# Poročilo naloga Neo4j



Primož Ratej Cvahte Podatkovne baze II ITK-VS Jan-2018

# Vsebina

| Import data               | 3  |
|---------------------------|----|
| About cypher              | 3  |
| Import cypher             | 3  |
| Import CSV                | 5  |
| American Congress         | 7  |
| Game of thrones           | 10 |
|                           |    |
|                           |    |
| Slika 1 Create constraint | 5  |
| Slika 2 Import CSV        | 6  |
| Slika 3 Kongres_01        | 7  |
| Slika 4 Kongres_02        | 7  |
| Slika 5 Kongres_03        | 8  |
| Slika 6 Kongres_04        | 8  |
| Slika 7 Kongres_05        | 9  |
| Slika 8 Kongres_06        | 9  |
| Slika 9 GOT_01            |    |
| Slika 10 GOT_02           | 11 |
| Slika 11 GOT_03           |    |
| Slika 12 GOT_04           |    |
| Slika 13 GOT_05.1         | 12 |
| Slika 14 GOT_05.2         |    |
| Slika 15 GOT_06.1         |    |
| Slika 16 GOT 06.1         |    |

# Import data

### About cypher

Cypher je deklarativni grafični poizvedbeni jezik, ki omogoča ekspresivno in učinkovito poizvedovanje in posodabljanje dela nad grafi. Cypher je relativno preprost, vendar zelo močan jezik. Zelo zapletene poizvedbe v bazo podatkov lahko enostavno izrazite s Cypherjem. To omogoča uporabnikom, da se osredotočijo na svojo domeno, namesto da bi se izgubili v dostopu do baze podatkov.

