e^{-x})$ w co najmniej dwóch programach. Następnie należy policzyć granicę $\lim_{x\to\infty} e^x * \ln(1+e^{-x})$, a otrzymany wynik skonfrontować z naszymi wykresami.

2.2 Rozwiązanie

Do narysowania wykresów posłużyłem się MATLAB'em oraz GeoGebrą, granice obliczyłem przy pomocy Wolfram Alpha.

2.3 Wyniki

2.4 Wnioski

Przyglądając się powyższym wykresom, możemy dostrzec, iż dla wartości przekraczających 30 nasze wykresy prezentują niespodziewane perturbacje. Zgodnie z wyznaczoną granicą oczekiwalibyśmy, że od

pewnego miejsca wartości zaczną zbiegać do 1. Natomiast w naszym przypadku, następuje nagły spadek do 0, poprzedzony chwilową oscylacją naszych wartości wokół 1. Problem najpewniej wynika ze zbyt małej wartości wykładnika, gdyż następuje wtedy dzielenie jedynki przez bardzo duży składnik znajdujący się w mianowniku.

3 Zadanie 3

3.1 Opis problemu

Zadanie trzecie polega na rozwiązaniu układu równań liniowych $\mathbf{A}\mathbf{x} = \mathbf{b}$, dla danej macierzy współczynników $\mathbf{A} \in R^{n \times n}$ i wektora prawych stron $\mathbf{b} \in R^n$. Do tego celu należy użyć następujących algorytmów: eliminacji Gaussa $\mathbf{x} = \mathbf{A}/\mathbf{b}$ oraz $\mathbf{x} = A^{-1}\mathbf{b}$ ($\mathbf{x} = \mathbf{inv}(\mathbf{A})^*\mathbf{b}$). Eksperymenty wykonujemy dla dwóch typów macierzy, Hilberta H_n dla n > 1 w moim przypadku ($n = 2, 4, 6 \dots, 36$) oraz macierzy losowej R_n , dla n = 5, 10, 20 z rosnącym wskaźnikiem uwarunkowania $c = 1, 10, 10^3, 10^7, 10^{12}, 10^{16}$. Następnie policzyć błędy względne $\frac{\|x - \tilde{x}\|}{\|x\|}$, gdzie $x = (1, \dots, 1)^T$. Przykładowa macierz Hilberta 3×3 .

$$\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

3.2 Rozwiązanie

Podczas rozwiązywania zadania należało skorzystać z funkcji **A=hilb(n)**, która zwraca macierz Hilberta o zadanym **n** oraz **A=matcond(n,c)** zwracjącą losową macierz z danym wskaźnikiem uwarunkowania. Algorytm eliminacji Gaussa jest częścią języka Julia, a jego wywołanie jest równoważne następującej operacji **x=A/b**. Aby rozwiązać układ równań drugim sposobem używamy funkcji **inv(x)**.

3.3 Wyniki

size	rank	cond	gaussian error	invert error
2	2	19.281470067903967	5.661048867003676e-16	1.1240151438116956e-15
$\parallel 4$	4	15513.738738929662	3.587613383388527e-13	2.4396188501254767e-13
\parallel 6	6	$1.4951058641931808\mathrm{e}7$	$2.6132877364524203 \mathrm{e}\text{-}10$	2.556358881528184e-10
8	8	$1.5257576052786306\mathrm{e}{10}$	3.7551147709171007e-7	4.029793620039031e-7
10	10	1.602489743907797e13	0.00020726510768035548	0.0002485713513251291
12	11	$1.6360718665566702\mathrm{e}{16}$	0.04676893017350922	0.17615857301849733
14	11	$2.4325396487256118\mathrm{e}{17}$	3.0194351169450253	3.4642402117856057
16	12	$6.019326309924319\mathrm{e}{17}$	4.586582236304648	5.860603956215107
18	12	$2.2287877143812815\mathrm{e}{18}$	4.480862554024397	5.339000330241911
20	13	1.0843011915344271e18	12.655226165432483	36.458539959836386
22	13	$9.63324344620851\mathrm{e}{18}$	50.98332587273586	41.1754108459008
24	13	$7.765483100170821\mathrm{e}{18}$	17.042652561190312	42.752046249600056
26	14	$4.872032287682753\mathrm{e}{18}$	12.366008990359907	18.455425454123958
28	14	$5.969866145859385\mathrm{e}{18}$	91.81593379606892	80.87151296965483
30	14	3.8417252904919854e18	22.757911310802164	31.231681742390187
32	14	$7.226010642658811\mathrm{e}{18}$	91.18468026004645	97.01384267591234
34	14	$7.877864065765033\mathrm{e}{18}$	16.318780330167282	18.52148018667523
36	15	$1.1984500558524019\mathrm{e}{19}$	31.4344690401547	44.67185207319411

