Theorem Corollary Example

Mathematics and Statistics Brush-up: Continuity and Convexity

Albert Rodriguez-Sala

UAB and Barcelona GSE

Continuity

Continuity

A map $f: X \to \mathbb{R}$ is said to be **continuous at a point** x if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$\forall y \in X$$
 s.t. $d(x,y) < \delta \Longrightarrow d(f(x),f(y)) < \varepsilon$

If f is not continuous at x, we say that f is discontinuous at x. If f is continuous at every point in a set X, we say that f is continuous on X. Notice that the definition given above is equivalent to:

$$f(N_{\delta}(x)) \subseteq N_{\varepsilon}(f(x))$$

Examples

Exercise

Exercise

let $f : \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$. Show that f(x) is continuous everywhere:

Uniformly continuous (global continuity)

Notice that continuity is a local property. To achieve global continuity, a $\textit{unique } \delta$ regardless what x is.

A function $f: X \to \mathbb{R}$ is said to be **uniformly continuous** if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that:

$$\forall y, x \in X$$
 s.t. $d(x, y) < \delta \longrightarrow d(f(x), f(y)) < \varepsilon$

Note that this is equivalent to sat that for uniform continuity we require a $\delta > 0$ such that δ is not a function of x. Obviously, a function is not uniformly continuous if it is not continuous.

5

Proposition

Proposition: If $f: X \to Y$ is continuous and X is compact, then it is uniformly continuous.

Other definitions of continuity

A function $f: X \subset \mathbb{R} \to Y \subset \mathbb{R}$ is **continuous (sequences definition)** if and only if for any sequence (x_n) converging to $\bar{x} \in \mathbb{R}$, the sequence $(f(x_n))$ converges to $f(\bar{x}) \in \mathbb{R}$

Other definitions of continuity

Proposition: Let $f: X \subset \mathbb{R} \to Y \subset \mathbb{R}$. The following statements are equivalent:

- 1. *f* is continous.
- 2. for all sets $O \subseteq Y$ open, the set called inverse image, $f^{-1}(O) \subseteq X$, is open.
- 3. for all sets $S \subseteq Y$ closed, the set $f^{-1}(S) \subseteq X$, is closed.

That is a function f is continuous if and only if the preimages of open (closed) sets are open (closed).

Intermediate value theorem

Theorem

Intermediate Value Theorem: If $f : \mathbb{R} \to \mathbb{R}$ is continuous on the closed interval [a, b] and $k \in \mathbb{R}$ is a scalar between f(a) and f(b), then there exists a $c \in [a, b]$ such that f(c)=k.

The Weierstrass's theorem

Theorem

Weierstrass's theorem: If X is a compact metric space and $f: X \to \mathbb{R}$ is a continuous function, then there exists maximum and minimum of f in X.

The Weierstrass's theorem

Theorem

Weierstrass's theorem: If X is a compact metric space and $f: X \to \mathbb{R}$ is a continuous function, then there exists maximum and minimum of f in X.

Proof.

Notice that the set spanned by the images of the whole domain X under f, is closed and bounded by continuity of f. Since f(X) is bounded, both $sup\{f(x):x\in S\}$ and $inf\{f(x):x\in S\}$ exist. Since the supremum and the infimum belong to the closure (cl(f(X))) and f(X) is closed, then they must belong to f(X) as well.

Convexity

Convexity

For any two points $x, y \in \mathbb{R}^n$

- the set $\{\lambda x + (1 \lambda)y : \lambda \in \mathbb{R}\}$ is called **line** through x and y.
- the set $\{\lambda x + (1 \lambda)y : \lambda \in [0, 1]\}$ is called **segment** between x and y.

Moreover, for all $m \in \mathbb{N}$ and for all $x^1, \ldots, x^m \in \mathbb{R}^n$, their **convex combination** are points of the following form: $\sum_{i=1}^m \lambda_i x^i$, with $\lambda_i > 0$ for all i and $\sum_{i=1}^m \lambda_i = 1$. thus the segment between x and y is the set of all convex combinations of x and y.

Convex sets

A set $S \subset \mathbb{R}^n$ is said to be **convex** if for all $x, y \in S$ and for all $\lambda \in [0, 1]$ we have that

$$(\lambda x + (1 - \lambda)y) \in S$$

This implies that a set is convex if and only if it contains all the segments between any pair of points the set itself. Equivalently, a set S is convex if and only if every combination of points of S lies in S.

