Introducción a la Teoría de Emparejamientos Modelos Bilaterales Uno-a-Uno

Juan Pablo Torres-Martínez

Departamento de Economía, Universidad de Chile

Teoría de Emparejamientos

Dados dos grupos de individuos, ¿es posible distribuirlos de forma *estable* o *eficiente* en parejas formadas por miembros de grupos diferentes?

La pregunta no es trivial, pues los individuos tienen preferencias por sus potenciales parejas y pueden actuar estratégicamente.

El estudio de *modelos de emparejamiento bilateral* busca responder la pregunta anterior, caracterizar las soluciones y describir mecanismos que las implementan.

Estos modelos se aplican a situaciones concretas, como el emparejamiento de estudiantes con universidades, los procesos de elección escolar, o la distribución de tareas entre empleados de una firma.

Nos preguntaremos si existen soluciones con "buenas" propiedades: estables, eficientes, individualmente racionales. Y mecanismos que las implementen y no incentiven a los individuos a mentir sobre sus verdaderas preferencias.

Emparejamientos Bilaterales Uno-a-Uno

Fije dos grupos finitos de individuos M y W.

Cada individuo tiene preferencias completas, transitivas y estrictas por los miembros del otro grupo. Además, cada individuo puede considerar inadmisibles a algunos miembros del otro grupo.

Por lo tanto, las preferencias de cada individuo $m \in M$ quedan caracterizadas por un ranking P^m de los miembros del conjunto $W \cup \{m\}$.

Análogamente, las preferencias de cada individuo $w \in W$ son representadas por un ranking P^w de los miembros del conjunto $M \cup \{w\}$.

Emparejamiento Bilateral Uno-a-Uno

Un emparejamiento es una función

$$\mu: M \cup W \rightarrow M \cup W$$

que cumple las siguientes propiedades:

$$m_i = \mu(w_j)$$
 \iff $w_j = \mu(m_i),$ $m_k = \mu(m_i)$ \iff $k = i,$ $w_s = \mu(w_j)$ \iff $s = j.$

Ejemplo

Considere un mercado en el cual $M = \{m_1, m_2, m_3\}$, $W = \{w_1, w_2, w_3\}$ y las preferencias vienen dadas por

En este contexto, si denotamos por $\mu(h)$ a la pareja de $h \in M \cup W$, podríamos emparejar a los individuos de tal forma que

$$\mu(m_1) = m_1, \qquad \mu(m_2) = w_3, \qquad \mu(m_3) = w_2, \qquad \mu(w_1) = w_1.$$

Racionalidad Individual y Estabilidad

Un emparejamiento μ puede ser <u>bloqueado por un individuo</u> si existe $h \in M \cup W$ que prefiere estar solo a ser emparejado con $\mu(h)$. Esto es, $hP^h\mu(h)$.

Un emparejamiento es **individualmente racional** si no puede ser bloqueado por ningún individuo.

Un emparejamiento μ puede ser <u>bloqueado por un par de individuos</u> (m, w) cuando $m \neq \mu(w)$ y ambos individuos prefieren estar juntos a ser emparejados con los individuos determinados por μ . Esto es, $wP^m\mu(m)$ y $mP^w\mu(w)$.

Un emparejamiento es **estable** si es individualmente racional y no puede ser bloqueado por ningún par de individuos.

Núcleo y Pareto Eficiencia

Un emparejamiento μ puede ser <u>bloqueado por una coalición</u> $A \subseteq M \cup W$ si existe un emparejamiento $\eta: A \to A$ tal que:

- (i) para algún $h \in A$, $\eta(h) \neq \mu(h)$;
- (ii) para cada $h \in A$, $\eta(h) \neq \mu(h) \Longrightarrow \eta(h)P^h\mu(h)$.

El **núcleo** es el conjunto de emparejamientos que no pueden ser bloqueados por ninguna coalición.

Un emparejamiento es **Pareto eficiente** si no puede ser bloqueado por la coalición $M \cup W$.

Núcleo versus Estabilidad

Teorema (Roth and Sotomayor (1990))

El núcleo coincide con el conjunto de emparejamientos estables. En particular, todo emparejamiento estable es Pareto eficiente.

Demostración

- ullet Si μ está en el núcleo entonces tiene que ser estable. Caso contrario sería bloqueable por una coalición compuesta por uno o por dos individuos.
- Sea μ un emparejamiento estable y asuma que no está en el núcleo. Esto es, existe una coalición $A\subseteq M\cup W$ y un emparejamiento $\eta:A\to A$ tal que:
- (i) para algún $h \in A$, $\eta(h) \neq \mu(h)$;
- (ii) para cada $h \in A$, $\eta(h) \neq \mu(h) \Longrightarrow \eta(h)P^h\mu(h)$.

