Algorithmische Mathematik II

Dozent Professor Dr. Patrik Ferrari

Mitschrift Maximilian Kessler

Version 10. Mai 2021 10:54

Zusammenfassung

Bei folgenden Vorlesungsnotizen handelt es sich um (inoffizielle) Mitschriften zur Vorlesung 'Algorithmische Mathematik II', die im Sommersemester 2021 an der Universität Bonn gehalten wird. Ich garantiere weder für Korrektheit noch Vollständigkeit dieser Notizen, und bin dankbar für jegliche Art von Korrektur, sowohl inhaltlich, als auch Tippfehler.

Bemerkungen, die nicht zum eigentlichen Vorlesungsinhalte gehören, wurden mit einem * gekennzeichnet. Sie werden nach eigenem Ermessen hinzugefügt, um weitere Details oder evtl. mündliche Anmerkungen beizufügen.

Manche Umgebungen sind mit einem [†] versehen. Das ist dann der Fall, wenn ihr Inhalt so, oder zumindest in sehr ähnlicher Form, in der Vorlesung vorkam (unter Umständen auch mündlich), ich aber die Umgebung der Aussage geändert habe. Das ist z.B. dann der Fall, wenn ich aus Aussagen, die einfach erwähnt werden, ein **Lemma**[†] mache, um sie hervorzuheben.

Weitere Informationen finden sich bei GitHub oder auf der Vorlesungshomepage

Inhaltsverzeichnis

Übersi	cht der	3	
0.1	Mehrstufige Modelle		4
	0.1.1	Produktmodelle	5
	0.1.2	Markovketten (MK)	7
Stichw	ortverz	zeichnis	10

Übersicht der Vorlesungen

Vorlesung 1 (Mi 05 Mai 2021 10:11)	4
Mehrstufie Modelle. Produktmodelle.	
Vorlesung 2 (Mo 10 Mai 2021 10:15)	7

Vorlesung 1 Mi 05 Mai 2021 10:11

0.1 Mehrstufige Modelle

Sei eine Folge von n Zufallsexperimenten in den Wahrscheinlichkeitsräumen $\Omega_1, \Omega_2, \dots, \Omega_n$ gegeben. Wir definieren ein n-stufiges Zufallsexperiment durch

- $\Omega = \Omega_1 \times \Omega_2 \times \ldots \times \Omega_n = \{\omega = (\omega_1, \ldots, \omega_n) \mid \omega_k \in \Omega_k, 1 \leq k \leq n\}$
- $\mathcal{F} = \mathcal{P}(\Omega)$.

i

• Definiere die Zufallsvariablen

$$X_k(\omega) = \omega_k \qquad 1 \leqslant k \leqslant n.$$

Den Index k interpretieren wir hierbei als Zeit. $k\mapsto X_k$ ist eine Trajektion von $X=(X_1,\ldots,X_n)$?

- $\mathbb{P} = ?$. Wir konstruieren \mathbb{P} auf (Ω, \mathcal{F}) mit
 - (a) Der Anfangsverteilung $\mathbb{P}(X_1 = x_1) := p_1(x_1)$ für alle $x_1 \in \Omega_1$.
 - (b) Den bedingten Verteilungen

$$\mathbb{P}(X_k = x_k \mid X_1 = x_1, X_2 = x_2, \dots, X_{k-1} = x_{k-1}) =: p_k(x_k \mid x_1, \dots, x_{k-1}).$$

für alle $x_l \in \Omega_l$, $1 \le l \le k-1$, sodass $\mathbb{P}(X_1 = x_1, \dots, X_{k-1} = x_{k-1}) \ne 0$.

Bemerkung*. Man kann das Allgemeiner machen, indem wir \mathcal{F} als die Produktsigmalalgebra der \mathcal{F}_i wählen.

Satz 0.1. Sei $p_i(\cdot)$ die Massenfunktion einer Wahrscheinlichkeitsverteilung auf Ω_i und $p_k(\cdot \mid x_1, \ldots, x_{k-1})$ für alle $1 \leq k \leq n$ mit $x_1 \in \Omega_1, \ldots, x_{k-1} \in \Omega_{k-1}$ eine Massenfunktion auf Ω_k .

