

Kongeriget Danmark

Patent application No.:

PA 1999 00092

Date of filing:

22 JAN. 1999

Applicant:

Novo Nordisk A/S, Novo Allé

DK-2880 Bagsværd

This is to certify the correctness of the following information:

The attached photocopy is a true copy of the following document:

- The specification, claims, figures and abstract as filed with the application on the filing date indicated above.

Erhvervsministeriet

Patentdirektoratet

TAASTRUP 10 Sept. 1999

Karin Schlichting

Head Clerk

Phytases (*myo*-inositol hexakisphosphate phosphohydrolases; EC 3.1.3.8) are enzymes that hydrolyze phytate (*myo*-inositol hexakisphosphate) to *myo*-inositol and inorganic phosphate and are known to be valuable feed additives.

A phytase was first described in rice bran in 1907 [Suzuki et al., Bull. Coll. Agr. Tokio Imp. Univ. 7, 495 (1907)] and phytases from Aspergillus species in 1911 [Dox and Golden, J. Biol. Chem. 10, 183-186 (1911)]. Phytases have also been found in wheat bran, plant seeds, animal intestines and in microorganisms [Howsen and Davis, Enzyme Microb. Technol. 5, 377-382 (1983), Lambrechts et al., Biotech. Lett. 14, 61-66 (1992), Shieh and Ware, Appl. Microbiol. 16, 1348-1351 (1968)].

The cloning and expression of the phytase from Aspergillus niger (ficuum) has been described by Van Hartingsveldt et al., in Gene, 127, 87-94 (1993) and in European Patent Application, Publication No. (EP) 420 358 and from Aspergillus niger var. awamori by Piddington et al., in Gene 133, 55-62 (1993).

Cloning, expression and purification of phytases with improved properties have been disclosed in EP 684 313. However, since there is a still ongoing need for further improved phytases, especially with respect to their thermostability, it is an object of the present invention to provide the following process which is, however, not only applicable to phytases.

A process for the preparation of a consensus protein, whereby such process is characterized by the following steps:

- a) at least three, preferably four amino acid sequences of a defined protein family are aligned by any standard alignment program known in the art;
- b) amino acids at the same position according to such alignment are compared regarding their evolutionary similarity by any standard program known in the art, whereas the degree of similarity provided by such a program which defines the least similarity of the amino acids that is used for the determination of an amino acid of corresponding positions is set to a less stringent number and the parameters are set in such a way that it is possible for the program to determine

15

20

25

30

1)

Ŋ

5

10

20

from only 2 identical amino acids at a corresponding position an amino acid for the consensus protein; however, if among the compared amino acid sequences are sequences that show a much higher degree of similarity to each other than to the residual sequences, these sequences are represented by their consensus sequence determined as defined in the same way as in the present process for the consensus sequence of the consensus protein or a vote weight of 1 divided by the number of such sequences is assigned to every of those sequences;

- c) in case no common amino acid at a defined position can be identified by the program, any of the amino acids of all sequences used for the comparison, preferably the most frequent amino acid of all such sequences is selected or an amino acid is selected on the basis of the consideration given in Example 2;
 - d) once the consensus sequence has been defined, such sequence is backtranslated into a DNA sequence, preferably using a codon frequency table of the organism in which expression should take place;
- e) the DNA sequence is synthesized by methods known in the art and used either integrated into a suitable expression vector or by itself to transform an appropriate host cell;
 - f) the transformed host cell is grown under suitable culture conditions and the consensus protein is isolated from the host cell or its culture medium by methods known in the art.

In a preferred embodiment of this process step b) can also be defined as follows:
b) amino acids at the same position according to such an alignment are compared regarding their evolutionary similarity by any standard program known in the art, whereas the degree of similarity provided by such program is set at the lowest possible value and the amino acid which is the most similar for at least half of the sequences used for the comparison is selected for the corresponding position in the amino acid sequence of the consensus protein.

In another preferred embodiment the consensus sequence is used in order to improve a specific protein. In this process first a consensus sequence is determined from a number of highly homologous sequences according to steps a), b) and c) as described above. In a second step the amino acid sequence of another protein which is homologous to the consensus sequence is compared with the consensus sequence and in a third step only those amino acid residues are replaced in the amino acid sequence of the other protein

which clearly differ from the consensus sequence of this protein family calculated under moderately stringent conditions whereas at all positions of the alignment where no preferred single amino acid can be determined under moderately stringent conditions the amino acids of the other protein remain unchanged.

5

10

15

20

25

By using this preferred embodiment the consensus sequence derived from a number of highly homologous sequences is used in order to replace only certain amino acid residues in the protein in such a manner that only those amino acid residues are replaced which clearly and unambiguously differ from the corresponding consensus sequence of this protein family which has been calculated on moderately stringent conditions. At all other positions of the alignment, however, where the method of the present invention is not able to determine clearly a preferred amino acid residue under moderately stringent conditions the amino acid residues of the other protein are maintained unchanged.

A further preferred embodiment is a process wherein at first a consensus sequence is determined from homologous sequences as described above. In a second step the active center of the protein comprising all amino acid residues that are involved in forming the active center is determined in the consensus sequence and in the sequence of a single homologous protein as well. The single homologous protein may have preferred properties like high specific activity or different pH dependency of enzymatic activity. In a third step some or all amino acid residues that are involved in forming the active centre of the homologeous protein are inserted into the backbone of the consensus sequence. The result thereof is a chimeric protein having the active centre derived from a single protein and the backbone of the consensus sequence.

The active centre of the protein can be determined e.g. by using any analysis of the three-dimensional structure of the protein, e.g. by homology modelling on the basis of a known 3D-structure of a known protein. Frequently the single homologeous protein is an enzyme.

It is furthermore an object of the present invention to provide such a process, wherein the program used for the comparison of amino acids at a defined position regarding their evolutionary similarity is the program "PRETTY". It is more specifically an object of the present invention to provide such a process, wherein the defined protein family is the family of phytases, especially wherein the phytases are of fungal origin.

It is furthermore an object of the present invention to provide such processes, wherein the host cell is of eukaryotic, especially fungal, preferably Aspergillus or yeast, preferably Saccharomyces or Hansenula origin.

It is also an object of the present invention to provide a consensus protein obtainable preferably obtained, by such processes and specifically the consensus protein, which has the amino acid sequences shown in Figures 2, 4 and 6 or a variant thereof. A "variant" refers in the context of the present invention to a consensus protein with amino acid sequence shown in Figure 2, 5, 7, and 8 wherein at one or more positions amino acids have been deleted, added or replaced by one or more other amino acids with the proviso that the resulting sequence provides for a protein whose basic properties like enzymatic activity (type of and specific activity), thermostability, activity in a certain pH-range (pH-stability) have not significantly been changed. "Significantly" means in this context that a man skilled in the art would say that the properties of the variant may still be different but would not be unobvious over the ones of the consensus protein with the amino acid sequence of Figure 2 itself.

A "mutein" refers in the context of the present invention to replacements of the amino acid in the amino acid sequences of the consensus proteins shown in Figure 2 which lead to consensus proteins with further improved properties e.g. activity. Such muteins can be defined and prepared on the basis of the teachings given in European Patent Application number 97810175.6, e. g. Q50L, Q50T, Q50G, Q50L-Y51N, or Q50T-Y51N. "Q50L" means in this context that at position 50 of the amino acid sequence (Figure 2) the amino acid Q has been replaced by amino acid L.

15

20

35

In addition, a food, feed or pharmaceutical composition comprising a consensus protein as defined above is also an object of the present invention.

In this context "at least three preferably four amino acid sequences of such defined protein family" means that three, four, five, six to 12, 20, 50 or even more sequences can be used for the alignment and the comparison to create the amino acid sequence of the consensus protein. "Sequences of a defined protein family" means that such sequences fold into a three dimensional structure, wherein the alpha-helixes, the beta-sheets and beta-turns are at the same position so that such structures are, as called by the man skilled in the art, largely superimposable. Furthermore these sequences characterize proteins which show the same type of biological activity, e.g. a defined enzyme class, e.g. the phytases. As known in the art, the three dimensional structure of one of such sequences is sufficient to allow the modelling of the structure of the other sequences of such a family. An example, how this can be effected, is given in the Reference Example of the present case. "Evolutionary similarity" in the context of the present invention refers to a scheme which classifies amino acids regarding their structural similarity which allows that one amino acid can be replaced by another amino acid with a minimal influence on the overall structure, as this is done e.g.

by programs, like "PRETTY", known in the art. The phrase "the degree of similarity provided by such a program...is set to less stringent number" means in the context of the present invention that values for the parameters which determine the degree of similarity in the program used in the practice of the present invention are chosen in a way to allow the program to define a common amino acid for a maximum of positions of the whole amino acid sequence, e. g. in case of the program PRETTY a value of 2 or 3 for the THRESHOLD and a value of 2 for the PLURALITY can be choosen. Furthermore, "a vote weight of one divided by the number of such sequences" means in the context of the present invention that the sequences which define a group of sequences with a higher degree of similarity as the other sequences used for the determination of the consensus sequence only contribute to such determination with a factor which is equal to one divided by a number of all sequences of this group.

As mentioned before should the program not allow to select the most similar amino acid, the most frequent amino acid is selected, should the latter be impossible the man skilled in the art will select an amino acid from all the sequences used for the comparison which is known in the art for its property to improve the thermostability in proteins as discussed e.g. by

Janecek, S. (1993), Process Biochem. 28, 435-445 or

Fersht, A. R. & Serrano, L. (1993), Curr. Opin. Struct. Biol. 3, 75-83.

20 Alber, T. (1989), Annu. Rev. Biochem. 58, 765-798 or

25

Matthews, B. W. (1987), Biochemistry 26, 6885-6888.

Matthews, B. W. (1991), Curr. Opin. Struct. Biol. 1, 17-21.

The stability of an enzyme is a critical factor for many industrial applications. Therefore, a lot of attempts, more or less successful, have been made to improve the stability, preferably the thermostability of enzymes by rational (van den Burg et al., 1998) or irrational approaches (Akanuma et al., 1998). The forces influencing the thermostability of a protein are the same as those that are responsible for the proper folding of a peptide strand (hydrophobic interactions, van der Waals interactions, H-bonds, salt bridges, conformational strain (Matthews, 1993). Furthermore, as shown by Matthews et al. (1987), the free energy of the unfolded state has also an influence on the stability of a protein. Enhancing of protein stability means to increase the number and strength of favorable interactions and to decrease the number and strength of unfavorable interactions. It has been possible to introduce disulfide linkages (Sauer et al, 1986) to replace glycine with

alanine residues or to increase the proline content in order to reduce the free energy of the unfolded state (Margarit et al, 1992; Matthews, 1987a). Other groups concentrated on the importance of additional H-bonds or salt bridges for the stability of a protein (Blaber et al, 1993) or tried to fill cavities in the protein interior to increase the buried hydrophobic surface area and the van der Waals interactions (Karpusas et al, 19898). Furthermore, the stabilization of secondary structure elements, especially a-helices, for example, by improved helix capping, was also investigated (Munoz & Serrano, 1995).

However, there is no fast and promising strategy to identify amino acid replacements which will increase the stability, preferably the thermal stability of a protein. Commonly, the 3D structure of a protein is required to find locations in the molecule where an amino acid replacement possibly will stabilize the protein's folded state. Alternative ways to circumvent this problem are either to search for a homologous protein in a thermo- or hyperthermophile organism or to detect stability-increasing amino acid replacements by a random mutagenesis approach. This latter possibility succeeds in only 10³ to 10⁴ mutations and is restricted to enzymes for which a fast screening procedure is available (Arase et al, 1993; Risse et al, 1992). For all these approaches, success was variable and unpredictable and, if successful, the thermostability enhancements nearly always were rather small.

Here we present an alternative way to improve the thermostability of a protein. Imanaka et al (1986) were among the first to use the comparisons of homologous proteins to enhance the stability of a protein. They used a comparison of proteases from thermophilic with homologous ones of mesophilic organisms to enhance the stability of a mesophilic protease. Serrano et al (1993) used the comparison of the amino acid sequences of two homologous mesophilic RNases to construct a more thermostable Rnase. They mutated individually all of the residues that differ between the two and combined the mutations that increase the stability in a multiple mutant. Pantoliano et al (1989) and, in particular, Steipe et al (1994) suggested that the most frequent amino acid at every position of an alignment of homologous proteins contribute to the largest amount to the stability of a protein. Steipe et al (1994) proved this for a variable domain of an immunoglobulin, whereas Pantoliano et al (1989) looked for positions in the primary sequence of subtilisin in which the sequence of the enzyme chosen to be improved for higher stability was singularly divergent. Their approach resulted in the replacement M50F which increased the $T_{\rm m}$ of subtilisin by 1.8 °C.

20

25

35

Steipe et al. (1994) proved on a variable domain of immunoglobulin that it is possible to predict a stabilizing mutation with better than 60% success rate just by using a statistical method which determines the most frequent amino acid residue at a certain position of this domain. It was also suggested that this method would provide useful results

not only for stabilization of variable domains of antibodies but also for domains of other proteins. However, it was never mentioned that this method could be extended to the entire protein. Furthermore, nothing is said about the program which was used to calculate the frequency of amino acid residues at a distinct position or whether scoring matrices were used as in the present case.

It is therefore an object of the present invention to provide a process for the preparation of a consensus protein comprising a process to calculate an amino acid residue for nearly all positions of a so-called consensus protein and to synthesize a complete gene from this sequence that could be expressed in a pro- or eukaryotic expression system.

DNA sequences of the present invention can be constructed starting from genomic or 10 cDNA sequences coding for proteins, e.g. phytases known in the art [for sequence information see references mentioned above, e.g. EP 684 313 or sequence data bases, for example like Genbank (Intelligenetics, California, USA), European Bioinformatics Institute (Hinston Hall, Cambridge, GB), NBRF (Georgetown University, Medical Centre, Washington DC, USA) and Vecbase (University of Wisconsin, Biotechnology Centre, Madison, Wisconsin, USA) or disclosed in the figures by methods of in vitro mutagenesis [see e.g. Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York]. A widely used strategy for "site directed mutagenesis", as originally outlined by Hurchinson and Edgell [J. Virol. 8, 181 (1971)], involves the annealing of a synthetic oligonucleotide carrying the desired nucleotide substitution to a target region of a single-stranded DNA sequence wherein the mutation should be introduced [for review see Smith, Annu. Rev. Genet. 19, 423 (1985) and for improved methods see references 2-6 in Stanssen et al., Nucl. Acid Res., 17, 4441-4454 (1989)]. Another possibility of mutating a given DNA sequence which is also preferred for the practice of the present invention is the mutagenesis by using the polymerase chain 25 reaction (PCR). DNA as starting material can be isolated by methods known in the art and described e.g. in Sambrook et al. (Molecular Cloning) from the respective strains. For strain information see, e.g. EP 684 313 or any depository authority indicated below. Aspergillus niger [ATCC 9142], Myceliophthora thermophila [ATCC 48102], Talaromyces thermophilus [ATCC 20186] and Aspergillus fumigatus [ATCC 34625] have 30 been redeposited according to the conditions of the Budapest Treaty at the American Type Culture Cell Collection under the following accession numbers: ATCC 74337, ATCC 74340, ATCC 74338 and ATCC 74339, respectively. It is however, understood that DNA encoding a consensus protein in accordance with the present invention can also be prepared in a synthetic manner as described, e.g. in EP 747 483 or the examples by

35

methods known in the art.

The process of the present invention can preferably be used in order to improve the thermostability of the enzyme phytase. After having constructed different consensus phytase sequences it was possible to decide whether single amino acid replacements had a positive or a negative effect on the protein stability. It is therefore another subject of the present invention to improve the thermostability of a phytase.

In this embodiment single amino acids are changed in the sequence of the phytase by the introduction of at least one mutation selected from the group consisting of

E58A	F54Y
D69K	I73V
D197N	K94A
T214L	R101A
E222T	N153K
E267D	V158I
R291I	A203G
R329H	S205G
S364T	V217A
A379K	A227V
G404A	V234L
	P238A
	Q277E
	A287H
	A292Q
	V366I
	A396S
	E415Q
	G437A
	E451R

In the above-given mutations the number represents the position in the consensus phytase-1-sequence as given in Figure 2 and the letter before the number represents the amino acid in the phytase which is replaced by the respective amino acid behind the number. The numbers given correspond to the consensus phytase sequence or relate to a corresponding residue calculated by an alignment as shown in Figure 1 when 26 amino acids (signal sequence) are added to the sequences shown in Fig. 1. Those mutations can be introduced into consensus sequences or into sequences of specific enzymes which have been improved by a process of the present invention. The above-mentioned amino acid replacements have a positive effect on the protein stability.

10

20

25

30

Once complete DNA sequences of the present invention have been obtained they can be integrated into vectors by methods known in the art and described e.g. in Sambrook et al. (s.a.) to overexpress the encoded polypeptide in appropriate host systems. However, a man skilled in the art knows that also the DNA sequences themselves can be used to transform the suitable host systems of the invention to get overexpression of the encoded polypeptide. Appropriate host systems are for example fungi, like Aspergilli, e.g. Aspergillus niger [ATCC 9142] or Aspergillus ficuum [NRRL 3135] or like Trichoderma, e.g. Trichoderma reesei or yeasts, like Saccharomyces, e.g. Saccharomyces cerevisiae or Pichia, like Pichia pastoris, or Hansenula polymorpha, e.g. H. polymorpha (DSM5215) or plants, as described, e.g. by Pen et al., Bio/Technology 11, 811-814 (1994). A man skilled in the art knows that such microorganisms are available from depository authorities, e.g. Centraalbureau Type Culture Collection (ATCC), the American the Schimmelcultures (CBS) or the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DSM) or any other depository authority as listed in the Journal "Industrial Property" [(1991) 1, pages 29-40]. Bacteria which can be used are e.g. E. coli, Bacilli as, e.g. Bacillus subtilis or Streptomyces, e.g. Streptomyces lividans (see e.g. Anné and Mallaert in FEMS Microbiol. Letters 114, 121 (1993). E. coli, which could be used are E. coli K12 strains e.g. M15 [described as DZ 291 by Villarejo et al. in J. Bacteriol. 120, 466-474 (1974)], HB 101 [ATCC No. 33694] or E. coli SG13009 [Gottesman et al., J. Bacteriol. 148, 265-273 (1981)].

Vectors which can be used for expression in fungi are known in the art and described e.g. in EP 420 358, or by Cullen et al. [Bio/Technology 5, 369-376 (1987)] or Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York (1991), Upshall et al. [Bio/Technology 5, 1301-1304 (1987)] Gwynne et al. [Bio/Technology 5, 71-79 (1987)], Punt et al. [J. Biotechnol. 17, 19-34 (1991)] and for yeast by Sreekrishna et al. [J. Basic Microbiol. 28, 265-278 (1988), Biochemistry 28,

4117-4125 (1989)], Hitzemann et al. [Nature 293, 717-722 (1981)] or in EP 183 070, EP 183 071, EP 248 227, EP 263 311. Suitable vectors which can be used for expression in E. coli are mentioned, e.g. by Sambrook et al. [s.a.] or by Fiers et al. in Procd. 8th Int. Biotechnology Symposium" [Soc. Franc. de Microbiol., Paris (Durand et al., eds.), pp. 680-697 (1988)] or by Bujard et al. in Methods in Enzymology, eds. Wu and Grossmann, Academic Press, Inc. Vol. 155, 416-433 (1987) and Stüber et al. in Immunological Methods, eds. Lefkovits and Pernis, Academic Press, Inc., Vol. IV, 121-152 (1990). Vectors which could be used for expression in Bacilli are known in the art and described, e.g. in EP 405 370, Procd. Natl. Acad. Sci. USA 81, 439 (1984) by Yansura and Henner, Meth. Enzymol. 185, 199-228 (1990) or EP 207 459. Vectors which can be used for the expression in H. Polymorpha are known in the art and described, e.g. in Gellissen et al., Biotechnology 9, 291-295 (1991).

Either such vectors already carry regulatory elements, e.g. promotors, or the DNA sequences of the present invention can be engineered to contain such elements. Suitable promotor elements which can be used are known in the art and are, e.g. for Trichoderma reesei the cbh1- [Haarki et al., Biotechnology 7, 596-600 (1989)] or the pki1-promotor [Schindler et al., Gene 130, 271-275 (1993)], for Aspergillus oryzae the amy-promotor [Christensen et al., Abstr. 19th Lunteren Lectures on Molecular Genetics F23 (1987), Christensen et al., Biotechnology 6, 1419-1422 (1988), Tada et al., Mol. Gen. Genet. 229, 301 (1991)], for Aspergillus niger the glaA- [Cullen et al., Bio/Technology 5, 369-376 (1987), Gwynne et al., Bio/Technology 5, 713-719 (1987), Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York, 83-106 (1991)], alcA- [Gwynne et al., Bio/Technology 5, 718-719 (1987)], suc1- [Boddy et al., Curr. Genet. 24, 60-66 (1993)], aphA- [MacRae et al., Gene 71, 339-348 (1988), MacRae et al., Gene 132, 193-198 (1993)], tpiA- [McKnight et al., Cell 46, 143-147 (1986), Upshall et al., Bio/Technology 5, 1301-1304 (1987)], gpdA- [Punt et al., Gene 69, 49-57 (1988), Punt et al., J. Biotechnol. 17, 19-37 (1991)] and the pkiA-promotor [de Graaff et al., Curr. Genet. 22, 21-27 (1992)]. Suitable promotor elements which could be used for expression in yeast are known in the art and are, e.g. the pho5-promotor [Vogel et al., Mol. Cell. Biol., 2050-2057 (1989); Rudolf and Hinnen, Proc. Natl. Acad. Sci. 84, 30 1340-1344 (1987)] or the gap-promotor for expression in Saccharomyces cerevisiae and for Pichia pastoris, e.g. the aox1-promotor [Koutz et al., Yeast 5, 167-177 (1989); Sreekrishna et al., J. Basic Microbiol. 28, 265-278 (1988)], or the FMD promoter [Hollenberg et al., EPA No. 0299108] or MOX-promotor [Ledeboer et al., Nucleic Acids Res. 13, 3063-3082 (1985)] for H. polymorpha. 35

Accordingly vectors comprising DNA sequences of the present invention, preferably for the expression of said DNA sequences in bacteria or a fungal or a yeast host and such transformed bacteria or fungal or yeast hosts are also an object of the present invention.

It is also an object of the present invention to provide a system which allows for high expression of proteins, preferably phytases like the consensus phytase of the present invention in Hansenula characterized therein that the codons of the encoding DNA sequence of such a protein have been selected on the basis of a codon frequency table of the organism used for expression, e.g. yeast as in the present case (see e.g. in Example 3) and optionally the codons for the signal sequence have been selected in a manner as described for the specific case in Example 3. That means that a codon frequency table is prepared on the basis of the codons used in the DNA sequences which encode the amino acid sequences of the defined protein family. Then the codons for the design of the DNA sequence of the signal sequence are selected from a codon frequency table of the host cell used for expression whereby always codons of comparable frequency in both tables are used.

15

20

25

Once such DNA sequences have been expressed in an appropriate host cell in a suitable medium the encoded protein can be isolated either from the medium in the case the protein is secreted into the medium or from the host organism in case such protein is present intracellularly by methods known in the art of protein purification or described in case of a phytase, e.g. in EP 420 358. Accordingly a process for the preparation of a polypeptide of the present invention characterized in that transformed bacteria or a host cell as described above is cultured under suitable culture conditions and the polypeptide is recovered therefrom and a polypeptide when produced by such a process or a polypeptide encoded by a DNA sequence of the present invention are also an object of the present invention.

Once obtained the polypeptides of the present invention can be characterized regarding their properties which make them useful in agriculture any assay known in the art and described e.g. by Simons et al. [Br. J. Nutr. <u>64</u>, 525-540 (1990)], Schöner et al. [J. Anim. Physiol. a. Anim. Nutr. <u>66</u>, 248-255 (1991)], Vogt [Arch. Geflügelk. <u>56</u>, 93-98 (1992)], Jongbloed et al. [J. Anim. Sci., <u>70</u>, 1159-1168 (1992)], Perney et al. [Poultry Sci. <u>72</u>, 2106-2114 (1993)], Farrell et al., [J. Anim. Physiol. a. Anim. Nutr. <u>69</u>, 278-283 (1993), Broz et al., [Br. Poultry Sci. <u>35</u>, 273-280 (1994)] and Düngelhoef et al. [Animal Feed Sci. Technol. <u>49</u>, 1-10 (1994)] can be used.

In general the polypeptides of the present invention can be used without being limited to a specific field of application, e.g. in case of phytases for the conversion of inositol polyphosphates, like phytate to inositol and inorganic phosphate.

Furthermore the polypeptides of the present invention can be used in a process for the preparation of a pharmaceutical composition or compound food or feeds wherein the components of such a composition are mixed with one or more polypeptides of the present invention. Accordingly compound food or feeds or pharmaceutical compositions comprising one or more polypeptides of the present invention are also an object of the present invention. A man skilled in the art is familiar with their process of preparation. Such pharmaceutical compositions or compound foods or feeds can further comprise additives or components generally used for such purpose and known in the state of the art.

It is furthermore an object of the present invention to provide a process for the reduction of levels of phytate in animal manure characterized in that an animal is fed such a feed composition in an amount effective in converting phytate contained in the feedstuff to inositol and inorganic phosphate.

10

Before describing the present invention in more detail a short explanation of the Figures enclosed is given below.

Figure 1: Design of the consensus phytase sequence. The letters represent the amino acid 15 residues in the one-letter code. The following sequences were used for the alignment: phyA from Aspergillus terreus 9A-1 (Mitchell et al, 1997; from amino acid (aa) 27), phyA from A. terreus cbs116.46; (van Loon et al., 1998; from aa 27), phyA from Aspergillus niger var. awamori (Piddington et al, 1993; from aa 27), phyA from A. niger T213; from aa 27), phyA from A. niger strain NRRL3135 (van Hartingsveldt et al, 1993; from aa 27), phyA from 20 Aspergillus fumigatus ATCC 13073 (Pasamontes et al, 1993; from aa 25), phyA from A. fumigatus ATCC 32722 (van Loon et al, 1998; from aa 27), phyA from A. fumigatus ATCC 58128 (van Loon et al., 1998; from aa 27), phyA from A. fumigatus ATCC 26906 (van Loon et al, 1998; from aa 27), phyA from A. fumigatus ATCC 32239 (van Loon et al, 1998; from aa 30), phyA from Emericella nidulans (Pasamontes et al, 1997a; from aa 25), phyA from Talaromyces thermophilus (Pasamontes et al, 1997a; from aa 24), and phyA from Myceliophthora thermophila (Mitchell et al, 1997; from aa 19). The alignment was calculated using the program PILEUP. The location of the gaps was refined by hand. Capitalized amino acid residues in the alignment at a given position belong to the amino acid coalition that establish the consensus residue. In bold, beneath the calculated consensus sequence, the amino acid sequence of the finally constructed consensus phytase (Fcp) is shown. The gaps in the calculated consensus sequence were filled by hand according to principals stated in Example 1.

Figure 2: DNA sequence of the consensus phytase-1 gene (fcp) and of the primers used for the gene construction. The calculated amino acid sequence (Figure 1) was converted into a DNA sequence using the program BACKTRANSLATE (Devereux et al., 1984) and the codon frequency table of highly expressed yeast genes (GCG program package, 9.0). The signal peptide of the phytase from A. terreus cbs.116.46 was fused to the N-terminus. The bold bases represent the sequences of the oligonucleotides used to generate the gene. The names of the respective oligonucleotides are alternately noted above or below the sequence. The underlined bases represent the start and stop codon of the gene. The bases written in italics show the two introduced Eco RI sites.

Figure 3: Alignment and consensus sequence of five Basidiomycetes phytases. The letters represent the amino acid residues in the one-letter code. The amino acid sequences of the phytases from Paxillus involutus, phyA1 (aa 21) and phyA2 (aa 21, WO 98/28409), Trametes pubescens (aa 24, WO 98/28409), Agrocybe pediades (aa 19, WO 98/28409), and Peniophora lycii (aa 21, WO 98/28409) starting with the amino acid residues mentioned in parentheses, were used for the alignment and the calculation of the corresponding consensus sequence called "Basidio" (Example 2). The alignment was performed by the program PILEPUP. The location of the gaps was refined by hand. The consensus sequence was calculated by the program PRETTY. While a vote weight of 0.5 was assigned to the two P. involutus phytases, all other genes were used with a vote weight of 1.0 for the consensus sequence calculation. At positions, where the program was not able to determine a consensus residues, the Basidio sequence contains a dash. Capitalized amino acid residues in the alignment at a given position belong to the amino acid coalition that establish the consensus residue.

Figure 4: Design of consensus phytase-10 amino acid sequence. Adding the phytase sequence of *Thermomyces lanuginosa* (Berka et al., 1998) and the consensus sequence of the phytases from five *Basidiomycetes* to the alignment of Figure 1, an improved consensus sequence was calculated by the program PRETTY. Additionally, the amino acid sequence of *A. niger* T213 was omitted, therefore, using a vote weight of 0.5 for the remaining *A. niger* phytase sequences. For further information see Example 2.

Figure 5: DNA and amino acid sequence of consensus phytase-10. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The sequence of the oligonucleotides which were used to assemble the gene are in bold letters. The label of oligonucleotides and the amino acids, which were changed compared to those for consensus phytase -1, are underlined and their corresponding triplets are highlighted in

small cases. The fcp10 gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10. The newly synthesized oligonucleotides are additionally marked by number 10. The phytase contains the following 32 exchanges: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E. The mutations accentuated in bold letters revealed a stabilizing effect on consensus phytase-1 as tested as single mutation in consensus phytase-1.

