Review of linear models

19 Sep 2023

```
## it's nice to include packages at the top
## (and NOT automatically install them)
## try not to carry over packages you don't use
library(faux)
library(brglm2) ## for lizards data
library(ggplot2); theme_set(theme_bw())
## diagnostics
library(performance)
library(DHARMa)
## downstream model evaluation
library(broom)
library(dotwhisker)
library(emmeans)
library(effects)
library(marginaleffects)
library(parameters)
## library(ggeffects)
```

Basics

- assume $\mathbf{y} \sim \text{Normal}(\mathbf{X}\beta, \sigma)^1$
- ullet X is the *model matrix*, can be anything we want it to be
- the *Gauss-Markov theorem* (Wikipedia) makes weaker assumptions: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; as long as $\boldsymbol{\epsilon}$ is mean-zero, homoscedastic with finite variance, and uncorrelated ... then the OLS solution

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

is the BLUE (or MVUE).

¹Notation-abuse warning ...

• we'll embrace the assumptions (which are needed for inference!)

Computation

- matrix decompositions (QR with pivoting; see here)
- big problems: biglm, speedglm, RcppEigen::fastLm
 - optimized BLAS, kernel trick, etc.
 - memory vs speed vs robustness ...
 - -p vs. n vs. many-small-regressions vs. ...

Inference

- σ^2 (residual variance) is RSS/(n-p)
- The covariance matrix is $\Sigma = \sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$.
- Individual coefficients are *t*-distributed
- Linear combinations of coefficients (contrasts or predictions) are t-distributed with covariance matrix $\mathbf{C}^{\top}\Sigma^{-1}\mathbf{C}$
- \bullet Joint hypotheses on coefficients are F-distributed
- Wald and likelihood ratio test comparisons are equivalent (but need to be careful about marginality)

Model matrices

- model definition converted to **X** before we start
- input variables vs predictor variables (Schielzeth (2010), Gelman and Hill (2006), CV)
 - transformations
 - encoding of categorical variables: contrasts
 - interactions
 - basis expansions (e.g. polynomials)

Wilkinson-Rogers formulas

- Wilkinson and Rogers (1973), updated by Chambers and Hastie (1991, ch. 2)
- operators: +, *, :, /, -, ^
- I()

Contrasts

treatment contrasts

- intercept = baseline, subsequent values are differences
- $\begin{array}{l} \bullet \ \left\{ \beta_0 = \mu_0, \beta_i = \mu_i \mu_0 \text{ for } i > 0 \right\} \\ \bullet \ \text{equivalently: } \left\{ \mu_0 = \beta_0, \mu_i = \beta_0 + \beta_i \text{ for } i > 0 \right\} \end{array}$

$$\mathbf{C}\beta = \begin{pmatrix} 1 & 0 & 0 & \dots \\ 1 & 1 & 0 & \dots \\ 1 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \dots \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \dots \end{pmatrix} \quad .$$

Maybe easier to start from the **inverse** contrast matrix: $\beta = \mathbf{C}^{-1}\mu$.

```
C <- cbind(1, contr.treatment(3)) ## R omits the intercept by default
```

1 2 3

1 0 0

2 - 1 1 0

3 -1 0 1

We have to specify the baseline level (contr.treatment uses first level of a factor; contr.SAS() uses the last level).

It's nice when contrasts are *orthogonal*, i.e. all rows are independent $\to \mathbf{C}^\top \mathbf{C}$ is diagonal.

Sum-to-zero contrasts

- intercept is the (unweighted!) average rather than baseline value $(\sum \mu_i/n)$
- other parameters are differences between mean of level i and intercept $(\mu_i \sum_i \mu_j / n)$
- last level is dropped

```
mfun <- function(C) MASS::fractions(solve(C))</pre>
(C <- cbind(1,contr.sum(3)))
```

Helmert contrasts

[3,] -1/3 2/3 -1/3

- Weird but orthogonal
- intercept, diff of first two levels, diff of level 3 from 1 & 2, ...

others

[3,] -1/6 -1/6 1/3

- MASS::contr.sdif() (successive-differences)
- contr.poly() (orthogonal polynomial contrasts)
- custom (e.g., "none" vs "symbiont effect" vs "crabs vs shrimp" vs "two-symbiont effect") (McKeon et al. (2012); data here)

```
cc_{inv} \leftarrow matrix(c(1/4,1/4,1/4,1/4,
                 1,-1/3,-1/3,-1/3,
                 0,1,-1,0,
                 0,1/2,1/2,-1),
               byrow=TRUE,
               nrow=4,
               dimnames=list(c("intercept", "avg_symb", "C.vs.S", "twosymb"),
                             c("none", "C", "S", "CS")))
  ## inverse contrast matrix
  MASS::fractions(cc_inv)
         none C S
                        CS
intercept 1/4 1/4 1/4 1/4
            1 -1/3 -1/3 -1/3
avg_symb
C.vs.S
             0 1 -1
             0 1/2 1/2
twosymb
                          -1
  ## contrast matrix
  mfun(cc_inv)
     intercept avg_symb C.vs.S twosymb
               3/4
                                0
none
        1
                         0
С
              -1/4
                        1/2
                               1/3
S
        1
              -1/4
                       -1/2 1/3
CS
        1
              -1/4
                          0 -2/3
```

practical issues

- too many ways to set contrasts (options(), contrasts(f) <-, lm(..., contrasts =
 list(...))</pre>
- terrible naming conventions: you can get used to it or use the faux package
- OK to fit models and later use emmeans to recover desired contrasts (switching linear bases)

```
mtcars$fcyl <- factor(mtcars$cyl)
lm0 <- lm(mpg ~ fcyl, mtcars)
cn <- function(x) names(coef(x))
cn(lm0)</pre>
```