Dann existiert eine eindeutige Wahrscheinlichkeitsverteilung \mathbb{P} auf (Ω, \mathcal{F}) , sodass

- $(a) \mathbb{P}(X_1 = x_1) = p_1(x_1) \quad \forall x_1 \in \Omega_1$
- \bigcirc b $\mathbb{P}(X_k = x_k) \mid X_1 = x_1, \dots, X_{k-1} = x_{k-1}) = p_k(x_k \mid x_1, \dots, x_{k-1})$ Die Wahrscheinlichkeitsverteilung \mathbb{P} hat die Massenfunktion

$$p(x_1,\ldots,x_n)=p_1(x_1)p_2(x_2\mid x_1)\cdot\ldots\cdot p_n(x_n\mid x_1,\ldots,x_{n-1}).$$

Beweis. 1) Nimm zunächst an, dass solch ein Maß existiert, wir zeigen die letzte Aussage. Sei \mathbb{P} sodass (a) und (b) erfüllt sind. Dann ist

$$\forall 1 \leqslant k \leqslant n \colon \mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = p(x_1, \dots, x_k).$$

- Für k = 1 gilt das (aus (a)).
- Falls es für k-1 gilt, so haben wir die Fälle
- $p(x_1, \ldots, x_{k-1}) = 0$, dann ist 0 = 0 wahr.
- Falls $p(x_1, \ldots, x_{k-1}) \neq 0$, so ist

$$\mathbb{P}(X_1 = x_1, \dots, X_k = x_k)
= \mathbb{P}(X_k = x_k \mid X_1 = x_1, \dots, X_{k-1} = x_{k-1}) \cdot \mathbb{P}(X_1 = x_1, \dots, X_{k-1} = x_{k-1})
= p_1(x_1) \cdot \dots \cdot p_{k-1}(x_{k-1} \mid x_1, \dots, x_{k-2}r \cdot p_k(x_k \mid x_1, \dots, x_{k-1}) = p(x_1, \dots, x_k)$$

Normierung: $\forall x \in \Omega, x = (x_1, \dots, x_n) \text{ mit } x_k \in \Omega_k \text{ ist}$

$$\sum_{x \in \Omega} p(x) = \sum_{x_1 \in \Omega_1} \dots \sum_{x_n \in \Omega_n} p(x_1, \dots, x_n)$$

$$= \sum_{x_1 \in \Omega_1} p(x_1) \sum_{x_2 \in \Omega_2} p(x_2 \mid x_1) \dots \sum_{x_n \in \Omega_n} p(x_n \mid x_1, \dots, x_{n-1}) = 1$$

Für Eigenschaft (b) ist

$$\mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = \sum_{x_{k+1} \in \Omega_{k+1}} \dots \sum_{x_n \in \Omega_n} p(x_1, \dots, x_n)$$

$$= p_1(x_1) \dots p_{k-1}(x_{k-1} \mid x_1, \dots, x_{k-2}) p_k(x_k \mid x_1, \dots, x_{k-1})$$

$$= \mathbb{P}(X_1 = x_1, \dots, X_{k-1} = x_{k-1}) p_k(x_k \mid x_1, \dots, x_{k-1})$$

Also erhalten wir

$$\mathbb{P}(X_k = x_k \mid X_1 = x_1, \dots, X_{k-1} = x_{k-1}) = p_k(x_k \mid x_1, \dots, x_{k-1}).$$

Anmerkung. Mir ist noch nicht klar, wo wir im Beweis des Satzes jetzt gezeigt haben wollen, dass solch ein Wahrscheinlichkeitsmaß existiert, das muss ich noch ausarbeiten.

Beweis nochmal $\operatorname{sortieren}$

Bemerkung. Falls $p_k(x_k \mid x_1, \dots, x_{k-1})$ nur eine Funktion von $x_{k-1}, \ldots, x_{k-m-1}$, dann sagen wir, dass unser Modell ein Gedächtnis von m Schritten hat.

