# Week 07: Graph Algorithms 1

# **Graph Algorithms**

# **Problems on Graphs**

What kind of problems do we want to solve on/via graphs?

- is the graph fully-connected?
- can we remove an edge and keep it fully-connected?
- is one vertex reachable starting from some other vertex?
- what is the cheapest cost path from v to w?
- which vertices are reachable from v? (transitive closure)
- is there a cycle that passes through all vertices? (circuit)
- is there a tree that links all vertices? (spanning tree)
- what is the minimum spanning tree?
- ..
- can a graph be drawn in a plane with no crossing edges? (planar graphs)
- are two graphs "equivalent"? (isomorphism)

# **Graph Algorithms**

In this course we examine algorithms for

- connectivity (simple graphs)
- path finding (simple/directed graphs)
- minimum spanning trees (weighted graphs)
- shortest path (weighted graphs)

and look at generic methods for traversing graphs.

We begin with one of the simplest graph traversals ...

## **Graph Traversal**

# **Finding a Path**

Questions on paths:

- is there a path between two given vertices (src,dest)?
- what is the sequence of vertices from *src* to *dest*?

Approach to solving problem:

- examine vertices adjacent to src
- if any of them is *dest*, then done
- otherwise try vertices two edges from v

• repeat looking further and further from v

Two strategies for graph traversal/search: depth-first, breadth-first

- DFS follows one path to completion before considering others
- BFS "fans-out" from the starting vertex ("spreading" subgraph)

## ... Finding a Path

6/79

8/79

Comparison of BFS/DFS search for checking if there is a path from a to h ...



Both approaches ignore some edges by remembering previously visited vertices.

## ... Finding a Path

Depth-first ...

2/79

3/79

5/79

- favour following path rather than neighbours
- can be implemented recursively or iteratively (via stack)
- full traversal produces a depth-first spanning tree

Breadth-first ...

- favour neighbours rather than path following
- can be implemented iteratively (via queue)
- full traversal produces a breadth-first spanning tree

## **Exercise #1: Traversal-induced Spanning Trees**

A spanning tree of a graph

- includes all vertices
- uses a subset of edges, without cycles

Show the DFS and BFS spanning trees for the graph below, starting with 0:



### Consider neighbours in ascending order

#### Answer:







BFS spanning tree

# **Depth-first Search**

repuii-insi searcii

Depth-first search can be described recursively as

#### depthFirst(G, v):

- 1. mark v as visited
- for each (v,w)∈edges(G) do
   if w has not been visited then
   depthFirst(w)

The recursion induces backtracking

## ... Depth-first Search

Recursive DFS path checking

else if w has not been visited then

```
if dfsPathCheck(G,w,dest) then
    return true  // found path via w to dest
end if
end if
end for
return false  // no path from v to dest
```

## Exercise #2: Depth-first Traversal (i)

12/79

Trace the execution of dfsPathCheck(G, 0, 5) on:



Consider neighbours in ascending order

#### Answer:

10/79

0 - 1 - 2 - 3 - 4 - 5

### ... Depth-first Search

14/79

Cost analysis:

- each vertex visited at most once  $\Rightarrow$  cost = O(V)
- visit all edges incident on visited vertices  $\Rightarrow$  cost = O(E)
  - o assuming an adjacency list representation

Time complexity of DFS: O(V+E) (adjacency list representation)

## ... Depth-first Search

15/79

Knowing whether a path exists can be useful

Knowing what the path is even more useful

⇒ record the previously visited node as we search through the graph (so that we can then trace path through graph)

Make use of global variable:

• visited[] ... array to store previously visited node, for each node being visited

