Metody numeryczne – laboratorium nr 6

Poszukiwanie pierwiastków równań nieliniowych

Zadanie 1

- 1) Napisz skrypt, który porówna działanie dwóch (z czterech podanych) metod rozwiazywania równań nieliniowych, pod kątem czasu potrzebnego na znalezienie rozwiązania oraz liczby iteracji. Poza wynikami liczbowymi skrypt ma generować wykres, na którym będzie zaznaczone równanie (krzywa) oraz dwa różne znaczniki reprezentujące odpowiednio rozwiązanie znalezione przez pierwszą i drugą metodę.
- 2) Metody poszukiwania pierwiastków równania nieliniowego:

a) metoda bisekcji (połowienia)

Dane wejściowe	Dane wyjściowe	
f-wzórfunkcji,f = @(x) wzór	$x_b - z$ naleziony pierwiastek metodą	
a – lewy kraniec przedziału izolacji	bisekcji	
pierwiastka	n_b – liczba iteracji potrzebna do	
b – prawy kraniec przedziału izolacji	znalezienia pierwiastka	
pierwiastka	czas_b – czas poszukiwania	
tol – dokładność dla x	pierwiastka	
ftol – dokładność dla wartości funkcji f (x)		

b) metoda regula falsi

function
$$[x_r, n_r, czas_r] = regula(f, a, b, tol, ftol)$$

gdzie:

Dane wyjściowe		
x_r – znaleziony pierwiastek metodą		
bisekcji		
n_r – liczba iteracji potrzebna do znalezienia pierwiastka		
		czas_r – czas poszukiwania
pierwiastka		

c) metoda siecznych

function $[x_s, n_s, czas_s] = sieczne(f, a, b, ftol)$

gdzie:

Dane wejściowe	Dane wyjściowe	
f – wzór funkcji, f = @ (x) wzór a – lewy kraniec przedziału izolacji pierwiastka	x_s – znaleziony pierwiastek metodą bisekcji	
	n_s – liczba iteracji potrzebna do znalezienia pierwiastka czas_s – czas poszukiwania	
b – prawy kraniec przedziału izolacji pierwiastka		
tol – dokładność dla x	pierwiastka	
ftol – dokładność dla wartości funkcji f (x)		

d) metoda Newtona (stycznych)

function $[x_n, n_n, czas_n] = newton(f, a, b, x0, tol, ftol)$

gdzie:

Dane wejściowe	Dane wyjściowe		
f-wzórfunkcji,f = @(x) wzór	x_n – znaleziony pierwiastek metodą		
a – lewy kraniec przedziału izolacji pierwiastka	bisekcji n_n – liczba iteracji potrzebna do znalezienia pierwiastka czas n – czas poszukiwania		
b – prawy kraniec przedziału izolacji pierwiastka			
x0 – punkt startowy	pierwiastka		
tol – dokładność dla x			
ftol – dokładność dla wartości funkcji f (x)			

3) Przykładowe funkcje nieliniowe do przetestowania skryptu:

Równanie	Przedział
cos(x)	< 0,2 >
$2^{-x} + e^x + 2\cos(x) - 6$	< 1,3 >
$(x+2)^5$	< -3,0 >
$e^{x-1}-2$	< -1,2 >
$\log(x + \frac{2}{3})$	<-0.5,2 >
$x^3 - 2x - 5$	< 0,3 >

4) Wyniki działania skryptu zapisz w tabeli dla dwóch funkcji innych niż podane w punkcie 3 przyjmując $tol=10^{-5}$ oraz $ftol=10^{-4}$.

Funkcja	Przedział	Metoda	Pierwiastek	Liczba iteracji	Czas
$e^x + 2x$	<-1, 1>	Regula falsi	-0.3517	9	0.0173
		Newtona	-0.3517	12	0.0056
$x^3 - 2x^2 + 4$	<-2, 2>	Regula falsi	-1.1304	17	0.0222
		Newtona	-1.1304	25	0.0064

/Tu wstaw wykresy/

Metoda bisekcji

Funkcja f(x) na danym przedziale [a, b] ma miejsce zerowe, gdy:

- jest ciągła,
- jest określona,
- $f(a) \cdot f(b) < 0$.

Gdy funkcja f(x) spełnia powyższe warunki, to w przedziale [a,b] istnienie pierwiastek i można go odnaleźć stosując algorytm połowienia.

