

Binomial Distributions

Dr. John S. Butler

We only play n games.

- A Bernoulli trial generates one of two possible outcomes "success" or "failure"
- Define the Random Variable
- X=1 if a success
- X= o if a failure
- The Random Variable is termed a Bernoulli RV with the Bernoulli probability distribution

 The Random Variable is termed a Bernoulli RV with the Bernoulli probability distribution

$$Pr(X=x_j)=Pr(x_j)=\begin{cases} p & for \ x_2 = 1\\ 1-p & for \ x_1 = 0 \end{cases}$$

From this we can show that

Features of a Bernoulli Experiment

- There are two possible outcomes arbitrary called success and failure
- A success occurs with probability p and a failure occurs with probability q=1-p
- 3. The Random Variable is ordered as 1 if success and 0 if failure

Binomial Distributions

Binomial Distributions

We only play n games.

- What is the probability of X tail in 5 tosses of a fair coin?
- Let's take a specific situation.
- What is the probability of one tail in five tosses

Pr(Fifth Toss is a Tail)=
$$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$
 $\frac{1}{2} = (\frac{1}{2})^4 \frac{1}{2}$

What is the probability of one head in five tosses

1. Pr(First Toss is a Tail) =
$$\frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) = \left(\frac{1}{2} \right)^4 \frac{1}{2}$$

2. Pr(Second Toss is a Tail)=
$$(\frac{1}{2})\frac{1}{2}(\frac{1}{2}\frac{1}{2}\frac{1}{2}) = (\frac{1}{2})^4\frac{1}{2}$$

3. Pr(Third Toss is a Tail)=
$$(\frac{1}{2}\frac{1}{2})\frac{1}{2}(\frac{1}{2}\frac{1}{2}) = (\frac{1}{2})^4\frac{1}{2}$$

4. Pr(Fourth Toss is a Tail)=
$$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$
 $(\frac{1}{2}, \frac{1}{2})$ $(\frac{1}{2}, \frac{1}{2})$ $(\frac{1}{2}, \frac{1}{2})$

5. Pr(Fifth Toss is a Tail)=
$$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$
 $\frac{1}{2}$ = $(\frac{1}{2})^4 \frac{1}{2}$

What is the probability of one tail in five tosses

Pr(one tails in five tosses) =
$$5\left(\frac{1}{2}\right)^4 \frac{1}{2}$$

■ What is the probability of X sixes in 5 tosses of a fair die?

- Let's take a specific situation.
- What is the probability of one six in 5 tosses

■ Pr(Fifth Toss is a Six)=
$$\left(\frac{5}{6}, \frac{5}{6}, \frac{5}{6},$$

What is the probability of one six in 5 tosses

1. Pr(First Toss is a Six)=
$$\frac{1}{6} \left(\frac{5}{6} \frac{5}{6} \frac{5}{6} \frac{5}{6} \right) = \left(\frac{5}{6} \right)^4 \frac{1}{6}$$

2. Pr(Second Toss is a Six)=
$$\left(\frac{5}{6}\right)\frac{1}{6}\left(\frac{5}{6}\frac{5}{6}\frac{5}{6}\right) = \left(\frac{5}{6}\right)^4\frac{1}{6}$$

3. Pr(Third Toss is a Six)=
$$\left(\frac{5}{6}, \frac{5}{6}\right) = \left(\frac{5}{6}, \frac{5}{6}\right) = \left(\frac{5}{6}\right)^4 = \left(\frac$$

4. Pr(Fourth Toss is a Six)=
$$\left(\frac{5}{6}, \frac{5}{6}, \frac{5}{6}\right) = \left(\frac{5}{6}\right)^4 =$$

5. Pr(Fifth Toss is a Six)=
$$\left(\frac{5}{6}, \frac{5}{6}, \frac{5}{6},$$

What is the probability of one six in 5 tosses

Pr(one six in 5 tosses) =
$$5\left(\frac{5}{6}\right)^4 \frac{1}{6}$$

Features of the Binomial Experiment

- 1. The experiment consists of n repeated Bernoulli trials
- 2. The trials are independent
- 3. The probability of success in each trial is constant

Binomial Distribution

$$Pr(X=k) = Pr(k) = {n \choose k} p^k q^{n-k} = {n \choose k} p^k (1-p)^{n-k}$$

$$k = 0,1,2,3,...,n, 0$$

This is the probability mass function for a **binomial distribution**. The random variable X that counts the **k successes** in **n trials**

