INTRODUÇÃO À PROGRAMAÇÃO

Prof.^a Priscilla Abreu

priscilla.braz@rj.senac.br

Roteiro de Aula

- Objetivo da aula
- Revisão de conteúdo
- Constantes
- Entrada e saída de dados
- Operadores aritméticos
- Exercícios

Objetivo da aula

Compreender o funcionamento dos comandos de entrada e saída de dados e o uso de operadores aritméticos.

REVISANDO...

Revisando...

- Linguagem C
- Compiladores e interpretadores
- Instruções
- Tipos de dados
- Variáveis
- Atribuição

LINGUAGEM C - ESTRUTURA BÁSICA Comentário /* Primeiro Programa em C */ Comandos de #include <stdio.h> pré-processamento biblioteca int main() Função printf("Meu primeiro programa em C\n"); **Principal** printf("INTRODUÇÃO À PROGRAMAÇÃO!");

Escrevendo na tela

DENIFINDO VARIÁVEIS...

COMANDO DE ATRIBUIÇÃO

Um comando é a descrição de uma ação a ser executada em um dado momento.

O comando de atribuição permite fornecer um valor a uma certa variável, onde este valor deve ter o mesmo tipo de dado da variável em questão.

Forma geral:

identificador = expressão OU valor;

COMANDO DE ATRIBUIÇÃO

Exemplos

- A = 2;
- SEXO = 'F';
- MEDIA = SOMA / 4;
- int idade = 10;

CONSTANTES

Para declarar uma constante basta adicionar a palavra reservada *const* seguida do tipo de dado, pelo nome da constante e atribuir um valor a ela.

Sintaxe:

const tipo NOME_DA_CONSTANTE = <valor>

Exemplo:

const int maximo = 10;

DECLARAÇÃO - VARIÁVEIS E CONSTANTES

Exemplos:

const float PI = 3.14

int idade;

char sexo;

float nota1;

float nota2;

CONSTANTES – EXEMPLO

ENTRADA E SAÍDA DE DADOS

COMO TROCAR INFORMAÇÕES COM O COMPUTADOR?

COMANDOS DE ENTRADA E SAÍDA

As unidades de entrada e saída são dispositivos que possibilitam a comunicação entre o usuário e o computador.

Exemplo: Através do teclado, o usuário consegue passar os dados de entrada. Já o computador pode apresentar os resultados no monitor, por exemplo.

Quem define o funcionamento dessas operações é o **programador** e os comandos de entrada e saída são ferramentas para essa finalidade.

COMANDO DE SAÍDA DE DADOS

SAÍDA DE DADOS

Recurso utilizado para poder apresentar informações/mensagens para o usuário do programa.

C:\Users\Priscilla\OneDrive\SENAC\2021.2\IntrodupÒo Ó ProgramaþÒo\Au
ESTUDANDO COMANDOS DE SAIDA DE DADOS
-----Process exited after 0.549 seconds with return value 0
Pressione qualquer tecla para continuar. . .

SAÍDA DE DADOS

- Função printf -> inserção de comandos que indiquem os tipos dos valores e o formato da impressão.
- Formato geral: printf(formato , lista de constantes/ variáveis/expressões);
- Exemplos:

 printf("Meu primeiro programa");
 printf("Nota1: %f) nota 2: %f ", nota1, nota2);

TIPO DE DADOS E POSIÇÃO DE EXIBIÇÃO

SAÍDA DE DADOS

Para cada valor de variável ou constante que se deseja imprimir, deve existir um especificador de formato correspondente, que varia com o tipo de dado.

