

1.3.1 Kennwerte des Motors aus Datenblatt

(Lücken bei der Versuchsdurchführung bitte ausfüllen)

Teilnehmer-Nr: 3 Zugewiesene Aufgaben-Datei: 06

Motordaten aus Oemer_DC_Motors_Qcc.pdf

Modell-Nr: 71L Nennleistung: 0.76kW

Ankernennspannung U_{AN}	=	170	V	(1.10)
Ankernennstrom I_{AN}	=	5,6	A	(1.11)
${\rm max.} \ {\rm Ankerstrom} \ I_{ANmax}$	=	9	A	(1.12)
${\sf Nenndrehzahl}\ n_N$	=	2500	min ⁻¹	(1.13)
max. Drehzahl n_{max}	=	3000	min^{-1}	(1.14)
Ankerwiderstand \mathcal{R}_{A}	=	3,4	Ω	(1.15)
Ankerinduktivität \mathcal{L}_{A}	=	22	mH	(1.16)
${\sf Nennantriebs moment}\ M_N$	=	2,9	Nm	(1.17)
Trägheitsmoment ${\cal J}$	=	0,002	${\sf kgm}^2$	(1.18)

	Peso Weight		13,6 K	(g	Inerzia Inertia	J	0,0020	kgm²	Eccita: Field	zione	110-200)- 330 Vdc	Р	72 W	K 8	30 ms
S		170) V			15	0 V		М	I Max.	Arm.	N	Ind.	Res.	Cod.	Spaz.
	P	N	1	η	P	N	- 1	η	(S1)	15"-5'	max.	max.	L	115°C	Arm.	Brush
ဗ္ဗ	kW	rpm	Α	%	kW	rpm	Α	%	Nm	Α	V	rpm	mH	Ω		nr.
~	0,97	3000	7,0	81,5	0,84	2600	7,0	80,2	3,1	11	200	3500	15	2,5	E0	2
=	0,76	2500	5,6	80,3	0,66	2200	5,6	79,1	2,9	9	200	3000	22	3,4	F0	2
_	0,57	2000	4,3	78,9	0,49	1700	4,1	79,5	2,7	7	210	2500	38	5,3	G6	2
	0,43	1500	3,2	78,3	0,37	1300	3,2	77,6	2,7	5	220	2000	64	9,4	1Z0	2

1.3.2 Berechnung weiterer Kennwerte des Motors:

Gegenspannung
$$e_M=u_A-R_Ai_A=$$
 _______ V (1.20)

Motorkonstante
$$K_F = \frac{e_M}{\omega_N} = \underbrace{0.5769}$$
 Vs (1.21)

Antriebsmoment
$$M_A = K_F \cdot i_{AN} = 3.23$$
 Nm (1.22)
Reibmoment $M_R = M_A - M_N = 0.33$ Nm (1.23)

Reibmoment
$$M_R = M_A - M_N = 0.33$$
 Nm (1.23)

1.3.3 Kennwerte und Übertragungsfunktion des Ankerkreises:

Strecke:

Stellglied Stromrichter (siehe Gleichung 1.7):

$$G_{SR} = \frac{K_{SR}}{1 + T_{SR} \cdot s} = \frac{\frac{2*170/20}{1+0.00005s}} \tag{1.24}$$

Motor:

Proportionalbeiwert des Ankers
$$K_A=\frac{1}{R_A}=\frac{1}{3.4}\frac{\Omega}{\Omega}=\frac{0.294}{0.294}\Omega^{-1}$$
 Zeitkonstante des Ankers $T_A=\frac{L_A}{R_A}=\frac{22}{3.4}\frac{\text{mH}}{\Omega}=\frac{6.47}{0.294}$ ms

$$G_A = \frac{K_A}{1 + T_A s} = \frac{0.294}{1 + 0.00647s} \tag{1.25}$$

Messeinrichtung (siehe Gleichung 1.8):

$$G_{M,ui} = \frac{K_{M,ui}}{1 + T_{M,ui} s} = \frac{1.7857}{1 + 0.0005s}$$
 (1.26)

