NP-Hard Problems Meet Parallelization

05-July-2024

Outline

- Motivation
 - Philosophy
 - Landscape
- Steiner Tree
 - Algorithm
 - Halt-Optimization
 - GPU-Optimization
 - Two-level parallelism
- Vehicle Routing
 - Local-search algorithm
- PACE Heuristics
- Tools and Visualization
- Summary & Future Directions

Our Philosophy

... take a **fresh look** at some of the classic graph algorithms and devise **faster** and more parallel GPU and CPU implementations.

+

- Fallin et al.

NP-hard

=

Our Philosophy

A High-Performance MST Implementation for GPUs

Alex Fallin Dept. of Computer Science Texas State University San Marcos, Texas, USA waf13@txstate.edu Andres Gonzalez Dept. of Computer Science Texas State University San Marcos, Texas, USA ag1548@txstate.edu

Jarim Seo Dept. of Computer Science Texas State University San Marcos, Texas, USA i s1195@txstate.edu Martin Burtscher Dept. of Computer Science Texas State University San Marcos, Texas, USA burtscher@txstate.edu

SC'23

ABSTRACT

Finding a minimum spanning tree (MST) is a fundamental graph algorithm with applications in many fields. This paper presents ECL-MST, a fast MST implementation designed specifically for GPUs. ECL-MST is based on a parallelization approach that unifies Kruskal's and Borûvka's algorithm and incorporates new and existing optimizations from the literature, including implicit path compression and edge-centric operation. On two test systems, it outperforms leading GPU and CPU codes from the literature on all of our 17 input graphs from various domains. On a Titan V GPU,

lines. In this example, the cheapest distribution grid that allows everyone to deliver or receive electricity is the MST shown.

Current status

Polynomial-time Problems

- Parallelization is easier
- Algorithms are simpler
- Runs in few seconds on million/billion-scale
- Solution search space is small
- Exact solution

Examples

- Minimum Spanning Tree
- Single Source Shortest Path

Goal: Solve the largest benchmark instances from DIMACS/PACE Challenges

NP-Hard Problems

- Comparatively difficult
- Complicated algorithms
- Few hours for thousand-sized instances
- Solution search space is large
- Trade-off: Solution quality vs. Time

- Steiner Tree Problem
- Travelling Salesman Problem
- Vehicle Routing Problem
- More practical applications

Optimizing for peak performance

Is that all?

Landscape of Parallelization

Steiner Tree Problem (STP) - Example

<u>Input</u>: Graph G(V, E, W) W:E \rightarrow Z⁺ and L⊆V terminals.

Output: A tree T'(V'⊇L, E'⊆E) of G such that minimize W(E').

// Minimum weighted tree with all terminals.

Fig 1 (a)

Fig 1 (b)

Steiner Tree Problem (STP) - Example

Input : Graph G(V, E, W) W: $E \rightarrow Z^+$ and L \subseteq V terminals

Output: Minimum weighted tree with all terminals

Fig 2 (a)

Fig 2 (b)

Steiner Tree Problem (STP) - Hardness

Input : Graph G(V, E, W) W: $E \rightarrow Z^+$ and $L \subseteq V$ terminals

Output: Minimum weighted tree with all terminals

Take away

- MST solution is a valid feasible Steiner Tree solution
- However, solution can be arbitrarily bad with respect to OPT.

Special cases

L =
$$\{u,v\}$$
 or k = 2 STP=ShortestPath_In_G(u,v)

• L = V or k = n STP=MST(G)

In general

STP is NP-Hard

In P Time

How to deal with NP-Hardness

What could be naive solutions? Enumerate all Spanning trees.

Approximation algorithm

- Runs in Polynomial time.
- Outputs an approximate solution with some guarantee.
 - e.g., 2 or some constant, log n, etc.
- There are several algorithms
 - Kou, Markowsky and Berman[KMB81]
 - Mehlhorn [M88]
 - Robins and Zelikovsky [RZ2000]

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 1981.

