

Funkcje rzeczywiste Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów matematyka komputerowa		Cykl kształcenia 2021/22
Ścieżka -		Kod przedmiotu UJ.WMIMKOS.250.5cb87abc1b516.21
Jednostka organizacyjna Wydział Matematyki i Informatyki		Języki wykładowe Polski
Poziom kształcenia drugiego stopnia		Przedmiot powiązany z badaniami naukowymi Tak
Forma studiów studia stacjonarne		Dyscypliny Matematyka
Profil studiów ogólnoakademicki		Klasyfikacja ISCED 0541 Matematyka
Obligatoryjność fakultatywny		Kod USOS
Koordynator przedmiotu	Wiesław Pawłucki	
Prowadzący zajęcia Wiesław Pawłucki		

Okresy Semestr 1, Semestr 3	Forma weryfikacji uzyskanych efektów uczenia się egzamin	Liczba punktów ECTS 6.0	
	Sposób realizacji i godziny zajęć wykład: 30, ćwiczenia: 30		

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy - Student zna i rozumie:			

W1	definicję pochodnej miary borelowskiej względem miary Lebesgue'a	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W2	definicję i podstawowe własności funkcji o wahaniu skończonym	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W3	konstrukcję się funkcji ciągłej bez pochodnej	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W4	twierdzenie Rademachera	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W5	twierdzenie o zmianie zmiennej w całce Lebesgue'a	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W6	definicję splotu funkcji	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W7	formułę na przedłużenie funkcji ciągłej z zachowaniem modułu ciągłości	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W8	twierdzenie Kirszbrauna	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04, MKO_K2_W05, MKO_K2_W06, MKO_K2_W07	egzamin ustny, zaliczenie na ocenę
W9	twierdzenie Whitney'a o przedłużaniu	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04	egzamin ustny, zaliczenie na ocenę
W10	pojęcie ciała Hardy'ego	MKO_K2_W01, MKO_K2_W02, MKO_K2_W03, MKO_K2_W04, MKO_K2_W05, MKO_K2_W06, MKO_K2_W07	egzamin ustny, zaliczenie na ocenę
Umiejętno	ości - Student potrafi:		
U1	sprawdzić czy dana funkcja rzeczywista jest o wahaniu skończonym; czy jest absolutnie ciągła	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05	egzamin ustny, zaliczenie na ocenę

U2	zdefiniować funkcję ciągłą na przedziale, silnie rosnącą, której pochodna zeruje się prawie wszędzie	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05	egzamin ustny, zaliczenie na ocenę
U3	sprawdzić czy dana funkcja spełnia warunek Lipschitza	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05	egzamin ustny, zaliczenie na ocenę
U4	zastosować twierdzenie o zmianie zmiennej w całce Lebesgue'a	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05	egzamin ustny, zaliczenie na ocenę
U5	zastosować współrzędne biegunowe w przestrzeni euklidesowej n-wymiarowej	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05	egzamin ustny, zaliczenie na ocenę
U6	zastosować pojęcie splotu funkcji	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05, MKO_K2_U06, MKO_K2_U07	egzamin ustny, zaliczenie na ocenę
U7	sprawdzić czy dana funkcja różniczkowalna przedłuża się na całą przestrzeń z zachowaniem klasy różniczkowalności	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05, MKO_K2_U06, MKO_K2_U07	egzamin ustny, zaliczenie na ocenę
U8	sprawdzić czy zadana klasa funkcji generuje ciało Hardy'ego	MKO_K2_U01, MKO_K2_U02, MKO_K2_U03, MKO_K2_U04, MKO_K2_U05, MKO_K2_U06, MKO_K2_U07	egzamin ustny, zaliczenie na ocenę
Kompet	encji społecznych - Student jest gotów do:		
K1	zastosowania teorii funkcji rzeczywistych w matematyce i jej zastosowaniach	MKO_K2_K01, MKO_K2_K02, MKO_K2_K03, MKO_K2_K04	egzamin ustny, zaliczenie na ocenę

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć
wykład	30
ćwiczenia	30

przygotowanie do ćwiczeń 60		
przygotowanie do egzaminu	60	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0
Liczba godzin kontaktowych	Liczba godzin 60	ECTS 2.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	Różniczkowanie miar zespolonych.	W1, U1, K1
2.	Funkcje o wahaniu skończonym.	W2, U1, K1
3.	Funkcje absolutnie ciągłe.	W2, U1, K1
4.	Funkcje ciągłe bez pochodnej.	W3, U2, K1
5.	Funkcje Lipschitza.	W7, U3, U5, K1
6.	Twierdzenie Rademachera.	W4, U3, K1
7.	Twierdzenie o zmianie zmiennej w całce Lebesgue'a.	W5, U3, U4, K1
8.	Sploty funkcji i ich zastosowania.	W6, U6, K1
9.	Przedłużanie funkcji.	W7, U3, U7, K1
10.	Twierdzenie Kirszbrauna.	W8, U3, K1
11.	Twierdzenie Whitney'a o przedłużaniu.	W9, U7, K1
12.	Twierdzenie Whitney'a o aproksymacji.	W2, U6, K1
13.	Ciała Hardy'ego.	W10, U8, K1

