ディープラーニングライブラリ Mocafe開発記

【開発目的と開発対象】

- 1. ディープラーニングのアルゴリズムを ゼロから実装して体得する
- 2. 画像認識の基礎を体感する

ディープラーニングライブラリを プロトタイプ開発

【陣容と開発技術】

1. 陣容

森山 1 人 (開発2016年4月~8月+試験9月)

2. 開発技術

C/C++11 (標準ライブラリのみ)

- ・Gnu C/C++4.9(gnu/g++コマンド+標準ライブラリ)
- ・VC++2013 (clコマンド+標準ライブラリ)
- CUDA7.5 (nvccコマンド+標準ライブラリ)
- MinGW (gnu/g++コマンド+標準ライブラリ)
- Makefile
- ・bashスクリプト/Microsoft bat形式

【陣容と開発技術】

- 3.動作環境
 - ·x86/64環境
 - NVIDIA GPU $(K40 \cdots sm_35)$
 - ·Windows7/Windows10
 - ·CentOS7
 - ・bashシェル/ターミナル
 - ・Microsoft コマンドプロンプト

【自己符号化器とは?】

入力層から隠し層に出力(符号化)し 隠し層から入力層に出力(復号化)した際に 元の入力データを復元するように ネットワークを訓練する方法を使用したニューラルネット

符号化

4次元→3次元(次元圧縮)

復号化

3 次元→4 次元 (入力データ復元)

元の入力との誤差の最小化

【自己符号化のメリット】

ニューラルネットの事前学習にて隠し層ごとに学習し ネットワークパラメータの良い初期値を得ることができる

層ごとに 自己符号化で 学習 隠し層

自己符号化は事前学習 (自己符号化器はその後に誤差逆伝播で学習)

教師なし学習

入力データ

【ボルツマンマシンとは?】

ニューラルネットのユニットの値を2値(0or1)とし確率を使用して状態を決定するマシン

その他のユニットの状態を元に 確率を使用して値を決定

【制約ボルツマンマシンとは?】

隠れ変数をもつボルツマンマシン、ユニット間結合に制約 ニューラルネットの隠し層の値を2値(0or1)とし 同一層同士で順伝播にて各層の出力の際に確率を使用 ユニット間の結合なし

$$z = f(\Sigma wx + b)$$

 \mathbf{X} :前層のユニットの出力

₩:ユニットを接続するコネクタの重み

り:バイアス値

f():活性化関数 ・・・・シグモイド関数 etc...

Z:ユニット出カを決定する確率値

入力データ

0~1のランダム値を使用して 確率値を超えるか否かで出力を決定

【ディープボルツマンマシンとは?】

制約ボルツマンマシンをディープに積み重ね最上層に出力層を重ねたもの

【ボルツマンマシンの事前学習】

手法(教師なし学習)

1. ギブスサンプリング

入力層の値に0~1のランダム値を使用

vを入力層、hを隠し層とすると

 $v_0 \rightarrow h_0 \rightarrow v_1 \rightarrow h_1 \rightarrow v_2 \rightarrow h_2 \cdots v_{T} \rightarrow h_T$

とサンプリングを繰り返し

自己符号化と同様に誤差を最小化するように ネットワークパラメータを修正

2. コントラスティブ・ダイバージェンス 入力層の値に**実際の訓練データ**を使用

(その他はギブスサンプリングと同様) → 反復回数が少なくて済む

【誤差逆伝播の概要】

手法(教師あり学習)

ニューラルネットに共通の学習方法 (自己符号化器、ディープボルツマンマシンに共通)

正解ラベル付きの学習データを使用し順伝播した結果の出力と正解ラベルを比較

正解と実際の出力の差分を誤差として ネットワークを逆伝播して各パラメータの誤差を求め 誤差量を元にネットワークパラメータを更新

【誤差逆伝播の手順】

①順伝播

伝播

正解ラベルデータ
伝播
出力層
隠し層
入力層

学習データ

ネットワークの重みとバイアスの 勾配(誤差量)を算出

重み量、バイアス量更新

②誤差逆伝播

【ネットワーク構成パラメータ】

- 1. 共通
 - ・各層のユニット数
 - ・隠し層の層数
 - •活性化関数
 - ・ネットワークパラメータ初期値倍率
 - ·入力層值倍率
 - ・出力層の回帰/二値分類/多クラス分類
 - •使用GPU番号
- 2. 自己符号化器
 - ・自己符号化器の種類(現時点ではノーマルのみ)
- 3. ディープボルツマンマシン
 - ・ディープボルツマンマシンの種類 ガウシアンベルヌーイ、ベルヌーイ、RELU

【ネットワーク学習パラメータ】

1. 共通

- ・epocs数(全体の学習回数)
- ・学習回数(1epocsごとの回数)・・・事前学習、誤差逆伝播個別指定
- •学習率(固定値、AdaGrad、RMSProp、AdaDelta、Adam)
 - ··事前学習、誤差逆伝播個別指定
- モーメンタム率
- ・ドロップアウト率
- ・重み減衰率
- ・重み上限値
- ・スパース正則化値
- ・学習サンプリング方法(オンライン、ミニバッチ、バッチ、SGD)
- 2. ディープボルツマンマシンのみ
 - ・事前学習方法/サンプリング回数、繰り返し回数 (ギブスサンプリング、コントラスティブ・ダイバージェンス、 持続的コントラスティブダイバージェンス)

【性能試験】

1. 試験環境

- Windows 7 (64bit)
- ・マシン HP Compaq8200 Elite USDT PC
- CPU Intel i5-2400S 2.5GHz
- ・メモリ 4G Byte
- ・Microsoft コマンドプロンプト

2. 試験内容

MNIST(手書き数字画像)データセットによる検証

学習データ60000件、交差検証データ10000件 手書き数字画像と $0\sim9$ までの数字の正解ラベルを 使用して学習、検証を行った(最高正解率の結果のみ表示)

【性能試験】

3. 試験結果

アルゴリズム / ネットワークパラメータごとの試験結果 (正解率、処理時間)

アルゴリズム	層数	隠し層 Unit数	活性化 関数	学習回数	学習率	サンプリ ング方法	正解率 (時間)
開発した Autoencoder	3	500	RELU	100	0.001	online	98. 17% (95時間54分)
Theanets (Autoencoder)	3	500	RELU	100	0.001	online	89.00%
開発したDBM	3	500	TANH	100	0.001	online	97.84% (103時間20分)
(同上)	3	100	SIGMOID	100	0.001	online	95. 44%
Scikit-learn (DBM)	3	100	SIGMOID	100	0.001	online	90. 08% (3時間40分)

【今後の改善について】

- 1.現時点ではGPUを使用した方が遅い
 - ・・・速度改善をすべき
- 2. 学習状況が分かりづらい
 - ・・・学習状況の可視化をすべき
- 3. 未実装の基本的なアルゴリズムが存在
 - ・・・アルゴリズムを追加実装すべき

☆マックスアウト自己符号化器