2 2

14

15

15

15

25

Contents

1	ubuntu																					
	1.1 run																					
	1.2 cp.sh																			_		
2	Basic																					
	2.1 ascii									_		_				_				_		
	2.2 limits .							Ċ	•	:	•	•		·	•	•	•	•	•	•	•	•
	Z.Z IIMICS .			•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•
3	字串																					
•	3.1 最長迴文子 ⁵	之中																				
	3.2 stringstrea			•	•	:		•	•	•	•	•		•	•	•	•	•	•	•	•	•
	J.Z Sti Iligati ed	1111		•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•
4	STL																					
4																						
	4.1 priority_qu			٠	٠			•	•	•		•		•	٠	٠	٠	•	•			
	4.2 deque				•			•	٠	٠	•	•		•	٠	٠	٠	•	•	•	•	•
	4.3 map			•				•	•	٠				٠	٠	٠	•	•	•			•
	4.4 unordered_m			٠	٠	•		٠	٠	٠				٠	٠	٠	٠	•	•		•	
	4.6 multiset																					
	4.7 unordered_s	et																				
	4.8 單調隊列																					
5	sort																					
	5.1 大數排序																					
6	math																					
	6.1 質數與因數																					
	6.2 快速冪 .																					
	6.3 歐拉函數																					
	6.4 atan																					
	6.5 大步小步																					
7	algorithm																					
	7.1 basic																					
	7.2 二分搜 .																					
	7.3 三分搜 .																					
	7.4 prefix sum																					
	7.5 差分																					
	7.6 greedy .			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	7.7 floyd warsh			•		:		Ċ	•		•	•		•	•	•	•	•	•	•	•	•
	7.7 floyd warsi 7.8 dinic			•	•			•	•					•	•	•	•	•	•	•	•	•
	7.9 SegmentTree			•	•	-		•	•		•	•		•	•	•	•	•	•	•	•	•
	7.10 Nim Game			•	•	-		•	•	-	•	•		•	•	•		•	•	•	•	
				•	•			•	•	٠	•	•		•	•	•	•	•	•	•	•	•
	7.11 Trie					-		٠	•	٠				٠	٠	٠	٠	•	•			
	7.12 SPFA			•	٠			٠	•	٠				٠	٠	٠	٠	•	•			
				•		-		٠	•	٠		-		٠	٠	٠	•	•	•			•
	7.14 SCC Tarjan							٠		٠				•	٠	٠						
	7.15 SCC Kosaraj				٠.				•					•	٠	٠						
	7.16 Articulation																					
	7.17 最小樹狀圖																					
	7.18 凸包								•					•	•							
	動態規劃																					
8																						
	8.1 LCS 和 LIS	٠		٠	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•
9	Section2																					
9																						
	9.1 thm			•	٠	•		٠	•	•	•	•		٠	•	•	٠	•	•	•	•	•
10	dp 表格																					
10	10.1 DPlist .																					
	IV.I DETISE .			•	•	•		•	•	•	•	•		•	•	•		•	•	•	•	
11	slogan																					
• • •	11.1 slogan .																					
	5105411 .			•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•

1 ubuntu

1.1 run

1 ~ \$ bash cp.sh PA

1.2 cp.sh

```
1 #!/bin/bash
2 clear
3 g++ $1.cpp -DDBG -o $1
4 if [[ "$?" == "0" ]]; then
            echo Running
            ./$1 < $1.in > $1.out
7
            echo END
8 fi
```

Basic

2.1 ascii

1	int	char	int	char	int	char
2	32		64	@	96	`
3	33	!	65	Α	97	a
4	34	"	66	В	98	b
5	35	#	67	С	99	C
6	36	\$	68	D	100	d
7	37	%	69	E	101	e
8	38	&	70	F	102	f
9	39	•	71	G	103	g
10	40	(72	Н	104	h
11	41)	73	I	105	i
12	42	*	74	J	106	j
13	43	+	<i>75</i>	K	107	k
14	44	,	76	L	108	1
15	45	_	77	М	109	m
16	46		78	N	110	n
17	47	/	79	0	111	0
18	48	0	80	P	112	p
19	49	1	81	Q	113	q
20	50	2	82	R	114	r
21	51	3	83	S	115	s
22	52	4	84	T	116	t
23	53	5	85	U	117	u
24	54	6	86	V	118	V
25	55	7	87	W	119	W
26	56	8	88	X	120	X
27	<i>57</i>	9	89	Y	121	y
28	58	:	90	Z	122	Z
29	59	;	91	Γ	123	{
30	60	<	92	\	124	1
31	61	=	93]	125	}
32	62	>	94	٨	126	~
33	63	?	95	_		
,						

2.2 limits

```
1 [Type]
                       [size]
                                    [range]
                                  127 to -128
   2 char
                         1
   3 signed char
                                  127 to -128
15 4
     unsigned char
                         1
                                   0 to 255
     short
                         2
                                   32767 to -32768
   6
     int
                                   2147483647 to -2147483648
     unsigned int
                                   0 to 4294967295
  8 long
                                   2147483647 to -2147483648
15 9 unsigned long
                         4
                                   0 to 18446744073709551615
  10 long long
                         8
25 11
                9223372036854775807 to -9223372036854775808
  12 double
                              1.79769e+308 to 2.22507e-308
                         8
  13 long double
                         16
                              1.18973e+4932 to 3.3621e-4932
  14 float
                         4
                                 3.40282e+38 to 1.17549e-38
  15 unsigned long long
                         8
                                   0 to 18446744073709551615
                         32
  16 string
```

字串

3.1 最長迴文子字串

```
1 #include <bits/stdc++.h>
 #define T(x) ((x)%2 ? s[(x)/2] : '.')
3
 using namespace std;
5
 string s;
6 int n;
8
 int ex(int 1,int r){
  int i=0;
```

```
10
     while (1-i)=0&&r+i<n&&T(1-i)==T(r+i) i++;
11
     return i:
12 }
13
14 int main(){
15
     cin>>s;
     n=2*s.size()+1;
16
17
     int mx = 0;
     int center=0;
18
19
     vector<int> r(n);
20
     int ans=1;
     r[0]=1;
21
22
     for(int i=1;i<n;i++){</pre>
       int ii=center-(i-center);
23
24
       int len=mx-i+1;
25
       if(i>mx){
         r[i]=ex(i,i);
26
27
         center=i;
         mx=i+r[i]-1;
28
29
       else if(r[ii]==len){
30
31
         r[i]=len+ex(i-len,i+len);
32
          center=i;
         mx=i+r[i]-1;
33
34
35
       else r[i]=min(r[ii],len);
36
       ans=max(ans,r[i]);
37
38
     cout << ans -1 << "\n";
39
     return 0;
40 }
```

3.2 stringstream

```
1 string s,word;
2 stringstream ss;
3 getline(cin,s);
4 ss<<s;
bwhile(ss>>word) cout<<word<<endl;</pre>
```

4 STL

4.1 priority_queue

```
1 priority_queue: 優先隊列,資料預設由大到小排序。
  讀取優先權最高的值:
3
4
     x = pq.top();
                            //讀取後刪除
5
     pq.pop();
6 判斷是否為空的priority_queue:
                            //回傳 true
7
     pq.empty()
8
     pq.size()
9|如需改變priority_queue的優先權定義:
                           //預設由大到小
     priority_queue<T> pq;
10
11
     priority_queue<T, vector<T>, greater<T> > pq;
12
                            //改成由小到大
13
     priority_queue < T, vector < T > , cmp > pq;
                                         //cmp
```

4.2 deque

```
1 deque 是 C++ 標準模板函式庫

2 (Standard Template Library, STL)

3 中的雙向佇列容器 (Double-ended Queue),

4 跟 vector 相似,不過在 vector

中若是要添加新元素至開端,

5 其時間複雜度為 O(N),但在 deque 中則是 O(1)。

6 同樣也能在我們需要儲存更多元素的時候自動擴展空間,

7 讓我們不必煩惱佇列長度的問題。
```

```
8 dq.push_back() //在 deque 的最尾端新增元素
 dq.push_front() //在 deque 的開頭新增元素
             //移除 deque 最尾端的元素
10 dq.pop_back()
11 dq.pop_front() //移除 deque 最開頭的元素
12 dq.back()
              //取出 deque 最尾端的元素
              //回傳 deque 最開頭的元素
13 dq.front()
14 dq.insert()
15 dq.insert(position, n, val)
     position: 插入元素的 index 值
17
     n: 元素插入次數
     val: 插入的元素值
19 dq.erase()
     //刪除元素,需要使用迭代器指定刪除的元素或位置,
              //同時也會返回指向刪除元素下一元素的迭代器。
20
              //清空整個 deque 佇列。
21 da.clear()
22 dq.size()
              //檢查 deque 的尺寸
              //如果 deque 佇列為空返回 1;
23 dq.empty()
              //若是存在任何元素,則返回0
24
              //返回一個指向 deque 開頭的迭代器
25 dq.begin()
              //指向 deque 結尾,
26 dq.end()
27
              //不是最後一個元素,
              //而是最後一個元素的下一個位置
28
```

4.3 map

```
1 map: 存放 key-value pairs 的映射資料結構,
2
      會按 key 由小到大排序。
  元素存取
3
  operator[]:存取指定的[i]元素的資料
4
6
  begin():回傳指向map頭部元素的迭代器
7
  end():回傳指向map末尾的迭代器
  rbegin():回傳一個指向map尾部的反向迭代器
10 rend():回傳一個指向map頭部的反向迭代器
11
12 遍歷整個map時,利用iterator操作:
13 取key:it->first 或 (*it).first
  取value:it->second 或 (*it).second
14
15
16 容量
17 empty():檢查容器是否為空,空則回傳true
18 size():回傳元素數量
  max_size():回傳可以容納的最大元素個數
20
21 | 修改器
22 clear():刪除所有元素
23 insert():插入元素
24 erase():刪除一個元素
  swap():交換兩個map
25
26
27| 查找
28 count():回傳指定元素出現的次數
29 find(): 查找一個元素
30
  //實作範例
31
32 #include <bits/stdc++.h>
33
  using namespace std;
  int main(){
34
35
     //declaration container and iterator
36
     map<string, string> mp;
37
     map<string, string>::iterator iter;
38
     map<string, string>::reverse_iterator iter_r;
39
40
     //insert element
     mp.insert(pair<string, string>
41
            ("r000", "student_zero"));
42
     mp["r123"] = "student_first";
43
44
     mp["r456"] = "student_second";
45
     //traversal
```

```
47
       for(iter=mp.begin();iter!=mp.end();iter++)
           cout << iter -> first << " "
48
49
                         <<iter->second<<endl;
       for(iter_r=mp.rbegin();iter_r!=mp.rend();iter_r++)
50
51
           cout << iter_r -> first << "
                 "<<iter_r->second<<endl;
52
53
       //find and erase the element
       iter=mp.find("r123");
54
       mp.erase(iter);
55
56
       iter=mp.find("r123");
       if(iter!=mp.end())
57
58
          cout << "Find, the value is "
                    <<iter->second<<endl;
59
60
       else cout<<"Do not Find"<<endl;</pre>
61
       return 0;
62 }
```

4.4 unordered_map

```
1 | unordered_map: 存放 key-value pairs2 | 的「無序」映射資料結構。3 | 用法與map相同
```

4.5 set

```
1 set: 集合,去除重複的元素,資料由小到大排序。
2
  取值: 使用iterator
3
4
      x = *st.begin();
             // set中的第一個元素(最小的元素)。
5
6
      x = *st.rbegin();
             // set中的最後一個元素(最大的元素)。
7
8
  判斷是否為空的set:
9
10
      st.empty() 回傳true
      st.size() 回傳零
11
12
  常用來搭配的member function:
13
14
      st.count(x):
      auto it = st.find(x);
15
16
         // binary search, O(log(N))
17
      auto it = st.lower_bound(x);
18
         // binary search, O(log(N))
      auto it = st.upper_bound(x);
19
20
         // binary search, O(log(N))
```

4.6 multiset

4.7 unordered_set

```
unordered_set 的實作方式通常是用雜湊表(hash table),

phase phase
```

```
7 unordered_set <int> myunordered_set;
8 myunordered_set.insert(2);
9 myunordered_set.insert(4);
10 myunordered_set.insert(6);
11 cout << myunordered_set.count(4) << "\n"; // 1
12 cout << myunordered_set.count(8) << "\n"; // 0</pre>
```

