Перекрёстная проверка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Разбейте множество из N объектов, каждый из которых принадлежит к одному из M классов, на K частей. Каждый объект должен попасть ровно в одну часть так, чтобы размеры частей, а также распределение классов по этим частям было сбалансировано. Формально, пусть cnt(x,c) — число объектов с классом c попавших в часть x, тогда должно выполняться $\forall x,y,c: |cnt(x,c)-cnt(y,c)| \leqslant 1$ и $\forall x,y: |\sum_c cnt(x,c)-\sum_c cnt(y,c)| \leqslant 1$.

Формат входных данных

Первая строка: три целых числа $N,\,M,\,K\,\,(1\leqslant N\leqslant 10^5,\,1\leqslant M,K\leqslant N)$ — число объектов, классов и частей.

Вторая строка: N целых чисел C_i $(1 \leqslant C_i \leqslant M)$ — класс i-го объекта.

Формат выходных данных

Выведите K строк. Каждая строка x начинается с целого числа S — размера части x. Далее идут S целых чисел — номера объектов попавших в часть x. Объекты нумеруются с единицы.

Пример

стандартный ввод	стандартный вывод
10 4 3	4 1 4 9 10
1 2 3 4 1 2 3 1 2 1	3 2 3 5
	3 6 7 8

Замечание

В первой части содержится четыре объекта, два из них первого класса, один второго и один четвёртого. Во второй и третьей части по три объекта первых трёх классов.

F-мера

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В результате эксперимента по классификации на K классов была получена матрица неточностей (Confusion matrix) CM, где CM[c,t] — число объектов класса c, которые были классифицированы как t. Посчитайте по данной матрице неточностей средневзвешенную по классам макро и микро F-меру.

Формат входных данных

Первая строка содержит целое число K — число классов ($1 \le K \le 20$). Далее идёт K строк — описание матрицы неточностей. Каждая строка c содержит K целых чисел — c-я строка матрицы неточностей. $\forall c,t:0 \le CM[c,t] \le 100$ и $\exists c,t:CM[c,t] \ge 1$.

Формат выходных данных

Выведите два вещественных числа с плавающей точкой — взвешенно усреднённую по классам макро и микро F-меру. Абсолютная погрешность ответа не должна превышать 10^{-6} .

Примеры

стандартный ввод	стандартный вывод
2	0.6
0 1	0.6
1 3	
3	0.326860841
3 1 1	0.316666667
3 1 1	
1 3 1	

Замечание

В первом примере классы распределены как 1:4. Точность (precision), полнота (recall) и F-мера первого класса равны 0, а второго 0.75. При этом средняя точность, полнота и F-мера равны 0.6.

Непараметрическая регрессия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

непараметрической Реализуйте алгоритм регрессии, который бы поддерживал функции расстояний, ядер И окон. Описание ядер МОЖНО найти здесь: https://en.wikipedia.org/w/index.php?oldid=911077090

Формат входных данных

Первая строка содержит два целых числа N и M — число объектов и признаков ($1 \le N \le 100$, $1 \le M \le 10$).

Далее идёт N строк — описание набора данных. Каждая строка i содержит M+1 целое число $d_{i,j}$ ($-100 \leqslant d_{i,j} \leqslant 100$) — описание i-го объекта. Первые M из этих чисел признаки i-го объекта, а последнее — его целевое значение.

Следующая строка описывает объект запроса q. Она состоит из M целых чисел $d_{q,j}$ $(-100 \leqslant d_{q,j} \leqslant 100)$ — признаки объекта q.

Далее идут три строки состоящих из строчных латинских букв.

Первая из них — название используемой функции расстояния: manhattan, euclidean, chebyshev.

Вторая — название функции ядра: uniform, triangular, epanechnikov, quartic, triweight, tricube, qaussian, cosine, logistic, sigmoid.

Tретья — название типа используемого окна: fixed — окно фиксированной ширины, variable — окно переменной ширины.

Последняя строка содержит параметр окна: целое число h ($0 \le h \le 100$) — радиус окна фиксированной ширины, либо целое число K ($1 \le K < N$) — число соседей учитываемое для окна переменной ширины.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — результат запроса.

Примеры

стандартный вывод
0.000000000
0.6090086848

Замечание

В случае неопределённости, когда в окно не попало ни одного объекта, требуется вывести значе-

ние по умолчанию для задачи регрес из обучающей выборке.	ссии — среднее	значение целево	й переменной по	всем объектам

Линейная регрессия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Найдите уравнения прямой аппроксимирующей положение объектов из заданного набора данных.

Формат входных данных

Первая строка содержит два целых числа N ($1 \le N \le 10^4$) — число объектов в обучающем множестве, и M ($1 \le M \le \min(N, 1000)$) — число признаков у объектов исключая зависимую переменную.

