hull_mini_project_12_18

December 18, 2023

```
[]: import yfinance as yf
    import math
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
[]: # Ticker symbol for S&P 500 index
    ticker_symbol = '^GSPC'
    # Fetch historical data
    sp500_data = yf.download(ticker_symbol, start='1900-01-01', end='2023-12-31')
    # Display the fetched data
    print(sp500_data)
    1 of 1 completed
                                                                   Adj Close \
                      Open
                                   High
                                                Low
                                                           Close
    Date
    1927-12-30
                 17.660000
                              17.660000
                                          17.660000
                                                       17.660000
                                                                    17.660000
    1928-01-03
                 17.760000
                              17.760000
                                          17.760000
                                                       17.760000
                                                                   17.760000
    1928-01-04
                 17.719999
                              17.719999
                                          17.719999
                                                       17.719999
                                                                    17.719999
    1928-01-05
                 17.549999
                              17.549999
                                          17.549999
                                                       17.549999
                                                                    17.549999
                 17.660000
                                          17.660000
    1928-01-06
                              17.660000
                                                       17.660000
                                                                    17.660000
    2023-12-12 4618.299805
                            4643.930176
                                        4608.089844
                                                     4643.700195 4643.700195
    2023-12-13 4646.200195
                            4709.689941
                                        4643.229980
                                                     4707.089844
                                                                 4707.089844
    2023-12-14 4721.040039
                            4738.569824 4694.339844
                                                     4719.549805
                                                                 4719.549805
                                                     4719.189941
    2023-12-15 4714.229980
                            4725.529785
                                        4704.689941
                                                                  4719.189941
    2023-12-18 4725.580078
                            4746.629883 4725.580078 4744.629883 4744.629883
                   Volume
    Date
    1927-12-30
                        0
    1928-01-03
                        0
    1928-01-04
                        0
                        0
    1928-01-05
    1928-01-06
                        0
```

```
2023-12-12 3808380000
    2023-12-13 5063650000
    2023-12-14 6314040000
    2023-12-15 8218980000
    2023-12-18 1332775000
    [24107 rows x 6 columns]
                       Open
                                                             Close
                                                                      Adj Close \
                                    High
                                                  Low
    Date
    1927-12-30
                               17.660000
                                            17.660000
                                                         17.660000
                                                                       17.660000
                  17.660000
                  17.760000
                               17.760000
                                            17.760000
                                                         17.760000
    1928-01-03
                                                                       17.760000
    1928-01-04
                  17.719999
                               17.719999
                                            17.719999
                                                         17.719999
                                                                       17.719999
    1928-01-05
                  17.549999
                               17.549999
                                            17.549999
                                                         17.549999
                                                                       17.549999
    1928-01-06
                  17.660000
                               17.660000
                                            17.660000
                                                         17.660000
                                                                       17.660000
    2023-12-12 4618.299805
                             4643.930176
                                          4608.089844
                                                       4643.700195 4643.700195
    2023-12-13 4646.200195
                             4709.689941
                                          4643.229980
                                                       4707.089844
                                                                    4707.089844
    2023-12-14 4721.040039
                             4738.569824
                                          4694.339844
                                                       4719.549805
                                                                     4719.549805
    2023-12-15 4714.229980
                             4725.529785
                                          4704.689941
                                                       4719.189941
                                                                     4719.189941
    2023-12-18 4725.580078
                             4746.629883 4725.580078 4744.629883
                                                                    4744.629883
                    Volume
    Date
    1927-12-30
                         0
                         0
    1928-01-03
                         0
    1928-01-04
                         0
    1928-01-05
                         0
    1928-01-06
    2023-12-12 3808380000
    2023-12-13 5063650000
    2023-12-14 6314040000
    2023-12-15 8218980000
    2023-12-18 1332775000
    [24107 rows x 6 columns]
[]: #LOG RELATIVE - currently not used
     log_today = np.log(sp500_data['Close'])
     log yesterday =np.log(sp500 data['Close'].shift(1))
     sqrt_252 = np.sqrt(252)
     log_data = (log_today/log_yesterday)*sqrt_252
     log data
[]: Date
```

1927-12-30

NaN

```
1928-01-03
              15.905726
1928-01-04
              15.862066
1928-01-05
              15.821274
1928-01-06
              15.909128
2023-12-12
              15.883140
2023-12-13
              15.899999
2023-12-14
              15.879470
2023-12-15
              15.874365
2023-12-18
              15.884597
Name: Close, Length: 24107, dtype: float64
```

```
[]: plt.plot(log_data)
plt.title('Log Relative for SP500')
```