4.8 單調隊列

```
1 //單調隊列
  "如果一個選手比你小還比你強,你就可以退役了。"--單調隊列
2
  example
  給出一個長度為 n 的數組,
6
  輸出每 k 個連續的數中的最大值和最小值。
  #include <bits/stdc++.h>
9
10
  #define maxn 1000100
11
  using namespace std;
  int q[maxn], a[maxn];
12
13 int n, k;
14
15
  void getmin() {
       // 得到這個隊列裡的最小值,直接找到最後的就行了
16
17
      int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
18
19
           while(head<=tail&&a[q[tail]]>=a[i]) tail--;
20
          g[++tail]=i:
21
       for(int i=k; i<=n;i++) {</pre>
22
23
          while(head<=tail&&a[q[tail]]>=a[i]) tail--;
24
           q[++tail]=i;
25
           while(q[head]<=i-k) head++;</pre>
           cout <<a[q[head]]<<"
26
27
28
       cout << endl;
29
  }
30
  void getmax() { // 和上面同理
31
      int head=0,tail=0;
32
       for(int i=1;i<k;i++) {</pre>
33
34
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
35
           q[++tail]=i;
36
       for(int i=k;i<=n;i++) {</pre>
37
38
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
           q[++tail]=i;
39
40
           while(q[head]<=i-k) head++;</pre>
41
           cout <<a[q[head]]<<"
42
43
      cout << end1;
44
  }
45
46
  int main(){
      cin>>n>>k; //每k個連續的數
47
       for(int i=1;i<=n;i++) cin>>a[i];
48
49
       getmin();
50
       getmax();
51
       return 0;
52 }
```

5 sort

5.1 大數排序

```
# 建立空串列
6
      arr = []
      for i in range(n):
7
8
       arr.append(int(input())) # 依序將數字存入串列
                              # 串列排序
9
      arr.sort()
10
      for i in arr:
11
       print(i)
                            # 依序印出串列中每個項目
    except:
12
13
      break
```

6 math

6.1 質數與因數

```
1 埃氏篩法
2 int n;
3 vector<int> isprime(n+1,1);
4 isprime[0]=isprime[1]=0;
  for(int i=2;i*i<=n;i++){</pre>
5
6
       if(isprime[i])
           for(int j=i*i;j<=n;j+=i) isprime[j]=0;</pre>
7
8 }
9
10 歐拉篩0(n)
11 #define MAXN 47000 //sqrt(2^31)=46,340...
12 bool isPrime[MAXN];
13 int prime[MAXN];
14 int primeSize=0;
15 void getPrimes(){
       memset(isPrime, true, sizeof(isPrime));
16
17
       isPrime[0]=isPrime[1]=false;
       for(int i=2; i < MAXN; i++){</pre>
18
           if(isPrime[i]) prime[primeSize++]=i;
19
20
           for(int
                j=0;j<primeSize&&i*prime[j]<=MAXN;++j){</pre>
21
                isPrime[i*prime[j]]=false;
                if(i%prime[j]==0) break;
22
23
           }
       }
24
25
  }
26
  最大公因數 O(log(min(a,b)))
27
  int GCD(int a, int b){
28
29
       if(b==0) return a;
       return GCD(b,a%b);
30
  }
31
32
33 質因數分解
  void primeFactorization(int n){
34
35
       for(int i=0;i<(int)p.size();++i){</pre>
           if(p[i]*p[i]>n) break;
36
37
           if(n%p[i]) continue;
           cout << p[i] << ' ';
38
39
           while(n%p[i]==0) n/=p[i];
40
41
       if(n!=1) cout << n << ' ';
42
       cout << '\n';
43 }
44
45 擴展歐幾里得算法
46 \frac{1}{ax+by=GCD(a,b)}
47
  #include <bits/stdc++.h>
48
  using namespace std;
49
  int ext_euc(int a,int b,int &x,int &y){
       if(b==0){
51
52
           x=1, y=0;
53
           return a;
       }
54
55
       int d=ext_euc(b,a%b,y,x);
56
       y-=a/b*x;
57
       return d;
58 }
59
```

```
60 int main(){
       int a,b,x,y;
61
       cin>>a>>b;
62
       ext_euc(a,b,x,y);
63
64
       cout << x << ' '<< y << endl;
65
       return 0;
66
   }
67
68
69
   歌德巴赫猜想
70
71
   solution: 把偶數 N (6≤N≤10<sup>6</sup>) 寫成兩個質數的和。
   #include <iostream>
72
73 using namespace std;
74 #define N 20000000
75
   int ox[N],p[N],pr;
76
   void PrimeTable(){
77
       ox[0]=ox[1]=1;
78
       pr=0;
79
       for(int i=2:i<N:i++){</pre>
80
            if(!ox[i]) p[pr++]=i;
81
            for(int j=0;i*p[j]<N&&j<pr;j++)</pre>
82
                ox[i*p[j]]=1;
       }
83
84
   }
85
86
   int main(){
       PrimeTable();
87
88
       int n;
       while(cin>>n,n){
89
90
            int x:
91
            for(x=1;;x+=2)
92
                if(!ox[x]&&!ox[n-x]) break;
93
            printf("%d = %d + %d\n",n,x,n-x);
       }
94
   }
95
   problem : 給定整數 N,
96
            求 N 最少可以拆成多少個質數的和。
97
   如果 N 是質數,則答案為 1。
   如果 N 是偶數(不包含2),則答案為 2 (強歌德巴赫猜想)。
   如果 N 是奇數且 N-2 是質數,則答案為 2 (2+質數)。
   其他狀況答案為 3 (弱歌德巴赫猜想)。
   #include < bits / stdc ++. h>
102
   using namespace std;
103
104
   bool isPrime(int n){
105
       for(int i=2;i<n;++i){</pre>
106
            if(i*i>n) return true;
107
108
            if(n%i==0) return false;
109
       }
       return true;
110
111
   }
112
   int main(){
113
114
       int n;
115
       cin>>n;
116
       if(isPrime(n)) cout<<"1\n";</pre>
       else if(n%2==0||isPrime(n-2)) cout<<"2\n";</pre>
117
       else cout << "3\n";</pre>
119 }
```

6.2 快速冪

```
1 計算a^b
  #include<iostream>
  #define ll long long
  using namespace std;
  const 11 MOD=1000000007;
6
7
  11 fp(11 a, 11 b) {
       int ans=1;
8
9
       while(b>0){
10
           if(b&1) ans=ans*a%MOD;
           a=a*a%MOD;
11
12
           b>>=1;
```

6.3 歐拉函數

```
1 //計算閉區間 [1,n] 中的正整數與 n 互質的個數
2
3
  int phi(){
4
      int ans=n;
5
      for(int i=2;i*i<=n;i++)</pre>
6
          if(n%i==0){
              ans=ans-ans/i;
              while(n%i==0) n/=i;
8
10
      if(n>1) ans=ans-ans/n;
11
      return ans;
12 }
```

6.4 atan

```
1| 說明
    atan() 和 atan2() 函數分別計算 x 和 y/x的反正切。
3
4 回覆值
    atan()函數會傳回介於範圍 - /2 到 /2 弧度之間的值。
5
    atan2() 函數會傳回介於 - 至
                                 弧度之間的值。
    如果 atan2() 函數的兩個引數都是零,
    則函數會將 errno 設為 EDOM,並傳回值 0。
8
10|範例
11 #include <math.h>
12 #include <stdio.h>
13
  int main(void){
14
15
      double a,b,c,d;
16
17
      c = 0.45;
18
      d=0.23;
19
      a=atan(c);
20
      b=atan2(c,d);
21
22
23
      printf("atan(%lf)=%lf/n",c,a);
      printf("atan2(%1f,%1f)=%1f/n",c,d,b);
24
25
26 }
27
28 /*
29 atan (0.450000) = 0.422854
30 atan2(0.450000,0.230000)=1.098299
31 */
```

6.5 大步小步

```
      1 題意

      2 給定 B,N,P,求出 L 滿足 B^L N(mod P)。

      3 4 題解

      5 餘數的循環節長度必定為 P 的因數,因此 B^0 B^P,B^1 B^(P+1),…,

      6 也就是說如果有解則 L<N,枚舉0,1,2,L-1 能得到結果,但會超時。</td>

      7
```

```
8 | 將 L 拆成 mx+y,只要分別枚舉 x,y 就能得到答案,
  設 m=√P 能保證最多枚舉 2√P 次 。
9
10
11
  B^(mx+y) N(mod P)
12 B^(mx)B^y N(mod P)
  B^y N(B^(-m))^x \pmod{P}
13
14
15
  先求出 B^0,B^1,B^2,...,B^(m-1),
  再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的 B^y。
16
17 這種算法稱為大步小步演算法,
  大步指的是枚舉 x (一次跨 m 步),
18
  小步指的是枚舉 y (一次跨 1 步)。
19
20
    複雜度分析
21
22 利用 map/unorder_map 存放 B^0,B^1,B^2,...,B^(m-1),
23 枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
  存放和查詢最多 2√P 次,時間複雜度為 0(√Plog√P)/0(√P)。
24
25
26
27
  #include <bits/stdc++.h>
28
29 using namespace std;
30 using LL = long long;
  LL B, N, P;
31
32
33
  LL fpow(LL a, LL b, LL c){
34
      LL res=1;
35
      for(;b;b >>=1){
36
          if(b&1)
37
               res=(res*a)%c;
          a=(a*a)%c;
38
39
40
      return res;
41
  }
42
     BSGS(LL a, LL b, LL p){
43
44
      a%=p,b%=p;
45
      if(a==0)
          return b==0?1:-1;
46
47
      if(b==1)
48
          return 0;
49
      map<LL, LL> tb;
      LL sq=ceil(sqrt(p-1));
50
51
      LL inv=fpow(a,p-sq-1,p);
52
      tb[1]=sq;
      for(LL i=1, tmp=1; i < sq; ++i){</pre>
53
54
          tmp=(tmp*a)%p;
55
          if(!tb.count(tmp))
               tb[tmp]=i;
56
57
      for(LL i=0;i<sq;++i){</pre>
58
59
          if(tb.count(b)){
60
              LL res=tb[b];
               return i*sq+(res==sq?0:res);
61
62
63
          b=(b*inv)%p;
64
      }
65
      return -1;
66
  }
67
68
  int main(){
69
      ios::sync_with_stdio(false);
      cin.tie(0),cout.tie(0);
70
71
      while(cin>>P>>B>>N){
          LL ans=BSGS(B,N,P);
72
          if(ans==-1)
73
74
               cout << "no solution\n";</pre>
75
76
              cout << ans << '\n';
77
      }
78 }
```

7 algorithm

7.1 basic

```
1 min_element:找尋最小元素
2 min_element(first, last)
3 max_element:找尋最大元素
4 max_element(first, last)
5 sort:排序,預設由小排到大。
6 sort(first, last)
기 sort(first, last, cmp):可自行定義比較運算子 cmp ∘
8 find:尋找元素。
9 find(first, last, val)
10 lower_bound:尋找第一個小於 x 的元素位置,
            如果不存在,則回傳 last 。
11
12 lower_bound(first, last, val)
13 upper_bound:尋找第一個大於 x 的元素位置,
            如果不存在,則回傳 last 。
14
15
  upper_bound(first, last, val)
16 next_permutation:將序列順序轉換成下一個字典序,
                 如果存在回傳 true,反之回傳 false。
17
18 next_permutation(first, last)
19 prev_permutation:將序列順序轉換成上一個字典序,
                 如果存在回傳 true,反之回傳 false。
20
21 prev_permutation(first, last)
```

7.2 二分搜

```
1 int binary_search(int target) {
2 // For range [ok, ng) or (ng, ok], "ok" is for the
3 // index that target value exists, with "ng" doesn't.
      int ok = maxn, ng = -1;
5 // For first lower_bound, ok=maxn and ng=-1,
6 // for last lower_bound, ok = -1 and ng = maxn
7 // (the "check" funtion
8 // should be changed depending on it.)
      while(abs(ok - ng) > 1) {
9
10
          int mid = (ok + ng) >> 1;
          if(check(mid)) ok = mid;
11
          else ng = mid;
13 // Be careful, "arr[mid]>=target" for first
14 // lower_bound and "arr[mid]<=target" for
15 // last lower_bound. For range (ng, ok],
16 // convert it into (ng, mid] and (mid, ok] than
17 // choose the first one, or convert [ok, ng) into
18 // [ok, mid) and [mid, ng) and than choose
19 // the second one.
20
      }
21
      return ok;
22 }
23
24 lower_bound(arr, arr + n, k);
                                 //最左邊 ≥ k 的位置
25 upper_bound(arr, arr + n, k);
                                 //最左邊 > k 的位置
27 lower_bound(arr, arr + n, k) - 1; //最右邊 < k 的位置
                                 //等於 k 的範圍
28 (lower_bound, upper_bound)
29 equal_range(arr, arr+n, k);
```