Como μ es estable, existe $w \in A \cap W$ tal que $\eta(w) \neq \mu(w)$ y $\eta(w) \in M$.

Pero esto implica que μ es bloqueado por el par de individuos $(\eta(w), w)$, lo cual contradice su estabilidad.

Existencia de Emparejamientos Estables

Gale and Shapley (1962) probaron que todo mercado bilateral uno-a-uno tiene al menos un emparejamiento estable.

Algoritmo de Aceptación Diferida (Deferred Acceptance)

Etapa 1-a: Cada individuo en M le hace una propuesta al más preferido de los individuos de W, si hay alguno aceptable.

Etapa 1-b: Cada $w \in W$ acepta temporalmente la más atractiva de las propuestas que recibe, rechazando las otras y todas aquellas que son inaceptables.

Etapa k-a: Cada $m \in M$ que fue rechazado en la etapa previa, le hace una propuesta a la alternativa aceptable más preferida entre aquellas a las cuales aún no ha hecho propuestas. Si no quedan alternativas aceptables, no hace propuestas.

Etapa k-b: Cada $w \in W$ mantiene la alternativa más atractiva entre la que escogió en la etapa previa y las propuestas que recibe en esta etapa.

El algoritmo termina cuando no se hacen más propuestas.

Emparejamientos Estables

El resultado del proceso de emparejamiento alcanzado por el mecanismo de aceptación diferida puede depender del lado del mercado que hace las propuestas.

Ejemplo

Si $M = \{m_1, m_2, m_3, m_4\}$, $W = \{w_1, w_2, w_3\}$ y las preferencias son dadas por

entonces los emparejamientos implementados por el algoritmo de aceptación diferida vienen dados por

$$\mu_M(m_1) = w_1, \quad \mu_M(m_2) = w_3, \quad \mu_M(m_3) = m_3, \quad \mu_M(m_4) = w_2;$$

 $\mu_W(m_1) = w_3, \quad \mu_W(m_2) = w_1, \quad \mu_W(m_3) = m_3, \quad \mu_W(m_4) = w_2.$

Emparejamientos Óptimos

Nos referiremos a un matching estable como M-óptimo si ningún individuo en M prefiere otro matching estable.

Análogamente, diremos que un matching estable es W-óptimo si ningún individuo en W prefiere otro matching estable.

Teorema (Gale and Shapley (1962))

Suponga que se utiliza el algoritmo de aceptación diferida. Si los individuos de M hacen las propuestas, el matching M-óptimo es implementado. Análogamente, el matching W-óptimo se obtiene cuando los individuos de W hacen las propuestas.

Estructura del Conjunto de Emparejamientos Estables

La notación $\mu \succeq_M \eta$ nos indicará que cada individuo en M considera a su pareja en μ tan buena cuanto su pareja en η . Análogamente, interpretaremos el símbolo $\mu \succeq_W \eta$.

Teorema (Knuth (1976))

Si μ y η emparejamientos estables, entonces $\mu \succeq_{\mathsf{M}} \eta$ si y solamente si $\eta \succeq_{\mathsf{W}} \mu$.

Demostración

Sean μ y η dos emparejamientos estables diferentes tales que $\mu \succeq_M \eta$. Por contradicción, suponga que existe $w \in W$ tal que $\mu(w)P^w\eta(w)$. Entonces, η puede ser bloqueado por el par de individuos $(\mu(w), w)$.

Corolario

El emparejamiento M-óptimo (respectivamente, W-óptimo) junta a cada individuo en W (respectivamente, M) con la alternativa menos aceptable entre aquellas que pueden ser implementadas de forma estable.

Estructura del Conjunto de Emparejamientos Estables

Teorema (Gale and Sotomayor (1985))

En todo emparejamiento estable los individuos que quedan solos son los mismos.

<u>Demostración.</u> Fije emparejamientos estables μ y μ' . Sea M_{μ} el conjunto de hombres que prefiere μ a μ' . Definiciones análogas para los símbolos $M_{\mu'}$, W_{μ} y $W_{\mu'}$.

Entonces, si $m \in M_{\mu}$ tenemos que $\mu(m)P^{m}\mu'(m)$. Luego, $w := \mu(m)$ debe cumplir $\mu'(w)P^{w}\mu(w)$, pues caso contrario (m,w) podría bloquear a μ' . Así, $\mu(M_{\mu}) \subseteq W_{\mu'}$.

De forma análoga, como $w \in W_{\mu'}$ asegura que $\mu'(w)P^w\mu(w)$, $m := \mu'(w)$ debe cumplir $\mu(m)P^m\mu'(m)$ pues caso contrario (m,w) podría bloquear a μ . Así, $\mu'(W_{\mu'}) \subseteq M_\mu$.

