

AD-A166 284 PULSED CHEMICAL LASER TECHNOLOGY DEVELOPMENT CRITICAL 1/1
DESIGN REVIEW(U) AVCO EVERETT RESEARCH LAB INC EVERETT
MA 05 MAR 84 DAAH01-83-C-0282

UNCLASSIFIED

F/G 28/5

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A166 204

DTIC ACCESSION NUMBER

LEVEL

PHOTOGRAPH THIS SHEET

PULSED CHEMICAL LASER TECHNOLOGY DEVELOPMENT

1

INVENTORY

CRITICAL DESIGN REVIEW

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A

**Approved for public release;
Distribution Unlimited**

DISTRIBUTION STATEMENT

ACCESSION FOR	
NTIS	GRA&I
DTIC	TAB
UNANNOUNCED	
JUSTIFICATION	
BY	
DISTRIBUTION /	
AVAILABILITY CODES	
DIST	AVAIL AND/OR SPECIAL
A-1	

DISTRIBUTION STAMP

86 4 14 100

DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

Wm. A. Duncan
Micom

AD-A166 204

PULSED CHEMICAL LASER TECHNOLOGY DEVELOPMENT

CRITICAL DESIGN REVIEW

Contract No. DAAH01-83-C-0282

3/5/84

Prepared For

Department of the Army
U.S. Army Missile Command
Redstone Arsenal, Alabama

Prepared By

Avco Everett Research Laboratory
Everett, Massachusetts

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

PULSED CHEMICAL LASER TECHNOLOGY DEVELOPMENT

CRITICAL DESIGN REVIEW

Contract No. DAAH01-83-C-0282

3/5/84

Prepared For

Department of the Army
U.S. Army Missile Command
Redstone Arsenal, Alabama

Prepared By

Avco Everett Research Laboratory
Everett, Massachusetts

MICOK-PCL - CRITICAL DESIGN REVIEW

AGENDA

PROGRAM REQUIREMENTS/OBJECTIVES	9:15-9:30
J. MORAN	
STATUS OF SYSTEM MODIFICATIONS	9:30-10:00
J. MORAN	
SPECIAL PERFORMANCE DIAGNOSTICS	10:00-10:45
B. Vu	
DATA ACQUISITION	10:45-11:00
N. OROZCO	
LABORATORY TOUR	11:00-12:00
LUNCH	12:00-12:30
REPETITIVE PULSE POWER DESIGN	12:30-1:15
C. PIKE	
PULSE POWER IMPLEMENTATION	1:15-1:45
V.N. MARTIN	
TEST PLAN	2:00-3:00
J. MORAN	

REQUIREMENTS FOR ARMY APPLICATIONS

CLOSED SYSTEM:

BLOW DOWN: CHEMICAL PUMP (Lithium)

RECIRCULATING: LITHIUM SCRUBBER (LiF or NaF)

SOLID GRAIN GAS GENERATORS:

F₂ (FROM NF₄ & F₄)

D₂ (FROM ND₃ & D₃)

N₂ (FROM N_A N₃)

TWO COLOR OPERATION:

DF 3.8 μm

DF → CO₂ 10.6 μm (9.6 μm)

SCOPE OF TECHNOLOGY DEVELOPMENT

TASK I: ANALYSIS

- KINETICS AND LASER PHYSICS
- MEDIUM QUALITY
- FLOW SYSTEM ANALYSIS
- SCALING ANALYSIS

TASK II: SELECTION DESIGN AND FABRICATION

- CONFIGURATION CHARACTERIZATION
- CONFIGURATION DEFINITION
- PERFORMANCE DIAGNOSTICS
- TEST PLAN
 - PDR - CDR
 - FABRICATION AND ASSEMBLY

Today

TASK III: DIAGNOSTICS AND PERFORMANCE TESTING

- SINGLE PULSE TESTING
- REPETITIVELY PULSED TESTING
- DATA ANALYSIS AND CORRELATION

TASK IV: SCALABILITY DESIGN/ANALYSIS

- CONCEPTUAL DESIGN

TEST CONFIGURATION REQUIREMENTS

	REQUIRED	PROPOSED
(FUEL VOLUMETRIC EFFICIENCY e_f (j/l)	20-50 j/l	≤ 34 j/l
PULSE LENGTH τ_p	1-10 μ sec	1-10 μ sec
PULSE RATE v	25 pps	0-30 pps
RUN DURATION	1-5 sec	0-1.6 sec * Limited by F_2 on-line capability
CAVITY VOLUME	>20 l	** 22.5 l
CAVITY PRESSURE	≤ 1.0 atm	150-760 torr Jet Pump (N ₂ Driven)

CONFIGURATION ELEMENTS

GAS VALVING AND MIXER SYSTEM

LASER CAVITY

INITIATION SYSTEM (REP. PULSE)

