Twitter Sentiment Analysis

William Gast

About Me

- William Gast
- Carthage College Class of 2020
 - Marketing
- Big Star Wars fan
- Hobbies include
 - Any type of sport
 - Travel

Motivation

- Sentiment analysis or opinion mining is an NLP technique that lets you determine the attitude (positive, negative, or neutral) of text.
- Given the model I am creating, an airline company could take result and understand how their customers are reacting to them and their services from their twitter data.
- This can be used to improve a company's decision making, customer satisfaction and more

Data

Source: Kaggle

• Name: Twitter US Airline Sentiment

• Columns in use:

Text

Airline Sentiment

Airline

Data columns (total 15 column	s):
tweet id	14640 non-null int64
airline sentiment	14640 non-null object
airline sentiment confidence	14640 non-null float64
negativereason	9178 non-null object
negativereason confidence	10522 non-null float64
airline	14640 non-null object
airline sentiment gold	40 non-null object
name	14640 non-null object
negativereason gold	32 non-null object
retweet count	14640 non-null int64
text	14640 non-null object
tweet coord	1019 non-null object
tweet_created	14640 non-null object
tweet location	9907 non-null object
user Timezone	9820 non-null object
dtypes: float64(2), int64(2), memory usage: 1.7+ MB	

column_name	percent_missing
tweet_id	0.000000
airline_sentiment	0.000000
airline_sentiment_confidence	0.000000
negativereason	37.308743
negativereason_confidence	28.128415
airline	0.000000
airline_sentiment_gold	99.726776
name	0.000000
negativereason_gold	99.781421
retweet_count	0.000000
text	0.000000
tweet_coord	93.039617
tweet_created	0.000000
tweet_location	32.329235
user_timezone	32.923497

Cleaning and Preprocessing

- 1. Cleaning
 - a. Taking out the @ and # signs while also removing the RT tags
- 2. Tokenization
- 3. Lower casing
- 4. Stop words removal
- 5. Stemming
- 6. Lemmatization
- 7. Vectorizing
 - a. Convert a collection of text documents to a matrix of token counts

Modeling

Sentiment Metric	Score	
Positive	0.674	
Neutral	0.326	
Negative	0.0	
Compound	0.735	

- VADER sentiment
 - lexicon and rule-based sentiment analysis tool specifically tuned to be used for social media.
- Naive Bayes
 - The intuition behind Naive Bayes is to find the probability of classes assigned to given text by using the joint probabilities of words and classes.
 - o It is easy and fast to predict class of test data set. It also perform well in multi class prediction
 - It perform well in case of categorical input variables compared to numerical variable(s).
- Random Forest
 - Ability to handle large data sets with higher dimensionality.
 - With more trees, it won't allow-overfitting trees in a model.

Choosing an evaluation metric

- I used the weighted F1-score for my evaluation metric
- A weighted F-1 score was a good choice because I care about the precision and recall of all the classes.
- Gives a good measure of the incorrectly classified cases.
- Does a good job of combating class imbalance

Results

	Precision	Recall	f1-score
VADER	.70	.55	.58
Textblob	.67	.46	.48
Naive Bayes	.84	.77	.79
Random Forest	.77	.75	.76

Questions?

Github: https://github.com/WilliamGast

Linkedin: https://www.linkedin.com/in/william-gast-2b6b45127/