HW3 2

February 10, 2022

1 Problem 2

1.1 Problem 2.1

Describe expected profile for $x_A(z)$ ### Problem2.1.a

When J_A is a negative constant, ficks law can be written as

$$J_A = -k = -cD_{AB}\frac{dx_A}{dz} \tag{1}$$

rearranging gives

$$\frac{dx_A}{dz} = \frac{k}{cD_{AB}}$$

which shows that with a negative constant for J_A , $\frac{dx_A}{dz}$ is positive which would mean that $x_A(z)$ has a positive slope

1.1.1 Proplem 2.1.b

When J_A is linear with a positive slope the following relationship can be used

$$N_A = x_A N + J_A \tag{2}$$

which can be rearranged to give

$$J_A = -Nx_A + N_A$$

which is a linear expression for J_A but it has a negative slope. In order to make the slope positive, $x_A(z)$ would need to be decreasing. so $x_A(z)$ would have a negative slope.

1.2 Problem 2.2

Describe expected profile for J_A ### Problem 2.2.a When $x_A(z)$ is linear with a negative slope, $\frac{dx_A}{dz}=-k$::

$$J_A = -cD_{AB}(-k) = kcD_{AB} \tag{3}$$

where k is a constant. (3) shows that J_A would be a positive constant if c is constant, or have a positive slope if c is variable.

1.2.1 Problem 2.2.b

When $x_A(z)$ is a gaussian function centered at z=-2 there are three scenarios: a.) z<-2 b.) z=-2 c.) z>-2

when z<-2, $\frac{dx_A}{dz}>0$. Using Fick's law,

$$J_A = -cD_{AB}\frac{dx_A}{dz}$$

which means $J_A<0\,$

when
$$z=-2$$
, $\frac{dx_A}{dz}=0$ so $J_A=0$

when
$$z > -2$$
, $\frac{dx_A}{dz} < 0$ so

$$J_A = cD_A B \frac{dx_A}{dz}$$

$$\therefore \, J_A > 0$$