

(9) BUNDESREPUBLIK DEUTSCHLAND

Patentschrift DE 196 36 343 C 1

DEUTSCHES PATENTAMT

- 21 Aktenzeichen:
- 196 36 343.8-44
- ② Anmeldetag:
- 30. 8.96
- 49 Offenlegungstag:45 Veröffentlichungstag
 - der Patenterteilung: 23. 10. 97

(a) Int. Cl.⁶: C 07 F 7/18 C 07 D 277/24 C 07 D 493/04 C 07 D 319/06

C 07 D 277/24 C 07 D 493/04 C 07 D 319/06 C 07 D 263/20 C 07 F 7/02 // (C07D 493/04, 303:00,313:00)

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

Patentinhaber:

Schering AG, 13353 Berlin, DE

② Erfinder:

Schinzer, Dieter, Prof. Dr., 38108 Braunschweig, DE; Limberg, Anja, 38102 Braunschweig, DE; Böhm, Oliver M., 38118 Braunschweig, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE 41 38 042 A1

Zwischenprodukte innerhalb der Totalsynthese von Epothilon A und B

Es werden Zwischenprodukte innerhalb der Totalsynthese von Epothilon A und B beschrieben. Epothilon A und B sind Naturstoffe, die durch Mikroorganismen hergestellt werden k\u00f6nnen und die Taxol \u00e4hnliche Eigenschaften besitzen und somit besonderes Interesse in der Arzneimittelchemie besitzen.

Beschreibung

Die Erfindung betrifft Zwischenprodukte innerhalb der Totalsynthese von Epothilon A und B. Epothilon A und B sind Naturstoffe, die durch Mikroorganismen hergestellt werden können und die Taxol ähnliche Eigenschaften besitzen und somit besonderes Interesse in der Arzneimittelchemie besitzen. Diese Epothilone A und B werden innerhalb des Standes der Technik in DE 41 38 042 C2 und in European Chemistry Chronicle, Vol. 1/ No. 1 S.7—10 beschrieben.

Aufgabe der vorliegenden Erfindung ist es, Zwischenprodukte für die Totalsynthese von Epothilon A und B bereitzustellen, die es erlauben, die Naturstoffe einfach herzustellen und ebenso die Strukturen in der üblichen Art und Weise zu variieren, um Verbindungen mit stärkeren bzw. nebenwirkungsärmeren Eigenschaften herstellen zu können.

Zunächst erfolgt die Beschreibung der Synthesestrategie, danach die detaillierte Synthese der Schlüsselsegmente, 2-(2,2-Dimethyl-[1,3]dioxan-4-yl)-2-methylpentan-3-on 3, 6-[(tert.-Butyldimethylsilyl)oxy]-2-methyl-hexanal 4, dem Thiazolderivat 8 und (4S,6S)-10-(tert.Butyldimethylsilyloxy)-2-(2,2-dimethyl-[1,3]-dioxan-4-yl)-5-hydroxy-2,4,6,-trimethyl-decan-3-on (dem Aldolreaktionsprodukt aus 3 und 4 und (3S,6R,7S,8S)-7-Benyloxy-3-(tert.-butyldimethylsilyloxy)-12-(tert.-butyldiphenylsilyloxy)-4,4,6,8-tetramethyl-5-oxo-dodecansäure 87. Diese Synthone werden zwangsläufig benötigt, um die Naturstoffe stereospezifisch erstellen zu können. Das folgende Schema zeigt den retrosynthetischen Weg, auf welchem Wege die Naturstoffe synthetisiert werden (nachveröffentlicht in Chem. Eur. J. 1996, 2,1477).

Schema 1

Retrosynthetische Analyse

truictur C1-C12 R=H (Epothilon A) R=-CH₃ (Epothilon B) OTBDMS тврмѕо P(0)0Et2 Û

Synthese von Segment 3

Arbeitsvorschriften zur Synthese von Segment 3

(2-(2,2-Dimethyl-[1,3]dioxan-4-yl)-2-methyl-pentan-3-on)

45

50

55

Das 3-[(tert-Butyldimethylsilyl)oxy]propanal 5 wird ausgehend von Propan-1,3-diol 13 hergestellt, indem zunächst nach einer Methode von P.G. McDougal, J.G. Rico, Y. Oh, B.D. Condon, J. Org. Chem. 1986, 51, 3388-3390, zum 3-[(tert-Butyldimethylsilyl)oxy]-1-propanol 14 monosilyliert wird, das anschließend mit DMSO/Oxalylchlorid zum Aldehyd 5 oxidiert wird (A. Jenmalm, W. Berts, Y. Li, K. Luthmann, I. Cs\$regh, U. Hacksell, J. Org. Chem. 1994, 59, 1139-1148).

Darstellung von 1-[(tert-Butyldimethylsilyl)oxy]-4,4-dimethyl-hex-5-en-3-ol 15

(H.C. Brown, P.K. Jadhav, Tetrahedron Lett. 1984, 25, 1215—1218; P.K. Jadhav, K.S. Bhat und P. Thirumalai, H.C. Brown, J. Org. Chem. 1986, 51, 432—439).

