Verjetnost z mero - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Matija Vidmarja 2021/22

Kazalo

1	Merljivost in mera			
	1.1	Merljive množice	3	
	1.2	Mere	4	

1 Merljivost in mera

1.1 Merljive množice

Definicija 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ (t.j. $\mathcal{A} \in 2^{2^{\Omega}}$). Potem rečemo, da je \mathcal{A} zaprta za:

• c^Ω (t.j. za komplement v Ω)

$$\stackrel{\text{def}}{\iff} \quad \forall A: (A \in \Omega \implies \Omega \setminus A \in \mathcal{A});$$

• \cap (t.j. za preseke)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad A_1 \cap A_2 \in \mathcal{A} \ \text{brž ko je } \{A_1,A_2\} \subset A;$$

• ∪ (t.j. za unije)

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 $A_1 \cup A_2 \in \mathcal{A}$ brž ko je $\{A_1, A_2\} \subset A$;

• \ (t.j. za razlike)

$$\stackrel{\text{def}}{\Longleftrightarrow}$$
 $A_1 \setminus A_2 \in \mathcal{A}$ brž ko je $\{A_1, A_2\} \subset A$;

• $\sigma \cap$ (t.j. za števne preseke)

$$\stackrel{\text{def}}{\Longleftrightarrow} \quad \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A} \ \text{za vsako zaporedje } (A_n)_{n \in \mathbb{N}} \ \text{iz } \mathcal{A};$$

• $\sigma \cup$ (t.j. za števne unije)

$$\stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{A} \ \ \mathrm{za} \ \mathrm{vsako} \ \mathrm{zaporedje} \ (A_n)_{n\in\mathbb{N}} \ \mathrm{iz} \ \mathcal{A}.$$

Definicija 1.2. \mathcal{A} je σ -algebra na Ω

$$\overset{\text{def}}{\Longleftrightarrow} \quad (\Omega, \mathcal{A}) \text{ je merljiv prostor}$$

$$\overset{\text{def}}{\Longleftrightarrow} \quad \emptyset \in \mathcal{A} \text{ in } \mathcal{A} \text{ je zaprt za } \mathbf{c}^{\Omega} \text{ in za } \sigma \cup .$$

V primeru, da \mathcal{A} je σ-algebra na Ω :

- A je \mathcal{A} -merljiva $\stackrel{\text{def}}{\iff} A \in \mathcal{A}$;
- \mathcal{B} je pod- σ -algebra $\stackrel{\text{def}}{\Longleftrightarrow}$ \mathcal{B} je σ -algebra na Ω in $\mathcal{B} \subset \mathcal{A}$.

Trditev 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$ zaprta za c^{Ω} in naj bo $\emptyset \in \mathcal{A}$. Potem je \mathcal{A} σ -algebra na Ω , če je \mathcal{A} zaprta za števne preseke, in v tem primeru je \mathcal{A} zaprta za \cap , \cup in \setminus .

1.2Mere

Definicija 1.3. Naj bo (Ω, \mathcal{F}) merljiv prostor in $\mu : \mathcal{F} \to [0, \infty]$. μ je mera na $(\Omega, \mathcal{F}) \stackrel{\text{def}}{\Longleftrightarrow}$

- $\bullet \ \mu(\emptyset) = 0;$
- $\mu\left(\bigcup_{n\in\mathbb{N}}\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$ za vsako zaporedje $(A_n)_{n\in\mathbb{N}}$ iz \mathcal{F} , ki sestoji iz paroma disjunktnih dogodkov.

Lastnosti:

- Mera μ na (Ω, \mathcal{F}) je $kon\check{c}na \iff \mu(\Omega) < \infty$.
- Mera μ na (Ω, \mathcal{F}) je $verjetnostna^1 \stackrel{\text{def}}{\iff} \mu(\Omega) = 1$
- Mera μ na (Ω, \mathcal{F}) je σ -končna $\stackrel{\text{def}}{\iff}$ obstaja zaporedje $(A_n)_{n\in\mathbb{N}}$ v \mathcal{F} ,

$$\bigcup_{n\in\mathbb{N}} \ = \ \Omega \quad \text{in}$$

$$\mu(A_n) \ < \ \infty, \quad \forall n\in\mathbb{N}$$

 $(\Omega, \mathcal{F}, \mu)$ je prostor z mero $\stackrel{\mathrm{def}}{\Longleftrightarrow} \mu$ je mera na (Ω, \mathcal{F}) . Če je μ mera na (Ω, \mathcal{F}) potem je $\mu(\Omega)$ masa mere μ . Če je $A \in \mathcal{F}$, potem je:

• A je μ -zanemarljiv $\stackrel{\text{def}}{\Longleftrightarrow}$ $\mu(A) = 0;$ Tudi: μ je verjetnost.

• A je $\mu\text{-}trivialna \ \stackrel{\mathrm{def}}{\Longleftrightarrow} \ A$ ali $\Omega \setminus A$ je $\mu\text{-}zanemarljiva$

Če imamo poleg tega še lastnost $P(\omega)$ v $\omega \in A,$ potem

- $P(\omega)$ drži μ -skoraj povsod (μ -s.p.) v $\omega \in A \iff$
 - $A_{\neg P} := \{ \omega \in \Omega \mid \neg P(\omega) \in \mathcal{F} \text{ in } \mu(A_{\neg P}) = 0 \};$
- $P(\omega)$ drži μ -skoraj gotovo (μ -s.g.) $\stackrel{\text{def}}{\Longleftrightarrow}$ $P(\omega)$ drži μ -skoraj povsod in μ je verjetnostna.

Pdrži $\mu\text{-skoraj povsod na}\ A \iff P(\omega)$ drži $\mu\text{-skoraj povsod v}\ \omega\in A.$ Podobno za ostale.