2. Konvergenz im \mathbb{R}^n

Sei $(a^{(k)})$ eine Folge in \mathbb{R}^n , also $(a^{(k)}) = (a^{(1)}, a^{(2)}, \ldots)$ mit $a^{(k)} = (a_1^{(k)}, \ldots a_n^{(k)}) \in \mathbb{R}^n$. Die Begriffe **Teilfolge** und **Umordnung** definiert man wie in Analysis I. $(a^{(k)})$ heißt beschränkt $:\iff \exists c \geq 0: \|a^{(k)}\| \leq c \ \forall k \in \mathbb{N}$.

Definition (Grenzwert und Beschränktheit)

 $(a^{(k)})$ heißt **konvergent**: $\iff \exists a \in \mathbb{R}^n : \|a^{(k)} - a\| \to 0 \ (k \to \infty) \ (\iff \exists a \in \mathbb{R}^n : \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} : \|a^{(k)} - a\| < \varepsilon \ \forall k \ge k_0)$. In diesem Fall heißt a der **Grenzwert** (GW) oder **Limes** von $(a^{(k)})$ und schreibt: $a = \lim_{k \to \infty} a^{(k)}$ oder $a^{(k)} \to a \ (k \to \infty)$

Beispiel

(n=2): $a^{(k)} = (\frac{1}{k}, 1 + \frac{1}{k^n})$ (Erinnerung: $\frac{1}{n}$ konvergiert gegen 17); a := (0,1); $||a^{(k)} - a|| = ||(\frac{1}{k}, \frac{1}{k^2})|| = (\frac{1}{k^2} + \frac{1}{k^4})^{\frac{1}{2}} \to 0 \implies a^{(k)} \to (0,1)$

Satz 2.1 (Konvergenz)

Sei $(a^{(k)})$ eine Folge in \mathbb{R}^n .

(1) Sei $a^{(k)} = (a_1^{(k)}, \dots, a_n^{(k)})$ und $a = (a_1, \dots, a_n) \in \mathbb{R}^n$. Dann:

$$a^{(k)} \to a \ (k \to \infty) \iff a_1^{(k)} \to a_1, \dots, a_n^{(k)} \to a_n \ (k \to \infty)$$

- (2) Der Grenzwert einer konvergenen Folge ist eindeutig bestimmt.
- (3) Ist $(a^{(k)})$ konvergent $\implies a^{(k)}$ ist beschränkgt und jede Teilfolge und jede Umordnung von $(a^{(k)})$ konvergiert gegen $\lim a^{(k)}$.
- (4) Sei $(b^{(k)})$ eine weitere Folge, $a, b \in \mathbb{R}^n$ und $\alpha \in \mathbb{R}$. Es gelte $a^{(k)} \to a, b^{(k)} \to b$ Dann:

$$||a^{(k)}|| \to ||a||$$
$$a^{(k)} + b^{(k)} \to a + b$$
$$\alpha a^{(k)} \to \alpha a$$
$$a^{(k)} \cdot b^{(k)} \to a \cdot b$$

- (5) **Bolzano-Weierstraß**: Ist $(a^{(k)})$ beschränkt, so enthält $(a^{(k)})$ eine konvergente Teilfolge.
- (6) Cauchy-Kriterium: $(a^{(k)})$ konvergent $\iff \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : ||a^{(k)} a^{(l)}|| < \varepsilon \ \forall k, l \geq k_0$

