姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

封面日期: 2025 年 6 月 25 日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

前言页显示日期: 2025 年 6 月 25 日

目录

第一章	高等数	/学部分	1
1.1	函数极	限连续	1
	1.1.1	函数的性态	1
	1.1.2	极限的概念	2
	1.1.3	函数极限的计算	3
	1.1.4	已知极限反求参数	5
	1.1.5	无穷小阶的比较	5
	1.1.6	数列极限的计算	5
	1.1.7	间断点的判定	6
1.2	一元函	i数微分学	7
	1.2.1	导数与微分的概念	7
	1.2.2	导数与微分的计算	8
	1.2.3	导数应用-切线与法线	9
	1.2.4	导数应用-渐近线	10
	1.2.5	导数应用-曲率	10
	1.2.6	导数应用-极值与最值	10
	1.2.7	导数应用-凹凸性与拐点	11
	1.2.8	导数应用-证明不等式	11
	1.2.9	导数应用-求方程的根	11
	1.2.10	微分中值定理证明题	12
1.3	一元函	i数积分学	13
	1.3.1	定积分的概念	13
	1.3.2	不定积分的计算	13

	1.3.3	定积分的计算	13
	1.3.4	反常积分的计算	14
	1.3.5	反常积分敛散性的判定	14
	1.3.6	变限积分函数	15
	1.3.7	定积分应用求面积	15
	1.3.8	定积分应用求体积	15
	1.3.9	定积分应用求弧长	16
	1.3.10	定积分应用求侧面积	16
	1.3.11	一定积分物理应用	16
	1.3.12	二证明含有积分的等式或不等式	16
1.4	常微分	方程	17
	1.4.1	一阶微分方程的解法	17
	1.4.2	二阶常系数线性微分方程	18
	1.4.3	高阶常系数线性齐次微分方程	19
	1.4.4	二阶可降阶微分方程	19
	1.4.5	欧拉方程	19
	1.4.6	变量代换求解二阶变系数线性微分方程	20
	1.4.7	微分方程综合题	20
1.5	多元函	数微分学	21
	1.5.1	多元函数的概念	21
	1.5.2	多元复合函数求偏导数与全微分	22
	1.5.3	多元隐函数求偏导数与全微分	22
	1.5.4	变量代换化简偏微分方程	23
	1.5.5	求无条件极值	23
	1.5.6	求条件极值 (边界最值)	24
1.6	二重积	分	25
	1.6.1	二重积分的概念	25
	1.6.2	交换积分次序	25
	1.6.3	二重积分的计算	26
	1.6.4	其他题型	27

1.7	无穷级	1数	27
	1.7.1	数项级数敛散性的判定	27
	1.7.2	交错级数	27
	1.7.3	任意项级数	28
	1.7.4	幂级数求收敛半径与收敛域	28
	1.7.5	幂级数求和	28
	1.7.6	幂级数展开	29
	1.7.7	无穷级数证明题	29
	1.7.8	傅里叶级数	30
1.8	多元函	i数积分学	31
	1.8.1	三重积分的计算	31
	1.8.2	第一类曲线积分的计算	31
	1.8.3	第二类曲线积分的计算	31
	1.8.4	第一类曲面积分的计算	32
	1.8.5	第二类曲面积分的计算	32
第二章	线性代	数部分	34
第二章 2.1		数部分 ;	
			34
	行列式	· ·	34 34
	行列式 2.1.1	数字行列式的计算	34 34
	行列式 2.1.1 2.1.2 2.1.3	数字行列式的计算	34 34 35 36
2.1	行列式 2.1.1 2.1.2 2.1.3	数字行列式的计算	34 34 35 36
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵	数字行列式的计算	34 34 35 36 36
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵 2.2.1	数字行列式的计算	34 34 35 36 36
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵 2.2.1 2.2.2	数字行列式的计算	34 34 35 36 36 37 38
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵 2.2.1 2.2.2 2.2.3	数字行列式的计算	34 34 35 36 36 37 38
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	数字行列式的计算	344 343 353 363 363 373 383
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	数字行列式的计算	344 343 363 363 3738 3839 3939
2.1	行列式 2.1.1 2.1.2 2.1.3 矩阵 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 向量	数字行列式的计算	344 3435 3636 3637 3838 3939

	2.3.4	问量空间 (数一 专 题)	41
2.4	线性方	· 程组	41
	2.4.1	解的判定	41
	2.4.2	求齐次线性方程组的基础解系与通解	42
	2.4.3	求非齐次线性方程组的通解	43
	2.4.4	解矩阵方程	43
	2.4.5	公共解的判定与计算	44
2.5	第特征	值与特征向量	45
	2.5.1	特征值与特征向量的计算	45
	2.5.2	相似的判定与计算	47
	2.5.3	相似对角化的判定与计算	47
	2.5.4	实对称矩阵的计算	48
2.6	二次型	[48
	2.6.1	求二次型的标准形	48
	2.6.2	合同的判定	49
	2.6.3	二次型正定与正定矩阵的判定	50
第三章	概率论	·····································	51
3.1			51
	3.1.1		51
	3.1.2		52
	3.1.3	三大概率公式的计算	
	3.1.4		52
3.2			53
	3.2.1	-	
	3.2.2	概率密度的判定与计算	
	3.2.3		54
	3.2.4		56
3.3	_		56
•	//		
	3.3.1	联合分布函数的计算	56
		联合分布函数的计算	

	3.3.3	二维连续型随机变量分布的计算	57
	3.3.4	求二维离散型随机变量函数的分布	58
	3.3.5	求二维连续型随机变量函数的分布	58
	3.3.6	求一离散一连续随机变量函数的分布	59
3.4	数字特	征	59
	3.4.1	期望与方差的计算	59
	3.4.2	协方差的计算	60
	3.4.3	相关系数的计算	61
	3.4.4	相关与独立的判定	61
3.5	第五章	大数定律与中心极限定理	62
3.6	第六章	· 统计初步	62
	3.6.1	求统计量的抽样分布	62
	3.6.2	求统计量的数字特征	63
3.7	参数估	i计	63
	3.7.1	求矩估计与最大似然估计	63
	3.7.2	估计量的评价标准	64

第一章 高等数学部分

1.1 函数极限连续

1.1.1 函数的性态

Remark. (有界性的判定)

连续函数在闭区间 [a,b] 上必然有界

连续函数在开区间 (a,b) 上只需要判断端点处的左右极限, 若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$, 则连续函数在该区间内有界.

1. 下列函数无界的是

(A)
$$f(x) = \frac{1}{x}\sin x, x \in (0, +\infty)$$

(B)
$$f(x) = x \sin \frac{1}{x}, x \in (0, +\infty)$$

(C)
$$f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in (0, +\infty)$$

(D)
$$f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0, 2022)$$

Solution.

(A)
$$\lim_{x\to 0^+} f(x)=1$$
, $\lim_{x\to +\infty}=0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界

(B)
$$\lim_{x\to 0^+} f(x) = 0$$
, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0,+\infty)$ 有界

(C)
$$\lim_{x\to 0^+} f(x) = +\infty$$
, $\lim_{x\to +\infty} = 0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0, +\infty)$ 无界

(D)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1 dt = 0$$
, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在 区间 (0,2022) 有界

Remark. (导函数与原函数的奇偶性与周期性)

连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数

连续偶函数仅有一个原函数 $\int_0^x f(t) dt$ 为奇函数

2. (2002, 数二) 设函数 f(x) 连续, 则下列函数中, 必为偶函数的是

(A)
$$\int_0^x f(t^2)dt$$
(B)
$$\int_0^x f^2(t)dt$$
(C)
$$\int_0^x t[f(t) - f(-t)]dt$$
(D)
$$\int_0^x t[f(t) + f(-t)]dt$$

Solution. 这种题可以采用奇偶性的定义直接去做,如下面选项 A,B 的解法,也可以按照上述的函数奇偶性的性质判断

(A) $\Leftrightarrow F(x) = \int_0^x f(t^2) dt$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则 A 选项是奇函数

(B)
$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出 B 的奇偶性

- (C) t[f(t)-f(-t)] 是一个偶函数, 故 C 选项是一个奇函数
- (D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.1.2 极限的概念

Definition 1.1.1 (函数极限的定义). 设函数 f(x) 在点 x_0 的某去心邻域内有定义。若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty} a_n = a$, 且 $a \neq 0$, 则当 n 充分大时有

(A)
$$|a_n| > \frac{|a|}{2}$$
 (B) $|a_n| < \frac{|a|}{2}$ (C) $a_n > a - \frac{1}{n}$ (D) $a_n < a + \frac{1}{n}$

Solution. 由数列极限的定义可知当 n 充分大的时候有 $|a_n - a| < \epsilon$

考虑选项 C,D, 令
$$\epsilon = \frac{1}{n}$$
 则 $|a_n - a| < \frac{1}{n} \implies a - \frac{1}{n} < a_n < a + \frac{1}{n}$

1.1.3 函数极限的计算

这一个题型基本上是计算能力的考察,对于常见未定式其实也没必要区分的那么明显,目标都是往最简单 $\frac{0}{0}$ 或者 $\frac{1}{\infty}$ 模型上面靠,辅助以 Taylor 公式,拉格朗日中值定理结合夹逼准则来做就可以.

