Reverse Mathematics: RCA, WWKL, and WKL

Exploring the Hierarchy of Logical Systems

Nora Han Supervised by Prof. Scott Weinstein

Logic, Information, and Computation LGIC 4960 Capstone Seminar

Dec 5, 2024

Introduction

- Studies subsystems of second-order arithmetic (RCA, WWKL, WKL).
- Main Goal: Show the hierarchy RCA < WWKL < WKL.

Key Questions

- What are the computability-theoretic and measure-theoretic differences among RCA, WWKL, and WKL?
- How do we use randomness and Π_1^0 -classes to separate these systems?

Disclaimer

Normally, these subsystems of second-order arithmetic are denoted with a subscript 0, which indicates a restricted induction scheme (restricted to Σ^0_1 formulas only). However, since we are working exclusively within ω -models, we are implicitly assuming unrestricted induction for all formulas. Consequently, we omit the subscripts, as they hold no meaning for our purpose.

Key Subsystems

- RCA: Recursive Comprehension Axiom.
 - Base system: only computable sets and functions are allowed.
- · WWKL: Weak Weak König's Lemma.
 - Every infinite binary tree of positive measure has an infinite path.
- · WKL: Weak König's Lemma.
 - Every infinite binary tree has an infinite path.

Why RCA < WWKL < WKL?

We construct a model satisfying RCA but not WWKL and another model satisfying WWKL but not WKL.

Proof: RCA < WWKL

- Goal: Prove that WWKL proves the existence of objects RCA cannot.
- Key Idea: Model minimal turing ideal, or recursive set, that satisfies RCA not WWKL,
- Construct a Π_1 -class V_n of positive measure and show it contains Martin-Löf random sequences.

Universal Martin-Löf Test

- A **Martin-Löf test** is a descending chain of effectively open sets $\{U_n\}_{n\in\omega}$ capturing sequences that fail randomness at level n.
- For a sequence to be Martin-Löf random, it must avoid all U_n .
- Each U_n satisfies $\mu(U_n) \leq 2^{-n}$, where μ is the Lebesgue measure on 2^{ω} (Cantor space).

Purpose of U_n

- U_n captures sequences non-random up to level n.
- Sequences in U_n exhibit predictable patterns, failing randomness criteria at stage n.

Why U_n is Effectively Open (Σ_1)

- Each U_n represents sequences meeting computably enumerable failure conditions.
- Let F_n be a c.e. set of finite binary strings representing failure conditions.
- · Then,

$$U_n = \bigcup_{\sigma \in F_n} [\sigma],$$

where $[\sigma]$ denotes the cylinder set of sequences starting with σ .

• As a union of basic open sets, U_n is effectively open.

Constructing the Π_1 Class

- Define $V_n = 2^{\omega} \setminus U_n$.
- V_n consists of sequences passing the test up to level n.
- Since U_n is effectively open (Σ_1) , V_n is effectively closed (Π_1) .

Properties of V_n

- V_n is a Π_1 class in Cantor space.
- It has positive measure:

$$\mu({\it V}_{\it n})=1-\mu({\it U}_{\it n})\geq 1-2^{-\it n}>0 \quad {\rm for}\, \it n>0.$$

• Contains sequences passing the first *n* levels of the randomness test.

Why RCA Cannot Prove $V_n \neq \emptyset$

- RCA cannot guarantee the existence of non-computable objects.
- Since V_n contains only non-computable, random sequences, RCA cannot prove $V_n \neq \emptyset$.
- In an ω -model of RCA with only computable reals, V_n appears empty.

Why WWKL Proves $V_n \neq \emptyset$

- WWKL includes the axiom: Every Π^0_1 class of positive measure is non-empty.
- Since V_n is a Π_1^0 class with positive measure, WWKL proves $V_n \neq \emptyset$.
- Therefore, WWKL proves the existence of non-computable, random sequences in V_n .

WWKL v.s. WKL

- Show that WWKL is strictly weaker than WKL.
- Construct an ω -model ${\mathcal M}$ satisfying WWKL but not WKL.