... Depth-first Search

```
visited[] // store previously visited node, for each vertex 0..nV-1
findPath(G,src,dest):
   Input graph G, vertices src, dest
   for all vertices v∈G do
      visited[v]=-1
   end for
  visited[src]=src
                                     // starting node of the path
  if dfsPathCheck(G,src,dest) then // show path in dest..src order
     v=dest
     while v≠src do
         print v"-"
         v=visited[v]
     end while
     print src
   end if
dfsPathCheck(G,v,dest):
   for all (v,w) \in edges(G) do
     if visited[w]=-1 then
         visited[w]=v
         if w=dest then
                                     // found edge from v to dest
            return true
         else if dfsPathCheck(G,w,dest) then
                                     // found path via w to dest
            return true
         end if
     end if
   end for
   return false
                                     // no path from v to dest
```

### Exercise #3: Depth-first Traversal (ii)

17/79

Show the DFS order in which we visit vertices in this graph when searching for a path from 0 to 6:



Consider neighbours in ascending order

| 0   | 0   | 3   | 5   | 3   | 1   | 5   | 4   | 7   | 8   |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |

Path: 6-5-1-0

```
... Depth-first Search
```

```
DFS can also be described non-recursively (via a stack):
visited[] // array of visiting orders, indexed by vertex 0..nV-1
findPathDFS(G,src,dest):
   Input graph G, vertices src,dest
   for all vertices v∈G do
      visited[v]=-1
  end for
  found=false
  visited[src]=src
  push src onto new stack s
  while ¬found ∧ s is not empty do
      pop v from s
      for each (v,w)∈edges(G) do
         if visited[w]=-1 then
            visited[w]=v
            if w=dest then
               found=true
            else
               push w onto s
            end if
         end if
      end for
   end while
   if found then
      display path in dest..src order
```

Uses standard stack operations (push, pop, check if empty)

Time complexity is the same: O(V+E) (each vertex added to stack once, each element in vertex's adjacency list visited once)

### Exercise #4: Depth-first Traversal (iii)

end if

20/79

19/79

Show how the stack evolves when executing findPathDFS(g,0,5) on:



Push neighbours in descending order ... so they get popped in ascending order



## **Breadth-first Search**

22/79

Basic approach to breadth-first search (BFS):

- visit and mark current vertex
- visit all neighbours of current vertex
- then consider neighbours of neighbours

Notes:

- tricky to describe recursively
- a minor variation on non-recursive DFS search works
  - $\Rightarrow$  switch the *stack* for a *queue*

### ... Breadth-first Search

23/79

BFS algorithm (records visiting order):

dequeue v from q

```
visited[\ ] \ \textit{// array of visiting orders, indexed by vertex } \ 0..nV-1
```

```
findPathBFS(G,src,dest):
    Input graph G, vertices src,dest
    for all vertices veG do
       visited[v]=-1
    end for
```

```
found=false
visited[src]=src
enqueue src into new queue q
while ¬found ∧ q is not empty do
```

```
BFS finds a "shortest" path
```

... Breadth-first Search

- based on minimum # edges between src and dest.
- stops with first-found path, if there are multiple ones

In many applications, edges are weighted and we want path

Time complexity of BFS: O(V+E) (same as DFS)



Uses standard queue operations (enqueue, dequeue, check if empty)

#### Exercise #5: Breadth-first Traversal

24/79

26/79

Show the BFS order in which we visit vertices in this graph when searching for a path from 0 to 6:



Consider neighbours in ascending order



Path: 6-5-0

• based on minimum sum-of-weights along path src .. dest

We discuss weighted/directed graphs later.

# **Other DFS Examples**

27/79

28/79

Other problems to solve via DFS graph search

- checking for the existence of a cycle
- determining which connected component each vertex is in



Graph with two connected components, a path and a cycle

## Exercise #6: Buggy Cycle Check

A graph has a cycle if

- it has a path of length > 1
- with start vertex src = end vertex dest
- and without using any edge more than once

We are not required to give the path, just indicate its presence.

The following DFS cycle check has two bugs. Find them.

- 1. Only one connected component is checked.
- 2. The loop

```
for each (v,w)∈edges(G) do
```

should exclude the neighbour of v from which you just came, so as to prevent a single edge w-v from being classified as a cycle.

