CIR₂CNB₂

TD de Maths Courbes planes

Exercice 1 - construction de courbes

$$\begin{cases} x(t) = \cos(3t) \\ y(t) = \cos\left(2t + \frac{\pi}{4}\right) \\ t \in [0, 2\pi] \end{cases} \begin{cases} x(t) = \frac{t}{1 - t^3} \\ y(t) = \frac{t^3}{1 - t^3} \\ t \in \mathbb{R} \end{cases} \begin{cases} x(t) = \frac{t^2}{1 - t^3} \\ y(t) = \frac{t^3}{1 - t^3} \\ t \in \mathbb{R} \end{cases} \begin{cases} x = \cos t \cos(3t) \\ y = \sin t \cos(3t) \\ t \in \mathbb{R} \end{cases}$$

Exercice 2 - Étude de la courbe paramétrée $\begin{cases} x(t) = \frac{1 - t^2}{1 + t^2 + t^4} \\ y(t) = \frac{t - t^3}{1 + t^2 + t^4} \end{cases}$

• Pour étudier les variations de y on pourra au préalable étudier les racines du polynôme $P(t) = t^3 - 4t^2 - 4t + 1$ puis du polynôme $Q(t) = t^6 - 4t^4 - 4t^2 + 1$

Exercice 3 - Étude de la courbe paramétrée
$$\begin{cases} x(t) = f(t) = \frac{1}{t} + \ln(2+t) \\ \text{dont on donne le tableau de variations :} \\ y(t) = g(t) = t + \frac{1}{t} \end{cases}$$

t	-2 -	1 0		1 :	2 +∞
f`(t)	+	-	-	- (+
f(t)	- 00	1 - ∞	+00 f	#	†***
g`(t)	+	-	- 1	+	+
g(t)	-5/2	- 00	+00	5	100

Exercice 4 Un cercle de rayon 1/3 roule sans glisser à l'intérieur d'un cercle fixe de rayon 1, centré en 0. Déterminer les équations de la trajectoire Γ d'un point M fixé sur la circonférence du petit cercle. Tracer la courbe Γ .

Envisager le cas d'un cercle de rayon 1/4, ou 1/5 ...

- La ligne courbe est la ligne la plus polie d'un point à un autre. (Mae West)
- Le carré, c'est une circonférence qui a mal tourné. (Pierre Dac)
- Le cercle est le plus long chemin d'un point au même point. (Stoppard)