Remark. (类型一 0 型)

4. (2000, 数二) 若 $\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为

(A) 0 (B) 6 (C) 36 (D) ∞

Solution. 这个题第一次见可能想不到, 但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

5. (2002, 数二) 设 y=y(x) 是二阶常系数微分方程 $y''+py'+qy=e^{3x}$ 满足初始条件 y(0)=y'(0)=0 的特解, 则当 $x\to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限

(A)不等于 (B)等于 1 (C)等于 2 (D)等于 3

Solution. 由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

Remark. (类型 $\stackrel{\infty}{=}$ 型)

6. (2014, 数一、数二、数三) 求极限

$$\lim_{x \to \infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln \left(1 + \frac{1}{x} \right)}$$

Solution.

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2} (e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2} (e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

Remark. (类型三 $0 \cdot \infty$ 型)

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

 \square

Remark. (类型四 $\infty - \infty$ 型)

8. 求极限 $\lim_{x\to\infty} (x^3 \ln \frac{x+1}{x-1} - 2x^2)$

Solution.【详解】 □

Remark. (类型五 0^0 与 ∞^0 型)

9. (2010, 数三) 求极限 $\lim_{x\to +\infty} (x^{1/x}-1)^{1/\ln x}$

Remark. (类型六 1[∞]型)

10. 求极限 $\lim_{x\to 0} \left(\frac{a^x+a^{2x}+\cdots+a^{nx}}{n}\right)^{1/x}$ $(a>0,n\in\mathbb{N})$

 \square

1.1.4 已知极限反求参数

Remark. (方法)

11. (1998, 数二) 确定常数 a, b, c 的值, 使 $\lim_{x\to 0} \frac{ax - \sin x}{\int_{h}^{x} \frac{\ln(1+t^3)}{t} dt} = c$ $(c \neq 0)$

Solution.【详解】 □

1.1.5 无穷小阶的比较

Remark. (方法)

12. (2002, 数二) 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

Solution.【详解】 □

13. (2006, 数二) 试确定 A, B, C 的值, 使得 $e^x(1 + Bx + Cx^2) = 1 + Ax + o(x^3)$, 其中 $o(x^3)$ 是当 $x \to 0$ 时比 x^3 高阶的无穷小量。

Solution.【详解】 □

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

Solution.【详解】 □

1.1.6 数列极限的计算

Remark. (方法)

- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n \ (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛。

Solution.【详解】 □

16. (2018, 数一、数二、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty} x_n$ 。

Solution.【详解】 □

- 17. (2019, 数一、数三) 设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$ 。
 - (i) 证明数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2} a_{n-2} \ (n=2,3,\cdots)$
 - (ii) $\vec{X} \lim_{n\to\infty} \frac{a_n}{a_{n-1}}$

Solution.【详解】 □

18. (2017, 数一、数二、数三) 求 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n}\right)$

Solution.【详解】 □

1.1.7 间断点的判定

19. (2000, 数二) 设函数 $f(x) = \frac{x}{a + e^{bx}}$ 在 $(-\infty, +\infty)$ 内连续, 且 $\lim_{x \to -\infty} f(x) = 0$, 则常数 a, b 满足

(A)
$$a < 0, b < 0$$
 (B) $a > 0, b > 0$

(C)
$$a \le 0, b > 0$$
 (D) $a \ge 0, b < 0$

1.2 一元函数微分学

1.2.1 导数与微分的概念

1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导, 则函数 |f(x)| 在点 x = a 处不可导的充分条件是

$$(A) \ f(a) = 0 \ \text{A}, \ f'(a) = 0$$

$$(B) \ f(a) = 0 \ \text{II.} \ f'(a) \neq 0$$

$$(C) f(a) > 0 \coprod f'(a) > 0$$

$$(D) f(a) < 0 \perp f'(a) < 0$$

Solution.【详解】

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

(A)
$$\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$$
 存在

(B)
$$\lim_{h\to 0} \frac{1}{h} f(1-e^h)$$
 存在

$$(C)$$
 $\lim_{h\to 0}\frac{1}{h^2}f(h-\sin h)$ 存在

$$(D) \lim_{h\to 0} \frac{1}{h}[f(2h) - f(h)]$$
 存在

Solution. 【详解】

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \le 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \cdots \end{cases}$

$$(A)$$
 $x = 0$ 是 $f(x)$ 的第一类间断点

$$(B)$$
 $x = 0$ 是 $f(x)$ 的第二类间断点

$$(C)$$
 $f(x)$ 在 $x=0$ 处连续但不可导

$$(D) f(x)$$
 在 $x = 0$ 处可导

1.2.2 导数与微分的计算

Remark (类型一分段函数求导).

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A)$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x=0 处的连续性。

Solution.【详解】 □

Remark (类型二复合函数求导).

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ & , y = f(f(x)), \ \vec{x} \ \frac{dy}{dx} \Big|_{x=e} \end{cases}$$

Solution.【详解】 □

Remark (类型三隐函数求导).

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定。设 $z=f(\ln y-\sin x)$,求 $\frac{dz}{dx}\Big|_{x=0}$ 和 $\frac{d^2z}{dx^2}\Big|_{x=0}$

Solution.【详解】 □

Remark (类型四反函数求导).

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数, 且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的 微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Solution.【详解】 □

Remark (类型五参数方程求导).

8. (2008, 数二) 设函数 y=y(x) 由参数方程 $\begin{cases} x=x(t) \\ y=\int_0^{t^2}\ln(1+u)du \end{cases}$ 确定, 其中 x(t) 是初值问题 $\begin{cases} \frac{dx}{dt}-2te^{-x}=0 \\ x|_{t=0}=0 \end{cases}$ 的解, 求 $\frac{d^2y}{dx^2}$

值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

Solution.【详解】

Remark (类型六高阶导数).

9. (2015, 数二) 函数 $f(x) = x^2 \cdot 2^x$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0) =$

Solution.【详解】

1.2.3 导数应用-切线与法线

Remark (类型一直角坐标表示的曲线).

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数, 它在 x = 0 的某个邻域内满足关系式 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$, 其中 $\alpha(x)$ 是当 $x\to 0$ 时比 x 高阶的无穷小, 且 f(x) 在 x = 1 处可导, 求曲线 y = f(x) 在点 (6, f(6)) 处的切线方程。

Remark (类型二参数方程表示的曲线).

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为__

Remark (类型三极坐标表示的曲线).

12. (1997, 数一) 对数螺线 $r = e^{\theta}$ 在点 $(\frac{\pi}{2}, \frac{\pi}{2})$ 处切线的直角坐标方程为__

1.2.4 导数应用-渐近线

13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是

(A)
$$y = x + \sin x$$
 (B) $y = x^2 + \sin x$
(C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

Solution.【详解】

14. (2007, 数一、数二、数三) 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为

$$(A) \ 0 \quad (B) \ 1 \quad (C) \ 2 \quad (D) \ 3$$

Solution.【详解】

1.2.5 导数应用-曲率

15. (2014, 数二) 曲线 $\begin{cases} x = t^2 + 7 \\ y = t^2 + 4t + 1 \end{cases}$ 对应于 t = 1 的点处的曲率半径是

(A)
$$\frac{\sqrt{10}}{50}$$
 (B) $\frac{\sqrt{10}}{100}$ (C) $10\sqrt{10}$ (D) $5\sqrt{10}$

Solution.【详解】

1.2.6 导数应用-极值与最值

17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则

- (A) f(0) 是 f(x) 的极大值
- (B) f(0) 是 f(x) 的极小值
- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值

19. (2014, 数二) 已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$, 且 y(2) = 0, 求 y(x) 的极大值与极小值

Solution.【详解】 □

1.2.7 导数应用-凹凸性与拐点

20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是

$$(A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)$$

Solution.【详解】 □

1.2.8 导数应用-证明不等式

21. (2017, 数一、数三) 设函数 f(x) 可导, 且 f(x)f'(x) > 0, 则

$$(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1)$$

$$(C) |f(1)| > |f(-1)| \quad (D) |f(1)| < |f(-1)|$$

Solution.【详解】 □

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

Solution.【详解】 □

1.2.9 导数应用-求方程的根

23. (2003, 数二) 讨论曲线 $y = 4 \ln x + k$ 与 $y = 4x + \ln^4 x$ 的交点个数。

Solution. 【详解】 □

24. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

1.2.10 微分中值定理证明题

Remark (类型一证明含有一个点的等式).

- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 且 f(1) = 1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
 - (ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

Solution.【详解】 □

26. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(1)=0,证明:存在 $\xi \in (0,1)$,使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$ 。

Solution. 【详解】 □

Remark (类型二证明含有两个点的等式).

