AI-Powered MITRE ATT&CK Mapping: Enhancing Cyber Threat Detection

Deniz SAKLI

Sr. Blue Team Engineer, Picus Security

Fatih ERDOĞAN

Sr. Blue Team Engineer, Picus Security

About us

Deniz SaklıSenior
Blue Team Engineer

PICUS

Fatih Erdoğan Senior Blue Team Engineer

PICUS

Introduction

ΛCΛDEMIC PARTNERS

MITRE ATT&CK Framework

ATT&CK

Sigma Rule

MITRE ATT&CK in Sigma Rule

- https://github.com/SigmaHQ/sigma/blob/master/rules/windows/ process_creation/proc_creation_win_bitsadmin_download.yml
- ☐ Sigma rule profiling using MITRE ATT&CK
- ☐ Tactics, Techniques, related APT Groups, Softwares etc.
- ☐ Mitigations, Detections

```
. .
title: File Download Via Bitsadmin
id: d059842b-6b9d-4ed1-b5c3-5b89143c6ede
status: test
description: Detects usage of bitsadmin downloading a file
    - https://blog.netspi.com/15-ways-to-download-a-file/#bitsadmin
    - https://isc.sans.edu/diary/22264
    - https://lolbas-project.github.io/lolbas/Binaries/Bitsadmin/
author: Michael Haag, FPT.EagleEye
date: 2017-03-09
modified: 2023-02-15

    attack.defense-evasion

    attack.persistence

    - attack.t1197
    - attack.s0190
   attack.t1036.003
logsource:
    category: process_creation
    product: windows
        - OriginalFileName: 'bitsadmin.exe'
        CommandLine|contains: ' /transfer '
            - ' /create '
            - ' /addfile '
        CommandLine|contains: 'http'
    condition: selection_img and (selection_cmd or all of selection_cli_*)
    - CommandLine
    - ParentCommandLine
    - Some legitimate apps use this, but limited.
level: medium
```

What's the Big Bang of our Journey?

- Why we did this research?
- What was the problem?
- Detection Engineering Procces
- ☐ TTP to MITRE ATT&CK

What we aimed ??

Our Journey

Dataset-Driven MITRE Techniques Identification

ΛCΛDEMIC PARTNERS

Finding Detection Rules

- □ ~3800 rules
 - Azure Sentinel
 - → MITRE CAR
 - Joe Sandbox
 - ☐ Splunk Rules
 - □ SigmaHQ
 - ☐ Elastic Rules
 - ☐ Picus Security Detection Rules

Parsing Detection Rules

- □ Rule normalization
- fields no, values ok!
- ☐ field=value, field in value and etc.
- and, or, not, stats, limit, dedup, count by, and etc.
- We extracted the strings by eliminating the parts in the "key=value" part, which is the general structure of the rules.

Parsing Detection Rules

BAFPER

```
search: '| tstats `security_cc
                                                                             ( time)
 as lastTime from datamodel=E
                                                                             nt_process
 = "*ping*" Processes.parent_
                                                                             ses.parent_process="*>*")
                                                                             *"Processes.process="*>*")
 OR (Processes.process = "*pi
 by Processes.parent_process_
                              "ping", "-n", "Nul", ">"
 Processes.original_file_name
                                                                             ess_guid
 Processes.user Processes.des
                                                                             tent_ctime(firstTime)`
   `security_content_ctime(lastTime)` | `ping_sleep_batch_command_filter`'
```

Parsing Detection Rules

☐ T1059.007 - Command and Scripting Interpreter: JavaScript

```
"t1059.007": [
      "\\mshta.exe",
        "vbscript",
        ".jpg",
        ".png",
        ".lnk",
        ".xls",
        ".doc",
        ".zip",
        ".dll",
        ".exe"
        "\\wscript.exe",
        "\\cscript.exe"
        "C:\\Users\\",
        "C:\\ProgramData\\"
```



```
".jse",
  ".vbe",
  ".js",
  ".vba",
  ".vbs"
"\\winzip"
"\\csc.exe",
  "\\wscript.exe",
  "\\cscript.exe",
  "\\mshta.exe"
  "\\wmic.exe"
  "wmic",
  "format",
  "http"
```

Dataset Analysis

- **☐** Total MITRE Techniques: 566
- **□** Coverage Count
 - **□** 334
- Not-Coverage Count
 - **232**
- Coverage Percentage
 - **□** ~60%
- → ~31000 Total Strings
 - after FP elimination:23846 query strings

Results

Error	8
Fail	32
Almost	34
Success	26
Success Rate	%60

Building MITRE Al Model

ΛCΛDEMIC PΛRTNERS

What's Feature Engineering?

