Lem. I = [0, 1] è compatto come sottospazio di \mathbb{R} .

Dim. Gli intervalli del tipo $[0, b[,]a, 1],]a, b[, \forall 0 \leq a < b \leq 1$ sono base per [0, 1], ottenuta intersecando la base di intervalli aperti di $\mathbb R$ con [0, 1]. $\forall \mathcal U = \{U_\alpha\}_{\alpha \in A}$ ricoprimento basico per [0, 1] consideriamo

$$\mathcal{T}:=\left\{t\in [0,1]\ \middle|\ \exists\, n\in\mathbb{N},\exists\, lpha_1\ldots,lpha_n\in A ext{ t.c. } [0,t]\subset igcup\limits_{i=1}^n U_{lpha_i}
ight\}.$$

In altre parole: $t \in T \Leftrightarrow [0, t]$ finitamente ricoperto da aperti di \mathcal{U} .

$$\exists a < b \text{ t.c. } U_0 = [0, a[e U_1 =]b, 1] \in \mathcal{U} \Rightarrow U_0 \subset T \neq \emptyset.$$

 $s:=\sup T>0$. Mostriamo che s=1. Se per assurdo $s<1\Rightarrow\exists \alpha\in A$ t.c. $s\in U_{\alpha}\Rightarrow \exists t\in T\cap U_{\alpha},\ \exists s'\in U_{\alpha}$ t.c. $s'>s \leadsto [0,s']=[0,t]\cup [t,s']\subset U_{\alpha_1}\cup\cdots\cup U_{\alpha_n}\cup U_{\alpha}\Rightarrow s'\in T$ contraddizione.

$$\exists t \in T \cap U_1 \rightsquigarrow [0,1] = [0,t] \cup [t,1] = U_{\alpha_1} \cdots \cup U_{\alpha_n} \cup U_1.$$

Oss. $[0,1]_{\ell} \subset \mathbb{R}_{\ell}$ non è compatto nella topologia di Sorgenfrey

$$\mathcal{U} = \left\{ \left[1 - \frac{1}{n}, 1 - \frac{1}{n+1}\right] \right\}_{n \in \mathbb{N}} \cup \{\{1\}\}.$$

Proprietà degli spazi compatti

Teor. X compatto e $Y \subset X$ chiuso $\Rightarrow Y$ compatto.

Dim. $\forall \mathcal{V} = \{V_{\alpha}\}_{\alpha \in A}$ ricoprimento aperto di $Y \Rightarrow \forall \alpha \in A$, $\exists U_{\alpha} \subset X$ aperto t.c. $V_{\alpha} = U_{\alpha} \cap Y \Rightarrow \mathcal{U} = \{U_{\alpha}\}_{\alpha \in A} \cup \{X - Y\}$ ricoprimento aperto di $X \leadsto \{U_{\alpha_1}, \ldots, U_{\alpha_n}, X - Y\}$ sottoricoprimento finito di \mathcal{U} per $X \Rightarrow \{V_{\alpha_1}, \ldots, V_{\alpha_n}\}$ sottoricoprimento finito di \mathcal{V} per Y.

Oss. Non vale implicazione inversa: \mathbb{R}_{ban} compatto, $Y = \{0\} \subset \mathbb{R}_{ban}$ compatto non chiuso.

Teor. X compatto e $f: X \to Y$ continua e suriettiva $\Rightarrow Y$ compatto.

Dim. $\forall \mathcal{V} = \{V_{\alpha}\}_{\alpha \in A}$ ricoprimento aperto di $Y \Rightarrow U_{\alpha} := f^{-1}(V_{\alpha})$ aperto in X e $V_{\alpha} = f(U_{\alpha})$ perché f suriettiva. $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ ricoprimento aperto di $X \Leftrightarrow \{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ sottoricoprimento finito di \mathcal{U} per $X \Rightarrow \{V_{\alpha_1}, \ldots, V_{\alpha_n}\}$ sottoricoprimento finito di \mathcal{V} per Y = f(X).

Cor. X compatto $\Rightarrow X/\sim$ compatto.

Cor. X compatto e $f: X \to Y$ continua $\Rightarrow f(X) \subset Y$ compatto.

Oss. In altre parole: l'immagine continua di un compatto è compatta.

Teor. X spazio di Hausdorff, $Y \subset X$ sottospazio compatto, $x \in X - Y \Rightarrow \exists U, V \subset X$ aperti t.c. $x \in U, Y \subset V$ e $U \cap V = \emptyset$.

