Pyruvatoxidation und Citratzyklus

Pyruvatoxidation (oxidative Decarboxylierung)

Pyruvat-Moleküle werden über ein Carrier-Protein aus dem Cytoplasma in die Matrix eines Mitochondriums transportiert. In der Matrix wird ein CO₂-Molekül vom Pyruvat-Molekül abgespalten. Dabei entsteht eine Acetyl-Gruppe, ein C₂-Körper. Sie wird vom Coenzym-A gebunden und die aktivierte Essigsäure Acetyl-Co-A entsteht. Zudem werden ein weiteres Molekül NADH und ein H⁺-Ion gebildet.

Citratzyklus Die weitere Oxidation der Acetyl-Gruppe erfolgt im Citratzyklus. Acetyl-Co-A reagiert mit dem C₄-Körper Oxalacetat zum C₆-Körper Citrat. Citrat wird im nächsten Schritt in den C₆-Körper Isocitrat umgewandelt. Im folgenden Schritt wird erneut CO₂ abgespalten. Es entsteht der C₅-Körper α-Ketoglutarat. Außerdem werden wieder NADH sowie ein H⁺-Ion gebildet. Anschließend wird ein weiteres CO₂ abgespalten. Dabei entstehen erneut ein NADH-Molekül und ein H⁺-Ion. Der entstandene C₄-Körper heißt Succinyl-CoA.

An diesem Punkt des Citratzyklus ist das während der Glykolyse entstandene Pyruvat vollständig abgebaut. Dabei sind pro Pyruvat-Molekül drei Moleküle CO₂ sowie drei Moleküle NADH und drei H⁺-Ionen entstanden.

Im letzten Teil des Citratzyklus wird Oxalacetat regeneriert. In den dabei auftretenden Teilreaktionen wird die Anzahl der C-Atome nicht mehr geändert. Zudem entstehen je ein Molekül ATP und NADH sowie ein H⁺-Ion. Ebenso bildet sich ein Molekül des Reduktionsäquivalents FADH₂.

Pro Glucose-Molekül entstehen zwei Moleküle Pyruvat. Somit wird der Citratzyklus für jedes abgebaute Glucose-Molekül zweimal durchlaufen. Daraus ergibt sich die Bilanzgleichung der Pyruvatoxidation und des Citratzyklus:

$$2 C_3 Pyruvat + 8 NAD^+ + 2 FAD + 2 ADP +$$

 $2 P_i + 6 H_2O \rightarrow 6 C_1 CO_2 + 8 NADH + 8 H^+ +$
 $2 FADH_2 + 2 ATP$

Der Citratzyklus erfüllt drei Funktionen:

- 1. Vollständige Oxidation der zwei C-Atome des Acetyl-CoA zu Kohlenstoffdioxid.
- 2. Reduktion von Coenzymen zu NADH + H⁺ und FADH₂, die in der Atmungskette zur ATP-Bildung genutzt werden.
- 3. Fixierung von Energie in Form von ATP.

Zusätzlich dient er als Drehscheibe des Stoffwechsels. Auch Fettsäuren und bestimmte Aminosäuren können über den Citratzyklus auf- oder abgebaut werden.