超越混淆因子

Speaker: 许文立

wlxu@cityu.edu.mo

August-November, 2025

Faculty of Finance, City University of Macau

CONTENTS

有效的控制变量

01

基本有害的控制变量

02

有害的控制变量

03

- > 回归中增加额外的控制变量有助于因果识别
- ▶ 混淆因子必须控制
- ▶ 将所有可观测变量都作为控制变量纳入回归方程?
- ▶ 大数据时代,成百上千个变量,不紧不必要,而且有时候有害
- ▶ 例子: 在金融机构做数据分析, 试图评估和设计账单催款的邮件形式, 结果变量是逾期客户的还款金融
- ▶ 随机实验:随机抽选5000名客户,抛硬币,为正则向客户发催款邮件,为 反面则不发(对照组)

	payments	email	opened	agreem~t	credit~t	risk_s~e
1.	740	1	1	0	2348.495	. 666752
2.	580	1	1	1	334.112	.2073951
3.	600	1	1	1	1360.661	.5504789
4.	770	0	0	0	1531.829	.5604882
5.	660	0	0	0	979.8557	.4551403

- ▶ 由于数据是随机的,处理是随机分配,所以满足条件独立性
- ➤ 第一种方式: 一阶差分估计量FD:

$$ATE = E[Y|T=1] - E[Y|T=0]$$

```
. * Calculate difference in means
. sum payments if email == 1
   Variable
                      0bs
                                 Mean
                                          Std. dev.
                                                          Min
                                                                     Max
                    2,454
                             669.3562
                                          102.0547
                                                          330
                                                                    1140
    payments
. scalar mean_treat = r(mean)
. sum payments if email == 0
   Variable
                      0bs
                                 Mean
                                          Std. dev.
                                                          Min
                                                                     Max
    payments
                    2,546
                             669.9764
                                          105.8026
                                                          340
                                                                    1050
. scalar mean_control = r(mean)
. display "Difference in means: " %5.2f (mean_treat - mean_control)
Difference in means: -0.62
```

- ▶ 由于数据是随机的,处理是随机分配,所以满足条件独立性
- ▶ 第二种方式:回归

Payments =
$$\beta_0 + \beta_1$$
Email + ε_i

payments	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
email _cons	6202804 669.9764		-0.21 325.12		-6.386904 665.9365	5.146343 674.0164

➤ What弄啥呢?

- ▶ 给客户发信息催款,居然还会使得客户少还逾期欠款?
- ▶ 也有可能,例如,还没到还款日期就打电话给我催催催! 烦!
- ▶此外, p-value也高于0.05, 意味着, 这一结果可能并没有统计学意义
- ▶ 接下来,怎么办?垂头丧气地宣布这个研究没有意义?我们需要更多数据和经费支持?
- ▶ 不要轻易放弃!

	payments	email	opened	agreem~t	credit~t	risk_s~e
1.	740	1	1	0	2348.495	. 666752
2.	580	1	1	1	334.112	.2073951
3.	600	1	1	1	1360.661	.5504789
4.	770	0	0	0	1531.829	.5604882
5.	660	0	0	0	979.8557	.4551403

- ▶ 数据里还有其它指标:
- ➤ credit_limit 代表客户逾期前的信用额度
- ➤ risk_score 对应邮件发送前对客户风险的评估值

- ➤ 如果处理效应TE存在,为什么无法得到显著的结果?
- ▶ 一种可能: 效应微乎其微
- ▶ 细想一下,促使人们偿还债务的主要因素大多超出了催收部门的控制范围——人们还款是因为找到了新工作、改善了财务状况或收入等
- ▶ 用统计学术语来说, 还款行为的变异性更多是由电子邮件之外的其他因素 所解释的

- ▶ 每个组的还款金融波动非常大
- ▶ 如果催款信息的效应仅为5/10块钱,那么,这个效应在[300 1000]的范围就很小

- ▶ 回归可以帮助降低结果变量的波动性——加入有效的控制变量/协变量
- ▶ 若变量能有效预测结果,它就能解释结果的大量方差/波动
- ▶ 例如,风险评级和信用额度可以预测还款行为,控制这些变量,能更轻松 地识别催款信息对还款金额的效应
- ▶ 多元回归的原理:控制住某一变量就是保持这些变量不变时,处理组和控制组的平均结果差异
- ➤ 因此,当我们控制风险和信用额度时,其实是在比较具有相同/近风险和信用额度的客户,payments应该也比较接近,波动应当更小

