is a unique affine map  $f: E \to F$  such that  $f(a_i) = b_i$ , for  $0 \le i \le m$ . Indeed, f must be such that

$$f(\lambda_0 a_0 + \dots + \lambda_m a_m) = \lambda_0 b_0 + \dots + \lambda_m b_m,$$

where  $\lambda_0 + \cdots + \lambda_m = 1$ , and this defines a unique affine map on all of E, since  $(a_0, a_1, \dots, a_m)$  is an affine frame for E.

Using affine frames, affine maps can be represented in terms of matrices. We explain how an affine map  $f: E \to E$  is represented with respect to a frame  $(a_0, \ldots, a_n)$  in E, the more general case where an affine map  $f: E \to F$  is represented with respect to two affine frames  $(a_0, \ldots, a_n)$  in E and  $(b_0, \ldots, b_m)$  in E being analogous. Since

$$f(a_0 + x) = f(a_0) + \overrightarrow{f}(x)$$

for all  $x \in \overrightarrow{E}$ , we have

$$\overrightarrow{a_0 f(a_0 + x)} = \overrightarrow{a_0 f(a_0)} + \overrightarrow{f}(x).$$

Since x,  $\overrightarrow{a_0 f(a_0)}$ , and  $\overrightarrow{a_0 f(a_0 + x)}$ , can be expressed as

$$\begin{array}{rcl}
x & = & x_1 \overline{a_0 a_1} + \dots + x_n \overline{a_0 a_n}, \\
\overrightarrow{a_0 f(a_0)} & = & b_1 \overline{a_0 a_1} + \dots + b_n \overline{a_0 a_n}, \\
\overrightarrow{a_0 f(a_0 + x)} & = & y_1 \overline{a_0 a_1} + \dots + y_n \overline{a_0 a_n},
\end{array}$$

if  $A = (a_{ij})$  is the  $n \times n$  matrix of the linear map  $\overrightarrow{f}$  over the basis  $(\overrightarrow{a_0a_1}, \dots, \overrightarrow{a_0a_n})$ , letting x, y, and b denote the column vectors of components  $(x_1, \dots, x_n), (y_1, \dots, y_n)$ , and  $(b_1, \dots, b_n)$ ,

$$\overrightarrow{a_0 f(a_0 + x)} = \overrightarrow{a_0 f(a_0)} + \overrightarrow{f}(x)$$

is equivalent to

$$y = Ax + b$$
.

Note that  $b \neq 0$  unless  $f(a_0) = a_0$ . Thus, f is generally not a linear transformation, unless it has a *fixed point*, i.e., there is a point  $a_0$  such that  $f(a_0) = a_0$ . The vector b is the "translation part" of the affine map. Affine maps do not always have a fixed point. Obviously, nonnull translations have no fixed point. A less trivial example is given by the affine map

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

This map is a reflection about the x-axis followed by a translation along the x-axis. The affine map

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3}/4 & 1/4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$