10

15

20

A system for transmitting a message in a communications network, the system comprising:

a signaling gateway operable to receive a message directed to a destination circuit;

a plurality of voice gateways coupled to the signaling gateway, the voice gateways comprising a destination voice gateway coupled to the destination circuit; and

a plurality of circuits comprising the destination circuit, each circuit coupled to at least one of the voice gateways, wherein the signaling gateway is operable to determine the destination voice gateway and to send the message to the destination voice gateway.

2. The system of claim 1, wherein:

the destination voice gateway is associated with an Internet protocol address; and

the signaling gateway is operable to:

associate the destination circuit with the Internet protocol address; and

send the message to the destination voice gateway by using the Internet protocol address.

25 3. The system of claim 1, further comprising a hash table associating a circuit with a voice gateway coupled to the circuit, wherein the signaling gateway is operable to determine the destination voice gateway by using the hash table.

10

15

20

25

- 4. The system of claim 1, further comprising a hash table associating the signaling gateway with the destination circuit, wherein the signaling gateway is operable to determine that the message is at the appropriate signaling gateway by using the hash table.
 - 5. The system of claim 1, wherein:

the signaling gateway is operable to execute one or more message transfer parts, each message transfer part operable to direct the message to at least one of the voice gateways; and

at least one voice gateway is operable to execute an integrated services digital network user part, the integrated services digital network user part operable to provide signaling information to a circuit.

- 6. The system of claim 1, further comprising a message direction part operable to append a header to the message, the header comprising an address associated with the signaling gateway and a circuit identifier associated with the destination circuit.
- 7. The system of claim 6, wherein the header comprises a sender identifier identifying a sender of the message.
 - 8. The system of claim 1, wherein the message comprises data information.
- 9. The system of claim 1, wherein the message comprises video information.

10

15

20

A method for transmitting a message in a communications network, the method comprising:

receiving a message at a signaling gateway coupled to a plurality of voice gateways, the message directed to a destination circuit;

determining a destination voice gateway coupled to the destination circuit, the voice gateways comprising the destination voice gateway; and

communicating the message to the destination voice gateway.

11. The method of claim 10, further comprising:

associating the destination circuit with an Internet protocol address identifying the destination voice gateway; and

communicating the message to the destination voice gateway by using the Internet protocol address.

- 12. The method of claim 10, further comprising:
 associating a circuit with a voice gateway using a
 hash table, the circuit coupled to the voice gateway; and
 determining the destination voice gateway by using
- determining the destination voice gateway by using the hash table.
- 25 13. The method of claim 10, further comprising:
 associating the signaling gateway with the
 destination circuit using a hash table; and

determining that the message is at the appropriate signaling gateway by using the hash table.

14. The method of claim 10, further comprising:

executing one or more message transfer parts at the signaling gateway, the message transfer part operable to direct the message from the signaling gateway to at least one of the voice gateways; and

executing an integrated services digital network user part at a voice gateway, the integrated services digital network user part operable to provide signaling information to a circuit.

10

5

15. The method of claim 10, further comprising appending a header to the message, the header comprising an address associated with the signaling gateway and a circuit identifier associated with the destination circuit.

15

16. The method of claim 15, wherein the header comprises a sender identifier identifying a sender of the message.

20

- 17. The method of claim 10, wherein the message comprises data information.
- 18. The method of claim 10, wherein the message comprises video information.

10

15

20

A signaling gateway for transmitting a message in a communications network, the signaling gateway comprising:

a signaling software stack operable to:

receive a message directed to a destination circuit, and

determine a destination voice gateway operable to communicate the message to the destination circuit, the destination voice gateway one of a plurality of voice gateways coupled to the signaling gateway; and

a message direction part operable to append a header to the message, the header comprising a voice gateway address identifying the destination voice gateway.

20. The signaling gateway of claim 19, wherein:

the destination voice gateway is associated with an Internet protocol address; and

the header comprises the Internet protocol address.

21. The signaling gateway of claim 19, further comprising a hash table associating a circuit with a voice gateway coupled to the circuit, wherein the signaling software stack is operable to determine the destination voice gateway by using the hash table.

22. The signaling gateway of claim 19, further comprising a hash table associating the signaling gateway with the destination circuit, wherein the signaling software stack is operable to determine that the message is at the appropriate signaling gateway by using the hash table.

