Algorithm Design and Implementation

Principle of Algorithms XI

Network Flow II

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Bipartite Matching

Matching

Definition

Given an undirected graph G = (V, E), subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

2

Bipartite matching

Definition

A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max-cardinality matching.

Bipartite matching: max-flow formulation

Formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add unit-capacity edges from s to each node in L.
- Add unit-capacity edges from each node in R to t.

Max-flow formulation: proof of correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. ⇒

- Let *M* be a matching in *G* of cardinality *k*.
- Consider flow f that sends 1 unit on each of the k corresponding paths.
- f is a flow of value k.

Max-flow formulation: proof of correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. \Leftarrow

- Let f be an integral flow in G' of value k.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M.
 - |M| = k: apply flow-value lemma to cut $(L \cup \{s\}, R \cup \{t\})$.

Max-flow formulation: proof of correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

- Integrality theorem \Rightarrow there exists a max flow f^* in G' that is integral.
- 1-1 correspondence $\Rightarrow f^*$ corresponds to max-cardinality matching.

Quiz 1

What is running time of Ford–Fulkerson algorithms to find a max-cardinality matching in a bipartite graph with |L| = |R| = n?

- A. O(m+n)
- B. *O*(*mn*)
- C. $O(mn^2)$
- D. $O(m^2n)$

Perfect matchings in bipartite graphs

Definition

Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly, we must have |L| = |R|.
- Which other conditions are necessary?
- Which other conditions are sufficient?

Perfect matchings in bipartite graphs

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Proof. Each node in S has to be matched to a different node in N(S).

Hall's marriage theorem

Theorem (Frobenius 1917, Hall 1935)

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Proof. =

This was the previous observation.

Hall's marriage theorem

Proof.

Suppose G does not have a perfect matching.

- Formulate as a max-flow problem and let (A, B) be a min cut in G'.
- By max-flow min-cut theorem, cap(A, B) < |L|.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
- $cap(A, B) = |L_B| + |R_A| \Rightarrow |R_A| < |L_A|$
- Min cut can't use ∞ edges $\Rightarrow N(L_A) \subseteq R_A$.
- $|N(L_A)| \le |R_A| < |L_A|$.
- Choose $S = L_A$.

Bipartite matching

Problem. Given a bipartite graph, find a max-cardinality matching.

year	worst case	technique	discovered by
1955	O(mn)	augmenting path	Ford-Fulkerson
1973	$O\left(mn^{1/2}\right)$	blocking flow	Hopcroft–Karp, Karzanov
2004	$O\left(n^{2.378}\right)$	fast matrix multiplication	Mucha–Sankowsi
2013	$\tilde{O}\left(m^{10/7}\right)$	electrical flow	Madry
20xx	???		

running time for finding a max-cardinality matching in a bipartite graph with n nodes and m edges

Quiz 2

Which of the following are properties of the graph G = (V, E)?

- A. G has a perfect matching.
- B. Hall's condition is satisfied: $|N(S)| \ge |S|$ for all subsets $S \subseteq V$.
- C. Both A and B.
- D. Neither A nor B.

Nonbipartite matching

Problem. Given an undirected graph, find a max-cardinality matching.

- Structure of nonbipartite graphs is more complicated.
- But well understood. [Tutte-Berge formula, Edmonds-Gallai]
- Blossom algorithm: $O(n^4)$. [Edmonds 1965]
- Best known: $O(mn^{1/2})$. [Micali-Vazirani 1980, Vazirani 1994]

Hackathon problem

Hackathon problem.

- Hackathon attended by n Harvard students and n Princeton students.
- Each Harvard student is friends with exactly k > 0 Princeton students;
 each Princeton student is friends with exactly k Harvard students.
- Is it possible to arrange the hackathon so that each Princeton student pair programs with a different friend from Harvard?

Mathematical reformulation. Does every k-regular bipartite graph have a perfect matching?

Ex. Boolean hypercube.

Hackathon problem

Theorem

Every k-regular bipartite graph G has a perfect matching.

Proof.

- Size of max matching = value of max flow in G'.
- Consider flow

$$f(u, v) = \begin{cases} 1 & \text{if } u = s \text{ or } v = t \\ 1/k & \text{otherwise} \end{cases}$$

• The value of flow f is $n \Rightarrow G'$ has a perfect matching.

