STOR 455 STATISTICAL METHODS I

Jan Hannig

Exam 1

- Held on Tuesday regular place and time
- Closed book closed notes, no computers
- Bring your scantron and pencil!
 Normal, chi square and t tables will be provided.
- I will have office hours at 12noon on Tuesday.
 (Provided my red eye lands on time.)

Example: Breast Cancer

- What's the relationship between mean annual temperature and the mortality rate for a type of breast cancer in women? The subjects from regions of Great Britain, Norway, and Sweden.
- Mortality: Mortality index for neoplasms of the female breast
- Temperature: Mean annual temperature (in degrees F)
- The Data (http://www.ncsec.org/cadre2/team6_2/modelll.pdf)

Mort	Temp
102.5	51.3
104.5	49.9
100.4	50.0
95.9	49.2

• • • • •

```
data breastcancer;
  infile 'breastcancer.dat';
  input mort temp;
symbol1 v=circle;
proc gplot data=breastcancer;
  plot mort*temp;
run;
```

Breast Cancer: Scatter plot


```
proc reg
  data=breastcancer;
  model mort=temp;
  run;
```

Mort= -21.8+2.36*temp, $s^2=57$.

 What's the interpretation of 2.4? Is it significantly different from zero? How confident are we about this estimate?

Inference for β_1

$$b_1 \sim N(\beta_1, \sigma^2(b_1))$$
where $\sigma^2(b_1) = \sigma^2 / \sum (X_i - \overline{X})^2$

$$t = (b_1 - \beta_1) / s(b_1)$$
where $s(b_1) = \sqrt{s^2 / \sum (X_i - \overline{X})^2}$

$$t \sim t(n-2)$$

Mathematical Remarks

- Normality of b₁ follows from the fact that it is a linear combination of the Y_i, each of which is an independent normal
- Use results for functions of r.v. to derive its mean and s.d.
- Need independence between b₁ and s² to have t-distribution

Notes

- Variance of b_1 smallest among all unbiased estimators of β_1
- Because $\sigma^2(b_1) = \sigma^2/\Sigma(X_i X)^2$, we can make this quantity small by making $\Sigma(X_i \overline{X})^2$ large.

Confidence Interval for β_1

- $b_1 \pm t^* s(b_1)$
- where $t^* = t(1-\alpha/2;n-2)$, the upper $(1-\alpha/2)$ 100 percentile of the t distribution with n-2 degrees of freedom
- 1- α is the confidence level

Significance tests for β_1

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$$

 $t = (b_1 - 0)/s(b_1)$
Reject H_0 if $|t| \ge t^*, t^* = t(1 - \alpha/2, n - 2)$
 $p - value = P(|T| > |t|)$, where $T \sim t(n - 2)$

The book discourages tests in favor of CIs

Breast Cancer Example

Root MSE 7.54466 R-Square 0.7654
Dependent Mean 83.34375 Adj R-Sq 0.7486
Coeff Var 9.05246

Parameter Estimates

```
Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -21.79469 15.67190 -1.39 0.1860
temp 1 2.35769 0.34888 6.76 <.0001
```

 What's the 99% CI for the regression coefficient of temp?

Inference for β_0

$$b_0 \sim N(\beta_0, \sigma^2(b_0))$$

where
$$\sigma^2(b_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2} \right]$$

$$t = (b_0 - \beta_0)/s(b_0)$$

for $s(b_0)$ replace σ^2 by s^2

$$t \sim t(n-2)$$

Confidence Interval for β_0

- $b_0 \pm t^* s(b_0)$
- where $t^* = t(1-\alpha/2;n-2)$, the upper $(1-\alpha/2)$ 100 percentile of the t distribution with n-2 degrees of freedom
- 1-α is the confidence level

Significance tests for β_0

$$H_0: \beta_0 = 0 \text{ vs } H_a: \beta_0 \neq 0$$

 $t = (b_0 - 0)/s(b_0)$

Reject
$$H_0$$
 if $|t| \ge t^*, t^* = t(1 - \alpha/2, n - 2)$

$$P = \text{Prob} \left(|\mathbf{z}| > |t| \right), \text{ where } z \sim t(n-2)$$

Notes

- Usually the CI and significance test for β_0 is not of interest
- If the ξ_i are approximately normal, then the CIs and significance tests are generally reasonable approximations

```
/* Ask SAS to give CI */
proc reg data=breastcancer;
model mort=temp/clb alpha=0.01;
run;
```

- /clb gives Cl.
- Confidence level: 1-alpha

Analysis of Variance

	Sum of		Mean			
Source	DF	Squares	Square	F	Value	Pr > F
Model	1	2599.53358	2599.533	58	45.6	7 < .0001
Error	14	796.90580	56.92184			
Corrected Total	15	3396.43938				

Root MSE 7.54466 R-Square 0.7654 Dependent Mean 83.34375 Adj R-Sq 0.7486 Coeff Var 9.05246

Parameter Estimates

Variable	DF		Standard Error t	Value 1	Pr > t	99% Confiden	ce Limits
Intercept	1	-21.79469	15.67190	-1.39	0.1860	-68.44747	24.85809
temp	1	2.35769	0.34888	6.76	<.0001	1.31913	3.39626

Point Estimation of μ_{Yh}

- $\mu_{Yh} = \beta_0 + \beta_1 X_h$, the mean value of Y for the subpopulation with $X=X_h$
- Point estimate of μ_{Yh} : $\hat{Y}_h = b_0 + b_1 X_h$
- Unbiased: E (\hat{Y}_h)= μ_{Yh}

Distribution of $E(Y_h)$

• \hat{Y}_h is normal (Why?)

