Índice general

1.	Ince	ertidumbre
	1.1.	Calculo de incertidumbre (Metodo GUM - clasico)
		1.1.1. Incertidumbre tipo A (.ºstadistica")
		1.1.2. Incertidumbre tipo B ("No estadistico")
		1.1.3. Incertidumbre combinada
		1.1.4. Incertidumbre expandida
	1.2.	Metedo Montecarlo
2.	Osc	iloscopio
3.	Voltimetro	
	3.1.	Instrumentos analógicos
		3.1.1. Funcionanmiento
		3.1.2. Ecuacion diferencial de su movimiento
	3.2.	Ley de respuesta de respuesta

Capítulo 1

Incertidumbre

 Hay dos caminos, el metodo MONTECARLO que es utilizando una aproximacion discreta.

$$\sigma = \sqrt{\sum_{i=1}^{N} \frac{A_{p_i}^2}{N-1}}$$

Camino dos: hallar la relacion entre σ y la desv
 estandar de exactitud y resolucion.

$$\sigma^2 = \sigma_{exactitud}^2 + \sigma_{resolucion}^2$$

Podemos hallar la desviacion estandar de la exactitud y la resolucion usando una formula que viene de estadistica/probabilidad

$$\sigma_x^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$
$$\sigma_{exactitud} = \frac{exactitud}{\sqrt{3}}$$
$$\sigma_{resolucion} = \frac{resolucion}{2\sqrt{3}}$$

1.1. Calculo de incertidumbre (Metodo GUM - clasico)

$$y = f(x_1, x_2, ..., x_n)$$

Ejemplo: $R = \frac{V}{I} \Rightarrow R = f(V, I)$

1.1.1. Incertidumbre tipo A (. **stadistica**)

Hago siempre lo mismo e igual varia. Se toman M medidas $\Rightarrow y_1, ..., y_M$

$$U_A = \frac{\sigma_A}{\sqrt{M}}$$

$$\sigma_A = \sqrt{\sum_{i=1}^M \frac{(y_i - \bar{y})^2}{M - 1}}$$

$$\bar{y} = \frac{\sum_{i=1}^M y_i}{M}$$

1.1.2. Incertidumbre tipo B ("No estadistico")

Apartamientos por el sistema de medida.

$$y = \underbrace{y_0}_{f(p_0)} + \frac{\partial f}{\partial x_1}|_{p=p_0} (x_1 - x_0) + \dots + \frac{\partial f}{\partial x_n}|_{p=p_0} (x_N - x_{n_0})$$

Aca p_0 es el promedio de los valores medidos Truncamos el Taylor en orden 2, ademas:

$$C_i = \frac{\partial f}{\partial x_i}$$

$$\Delta y = C_1 \Delta x_1 + \dots + C_n \Delta x_n$$

 $u(x_k)= ext{ propagacion de varianzas en todas las fuentes}$

Para esto miramos la exactitud y resolucion de cada variable

$$U_B = \sqrt{\sum_{k=1}^{N} C_K^2 \cdot u(x_k)^2}$$

1.1.3. Incertidumbre combinada

$$U_C = \sqrt{U_A^2 + U_B^2}$$

1.1.4. Incertidumbre expandida

$$U_E = K \cdot U_C$$

Kes el factor de cobertura. Usualmente K=2 (95 Resultado de la medida: $\bar{y}\pm U_E$

1.2. Metedo Montecarlo

Para el metodo de Montecarlo hacemos lo siguiente:

- \blacksquare Generamos distribucion normal de valores de m
- \blacksquare Generamos distribucion normal de valores de V
- \blacksquare Luego intentamos hallar distribucion (normal) de valores de δ donde

$$\delta_j = \frac{m_j}{V_j}$$

Si tenemos una variable X que aparenta ser normal, esto es: $X\sim N(\mu,\sigma^2)$ Entonces podemos hacer un cambio de variable $Z=\frac{X-\mu}{\sigma}$

$$\Rightarrow Z \sim N(0,1)$$

$$X = Z\sigma + \mu$$

Capítulo 2

Osciloscopio

Capítulo 3

Voltimetro

3.1. Instrumentos analógicos

Siguen vigentes porque son baratos y muy sensibles entonces se pueden construir instrumentos que miden con muy buena precision de forma barata. Tambien son demandados por las insdustrias.

3.1.1. Funcionanmiento

Tenemos un iman permanente con una bobina movil. A traves de la bobina movil circula la corriente, lo que induce una fuerza por ley de Faraday y esto genera un par magnético que rota la aguja.

Cuando la bobina gira, arrastra la espira en cortocircuito que, por moverse en un campo magnético tendrá una f.e.m inducida y por tratarse de un circuito

cerrado circula una intensidad inducida, que reacciona con el campo magnético generando un par que se opone al movimiento y que se llama AMORTIGUA-MIENTO.

3.1.2. Ecuacion diferencial de su movimiento

$$J\frac{\partial^2 \theta}{\partial t^2} = Gi - D\frac{\partial \theta}{\partial t} - k_r \theta$$

Donde J es el momento de inercia del rotor.

3.2. Ley de respuesta de respuesta