Binomial Distribution

Is the sum of p all equal 1

$$\sum_{k=0}^{n} Pr(X=k) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = 1$$

Binomial Distribution

Is the sum of p all equal 1

$$E[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np$$

$$Var[X] = np(1-p)$$

Example - Coin Toss

Coin Toss - Probability Distribution

p=Pr(T)=0.5,
Pr(X=k) =
$$Pr(k) = \binom{n}{k} 0.5^k 0.5^{n-k}$$

n-number of times you play the game (always the same) k-the number of Tails (T) from 0 to n

$$E[X] = \sum_{k=0}^{n} {n \choose k} 0.5^{k} (1 - 0.5)^{n-k} = n0.5$$

$$Var[X] = n0.5 (1-0.5)$$

Coin Toss - Probability Distribution

Now let's play the game 10 times

10-number of times you play the game (always the same) k=0,1,...,10- the number of Tails (T) from 0 to 10

$$E[X] = \sum_{k=0}^{n} {10 \choose k} 0.5^{k} (1 - 0.5)^{n-k} = 10 * 0.5 = 5$$

$$Var[X] = 10 * 0.5(1-0.5) = 2.5$$

Coin Toss - Probability Distribution

Play the game n=10 times

$$Pr(X=k) = Pr(k) = {10 \choose k} 0.5^k 0.5^{10-k}, \ k = 0,1,...,n$$

Expected Number of Heads

k	o	1	2	3	4	5	6	7	8	9	10
Pr(X=k)	0.00097	0.00976	0.0439	0.1171	0.205	0.246	0.205	0.117	0.0439	0.0097	0.00097

$$E[X] = \sum_{k=0}^{10} kPr(k)$$

Variance of Heads

k	0	1	2	3	4	5	6	7	8	9	10
Pr(X=k)	0.0009 7	0.0097 6	0.0439	0.1171	0.205	0.246	0.205	0.117	0.0439	0.0097	o.ooo9 7
$(x_k - 5)$	25	16	9	4	1	0	1	4	9	16	25
	0.024	0.1562	0.3955	0.468	0.205	0	0.205	0.468	0.3955	0.1562	0.024

$$Var[X] = \sigma^2 = E[(X - 5)^2] = \sum_{k=0}^{10} (k - 5)^2 Pr(k)$$

Coin Toss

EXPECTED NUMBER OF TOSSES

$$E[X] = np = 10\frac{1}{2} = 5$$

VARIANCE

$$Var[X] = 10\frac{1}{2}(1-\frac{1}{2}) = \frac{10}{4} = 2.5$$

Coin Toss - Cumulative Distribution

Coin Toss

PROBABILITY DISTRIBUTION

CUMULATIVE DISTRIBUTION

Example - Dice

Dice Game – First Six

p=Pr(6)=
$$\frac{1}{6}$$
, q=Pr(1,2,3,4,5)=1-Pr(6)= $\frac{5}{6}$
Pr(X=k) = $Pr(k) = \binom{n}{k} \frac{1}{6} \frac{5}{6}$

n-number of times you play the game (always the same) k—the number of sixes o to n

$$E[X] = \sum_{k=0}^{n} {n \choose k} \frac{1}{6}^{k} (1 - \frac{1}{6})^{n-k} = n \frac{1}{6}$$

$$Var[X] = n \frac{1}{6} (1 - \frac{1}{6})$$

Dice Game – First Six

Now let's play the game 10 times

$$Pr(6) = \frac{1}{6},$$

$$Pr(1,2,3,4,5) = 1 - Pr(6) = \frac{5}{6}$$

$$Pr(X=k) = Pr(k) = {10 \choose k} \frac{1^k}{6} \frac{5^{10-k}}{6}$$

10-number of times you play the game (always the same)

k = 0, 1, ..., 10 – the number of sixes o to 10

$$E[X] = \sum_{k=0}^{\infty} {10 \choose k} \frac{1}{6}^k (1 - \frac{1}{6})^{n-k} = 10 \frac{1}{6}$$

$$Var[X] = 10 \frac{1}{6} (1 - \frac{1}{6})$$

First Six- Probability Distribution

$$\Pr(X=k) = \Pr(k) = {10 \choose k} \frac{1^k}{6} \frac{5^{n-k}}{6} = {10 \choose k} \frac{1^k}{6} (1 - \frac{1}{6})^{10-k}$$