7.3 三分搜

```
      1
      題意

      2
      給定兩射線方向和速度,問兩射線最近距離。

      3
      4

      4
      題解

      5
      假設 F(t) 為兩射線在時間 t 的距離,F(t) 為二次函數,可用三分搜找二次函數最小值。

      7
      8

      #include <bits/stdc++.h>

      9
      using namespace std;
```

```
10
  struct Point{
11
       double x, y, z;
12
       Point() {}
13
14
       Point(double _x, double _y, double _z):
15
           x(_x),y(_y),z(_z){}
       void read() { cin>>x>>y>>z; }
16
17
       Point operator+(const Point &rhs) const{
           return Point(x+rhs.x,y+rhs.y,z+rhs.z);
18
19
20
       Point operator - (const Point &rhs) const{
21
           return Point(x-rhs.x,y-rhs.y,z-rhs.z);
22
       Point operator*(const double &d) const{
23
24
           return Point(x*d,y*d,z*d);
25
26
       Point operator/(const double &d) const{
27
           return Point(x/d,y/d,z/d);
28
       }
29
       double dist(const Point &rhs) const{
           double res = 0;
30
31
           res+=(x-rhs.x)*(x-rhs.x);
32
           res+=(y-rhs.y)*(y-rhs.y);
33
           res+=(z-rhs.z)*(z-rhs.z);
           return res;
34
35
       }
36
  };
37
38
  int main(){
39
       ios::sync_with_stdio(false);
       cin.tie(0),cout.tie(0);
40
41
       int T;
42
       cin>>T;
43
       for(int ti=1;ti<=T;++ti){</pre>
44
           double time;
45
           Point x1, y1, d1, x2, y2, d2;
46
           cin>>time;
47
           x1.read();
48
           y1.read();
49
           x2.read();
50
           y2.read();
51
           d1=(y1-x1)/time;
           d2=(y2-x2)/time;
52
53
           double L=0,R=1e8,m1,m2,f1,f2;
54
           double ans = x1.dist(x2);
55
           while(abs(L-R)>1e-10){
56
                m1=(L+R)/2:
57
                m2=(m1+R)/2;
58
                f1=((d1*m1)+x1).dist((d2*m1)+x2);
                f2=((d1*m2)+x1).dist((d2*m2)+x2);
59
60
                ans = min(ans, min(f1, f2));
61
                if(f1<f2) R=m2;
62
                else L=m1;
63
           cout << "Case "<<ti << ": ";
64
65
           cout << fixed << setprecision(4) << sqrt(ans) << '\n';</pre>
       }
66
67 }
```

7.4 prefix sum

```
1 // 前綴和
  陣列前n項的和。
  b[i]=a[0]+a[1]+a[2]+ ··· +a[i]
  區間和 [l, r]:b[r]-b[1-1] (要保留b[1]所以-1)
  #include < bits / stdc ++. h>
7
  using namespace std;
  int main(){
      int n:
10
      cin>>n;
11
      int a[n],b[n];
12
      for(int i=0;i<n;i++) cin>>a[i];
13
      b[0]=a[0];
      for(int i=1;i<n;i++) b[i]=b[i-1]+a[i];</pre>
14
```

103 };

104

```
| for(int i=0;i<n;i++) cout<<b[i]<<' ';
| cout<<'\n';
| int l,r;
| cin>>l>>r;
| cout<<b[r]-b[l-1]; //區間和
| 20 | }
```

7.5 差分

```
1 // 差分
2|用途:在區間 [1, r] 加上一個數字v。
3|b[1] += v; (b[0~1] 加上v)
4 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v))
5 給的 a [ ] 是前綴和數列,建構 b [ ] ,
  因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
7 所以 b[i] = a[i] - a[i-1]。
8 在 b[1] 加上 v,b[r+1] 減去 v,
9 最後再從 0 跑到 n 使 b[i] += b[i-1]。
10 這樣一來,b[] 是一個在某區間加上v的前綴和。
11
12 #include <bits/stdc++.h>
13 using namespace std;
14 int a[1000], b[1000];
  // a: 前綴和數列, b: 差分數列
16 int main(){
17
      int n, 1, r, v;
      cin >> n;
18
19
      for(int i=1; i<=n; i++){</pre>
20
          cin >> a[i];
          b[i] = a[i] - a[i-1]; //建構差分數列
21
22
23
      cin >> 1 >> r >> v;
      b[1] += v;
24
      b[r+1] -= v;
25
26
      for(int i=1; i<=n; i++){</pre>
27
28
          b[i] += b[i-1];
          cout << b[i] << ' ';
29
30
31 }
```

7.6 greedy

28

```
1 // 貪心
2 貪心演算法的核心為,
3 採取在目前狀態下最好或最佳(即最有利)的選擇。
  貪心演算法雖然能獲得當前最佳解,
5 但不保證能獲得最後(全域)最佳解,
6 提出想法後可以先試圖尋找有沒有能推翻原本的想法的反例,
7
  確認無誤再實作。
8
10 刪數字問題
11 //problem
12 | 給定一個數字 N(≤10^100),需要刪除 K 個數字,
13 請問刪除 K 個數字後最小的數字為何?
14
15
  //solution
  刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i 位數,
17 扣除高位數的影響較扣除低位數的大。
18
19
  //code
20 int main(){
21
     string s:
22
     int k;
     cin>>s>>k:
23
     for(int i=0;i<k;++i){</pre>
24
        if((int)s.size()==0) break;
25
26
        int pos =(int)s.size()-1;
        for(int j=0; j<(int)s.size()-1;++j){</pre>
27
```

if(s[j]>s[j+1]){

```
29
                  pos=j;
30
                  break;
              }
31
          }
32
33
          s.erase(pos,1);
34
      while((int)s.size()>0&&s[0]=='0')
35
36
          s.erase(0,1);
       if((int)s.size()) cout<<s<'\n';</pre>
37
       else cout << 0 << '\n';
38
39 }
40
41
42 最小區間覆蓋長度
   //problem
43
44 | 給定 n 條線段區間為 [Li,Ri],
45
   請問最少要選幾個區間才能完全覆蓋 [0,S]?
   //solution
47
48 先將所有區間依照左界由小到大排序,
49 對於當前區間 [Li, Ri], 要從左界 >Ri 的所有區間中,
50 | 找到有著最大的右界的區間,連接當前區間。
51
52
   //problem
53 長度 n 的直線中有數個加熱器,
   在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
54
   問最少要幾個加熱器可以把 [0,n] 的範圍加熱。
55
56
57
   //solution
   對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,
58
   更新已加熱範圍,重複上述動作繼續尋找加熱器。
   //code
62
  int main(){
      int n, r;
63
       int a[1005];
64
65
      cin>>n>>r:
       for(int i=1;i<=n;++i) cin>>a[i];
66
67
      int i=1, ans=0;
68
       while(i<=n){</pre>
69
          int R=min(i+r-1,n),L=max(i-r+1,0)
          int nextR=-1:
70
71
          for(int j=R; j>=L; -- j){
              if(a[i]){
72
73
                 nextR=j;
74
                 break;
75
              }
76
          }
77
          if(nextR==-1){
              ans=-1;
78
79
              break;
80
81
          ++ans;
82
          i=nextR+r:
83
       cout << ans << '\n';
84
85
86
87
   最多不重疊區間
88
   給你 n 條線段區間為 [Li,Ri],
   請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
91
92
   //solution
94 依照右界由小到大排序,
   每次取到一個不重疊的線段,答案 +1。
96
97
   //code
98
   struct Line{
      int L.R:
99
       bool operator < (const Line &rhs)const{</pre>
100
           return R<rhs.R;</pre>
101
102
```

```
105
   int main(){
                                                         180
       int t:
                                                            //code
106
                                                         181
       cin>>t;
                                                            struct Work{
107
       Line a[30];
108
                                                         183
                                                                int t, d;
109
       while(t--){
                                                         184
                                                                bool operator<(const Work &rhs)const{</pre>
           int n=0;
110
                                                         185
                                                                    return d<rhs.d;</pre>
          while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
111
                                                         186
112
                                                         187
                                                            }:
113
           sort(a,a+n);
                                                         188
           int ans=1,R=a[0].R;
114
                                                         189
                                                            int main(){
115
           for(int i=1;i<n;i++){</pre>
                                                         190
                                                                int n=0;
               if(a[i].L>=R){
                                                                Work a[10000];
                                                         191
116
117
                                                         192
                                                                priority_queue<int> pq;
                  ++ans;
                  R=a[i].R:
                                                                while(cin>>a[n].t>>a[n].d)
118
                                                         193
119
                                                         194
                                                                    ++n:
          }
                                                                sort(a,a+n);
120
                                                         195
121
          cout << ans << '\n';</pre>
                                                                int sumT=0,ans=n;
                                                         196
122
       }
                                                         197
                                                                for(int i=0;i<n;++i){</pre>
                                                                    pq.push(a[i].t);
123
  }
                                                         198
124
                                                         199
                                                                    sumT+=a[i].t;
                                                                    if(a[i].d<sumT){</pre>
125
                                                         200
126 最小化最大延遲問題
                                                         201
                                                                        int x=pq.top();
                                                         202
                                                                        pq.pop();
127 //problem
                                                                        sumT -=x;
                                                         203
128 | 給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                                        --ans;
                                                         204
129 期限是 Di, 第 i 項工作延遲的時間為 Li=max(0, Fi-Di),
                                                                    }
                                                         205
   原本Fi 為第 i 項工作的完成時間,
                                                         206
                                                                }
   求一種工作排序使 maxLi 最小。
                                                         207
                                                                cout <<ans << '\n';
132
                                                         208
                                                            }
133
   //solution
                                                         209
  |按照到期時間從早到晚處理。
134
                                                            任務調度問題
                                                         210
135
                                                            //problem
                                                         211
   //code
136
                                                         212 給定 N 項工作,每項工作的需要處理時長為 Ti,
   struct Work{
137
                                                            期限是 Di,如果第 i 項工作延遲需要受到 pi 單位懲罰,
138
       int t, d;
                                                            請問最少會受到多少單位懲罰。
                                                         214
       bool operator < (const Work &rhs)const{</pre>
139
                                                         215
140
          return d<rhs.d;</pre>
                                                         216
                                                            //solution
141
                                                            依照懲罰由大到小排序,
142
  };
                                                         217
                                                            每項工作依序嘗試可不可以放在 Di-Ti+1, Di-Ti,...,1,0,
143
                                                         218
   int main(){
144
                                                            如果有空閒就放進去,否則延後執行。
                                                         219
145
       int n;
                                                         220
       Work a[10000];
146
                                                         221
                                                            //problem
147
       cin>>n;
                                                         222 給定 N 項工作,每項工作的需要處理時長為 Ti,
       for(int i=0;i<n;++i)</pre>
148
                                                            期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
                                                         223
149
           cin>>a[i].t>>a[i].d;
                                                                 單位獎勵,
150
       sort(a.a+n):
                                                            請問最多會獲得多少單位獎勵。
                                                         224
       int maxL=0, sumT=0;
151
                                                         225
152
       for(int i=0;i<n;++i){</pre>
                                                         226
                                                            //solution
          sumT+=a[i].t:
153
                                                            和上題相似,這題變成依照獎勵由大到小排序。
                                                         227
           maxL=max(maxL,sumT-a[i].d);
154
                                                         228
       }
155
                                                         229
                                                            //code
156
       cout << maxL << '\n';</pre>
                                                         230
                                                            struct Work{
157
  }
                                                                int d,p;
                                                         231
158
                                                         232
                                                                bool operator<(const Work &rhs)const{</pre>
159
                                                         233
                                                                    return p>rhs.p;
   最少延遲數量問題
160
                                                         234
   //problem
161
                                                            };
                                                         235
162 給定 N 個工作,每個工作的需要處理時長為 Ti,
                                                         236
   期限是 Di,求一種工作排序使得逾期工作數量最小。
163
                                                         237
                                                            int main(){
                                                         238
                                                                int n;
165
  //solution
                                                         239
                                                                Work a[100005];
166 期限越早到期的工作越先做。將工作依照到期時間從早到晚排序4
                                                                bitset<100005> ok;
   依序放入工作列表中,如果發現有工作預期,
167
                                                                while(cin>>n){
                                                         241
   就從目前選擇的工作中,移除耗時最長的工作。
168
                                                         242
                                                                    ok.reset();
                                                                    for(int i=0;i<n;++i)</pre>
169
                                                         243
                                                         244
                                                                        cin>>a[i].d>>a[i].p;
170
   上述方法為 Moore-Hodgson s Algorithm。
171
                                                         245
                                                                    sort(a.a+n):
172 //problem
                                                         246
                                                                    int ans=0;
                                                                    for(int i=0;i<n;++i){</pre>
173 給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
                                                         247
                                                                        int j=a[i].d;
                                                         248
174
                                                         249
                                                                        while(j--)
175
   //solution
                                                                            if(!ok[j]){
                                                         250
176 和最少延遲數量問題是相同的問題,只要將題敘做轉換。
                                                         251
                                                                                ans+=a[i].p;
  |工作處裡時長 → 烏龜重量
                                                                                ok[j]=true;
                                                         252
178 工作期限 → 烏龜可承受重量
                                                         253
                                                                                break;
179 多少工作不延期 → 可以疊幾隻烏龜
                                                                            }
                                                         254
```

```
3 int medium[n][n];
4 // 由 i 點到 j 點的路徑,其中繼點為 med i um [ i ] [ j ] 。
  void floyd_warshall(){ //0(V^3)
6
    for(int i=0;i<n;i++)</pre>
7
      for(int j=0;j<n;j++){</pre>
9
         d[i][j]=w[i][j];
10
         medium[i][j]=-1;
         // 預設為沒有中繼點
11
12
      }
    for(int i=0;i<n;i++) d[i][i]=0;</pre>
13
14
    for(int k=0;k<n;k++)</pre>
15
      for(int i=0;i<n;i++)</pre>
16
         for(int j=0;j<n;j++)</pre>
17
           if(d[i][k]+d[k][j]<d[i][j]){</pre>
             d[i][j]=d[i][k]+d[k][j];
18
19
             medium[i][j]=k;
               由 i 點 走 到 j 點 經 過 了 k 點
20
           }
21
22
  }
23
24 // 這支函式並不會印出起點和終點,必須另行印出。
                                    // 印出最短路徑
25 void find_path(int s,int t){
    if(medium[s][t]==-1) return; // 沒有中繼點就結束
26
                                    // 前半段最短路徑
27
    find_path(s,medium[s][t]);
28
    cout << medium[s][t];</pre>
                             // 中繼點
    find_path(medium[s][t],t);
                                    // 後半段最短路徑
29
30 }
```