Figure 6: Alignment for the design of consensus phytase-11. In contrast to the design of consensus phytase-10, for the design of the amino acid sequence of consensus phytase-11, all *Basidiomycetes* phytases were used as independent sequences using an assigned vote weight of 0.2 for each *Basidiomycetes* sequence. Additionally, the amino acid sequence of *A. niger* T213 was used in that alignment, again.

Figure 7: DNA and amino acid sequence of consensus phytase-1-thermo[8]-Q50T-K91A. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 8: DNA and amino acid sequence of consensus phytase-10-thermo[3]-Q50T-K91A. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 9: DNA and amino acid sequence of A. fumigatus ATCC 13073 phytase a-mutant.

The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 10: DNA and amino acid sequence of consensus phytase-7. The amino acids are written above the corresponding DNA sequence using the one-letter code. The sequence of the oligonucleotides used to assemble the gene are in bold letters. Oligonucleotides and amino acids that were exchanged are underlined and their corresponding triplets are highlighted in small cases. The fcp7 gene was assembled from the following

oligonucleotides: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22. The newly synthesized oligonucleotides are additionally marked by number 7. The phytase contains the following 24 exchanges in comparison to the original consensus phytase: S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S.

Figure 11: Differential scanning calorimetry (DSC) of consensus phytase-1 and consensus phytase-10. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-10 (upper graph) yielded a melting temperature of 85.4 °C, which is 7.3 °C higher than the melting point of consensus phytase-1 (78.1 °C, lower graph).

Figure 12: Differential scanning calorimetry (DSC) of consensus phytase-10-thermo-Q50T and consensus phytase-10-thermo-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-10-thermo-Q50T (upper graph) yielded a melting temperature of 88.6 °C, while the melting point of consensus phytase-10-thermo-Q50T-K91A was found at 89.3 °C.

Figure 13: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-10 and consensus phytase-10-thermo-Q50T. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86 °C. The diluted supernatant of transformed S. cerevisiae strains was used for the determination. The other components of the supernatant showed no influence on the determination of the temperature optimum: A, consensus phytase-1; \$\diample\$, consensus phytase-10; \$\mathbb{\ma

Figure 14: pH-dependent activity profile and substrate specificity of consensus phytase-10 and its variants thermo-Q50T and thermo-Q50T-K91A. The phytase activity was determined using the standard assay in appropriate buffers (see Example 9) at different pH-values. Graph a) shows the pH-dependent activity profile of consensus phytase-10 (□), consensus phytase-10-thermo-Q50T (•), and consensus phytase-10-thermo-Q50T-K91A (∧). Graph b) shows the corresponding substrate specificity tested by replacement of phytate by the indicated compounds in the standard assay; open bars, consensus phytase-10

(grey bars, consensus phytase-10-thermo-Q50T; dark bars, consensus phytase-10-thermo-Q50T-K91A). The numbers correspond to the following compounds: 1, phytate; 2, p-nitrophenyl phosphate; 3, phenyl phosphate; 4, fructose-1,6-bisphosphate; 5, fructose-6-phosphate; 6, glucose-6-phosphate; 7, ribose-5-phosphate; 8, DL-glycerol-3-phosphate; 9, glycerol-2-phosphate; 10, 3-phosphoglycerate; 11, phosphoenolpyruvate; 12, AMP; 13, ADP; 14, ATP.

Figure 15: pH-dependent activity profile and substrate specificity of consensus phytase-1-thermo[8]-Q50T and of consensus phytase-1-thermo[8]-Q50T-K91A. The phytase activity was determined using the standard assay in appropriate buffers (see Example 9) at different pH-values. Graph a) shows the pH-dependent activity profile of the Q50T-(\blacksquare) and the Q50T-K91A-variant (\bullet). Graph b) shows the corresponding substrate specificities tested by replacement of phytate by the indicated compounds in the standard assay (open bars, consensus phytase-1-thermo[8]-Q50T; filled bars, consensus phytase-1-thermo[8]-Q50T-K91A.). The substrates are listed in the legend of Figure 14.

Figure 16: Differential scanning calorimetry (DSC) of consensus phytase-1-thermo[8]-Q50T and consensus phytase-1-thermo[8]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-1-thermo[8]-Q50T (upper graph) showed a melting temperature of 84.7 °C, while the melting point of consensus phytase-1-thermo[8]-Q50T-K91A was found at 85.7 °C.

Figure 17: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-1-thermo[3] and consensus phytase-1-thermo[8]. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86 °C. Purified protein from the supernatant of transformed S. cerevisiae strains was used for the determination. O, consensus phytase-1; \Box , consensus phytase-1-thermo[3]; \blacktriangle , consensus phytase 1-thermo[8].

25

30

Figure 18: Comparison of the pH-dependent activity profile and substrate specificity of consensus phytase-1, consensus phytase-7, and of the phytase from A. niger NRRL 3135. The phytase activity was determined using the standard assay in appropriate buffers (see Example 9) at different pH-values. Graph a) shows the pH-dependent activity profile of consensus phytase-1 (
), the phytase from A. niger NRRL 3135 (O), and of consensus phytase-7 (A). Graph b) shows the corresponding substrate specificity tested by replacement of phytate by the indicated compounds in the standard assay (black bars, A.

niger NRRL 3135 phytase; grey bars, consensus phytase-1, dashed bars, consensus phytase-7). The substrates are listed in the legend of Figure 14.

Figure 19: Differential scanning calorimetry (DSC) of the phytase from A. fumigatus ATCC 13073 and of its stabilized α-mutant, which contains the following amino acid exchanges F55Y, V100I, F114Y, A243L, S265P, N294D.

10

The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus A. fumigatus 13073 phytase (upper graph) revealed a melting temperature of 62.5 °C, while the melting point of the α-mutant was found at 67.0 °C

Figure 20: Comparison of the temperature optimum of A. fumigatus 13073 wild-type, its A. fumigatus α-mutant, and a further stabilized α-mutant (E59A-S126N-R329H-S364T-G404A). For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 75 °C. The diluted supernatant of transformed S. cerevisiae strains was used for the determination. The other components of the supernatant showed no influence on the determination of the temperature optimum.

O, A. fumigatus ATCC 13073 phytase; A. fumigatus ATCC 13073 α-mutant; A. fumigatus ATCC 13073 alpha-mutant-(E59A-S126N-R329H-S364T-G404A)-Q27T;

A. fumigatus ATCC 13073 α-mutant-(E59A-S126N-R329H-S364T-G404A)-Q27T-K68A. Q27T and K68A corresponds to consensus phytase-1 Q50T and K91A, respectively.

Figure 21: Amino acid sequence of consensus phytase 12 (consphy12) which contains a number of active site residues transferred from the "basidio" consensus sequence to consensus phytase-10-thermo-Q50T-K91A.

Example 1:

15

20

Design of the amino acid sequence of consensus phytase-1

Alignment of the amino acid sequences

The alignment was calculated using the program PILEUP from the Sequence

5 Analysis Package Release 9.0 (Devereux et al., 1984) with the standard parameter (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor. Table 1 shows the sequences (see Figure 1) without the signal sequence that were used for the performance of the alignment starting with the amino acid (aa) as mentioned in Table 1.

10 Table 1: Origin and vote weight of the phytase amino acid sequences used for the design of consensus phytase-1

- phyA from Aspergillus terreus 9A-1, aa 27, vote weight 0.5 (Mitchell et al., 1997)
- phyA from Aspergillus terreus cbs116.46, aa 27, vote weight 0.5 (van Loon et al., 1998)
- phyA from Aspergillus niger var. awamori, aa 27, vote weight 0.33 (Piddington et al., 1993)
- phyA from Aspergillus niger T213, aa 27, vote weight 0.33
- phyA from Aspergillus niger strain NRRL3135, aa 27, vote weight 0.33 (van Hartingsveldt et al., 1993)
- phyA from Aspergillus fumigatus ATCC 13073, aa 26, vote weight 0.2 (Pasamontes et al., 1997)
- phyA from Aspergillus fumigatus ATCC 32722, aa 26, vote weight 0.2 (van Loon et al., 1998)
- phyA from Aspergillus fumigatus ATCC 58128, aa 26, vote weight 0.2 (van Loon et al., 1998)
- 25 phyA from Aspergillus fumigatus ATCC 26906, aa 26, vote weight 0.2 (van Loon et al., 1998)
 - phyA from Aspergillus fumigatus ATCC 32239, aa 30, vote weight 0.2 (van Loon et al., 1998)
- phyA from Emericella nidulans, aa 25, vote weight 1.0 (Roche Nr. R1288, Pasamontes et al., 1997a)
 - phyA from Talaromyces thermophilus ATCC 20186, aa 24, vote weight 1.0 (Pasamontes et al., 1997a)
 - phyA from Myceliophthora thermophila, aa 19, vote weight 1.0 (Mitchell et al., 1997)

Calculation of the amino acid sequence of consensus phytase-1

15

25

30

Using the refined alignment as input, the consensus sequence was calculated by the program PRETTY from the Sequence Analysis Package Release 9.0 (Devereux et al., 1984). PRETTY prints sequences with their columns aligned and can display a consensus sequence for an alignment. A vote weight that pays regard to the similarity between the amino acid sequences of the phytases aligned was assigned to all sequences. The vote weight was set such as the combined impact of all phytases from one sequence subgroup (same species, but from different strains), e. g. the amino acid sequences of all phytases from A. fumigatus, on the election was set one, that means that each sequence contributes with a value of 1 divided by the number of strain sequences (see Table 1). By this means, it was possible to prevent that very similar amino acid sequences, e. g. of the phytases from different A. fumigatus strains, dominate the calculated consensus sequence.

The program PRETTY was started with the following parameters: The plurality defining the number of votes below which there is no consensus was set on 2.0. The threshold, which determines the scoring matrix value below which an amino acid residue may not vote for a coalition of residues, was set on 2. PRETTY used the PrettyPep.Cmp consensus scoring matrix for peptides.

Ten positions of the alignment (position 46, 66, 82, 138, 162, 236, 276, 279, 280, 308; Figure 1), for which the program was not able to determine a consensus residue, were filled by hand according to the following rules: if a most frequent residue existed, this residue was chosen (138, 236, 280); if a prevalent group of similar or phylogenetically equivalent residues occurred, the most frequent or, if not available, one residues of this group was selected (46, 66, 82, 162, 276, 308). If there was either a prevalent residue nor a prevalent group, one of the occurring residues was chosen according to common assumption on their influence on the protein stability (279). Eight other positions (132, 170, 204, 211, 275, 317, 384, 447; Figure 1) were not filled with the amino acid residue selected by the program but normally with amino acids that occur with the same frequency as the residues that were chosen by the program. In most cases, the slight underrating of the three A. niger sequences (sum of the vote weights: 0.99) was eliminated by this corrections.

Conversion of the consensus phytase-1 amino acid sequence to a DNA sequence

The first 26 amino acid residues of A. terreus cbs116.46 phytase were used as signal peptide and, therefore, fused to the N-terminus of all consensus phytases. For this stretch,

we used a special method to calculate the corresponding DNA sequence. Purvis et al (1987) proposed that the incorporation of rare codons in a gene has an influence on the folding efficiency of the protein. Therefore, at least the distribution of rare codons in the signal sequence of A. terreus cbs116.46, which was used for the consensus phytase and which is very important for secretion of the protein, but converted into the S. cerevisiae codon usage, was transferred into the new signal sequence generated for expression in S. cerevisiae. For the remaining parts of the protein, we used the codon frequency table of highly expressed S. cerevisiae genes, obtained from the GCG program package, to translate the calculated amino acid sequence into a DNA sequence.

10 The resulting sequence of the fcp gene is shown in Figure 2.

Construction and cloning of the consensus phytase-1 gene

The calculated DNA sequence of consensus phytase-1 (fcp) was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with its previous and its following oligonucleotide of the opposite strand. The location of all primers, purchased by Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 2.

PCR-Reactions

20

25

30

In three PCR reactions, the synthesized oligonucleotides were composed to the entire gene. For the PCR, the High Fidelity Kit from Boehringer Mannheim (Boehringer Mannheim, Mannheim, Germany) and the thermo cycler The ProtokolTM from AMS Biotechnology (Europe) Ltd. (Lugano, Switzerland) was used.

Oligonucleotide CP-1 to CP-10 (Mix 1, Figure 2) were mixed to a concentration of 0.2 pMol/µl of each oligonucleotide. A second oligonucleotide mixture (Mix 2) was prepared with CP-9 to CP-22 (0.2 pMol/µl of each oligonucleotide). Additionally, four short primers were used in the PCR reactions:

CP-a: Eco RI

5'-TATATGAATTCATGGGCGTGTTCGTC-3'

CP-b:

5'-TGAAAAGTTCATTGAAGGTTTC-3'

CP-c:

5'-TCTTCGAAAGCAGTACAAGTAC-3'

CP-e:

Eco RI

5'-TATATGAATTCTTAAGCGAAAC-3'

PCR reaction a:

10 µl Mix 1 (2.0 pmol of each oligonucleotide)

5

2 μl nucleotides (10 mM each nucleotide)

2 μl primer CP-a (10 pmol/μl) 2 μl primer CP-c (10 pmol/μl)

10,0 µl PCR buffer

0.75 µl polymerase mixture

10

73.25 µl H₂O

PCR reaction b:

10 µl Mix 2 (2.0 pmol of each oligonucleotide)

2 μl nucleotides (10 mM each nucleotide)

2 μl primer CP-b (10 pmol/μl) 2 μl primer CP-e (10 pmol/μl)

15

20

25

10,0 µl PCR buffer

0.75 µl polymerase mixture (2.6 U)

73.25 µl H₂O

Reaction conditions for PCR reaction a and b:

step 1 2 min - 45°C

step 2 30 sec - 72°C

step 3 30 sec - 94°C

step 4 30 sec - 52°C

step 5 1 min - 72°C

Step 3 to 5 were repeated 40-times.

The PCR products (670 and 905 bp) were purified by an agarose gel electrophoresis (0.9% agarose) and a following gel extraction (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction c.

PCR reaction c:

6 μl PCR product of reaction a (≈50 ng)

6 μl PCR product of reaction b (≈50 ng)

30

2 μl primer CP-a (10 pmol/μl) 2 μl primer CP-e (10 pmol/μl)

10,0 µl PCR buffer

0.75 µl polymerase mixture (2.6 U)

73.25 µl H₂O

35 Reaction conditions for PCR reaction c:

step 1 2 min - 94°C step 2 30 sec - 94°C step 3 30 sec - 55°C step 4 1 min - 72°C

5 Step 2 to 4 were repeated 31-times.

The resulting PCR product (1.4 kb) was purified as mentioned above, digested with Eco RI, and ligated in an Eco RI-digested and dephosphorylated pBsk(-)-vector (Stratagene, La Jolla, CA, USA). 1 µl of the ligation mixture was used to transform E. coli XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook et al. (1987). The DNA sequence of the constructed consensus phytase gene (fcp, Figure 2) was controlled by sequencing as known in the art.

Example 2 Design of an improved consensus phytase (consensus phytase-10) amino acid sequence

The alignments used for the design of consensus phytase-10 were calculated using the program PILEUP from the Sequence Analysis Package Release 9.0 (Devereux et al., 1984) with the standard parameter (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor.

The following sequences were used for the alignment of the *Basiodiomycetes* phytases starting with the amino acid (aa) mentioned in Table 2:

Table 2: Origin and vote weight of five *Basidiomycetes* phytases used for the calculation of the corresponding amino acid consensus sequence (basidio)

- phyA1 from Paxillus involutus NN005693, aa 21, vote weight 0.5 (WO 98/28409)
- phyA2 from Paxillus involutus NN005693, aa 21, vote weight 0.5 (WO 98/28409)
- phyA from Trametes pubescens NN9343, aa 24, vote weight 1.0 (WO 98/28409)
- phyA from Agrocybe pediades NN009289, aa 19, vote weight 1.0 (WO 98/28409)
- phyA from Peniophora lycii NN006113, aa 21, vote weight 1.0 (WO 98/28409)

The alignment is shown in Figure 3.

In Table 3 the genes, which were used for the performance of the final alignment, are arranged. The first amino acid (aa) of the sequence which is used in the alignment is mentioned behind the organism designation.

Table 3: Origin and vote weight of the phytase sequences used for the design of consensus phytase 10

- phyA from Aspergillus terreus 9A-1, aa 27, vote weight 0.5 (Mitchell et al., 1997)
- phyA from Aspergillus terreus cbs116.46, aa 27, vote weight 0.5 (van Loon et al., 1998)
- phyA from Aspergillus niger var. awamori, aa 27, vote weight 0.5 (Piddington et al., 1993)
 - phyA from Aspergillus niger strain NRRL3135, aa 27, vote weight 0.5 (van Hartingsveldt et al., 1993)
 - phyA from Aspergillus fumigatus ATCC 13073, aa 26, vote weight 0.2 (Pasamontes et al., 1997)
 - phyA from Aspergillus fumigatus ATCC 32722, aa 26, vote weight 0.2 (van Loon et al., 1998)
 - phyA from Aspergillus fumigatus ATCC 58128, aa 26, vote weight 0.2 (van Loon et al., 1998)
- phyA from Aspergillus fumigatus ATCC 26906, aa 26, vote weight 0.2 (van Loon et al., 1998)
 - phyA from Aspergillus fumigatus ATCC 32239, aa 30, vote weight 0.2 (van Loon et al., 1998)
 - phyA from Emericella nidulans, aa 25, vote weight 1.0 (Roche Nr. R1288, Pasamontes et al., 1997a)
 - phyA from Talaromyces thermophilus ATCC 20186, aa 24, vote weight 1.0 (Pasamontes et al., 1997a)
 - phyA from Myceliophthora thermophila, aa 19, vote weight 1.0 (Mitchell et al., 1997)
 - phyA from Thermomyces lanuginosa, aa 36, vote weight 1.0 (Berka et al., 1998)
- 25 Consensus sequence of five Basidiomycetes phytases, vote weight 1.0 (Basidio, Figure 3)

The corresponding alignment is shown in Figure 4.

10

20

Calculation of the amino acid sequence of consensus-10

To improve the alignment, we added the original consensus sequence of five phytases from four different *Basidiomycetes*, called Basidio, still containing the undefined sequence positions (see Figure 3), nearly all phytase sequences used for calculation of the original consensus phytase and one new phytase sequence from the *Ascomycete Thermomyces lanuginosa* to a larger alignment. Using the consensus sequence of the basidiomycetal phytase sequences, does not pay regard to the diversity among the five amino acid sequences, but pays regard to the common and different amino acid residues between the phytases from the *Ascomycetes* and the *Basidiomycetes*.

We set plurality on 2.0 and threshold on 3. The used vote weight are listed in Table 3. The alignment and the corresponding consensus sequence is presented in Figure 4. The new consensus phytase sequence has 32 different amino acids in comparison to the original consensus phytase. Positions for which the program PRETTY was not able to calculate a consensus amino acid residue were filled according to rules mentioned in Example 1. None of the residues suggested by the program was replaced.

Furthermore, we included all *Basidiomycetes* phytases as single amino acid sequences but assigning a vote weight of 0.2 in the alignment. The corresponding alignment is shown in Figure 6. The calculated consensus amino acid sequence (consensus phytase-11) has the following differences to the sequence of consensus phytase-10. Letter X means that the program was not able to calculate a consensus amino acid; the amino acid in parenthesis corresponds to the amino acid finally included into the consensus phytase-10.

D35X, X(K)69K, X(E)100E, A101R, Q134N, X(K)153N, X(H)190H, X(A)204S, X(E)220D, E222T, V227A, X(R)271R, H287A, X(D)288D, X(K)379K, X(I)389I, E390X, X(E)415E, X(A)416A, X(R)446L, E463A, whereas the numbering is as in Fig. 5.

We also checked single amino acid replacements suggested by the improved consensus sequences 10 and 11 on their influence on the stability of the original consensus phytase. The approach is described in example 3.

Conversion of consensus phytase-10 amino acid sequence to a DNA sequence

The first 26 amino acid residues of A. terreus cbs116.46 phytase were used as signal peptide and, therefore, fused to the N-terminus of consensus phytase-10. The used procedure is further described in Example 1.

The resulting sequence of the fcp10 gene is shown in Figure 5.

25

30

15

20

Construction and cloning of the consensus phytase-10 gene (fcp10)

The calculated DNA sequence of fcp10 was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with its previous and its following oligonucleotide of the opposite strand. The location of all primers, purchased by Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 5.

PCR-Reactions

In three PCR reactions, the synthesized oligonucleotides were composed to the entire gene. For the PCR, the High Fidelity Kit from Boehringer Mannheim (Boehringer Mannheim, Mannheim, Germany) and the thermo cycler The Protokol from AMS Biotechnology (Europe) Ltd. (Lugano, Switzerland) was used. The following oligonucleotides were used in a concentration of 0.2 pMol/ml.

Mix 1.10: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10

Mix 2.10: CP-9.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10

The newly synthesized oligonucleotides are marked by number 10. The phytase contains the following 32 exchanges, which are underlined in Figure 5, in comparison to the original consensus phytase: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E.

Four short PCR primer were used for the assembling of the oligonucleotides:

CP-a: Eco RI

5'-TATATGAATTCATGGGCGTGTTCGTC-3'

20 CP-b:

10

5'-TGAAAAGTTCATTGAAGGTTTC-3'

CP-c.10:

5'-TCTTCGAAAGCAGTACACAAAC-3'

CP-e:

Eco RI

25

30

5'-TATATGAATTCTTAAGCGAAAC-3'

PCR reaction a:

10 µl Mix 1.10 (2.0 pmol of each oligonucleotide)

2 µl nucleotides (10 mM each nucleotide)

2 μl primer CP-a (10 pmol/ml) 2 μl primer CP-c.10 (10 pmol/ml)

10,0 µl PCR buffer

0.75 µl polymerase mixture

73.25 µl H₂O

PCR reaction b:

10 µl Mix 2.10 (2.0 pmol of each oligonucleotide)

2 µl nucleotides (10 mM each nucleotide)

2 μl primer CP-b (10 pmol/ml) 2 μl primer CP-e (10 pmol/ml)

10,0 µl PCR buffer

0.75 µl polymerase mixture (2.6 U)

73.25 µl H2O

Reaction conditions for PCR reaction a and b:

step 1 2 min - 45 °C step 2 30 sec - 72 °C step 3 30 sec - 94 °C step 4 30 sec - 52 °C step 5 1 min - 72 °C

Step 3 to 5 were repeated 40-times.

The PCR products (670 and 905 bp) were purified by an agarose gel electrophoresis (0.9% agarose) and a following gel extraction (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction c.

PCR reaction c:

6 µl PCR product of reaction a ≈50 ng)

6 μl PCR product of reaction b ≈50 ng)

20

5

10

2 μl primer CP-a (10 pmol/ml) 2 μl primer CP-e (10 pmol/ml)

10,0 µl PCR buffer

0.75 µl polymerase mixture (2.6 U)

73.25 µl H₂O

25 Reaction conditions for PCR reaction c:

step 1 2 min - 94 °C step 2 30 sec - 94 °C step 3 30 sec - 55 °C step 4 1 min - 72 °C

30 Step 2 to 4 were repeated 31-times.

The resulting PCR product (1.4 kb) was purified as mentioned above, digested with *Eco* RI, and ligated in an *Eco* RI-digested and dephosphorylated pBsk(-)-vector (Stratagene, La Jolla, CA, USA). 1 µl of the ligation mixture was used to transform *E. coli* XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook *et al.* (1987). The DNA sequence of the constructed gene (*fcp10*) was checked by sequencing as known in the art.

Example 3

Increasing the thermostability of consensus phytase-1 by introduction of single mutations suggested by the amino acid sequence of consensus phytase-10 and consensus phytase-11

In order to increase the thermostability of homologous genes, it is also possible to test the stability effect of each differing amino acid residue between the protein of interest and the calculated consensus sequence and to combine all stabilizing mutations into the protein of interest. We used the consensus phytase as protein of interest and tested the effect on the protein stability of 34 amino acid residues, differing to consensus phytase 10 and/or 11 as single mutations.

To construct muteins for expression in A. niger, S. cerevisiae, or H. polymorpha, the corresponding expression plasmid containing the consensus phytase gene was used as template for site-directed mutagenesis (see Example 6-8). Mutations were introduced using the "quick exchangeTM site-directed mutagenesis kit" from Stratagene (La Jolla, CA, USA) following the manufacturer's protocol and using the corresponding primers. All mutations made and their corresponding primers are summarized in Table 4. Plasmids harboring the desired mutation were identified by DNA sequence analysis as known in the art.

Table 4: Primers used for site-directed mutagenesis of consensus phytase

20 (Exchanged bases are highlighted in bold. The introduction of a restriction site is marked above the sequence. When a restriction site is written in parenthesis, the mentioned site was destroyed by introduction of the mutation.)

	mutation	Primer set
25	Q50T	Kpn I 5'-CACTTGTGGGGTACCTACTCCATACTTCTC-3' 5'-GAGAAGTATGGAGAGTAGGTACCCCACAAGTG-3'
30	Y54F	5'-GGTCAATACTCTCCATTCTTCTCTTTGGAAG-3' 5'-CTTCCAAAGAGAAGAATGGAGAGTATTGACC-3'
	E58A	5'-CATACTTCTCTTTGGCAGACGAATCTGC-3' 5'-GCAGATTCGTCTGCCAAAGAGAAGTATG-3'

	D69K	Aat II 5'-CTCCAGACGTCCCAAAGGACTGTAGAGTTAC-3' 5'-GTAACTCTACAGTCCTTTGGGACGTCTGGAG-3'
5	D70G	Aat II 5'-CTCCAGACGTCCCAGACGGCTGTAGAGTTAC-3' 5'-GTAACTCTACAGCCGTCTGGGACGTCTGGAG-3'
	K91A	5'-GATACCCAACTTCTTCTGCGTCTAAGGCTTACTCTG-3' 5'-CAGAGTAAGCCTTAGACGCAGAAGAAGTTGGGTATC-3'
10	A94K	Sca I 5'-CTTCTAAGTCTAAGAAGTACTCTGCTTTG-3' 5'-CAAAGCAGAGTACTTCTTAGACTTAGAAG-3'
15	A101R	5'-GCTTACTCTGCTTTGATTGAACGGATTCAAAAGAACGCTAC-3' 5'-GTAGCGTTCTTTTGAATCCGTTCAATCAAAGCAGAGTAAGC-3'
	N134Q	5'-CCATTCGGTGAACAGCAAATGGTTAACTC-3' 5'-GAGTTAACCATTTGCTGTTCACCGAATGG-3'
20	K153N	Nru I 5'-GATACAAGGCTCTCGCGAGAAACATTGTTC -3' 5'-GGAACAATGTTTCTCGCGAGAGCCTTGTATC-3'
	I158V	Bss HI 5'-GATTGTTCCATTCGTGCGCGCTTCTGGTTC-3' 5'-GAACCAGAAGCGCGCACGAATGGAACAATC-3'
25	D197N	Bcl I 5'-CTCCAGTTATTAACGTGATCATTCCAGAAGG-3' 5'-CCTTCTGGAATGATCACGTTAATAACTGGAG-3'
30	S187A	Apa I 5'-GGCTGACCCAGGGGCCCAACCACCAAGC-3' 5'-GCTTGGTGTGGTTGGGCCCCTGGGTCAGCC-3'
	T214L	Neo I 5'-CACTTTGGACCATGGTCTTTGTACTGCTTTCG-3' 5'-CGAAAGCAGTACAAAGACCATGGTCCAAAGTG-3'
35	E222T	Avr II 5'-GCTTTCGAAGACTCTACCCTAGGTGACGACGTTG-3' 5'-CAACGTCGTCACCTAGGGTAGAGTCTTCGAAAGC-3'

	V227A	5'-GGTGACGACGCTGAAGCTAACTTCAC-3' 5'-GTGAAGTTAGCTTCAGCGTCGTCACC-3'
5	L234V	Sac II 5'-CTAACTTCACCGCGGTGTTCGCTCCAG-3' 5'-CTGGAGCGAACACCGCGGTGAAGTTAG-3'
	A238P	5'-GCTTTGTTCGCTCCACCTATTAGAGCTAGATTGG-3' 5'-CCAATCTAGCTCTAATAGGTGGAGCGAACAAAGC-3'
10	T251N	<i>Hpa</i> I 5'-GCCAGGT <i>GTTAAC</i> TTG AC TGACGAAG-3' 5'-TTCGTCAGTCAA <i>GTTAAC</i> ACCTGGC-3'
15	Y259N	Aat II 5'-GACGAAGACGTCGTTAACTTGATGGAC-3' 5'-GTCCATCAAGTTAACGACGTCTTCGTC-3'
	E267D	Asp I 5'-GTCCATTCGACACTGTCGCTAGAACTT C-3' 5'-GAAGTTCTAGCGACAGTGTCGAATGGAC-3'
20	E277Q	5'-CTGACGCTACTCAGCTGTCTCCATTC-3' 5'-GAATGGAGACAGCTGAGTAGCGTCAG-3'
	A283D	5'-GTCTCCATTCTGTGATTTGTTCACTCAC-3' 5'-GTGAGTGAACAAATCACAGAATGGAGAC-3'
25	H287A	Ksp I 5'-GCTTTGTTCACCGCGGACGAATGGAG-3' 5'-CTCCATTCGTCCGCGGTGAACAAAGC-3'
30	R291I	Bam HI 5'-CACGACGAATGGATCCAATACGACTAC-3' 5'-GTAGTCGTATTGGATCCATTCGTCGTG-3'
	Q292A	Bsi WI 5'-GACGAATGGAGAGCGTACGACTACTTG-3' 5'-CAAGTAGTCGTACGCTCCATTCGTC-3'
35	A320V	<i>Hpa</i> I 5'-GGTGTTGGTTTC <i>GTTAAC</i> GAATTGATTGC-3' 5'-GCAATCAATTC <i>GTTAAC</i> GAAACCAACACC-3'
	R329H	(Bgl II) 5'-GCTAGATTGACT <i>CACTCT</i> CCAGTTCAAG-3' 5'-CTTGAACTGGAGAGA <i>GTGAGT</i> CAATCTAGC-3'

	S364T	<i>Eco</i> RV 5'-CTCACGACAACACTAT <i>GATATC</i> TATTTTCTTC-3' 5'-GAAGAAAATA <i>GATATC</i> ATAGTGTTGTCGTGAG-3'
5	I366V	Nco I 5'-CGACAACT <i>CCATGG</i> TTTCTATTTTCTTCGC-3' 5'-GCGAAGAAAATAGAAA <i>CCATGG</i> AGTTGTCG-3'
	A379K	Kpn I 5'-GTACAACGGTACCAAGCCATTGTCTAC-3' 5'-GTAGACAATGGCTTGGTACCGTTGTAC-3'
10	S396A	5'-CTGACGGTTACGCTGCTTCTTGGAC-3' 5'-GTCCAAGAAGCAGCGTAACCGTCAG-3'
15	G404A	5'-CTGTTCCATTCGCTGCTAGAGCTTAC-3' 5'-GTAAGCTCTAGCAGCGAATGGAACAG-3'
	Q415E	5'-GATGCAATGTGAAGCTGAAAAGGAACC-3' 5'-GGTTCCTTTTCAGCTTCACATTGCATC-3'
20	A437G	Sal I 5'-CACGGTTGTGGTGTCGACAAGTTGGG-3' 5'-CCCAACTTGTCGACACCACAACCGTG-3'
	A463E	Mun I 5'-GATCTGGTGGCAATTGGGAGGAATGTTTCG-3' 5'-CGAAACATTCCTCCCAATTGCCACCAGATC-3'

25 and accordingly for other mutations.