# **Computing Connected Components**

30/79

Problems:

- how many connected subgraphs are there?
- are two vertices in the same connected subgraph?

Both of the above can be solved if we can

- build an array, one element for each vertex V
- indicating which connected component V is in
- componentOf[] ... array [0..nV-1] of component IDs

### ... Computing Connected Components

31/79

Algorithm to assign vertices to connected components:

```
components(G):
  Input graph G
  for all vertices v∈G do
      componentOf[v]=-1
  end for
  compID=0
  for all vertices v∈G do
      if componentOf[v]=-1 then
         dfsComponents(G,v,compID)
         compID=compID+1
     end if
   end for
dfsComponents(G, v, id):
   componentOf[v]=id
  for all vertices w adjacent to v do
      if componentOf[w]=-1 then
         dfsComponents(G,w,id)
      end if
   end for
```

### **Exercise #7: Connected components**

Trace the execution of the algorithm

- 1. on the graph shown below
- 2. on the same graph but with the dotted edges added



### Consider neighbours in ascending order

1.

| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] |  |
|-----|-----|-----|-----|-----|-----|-----|-----|--|
| -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1  |  |
| 0   | -1  | -1  | -1  | -1  | -1  | -1  | -1  |  |
| 0   | -1  | 0   | -1  | -1  | -1  | -1  | -1  |  |
| 0   | 0   | 0   | -1  | -1  | -1  | -1  | -1  |  |
| 0   | 0   | 0   | 1   | -1  | -1  | -1  | -1  |  |
|     |     |     |     |     |     |     |     |  |
| 0   | 0   | 0   | 1   | 1   | 2   | 2   | 2   |  |

2..

| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] |
|-----|-----|-----|-----|-----|-----|-----|-----|
| -1  | -1  | -1  | -1  | -1  | -1  | -1  | -1  |
| 0   | -1  | -1  | -1  | -1  | -1  | -1  | -1  |
| 0   | 0   | -1  | -1  | -1  | -1  | -1  | -1  |
| 0   | 0   | 0   | -1  | -1  | -1  | -1  | -1  |
|     |     |     |     |     |     |     |     |
| 0   | 0   | 0   | 0   | 0   | 1   | 1   | 1   |

## ... Computing Connected Components

Consider an application where connectivity is critical

- we frequently ask questions of the kind above
- but we cannot afford to run components () each time

Add a new fields to the GraphRep structure:

### ... Computing Connected Components

35/79

With this structure, the above tasks become trivial:

```
// How many connected subgraphs are there?
int nConnected(Graph g) {
    return g->nC;
}
// Are two vertices in the same connected subgraph?
bool inSameComponent(Graph g, Vertex v, Vertex w) {
    return (g->cc[v] == g->cc[w]);
}
```

Consider maintenance of such a graph representation:

- initially, nC = nV (because no edges)
- adding an edge may reduce nC
- removing an edge may increase nC
- cc[] can simplify path checking (ensure v, w are in same component before starting search)

Additional maintenance cost amortised by reduced cost for nConnected() and inSameComponent()

## **Hamiltonian and Euler Paths**

## **Hamiltonian Path and Circuit**

37/79

Hamiltonian path problem:

34/79

- find a simple path connecting two vertices v,w in graph G
- such that the path includes each *vertex* exactly once

If v = w, then we have a *Hamiltonian circuit* 

Simple to state, but difficult to solve (NP-complete)

Many real-world applications require you to visit all vertices of a graph:

• Travelling salesman

• Bus routes

Problem named after Irish mathematician, physicist and astronomer Sir William Rowan Hamilton (1805 - 1865)

#### ... Hamiltonian Path and Circuit

38/79

Graph and two possible Hamiltonian paths:







#### ... Hamiltonian Path and Circuit

39/79

### Approach:

- generate all possible simple paths (using e.g. DFS)
- keep a counter of vertices visited in current path
- stop when find a path containing V vertices

Can be expressed via a recursive DFS algorithm

- similar to simple path finding approach, except
  - keeps track of path length; succeeds if length = v
  - resets "visited" marker after unsuccessful path

#### ... Hamiltonian Path and Circuit

40/79

Algorithm for finding Hamiltonian path:

visited[] // array [0..nV-1] to keep track of visited vertices

hasHamiltonianPath(G,src,dest):

```
for all vertices v \in G do
   visited[v]=false
end for
return hamiltonR(G, src, dest, #vertices(G)-1)
```

#### hamiltonR(G,v,dest,d):

```
Input G
           current vertex considered
      dest destination vertex
           distance "remaining" until path found
if v=dest then
```

```
if d=0 then return true else return false
else
   visited[v]=true
   for each (v,w) \in edges(G) \land \neg visited[w] do
      if hamiltonR(G,w,dest,d-1) then
         return true
      end if
  end for
end if
visited[v]=false
                             // reset visited mark
return false
```

#### Exercise #8: Hamiltonian Path

41/79

Trace the execution of the algorithm when searching for a Hamiltonian path from 1 to 6:



Consider neighbours in ascending order

| 1-0-2-3-4-5-6       | d≠0                    |
|---------------------|------------------------|
| 1-0-2-3-4-5-7-8-9   | no unvisited neighbour |
| 1-0-2-3-4-5-7-9-8   | no unvisited neighbour |
| 1-0-2-3-4-7-5-6     | d≠0                    |
| 1-0-2-3-4-7-8-9     | no unvisited neighbour |
| 1-0-2-3-4-7-9-8     | no unvisited neighbour |
| 1-0-2-3-4-8-7-5-6   | d≠0                    |
| 1-0-2-3-4-8-7-9     | no unvisited neighbour |
| 1-0-2-3-4-8-9-7-5-6 | ✓                      |
|                     |                        |

Repeat on your own with src=0 and dest=6

#### ... Hamiltonian Path and Circuit

43/79

Analysis: worst case requires (V-1)! paths to be examined

Consider a graph with isolated vertex and the rest fully-connected





#### Checking has Hamiltonian Path(g, 0, x) for any x

- requires us to consider every possible path
- e.g 1-2-3-4, 1-2-4-3, 1-3-2-4, 1-3-4-2, 1-4-2-3, ...
- starting from any x, there are 3! paths  $\Rightarrow$  4! total paths
- there is no path of length 5 in these (V-1)! possibilities

There is no known simpler algorithm for this task  $\Rightarrow NP$ -hard.

Note, however, that the above case could be solved in constant time if we had a fast check for 0 and x being in the same connected component

### **Euler Path and Circuit**

44/79

#### Euler path problem:

- find a path connecting two vertices v,w in graph G
- such that the path includes each edge exactly once
   (note: the path does not have to be simple ⇒ can visit vertices more than once)

If v = w, the we have an Euler circuit



Euler Path: 4-3-1-5-2-1



Euler Circuit: 1-2-5-4-3-1

Many real-world applications require you to visit all edges of a graph:

- Postman
- Garbage pickup
- ...

#### ... Euler Path and Circuit

45/79

Problem named after Swiss mathematician, physicist, astronomer, logician and engineer Leonhard Euler (1707 - 1783)

Based on a circuitous route via bridges in Konigsberg



#### **Exercise #9: Euler Path**

46/79

Is there a way to cross all the bridges of Konigsberg exactly once on a walk through the town?

• treat land as nodes; bridges as edges



N E

Bridges as graph

#### No

#### ... Euler Path and Circuit

48/79

One possible "brute-force" approach:

- check for each path if it's an Euler path
- would result in factorial time performance

Can develop a better algorithm by exploiting:

Theorem. A graph has an Euler circuit if and only if it is connected and all vertices have even degree

Theorem. A graph has a non-circuitous Euler path if and only if it is connected and exactly two vertices have odd degree

## **Exercise #10: Eulerian Graphs**

49/79

Graphs with an Euler path are often called Eulerian Graphs

Which of these two graphs have an Euler path? an Euler circuit?





