# Kapitel 2: Clustering i



1. Intorduction to Data Streams

## 2. Clustering in Data Streams

- 2.1 Adaptive Approaches
- 2.2 Online Offline Approaches
- 2.3 Continous Grid-based Approaches
- 2.4 Change Detection
- 3. Classification in Data Streams



- · The (batch) clustering problem
  - Given a set of measurements, observations, etc., the goal is to group the data into groups of similar data objects (clusters)
- The data stream clustering problem
  - Continuously maintain a consistently good clustering of the sequence observed so far, using a small amount of memory and time
- This implies
  - · Use incremental computations and techniques
  - · Maintaining cluster structures that evolve over time
  - Working with summaries (of such cluster structures) instead of raw data

# **Challenges**



- Traditional clustering methods require access upon the whole data set
- Rather, we need online maintenance of patterns that captures pattern drifts
- The underlying population distribution might change: drifts/ shifts of concepts
- One clustering model might not be adequate to capture the evolution
- The role of outliers and clusters are often exchanged in a stream
- A clear and fast identification of outliers is often crucial for the success



| Cluster Model | Batch/static clustering | Dynamic/stream clustering          |
|---------------|-------------------------|------------------------------------|
| Partitioning  | k-means,                | - Leader                           |
| methods       | k-medoid                | <ul> <li>STREAM k-Means</li> </ul> |
|               |                         | - CluStream                        |
| Density-based | DBSCAN,                 | - DenStream                        |
| methods       | OPTICS                  | - incDBSCAN                        |
|               |                         | - incOPTICS                        |
| Grid-based    | STRING                  | - Dstream                          |
| methods       |                         |                                    |



- · Goal: Construct a partition of a set of objects into k clusters
- · Two types of methods
  - Adaptive methods such as Leader (Spath 1980), Simple single pass k-Means (Farnstrom et al., 2000), STREAM k-Means (OCaEtAl02)
  - Online summarization offline clustering methods such as CluStream (AggEtAl03), DenStream (CaoEtAl06)
  - Continous grid-based such as DStream (CheTu07)

# **Kapitel 2: Clustering**



- 1. Intorduction to Data Streams
- 2. Clustering in Data Streams
- 2.1 Adaptive Approaches
- 2.2 Online Offline Approaches
- 2.3 Continous Grid-based Approaches
- 2.4 Change Detection
- 3. Classification in Data Streams



- · The simplest single-pass partitioning algorithm
- Whenever a new instance p arrives from the stream
  - Find its closest cluster (leader), c<sub>clos</sub>
  - Assign p to  $c_{clos}$  if their distance is below the threshold  $d_{thresh}$
  - Otherwise, create a new cluster (leader) with p
- Properties
  - · 1-pass and fast algorithm
  - No prior information on the number of clusters required
  - Result depends on the order of the examples
  - Sensitive to a correct guess of d<sub>thresh</sub> (which is fixed)

### **STEAM k-Means**



- Simple extension of batch *k*-Means to streams:
  - Use a buffer (chunk) that fits in memory and apply k-Means locally in the buffer
- STEAM k-Means:
  - Apply k-Means on chunk X<sub>i</sub>
  - X' denotes the set of i · k cluster centers from all chunks X<sub>1</sub>,...X<sub>i</sub> each
    weighted by the number of points assigned to it
  - Output the k centers obtained by clustering X'



## **STEAM k-Means**



## Properties:

- · Pros:
  - · Single scan
- · Cons:
  - Expensive (according to authors)
  - No aging
  - Cluster model inherent limitations (no noise handling, ...)
  - Fixed k in all chunks

# **Kapitel 2: Clustering**



- 1. Intorduction to Data Streams
- 2. Clustering in Data Streams
- 2.1 Adaptive Approaches
- 2.2 Online Offline Approaches
- 2.3 Continous Grid-based Approaches
- 2.4 Change Detection
- Classification in Data Streams

### **Basic Idea**



- · Online component
  - Maintain a larger number of small clusters (micro-cluster)
  - · Reduce data, keep sufficient details
  - Separate clusters for noise (improved robustness)
  - Provide accurate and fine grained input for further steps
- · Offline component
  - Generate actual clustering on user request using micro-cluster information
  - Exchangeable clustering method
  - Individual and changing parameterization possible
  - · Only approximate clustering



