Agent-based modelleren van het openbaar vervoer om veranderingen in passagiersstromen te identificeren

Sophie Ensing
Thesis MSc Data Science
20/06/2019

Introductie

- Veranderingen in het openbaar vervoer
- Impact drukte
- Simulatie van boten door de grachten^[1]

^[1] Jeroen van der Does de Willebois. Assessing the impact of quay-wall renovations on the nautical traffic in Amsterdam. Master's thesis, TU Delft, 2019

Hoe kan een agent model gebruikt worden om veranderingen in passagiersstromen in het openbaar vervoer te identificeren?

Hoe kan een agent model gebruikt worden om veranderingen in passagiersstromen in het openbaar vervoer te identificeren?

Agent-based modeling

- Passagiers
 - Regels
 - Doelen
- Omgeving is het openbaar vervoer netwerk

Passagiers

Groep 1: voorkeur voor de kortste route

Groep 2: voorkeur voor minste overstappen

Groep 3: voorkeur voor kortste wachttijd

Hoe kan een agent model gebruikt worden om veranderingen in passagiersstromen in het openbaar vervoer te identificeren?

Sub-netwerk

Tram 24 en 12 + Metro 50, 52 en 53

networkx maps.amsterdam.nl

GVB data

Gemiddelde aantal passagiers per uur, per weekdag*

^{*} aantallen gecorrigeerd voor de gebruikte lijnen in het onderzoek

GVB data

Drukte verdeling op een weekdag, 08:00 - 09:00*

Aankomsthalte

^{*} aantallen gecorrigeerd voor de gebruikte lijnen in het onderzoek

Passagiers

- 1. Genereren passagier
- 2. Toewijzen begin- en eindstation
- 3. Alle routeopties berekenen
- 4. Route kiezen op basis van regels

Hoe kan een agent model gebruikt worden om veranderingen in passagiersstromen in het openbaar vervoer te identificeren?

Veranderingen in het OV

Scenario 1

- Al het openbaar vervoer rijdt volgens schema
- Genereren van passagiers op basis van kansverdelingen
- Weekdag/weekenddag
- 08:00 09:00, 11:00 12:00,
 14:00 15:00, 17:00 18:00,
 20:00 21:00

Scenario 2

- Scenario 1, maar:
- Tijdens elk uur in de simulatie rijdt tram 12 het eerste half uur niet.

Resultaten

- Foutmarge (Mean Average Error) berekend voor alle stations en ritten.
 - Foutmarge tussen 3 en 36 personen gemiddeld
- Foutmarge belangrijk als baseline
- Wachttijd, aantal overstappen en ritduur
 - Wachttijd veel meer outliers
 - Geen groot effect op overstappen en ritduur
- Bezetting van alle voertuigen
 - Invloed op alle lijnen behalve metro 50

Richting Amstelstation

Richting Centraal station

Tram 12

Richting Centraal station

Richting De Boelelaan/VU

Tram 24

Richting Station Zuid

Richting Station Noord

Metro 52

Richting Gaasperplas

Richting Centraal Station

Metro 53

Discussie

- Limitaties van de data
 - Sub-trips
 - Begin en eindstation
- Sub-netwerk
- Verdeling passagiers
- Contributie
 - GVB: kritieke lijnen en veranderingen
 - Gemeente: drukte als resultaat van veranderingen

Conclusie

- Verder onderzoek van belang
 - Toepassen op het hele netwerk
 - Meer onderzoek naar gedrag
 - Wat is drukte in deze context?
- Model biedt duidelijke baseline performance

Bedankt voor jullie aandacht.

Voorspellingsmodel Drukte in Amsterdam

Don de Lange Msc Data Science

Probleem

• Amsterdam is **DRUK**

Hoe kan een voorspelling gemaakt van drukte binnen Amsterdam gegeven worden, met behulp van stad gerelateerde data?

Hoe kan een voorspelling gemaakt van drukte binnen Amsterdam gegeven worden, met behulp van stad gerelateerde data?

Gerelateerde Data

Metingen per uur, voor iedere datum

GVB

Per Station

- Tram en MetroSamengevoegd
- Totaal aantal inchecken en uitchecken
- Coördinaten

CMSA

• Per Sensor ID

- Wi-Fi sensor + Tel camera's zelfde gebied
- Totaal voetgangers + apparaten
- Coördinaten

Evenementen

- Extra **DRUK**
- Per evenement
 - Datum
 - Coördinaten

Drukte Voorspelling → CMSA gegeven drukte

Voorspellingsmethode

Wat wordt er voorspeld

• 2 Methoden

Regressie	
Drukte Voorspelling	Telling CMSA

Classificatie			
Drukte Niveau	Deel tellingen CMSA		
Level 1	0% - 25%		
Level 2	25% - 50%		
Level 3	50% - 75%		
Level 4	75% - 100%		

Coördinaten gebruik

- Afstand GVB stations tot sensor die wordt voorspeld van belang
 - Stations met lagere afstand meer belangrijker
- Afstand tussen GVB station en Sensor vooraf berekend en toegevoegd als gewicht

Voorspellingsmodellen

Random Forest

- Traint meerdere beslissingsbomen op deelverzamelingen van de data
- ledere zwakke beslissingsboom wordt gecombineerd tot 1 sterke beslissingsboom.

XGBoost

- Traint sequentiële beslissingsbomen op deelverzamelingen van de data
- Error functie beslissingsboom minimaliseren

Evaluatie

- Regressie
 - o **R2**:
 - In hoeverre de voorspelling kan worden uitgelegd met de gegeven data
 - Zo hoog mogelijk
- Classificatie
 - Accuracy: Ratio correct gelabelde voorspellingen
 - Precision: Per niveau, correct gelabelde voorspellingen van het totaal voorspellingen met het label
 - Recall: Per label, correct gelabelde voorspellingen van het totaal instanties met het label

Voorspelling

Voorspel drukte op alle sensoren

Methode:

- 1. Train modellen met cross-validation op 80% van de dagen
- 2. Maak voorspellingen op overige 20%

Voorspelling Resultaten

Regressie			
Model	R2		
Baseline	57.7%		
Random Forest	83.3%		
XGBoost	85.2%		

Classificatie				
Model	Accuracy	Precision	Recall	
Baseline	24.1%	24.1%	25%	
Random Forest	84.4%	84.4%	84.4%	
XGBoost	85.8%	85.8%	85.8%	

Generalisatie

Generaliseer voorspellingen

Voorspellingen niet getrainde sensor locaties

Methode:

- 1. Train modellen met cross-validation op 6 sensoren
- 2. Maak voorspellingen overgebleven sensor

Generalisatie Resultaten

Regressie		
Model	R2	
Baseline	58.3%	
Random Forest	84.4%	
XGBoost	85.5%	

Classificatie				
Model	Accuracy	Precision	Recall	
Baseline	24.2%	24.2%	25%	
Random Forest	84.2%	84.2%	84.2%	
XGBoost	84.2%	84.2%	84.2%	

Discussie

- GVB data kan gebruikt worden om drukte te voorspellen
- Modellen kunnen voorspellingen maken op onbekende punten

Limitaties

- Onduidelijk hoeveel CMSA sensoren er nodig zijn
- Onduidelijk welke CMSA sensoren nuttiger zijn dan andere

Conclusie

- Verder onderzoek CMSA sensoren van belang
- Verder onderzoek naar generalisatie van belang
- Onderzoek goed startpunt

Bedankt voor jullie aandacht