0.1.1 Produktmodelle

Falls $p_k(x_k \mid x_1 = \ldots = x_{k-1}) = p_k(x_k)$, d.h. x_k hängt nicht von den Werten x_1, \ldots, x_{k-1} ab. Dann erhalten wir aus Satz 0.1, dass

$$p(x_1,\ldots,x_n)=\prod_{k=1}^n p_k(x_k).$$

Definition 0.2 (Produktmodell). Die Wahrscheinlichkeitsverteilung \mathbb{P} auf $\Omega = \Omega_1 \times \ldots \times \Omega_n$ mit Massenfunktion

$$p(x_1,\ldots,x_n)=\prod_{k=1}^n p_k(x_k).$$

heißt **Produkt von** $\mathbb{P}_1, \ldots, \mathbb{P}_n$. (\mathbb{P}_k hat Massenfunktion p_k).

Notation. Wir schreiben $\mathbb{P} = \mathbb{P} \otimes \mathbb{P}_2 \otimes \ldots \otimes \mathbb{P}_n$, wenn \mathbb{P} das Produkt von $\mathbb{P}_1, \ldots, \mathbb{P}_n$ ist.

Beispiel. Seien n unabhängige 0-1-Experimente mit Erfolgswahrscheinlichkeit p gegeben. Also

$$\Omega_1 = \ldots = \Omega_n = \{0,1\}.$$

 $\Omega_1=\ldots=\Omega_n=\left\{0,1\right\}.$ und $p_k(1)=p=1-p_k(0)$ für $k=1,\ldots,n.$ dann ist $p_k(x)=1$

 $(1-p)\left(\frac{p}{1-p}\right)^x$ für $x \in \{0,1\}$. Die entstehende Verteilung $p(x_1,\dots,x_n) = (1-p)^n \prod_{k=1}^n \left(\frac{p}{1-p}\right)^{x_k}.$

$$p(x_1,...,x_n) = (1-p)^n \prod_{k=1}^n \left(\frac{p}{1-p}\right)^{x_k}$$

ist die $n\text{-}\mathbf{dimensionale}$ Bernoulli-Verteilung mit Parameter p

Satz 0.3. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Produktmodell. Dann ist für beliebige Ereignisse $A_k \subseteq \Omega_k$, k = 1, ..., n:

$$\mathbb{P}(A_1 \times \ldots \times A_n) = \prod_{k=1}^n \mathbb{P}_k(A_k).$$

und
$$\mathbb{P}(\tilde{A}_k) = \mathbb{P}_k(A_k)$$
, wobei
$$\tilde{A}_k := \Omega_1 \times \ldots \times \Omega_{k-1} \times A_k \times \Omega_{k+1} \times \ldots \times \Omega_n.$$

Deswegen sind $\tilde{A}_1, \ldots, \tilde{A}_n$ unabhängige Ereignisse.

Beweis. Es ist

$$\mathbb{P}(A_1 \times \ldots \times A_n) = \mathbb{P}((X_1, \ldots, X_n) \in A_1 \times \ldots \times A_n))$$

$$= \sum_{(x_1, \ldots, x_n) \in A_1 \times \ldots \times A_n} p(x_1, \ldots, x_n)$$

$$= \sum_{x_1 \in A_1} \ldots \sum_{x_n \in A_n} p_1(x_1) \cdot \ldots p_n(x_n)$$

$$= \prod_{k=1}^n \sum_{x_k \in A_k} p_k(a_k)$$

$$= \prod_{k=1}^n \mathbb{P}(A_k)$$

Es ergibt sich leicht

$$\mathbb{P}(\tilde{A}_k) = \mathbb{P}(X_k \in A_k, X_l \in \Omega_l \ \forall l \neq k)$$

$$= \left(\prod_{l \neq k} \underbrace{\mathbb{P}_l(X_l \in \Omega_l)}_{=1}\right) \cdot \mathbb{P}_k(X_k \in A_k)$$