Phase 1

// Input G

Compute the shortest distance between every pair of terminals

Phase 2

// Construct G'= K_L

Build a graph G' over terminals, having edge-weights corresponding to the shortest distances computed in Phase 1

// Every edge in G' corresponds
to a path in G

MST (G')

Phase 3

// Construct G''

For every edge in MST(G') substitute the edges with the corresponding shortest path in G

// Collect all the edges & vertices of the corresponding path to construct G"

MST(G")

Takeaway: One more invocation for SSSP/MST algorithm. $G \rightarrow G' \rightarrow G''$


```
Phases 1 & 2
                                    Observe:
                                 Two For-loops.
For u in L {
                                     Naive?
 For v in L {
   P_{uv} = ShortestPath(u,v)
   W'(u,v) = |P_{uv}|
T' = MST(G', W')
```

Phase 3

```
For (u,v) in edges of T' {

G'' = G'' U P<sub>uv</sub>

//Add vertices & edges of P<sub>uv</sub>
}
```

$$T'' = MST(G'', W)$$


```
Input: Graph G(V, E, W, L)
Output: 2-approx Steiner Tree T (V_{\tau}, E_{\tau}) V_{\tau} \supseteq L
                                                Single For-loop
For s \in L {
                                               but runs SSSP to
  SSSP (G, W, L, s) with Halt
                                                  Completion
  Compute W' incrementally
T' = MST(G', W')
Compute G" and its vertices, adjList using T'
T'' = MST(G'', W)
return T"
```

CPU Implementation - Optimization

SSSP-halt optimization

Fig. 4 SSSP-halt visualization


```
Input: Graph G(V, E, W, L)
Output: 2-approx Steiner Tree T (V_{\tau}, E_{\tau}) V_{\tau} \supseteq L
For s \in L {
  parallel SSSP(G, W, L, s);
  Compute W' incrementally;
T' = parallel MST(G', W');
Compute G" and its vertices, adjList;
T'' = parallel MST(G'', W);
return T"
```

A novel aspect of our work is to run multiple parallel-SSSPs in parallel.

Subroutines?
Gunrock

Design choice for parallelization

Fig. 5 Sequential vs GPU v1 vs GPU v2

KMBCPU KMBGPU

GPU Implementation - SSSP

- n-threads
- One thread for each node
- Performs RELAX in parallel
- RELAXes its neighbours
- Till there is no change

Fig. 6 push-SSSP


```
MAIN
For s in L {
 ThdsPerBlk = 512; // or 1024
  Blks = [n/ThdsPer Blk];
 do {
    INIT-KERNEL<Blks,ThdsPerBlk>(s, d, p, n);
    RELAX-KERNEL<Blks,ThdsPerBlk>(.., s, d, p, changed, n);
                           //= = = = =
    CopyTo(DArray, d<sub>s</sub>);
    CopyTo(PArray, p<sub>s</sub>);
                          // From Device to Host
    CopyTo(hChanged, changed); // = = = = =
 } while (hChanged);
```

 We need the p[] for knowing the intermediate vertices in the shortest path


```
RELAX-KERNEL(..,s, d, p, changed, n) {
                                                                   Note:
u = tid // compute tid;
If tid < n {
  For v \in adjacent[u] \{ // Using CSR arrays \}
     // Relax Operation (u, v, W(u,v))
     newCost = d_s[u] + W(u, v);
     old = d_s[v];
      If newCost < old
         Atomic-MIN(d<sub>s</sub>[v], newCost);
                                                     Is it enough?
     // Updates Parent array
     If Atomic-MIN is success {
        p_{s}[v] = u;
         changed = true;
```

 Parent of v should be updated if the Atomic-MIN is success

Parent update - Challenge

Two threads want to update distance of their common neighbour v

```
<snip>
newCost = d_s[u] + W(u, v);
old = d_s[v];
If newCost < old
     Atomic-MIN(d<sub>s</sub>[v], newCost);
// Updates Parent array
If Atomic-MIN is success {
    p_{s}[v] = u;
     changed = true;
</snip>
```

Fig. 7 Challenges in parent update

Even **Gunrock** has a challenge in updating p array consistently. Listed as known issues https://github.com/gunrock/releases/tag/v1.0

Synchronization optimization • Pull

Because, one thread is writing to an index

GPU Optimizations

- Synchronization
 - Push
 - Pull
- Computation
 - Data-driven
 - Edge-based
 - Controlled Computation unrolling
 - Δ^2
 - 2Δ
 - t∆
- Memory
 - Shared memory