7.8 dinic

```
1 #include <stdio.h>
2
  #include <string.h>
3 #include <queue>
4 #define MAXNODE 105
5 #define oo 1e9
6 using namespace std;
8 int nodeNum;
9 int graph[MAXNODE][MAXNODE];
10 int levelGraph[MAXNODE];
11
  bool canReachSink[MAXNODE];
12
  bool bfs(int from, int to){
13
14
       memset(levelGraph,0,sizeof(levelGraph));
       levelGraph[from]=1;
15
       queue<int> q;
16
       q.push(from);
17
18
       int currentNode;
19
       while(!q.empty()){
           currentNode=q.front();
20
21
           q.pop();
           for(int nextNode=1; nextNode<=nodeNum</pre>
22
23
                                     ;++nextNode){
                if((levelGraph[nextNode]==0)&&
24
25
                    graph[currentNode][nextNode]>0){
26
                    levelGraph[nextNode]=
                        levelGraph[currentNode]+1;
27
                    q.push(nextNode);
28
29
30
                if((nextNode==to)&&
31
                    (graph[currentNode][nextNode]>0))
32
                    return true:
```

```
33
           }
       }
34
35
       return false;
36 }
37
  int dfs(int from, int to, int bottleNeck){
       if(from == to) return bottleNeck;
38
       int outFlow = 0;
39
40
       int flow;
       for(int nextNode=1; nextNode <= nodeNum; ++ nextNode){</pre>
41
           if((graph[from][nextNode]>0)&&
42
43
                (levelGraph[from]==levelGraph[nextNode]-1)&&
                canReachSink[nextNode]){
44
45
                flow=dfs(nextNode, to,
                    min(graph[from][nextNode],bottleNeck));
46
47
                graph[from][nextNode]-=flow; //貪心
48
                graph[nextNode][from]+=flow; //反悔路
49
                outFlow+=flow;
50
               bottleNeck -= flow;
51
52
           if(bottleNeck==0) break;
53
       if(outFlow==0) canReachSink[from]=false;
54
55
       return outFlow;
56
  }
57
  int dinic(int from, int to){
58
59
       int maxFlow=0;
       while(bfs(from, to)){
60
61
           memset(canReachSink,1,sizeof(canReachSink));
62
           maxFlow += dfs(from, to, oo);
63
64
       return maxFlow;
65
  }
66
67
  int main(){
68
       int from, to, edgeNum;
69
       int NetWorkNum = 1;
       int maxFlow:
70
       while(scanf("%d",&nodeNum)!=EOF&&nodeNum!=0){
71
           memset(graph, 0, sizeof(graph));
72
           scanf("%d %d %d", &from, &to, &edgeNum);
73
74
           int u, v, w;
75
           for (int i = 0; i < edgeNum; ++i){</pre>
76
                scanf("%d %d %d", &u, &v, &w);
77
                graph[u][v] += w;
78
                graph[v][u] += w;
           }
79
80
           maxFlow = dinic(from, to);
           printf("Network %d\n", NetWorkNum++);
81
82
           printf("The bandwidth is %d.\n\n", maxFlow);
83
84
       return 0;
85 }
```

7.9 SegmentTree

```
1 #define MAXN 1000
2 int data[MAXN]; //原數據
3 int st[4 * MAXN]; //線段樹
  int tag[4 * MAXN]; //懶標
6
  inline int pull(int 1, int r) {
7 // 隨題目改變 sum \ max \ min
8 // 1、r是左右樹的 index
      return st[l] + st[r];
10 }
11
12
  void build(int 1, int r, int i) {
  // 在[1, r]區間建樹, 目前根的index為i
13
      if (1 == r) {
14
15
          st[i] = data[1];
16
          return;
17
      int mid = 1 + ((r - 1) >> 1);
18
      build(1, mid, i * 2);
19
```

```
20
      build(mid + 1, r, i * 2 + 1);
      st[i] = pull(i * 2, i * 2 + 1);
21
22 }
23
24 int query(int ql, int qr, int l, int r, int i) {
  // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
25
      if (ql <= 1 && r <= qr)</pre>
26
27
          return st[i]:
      int mid = 1 + ((r - 1) >> 1);
28
29
      if (tag[i]) {
          //如果當前懶標有值則更新左右節點
30
31
          st[i * 2] += tag[i] * (mid - 1 + 1);
32
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i]; //下傳懶標至左節點
33
          tag[i*2+1] += tag[i];//下傳懶標至右節點
34
35
          tag[i] = 0;
36
      }
37
      int sum = 0;
      if (ql <= mid)</pre>
38
39
          sum += query(ql, qr, l, mid, i * 2);
40
        (qr > mid)
41
          sum += query(ql, qr, mid + 1, r, i*2+1);
42
      return sum;
43 }
44
45 void update(int ql,int qr,int l,int r,int i,int c) {
46 // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
47 // c是變化量
48
      if (ql <= 1 && r <= qr) {</pre>
49
          st[i] += (r - l + 1) * c;
              //求和,此需乘上區間長度
50
          tag[i] += c;
51
          return;
52
      int mid = 1 + ((r - 1) >> 1);
53
54
      if (tag[i] && l != r) {
          //如果當前懶標有值則更新左右節點
55
56
          st[i * 2] += tag[i] * (mid - 1 + 1);
57
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i];//下傳懶標至左節點
58
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
59
60
          tag[i] = 0;
61
62
      if (ql <= mid) update(ql, qr, l, mid, i * 2, c);</pre>
      if (qr > mid) update(ql, qr, mid+1, r, i*2+1, c);
63
      st[i] = pull(i * 2, i * 2 + 1);
64
65 }
66 //如果是直接改值而不是加值,query與update中的tag與st的
67 // 改值從 += 改成 =
```

7.10 Nim Game

```
1 | //兩人輪流取銅板,每人每次需在某堆取一枚以上的銅板,
2 | //但不能同時在兩堆取銅板,直到最後,
3 //將銅板拿光的人贏得此遊戲。
5 #include <bits/stdc++.h>
6 #define maxn 23+5
7 using namespace std;
9 int SG[maxn];
10 int visited[1000+5];
11
  int pile[maxn],ans;
12
13
  void calculateSG(){
14
      SG[0]=0;
15
      for(int i=1;i<=maxn;i++){</pre>
16
          int cur=0;
          for(int j=0; j<i; j++)</pre>
17
              for(int k=0;k<=j;k++)</pre>
18
19
                  visited[SG[j]^SG[k]]=i;
20
          while(visited[cur]==i) cur++;
21
          SG[i]=cur;
      }
22
```

```
23 }
24
25
  int main(){
26
        calculateSG();
27
        int Case=0,n;
28
        while(cin>>n,n){
29
          ans=0:
30
          for(int i=1;i<=n;i++) cin>>pile[i];
          for(int i=1;i<=n;i++)</pre>
31
32
            if(pile[i]&1) ans^=SG[n-i];
33
          cout << "Game "<<++Case << ": ";
          if(!ans) cout<<"-1 -1 -1\n";
34
35
            bool flag=0;
36
37
            for(int i=1;i<=n;i++){</pre>
38
              if(pile[i]){
39
                 for(int j=i+1; j<=n; j++){</pre>
40
                   for(int k=j;k<=n;k++){</pre>
41
                      if((SG[n-i]^SG[n-j]^SG[n-k])==ans){
42
                        cout << i - 1 << " " << j - 1 << " " << k - 1 << endl;
43
                        flag=1;
44
                        break;
                      }
45
                  }
46
47
                   if(flag) break;
48
                 if(flag) break;
49
              }
50
51
            }
52
          }
53
54
        return 0;
55
  }
56
57
58
   input
59
  4 1 0 1 100
  3
     1 0 5
60
62
  0
   output
63
64 Game 1: 0 2 3
  Game 2: 0 1 1
65
  Game 3: -1 -1 -1
67 */
```

7.11 Trie

```
#include <bits/stdc++.h>
2
  using namespace std;
3
  const int maxn = 300000 + 10;
  const int mod = 20071027;
  int dp[maxn];
  int mp[4000*100 + 10][26];
8
  char str[maxn];
10
11
  struct Trie {
12
       int seq;
13
       int val[maxn];
14
15
       Trie() {
16
           seq = 0;
17
           memset(val, 0, sizeof(val));
           memset(mp, 0, sizeof(mp));
18
19
20
21
       void insert(char* s, int len) {
22
           int r = 0;
           for(int i=0; i<len; i++) {</pre>
23
                int c = s[i] - 'a';
24
25
                if(!mp[r][c]) mp[r][c] = ++seq;
26
                r = mp[r][c];
27
           val[r] = len;
28
```

```
29
           return:
                                                                25
                                                                                     continue:
       }
                                                                26
                                                                                dis[e.t] = dis[cur] + e.w;
30
31
                                                                27
                                                                                if (inq[e.t])
       int find(int idx, int len) {
32
                                                                28
                                                                                     continue:
33
           int result = 0;
                                                                29
                                                                                ++cnt[e.t];
34
           for(int r=0; idx<len; idx++) {</pre>
                                                                30
                                                                                if (cnt[e.t] > n)
                int c = str[idx] - 'a';
                                                                                     return false; // negtive cycle
35
                                                                31
36
                if(!(r = mp[r][c])) return result;
                                                                32
                                                                                inq[e.t] = true;
                if(val[r])
37
                                                                33
                                                                                q.push(e.t);
38
                    result = (result + dp[idx + 1]) % mod;
                                                                34
39
           }
                                                                35
                                                                       }
                                                                36
40
           return result;
                                                                       return true:
41
       }
                                                                37 }
42 };
43
  int main() {
44
45
       int n, tc = 1;
46
                                                                   7.13 dijkstra
47
       while(~scanf("%s%d", str, &n)) {
48
           int len = strlen(str);
49
                                                                 1 #include <bits/stdc++.h>
50
           char word[100+10];
                                                                   #define maxn 50000+5
51
                                                                   #define INF 0x3f3f3f3f
                                                                 3
           memset(dp, 0, sizeof(dp));
52
                                                                   using namespace std;
53
           dp[len] = 1;
54
                                                                   struct edge{
           while(n--) {
55
                                                                 7
                                                                       int v,w;
                scanf("%s", word);
56
                                                                 8
                                                                   };
57
                tr.insert(word, strlen(word));
                                                                 9
58
           }
                                                                   struct Item{
                                                                10
59
                                                                11
                                                                       int u, dis;
60
           for(int i=len-1; i>=0; i--)
                                                                       bool operator<(const Item &rhs)const{</pre>
                                                                12
61
                dp[i] = tr.find(i, len);
                                                                13
                                                                            return dis>rhs.dis;
62
           printf("Case %d: %d\n", tc++, dp[0]);
                                                                14
                                                                       }
63
                                                                15 };
64
       return 0:
                                                                16
65 }
                                                                17
                                                                   vector<edge> G[maxn];
66
                                                                18
                                                                   int dist[maxn];
   /*****
67
                                                                19
   ****Input****
68
                                                                   void dijkstra(int s){ // O((V + E)log(E))
                                                                20
   * abcd
69
                                                                21
                                                                       memset(dist,INF,sizeof(dist));
70
   * 4
                                                                22
                                                                       dist[s]=0;
   * a b cd ab
71
                                                                23
                                                                       priority_queue < Item > pq;
72
   ******
                                                                24
                                                                       pq.push({s,0});
73
   ****Output***
                                                                25
                                                                       while(!pq.empty()){
74
   * Case 1: 2
                                                                26
                                                                            Item now=pq.top();
75
   ********
                                                                27
                                                                            pq.pop();
76 */
                                                                28
                                                                            if(now.dis>dist[now.u]) continue;
                                                                            for(edge e:G[now.u]){
                                                                29
                                                                                if(dist[e.v]>dist[now.u]+e.w){
                                                                30
                                                                31
                                                                                     dist[e.v]=dist[now.u]+e.w;
  7.12 SPFA
                                                                32
                                                                                     pq.push({e.v,dist[e.v]});
                                                                33
                                                                                }
                                                                            }
                                                                34
1 struct Edge
                                                                       }
                                                                35
2
  {
                                                                36 }
3
       int t;
                                                                37
       long long w;
                                                                38
                                                                   int main(){
5
       Edge(){};
                                                                       int t, cas=1;
                                                                39
6
       Edge(int _t, long long _w) : t(_t), w(_w) {}
                                                                40
                                                                       cin>>t;
7
  };
                                                                41
                                                                       while(t--){
8
                                                                42
                                                                            int n,m,s,t;
9 bool SPFA(int st) // 平均0(V + E) 最糟0(VE)
                                                                43
                                                                            cin>>n>>m>>s>>t;
10 {
                                                                44
                                                                            for(int i=0;i<=n;i++) G[i].clear();</pre>
11
       vector<int> cnt(n, 0);
                                                                45
                                                                            int u,v,w;
```

