Internet: Naming and Addressing

Names, addresses and routes:

According to Shoch (1979)

- name: identifies what you want
- address: identifies where it is
- route: identifies a way to get there
- Internet names and addresses

	Example	Organization
MAC address		flat, permanent
IP address	128.101.35.34	2-level
Host name	afer.cs.umn.edu	hierarchical

IP addresses

- Two-level hierarchy: network id. + host id.
 - (or rather 3-level, subnetwork id.)
 - 32 bits long usually written in dotted decimal notation e.g., 128.101.35.34
- No two hosts have the same IP address
 - host's IP address may change, e.g., dial-in hosts
 - a host may have multiple IP addresses
 - IP address identifies host interface
- Mapping of IP address to MAC (physical) IP done using IP ARP (this is called address resolution)
 - one-to-one mapping
- Mapping between IP address and host name done using Domain Name Servers (DNS)
 - many-to-many mapping

Internet Domain Names

- Hierarchical: anywhere from two to possibly infinity
- Examples: afer.cs.umn.edu, lupus.fokus.gmd.de
 - edu, de: organization type or country (a "domain")
 - umn, fokus: organization administering the "sub-domain"
 - cs, fokus: organization administering the host
 - afer, lupus: host name (have IP address)

Domain Name Resolution and DNS

DNS: Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function implemented as application-layer protocol
 - complexity at network's "edge"

- hierarchy of redundant servers with time-limited cache
- 13 root servers, each knowing the global top-level domains (e.g., edu, gov, com) , refer queries to them
- each server knows the 13 root servers
- each domain has at least 2 servers (often widely distributed) for fault distributed
- DNS has info about other resources, e.g., mail servers

DNS name servers

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- · maintenance

doesn't scale!

 no server has all nameto-IP address mappings

local name servers:

- each ISP, company has local (default) name server
- host DNS query first goes to local name server

authoritative name server:

- for a host: stores that host's IP address, name
- can perform name/address translation for that host's name

DNS: Root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts
 authoritative name
 server if name
 mapping not known
 - gets mapping
 - returns mapping to local name server
- ~ dozen root name servers worldwide

Simple DNS example

root name server

host homeboy.aol.com wants IP address of afer.cs.umn.edu

- 1. Contacts its local DNS server, dns.aol.com
- 2. dns.aol.com contacts root name server, if necessary
- 3. root name server contacts authoritative name server, dns.umn.edu, if necessary

root name server

DNS example

Root name server:

- may not know authoritative name server
- may know *intermediate name server*: who to contact to find authoritative name *server*

DNS: iterated queries root name server

recursive query:

- puts burden of name resolution on contacted name server
- heavy load?

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS: caching and updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time
- update/notify mechanisms under design by IETF
 - RFC 2136
 - http://www.ietf.org/html.charters/dnsind-charter.html

CSci4211: Application Layer 10

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type,ttl)

- Type=A (or AAAA)
 - name is hostname
 - value is IPv4 (IPv6) address
 - Type=NS
 - name is domain (e.g. foo.com)
 - value is IP address of authoritative name server for this domain

- Type=CNAME
 - name is an alias name for some "canonical" (the real) name
 - value is canonical name
- Type=MX
 - value is hostname of mailserver associated with name

DNS protocol, messages

DNS protocol: query and reply messages, both with same message format

msg header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

DNS protocol, messages

CSci4211: Application Layer

DNS Protocol

- Query/Reply: use UDP, port 53
- Transfer of DNS Records between authoritative and replicated servers: use TCP

Application Layer 14