#### Import cypher

Najprej smo uvozili podatke z poizvedovalnim jezikom cypher. Zaganjamo vsak query posebej. Podatke pa zajemamo z GitHub-a.

```
// Legis-graph LOAD CSV cypher script
// https://github.com/legis-graph/legis-graph
// Load Legislators
CREATE INDEX ON :Legislator(bioguideID);
CREATE INDEX ON :Legislator(thomasID);
CREATE INDEX ON :Legislator(lisID);
CREATE INDEX ON :Legislator(govtrackID);
CREATE INDEX ON :Legislator(opensecretsID);
CREATE INDEX ON :Legislator(votesmartID);
CREATE INDEX ON :Legislator(cspanID);
CREATE INDEX ON :Legislator(wikipediaID);
CREATE INDEX ON :Legislator(washpostID);
CREATE INDEX ON :Legislator(icpsrID);
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/legislators-
current.csv' AS line
WITH line WHERE line.thomasID IS NOT NULL
MERGE (legislator:Legislator { thomasID: line.thomasID })
```

```
ON CREATE SET legislator = line
    ON MATCH SET legislator = line
MERGE (s:State {code: line.state})
CREATE UNIQUE (legislator)-[:REPRESENTS]->(s)
MERGE (p:Party {name: line.currentParty})
CREATE UNIQUE (legislator)-[:IS_MEMBER_OF]->(p)
MERGE (b:Body {type: line.type})
CREATE UNIQUE (legislator) - [:ELECTED TO] -> (b);
// Load Bills
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/bills.csv'
AS line
MERGE (bill:Bill { billID: line.billID })
    ON CREATE SET bill = line
    ON MATCH SET bill = line;
CREATE INDEX ON :Bill(billID);
// Load
LOAD CSV WITH HEADERS
{\tt FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/subjects.csv'}
AS line
MERGE (subject:Subject { title: line.title });
CREATE INDEX ON : Subject(title);
// Load Congresses
LOAD CSV WITH HEADERS
{\tt FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/congresses.csv'}
AS line
MERGE (congress:Congress { number: line.number });
// Laod Bills Congresses
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-
graph/master/outputs/bill_congresses.csv'
AS line
MATCH (bill:Bill { billID: line.billID }),
      (congress:Congress { number: line.number })
MERGE (bill) - [r:PROPOSED DURING] -> (congress);
// Load Bills Subjects
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-
graph/master/outputs/bill subjects.csv'
AS line
MATCH (bill:Bill { billID: line.billID }),
      (subject:Subject { title: line.title })
MERGE (bill) -[r:DEALS WITH] -> (subject);
// Load Bills Legislators
// Load current sponsorships
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS
{\tt FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/sponsors.csv'}
AS line
MATCH (bill:Bill { billID: line.billID }),
      (legislator:Legislator { bioguideID: line.bioguideID })
MERGE (bill) -[r:SPONSORED BY] -> (legislator)
    ON CREATE SET r.cosponsor = line.cosponsor;
// Load Votes
USING PERIODIC COMMIT
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/votes.csv'
AS line
MATCH (bill:Bill { billID: line.billID }),
      (legislator:Legislator { bioguideID: line.bioguideID })
```

```
MERGE (bill) <- [r:VOTED ON] - (legislator)</pre>
          ON CREATE SET r.vote = line.vote;
// Load Committees
LOAD CSV WITH HEADERS
{\tt FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/committees-properties of the complex of th
current.csv' AS line
MERGE (c:Committee {thomasID: line.thomasID})
    ON CREATE SET c = line
     ON MATCH SET c = line;
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-
graph/master/outputs/bill_committees.csv' AS line
MATCH (b:Bill {billID: line.billID})
MATCH (c:Committee {thomasID: line.committeeID})
CREATE UNIQUE (b)-[:REFERRED TO]->(c);
CREATE INDEX ON : Committee (thomasID);
// Load Committee Members
LOAD CSV WITH HEADERS
FROM 'https://raw.githubusercontent.com/legis-graph/legis-graph/master/outputs/committee-
members.csv' AS line
MATCH (c:Committee {thomasID: line.committeeID})
MATCH (l:Legislator {bioguideID: line.legislatorID})
CREATE UNIQUE (1) - [r:SERVES ON] -> (c)
SET r.rank = line.rank;
// Create District nodes
LOAD CSV WITH HEADERS
FROM 'https://github.com/legis-graph/legis-
graph/blob/master/outputs/cb 2014 districts.csv?raw=true' AS line
CREATE (d:District)
SET d.state = line.state,
          d.district = line.district,
          d.wkt = line.polygon
WITH d, line
MATCH (1:Legislator) WHERE 1.state = line.state AND 1.district = line.district
CREATE UNIQUE (1) -[:REPRESENTS] -> (d);
```

## Import CSV

Datoteka CSV Game of Thrones prikazuje povezave oz. sodelovanja med karakterji ter moč med njihovimi povezavami. Datoteko CSV prenesemo z eštudija.

```
Najprej moramo ustvariti omejitev, da bi potrdili celovitost naše sheme:

CREATE CONSTRAINT ON (c:Character) ASSERT c.name IS UNIQUE;

$ CREATE CONSTRAINT ON (c:Character) ASSERT c.name IS UNIQUE;

$ CREATE CONSTRAINT ON (c:Character) ASSERT c.name IS UNIQUE;

(no changes, no records)
```

Slika 1 Create constraint

Datoteko CSV prenesemo v mapo Import ter jo uvozimo.

LOAD CSV WITH HEADERS FROM "file:///GameOfThrones.csv" AS row

```
MERGE (src:Character {name: row.Source})
MERGE (tgt:Character {name: row.Target})
MERGE (src)-[r:INTERACTS]->(tgt)
ON CREATE SET r.weight = toInt(row.Weight)

A 1 LOAD CSV WITH HEADERS FROM "file:///GameOfThrones.csv" AS row
2 MERGE (src:Character {name: row.Source})
3 MERGE (tgt:Character {name: row.Target})
4 MERGE (src)-[r:INTERACTS]->(tgt)
A 5 ON CREATE SET r.weight = toInt(row.Weight)

$ LOAD CSV WITH HEADERS FROM "file:///GameOfThrones.csv" AS row MERGE (src:Character)
(no changes, no records)
```

