ТЕМА 4. СОПРЯЖЕННЫЕ, САМОСОПРЯЖЕННЫЕ, КОМПАКТНЫЕ ОПЕРАТОРЫ

Пусть X, Y – банаховы пространства, $A: X \to Y$ и $A \in \mathcal{B}(X,Y)$, f – линейный ограниченный, определенный на пространстве Y.

Определение 1. Сопряженным оператором $A^*:Y^*\to X^*$ к линейному ограниченному оператору $A:X\to Y$ называется оператор, действующий по формуле

$$f(Ax) = A^* f(x)$$
 для всех $x \in X, f \in Y^*$. (2.1)

Теорема 1. Сопряженный оператор A^* является линейным ограниченным оператором из Y^* в X^* и $||A^*|| = ||A||$.

Свойство 1.
$$(A + B)^* = A^* + B^*; \quad (\alpha A)^* = \alpha A^*.$$

Свойство 2. $||A|| = ||A^*||$.

Свойство 3. Пусть X = Y. Тогда $(AB)^* = B^*A^*; \quad I^* = I$.

Свойство 4. Если оператор A имеет ограниченный обратный A^{-1} , то и A^* также обратим, причем $(A^*)^{-1} = (A^{-1})^*$.

Теорема 2. Пусть X, Y – банаховы пространства, оператор $A: X \to Y$ – линейный ограниченный оператор, $\mathcal{R}(A) \subset Y$ – множество его значений. Тогда замыкание $\mathcal{R}(A)$ совпадает с множеством таким $y \in Y$, что f(y) = 0 для всех функционалов $f \in Y^*$, удовлетворяющих условию $A^*f = 0$.

Следствие 1. Для того, чтобы уравнение Ax = y было разрешимо при заданном y необходимо, а если $\mathcal{R}(A)$ замкнуто, то и достаточно, чтобы любой функционал, удовлетворяющий уравнению $A^*f = 0$, на заданном y обращался в нуль.

Следствие 2. Для того, чтобы уравнение Ax = y было разрешимо для любого $y \in Y$, необходимо, чтобы уравнение $A^*f = 0$ имело только нулевое решение.

Следствие 3. Уравнение $A^*f=0$ имеет только нулевое решение тогда и только тогда, когда $\overline{\mathscr{R}(A)}=Y.$

Сопряженные и самосопряженные операторы в гильбертовых пространствах

Определение 2. Пусть H_1 , H_2 – гильбертовы пространства. Сопряженным оператором к оператору $A: H_1 \to H_2$ называется оператор $A^*: H_2 \to H_1$ такой, что для любых $x \in H_1$, $y \in H_2$ выполняется равенство $(Ax,y)_{H_2} = (x,A^*y)_{H_1}$.

Определение 3. Линейный ограниченный оператор $A: H \to H$ называется самосопряженным, если $A=A^*$, т. е. справедливо тождество $(Ax,y)_H=(x,Ay)_H$ для всех $x,y\in H$. Линейный ограниченный оператор называется унитарным, если $A^*=A^{-1}$. Линейный ограниченный оператор называется нормальным, если $A^*A=AA^*$.

 $\Pi p u M e p 1$. В пространстве $L_2[0,1]$ рассмотрим оператор умножения на функцию, т. е.

$$Ax(t) = a(t)x(t).$$

Тогда

$$(Ax,y) = \int_{0}^{1} Ax(t)\overline{y(t)}dt = \int_{0}^{1} a(t)x(t)\overline{y(t)}dt = \int_{0}^{1} x(t)\overline{a(t)}\overline{y(t)}dt.$$

Значит, $A^*y(t)=\overline{a(t)}y(t)$. Следовательно, если a(t) – вещественнозначная функция, то $a(t)=\overline{a(t)}$ и оператор A самосопряженный. Если |a(t)|=1 почти всюду, то $\frac{1}{a(t)}=\overline{a(t)}$ и оператор унитарный. Так как $a(t)\overline{a(t)}=\overline{a(t)}a(t)$, то оператор умножения на функцию нормальный.

Функция $\varphi(x,y)=(Ax,y)$ называется билинейной формой, порожденной оператором A. Билинейная форма линейна по первой переменной и антилинейна по второй. По аналогии, $\kappa в a d p a m u u h o u d v d e p a mopa A будем называть числовую функцию <math>\varphi(x)=(Ax,x)$.