30

35

The temperature optimum of the purified phytases, expressed in Saccharomyces cerevisiae (Example 7), was determined as outlined in Example 9. Table 5 shows the effect on the stability of consensus phytase for each mutation introduced.

Table 5: Stability effect of the individual amino acid replacements in consensus phytase-1 (+ or - means a positive, respectively, negative effect on the protein stability up to 1 °C, ++ and -- means a positive, respectively, negative effect on the protein stability between 1 and 3 °C; the number 10 or 11 corresponds to the consensus phytase sequence that suggests the amino acid replacement.)

stabilizing

neutral

destabilizing

mutation	effect	mutation	effect	mutation	effect
E58A (10)	+	D69A	±	Y54F (10)	-
D69K (11)	+	D70G (10)	±	V73I	-
D197N (10)	+	N134Q (10)	±	A94K (10)	-
T214L (10)	++	G186H	±	A101R (11)	~
E222T (11)	++	S187A (10)	±	K153N (11)	-
E267D (10)	+	T214V	±	I158V (10)	
R291I*	+	T251N (10)	±	G203A	
R329H (10)	+	Y259N (10)	±	G205S	-
S364T (10)	++	A283D (10)	±	A217V	-
A379K (11)	+	A320V (10)	±	V227A (11)	
G404A (10)	++	K445T	±	L234V (10)	-
		A463E (10)	±	A238P (10)	
				E277Q (10)	-
				H287A (11)	-
				Q292A (10)	-
				1366V (10)	-
				S396A (10)	
		·		Q415E (11)	-
				A437G (10)	
				E451R	

^{*:} This amino acid replacement was found in another round of mutations.

We combined eight positive mutations (E58A, D197N, E267D, R291I, R329H, S364T, A379K, G404A) in the consensus phytase using the primers and the technique mentioned above in this example. Furthermore, the mutations Q50T and K91A were introduced which mainly influence the catalytical characteristics of the phytase (see patent application EP 97810175.6 and EP 97112688 as well as Example 9). The DNA and amino acid sequence of the resulting phytase gene (consensus phytase-thermo[8]-Q50T-K91A) is shown in Figure 7. In this way, the temperature optimum and the melting point of the consensus phytase was increased by 7 °C (Figure 15, 16, 17).

Using the results of Table 5, we further improved the thermostability of consensus phytase 10 by the following back mutations K94A, V158I, and A396S that revealed a strong negative influence on the stability of consensus phytase. The resulting protein is phytase-10-thermo [3]. Furthermore, we introduced the mutations Q50T and K91A which mainly influence the catalytical characteristics of consensus phytase (see patent application EP 97810175.6 and EP 97112688 as well as Example 9 and Figure 14 and 15). The resulting 15 DNA and amino acid sequence is shown in Figure 8. The optimized phytase showed a 4 °C higher temperature optimum and melting point than consensus phytase 10 (Figure 12 and 13). Furthermore, the phytase has also a strongly increased specific activity with phytate as substrate of 250 U/mg at pH 5.5 (Figure 14).

Example 4

10

20

Stabilization of the phytase of A. fumigatus ATCC 13073 by replacement of amino acid residues with the corresponding consensus phytase-1 and consensus phytase-10 residues

At six typical positions where the A. fumigatus 13073 is the only or nearly the only phytase in the alignment of Figure 1 that does not contain the corresponding consensus phytase amino acid residue, the non-consensus amino acid residue was replaced by the consensus one. In a first round, the following amino acids were substituted in A. fumigatus 13073 phytase, containing the Q27T substitution and the signal sequence of A. terreus cbs.116.46 phytase (see European Patent Application No. 97810175.6 and Figure 9):

F55(28)Y, V100(73)I, F114(87)Y, A243(220)L, S265(242)P, N294(282)D.

The numbers in parentheses confer to the numbering of Figure 1. 30

In a second round, four of the seven stabilizing amino acid exchanges (E59A, R329H, S364T, G404A) found in the consensus phytase-10 sequence and, tested as single mutation in consensus phytase-1 (Table 5), were additionally introduced into the A. fumigatus amutant. Furthermore, the amino acid replacement S126N, shown to reduce the protease susceptibility of the phytase, was introduced.

The mutations were introduced as described in example 3 (see Table 6) and expressed as described in example 6 to 8. The resulting *A. fumigatus* 13073 phytase variants were called a-mutant and β-mutant-E59A-S126N-R329H-S364T-G404A.

The temperature optimum (60 °C, Figure 20) and the melting point (67.0 °C, Figure 19) of the A. fumigatus 13073 phytase β -mutant was increased by 5 °C in comparison to the values of the wild-type (temperature optimum: 55 °C, T_m : 60 °C). The five additional amino acid replacements further increased the temperature optimum by 3 °C (Figure 20).

10 Table 6: Mutagenesis primers for stabilization of A. fumigatus phytase ATCC 13073

	Mutation	Primer
	F55Y	5'-CACGTACTCGCCATACTTTTCGCTCGAG-3'
		5'-CTCGAGCGAAAAGTATGGCGAGTACGTG-3'
		(Xho I)
15	E58A	5'-CCATACTTTTCGCTCGCGGACGAGCTGTCCGTG-3
		5'-CACGGACAGCTCGTCCGCGAGCGAAAAGTAGG-3'
	V100I	5'-GTATAAGAAGCTTATTACGGCGATCCAGGCC-3'
		5'-GGCCTGGATCGCCGTAATAAGCTTCTTATAC-3'
20		
	F114Y	5'-CTTCAAGGGCAAGTACGCCTTTTTGAAGACG-3'
		5'-CGTCTTCAAAAAGGCGTACTTGCCCTTGAAG-3'
	A243L	5'-CATCCGAGCTCGCCTCGAGAAGCATCTTC-3'
25		5'-GAAGATGCTTCTCGAGGCGAGCTCGGATG-3'
	S265P	5'-CTAATGGA TGTGTCCGTTTGATACGGTAG-3'
	02001	5'-CTACCGTATCAAACGGACACATGTCCATTAG-3'

N294D 5'-GTGGAAGAAGTACGACTACCTTCAGTC-3' 5'-GACTGAAGGTAGTCGTACTTCTTCCAC-3'

(Mlu I)

5 R329H 5'-GCCCGGTTGACGCATTCGCCAGTGCAGG-3'

5'-CCTGCACTGGCGAATGCGTCAACCGGGC-3'

Nco I

S364T 5'-CACACGACAACACCATGGTTTCCATCTTC-3'

5'-GAAGATGGAAACCATGGTGTTGTCGTGTG-3'

10 (Bss HI)

G404A 5'-GTGGTGCCTTTCG*CCGCGCG*AGCCTACTTC-3'

5'-GAAGTAGGCTCGCGCGCGAAAGGCACCAC-3'

Example 5

15

Introduction of the active site amino acid residues of the A. niger NRRL 3135 phytase into the consensus phytase-1

We used the crystal structure of the Aspergillus niger NRRL 3135 phytase to define all active site amino acid residues (see Reference Example and EP 97810175.6). Using the alignment of Figure 1, we replaced the following active site residues and additionally the not identical adjacent ones of the consensus phytase by that of the A. niger phytase:

20 S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S

The new protein sequence consensus phytase -7 was backtranslated into a DNA sequence (Figure 10) as described in Example 1. The corresponding gene (fcp7) was generated as described in Example 1 using the following oligonucleotide mixes:

Mix 1.7: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7

Mix 2.7: CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22.

The DNA sequences of the oligonucleotides are indicated in Figure 3. The newly synthesized oligonucleotides are additionally marked by number 7. After assembling of the

oligonucleotides using the same PCR primers as mentioned in Example 1, the gene was cloned into an expression vector as described in Examples 6-8.

The pH-profile determined after expression in *H. polymorpha* and purification was shifted into the acidic range of the pH-spectrum showing an optimum at pH 4.5-5.0 (see Figure 18). The enzyme had a broad pH-optimum reaching at least 60% of its maximum activity from pH 2.5 to pH 6.0. Up to pH 5.0, the profile resembled the profile of the *A. niger* NRRL 3135 phytase. However, below pH 5.0 it lacked the typical low at pH 4.0 of the profile of *A. niger* phytase.

Example 6

10

20

25

35

Expression of the consensus phytase genes in Hansenula polymorpha

The phytase expression vectors, used to transform *H. polymorpha* RB11 (Gellissen *et al.*, 1994), was constructed by inserting the *Eco* RI fragment of pBsk-fcp or variants thereof into the multiple cloning site of the *H. polymorpha* expression vector pFPMT121, which is based on an *ura3* selection marker from *S. cerevisiae*, a formate dehydrogenase (FMD) promoter element and a methanol oxidase (MO) termimator element from *H. polymorpha*. The 5' end of the fcp gene is fused to the FMD promoter, the 3' end to the MOX terminator (Gellissen *et al.*, 1996; EP 0299 108 B). The resulting expression vector are designated pFPMTfcp, pFPMTfcp10, pFPMTfcp7.

The constructed plasmids were propagated in E. coli. Plasmid DNA was purified using standard state of the art procedures. The expression plasmids were transformed into the H. polymorpha strain RP11 deficient in orotidine-5'-phosphate decarboxylase (ura3) using the procedure for preparation of competent cells and for transformation of yeast as described in Gelissen et al. (1996). Each transformation mixture was plated on YNB (0.14% w/v Difco YNB and 0.5% ammonium sulfate) containing 2% glucose and 1.8% agar and incubated at 37 °C. After 4 to 5 days individual transformant colonies were picked and grown in the liquid medium described above for 2 days at 37 °C. Subsequently, an aliquot of this culture was used to inoculate fresh vials with YNB-medium containing 2% glucose. After seven further passages in selective medium, the expression vector integrates into the yeast genome in multimeric form. Subsequently, mitotically stable transformants were obtained by two additional cultivation steps in 3 ml non-selective liquid medium (YPD, 2% glucose, 10 g yeast extract, and 20 g peptone). In order to obtain genetically homogeneous recombinant strains an aliquot from the last stabilization culture was plated on a selective plate. Single colonies were isolated for analysis of phytase expression in YNB containing 2% glycerol instead of glucose to derepress the fmd promoter. Purification of the consensus phytases was done as described in Example 7.

Example 7

Expression of the consensus phytase genes in Saccharomyces cerevisiae and purification of the phytases from culture supernatant

The consensus phytase genes were isolated from the corresponding Bluescriptplasmid (pBskfcp, pBSKfcp10, pBskfcp7) and ligated into the Eco RI sites of the expression cassette of the Saccharomyces cerevisiae expression vector pYES2 (Invitrogen, San Diego, CA, USA) or subcloned between the shortened GAPFL (glyceraldhyde-3phosphate dehydrogenase) promoter and the pho5 terminator as described by Janes et al. (1990). The correct orientation of the gene was checked by PCR. Transformation of S. cerevisiae strains. e. g. INVSc1 (Invitrogen, San Diego, CA, USA) was done according to 10 Hinnen et al. (1978). Single colonies harboring the phytase gene under the control of the GAPFL promoter were picked and cultivated in 5 ml selection medium (SD-uracil, Sherman et al., 1986) at 30°C under vigorous shaking (250 rpm) for one day. The preculture was then added to 500 ml YPD medium (Sherman et al., 1986) and grown under the same conditions. Induction of the gall promoter was done according to manufacturer's instruction. After four days of incubation cell broth was centrifuged (7000 rpm, GS3 rotor, 15 min, 5°C) to remove the cells and the supernatant was concentrated by way of ultrafiltration in Amicon 8400 cells (PM30 membranes) and ultrafree-15 centrifugal filter devices (Biomax-30K, Millipore, Bedford, MA, USA). The concentrate (10 ml) was desalted on a 40 ml Sephadex G25 Superfine column (Pharmacia Biotech, Freiburg, Germany), with 10 mM sodium acetate, pH 5.0, serving as elution buffer. The desalted sample was brought to 2 M (NH₄)₂SO₄ and directly loaded onto a 1 ml Butyl Sepharose 4 Fast Flow hydrophobic interaction chromatography column (Pharmacia Biotech, Feiburg, Germany) which was eluted with a linear gradient from 2 M to 0 M (NH4)₂SO₄ in 10 mM sodium acetate, pH 5.0. Phytase was eluted in the break-through, 25 concentrated and loaded on a 120 ml Sephacryl S-300 gel permeation chromatography column (Pharmacia Biotech, Freiburg, Germany). Consensus phytase and consensus phytase -7 eluted as a homogeneous symmetrical peak and was shown by SDS-PAGE to be approx. 95% pure.

Example 8

30

35

Expression of the consensus phytase genes in Aspergillus niger

The Bluescript-plasmids pBsk*fcp, pBSK*fcp10, and pBsk*fcp7 were used as template for the introduction of a Bsp HI-site upstream of the start codon of the genes and an Eco RV-site downstream of the stop codon. The ExpandTM High Fidelity PCR Kit (Boehringer Mannheim, Mannheim, Germany) was used with the following primers:

Primer Asp-1:

5

15

Bsp HI

5'-TATATCATGAGCGTGTTCGTCGTGCTACTGTTC-3'

Primer Asp-2 used for cloning of fcp and fcp7:

Eco RV

3'-ACCCGACTTACAAAGCGAATTCTATAGATATAT-5'

Primer Asp-3 used for cloning of fcp10:

Eco RV

3'-ACCCTTCTTACAAAGCGAATTCTATAGATATAT-5'

The reaction was performed as described by the supplier. The PCR-amplified fcp-10 genes had a new Bsp HI site at the start codon, introduced by primer Asp-1, which resulted in a replacement of the second amino acid residue glycine by serine. Subsequently, the DNA-fragment was digested with Bsp HI and Eco RV and ligated into the Nco I site downstream of the glucoamylase promoter of Aspergillus niger (glaA) and the Eco RV site upstream of the Aspergillus nidulans tryptophan C terminator (trpC) (Mullaney et al., 1985). After this cloning step, the genes were sequenced to detect possible failures introduced by PCR. The resulting expression plasmids which basically corresponds to the pGLAC vector as described in Example 9 of EP 684 313, contained the orotidine-5'phosphate decarboxylase gene (pyr4) of Neurospora crassa as a selection marker. Transformation of Aspergillus niger and expression of the consensus phytase genes was 20 done as described in EP 684 313. The consensus phytases were purified as described in Example 7.

Example 9 Determination of phytase activity and of temperature optimum

Phytase activity was determined basically as described by Mitchell et al (1997). The 25 activity was measured in an assay mixture containing 0.5% phytic acid (≈5 mM) in 200 mM sodium acetate, pH 5.0. After 15 min of incubation at 37 °C, the reaction was stopped by addition of an equal volume of 15% trichloroacetic acid. The liberated phosphate was quantified by mixing 100 μl of the assay mixture with 900 μl H₂O and 1 ml of 0.6 M H₂SO₄, 2% ascorbic acid and 0.5% ammonium molybdate. Standard solutions of 30 potassium phosphate were used as reference. One unit of enzyme activity was defined as the amount of enzyme that releases 1 µmol phosphate per minute at 37 °C. The protein

concentration was determined using the enzyme extinction coefficient at 280 nm calculated according to Pace et al (1995): consensus phytase, 1.101; consensus phytase 7, 1.068; consensus phytase 10, 1.039.

In case of pH-optimum curves, purified enzymes were diluted in 10 mM sodium acetate, pH 5.0. Incubations were started by mixing aliquots of the diluted protein with an equal volume of 1% phytic acid (≈10 mM) in a series of different buffers: 0.4 M glycine/HCl, pH 2.5; 0.4 M acetate/NaOH, pH 3.0, 3.5, 4.0, 4.5, 5.0, 5.5; 0.4 M imidazole/HCl, pH 6.0, 6.5; 0.4 M Tris/HCl pH 7.0, 7.5, 8.0, 8.5, 9.0. Control experiments showed that pH was only slightly affected by the mixing step. Incubations were performed for 15 min at 37 °C as described above.

For determinations of the substrate specificities of the phytases, phytic acid in the assay mixture was replaced by 5 mM concentrations of the respective phosphate compounds. The activity tests were performed as described above.

10

25

For determination of the temperature optimum, enzyme (100 μ l) and substrate solution (100 μ l) were pre-incubated for 5 min at the given temperature. The reaction was started by addition of the substrate solution to the enzyme. After 15 min incubation, the reaction was stopped with trichloroacetic acid and the amount of phosphate released was determined.

The pH-optimum of the original consensus phytase was around pH 6.0-6.5 (70 U/mg). By introduction of the Q50T mutation, the pH-optimum shifted to pH 6.0 (130 U/mg). After introduction of K91A, the pH optimum shifted one pH-unit into the acidic pH-range showing a higher specific activity between pH 2.5 and pH 6.0. That was shown for the stabilized mutants and for consensus phytase-10, too (Figure 14 and 15).

Consensus phytase-7, which was constructed to transfer the catalytic characteristics of the A. niger phytase NRRL 3135 into the consensus phytase, had a pH-profile which is shifted into the acidic range of the pH-spectrum showing an optimum between pH 4.5 and 5.0 (see Figure 19). The enzyme had a broad pH-optimum reaching at least 60% of its increased maximum activity from pH 2.5 to pH 6.0. The substrate spectrum, too, resemble more to that of the A. niger NRRL 3135 phytase than to the consensus phytase-1.

The temperature optimum of consensus phytase-1 (71 °C) was 16-26 °C higher than the temperature optimum of the wild-type phytases (45-55 °C, Table 7) which were used to calculate the consensus sequence. The improved consensus phytase-10 showed a further

increase of its temperature optimum to 80 °C (Figure 11). The temperature optimum of the consensus phytase-1-thermo[8] was found in the same range (78 °C) using the supernatant of an overproducing *S. cerevisiae* strain. The highest temperature optimum reached of 82 °C was determined for consensus phytase-10-thermo-Q50T-K91A.

Table 7: Temperature optimum and T_m -value of consensus phytase and of the phytases from A. fumigatus, A. niger, E. nidulans, and M. thermophila. The determination of the temperature optimum was performed as described in Example 9. The T_m -values were determined by differential scanning calorimetry as described in Example 10.

phytase	temperature optimum [°C]	<i>T</i> m [°C]
Consensus phytase-10- thermo-Q50T-K91A	82	89.3
Consensus phytase-10- thermo-Q50T	82	88.6
Consensus phytase-10	80	85.4
Consensus phytase-1- thermo[8]-Q50T	78	84.7
Consensus phytase-1- thermo[8]-Q50T-K91A	78	85.7
Consensus phytase-1	71	78.1
A. niger NRRL3135	55	63.3
A. fumigatus 13073	55	62.5
A. fumigatus 13073 α-mutant	60	67.0
A. fumigatus 13073 α-mutant (optimized)	63	-
A. terreus 9A-1	49	57.5
A. terreus cbs.116.46	45	58.5
E. nidulans	45	55.7
M. thermophila	55	n. d.
T. thermophilus	45	n. đ.

Example 10

Determination of the melting point by differential scanning calorimetry (DSC)

In order to determine the unfolding temperature of the phytases, differential scanning calorimetry was applied as previously published by Brugger et al (1997). Solutions of 50-60 mg/ml homogeneous phytase were used for the tests. A constant heating rate of 10 ° C/min was applied up to 90-95 °C.

The determined melting points reflect the results obtained for the temperature optimums (Table 7). The most stable consensus phytase designed is consensus phytase-10-thermo-Q50T-K91A showing a melting temperature under the choosen condition of 89.3 ° C. This is 26 to 33.6 °C higher than the melting point of the wild-type phytases used.

Example 11

Transfer of basidiomycete phytase active site into consensus phytase-10-thermo-Q50T-K91A

- As described previously (Example 3), mutations derived from the basidiomycete phytase active site were introduced into the consensus phytase 10. The following five constructs a) to e) were prepared:
- a) This construct is called consensus phytase 12, and it comprises a selected number of active site residues of the basidio consensus sequence, its amino acid sequence
 (consphy12) is shown in Fig. 21 (the first 26 amino acids forms the signal peptide, amended positions are underlined);
 - b) a cluster of mutations (Cluster II) was transferred to the consensus 10 sequence, viz.: S80Q, Y86F, S90G, K91A, S92A, K93T, A94R, Y95I;
- c) analogously, another cluster of mutations (Cluster III) was transferred, viz.: T129V,
 E133A, Q143N, M136S, V137S, N138Q, S139A;
 - d) analogously, a further cluster of mutations (Cluster IV) was transferred, viz.: A168D, E171T, K172N, F173W;

e) and finally, a further cluster of mutations (Cluster V) was transferred, viz.: Q297G, S298D, G300D, Y305T.

These constructs were expressed as described in Examples 6 to 8.

References:

15

20

25

Akanuma, S., Yamagishi, A., Tanaka, N. & Oshima, T. (1998). Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from *Bacillus subtilis* by experimental evolution. *Prot. Sci.* 7, 698-705.

Arase, A., Yomo, T., Urabe, I., Hata, Y., Katsube, Y. & Okada, H. (1993). Stabilization of xylanase by random mutagenesis. *FEBS Lett.* 316, 123-127.

Berka, R. M., Rey, M. W., Brown, K. M., Byun, T. & Klotz, A. V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. *Appl. Environ. Microbiol.* 64, 4423-4427.

Blaber, M., Lindstrom, J. D., Gassner, N., Xu, J., Heinz, D. W. & Matthews, B. W. (1993). Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala'Ser and Val'Thr substitutions in T4 lysozyme. *Biochemistry* 32, 11363-11373.

Brugger, R., Mascarello, F., Augem, S., van Loon, A. P. G. M. & Wyss, M. (1997). Thermal denaturation of phytases and pH 2.5 acid phosphatase studied by differential scanning calorimetry. In *The Biochemistry of phytate and phytase (eds. Rasmussen, S.K; Raboy, V.; Dalbøge, H. and Loewus, F.;* Kluwer Academic Publishers.

Cosgrove, D.J. (1980) Inositol phosphates - their chemistry, biochemistry and physiology: studies in organic chemistry, chapter 4. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York.

Devereux, J., Haeberli, P.& Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res.* 12, 387-395.

Gellissen, G., Hollenberg, C. P., Janowicz, Z. A. (1994) Gene expression in methylotrophic yeasts. In: Smith, A. (ed.) Gene expression in recombinant microorganisms. Dekker, New York, 395-439.

Gellissen, G., Piontek, M., Dahlems, U., Jenzelewski, V., Gavagan, J. E., DiCosimo, R., Anton, D. I. & Janowicz, Z. A. (1996) Recombinant *Hansenula polymorpha* as a biocatalyst: coexpression of the spinach glycolate oxidase (*GO*) and the *S. cerevisiae* catalase T (*CTT1*) gene. *Appl. Microbiol. Biotechnol.* 46, 46-54.

Gerber, P. and Müller, K. (1995) Moloc molecular modeling software. J. Comput. Aided Mol. Des. 9, 251-268

Hinnen, A., Hicks, J. B. & Fink, G, R. (1978) Transformation of yeast. *Proc. Natl. Acad. Sci. USA* 75, 1929-1933.

Imanaka, T., Shibazaki, M. & Takagi, M. (1986). A new way of enhancing the thermostability of proteases. *Nature* **324**, 695-697.

Janes, M., Meyhack, B., Zimmermann, W. & Hinnen, A. (1990) The influence of GAP promoter variants on hirudine production, average plasmid copy number and cell growth in *Saccharomyces cerevisiae*. *Curr. Genet.* 18, 97-103.

Karpusas, M., Baase, W. A., Matsumura, M. & Matthews, B. W. (1989).
 Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. *Proc. Natl. Acad. Sci. (USA)* 86, 8237-8241.

15

25

Margarit, I., Campagnoli, S., Frigerio, F., Grandi, G., Fillipis, V. D. & Fontana, A. (1992). Cumulative stabilizing effects of glycine to alanine substitutions in *Bacillus subtilis* neutral protease. *Prot. Eng.* 5, 543-550.

Matthews, B. W. (1987a). Genetic and structural analysis of the protein stability problem. *Biochemistry* 26, 6885-6888.

Matthews, B. W. (1993). Structural and genetic analysis of protein stability. *Annu. Rev. Biochem.* 62, 139-160.

Matthews, B. W., Nicholson, H. & Becktel, W. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. *Proc. Natl. Acad. Sci. (USA)* 84, 6663-6667.

Mitchell, D. B., Vogel, K., Weimann, B. J., Pasamontes, L. & van Loon, A. P. G. M. (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi *Aspergillus terreus* and *Myceliophthora thermophila*, *Microbiology* 143, 245-252.

Mullaney, E. J., Hamer, J. E., Roberti, K. A., Yelton, M. M. & Timberlake, W. E. (1985) Primary structure of the *trpC* gene from *Aspergillus nidulans*. *Mol. Gen. Genet.* 199, 37-46.

Munoz, V. & Serrano, L. (1995). Helix design, prediction and stability. *Curr. Opin. Biotechnol.* 6, 382-386.

Pace, N. C., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. *Prot. Sci.* 4, 2411-2423.

- Pantoliano, M. W., Landner, R. C., Brian, P. N., Rollence, M. L., Wood, J. F. & Poulos, T. L. (1987). Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. *Biochemistry* 26, 2077-2082.
- Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D. B. & van Loon, A. P. G. M. (1997a). Cloning of the phytases from *Emericella nidulans* and the thermophilic fungus *Talaromyces thermophilus*. *Biochim. Biophys. Acta* 1353, 217-223.
- Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. & van Loon, A. P. G. M. (1997)
 Cloning, purification and characterization of a heat stable phytase from the fungus
 Aspergillus fumigatus, Appl. Environ. Microbiol. 63, 1696-1700.
 - Piddington, C. S., Houston, C. S., Paloheimo, M., Cantrell, M., Miettinen-Oinonen, A. Nevalainen, H., & Rambosek, J. (1993) The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene 133, 55-62.
 - Purvis, I. J., Bettany, A. J. E., Santiago, T. C., Coggins, J. R., Duncan, K., Eason, R. & Brown, A. J. P. (1987). The efficiency of folding of some proteins is increased by controlled rates of translation *in vivo*. *J. Mol. Biol.* 193, 413-417.
 - Risse, B., Stempfer, G., Rudolph, R., Schumacher, G. & Jaenicke, R. (1992).
- 20 Characterization of the stability effect of point mutations of pyruvate oxidase from Lactobacillus plantarum: protection of the native state by modulating coenzyme binding and subunit interaction. Prot. Sci. 1, 1710-1718.

- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- Sauer, R., Hehir, K., Stearman, R., Weiss, M., Jeitler-Nilsson, A., Suchanek, E. & Pabo, C. (1986). An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of l-repressor. *Biochemistry* 25, 5992-5999.
 - Serrano, L., Day, A. G. & Fersht, A. R. (1993). Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. J. Mol. Biol. 233, 305-312.
 - Sheman, J. P., Finck, G. R. & Hicks, J. B. (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor University.
 - Steipe, B., Schiller, B., Plueckthun, A. & Steinbach, S. (1994). Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188-192.
- van den Burg, B., Vriend, G., Veltman, O. R., Venema & G., Eijsink, V. G. H. (1998). Engineering an enzyme to resist boiling *Proc. Natl. Acad. Sci. (USA)* 95, 2056-2060.

Van Etten, R.L. (1982) Human prostatic acid phosphatase: a histidine phosphatase. *Ann. NY Acad. Sci.* 390,27-50

van Hartingsveldt, W., van Zeijl, C. M. F., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M. E. G., Luiten, R. G. M., van Paridon, P. A., Selten, G. C. M., Veenstra, A. E., van Gorcom, R. F. M., & van den Hondel, C. A. M. J. J. (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127, 87-94.

5

van Loon, A. P. G. M., Simoes-Nunes, C., Wyss, M., Tomschy, A., Hug, D., Vogel, K. & Pasamontes, L. (1998). A heat resistant phytase of Aspergillus fumigatus with superior performance in animal experiments. Phytase optimization and natural variability. In the Biochemistry of phytate and phytases. Kluwer Academic Press, s.a.

