Class 14: RNASeq Mini-Project

Bernice Lozada (A16297973)

Table of contents

Data Import
Setup for DESeq
Running DESeq
Add gene annotation data (gene names etc.)
Results visualization
Save our results
Pathway analysis (KEGG, GO, Reactome)
Kegg analysis:
GO Analysis
Reactome Analysis
GO Online

Here we run through a complete RNAseq analysis from counts to pathways to biological insight.

Data Import

```
# Import countdata
countData = read.csv("GSE37704_featurecounts.csv", row.names =1)

# remove first $length column
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
# filter count data where you have 0 read count across all samples
non_zero <- rowSums(countData) != 0
filtered_countData <- countData[non_zero,]
head(filtered_countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Setup for DESeq

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

Running DESeq

```
dds = DESeqDataSetFromMatrix(countData = filtered_countData,
                                colData = colData,
                                design =~ condition )
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                  : 4349, 27%
LFC < 0 (down)
                  : 4396, 28%
outliers [1]
                   : 0, 0%
low counts [2]
                   : 1237, 7.7%
(mean count < 0)</pre>
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

Add gene annotation data (gene names etc.)

```
library("AnnotationDbi")
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                   "IPI"
                                                                  "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column= "GENENAME",
                      multiVals="first")
```

head(res, 10)

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre>> <numeric> <numeric></numeric></numeric></pre>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863 5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350 2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	5 -12.630158 1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326 3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237 8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	3 1.040744 2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970 1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522 1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td><character></character></td></cl<></character>	haracter>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Results visualization

plot(res\$log2FoldChange,-log(res\$padj))

Make it colorful:)

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Save our results

```
res = res[order(res$pvalue),]
write.csv(res, file ="deseq_results_lab14.csv")
```

Pathway analysis (KEGG, GO, Reactome)

Kegg analysis:

library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  head(kegg.sets.hs,3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                               "1549"
                                                                        "1551"
 [9] "1553"
              "1576"
                        "1577"
                                           "1807"
                                  "1806"
                                                     "1890"
                                                               "221223" "2990"
[17] "3251"
              "3614"
                        "3615"
                                  "3704"
                                           "51733"
                                                     "54490"
                                                               "54575"
                                                                        "54576"
[25] "54577"
              "54578"
                        "54579"
                                  "54600"
                                           "54657"
                                                     "54658"
                                                               "54659"
                                                                        "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                           "7172"
                                                     "7363"
                                                               "7364"
                                                                        "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                           "7378"
                                                     "7498"
                                                               "79799"
                                                                        "83549"
[49] "8824"
                        "9"
                                  "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                            "10622"
                                                      "10623"
                                                                "107"
                                                                         "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                            "11128"
                                                      "11164"
                                                                "112"
                                                                         "113"
                         "122481" "122622" "124583" "132"
 [17] "114"
                "115"
                                                               "158"
                                                                         "159"
                                                      "204"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                                "205"
                                                                         "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721" "25885"
                                                      "2618"
                                                                "26289"
                                                                         "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                      "2982"
                                                                "2983"
                                                                         "2984"
                                                               "318"
                                                                         "3251"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                            "30833"
                                                      "30834"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                            "377841" "471"
                                                                "4830"
                                                                         "4831"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                            "4882"
                                                      "4907"
                                                                "50484"
                                                                         "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                            "5137"
                                                      "5138"
                                                               "5139"
                                                                         "5140"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                      "5146"
                                                               "5147"
                                                                         "5148"
```

```
"5158"
 [89] "5149"
               "5150"
                        "5151"
                                  "5152"
                                           "5153"
                                                              "5167"
                                                                       "5169"
 [97] "51728"
               "5198"
                        "5236"
                                  "5313"
                                           "5315"
                                                    "53343"
                                                              "54107"
                                                                       "5422"
                                                    "5431"
[105] "5424"
               "5425"
                        "5426"
                                  "5427"
                                           "5430"
                                                              "5432"
                                                                       "5433"
[113] "5434"
               "5435"
                        "5436"
                                  "5437"
                                           "5438"
                                                    "5439"
                                                              "5440"
                                                                       "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                           "5558"
                                                    "55703"
                                                              "55811"
                                                                       "55821"
[129] "5631"
               "5634"
                        "56655"
                                  "56953"
                                           "56985"
                                                    "57804"
                                                              "58497"
                                                                       "6240"
[137] "6241"
               "64425"
                        "646625" "654364"
                                           "661"
                                                    "7498"
                                                              "8382"
                                                                       "84172"
[145] "84265"
               "84284"
                        "84618"
                                  "8622"
                                           "8654"
                                                    "87178"
                                                              "8833"
                                                                       "9060"
[153] "9061"
               "93034"
                        "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                              "956"
                                                                       "957"
               "9615"
[161] "9583"
```

Make named vector of fold changes

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Gage pathway analysis:

```
keggres = gage(foldchanges, gsets = kegg.sets.hs)
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                    exp1
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
```