[]: Text(0.5, 1.0, 'Log Relative for SP500')


```
[]: #CALCULATE GARMAN KLASS FOR EACH DAY

# Download S&P 500 data from Yahoo Finance
sp500 = yf.download('^GSPC', start='1983-01-01', end='2023-12-31')
```

```
# Calculate Garman-Klass estimator for each day
def calculate_gk_estimator(high, low, open_price, close):
   log_hl = np.log(high / low)
   log_co = np.log(close / open_price)
   log_co_square = log_co ** 2
   return np.sqrt((1 / (2)) * np.sum(log_hl ** 2 - (2 * np.log(2) - 1) *__
 ⇔log_co_square))
# Create an empty list to store daily estimators
gk_estimators = []
# Iterate through the dataset day by day
for i in range(len(sp500)):
   high = sp500['High'].iloc[i]
   low = sp500['Low'].iloc[i]
   open_price = sp500['Open'].iloc[i]
   close = sp500['Close'].iloc[i]
   # Calculate the Garman-Klass estimator for the current day
   gk_est = calculate_gk_estimator(high, low, open_price, close)
   gk_estimators.append(gk_est)
# Add the daily estimators to the DataFrame
sp500['Garman_Klass_Estimator'] = gk_estimators
# Displaying the DataFrame with the Garman-Klass estimator for each day
print(sp500[['Open', 'High', 'Low', 'Close', 'Garman_Klass_Estimator']])
plt.plot(sp500['Garman_Klass_Estimator'])
plt.title('Garman_Klass_Estimator')
```

[******	1 of 1 completed				
	Open	High Low		Close \	
Date					
1983-01-03	140.649994	141.330002	138.199997	138.339996	
1983-01-04	138.330002	141.360001	138.080002	141.360001	
1983-01-05	141.350006	142.600006	141.149994	141.960007	
1983-01-06	142.009995	145.770004	142.009995	145.270004	
1983-01-07	145.270004	146.460007	145.149994	145.179993	
•••	•••	•••	•••	•••	
2023-12-12	4618.299805	4643.930176	4608.089844	4643.700195	
2023-12-13	4646.200195	4709.689941	4643.229980	4707.089844	
2023-12-14	4721.040039	4738.569824	4694.339844	4719.549805	
2023-12-15	4714.229980	4725.529785	4704.689941	4719.189941	
2023-12-18	4725.580078	4746.629883	4725.580078	4744.509766	

Garman_Klass_Estimator

Date

1983-01-03	0.014065
1983-01-04	0.013598
1983-01-05	0.006975
1983-01-06	0.015555
1983-01-07	0.006347
•••	•••
 2023-12-12	0.004920
	 0.004920 0.008261
2023-12-12	0.001020
2023-12-12 2023-12-13	0.008261

[10326 rows x 5 columns]

[]: Text(0.5, 1.0, 'Garman_Klass_Estimator')


```
[]: #HAR MODEL
import statsmodels.api as sm

# Assuming you have a pandas DataFrame 'data' with a column 'volatility'
→representing daily volatility
```

```
# Replace this with your actual dataset and column names
# Calculating different volatility measures
sp500['yesterday_volatility'] = sp500['Garman_Klass_Estimator'].shift(1)
sp500['avg_2_5_day_volatility'] = sp500['Garman_Klass_Estimator'].shift(6).
 →rolling(window=5).mean()
sp500['avg_6_21_day_volatility'] = sp500['Garman_Klass_Estimator'].shift(21).
 →rolling(window=16).mean()
# Dropping NaN values resulting from rolling means
data = sp500.dropna()
# Creating the HAR model
X = data[['yesterday_volatility', 'avg_2_5_day_volatility', '
X = sm.add_constant(X) # Adding a constant coefficient
y = data['Garman_Klass_Estimator']
# Fitting the model
model = sm.OLS(y, X).fit()
# Printing the model summary
print(model.summary())
                            OLS Regression Results
```

```
_____
Dep. Variable:
              Garman_Klass_Estimator
                                 R-squared:
0.491
Model:
                             OLS
                                 Adj. R-squared:
0.491
Method:
                     Least Squares
                                 F-statistic:
3310.
Date:
                   Mon, 18 Dec 2023
                                 Prob (F-statistic):
0.00
Time:
                         13:31:57
                                 Log-Likelihood:
41921.
No. Observations:
                           10290
                                 AIC:
-8.383e+04
Df Residuals:
                           10286
                                 BIC:
-8.380e+04
Df Model:
                              3
Covariance Type:
                        nonrobust
______
========
                                               P>|t|
                                                        [0.025
                       coef
                             std err
                                          t
0.975]
```

const	0.0009	8.97e-05	10.295	0.000	0.001	
0.001						
yesterday_volatility	0.4384	0.009	48.523	0.000	0.421	
0.456						
avg_2_5_day_volatility	0.3391	0.012	27.898	0.000	0.315	
0.363						
avg_6_21_day_volatility	0.1059	0.012	8.951	0.000	0.083	
0.129						
=======================================	=======	========			======	
Omnibus:	8945.32	3 Durbin-W	Durbin-Watson:		2.194	
<pre>Prob(Omnibus):</pre>	0.00	0.000 Jarque-B		1321	1321356.702	
Skew:	3.55	4 Prob(JB)	<pre>Prob(JB):</pre>		0.00	
Kurtosis:	58.05	8 Cond. No	Cond. No.		364.	
					======	

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.