OPTICS

ACOUSTIC SUPPRESSOR

DIAGNOSTICS

* typically will run ~ 18 pulses
or ~ 0.6 sec

** 22.5 liters for RP
30 " " single pulse

TEST MATRIX PARAMETERS

CAVITY PRESSURE

DF AND DF \rightarrow CO₂ MODES

DILUENTS: HE, N₂, AR, NF₃, SF₆

STABILIZER: O₂

GENERATOR PRODUCTS: NF₃, CF₄, N₂

SEEDANTS: SF₆, NF₃

INITIATION LEVEL

DIAGNOSTICS TO DETERMINE

ENERGY PER PULSE

PULSE SHAPE

→ TIME DEPENDENT SPECTRA

INITIATION SYSTEM CHARACTERISTICS

→ F₂ DISSOCIATION LEVEL

TIME DEPENDENT PRESSURE AND TEMPERATURE

MEDIUM HOMOGENEITY

→ TIME DEPENDENT GAIN

MODELING IS REQUIRED TO SUPPORT THE ABOVE

KINETICS (P.S.I./AERL)

E-BEAM DEPOSITION (AERL)

ACOUSTIC RECOVERY (AERL)

MICOM-PCL PROGRAM SCHEDULE

AERL-PCL FACILITY

ELEMENT	MODIFICATIONS IN MICOM PROGRAM	
	SINGLE PULSE	REP PULSE
FLUIDIC VALVING	YES	NO
GAS MIXER	NO	NO
LASER CAVITY	NO	NO
ACOUSTIC SUPPRESSOR	NO	NO
FLOW CHANNEL STRUCTURE	YES	NO
JET PUMP	YES	NO
GAS SCRUBBER	NO	NO
E-BEAM FOIL AND SUPPORT	NO	YES
CATHODE	YES	NO
PULSE FORMING NETWORK	N.A.	YES
MODULATOR	N.A.	YES
FACILITIES	NO	NO
OPTICS TRAIN STRUCTURE	YES	NO
* OUTPUT WINDOW	NO	NO
DIAGNOSTICS AND CONTROLS	YES	YES

* For CO₂ operation, will put calorimeter inside optics box & use small ZnSe window to remove small portion of beam for diagnostics.

For D₂ operation will use large CaF₂ window to transmit beam from the cavity.

AVCO EVERETT RESEARCH LABORATORY
HAVERHILL FACILITY

3839

AVCO EVERETT

Figure 2.3.2 AERL-PCL Facility Floor Plan

SYSTEM COMPONENTS - PLAN VIEW

Flux thru Cavity is TOP to BOTTOM
 Dr. before the
 Dr. ch. to chamber
 (abs ch. to radiation
 3.39 μ m radiation)

K1734

MAVCO EVERETT

K8074

Dr in Red
Dr in Blue
Fr

STATUS OF SYSTEM MODIFICATIONS

ELEMENTS INITIATED AT START OF PROGRAM.

VALVE ASSEMBLY UPGRADE (AERL P-699-SECT 4.3.1.1.1)

Task Completed.

Flow Testing In Progress.

CATHODE MODIFICATIONS (P-699-SECT 4.3.1.1.3.1)

FABRICATION COMPLETED

INSTALL AND TEST [3/19/84]

After 1st single pulse testing.
Will baseline w/ old cathode
for comparison w/ previous data.

ELECTRON GUN MODIFICATIONS (P-699-SECT 4.3.1.1.3.3)

FOIL SUPPORT DESIGN COMPLETED for RP testing

FABRICATE BY 4/9/84

BUSHING MODIFICATIONS COMPLETED 4 prong receptacle for
RP testing

CABLE TERMINATIONS FABRICATION IN PROGRESS

CRYOPUMP AND ADAPTER FLANGES IN HOUSE to increase
pumping speed
for RP operation

FOIL DESIGN (P-699-SECT 4.3.1.1.2.4) for RP operation

3 MIL KAPTON 1/2 MIL AL FOIL IS IN HOUSE. Plan to try 3/8"
^{1/4" center support}

4 MIL KAPTON 1.0 MIL AL FOIL TO BE ORDERED. Backup if
(Takes ~ 2 hrs to replace foil) thinner foils fail

OPTICS AND EXHAUST FLOW SYSTEMS MODS (4.3.1.1.4.1-4.3.1.1.5.1)

MODIFICATIONS ARE COMPLETED

FLOW TESTING IS COMPLETED.

OPTICS TESTING - WEEK OF 3/5/84

STATUS OF FLOW TESTING

NO CAVITY GAS FLOW:

AT 1000 PSI JET PUMP DRIVE PRESSURE
CAVITY PRESSURE \leq 180 TORR

FULL CAVITY GAS FLOW:

AT 1200 PSI JET PUMP DRIVE PRESSURE
CAVITY PRESSURE \leq 250 TORR

GOAL OF (.20 ATM F₂, .06 O₂, 02 O₃) = 213 TORR
CAN BE MET. may require more O₂ for stability @ low diluent

CAVITY PRESSURE IS CONSTANT TO \pm 7%.
THROUGH THE RUN.

ALL GAS SYSTEMS ARE OPERATING.

FLOW CONTROL SYSTEM IS OPERATING.

