Response Time Analysis of Firefighting Operations Using Discrete Event Simulation

Response Time Analysis of Firefighting Operations Using Discrete Event Simulation

Esra Aleisa e-mail: e.aleisa@ ku.edu.kw

Mehmet Savsar e-mail: mehmet@kuniv.edu.kw

Department of Industrial & Management Systems Engineering, Kuwait University Safat 13060 Kuwait

Abstract— this paper reports the results of applying discrete event simulation on firefighting operations in the State of Kuwait. The objective is to reduce the response times to reach fires in all districts to below five minutes. Other performance measures included response time/utilization, number of incidents exceeding ten minutes/utilization. Both are critical for decision making. An improved system reduced the average response from 7.3 minutes to around 3 minutes. The Simulation of the output runs were analyzed using ANOVA. The results were validated at 95% confidence level. Simulation turned to be an excellent tool for testing different alternatives efficiently without disturbing ongoing firefighting operations.

Keywords: firefighting, response time, Simulation, ANOVA

I. INTRODUCTION

Urban fires cause significant threat to the loss of lives and property. Statistics show that fires will injure one person every two minutes and kill another every 162 minutes in the United States alone. [1]. Fires in buildings alone have killed over 3,000, injured 15,000 and caused a loss of \$9.2 billion in fire-related property damage in the states [2]. This study uses discrete event simulation (DES) to model and improve firefighting operations in the state of Kuwait. The main objective is to reduce the response time required to reach an accident place. It is a life-saving criterion that need to be reduced and regularly monitored. Many Research efforts such as Huang et al. [3], Indriasari et al. [4], Erden and Coskun [5], and Wei and Juncheng [6], have conducted studies on optimal siting of fire stations in Singapore, South Jakarta, Istanbul and China, respectively, agreed on a response time of five minutes or less for firefighting services. Determining the proper response time is critical in order to beat flashovers. Flashovers is defined as the point in time at which a structure fire is fully developed, so people are not likely to survive and property is unsalvageable [9]. Tzeng and Chen [7], on the other hand, have conducted their study in Taipei's international airport in Taiwan, aimed for a response time of no more than three minutes for aircraft fire accidents. Yang et al. [8] have used a response time of four to five minutes for high risk fires and 10 ten to 20 minutes for low risk fires, in the Derbyshire region, UK. Murray and Tong [9] claim that a 6 minutes response time is realistic: one minutes for the dispatcher to handle the call of service, one minutes for a fire company to get into their gear and depart, and four minutes of travel time.

A simulation model is developed to study the firefighting system in detail and to determine the effects of implementing different changes on response time. Discrete event simulation was used due to its ability to incorporate many of the constraints commonly found in large-scale systems [10-12]. The simulation model was constructed using Arena software. The results of the system were validated at a 95% confidence level, which indicates that the simulation model is valid representation of reality, and is qualified it to be used as medium for diagnostics and improvements for such critical activities.

II. LITERATURE REVIEW

Hogg [13], one of the earliest studies that have used simulation for fire station location, aimed to minimize the sum of the financial losses from fire and the cost of providing the fire brigade. Another early research conducted by Monarchi et al. [14] have also used simulation to analyze alternative deployment strategies for urban fire suppression systems. Fitzsimmons [15] have used computer models for disseminating emergency ambulances to fire stations in an attempt to reduce response time. His research was the first to consider the urgency of response time reduction. Hendrick and Plane [16] have analyzed the deployment strategies for Denver's fire department. They used a simulation model to evaluate different fire companies' configurations. An extension to the aforementioned research was presented by Plane and Hendrick [17]. Halpern et al.[18] analyzed the effect of manning level in one and two-family residential fires in the city of Calgary, Canada. They established a relationship between manning levels and time needed to extinguish the fire by using an activity network approach. Badri et al. [19] have considered multiple objectives that incorporate both travel times and travel distances from stations to demand sites. They also considered political criteria in their model and used a programming modeling technique to solve the problem. Tzeng and Chen [20] developed a location model based on a fuzzy multi-objective approach to help in determining the optimal number and sites of fire stations at an international airport. Due to the combinatorial complexity of their formulation they employed a genetic algorithm (GA) to determine the optimal number and sites of fire stations in Taipei's international airport. Later, Patricio Pedernera et al. [21] developed a dynamic programming model which evaluates the different possible

combinations of fire stations' locations on the basis of the coverage which each location provides to the system, maximizing the surface area under coverage. Their model was applied to the Forest Fire Protection Program system in Chile. Huang et al. [3] used the Ant Algorithm to solve a fuzzy model characterized by a large scale Linear Feature Covering Problem (LFCP), by first transforming the continuous problem into a discrete one using the Geographic Information System (GIS). They applied the ant algorithm due to its ability to solve novel Multi-Objective problems for solving large scale location problems due to its new local Yanga et al.[23] have also search measure [3, 22]. developed a fuzzy multi-objective programming model for the optimization of fire station locations but through genetic algorithms.