for(int i=0;i<m;i++){</pre>

cin>>u>>v>>w;

dijkstra(s);

G[u].push_back({v,w});

G[v].push_back({u,w});

cout << "Case #"<<cas++<<": ";

else cout << dist[t] << endl;</pre>

if(dist[t]==INF) cout << "unreachable \n";</pre>

46

47

48

49

50

51

52

53

54

55

56 }

}

12 bitset < MXV > inq(0); 13 queue<int> q; q.push(st); 14 15 dis[st] = 0;16 inq[st] = true; 17 while (!q.empty()) 18 int cur = q.front(); 19 20 q.pop(); 21 inq[cur] = false; 22 for (auto &e : G[cur]) 23 { if (dis[e.t] <= dis[cur] + e.w)</pre> 24

7.14 SCC Tarjan

```
1 //Strongly Connected Components
2 //Tarjan O(V + E)
3 int dfn[N], low[N], dfncnt, sk[N], in_stack[N], tp;
4 //dfn[u]: dfs時u被visited的順序
5 //low[u]: 在u的dfs子樹中能回到最早已在stack中的節點
6 int scc[N], sc;//節點 u 所在 SCC 的編號
7 int sz[N]; //強連通 u 的大小
  void tarjan(int u) {
9
      low[u] = dfn[u] = ++dfncnt, s[++tp] = u,
10
           in_stack[u] = 1;
       for (int i = h[u]; i; i = e[i].nex) {
11
12
           const int &v = e[i].t;
          if (!dfn[v]) {
13
14
               tarjan(v);
15
               low[u] = min(low[u], low[v]);
16
          } else if (in_stack[v]) {
17
               low[u] = min(low[u], dfn[v]);
18
19
      if (dfn[u] == low[u]) {
20
           ++sc;
21
22
          while (s[tp] != u) {
               scc[s[tp]] = sc;
23
24
               sz[sc]++
               in_stack[s[tp]] = 0;
25
26
          }
27
           scc[s[tp]] = sc;
28
29
           sz[sc]++;
           in_stack[s[tp]] = 0;
30
31
           --tp;
      }
32
33 }
```

7.15 SCC Kosaraju

```
1 / / 做兩次 dfs, O(V + E)
2 //g 是原圖, g2 是反圖
3 //s是 dfs離開的節點
 4 void dfs1(int u) {
       vis[u] = true;
6
       for (int v : g[u])
7
           if (!vis[v]) dfs1(v);
8
       s.push_back(u);
9 }
10
   void dfs2(int u) {
11
12
       group[u] = sccCnt;
       for (int v : g2[u])
13
14
           if (!group[v]) dfs2(v);
15 }
16
  void kosaraju() {
17
18
       sccCnt = 0;
19
       for (int i = 1; i <= n; ++i)
20
           if (!vis[i]) dfs1(i);
       for (int i = n; i >= 1; --i)
21
           if (!group[s[i]]) {
22
23
               ++sccCnt;
24
               dfs2(s[i]);
           }
25
26 }
```

7.16 ArticulationPoints Tarjan

```
#include <bits/stdc++.h>
using namespace std;

vector<vector<int>>> G;
```

```
5 int N;
  int timer;
7 bool visited[105];
8| int visTime[105]; // 第一次visit的時間
9 int low[105];
10 // 最小能回到的父節點(不能是自己的parent)的visTime
11 int res;
  //求割點數量
12
13
  void tarjan(int u, int parent) {
14
      int child = 0:
15
      bool isCut = false;
16
      visited[u] = true;
17
       visTime[u] = low[u] = ++timer;
       for (int v: G[u]) {
18
19
           if (!visited[v]) {
20
               ++child;
21
               tarjan(v, u);
               low[u] = min(low[u], low[v]);
22
               if (parent != -1 && low[v] >= visTime[u])
23
24
                   isCut = true;
25
           }
26
           else if (v != parent)
27
               low[u] = min(low[u], visTime[v]);
28
       //If u is root of DFS tree->有兩個以上的children
29
30
       if (parent == -1 && child >= 2)
31
           isCut = true;
32
       if (isCut)
33
           ++res;
34 }
35
36
  int main()
37
38
       char input[105];
       char* token:
39
40
       while (scanf("%d", &N) != EOF && N)
41
42
           G.assign(105, vector<int>());
43
           memset(visited, false, sizeof(visited));
           memset(low, 0, sizeof(low));
44
45
           memset(visTime, 0, sizeof(visited));
46
           timer = 0;
47
           res = 0;
           getchar(); // for \n
48
49
           while (fgets(input, 105, stdin))
50
               if (input[0] == '0')
51
52
                   break;
               int size = strlen(input);
53
               input[size - 1] = ' \setminus 0';
55
               --size;
56
               token = strtok(input, " ");
57
               int u = atoi(token);
               int v;
58
               while (token = strtok(NULL, " "))
59
60
               {
61
                   v = atoi(token);
62
                   G[u].emplace_back(v);
63
                   G[v].emplace_back(u);
               }
64
65
           }
66
           tarjan(1, -1);
67
           printf("%d \ n", res);
68
69
       return 0;
70 }
```

7.17 最小樹狀圖

```
1 定義
2 有向圖上的最小生成樹(Directed Minimum Spanning Tree)
3 稱為最小樹形圖。
4 常用的演算法是朱劉演算法(也稱為Edmonds 演算法),
5 可以在O(nm)時間內解決最小樹形圖問題。
```

```
Jc11
    流程
8 | 1. 對於每個點,選擇它入度最小的那條邊
9 2. 如果沒有環,演算法終止;
     否則進行縮環並更新其他點到環的距離。
10
11
12 bool solve() {
13
    ans = 0;
14
    int u, v, root = 0;
15
    for (;;) {
     f(i, 0, n) in[i] = 1e100;
16
17
     f(i, 0, m) {
       u = e[i].s;
18
       v = e[i].t;
19
       if (u != v && e[i].w < in[v]) {</pre>
20
21
         in[v] = e[i].w;
22
         pre[v] = u;
23
       }
24
     f(i, 0, m) if(i!=root && in[i]>1e50) return 0;
25
     int tn = 0;
26
27
     memset(id, -1, sizeof id);
     memset(vis, -1, sizeof vis);
28
29
     in[root] = 0;
     f(i, 0, n) {
30
31
       ans += in[i];
32
       v = i;
       while(vis[v]!=i&&id[v]==-1&&v!=root){
33
34
         vis[v] = i;
         v = pre[v];
35
       }
36
       if (v != root && id[v] == -1) {
37
38
         for(int u=pre[v];u!=v;u=pre[u]) id[u]=tn;
39
         id[v] = tn++;
       }
40
41
     if (tn == 0) break;
42
     f(i, 0, n) if (id[i] == -1) id[i] = tn++;
43
44
     f(i, 0, m) {
       u = e[i].s;
45
       v = e[i].t;
46
47
       e[i].s = id[u];
48
       e[i].t = id[v];
49
       if (e[i].s != e[i].t) e[i].w -= in[v];
50
51
     n = tn;
     root = id[root];
52
53
54
    return ans;
55 }
56
57
58
   Tarjan 的DMST 演算法
59
60 Tarjan 提出了一種能夠在
61 0 (m+nlog n)時間內解決最小樹形圖問題的演算法。
62
63
64 Tarjan 的演算法分為收縮與伸展兩個過程。
65 接下來先介紹收縮的過程。
66 | 我們要假設輸入的圖是滿足強連通的,
67 如果不滿足那就加入 O(n) 條邊使其滿足,
68 並且這些邊的邊權是無窮大的。
70 | 我們需要一個堆存儲結點的入邊編號,入邊權值,
71 | 結點總代價等相關信息,由於後續過程中會有堆的合併操作,
72 這裡採用左偏樹 與並查集實現。
73 | 演算法的每一步都選擇一個任意結點v,
74 | 需要保證v不是根節點,並且在堆中沒有它的入邊。
75 再將v的最小入邊加入到堆中,
76 如果新加入的這條邊使堆中的邊形成了環,
77 那麼將構成環的那些結點收縮,
78 我們不妨將這些已經收縮的結點命名為超級結點,
79 再繼續這個過程,如果所有的頂點都縮成了超級結點,
80 | 那麼收縮過程就結束了。
81 | 整個收縮過程結束後會得到一棵收縮樹,
```

```
82 之後就會對它進行伸展操作。
83
84 | 堆中的邊總是會形成一條路徑v0 <- v1<- ... <- vk,
85 由於圖是強連通的,這個路徑必然存在,
86 並且其中的 vi 可能是最初的單一結點,
  也可能是壓縮後的超級結點。
89 最初有 v0=a,其中 a 是圖中任意的一個結點,
90 | 每次都選擇一條最小入邊 vk <- u,
91 | 如果 u 不是v0, v1,..., vk中的一個結點,
92 那麼就將結點擴展到 v k+1=u。
93 如果 u 是他們其中的一個結點 vi,
  那麼就找到了一個關於 vi <- ... <- vk <- vi的環,
  再將他們收縮為一個超級結點c。
96
97
  向隊列 P 中放入所有的結點或超級結點,
  並初始選擇任一節點 a,只要佇列不為空,就進行以下步驟:
98
  選擇 a 的最小入邊,保證不存在自環,
100
  並找到另一頭的結點 b。
  如果結點b沒有被記錄過說明未形成環,
   令 a <- b,繼續目前操作尋找環。
104
  如果 b 被記錄過了,就表示出現了環。
105
  總結點數加一,並將環上的所有結點重新編號,對堆進行合併,
106
  以及結點/超級結點的總權值的更新。
107
  更新權值操作就是將環上所有結點的入邊都收集起來,
108
  並減去環上入邊的邊權。
109
110
111
112 #include <bits/stdc++.h>
113
  using namespace std;
114 typedef long long ll;
115 #define maxn 102
116 #define INF 0x3f3f3f3f
117
118
  struct UnionFind {
    int fa[maxn << 1]:</pre>
119
    UnionFind() { memset(fa, 0, sizeof(fa)); }
120
121
    void clear(int n) {
122
      memset(fa + 1, 0, sizeof(int) * n);
123
    int find(int x) {
124
      return fa[x] ? fa[x] = find(fa[x]) : x;
125
126
127
    int operator[](int x) { return find(x); }
128
129
  struct Edge {
131
    int u, v, w, w0;
132
133
  struct Heap {
134
135
    Edge *e;
    int rk, constant;
136
137
    Heap *lch, *rch;
138
139
    Heap(Edge *_e):
140
      e(_e),rk(1),constant(0),lch(NULL),rch(NULL){}
141
142
    void push() {
      if (lch) lch->constant += constant;
143
      if (rch) rch->constant += constant;
145
      e->w += constant;
      constant = 0;
146
    }
147
148 };
149
150 Heap *merge(Heap *x, Heap *y) {
    if (!x) return y;
151
152
    if (!y) return x;
    if(x->e->w + x->constant > y->e->w + y->constant)
153
      swap(x, y);
155
    x - push();
    x - rch = merge(x - rch, y);
```

```
157
     if (!x->lch || x->lch->rk < x->rch->rk)
       swap(x->lch, x->rch);
158
     if (x->rch)
159
       x->rk = x->rch->rk + 1;
160
     else
161
162
       x->rk = 1;
163
     return x;
164 }
165
166 Edge *extract(Heap *&x) {
167
     Edge *r = x -> e;
     x \rightarrow push();
168
     x = merge(x->lch, x->rch);
169
170
     return r;
171 }
172
173 vector<Edge> in[maxn];
174 int n, m, fa[maxn << 1], nxt[maxn << 1];
175 Edge *ed[maxn << 1];
176 Heap *Q[maxn << 1];
177 UnionFind id:
178
179 void contract() {
     bool mark[maxn << 1];</pre>
180
     //將圖上的每一個節點與其相連的那些節點進行記錄
181
     for (int i = 1; i <= n; i++) {
182
       queue < Heap *> q;
183
       for (int j = 0; j < in[i].size(); j++)</pre>
184
          q.push(new Heap(&in[i][j]));
185
186
       while (q.size() > 1) {
187
          Heap *u = q.front();
          q.pop();
188
          Heap *v = q.front();
189
190
          q.pop();
191
          q.push(merge(u, v));
192
193
       Q[i] = q.front();
     }
194
     mark[1] = true;
195
     for(int a=1,b=1,p;Q[a];b=a,mark[b]=true){
196
       //尋找最小入邊以及其端點,保證無環
197
198
       do {
          ed[a] = extract(Q[a]);
199
200
          a = id[ed[a]->u];
       } while (a == b && Q[a]);
201
202
       if (a == b) break;
       if (!mark[a]) continue;
203
       //對發現的環進行收縮,以及環內的節點重新編號,
204
       //總權值更新
205
       for (a = b, n++; a != n; a = p) {
206
207
          id.fa[a] = fa[a] = n;
          if (Q[a]) Q[a]->constant -= ed[a]->w;
208
209
          Q[n] = merge(Q[n], Q[a]);
         p = id[ed[a]->u];
210
          nxt[p == n ? b : p] = a;
211
212
213
     }
214 }
215
216 ll expand(int x, int r);
217 | ll expand_iter(int x) {
218
     11 r = 0:
219
     for(int u=nxt[x];u!=x;u=nxt[u]){
       if (ed[u]->w0 >= INF)
220
          return INF;
221
       else
222
223
          r += expand(ed[u]->v,u)+ed[u]->w0;
224
     }
225
     return r;
226 }
227
   11 expand(int x, int t) {
229
     11 r = 0;
     for (; x != t; x = fa[x]) {
230
231
       r += expand_iter(x);
       if (r >= INF) return INF;
232
233
```

```
234
     return r;
235 }
236
   void link(int u, int v, int w) {
237
238
     in[v].push_back({u, v, w, w});
239 }
240
241
   int main() {
     int rt;
242
      scanf("%d %d %d", &n, &m, &rt);
243
244
      for (int i = 0; i < m; i++) {</pre>
245
        int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
246
247
        link(u, v, w);
248
     }
249
      //保證強連通
     for (int i = 1; i <= n; i++)</pre>
250
       link(i > 1 ? i - 1 : n, i, INF);
251
252
      contract();
253
     11 ans = expand(rt, n);
      if (ans >= INF)
254
        puts("-1");
255
256
        printf("%11d\n", ans);
257
258
     return 0;
259 }
```

