machine learning

03 - k-means

francisco josé diego acosta

theory

Chapter 10

An Introduction to Statistical Learning

by Gareth James, et al.

https://www-bcf.usc.edu/~gar eth/ISL/ISLR%20Seventh%20P rinting.pdf **Springer Texts in Statistics**

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

- Unsupervised learning algorithm
- It is one of the simplest way to solve a **clustering** problem
- typical clustering problems:
 - cluster similar documents
 - custer customers
 - market segmentation
 - identify similar physical groups

theory

what is a cluster?
 A cluster refers to a collection of data points aggregated together because of certain similarities.

theory

what is a cluster?
 A cluster refers to a collection of data points aggregated together because of certain similarities.

theory

 The objective of K-means is simple: group similar data points together and discover underlying patterns. To achieve this objective, K-means looks for a fixed number (k) of clusters in a dataset.

- Imagine you have some data you can plot in a line
- You already know the data is grouped in 3 clusters

- Imagine you have some data you can plot in a line
- You already know the data is grouped in 3 clusters
- In this case, the clusters are easy to see

theory

0. Let's start with the raw data

theory

1. Select the number of clusters you want to identify. This is the "K" in K-Means clustering Let's select k = 3

theory

2. Randomly select 3 distinct data points
These are the initial clusters centroids

theory

3. Measure the distance between the first point and the three centroids

theory

3. Measure the distance between the first point and the three centroids

theory

4. Assigns the point to the cluster to which the centroid is closest

theory

4. Assigns the point to the cluster to which the centroid is closest Do the same thing for the rest of points

theory

5. Calculate the mean of each cluster

theory

theory

But this is not what we expected to have!

theory

7. Add the variation within cluster

7. Add the variation within cluster

7. Add the variation within cluster

theory

7. Add the variation within cluster
The goal now is to minimize the total variation. How?? -> Iterate

theory

We have finally reach the cluster that minimize the total variation

theory

What is the best K? The one that minimize the variation

K = 3 is even better! We can quantify how much better by comparing the total variation within the 3 clusters to K = 2

theory

What is the best K? The one that minimize the variation

theory

What if we try k = 4?

theory

Each time we add a cluster (increases k by 1) the total variation is smaller.

So the best solution is when there is only one cluster per data point, innit??

If K=N then the variation is 0

Solution: The elbow method

Solution: The elbow method

theory

• The objective of K-means is simple: group similar data points together and discover underlying patterns. To achieve this objective, K-means looks for a fixed number (k) of clusters in a dataset.

theory

- 1. Initialize cluster centroids $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^n$ randomly.
- 2. Repeat until convergence: {

For every i, set

$$c^{(i)} := \arg\min_{j} ||x^{(i)} - \mu_j||^2.$$

For each j, set

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)} = j\}}.$$
 Rectan

}

- 1. **you** choose a number of clusters **K**
- 2. kmeans randomly create K centroids (which are the imaginary data point that represent the cluster) and assign each data point to the cluster which centroid is closest
- 3. Until convergence repeat:
 - a. for each cluster, compute the cluster centroid by taking the **mean** vector of data points in the cluster
 - b. assign each data point to the cluster for which the centroid is the closest.

theory

k-means clustering (k = 4, #data = 300) music: "fast talkin" by K. MacLeod incompetech.com https://www.youtube.com/watch?v=5l3Ei69l40s