Билет 18

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 18:	Скалярное	произведение	и норма.	Своиства и примеры.	неравенство
	Коши-Бун	яковского.				1

Билет 18 СОДЕРЖАНИЕ

0.1. Билет 18: Скалярное произведение и норма. Свойства и примеры. Неравенство Коши-Буняковского.

Определение 0.1.

Нормированным пространством над \mathbb{R} называется пара $\langle X, \|\cdot\| \rangle$, где X - линейное пространство над \mathbb{R} (далее одно и тоже обозначение используется для линейного пространства и его множества векторов), а $\|\cdot\|: X \mapsto \mathbb{R}$ - норма, обладающая следующими свойствами $\forall x,y \in X \quad \forall \lambda \in \mathbb{R}$.

- 1. $||x|| \geqslant 0$ и $||x|| = 0 \iff x = \vec{0}$
- $2. \|\lambda x\| = \lambda \|x\|$
- 3. $||x + y|| \le ||x|| + ||y|| (\triangle)$

Пример.

$$X = \mathbb{R}, \|x\| = |x|$$

Пример.

На $X = \mathbb{R}^d$ можно задать бесконечно много норм:

$$||x||_1 = \sum_{i=1}^d |x_i|.$$

$$||x||_2 = \sqrt{\sum_{i=1}^d |x_i|^2}.$$

$$||x||_n = \sqrt[n]{\sum_{i=1}^d |x_i|^n}.$$

$$||x||_{\infty} = \max_{i \in 1, \dots, d} |x_i|.$$

Пример.

$$X = C[a, b], ||f|| = \max_{x \in [a, b]} |f(x)|.$$

Доказательство.

Докажем неравенство треугольника:

$$||f + g|| = \max_{x \in [a,b]} |f(x) + g(x)|$$

$$= |f(x_0) + g(x_0)|$$

$$\leqslant |f(x_0) + |g(x_0)|$$

$$\leqslant \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |g(x)|$$

$$= ||f|| + ||g||$$

Определение 0.2.

Пусть X - линейное пространство, тогда функция $\langle \cdot, \cdot \rangle : X \times X \mapsto \mathbb{R}$ называется скалярным произведением, если удовлетворяет следующим свойствам $\forall x, y, z \in X \quad \forall \lambda \in \mathbb{R}$:

1.
$$\langle x, x \rangle \geqslant 0$$
 и $\langle x, x \rangle = 0 \iff x = \vec{0}$.

- 2. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- 3. $\langle x, y \rangle = \langle y, x \rangle$
- 4. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Замечание.

Аналогичные определения можно дать над \mathbb{C} , тогда надо ещё потребовать $\langle x, x \rangle \in \mathbb{R}$, и третий пункт примет вид $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

Пример.

$$X = \mathbb{R}^d, \langle x, y \rangle = \sum_{i=1}^d x_i y_i$$

Пример.

Пусть $w_1, \ldots, w_d > 0$, тогда

$$X = \mathbb{R}^d, \langle x, y \rangle = \sum_{i=1}^d w_i x_i y_i$$

Пример.

$$X = C[a, b], \langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt$$

Свойства.

- 1. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ if $\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$
- 2. Неравенство Коши-Буняковского: $\langle x,y \rangle^2 \leqslant \langle x,x \rangle \cdot \langle y,y \rangle$

Доказательство.

Пусть $t \in \mathbb{R}$.

$$\langle x + ty, x + ty \rangle \ge 0.$$

 $\langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle.$

Это квадратное уровнение имеет корень только если x+ty=0, значит не более одного корня. Его дискриминат ≤ 0 :

$$(2\langle x,y\rangle)^2 - 4\langle x,x\rangle \cdot \langle y,y\rangle \leqslant 0 \implies \langle x,y\rangle^2 \leqslant \langle x,x\rangle \cdot \langle y,y\rangle. \qquad \Box$$

3. $||x|| = \sqrt{\langle x, x \rangle}$ - норма

Доказательство.

(a) Первое свойство переносится напрямую, из аналогичных свойств для $\langle x, x \rangle$ и $\sqrt{\ }$

(b)
$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} = \lambda \|x\|$$

(c)

$$||x + y|| \leqslant ||x|| + ||y|| \iff \sqrt{\langle x + y, x + y \rangle} \leqslant \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$$

$$\stackrel{\stackrel{?}{\iff}}{\iff} \langle x + y, x + y \rangle \leqslant \langle x, x \rangle + 2\sqrt{\langle x, x \rangle}\sqrt{\langle y, y \rangle} + \langle y, y \rangle$$

$$\iff \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$$

$$\iff \langle x, y \rangle \leqslant \sqrt{\langle x, x \rangle}\sqrt{\langle y, y \rangle}$$

$$\iff \langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$$

Билет 18 СОДЕРЖАНИЕ

Последнее неравенство - неравенство Коши-Буняковского.

Свойства.

1. $\rho(x,y) = ||x-y||$ - метрика

Доказательство.

- (а) Первое свойство переходит прямо
- (b) $\rho(y,x) = ||y-x|| = ||(-1)(x-y)|| = |(-1)|||x-y|| = \rho(x,y)$
- (c) $||x y|| \le ||x z|| + ||z y||$ (\triangle для нормы).

2. $|||x|| - ||y||| \le ||x - y||$

Доказательство.

$$||x|| = ||(x - y) + y|| \stackrel{\triangle}{\leqslant} ||x - y|| + ||y||.$$

$$||y|| = ||(y - x) + x|| \stackrel{\triangle}{\leqslant} ||y - x|| + ||x|| = ||x - y|| + ||x||.$$

$$||x|| \leqslant ||x - y|| + ||y|| \implies ||x|| - ||y|| \leqslant ||x - y||.$$

$$||y|| \leqslant ||x - y|| + ||x|| \implies ||y|| - ||x|| \leqslant ||x - y||.$$