Slika 2 Import CSV

## **American Congress**

1. Izpišite vse člane kongresa, ki se pišejo Smith.

```
MATCH (n {lastName:"Smith"}) return n;
$ MATCH (n {lastName:"Smith"}) return n;
TCH (n {lastName:"Smith"}) return n;
        "birthday": "1965-06-15",
        "lastName": "Smith",
        "gender": "M",
        "democratCount": "11",
        "opensecretsID": "N00007833",
        "otherCount": "0",
        "type": "House",
        "icpsrID": "29768",
        "votesmartID": "845",
        "religion": "Christian",
        "firstName": "Adam",
        "cspanID": "44329",
        "district": "9",
        "thomasID": "01528",
         "wikipediaID": "Adam Smith
   Started streaming 5 records after 2 ms and completed after 212 ms.
```

2. Izpišite vse zakone, ki so jih sponzorili republikanci iz Kalifornije, ki so starejši od 65 let.

```
MATCH (leg:Legislator), bl=(bill)-[sp_by:SPONSORED_BY]-
>(:Legislator)
WHERE leg.state="CA" AND leg.birthday>"1952-02-09" RETURN bl LIMIT 20;

MATCH (leg:Legislator), bl=(bill)-[sp_by:SPONSORED_BY]->(:Legislator)
WHERE leg.state="CA" AND leg.birthday>"1952-02-09" RETURN bl LIMIT 20;

(leg:Legislator), bl=(bill)-[sp_by:SPONSORED_BY]->(:Legislator) WHERE leg.state=

bl

{
    "vetoed": "False",
    "enacted": "False",
    "officialritle": "A joint resolution
    proposing an amendment to the
    Constitution of the United States
    relating to contributions and
    expenditures intended to affect
    elections.",
    "billID": "sjres5-114"
}
```

Slika 4 Kongres\_02

Slika 3 Kongres\_01

3. Preštejte, za koliko zakonov je pozitivno glasoval Robert Aderholt.

```
MATCH (leg:Legislator {firstName: 'Robert', lastName: 'Aderholt'}) -
[vot:VOTED ON] -> (bl:Bill)
WHERE vot.vote = 'Yea' OR vot.vote = 'Aye'
RETURN count(bl), leg.lastName
 MATCH (leg:Legislator {firstName: 'Robert',lastName:'Aderholt'})-[vot:VOTED_ON]->(bl:Bill
WHERE vot.vote = 'Yea' OR vot.vote = 'Aye'
RETURN count(bl), leg.lastName
CH (leg:Legislator {firstName: 'Robert',lastName:'Aderholt'})-[vot:VOTED_ON]->(bl:Bill) WHERE vot.vote =
  count(bl)
                                                               leg.lastName
  158
                                                               "Aderholt"
```

Slika 5 Kongres\_03

4. Koliko zakonov je bilo skupno predlaganih na 114. kongresu, in koliko od teh je trenutno aktivnih?

```
MATCH (con:Congress {number:"114"})
WITH con, size(()-[:PROPOSED DURING]->(con)) as Proposed
MATCH (bl:Bill {active:"True"})-[:PROPOSED DURING]->(con)
RETURN Proposed, count(bl) as active
      MATCH (con:Congress {number:"114"})
      WITH con, size(()-[:PROPOSED_DURING]->(con)) as Proposed
      MATCH (bl:Bill {active:"True"})-[:PROPOSED_DURING]->(con)
      4 RETURN Proposed, count(bl) as active
      CH (con:Congress {number: "114"}) WITH con, size(()-[:PROPOSED_DURING]->(con)) as Proposed MATCH (bl:Bill
         Proposed
                                                                                      active
         10223
```

