Learning to Reconstruct Medical Images

Jonas Adler^{1, 2} Ozan Öktem¹

¹Department of Mathematics KTH - Royal Institute of Technology, Stockholm

> ²Research and Physics Elekta, Stockholm

Why do we need machine learning?

Task: Identify a rabbit in an image

Why do we need machine learning?

Task: Identify a rabbit in an image

Proposed solution: If the animal is within this range of colors and has long ears and fur and has a slightly elliptical shape and has a nose like... then it is a rabbit

Why do we need machine learning?

Task: Identify a rabbit in an image

Proposed solution: If the animal is within this range of colors and has long ears and fur and has a slightly elliptical shape and has a nose like... then it is a rabbit

$$oldsymbol{g} = \mathcal{T}(f_{\mathsf{true}}) + \delta oldsymbol{g}.$$

▶ $g \in Y$ Data

► $f_{\text{true}} \in X$ Image

 $ightharpoonup \mathcal{T}: X \to Y$ Forward operator

► $\delta g \in Y$ Noise

$$oldsymbol{g} = \mathcal{T}(oldsymbol{f_{true}}) + \delta oldsymbol{g}.$$

► $g \in Y$ Data

 $ightharpoonup f_{true} \in X$ Image

 $ightharpoonup \mathcal{T}: X \to Y$ Forward operator

▶ $\delta g \in Y$ Noise

$$g = \mathcal{T}(f_{\mathsf{true}}) + \delta g.$$

▶ $g \in Y$ Data

► $f_{\text{true}} \in X$ Image

 $ightharpoonup \mathcal{T}: X \to Y$ Forward operator

► $\delta g \in Y$ Noise

 $\xrightarrow{\mathcal{T}}$

$$g = \mathcal{T}(f_{\mathsf{true}}) + \delta g.$$

► $g \in Y$ Data

► $f_{\text{true}} \in X$ Image

 $ightharpoonup \mathcal{T}: X \to Y$ Forward operator

 $ightharpoonup \delta g \in Y$ Noise

$$oldsymbol{g} = \mathcal{T}(oldsymbol{f}_{\mathsf{true}}) + \delta oldsymbol{g}.$$

▶ $g \in Y$ Data

► $f_{\text{true}} \in X$ Image

 $ightharpoonup \mathcal{T}: X \to Y$ Forward operator

▶ $\delta g \in Y$ Noise

Solution methods

Analytic pseudoinverse (FBP, FDK) $f = \mathcal{T}^{\dagger}(g)$

Solution methods

- ► Analytic pseudoinverse (FBP, FDK) $f = \mathcal{T}^{\dagger}(g)$
- Variational methods (TV, TGV, Huber)

$$f = \operatorname*{arg\,min}_{f} || \, \mathcal{T}(f) - g ||_{Y}^{2} + \lambda ||
abla f ||_{1}^{2}$$

► Strategy, solve an optimization problem:

$$f = \operatorname*{arg\,min}_{f} || \mathcal{T}(f) - g||_{Y}^{2} + \lambda ||\nabla f||_{1}$$

Several issues:

► Strategy, solve an optimization problem:

$$f = \operatorname*{arg\,min}_{f} || \, \mathcal{T}(f) - g||_{Y}^{2} + \lambda ||\nabla f||_{1}$$

Several issues:

► Prior is typically unknown - have to "guess"

Strategy, solve an optimization problem:

$$f = \operatorname*{arg\,min}_{f} || \mathcal{T}(f) - g||_{Y}^{2} + \lambda ||\nabla f||_{1}$$

Several issues:

- ► Prior is typically unknown have to "guess"
- ightharpoonup Parameters (λ) need to be selected

Strategy, solve an optimization problem:

$$f = \operatorname*{arg\,min}_{f} || \, \mathcal{T}(f) - g||_{Y}^{2} + \lambda ||\nabla f||_{1}$$

Several issues:

- Prior is typically unknown have to "guess"
- \blacktriangleright Parameters (λ) need to be selected
- ► Large computational burden

Solution methods

- Analytic pseudoinverse (FBP, FDK) $f = \mathcal{T}^{\dagger}(q)$
- Variational methods (TV, TGV, Huber) $f = \arg\min ||\mathcal{T}(f) g||_Y^2 + \lambda ||\nabla f||_1$
- lacktriangledown Machine learning $f=\mathcal{T}^{\dagger}_{\scriptscriptstyleeta}(g)$

▶ We are given training data (f,g) which is a $X \times Y$ valued random variable such that $\mathcal{T}(f) \approx g$.