#### No Euler circuit

Only the second graph has an Euler path, e.g. 2-0-1-3-2-4-5

#### ... Euler Path and Circuit

51/79

Assume the existence of degree (g, v) (degree of a vertex, cf. problem set week 6)

Algorithm to check whether a graph has an Euler path:

```
hasEulerPath(G,src,dest):
```

```
Input graph G, vertices src,dest
Output true if G has Euler path from src to dest
       false otherwise
if src≠dest then
  if degree(G,src) is even V degree(G,dest) is even then
      return false
   end if
else if degree(G,src) is odd then
   return false
end if
for all vertices v \in G do
  if v≠src ∧ v≠dest ∧ degree(G,v) is odd then
      return false
  end if
end for
return true
```

#### ... Euler Path and Circuit

52/79

Analysis of hasEulerPath algorithm:

assume that connectivity is already checked

- assume that degree is available via O(1) lookup
- single loop over all vertices  $\Rightarrow O(V)$

If degree requires iteration over vertices

- cost to compute degree of a single vertex is O(V)
- overall cost is  $O(V^2)$

⇒ problem tractable, even for large graphs (unlike Hamiltonian path problem)

For the keen, a linear-time (in the number of edges, E) algorithm to compute an Euler path is described in [Sedgewick] Ch.17.7.

## **Directed Graphs**

## **Directed Graphs (Digraphs)**

54/79

In our previous discussion of graphs:

- an edge indicates a relationship between two vertices
- an edge indicates nothing more than a relationship

In many real-world applications of graphs:

- edges are directional  $(v \rightarrow w \neq w \rightarrow v)$
- edges have a *weight* (cost to go from  $v \rightarrow w$ )

## ... Directed Graphs (Digraphs)

55/79

Example digraph and adjacency matrix representation:



Undirectional ⇒ symmetric matrix Directional ⇒ non-symmetric matrix

Maximum #edges in a digraph with V vertices: V<sup>2</sup>

## ... Directed Graphs (Digraphs)

56/79

Terminology for digraphs ...

Directed path: sequence of  $n \ge 2$  vertices  $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n$ 

• where  $(v_i, v_{i+1}) \in edges(G)$  for all  $v_i, v_{i+1}$  in sequence

• if  $v_1 = v_n$ , we have a *directed cycle* 

Degree of vertex:  $deg(v) = number of edges of the form <math>(v, \_) \in edges(G)$ 

• Indegree of vertex:  $deg^{-1}(v)$  = number of edges of the form  $(\_, v) \in edges(G)$ 

Reachability: w is reachable from v if  $\exists$  directed path v,...,w

Strong connectivity: every vertex is reachable from every other vertex

Directed acyclic graph (DAG): graph containing no directed cycles

# **Digraph Applications**

Potential application areas:

| Domain       | Vertex          | Edge          |
|--------------|-----------------|---------------|
| Web          | web page        | hyperlink     |
| scheduling   | task            | precedence    |
| chess        | board position  | legal move    |
| science      | journal article | citation      |
| dynamic data | malloc'd object | pointer       |
| programs     | function        | function call |
| make         | file            | dependency    |

## ... Digraph Applications

Problems to solve on digraphs:

- is there a directed path from s to t? (transitive closure)
- what is the shortest path from s to t? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- which web pages are "important"? (PageRank)
- how to build a web crawler? (graph traversal)

# **Digraph Representation**

Similar set of choices as for undirectional graphs:

- array of edges (directed)
- vertex-indexed adjacency matrix (non-symmetric)
- vertex-indexed adjacency lists

