

Functions and Algebra 3i

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Practice 2	

The functions f and g are defined for all real values of x by

$$f(x)=ig|2x+aig|+3a \quad ext{ and }\quad g(x)=5x-4a,$$

where a is a positive constant.

Part A Range
Find the range of $f(x)$.
Fill in the inequality below.
Items:
$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$

Part B	
Inverse function of <i>j</i>	f(x)

Fill in the blanks to explain why the function f(x) has no inverse.

no inverse.

Items:

$\overline{}$	ſ	$\overline{}$
-a		2ϵ
,		l

$\overline{}$		
-2a	one-to-ma	r

Part C

Inverse function of g(x)

Find an expression for $g^{-1}(x)$.

The following symbols may be useful: a, x

Part D

Solve for x

Solve for x the equation gig(f(x)ig)=31a. Give your solutions in ascending order.

$$x = ($$
 $)a$

$$x = \bigcap_{C} C$$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Inverse Quadratic Function

Subject & topics

Maths | Functions | Graph Sketching

Status

Not started

Stage & difficulty

A Level Practice 2

Figure 1 shows the graph of y=f(x), where

$$f(x)=2-x^2,\quad x\leq 0$$

Figure 1: The graph of y=f(x), for $x\leq 0$.

$f^2(-3)$
Evaluate $f^2(-3)$.

Need some help?

Part A

Part B

 $f^{-1}(x)$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x, y

Need some help?

Part C

Graph of $f^{-1}(x)$

Sketch the graph of $y = f^{-1}(x)$.

Need some help?

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities

Function Types and Inverses

Figure 1 shows five different graphs, A, B, C, D and E, each for values of x such that $-a \le x \le a$ where a is a constant.

Figure 1: The set of five graphs, labelled A, B, C, D and E

2023, 13.17	Tulliction Types and Inverses — Isaac Science
Part A Function	
Which diag	ram does not show the graph of a function?
A	
В	
c	
D	
E	
Part B One-to-o	one Function
Which diag	ram shows the graph of a function that is not one-to-one?
A	
В	
c	
D	
E	

Part C

Inverses

It is given that two of the diagrams illustrate functions that are inverses of each other. Identify one of these two diagrams.

- () A
- () B

- () E

Part D

Sketch

The graph in E has equation y=f(x). Sketch the graph of $y=\left|f(x)\right|$.

To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.

Need some help?

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 23 - Defining Functions & Rational

<u>Inequalities</u>

Combined Transformations

The function f is defined by $f(x)=\sqrt{mx+7}-4$, where $x\geqslant -\frac{7}{m}$ and m is a positive constant. Figure 1 shows the curve y=f(x).

Figure 1: The curve y=f(x)

Part A

Translation of the curve $y=\sqrt{x}$

A sequence of transformations maps the curve $y=\sqrt{x}$ to the curve y=f(x). Give details of these transformations.

Available items

Stretch the curve in the y direction by a factor of $\frac{1}{m}$.

Translate the curve 7 units in the negative y direction.

Stretch the curve in the x direction by a factor of m.

Stretch the curve in the x direction by a factor of $\frac{1}{m}$.

Translate the curve 4 units in the negative y direction.

Translate the curve 4 units in the negative \boldsymbol{x} direction.

Translate the curve 7 units in the positive x direction.

Translate the curve 7 units in the negative \boldsymbol{x} direction.

Translate the curve 4 units in the positive y direction.

Part B

$$f^{-1}(x)$$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, $\, m$, $\, x$

Part C

$\quad \text{Values of } m$

It is given that the curves y=f(x) and $y=f^{-1}(x)$ do not meet. Thus it can be deduced that neither curve meets the line y=x. Hence determine the possible values of m.

Construct your answer from the items below.

Items:

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities

Curve Sketching and Combined Transformations 3i

The function f is defined for all real values of \boldsymbol{x} by

$$f(x) = k(x^2 + 4x)$$

where k is a positive constant. Figure 1 shows the curve with equation y=f(x).

Figure 1: The graph of y=f(x)

Part A

Transformations

Give a sequence of transformations that will transform the curve $y=x^2$ to the curve y=f(x).

Available items

Translate the curve 2 units in the negative y direction.

Translate the curve 2 units in the positive x direction.

Translate the curve 2 units in the positive y direction.

Translate the curve 2 units in the negative \boldsymbol{x} direction.

Stretch the curve in the y direction by a factor of $\frac{1}{k}$.

Stretch the curve in the x direction by a factor of k.