□ Feature engineering is the process of selecting, transforming or creating input features used in machine learning.

What's Hyper-Parameter Optimization?

Hyper-parameter optimization is the process of searching and selecting the best combinations of parameters that determine the behavior of a machine learning algorithm.

Overfitting

- □ To assess the quality of the features, an algorithm that can solve the problem is selected and trained with parameters prone to overfitting.
- ☐ The rationale behind using overfitting is as follows: If a model fits the training data extremely well, it may indicate that the features contain valuable information.

Feature Benchmarking Pipeline

What's SageMaker Feature Store?

SageMaker Feature Store is a preferred method because it is cost-effective and compatible with companies' existing technology infrastructure.

□ Limitations:

- A maximum of 2,500 features can be defined for each feature group.
- Features, especially transformer outputs from pre-trained models, can push this limit.
- In all feature groups, the timestamp (event time) must be in the following format:
 - yyyy-MM-dd'T'HH:mm:ssZ
 - yyyy-MM-dd'T'HH:mm:ss.SSSZ

What's SageMaker Pipeline?

☐ The Amazon SageMaker Pipeline consists of interconnected steps for developing machine learning models. These steps are defined by a structure called a Directed Acyclic Graph (DAG)

Baseline Model: XGBoost

Feature Benchmarking Pipeline

Experiment Results

ΛCΛDEMIC PΛRTNERS

First Results


```
powershell eventcode message get-domaingroup eventcode message computername user
getdomaingroup_with_powershell_script_block_filter
norm_id windowssysmon event_id image fsutil.exe file fsutil.exe command deletejournal createjournal user
excluded_users
process where subtype.create and (process_name == "net.exe" and wildcard(command_line, "* user*", "*localgroup *",
"*group *") or process_name in ("groups", "id") or process_name == "dscl" and command_line == "*list /groups*" or
process_name == "dscacheutil" and command_line == "*group*" or wildcard(command_line, "*/etc/passwd*",
"*/etc/master.passwd*"))
```



```
[[(0.17662115230669162, 't1087'), (0.07609371176822945, 't1018'), (0.05363455645688569, 't1069'), (0.028262998909284093, 't1027'), (0.026425673761521214, 't1197')], [(0.09839916335248582, 't1070'), (0.04411811232669071, 't1059'), (0.040287713953828845, 't1218'), (0.035717758411632154, 't1003'), (0.03222885938600783, 't1055')], [(0.2488008485250996, 't1087'), (0.05026502511848476, 't1069'), (0.027715616320007495, 't1204'), (0.026753709955651718, 't1036'), (0.0256639554210251, 't1003')]]
```

Experiment Results: Filters

Testing Model Predictions for Specific Product

ΛCΛDEMIC PARTNERS

Sample 2

```
Event
   where Even
   parse Even
              SecurityEvent
   where Pare
                 where EventID==4624
"C:\\Windows\\!
                                                                                      ription "<" *
   parse Even
                 where AuthenticationPackageName contains "WDigest"
'CurrentDirect
                                                                                      cessGuid">
                 summarize count() by Computer
ParentProcessG
                                                                                       'ParentUser">'
ParentUser "<"
   summarize !
                                                                                      ParentImage,
ParentProcessG
```

First Result:

Sample 1

Sample 2

Final Result:

Phase	Match (%)	No Match (%)	Overall Score
Phase-1	55	45	55.56
Phase-2	70	30	70.37
Phase-3	81	19	80.65

Coverage Improvement

ΛCΛDEMIC PARTNERS

Problem Definitions

- □ Differences in Training Data
- Supported MITRE Techniques
- Outdated MITRE ATT&CK Version
- Lack of Dataset Enrichment
- → Different Query Fields
- ☐ Focusing Certain Techniques
 - ☐ T1078: Valid Accounts
 - ☐ T1190: Exploit Public-Facing Application
 - ☐ T1110: Brute Force
 - ☐ T1562: Impair Defenses

Dataset Enrichment & Testing Model

- Open Source Count: More than 20
- Open Source Rule Count: More than 10k
- □ Each source helped us create examples for multiple techniques.