7.18 凸包

```
1 /* ******************************
2 * Q:平面上給定多個區域,由多個座標點所形成,再給定
  * 多點 (x,y),判斷有落點的區域 (destroyed)的面積總和。
   * ***********************************
  #include <bits/stdc++.h>
  using namespace std;
  const int maxn = 500 + 10;
  const int maxCoordinate = 500 + 10;
9
10
11
  struct Point {
12
      int x, y;
13
  };
14
15
  int n;
16
  bool destroyed[maxn];
17
  Point arr[maxn];
  vector < Point > polygons[maxn];
19
20
  void scanAndSortPoints() {
      int minX = maxCoordinate, minY = maxCoordinate;
21
      for(int i=0; i<n; i++) {</pre>
22
          int x, y;
23
          scanf("%d%d", &x, &y);
24
          arr[i] = (Point)\{x, y\};
25
          if(y < minY || (y == minY && x < minX)) {</pre>
26
27
      // If there are floating points, use:
28
      // if(y<minY || (fabs(y-minY)<eps && x<minX)) {
              minX = x, minY = y;
29
30
31
32
      sort(arr, arr+n, [minX, minY](Point& a, Point& b){
33
          double theta1 = atan2(a.y - minY, a.x - minX);
34
          double theta2 = atan2(b.y - minY, b.x - minX);
35
          return theta1 < theta2;</pre>
      }):
36
37
      return;
38 }
39
      returns cross product of u(AB) \times v(AC)
40
41 int cross(Point& A, Point& B, Point& C) {
      int u[2] = {B.x - A.x, B.y - A.y};
42
      int v[2] = {C.x - A.x, C.y - A.y};
43
44
      return (u[0] * v[1]) - (u[1] * v[0]);
45 }
46
```

```
47 // size of arr = n >= 3
48 // st = the stack using vector, m = index of the top
49 vector < Point > convex_hull() {
        vector<Point> st(arr, arr+3);
50
51
        for(int i=3, m=2; i<n; i++, m++) {</pre>
            while(m >= 2) {
52
                if(cross(st[m], st[m-1], arr[i]) < 0)</pre>
53
55
                st.pop_back();
56
                m - -;
57
            }
            st.push_back(arr[i]);
58
59
60
        return st;
61 | }
62
63 bool inPolygon(vector<Point>& vec, Point p) {
64
       vec.push_back(vec[0]);
        for(int i=1; i<vec.size(); i++) {</pre>
65
66
            if(cross(vec[i-1], vec[i], p) < 0) {</pre>
                vec.pop_back();
67
                return false;
68
            }
69
70
       }
71
        vec.pop_back();
72
        return true;
73 }
74
75
           1 | x1 x2 x3 x4
                                    x5
                                                  xn I
76
           2 | y1 y2 y3 y4 y5
77
   double calculateArea(vector < Point > & v) {
        v.push_back(v[0]);
79
                                     // v[n] = v[0]
80
        double result = 0.0;
        for(int i=1; i<v.size(); i++)</pre>
81
           result += v[i-1].x*v[i].y - v[i-1].y*v[i].x;
82
83
        v.pop_back();
        return result / 2.0;
84
85 }
86
   int main() {
87
88
        int p = 0;
        while(~scanf("%d", &n) && (n != -1)) {
89
90
            scanAndSortPoints();
91
            polygons[p++] = convex_hull();
92
93
        int x, y;
94
95
        double result = 0.0;
        while(~scanf("%d%d", &x, &y)) {
96
97
            for(int i=0; i<p; i++) {</pre>
                if(inPolygon(polygons[i], (Point){x, y}))
98
99
                     destroyed[i] = true;
100
            }
101
        for(int i=0; i<p; i++) {</pre>
102
            if(destroyed[i])
103
104
                result += calculateArea(polygons[i]);
105
        printf("%.21f\n", result);
106
107
        return 0;
108 }
```

8 動態規劃

8.1 LCS 和 LIS

9 //LCS 和 LIS 題目轉換

```
10 LIS 轉成 LCS
    1. A 為原序列, B=sort(A)
11
    2. 對 A,B 做 LCS
12
13 LCS 轉成 LIS
    1. A, B 為原本的兩序列
14
    2. 最 A 序列作編號轉換,將轉換規則套用在 B
15
    3. 對 B 做 LIS
16
     4. 重複的數字在編號轉換時後要變成不同的數字,
17
       越早出現的數字要越小
18
     5. 如果有數字在 B 裡面而不在 A 裡面,
19
```

直接忽略這個數字不做轉換即可

9 Section2

9.1 thm

- · 中文測試
- $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- $\binom{x}{y} = \frac{x!}{y!(x-y)!}$
- $\int_0^\infty e^{-x} dx$
- $\cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

10 dp 表格

10.1 DPlist

ا م					
1					
2	!	!			!
3	I	I			
4					
5	1				. !
6	I	I			
7					
8	1	1			!!!
9	1	1			
10 11	1				
12	1				: :
13			 		
14	1	1	ı		
15	i	1	l I		: :
16			 		
17	1	1	ı	1	
18	i	i			ii
19			 ' 		
20	1	1	I		
21	i	i			i i
22	·		 		·
23	1	1			
24	i	i			i i
25			 		
26	1	1			l I
27	1	1			l I
28			 		
29	1	1			l I
30	1	1			l I
31			 		
32	1	1			l I
33	1	1			I I
34			 		
35	I				l I
36	I				l I
37			 		
38	I	I			ı I

269 |

I

Ι

Ι

I

I

														_
347		1		1		1	424							
	1		-	-	!	1	424	1	1	ı				
348	1	ı	1	1	1	ı		!	1	I I	!	!	!!!	
349							- 426	ı	ı	I	ı	ı	1 1	
350	!	!	!	!	!	!	427							
351	I	I	ı	I	I	I	428	!	<u> </u>	ļ	!	!	!!!	
352							- 429	I	I	I	I	I	1 1	
353	I	I	ı	I	I	I	430							
354	I	ı	ı	1	1	1	431	1	I	I	I	I	1 1	
355							- 432	1	I	I	I	I	1 1	ı
356		I	1	1	1	1	433							
357	1	I	I	1	1	I	434	1	I	I	I	I	1 1	ı
358							- 435	1	I	I	I	I	1 1	
359	1	1	1	1	1	1	436							-
360	i	i	i	i	i	i	437	1	I	I	I	I	1 1	
361			. .	·			- 438	i	i	i	i	i	i i	
362	1	1	1	1	I	1	439							
363	i	i	i	i	i	i	440	1	ı	ı		ı		
364			' 	' 		' 	- 441	1		1	! !	1	: :	
		1		1		1	1	·	! 	! 	! 	! 		_
365	!	!	!	!	!	1	442	1						
366	I	ı	ı	ı	1	I	443	!	!	!	!	!	!!	
367							- 444	I	I	I	I	I	1 1	
368	1	Į.	!	1	1	1	445							
369	ı	ı	ı	1	1		446	1	I	I	l	I	1 1	
370							- 447	1	I	I	I	I	1 1	
371		I	1	1	1	1	448							
372	1	1	1	1	1	1	449	1	I	I	I	I	1 1	J
373							- 450	1	I	I	I	I	1 1	ı
374	1	I	1	1	I	I	451							-
375	1	1	1	1	1	1	452	1	I	I	I	I	1 1	
376							- 453	i	i	i	İ	İ	i i	
377	1	1	1	1	I	1	454	· 	· 	· 				
378	i	i	i	i	i	i	455	1	I	I	ı	ı	1 1	
379				. .			- 456	i	i	i	i	i	i i	
380	1	1	1	1	1	1	457							_
381	1		-	1	1	1	458	1	ı	ı				
			' 	' 		! 		1	!	1	!	1	; ;	
382							- 459	1	ı	ı	ı	ı	1 1	
383	!	!	!	!	!	!	460							
384	I	I	ı	I	I	I	461	!	<u> </u>	ļ	!	!	!!!	
385							- 462	1	I	I	I	I	1 1	1
386		I	I	I	1	1	463							
387	1	I	I	I	I	1	464	1	I	I	I	I	1 1	ı
388							- 465	1	I	I	I	I	1 1	ı
389	1	I	I	1	I	1	466							-
390	1	I	1	1	I	I	467	1	I	I	I	I	1 1	
391							- 468	1	I	I	I	I	1 1	
392	1	1	1	1	I	1	469							-
393	i	i	i	i	i	i	470	1	I	I	ı	I	1 1	
394			. .	·			- 471	i	i	i	i	i	i i	
395	1	1	1	1	I.	1	472	'	' 	' 	' 	' 		_
396	1	i	<u> </u>	1	1	i	473	1	ı	ı				
397			' 	' 		' 	- 474	1		1	! !	1	: :	
		1		1		1		·	! 	! 	! 	! 		_
398	1	I I	1	1	1	1	475	1	1	1			· · · · · ·	
399	ı	I	1	I	I	I	476	1	I I	1	I	1	i !	
400							- 477	I	I	I	I	I	1 1	
401	1	!	!	!	1	1	478							
402	I	I	1	I	I	I	479	!	!	!	!	1	i	
403							- 480	1	I	I	l	I	1 1	
404	1	I	1	1	1	I	481							•
405		I	1	1	1	1	482	1			l	l	1 1	ı
406							- 483	1	I	1	l	I	1 1	ı
407	1	1		1	1	1	484							
408	1	1	1	1	1	1	485	1	I		l	I	1 1	
409							- 486	1		1	I	I	į i	
410	1	1	1	1	1	I	487		· 	· 				
411	i	i	i	i	i	I	488	1	I	I	I	I		
412	· 			' 			- 489	i	i	i	I	I	; ;	
413	1	1	ı	1	ı	ı	490		' 	· 	' 			_
	1	I I	1	1	1	! 		1	1	1	1	1		
414	1	 	1	I	I	I 	491	1	I I	1	 	! !	i !	
415							- 492	1	I	I	I	I	1 1	
416	1	I .	1	!	1	1	493							
417	I	I	1	1	I	I	494	!	!	!	!	I	<u> </u>	
418							- 495	1	I	I	l	I	1 1	
419	1	I	1	1	1	I	496							•
420	1	I	1	1	1		497	I				1	1 1	
421							- 498	1	I	1	l	I	1 1	ı
422	1	1		1	1	1	499							
423	1	1	1	1	I	I	500	1	I	I	I	I		ı
- 1		-					1							

