Problem 1. Let $f: A \to B$. Then:

- a) f is injective if and only if it has a left inverse.
- b) f is surjective if and only if it has a right inverse.
- c) f is bijective if and only if it has a left and right inverse.
- d) If $|A| = |B| = n \in \mathbb{Z}_{\geq 0}$ then f is injective if and only if f is surjective if and only if f is bijective.

Proof.

a) Suppose that f is injective. This implies that $f^{-1}(f(a)) = \{a\}$ for all $a \in A$. Define $g: B \to A$ as $g(b) = f^{-1}(a)$ where $b \in f(A)$. If $b \notin f(A)$ then send it to any arbitrary $a \in A$. Then $g \circ f(a) = f^{-1}(f(a)) = a$ which implies that $g \circ f = id_A$ and that g is a left inverse of f.

Now suppose that there exists a function $g: B \to A$ such that $g \circ f = id_A$. Let $a_0, a_1 \in A$ such that $f(a_0) = f(a_1)$. Then $g \circ f(a_0) = a_0 = a_1 = g \circ f(a_1)$ which is the definition of injectivity.

Therefore f is injective if and only if it has a left inverse.

b) Suppose that f is surjective. Then given $b \in B$ there exists an $a \in A$ such that f(a) = b. Define a function $g: B \to A$ via g(b) = a where a fulfills f(a) = b. Then $f \circ g(b) = b$ by definition which implies that g is a right inverse of f.

Now suppose that there exists a function $g: B \to A$ such that $f \circ g = id_B$. Then given $b \in B$ let a = g(b). Then $f(a) = f \circ g(b) = b$. Since this holds for all elements of b f is surjective.

Therefore f is surjective if and only if it has a right inverse.

c) Suppose that f is a bijection. Then it is both injective and surjective which by the previous statements in the proposition implies that f has both a left and right inverse.

Otherwise suppose that f has a left and right inverse. Then via the previous statements in the proposition we know that f is both injective and surjective and thus a bijection.

To show that the left and right inverse are unique let g, h be a left and right inverse for f respectively. Then

$$g = g \circ id_B = g \circ (f \circ h) = (g \circ f) \circ h = id_A \circ h = h$$

Therefore f is a bijection if and only if it has a left and right inverse. Moreover these inverses are equal.

d) Suppose that |A| = |B| = 1. Then there is only one function $f: A \to B$ defined as $f(a_0) = b_0$. As such the function f is injective, surjective and bijective.

Next assume for sets of size n that a function is injective if and only if it is surjective if and only if it is surjective. Let |A| = |B| = n + 1, and without loss of generality let f be injective. Select a_n and $b_n = f(a_n)$ and look at $f|_{A\setminus\{a_n\}}$. This will preserve injectivity since we removed paired items. This implies that $f|_{A\setminus\{a_n\}}$ is injective, surjective, and bijective via our inductive hypothesis. Reintroduce the pair (a_n,b_n) to the function $f|_{A\setminus\{a_n\}}$. This will preserve injectivity as only a_n maps to b_n , surjectivity because b_n is mapped to by a_n , and as such f is bijective.

Therefore via induction, if $|A| = |B| = n \in \mathbb{Z}_{>0}$ then a function $f: A \to B$ is injective if and only if it is surjective if and only if it is bijective.