Tabela 3: Hilbert

size	rank	cond	gaussian error	invert error
5	5	1.00000000000000007	1.7901808365247238e-16	1.4043333874306804e-16
5	5	9.99999999999995	4.864753555590494 e- 16	5.438959822042073e-16
5	5	1000.0000000000095	$4.0296660774695415 \mathrm{e}\text{-}15$	3.7224769761911e-15
5	5	$9.999999988980627\mathrm{e}6$	8.733377064403182e-11	4.8241189717112e-11
5	5	$9.999816990527867\mathrm{e}{11}$	$1.1133476564496114\mathrm{e}\text{-}5$	1.849016181079592e-5
5	4	$1.5951433239650136\mathrm{e}{16}$	0.21622357302232126	0.2711884395501898
10	10	1.000000000000000007	3.3857251850959236e-16	3.1597501217190306e-16
10	10	9.99999999999998	$2.3551386880256624 \mathrm{e}\text{-}16$	2.2752801345137457e-16
10	10	1000.0000000000496	3.321272584248899e-14	3.348876922871696e-14
10	10	$1.0000000001124866\mathrm{e}7$	$2.706753549009248 \mathrm{e}\text{-}10$	2.3291364309905156e-10
10	10	$1.0001159201077572\mathrm{e}{12}$	1.3351437040014653e-5	2.0643407181520504e-5
10	9	$6.379387724567673\mathrm{e}{15}$	0.059063649540189334	0.029978697058601657
20	20	1.00000000000000018	$5.002167713849564\mathrm{e}\text{-}16$	5.534436722516086e-16
20	20	10.0000000000000007	7.69985892130607e-16	4.1910000110727263e-16
20	20	999.999999999699	$2.553266764881752\mathrm{e}\text{-}14$	2.6184651813276296e-14
20	20	$1.0000000002053203\mathrm{e}7$	$2.2513786794432707 \mathrm{e}\text{-}10$	2.0531536109299356e-10
20	20	$1.0000836964768766\mathrm{e}{12}$	$1.9390807211897133\mathrm{e}\text{-}5$	1.5496514406250566e-5
20	19	5.81750942337733e15	0.04332188790837964	0.17286837675040306

Tabela 4: Random

Pierwszym nasuwającym się wnioskiem jest fakt, że nawet dla małych rozmiarów macierze Hilberta, mają bardzo duże wskaźniki uwarunkowania. Kolejną rzeczą jest to, iż w przypadku macierzy Hilberta widzimy znaczącą różnice w wartościach błędów względnych, względem macierzy generowanej losowo. W przypadku macierzy generowanej losowo, nie jesteśmy w stanie stwierdzić wyższości jednego algorytmu nad drugim. Dla

Hilberta sytuacja wygląda zgoła inaczej, gdyż algorytm eliminacji Gaussa daje wyniki bliższe temu rzeczywistemu. Zatem nasuwającym się wnioskiem jest to, że rozwiązywanie układu równań dla macierzy Hilberta jest zadaniem źle uwarunkowanym.

