(11) **EP 1 364 960 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 26.11.2003 Bulletin 2003/48

(21) Application number: 02711294.5

(22) Date of filing: 04.02.2002

(51) Int CI.7: **C07K 5/062**, C07K 5/065, C07K 5/078, C07K 14/745, G01N 33/15, G01N 33/68, G06F 17/50

(86) International application number: **PCT/JP02/00883**

(87) International publication number: WO 02/062829 (15.08.2002 Gazette 2002/33)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 02.02.2001 JP 2001027474

(71) Applicant: CHUGAI SEIYAKU KABUSHIKI KAISHA Tokyo, 115-8543 (JP)

(72) Inventors:

- SHIRAISHI, Takuya, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)
- KADONO, Shojiro, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)

 HARAMURA, Masayuki, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)

 SATO, Haruhiko c/o Chugai Seiyaku Kabushiki Kaisha Gotenba-shi, Shizuoka 412-8513 (JP)

 KOZONO, Toshiro, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)

 KOGA, Takaki, c/o Chugai Seiyaku Kabushiki Kaisha Gotenba-shi, Shizuoka 412-8513 (JP)

 SAKAMOTO, Akihisa, c/o Chugai Seiyaku K.K. Gotenba-shi, Shizuoka 412-8513 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) PEPTIDE DERIVATIVES

(57) A compound of Formula (1):

wherein

R₁ represents an amidinophenyl group, etc.;

R₂ represents a hydrogen atom, etc.;

R₃ represents a carbamoylalkyl group, etc.;

R₄ represents a hydrogen atom, etc.; R₅ represents a benzyl group, etc.;

R₆ represents a hydrogen atom, etc.; and

R₇ represents an alkylsulfonyl group, etc.

A crystal of a complex between factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor. A medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, obtainable by X-ray crystal structure analysis of the crystal. A method for computationally designing a low-molecular weight reversible factor VIIa inhibitor using the coordinate data.

Description

20

25

30

40

45

50

TECHNICAL FIELD

[0001] The present invention relates to peptide derivatives having an inhibitory activity against blood coagulation factor VIIa.

BACKGROUND ART

[0002] Blood coagulation is a host defense mechanism provoked in response to vascular injury and/or foreign stimulation. Blood coagulation involves 15 factors including 12 proteinaceous coagulation factors in plasma, along with calcium ion, tissue factor and phospholipid (platelet-derived). This reaction is mediated by a cascade mechanism, in which a series of protease activations occurs successively on the membrane of platelets aggregated at a site of injury or damaged endothelial cells.

[0003] The blood coagulation cascade is divided into intrinsic and extrinsic pathways. It is called extrinsic blood coagulation when it occurs with the aid of tissue factor present in tissues, while it is called intrinsic blood coagulation when it occurs without the aid of tissue factor.

[0004] Intrinsic blood coagulation is initiated by the contact of blood coagulation factor XII in plasma with the surface of a negatively-charged solid phase or the like. Upon adsorption onto the surface, factor XII is converted through limited hydrolysis into activated factor XII (XIIa), an active protease. In turn, factor XIIa causes the limited hydrolysis of factor XI into activated factor XI (XIa), an active protease. After such a cascade of protease activations, the final protease thrombin causes the limited hydrolysis of fibrinogen into fibrin, leading to the completion of blood coagulation. In downstream reactions after the activation of factor XI, a number of coagulation factors are assembled into complexes to facilitate coagulation factor localization at a site of hemostasis and to ensure efficient activation reactions. Namely, a tenase complex is assembled from phospholipids, factor VIIIa, factor IXa, factor X and Ca²⁺, while a prothrombinase complex is assembled from phospholipids, factor Va, factor Xa, prothrombin and Ca²⁺, resulting in significant promotion of prothrombin activation.

[0005] Extrinsic blood coagulation is initiated by the formation of a complex between factor VIIa and tissue factor. This complex between factor VIIa and tissue factor will join the intrinsic pathway at the stage of factor X and IX activation. **[0006]** In general, extrinsic blood coagulation is reported to be important for hypercoagulation and physiological coagulation under pathological conditions.

[0007] Examples of known anticoagulants include a thrombin inhibitor such as heparin, as well as warfarin. However, since a thrombin inhibitor acts on downstream reactions of the blood coagulation cascade and hence cannot control the consumption of coagulation factors that lead to thrombin generation upon excess inhibition of coagulation, such a thrombin inhibitor involves a problem of hemorrhage tendency in clinical use. Likewise, warfarin inhibits the production of many blood coagulation factors and also involves a problem of hemorrhage tendency in clinical use, as in the case of a thrombin inhibitor.

[0008] As mentioned above, factor VIIa is located upstream in the extrinsic pathway and hence an inhibitor against factor VIIa will not affect the intrinsic coagulation pathway. That is, such an inhibitor will be able to leave the resistance against hemorrhage. This suggests that a factor VIIa inhibitor is expected to reduce the hemorrhage tendency, a side effect of existing anticoagulants. Thus, a factor VIIa inhibitor is expected to be effective in preventing or treating pathological conditions associated with the extrinsic coagulation pathway, e.g., chronic thrombosis (more specifically, post-operative deep vein thrombosis, post-PTCA restenosis, DIC (disseminated intravascular coagulation), cardioembolic strokes, cardiac infarction and cerebral infarction).

[0009] To date, some compounds have been reported as factor VIIa inhibitors (see, e.g., WO00/41531, WO00/35886, WO99/41231, EP921116A, WO00/15658, WO00/30646, WO00/58346).

[0010] However, all of these compounds are insufficient to have an inhibitory activity against factor VIIa or a selective inhibitory activity against extrinsic blood coagulation; there is a need to develop an agent having an improved inhibitory activity or an improved selective inhibitory activity.

[0011] Recent studies on enzyme inhibitors have tended to employ computational procedures, in which a three-dimensional enzyme model based on X-ray crystal structure analysis or the like is displayed on the screen of a computer to design a candidate compound which may have an inhibitory activity or to perform computer-aided virtual screening. Factor VIIa (hereinafter also referred to as "FVIIa") has also been studied by X-ray structure analysis to determine its three-dimensional structure in free form, in complex with soluble tissue factor (this complex being hereinafter also referred to as "factor VIIa/soluble tissue factor" or "FVIIa/sTF), and in complex with a protein inhibitor (Nature, 380, 41-46, 1996; J. Mol. Biol, 285, 2089-2104, 1999; Proc Natl Acad Sci U S A., 96, 8925-8930; J Struct Biol., 127, 213-223, 1999; Nature, 404, 465-470, 2000).

[0012] However, computational virtual docking techniques result in inaccurate estimation at present (Guidebook on

Molecular Modeling Drug Design, 129-133, 1996, ACADEMIC PRESS); on the other hand, an enzyme molecule frequently undergoes an inhibitor brinding-induced conformational change called induced fit (Guidebook on Molecular Modeling Drug Design, 133-134, 1996, ACADEMIC PRESS). For computer-aided design of inhibitors, it is therefore most desirable to perform X-ray structure analysis on each inhibitor or its structurally similar inhibitor in complex with an enzyme to clarify the details of the binding mode between inhibitor and enzyme at the atomic level. In all previously reported crystals containing factor VIIa, however, irreversible inhibitors or protein inhibitors occupy the active sites of factor VIIa, which may be used as inhibitor-binding sites. Such crystals cannot be used for X-ray crystal structure analysis of a complex between factor VIIa and a low-molecular weight reversible inhibitor (e.g., having a molecular weight less than 1000). Generally, protein crystallization usually requires high purity. A problem of protease cleavage often arises in purifying such high-purity proteins (Crystallization of Nucleic Acids and Proteins, A Practical Approach, 34, 1992, IRL PRESS). In particular, a problem of self-cleavage arises in purifying and crystallizing a protease such as factor VIIa. For this reason, an irreversible inhibitor is often used in purification and crystallization because once binding occurs, the irreversible inhibitor will not be released from the protease and allows complete prevention of selfcleavage during purification and crystallization. However, in the case of a complex with a low-molecular weight reversible inhibitor, it involves technical difficulties because there is no guarantee that self-cleavage is completely prevented during crystallization. Indeed, there has been no report showing the crystallization or three-dimensional structure of a complex between factor VIIa and a low-molecular weight reversible factor VIIa inhibitor.

DISCLOSURE OF THE INVENTION

[0013] An object of the present invention is to provide a peptide derivative useful as a medicament, which has an inhibitory activity against blood coagulation factor VIIa or which has an excellent selective inhibitory effect on extrinsic blood coagulation.

[0014] Another object of the present invention is to provide a crystal which can be used for X-ray crystal analysis to clarify the three-dimensional structure of a complex between factor VIIa/soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, as well as a method for preparing the crystal. Yet another object of the present invention is to provide a method for designing a novel low-molecular weight reversible factor VIIa inhibitor having an excellent specific or selective inhibitory activity for factor VIIa by using three-dimensional structure information of the complex crystal, as well as a low-molecular weight reversible factor VIIa inhibitor designed by the method.

[0015] As a result of extensive and intensive efforts, the inventors of the present invention found that a peptide derivative of Formula (1) had an inhibitory activity against factor VIIa or a selective inhibitory effect on extrinsic blood coagulation, which led to the completion of the invention.

[0016] Namely, the present invention provides a compound of Formula (1):

35

40

5

10

15

20

25

30

wherein

R₁ represents a group selected from the following formulae:

50

55

[wherein R₈ represents an amino group, an aminomethyl group or

10

5

15

20

25

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acyl group or an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety, R_{10} represents an amino group, one of X and Y represents =CH- and the other represents =N-)];

R₂ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

R₃ represents:

-\(\)

or

30

[wherein m represents an integer of 1 to 6, and R₁₁ represents:

35

40

45

(wherein R₁₂ represents a hydrogen atom or a linear or branched C₁-C₃ alkyl group) or

50

55

 $\rm R_4$ represents a hydrogen atom or a linear or branched $\rm C_1\text{-}C_6$ alkyl group;

 R_5 represents a linear or branched C_1 - C_6 -alkyl group or - CH_2 - R_{13} (wherein R_{13} represents an optionally substituted aryl group or an optionally substituted heterocyclic group);

 $\rm R_{6}$ represents a hydrogen atom or a linear or branched $\rm C_{1}\text{-}C_{6}$ alkyl group; and

 R_7 represents an optionally substituted linear or branched C_1 - C_6 alkyl group or -SO₂- R_{14} (wherein R_{14} represents an optionally substituted linear or branched C_1 - C_8 alkyl group)

or a tautomer or enantiomer of the compound, or a hydrate or pharmaceutically acceptable salt thereof.

[0017] The present invention also provides a pharmaceutical composition comprising a compound of Formula (1).

Further, the present invention provides an antithrombotic agent comprising the compound. Furthermore, the present invention provides a blood coagulation factor VIIa inhibitor comprising the compound.

[0018] In addition, the present invention provides a crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined above).

[0019] Further, the present invention provides a method for preparing a crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, which comprises the following steps (i) to (iii):

- (i) preparing human factor VIIa/human soluble tissue factor, which is co-crystallizable with the low-molecular weight reversible factor VIIa inhibitor;
 - (ii) preparing a concentrated sample for crystallization to add the low-molecular weight reversible factor VIIa inhibitor, and
 - (iii) obtaining the crystal of the complex between human factor VIIa/human soluble tissue factor and the low-molecular weight reversible factor VIIa inhibitor from the concentrated sample for crystallization prepared in (ii) to add a seed crystal of a complex between a low-molecular weight irreversible or reverdible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined above).
- [0020] In addition, the present invention provides a medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, wherein said data are obtainable by performing X-ray crystal structure analysis on the above crystal prepared for the complex between human factor VIIa/human soluble tissue factor and the low-molecular weight reversible factor VIIa inhibitor.
- [0021] Further, the present invention provides a method for computationally designing a low-molecular weight reversible factor VIIa inhibitor using the above coordinate data. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Asp60 side chain, Tyr94 side chain and Thr98 main chain of the human factor VIIa H chain. In another embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with Lys192 side chain of the human factor VIIa H chain. In yet another embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Val170E, Gly170F, Asp170G, Ser170H, Pro170I and Gln217 of the human factor VIIa H chain. In yet another embodiment, the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with the S4 subsite of the human factor VIIa H chain through a hole extending from the S4 site to the S4 subsite.
 - **[0022]** Furthermore, the present invention provides a low-molecular weight reversible factor VIIa inhibitor designed by the above method. In one embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the following Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa:

40 Class [A-1]:

5

10

15

20

25

30

35

45

55

$$H_2N$$
 H_2N
 X_1
 X_2
 X_3
 X_4
 X_2
 X_3

(wherein X₁ represents O or NH, and X₂ represents a hydrogen atom or a methyl group) or Class [A-2]:

(wherein R₂₃ represents a 6 or 5-membered aromatic ring containing a heteroatom(s)).

[0023] In another embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite of human factor VIIa:

Class [B-1]:

5

25 Class [B-2]:

Class [B-3]:

40

50

$$\xi - R_{25} - R_{24} \qquad \xi - R_{25}$$

(wherein R_{24} represents the same partial structures define as Class [B-2], and R_{25} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)) or Class [B-4]:

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]).

[0024] In vet another embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the following Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site of human factor VIIa:

Class [C-1]:

10

5

$$R_{28}$$

$$\begin{cases}
X_3 \\
R_{28}
\end{cases}$$

$$R_{28}$$

20

25

35

40

15

$$R_{28}$$
 X_3 $\begin{cases} R_{28}$ X_3

(wherein X_3 represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom (s)) or

Class [C-2]:

30 X₄ Z₇ Z₇

X₇=X₈

(wherein X₄ represents NH, S or O, and X₅, X₆, X₇, X₈, X₉ and X₁₀ each independently represent N or CH).

[0025] In yet another embodiment, the low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa, any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite, and any one of the partial structures shown in the above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site.

BRIEF DESCRIPTION OF DRAWINGS

⁴⁵ [0026]

Figure 1 shows the three-dimensional conformation of the binding sites between human factor VIIa and Compound (1).

Figure 2 shows a schematic view of the binding sites between human factor VIIa and Compound (1).

Figure 3 shows the S4 site of human factor VIIa upon binding to D-Phe-Phe-Arg-cmk (left) or Compound (1) (right)

BEST MODE FOR CARRYING OUT THE INVENTION

[0027] In the definition of a compound of Formula (1), the following group defined as R₁:

55

preferably has the following formula:

5

10

15

20

25

30

35

40

45

50

55

wherein R₈ preferably represents the following formula:

N R₉

[0028] Examples of the acyl group defined as R₉ in the formula for R₈:

include alkylcarbonyl groups such as a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group, a pivaloyl group, a caproyl group and a phenylacetyl group; alkenylcarbonyl groups such as an acryloyl group, a propioloyl group, a methacryloyl group, a crotonoyl group and an isocrotonoyl group; and arylcarbonyl groups such as a benzoyl group. Preferred is an alkylcarbonyl group having a linear or branched C_1 - C_6 alkyl as its alkyl moiety. Particularly preferred are an acetyl group, a propionyl group, a butyryl group, an isobutyryl group and an isovaleryl group.

[0029] The alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety, defined as R_9 in the formula for R_8 :

is preferably an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_4 alkyl as its alkyl moiety (wherein examples of a substituent include a phenyl group). Particularly preferred are a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group and a benzyloxycarbonyl group.

[0030] In the present invention, when expressed as "optionally substituted" or when several substitutions are possible for a given group or moiety, it is meant that the group or moiety may be substituted with one or more substituents.

[0031] R_9 in the formula for R_8 :

R₉

is preferably a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isovaleryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group.

[0032] The following group defined as R₁:

preferably has the following formula:

[0033] The following group defined as R₁:

15

20

5

10

preferably has the following formula:

25

30

[0034] The following group defined as R₁:

35

40

preferably has the following formula:

45

[0035] The following group defined as R₁:

50

$$N$$
 NH_2

55

preferably has the following formula:

$$N$$
 NH_2
 NH_2

[0036] The following group defined as R₁:

10

5

15

preferably has the following formula:

20

[0037] The following group defined as R₁:

25

30

preferably has the following formula:

35

40

45

50

[0038] The linear or branched C_1 - C_6 alkyl group defined as R_2 is preferably a linear or branched C_1 - C_3 alkyl group, and particularly a methyl group.

[0039] The following group defined as R₃:

preferably has the following formula:

m in the group $-(CH_2)_m - R_{11}$ defined as R_3 is preferably an integer of 1 to 3, and particularly 2. **[0040]** R_{11} in the group $-(CH_2)_m - R_{11}$ defined as R_3 is preferably $-CONH_2$.

or

10

5

15

20

(wherein R_{12} preferably represents a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly represents a methyl group).

[0041] The linear or branched C_1 - C_6 alkyl group defined as R_4 is preferably a linear or branched C_1 - C_3 alkyl group, and particularly a methyl group.

[0042] The linear or branched C_1 - C_6 alkyl group defined as R_5 is preferably a linear or branched C_1 - C_4 alkyl group. [0043] The optionally substituted aryl group as R_{13} in the group - CH_2 - R_{13} defined as R_5 is preferably a group of the following formula:

25

30

[wherein R_{15} preferably represents a hydrogen atom, an optionally substituted anyl group (wherein examples of the aryl group include a phenyl group and a naphthyl group, with a phenyl group being preferred, and examples of a substituent include a linear or branched C_1 - C_3 alkoxy group, a linear or branched C_1 - C_3 alkyl group which may be substituted with a halogen atom, a nitro group and an amino group), a C_1 - C_3 alkyl group which may be substituted with a halogen atom, a linear or branched C_1 - C_3 alkoxy group, a halogen atom, an arylcarbonyl group (wherein examples of the aryl group include a phenyl group and a naphthyl group, with a phenyl group being preferred), an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, a nitro group, or an amino group, and particularly represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or an amino group] or

40

35

45

50

(wherein R_{16} preferably represents a hydrogen atom or a linear or branched C_1 - C_6 alkyl group, and particularly represents a hydrogen atom).

[0044] The optionally substituted heterocyclic group as R_{13} in the group -CH $_2$ -R $_{13}$ defined as R_5 contains a 5- to 10-membered monocyclic or condensed ring having at least one nitrogen atom, oxygen atom and/or sulfur atom as a ring member. Examples include furan, thiophene, pyran, pyrrole, pyridine, indole, benzofuran, benzothiophene, benzopyran and benzothiopyran. Examples of a substituent on the optionally substituted heterocyclic group include those listed below for R_{17} and R_{18} .

[0045] The optionally substituted heterocyclic group as R_{13} in the group -CH $_2$ -R $_{13}$ defined as R_5 is preferably a group of the following formula:

In the above formula, R_{17} preferably represents a hydrogen atom, a hydroxy group, a linear or branched C_1 - C_6 alkoxy group, -O-(CH_2)_n-OH (wherein n represents an integer of 1 to 5), -O-(CH_2)_p-COOH (wherein p represents an integer of 1 to 5), -O-(CH_2)_q-NH₂ (wherein q represents an integer of 1 to 5),

(wherein R_{19} represents a hydrogen atom, a hydroxy group, a carboxyl group, a linear or branched C_1 - C_6 alkyl group, a halogen atom, a linear or branched C_1 - C_6 alkoxy group, or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety), or -OSO₂- R_{20} (wherein R_{20} represents a linear or branched C_1 - C_6 alkyl group or a benzyl group).

[0046] Above all, R_{17} is preferably a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C_1 - C_3 alkoxy group, -O-(CH_2)_n-OH (wherein n represents an integer of 1 to 3), -O-(CH_2)_p-COOH (wherein p represents an integer of 1 to 3), -OSO₂- R_{20} (wherein R_{20} particularly represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group, or a 3- or 4-carboxybenzyloxy group.

[0047] R_{18} preferably represents a hydrogen atom, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkylsulfonyl group, or an optionally substituted arylsulfonyl group (wherein the aryl group is preferably a phenyl group, and examples of a substituent include a linear or branched C_1 - C_3 alkoxy group, a linear or branched C_1 - C_3 alkyl group which may be substituted with a halogen atom, a nitro group and an amino group), and particularly represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group.

[0048] The linear or branched C_1 - C_6 alkyl group defined as R_6 is preferably a linear or branched C_1 - C_3 alkyl group. [0049] Examples of a substituent on the optionally substituted linear or branched C_1 - C_6 alkyl group defined as R_7 include a carboxyl group, an amino group, a mono- or di-substituted alkylamino group having a C_1 - C_6 alkyl as its alkyl moiety, and an alkylcarbonylamino group having a C_1 - C_6 alkyl as its alkyl moiety.

[0050] The alkyl moiety of the optionally substituted linear or branched C_1 - C_6 alkyl group defined as R_7 is preferably a linear or branched C_1 - C_4 alkyl group.

[0051] The optionally substituted linear or branched C_1 - C_6 alkyl group defined as R_7 is preferably a linear or branched C_1 - C_4 alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 3, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a linear or branched C_1 - C_3 alkyl group or an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)].

[0052] Above all, in the formula:

5

10

15

20

25

30

40

45

50

55

k is particularly an integer of 0 to 2, and R_{21} is preferably a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group).

[0053] Examples of a substituent on the optionally substituted linear or branched C_1 - C_8 alkyl group defined as R_{14} in the group -SO₂- R_{14} defined as R_7 include (a) a carboxyl group, (b) an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, and (c) a phenyl group which may be substituted with a carboxyl group or the like

[0054] The alkyl moiety of the optionally substituted linear or branched C_1 - C_8 alkyl group defined as R_{14} is preferably a linear or branched C_1 - C_6 alkyl group.

[0055] The optionally substituted linear or branched C_1 - C_8 alkyl group defined as R_{14} is preferably (a) an optionally substituted linear or branched C_1 - C_6 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety), or (b) - CH_2 - R_{23} (wherein R_{23} represents an optionally substituted phenyl group, which may be substituted with a carboxyl group or the like).

[0056] In particular, R_{14} is preferably a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C_1 - C_4 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety).

[0057] R₁ is preferably selected from the following formulae:

15

20

25

10

5

[wherein R₈ represents:

35

40

45

30

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acyl group, or an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety)].

[0058] Above all, R₁ is particularly selected from the following formulae:

50

[wherein R₈ represents:

(wherein R₉ represents a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isobutyryl group, an isobutyryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group)].

[0059] R_2 is preferably a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly a hydrogen atom or a methyl group.

[0060] R₃ is preferably a group of the following formula:

or

5

30

[wherein m represents an integer of 1 to 3, and R₁₁ represents:

CONH₂,

(wherein R₁₂ represents a hydrogen atom or a methyl group) or

35 [0061] Also preferred is a compound, in which R₃ represents a linear or branched C₁-C₆ alkyl group or -(CH₂)_m-R₁₁ (wherein m and R₁₁ are as defined above).

[0062] Also preferred is a compound, in which R₃ represents:

and R₇ represents -SO₂-R₁₄ (wherein R₁₄ is as defined above).

[0063] In particular, R₃ is preferably a group of the following formula:

-(CH₂)₂CONH₂,

55

45

or

10

5

[0064] R₄ is preferably a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly a hydrogen atom or a methyl group.

[0065] R_5 is preferably a linear or branched C_1 - C_6 alkyl group or - CH_2 - R_{13} [wherein R_{13} represents a group selected from the following formulae:

20

25

15

(wherein

 R_{15} represents a hydrogen atom, an optionally substituted aryl group, a C_1 - C_3 alkyl group which may be substituted with a halogen atom, a linear or branched C_1 - C_3 alkoxy group, a halogen atom, an arylcarbonyl group, an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, a nitro group, or an amino group;

R₁₆ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

 R_{17} represents a hydrogen atom, a hydroxy group, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkoxy group, -O-(CH_2)_n-OH (wherein n represents an integer of 1 to 5), -O-(CH_2)_p-COOH (wherein p represents an integer of 1 to 5), -O-(CH_2)_q-NH₂ (wherein q represents an integer of 1 to 5),

35

40

45

30

(wherein R_{19} represents a hydrogen atom, a hydroxy group, a carboxyl group, a linear or branched C_1 - C_6 alkyl group, a halogen atom, a linear or branched C_1 - C_6 alkoxy group, or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety), or -OSO₂- R_{20} (wherein R_{20} represents a linear or branched C_1 - C_6 alkyl group or a benzyl group); and

 R_{18} represents a hydrogen atom, a linear or branched C_1 - C_6 alkyl group, a linear or branched C_1 - C_6 alkylsulfonyl group, or an optionally substituted arylsulfonyl group)].

[0066] In particular, R_5 is preferably a linear or branched C_1 - C_4 alkyl group or - CH_2 - R_{13} [wherein R_{13} represents a group selected from the following formulae:

50

55

(wherein

R₁₅ represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or

an amino group;

10

15

20

25

30

35

40

45

50

55

 R_{17} represents a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C_1 - C_3 alkoxy group, -O-(CH₂)_n-OH (wherein n represents an integer of 1 to 3), -O-(CH₂)_p-COOH (wherein p represents an integer of 1 to 3), -O-(CH₂)_q-NH₂ (wherein q represents an integer of 1 to 3), -OSO₂- R_{20} (wherein R_{20} represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group; or a 3- or 4-carboxybenzyloxy group; and

R₁₈ represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group)].

[0067] R_6 is preferably a hydrogen atom or a linear or branched C_1 - C_3 alkyl group, and particularly a hydrogen atom or a methyl group.

[0068] R₇ is preferably a linear or branched C₁-C₆ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 3, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a linear or branched C_1 - C_3 alkyl group or an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)] or

[wherein R₁₄ represents:

(i) an optionally substituted linear or branched C_1 - C_6 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety); or (ii) -CH₂-R₂₃ (wherein R₂₃ represents an optionally substituted phenyl group)].

[0069] Above all, R₇ is particularly a linear or branched C₁-C₄ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 2, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group)] or

[wherein R_{14} represents a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C_1 - C_4 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)].

[0070] Having the definition given above for each symbol, preferred is a compound of Formula (1) wherein R₁ is a group selected from the following formulae:

[wherein R₈ represents:

5

20

40

45

50

55

10 Rg N

(wherein R_g represents a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isovaleryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group)];

R₂ is a hydrogen atom or a methyl group;

 R_3 is a group of the following formula:

 25 - $(CH_2)_2CONH_2$,

or *35*

R₄ is a hydrogen atom or a methyl group;

 R_5 is a linear or branched C_1 - C_4 alkyl group or -CH $_2$ - R_{13} [wherein R_{13} represents a group selected from the following formulae:

(wherein

R₁₅ represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or an amino group:

R₁₇ represents a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C₁-C₃ alkoxy group,

-O- $(CH_2)_n$ -OH (wherein n represents an integer of 1 to 3), -O- $(CH_2)_p$ -COOH (wherein p represents an integer of 1 to 3), -O- $(CH_2)_q$ -NH₂ (wherein q represents an integer of 1 to 3), -OSO₂-R₂₀ (wherein R₂₀ represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group; and 4-carboxybenzyloxy group; and

R₁₈ represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group)];

R₆ is a hydrogen atom or a methyl group; and

5

10

15

25

30

35

40

45

50

55

R₇ is a linear or branched C₁-C₄ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 2, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a methyl group or an acetyl group)] or

[wherein R₁₄ represents a benzyl group, a 2-, 3- or 4-carboxybenzyl group, or an optionally substituted linear or branched C₁-C₄ alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C₁-C₃ alkyl as its alkyl moiety)].

Above all, particularly preferred is a compound selected from the following formulae:

15

20

25

30

35

40

45

50

55

[0071] Compounds of Formula (1) have enantiomers; all individual enantiomers and mixtures thereof are intended to be within the scope of the present invention. Above all, preferred are compounds having the S-configuration at the carbon atom attached to R_5 in Formula (1).

[0072] The compounds of the present invention may also be obtained as hydrates.

[0073] Examples of a salt-forming acid include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as acetic acid, oxalic acid, maleic acid, fumaric acid, citric acid, tartaric acid, methanesulfonic acid and trifluoroacetic acid.

[0074] Each compound of Formula (1) may be administered as a pharmaceutical composition in any dosage form suitable for the intended route of administration, in combination with one or more pharmaceutically acceptable diluents, wetting agents, emulsifiers, dispersants, auxiliary agents, preservatives, buffers, binders, stabilizers and the like. It may be administered parenterally or orally.

[0075] The dose of the compound can be determined as appropriate for the physique, age and physical condition of a patient, severity of the disease to be treated, elapsed time after onset of the disease, etc. For example, it is usually used at a dose of 1 to 1000 mg/day/person for oral administration and at a dose of 0.1 to 100 mg/day/person for parenteral administration (by intravenous, intramuscular or subcutaneous route).

[0076] The compounds of Formula (1) can be prepared as shown in the following Reaction Schemes 1 to 6.

Reaction Scheme 1

Reaction Scheme 2

Reaction Scheme 2

Reaction Scheme 3

Reaction Scheme 3.

Reaction Scheme 4

Reaction Scheme 5

5

10

15

Reaction Scheme 5

20

Reaction Scheme 6

[0077]

25

50

55

[0078] In Reaction Schemes 1 to 6, the substituents R_1 , R_2 , and R_n are each as defined above, and R_1 , R_2 , and R_n represent the respective corresponding protected forms of R_1 , R_2 , and R_n . Examples of protecting groups include those described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985) or PROTECTING GROUP

IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC, 1991), e.g., a t-butoxycarbonyl (Boc) group, a benzyloxycarbonyl (Cbz) group, a 9-fluorenylmethoxycarbonyl (Fmoc) group.

Reaction Scheme 6

[0079] Likewise, P represents a commonly-used protecting group, such as those described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985) or PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991).

[0080] X represents a halogen atom such as chloride, bromide or iodide.

[0081] Starting materials in the individual reaction steps are known per se or can be prepared in a known manner.

[0082] All reactions in the individual reaction steps can be performed in a known manner.

[0083] Likewise, other starting materials and individual reagents used here are also known per se or can be prepared in a known manner.

[0084] The preparation of the compounds according to the present invention will be illustrated in more detail, in line with the above-mentioned reaction schemes.

Reaction Scheme 1

10

15

20

25

30

40

45

50

[0085] Intermediate (3) may be obtained through condensation between Starting material (1) and Reagent 2 (listed in Table A-1 to Table A-34; this reagent being commercially available or easy to synthesize by known synthesis procedures).

[0086] The condensation used here may be accomplished as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985), for example, by commonly-used active ester method, acid anhydride method, azide method or acid chloride method, or using various condensing agents. Examples of a condensing agent available for use include commonly-used reagents such as those described in Peptide Synthesis Handbook (Novabiochem, 1998), e.g., N,N'-dicyclohexylcarbodiimide (DCC), water-soluble carbodiimide (WSCI), carbonyldiimidazole (CDI), diphenylphosphorylazide (DPPA), Bop reagent, Pybop reagent, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and 2-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dimethylformamide, dichloromethane) at room temperature or under cooling or heating conditions.

[0087] Intermediate (4) may be obtained from Intermediate (3) through appropriate amino deprotection, for example, as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985). The reaction may be carried out in a routine manner with or without an appropriate solvent (e.g., dichloromethane, dimethylformamide) at room temperature or under cooling or heating conditions.

[0088] Intermediate (6) may be obtained through condensation between Intermediate (4) and Reagent 5 (listed in Table A-1 to Table A-34; this reagent being commercially available or easy to synthesize by known synthesis procedures) in the same manner as described above.

[0089] Intermediate (7) may be obtained from Intermediate (6) through amino deprotection as described above. The reaction may be carried out in a routine manner with or without an appropriate solvent (e.g., dichloromethane, dimethylformamide) at room temperature or under cooling or heating conditions.

[0090] Intermediate (9) may be obtained from Intermediate (7) through commonly-used alkylation, acylation or sulfonylation with Reagent 8 (listed in Table A-1 to Table A-34; this reagent being commercially available or easy to synthesize by known synthesis procedures). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dimethylformamide, dichloromethane) at room temperature or under cooling or heating conditions.

[0091] Compound (10) and Intermediate (11) may be derived from Intermediate (9) in a known manner as described in JP 09-509937 A, the Chemistry of Amidines and Imidates (JOHN WILEY & SONS, INC, 1991), etc.

[0092] For example, Compound (10) may be obtained by treating Intermediate (9) with a strong acid and then reacting it with an ammonium salt or ammonia. The reaction may be carried out in a routine manner with an appropriate solvent (e.g., methanol, ethanol) at room temperature or under cooling or heating conditions.

[0093] Compound (10) may also be obtained from Intermediate (11) through appropriate deprotection, for example, as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985). The reaction may be carried out in a routine manner with or without an appropriate solvent (e.g., dichloromethane, dimethylformamide, water, ethanol) at room temperature or under cooling or heating conditions.

Reaction Scheme 2

[0094] Intermediate (14) may be obtained from Starting material (12) through commonly-used alkylation, acylation or sulfonylation with Reagent 13 (this reagent being an alkyl halide, an acyl chloride or sulfonyl chloride, which is commercially available or easy to synthesize by known synthesis procedures). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dimethylformamide, dichloromethane) at room temperature or under cooling or heating conditions.

[0095] Intermediate (16) may be obtained through condensation between Intermediate (14) and Reagent 15 (this

reagent being a naturally-occurring or modified amino acid, which is commercially available or easy to synthesize by known synthesis procedures) in the same manner as described above.