Disjoint Paths

Definition. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightsquigarrow t$ paths.

Max-flow formulation. Assign unit capacity to every edge.

Theorem

1-1 correspondence between k edge-disjoint $s \leadsto t$ paths in G and integral flows of value k in G'.

Proof. \Rightarrow

- Let P_1, \ldots, P_k be k edge-disjoint $s \rightsquigarrow t$ paths in G.
- Set $f(e) = \begin{cases} 1 & \text{edge } e \text{ participates in some path } P_j \\ 0 & \text{otherwise} \end{cases}$
- Since paths are edge-disjoint, f is a flow of value k.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. \Leftarrow

- Let f be an integral flow in G' of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by flow conservation, there exists an edge (u, v) with f(u, v) = 1.
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Proof.

- Integrality theorem \Rightarrow there exists a max flow f^* in G' that is integral.
- 1-1 correspondence \Rightarrow f^* corresponds to max number of edge-disjoint $s \rightsquigarrow t$ paths in G.

Network connectivity

Definition. A set of edges $F \subseteq E$ disconnects t from s if every $s \leadsto t$ path uses at least one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find minimal number of edges whose removal disconnects t from s.

Menger's theorem

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof. <

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every $s \rightsquigarrow t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Menger's theorem

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof. >

- Suppose max number of edge-disjoint $s \rightsquigarrow t$ paths is k.
- Then value of max flow = k.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s.

Quiz 3

How to find the max number of edge-disjoint paths in an undirected graph?

- A. Solve the edge-disjoint paths problem in a digraph (by replacing each undirected edge with two antiparallel edges).
- B. Solve a max flow problem in an undirected graph.
- C. Both A and B.
- D. Neither A nor B.

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Observation. Two paths P_1 and P_2 may be edge-disjoint in the digraph but not edge-disjoint in the undirected graph.

Lemma

In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Proof. [by induction on number of such pairs]

- Suppose f(e) > 0 and f(e') > 0 for a pair of antiparallel edges e and e'.
- Set $f(e) = f(e) \delta$ and $f(e') = f(e') \delta$, where $\delta = \min\{f(e), f(e')\}$.
- f is still a flow of the same value but has one fewer such pair.

Lemma

In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e': either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Theorem

Max number of edge-disjoint $s \rightsquigarrow t$ paths = value of max flow.

Proof. Similar to proof in digraphs; use lemma.

More Menger theorems

Theorem

Given an undirected graph and two nodes s and t, the max number of edge-disjoint s-t paths equals the min number of edges whose removal disconnects s and t.

Theorem

Given an undirected graph and two nodes s and t, the max number of internally node-disjoint s-t paths equals the min number of internal nodes whose removal disconnects s and t.

Theorem

Given an directed graph with two nonadjacent nodes s and t, the max number of internally node-disjoint $s \rightsquigarrow t$ paths equals the min number of internal nodes whose removal disconnects t and s.

Extensions to Max Flow

Quiz 4

Which extensions to max flow can be easily modeled?

- A. Multiple sources and multiple sinks.
- B. Undirected graphs.
- C. Lower bounds on edge flows.
- D. All of the above.

Multiple sources and sinks

Definition

Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and multiple source nodes and multiple sink nodes, find max flow that can be sent from the source nodes to the sink nodes.

Multiple sources and sinks: max-flow formulation

- Add a new source node s and sink node t.
- For each original source node s_i add edge (s, s_i) with capacity ∞ .
- For each original sink node t_j , add edge (t_j, t) with capacity ∞ .

Claim

1-1 correspondence betweens flows in G and G'.

Circulation with supplies and demands

Definition

Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and node demands d(v), a circulation is a function f(e) that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ capacity
- For each $v \in V$: $\sum_{e \text{ into } v} f(e) \sum_{e \text{ out of } v} f(e) = d(v)$

flow conservation

Circulation with supplies and demands: max-flow formulation

- Add new source s and sink t.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim

G has circulation iff G' has max flow of value

$$D = \sum_{v:d(v)>0} d(v) = \sum_{v:d(v)<0} -d(v)$$

Circulation with supplies and demands

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Proof. Follows from max-flow formulation + integrality theorem for max flow.

