A Minimally Constrained Optimization Algorithm for Table Cartograms

Andrew McNutt
Gordon Kindlmann
University of Chicago

Speed Camera Violations In Chicago 2017

Outliers are highlighted aswarps to the "fabric" of the chart. Here we see the effect of a school holiday (1/16) and an outlier of unknown origin.

The background shows a checkerboard table cartogram (such as those shown in the example transformations) converging. Yellow is high error, black is no error

What is a Table Cartogram?

Table cartograms are a form of data visualization that renders *tabular data* as a grid of quadrilateral cells, whose areas are changed to fit the data.

Like a heatmap that has been area-ed rather than colored.

They possess an **Accurate Embedding of Data** as area.

They have a **Planar Grid-like Topology** that is constrained to a rectangle

How to efficiently & expressively compute Table Cartograms?

We contribute a web-ready algorithm for constructing Table Cartograms based on imposing a minimal collection of constraints. This enables creative control of the output.

$$\mathscr{C}(\vec{x}) = \sum_{v_i \in \vec{x}} \lambda_1 \operatorname{border}(v_i) + \lambda_2 \operatorname{order}(v_i) + \lambda_3 \operatorname{overlap}(v_i)$$

$$\mathcal{E} = \frac{1}{\text{num cells}} \sum_{\substack{\text{cell} \in \text{table}}} \frac{\left(\text{cell value} - \frac{\text{cell area}}{\text{table area}} \sum_{\text{value} \in \text{table}}\right)^2}{(\text{cell value})^2}$$

OBJECTIVE

$$obj(\vec{x}) = \mathscr{E}(\vec{x}) + \mathscr{C}(\vec{x})$$

This formulation is continuous & differentiable, which works agreeably with adaptive SGD and performs well in the browser.

Find out more at mcnutt.in/#/research/table-cartogram