SPECIAL DIAGNOSTICS GAS HANDLING IS IN USE.
HCl & HF seedant flows for diagnostics are installed

FLUORIC VALVE SWITCHING TESTS 3/5/84 week of
FLUORINE FLOW TESTS 3/5/84 "

Figure 2.5.1 Stresses in Performed Foils

Figure 2.5.2 Sketch of Foil Fatigue Test Set-Up

- A : Air Boundary Flow
- M : H₂/Air Mixture Flow
- 1 : Valve and Mixer System
- 2 : Foil Holder and Foil Support Structure
- 3 : 10 x 30 cm Foil
- 4 : Spark Plugs

IR&D Task - Foil Testing

Simulates both stress & thermal environments

Goal of 2.5×10^9 pulses @ 25 Hz
(1000 sec @ 25 Hz)

PULSED CHEMICAL LASER
OPTICS TRAIN
SIDE ELEVATION

SPECIAL PERFORMANCE DIAGNOSTICS

Vu

- F_2 (NF_3) DISSOCIATION LEVEL
- LASER SPECTRA \swarrow Time integrated
 \searrow Time Resolved
- TIME DEPENDENT GAIN.

F_2 (NF_3) DISSOCIATION LEVEL

OBJECTIVE: RELATE E-BEAM INITIATION CHARACTERISTICS AND GAS COMPOSITION TO F-ATOM FORMATION. $\{F\}/\{F_2\} \sim 5 \times 10^3$

$0.2 \rightarrow 0.5\%$

MOTIVATION:

- COUPLE LASER CODE TO EXPERIMENTS.
- DEVELOP SCALING RELATIONS.

APPROACH: USE SINGLE LINE ($v = 1 \rightarrow 0$) PULSED HF PROBE LASER TO MEASURE PRODUCT CONCENTRATION IN TITRATION REACTION:

TASKS:

- SELECT HF PROBE LASER (LUMONICS TEA 203).
- SELECT DETECTORS (MOLECTRON PYROELECTRIC P3-01).
- IMPLEMENT HF CLEAN-UP OF F_2 SUPPLY. (NaF scrubber)
- IMPLEMENT $HC\&$ INJECTION SYSTEM.
- IMPLEMENT HF CALIBRATION GAS FLOW SYSTEMS.
- IMPLEMENT DIAGNOSTIC OPTICS.
- TEST.

SCHEMATIC FOR F-ATOM MEASUREMENT

GAS FLOW:

WITH TRACES OF:
HF FOR CALIBRATION
HCl FOR TITRATION

E-BEAM:

USE E-BEAM MASK
SO THAT ONLY $\frac{1}{2}$ OF CAVITY
IS IRRADIATED

PROBE LASER BEAMS

- ① : CALIBRATION BEAM
- ② : TEST BEAM
- ③ : REFERENCE BEAM

NOMENCLATURE

D : PYRO ELECTRIC DETECTOR

M : MIRROR

BS : QUARTZ BEAM SPLITTER

F_2 (NF_3) DISSOCIATION MEASUREMENT:

DESIGN CONSIDERATIONS

ABSORPTION LINE

- USE HF 1P8 LINE ($2,783\mu$) INSTEAD OF 1P4 LINE.
- TOTAL CAVITY LENGTH CAN BE USED AS ABSORPTION PATH.
If 1P4 line is used, ~2cm will absorb 90% of rad
1P8 is 100 times less sensitive.

PROBE LASER

- LUMONICS TEA-203, SINGLE LINE OPERATION
 $I \leq 50\text{ kW/cm}^2$, $\tau = 0.5\mu\text{s}$
- TEST AND CALIBRATION BEAM INTENSITIES
 $I \ll I_s$: AVOID HF BLEACHING
 I : BEAM INTENSITY $\approx 0.1\text{ kW/cm}^2$
 I_s : SATURATION INTENSITY $= 1.7\text{ kW/cm}^2$

DETECTORS

- PYROELECTRIC (MOLECTRON P3-01, $\tau_R = 50\text{ ns}$,
 $V/I = 3\text{ mV/(kW/cm}^2)$)
- FILTERS AND FOCUSING LENSES ON DETECTORS.

CALIBRATION

- INTRA-CAVITY CALIBRATION
- CALIBRATION MEASUREMENT SIMULTANEOUS WITH
DISSOCIATION MEASUREMENT

LASER SPECTRAL MEASUREMENT

OBJECTIVE:

RELATE DF AND CO₂ TIME-DEPENDENT AND TIME-INTEGRATED SPECTRA,
TO CAVITY AND INITIATION CONDITIONS.

MOTIVATION:

- ADDRESS MODE FORMATION
- TAILOR SPECTRA TO REMOVE LONG WAVELENGTHS ($\approx 4.1 \mu\text{m}$)
- PROVIDE DATA BASE FOR MODELING AND SCALING

APPROACH:

- GRATING SPECTROMETRY USING EBERT-FASTIE CONFIGURATION
- IR PHOTOGRAPHY FOR TIME-INTEGRATED SPECTRA
- PYROELECTRIC DETECTORS FOR TIME-RESOLVED SPECTRA;

DIGITAL DATA ACQUISITION

Have capability to look @ 10 times simultaneously

TASKS:

- IMPLEMENT SPECTROMETER OPTICS
- SELECT AND CALIBRATE GRATINGS
- IMPLEMENT IR CAMERA
- IMPLEMENT DETECTOR ARRAYS (10)
- IMPLEMENT DATA ACQUISITION
- TIME-INTEGRATED MEASUREMENT
- TIME RESOLVED MEASUREMENT

DF SPECTRA
RUNS 459/458 (NF₃)