 Δ – max degree of the graph

GPU Optimizations

- Synchronization
 - Push
 - Pull
- Computation
 - Data-driven
 - Edge-based
 - Controlled Computation unrolling
 - Δ²
 - 2Δ
 - <u>t∆</u>
- Memory
 - Shared memory

 Δ – max degree of the graph

Compute optimization

- Computation Unrolling
 - Instead of one thread doing Δ work, perform more work per thread
 - Update also neighbours of neighbours (Δ^2)
 - Repeat the work; Say 2 times or t times $(2\Delta \text{ or } t\Delta)$; e.g. we do pull 3 times in the kernel 3-pull
- Data-driven
 - Needs Worklist (WL)
 - Active/Change nodes are inserted into WL
- Edge-based optimization
 - m-threads are launched
 - RELAXes one edge or a group of edges

Memory optimization

- Programmable shared memory can be useful
- When there are multiple reads to DRAM
- We can move data to shared memory
- For example, in 3-pull, we moved CSR AdjList to shared
- As the neighbours' AdjList is accessed 3 times
- Of the total 48K per block
- when using 512 threadPerBlock we have 24 words to store per thread
- Hence, if degree(node) < 25 we use shared, we move CSR AdjList[node] to Shared
- With shared memory we achieve 25% of improvement in 3-pull

Double-barrel approach

- SSSP happens in parallel
- To run two SSSP, we have to run one after the other
- Instead we use Double-barrel approach
- This can be generalized (p-SSSP)

In our Double-barrel approach, we run two individually parallel SSSPs also in parallel.

Image source: https://stock.adobe.com/

Double-barrel approach


```
Result Array: d[n]
Initialize(d=INTMAX)
d[src] = 0
FixedPoint{
     doRELAX(G, d, changed ...);
Result Array: d[2n]
Initialize(d=INTMAX)
d[src1] = 0; d[n+src2] = 0
FixedPoint{
    doRELAX(G, dist, changed, ...);
```


Fig. 9 Double-barrel approach.

Key takeaways so far

- Solving Steiner Tree Problem is NP-hard
- KMB Algorithm, a 2-approximation algorithm
- CPU implementation has SSSP-halt optimization
- SSSP with parent array update <u>was</u> challenging
- Pull-based SSSP is great for KMBGPU even without SSSP-halt
- Parallel-SSSPs in parallel (p-SSSP)

Experimental setup & Graphsuite

CPU

- Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz
- 64GB RAM

GPU

- Tesla P100 @ 1.33 GHz
- 12GB global memory

- GCC 7.3.1 with O3
- CUDA 10.2

Graphsuite

- Total 14 Graphs
 - 11 from PACE Challenge [PACE2018]
 - 2 from SteinLib
 - 1 from SNAP

Baselines

- PACE'18 Winner CIMAT [PACE2018]
- ODGF's KMB/JEA [BC19]

- CIMAT Team https://github.com/HeathcliffAC/SteinerTreeProblem
- S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

Experiments: Speed-up

Fig. 10 Speed-up comparisons of the implementations (higher is better). JEA timed-out on t11

Takeaway: KMBCPU and KMBGPU-OPT are better than JEA

Comparison of p-SSSP

Fig. 12 KMBGPU with varying p-SSSP for the graph t14 (Smaller is better).

Takeaway: As we increase the #parallel SSSPs it reaches peak performance and reduces.

Experiments - Scalability of GPU and CPU

Fig. 13 Scalability plot on **t14** with increasing terminal size (lower is better)

Takeaway: KMBGPU-OPT scales better than KMBCPU

Summary - STP

- Optimized CPU implementation for KMB algorithm
 - Novel SSSP-halt technique
 - Speed-up of 4x (average) over JEA/OGDF's KMB[BC19]
- Optimized GPU implementation for KMB algorithm
 - Novel p-SSSP technique (multiple parallel-SSSP in parallel)
 - Speed-up of 20x (average) over sequential JEA[BC19]

S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

Capacitated Vehicle Routing Problem (CVRP)

Input: Given n nodes (single Depot and customers) with their coordinates (x_i, y_i) and demands $d_i > 0$ for $i \in n$, Vehicle capacity C. Node 0 is Depot and has zero demand.

Output: Set of routes serving all the customers respecting the vehicle capacity from/to Depot.

