Katedra teoretické informatiky a matematické logiky

Daniel Crha

Board game with artificial intelligence

Obhajoba bakalářské práce

7. července 2020

- Klasické problémy teorie her jsou dobře prozkoumané
 - Mají i dobrou podporu
- Tyto problémy ale často nemodelují reálný svět

Složitější vlastnosti v teorii her

- Chtěli bychom zkoumat vlastnosti, které reálný svět modelují
- Konkrétně:
 - Neúplnost informace
 - Více hráčů
 - Prvky náhody
 - Netriviální větvící faktor
- Jedná se o méně zkoumanou oblast

Cíle

- Navrhnout hru se zmíněnými vlastnostmi
- Hru implementovat s podporou pro umělou inteligenci
- Implementovat a porovnat několik inteligencí

Návrh hry

Pravidla a vlastnosti

Implementace

Technologie a rozhraní

Umělé inteligence

Náhoda a heuristika

Umělé inteligence

MaxN

Umělé inteligence

Information Set Monte Carlo Tree Search

- Stručně seznámit komisi s obsahem práce.
- Vysvětlit hlavní myšlenky.
- Vysvětlit, v čem spočívá hlavní přínos studenta k dané problematice.
 - Toto je nejdůležitější součást prezentace.
 - Komisi, jejíž většina členů nečetla podrobně celou bakalářskou práci, je potřeba přesvědčit, že se nejedná o překlad jakéhosi anglického textu do češtiny/slovenštiny.
 - V rámci prezentace je vhodné zdůraznit, jaké (matematické) problémy musel autor bakalářské práce samostatně vyřešit.
- Smyslem obhajoby bakalářské práce není naučit posluchače matematiku obsaženou v práci. Nejedná se o obdobu klasické přednášky!

Základní zásady prezentace

Bakalářská práce

- Celková doba prezentace by neměla přesáhnout 10 minut!
- Méně je někdy více! Nicméně všeho s mírou. Prezentace končící po pěti minutách též nebude působit příliš dobře.

Další zásady prezentace

Bakalářská práce

- V prezentaci (na slidech) by se (až na výjimky) neměl objevit souvislý text.
 - Slidy obsahují pouze klíčovou část informace, kterou má prezentace posluchačům předat.
 - Předpokládá se, že slidy jsou doplňovány mluveným projevem, který je tvořen souvislými větami přednesenými spisovným jazykem.
- Nepůsobí dobře, je-li mluvený projev předčítán z papíru drženého v ruce (obhajoba není projevem na stranickém kongresu/sjezdu).
 - Hlavní osnova prezentace by měla být zřejmá ze slidů, zbytek by měl být uložen v hlavě prezentujícího.
- Taktéž však nepůsobí úplně dobře, připomíná-li prezentace doslovný přednes naučeného textu (obhajoba není soutěží v recitaci).
 - Mluvený projev by měl být přirozený. S jistou nervozitou je počítáno.

Zásadní poznatek

$$F(x) = P(X \le x), \quad x \in \mathbb{R}.$$

• Toto je zprava spojitá verze distribuční funkce.

Děkuji za pozornost!

Za ochotu a čas mně věnovaný při přípravě této bakalářské práce děkuji též svému vedoucímu prof. Janu Jakubovi.

Připomínky oponenta

- Uvedl-li oponent ve svém posudku zásadnější připomínky nebo dotazy, je vhodné si připravit relevantní odpovědi písemnou formou.
- Tyto se zařadí na konec prezentace (za poděkování) a použijí se v případě, že je během obhajoby vyžadována podrobnější reakce na tu kterou připomínku.
- Písemné odpovědi není nutné připravovat pro formální připomínky, resp. pro připomínky/dotazy, které lze odpovědět/vysvětlit jednou větou.

Oddíl 5 Ilustrace použití La balíčku beamer

Vysazený vzorec v rámečku

Pomocí příkazu dmath definovaného v MFF_Present.sty

$$F(x) = P(X \le x), \qquad x \in \mathbb{R}.$$

• Toto je zprava spojitá verze distribuční funkce.

Vysazený vzorec v rámečku

Pomocí příkazu dmath definovaného v MFF_Present.sty, menší okraje

$$F(x) = P(X \le x), \qquad x \in \mathbb{R}.$$

• Toto je zprava spojitá verze distribuční funkce.