2105

Slika 6 Kongres\_04

5. Izpišite vse zvezne države, ki imajo v kongresu večino demokratov.

```
MATCH (leg:Legislator)-[rep:REPRESENTS]->(sta:State)
WITH sta AS drzave, sum(size((leg{currentParty:"Democrat"})-[rep]-
>(sta))) AS sumDemo,
sum(size((leg{currentParty:"Republican"})-[rep]->(sta))) AS sumRep
WHERE sumDemo>sumRep
RETURN drzave.code
```

```
MATCH (leg:Legislator)-[rep:REPRESENTS]->(sta:State)
WITH sta AS drzave, sum(size((leg{currentParty: "Democrat"})-[rep]->(sta))) AS sumDemo,
sum(size((leg{currentParty:"Republican"})-[rep]->(sta))) AS sumRep
WHERE sumDemo>sumRep
RETURN drzave.code
I (leg:Legislator)-[rep:REPRESENTS]->(sta:State) WITH sta AS drzave, sum(size((leg{currentParty:"Demo
 drzave.code
 "HI"
 "MA"
 "RI"
 "NY"
 "MP"
 "OR"
Slika 7 Kongres_05
   6. S pomočjo grafa vizualizirajte vse predstavnike zvezne države Ohio, izvoljene v obe
      telesi kongresa, pri čemer prikažite tudi njihovo pripadnost stranki.
MATCH (sta:State {code: "OH"})<-[:REPRESENTS]-(leg:Legislator)</pre>
MATCH (leg)-[imo:IS MEMBER OF]->(par:Party)
WITH par.name as party, count(imo) as count
RETURN party, count;
  MATCH (sta:State {code: "OH"})<-[:REPRESENTS]-(leg:Legislator)
MATCH (leg)-[imo:IS_MEMBER_OF]->(par:Party)
WITH par.name as party, count(imo) as count
RETURN party, count;
CH (sta:State {code: "OH"})<-[:REPRESENTS]-(leg:Legislator) MATCH (leg)-[in
   party
   "Democrat"
   "Republican"
```

Slika 8 Kongres 06

7. Vizualizirajte vse senatorje iz Floride, in prikažite v katerih komitejih so aktivni.

```
MATCH (leg:Legislator)-[el_to:ELECTED_TO]->(bo:Body{type:"Senate"})
MATCH (leg)-[ser:SERVES_ON]->(com:Committee)
MATCH (leg)-[rep:REPRESENTS]->(sta:State{code:"FL"})
RETURN leg, com, bo, sta;
```

8. Kakšne zakone obravnavajo komiteji iz točke 7, in s kakšno problematiko (predmet zakona) se ti zakoni ukvarjajo?

```
MATCH (leg:Legislator)-[se:SERVES_ON]->(com:Committee)
MATCH (leg)-[rep:REPRESENTS]->(st:State{code:"FL"})
MATCH (bi:Bill)-[de_wi:DEALS_WITH]->(sub:Subject)
RETURN sub
LIMIT 20;
```

#### Game of thrones

1. Koliko je minimalno, maksimalno in povprečno število karakterjev, s katerimi so sodelovali karaterji?

```
MATCH (cha:Character)-[:INTERACTS]->()
WITH cha, count(*) AS num
RETURN min(num) AS min, max(num) AS max, avg(num) AS avg
```

```
MATCH (cha:Character)-[:INTERACTS]->()
WITH cha, count(*) AS num
RETURN min(num) AS min, max(num) AS max, avg(num) AS avg
```

| (cha:Character)-[:INTERACTS]->() WITH cha, count(\*) AS num RETURN min(num) AS min, max(num

| min | max | avg               |
|-----|-----|-------------------|
| 1   | 24  | 4.957746478873241 |

Slika 9 GOT\_01

2. Poiščite vse možne najkrajše poti med karakterjema Jeoffrey Lanister in Khal Drogo.

```
MATCH (dick:Character{name:"Joffrey"}),
  (Khal:Character{name:"Drogo"})
MATCH path=allShortestPaths((dick)-[INTERACTS*]-(Khal))
RETURN path;
```