Claims

1. A process for the preparation of a consensus protein, whereby such process is characterized by the following steps:

5

10

15

20

25

- a) at least three, preferably four amino acid sequences are aligned by any standard alignment program known in the art,
- b) amino acids at the same position according to such alignment are compared regarding their evolutionary similarity by any standard program known in the art, whereas the degree of similarity provided by such a program which defines the least similarity of the amino acids that is used for the determination of an amino acid of corresponding positions is set to a less stringent number and the parameters are set in such a way that it is possible for the program to determine from only 2 identical amino acids at a corresponding position an amino acid for the consensus protein; however, if among the compared amino acid sequences are sequences that show a much higher degree of similarity to each other than to the residual sequences, these sequences are represented by their consensus sequence determined as defined in the same way as in the present process for the consensus sequence of the consensus protein or a vote weight of 1 divided by the number of such sequences is assigned to every of -those sequences,
- c) in case no common amino acid at a defined position is identified by the program, any of the amino acids, preferably the most frequent amino acid of all such sequences is selected,
- d) once the consensus sequence has been defined, such sequence is back-translated into a DNA sequence, preferably by using a codon frequency table of the organism in which expression should take place,
- e) the DNA sequence is synthesized by methods known in the art and used either integrated into a suitable expression vector or by itself to transform an appropriate host cell,
 - f) the transformed host cell is grown under suitable culture conditions and the consensus protein is isolated from the host cell or its culture medium by methods known in the art.
- 2. A process as claimed in claim 1 wherein the program used for the comparison of amino acids at a defined position regarding their evolutionary similarity is the program "PRETTY".

3. A process as claimed in claims 1 or 2, wherein

in a first step a consensus sequence is determined from a number of highly homologous sequences according to steps a), b) and c) of claim 1,

in a second step the amino acid sequence of another protein which is homologous to the consensus sequence is compared with the consensus sequence and

in a third step only those amino acid residues are replaced in the amino acid sequence of the other protein which clearly differ from the consensus sequence of this protein family calculated under moderately stringent conditions whereas at all positions of the alignment where no preferred single amino acid can be determined under moderately stringent conditions the amino acids of the other protein remain unchanged.

4. A process as claimed in any one of claims 1-3, wherein

10

25

in a first step a consensus sequence is determined from homologous sequences according to steps a), b) and c) of claim 1,

in a second step the active center of the protein comprising all amino acid residues that are involved in forming the active center is determined in the consensus sequence and in the sequence of a homologous protein as well and

in a third step some or all of the amino acids that form the active center of the homologeous protein are inserted in the backbone of the consensus sequence.

- 5. A process as claimed in claim 4, wherein the active center of the protein is determined by using an analysis of the three-dimensional structure of the protein.
 - 6. A process as claimed in claims 4 and 5, wherein the homologeous protein is an enzyme.
 - 7. A process as claimed in claims 1 to 6, wherein the defined protein family is the family of phytases.
 - 8. A process as claimed in claim 7, wherein the phytases are of fungal origin.
 - 9. A process as claimed in claims 7 or 8, wherein the amino acid sequence of the phytase is changed by the introduction of at least one mutation selected from the group consisting of

E58A	F54Y
D69K	173V
D197N	K94A
T214L	R101A
E222T	N153K
E267D	V158I
R291I	A203G
R329H	S205G
S364T	V217A
A379K	A227V
G404A	V234L
	P238A
	Q277E
	A287H
	A292Q
	V366I
	A396S
	E415Q
	E415Q G437A

eukaryotic origin.

whereby the number represents the position in the consensus phytase sequence or a corresponding residue according to an alignment as shown in Fig. 1 when 26 amino acids (signal sequence) are added to the sequences shown in Fig. 1 and the letter before the number represents the amimo acid in the phytase which is replaced by the amino acid behind the number.

10. A process as claimed in any one of claims 1 to 9, wherein the host cell is of

- 11. A process as claimed in claim 10, wherein eukaryotic means fungal, preferably Aspergillus or yeast, preferably Saccharomyces or Hansenula.
- 12. A consensus protein obtainable preferably obtained by a process as claimed in any one of claims 1 to 11.
- 5 13. A consensus protein which comprises the amino acid sequence shown in Figure 2 or any variants or muteins thereof (consensus phytase-1).
 - 14. A mutein of the consensus protein of claim 13 characterized therein that in the amino acid sequence of Figure 2 the following replacements have been effected Q50L, Q50T, Q50G, Q50T-Y51N, Q50L-Y51N or Q50T-K91A.
- 15. A consensus protein which comprises the amino acid sequence shown in Figure 4 having the designation consensus phytase 10 (Fcp10) and any variants or muteins thereof.
 - 16. A consensus protein which comprises the amino acid sequence shown in Figure 6 having the designation Consensus seq. 11 and any variant or mutein thereof.
- 17. A consensus protein which comprises the amino acid sequence shown in Figure
 10 (consensus phytase 7) and any variant or mutein thereof.
 - 18. A consensus protein which comprises the amino acid sequence shown in Figure 21 (consensus phytase 12) and any variant or mutein thereof.
 - 19. A consensus protein which comprises the amino acid sequence shown in Figure 3 (basidio consensus) and any variant or mutein thereof.
- 20. A phytase being selected from amongst: A. fumigatus ATCC 13073 alphamutant; A. fumigatus ATCC 13073 alpha-mutant-(E59A-S126N-R329H, S364T-G404A)-Q27T; A. fumigatus ATCC 13073 alpha-mutant-(E59A, S126N-R329H-S364T-G404A)-Q27T-K68A, preferably the latter.
- 21. A food, feed or pharmaceutical composition comprising a consensus protein as claimed in any of the claims 12 to 17.

QVLSRHGARY PTSSKBKKYK KLVTAIQaNA

QVLSRHGARY PTSSKBKKYK kLVTAIQaNA

Figure 1

A. fumigatus 32722

55 Tdfkgkfafl ktynytlgad

TdFKGKFAFL KTYNYTLGAD
A. fumigatus 58128

		1		
	50			
5	A. terreus 9A-1 LQDESPFP1D VPEDChITFV		GYQCFPELSH	kWGlYAPYFS
	A. terreus cbs LQDESPFPlD VPDDChITFV		GYQCFPELSH	kWGlYAPYFS
10	A. niger var. awamor: LANESAISPD VPAGCrVTFA	NqsTCDTVDQ	GYQCFSETSH	LWGQYAPFFS
	A. niger T213 LANESVISPD VPAGCrVTFA	NqsSCDTVDQ	GYQCFSETSH	LWGQYAPFFS
	A. niger NRRL3135 LANESVISPE VPAGCTVTFA	NqsSCDTVDQ	GYQCFSETSH	LWGQYAPFFS
15	A. fumigatus 13073 LEDEISVSSK LPKDCrITLV	GSkSCDTVD1	GYQCsPATSH	LWGQYSPFFS
	A. fumigatus 32722 LEDE1SVSSK LPKDCrITLV	GSkSCDTVD1	GYQCsPATSH	LWGQYSPFFS
20	A. fumigatus 58128 LEDELSVSSK LPKDCrITLV	GSkSCDTVD1	GYQCsPATSH	LWGQYSPFFS
	A. fumigatus 26906 LEDELSVSSK LPKDCrITLV	GSkSCDTVD1	GYQCsPATSH	LWGQYSPFFS
	A. fumigatus 32239 LEDELSVSSD LPKDCrVTFV	GSkACDTVE1	GYQCsPGTSH	LWGQYSPFFS
25	E. nidulans IEQESAISeD VPHGCeVTFV	QNHSCNTADG	GYQCFPNVSH	VWGQYSPYFS
	T. thermophilus LADQSEISPD VPQNCkITFV	DSHSCNTVEG	GYQCrPEISH	sWGQYSPFFS
30	M. thermophila VpSElDaS IPDDCeVTFA	ESRPCDTpD1	GFQCgTAISH	FWGQYSPYFS
	Consensus LEDESAISPD VPDDC-VTFV	NSHSCDTVDG	GYQCFPEISH	LWGQYSPYFS
35	Consensus phytase LEDESAISPD VPDDCRVTFV	NSHSCDTVDG	GYQCFPEISH	LWGQYSPYFS
	100	51		
40	A. terreus 9A-1 TaFpGKYAFL QSYNYSLDSE	QVLARHGARs	PThSKtKAYA	Atiaaiqksa
	A. terreus cbs TalpGKYAFL KSYNYSMGSE	QVLARHGARs		
45	A. niger var. awamori TtFDGKYAFL KTYNYSLGAD	QVLSRHGARY	PTESKgKkYS	ALIEEIQQNV
	A. niger T213 TtFDGKYAFL KTYNYSLGAD	QVLSRHGARY	PTESKgKkys	ALIEEIQQNV
	A. niger NRRL3135 TtFDGKYAFL KTYNYSLGAD	QVLSRHGARY	-	
50	A. fumigatus 13073 TdFKGKFAFL KTYNYTLGAD	QVLSRHGARY	PTSSKsKkYK	kLVTAIQaNA
	3			

			- 50 -	
	A. fumigatus 26906 TdFKGKFAFL KTYNYTLGAD	QVLSRHGARY	PTSSKsKkyk	kLVTAIQaNA
	A. fumigatus 32239 TeFKGKFAFL ETYNYTLGAD	QVLSRHGARY	PTASKsKkyk	klvtaiqkna
5	E. nidulans TsFwGQYAFL ESYNYTLGAD		PTESKSKAYS	GLIEAIQKNA
	T. thermophilus TaYKGyYAFL KDYrYqLGAN		PTSSKtElys	QLISTIQKTA
10	M. thermophila IsygPgYEFL RTYDYTLGAD	QVLSRHGARa	PT1KRaaSYv	DLIDrIHhGA
	Consensus FKGKYAFL KTYNYTLGAD	QVLSRHGARY	PTSSK-KAYS	ALIEAIQKNA T
15	Consensus phytase TAFKGKYAFL KTYNYTLGAD	QVLSRHGARY	PTSSKSKAYS	ALIBAIQKNA
		101		
	150	101		
20	A. terreus 9A-1 FVRATDASRV hESAEKFVEG	ELTPFGrNQL	rDlGaQFYeR	YNALTRhinP
	A. terreus cbs FVRAADSSRV hESAEKFVEG	NLTPFGrnQL	qDlGaQFYRR	YDTLTRhInP
25	A. niger var. awamori FIRSSGSSRV IASGEKFIEG	DLTPFGEQEL	VNSGIKFYQR	YESLTRNIIP
	A. niger T213 FIRSSGSSRV IASGEKFIEG	DLTPFGEQEL	VNSGIKFYQR	YESLTRNIIP
	A. niger NRRL3135 FIRSSGSSRV IASGKKFIEG	DLTPFGEQEL	VNSGIKFYQR	YESLTRNIVP
30	A. fumigatus 13073 FIRASGSDRV IASGEKFIEG	DLTPFGEQQL	VNSGIKFYQR	YKALARSVVP
	A. fumigatus 32722 FIRASGSDRV IASGEKFIEG	DLTPFGEQQL	VNSGIKFYQR	YKALARSVVP
35	A. fumigatus 58128 FIRASGSDRV IASGEKFIEG	DLTPFGEQQL	VNSGIKFYQR	YKALARSVVP
	A. fumigatus 26906 FIRASGSDRV IASGEKFIEG	DLTAFGEQQL	VNSGIKFYQR	YKALARSVVP
	A. fumigatus 32239 FIRSSGSDRV IASGEKFIEG	DLTPFGEQQM	VNSGIKFYQK	YKALAgSVVP
40	E. nidulans	DLTifGENQM	VDSGaKFYRR	YKNLARKnTP

45 FVRTAGQDRV VhSAENFTQG Consensus DLTPFGENQM VNSGIKFYRR YKALARK-VP FVRASGSDRV IASAEKFIEG Consensus phytase DLTPFGENQM VNSGIKFYRR YKALARKIVP 50 FIRASGSDRV IASAEKFIEG

T. thermophilus DLTPFGENQM IQlGIKFYNH YKSLARNAVP

FIRASGSDRV VASAEKFING

FVRCSGSDRV IASGrlFIEG M. thermophila

ELTRtGQQQM VNSGIKFYRR YRALARKsIP

	200			
	A. terreus 9A-1 NNTLEHS1CT AFESSTV		ANpHQPSPr	/ DVaIPEGSAY
5	A. terreus cbs NNTLEHSICT AFEASTV	FQNARqGDPh	ANPHQPSPr	/ DVVIPEGTAY
	A. niger var. awamori NNTLDPGTCT VFEDSEL	FQSTKLkDPr	AqpgQSSPk1	DVVISEASSS
10	A. niger T213 NNTLDPGTCT VFEDSEL	FQSTKLkDPr	AqpgQSSPk1	DVVISEASSs
	A. niger NRRL3135 NNTLDPGTCT VFEDSEL	1		DVVISEASSs
15	A. fumigatus 13073 NNTLDHGVCT kFEASQL	_		SVIIPESETF
15	A. fumigatus 32722 NNTLDHGVCT kFEASQL			SVIIPESETF
	A. fumigatus 58128 NNTLDHGVCT kFEASQL			SVIIPESETF
20	A. fumigatus 26906 NNTLDHGVCT kFEASQL	_		SVIIPESETF
	A. fumigatus 32239 NNTLDHSVCT NFEASEL E. nidulans			SVIIPESETY
25	NNTLDHSTCV SFENDEr		_	NVIIPEIDGF
20	T. thermophilus NNTLDtGSCP VFEDSSg M. thermophila			NVIIeEGPSY mVVIPETAGa
	NNTLHND1CT AFEEgpySTI	FIISATHADAG	SIVRPIIPYO	mvvipeiAGa
30	Consensus NNTLDHGTCT AFEDSEL	FQSAKLADPG	S-PHQASPVI	NVIIPEGSGY
30				NVIIPEGSGY
30 35	NNTLDHGTCT AFEDSEL Consensus phytase	FQSAKLADPG		
	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL			
	NNTLDHGTCT AFEDSEL Consensus phytase	FQSAKLADPG	SQPHQASPVI	DVIIPEGSGY
	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVSlTD A. terreus cbs ADDVVnLMAM CPFETVSlTD	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA	SQPHQASPVI VFAPAIaQRL VFAPAIakRL	DVIIPEGSGY EADLPGVQLS EADLPGVQLS
35	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVS1TD A. terreus cbs ADDVVnLMAM CPFETVS1TD A. niger var. awamori DTEVTyLMDM CSFDTIStST	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA	SQPHQASPVI VFAPAIaQRL VFAPAIakRL	DVIIPEGSGY EADLPGVQLS EADLPGVQLS
35	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVS1TD A. terreus cbs ADDVVnLMAM CPFETVS1TD A. niger var. awamori DTEVTYLMDM CSFDTIStST A. niger T213 DTEVTYLMDM CSFDTIStST	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA ADTVEANFTA ADTVEANFTA	SQPHQASPVI VFAPAIaQRL VFAPAIakRL TFAPSIRQRL TFAPSIRQRL	DVIIPEGSGY EADLPGVQLS EADLPGVQLS ENDLSGVTLT
35 40	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVS1TD A. terreus cbs ADDVVnLMAM CPFETVS1TD A. niger var. awamori DTEVTyLMDM CSFDTIStST A. niger T213 DTEVTYLMDM CSFDTIStST A. niger NRRL3135 DTEVTYLMDM CSFDTIStST	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA ADTVEANFTA ADTVEANFTA ADTVEANFTA	SQPHQASPVI VFAPAIaQRL VFAPAIAkRL TFAPSIRQRL TFAPSIRQRL TFVPSIRQRL	DVIIPEGSGY EADLPGVQLS EADLPGVQLS ENDLSGVTLT ENDLSGVTLT
35 40 45	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVSITD A. terreus cbs ADDVVnLMAM CPFETVSITD A. niger var. awamori DTEVTYLMDM CSFDTIStST A. niger T213 DTEVTYLMDM CSFDTIStST A. niger NRRL3135 DTEVTYLMDM CSFDTISTST A. fumigatus 13073 DEDVVSLMDM CSFDTVARTS	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA ADTVEANFTA ADTVEANFTA ADTVEANFTA GDEVAANFTA	SQPHQASPVI VFAPAIAQRL VFAPAIAKRL TFAPSIRQRL TFAPSIRQRL TFVPSIRQRL 1FAPDIRARA	DVIIPEGSGY EADLPGVQLS EADLPGVQLS ENDLSGVTLT ENDLSGVTLT ENDLSGVTLT
35 40	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVS1TD A. terreus cbs ADDVVnLMAM CPFETVS1TD A. niger var. awamori DTEVTyLMDM CSFDTIStST A. niger T213 DTEVTYLMDM CSFDTIStST A. niger NRRL3135 DTEVTYLMDM CSFDTIStST A. fumigatus 13073 DEDVVSLMDM CSFDTVARTS A. fumigatus 32722 DEDVVSLMDM CSFDTVARTS	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA ADTVEANFTA ADTVEANFTA ADTVEANFTA GDEVAANFTA	SQPHQASPVI VFAPAIAQRL VFAPAIAKRL TFAPSIRQRL TFAPSIRQRL TFVPSIRQRL 1FAPDIRARA 1FAPDIRARA	DVIIPEGSGY EADLPGVQLS EADLPGVQLS ENDLSGVTLT ENDLSGVTLT ENDLSGVTLT EKHLPGVTLT
35 40 45	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVS1TD A. terreus cbs ADDVVnLMAM CPFETVS1TD A. niger var. awamori DTEVTyLMDM CSFDTIStST A. niger T213 DTEVTyLMDM CSFDTIStST A. niger NRRL3135 DTEVTyLMDM CSFDTIStST A. fumigatus 13073 DEDVVSLMDM CSFDTVARTS A. fumigatus 32722 DEDVVSLMDM CSFDTVARTS A. fumigatus 58128 DEDVVSLMDM CSFDTVARTS	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA ADTVEANFTA ADTVEANFTA ADTVEANFTA GDEVAANFTA GDEVAANFTA	SQPHQASPVI VFAPAIAQRL VFAPAIAKRL TFAPSIRQRL TFAPSIRQRL TFVPSIRQRL 1FAPDIRARA 1FAPDIRARA	EADLPGVQLS EADLPGVQLS EADLSGVTLT ENDLSGVTLT ENDLSGVTLT EKHLPGVTLT EKHLPGVTLT
35 40 45	NNTLDHGTCT AFEDSEL Consensus phytase NNTLDHGTCT AFEDSEL 250 A. terreus 9A-1 TDDVVnLMAM CPFETVS1TD A. terreus cbs ADDVVnLMAM CPFETVS1TD A. niger var. awamori DTEVTYLMDM CSFDTIStST A. niger T213 DTEVTYLMDM CSFDTIStST A. niger NRRL3135 DTEVTYLMDM CSFDTISTST A. fumigatus 13073 DEDVVSLMDM CSFDTVARTS A. fumigatus 32722 DEDVVSLMDM CSFDTVARTS A. fumigatus 58128 DEDVVSLMDM CSFDTVARTS A. fumigatus 26906 DEDVVSLMDM CSFDTVARTS A. fumigatus 26906 DEDVVSLMDM CSFDTVARTS	FQSAKLADPG 201 GDDAVANFTA GDAAADNFTA ADTVEANFTA ADTVEANFTA ADTVEANFTA GDEVAANFTA	SQPHQASPVI VFAPAIAQRL VFAPAIAKRL TFAPSIRQRL TFAPSIRQRL TFVPSIRQRL 1FAPDIRARA 1FAPDIRARA 1FAPDIRARA	EADLPGVQLS EADLPGVQLS EADLPGVQLS ENDLSGVTLT ENDLSGVTLT ENDLSGVTLT EKHLPGVTLT EKHLPGVTLT EKHLPGVTLT

	E. nidulans NENVIyLMDM CSFDTMARTA	ADEIEANFTA	IMGPPIRKRL	ENDLPGIKLT	
	T. thermophilus vSDVpyLMDL CPFETLARNh	GHDAQEKFAk	qFAPAIlEKI	KDHLPGVDLA	
5	M. thermophila DADTVaLMDL CPFETVASSS	GDDAQDTY1S	TFAGPITARV	NANLPGANLT	
	Consensus LMDM CPFETVARTS	GDDAEANFTA	TFAPAIRARL	EADLPGVTLT	DEDVV-
10	Consensus phytase DEDVVYLMDM CPFETVARTS	GDDVEANFTA	LFAPAIRARL	KADLPGVTLT	
		251			
15	300				
	A. terreus 9A-1 YNYL1SLDKY YGYGGGNPLG	• • • • • • • • • • • • • • • • • • • •	.DAhTLSPFC	DLFTAtEWtq	
	A. terreus cbs YNYL1SLDKY YGYGGGNPLG	••••••	.DAhTLSPFC	DLFTAaEWtq	
20	A. niger var. awamori YDYLQSLkKY YGHGAGNPLG	•••••	.vDTKLSPFC	DLFTHdEWih	
	A. niger T213 YDYLRSLKKY YGHGAGNPLG		.vDTKLSPFC	DLFTHdEWih	
25	A. niger NRRL3135 YDYLOSLKKY YGHGAGNPLG		.vDTKLSPFC	DLFTHdEWin	
	A. fumigatus 13073 YNYLOSLGKY YGYGAGNPLG		.DASQLSPFC	QLFTHnEWkk	
	A. fumigatus 32722 YNYLOSLGKY YGYGAGNPLG		.DASQLSPFC	QLFTHnEWkk	
30	A. fumigatus 58128		.DASQLSPFC	QLFTHnEWkk	
	YNYLQSLGKY YGYGAGNPLG A. fumigatus 26906		.DASQLSPFC	QLFTHnEWkk	
25	YNYLQSLGKY YGYGAGNPLG A. fumigatus 32239		.DASELSPFC	AIFTHnEWkk	
35	YDYLQSLGKY YGYGAGNPLG E. nidulans		.HGTELSPFC	AIFTEKEWlq	
	YDYLQSLSKY YGYGAGSPLG T. thermophilus		.TDT.LSPFC	ALsTQeEWqa	
40	-	sdpatadagg	gNGrpLSPFC	rLFSEsEWra	
	YDYLQSVGKW YGYGPGNPLG				
	Consensus		-DATELSPFC	ALFTE-EW	
45	YDYLQSLGKY YGYGAGNPLG Consensus phytase YDYLQSLGKY YGYGAGNPLG	• • • • • • • • • •	.DATELSPFC	ALFTHDEWRQ	
	-				

	350			
	A. terreus 9A-1	PVQGVGWaNE	LMARLTRAPV	HDHTCVNNTL
	DASPATFPLN ATLYADFSHD	•		
5	A. terreus cbs	PVQGVGWaNE	LIARLTRSPV	HDHTCVNNTL
	DANPATFPLN ATLYADFSHD	1		
	A. niger var. awamori	_	LIARLTHSPV	HDDTSSNHTL
	DSNPATFPLN STLYADFSHD			
	A. niger T213	_	LIARLTHSPV	HDDTSSNHTL
10	DSNPATFPLN STLYADFSHD			
	A. niger NRRL3135	PTQGVGYaNE	LIARLTHSPV	HDDTSSNHTL
	DSSPATFPLN STLYADFSHD			
	A. fumigatus 13073	PAQGIGFENE	LIARLTRSPV	QDHTSTNsTL
15	vsnpatfpln atmyvdfshd A. fumigatus 32722	DAOGTGE-NE	T TADI MOGDU	ODIIII CIIINI - IIII
10	vsnpatfpln atmyvdfshd	PAQGIGFENE	LIARLIRSPV	QDHTSTNsTL
	A. fumigatus 58128	DACCTCE+NE	T.T A D T. T'D C D \	QDHTSTNsTL
	vsnpatfpln atmyvdfshd	FAQGIGFCRE	DIAKLIKSEV	QDR121MB11
	A. fumigatus 26906	PAOGIGEENE	LIARLTESPV	QDHTSTNsTL
20	VSNPATFPLN ATMYVDFSHD			20110111012
	A. fumigatus 32239	PAQGIGFTNE	LIARLTNSPV	QDHTSTNsTL
	DSDPATFPLN ATIYVDFSHD			
	E. nidulans	PAQGIGFTNE	LIARLTQSPV	QDNTSTNHTL
	DSNPATFPLD rKLYADFSHD			
25	T. thermophilus	PAQGVGF√NE	LIARMTHSPV	QDYTTVNHTL
	DSNPATFPLN ATLYADFSHD			
	M. thermophila	PTQGVGF∨NE	LLARLAgvPV	RDgTSTNRTL
	DGDPrTFPLG rPLYADFSHD			
30	Consensus	DACCUCE NE	LIARLTHSPV	ODIMICONTINU
50	DSNPATFPLN ATLYADFSHD	PAQUVOF-NE	DIARDIASPV	QDHISINHIL
	Consensus phytase	PAOGVGFANE	LIARLTRSPV	ODHTSTNHTI.
				#
	DSNPATFPLN ATLYADFSHD			
	DSNPATFPLN ATLYADFSHD			
35	DSNPATFPLN ATLYADFSHD			
35	DSNPATFPLN ATLYADFSHD	351		
35	400			
35	400 A. terreus 9A-1		GLYNGTAPLS	qTsvEsvsQT
	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM	SNLVSIFWAL		
35 40	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs	SNLVSIFWAL	GLYNGTAPLS GLYNGTKPLS	
	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM	SNLVSIFWAL	GLYNGTkPLS	qTTVEDITrT
	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori	SNLVSIFWAL	GLYNGTkPLS	qTTVEDITrT
	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL	GLYNGTkPLS GLYNGTkPLS	qTTVEDITrT TTTVENITQT
	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213	SNLVSIFWAL	GLYNGTkPLS GLYNGTkPLS	qTTVEDITrT TTTVENITQT
40	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS	qTTVEDITrT TTTVENITQT TTTVENITQT
40	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS	qTTVEDITrT TTTVENITQT TTTVENITQT
40	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT
40	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT
40	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFELM A. fumigatus 32722	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1
40 45	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1
40 45	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1
40 45	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASR1YVEMM A. niger T213 DGFSSAWTVP FASR1YVEMM A. niger NRRL3135 DGFSSAWTVP FASR1YVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTGPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1
40 45 50	400 A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASR1YVEMM A. niger T213 DGFSSAWTVP FASR1YVEMM A. niger NRRL3135 DGFSSAWTVP FASR1YVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM A. fumigatus 26906	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTGPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1
40 45	A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1
40 45 50	A. terreus 9A-1 DGYAAAWTVP FAARAYVEMM A. terreus cbs DGYAAAWTVP FAARAYIEMM A. niger var. awamori DGFSSAWTVP FASRIYVEMM A. niger T213 DGFSSAWTVP FASRIYVEMM A. niger NRRL3135 DGFSSAWTVP FASRIYVEMM A. fumigatus 13073 DGYSASWVVP FGARAYFETM A. fumigatus 32722 DGYSASWVVP FGARAYFETM A. fumigatus 58128 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM A. fumigatus 26906 DGYSASWVVP FGARAYFETM	SNLVSIFWAL SNLVSIFWAL NGIISILFAL NGIISILFAL NGIISILFAL NSMVSIFFAL NSMVSIFFAL	GLYNGTKPLS GLYNGTKPLS GLYNGTKPLS GLYNGTEPLS GLYNGTGPLS GLYNGTEPLS GLYNGTEPLS	qTTVEDITrT TTTVENITQT TTTVENITQT TTTVENITQT rTSVESaKE1 rTSVESaKE1 rTSVESaKE1

	E. nidulans DGYAASWTVP FGARAYFELM	NSMISIFFA	M GLYNGTQPLS	mDSVESIQEm
	T. thermophilus DGYSAAWTVP FGGRAYIEM	NTMTSIFaA	L GLYNGTAKLS	TTEIKSIEET
5	M. thermophila GGYAASWAVP FAARIYVEKN	NDMMGVLgA	L GaYDGVPPLI) KTArrDpEEl
	Consensus DGYAASWTVP FGARAYVEMM		L GLYNGTAPLS	TTSVESIEET
10	Consensus phytase DGYSASWTVP FGARAYVEMM		L GLYNGTAPLS	TTSVESIEET
		401		
15	450 A. terreus 9A-1	00	RAEKE	DI UNIU INTO
	VMPLHGCPTD KLGRCKrDAF	•		
	A. terreus cbs VMPLHGCAVD NLGRCKrDDF		RAEKQ	
20	A. niger var. awamori VVPLHGCPID aLGRCTrDSF		QAEQE	PLVRVLVNDR
	A. niger T213 VVPLHGCPID aLGRCTrDSF	QC	QAEQE	PLVRVLVNDR
25	A. niger NRRL3135 VVPLHGCPVD aLGRCTrDSF	QC	QAEQE	PLVRVLVNDR
20	A. fumigatus 13073	QC	KSEKE	PLVRALINDR
	VVPLHGCDVD KLGRCKLNDF A. fumigatus 32722	oc	KSEKE	PLVRALTNDR
20	VVPLHGCDVD KLGRCKLNDF			
30	A. fumigatus 58128 VVPLHGCDVD KLGRCKLNDF	QC	KSEKE	SLVRALINDR
	A. fumigatus 26906 VVPLHGCDVD KLGRCKLNDF	QC	KSEKE	PLVRALINDR
n E	A. fumigatus 32239	QC	KSEKE	PLVRALINDR
35	VVPLHGCAVD KLGRCKLKDF E. nidulans	QC	E.KKE	PLVRVLVNDR
	VVPLHGCAVD KFGRCTLDDW T. thermophilus		DDSDE	
40	VVPLHGCEVD SLGRCKrDDF			
40	M. thermophila VMTLkGCGAD ErGMCTLErF	RCsgggggg	ggegrQEKDE	eMVRVLVNDR
	Consensus	QC	QAEKE	PLVRVLVNDR
45	VVPLHGCAVD KLGRCKLDDF Consensus phytase	QC	QAEKE	PLVRVLVNDR
	VVPLHGCAVD KLGRCKRDDF		_	
		, 451		
50	471 A. terreus 9A-1	VAGI.SEAOAG	GNWADCF~~~	_
- -		VEGLSFARAG	GHHADCF 444	~
	A. niger var. awamori			
55		VrGLSFARSG VrGLSFARSG	GDWAECFA~~	-
-	GDWAECFA~~ ~	VIGUSTARSG		
	A. fumigatus 13073 A. fumigatus 32722	VKGLSWARSG VKGLSWARSG	GNWGECFS~~ GNWGECFS~~	~