Zu einer auf —25°C gekühlten Suspension von Isopinocamphenylboran (Ipc₂BH) (7.34 mmol, hergestellt aus (—)—Pinen [99%, 97% optische Aktivität (ee)] H.C. Brown, M.C. Desai, P.K. Jadhav, J. Org. Chem. 1982, 47, 5065—5069; H.C. Brown, B. Singaram, J. Org. Chem. 1984, 49, 945—947) in 26 ml THF wird 500 mg (7.34 mmol, 1 equiv) 3-Methyl-1,2-butadien langsam zugetropft und die Reaktionsmischung 6 h bei —25°C gerührt. Das THF wird anschließend abgepumpt bei RT (14 bar/1 h), (0.5 mm/2 h) und der Rückstand in 10.5 ml Diethylether gelöst. Die Lösung wird auf —78°C gekühlt und 1.382 g (7.34 mmol, 1 equiv) Aldehyd 5 zugetropft. Man löst 12 h bei —78°C rühren und läßt dann auf RT erwärmen. Die Reaktionsmischung wird mit 10.7 ml 3 N NaOH-Lösung versetzt, danach mit 4.4 ml 30%iger H₂O₂-Lösung und 2 h unter Rückfluß erhitzt. Die organische Phase wird abgetrennt, mit 15 ml H₂O und 15 ml ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch mit Pentan: Diethylether = 2:1 gereinigt und man erhält 800 mg (3.098 mmol) des Alkohols 15, entsprechend einer Ausbeute von 42%. Die Bestimmung des Enantiomerenüber-

schusses erfolgte durch GC-analytische Untersuchung der diastereomeren Verbindungen, die bei der Veresterung des Alkohols mit (1R)-(-)-Camphansäurechlorid erhalten werden und ergab eine optische Aktivität (ee) von 92%.

Allgemeine Daten: $C_{14}H_{30}O_2Si$, FG = 258.47 g/mol

¹³C-NMR (100 MHz, CDCl₃): 145.69 (d), 112.27 (t), 78.52 (d), 63.29 (t), 41.19 (s), 33.39 (t), 25.89 (q), 22.85 (q), 22.43 (q), 5 (18.17 (s), -5.52(q).

Darstellung von 4-(1,1-Dimethyl-allyl)-2,2-dimethyl-[1,3]dioxan 16

Es werden 278 mg (1.076 mmol) des Alkohols 15 in 13 ml Aceton gelöst und 400 mg (2.51 mmol, 2.3 eqiuv) 10 wasserfreies CuSO₄ zugegeben. Dann werden 20 Tropfen einer Lösung von 0.1 ml Eisessig in 1 ml CH₂Cl₂ zugetropft und 12 h bei RT gerührt. Falls sich DC-chromatographisch noch Edukt nachweisen läßt, wird weitere Säurelösung zugegeben, bis die Umsetzung vollständig ist. Zur Aufarbeitung wird das Reaktionsgemisch auf ges. NaHCO₃-Lösung gegossen und die wäßrige Phase mit DE extrahiert. Die vereinigten organischen Phasen werden über MgSO₄ getrocknet und am Rotationsverdampfer eingeengt. Der Rückstand wird säulenchromatographisch mit Pentan: Diethylether = 2:1 gereinigt. Man erhält 161 mg (0.87 mmol) des Acetonids 16 entsprechend einer Ausbeute von 81%.

Allgemeine Daten: $C_{11}H_{20}O_2$, FG = 184.28 g/mol

¹³C-NMR (100 MHz, CDCl₃): 145.10 (d), 111.88 (t), 98.19 (s), 75.32 (d), 60.10 (t), 39.97 (s), 29.80 (q), 25.88 (t), 22.86 (q), 22.45 (q), 19.11 (q).

Darstellung von 2-(2,2-Dimethyl-[1,3]dioxan-4-yl)-2-methyl-propionaldehyd 17

Es werden 286 mg (1.55 mmol) des Acetonids 16 in 18 ml THF gelöst und 14 ml wäßriger Phosphatpuffer pH 7 zugegeben. Zu der kräftig gerührten Reaktionsmischung wird 400 μl (0.031 mmol, 0.02 equiv) OsO₄-Lösung 25 (2.5%ig in tert-Butanol) zugetropft. Nach 10 min. werden 996 mg (4.656 mmol, 3 equiv) NalO₄ portionsweise über einen Zeitraum von 20 min. zugegeben. Die Mischung wird kräftig bei RT gerührt und nach 24 und 48 h jeweils weitere 332 mg (je 1.55 mmol, 2 × 1.0 equiv) NalO₄ addiert. Nach 55 h werden die Phasen getrennt, die wäßrige Phase mit Diethylether extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch mit Pentan: Diethylether = 1:1 gereinigt. Man 30 erhält 221 mg (1.19 mmol) des Aldehyds 17 entsprechend einer Ausbeute von 76%.

Allgemeine Daten: $C_{10}H_{18}O_3$, FG = 186.25 g/mol ^{13}C -NMR (100 MHz, CDCl₃): 206.09 (d), 98.43 (s), 72.94 (d), 59.75 (t), 48.84 (s), 29.57 (q), 25.57 (t), 18.96 (q), 18.62 (q), 16.46 (q).