- ▶ 多元回归的两步回归分解法:
- ➤ 第一步:分别用处理变量(发催款邮件)和结果变量(payments)对控制 变量(风险和信用额度)回归
- ▶ 第二步: 用上述两个回归的余值,即结果变量的余值对处理变量的余值回归

Variable	0bs	Mean	Std. dev.	Min	Max
payments	5,000	669.672	103.9701	330	1140
email	5,000	. 4908	. 4999654	0	1
opened	5,000	. 2734	. 445749	0	1
agreement	5,000	.1608	.3673831	0	1
credit_limit	5,000	1194.845	480.979	193.6956	3882.178
risk_score	5,000	.4808119	.1003763	.1317844	.7734587
email_jitter	5,000	.4907015	.4999052	0300313	1.039341
res_email	5,000	5.96e-11	. 4992335	5323009	.7903931
res_payments	5,000	1.52e-08	75.19032	-261.3965	261.9144

- ➤ 控制其它变量后,payments的标准差下降了近一半;
- ▶ 催收信息方差没有什么影响

- ▶ 多元回归的两步回归分解法:
- ➤ 第一步:分别用处理变量(发催款邮件)和结果变量(payments)对控制 变量(风险和信用额度)回归
- ▶ 第二步: 用上述两个回归的余值,即结果变量的余值对处理变量的余值回归

res_payments	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
res_email	4.430355		2.08	0.038	.255654	8.605057
_cons	1.49e-08		0.00	1.000	-2.083942	2.083942

▶ 每个组的还款金融波动非常已经缩小了很多

▶ 实践中,一个回归足以

payments	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
email	4.430355	2.129899	2.08	0.038	.2548181	8.605893
credit_limit	.1510686	.0080216	18.83	0.000	.1353427	.1667946
risk_score	-8.051563	38.42376	-0.21	0.834	-83.37899	67.27586
_cons	490.8653	9.714986	50.53	0.000	471.8196	509.9109

➤ 所有结果的代码和数据见: https://wenzhe-huang.github.io/python-causality-

handbook-zh/07-Beyond-Confounders.html

- ▶ 任何时候如果我们有一个对结果有良好预测性的控制变量,即便它不是混杂因素,将其纳入模型都是明智之举。
- > 这有助于降低我们处理效应估计的方差。

- > 考察新药实验对病人住院天数的影响
- ▶ 两家医院: 一家医院的处理是向90%的病人提供新药治疗,而10%接受安慰剂;另一家医院则随机向10%病人提供新药,90%为安慰剂
- ▶ 还有一个信息/变量: 第一家医院接收的病人通常更为严重

	hospital	treatm~t	severity	days
1.	1	1	29.68662	82
2.	1	1	20.05034	57
3.	1	1	20.3024	49
4.	0	0	10.60312	44
5.	0	0	8.332793	15

▶ 简单的一阶差分估计量——一元回归?

$$Days = \beta_0 + \beta_1 treatment + \epsilon$$

days	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
treatment	14.15333	3.366811	4.20	0.000	7.450527	20.85614
_cons	33.26667	2.661698	12.50	0.000	27.96763	38.5657

- ▶ 新药使得病人住院天数增加
- ▶ 注意: 两家不同的医院在进行两项随机实验
- ▶ 混淆因子: 病情严重程度

▶ 为了解决这个问题: 第一种方法分别对两家医院回归

$$Days = \beta_0 + \beta_1 treatment + \epsilon$$

days	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
treatment	_	10.92119	-1.04	0.306	-33.81583	11.00102
_cons		2.868044	10.60	0.000	24.52267	36.29215

days	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
treatment _cons		6.954515 6.746871		0.141 0.000	-24.37146 45.44166	3.579788 72.55834

▶ 上述分组回归减少样本量(不显著): 第二种方法纳入控制变量

$$Days = \beta_0 + \beta_1 treatment + severity + \epsilon$$

days	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
treatment	-7.591173	2.269234	-3.35	0.001	-12.1098	-3.07255
severity	2.274068	.1537267	14.79	0.000	1.96796	2.580177
_cons	11.66406	2.000134	5.83	0.000	7.681285	15.64684

