Math 375 Fall 2016

Laplace Transform

Worksheet # 3 Part 2 November 14-18

The problems on this worksheet refer to material from sections §6.1, §6.2, 6.3, and §6.4 of your text. Please report any typos, omissions and errors to aiffam@ucalgary.ca

Inverse Transform of Rational Functions

Compute the inverse Laplace transform of each of the following

a.
$$\frac{2}{s^2 - 6s}$$

a.
$$\frac{2}{s^2 - 6s}$$
 b. $\frac{3s - 14}{s^2 - 4s + 8}$ c*. $\frac{8s + 20}{s^2 - 12s + 32}$ d*. $\frac{3s + 2}{(s+1)(s+2)(s^2+1)}$ e. $\frac{3s^2 + 2s + 1}{(s^2+1)(s^2+2s+2)}$ f. $\frac{4}{s(s^4-1)}$ g. $\frac{s}{(s^2+1)(s^2+4)}$ h. $\frac{3s^2 + 24s + 15}{s(s^2+8s+15)}$

$$\frac{3s^2 + 2s + 1}{(s^2 + 1)(s^2 + 2s + 2)}$$

f.
$$\frac{4}{s(s^4-1)}$$

g.
$$\frac{s}{(s^2+1)(s^2+4)}$$

h.
$$\frac{3s^2 + 24s + 15}{s(s^2 + 8s + 15)}$$

The Second Shift Formula for the Inverse Transform

02. Determine the inverse Laplace transform of

a.
$$\frac{e^{-5 s}}{(s-2)^4}$$

b.
$$\frac{8 e^{-3 s}}{s^2 + 4}$$

$$c^*$$
. $\frac{(s+2)e^{-\pi s}}{s^2-4s+13}$

Inverse Transform of a Derivative

Compute the inverse Laplace transform of

a*.
$$\frac{s}{(s^2+1)^2}$$

b.
$$\frac{s^2-1}{(s^2+1)^2}$$

c.
$$\ln\left(\frac{s^2+1}{s^2+4}\right)$$

$$\mathbf{d.} \quad \tan^{-1}\left(\frac{3}{s+2}\right)$$

Solving Initial Value Problems

Use Laplace transform to solve the initial value problems.

$$\mathbf{a.} \quad \left\{ \begin{array}{l} y'' + 5\,y' + 6\,y = 2\,\mathrm{e}^- \\ y(0) = 1, \ y'(0) = 3 \end{array} \right.$$

b.
$$\begin{cases} y'' + 4y = 8\sin(2t) + 9\cos(t) \\ y(0) = 1, \ y'(0) = 0 \end{cases}$$

$$\mathbf{a.} \quad \left\{ \begin{array}{l} y'' + 5\,y' + 6\,y = 2\,\mathrm{e}^{-t} \\ y(0) = 1, \quad y'(0) = 3 \end{array} \right. \qquad \mathbf{b.} \quad \left\{ \begin{array}{l} y'' + 4\,y = 8\,\sin(2\,t) + 9\,\cos(t) \\ y(0) = 1, \quad y'(0) = 0 \end{array} \right.$$

$$\mathbf{c*.} \quad \left\{ \begin{array}{l} y'' - 3\,y' + 2\,y = g(t) \\ y(0) = -3, \quad y'(0) = 1 \end{array} \right. \quad \text{with} \quad g(t) = \left\{ \begin{array}{l} 0 \quad \text{if} \quad 0 \le t < 1 \\ 1 \quad \text{if} \quad 1 \le t < 2 \\ -1 \quad \text{if} \quad t \ge 2 \end{array} \right.$$

- Use Laplace transform method to solve the initial value problems.

 - **a.** $\begin{cases} y'' + 2y' + y = g(t) \\ y(0) = 3, \ y'(0) = -1 \end{cases} \text{ with } g(t) = \begin{cases} e^t & \text{if } 0 \le t < 1 \\ e^t 1 & \text{if } t \ge 1 \end{cases}$ **b.** $\begin{cases} y'' + 9y = g(t) \\ y(0) = 0, \ y'(0) = 0 \end{cases} \text{ with } g(t) = \begin{cases} \cos(t) & \text{if } 0 \le t < 3\pi/2 \\ \sin(t) & \text{if } t \ge 3\pi/2 \end{cases}$