1.3.4 Berechnung des Ankerstromreglers:

Die Werte sollen nach Betragsoptimum berechnet werden:

$$rac{K_S}{\prod\limits_{v=1}^n(1+T_vs)}$$
 1 große Zeitkonstante $K_Prac{1+T_Ns}{T_Ns}$ $K_P=rac{T_1}{2K_ST_\Sigma},$ $T_N=T_1$ $T_1\gg T_\Sigma=\sum_{v=2}^nT_v$

Ergebnisse:

Streckenverstärkung innerer RK
$$K_{S,i} =$$
 KM*KA=1.78*0.294=0.5233

Summezeitkonstante $T_{\Sigma,i} =$ 0.55ms = 0.00055s

$$K_{P,i} = \frac{0.00647}{0.0098175} = 0.659027$$

$$T_{N,i} = \frac{TA}{0.00647s} = \frac{0.00647s}{0.00647s}$$
 (1.27)
$$G_{PI,i} = K_{P,i} \frac{1 + T_{N,i} \, s}{T_{N,i} \, s} = \frac{1.32}{0.00647} = 0.00647$$

1.3.5 Parametrierung des Ankerstromkreises:

1.3.6 Simulation des inneren Regelkreises:

Notation von i-Sollwertanpassung:

Notieren Sie den Wert Ihrer "i-Sollwertanpassung" K_{SA} !

$$K_{SA,i} = 10/5.6 = 1.78$$
 (1.28)

Berechnung:

Teilnehmer 1: Überschwingweite =
$$8.6-5.5=3.1\%$$
 (1.29)
Teilnehmer 2: Anregelzeit = 0.000788 (1.30)

Teilnehmer 2:
$$\frac{\text{Anregelzeit}}{T_{\Sigma}} = \frac{0.00078s}{0.00055s} = \frac{1.40}{1.31}$$

Teilnehmer 3: Ausregelzeit =
$$0.00561$$
 (1.32)

Teilnehmer 3:
$$\frac{\text{Ausregelzeit}}{T_{\Sigma}} = \frac{0.00561 \text{s}}{0.00055 \text{s}} = \frac{10.2}{0.00055 \text{s}}$$
 (1.33)

1.3.7 Ergänzen des Ankerkreises um induzierte Gegenspannung:

Berechnungen:

Der theoretisch erreichte Endwert des Ankerstroms lässt sich berechnen (siehe 2.2) $i_A(\infty) = \frac{1}{K_{M,ui} + \frac{K_F^2 \cdot T_{N,i}}{K_{P,i} \cdot K_{SR} \cdot J}}$

$$i_A(\infty) = \frac{1}{\underbrace{1.7857} + \underbrace{\frac{0.0065^*(0.5769)^*2}{-1.318^*(2^*170/20)^*0.002}} = \underbrace{0.5327}$$
(1.34)

Der Endwert um den der Ankerstrom i_A bei Verwendung von $K_{SA,i}$ schwankt (Bild 1.8), ergibt sich aus:

$$K_{SA,i} \cdot i_A(\infty) = 1.7857 * 0.5327 = 0.948$$
 (1.35)

Schaltbild:

Ankerstrom nach der Simulation:

Ergänzen des Ankerkreises um nicht-induzierte Gegenspannung:

Ankerstrom nach der Simulation:

Rechnungen:

Der Verstärkungsfaktor des inneren Kreises ist $K_{Si}=i_A(\infty)$.

Insgesamt lässt sich die Übertragungsfunktion G_{Wi} des nach dem Betragsoptimum eingestellten geschlossenen inneren Kreises als PT_1 -Glied beschreiben.

