Symmulation of Fe58 activation with proton beam

— Results —

Maciej Lewicki¹

Helmholtz Zentrum Dresden-Rossendorf

7th August 2014

Penetration depth

Figure: Yield of Co58 in various depths

Iron target

Figure: Isotope yield distribution for energies $\in [0.006:0.020]$ GeV

Iron target

- = $^{54}_{24}Cr$ stable
- $= {54 \atop 25}Mn stable$
- $= {}^{54}_{26}Fe \beta^+ 7.5 \cdot 10^4 a$
- $^{55}_{25}Mn$ β^- , γ : 1332, 1173
- = $^{56}_{25}Mn$ stable
- \blacksquare ${}^{56}_{26}Fe$ stable
- $= {}^{57}_{25}Mn \text{stable}$
- \blacksquare $\frac{57}{26}$ Fe β ⁻, no γ
- \blacksquare $\frac{57}{27}Co \beta^-$, no γ
- \bullet $^{58}_{26}Fe$ stable
- $= {}^{58}_{27}Co \beta^{+}, 70.86d$

- \bullet $^{59}_{27}Co$ stable
- $^{59}_{28}Ni \beta^+, 7.5 \cdot 10^4 a$
- ${}^{60}_{27}Co \beta^-, \gamma$: 1332, 1173, 5.272a
- \bullet $\frac{60}{28}Ni$ stable
- \bullet $^{61}_{28}Ni$ stable
- $= {}^{62}_{28}Ni \text{stable}$
- \bullet $^{63}_{28}Ni \beta^-$, no γ
- $^{65}_{28}Ni$ β^- , γ : 1482, 1115, 2.52h

Iron target

Z	57Cu 196.3 MS € 100.00%	58Cu 3.204 S € 100.00%	59Cu 81.5 S € 100.00%	60Cu 23.7 M €: 100.00%	61Cu 3.333 H €100.00%	62Cu 9.673 M ∈ 100.00%	63Cu STABLE 69.15%	64Cu 12.701 H ε: 61.50% β-: 38.50%	65Cu \$TABLE 30.85%
28	56Ni	57Ni	58Ni	59Ni	60Ni	61M	62Ni	63Ni	64Ni
	6.075 D	35.60 H	STABLE	7.6E+4 Y	STABLE	STABLE	STABLE	101.2 Υ	STABLE
	€: 100.00%	c: 100.00%	68.077%	€: 100.00%	26.223%	1.1399%	3.6346%	β-: 100.00%	0.9255%
27	55Co	56Co	57Co	58Co	59Co	60Co	61Co	62Co	63Co
	17.53 H	77.236 D	271.74 D	70.86 D	STABLE	1925.28 D	1.650 H	1.50 M	27.4 S
	€: 100.00%	€ 100.00%	e: 100.00%	e: 100.00%	100%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
26	54Fe	55Fe	56Fe	57Fe	58Fe	59Fe	60Fe	61Fe	62Fe
	STABLE	2.744 Y	STABLE	STABLE	STABLE	44.495 D	2.62E+6 Y	5.98 M	68 S
	5.845%	€:100.00%	91.754%	2.119%	0.282%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%
25	53Mn 3.74E+6 Y e: 100.00%	54Mn 312.12 D ε: 100.00% β- < 2.9E-4%	55Mn STABLE 100%	56Mn 2.5789 H β-: 100.00%	57Mn 85.4 S β-: 100.00%	58Mn 3.0 S β-: 100.00%	59Mn 4.59 S β-: 100.00%	60Mn 0.28 S β-: 100.00%	Stable EC+β+ β- α P N
	28	29	30	31	32	33	34	35	Unknown

Figure: 'Nuclear neighbourhood' of Iron(58)

Iron target

Figure: Multiple steps in yields for energies $\in [0.010:0.012]$ GeV

Copper target

- = ${}^{58}_{26}Fe$ stable
- \bullet $^{59}_{27}Co$ stable
- $^{59}_{28}Ni \beta^+ 7.5 \cdot 10^4 a$
- $^{60}_{27}Co \beta^-$, γ : 1332, 1173, 5.272a
- \bullet 60 Ni stable
- ⁶¹₂₈*Ni* stable
- $= {}^{62}_{28}Ni stable$
- lacksquare $^{63}_{28}Ni$ eta^- , no γ

Energy deposition

Figure: Energy deposition for energies ∈ [0.012 : 0.016]GeV

Energy depostion

Detailed look

Figure: Energy distribution at its maximum

Energy deposition

in numbers

Parameters

- Average energy deposition density: $\rho = 1.0[GeV/cm^3]$
- Volumetric heat capacity of Iron: $C_{p,V} = 3.537 \left[\frac{J}{cm^3K} \right]$
- Volumetric heat capacity of Copper: $C_{p,V} = 3.450 \left[\frac{J}{cm^3K} \right]$

d[mm]	V[cm³]	E[GeV/prmry]	P[J/s]
0.38	7.4613e-03	7.4613e-03	5.9690e+03
0.43	8.4430e-03	8.4430e-03	6.7544e+03
0.48	9.4248e-03	9.4248e-03	7.5398e+03
0.54	1.0603e-02	1.0603e-02	8.4823e+03
0.60	1.1781e-02	1.1781e-02	9.4248e+03

Fluence

Figure: 2D projection of fluence for energies ∈ [0.012 : 0.016]GeV

