Introduction to Arduino

• **Arduino** is an open-source electronics platform based on easy-to-use hardware and software. It is ideal for creating interactive projects by connecting sensors and actuators and programming logic using the Arduino IDE.

Purpose:

- Designed for students, hobbyists, and professionals to build digital devices and interactive objects.
- Suitable for both **beginners** and advanced users due to its simplicity and versatility.

Key Features:

- **Microcontroller-based** board (e.g., ATmega328P on the Arduino Uno).
- **Arduino IDE** supports coding in a simplified C/C++-like language.
- Provides easy access to digital and analog I/O pins for sensor/actuator connections.

How Arduino Works?

- It reads **inputs** such as light from a sensor, a finger on a button, or a Twitter message.
- It then **processes** the input according to your code (program).
- Finally, it can **control outputs** such as turning on an LED, starting a motor, or sending data to the internet.

Programming:

- Written using **Arduino IDE** which is compatible with Windows, macOS, and Linux.
- Code is uploaded via a USB cable using a **bootloader** already installed on the board.

Common Applications:

- LED blinking and lighting control
- **Sensor monitoring** (e.g., temperature, humidity, motion)
- **Robotics** (e.g., motor control, obstacle avoidance)
- **Home automation** (e.g., smart lights, smart thermostats)
- **IoT projects** (e.g., weather stations, remote monitoring)

Circuit Basics:

Consider this basic LED circuit

- Consider the circuit shown above, the LED is connected to pins on the Arduino using some resistors to limit the amount of current flowing through the LED. The reference level is set using the ground pin.
- During the high or the 'ON' state, the circuit connections will be complete, and current will flow through the circuit components as programmed in the microcontroller. In this state, the LED will glow. When the circuit is turned 'OFF', the pins are set to low and the LED becomes dim due to no current flow.

Arduino Pin Configuration and Architecture

Pin Configuration (Arduino Uno):

Different Arduino are designed to serve different purposes but some basic components are

needed in every Arduino. Note that Arduino Uno is the most used board and is the most

common choice for different users. Let us study the internal structure of the Arduino Uno

model.

Processor: 16 MHz ATmega16U2

Flash memory: 32KB

Ram: 2KB

Voltage Needed: 5V

Input Voltage: 7-12V

Analog input pins: 6

Number of digital I/O: 14 with 6 of them being PWM pins

Components of Arduino:

Let's study the basic components of Arduino:

Breadboard: Breadboards are used to provide a base for setting up the connecting

components together. If you look at a breadboard, is a plastic block made up of holes that

are left for making connections using wires. The internal of the breadboard consists of

different connections that are hidden. They are generally used for smaller circuits.

LEDs(Light Emitting Diode): LEDs are small devices that illuminate when a small

voltage is supplied to them. These LEDs come in a variety of colors ranging from red to

green. These LEDs can be used for testing minimum voltages since they don't burn for a

long period.

Photo Resistor: Many Arduino contain a photo resistor that is used for measuring changes

in light using Arduino.

Tactile Switch: This switch resembles a button that is used to open or close a circuit like

any other switch. When the button is turned on, the voltage of Arduino increases from 0V

Internet Of Things

to +5V. This voltage change acts as a trigger for the Arduino and an Arduino detects this change momentarily since the switch is then turned off when the button is released.

Microcontroller: An Arduino consists of a microcontroller that controls the whole functioning of the Arduino by generating an apt output corresponding to the input code. Depending on the type of Arduino board you are using, you can select a microcontroller that fits well.

Resistors: Resistors are used to resist the flowing electricity. Resistors are often bought to set a limit to the current flowing in the circuit thereby protecting the components of the circuit from getting burnt due to excessive current.

Jumper Wires: Jumper wires are thin wires covered with a plastic covering for insulation. These wires are used for connecting different components in the breadboard.

