Machine Learning for Networking ML4N

Luca Vassio
Gabriele Ciravegna
Zhihao Wang
Tailai Song

Machine Learning (ML)

 "Design methodologies to extract patterns from data, ideally without much domain-specific expertise"
 Mathematics for Machine Learning book

 "Algorithms that enables computers to learn and make decisions without being explicitly programmed"

ChatGPT

- Learn to answer questions based on data
- Fit models to data to make predictions

Networking

- Communication networks
 Nodes interconnected by telecommunications links used to exchange messages between the nodes
- Cybersecurity applications
 Identification/protection of computer systems and networks
 from attacks

ML4N course

- A Python course
- A computer science course
- A machine learning course
- A communication network course
- A modelling and statistic course
- A performance evaluation course
- A team-work course
- ...

Big data Data science Data mining Artificial intelligence Machine learning Pattern recognition Statistical learning Deep learning

. . .

Big data

Big data

 "Data whose scale, diversity and complexity require new architectures, techniques, algorithms and analytics to manage it and extract value and hidden knowledge from it"

Who generates big data?

- User-generated content on the Internet
- Health and scientific computing
- Log files
 - Web server log files, machine system log files
- Internet Of Things (IoT)
 - Sensor networks, RFID, smart meters

Who generates big data?

- Log files
 - Web server log files, machine syslog files

- Internet Of Things
 - Sensor networks, RFID, smart meters

5 Vs of big data

- Volume quantity of data
- Velocity generation rate (streaming data)
- Variety various formats and structures (audio, video, image, text, graph,...)
- Veracity control data quality
- Value decision-making capabilties

Answers to big data challenges

- Technology & infrastructure
 - New architectures, programming paradigms and techniques
 - Transfer the processing power to the data
 - Apache Hadoop/Spark ecosystem

- Data management & analysis
 - New emphasys on "data" → Data science

Data Science

Data Science

"Extracting meaning from large quantities of data"

The data science process - one possible pipeline

The data science process

~KDD: Knowledge Discovery in Databases

Data storage

- Storage infrastructure
 - Storage technology, e.g., HDD, SSD
 - Networking architecture, e.g., DAS, NAS, SAN
- Data management
 - File systems (HDFS, Ceph), key-value stores (Memcached), column-oriented databases (Cassandra), document databases (MongoDB)
- Programming models
 - Map reduce, stream processing, graph processing

Preprocessing

Data cleaning

- ★ reduces the effect of noise
- ★ identifies or removes outliers

Data integration

- ★reconciles data extracted from different sources
- [⋆]integrates metadata

Preprocessing

Data cleaning

- ★ reduces the effect of noise
- ★ identifies or removes outliers
- \times solves inconsistencies

Data integration

Real world data is "dirty"

es

Without good quality data, no good quality pattern

×manages redundancy

Data analysis

- Objectives
 - Descriptive analytics, predictive analytics, prescriptive analytics
- Methods
 - Machine learning, data mining, statistical analysis
 - Text mining, graph data mining, association analysis, classification and regression, clustering,...
- Diverse domains call for customized techniques

Machine learning and data mining common goal

- Extraction of information from available data
 - implicit
 - previously unknown
 - potentially useful
 - automatic (performed by algorithms)
- Extracted information is represented by means of abstract models (pattern)
- ML: use the models to make predictions

The data science recipe

- Data expert
 - Data processing, data structures
- Data analyst
 - Machine learning, Data mining, statistics
- Visualization expert
 - Visual art design, storytelling skills
- Domain expert
 - Provide understanding of the application domain
- Business expert
 - Data driven decisions, new business models

MODERN DATA SCIENTIST

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- ☆ Bayesian inference
- ☆ Supervised learning: decision trees, random forests, logistic regression
- ★ Unsupervised learning: clustering, dimensionality reduction
- ☆ Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative, innovative and collaborative

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Statistical computing package e.g. R
- ☆ Databases SOL and NoSOL
- ☆ Relational algebra
- ☆ Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ☆ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- Able to engage with senior management
- ☆ Story telling skills
- ☆ Translate data-driven insights into decisions and actions
- ☆ Visual art design
- ☆ R packages like ggplot or lattice
- ☆ Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

Artificial Intelligence

Artificial Intelligence (AI)

 "Al is machines mimicking human intelligence to perform tasks"

ChatGPT

 "The goals of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception, and support for robotics."
 Wikipedia

"Artificial Intelligence is the new Electricity!"

Prof. Andrew Ng during a talk at Stanford University

Electricity fuels our planet

Self-driving cars

Real-time translation

Writing programming code

```
def common_prefix(a, b) :
   """Return the common prefix of two lists."""
   if len(a) < len(b) :</pre>
  return common_prefix(b,a)
   for i in range(len(a)):
  if a[i] != b[i] :
          · return a[:i]
   return a
```

AI fuels:

Personal assistants

Finding a job

More jobs for you

Based on your profile and search history

Lehtori metsätalous

Lapland University of Applied Sciences Rovaniemi, Lappi, Finland (Hybrid)

Promoted · 10 applicants

Adjunkt/lektor til uddannelse inden for IT systemudvikling

UCL Erhvervsakademi og Professionshøjskole Odense, South Denmark, Denmark (On-site)

