Jensen's inequality

Ref: Section 3.1.8 Boyd's

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

extension: if
$$f$$
 is convex, then $f(\mathbf{E}z) \leq \mathbf{E}f(z)$.

$$f(\mathbf{E}z) \leq \mathbf{E}f(z)$$

$$f(\mathbf{E}z) \leq \mathbf{E}f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Write Jenson's equality. J(b, x, + ... + b, x,) < b, f(x,) + ... + p, f(x) $\Rightarrow f(E(x)) \leq Zhif(xi) = E(f(x))$ P(X=K1)=+1 P(X=71)= >L P(X=m)=kn

Z: travel time " unstant E(Z) = Z = 1/ar(Z) = D X: runden misse E(X)=0 $\vee(\times) = |$ E(f(x+3)) = f(E(Z+X) = f(E(z) + E(x))

Larger the variance of V, the larger E (f(x +v)) Not true, Conto exaple $f(n) = \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x \neq 0 \end{cases}$ Compute: Var (V), Var (W) and compare. E(fiv)), E(fiv)) and compure

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$h: \mathbf{R} \to \mathbf{R}$$
:

$$f(x) = h(g(x))$$

g convex, h convex, \tilde{h} nondecreasing f is convex if g concave, h convex, \tilde{h} nonincreasing

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension h

examples

h(x) = (4p(x), con

- $ightharpoonup \exp g(x)$ is convex if g is convex
 - 1/g(x) is convex if g is concave and positive (variby)

rinime > Optimum.

Optimization problem in standard form

minimize

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}$, $i=1,\ldots,m$, are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions

optimal value:

 $p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$ if problem is unbounded below

Jeesisle solution in which solutions
vex optimization problems

the constants 4-2

Optimal and locally optimal points

- $\nearrow x$ is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints
 - \nearrow a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
 - x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to $f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p$
$$||z-x||_2 \leq R$$
 examples (with $n=1, \ m=p=0$)
$$f_0(x)=1/x, \ \operatorname{dom} f_0=\mathbf{R}_{++} \colon \ p^\star=0, \ \text{no optimal point}$$

- $f_0(x) = 1/x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
 - $f_0(x) = x \log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

fo(n) = x hogx where x & R+ $\frac{\partial}{\partial x} f_{\nu}(x) = 0$ るれてもしい), Minimum AS(x) = -12Minimiserx=te