III. FIRE OPERATIONS IN KUWAIT

There are twenty stations that belong to the firefighting sector. Each station has a specific coverage area. However, if a station is busy with an incident and another incident occurs at the same time in its coverage area, then the nearest station is assigned to cover. Our field study shows that the firefighting sector has attended 14,714 incidents last year. 30.4% of these incidents were actual fires. Fire incidents are classified as: residential areas, commercial areas, aviation transportation, marine transportation, and land transportation. Percentages of these incidents are shown in Table I. The remaining 69.6% are non-fire incidents; these are classified as rescue, good intent calls, service calls, occasion safety, false calls, and others with related percentages shown in Table II. Good intent calls had the highest percentage compared to the other types of calls.

TABLE I: CLASSIFICATION OF FIRE INCIDENTS ATTENDED BY THE FIREFIGHTING SECTOR

Fire Incidents	Number of Occurrence	Percentage		
Residential Areas	855	19.13		
Commercial Areas	476	10.65		
Other Areas	2,256	50.47		
Aviation Transportation	1	0.02		
Marine Transportation	11	0.24		
Land Transportation	871	19.49		
Total	4,470	100		

IV. SIMULATION SYSTEM PARAMETERS

The entities consist of calls that arrive to the emergency service center and delivered to the fire stations. These are transformed into information that is delivered to the fire station. Then, eventually to firefighters movement to the place of the incident.

The operating policy in the general simulation network model is that each station is able to receive one incident only; otherwise incidents are delivered to the next nearest available station. The system simulation model length is designed to cover 365 day, 24 hours/day. The simulation consisted of thirty replications.

TABLE II: CLASSIFICATION OF FIRE CALLS RECEIVED BY

	FIREFIGHTING SECTOR			
Non-fire incidents	Number of Occurrence	Percentage		
Rescue	2,010	19.62		
Good Intent Calls	5,406	52.75		
Service Calls	1,964	19.16		
Occasion Safety	524	5.11		
False Calls	280	2.73		
Others	64	0.63		
Total	10,248	100		

A. Statistical Data Fitting

We define denote the firefighting time intervals as:

- T_i = Time duration to move to the incident place.
- T_f = Time duration for firefighting.
- T_s = Time duration to return back to the station.

The fitting to statistical data distributions for the above intervals are shown in Table III.

TABLE III: STATISTICAL DATA FITTING FOR ARRIVAL OF FIRE RELATED INCIDENTS FOR SOME FIRE STATIONS

Stations	Ti (min)	Tf (min)	Ts (min)
Madina	0.5+LOGN (8.65,9.23)	0.5+GAMM (9.05, 1.09)	4+WEIB(23.3, 0.909)
Shuwaikh Industrial	1.5+GAMM (2.37,3.29)	0.5+LOGN (9.52, 21.6)	4+WEIB(14.1, 0.722)
Hilaly	0.5+WEIB (8.51, 1.53)	0.999+WEIB (14.2, 0.505)	2+EXPO(20.9)
Doha	6	10	24
Shohada	0.5+GAMM (5.5, 1.1)	0.5+WEIB (8.42, 1.32)	2.5+WEIB (22.9, 1.15)
Sulaibikat	1.5 +WEIB (6.56, 1.73)	0.5+LOGN (9.32, 13)	0.5+ERLA (8.82, 2)

TABLE IV: NUMBER OF ACCIDENTS FROM THE ACTUAL AND SIMULATION MODEL

Month	Simulation Model Output	Actual Incidents		
January	1113.87	1208		
February	1034.80	1051		
March	977.03	1236		
April	1077.43	1277		
May	1540.87	1332		
June	1260.77	1297		
July	1422.90	1300		
August	1669.53	1319		
September	1375.20	1207		
October	1757.30	1208		
November	1685.27	1081		
December	1155.80	1198		
Total incident	16070.77	14714		
Mean	1226.17	1339.23		
St-dev	7867.79	75961.2		