Goal : Minimize total distance travelled.

CVRP Limitations

State-of-the-art

- works only on smaller instances
- has a large solution Gap
- takes a lot of time

Instance	Number of	Time (s)			
instance	customers	Base2	Base1		
Flanders2	30,000	8,355	2,534		
Flanders1	20,000	7,768	2,031		
Brussels1	15,000	7,164	871		

Table 4: State-of-the-art GPU methods are time-consuming.

RQ1. Can we invent a simpler algorithm?

RQ2. Can we reduce Gap on large instances?

Our ParMDS

- Serial and **Par**allel implementation
- Combining MST and DFS
- Uses Local-search approach
- Uses Randomization approach

$$Gap = (\frac{Z_S}{Z_{BKS}} - 1) \times 100$$

Baseline1: P. Yelmewad and B. Talawar. Parallel Version of Local Search Heuristic Algorithm to Solve Capacitated Vehicle Routing Problem, Cluster Computing, 2021.

Baseline2: M. Abdelatti and M. Sodhi. An improved GPU-accelerated heuristic technique applied to the Capacitated Vehicle Routing Problem, GECCO, 2020.

Overview - ParMDS

Overview - ParMDS

Example - Overview

(b) Graph for I, along with node-demands

ParMDS on an example input instance with n = 7 and Vehicle Capacity = 5.

Example - DFS and Randomization

Takeaway: Randomizing neighbours of MST may yield a different DFS ordering. Hence, a different route!

Intra-route optimization - 20pt

ParMDS Algorithm


```
Input: G = (V, E), Demands D := \bigcup_{i=1}^n d_i, Capacity Q
   Output: R, a collection of routes as a valid CVRP solution
             C_R, the cost of R
1 T \leftarrow PRIMS MST(G)
                                                    /* Step 1 */
_2 C_R \leftarrow \infty
for i \leftarrow 1 to \rho do /* Superloop */ /* Parallel */
                                                                                       /* Standard: stride = 1;
                                                                        Zoom-in
       T_i \leftarrow \text{Randomize}(T) / * \text{Shuffle Adjacency List } * /
                                                                                       /* Strided : stride = #CPU cores
       \pi_i \leftarrow \text{DFS\_Visit}(T_i, \text{Depot})
                                         /* Step 2 */
                                                                                       /* Parallel for loop: Standard/Strided
       R_i \leftarrow \text{Convert To Routes}(\pi_i, Q, D) /* Step 3 */
                                                                                     1 for i \leftarrow 1; i \leq \rho; i = i + stride do
      C_{R_i} \leftarrow \text{CALCULATE\_COST}(R_i) /* Parallel */
                                                                                           for v \in V do
      if C_{R_i} < C_R then
                                                                                                /* seed ← constant or i or rand()
                                                                                                                                                        */
          C_R \leftarrow C_{R_i} /* Current Min Cost */
R' \leftarrow R_i /* Current Min Cost Route */
                                                                                               Shuffle-neighbors(AdjList(v), seed);
                                                                                           end
       end
12 end
                                                                                     6 end
13 R \leftarrow \text{Refine}_{\text{ROUTES}}(R')
                                                     /* Step 4 */
                                                                                     7 ...
14 return R, C_R
```

Experiments

STATE OF THE AND OCK WAS DEED TO THE CAME OF THE AND OCK WAS DEED TO THE CAME OF THE CAME

- 130 Instances of CVRPLIB
- Intel Xeon CPU E5-2640 v4
- Baselines on GPU
 - NVIDIA's Tesla P100
 - CUDA 11.5

Speedup of ParMDS vs. baselines

- Our Code uses
 - **SeqMDS:** GCC 9.3.1
 - ParMDS: nvc++ compiler NVIDIA's HPC SDK 22.11

Method	Execution Time (s) using Random
SeqMDS	1,722.44
ParMDS-Standard	1,522.26
ParMDS-Strided	186.50

More detailed analysis in our paper

Gap at the end of each step

Faster Steiner Heuristics

Algo.	Abbr.	Name
1	DJ	Dijkstra Tree Algorithm
2	DJ-all	Dijkstra Tree from all terminals Algorithm
3	SP	Single Probe Algorithm
4	SP-all	Single Probe from all terminals Algorithm
5	DP	Double Probe Algorithm
6	DP-all	Double Probe from all terminals Algorithm
7	HSD	Hybrid of SP-all and DP-all
<u>Baseline</u>	P18WIN	PACE 2018 Heuristic Track Winner