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0,1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Solution.【详解】 □

Remark (类型三证明含有高阶导数的等式或不等式).

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数,且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$ 。

1.3 一元函数积分学

1.3.1 定积分的概念

1. 例 1 (2007, 数一、数二、数三) 如图, 连续函数 y = f(x) 在区间 [-3,-2],[2,3] 上的图形分别是直径为 1 的上、下半圆周, 在区间 [-2,0],[0,2] 的图形分别是直径为 2 的下、上半圆周. 设 $F(x) = \int_0^x f(t)dt$, 则下列结论正确的是:

$$(A)F(3) = -\frac{3}{4}F(-2)$$

Solution.【详解】

2. 例 2 (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是

(A) (0,1) (B)
$$\left(1, \frac{\pi}{2}\right)$$
 (C) $\left(\frac{\pi}{2}, \pi\right)$ (D) $(\pi, +\infty)$

Solution.【详解】 □

3. 例 3 (2003, 数二) 设 $I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx, I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx,$ 则

$$(A)I_1 > I_2 > 1$$
 $(B)1 > I_1 > I_2$

$$(C)I_2 > I_1 > 1$$
 $(D)1 > I_2 > I_1$

Solution. 【详解】 □

1.3.2 不定积分的计算

4. 例 5 (2009, 数二、数三) 计算不定积分 $\int \frac{1}{1+\sqrt{\frac{1+x}{x}}} dx (x > 0)$

5. 例 6 求 $\int \frac{1}{1+\sin x + \cos x} dx$

1.3.3 定积分的计算

6. 例 7 (2013, 数一) 计算 $\int_0^1 \frac{f(x)}{\sqrt{x}} dx$, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution.【详解】

7. 例 8 求下列积分:

(1)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$$

Solution.【详解】

8. 例 9 求 $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$

Solution.【详解】

1.3.4 反常积分的计算

9. 例 10 (1998, 数二) 计算积分 (题目内容缺失)

Solution. 【详解】 □

1.3.5 反常积分敛散性的判定

10. 例 11 (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则

$$(A) \ a < 1 \ b > 1$$

(B)
$$a > 1$$
 $b > 1$

$$(C) \ a < 1 \ a + b > 1$$

(D)
$$a > 1$$
 $a + b > 1$

Solution.【详解】 □

11. 例 12 (2010, 数一、数二) 设 m, n 均为正整数, 则反常积分 $\int_0^1 \frac{\sqrt[n]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

- (A) m
- (B) n
- (C) m, n
- (D) m, n

1.3.6 变限积分函数

12. 例 13 (2013, 数二) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$$
 , $F(x) = \int_0^x f(t) dt$, 则
$$(A) \ x = \pi \qquad F(x)$$

$$(B) x = \pi \qquad F(x)$$

(C)
$$F(x)$$
 $x = \pi$

(D)
$$F(x)$$
 $x = \pi$

Solution.【详解】

- 13. 例 14 (2016, 数二) 已知函数 f(x) 在 $[0,3\pi]$ 上连续, 在 $(0,3\pi)$ 内是函数的一个原函数, 且 f(0)=0.
 - (i) 求 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 上的平均值;
 - (ii) 证明 f(x) 在区间 $\left[0, \frac{3\pi}{2}\right]$ 内存在唯一零点.

Solution.【详解】 □

1.3.7 定积分应用求面积

14. 例 15 (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

Solution.【详解】 □

1.3.8 定积分应用求体积

- 15. 例 16 (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (i) 求 D 的面积 A;
 - (ii) 求 D 绕直线 x=e 旋转一周所得旋转体的体积 V.

Solution.【详解】 □

16. 例 17 (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

1.3.9 定积分应用求弧长

17. 例 18 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution.【详解】 □

1.3.10 定积分应用求侧面积

18. 例 19 (2016, 数二) 设 D 是由曲线 $y = \sqrt{1 - x^2} (0 \le x \le 1)$ 与 $x = \cos^3 t$ 围成的平面区域,求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution. 【详解】 □

1.3.11 一定积分物理应用

19. 例 20 (2020, 数二) 设边长为 2a 等腰直角三角形平板铅直地沉没在水中, 且斜边与水面相齐, 设重力加速度为 g, 水密度为 ρ , 则该平板一侧所受的水压力为

Solution.【详解】 □

1.3.12 二证明含有积分的等式或不等式

- 20. 例 21 (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (i) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (ii) $\Re \lim_{x\to+\infty} \frac{S(x)}{x}$

Solution.【详解】 □

- 21. 例 22 (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a, b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (i) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$
 - (ii) $\int_a^{a+\int_a^b g(t)dt} f(x)dx \le \int_a^b f(x)g(x)dx.$

1.4 常微分方程

1. 例 1 (1998, 数一、数二) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$, 其中 α 是 Δx 的高阶无穷小, $y(0) = \pi$, 则 y(1) 等于

(A)
$$2\pi$$
 (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

Solution.【详解】 □

2. 例 2 (2002, 数二) 已知函数 f(x) 在 $(0, +\infty)$ 内可导, f(x) > 0, $\lim_{x \to +\infty} f(x) = 1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

Solution. 【详解】 □

1.4.1 一阶微分方程的解法

Remark (类型一可分离变量).

3. 例 3 (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 & \end{cases}$$

Solution.【详解】

Remark (类型二一阶齐次).

4. 例 4 (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

(A)
$$\lambda = \frac{1}{2}$$
, $\mu = \frac{1}{2}$ (C) $\lambda = \frac{2}{3}$, $\mu = \frac{1}{3}$

Remark (类型三一阶线性).

- 5. 例 5 (2018, 数一) 已知微分方程 y' + y = f(x), 其中 f(x) 是 \mathbb{R} 上的连续函数。
 - (i) 若 f(x) = x, 求方程的通解;
 - (ii) 若 f(x) 是周期为 T 的函数, 证明: 方程存在唯一的以 T 为周期的解。

Solution. 【详解】 □

Remark (类型四伯努利方程 (数一掌握)).

6. 例 6 求解微分方程 $y' = \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1}$ 。

Solution.【详解】 □

Remark (类型五全微分方程 (数一掌握)).

7. 例 7 求解下列微分方程:

$$(1) (2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

(2)
$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0.$$

Solution. 【详解】 □

1.4.2 二阶常系数线性微分方程

8. 例 8 (2017, 数二) 微分方程 $y'' - 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$

(A)
$$Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(B)
$$Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

$$(C) Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

$$(D) Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

9. 例 9 (2015, 数一) 设 $y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^x$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^x$ 的一个特解, 则

(A)
$$a = -3, b = 2, c = -1$$

(B)
$$a = 3, b = 2, c = -1$$

$$(C)$$
 $a = -3, b = 2, c = 1$

(D)
$$a = 3, b = 2, c = 1$$

Solution.【详解】

10. 例 10 (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y = 0 的两个解。若 u(-1) = e, u(0) = -1,求 u(x),并写出该微分方程的通解。

- 11. 例 11 (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (i) 证明反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;
 - (ii) 若 y(0) = 1, y'(0) = 1, 求 $\int_0^{+\infty} y(x) dx$ 的值。

1.4.3 高阶常系数线性齐次微分方程

12. 例 12 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

1.4.4 二阶可降阶微分方程

Remark (方法数一、数二掌握数三大纲不要求).

13. 例 13 求微分方程 $y''(x+y'^2)=y'$ 满足初始条件 y(1)=y'(1)=1 的特解。

1.4.5 欧拉方程

Remark (方法数一掌握数二、数三大纲不要求).

14. 例 14 求解微分方程 $x^2y'' + xy' + y = 2 \sin \ln x$ 。

Solution.【详解】 □

1.4.6 变量代换求解二阶变系数线性微分方程

17. 例 17 (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1-x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

Solution. 【详解】 □

1.4.7 微分方程综合题

Remark (类型一综合导数应用).

18. 例 18 (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

Solution.【详解】 □

Remark (类型二综合定积分应用).

19. 例 19 (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的 立体体积值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

Solution. 【详解】 □

Remark (类型三综合变限积分).

20. 例 20 (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

Remark (类型四综合多元复合函数).

21. 例 21 (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

Solution.【详解】 □

Remark (类型五综合重积分).