2. Konvergenz im \mathbb{R}^n

Beweis

- (1) $1.1(7) \implies |a_i^{(k)} a_j| \le ||a^{(k)} a|| \le \sum_{i=1}^n |a_i^{(k)} a_j| \implies \text{Behauptung.}$
- (2) und
- (3) wie in Analysis I.
- (4) folgt aus (1)
- (5) Sei $(a^{(k)})$ beschränkt. O.B.d.A: n=2. Also $a^{(k)}=(a_1^{(k)},a_2^{(k)})$ 1.1(7) $\Longrightarrow |a_1^{(k)}|,|a_2^{(k)}| \le \|a^{(k)}\| \ \forall k \in \mathbb{N} \implies (a_1^{(k)},a_2^{(k)})$ sind beschränkte Folgen in \mathbb{R} . Analysis $1 \implies (a_1^{(k)})$ enthält eine konvergente Teilfolge $(a_1^{(k_{j_l})})$. $(a_2^{(k_{j_l})})$ enthält eine konvergente Teilfolge $(a_2^{(k_{j_l})})$. Analysis $1 \implies (a_1^{(k_{j_l})})$ ist konvergent $\stackrel{(1)}{\Longrightarrow} (a^{(k_{j_l})})$ konvergiert.
- (6) " \Longrightarrow ": wie in Analysis 1. " \Leftarrow ": 1.1(7) \Longrightarrow $|a_j^{(k)} a_j^{(l)}| \le ||a^{(k)} a^{(l)}|| \ (j = 1, ..., n) \implies$ jede Folge $(a_j^{(k)})$ ist eine Cauchyfolge in \mathbb{R} , also konvergent $\stackrel{(1)}{\Longrightarrow}$ $(a^{(k)})$ konvergiert.

Satz 2.2 (Häufungswerte und konvergente Folgen)

Sei $A \subseteq \mathbb{R}^n$

- (1) $x_0 \in H(A) \iff \exists \text{ Folge } (x^{(k)}) \text{ in } A \setminus \{x_0\} \text{ mit } x^{(k)} \to x_0.$
- (2) $x_0 \in \bar{A} \iff \exists \text{ Folge } (x^{(k)}) \text{ in } A \text{ mit } x^{(k)} \to x_0.$
- (3) A ist abgeschlossen \iff der Grenzwert jeder konvergenten Folge in A gehört zu A.
- (4) A ist beschränkt und abgeschlossen \iff jede Folge in A enthält eine konvergente Teilfolge, deren Grenzwert zu A gehört.

Beweis

- (1) Wie in Analysis 1
- (2) Fast wörtlich wie bei (1)
- (4) Wörtlich wie in Analysis 1
- (3) " \Longrightarrow ": Sei $(a^{(k)})$ eine konvergente Folge in A und $x_0 := \lim a^{(k)} \stackrel{(2)}{\Longrightarrow} x_0 \in \bar{A} \stackrel{\text{Vor.}}{=} A$. " \Leftarrow ": z.z: $\bar{A} \subseteq A$. Sei $x_0 \in \bar{A} \stackrel{(2)}{\Longrightarrow} x_0 \in A$. Also: $A = \bar{A}$.

Satz 2.3 (Überdeckungen)

 $A \subseteq \mathbb{R}^n$ sei abgeschlossen und beschränkt

(1) Ist
$$\varepsilon > 0 \implies \exists a^{(1)}, \dots, a^{(m)} \in A : A \subseteq \bigcup_{i=1}^{m} U_{\varepsilon}(a^{(i)})$$

(2) \exists abzählbare Teilmenge B von $A: \bar{B} = A$.

(3) Überdeckungssatz von Heine-Borel: Ist $(G_{\lambda})_{\lambda \in M}$ eine Familie offener Mengen mit $A \subseteq \bigcup_{\lambda \in M} G_{\lambda}$, dann existieren $\lambda_1, \dots, \lambda_m \in M : A \subseteq \bigcup_{j=1}^m G_{\lambda_j}$.