Darstellung von 2-(2,2-Dimethyl-[1,3]dioxan-4-yl)-2-methyl-pentan-3-ol 18

Eine Lösung von 268 mg (1.44 mmol) des Aldehyds 17 in 4 ml Diethylether wird bei 0°C mit 528 µl (1.58 mmol, 1.1 equiv) einer 3 M Lösung von EtMgBr in Diethylether versetzt. Man läßt 2 h bei 0°C rühren, erwärmt auf RT und läßt eine weitere Stunde rühren. Zur Aufarbeitung wird mit ges. wäßriger NH4Cl-Lösung versetzt und dann soviel Wasser zugegeben bis der Niederschlag in Lösung geht. Die wäßrige Phase wird mit Diethylether extrahiert, die vereinigten organischen Phasen über MgSO4 getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch mit Pentan: Diethylether = 1:1 gereinigt. Man erhält 251 mg (1.16 mmol) des Alkohols 18, entsprechend einer Ausbeute von 80%.

Allgemeine Daten: $C_{12}H_{24}O_3$, FG = 216.31 g/mol

¹³C-NMR (100 MHz, C_6D_6): 98.41 (s), 79.95 (d), 76.65 (d), 60.10 (t), 40.60 (s), Diastereomer 1: 30.04 (q), 25.73 (t), 24.64 (t), 20.03 (q), 19.25 (q), 15.99 (q), 11.67 (q)

24.64 (t), 20.03 (q), 19.25 (q), 15.99 (q), 11.67 (q) 13 C-NMR (100 MHz, C_6D_6): 98.57 (s), 78.85 (d), 76.46 (d), 60.08 (t), 39.93 (s), Diastereomer 2: 30.02 (q), 25.41 (t), 25.08 (t), 20.85 (q), 20.30 (q), 18.90 (q), 11.95 (q).

Darstellung von 2-(2,2-Dimethyl-[1,3]dioxan-4-yl)-2-methyl-pentan-3-on 3

W.P. Griffith, S.V. Ley, G.P. Whitcombe, A.D. White, J. Chem. Soc., Chem. Commun. 1987, 1625—1627. Es werden 70 mg (0.32 mmol) des Alkohols 18 in 5 ml CH₂Cl₂ gelöst und 64 A Molsiebkugeln und 66 mg (0.48 mmol, 1.5 equiv) 4-Methylmorpholin N—OXID (NMO) zugegeben. Nach 10 min Rühren werden 6 mg Tetrapropylammonium-perruthenat(VII) (TPAP) (0.016 mmol, 0.05 Aquivalente) addiert und 4 Stunden bei RT gerührt. Danach wird die Reaktionsmischung am Rotationsverdampfer eingeengt und direkt säulenchromatographisch mit Pentan: Diethylether = 1:1 gereinigt. Man erhält 60 mg (0.28 mmol) des Ethylketons 3, entsprechend einer Ausbeute von 86%.

Allgemeine Daten: $C_{12}H_{22}O_3$, FG = 214.30 g/mol ^{13}C -NMR (100 MHz, C_6D_6): 213.23 (s), 98.42 (s), 74.18 (d), 59.82 (t), 50.44 (s), 31.70 (t), 30.03 (q), 25.55 (t), 20.97 (q), 19.35 (q), 19.04 (q), 8.16 (q).

65

35

Synthese von Segment 4

5 OTBDMS 10 4 15 TBDMSCI, Imidazol, DMF NaOH, EtOH 20 81% 86% 20 19 MeOH, THF K₂CO₃ 25 TBDMSO TEDMSO 90% OTBDMS 21 22 30 SOCI₂ Benzol n-BuLi TBDMSC 92% 65% 23 35 40 OTBDMS **OTBDMS** NaHMDS; Mel 82% 45 CICOCOCI, DMSO, ENN OTBDMS 50 OTBDMS 87% 26 55 Abkürzungen: OTBDMS = tert.-Butyldimethylsilyloxy-Rest tert.-Butyldimethylsilylchlorid **TBDMSCI** = **HMDS** Hexamethyldisilazan =

Arbeitsvorschriften zur Darstellung von Segment 4

Lithiumaluminiumhydrid

Das Natrium-6-hydroxyhexanoat 20 wird nach einer Vorschrift von Wulff, Krüger und Röhle Chem. Ber. 1971, 104, 1387—1399 aus ω-Caprolacton 19 hergestellt.

LAH

Darstellung von 6-[(tert-Butyldimethylsilyl)oxy)-hexansäuresilylester 21

E. J. Corey, A. Venkanteswarlu, J. Am. Chem. Soc. 1972, 94, 6190—6191.

Eine Mischung aus 2.00 g (12.97 mmol) des Salzes 20, 25 ml DMF, 5.87 g (38.93 mol, 3 equiv) TBDMSCI und 5.3 g (77.85 mmol, 6 equiv) Imidazol wird 48 h bei RT gerührt. Das Reaktionsgemisch wird flashfiltriert und anschließend mit Pentan: DE = 4:1 säulen-chromatographisch gereinigt. Man erhält 3.99 g (11.1 mmol) der bissilylierten Verbindung 21, entsprechend einer Ausbeute von 85%.

Allgemeine Daten: C₁₈H₄₀O₃Si₂, FG = 360.69 g/mol

13C-NMR (100 MHz, CDCi₃): 174.17 (s), 63.00 (t), 36.02 (t), 32.53 (t), 25.95 (q), 25.55 (q), 25.40 (t), 24.91 (t), 18.33 (s),

Darstellung von 6-[(tert-Butyldimethylsilyl)oxy]-hexansäure 22

17.57 (s), -4.83 (q), -5.32 (q).

nach D.R. Morton, J.L. Thompson, J. Org. Chem. 1978, 43, 2102—2106.

