Solve $\frac{d\mathbf{u}}{dt} = A\mathbf{u} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{u}$ starting from $\mathbf{u}(0) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. This is a vector equation for u. It contains two scalar equations for the components y and z. They are "coupled together" because the matrix A is not diagonal:

$$\frac{du}{dt} = Au$$
 $\frac{d}{dt} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix}$ means that $\frac{dy}{dt} = z$ and $\frac{dz}{dt} = y$.

The idea of eigenvectors is to combine those equations in a way that gets back to 1 by 1 problems. The combinations y + z and y - z will do it. Add and subtract equations:

$$\frac{d}{dt}(y+z) = z + y \quad \text{and} \quad \frac{d}{dt}(y-z) = -(y-z).$$

The combination y + z grows like e^t , because it has $\lambda = 1$. The combination y - z decays like e^{-t} , because it has $\lambda = -1$. Here is the point: We don't have to juggle the original equations du/dt = Au, looking for these special combinations. The eigenvectors and eigenvalues of A will do it for us.

This matrix A has eigenvalues 1 and -1. The eigenvectors x are (1,1) and (1,-1). The pure exponential solutions u_1 and u_2 take the form $e^{\lambda t}x$ with $\lambda_1 = 1$ and $\lambda_2 = -1$:

The pure exponential solutions
$$u_1$$
 and u_2 take the form e^{-x} with $\lambda_1 = 1$ and $\lambda_2 = -1$.
$$u_1(t) = e^{\lambda_1 t} x_1 = e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad u_2(t) = e^{\lambda_2 t} x_2 = e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \tag{4}$$

Notice: These
$$u$$
's satisfy $Au_1 = u_1$ and $Au_2 = -u_2$, just like x_1 and x_2 . The factors e^t and e^{-t} change with time. Those factors give $du_1/dt = u_1 = Au_1$ and $du_2/dt = -u_2 = Au_2$. We have two solutions to $du_1/dt = Au_2$. To find all other solutions, multiply those

 Au_2 . We have two solutions to du/dt = Au. To find all other solutions, multiply those special solutions by any numbers C and D and add:

pecial solutions by any numbers
$$C$$
 and D and add:

$$u(t) = Ce^t \begin{bmatrix} 1 \\ 1 \end{bmatrix} + De^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} Ce^t + De^{-t} \\ Ce^t - De^{-t} \end{bmatrix}. \quad (5)$$

With these two constants C and D, we can match any starting vector $\mathbf{u}(0) = (u_1(0), u_2(0))$. Set t = 0 and $e^0 = 1$. Example 1 asked for the initial value to be u(0) = (4, 2): u(0) decides C, D $C\begin{bmatrix} 1\\1 \end{bmatrix} + D\begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix}$ yields C = 3 and D = 1.

With
$$C=3$$
 and $D=1$ in the solution (5), the initial value problem is completely solved.
The same three steps that solved $u_{L+1}=Au_L$ now solve $du/dt=Au_L$

The same three steps that solved $u_{k+1} = Au_k$ now solve du/dt = Au:

1. Write
$$u(0)$$
 as a combination $c_1x_1 + \cdots + c_nx_n$ of the eigenvectors of A .

2. Multiply each eigenvector x_i by its growth factor $e^{\lambda_i t}$.

3. The solution is the same combination of those pure solutions
$$e^{\lambda t}x$$
:
$$\frac{du}{dt} = Au \qquad \qquad u(t) = c_1 e^{\lambda_1 t} x_1 + \dots + c_n e^{\lambda_n t} x_n. \tag{6}$$

Not included: If two λ 's are equal, with only one eigenvector, another solution is needed.

Not included: If two
$$\lambda$$
's are equal, with only one eigenvector, another solution is needed. (It will be $te^{\lambda t}x$.) Step 1 needs to diagonalize $A=X\Lambda X^{-1}$: a basis of n eigenvectors.

Solve $d\mathbf{u}/dt = A\mathbf{u}$ knowing the eigenvalues $\lambda = 1, 2, 3$ of A:

Typical example Equation for
$$u$$
 and u and u are u and u starting from u and u starting from u and u starting from u and u are u and u are u and u are u and u and u are u are u and u are u and u are u are u are u and u are u are u and u are u are u are u are u are u are u and u are u

Step 1 The vector u(0) = (9,7,4) is $2x_1 + 3x_2 + 4x_3$. Thus $(c_1, c_2, c_3) = (2,3,4)$. **Step 2** The factors $e^{\lambda t}$ give exponential solutions $e^t x_1$ and $e^{2t} x_2$ and $e^{3t} x_3$.

Step 3 The combination that starts from
$$u(0)$$
 is $u(t) = 2e^t x_1 + 3e^{2t} x_2 + 4e^{3t} x_3$.

The coefficients 2, 3, 4 came from solving the linear equation $c_1 x_1 + c_2 x_2 + c_3 x_3 = u(0)$:

The coefficients 2, 3, 4 came from solving the linear equation
$$c_1 \boldsymbol{x}_1 + c_2 \boldsymbol{x}_2 + c_3 \boldsymbol{x}_3 = \boldsymbol{u}(0)$$
:
$$\begin{bmatrix} \boldsymbol{x}_1 & \boldsymbol{x}_2 & \boldsymbol{x}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 9 \\ 7 \\ 4 \end{bmatrix} \text{ which is } X\boldsymbol{c} = \boldsymbol{u}(0). \quad (7)$$