

복사안개는 언제 사라질까?

8조 한지수 김희애 김한준 권언민

INDEX

- ●연구목표
- ●연구개요
- ●가정
- ●계산과정
- ●계산결과
- ●결론

연구목표

안개 지속시간

계절변화에 따른 초기조건의 변화

연구개요

태양복사에너지로부터 받는 열량

안개소멸 시간

안개소멸을 위해 필요한 열량

연구개요

단위 시간당! 태양복사에너지로부터 받는 열량

상태변화 온도상승 수증기량 변화

상대습도가 0.7이 되어 안개 소멸

몇 번의 <mark>단위시간</mark> 이 지났을까?

단위시간당 준 열량 * 진행된 단위시간 = 총 필요한 열량

가정

- 안개소멸과정은 isobaric process
- 공기덩어리는 dry air, liquid water, vapor 로 구성
- 이상기체라고가정
- 비열, 응결 잠열 등은 상수로 가정
- 공기의 가열은 공기 덩이에서 전체적으로 균일하게 발생
- 계산이 이루어질 시스템은 닫힌 계로 dry air, liquid water, vapor 만 존재한다고 가정
- 안개의 소멸은 이슬점보다 온도가 높아질 때 발생하며, 완전한 안개의 소멸은 상대습도가 70%일 때로 가정

가정

Table 2.2 Annual mean meteorological elements for 20 years(1989-2008) at 8 groups.

	Station height (m)	No. of foggy days	Wind speed (m/s)	Cloud amount (octa)	Temp.	D.T.R. (℃)	S.L.P. (hPa)	R.H. (%)
Mountains	1013	117.1	4.1	4.5	5.9	8.6	1017.1	76.0
Inland	81	37.6	1.9	4.1	12.1	10.9	1016.5	70.6
East Sea	223	35.9	3.4	4.8	12.6	6.1	1015.7	75.1
Yellow Sea	108	74.7	3.7	4.3	11.6	5.3	1016.5	76.2
Jeju	47	20.4	4.3	4.7	16.1	5.9	1015.9	71.0
East Coast	38	10.6	2.9	4.0	13.0	8.2	1015.7	67.0
West Coast	112	53.3	3.4	4.1	12.2	7.8	1017.0	73.2
South Coast	36	17.2	3.0	3.9	14.3	8.6	1016.1	67.9

가정

Air parcel

$$H = 1$$
 $A = 1$
 $\rho = 1.2455 \ kg/m^3$

계산과정 - 안개소멸에 필요한 열량(q1, q2)

q1 = 온도 상승에 필요한 열량 q2 = 상태변화에 쓰이는 열량

계산과정 - q1, q2

$$dH/m_d = (c_{pd} + w_t c_w) dT + l_v dw$$

$$q1 = \, m_d c_{pd} + m_t c_{pw} + (c_{pv} - c_{pw}) (e_1 \, V / Rv / \, T_1) / m \, (T_2 - T_1) \,$$

$$q2 = l_v (6.11e^{19.83 - 5417/T_2} / T_2 - e_1 / T_1) V / R_v$$

계산과정 - 안개소멸에 필요한 열량(q3)

안개소멸 r = 0.7

안개소멸시작 r = 1

q3 = 온도상승에 필요한 열량

계산과정 - q3

$$\delta Q = mc_p dT = mc_p (T - T_{dew})$$

$$c_p = (1-q)c_{pd} + qc_{pv}$$

$$T - T_{dew} = -R_v T T_{dew} (\ln r) / l_v$$

$$q3 = (m_{\rm d}c_{\rm pd} + m_{\rm v}c_{\rm pv})/m(T_2 - T_1)$$

계산과정 - 태양복사에너지

$$Qd = \frac{24}{\pi} S(\frac{dm}{d})^2 \int_0^{Hs} (\sinh \sin \theta + \cosh \cos \theta \cosh) dH$$

$$\frac{d}{d_m} = \frac{1 - \varepsilon^2}{1 - \varepsilon \cos(\alpha n)}$$

	δ	n	
춘분	0	90	
하지	23,5	0	
추분	0	90	
동지	-23,5	180	

계산과정 - 태양복사에너지

$$T_2 = T_1 + dQ/(m_d c_{pd} + m_w c_{pw} + m_v c_{pv})$$

계산과정 - MATLAB 이용

dT(단위시간당 온도변화) * (단위시간 횟수) = T(r = 0.7의 온도) - T1(초기온도)

시간범위는 위 결과에 해당하는 시간과 맞춰가면서 조정한다.

계산과정 - MATLAB 이용

$$T(i+1) = T(i) + (dQ - dq_2)/dq_1$$

$$e_{v_i} = m_t R_v T_i / V$$

i = time (횟수)

m_t=w*m (물+수증기 질량) w = 0.015 (전체 공기 질량에 대한 수증기+물 질량의 비율) m_d=m-m_t (건조공기 질량) dt = 1 (시간간격) T1 = 초기 온도= 각 분지점의 최저기온

계산결과

$$T(i+1) = T(i) + (dQ - dq_2)/dq_1$$

$$e_{v_i} = m_t R_v T_i / V$$
 i = time (श्रे4)

계산결과

$$T(i+1) = T(i) + (dQ - dq_2)/dq_1$$

$$e_{v_i} = m_t R_v T_i / V$$
 i = time (श्रे4)

결론

	적위	n	최저기온	Q(시간범위)	안개지속시간
동지	-23,5	180	-3.2℃	4	190분
하지	23,5	0	19℃	1	75.2분
춘분	0	90	2.8℃	2.5	139.7분
추분	0	90	16℃	2	85.4분

참고문헌

ESCI 340, Physical Meteorology, Radiation Lesson 7, Solar Radiation

우리나라 안개 발생의 장기 변동 특성 분석, 손희정, 공주대학교 대기과학과, 2010

도로상 위험안개의 특징분석 및 발생지표의 개발, 조혜진, 대한지리학회지,제 38권, 제4호, 2003, p478~489

Atmospheric thermodynamics, Anastasios A. Tsonis, 2th

기상청, 기상백과, 지표면에 입사하는 태양에너지 http://web.kma.go.kr/communication/encyclopedia/list.jsp

Thank You & Question