TABLE V: OUTPUT OF THE SIMULATION MODEL

Fire Station	I. Avg. Utilization (%)	II. Avg. Response Time (Min)	III. Avg. Number of Incidents >10 Min	IV. Response Time/Utilization	V. Incidents >10 Min/Utilization	
Jaleeb	15.89	11.85	643.07	0.746	40.470	
Alqurain	11.47	11.52	556.9	1.004	48.553	
Salmiya (south)	8.25	8.556	328.3	1.037	39.794	
Farwaniya	7.0675	7.182	176.83	1.016	25.020	
Mangaf	6.6316	8.928	356.63	1.346	53.777	
Hawalli	6.4816	114.952	577.83	17.735	89.149	
Mushrif	6.3942	13.206	353.87	2.065	55.342	
Jahra	6.3284	9.96	272.4	1.574	43.044	
Jahra Crafts	6.3246	13.89	414.57	2.196	65.549	
Salmiya	5.9923	7.404	86.5333	1.236	14.441	
Shohada	5.2795	8.028	207.3	1.521	39.265	
Sulaibikat	5.0643	8.856	280.83	1.749	55.453	
Mina Abdulla	4.676	18.264	171.17	3.906	36.606	
Hilaly	4.1738	9.666	180.8	2.316	43.318	
Mubarak Alkabeer	4.1552	18.438	179.63	4.437	43.230	
Ardiya	4.0306	10.698	159.5	2.654	39.572	
Shuwaikh Industrial	3.6691	10.758	263.83	2.932	71.906	
Airport	3.101	5.448	18.533	1.757	5.976	
Madina	2.8313	10.698	123.9	3.778	43.761	
Fahaheel	2.6462	7.02	61.9	2.653	23.392	
Military Airport	2.4868	15.63	69.7333	6.285	28.041	
Ahmadee	1.6888	8.826	61.4	5.226	36.357	
Nuwaiseeb	1.2514	15.198	88.4667	12.145	70.694	
Ras Alsalmiya	1.1238	26.7	15.6997	23.759	13.970	
Shoaiba Industrial	0.941	16.296	39.4667	17.318	41.941	
Wafra	0.7281	16.482	56.2	22.637	77.187	
Shoaiba Marine	0.7062	42.198	7.5	59.754	10.620	
Zoor	0.6918	21.606	20	31.232	28.910	
Doha (Technical rescue)	0.597	7.506	0	12.573	0.000	
Sabhan	0.4661	20.196	23.6333	43.330	50.704	
Salmi	0.4257	17.466	23.8333	41.029	55.986	
Khour al-Subiya	0.3838	29.514	21.1333	76.899	55.063	
Shuwaikh Marine	0.3759	10.692	33	28.444	87.789	
Subiya	0.3354	16.434	27.6	48.998	82.290	
Failaka Maeine	0.3107	8.526	13.9333	27.441	44.845	
Abdili	15.89	16.464	13.6	1.036	0.856	

V. MODEL VALIDATION

Statistical model validation is the process of deciding whether or not the simulated system is a valid representation of reality. Table IV summarizes the total number of incidents per month for the real as-is system and for the simulation model.

In order to test the hypothesis on equality of the means, first we perform the test on equality of variances as by having the null hypothesis as $H_0: \sigma_1^2 = \sigma_2^2$ and the alternative hypothesis as $H_1: \sigma_1^2 \neq \sigma_2^2$ the resultant P-value = .001. The decision rule is to reject H_0 if the P-value is less than the significance level of $\alpha = 0.05$. Hence, we rejected H_0 and concluded that the two population variances are not equal. Which is typical. Next, we need to test the equality of two means. The null hypothesis here is $H_0: \mu_1 = \mu_2$ while the alternative hypothesis is $H_1: \mu_1 \neq \mu_2$. The resultant P-value = 0.2. Using the same decision rule, since test statistic of 0.2 was larger than significance level of 0.05, we failed to reject H_0 and conclude that both population means are equal at a

95% confidence level. Finally, we constructed a confidence interval on the difference between the two population means. We are 95% confident that the difference between the two means is between [-68, 294]. Since zero is within this interval, we can conclude that both population means are equal at a 95% confidence level. Our model is a valid representation of reality. Other variables were also tested to ensure system validation.

