Systems of **Linear Equations**

Linear Equations in n Variables

Recall from analytic geometry that the equation of a line in two-dimensional space has the form

$$a_1x + a_2y = b$$
, a_1, a_2 , and b are constants.

This is a linear equation in two variables x and y. Similarly, the equation of a plane in three-dimensional space has the form

$$a_1x + a_2y + a_3z = b$$
, a_1, a_2, a_3 , and b are constants.

Such an equation is called a **linear equation in three variables** x, y, and z. In general, a linear equation in n variables is defined as follows.

Definition of a Linear Equation in *n* Variables

A linear equation in *n* variables $x_1, x_2, x_3, \ldots, x_n$ has the form

$$a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n = b.$$

The coefficients $a_1, a_2, a_3, \ldots, a_n$ are real numbers, and the constant term b is a real number. The number a_1 is the **leading coefficient**, and x_1 is the **leading variable**.

Each equation is linear.

(a)
$$3x + 2y = 7$$

(b)
$$\frac{1}{2}x + y - \pi z = \sqrt{2}$$

(c)
$$x_1 - 2x_2 + 10x_3 + x_4 = 0$$
 (d) $\left(\sin\frac{\pi}{2}\right)x_1 - 4x_2 = e^2$

$$\left(\operatorname{din}\left(\sin\frac{\pi}{2}\right)x_1 - 4x_2 = e^2$$

Each equation is not linear.

(a)
$$xy + z = 2$$

(b)
$$e^x - 2y = 4$$

(c)
$$\sin x_1 + 2x_2 - 3x_3 = 0$$
 (d) $\frac{1}{x} + \frac{1}{y} = 4$

(d)
$$\frac{1}{x} + \frac{1}{y} = 4$$

A solution of a linear equation in n variables is a sequence of n real numbers s_1, s_2, \ldots s_3, \ldots, s_n arranged so the equation is satisfied when the values

$$x_1 = s_1, \quad x_2 = s_2, \quad x_3 = s_3, \quad \dots, \quad x_n = s_n$$

are substituted into the equation. For example, the equation

$$x_1 + 2x_2 = 4$$

is satisfied when $x_1 = 2$ and $x_2 = 1$. Some other solutions are $x_1 = -4$ and $x_2 = 4$, $x_1 = 0$ and $x_2 = 2$, and $x_1 = -2$ and $x_2 = 3$.

The set of *all* solutions of a linear equation is called its **solution set**.

Parametric Representation of a Solution Set

Solve the linear equation $x_1 + 2x_2 = 4$.

SOLUTION To find the solution set of an equation involving two variables, solve for one of the variables in terms of the other variable. If you solve for x_1 in terms of x_2 , you obtain

$$x_1 = 4 - 2x_2$$

In this form, the variable x_2 is **free**, which means that it can take on any real value. The variable x_1 is not free because its value depends on the value assigned to x_2 . To represent the infinite number of solutions of this equation, it is convenient to introduce a third variable t called a **parameter**. By letting $x_2 = t$, you can represent the solution set as

$$x_1 = 4 - 2t$$
, $x_2 = t$, t is any real number.

Particular solutions can be obtained by assigning values to the parameter t. For instance, t = 1 yields the solution $x_1 = 2$ and $x_2 = 1$, and t = 4 yields the solution $x_1 = -4$ and $x_2 = 4$.

The solution set of a linear equation can be represented parametrically in more than one way. In Example 2 you could have chosen x_1 to be the free variable. The parametric representation of the solution set would then have taken the form

$$x_1 = s$$
, $x_2 = 2 - \frac{1}{2}s$, s is any real number.

EXAMPLE

Solve the linear equation 3x + 2y - z = 3.

