CAMINO MÍNIMO

Tecnología Digital V: Diseño de Algoritmos Universidad Torcuato Di Tella

El problema de camino mínimo

Problema

Dados ...

- 1. Un grafo dirigido pesado G = (N, A), con una función de distancia $d: A \to \mathbb{R}_+$ asociada con los arcos, y
- 2. $nodos s, t \in N$ de origen y destino,

... determinar el camino pesado más corto en G entre los nodos s y t.

L

Aplicación I

Determinar el camino más corto entre dos ciudades en un mapa vial.

Aplicación II

Determinar el camino más corto entre dos puntos de una ciudad (a pie, en auto, o en bicicleta).

www.openstreetmap.org

 Arcos con peso negativo: Si el grafo G no contiene ciclos de peso negativo o contiene alguno pero no es alcanzable desde s, entonces el problema sigue estando bien definido, aunque algunos caminos puedan tener longitud negativa.

- Arcos con peso negativo: Si el grafo G no contiene ciclos de peso negativo o contiene alguno pero no es alcanzable desde s, entonces el problema sigue estando bien definido, aunque algunos caminos puedan tener longitud negativa.
- \odot Sin embargo, si G tiene algún ciclo con peso negativo alcanzable desde s, el concepto de camino de peso mínimo deja de estar bien definido.

- Arcos con peso negativo: Si el grafo G no contiene ciclos de peso negativo o contiene alguno pero no es alcanzable desde s, entonces el problema sigue estando bien definido, aunque algunos caminos puedan tener longitud negativa.
- Sin embargo, si *G* tiene algún ciclo con peso negativo alcanzable desde *s*,
 el concepto de camino de peso mínimo deja de estar bien definido.
- O **Propiedad de subestructura óptima de un camino mínimo:** Sea P_{ij} un camino mínimo entre i y j, y sea $k \in P_{ij}$. Entonces, el subcamino de P_{ij} entre i y k es un camino mínimo entre i y k.

Camino Mínimo - Ejemplo

Algoritmo de Dijkstra (1959)

Edsger Dijkstra (1930-2002) www.cs.utexas.edu/users/EWD

Algoritmo de Dijkstra (1959)

 Asumimos que las longitudes de las aristas son positivas. El grafo puede ser orientado o no orientado.

Algoritmo de Dijkstra

- 1. Asignar distancias tentativas $d_s = 0$ y $d_i = \infty$ para $i \neq s$.
- 2. Mientras el destino no esté visitado:
 - Seleccionar como nodo actual i el nodo no visitado con menor distancia tentativa, y marcarlo como visitado.
 - ∘ Para cada $j \in N^+(i)$ no visitado, calcular $d'_j = d_i + d_{ij}$. Si $d'_j < d_j$ entonces fijar $d_j := d'_j$.
- 3. Retornar d_t .

Algoritmo de Dijkstra

Lema

Llamamos S_k a los nodos visitados luego de la iteración k. Al finalizar la iteración k el algoritmo de Dijkstra determina el camino mínimo entre el nodo s y cada uno de los nodos de S_k .

Algoritmo de Dijkstra

Lema

Llamamos S_k a los nodos visitados luego de la iteración k. Al finalizar la iteración k el algoritmo de Dijkstra determina el camino mínimo entre el nodo s y cada uno de los nodos de S_k .

Teorema

Dado un grafo orientado G con pesos positivos en las aristas, el algoritmo de Dijkstra determina el camino mínimo entre el nodo s y el resto de los nodos de G.

Algoritmo de Dijkstra

- 1. Asignar distancias tentativas $d_s = 0$ y $d_i = \infty$ para $i \neq s$.
- 2. Mientras el destino no esté visitado:
 - Seleccionar como nodo actual i el nodo no visitado con menor distancia tentativa, y marcarlo como visitado.
 - Para cada $j \in N^+(i)$ no visitado, calcular $d'_j = d_i + d_{ij}$. Si $d'_j < d_j$ entonces fijar $d_j := d'_j$.
- 3. Retornar d_t .

