

Fourier – RNNs for Modelling Noisy Physics Data

Vignesh Gopakumar, Stanislas Pamela, Lorenzo Zanisi

Outline

Neural Operator Learning

Fourier Neural Operators

Fourier-RNNs

Experiments

Scaling Up !!

Neural Operator Learning: Theory

Operator Learning: Learning the mapping between vector spaces of functions.

$$G_{\theta}: A \to U, \ \theta \in \Theta$$

The Neural Network in the above configuration is seen as learning the approximation of Green's Function of the PDE.

$$u_{\lambda}(x) = \int_{D} G_{\lambda}(x, y) f(y) dy$$

$$\mathrm{NO}_{\Theta}(f) = \mathrm{NO}_{ heta}(f) = \int_D g_{ heta}(x,y) f(y) \,\mathrm{d}y$$

Learning the dominant modes

Fourier Layer

Schematic Layout of a Fourier Layer within FNO

$$y = \sigma \left(\mathcal{F}^{-1} (R \mathcal{F}(x)) + W x \right)$$

Source: Zongyi et al. Fourier Neural Operator for Parametric Partial Differential Equations (ICLR 2021)

Autoregressive FNO

- Models Spatio-Temporal Evolution
- Inputs the first 10 time instances of the field variable to output the next 5 time instances.
- The 5 time instances output from the FNO is mixed with the last 5 time instances at the initial input to output the next 5 time time instances (11...15)
- Loop continued until the desired time length.
- FNO is trained to minimize the the reconstruction error (MSE) across the network output and the simulation.

Autoregressive FNO

- Models Spatio-Temporal Evolution
- Inputs the first 10 time instances of the field variable to output the next 5 time instances.
- The 5 time instances output from the FNO is mixed with the last 5 time instances at the initial input to output the next 5 time time instances (11...15)
- Loop continued until the desired time length.
- FNO is trained to minimize the the reconstruction error (MSE) across the network output and the simulation.

Vortex Shedding – Navier-Stokes flow around a cylinder

Initial Conditions : $U_x = 1.0 \text{ m/s}$ (left to right), $U_v = 0 \text{ m/s}$, p = 0.0 Pa

Fixed cylinder size

Training dataset built across a range of Reynolds Numbers moving from the the Laminar regime to Turbulent regime.

Re: 40 - 200 Re: 200 - 400

Re: 10000 - 100000

But what happens when the data is Non-Markovian?

Recurrent Neural Networks (RNN)

Fourier - RNN

RNN Cell and F-RNN Cell

$$h_t = W_x x_t + W_h h_{t-1}$$
$$y_t = \sigma(h_t)$$

$$h_t = \mathcal{F}^{-1}(R_x \mathcal{F}(x_t)) + W_x x_t +$$

$$\mathcal{F}^{-1}(R_h \mathcal{F}(h_{t-1})) + W_h h_{t-1}$$

$$y_t = \sigma(h_t)$$

Navier Stokes Flow with Noise

Noisy Data is given as:

$$\tilde{x} = x + \mathcal{N}(0, N)$$

Where, the noise factor is characterised by the variance of Normal Distribution centred at 0.

Navier Stokes Flow - Laminar

Model	N = 0.0	N = 0.05	N = 0.1	N = 0.25
C-RNN	0.4789	0.4785	0.4786	0.4791
FNO	0.000365	0.0006603	0.002565	0.01368
F-RNN	0.0008505	0.0009457	0.001071	0.001499

Navier Stokes Flow - Turbulent

Model	N = 0.0	N = 0.05	N = 0.1	N = 0.25
C-RNN	2.137	2.137	2.137	2.137
FNO	0.08301	0.08792	0.09808	0.1261
F-RNN	0.097	0.09234	0.09793	0.1089

Wave Dynamics with Noise

Model	N = 0.0	N = 0.05	N = 0.1	N = 0.25
C-RNN	0.004069	0.004656	0.005564	0.00727
FNO	0.001072	0.001038	0.001116	0.001461
F-RNN	0.0009589	0.001064	0.001021	0.001073

