EEE 51 Assignment 1 Answer Key

2nd Semester SY 2018-2019

BJT DC Biasing

(a) Finding V_{BE} , I_C , and V_{OUT}

$$I_C = I_S e^{\frac{V_{BE}}{V_T}} \tag{1}$$

$$I_B = \frac{I_C}{\beta} \tag{2}$$

KVL at $135k\Omega$ to GND loop,

$$10 - I_B R_1 - V_{BE} = 0 (3)$$

Substituting (1) and (2) to (3) will give

$$10 - V_{BE} - \frac{I_s}{\beta} e^{\frac{V_{BE}}{V_T}} R_1 = 0 (4)$$

Plugging in the given values will give

$$10 - V_{BE} - 1.125 \ x10^{-10} \ e^{\frac{V_{BE}}{26mV}} = 0$$

Solving the equation will give the value of V_{BE} which then allows for computing the value of I_C and V_{OUT}

- (b) Suppose RE is 200 and R2 is finite but has an unknown value
 - (i) Find I_C by KVL at $10V \rightarrow R_C \rightarrow V_{OUT}$

$$I_C = \frac{10 - V_{OUT}}{R_C}$$
$$I_C = 6.25mA$$

(ii) Since V_A approaches infinity, base-emitter voltage can be computed using

$$I_C = I_s \ e^{\frac{V_{BE}}{V_T}}$$

$$V_{BE} = 0.646V$$

Using the computed V_{BE} , the value of I_B can be computed

$$I_B = \frac{I_C}{\beta}$$

$$I_B = 52.08\mu A$$

(iii) The voltage across R_2 can be computed using KVL

$$V_2 = V_{BE} + (I_C + I_B)R_E$$

$$V_2 = 1.91V$$

(iv) Using node-voltage equations at node V_2 , the equation below can be generated

$$\frac{10 - V_2}{R_1} = \frac{V_2}{R_2} + I_B$$

Rearranging then substituting the calculated values from i, ii, and iii

$$R_2 = \frac{V_2}{\frac{10 - V_2}{R_1} - I_B} = \frac{1.91}{\frac{10 - 1.91}{135k\Omega} - 52.08\mu A}$$

$$R_2 = 243.44k\Omega$$

MOSFET DC Biasing

(a) From the KVL loop on the input side of M_1 , V_{GS} should be solved:

$$V_{BIAS} - V_{GS} - V_{RS} - V_{SS} = 0$$

 $V_{GS} = V_{BIAS} - V_{R_S} - V_{SS}$
 $V_{GS} = 0.65V - 0.65V - (-0.8V)$
 $\boxed{V_{GS} = 0.8V}$

(b)

$$I_D = k(V_{GS} - V_{TH})^2 \rightarrow Saturation$$

 $I_D = 2k \left[(V_{GS} - V_{TH})V_{DS} - \frac{V_{DS}^2}{2} \right] \rightarrow Linear$

Assumptions: Since V_{DS} is not given and cannot be solved as of this moment which is a present factor in linear mode equation, we first assume saturation mode.

$$I_D = k(V_{GS} - V_{TH})^2$$

$$I_D = 100\mu A/V^2 (0.8V - 0.2V)^2$$

$$I_D = 36\mu A$$

(c) The KVL branch from V_{DD} to V_{SS} passing through the V_{DS} of M1 is

$$\begin{split} V_{DD} - (I_D + I_L)R_D - V_{DS} - V_{RS} - V_{SS} &= 0 \\ V_{DS} &= V_{DD} - (I_D + I_L)R_D - V_{R_S} - V_{SS} \\ &= 0.8V - (36\mu A + 20\mu A)5k\Omega - 0.65V - (-0.8V) \\ \hline V_{DS} &= 0.67V \end{split}$$

(d) The conditions for saturation and linear are as follows:

$$V_{DS} > V_{GS} - V_{TH} \rightarrow Saturation$$

 $V_{DS} < V_{GS} - V_{TH} \rightarrow Linear$

Since the values for V_{GS} and V_{DS} are already obtained and verifying the assumption from (b),

$$V_{DS} > V_{GS} - V_{TH}$$

 $0.67V > 0.8V - 0.2V$
 $\boxed{0.67V > 0.6V}$

Therefore, M1 is indeed in saturation mode.

(e) From the KVL loop at the output side of M_1 , V_O could be obtained:

$$\begin{aligned} V_O - V_{DS} - V_{R_S} - V_{SS} &= 0 \\ V_O &= V_{DS} + V_{R_S} + V_{SS} \\ &= 0.67V + 0.65V - 0.8V \\ \hline V_O &= 0.52V \end{aligned}$$

(f)

$$R_S = \frac{V_{R_S}}{I_D}$$
$$= \frac{0.65V}{36\mu A}$$
$$R_S = 18.06k\Omega$$

$$R_L = \frac{V_O}{I_L}$$
$$= \frac{0.52V}{20\mu A}$$
$$R_L = 26k\Omega$$