Algoritmo de Dijkstra

- 1. Asignar distancias tentativas $d_s = 0$ y $d_i = \infty$ para $i \neq s$.
- 2. Mientras el destino no esté visitado:
 - Seleccionar como nodo actual i el nodo no visitado con menor distancia tentativa, y marcarlo como visitado.
 - Para cada $j \in N^+(i)$ no visitado, calcular $d'_j = d_i + d_{ij}$. Si $d'_j < d_j$ entonces fijar $d_j := d'_j$.
- 3. Retornar d_t .

Complejidad computacional:

Algoritmo de Dijkstra

- 1. Asignar distancias tentativas $d_s = 0$ y $d_i = \infty$ para $i \neq s$.
- 2. Mientras el destino no esté visitado:
 - Seleccionar como nodo actual i el nodo no visitado con menor distancia tentativa, y marcarlo como visitado.
 - Para cada $j \in N^+(i)$ no visitado, calcular $d'_j = d_i + d_{ij}$. Si $d'_j < d_j$ entonces fijar $d_j := d'_j$.
- 3. Retornar d_t .

Complejidad computacional:

 $O(n^2)$ con una implementación sencilla.

Algoritmo de Dijkstra

- 1. Asignar distancias tentativas $d_s = 0$ y $d_i = \infty$ para $i \neq s$.
- 2. Mientras el destino no esté visitado:
 - Seleccionar como nodo actual i el nodo no visitado con menor distancia tentativa, y marcarlo como visitado.
 - Para cada $j \in N^+(i)$ no visitado, calcular $d'_j = d_i + d_{ij}$. Si $d'_j < d_j$ entonces fijar $d_j := d'_j$.
- 3. Retornar d_t .

Complejidad computacional:

- $O(n^2)$ con una implementación sencilla.
- \bigcirc $O(m \log n)$ guardando las distancias tentativas en un heap.

Reducciones desde otros problemas

Exact packing

Dados un conjunto $C=\{1,\ldots,n\}$ de objetos, el peso $p_i\in\mathbb{Z}_+$ de cada objeto $i\in C$ y una capacidad máxima $M\in\mathbb{Z}_+$, determinar si existe un subconjunto de C con peso igual a M.

Reducciones desde otros problemas

Exact packing

Dados un conjunto $C = \{1, \dots, n\}$ de objetos, el peso $p_i \in \mathbb{Z}_+$ de cada objeto $i \in C$ y una capacidad máxima $M \in \mathbb{Z}_+$, determinar si existe un subconjunto de C con peso igual a M.

Ejemplo:

- 1. $C = \{1, \ldots, 4\},$
- 2. $p_1 = 1, p_2 = 2, p_3 = 1, p_4 = 1,$
- 3. M = 3.

Reducciones desde otros problemas

Exact packing

Dados un conjunto $C = \{1, \dots, n\}$ de objetos, el peso $p_i \in \mathbb{Z}_+$ de cada objeto $i \in C$ y una capacidad máxima $M \in \mathbb{Z}_+$, determinar si existe un subconjunto de C con peso igual a M.

Ejemplo:

```
1. C = \{1, ..., 4\},
2. p_1 = 1, p_2 = 2, p_3 = 1, p_4 = 1,
3. M = 3.
```

 Cómo convertimos este problema en un problema de recorrido en un grafo?

Si además cada objeto tiene un costo de compra y queremos minimizar el costo total ...

Course scheduling

Dado el programa de charlas de una conferencia, determinar la mayor cantidad de charlas a la que podemos asistir.

- 1. Todas las charlas se realizan en un mismo día.
- 2. Cada charla tiene un horario de inicio y final.
- 3. Una vez que entramos a una charla, no se puede salir hasta que termine.

Course scheduling

Dado el programa de charlas de una conferencia, determinar la mayor cantidad de charlas a la que podemos asistir.

- 1. Todas las charlas se realizan en un mismo día.
- 2. Cada charla tiene un horario de inicio y final.
- 3. Una vez que entramos a una charla, no se puede salir hasta que termine.
- Cómo convertimos este problema en un problema de camino mínimo?

Ejemplo. [9-11], [10-13], [9-15], [11-13], [13-15]

Ejemplo. [9-11], [10-13], [9-15], [11-13], [13-15]

Camino mínimo con arcos negativos

Camino mínimo con arcos negativos

Camino mínimo con arcos negativos!