VI. ANALYSIS OF SIMULATION OUTPUT

Table V shows the outputs from the simulation model. As depicted in the Table V, Jileeb Shyookh district had the highest station in utilization and Shoaiba Marine had the highest response time. While response time is an important measure, the number of incidents for which delay time exceeds ten minutes is a main concern that has to be addressed in improving the fire station operations. Utilization of a station only tells us whether or not the station is overloaded. An important measure that could be developed is the combination of these measures. We have calculated a measure based on *response time/utilization*, for which

TABLE VI: ANOVA MODEL

					Replication 1		Replication 2					
No	Label	(A)	(B)	AB	(C)	AC	BC	ABC	Response time	No. of delayed incident	Response time	No. of delayed incident
1	(1)	-1	-1	1	-1	1	1	-1	7.49	70	7.72	85
2	a	1	-1	-1	-1	-1	1	1	4.56	0	4.59	0
3	ь	-1	1	-1	-1	1	-1	1	4.08	0	4.07	0
4	Ab	1	1	1	-1	-1	-1	-1	3.57	0	3.58	0
5	C	-1	-1	1	1	-1	-1	1	3.97	0	3.98	0
6	Ac	1	-1	-1	1	1	-1	-1	3.33	0	3.32	0
7	Вс	-1	1	-1	1	-1	1	-1	3.07	0	3.08	0
8	Abc	1	1	1	1	1	1	1	2.48	0	2.83	0

smaller values indicate better performance. We have also devised another measure based on *number of incidents exceeding 10 minutes/utilization*, which is also required to be low. As it can be seen from the Table VI, with respect to response time/utilization, Jaleeb station performed the best with a minimum value of 0.746 and Khour Al-Subiya performed worst with a maximum value of 76.899. With respect to number of incidents exceeding 10 minutes/utilization, (see column V of table VI), Doha (Technical Rescue) station performed best compared to all other fire stations, while Hawalli performed worst with a value of 89.149.

VII. ANALYSIS OF VARIANCE

In this section, we use the analysis of variance (ANOVA) to identify the factors of significant effect on response time reduction. We conducted the experiments using 2³ factorial designs on our validated simulation models. The three factors consist of:

- A: Using navigation device in the vehicle.
- B: Using a centralized network that links the emergency service centers and fire stations
- C: Using the phone number to locate incidence position (when land lines are used)

Each factor is assigned two levels as follows:

- 1. Using the current procedure
- 2. Using the suggested option

For analysis of suggested improvements, we conducted full factorial design of the experiments with 2³ design formed by treatment combinations. Minitab software was used to

analyze the results. Table VI shows the algebraic signs for the factors and levels assigned.

Factor C has the highest effect, followed by B, and then by A. The F-values of the main effects, the 2-Way interaction, and the 3-Way interaction are high. We conclude that the main effects of the factors and their interactions are all significant.

VIII. RESULTS OF THE IMPROVED MODEL

After determining significant factors affecting the response time, we re-ran the simulation code while using the ANOVA results. On average, the simulation model suggests the average response time will reduce rom 7.3 minutes to around 3 minutes. The following tests are performed in order to statistically compare the current system with the improved system. First, we test the equality of two population variances: using $H_0: \sigma_1^2 = \sigma_2^2$ and $H_1: \sigma_1^2 \neq \sigma_2^2$. The corresponding *P*-value = 0.00, indicates that the two population variances are not equal. Testing the equality of two population means for the current and improved system: with $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$ results in a *P*-value =0.00, which supports the hypothesis that the current and improved response times to statistical differ.

IX. CONCLUSION

In this study, we have applied discrete event simulation to model firefighting services of the state of Kuwait. All fire stations in all governorates were analyzed in an attempt to reduce response times to incidence place. Thus, saving more human life and to minimizing damage to property. The data was collected over a five years period and a simulation code was generated for all existing fire stations and associated emergency service rooms. The simulation model of the current simulation was validated at a 95% confidence level. Therefore, it was qualified to be used as

an experimentation medium to test different scenarios and technologies that aim to reduce response time. Experiments were carried out using 2³ factorial designs and analyzed to indicate those factors that will contribute most to response time reduction. Analysis of the production showed, that the best scenario involved the introduction of centralized systems and navigation technology. The simulation with the technology introduced has succeeded in reducing the response time by 32%. Simulation turned out to provide valuable information and insight of problems in the current systems. Also, it enabled testing proposed solutions without disturbing the current system or jeopardising lives and properties.

ACKNOWLEDGMENT

The Authors thank Kuwait University Research Administration for supporting the research entitled Fire Station Location Analysis in a Metropolitan Area under the grant number EI02/11.