22. 例 22 (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数, f(0) = 1, 且满足

$$\iint_{D_t} f'(x+y)dxdy = \iint_{D_t} f(t)dxdy$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。

Solution.【详解】 □

1.5 多元函数微分学

1.5.1 多元函数的概念

1. 例 1 求下列重极限:

(1)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2} \quad (\alpha \ge 0, \beta \ge 0);$$
(2)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x^2 - y^2)}{x^2 + y^2};$$

- 2. 例 2 (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是
 - (A) 若极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在,则f(x,y)在点(0,0)处可微
 - (B) 若极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在,则f(x,y)在点(0,0)处可微
 - (C) 若f(x,y)在点(0,0)处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在
 - (D) 若f(x,y)在点(0,0)处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在

Solution.【详解】

3. 例 3 (2012, 数三) 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则 $dz|_{(0,1)} =$

Solution. 【详解】 □

1.5.2 多元复合函数求偏导数与全微分

4. 例 4 (2021, 数一、数二、数三) 设函数 f(x,y) 可微, 且

$$f(x+1, e^x) = x(x+1)^2,$$

 $f(x, x^2) = 2x^2 \ln x$

则 df(1,1) =

$$(A) dx + dy$$
 $(B) dx - dy$ $(C) dy$

Solution.【详解】 □

5. 例 5 (2011, 数一、数二) 设 z = f(xy, yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导, 且在 x = 1 处取得极值 g(1) = 1, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=1,y=1}$ 。

Solution. 【详解】 □

1.5.3 多元隐函数求偏导数与全微分

- 6. 例 6 (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x,y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

Solution.【详解】

7. 例 7 (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确 定的函数, 其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{dz}{dx}$ 。

Solution.【详解】 □

1.5.4 变量代换化简偏微分方程

8. 例 8 (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a, b 的值, 使等式在变换 $\xi = x + ay, \eta = x + by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$ 。

Solution.【详解】 □

1.5.5 求无条件极值

9. 例 9 (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续, 且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C) 点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

Solution. 【详解】 □

10. 例 10 (2004, 数一) 设 z = z(x,y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数, 求 z = z(x,y) 的极值点和极值。

1.5.6 求条件极值 (边界最值)

11. 例 11 (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数,且 $\varphi'_y(x,y) \neq 0$ 。已 知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y)=0$ 下的一个极值点,下列选项正确的是

$$(A)$$
 若 $f'_x(x_0, y_0) = 0$, 则 $f'_y(x_0, y_0) = 0$

Solution.【详解】

12. 例 12 (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

Solution.【详解】 □

13. 例 13 (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则

(A) u(x,y)的最大值和最小值都在D的边界上取得

(B) u(x,y)的最大值和最小值都在D的内部取得

- (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
- (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

Solution.【详解】 □

14. 例 14 (2005, 数二) 已知函数 z = f(x,y) 的全微分 dz = 2xdx - 2ydy, 且 f(1,1) = 2, 求 f(x,y) 在椭圆域 $D = \{(x,y)|x^2 + \frac{y^2}{4} \le 1\}$ 上的最大值和最小值。

1.6 二重积分

1.6.1 二重积分的概念

1. 例 1 (2010, 数一、数二)

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2 + j^2)} =$$

$$(A) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy \quad (D) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$

Solution.【详解】

2. 例 2 (2016, 数三) 设 $J_i = \iint_{D_i} \sqrt[3]{x-y} dx dy (i=1,2,3)$, 其中

$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x, y) | 0 \le x \le 1, x^2 \le y \le 1\},$$

则

(A)
$$J_1 < J_2 < J_3$$
 (B) $J_3 < J_1 < J_2$

(C)
$$J_2 < J_3 < J_1$$
 (D) $J_2 < J_1 < J_3$

Solution.【详解】 □

1.6.2 交换积分次序

3. 例 3 (2001, 数一) 交换二次积分的积分次序:

$$\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$$

Solution.【详解】 □

4. 例 5 交换 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$ 的积分次序。

1.6.3 二重积分的计算

6. 例 6 (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数,且 $f(1,y) = 0, f(x,1) = 0, \iint_D f(x,y) dx dy = a$,其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$,计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) dx dy.$$

Solution.【详解】 □

7. 例 7 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

Solution.【详解】 □

8. 例 8 (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计 算二重积分 $\iint_D (x + 2y) dx dy$ 。

Solution.【详解】 □

9. 例 9 (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。

Solution.【详解】 □

10. 例 10 (2014, 数二、数三) 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy.$$

Solution. 【详解】 □

11. 例 11 (2019, 数二) 已知平面区域 $D = \{(x,y) | |x| \le y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} dx dy.$$

1.6.4 其他题型

13. 例 12 (2010, 数二) 计算二重积分 $I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$, 其中 (题目描述不完整)

Solution.【详解】 □

14. 例 13 (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$, 其中

$$D = \{(x,y)|(x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$$

Solution.【详解】 □

1.7 无穷级数

1.7.1 数项级数敛散性的判定

1. 例 1 (2015, 数三) 下列级数中发散的是

$$(A) \sum_{n=1}^{\infty} \frac{n}{3^n} \quad (C) \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \quad (D) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Solution. 【详解】 □

2. 例 2 (2017, 数三) 若级数 $\sum_{n=1}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$ 收敛, 则 k =

$$(A)\ 1 \quad (B)\ 2 \quad (C)\ -1 \quad (D)\ -2$$

Solution.【详解】 □

1.7.2 交错级数

3. 例 3 判定下列级数的敛散性:

$$(1)\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n-\ln n} \quad (2)\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

1.7.3 任意项级数

4. 例 4 (2002, 数一) 设 $u_n \neq 0 (n = 1, 2, 3, \cdots)$, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$, 则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$

 $(A) \qquad (B) \qquad (C) \qquad (D)$

Solution.【详解】 □

5. 例 5 (2019, 数三) 若 $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则

$$(A)$$
 $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛

$$(C)$$
 $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

Solution. 【详解】 □

1.7.4 幂级数求收敛半径与收敛域

6. 例 6 (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛, 则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^n$ 的

$$(A)$$
 , (B) ,

$$(C)$$
 , (D) ,

Solution. 【详解】 □

7. 例 7 求幂级数 $\sum_{n=1}^{\infty} \frac{3n}{2n+1} x^n$ 的收敛域.

Solution.【详解】 □

1.7.5 幂级数求和

8. 例 8 (2005, 数一) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$ 的收敛区间与和函数 f(x).

Solution.【详解】 □

9. 例 9 (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

- 10. 例 10 (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:
 - (i) S(x) 所满足的一阶微分方程;
 - (ii) S(x) 的表达式.

Solution.【详解】 □

1.7.6 幂级数展开

11. 例 11 (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

Solution. 【详解】 □

12. 例 12 将函数 $f(x) = \ln \frac{x}{x+1}$ 在 x = 1 处展开成幂级数.

Solution.【详解】 □

1.7.7 无穷级数证明题

- 13. 例 13 (2016, 数一) 已知函数 f(x) 可导, 且 $f(0) = 1, 0 < f'(x) < \frac{1}{2}$ 。 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$ 。 证明:
 - (i) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (ii) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

Solution.【详解】 □

- 14. 例 14 (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (i) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (ii) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

1.7.8 傅里叶级数

15. 例 15 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution. 【详解】由狄利克雷收敛定理知,f(x) 以 2π 为周期的傅里叶级数在 $x=\pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 例 16 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution. 【详解】对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

1.8 多元函数积分学

1.8.1 三重积分的计算

- 1. 例 1 (2013, 数一) 设直线 L 过 A(1,0,0),B(0,1,1) 两点,将 L 绕 z 轴旋转一周得到曲面 Σ,Σ 与平面 z=0,z=2 所围成的立体为 Ω .
 - (I) 求曲面 Σ 的方程;
 - (II) 求 Ω 的形心坐标.

Solution.【详解】 □

2. 例 2 (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体,求 Ω 的形心坐标.

Solution.【详解】 □

1.8.2 第一类曲线积分的计算

3. 例 3 (2018, 数一) 设 L 为球面 $x^2+y^2+z^2=1$ 与平面 x+y+z=0 的交线, 则 $\oint_L xyds=0$

Solution.【详解】 □

4. 例 4 设连续函数 f(x,y) 满足 $f(x,y) = (x+3y)^2 + \int_L f(x,y) ds$, 其中 L 为曲线 $y = \sqrt{1-x^2}$, 求曲线积分 $\int_L f(x,y) ds$.

Solution.【详解】 □

1.8.3 第二类曲线积分的计算

Remark (类型一平面第二类曲线积分).

- 5. 例 5 (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;
 - (II) 计算 $\oint_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$, 其中 ∂D_1 是 D_1 的正向边界.

Remark (类型二空间第二类曲线积分).

6. 例 6 (2011, 数一) 设 L 是柱面 $x^2+y^2=1$ 与平面 z=x+y 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则曲线积分 $\oint_L xzdx+xdy+\frac{y^2}{2}dz=$

1.8.4 第一类曲面积分的计算

Remark (方法).

7. 例 7 (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x + \sqrt{3})|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

1.8.5 第二类曲面积分的计算

Remark (方法).

8. 例 8 (2009, 数一) 计算曲面积分

$$I = \oint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

9. 例 9 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于零的常数.

10. 例 10 (2020, 数一) 设 Σ 为曲面 $z=\sqrt{x^2+y^2}(1\leq x^2+y^2\leq 4)$ 的下侧,f(x) 为连续函数,计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] dydz + [yf(xy) + 2y + x] dzdx + [zf(xy) + z] dxdy.$$

第二章 线性代数部分

2.1 行列式

2.1.1 数字行列式的计算

1. 设

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$

则方程 f(x) = 0 根的个数为?