Interactions

- differences in differences
- parameter values of main effects (and p values etc.) depend on contrasts/centering!
- overall model fit (R^2 , predictions, etc.) is invariant

Lizard data (Schoener (1970), from the brglm2 package):


```
data("lizards", package = "brglm2")
lmTL1 <- lm(grahami~time+light,data=lizards)</pre>
pp <- with(lizards,expand.grid(time=levels(time),light=levels(light)))</pre>
pp$grahami <- predict(lmTL1,newdata=pp)</pre>
cc <- as.list(plyr::rename(coef(lmTL1),c(`(Intercept)`="int")))</pre>
labelpos <- with(cc,</pre>
  list(x=c(1,2,3,1), xend=c(1,2,3,1),
      y=c(int,int,int,int),
      yend=c(int,int+timemidday,int+timelate,int+lightshady)))
xpos < -0.1
ggplot(pp,aes(x=time,y=grahami,colour=light))+geom_point()+
  geom_line(aes(group=light))+
  annotate("segment", x=labelpos$x, xend=labelpos$xend, y=labelpos$y,
           yend=labelpos$yend,alpha=0.5,
           arrow=arrow(length = unit(0.3, "cm"), ends="both"))+
  annotate("text", x=with(labelpos, (x+xend)/2)+xpos, y=with(labelpos, (y+yend)/2),
label=paste0("beta[",1:4,"]"),parse=TRUE)+
  annotate("segment", x=labelpos$x[1], xend=labelpos$x[3], y=labelpos$y[1],
           yend=labelpos$y[1],alpha=0.3,lty=2) +
    labs(title = "additive model")
```

additive model


```
lmTL2 <- lm(grahami~time*light,data=lizards)</pre>
gg_color_hue <- function(n) {</pre>
  hues = seq(15, 375, length=n+1)
  hcl(h=hues, l=65, c=100)[1:n]
}
pp2 <- pp
pp2$grahami <- predict(lmTL2,newdata=pp)</pre>
cc <- as.list(plyr::rename(coef(lmTL2),c(`(Intercept)`="int",</pre>
        `timemidday:lightshady`="midshady",`timelate:lightshady`="lateshady")))
labelpos <- with(cc,</pre>
  list(x=c(1,2,3,1,2,3), xend=c(1,2,3,1,2,3),
      y=c(int,int,int,int,int+lightshady+timemidday,int+lightshady+timelate),
      yend=c(int,int+timemidday,int+timelate,int+lightshady,
             int+timemidday+lightshady+midshady,int+timelate+lightshady+lateshady)))
xpos < -0.1
ggplot(pp2,aes(x=time,y=grahami,colour=light))+geom_point()+
  geom_line(aes(group=light))+
  annotate("segment", x=1:2, xend=2:3,
           y=with(cc,c(int+lightshady,int+timemidday+lightshady)),
           yend=with(cc,c(int+timemidday+lightshady,int+timelate+lightshady)),
           colour=gg_color_hue(2)[2],lty=2)+
  annotate("segment", x=labelpos$x, xend=labelpos$xend, y=labelpos$y,
```

interaction model

Marginality

- Venables (1998)
- 'type (X) sums of squares'
- scaling and centering (Schielzeth 2010) alleviates many problems; sum-to-zero contrasts (weighted or unweighted?)

Model interpretation, visualization, testing

Diagnostics

- linearity > heteroscedasticity, outliers > normality
- upstream problems can induce downstream problems first
- universal plots are universal, but less interpretable than problem-specific exploration (try to identify problematic predictors/groups/etc.)

Graphical diagnostics

- base R: stats::plot.lm()performance::check_model()
- DHARMa (simulateResiduals(., plot = TRUE))
 - (plotResiduals(simout, form = pred_var))
- broom::augment() + plot-your-own (ggplot2)

performance::check_model(lmTL2)

DHARMa residual

plot(ss, form = lizards\$time)

DHARMa residual

Solutions to problems

- **nonlinearity**: transformation, add covariates (??), add interactions, add polynomial terms etc.
- outliers: drop values (report both!), use robust regression
- heteroscedasticity: transformation, model dispersion explicitly, GLMs
- non-Normality: transformation, GLMs

Transformation

- May do too much at once (GLMs and GAMs allow more flexibility)
- Log-transformation is often interpretable and solves problems
- Transforming boundary values (e.g. log(0)) is problematic
- Box-Cox transformations: $y \to \frac{y^{\lambda}-1}{\lambda}$ (include Jacobian term $GM^{\lambda-1}$ in denominator to keep log-likelihood comparable)
 - flexible
 - in practice people often use 'round numbers': $\lambda = 0$ (log), 1/2 (square root), etc.
 - MASS::boxcox()
 - hard to interpret!

