photobiologyFilters Version 0.1.13 Catalogue of filters

Pedro J. Aphalo

November 14, 2014

${\bf Contents}$

1	Intr	roduction	1
2		nmy filters Perfectly clear filter	2 2
3	Plastic films		
	3.1	Cellulose diacetate	2
	3.2	Polyester	6
	3.3	Polythene	7
	3.4	Rosco theatrical filters	7
	3.5	Commercial greenhouse films from BPI Agri Visqueen	10
4	Plastic sheets 12		
	4.1	Plexiglas	12
	4.2	Polycarbonate	14
	4.3	Polyestyrene	15
	4.4	Polyester	16
	4.5	Polyvinilchloride	16
5	Optical glass filters 18		
	5.1^{-2}	Schott long-pass filters	18
	5.2	Schott band-pass filters	28
1	Iı	ntroduction	

1 Illuroduction

```
library(ggplot2)
library(photobiologyFilters)
library(photobiologygg)
```

```
filter.plotter <- function(filter_name, w.low=280, w.high=1100) {
  obj.name <- paste(filter_name, ".spct", sep="")
  spct <- get(obj.name)
  trim_spct(spct, waveband(c(w.low, w.high)), fill=NULL)
  print(plot(spct) + labs(title=obj.name) + theme_bw(10))
}</pre>
```

2 Dummy filters

2.1 Perfectly clear filter

filter.plotter("clear")

3 Plastic films

3.1 Cellulose diacetate

```
for (filter in c("acetate.115um.new", "acetate.250um.new", "acetate.480um.new")) {
   filter.plotter(filter)
}
```


3.2 Polyester

filter.plotter("polyester.new")

3.3 Polythene

```
filter.plotter("polythene.new")
filter.plotter("polythene.used")
```


3.4 Rosco theatrical filters

$3.5 \quad \hbox{Commercial greenhouse films from BPI Agri Visqueen}$

```
for (filter in c("solatrol.new", "luminance.new")) {
  filter.plotter(filter)
}
```


4 Plastic sheets

4.1 Plexiglas

```
for (filter in c("PLXOA000_XT", "PLXOA570_GT", "PLXOF00_GT", "PLXOZ023_GT")) {
   filter.plotter(filter)
}
```



```
for (filter in c("PLX1C33_GT", "PLX2C04_GT", "PLX3C01_GT", "PLX5C01_GT")) {
   filter.plotter(filter)
}
```


4.2 Polycarbonate

```
for (filter in c("PC", "PC_UV")) {
  filter.plotter(filter)
}
```


4.3 Polyestyrene

```
for (filter in c("PS")) {
  filter.plotter(filter)
}
```


4.4 Polyester

```
for (filter in c("Pet_G")) {
  filter.plotter(filter)
}
```


4.5 Polyvinilchloride

```
for (filter in c("PVC")) {
  filter.plotter(filter)
}
```


5 Optical glass filters

5.1 Schott long-pass filters

```
for (filter in c("gg395", "gg400", "gg435", "gg455", "gg475", "gg495")) {
   filter.plotter(filter)
}
```



```
for (filter in c("bg25", "bg3", "bg7")) {
   filter.plotter(filter)
}
```



```
for (filter in c("kg2", "kg3", "kg5")) {
  filter.plotter(filter)
}
```



```
for (filter in c("n_wg280", "n_wg295", "n_wg305", "n_wg320")) {
   filter.plotter(filter)
}
```



```
for (filter in c("og515", "og530", "og550", "og570", "og590")) {
   filter.plotter(filter)
}
```


5.2 Schott band-pass filters

```
for (filter in c("ug1", "ug5", "ug11")) {
   filter.plotter(filter)
}
```

3000 Wavelength (nm)

