GCE: 503, Analysis and measure theory May 2020

No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let X be a measure space $f_n: X \to \mathbb{R}$ a sequence of measurable functions, and $f: X \to \mathbb{R}$ a measurable function. By definition we say that f_n converges to f in measure if for all $\epsilon > 0$,

$$\mu(\{x \in X : |f_n(x) - f(x)| > \epsilon\}),$$

converges to zero, as $n \to \infty$, where μ is the measure on X.

- (i). Find a measure space X, a sequence of measurable functions $f_n: X \to \mathbb{R}$, and $f: X \to \mathbb{R}$ a measurable function such that f_n converges to f almost everywhere but not in measure.
- (ii). Find a measure space Y, a sequence of measurable functions $g_n: Y \to \mathbb{R}$, and $g: Y \to \mathbb{R}$ a measurable function such that g_n converges to g in measure but not almost everywhere.

Exercise 2:

Let X be a metric space such that X is a finite set.

- (i). Show that any convergent sequence in X is eventually constant.
- (ii). Find (with proof) all subsets of X that are compact.

Exercise 3:

Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \left\{ \begin{array}{ll} 0, & \text{if } x = 0 \text{ or } x \in [0,1] \backslash \mathbb{Q}; \\ 1/q, & \text{if } x \in (0,1] \bigcap \mathbb{Q} \text{ and } x = p/q \text{ in lowest terms.} \end{array} \right.$$

For instance, f(0.75) = 1/4 due to 0.75 = 3/4 in lowest term; $f(1/\sqrt{2}) = 0$ due to $1/\sqrt{2} \notin \mathbb{Q}$.

- (i). Is f a Lebesgue measurable function? Justify your answer.
- (ii). Find $\int_0^1 f(x)dx$.
- (iii). Prove that $f(x) \leq x$ for all $x \in [0, 1]$.
- (iv). Find the set of points of discontinuity of f in [0,1].

Exercise 4:

Find (with proof)
$$\lim_{n\to\infty} \int_0^1 \frac{\sin(x^n)}{x^n} dx$$
.

Exercise 5:

Let
$$f_n \in L^2([0,1])$$
 and $f \in L^2([0,1])$.

- (i). Prove that, $||f_n f||_2 \to 0$ implies that $||f_n||_2 \to ||f||_2$. (ii). Does $||f_n||_2 \to ||f||_2$ imply $||f_n f||_2 \to 0$? Justify your answer. (iii). Suppose $||f_n||_2 \to ||f||_2$ and $f_n \to f$ almost everywhere on [0,1]. Show that $||f_n f||_2 \to 0$.