Beweis

- (1) Sei $\varepsilon > 0$. Annahme: Die Behauptung ist falsch. Sei $a^{(1)} \in A$. Dann: $A \nsubseteq U_{\varepsilon}(a^{(1)}) \Longrightarrow \exists a^{(2)} \in A: a^{(2)} \notin U_{\varepsilon}(a^{(1)}) \Longrightarrow \|a^{(2)} a^{(1)}\| \ge \varepsilon. \ A \nsubseteq U_{\varepsilon}(a^{(1)}) \cup U_{\varepsilon}(a^{(2)}) \Longrightarrow \exists a^{(3)} \in A: \|a^{(3)} a^{(2)}\| \ge \varepsilon, \ \|a^{(3)} a^{(1)}\| \ge \varepsilon \text{ etc..}$ Wir erhalten so eine Folge $(a^{(k)})$ in A: $\|a^{(k)} a^{(l)}\| \ge \varepsilon$ für $k \ne l$. 2.2(4) $\Longrightarrow (a^{(k)})$ enthält eine konvergente Teilfolge $\Longrightarrow \exists j_0 \in \mathbb{N}: \|a^{(k_j)} a^{(k_l)}\| < \varepsilon \ \forall j, l \ge j_0$, Widerspruch!
- (2) Sei $j \in \mathbb{N}$. $\varepsilon := \frac{1}{j}$. (1) $\Longrightarrow \exists$ endl. Teilmenge B_j von A mit (*) $A \subseteq \bigcup_{x \in B_j} U_{\frac{1}{j}}(x)$. $B := \bigcup_{j \in \mathbb{N}} B_j \Longrightarrow B \subseteq A$ und B ist abzählbar. Dann: $\bar{B} \subseteq \bar{A} \stackrel{\text{Vor.}}{=} A$. Noch zu zeigen: $A \subseteq \bar{B}$. Sei $x_0 \in A$ und $\delta > 0$: zu zeigen: $U_{\delta}(x_0) \cap B \neq \emptyset$. Wähle $j \in \mathbb{N}$ so, daß $\frac{1}{j} < \delta$ $(*) \Longrightarrow \exists x \in B_j \subseteq B : x_0 \in U_{\frac{1}{j}}(x) \Longrightarrow ||x_0 x|| < \frac{1}{j} < \delta \Longrightarrow x \in U_{\delta}(x_0) \Longrightarrow x \in U_{\delta}(x_0) \cap B$.
- (3) Teil 1: Behauptung: $\exists \varepsilon > 0$: $\forall a \in A \ \exists \lambda \in M : U_{\varepsilon}(a) \subseteq G_{\lambda}$. Beweis: Annahme: Die Behauptung ist falsch. $\forall k \in \mathbb{N} \ \exists a^{(k)} \in A : \ (**)U_{\frac{1}{k}}(a^{(k)}) \not\subseteq G_{\lambda} \ \forall \lambda \in M. \ 2.2(4) \implies (a^{(k)})$ enthält eine konvergente Teilfolge $(a^{(k_j)})$ und $x_0 := \lim_{j \to \infty} a^{k_j} \in A \implies \exists \lambda_0 \in M : x_0 \in G_{\lambda_0}$; G_{λ_0} offen $\Longrightarrow \exists \delta > 0 : U_{\delta}(x_0) \subseteq G_{\lambda_0}$. $a^{(k_j)} \to x_0 \ (j \to \infty) \implies \exists m_0 \in \mathbb{N} : a^{(m_0)} \in U_{\frac{\delta}{2}}(x_0)$ und $m_0 \ge \frac{2}{\delta}$. Sei $x \in U_{\frac{1}{m_0}}(a^{(m_0)}) \implies ||x x_0|| = ||x a^{(m_0)} + a^{(m_0)} x_0|| \le ||x a^{(m_0)}|| + ||a^{(m_0)} x_0|| \le \frac{1}{m_0} + \frac{\delta}{2} \le \frac{\delta}{2} + \frac{\delta}{2} = \delta \implies x \in U_{\delta}(x_0) \implies x \in G_{\lambda_0}$. Also: $U_{\frac{1}{m_0}}(a^{(m_0)}) \subseteq G_{\lambda_0}$, Widerspruch zu (**)!

Teil 2: Sei $\varepsilon > 0$ wie in Teil 1. (1) $\implies \exists a^{(1)}, \dots, a^{(m)} \in A : A \subseteq \bigcup_{j=1}^m U_{\varepsilon}(a^{(j)})$. Teil 1

$$\implies \exists \lambda_j \in M : U_{\varepsilon}(a^{(j)}) \subseteq G_{\lambda_j} \ (j = 1, \dots, m) \implies A \subseteq \bigcup_{j=1}^m G_{\lambda_j}$$