Vysazené vzorce v rámečku (zarovnané)

Pomocí příkazu dalign definovaného v MFF_Present.sty

$$F(t) = P(T \le t),$$
 $t > 0,$
 $S(t) = P(T > t).$

 Toto je zprava spojitá verze distribuční funkce, resp. funkce přežití.

Vysazené vzorce v rámečku (vycentrované)

Pomocí příkazu dgather definovaného v MFF_Present.sty

$$F(t) = P(T \le t), \qquad t > 0,$$
 $S(t) = P(T > t).$

 Toto je zprava spojitá verze distribuční funkce, resp. funkce přežití.

Matematika v titulku: $F(t) = P(T \le t)$

- Matematický text (v dolarech) má nastaven svůj styl (zejména barvu).
- Je-li matematika použita v titulku slidu, je potřeba ji obarvit na standardní barvu použitou v titulcích (zde bílá, pro kterou máme ve stylovém souboru MFF_Present.sty definován příkaz tw).

Tučná a/nebo obarvená matematika

 Též v rámci matematického textu můžeme zvýrazňovat (změnou barvy) nejdůležitější součásti vzorců:

$$F(t) = P(T \le t), \qquad t > 0.$$

 U tučných symbolů získaných pomocí příkazu boldsymbol je (bohužel) potřeba měnit barvu po jednom. U tučných matematických fontů získaných pomocí mathbf toto potřeba není. Srovnej:

$$\widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \mathbf{Y},$$

$$\widehat{\boldsymbol{\beta}} = \left(\mathbb{X}^{\top} \mathbb{X} \right)^{-1} \mathbb{X}^{\top} \mathbf{Y},$$

$$\widehat{\mathbf{G}} = (\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}\mathbf{V}$$

Text v barevném rámečku

Pomocí příkazu mffbox definovaného v MFF_Present.sty

Příliš žluťoučký kůň úpěl ďábelské ódy.

Ještě jednou, nyní se změněnou velikostí okrajů:

Příliš žlutoučký kůň úpěl ďábelské ódy.

Text v barevném rámečku s titulkem

Pomocí příkazu mffboxTitle definovaného v MFF_Present.sty

Titulek

Příliš žluťoučký kůň úpěl ďábelské ódy.

Vhodné použít např. pro znění matematických vět:

Věta. O žlutém koni a úrokové limitě

Příliš žluťoučký kůň úpěl ďábelské ódy:

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\mathbf{e}.$$

Odrážky se budou postupně odkrývat.

- Odrážky se budou postupně odkrývat.
- Obecně není dobré přehánět to s efekty podobného typu, aby se prezentace nezvrhla v rychlou změť postupně se objevujících částí textu.

- Odrážky se budou postupně odkrývat.
- Obecně není dobré přehánět to s efekty podobného typu, aby se prezentace nezvrhla v rychlou změť postupně se objevujících částí textu.
- Další řádek.

- Odrážky se budou postupně odkrývat.
- Obecně není dobré přehánět to s efekty podobného typu, aby se prezentace nezvrhla v rychlou změť postupně se objevujících částí textu.
- Další řádek.
- Ještě jeden řádek.

Postupné odkrývání ještě jednou

Příkaz pause

$$F(t) = P(T \le t), \qquad t > 0,$$

$$\mathbb{E}T = \int_0^\infty \{1 - F(t)\} dt.$$

Postupné odkrývání ještě jednou

Příkaz pause

$$F(t) = P(T \le t), \qquad t > 0,$$

$$\mathbb{E}T = \int_0^\infty \{1 - F(t)\} dt.$$

 Platí pro náhodné veličiny, které jsou skoro jistě nezáporné a mají konečnou střední hodnotu. Užití prostředí Rin a Rout definovaných v MFF_Present.sty

Průměr

> mean(c(1, 2, 3, 4, 5))

[1] 3

Průměr menším písmem

> mean(c(1, 2, 3, 4, 5))

Speciální pozadí na jednom slidu

Formát hlavičky i paty ponechán původní

Speciální pozadí na jednom slidu Pouze hlavička zůstala původní

LATEX balíček beamer

 Mnoho dalších efektů vylepšujících (někdy) prezentaci lze nalézt v dokumentaci LATEXového balíku beamer, např.

```
http://ftp.cvut.cz/tex-archive/macros/latex/contrib/beamer/doc/beameruserguide.pdf
```