4 Zadanie 4

4.1 Opis problemu

W zadaniu czwartym należy przy użyciu funkcji roots obliczyć 20 miejsc zerowym wielomianu P.

$$P(x) = x^{20} - 210x^{19} + 20615x^{18} - 1256850x^{17} + 53327946x^{16} \\ -1672280820x^{15} + 40171771630x^{14} - 756111184500x^{13} \\ +11310276995381x^{12} - 135585182899530x^{11} \\ +1307535010540395x^{10} - 10142299865511450x^{9} \\ +63030812099294896x^{8} - 311333643161390640x^{7} \\ +1206647803780373360x^{6} - 3599979517947607200x^{5} \\ +8037811822645051776x^{4} - 12870931245150988800x^{3} \\ +13803759753640704000x^{2} - 8752948036761600000x \\ +2432902008176640000$$

P jest postacią naturalną wielomianu Wilkinsona p.

$$p(x) = (x - 20)(x - 19)(x - 18)(x - 17)(x - 16)$$

$$(x - 15)(x - 14)(x - 13)(x - 12)(x - 11)$$

$$(x - 10)(x - 9)(x - 8)(x - 7)(x - 6)$$

$$(x - 5)(x - 4)(x - 3)(x - 2)(x - 1)$$

Następnie należy sprawdzić wyznaczone pierwiastki z_k , obliczając $|P(z_k)|$, $|p(z_k)|$ i $|z_k - k|$, gdzie $k \in [1, ..., 20]$. Drugim poleceniem jest to, aby powtórz eksperyment, ale z modyfikacją współczynnika -210 na $-210 - 2^{-23}$.

4.2 Rozwiązanie

Do rozwiązania zadania posłużyłem się trzema funkcjami z pakietu Polynomials. Pierwszą jest polynomials(coefficients) tworząca równanie w postaci ogólnej z podanych współczynników, fromroots(1:20) zwracająca wielomian na podstawie jego miejsc zerowych oraz roots(polynomial), która oblicza pierwiastki podanego wielomianu.

4.3 Wyniki

$P(z_k)$	$p(z_k)$	$ z_k - k $
1603.9573920179469	2627.95739201793	1.6653345369377348e-14
7032.126244053075	9351.873755953971	8.602007994795713e-13
363020.53660426877	280076.5365949661	3.3646685437815904e-10
4.1297007568024816e6	3.867556758775393e6	3.0104239989725556e-8
3.075695036659063e7	$3.0116950254288312\mathrm{e}7$	8.773618791479976e-7
1.4257935012621844e8	1.4125224900969258e8	1.3036540314814715e-5
5.24632388586803e8	5.2217372324751204e8	0.00011769796309923919
1.7358866242071867e9	$1.7316932035664785\mathrm{e}9$	0.0007083981118194416
5.1002248626897955e9	$5.093502113334706\mathrm{e}{9}$	0.003039097772564503
1.166611991635824e10	$1.1655899158883463\mathrm{e}{10}$	0.009425364817383652
3.127208130563727e10	$3.125699514215297\mathrm{e}{10}$	0.02299817354506395
6.1418141120587135e10	$6.1397123899342445\mathrm{e}{10}$	0.040566592069646745
1.5300549815452048e11	$1.5297585245239474\mathrm{e}{11}$	0.05950452401079254
3.0985557081238544e11	$3.0981676989206445\mathrm{e}{11}$	0.06480991092200128
5.010255098229966e11	$5.009726725103758\mathrm{e}{11}$	0.05398301833971253
9.394123675655612e11	$9.393457079007137\mathrm{e}{11}$	0.03609096183973115
2.3971581253245e12	$2.39707235924346\mathrm{e}{12}$	0.0165393639009217
5.670957056381105e12	5.67084966955888e12	0.005602369314754441
7.741019369389632e12	7.740885904434366e12	0.0011451039164107613
1.2178388919649346e13	$1.2178225081520236\mathrm{e}{13}$	0.00011119342792653697

