Лабораторная работа 3

Параллельные алгоритмы сортировки в OpenMP и их практическое применение

Цель работы. Изучение различных алгоритмов сортировки и их параллельных вариантов реализации. Знакомство с медианным фильтром для обработки изображений.

Порядок выполнения работы

- 1. Ознакомиться с теоретическими сведениями.
- 2. Ознакомится с алгоритмами сортировки.
- 3. Выполнить задания 1–2.
- 4. Подготовить отчет по лабораторной работе.
- 5. Защитить лабораторную работу перед преподавателем

ЗАДАНИЯ

Задание 3.1. Разработайте консольное приложение, реализующее сортировку одномерного массива разными алгоритмами (в последовательной и параллельной реализации). При помощи этого приложения выполните экспериментальное исследование на четырех наборах (20 000–50 000 эл.) по обработке разных типов данных (int, double) с разными реализациями (не менее 30 запусков для каждой реализации). В приложении необходимо реализовать следующие методы сортировки:

- пузырька (классический алгоритм), только последовательный вариант;
 - пузырька (алгоритм Чет-нечетной перестановки)²;
 - Шелла;

- быстрой сортировки (qsort).

Для каждой реализации функций сортировки массива выполните расчет времени и сформируйте сводные таблицы. При этом сортировку производить для одного и того же набора данных, т. е. исходные значения массива копируются в массив, предназначенный для сортировки. Заполнение массива осуществлять с учетом некоторой закономерности (придумать функцию генерации данных в зависимости от индекса). Результаты эксперимента оформите в виде табл. 3.1.

¹ В зависимости от оборудования (на котором будут выполняться эксперименты) и согласованию с преподавателем возможно изменения наборов данных в сторону уменьшения.

² Пример вариантов последовательной реализации сортировки «Чет-нечетной перестановки» доступен на сервере Дистанционного образования СибГУ им. М.Ф. Решетнева

Таблица 3.1

Функция сортировки	Поток	Время	$S_p(n)$	$E_p(n)$	Время	$S_p(n)$	$E_p(n)$		
	НД1 20 0	000		НД					
Классический алгоритм пуз									
Чет-нечетной перестановки									
Чет-нечет перестановки	2								
(парал.)	3								
	4								
Шелла (посл.)									
Шелла (парал.)	2								
	3								
	4								
Быстрой сортировки (посл.)									
Быстрой сортировки	2								
(парал.)	3								
	4								
	Тип Double	НД1 20 000		НД					
Классический алгоритм пузырька									
Чет-нечетной перестановки (посл.)									
Чет-нечет перестановки	2								
(парал.)	3								
	4								
Другие алгоритмы и варианты реализации аналогично типу данных int									

Задание 3.2. Разработайте консольное приложение, реализующее выполнение медианной фильтрации изображения. В приложение должен загружаться набор из четырех файлов input_X.bmp (где X – номер файла) и формироваться выходные файлы output_X_alg.bmp, где alg означает имя используемого алгоритма обработки (или его номер). При реализации алгоритмов медианной фильтрации необходимо использовать не менее двух алгоритмов сортировки (на выбор студента взять из задания 3.1) и не менее двух вариантов распараллеливания (например, на основе распараллеливания циклов или создания параллельных секций).

При помощи разработанного приложения проведите экспериментальные исследования по обработке данных с разными реализациями (не менее **20 запусков** для каждой реализации). При применении каждого алгоритма получить показатели для разных размеров окрестности $\mathbf{K}_{\text{size}} \times \mathbf{K}_{\text{size}}$, для четырех изображений с разрешением от 1280×720 до 3840×2160^3 . В рамках лабораторной работы $\mathbf{K}_{\text{size}} = (\text{RH} \times 2 + 1) = (\text{RW} \times 2 + 1)$. Результаты экспериментального исследования оформить в виде табл. 3.2.

³ В зависимости от оборудования (на котором будут выполняться эксперименты) и согласованию с преподавателем возможно изменения наборов данных в сторону уменьшения.

Таблица 3.2

Функция	Поток	K _{size}	НД 1		НД 2		НД 3		НД 4	
(реализация)			Время	$S_p(n)$	Время	$S_p(n)$	Время	$S_p(n)$	Время	$S_p(n)$
Вариант реализации 1		7								
(посл.)		11								
		15								
Вариант	2	7								
реализации 1		11								
(парал.)		15								
	3	7								
		11								
		15								
	4									
Вариант реализации 2		7								
(посл.)		11								
		15								
Вариант реализации 2 (парал.)	2	7								
		11								
		15								
	3									
	4									
Иные варианты										

Отчет

Отчет сдается преподавателю в электронном виде и должен содержать:

- титульный лист;
- цель работы;
- постановку задачи;
- исходный код программы задания 3.1;
- конфигурация компьютера и параметры операционной системы, на которой производится выполнение задания 3.1;
- результаты экспериментального исследования программы задания 3.1 в табличной форме;
 - выводы по результатам экспериментального исследования;
 - текст программы задания 3.2, с комментариями;
- конфигурация компьютера и параметры операционной системы, на которой производится выполнение задания 3.2;
 - примеры исходных и обработанных данных (картинки);
- результаты выполнения задания 3.2 (экспериментального исследования) в табличной форме;
 - выводы по результатам экспериментального исследования;
 - выводы по лабораторной работе в целом.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Охарактеризуйте алгоритм сортировки «Пузырьком».
- 2. Приведите алгоритм сортировки «Чет-нечетной перестановки».
- 3. Раскройте сущность сортировки алгоритмом «Шелла».
- 4. Охарактеризуйте сортировку алгоритмом qsort.
- 5. Перечислите виды параллелизма для алгоритмов сортировки.
- 6. Поясните известные вам способы распараллеливания сортировки «Чет-нечетной перестановки».
 - 7. Приведите параллельные алгоритмы сортировки «Шелла».
 - 8. Приведите параллельные алгоритмы быстрой сортировки.
 - 9. Опишите подходы к параллельной обработки изображений.
 - 10. Раскройте суть медианной фильтрации изображения.
- 11. Опишите известные вам алгоритмы медианной фильтрации изображения.
- 12. Расскажите о методах распараллеливания алгоритмов медианной фильтрации.
- 13. Назовите известные вам возможные проблемы при реализации параллельной обработки изображений.
- 14. Охарактеризуйте подходы к обработке изображений на основе параллельных секций.
- 15. Охарактеризуйте способы представления данных изображения для повышения быстродействия алгоритмов обработки.

Информация по медианному фильтру

Медианный фильтр представляет собой скользящую по полю изображения нечетную апертуру фильтра (окно по окрестности анализируемого пиксела). В выходное изображение записывается медиана всех элементов (пикселей) изображения, попавших в апертуру фильтра на оригинальном изображении.

Медианой дискретной последовательности $X = \{x_1, x_2, ..., x_L\}$ для нечетного L называют такой ее элемент, для которого существуют (L-1)/2 элементов, меньших или равных ему по величине, и (L-1)/2 элементов, больших или равных ему по величине. Другими словами, медианой является средний по порядку член ряда, получающегося при упорядочении исходной последовательности. Например, med(21, 2, 10, 7, 7) = 7.

Суть медианной фильтрации изображения заключается в следующем: в одномерный массив заносятся значения пикселей из окрестности, после этого выполняется сортировка и в качестве результирующего значения заносится значение, содержащееся в центральном элементе массива.

Существует также быстрый алгоритм медианной фильтрации, о котором можно почитать в статье: Бардин Б. В. Быстрый алгоритм медиан-

ной фильтрации / Научное приборостроение, 2011, том 21, No 3, с. 135–139 доступной по адресу: http://iairas.ru/mag/2011/full3/Art16.pdf .

Пример возможной реализации классического медианного фильтра для обработки одного канала показан с использованием псевдокода.

Используемые обозначения:

```
IMAGE[][]
                - массив элементов входного
                  изображения в формате адресации [Y][X]
IMAGE2[][]
                - массив элементов выходного
                  изображения в формате адресации [Y][X]
Height, Width
                - размеры изображения по высоте и ширине
RH, RW
                - размеры рангов скользящего окна
size
                - площадь окна фильтрации
                  size=M\times N=(RH\times 2+1)\times (RW\times 2+1)
MEDMAS[size]
                - массив элементов медианы
                  с размером size
Masind
                - переменная для индексации элементов
```

массива MEDMAS при заполнении

Медианный Фильтр

Начало

Цикл 1 по Y изображению (Y **от** 0 **до** Height) **Цикл 2** по X изображению (X **от** 0 **до** Width)

Начало 2

Заполнение массива MEDMAS элементами изображения IMAGE(X,Y,RH,RW)

Сортировка массива любым алгоритмом Запись в выходное изображение IMAGE2[Y][X] значения центрального элемента массива **MEDMAS**[size/2])

Конец 2

Конец

Заполнение массива MEDMAS элементами изображения IMAGE(X,Y,RH,RW)

Начало

Masind=0;

Цикл A1 (DY от -RH до RH включительно)

Начало А1

KY = Y + DY

Если KY < 0 то KY=0

Если KY > Height - 1 **то** KY = Height - 1

Цикл A2 (DX от -RW до RW включительно)

Начало А2

```
KX = X + DX
ECJU KX <0 TO KX=0
ECJU KX > Width - 1 TO KX= Width-1
MEDMAS[Masind] = IMAGE[KY][KX]
Masind = Masind+1;
Koheц A2
Koheц A1
```

Конец

При программной реализации заполнения массива MEDMAS элементами изображения можно не выделять в отдельную функцию.

В случае использования трех цветовых каналов (для цветного RGB изображения) потребуется заполнять и сортировать три массива: MEDMAS_R, MEDMAS_G и MEDMAS_B.