Dim. $\forall y \in Y$, $\exists U_y, V_y \subset X$ aperti t.c. $x \in U_y$, $y \in V_y$, $U_y \cap V_y = \emptyset \rightsquigarrow \{V_y \cap Y\}_{y \in Y}$ ricoprimento aperto di $Y \rightsquigarrow \{V_{y_1} \cap Y, \ldots, V_{y_n} \cap Y\}$ sottoricoprimento finito \rightsquigarrow

$$U = \bigcap_{i=1}^n U_{y_i}$$
 $V = \bigcup_{i=1}^n V_{y_i}$

aperti in X t.c. $x \in U$, $Y \subset V$, $U \cap V = \emptyset$.

Teor. X spazio di Hausdorff e $Y \subset X$ sottospazio compatto $\Rightarrow Y$ chiuso.

Dim. $\forall x \in X - Y$, $\exists U, V \subset X$ aperti t.c. $x \in U$, $Y \subset V$ e $U \cap V = \emptyset \Rightarrow x \in U \subset X - V \subset X - Y \Rightarrow X - Y$ aperto. □

Teor. $f: X \to Y$ continua e biiettiva con X compatto e Y di Hausdorff \Rightarrow f omeomorfismo.

Dim. Basta far vedere che f è chiusa. $\forall A \subset X$ chiuso $\Rightarrow A$ compatto $\Rightarrow f(A) \subset Y$ compatto $\Rightarrow f(A)$ chiuso in Y.

Cor. $f: X \to Y$ continua e iniettiva con X compatto e Y di Hausdorff \Rightarrow f immersione.

Dim. $f(X) \subset Y$ di Hausdorff (T_2 ereditaria), $f|_{f(X)}: X \to f(X)$ continua e biiettiva quindi omeo per il Teorema.

Lem. X compatto di Hausdorff \Rightarrow X è T_3 .

Dim. $X \in T_2 \Rightarrow T_1$. $\forall Y \subset X$ chiuso $\Rightarrow Y$ compatto, $\forall x \in X - Y$, $\exists U, V \subset X$ aperti t.c. $x \in U, Y \subset V, U \cap V = \emptyset$.

Def. Uno spazio X è *localmente compatto* se $\forall x \in X$, $\exists J \subset X$ intorno compatto di x in X.

Oss. Compatto \Rightarrow loc. compatto.

N.B. In genere le proprietà locali sono espresse in termini di basi di intorni aventi tali proprietà. Localmente compatto è un'eccezione.

Lem. X compatto di Hausdorff $\Rightarrow \forall x \in X$, $\exists \mathcal{J}_x$ base di intorni compatti.

Dim. Ogni punto ammette base di intorni chiusi, quindi compatti (vedi Lezione 9: caratterizzazione di T_3 mediante basi di intorni chiusi).

Cor. X localmente compatto di Hausdorff $\Rightarrow \forall x \in X$, $\exists \mathcal{J}_x$ base di intorni compatti di x in X.

Dim. $\forall x \in X$, $\exists J \subset X$ intorno compatto di x in $X \Rightarrow \exists \mathcal{J}_x$ base di intorni compatti di x in J e quindi in X.

Cor. X localmente compatto di Hausdorff $\Rightarrow X \ earrow T_3$.

Teor. X compatto di Hausdorff $\Rightarrow X \stackrel{.}{e} T_4$.

Dim. $X \in T_3$. $\forall P, Y \subset X$ chiusi t.c. $P \cap Y = \emptyset \Rightarrow \forall y \in Y$, $\exists U_y, V_y \subset X$ aperti t.c. $P \subset U_y$, $y \in V_y$, $U_y \cap V_y = \emptyset \rightsquigarrow \{V_y \cap Y\}_{y \in Y}$ ricoprimento aperto di Y compatto $\rightsquigarrow \{V_{y_1} \cap Y, \ldots, V_{y_n} \cap Y\}$ sottoricoprimento finito

$$U = \bigcap_{i=1}^n U_{y_i}$$
 $V = \bigcup_{i=1}^n V_{y_i}$

aperti in X t.c. $P \subset U$, $Y \subset V$ e $U \cap V = \emptyset$.

Lavoro di gruppo. Esiste un omeomorfismo tra [0, 1] e S^1 ?