Problem Set 3

1 Problems

Problem 1. (2 points) Given the RRRP robot shown below, the shown configuration is the home position of this robot determine the following:

- (a) The zero position configuration M
- (b) The screw axis S_i for each joint in the $\{s\}$ frame.
- (c) The screw axis \mathcal{B}_i for each joint in the $\{b\}$ frame.
- (d) Using the Product of Exponential method in either the space or body frame to find the end-effector configuration for the joint configuration $\theta_1 = \pi$, $\theta_2 = \frac{\pi}{2}$, $\theta_3 = \frac{\pi}{4}$, $\theta_4 = 2$

Problem 2. (1 points) For the RRP robot shown below in its home configuration determine the following:

- (a) The body Jacobian J_b
- (b) The space Jacobian J_s

Problem 3. (1 point) Given the 3R planar robot shown below in the given configuration with angles $\theta_1 = \frac{\pi}{4}$, $\theta_2 = 0$, $\theta_3 = \frac{\pi}{2}$, and link lengths all equal to 1m, determine the required joint torques in order to apply 10N force in the y_s direction:

Problem 4. (1 points) Given the spatial 3R robot show in its zero configuration, determine the spatial twist V_s of the tip with the joint configuration $\theta_1 = 0, \theta_2 = 0, \theta_3 = \frac{\pi}{4}$ and joint rates $\dot{\theta_1} = 1, \dot{\theta_2} = 1, \dot{\theta_3} = 2$