Por lo tanto, como μ y μ' son inyectivas, $\mu(M_{\mu})=W_{\mu'}$ y $\mu'(W_{\mu'})=M_{\mu}$.

Suponga que existe $m \in M$ tal que $\mu'(m) = m$ y $\mu(m) \neq m$. Entonces, la estabilidad de μ asegura que $\mu(m)P^mm$. Por lo tanto, $m \in M_\mu$. Como $\mu'(W_{\mu'}) = M_\mu$, existe $w \in W$ tal que $\mu'(w) = m$. Una contradicción.

Considere un mercado bilateral uno-a-uno en el cual un planificador central, que no observa las preferencias de los individuos, quiere implementar un emparejamiento estable.

Un mecanimo centralizado estable es una función Φ que asocia a cada perfil de preferencias $P = (P^h)_{h \in M \cup W}$ un emparejamiento estable $\Phi(P)$.

Un mecanismo centralizado estable es *strategy proof* si para cada individuo es una estrategia débilmente dominante reportar sus verdaderas preferencias.

Ejemplo Considere el siguiente mercado bilateral uno-a-uno:

P^{m_1}	P^{m_2}	P^{m_3}	P^{w_1}	P^{w_2}	P^{w_2}
W_1	<i>W</i> 3	W ₂	m_3	m_1	тз
W_2	w_1	w_1	m_2	m_3	m_2
W ₃	W_2	W_3	m_1	m_2	m_1
m_1	m_2	m_3	w_1	W_2	W ₃

Suponga que se implementa el algoritmo de aceptación diferida con el grupo ${\it M}$ haciendo las propuestas. Entonces, llegamos al emparejamiento caracterizado por

$$\mu_M(w_1) = m_1, \qquad \mu(w_2) = m_3, \qquad \mu(w_3) = m_2.$$

Note que, si todos los individuos $h \neq w_1$ reportan sus verdaderas preferencias, entonces w_1 tiene incentivos para reportar preferencias $m_3 \hat{P}^{w_1} m_2 \hat{P}^{w_1} w_1 \hat{P}^{w_1} m_1$.

Teorema (Roth (1982))

No existe ningún mecanismo de emparejamiento centralizado estable que sea strategy-proof.

<u>Demostración</u>. Es suficiente probar que existe <u>un</u> mercado bilateral donde no hay mecanismos de emparejamiento centralizado estables en los cuales reportar las verdaderas preferencias sea una estratégia dominante.

Suponga que $M = \{m_1, m_2\}$, $W = \{w_1, w_2\}$ y que las preferencias vienen dadas por $w_i P^{m_i} w_j P^{m_i} m_i$ y $m_j P^{w_i} m_i P^{w_i} w_i$, donde $i \neq j$.

Entonces, los únicos emparejamientos estables son $\mu=[(m_1,w_1),(m_2,w_2)]$ y $\mu'=[(m_1,w_2),(m_2,w_1)]$. Note que los hombres prefieren μ a μ' y las mujeres μ' a μ .

Si Φ es un mecanismo de emparejamiento centralizado estable, entonces $\Phi(P) \in \{\mu, \mu'\}$.

Demostración (continuación)

Note que, caso $\Phi(P) = \mu$ y $M \cup \{w_1\}$ estén reportando sus verdaderas preferencias, w_2 tiene incentivos a reportar preferencias $m_1 \hat{P}^{w_2} w_2 \hat{P}^{w_2} m_2$.

Efectivamente, el único emparejamiento estable del mercado bilateral $(M,W,P^{m_1},P^{m_2},P^{w_1},\hat{P}^{w_2})$ es μ' , el cual mejora la situación de w_2 con respecto a μ .

Alternativamente, cuando $\Phi(P) = \mu'$ y $W \cup \{m_1\}$ están reportando sus verdaderas preferencias, m_2 tiene incentivos a reportar preferencias $w_2 \hat{P}^{m_2} m_2 \hat{P}^{m_2} w_1$.

Efectivamente, el único emparejamiento estable del mercado bilateral $(M,W,P^{m_1},\hat{P}^{m_2},P^{w_1},P^{w_2})$ es μ , el cual mejora la situación de m_2 con respecto a μ' .

Concluimos que cuando el mecanismo centralizado estable es dado por Φ reportar las verdaderas preferencias no es una estratégia dominante.

En la demostración del resultado previo, son los individuos de W los que tienen incentivos para sub-reportar sus preferencias cuando son los miembros de M los que hacen las propuestas.

Esto es un reflejo del siguiente resultado:

Teorema (Dubins and Freedman (1981))

El mecanismo que lleva al emparejamiento M-óptimo es strategy-proof para los individuos en M.