	A. fumigati	ıs 58128	VKGLSV	VARSG GN	WGECFS~	~ ~						
	A. fumigati A. fumigati	18 26906	VKGLSV	VARSG GN	WGECF5~	~ ~						
			VKGLSV	VARSG								
_	GNSEQSFS		LIBOT NI	ARSG GN	いしかへをかり							
Ð	E. nidulan:											
	T. thermoph			FARQG GN FARGN GK								
	M. thermop	711a	IESMAI	ARGN GR	WDICFA~							
			ved er	ARSG GN	WARCEA.							
ΙΛ.	Consensus 1	.h										
lO	сопвения 1	huycase	VAGUE:	ANDG GN	WALLE IN.							
	Figure 9											
	Figure 2											
	CI	2-1										
	C.	•										
		Eco RI	M G V	F V	v r r	s	IA	T L	F	G S	3 T	
15	T	ATATGAATT										
	1	+	 .	+	+	 -	+		-+- - -	-	+	60
	_											
	A'	TATACTTAA	GTACCCGC	CAAGCAG	CACGATG	ACAGO	TAACG	GTGGA	ACAA	SCCAA	\GGT	
		S G T	A L G	P R	g n s	H	s c	D T	v	D G	3 G	
20	C	ATCCGGTAC	CGCCTTGG	STCCTCGT	GGTAATT	CTCAC	CTCTTG	TGACA	CTGT	rgace	:GTG	
	61 -	+		+	+		+ -		-+		+	120
	G'	ragg ccatg	GCGGAACC	CAGGAGCA	CCATTAA	GAGT	BAGAAC	ACTGT	GACA	ACTGC	CAC	
		CP-2										
			CP-3									
						-	0 17	a 10	. 37	ъ с	, ,	
25		Y Q C TTACCAATG										
	G'	ITACCAATG	TTTCCCAG	LAATTTCT	CACTIGI	GGGG	CARIA	CICIC	CAIA		.CII	
	301	+					4			 -	- 	180
	121 -			,	-		•		•		•	100
	C:	AATGGTTAC	A A A CCCTC	ממג ג מיידים	GTGAACA	CCCCZ	AGTTAT	GAGAG	GTAT	BAAGA	GAA	
	C.	MIGGIIAC	mindod C.		0.0.0.							
30		E D E	SAI	s P	D V P	D	D C	R V	T	F V	7 Q	
•												
	· T	ggaagacga	ATCTGCTA!	TTCTCCA	GACGTTC	CAGA	CGACTG	TAGAG	TTAC	TTTC	FTTC	
	181 -	+		-+	+		+		-+	- -	+	240
	A	CCTTCTGCT	TAGACGAT	aaagaggt	CTGCAAG	GTCT	3CTGAC	ATCTC	AATG	AAAGC	JAAG	
			CP-	1								
35				CP-5								
					_				_			
		V L S	R H G	A R	у р т	S	s K	s K	. A	Y 5	ن A	
								ame=-				
	*	አረጥጥጥጥረጥረ	でもごもでもべる	マロククママスペス	TACTOAL	, "T"T"("	L'ITAA	L-TCTA	いしゃしゃしご	LIACT	LLIG	

	24:	1						-+-	- .		+				+	- .		-+-			-+	300
		TTC	AAAA	CAG	ATC	CTGT	rgco	CACC	ATC	TAT	rgg(GTT	GAA	GAA	JAT"	rcac	JAT'	rcco	JAA7	rgag:	AC	
		т.	т	.	7	_	_	v	37			_	_		_							
5																				L		
J		CTTI																				
	301																					360
		GAAA	CTA	ACT	TCG	ATA	AGT	TTT	CTI	GCG	ATC	ACC	LAAE	\GTI	'CCC	TTA	CAT	'GCG	AAA	.GAAC	T	
										CP-	-	SP-7	7									
10		T	Y	N	Y	T	L	G	A	D	D	L	т	P	F	G	E	N	Q	M	v	
		AGAC	TTA	CAA	CTA	CAC	TTT	GGG	TGC	TGA	CGA	.CTI	'GAC	TCC	ATT	'CGG	TGA	AAA	CCA	AATG	G	
	361			+				+			-+-	-	. -	+	-			+			+ 4	420
		TCTG	AAT(GTT(GAT	GTG.	AAA	CCC	A CG	ACT	GCT	GAA	CTG	AGG	TAA	GCC	act	TTT	GGT"	TTAC	:C	
15		N	S	G	Ι	K	F	Y	R	R	Y	K	A	L	A	R	K	I	v	P	F	
		TTAA	CTC	rgg:	rat:	TAA	GTT	CTA	CAG	AAG	ATA	CAA	.GGC	TTT	GGC	TAG.	AAA	GAT'	TGT'	ICCA	T	
	421			+-				+			-+-	 -		+				+			+ 4	180
		AATT	GAGA	ACCI	KAT!	ATT(CAA	GAT(GTC'	TTC:	TAT	GTT	C CG	AAA	CCG.	ATC:	TTT	CTA	ACAI	AGGT.	A	
													СP	-8								
20														(CP-	9						
																				G :		
	481	TCAT		-+-						 -	+-	-		+-				- - -	- - -		+ 5	40
		agtai	ATCT	CGA	AGA	YCC3	\AG1	CTC	TC	'CAA	TAI	ACG	AAG2	ACG/	\CT	TTC	CAAC	TAF	CTI	'CCA	A.	
25																						
		Q TCCAA	S ATCT	A GCT	K 'AAG	L TTG	a GCI	D GAC	P CCA	G L GGT	S TCI	Q rcai	P ACCI	H ACAC	Q Cai	a Agci	S TCI	P CCA	V LGTI	I I) 3	
	541			-+-			4			-	+			+-	-	·	· - - +	· -	· -	·	- 6	00
		AGGTT	AGA	.CGA	TTC	AAC	CGA	CTG	GGT	CCA	AGA	GT	rgg	GTO	GTT	CGA	LAGA	GGI	'CAA	TAAC	3	
30																CF	-10	CP-	. 7 7			
		v	ı	I	P	E	G	s	G	v	N	N	'n	т.	D	u			_	T A		
		ACGTT	ATT.	ATT	CCA	- GAA	.GGa	TCc	GGT	TAC	AAC	ÀAC	CACI	TTG	GAC	CAC	GGI	'ACT	TGT	ACT	3	
	601			-+-			+				+		- -	-+-			+			4	- 60	60

TGCAATAATAAGGTCTTCCLAGgCCAATGTTGTTGTGAAACCTGGTGCCATGAACATGAC

		F	E	D	s	E	L	G	D	D	V	E	A	N	F	T	A	L	F	A	P	
		CTTT	CGA	AGA	CTC	TGA	ATI	:GGG	TGA	.CGA	.CGT	TGA	AGC	TAA	CTT	CAC	TGC	TTT	GTT	CGC	TC	
5	661			+			-	+			-+-			+	-		-	+			-+	720
		GAAA	GCT	TCT	GAG	ACT	TAA	ccc	ACT	GCT	GCA	ACI	TCG	ATT	GAA	GTG	ACG	AAA	CAA	.GCG	AG	
																				CP-	12	
		78	I	D	n	D	т.	E.	Δ	ח	т.	P	G	v	т	L	т	D	E	D	v	
10		CAGC																				
	721		- 	+				+			-+-			+	- 			+			-+	780
		GTCG	ATA	ATC	TCG	ATC	TA.	CCI	'TCG	ACT	GAA	.CGG	TCC	'ACA	ATG	AAA	.CTG	ACT	GCT	TCT	GC	
		CP-1	2																			
			y.	_		_		_	_			an.	77	7	ъ	T	c	п	n	T	E	
15																						
		TTGT																				
	781		 -	+		-	· -	+			-+-			+			 -	+ - -	- 		-+	840
		AACA	AAT	'GAA	CTA	CCI	'GTA	CAC	AGG	TAA	GCT	TTC	ACA	ACG	ATC	TTG	AAG	ACT	GCG	ATG	AC	
20			s	D	E	_	7	т.	.	T	บ	n	R	W	D	0	v	ח	v	т.	0	
20																						
		AATT																				
	841			+				+			-+-			+				+			-+	900
		TTAA	.CAG	AGG	TAA	GAC	ACG	AAA	CAA	GTG	AGT	GCI	'GCT	TAC	CTC	TGT	TAT	'GCT	GAT	GAA	.CG	
95			CP	-14	CP-	15																
20					ĸ		v	~	v	~	A	a	N	ъ	т.	G	D	Δ	0	G	W	
		S																				
		AATC																				
	901																					960
		TTAG	AAA	CCC	TTA:	'CAT	[GA]	rgcc	'AA'	'GCC	ACC	ACC	CAT	GGG	TAA	CCC	'AGG	TCG	AGT	TCC	.AC	
30		a	F	λ	N	ir:	т.	т	Δ	R	T.	т	R	S	P	v	0	D	н	т	s	
		TTG																				
		1100	1						~ \		4											

TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC

15

Figure 3

QVNIIQR

30	Basidio		S-P-R-TAAQ	LPIP-Q-Q	WSPYSPYFPV	A-Y-APPAGC	QI-
	P. lycii tVtQVNLIQR		StQfsfvAAQ	LPIPaQntsn	WGPYdPFFPV	EpYaAPPEGC	
25	A. pediades KItQVNIIQR		GgvvQaTfvQ	pfFPpQiQds	WAAYTPYYPV	qaYtPPPkDC	
	T. pubescens QInQVHIIQR		hiPlRdTSAc	LdVTrDvQqs	WSmYSPYFPa'	Atyvappasc	
	P. involutus EInQVNIIQR	(phyA2)	SvP.RniAPK	FSIPeseQrn	WSPYSPYFPL	AeykAPPAGC	
20	P. involutus QInQVNIIQR	(phyA1)	SvP.KnTAPt	FPIPeseQrn	WSPYSPYFPL	Aeykappagc	
	50						

	100		51				
	P. involutus dLGnsDLVPF	(phyA1)	HGARFPTSGA	TTRIKAGLTK	LQGvqnfTDA	KFNFIkSfkY	
5	P. involutus dLGtsDLVPF	(phyA2)	HGARFPTSGA	ATRIKAGLSK	LQSvqnfTDP	KFDFIkSfTY	
	T. pubescens sLGqDsLVeL		HGARFPTSGA	Akriqtavak	LKAAsnyTDP	llafvtnyty	
10	A. pediades tLGhDDLVPF		HGARFPTSGA	GTRIQAAVKK	LQSAktyTDP	RLDFLtNyTY	
	P. lycii kFGvADLLPF		HGARWPTSGA	rSRqvAAVAK	IQmArpfTDP	KYEFLnDfvY	
15	Basidio DDLVPF		HGARFPTSGA	ATRIQAAVAK	LQSATDP	KLDFL-N-TY	-LG-
			7.07				
	150		101				
20	P. involutus TNWTAGFAsA	(phyA1)	GAaQSfDAGQ	EAFARYSKLV	SKNNLPFIRA	dgsdrvvdsa	
	P. involutus TNWTAGFAsA	(phyA2)	GAaQSfDAG1	Evfarysklv	SsDNLPFIRS	dgsdrvvdta	
25	T. pubescens		GAtQSSEAGQ	EAFTRYSsLV	SaDELPFVRA	SGSDRVVATA	
	A. pediades TNWTEGFSaA		GA1QSSQAGE	ETFqRYSfLV	Skenlpfvra	SSSNRVVDSA	
	P. lycii TNWTAGFGdA		GAnQShQTGt	DmYTRYStLf	egGDVPFVRA	AGdQRVVDSS	
30	Basidio		GA-QSSQAGQ	EAFTRYS-LV	S-DNLPFVRA	SGSDRVVDSA	
	TNWTAGFA-A						

35

151

- P. involutus (phyA1) ShNTvqPkLn LILPQtGNDT LEDNMCPaAG DSDPQvNaWL AVafPSITAR
- P. involutus (phyA2) SrNAiqPkLd LILPQtGNDT LEDNMCPaAG ESDPQvDaWL 40 AsafPSVTAQ

				01		
	T. pubescens AqFAPPMTAR	ī	SsNSitPvL	s VIISEaGND	r LDDNMCPaA(G DSDPQvNqWL
	A. pediades SIYGTPIAnR		ShHvlnPiL	f VILSEslND	r LDDaMCPnA(3 sSDPQtGiWt
5	P. lycii GVFAPnITAR		SgETvlPtLo	T VVLqEeGNcT	C LCNNMCPnE	/ DGDest.tWL
	Basidio AVFAPPITAR		S-NTP-L	- VILSE-GNDI	· LDDNMCP-AG	B DSDPQ-N-WL
10						
	250		201			
15	P. involutus giPGsFeAFa	(phyA1)	LNAAAPSVNL	TDtDAfNLvs	LCAF1TVSkE	kkSdFCtLFE
	P. involutus giPGsFeAFa	(phyA2)	LNAAAPGANL	TDaDAfNLvs	LCPFmTVSkE	qkSdFCtLFE
	T. pubescens elQAE.dAFa		LNAGAPGANL	TDtDTyNLlt	LCPFETVAtE	rrSeFCDIYE
20	A. pediades .tPEEFaqFe		LNqqAPGANI	TAaDvsNLip	LCAFETIVKE	tpSpFCNLF.
	P. lycii .tAEEYvSYe		LNAAAPSANL	SDsDAltLmd	MCPFDTLSsG	naSpFCDLF.
25	Basidio AF-		LNAAAPGANL	TD-DA-NL	LCPFETVS-E	S-FCDLFEPEEF-
30	300		251			
	P. involutus NTQTNRTLDA	(phyA1)	YgGDLDKFYG	TGYGQeLGPV	QGVGYVNELI	ARLTnsAVRD
	P. involutus NTQTNRTLDA	(phyA2)	YaGDLDKFYG	TGYGQALGPV	QGVGYINELL	ARLTnsAVnD
35	T. pubescens HTQTNsTLDS		YnADLDKFYG	TGYGQPLGPV	QGVGYINELI	ARLTaQnVsD
	A. pediades NTQTNRTLDS		YfGDLDKFYG	TGYGQPLGPV	QGVGYINELL	ARLTemPVRD
40	P. lycii ETQTNRTLDS		YyydLDKYYG	TGpGNALGPV	QGVGYVNELL	ARLTgQAVRD

	Basidio NTQTNRTLDS		Y-GDLDRFYG	TGYGQPLGPV	QGVGYINELL	ARLT-QAVRD
5						
	350		301			
	P. involutus vPNPwRTWrT	(phyA1)	SPVTFPLNKT	FYADFSHDN1	MVAVFSAMGL	FrQPAPLsTS
10	P. involutus tPDPNRTWLT	(phyA2)	APdtfplnkt	MYADFSHDN1	MVAVFSAMGL	FrQSAPLsTS
	T. pubescens		SPETFPLNRT	LYADFSHDNQ	MVAIFSAMGL	FNQSAPLDPT
15	A. pediades fPNPKRTWVT		SPITFPLDRS	IYADLSHDNQ	MIAIFSAMGL	FNQSSPLDPS
	<i>P. lycii</i> kPDeNRlWVd		dPaTFPLNRT	FYADFSHONt	MVPIFAALGL	FNaTA.LDP1
20	Basidio PDPNRTWVT		SP-TFPLNRT	fyadfshdng	MVAIFSAMGL	FNQSAPLDPS
	400		351			
25	P. involutus RVLVQDqVQP	(phyA1)	SslvPFSGRM	VVERLsCf	GT	tkV
	P. involutus RVLVQDqVQP	(phyA2)	SsVVPFSARM	aVERLsCa	GT	tkV
30	T. pubescens		kKIVPFSARM	VVERLdCg	GA	qaV
	A. pediades RILVNDALQP		SRLtPFSARM	VtERLlCqrd	GTgaggpari	mrngnvqtfV
	P. lycii RVLVNDAVQP		SKLVPFSGHM	tVEKLaC		sgkeaV
35	Basidio RVLVNDAVQP		SKLVPFSARM	VVERL-C	GT	v

	Basidio		LEFCGGD-DG	-CTLDAFVES	Q-YAREDGQG	DFEKCFATP-	-
5	P. lycii		LEFCGG.vDG	vCeLsAFVES	QtYARENGQG	DFAKCgfvPs	е
	A. pediades		LKFCGGDmDS	1CTLEAFVES	QkYAREDGQG	DFEKCFD	~
	T. pubescens		LAFCGADtsG	vCTLDAFVES	Qayarndgeg	DFEKCFAT~~	~
	P. involutus	(phyA2)	LEFCGGDqDG	lcaldkfves	QaYARsGGaG	DFEKCLATTV	~
	P. involutus	(phyA1)	LEFCGGDrNG	1CTLAKFVES	QtFARsDGaG	DFEKCFATSa	~

Figure 4

VPKGCRVTFV

	50				
5	A. terreus 9al VPeDCHITFV	KhsdCNSVDh	GYQCfPELSH	kWGlYAPYFS	LqDESPFPlD
	A. terreus cbs VPdDCHITFV	NhsdCtSVDr	GYQCfPELSH	kWGlYAPYFS	LqDESPFPlD
10	A. niger var. awamori VPaGCRVTFa	NqsTCDTVDq	GYQCfSEtSH	LWGQYAPFFS	LANESAISPD
	A. niger NRRL3135 VPaGCRVTFa	NqsSCDTVDq	GYQCfSEtSH	LWGQYAPFFS	LANESVISPE
	A. fumigatus 13073 LPkDCRITLV	GSkSCDTVDl	GYQCsPAtSH	LWGQYSPFFS	LEDE1SVSSK
15	A. fumigatus 32722 LPkDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDE1SVSSK
	A. fumigatus 58128 LPkDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDELSVSSK
20	A. fumigatus 26906 LPkDCRITLV	GSkSCDTVD1	GYQCsPAtSH	LWGQYSPFFS	LEDE1SVSSK
	A. fumigatus 32239 LPkDCRVTFV	GSkACDTVEl	GYQCsPGtSH	LWGQYSPFFS	LEDE1SVSSD
	E. nidulans VPhGCeVTFV	QNHSCNTaDG	GYQCfPNVSH	VWGQYSPYFS	IEQESAISeD
25	T. thermophilus VPqNCKITFV	DSHSCNTVEG	GYQCrPEISH	sWGQYSPFFS	LADQSEISPD
	T. lanuginosa VPkGCRVeFV	~~~~	~~~nvDIAR	hwgqyspffs	LAEvSEISPA
30	M. thermophila IPdDCeVTFa	ESRPCDTpD1	GFQCgTAISH	FWGQYSPYFS	VPsElDaS
	Basidio pPaGCQIxqV	xSxPxrxtAA	qLPipxQxqx	xWSPYSPYFP	VAxyxA
35	Consensus GCRVTFV	NSHSCDTVDG	GYQC-PEISH	LWGQYSPFFS	LADESAISPD VP-
	Fcp10	NSHSCDTVDG	GYQCFPRISH	LWGQYSPFFS	LADESAISPD

5	A. terreus 9al QSYNYSLDSE	QVLARHGARs	PThSKTKaYA	AtiaAIQKSA	TaFpGKYAFL
	A. terreus cbs KSYNYSMGSE	QVLARHGARS	PTdSKTKaYA	AtlaAlQKNA	TalpGKYAFL
	A. niger var. awamori KTYNYSLGAD	QVLSRHGARY	PTeSKGKKYS	ALIeEIQQNv	TEFDGKYAFL
10	A. niger NRRL3135 KTYNYSLGAD	QVLSRHGARY	PTdSKGKKYS	ALIEEIQQNA	TtFDGKYAFL
	A. fumigatus 13073 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtAIQaNA	Tdfkgkfafl
15	A. fumigatus 32722 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtAIQaNA	TdfkGkfafl
	A. fumigatus 58128 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtAIQaNA	Tdfkgkfafl
	A. fumigatus 26906 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtAIQaNA	Tdfkgkfafl
20	A. fumigatus 32239 ETYNYTLGAD	QVLSRHGARY	PTASKSKKYk	klvtaiqkna	TeFKGKFAFL
	E. nidulans ESYNYTLGAD	QVLSRHGARY	PTeSKSKaYS	GLIEAIQKNA	TsFwGQYAFL
25	T. thermophilus KdYrYqLGAN	QLLSRHGARY	PTSSKTELYS	qLIsrIQKtA	TaYKGyYAFL
	T. lanuginosa RdYaYhLGAD	QVLSRHGARY	PTAhKSEvYA	ELLqrIQDtA	TeFKGDFAFL
	M. thermophila RTYDYTLGAD	QVLSRHGARa	PTlkRAasYv	DLIdrIHhGA	isYgPgYEFL
30	Basidio xnxtYxLGxD	NIIqRHGARF	PTSGaAtRiq	AaVakLQsax	xxtDPKLDFL
	Consensus KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYS	ALI-AIQKNA	T-FKGKYAFL
35	Fcp10 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYS	ALIEAIQKNA	TAFKGKYAFL

5	150	101			
	A. terreus 9al VhESAEKFVE	ELTPFGrNQL	rDlGaQFYeR	YNAL.TRhin	PFVRATDAsR
	A. terreus cbs VhESAEKFVE	NLTPFGrNQL	qDlGaQFYRR	YDTL.TRhin	PFVRAADSsR
10	A. niger var. awamori VIASGEKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRnII	PFIRSSGSsR
	A. niger NRRL3135 VIASGKKFIB	DLTPFGEQEL	VNSGIKFYQR	YESL.TRnIV	PFIRSSGSBR
15	A. fumigatus 13073 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
	A. fumigatus 32722 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
	A. fumigatus 58128 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
20	A. fumigatus 26906 VIASGEKFIE	DLTAFGEQQL	VNSGIKFYQR	YKAL.ARsVV	PFIRASGSDR
	A. fumigatus 32239 VIASGEKFIE	DLTPFGEQQM	VNSGIKFYQK	YKAL.AgsVV	PFIRSSGSDR
25	E. nidulans VVASAEKFIN	DLTiFGENQM	VDSGaKFYRR	YKnL.ARknt	PFIRASGSDR
	T. thermophilus VIASGr1FIE	DLTPFGENQM	IQlGIKFYnH	YKSL.ARnaV	PFVRCSGSDR
	T. lanuginosa VIASAEfFnr	NLTRFGEEQM	MESGrQFYHR	YREq.AReIV	PFVRAAGSAR
30	M. thermophila VVhSAENFtQ	ELTRtGQQQM	VNSGIKFYRR	YRAL.ARksI	PFVRTAGqDR
	Basidio VVDSAtNWtA	DLvPFGAxQs	sQAGqEaFtR	YsxLvSxdnL	PFVRASGSDR
35	Consensus VIASAEKFIE	DLTPFGEQQM	VNSGIKFYRR	YKAL-AR-IV	PFVRASGSDR
	Fcp10	DLTPFGEQQM	VNSGIKFYRR	YKAL.ARKIV	PFVRASGSDR

VIASAEKFIE

5	A. terreus 9al TAFEsSt	GFQTARqDDh	hAnphQPSPr	VDVaIPEGsA	YNNTLEHSLC
	A. terreus cbs	GFQNARqGDP	hAnphQPSPr	VDVVIPEGtA	YNNTLEHSIC
	A. niger var. awamori TvFEdSE	GFQSTKLkDP	rAqpgQSSPk	IDVVISEASS	sNNTLDpGtC
10	A. niger NRRL3135 TvFEdSE	GFQSTKLkDP	rAqpgQSSPk	IDVVISEAsS	sNNTLDpGtC
	A. fumigatus 13073 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
15	A. fumigatus 32722 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
	A. fumigatus 58128 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
	A. fumigatus 26906 TkFEaSQ	GFQqAKLADP	gAt.nRAAPa	ISVIIPESeT	FNNTLDHGVC
20	A. fumigatus 32239 TnFEaSE	GFQqANVADP	gAt.nRAAPV	ISVIIPESeT	YNNTLDHSVC
	E. nidulans vSFEndE	GFRkAQLhDh	g.s.gQATPV	VNVIIPEidG	FNNTLDHStC
25	T. thermophilus PvFEdSs	GFQSAKV1DP	hSdkhDAPPt	INVIIeEGpS	YNNTLDtGsC
	T. lanuginosa PAaEeAp	GFQdAKdrDP	rSnkdQAePV	INVIISEELG	sNNTLDgltC
	M. thermophila TAFEegPySt	GFHSAlLADR	gStvrPTlPy	dmVVIPETaG	aNNTLHNDLC
. 30	Basidio PxAG	GFaxA	sxntxxPx	LxVILSExg.	. NDTLDDNMC
	Consensus TAFEP-SE	GFQSAKLADP	-AQASPV	INVIIPEG-G	YNNTLDHGLC
35	Fcp10	GFQSAKLADP	GANPHQASPV	INVIIPEGAG	YNNTLDHGLC

		-	00 -		
	A. terreus 9al MCPFETVSlT	VGDDavANFT	AVFAPAIaqR	LEAdlpGVQL	StDDVVNLMA
	A. terreus cbs MCPFETVSlT	VGDAaADNFT	AVFAPAIakR	LEAdLPGVQL	SADDVVNLMA
5	A. niger var. awamori MCSFDTIStS	LADtVEANFT	AtFAPSIRqR	LEndLSGVtL	TDtEVtyLMD
	A. niger NRRL3135 MCSFDTIStS	LADtVEANFT	AtfvPSIRqR	LEndLSGVtL	TDtEVtyLMD
10	A. fumigatus 13073 MCSFDTVArT	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
	A. fumigatus 32722 MCSFDTVArT	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
	A. fumigatus 58128 MCSFDTVArT	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
15	A. fumigatus 26906 MCSFDTVArT	LGDEVAANFT	ALFAPdIRAR	aKkhLPGVtL	TDEDVVSLMD
	A. fumigatus 32239 MCSFDTVArT	LGDEVEANFT	ALFAPAIRAR	IEkhLPGVQL	TDDDVVSLMD
20	E. nidulans MCSFDTMArT	rADEIEANFT	AIMGPPIRkR	LEndLPGIKL	TNENVIYLMD
	T. thermophilus LCPFETLArn	gGHDaQEKFA	kqFAPAIlEK	IKDhLPGVDL	AvsDVpyLMD
	T. lanuginosa LCPFDTVGsd	.DptqpAEF1	qVFGPRVlkK	ItkhMPGVNL	TlEDVplFMD
25	M. thermophila LCPFETVASS	IGDDaQDtYl	StFAGPItAR	VNAnLPGaNL	TDADtVaLMD
	Basidio LCPFETVS	dSDpqxnxWl	AVFAPPItAR	LNAaaPGaNL	TDxDaxNLxx
30	Consensus MCPFDTVA-T	LGDDVEANFT	AVFAPPIRAR	LEA-LPGVNL	TDEDVVNLMD
	Fcp10	LGDDVEANFT	AVFAPPIRAR	LEAHLPGVNL	TDEDVVNLMD
35	300	251			

dD..Aht...LSPF CDLFTa..tE WtQYNYLISL

A. terreus 9al

dkyygygggn

	A. terreus cbs dkyygygggn	dDAht	LSPF	CDLFTaaE	WtQYNYLlsL
	A. niger var. awamori kKYYGHGAGN	TvDTK	LSPF	CDLFTHdE	WiHYDYLQSL
5	A. niger NRRL3135 kKYYGHGAGN	TvDTK	LSPF	CDLFTHdE	Winydylosl
	A. fumigatus 13073 gKYYGYGAGN	SDASQ	LSPF	CQLFTHnE	WKKYNYLQSL
10	A. fumigatus 32722 gKYYGYGAGN	SDASQ	LSPF	CQLFTHnE	WKKYNYLQSL
	A. fumigatus 58128 gKYYGYGAGN	SDASQ	LSPF	CQLFTHnE	WkKYNYLQSL
	A. fumigatus 26906 gKYYGYGAGN	SDASQ	LSPF	CQLFTHnE	WKKYNYLQSL
15	A. fumigatus 32239 gKYYGYGAGN	ADASE	LSPF	CAIFTHnE	WkKYDYLQSL
	E. nidulans sKYYGYGAGS	AHGTE	LSPF	CAIFTEkE	WlQYDYLQSL
20	T. thermophilus gKYYGnGGGN	htDT	LSPF	CALsTQeE	WqaYDYYQSL
	T. lanuginosa dKYYSHGGGS	PvlfPrQ	LSPF	CHLFTadD	WmaYDYYyTL
	M. thermophila gKWYGYGPGN	SsdpATadag	ggngrpLSPF	CrLFSEsE	WraYDYLQSV
25	Basidio dKFYGtGyGQ		xexxSxF	CDLFexxpeE	FxaFxYxgdL
	Consensus KYYGYGAGN	SDATQ	LSPF	CDLFTHE	W-QYDYLQSL -
30	Fcp10 GKYYGYGAGN	SDATQ	LSPF	CDLFTHDE	WIQYDYLQSL
	350	301			
35	A. terreus 9al FPLNATLYAD	PLGPvQGVGW	aNELMARLTR	A.PVHDHTCv	NNTLDASPAT
	A. terreus cbs FPLNATLYAD	PLGPvQGVGW	aNELIARLTR	S.PVHDHTCv	NNTLDANPAT

