ÉTENDRE LE CONCEPT DE GÉNÉRALISATION EN APPRENTISSAGE PAR RENFORCEMENT

RONNIE LIU (20154429)

POUR LE COURS IFT 3150

MOTIVATION ET OBJECTIFS

Différents types de surfaces lesquelles le robot n'est pas habitué

Surapprentissage

MOTIVATION ET OBJECTIFS

OBJECTIFS DU PROJET

- I. Maîtriser les fondements de RL
- 2. Proposer une méthode d'entraînement afin de mieux généraliser pour des tâches similaires.
- 3. Appliquer et illustrer que cette méthode augmente la performance de l'agent à bien généraliser.

Assault

Space Invaders

REVUE DE LITTÉRATURE

1. Atticle Playing Atari with Deep Reinforcement Learning

https://arxiv.org/pdf/1312.5602.pdf

- 7 jeux Atari avec même réseau de CNN.
- But: Comparer la performance des agents en fonction de différents algorithmes classiques de RL.

SIMILARITÉS

- Modèle CNN pour notre politique
- Même processus prétraitement des images avec un seul canal au lieu de 4

DIFFÉRENCES

 Entraîner sur de différents environnements lors de la phase d'entraînement et de test

2. Article Offline Reinforcement Learning with Implicit Q-Learning

https://arxiv.org/pdf/2110.06169.pdf

- Expériences sur les humanoïdes
- But: Illustrer la haute performance de l'algorithme IQL en termes de généralisation

SIMILARITÉS

 Application de l'algorithme IQL dans notre projet

DIFFÉRENCES

 Utilisation des jeux Atari au lieu des humanoïdes

CONTEXTE THÉORIQUE

APPRENTISSAGE PAR RENFORCEMENT (RL)

* But: Gagner le plus de points possibles (récompenses)

* Politique π (a | s, θ) : distribution sur des actions a étant donné un état s

* Fonction de Qualité: Espérance des futures récompenses obtenues par l'agent à un état initial s avec une action choisie a.

$$Q_{\pi}(s,a) = \mathop{\mathbb{E}}_{s \sim p(s_0)} \left\{ \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \mid s_0 = s, a_0 = a \right\} pour \ 0 < \gamma < 1$$

$$\pi^* = \mathop{\mathrm{argmax}}_{a \in A} Q^*(s, a)$$

CONTEXTE THÉORIQUE

Q-LEARNING ET DEEP Q-LEARNING (DQN)

Principe derrière Q-Learning

• Epsilon-Greedy: exploration de l'environnement

$$Q(s_t, a_t)_{new} = Q(s_t, a_t)_{old} + \alpha \left[\mathbf{r} + \gamma \max_{\mathbf{a}_{t+1}} \mathbf{Q}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - Q(s_t, a_t)_{old} \right]$$

Q-Learning vs DQN

CONTEXTE THÉORIQUE

GÉNÉRALISATION EN APPRENTISSAGE PAR RENFORCEMENT

- Fonction de perte ou Récompenses obtenues? Quelle mesure doit-on utiliser?
- Application de cette analogie avec les jeux Atari

MÉTHODOLOGIE

ZERO-SHOT META LEARNING

8

MÉTHODOLOGIE

PRÉTRAITEMENT ET MODÈLE CNN

MÉTHODOLOGIE

ALGORITHME PROPOSÉ: IQL

$\begin{aligned} &Q(s_t, a_t)_{new} = Q(s_t, a_t)_{old} + \alpha \left[\mathbf{r} + \gamma \max_{\mathbf{a}_{t+1}} \mathbf{Q}\left(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}\right) - Q(s_t, a_t)_{old}\right] \\ &MPLICIT Q-LEARNING (OFFLINE RL) \\ &Q(s_t, a_t)_{new} = Q(s_t, a_t)_{old} + \alpha \left[\mathbf{r} + \gamma \max_{\mathbf{a}_{t+1}} \mathbf{Q}\left(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}\right) - Q(s_t, a_t)_{old}\right] \end{aligned}$

Algorithm 1 Implicit Q-learning

Initialize parameters ψ , θ , $\hat{\theta}$, ϕ . TD learning (IQL):

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \nabla_{\psi} L_V(\psi)$$

$$\theta \leftarrow \theta - \lambda_Q \nabla_{\theta} L_Q(\theta)$$

$$\hat{\theta} \leftarrow (1 - \alpha)\hat{\theta} + \alpha\theta$$

end for

Policy extraction (AWR):

for each gradient step do

$$\phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} L_{\pi}(\phi)$$

end for

I. Variable Violette: Fonction de perte de la valeur

2. Variable Verte: Fonction de perte des valeurs de qualité

3. Variable Bleue : Régression pondérée des avantages pour extraire la politique

EXPÉRIENCES

Numéro	Algorithme utilisé	Environnements d'entraînement	Environnement de test	
1	DQN	Assault	Assault	
2	DQN	Carnival, Space-Invaders	Assault	
3	IQL	Assault	Assault	
4	IQL	Carnival, Space-Invaders	Assault	
Notes was Bernésianes A est la méthodo managée du maist				

Noter que l'expérience 4 est la méthode proposée du projet.