35F₂ : 18D₂ : 35NF₃ : 12O₂

458 200 torr

459 400 torr

SPECTROMETER

(L) : Diverging Lense,
 CaF_2 , $f = -10\text{cm}$

(M) : Spherical Mirror,
 $f = 330\text{ cm}$

(G) : Blazed Grating, ($5 \times 5\text{cm}$)
300 l/mm for DF Spectra
150 l/mm for DF/ CO_2 Spectra

(D) Pyroelectric Detector
Molelectron PI-61
(1 of 10 shown)

(F) : Film Plane,
35 mm Kodak 5367 No.1

(S) : Stoboscope Flash
Gen Rad 1531 AB

SPECTRAL MEASUREMENT: DESIGN CONSIDERATIONS

DF SPECTRAL RANGE

- **69 LINES** BETWEEN $3.581\mu\text{m}$ AND $4.788\mu\text{m}$
- SMALLEST LINE SEPARATION: $0.003\mu\text{m}$

Expect 40. Have 8 data channels available for test.

GRATING SPECTROMETER

- EBERT-FASTIE CONFIGURATION
- MAXIMUM REVOLVING POWER: $0.00026\mu\text{m}$
- LINE SEPARATION CAPABILITY:
 $\Delta s/\Delta\lambda = 1.3\text{cm}/0.01\mu\text{m}$
- TOLERANCE TO INCIDENT BEAM JITTER:
 $\Delta\theta_I = \leq \pm 2.5\text{m rad}$
- N_2 FLUSH TO AVOID ABSORPTION BY CO_2 .

TIME-INTEGRATED MEASUREMENT: IR PHOTOGRAPHY

- PRINCIPLE: HEATING OF FILM BY LASER LINES CHANGES FILM SENSITIVITY.
- LINEAR RESPONSE FOR $J \leq 500 \text{ mJ/cm}^2$ (SILVER HALIDE EMULSION).
- QUANTITATIVE MEASUREMENT FOR ALL LASING LINES.

TIME-RESOLVED MEASUREMENT: PYROELECTRIC DETECTORS

- 10 STRONGEST LINES ($3.8\mu\text{m} < \lambda < 4.2\mu\text{m}$) MEASURED BY MOLECRON P1-61 PYROELECTRIC DETECTORS.
- WORKING INTENSITY RANGE $0.04\text{kW/mm}^2 < I < 4\text{kW/mm}^2$
- DIGITAL DATA ACQUISITION

TIME DEPENDENT GAIN

OBJECTIVE:

MEASURE LASER GAIN AT SELECTED WAVELENGTHS

MOTIVATION:

PROVIDE DATA BASE FOR SYSTEM DESIGN,
MODELING AND SCALING

APPROACH:

- FABRICATE PROBE DF LASER WITH 4 μ SEC PULSE TO MEASURE TIME-RESOLVED GAIN
- LINE SELECTION BY 300 L/mm GRATING

TASKS:

- FABRICATE FLASHLAMP INITIATED DF PROBE LASER
- IMPLEMENT OPTICS AND DETECTOR ARRAY
- GAIN MEASUREMENT

DF PROBE LASER

K9548

SCHEMATIC FOR TIME RESOLVED GAIN MEASUREMENT

TIME DEPENDENT GAIN: DESIGN CONSIDERATIONS

DF PROBE LASER

- FLASHLAMP INITIATED
- LASER PULSE:
 - $\tau = 4 \mu\text{s}$ (FWHM)
 - $I = 200 \text{ W/cm}^2$ PER LINE
- GAIN MEASUREMENT: $\pm 15\%$ UNCERTAINTY WITH 100 CM LONG OPTICAL CAVITY OF PROBE LASER

EXPERIMENTAL CONDITIONS

- TEST BEAM INTENSITY:

$$I_T \ll I_S$$

I_T : TEST BEAM INTENSITY (10 W/cm^2)

I_S : SATURATION INTENSITY (600 kW/cm^2)

- LENGTH OF E-BEAM APERTURE:

REDUCED TO 25 CM TO AVOID AMPLIFIED SPONTANEOUS EMISSION (ASE)

SPECIAL PERFORMANCE DIAGNOSTICS: STATUS

F₂(NF₃) DISSOCIATION MEASUREMENT

- DIAGNOSTIC SYSTEM READY FOR SHAKEDOWN AND TESTING.

SPECTRAL MEASUREMENT

- ASSEMBLY IN PROGRESS
- TIME INTEGRATED MEASUREMENT:
 - SPECTROMETER READY FOR TESTING 3/26/84.
- TIME RESOLVED MEASUREMENT:
 - PYROELECTRIC DETECTORS DELIVERED 3/12/84.
 - INSTALL 1 DATA CHANNEL 3/19-3/26/84. ←
 - IMPLEMENT DETECTOR ARRAY AND DATA ACQUISITION SYSTEM 3/26-4/27/84.
 - READY FOR TESTING 4/30/84. ← —

TIME DEPENDENT GAIN MEASUREMENT

- TEST OPTICS COMPLETED
- PROBE LASER READY FOR SHAKEDOWN AND TESTING.
- TESTING 5/7/84 (TENTATIVE).