$$= \mathbb{P}k(A_k)$$

Damit ergibt sich schlussendlich für beliebiges $I = \{i_1, \dots, i_l\}$:

$$\mathbb{P}(\tilde{A}_{i_1} \cap \ldots \cap \tilde{A}_{i_l}) = \mathbb{P}\left(\bigcap_{i \in I} \{X_i \in A_i\} \cap \bigcap_{j \neq I} \{x_j \in \Omega_j\}\right)$$

$$= \prod_{i \in I} \mathbb{P}_i(A_i) \cdot \prod_{j \neq I} \underbrace{\mathbb{P}_j(\Omega_j)}_{=1}$$

$$= \prod_{i \in I} \mathbb{P}_i(A_i)$$

$$\mathbb{P}(A_i) = \mathbb{P}(\tilde{A}_i)$$

$$\prod_{k=1}^{l} \mathbb{P}(\tilde{A}_{i_k})$$

Bemerkung. • Es ist $\Omega = \Omega_1 \times \ldots \times \Omega_n$

• Eigentlich müssen wir $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)$ als entsprechende Wahrscheinlichkeitsräume betrachten, wir unterdrücken aber oft die Notation $\mathcal{F}_i, \mathbb{P}_i$

Im Allgemeinen setzen wir

$$\mathcal{F} = \mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$$
.

wobei \mathcal{F} dann die σ -Algebra ist, die von $A_1 \times \ldots \times A_n$ mit $A_i \in \mathcal{F}_i$ erzeugt ist. Im Spezialfall $F_i = \mathcal{P}(\Omega_i)$ ergibt sich insbesondere wieder der uns bekannte Fall $\mathcal{F} = \mathcal{P}(\Omega)$.

Für Produktmodelle erhalten wir also $\Omega = \Omega_1 \times \ldots \times \Omega_n$, $\mathcal{F} = \mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$ sowie $\mathbb{P} = \mathbb{P}_1 \otimes \ldots \otimes \mathbb{P}_n$.

Beachte, dass $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n \neq \mathcal{F}_1 \times \ldots \times \mathcal{F}_n$ im Allgemeinen, wie das folgende Beispiel zeigt.

Beispiel. Im Fall n=2 ergibt sich Beispielsweise folgende Situation:

Vorlesung 2 Mo 10 Mai 2021 10:15

0.1.2 Markovketten (MK)

- Setze $X = (X_0, X_1, X_2, \dots, X_n)$. Die Zeit beginnt hier bei k = 0.
- Betrachte $\Omega_k = \mathcal{S}$ für festes \mathcal{S} , also

$$\Omega = \mathcal{S}^{n+1} = \{(x_0, \dots, x_n) \mid x_i \in \mathcal{S}, 0 \leqslant i \leqslant n\}.$$

 $\begin{tabular}{ll} \textbf{Definition 0.4} & (Markovkette). Eine $\frac{\textbf{Markovkette}}{\textbf{Markovkette}}$ (abgekürzt: MK) ist ein mehrstufiges Modell mit der Eigenschaft \\ \end{tabular}$

$$p_k(x_k \mid x_0, \dots, x_{k-1}) = p_k(x_k \mid x_{k-1}).$$

Diese Eigenschaft heißt auch Markov-Eigenschaft.

Frage. Sei $\mathcal S$ abzählbar. Wie beschreibt man die Übergänge von X_k nach X_{k+1} ?

Definition 0.5 (Sotchastische Matrix). Eine Matrix $P = [\mathbb{P}(x,y)]_{x,y\in\mathcal{S}}$

mit den Eigenschaften

(a) $\forall x \, \forall y \colon \mathbb{P}(x,y) \geqslant 0$ (b) $\forall x \in \mathcal{S} \colon \sum_{y \in \mathcal{S}} \mathbb{P}(x,y) = 1$ heißt stochastische Matrix.