Tabela 5: -210

$P(z_k)$	$p(z_k)$	$ z_k - k $
10130.71275321466	10130.712753214342	7.749356711883593e-14
56308.28771988236	72692.28772015421	8.29603052920902e-12
807092.163108728	631988.1628406073	8.906004822506475e-10
8.084860855411538e6	7.298429054000744e6	5.614410936161107e-8
3.879198510577002e7	$3.4091787996578604\mathrm{e}7$	1.0868296920207854e-6
1.4732257627258718e8	$6.416108188442689\mathrm{e}7$	5.193150526494605e-6
4.1411759028405327e8	$9.853716087511169\mathrm{e}8$	0.0002283049351108346
5.02184047848722e8	$1.676272204696169\mathrm{e}{10}$	0.006980931819212444
1.2260299344962182e9	$1.3459810989298729\mathrm{e}{11}$	0.08227581314042176
1.711412152637466e9	$1.483751062525329\mathrm{e}{12}$	0.6505270479399019
1.711412152637466e9	$1.483751062525329\mathrm{e}{12}$	1.1105047852610384
1.922343284948516e10	$3.2961283180123582\mathrm{e}{13}$	1.665389446835571
1.922343284948516e10	$3.2961283180123582\mathrm{e}{13}$	2.0460081179778995
2.78104055609644e11	9.547548928471629e14	2.518885830105916
2.78104055609644e11	9.547548928471629e14	2.712916579182928
1.0504983293359739e12	2.7422169135681444e16	2.9060058491454366
1.0504983293359739e12	2.7422169135681444e16	2.8254814771679904
6.884949792026641e12	$4.252502050102871\mathrm{e}17$	2.454019284846941
6.884949792026641e12	$4.252502050102871\mathrm{e}17$	2.004325976483215
9.72908249032009e11	$1.3743613755543311\mathrm{e}{18}$	0.8469082068719089

Tabela 6: $-210 - 2^{-23}$

Spoglądając na otrzymane wyniki widzimy, iż zarówno wyliczając wartość z postaci normalnej jak i iloczynowej, nie byliśmy w stanie uzyskać spodziewanego wyniku. Jednoznacznie wskazuje nam to, iż mamy do czynienia z bardzo "patologicznym" przypadkiem, ponieważ miejsca zerowe nie zerują naszych funkcji. Wartości naszych wielomianów przyjmują wręcz niebotyczne wartości, a fakt iż, nawet tak pozornie mała modyfikacja współczynnika z -210 na $-210-2^{-23}$, ma znaczący wpływ na wyniki końcowe. Sprawia, że nasuwa się oczywisty wniosek, mianowice to zadanie z pewnością jest źle uwarunkowane.

5 Zadanie 5

5.1 Opis problemu

W zadaniu piątym mamy przedstawiony model wzrostu populacji,

$$p_n := p_n + rp_n(1 - pn), n = 0, 1, \dots,$$

r jest pewną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiącą procent maksymalnej wielkości populacji dla danego stanu środowiska. Dla danych $p_0 = 0.01$ i r = 3 należy w arytmetyce Float32 wykonać 40 iteracji wyrażenia, a następnie ponownie wykonać 40 iteracji z tą różnicą, iż po 10 iteracjach odrzucamy cyfry po trzecim miejscu po przecinku i dopiero po obcięciu wyniku prowadzimy dalsze obliczenia. Następnie należy wykonać po 40 iteracji wyrażenia w arytmetyce Float32 i Float64, a następnie porównać wyniki.

5.2 Rozwiązanie

Rozwiązanie polega na obliczaniu kolejnych wartości p_{n+1} w pętli.