REFERENCES

- K. MJ. and S. JGP. (2008). U.S. Fire Department Profile Through 2007, Fire Analysis and Research Division National Fire Protection Association. Available: http://www.doi.idah.gov/SFM/FDProfile 2007.pdf
- [2] K. Yamashita, "Understanding Urban Fire Modeling Fire Incidence Using Classical and Geographically Weighted Regression," Master of Arts, Department of Geography, Western Washington University, USA, USA, 2000.
- [3] B. Huang, N. Liu, and C. M., "A GIS supported Ant algorithm for the linear feature covering problem with distance constraints," *Decision Support Systems*, vol. 42, pp. 1063-1075, 2005.
- [4] V. Indriasari, A. Mahmud, N. Ahmad, and A. Shariff, "Maximal service area problem for optimal siting of emergency facilities," *International Journal of Geographical Information Science*, vol. 24, pp. 213-230, 2008.
- [5] T. Erden and M. Coskun, "Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems," *Natural Hazards and Earth System Sciences*, vol. 10, pp. 2127-2134., 2010.
- [6] Z. Wei and J. Juncheng, "Research on the Location of Fire Station Based on GIS and GA," *Applied Mechanics and Materials*, pp. 377-380, 2012.
- [7] G. H. Tzenga and Y. W. Chen, "The Optimal Location of Airport Fire Stations: A Fuzzy Multi-Objective Programming and revised Genetic Algorithm," *Transportation Planning and Technology*, vol. 23, pp. 37-55, 1999.
- [8] L. Yang, B. F. Jones, and S.-H. Yang, "A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms.," *European Journal of Operational Research*, vol. 181, pp. 903-915, 2007.
- [9] A. Murray and D. Tong, "GIS and Spatial analysis in the media," *Applied Geography*, pp. 250-259, 2009.
- [10] E. Aleisa, Facilities Planning and Simulation, the Passionate Attachment. Saarbrücken, Germany: LAP Lambert Academic Publishing AG & Co, 2010.
- [11] E. Aleisa and L. Lin, "For effective facilities planning: layout optimization then simulation, or vice versa?," presented at the Proceedings of the 37th conference on Winter simulation, Orlando, Florida, 2005.
- [12] E. Aleisa and M. D. Al-Ahmed, "Application of discrete event simulation to design and management of waste water pit –a case

- study," in *Proceeding of The 5th IEEE GCC Conference & Exhibitions (IEEEGCC 2009)*, Kuwait City, Kuwait, 2009.
- [13] J. Hogg, "Optimal Siting of Fire Stations," *Operations Research Quarterly*, vol. 19, pp. 275–287, 1968.
- [14] D. E. Monarchi, T. E. Hendrick, and D. R. Plane, "SIMULATION FOR FIRE DEPARTMENT DEPLOYMENT POLICY ANALYSIS," Decision Sciences, vol. 8, pp. 211-227, 1977.
- [15] J. Fitzsimmons, "Allocation of emergency ambulances to fire stations," Fire Technology, vol. 9, pp. 112-118, 1973.
- [16] T. E. Hendrick and D. R. Plane, "An Analysis of the Deployment of Fire Fighting Resources in Denver, Colorado," Office of Policy Development and Research Department of Housing and Urban Development Report No. 1566/3-HUD., Denver, ColoradomAY 1975 1975.
- [17] d. r. PLANE and T. E. Hendrick, "MATHEMATICAL-PROGRAMMING AND LOCATION OF FIRE COMPANIES FOR DENVER-FIRE-DEPARTMENT," *OPERATIONS RESEARCH* vol. 25, pp. 563-578, 1977.
- [18] J. Halpern, A. Sarisamlis, and Y. Wand, "An Activity Network Approach for the Analysis of Manning Policies in Fire Fighting Operations," *Management Science*, vol. 28, pp. 1121-1136, 1982.
- [19] M. A. Badri, A. K. Mortagy, and C. A. Alsayed, "A multi-objective model for locating fire stations," *European Journal of Operational Research*, vol. 110, pp. 243-260, 10/16/1998.
- [20] G. H. Tzeng and Y. W. Chen, "The optimal location of airport fire stations: a fuzzy multi-objective programming and revised genetic algorithm approach," *Transportation Planning and Technology*, vol. 23, pp. 37-55, 1999/10/01 1999.
- [21] A. Patricio Pedernera, S. Miguel Castillo, and A. Guillermo Julio, "A Model for Dynamic Programming to Back Strategic Planning for Fire Management in Chile," in *Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View*, Córdoba, Spain., 2004.
- [22] N. Liu, B. Huang, and C. M., "Optimal Siting of Fire-Stations Using GIS and ANT Algorithm " *Journal of Computing in Civil Engineering*, vol. 20, pp. 361-369, 2006.
- [23] L. Yang, B. F. Jones, and S.-H. Yang, "A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms," *European Journal of Operational Research*, vol. 181, pp. 903-915, 9/1/2007.