Eine Lösung von 3.25 g (9.02 mmol) der bissilylierten Verbindung 21 in 130 ml Methanol und 44 ml THF wird mit einer Lösung von 4.4 g (31.8 mmol, 3.5 equiv) K₂CO₃ in 44 ml H₂O versetzt und 1 h bei RT gerührt. Danach wird das Volumen der Reaktionslösung im Vakuum auf ein Viertel reduziert. Man verdünnt mit 130 ml ges. NaCl-Lösung und stellt mit 1 M KHSO₄-Lösung auf pH 4—5 ein. Es wird mit Diethylether extrahiert. Die vereinigten organischen Phasen werden über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer abdestilliert. Man erhält 2.01 g (8.17 mmol) der Carbonsäure 22, entsprechend einer Ausbeute von 90%.

Allgemeine Daten: C₁₂H₂₆O₃Si, FG = 246.42 g/mol

13C-NMR (100 MHz, CDCl₃): 180.09 (s), 62.90 (t), 34.05 (t), 32.37 (t), 25.93 (q), 25.31 (t), 24.46 (t), 18.32 (s), -5.33 (q).

Darstellung von 6-[(tert-Butyldimethylsilyl)oxy]-hexanoylchlorid 23

J. Tanaka, Bull. Chem. Jpn. 1992, 65, 2851 – 2853.

Eine Lösung von 0.5 g (2.03 mmol) Carbonsäure 22 in 4 ml Benzol wird mit 362 mg (3.04 mmol, 1.5 equiv)

Thionylchlorid (SOCl₂) versetzt und 2 h unter Rückfluß erhitzt. Man läßt abkühlen und destilliert das Lösungsmittel am Rotationsverdampfer ab. Um das überschüssige SOCl₂ aus der Reaktionsmischung zu entfernen, wird der Rückstand wieder mit Benzol versetzt und erneut abdestilliert. Man erhält 494 mg (1.865 mmol, 92%) des 30 Säurechlorids 23. Dieses Rohprodukt wird ohne Aufreinigung und Charakterisierung weiter umgesetzt.

25

Darstellung von 3-[6-[(tert-Butyldimethylsilyl)oxy]-hexanoyl)-4-isopropyloxazolldin-2-on 7

A. Gonzalez, Synth. Comm. 1991, 21, 1353—1360. Eine Lösung von 755 mg (5.845 mmol) (4S)-4-(1-Methylethyl)-2-oxazolidinon 24 in 8 ml THF wird auf —78°C gekühlt und tropfenweise mit 4.0 ml (6.43 mmol, 1.1 equiv) einer n-BuLi-Lösung (1.6 M in Hexan) versetzt. Anschließend wird bei —78°C innerhalb von 2 min eine Lösung von 1.703 g (6.43 mmol, 1.1 equiv) Säurechlorid 23 in 7 ml THF zugegeben. Man läßt auf RT erwärmen und versetzt mit 11 ml einer 1 M wäßrigen K₂CO₃-Lösung und läßt 15 min rühren. Es wird mit CH₂Cl₂ extrahiert, über MgSO₄ getrocknet und das Lösungsmittel am Rotationsverdampfer abdestilliert. Der Rückstand wird säulen-chromatographisch mit Pentan: Diethylether = 1:1 gereinigt. Man erhält 1.352 g (3.78 mmol) der Verbindung 7, entsprechend einer Ausbeute von 65%. Allgemeine Daten: C₁₈H₃₅NO₄Si, FG = 357.56 g/mol ¹³C-NMR (100 MHz, CDCl₃): 173.22 (s), 154.02 (s), 63.26 (t), 62.94 (t), 58.32 (d), 35.47 (t), 32.52 (t), 28.32 (d), 25.92 (q), 25.36 (t), 24.18 (t), 18.29 (s), 17.92 (q), 14.61 (q), —5.34 (q).

Darstellung von 3-[6-[(tert-Butyldimethylsilyl)oxy]-2-methyl-hexanoyl]-4-isopropyl-oxazolidin-2-on 25

D.A. Evans, A.E. Weber J. Am. Chem. Soc. 1986, 108, 6757—6761.

Es werden 1.231 ml (1.231 mmol, 1.1 equiv) einer 1 M Lösung von NaHMDS in THF auf —78°C gekühlt und tropfenweise mit einer auf 0°C gekühlten Lösung von 400 mg (1.119 mmol) Oxazolidinon 7 in 3.5 ml THF versetzt. Man läßt 30 min bei —78°C rühren, addiert 793 mg (5.593 mmol, 5 equiv) Methyljodid gelöst in 2 ml Tetrahydrofuran und läßt für 4 h bei —78°C rühren. Anschließend wird mit ges. NH4Cl-Lösung gequencht, mit Diethylether extrahiert, über MgSO4 getrocknet und eingeengt. Der Rückstand wird säulenchromatographisch mit Pentan: Diethylether = 2:1 gereinigt, wobei das in geringem Maße entstandene unerwünschte Diastereomer leicht abgetrennt werden kann. Man erhält 328 mg (0.917 mmol) des methylierten Produkts 25, entsprechend einer Ausbeute von 82%.