DATA ACQUISITION REQUIREMENTS Nelson Orozco

6 EXPERIMENTS TO BE DONE

	CHANNELS AVAILABLE	Oscilloscope	* DATA PRECISION	** LECROY
		(4)	(4)	(8)
: F-ATOM FORMATION				
GUN CURRENT		1		
GUN VOLTAGE			1	
PROBE LASER PULSE SHAPE				1
ABSORPTION REF. PATH				1
ABSORPTION TEST PATH				1
CAVITY PULSE OVERPRESSURE		1		
: TIME RESOLVED LASER SPECTRA				
GUN CURRENT			1	
GUN VOLTAGE				1
CAVITY PULSE OVERPRESSURE				1
LASER PULSE SHAPE				1
SPECTRA MEASUREMENTS				8

- * Each unit has 2 channels. Only one in house now. Other on order
- ** Lecroy Inst. will be ordered this week

DAVCO EVERETT

DATA ACQUISITION REQUIREMENTS

SCOPE	DATA <u>PRECISION</u>	LECROY
" (4)	" (4)	" (8)

: TIME RESOLVED LASER GAIN MEASUREMENTS

GUN CURRENT 1
GUN VOLTAGE 1
CAVITY PULSE OVERPRESSURE 1
LASER PULSE SHAPE 1
GAIN MEASUREMENTS 2

 AVCO-EVERETT

DATA ACQUISITION REQUIREMENTS

• TIMING & SAMPLING

- PULSE WIDTH - 0.5 μ s - 5 μ s
- RESOLUTION - 50 ns
- PULSE SAMPLING RATE - > 20 MHz
- PULSE REPETITION RATE - 10 Hz → 30 Hz
- No. PULSE EVENTS - 18 MAX.

- No. CHANNELS - 12

 AVCO EVERETT

DATA ACQUISITION REQUIREMENTS

TIMING & CONTROL LOGIC

AVCO EVERETT

DATA ACQUISITION REQUIREMENTS

SYSTEM HARDWARE REQUIREMENTS FOR SINGLE PULSE

- 2 - DATA PRECISION DATA 6000 WAVEFORM ANALYZER
(1 IN HOUSE)
- 2 - DATA PRECISION MODEL 620, 100 MHz DIGITIZING MODULE
8 BIT RESOLUTION, 2 CHANNELS
- 4 - DATA PRECISION MODEL 694-B PROBES
- 2 - DATA PRECISION FIRMWARE 682-30
RS232C INTERFACE AND IEEE-4888
GPIB INTERFACE
- 1 - LECROY 3500SA32 MULTICHANNEL ANALYZER
- 2 - LECROY NIM MODEL 612AM 6-CHANNEL PHOTOMULTIPLIER AMPLIFIER
- 6 - LECROY MODEL TR8837F 32 MEGASAMPLE/SEC. TRANSIENT RECORDER
- 6 - LECROY MODEL 4501A NIM TO CAMAC ADAPTERS
- 1 - LECROY MODEL 1434 CAMAC CRATE
- 1 - LECROY MODEL 3501 CRATE CONTROLLER
- 1 - LECROY 3500-38-488 INTERFACE

*Comments:
4 - 694-B
4 - 3500SA32*

AVCO EVERETT

DATA ACQUISITION REQUIREMENTS

- SYSTEM HARDWARE REQUIREMENTS FOR REP. PULSE**

- SAME REQUIREMENTS FOR SINGLE PULSE**

- 1 - LECROY NIM MODEL 222/222N DUAL GATE & DELAY GENERATORS
- 1 - LECROY NIM MODEL 428F (430) QUAD LINEAR FAN IN/FAN OUT
- 1 - LECROY NIM MODEL 620D 8-CHANNEL DISCRIMINATOR
- 1 - LECROY NIM MODEL 688AL LEVEL ADAPTER

Figure 2.8.5 Data Acquisition System Schematic

~1 week behind schedule. No catch-up

TABLE I: TEST PLAN: TASK III - SINGLE PULSE TESTING (Continued) capability. Slips on 1/1 ratio.

2/20	2/27	3/3	3/12	3/19	3/26	4/2	4/9	4/16	4/23	4/30	5/7	5/14	5/21	5/28	6/4	6/11	6/18	6/25	7/2
2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/27	5/4	5/11	5/18	5/25	6/1	6/8	6/15	6/22	6/29	7/6

F FLUORINE ATOM PRODUCTION MEASUREMENTS

- F1 FABRICATE F-ATOM REFERENCE AND TEST LEGS
- F2 SHAKE DOWN LUMINESCENCE OF LASER
- F3 INSTALL F-ATOM CONVEYANCE OPTICS
- F4 SHAKE DOWN F-ATOM DETECTORS
- F5 MEASURE F-ATOM FORMATION

G TIME INTEGRATED LASER SPECTRAL MEASUREMENTS, OF

- G1 INSTALL SPECTROPOETER
- G2 FABRICATE FILM HOLDER
- G3 INSTALL FLASH LAMP
- G4 IMPLEMENT LASER/SPECTROMETER ALIGNMENT
- G5 MEASURE LASER / OF (A,I) OF

