УПРАЖНЕНИЕ ПО ДИСКРЕТНИ СТРУКТУРИ 1 седмица 44

Задача .1 За всеки x и y c [x,y] означаваме множеството $[x,y] = \{x,\{y\}\}$. За всеки две множества A и B c A + B означаваме множеството $A + B = \{[x,y] \mid x \in A \& y \in B\}$. Докажете, че съществуват множества A, B и C такива, че: $(A+B) \cap (A+C) \not\subseteq A + (B \cap C)$.

Нека $A = \{\{0\}, \{1\}\}, B = \{0\}$ и $C = \{1\}$. Тогава $B \cap C = \emptyset$, откъдето: $A + (B \cap C) = \emptyset$. От друга страна $A + B = \{[x,y] \mid x \in A \& y \in B\} = \{[\{0\},0],\ [\{1\},0]\} = \{\{\{0\},\{0\}\},\ \{\{1\},\{0\}\}\}\} = \{\{\{0\},\{1\}\}\}\}$. Напълно подобно (заменяйки 0 с 1) получаваме, че $A + C = \{\{\{1\}\},\ \{\{0\},\{1\}\}\}\}$. Следователно: $(A + B) \cap (A + C) = \{\{\{0\},\{1\}\}\}\} = \{A\}$, което не е подмножество на $\emptyset = A + (B \cap C)$.

1 Бинарни Релации

Определение .2 *Казваме*, че множеството R е (бинарна) релация, ако всеки негов елемент е наредена двойка:

$$\forall u(u \in R \Rightarrow \exists x \exists y (u = (x, y))).$$

Примери:

- 0) \emptyset е бинарна релация. Наистина, за всяко u е вярна импликацията: $u \in \emptyset \Rightarrow u$ е наредена двойка, защото предпоставката е Π .
 - 1) Нека A е множество. Тогава $A \times A$ е релация, защото всеки нейн елемент е наредена двойка:

$$A \times A = \{(x, y) \mid x, y \in A\}.$$

2) Отношението < в множеството на естествените числа $\mathbb N$ се представя от релацията < = $\{(a,b) \mid a,b\in\mathbb N \& a < b\}$ = $=\{(0,1),(0,2),\ldots,(0,100),\ldots$ $(1,2),(1,3),\ldots,(1,100),\ldots$ \ldots $(100,101),(100,102),\ldots$

По-нататък, наравно с $(x,y) \in R$, за да означим че x е в релация R с y ще използваме и записа xRy. Така, например, за да означим, че 3 е по-малко от 5 ще използваме записите: $(3,5) \in <$ и 3 < 5. Определения

Нека R е бинарна релация и A е множество. Казваме, че

- R е над A, ако R сравнява единствено елементи на A, т.е. $R \subseteq A \times A$;
- R е рефлексивна над A, ако $\forall a(a \in A \Rightarrow (a, a) \in R)$ или $\forall a(a \in A \Rightarrow aRa)$
- R е симетрична, ако $\forall a \forall b ((a,b) \in R \Rightarrow (b,a) \in R)$ или $\forall a \forall b (aRb \Rightarrow bRa)$;
- R е антисиметрична, ако $\forall a \forall b ((a,b) \in R \& (b,a) \in R \Rightarrow a=b)$ или $\forall a \forall b (aRb \& bRa \Rightarrow a=b)$;
- R е транзитивна, ако $\forall a \forall b \forall c((a,b) \in R\&(b,c) \in R \Rightarrow (a,c) \in R)$ или $\forall a \forall b \forall c(aRb\&bRc \Rightarrow aRc)$;
- R е релация на еквивалентност (P.E.) над A, ако R е релация над A, рефлексивна е над A, симетрична е и е транзитивна.