Expected Number of Heads

K	o	1	2	3	4	5	6	7	8	9	10
Pr(X=k)	0.161	0.323	0.2907	0.155	0.054	0.013	0.002	0.0002	~0	~0	~0

$$E[X] = \sum_{k=0}^{10} kPr(k)$$

Variance of Heads

k	0	1	2	3	4	5	6	7	8	9	10
Pr(X=k)	0.16 1	0.32	0.2907	0.155	0.054	0.013	0.002	0.0002	~0	~0	~0
$(x_k - 10/6)^2$	2.777	0.44	0.111	1.778	5.44	11.1	18.77	28.44	20.11	53-77	69.44
	0.44 8	0.14	0.032	0.275	0.29	0.14	0.04	~0	~0	~0	~0

$$Var[X] = \sigma^2 = E\left[\left(X - \frac{10}{6}\right)^2\right] = \sum_{k=0}^{10} (k - \frac{10}{6})^2 Pr(k)$$

Die Roll

EXPECTED NUMBER OF SIXES

$$E[X] = np = 10\frac{1}{6} = \frac{10}{6}$$

VARIANCE

$$Var[X] = np(1-p) = 10\frac{1}{6}\frac{5}{6} = \frac{50}{36}$$

First Six- Cumulative Distribution

First Six

Note about Notation

- *X* ~ *B*(*n*, *p*)
 - n is size of distribution
 - p is the probability

In R

- dbinom(x, size, prob, log = FALSE): returns the value of the binomial probability density function
- **pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)**: returns the value of the binomial cumulative density function.
- **qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)**: returns the value of the inverse binomial cumulative density function.
- rbinom (n, size, prob): generates a vector of binomial random variables.

Rugby - Ireland vs New Zealand

Ireland vs New Zealand

- The probability of Ireland beating New Zealand in a one off game is 0.15.
- Describe the binomial distribution if Ireland played New Zealand 10 times for 10 Irish wins

Ireland vs New Zealand

Now let's play the game 10 times Pr(Ireland Win)=0.15, Pr(New Zealand Win)=1-0.15=0.85

$$Pr(X=k) = Pr(k) = {10 \choose k} 0.15^k 0.85^{10-k}$$

10-number of times you play the game (always the same) k=0,1...,10-the number of Ireland wins 0 to 10

$$E[X] = 10(.15) = 1.5$$

 $Var[X] = 10(0.15) (1 - 0.15) = 1.35$

Ireland vs New Zealand

Transmission Error

Example-Transmission Error

- One percent of bits transmitted through a digital transmission are received in error.
- 2. Let k denote the bit errors in 300 transmission.

Example-Transmission Error

■
$$Pr(X=k) = Pr(k) = {300 \choose k} 0.01^k 0.99^{200-k}, k=0,...,300$$

Number of Transmission Errors in 300

$$E[X] = 300 * 0.01 = 3$$

 $Var[X] = 300 * 0.01 (1-0.01) = 2.97$

Example-Transmission Error

■
$$Pr(X=k) = Pr(k) = {300 \choose k} 0.01^k 0.99^{300-k}, k=0,...,300$$

$$E[X] = 300 * 0.01 = 3$$

$$Var[X] = 300 * 0.01 (1-0.01) = 2.97$$

Number of Transmission Errors in 300

Product Error

It is known that 5% of smart phones on a production line are defective. 100 Products are inspected and the number of defective products are counted.

Let k be the number of defective devices in 100 tests

■
$$Pr(X=k) = Pr(k) = {100 \choose k} 0.05^k 0.95^{100-k}, k=0,...,100$$

Product Errors in 100

$$E[X] = 100 * 0.05 = 5$$

 $Var[X] = 100 * 0.05 (1-0.05)=4.75$

■
$$Pr(X=k) = Pr(k) = {100 \choose k} 0.05^k 0.95^{100-k}, k=0,...,100$$

Product Errors in 100

You go to the Factory and for 10 days you test 100 products each day and you get you this table:

Day	1	2	3	4	5	6	7	8	9	10
Number of Faults	15	13	16	14	11	7	9	6	5	4

■ Do you believe the factory has a product error rate of 0.05?

Takeaway Point

■ The Binomial distribution models the number of successes in a fixed number of independent Bernoulli trials.

