Principal Components

Suppose we have N measurements on each of p variables X_j , j = 1, ..., p. There are several equivalent approaches to principal components:

- Given $X = (X_1, ..., X_p)$, produce a derived (and small) set of uncorrelated variables $Z_k = X\alpha_k$, k = 1, ..., q < p that are linear combinations of the original variables, and that explain most of the variation in the original set.
- Approximate the original set of N points in \mathbb{R}^p by a least-squares optimal linear manifold of co-dimension q < p.
- Approximate the $N \times p$ data matrix \mathbf{X} by the best rank-q matrix $\hat{\mathbf{X}}_{(q)}$. This is the usual motivation for the SVD.

PC: Derived Variables

 $Z_1 = X\alpha_1$ is the projection of the data onto the longest direction, and has the largest variance amongst all such normalized projections.

 α_1 is the eigenvector corresponding to the largest eigenvalue of $\hat{\Sigma}$, the sample covariance matrix of X. Z_2 and α_2 correspond to the second-largest eigenvector.

PC: Least Squares Approximation

Find the linear manifold $f(\lambda) = \mu + \mathbf{V}_q \lambda$ that best approximates the data in a least-squares sense:

$$\min_{\mu, \{\lambda_i\}, \mathbf{V}_q} \sum_{i=1}^N \|x_i - \mu - \mathbf{V}_q \lambda_i\|^2.$$

Solution: $\mu = \bar{x}, v_k = \alpha_k, \lambda_k = \mathbf{V}_q^T(x_i - \bar{x}).$

PC: Singular Value Decomposition

Let $\tilde{\mathbf{X}}$ be the $N \times p$ data matrix with centered columns (assume N > p).

$$\tilde{\mathbf{X}} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

is the SVD of $\tilde{\mathbf{X}}$, where

- U is $N \times p$ orthogonal, the left singular vectors.
- **V** is $p \times p$ orthogonal, the right singular vectors.
- **D** is diagonal, with $d_1 \ge d_2 \ge ... \ge d_p \ge 0$, the singular values.

The SVD always exists, and is unique up to signs. The columns of \mathbf{V} are the principal components, and $Z_j = U_j d_j$.

Let $\mathbf{D_q}$ be \mathbf{D} , with all but the first q diagonal elements set to zero. Then $\hat{\mathbf{X}}_q = \mathbf{U}\mathbf{D}_q\mathbf{V}^T$ solves

$$\min_{\text{rank}(\hat{\mathbf{X}}_q)=q} ||\tilde{\mathbf{X}} - \hat{\mathbf{X}}_q||$$

PC: Example — Digit Data

130 threes, a subset of 638 such threes and part of the handwritten digit dataset. Each three is a 16×16 greyscale image, and the variables $X_j, j = 1, \ldots, 256$ are the greyscale values for each pixel.

Rank-2 Model for Threes

Two-component model has the form

Here we have displayed the first two principal component directions, v_1 and v_2 , as images.

SVD: Expression Arrays

The rows are genes (variables) and the columns are observations (samples, DNA arrays). Typically 6-10K genes, 50 samples.

Eigengenes

- The first principal component or eigengene is the linear combination of the genes showing the most variation over the samples.
- The individual gene loadings for each eigengene or eigenarrays can have biological meaning.
- The sample values for the eigengenes show useful low-dimensional projections.

Example: NCI Cancer Data

First two eigengenes

Points are colored according to NCI cancer classes

First two eigenarrays

Gene