LAMINATED TYPE PRESSURE SENSITIVE MATERIAL

Patent Number:

JP2158105

Publication date:

1990-06-18

Inventor(s):

SOEDA YOSHIHIRO; others: 01

Applicant(s):

YOKOHAMA RUBBER CO LTD: THE

Requested Patent:

IP2158105

Application Number: JP19880313600 19881212

Priority Number(s):

IPC Classification:

H01C10/10; G01L1/20; G01L9/06

EC Classification:

Equivalents:

Abstract

PURPOSE: To make it possible to form a material by a printing method and to prevent current conduction under the state wherein pressure is not applied positively even if a spacer and the like are not used when the material is applied for sensors. switches and variable resistors by laminating conductive compositions whose pressure sensitive resistance is changed and which have printing characteristics, and making the electric conductivity of the outermost layer smaller than the synthesized electric conductivity of the other layers.

CONSTITUTION: On a base material 12 comprising an insulating material such as polyester, conductive composition whose pressure sensitive resistance is changed and which have printing characteristics are laminated by screen printing, and a first layer 14 is obtained. Then, conductive compositions whose pressure sensitive resistance is changed and which has printing characteristics are laminated on the first layer 14 by screen printing. Thus, a second layer 16 as an outermost layer having the electric conductivity smaller than the (synthesized) electric conductivity of the first layer 14 which is the layer other than the outermost layer is formed. The number of said laminated layers can be two or more and can be determined appropriately in correspondence with the intended applications and the like of the laminated type pressure sensitive material. With this constitution, insulation between the conductor and the laminated type pressure sensitive material when pressure is not applied is ensured, when various kinds of the conductors are brought into contact with the surface (outermost layer) and various kinds of elements and the like are formed. The change in electric resistance is large, and the pressure sensitive property is excellent.

Data supplied from the esp@cenet database - 12

@ 公 開 特 許 公 報 (A) 平2-158105

(5) Int. Cl. 5

識別配号

庁内整理番号

❸公開 平成2年(1990)6月18日

H 01 C 10/10 G 01 L 1/20 9/06 Z 2117-5E 8803-2F

審査請求 未請求 請求項の数 1 (全8頁)

の発明の名称 積層型感圧材

②特 頤 昭63-313600

@出 願 昭63(1988)12月12日

@発明者 添田

善弘

神奈川県中郡大磯町西小磯349

@発明者 小林

俊 夫 神奈川県中郡二宮町百合ケ丘1-10-12

勿出 願 人 横浜ゴム株式会社

東京都港区新橋5丁目36番11号

四代 理 人 弁理士 渡辺 望稔 外1名

明 組 書

1 . 発明の名称 積層型感圧材

2. 特許請求の範囲

(1) 印刷特性を有する感圧抵抗変化型導電性組成物を少なくとも2層積層してなり、最外層の電気伝導度が、それ以外の層の合成電気伝導度よりも小さいことを特徴とする積層型感圧材。

3. 発明の詳細な説明

<産業上の利用分野>

本発明は、印刷特性を有する感圧抵抗変化型 導電性組成物(弾性導電体、弾性抵抗体、感圧 導電体、感圧抵抗体を含む。)を積層してなる 積層型感圧材に関する。 詳しくは、 感圧抵抗 変化型導電性組成物をスクリーン印刷等の各種 の印刷的手法にて複数積層してなる、加圧カー抵抗値変化特性、つまり感圧性 (勾配)を改善した積層型感圧材に関する。

く従来の技術>

各種の化学的、機械的、電気抵抗的あるいは気相分解法等の手段により成形した直径0.5~100μm程度の金属粉末等の導電性粒子を、各種の合成樹脂等のゴム質弾性体に混合・分散した感圧抵抗変化型導電性組成物からなる、加圧によって電気抵抗値が変化するようにした感圧材が各種提案されている。

このような感圧材を導電弾性体、感圧抵抗体、各種のセンサー・スイッチ等として適用する場合には、通常、感圧抵抗変化型導電性組成物の表面に外部金属(グラファイトを含む、従来のの外部導電体を接触させて使用するが、従来の感圧材においては、外部導電体と感圧が思においても通電してしまうことが多いという問題点が

あった。

この問題点を解決するために、各種の絶縁材料からなるスペーサーを挿入する方法、さらに実公昭 6 0 - 8 7 1 2 5 号公報に開示されるゴム製アクチュエーターを挿入する方法等が各種提案されている。