- ▶ We are given training data (f,g) which is a $X \times Y$ valued random variable such that $\mathcal{T}(f) \approx g$.
- ▶ We give a class of operators ${\mathcal T}_{ heta}^{\dagger} \colon {\mathit Y} \to {\mathit X}$

- ▶ We are given training data (f,g) which is a $X \times Y$ valued random variable such that $\mathcal{T}(f) \approx g$.
- ▶ We give a class of operators $\mathcal{T}_{\theta}^{\dagger}$: $Y \to X$
- ▶ Parametrized by θ which we *learn*

- ▶ We are given training data (f,g) which is a $X \times Y$ valued random variable such that $\mathcal{T}(f) \approx g$.
- ▶ We give a class of operators $\mathcal{T}_{\theta}^{\dagger} \colon Y \to X$
- ▶ Parametrized by θ which we learn
- ► Selected by optimization of a *loss* function $L(\theta)$

$$\theta^* = \operatorname*{arg\,min}_{\theta} L(\theta)$$

- ▶ We are given training data (f,g) which is a $X \times Y$ valued random variable such that $\mathcal{T}(f) \approx g$.
- ▶ We give a class of operators $\mathcal{T}_{\theta}^{\dagger} \colon Y \to X$
- Parametrized by θ which we learn
- ▶ Selected by optimization of a *loss* function $L(\theta)$

$$\theta^* = \operatorname*{arg\,min}_{\theta} L(\theta)$$

▶ Different from classification ($X \to \mathbb{R}^n$) and image processing ($X \to X$)

Learned inversion methods

- ► Fully learned
- Learned post-processing
- Learned iterative schemes

Fully learned reconstruction

Goal: Learn "the whole" mapping from data to signal

- Tomographic image reconstruction based on artificial neural network (ANN) techniques
 Argyrou et. al. NSS/MIC 2012
- Tomographic image reconstruction using artificial neural networks. Paschalis et. al. Nucl Instrum Methods Phys Res A 2004
- Image reconstruction by domain-transform manifold learning.
 Zhu et. al. Nature 2018

Fully learned reconstruction

Goal: Learn "the whole" mapping from data to signal

- Tomographic image reconstruction based on artificial neural network (ANN) techniques
 Argyrou et. al. NSS/MIC 2012
- Tomographic image reconstruction using artificial neural networks. Paschalis et. al. Nucl Instrum Methods Phys Res A 2004
- Image reconstruction by domain-transform manifold learning. Zhu et. al. Nature 2018

Problem: \mathcal{T} typically has symmetries, but the network has to learn them. Example: 3D CBCT, data: 10^8 pixels and 10^8 voxels $\implies 10^{16}$ connections!

Learned inversion methods

- ► Fully learned
- Learned post-processing
- Learned iterative schemes

Learned post-processing

Use deep learning to improve the result of another reconstruction

$${\mathcal T}^\dagger_{ heta} = \Lambda_{ heta} \circ {\mathcal T}^\dagger$$

where \mathcal{T}^{\dagger} is some reconstruction (FBP, TV, ...) and Λ_{θ} is a learned post-processing operator.

Learned post-processing

Use deep learning to improve the result of another reconstruction

$${\mathcal T}^\dagger_{ heta} = \Lambda_{ heta} \circ {\mathcal T}^\dagger$$

where \mathcal{T}^{\dagger} is some reconstruction (FBP, TV, ...) and Λ_{θ} is a learned post-processing operator.

Allows separation of inversion and learning, data can be seen as $\underbrace{\mathcal{T}^{\dagger}(g)}_{\in X}, \underbrace{f}_{\in X}$.

The problem becomes an image processing problem \implies easy to solve.