## **Micro Clusters: Cluster Features**



- Clustering Features<sup>1</sup> for a set of points  $X: CF_X = (N_X, LS_X, SS_X)$  with
  - $N_X$  is the number of points, i.e., |X|
  - $LS_X$  is the linear sum of all points in X, i.e.,  $\sum_{x_i \in X} x_i$
  - $SS_X$  is the squared sum of all points in X, i.e.,  $\sum_{x_i \in X} x_i^2$
- From CF<sub>X</sub> we can easily compute basic statistics of X such as
  - Mean (centroid) of X
  - Compactness measures such as radius, diameter, variance and std. deviation
- *CF*s are additive, i.e., given two (disjunctive) sets X and Y with their corresponding  $CF_X$  and  $CF_Y$ , we can compute  $CF_{X \cup Y}$  as follows:

$$CF_{X\cup Y} = CF_X + CF_Y = (N_X + N_Y, LS_X + LS_Y, SS_X + SS_Y)$$

<sup>&</sup>lt;sup>1</sup>Zhang, Ramakrishnan, Linvy: BIRCH: An Efficient Data Clustering Method for Very Large Databases, Proc. ACM SIGMOD 1996

## **Micro Clusters: Data Bubbles**



- While CFs are good for partitioning based clustering, they do not capture density estimations necessary for e.g. OPTICS
- Data Bubbles<sup>2</sup> for a set of points  $X: B_X = (N_X, M_X, r_X)$  with
  - $N_X$  is the number of points, i.e., |X|
  - M<sub>X</sub> is the centroid of X
  - r<sub>X</sub> is the radius of the ball centered at M capturing all points in X
- Data Bubbles can be computed from CFs
- Data Bubbles allow a good approximation of core/reachability distances for hierarchical clustering

<sup>&</sup>lt;sup>2</sup>Breunig, Kriegel, Kröger, Sander: Data Bubbles: Quality Preserving Performance Boosting for Hierarchical Clustering, Proc. ACM SIGMOD 2001



- One of the first algorithms for streams proposing an online/offline framework
- Uses cluster features to propose a k-Means like stream clustering method
- Cluster Features (see above) are extended by the information of the time slots T when points in X have arrived, i.e. x<sub>i</sub> has arrived at time t<sub>i</sub>:

$$CFT_X = (N_X, LS_X, SS_X, LST_X, SST_X)$$
, where

- N, LS<sub>X</sub>, and SS<sub>X</sub> are defined as above (note that LS<sub>X</sub> and SS<sub>X</sub> are vectors)
- $LST_X$  is the linear sum of time slots of X, i.e.,  $\sum_{t_i \in T} t_i$
- $SST_X$  is the linear sum of time slots of X, i.e.,  $\sum_{t_i \in T} t_i^2$
- · Again, important for the stream situation:
  - *CFT*s can be maintained incrementally, i.e.  $CFT_{X \cup p} = CFT_X + p$

## CluStream — Method at a Glance



- General idea: a fixed number of q micro-clusters (represented as CFTs) is maintained over time
- Initialize: apply q-Means over a buffer of initP observations and build a summary for each cluster
- Both q and initP are input parameters
- Upon request, k-Means can be applied to a snapshot of the q CFTs

### CluStream — Online Phase



- Maintain q micro-clusters while adding a new observation x<sub>i</sub> from the stream
  - Find closest micro-cluster  $MC_i$  according to distance  $dist(x_i, \mu_i)$
  - If  $dist(x_i, \mu_j) < \alpha \cdot \sigma_j$  then add  $x_i$  to  $MC_j$
  - Else create a new micro-cluster containing only x<sub>i</sub> and delete a micro cluster by using one of the following actions:
    - Delete the least recent MC if its relevance stamp  $t_r < t_{now} \tau$
    - · Merge the two closest micro clusters
- $\alpha \cdot \sigma_j$  is called the maximal boundary of  $MC_j$
- The relevance stamp t<sub>r</sub> of MC<sub>j</sub> approximates the average time stamp of the last m objects
- It is computed as the time of arrival of the m/(2 · N)-th percentile (i.e., 1 − m/2 · N of the time stamps in MC<sub>i</sub>