[0096] Intermediate (17) may be obtained from Intermediate (16) through appropriate deprotection. The reaction may be carried out in a routine manner with an appropriate solvent (e.g., water, methanol, ethanol) at room temperature or under cooling or heating conditions.

[0097] Intermediate (19) may be obtained through condensation between Intermediate (17) and Reagent 18 (listed in Table A-27; this reagent being commercially available or easy to synthesize by known synthesis procedures), while Compound (20) may be obtained through condensation between Intermediate (17) and Reagent 18 in the same manner as described above.

10 [0098] Compound (20) may also be obtained from Intermediate (19) through appropriate deprotection.

Reaction Scheme 3

15

25

40

[0099] Compound (21) may be obtained from Intermediate (9) through appropriate deprotection.

[0100] Compound (23) may be obtained through reaction between Intermediate (21) and Reagent 22 (listed in Tables A-28 to 29; this reagent being commercially available or easy to synthesize by known synthesis procedures). The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dichloromethane, dimethylfonnamide, water, tetrahydrofuran) at room temperature or under cooling or heating conditions.

[0101] Intermediate (24) and Compound (25) may be obtained through amidination as described above.

20 [0102] Intermediate (25) may also be obtained from Intermediate (24) through appropriate deprotection.

Reaction Scheme 4

[0103] Intermediate (26) may be obtained from Intermediate (9) in a known manner, for example, according to the method of Lee, et al. (Bioorg. Med. Chem. Lett. 869-876, 6, 1998).

[0104] Intermediate (28) may be obtained from Intermediate (26) and Reagent 27 (this reagent being a compound of Formula: NH_2 - R_9 (wherein R_9 is as defined above), which is commercially available or easy to synthesize by known synthesis procedures) in a known manner, for example, according to the method of Lee, et al. (Bioorg. Med. Chem. Lett. 869-876, **6**, 1998).

[0105] Intermediate (30) may be obtined from Intermediate (9) and Reagent 29 (this reagent being a compound of Formula: NH₂-R₉ (wherein R₉ is as defined above), which is commercially available or easy to synthesize by known synthesis procedures) in a known manner, for example, according to the method of Trucker, et al. (Bioorg. Med. Chem. 601-616, 8, 2000).

[0106] Intermediate (32) may be obtained from Intermediate (11) and Reagent 31 (this reagent being an amine protecting group, such as a Boc group or a Cbz group), as described in Principle and Experiments of Peptide Synthesis (Maruzen Co., Ltd., 1985) or PROTECTING GROUP IN ORGANIC SYNTHESIS SECOND EDITION (JOHN WILEY & SONS, INC 1991). Examples of Reagent (31) include a t-butyloxycarbonyl group, a benzyloxycarbonyl group, an acetyl group and a 9-fluorenylmethyloxycarbonyl group. The reaction may be carried out in a routine manner with an appropriate solvent (e.g., dichloromethane, dimethylformamide) at room temperature or under cooling or heating conditions

[0107] Compound (33) may be obtained from Intermediate (28), (30) or (32) through appropriate deprotection.

Reaction Scheme 5

[0108] Intermediate (34) may be obtained in the same manner as described above for Intermediate (9).

[0109] Intermediate (36) may be obtained from Intermediate (34) and Reagent 35 (listed in Tables A-30 to 31; this reagent being commercially available or easy to synthesize by known synthesis procedures) through the Suzuki reaction in the presence of a palladium catalyst, for example, according to the method of Ellman, et al. (J. Am. Chem. Soc. 11171-11172, 161, 1994). This reaction may be carried out in a solvent commonly used for the Suzuki reaction, e.g., an ether solvent, an aromatic hydrocarbon solvent, acetonitrile, dimethylformamide, or a mixed solvent thereof with water, preferably in tetrahydrofuran, more preferably in a mixed solvent of tetrahydrofuran with water. Examples of a reagent available for use as a palladium catalyst include tetrakis(triphenylphosphine)palladium, palladium acetate, dichlorobis(benzonitrile)palladium and tris(dibenzylideneacetone)dipalladium, with tetrakis(triphenylphosphine)palladium and tris(dibenzylideneacetone)dipalladium being preferred.

55 [0110] Compound (37) may be obtained from Intermediate (36) through amidination as described above.

Reaction Scheme 6

10

20

25

30

35

40

45

55

[0111] Intermediate (38) may be obtained according to the above Reaction Scheme 1.

[0112] Intermediate (40) may be obtained from Intermediate (38) through commonly-used alkylation with Reagent 39 (listed in Tables A-32 to 34). The reaction may be carried out in a routine manner in the presence of an appropriate base (e.g., sodium hydride, cesium carbonate, potassium carbonate, sodium hydroxide) using an appropriate solvent (e.g., dimethylformamide, tetrahydrofuran) at room temperature or under cooling or heating conditions.

[0113] Intermediate (41) may be obtained from Intermediate (40) through deprotection as described above.

[0114] Intermediate (42) may be obtained from Intermediate (41) through alkylation, acylation or sulfonylation with Reagent 8, as described above.

[0115] Intermediate (43) may be obtained from Intermediate (42) through amidination as described above.

[0116] Compound (44) may be obtained from Intermediate (43) through appropriate deprotection.

[0117] As used herein, the term "low-molecular weight factor VIIa inhibitor" refers to an agent having an inhibitory activity against factor VIIa. This term encompasses every compound having such a property, above all, synthetic or natural low-molecular weight compounds or peptide derivatives with a molecular weight less than 1000. The inhibitory activity against factor VIIa may be determined, for example, as described below in the Test Example.

[0118] The term "irreversible factor VIIa inhibitor" refers to a factor VIIa inhibitor having a group capable of reacting with factor VIIa, which makes covalent bond with the factor VIIa. In the case of a serine protease such as factor VIIa, a chloromethylketone group may be used as a group capable of reacting with the protease to form a covalent bond with the Ser residue at the active center of the enzyme, resulting in irreversible inhibition. The term "reversible factor VIIa inhibitor" refers to a factor VIIa inhibitor whose binding to factor VIIa is not irreversible. The term "low-molecular weight reversible factor VIIa inhibitor" refers to a low-molecular weight factor VIIa inhibitor whose binding to factor VIIa is not irreversible.

[0119] To overcome the problems, the inventors of the present invention have established a method for preparing a crystal of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. The resulting crystal can be used for X-ray crystal structure analysis to provide accurate three-dimensional structure information about the binding mode between the low-molecular weight reversible factor VIIa inhibitor and human factor VIIa. Upon processing by a computer, this three-dimensional structure information allows a visual and numerical representation of the binding mode between the low-molecular weight reversible inhibitor and factor VIIa. This is advantageous in evaluating interactions important for binding to factor VIIa.

[0120] Starting from the structure of the complex between the low-molecular weight reversible VIIa inhibitor and factor VIIa, which is determined by X-ray structure analysis, it is further possible to design a low-molecular weight reversible inhibitor highly specific to factor VIIa by making virtual modifications to the inhibitor molecule. Such computational virtual evaluation is advantageous in facilitating the molecular design of low-molecular weight reversible inhibitors because it requires much less time than actual compound synthesis.

[0121] It is also possible to identify accurate sites allowing interactions important for the improvement of specificity to factor VIIa, upon analyzing the relationship between factor VIIa-inhibiting activity or selectivity and the binding mode between a low-molecular weight reversible VIIa inhibitor and factor VIIa. Based on the thus confirmed information about interactions important for the specificity to factor VIIa, the low-molecular weight reversible inhibitor molecule can further be modified on a computer to have interactions important for the specificity to factor VIIa in a case where the binding mode between the inhibitor molecule and factor VIIa or its structurally similar serine protease (e.g., thrombin, trypsin, factor Xa) has been identified or estimated by X-ray crystal structure analysis and/or computer modeling. Although inhibitor-enzyme interactions are very complex processes and there is a limit to accuracy in now-available computational virtual evaluation alone, more efficient molecular design can be accomplished using such interactions whose effectiveness has been confirmed experimentally.

[Crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor]

[0122] This refers to a crystal composed of human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, which belongs to the orthorhombic system of space group $P2_12_12_1$ with unit cell parameters $a = 71.4 \text{ Å} \pm 5\%$, $b = 82.5 \text{ Å} \pm 5\%$, $c = 123.3 \text{ Å} \pm 5\%$ and $a = \beta = \gamma = 90^\circ$ and which contains one complex between human factor VIIa/human soluble tissue factor and the reversible factor VIIa inhibitor in the asymmetric unit.

[0123] In such a complex crystal, the low-molecular weight reversible factor VIIa inhibitor is preferably a compound of Formula (1) (wherein each symbol is as defined above).

[Method for crystallizing a complex between human factor VIIa/human soluble tissue factor and a reversible factor VIIa inhibitor]

[0124] Human factor VIIa used for crystallization may be prepared as follows. Human factor VII is expressed in cells transformed with a vector encoding human factor VII, purified by column chromatography and then converted into the active form, factor VIIa, which is further purified by column chromatography. Instead of this recombinant factor VIIa, a human FVIIa formulation (NovoSeven, Novo Nordisk Pharma Ltd.) may also be used after purification by column chromatography.

[0125] Human soluble tissue factor used for crystallization may be prepared by expression in appropriate cells or microorganism cells (particularly, E. coli cells) transformed with a vector encoding the extracellular domain of human tissue factor, and subsequent purification by column chromatography.

[0126] The thus prepared human factor VIIa and human soluble tissue factor may be mixed in the presence of benzamidine at an excess ratio of human soluble tissue factor to human factor VIIa, and then purified by gel filtration column chromatography with a benzamidine-free buffer to give a human factor VIIa/human soluble tissue factor complex. To this complex, a low-molecular weight reversible factor VIIa inhibitor of interest for structure analysis may be added at a concentration of around 0.5 mM or at saturation concentration (if less soluble), followed by ultrafiltration to give a concentrated sample for crystallization.

[0127] To prepare a crystal, the concentrated sample for crystallization may be subjected to vapor diffusion methods at a temperature of 25°C in a solution of 100 mM sodium cacodylate buffer (pH 5.0), 6% to 7.5% PEG4000, 5 mM CaCl₂ and 5% glycerol (Crystallization of Nucleic Acids and Proteins: A practical Approach, 82-90, 1992, IRL PRESS). During crystallization, it is necessary to add a seed solution prepared by crushing and diluting a crystal of a complex between a low-molecular weight irreversible or reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor in 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG4000 and 5 mM CaCl₂ using a homogenizer. About a month later, long rod crystals (maximum size: about 1.0 mm long \times 0.05 mm diameter) may be obtained for a complex between the low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. Crystallization procedures and solution conditions are not limited to those described above only. For example, crystallization may also be accomplished by static batch methods, free interface diffusion methods or dialysis methods, in addition to vapor diffusion methods.

[0128] In such a crystallization method, the low-molecular weight reversible factor VIIa inhibitor is preferably a compound of Formula (1) (wherein each symbol is as defined above).

[Medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor]

35 [0129] The coordinates of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor may be obtained by revealing the three-dimensional structure of this complex crystal using X-ray crystal structure analysis, one of the three-dimensional structure determination techniques. In this technique, a crystal is irradiated with monochromatized X-ray beams to collect the intensity data of diffraction spots, based on which the electron density in the crystal unit is calculated to determine the positions of individual atoms. The 40 three-dimensional positions of individual atoms and a variable parameter representing atomic thermal vibration called the temperature factor are refined to minimize the difference between calculated (Fc) and observed (Fo) diffraction intensity data, thereby giving the final coordinate data of the crystal structure. By way of illustration, the above-mentioned procedures is applied to the following compounds disclosed herein as examples for a low-molecular weight reversible factor VIIa inhibitor to prepare crystals of their respective complexes with factor VIIa/human soluble tissue factor, followed by X-ray crystal structure analysis to clarify their binding modes with factor VIIa.

50

45

5

10

20

25

30

5

$$NH_2$$
 NH_2
 N

15

20

25

30

35

40

45

50

55

[0130] Table 36 shows the coordinate data of a complex between Compound (1) and human factor VIIa/human soluble tissue factor, given in PDB format commonly used in the art for recording three-dimensional coordinates of proteins. In Table 36, the first line denotes the lattice type and symmetry of the crystal. The second and subsequent lines contain the structure coordinate data, including, from the left, atomic number, atom name, amino acid residue name, chain ID, amino acid residue number, X, Y, Z, occupancy, temperature factor, segment ID (equal to chain ID in this case) and atom type. The unit of coordinates is in Å. Amino acid residues are numbered on the basis of the residue number of the corresponding chymotrypsin amino acid residue, as described in Nature, vol. 380, pages 41-46, 1996. Factor VIIa are composed of two polypeptide chains: the longer one is herein referred to as the H chain and the shorter

[0131] In the present invention, a part of coordinate data is intended to mean partial data of structure coordinates obtained by X-ray crystal structure analysis, particularly the coordinate data covering a low-molecular weight reversible factor VIIa inhibitor and its surrounding residues, expressed in three-dimensional form. Likewise, Table 37 shows the coordinate data of a complex between Compound (2) and human factor VIIa/human soluble tissue factor, obtained by X-ray crystal structure analysis. The coordinate data shown in Table 37 is given in PDB format for residues located exclusively within 10 Å of Compound (2).

one as the L chain. In Table 36, chain ID indicates the following: H: factor VIIa H chain; L: factor VIIa L chain; T: soluble

tissue factor; C: calcium ion; W: water molecule or I: low-molecular weight reversible factor VIIa inhibitor.

[0132] A medium containing a part or all of coordinate data is intended to mean a computer memory or any disk device carrying a part or all of coordinate data in PDB format or equivalent information.

[Method for computationally designing a novel low-molecular weight reversible factor VIIa inhibitor using the analyzed coordinate data]

[0133] There are many computer programs for representing the three-dimensional structure of molecules such as proteins. When these software programs are combined with the structure coordinates obtained by X-ray crystal structure analysis, it is possible to make computer-aided visual representation of the structure of a complex between a lowmolecular weight reversible VIIa inhibitor and human factor VIIa/human soluble tissue factor, particularly the structure surrounding the low-molecular weight reversible factor VIIa inhibitor. This allows visual recognition of interactions between the low-molecular weight reversible factor VIIa inhibitor and human FVIIa. Figure 1 shows a three-dimensional view of Compound (1) bound to active site pockets of human factor VIIa. The peptide compound of the present invention including Compound (1) will bind to human factor VIIa at 4 sites, which are designated as S1 site, S2 site, S4 site and S1 subsite, respectively. Each active site pocket is composed of amino acid residues from the human factor VIIa H chain. Hereinafter, it is not specifically noted that amino acid residues constituting active sites are found in H chain. Figure 2 shows a schematic view of the binding mode, along with main amino acid residues of human factor VIIa used for constituting the individual sites. The peptide compound including Compound (1) will bind to these residues via hydrogen bonding, ionic bonding, as well as van der Waals interaction. As used herein, the term "hydrogen bonding" refers to an electric dipole-electric dipole interaction in the form of X-H...Y, established by sandwiching hydrogen between a X-H group (wherein X represents an electronegative group) and other electronegative group Y having an unshared electron pair. This term also encompasses an interaction between ion and dipole, one of which is positively or negatively charged at physiological pH. Typically, such an interaction occurs when X and Y are N or O. The term "ionic bonding" refers to an electrostatic interaction established between a group negatively charged at physiological pH (e.g., carboxylic acid) and a group positively charged at physiological pH (e.g., amidino or amine). The term "van der Waals interaction" refers to an interaction between any atoms, which serves as a weak attraction at an appropriate

distance apart, whereas it serves as a strong repulsion at a distance less than a threshold. Every atomic species has a value called the van der Waals radius. The strongest attraction is established when a distance between two atoms is the sum of their van der Waals radii.

[0134] In these software programs, it is also possible to make virtual modification of the structure of an inhibitor molecule and to make a rough energy estimation for the influence of the modified inhibitor molecule on its binding by calculating a value called the molecular force field energy. Starting from the structure coordinates determined by X-ray crystal structure analysis, it is further possible to design a novel inhibitor capable of establishing a stronger binding to human factor VIIa by making virtual modification of the inhibitor using such programs. Such strategy is advantageous in designing low-molecular weight reversible inhibitors specific to factor VIIa because it requires much less time for evaluation than actual compound synthesis. Examples of such computer programs include, but are not limited to, QUANTA, InsightII, CHARMM, Discover and Ludi (Accelrys Inc) as well as Sybyl (Tripos Inc).

10

15

20

25

30

35

40

45

55

[0135] In this way, virtual modifications and evaluations can be made on inhibitors using three-dimensional structure information. However, inhibitor-enzyme binding is a very complex process and there is a limit to accuracy in now-available virtual evaluation. For this reason, a plurality of low-molecular weight reversible factor VIIa inhibitors may be analyzed for the relationship between their factor VIIa-inhibiting activity or selectivity and their binding modes determined by X-ray crystal structure analysis in order to identify sites and interactions important for binding and specificity to human factor VIIa. The thus identified sites and interactions will in turn allow computer-aided design of a low-molecular weight reversible inhibitor specific to human factor VIIa. In this way, a problem of accuracy in computational virtual evaluation of the binding activity can be overcome using such experimentally confirmed information on binding modes.

[0136] Table 41 shows the hydrogen bonding between Compound (1) and S2 site of human factor VIIa. Compound (1) has an amide group at a position where it binds to the S2 site, through which hydrogen bonds are formed between its amino moiety and the side chain carboxylic acid of Asp60, the side chain hydroxy group of Tyr94 and the main chain carbonyl oxygen of Thr98. In addition, data in Table 38 indicate that the selectivity against thrombin is higher in low-molecular weight reversible factor VIIa inhibitors capable of hydrogen bonding with these amino acid residues at the S2 site than in factor VIIa inhibitors incapable of hydrogen bonding. These findings suggest that the establishment of such hydrogen bonding is advantageous in providing the specificity to human factor VIIa. Since Asp60 is negatively charged at physiological pH, the establishment of ionic bonding is also advantageous in providing the specificity to factor VIIa.

[0137] In view of the foregoing, efficient design can be achieved for an inhibitor highly specific to human factor VIIa by modifying the inhibitor structure to include a hydrogen-bearing nitrogen atom (e.g., an amide group, an amidino group, a guanidino group, aniline, amine) or a hydrogen-bearing oxygen atom (e.g., a hydroxy group) at a position capable of hydrogen bonding or ionic bonding with all or some of the side chain carboxylic acid of Asp60, the side chain hydroxy group of Tyr94 and the main chain carbonyl oxygen of Thr98, particularly with the side chain of Asp60. The molecular design may be accomplished such that a hydrogen-bondable atom of the introduced substituent is located at a distance of 2.5 to 3.5 Å from at least one of the side chain oxygen atom of Asp60, the side chain oxygen atom of Tyr94 and the main chain oxygen atom of Thr98. Likewise, an ionic bond may be introduced such that a positively-charged atom of the introduced substituent is located at a distance of 2.5 to 4.5 Å from the side chain oxygen atom of Asp60. Alternatively, after a structure coordinate of a complex between a molecule to be modified and factor VIIa or its structurally similar protease (e.g., thrombin, trypsin, factor Xa) by modeling or X-ray crystal structure analysis is fitted to the factor VIIa part of the structure coordinates of the complex between Compound (1) or (2) and human factor VIIa/human soluble tissue factor, it may allow to introduce a substituent, which has the atoms capable of hydrogen bonding at the overlap position of the amide group of Compound (1) or (2), into the molecule to be modified.

[0138] Tables 42 and 43 show the hydrogen and/or ionic bonding between Compound (1) or (2) and S1 subsite of human factor VIIa, respectively. Each of these inhibitors has a sulfonamide group and/or carboxylic acid at a position where it binds to the S1 subsite, through which a hydrogen or ionic bond is formed with the side chain amine group of Lys192. In addition, data in Table 39 indicate that higher selectivity against thrombin is given by factor VIIa inhibitors capable of hydrogen or ionic bonding with these amino acid residues at the S1 subsite, particularly by those having carboxylic acid. These findings suggest that the establishment of such hydrogen or ionic bonding is advantageous in providing the specificity to human factor VIIa.

[0139] In view of the foregoing, efficient design can be achieved for an inhibitor highly specific to human factor VIIa by modifying the inhibitor structure to include carboxylic acid or a biological equivalent thereof (e.g., sulfonic acid, sulfonamide, sulfonurea, tetrazole) at a position capable of hydrogen or ionic bonding with the side chain amino group of Lys192. The molecular design may be accomplished such that a hydrogen-bondable atom of the introduced substituent is located at a distance of 2.5 to 3.5 Å from the side chain nitrogen atom of Lys192. Likewise, an ionic bond may be introduced such that a negatively-charged atom of the introduced substituent is located at a distance of 2.5 to 4.5 Å from the side chain nitrogen atom of Lys192. Alternatively, after a structure coordinate of a complex between a molecule to be modified and factor VIIa or its structurally similar protease (e.g., thrombin, trypsin, factor Xa) by modeling

or X-ray crystal structure analysis is fitted to the factor VIIa part of the structure coordinates of the complex between Compound (1) or (2) and human factor VIIa/human soluble tissue factor, it may allow to introduce a substituent, which has the atoms capable of hydrogen or ionic bonding at the overlap position of the sulfonamide group of Compound (2) or the carboxylic acid moiety of Compound (1), into the molecule to be modified. Since the position of Lys192 will vary depending on the structure of a compound bound thereto, the molecule may also be modified to establish hydrogen or ionic bonding with each position of Lys 192 when the Compound (1) or the Compound (2) is bounded. Furthermore, taking into account the flexibility of Lys192, the above strategy may also be applied to the structure adjusted to ensure a stable position of the Lys192 side chain in light of molecular force field energy.

[0140] Tables 44 and 45 show the van der Waals interaction between Compound (1) or (2) and S4 site of human factor VIIa, respectively. These compounds establish van der Waals interactions and hydrophobic interactions with the Trp215 side chain, the Gly216 main chain, the Gln217 side chain, the Val170E side chain, the GlyI70F main chain, the Asp170G main chain, the Ser170H main and side chains, as well as the Pro170I side chain, among amino acid residues constituting the S4 site. In addition, data in Table 40 indicate that the selectivity against thrombin is higher in Compounds (1) and (2) than in compounds modified to have a smaller area for interactions with these amino acid residues. These findings suggest that the establishment of van der Waals and hydrophobic interactions with these amino acid residues, particularly with Val170E, Gly170F, Asp170G, Ser170H, Pro170I and Gln217, is advantageous in providing the specificity to human factor VIIa. As used herein, the term "hydrophobic interaction" refers to a phenomenon in which nonpolar groups (e.g., an alkyl group, a benzene ring) are associated in water. Water molecules surrounding such nonpolar groups are in low-entropy state and hence energetically unstable. For this reason, the nonpolar groups are associated and interacted with each other to give a smaller surface area in contact with water.

[0141] In view of the foregoing, efficient design can be achieved for an inhibitor highly specific to human factor VIIa by modifying the inhibitor structure to include a more hydrophobic group (e.g., a Bi-Phe group, a naphthyl group, an indole group) at a position capable of van der Waals and hydrophobic interactions with these amino acid residues. The molecular design may be accomplished such that atoms in the introduced substituent are located at a distance of 3.5 to 4.2 Å from atoms in these amino acid residues. Alternatively, after a structure coordinate of a complex between a molecule to be modified and factor VIIa or its structurally similar protease (e.g., thrombin, trypsin, factor Xa) by modeling or X-ray crystal structure analysis is fitted to the factor VIIa part of the structure coordinates of the complex between Compound (1) or (2) and human factor VIIa/human soluble tissue factor, it may allow to introduce a substituent, which has the hydrophobic atoms at the overlap position of the indole moiety of Compound (1) or the biphenyl moiety of Compound (2), into the molecule to be modified.

[0142] Figure 3 shows the molecular surface of the S4 site in factor VIIa upon binding to D-Phe-Phe-Arg chloromethylketone (Nature, 380, 41-46, 1996, PDB = 1DAN) or Compound (1). Upon binding to Compound (1), there appears a hole extendable to a space under the S4 site, which is not observed upon binding to D-Phe-Phe-Arg chloromethylketone. There has been no report showing such a hole or a compound resulting in such a hole. This behavior is caused by a change in the position of the Gln217 side chain when the indole ring of Compound (1) binds to a specific position in the S4 site. Under this hole, there is a space surrounded by the Cys168 side chain, the Ser170B side chain, the Ile176 side chain, the Cys182 side chain, the Trp 215 side chain, the Gly 216 main chain, the Gln 217 main and side chains, the His 224 main and side chains, the Phe225 main and side chains, the Gly 226 main chain, as well as the Val227 side chain. This space is hereinafter referred to as S4 subsite. By allowing a substituent to protrude through this hole, it is possible to establish hydrogen bonding, van der Waals interactions and hydrophobic interactions with these S4 subsite residues. When a comparison of three-dimensional structure is made with known blood coagulationrelated serine proteases including thrombin, none of these proteases has a space corresponding to the S4 subsite; the establishment of interactions with the S4 subsite is advantageous in providing the specificity to human factor VIIa. For example, in a case where Compound (1) is used as an initial model for molecular design, a substituent introduced at the 5-position of the indole moiety may be allowed to protrude through this hole toward the direction of the S4 subsite. [0143] In view of the foregoing, the compound structure can be modified to include a hydrophobic group (e.g., a benzene ring) at the position corresponding to the indole ring of Compound (1), thereby resulting in a hole extending to the S4 subsite. In addition, a substituent may be introduced in such a way as to protrude through this hole to establish hydrogen bonding, van der Waals interaction and hydrophobic interaction with the S4 subsite. These allow the design of an inhibitor highly specific to human factor VIIa.

[0144] In summary, a preferred low-molecular weight reversible factor VIIa inhibitor will interact with at least one of the S2 site, S1 subsite, S4 site and S4 subsite of human factor VIIa. More specifically, a preferred low-molecular weight reversible factor VIIa inhibitor comprises at least one of the partial structures shown in the following Class [A-1], [A-2], [B-1], [B-2], [B-3], [B-4], [C-1] or [C-2].

(A) The partial structures shown in the following Class [A-1] or [A-2] are preferred for interaction with the S2 site:

Class [A-1]:

10

20

25

30

35

45

$$H_2N$$
 H_2N
 X_1
 X_2
 X_3
 X_4
 X_4
 X_4
 X_5

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

$$\xi$$
 -----R₂₃---NH₂

(wherein R_{23} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)).

In Class [A-2], particularly preferred is a partial structure wherein R_{23} is a benzene ring, a pyridine ring or an imidazole ring.

(B) The partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] are preferred for interaction with the S1 subsite:

Class [B-1]:

5

10

15

20

25

30

35

40

45

50

55

Class [B-2]:

Class [B-3]:

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(wherein R₂₄ represents the same partial structures defined as Class [B-2], and R₂₅ represents a 6 or 5-membered aromatic ring containing a heteroatom(s), preferably represents a benzene ring) or Class [B-4]:

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]).

(C) The partial structures shown in the following Class [C-1] or [C-2] are preferred for interaction with the S4 site:

Class [C-1]:

$$R_{28}$$
 X_3 R_{28} X_3

(wherein X_3 represents O_1 NH or CH_2 , and R_{28} represents a 6 or 5-membered aromatic ring containing a heteroatom(s) Class [C-2]:

(wherein X_4 represents NH, S or O, and X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} each independently represent N or CH).

[0145] In Class [C-1], preferred are partial structures wherein R₂₈ is a benzene ring.

[0146] More specifically, a preferred low-molecular weight reversible factor VIIa inhibitor comprises: (1) any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site as well as any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite; (2) any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site as well as any one of the partial structures shown in the

above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site; or (3) any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite as well as any one of the partial structures shown in the above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site.

[0147] A particularly preferred low-molecular weight reversible factor VIIa inhibitor comprises any one of the partial structures shown in the above Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site, any one of the partial structures shown in the above Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite, and any one of the partial structures shown in the above Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site.

10

15

20

EXAMPLES

[0148] The present invention will be further described in the following Examples, which are not intended to limit the scope of the invention. To explain the utility of the compounds according to the present invention, some representative compounds are tested for their biological activities including FVIIa-inhibiting activity in the Test Example.

[0149] In the following Examples, conventional abbreviations are used, as shown below:

DMF = N, N-dimethylformamide;

HOBt = 1-hydroxybenzotriazole;

EDC HCI = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride;

Boc = tertiary-butoxycarbonyl;

Ac = acetyl;

Fmoc = 9-fluorenylmethoxycarbonyl; and

HPLC = high performance liquid chromatography.

25

30

40

45

[0150] NMR found in the physical property data refers to a nuclear magnetic resonance spectrum. The results are expressed as δ (delta) values in units of ppm, which are commonly used to represent chemical shifts. The measurement was carried out in the presence or absence of an internal standard (TMS; tetramethylsilane). Numerals in parentheses found next to the δ values indicate the number of hydrogen atoms, followed by the symbols s, d, t, q, m and br which represent singlet, doublet, triplet, quartet, multiplet and a broad absorption peak, respectively. Likewise, J represents a coupling constant.

[0151] MS refers to mass spectrometry. FAB and ESI are abbreviations for ionization techniques, Fast-Atom Bombardment Ionization and ElectroSpray Ionization, respectively.

35 Example 1

N1-4-Cyanobenzyl-N2-t-butoxycarbonyl-L-glutamide

[0152] To a solution of 4-cyanobenzylamine (1.6 g, 12.2 mmol) in DMF (20 ml), *t*-butoxycarbonyl-L-glutamine (2.0 g, 8.1 mmol), HOBt (1.4 g, 8.9 mmol) and EDC HCl (1.7 g, 8.9 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, water was added to the reaction mixture, which was then extracted with ethyl acetate. The ethyl acetate layer was washed sequentially with 10% aqueous citric acid, saturated aqueous sodium bicarbonate and saturated brine, and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give N¹-4-cyanobenzyl-N²-*t*-butoxycarbonyl-L-glutamide (2.9 g, 8.1 mmol; yield 100%).

H-NMR (CDCl₃) δ : 1.42 (9H, s), 1.87-2.55 (4H, m), 4.14-4.27 (1H, m), 4.49 (2H, d, J=6 Hz), 5.47-6.02 (2H, m), 7.38 (2H, d, J=8 Hz), 7.60 (2H, d, J=8 Hz)

Example 2

50

55

N1- 4-Cyanobenzyl-L-glutamide

[0153] To N¹-4-cyanobenzyl-N²-t-butoxycarbonyl-L-glutamide (2.9 g, 8.1 mmol), a 4N hydrochloric acid/ethyl acetate solution (20 ml) was added and stirred at room temperature under a nitrogen stream. After 1 hour, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:1) to give N¹-4-cyanobenzyl-L-glutamide (2.1 g, 8.1 mmol; yield 100%). H-NMR (CD₃OD) δ : 1.77-2.12 (2H, m), 2.32 (3H, t, J=7 Hz), 3.29-3.45 (4H, m), 4.49 (2H, s), 7.50 (2H, d, J=8 Hz), 7.71 (2H, d, J=8 Hz)

Example 3

1-(t-Butoxycarbonyl)-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0154] To a solution of N¹-4-cyanobenzyl-L-glutamide (300 mg, 1.2 mmol) and N-(9-fluorenylmethoxycarbonyl)-1-(t-butoxycarbonyl)-D-tryptophan (606 mg, 1.2 mmol) in DMF (5 ml), HOBt (176 mg, 1.2 mmol) and EDC HCl (221 mg, 1.2 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, water was added to the reaction mixture to precipitate N-(9-fluorenylmethoxycarbonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide, which was then collected by filtration, washed with water and dried. The resulting N-(9-fluorenylmethoxycarbonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide was dissolved in dichloromethane (40 ml), to which piperidine (10 ml) was then added and stirred at room temperature under a nitrogen stream. After 5 minutes, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:0, 10:1) to give 1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (650 mg, 1.2 mmol; yield 100%).

15 H-NMR (CDCl₃) δ: 1.67 (9H, s), 1.80-2.49 (4H, m), 3.13-3.33 (2H, m), 3.70-3.79 (1H, dd, *J*=4, 9 Hz), 4.40 (2H, d, *J*=6 Hz), 4.39-4.55 (1H, m), 5.62 (1H, brs), 6.14 (1H, brs), 7.20-7.67 (9H, m), 8.07-5.17 (2H, m)

Example 4

N-(Ethylsulfonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0155] To a solution of 1-(*t*-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (300 mg, 0.55 mmol) in DMF (10 ml), triethylamine (162 mg, 1.6 mmol) and ethanesulfonyl chloride (206 mg, 1.6 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, the solvent was distilled off under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1) to give N-(ethylsulfonyl) 1-(*t*-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (135 mg, 0.21 mmol; yield 38%).

H-NMR (CD₃OD) δ : 1.08 (3H, t, J=7 Hz), 1.70 (9H, s), 1.60-2.12 (4H, m), 2.75-3.34 (4H, m), 4.13-4.55 (4H, m), 7.24-7.78 (9H, m)

Example 5

N-(Ethylsulfonyl)-D-tryptophyl-N1-(4-amidinobenzyl)-L-glutamide

35 **[0156]**

25

30

40

45

[0157] N-(Ethylsulfonyl)-1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (135 mg, 0.21 mmol) was dissolved in saturated hydrogen chloride/ethanol solution (10 ml) and allowed to stand at room temperature for 20 hours. After the solvent was removed under reduced pressure, the resulting N-(ethylsulfonyl)-D-tryptophyl-N¹-(4-ethoxyimino-carbonylbenzyl)-L-glutamide was dissolved in ethanol (8 ml) and further dissolved in ammonium acetate (500 mg, 6.4 mmol) and saturated ammonia/ethanol solution (1.3 ml), followed by heating at reflux. After 1 hour, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:1) to give 4-amidino-[(S)-N-[(R)-N'-ethylsulfonyltryptophyl]glutaminyl]-aminomethylbenzene (94 mg, 0.17 mmol; yield 81%).