しかしながら、上記の各方法では感圧材を各種の用途に適用するに際して、部品数、工程数の増加を招き、スイッチ等として製品化した際にコストが高くなる等の欠点を有する。

また、上記の問題点を解決する方法として、特開昭 5 2 - 1 3 9 9 8 9 号公報には感圧抵抗体を積層した積層型の感圧材も提案されている。 このものは、粒子密度等の異なる。準にないないた感圧抵抗体を、加熱圧着、未削いなの加張接着等の方法や、導電連料、接着削いなの間を混合した導電接着削等を用いる。

しかしながら、この方法にて作成した感圧材 は、感圧材全体の厚みが大きなものとなってし

度が、それ以外の層の合成電気伝導度よりも小さいことを特徴とする積層型感圧材を提供する。

以下、本発明の具体的構成について詳細に説明する。

本発明の積層型感圧材は、印刷特性を有する 感圧抵抗変化型組成物を少なくとも 2 層積層し てなる。

ここで、本発明において印刷特性を有するとは、スクリーン印刷、グラビア印刷等の各種の 厚膜印刷方法:

吹き付け等の各種の塗装方法;

スプレーコート、 スピンコート、 ロール コート、パーコート等の各種のコーティング方 法;

等の、各種の印刷的手法による成膜・積層が可 能であることを意味するものである。

本発明に適用される歴圧抵抗変化型導電性組成物は、前述のような印刷特性を有しさえすれば特に限定はなく、通常の歴圧材に適用される

まう。 しかも、各種の接着剤を用いた際には接着剤層の存在のため、感圧材の加圧カー抵抗変化特性を損なうという問題点もある。

<発明が解決しようとする課題>

<課題を解決するための手段>

前記目的を達成するために、本発明は、印刷特性を有する感圧抵抗変化型導電性組成物を少なくとも 2 層積層してなり、最外層の電気伝導

公知のいかなるものも適用可能であり、例えば本出願人による特願昭 6 2 - 2 9 4 7 9 6 号等の各明細書に開示される感圧抵抗変化型導電性組成物が好適に例示される。

本発明に適用される、このような感圧抵抗変化型 準電性租 成物 は、基本的に有機高分子材料と、導電性材料とを含有してなるものである。

本発明の積層型感圧材に適用される感圧抵抗変化型導電性組成物に用いられる有機高分子材料は、通常の感圧抵抗変化型導電性組成物に適用可能で、得られる感圧抵抗変化型導電性組成物が印刷特性を有するものであればいかなるものも適用可能であるが、例えば、

フェノール樹脂、ユリア樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル樹脂、エボキシ樹脂、ケイ素樹脂、ポリウレタン樹脂等の熱硬化性樹脂;

塩化ビニル・酢酸ビニル共重合体、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹

脂、アクリル樹脂、スチロール樹脂、ポリアミ ド樹脂等の熱可塑性樹脂;

ニトロセルロース、アセチルセルロース、エ ・チルセルロース等の繊維素鉄導体:

塩化ゴム、塩酸ゴム、シリコンゴム等のゴム 誘導体等:

さらには、上記の各ゴム質弾性体の各種の変性体が好適に例示される。

特に、塩化ビニル・酢酸ビニル共重合体ならびにその変性体は好適に適用される。

本発明に適用される感圧抵抗変化型導電性租成物おいて用いられる導電性材料は、通常電性 を抵抗変化型導電性組成物に適用される導電性材料 特質はいずれも適用可能であり、グラファイ材 た、銀、ニッケル、銅および表面を導電性材料 でコートしたマイカ等が例示される。 中でま グラファイトは好適に適用され、特に好ま くは、鯛片状のグラファイトでそのサイズが 6.0μm 程度のものがよい。

本発明の積層型感圧材に適用される感圧抵抗

囲内であれば自由に定め得る。

本発明の積層型感圧材に適用される感圧抵抗変化型導電性組成物は、その印刷特性を向上させるため必要に応じ各種の有機溶媒を併用したものであっても良い。

好適に適用される有機溶剤としては、例えば、

工業用ガソリン、灯油等の脂肪族炭化水素:

低標点芳香族石油ナフサ、中標点芳香族石油 ナフサ等の芳香族石油ナフサ;