*Slika 10 GOT\_02* 

3. Poiščite maksimalno najkrajšo pot med dvema karakterjema.

```
MATCH (char_x:Character), (char_y:Character) WHERE id(char_x) >
id(char_y)
MATCH nodes=shortestPath((char_x)-[:INTERACTS*]-(char_y))
RETURN length(nodes) AS nodes, extract(x IN nodes(nodes) | x.name)
AS numOfNodes
ORDER BY nodes DESC LIMIT 5;
```

| nodes | numOfNodes                                                                 |
|-------|----------------------------------------------------------------------------|
| 6     | ["Illyrio", "Belwas", "Daenerys", "Robert", "Tywin", "Oberyn", "Amory"]    |
| 6     | ["Illyrio", "Belwas", "Daenerys", "Robert", "Sansa", "Bran", "Luwin"]      |
| 6     | ["Illyrio", "Belwas", "Daenerys", "Robert", "Sansa", "Bran", "Jojen"]      |
| 6     | ["Nan", "Bran", "Sansa", "Robert", "Daenerys", "Belwas", "Illyrio"]        |
| 6     | ["Illyrio", "Belwas", "Daenerys", "Robert", "Stannis", "Davos", "Shireen"] |

Slika 11 GOT\_03

4. Poiščite vse karakterje, ki se pojavijo na vsaki najkrajši možni poti med karakterjema Robert Arryn in Aegon.

```
MATCH (Robert:Character {name: "Robert Arryn"}), (Aemon:Character {name: "Aemon"})
MATCH nodes=allShortestPaths((Robert)-[INTERACTS*]-(Aemon))
RETURN nodes;
```



Slika 12 GOT\_04

5. Izpišite prvih pet karakterjev, ki imajo največ povezav z drugimi karakterji, in prvih pet karakterjev, ki imajo najmanj povezav z drugimi karakterji (in izpišite število povezav).

```
MATCH (char:Character)
RETURN char.name AS Character, size( (char)-[:INTERACTS]-() ) AS min
ORDER BY min LIMIT 5
```

| Character | min |
|-----------|-----|
| "Shireen" | 1   |
| "Walton"  | 1   |
| "Amory"   | 1   |
| "Karl"    | 1   |
| "Illyrio" | 1   |

#### Slika 13 GOT\_05.1

```
MATCH (char:Character)
RETURN char.name AS Character, size( (char)-[:INTERACTS]-() ) AS max
ORDER BY max DESC LIMIT 5;
```

CH (char:Character) RETURN char.name AS Character, size( (char)-[:INTERACTS]-() ) AS max ORDER BY max DESC LIM

| Character | max |
|-----------|-----|
| "Tyrion"  | 36  |
| "Sansa"   | 26  |
| "Jon"     | 26  |
| "Robb"    | 25  |
| "Jaime"   | 24  |

#### *Slika 14 GOT\_05.2*

6. Izpišite prvih pet (in zadnjih pet) karakterjev, ki imajo največjo povprečno težo sodelovanj z drugimi karakterji.

MATCH (char:Character)-[inter:INTERACTS]->()
RETURN DISTINCT(char.name) AS character, AVG(inter.weight) AS weight
ORDER BY weight LIMIT 5;

| character      | weight |
|----------------|--------|
| "Balon"        | 4      |
| "Luwin"        | 4      |
| "Varys"        | 4      |
| "Podrick"      | 4      |
| "Robert Arryn" | 4      |

#### Slika 15 GOT\_06.1

MATCH (char:Character)-[inter:INTERACTS]->()
RETURN DISTINCT(char.name) AS character, AVG(inter.weight) AS weight
ORDER BY weight DESC LIMIT 5;

| character | weight             |
|-----------|--------------------|
| "Hodor"   | 38                 |
| "Bran"    | 31.4444444444443   |
| "Jojen"   | 22                 |
| "Samwell" | 19.00000000000004  |
| "Jon"     | 18.904761904761905 |

Slika 16 GOT\_06.1