ADA Mini HW #9

Student Name: 林楷恩 Student ID: b07902075

I will construct a polynomial time transformation f such that $x \in \text{HAM-PATH} \iff f(x) \in \text{TSP}$

$$f = "on input < G = (V, E) >:$$

- **1.** construct V' such that $V' = V \cup \{v^*\}$
- **2.** construct E' such that $E' = E \cup \{ (v^*, v_i) \mid v_i \in V \}$
- **3.** Let G' = (V', E')
- **4.** construct cost function c where:
 - (1) $c(v_i, v_j) = 0$ if $(v_i, v_j) \in E$
 - (2) $c(v_i, v_j) = 1$ if $(v_i, v_j) \notin E$
 - (3) $c(v^*, v_i) = 0 \ \forall \ v_i \in V$
- **5.** output < G', c, 0 >"

* Proof of Correctness:

- Let $x = \langle G \rangle$ where G = (V, E)
- Let $f(x) = \langle G', c, 0 \rangle$ where G' = (V', E')
- $1. \implies :$

Let $h = \langle v_1, v_2, \dots, v_n \rangle$ be a Hamiltonian path in x

- $\Longrightarrow (v^*, v_1) \in E'$ and $(v^*, v_n) \in E'$ by construction
- $\implies h' = \langle v^*, v_1, v_2, \dots, v_n, v^* \rangle$ is a tour in G'
- $\Longrightarrow c(v^*, v_1) = c(v_n, v^*) = 0$ by construction
- $\implies c(v_i, v_{i+1}) = 0$ because $(v_i, v_{i+1}) \in E, \ \forall \ i \in \{1, 2, \dots, n-1\}$
- \implies the cost of $h' = 0 \le 0 = k$
- $\implies f(x) \in TSP$
- 2. <=:

Let $h' = \langle v^*, v_1, v_2, \dots, v_n, v^* \rangle$ be a tour whose cost ≤ 0 in f(x)

- \implies all edges in h' must have 0 cost since there is no negative cost by construction
- $\implies c(v_i, v_{i+1}) = 0, \ \forall \ i \in \{1, 2, \dots, n-1\}$
- $\Longrightarrow (v_i, v_{i+1}) \in E, \ \forall \ i \in \{1, 2, \dots, n-1\}$
- $\implies h = \langle v_1, v_2, \dots, v_n \rangle$ is a path that visits all vertices only once in x
- $\Longrightarrow x \in \mathsf{HAM}\text{-}\mathsf{PATH}$