55 ESI+ 556 (M++1)

H-NMR (DMSO-d6) δ : 0.85 (3H, t, J=7 Hz), 1.65-2.03 (2H, m), 2.48-3.54 (6H, m), 4.12-4.43 (4H, m), 6.70-7.75 (9H, m), 7.95 (1H, brs), 8.43 (2H, brs)

Example 6

N-{[3-(Methoxycarbonyl)benzyl]sulfonyl}-1-(t-butoxycarbonyl)-D-tryptophyl-N1-(4-cyanobenzy)-L-glutamide

[0158] To a solution of 1-(t-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (350 mg, 0.64 mmol) in DMF (10 ml), triethylamine (194 mg, 1.9 mmol) and [3-(methoxycarbonyl)benzyl]sulfonyl chloride (477 mg, 1.9 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, the solvent was distilled off under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1) to give N-{[3-(methoxycarbonyl)benzyl]sulfonyl}-1-(t-butoxycarbonyl)-D-trypto-phyl-(4-cyanobenzyl)-L-glutamide (407 mg, 0.21 mmol; yield 84%).

H-NMR (CD₃OD) δ : 1.70 (9H, s), 1.75-2.15 (4H, m), 2.65-3.42 (2H, m), 3.92 (3H, s), 3.88-4.54 (6H, m), 7.23-8.21 (13H, m)

Example7

N-[(3-(Carboxybenzyl)sulfonyl]-D-tryptophyl-N1-(4-amidinobenzyl)-L-glutamide

[0159]

-

15

20

25

35

40

45

50

55

30

[0160] N-{[3-(Methoxycarbonyl]benzyl]sulfonyl}-1-(*t*-butoxycarbonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (407 mg, 0.21 mmol) was dissolved in saturated hydrogen chloride/ethanol solution (15 ml) and allowed to stand at room temperature for 20 hours. After the solvent was removed under reduced pressure, the resulting crude product was dissolved in ethanol (16 ml) and further dissolved in ammonium acetate (1 g, 12.8 mmol) and saturated ammonia/ ethanol solution (2.4 ml), followed by heating at reflux. After 1 hour, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane: methanol = 4:1, 1:1) to give a mixture of N-{[3-(methoxycarbonyl)benzyl]sulfonyl}-D-tryptophyl-N¹-(4-amidinobenzyl)-L-glutamide and N-{[3-(ethoxycarbonyl)-benzyl]sulfonyl}-D-tryptophyl-N¹-(4-amidinobenzyl)-L-glutamide. This mixture was dissolved in ethanol (2 ml), to which 2N aqueous sodium hydroxide (2 ml) was then added and stirred at room temperature. After 1 hour, the reaction mixture was adjusted to pH 6 with 1N aqueous hydrogen chloride and the precipitated product was collected by filtration. The resulting crude product was applied to preparative HPLC (YMC-pack ODS; gradient of 95% A/B to 45% A/B over 25 min, A = 0.1% TFA-H₂O, B = 0.1% TFA-CH₃CN) to give N-[(3-(carboxybenzyl)sulfonyl]-D-tryptophyl-N¹-(4-amidino-benzyl)-L-glutamide trifluoroacetate (68 mg, 0.088 mmol; yield 16%). ESI+ 662 (M¹+1)

H-NMR (DMSO-d6) δ: 1.64-2.02 (4H, m), 2.90-3.21 (2H, m), 3.89-4.41 (6H, m), 6.75-7.95 (13H, m)

Example 8

N-(Benzylsulfonyl)-D-isoleucine

[0161] To a solution of D-isoleucine (3 g, 22.9 mmol) in dioxane (184 ml), 1N aqueous sodium hydroxide (23 ml) and then benzylsulfonyl chloride (6 g, 34.4 mmol) were added and stirred at room temperature. After 3 hours, the reaction mixture was adjusted to pH 2 with 2N aqueous hydrogen chloride and then extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1, 4:1) to give N-(benzyl-sulfonyl)-D-isoleucine (6.3 g, 22.2 mmol; yield 97%).

H-NMR (CDCl₃) δ : 0.78-1.02 (6H, m), 1.05-1.60 (2H, m), 1.68-1.92 (1H, m), 3.85 (1H, dd, J=4, 7 Hz), 4.22-4.38 (2H, m), 5.17 (1H, d, J=9 Hz), 5.97 (1H, brs), 7.26-7.48 (5H, m)

Example 9

5

10

15

25

30

N-(Benzylsulfonyl)-D-isoleucyl-L-methionine methyl ester

[0162] To a solution of N-(benzylsulfonyl)-D-isoleucine (6.3 g, 22.2 mmol) and L-methionine methyl ester hydrochloride (6.7 g, 33.3 mmol) in dichloromethane (100 ml), HOBt (4.1 g, 26.6 mmol), EDC HCl (5.1 g, 1.2 mmol) and N-methylmorpholine (3.4 g, 33.3 mmol) were added and stirred at room temperature under a nitrogen stream After 12 hours, water was added to the reaction mixture, which was then extracted with ethyl acetate. The ethyl acetate layer was washed sequentially with 10% aqueous citric acid, saturated aqueous sodium bicarbonate and saturated brine, and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane) to give N-(benzylsulfonyl)-D-isoleucyl-L-methionine methyl ester (6.4 g, 14.9 mmol; yield 67%).

H-NMR (CD₃OD) δ : 0.92-1.02 (6H, m), 1.18-1.36 (1H, m), 1.62-1.88 (2H, m), 2.00-2.28 (2H, m), 2.12 (3H, s), 2.51-2.77 (2H, m), 3.71 (3H, s), 3.83 (1H, d, J=8 Hz), 4.32 (2H, q, J= 13 Hz), 4.68 (1H, dd, J=5, 9 Hz), 7.32-7.51 (5H, m)

20 Example 10

N-(Benzylsulfonyl)-D-tryptophyl-N1-(4-aminobenzyl)-L-methioninamide

[0163]

NH2 O HN SO

35

40

45

[0164] To a solution of N-(benzylsulfonyl)-D-isoleucyl-L-methionine methyl ester (6.4 g, 14.9 mmol) in ethanol (30 ml), 2N aqueous sodium hydroxide (30 ml) was added and stirred at room temperature. After 1 hour, the reaction mixture was adjusted to pH 2 with 2N aqueous hydrogen chloride and then extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give N- (benzylsulfonyl) -D-isoleucyl-L-methionine (6.2 g, 14.9 mmol; yield 100%).

[0165] To a solution of N-(benzylsulfonyl)-D-isoleucyl-L-methionine (100 mg, 0.24 mmol) and 4-aminobenzylamine (59 mg, 0.48 mmol) in dichloromethane (5 ml), HOBt (44 mg, 0.29 mmol) and EDC HCl (56 mg, 0.29 mmol) were added and stirred at room temperature under a nitrogen stream. After 12 hours, the reaction mixture was concentrated under reduced pressure and water was added to the residue. The precipitated product was collected by filtration, washed with water and then dried. The resulting crude product was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 10:1) to give N-(benzyl-sulfonyl)-D-tryptophyl-N¹-(4-aminobenzyl) -L-methiolinamide (108 mg, 0.21 mmol; yield 86%).

ESI+ 521 (M++1)
50 H-NMR (CD-OD)

H-NMR (CD₃OD) δ: 0.87-1.00 (6H, m), 1.09-1.28 (1H, m), 1.57-1.83 (2H, m), 1.86-2.26 (2H, m), 2.09 (3H, s), 2.43-2.69 (2H, m), 3.71 (3H, s), 4.13-4.32 (4H, m), 4.50-4.68 (2H, m), 6.64 (2H, d, *J*=8 Hz), 7.01 (2H, d, *J*=8 Hz), 7.32-7.49 (5H, m)

Example 11

55 N-(Propylsulfonyl) -D-isoleucyl-3-(methylamino-N¹-(4-cyanobenzyl)-L-alaninamide

[0166] To N-(propylsulfonyl)-D-isoleucyl-3-[(t-butoxycarbonyl)(methyl)amino]-N¹-(4-cyanobenzyl)-L-alaninamlde (1.6 g, 3 mmol), trifluoroacetic acid (10 ml) was added and stirred at room temperature under a nitrogen stream. After

1 hour, the reaction mixture was concentrated under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:0, 4:1) to give N-(propylsulfonyl) -D-isoleucyl-3-(methylamino)-N¹-(4-cyanobenzyl)-L-alaninamide (1.3 g, 2.9 mmol, yield 96%). ESI+ 452 (M+1)

H-NMR (CDCl₃) δ : 0.79-1.23 (10H, m), 1.46-1.95 (4H, m), 2.41 (3H, s), 2.52-3.81 (4H, m), 4.33-4.52 (4H, m), 7.36 (2H, d, J=8 Hz), 7.59 (2H, d, J=8 Hz)

Example 12

10 N-(Propylsulfonyl)-D-isoleucyl-3-[(aminocarbonyl)(methyl)-amino]-N1-(4-amidinobenzyl)-L-alaninamide

[0167]

5

15

20

25

30

40

45

O NH₂
H
N
NH
O HN
S
O
HN
NH₂

[0168] To a solution of N-(propylsulfonyl)-D-isoleucyl-3-(methylamino)-N¹-(4-cyanobenzyl)-L-alaninamide (500 mg, 1.0 mmol) in water (1.3 ml)/tetrahydrofuran (3 ml), potassium cyanate (243 mg, 3 mmol) was added under stirring at 50°C and then further stirred under the same conditions. After stirring for 3 hours, water was added to the reaction mixture, which was then extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give N-(propylsulfonyl)-D-isoleucyl-3-[(aminocarbonyl)(methyl)amino]-N¹-(4-cyanobenzyl)-L-alaninamide (430 mg, 0.87 mmol; yield 87%).

[0169] The resulting product was dissolved in saturated hydrogen chloride/ethanol solution (10 ml) and allowed to stand at room temperature for 20 hours. After the solvent was removed under reduced pressure, the resulting crude product was dissolved in saturated ammonia/ethanol solution (10 ml) and allowed to stand at room temperature for 20 hours. The solvent was distilled off under reduced pressure and the residue was applied to preparative HPLC (YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, A = 0.1% TFA-H₂O, B = 0.1% TFA-CH₃CN) to give N-(propylsulfonyl)-D-isoleucyl-3-[(aminocarbonyl)-(methyl)amino]-N¹-(4-amidinobenzyl)-L-alaninamide trifluoroacetate (27 mg, 0.004 mmol; yield 5%).

ESI+ 512 (M++1)

H-NMR (CD3OD) δ: 0.87-1.10 (9H, m), 1.12-1.88 (5H, m), 2.92 (3H, s), 2.87-3.12 (2H, m), 3.52 (1H, dd, *J*=4, 15 Hz), 3.65 (1H, d, *J*=8 Hz), 3.82 (1H, dd, *J*=9, 14 Hz), 4.43-4.67 (3H, m), 7.54 (2H, d, *J*=8 Hz), 7.76 (2H, d, *J*=8 Hz)

Example 13

N-(Benzylsulfonyl)-D-isoleucyl-N1-{4-[imino(methylthio)-methyl]benzyl}-L-methioninamide

[0170] N-(Benzylsulfonyl)-D-isoleucyl-N¹-(4-cyanobenzyl)-L-methioninamide (100 mg, 0.19 mmol) was dissolved in pyridine (5 ml) and triethylamine (0.5 ml), bubbled with a hydrogen sulfide gas for 5 minutes, and then stirred for 24 hours. After addition of ethyl acetate to the reaction mixture, the organic layer was washed sequentially with 0.5 N hydrochloric acid, saturated aqueous sodium bicarbonate and saturated brine, and then dried over sodium sulfate. The solvent was distilled off under reduced pressure and the residue was dissolved in acetonitrile, followed by addition of methyl iodide (0.14 ml, 0.94 mmol) and heating at reflux for 2 hours under a nitrogen atmosphere. The solvent was distilled off under reduced pressure and the residue was purified on a silica gel column (dichloromethane:methanol = 10:1) to give N-(benzyl-sulfonyl)-D-isoleucyl-N¹-{4-[imino(methylthio)methyl]benzyl}-L-methioninamide (109 mg, 0.19 mmol; yield 100%).

55 ESI+ 579 (M++1)

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 2.03 (3H, s), 2.40 (3H, s), 3.69 (1H, t, J=6 Hz), 4.50-4.60 (1H, m), 7.21-7.39 (8H, m), 7.60-7.64 (1H, m)

N-(Benzylsulfonyl)-D-isoleucyl-N1-{4-[hydrazino(imino)-methyl]benzyl}-L-methioninamide

[0171]

H₂N N NH₂O HN SO

15

20

10

5

[0172] N-(Benzylsulfonyl)-D-isoleucyl-N¹-{4-[imino-(methylthio)methyl]benzyl}-L-methioninamide (49 mg, 0.084 mmol) was dissolved in dichloromethane (2 ml) and methanol (2 ml), to which hydrazine (0.020 ml, 0.624 mmol) was then added and stirred for 18 hours. The solvent was distilled off under reduced pressure and the residue was purified by preparative HPLC to give N-(benzylsulfonyl)-D-isoleucyl-N¹-{4-[hydrazino(imino)methyl]benzyl}-L-methioninamide (29 mg, 0.051 mmol; yield 61%).

ESI+ 563 (M++1)

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.58-1.78 (2H, m), 2.42-2.58 (2H, m), 3.63 (1H, d, J=7 Hz), 4.21 (2H, s), 4.53 (1H, brs), 7.25-7.57 (9H, m)

25

Example 15

N-(Benzylsulfonyl)-D-isoleucyl-N1-[4-(E)-amino-(hydroxyimino)methyl]benzyl]-L-methioninamide

30 **[0173]**

35

H₂N NOH

40

45

[0174] N-(Benzylsulfonyl)-D-isoleucyl-N¹-(4-cyanobenzyl)-L-methioninamide (100 mg, 0.19 mmol) was dissolved in ethanol (6 ml) and pyridine (0.6 ml), to which hydroxyamine hydrochloride (120 mg) was then added and stirred for 16 hours. After the solvent was distilled off under reduced pressure, the residue was dissolved in ethanol, filtered and then purified by preparative HPLC to give N-(benzylsulfonyl)-D-isoleucyl-N¹-[4-(E)-amino(hydroxyimino)methyl]benzyl] -L-methioninamide (1.6 mg, 0.00003 mmol; yield 1.5%).

ESI+ 564 (M++1)

H-NMR ($\stackrel{\frown}{CD_3OD}$) δ : 0.85-0.90 (6H, m), 1.50-1.70 (2H, m), 2.05 (3H, s), 2.43-2.60 (2H, m), 3.60 (1H, d, J=8 Hz), 4.20 (1H, s), 7.25-7.45 (9H, m)

50

N-(Benzylsulfonyl)-D-isoleucyl-N1-[4-((E)-amino{[(t-butyloxy)carbonyl]imino}methyl)benzyl]-L-methioninamide

5 [0175]

10

15

H₂N N O HN S

20

25

30

[0176] N-(Benzylsulfonyl)-D-isoleucyl-N¹-{4-[amino(imino)-methyl]benzyl}-L-methioninamide (20 mg, 0.032 mmol) was dissolved in dimethylformamide (0.5 ml), to which triethylamine (0.018 ml, 0.13 mmol) and di-t-butyl carbonate (14 mg, 0.065 mmol) were then added and stirred for 16 hours. After addition of ethyl acetate to the reaction mixture, the organic layer was washed with water and dried over sodium sulfate. The solvent was distilled off under reduced pressure and the residue was purified by preparative TLC (dichloromethane:methanol = 10:1) to give N-(benzylsulfonyl) -D-isoleucyl-N¹-[4-((E)-amino-[[(t-butyloxy)carbonyl]imino]methyl)benzyl]-L-methioninaniide (16 mg, 0.024 mmol; yield 76%).

ESI+ 648 (M++1)

H-NMR (CD₃OD) δ : 0.85-0.90 (6H, m), 1.50 (9H, s), 2.03 (3H, s), 3.68 (1H, d, J=8 Hz), 4.20 (2H, s), 7.20-7.38 (7H, m), 7.64-7.70 (2H, m)

Example 17

N-(Ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N1-4-cyanobenzyl)-L-glutamide

35

40

[0177] 4-Bromo-N-(ethylsulfonyl)-D-phenylalanyl-N¹-(4-cyanobenzyl)-L-glutamide (30 mg, 0.052 mmol) was dissolved in tetrahydrofuran (4 ml) and water (0.4 ml). Subsequently, 3,5-bistrifluoromethylphenylboronic acid (40.2 mg, 0.156 mmol), sodium carbonate (50 mg) and tetrakis(triphenylphosphine)-palladium (30 mg, 0.026 mmol) were added to the solution, followed by heating at reflux for 2 hours under a nitrogen atmosphere. After addition of ethyl acetate to the reaction mixture, the organic layer was washed with water and dried over sodium sulfate. The solvent was distilled off under reduced pressure and the residue was purified by preparative TLC (dichloromethane:methanol = 10:1) and then preparative HPLC to give N-(ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N¹-(4-cyanobenzyl)-L-glutamide (24 mg, 0.034 mmol; yield 65%).

ESI+ 712 (M++1)

45 H-NMR (CD₃O) δ: 1.10 (3H, t, J=7 Hz), 1.75-1.87 (2H, m), 1.88-2.07 (2H, m), 2.82-3.10 (4H, m), 4.10-4.30 (2H, m), 4.40-4.50 (2H, m), 7.10-7.62 (9H, m), 8.10 [1H, s)

50

N-(Ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N1-{4-amidinobenzyl}-L-glutamide

5 [0178]

10 CONH₂ CF₃

HN NH CF₃

NH NH NH₂

15

[0179] Starting with N-(ethylsulfonyl)-3,5-bis(trifluoromethyl)-D-phenylalanyl-N'-(4-cyanobenzyl)-L-glutamide, the same procedure as shown in Example 5 was repeated to give the compound of interest. ESI+ 729 (M++1)

20 H-NMR (CD₃OD) δ: 1.05 (3H, t, *J*=7 Hz), 1.75-1.85 (2H, m), 1.97-2.05 (2H, m), 2.82-3.10 (4H, m), 4.15-4.22 (2H, m), 4.45 (1H, s), 7.40-7.51 (4H, m), 7.62-7.70 (3H, m), 7.90 (1H, s), 8.13 (2H, s)

Example 19

25

30

40

45

N-(t-Butoxycarbonyl)-5-{[3-(methoxycarbonyl)-5-benzyl]oxy}-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0180] To a solution of N-(*t*-butoxycarbonyl)5-hydroxy-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (327 mg, 0.58 mmol) in acetone (4 ml), 3-(methoxycarbonyl)benzylbromide (267 mg, 1.2 mmol) and cesium carbonate (378 mg, 1.2 mmol) were added and stirred at reflux under a nitrogen stream. After 4 hours, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol = 10:1) to give N-(*t*-butoxycarbonyl)-5-{[3-(methoxycarbonyl) benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (347 mg, 0.5 mmol; yield 84%). ESI+ 711 (M++1)

H-NMR (CD₃OD) δ : 1.30 (9H, s), 1.50-2.08 (4H, m), 3.02-3.22 (2H, m), 3.93 (3H, s), 4.02-4.27 (2H, m), 4.39-4.55 (1H, m), 5.20 (2H, s), 6.88 (1H, dd, J=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, J=2 Hz), 7.26 (1H, d, J=9 Hz), 7.42 (2H, d, J=8 Hz), 7.51 (1H, t, J=7 Hz), 7.66 (2H, d, J=8 Hz), 7.75 (1H, d, J=6 Hz), 7.97 (1H, d, J=6 Hz), 8.17 (1H, s)

Example 20

5-{[3-(Methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N1-(4-cyanobenzyl)-L-glutamide

[0181] To a solution of N-(*t*-butoxycarbonyl)-5-{[3-(methoxycarbonyl)benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl) -L-glutamide (347 mg, 0.5 mmol) in dichloromethane (10 ml), trifluoroacetic acid (10 ml) was added and stirred at room temperature under a nitrogen stream. After 1 hour, the solvent was distilled off under reduced pressure. The residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 1:1) to give 5-{[3-(methoxycarbonyl)benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (277 mg, 0.45 mmol; yield 93%).

[0182] To a solution of 5-{[3-(methoxycarbonyl)benzyl]oxy}-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (0.45 mmol) in DMF (10 ml), triethylamine (137 mg, 1.4 mmol) and ethanesulfonyl chloride (174 mg, 1.4 mmol) were added and stirred at room temperature under a nitrogen stream. After 2 hours, the solvent was distilled off under reduced pressure and the residue was applied to flash column chromatography (Merck Silicagel 60; mobile phase: dichloromethane:methanol=8:1) to give 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (158 mg, 0.22 mmol; yield 50%).

ESI+ 703 (M²+1)

55 H-NMR (CD₃OD) δ: 0.94 (3H, t, *J*=7 Hz), 1.60-2.08 (4H, m), 2.58-3.30 (4H, m), 3.91 (3H, s), 4.02-4.27 (2H, m), 4.35-4.48 (2H, m), 5.20 (2H, s), 6.89 (1H, dd, *J*=2, 9 Hz), 7.12 (1H, s), 7.19 (1H, d, *J*=2 Hz), 7.27 (1H, d, *J*=9 Hz), 7.42-7.53 (3H, m), 7.65 (2H, d, *J*=8 Hz), 7.73 (1H, d, *J*=6 Hz), 7.98 (1H, d, *J*=6 Hz), 8.16 (1H, s)

5-{[3-(Methoxycarbonyl)benzyl]oxy}-N (ethylsulfonyl)-D-tryptophyl-N1-{4-[amino(imino)methyl]benzyl]-L-glutamide

[0183] A solution of 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-(4-cyanobenzyl)-L-glutamide (158 mg, 0.22 mmol) in pyridine (10 ml) and triethylamine (2 ml) was bubbled with a hydrogen sulfide gas. After bubbling for 30 minutes, the solution was allowed to stand. After 12 hours, water/ethyl acetate was added to the reaction mixture and the aqueous layer was adjusted to pH 4 with 2N aqueous hydrogen chloride, followed by extraction. The organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off and the filtrate was concentrated under reduced pressure.

[0184] The residue was dissolved in acetone (10 ml), to which methyl iodide (312 mg, 2.2 mmol) was then added and stirred at 50°C under a nitrogen stream. After 1 hour, the reaction mixture was concentrated under reduced pressure.

[0185] The residue was dissolved again in methanol (10 ml), followed by addition of ammonium acetate (170 mg, 2.2 mmol) and heating at reflux under a nitrogen stream. After 4 hours, the solvent was distilled off under reduced pressure and the residue was applied to column chromatography (Fuji Silysia NH-DM-1020; mobile phase: dichloromethane:methanol = 4:1, 2:1) to give 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-{4-[amino(imino)methyl]benzyl}-L-glutamide (124 mg, 0.17 mmol; yield 78%).

ESI+ 720 (M*+1)

20 H-NMR (CD₃OD) δ: 0.94 (3H, t, *J*=7 Hz), 1.64-2.10 (4H, m), 2.55-3.30 (4H, m), 3.89 (3H, s), 4.08-4.42 (4H, m), 5.18 (2H, s), 6.87 (1H, dd, *J*=2, 9 Hz), 7.15 (1H, s), 7.20-7.76 (8H, m), 7.95 (1H, d, *J*=6 Hz), 8.14 (1H, s)

Example 22

5-[(3-Carboxybenzyl)oxy]-N-(ethylsulfonyl)-D-tryptophyl-N1-(4-[amino(imino)methyl]benzyl}-L-glutamide

[0186]

CONH₂

H

NH

NH

NH

NH

NH

HO₂C

40

45

50

55

25

30

35

[0187] To a solution of 5-{[3-(methoxycarbonyl)benzyl]oxy}-N-(ethylsulfonyl)-D-tryptophyl-N¹-{4-[amino(imino)methyl]-benzyl}-L-glutamide (124 mg, 0.17 mmol) in ethanol (3 ml), 1N aqueous sodium hydroxide (3 ml) was added and stirred at room temperature. After 2 hours, the reaction mixture was adjusted to pH 6 with 1N aqueous hydrogen chloride and then concentrated under reduced pressure. The residue was applied to preparative HPLC (YMC-pack ODS: gradient of 95% A/B to 25% A/B over 10 min, A = 0.1% TFA-H₂O, B = 0.1% TFA-CH₃CN) to give 5-[(3-carboxybenzyl)oxy]-N-(ethylsulfonyl)-D-tryptophyl-N¹-{4-[amino(imino)methyl]benzyl}-L-glutamide (85 mg, 0.1 mmol; yield 61%).

ESI+ 706 (M++1)

H-NMR (CD₃OD) δ: 0.97 (3H, t, *J*=7 Hz), 1.59-2.07 (4H, m), 2.55-3.28 (4H, m), 3.89 (3H, s), 4.10-4.54 (4H, m), 5.19 (2H, s), 6.90 (1H, dd, *J*=2, 9 Hz), 7.16 (1H, s), 7.23 (1H, d, *J*=2 Hz), 7.27 (1H, d, *J*=9 Hz), 7.50-8.00 (7H, m), 8.16 (1H, s)

Examples 23 to 182

[0188] The compounds of Examples 23 to 182 were prepared according to Examples 1 to 22 and the reaction schemes mentioned above. Tables 1 to 34 summarize the chemical structures and instrumental analysis data of these compounds. In the tables, Reagent 2, Reagent 5, Intermediate 9 and others are the same as the corresponding reagents and intermediates shown in the above reaction schemes.

Reagent 8

Reagent 5

Structure MS

Table 1

Example

Reagent 2

٤	5	

1	0	

15

20

25

30

35

40

45

50

23	HO ₂ C NHBoc	HO ₂ C NHBoc	·	HN NH ₂ ESI+ 394 (M*+1)
24	CO₂EI HO₂O NHBoc	но₂с≺инвос	a E	CO ₂ EI H NH O HN NH ₂ FAB+ 560 (M ⁺ +1)
25	OAc HO₂C ^{, N} HBoc	HO₂C NHBoc	ci de Co	OH NH O HN-SO HN NH₂ FAB+ 532 (M ⁺ +1)
26	OAC HO ₂ C ⁻ NHBoc	но₂стынвос	c _o .s. C	OH NH SO HN SO HN NH2 ESI+ 504 (M*+1)
27	HO ₂ C ^{-, N} HBoc	HO ₂ C [→] NHBoc	a S	OH NH O HN O O HN NH ₂ O FAB+ 518 (M ⁺ +1)

Table 2

10	
15	

20	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
28	HO₂G [·] NHBoc	HO₂C NHFmoc		HN NH ₂ FAB+ 364 (M ⁺ +1)
29	OH HO₂C NHBoc	но₂с≺мнвос		OH NH NH NH NH ESI+ 398 (M*)
30	HO ₂ C' NHBoc	HO₂C NHFmoc	CI-O	H NH OH O'S=O HN NH ₂ ESI+ 554 (M*+1)
31	HO₂C NHBoc	HO ₂ C NHFmoc	CI-CS O'S Br	NH OH NH OS-50 HN: NH₂ Br E:SI+ 583 (M*+1)
32	HO ₂ C ^{··· −} NHBoc	HO ₂ C NHFmoc	CI-S	HN NH OH O NH O S O HN NH2 ESI+ 518 (M++1)

Table 3

4	ō		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
33	HO2C. NHBoc	HO₂C NHFmoc	0.40	HN NH ₂ OH ESI+ 518 (M ⁺ +1)
34	но₂с∵ МНВос	HO ₂ C NHFmoc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HN NH₂ OS ON OS
35	HO ₂ C NHBoc	HO₂C NHFmoc	O-G CGO CGO CGO	NH OH NH2 ESI+ 561 (M*+1)
36	HO ₂ CNHBoc	HO ₂ C NHFmoc	0-40 C 0	HN NH2 OH O-S=0 HN NH2 ESI+ 470 (M+1)
37	HO₂C NHBoc	HO₂C NHFmoc	ට ද ප්ර ප්ර	NH OH NH O'S O ESI+ 456 (M*+1)

Table 4

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
38	HO ₂ C NHBoc	HO ₂ C NHFmoc	O d o	H NH OH O NH HN NH ₂ ESI+ 442 (M*+1)
39	HO ₂ C' NHBoc	HO ₂ C NHBoc	a b	H NH NH O S O HN NH2 FAB+ 500 (M*+1)
40	но _з су_инвос	HO ₂ C NHB∞		H NH NH O NH O S O S O FAB+ 548 (M*+1)
41	HO ₂ C ⁻ NHBoc	HO₂C NHBoc		H NH2 NH2 HIN NH2 FAB+ 394 (M*+1)
42	O NH2 HO ₂ C NHBOC	HO ₂ C NHBoc		HN NH ₂ HIN NH ₂ FAB+ 391 (M*+1)

Table 5

5	

5	5
J	J

Example	Reagent 2	Reagent 5	Reagent 8	Structure
Cyampie	ricayeni z	reayent 5	neayent o	MS
43	HO ₂ C NHBoc	но₂с мнвос	C S	CONH ₂ NH NH NH ₂ N
44	HO ₂ C NHBoc	но₂с №нвос	ci-g D	CONH ₂ NH O HN S O HN NH ₂ O HN FAB+ 531 (M*+1)
45	HO₂C NHBoc	HO ₂ C NHBoc		CONH ₂ NH NH ₂ HN NH ₂ ESI+ 377 (M ⁺ +1)
46	OH HO₂Cr. NHBoc	HO ₂ C NHBoc		OH NH NH NH FAB+ 412 (M*+1)
47	CONH₂ HO₂C: NHBoc	HO ₂ C NHBac	C C C C C C C C C C C C C C C C C C C	CONH ₂ HN NH ₂ FAB+ 497 (M*+1)

Table 6

J	

5					
	Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
10	48	CONH2 HO2C NHBoc	HO₂C NHBoc	CL CO	FAB+ 526 (M*+1)
20	49	OH HO ₂ C NHBoc	но₂с ннвос	0.00 0.00 0.00 0.00	OH NH NH SO HN SO HN NH2 FAB+ 566 (M*+1)
25		ОН			Ď.
30	50	HO ₂ C. NHBoc	HO ₂ C NHBoc	Ci-s	HN NH ₂ ESI+ 518 (M*+1)
<i>35</i>	51	HO₂C: NHBoc	HO ₂ C NHBoc	CI-S O CO₂H	HN NF2 CO2
			,		ESI+ 578 (M++1)
45	52	HO ₂ C: NHBoc	HO ₂ C NHBoc		HN NH ₂
50					

55

FAB+ 428 (M++1)

Table 7

5	

10	
15	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
53	CONH₂ HO₂C NHBoc	но₂с✓мнв∞с	0-42 0-42 0-43	FAB+ 497 (M+1)
54	S NHBoc	HO ₂ C NHBoc	CL S	FAB+ 582 (M ⁺ +1)
55	но _г синвос	HO ₂ C NHBoc	O S S	NH NH₂ O HN SO HN NH₂ O (M*+1)
56	HO₂C NHBoc	HO ₂ C NHBoc	CI-5 CO ₂ H	NH-50 HN-80 CO ₂ Et
57	S HO ₂ C [™] NHBoc	HO ₂ C NHBoc	CI-Q CO₂H	S- HN NH ₂ O HN SO CO ₂ H

Table 8

5	

5					
	Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
10	58	HO ₂ C ^{, NHB} oc	HO ₂ C NHFmoc	O CO 2 H	NH OH O HN 50 CO ₂ E1 ESI+ 594 (M*+1)
20	59	HO₂C' NHBoc	HO ₂ C NHFmoc	CI-SI OCO2H	HN NH ₂ CO ₂ H
25					c
30	60	HO₂C ^{. NHB} oc	HO ₂ C NHFmoc	C O	HN NH ₂ OH
35		ş′	· }	Clos	ESI+ 536 (M++1)
40	61	HO ₂ C. NHBoc	HO ₂ C NHFmoc		0 0 HN 50 HN2 NH2 0 IESI+ 488 (M*+1)
45	62	O_NMe ₂	HO ₂ C NHFmoc	CI O	O_NMe ₂ H, NH) OH O HN-SO
50					HN NH2 0

55

FAB+ 513 (M++1)

Table 9

5	

,	c	,		

5	5	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
63	O NMe ₂	HO ₂ C NHFmoc	Option C	O NMe ₂ IT NH OH O HN SO HN NH ₂ FAB+ 561 (M ⁺ +1)
64	HN O	HO ₂ C NHFmac	CO 0-19	HN OH
65	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ HN NH ₂ ESI+ 593 (M ⁴ +1)
66	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc		CONH ₂ HN NH ₂ E:SI+ 501 (M ⁺ +1)
67	НО₂С NНВос	HO ₂ C NHBoc	CI O	HN NH ₂ O HN S O O O O O O O O O O O O O O O O O O