Pin Type	Label/Range	Description
Digital I/O	D0 to D13	Used for digital input/output. Can read or write
		HIGH/LOW.
PWM Output	D3, D5, D6, D9, D10,	Support PWM via analogWrite() for dimming
	D11	LEDs, motor control.
Analog Inputs	A0 to A5	Read analog voltages (0–5V), returns 0–1023
		using 10-bit ADC.
Power Pins	3.3V, 5V, GND, VIN	Provide power or accept external power.
AREF	AREF	Analog reference voltage for ADC.
Reset	RESET	Resets microcontroller. Triggered by button or
		external pin.
Communication	TX (D1), RX (D0)	UART serial communication (TX = Transmit,
		RX = Receive).

Key Internal Blocks of Arduino Uno:

- **CPU Core**: 8-bit AVR microcontroller (ATmega328P)
- **Timers**: 2×8 -bit and 1×16 -bit used for delays, PWM, counters.

- Serial Communication Interfaces:
 - **UART** (TX/RX)
 - o **SPI** (D10–D13)
 - o **I2C** (A4–SDA, A5–SCL)
- ADC: 6-channel, 10-bit Analog to Digital Converter
- Oscillator: 16 MHz crystal oscillator for accurate timing

Detailed Pin Roles:

Digital Pins (D0-D13)

- Used for digital HIGH/LOW input or output
- D0 & D1 are reserved for serial communication (RX, TX)

PWM Pins (~D3, D5, D6, D9, D10, D11)

- Use analogWrite() for PWM output
- Applications: LED brightness, servo motors, fan speed

Analog Pins (A0-A5)

- Input analog voltages (0–5V)
- Useful for sensors (temperature, LDR, potentiometers)

Power Pins

Pin	Function
5V	Provides 5V regulated power to external components
3.3V	Supplies 3.3V power (less current available)
GND	Ground pin
VIN	Voltage input (7–12V) when powering externally

Unit – 2 : Getting Started with Arduino

Communication Pins:

• UART:

- o TX (D1): Transmits data
- o RX (D0): Receives data

• I2C:

- o SDA (A4): Data line
- o SCL (A5): Clock line

• **SPI**:

- o SS (D10): Slave Select
- o MOSI (D11): Master Out Slave In
- o MISO (D12): Master In Slave Out
- o SCK (D13): Serial Clock

AREF Pin:

- Use with analogReference() in code
- External reference voltage for analog input conversion

Arduino Architecture (Based on Arduino Uno):

The **Arduino Uno** is an open-source microcontroller board built around the **ATmega328P** chip. It includes hardware components and software support for embedded development.

Microcontroller: ATmega328P

• **CPU**: 8-bit AVR RISC processor

• Clock Speed: 16 MHz

• **Flash Memory**: 32 KB (for program storage)

• **SRAM**: 2 KB (for runtime data)

• **EEPROM**: 1 KB (non-volatile storage)

Digital I/O Pins (D0–D13):

- Used for general digital input/output
- 6 pins support **PWM** (D3, D5, D6, D9, D10, D11)

Analog Input Pins (A0–A5):

- Connected to a **10-bit ADC** (Analog to Digital Converter)
- Reads analog voltage (0–5V), returns 0–1023

Power Supply Section:

- Can be powered via:
 - o **USB** (5V)
 - o **Vin** (7–12V external adapter)
- Contains a **voltage regulator** to convert input to stable 5V or 3.3V

Timers:

- Timer0 and Timer2: 8-bit
- **Timer1**: 16-bit
- Used for timekeeping (delay(), millis()), PWM, and interrupts

Communication Interfaces:

Protocol	Pins Used	Purpose
UART	D0 (RX), D1 (TX)	Serial communication with PC
SPI	D10 (SS), D11 (MOSI), D12 (MISO), D13 (SCK)	For SPI-based sensors and modules
I2C	A4 (SDA), A5 (SCL)	For communicating with I2C devices

Other Components:

- **USB Interface**: For uploading code and serial communication
- Reset Circuit: Manually or automatically restarts the board
- Crystal Oscillator (16 MHz): Provides clock to the MCU
- Voltage Regulator: Maintains 5V or 3.3V levels for safe operation

Summary:

Component	Description	
MCU	ATmega328P – brain of Arduino Uno	
Clock Speed	16 MHz	
Memory	Flash (32 KB), SRAM (2 KB), EEPROM (1 KB)	
I/O Pins	14 Digital, 6 Analog	
Communication	UART, SPI, I2C	
Timers	3 Timers (used in PWM, delays, interrupts)	
Power Supply	USB or DC (7–12V), onboard regulators	
Programming	Arduino IDE with simplified C++	

Arduino Uno: Device and Platform Features

Device Features (Arduino Uno Board):

The **Arduino Uno** is a widely used development board based on the **ATmega328P** microcontroller, suitable for IoT, robotics, and embedded systems.

General Specifications:

Feature	Specification
Microcontroller	ATmega328P
Operating Voltage	5V
Input Voltage	7–12V (recommended), up to 20V (absolute max)
Digital I/O Pins	14 (6 support PWM)
Analog Input Pins	6 (A0 to A5)
Flash Memory	32 KB (0.5 KB used by bootloader)
SRAM	2 KB
EEPROM	1 KB
Clock Speed	16 MHz
USB Interface	Yes – for programming and serial communication
Reset Button	Resets the program execution

Platform Features:

Arduino combines hardware with a powerful and beginner-friendly software ecosystem.

Arduino IDE (Integrated Development Environment):

- Free, open-source coding platform
- Code in simplified C/C++
- Supports uploading via USB
- Comes with:
 - o Built-in examples
 - Serial Monitor for real-time debugging
 - Board Manager for adding new boards

Arduino Libraries:

- Ready-to-use code for sensors, displays, actuators
- Examples:
 - Servo.h for controlling servos
 - Wire.h I2C communication
 - o DHT.h temperature/humidity sensors
- Installable from Library Manager

Board Compatibility:

- Supports many boards: Uno, Mega, Nano, Due
- Add custom boards via Board Manager

Communication Capabilities:

Arduino Uno supports three major communication protocols:

Protocol	Use Case	Pins
UART	Serial monitor, serial devices	D0 (RX), D1 (TX)
SPI	High-speed modules (e.g. SD card)	D10 (SS), D11 (MOSI), D12 (MISO), D13 (SCK)
I2C	Multi-device, 2-wire protocol	A4 (SDA), A5 (SCL)

Power Supply Options:

Arduino Uno can be powered in three ways:

Method	Details
TICD C. LL	5V in sect and data transmission to IDE
USB Cable	5V input and data transmission to IDE
Barrel Jack	7–12V via adapter (recommended)
	•
Vin Pin	Direct external voltage input (regulated onboard)

Concept of Digital and Analog Ports – Arduino

Overview:

Arduino boards come with **Digital** and **Analog** pins, used to interface with a wide range of external electronic components such as LEDs, sensors, motors, and buttons.

Digital Ports:

Definition:

Digital pins can read or write binary values:

- **HIGH** (1) = 5V
- **LOW** (0) = 0V

Used for interacting with digital devices like buttons, relays, and LEDs.

Key Functions:

- pinMode(pin, INPUT/OUTPUT)
- digitalRead(pin)
- digitalWrite(pin, HIGH/LOW)

Common Use Cases:

Application	Function
LED Control	Turn LEDs ON or OFF
Button Input	Detect press or release (HIGH/LOW)
Relay Switching	Activate appliances
Digital Modules	Receive/send digital signals (e.g., IR sensor)

Analo	g P	ort	s:
-------	-----	-----	----

Definition:

Analog pins (A0 to A5 on Uno) **read varying voltages** between 0V and 5V. These voltages are converted to digital values using a 10-bit **ADC** (Analog-to-Digital Converter).