Translate the curve 4 units in the positive x direction.

Stretch the curve in the x direction by a factor of $\frac{1}{k}$.

Translate the curve 4 units in the negative y direction.

Translate the curve 4 units in the positive y direction.

Translate the curve 4 units in the negative \boldsymbol{x} direction.

Stretch the curve in the y direction by a factor of k.

Part B

Range

Find the range of f(x) as a single inequality in terms of k.

The following symbols may be useful: <, <=, >, >=, f(x), k, x, y

Pa	C

Find k

It is given that there are three distinct values of x which satisfy the equation $\big|f(x)\big|=20.$

Find the value of k.

Part D Solve ig|f(x)ig|=20

Using the value of k from part C, find the three distinct values of x which satisfy the equation $\big|f(x)\big|=20$. Give any irrational values to 3 sf.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

STEM SMART Double Maths 23 - Defining Functions & Rational

Inequalities

Modulus Functions 2

Subject & topics

Maths | Functions | General Functions

Status

Not started

Stage & difficulty

A Level Practice 2 Further A Practice 1

Part A

Divergence of $y=|\frac{1}{x}|$

Does the function $y = \left| \frac{1}{x} \right|$ diverge anywhere? Where?

The following symbols may be useful: x

Need some help?

Part B

Graph of
$$y=|rac{1}{x}|$$

Sketch the graph of $y = \left| \dfrac{1}{x} \right|$

Need some help?

Part C

Divergence of
$$y = \left| rac{1}{x^2-4} \right|$$

Does the function $y=\left|\dfrac{1}{x^2-4}\right|$ diverge anywhere? Where?

The following symbols may be useful: x, ±

Need some help?

Part D

Graph of
$$y=\left|rac{1}{x^2-4}
ight|$$

Sketch the graph of $y=\left|rac{1}{x^2-4}
ight|.$

Need some help?

Part E

Solve equation graphically

Solve the equation $|x|=\left|rac{1}{x}
ight|$ graphically and give the solution as a single expression.

The following symbols may be useful: x, \pm

Need some help?

Created for isaacphysics.org for Julia Riley

Question deck:

STEM SMART Double Maths 23 - Defining Functions & Rational

<u>Inequalities</u>

Sketching a Cubic Modulus Function

Pre-Uni Maths for Sciences E4.7

The function f is defined by $f(x)=2x^3-x^2-4x-4$.

Part A Quotient
Find the quotient when $f(x)$ is divided by $x-2$.
The following symbols may be useful: x
Need some help?

Part B $ \begin{tabular}{ll} First stationary point of } f(x) \\ \hline \end{tabular} $
Find the co-ordinates and nature of the stationary point of $f(x)$ with the larger x -coordinate.
The stationary point (
Items:
Need some help?
Part C $ \textbf{Second stationary point of } f(x) $
Find the co-ordinates and nature of the stationary point of $f(x)$ with the smaller x -coordinate.
The stationary point (
Items:
Need some help?

Part D

Sketch of y=f(x)

Sketch the graph of y = f(x).

Need some help?

Part E

Sketch of $y=\left|f(x)\right|$

Sketch the graph of y=|f(x)|, then pick the graph that corresponds to y=|f(x)| from the options below.

Figure 1: Option (i)

Figure 2: Option (ii)

- Option (i)
- Option (ii)
- Option (iii)

Part F

Sketch of $y=f(\lvert x \rvert)$

Sketch the graph of y = f(|x|).

To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.

Need some help?

Created for isaacphysics.org by Matthew Rihan

Question deck:

STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities

Rational Inequality

Pre-Uni Maths for Sciences A2.10

Subject & topics Maths Functions General Functions		
Status Not started	Stage & difficulty Further A Practice 2	

Solve the inequality

$$\frac{x+4}{x+2} \leq \frac{x+2}{x-1}$$

giving your answer using set notation.

The solution is $\{x: \bigcirc x \bigcirc \} \cup \{x:x \bigcirc \}.$
Items:
Need some help?

Question deck:

<u>STEM SMART Double Maths 23 - Defining Functions & Rational Inequalities</u>

Created for isaacphysics.org by Matthew Rihan

Rational Modulus Inequality

Pre-Uni Maths for Sciences E4.10

Subject & topics Maths Functions General Functions Status	Stage & difficulty	
Not started	Further A Practice 2	

Solve the inequality

$$rac{-x^2-5x+24}{|x|+3} > 2$$

giving your answer using set notation.

Created for isaacphysics.org by Matthew Rihan