Следующие N строк содержат описание объектов. i-я из этих строк содержит описание i-го объекта, M+1 целых чисел. Первые M из этих чисел: $X_{i,j}$ ($|X_{i,j}| \leq 10^9$) — признаки i-го объекта, а последнее Y_i ($|Y_i| \leq 10^9$) — значение его зависимой переменной.

Формат выходных данных

Выведите M+1 вещественных чисел с плавающей точкой A_j — коэффициенты прямой из уравнения $Y=A_0\cdot X_0+A_1\cdot X_1+\cdots+A_{M-1}\cdot X_{M-1}+A_M$

Система оценки

Пусть $Score=100\cdot \frac{B-S}{B-J}$, где S-SMAPE вашего решения, J-SMAPE решения эталона с запасом $\approx 1\%,\ B-SMAPE$ наивного решения с запасом $\approx 2\%.$

Примеры

стандартный ввод	стандартный вывод
2 1	31.0
2015 2045	-60420.0
2016 2076	
4 1	2.0
1 0	-1.0
1 2	
2 2	
2 4	

Замечание

He стоит "дудосить" тестирующую систему для подбора оптимальных параметров алгоритма! Их следует настраивать локально используя следующие наборы данных: https://drive.google.com/file/d/1D2xJ6ujn4qR73suNJ64DGosfUlb-xmgD

Эти наборы данных отличаются от тех, на которых будет тестироваться ваше решение, но они получены тем же самым методом генерации. Каждый набор данных начинается с целого положительного числа M ($1 \le M \le 1000$) — число признаков. Далее следуют два множества объектов: тренировочное и тестовое. Каждое множество начинается с целого положительного числа N_t ($1 \le N_t \le 10^4$) — число объектов в множестве. Далее следуют N_t объектов в формате, который соответствует формату задачи на codeforces.

Метод опорных векторов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Найдите коэффициенты λ_i опорных векторов и сдвиг b, для классификации по формуле $class(x) = sign(\sum_i y_i \cdot \lambda_i \cdot k(x,x_i) + b)$, где x — это векторное описание запрашиваемого объекта, а k — функция ядра.

Формат входных данных

В первой строке находится целое число N (1 $\leqslant N \leqslant 100$) — число объектов в обучающем множестве.

Следующие N строк содержат описание объектов по одному объекту на строке. i-й объект описывается N+1 целым числом: первые N из них $K_{i,j}$ ($|K_{i,j}| \le 10^9$) — значение функции ядра между i-м и j-м объектом, последнее Y_i ($Y_i = \pm 1$) — класс i-го объекта.

Далее идёт строка содержащая целое число C $(1\leqslant C\leqslant 10^5)$ — ограничение на коэффициенты λ_i .

Формат выходных данных

Выведите N+1 число с плавающей точкой: первые N чисел — коэффициенты λ_i ($0 \le \lambda_i \le C$, $\sum \lambda_i \cdot Y_i = 0$) соответствующие объектам из тренировочного множества, последнее число b ($|b| \le 10^{12}$) — коэффициент сдвига.

Система оценки

Пусть $Score=100\cdot \frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%,\, B-F_1$ -мера наивного решения с запасом $\approx 2\%.$

Тогда
$$Verdict = \begin{cases} Ok & Score \geqslant 100 \\ PartiallyCorrect & 0 \leqslant Score < 100 \\ WrongAnswer & Score < 0 \end{cases}$$

Пример

стандартный ввод	стандартный вывод
6	0.0
5 4 6 9 11 10 -1	0.0
4 5 6 9 10 11 -1	1.0
6 6 8 12 14 14 -1	1.0
9 9 12 18 21 21 1	0.0
11 10 14 21 25 24 1	0.0
10 11 14 21 24 25 1	-5.0
1	

Наивный байесовский классификатор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Реализуйте наивный байесовский классификатор.

Априорные вероятности классов оцениваются обыкновенным частотным методом.

Для оценки вероятности встречи слов в каждом классе используется модель Бернулли с аддитивным сглаживанием (сглаживание Лапласа) $p(x) = \frac{count(x) + \alpha}{\sum_{y \in Q} count(y) + \alpha \cdot |Q|}$, где x — рассматриваемое событие, а Q — множество всех событий.

Каждое слово это отдельный признак с двумя возможными событиями встретилось / не встретилось.

Формат входных данных

В первой строке содержится целое положительное число K $(1\leqslant K\leqslant 10)$ — число классов.

Во второй строке содержится K целых положительных чисел λ_C $(1 \leqslant \lambda_C \leqslant 10)$ — штрафы за ошибки классификации сообщений соответствующих классов.

В третьей строке содержится целое положительное число α (1 $\leqslant \alpha \leqslant$ 10) — интенсивность аддитивного сглаживания.