Learned post-processing

Denoise in transform domain (Fourier, Wavelet, Shearlet, etc)

Won AAPM Low-Dose CT Grand Challenge:

A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
Kang et. al. 2016

Jonas Adler jonasadl@kth.se Learning to Reconstruct 12 / 26

► I(g) ← information in g

- ► I(g) ← information in g
- $ightharpoonup I_{total} = I_{prior} + I(g)$

- ► I(g) ← information in g
- $ightharpoonup I_{total} = I_{prior} + I(g)$
- ► For post processing, we only have $I(\mathcal{T}^{\dagger}(g))$

- ► I(g) ← information in g
- $ightharpoonup I_{total} = I_{prior} + I(g)$
- ► For post processing, we only have $I(\mathcal{T}^{\dagger}(g))$
- $ightharpoonup I(\mathcal{T}^{\dagger}(g)) \leq I(g)$

- ► I(g) ← information in g
- $ightharpoonup I_{total} = I_{prior} + I(g)$
- ► For post processing, we only have $I(\mathcal{T}^{\dagger}(g))$
- $ightharpoonup I(\mathcal{T}^{\dagger}(g)) \leq I(g)$
- Post processing beats traditional methods because it utilizes the prior information better

- ► I(g) ← information in g
- $ightharpoonup I_{total} = I_{prior} + I(g)$
- ► For post processing, we only have $I(\mathcal{T}^{\dagger}(g))$
- $ightharpoonup I(\mathcal{T}^{\dagger}(g)) \leq I(g)$
- Post processing beats traditional methods because it utilizes the prior information better

We could do better by using the raw data!

Jonas Adler jonasadl@kth.se Learning to Reconstruct 13/26

Learned inversion methods

- ► Fully learned
- ► Learned post-processing
- ► Learned iterative schemes

Learned iterative reconstruction

▶ Problem: Data $g \in \overline{Y}$, reconstruction $f \in X$ How to include data in each iteration?

Learned iterative reconstruction

- ▶ Problem: Data $g \in Y$, reconstruction $f \in X$ How to include data in each iteration?
- Inspiration from iterative optimization methods

$$f = rg \min rac{1}{2} || \mathcal{T}(f) - g||_Y^2$$

Algorithm 1 Generic gradient based optimization algorithm

- 1: **for** i = 1, ... **do**
- 2: $f_{i+1} \leftarrow \mathsf{Update}(f_i, \mathcal{T}^*(\mathcal{T}(f_i) g))$

Gradient descent:

$$\mathsf{Update}\big(f_i, \mathcal{T}^*(\mathcal{T}(f_i) - g)\big) = f_i - \alpha \, \mathcal{T}^*(\mathcal{T}(f_i) - g)$$

Learned gradient descent

- ► Set a stopping criteria (fixed number of steps)
- ▶ Learn the function Update $= \Lambda_{ heta}$

Learned gradient descent

- Set a stopping criteria (fixed number of steps)
- ► Learn the function Update = Λ_{θ}

Algorithm 2 Learned gradient descent

- 1: **for** i = 1, ..., I **do**
- 2: $f_{i+1} \leftarrow \Lambda_{\theta} ig(f_i, \mathcal{T}^* (\mathcal{T}(f_i) g) ig)$
- 3: ${\mathcal T}_{ heta}^{\dagger}(oldsymbol{g}) \leftarrow f_I$

Learned gradient descent

- Set a stopping criteria (fixed number of steps)
- ► Learn the function Update = Λ_{θ}

Algorithm 2 Learned gradient descent

- 1: **for** i = 1, ..., I **do**
- 2: $f_{i+1} \leftarrow \Lambda_{\theta}(f_i, \mathcal{T}^*(\mathcal{T}(f_i) g))$
- 3: ${\mathcal T}_{ heta}^{\dagger}(oldsymbol{g}) \leftarrow f_I$

We separate problem dependent (and possibly global) components into $\mathcal{T}^*(\mathcal{T}(f_i)-g)$, and local into $\Lambda_\theta!$

Algorithm 3 Learned Primal-Dual (conceptual)

