21-AUG-2006 15:00 VON: AN:USPTO S.10/20

Claim Amendments

Please amend the claims as indicated in the following paragraphs:

1	1. (CURRENTLY AMENDED) A [partitionable] system, comprising:
2	[a first domain, comprising a first processor, a first firmware program,
3	and a first interrupt table;
4	a second domain, comprising a second processor, a second firmware
5	program, and a second interrupt table;
6	wherein the system is partitionable into the first domain and the second
7	domain; and
8	a plurality of input/output devices, comprising a first single-
9	instance device, a second single-instance device, a first multi-instance
10	device, and a second multi-instance device;
11	wherein the first firmware program initializes the first interrupt table for
12	the first single-instance and the first multi-instance devices and the second
13	firmware program initializes the second interrupt table for the second single-
14	instance and the second multi-instance devices when the system is partitioned
15	into the first and second domains.]
16	a plurality of processors;
17	a first plurality of boot-capable devices to supply a first plurality of
18	interrupts:
19	a second plurality of boot-capable devices to supply a second plurality of
20	interrupts; and
21	an interrupt controller subsystem, comprising a first programmable
22	interrupt controller and a second programmable interrupt controller;

23	wherein:
24	if the system is partitioned into a first domain and a second domain:
25	the first plurality of interrupts are received by the first
26	programmable interrupt controller;
27	a first processor-interrupting signal is generated by the first
28	programmable interrupt controller, the first processor-interrupting signal
29	to interrupt a first processor of the plurality of processors, wherein the
30	first processor is in the first domain;
31	the second plurality of interrupts are received by the second
32	programmable interrupt controller; and
. 33	a second processor-interrupting signal is generated by the second
34	programmable interrupt controller, the second processor-interrupting
35	signal to interrupt a second processor of the plurality of processors,
36	wherein the second processor is in the second domain; and
37	if the system is not partitioned:
38	the first plurality of interrupts and the second plurality of interrupts
39	are received by the first programmable interrupt controller;
40	the first processor-interrupting signal is generated by the first
41	programmable interrupt controller, the first processor-interrupting signal to
42	interrupt the first processor of the plurality of processors.

2. (CURRENTLY AMENDED) The [partitionable] system of claim 1, the first processor-interrupting signal to cause a third processor-interrupting signal to be generated when the system is not partitioned, the third processor-

- 4 interrupting signal to interrupt the second processor of the plurality of
- 5 processors when the system is not partitioned.
- 6 [wherein the first processor is interrupted by the first single-instance and the
- 7 first multi-instance devices and the second processor is interrupted by the
- 8 second single-instance and the second multi-instance devices.]
- 1 3. (CURRENTLY AMENDED) The [partitionable] system of claim 2, 2 <u>further comprising:</u>
- a signal path to route the second plurality of interrupts to the first
 interrupt controller when the system is not partitioned.
- 5 [wherein a first operating system is booted in the first domain and a second
- 6 operating system is booted in the second domain when the system is
- 7 partitioned.]
- 4. (CURRENTLY AMENDED) The [partitionable] system of claim 3,
- 2 <u>further comprising</u>:
- 3 <u>firmware executed by the first processor, the firmware to program the</u>
- 4 interrupt controller subsystem such that the second programmable interrupt
- 5 controller is not enabled when the system is not partitioned.
- 6 [wherein the first operating system is a legacy operating system.]
- 5. (CURRENTLY AMENDED) The [partitionable] system of claim 3,

