Run label base_ITback_chi15e2_4e3pfr_D26_P26_imp3e3 Path /home/millerma/arcnt uedge/final baseline Plots created 11:31 AM Thu 18 Jan 2024 **UEDGE version** 7.0.9.2.2 **Grid** nx = 64, ny = 44, 0 cells are invalid polygons Core n_i fixed uniform 1.5e+20 m⁻³ Core n_n set loc flux = -(1-albedoc)*ng*vtg/4 Core T_e , T_i or P_e , P_i fixed $P_e = 6.5$ MW, $P_i = 6.5$ MW Core ion v_{\parallel} (up) d(up)/dy = 0 at core boundary **Uniform coeffs** $D = 0 \text{ m}^2/\text{s}$, $\chi_e = 0 \text{ m}^2/\text{s}$, $\chi_i = 0 \text{ m}^2/\text{s}$ ${\ensuremath{\mathsf{CF}}}$ wall ${\ensuremath{\mathsf{T}}}_{\ensuremath{\mathbf{e}}}$ extrapolated PF wall Te fixed 2 eV CF wall Ti extrapolated **PF wall T_i fixed 2 eV** CF wall n_i extrapolated **PF wall n_i fixed 1e+18 m⁻³** Flux limits unknown **Recycling coefficient** 1 (plates), 1 (walls) **Neutral model** inertial neutrals **Impurity Z** 10 Impurity model fixed-fraction model Impurity fraction spatially varying (mean = 0.003, std = 2.06e-19, min = 0.003, max = 0.003) Potential equation off Converged yes, sim. time 0 s **Field line angle** 3.17° inner target, 3.28° outer target **Separatrix** $n_i = 8.7e + 19 \text{ m}^{-3}$, $n_n = 4.4e + 12 \text{ m}^{-3}$, $T_i = 320 \text{ eV}$, $T_e = 353 \text{ eV}$ Fall off lengths $\lambda_n = 6.7$ mm, $\lambda_{T_e} = 2.5$ mm, $\lambda_{T_i} = 0.68$ mm Outer PF corner p_n 412 Pa **Power sharing** 1:2.3, $P_{LCFS inboard} = 3.9 \text{ MW}$, $P_{LCFS outboard} = 9 \text{ MW}$ $\begin{aligned} \mathbf{P_{rad\ imp}} &\ P_{tot} = 6.7\ \text{MW},\ P_{xpt} = 2.1\ \text{MW},\ P_{ileg} = 0.014\ \text{MW},\ P_{oleg} = 3.7\ \text{MW},\\ &\ P_{main\ chamber\ SOL} = 1.2\ \text{MW},\ P_{core} = 0.12\ \text{MW} \end{aligned}$ **Power balance** $P_{loss} = 15 \text{ MW} = P_{core} + 14\%$ $1.1 \text{ MW}, P_{OT} = 3.6 \text{ MW}, P_{CFW} = 0.18 \text{ MW}, P_{PFW} = -0.51 \text{ MW}, P_H = 3.8 \text{ MW}, P_I = 6.7 \text{ MW}$ ance $\Sigma_{xy}|\Sigma_s(\Delta n)_s^{xy}|/\Sigma_{xy}\Sigma_s|(\Delta n)_s^{xy}| = 8.8e-09\%$ D_{omp} D_{imp} 10^{-2} χ_{eomp} χ_{iomp} χ_{eiimp} 6×10^{-3} $\chi_{i \text{ imp}}$ 4×10^{-3} 0 50 0 50 $R_{omp} - R_{sep}$ [mm] $R_{omp} - R_{sep}$ [mm] χ [m²/s] $D [m^2/s]$ 10^{-1} 10^{-2} 6×10^{-2} 4×10^{-2} 6×10^{-3}

 10^{-1}

 10^{-2}

 -10^{0}

 -10^{1}

 -10^{0}

 -10^{1}

Sum over core poloidal cells 1e23 1.0 Total ion flux Diffusion 0.5 $Flux [s^{-1}]$ Convection $E \times B$ convection 0.0 ∇B convection -0.5(Neutral flux) Sum of components -1.0-20-100 20 10 30 40 50 $R - R_{sep}$ [mm] 6 4 i+n conv.+cond. Power [MW] 2 Ion conduction **Neutral** conduction 0 Ion convection **Neutral convection** -2 Sum of components -4-6 -20-1010 20 0 30 40 50 $R - R_{sep}$ [mm] 7.5 5.0 Power [MW] 2.5 Electron conv.+cond. **Electron conduction** 0.0 Electron convection Sum of components -2.5-5.0-7.5

10

20

 $R - R_{sep}$ [mm]

30

40

50

-20

-10

0