Subsets of ω

- Let X, Y, Z, \ldots denote subsets of ω .
- Each set $X\subseteq\omega$ is identified with its characteristic function χ_X .

Join Operation $(X \oplus Y)$

• For sets $X, Y \subseteq \omega$, define the join $X \oplus Y$ by interleaving:

$$Z(2n) = X(n), \quad Z(2n+1) = Y(n).$$

Randomness Over a Set

• A set X is random over Y if, for every $\Delta_1^{1, Y}$ class $\mathcal{B} \subseteq 2^\omega$ with $\mu(\mathcal{B}) = 1$, we have $X \in \mathcal{B}$.

Construction of $\{X^n\}$

- Base case: $X^0 = \emptyset$.
- Inductive step: For $n \ge 0$,
 - 1. Choose X_n random over X^n .
 - 2. Define $X^{n+1} = X^n \oplus X_n$.

Construction of Model \mathcal{M}

- $\mathcal{M} = \{Y : \exists n, Y \leq_T X^n\}.$
- Observe that ${\cal M}$ is an ω -Model of RCA(we show this by showing that ${\cal M}$ is a turing ideal)

Non-Emptiness

 $\mathcal{X}^0=\emptyset$ is recursive (computable without any oracle), so \mathcal{M} contains at least all recursive sets (since any recursive set Y satisfies $Y\leq_{\mathcal{T}}\mathcal{X}^0$).

Closure Under Turing Reducibility

• If $A \in \mathcal{M}$ and $B \leq_T A$, then $B \leq_T X^n$ for some n, so $B \in \mathcal{M}$.

Closure Under Join

- If $A, B \in \mathcal{M}$, then $A \leq_{\mathcal{T}} X^{n_1}$ and $B \leq_{\mathcal{T}} X^{n_2}$.
- Let $n = \max(n_1, n_2)$, then $A \oplus B \leq_T X^n$.
- Thus, $A \oplus B \in \mathcal{M}$.

Properties of \mathcal{M}

- ${\mathcal M}$ is a Turing ideal.
- · Satisfies RCA.
- · Satisfies WWKL.
- Fails WKL: Cannot separate certain sets A and B.

Why \mathcal{M} Satisfies WWKL

- Let $T \subseteq 2^{<\omega}$ be a binary tree of positive density in \mathcal{M} , i.e., there exists n such that $T \leq_T X^n$.
- Define a set $\mathcal D$ capturing paths of T .
- Show \mathcal{D} is measurable and Borel in X^n .
- Apply the **0-1 law** to prove $\mu(\mathcal{D})=1.$
- Conclude \mathcal{M} contains an infinite path Z of T.
- Thus, ${\mathcal M}$ satisfies WWKL.

Define \mathcal{D}

$$\mathcal{D} = \{ Y : \exists Z \equiv_{T} Y (Z \text{ is a path of } T) \}$$

- \mathcal{D} captures all sets Y Turing equivalent to a path Z of T.
- If T has paths of positive measure, \mathcal{D} also has positive measure.

Paths of T are Borel

$$\mathit{Paths}(\mathit{T}) = \{\mathit{Z} \in 2^{\omega} : \forall \mathit{n} \ (\mathit{Z} \upharpoonright \mathit{n} \in \mathit{T})\}$$

- Paths(T) is the set of all infinite paths in T. where $Z \upharpoonright n$ is the prefix of Z of length n.
- Note that Paths(T) is Π_1^0 in T, and hence Borel in X^n .

D is Borel

- \mathcal{D} is the closure of Paths(T) under Turing equivalence.
- Exercise: Show that D is Borel in X^n . [Hint: think about the definition of Turing Equivalence]

The o-1 Law

Statement: For any measurable class $\mathcal C$ closed under finite variations:

$$\mu(\mathcal{C}) \in \{0,1\}.$$

(p71, Proposition 1.9.12 Nies, Computability and Randomness 2009)

- \mathcal{D} is measurable and closed under finite variations:
 - If $Y \in \mathcal{D}$, any finite variant of Z would be turing equivalent to Y and thus also belongs to \mathcal{D} .