Solution.【详解】

2. 利用范德蒙行列式计算

$$\left|\begin{array}{ccc} b & b^2 & ac \\ c & c^2 & ab \end{array}\right| =$$

Solution.【详解】

3. 设 x_1, x_2, x_3, x_4 ,

4. 计算三对角线行列式

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

Solution.【详解】

2.1.2 代数余子式求和

4. 已知

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix} = 27$$

Solution.【详解】

5. 设

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & n-1 & \cdots & 0 & 0 \\ n & 0 & \cdots & 0 & 0 \end{pmatrix}$$

则 |A| 的所有代数余子式的和为_____

2.1.3 抽象行列式的计算

6. (2005, 数一、二) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$.若 |A| = 1,则 |B| =______

Solution.【详解】 □

7. 设 A 为 n 阶矩阵, α , β 为 n 维列向量. 若 |A|=a, $\begin{vmatrix}A&\alpha\\\beta^T&b\end{vmatrix}=0$, 则 $\begin{vmatrix}A&\alpha\\\beta^T&c\end{vmatrix}=$

Solution.【详解】 □

8. 设 A 为 2 阶矩阵, $B = \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix}$ A^2 . 若 |A| = -1, 则 $|B| = \underline{\hspace{1cm}}$

Solution.【详解】 □

9. 设 n 阶矩阵 A 满足 $A^2 = A, A \neq E$, 证明 |A| = 0

Solution.【详解】 □

2.2 矩阵

2.2.1 求高次幂

1. 设 $A=\sqrt{a}$, B 为 3 阶矩阵,满足 BA=O,且 r(B)>1,则 $A^n=0$ 。

Solution.【详解】 □

2. 设

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 2 \\ 0 & 4 & 1 \end{pmatrix}$$

则 $A^n =$ 。

3. 设

$$A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$

P 为 3 阶可逆矩阵, $B=P^{-1}AP$,则 $(B+E)^{100}=$ ______。

Solution.【详解】 □

2.2.2 逆的判定与计算

3. 设 n 阶矩阵 A 满足 $A^2 = 2A$,则下列结论不正确的是:

Solution. 【详解】 □

- 4. 设 A, B 为 n 阶矩阵, a, b 为非零常数。证明:
 - (a) 若 AB = aA + bB, 则 AB = BA;
 - (b) 若 $A^2 + aAB = E$, 则 AB = BA。

Solution.【详解】 □

5. 设

$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$

满足 $A^3 = O$ 。

- (a) 求 a 的值;
- (b) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X。

2.2.3 秩的计算与证明

6. (2018, 数一、二、三) 设 A, B 为 n 阶矩阵, (XY) 表示分块矩阵, 则:

- (a) r(AAB) = r(A)
- (b) r(ABA) = r(A)
- (c) $r(AB) = \max\{r(A), r(B)\}$
- (d) $r(AB) = r(A^T B^T)$

Solution.【详解】

- 7. (1) 若 $A^2 = A$, 则 r(A) + r(A E) = n。
- 8. (II) 若 $A^2 = E$, 则 r(A + E) + r(A E) = n。

Solution.【详解】

2.2.4 关于伴随矩阵

8. 设 n 阶矩阵 A 的各列元素之和均为 2,且 |A|=6,则 A^* 的各列元素之和均为:

- (a) (A) 2
- (b) (B) 1
- (c) (C) 3
- (d) (D) 6

Solution. 【详解】 □

9. 设 $A = (a_{ij})$ 为 $n(n \ge 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:

(a)
$$a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$$

(b) $a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \perp |A| = -1$.

2.2.5 初等变换与初等矩阵

- 10. (2005, 数一、二) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵,交换 A 的第 1 行与第 2 行得到矩阵 B,则:
 - (a) (A) 交换 A* 的第 1 列与第 2 列,得 B*
 - (b) (C) 交换 A^* 的第 1 列与第 2 列,得 $-B^*$
 - (c) (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

Solution. 【详解】 □

11. 设

则 $(P^{-1})^{2023}A(Q^T)^{2022} =$ _____。

Solution.【详解】 □

2.3 向量

2.3.1 线性表示的判定与计算

- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$,则
 - (a) (A) $\alpha, \beta 与 \alpha, \gamma$ 等价
 - (b) (B) $\alpha, \beta 与 \beta, \gamma$ 等价
 - (c) (C) $\alpha, \gamma 与 \beta, \gamma$ 等价
 - (d) (D) α 与 γ 等价

Solution. 【详解】 □

2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。当 a,b 为何值时,

- (a) (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示,并求出表示式;
- (b) (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出表示式。

Solution.【详解】 □

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价,求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

Solution.【详解】 □

2.3.2 线性相关与线性无关的判定

- 3. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (a) (A) 必要非充分条件
 - (b) (B) 充分非必要条件
 - (c) (C) 充分必要条件
 - (d) (D) 既非充分又非必要条件

Solution.【详解】 □

4. 设 A 为 n 阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1 = A\alpha_1 \neq 0$, $A^2\alpha_2 = \alpha_1 + A\alpha_2$, $A^2\alpha_3 = \alpha_2 + A\alpha_3$,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

Solution.【详解】 □

5. 设 4 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,与 4 维列向量 β_1, β_2 两两正交,证明 β_1, β_2 线性相 关。

Solution. 【详解】 □

2.3.3 极大线性无关组的判定与计算

- (a) (I) 当 a 为何值时,该向量组线性相关,并求其一个极大线性无关组;
- (b) (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

Solution.【详解】 □

7. 证明:

- (a) (I) 设 A, B 为 $m \times n$ 矩阵,则 $r(A+B) \le r(A) + r(B)$;
- (b) (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \leq \min\{r(A), r(B)\}$ 。

Solution.【详解】 □

2.3.4 向量空间 (数一专题)

- 8. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (a) (I) 证明向量组 $\beta_1, \beta_2, \beta_3$ 为 R^3 的一个基:
 - (b) (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 与基 $\beta_1, \beta_2, \beta_3$ 下的坐标相同,并求所有的 ξ 。

Solution.【详解】 □

2.4 线性方程组

2.4.1 解的判定

- 1. (2001,数三)设 A 为 n 阶矩阵, α 为 n 维列向量,且 $\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$,则线性方程组
 - (a) (A) $Ax = \alpha$ 有无穷多解
 - (b) (B) $Ax = \alpha$ 有唯一解

(c) (C)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 只有零解

(d) (D)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 有非零解

Solution.【详解】

- 2. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m < n, 则下列结论不正确的是
 - (a) (A) 线性方程组 $A^Tx = 0$ 只有零解
 - (b) (B) 线性方程组 $A^{T}Ax = 0$ 有非零解
 - (c) (C) $\forall b$, 线性方程组 $A^Tx = b$ 有唯一解
 - (d) (D) $\forall b$, 线性方程组 Ax = b 有无穷多解

Solution.【详解】 □

2.4.2 求齐次线性方程组的基础解系与通解

- 2. (2011, 数一, 二) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, $(1,0,1,0)^T$ 为线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为
 - (a) (A) α_1, α_2
 - (b) (B) α_1, α_3
 - (c) (C) $\alpha_1, \alpha_2, \alpha_3$
 - (d) (D) $\alpha_2, \alpha_3, \alpha_4$

Solution.【详解】 □

3. (2005, 数一、二) 设 3 阶矩阵 A 的第 1 行为 (a,b,c), a,b,c 不全为零, $B = \begin{pmatrix} 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ 满足 AB = O,求线性方程组 Ax = 0 的通解。

Solution. 【详解】 □

4. (2002, 数三) 设线性方程组

$$ax_1 + bx_2 + bx_3 + \dots + bx_n = 0$$

 $bx_1 + ax_2 + bx_3 + \dots + bx_n = 0$
 \vdots
 $bx_1 + bx_2 + bx_3 + \dots + ax_n = 0$

其中 $a \neq 0, b \neq 0, n \geq 2$ 。当 a, b 为何值时,方程组只有零解、有非零解,当方程组有非零解时,求其通解。

Solution.【详解】

2.4.3 求非齐次线性方程组的通解

5. 设 A 为 4 阶矩阵, k 为任意常数, η_1, η_2, η_3 为非齐次线性方程组 Ax = b 的三个解, 满足

$$\eta_1 + \eta_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \eta_2 + 2\eta_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

Solution.【详解】 □

- 6. (2017, 数一、三、三) 设 3 阶矩阵 $A = (\alpha'_1, \alpha'_2, \alpha'_3)$ 有三个不同的特征值, 其中 $\alpha_3 = \alpha_1 + 2\alpha_2$ 。
 - (a) (I) 证明 r(A) = 2;
 - (b) (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求线性方程组 $Ax = \beta$ 的通解。