Table 10

5	

10	
15	

55	5

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
68	S- HO₂C ^{. NHBoc}	HO ₂ C NHBoc	C O O O	HN NH ₂
				ESI+ 610 (M++1)
69	HO₂C NHBoc	HO ₂ C NBoc		HN NH2
				ESI+ 438 (M++1)
70	CONH2 HO2C NHB∞	HO ₂ C NHBoc	C C C	CONH ₂ NH NH ₂ NH NH ₂
·				ESI+ 579 (M++1)
71	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ HN NH HN NH ₂
				ESI+ 567 (M++1)
72	CONH ² HO ₂ C. NHB∞	HO ₂ C NHBoc	CI S	CONH ₂ HN NH ₂ O HN-GO
				ESI+ 567 (M++1)

Reagent 8

Reagent 5

Structure MS

Table 11

Example

Reagent 2

10	
15	

20

25

30

35

40

45

50

73	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	C O	CONH ₂ NH O HN. SO HN NH ₂ ESI+ 547 (M*+1)
74	CONH₂ HO₂C: NHBoc	HO ₂ C NHBoc	G O	CONH ₂ NH NH NH SO HN NH ₂ ESI+ 561 (M ⁺ +1)
75	CONH₂ HO₂C: NBoc	HO ₂ C NHFmoc	O.W.	CONH ₂ H O H
76	CONH₂ HO₂C: NHBoc	HO ₂ C NHBoc	C O	CONH ₂ NH NH O HN NH ₂ ESI+ 595 (M*+1)
77	CONH ₂	HO₂C NHBoc	CI-S	CONH ₂ HN NH O HN SO HN NH ₂ ESI+ 483 (M ⁺ +1)

Table 12

5

1	0	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
78	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc	C C C C C C C C C C C C C C C C C C C	CONH ₂ NH O HN SO HN NH ₂ ESI+ 573 (M*+1)
79	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	G O	CONH ₂ HN NH O HN SO HN NH ₂ ESI+ 531 (M ⁺ +1)
80	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	GI O	CONH ₂ H N NH NH O HN SO O HN SO O
81	CONH ₂ HO ₂ C. NHBoc	HO ₂ C NHBoc	CI-O	CONH ₂ NH O HN O HN NH ₂ ESI+ 621 (M ⁺ +1)
82	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	CI O	CONH ₂ NH NH NH NH SO HN NH ₂ ESI+ 570 (M*+1)

Table 13

5	5	

0		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
83	CONH ₂	O NH HO ₂ C NHBoc	0 o	CONH ₂ NH NH O HN 50 O HN 101 ESI+ 614 (M*+1)
84	СОИН ²	N-5- N-5- NHBoc	Q G O	CONH ₂ NH N-S-O HN NH ₂ ESI+ 696 (M*+1)
85	CO₂EI HO₂C NHBoc	HO ₂ C NHBoc	O. O	FAB+ 532 (M++1)
86	HO ₂ C [™] NHBoc	HO ₂ C NHFmoc	CI-S OS CO₂H	HN NH₂ CO₂H
87	HO ₂ C: NHBoc	HO ₂ C NHFmoc	Cl. O O S O CO₂H	NH OH O HN SO CO2F HN NH2 FAB+ 548 (M+1)

Table 14

!	5	
٠		

	Example	Reagent
10	88	HO ₂ C NHF
20	89	BocN HO ₂ O NHF
30	90	HO ₂ C N⊦
<i>35 40</i>	91	но ₂ с. ^С NЬ
45		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
88	NBoc HO ₂ C NHFmoc	HO₂C NHFmoc	C O	NH NH O O HN NH2 ESI+ 469 (M*+1)
89	BocN / HO₂C NHFmoc	HO ₂ c NHFmoc	C O	HN NH OH OH NH₂ O HN NH₂ O
90	NHBoc	HO ₂ C NHFmoc	C O	H NH OH O HN SO HN NH2 ESI+ 550 (M++1)
91	у НО ₂ С. NНВос	HO₂C NHFmoc	G S	S NH OH O HN O HN NH ₂ ESI+ 550 (M ⁺ +1)
92	S HO₂C ^{, NH} Boc	HO ₂ C NHFmoc	Ci O	HN NH OH O HN SO HN NH ₂ ESI+ 550 (M*+1)

55

Table 15

10

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
93	S HO₂C ^{, N} HBoc	HO₂C NHFmoc	CCO₂Me	HN NH ₂ OH
94	S HO ₂ C [⊂] NHBoc	HO ₂ C NHFmoc	CO ₂ Me	NH OH O HN O CO ₂ Me ESS(+ 594 (M*+1)
95	но₂с ИНВос	HO ₂ C NHFmoc	CI-S CO ₂ Me	NH OH O HN 50 HN NH2 CO2H ESSI+ 580 (M++1)
96	S HO₂C NHB∞c	HO ₂ C NHFmoc	Clos	NH OH O HN-gO HN NH ₂ ESI+ 502 (M ⁺ +1)
97	S NHBoc	HO ₂ C NHFmoc	CI-S O CO ₂ Me	NH NH ₂ CO ₂ H ESI+ 592 (M ⁺ +1)

Table 16

1	0		

1	9	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
98	CONH₂ HO₂C NHBoc	HO₂C NHFmoc	CI-SI O CO₂Me	CONH ₂ NH OH O HN. O HN NH ₂ CO ₂ H ESI+ 577 (M ⁺ +1)
99	CONH₂ HO₂C: NHB∞c	HO ₂ C NHBoc	Cl. O O CO₂Me	CO ₂ H ESI+ 699 (M*+1)
100	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc	CI-S CO ₂ Me	CO ₂ H ESSI+ 673 (M*+1)
101	CONH₂ HO₂C: NHBoc	HO ₂ C NHBoc	CL S CO ₂ Me	CONH ₂ NH O HN 90 HN NH ₂ CO ₂ H ESI+ 673 (M ⁺ +1)
102	CONH ² HO ₂ C ^{- NHBoc}	HO ₂ C NHBoc	CI-S O'CO ₂ Et	CONH ₂ NH O HN O HN CO ₂ H ESI+ 589 (M ⁺ +1)

Table 17

10		
15		
20		
25		
30		
35		
40		
45		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
103	CONH₂ HO₂C NHBoc	HO ₂ C NHFmoc	0-20 0-20	CONH ₂ NH OH O HN SO
104	ÇONH₂ HO₂C' NHBoc	HO₂C NHBoc	Ci O O CO ₂ Et	ESI+ 471 (M++1) CONH2 HN NIH2 HO2C ESI+ 589 (M++1)
105	S NHBoc	HO ₂ C NHBoc	CI-S O CO₂Me	HN NH ₂ CO ₂ H ESI+ 702 (M*+1)
106	OS HO₂C NHBoc	HO₂C NHFm∞	CI-O O O CO₂Me	OS NH OH O HN SO CO ₂ H ESI+ 596 (M*+1)
107	O ₂ S HO ₂ C" NHBoc	HO₂C NHFm∞	CI-S OS CO ₂ Me	O ₂ S NH OH O HN O HN NH ₂ CO ₂ H ESI+ 612 (M*+1)

55

Table 18

!	ō	

10		

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
108	HO₂C NHBoc	HO ₂ C NHBoc	CI CO ₂ Me	HN NH ₂ CO ₂ H ESI+ 574 (M ⁺ +1)
109	CONH ⁵	HO ₂ C NHBoc	CI-S OCO2Me	CO ₂ H ESI+ 589 (M ⁺ +1)
110	ÇONH₂ HO₂C' NHBớc	HO ₂ C NHBoc	C O	CONH ₂ HN SO HN SO HN SO SSI+ 503 (M ⁺ +1)
111	CONH₂ HO₂C' NHB0C	HO₂C NHBoc	CI OS	CONH ₂ HN NH SO HN NH ₂ ESI+ 517 (M ⁺ +1)
112	CONH₂ HO₂C NHBoc	HO₂C NHBac	CI-S	NH ₂ OC NH NH ₂ OC NH NH ₂ O HN NH ₂ O ESI+ 593 (M ⁺ +1)

Table 19

!	5		

-	Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
15	113	HO₂C· NHBoc	нО₂с №НВос	0.00	HN NH ₂ O HN SO HN NH ₂ O (M*+1)
20	114	HO₂C NHBoc	HO ₂ C NHBoc	O O O	S NH NH O HN S O O HN S O O O O O O O O O O O O O O O O O O
	ļ				LOIT 340 (M +1)
30	115	S HO₂C NHBoc	HO ₂ C NHBoc	orgo C	NH NH O HN SO HN 11H2 O HN 11H2 O HN 11H2
40 .	116	HO ² C. NHBoc	HO₂C NHBoc	G O	HN NH ₂ O HN 50 O HN NH ₂ O O O O O O O O O O O O O O O O O O O
45					
50	117	HO₂C NHBoc	HO ₂ C NHBoc	CI OS	HN-NH2

55

ESI+ 486 (M++1)

Table 20

5	

1	0	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
113	\$′ HO₂C [,]	HO ₂ C NHBoc	ood GO	S NH NH S O HN NH ₂ O HN NH ₂ O (M ⁺ +1)
114	но₂с инвос	HO ₂ C NHBoc	GO 0	HN NH ₂ ESI+ 548 (M ⁺ +1)
115	S HO₂C NHBoc	HO ₂ C NHBoc	0 d 0 d	NH NH₂ 0 HN SO HN NH₂ 0 HN NH₂ NH₂ NH₂ NH₂ NH₂ NH₂ NH₂ NH₂ NH₂
116	HO ₂ C. NHBoc	HO ₂ C NHBoc	G O	HN NH SO HN SO HN NH2 ESI+ 472 (M+1)
117	S HO₂C NHBoc	HO ₂ C NHBoc	CI	NH NH₂ O HN SO HN NH₂ SSI+ 486 (M++1)

Table 21

5	5	

10		

٥-	
25	

50	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
123	HO ² C. NHBoc	HO₂C NHBoc	0-00 0-00 0-00	HN NH ₂
				ESI+ 486 (M++1)
124	HO ₂ C NHBoc	HO ₂ C NHBoc	0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1	HN NH ₂
				ESI+ 506 (M++1)
125	HO ² C. NHBoc	HO ₂ C NHBoc	CI-S	HN NH ₂
				ESI+ 520 (M ⁺ +1)
126	HO ₂ C NHBoc	HO₂C NHBoc	CI-OS	HN -NH2
,				ESI+ 596 (M++1)
127	ÇONH₂ HO₂C NHBoc	но₂с⊈мнвос	C O	CONH ₂ NH NH O HN NH ₂ O HN NH ₂ ESI+ 503 (M ⁺ +1)

Table 22

10		

20	

50	

5	5	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
128	CONH₂ HO₂C NHBoc	HO ₂ C NHBoc	O O O O O O O O O O O O O O O O O O O	CONH ₂ HN NH O HN-SO HN NH ₂ ESI+ 517 (M ⁺ +1)
129	HO ₂ C NHBoc	HO ₂ ca NHB∞c	COO	CONH2 HN NH2 O HN 50
				ESI+ 531 (M++1)
130	CONH ₂	HO ₂ C NHFmoc	o do	CONH₂ NH OH HN NH₂
				ESI+ 533 (M++1)
131	CONH ₂ HO ₂ C. NHBoc	HO ₂ C NHBoc	C C C C	CONH ₂ NH NH NH ₂ NH NH NH NH NH NH NH NH NH N
				ESI+ 545 (M+1)
132	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONH ₂ HN NH SO HN NH ₂ ESI+ 565 (M ⁺ +1)

Table 23

£		

1	0	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
133	CONH₂ HO₂C ^{- C} NHBoc	но₂с №нвос	CL'O	CONH ₂ HN NH SO HN NH ₂ ESI+ 579 (M ⁴ +1)
134	CONH ₂ HO ₂ C NHBoc	HO ₂ C NHBoc	ord cto	CONH ₂ H N NH O HN S ESI+ 655 (M ⁺ +1)
135	CONH ₂	HO ₂ C NHBoc	0.00	NH ₂ OC NH ₂ O
136	CONH ₂ HO ₂ C NHBoc	HO₂C NHBoc	G OS	CONH ₂ NH NH NH ₂ ESI+ 455 (M ⁺ +1)
137	CONH ₂ HO ₂ C: NHBoc	HO₂C NHBoc	CI-S	CONH ₂ H N N N N N N N N N N N N N N N N N N

Table 24

5		

10	
15	
20	
25	
30	
35	
40	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
138	CONH2 HOZO NHBOC	HO ₂ C NHFmoc	O u C	CONH2 HN NH OH HN NH2
				ESI+ 485 (M*+1)
139	CONH ₂	HO ₂ C NHBoc	C O	CONH ₂ H N NH O H N NH O H N NH O
	·			ESI+ 497 (M*+1)
140	CONH ₂	HO ₂ C NHBoc	CIOS	CONH ₂ H NH N
				ESI+ 531 (M*+1)
141	CONH ₂ HO ₂ CO NHBoc	HO ₂ C NHBoc	C O	CONH ₂ NH NH NH ₂
				ESI+ 607 (M+1)
142	CONH ₂ HO ₂ CV NHBoc	HO ₂ C NHBoc	O. S.	NH ₂ OC H N NH NH ₂ HN NH ₂ ESI+ 607 (M*+1)

Table 25

10	
15	

20	

50	

5	5	

Example	Reagent 2	Reagent 5	Reagent 8	Structure MS
143	CONH ₂	НО₂С №НВос	CI O	CONH ₂ NH O HN. 50 HN NH ₂ E:SI+ 455 (M ⁺ +1)
144	HO ² C. NHBoc	HO ₂ C NHBoc	C O O	CONH ₂ HN NH O HN SO O HN S
145	CONH2 HO2C NHBoc	HO ₂ C NHBoc	CI-S CO₂Me	CONH ₂ H NH NH NH EI0 ₂ C ESI+ 614 (M*+1)
146	CONH₂ HO₂C NHB∞C	HO ₂ C NHBoc	CI~3 CO₂Me	CONH ₂ NH NH NH NH HN-NH ₂ ESI+ 586 (M*+1)
147	HO2C. NHBoc	HO ₂ C NHBoc	CI-S CO ₂ Me	H ₂ N NH H NH NH O HN. 50 HN NH ₂ CO ₂ H ESil+ 588 (M*+1)

Table 26

5	
_	

10	
15	
20	
25	
30	
35	
40	
45	

Example	Reagent 2	Reagent 5	Reagent B	Structure MS
148	CONH₂ HO₂C NHBoc	NH HO₂C NHBoc	0-4/ C 0	CONH ₂ NH NH NH NH ₂ Sil+ 586 (M*+1)
149	CONH₂ HO₂C NHBoc	NH HÖ2C NHBoc	O=40 근 O	CONH ₂ NH NH NH NH ₂ NH NH ₂ ESI+ 570 (M*+1)
150	CONH ₂ HO ₂ C NHBoc	NH HO₂C NHBoc	Br~ CO₂EI	CONH ₂ HN NH CO ₂ Et HN NH ₂ E:SI+ 550 (M ⁺ +1)
151	CONH ₂ HO ₂ C NHBoc	NH HO₂C NHBoc	Br~~ CO₂Et	CONH ₂ NH NH CO ₂ H HN NH ₂ ESI+ 522 (M ⁺ +1)
152	CONH2 HO2C NHBcc	NH HO ₂ C NHBoc	Ci-d O co₂Me	CONH ₂ H NH NH NH NH NH NH S NH NH

55

Table 27

Example	Intermediate 17	Reagent 18	Structure MS
153	HO DO DE LOS DEL LOS DE LOS DEL LOS DE LOS DEL LOS DE LOS DEL LOS DE LOS DE LOS DE LOS DEL LOS DE LOS DEL L	NH₂ BocHN	H ₂ N
154	HO JOHN SO	NH ₂	H NH NH O NH SO NH SO STATE OF
		·	

Table 28

Example	Intermediate 9	Reagent 22	Structure MS
155	N H N O O O O O O O O O O O O O O O O O	KNCO	NH ₂ NH NH NH NH NH NH NH NH NH N
156	NH NH O	KNCO	H ₂ NH ₂ H ₂ NH ₂ H ₂ N NH ESI+ 608 (M*+1)
157	NBoc NH O HN g O	СНЗСОСІ	H ₂ N NH SO HN-SO NH SO
158	H NBOC Y NH O HN S O	KNCO	O NH ₂ H NH OH O HN SO H ₂ N NH ESI+ 500 (M*+1)
159	H NBoc Y O O HN SO	KNCO	O NH ₂ H N O O O HN O O O O O O O O O O O O O O

Table 29

	Example	Intermediate 9	Reagent 22	Structure MS
10	160	Bock NH O O HN BO	KNCO	NH ₂ N O H ₂ N O NH NH O H ₂ N O NH NH
20	161	NBOC NH NO O	KNCO	O NH2 H NH NH SO O HN-50 O HN-50 O HSI+ 498 (M*+1)
<i>30</i>	162	NB NB H N NB N	KNCO	O NH ₂ H NH NH O HN SO H ₂ N NH ESI+ 540 (M*+1)
40	163	NBoc NH NB	KNCO	O NH2 H ₂ N NH ESI+ 526 (M ⁺ +1)
45				
50				

Table 30

10	

Example	Intermediate 34	Reagent 35	Structure MS
164	SO OF THE COUNTY	(HO)₂B Q	CONH ₂ H ₂ N NH ESI+ 623 (M ⁺ +1)
165	CONH₂ HN-SO CN CN CN CN CN CONH₂ Br CN CN	(HO)₂B	CONH ₂ H ₂ N NH ESI+ 623 (M*+1)
			LOIT 020 (IN +1)
166	CONH₂ HN-SO CN	(HO) ₂ B	CONH ₂ NH NH SO H ₂ N NH ESI+ 623 (M*+1)
167	CONH ₂ H NH NH O HN-S O CN O S	(HO) ₂ B	CONH ₂ NH ESI+ 593 (M*+1)
168	CONH ₂ HN SO CN CN	(HO) ₂ B NH ₂	CONH ₂ H ₂ N NH ESI+ 608 (M*+1)

Table 31

5

	Example	Intermediate 34	Reagent 35	Structure MS
10	169	CONH ₂ HN B ₁ HN B ₂ CN	(HO) ₂ B NO ₂	CONH ₂ H N N N N N N N N N N N N N N N N N N
				H ₂ N [^] NH ESI+ 638 (M ⁺ +1)
20				
25				
30				
35				
40				
45				
50				

Table 32

10	
15	

Example	Intermediate 38	Reagent 39	Reagent 8	Structure MS
170	CONH₂ NH NHBoc OH	Br	O C O	CONH ₂ NH NH NH NH ₂ ESI+ 662 (M*+1)
171	CONH ₂ NH NHBoc OH		C O	CONH ₂ H NH NH NH NH NH S O HN NH ₂ ESI+ 572 (M ⁺ +1)
172	CONH ₂ NH NHBoc OH	Br	0-3 0-3	CONH ₂ NH NH NH NH NH NH S HN NH ₂ E:SI+ 676 (M ⁺ +1)
173	CONH2 NH NH NHBoc OH		CI-S	CONH ₂ NH NH NH NH NH SO OH NNH ESI+ 586 (M*+1)
174	CONH2 NH NH NH NHBOC OH	Br OAc	CI-O	CONH ₂ NH NH NH NH NH SO OH ESI+ 629 (M ⁺ +1)

Table 33

5

	Example	Intermediate 38	Reagent 39	Reagent 8	Structure MS
10	175	CONH2 NH NH NH NHBoc OH	Br CO₂Et	O CO	CONH ₂ H NH O HN NH CO ₂ H ESI+ 657 (M ⁴ +1)
20	176	CONH2 NH	Br AcO	C 0	CONH ₂ H NH NH O HN NH O HN S O O ESI+ 643 (M* H)
<i>30</i>	177	CONH2 NH NHBoc OH	Br AcO	CI-S	CONH ₂ H NH NH O HN NH O HN SO O HO ESI+ 615 (M*+1)
40	178	CONH2 NH	^{Br} CO₂Et	ch S	CONH ₂ NH NH O HN NH ₂ CO ₂ H ESI+ 630 (M ⁺ +1)
45	179	CONH2 NH	Br ⟨ CO₂Et	CI-S	CONH ₂ H N N N N N N N N N N N N N N N N N N
50		CN	•		HN NH ₂ O CO ₂ EI

55

ESI+ 658 (M++1)

Table 34

٠	,	

10	

Example	Intermediate 38	Reagent 39	Reagent 8	Structure MS
180	CN CONH2 NH	Br EiO ₂ C	CI CO	CONH ₂ NH NH NH NH NH NH ESI+ 671 (M ⁺ +1)
181	CONH2 H NH NH O NHBoc OH	Br OAc	Org CO	CONH ₂ NH NH NH ₂ HO ESI+ 678 (M*+1)
182	CONH ₂ NH NH NHBoc OH	Br OAc	CI-SO	CONH ₂ NH NH NH NH O HN NH O HN NH O HN O HN HN

Example 183

[Expression and purification of human factor VIIa]

[0189] Human factor VII cDNA was obtained from a human liver cDNA library (CLONTECH) by PCR. The primer sequences used are as follows:

GTCTGGATCCACCATGGTCTCCCAGGCCCTCAG

10

15

20

25

30

5

TGTTGAATTCTACTAGGGAAATGGGGCTCGCA.

[0190] The human factor VII gene was integrated into a Double One expression vector (IDEC), subcloned and digested with the restriction enzyme Sspl. The linearized fragment was then introduced into the CHO cell line DG44 by electroporation to create human factor VII-expressing transformants. The transformants were then grown in the presence of 5 nM methotrexate (Sigma) for gene amplification. The resulting methotrexate-resistant human factor VII-expression transformants were further grown in a CHO-S-SFMII medium (GIBCO BRL) supplemented with 5 nmol/L methotrexate and 0.5 µg/ml vitamin K (Sigma) to express human factor VII.

[0191] The culture supernatant of human factor VII-expressing CHO transformants was concentrated through a hollow fiber dialyzer (PAN-130F, Asahi Medical Co., Ltd.) and supplemented with benzamidine at a final concentration of 5 mM for frozen storage. This frozen-stored culture supernatant was used, as appropriate, in purifying human factor VIIa. For purification, reference was made to Methods Enzymol., vol. 80, pages 228-237, 1981 and Biochemistry, vol. 27, pages 7785-7793, 1988. The concentrated culture supernatant was diluted 10-fold in 20 mM Tris-HCl buffer (pH 8.0) containing 5 mM benzamidine and 5 mM EDTA, and then applied to a Q Sepharose Fast Flow column equilibrated with the same buffer. Proteins adsorbed to the column were eluted with a stepwise gradient of NaCl (0.1, 0.2, 0.3 M) in the same buffer. The 0.3 M NaCl fractions containing human factor VII were concentrated by ultrafiltration, diluted 10-fold in 20 mM Tris-HCl buffer (pH 8.0) containing 5 mM benzamidine and 5 mM EDTA, and then applied to a Q Sepharose Fast Flow column equilibrated with the same buffer. After washing with the same buffer, human factor VII was eluted from the column with a linear CaCl2 gradient up to 50 mM. The resulting fractions were analyzed by SDS/ PAGE to collect human factor VII-containing fractions, which were then allowed to stand at room temperature for 2 days to facilitate self-digestion for activation into human factor VIIa. The reaction mixture was diluted 10-fold in 20 mM Tris-HCl buffer (pH 7.0) and then applied to a Q Sepharose Fast Flow column equilibrated with the same buffer. Human factor VIIa was eluted with a linear NaCI gradient of 150 to 350 mM in the same buffer. The resulting fractions were analyzed by SDS/PAGE to collect human factor VIIa-containing fractions, thus giving a purified human VIIa fraction.

Example 184

[Expression and purification of human soluble tissue factor]

40

45

55

35

[0192] A gene fragment encoding human soluble tissue factor (amino acids 1-218) was inserted downstream of the tac promoter and the M13 signal peptide sequence to create a secretory expression vector, which was then transformed into *E. coli* JM109 cells. The resulting transformants were grown to express human soluble tissue factor into the culture supernatant.

[0193] Purification was performed as described in Biochemistry, vol. 31, pages 3998-4003, 1992, with some modifications. The culture supernatant was concentrated by ultrafiltration and then treated with 65% saturated ammonium sulfate to precipitate the protein of interest. The precipitated product was collected by centrifugation (18000 g, 10 minutes), dissolved in PBS and then dialyzed against 25 mM acetate buffer (pH 5.2). The dialyzed solution was centrifuged (8000 g, 20 minutes) to remove insoluble products and the resulting supernatant was applied to an SP Sepharose Fast Flow column equilibrated with 25 mM acetate buffer (pH 5.2). Human soluble tissue factor was eluted from the column with a linear NaCl gradient up to 500 mM in the same buffer. The resulting fractions were analyzed by SDS/PAGE to collect fractions containing human soluble tissue factor, followed by dialysis against 25 mM Tris-HCl buffer (pH 7.5). The dialyzed fractions were applied to a Q Sepharose Fast Flow column equilibrated with 25 mM Tris-HCl buffer (pH 7.5) and human soluble tissue factor was eluted from the column with a linear NaCl gradient up to 500 mM in the same buffer, thus giving a purified human soluble tissue factor fraction.

Example 185

[Preparation of a human factor VIIa/human soluble tissue factor seed crystal]

5 [0194] As described in Proteins, vol. 22, pages 419-425, 1995, crystallization was performed on a complex between human factor VIIa and human soluble tissue factor, irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone. This crystal is necessary as a seed crystal for crystallization of a complex between reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor. The purified human factor VIIa was mixed with a 10-fold molar excess of D-Phe-Phe-Arg chloromethylketone (BACHEM) and allowed to stand at 4°C for 3 hours. To this mixture, an excess amount 10 of the purified human soluble tissue factor was added and allowed to stand at 37°C for 30 minutes, followed by ultrafiltration for concentration. The concentrated fraction was applied to a gel filtration column (Superdex 75) equilibrated with 50 mM Tris-HCl buffer (pH 7.5) containing 5 mM CaCl₂ and 100 mM NaCl, and then eluted with the same buffer to give a purified fraction of the human factor VIIa/human soluble tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone. This fraction was concentrated by ultrafiltration for crystallization to prepare a sample with a protein concentration of 10 mg/ml in 50 mM Tris-HCl buffer (pH 7.5), 100 mM NaCl and 5 mM CaCl₂. This sample was then allowed to stand at a temperature of 20°C using hanging drop vapor diffusion methods under reservoir conditions of 100 mM sodium cacodylate buffer (pH 5.0), 24% PEG40 and 5 mM CaCl₂, yielding a large amount of needle crvstal.

20 Example 186

[Preparation of a human factor VIIa/human soluble tissue factor sample for crystallization]

[0195] After addition of 1/10 volumes of 1M benzamidine, the purified human factor VIIa was mixed with a molar excess of the purified human soluble tissue factor. This mixture was concentrated by ultrafiltration and then applied to a gel filtration column (Superdex 75) equilibrated with 50 mM Tris-HCl buffer (pH 7.5) containing 5 mM CaCl₂ and 100 mM NaCl. A human factor VIIa/human soluble tissue factor complex was eluted from the column with the same buffer to give a purified fraction of the human factor VIIa/human soluble tissue factor complex.

30 Example 187

25

40

45

[Crystallization of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor]

35 [0196] The purified human factor VIIa/human soluble tissue factor complex was mixed with Compound (1) or (2) and then concentrated by ultrafiltration for crystallization to prepare a sample with a protein concentration of 12-13 mg/ml in 50 mM Tris-HCl buffer (pH 7.5), 100 mM NaCl and 5mM CaCl₂. Compounds (1) and (2) were used at the concentrations indicated in Table 35.

Table 35

	Compound (1)	Compound (2)
Concentration	0.5 mM	< 0.5 mM

[0197] Since spontaneous crystallization will not occur for a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor, it is necessary to add a seed crystal during crystallization. The seed crystal was prepared as follows. In a solution of 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG4000 and 5mM CaCl₂, the crystal of the human factor VIIa/human soluble tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone was crushed with a homogenizer and then diluted to prepare a series of 10-fold dilutions from 10⁻¹ to 10⁻⁶. Likewise, a crystal of a complex between a low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor was also available as a seed crystal.

[0198] Crystallization was performed by hanging drop vapor diffusion methods at a temperature of 25°C under reservoir conditions of 100 mM sodium cacodylate buffer (pH 5.0), 6% to 7.5% PEG4000, 5 mM CaCl₂ and 5% glycerol. The complex sample prepared from the low-molecular weight reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor was mixed with the reservoir and the seed dilutions at a ratio of 1.5 μ l:1.5 μ l:0.5 μ l (sample: reservoir:seed) to prepare a crystallization drop. About a month later, long rod crystals (maximum size: about 1.0 mm long \times 0.05 mm diameter) were obtained for the complex between the low-molecular weight reversible inhibitor and human factor VIIa/human soluble tissue factor.

Example 188

10

15

20

25

30

[Measurement of X-ray diffraction data]

5 (A) Crystal of the complex between Compound (1) and human factor VIIa/human soluble tissue factor

[0199] The crystal was soaked in 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG40 and 5mM CaCl₂ with a 5% stepwise gradient of glycerol from 10% up to 30%. This crystal together with its surrounding solution was picked by a nylon loop (cryo-loop, Hampton research) and frozen in a nitrogen stream at -170°C. The crystal was maintained in a nitrogen stream at -170°C during measurement. X-ray diffraction data were collected using an R-axis IV imaging plate detector (Rigaku) under CuKα radiation from a rotating anode X-ray generator with a fine focus filament (Ultrax18, Rigaku) at 44 kV \times 100 mA through OSMIC X-ray focusing mirrors (Rigaku). The DENZO/SCALEPACK program (Mac Science) was used for cell parameter and crystal orientation determination, diffraction spot indexing, as well as diffraction data processing, thereby obtaining diffraction intensity data up to 2.2 Å resolution. This crystal was found to be isomorphous to the Protein Data Bank complex of human factor VIIa/human soluble tissue factor, irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN). This crystal had space group P2₁2₁2₁ with unit cell parameters a = 71.40 Å, b = 82.22 Å, c = 123.47 Å, α = 90.0°, β = 90.0° and γ = 90.0°.

(B) Crystal of the complex between Compound (2) and human factor VIIa/human soluble tissue factor

[0200] The crystal was soaked in 100 mM sodium cacodylate buffer (pH 5.0), 9% PEG4000 and 5mM CaCl $_2$ with a 5% stepwise gradient of glycerol from 10% up to 30%. This crystal together with its surrounding solution was picked by a nylon loop (cryo-loop, Hampton research) and frozen in a nitrogen stream at -170°C. The crystal was maintained in a nitrogen stream at -170°C during measurement. X-ray diffraction data were collected using an R-axis IV imaging plate detector (Rigaku) under CuK α radiation from a rotating anode X-ray generator with a fine focus filament (Ultrax18 Rigaku) at 40 kV \times 100 mA through Yale mirrors (Rigaku). The DENZO/SCALEPACK program (Mac Science) was used for cell parameter and crystal orientation determination, diffraction spot indexing, as well as diffraction data processing, thereby obtaining diffraction intensity data up to 2.2 Å resolution. This crystal was found to be isomorphous to the Protein Data Bank complex of human factor VIIa/human soluble tissue factor, irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN). This crystal had space group P2 $_1$ 2 $_1$ 2 $_1$ 2 with unit cell parameters a = 71.28 Å, b = 82.32 Å, c = 123.38 Å, α = 90.0°, β = 90.0° and γ = 90.0°.

Example 189

- 35 [Structure Analysis]
 - (A) Crystal of the complex between Compound (1) and human factor YIIa/human soluble tissue factor
- [0201] Water molecules, and D-Phe-Phe-Arg chloromethylketone were removed from the coordinate data of the 40 factor VIIa/tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN) in the Protein Data Bank to create an initial model, followed by structure refinement using the CNX2000.1 program (Accerlys Inc). After rigid body refinement and energy minimization refinement, a Fourier map was calculated using coefficients 2Fo-Fc and Fo-Fc, where Fo was the structure factor observed experimentally and Fc was the structure factor calculated from the refined model. The map was then displayed on QUANTA to give a continuous electron density 45 peak around the catalytic active center of factor VIIa. An atomic model for Compound (1) was fitted to this electron density peak, followed by several rounds of refinement by simulated annealing and energy minimization. The locations of water molecules were then determined based on the Fourier map with coefficients 2Fo-Fc and Fo-Fc, followed by simulated annealing refinement and energy minimization refinement. This procedure was repeated to give the final structure coordinates. The refined parameters were xyz coordinates and an isotropic temperature factor for each atom. The occupancy was set to 1.0 for each atom. The final structure contains cordinates of 5142 atoms (including 4688 protein atoms, 9 ion atoms, 404 water atoms and 41 inhibitor atoms), giving a reduction of crystallographic R factor to 22.59% for the 30.0-2.2 Å resolution data (34775 reflections). Meanwhile, the Free R value was 26.72% for 2627 reflections.
- 55 (B) Crystal of the complex between Compound (2) and human factor VIIa/human soluble tissue factor

[0202] Water molecules and D-Phe-Phe-Arg chloromethylketone were removed from the coordinate data of the factor VIIa/tissue factor complex irreversibly inhibited with D-Phe-Phe-Arg chloromethylketone (PDB code: 1DAN) in the

Protein Data Bank to create an initial model, followed by structure refinement using the CNX2000.1 program. After rigid body refinement and energy minimization refinement, a Fourier map was calculated using coefficients 2Fo-Fc and Fo-Fc, where Fo was the structure factor observed experimentally and Fc was the structure factor calculated from the refined model. The map was then displayed on QUANTA to give a continuous electron density peak around the catalytic active center of factor VIIa. An atomic model for Compound (2) was fitted to this electron density peak, followed by several rounds of refinement by simulated annealing and energy minimization. The locations of water molecules were then determined based on the Fourier map with coefficients 2Fo-Fc and Fo-Fc, followed by simulated annealing refinement and energy minimization refinement. This procedure was repeated to give the final structure coordinates. The refined parameters were xyz coordinates and an isotropic temperature factor for each atom. The occupancy was set to 1.0 for each atom. The final structure contains cordinates of 5193 atoms (including 4688 protein atoms, 9 ion atoms, 454 water atoms and 42 inhibitor atoms), giving a reduction of crystallographic R factor to 21.13% for the 30.0-2.2 Å resolution data (33708 reflections). Meanwhile, the Free R value was 25.08% for 2530 reflections.