### CluStream — Offline Phase



- · Snapshots of micro-clusters are stored in pyramidal time frame
- Given k and a time horizon h
- Locate all valid micro-clusters within h
- Final clusters are gained using a modified k-Means
  - Micro-clusters over a certain time horizon are treated as pseudo-points
  - In the initialization: seeds are not picked randomly, but sampled with a probability proportional to N
  - Distances are calculated between centroids of the micro-clusters
  - New seeds are weighted by N
  - The k clusters obtained from applying k-Means on the micro-clusters are called macro-clusters



- Density-base cluster model: clusters as regions of high density surrounded by regions of low density (noise)
- Very appealing for streams
  - No assumption on the number of clusters
  - · Discovering clusters of arbitrary shapes
  - Ability to handle outliers and noise
- But, they miss a clustering model (or it is too complicated): clusters are represented by all their points
- So we can again only hope to approximate an arbitrary shaped cluster by many small (circular) micro-clusters





 The DenStream algorithm uses time-weighted cluster features at time slot t given a time weighting function f for observations x<sub>i</sub> arriving at time t<sub>i</sub> < t:</li>

$$CF_X^t = (N_X^t, LS_X^t, SS_X^t)$$

where

- $N_X^t = \sum_{x_i \in X} f(t t_i)$
- $LS_X^t = \sum_{x_i \in X} f(t-t_i)x_i$
- $SS_X^t = \sum_{x_i \in X} f(t t_i) x_i^2$
- Usually,  $f(t) = 2^{-\lambda t}$  models the damped window model (but other functions are possible)



- If a new observation  $x_i$  is added, a micro-cluster summary  $CF_X^t$  can be maintained incrementally (analogously as above)
- If no point is added to  $CF_X^t$  for time interval  $\Delta t$ , then  $CF_X^t = (2^{-\lambda \Delta t} \cdot N, 2^{-\lambda \Delta t} \cdot LS_X^t, 2^{-\lambda \Delta t} \cdot SS_X^t)$
- The radius  $r_X$  of a micro-cluster X can be derived from the cluster feature  $CF_X^t$  as follows

$$r_X = \sqrt{SS_X^t/N_X^t - (LS_X^t/N_X^t)^2}$$

- Analogously, the center  $c_X$  of a micro-cluster can be computed from its  $CF_X^t$ 

## **DenStream** — Basics



Given the density threshold  $\mu$  (#points) and  $\varepsilon$  (volume) and a weighting factor  $\beta$  (0 <  $\beta$   $\leq$  1), DenStream maintains three different types of micro-clusters:

- Core (or dense) micro-clusters (CMC) X if  $N_X^t \geq \mu$  and  $r_X \leq \varepsilon$
- Potential core micro-clusters (PCMC) X if
   N<sub>X</sub><sup>t</sup> ≥ β · μ and r<sub>X</sub> ≤ ε
   (provides the opportunity for transitions between new clusters and outliers)
- Outlier micro-clusters (OMC) X if  $r_X \le \varepsilon$  and  $N_X^t < \beta \cdot \mu$

Note: all MC types always have a radius  $\leq \varepsilon$ 





## **DenStream** — Initialization



- Collect a set I of initP of initial points
- For any *p* ∈ *I*:
  - Compute  $\varepsilon$ -neighborhood  $N_{\varepsilon}(p)$  of p
  - If |N<sub>ε</sub>(p)| ≥ μ (p is core), create a new CMC X = N<sub>ε</sub>(p) and remove X from I
- For all remaining  $p \in I$ : create a new OMCs  $X = N_{\varepsilon}(p)$  and remove X from I