Solution.【详解】 □

- 7. (I) 求 λ , a 的值;
- 8. (II) 求方程组 Ax = b 的通解。

Solution. 【详解】 □

- 9. (I) η 为非齐次线性方程组 Ax = b 的特解, 证明:
 - (a) (II) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 线性无关;
 - (b) (III) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 为 Ax = b 所有解的极大线性无关组。

Solution. 【详解】 □

2.4.4 解矩阵方程

9. 矩阵方程解的判定

$$AX = B$$
 无解 $\Leftrightarrow r(A) < r(A|B)$
$$AX = B$$
 有唯一解 $\Leftrightarrow r(A) = r(A|B) = n$
$$AX = B$$
 有无穷多解 $\Leftrightarrow r(A) = r(A|B) < n$

- 10. 矩阵方程的求法对 (A|B) 作初等行变换,化为行最简形矩阵,得矩阵 X。
- 11. (例 4.10) 设

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$

矩阵 X 满足 $AX + E = A^{2022} + 2X$,求矩阵 X。

Solution.【详解】 □

12. (例 4.11) (2014, 数一、二、三) 设

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$

- (a) (I) 求线性方程组 Ax = 0 的一个基础解系;
- (b) (II) 求满足 AB = E 的所有矩阵 B。

Solution.【详解】 □

2.4.5 公共解的判定与计算

12. (2007, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$(II)x_1 + 2x_2 + x_3 = a - 1$$

有公共解, 求 a 的值及所有公共解。

13. 设齐次线性方程组

(I)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

齐次线性方程组 (II) 的一个基础解系为 $\alpha_1 = (2, -1, a+2, 1)^T$, $\alpha_2 = (-1, 2, 4, a+8)^T$

- (a) (1) 求方程组 (I) 的一个基础解系;
- (b) (2) 当 a 为何值时,方程组 (I) 与 (II) 有非零公共解,并求所有非零公共解。

Solution.【详解】 □

14. (2005,数三)设线性方程组

$$(I) \begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

与 (II)

$$\begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解,求a,b,c的值。

Solution.【详解】 □

2.5 第特征值与特征向量

2.5.1 特征值与特征向量的计算

1. 设

求 A 的特征值与特征向量。

Solution.【详解】

2. (2003, 数一) 设

$$A = \begin{pmatrix} 5 & -2 & 3 \\ 3 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad B = P^{-1}A^*P$$

求 B + 2E 的特征值与特征向量。

Solution.【详解】 □

3. 设

$$A = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 4 & -2 \\ 1 & -2 & a \end{pmatrix}$$

的特征方程有一个二重根, 求 A 的特征值与特征向量。

Solution. 【详解】 □

- 4. 设 3 阶非零矩阵 A 满足 $A^2 = O$,则 A 的线性无关的特征向量的个数是
 - (a) (A) 0
 - (b) (B) 1
 - (c) (C) 2
 - (d) (D) 3

Solution. 【详解】 □

- 5. 设 $A = \alpha \beta^T + \beta \alpha^T$, 其中 α, β 为 3 维单位列向量,且 $\alpha^T \beta = \frac{1}{3}$,证明:
 - (a) (I) 0 为 A 的特征值;
 - (b) (II) $\alpha + \beta, \alpha \beta$ 为 A 的特征向量;
 - (c) (III) A 可相似对角化。

2.5.2 相似的判定与计算

6. (2019, 数一、二、三) 设

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 0 & 0 \\ -1 & -1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

(I) 求 x, y 的值; (II) 求可逆矩阵 P, 使得 $P^{-1}AP = B$ 。

2.5.3 相似对角化的判定与计算

8. (2005, 数一、二) 设 3 阶矩阵 A 的特征值为 1, 3, -2, 对应的特征向量分别为 $\alpha_1,\alpha_2,\alpha_3$ 。 若

$$P = (\alpha_1, 2\alpha_2, -\alpha_3)$$

则 $P^{-1}AP =$ _____。

Solution. 【详解】 □

9. 设 n 阶方阵 A 满足 $A^2 - 3A + 2E = O$, 证明 A 可相似对角化。

Solution.【详解】 □

- 10. (2020, 数一、二、三) 设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$,其中 α 为非零向量且不是 A 的 特征向量。
 - (a) (I) 证明 P 为可逆矩阵;
 - (b) (II) 若 $A^2\alpha + 6A\alpha 10\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵。

2.5.4 实对称矩阵的计算

11. (2010, 数二、三) 设

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 \\ 1 & 3 & a & 1 \\ 4 & a & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

正交矩阵 Q 使得 Q^TAQ 为对角矩阵。若 Q 的第 1 列为 $\frac{1}{\sqrt{6}}(1,2,1,0)^T$,求 a,Q。

Solution.【详解】 □

- 12. 设 3 阶实对称矩阵 A 满足 $A^2 + A = O$, A 的各行元素之和均为零, 且 r(A) = 2。
 - (a) (I) 求 A 的特征值与特征向量;
 - (b) (II) 求矩阵 A。

Solution.【详解】 □

2.6 二次型

2.6.1 求二次型的标准形

- 1. (2016,数二、三)设二次型 $f(x_1,x_2,x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 2x_2x_3$ 的正、负惯性指数分别为 1, 2, 则
 - (a) a > 1
 - (b) a < -1
 - (c) -1 < a < 1
 - (d) a = 1 或 a = -1

- 2. (2022, 数一) 设二次型 $f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} ijx_i x_j$ 。
 - (a) 求 $f(x_1, x_2, x_3)$ 对应的矩阵;

(b) 求正交变换 x = Qy, 将 $f(x_1, x_2, x_3)$ 化为标准形;

(c) 求 $f(x_1, x_2, x_3) = 0$ 的解。

Solution.【详解】 □

- 3. (2020,数一、三)设二次型 $f(x_1,x_2) = 4x_1^2 + 4x_2^2 + 4x_1x_2$ 经正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1,y_2) = y_1^2 + by_2^2$,其中 $b \ge 0$ 。
 - (a) 求 a,b 的值;
 - (b) 求正交矩阵 Q。

Solution.【详解】 □

2.6.2 合同的判定

4. (2008,数二、三)设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,与A合同的矩阵是

(a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$(d) \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

Solution.【详解】 □

5. 设 A, B 为 n 阶实对称可逆矩阵,则存在 n 阶可逆矩阵 P,使得

- (a) PAP = B;
- (b) $P^{-1}ABP = BA$;
- (c) $P^{-1}AP = B$;
- (d) $P^T A P = B_{\circ}$

2.6	二次型	第二章	线性代数部分
	成立的个数是		
	(a) 1		
	(b) 2		
	(c) 3		
	(d) 4		
	Solution.【详解】		
2.6.	3 二次型正定与正定矩阵的判定		
6.	(2017,数一、二、三)设 A 为 $m \times n$ 阶矩阵,且 $r(A) = n$,	则下列结论	之
	(a) $A^T A$ 与单位矩阵等价;		
	(b) $A^T A$ 与对角矩阵相似;		
	(c) $A^T A$ 与单位矩阵合同;		
	(d) $A^T A$ 正定。		
	正确的个数是		
	(a) 1		
	(b) 2		
	(c) 3		
	(d) 4		
	Solution.【详解】		
7.	证明:		
	(a) 设 A 为 n 阶正定矩阵, B 为 n 阶反对称矩阵,则 $A-B$) ² 为正定知	巨阵;

Solution.【详解】

(b) 设 A,B 为 n 阶矩阵,且 r(A+B)=n,则 A^TA+B^TB 为正定矩阵。

第三章 概率论部分

3.1 事件与概率论

3.1.1 事件的关系、运算与概率的性质

1. 设 A, B 为随机事件,且 $P(A) = P(B) = \frac{1}{2}$, $P(A \cup B) = 1$,则 $(A) \ A \cup B = \Omega \quad (B) \ AB = \varnothing \quad (C) \ P(\bar{A} \cup \bar{B}) = 1 \quad (D) \ P(A - B) = 0$

Solution.【详解】 □

(A)
$$\frac{3}{4}$$
 (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D) $\frac{5}{12}$

Solution.【详解】 □

3. 设随机事件 A,B 满足 $AB=\overline{AB}$,且 0< P(A)<1,0< P(B)<1,则 $P(A|\bar{B})+P(B|\bar{A})=$

Solution.【详解】 □

4. 设随机事件 A, B, C 两两独立,满足 $ABC = \emptyset$,且 P(A) = P(B) = P(C),A, B, C 至 少有一个发生的概率为 $\frac{9}{16}$,则 P(A) =

Solution.【详解】 □

5. 设 A, B 为随机事件,且 $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$,则 P(A|B) + P(B|A) 的最大值为?,最小值为?.