Example 190

5

10

15

20

25

30

35

40

45

50

[Structure coordinates]

(A) Crystal structure coordinates of the complex between Compound (1) and human factor VIIa/human soluble tissue factor

[0203] The coordinates of all atoms were shown in PDB format in Table 36 (found at the end of the specification).

(B) Crystal structure coordinates of the complex between Compound (2) and human factor VIIa/human soluble tissue factor

[0204] The coordinates of Compound (2) and amino acid residues within 10 Å of Compound (2) were shown in PDB format in Table 37 (found at the end of the specification).

Table 38 Relationship between S2 site-binding moiety and human factor VIIa specificity

Compound	Example	IC50 Factor VIIa (nM)	IC50 Thrombin (nM)	Thrombin selectivity
(2)	65	93	9415	101
(3)	67	341	2275	7

Table 39 Relationship between S1 subsite-binding moiety and human factor VIIa specificity

O NH ₂ H NH O O HN O O O O O O O O O O O O O O O O O O O	NH ₂ NH ₂ NH ₂ NH ₂	
(2)	(4)	
Example 65	Example 66	
O _≫ NH₂	O _≫ NH₂	O _V NH₂
HN NH ₂	HN NH ₂ COOH	HN NH ₂ COOH
(5)	(6)	(1)
Example 5	Example 7	Example 146

Compound	Example	IC50 Factor VIIa	IC50 Thrombin (nM)	Thrombin selectivity
(2)	65	93	9415	101
(4)	66	2945	59051	20
(5)	5	62	5880	95
(6)	7 .	37	17870	483
(1)	146	153	80175	524

Table 40 Relationship between S4 site-binding moiety and human factor VIIa specificity

O NH₂

Compound	Example	IC50 Factor VIIa (nM)	IC50 Thrombin (nM)	Thrombin selectivity
(2)	65	93	9415	101
(5)	5	62	5880	95
(7)	73	81	397	5

Table 41 Hydrogen bonding between Compound (1) and human factor VIIa S2 site

O5 O C15 NH₂ N6

C14

H

NH

O₂S

COOH

Hydrogen bonding

Inhibitor	Factor VIIa	Distance
N6	Asp60_OD2	3.0 Å
N6	Tyr94_OH	3.0 Å
N6	Thr98_0	2.8 Å
05	Asp60_OD2	3.2 Å

Table 42 Hydrogen and ionic bonding between Compound (1) and human factor VIIa S1 subsite

Hydrogen bonding

 Inhibitor
 Factor VIIa
 Distance

 N5
 Gly216_0
 2.9 Å

 O4
 Gly219_N
 2.8 Å

Ionic bonding

Inhibitor Factor VIIa Distance

O7 Lys192_NZ 4.2 Å

Table 43 Hydrogen bonding between Compound (2) and human factor VIIa S1 subsite

NH₂

NH₂

NH₂

NH₂

NH₂

O3

O3

C30

Hydrogen bonding

 Inhibitor
 Factor VIIa
 Distance

 N5
 Gly216_O
 2.8 Å

 O3
 Gly219_N
 2.8 Å

 O4
 Lys192_NZ
 3.2 Å

Table 44 Van der Waals interaction between Compound (1) and human factor VIIa S4 site

Ligand	Factor	Minimum	Factor	Minimum	Factor	Minimum
atom	VIIa	distance	VIIa	distance	VIIa	distance
C16	Pro170I	3.9 Å				
C17	Pro170I	3.7 Å				
C18	Pro170I	3.4 Å				
C19	Pro170I	3.5 Å				
C20	Gln217	3.8 Å	Val170E	4.2 Å	Ser170H	4.1 Å
C20	Pro170I	4.0 Å				
C21	Val_170E	4.0 Å	Asp170G	4.2 Å	Ser170H	3.8 Å
C22	Asp170G	3.5 Å	Ser170H	4.1 Å		
C23	Asp170G	3.8 Å	Pro170I	3.8 Å		
C24	Pro170I	4.1 Å				
N7	Asp170G	4.0 Å				

* The above table exclusively shows ligand atoms located within a minimum distance of 4.2 Å from amino acid residues in human factor VIIa.

Table 45 Van der Waals interaction between Compound (2) and human factor VIIa S4 site

Ligand atom	Factor VIIa	Minimum distance	Factor VIIa	Minimum distance	Factor VIIa	Minimum distance
C16	Trp215	3.9 Å	Gly216	4.2 Å	Pro170I	4.0 Å
C17	Pro170I	3.6 Å				
C18	Pro170I	3.6 Å	Trp215	4.2 Å	Gln217	4.2 Å
C19	Ser170H	3.8 Å	Pro170I	3.6 Å	Gln217	3.9 Å
C20	Ser170H	3.9 Å	Pro170I	3.7 Å		
C21	Pro170I	3.7 Å				
C22	Pro170I	3.7 Å				
C23	Ser170H	3.7 A				
C24	Ser170H	4.2 Å	Gln217	3.9 Å		
C25	Gln217	4.2 Å				
C26	Gly170F	4.2 Å				
C27	Asp170G	3.9 Å	Ser170H	3.9 Å		
C28	Asp170G	3.8 Å	Ser170H	3.6 Å		

* The above table exclusively shows ligand atoms located within a minimum distance of 4.2 Å from amino acid residues in human factor VIIa.

Test Example: Biological activity test

Method

Metho

5

10

15

20

25

30

35

40

45

50

1. Assay for FVIIa-inhibiting activity

[0205] The assay was carried out with 96-well microplates (Falcon, No. 3072) at room temperature.

[0206] A 10 vol% DMSO solution of a test compound (20 μ L) was mixed with 40 μ L Thromborel®S (50 mg/mL, Dade Behring, GTS-200A), 20 μ L Spectrozyme®fVIIa (5 mmol/L, American Diagnostica Inc., #217L), 20 μ L Tris buffer (500 mmol/L Tris/HCl, pH 7.5, 1500 mmol/L NaCl, 50 mmol/L CaCl₂) and 80 μ L distilled water, followed by stirring. The reaction was initiated by addition of 20 μ L FVIIa (20 nmol/L, Enzyme Research Laboratories, HF VIIa) and then monitored over time for absorbance at 405 nm using a microplate reader (Biorad, Model 3550) to determine the initial velocity of the reaction for each test compound. The initial reaction velocity was set to 100% in the case of adding 10 vol% DMSO alone, instead of a test compound. A concentration-reaction curve was prepared for FVIIa-inhibiting activity of each test compound to calculate a concentration at which the compound causes 50% inhibition of initial reaction velocity. This concentration was defined as an IC50 value.

2. Assay for thrombin-inhibiting activity

[0207] The assay was carried out with 96-well microplates (Falcon, No. 3072) at room temperature.

[0208] A 10 vol% DMSO solution of a test compound (20 μ L) was mixed with 40 μ L Tris buffer (200 mmol/L Tris/HCl, pH 8.0), 20 μ L NaCl solution (1 mol/L), 20 μ L FVR-pNa (2 mmol/L, SIGMA, B 7632) and 80 μ L distilled water, followed by stirring. The reaction was initiated by addition of 20 μ L human thrombin (5 U/mL, SIGMA, T 1063) and then monitored over time for absorbance at 405 nm using a microplate reader (Biorad, Model 3550) to determine the initial velocity of the reaction for each test compound. The same procedure as shown in assay for FVIIa-inhibiting activity was repeated to calculate an IC50 value for each test compound.

Result

[0209] The results obtained are shown in Table 46 below.

Table 46

Example No.	IC50 Factor VIIa (nM)	IC50 Thrombin (nM)
5	62	5880
7	37	17870
65	93	9415
81	177	5691
82	131	12544
170	37	9422
22	39	17544
146	153	80175
148	65	8325
83	55	14374

INDUSTRIAL APPLICABILITY

[0210] The compound of the present invention can have an excellent inhibitory activity against FVIIa or a selective inhibitory activity against extrinsic blood coagulation. This suggests that the compound of the present invention is expected to have pharmaceutical utility such as an antithrombotic agent with higher safety and fewer side effects (e. g., hemorrhage tendency). In particular, it is expected to have prophylactic or therapeutic utility for pathological conditions associated with the extrinsic coagulation pathway. More specifically, it is expected to be effective as a therapeutic or prophylactic agent for chronic thrombosis (e.g., postoperative deep vein thrombosis, post-PTCA restenosis, chronic DIC). cardioembolic strokes, cardiac infarction, cerebral infarction, etc.

[0211] In addition, it is not only possible to provide a crystal which can be used for X-ray crystal structure analysis with the aim of three-dimensional structure analysis of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, but it is also possible to computationally design a low-molecular weight reversible factor VIIa inhibitor using X-ray crystal structure analysis data. Therefore, such a design procedure enables the development of a low-molecular weight reversible factor VIIa inhibitor.

Table 36 Coordinate data of the complex between Compound
(1) and human factor VIIa/soluble tissue factor (all data)

10	CRYST1	71.4	100	82.220	123.	470 90	00 90.00	90.00	P212121		
	ATOM	1	N	ALA L	1	43.000			1.00 26.90	L	N
	ATOM	2		ALA L	î	44.06		87. 381	1.00 27.37	Ĺ	Ĉ
	ATOM	3		ALA L	i	44. 489		88. 817	1.00 28.56	Ĺ	č
	ATOM	4		ALA L	Ī	43.80		89. 541	1.00 27.63	Ĺ	ŏ
15	ATOM	5	CB	ALA L	l	43.52		87. 252	1.00 27.26	Ĺ	Ċ
	ATOM	6	N N	ASN L	2	45.618		89. 233	1.00 29.16	L	N
	ATOM	7	CA	ASN L	2	46. 10		90. 585	1.00 29.83	L	Ċ
	ATOM	8	C	ASN L	2	46. 26		91.402	1.00 30.42	Ĺ	č
	ATOM	9	Ö	ASN L	2	46. 98		91.018	1.00 32.56	ĩ	ŏ
20	ATOM	10	CB	ASN L	2	47. 44		90.546	1.00 27.10	Ĺ	č
	ATOM	11	CG	ASN L	2	47. 320		89. 989	1.00 27.19	Ĺ	č
	ATOM	12		ASN L	2	46. 57		90.519	1.00 26.29	Ĺ	ŏ
	ATOM	13		ASN L	2	48. 04		88.917	1.00 27.22	Ĭ.	N
	ATOM	14	N	ALA L	3	45. 56		92.528	1.00 31.86	Ĺ	N
25	ATOM	15	CA	ALA L	3	45.65		93. 438	1.00 31.70	Ĺ	Ĉ
23	ATOM	16	C	ALA L	3	46. 42		94.641	1.00 32.24	Ĺ	č
	ATOM	17	Ö	ALA L	3	46.62		94.764	1.00 31.48	Ĺ	ŏ
	ATOM	18	СB	ALA L	3	44. 26		93.853	1.00 31.84	Ĺ	č
	ATOM	19	N .		4	46.86		95. 524	1.00 32.19	Ĺ	Ň
30	ATOM	20	CA	PHE L	4	47. 63		96.697	1.00 31.55	Ĺ	Ċ
30	ATOM	21	C	PHE L	4	46.91		97.574	1.00 29.19	Ĺ	Č
	ATOM	22	0	PHE L	4	45.79		98.025	1.00 30.82	Ē	Ō
	ATOM	23	CB	PHE L	4	48.00		97.548	1.00 33.52	L	C
	ATOM	24	CG	PHE L	4	48.90		98.715	1.00 35.99	L	C
	ATOM	25	CD1	PHE L	4	50.18		98.506	1.00 36.15	L	Ċ
35	ATOM	26	CD2	PHE L	4	48.46	4 34.768	100.021	1.00 36.15	L	С
	ATOM	27	CEI	PHE L	4	51. 0 1	2 33.759	99.580	1.00 38.17	L	С
	ATOM	28	CE2	PHE L	4	49.28	9 34.464	101.103	1.00 38.45	L	С
	ATOM	29	CZ	PHE L	4	50.56	7 33. 957	100.881	1.00 37.74	L	C
	ATOM	30	N	LEU L	5	47.56	9 31.519	97.796	1.00 27.82	L	N
40	ATOM	31	CA	LEU L	5	47.04		98.640	1.00 26.01	L	C
	ATOM	32	C	LEU L	5	45.86	4 29.624	98.122	1.00 26.56	L	С
	ATOM	33	0	LEU L	5	45.50	5 28.619	98.730	1.00 27.40	L	0
	ATOM	34	CB	LEU L	5	46.68			1.00 24.14	. L	С
	ATOM	35	CG	LEU L	5	47.81			1.00 24.48	L	С
45	ATOM	36	CD1	LEU L	5	47. 24			1.00 22.64	Ł	C
	ATOM	37	CD2	LEU L	5	48.88	6 30.479	101.102	1.00 21.31	L	C
	MOTA	38	N	CGU L	6	45. 25	2 30.027	97.016	1.00 26.55	L	N
	MOTA	39	CA	CGU L	6	44. 12	0 29.256	96.516	1.00 26.75	L	С
	MOTA	40	CB	CGU L	6	43.49	7 29.921	95. 289	1.00 26.18	L	C
50	ATOM	41	CG	CGU L	6	42.28	3 29.117	94.819	1.00 25.49	L	C
	MOTA	42	CD1	CGU L	6	42.60	8 28.386	93.520	1.00 23.72	· L	С
	ATOM	43	CD2	CGU L	6	41.06	8 30.027	94.667	1.00 26.90	L	С
	MOTA	44	0E1	CGU L	6	43. 36		92.739	1.00 19.08	L	0
	ATOM	45	0E2	CGU L	6	42.10		93. 323	1.00 22.25	L	0
55	ATOM	46	0E3	CGU L	6	40.52	4 30.434	95.688	1.00 27.43	L	0
	MOTA	47	0E4	CGU L	6	40.69	0 30.308	93.557	1.00 26.50	L	0

	MOTA	48	С	CGU L	6	44.499	27.819	96.178	1.00 25.52	L	C
_	MOTA	49	Ŏ	CGU L	6	43.666	26.915	96.256	1.00 24.58	ī	Ō
5	ATOM	50	Ň	CGU L	7	45.760	27.607	95.813	1.00 24.67	Ĺ	Ň
	ATOM	51	CA	CGU L	7	46. 245	26. 273	95.478	1.00 24.21	ī	Ċ
	MOTA	52	CB	CGU L	7	47. 622	26.392	94.817	1.00 23.05	Ĺ	č
	MOTA	53	CG	CGU L	7	47. 330	27.007	93.446	1.00 25.83	Ĺ	č
	ATOM	54		CGU L	7	46.490	26.029	92.643	1.00 25.89	Ĺ	Č
10	ATOM	55		CGU L	7	48. 590	27. 400	92.679	1.00 27.73	Ĺ	č
	ATOM	56		CGU L	7	45. 505	26. 442	92.115	1.00 24.48	Ĺ	Ö
		57		CGU L	7	46.845	24. 866	92.113	1.00 24.48	L	0
	MOTA							92. 846	1.00 23.44		
	MOTA	58		CGU L CGU L	7	49.041	28. 527			Ļ	0
15	ATOM	59			7	49.090	26.585	91.922	1.00 28.37	Ļ	0
,,,	ATOM	60	C	CGU L	7	46. 249	25. 303	96.672	1.00 23.79	Ĺ	C
	ATOM	61	0	CGU L	7	46.558	24. 120	96.529	1.00 25.13	Ļ	0
	MOTA	62	N	LEU L	8	45.896	25.811	97.848	1.00 24.29	L	N
	ATOM	63	CA	LEU L	8	45. 789	24. 983	99.049	1.00 24.16	ŗ	C
	ATOM	64	C	LEU L	8	44. 458	24. 235	98.963	1.00 25.54	Ĺ	C
20	ATOM	65	0	LEU L	8	44. 285	23.180	99.565	1.00 26.65	Ĺ	0
	ATOM	66	CB	LEU L	8	45. 790		100.311	1.00 23.41	ŗ	C
	ATOM	67	CG	LEU L	8	47.117		100.968	1.00 24.22	L	C
	ATOM	68		LEU L	8	48.042	26.938	99.969	1.00 19.80	Ļ	C
	ATOM	69		LEU L	8	46.817		102.148	1.00 23.24	. L	C
25	ATOM	70	N	ARG L	9	43.520	24.798	98. 203	1.00 27.13	L	N
	ATOM	71	CA	ARG L	9	42.198	24. 213	98.027	1.00 27.75	L	C
	ATOM	72	C	ARG L	9	42.226	23.132	96.949	1.00 27.08	ŗ	C
	ATOM	73	0	ARG L	9	42.930	23. 255	95.948	1.00 27.06	L	0
	ATOM	74	CB	ARG L	9	41.192	25.300	97.625	1.00 29.68	Ĺ	C
30	ATOM	75	CG	ARG L	9	41.292	26.593	98.427	1.00 33.48	Ļ	C
	ATOM	76	CD	ARG L	9	40.264	27.619	97.964	1.00 34.05	Ļ	C
	ATOM	77	NE	ARG L	9	38.914	27. 246	98.370	1.00 37.69	L	N
	ATOM	78	CZ	ARG L	9	38. 254	27. 781	99.395	1.00 38.57	Ļ	C
	ATOM	79	NHI		9	38.806	28. 734		1.00 38.38	Ļ	N
	ATOM	80		ARG L	9	37.037	27. 349	99.689	1.00 40.53	L	N
35	ATOM	81	N	PRO L	10	41.465	22.050	97.144	1.00 27.28	Ĺ	N
	ATOM	82	CA	PRO L	10	41.446	20.985	96.137	1.00 27.55	L	C
	ATOM	83	C	PRO L	10	41.008	21.551	94.780	1.00 27.58	Ļ	C
	ATOM	84	0	PRO L	10	40.388	22.615	94.713	1.00 27.34	L	0
	MOTA	85	CB	PRO L	10	40.433	19.999	96.708	1.00 29.14	L	C
40	ATOM	86	CG	PRO L	10	40.613	20.160	98. 191	1.00 27.86	Ļ	C
	ATOM	87	CD	PRO L	10	40.686	21.665	98. 333	1.00 28.70	L	C
	ATOM	88	N	GLY L	11	41.334	20.848	93.702	1.00 26.59	L	N
	MOTA	89	CA	GLY L	11	40.950	21.321	92.383	1.00 28.67	Ļ	C
	ATOM	90	C	GLY L	11	39.445	21.370	92.164	1.00 29.12	L	C
45	ATOM	91	0	GLY L	11	38.709	20.499	92.628	1.00 30.35	L	0
	ATOM	92	N	SER L	12	38.985	22.398	91.459	1.00 29.23	Ĺ	N
	ATOM	93	CA	SER L	12	37.567	22.560	91.159	1.00 29.12	L	C
	ATOM	94	C	SER L	12	37. 393	23.085	89. 740	1.00 29.51	Ĺ	C
	MOTA	95	0	SER L	12	37. 797	24. 206	89. 425	1.00 28.38	L	0
50	ATOM	96	CB	SER L	12	36.916	23.531	92. 143	1.00 30.52	L	C
50	MOTA	97	0G	SER L	12	35. 555	23.749	91.803	1.00 31.56	L	0
	ATOM	98	N	LEU L	13	35. 788	22. 271	88. 884	1.00 29.17	L	N
	MOTA	99	CA	LEU L	13	36. 575	22.660	87. 497	1.00 30.18	L	C
	MOTA	100	C	LEU L	13.	35. 779	23.953	87. 383	1.00 30.11	L	C
	MOTA	101	0	LEU L	13	36.128	24.844	86.611	1.00 32.23	L	0
55	MOTA	102	CB	LEU L	13	35.842	21.549	86. 745	1.00 30.30	L	C
	MOTA	103	CG	LEU L	13	35.630	21.832	85. 260	1.00 31.24	L	C

5	ATOM ATOM ATOM ATOM ATOM ATOM	104 105 106 107 108 109	CD2 N CA CB	LEU L LEU L CGU L CGU L CGU L CGU L	13 13 14 14 14 14	36. 982 34. 743 34. 703 33. 851 32. 668 31. 651	21.877 20.756 24.051 25.230 25.027 26.161	84. 558 84. 654 88. 153 88. 130 89. 072 89. 091	1.00 29.56 1.00 30.75 1.00 29.30 1.00 29.52 1.00 31.22 1.00 35.34	L L L L L	C C C C
10	ATOM ATOM ATOM ATOM ATOM	110 111 112 113 114	CD1 CD2 OE1 OE2 OE3	CGU L CGU L CGU L CGU L	14 14 14 14	30. 495 31. 135 29. 836 30. 285 31. 048	25. 800 26. 407 26. 703 24. 609 27. 567	90. 019 87. 679 90. 495 90. 254 87. 288	1.00 36.63 1.00 36.12 1.00 37.62 1.00 40.38 1.00 37.34	L L L L	C C O O
15	ATOM ATOM ATOM ATOM ATOM ATOM	115 116 117 118 119 120	C 0	CGU L CGU L ARG L ARG L ARG L	14 14 14 15 15	30. 838 34. 585 34. 616 35. 177 35. 894 37. 132	25. 432 26. 515 27. 463 26. 540 27. 718 28. 064	86. 992 88. 502 87. 725 89. 691 90. 175 89. 356	1. 00 37. 27 1. 00 28. 40 1. 00 28. 45 1. 00 27. 46 1. 00 27. 51 1. 00 27. 23	L L L L L	0 0 N C C
20	ATOM ATOM ATOM ATOM ATOM	121 122 123 124 125	O CB CG CD NE	ARG L ARG L ARG L ARG L ARG L	15 15 15 15 15	37. 465 36. 313 37. 003 37. 615 38. 708	29. 237 27. 508 28. 707 28. 338 27. 374	89.182 91.637 92.288 93.650 93.512	1. 00 25. 95 1. 00 27. 70 1. 00 28. 99 1. 00 27. 72 1. 00 23. 84	L L L L	0 C C N
25	ATON ATON ATON ATON ATON	1 26 1 27 1 28 1 29 1 30	NH2 N CA	ARG L ARG L ARG L CGU L CGU L	15 15 15 16 16	38. 726 37. 710 39. 759 37. 792 39. 032	26. 161 25. 737 25. 358 27. 036 27. 205	94. 058 94. 798 93. 848 88. 835 88. 085	1.00 24.64 1.00 25.00 1.00 23.56 1.00 27.33 1.00 27.34	L L L L	C N N N C
30	ATOM ATOM ATOM ATOM	131 132 133 134 135	CD2 OE1	CGU L	16 16 16 16	39. 967 40. 198 40. 616 41. 304 41. 440	26. 045 25. 989 27. 379 24. 995 27. 927	88. 431 89. 937 90. 373 90. 253 89. 699	1. 00 27. 36 1. 00 23. 86 1. 00 24. 51 1. 00 23. 35 1. 00 27. 27	L L L L	000000
35	ATOM ATOM ATOM ATOM ATOM ATOM	136 137 138 139 140 141	0E3	CGU L CGU L CGU L CGU L CYS L	16 16 16 16 16 17	40. 095 42. 407 41. 023 38. 982 39. 739 38. 113	27. 883 25. 416 23. 818 27. 363 28. 159 26. 607	91. 340 90. 385 90. 349 86. 574 86. 011 85. 913	1. 00 24. 69 1. 00 20. 19 1. 00 22. 98 1. 00 29. 25 1. 00 29. 12 1. 00 29. 27	L L L L L	0 0 0 C 0 N
40	ATOM ATOM ATOM ATOM ATOM	142 143 144 145 146	CA C O CB SG	CYS L CYS L CYS L CYS L CYS L	17 17 17 17 17	38. 020 36. 760 36. 767 38. 143 39. 683	26. 672 27. 339 27. 841 25. 268 24. 375	84. 460 83. 910 82. 789 83. 870 84. 273	1. 00 30. 58 1. 00 30. 90 1. 00 31. 41 1. 00 29. 03 1. 00 29. 62	L L L L	0000
45	MOTA MOTA MOTA MOTA	147 148 149 150	N CA C O	LYS L LYS L LYS L LYS L	18 18 18 18	35. 682 34. 428 34. 376 34. 202	27. 337 27. 953 29. 423 30. 299	84. 686 84. 254 84. 649 83. 804	1.00 33.15 1.00 33.15 1.00 33.16 1.00 33.01	L L L	N C C O
50	MOTA MOTA MOTA MOTA MOTA	151 152 153 154 155	CB CG CD CE NZ	LYS L LYS L LYS L LYS L LYS L	18 18 18 18	33. 229 32. 773 33. 805 34. 139 32. 971	27. 210 25. 998 24. 888 24. 448 23. 879	84. 855 84. 049 84. 034 82. 610 81. 874	1.00 33.20 1.00 35.52 1.00 38.86 1.00 39.72 1.00 40.07	L L L L	C C C C N
55	MOTA MOTA MOTA MOTA	156 157 158 159	N CA CB CG	CGU L CGU L CGU L	19 19 19 19	34. 525 34. 510 34. 259 32. 874	29. 686 31. 048 31. 030 30. 589	85. 942 86. 459 87. 963 88. 419	1.00 33.87 1.00 33.17 1.00 34.83 1.00 37.03	L L L	N C C C

_	MOTA MOTA MOTA	160 161 162	CD2	CGU L CGU L CGU L	19 19 19	31.834 32.836 30.658	31.593 30.518 31.307	87. 934 89. 941 88. 057	1.00 37.84 1.00 39.06 1.00 36.43	L L L	C C 0
5	MOTA MOTA	163 164	OE 2 OE 3	CGU L	19 19	32. 229 32. 692	32.655 29.414	87. 435 90. 470	1.00 39.63 1.00 38.92	L L	0
10	ATOM ATOM ATOM	165 166 167	OE 4 C O	CGU L CGU L	19 19 19	32.955 35.826 35.934	31. 571 31. 771 32. 978	90. 570 86. 182 86. 388	1.00 41.50 1.00 32.60 1.00 33.89	L L L	0 C 0
	ATOM ATOM ATOM	168 169 170	N CA CB	CGU L CGU L	20 20 20	36. 824 38. 128 39. 045	31.030 31.607 31.487	85. 714 85. 422 86. 634	1.00 31.95 1.00 30.77 1.00 28.99	L L L	N C C
15	MOTA MOTA MOTA	171 172 173		CGU L CGU L	20 20 20	38.620 38.770 39.521	31. 952 33. 462 31. 281	88. 020 88. 131 89. 047	1.00 30.59 1.00 31.48 1.00 30.25	L L L	C C C
	MOTA MOTA MOTA	174 175 176	OE 1 OE 2	CGU L CGU L	20 20 20	38.025 39.634 39.282	34.061 34.004 31.444	88. 882 87. 461 90. 226	1.00 33.25 1.00 33.62 1.00 29.48	L L L	0 0
20	ATOM ATOM ATOM	177 178 179		CGU L CGU L	20 20 20	40. 453 38. 791 38. 328	30. 598 30. 857 29. 796	88. 629 84. 283 83. 875	1.00 30.41 1.00 29.55 1.00 29.94	L L L	0 0
	ATOM ATOM	180 181	N CA	GLN L GLN L	21 21	39. 891 40. 68 0	31. 419 30. 808	83.795 82.739	1.00 30.03 1.00 30.36	L L	N C
25	ATOM ATOM ATOM	182 183 184	C O CB	GLN L GLN L	21 21 21	41.690 42.484 41.425	29. 913 30. 388 31. 879	83. 454 84. 276 81. 944	1.00 29.74 1.00 27.73 1.00 33.78	L L L	C C
	ATOM ATOM ATOM	185 186 187		GLN L GLN L GLN L	21 21 21	40.535 39.865 39.029	32. 812 32. 115 31. 228	81.134 79.966 80.150	1.00 40.75 1.00 44.61 1.00 48.21	L L L	C 0
30	ATOM ATOM ATOM	188 189 190	NE 2 N CA	GLN L CYS L CYS L	21 22 22	40. 235 41. 659 42. 584	32.510 28.621 27.704	78. 752 83. 159 83. 798	1.00 45.88 1.00 27.02 1.00 26.53	L L L	N N C
05	ATOM ATOM ATOM	191 192 193	C O CB	CYS L CYS L CYS L	22 22 22	43.607 43.285 41.824	27. 197 26. 959 26. 529	82.795 81.630 84.417	1.00 28.06 1.00 29.00 1.00 26.03	L L L	C 0 C
35	ATOM ATOM ATOM	194 195 196	SG N CA	CYS L SER L SER L	22 23 23	41.127 44.846 45.919	25. 347 27. 044 26. 564	83. 224 83. 251 82. 395	1.00 24.58 1.00 28.01 1.00 29.36	L L L	S N C
40	ATOM ATOM ATOM	197 198 199	C O CB	SER L SER L SER L	23 23 23	45. 856 45. 041 47. 278	25. 046 24. 409 26. 991	82. 316 82. 991 82. 954	1.00 29.53 1.00 28.50 1.00 30.24	L L L	C 0
	ATOM ATOM	200 201	OG N	SER L PHE L	23 24	47. 547 46. 729	26.328 24.471	84.176 81.496	1.00 32.90 1.00 28.75	L L	C O N
45	ATOM ATOM ATOM	202 203 204	CA C O	PHE L PHE L	24 24 24	46.774 47.044 46.373	23. 030 22. 340 21. 370	81. 325 82. 659 83. 019	1.00 28.22 1.00 28.31 1.00 26.88	L L L	C C O
	MOTA MOTA MOTA	205 206 207		PHE L PHE L PHE L	24 24 24	47.871 47.906 47.014	22. 644 21. 179 20. 626	80. 328 80. 019 79. 106	1.00 27.99 1.00 27.32 1.00 27.03	L L L	C C
50	ATOM ATOM ATOM	208 209 210	CEI	PHE L PHE L PHE L	24 24 24	48. 791 47. 000 48. 784	20. 338 19. 256 18. 964	80. 684 78. 864 80. 449	1.00 27.00 1.00 25.26 1.00 25.45	L L L	C C C
	ATOM ATOM ATOM	211 212 213	CZ N CA	PHE L CGU L CGU L	24 25 25	47.887 48.031 48.405	18. 423 22. 850 22. 282	79. 540 83. 388 84. 673	1.00 25.69 1.00 27.44 1.00 28.71	L L	C N
55	ATOM ATOM	214 215	CB CG	CGU L	25 25	49. 570 50. 357	23. 068 22. 364	85. 262 86. 358	1.00 28.41 1.00 33.43 1.00 38.45	L L L	C C C