H TIME RESOLVED LASER SPECTRAL MEASUREMENTS, OF

- H1 OBTAIN DF (A,I), CO₂ (A,I) DETECTORS (10)
- H2 INSTALL ONE COMPLETE OF (A,I) DATA CHANNEL
- H3 SHAKE DOWN ONE OF (A,I) CHANNEL
- H4 INSTALL DF (A,I) DETECTOR ARRAY
- H5 INTEGRATE OF (A,I) WITH DATA ACQUISITION
- H6 MEASURE DF (A,N) - TIME RESOLVED SPECTRA

I TIME RESOLVED LASER SPECTRAL MEASUREMENTS, CO₂

- I1 MODIFY CALORIMETER AND WINDOW FOR CO₂ (A,I)
- I2 MODIFY SPECTROMETER FOR CO₂ (A,I)
- I3 MEASURE CO₂ (A,I) - TIME RESOLVED SPECTRA

J DATA ACQUISITION SYSTEM

- J1 IMPLEMENT 2-CHANNEL A/D DATA ACQUISITION
- J2 FINALIZE SELECTION OF DATA ACQUISITION SYSTEM
- J3 OBTAIN DATA ACQUISITION SYSTEM
- J4 IMPLEMENT DATA ACQUISITION SYSTEM

PULSED CHEMICAL LASER

PULSE POWER SYSTEM DESIGN

CHARLES PIKE

AVCO EVERETT

TECHNICAL APPROACH FOR REPETITIVE PULSE POWER SYSTEM

- REQUIREMENTS/SPECIFICATION
- IN-HOUSE AVAILABILITY OF SUBSYSTEMS
 - HV LOW CURRENT POWER SUPPLY
 - DOUBLE-ENDED CERAMIC THYRATRONS
 - OIL TANK
 - HV ENERGY STORAGE CAPACITORS
- DESIGN CONSIDERATIONS VS. TRADE-OFFS
 - Modified S³ Device
 - SIMPLE SKETCHES
 - LAYOUT
 - SUBSYSTEM
 - COMPONENTS
 - INTERFACES

ELECTRON GUN SPECIFICATIONS

• VOLTAGE	230 KV MAX.	• PULSE RATE	30 HZ
• CURRENT DENSITY	11.3A/CM ²	• RESISTANCE	12.2 Ω (INITIAL)
• PULSE LENGTH	0.5 μSEC	• AV. ELECTRODE SPACING	4.3 CM
• ENERGY	1640 J/PULSE	• CLOSURE VELOCITY	1.0 CM/μSEC
• AREA	1450 CM ²	• RISE TIME	150 N SEC. MAX.
• CURRENT	16.4KA		

REPETITIVE PULSE POWER SYSTEM: OPERATING PARAMETERS

- POWER SUPPLY 0-70 KV AT 50 MA DC
- PRIMARY STORAGE CAPACITY 390 MFD AT 40 KV
- THYRATRON CHARGING STOP/START CHARGE
- INTERMEDIATE CAPACITY 1.0 MFD AT 80 KV
- INTERMEDIATE REGULATION ZENOX UNITS
- INTERMEDIATE SWITCH 105 KV CERAMIC THYRATRON
- MODULATOR OUTPUT SWITCH 460 KV SPARK GAP (I_{ideal} to one in s¹)

 AVCO EVERETT

"Master Schematic of E-Gun HV Pulse Modulator System"

AVCO EVERETT

PEAK CAPACITOR BANK FAULT
CURRENT

$$I_0 = \frac{40 \text{ KV} - 2 \text{ (TUBE DROP)}}{66.6 + 450} = 75 \text{ AMPS}$$

$$RC = 390 \times 10^{-6} \times 516.6 = 0.2 \text{ SEC}$$

$$SRC = 1 \text{ SEC}$$

AVCO EVERETT

PROTECTIVE CROW-BAR DESIGN

AVCO EVERETT

K9081

AVCO EVERETT

CHARGE

	NODE OFFSET	VALUE	TIME-μS
UPPER	1	.0005	-0.000
LOWER	3	0	3.525

NO DIODE
R = 400Ω

CHARGE

TIME- μ s

100.00
3.742

NODE OFFSET VALUE

UPPER 1 .0005 -0.000

LOWER 3 0 100.00

7V ZENER

CHARGE1

NODE	OFFSET	VALUE	TIME- μ s
UPPER	1	.0005	-0.020
LOWER	3	0	4.475

COMPARISON OF THYRATRON BURST MODE OPERATION

MARCONI <u>BURST MODE</u>	AVCO <u>BURST MODE</u>
DOUBLE-ENDED	CX1171B
CERAMIC THYRATRON	(3" DIA.)
PULSED STORED ENERGY	2.6 KJ, MAX.
PULSE LENGTH	30 μ SEC
PRF	67 PPS
PFN VOLTAGE	105 KV
PULSE DISCHARGE CURRENT	4800 \hat{A}
BURST ENERGY	49.2 KJ FOR 1 SEC

AVCO EVERETT

RESTART FILE? (Y/N)
Q E (4) (5)
CASHIER
DISCOUNT
UN/OUTPUT

ESTATE FILE? (Y/N)