Convex hull

Given a set $S \in \mathbb{R}^n$, the smallest convex set that contains S is called **convex hull** of S, denoted by co(S). An analogous definition of convex hull states it is the set of all convex combinations of points in the set S:

$$co(S) = \{\lambda_1 x_1 + \cdots + \lambda_k x_k : x_i \in S, \lambda_i \geq 0, \sum_{i=1}^k \lambda_i = 1\}$$

Notice that any closed convex set can be written as the convex hull of itself.

Properties convex sets

- the intersection of any collection of convex sets is a convex set.
- The linear combination of convex sets is convex: Let S and T be convex subsets in $X \subseteq \mathbb{R}^n$ and α and β be real numbers. Then, the set $Z = \alpha S + \beta T = \{z \in Z : \alpha x + \beta y, x \in S, y \in Y\}$ is convex.

Brouwer's fixed-point theorem

Theorem Brouwer's fixed-point theorem Every continuous function f from a convex compact set $X \subset \mathbb{R}^n$ to itself $(f: X \to X)$ has a fixed point x^* such that $f(x^*) = x^*$.

Convex functions

Let S be a convex subset in a real vector space. A function $f: S \to \mathbb{R}$ is said to be **convex (strictly convex)** if for all $x, y \in S, \lambda \in [0, 1]$

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$$

And a function $f:X\to\mathbb{R}$ is said to be **concave (strictly concave)** if for all $x,y\in\mathcal{S},\lambda\in[0,1]$

$$f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y)$$

That is a function is convex (concave) if -f is concave (convex).

Epigraph and Hypograph

Let $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$, then:

- The **epigraph** of f is defined as: $epif := \{(x, y) \in \mathbb{R}^{n+1} : x \in S, y \geq f(x)\}$
- The **hypograph** of f is defined as: $hypf := \{(x, y) \in \mathbb{R}^{n+1} : x \in S, y \leq f(x)\}$

Notice that any function $f:U\subseteq\mathbb{R}^n\to\mathbb{R}$ is convex if and only if its epigraph is a convex set. Conversely, f is concave if and only if its hypograph is a convex set. We define:

Contour sets

• The **upper contour set** of a function f consists of all of the points in the domain of f at which the value of the function is at least a certain value (say $\alpha \in \mathbb{R}$).

$$U_f(\alpha) = \{x \in X : f(x) \ge \alpha\}.$$

• The **lower contour set** of a function f consists of all of the points in the domain of f at which the value of the function is no more than a certain value ($\alpha \in \mathbb{R}$)

$$L_f(\alpha) = \{x \in X : f(x) \le \alpha\}$$

Quasi-convex and quasi-concave functions

Let S be a convex subset of \mathbb{R}^n , then a real function $f: S \to \mathbb{R}$ is said to be

• quasi-convex if for all $x, y \in S$ and $\lambda \in [0, 1]$ then:

$$f(\lambda x + (1 - \lambda)y) \le max\{f(x), f(y)\}$$

• quasi-concave if for all $x, y \in S$ and $\lambda \in [0, 1]$ then:

$$f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}$$

Notice that a function f is quasi-concave if $U_f(\alpha)$ is a convex set $\forall \alpha \in \mathbb{R}$. Analogously, a function f is said quasi-convex if $L_f(\alpha)$ is a convex set $\forall \alpha \in \mathbb{R}$.

Prop: Increasing functions are both quasi-ccv and quasi-cvx

• **Proposition:** Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function. Then, f is both quasi-concave and cuasi-convex.

Proof.

Consider $x,y\in\mathbb{R},\lambda\in(0,1)$. Assume, without l.o.g, that x>y. Then

$$x > \lambda x + (1 - \lambda)y > y$$

Since f is increasing, then

$$f(x) \ge f(\lambda x + (1 - \lambda)y \ge f(y)$$

Since $f(x) = max\{f(x), f(y)\}$ then from the first inequality, $f(y) \le max\{f(x), f(y)\}$, so f is quasi-convex. Then, since $f(y) = min\{f(x), f(y)\}$, then, from the second inequality, $f(x) \ge min\{f(x), f(y)\}$, so f is quasi-concave.