Rule Source	Technique Count	Rule Count
GitHub - mbabinski/Sigma-Rules: A repository of my own Sigma detection rules.	40	159
security_content/detections at develop · splunk/sec urity_content	129	1389
eqllib/eqllib/analytics at 30243396b5bc88ea33ae0 92aab683f77be84640a · endgameinc/eqllib	91	129
• atomic-threat-coverage/Atomic_Threat_Coverage/D etection_Rules at master · atc-project/atomic-threat-coverage	113	457

```
{'Technique': 't1035', 'Count': 43}
{'Technique': 't1089', 'Count': 16}
{'Technique': 't1015', 'Count': 10}
{'Technique': 't1026', 'Count': 4}
{'Technique': 't1043', 'Count': 13}
{'Technique': 't1058', 'Count': 4}
{'Technique': 't1060', 'Count': 24}
{'Technique': 't1065', 'Count': 13}
{'Technique': 't1076', 'Count': 15}
{'Technique': 't1077', 'Count': 23}
{'Technique': 't1085', 'Count': 20}
{'Technique': 't1086', 'Count': 71}
{'Technique': 't1173', 'Count': 4}
{'Technique': 't1175', 'Count': 12}
{'Technique': 't1177', 'Count': 4}
{'Technique': 't1209', 'Count': 4}
```

Product Based Results

- □ Splunk
 - ☐ Model v1: 637
 - ☐ Model v2: 463
 - **-27.31%**
- QRadar
 - ☐ Model v1: 612
 - ☐ Model v2: 436
 - **-28.75**%
- □ ArcSight
 - ☐ Model v1: 617
 - ☐ Model v2: 467
 - **-24.31%**

Sigma Rule Based Results

- □ Splunk
 - ☐ Model v1: 327
 - ☐ Model v2: 419
 - **+28.13%**
- □ QRadar
 - ☐ Model v1: 285
 - ☐ Model v2: 393
 - **+37.89%**
- ☐ ArcSight
 - ☐ Model v1: 254
 - ☐ Model v2: 429
 - **+24.31%**

Real-Time MITRE AI Service Implementation

ΛCΛDEMIC PΛRTNERS

MLOps & Model Inference

- Machine learning enables data-driven decision making and automation in areas such as cybersecurity. However, deploying and managing models at scale presents challenges.
- ☐ The model inference phase enables trained models to become usable by applications. This process is the transformation of raw data inputs into meaningful predictions.

SageMaker Inference Types

- Real-time Inference
- → Serverless Inference
- → Batch Transform
- → Asynchronous Inference

Amazon SageMaker

Advantages & Limitations of Serverless Inference

■ Advantages:

- Cost Efficiency
- Auto Scaling
- Simple Management
- Flexibility

□ Limitations:

- Memory
- The maximum data size
- Processing time is limited
- A cold start condition may occur

SageMaker Inference Process

Model Preparation and Packaging:

- Model outputs are stored on S3.
- Pre-processing and post-processing operations are defined with custom scripts.
- Pre-trained models such as HuggingFace can be packaged.

Writing a Custom Inference Script:

 A custom Python script is defined to process the incoming data, make predictions and format the output.

SageMaker Inference Process

Model Registration and Deployment:

- Models are versioned with the SageMaker Model Registry.
- Models can be served with custom Docker image.
- Automatic model deployment is provided using EventBridge and Lambda.

