

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Banco de Dados AD2 1º semestre de 2015.

Nome:	
_	

Observações:

- 1. Prova COM consulta.
- 2. As ADs deverão ser postadas na plataforma antes do prazo final de entrega estabelecido no calendário de entrega de ADs.
- 3. Lembre-se de enviar as ADs para avaliação. Cuidado para não deixar a AD como "Rascunho" na plataforma!
- 4. ADs em forma de "Rascunho" não serão corrigidas!
- 5. As ADs devem ser enviadas no formato de arquivo PDF ou DOC. No caso de arquivos no formato DOC, eles devem conter apenas o link para o Google Drive.
- 6. ADs entregues em outros formatos não serão corrigidas!

Atenção: Como a avaliação à distância é individual, caso seja constatado que provas de alunos distintos são cópias umas das outras, independentemente de qualquer motivo, a todas será atribuída a nota ZERO. As soluções para as questões podem sim, ser buscadas por grupos de alunos, mas a redação final de cada prova tem que ser individual.

Questão 1. [2,5 pontos] Considere o diagrama ER mostrado abaixo.

Construa um esquema relacional equivalente a este diagrama ER.

```
As chaves primárias estão sublinhadas.
```

```
Aluno(CPF, nome, matrícula)

Matrícula(codMatrícula, númeroTurma)

codMatrícula REFERENCIA Aluno

númeroTurma REFERENCIA Turma

Turma(número, sala, horário, codDisciplina, codProfessor)

codDisciplina REFERENCIA Disciplina

codProfessor REFERENCIA Professor

Disciplina(código, nome, númeroCréditos, codProfessor)

codProfessor REFERENCIA Professor

Professor(CPF, nome, salário)
```

Questão 2. [5,0 pontos] Considere o esquema relacional a seguir, onde as chaves primárias estão sublinhadas.

```
Estado (sigla: string, nome: string)

Time (codTime: integer, nome: string, siglaEstado: string)

SiglaEstado REFERENCIA Estado

Jogador (codJogador: integer, nome: string, idade: integer, salário: float, codTime: integer)

codTime REFERENCIA Time

Partida(codPartida: integer, data: date, codTime1: integer, codTime2: integer, local: string)

codTime1 REFERENCIA Time

codTime2 REFERENCIA Time
```

Sobre esta base de dados, resolver as consultas utilizando SQL. Não usar mais tabelas que o estritamente necessário.

a) Escreva uma instrução SQL que cria a tabela Estado com as colunas especificadas no enunciado. [0,5 ponto]

```
CREATE TABLE Estado (
sigla varchar(2),
nome varchar(255),
PRIMARY KEY (sigla)
);
```

b) Escreva uma instrução SQL para inserir uma tupla na tabela Estado com sigla RJ e nome Rio de Janeiro. [0,5 ponto]

```
INSERT INTO Estado VALUES ("RJ", "Rio de Janeiro");
```

c) Faça uma consulta que retorna os nomes dos jogadores que tem mais de 28 anos. [0,5 ponto]

```
SELECT nome
FROM Jogador
WHERE idade > 28;
```

d) Faça uma consulta que retorna os nomes dos times que possuem jogadores com salário de até 1.500,00. [0,5 ponto]

SELECT t.nome FROM Time as t, Jogador as j WHERE t.codTime = j.codTime AND salário <= 1500;

e) Faça uma consulta que retorna os nomes dos jogadores do estado de nome "Rio de Janeiro" e que não fazem parte do elenco do time "Vasco". [0,5 ponto]

SELECT j.nome
FROM Jogador as j, Time as t, Estado as e
WHERE j.codTime = t.codTime
AND e.sigla = t.siglaEstado
AND e.nome = "Rio de Janeiro"
AND t.nome <> "Vasco";

f) Faça uma consulta que retorna o número de jogadores entre 18 e 24 anos que jogam em cada time. [0,5 ponto]

SELECT t.codTime, COUNT(j.codJogador)
FROM Jogador as j, Time as t
WHERE j.codTime = t.codTime
AND j.idade >= 18 AND j.idade <= 24
GROUP BY t.codTime;

g) Escreva uma instrução SQL para excluir a tabela Jogador. [0,5 ponto]

DROP TABLE Jogador;

h) Escreva uma instrução SQL para excluir todos os jogadores que fazem parte do time "Botafogo". [0,5 ponto]

```
DELETE FROM Jogador
WHERE codJogador IN (SELECT codJogador FROM Jogador as j, Time as t
WHERE j.codTime = t.codTime AND t.nome = "Botafogo";
```

i) Faça uma consulta que retorna os nomes dos times que nunca jogaram no local "Estádio do Maracanã". [0,5 ponto]

SELECT t.nome
FROM Time
WHERE codTime NOT IN (SELECT t.codTime FROM Time as t, Partida as p
WHERE (p.codTime1 = t.codTime OR p.codTime2 = t.codTime)
AND p.local = "Estádio do Maracanã");

j) Faça uma consulta que retorna os códigos de identificação dos times que possuem menos de 19 jogadores. [0,5 ponto]

```
SELECT t.codTime, COUNT(j.codJogador) as numJogadores FROM Jogador as j, Time as t
```

WHERE j.codTime = t.codTime GROUP BY t.codTime HAVING numJogadores < 19;

Questão 3. [2,5 pontos]

a) Quais são os objetivos do processo de Normalização? [0,5 ponto]

Reagrupar informações para eliminar redundâncias de dados e para eliminar estruturas inexistentes no modelo relacional (atributos multivalorados).

b) Analise a tabela abaixo (referente à organização de uma loja de materiais esportivos).

Loja									
Cod loja	Nome loja	Localização galpão de estoque	Tamanho galpão de estoque	Divisões galpão de estoque	Produto da loja				
					Cod produto	Nome produto	Quantidade		
1	1	Av. Rio de Janeiro, 20	30.000 m ²	204	1	Bola	30		
					2	Luva de boxe	129		
					3	Camiseta	302		

Considere as seguintes dependências funcionais para essa tabela:

Cod loja → Nome loja

Cod loja → Localização galpão de estoque

Localização galpão de estoque → Tamanho galpão estoque

Localização galpão de estoque → Divisões galpão de estoque

Cod Produto → Nome produto

Cod Produto → Quantidade

1. Diga em que forma normal encontra-se a tabela. Justifique sua resposta. [0,5 ponto]

A tabela não se encontra normalizada, pois existem tabelas aninhadas.

2. Caso a tabela não esteja normalizada, normalize-a mostrando as transformações da tabela para a terceira forma normal. Mostre cada forma normal intermediária entre aquela em que a tabela se encontra e a terceira forma normal. [1,5 ponto]

ÑN:

 $Loja(\underline{codLoja},\ nomeLoja,\ \underline{localGalpao},\ tamanhoGalpao,\ divisoesGalpao,\ (codProduto,\ nomeProduto,\ quantidade))$

1FN:

Loja(codLoja, nomeLoja, localGalpao, tamanhoGalpao, divisoesGalpao)

Produto(codProduto, nomeProduto, quantidade, codLoja)

codLoja REFERENCIA Loja

2FN:

Loja(codLoja, nomeLoja, localGalpao)

localGalpao REFERENCIA Galpao

Galpao(<u>localGalpao</u>, tamanhoGalpao, divisoesGalpao)

 $Produto (\underline{codProduto}, nomeProduto, quantidade, codLoja)\\$

codLoja REFERENCIA Loja

3FN:

Já está.