5.3 Wyniki

type	result
iterations = 40	0.25860548
iterations = 10 + 30	1.093568

Tabela 7: przykład a

type	result
Float32	0.25860548
Float64	0.011611238029748606

Tabela 8: przykład b

5.4 Wnioski

Wyniki zaprezentowane powyżej, jednoznacznie ukazują wpływ zastosowanej przez nas redukcji cyfr po przecinku. W naszym przypadku nastąpiło obcięcie do trzech cyfr znaczących, pomimo tego różnica w uzyskanych wynikach jest duża. Podobna sytuacja ma miejsce w przypadku wykorzystania innej arytmetyki, tylko zamiast zmniejszać precyzje, zwiększamy ją. Dzięki temu prowadząc obliczenia jesteśmy mniej narażeni na utratę cyfr, które mogą mieć realny wpływ na wynik końcowy.

6 Zadanie 6

6.1 Opis problemu

W zadaniu szóstym ponownie mamy do rozważenia równanie rekurencyjne

$$x_{n+1} := x_n^2 + c, n = 0, 1, \dots,$$

gdzie c jest pewną daną stałą. Należy przeprowadzić szereg eksperymentów, polegających na wykonywaniu po 40 iteracji powyższego wyrażenia w arytmetyce Float64 dla różnych wartości c oraz x_0 .

1.
$$c = -2, x_0 = 1$$

2.
$$c = -2, x_0 = 2$$

4.
$$c = -1, x_0 = 1$$

5.
$$c = -1, x_0 = -1$$

6.
$$c = -1, x_0 = 0.75$$

7.
$$c = -1, x_0 = 0.25$$

6.2 Rozwiązanie

	1	0	1 00000000000000
n	$x_0 = 1$	$x_0 = 2$	$x_0 = 1.99999999999999999999999999999999999$
1	-1.0	2.0	1.9999999999996
2	-1.0	2.0	1.999999999998401
3	-1.0	2.0	1.99999999993605
4	-1.0	2.0	1.99999999997442
5	-1.0	2.0	1.9999999999897682
6	-1.0	2.0	1.9999999999590727
7	-1.0	2.0	1.999999999836291
8	-1.0	2.0	1.9999999993451638
9	-1.0	2.0	1.9999999973806553
10	-1.0	2.0	1.999999989522621
11	-1.0	2.0	1.9999999580904841
12	-1.0	2.0	1.9999998323619383
13	-1.0	2.0	1.9999993294477814
14	-1.0	2.0	1.9999973177915749
15	-1.0	2.0	1.9999892711734937
16	-1.0	2.0	1.9999570848090826
17	-1.0	2.0	1.999828341078044
18	-1.0	2.0	1.9993133937789613
19	-1.0	2.0	1.9972540465439481
20	-1.0	2.0	1.9890237264361752
21	-1.0	2.0	1.9562153843260486
22	-1.0	2.0	1.82677862987391
23	-1.0	2.0	1.3371201625639997
24	-1.0	2.0	-0.21210967086482313
25	-1.0	2.0	-1.9550094875256163
26	-1.0	2.0	1.822062096315173
27	-1.0	2.0	1.319910282828443
28	-1.0	2.0	-0.2578368452837396
29	-1.0	2.0	-1.9335201612141288
30	-1.0	2.0	1.7385002138215109
31	-1.0	2.0	1.0223829934574389
32	-1.0	2.0	-0.9547330146890065
33	-1.0	2.0	-1.0884848706628412
34	-1.0	2.0	-0.8152006863380978
35	-1.0	2.0	-1.3354478409938944
36	-1.0	2.0	-0.21657906398474625
37	-1.0	2.0	-1.953093509043491
38	-1.0	2.0	1.8145742550678174
39	-1.0	2.0	1.2926797271549244
40	-1.0	2.0	-0.3289791230026702