ベンゾール、トルオール、キシロール、ソル ベントナフサ等の芳香族炭化水素:

テレビン油、 ジベンテン、 パインオイル等の テルベン族 炭化 水素:

メチレンクロライド、トリクロルエチレン、 パークロルエチレン、オルトジクロルベンゼン 等の塩化炭化水素:

2 - ニトロプロパン等のニトロ化炭化水素; メチルアルコール、エヂルアルコール、イソ 変化型導電性組成物は、必要に応じ、各種の半導体材料および絶縁性材料を含有していてもよい。

半導体材料および絶縁性材料としては、前述の導電性材料の1/100以下の電気伝導度を有する物質が好ましく、三二酸化クロム、二酸化チタン、窒化硼素、二硫化モリブデン、酸化マグネシウム、炭酸カルシウム、水酸化アルミニウム、アルミナ、亜鉛葉、クレー、タルク等が好適に例示される。

半導体材料および絶縁性材料が含有される際に、その電気伝導度が前述の導電性材料の1/100以下であるのが好ましい理由は、半導体材料および絶縁性材料の電気伝導度が導電性材料の電気伝導度の1/100を超えると感圧性が発現しないからである。

上記有機高分子材と導電性材料および絶縁性材料の配合量は、特に限定されず、これら三者の配合によって得られる感圧抵抗変化型導電性組成物からなる感圧材が感圧抵抗変化を示す範

ブロピルアルコール、イソブチルアルコール等 の脂肪族アルコール;

エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテルアルコール:

ジオキサン等のエーテル ;

酢酸メチル、酢酸エチル、酢酸イソプロビル 等の酢酸エステル:

酢酸 エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸エチレングリコールモノブチルエーテル、酢酸 ジエチレングリコールモノエチルエーテル等のエーテルエステル:

さらには、上記の各種の有機溶剤の混合物等を好適に例示することができ、印刷、塗装、コーティング等の積層方法と、前記有機高分子材料および溶剤の揮発速度を考慮した上で、使

用可能な溶剤であれば如何なる溶剤でもよいが、特に好ましいのはエチレングリコールモノブチルエーテル、酢酸エチレングリコールモノブチルエーテルである。

本発明の積層型感圧材は、このような層を圧材は、このような層を圧材は、このような層を圧材なから、といるをできるが、ないの異ななのとが、有機の子材をといるを圧低が、有機気を移り、では、物質を上が、有機気を発展をある。とののようなを発展をあるとののとののとののといるとののようとを通りを表してある。

本発明の積層型感圧材に適用されるこのような感圧抵抗変化型導電性組成物は、公知のいかなる製造方法にて製造されたものであってもよく、1例を挙げると、導電性材料と、電気絶縁材料と、有機高分子材とを適当な溶媒中に溶

第1 図に示される積層型感圧材 1 0 は、ポリエステル等の絶縁材からなる基材 1 2 上に 切り特性を有する感圧抵抗変化型導電性組成物をスクリーン印刷により積層して第1 層 1 4 とにの第1 層 1 4 上に印刷特性を有する感圧抵抗変化型導電性組成物をスクリーン印刷により積層しての第1 層 1 4 の(合成)電気伝導度の小さい、最外層としての第2層 1 6 としたものである。

本発明の積層型懸圧材の感圧抵抗変化型導電

解、分散させればよい。

本発明の積層型感圧材は、以上のような、印刷特性を有する感圧抵抗変化型導電性組成物を印刷、連装、コーティング等の印刷的な手法により少なくとも2層積層し、かつ最外層の電気導電度を、それ以外の層の合成電気伝導度よりも小さくしたものである。

第1 図に本発明の積層型感圧材の一例が示される。

性組成物の積層数は2以上であればよく、目的とする積層型感圧材の用途等に応じて適宜決定すればよい。

なお、積層数を3以上とする際には、最外層の電気伝導度を、残りの各層の合成電気は気に切らのとすれば、残りの各層はに同じ電気伝導度を有するものを2以上積層しても層の合成電気伝導度よりも小さければ、最外層との合成電気伝導度のものを最外層以外に積層してもよい。

