ANSWERS TO TOPIC A PROBLEMS

Some notes about our class solution keys (this and all future keys):

- 1) For most problems, there is more than one way to set up the solution, and my full solution key usually shows just one possible solution method. You never need to use the same method to solve the problem that I do any method that is chemically valid is fine with me. If you use a different method from mine, but you get the correct answer, your method is probably correct (although you're welcome to check with me, just to be sure). If you use a different method and get a different answer, let me look over your solution, to see whether your method is valid you might have just made an arithmetic error.
- 2) In all calculations, I keep more digits than required by the significant figure rules, and round to the correct number of sig figs at the end. It is always best to keep extra digits throughout the calculations, to avoid rounding errors. If you get an answer that is slightly different from mine (± 1) in the last sig fig), it's probably just a rounding error.
- 3) I try to be very careful as I write answer keys, but \underline{I} am not perfect. If you find an error in a solution key, tell me about it everyone will be grateful.
- 1) a) 2x mol
 - b) 8x mol
 - c) $(1.2044 \times 10^{24})x$ atoms
 - d) 262.87*x* g
 - e) 72.93*x* g Mg
- a) 0.0038171*x* mol
 - b) 0.026720*x* mol
 - c) 0.42751x g
 - d) $(1.6091 \times 10^{22}) x$ atoms
- 3) 4.5x atoms
- 4) a) Box 1 contains more atoms.
 - b) The two boxes contain equal numbers of atoms.
- 5) Box 1 contains more molecules.
- 6) The element is platinum.
- 7) $C_3H_6Cl_2$.
- 8) The empirical formula is B₃H₅ (or H₅B₃).
- 9) the molecular formula is B_6H_{10} (or $H_{10}B_6$).
- 10) The group 2A element is barium.

- 11) $C_8H_4O_5$
- 12) 16.28 g
- 13) a) 5x mol H₂O b) 6.5x mol O₂
- 14) a) F_2 is the limiting reactant.
 - b) 41.87 g of NF₃
 - c) $1.74 g of N_2$.
 - d) The ICE table will look like this (rounding all values to four decimal places):

	N_2	+	3 F ₂	\rightarrow	2 NF ₃
Initial	0.3569 mol		0.8845 mol		0 mol
Change	- 0.2948 mol		- 0.8845 mol		+ 0.5896 mol
End	0.0621 mol		0 mol		0.5896 mol

- 15) **62.39 g**, 89.94%
- 16) 17.0 g of MgCl₂.
- 17) **9.1 mL**
- a) 1.286 moles of C₂H₆, no O₂, 7.429 moles of CO₂, and 11.143 moles of H₂O
 - b) 29.19 g of C_2H_6 , 152.93 g of CO_2 , and 93.91 g of H_2O
 - c) 0.502 moles of C₂H₆.
- 19) a) no NH₃, y = 0.75x moles of O₂, 0.5x moles of N₂, and 1.5x moles of H₂O.
 - b) x 1.333y moles of NH₃, no O₂, 0.667y moles of N₂, and 2y moles of H₂O. (Expressions like $x {}^4/_3y$ are also acceptable.)
 - c) x = 0.8y (Any equivalent equation is okay, such as y = 1.25x, x/y = 0.8, etc.)
- 20) 1.209x g
- 21) 44.4% Al, 55.6% Cu
- 22) 37.90% AgNO₃, 62.10% KNO₃
- 23) 14.841 g of SO₂ and 43.882 g of SO₃.