	ATOM ATOM	216 217	CD2	CGU L	25 25		51.791 50.357	22.882 20.859	86. 348 86. 100	1.00 40.65 1.00 40.80	L L	C C
5	ATOM	218		CGU L	25		52. 101	23.772	87.138	1.00 41.24	L	0
•	ATOM	219		CGU L	25		52.571	22.386	85.537	1.00 43.46	L	0
	MOTA	220		CGU L	25 25		50. 854 49. 853	20. 453 20. 120	85. 053 86. 950	1.00 41.65 1.00 42.95	L L	0 0
	MOTA MOTA	221 222	C C	CGU L	25 25		47. 233	22. 264	85.644	1.00 42.33	L	Č
	ATOM	223	0	CGU L	25		46. 958	21. 246	86. 271	1.00 25.98	Ĺ	Õ
10	ATOM	224	N	CGU L	26		46. 541	23. 391	85. 765	1.00 25.93	Ĺ	Ň
	MOTA	225	CA	CGU L	26		45.389	23.474	86.652	1.00 26.06	Ĺ	C
	ATOM	226	CB	CGU L	26		44.770	24.870	86.576	1.00 24.81	L	С
	MOTA	227	CG	CGU L	26		45.740	25.994	86.948	1.00 26.07	L	C
	ATOM	228		CGU L	26		46.302	25. 752	88.351	1.00 26.84	L	С
15	ATOM	229		CGU L	26		45.038	27.349	86.880	1.00 26.66	L	C
	ATOM	230		CGU L	26		45. 548	25.374	89. 218	1.00 24.86	L	0
	ATOM	231		CGU L	26		47. 480	25.942	88. 538	1.00 26.84	L	0
	MOTA	232 233		CGU L	26 26		44.976 44.567	27.925 27.805	85.801 87.890	1.00 28.65 1.00 26.86	L L	0 0
20	ATOM -	234	C	CGU L	26		44. 360	22.416	86. 254	1.00 26.09	Ĺ	C
	ATOM	235	ŏ	CGU L	26		43.830	21.696	87.099	1.00 26.77	ĩ	Õ
	ATOM	236	Ň	ALA L	27		44.090	22.319	84.957	1.00 26.92	ĩ	N
	ATOM	237	CA	ALA L	27		43.139	21.341	84.449	1.00 26.84	Ĺ	Ċ
	ATOM	238	C	ALA L	27		43.590	19.927	84.797	1.00 26.93	L	C
25	MOTA	239	0	ALA L	27		42.775	19.085	85.171	1.00 27.45	L	0
	ATOM	240	CB	ALA L	27		42.999	21.486	82.938	1.00 24.94	Ļ	C
	ATOM	241	N	ARG L	28		44.891	19.669	84.678	1.00 27.54	L	N
	ATOM ATOM	242 243	CA	ARG L	28 28		45.434 45.275	18.347 17.976	84.977 86.451	1.00 29.15 1.00 29.86	L L	C C
	ATOM	243	C O	ARG L	28	•	45.145	16.804	86. 785	1.00 23.80	L	0
30	ATOM	245	CB	ARG L	28		46.911	18.278	84.600	1.00 30.06	Ĺ	Č
	ATOM	246	CG	ARG L	28		47.457	16.859	84. 531	1.00 32.65	Ĺ	č
	ATOM	247	CD	ARG L	28		48.977	16.856	84.601	1.00 36.00	Ĺ	Č
	MOTA	248	NE	ARG L	28		49.441	17.365	85.890	1.00 37.93	L	N
35	ATOM	249	CZ	ARG L	28		49.284	16.735	87.053	1.00 38.70	L	С
03	ATOM	250	NH1	ARG L	28		48.682	15.552	87. 109	1.00 38.86	L	N
	ATOM	251		ARG L	28 29		49.706 45.302	17. 308 18. 969	88. 171 87. 333	1.00 39.29 1.00 29.50	L	N
	ATOM ATOM	252 253	N CA	CGU L	29		45. 131	18.714	88.761	1.00 29.34	L L	N C
	ATOM	254	CB	CGU L	29		45. 529	19. 947	89.559	1.00 23.34	L	C
40	MOTA	255	CG	CGU L	29		47.033	20.154	89.530	1.00 30.94	Ĺ	Č
	ATOM	256	CD1		29		47. 709	19.275	90.575	1.00 33.97	Ĺ	Č
	ATOM	257	CD2	CGU L	29		47.360	21.610	89.778	1.00 29.62	L	C
	ATOM	258		CGU L	29		48.900	19.048	90.442	1.00 37.46	L	0
	MOTA	259		CGU L	29		47. 028	18.834	91.503	1.00 36.82	L	0
45	ATOM	260		CGU L	29		48. 486	21.975	89.603	1.00 27.06	L	0
	ATOM	261		CGU L	29		46.476	22. 332	90.128	1.00 28.53	L	0
	ATOM	262 263	C	CGU L	29		43.688	18.343	89.077	1.00 28.66	L	C
	ATOM ATOM	264	O N	CGU L	29 30		43. 401 42. 783	17. 742 18. 717	90. 113 88. 181	1.00 29.88 1.00 27.56	L L	0 N
50	ATOM	265	CA	ILE L	30		41.371	18.408	88.340	1.00 27.41	L	N C
30	ATOM	266	Č	ILE L	30		41. 103	17.006	87. 791	1.00 28.29	Ĺ	Č
	ATOM	267	Ŏ	ILE L	30		40.605	16.138	88. 503	1.00 28.57	Ĺ	ŏ
	MOTA	268	CB	ILE L	30		40.492	19.428	87.570	1.00 26.20	Ĺ	Č
	ATOM	269		ILE L	30		40.685	20.830	88. 156	1.00 25.87	L	Ċ
55	ATOM	270		ILE L	30		39.035	19.014	87.626	1.00 23.37	L	С
	ATOM	271	CD1	ILE L	30		39.890	21.910	87. 444	1.00 25.78	L	C

	ATOM ATOM	272 273	N CA	PHE L PHE L	31 31	41.454 41.237	16.794 15.512	86. 525 85. 855	1.00 28.80 1.00 32.23	L L	N C
5	ATOM	274	C	PHE L	31	42. 260	14.420	86. 195	1.00 34.25	L	C
	MOTA	275	0	PHE L	31	41.958	13.230	86.097	1.00 34.78	L.	0
	MOTA	276	CB	PHE L	31	41.188	15.739	84.341	1.00 30.23	L	C
	MOTA	277 278	CG	PHE L	31	40. 039 38. 737	16.608 16.111	83. 900 83. 893	1.00 28.90 1.00 29.15	L	C
40	ATOM ATOM	279		PHE L	31 31	30. 737 40. 254	17. 926	83.512	1.00 25.15	L L	C
10	ATOM	280		PHE L	31	37. 664	16.918	83.503	1.00 23.49	Ĺ	C
	ATOM	281		PHE L	31	39. 194	18.740	83.123	1.00 21.03	L	C
	ATOM	282	CZ	PHE L	31	37.896	18. 237	83.118	1.00 26.07	Ĺ	č
	ATOM	283	N	LYS L	32	43.463	14.832	86.586	1.00 36.51	Ĺ	N
15	ATOM	284	CA	LYS L	32	44.544	13.919	86.967	1.00 39.51	Ĺ	C
	ATOM	285	C	LYS L	32	45.132	13.120	85.800	1.00 40.53	L	С
	MOTA	286	0	LYS L	32	46. 265	13.362	85.386	1.00 41.25	Ĺ	0
	ATOM	287	CB	LYS L	32	44.064	12.958	88.064	1.00 40.66	Ĺ	С
	ATOM	288	CG	LYS L	32	43.132	13.599	89.088	1.00 43.75	L	С
20	ATOM	289	CD	LYS L	32	43. 294	13.002	90.473	1.00 45.44	Ĺ	C
	ATOM	290	CE	LYS L	32	44.566	13.514	91.136	1.00 48.55	L	C
	ATOM	291	NZ	LYS L ASP L	32	44.556	15.002	91. 284 85. 278	1.00 49.03 1.00 41.87	L	N
	ATOM ATOM	292 293	N CA	ASP L	33 33	44. 366 44. 811	12.167 11.343	84.161	1.00 43.56	L L	N C
	ATOM	294	C	ASP L	33	45. 103	12.193	82. 922	1.00 44.09	Ĺ	C
25	ATOM	295	Õ	ASP L	33	44. 322	13.073	82, 562	1.00 44.53	. <u>L</u>	Õ
	ATOM	296	CB	ASP L	33	43. 747	10.290	83. 849	1.00 45.31	Ĺ	Č
	ATOM	297	CG	ASP L	33	44.088	9.458	82.635	1.00 47.36	L	C
	ATOM	298		ASP L	33	43. 8 43	9.923	81.525	1.00 45.97	L	0
	MOTA	299		ASP L	33	44.606	8.347	82.809	1.00 49.11	L	. 0
30	ATOM	300	N	ALA L	34	46. 235	11.920	82. 279	1.00 44.21	L	N
	ATOM	301	CA	ALA L	34	46.666	12.657	81.092	1.00 44.90	L	C
	ATOM	302	C	ALA L	34	45.679	12.572	79.932	1.00 45.63	L	C
	ATOM ATOM	303 304	O CB	ALA L	34 34	45.350 48.034	13.583 12.155	79.309 80.643	1.00 46.43 1.00 45.30	L L	0
35	ATOM	305	N N	CGU L	35	45. 225	11.360	79.637	1.00 45.00	Ĺ	C N
55	ATOM	306	CA	CGU L	35	44. 274	11.132	78. 559	1.00 44.45	Ĺ	C
	ATOM	307	CB	CGU L	35	43.892	9.646	78. 502	1.00 47.50	Ĺ	č
	ATOM	308	CG	CGU L	35	45.001	8.586	78.399	1.00 52.62	L	C
	ATOM	309		CGU L	35	46.080	9.012	77.405	1.00 54.39	L	С
40	ATOM	310		CGU L	35	45.632	8. 287	79.763	1.00 53.62	L	C
	ATOM	311		CGU L	35	47. 263	8. 886	77. 743	1.00 55.86	L	0
	ATOM	312		CGU L	35	45.722	9.460	76.313	1.00 56.24	L	0
	ATOM ATOM	313		CGU L	35	46.606	8. 955	80.122	1.00 53.37	L	0
	ATOM	314 315	C C	CGU L	35 35	45.140 43.019	7. 379	80. 445	1.00 54.53 1.00 42.91	L	0
45	ATOM	316	0	CGU L	35 35	42.540	11.992 12.632	78. 756 77. 819	1.00 42.91	L L	C
	ATOM	317	N	ARG L	36	42.494	12.009	79. 978	1.00 42.37	Ĺ	0 N
	ATOM	318	CA	ARG L	36	41.304	12.795	80. 294	1.00 38.99	Ĺ	Ċ
	ATOM	319	C	ARG L	36	41.572	14.296	80. 212	1.00 36.95	Ĺ	Č
	ATOM	320	0	ARG L	36	40.728	15.061	79.747	1.00 36.47	Ĺ	Õ
50	ATOM	321	CB	ARG L	36	40.797	12.447	81.696	1.00 41.08	L	C
	ATOM	322	CG	ARG L	36	40.298	11.017	81.844	1.00 43.46	L	C C.
	ATOM	323	CD	ARG L	36	39. 891	10.718	83. 278	1.00 45.24	L	C.
	ATOM	324	NE	ARG L	36	39.441	9.337	83. 441	1.00 47.54	L	N
55	ATOM	325	CZ	ARG L	36	39.133	8.776	84.607	1.00 48.41	L	C
55	MOTA	326		ARG L	36 26	39. 225	9.471	85.734	1.00 46.77	L	N
	ATOM	327	MUZ	ARG L	36	38. 728	7.512	84. 647	1.00 50.53	L	N

	ATOM	328	N	THR L	37	42.747	14.716	80.669	1.00 34.62	L	N
5	MOTA		CA	THR L	37	43.109	16.126	80.640	1.00 32.74	L	C
	ATOM-	330	C	THR L	37	43.201	16.637	79. 204	1.00 31.75	L	C
	MOTA	331	0	THR L	37	42.694	17.714	78.891	1.00 30.68	L	0
	MOTA	332	CB	THR L	37	44. 455	16.369	81.351	1.00 32.46	\mathbf{L}_{\cdot}	C
	MOTA	333	0G1	THR L	37	44. 393	15.839	82.681	1.00 32.01	L	0
10	MOTA	334		THR L	37	44.759	17.861	81.427	1.00 31.14	L	C
70	MOTA	335	N	LYS L	38	43.844	15.860	78. 336	1.00 31.24	L	N
	MOTA	336	CA	LYS L	38	43.989	16.239	76.934	1.00 32.20	L	C
	ATOM	337	С	LYS L	38	42.630	16.318	76. 233	1.00 30.65	L	C
	ATOM	338	0	LYS L	38	42.390	17.231	75.446	1.00 31.32	L	0
	ATOM	339	CB	LYS L	38	44.891	15.241	76.197	1.00 34.59	L	C
15	ATOM	340	CG	LYS L	38	46.332	15.182	76.711	1.00 37.74	L	C
	ATOM	341	CD	LYS L	38	47.030	16.539	76.640	1.00 39.00	L	C
	ATOM	342	CE	LYS L	38	47.216	17.009	75. 204	1.00 41.05	L	C
	ATOM	343	NZ	LYS L	38	47.824	18.365	75.130	1.00 38.92	L	N
	ATOM	344	N	LEU L	39	41.749	15.362	76.519	1.00 28.80	L	N
20	ATOM	345	CA	LEU L	39	40.417	15.345	75.919	1.00 28.45	L	C
	ATOM	346	С	LEU L	39	39.665	16.624	76. 275	1.00 27.55	L	С
	ATOM	347	0	LEU L	39	38.927	17.170	75.458	1.00 27.44	L	0
	ATOM	348	CB	LEU L	39	39.619	14.134	76.410	1.00 28.33	L	C
	ATOM	349	CG	LEU L	39	38.190	14.034	75.866	1.00 30.67	L	С
25	ATOM	350	CD1	LEU L	39	38.228	13.988	74.342	1.00 30.91	L	С
	ATOM	351	CD2	LEU L	39	37.504	12.791	76.422	1.00 30.33	L	С
	ATOM	352	N	PHE L	40	39.850	17.091	77.505	1.00 26.66	L	N
	ATOM	353	CA	PHE L	40	39.213	18.315	77.968	1.00 26.79	L	C
	ATOM	354	C	PHE L	40	39.869	19.531	77. 319	1.00 26.64	L	С
30	ATOM	355	0_	PHE L	40	39.188	20.429	76.821	1.00 27.35	L	0
	ATOM	356	CB	PHE L	40	39.346	18. 438	79.491	1.00 25.08	ŗ	C
	ATOM	357	CG	PHE L	40	39.028	19.810	80.020	1.00 25.21	L	Č
	ATOM	358		PHE L	40	37.707	20. 208	80. 225	1.00 24.16	Ļ	C
	ATOM	359		PHE L	40	40.052	20.718	80. 291	1.00 24.18 1.00 25.10	L	C
35	ATOM	360		PHE L	40	37.411	21.488 22.003	80. 692 80. 758		L	C
	ATOM ATOM	361 362	CZ	PHE L	40 40	39.767 38.444	22. 389	80. 158	1.00 24.75 1.00 25.22	L L	C
	ATOM	363	N N	TRP L	41	41.199	19.539	77.324	1.00 25.22	Ļ	N
	ATOM	364	CA	TRP L	41	41.1990	20.648	76. 795	1.00 26.28	Ĺ	C
	ATOM	365	C	TRP L	41	41.866	20. 970	75. 301	1.00 27.29	L	C
40	ATOM	366	ŏ	TRP L	41	41.988	22.131	74. 906	1.00 26.04	Ĺ	ő
40	ATOM	367	CB	TRP L	41	43.464	20. 425	77.144	1.00 24.26	Ĺ	Č
	ATOM	368	CG	TRP L	41	44.306	21.652	77. 027	1.00 25.36	Ĺ	Č
	ATOM	369	CD1		41	45.257	21.906	76.086	1.00 25.02	Ĺ	Č
	ATOM	370		TRP L	41	44.270	22.802	77.883	1.00 25.54	Ĺ	Č
	ATOM	371		TRP L	41	45.819	23. 143	76. 299	1.00 27.28	Ĺ	N
45	ATOM	372		TRP L	41	45.232	23.715	77.395	1.00 26.01	Ĺ	C
	ATOM	373		TRP L	41	43.517	23.149	79.014	1.00 26.85	Ĺ	. C
	ATOM	374		TRP L	41	45.464	24.954	78.000	1.00 24.01	Ĺ	Č
	ATOM	375		TRP L	41	43.747	24.383	79.616	1.00 25.86	Ĺ	Č
	ATOM	376		TRP L	41	44.715	25.270	79.105	1.00 26.46	Ĺ	Č
50	ATOM	377	N	ILE L	42	41.629	19.968	74.463	1.00 28.66	Ĺ	N
	ATOM	378	CA	ILE L	42	41.523	20.237	73.033	1.00 30.71	ĩ	C
	ATOM	379	С	ILE L	42	40.370	21.171	72.666	1.00 29.53	Ĺ	Č
	ATOM	380	0	ILE L	42	40.469	21.936	71.705	1.00 30.98	Ĺ	ŏ
	ATOM	381	CB	ILE L	42	41.429	18.925	72.209	1.00 32.87	L	Ċ
55	MOTA	382	CG1	ILE L	42	40.350	18.004	72.771	1.00 33.91	L	C
	ATOM	383		ILE L	42 .	42.769	18.217	72.217	1.00 36.59	L	Ċ

	ATOM	384	CDI	!LE L	42	38. 982	18.321	72. 269	1.00 36.99	L	С
	ATOM	385	N N	SER L	43	39. 289	21.127	73. 437	1.00 28.62	Ĺ	N
5	ATOM	386	CA	SER L	43	38. 136	21. 985	73. 185	1.00 28.31	Ĺ	C
3	ATOM	387	C	SER L	43	38. 213	23. 262	74.009	1.00 27.84	Ĺ	č
	ATOM	388	Ö	SER L	43	37. 980	24. 356	73. 499	1.00 27.48	ĩ	Õ
	ATOM	389	CB	SER L	43	36. 839	21. 247	73. 517	1.00 26.23	ĭ	Č
	ATOM	390	0G	SER L	43	36. 679	20.123	72.671	1.00 27.51	Ĺ	Õ
10	ATOM	391	N	TYR L	44	38. 541	23.115	75. 289	1.00 27.54	Ĺ	N
10	ATOM	392	CA	TYR L	44	38. 640	24. 257	76.188	1.00 27.08	Ĺ	Ċ
	ATOM	393	C	TYR L	44	39. 581	25.329	75.650	1.00 27.23	Ĺ	Č
	ATOM	394	Ö	TYR L	44	39. 241	26.510	75.650	1.00 27.59	Ĺ	ŏ
	ATOM	395	СB	TYR L	44	39, 136	23.805	77.567	1.00 26.19	Ĺ	Č
	ATOM	396	CG	TYR L	44	39. 140	24.898	78.614	1.00 24.94	Ĺ	č
15	ATOM	397		TYR L	44	37. 949	25.366	79.164	1.00 23.63	Ĺ	č
	ATOM	398		TYR L	44	40. 337	25.457	79.064	1.00 26.53	Ĺ	Č
	ATOM	399		TYR L	44	37. 949	26.362	80.142	1.00 26.54	Ĺ	Č
	ATOM	400		TYR L	44	40. 348	26.455	80.043	1.00 26.05	Ĺ	Č
	ATOM	401	CZ	TYR L	44	39. 151	26.899	80.577	1.00 26.97	Ĺ	Č
20	ATOM	402	OH	TYR L	44	39. 150	27.865	81.560	1.00 28.80	Ĺ	Ö
	ATOM	403	N	SER L	45	40. 757	24.911	75.192	1.00 27.72	ĩ	N
	ATOM	404	CA	SER L	45	41. 768	25.839	74.686	1.00 30.15	ĭ	Ċ
	ATOM	405	C	SER L	45	41. 744	26.104	73.182	1.00 30.62	Ĺ	Č
	ATOM	406	Õ	SER L	45	42,604	26.820	72.671	1.00 30.63	Ĺ	Ŏ
25	ATOM	407	ČВ	SER L	45	43. 165	25.340	75.061	1.00 30.16	Ĺ	Č
	ATOM	408	0G	SER L	45	43.497	24.166	74.339	1.00 29.88	Ĺ	Ō
	ATOM	409	N	ASP L	46	40.771	25.543	72.472	1.00 31.14	Ĺ	N
	ATOM	410	CA	ASP L	46	40.703	25.745	71.027	1.00 31.20	Ĺ	C
	ATOM	411	C	ASP L	46	40.411	27.189	70.627	1.00 30.32	Ī	Č
30	ATOM	412	0	ASP L	46	40.884	27.650	69.594	1.00 32.57	Ĺ	Ŏ
	ATOM	413	CB	ASP L	46	39.646	24.833	70.405	1.00 31.05	L	C
	ATOM	414	CG	ASP L	46	39.742	24.784	68.892	1.00 32.56	L	С
	ATOM	415	0D1	ASP L	46	40.634	24.106	68.375	1.00 33.28	Ĺ	0
	MOTA	416	OD2	ASP L	46	38. 941	25.428	68.242	1.00 29.30	L	0
35	ATOM	417	N	GLY L	47	39.636	27.899	71.442	1.00 29.23	L	N
	ATOM	418	CA	GLY L	47	39. 299	29.276	71.131	1.00 28.60	L	С
	ATOM	419	C	GLY L	47	38. 1 00	29.318	70.202	1.00 31.30	L	С
	MOTA	420	0	GLY L	47	37.926	28.417	69.392	1.00 30.95	L	0
	ATOM	421	N	ASP L	48	37. 273	30.355	70.308	1.00 31.54	L	N
	ATOM	422	CA	ASP L	48	36.090	30.472	69.462	1.00 32.74	L	C
40	ATOM	423	C	ASP L	48	36.378	31.223	68.165	1.00 33.54	L	С
	ATOM	424	0	ASP L	48	36. 498	32.452	68.159	1.00 32.67	L	0
	MOTA	425		ASP L		34. 970			1.00 34.96	L	C
	MOTA	426	CG	ASP L	48	33. 809	31.573	69.358	1.00 36.81	L	С
	MOTA	427		ASP L	48	33. 501	30.848	68.425	1.00 36.52	L	0
45	ATOM	428		ASP L	48	33. 208	32.615	69.623	1.00 39.87	L	0
	MOTA	429	N	GLN L	49	36. 485	30.481	67.064	1.00 33.17	L	N
	MOTA	430	CA	GLN L	49	36. 767	31.089	65.762	1.00 33.44	L	С
	ATOM	431	C	GLN L	49	35. 666	32.022	65. 259	1.00 33.32	L	C
	ATOM	432	0	GLN L	49	35. 871	32.774	64.305	1.00 34.51	L	0
50	ATOM	433	CB	GLN L	49	37.046	30.009	64.713	1.00 32.45	L	, C
	ATOM	434	CG	GLN L	49	38. 448	29.410	64.780	1.00 31.73	L	C
	MOTA	435	CD	GLN L	49	38. 707	28.668	66.078	1.00 33.97	L	C
	MOTA	436		GLN L	49	37. 915	27.822	66.477	1.00 32.13	L	0
	MOTA	437		GLN L	49	39. 821	28.978	66.737	1.00 32.44	L	N
55	ATOM	438	N	CYS L	50	34. 500	31.973	65.895	1.00 32.75	L	N
	MOTA	439	CA	CYS L	50	33. 391	32.840	65.519	1.00 32.95	L	C

	ATOM	440	С	CYS L	50	33.533	34.239	66.113	1.00 34.35	L	С
	MOTA	441		CYS L	50	32.803	35.154	65.733	1.00 33.23	Ĺ	Ō
				CYS L		32.062	32.249	65.988	1.00 31.79	Ĺ	Č
5	ATOM	442			50						
	MOTA	443		CYS L	50	31.419	30.890	64.967	1.00 30.41	L	S
	MOTA	444	N	ALA L	51	34.466	34.398	67.049	1.00 36.39	L	N
	ATOM	445	CA	ALA L	51	34.698	35.681	67.712	1.00 38.60	L	С
	MOTA	446	C	ALA L	51	34.967	36.818	66.727	1.00 39.03	Ĺ	С
	MOTA	447		ALA L	51	34.554	37.955	66.952	1.00 39.61	L	0
10	ATOM	448		ALA L	51	35.861	35.554	68.695	1.00 37.84	Ĺ	Č
	MOTA	449		GSERL	52	35.657	36.507	65.636	1.00 39.50	Ĺ	N
				GSERL	52	35.974	37. 503	64.619	1.00 39.27	Ĺ	C
	ATOM	450									
	MOTA	451		GSERL	52	37. 114	36.982	63. 737	1.00 40.23	Ļ	C
15	MOTA	452	0G	GSERL	52	36.756	36.974	62.365	1.00 45.10	L	0
	MOTA	453	С	GSERL	52	34.756	37.859	63.760	1.00 38.60	L	C
	ATOM	454	0	GSERL	52	34.854	38.667	62.835	1.00 38.29	Ĺ	0
	MOTA	455	C1	GSERL	52	37.197	35.776	61.707	1.00 45.99	L	C
	ATOM	456		GSERL	52	38.111	36.101	60.515	1.00 46.11	L	C
	ATOM	457	C3	GSERL	52	38.477	34.801	59.788	1.00 46.60	Ĺ	Č
20	ATOM	458	C4	GSERL	52	39.100	33.808	60.777	1.00 46.16	Ĺ	č
	ATOM	459	C5	GSERL	52	38.180	33.615	62.004	1.00 46.88	ĩ	Č
	ATOM	460	C6	GSERL	52	38.849	32.688	63.024	1.00 48.42	Ļ	Ç
	ATOM	461	02	GSERL	52	37. 438	36.988	59.614	1.00 47.32	L	0
	ATOM	462	03	GSERL	52	39.406	35.079	58.734	1.00 46.42	L	0
25	ATOM	463	04	GSERL	52	39.302	32.549	60.123	1.00 46.46	L	0
	MOTA	464	05	GSERL	52	37.851	34.874	62.616	1.00 47.23	L	0
	ATOM	465	06	GSERL	52	39, 251	31.462	62.431	1.00 51.52	L	0
	ATOM	466	N	SER L	53	33.610	37.263	64.085	1.00 36.60	L	N
	ATOM	467	CA	SER L	53	32.367	37.488	63.354	1.00 35.81	Ĺ	C
30	ATOM	468	C	SER L	53	32.602	37.463	61.845	1.00 33.73	Ĺ	Č
30	ATOM	469	0	SER L	53	32.395	38.460	61.162	1.00 33.37	Ĺ	.0
	ATOM	470	CB	SER L	53	31.765	38. 831	63.764	1.00 37.62		C
								63.524		L	
	ATOM	471	0G	SER L	53	32.684	39.879		1.00 40.28	ŗ	0
	ATOM	472	N	PRO L	54	33.026	36.310	61.303	1.00 32.42	L	N
35	ATOM	473	CA	PRO L	54	33. 285	36.192	59.865	1.00 31.65	L	C
	ATOM	474	С	PRO L	54	32.069	36.078	58.940	1.00 30.67	L	C
	ATOM	475	0	PRO L	54	32.156	36.424	57.761	1.00 30.19	L	0
	ATOM	476	CB	PRO L	54	34.172	34.956	59.788	1.00 31.82	L	C
	MOTA	477	CG	PRO L	54	33.578	34.084	60.841	1.00 30.71	L	C
	ATOM	478	CD	PRO L	54	33.366	35.051	61.994	1.00 30.98	Ĺ	C
40	ATOM	479	N	CYS L	55	30.946	35.594	59.461	1.00 29.86	Ĺ	Ň
	ATOM	480	CA	CYS L	55	29.752	35.422	58.635	1.00 30.36	Ĺ	Ċ
	ATOM	481	C	CYS L	5 5	29.033	36. 733	58. 343	1.00 31.54	Ĺ	Č
	ATOM	482	0	CYS L	5 5	28. 455	37. 358	59. 230			
										Ļ	0
45	ATOM	483	CB	CYS L	55	28.794	34. 430	59. 290	1.00 28.02	Ĺ	C
43	ATOM	484	SG	CYS L	55	29.586	32. 875	59.818	1.00 28.74	L	S
	MOTA	485	N	GLN L	56	29.060	37.122	57.074	1.00 31.32	L	N
	ATOM	486	CA	GLN L	56	28.456	38, 365	56.607	1.00 30.45	L	C
	ATOM	487	C	GLN L	56	26.983	38. 271	56.217	1.00 29.58	L	C
	ATOM	488	0	GLN L	56	26.387	37.195	56.205	1.00 30.14	L	0
50	ATOM	489	ČB	GLN L	56	29.239	38. 873	55.398	1.00 29.51	Ĩ.	Č
	ATOM	490	CG	GLN L	56	30.731	38. 996	55.615	1.00 27.82	L .	C
	ATOM	491	CD	GLN L	56	31.463	39. 252	54. 321	1.00 28.65	L	
											C
	ATOM	492		GLN L	56	31.054	40.098	53. 526	1.00 31.65	L	0
	ATOM	493		GLN L	56	32.551	38. 526	54.098	1.00 29.31	Ļ	N
55	MOTA	494	N	ASN L	57	26.415	39. 429	55.897	1.00 30.03	Ĺ	N
	MOTA	495	CA	ASN L	57	25.030	39. 559	55. 453	1.00 29.58	L	C

	ATOM	495	С	ASN L	57	23.952	38.887	56. 296	1.00 29.62	L	C	
	MOTA	497		ASN L	57	23.024	38. 276	55.764	1.00 29.77	L		
	ATOM	498	CB	ASN L	57	24.921	39.085	53.999	1.00 29.04	L	. C	
5	ATOM	499		ASN L	57	25.762	39.924	53.054	1.00 29.56	. L	. C	
	ATOM	500	0D1	ASN L	57	25.568	41.134	52.945	1.00 32.62	L	. 0	
	ATOM	501		ASN L	57	26.702	39.287	52.367	1.00 29.28	L	N	
	ATOM	502	N	GLY L	58	24.059	39.019	57.610	1.00 30.01	L	N	
	ATOM	503	CA	GLY L	58	23.061	38.432	58.485	1.00 30.78	L	C	
10	ATOM	504	C	GLY L	58	23.145	36.931	58.670	1.00 30.82	L	C	
	MOTA	505	0	GLY L	58	22.16 6	36.299	59.066	1.00 31.08	L		
	ATOM	506	N	GLY L	59	24.305	36.351	58.388	1.00 31.24	L		
	ATOM	507	CA	GLY L	59	24.453	34.919	58. 557	1.00 31.81	L		
	ATOM	508	C	GLY L	59	24.692	34.578	60.015	1.00 31.05	L		
15	MOTA	509	0	GLY L	59	24.845	35.466	60.853	1.00 31.54	L		
	ATOM	510	N	FSERL	60	24.723	33.289	60.326	1.00 30.80	L		
	MOTA	511		FSERL	60	24.959	32.852	61.690	1.00 30.86	L		
	ATOM	512	CB	FSERL	60	23.724	32.128	62.227	1.00 31.58	l.		
	ATOM	513	0G	FSERL	60	22.643	33.041	62.308	1.00 32.58	Ĺ		
20	ATOM	514	Č	FSERL	60	26.184	31.953	61.743	1.00 30.82	Ī		
	ATOM	515	Ŏ	FSERL	60	26.297	30.990	60.984	1.00 29.56	Ĺ		
	ATOM	516	Č1	FSERL	60	21.375	32.378	62.268	1.00 35.22	L		
	ATOM	517	C2	FSERL	60 ·	20.246	33.387	62.560	1.00 36.79	L		
	MOTA	518	C3	FSERL	60	20.174	34.428	61.430	1.00 37.43	L		
25	MOTA	519	C4	FSERL	60	20.031	33.715	60.084	1.00 36.10	I		
	ATOM	520	C5	FSERL	60	21.164	32.683	59.913	1.00 35.80	I		
	ATOM	521	C6	FSERL	60	21.036	31.969	58.566	1.00 35.30	L		
	ATOM	522	02	FSERL	60	20.509	34.051	63.802	1.00 39.97	L		
	ATOM	523	03	FSERL	60	19.049	35.291	61.638	1.00 39.35	I	. 0	
30	ATOM	524	04	FSERL	60	18.764	33.048	60.034	1.00 38.01	I	. 0	
	ATOM	525	05	FSERL	60	21.172	31.739	60.996	1.00 35.11	I	. 0	
	ATOM	526	N	CYS L	61	27.103	32.284	62.644	1.00 29.76	I		
	ATOM	527	CA	CYS L	61	28.340	31.532	62.803	1.00 30.26	I	, с	
	ATOM	528	C	CYS L	61	28.205	30.412	63.825	1.00 30.72	I	C	
35	ATOM	529	0	CYS L	61	27.616	30.591	64.895	1.00 29.55	I	, 0	
55	ATOM	530	CB	CYS L	61	29. 468	32.474	63.227	1.00 29.48	I	. С	
	ATOM	531	SG	CYS L	61	31.145	31.764	63.150	1.00 30.89	I	. S	
	ATOM	532	N	LYS L	62	28.754	29. 254	63.477	1.00 30.27	I		
	ATOM	533	CA	LYS L	62	28.729	28.090	64.347	1.00 29.64	I		
10	ATOM	534	С	LYS L	62	30.183	27.688	64.543	1.00 29.26	I	_	
40	MOTA	535	0	LYS L	62	30.870	27.312	63.595	1.00 28.28	I		
	MOTA	53 6	CB	LYS L	62	27.943	26.952	63.696	1.00 30.78	I		
	ATOM	537	CG	LYS L	62	27. 56 1	25.826	64.642	1.00 33.70	I	, ,	
	ATOM	538	CD	LYS L	62	28. 780	25.112	65.204	1.00 35.68	I		
	ATOM	539	CE	LYS L	62	28. 392	23.957	66.122	1.00 34.05	I		
45	MOTA	540	ΝZ	LYS L	62	27.581	24. 389	67.286	1.00 32.19	I		
	MOTA	541	N	ASP L	63	30.645	27. 781	65.782	1.00 29.03	I		
	ATOM	542	CA	ASP L	63	32.018	27. 455	66.120	1.00 28.45	I		
	ATOM	543	С	ASP L	63	32.317	25.970	65.961	1.00 27.88	I		
	MOTA	544	0	ASP L	63	31.489	25. 120	66.286	1.00 26.64	I		
50	ATOM .	545	CB	ASP L	63	32.310	27. 909	67. 54 6	1.00 28.61	I		
	ATOM	546	CG	ASP L	63	33.762	27.778	67.899	1.00 31.76	I	. С	
	MOTA	547		ASP L	63	34. 595	28. 171	67.072	1.00 29.78	I		
	MOTA	548		ASP L	63	34. 057	27. 289	68. 98 9	1.00 31.88	I		
	MOTA	549	N	GLN L	64	33. 511	25.670	65.463	1.00 27.71	I		
55	MOTA	550	CA	GLN L	64	33. 934	24. 296	65. 222	1.00 29.46	I	. C	
	ATOM	551	С	GLN L	64	35. 354	24. 115	65.75 1	1.00 29.86	I		