What about correlated predictors?

- Can compute variance inflation factors (VIFs)
- Dropping correlated factors is dubious: Graham (2003), Dormann et al. (2012), Morrissey and Ruxton (2018), Vanhove (2021)
- perfect collinearity gets handled automatically by R's pivoting, but may want to change contrasts/model setup

```
summary(lmTL2)
```

```
Call:
```

```
lm(formula = grahami ~ time * light, data = lizards)
```

Residuals:

```
Min 1Q Median 3Q Max -30.250 -4.125 1.250 6.875 17.750
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     11.750
                               5.375 2.186 0.04311 *
                     -5.083
                                8.211 -0.619 0.54408
timemidday
timelate
                     -6.250
                                7.602 -0.822 0.42238
lightshady
                     11.750
                                7.602 1.546 0.14061
timemidday:lightshady 32.833
                               11.190 2.934 0.00927 **
timelate:lightshady
                     -6.500
                               10.751 -0.605 0.55343
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 10.75 on 17 degrees of freedom Multiple R-squared: 0.7504, Adjusted R-squared: 0.677 F-statistic: 10.22 on 5 and 17 DF, p-value: 0.0001179

broom::tidy(lmTL2)

A tibble: 6 x 5

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	11.8	5.38	2.19	0.0431
2	timemidday	-5.08	8.21	-0.619	0.544
3	timelate	-6.25	7.60	-0.822	0.422
4	lightshady	11.7	7.60	1.55	0.141
5	timemidday:lightshady	32.8	11.2	2.93	0.00927
6	timelate:lightshady	-6.5	10.8	-0.605	0.553

```
## automatically drop intercept; optional by_2sd argument
dotwhisker::dwplot(lmTL2) + geom_vline(xintercept = 0, lty = 2) +
    labs(x="difference in grahami count")
```


Interpretation and testing

- Look at coefficient tables: summary() or coef(summary())
- model comparison: drop1(), anova(), car::Anova()
- coefficient *plots*: broom + ggplot2, dotwhisker

Downstream methods

- plot predictions with data
- partial residuals plots (e.g. remef package)
- prediction, effects plots
- uncertainty of predictions
- emmeans, marginal effects, effects, sjPlot ...

References

Chambers, J. M., and T. J. Hastie, eds. 1991. *Statistical Models in S*. 1st ed. Chapman & Hall/CRC.

Dormann, Carsten F., Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R. García Marquéz, et al. 2012. "Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance." *Ecography*, no–. https://doi.org/10.1111/j.1600-0587.2012.07348.x.

- Gelman, Andrew, and Jennifer Hill. 2006. *Data Analysis Using Regression and Multi-level/Hierarchical Models*. Cambridge, England: Cambridge University Press.
- Graham, Michael H. 2003. "Confronting Multicollinearity in Ecological Multiple Regression." *Ecology* 84 (11): 2809–15. https://doi.org/10.1890/02-3114.
- McKeon, C., Adrian Stier, Shelby McIlroy, and Benjamin Bolker. 2012. "Multiple Defender Effects: Synergistic Coral Defense by Mutualist Crustaceans." *Oecologia* 169 (4): 1095–1103. https://doi.org/10.1007/s00442-012-2275-2.
- Morrissey, Michael B., and Graeme D. Ruxton. 2018. "Multiple Regression Is Not Multiple Regressions: The Meaning of Multiple Regression and the Non-Problem of Collinearity." *Philosophy, Theory, and Practice in Biology* 10 (3).
- Schielzeth, Holger. 2010. "Simple Means to Improve the Interpretability of Regression Coefficients: Interpretation of Regression Coefficients." *Methods in Ecology and Evolution* 1 (2): 103–13. https://doi.org/10.1111/j.2041-210X.2010.00012.x.
- Schoener, Thomas W. 1970. "Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats." *Ecology* 51 (3): 408–18. https://doi.org/10.2307/1935376.
- Vanhove, Jan. 2021. "Collinearity Isn't a Disease That Needs Curing." *Meta-Psychology* 5 (April). https://doi.org/10.15626/MP.2021.2548.
- Venables, W. N. 1998. "Exegeses on Linear Models." In. 1998 International S-PLUS User Conference. Washington, DC. http://www.stats.ox.ac.uk/pub/MASS3/Exegeses.pdf.
- Wilkinson, G. N., and C. E. Rogers. 1973. "Symbolic Description of Factorial Models for Analysis of Variance." *Journal of the Royal Statistical Society. Series C (Applied Statistics)* 22 (3): 392–99. https://doi.org/10.2307/2346786.