Allgemeine Daten: C19H37NO4Si, FG = 371.59 g/mol

¹³C-NMR (100 MHz, CDCl₃): 177.13 (s), 153.60 (s), 63.13 (t), 62.95 (t), 58.38 (d), 37.63 (d), 32.83 (t), 32.78 (t), 28.37 (d), 25.92 (q), 23.50 (t), 18.29 (s), 17.89 (q), 17.76 (q), 14.63 (q), -5.33 (q).

Darstellung von 6-[(tert-Butyldimethylsilyl)oxy]-2-methyl-hexan-1-ol 26

D.A. Evans, A.E. Weber J. Am. Chem. Soc. 1986,108, 6757—6761.

Zu einer auf 0°C gekühlten Lösung von 168 mg (0.452 mmol) der Verbindung 25 in 3 ml Diethylether wird über einen Zeitraum von 40 min mit Hilfe einer Dosierpumpe 452 µl (0.452 mmol, 1 equiv) einer 1 M Lösung von Lithiumaluminiumhydrid (LAH) in Diethylether zugegeben. Falls sich DC-chromatographisch noch Edukt nachweisen läßt, wird weitere LAH-Lösung zugetropft bis die Umsetzung vollständig ist. Es wird gequencht durch

die Zugabe von 17 ml Wasser, 17 ml 15%iger wäßriger NaOH-Lösung und 52 ml Wasser. Anschließend wird über grobes Kieselgel mit Diethylether flashfiltriert und säulenchromatographisch mit Pentan: Diethylether = 1:1 gereinigt. Man erhält 94 mg (0.381 mmol) des Alkohols 26, entsprechend einer Ausbeute von 84%. Allgemeine Daten: C₁₃H₂₀O₂Si, FG = 246.46 g/mol

¹³C-NMR (100 MHz, CDCl₃): 68.25 (t), 63.12 (t), 35.72 (d), 33.03 (t), 32.84 (t), 25.94 (q), 23.13 (t), 18.34 (s), 16.51 (q), -5.29 (q).

Darstellung von 6-[(tert-Butyldimethylsilyl)oxy]-2-methyl-hexanal 4

D.A. Evans, A.E. Weber J. Am. Chem. Soc. 1986,108, 6757—6761.

Eine Lösung aus 64 mg (0.505 mmol, 1.4 equiv) Oxalylchlorid in 2 ml CH₂Cl₂ wird auf —78°C gekühlt und 79 mg (1.011 mmol, 12.8 equiv) DMSO addiert. Nach 5 min wird eine Lösung aus 89 mg (0.361 mmol) des Alkohols 26 in 1 ml CH₂Cl₂ zugetropft. Man läßt 30 min bei —78°C rühren und addiert dann 161 mg (1.589 mmol, 4.4 equiv) NEt₃. Man ersetzt das —78°C Kältebad durch ein 30°C-Bad und läßt eine wittere Stunde rühren. Anschließend wird mit 5.2 ml Pentan verdünnt, mit 3.4 ml einer 1 M wäßrigen NaHSO₄-Lösung und 3 mal mit je 3.4 ml Wasser gewaschen, über MgSO₄ getrocknet und eingeengt. Der Rückstand wird mit Pentan: Diethylether — 2:1 säulenchromatographisch gereinigt. Man erhält 77 mg (0.315 mmol) des Aldehyds 4, entsprechend einer Ausbeute von 87%.

Allgemeine Daten: C₁₃H₂₈O₂Si, FG = 244.45 g/mol

13C-NMR (100 MHz, CDCl₃): 205.24 (d), 62.81 (t), 46.30 (d), 32.73 (t), 30.25 (t), 25.93 (q), 23.25 (t), 18.33 (s), 13.25 (q),

-5.32 (a).

Synthese von Segment 2

Abkürzungen:

Arbeitsvorschriften zur Synthese von Segment 8

3-[(t-Butyldimethylsilyl)oxy)-propanal 5

Synthese durch Monosilylierung von 1,3-Propandiol und anschließende Swern-Oxidation des entstandenen 55 3-[(t-Butyldimethylsilyl)oxy]-1-propanols. Allgemeine Daten: C₃H₂₀O₂Si; FG = 188.36; CAS-Nr. [89922-82-7]

 13 C-NMR (100 MHz, CDCl₃): d = 202.05 (d), 57.42 (t), 46.58 (t), 25.82 (q), 18.23 (s), -5.43 (q).

1-[(t-Butyldimethylsilyl)oxy]-3-hydroxy-4-methyl-4-penten 27

60

Zu 443 mg Mg-Drehspänen (18.2 mmol) und 1.5 ml abs. Tetrahydrofuran (THF) unter N2 werden 0.2 ml 2-Brompropen gegeben, so daß die Grignardreaktion anspringt. Es wird unter gelegentlicher Kühlung eine Lösung von 1.7 ml 2-Brompropen (insgesamt 22 mmol) in 6 ml abs. Tetrahydrofuran langsam zugetropft, bis alle Magnesium-Späne gelöst sind. Zu der noch warmen Mischung wird eine Lösung von 2.862 g 5 (15.2 mmol) in 6 ml 65 abs. THF getropft. Es wird 6 h bei RT gerührt. Danach gibt man 25 ml ges. NH4Cl-Lsg. zu der Reaktionslösung und läßt 10 min rühren. Die Mischung wird in 30 ml ges. NH4Cl-Lsg. gegossen und zweimal mit Ether extrahiert. Die vereinigten org. Phasen werden je einmal mit ges. NH4Cl-Lsg. und ges. NaCl-Lsg. gewaschen. Man trocknet