• variance
$$\sigma^2(\hat{Y}_h) = \sigma^2 \left[\frac{1}{n} + \frac{\left(X_h - \overline{X}\right)^2}{\sum \left(X_i - \overline{X}\right)^2} \right]$$

Inference for E(Y_h)

• Estimate $\sigma^2(\hat{Y}_h)$ by

$$s^{2}(Y_{h}) = s^{2} \left[\frac{1}{n} + \frac{(X_{h} - \overline{X})^{2}}{\sum (X_{i} - \overline{X})^{2}} \right]$$

•
$$t = \frac{\hat{Y}_h - E(Y_h)}{s(\hat{Y}_h)} \sim t(n-2)$$

Inference for E(Y_h)

• Confidence Interval: $\hat{Y}_h \pm t^* s(\hat{Y}_h)$ where $t^* = t(1-\alpha/2, n-2)$

Significance tests: rarely used in practice

Breast Cancer Example

Root MSE 7.54466 R-Square 0.7654

Dependent Mean 83.34375 Adj R-Sq 0.7486

Coeff Var 9.05246

Parameter Estimates

```
Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -21.79469 15.67190 -1.39 0.1860
temp 1 2.35769 0.34888 6.76 <.0001
```

 What's the 95% CI of the mean mort of cities with temp=45?

- Create new data with X_h
- Use /clm option in proc reg to get Cl
- Breast cancer example: give the 95% CI of the mean mortality index for temp=45.

```
/*Cl for mean response */
data bc1;
if _n_ = 1 then temp=45;
  output;
set breastcancer;

proc reg data = bc1;
model mort= temp/clm
  alpha=.05;
run;
```

- Output Cl to bc2
- Print only the CI we want: (80, 88).

Predicting new observations

- Predict $Y_{h(new)} = \beta_0 + \beta_1 X_h + \xi$ for a particular value of $X=X_h$
- Best predictor Ŷ_h = b₀ + b₁X_h
 (same as point estimator of E(Y_h))
- Prediction variance:

```
Var(Y_{h(new)})=Var(\hat{Y}_h)+Var(\xi)
(larger variance)
```

Inference for Y_{h(new)}

Estimate prediction variance by:

$$s^{2}(\text{pred}) = s^{2} \left[1 + \frac{1}{n} + \frac{\left(X_{h} - \overline{X}\right)^{2}}{\sum \left(X_{i} - \overline{X}\right)^{2}} \right]$$

t-distribution:

$$t = (Y_{h(new)} - \hat{Y}_h)/s(pred) \sim t(n-2)$$

Breast Cancer Example

Root MSE 7.54466 R-Square 0.7654

Dependent Mean 83.34375 Adj R-Sq 0.7486

Coeff Var 9.05246

Parameter Estimates

```
Parameter Standard
Variable DF Estimate Error t Value Pr > |t|
Intercept 1 -21.79469 15.67190 -1.39 0.1860
temp 1 2.35769 0.34888 6.76 <.0001
```

• What's the 95% PI of the mort of a city with temp=45?

- Create new data with X_h
- Use /cli option to get Pl
- Breast cancer example: 95% prediction interval of a city whose temp=45: (68, 101)

Notes

- The standard error (Std Error Mean Predict) given in this output is the standard error of \hat{Y}_h , not s^2 (pred)
- The prediction interval is wider than the confidence interval

Prediction of mean of m new obs.

Estimate prediction variance by:

$$s^{2}(\text{predmean}) = s^{2} \left[\frac{1}{m} + \frac{1}{n} + \frac{\left(X_{h} - \overline{X}\right)}{\sum \left(X_{i} - \overline{X}\right)} \right]$$

- t-distribution:
 - $t = (Y_{h(new)} \hat{Y}_h)/s(predmean) \sim t(n-2).$
- What's the PI for the average mort. Index of two cities whose temp=45?

Confidence band for regression line

- Working-Hotelling CB: $\hat{Y}_h \pm Ws(\hat{Y}_h)$
- where $W^2=2F(1-\alpha; 2, n-2)$
- This gives intervals for all X_h
- CI narrower when X_h close to X

```
/*plot confidence band */
symbol1 v=circle i=rlclm99;
proc gplot data=breastcancer;
  plot mort*temp;
run;
symbol1 v=circle i=rlclm95;
proc gplot data=breastcancer;
  plot mort*temp;
run;
```

95% and 99% Confidence band

9/23/10