Camino mínimo con arcos negativos

Camino mínimo con arcos negativos!

- 1. Algoritmo de Bellman-Ford (1956). Complejidad O(nm) en el peor caso, pero puede manejar arcos con longitudes negativas.
- 2. Algoritmo de Floyd-Warshall (1962). Complejidad $O(n^3)$. Calcula el camino mínimo entre cada par de nodos, y también permite arcos con longitudes negativas.

Algoritmo de Bellman-Ford (1955)

- Si *G* no tiene circuitos de longitud negativa, al finalizar la iteración *k* el algoritmo de Bellman-Ford determina los caminos mínimos de a lo sumo *k* arcos entre el vértice *s* y los demás vértices.
- O El grafo puede ser orientado o no orientado. .

Algoritmo de Bellman-Ford

- 1. Asignar distancias tentativas $d_s = 0$ y $d_i = \infty$ para $i \neq s$.
- 2. Para k = 1, ..., |V| 1:
 - Para cada arista (i, j), si $d_i + d_{ij} < d_j$ entonces fijar $d_j := d_i + d_{ij}$.
- 3. Retornar d_t .

Observación: es posible terminar la ejecución del algoritmo si no se detectan cambios en las estimaciones en una iteración.

Nodos visitados

Cuando termina, el Algoritmo de Dijkstra calcula el camino mínimo entre el nodo origen y todos los nodos visitados.

A. Lundblom y R. Uggelberg, Comparative analysis of weighted pathfinding in realistic environments. Degree Project in Computer Science. KTH Skolan för Datavetenskap och Kommunikation, Suecia (2017).

Algoritmo A* = Dijkstra + estimación de distancia al destino

 \bigcirc Tenemos como parte de los datos una estimación $\ell:N\to\mathbb{R}$ de la distancia entre cada nodo y el nodo destino.

Algoritmo A* = Dijkstra + estimación de distancia al destino

- Tenemos como parte de los datos una estimación $\ell: N \to \mathbb{R}$ de la distancia entre cada nodo y el nodo destino.
- Suponemos que esta estimación cumple la desigualdad triangular $\ell_i \leq \ell_j + d_{ij}$ para todo arco $ij \in E$.

Algoritmo A* = Dijkstra + estimación de distancia al destino

- Tenemos como parte de los datos una estimación $\ell: N \to \mathbb{R}$ de la distancia entre cada nodo y el nodo destino.
- Suponemos que esta estimación cumple la desigualdad triangular $\ell_i \leq \ell_j + d_{ij}$ para todo arco $ij \in E$.
- En cada paso del Algoritmo de Dijkstra, en lugar de usar la distancia d_{ij} de cada arco $ij \in E$, usamos $\hat{d}_{ij} := d_{ij} + \ell_j \ell_i$ como su "distancia".

Algoritmo A* = Dijkstra + estimación de distancia al destino

- Tenemos como parte de los datos una estimación $\ell: N \to \mathbb{R}$ de la distancia entre cada nodo y el nodo destino.
- Suponemos que esta estimación cumple la desigualdad triangular $\ell_i \leq \ell_j + d_{ij}$ para todo arco $ij \in E$.
- En cada paso del Algoritmo de Dijkstra, en lugar de usar la distancia d_{ij} de cada arco $ij \in E$, usamos $\hat{d}_{ij} := d_{ij} + \ell_j \ell_i$ como su "distancia".
- Si ℓ_i es una cota inferior de la distancia del nodo i al nodo destino, para todo $i \in N$, entonces el Algoritmo A* es un algoritmo. Si no, es una heurística.

Nodos visitados

- \circ Cuando se utiliza una cota inferior para la función de estimación ℓ , el Algoritmo A* visita una cantidad de nodos mucho menor.
- O No obstante, el peor caso sigue siendo el mismo!

A. Lundblom y R. Uggelberg, Comparative analysis of weighted pathfinding in realistic environments. Degree Project in Computer Science. KTH Skolan för Datavetenskap och Kommunikation, Suecia (2017).