über MgSO₄, engt im Vakuum ein und reinigt flashchromatographisch (Ether : Pentan = 1 : 6). Man erhält 2.749 g 27 (11.9 mmol; 79% d. Th.) als farbloses Öl. Allgemeine Daten: C₁2H26O₂Si; FG = 230.43

¹³C-NMR (100 MHz, CDCl₃): d = 147.10 (s), 110.39 (t), 75.21 (d), 62.17 (t), 36.79 (t), 25.89 (q), 18.41 (s), -5.49 (q), -5.53 (q).

(S)-1-[(t-Butyldimethylsilyl)oxy]-3-hydroxy-4-methyl-4-penten 11

Man löst 600 mg 2 (2.60 mmol) und 91.5 mg (—)-Diisopropyltartrat (0.391 mmol) unter N₂ in 10.4 ml abs. CH₂Cl₂ und versetzt mit 180 mg gepulvertem, frisch aktiviertem Molsieb. Als interner Standard für die GC werden 100 ml n-Decan dazugegeben. Man kühlt auf —20°C ab und gibt unter Rühren 74 mg Titan(IV)-isopropylat (0.260 mmol) dazu. Nach 30 min. wird ein aliquoter Teil von etwa 4 Tropfen entnommen und bei 0°C mit einer Mischung von je etwa 0.15 ml Ether und Eisen(II)-sulfat-Zitronensäure-Lösung (s. unten) aufgearbeitet. Die org. Phase dient als to-Probe für die GC. Man gibt 610 ml einer ca. 3 M-Lösung von t-Butylhydroperoxid in Isooctan (1.82 mmol) dazu. Die Reaktionsmischung wird im Kühlschrank bei —22°C aufbewahrt. Ein- bis zweimal täglich werden Proben entnommen und wie oben aufgearbeitet. Die jeweilige Konzentration von 11 wird gaschromatographisch bestimmt. Nach 118 h wird die Reaktion bei etwa 50%-iger Umsetzung von 27 abgebrochen. Bei —20°C wird eine frisch angesetzte, auf 0°C gekühlte Lösung von 3.3 g Eisen(II)-sulfat-heptahydrat und 1.1 g Zitronensäuremonohydrat in 10 ml dest. Wasser dazugegeben. Nach 20 min kräftigem Rühren ohne weitere Kühlung wird die Mischung dreimal mit CH₂Cl₂ extrahiert. Die ges. org. Phasen werden auf ca. 10 ml eingeengt und bei 0°C 30 min. lang mit 3 ml NaOH-Lsg. (30% in ges. NaCl-Lsg) gerührt. Es wird wiederum dreimal mit CH₂Cl₂ extrahiert, und die vereinigten org. Phasen werden mit ges. NaCl-Lsg. gewaschen, über MgSO₄ getrocknet und eingeengt.

Flashchromatographische Reinigung (Ether: Pentan = 1:6) liefert 274 mg 11 (1.19 mmol; 46% des Eduktes)

als farbloses Öl.

35

60

Allgemeine Daten: $C_{12}H_{26}O_2Si$; FG = 230.43

(c = 1, CHCl₃), [a]_D = -4.6°; ee = 90% (berechnet durch Integration der olefinischen ¹H-NMR-Signale sowie des ¹H-NMR-Signals der C-4-Methylprotonen der diastereomeren Reaktionsprodukte von 11 mit S(+)-a-Methoxy-a-trifluor-methylphenylessigsäurechlorid, S(+)-MTPA-Cl).

Die absolute Konfiguration des überwiegenden Enantiomers wurde nach der Methode von MOSHER durch Vergleich der ¹H-NMR-Spektren der Reaktionsprodukte von 11 mit S(+)-MTPA—Cl bzw. R(-)-MTPA—Cl bestimmt.

(S)-3-Benzyloxy-1-[(t-butyldimethylsilyl)oxy]-4-methyl-4-penten 28

70 mg einer Suspension von 35% Kaliumhydrid in Mineralöl (0.609 mmol) werden unter N_2 mit 0.5 ml abs. THF versetzt und auf 0°C gekühlt. Man gibt 1.5 ml Benzylbromid (12.6 mmol) dazu. Unter Rühren wird eine Lösung von 117 mg 11 (0.508 mmol) und 3 mg Tetra-n-butylammoniumiodid (8 mmol) in 1 ml abs. THF dazugetropft. Nach 15 min läßt man auf RT erwärmen. Es wird 19 h gerührt, danach werden 8 ml ges. NH4Cl-Lsg. eingespritzt. Die Mischung wird zweimal mit Ether extrahiert, die vereinigten org. Phasen werden zweimal mit ges. NaCl-Lsg. und einmal mit Wasser gewaschen und über MgSO4 getrocknet. Nach dem Einengen am Rotationsverdampfer wird der Hauptteil des noch vorhandenen Benzylbromides bei RT im Hochvakuum abgezogen. Flashchromatographische Reinigung (Ether : Petrolether = 1:100) liefert 96 mg 28 (0.299 mmol; 59% d.Th.) als farbloses Öl.