									-			
	ATOM	552	0 (GLN L	64	35.988	25.076	66.145	1.00 29.	22	L	0
	ATOM			GLN L	64	33.894	24.014	63.715	1.00 30.		Ĺ	Č
5	ATOM			GLN L	64	33. 597	22. 576	63.346	1.00 33.		Ĺ	č
	ATOM			GLN L	64	32. 157	22.156	63.621	1.00 33.		Ĺ	Č
							20. 973					
	ATOM		0E1 (64	31.840		63.568	1.00 36.		Ļ	0
	ATOM		NE2 (64	31. 284	23. 119	63.904	1.00 31.		L	N
	ATOM			LEU L	65	35.862	22. 891	65.740	1.00 32.		L	N
10	MOTA	559	CA I	LEU L	65	37.206	22.633	66.242	1.00 33.	87	L	C
	MOTA	560	C I	LEU L	65	38.292	23. 203	65.332	1.00 35.	15	L	С
	ATOM	561	0 1	LEU L	65	38.688	22.574	64.349	1.00 36.	47	L	0
	ATOM			LEU L	65	37.410	21.125	66.422	1.00 35.		L	Č
	ATOM			LEU L	65	38.554	20.679	67.337	1.00 36.		Ĺ	Č
	ATOM		CD1		65	38. 435	21. 372	68.687	1.00 36.		Ĺ	č
15												
	ATOM			LEU L	65	38.503	19.172	67.517	1.00 35.		L	C
	ATOM			GLN L	66	38. 767	24.401	65.666	1.00 35.		L	N
	MOTA			GLN L	6 6	39.820	25.072	64.903	1.00 35.		L	С
	MOTA			GLN L	66	39.293	25.586	63.561	1.00 35.		L	С
20	MOTA	569	0 (GLN L	66	39.998	25.562	62.547	1.00 33.		L	0
20	ATOM	570	CB (GLN L	6 6	40.986	24.101	64.674	1.00 37.	22	L	С
	ATOM	571	CG (GLN L	66	42.288	24.748	64.232	1.00 40.	93	L	C
	ATOM			GLN L	66	43.040	25.456	65.356	1.00 40.	68	L	Ċ
	ATOM			GLN L	66	44.109	26.017	65.128	1.00 41.	86	L	Ö
	ATOM			GLN L	66	42.488	25. 431	66.566	1.00 40.		Ĺ	N
25	ATOM			SER L	67	38. 051	26.059	63.568	1.00 31.		Ĺ	N
					67				1.00 31.			
	ATOM			SER L		37.412	26.568	62.365			L	C
	ATOM			SER L	67	35.991	27.036	62.667	1.00 31.		Ļ	C
	MOTA			SER L	67	35.613	27. 197	63.829	1.00 31.		L	0.
	MOTA			SER L	67	37.389	25. 477	61.288	1.00 30.		L	C ·
30	MOTA			SER L	67	36.946	24. 239	61.817	1.00 30.		L	0
	ATOM			TYR L	68	35.210	27. 265	61.618	1.00 29.		L	N
	ATOM	582	CA	TYR L	68	33.835	27.707	61.785	1.00 28.	95	L	С
	MOTA	583	C '	TYR L	68	32.987	27.358	60.573	1.00 28.	08	L	C
	MOTA	584	0	TYR L	68	33.500	26.977	59.516	1.00 27.	87	L	0
0.5	ATOM			TYR L	68	33.769	29. 221	62.024	1.00 30.		L	Ċ
35	ATOM	586		TYR L	68	34.288	30.061	60.876	1.00 29.		Ĺ	Č
	ATOM			TYR L	68	35.650	30. 332	60.743	1.00 30.		Ĺ	Č
	ATOM	588		TYR L	68	33.417	30. 574	59.912	1.00 30.		Ľ	Č
	MOTA			TYR L	68	36.135	31.090	59.682	1.00 29.		Ĺ	Č
		590		TYR L	68				1.00 29.			
40	ATOM					33.892	31.331	58.844			L	C
	ATOM	591		TYR L	68	35.251	31.585	58.737	1.00 29.		ŗ	C
	ATOM	592		TYR L	68	35.733	32.320	57.683	1.00 28.		L	0
	MOTA	593		ILE L	69	31.680	27.499	60.743	1.00 25.		L	N
	MOTA			ILE L	69	30.72 0	27. 220	59.691	1.00 24.		L	C
	ATOM	595		ILE L	69	29.732	28.374	59.657	1.00 23.	. 58	L	C
45	ATOM	596	0	ILE L	69	29. 23 3	28.800	60.698	1.00 21.	31	L	0
	ATOM	597	CB	ILE L	69	29.947	25.908	59.974	1.00 24.	42	· L	C
	MOTA	598		ILE L	69	30.904	24.717	59.914	1.00 24.		Ĺ	Č
	ATOM	599		ILE L	69	28.818	25.739	58. 97 6	1.00 23.		Ĺ	č
	ATOM	600		ILE L	69	30.243	23.389	60.201	1.00 23		Ľ	
					70							C
50	ATOM	601		CYS L		29.466	28.893	58.464	1.00 23.		Ļ	N
	ATOM	602		CYS L	70	28.517	29.985	58. 323	1.00 23.		L	C
	ATOM	603		CYS L	70	27.195	29.499	57.730	1.00 24.		L	C
	ATOM	604		CYS L	70	27.174	28.777	56.735	1.00 22.		L	0
	ATOM	605		CYS L	70	29.084	31.091	57.427	1.00 24		L	C
<i>55</i>	ATOM	606		CYS L	70	30.424	32.100	58.136	1.00 24.	79	L	S
55	ATOM	607	N	PHE L	71	26.096	29.880	58.373	1.00 23.		Ĺ	N
											-	••

	ATOM	608	CA	PHE L	71	24.765	29.550	57.896	1.00 24.42	L	€
	ATOM	609	C	PHE L	71	24.305	30.861	57. 285	1.00 25.98	L	С
5	ATOM	610	0	PHE L	71	24.271	31.884	57.961	1.00 26.06	L	0
	ATOM	611	CB	PHE L	71	23.840	29.148	59.051	1.00 23.72	L	С
	ATOM	612	CG	PHE L	71	24.079	27.753	59.563	1.00 23.26	L	Ċ
	MOTA	613		PHE L	71	25. 220	27.448	60.300	1.00 20.48	Ĺ	č
	MOTA	614		PHE L	71	23.170	26. 737	59. 286	1.00 21.74	Ĺ	č
10	ATOM	615		PHE L	71	25.453	26. 157	60.751	1.00 19.84	Ĺ	č
10	MOTA	616		PHE L	71	23.395	25.440	59.733	1.00 22.58	Ĺ	Č
	ATOM	617	CZ	PHE L	71	24.537	25. 149	60.467	1.00 21.41	Ĺ	Č
	ATOM	618	N	CYS L	72	23.964	30. 838	56.004	1.00 27.38	Ĺ	N
	ATOM	619	CA	CYS L	72	23.561	32.060	55. 322	1.00 28.04	L	C
				CYS L	72	22.067	32. 210	55. 147	1.00 28.04	Ĺ	. C
15	ATOM	620	C				31. 236				
	ATOM	621	0	CYS L	72	21.315		55. 240	1.00 30.40	Ļ	0
	ATOM	622	CB	CYS L	72	24. 216	32. 125	53.941	1.00 27.64	L	C
	ATOM	623	SG	CYS L	72	25.997	31.758	53.929	1.00 27.84	L	S
	ATOM	624	N	LEU L	73	21.645	33. 446	54.896	1.00 29.28	L	N
20	ATOM	625	CA	LEU L	73	20. 243	33.736	54.640	1.00 29.11	L	C
	ATOM	626	C	LEU L	73	20.018	33. 294	53. 201	1.00 29.05	L	C
	ATOM	627	0	LEU L	73	20.964	33. 228	52.419	1.00 29.21	L	0
	ATOM	628	CB	LEU L	73	19.963	35. 233	54. 786	1.00 29.61	L	C
	ATOM	629	CG	LEU L	73	19.999	35.764	56. 221	1.00 31.06	Ļ	C
25	ATOM	630		LEU L	73	19.802	37. 274	56. 220	1.00 32.08	L	C
20	ATOM	631		LEU L	73	18.913 18.766	35.075	57.043	1.00 30.65	L	C
	MOTA	632 633	N CA	PRO L PRO L	74 74	18. 384	32.991 32.543	52.833 51.492	1.00 29.36 1.00 29.38	L	Ŋ
	MOTA MOTA	634	C	PRO L	74	19. 120	33.149	50. 298	1.00 29.30	L	C
	ATOM	635	0	PRO L	74	19.630	32. 420	49.449	1.00 29.43	L L	C
20	ATOM	636	CB	PRO L	74	16.888	32. 828	51.461	1.00 29.02	L	0 C
30	ATOM	637	CG	PRO L	74	16.486	32. 477	52.854	1.00 29.08	L	C
	ATOM	638	CD	PRO L	74	17.570	33. 151	53. 682	1.00 29.95	L	C
	MOTA	639	N	ALA L	75	19.190	34. 473	50. 229	1.00 28.84	L	N ·
	ATOM	640	CA	ALA L	75		35.124	49.100	1.00 28.32	Ĺ	Č
_	ATOM	641	C	ALA L	75	21.368	35. 226	49.194	1.00 27.93	ĩ	Č
35	ATOM	642	Ö	ALA L	75	21.978	36.020	48. 481	1.00 29.61	ĩ	Ö
	ATOM	643	CB	ALA L	75	19. 257	36.508	48. 893	1.00 27.56	Ĺ	Č
	ATOM	644	N	PHE L	76	21.987	34.418	50.047	1.00 26.68	Ĺ	N
	ATOM	645	CA	PHE L	76	23. 433	34.480	50. 205	1.00 25.92	Ĺ	Ċ
	ATOM	646	C	PHE L	76	24. 105	33. 108	50. 253	1.00 25.21	Ĺ	Č
40	ATOM	647	Ö	PHE L	76	23. 484	32.103	50.606	1.00 24.64	Ĺ	ŏ
	ATOM	648	СB	PHE L	76	23.770	35. 269	51.479	1.00 26.98	· Ĺ	č
	ATOM	649	CG	PHE L	76	23.308	36.705	51.447	1.00 26.03	Ĺ	č
	ATOM	650	CD1	PHE L	76	24.009	37.660	50.717	1.00 26.24	Ĺ	Č
	MOTA	651	CD2	PHE L	76	22.161	37.094	52.128	1.00 25.56	Ĺ	Č
45	ATOM	652		PHE L	76	23.570	38.986	50.665	1.00 27.46	Ĺ	č
	MOTA	653		PHE L	76	21.713	38.416	52.083	1.00 28.29	Ĺ	č
	ATOM	654	CZ	PHE L	76	22.420	39.363	51.350	1.00 27.25	Ĺ	č
	ATOM	655	N	GLU L	77	25. 381	33.082	49.881	1.00 23.35	Ĺ	Ň
	ATOM	656	CA	GLU L	77	26. 171	31.861	49.896	1.00 25.22	Ĺ	Ĉ
50	ATOM	657	C	GLU L	77	27.636	32. 260	50.022	1.00 25.48	Ĺ	č
	ATOM	658	Ö	GLU L	77	27.947	33.446	50.102	1.00 24.93	Ĺ	Ö
	ATOM	659	CB	GLU L	77	25. 931	31.027	48.624	1.00 24.76	Ĺ	č
	ATOM	660	CG	GLU L	77	26.369	31.665	47.317	1.00 26.43	Ĺ	č
	MOTA	661	CD	GLU L	77	25. 929	30. 854	46.102	1.00 29.36	Ĺ	č
55	ATOM	662		GLU L	77	26. 332	29.708	45.975	1.00 26.59	Ĺ	Õ
= =	ATOM	663		GLU L	7 7	25. 177	31.379	45. 287	1.00 31.26	Ĺ	ő
											-

5	ATOM ATOM ATOM ATOM	664 665 666 667	CA C	GLY L GLY L GLY L GLY L	78 78 78 78	28. 525 29. 944 30. 414 29. 613	31. 273 31. 545 31. 145 31. 056	50.045 50.191 51.585 52.513	1.00 24.82 1.00 24.72 1.00 26.41 1.00 25.52	L L L L	N C C O
10	ATOM ATOM ATOM ATOM ATOM	668 669 670 671 672	C 0	ARG L ARG L ARG L ARG L ARG L	79 79 79 79 79	31.711 32.299 31.847 31.503 33.827	30. 894 30. 507 31. 428 30. 972 30. 532	51.731 53.014 54.146 55.236 52.894	1.00 26.17 1.00 26.44 1.00 27.39 1.00 27.00 1.00 25.97	L L L L	N C C O
15	ATOM ATOM ATOM ATOM	673 674 675 676		ARG L ARG L ARG L ARG L	79 79 79 79 79	34. 596 36. 018 36. 352 37. 168	30. 332 30. 145 29. 745 28. 422 27. 553	54. 138 53. 756 54. 279 53. 689	1. 00 25. 27 1. 00 25. 27 1. 00 27. 07 1. 00 29. 92 1. 00 31. 71	L L L L	C C N C
	ATOM ATOM ATOM ATOM ATOM	677 678 679 680 681		ARG L ASN L ASN L ASN L	79 79 80 80 80	37. 754 37. 394 31. 845 31. 440 30. 171	27. 849 26. 375 32. 728 33. 727 34. 446	52. 536 54. 254 53. 875 54. 858 54. 415	1.00 34.10 1.00 34.56 1.00 28.14 1.00 27.10 1.00 27.35	L L L L	N N C C
20	ATOM ATOM ATOM ATOM	682 683 684 685	O CB CG OD1	ASN L ASN L ASN L ASN L	80 80 80 80	29. 950 32. 561 33. 868 33. 952	35. 598 34. 750 34. 110 33. 449	54. 785 55. 038 55. 442 56. 473	1.00 27.84 1.00 27.74 1.00 29.02 1.00 31.37	L L L L	0 C C 0
25	ATOM ATOM ATOM ATOM ATOM	686 687 688 689 690	ND2 N CA C	ASN L CYS L CYS L CYS L CYS L	80 81 81 81	34. 897 29. 348 28. 103 28. 341 27. 474	34. 301 33. 771 34. 353 35. 691 36. 566	54. 629 53. 616 53. 113 52. 395 52. 392	1.00 31.80 1.00 26.38 1.00 26.94 1.00 27.16 1.00 26.50	L L L L	N C C O
30	ATOM ATOM ATOM ATOM	691 692 693 694	CB SG N CA	CYS L CYS L GLU L GLU L	81 81 82 82	27. 115 26. 764 29. 510 29. 875	34. 563 33. 080 35. 834 37. 058	54. 263 55. 267 51. 777 51. 077	1.00 26.45 1.00 28.68 1.00 26.64 1.00 27.18	L L L L	C S N C
35	ATOM ATOM ATOM ATOM ATOM	695 696 697 698 699	C O CB CG CD	GLU L GLU L GLU L GLU L	82 82 82 82 82	29. 314 29. 364 31. 408 32. 116 32. 435	37. 153 38. 216 37. 199 36. 245 34. 881	49. 654 49. 031 51. 028 50. 057 50. 658	1.00 27.98 1.00 28.25 1.00 27.27 1.00 25.93 1.00 27.71	Ł L L L	0 0 0 0
40	ATOM ATOM ATOM ATOM	700 701 702 703	OE1 OE2 N CA	GLU L GLU L THR L THR L	82 . 82 83 83	31. 618 33. 503 28. 776 28. 238	34. 339 34. 356 36. 052 36. 042	51. 391 50. 371 49. 140 47. 784	1.00 26.78 1.00 29.60 1.00 28.28 1.00 28.62	L L L	0 0 N C
45	ATOM ATOM ATOM ATOM ATOM	704 705 706 707 708		THR L THR L THR L THR L THR L	83 83 83 83	26. 762 25. 910 28. 442 29. 836 27. 941	36. 405 35. 738 34. 668 34. 341 34. 692	47. 698 48. 284 47. 117 47. 124 45. 675	1.00 29.44 1.00 28.89 1.00 26.44 1.00 25.96	L L L	0 0
	ATOM ATOM ATOM ATOM	709 710 711 711	N CA C	HIS L HIS L HIS L	84 84 84 84	26. 475 25. 109 24. 514 24. 914	37. 472 37. 939 37. 169 37. 372	46. 958 46. 759 45. 588 44. 442	1.00 26.81 1.00 31.51 1.00 34.54 1.00 35.95 1.00 36.09	L L L L	C N C C
50	ATOM ATOM ATOM ATOM	713 714 715 716	CB CG ND1 CD2	HIS L HIS L HIS L	84 84 84 84	25. 085 25. 439 26. 701 24. 697	39. 434 40. 328 40. 373 41. 231	46. 424 47. 572 48. 126 48. 256	1.00 36.24 1.00 38.81 1.00 39.64 1.00 39.06	L L L L	C C N C
55	ATOM ATOM ATOM	717 718 719		HIS L HIS L LYS L	84 84 85	26. 721 25. 518 23. 561	41. 264 41. 799 36. 290	49. 100 49. 200 45. 871	1.00 39.38 1.00 41.56 1.00 37.90	L L L	C N N

	ATOM	720	CA	LYS L	85	22.931	35. 504	44.817	1.00 39.99	L	C
5	MOTA	721	C	LYS L	85	22.179	36. 379	43.808	1.00 41.95	L	C
5	ATOM	722	0	LYS L	85	21.997	35.988	42.659	1.00 42.20	Ļ	0
	MOTA	723	CB	LYS L	85	21. 983	34. 471	45.432	1.00 40.09	Ļ	C
	ATOM	724	CG	LYS L	85	22.673	33. 492	46.380	1.00 41.01	Ĺ	C
	ATOM	725	CD	LYS L	85	21.699	32.493	46.987	1.00 40.74	L	C
40	ATOM	726	CE	LYS L	85	21.202	31.494	45.958	1.00 42.61	L	C
10	ATOM	727	NZ	LYS L	85	22. 296	30.609	45.462	1.00 43.27	L	N
	ATOM	728	N	ASP L	86	21. 758	37. 567	44. 235	1.00 44.88	L	N
	ATOM	729	CA	ASP L	86	21.030	38. 487	43.361	1.00 47.56	L	C
	ATOM ATOM	730	C	ASP L	86	21.941	39. 324	42.455	1.00 47.92 1.00 48.41	Ļ	C
		731	O CB	ASP L	86 96	21.456	40.131	41.663		L	0
15	ATOM	732		ASP L	86	20.159	39. 433	44.196	1.00 49.53 1.00 52.38	L	C
	MOTA	733 734	CG	ASP L ASP L	86 86	19.237 18.537	38.694	45.147 44.701	1.00 52.38	Ĺ	C
	MOTA MOTA	735		ASP L	86	19. 217	37. 783 39. 037	46.334	1.00 53.54	L L	0
	ATOM:	736	N N	ASP L	87	23. 252	39. 132	42.568	1.00 48.29	Ĺ	N
	ATOM	737	CA	ASP L	87	24. 213	39. 883	41.762	1.00 48.43	· L	C
20	ATOM	738	C	ASP L	87	24. 938	39.017	40.736	1.00 48.75	Ĺ	č
	ATOM	739	Ŏ	ASP L	87	26. 108	39. 250	40.431	1.00 48.28	Ĺ	ŏ
	ATOM	740	ČB	ASP L	87	25. 244	40.550	42.673	1.00 49.27	ĩ	č
	ATOM	741	CG	ASP L	87	24.639	41.629	43.545	1.00 49.65	Ĺ	č
	ATOM	742		ASP L	87	25.271	41.998	44.528	1.00 50.02	Ĺ	0
25	ATOM	743		ASP L	87	23.541	42.101	43.231	1.00 50.10	L	0
	ATOM	744	N	GLN L	88	24.239	38.024	40.199	1.00 48.76	L	N
	ATOM	745	CA	GLN L	88	24.834	37.130	39.216	1.00 48.54	L	С
	MOTA	746	C	GLN L	88	24.028	37.101	37.921	1.00 47.25	L	C
	MOTA	747	0	GLN L	88	23.989	36.081	37.238	1.00 47.52	L	0
30	ATOM	748	CB	GLN L	88	24.925	35.716	39.796	1.00 50.51	L	C
	ATOM	749	CG	GLN L	88	25.663	35.632	41.129	1.00 53.34	L	C
	ATOM	750	CD	GLN L	88	27.134	35.973	41.006	1.00 54.62	L	C
	MOTA	751		GLN L	88	27.499	37.016	40.461	1.00 55.79	L	0
_	ATOM ATOM	752 753	NEZ N	GLN L LEU L	88	27.990	35.094	41.518	1.00 55.48	L	N
35	ATOM	754	CA	LEU L	89 89	23.399 22.587	38. 221 38. 294	37.575 36.363	1.00 45.19 1.00 42.20	L L	N
	ATOM	755	C	LEU L	89	23. 431	38. 485	35.105	1.00 42.20	L	C C
	ATOM	756	Õ	LEU L	89	23. 313	39.493	34.407	1.00 39.00	L	Ö
	ATOM	757	ČВ	LEU L	89	21.564	39.429	36.487	1.00 42.79	Ĺ	Č
	ATOM .	758	ĊĞ	LEU L	89	20.458	39.493	35.430	1.00 43.04	Ĺ	č
40	ATOM	759		LEU L	89	19.678	38. 187	35.421	1.00 43.31	Ĺ	č
	ATOM	760		LEU L	89	19.532	40.662	35.729	1.00 43.24	Ĺ	č
	ATOM	761	N	ILE L	90	24.284	37.504	34.825	1.00 37.21	Ţ	N
	MOTA	762	CA	ILE L	90	25.151	37.532	33.654	1.00 34.54	L	C
4.5	ATOM	763	С	ILE L	90	24.832	36.325	32.778	1.00 33.42	L	C
45	ATOM	764	0	ILE L	90	24. 29 0	35. 327	33.253	1.00 34.00	L	0
	ATOM	765	CB	ILE L	90	26.643	37.503	34.057	1.00 34.63	L	С
	ATOM	766		ILE L	90	26.934	36.263	34.905	1.00 33.21	L	C
	ATOM .	767		ILE L	90	26.997	38. 778	34.819	1.00 32.30	L	С
50	ATOM	768		ILE L	90	28. 372	36.154	35.356	1.00 36.32	L	C
50	ATOM	769	N	CYS L	91	25. 181	36.415	31.501	1.00 31.20	L	N
	ATOM	770	CA	CYS L	91	24. 885	35.350	30.556	1.00 30.45	Ļ	C
	ATOM ATOM	771	C 0	CYS L CYS L	91	25. 471	33.971	30.833	1.00 30.35	L	C
	ATOM	772 773	CB	CYS L	91 91	24. 778 25. 261	32.967 35.790	30. 671 29. 143	1.00 29.92 1.00 26.98	L	0
55	ATOM	774	SG	CYS L	91	24. 204	37.118	28. 480	1.00 26.98	L L	C
33	ATOM	775	N N	VAL L	92	26. 732	33. 902	31.245	1.00 20.22		S
	UIOW	113	14	IVP P	32	20.132	33. 304	J1. 240	1.00 23.00	L	N

	ATOM	776	CA	VAL 3	92	27, 333	32.602	31.514	1.00 28.75	L	C
	ATOM	777	C	VAL I		26.693	31.897	32.707	1.00 27.72	Ĺ	č
	ATOM	778	Ō	VAL .		26.940	30.712	32.937	1.00 28.52	Ĺ	ō
5	ATOM	779	CB	VAL I			32.709	31.718	1.00 31.07	L	Č
	ATOM	780		VAL 1		29.529	33.115	30.403	1.00 29.69	L	С
	ATOM	781	CG2	VAL 1	92	29.190	33.717	32.813	1.00 31.06	L	С
	ATOM	782	N	ASN I	93	25.865	32.622	33.457	1.00 25.61	L	N
	MOTA	783	CA	ASN 1	93	25.174	32.050	34.605	1.00 24.28	L	C
10	ATOM	784	С	ASN I		23.753	31.651	34.213	1.00 23.30	L	С
	MOTA	785	0	ASN 1		22.850	32.487	34.183	1.00 22.74	L	0
	ATOM	786	CB	ASN 1		25.123	33.047	35.767	1.00 23.78	L	С
	ATOM	787	CG	ASN 1		24. 294	32. 533	36.930	1.00 25.91	L	C
	MOTA	788		ASN 1		24.175	31.326	37.128	1.00 28.42	L	0
15	ATOM	789		ASN I		23.725	33.442	37.710	1.00 24.92	L	N
	ATOM	790	N	GLU I		23.564	30.370	33.907	1.00 22.36	L	N
	ATOM	791	CA	GLU I		22. 257	29.862	33.511	1.00 22.33	L	C
	ATOM	792	C	GLU I		21.654	30. 701	32.383	1.00 20.87	L	C
00	ATOM	793	0	GLU I		20.472	31.047	32.412	1.00 18.77	Ļ	0
20	ATOM	794	CB	GLU I		21. 302	29.856	34.711	1.00 24.83	L	C
	ATOM	795	CC	GLU !		21.714	28.934	35.863	1.00 27.12	L	C
	MOTA MOTA	796 797	CD OE 1	GLU I		21.684 22.593	27. 462 26. 997	35.488 34.794	1.00 30.61	L	C
	MOTA	798		GLU I		20.741	26. 783	35. 891	1.00 29.23 1.00 35.59	L L	0
25	MOTA	799	N	ASN I		22. 482	31.035	31.400	1.00 33.39	L	N
23	ATOM	800	CA	ASN I		22. 054	31.810	30. 240	1.00 20.33	L	C
	ATOM	801	C	ASN I		21. 375	33. 134	30.603	1.00 22.32	Ĺ	C
	ATOM	802	Ö	ASN		20.567	33.656	29.829	1.00 22.62	Ĺ	Õ
	MOTA	803	СB	ASN		21.108	30.963	29.381		Ĺ	č
30	MOTA	804	CG	ASN		21.028	31.451	27.956	1.00 17.99	Ĺ	Č
	ATOM -	805	0D1	ASN 1	L 95	22.040	31.546	27.270	1.00 20.44	L	0
	MOTA	806	ND2	ASN 1	L 95	19.827	31.757	27.499	1.00 18.44	. L	N
	ATOM	807	N	GLY !		21.716	33.674	31.773	1.00 23.58	L	N
	ATOM	808	CA	GLY 1		21.140	34.928	32. 227	1.00 22.26	L	С
35	ATOM	809	C	GLY I		19.645	34.875	32.494	1.00 22.45	L	С
	ATOM	810	0	GLY !		19.002	35. 911	32.650	1.00 24.38	L	0
	ATOM	811	N	GLY I		19.084	33.674	32.566	1.00 21.95	ŗ	N
	ATOM	812	CA	GLY I		17.654	33.558	32.789	1.00 20.54	L	C
	MOTA Mota	813 814	C	GLY !		16.871 15.645	33. 760 33. 740	31.501 31.510	1.00 20.22	L	C
40	ATOM	815	O N	CYS I		17. 580	33. 959	30.393	1.00 22.61 1.00 19.38	L	0
	ATOM	816	CA	CYS		16.956	34. 161	29.086	1.03 19.38	· L L	N C
	ATOM	817	C	CYS		16.477	32.833	28.508	1.03 20.02	L	C
	MOTA	818	Õ	CYS		17. 165	31.818	28. 623	1.00 20.27	Ĺ	0
	ATOM	819	ČВ	CYS		17.955	34.764	28. 105	1.00 19.41	Ĺ	C
45	ATOM	820	SG	CYS		18.601	36.419	28. 485	1.00 22.10	Ĺ	Š
	ATOM	821	N	GLU		15.314	32.839	27.867	1.00 20.33	Ĺ	N
	ATOM	822	CA	GLU		14.794	31.611	27. 277	1.00 20.72	Ĺ	Ċ
	MOTA	823	С	GLU		15.625	31.164	26.076	1.00 19.15	Ĺ	č
	ATOM	824	0	GLU		15.827	29.974	25.877	1.00 17.11	L	Õ
50	ATOM	825	CB	GLU	L 99	13.336	31.779	26.850	1.00 22.59	L	С
	ATOM	826	CG	GLU		12.682	30.457	26.467	1.00 29.91	Ĺ	· Č
	ATOM	827	CD	GLU		11.178	30.564	26.302	1.00 32.54	L	Ċ
	MOTA	828		GLU		10.738	31.204	25.370	1.00 33.67	L	0
	ATOM	829		GLU		10.458	29.999	27.122	1.00 37.34	L	0
55	ATOM	830	N		L 100	16. 101	32.114	25. 274	1.00 18.04	L	N
	ATOM	831	CA	GLN	L 100	16.911	31.763	24.112	1.00 18.31	L	С

	ATOM	832	С	GLN L	100	18.281	32.459	24.118	1.00	19.20	1	,	С
	MOTA	833	Ō	GLN L		19.223	31.951	24.724		19.26	Ī		0
5	ATOM	834	CB	GLN L		16.145	32.056	22. 805		16.04	ì		č
	ATOM	835	CG	GLN L		14. 789	31.342	22.716		15.13	į	_	Č
	MOTA	836	CD	GLN L		14.182	31.366	21.321		16.10	İ		C
	ATOM	837	OE1	GLN L		14.478	32.245	20.520		16.54	I		0
	ATOM	838	NE 2	GLN L	100	13.314	30.403	21.034		17.14	I		N
10	ATOM	839	N	TYR L	101	18.408	33.610	23.465	1.00	19.40	I	,	N
	ATOM	840	CA	TYR L	101	19.705	34.282	23.429	1.00	20.26	I	,	С
	ATOM	841	C	TYR L		19.895	35.307	24.540	1.00	22.37	I		С
	ATOM	842	Õ	TYR L		18.956	36.002	24. 935		22.47	Ĩ		Ŏ
	ATOM	843	СВ	TYR L		19.934	34.955	22.071		18.52	Ĩ		č
15		844	CG	TYR L		19.838	34.017	20. 880		20.18	i		Č
13	ATOM												
	MOTA	845	CD1	TYR L		20. 215	32.673	20. 982		17.62	Į		C
	ATOM	846		TYR L	101	19.387	34.481	19.643		19.56	I		C
	MOTA	847	CE1	TYR L	101	20.140	31.822	19.884		19.81	1		C
	ATOM	848	CE2		101	19.315	33.640	18.541		19.48	I		С
20	MOTA	849	CZ	TYR L	101	19.693	32.313	18.666	1.00	18.80	I		С
	ATOM	850	OH	TYR L	101	19.641	31.489	17.564	1.00	19.13	I		0
	MOTA	851	N	CYS L	102	21.127	35.387	25.032	1.00	22.05	I	,	N
	ATOM	852	CA	CYS L		21.500	36.300	26.102	1.00	23.17	I		C
	MOTA	853	Č	CYS L		22.680	37.168	25.657		24.83	Ĩ		Č
	ATOM	854	ŏ	CYS L		23.617	36.686	25. 020		25.16	Ī	-	ŏ
25	ATOM	855	СB	CYS L		21.897	35.494	27. 343		22.80	Ī		Č
		856	SG	CYS L		22.308	36.468	28. 827		24.11	I		
	MOTA										_		S
	MOTA	857	N	SER L		22.628	38.451	25. 995		26.62	Ī		N
	MOTA	858	CA	SER L		23.695	39.382	25.650		28.86	Ī	-	C
30	MOTA	859	C	SER L		24.115	40.156	2 6 . 889	1.00		I		С
30	MOTA	860	0	SER L		23.277	40.759	27.558		31.61	I		0
	MOTA	861	CB	SER L		23.225	40.377	24.584	1.00	27.37	I	,	С
	MOTA	862	0G	SER L	103	22.975	39.733	23.350	1.00	29.37	I		0
	MOTA	863	N	ASP L	104	25.405	40.125	27. 205	1.00	30.25	I		N ·
	ATOM	864	CA	ASP L	104	25.915	40.865	28.352	1.00	31.60	1		С
35	ATOM	865	C	ASP L		26.112	42.304	27.899	1.00	33.46	I		Ċ
	ATOM	866	Ŏ	ASP L		26.323	42.562	26.714	1.00		Ī	-	Ō
	MOTA	867	CB	ASP L		27. 258	40.303	28. 820		30.24	Ī		Č
	ATOM	868	CG	ASP L		27.124	38.978	29. 537		31.11	Ī		Č
	ATOM	869		ASP L		26.369	38.909	30. 503		30.36	Ì		Ö
	ATOM	870		ASP L		27.788	38. 022	29. 129	1.00		I		0
40													
	ATOM	871	N	HIS L		26.045	43. 241	28. 835		37.03	I		N
	ATOM	872	CA	HIS L		26.226	44.642	28. 486		40.26		•	Ç
	MOTA	873	C	HIS L		27.048	45.418	29. 505		43.18	I	-	С
	ATOM	874	0	HIS L		26.942	45.197	30.714	1.00	42.14	I		0 .
45	ATOM	875	CB	HIS L		24.866	45.317	28. 288		38.90	I		C
40	ATOM	876	CG	HIS L	105	24.151	44.878	27.048	1.00	38.94	I		C
	MOTA	877	ND1	HIS L	105	24.678	45.051	25. 786	1.00	38.12	I	,	N
	ATOM	878		HIS L		22.955	44.267	26.875		37.83	I		C
	ATOM	879		HIS L		23.838	44.565	24.890		38.48	Ī		č
	ATOM	880		HIS L		22.785	44.083	25. 524		37.45	Ī		N
50	ATOM	881	N	THR L		27. 875	46. 325	28. 993		46.90			
											l		N
	ATOM	882	CA	THR L		28. 731	47.171	29.816		49.56	Į		C
	ATOM	883	C	THR L		27.995	48. 481	30.076		49.91	1		C
	ATOM	884	0	THR L		27.876	49.319	29. 182		51.77	I		0
	ATOM	885	CB	THR L		30.061	47. 482	29.093		50.44	I		С
55	ATOM	886		THR L		30.719	46.256	28.752	1.00	52.50	I		0
	ATOM	887	CG2	THR L	106	30.977	48.310	29.983	1.00	51.29	I		С
											_		