• 0.193056-HU1E7
• -0.3001402 - .665E+02 - .530E+02 - .395E+02 - .260E+02 - .125E+02 • 100E+01 • 145E+02 • 415E+02

- 204 105: -

.665E+02 - .530E+02 -.395E+02 -.260E+02 -.125E+02 .100E+01 .145E+02 .280E+02 .415E+02

..... AAAA
..... AAAA
..... AAAA
..... AAAA

AAA AAAAAA
AAA AAAAAA

AAA
AA +
A +

AAA
AA
A
AA

• 3.5UE-034

180-3052

卷之三

• AGCE-011

卷之三十一

(N/L) 43714-246-2

卷之三

5.2 Selected for use

卷之三

TETRAHYDROFURAN

卷之三

ALREADY EXISTS, USE ANOTHER NAME

-100,50=NODE2
 500E-02 -100E-02 -.665E+02 -.530E+02 -.395E+02 -.260E+02 -.125E+02 .100E+01 .145E+02 .280E+02 .415E+02
 150E+02
 200E+02
 250E+02
 300E+02
 350E+02
 400E+02
 450E+02
 500E+02
 UN/OUTUT
 ESTART FILE? (Y/N)
 pr.
 4/07/13 23:55:17.

12

K 9083

AVCO EVERETT

K9470

DAVCO EVERETT

AVCO EVERETT

TIME (MICROSECONDS)

K9469

K9471

AVCO EVERETT

PFN/SWITCH REQUIREMENTS

- VOLTAGE HOLD-OFF: 500 KV
- ENERGY 1640/J PULSE @ 30 PPS (1.5 SEC)
- PULSE CHARGING TIME: 30 μ S
- PULSE DISCHARGE TIME: 0.5 μ SEC

AVCO EVERETT

REPETITIVE PULSE POWER SYSTEM

CONSTRUCTION DETAILS

STATUS

SCHEDULE

V. N. MARTIN

DAVICO EVERETT

STATUS % 3/5/84

COMPLETE

- ELECTRICAL DESIGN 95
- LAYOUTS + MECHANICAL DETAILS 95
- MAJOR HV COMPONENTS 85
- SUBASSEMBLIES 90
- TANK INSTALLATION 50

STATUS: COMPLETED SUBASSEMBLIES

T.I.G. HV TRIGGER DRIVE CHASSIS

CHARGING THYRATRON MODULE

INTERMEDIATE CAPACITOR ASSEMBLY (0.11 μF Capacitors)

PFN CAPACITORS

T.I.G. SUPPORT STRUCTURE

DAVID EVERETT

AVCO EVERETT

69467

AVCO EVERETT

666

DAVCO EVERETT

69468

EQUIPMENT SCHEDULE TO COMPLETION

ANNE CO EVERETT

SYSTEM INTEGRATION AND TESTING -

RONALD EVERETT

PULSED CHEMICAL LASER TECHNOLOGY DEVELOPMENT

TEST PLAN

SINGLE PULSE DIAGNOSTIC TESTING

Contract No. DAAHC1-83-C-0282

Prepared For

Department of the Army

U.S. Army Missile Command

Redstone Arsenal, Alabama

Prepared By

James P. Moran

Avco Everett Research Laboratory

Everett, Mass.

TABLE I: TEST PLAN: TASK III - SINGLE PULSE TESTING

Shift	Date	Scale	One week to left
2/20	2/27	3/5	3/12
2/24	3/2	3/9	3/16

A. GAS HANDLING

- A1 TEST JET PUMP WITH CAVITY FLOW
- A2 INSTALL SINGLE PULSE FLUIDIC VALVE DRIVE
- (A3 TEST FLUIDICS, $P_c = 10$ ATM
A4 TEST FULL FLOW, $P_c = 1.0$ ATM, 0.5 ATM)

Phase No. 1
Done

B. FLUORINE GAS HANDLING

- B1 INSTALL F2 SUPPLY GAS CLEANUP
- B2 INSTALL HF/HCl PLUMBING
- B3 SHAKE DOWN F2 GAS HANDLING

C. MAIN LASER OPTICS

- C1 INSTALL LASER OPTICS AND CALORIMETER
- C2 INSTALL LASER PULSE SHAPE DETECTOR
- C3 SHAKE DOWN CALORIMETER DIAGNOSTICS
- C4 SHAKE DOWN LASER ALIGNMENT OPTICS

D. SINGLE PULSE ELECTRON BEAM

- D1 PUT CARBON FELT ON NEW CATHODE
- D2 TEST TRANSMISSION OF OLD CATHODE, 1/2-IN. FOIL BAR SPACING
- D3 INSTALL NEW CATHODE
- D4 TEST NEW CATHODE TRANSMISSION, 1/2-IN. FOIL BAR SPACING
- D5 TEST NEW CATHODE FOIL BARS REMOVED

E. LASER PERFORMANCE MEASUREMENTS

- E1 TEST OF LASER 10 ATM 20 F2 6 D2, 1 O2, 73 Hz Baseline Nary
- E2 TEST OF LASER 0.5 ATM, 10 ATM, 20 F2 6 D2, 1 O2 73 Hz
- E3 DF LASER PERFORMANCE MEASUREMENTS, COMPOSITE
- E4 CO2 LASER PERFORMANCE MEASUREMENTS

Lens

TABLE I: TEST PLAN: TASK III - SINGLE PULSE TESTING (Continued)

TABLE I: TEST PLAN: TASK III - SINGLE PULSE TESTING (Continued)