▶ 上述分组回归减少样本量(不显著): 第二种方法纳入控制变量

$$Days = \beta_0 + \beta_1 treatment + severity + hospital + \epsilon$$

- ➤ 我们思考要不要加入hospital,因为医院类型决定了处理
- ➤ 但是,因为我们已经控制了病情程度,因此,医院类型就与住院天数无关了,hospital就不是混淆因子
- ➤ 控制hospital可以降低方差,所以应该会有用吧?!
- ▶ 注意,降低方差是结果的方差,而不是处理的方差
- ▶不过,还是想控制它,找了这么久数据,是在忍不住!

▶ 上述分组回归减少样本量(不显著): 第二种方法纳入控制变量

$$Days = \beta_0 + \beta_1 treatment + severity + hospital + \epsilon$$

days	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
treatment	-5.09447	3.492034	-1.46	0.149	-12.04946	1.860519
severity	2.38653	.1947953	12.25	0.000	1.998561	2.774498
hospital	-4.153548	4.413196	-0.94	0.350	-12.94319	4.636093
_cons	11.01108	2.11845	5.20	0.000	6.791826	15.23034

➤ 控制了病情后,再控制医院类型反而会增加ATE的方差

$$\hat{\sigma}^2 = rac{1}{n-2} \sum (y_i - \hat{y}_i)^2$$

$$ext{Var}(\hat{eta}_2) = rac{\sigma^2}{\sum (x_i - ar{x})^2}$$

- ▶ 上述公式显示,回归系数的标准误与变量X的方差成反比
- ▶ 举个极端例子,假设你想评估某种药物的效果,于是对10000人进行测试,但其中仅1人接受了处理
- ▶ 换言之,我们需要处理变量存在大量变异,才能更容易发现其影响。

Variable	0bs	Mean	Std. dev.	Min	Max
hospital	80	. 6375	. 4837551	0	1
treatment	80	. 625	.4871774	0	1
severity	80	15.47575	7.191461	-4.030356	31.06742
days	80	42.1125	16.04345	0	82
res_treatm~t	80	3.06e-10	.2413655	9517725	.9255486
res_days	80	-2.12e-08	7.450029	-22.03868	17.23881

res_days	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
res_treatment	-5.094469	3.446974	-1.48	0.143	-11.95687	1.767928
_cons	-1.97e-08	.8267643	-0.00	1.000	-1.645961	1.645961

- ▶ 回到催款信息的例子: 邮件是随机发的
- ➤ 还有一个虚拟变量: opened、agreement

	payments	email	opened	agreem~t	credit~t	risk_s~e
1.	740	1	1	0	2348.495	. 666752
2.	580	1	1	1	334.112	.2073951
3.	600	1	1	1	1360.661	.5504789
4.	770	0	0	0	1531.829	.5604882
5.	660	0	0	0	979.8557	.4551403

Payments =
$$\beta_0 + \beta_1$$
Email + credit + risk + ε_i

payments	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
email	4.430355	2.129899	2.08	0.038	.2548181	8.605893
credit_limit	.1510686	.0080216	18.83	0.000	.1353427	.1667946
risk_score	-8.051563	38.42376	-0.21	0.834	-83.37899	67.27586
_cons	490.8653	9.714986	50.53	0.000	471.8196	509.9109

Payments

$$= \beta_0 + \beta_1$$
Email + credit + risk + opened + agreement

$$+ \varepsilon_{i}$$

payments	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
email	-1.609485	2.723665	-0.59	0.555	-6.949065	3.730095
credit_limit	. 1506935	.0080119	18.81	0.000	.1349867	.1664003
risk_score	-2.092863	38.37499	-0.05	0.957	-77.3247	73.13897
opened	3.980847	3.913991	1.02	0.309	-3.692294	11.65399
agreement	11.70934	4.165948	2.81	0.005	3.542252	19.87643
_cons	488.4416	9.715979	50.27	0.000	469.394	507.4892

总之

▶ 包含: 混淆因子、结果预测变量

▶ 排除: 处理预测变量、中介变量、共同结果变量

THANK YOU