Следующая строка содержит целое положительное число N $(1 \leqslant N \leqslant 200)$ — число сообщений в обучающей выборке.

Следующие N строк содержат описания соответствующих сообщений из обучающей выборки. Каждое сообщение в ней начинается с целого положительного числа C_i ($1 \le C_i \le K$) — класса к которому относится i-е сообщении. Далее следует целое положительное число L_i ($1 \le L_i \le 10^4$) — число слов в i-м сообщение. Затем следует содержание сообщения — L_i слов состоящих из маленьких латинских букв.

Далее в отдельной строке содержится целое положительное число M ($1 \le M \le 200$) — число сообщений в проверочной выборке.

Следующие M строк содержат описания соответствующих сообщений из проверочной выборки. Каждое сообщение в ней начинается с целого положительного числа L_j ($1 \leqslant L_j \leqslant 10^4$) — число слов в j-м сообщении. Затем следует содержание сообщения — L_j слов состоящих из маленьких латинских букв.

Гарантируется, что сумма длин всех сообщений в обучающей и проверочной выборках меньше чем $2\cdot 10^6$.

Формат выходных данных

Выведите M строк — результаты мягкой классификации оптимального наивного байесовского классификатора соответствующих сообщений из проверочной выборки.

Каждый j-й результат мягкой классификации должен содержать K чисел p_C — вероятности того, что j-е сообщение относится к классу C.

Пример

стандартный ввод	стандартный вывод
3	0.4869739479 0.1710086840 0.3420173681
1 1 1	0.1741935484 0.7340501792 0.0917562724
1	0.4869739479 0.1710086840 0.3420173681
4	0.4869739479 0.1710086840 0.3420173681
1 2 ant emu	0.4869739479 0.3420173681 0.1710086840
2 3 dog fish dog	
3 3 bird emu ant	
1 3 ant dog bird	
5	
2 emu emu	
5 emu dog fish dog fish	
5 fish emu ant cat cat	
2 emu cat	
1 cat	

Замечание

В примере условные вероятности выглядят следующим образом:

Слово сат не рассматривается, так как оно ни разу не встретилось в обучающей выборке. Для первого запроса $p(c_1|M)\cdot p(M)=\frac{2}{4}\cdot \left(1-\frac{3}{4}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{2}\right)\cdot \left(1-\frac{1}{4}\right)$ и $p(c_1|M)=\frac{3/256}{3/256+1/243+2/243}$

Дерево принятия решений

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Постройте дерево принятия решений.

Формат входных данных

Первая строка содержит три целых положительных числа M ($1 \le M \le 100$) — число признаков у объектов (исключая класс), K ($1 \le K \le 20$) — число классов и H ($1 \le H \le 10$) — максимальная глубина (в рёбрах) дерева принятия решений.

Вторая строка содержит целое положительное число N ($1 \leqslant N \leqslant 4000$) — число объектов в обучающей выборке.

Следующие N строк содержат описания объектов в обучающей выборке. В i-й из этих N строк перечислено M+1 целое число: первые M чисел $A_{i,j}$ ($|A_{i,j}| \le 10^9$) — признаки i-го объекта, последнее число C_i ($1 \le Ci \le K$) — его класс.

Формат выходных данных

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число S $(1\leqslant S\leqslant 2^{11})$ — число вершин в дереве.

В следующих S строках выведите описание вершин дерева. В v-й из этих строк выведите описание v-й вершины:

- Если v-я вершина узел, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число f_v ($1 \le f_v \le M$) индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой b_v константа с которой происходит сравнения для проверки, два целых положительных числа l_v и r_v ($v < l_v, r_v \le S$) индекс вершины дерева в которую следует перейти, если выполняется условие $A[f_v] < b_v$, и индекс вершины дерева в которую следует перейти, если условие не выполняется.
- Если v-я вершина лист, выведите через пробел: заглавную латинскую букву 'C' и целое положительное число D_v ($1 \le D_v \le K$) класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F_1 -мера.

Пусть $Score=100\cdot\frac{F-B}{J-B}$, где $F-F_1$ -мера вашего решения, $J-F_1$ -мера решения эталона с запасом $\approx 1\%,\, B-F_1$ -мера наивного решения с запасом $\approx 2\%.$

Тогда
$$Verdict = \begin{cases} Ok & Score \ge 100 \\ PartiallyCorrect & 0 \le Score \le 100 \\ WrongAnswer & Score < 0 \end{cases}$$

Пример

стандартный ввод	стандартный вывод
2 4 2	7
8	Q 1 2.5 2 5
1 2 1	Q 2 2.5 3 4
2 1 1	C 1
3 1 2	C 4
4 2 2	Q 2 2.5 6 7
3 4 3	C 2
4 3 3	C 3
1 3 4	
2 4 4	

Страница 2 из 2