SOLUTION Choosing y and z to be the free variables, begin by solving for x to obtain

$$3x = 3 - 2y + z$$
$$x = 1 - \frac{2}{3}y + \frac{1}{3}z.$$

Letting y = s and z = t, you obtain the parametric representation

$$x = 1 - \frac{2}{3}s + \frac{1}{3}t$$
, $y = s$, $z = t$

where s and t are any real numbers. Two particular solutions are

$$x = 1, y = 0, z = 0$$
 and $x = 1, y = 1, z = 2$.

Systems of Linear Equations

A system of m linear equations in n variables is a set of m equations, each of which is linear in the same n variables:

۲

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \cdots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \cdots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \cdots + a_{mn}x_n = b_m.$$

Example:

$$3x_1 + 2x_2 = 3$$
$$-x_1 + x_2 = 4$$

has $x_1 = -1$ and $x_2 = 3$ as a solution because *both* equations are satisfied when $x_1 = -1$ and $x_2 = 3$. On the other hand, $x_1 = 1$ and $x_2 = 0$ is not a solution of the system because these values satisfy only the first equation in the system.

EXAMPLE

Systems of Two Equations in Two Variables

Solve each system of linear equations, and graph each system as a pair of straight lines.

(a)
$$x + y = 3$$

(b)
$$x + y = 3$$

(c)
$$x + y = 3$$

$$x - y = -1$$
 $2x + 2y = 6$

$$x + y = 1$$

SOLUTION

(a) This system has exactly one solution, x = 1 and y = 2. The solution can be obtained by adding the two equations to give 2x = 2, which implies x = 1 and so y = 2. The graph of this system is represented by two intersecting lines, as shown in Figure 1.1(a).

$$x + y = 3$$

 $x - y = -1$

(b) This system has an infinite number of solutions because the second equation is the result of multiplying both sides of the first equation by 2. A parametric representation of the solution set is shown as

$$x = 3 - t$$
, $y = t$, t is any real number.

$$\begin{array}{ccc}
x + y &= 3 \\
2x + 2y &= 6
\end{array}$$

(c) This system has no solution because it is impossible for the sum of two numbers to be 3 and 1 simultaneously. The graph of this system is represented by two parallel lines, as shown in Figure 1.1(c).

(c) Two parallel lines:

$$x + y = 1$$

Number of Solutions of a System of Linear Equations

For a system of linear equations in n variables, precisely one of the following is true.

- 1. The system has exactly one solution (consistent system).
- 2. The system has an infinite number of solutions (consistent system).
- 3. The system has no solution (inconsistent system).

Solving a System of Linear Equations

Which system is easier to solve algebraically?

$$x - 2y + 3z = 9$$
 $x - 2y + 3z = 9$
 $-x + 3y = -4$ $y + 3z = 5$
 $2x - 5y + 5z = 17$ $z = 2$

The system on the right is clearly easier to solve. This system is in **row-echelon form**, which means that it follows a stair-step pattern and has leading coefficients of 1. To solve such a system, use a procedure called **back-substitution**.

Using Back-Substitution to Solve a System in Row-Echelon Form

EXAMPLE

Use back-substitution to solve the system.

$$x - 2y = 5$$
 Equation 1
 $y = -2$ Equation 2

SOLUTION From Equation 2 you know that y = -2. By substituting this value of y into Equation 1, you obtain

$$x - 2(-2) = 5$$
 Substitute $y = -2$.
 $x = 1$. Solve for x .

The system has exactly one solution: x = 1 and y = -2.

EXAMPLE

Solve the system.

$$x - 2y + 3z = 9$$
 Equation 1
 $y + 3z = 5$ Equation 2
 $z = 2$ Equation 3

SOLUTION From Equation 3 you already know the value of z. To solve for y, substitute z=2 into Equation 2 to obtain

$$y + 3(2) = 5$$
 Substitute $z = 2$.
 $y = -1$. Solve for y .

Finally, substitute y = -1 and z = 2 in Equation 1 to obtain

$$x - 2(-1) + 3(2) = 9$$
 Substitute $y = -1$, $z = 2$.
 $x = 1$. Solve for x .

