Hunter Lybbert Student ID: 2426454 03-13-25 AMATH 502

HOMEWORK 8

Exercises come from the assignment sheet provided by the professor on canvas.

- 1: See assignment document for background on the Sierpinski Carpet.
 - (a) Show that the (Lebesgue) measure of the resulting fractal is 0. Justify your work.

Solution:

TODO

(b) Find the similarity dimension of the limiting fractal. Show and explain your work.

Solution:

TODO

(c) Show that the box-counting dimension of this fractal is the same as the similarity dimension. (You may not be able to complete this until box-counting dimension is defined in class).

Solution:

TODO

(d) Show that there are uncountably many points on the interior of the limiting fractal (i.e. infinitely many points without x = 0, x = 1, y = 0, or y = 1). Hint: Try showing this in just one dimension, e.g., show that there are uncountably many points (x, y) with a fixed value of y, perhaps y = 0.5 is a good choice.

Solution:

TODO

2:	In this problem we construct what is called a middle-halves Cantor set. Consider the
	following Cantor set construction. Start with the interval [0, 1], then remove the middle
	half. Continue this process for each sub-interval.

1	(a)) Draw	S_1	and	S_2
١	Ct.	Diaw	\sim 1	and	ν .

Solution:

TODO

(b) Find the similarity dimension of the set.

Solution:

TODO

(c) Find the measure of the set.

Solution:

TODO

- **3:** See assignment sheet for details of the *fat fractal*.
 - (a) Find the (Lebesgue) measure of this cantor set. Show your work.

Solution:

TODO

(b) Is the fractal self similar? Justify your answer.

Hint: Can you find the similarity dimension of this set? What happens when you try?)

Note: You may find this part to be difficult. If you are struggling with it, you may want to skip it for now and come back to it later.

4: The tent map on the interval [0, 1] is defined by $x_{n+1} = f(x_n)$, where

$$f(x) = \begin{cases} rx, & 0 \le x \le \frac{1}{2} \\ r(1-x), & \frac{1}{2} < x \le 1 \end{cases}.$$

Assume that r > 2. Then some points get mapped outside of the interval [0, 1]. If $f(x_0) > 1$ then we say that x_0 has "escaped" after one iteration. Similarly, if $f^n(x_0) > 1$ for some finite n and n is the smallest integer for which this is true, then we say x_0 has escaped after n iterations.

- (a) Find the set of initial conditions x0 that escape after one iteration.
- (b) Find the set of initial conditions x0 that escape after two iterations.
- (c) Describe the set of x0 that never escape. This is called the invariant set. Hint: First look at what happens for r = 3. Does this look like a set you recognize?
- (d) Find the box dimension of the invariant set (for general r, not r = 3).
- (e) This is just a note, you don't need to answer anything here. After completing this problem, you will have shown that the invariant set of this chaotic map forms a fractal. Cool! This invariant set is called a strange repeller because it is a fractal set that repels all nearby points that are not in the set and points in the set are part of a chaotic orbit.