- 2 the interrupt controller subsystem further comprising a multiplexer to 3 receive the first processor-interrupting signal or the second processor-4 interrupting signal, wherein the multiplexer sends the third processor-5 interrupting signal to the second processor when the system is partitioned and 6 the second processor-interrupting signal is received. [wherein the first firmware 7 program initializes the first interrupt table for the first single-instance, the first 8 multi-instance, and the second multi-instance devices when the partitionable 9 system is unpartitioned.]
- 6. (CURRENTLY AMENDED) The [partitionable] system of claim 5, wherein the multiplexer sends the third processor-interrupting signal to the
- 3 second processor when the system is unpartitioned and the first processor-
- 4 interrupting signal is received.
- 5 [the first processor is interrupted by the first single-instance, the first multi-
- 6 instance, or the second multi-instance devices.]
- 7. (CURRENTLY AMENDED) The [partitionable] system of claim 1
- 2 <u>further comprising power distribution logic to generate a power good reset</u>
- 3 signal, wherein the power good reset signal is received by the first domain and
- 4 the second domain when the system is partitioned.
- 5 [6, wherein the second processor is interrupted by the first single-instance, the
- 6 first multi-instance, or the second multi-instance devices.]

7

8

9

5 6 are set.

1	8. (CURRENTLY AMENDED) The [partitionable] system of claim <u>1,</u>
2	further comprising a first domain reset handler and a second domain reset
3	handler, wherein the first domain reset handler issues a first hard reset to the
4	first domain when the system is partitioned and the second domain reset
5	handler issues a second hard reset to the second domain when the system is
6	partitioned.
7	[5, wherein the second single-instance devices are unused.]
1	9. (CURRENTLY AMENDED) The [partitionable] system of claim [5]
2	1, further comprising:
3 .	a first bit to indicate that the first domain is to be cojoined with the
4	second domain; and
5	a second bit to indicate that the second domain is to be cojoined with the
6	first domain;

1 10. (CURRENTLY AMENDED) The [partitionable] system of claim [1,] 2 8, the power distribution logic further comprising:

wherein the [partitionable] system is [returned] changed from a

partitioned state to an unpartitioned state when the first bit and the second bit

3 a two-input multiplexer to receive the first hard reset and the second hard reset, the two-input multiplexer being driven by an indicator of whether the 4 system is partitioned, the two-input multiplexer to generate an output signal, the output signal to reset devices in the first domain.

7	[further comprising:
8	an interrupt controller accessible to the first domain and to the second
9	domain, the interrupt controller comprising:
lO	a first interrupting device for sending a first processor interrupt to
1	the first processor, the first processor interrupt coming from either the first
12	single-instance device or the first multi-instance device;
13	a second interrupting device for producing a second processo
L4	interrupt to the second processor, the second processor interrupt coming from
15	either the second single-instance device or the second multi-instance device
16	and
17	wherein the first interrupting device receives both the first processor
18	interrupt and the second processor interrupt when the system is partitioned.]

- 1 11. (CURRENTLY AMENDED) The [partitionable] system of claim 10,
- 2 wherein the output signal is generated by the first hard reset signal when the
- 3 system is unpartitioned.
- 4 [wherein the first interrupting device receives the first processor interrupt and
- 5 the second interrupting device receives the second processor interrupt when the
- 6 system is not partitioned.]
- 1 12. (CURRENTLY AMENDED) The [partitionable] system of claim 10,
- 2 wherein the output signal is generated by the second hard reset signal when the
- 3 system is partitioned.
- 4 [further comprising:

- a two-input multiplexer for routing interrupts from either the first interrupting device or the second interrupting device to the second processor.]
- 1 13. (CURRENTLY AMENDED) The [partitionable] system of claim 7.
- 2 wherein the power good reset signal is received by the first domain and the
- 3 second domain when the system is unpartitioned.
- 4 [12, wherein the two-input multiplexer routes interrupts from the first
- 5 interrupting device to the second processor when the system is not partitioned
- 6 and routes interrupts from the second interrupting device to the second
- 7 processor when the system is partitioned.]
- 1 14. (CANCELLED) The partitionable system of claim 1, further
- 2 comprising a first reset handler, wherein the first reset handler issues a hard
- 3 reset to all processors and all input/output devices when the system is not
- 4 partitioned.
- 1 15. (CANCELLED) The partitionable system of claim 14, further
- 2 comprising a second reset handler, wherein the first reset handler issues a
- 3 second hard reset to the first processor, the first single-instance device and the
- 4 first multi-instance device while the second reset handler issues a third hard
- 5 reset to the second processor, the second single-instance device and the second
- 6 multi-instance device when the system is partitioned into the first and second
- 7 domains.