3.1.2 三大概型的计算

6. (2016, 数三) 设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到为止,则取球次数恰好为4的概率为

Solution. 【详解】 □

7. 在区间 (0,a) 中随机地取两个数,则两数之积小于 $\frac{a^2}{4}$ 的概率为

Solution.【详解】 □

8. 设独立重复的试验每次成功的概率为p,则第5次成功之前至82次失败的概率为

Solution. 【详解】 □

3.1.3 三大概率公式的计算

9. 设 A, B 为随机事件,且 $P(A \cup B) = 0.6$, $P(B|\bar{A}) = 0.2$,则 P(A) =

Solution. 【详解】 □

10. (2018, 数一) 设随机事件 A 与 B 相互独立, A 与 C 相互独立, 满足 $BC = \emptyset$, 且

$$P(A) = P(B) = \frac{1}{2}, \quad P(AC|AB \cup C) = \frac{1}{4},$$

则 P(C) = ?.

Solution. 【详解】 □

- 11. (2003, 数一) 设甲、乙两箱装有同种产品,其中甲箱装有 3 件合格品和 3 件次品,乙箱装有 3 件合格品。从甲箱中任取 3 件产品放入乙箱,
 - (i) 求乙箱中次品件数 X 的数学期望;
 - (ii) 求从乙箱中任取一件产品是次品的概率.

Solution.【详解】 □

3.1.4 事件独立的判定

Remark (事件独立的充要条件).

12. 设 A, B 为随机事件,且 0 < P(A) < 1,则

- (A) $A \supset B$ A, B
- (B) $B \supset A$ A, B
- (C) $AB = \emptyset$ A, B
 - (D) $A = \bar{B}$ A, B

Solution.【详解】

13. 设 A, B, C 为随机事件,A 与 B 相互独立,且 P(C) = 0,则 $\bar{A}, \bar{B}, \bar{C}$

(A) (B)

 $(C) \qquad (D)$

Solution.【详解】

3.2 一维随机变量

3.2.1 分布函数的判定与计算

1. 设随机变量 X 的分布函数为 F(x), a,b 为任意常数,则下列一定不是分布函数的是

(A)
$$F(ax + b)$$
 (B) $F(x^2 + b)$ (C) $F(x^3 + b)$ (D) $1 - F(-x)$

Solution. 【详解】 □

2. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则 X 的分布函数 F(x) = ?, $P\{-2 < X < \frac{1}{4}\} = ?$.

3.2.2 概率密度的判定与计算

3. 设随机变量 X 的概率密度为 f(x),则下列必为概率密度的是

(A)
$$f(-x+1)$$
 (B) $f(2x-1)$ (C) $f(-2x+1)$ (D) $f(\frac{1}{2}x-1)$

Solution.【详解】 □

4. $(2011, 数 - \sqrt{2})$ 设 $F_1(x), F_2(x)$ 为分布函数,对应的概率密度 $f_1(x), f_2(x)$ 为连续函数,则下列必为概率密度的是

(A)
$$f_1(x)f_2(x)$$
 (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$

Solution. 【详解】 □

5. (2000, 三) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3}, & x \in [0, 1] \\ \frac{2}{9}, & x \in [3, 6] \\ 0, & \sharp \text{ th} \end{cases}$$

若 $P\{X \ge k\} = \frac{2}{3}$,则 k 的取值范围是?.

Solution.【详解】 □

3.2.3 关于八大分布

6. 设随机变量 X 的概率分布为 $P\{X=k\}=C\frac{\lambda^k}{k!},\ k=1,2,\cdots,\ 则\ C=?.$

Solution.【详解】 □

7. 设随机变量 X 的概率密度为 $f(x) = Ae^{-\frac{x^2}{2} + Bx}$, 且 EX = DX, 则 A = ?, B = ?.

Solution.【详解】 □

8. (2004, 数一、三) 设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$ 。若 $P\{|X| < x\} = \alpha$,则 x 等于

(A)
$$u_{\frac{\alpha}{2}}$$
 (B) $u_{1-\frac{\alpha}{2}}$ (C) $u_{\frac{1-\alpha}{2}}$ (D) $u_{1-\alpha}$

Solution.【详解】

9. 设随机变量 $X \sim N(2, \sigma^2)$, 且 $P\{2 < X < 4\} = 0.3$, 则 $P\{X < 0\} = ?$.

Solution.【详解】 □

10. 设随机变量 $X \sim N(\mu, \sigma^2)(\mu < 0)$, F(x) 为其分布函数, a 为任意常数, 则

$$(A) F(a) + F(-a) > 1 (B) F(a) + F(-a) = 1$$

$$(C) F(a) + F(-a) < 1 (D) F(\mu + a) + F(\mu - a) = \frac{1}{2}$$

Solution.【详解】 □

11. 设随机变量 X 与 Y 相互独立,均服从参数为 1 的指数分布,则 $P\{1 < \max\{X,Y\} < 2\} = ?$.

Solution.【详解】 □

12. 设随机变量 X 与 Y 相互独立,均服从区间 [0,3] 上的均匀分布,则 $P\{1 < \min\{X,Y\} < 2\} = ?$.

Solution. 【详解】 □

13. (2013, 数一) 设随机变量 $Y \sim E(1)$, a > 0, 则 $P\{Y \le a + 1 | Y > a\} = ?$.

Solution.【详解】 □

14. 设随机变量 $X \sim G(p)$, m, n 为正整数, 则 $P\{X > m + n | X > m\}$

- (A) m n n
- (B) m n n
- (C) n m m
- (D) n m m

3.2.4 求一维连续型随机变量函数的分布

15. 设随机变量 $X \sim E(\lambda)$, 则 $Y = \min\{X, 2\}$ 的分布函数

$$(A) \qquad (B)$$

$$(C) \qquad (D)$$

Solution.【详解】 □

16. (2013, 数一) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{2x}{a^2}, & 0 < x < a \\ 0, & \sharp \text{ } \end{cases}$$

$$Y = \begin{cases} \frac{1}{3}X, & X \le 1 \\ X, & 1 < X < 2 \\ 1, & X \ge 2 \end{cases}$$

- (a) 求 Y 的分布函数;
- (b) $求 P{X ≤ Y}$.

Solution. 【详解】 □

- 17. $(2021, 数 \sqrt{2})$ 在区间 (0,2) 上随机取一点,将该区间分成两段,较短一段的长度记为 X,较长一段的长度记为 Y。
 - (a) 求 X 的概率密度;
 - (b) 求 $Z = \frac{Y}{Y}$ 的概率密度;
 - (c) 求 $E\left(\frac{Y}{X}\right)$.

Solution.【详解】 □

3.3 二维随机变量

3.3.1 联合分布函数的计算

1. 设随机变量 X 与 Y 相互独立, $X \sim B(1,p)$, $Y \sim E(\lambda)$, 则 (X,Y) 的联合分布函数 F(x,y) = ?.

Solution.【详解】

3.3.2 二维离散型随机变量分布的计算

- 2. 设随机变量 X 与 Y 相互独立,均服从参数为 p 的几何分布。
 - (a) 求在 $X + Y = n(n \ge 2)$ 的条件下, X 的条件概率分布;
 - (b) $\vec{x} P\{X + Y \ge n\} (n \ge 2)$.

Solution.【详解】

3.3.3 二维连续型随机变量分布的计算

4. (2010, 数一、三) 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, \quad -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

Solution.【详解】 □

- 5. 设随机变量 $X \sim U(0,1)$,在 X = x(0 < x < 1) 的条件下,随机变量 $Y \sim U(x,1)$ 。
 - (a) 求 (X,Y) 的联合概率密度;
 - (b) 求 (X,Y) 关于 Y 的边缘概率密度 $f_Y(y)$;

Solution.【详解】 □

6. 设二维随机变量 $(X,Y) \sim N(1,2;1,4;-\frac{1}{2})$,且 $P\{aX+bY\leq 1\}=\frac{1}{2}$,则 (a,b) 可以为

$$(A) \quad \left(\frac{1}{2}, -\frac{1}{4}\right) \quad (B) \quad \left(\frac{1}{4}, -\frac{1}{2}\right)$$

$$(C) \quad \left(-\frac{1}{4}, \frac{1}{2}\right) \quad (D) \quad \left(\frac{1}{2}, \frac{1}{4}\right)$$

7. (2020, 数三) 设二维随机变量 $(X,Y) \sim N(0,0;1,4;-\frac{1}{2})$,则下列随机变量服从标准正态分布且与 X 相互独立的是

(A)
$$\frac{\sqrt{5}}{5}(X+Y)$$
 (B) $\frac{\sqrt{5}}{5}(X-Y)$
(C) $\frac{\sqrt{3}}{3}(X+Y)$ (D) $\frac{\sqrt{3}}{3}(X-Y)$

Solution.【详解】 □

8. (2022, 数一) 设随机变量 $X \sim N(0,1)$,在 X = x 的条件下,随机变量 $Y \sim N(x,1)$,则 X 与 Y 的相关系数为

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{2}}{2}$

Solution.【详解】 □

3.3.4 求二维离散型随机变量函数的分布

12. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$,求 Z = X + Y 的概率分布.

