NLP Assignment 3

Analysis (Experiments)

Before testing the experiments as mentioned in the assignment paper, I ran my model on the default configurations given and got the below scores:

Experi	UAS	UASno	LAS	LASno	UEM	UEMno	Root	Loss
ments		Punc		Punc		Punc		
Defaul	70.536	73.308	66.370	68.716	10.823	11.352	64.470	0.3614805
t	181668	653139	865219	441530	529411	941176	588235	272221565
Config	6	7	2	5	8	5	3	
uration								

Then I tried increasing the learning rate and number of iterations to see how the model performs. I saw a significant increase in the performance of the model at iterations 2001 and learning rate 0.3, so I fixed these two hyperparameters and performed the below testing.

1. <u>Number of hidden layers</u> — As per the paper, only one hidden layer was implemented. Here we had to implement 2 more hidden layers.

Configuration: Default with learning rate 0.3, hidden size=150 and number of iterations 2001

Exper	UAS	UASno	LAS	LASno	UEM	UEMno	Root	Loss
iment		Punc		Punc		Punc		
S								
Hidde	80.088	82.165	76.927	78.593	20.823	22.235	82.058	0.20614504
Thade								
n	241892	263098	487100	228960	529411	294117	823529	769444467
Layer	5	4	2	6	8	6	4	
Hidde	81.267	83.196	78.353	79.912	22.588	24.176	82.470	0.20979091
n	293167	744475	316549	959927	235294	470588	588235	927409171
Layer	5	2	1	7	1	2	3	
1								

Hidde	18.45	19.50	14.67	1.56	0.64	0.645	14.877	1.133
n								
Layer								
2								

Observation: As we can see from the result, increase in hidden layer doesn't necessarily increase the accuracy a lot. By adding one hidden layer of 150 nodes, I saw an increase in the scores, but when I added a third layer of 100 nodes I saw a considerable decrease in the performance. The loss computed was very high as evident from the scores above. Also, in the paper it was mentioned that adding more and more hidden layers do not necessarily have an impact in the performance and that is quite evident from the results.

2. <u>Capturing interactions</u> – The paper used a cube non-linearity to account for interactions between different combinations of token features. We had to implement sigmoid, relu and tanh to see the performance.

Configuration: Default with learning rate 0.3 and number of iterations 2001

Exper	UAS	UASno	LAS	LASno	UEM	UEMno	Root	Loss
iment		Punc		Punc		Punc		
S								
Cubo	80.088	82.165	76.927	78.593	20.823	22.235	82.058	0.20614504
Cube								
Activ	241892	263098	487100	228960	529411	294117	823529	769444467
ation	5	4	2	6	8	6	4	
Relu	78.904	81.077	75.656	77.431	18.764	19.823	75.176	0.25332181
	205199	262194	205598	752670	705882	529411	470588	15568161
	8	1	6	5	4	8	2	
							_	
Sigmo	68.561	71.497	62.818	65.280	9.0	9.5294	60.647	0.47858031
id	956277	202283	755141	054258		117647	058823	60071373
	9	4	2	7		1	5	
Tanh	78.208	80.444	74.831	76.643	17.235	18.235	76.058	0.26513482
	739437	243486	118977	305262	294117	294117	823529	15341568
	1	1			6	6	4	

Observation: Clearly as the paper suggest the cube activation function outperforms the other functions.

3. Parallel Layers each for word, Pos tag and deps-

Configuration: Default with learning rate 0.3 and number of iterations 2001

Experi	UAS	UASno	LAS	LASnoP	U	UEMno	Root	Loss
ments		Punc		unc	Е	Punc		
					M			
Paralle	80.6790	82.7982	77.6877	79.4240	21	22.2352	79.7647	0.2382499
1	138844	818064	632924	660148		941176	058824	68290329
hidden								
layers								

Observation: By implementing separate hidden layers, the performance of the model did not improve. This might be because there is no interaction between the words, pos tags and labels and hence the decrease in scores.

4. <u>Effect of fixing Word, POS and Dep Embedding's</u> – Fix word embeddings and using the pre-trained model.

Configuration: Default with learning rate 0.3, hidden size=150 and number of iterations 2000

Experimen	UA	UASnoPunc	LA	LASnoPun	UE	UEMnoPun	Roo	Los
ts	S		S	С	M	С	t	S
Fixed	40.8	48.73170180	34.	37.8	2.87	2.90	33.5	0.6
Embedding		3	5					5
S								

Observation: I noticed a remarkable decrease in the in the scores by setting trainable as False. This is because the model is not learning new interactions and therefore the performance is not good.

5. Best Configuration -

I tried to increase the interactions to 4000 with learning rate as 0.3 to see how well the model works as with lesser iterations the loss value was not converging properly. The model accuracy increased significantly by doing so and the loss value also converged.

Parameter	Value
Maximum Iterations	4001
Batch Size	10000
Hidden Size	200
Embedding Size	50
Learning Rate	0.3
Display Step	100

Lambda Value	10-8
Validation Step	200
Activation Function	Cube Activation
Number of tokens	48

Exper	UAS	UASno	LAS	LASno	UEM	UEMn	Root	Loss
iment		Punc		Punc		oPunc		
S								
Best	84.624	86.466	82.072	83.586	27.411	29.117	84.411	0.1635645
	97195	399140	438118	729214	764705	647058	764705	262897014
	7	9	5	9	9	8	9	7

6. Gradient Clipping - Gradient Clipping: It is a method which clips the gradients or caps them to a threshold value to prevent it from getting too large or too small.

Usefulness: Gradient Clipping is common in recurrent neural networks where gradients are being propagated both in forward and backward mode.

There are two problems to look into:

- Vanishing gradient Issue: It is seen that when the gradient of the loss function is multiplied with numbers less than 1 then the gradients tend to become vanishingly small and hence the name vanishing gradient problem.
- 2. Exploding gradient Issue: Sometimes the other way happens. The gradient of the loss function when multiplied with numbers greater than 1 then there is a possibility that the gradient explodes and hence the name exploding gradient problem.

In both the cases, we need to set a threshold so that the gradients do not become too large or too small. Hence, we use gradient clipping to clip the numbers to prevent them from the above two problems.

By removing gradient clipping:

Configuration: Default with learning rate 0.1 and number of iterations 1001

Experiment	UA	UASnoPun	LA	LASnoPun	UE	UEMnoPun	Roo	Los
S	S	С	S	c	M	С	t	s
Parallel	nan	nan	nan	nan	nan	nan	nan	nan
hidden								
layers								

Observation: The loss values after the first one (started with 4.51 at step 0) started to come as Nan after removing the gradient clipping.