## **DenStream** — Online Phase



## Online micro-cluster maintenance (when a new observation $x_i$ arrives)

- · Core micro-clusters are not considered
- Find closest potential core micro-cluster X<sub>p</sub>
- If  $dist(x_i, c_{X_p}) \leq \varepsilon$ 
  - Add  $x_i$  to  $X_p$
  - Check if X<sub>p</sub> becomes a CMC
- Else
  - Find closest outlier micro-cluster X<sub>o</sub>
  - If  $dist(x_i, c_{X_o}) \le \varepsilon$ , add  $x_i$  to  $X_o$  and check if  $X_o$  becomes a PCMC
  - Else: create a new OMC  $X_{x_i} = \{x_i\}$
- After a given number of T time steps, check:
  - Delete all CMC X with  $N_X^t < \mu$
  - ullet Delete all OMC that did not become CMC within the last  ${\mathcal T}$  time steps

## **DenStream** — Offline Phase



- Upon user request, run DBSCAN on current CMCs and PCMCs
- · Use centers and weights of the micro-clusters

## **DenStream** — Discussion



- Single scan, stream compression using micro-clusters
- Noise/ outlier handling (model inherent)
- Flexible data aging model (for individual objects)
- Constant parameters over time, what about clusters with changing density?

# **Online/Offline-Approaches: Summary**



|         | CluStream            | DenStream          |
|---------|----------------------|--------------------|
| Online  | convex micro cluster |                    |
| Offline | k-Means              | DBSCAN             |
| Aging   | entire MCs           | individual objects |

- · Cluster algorithm in offline phase exchangeable in principle
- Still "high" online costs (check all MCs)
- Many variants exist

# **Kapitel 2: Clustering**



- 1. Intorduction to Data Streams
- 2. Clustering in Data Streams
- 2.1 Adaptive Approaches
- 2.2 Online Offline Approaches
- 2.3 Continous Grid-based Approaches
- 2.4 Change Detection
- 3. Classification in Data Streams

#### **Basic Idea**



- · A grid structure is used to capture the density of the data set
- A cluster is a set of connected dense cells (see e.g. STING)
- Appealing features
  - No assumption on the number of clusters
  - Discovering clusters of arbitrary shapes
  - Ability to handle outliers
- · In case of streams
  - The grid cells are considered as micro-clusters, i.e., summary information on cells are maintained
  - · Update these summaries on the grid structure as the stream proceeds
  - Sample method: DStream (CheTu07)



- DStream divides each dimension into I partitions resulting in I<sup>d</sup> cells
   (d: data dimensionality)
- · Populated grid cells are maintained in a hash list
- For a grid cell *C*, the following summary is stored:

$$CF_C = (t_{update}, t_{spor}, N_C, label_C, status_C)$$

#### where

- t<sub>update</sub> is the last update time
- t<sub>spor</sub> last time, C has been removed
- $N_C = \sum_{x_i \in C} \lambda^{t-t_i} \cdot x_i$  (count using damped window aging)
- · label is the cluster label
- status ∈ {sporadic, normal}



- · DStream follows the online/offline paradigm
- · Online mapping of the new data into the grid
- Offline computation of grid density and clustering of dense cells



## **DStream** — Summaries



- Three cell types are defined by parameters  $\tau_{dense}$  and  $\tau sparse$ :
  - Cell C is dense if N<sub>C</sub> > τ<sub>dense</sub>
  - Cell C is sparse if  $N_C < au_{sparse}$
  - Cell C is transitional if  $au_{sparse} < N_C < au_{dense}$
- Connected regions of dense or transitional cells form a cluster
- Changes of the status occur in the online component
  - Set status to normal, if C changed from sparse to another type
  - Set status to *sporadic*, if for *C* the number of insertions into *C* is less than expected since the last update

### **DStream** — Online Phase



- Online grid cell maintenance (for new observation o<sub>i</sub>):
  - Determine the grid cell C that x<sub>i</sub> falls into
  - Add C to the hash list if it is not already contained
  - Update CF<sub>C</sub> w.r.t. x<sub>i</sub> and set status to normal if type changed from sparse
  - Periodically after T time steps
    - Delete all grid cells from the hash list that have been marked as sporadic and did not receive new points within the last T time steps
    - Mark sparse grid cells as sporadic if requirements (see previous slide) are met
    - Adjust the clustering

## **DenStream** — Discussion



- · Single scan, stream compression using micro-clusters
- Noise/ outlier handling (model inherent)
- · Aging model for entire cells
- Constant parameters over time, what about clusters with changing density?
- Curse of dimensionality (number of grid cells is I<sup>d</sup>)