3.3.5 求二维连续型随机变量函数的分布

13. 设二维随机变量 (X,Y) 的联合概率密度为

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & \text{其他} \end{cases}$$

求:

- (a) (X,Y) 的联合分布函数 F(x,y);
- (b) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
- (c) 条件概率密度 $f_{X|Y}(x|y), f_{Y|X}(y|x)$;
- (d) $P\left\{Y \le \frac{1}{2} | X \le \frac{1}{2}\right\}, P\left\{Y \le \frac{1}{2} | X = \frac{1}{2}\right\};$
- (e) Z = 2X Y 的概率密度 $f_Z(z)$.

3.3.6 求一离散一连续随机变量函数的分布

- 14. (2020, 数一) 设随机变量 X_1, X_2, X_3 相互独立, X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},\ Y=X_3X_1+(1-X_3)X_2$ 。
 - (a) 求 (X_1,Y) 的联合分布函数 (结果用标准正态分布函数 $\Phi(x)$ 表示);
 - (b) 证明 Y 服从标准正态分布.

Solution. 【详解】 □

3.4 数字特征

3.4.1 期望与方差的计算

Solution.【详解】

1. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty, 则 <math>E[\min\{|X|, 1\}] = ?.$

Solution. 【详解】 □

2. (2016, 数三) 设随机变量 X 与 Y 相互独立, $X \sim N(1,2)$, $Y \sim N(1,4)$, 则 D(XY) =

 $(A) \ 6 \quad (B) \ 8 \quad (C) \ 14 \quad (D) \ 15$

3. 设随机变量 X 与 Y 同分布,则 $E\left(\frac{X+Y}{2}\right)=?$.

Solution.【详解】 □

4. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$,且 $P\{X+Y>0\}=1-e^{-1}$,则 $E(X+Y)^2=?$.

Solution.【详解】 □

5. 设随机变量 X 与 Y 相互独立, $X \sim E(\lambda)$, $Y \sim E\left(\frac{1}{6}\right)$,若 $U = \max\{X,Y\}$, $V = \min\{X,Y\}$,则 EU = ?,EV = ?.

Solution.【详解】 □

6. (2017, 数一) 设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布函数,则 EX = ?.

Solution.【详解】

7. 设随机变量 $X \sim N(0,1)$, 则 E|X| = ?, D|X| = ?.

Solution. 【详解】 □

8. 设随机变量 X 与 Y 相互独立,均服从 $N(\mu,\sigma^2)$,求 $E[\max\{X,Y\}]$, $E[\min\{X,Y\}]$.

Solution. 【详解】 □

9. 设独立重复的射击每次命中的概率为p, X表示第n次命中时的射击次数,求EX, DX.

Solution. 【详解】 □

- 10. (2015, 数一、三) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ 0, & x \leq 0 \end{cases}$ 文的观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为观测次数。
 - (a) 求 Y 的概率分布;
 - (b) 求 EY.

Solution.【详解】 □

3.4.2 协方差的计算

11. 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。若 DX = 4,正整数 $s \le n$, $t \le n$,则

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s} X_{i}, \frac{1}{t}\sum_{j=1}^{t} X_{j}\right) =$$

(A) $4 \max\{s,t\}$ (B) $4 \min\{s,t\}$ (C) $\frac{4}{\max\{s,t\}}$ (D) $\frac{4}{\min\{s,t\}}$

Solution.【详解】 □

- 12. (2005, 数三) 设 $X_1, X_2, \cdots, X_n (n > 2)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,样本均值 为 \bar{X} 。记 $Y_i = X_i \bar{X}$, $i = 1, 2, \cdots, n$ 。
 - (a) 求 Y_i 的方差 DY_i , $i = 1, 2, \dots, n$;
 - (b) 若 $c(Y_1 + Y_n)^2$ 为 σ^2 的无偏估计量,求常数 c.

3.4.3 相关系数的计算

13. (2016, 数一) 设试验有三个两两互不相容的结果 A_1, A_2, A_3 ,且三个结果发生的概率均为 $\frac{1}{3}$ 。将试验独立重复地做两次,X 表示两次试验中 A_1 发生的次数,Y 表示两次试验中 A_2 发生的次数,则 X 与 Y 的相关系数为

$$(A) - \frac{1}{2} (B) - \frac{1}{3} (C) \frac{1}{3} (D) \frac{1}{2}$$

Solution. 【详解】 □

- 14. 设随机变量 $X \sim B\left(1, \frac{3}{4}\right), Y \sim B\left(1, \frac{1}{2}\right), 且 \rho_{XY} = \frac{\sqrt{3}}{3}$ 。
 - (a) 求 (X,Y) 的联合概率分布;
 - (b) $\Re P\{Y=1|X=1\}.$

Solution. 【详解】 □

3.4.4 相关与独立的判定

15. 设二维随机变量 (X,Y) 服从区域 $D = \{(x,y)|x^2 + y^2 \le a^2\}$ 上的均匀分布,则

(D)
$$X Y U(-a, a)$$

Solution. 【详解】 □

- 16. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$ 。
 - (a) 求 *X* 的期望与方差;
 - (b) 求 X 与 |X| 的协方差,问 X 与 |X| 是否不相关?
 - (c) 问 X 与 |X| 是否相互独立? 并说明理由.

3.5 第五章大数定律与中心极限定理

1. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, $\mu_k = E(X_i^k)(k=1,2,3,4)$ 。 由切比雪夫不等式,对任意 $\varepsilon > 0$,有

$$P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \mu_2 \right| \ge \varepsilon \right\} \le$$

$$(A) \frac{\mu_4 - \mu_2^2}{n\varepsilon^2} \quad (B) \frac{\mu_4 - \mu_2^2}{\sqrt{n}\varepsilon^2} \quad (C) \frac{\mu_2 - \mu_1^2}{n\varepsilon^2} \quad (D) \frac{\mu_2 - \mu_1^2}{\sqrt{n}\varepsilon^2}$$

Solution.【详解】 □

2. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, X_i 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于?.

Solution. 【详解】 □

3. (2020, 数一) 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, $P\{X = 0\} = P\{X = 1\} = \frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数。利用中心极限定理得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为

$$(A) \ 1 - \Phi(1) \quad (B) \ \Phi(1) \quad (C) \ 1 - \Phi(0.2) \quad (D) \ \Phi(0.2)$$

Solution.【详解】 □

3.6 第六章统计初步

3.6.1 求统计量的抽样分布

1. (2013, 数一) 设随机变量 $X \sim t(n)$, $Y \sim F(1,n)$ 。给定 $\alpha(0 < \alpha < 0.5)$,常数 c 满足 $P\{X>c\} = \alpha$,则 $P\{Y>c^2\} =$

(A)
$$\alpha$$
 (B) $1-\alpha$ (C) 2α (D) $1-2\alpha$

Solution.【详解】

Solution.【详解】 □

3.6.2 求统计量的数字特征

3. 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,则

$$E\left[\left(\bar{X} - S^2\right)^2\right] =$$

Solution. 【详解】 □

- 4. 设 X_1, X_2, \cdots, X_9 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,样本均值为 \bar{X} ,样本方差为 S^2 。
 - (a) $\vec{X} E[(\bar{X}S^2)^2];$
 - (b) 求 $D(S^2)$.

Solution.【详解】 □

3.7 参数估计

3.7.1 求矩估计与最大似然估计

1. (2002, 数一) 设总体 X 的概率分布为

$$\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline P & \theta^2 & 2\theta(1-\theta) & 1-2\theta \end{array}$$

其中 $0 < \theta < \frac{1}{2}$ 为未知参数,利用总体 X 的如下样本值 3,1,3,0,3,1,2,3,求 θ 的矩估 计值与最大似然估计值。

Solution. 【详解】 □

2. (2011, 数一) 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本,其中 μ_0 已 知, $\sigma^2 > 0$ 未知,样本均值为 \bar{X} ,样本方差为 S^2 。

- (a) 求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
- (b) 求 $E(\hat{\sigma}^2)$ 与 $D(\hat{\sigma}^2)$ 。

Solution.【详解】 □

- 3. (2022, 数一、三) 设 X_1, X_2, \dots, X_n 为来自期望为 θ 的指数分布总体的简单随机样本, Y_1, Y_2, \dots, Y_m 为来自期望为 2θ 的指数分布总体的简单随机样本,两个样本相互独立。利用 X_1, X_2, \dots, X_n 与 Y_1, Y_2, \dots, Y_m ,
 - (a) 求 θ 的最大似然估计量 $\hat{\theta}$;
 - (b) 求 $D(\hat{\theta})_{\circ}$

Solution.【详解】 □

3.7.2 估计量的评价标准

4. 设总体 X 的概率密度为

$$f(x) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta \\ 0, & \text{其他} \end{cases}$$

其中 $\theta > 0$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。

- (a) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (b) 问 $\hat{\theta}$ 是否为 θ 的无偏估计量? 并说明理由。