The solution is x = 1, y = -1, and z = 2.

Two systems of linear equations are called **equivalent** if they have precisely the same solution set. To solve a system that is not in row-echelon form, first change it to an *equivalent* system that is in row-echelon form by using the operations listed below.

Operations That Lead to Equivalent Systems of Equations Each of the following operations on a system of linear equations produces an *equivalent* system.

- 1. Interchange two equations.
- 2. Multiply an equation by a nonzero constant.
- 3. Add a multiple of an equation to another equation.

Rewriting a system of linear equations in row-echelon form usually involves a *chain* of equivalent systems, each of which is obtained by using one of the three basic operations. This process is called **Gaussian elimination**, after the German mathematician Carl Friedrich Gauss (1777–1855).

EXAMPLE

Solve the system.

$$x - 2y + 3z = 9$$

$$-x + 3y = -4$$

$$2x - 5y + 5z = 17$$

SOLUTION

$$x - 2y + 3z = 9$$

 $y + 3z = 5$
 $2x - 5y + 5z = 17$

Adding the first equation to the second equation produces a new second equation.

$$x - 2y + 3z = 9$$

 $y + 3z = 5$
 $-y - z = -1$

Adding -2 times the first equation to the third equation produces a new third equation.

Now that everything but the first x has been eliminated from the first column, work on the second column.

$$x - 2y + 3z = 9$$

 $y + 3z = 5$
 $2z = 4$
Adding the second equation to the third equation produces a new third equation.

$$x - 2y + 3z = 9$$

 $y + 3z = 5$
 $z = 2$

Multiplying the third equation by $\frac{1}{2}$ produces a new third equation.

$$x = 1,$$
 $y = -1,$ $z = 2.$

An Inconsistent System

EXAMPLE

Solve the system.

$$x_1 - 3x_2 + x_3 = 1$$

 $2x_1 - x_2 - 2x_3 = 2$
 $x_1 + 2x_2 - 3x_3 = -1$

$$x_1 - 3x_2 + x_3 = 1$$

 $5x_2 - 4x_3 = 0$
 $x_1 + 2x_2 - 3x_3 = -1$

Adding -2 times the first equation to the second equation produces a new second equation.

 $x_1 - 3x_2 + x_3 = 1$
 $x_1 - 3x_2 + x_3 = 1$
 $5x_2 - 4x_3 = 0$
 $5x_2 - 4x_3 = -2$

Adding -1 times the first equation to the third equation produces a new third equation.

$$x_1 - 3x_2 + x_3 = 1$$

 $5x_2 - 4x_3 = 0$
 $0 = -2$
Adding -1 times the second equation to the third equation produces a new third equation.

A System with an Infinite Number of Solutions

EXAMPLE

Solve the system.

$$x_2 - x_3 = 0
 x_1 - 3x_3 = -1
 -x_1 + 3x_2 = 1$$

SOLUTION Begin by rewriting the system in row-echelon form as follows.

$$x_1$$
 $-3x_3 = -1$ The first two equation $x_2 - x_3 = 0$ $-x_1 + 3x_2 = 1$

$$x_1$$
 $-3x_3 = -1$ Adding the first equation to the third equation produces $3x_2 - 3x_3 = 0$ a new third equation.

$$x_1$$
 $-3x_3 = -1$ Adding -3 times the second equation to the third equation eliminates the third equation.

Because the third equation is unnecessary, omit it to obtain the system shown below.

$$\begin{aligned}
 x_1 & -3x_3 &= -1 \\
 x_2 - x_3 &= 0
 \end{aligned}$$

To represent the solutions, choose x_3 to be the free variable and represent it by the parameter t. Because $x_2 = x_3$ and $x_1 = 3x_3 - 1$, you can describe the solution set as

$$x_1 = 3t - 1$$
, $x_2 = t$, $x_3 = t$, t is any real number.