Theorem

Given (V, E, c, d), there does not exist a circulation iff there exists a node partition (A, B) such that $\sum_{v \in B} d(v) > \operatorname{cap}(A, B)$.

Proof sketch. Look at min cut in G'.

Circulation with supplies, demands, and lower bounds

Definition

Given a digraph G=(V,E) with edge capacities $c(e)\geq 0$, lower bounds $\ell(e)\geq 0$, and node demands d(v), a circulation f(e) is a function that satisfies:

- For each $e \in E : \ell(e) \le f(e) \le c(e)$ capacity
- For each $v \in V$: $\sum_{\substack{e \text{ into } v \\ \text{flow conservation}}} f(e) \sum_{\substack{\text{out of } v \\ \text{flow conservation}}} f(e) = d(v)$

Circulation problem with lower bounds. Given (V, E, ℓ, c, d) , does there exist a feasible circulation?

Circulation with supplies, demands, and lower bounds

Max-flow formulation. Model lower bounds as circulation with demands.

- Send $\ell(e)$ units of flow along edge e.
- Update demands of both endpoints.

Theorem

There exists a circulation in G iff there exists a circulation in G'. Moreover, if all demands, capacities, and lower bounds in G are integers, then there exists a circulation in G that is integer-valued.

Proof sketch. f(e) is a circulation in G iff $f'(e) = f(e) - \ell(e)$ is a circulation in G'.

Survey Design

Survey design

- Design survey asking n_1 consumers about n_2 products.
- Can survey consumer *i* about product *j* only if they own it
- Ask consumer i between c_i and c'_i questions.
- Ask between p_i and p'_i consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when $c_i = c'_i = p_j = p'_j = 1$.

Survey design

Max-flow formulation. Model as a circulation problem with lower bounds.

- Add edge (i, j) if consumer j owns product i.
- Add edge from s to consumer j.
- Add edge from product i to t.
- Add edge from t to s.
- All demands = 0.
- Integer circulation
 ⇔ feasible survey design.

Airline Scheduling

Airline scheduling

Airline scheduling.

- Complex computational problem faced by airline carriers.
- Must produce schedules that are efficient in terms of equipment usage, crew allocation, and customer satisfaction.
- One of largest consumers of high-powered algorithmic techniques.

"Toy problem."

- Manage flight crews by reusing them over multiple flights.
- Input: set of k flights for a given day.
- Flight *i* leaves origin o_i at time s_i and arrives at destination d_i at time f_i .
- Minimize number of flight crews.

Airline scheduling

Circulation formulation. [to see if *c* crews suffice]

- For each flight i, include two nodes u_i and v_i .
- Add source s with demand -c, and edges (s, u_i) with capacity 1.
- Add sink t with demand c, and edges (v_i, t) with capacity 1.
- For each i, add edge (u_i, v_i) with lower bound and capacity 1.
- If flight j reachable from i, add edge (v_i, u_j) with capacity 1.

Airline scheduling: running time

Theorem

The airline scheduling problem can be solved in $O(k^3 \log k)$ time.

Proof.

- k = number of flights.
- c = number of crews (unknown).
- O(k) nodes, $O(k^2)$ edges.
- At most *k* crews needed.
 - \Rightarrow solve \log_2 circulation problems. \leftarrow binary search for min value c^*
- Value of any flow is between 0 and k
 - \Rightarrow at most k augmentations per circulation problem.
- Overall time = $O(k^3 \log k)$.

Remark

Can solve in $O(k^3)$ time by formulating as minimum-flow problem.

Airline scheduling: postmortem

Remark. We solved a toy version of a real problem.

Real-world problem models countless other factors:

- Union regulations: e.g., flight crews can fly only a certain number of hours in a given time window.
- Need optimal schedule over planning horizon, not just one day.
- Deadheading has a cost.
- Flights don't always leave or arrive on schedule.
- Simultaneously optimize both flight schedule and fare structure

Message.

- Our solution is a generally useful technique for efficient reuse of limited resources but trivializes real airline scheduling problem.
- Flow techniques useful for solving airline scheduling problems and are widely used in practice.
- Running an airline efficiently is a very difficult problem.