Utiliser les expériences I et 2 comme expériences de base.

Comparer les expériences I et 3 – DQN vs IQL avec un seul environnement d'entraînement

Comparer les expériences 2 et 4 – DQN vs IQL avec un ensemble d'environnements d'entraînement

Comparer les expériences 3 et 4 – Différents nombres d'environnement d'entraînement avec l'algo IQL

DISCUSSION

Score maximum dans l'évaluation: 311 points (avec 4.7 M de pas)

Score maximum dans l'évaluation: 357 points (avec 3.2 M de pas)

- Expérience 3 avec IQL a un score plus haut que l'expérience I avec DQN
- Phénomène étrange dans la courbe d'évaluation de l'expérience 3

DISCUSSION

Score maximum dans l'évaluation: 244 points (avec 4.7 M de pas)

Score maximum dans l'évaluation: 357 points (avec 3.3 M de pas)

- Expérience 4 avec IQL a un score plus haut que l'expérience 2 avec DQN
- Phénomène étrange aussi dans la courbe d'évaluation de l'expérience 4

RÉSULTATS SOMMAIRES

Graphique I. Récompenses totales moyennes durant la phase d'entraînement (haut) et de test (bas) en fonction de nombre d'étapes (pas)

Numéro	Récompense maximale	Nombre d'étapes pour atteindre la valeur
d'expérience		maximale
1	311 points	Environ 4.7 millions
2	244 points	Environ 4.7 millions
3	357 points	Environ 3.2 millions
4	357 points	Environ 3.3 millions

SOURCE D'ERREURS

15

- Implémentation erronée dans l'algorithme IQL
 - IQL, un algorithme qui améliore la généralisation selon l'article, mais presence de surajustement ici.
- Taille du Replay Buffer pour stocker les données

CONCLUSION

16

- Méthode proposée: Zero-Shot Meta Learning avec l'algorithme IQL
- Environnement d'entraînement = de test
 - IQL: score de 357 points > DQN: score de 311 points.
- Deux environnements d'entraînement et un nouvel environnement de test
 - IQL: score de 357 points > DQN: score de 244 points.
- IQL avec plusieurs environnements est la meilleure méthode pour que l'agent puisse s'adapter dans différents jeux

Contributions futures

- Mettre l'accent sur divers choix d'hyperparamètres
- Application d'un algorithme de Meta-Learning pour approfondir davantage le concept de généralisation en RL

LIENS DES IMAGES (RÉFÉRENCES)

17

Diapositive 2

Robot: https://1721181113.rsc.cdn77.org/data/images/full/41137/robot-dog.jpg?w=600?w=430

Tapis: https://lh5.googleusercontent.com/p/AFIQipOkbQ_tZ8LPZ8hHs5h6elKAuqJreW3jSvudXO8w

Terre: https://thumbs.dreamstime.com/b/earth-ground-texture-as-background-nature-environment-environmental-backdrop-

175502313.jpg

Escalier: https://boiseriesmetropolitaines.com/wp-content/uploads/2020/03/escalier-residentiel.jpg

Diapositive 3

Space Invaders: https://www.gymlibrary.ml/environments/atari/space_invaders/

Carnival: https://www.gymlibrary.ml/environments/atari/carnival/
Assault: https://www.gymlibrary.ml/environments/atari/assault/

Diapositive 5

Schéma de RL: https://i.stack.imgur.com/eoeSq.png

Diapositive 6

Q-Learning vs DQN:

 $\frac{https://www.researchgate.net/publication/352158682/figure/fig4/AS:1031386303582213@1622913065565/Difference-between-Q-Learning-and-DQN.png$

Diapositive 8

Schéma de Meta-Learning: https://lilianweng.github.io/posts/2019-06-23-meta-rl/

Diapositive 9

Algorithme de IQL: https://arxiv.org/pdf/2110.06169.pdf