Определение 4. Оператор $A \in \mathcal{B}(H)$ называется неотрицательным, если порожденная им квадратичная форма неотрицательна, т. е. $(Ax,x)\geqslant 0$ для всех $x\in H$. Неотрицательный оператор обозначается следующим образом: $A\geqslant 0$. Если $A-B\geqslant 0$, то говорят, что $A\geqslant B$.

Теорема 3. Пусть A – самосопряженный оператор в H. Тогда 1) квадратичная форма принимает только вещественные значения:

2)
$$||A|| = \sup_{\|x\| \le 1} |(Ax,x)|.$$

Пусть в H задано подпространство $L\subset H$. Согласно теореме о разложении в прямую сумму гильбертова пространства имеем $H=L\oplus L^\perp$ или $x=y+z,\ y\in L,\ z\in L^\perp$. Тогда каждому элементу $x\in H$ можно поставить в соответствие единственный элемент $y\in L$ проекцию элемента x на подпространство L. Тем самым определяется отображение или оператор, который называется *ортопроектором* и y=Px.

Cвойство 5. Каждый проектор P является всюду определенным в H линейным оператором со значениями в H.

Свойство 6. $P \in \mathcal{B}(H)$, причем ||P|| = 1, если $L \neq \{0\}$.

Свойство 7. $P^2 = P$.

Свойство 8. $P = P^*$.

Свойство 9. Оператор проектирования положителен, т. е. $(Px,x) \geqslant 0$ для всех $x \neq 0$.

Cвойство 10. $x \in L$ тогда и только тогда, когда ||Px|| = ||x||.

Свойство 11. $(Px,x) \leq ||x||^2$ для любого $x \in H$. $(Px,x) = ||x||^2$ тогда и только тогда, когда $x \in L$.

Теорема 4. Пусть A – самосопряженный оператор в H, причем $A^2 = A$; тогда A – проектор на некоторое подпространство $L \subset H$.

Компактные операторы

Определение 5. Пусть X и Y – банаховы пространства. Линейный оператор $A: X \to Y$ называется *компактным*, если он отображает всякое ограниченное множество пространства X в предкомпактное множество пространства Y.

Совокупность всех компактных операторов, действующих из X в Y, обозначим символом $\mathcal{K}(X,Y)$.

Определение 6. Линейный оператор $A: X \to Y$ называется компактным, если для любой последовательности $(x_n) \subset B[0,r] \subset X$ последовательность образов (Ax_n) содержит фундаментальную подпоследовательность.

Определение 7. Линейный оператор $A: X \to Y$ называется компактным, если образ A(B) любого шара $B[0,r] \subset X$ является вполне ограниченным в Y множеством.

 $\Pi p \, u \, M \, e \, p \, 2$. Пусть Y — конечномерное банахово пространство, $A: X \to Y, \, A \in \mathcal{B}(X,Y)$. Тогда, A(B) — образ шара B[0,r] пространства X будет ограниченным в Y множеством, и, следовательно, вполне ограниченным.

 $\Pi p \, u \, m \, e \, p \, 3$. Оператор $A \in \mathcal{B}(X,Y)$ называется оператором конечного ранга, если $\dim \mathcal{R}(A) < \infty$, т. е. множество его значений есть конечномерное подпространство пространства Y. В этом случае A(B) является ограниченным множеством в конечномерном пространстве, поэтому предкомпактным, т. е. $A \in \mathcal{K}(X,Y)$.

Таким образом, любой линейный ограниченный оператор конечного ранга компактен. Примером такого оператора служит интегральный оператор Фредгольма с вырожденным ядром, действующий в пространстве C[a,b].

Пример 4. Рассмотрим оператор

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \,ds$$
 (2.2)

как оператор, действующий из пространства C[a,b] в пространство C[a,b], ядро которого $\mathcal{K}(t,s)$ непрерывно по совокупности переменных. Покажем, что A(B) предкомпактно в C[a,b]. По теореме Арцела-Асколи мы должны проверить условия равномерной ограниченности и равностепенной непрерывности функций $y(t) = Ax(t) \subset A(B)$.

