微分積分学A 試験問題

2019年7月25日第2時限施行

担当 水野 将司

学生番号

名前

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

 $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ を $x \in \mathbb{R} \setminus \{0\}$ に対して $f(x) := x \sin\left(\frac{1}{x^2}\right)$ で定義する. この時 $\lim_{x \to 0} f(x) = 0$ となることを ε - δ 論法を用いて証明を与えよ.

問題 2.

関数 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して $f(x) := 3x^4 - 2019$ で定義する. f(x) が x = -1 で連続であることを, ε - δ 論法を用いて証明せよ.

問題 3.

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ が \mathbb{R} 上連続関数である時, f-g が \mathbb{R} 上連続関数であることを, ε - δ 論法を用いて証明せよ.

問題 4.

xの方程式 $x^3 + x^2 - 2x - 1 = 0$ は相異なる 3 つの実数解を持つことを示せ. 問題 **5.**

 $f:[1,\infty)\to\mathbb{R}$ を $x\in[1,\infty)$ に対して $f(x)=\frac{1}{x}$ で定義する. この時, f は $[1,\infty)$ 上で一様連続であることを示せ.

問題 6.

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して $f(x) := x^3$ で定義する. この時, f が \mathbb{R} 上連続となること を ε - δ 論法を用いて示せ.

微分積分学A 試験問題

2019年7月25日第3時限施行

担当 水野 将司

学生番号

名前

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

 $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ を $x \in \mathbb{R}\setminus\{0\}$ に対して $f(x) := x\cos\left(\frac{1}{x^2}\right)$ で定義する. この時 $\lim_{x\to 0} f(x) = 0$ となることを ε - δ 論法を用いて証明を与えよ.

問題 2.

関数 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して $f(x) := -2x^4 + 1729$ で定義する. f(x) が x = -1 で連続であることを, ε - δ 論法を用いて証明せよ.

問題 3.

 \mathbb{R} 上連続関数 $f:\mathbb{R}\to\mathbb{R}$ と $c\in\mathbb{R}$ に対して cf が \mathbb{R} 上連続関数であることを, ε - δ 論法を用いて証明せよ.

問題 4.

xの方程式 $8x^3 - 6x + 1 = 0$ は相異なる 3 つの実数解を持つことを示せ.

問題 5.

 $f:(0,\infty)\to\mathbb{R}$ を $x\in(0,\infty)$ に対して $f(x)=\sqrt{1+x}$ で定義する. この時, f は $(0,\infty)$ 上で一様連続であることを示せ.

問題 6.

 $f: \mathbb{R} \to \mathbb{R}$ を $x \in \mathbb{R}$ に対して $f(x) := x^3$ で定義する. この時, f が \mathbb{R} 上連続となること を ε - δ 論法を用いて示せ.