2/20	2/27	3/5	3/12	3/19	3/26	4/2	4/9	4/16	4/23	4/30	5/7	5/14	5/21	5/28	6/4	6/11	6/18	6/25	7/2
2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/27	5/4	5/11	5/18	5/25	6/1	6/8	6/15	6/22	6/29	7/6

K. TIME DEPENDENT GAIN MEASUREMENTS, DF

- K1 INSTALL PROBE LASER GAS SUPPLIES
- K2 OBTAIN PROBE LASER LINE SELECTIVE OPTICS
- K3 ASSEMBLE LASER OPTICS
- K4 SHAKE DOWN FLASHLAMPS
- K5 INSTALL PROBE LASER CONVEYANCE OPTICS
- K6 SHAKE DOWN GAIN MEASUREMENT DETECTORS
- K7 MEASURE GAIN OF (λ, i)

Laser

TABLE II: TEST PLAN: TASK III - REPETITIVELY PULSED TESTING

	6/10	6/11	6/12	6/13	6/14	6/15	6/16	6/17	6/18	6/19	6/20	6/21	6/22	6/23	6/24	6/25	6/26
2/20	2/27	3/5	3/12	3/19	3/26	4/2	4/9	4/16	4/23	4/30	5/7	5/14	5/21	5/28	6/4	6/11	6/18
2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/27	5/4	5/11	5/18	5/25	6/1	6/8	6/15	6/22
																6/29	7/6

E-BEAM FOIL, REPETITIVE PULSE OPERATION

- L1 MODIFY FOIL SUPPORT STRUCTURE FRAME
- L2 FABRICATE FOIL SUPPORT BARS
- L3 OBTAIN BACKUP MIL KAPTON/10 MIL A FOIL
- L4 TEST NEW FOIL STRUCTURE TRANSMISSION, 3/8 IN. FOIL BAR SPACING
- L5 TEST NEW FOIL STRUCTURE, BURST MODE REP PULSE

N. REPETITIVE PULSE POWER SYSTEM

- N1 COUPLE DC POWER SUPPLY TO ENERGY STORAGE CAPACITORS
- N2 ASSEMBLE CHARGING THYRATRON MODULE
- N3 ASSEMBLE CHARGING REACTOR SYSTEM
- N4 ASSEMBLE DISCHARGE THYRATRON MODULE
- N5 ASSEMBLE INTERMEDIATE STORAGE CAPACITOR SYSTEM
- N6 INSTALL HV PULSE TRANSFORMER AND TRIGGER TRANSFORMER
- N7 ASSEMBLE PULSE FORMING NETWORK
- N8 INSTALL MAIN SPARK GAP AND TRIGGER ISOLATION GAP
- N9 INSTALL DUMMY LOAD
- M10 COMPONENT CHECKOUT
- M11 ASSEMBLE GAS FLOW CONTROL
- M12 ASSEMBLE SYSTEM CONTROLS AND TIMING AND DIAGNOSTICS
- M13 SYSTEM INTEGRATION
- M14 TEST TO DUMMY LOAD
- M15 INTEGRATE PPS CONTROLS WITH LASER SYSTEM CONTROLS
- M16 INSTALL COAXIAL CABLE COUPLING TO E-BEAM BUSHING

N. LASER PERFORMANCE MEASUREMENTS, REPETITIVE PULSE _____ TEST START 6/30/94

- N1 OF LASER PERFORMANCE
- N2 CO₂ LASER PERFORMANCE

L1000

TABLE III: TEST PLAN: AERL-IRAD: REPETITIVELY PULSED TESTING

	2/20	2/27	3/5	3/12	3/19	3/26	4/2	4/9	4/16	4/23	4/30	5/7	5/14	5/21	5/28	6/4	6/11	6/18	6/25	7/2
	2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/27	5/4	5/11	5/18	5/25	6/1	6/8	6/15	6/22	6/29	7/6

Q_E-BEAM FOIL ENVIRONMENT SIMULATOR

- Q1 ASSEMBLE FLOW TRAIN
- Q2 ASSEMBLE GAS SUPPLY AND CONTROL PLUMBING
- Q3 BENCH TEST FLUIDIC VALVES
- Q4 ASSEMBLE VALVING AND MIXER
- Q5 ASSEMBLE SPARK PLUGS AND IGNITION CIRCUITRY
- Q6 FABRICATE FOIL SUPPORT STRUCTURE ASSEMBLY
- Q7 INSTALL FLOW AND TEMPERATURE DIAGNOSTICS
- Q8 SYSTEM SHAKE DOWN
- Q9 TEST CANDIDATE REP PULSE FOILS

X_P_MECHANICAL_D2_VALVING

- P1 COMPLETE VALVING DESIGN
- P2 DESIGN VALVE DRIVE TRAIN AND TIMING
- P3 FABRICATE VALVES
- P4 OBTAIN AND ASSEMBLE DRIVE TRAIN COMPONENTS
- P5 MODIFY PCL GAS HANDLING TO ACCOMMODATE VALVES
- P6 INSTALL MECHANICAL VALVES
- P7 TEST MECHANICAL VALVE PERFORMANCE

L2000

* Flushing valving applicable to high re-rate application.
25 Hz or below may and itself more applicable
to mechanical valves.

TABLE IV. TASK III SINGLE PULSE TESTING - TEST MATRIX

206

E W D

DTIC

5 - 86