ا 1			1				J 570	1				ı	
1 2		 	I 	I 	 	 	578 - 579	 	 	 	I 	 	
3	1	I	1	I	I	I	J 580						
4 5		 	l 	l 	 	l 	581 - 582	1				 -	
5 6	I	 I	1	 I			583		 	 	 	I 	
7	i	İ	i	i İ	İ	İ	584	I	I	I	I	I	I
8		 					- 585	1	I	I	I	I	I
9		 	 	 	 	 	586 587	1	 I	 I			
1		 					- 588	i	İ	İ	! 	! 	i
2	1	I	1	I	I	I	589						
3		 	I	l 	 	l 	590	1					1
5	1	 I	I	 I	 I	 I	- 591 592		I 	I 	 	l 	
6	i	i İ	i	i İ	i I	i İ	593	1	I	I	I	I	I
7		 					- 594	I	I	I	l	l	I
3 9							595		 I	 I	 I		
,		 I 	I 	 	 	 	596 - 597		! 	! 	! 	l I	l I
	I	I	I	I	I	I	598						
2	1	I	1	l	I	I	J 599	1	I	I	l ·	l	I
1	1	 I	 I	 I	 I	 I	- 600 601		 	 	 	 	
;	<u> </u>	! 	 	! 	 	! 	602	1	I	I	I	I	1
5		 					- 603	i	i	i	I	i İ	i
7	!	!	!	!	!	!	604						
3 9	 	 	 	 	 	 	605 - 606	1	 	 	 	l I	1
9	I	I	I	I	I	I	607						
ı	1	I	1	l	I	I	[608	1	I	I	l	l	I
2		 		 '			- 609	I	I	I	l	I	I
4		! 	 	! !	 	! 	610 611	1	 I	 I			1
5		 					- 612	i	I	I	i İ	İ	i
5	!	l	!	!	l	l	613						
7	 	 	 	 	 	 	614 - 615	1	 	 	 	 	1
	ı	I	I	I	I	I	616				 	 	
)	i	İ	i	I	İ	İ	617	I	I	I	I	l	I
		 					- 618	I	I	I	l	l	I
2	1	 	 	 	 	 	619 620	1	 I				
1		 					- 621	i	i İ	i İ	! 	! 	i
5	1	I	1	l	I	I	622						
5		 	I	l 	 	l 	623	1					1
3	1	 I	I	 I	 I	 I	- 624 625	I	l 	l 	 	l 	
	i	İ	i i	İ	İ	İ	626	I	I	I	I	I	I
1		 					- 627	I	I	I	l	I	I
2		 		 -	 	 	628 629	1	 I	 I	· I		 I
		 		 	 		- 630	i	! 	! 	! 	! 	l
1		I	1	I	I	I	631						
5		I	1	l	I	I	632	1	1	1	ļ		1
7	1	 I		 I	 I	 I	- 633 634	l 	 	 	 	 	
3	i	İ	' 		İ	İ	635	I	I	I	I	I	I
9		 					- 636	1	I	I	l	l	I
							637	1	 I	 I	· I	 I	 I
2		 I 	I 	 	 	 	- 638 - 639		! 	! 	! 	l I	l I
3	1	I	1	I	I	I	[640						
1	1	I	1	l	I	I	[641	1	I	I	l ·	l	I
	1	 I	 I	 I	 I	 I	- 642 643	I	l 	l 	 	l 	l
1	I I	! 	1	! 	! 	! 	644	1	 	 	 	 	1
1		 					- 645	i	i i	i i	I	İ	i
١	ļ.	l	!	ļ ·	l	l	J 646						
'	I	 	I	l 	 	 	647 - 648	I	I I	I I	 	 	
	- _	 	 	 	 	 	- 648 649	I	I 	I 	I 	ı 	I
3	i	I	i	I	i I	I	[650	1	I	I	I	l	I
4		 					- 651	1	I	I	I	I	I
5	1	I I	I I	l I	I I	l I	652 653	I	 I	 I	· I		 I
7		 	· 	' 			- 654	i					i
1								•	•	•	•	•	•

655								- 732	1 1	I	I	l	
656	ļ	!	l	ļ	l	Į.	l	733		 			
657 658	 		 	 	 	 	 	734 735		l I	l I		
659	ı	1	I	I	I	I	I	736		 ' 	' 		·
660	I	- 1	I	I	I	I	I	737	!!!	l	l		. !
661 662	1		 I	 I	 I			- 738 739		 	 	 	
663	i	İ	i İ	i İ	i İ	i İ	i İ	740	1 1	l	l	l I	l I
664								741	1 1	l	l		l I
665 666	ı		l I	! 	l I	I I	! 	742 743	I I	 · I	· I		
667		:				· 		744	i i	i İ	i İ	i i	i i
668			 -		 -			745 746		 · ı	· ı		
669 670			I 	 	I 	 	 	- 747		! 	! 		
671	Ι	1	I	I	I	I	I	748		 			
672 673	 		 	 	 	 	 	749 - 750		 	 		
674	Ι	1	I	I	I	I	I	751		 			
675	I	I	l	l	l	I	l	752	1 !	l	l		
676 677	 I		· I	· I		 I	· I	- 753 754		 	 	 	
678	i	i		İ		i	İ	755	1 1	I	I		I I
679				· ·				756	1 1	I	I	l I	l I
680 681	l I		! 	I 	! 	! 	I 	757 758		 · 	· 		
682								- 759	i i	l	l		i i
683 684		[-	 	[-	760 761		 · I	· I		
685			 	 	ı 		 	- 762		! 	! 		
686	I	ļ	l	l	l	I	l	763		 			
687 688	 		 	 	 	 	 	764 - 765		 	 		
689	ı	1	I	I	I	I	I	766		 			·
690	I	- 1	I	I	I	I	I	767	!!!	l	l		!!!
691 692	1		 I	 I	 I			- 768 769		 	 	 	
693	i	i	İ	İ	i I	İ	İ	770	1 1	I	I	l I	1
694			·	·		 1	·	- 771 772		 l 	l 		l I
695 696	i		l 	! 	! 	! 	! 	773	1 1	I	I		1
697								774	i i	l	l		İ
698 699	1		 	 	 	 	 	775 776	I I	 · I	· I		
700	<u>-</u> -	'	' 	' 	' 	' 	' 	- 777	i i	i I	i I		i i
701	1			<u> </u>		!	<u> </u>	778		 			
702 703	 	ا 	 	 	l 	 	 	779 - 780		l I	l I	 	
704	I	1	I	I	I	I	I	781		 			
705 706	 		 	 	 	 	 	782 - 783		 	 		
707	ı	ı	I	I	I	I	I	784		 :	 :		
708	I	İ	I	I	I	I	I	785	<u> </u>	l	l		
709 710	 I		· I	 I	 I	 I	 I	- 786 787	ı l	 	 	 	ı l
711	i	İ	i	i I	i	İ	i I	788	1 1	I	I	l I	1 1
712 713	 I		· I	· I		 I	· I	- 789 790		 	 		
714			! 	! 	! 	! 	! 	790 791		 	 		
715			·				·	792	ı i	l	l	ı	ı i
716 717	1		 	I I	 	I I	I I	793 794		 · I	· I		
718								795	i i				i i
719		!		l	 -	1	l	796		 · I	· I		
720 721	I 		 	 	I 	I 	 	797 - 798	1 I	l 	l 	 	
722	I	I	I	I	I	I	I	799		 			
723			 	 	 	<u> </u>	 	800		 -	 -		
724 725	1		 	 	 	 	 	- 801 802	ı l	 I 	I 		ı l
726	i	İ	l	l	l	İ	İ	803	1 1	l	l		
727 728	 I			 I	 I	 I	· I	- 804 805		 	 	 	
729	i							805	1 1	I	I	l	1
730				· ·				- 807	1 1	l	l	l i	l İ
731	1		l	I	l	I	I	808		 			

1													
809 810	1	l I	l I	1	1	1	886 887	1	1	 I	 I	 I	
811							- 888	i	i	i I	' 	i I	i i
812	I	1	I	1	1	1	889						
813	I	I	I	I	I	1	890	1	1	<u> </u>	<u> </u>	<u> </u>	! !
814	1		1			1	- 891 892			 	 	l 	
815 816	1	l I		1	1	1	893	1	1	 I		 I	1 1
817					' 		- 894	i	i	! 	! 	! 	i i
818	I	1	1	1	1	1	895						
819	I	1	I	I	1	1	l 896	1	1	l	l	l	1 1
820							- 897	1	I	l	l	l	1 1
821 822	1	l I			1	1	898 899	1	1	 I		 I	1 1
823							- 900	i	i	i I	' 	i I	i i
824	1	1	I	1	1	1	901						
825	I	1	I	I	1	1	902	1	1	l	l	l	1 1
826							- 903 904			 	 	 	I I
827 828	1	l I	i	1	1	1	904	1	1	 I		 I	1 1
829							- 906	i	i	i I	' 	i I	i i
830	1	1	1	1	1	1	907						
831	I	I	I	I	1	1	908	!	!	<u> </u>		<u> </u>	!!!
832 833	1		1	 I	 I	I	- 909 910	1	I 	 	l 	l 	ı l
834	1	i	i I			1	910	1	1	I	I	I	
835				· 			- 912	Í	İ	I	I	I	i i
836	1	1	1	1	1	1	913						
837	1		1	 		1	914	1	1			l	
838 839	1		1		 I	I	- 915 916	1	I	l 	I 	l 	ı l
840	i	i	i	i	i	i	917	1	ı	I	l	I	1 1
841							- 918	i	İ	I	I	I	i i
842	1	1	1	1	1	1	919			·			
843	I	I	I	I	I	I	920	1					
844 845	1		1		1	1	- 921 922			 	l 	 	I I
846	i	i	i	i	i	i	923	1	ı	I	l	I	1 1
847							- 924	i	İ	I	İ	I	i i
848	1	1	1	1	1	1	925			·			
849	I	I	ı	ı	I	I	926	1					
850 851	1		1		1	1	- 927 928	I 	I 	 	l 	l 	l I
852	i	i	i	i	i	i	929	1	I	I	I	I	1 1
853							- 930	1	I	l	l	l	1
854	Į.	!	ļ.		Į.	1	931						
855 856	I 	 	 	 	 		- 932 - 933	1		 	l I	 	
857	I	1	1	1	1	1	934						
858	İ	i	İ	i	İ	İ	935	1	I	l	l	l	1
859							- 936	1	I	l	l	l	1
860	!		!				937			· I			
861 862	l 	 	 	 	 	I 	938	I	1	! 	ı İ	ı İ	1 1
863	I	1	1	1	1	I	940		· 				. '
864	1	1	1	I	I	I	941	Į.	Į.	ļ	l	ļ	I I
865	1						942	1	1	l 	l :	l 	I I
866 867	1	I I	I I	I I	 	I I	943	1	I	· I			
868						· 	- 945	i	i	İ	İ	İ	; ;
869	1	1	1	1	1	1	946						
870	I	1	1	1	1	1	947	!	!	l ·	l ·	!	
871	1		1	 I	 I	I	- 948 949	1	l 	 	 	l 	I
872 873	1	i I	1	1		1	949	1	1	I	I	I	
874			· 	· 	· 	· 	- 951	i	i	İ		İ	i i
875	1	1	1	1	1	1	952						
876	I	1	1	1	1	1	953	!	!	!	l	!	
877 878	1		1	 I	 I	I	- 954 955	1	l 	 	 	l 	I
878	1	l I	l I	l I	l I	1	955	1	1	I	I	I	
880		'		· 	· 	· 	- 957	i	i	İ	i İ	İ	i i
881	1	1	1	1	1	1	958						
882	I	I	I	I	I	I	959	!	!	!		!	<u> </u>
883 884			I	 I	 I	I	- 960 961	1	I 	I 	l 	l 	ı l
885	1	i	i I			1	962	1	1	I	I	I	
200	•	•		'	•	'	. 332	•	•	'	'	•	