	A. niger var. awamori FPLNSTLYAD	PLGPTQGVGY	aNELIARLTH	S.PVHDDTSS	NHTLDSNPAT
	A. niger NRRL3135 FPLNSTLYAD	PLGPTQGVGY	aNELIARLTH	S.PVHDDTSS	NHTLDSSPAT
5	A. fumigatus 13073 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
	A. fumigatus 32722 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
10	A. fumigatus 58128 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NSTLVSNPAT
	A. fumigatus 26906 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NsTLvSNPAT
	A. fumigatus 32239 FPLNATIYvD	PLGPAQGIGF	tNELIARLTN	S.PVQDHTST	NsTLDSDPAT
15	E. nidulans FPLDrkLYAD	PLGPAQGIGF	tNELIARLTQ	S.PVQDNTST	NHTLDSNPAT
	T. thermophilus FPLNATLYAD	PLGPAQGVGF	VNELIARMTH	S.PVQDYTTv	NHTLDSNPAT
20	T. lanuginosa FPLDAvLYAD	AFGPSRGVGF	vneliarmtg	Nlpvkdhttv	NHTLDdnpet
	M. thermophila FPLGrPLYAD	PLGPTQGVGF	vnellarla.	GvPVRDgTST	NRTLDGDPrT
	Basidio FPLNrTFYAD	PLGPvQGVGY	inellarltx	qa.VRDNTqT	NRTLDSSPXT
25	Consensus FPLNATLYAD	PLGPAQGVGF	-NELIARLTH	S-PVQDHTST	NHTLDSNPAT
	Fcp10	PLGPAQGVGF	VNELIARLTH	s.pvqdhtst	NHTLDSNPAT
30	FPLNATLYAD				
50	v.	351			
	400	351			
	A. terreus 9al AAWTVPFAAR	FSHDSnLVSI	FWALGLYNGT	aPLSqTSVE.	.SvsQTDGYA
35	A. terreus cbs AAWTVPFAAR	FSHDSnLVSI		kPLSqTTVE.	.ditrTDGYA
	A. niger var. awamori SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	kplstttve.	.NitQTDGFS

- 71 -

	A. niger NRRL3135 SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	kplstttve.	.NitQTDGFS
	A. fumigatus 13073 ASWvVPFGAR	FSHDNSMVS1	FFALGLYNGT	ePLSrTSVE.	.SaKElDGYS
5	A. fumigatus 32722 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	gPLSrTSVE.	.SaKElDGYS
	A. fumigatus 58128 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	ePLSrTSVE.	.SaKElDGYS
10	A. fumigatus 26906 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	ePLSrTSVE.	.SaKElDGYS
	A. fumigatus 32239 ASWAVPFGAR	FSHDNGMIPI	FFAMGLYNGT	ePLSqTSeE.	.Stkesngys
	E. nidulans ASWTVPFGAR	FSHDNSMISI	FFAMGLYNGT	qPLSmdSVE.	.SiQEmDGYA
15	T. thermophilus AAWTVPFGGR	FSHDNTMtSI	FaALGLYNGT	akLSTTeIK.	.SiEETDGYS
	T. lanuginosa ASWTVPFAAR	FSHDNTMtGI	FSAMGLYNGT	kPLSTSkIQP	pTgAAADGYA
20	M. thermophila ASWAVPFAAR		LgALGaYDGv		_
	Basidio TSklvPFSAR	FSHDNqMVAI	FBAMGLFNqS	aPLdPSxpDP	nrtWv
25	Consensus ASWTVPFAAR	FSHDNTMVSI	FFALGLYNGT	-PLSTTSVEP	-S-EETDGYA
	Fcp10 ASWTVPFAAR	FSHDNTMVSI	FFALGLYNGT	KPLSTTSVE.	. SIRETDGYA
		401			
30	450				
	A. terreus 9al PLHGCPtDKL	AYVEMMQC	ra	EKEPL	VRVLVNDRVM
	A. terreus cbs PLHGCAVDNL	AYIEMMQC	ra	EKQPL	VRVLVNDRVM
35	A. niger var. awamori PLHGCPIDaL	lyvemmqc	Qa	EQEPL	VRVLVNDRVV
	A. niger NRRL3135 PLHGCPVDaL	lyvemmqc	Qa	EQEPL	VRVLVNDRVV

	A. fumigatus 13073 PLHGCDVDKL	AYfEtMQC	Кв	EKEPL	VRaLINDRVV
	A. fumigatus 32722 PLHGCDVDKL	AYfEtMQC	Ks	EKEPL	VRaLINDRVV
5	A. fumigatus 58128 PLHGCDVDKL	AYfetMQC	Ks	EKESL	VRaLINDRVV
	A. fumigatus 26906 PLHGCDVDKL	AYfEtMQC	Ks	EKEPL	VRaLINDRVV
10	A. fumigatus 32239 PLHGCAVDKL	AYfEtMQC	Кв	EKEPL	VRaLINDRVV
	E. nidulans PLHGCAVDKF	AYFELMQC	E	KKEPL	VRVLVNDRVV
	T. thermophilus PLHGCEVDsL	AYIEMMQC	Dd	sdepv	VRVLVNDRVV
15	T. lanuginosa PLHGCrVDRW	AYVELLRC	Etetsseeee	EGEDEPF	VRVLVNDRVV
	M. thermophila TLkGCGaDEr	iYVEkMRC	e33333333	EGrqeKDEeM	VRVLVNDRVM
20	Basidio PLEfCGgDxd	mvVErLxCxx	xgtxxxxxxx	XXXXXXXXXX	VRVLVNDaVq
	Consensus PLHGCGVDKL	AYVEMMQC	E	EGEKEPL	VRVLVNDRVV
25	Fcp10 PLHGCGVDKL	AYVEMMQC	EA	EKEPL	VRVLVNDRVV

Fcp10 GRCKRDDFVE GLSFARSG.. GNWEECFA.. ..

		451	482
	A. terreus 9al	GRCKrDAFVA GLSFAQAG	GNWADCF~~~ ~-
	A. terreus cbs	GRCKrDDFVE GLSFARAG	GNWAECF
	A. niger var. awamori	GRCtrDsFVr GLSFARSG	GDWAECsA~~
5	A. niger NRRL3135	GRCtrDsFVr GLSFARSG	GDWAECFA
	A. fumigatus 13073	GRCKINDFVK GLSWARSG	GNWGECFS~- ~-
	A. fumigatus 32722	GRCK1NDFVK GLSWARSG	GNWGECFS
	A. fumigatus 58128	GRCKINDFVK GLSWARSG	GNWGECFS
	A. fumigatus 26906	GRCKINDFVK GLSWARSG	GNWGECFS
10	A. fumigatus 32239	GRCK1KDFVK GLSWARSG	GNSEQSFS~~ ~~
	E. nidulans	GRCtlddwve GLNFARSG	GNWKtCFT1~ ~~
	T. thermophilus	GRCKrDDFVr GLSFARqG	GNWEGCYAas e~
	T. lanuginosa	GRCRrDEWIK GLTFARqG	GHWDrCF~~~ ~~
	M. thermophila	GmCtlerFIE SMAFARGN	GKWD1CFA
15	Basidio	GxCtlDAFVE SqxYAReDgq	GDFEKCFAtp xx
	Consensus	GRCK-DDFVE GLSFARSG	GNWEECFA

Figure 5

	CP-1
5	Ecorim g v f v v l l s i a t l f g s t 1 ${ t t}$
	1++ 60
	ATATACTTAAGTACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAAGCCAAGGT
	S G T A L G P R G N S H S C D T V D G G 3
10	CATCCGGTACCGCCTTGGGTCCTCGTGGTAATTCTCACTCTTGTGACACTGTTGACGGTG
	61
	GTAGGCCATGGCGGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACAACTGCCAC
	CP-2 <u>CP-3.10</u>
15	Y Q C F P E I S H L W G Q Y S P F F S L 5
	121++ 180
	CAATGGTTACAAAGGGTCTTTAAAGAGTGAACACCCCAGTTATGAGAGGTAAGAAGAGAA
20	ADESAISPDVPKGCRVTFVQ77
	TGGCTGACGAATCTGCTATTTCTCCAGACGTTCCAAAGGGTTGTAGAGTTACTTTCGTTC
	181
	ACCGACTGCTTAGACGATAAAGAGGTCTGCAAGGTTTCCCGACATCTCAATGAAAGCAAG
25	<u>CP-4.10</u> <u>CP-5.10</u>
	V L S R H G A R Y P T S S K S K K Y S A 97
	AAGTTTTGTCTAGACACGGTGCTAGATACCCAACTTCTTCTAAGTCTAAGAAGTACTCTG
	241+ 300
	TTCAAAACAGATCTGTGCCACGATCTATGGGTTGAAGAAGATTCAGATTCTTCATGAGAC
30	and the second s
_	LIEAIQKNATAFKGKYAFL K 117
	CTTTGATTGAAGCTATTCAAAAGAACGCTACTGCTTTCAAGGGTAACTACCGTTTTCAA

	301			+				+		· -	-+-			+	. -	 -	-	+		- 	-+	360
		GAAA	CTA	ACT	TCG	ATA	AGI	TT	CTI	GCG	ATG	ACG	AAA	GTI	ccc	ATT	CAT	'GCG	AAA	GAA	CT	
										CF	-6											
												CP-	7.1	0								
5		T	Y	N	Y	T	L	G	A	D	D	L	T	P	F	G	E	Q	Q	M	v	137
		AGAC	TTA	CAA	CTA	CAC	TTI	GGG	TGC	TGA	CGA	CTI	'GAC	TCC	ATT	CGG	TGA	ACA	ACA	AAT	GG	
	361			+				+	- 		-+-			+	- - -			+			-+	420
		TCTG	AAT	GTT	GAT	GTG	AAA	CCC	ACG	ACT	'GCT	'GAA	CTG	AGG	TAA	GCC	ACT	T GT	TGT	TTA	CC	
10		N	s	G	I	ĸ	F	Y	R	R	Y	ĸ	A	L	A	R	ĸ	I	v	P	F	157
		TTAA	CTC	TGG	TAT	TAA	GTI	CTA	CAG	AAG	ATA	CAA	GGC	TTT	'GGC	TAG	AAA	GAT	TGT	TCC.	АТ	
	421			+			<u>-</u>	+	. -		-+-	-		+				+		-	-+	480
		AATT	GAG.	ACC.	ATA	ATT	CAA	GAT	GTC	TTC	'TAT	GTI	CCG	AAA	.CCG	ATC	TTT	CTA	ACA	AGG'	TA	
													CP	-8.	10							
15															CP-	9.1	<u>o</u>					
																			E			177
	481	TCGT																				540
		AGCA	atc'	TCG.	AAG	ACC	AAG	ACT	GTC	TCA.	ATA	ACG	AAG	ACG	ACT	TTT	CAA	GTA	ACT'	TCC.	AA	
20																						
		Q TCCA	_								_	_							V AGT			197
	541		- 	+				+			-+-			+				+		- - -	-+	600
		AGGT	TAG	ACG.	ATT	CAA	CCG	ACI	GGG	TCC	ACG	ATT	GGG	TGT	GGT	TC G	AAG	AGG	TCA	ATA	ΑT	
25							,									CP	-10	.10				
																		CP-	11.	10		
		V ACGT																	C G T G			217
	601			+			- - -	+			-+-	- - -		+				+			-+	660
30		TGCA	ATA	ATA	AGG	TCT	TCC	ACG	ACC	TAA:	GTT	GTT	GTG	AAA	.CCT	GGT	GCC	AAA	CAC	ATG.	AC	
		F	E	E	s	E	L	G	D	D	v	E	A	N	F	T	A	¥	F	A	P	237
		CTTT	CGA	AGA	ATC	TGA	ATT	'GGG	TGA	CGA	CGI	TGA	AGC	TAA	CTT	CAC	TGC	TGT	TTT	CGC	TC	

		66	1	. – – –		+			-+-							+			-+-			4	- 720
			GAA	AGC	TTÇ	TTA	GAC'	TTA.	ACC	CAC	TGC	TGC	AAC	TTC	GAT	TGA	AGT	GAC	GAC	AAA	AGC	'G A G	ļ
																					CP	-12	.10
5			P	ı	R	A	R	L	E	A	H	L	P	G	v	N	L	т	D	E	D	ν	257
			CAC	CTA	TTA	GAG	CTA(JAT'	rgg	AAG	CTC	ACT	TGC	CAG	GTG'	TTA.	ACT"	rgac	CTG.	ACG.	AAG	ACG	;
		723	L			+	- -		-+-			+		-	- - - .	+			-+-			+	780
			GTG	GAT	AAT	CTC	JATO	TA.	ACC:	FTC	GAG	TGA	ACG	GTC	CAC	LAT:	TGA	CTC	JAC!	rgc:	rtc	TGC	
10			CP-	13.	10																		
			V	N	L	M	D	M	С	P	F	D	T	V	A	R	T	S	D	A	T	Ω	277
			TTG	TTA	ACTI	rgat	'GGA	CAI	'GT	TC	CAT	TCG	ACA	TG	TGC	TAC	AAC	TTC	TGI	ACGO	TA	CTC	
		781			+		· -	 -	+			+			4	- 	- - -		+	· -		+	840
			AAC	LATI	[GA#	CTA	CCT	GTA	CAC	AGO	3TA	AGC'	TGTC	BACA	ACG	ATC	TTG	AAG	ACT	GCG	ATO	ЗAG	
15			T.	g	D	F	C	n	Τ.	727	T	ш	n		TAT	_	_	17	_	37	_	_	297
			AATT																			_	297
		041																					
		041																					900
20			TTA					ACT	GAA	CAA	LGT	AGI	rgci	GCT	TAC	CTA	AGT	TAT	GCT	'GAT	'GAJ	/CG	
20				<u>C</u>	P-1	4.1 CP	u - <u>15</u>	.10															
			s	L	G	ĸ	Y	Y	G	Y	G	A	G	N	P	L	G	P	A	Q	G	v	317
			AATC	TTT	GGG	TAA	GTA	CTA	cgg	TTA	.CGG	TGC	TGG	TAA	CCC	ATT	GGG'	rcc	AGC	TCA	AGG	TG	
		901			+		 -			 -		-+-			+				+			-+	960
25			TTAG	AAA	CCC.	ATT	CAT	BAT	3CC	AAT	GCC	AC G	ACC	ATT	GGG'	raa(CCC	AGG"	rcg.	AGT"	TCC	AC	
																							337
			TTGG	TTT	CGT	TAAC	CGAI	TTC	AT.	rgc	TAG	ATT	GAC	TCA	CTC:	rcc/	AGTT	CAA	AGA	CCA	CAC	TT	
30	1020	961			+			4	··			-+-			+			4	 -			-+	
			AACC	AAA	GCA/	ATTO	3CTI	'AAC	LAT:	ACG.	ATC	TAA	CTG	AGT	3AG1	\GG'	rcaj	GTI	CT	3GT(STG	AA	

CP-16.10 CP-17.10

		T	N	H	T	L	D	s	N	P	A	T	F	. E	· I	N	A	. :	r 1	<u>.</u>	<i>Y</i> 2	A 357
		CTA	CTAA	CCA	CAC	TTT	GGA	CTC	TAI	ACC	CAG	CTA	CTI	TCC	CAT	'TGA	ACG	CT	CT	rtg:	raco	3
		ı		+				+			+				+			-+-		. .		-
	1080																					
5		GAT	BATT	'GGT	GTG.	AAA	CCT	GAG	ATI	'GG(FTC	GAT	GAA	AGG	GTA	ACT	TGC	GAT	GAA	ACA	TGC	2
		D			**	_		_			_	_	_	_	_							
		_																				377
		CTGA	CTT	CTC'	TCA(CGA	CAA	CAC	TAT	'GG1	TT	CTA!	r t T	TCT	TCG	CTT'	rgg	GTT	TGT	'ACA	ACG	ļ.
10	1081 1140			+				+			-+	-			+			- + -			+	
		GACT	GAA	GAG	AGTO	SCTO	TT(STG	АТА	CCA	AAC	ZATI	AA	AGA:	AGC(2221	\ CC(73.5	እሮአ	mc m	maa	
														1012		JIM	100	CAA	ACA	161	160	
									•	CP-		.10 :P-1		LO								
		т	ĸ	P	L	s	T	T	s	v	E	s	I	E	E	T	D	G	Y	A	A	397
15		GTAC	TAAC	GCC A	ATTC	TCI	'AC'	ľAC'	TTC'	TGT	TG	LATC	TAT	TG	LAG!	LAAC	TG?	\CG	GTT.	ACG	CTG	
	1141			+-		· -	4				-+-	. -				. .		- + -			+	
	1200																					
		CATG	ATTO	CGGT	'AAC	AGA	TGA	TG	AAG	ACA.	ACI	TAG	ATA	ACI	TCI	TTG	ACI	GC	CAA!	rgc	JAC	
20		s	W	т	v	P	F	Δ	Δ	p	75.	v	77	E.	м	w	0	~	177	7		417
		CTTC:															-		_			417
	1260																					
		GAAG	AACC	'TGA	CAA	GGT.	AAG	CCA	CGA	ATC:	rcg	ААТ	GCA	ACT	TTA	CTA	CGT	TAC	ACI	TC	JAC	
25													CP		.10 CP-	21.	10					
		к	E	P j	L,	v 1	R '	v	L	v	N	D	R					Ħ	G	c	G	427
		AAAA																			_	437
	1261																					
30	1320						+				+-			+				+			-+	
		TTTTC	CTT	GGT	AAC(CAAT	rcte	CAA	AAC	CAA	TT(3CT(TC:	rca:	ACA:	AGG:	CAA)	CGT	GCC	AAC	AC	
		v	D 1	K I	L (3 F	٠ (2	ĸ	R	D	D	F	v	E	G	L	s	F	A	R	457
		ር ጥርጥጥ																				

1321

CACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT

CP-22.10

S G G N W E E C F A * Eco RI 467

GATCTGGTGGTAACTGGGAAGAATGTTTCGCTTAAGAATTCATATA

1381

CTAGACCACCATTGACCCTTCTTACAAAGCGAATTCTTAAGTATAT

10

Figure 6

1 50 ----- ~FPipeseqR nWSPYSPYFP LAEykA.... 15 P. involutus (phyA1) pPaGCQInqV ----- -FsipeseqR nWSPYSPYFP LAEykA.... P. involutus (phyA2) pPaGCeInqV T. pubescens 20 pPaSCQInqV A. pediades pPKDCKITqV P. lycii pPEGCtVTqV KhadCNSVDh GYQCfPELSH kWGlYAPYFS LqDESPFPlD 25 A. terreus 9a1 VPEDCHITFV NhadCtSVDr GYQCfPELSH kWGlYAPYFS LqDESPFPlD A. terreus cbs VPDDCHITFV NqsTCDTVDq GYQCfSEtSH LWGQYAPFFS LANESAISPD A. niger var. awamori 30 VPaGCRVTFa NqsSCDTVDq GYQCfSEtSH LWGQYAPFFS LANESvISPD A. niger T213 **VPaGCRVTFa** NqsSCDTVDq GYQCfSEtSH LWGQYAPFFS LANESvISPE A. niger NRRL3135 **VPaGCRVTFa** 35 A. fumigatus ATCC13073 GSkSCDTVD1 GYQCsPAtSH LWGQYSPFFS LEDE1SVSSK LPKDCRITLV

	A. fumigatus ATCC32722 LPKDCRITLV	GSkSCDTVD1 GYQCsi	PAtSH LWGQYSPFFS LEDE1S	VSSK
	A. fumigatus ATCC58128 LPKDCRITLV	GSkSCDTVD1 GYQCsi	PAtsh LWGQYSPFFS LEDEIS	vssk
5	A. fumigatus ATCC26906 LPKDCRITLV	GSkSCDTVDl GYQCsI	PATSH LWGQYSPFFS LEDEIS	vssk
	A. fumigatus ATCC32239 LPKDCRVTFV	GSkACDTVEl GYQCsI	PGtSH LWGQYSPFFS LEDELS	VSSD
10	E. nidulans VPhGCeVTFV	QNHSCNTaDg GYQCfr	NVSH VWGQYSPYFS IEQESA	ISeD
	T. thermophilus VPQNCKITFV	DSHSCNTVEG GYQCTF	EISH sWGQYSPFFS LADQSE	SPD
	T. lanuginosa VPKGCRVeFV	~~~~nv	DIAR hWGQYSPFFS LAEvSEI	SPA
15	M. thermophila IPDDCeVTFa	ESRPCDTpDl GFQCgT	AISH FWGQYSPYFS VPsElDa	ıs
	G			
	Consensus Seq. 11 VPKGCRVTFV	NSHSCDTVD- GYQC-P	eish lwgqyspffs ladesai	SPD
20				
20	100	51		
20	100 P. involutus (phyA1) KSFKYdLGns		tRik AgLtKLQgvq nftDAKF	nFI
20	P. involutus (phyAl)	NIIqRHGARF PTSGaT	tRik AgLtKLQgvq nftDAKF tRik AgLsKLQsvq nftDPKF	
	P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2)	NIIQRHGARF PTSGaT		DFI
	P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2) KSFtYdLGTs T. pubescens	NIIQRHGARF PTSGaT NIIQRHGARF PTSGaA HIIQRHGARF PTSGaA	tRik AgLsKLQsvq nftDPKF	DFI AFV
25	P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2) KSFtYdLGTs T. pubescens tnYtYSLGqD A. pediades	NIIQRHGARF PTSGaT NIIQRHGARF PTSGaA HIIQRHGARF PTSGaA NIIQRHGARF PTSGaG	tRik AgLsKLQsvq nftDPKF KRiq TaVAKLKaaS nytDPlL	DFI AFV DFL
25	P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2) KSFtYdLGTs T. pubescens tnYtYSLGqD A. pediades tnYtYTLGhD P. lycii	NIIQRHGARF PTSGAT NIIQRHGARF PTSGAAI HIIQRHGARF PTSGAAI NIIQRHGARF PTSGAGI	tRik AgLsKLQsvq nftDPKF KRiq TaVAKLKaaS nytDPlL :Riq AaVKKLQsak TytDPRL	DFI AFV DFL EFL
25	P. involutus (phyA1) KSFKYdLGns P. involutus (phyA2) KSFtYdLGTs T. pubescens tnYtYSLGqD A. pediades tnYtYTLGhD P. lycii NdFvYkFGvA A. terreus 9a1	NIIQRHGARF PTSGAT NIIQRHGARF PTSGAAI HIIQRHGARF PTSGAAI NIIQRHGARF PTSGAGI NLIQRHGARW PTSGATS	tRik AgLsKLQsvq nftDPKF KRiq TaVAKLKaaS nytDPlL tRiq AaVKKLQsak TytDPRL sRqv AaVAKIQmar PftDPKY	DFI AFV DFL EFL AFL

		•	- 80 -		
	A. niger T213 KTYNYSLGAD	QVLSRHGARY	PTeSKGKKYS	ALIEeIQQNv	TtFDGKYAFL
	A. niger NRRL3135 KTYNYSLGAD	QVLSRHGARY	PTdSKGKKYS	ALIEeIQQNA	TtFDGKYAFL
5	A. fumigatus ATCC13073 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	Tdfkgkfafl
	A. fumigatus ATCC32722 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	Tdfkgkfafl
10	A. fumigatus ATCC58128 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	Tdfkgkfafl
	A. fumigatus ATCC26906 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYk	kLVtaIQaNA	Tdfkgkfafl
	A. fumigatus ATCC32239 ETYNYTLGAD	QVLSRHGARY	PTASKSKKYk	kLVtaIQKNA	TeFKGKFAFL
15	E. nidulans ESYNYTLGAD	QVLSRHGARY	PTeSKSKaYS	GLIEaIQKNA	TsFwGQYAFL
	T. thermophilus KdYrYqLGAN	QLLSRHGARY	PTSSKTElys	qLIsRIQKtA	TaYKGyYAFL
20	T. lanuginosa RdYaYhLGAD	QVLSRHGARY	PTAhKSEvya	ELLQRIQDtA	TeFKGDFAFL
	M. thermophila RTYDYTLGAD	QVLSRHGARa	PTlkRAasYv	DLIDRIHHGA	isYgPgYEFL
25	Consensus Seq. 11 KTYNYTLGAD	QVLSRHGARY	PTSSKSKKYS	ALIBRIQKNA	T-FRGRYAFL
			101		
	150				
30	P. involutus (phyA1) VVDSAtNWtA	DLvPFGAaQs	fDAGqEaFaR	YskLvSKNnL	PFIRAdGSDR
	P. involutus (phyA2) VVDTAtNWtA	DLvPFGAaQs i	fDAGLEvFaR	YskLvSsDnL	PFIRSdGSDR

sLveLGAtQs sEAGqEaFtR YsSLvSaDeL PFVRASGSDR

DLvPFGAlQs sQAGeEtFQR YsfLvSKEnL PFVRASSSNR

DL1PFGANQs hQTGtDMYtR YsTLfEgGdV PFVRAAGdQR

T. pubescens

VVATANNWtA

VVDSAtNWtE

P. lycii VVDSStNWtA

35 A. pediades

	A. terreus 9a1 VhESAEKFVE	ELTPFGrNQL	rDlGaQFYeR	YNAL.TRHIN	PFVRATDASR
	A. terreus cbs VhesAEKFVE	NLTPFGrNQL	qDlGaQFYRR	YDTL.TRHIn	PFVRAADSsR
5	A. niger var. awamori VIASGEKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRNII	PFIRSSGSsR
	A. niger T213 VIASGEKFIE	DLTPFGEQEL	VNSGIKFYQR	YESL.TRNII	PFIRSSGS&R
10	A. niger NRRL3135 VIASGKKFIE		-	YESL.TRNIV	
	A. fumigatus ATCC13073 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
	A. fumigatus ATCC32722 VIASGEKFIE	DLTPFGEQQL	VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
15	A. fumigatus ATCC58128 VIASGEKFIE		VNSGIKFYQR	YKAL.ARSVV	PFIRASGSDR
	A. fumigatus ATCC26906 VIASGEKFIE			YKAL.ARSVV	
20	A. fumigatus ATCC32239 VIASGEKFIE			•	
	E. nidulans VVASAEKFIN			YKnL.ARKnt	
	T. thermophilus VIASGrlFIE		-	YKSL.ARNaV	
25	T. lanuginosa VIASAEfFnr			YREq.AREIV	
	M. thermophila VVhSAENFtQ	ELTREGQQQM	VNSG1KFYRR	YRAL.ARKsI	PFVRTAGqDR
30	Consensus Seq. 11 VIASAEKFIE	DLTPFGENQM	VNSGIKFYRR	YKAL-ARNIV	PFVRASGSDR
	200	151			
35	P. involutus (phyAl) PAaGD	GFaSA	shNtvqPk	LNLILPQT	gndtlednmc
	P. involutus (phyA2) PAaGE	GFaSA	srNaiqPk	LDLILPQT	gndtlednmc

	Consensus Seq. 11 TAFEDST	GFQSAKLADP -AHQASPV INVIIPEGSG YNNTLDHGLC
35		
	M. thermophila TAFEEgpyST	GFHSAlLADR gStvRPTlPy dmVVIPETAG aNNTLHNDLC
	T. lanuginosa PAaEEAP	GFQdAKdrDP rSnkDQAePV INVIISEETG sNNTLDgltC
30	T. thermophilus PvFEDSS	GFQSAKVlDP h\$dkHDAPPt INVIIeEGPS YNNTLDtGsC
	E. nidulans vSFENde	GFRkAQLhDh g.s.gQATPV VNVIIPEidG FNNTLDHStC
25	A. fumigatus ATCC32239 TnFEASe	GFQQANVADP gAt.NRAAPV ISVIIPESeT YNNTLDHSVC
	A. fumigatus ATCC26906 TkFEASq	GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
	A. fumigatus ATCC58128 TkFEASq	GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
20	A. fumigatus ATCC32722 TkFEASq	GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
	A. fumigatus ATCC13073 TkFEASq	GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
15	A. niger NRRL3135 TvFEDSe	GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDpGtC
	A. niger T213 TvFEDSe	GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDpGtC
	A. niger var. awamori TvFEDSe	GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDpGtC
10	A. terreus cbs	GFQNARqGDP hAnpHQPSPr VDVVIPEGTA YNNTLEHSIC
	A. terreus 9al TAFEsST	GFQTARqDDh hAnpHQPSPr VDVaIPEGSA YNNTLEHSLC
5	P. lycii PnevD	GFgdAsgEtvlPt LQVVLQEE gNcTLcNNMC
	A. pediades PnaGs	GFsAAshHvlNPI LfVILSES LNDTLDDAMC
	T. pubescens	GFalAssNsiTPV LSVIISEA gNDTLDDNMC

.410000-

_	_	

	P. involutus (phyA1) LCAF1TVSK.	.SDpqvnaWl	AVafPSItAR	LNAaaPSVNL	TDtDafNLVs
5	P. involutus (phyA2) LCPFmTVSK.	.SDpqvDaWl	AsafPSVtAQ	LNAaaPGaNL	TDADafNLVs
	T. pubescens LCPFETVAt.	.SDpqvnQWl	AqFAPPMtAR	LNAgaPGaNL	TDtDtyNLLt
10	A. pediades LCAFETIVK.	.SDpqtGiWT	SIYGTPIanR	LNqqaPGaNI	TAADVsNLIp
	P. lycii MCPFDTLSs.	.GDESt.tWl	GVFAPnItAR	LNAaaPSaNL	SDsDaLtLMD
	A. terreus 9al MCPFETVSlT	VGDDAVANFT	AVFAPAIaqR	LEAdlpGVQL	StddVVNLMA
15	A. terreus cbs MCPFETVSlT	VGDAAADNFT	AVFAPAIakR	LEAdLPGVQL	SADDVVNLMA
	A. niger var. awamori MCSFDTIStS	LADtvEANFT	Atfapsirqr	LEndLSGVtL	TDtEVtyLMD
20	A. niger T213 MCSFDTIStS	LADtvEANFT	AtFAPSIRqR	LEndLSGVtL	TDtEVtyLMD
	A. niger NRRL3135 MCSFDTIStS	LADtvEANFT	AtfvPSIRqR	LEndLSGVtL	TDtEVtyLMD
	A. fumigatus ATCC13073 MCSFDTVART	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
25	A. fumigatus ATCC32722 MCSFDTVART	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
	A. fumigatus ATCC58128 MCSFDTVART	LGDEVAANFT	ALFAPdIRAR	aEkhLPGVtL	TDEDVVSLMD
30	A. fumigatus ATCC26906 MCSFDTVART	LGDEVAANFT	ALFAPdIRAR	aKkhLPGVtL	TDEDVVSLMD
	A. fumigatus ATCC32239 MCSFDTVART	LGDEVEANFT	ALFAPAIRAR	IEkhLPGVQL	TDDDVVSLMD
	E. nidulans MCSFDTMART	rADEIEANFT	AIMGPPIRkR	LEndLPGIKL	TNENVIYLMD
35	T. thermophilus LCPFETLARn	gGHDAQEKFA	kqFAPAIlEK	IKDhLPGVDL	AvsDVpyLMD
	T. lanuginosa LCPFDTVGsd	.DptqpAEF1	qVFGPRVlkK	ItkhMPGVNL	TlEDVplFMD