$$||y||_C = \max_{a \leqslant t \leqslant b} |Ax(t)| = \max_{a \leqslant t \leqslant b} |\int_a^b \mathcal{K}(t,s)x(s) \, \mathrm{d}s| \leqslant$$

$$\leqslant \max_{a\leqslant t\leqslant b}\int\limits_a^b |\mathcal{K}(t,s)x(s)|\,\mathrm{d} s\cdot \|x\|\leqslant M(b-a),$$
где $M=\max_{a\leqslant t,s\leqslant b} |\mathcal{K}(t,s)|.$

$$|y(t_1) - y(t_2)| \leqslant \int_a^b |\mathcal{K}(t_1, s) - \mathcal{K}(t_2, s)| \, \mathrm{d}s \cdot ||x|| \leqslant \varepsilon(b - a),$$

так как в силу равномерной непрерывности функции $\mathcal{K}(t,s)$ на компакте $[a,b] \times [a,b]$ для любого $\varepsilon > 0$ найдется $\delta(\varepsilon) > 0$ такое, что для всех $t_1,t_2 \in [a,b]: |t_1-t_2| < \delta$ следует, что

$$|\mathcal{K}(t_1,s) - \mathcal{K}(t_2,s)| < \varepsilon.$$

Таким образом, интегральный оператор Фредгольма с непрерывным ядром компактен.

 $\Pi p u m e p 5$. Тождественный оператор $I: X \to X$ является компактным тогда и только тогда, когда $\dim X < \infty$.

Теорема 5. Пусть $A: X \to Y$ – компактный оператор. Тогда область его значений $\mathcal{R}(A) \subset Y$ сепарабельна.

Теорема 6. Пусть $A_1, A_2 \in \mathcal{K}(X,Y)$. Тогда операторы $A_1 + A_2$, αA_1 , где α – произвольная постоянная, также компактны.

Теорема 7. Пусть $(A_n)_{n=1}^{\infty}$ – последовательность компактных операторов, действующих из X из Y, $(A_n)_{n=1}^{\infty}$ равномерно сходится κ оператору A. Тогда $A \in \mathcal{K}(X,Y)$.

Замечание 3. Если $(A_n)_{n=1}^{\infty} \subset \mathcal{K}(X,Y)$ – последовательность, сходящаяся в каждой точке $x \in X$, то предельный оператор A может оказаться не компактным.

Теорема 8. Пусть $A, B \in \mathcal{B}(X)$. Если хотя бы один из операторов является компактным, то компактным будет и их произведение.

Cледствие 4. В бесконечномерном банаховом пространстве X компактный оператор A не может иметь ограниченного обратного.

Теорема 9. Пусть X,Y – банаховы пространства, $A \in \mathcal{K}(X,Y)$. Тогда сопряженный оператор $A^* \in \mathcal{K}(X^*,Y^*)$.

Теорема 10. Пусть H – сепарабельное гильбертово пространство, $A \in \mathcal{B}(H)$. Для того, чтобы $A \in \mathcal{K}(H)$ необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал номер $n = n(\varepsilon)$ и такие линейные операторы A_1 и A_2 : A_1 – n-мерный, $\|A_2\| < \varepsilon$, что

$$A = A_1 + A_2. (2.3)$$

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 Πp и м е p 6. Пусть $X=Y=\ell_2$ над полем $\mathbb C$. Пусть $x\in\ell_2$ и

$$Ax = (0, \dots, 0, \alpha_1 x_1, \alpha_2 x_2, \dots),$$

где $(\alpha_i)_{i=1}^{\infty}$ – ограниченная последовательность в $\mathbb C$. Построить сопряженный оператор.

Решение. Применяя теорему Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве, получим

$$f(Ax) = (Ax,y)_{\ell_2} = \sum_{i=1}^{\infty} \alpha_i x_i \overline{y_{i+k}} = \sum_{i=1}^{\infty} x_i \alpha_i \overline{y_{i+k}} = A^* f(x) = (x,z)_{\ell_2},$$

где $z = A^*y$ $z_i = \overline{\alpha_i}y_{i+k}$. Следовательно,

$$A^*y = (\overline{\alpha_1}y_{k+1}, \overline{\alpha_2}y_{k+2}, \ldots).$$

Здесь мы заменили пространство функционалов изоморфным ему пространством, а именно, пространством ℓ_2 .

 $\Pi p u m e p$ 7. Рассмотрим в пространстве $L_2[a,b]$ интегральный оператор Фредгольма с ядром $\mathcal{K}(t,s)$, удовлетворяющим условию

$$\int_{a}^{b} \int_{a}^{b} |\mathcal{K}(t,s)|^2 \, \mathrm{d}t \, \mathrm{d}s < \infty. \tag{2.4}$$

Построить сопряженный оператор.