

OpenCL™ and SYCL™ Open Standards for ADAS Vision Processing and Machine Learning

Charles Macfarlane, VP Product Marketing

How do we deliver embedded intelligence?

We have a mountain to climb

This presentation will focus on:

 The targets hardware and software platforms that will be able to deliver the results

The open standards that will enable solutions to interoperate

How Codeplay can help deliver embedded intelligence

Where do we need to go?

"On a 100 millimetre-squared chip, Google needs something like 50 teraflops of performance"

> Daniel Rosenband (Google's self-driving car project) at HotChips 2016

Performance trends

These trend lines seem to violate the rules of physics...

Year of introduction

How do we get there from here?

We need to write software today for platforms that cannot be built yet

We need to validate the systems as safe

We need to start with simpler systems that are not fully autonomous

Two models of software development

Desirable Solution Development

The different levels of programming model

Device-specific programming

- Assembly language
- VHDL
- Device-specific Clike programming models

Higher-level language enabler

- NVIDIA PTX
- HSA
- OpenCL SPIR
- SPIR-V

C-level programming

- OpenCL C
- DSP C
- MCAPI/MTAPI

C++-level programming

- SYCL
- CUDA
- HCC
- C++ AMP

Graph programming

- OpenCV
- OpenVX
- Halide
- VisionCpp
- TensorFlow
- Caffe

Why graph programming?

When you scale the number of cores:

- You don't scale the number of memory ports
- Your compute performance increases
- But your off-chip memory bandwidth does not

Therefore:

- You need to reduce off-chip memory bandwidth by processing everything onchip
- This is achieved by tiling

However,
writing tiled
image pipelines
is hard

If we build up a graph of operations (e.g. convolutions) and then have a runtime system split into fused tiled operations across an entire system-on-chip, we get great performance

The route to full autonomy

- Graph programming
 - This is the most widely-adopted approach to machine vision and machine learning

- Open standards
 - This lets you develop today for future architectures

Which model should we choose?

Device-specific programming

- Assembly language
- VHDL
- Device-specific Clike programming models

Higher-level language enabler

- NVIDIA PTX
- HSA
- OpenCL SPIR
- SPIR-V

C-level programming

- OpenCL C
- DSP C
- MCAPI/MTAPI

C++-level programming

- SYCL
- CUDA
- HCC
- C++ AMP

Graph programming

- OpenCV
- OpenVX
- Halide
- VisionCpp
- TensorFlow
- Caffe

They are not alternatives, they are layers

Can specify, test and validate each layer

For Codeplay, these are our layer choices

We have chosen a layer of standards, based on current market adoption

- TensorFlow and OpenCV
- SYCL
- OpenCL (with SPIR)
- LLVM as the standard compiler back-end

Devicespecific programming

• LLVM

Higher-level language enabler

• OpenCL SPIR

C/C++-level programming

• SYCL

Graph programming

- TensorFlow
- OpenCV

The actual choice of standards may change based on market dynamics, but by choosing widely adopted standards and a layering approach, it is easy to adapt

For Codeplay, these are our products

OpenCL SPIR

specific programming

LLVM

Where Codeplay fits in

Company

~60 staff, mostly engineering

License and customize technologies for semiconductor companies

ComputeAorta and ComputeCpp: implementations of OpenCL, Vulkan and SYCL

15+ years of experience in heterogeneous solutions

Further information

OpenCL https://www.khronos.org/opencl/

OpenVX https://www.khronos.org/openvx/

HSA http://www.hsafoundation.com/

SYCL http://sycl.tech

OpenCV http://opencv.org/

Halide http://halide-lang.org/

VisionCpp https://github.com/codeplaysoftware/visioncpp

Charles.Macfarlane@Codeplay.com

VP Product Marketing

@codeplaysoft

/codeplaysoft

codeplay.com