本発明の積層型感圧材における各層の層厚は特に限定はなく、各感圧抵抗変化型導電性組成物の電気伝導度、積層型感圧材の設計電気抵抗等により適宜決定される。

本発明の積層型感圧材は、最外層(第1 図に示される例においては第2 層1 6) の電気伝導度は、残りの各層(第1 図に示される例においては第1 層1 4) の合成電気伝導度よりも小さいものである。 このような構成とすることに

より本発明の積層型感圧材は、各種の事電体を表面(最外層)に接触させて各種の素子等とした際に、無加圧時の事電体と積層型感圧材との絶縁が確実で、かつ、加圧時の電気抵抗の変化が大きな感圧性に優れたものとなる。

なお、各種の思圧材において、抵抗値の対数を概略に、加圧力の直線の傾きを"勾配"といいをグラフにした際の直線の傾きを"勾配"といいの勾配の絶対値が大きいほど良好な感圧性がいいのの所定の構成を有するため、この勾配の絶対値も大きく、悪圧性に優れたものである。

本発明の積層型感圧材は、最外層の電気伝導度は残りの各層の合成電気伝導度より小さいものである。

最外層および、残りの各層の合成電気伝導度を調整する方法は、全く材質の異なる感圧抵抗変化型導電性組成物を用いる方法:同材質であるが、有機高分子材と導電性材料との含有比を

く実施例>

以下、本発明の具体的実施例を挙げ、本発明をより詳細に説明する。

[実施例1]

第1図に示されるように、厚さ188μmの ポリエステルフィルムからなる基材12上に、 グラファイトを 5 7 重量部、二酸化チタンを 1 3 4 重量部、塩化ビニル・酢酸ビニル共重合 体を100重量部、500重量部の酢酸エチレ ングリコールモノブチルエーテルに溶解、分散 することにより得られた印刷用感圧抵抗変化型 導電性租成物 A を、スクリーン印刷により第1 周14として積層し、次いで溶剤を蒸発させて 乾燥した。 ついで、この第1届14上に、 グラファイトを43重量部、二酸化チタンを 1 2 4 重量部、塩化ビニル・酢酸ビニル共重合 体を100重量部、475重量部の酢酸エチレ ングリコールモノブチルエーテルに溶解、分散 することにより得られた印刷用感圧抵抗変化型 導電性組成物 B を、スクリーン印刷により第2

替えて電気伝導度を変化させた感圧抵抗変化型 導電性組成物を用いる方法:さらには、材質、 有機高分子材と導電性材料との含有比共に全く 同じであるが、層厚を替えることにより電気抵 抗を調整する方法:等、公知の各種の方法によ

なお、この場合においては、最外層の層厚を 待くすれば一般に電気抵抗は大きくなる傾向を 有するため、積層型感圧材の無加圧状態での電 流温れを軽減することができる。

第 1 図に示される例には、後層型感圧 材 1 0 はポリエステル製の基材 1 2 上に積層で れ作製されるものである、本発明の積層型感だ 材 1 0 において適用される基材 1 2 はポリエステルに限定されるものではなく、各種のエポキシ制脂、メラミン樹脂、アクリル樹脂、ポリイミド樹脂や、塩化ビニル等、各種の絶縁材料が適用可能である。

層 1 6 として積層し、次いで溶剤を蒸発させて乾燥して、第 1 図に示される本発明の積層型感圧材 1 0 を得た。

得られた積層型感圧材 1 0 の各層層厚はすべて 2 0 μm、最外層である第 2 暦 1 6 の電気導電度は 1 × 1 0 ⁻⁴ S · c m ⁻¹、それ以外の層である第 1 暦 1 4 の(合成)電気導電度は 1 × 1 0 ⁻⁸ S · c m ⁻¹であった。

このようにして作成した本発明の積層型感圧材10を、平らな櫛目電極上に載置し、50kの並列抵抗を加えたのち、直径10mmの平坦な先端部を有する棒で加圧および除圧を繰り返し特性を観察した。

得られた積層型感圧材 1 0 の加圧力と電気抵抗との関係は、加圧が始ると直ちにかつ滑らかに電気抵抗が低下して導通状態となり、加圧が解除されると直ちにかつ滑らかに元の抵抗値となる優れた特性を有するものであった。

また、 勾配を算出したところ、 勾配は - 0 . 7 7 で良好な感圧性を示した。

[実施例2]