$\mu(\mathcal{D}) = 1$

- The set $\operatorname{Paths}(\mathbf{T})\subseteq\mathcal{D}$, so $\mu(\mathcal{D})\geq\mu(\operatorname{Paths}(\mathbf{T}))>0.$
- By the 0-1 law, $\mu(\mathcal{D})=1.$

Putting it All Together

- Since by definition, X_n is random over X^n and \mathcal{D} is $\Delta_1^{1X^n}$, $X_n \in \mathcal{D}$.
- The existence of Z as a path of T means Z is an infinite sequence that satisfies $Z \upharpoonright n \in T$ for all n. Since $Z \equiv_T X_n$ and X_n is part of the model \mathcal{M} , Z must also belong to \mathcal{M} .
- Therefore, T has a path Z that is defined within the model \mathcal{M} , satisfying the requirement that every infinite binary tree with positive measure has a path.

Why \mathcal{M} Fails WKL

- Weak König's Lemma (WKL): Every infinite binary tree has an infinite path.
- Let *A* and *B* be disjoint r.e. sets not recursively separable.
- Claim: No $Y \in \mathcal{M}$ separates A and B.
- Inductive proof shows that for all n, no $Y \leq_T X^n$ separates A and B.
- Therefore, ${\cal M}$ does not satisfy WKL, since WKL implies Σ^0_1 separation over RCA, as discussed in class.

Base Case (n = 0)

- $X^0 = \emptyset$.
- Assumption: A and B are not recursively separable.
- Therefore, no recursive set Y separates A and B.
- **Conclusion:** Claim holds for n = 0.

Inductive Hypothesis

Inductive Hypothesis:

• Assume the claim holds for n: No $Y \leq_T X^n$ separates A and B.

Goal:

• Prove the claim for n + 1: No $Y \leq_T X^{n+1}$ separates A and B.

Defining \mathcal{D}

$$\mathcal{D} = \{ Z : \exists Y \leq_T^{X^{\circ}} Z (A \subseteq Y \land B \cap Y = \emptyset) \}.$$

• \mathcal{D} : Set of all Z that can compute (relative to X^n) a separating set Y.

Measure-Theoretic Argument

Theorem 5.3 (Jockusch and Soare):

• If A and B are disjoint recursively inseparable sets, and S is the collection of all sets that separate A and B,

$$\mu\left(\mathcal{U}(\mathcal{S})\right) = 0.$$

• $\mathcal{U}(\mathcal{S})$: Upward cone of \mathcal{S} (sets Z such that Z computes some $Y \in \mathcal{S}$).

Application:

- Relativize to X^n : $\mu(\mathcal{D}) = 0$.
- Since \mathcal{D} is $\Delta_1^{1X^n}$ [Exercise], $X_n \notin \mathcal{D}$.

Inductive Step

Implication for X^{n+1} :

- $X^{n+1} = X^n \oplus X_n$.
- X_n is random over X^n .
- If $Y \leq_T X^{n+1}$, then $Y \leq_T^{X^n} X_n$.
- Y cannot separate A and B.

Conclusion: \mathcal{M} does not satisfy *WKL*.

Conclusion

- ullet RCA < WWKL < WKL hierarchy demonstrated.
- Highlighted the role of randomness and measure theory in reverse mathematics.
- Explored the interplay between computability and logical systems.

Implications

- Foundational insights into mathematical theorems.
- Applications to algorithmic randomness and measure theory.

Works Cited I

 Π_1^0 classes and degrees of theories. Transactions of the American Mathematical Society, pages 33–56, 1972.

Andre Nies.

Computability and Randomness.

Oxford University Press, 2009.

Xiaokang Yu and Stephen G. Simpson.

Measure theory and weak König's lemma.

Archive for Mathematical Logic, 30:171–180, 1990.