- 84 -

	M. thermophila LCPFETVAsS	IGDDAQDtYl	StFAGPItAR	VNAnLPGaNL	TDADtVaLMD
5	Consensus Seq. 11 MCPFDTVART	LGDDAEANFT	AVFAPPIRAR	LRA-LPGVNL	TOEDVVNLMD
	300	251			
10	P. involutus (phyA1) dKFYGtGyGQ		ekkSdF	CtLFegiPGs	FeaFAYggdL
	P. involutus (phyA2) dKFYGtGyGQ	• • • • • • • • • • • • • • • • • • • •	eqkSdF	CtLFegiPGs	FeaFAYagdL
	T. pubescens dKFYGtGyGQ		errSeF	CDIYeelqAE	.daFAYnadL
15	A. pediades dkFYGtGyGQ		etpSPF	CNLFTPEE	FaQFEYFgdL
	P. lycii dkyygtgpgn	•••••	gnaSPF	CDLFTAEE	YvsYEYYydL
20	A. terreus 9a1 dKYYGYGGGN	dDAht	LSPF	CDLFTAtE	WŁQYNYLISL
	A. terreus cbs dKYYGYGGGN	dDAht	LSPF	CDLFTAAE	WtQYNYLlSL
	A. niger var. awamori kKYYGHGAGN	TvDTK	LSPF	CDLFThDE	Wihydylosl
25	A. niger T213 kKYYGHGAGN	TvDTK	LSPF	CDLFThDE	WiHYDYLRSL
	A. niger NRRL3135 kKYYGHGAGN	TvDTK	LSPF	CDLFThDE	Winydylosl
30	A. fumigatus ATCC13073 gKYYGYGAGN	SDASQ	LSPF	CQLFThNE	WKKYNYLQSL
	A. fumigatus ATCC32722 gKYYGYGAGN	SDASQ	LSPF	CQLFThNE	WKKYNYLQSL
	A. fumigatus ATCC58128 gKYYGYGAGN	SDASQ	LSPF	CQLFThNE	WKKYNYLQSL
35	A. fumigatus ATCC26906 gKYYGYGAGN	SDASQ	LSPF	CQLFThNE	WKKYNYLQSL
	A. fumigatus ATCC32239 gKYYGYGAGN	ADASE	LSPF	CAIFThNE	WKKYDYLQSL

	E. nidulans sKYYGYGAGS	AHGTELSPF CAIFTEKE W1QYDYLQSL
	T. thermophilus gKYYGnGGGN	htDT LSPF CALsTqEE WqaYDYYQSL
5	T. lanuginosa dKyySHGGGS	PvlfPrQLSPF CHLFTADD WmaYDYYyTL
	M. thermophila gкwyGyGpGN	SødpATadag ggngrpLSPF CrLFSESE WraYDYLQSV
10	Consensus Seq. 11 KYYGYGAGN	SDATQLSPF CDLFTADE W-QYDYLQSL
	350	301
15	P. involutus (phyA1) FPLNkTFYAD	eLGPvQGVGY vNELIARLTN S.AVRDNTqT NRTLDASPvT
	P. involutus (phyA2) FPLNkTMYAD	ALGPVQGVGY iNELLARLTN S.AVNDNTqT NRTLDAaPDT
20	T. pubescens FPLNrTLYAD	PLGPvQGVGY iNELIARLTA q.nVsDHTqT NsTLDSSPET
	A. pediades FPLDrSIYAD	PLGPvQGVGY iNELLARLTE m.PVRDNTqT NRTLDSSPlT
	P. lycii FPLNrTFYAD	ALGPvQGVGY vNELLARLTg q.AVRDETqT NRTLDSDPAT
25	A. terreus 9al FPLNATLYAD	PLGPvQGVGW aNELMARLTR A.PVHDHTCv NNTLDASPAT
	A. terreus cbs FPLNATLYAD	PLGPvQGVGW aNELIARLTR S.PVHDHTCv NNTLDANPAT
30	A. niger var. awamori FPLNSTLYAD	PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSNPAT
	A. niger T213 FPLNSTLYAD	PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSNPAT
	A. niger NRRL3135 FPLNSTLYAD	PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSSPAT
35	A. fumigatus ATCC13073 FPLNATMYvD	PLGPAQGIGF tNELIARLTR S.PVQDHTST NSTLVSNPAT
	A. fumigatus ATCC32722 FPLNATMYvD	PLGPAQGIGF tNELIARLTR S.PVQDHTST NBTLvSNPAT

	A. fumigatus ATCC58128 FPLNATMYvD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NatlvSNPAT
	A. fumigatus ATCC26906 FPLNATMYVD	PLGPAQGIGF	tNELIARLTR	S.PVQDHTST	NaTLvSNPAT
5	A. fumigatus ATCC32239 FPLNATIYVD	PLGPAQGIGF	tNELIARLTN	S.PVQDHTST	NSTLDSDPAT
	E. nidulans FPLDrkLYAD	PLGPAQGIGF	tneliarltq	S.PVQDNTST	NHTLDSNPAT
10	T. thermophilus FPLNATLYAD	PLGPAQGVGF	vNELIARMTH	S.PVQDYTTv	NHTLDSNPAT
	T. lanuginosa FPLDAvLYAD	AFGPSRGVGF	vNELIARMTg	Nlpvkdhtt _v	NHTLDdnpet
	M. thermophila FPLGrPLYAD	PLGPTQGVGF	vnellarla.	GvPVRDgTST	NRTLDGDPrT
15					
	Consensus Seq. 11 FPLNATLYAD	PLGPAQGVGF	-NELIARLTH	s-pvQdhtst	NHTLDSNPAT
					•
		351			
20	400	331			
20	400 P. involutus (phyA1) TSSlVPFSGR		FsAMGLFrqP	aPLSTSvpNP	wrtWr
20	P. involutus (phyA1)	FSHDNlMVAV	FsAMGLFrqP FsAMGLFrqS	_	
20 25	P. involutus (phyA1) TSSlVPFSGR P. involutus (phyA2)	FSHDN1MVAV	_	aPLSTSTpDP	nrtWl
	P. involutus (phyA1) TSS1VPFSGR P. involutus (phyA2) TSSVVPFSAR T. pubescens	FSHDN1MVAV FSHDN1MVAV FSHDNqMVAI	FsAMGLFrqS	aPLSTSTpDP aPLdPTTpDP	nrtWl
	P. involutus (phyA1) TSS1VPFSGR P. involutus (phyA2) TSSVVPFSAR T. pubescens vkkiVPFSAR A. pediades	FSHDN1MVAV FSHDNqMVAI LSHDNqMIAI	FsAMGLFrqS FsAMGLFnqS	aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP	nrtWl artFl krtWv
25	P. involutus (phyA1) TSS1VPFSGR P. involutus (phyA2) TSSVVPFSAR T. pubescens vkkiVPFSAR A. pediades TSR1tPFSAR P. lycii	FSHDN1MVAV FSHDN1MVAI LSHDNqMIAI FSHDNTMVPI	FsAMGLFrqS FsAMGLFnqS FsAMGLFnqS	aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP a.LdP1kpDe	nrtWl artFl krtWv
25	P. involutus (phyA1) TSS1VPFSGR P. involutus (phyA2) TSSVVPFSAR T. pubescens vkkiVPFSAR A. pediades TSR1tPFSAR P. lycii DSk1VPFSGH A. terreus 9a1	FSHDN1MVAV FSHDN1MVAI LSHDNqMIAI FSHDNTMVPI FSHDSnLVSI	FsAMGLFnqS FsAMGLFnqS FsAMGLFnqS	aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP a.LdP1kpDe aPLSqTSVES	nrtWl artFl krtWv nrlWv
25	P. involutus (phyA1) TSS1VPFSGR P. involutus (phyA2) TSSVVPFSAR T. pubescens vkkiVPFSAR A. pediades TSR1tPFSAR P. lycii DSk1VPFSGH A. terreus 9a1 AAWTVPFAAR A. terreus cbs	FSHDNlmVAV FSHDNlmVAV FSHDNqmVAI LSHDNqmIAI FSHDNTmVPI FSHDSnLVSI FSHDSnLVSI	Fsamglfnqs Fsamglfnqs Fsalglfnat Fwalglyngt Fwalglyngt	aPLSTSTpDP aPLdPTTpDP sPLdPSfpNP a.LdP1kpDe aPLSqTSVES KPLSqTTVEd	nrtWl artFl krtWv nrlWv VsQTDGYA ItrTDGYA

	A. niger NRRL3135 SAWTVPFASR	FSHDNGIISI	LFALGLYNGT	KPLSTTTVEN	ItQTDGFS
	A. fumigatus ATCC13073 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	EPLSTTSVES	akElDGYS
5	A. fumigatus ATCC32722 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	gPLSrTSVES	akElDGYS
	A. fumigatus ATCC58128 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	EPLSTTSVES	akElDGYS
10	A. fumigatus ATCC26906 ASWvVPFGAR	FSHDNSMVSI	FFALGLYNGT	EPLSTTSVES	akElDGYS
	A. fumigatus ATCC32239 ASWAVPFGAR	FSHDNGMIPI	FFAMGLYNGT	EPLSqTSeES	tkESNGYS
	E. nidulans ASWTVPFGAR	FSHDNSMISI	FFAMGLYNGT	QPLSmdSVES	IqEmDGYA
15	T. thermophilus AAWTVPFGGR	FSHDNTMtSI	FaALGLYNGT	akLSTTeIKS	IeETDGYS
	T. lanuginosa ASWTVPFAAR	FSHDNTMtGI	FsAMGLYNGT	KPLSTSKIQP	ptgaAADGYA
	M. thermophila	FSHDNdMMGV	LgALGaYDGv	pPLdkTArrd	peElGGYA
20	ASWAVPFAAR				
20	ASWAVPFAAR Consensus Seq. 11 ASWIVPFAAR	FSHDNTMVSI	FFALGLYNGT	KPLSTTSVES	IETDGYA
20	Consensus Seq. 11	FSHDNTMVSI	PFALGLYNGT	KPLSTTSVES	IETDGYA
	Consensus Seq. 11 ASWTVPFAAR	401		KPLSTTSVES	
	Consensus Seq. 11 ASWTVPFAAR 450 P. involutus (phyA1)	401 mvVErLsC	fGt	Tk	
25	Consensus Seq. 11 ASWTVPFAAR 450 P. involutus (phyA1) PLEfCGgDRn P. involutus (phyA2)	401 mvVErLsC maVErLsC	fGt	Tk	VRVLVQDQVq
25	Consensus Seq. 11 ASWTVPFAAR 450 P. involutus (phyA1) PLEfCGgDRn P. involutus (phyA2) PLEfCGgDQd T. pubescens	401 mvVErLsC maVErLsC mvVErLDC	fGtAGt	Tk	VRVLVQDQVq VRVLVQDQVq VRLLVNDaVq
25	Consensus Seq. 11 ASWTVPFAAR 450 P. involutus (phyA1) PLEfCGgDRn P. involutus (phyA2) PLEfCGgDQd T. pubescens PLafCGaDts A. pediades	401 mvVErLsC maVErLsC mvVErLDC	fGt AGt GGa DGtGsGGpsr	TkQs imrNgnvQTF	VRVLVQDQVq VRVLVQDQVq VRLLVNDaVq

	A. terreus cbs PLHGCAVDNL	AYIEMMQCrA		EKQPL	VRVLVNDRVM
	A. niger var. awamori PLHGCPIDaL	1YVEMMQCQA		EQEPL	VRVLVNDRVV
5	A. niger T213 PLHGCPIDaL	1YVEMMQCQA		EQEPL	VRVLVNDRVV
	A. niger NRRL3135 PLHGCPVDaL	1 YVEMMQCQA	• • • • • • • • • • • • • • • • • • • •	EQEPL	VRVLVNDRVV
10	A. fumigatus ATCC13073 PLHGCDVDKL	AYFELMQCKS		EKEPL	VRaLINDRVV
	A. fumigatus ATCC32722 PLHGCDVDKL	AYFETMQCKS		EKEPL	VRaLINDRVV
	A. fumigatus ATCC58128 PLHGCDVDKL	AYFELMQCKS		EKESL	VRaLINDRVV
15	A. fumigatus ATCC26906 PLHGCDVDKL	AYFELMQCKS		EKEPL	VRaLINDRVV
	A. fumigatus ATCC32239 PLHGCAVDKL	AYFELMQCKS		EKEPL	VRaLINDRVV
20	E. nidulans PLHGCAVDKF	AYFELMQCE.		KKEPL	VRVLVNDRVV
	T. thermophilus PLHGCEVDsL	AYIEMMQCDD		sDEPV	VRVLVNDRVV
	T. lanuginosa PLHGCrVDRW	AYVELLRCET	ETsSeEEeEG	EDEPF	VRVLVNDRVV
25	M. thermophila TLkGCGaDEr	iYVEkMRCsG	GGgGGGGEG	rQekdEeM	VRVLVNDRVM
	Consensus Seq. 11 PLHGCGVDKL	AYVEMMQCEA	GG-G-GG-EG	BKEPL	VRVLVNDRVV
30					
		451		4	182
	P. involutus (phyA1)	GlCtLAKFVE	SqTFARSDga	GDFEKCFAts	a~
	P. involutus (phyA2)	GlCaLDKFVE	SqAYARSGga	GDFEKCLAtt	v~
	T. pubescens	GvCtLDAFVE	SqAYARNDge	GDFEKCFAt-	
35	A. pediades	SICTLEAFVE	SqkYAReDgq	GDFEKCFD~~	~~
	P. lycii	GvCELsAFVE	SqTYAReNgq	GDFAKCgfvp	se

- 89 -

	Consensus Seq. 11	GRCKLDDFVE GLSFARSG GNWAECFA
15		
	M. thermophila	GmCtLErFIE SMAFARGN GKWDlCFA
	T. lanuginosa	GRCRrDEWIK GLTFARqG GHWDrCF~~~ ~~
	T. thermophilus	GRCKrDDFVr GLSFARqG GNWEGCYAas e~
	E. nidulans	GRCtLDDWVE GLNFARSG GNWktCfTl~ ~~
10	A. fumigatus ATCC32239	GRCKLKDFVK GLSWARSG GNSEQSFS~~ ~~
	A. fumigatus ATCC26906	GRCKLNDFVK GLSWARSG GNWGECFS~~ ~~
	A. fumigatus ATCC58128	GRCKLNDFVK GLSWARSG GNWGECF5~~ ~~
	A. fumigatus ATCC32722	GRCKLNDFVK GLSWARSG GNWGECFS~~ -~
	A. fumigatus ATCC13073	GRCKLNDFVK GLSWARSG GNWGECFS~~ -~
5	A. niger NRRL3135	GRCtrDsFVr GLSFARSG GDWAECFA~~ ~~
	A. niger T213	GRCtrDsFVr GLSFARSG GDWAECFA
	A. niger var. awamori	GRCtrDsFVr GLSFARSG GDWAECsA~~ ~~
	A. terreus cbs	GRCKrDDFVE GLSFARAG GNWAECF~~~ ~~
	A. terreus 9al	GRCKrDAFVA GLSFAQAG GNWADCF

20

	20		M	G	V	F	v	v	L	L	s	I	A	т	L	F	G	s	T	s	G	T
			ΑT	GGG	CGT	GTT	CGT	'CGT	GCT	'ACT	GTC	CAT	TGC	CAC	CTT	GTT	'CGG	TTC	CAC	'ATC	CGG	TACC
5	60	1		-+-			+				+			-+-			+				+	
			TA	.ccc	GCA	CAA	.GCA	.GCA	.CGA	TGA	CAG	GTA	ACG	GTG	GAA	.CAA	.GCC	'AAG	GTG	TAG	GCC	ATGG
10	40		A	L	G	P	R	G	N	s	н	s	С	D	т	v	D	G	G	Y	Q	С
			GC	CTT	GGG	TCC	TCG	TGG	TAA	TTC	TCA	CTC	TTG	TGA	CAC	TGT	TGA	.CGG	TGG	TTA	.CCA	ATGT
	120	61		-+-			+				+			-+-			+				+	
			CG	GAA	CCC	AGG	AGC	ACC	ATT	'AAG	AGT	'GAG	AAC	ACT	GTG	ACA	ACT	GCC	ACC	AAT	GGT	TACA
15	60		F	P	E	I	s	н	L	W	G	T	Y	s	P	Y	F	s	L	A	D	E
			TT	CCC	AGA	AAT	TTC	TCA	CTT	GTG	GGG	TAC	CTA	.CTC	TCC	ATA	CTT	CTC	TTT	GGC	AGA	CGAA
20	180	121		-+-		-	+	- 			+			-+-			+				+	
			AA	GGG	TCT	TTA	AAG	AGT	GAA	.CAC	ccc	ATG	GAT	GAG	AGG	TAT	GAA	.GAG	AAA	.CCG	тст	GCTT
	80		S	A	I	s	P	D	v	P	D	D	С	R	v	т	F	v	Q	v	L	s
25			TC'	TGC	TAT	TTC	TCC	AGA	CGT	TCC	AGA	.CGA	.CTG	TAG	AGT	TAC	TTT	CGT	TCA	AGT	TTT	GTCT
	240	187		- + -	-		+				+			-+-			+				+	
			AG	ACG	ATA	AAG	AGG	TCT	GCA	AGG	TCT	GCT	GAC	ATC	TCA	ATG	AAA	GCA	AGT	TCA	AAA	CAGA
30	100		R	н	G	A	R	Y	P	T	s	s	A	s	ĸ	A	Y	s	A	L,	I	E
			AG	ACA	CGG	TGC	TAG	ATA	ccc	AAC	TTC	TTC	TGC	GTC	TAA	GGC	TTA	CTC	TGC	ттт	GAT	TGAA
	300	241		-+-			+				+			-+-			+	 -		 -	+	- -
35			TC'	TGT	GCC.	ACG	ATC	TAT	GGG	TTG	AAG	AAG	ACG	CAG	ATT	CCG	AAT	GAG	ACG	AAA	CTA	ACTT
	120		A	I	Q	ĸ	N	A	T	A	F	ĸ	G	ĸ	Y	A	F	L	к	т	Y	N

TTCATGATGCCAATGCCACGACCATTGGGTAACCCAGGTCGAGTTCCACAACCAAAGCGA

	340	N	E	L	r	A	R	L	Т	H	s	P	v	Q	D	н	т	s	т	N	н
5		AA	.CGA	ATT	GAT	TGC	TAG.	ATT	GAC	TCA	CTC	TCC	AGI	TCA	AGA	CCA	CAC	TTC	TAC	'TAA	CCAC
	961 1020		-+-			+				+			-+-			+				+	
		тт	GCT	TAA	CTA	ACG.	ATC'	TAA	CTG	AGT	GAG	AGG	TCA	AGI	TCT	GGT	GTG	AAC	ATG	ATT	GGTG
10	360	T	L	D	s	N	P	A	т	F	P	L	N	A	т	L	Y	A	D	F	s
		AC	TTT	GGA	CTC	TAA	ccc	AGC'	TAC	TTT	CCC	ATT	GAA	CGC	TAC	TTT	GTA	.CGC	TGA	CTT	CTCT
	1021 1080		- + -		-	+				+	-		- + -			+				+ - -	-
15		TG.	AAA	CCT	GAG	ATT	GGG'	rcg:	ATG.	AAA	GGG'	TAA	CTT	GCG	ATG	AAA	CAT	GCG	ACT	GAA	GAGA
	380	н	D	N	I	M	r	s	I	F	F	A	L	G	L	Y	N	G	Т	K	P
		CA	CGA	CAA	CAC'	rat(GAT	ATC'	rat"	TTT	CTT	CGC	TTT	GGG	TTT	GTA	CAA	CGG	TAC	CAA	GCCA
20	1081 1140		-+-	-		+			-	+			- + -		- 	+				+	
		GT	GCT(GTT(GTG2	ATA	CTAT	rag?	ATA	AAA	GAA(GCG.	AAA	CCC	AAA	CAT	GTT	GCC	ATG	GTT	CGGT
25	400	L	s	т	T	s	v	E	s	I	E	E	т	D	G	Y	S	A	s	W	т
		TT	GTC'	TAC	rac'	rtci	rgtī	rgaj	ATC:	rat'	rga/	AGA	AAC'	TGA	CGG'	TTA	CTC'	TGC	TTC'	rtg(SACT
	1141 1200		-+-			+-				 -			-+-			+				+ ·	
		AA	CAG	ATG/	ATG/	AAGA	ACAZ	ACT	ragi	ATA	ACT"	rct"	rtg:	ACT	GCC	AAT(JAG.	ACG.	AAG	AAC	CTGA
30	420	v	P	F	A	Α	R	A	Y	v	E	M	M	Q	С	Q	A	E	ĸ	E	P
		GT.	rcc	ATT(CGC1	rgci	rag <i>i</i>	AGCT	CTAC	CGT	rga <i>i</i>	AAT (3AT(GCA	ATG'	rca.	AGC'	TGA.	AAA	GGA	ACCA
35	1201 1260		-+-			- - + -		- ·	+	+ -			-+-	-		+	-	-		+ ·	- -
		CA	AGG'	TAAC	3CGI	ACGI	ATC1	rcg <i>i</i>	ATC	CA	\CTI	rta(CTA	CGT"	rac:	AGT"	rcg.	ACT	TTT	CCT:	rggt

	440	L	V	R	V	L	V	N	D	R	V	V	Р	ь	н	G	С	А	V	D	ĸ
		TI	GGI	TAG	SAGT	'TTT	GGI	TAA	.CGA	CAG	AGT	TGT	TCC	TTA	'GCA	.CGG	TTG	TGC	TG1	'TGA	CAAG
5	126 1320	1	-+-			+				+			-+-			+				+	
		AF	CCP	LAT C	TCA	AAA	CCA	LTA	GCI	GTC	TCA	ACA	AGG	TAA	.CGT	GCC	AAC	ACG	ACA	ACT	GTTC
10	460	L	G	R	С	ĸ	R	D	D	F	v	E	G	L	s	F	A	R	S	G	G
		T	GGG	PATE	ATG	AAT	GAG	AGA	.CGA	CTI	CGT	TGA	AGG	TTT	GTC	TTT	CGC	TAG	ATC	TGG:	TGGT
	132 1380	1	-+-			+	. -			+		- 	-+-			+				+	
		A	CCC	CATC	TAC	'ATT	CTC	TCT	GCT	'GAA	GCA	ACT	TCC	ΆλΑ	CAG	AAA	.GCG	ATC	TAC	ACC	ACCA
15		N	W	A	E	С	F	A	*		467										
		A.F	CTG	GGC	TGA	ATC	TTI	CGC	TTA	A											
	138	1	- + -			4	- - -			+ 1	410										
		T	GAC	CCC	ACT	'TAC	'AAA'	GCG	AAT	T											

25

5

Figure 8

180

30

10 M G V F V V L L S I A T L F G S T S G T 20 ${\tt ATGGGCGTGTTCGTCGTGCTACTGTCCACTTGTTCGGTTCCACATCCGGTACC}$ 1 ------15 60 TACCCGCACAAGCACCATGACAGGTAACGGTGGAACAAGCCAAGGTGTAGGCCATGG A L G P R G N S H S C D T V D G G Y Q C 40 20 ${\tt GCCTTGGGTCCTCGTGGTAACTCTCACTCTTGTGACACTGTTGACGGTGGTTACCAATGT}$ 61 -------120 CGGAACCCAGGAGCACCATTGAGAGTGAGAACACTGTGACAACTGCCACCAATGGTTACA 25 A FPEISHLWG<u>T</u>YSPFFSLADE 60 ${\tt TTCCCAGAAATTTCTCACTTGTGGGGTACATACTCTCCATTCTTCTCTTTTGGCTGACGAA}$ 121 ------

AAGGGTCTTTAAAGAGTGAACACCCCATGTATGAGAGGTAAGAAGAGAAACCGACTGCTT

	80		s	A	I	S	P	D	v	P	ĸ	G	С	R	v	T	F	v	Q	v	L	s
			TC	TGC	'TAT	TTC	TCC	'AGA	ACG:	rtc	CAA	AGG	GTT(GTA(GAG:	PTAC	CTT	rcg1	TC	\AG7	TTT	GTCT
5	240	181				- +-				 -			-+-	- .		+			4			+
			AG	ACG	ATA	AAG:	AGG	TCT	GC/	AAGO	TT	rcco	CAAC	CATO	CTC	ATC	SAA	AGCA	\AG'I	TCA	AAA	CAGA
10	100		R	н	G	A	R	Y	P	т	s	s	A	s	K	A	Y	s	A	L	I	E
			AG	ACA	CGG	TGC'	TAG	АТА	CCC	ZAAC	TTC	TTC	CTGC	GTC	TAF	\GGC	GTA	CTC	TGC	TTT	'GAT	TGAA
	300	241		-		-+-	-			- -	·		- +		- - -	-+-	· -		+			+
			TC'	TGT	GCC:	ACG	ATC'	TAT	'GGG	TTC	AAG	AAG	BACG	CAC	BATT	'CCG	CAT	'GAG	ACG	AAA	.CTA	ACTT
15	120		A	I	Q	ĸ	N	A	T	A	F	ĸ	G	ĸ	Y	A	F	L	ĸ	т	Y	N
			GC'	rat"	TCA	AAA	JAA(CGC	TAC	TGC	TTT	'CAA	\GGG	TAA	GTA	.CGC	'TTT	CTT	GAA	GAC	TTA	CAAC
20	360	301				-+			- - +	-			+	-		-+-	-		+			+
			CGI	ATA	AGT.	rttc	CTT	GCG.	ATG	ACG	AAA	GTT	ccc	ATT	'CAT	GCG	AAA	GAA	СТТ	CTG.	AAT	GTTG
	A 140		Y	T	L	G	A	D	D	L	т	P	F	G	E	Q	Q	М	v	N	s	G
25			TAC	CAC	rtt	3GG1	GC1	rga	CGA	CTT	GAC	TCC	ATT	CGG	TGA	ACA	ACA	AAT	ggt	TAA	CTC'	rggt
	420	361		.	- - -	- +			+				+			-+-			+			+
			ATG	TG?)AA/	CCA	\CG#	ACT(GCT	GAA	CTG	AGG	TAA	GCC	ACT	TGT	TGT	TTA(CCA	ATT(GAG)	ACCA
30	160		I	ĸ	F	Y	R	R	Y	ĸ	A	L	A	R	ĸ	I	v	p	F	I	R	A
			ATI	'AAC	TTC	TAC	'AGA	\ A GI	ATA	CAA	GGC	TTT	GGC'	TAG	AAA	GAT'	TGT"	rcci	ATT	CAT'	r a g/	AGCT
	480	421				+		· ·	+				+		 -	-+-			+			+
35			TAA	TTC	CAAG	ATG	TCI	TC	rat(GTT(CCG	AAA	CCG	ATC'	TTT(CTA	ACA	AGG'	raac	3TA	ATC7	rcga
	180		s	G	s	D	R	v	I	A	s	A	E	ĸ	F	I	E	G	F	Q	s	A

			TC'	TGG	TTC	TGA	CAG	AGT	TAT	TGC	TTC	TGC	TGA	AAA	GTT	CAT	TGA	AGG	TTT	'CCA	ATC	TGCT
	540	481		- 		-+-			+	- 			+			-+-		- - -	+	-		+
			AG	ACC	AAG	ACT	GTC	TCA	ATA	ACG	AAG	ACG	ACT	TTT	CAA	GTA	ACT	TCC	'AAA	.GGT	'TAG	ACGA
5	200		ĸ	L	A	D	P	G	A	N	P	н	Q	A	s	P	v	I	N	v	I	I
			AA	GTT	GGC	TGA	CCC	AGG	TGC	TAA	CCC	ACA	.CCA	AGC	TTC	TCC	AGT	TAT	TAA	CGT	'TAT	TATT
10	600	541				-+-	-		+				+			-+-			+	. 		+
			TT	CAA	CCG	ACT	GGG	TCC	ACG	ATT	GGG	TGT	GGT	TCG	AAG	AGG	TCA	ATA	ATT	'GCA	АТА	ATAA
	220		P	E	G	A	G	Y	N	N	Т	L	D	Н	G	L	C	T	A	F	Е	E
15			CC	AGA.	AGG	TGC	TGG'	TTA	CAA	CAA	CAC	TTT	GGA	.CCA	CGG	TTT	GTG	TAC	TGC	TTT	CGA	AGAA
	660	601				-+-		- - -	+		- - -		+			-+-			+			+
			GG'	TCT'	TCC	ACG.	ACC.	ААТ	GTT	GTT	GTG	AAA	CCT	GGT	GCC	АДА	CAC	ATG	ACG	AAA	GCT	TCTT
20	240		s	E	L	G	D	D	v	E	A	N	F	Т	A	v	F	A	P	P	I	R
			TC	TGA	ATT	GGG'	TGA	CGA	CGT	TGA	AGC	TAA	CTT	CAC	TGC	TGT	TTT	CGC	TCC	ACC	AAT	TAGA
	720	661			-	-+-			+				+	- 		-+-			- - +			+
25			AG	ACT'	TAA	ccc	ACT(GCT	GCA	ACT	TCG	ATT	GAA	GTG.	ACG.	ACA	AAA	GCG.	AGG	TGG	TTA	ATCT
	260		A	R	L	E	A	н	L	P	G	v	N	L	т	D	E	D	v	v	N	L
			GC'	TAG.	ATT	GGA	AGC'	TCA	CTT	GCC.	AGG	TGT	TAA	CTT	GAC	TGA	CGA	AGA	CGT	TGT	TAA	CTTG
30	780	721		-	-	-+-			- - +				+			- + -	-	 -	- - +			+
			CG	ATC'	TAA	CCT	TCG	AGT	GAA	CGG	TCC	ACA	АТТ	gaa	CTG	ACT	GCT	TCT	GCA	ACA	АТТ	GAAC
35	280		M	D	М	С	P	F	D	T	v	A	R	T	s	D	A	Т	Q	r	s	P
			AT	GGA	CAT	GTG'	TCC.	ATT	CGA	CAC	TGT	TGC	TAG	AAC	TTC	TGA	CGC	TAC	TCA	ATT	GTC	TCCA