1																	
985			 		I	ا ۔ ۔ ۔ ۔ ۔ ۔ ۔		 									
1		1		1	۱						l 	 	 	 		l 	I -
		i	i	i	i	i		! 			1	l	I	I		I	ı
										- 1	i i		I	I		i İ	i
190		1	I	I	- 1	I			•								-
972		I	I	I	I	I				- 1	<u> </u>		!	!		<u> </u>	!
1										- 1		 	 	 		 	 -
1		1	;					l I			1		 I	 I			- I
975			'		'			' 			i		İ	i I		' 	i
1975		1	1	I	- 1	ı			105	51							-
977		1	I	I	I	I							l	l			I
											I		l	l		l	I
986		1	!	-		'		l I			1		 I	 I			- I
980			' 							- 1		! 	' 	' 		! 	i
982		1	1	- 1	- 1	ı		l									-
985		1	1	I	- 1	I							l	l			1
986													l	l		l	I
985			!	!		l I		 					 !				-
986						ا		l 				 	l I	l I		l I	i
987		ı	1	- 1	- 1	ı		l					' 	' :		' 	-
989		ĺ	Ì	Ì	ĺ	ĺ			106	64			l	l			I
999													l	l		l	I
1932		!	ļ	!	!	!											-
1		 	 	 	ا 	ا		 				l 1	 	 		 	1
959		ı	1	- 1	- 1	1		I		- 1			 	 			-
999		i	i	i	i	i		i İ			1		I	I		l	I
996									- 107	71			l	l		l	I
1986		!	į.	ļ.	!	!		l					· ·				-
989		 	 	 	 	ا		 			1	 	 	 		 	
1		ı	1	- 1	- 1	1		I					 	 			-
1000		i	i	i	i	i		i I		- 1			I	I		I	I
									- 107	77			l	l		l	I
1003		1	į.	Į.	!	Į.		<u> </u>									-
1005			 		I	ا ۔ ۔ ۔ ۔ ۔ ۔ ۔		 									
1005		1	I	1	I							 	 	 		l 	-
1883		i	i	i	i	i		! 		- 1	1	l	I	I		I	ı
1008					<u>-</u>						į i	ĺ	I	I		I	İ
1886		1	Į.	Į.	!	!		<u> </u>	•	- 1							-
1010			 		I	ا ۔ ۔ ۔ ۔ ۔ ۔ ۔		 		- 1							
1011		1	I	1	I							 	 	 		l 	- -
1013		i	i	i	i	i		' 			1	1	I	I		l	ı
1014											İ		l	l			I
1015		1	I	I	1	ļ		l					·				-
1016					 	ا ۔ ۔ ۔ ۔ ۔ ۔ ۔		 									
1017		1	I	ı	1	I		I			I	I 	I 	I 		I 	-
1018		i	i	i	i	i i				- 1	1	l	I	I		I	ı
1020	1018		-								1	l	I	I	ı	I	I
1021		!	Į.	1	1	I		l ·									-
1022 1099		1				I		l] 	 -	 -		 -	1
1023		1		1							I	I 	I 	I 		I 	1 -
1024		i	i	i	i	i i					1	l	I	I		I	ı
1025							:				İ		İ	I		I	Ī
1027	1025	1	I	I	- 1	I		I	116	92							-
1028		I	I	I	I	I		l					ļ	ļ			
1029		1		1		ا					l 	l 	I 	I 		l 	1
1030		i I		I I	1	 		ı İ			1		I	I		I	ı
1031											i						i
1033	1031	1	1	1	- 1	I		I	116	86							-
1034		I	I	- 1	I	I		l		- 1	1	l	l	l		l	I
1035											1	l	l	l		l	I
1036		I	l I	l I	- !	ļ		l I			1		· I	· I			- I
1037 1114 1038						ا		' 				! 	' 	' 		! 	i
1038 1115		I	I	1	1	ı		I	111	14							-
1039 1116	1038	1	I	1	ĺ	ĺ		l				l	l	l		l	1
	1039								- 111	16	1	l	l	l		l	I

	JCII						FJC	
1117							- 1194	
1118	1	ı		1	ı	1	1194	
1119	i		! 		l I	<u> </u>	1196	
1120		' 					- 1197	
1121	1	ı	ı	1	ı	ı	1198	
1122	i	i	i I	i		i	1199	
1123							- 1200	
1124	T.	I	I	1		I	1201	
1125	İ	i	I	İ		İ	1202	
1126							- 1203	
1127	1	I		1		I	1204	4
1128	1	I		1		I	1205	5
1129							- 1206	
1130	1	I		1		I	1207	
1131	1	I		1		I	1208	
1132							- 1209	
1133	1	1		1		1	1210	
1134	1	I		1		I	1211	
1135							- 1212	
1136	1	1	l			1	1213	
1137	1	ı	l	1		I	1214	
1138 1139	1		 I				- 1215 1216	
1140	1		 			1	1210	
1141		· 	' 				- 1217 - 1218	
1142	ı	I	ı	1	I	ı	1210	
1143	i	i	I		· 	i	1213	
1144							- 1221	
1145	I	I	I			I	1222	
1146	İ	i	I	İ		İ	1223	
1147							- 1224	
1148	1		l			1	1225	5
1149	1		l			1	1226	5
1150							- 1227	
1151	1	I		1		I	1228	
1152	1		l			1	1229	
1153					·		- 1230	
1154	!	!	!			!	1231	
1155	1	l	l	1		I	1232	
1156							- 1233 I 1234	
1157 1158	1	1	 	1	l I	 	1234 1235	
1159		I 	I 		 	 	- 1235	
1160	ı	ı	ı	1	l	ı	1237	
1161	i	i	i I	i		i	1238	
1162							- 1239	
1163	1	I	I	1		I	1240	
1164	ĺ	İ	ĺ			ĺ	1241	
1165							- 1242	2
1166	1		l			1	1243	
1167	1		l			1	1244	
1168							- 1245	
1169	1	1	l	1		1	1246	
1170	I	1	l 	I	l 	I	1247	
1171	1					 I	- 1248 I 1249	
1172 1173	I	1 1	I I	I 	l I	I I	1249 1250	
1173		ı 	ı 			ı 	- 1250 - 1251	
1174	1	1	I	ı	_ .	1	1251	
1176	i	i	I			i	1252	
1177							- 1254	
1178	I	I	I	1	1	I	1255	
1179	İ	İ		İ		İ	1256	
1180							1257	
1181	1	I	I	1		I	1258	
1182	1	I	I	I		I	1259	
1183							- 1260	
1184	1	I	l	1	l	1	1261	1
1185	1	I	l	1		I	1262	2
1186							- 1263	
1187	1	!	<u> </u>	<u> </u>	<u> </u>	I	1264	
1188	1	I	l	I	l	I	1265	
1189							1266	
1190	I	1	l '	I		I	1267	
1191	1	I	I 	I	l 	I 	1268	
1192	1						- 1269 I 1270	
1193	I	I	l		ı	I	1270	"

1														
1271		 	 -	 	 	 	1348	1	 I	 I				
1272 1273		 	 	 	 	 	1349 - 1350		l I	l I			i I I I	ı
1273	1	I	ı	I	I	I	1351		 	 			;	-
1275	i	! 	! 	! 	! 	! 	1352	1	I	I	I		1 1	ı
1276	· 						- 1353	i	I	I	İ	i	i i	1
1277	1	l	l	l	l	l	1354							-
1278			l				1355	I	l	l				l
1279		·	·	·	·	·	- 1356	I	l	l			i I	1
1280							1357			·				
1281 1282		 	 	 	 	 	1358 - 1359	1	l I	l I			i I	1
1283	1	I	ı	I	I	I	1360		 	 	 		,	-
1284	i		i I				1361	1	I	I	l		1 1	1
1285							- 1362	İ	I	I	ĺ		i i	ĺ
1286			l				1363							
1287			l				1364	ļ	<u> </u>	<u> </u>			! !	1
1288							- 1365	ı	l	l			i I	J
1289 1290	1	 	 	 	 	 	1366 1367	1	 I	 I		I		ı
1291		' 		' :	' :		- 1368	i	' 	' 	! 		, I	ĺ
1292	1	l	l	l	l	l	1369	· 				· 		-
1293	1	l	l	l	l	l	1370	1	l	l			l I	l
1294						·	- 1371	1	l	l			l I	l
1295			<u> </u>				1372							
1296 1297		 	 	 	 	 	1373 - 1374		l I	l I			i I I I	ı
1298	1	I	ı	I	I	I	1375		 	 	 		,	-
1299	i		I				1376	1	I	I			1 1	1
1300							- 1377	İ	l	l			i i	ĺ
1301	1	l	l	l	l	l	1378				·			
1302			l				1379	!	!	!			! !]
1303 1304	1						- 1380 1381		 	 	 	 	i I	1
1305	i	I 	! 	I 	I 	I 	1382	1	I	I	l		1 1	ı
1306	· 						- 1383	i	I	I			i i	1
1307	1		l				1384							-
1308			l				1385	1	<u> </u>	<u> </u>			! !	1
1309	1		· I	· I	· I		- 1386 I 1387		 	 	 	 	i I	J
1310 1311	1	 	 	 	 	 	1387 1388	1	 I	 I		I		ı
1312				' 	' 		- 1389	i	I	I			i i	ı
1313	1		l				1390							-
1314	1	l	l	l	l	l	1391	1	<u> </u>	<u> </u>	<u> </u>		! !	1
1315				· I	· I		- 1392 I 1303		 	 	 	 	i I	1
1316 1317	1	 	 	 	 	 	1393 1394	1	 I	 I		I		ı
1318				' 	' 		- 1395	i	i I	i I			, I I	l
1319	1		l				1396							-
1320			l				1397	1	l	l				l
1321			·	·	·		- 1398	1	l	l			i I	ļ
1322							1399	1		· · ·				
1323 1324	I 	 	 	 :	 :	 	1400 - 1401		 	l I	 	 	i I I I	l
1325	1	I	I	I	I	I	1401					· 		-
1326	1	I	I	I	I	I	1403	1	I	I	l		l I	l
1327		·		·		·	- 1404	I	I	I	l	l I	i I	ļ
1328		 -	 -	 -	 -	 -	1405		· ·	· I				
1329 1330	I	I 	I 	I 	I 	 	1406 - 1407	I I	I I	I I	l 	 	; 	i
1331	I	I	I	I	I	I	1407		' 	' 			, I	-
1332	i		I				1409	1	I	I			l I	1
1333							- 1410	İ					i i	ĺ
1334			l				1411							
1335			l				1412	!	ļ	ļ			! !	1
1336	1	· I	· I	· I	· I	· I	- 1413 I 1414	I	l 	 	 	 		1
1337 1338	I	ı İ	1 	ı İ	ı İ	ı İ	1414 1415	1	I	I				ı
1339							- 1416	i			· 	· 	, ! [1
1340	1	l	I	l	l	l	1417						·	-
1341	1	l	l	l	l	l	1418	1	l	l	l			1
1342			·	· ·	· ı	·	- 1419	I	l	l	l		i I	J
1343 1344	1	l I	I I	l I	l I	l I	1420 1421	1		· I	· I			
1345		' 	' 	' 	' 	' 	- 1421		' 	' 	· 	· 	, I I	l
1346	1	l	I	l	l	l	1423						·	-
1347	1	l	l	l	l	l	1424	I	l	l	l	l I	l I	l

1499 | 1500 | 1501 -