Table. Our Steiner heuristic algorithms and baseline

Gap and Time comparison

t#	DJ	DJ-all	SP	SP-all	DP	DP-all	HSD	P18WIN
t01	41.21	30.34	6.68	6.09	5.90	5.12	5.12	34.86
t02	45.30	39.78	8.16	7.34	7.12	6.62	6.62	33.91
t03	31.37	29.37	6.96	6.30	5.85	5.48	5.48	30.42
t04	21.77	19.42	5.25	4.74	3.43	3.16	3.43	27.30
t05	2.28	1.83	0.43	0.41	0.43	0.38	0.38	2.34
t06	1.07	0.97	0.18	0.15	ТО	ТО	0.15	2.76
t07	20.87	17.53	4.28	4.21	3.85	3.49	4.21	32.92
t08	1.90	1.76	0.52	0.31	0.29	0.28	0.28	2.02
t09	51.87	47.50	8.45	8.24	7.57	7.26	7.31	7.10
t10	2.24	2.15	0.38	0.35	0.32	0.32	0.32	5.95
t11	20.99	19.14	4.77	4.48	3.56	3.39	4.48	31.12
t12	153.54	133.48	26.35	20.37	10.49	7.19	7.19	77.07
t13	244.67	154.62	9.00	8.94	9.81	9.59	8.94	36.68
t14	24.42	21.68	1.60	0.98	0.28	0.00	0.04	48.96
avg.	47.39	37.11	5.93	5.21	4.53	4.02	3.85	26.67

t#	DJ	DJ-all	SP	SP-all	DP	DP-all	HSD	P18WIN
t01	0.105		0.162	98.76	9.23			
t02	0.160		0.288	364.80	154.43			
t03	0.220		0.449	944.40	48.56			
t04	0.249		0.453	964.12	32.45			
t05	0.141		0.262	569.96	88.56			
t06	0.115		0.244	573.19				
t07	0.241		0.592	1782.85	139.11			
t08	0.228		0.381	930.70	41.30			
t09	0.083	642.64	0.077	203.42	4.76			
t10	0.239		0.477	1468.10	41.13			
t11	0.466		0.928		137.12			
t12	0.035	813.09	0.055	6.32	2.26	302.12	308.23	
t13	0.050	1176.68	0.084	115.53	4.23			
t14	0.287		0.319	898.93	24.92			
sum	2.618	22432.41	4.769	10721.09	2528.04	23702.12	23708.23	25200
avg.	0.187	1602.32	0.341	765.79	180.57	1693.01	1693.45	1800

Table. Comparison of (a) Gap and (b) Time (in seconds) for our algorithms vs Baseline

- SP and DP is faster than others
- HSD has the least Gap

Tools and Visualization

- https://mrprajesh.github.io/tools
- Steiner Tree
- CVRP

Publications

1. Accelerating Computation of Steiner Trees on GPUs.

Rajesh Pandian M, Rupesh Nasre & N. S. Narayanaswamy.

International Journal of Parallel Programming (IJPP), volume 50, pages 152–185, 2022.

DOI: https://doi.org/10.1007/s10766-021-00723-0 (Source code)

2. Effective Parallelization of the Vehicle Routing Problem.

Rajesh Pandian M, Somesh Singh, Rupesh Nasre & N.S.Narayanaswamy.

Genetic and Evolutionary Computation Conference (GECCO). pgs 1036–1044, 2023.

DOI: https://doi.org/10.1145/3583131.3590458 (Source code)

Summary

- Fresh perspective to <u>design</u> parallelism-friendly algorithms
- Performance: Algorithmic- and Parallelism- specific Optimizations
- Our techniques are applicable in general
 - Two-level parallelism (p-SSSP) technique
 - Strided parallel Local-search
- Immediate future directions
 - Substituting our SSSP with faster SSSP
 - Extending DD-based pSSSP
 - Supporting parMDS on GPU

https://mrprajesh.github.io/pages/research.html Thank you.

https://bit.ly/rajesh-viva