実施例1と同様に、厚さ188 µ m のポリ エステルフィルムからなる基材12上にグラ ファイトを42重量部、二酸化チタンを124 重量部、塩化ビニル・酢酸ビニル共重合体を 100重量部、473重量部の酢酸エチレング ルコールモノブチルエーテルに溶解、分散する ことにより得られた印刷用感圧抵抗変化型導電 性組成物でを第1層14として積層し、溶剤を 蒸発して乾燥し、次いで、この第1層14上 に、グラファイトを49重量郎、二酸化チタン を134重量部、塩化ビニル・酢酸ビニル共重 合体を100重量部、468重量部の酢酸エチ レングルコールモノブチルエーテルに溶解、分 散することにより得られた印刷用感圧抵抗変化 型連貫性組成物Dをスクリーン印刷により第2 層18として積層し、溶剤を蒸発して乾燥し、 第1図に示される本発明の積層型態圧材10を

得られた積層型感圧材10の各層層厚は共に

暦した。

さらにこの第2層上に、実施例1の第2層 16と全く同様の第3層を実施例1と同様に積 層し、溶剤を蒸発して乾燥して、3層からなる 本発明の積層型感圧材を得た。

各層層原はすべて 2 0 μ m 、 最外層である第 3 層の電気伝導度は 1 × 1 0 ⁻⁻⁴ S · c m ⁻¹、最外層以外の層である第 1 層および第 2 層を加えてなる 4 0 μ m の層の合成電気伝導度は 3 × 1 0 ⁻⁻⁴ S · c m ⁻¹であった。

また、勾配も一0.82と、非常に良好な感

2 0 μm、最外層である第 2 層 1 6 の電気導電 度は 7 × 1 0 ⁻⁶ S · c m ⁻¹、 それ以外の層で ある第 1 層 1 4 の (合成) 電気導電度は 7 × 1 0 ⁻⁶ S · c m ⁻¹であった。

このようにして作成した本発明の積層型感圧 村10を、実施例1と同様に平らな櫛目電極極と は、50kkの並列抵抗を加えたため、 直径10mmの平坦な先端を有する棒でこの加圧 および除圧を繰り返し特性を観察したところが はあたが始るとはあかいであったの抵抗値となる優れた特性 を有するものであった。

また、勾配は-0.80であり、良好な感圧性を有するものであった。

[実施例3]

実施例1の第1層14と全く同様の第1層を 実施例1と同様の基材上に積層した。

次いで、この第1層上に、実施例1の第2層16と全く同様の第2層を実施例1と同様と積

圧性を有するものであった。

上記の各実施例における各層の電気伝導度および勾配を下記の表1に示す。

[比較例1~6]

実施例1に用いた、印刷用感圧抵抗変化型導電性組成物 A および B と構成材質は全く同様だが、組成比を変化させた各種の印刷用感圧抵抗変化型導電性組成物を用い、印刷順序を変えて、実施例1と同様の方法にて積層型感圧材を作製した。

t.

また、得られた各種層型感圧材の各層における電気伝導度および勾配を下記の表1に示すが、いずれのものも勾配の絶対値は小さく、良好な感圧性を示すとはいえない。

[比較例7および8]

実施例1 に用いた、印制用感圧抵抗変化型導電性組成物 A と構成材質は同様だが、組成比を変化させた各種の印刷用感圧抵抗変化型導電性組成物を用い、実施例1 の第1 層1 4 と同様の方法にて単層型の感圧材を作製した。

このようにして作成した感圧材を、実施例1 と同様に平らな櫛目電極上に載置し、50kkのの並列抵抗を加えたのち、直径10mmの平坦な先端を有する棒で加圧および除圧を繰り返たところ、いずれの感圧材も加圧が始ると直ちに元の抵抗値には戻るが、その抵抗値の変化幅は小さかった。