Allgemeine Daten: $C_{19}H_{32}O_{2}Si$, FG = 320.54¹³C-NMR (100 MHz, CDCl₃): d = 144.70 (s), 138.87 (s), 128.33 (d), 127.78 (d), 127.40 (d), 113.54 (t), 80.03 (d), 70.07 (t), 59.71 (t), 37.18 (t), 25.97 (q), 18.30 (s), 16.75 (q), -5.28 (q), -5.31 (q).

(S)-3-Benzyloxy-5-[(t-butyldimethylsilyl)oxy]-2-pentanon 9

Zu einer Mischung aus 1.5 ml THF und 1.5 ml Wasser werden 38 mg 28 (118 mmol) gegeben. 48 mg einer Lsg. von 2.5% OSO4 in t-Butanol (4.7 mmol) werden mit 0.5 ml THF gemischt und dazugetropft. Es wird 5 min gerührt; dann werden 127 mg NalO4 (590 mmol) dazugegeben. Nach 12 h kräftigem Rühren bei RT wird die Reaktionsmischung in 20 ml Ether gegossen und mit 5 ml Wasser verdünnt. Man extrahiert zweimal mit Ether, trocknet die vereinigten org. Phasen über MgSO4 und engt ein. Flashchromatographische Reinigung (Ether: Pentan = 1:4) liefert 14 mg 9 (43.4 mmol; 37% d.Th.) als graubraunes Öl.

Aligemeine Daten: $C_{18}H_{30}O_3Si$; FG = 322.53 ^{13}C -NMR (100 MHz, CDCl₃): d = 211.00 (s), 137.67 (s), 128.51 (d), 127.94 (d), 127.90 (d), 82.00 (d), 72.59 (t), 58.68 (t), 35.23 (t), 25.94 (q), 25.68 (q), 18.30 (s), -5.38 (q), -5.43 (q).

4-Hydroxymethyl-2-methylthiazol 29

Die Verbindung 29 wird durch Ringschluß von L-Cystein-methylester-hydrochlorid mit Acetaldehyd, anschließender Dehydrierung über MnO₂ und Reduktion der Methylestergruppe durch LAH hergestellt. Allgemeine Daten: C₂H7NOS; FG = 129.19; CAS-Nr. [76632-23-0]

¹³C-NMR (50 MHz, CDCl₃): d = 167 (s), 156.0(s), 114.4 (d), 60.5 (t), 19.0 (q).

4-Brommethyl-2-methylthiazol 30

Man löst 60 mg 29 (0.464 mmol) in 1 ml abs. Ether und gibt unter Rühren 47 mg Triphenylphosphin (0.511 mmol) und 169 mg Tetrabrommethan (0.511 mmol) dazu. Nach 16 h Rühren (RT) wird der Niederschlag abfiltriert und mit Ether gewaschen. Das Filtrat wird eingeengt und flashchromato-graphisch gereinigt (Ether: Pentan = 1:5). Man erhält 33 mg 30 (0.172 mmol; 37% d.Th.) als helles bräunliches Öl. Allgemeine Daten: C₅H₆BrNS; FG = 192.08

¹³C-NMR (100 MHz, CDCl₃): d = 166.91 (s), 151.63 (s), 117.25 (d), 27.11 (t), 19.25 (q).

Verbindung 10

150 mg 1(0.78 mmol) und 300 ml Triethylphosphit (1.75 mmol) werden 1.5 Stunden lang auf 160°C erhitzt. Nach dem Abkühlen wird das überschüssige Triethylphosphit im Vakuum abdestilliert. Flashchromatographische Reinigung (Ether/Methanol = 19:1) liefert 173 mg 10 (89% d. Th.) als schwach gelbliches Öl.

13C-NMR (100 MHz, CDCl₃): d = 165.44 (s), 145.96 (ds, ²J(C,P)=8.2 Hz), 115.67 (dd, ³J(C,P)=7.4 Hz), 62.19 (dt, ²C, ²J(C,P)=6.4 Hz), 29.35 (dt, ¹J(C,P)=141 Hz), 19.05 (q), 16.35 (dq, ²C, ³J(C,P)=6.0 Hz).

(Anmerkung: Bei den zweifachen Angaben zur Signalmultiplizität bezieht sich das führende Zeichen auf die im Spektrum sichtbare durch C,P-Kopplung verursachte Multiplizität und das folgende Zeichen auf die durch C,H-Kopplung verursachte, im Standardspektrum unsichtbare Multiplizität.)

(S,4E)-3-Benzyloxy-1-(tert.butyldimethylsilyloxy)-4-methyl-5-(2-methyl-5-(2-methylthiazo-4-yl)-pent-4-en 8

Unter N₂ werden 33 mg 10 (132 mmol) in 2 ml abs. Tetrahydrofuran (THF) gelöst und auf -78°C gekühlt. Man tropft 78 ml n-BuLi-Lsg. (15% in Hexan; 125 mmol) dazu und läßt 45 min rühren. Anschließend wird bei -78°C eine Lösung von 35 mg Methylketon 9 (109 mmol) in 1 ml abs. THF dazugegeben. Nach langsamer 25 Erwärmung auf RT läßt man noch 40 h rühren und gibt dann 10 ml ges. NH₄Cl-Lsg. zu der Reaktionsmischung. Es wird dreimal mit je 15 ml Ether extrahiert. Die vereinigten org. Phasen werden zweimal mit wenig Wasser und einmal mit ges. NaCl-Lsg. gewaschen. Nach dem Trocknen über MgSO₄ wird das Lösungsmittel am Rotationsverdampfer abdestilliert. Flashchromatographische Reinigung (Pentan-/Dichlormethan = 1:1, dann 1:2) liefert 17 mg (38% d. Th.) als farbloses Ö18.