V vertices identified by 0 ... V-1



### ... Digraph Representation

57/79

58/79

59/79

60/79

Costs of representations: (where degree deg(v) = #edges leaving v)

|                     | array<br>of edges | adjacency<br>matrix | adjacency<br>list |
|---------------------|-------------------|---------------------|-------------------|
| space usage         | E                 | $V^2$               | V+E               |
| insert edge         | E                 | 1                   | 1                 |
| exists edge (v,w)?  | E                 | 1                   | deg(v)            |
| get edges leaving v | E                 | V                   | deg(v)            |

Overall, adjacency list representation is best

- real graphs tend to be sparse (large number of vertices, small average degree deg(v))
- algorithms frequently iterate over edges from v

# Reachability

## **Transitive Closure**

62/79

Given a digraph G it is potentially useful to know

• is vertex *t* reachable from vertex *s*?

Example applications:

- can I complete a schedule from the current state?
- is a malloc'd object being referenced by any pointer?

How to compute transitive closure?

... Transitive Closure 63/79

One possibility:

- implement it via hasPath(G,s,t) (itself implemented by DFS or BFS algorithm)
- feasible if reachable(G,s,t) is infrequent operation

What if we have an algorithm that frequently needs to check rechability?

Would be very convenient/efficient to have:

```
reachable(G,s,t):
```

```
return G.tc[s][t] // transitive closure matrix
```

Of course, if V is very large, then this is not feasible.

#### **Exercise #11: Transitive Closure Matrix**

64/79

Which reachable s .. t exist in the following graph?



|   | а | b | С | d | 9 | f | g |
|---|---|---|---|---|---|---|---|
| а | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| b | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| С | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| d | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 9 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| f | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| g | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

#### Transitive closure of example graph:





adjacency matrix

|   | а | b | С | d | е | f | g |
|---|---|---|---|---|---|---|---|
| а | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| b | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| С | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| d | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| е | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| f | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| g | 1 | 1 | 1 | 1 | 0 | 1 | 1 |

transitive closure

#### ... Transitive Closure

66/79

Goal: produce a matrix of reachability values

- if tc[s][t] is 1, then t is reachable from s
- if tc[s][t] is 0, then t is not reachable from s

So, how to create this matrix?

Observation:

```
\forall i.s.t \in \text{vertices}(G):
  (s,i) \in \text{edges}(G) \land (i,t) \in \text{edges}(G) \implies tc[s][t] = 1
```

67/79 ... Transitive Closure

If we implement the above as:

```
make tc[][] a copy of edges[][]
for all i∈vertices(G) do
   for all s∈vertices(G) do
      for all t∈vertices(G) do
         if tc[s][i]=1 \land tc[i][t]=1 then
            tc[s][t]=1
         end if
      end for
   end for
end for
```

tc[s][t]=1 if there is a path from s to t of length 2  $(s \rightarrow i \rightarrow t)$ 

then we get an algorithm to convert edges into a tc

This is known as Warshall's algorithm

68/79 ... Transitive Closure

How it works ...

After iteration 1, tc[s][t] is 1 if

• either  $s \rightarrow t$  exists or  $s \rightarrow 0 \rightarrow t$  exists

After iteration 2, tc[s][t] is 1 if any of the following exist

•  $s \rightarrow t$  or  $s \rightarrow 0 \rightarrow t$  or  $s \rightarrow 1 \rightarrow t$  or  $s \rightarrow 0 \rightarrow 1 \rightarrow t$  or  $s \rightarrow 1 \rightarrow 0 \rightarrow t$ 

Etc. ... so after the  $V^{th}$  iteration, tc[s][t] is 1 if

• there is any directed path in the graph from s to t

#### **Exercise #12: Transitive Closure**

69/79

Trace Warshall's algorithm on the following graph:



```
1^{st} iteration i=0:
```

| tc  | [0] | [1] | [2] | [3] |
|-----|-----|-----|-----|-----|
| [0] | 0   | 1   | 1   | 1   |
| [1] | 1   | 1   | 1   | 1   |
| [2] | 0   | 1   | 0   | 0   |
| [3] | 0   | 0   | 0   | 0   |