得られた各感圧材の電気伝導度および勾配を

値の変化幅は小さかった。

また、本比較例の勾配は-0.70で良好な 感圧性を有するとはいえない。

弗 1

	電気伝導度 (S·cm ⁻¹)		
	最外層以外の合成	最外層	勾配
実施例1	· 1 × 1 0 - 3	1 × 1 0 ⁻⁴	-0.77
実施例 2	5 × 1 0 ⁻⁴	7 × 1 0 ⁻⁶	-0.80
実施例3	3 × 1 0 *4	1 × 1 0 ⁻⁴	-0.82
比較例1	1 × 1 0 ⁻³	1 × 1 0 -3	-0.70
比較例2	1 × 1 0 ⁻⁴	1 × 1 0 ⁻⁴	-0.68
比較例3	1 × 1 0 ⁻⁴	1 × 1 0 -2	-0.58
比較例4	5 × 1 0 ⁻⁴	5 × 1 0 ⁻⁴	-0.70
比較例5	7 × 1 0 ⁻⁶	7 × 1 0 -6	-0.70
比較例8	7 × 1 0 -6	5 × 1 0 ⁻⁴	-0.59
比較例7	1 × 1 0 -2	-	-0.68
比較例8	5 × 1 0 ⁻⁴	-	-0.86
比較例9	3 × 1 0 ⁻⁴	1 × 1 0 -2	-0.70

下記の表 1 に示すが、いずれのものも勾配の絶対値は小さく、良好な感圧性を示すとはいえない。

[比较例9]

実施例3と全く同様にして、第1層および 第2層を形成した。

次いで、第1層と全く同様に第2層上に第3層を形成した。

各層層厚はすべて 2 0 μm、最外層である 第 3 層が 1 × 1 0 ⁻³ S · c m ⁻¹、最外層以外の 第 1 層 および第 2 層を加えてなる 4 0 μm の層 の 合成 包気 伝導 率 は 3 × 1 0 ⁻⁴ S · c m ⁻¹で あった。

このようにして作成した積層型感圧材を、 実施例1と同様に平らな櫛目電極上に 歌躍し、 50kの並列抵抗を加えたのち、直径10mmの平坦な先端部を有する棒で加圧および除 圧を繰り返し特性を観察したところ、加圧が始まると直ちに電気抵抗は低下し、加圧が解除されると直ちに元の抵抗値には戻るが、その抵抗

く発明の効果>

本発明の積層型感圧材は、従来の感圧材に比れて、未加圧状態での絶縁が確実で、加圧圧縮による電気抵抗の低下が大幅で、かつ、加圧圧症症の増大により電気抵抗値が滑らかに減少する感圧性に優れるものである。 そのため、本発明の積層型感圧材は加圧力変換素子、可変抵抗体、各種のセンサ、スイッチ等に非常に好適に

また、本発明の積層型態圧材は、印刷、塗装、コーティング等の印刷的手法による作製が可能であるため、作製が容易で、かつ電気的設計の自由度が高い。

しかも、本発明の積層型感圧材は前述の各素子等に適用される際に絶縁のためにスペーサー等を用いる必要がなく、コスト的にも有利である。

4. 図面の簡単な説明

第1図は、本発明の積層型感圧材の一例の概略断面図である。

第2図は、感圧材の勾配についての説明をするためのグラブである。

符号の説明

10…積層型感圧材、

12…基材、

1 4 … 第 1 層、

1 8 … 第 2 層、

特許出願人 横浜ゴム株式会社 代理人 弁理士 渡辺 望 は 同 弁理士 三和 晴 子

F I G. 2

手統補正書(自発)

平成01年01月26日

特許庁長官 吉田文 股 段

面

- 1. 事件の表示 昭和63年特許顕第313800号
- 2. 発明の名称 . 積層型感圧材
- 3. 補正をする者

事件との関係 特許出額人

8 称 (671)横浜ゴム株式会社

4. 代 理 人 平101 電話864-4498

住 所 東京都千代田区岩本町3丁目2番2号

千代田岩本ビル 4階

氏 名 (8015) 弁理士 渡 辺 望 稔

住 所 同 所

氏 名 (9021) 弁理士 三 和 晴 子

5. 補正の対象

明紺書の「発明の詳細な説明」の標

8 補正の内容

(1)明細書第13ページ第8行目の「電気伝導度の小さい」の記載を「電気伝導度より小さい電気伝導度を有する」に補正する。

(2) 問第14ページ第17行目~第18行目の「電気伝導度は」の記載を「電気伝導度が」 に補正する。

(3) 同第16ページ第1行目および第4行目 の「替え」の記載を「変え」に補正する。

(4) 問第19ページ第11行目の「49重量 郎」の記載を「39重量郎」に補正する。

(5) 同第20ベージ第3行目~第4行目の「7×10⁻⁶」の記載を「5×10⁻⁴」に補正する。

(6) 同第20ページ第20行目の「同様と」 の記載を「同様に」に補正する。