25

30

- 23. The signaling gateway of claim 19, wherein the header comprises a circuit identifier associated with the destination circuit.
- 5 24. The signaling gateway of claim 19, wherein the header comprises a sender identifier identifying a sender of the message.
- 25. The signaling gateway of claim 19, wherein themessage comprises data information.
 - 26. The signaling gateway of claim 19, wherein the message comprises video information.

10

15

20

25

27. A system for transmitting a message in a communications network, the system comprising:

means for receiving a message at a signaling gateway coupled to a plurality of voice gateways, the message directed to a destination circuit;

means for determining a destination voice gateway coupled to the destination circuit, the voice gateways comprising the destination voice gateway; and

means for communicating the message to the destination voice gateway.

28. The system of claim 27, further comprising:

means for associating the destination circuit with an Internet protocol address identifying the destination voice gateway; and

means for communicating the message to the destination voice gateway by using the Internet protocol address.

29. The system of claim 27, further comprising:

means for associating a circuit with a voice gateway using a hash table, the circuit coupled to the voice gateway; and

means for determining the destination voice gateway by using the hash table.

30. The system of claim 27, further comprising:

means for associating the signaling gateway with the destination circuit using a hash table; and

means for determining that the message is at the appropriate signaling gateway by using the hash table.

15

20

31. The system of claim 27, further comprising:

24

means for executing one or more message transfer parts to direct the message from the signaling gateway to at least one of the voice gateways; and

means for executing an integrated services digital network user part at a voice gateway, the integrated services digital network user part operable to provide signaling information to a circuit.

- 32. The system of claim 27, further comprising means for appending a header to the message, the header comprising an address associated with the signaling gateway and a circuit identifier associated with the destination circuit.
- 33. The system of claim 32, wherein the header comprises a sender identifier identifying a sender of the message.
- 34. The system of claim 27, wherein the message comprises data information.
- 35. The system of claim 27, wherein the message comprises video information.

10

15

20

25

30

36. Signaling software embodied in a computerreadable medium and operable to perform the following:

receiving a message at a signaling gateway coupled to a plurality of voice gateways, the message directed to a destination circuit;

determining a destination voice gateway coupled to the destination circuit, the voice gateways comprising the destination voice gateway; and

communicating the message to the destination voice gateway.

37. The signaling software of claim 36, further operable to:

associate the destination circuit with an Internet protocol address identifying the destination voice gateway; and

communicate the message to the destination voice gateway by using the Internet protocol address.

38. The signaling software of claim 36, further operable to:

associate a circuit with a voice gateway using a hash table, the circuit coupled to the voice gateway; and determine the destination voice gateway by using the

hash table.

39. The signaling software of claim 36, further operable to:

associate the signaling gateway with the destination circuit using a hash table; and

determine that the message is at the appropriate signaling gateway by using the hash table.

10

15

20

40. The signaling software of claim 36, further operable to:

execute one or more message transfer parts at the signaling gateway, the message transfer part operable to direct the message from the signaling gateway to at least one of the voice gateways; and

execute an integrated services digital network user part at a voice gateway, the integrated services digital network user part operable to provide signaling information to a circuit.

- 41. The signaling software of claim 36, further operable to append a header to the message, the header comprising an address associated with the signaling gateway and a circuit identifier associated with the destination circuit.
- 42. The signaling software of claim 41, wherein the header comprises a sender identifier identifying a sender of the message.
- 43. The signaling software of claim 36, wherein the message comprises data information.
- 25 44. The signaling software of claim 36, wherein the message comprises video information.

10

15

20

25

30

a signaling gateway operable to receive a message directed to a destination circuit;

a plurality of voice gateways coupled to the signaling gateway, the voice gateways comprising a destination voice gateway coupled to the destination circuit, the voice gateways operable to execute an integrated services digital network user part, the integrated services digital network user part operable to provide signaling information to a circuit; and

a hash table associating the destination circuit with the destination voice gateway, the hash table associating the signaling gateway with the destination circuit;

a plurality of circuits comprising the destination circuit, each circuit coupled to at least one of the voice gateways, wherein the signaling gateway is operable to:

execute one or more message transfer parts, each message transfer part operable to direct the message to at least one of the voice gateways;

determine the destination voice gateway by using the hash table;

determine that the message is at the appropriate signaling gateway by using the hash table;

associate the destination circuit with an Internet protocol address identifying the destination voice gateway;

append a header to the message, the header comprising an address associated with the signaling gateway, a circuit identifier associated with the

destination circuit, and a sender identifier identifying a sender of the message; and

send the message to the destination voice gateway.