Компьютерная математика

Лабораторная работа №:

	1.	Нахождение характеристического полинома произвольной квадратной матрицы	ПО			
методу	иетоду Лаверрье (MatLab)2					
	2.	Найти все собственные значения матрицы 3 × 3 (Python)	2			
		ки				

1. Нахождение характеристического полинома произвольной квадратной матрицы по методу Лаверрье (MatLab)

Разрешается использование встроенных функций умножения, возведения в степень и др. (Демидович и Марон 1966) Глава 12, §8, стр. 417-419.

Тестовые примеры:

Входные данные (матрица):	Выходные данные (полином):
[5,4;3,-2]	[1, -3, -22]
[4, -4, 0; 3, 1, 3; 1, 2, -3]	[1, -2, -5, 84]
[3,4,-1,-1;-1,-3,1,-1;-2,-4,4,2;-1,0,-5,0]	[1, -4,6,39, -38]
[-6.5, 7.8, 8.1; 1.6, 2.4, -9.1; -8.1, 3.1, -1]	[1,5.1,69.84, -617.293]

2. Найти максимальное собственное значение матрицы 3 × 3 (Python)

Разрешается использование встроенных функций умножения и возведения в степень из стандартных библиотек Python.

Точность 0.001 определяется по среднему арифметическому от разницы значений на текущей итерации и предыдущей.

*При желании, второе и третье собственные значения можно найти реализацией любого из рассказанных методов. За выполнение можно зачесть любое из заданий предыдущих лабораторных.

(Демидович и Марон 1966) Глава 12, §11, стр. 421-428; §13, стр. 431-434.

Тестовые примеры:

Входные данные (матрица):	Выходные данные (λ_1) :
[[2.0,1.0,-4.0],[-3.0,4.0,0.0],[-3.0,-1.0,8.0]]	10.056
[[1.0, -3.0, -2.0], [-1.0, 4.0, 4.0], [-2.0, 3.0, 6.0]]	9.4245
[[-1.0,7.0,2.0], [9.0,8.0,1.0], [5.0,2.0,7.0]]	13.573
[[-10.0,1.0,-1.0],[-4.0,-8.0,-1.0],[-2.0,-5.0,-9.0]]	-12.307

Ссылки

Демидович, Борис Павлович, и Исаак Абрамович Марон. *Основы вычислительной математики*. Москва: Наука, 1966.