10

1	16. (CANCELLED) The partitionable system of claim 14, wherein
2	the first reset handler issues a power good reset to all processors and
3	input/output devices whether the system is partitioned or not.

1	17. (WITHDRAWN) A partitionable system, comprising:
2	a first connector coupled to a bus; and
3	a second connector coupled to the bus, the second connector coupling
4	the partitionable system to a chassis by a cable;
5	a first controller coupled to the bus, wherein the first controller transmits
6	an identification signal to the first connector; and
7	a second controller coupled to the bus, wherein the second controller
8	transmits a second identification signal to the second connector when the
9	system is partitioned, but the first controller transmits the second identification

signal to the second connector when the system is not partitioned.

1 18. (WITHDRAWN) The partitionable system of claim 17, further 2 comprising a chassis coupled directly to the first connector, the chassis 3 comprising a third controller, a third connector, and a cable coupling the first 4 connector to the third connector, wherein the third controller in the chassis 5 detects the identification signal.

1	(WITHDRAWN) The partitionable system of claim 18, wh	nerein
2	the chassis comprises a fourth connector for coupling to a second chassis	s, the
3	second chassis comprising a fourth controller and a second cable, the se	econd
4	cable coupling the fourth connector to the third connector, wherein the f	ourth
5	controller in the second chassis does not detect the identification signal.	

- 1 20. (WITHDRAWN) The partitionable system of claim 19, wherein 2 the fourth controller in the second chassis can obtain the identification signal by 3 querying the third controller.
- 1 21. (WITHDRAWN) The partitionable system of claim 19, wherein 2 the first controller sends non-identification signals to the first connector and the 3 fourth controller in the second chassis detects the non-identification signal.

1 22. (WITHDRAWN) A method, comprising:

2

3

4

6

7

8

identifying input/output devices in a system, the input/output devices comprising first single-instance devices, first multi-instance devices, second single-instance devices, and second multi-instance devices;

5 determining that the system is to be partitioned; and

initializing an interrupt controller such that the first single-instance and first multi-instance devices interrupt a first processor in a first domain while the second single-instance and second multi-instance devices interrupt a second processor in a second domain.

1

23. (WITHDRAWN)

The method of claim 22, further comprising:

2	configuring a first interrupt table to receive interrupts from the first
3	single-instance and first multi-instance devices.
1	24. (WITHDRAWN) The method of claim 23, further comprising:
2	configuring a second interrupt table to receive interrupts from the second
3	single-instance and second multi-instance devices.
1	25. (WITHDRAWN) The method of claim 24, further comprising:
2	determining that the system is not to be partitioned; and
3	initializing the interrupt controller such that the first single instance
4	devices, the first multi-instance devices, and the second multi-instance devices
5	interrupt both the first processor and the second processor.
1	26. (WITHDRAWN) A system, comprising:
2	a first connection between a first reset handler and a first domain, the
3	first domain comprising one or more processors and input/output devices,
4	wherein the first reset handler produces a first hard reset signal;
5	a second connection between a second reset handler and a second
6	domain, the second domain comprising one or more processors and input/output
7	devices, wherein the second reset handler produces a second hard reset signal;
8	and

9	a multiplexer, wherein the first hard reset signal and the second
10	hard reset signal are received as inputs to the multiplexer;
11	wherein the multiplexer sends the second hard reset signal to the second
12	domain when the system is partitioned and sends the first hard reset signal to
13	the second domain when the system is not partitioned.
1	27. (WITHDRAWN) The system of daim 26, further comprising:
T	27. (WITHDRAWN) The system of claim 26, further comprising:
2	a third connection coupled between the first reset handler and both the
3	first and second domains, wherein a power good signal is sent by the first reset
4	handler over the third connection to both the first domain and the second
5	domain irrespective of whether the system is partitioned or not.