Voltage to Digital Mapping:

• Voltage Range: 0V to 5V

• Digital Value Range: 0 to 1023

Key Function:

• analogRead(pin)

Analog pins only **read** values. To simulate analog output, Arduino uses **PWM** via analogWrite() on specific digital pins.

Common Use Cases:

Application	Function
Potentiometer	Measure turning position
Temperature Sensor	Read varying voltage based on temperature (e.g., LM35)
Light Sensor (LDR)	Measure light intensity
Joystick Module	Read X/Y movement axes

Arduino Interfacing Board

Definition:

The **Arduino Interfacing Board** refers to external modules or shields that connect to an Arduino to **enhance its capabilities**. These include **relay boards, sensor shields, motor drivers**, displays, and communication modules that help the Arduino interact with the physical world.

These boards:

- Provide plug-and-play expansion
- Simplify wiring and coding
- Enable communication with external devices or networks

Examples of Interfacing Modules and Shields:

Module/Shield	Purpose	
Relay Module	Control high-voltage AC appliances like fans, lamps	
Motor Driver Module	Drive DC motors, stepper motors, or servos (e.g., L298N, L293D)	
Sensor Shield	Easily connect multiple sensors to Arduino pins	
LCD Display (16x2)	Show sensor readings (e.g., temperature, humidity)	
Wi-Fi Shield (ESP8266)	Enable wireless communication via internet	
Ethernet Shield	Connect Arduino to a LAN for network communication	
Bluetooth Module (HC-05)	Wireless data transfer with phones, PCs, or other microcontrollers	

Interfacing Techniques and Functions

Technique	Arduino Function	Purpose
Digital I/O	digitalRead(), digitalWrite()	Read button presses or control LEDs, relays
Analog Input	analogRead()	Read values from analog sensors (e.g., potentiometer)
PWM Output	analogWrite()	Dim LEDs, control motor speeds, servo position
Serial	Serial.begin(),	Communicate with PC, sensors (e.g.,
Communication	Serial.print()	Bluetooth)
I2C Communication	Wire.h library	Connect to devices like LCDs, RTCs using 2 wires
SPI Communication	SPI.h library	High-speed communication with SD cards, sensors

Arduino Interfacing Board

Provides plug-and-play expansion, simplifies wiring and coding, enables communication

Examples of Interfacing Modules and Shields

Module

Module

(16x2)

Wi-Fi

Shield

Bluetooth

Module

Common Components & Connections

Interfacing Techniques and Functions

Motor Driver LCD Display

Digital I/O	digitalRead(), digitalWrite()	
Analog Input	analogRead()	
PWM Output	analogWrite()	
Serial Com-	analogWrite(pin	

Button

Ultrasonic Sensor

Ultrasonic Sensor

Arduino Interfacing Board Examples:

Arduino's pins allow **easy interfacing** with sensors and actuators.

Common Components & Connections:

Component	Interface Type	Purpose
LED	Digital Output	Visual feedback or status light
Push Button	Digital Input	User input detection
Potentiometer	Analog Input	Adjustable voltage source
Ultrasonic Sensor	Digital	Distance measurement
DHT11 Sensor	Digital	Temperature and humidity sensing
Servo Motor	PWM	Controlled angular motion

Communication Protocols:

Protocol	Use Case	Pins Involved
UART	Serial Monitor, Serial Comm	D0 (RX), D1 (TX)
SPI	High-speed device communication	D10 (SS), D11 (MOSI), D12 (MISO), D13 (SCK)
I2C	2-wire communication for sensors	A4 (SDA), A5 (SCL)

Benefits of Using Interfacing Boards:

- Simplifies wiring of complex circuits
- Reduces development time
- Makes prototyping modular and reusable
- Enables Arduino to connect with a wide variety of hardware
- Promotes better organization and debugging

Arduino interfacing boards are **essential** for building real-world IoT and embedded systems. They bridge the gap between **software code and physical components**, allowing your Arduino to **sense**, **process**, **and act** in its environment.