Therefore $a \sim b$ if and only if $\bar{a} = \bar{b}$. b) Suppose that $\bar{a} \neq \bar{b}$ and that there existed a $c \in \bar{a} \cap \bar{b}$. Then $a \sim c$ and $c \sim b$ which we imply that $a \sim b$ by transitivity and that $\bar{a} = \bar{b}$ by the previous part of the proposition which is a contradiction. Therefore if $\bar{a} \neq \bar{b}$ then $\bar{a} \cap \bar{b} = \phi$ Problem 3. Let n be a fixed positive integer. Then $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \}$	
 a) a ~ b if and only if ā = b̄. b) if ā ≠ b̄, then ā ∩ b̄ = φ Proof. a) Suppose that a ~ b. Without loss of generality let c ∈ ā. Then c ~ a which implies c ~ b by transitivity and as such c ∈ b̄ Therefore if a ~ b then ā = b̄. Now suppose that ā = b̄. Since a ∈ ā and b ∈ b̄ by reflexivity we know that a, b ∈ b̄ and such a ~ b. Therefore a ~ b if and only if ā = b̄. b) Suppose that ā ≠ b̄ and that there existed a c ∈ ā ∩ b̄. Then a ~ c and c ~ b which we imply that a ~ b by transitivity and that ā = b̄ by the previous part of the proposition whis a contradiction. Therefore if ā ≠ b̄ then ā ∩ b̄ = φ Problem 3. Let n be a fixed positive integer. Then (Z/nZ)* = {ā ∈ Z/nZ 1 ≤ a ≤ n and a, n are relatively prime} 	Nome 2. Let the an equivelence relation of the cet A. For any a h.c. A.
 b) if ā ≠ b̄, then ā ∩ b̄ = φ Proof. a) Suppose that a ~ b. Without loss of generality let c ∈ ā. Then c ~ a which implies a c ~ b by transitivity and as such c ∈ b̄ Therefore if a ~ b then ā = b̄. Now suppose that ā = b̄. Since a ∈ ā and b ∈ b̄ by reflexivity we know that a, b ∈ b̄ and such a ~ b. Therefore a ~ b if and only if ā = b̄. b) Suppose that ā ≠ b̄ and that there existed a c ∈ ā ∩ b̄. Then a ~ c and c ~ b which we imply that a ~ b by transitivity and that ā = b̄ by the previous part of the proposition whis a contradiction. Therefore if ā ≠ b̄ then ā ∩ b̄ = φ Problem 3. Let n be a fixed positive integer. Then (Z/nZ)× = {ā ∈ Z/nZ 1 ≤ a ≤ n and a, n are relatively prime} 	
 a) Suppose that a ~ b. Without loss of generality let c ∈ ā. Then c ~ a which implies a c ~ b by transitivity and as such c ∈ b̄ Therefore if a ~ b then ā = b̄. Now suppose that ā = b̄. Since a ∈ ā and b ∈ b̄ by reflexivity we know that a, b ∈ b̄ and such a ~ b. Therefore a ~ b if and only if ā = b̄. b) Suppose that ā ≠ b̄ and that there existed a c ∈ ā ∩ b̄. Then a ~ c and c ~ b which we imply that a ~ b by transitivity and that ā = b̄ by the previous part of the proposition whis a contradiction. Therefore if ā ≠ b̄ then ā ∩ b̄ = φ Problem 3. Let n be a fixed positive integer. Then (Z/nZ)* = {ā ∈ Z/nZ 1 ≤ a ≤ n and a, n are relatively prime} 	
 a) Suppose that a ~ b. Without loss of generality let c ∈ ā. Then c ~ a which implies c ~ b by transitivity and as such c ∈ b̄ Therefore if a ~ b then ā = b̄. Now suppose that ā = b̄. Since a ∈ ā and b ∈ b̄ by reflexivity we know that a, b ∈ b̄ and such a ~ b. Therefore a ~ b if and only if ā = b̄. b) Suppose that ā ≠ b̄ and that there existed a c ∈ ā ∩ b̄. Then a ~ c and c ~ b which we imply that a ~ b by transitivity and that ā = b̄ by the previous part of the proposition whis a contradiction. Therefore if ā ≠ b̄ then ā ∩ b̄ = φ Problem 3. Let n be a fixed positive integer. Then (Z/nZ)* = {ā ∈ Z/nZ 1 ≤ a ≤ n and a, n are relatively prime} 	if $\bar{a} \neq b$, then $\bar{a} \cap b = \phi$
 c ~ b by transitivity and as such c ∈ b̄ Therefore if a ~ b then ā = b̄. Now suppose that ā = b̄. Since a ∈ ā and b ∈ b̄ by reflexivity we know that a, b ∈ b̄ and such a ~ b. Therefore a ~ b if and only if ā = b̄. b) Suppose that ā ≠ b̄ and that there existed a c ∈ ā ∩ b̄. Then a ~ c and c ~ b which we imply that a ~ b by transitivity and that ā = b̄ by the previous part of the proposition whis a contradiction. Therefore if ā ≠ b̄ then ā ∩ b̄ = φ Problem 3. Let n be a fixed positive integer. Then (Z/nZ)[×] = {ā ∈ Z/nZ 1 ≤ a ≤ n and a, n are relatively prime} 	f.
such $a \sim b$. Therefore $a \sim b$ if and only if $\bar{a} = \bar{b}$. b) Suppose that $\bar{a} \neq \bar{b}$ and that there existed a $c \in \bar{a} \cap \bar{b}$. Then $a \sim c$ and $c \sim b$ which we imply that $a \sim b$ by transitivity and that $\bar{a} = \bar{b}$ by the previous part of the proposition whis a contradiction. Therefore if $\bar{a} \neq \bar{b}$ then $\bar{a} \cap \bar{b} = \phi$ Problem 3. Let n be a fixed positive integer. Then $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \}$	
 b) Suppose that ā ≠ b̄ and that there existed a c ∈ ā ∩ b̄. Then a ~ c and c ~ b which we imply that a ~ b by transitivity and that ā = b̄ by the previous part of the proposition which is a contradiction. Therefore if ā ≠ b̄ then ā ∩ b̄ = φ Problem 3. Let n be a fixed positive integer. Then (Z/nZ)[×] = {ā ∈ Z/nZ 1 ≤ a ≤ n and a, n are relatively prime} 	Now suppose that $\bar{a} = \bar{b}$. Since $a \in \bar{a}$ and $b \in \bar{b}$ by reflexivity we know that $a, b \in \bar{b}$ and such $a \sim b$.
imply that $a \sim b$ by transitivity and that $\bar{a} = \bar{b}$ by the previous part of the proposition while a contradiction. Therefore if $\bar{a} \neq \bar{b}$ then $\bar{a} \cap \bar{b} = \phi$ Problem 3. Let n be a fixed positive integer. Then $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \}$	Therefore $a \sim b$ if and only if $\bar{a} = \bar{b}$.
Problem 3. Let n be a fixed positive integer. Then $ (\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \} $	imply that $a \sim b$ by transitivity and that $\bar{a} = \bar{b}$ by the previous part of the proposition where
$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \}$	Therefore if $\bar{a} \neq \bar{b}$ then $\bar{a} \cap \bar{b} = \phi$
$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \}$	
$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \in \mathbb{Z}/n\mathbb{Z} 1 \leq a \leq n \text{ and } a, n \text{ are relatively prime} \}$	plem 3. Let n be a fixed positive integer. Then
	· · ·
$P_{mod}f$ Let $\bar{z} \in (\mathbb{Z}/m\mathbb{Z}) \times \mathbb{Z}$ be a constitution in the property of \bar{z} and \bar{z} that $\bar{z} = \bar{z}$	
<i>Proof.</i> Let $a \in (\mathbb{Z}/n\mathbb{Z})^n$. Then a has a multiplicative inverse c such that $ac = 1$.	f. Let $\bar{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then \bar{a} has a multiplicative inverse \bar{c} such that $\bar{a}\bar{c} = \bar{1}$.