Tutorial Business Analytics

Tutorial 3 - Solution

Exercise 3.1

The following table displays the per capita gross national product (X in 1000\$) and the percentage of literate people among the population (*Y*).

Country	X	Y
Nepal	0.5	5
Uganda	0.6	28
Thailand	1.0	68
South Korea	1.4	77
Peru	1.8	48
Lebanon	3.6	48
Ireland	5.7	98
France	6.4	96
New Zealand	13.0	99

Note:
$$\sum x_i = 34$$
, $\sum x_i^2 = 262.22$, $\sum y_i = 567$, $\sum x_i y_i = 2914.3$, $\bar{x} = 3.78$, $\bar{y} = 63$

a) Calculate the coefficients
$$\hat{\beta}_o$$
 and $\hat{\beta}_1$ of the simple linear regression model using the ordinary least squares. Find the regression line using the formulas below:
$$\hat{\beta}_1 = \frac{Cov(x,y)}{Var(x)} = \frac{\frac{1}{n-1}\sum_i^n(x_i-\bar{x})(y_i-\bar{y})}{\frac{1}{n-1}\sum_i^n(x_i-\bar{x})^2} = \frac{\sum_i^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_i^n(x_i-\bar{x})^2} = \frac{\frac{1}{n}\sum_i^nx_iy_i-\bar{x}\bar{y}}{\frac{1}{n}\sum_i^nx_i^2-\bar{x}^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- b) Interpret the coefficients calculated in exercise a).
- c) Test the zero hypothesis $H_0:\beta_1\leq 0$ with significance level $\alpha=0.05$. Use the following t-test with RSS=4411.4 and $\sum_{i=1}^n(x_i-\bar{x})^2=133.77$:

$$t_0 = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

$$SE(\hat{\beta}_1) = \sqrt{\frac{RSS}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \frac{1}{n-2}}$$

- d) Now the above linear regression model will be used to estimate the percentage of literates among a country with known gross national product. Which problems might occur? Briefly explain your concerns using an example.
- e) Repeat c) using R (Exercise 3.1_R-Script.R).

Solution

a) The formulas for the coefficients are:

$$\hat{\beta}_1 = \frac{\sum_i^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_i^n (x_i - \bar{x})^2} = \frac{\frac{1}{n} \sum_i^n x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_i^n x_i^2 - \bar{x}^2}$$
$$= \frac{\frac{1}{9} (2914.3) - (3.78)(63)}{\frac{1}{9} (262.22) - (3.78)(3.78)} = 5.77$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

= 63 - (5.77)(3.78) = 41.2

- \Rightarrow regression line: $\hat{y}_i = 41.2 + 5.77x_i$
- b) $\widehat{\beta}_0$: a country with a capita gross national product of 0 has 41.2 percent of literate people among the population $\widehat{\beta}_1$: with each increase of \$1000, the percentage of literate people among the population increases by 5.77.
- c) Use the "test manual" from tutorial 2 to solve the exercise.
 - 1.) Not needed, because only one test is used in regression analysis.
 - 2.) $H_0: \beta_1 \leq 0$ vs. $H_1: \beta_1 > 0$
 - 3.) simple t-test for coefficient:

$$t_0 = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

$$SE(\hat{\beta}_1) = \sqrt{\frac{RSS}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \frac{1}{n-2}} = 2.17$$

with RSS = 4411.4,
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = 133.77$$

$$t_0 = 2.66$$

4.)
$$\alpha = 0.05$$

5.)
$$df = n - 2 = 7$$
, $t_{7:0.95}^c = 1.895$

6.) $t_0 > t^c \implies \text{reject } H_0$. $\hat{\beta}_1$ is statistically significant.

- d) A prediction for countries with per capita gross national product outside the sample range is problematic. For example, any country with a gross national product smaller than Nepal or greater than New Zealand may have illogical predicted percentage of literate people among population (< 0% or >100%).
- e) Note: R always outputs a two-tail p-value for t-test when you read the summary of the model, i.e., H_0 : $\beta_1 = 0$.

Exercise 3.2

t	Demand
0	28.20
1	37.65
2	47.28
3	59.76
4	73.44
5	86.19
6	100.31
7	112.58
8	121.63
9	
10	

- a) For the time series above, calculate the forecasted demand value for t=10 using the simple linear regression and the formula below: $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 \cdot t$
- b) Calculate the RMSE and explain its meaning.
- c) For the time series above, calculate the forecasted demand value for t=10, assuming a biannual seasonal component of the following form: Starting from the first period t=0, suppose after every second period a new year begins. Make use of the formula below:

$$\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 \cdot t + \hat{\beta}_2 \cdot Q_1$$

d) Does the data reflect biannual data?

Note: You can use R to solve this exercise (exercise 3.2_R-Script.R).

Solution

a) Forecast

$$\begin{array}{ll} \hat{\beta}_0 = 25.3822, & \hat{\beta}_1 = 12.1833 \\ \Rightarrow & \hat{y}_{10} = \hat{\beta}_0 + \hat{\beta}_1 \cdot 10 = 25.3822 + 12.1833 \cdot 10 = 147.2152 \end{array}$$

b) RMSE

$$RMSE = \sqrt{MSE}$$

$$MSE = \frac{RSS}{T}$$

$$RSS = \sum_{t=1}^{n} \hat{e}_t^2$$

$$\hat{e}_t = y_t - \hat{y}_t$$

$$\hat{e}_1 = 28.20 - 25.38222 = 2.81777$$

$$\hat{e}_2 = 37.65 - 37.56556 = 0.08444$$

(...)

$$RSS = 27.72076$$

$$MSE = 3.08$$

$$RMSE = 1.755$$

RMSE is the average deviation of the prediction from the actual values of the data. It is useful for comparing different machine learning models for numerical prediction.

c) Forecast

$$\hat{\beta}_0 = 25.3117, \ \hat{\beta}_1 = 12.1833, \ \hat{\beta}_2 = 0.1270$$

$$\hat{y}_{10} = \hat{\beta}_0 + \hat{\beta}_1 \cdot 10 + 1 \cdot \hat{\beta}_2 = 25.3117 + 12.1833 \cdot 10 + 0.1270 = 147.2717$$

d) No, because the seasonal variable is not statistically significant.