Die Zeitkonstante ist

$$2 \cdot (T_{St} + T_M) = 2 \cdot (0,05 \, \mathrm{ms} + 0,5 \, \mathrm{ms}) = 1,1 \, \mathrm{ms}.$$

(siehe auch: Schulz/Graf S. 362f).

Damit lässt sich der geschlossene innere Regelkreis, wie folgt beschreiben:

$$G_{Wi} = \frac{K_{Si}}{1+1, 1 \operatorname{ms} s} = \frac{0.5237}{1+1, 1 \operatorname{ms} s}$$
 (1.37)

1.3.8 Der äußere Regelkreis (Drehzahlregelstrecke):

Der Verstärkungsfaktor der äußeren Strecke K_{Sa} ist:

$$K_{Sa} = K_{SA,i} \cdot K_{Si} \cdot K_F \cdot \frac{1}{J} \cdot \frac{60}{2\pi} K_n$$

$$K_{Sa} = \frac{\text{Ksa} = 0.5327*0.948*0.5769*1/0.002*}{\text{(60/2pi)}*0.0025} = 3,498$$
(1.39)

1.3.9 Berechnung des Drehzahlreglers und Simulation von Führungsverhalten:

Bestimmen Sie aus den Parametern der Drehzahlregelstrecke, die Parameter eines PI-Reglers ausgelegt nach dem symmetrischen Optimum und ergänzen Sie im Simulationsmodell die Parameter für diesen Regler. Kp = 0.002/(2*0.948*(60/2pi)*0.0011*0.5769*0.0025) = 69.22

$$G_{PI,n} = K_{P,n} \cdot \frac{1 + T_{N,n}}{T_{N,n}} = \frac{1 + 0.0044}{0.0044} * 69,22 \quad \textbf{(1.40)}$$
 TN = 0.0011*4 = 0.0044

Simulieren Sie das Führungsverhaltens auf einen Sollwertsprung und beobachten Sie neben der Drehzahl auch den Ankerstrom.

Hinweis: Testen Sie das Führungsverhalten nur mit sehr kleinen Sollwerten ($n=\frac{\text{Nenndrehzahl}}{100}=\frac{N_N}{100}$). In diesem Aufgabenteil wird das Lastmoment M_L zu Null angenommen.

Hinweis: Auch hier können Sie sich die Vorgabe des Sollwerts vereinfachen, wenn Sie den Block "n-Sollwertanpassung" nutzen.

Welchen Wert stellen Sie ein?

$$K_{SA,n} = 0.0025$$
 (1.41)

Schaltbild:

Ankerstrom:

Stromregler:

Drehzahl:

Rechnungen:

Wie groß wird der Ankerstrom maximal/minimal?

$$I_{A,max} = 9A \& I_{A,min} = 0$$
 (1.47)

1.3.10 Testen des Drehzahlreglers – Störverhalten:

Sollwert:

Lastmoment:

Ankerstrom:

Stromregler:

Drehzahl:

Rechnungen:

Teilnehmer 3: Überschwingweite =
$$1262-1250=12/100=0.12\%$$
 (1.49)

Teilnehmer 1: Anregelzeit = $0.098s$ (1.50)

Teilnehmer 1: $\frac{\text{Anregelzeit}}{T_{\Sigma}} = \frac{0.098s}{0.00055s} = \frac{178.18}{10.00055s}$ (1.51)

Teilnehmer 2: Ausregelzeit = $\frac{\text{nicht vorhanden}}{\text{nicht vorhanden}}$ (1.52)

Teilnehmer 2: $\frac{\text{Ausregelzeit}}{T_{\Sigma}} = \frac{10.098s}{0.00055s} = \frac{178.18}{10.00055s}$ (1.53)

Wie groß wird der Ankerstrom maximal/minimal?

$$I_{A,max} = \underline{\qquad 5.99 \qquad \qquad } \tag{1.54}$$

$$I_{A,min} =$$
______(1.55)