Bemerkung*. Beachte, dass die Matrix in obiger Definition nicht zwingend endlich sein muss, Definitionen verallgemeinern sich kanonisch. Wir fordern aber, dass S abzählbar ist.

Lemma 0.6. Die Matrix P_k mit den Einträgen

$$P_k(x, y) = p_k(Y \mid X) \quad \forall x, y, \in \mathcal{S}.$$

ist eine stochastische Matrix.

Beweis. Offenbar ist $p_k(Y \mid X) \ge 0$. Zudem

$$\sum_{y \in \mathcal{S}} P_k(x, y) = \sum_{y \in \mathcal{S}} \mathbb{P}(X_k = Y \mid X_{k-1} = x)$$

$$= \mathbb{P}\left(\bigcup_{y \in \mathcal{S}} \{X_k = y\} \mid X_{k-1} = x\right)$$

$$= \mathbb{P}(\Omega_k \mid X_{k-1} = x)$$

$$= 1$$

weil es sich bei $\mathbb{P}(\cdot \mid X_{k-1} = x)$ um eine Wahrscheinlichkeitsverteilung handelt, und $\mathcal{S}=\bigsqcup_{y\in\mathcal{S}}\left\{ y\right\}$ eine disjunkte Vereinigung ist.

Bemerkung. P_k ist eine sogenannte Übergangsmatrix. Sie beschreibt den Übergang der Markovkette von Ω_k nach Ω_{k+1}

Die Massenfunktion einer Markovkette ist

$$p(x_0, x_1, \dots, x_n) = p_0(x_0) \cdot P_1(x_0, x_1) \cdot \dots \cdot P_n(x_{n-1}, x_n).$$

wobei p_0 die sogenannte **Anfangsverteilung** ist.

Bemerkung. Falls $P_k = \mathbb{P}$, d.h. die Übergangsmatrixk hängt nicht von k ab, dann heißt die Markovkette (zeitlich) homogen.

 ${\bf Bemerkung.}$ Seien P,Qzwei stochastische Matrizen. Dann ist auch $P\cdot Q$ eine stochastische Matrix, wobei

$$(P \cdot Q)(x,y) = \sum_{z \in \mathcal{S}} P(x,z) \cdot Q(z,y).$$

Frage. Was ist

- 1) $\mathbb{P}(X_n = x)$
- 2) $\lim_{n \to \infty} \mathbb{P}(X_n = x)$ (Existiert dieser überhaupt?)
- 3) Ist $\lim_{n\to\infty} \mathbb{P}(X_n = x)$ von x_0 abhängig?

Satz 0.7 (Massenfunktion in Markovketten). Sei μ_0 der Zeilenvektor mit Elementen $p_0(x), x \in \mathcal{S}$. Seien dazu P_1, P_2, \ldots, P_n die Übergangsmatrizen einer Markovkette $X = (X_0, X_1, \ldots, X_n)$ auf \mathcal{S} . Dann hat die Wahrscheinlichkeit von X_n die Massenfunktion

$$\mu_n(x) := \mathbb{P}(X_n = x) = (\mu_0 \cdot P_1 \cdot \dots \cdot P_n)(x) \quad \forall x \in \mathcal{S}.$$

Beweis.

$$\mathbb{P}(X_n = x) = \sum_{\substack{x_0, \dots, x_{n-1} \in \mathcal{S} \\ = \mu_0(x_0) P_1(x_0, x_1) \dots P_n(x_{n-1}, x)}} \mathbb{P}(X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = x)$$

Stichwortverzeichnis

n-dimensionale	Markov-Eigenschaft, 7	
Bernoulli-Verteilung	Markovkette, 7	
$\begin{array}{c} \text{mit Parameter } p \;, 6 \\ n\text{-stufiges Zufallsexperiment, } 4 \end{array}$	Produkt von $\mathbb{P}_1, \dots, \mathbb{P}_n, \frac{5}{5}$	
Anfangsverteilung, 8	stochastische Matrix, 8	
homogen, 8	Übergangsmatrix, 8	