Elliptic Curve Cryptography

Sai Manoj

02/02/2022

1 Weierstrass Equations

The Weierstrass Equation for an elliptic curve is of the form $y^2 = x^3 + Ax + B$ where A, B are constants. If K is a field such that the constants belong to K, then the elliptic curve E is said to defined over K.

$$E(L) = (\infty) \cup ((x, y) \in L \times L | y^2 = x^3 + Ax + B)$$

The point ∞ is always contained in this set.

For a cubic equation with roots r1, r2, r3, the discriminant is given by $((r1-r2)(r2-r3)(r3-r1)) + (4A^3+27B^2)$

For there to be no multiple roots, none of r1 - r2, r2 - r3, r3 - r1 should be zero. This implies that $4A^3 + 27B^2 \neq 0$.

1.1 Generalized Weierstrass Equation

The generalized Weierstrass equation is of the form $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$. There is also a more generalized form which is used when working with the fields of characteristic 2 and 3.

<u>Note</u>:- The characteristic of a field F is 0 if $Z \subset F$, or is a prime p. The *prime* subfield is the smallest subfield of F which is either Q or F_p .

Some definitions: -

- A ring is a set R which is closed under + and \times .
- -R is an Abelian group under +.
- Associativity of \times
- Distributive property is satisfied.
- A field is a ring in which all non-zero elements are invertible.

Consider the example equation : $-cy^2 = dx^3 + ax - b$ Multiplying with c^3d^2 on both sides, we get $c^4d^2y^2 = c^3d^3x^3 + ac^3d^2x - bc^3d^2$ => $(c^2dy)^2 = (cdx)^3 + ac^2d(cdx) - bc^3d^2$ Let $Y = c^2dy$ and X = cdx, then => $Y^2 = X^3 + AX + B$ It is still a Weierstrass equation.

<u>Definition</u>:- The point ∞ is a little strange, but we say that a line exactly passes through ∞ when it is vertical.

We also consider that the ends of the y-axis as wrapping around and meeting (perhaps somewhere in the back behind the page) in the point ∞ . More related to this will come under Projective Coordinates (ends of Y-axis is not clear).

2 The Group Law

We have looked at the method where we get more points from two given points on an elliptic curve.

Consider two points, $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$ on an elliptic curve E given by the equation $y^2 = x^3 + Ax + B$. The point P'_3 is obtained from the intersection of line joining P_1 and P_2 and the elliptic curve. We also define the new point P_3 , which is the image of P'_3 with respect to the X-axis.

We define the operation $+_E$ on these points as follows,

$$P_1 +_E P_2 = P_3$$

Consider that the line joining P_1 and P_2 is not vertical. The equation of the line passing through y_1 can be written as $y = m(x-x_1)+y_1$. We can find the intersection with E by substituting this line into the equation of the curve.

$$\Rightarrow (m(x-x_1)+y_1)^2 = x^3 + Ax + B$$

For various cases of selecting the two points, we have the following law: -

(i) If $x_1 \neq x_2$, then

$$x_3 = m_2 - x_1 - x_2$$
, $y_3 = m(x_1 - x_3) - y_1$, where $m = \frac{y_2 - y_1}{x_2 - x_1}$

(ii) If
$$x_1 = x_2$$
 but $y_1 \neq y_2$, then $P1 + P2 = \infty$.
(iii) If $P_1 = P_2$ and $y_1 \neq 0$, then $x_3 = m_2 - 2x_1$, $y_3 = m(x_1 - x_3) - y_1$, where $m = \frac{3x_1^2 + A}{2y_1}$.
(iv) If $P_1 = P_2$ and $y_1 = 0$, then $P_1 + P_2 = \infty$.

<u>Note</u>: $P + \infty = P$ for all points P on E.

E forms an additive Abelian group with ∞ as the identity element.