#### $2^{\text{nd}}$ iteration i=1:

| tc  | [0] | [1] | [2] | [3] |
|-----|-----|-----|-----|-----|
| [0] | 1   | 1   | 1   | 1   |
| [1] | 1   | 1   | 1   | 1   |
| [2] | 1   | 1   | 1   | 1   |
| [3] | 0   | 0   | 0   | 0   |

3<sup>rd</sup> iteration i=2: unchaged

4<sup>th</sup> iteration i=3: unchanged

... Transitive Closure

Cost analysis:

• storage: additional  $V^2$  items (each item may be 1 bit)

• computation of transitive closure:  $V^3$ 

• computation of reachable(): O(1) after having generated tc[][]

Amortization: would need many calls to reachable () to justify other costs

Alternative: use DFS in each call to reachable() Cost analysis:

- storage: cost of queue and set during reachable
- computation of reachable (): cost of DFS =  $O(V^2)$  (for adjacency matrix)

# **Digraph Traversal**

Same algorithms as for undirected graphs:

depthFirst(v):

- 1. mark v as visited
- for each (v,w)∈edges(G) do
   if w has not been visitied then
   depthFirst(w)

breadth-first(v):

```
    enqueue v
    while queue not empty do
        dequeue v
        if v not already visited then
        mark v as visited
        enqueue each vertex w adjacent to v
```

# **Example: Web Crawling**

Goal: visit every page on the web

71/79

72/79

**Solution:** breadth-first search with "implicit" graph

visit scans page and collects e.g. keywords and links

PageRank 74/79

Goal: determine which Web pages are "important"

**Approach:** ignore page contents; focus on hyperlinks

- treat Web as graph: page = vertex, hyperlink = di-edge
- pages with many incoming hyperlinks are important
- need to computing "incoming degree" for vertices

Problem: the Web is a very large graph

• approx.  $10^{14}$  pages,  $10^{15}$  hyperlinks

Assume for the moment that we could build a graph ...

Most frequent operation in algorithm "Does edge (v,w) exist?"

... PageRank 75/79

Simple PageRank algorithm:

73/79

Note: requires inbound link check (not outbound as assumed above for cost of representation)

... PageRank 76/79

V = # pages in Web, E = # hyperlinks in Web

Costs for computing PageRank for each representation:

| Representation   | linkExists(v,w) | Cost  |
|------------------|-----------------|-------|
| Adjacency matrix | edge[v][w]      | 1     |
| Adjacency lists  | inLL(list[v],w) | ≅ E/V |

Not feasible ...

end for

- adjacency matrix ...  $V = 10^{14} \Rightarrow$  matrix has  $10^{28}$  cells
- adjacency list ... V lists, each with  $\approx 10$  hyperlinks  $\Rightarrow 10^{15}$  list nodes

So how to really do it?

... PageRank

Approach: the random web surfer

- if we randomly follow links in the web ...
- ... more likely to re-discover pages with many inbound links

Could be accomplished while we crawl web to build search index

### **Exercise #13: Implementing Facebook**

78/79

Facebook could be considered as a giant "social graph"

- what are the vertices?
- what are the edges?
- are edges directional?

What kind of algorithm would ...

• help us find people that you might like to "befriend"?

Summary 79/79

Graph traversal

- o depth-first search (DFS)
- breadth-first search (BFS)
- o applications: path finding, connected components
- Hamiltonian paths/circuits, Euler paths/circuits
- Digraphs: representations, applications, reachability
- Suggested reading (Sedgewick):
  - Hamiltonian/Euler paths ... Ch.17.7
  - o Graph search ... Ch.18.1-18.3,18.7
  - o Digraphs ... Ch.19.1-19.3

Produced: 4 Sep 2017