Tabela 9: dla c=-2

n	$x_0 = 1$	$x_0 = 2$	$x_0 = 0.75$	$x_0 = 0.25$
1	0.0	0.0	-0.4375	-0.9375
2	-1.0	-1.0	-0.80859375	-0.12109375
3	0.0	0.0	-0.3461761474609375	-0.9853363037109375
4	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135
5	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
7	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	0.0	0.0	-0.01948876442658909	-0.999999999670343
10	-1.0	-1.0	-0.999620188061125	-6.593148249578462e-11
11	0.0	0.0	-0.0007594796206411569	-1.0
12	-1.0	-1.0	-0.9999994231907058	0.0
13	0.0	0.0	-1.1536182557003727e-6	-1.0
14	-1.0	-1.0	-0.999999999986692	0.0
15	0.0	0.0	-2.6616486792363503e-12	-1.0
16	-1.0	-1.0	-1.0	0.0
17	0.0	0.0	0.0	-1.0
18	-1.0	-1.0	-1.0	0.0
19	0.0	0.0	0.0	-1.0
20	-1.0	-1.0	-1.0	0.0
21	0.0	0.0	0.0	-1.0
22	-1.0	-1.0	-1.0	0.0
23	0.0	0.0	0.0	-1.0
24	-1.0	-1.0	-1.0	0.0
25	0.0	0.0	0.0	-1.0
26	-1.0	-1.0	-1.0	0.0
27	0.0	0.0	0.0	-1.0
28	-1.0	-1.0	-1.0	0.0
29	0.0	0.0	0.0	-1.0
30	-1.0	-1.0	-1.0	0.0
31	0.0	0.0	0.0	-1.0
32	-1.0	-1.0	-1.0	0.0
33	0.0	0.0	0.0	-1.0
34	-1.0	-1.0	-1.0	0.0
35	0.0	0.0	0.0	-1.0
36	-1.0	-1.0	-1.0	0.0
37	0.0	0.0	0.0	-1.0
38	-1.0	-1.0	-1.0	0.0
39	0.0	0.0	0.0	-1.0
40	-1.0	-1.0	-1.0	0.0

Tabela 10: dla c = -1

6.3 Wyniki

Wyznaczam iterację graficzną. Jak to zrobić?

Do przeprowadzenia iteracji trzeba najpierw wyznaczyć wykres funkcji y-ax(1-x) oraz dwusieczną (przekątną kwadratu). Następnie należy zaznaczyć punkt x_q na osi x i przeprowadzić linię pionową wychodzącą z punktu x_0 , a kończącą się w momencie przecięcia wykresu funkcji. Od tego punktu zaczynamy rysować linię poziomą do punktu przecięcia z przekątną, a stąd znowu linię pionową do punktu przecięcia z wykresem itd.

 $x_{n+1}:=x_n^2-1 \ {\rm dla} \ x_0=-1$ Jak widzimy dla -1 widać zacyklenie się procesu. Jest one wręcz natychmiastowe. Oznacza to, że jest stabilne.

 $x_{n+1}:=x_n^2-1 \ {\rm dla} \ x_0=0.25$ Dla 0.25 powoli widać zacyklanie się procesu. Tzn. powolną stabilizację.

 $x_{n+1} := x_n^2 - 1 \ {\rm dla} \ x_0 = 0.75$ Jeszcze mocniejsze zacyklanie. Nieskończony cykl.

zachowania w granicy stopniowo (w kolejnych iteracjach jest mocniej zapełniony) zapełnia on (powoli) całą dostępną przestrzeń. Zjawisko to, nazywane mieszaniem, jest wskaźnikiem niestabilnego stanu systemu. Spoglądając na dane z tabeli znajdziemy potwierdze- nie naszej graficznej reprezentacji.

 $x_{n+1}:=x_n^2-2 \ {\rm dla} \ x_0=1$ Zielone odcinki rysują się do punktów stałych w funkcji. Patrząc na tabelę możemy zinterpretować to jako brak zmian w kolejnych wartościach ciągu.

 $x_{n+1} := x_n^2 - 2$ dla $x_0 = 2$ Tak samo jak w poprzednim przykładzie.