		781								. -				- -		4 -						
	840	761				- •							•			•						•
			TA	.CCT	GTA	CAC	AGG	TAA	GCI	GTG	ACA	ACC	ATO	CTTC	AAC	ACT	rgce	ATC	AGT	TAA	CAG	AGGI
5			F	С	D	L	F	т	н	D	E	W	I	Q	Y	D	Y	L	Q	s	L	G
	300																		•			
			тт	CTG	TGA	CTT	GTT	CAC	TCA	CGA	CGA	ATC	GAT	TCA	ATA	CGP	CTA	CTI	GCA	ATC	TTT:	GGGT
	900	841				-+-		- 	+				+			· - + -		- - -	+			+
10			AΑ	GAC	ACT	GAA	CAA	GTG	AGT	GCT	GCT	'TAC	CTA	AGT	TAT	GCI	GAI	GAA	CGT	"TAG	AAA	.CCCA
			ĸ	Y	Y	G	Y	G	A	G	N	p	L	G	P	A	Q	G	v	G	F	v
	320		7 7.	ርሞል.	ርም እ	ccc	ידייא	ccc	TOO	TOO	ጥአ እ	ccc	יא חים	ccc	TOO	יאכר	ייירי א	N.C.C	man.	TO CO	aranan	CGTT
15		901																				+
	960					-			·							-			·			·
			TT	CAT	GAT	GCC	AAT	GCC.	ACG	ACC	ATT	GGG	TAA	CCC	AGG	TCG	AGT	TCC	ACA	ACC	AAA	GCAA
20	340		И	E	L	r	A	R	L	T	н	s	P	v	Q	D	н	т	s	т	N	н
20	340		AA	CGA	ATT	GAT'	TGC'	TAG	АТТ	GAC'	TCA	стс	тсс	'AGT	TCA	AGA	CCA	CAC	ттс	ጥ ልሮ	таа	CCAC
		961																				+
	1020																					
25			TT(GCT"	TAA	CTAI	ACG	ATC'	TAA	CTG	AGT	GAG	AGG	TCA	AGT	TCT	GGT	GTG.	AAG.	ATG.	ATT	GGTG
20	360		T	L	D	s	N	P	A	T	F	P	L	N	A	T	L	Y	A	D	F	s
			AC:	rtte	GGA	CTC:	ГААС	CCC	AGC'	TAC'	TTT	ccc.	АТТ	GAA	CGC	TAC	TTT	GTA	CGC'	TGA	CTT	CTCT
]	L021		- .		- +			+				+			-+-	- 		+			+
30	1080																					
			TG	AAA	CCT	3AG?	ATTO	3GG	rcg	ATG	AAA	3GG'	TAA	CTT	GCG.	ATG:	AAA	CAT	GCG/	ACT	GAA(GAGA
	380		Н	D	N	T	M	V	s	I	F	F	A	L	G	L	Y	N	G	T	ĸ	P
35			CAG	CGAC	CAAC	CACT	rato	GT.	rtc:	rat"	rtt(CTT(CGC'	TTT(GGG'	TTT	GTA	CAA	CGG'	rac:	ГААС	3CCA
	_	1081		- -		-+	- - -	- .	+			-	+	 -		- + -		- 	+	- .		+
	1140																					

GTGCTGTTGTGATACCAAAGATAAAAGAAGCGAAACCCAAACATGTTGCCATGATTCGGT L S T T S V E S I E E T D G Y S A S W T 400 TTGTCTACTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACTCTGCTTCTTGGACT 1200 AACAGATGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGACGAAGAACCTGA V P F A A R A Y V E M M Q C E A E K E P 10 420 GTTCCATTCGCTGCTAGAGCTTACGTTGAAATGATGCAATGTGAAGCTGAAAAGGAACCA 1201 -----+ 1260 CAAGGTAAGCGACGATCTCGAATGCAACTTTACTACGTTACACTTCGACTTTTCCTTGGT 15 LVRVLVNDRVVPLHGCGVDK 440 ${\tt TTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTGGTGTTGACAAG}$ 1261 ------20 1320 AACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACACCACAACTGTTC L G R C K R D D F V E G L S F A R S G G 25 460 TTGGGTAGATGTAAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTAGATCTGGTGGT 1321 ------1380 AACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGATCTAGACCACCA

30 N W E E C F A * 467

AACTGGGAAGAATGTTTCGCTTAA

1381 ----- 1404

TTGACCCTTCTTACAAAGCGAATT

5

10

15

Figure 9

20

		A	L	G	Р	R	G	N	н	5	K	5	C	ע	Т	V	ע	ъ	G	¥	Q	40
																					CCAG	120
5	61																				GGTC	120
Ü																						
		_	_	_	-																D GGAC	60
	121																				+	180
10		AC	GAG	GGG	ACG	CTG	AAG.	AGT.	AGA'	TAC	CCC	Gtg	CAT	GAG	CGG	TAt	GAA	AAG	CGA	GCT	CCTG	
		E	L	s	v	s	s	ĸ	L	P	ĸ	D	С	R	I	T	L	v	Q	v	ь	80
		GA	GCT	GTC	CGT	GTC	GAG	TAA	GCT'	TCC	CAA	GGA	TTG	CCG	GAT	CAC	CTT	GGT	ACA	GGT	GCTA	
	181			-	- + -			+				+	-		-+-			+			+	240
15		CT	CGA	CAG	GCA	CAG	CTC	ATT	CGA	AGG	GTT	CCT	AAC	GGC	CTA	GTG	GAA	CCA	TGT	CCA	CGAT	
		s	R	Н	G	A	R	Y	P	Т	s	s	ĸ	s	K	K	Y	ĸ	ĸ	L	I	100
																					TaTt	200
20	241																				+ AtAa	300
																						120
																					Y GTAC	120
	301																				+	360
25		TG	CCG	CTA	.GGT	'CCG	GTT	ACG	GTG	GCT	GAA	GTT	ccc	GTT:	CAt	gCG	GAA	AAA	CTT	CTG	CATG	
		N	Y	т	L	G	A	D	D	L	т	P	F	G	E	Q	Q	L	v	N	s	140
		AA	CTA	TAC	TCT	'GGG	TGC	:GGA	TGA	.CCT	CAC	TCC	CTT	TGG	GGA	GCA	GCA	GCT	GGT	GAA	CTCG	
	361																				+	420
30		TT	GAT	'ATG	AGA	rccc	ACG	CCT	'ACT	'GGA	GTG	AGG	GAA	ACC	CCT	CGT	CGT	CGA	CCA	CTT	GAGC	
																					R	
		GG	CAT	CAP	GTT	CTA	CCA	GAG	GTA	CAA	.GGC	TCI	GGC	CGCG	CAG	TGT	GGT	GCC	GTT	TAL	TCGC	

		421	CCGTAGTTCAAGATGGTCTCCATGTTCCGAGACCGCGCGTCACACCACGGCAAATAAGCG														480						
			CCC	STAC	GTT	CAA	GAT(GGT	CTC	CAT	GTT	CCG	AGA	CCG	CGC	GTC	ACA	CCA	CGG	CAA	ATA	AGCG	
			A	s	G	s	D	R	v	I	A	s	G	E	ĸ	F	I	E	G	F	Q	Q	180
5			GC	CTC	AGG	CTC	GGA(CCG	GGT	TAT	TGC	TTC	GGG.	AGA	GAA	GTT(CAT	CGA	GGG	GTT	CCA	GCAG	
		481				-+-			+				+			-+-	-		+	-		+	540
			CGC	GAG'	TCC	GAG	CCT	GGC	CCA	ATA	ACG	AAG	CCC	TCT	CTT	CAA	STA	GCT	ccc	CAA	GGT	CGTC	
			A	ĸ	L	A	D	P	G	A	T	N	R	A	A	P	A	I	s	v	I	I	200
10	•		GC	GAA	GCT	GGC'	TGA	TCC	TGG	CGC	GAC	GAA	CCG	CGC	CGC'	TCC	GGC	GAT	TAG	TGT	GAT	TATT	
		541		-		-+-		- 	+	-			+			-+-			+			+	600
			CGG	CTT	CGA	CCG.	ACT.	AGG	ACC	:GCG	CTG	CTT	GGC	GCG	GCG.	AGG	CCG	CTA	ATC	ACA	CTA	ATAA	
			D	F	q	E	т	Ŧ	N	N	т	L	D	н	G	v	С	т	к	F	E	A	220
15																						.GGCG	
10		601																				+	660
																						CCGC	
				_																		R	
20)																					'CCGA	
		661																				+	720
			TC.	AGT	CGA	.CCC	TCT	'ACT	CCA	ACC	CCG	GTI	'AAA	.GTG	ACG	CGA	GAA	ACG	TGG	GCT	GTA	.GGCT	
																	_	_			_	_	262
																						L	
25	5																					TCTA	
		721																				+ 'AGAT	
			CG	AGC	:Gga	GCI	CTI	:CG1	AGZ	AGC	jACC	JGCF	CTG	CGA	LC I'G	arc'i	GC 1		GCF	ara CF	7G I C	AGAT	
			М	D	M	С	P	F	D	T	v	A	R	т	s	D	A	s	Q	L	s	P	280
30)		AT	'GGA	CAT	GTG	TcC	GT	rtga	ATAC	CGGT	rago	GCC	CAC	CAG	CGA	CGC	CAAC	TC	AGCI	GTC	CACCG	
		701			. -	· - + -			- -	 -		. .	. +		. -	-+-			4	 -		+	840

			TACCTGTACACAgGCAAACTATGCCATCGCGCGTGGTCGCTGCGTTCAGTCGACAGTGGC																				
			F	С	Q	L	F	T	н	N	E	W	ĸ	ĸ	Y	D	Y	L	Q	s	L	G	300
			TT	CTG	TCA	ACT	CTT	CAC	TCA	CAA	TGA	GTG	GAA	GAA	STA	CgA	CTA	CCT	TCA	GTC	CTT	GGGC	
5	84	1				-+-		-	+	- 	<i>-</i>	-	+			-+-		<i>-</i>	+			+	900
			AA	GAC	agt	TGA	GAA.	GTG	AGT	GTT	ACT	CAC	CTT	CTT	CAT	GCT	GAT	GGA	AGT	CAG	GAA(CCCG	
												P									-	т	320
			AA	GTA	CTA	CGG	CTA	.CGG	CGC	AGG	CAA	CCC	TCT	GGG.	ACC	GGC	TCA	GGG	GAT	'AGG	GTT	CACC	
10	90	01		-		-+-	- <i>-</i> -		+		- - -	- <i>-</i> -	+			- + -	-		+			+	960
			тт	CAT	GAT	GCC	GAT	GCC	:GCG	TCC	GTI	'GGG	AGA	CCC	TGG	CCG	AGT	ccc	CTA	TCC	CAA	GTGG	
	340		N	E	L	I	A	R	L	т	R	s	P	V	Q	D	н	T	S	Т	N	S	
15			AA	.CGA	.GCT	'GA'I	TGC	CCG	GTT	'GAC	gC0	TTC	:GCC	AGT	GCA	GGA	CCA	CAC	CAG	CAC	TAA	CTCG	}
	90 1020	61				-+-							+			-+-					-	+	
			TI	GCI	CGA	CTA	ACC	GGC	CAA	CTC	GG(CAAG	CGG	TCA	CGT	CCI	'GG'I	GTG	GTC	GTG	ATT	GAGC	!
20	360		T	L	v	s	N	P	A	т	F	P	L	N	A	T	M	Y	V	D	F	s	
			AC	ACTCTAGTCTCCAACCCGGCCACCTTCCCGTTGAACGCTACCATGTACGTCGACTTTTCA																			
	1080	21		. -		-+-			4			- -	+			-+-	- -	·	4	+ -	-	4	÷
25			TO	BAGA	ATC#	AGA	GT'	rggo	3CC(GTC	GA	AGGC	GCA <i>I</i>	CTI	'GCG	ATC	GT?	CAT	rgC?	AGCT	GAA	AAGT	
	380		н	D	N	s	М	v	s	I	F	F	A	L	G	L	Y	N	G	т	E	P	
			CZ	ACG/	ACA	ACA	GCA!	rgg:	rtt(CA!	rct'	TCT:	rtgo	CATI	GGG	CC!	rgtz	ACA	ACG(GCA	CTGA	ACC	2
30	10	81				+				+ - - ·			-+-		. -	+-		- ·		+ - - ·	- -		+
	1140																						_
			G'	rgc'	rgt'	rg t (CGT	ACC	AAA	GGT.	AGA	AGA	AAC	3TA/	ACC	:GGZ	ACA'	rgt'	TGC	CGT	3AC1	TGG	3
35	400		L	s	R	т	s	v	E	s	A	ĸ	E	L	D	G	Y	s	A	s	W	v	

		TTGTCCCGGACCTCGGTGGAAAGCGCCAAGGAATTGGATGGGTATTCTGCATCCTGGG														GGTG					
	1141 1200			-	-+-			+				+	- 		-+ -			+			+
		AA	CAG	GGC	CTG	GAG	CCA	CCT	TTC	GCG	GTT	CCT	TAA	CCT	ACC	CAT	AAG	ACG	TAG	GAC	CCAC
5	420	v	P	F	G	A	R	A	Y	F	E	т	M	Q	С	ĸ	s	E	ĸ	E	P
		GTGCCTTTCGGCGCGCGAGCCTACTTĆGAGACGATGCAATGCA																			
10	1201 1260		-		-+-			+				+	-		-+-		-	+			+
		CA	CGG.	AAA	GCC	GCG	CGC	TCG	GAT	GAA	GCT.	CTG	CTA	CGT	TAC	GTT	CAG	CCT	TTT	CCT	CGGA
	440	L	v	R	A	L	I	N	D	R	v	v	P	L	H	G	С	D	v	D	ĸ
15		CT	TGT	TCG	CGC	TTT	GAT	TAA	TGA	.CCG	GGT	TGT	GCC	ACT	GCA	TGG	CTG	CGA	TGT	GGA	CAAG
	1261 1320			-	- + -			+	. – – –	- 	- 	+			-+-			+			+
		GAACAAGCGCGAAACTAATTACTGGCCCAACACGGTGACGTACCGACGCTACACCTGTTC															GTTC				
20	460	L	G	R	С	к	L	N	D	F	v	ĸ	G	L	s	W	A	R	s	G	G
		CT	GGG	GCG	ATG	CAA	GCI	'GAA	TGA	CTI	TGT	CAA	.GGG	ATI	'GAG	TTG	GGC	CAG	ATC	TGG	GGGC
	1321 1380		-		-+-	. 		+				+			-+-			· - - +			+
25		GA	.ccc	:CGC	TAC	GTT	CGA	CTI	ACT	'GAA	ACA	GTT	ccc	TAA	CTC	AAC	CCG	GTC	TAG	ACC	CCCG
		N	W	G	E	С	F	s	*		467	,									
		AA	CTG	GGG	AGA	GTG	CTI	TAC	TTG	A											
	1381				-+-					-]	404	,									
30		тт	GAC	CCC	TCI	CAC	GAZ	ATC	CAAC	T											

Figure 10

	CP-1
5	ECORI M G V F V V L L S I A T L F G S T
	TATATGAATTCATGGGCGTGTTCGTCGTGCTACTGTCCATTGCCACCTTGTTCGGTTCCA
	1+ 60
	ATATACTTAAGTACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAAGCCAAGGT
10	SGTALGPRGNSHSCDTVDGG
	CATCCGGTACCGCCTTGGGTCCTCGTGGTAATTCTCACTCTTGTGACACTGTTGACGGTG
	61+ 120
	GTAGGCCATGGCGGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACAACTGCCAC
	CP-2
15	CP-3
	YQCFPEISHLWGQYSPYFSL
	GTTACCAATGTTTCCCAGAAATTTCTCACTTGTGGGGTCAATACTCTCCATACTTCTCTT
	121
	CAATGGTTACAAAGGGTCTTTAAAGAGTGAACACCCCAGTTATGAGAGGTATGAAGAGAA
	CARIGOTING
20	EDESAISPDVPDDCRVTFVQ
	TGGAAGACGAATCTGCTATTTCTCCAGACGTTCCAGACGACTGTAGAGTTACTTTCGTTC
	181
	ACCTTCTGCTTAGACGATAAAGAGGTCTGCAAGGTCTGACATCTCAATGAAAGCAAG
25	<u>CP-4.7</u> <u>CP-5.7</u>
	V L S R H G A R Y P T D S K G K K Y S A
	AAGTTTTGTCTAGACACGGTGCTAGATACCCAACTgacTCTAAGggtAAGaagTACTCTG
	241+ 300
	TTCAAAACAGATCTGTGCCACGATCTATGGGTTGActgAGATTCccaTTCttcATGAGAC
30	TTCAAAACAGATCTGTGCCACGATCTATGGGIIGACLGAGATICCCGIITCLCCATCACAC

		L	I	E	A	I	Q	K	N	A	T	A	F	K	G	K	Y	A	F	L	K	
		CTTT	'GAT	TGA	AGC	TAT	TCA	AAA	GAA	CGC	TAC	TGC	TTT	'CAA	GGG	TA A	GTA	.CGC	TTT	'CTT	GA	
	301			+		-		+			-+-			+	. – . –	- 		+			-+	360
5		GAAA	CTA	ACT	TCG	ATA	AGI	TTI	CTI	GCG	ATG	ACG	AAA	GTI	ccc	'ATT	CAT	GCG	AAA	.GAA	CT	
										CP	-6											
												CP-	· 7									
		T	Y	N	Y	т	L	G	A	D	D	L	T	P	F	G	E	N	Q	M	v	
		AGAC	TTA	CAA	.CTA	CAC	TTI	rggg	TGC	TGA	CGA	CTI	'GAC	TCC	ATT	'CGG	TGA	AAA	.CCA	TAA	GG	
10	361			+			-	+			-+-			- - +				+			-+	420
		TCTG	AAT	GTT	GAT	GTG	AAA	'GGC	ACG	act	'GCT	GAA	CTG	AGG	TAA	.GCC	ACT	T TT	GGT	TTA	.CC	
		N	s	G	I	к	F	Y	R	R	Y	к	A	L	A	R	ĸ	I	v	P	F	
		TTAA	CTC	TGG	TAT	TAA	GTT	CTA	CAG	AAG	ATA	CAA	GGC	TTI	'GGC	TAG	AAA	GAT	TGT	TCC	AT	
15	421			+				+	. 		-+-			+	. -	- 		+			-+	480
		AATI	'GAG	ACC	АТА	ATT	CAA	GAT	GTC	TTC	TAT	GTI	CCG	AAA	CCG	ATC	TTT	CTA	ACA	AGG	TA	
													CP	-8.	7							
															CP-	9						
		I	R	A	s	G	s	s	R	v	I	A	s	A	E	K	F	I	E	G	F	
20		TCAT	TAG	AGC	TTC	TGG	TTC	Ttc:	:tAG	AGT	TAT	TGC	TTC	TGC	TGA	AAA	GTT	CAT	'TGA	AGG	TT	
	481																					540
		AGTA	ATC	TCG	AA G	ACC	AAG	Aag	JaT C	TCA.	ATA	ACG	AAG	ACG	ACT	TTT	CAA	GTA	ACT	TCC	AA	
		•			v		•	_		a	-	^		1.7	_	70		В	7.7	_	n	
			s 									-										
25		TCCA																				
	541																					600
		AGGT	'TAG	ACG	ATT	CAA	.CCG	ACT	'GGC	TCC	AAG	AGT	TGG	TGT	GGT	TCG	AAG	AGG	TCA	ATA.	AC	
																CP	-10		11.	7		
30		v	I	I	s	E	A	s	<u>s</u>	Y	N	N	T	L	D	P	G	T	C	T	A	
		ACGT	'TAT	'TAT	Ttc	tga	.cgc	tTC	Ttc	tTA	CAA	CAA	CAC	TTT!	GGA	.Ccc	aGG	TAC	TTG	TAC	TG	
	601		-	+	-			+	. .		-+-		. -	+				+			-+	660

 ${\tt TGCAATAATAAagaCTgcgaAGGagaATGTTGTTGTGAAACCTGggtcCATGAACATGAC}$

- 108 -

			F	E	D	S	E	L	A	D	T	V	E	A	Ŋ	F	T	A	L	F	A	P	
			CTTI	CGA	LAGA	CTC	TGA	ATI	[Ggd	:tG#	Cac	tG1	TGA	AGC	TAZ	CTI	CAC	TGC	TTT	'GT'I	CGC	TC	
		661		- - -	+				+			· - + -		- 		. 			+			-+	720
			GAAA	AGCT	TCT	'GAG	ACT	"TAA	ACCG	gaC7	Gto	ga CA	ACT	TCG	ATI	'GAZ	GTG	ACG	AAA	CAA	GCG	ag	
5																				CP-	12.	7	
			A	I	R	A	R	L	E	A	D	L	P	G	v	T	L	T	D	T	E	v	
			CAGO	TAT	TAG	AGC	TA G	ATT	GGF	AAGC	TGA	CTI	GCC	'AGG	TGI	'TAC	TTT	GAC	TGA	Cac	tga	aG	
		721		. -	+	-	-		+			-+-			- - +				+			-+	780
10			GTCG	ATA	ATC	TCG	ATC	TAA	CCI	TCG	act	GAA	'CGG	TCC	ACA	ATG	AAA	CTG	ACT	'Gtg	act	tC	
			CP-1	3.7	<u>-</u>																		
			I	Y	L	M	D	M	C	S	F	E	T	v	A	R	T	s	D	A	T	E	
			TTac	t T A	CTT	GAT	GGA	CAT	'GTG	Ttc	tT1	'CGA	AAC	TGT	TGC	TAG	AAC	TTC	TGA	.cgc	TAC	TG	
15		781		· -	+			-	+			-+-			+				+			-+	840
			AAtg	aAT	'GAA	CTA	CCT	GTA	CAC	Aag	βAA	.GCT	TTG	ACA	ACG	ATC	TTG	AAG	ACT	GCG	ATG	AC	
			L	S	P	F	С	A	L	F	т	H	D	E	W	R	H	Y	D	Y	L	Q	
			AATT	GTC	TCC	ATT	CTG	TGC	TTI	GTI	CAC	TCA	CGA	.CGA	ATG	GAG	Aca	сТА	.CGA	CTA	.CTT	GC	
20		841			+		-	-	+	-		-+-	 -	-	+				+			-+	900
			TTAA	CAG	AGG	TAA	gac	ACG	AAA	CAA	GTG	AGT	GCT	GCT	TAC	CTC	Tgt	gAT	GCT	GAT	GAA	.CG	
				C	P-1		-15	.7															
			s	L	K	ĸ	Y	Y	G	H	G	A	G	N	P	L	G	P	T	Q	G	v	
25			AATC	TTT	Gaa	gAA	GTA	CTA	.CGG	Tca	cGG	TGC	TGG	TAA	ccc	ATT	GGG	TCC	Aac	tCA	AGG	TG	
		901			+	- 			+		-	-+-			+			-	+			-+	960
			TTAG	AAA	.Ctt	ctt	CAT	GAT	GCC	!Agt	gCC	AC G	ACC	ATT	GGG	TAA	.CCC	AGG	Ttg	aGT	TCC	AC	
			G	F	A	N	E	L	I	A	R	L	T	R	s	P	v	Q	D	н	т	s	
30			TTGG	TTT	CGC	TAA	CGA	ATT	GAT	TGC	TAG	ATT	GAC	TAG	ATC	TCC	AGT	TCA	AGA	CCA	CAC	TT	
	1020	961			+	-		- 	+			-+-			+	-			+			-+	
	1020		አአርር	מממי	ace	ልጥጥ	a Can	ጥልአ	CTL) A C C	: 3 TT∕	ጥ አ አ	ሮሞሮ	ልጥር	ጥል ⁄2	y CC	TIC A	አርጥ	ጥርጥ	ረ ረም	ርጥር	AA	

- 109 -

CP-16 <u>CP-17.7</u>

		T	N	Н	T	L	D	S	N	P	A	Т	F	P	L	N	A	T	L	Y	A
		CTACTAACCACACTTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTT														TTT	GTA	CG			
5	1021 1080		. .	+	-			+			-+-			+				+	- - -		-+
		GATGATTGGTGTGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC																			
		D	F	s	н	D	N	G	I	I	S	I	F	F	A	L	G	L	Y	N	G
10		CTGA	CTI	CTC	TCA	CGA	CAA	Cgg	tat	tAT	TTC	TAT	TTT	CTT	CGC	TTT	GGG	TTT	GTA	CAA	CG
	1081 1140							+			-+-			+				+			-+
		GACT	GAA	GAG	AGT	'GC'I	'GT'I	'Gcc	ata	aTA	AAG	ATA	AAA	GAA	GCG	AAA	.ccc	AAA	CAT	GTT(GC
15		CP-18.7 CP-19.7 TAPLSTTSVESIEETDGYSS																			
		T	A	P	L	s	T	T	s	V	E	s	I	E	E	T	D	G	Y	S	ន
		GTAC	TGC	CTCC	TTA	GTC	TAC	TAC	TTC	TGT	'TGA	ATC	TAT	TGA	AGA	AAC	TGA	.CGG	TTA	CTC'	Tt
	1141 1200			4	- 			+			-+-			+				+			-+
20		CATG	ACG	BAGG	TAA	CAG	ATG	ATG	AAG	aca	ACT	TAG	ATA	ACT	TCT	TTG	ACT	GCC	AAT	GAG	Aa
		A	W	T	v	P	F	A	<u>s</u>	R	A	Y	v	E	M	М	Q	C	Q	A	E
	1201	ctgo	tTG	GAC	TGT	TCC	TTA:	'Cgc	ttc	tAG	AGC	TTA	CGT	TGA	AAT	GAT	GCA	ATG	TCA	AGC	TG
25	1201																				
		gacg	jaA(CTG	BACA	AGG	TAA	Gcg	jaag	JaTC	TCG	TAA				CTA	CGT	TAC	AGT	TCG.	AC
													CP	-20	CP-	21					
		K	E	P	L	v	R	V	L	v	N	D	R	V	V	P	L	H	G	C	A
30		AAA	AGGZ	AACC	CATT	rgg?	TAC	AGT	TTT	GGT	TAA	ACGA	CAG	AGT	TGT	TCC	ATT	GCA	.CGG	TTG	TG
	1261 1320				 -		. -	- +			-+-			+	. 			+			-+
		TTTT	rcci	rtge	JTA!	\CC2	LATO	CTC	LAAJ	\CC}	LATI	GC1	GTC	TCA	ACA	LAGG	TAA	CGI	GCC	AAC	AC

- 110 -

TAGACCACCATTGACCCGACTTACAAAGCGAATCTTAAGTATAT

V D K L G R C K R D D F V E G L S F A R

CTGTTGACAAGTTGGGTAGATGTAAGAGAGAGCGACTTCGTTGAAGGTTTGTCTTTCGCTA

1321

GACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT

CP-22

S G G N W A E C F A * ECO RI

GATCTGGTGGTAACTGGGCTGAATGTTTCGCTTAAGAATTCATATA

1381

CTAGACCACCATTGACCCGACTTACAAAGCGAATTCTTAAGTATAT

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

10

1 MGVFVVLLSI ATLFGSTSGT ALGPRGNSHS CDTVDGGYQC FPEISSNWSP 51 YSPYFSLADE SAISPDVPKG CRVTFVQVLQ RHGARFPTSG AATRISALIE 101 AIQKNATAFK GKYAFLKTYN YTLGADDL \underline{V} P FG \underline{AN} QSSQ \underline{A} G IKFYRRYKAL 5 151 ARKIVPFIRA SGSDRVI<u>D</u>SA <u>TNW</u>IEGFQSA KLADPGANPH QASPVINVII 201 PEGAGYNNTL DHGLCTAFEE SELGDDVEAN FTAVFAPPIR ARLEAHLPGV 251 NLTDEDVVNL MDMCPFDTVA RTSDATELSP FCDLFTHDEW IQYDYLGDLD 301 KYYGTGAGNP LGPAQGVGFV NELIARLTHS PVQDHTSTNH TLDSNPATFP 351 LNATLYADFS HDNTMVAIFF ALGLYNGTKP LSTTSVESIE ETDGYSASWL 401 VPFSARMYVE MMQCEAEKEP LVRVLVNDRV VPLHGCGVDK LGRCKRDDFV **451 EGLSFARSGG NWEECFA**

Abstract

This invention relates to a new improved consensus phytase by introduction of additional phytase sequences into the sequence alignment and the method of the introduction process. Furthermore, the invention relates to the transfer of stabilizing amino acid exchanges found by the new method into homologous proteins. Furthermore, the invention relates to the replacement of a whole active site of a phytase. It also relates to the corresponding DNA sequences and its generation, methods to produce such phytases and the use thereof.

10