- Principais códigos de formato de impressão:
 - -%d -> variável inteira com sinal
 - -%u -> variável inteira sem sinal
 - -%f -> variável ponto flutuante (double ou float)
 - %e -> ponto flutuante em notação científica
 - -%c -> char
 - -%s -> cadeia de char
 - -%p -> Apresenta um ponteiro

SAÍDA DE DADOS - EXEMPLO

```
#include <stdio.h>
int main()
{
    int a=1;
    printf("Valor de a: %d.", a);
    a = 6;
    printf("Valor de a: %d.", a);
}
```


SAÍDA DE DADOS

\n	Caractere de nova linha
\t	Caractere de tabulação
\r	Caractere de retrocesso
\"	Caractere "
\\	Caractere \

SAÍDA DE DADOS - EXEMPLO

```
#include <stdio.h>
int main()
{
    int a=1;
    printf("Valor de a: %d.\n", a);
    a = 6;
    printf("Valor de a: %d.", a);
}
```


SAÍDA DE DADOS - EXEMPLO

```
#include <stdio.h>
int main()
{
    int a=1; float b=4.2;
    printf("Valor de a: %d\n Valor de b: %.1f",a,b);
}
```


SAÍDA DE DADOS - EXERCÍCIO

Faça um programa que exiba na tela seu nome completo, mas apresentando cada parte do nome em uma linha.

Exemplo:

SAÍDA DE DADOS - EXEMPLO

É possível também especificar o tamanho dos campos:

%4d 3 3

4

%.2f 5 . 3 0

COMANDO DE ENTRADA DE DADOS

ENTRADA DE DADOS

Recurso utilizado para poder capturar informações do usuário e para o computador/programa.

ENTRADA DE DADOS

Função **scanf**: permite capturar valores fornecidos via teclado e armazená-los em variáveis.

Formato geral:

scanf (formato, lista de endereços das variáveis);

Exemplo:

ENDEREÇO DA VARIÁVEL QUE RECEBERÁ O VALOR

scanf('(%d), &idade);

TIPO DE DADO A SER ARMAZENADO

COMANDOS DE ENTRADA

Exemplo:

ENTRADA DE DADOS

Formato deve possuir especificadores de tipos similares aos utilizados na função printf.

%d -> especifica um inteiro

%u -> especifica um inteiro sem sinal

%f, %e, %g -> especifica um float

%lf, %le, %lg -> especifica um double

%c -> especifica char

%s -> especifica uma cadeia de caracteres

%p -> Apresenta um ponteiro

ENTRADA DE DADOS

Exemplo:

```
#include <stdio.h>
int main(){
     float h;
     printf("Informe a altura em metros:");
     scanf("%f", &h);
     printf("Altura em metros: %f \n", h);
}
```


EXPRESSÕES E OPERADORES

EXPRESSÕES E OPERADORES

As variáveis, assim como as constantes, poderão ser utilizadas para a elaboração de expressões, de acordo com seu tipo de dado. Para isso, os operadores são utilizados.

OPERADORES

- Aritméticos
- Relacionais
- Lógicos

OPERADORES ARITMÉTICOS

OPERADOR	AÇÃO
+	Adição, menos unário
-	Subtração
*	Multiplicação
/	Divisão
%	Resto da divisão
++	Incremento
	Decremento

OPERADORES ARITMÉTICOS

Exemplo:

```
#include <stdio.h>
int main(){
    int a = 3, b = 6;
    float soma, media;
    soma = a + b;
    media = (a+b)/2;
    printf("Média: %f", media);
```


OPERADORES ARITMÉTICOS

Exemplo:

```
#include <stdio.h>
int main(){
    int a = 3;
    a++; // a = a+1;
    a--; // a = a-1;
    a-1;
```


OPERADORES ARITMÉTICOS

Atribuição e operação

Operação combinada com atribuição em um mesmo operador.

•
$$a += b$$
; $/* a = a + b */$

•
$$c = b^*a$$
; $/^* c = c - (b^*a)^*/$

•
$$d *= a - b;$$
 $/* d = d * (a - b) */$

EXERCÍCIO

Faça um programa para o usuário informar a base e a altura de um retângulo e calcular e exibir a área e perímetro desse retângulo.

Obs.: A área de um retângulo é a base multiplicada pela altura e o perímetro é a soma dos lados do retângulo.

DÚVIDAS???