

3D Data Processing Lab 1: Semi-Global Matching Example

Semi-Global Matching

- Approximate global methods by aggregating costs for a number of directions (from 2D to multiple 1D areas of interest)
- Minimization along individual image rows can be performed efficiently in polynomial time using Dynamic Programming

Semi-Global Matching

- For each direction, start from one end point and go toward p
- For each pixel along the direction, update the following dynamic programming equation (the result at step i depends on the result at step i-1):

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1}) - \min_{0 \le \Delta \le d_{\text{max}}} E(p_{i-1}, \Delta)$$

where:

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2(p, q) & \text{if } |f_p - f_q| > 1 \end{cases}$$

Restrict the range of resulting

values, without affecting the minimization procedure

Semi-Global Matching

Consider the stereo matching problem for the following 7 x 1 left and right images:

- 1) Compute the right to left **cost volume**, considering positive disparities, $d \ge 0$ with $d_{max} = 0$ 3 and data cost defined by the sum of absolute differences (SAD) computed in 1 x 1 windows. Use value -1 to set "no disparity assigned"
- 2) Given the matching cost computed in 1), consider the Semi-Global Matching method with the following simplified dynamic programming equations:

$$E(p_i, d) = E_{data}(p_i, d) + E_{smooth}(p_i, p_{i-1})$$

$$E_{smooth}(p, q) = \min \begin{cases} E(q, f_q) & \text{if } f_p = f_q \\ E(q, f_q) + c_1 & \text{if } |f_p - f_q| = 1 \\ \min_{0 \le \Delta \le d_{\max}} E(q, \Delta) + c_2 & \text{if } |f_p - f_q| > 1 \end{cases}$$

where $c_1 = 1$ and $c_2 = 2$. Compute the integration matrix for the highlighted pixel and scanline:

Cost Volume

Compute the Cost Volume

0	1	1	2	1	1	3	1
1	2	1	1	2	1	1	-1
2	0	0	0	2	3	-1	-1
3	1	1	0	0	-1	-1	-1

right to left

0	1		
1	2		
2	0		
3	1		

0	1		
1	2		
2	0		
3	1		

$$1 + \min(1, 2+1, 0+2)=2$$

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) \\ E(q, f_q) + c_1 \\ \min_{0 \le \Delta \le d_{\text{max}}} E(q, \Delta) + c_2 \end{cases}$$

if
$$f_p = f_q$$

if $|f_p - f_q| = 1$
if $|f_p - f_q| > 1$

$$c_1 = 1$$

$$c_2 = 2$$

0	1	2	
1	2	2	
2	0	0	
3	1	2	

$$E_{smooth}(p,q) = \min \begin{cases} E(q, f_q) \\ E(q, f_q) + c_1 \\ \min_{0 \le \Delta \le d_{\text{max}}} E(q, \Delta) + c_2 \end{cases}$$

$$\begin{array}{c}
\text{if } f_p = f_q \\
\text{if } |f_p - f_q| = 1 \\
\text{if } |f_p - f_q| > 1
\end{array}$$

$$\begin{array}{c}
\mathbf{c_1} = \mathbf{1} \\
\mathbf{c_2} = \mathbf{2}
\end{array}$$

0	1	2	4	
1	2	2	2	
2	0	0	0	
3	1	2	1	

$$1 + \min(4, 2+1, 0+2)=3$$

0	1	2	4	3
1	2	2	2	3
2	0	0	0	2
3	1	2	1	1