```
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination
                                      0.121861535
                                                       28 3.066756e-03
hsa04114 Oocyte meiosis
                                      0.121861535
                                                       102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
Make a pathway plot:
  pathview(gene.data = foldchanges, pathway.id = "hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14
Info: Writing image file hsa04110.pathview.png
Focus on top 5 upregulated pathways and make pathway plot:
  keggrespathways_up <- rownames(keggres$greater)[1:5]</pre>
  # Extract IDs (8 characters long)
  keggresids_up = substr(keggrespathways_up, start = 1, stop = 8)
  keggresids_up
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data = foldchanges, pathway.id = keggresids_up, species = "hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14

```
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14
Info: Writing image file hsa04142.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14
Info: Writing image file hsa04330.pathview.png
Making pathway plot for top 5 downregulated pathways:
  keggrespathways_down <- rownames(keggres$less)[1:5]</pre>
  # Extract IDs (8 characters long)
  keggresids_down = substr(keggrespathways_down, start = 1, stop = 8)
  keggresids down
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data = foldchanges, pathway.id = keggresids_down, species = "hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14
Info: Writing image file hsa04110.pathview.png
```

```
'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14

Info: Working in directory /Users/bernicelozada/Desktop/BIMM 143/Class14

Info: Writing image file hsa04114.pathview.png
```

GO Analysis

```
data(go.sets.hs)
data(go.subs.hs)

# Focusing on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets = gobpsets, same.dir = TRUE)

lapply(gobpres, head)
```

\$greater

0			_
	p.geomean s		-
GO:0007156 homophilic cell adhesion			8.519724e-05
GO:0002009 morphogenesis of an epithelium			1.396681e-04
GO:0048729 tissue morphogenesis			1.432451e-04
GO:0007610 behavior			1.925222e-04
GO:0060562 epithelial tube morphogenesis			5.932837e-04
GO:0035295 tube development			5.953254e-04
	q.val set.		exp1
GO:0007156 homophilic cell adhesion	0.1952430		.9724e-05
GO:0002009 morphogenesis of an epithelium			6681e-04
GO:0048729 tissue morphogenesis	0.1952430		32451e-04
GD:0007610 behavior	0.1968058		2522e-04
GO:0060562 epithelial tube morphogenesis	0.3566193		32837e-04
GO:0035295 tube development	0.3566193	391 5.95	3254e-04
\$less			
	p.geomean st	at.mean	p.val
GO:0048285 organelle fission	1.536227e-15 -8	.063910 1	.536227e-15
GO:0000280 nuclear division	4.286961e-15 -7	.939217 4	.286961e-15
GO:0007067 mitosis	4.286961e-15 -7	.939217 4	.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14 -7	.797496 1	.169934e-14
GO:0007059 chromosome segregation	2.028624e-11 -6	.878340 2	2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10 -6	.695966 1	.729553e-10
	q.val se	t.size	exp1
GO:0048285 organelle fission	5.843127e-12	376 1.	536227e-15
GO:0000280 nuclear division	5.843127e-12	352 4.	286961e-15
GD:0007067 mitosis	5.843127e-12	352 4.	286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195965e-11	362 1.	169934e-14
GO:0007059 chromosome segregation	1.659009e-08	142 2.	028624e-11
GO:0000236 mitotic prometaphase	1.178690e-07	84 1.	729553e-10
\$stats			
	stat.mean	exp1	
GO:0007156 homophilic cell adhesion	3.824205 3.82	4205	
GO:0002009 morphogenesis of an epithelium	3.653886 3.65	3886	
GO:0048729 tissue morphogenesis	3.643242 3.64	3242	
GO:0007610 behavior	3.565432 3.56	5432	
GO:0060562 epithelial tube morphogenesis	3.261376 3.26	1376	
GO:0035295 tube development	3.253665 3.25	3665	

Reactome Analysis

Get list of significant genes and output as a plain text file:

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
head(sig_genes)</pre>
```

```
ENSG00000117519 ENSG00000183508 ENSG00000159176 ENSG00000150938 ENSG00000116016

"CNN3" "TENT5C" "CSRP1" "CRIM1" "EPAS1"

ENSG00000136068

"FLNB"
```

```
# write.table(sig_genes, file = "significant_genes.txt", row.names = FALSE, col.names = FA
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The cell cycle pathway has the most significant "entities p-value". The most significant pathways in the Reactome analysis have to do with the cell cycle, which is the same for the KEGG pathways. However, the KEGG pathway analysis also implicated glycolysis as a significantly changed pathway, while it was not in the top 20 for Reactome. This is likely because the Reactome has more detailed, overlapping reactions within one pathway, while KEGG just reveals the overall pathway.

GO Online

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The negative regulation of glycogen biosynthetic process has the most significant entities p-value. Though the order of significant pathways is different between the KEGG and GO analysis, the content is the same. This may be because GO will annotate and organize by specific reactions, while KEGG will annotate general pathways by simply detecting genes that are all implicated in a general pathway.