- 1: **for** i = 1, ..., I **do**
- 2: $h_i \leftarrow \Gamma_{\theta_i^{\mathcal{G}}}(h_{i-1}, \mathcal{T}(f_{i-1}), g)$
- 3: $f_i \leftarrow \Lambda_{\theta_i^p}(f_{i-1}, \mathcal{T}^*(h_i))$
- 4: ${\mathcal T}^\dagger_{ heta}(oldsymbol{g}) \leftarrow f_I$

g

```
apply T

apply T*

copy

3x3 conv + PReLU

3x3 conv
```


apply T
 apply T*
 copy
 3x3 conv + PReLU
 3x3 conv

References

- ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI Yang et. al. NIPS 2016
- Recurrent inference machines for solving inverse problems
 Putzky and Welling, arXiv 2017
- Learning a Variational Network for Reconstruction of Accelerated MRI Data Hammernick et. al., arXiv 2017
- Solving ill-posed inverse problems using iterative deep neural networks Adler and Öktem, Inverse Problems 2017
- Learned Primal-Dual Reconstruction Adler and Öktem, IEEE TMI 2018

References

- ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI Yang et. al. NIPS 2016
- Recurrent inference machines for solving inverse problems Putzky and Welling, arXiv 2017
- Learning a Variational Network for Reconstruction of Accelerated MRI Data Hammernick et. al., arXiv 2017
- Solving ill-posed inverse problems using iterative deep neural networks Adler and Öktem, Inverse Problems 2017
- Learned Primal-Dual Reconstruction Adler and Öktem, IEEE TMI 2018

References

- ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI Yang et. al. NIPS 2016
- Recurrent inference machines for solving inverse problems
 Putzky and Welling, arXiv 2017
- Learning a Variational Network for Reconstruction of Accelerated MRI Data Hammernick et. al., arXiv 2017
- Solving ill-posed inverse problems using iterative deep neural networks Adler and Öktem, Inverse Problems 2017
- Learned Primal-Dual Reconstruction Adler and Öktem, IEEE TMI 2018

Results

Results for CT with Human data

► Inverse problem:

$$g = \mathcal{P}(f) + \delta g$$

► Geometry: fan beam 1000 angles

Noise: Poisson noise (low dose CT)

► Training data: 2000 512×512 pixel slices

Results

Results for CT with Human data

Inverse problem:

$$g = \mathcal{P}(f) + \delta g$$

- Geometry: fan beam 1000 angles
- ▶ Noise: Poisson noise (low dose CT)
- ▶ Training data: 2000 512×512 pixel slices

Compare to:

- ► Analytic Pseudo-Inverse (FBP)
- Variational methods (TV-regularization)
- Post-processing deep learning by U-Net

Phantom

FBP PSNR 33.65 dB, SSIM 0.830, 423 ms

Phantom

TV PSNR $37.48~\mathrm{dB},$ SSIM 0.946, $64\,371~\mathrm{ms}$

Phantom

FBP + U-Net denoising PSNR 41.92 dB, SSIM 0.941, 463 ms

Phantom

Learned Primal-Dual PSNR $44.11~\mathrm{dB}$, SSIM $0.969,\,620~\mathrm{ms}$

► Machine learning allows us to handle complicated priors

```
Source:
github.com/adler-j
Contact:
jonasadl@kth.se
```

- Machine learning allows us to handle complicated priors
- Fully learned reconstruction is in-feasible

```
Source:
github.com/adler-j
Contact:
jonasadl@kth.se
```

- Machine learning allows us to handle complicated priors
- ► Fully learned reconstruction is in-feasible
- ► Learned post-processing gives good results

```
Source:
github.com/adler-j
Contact:
jonasadl@kth.se
```

- ► Machine learning allows us to handle complicated priors
- Fully learned reconstruction is in-feasible
- Learned post-processing gives good results
- Learned iterative reconstruction gives better results

```
Source:
github.com/adler-j
Contact:
jonasadl@kth.se
```

- ► Machine learning allows us to handle complicated priors
- Fully learned reconstruction is in-feasible
- ► Learned post-processing gives good results
- ► Learned iterative reconstruction gives better results

Questions!

```
Source:
github.com/adler-j
Contact:
jonasadl@kth.se
```