Use Cases

Sigma Rule Integration

```
print(mySigmaTemplate['Sigma_ID'][12])
    print(mySigmaTemplate['Sigma_Title'][12])
    print(mySigmaTemplate['Sigma_Description'][12])
    print(mySigmaTemplate['Sigma_Splunk'][12])
    v 0.0s

Table 119
    File Creation in Startup Folder
    Detects the attempt to create file in startup folder. This technique is utilized for persistence.
    ( EventCode='11' (TargetFilename='*\Microsoft\\Windows\\Start Menu\\Programs\\Startup\\*'))
```

Sigma Rule Integration

	<pre>df_results = pd.DataFrame(fatihResults, columns=['sigma_id', 'service_result_value', 'picus_result_value', 'diff', 'intersection', 'suggested']) df_results</pre>							
✓ 0	0.0s						Python	
	sigma_id	service_result_value	picus_result_value	diff	intersection	suggested		
0	2006	[t1098, t1090, t1012, t1069]	[t1007, ta0007, g0049]	[g0049, ta0007, t1007]	0	[t1090, t1098, t1012, t1069, t1007, g0049, ta0		
1	2008	[t1218, t1562, t1190]	[t1562, ta0005]	[ta0005]	[t1562]	[t1218, ta0005, t1562, t1190]		
2	2011	[t1543, t1218]	[ta0003, t1547]	[ta0003, t1547]	0	[ta0003, t1547, t1218, t1543]		
3	2017	[t1033, t1218, t1082, t1562, t1087]	[ta0002, ta0005, t1218, g0080]	[ta0005, ta0002, g0080]	[t1218]	[ta0005, t1218, t1033, t1082, g0080, t1562, t1		
4	2023	[t1218, t1562, t1053]	[t1053, t1218, ta0005]	[ta0005]	[t1218, t1053]	[t1562, ta0005, t1218, t1053]		
	•••							
627	8918	[t1486, t1547, t1112]	[t1112, ta0005]	[ta0005]	[t1112]	[t1486, t1547, ta0005, t1112]		
628	8934	[t1218, t1046, t1485]	[ta0003, t1574]	[ta0003, t1574]	0	[t1574, t1218, t1046, t1485, ta0003]		
629	8965	[t1485, t1112, t1070]	[t1112, ta0005, g0040]	[g0040, ta0005]	[t1112]	[t1112, t1070, ta0005, t1485, g0040]		
630	8970	[t1190, t1083, t1552, t1012]	[t1552, ta0006]	[ta0006]	[t1552]	[t1083, t1190, ta0006, t1012, t1552]		
631	8981	[t1046]	[t1083, t1055, ta0004, ta0007]	[t1083, ta0007, ta0004, t1055]	0	[t1083, t1046, t1055, ta0004, ta0007]		
632 rows × 6 columns								

Sigma Rule Integration

	sigma_id	service_result_value	picus_result_value	diff	intersection
0	2006	[t1098, t1090, t1012, t1069]	[t1007, ta0007, g0049]	[g0049, ta0007, t1007]	0
1	2008	[t1218, t1562, t1190]	[t1562, ta0005]	[ta0005]	[t1562]
2	2011	[t1543, t1218]	[ta0003, t1547]	[ta0003, t1547]	[]
3	2017	[t1033, t1218, t1082, t1562, t1087]	[ta0002, ta0005, t1218, g0080]	[ta0005, ta0002, g0080]	[t1218]
4	2023	[t1218, t1562, t1053]	[t1053, t1218, ta0005]	[ta0005]	[t1218, t1053]

Technique Suggestions from Sigma Rule

```
Development python3 sigma-mitre-suggestor.py 5492
Sigma ID: 5492
MITRE Coverage Service Tags: ['t1055', 't1003', 't1083', 't1562']
Picus Tags: ['ta0006', 't1003', 'ta0005', 't1055', 't1620', 'ta0002', 't1106']
Not Matched Tags with Picus: ['ta0005', 'ta0006', 't1620', 't1106', 'ta0002']
Matched Tags with Picus: ['t1055', 't1003']
Suggested Tags: ['t1083', 't1003', 'ta0005', 'ta0006', 't1620', 't1055', 't1106', 'ta0002', 't1562']
```

Technique Suggestions from Sigma Rule

Fatih 2:35 PM

!run mitresuggester 5492

detection-bot APP 2:35 PM

I'm on it! Your execution ID is

(details available at https://

@Fatih:

Sigma ID: 5492

MITRE Coverage Service Tags: ['t1055', 't1003', 't1083', 't1562']

Picus Tags: ['ta0006', 't1003', 'ta0005', 't1055', 't1620', 'ta0002', 't1106']

Not Matched Tags with Picus: ['ta0002', 'ta0006', 't1620', 'ta0005', 't1106']

Matched Tags with Picus: ['t1055', 't1003']

Suggested Tags: ['ta0002', 't1003', 'ta0006', 't1083', 't1562', 't1620', 't1055', 'ta0005',

't1106']

Show less

MITRE AI Service

MITRE AI Service

Al Powered MITRE Mapping from given SIEM/EDR query.

```
SIEM/EDR Query
  (source="WinEventLog:Security" EventCode="4688" New_Process_Name="*\WMIC.exe"
  Process_Command_Line="*wmic*" Process_Command_Line="*logicaldisk*"
  Process_Command_Line="*get*")
 Submit
```

Rule

```
(source="WinEventLog:Security" EventCode="4688" New_Process_Name="*\WMIC.exe" Proc
```

MITRE Techniques

```
▼ 0 : {
  "rule_id": "blueteam-9a502cda-8a60-11ef-8504-624c29464186"
  "mitre_technique": "t1047"
  "probability": 0.042
```

Mapping Completed!

MITRE Al Service

Al Powered MITRE Mapping from given SIEM/EDR query.

```
SIEM/EDR Query
  (source="WinEventLog:Microsoft-Windows-TaskScheduler/Operational" (EventCode="106"
  TaskCategory="Task registered") "*Microsoft Driver Management Service*")
```

Rule

```
(source="WinEventLog:Microsoft-Windows-TaskScheduler/Operational" (EventCode="106"
```

MITRE Techniques

```
▼ 0 : {
  "rule_id": "blueteam-489abc96-8a5d-11ef-8504-624c29464186"
  "mitre_technique": "t1053"
  "probability": 0.188
```

Mapping Completed!

MITRE Al Service

AI Powered MITRE Mapping from given SIEM/EDR query.

```
SIEM/EDR Query
  (source="WinEventLog:Security" EventCode="4688" New_Process_Name="*schtasks.exe"
  Process_Command_Line="*/create*" Process_Command_Line="*\\sshd\\config\\*")
```

Rule

```
(source="WinEventLog:Security" EventCode="4688" New_Process_Name="*schtasks.exe" P
```

MITRE Techniques

```
▼ 0 : f
  "rule_id": "blueteam-d501edf4-8a5c-11ef-8504-624c29464186"
  "mitre_technique": "t1053"
  "probability": 0.074
```

Mapping Completed!

Al Powered MITRE Mapping from given SIEM/EDR query.

```
SIEM/EDR Query
  (source="WinEventLog:Microsoft-Windows-Sysmon/Operational" EventCode="7"
  (Image="*winword.exe" OR Image="*powerpnt.exe" OR Image="*excel.exe")
  (ImageLoaded="*vbe*.dll*"))
```

Rule

```
(source="WinEventLog:Microsoft-Windows-Sysmon/Operational" EventCode="7" (Image="*
```

MITRE Techniques

```
▼ 0 : {
   "rule_id": "blueteam-7d2a0dc8-8a5c-11ef-8504-624c29464186"
   "mitre_technique": "t1059"
   "probability": 0.049
```

Mapping Completed!

MITRE AI Service

Al Powered MITRE Mapping from given SIEM/EDR query.

```
mimikatz Isadump

Submit
```

Rule

mimikatz lsadump

MITRE Techniques

Mapping Completed!

Al Powered MITRE Mapping from given SIEM/EDR query.

SIEM/EDR Query deniz fatih

Rule

deniz fatih

MITRE Techniques

1 []

FEEDBACK

Al-Powered MITRE ATT&CK Mapping: Enhancing Cyber Threat Detection

Fatih Erdogan Deniz Sakli

Thank you for watching!

Deniz Saklı Senior Blue Team Engineer

PICUS

Fatih Erdoğan Senior Blue Team Engineer

PICUS

ΛCΛDEMIC PARTNERS