Szkic algorytmu:

- 1. Sprawdź, czy na zadanym przedziale istnieje pierwiastek. Jeśli nie, zakończ działanie programu z odpowiednim komunikatem. Jeśli tak, przejdź do kolejnego kroku.
- 2. Wyznacz środek x_0 przedziału [a, b]
- 3. Jeśli osiągnięto zadaną dokładność, to zakończ działanie programu i zwróć x_0 . Jeśli nie, przejdź do kolejnego kroku.
- 4. Jeśli $f(a) \cdot f(x_0) < 0$, to $b = x_0$. W przeciwnym wypadku $a = x_0$.
- 5. Idź do kroku 2.

Regula falsi

Funkcja f(x) na danym przedziale [a, b] ma miejsce zerowe, gdy:

- ullet funkcja f oraz jej pierwsza i druga pochodna są ciągłe w badanym przedziale [a,b],
- pierwsza i druga pochodna funkcji f mają stały znak w badanym przedziale [a, b],
- $f(a) \cdot f(b) < 0$.

Gdy funkcja f(x) spełnia powyższe warunki, to w przedziale [a,b] istnienie pierwiastek i można go odnaleźć stosując regulę falsi.

Szkic algorytmu:

- 1. Sprawdź, czy na zadanym przedziale istnieje pierwiastek. Jeśli nie, zakończ działanie programu z odpowiednim komunikatem. Jeśli tak, przejdź do kolejnego kroku.
- 2. Zbadaj znak funkcji i jej drugiej pochodnej na krańcach przedziału. Jeśli znaki są takie same w punkcie a, to $x_s=a$ oraz $x_0=b$. W przeciwnym wypadku $x_s=b$ i $x_0=a$.
- 3. Wykonuj tak długo aż osiągnięta zostanie zadana dokładność:
 - (a) Oblicz x_0 zgodnie ze wzorem: $x_0 = x_s \frac{f(x_s)}{f(x_0) f(x_s)} (x_0 x_s)$

Metoda siecznych

Szkic algorytmu:

- 1. Sprawdź, czy na zadanym przedziale istnieje pierwiastek. Jeśli nie, zakończ działanie programu z odpowiednim komunikatem. Jeśli tak, przejdź do kolejnego kroku.
- 2. Wykonaj pierwszy krok metody falsi, tj. zbadaj znak funkcji i jej drugiej pochodnej na krańcach przedziału. Jeśli znaki są takie same w punkcie a, to $x_0=a$ oraz $x_1=b$. W przeciwnym wypadku $x_0=b$ i $x_1=a$.
- 3. Oblicz x_{i+1} zgodnie ze wzorem:

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}.$$

4. Jeśli osiągnięto zadaną dokładność, to zakończ działanie programu i zwróć x_{i+1} . Jeśli nie powtórz poprzedni krok.

Metoda stycznych

Szkic algorytmu:

- 1. Sprawdź, czy na zadanym przedziale istnieje pierwiastek. Jeśli nie, zakończ działanie programu z odpowiednim komunikatem. Jeśli tak, przejdź do kolejnego kroku.
- 2. Zbadaj znak funkcji i jej drugiej pochodnej na krańcach przedziału. Jeśli znaki są takie same w punkcie a, to $x_0 = a$. W przeciwnym wypadku $x_0 = b$.
- 3. Oblicz x_{i+1} zgodnie ze wzorem:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}.$$

4. Jeśli osiągnięto zadaną dokładność, to zakończ działanie programu i zwróć x_{i+1} . Jeśli nie powtórz poprzedni krok.

Przyda się:

Warunki stopu:

$$|f(x)| \le ftol$$

$$|x_k - x_{k-1}| \le tol$$

pomiaru czasu

tic - start zegara, toc - stop zegara

obliczanie pierwszej pochodnej numerycznie
$$df(x) = \frac{f(x+h) \, - \, f(x-h)}{2*h}$$

gdzie h – mała liczba, np. 0.001

obliczanie drugiej pochodnej numerycznie

$$d2f(x) = \frac{f(x+h) - 2 * f(x) + f(x-h)}{h^2}$$

gdzie h – mała liczba, np. 0.001

rysowanie punktu na wykresie plot (x, y, 'r*') – wygeneruje czerwoną gwiazdkę o współrzędnych (x,y)