

planetmath.org

Math for the people, by the people.

tests for local extrema in Lagrange multiplier method

 ${\bf Canonical\ name} \quad {\bf TestsForLocalExtremaInLagrangeMultiplierMethod}$

Date of creation 2013-03-22 15:28:52 Last modified on 2013-03-22 15:28:52 Owner stevecheng (10074) Last modified by stevecheng (10074)

Numerical id 6

Author stevecheng (10074)

Entry type Result
Classification msc 26B12
Classification msc 49-00
Classification msc 49K35
Related topic HessianForm

 $Related\ topic \qquad Relations Between Hessian Matrix And Local Extrema$

Defines projected Hessian Defines reduced Hessian Let U be open in \mathbb{R}^n , and $f: U \to \mathbb{R}$, $g: U \to \mathbb{R}^m$ be twice continuously differentiable functions. Assume that $p \in U$ is a stationary point for f on $M = g^{-1}(\{0\})$, and D g has full rank everywhere on M. Then we know that p is the solution to the Lagrange multiplier system

$$D f(p) = \lambda \cdot D g(p), \qquad (1)$$

for a Lagrange multiplier vector $\lambda = (\lambda_1, \dots, \lambda_m)$.

Our aim is to develop an analogue of the second derivative test for the stationary point p.

The most straightforward way to proceed is to consider a coordinate chart $\alpha \colon V \to M$ for the manifold M, and consider the Hessian of the function $f \circ \alpha \colon V \to \mathbb{R}^n$ at $0 = \alpha^{-1}(p)$. This Hessian is in fact just the Hessian form of $f \colon M \to \mathbb{R}$ expressed in the coordinates of the chart α . But the whole point of using Lagrange multipliers is to avoid calculating coordinate charts directly, so we find an equivalent expression for $D^2(f \circ \alpha)(0)$ in terms of $D^2(f \circ \alpha)$ without mentioning derivatives of α .

To do this, we differentiate $f \circ \alpha$ twice using the chain rule and product rule². To reduce clutter, from now on we use the prime notation for derivatives rather than D.

$$(f \circ \alpha)''(0) = ((f' \circ \alpha) \cdot \alpha')'(0)$$

$$= ((f'' \circ \alpha) \cdot \alpha' \cdot \alpha' + (f' \circ \alpha) \cdot \alpha'')(0)$$

$$= f''(\alpha(0)) \cdot \alpha'(0) \cdot \alpha'(0) + f'(\alpha(0)) \cdot \alpha''(0)$$

$$= f''(p) \cdot \alpha'(0) \cdot \alpha'(0) + f'(p) \cdot \alpha''(0).$$
(2)

If we interpret $(f \circ \alpha)''(0)$ as a bilinear mapping of vectors $u, v \in \mathbb{R}^{n-m}$, then formula (??) really means

$$(f \circ \alpha)''(0) \cdot (u, v) = f''(p) \cdot \left(\alpha'(0) \cdot u, \alpha'(0) \cdot v\right) + f'(p) \cdot \left(\alpha''(0) \cdot (u, v)\right). \tag{3}$$

To obtain the quadratic form, we set v = u; also we abbreviate the vector $\alpha'(0) \cdot u$ by h, which belongs to the tangent space T_pM of M at p. So,

$$(f \circ \alpha)''(0) \cdot u^2 = f''(p) \cdot h^2 + f'(p) \cdot (\alpha''(0) \cdot u^2). \tag{4}$$

¹Actually, only D g(p) needs to have full rank, and the arguments presented here continue to hold in that case, although M would not necessarily be a manifold then.

²Note that the "product" operation involved (second equality of (??)) is the operation of *composition of two linear mappings*. Think hard about this if you are not sure; it took me several tries to get this formula right, since multi-variable iterated derivatives have a complicated structure.

Naïvely, we might think that $(f \circ \alpha)''(0)$ is simply f''(p) restricted to the tangent space T_pM . This happens to be the first term in $(\ref{thm:eq:th$

But the second term of (??) still involves α . To eliminate it, we differentiate the equation $g \circ \alpha = 0$ twice.

$$0 = (g \circ \alpha)''(0) = g''(p) \cdot \alpha'(0) \cdot \alpha'(0) + g'(p) \cdot \alpha''(0).$$
 (5)

(It is derived the same way as (??) but with f replaced by g.) Now we can substitute (??) and (??) in (??) to eliminate the term $f'(p) \cdot \alpha''(0)$:

$$(f \circ \alpha)''(0) = f''(p) \cdot \alpha'(0) \cdot \alpha'(0) + \lambda \cdot g'(p) \cdot \alpha''(0)$$

= $f''(p) \cdot \alpha'(0) \cdot \alpha'(0) - \lambda \cdot g''(p) \cdot \alpha'(0) \cdot \alpha'(0)$, (6)

or expressed as a quadratic form,

$$(f \circ \alpha)''(0) \cdot u^2 = f''(p) \cdot h^2 - \lambda \cdot g''(p) \cdot h^2. \tag{7}$$

Thus, to understand the nature of the stationary point p, we can study the modified Hessian:

$$f''(p) - \lambda \cdot g''(p)$$
, restricted to $T_p M$. (8)

For example, if this bilinear form is positive definite, then p is a local minimum, and if it is negative definite, then p is a local maximum, and so on. All the tests that apply to the usual Hessian in \mathbb{R}^n apply to the modified Hessian (??).

In coordinates of \mathbb{R}^n , the modified Hessian (??) takes the form

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} \bigg|_{p} - \sum_{k=1}^{m} \lambda_{k} \left. \frac{\partial^{2} g^{k}}{\partial x^{i} \partial x^{j}} \bigg|_{p} \right) h^{i} h^{j} . \tag{9}$$

We emphasize that the vector h can be restricted to lie in the tangent space T_pM , when studying the stationary point p of f restricted to M.

In matrix form (??) can be written

$$B = \left[\frac{\partial^2 f}{\partial x^i \partial x^j} - \sum_{k=1}^m \lambda_k \frac{\partial^2 g^k}{\partial x^i \partial x^j} \right]_{ij}.$$
 (10)

But again, the test vector h need only lie on T_pM , so if we want to apply positive/negative definiteness tests for matrices, they should instead be applied to the *projected* or *reduced* Hessian:

$$Z^{t}BZ$$
 (11)

where the columns of the $n \times (n-m)$ matrix Z form a basis for $T_pM = \ker g'(p) \subset \mathbb{R}^n$.