Your profile matches this job

Promoted · 7 applicants

Senior Lecturer, ICT, Robotics

Häme University of Applied Sciences, HAMK Riihimäki, Tavastia Proper, Finland (On-site)

Promoted · 20 applicants · in Easy Apply

Associate Professor of Ecological Macroeconomics

Roskilde University

Roskilde, Zealand, Denmark (On-site)

Promoted · 2 applicants

Assistant Professor in Physics with a focus on Experimental Quantum Technology

The Faculty of Engineering at Lund University Lund, Skåne County, Sweden (On-site)

AI fuels:

Detect fake news

Automated surgery:

A patient-side surgical arm of Da Vinci Surgical System

•

Intelligence involves learning

Al involves ML

Machine Learning

Machine Learning (ML)

 "Design methodologies to extract patterns from data, ideally without much domain-specific expertise"
 Mathematics for Machine Learning book

 "Algorithms that enables computers to learn and make decisions without being explicitly programmed"

ChatGPT

- Learn to answer questions based on data
- Fit models to data to make predictions

Machine Learning and Al

Supervised learning: Classification/Regression

- Predict classes or values
- ~pattern recognition

 $https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature-projections \ 45$

Unsupervised learning: Clustering

- Detecting groups of similar data objects
- Identifying exceptions and outliers

Social impact such as:

Interpretability and transparency of the process

The ability to explain or to present in understandable terms to a human

Social impact such as:

Bias in algorithms and data

Wrongfully Accused by an Algorithm

In what may be the first known case of its kind, a faulty facial recognition match led to a Michigan man's arrest for a crime he did not commit.

https://www.nytimes.com/ 2020/06/24/technology/facialrecognition-arrest.html

Social impact such as:

Bias in algorithms and data

Algorithm can learn also prejudices and biases from data, leading to unfair outcomes

Watch Videos:

https://www.netflix.com/title/81328723 https://www.codedbias.com/about

http://gendershades.org/

Social impact such as:

Privacy preservation

Strava released their global heatmap. 13 trillion GPS points from their users

ML4N

Prerequisites of the course

- Programming skills (whatever the language)
- Communication networks
- Probability theory and statistics
- Linear algebra
- Calculus
- Operational research (continuous optimization)

Goals of ML4N

You will learn:

- How to use **Pyhton** for data science and machine learning
- Different phases of **data science** and **machine learning** process
- Theoretical principles of machine learning
- Models for supervised and unsupervised learning
- Properties, domains of application, and limitations of different machine learning approaches

You will be able to:

- Design, implement and evaluate code in Python
- Design, implement and evaluate a **machine learning pipeline**
- Devise complete solutions for different tasks in networking
- Critically evaluate which **strategies** are better suited

Machine learning and Deep learning – Barbara Caputo

http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXFNG&p_a_acc=2024

Advanced Machine Learning – Tatiana Tommasi

http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01URWOV&p_a_acc=2025

Applied AI and machine learning – Gianvito Urgese

http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01VIAMY&p_a_acc=2025

- Data science and machine learning for engineering applications Tania Cerquitelli
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01DSTMW&p_a_acc=2025
- Machine learning and pattern recognition Sandro Cumani

http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01URTOV&p_a_acc=2025

Machine learning for IOT – Daniele Pagliari
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXPSM&p_a_acc=2025

Machine learning for vision and multimedia — Fabrizio Lamberti
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01URPOV&p_a_acc=2025

- Machine learning in applications Santa Di Cataldo
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01URXOV&p_a_acc=2025
- Mathematics in Machine Learning Francesco Vaccarino
 https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXGSM&p_a_acc=2025
- Model Order Reduction and Machine Learning Fabio Vicini
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01DTTNG&p_a_acc=2025

- Optimization for machine learning Giuseppe Calafiore
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TVOMV&p_a_acc=2025
- Data analysis and Artificial Intelligence Tatiana Tommasi
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01USPLO&p_a_acc=2025
- Applied data science project Giuseppe Rizzo
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXXSM&p_a_acc=2025
- Data science lab: process and methods Flavio Giobergia
 http://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TWZSM&p_a_acc=2025
- Large Language Models Flavio Giobergia
 https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01HZNOV&p_a_acc=2025

Machine Learning for Mathematical Engineering – Carlo Masone

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01OHDNG&p_a acc=2025

Robot Learning - Giuseppe Averta

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01HFNOV&p_a_acc=2025

Machine Learning – Sandro Cumani

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01HERUU&p_a_acc=2025

Statistical learning and neural networks – Enrico Magli

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01SOVBH&p_a_acc=2025

Methods and tools for ICT – Diego Valsesia

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01DSFBH&p_a_acc=2025

Signal, image and video processing and learning – Diego Valsesia

https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01SOVBH&p_a acc=2025

• ..

Any questions?

Self-assessment quiz

- 1) What characterizes "Big Data"?
- 2) Make 5 examples of apps that (might) use Machine Learning and guess for which task
- 3) Write down your own definitions of Statistics, Computer Science, Data Science and Machine Learning

References: readings

Chapter 1

Chapter 2 and Appendix B,C,D

Slide acknowledgments

- Elena Maria Baralis Politecnico di Torino
- Alexander Jung and Shamsiiat Abdurakhmanova Aalto University