RAD-seq in Roscoff

Matthieu Bruneaux

2015-03-10

Mini-workshop about ddRAD

Introduction about RAD-seq

- ► RAD? RAD-seq? ddRAD?
- Applications
- Workflow

Practicals

- ▶ One complete project, from raw reads to final results
- Cherry-picking of some analysis steps
- Open questions

Objectives

- Overview of RAD-seq
- Arouse curiosity
- ► Give useful pointers

Disclaimer about the speaker!

- Not a population geneticist, not a bioinformatician
- Evolutionary biologist who dropped into a RAD-seq project when he was a small post-doc
- Some things said here are probably incorrect or plainly wrong!

What are RAD markers?

Miller et al. 2007

Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers

Michael R. Miller, ¹ Joseph P. Dunham, ² Angel Amores, ³ William A. Cresko, ² and Eric A. Johnson^{1,4}

Description of RAD markers

- Restriction site associated DNA fragments
- Used with micro-array systems
- ▶ Similar to RFLP or AFLP, but many more markers

RAD - Miller et al. 2007 (6 steps)

RAD - Miller et al. 2007 (6 steps)

RAD - Miller et al. 2007 (method summary)

Demonstration

- Mapping breakpoint on a Drosophila chromosome
- ▶ Identification of the lateral plate locus in threespine stickleback

RAD - Miller et al. 2007

Advantage of the method

- ► Easy-to-produce genotyping resource for non-model species
- ► Moderate cost
- ► Genetic mapping possible (if markers location known)
- Bulk genotyping possible

But note that...

- ▶ At this point the restriction site is the polymorphic marker
- ▶ One restriction enzyme only is used

What is RAD-seq?

Baird et al. 2008

OPEN & ACCESS Freely available online

Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers

Nathan A. Baird¹, Paul D. Etter¹, Tressa S. Atwood², Mark C. Currey³, Anthony L. Shiver¹, Zachary A. Lewis¹, Eric U. Selker¹, William A. Cresko³, Eric A. Johnson¹*

1 Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America, 2 Floragenex, Eugene, Oregon, United States of America, 3 The Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America

RAD-seq

- ► RAD fragments with high-throughput sequencing (Illumina)
- ► SNP identified by sequence polymorphism and site disruption
- Can be used with or without reference genome

A Ligate P1 Adapter to digested genomic DNA

C Ligate P2 Adapter to sheared fragments

D Selectively amplify RAD tags

llumina sequence read length

Demonstration

- Discover 13000 SNP in threespine stickleback and in Neurospora
- Barcoding system for multiplexing
- Marker density can be tuned by the choice of restriction enzyme

Population genomics of parallel adaptation - Hohenlohe 2010

A major paper

OPEN & ACCESS Freely available online

PLOS GENETICS

Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

Paul A. Hohenlohe¹*, Susan Bassham¹*, Paul D. Etter², Nicholas Stiffler³, Eric A. Johnson², William A. Cresko¹*

Method

- ► Model: threespine stickleback
- Comparison of 3 freshwater and 2 marine populations
- 20 individuals per population, individual barcodes
- Single reads (not paired ends)

Population genomics of parallel adaptation - Hohenlohe 2010

Hohenlohe 2010 - Genome profiles

- ► A: number of RAD tags per 1Mb
- ▶ B: Coverage per RAD per individual in one run (16 individuals black line is average)

Evidence for balancing selection

- A: Nucleotide diversity, B: heterozygosity across all five populations (blue), three FW (red) or two SW (green)
- C: Fst between FW and SW (blue), among FW (red) and among SW (green)
- Horizontal bars shows regions of significantly elevated or reduced values on the profile

Genome-wide differentiation among populations

Differentiation among SW and FW, zoom on LG

Highlights

- ► RAD-seq on natural populations, 45000 SNPs in 100 individuals
- ► Barcoded samples
- ► Genome profiling, kernel smoothing and permutation testing

But note that...

- ► Genome available
- ► Single reads

What is paired-end RAD-seq?

Etter 2011

OPEN @ ACCESS Freely available online

Local *De Novo* Assembly of RAD Paired-End Contigs Using Short Sequencing Reads

Paul D. Etter¹, Jessica L. Preston¹, Susan Bassham², William A. Cresko², Eric A. Johnson¹*

Method

- ▶ Paired-end sequencing of RAD fragments to build contigs on the randmoly sheared side
- ▶ Demonstration with threespine and *E. coli* sequencing
- Up to 5kb contigs with circularization step

Single-reads RAD-seq

D Selectively amplify RAD tags

llumina sequence read length

Paired-ends RAD-seq

Notes

- ► The stacked end is useful for high coverage work (SNP calling, allele frequency estimates)
- ► The echelon end is useful for contig building, but base coverage is lower

What is double-digest RAD-seq?

Peterson et al. 2012

OPEN @ ACCESS Freely available online

Double Digest RADseq: An Inexpensive Method for *De Novo* SNP Discovery and Genotyping in Model and Non-Model Species

Brant K. Peterson*, Jesse N. Weber, Emily H. Kay, Heidi S. Fisher, Hopi E. Hoekstra

Method

- Two enzyme double digest followed by precise size selection
- Library contains only fragments close to target size
- Read counts across regions are expected to be correlated between individuals

Peterson 2012

Double digest RAD tag

What is paired-end double RAD?

Bruneaux et al. 2013

Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-site-associated DNA tag approach

MATTHIEU BRUNEAUX,*1 SUSAN E. JOHNSTON,*1 GÁBOR HERCZEG,† JUHA MERILÄ,† CRAIG R. PRIMMER* and ANTI VASEMÄGI*‡

Method

- Two enzyme double digestion
- Paired-end sequencing on after size-selection
- ► You will hear more about it soon (see practicals)

Paired-end double RAD

Add a picture

Uses of RAD tags

Uses of RAD tags

Population genomics

Hess 2013 - Pacific lamprey

Phylogeography

Emerson 2011

QTL mapping

Houston 2012

Phylogenies

Rubin 2012

There are also some potential issues...

- PCR-duplicates
- individual vs pool genotyping for allele frequencies
- Comparison SNP vs microsat (deFaveri)

Conclusion

In a nutshell

- ► RAD tags: versatile method of genome complexity reduction
- ▶ RAD-seq: large scale discovery of SNPs, affordable
- Useful for both model and non-model organisms
- Just a tool: the downstream analyses are still your expertise

General workflow scheme

Development of pipelines and tools

 ${\sf Rainbow,\ STACKS,\ GATK,\ dDocent}$

Tools for NGS can be used for RAD

Simple scripts can be used also

This is one thing I want to show during the practical Get a good grip and a good feeling/understanding about the data with simple, straightforward methods before choosing to apply more complex methods which rely on third-party scripts. It is important to understand what the third party scripts do!

One complete project

Tour of other tools and specific analyses

To illustrate some specific points (e.g. likelihood or bayesian based genotyping or allele frequency estimates or Fst calculations, . . .)