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, dyskusja, rozwiązywanie zadań, ćwiczenia przedmiotowe, konsultacje

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu	
wykład	egzamin ustny	pozytywnie zdany egzamin	
ćwiczenia	zaliczenie na ocenę	obecność i aktywność na ćwiczeniach (dopuszczalna nieobecność na co najwyżej dwóch ćwiczeniach), zaliczenie trzech sprawdzianów	

Wymagania wstępne i dodatkowe

wstęp do teorii miary i całki

Literatura

Obowiązkowa

1. St. Łojasiewicz; Wstęp do teorii funkcji rzeczywistych; PWN 1973

Dodatkowa

- 1. W. Rudin; Analiza rzeczywista i zespolona; PWN 1986
- 2. E.M. Stein; Singular Integrals and Differentiability Properties of Functions; Princeton Univ. Press; 1970
- 3. H. Federer; Geometric Measure Theory; Springer Verlag, 1969
- 4. B. Malgrange; Ideals of Differentiable Functions; Oxford Univ. Press, 1966
- 5. N. Bourbaki; Functions of a Real Variable: Elementary Theory; Springer Verlag, 2004

Kierunkowe efekty uczenia się

Kod	Treść
MKO_K2_W01	Absolwent zna i rozumie /posiada ugruntowaną wiedzę z informatyki w zakresie umożliwiającym zajmowanie się zagadnieniami matematyki komputerowej
MKO_K2_W02	Absolwent zna i rozumie /posiada pogłębioną wiedzę z wybranych działów matematyki
MKO_K2_W03	Absolwent zna i rozumie /posiada pogłębioną wiedzę z wybranych działów matematyki w stopniu niezbędnym do pracy z algorytmami matematyki dyskretnej i ciągłej oraz wie, jak się ją wykorzystuje do analizy i modelowania problemów w wybranym dziale matematyki komputerowej
MKO_K2_W04	Absolwent zna i rozumie współczesne kierunki rozwoju i osiągnięcia nauki w dziedzinie matematyki i/lub informatyki
MKO_K2_W05	Absolwent zna i rozumie /posiada pogłębioną wiedzę z zakresu teoretycznych podstaw informatyki
MKO_K2_W06	Absolwent zna i rozumie narzędzia informatyczne wspomagające pracę matematyka komputerowego
MKO_K2_W07	Absolwent zna i rozumie /ma pogłębioną wiedzę z zakresu ochrony własności intelektualnej i odpowiedzialności za swoje działania
MKO_K2_U01	Absolwent potrafi /umie samodzielnie rozwiązywać złożone problemy matematyczne tak metodami klasycznymi, jak i komputerowo wspieranymi
MKO_K2_U02	Absolwent potrafi analizować i rozwiązywać złożone problemy informatyczne
MKO_K2_U03	Absolwent potrafi pozyskiwać, integrować i interpretować informacje z wiarygodnych źródeł (w języku polskim i angielskim)
MKO_K2_U04	Absolwent potrafi w zrozumiały sposób przedstawiać nowe wyniki (w mowie i piśmie) i prowadzić dyskusje z zakresu matematyki i/lub informatyki
MKO_K2_U05	Absolwent potrafi pracować zespołowo
MKO_K2_U06	Absolwent potrafi /umie zdefiniować kierunek dalszego pogłębiania wiedzy i określić sposób realizacji tego procesu
MKO_K2_U07	Absolwent potrafi/ posługuje się językiem angielskim na poziomie średnio zaawansowanym (B2+); potrafi ze zrozumieniem czytać w tym języku dokumentację oprogramowania, podręczniki i artykuły z dziedziny nauk ścisłych
MKO_K2_K01	Absolwent jest gotów do /zdaje sobie sprawę z konieczności uczenia się przez całe życie i adaptowania swojej wiedzy do zachodzących zmian
MKO_K2_K02	Absolwent jest gotów do /potrafi definiować priorytety służące realizacji zadania; podchodzi ze stosowną rezerwą do opinii i stwierdzeń, które nie zostały w sposób wystarczający i poprawny uzasadnione
MKO_K2_K03	Absolwent jest gotów do /rozumie i docenia znaczenie uczciwości intelektualnej w działaniach własnych i innych osób; postępuje etycznie
MKO_K2_K04	Absolwent jest gotów do /jest świadom swojej roli w społeczeństwie i odpowiedzialności za dobro wspólne