13C-NMR (100 MHz, CDCl₃): d = 164.4 (s), 152.90 (s), 139.74 (s), 138.84 (s), 128.33 (d, 2 C), 127.77 (d, 2 C), 127.41 (d), 121.33 (d), 115.67 (d), 82.00 (d), 70.30 (t), 59.69 (t), 37.58 (t), 25.98 (q, 3 C), 19.26 (q), 18.30 (s), 13.44 (q), -5.25 (q), -5.31 (q).

Darstellung von
(4S,6S)-10-(tert-Butyldimethylsilyoxy)-2-(2,2-dimethyl-[1,3]-dioxan-4-yl)-5-hydroxy-2,4,6-trimethyl-decan-3-on
80

Zu einer Lösung von 23 mg Diisopropylamin (0.227 mmol, leq.) in ml Tetrahydrofuran (THF) werden bei 0°C 142 ml (0.227 mmol, 1 Äquivalente) einer 1.6 M Lösung von n-BuLi in Hexan zugetropft und 30 Minuten bei 0°C gerührt, bevor dann auf -78°C heruntergekühlt wird. Nun werden 49 mg (0.227 mmol, 1 eq.) (S)-2-(2,2-dimethyl-[1,3]-dioxan-4-yl-2-methyl-pentan-3-on 3, gelöst in 1 ml THF langsam zugetropft. Die Lösung wird 35 min. bei -78°C gerührt. Anschließend werden 55 mg (0.224 mmol, 099 eq.) (S)-6-(tert-Butyldimethylsilyoxy)-2-methylhexanal 4 zugetropft und 1 h bei -78°C gerührt. Die Reaktion wird durch Zugabe von gesättigter NH4Cl-Lösung gestoppt und auf RT erwärmt. Die wäßrige Phase wird mit Ether extrahiert, die vereinigten organischen Phasen über MgSO4 getrocknet und das Lösungsmittel am Rotationsverdampfer abdestilliert. Der Rückstand wird säulenchromatographisch mit Pentan: Diethylether = 2:1 gereinigt. Man erhält 49 mg (0.107 mmol, 48%) (4S,6S)-10-(tert-Butyldimethylsilyoxy)-2-(2,2-dimethyl-[1,3] dioxan-4-yl)-5-hydroxy-2,4,6-trimethyl-decan-3-on 80 des Aldolprodukts als farbloses Öl.

 13 C-NMR (50 MHz, C_6D_6): 98.50 (s), 74.93 (d), 74.65 (d), 63.25 (t), 59.70 (t), 51.56 (s), 41.70 (d), 35.82 (d), 33,67 (t), 50.31.05 (t), 30.01 (q), 26.17 (q), 25.37 (t), 23.32 (t), 21.53 (q), 19.01 (q), 18,69 (q), 18,51 (s), 15.63 (q), 9.63 (q).

Gemäß konventioneller Methoden wird der Benzylether hergestellt, um 81 zu erhalten; es können hier auch andere Hydroxylschutzgruppen verwendet werden.

10

Die Stufenfolge bis 86 ist aus dem Stand der Technik zu entnehmen, konventionelle Schutzgruppenchemie.

Durch Oxidation, z. B. Pyridiniumdichromat wird die Carbonsäure 87 erhalten

DE 196 36 343

. :

15

35

40

45

50

55

60

65

Die Veresterung zu 2 erfolgt hier beispielsweise mit DMAP/DCCI (Angew. Chem. 90, (1978), S. 556).

Die Erfindung betrifft auch Stereoisomere der Verbindungen gemäß Ansprüche 1-5, wie diese üblicherweise innerhalb der Synthese anfallen. Ebenso Derivate der Verbindungen gemäß Ansprüche 1 -- 5, die an den Hydroxyl-, Carbonyl- oder Carboxylgruppen andere Schutzgruppen tragen, die gemäß Methoden aus dem Stand der Technik herstellbar sind.

Patentansprüche

1.2-(2,2-Dimethyl-[1,3]-dioxan-4-yl)-2-methyl-pentan-3-on 3.
2.6-[(tert.-Butyldimethylsilyl)oxy]-2-methyl-hexanal 4.
3.(S,4E)-3-Benzyloxy-1-(tert.butyldimethylsilyloxy)-4-methyl-5-(2-ethylthiazol-4-yl)-pent-4-en 8.

(4\$,6\$)-10 (tert.Butyldimethylsilyloxy)-2-(2,2-dimethyl-[1,3]-dioxan-4-yl)-5-hydroxy-2,4,6,-trimethyl-decan-3-on 80.

 3S,6R,7S,8S)-7-Benzyloxy-3-(tert.-butyldimethylsilyloxy)-12 (tert.-butyldiphenylsilyloxy)-4,4,6,8-tetramethyl-5-oxo-dodecansaure 87.

6. Stereoisomere der Verbindungen gemäß Ansprüche 1-5.