		000 11	01 W	0.5.400	40 050	01 007	1 00 50 05		. ·	
	ATOM	888 N	GLY L 107	27.499	48.650	31.297	1.00 50.05	L	N	
5	ATOM	889 CA		26.772	49.862	31.637	1.00 50.24	Ĺ	C	
J	ATOM	890 C	GLY L 107	25. 265	49.664	31.683	1.00 50.91	L	C	
	ATOM	891 0	GLY L 107	24.524	50.566	32.076	1.00 51.47	ŗ	0	
	ATOM	892 N	THR L 108	24.812	48.480	31.276	1.00 50.46	ŗ	N	
	ATOM	893 C/		23.394	48. 138	31.269	1.00 48.90	Ļ	C	
40	MOTA	894 C	THR L 108	23. 244	46.633	31.482	1.00 47.11	L	C	
10	ATOM	895 0		24.024	45.847	30.948	1.00 47.64	L	0	
	ATOM	896 CI		22.733	48.524	29.929	1.00 50.40	Ļ	C	
	ATOM		G1 THR L 108	23.506	47.998	28.842	1.00 51.52	L	0	
	ATOM		G2 THR L 108	22.639	50.038	29.793	1.00 51.68	L	С	
	MOTA	899 N		22.244	46.238	32.266	1.00 44.24	L	N	
15	MOTA	900 C/		22.005	44. 825	32.558	1.00 41.00	L	С	
	MOTA	901 C		21.909	43.997	31.280	1.00 37.67	L	С	
	MOTA	902 0		21.642	44.531	30.201	1.00 37.06	L	0 .	
	MOTA	903 C		20.716	44.663	33.367	1.00 42.02	L	С	
	MOTA	904 C		19.450	44.860	32.555	1.00 44.84	L	С	
20	MOTA	905 C		18.219	44.906	33.444	1.00 47.58	L	С	
	MOTA	906 C	E LYS L 109	18.148	46. 209	34.230	1.00 49.04	L	C	
	MOTA	907 N		18.009	47. 398	33. 338	1.00 48.86	L	N	
	MOTA	908 N		22.125		31.409	1.00 33.89	L	N	
	MOTA	909 C		22.063	41.786	30.264	1.00 31.44	L	C	
25	MOTA	910 C		20.696	41.861	29.596	1.00 28.77	L	С	
	MOTA	911 0		19.690	42.107	30. 253	1.00 28.40	L	0	
	MOTA	912 C		22.334	40. 346	30.709	1.00 29.16	L	C	
	ATOM	913 C		21.206	39.704	31.515	1.00 26.40	L	C	
	MOTA	914 C		20.133	39.072	30.617	1.00 23.55	L	С	
20	ATOM	915 N		19.049	38. 500	31.409	1.00 23.99	L	N	
30	MOTA	916 C		18.083	39. 206	31.993	1.00 26.90	L	C	
	MOTA		H1 ARG L 110	18.045	40.529	31.871	1.00 25.76	L	N	
	MOTA		H2 ARG L 110	17.163	38. 592	32.726	1.00 23.93	L	N	
	MOTA	919 N		20.666	41.652	28. 287	1.00 27.46	L	N	
	MOTA	920 C		19.416	41.683	27.545	1.00 26.40	L	C .	
35	MOTA	921 C		19.173	40.310	26. 925	1.00 25.75	L	C	
	MOTA	922 0		20. 116	39. 578	26.624	1.00 25.72	L	0	
	MOTA	923 C		19.484	42.732	26.442	1.00 23.78	L ·	C	
	ATOM	924 0		20. 407	42.337	25. 447	1.00 28.02	L	0	
	ATOM	925 N		17.906	39. 962	26.745	1.00 24.32	L	N	
40	ATOM	926 C		17.553	38. 682	26. 152	1.00 24.98	Ļ	C	
	ATOM	927 C		17.024	38. 891	24.742	1.00 24.93	,L	Ç ·	
	ATOM	928 0		16.341	39.879	24.470	1.00 26.51	L	0	
	ATOM	929 C		16.480	37. 985	26.980	1.00 23.15	L	C	
	ATOM		G CYS L 112	16.932	37. 554	28.686	1.00 25.67	L	S	
45	ATOM	931 N		17.341	37.961	23.846	1.00 24.52	L	N	
	ATOM		A ARG L 113	16.884	38.042	22.463	1.00 23.03	L	Č	
	ATOM	933 C		16.292	36.709	22. 021	1.00 22.44.	L	C	
	ATOM	934 0		16.260	35.749	22. 791	1.00 20.23	L	0	
	ATOM		B ARG L 113	18.038	38. 457	21.543	1.00 23.44	L	C	
50	ATOM		G ARG L 113	18.470	39.912	21.739	1.00 25.76	L	C	
50	ATOM		D ARG L 113	19.706	40. 286	20.926	1.00 25.39	Ĺ	C	
	ATOM		E ARG L 113	20.882	39.525	21.349	1.00 26.05	L	N	
	ATOM		Z ARG L 113	21.361	38. 459	20.712	1.00 22.82	L	C	
	ATOM		TH1 ARG L 113	20.775	38.019	19.607	1.00 19.33	L	N	
	ATOM		TH2 ARG L 113	22. 421	37. 823	21.190	1.00 19.90	L	N	
55	ATOM	942 N		15.810	36.65 6	20. 783	1.00 21.91	L	N	
	ATOM	943 C	CA CYS L 114	15. 208	35. 439	20. 268	1.00 21.36	L	C	

	ATOM	944	С	CYS L 1		15.653	35.122	18.847	1.00 20.52		L	C
	ATOM	945	0	CYS L 1		16.153	35.979	18.120	1.00 19.97		L	0
5	ATOM	946	CB	CYS L 1		13.677	35. 542	20. 296	1.00 20.90		L	С
	ATOM	947	SG	CYS L 1		12.941	36.040	21.885	1.00 22.52		L	S
	ATOM	948	N	HIS L 1		15.453	33.868	18.469	1.00 20.76		L	N
	ATOM	949	CA	HIS L 1		15.786	33. 367	17.147	1.00 20.81		L	C
	ATOM	950	C	HIS L 1		14.684	33.850	16.199	1.00 21.18		L	C
10	ATOM	951	0	HIS L 1		13.556	34.098	16.627	1.00 21.61		L	0
	ATOM	952	CB	HIS L		15.827	31.832	17.207	1.00 20.46		L	C
	ATOM	953	CG	HIS L 1		16.269	31.172	15.938	1.00 19.99		L	C
	ATOM	954		HIS L 1		15.455	31.057	14.832	1.00 19.51		L	N
	ATOM	955		HIS L 1		17.442	30.586	15.602	1.00 18.82		L	C
15	ATOM	956	CE 1	HIS L 1		16.107	30.432	13.870	1.00 17.84		L	С
15	ATOM ·	957	NE2	HIS L 1		17.315	30.134	14.311	1.00 19.44		L	N
	ATOM	958	N	GLU L 1	116	15.020	34.012	14.925	1.00 21.79		L	N
	ATOM	959	CA	GLU L 1	116	14.050	34.429	13.924	1.00 21.88		L	С
	ATOM	960	С	GLU L 1	116	12.845	33.503	14.053	1.00 20.86		L	€
	ATOM	961	0	GLU L 1	116	13.002	32.306	14.288	1.00 20.19		L	0
20	ATOM	962	CB	GLU L 1		14.655	34.300	12.522	1.00 25.33		L	C
	ATOM	963	CG	GLU L 1	116	13.663	34.559	11.391	1.00 32.50		L	C
	ATOM	964	CD	GLU L 1		14.201	34.154	10.027	1.00 36.87		L	C
	ATOM	965	0E1	GLU L	116	13.412	34.107	9.075	1.00 39.33		L	0
	ATOM	966	0E2	GLU L		15.405	33.890	9.916	1.00 38.85		L	0
25	ATOM	967	N	GLY L	117	11.646	34.051	13.900	1.00 20.27		L	N
	MOTA	968	CA	GLY L 1		10.451	33. 236	14.020	1.00.18.99		L	C
	ATOM	969	С	GLY L		9.860	33. 299	15.417	1.00 19.27		L	C
ATOM		970	0	GLY L		8.820	32.694	15.688	1.00 19.43		L	0
	ATOM	971	N	TYR L 1		10.543	34.018	16.305	1.00 19.01		L.	N
30	ATOM	972	.CA	TYR L		10.116	34.206	17.689	1.00 19.23		L	C
	ATOM	973	C	TYR L 1		10.278	35.692	18.018	1.00 20.14		L	C
	ATOM	974	0	TYR L		11.012	36.409	17.344	1.00 19.66		L.	0
	ATOM	975	CB	TYR L		10.999	33.417	18.671	1.00 18.12		L	C
	ATOM	976	CG	TYR L		10.916	31.905	18.602	1.00 15.33		L	C
35	ATOM	977		TYR L		11.650	31.187	17.658	1.00 15.05		L	С
	ATOM	978		TYR L		10.116	31.192	19.499	1.00 13.29		L	C
	MOTA	979		TYR L		11.590	29. 791	17.607	1.00 14.73		L	С
	MOTA	980		TYR L 1		10.049	29.803	19.457	1.00 14.27		L	С
	ATOM	981	CZ	TYR L		10.790	29.109	18.507	1.00 15.35		L	C
40	ATOM	982	OH	TYR L		10.736	27.735	18.466	1.00 15.58		L	0
40	ATOM	983	N	SER L		9.595	36.150	19.058	1.00 21.39		L	N
	ATOM	984	CA	SER L		9.710	37. 538	19.481	1.00 23.14		L	C
	ATOM	985	C	SER L		9.746	37. 524	21.002	1.00 21.88		L	C
	ATOM	986		SER L		9.189			1.00 23.34		L	0
	MOTA	987	CB	SER L		8.522	38. 364	18.979	1.00 23.84		L	C
45	ATOM	988	0G	SER L		7.312	37.905	19. 5 56	1.00 31.34		L	0
	ATOM	989	N	LEU L		10.413	38.510	21.585	1.00 23.21		L	N
	ATOM	990		LEU L		10.544	38.606	23.036	1.00 24.38		L	C
	MOTA	991	C	LEU L		9. 253	39.096	23.683	1.00 26.18		L	C
	ATOM	992	0	LEU L		8.667	40.081	23. 236	1.00 27.69		L	0
50	ATOM	993		LEU L		11.683	39.565	23. 389	1.00 23.36		L	C
	ATOM	994		LEU L		12.119	39.619	24.855	1.00 25.06	-	L	C
	ATOM	995		LEU L		12.801	38.311	25. 230	1.00 24.68		L	С
	ATOM	99 6		LEU L		13.080	40.789	25.063	1.00 24.21		L	С
	MOTA	997	N	LEU L		8.817	38.410	24.736	1.00 26.79			N
55	ATOM	998		LEU L		7.600	38.790	25. 450	1.00 28.18			С
	MOTA	999	C	LEU L	121	7.885	39.949	26.402	1.00 29.35			С

	ATOM	1000	0	LEU L		9.039	40.320	26.614	1.00 28.95	L	0
	ATOM	1001	CB	LEU L		7.042	37. 595	26.235	1.00 26.70	L	C
5	ATOM	1002	CG	LEU L		6.491	36.417	25.418	1.00 27.20	L	C
	ATOM	1003		LEU L		6.025	35. 310	26.348	1.00 27.89	L	C
	ATOM	1004	CD2	LEU L		5.335	36. 891	24.554	1.00 28.46	L	C
	ATOM	1005	N	ALA L		6.825	40. 512	26.979	1.00 30.71	L	N
	ATOM	1006	CA	ALA L		6.948		27.903	1.00 30.91	L	C
10	MOTA	1007	С	ALA L		7.865	41.379	29.097	1.00 30.79	L	C
	ATOM	1008	0	ALA L		8. 492	42.307	29.607	1.00 32.36	L	0
	ATOM	1009	CB	ALA L		5.566	42.058	28.397	1.00 33.12	L	С
	MOTA	1010	N	ASP L		7.953	40. 131	29.550	1.00 28.66	L	N
	ATOM	1011	CA	ASP L		8.811	39.826	30.687	1.00 27.44	L	С
15	ATOM	1012	C	ASP L		10.301	40.040	30.405	1.00 27.39	L	C
	ATOM	1013	0	ASP L		11.123	39. 955	31.314	1.00 28.38	L	0
	ATOM	1014	CB	ASP L		8. 571	38. 392	31.189	1.00 27.26	L	С
	ATOM	1015	CG	ASP L		8.951	37. 324	30.168	1.00 26.53	L	С
	ATOM	1016		ASP L		9.602	37. 634	29.173	1.00 25.66	L	0
20	ATOM	1017		ASP L		8. 595	36. 173	30. 389	1.00 25.85	L	0
20	ATOM	1018	N	GLY L		10.645	40. 318	29.150	1.00 27.75	L	N
	ATOM	1019	CA	GLY L		12.033	40. 551	28.789	1.00 27.23	. L	C
	ATOM	1020	C	GLY L		12.937	39. 329	28. 721	1.00 28.17	L	C
	ATOM	1021	0	GLY L		14.135	39.465	28.460	1.00 27.43	Ĺ	0
25	ATOM	1022	N	VAL L		12.389	38. 137	28.943	1.00 28.24	L	N
25	ATOM	1023	CA	VAL L		13. 205	36. 920	28.899	1.00 27.90	L	C
	MOTA MOTA	1024 1025	C 0	VAL L VAL L		12.626 13.373	35.779	28.057 27.533	1.00 26.61	L	C
	ATOM	1025	CB	VAL L		13. 476	34. 954 36. 367	30.326	1.00 25.92 1.00 28.91	L	0
	ATOM	1027		VAL L		14. 182	37. 421	31.173	1.00 28.31	L	- C
	ATOM	1028		VAL L		12.173	35. 930	30.980	1.00 27.68	L L	C
30	ATOM	1029	N N	SER L		11.304	35. 734	27. 927	1.00 27.08	L	C N
	ATOM	1030	CA.	SER L		10.639	34. 677	27.175	1.00 23.52	Ĺ	C
	ATOM	1031	C	SER L		10.475	34. 989	25.696	1.00 23.79	Ĺ	C
	ATOM	1032	Ö	SER L		10.427	36. 157	25. 294	1.00 21.55	Ĺ	0
	MOTA	1033	CB	SER L		9. 266	34. 393	27. 788	1.00 23.48	L	Č
35	ATOM	1034	0G	SER L		9. 396	34.047	29.157	1.00 24.08	Ĺ	Ö
	MOTA	1035	N	CYS L		10.391	33.932	24.890	1.00 21.77	Ĺ	N
	ATOM	1036	CA	CYS L		10.219	34.070	23.451	1.00 22.08	Ĺ	Ĉ
	MOTA	1037	C	CYS L		8.966	33.324	23.020	1.00 22.86	Ĺ	Č
	MOTA	1038	0	CYS L	127	8.698	32.214	23.482	1.00 23.36	Ĺ	Ŏ
40	MOTA	1039	CB	CYS L	127	11.431	33.516	22.700	1.00 21.97	Ĺ	Č
	MOTA	1040	SG	CYS L		13.006	34.368	23.044	1.00 21.79	L	S
	MOTA	1041	N	THR L		8. 197	33.947	22.136	1.00 21.95	L	N
	MOTA	1042	CA	THR L		6.967	33. 353		1.00 21.10	L	С
	MOTA	1043		THR L		7.041	33. 249	20.126	1.00 20.42	L	С
45	MOTA	1044	0	THR L		7. 593	34.126	19.458	1.00 18.28	L	0
	MOTA	1045	CB	THR L		5. 735	34.210	22.063	1.00 21.74	L	С
	MOTA	1046		THR L		4. 530	33.513	21.732	1.00 22.91	L	0
	MOTA	1047		THR L		5. 743	35. 554	21.353	1.00 18.95	L	С
	MOTA	1048	N	PRO L		6.497	32.162	19.559	1.00 21.27	L	N
50	ATOM	1049	CA	PRO L		6.514	31.960	18.107	1.00 22.20	L	C
	ATOM	1050	Ç	PRO L		5.713	33.026	17.363	1.00 23.45	L	С
	MOTA	1051	0	PRO L		4.621	33. 394	17. 786	1.00 25.63	L	0
	ATOM	1052	CB	PRO L		5. 891	30. 572	17.943	1.00 22.20	L	С
	MOTA	1053	CG	PRO L		6. 213	29.888	19.247	1.00 21.77	L	С
55	MOTA	1054	CD	PRO L		5. 938	30. 984	20. 243	1.00 20.67	L	C
	ATOM	1055	N	THR L	130	6. 260	33. 528	16.262	1.00 23.88	L	N

							•				
	ATOM	1056	CA	THR L	130	5.556	34. 525	15. 465	1.00 25.00	L	С
	MOTA	1057	Ċ	THR L		5. 164	33.923	14. 122	1.00 26.32	Ĺ	Č
5	ATOM	1058	Ō	THR L		4.762	34.639	13. 206	1.00 27.47	Ĺ	Ŏ
	ATOM	1059	CB	THR L		6.411	35.774	15. 205	1.00 25.51	L	Č
	MOTA	1060	OG1	THR L		7.591	35.404	14.486	1.00 27.07	Ĺ.	ŏ
	ATOM	1061	CG2			6.789	36.443	16.513	1.00 27.60	Ĺ	Č
	MOTA	1062	N	VAL L		5. 299	32.601	14.014	1.00 24.93	Ĺ	N
40	ATOM	1063	CA	VAL L		4. 942	31.870	12.807	1.00 23.51	Ĺ	Č
10	ATOM	1064	C	VAL L		4. 271	30.565	13. 218	1.00 24.02	Ĺ	C
	ATOM	1065	0	YAL L		4.369	30.139	14. 372	1.00 22.94		0
	ATOM	1066	CB	VAL L		6.178	31.541	11. 930	1.00 25.15	L L	C
	MOTA	1067		VAL L		6.844	32.831	11. 469	1.00 24.40		Ċ
										L	C
15	ATOM	1068		VAL L		7.163	30.673	12.705	1.00 23.42	Ļ	C
20	MOTA	1069	N	GLU L		3.589	29.937	12. 268	1.00 22.59	Ļ	N
	ATOM	1070	CA	GLU L		2.888	28.690	12.518	1.00 22.16	Ļ	C
	ATOM .	1071	Ç	GLU L		3.840	27. 537	12.828	1.00 20.71	Ļ	C
	ATOM	1072	0	GLU L		3.567	26.720	13.711	1.00 20.40	L	0
	ATOM	1073	CB	GLU L		2.004	28. 340	11.308	1.00 22.29	L	С
	ATOM	1074	CG	GLU L		1.352	26.972	11.390	1.00 27.79	L	C
	ATOM	1075	CD	GLU L		0.327	26.730	10.286	1.00 29.81	L	C
	ATOM	1076	0E1			0.498	27. 265	9. 196	1.00 30.53	L	0
	ATOM	1077		GLU L		-0.636	25.985	10.526	1.00 30.39	L	0
	ATOM	1078	N	TYR L		4.955	27.473	12.109	1.00 19.60	L	N
25	ATOM	1079	CA	TYR L		5.930	26.404	12.317	1.00 17.97	L	C
	ATOM	1080	С	TYR L		7.320	26.925	12.654	1.00 16.71	L	C
	ATOM	1081	0	TYR L		8.236	26.860	11.834	1.00 16.11	L.	0
	ATOM	1082	CB	TYR L		·5.998	25.511	11.077	1.00 17.19	L	С
	ATOM	1083	CG	TYR L		4.737	24.717	10.874	1.00 19.02	L	С
30	MOTA	1084	CD1			4.412	23.673	11.735	1.00 16.92	L	С
	ATOM	1085		TYR L		3.833	25.049	9.862	1.00 19.13	L	С
	ATOM	1086		TYR L		3.220	22.978	11.602	1.00 18.85	L	С
	MOTA	1087	CE 2			2.632	24.358	9.719	1.00 18.71	L	C
	ATOM	1088	CZ	TYR L	. 133	2.335	23.327	10.594	1.00 19.77	L	C
35	ATOM	1089	OH	TYR L	133	1.159	22.640	10.467	1.00 20.62	L	0
	ATOM	1090	N	PRO L		7.499	27.440	13.878	1.00 15.85	L	N
	ATOM	1091	CA	PRO L	134	8.804	27.963	14. 291	1.00 15.14	L	C
	MOTA	1092	С	PRO L	. 134	9.807	26.814	14.412	1.00 15.88	Γ.	С
	ATOM	1093	0	PRO L	. 134	9.419	25.677	14.677	1.00 17.59	L	0
40	MOTA	1094	CB	PRO L		8.497	28.623	15.630	1.00 13.01	L	С
40	MOTA	1095	CG	PRO L	134	7.444	27.730	16.198	1.00 13.89	L	С
	ATOM	1096	CD	PRO L	134	6.543	27.455	15.002	1.00 15.08	Ĺ	Ċ
	MOTA	1097	N -	CYS L	135	11.086	27.108	14.206	1.00 15.52	1	N
	MOTA	1098	CA	CYS L		12.125	26.084	14.291	1.00 14.64	L	C
	ATOM	1099	C	CYS L		12.228	25.562	15.714	1.00 14.59	ī	č
45	ATOM	1100	0	CYS L		11.874	26.263	16.663	1.00 12.74	ī	Ŏ
	MOTA	1101	CB	CYS L		13.486	26.660	13.875	1.00 13.94	ī	Č
	MOTA	1102	SG	CYS L		14.133	27. 949	14.997	1.00 16.77	ĩ	Š
	MOTA	1103	N	GLY L		12.709	24. 328	15.852	1.00 14.02	Ĺ	N
	ATOM	1104	CA	GLY L		12.902	23.737	17.167	1.00 14.41	Ĺ	C
50	ATOM	1105	Ċ	GLY L		11.682	23. 301	17.957	1.00 15.69	Ĺ	Č
	MOTA	1106	ŏ	GLY L		11.810	22.917	19.119	1.00 16.17		
	ATOM	1107	N	LYS L		10.501	23. 358	17. 352	1.00 15.17	L	0 N
	ATOM	1108	CA	LYS L		9. 284	22. 935	18.036	1.00 15.50	L	N
	ATOM	1109	C	LYS L		9. 264 8. 701	21. 730	17. 309		L	C
	ATOM	1110	0	LYS L					1.00 17.03	L	C
55	ATOM	1111	CB	LYS L		8.709	21.669	16.077	1.00 17.59	Ļ	0
	VION	1111	CD	LIO L	101	8. 248	24.063	18.058	1.00 16.09	L	С

	MOTA MOTA	1112 1113		LYS L			8. 085 9. 354	24. 783 25. 441	19.382 19.855	1.00 20.5 1.00 23.9		L L	C C
5	ATOM	1114		LYS L			9.056	26.486	20. 935	1.00 26.9		Ĺ	Č
	ATOM	1115		LYS L			8.408	25. 912	22.147	1.00 27.1			Ň
	MOTA	1116		ILE L			8.191	20.780	18.082	1.00 16.4			N
	ATOM	1117		ILE L			7.598	19.568	17.536	1.00 16.5		L	C
	ATOM	1118	C 1	ILE L	138		6.072	19.699	17.623	1.00 17.0	5	L	C
10	ATOM	1119	0	ILE L	138		5.479	19.442	18.665	1.00 17.09	3	Ĺ	0
	ATOM	1120	CB :	ILE L	138		8.091	18.340	18.332	1.00 16.5	l	L	C
	ATOM	1121		ILE L			9.630	18.329	18.335	1.00 14.3		L	C
	ATOM	1122		ILE L			7.534	17.048	17.713	1.00 15.0		L	C
	ATOM	1123		ILE L			10.268	17. 188	19.119	1.00 12.5			C
15	ATOM	1124		PRO L			5.421	20.096	16.514	1.00 18.8			N
	ATOM	1125		PRO L			3.963	20. 284	16.436	1.00 19.5		L	C
	ATOM	1126		PRO L			3.016	19. 231	17.016	1.00 19.2		L	C
	ATOM ATOM	1127 1128		PRO L PRO L			2.065 3.718	19. 588 20. 548	17. 708 14. 943	1.00 20.9 1.00 19.1		L	0
	ATOM	1129		PRO L			4.902	19.948	14. 273	1.00 13.1		L L	C
20	ATOM	1130		PRO L		•	6.034	20.304	15. 195	1.00 22.3		L	Č
	ATOM	1131		ILE L			3. 249	17.948	16.764	1.00 18.1			N
	ATOM	1132		ILE L			2. 334	16.952	17. 317	1.00 19.9		Ĺ	Ċ
	ATOM	1133		ILE L			2.398	16.843	18.844	1.00 21.3		L	C
25	ATOM	1134	0	ILE L	140		1.550	16.194	19.454	1.00 21.5)	L	0
25	ATOM	1135		ILE L			2.549	15. 544	16.711	1.00 20.0		L	C
	ATOM	1136		ILE L			3.953	15.034	17.030	1.00 18.7		L	C
	ATOM	1137		ILE L			2. 294	15.58 6		1.00 21.8		L	C
	ATOM	1138		ILE L			4.178	13.596	16.611	1.00 20.3		L	C
30	ATOM ATOM	1139 1140		LEU L			3. 397 3. 531	17. 475 17. 458	19. 458 20. 912	1.00 21.3			N
	MOTA	1140		LEU L LEU L			3. 115	18.806	21.505	1.00 23.2 1.00 25.1		L ጌ	C
	ATOM	1142		LEU L			2.965	18.942	22. 716	1.00 25.8		L	Õ
	ATOM	1143		LEU L			4.975	17.144	21.315	1.00 21.2		Ĺ	Č
	ATOM	1144		LEU L			5.601	15.886	20. 705	1.00 21.1		Ĺ	Č
35	ATOM	1145		LEU L			6.998	15.706	21.268	1.00 19.0		Ĺ	Č
	ATOM	1146	CD2	LEU L	141		4.732	14.665	20.998	1.00 19.8	2	L	С
	MOTA	1147		GLU L			2.936	19.804	20.648	1.00 29.0		L	N
	ATOM	1148		GLU L			2.534	21.131	21.093	1.00 32.7		L	C
	ATOM	1149		GLU L			1.011	21. 223	21.174	1.00 35.0		Ļ	Č
40	ATOM	1150		GLU L			0.514	21.605	22. 226	1.00 37.7		Ļ	0
	ATOM ATOM	1151 1152		GLU L GLU L			3.067 4.577	22.194 22.381	20.130 20.166	1.00 32.5 1.00 35.6		L L	C
	ATOM	1152		GLU L			5.062	23.007	21.462	1.00 33.0		L	C
	ATOM	1154		GLU L			4. 494			1.00 39.0		L	Ö
	ATOM	1155		GLU L			6.008	22.486	22.053	1.00 36.3	-	L	ŏ
45	ATOM	1156		GLU L			0.349	20.913	20.180	1.00 36.0			Ŏ
	ATOM	1157		ILE H	16		21.992	3.783	14.153	1.00 14.1			N
	MOTA	1158		ILE H	16		21.860	4.032	15.614	1.00 13.8		H	C
	MOTA	1159		ILE H	16		21.875	2.706	16.373	1.00 14.8	5	H	C
50	MOTA	1160		ILE H	16		21.043	1.834	16.132	1.00 14.8			0
50	ATOM	1161		ILE H	16		20. 534	4.767	15.944	1.00 13.6		H	C
	MOTA	1162		ILE H	16		20. 451	6.095	15.183	1.00 12.6		H	C
	ATOM	1163		ILE H	16		20. 436	4.989	17.450	1.00 11.2		H	Č
	ATOM ATOM	1164		ILE H	16		21.567	7.092	15.493	1.00 10.6		H	C
55	ATOM	1165 1166		VAL H	17 17		22.830	2.564	17. 285	1.00 16.1			N
= -	ATOM	1167		VAL H	17		22. 967 22. 445	1.358 1.593	18.092 19.504	1.00 16.4 1.00 15.7		H.	C
	AIUM	1101	C	1715 11	1 1		24. 440	1.030	19.004	1.00 10.7	U	H	C

	MOTA MOTA	1168 1169	O CB	VAL H	17 17	22. 861 24. 451	2. 536 0. 918	20.178 18.195	1.00 14.50 1.00 17.79	H H	0 C
5	MOTA	1170		VAL H	17	24.581	-0.259	19.145	1.00 19.06	H	C
	MOTA	1171		VAL H	17	24.977	0.529	16.826	1.00 19.20	H	C
	ATOM ATOM	1172 1173	N Ca	GLY H	18 18	21. 532 20. 990	0.735 0.876	19.950 21.292	1.00 15.38 1.00 13.01	H H	N C
	ATOM	1174	C	GLY H	18	19. 982	1.998	21. 472	1.00 13.01	H	Č
10	ATOM	1175	Ŏ	GLY H	18	19.768	2.468	22.583	1.00 11.44	H	Õ
10	ATOM	1176	N	GLY H	19	19.365	2.436	20.384	1.00 11.70	H	N
	ATOM	1177		GLY H	19	18.368	3.487	20.483	1.00 13.29	H	C
	ATOM	1178	C	GLY H	19	16.964	2.926	20.333	1.00 13.92	H	C
	ATOM ATOM	1179 1180	O N	GLY H LYS H	19 20	16.731 16.016	1.736 3.783	20.540 19.977	1.00 13.45 1.00 15.81	H H	O N
15	ATOM	1181		LYS H	20	14.644	3. 341	19. 788	1.00 13.31	H	C
	ATOM	1182	C	LYS H	20	14.064	4.033	18.567	1.00 16.64	H	Č
	ATOM	1183	0	LYS H	20	14.683	4.935	18.009	1.00 13.94	H	0
	ATOM	1184	CB	LYS H	20	13.794	3.668	21.024	1.00 19.44	H	С
20	ATOM	1185	CG	LYS H	20	14.312	3.043	22.317	1.00 26.17	H	C
20	ATOM	1186	CD	LYS H	20	13.307	3.186	23.450	1.00 29.52 1.00 32.88	H	C
	MOTA MOTA	1187 1188	CE NZ	LYS H LYS H	20 20	13.918 14.426	2.824 1.423	24.806 24.867	1.00 32.88	H H	C N
	MOTA	1189	N	VAL H	21	12.881	3.601	18.148	1.00 13.39	H	N
	ATOM	1190	CA	VAL H	21	12.228	4.213	17.007	1.00 14.10	H	Ċ
25	ATOM	1191	C	VAL H	21	11.729	5.610	17. 393	1.00 15.28	H	C
	ATOM	1192	0	VAL H	21	11.136	5.796	18.459	1.00 15.43	H	0
	ATOM	1193	CB	VAL H	21	11.022	3.356	16.530	1.00 14.85	H	C
	ATOM ATOM	1194 1195		VAL H	21 21	10.233 11.517	4. 104 2. 018	15.446 15.982	1.00 15.73 1.00 13.11	H H	C
30	ATOM -	1196	N	CYS H	22	11.992	6. 595	16.542	1.00 14.61	Н	N
	ATOM	1197	CA	CYS H	22	11.518	7.944	16.805	1.00 15.34	H	Ċ
	ATOM	1198	С	CYS H	22	10.063	7, 948	16.362	1.00 15.49	H	C
	ATOM	1199	0	CYS H	22	9. 779	7.785	15. 176	1.00 16.18	Н	0
	ATOM	1200 1201	CB SG	CYS H	22 22	12.279 11.768	8.984 10.666	15.976 16.438	1.00 13.94	H H	C
35	ATOM ATOM	1201	N N	PRO H	23	9. 120	8. 127	17.301	1.00 14.65 1.00 16.39	n H	S N
	ATOM	1203	CA	PRO H	23	7. 710	8. 134	16.898	1.00 16.45	H	Č
	ATOM	1204	C	PRO H	23	7. 491	9.096	15.733	1.00 16.91	H	Č
	ATOM	1205	0	PRO H	23	7. 995	10.220	15.746	1.00 17.56	H	0
40	ATOM	1206	CB	PRO H	23	6. 993	8. 577	18.171	1.00 16.38	H	C
	ATOM Atom	1207 1208	CG CD	PRO H	23 23	7. 863 9. 251	7. 993 8. 348	19.250 18.753	1.00 16.66 1.00 15.94	H H	C
	ATOM	1200	N N	LYS H	24	6. 746	8.647	14. 730	1.00 15.94	н Н	N
	ATON	1210	CA	LYS H	24	6.464	9.456	13.549	1.00 16.46	H	Ĉ
	ATOM	1211	C	LYS H	24	6.117	10.895	13.915	1.00 15.64	H	Č
45	ATOM	1212	0	LYS H	24	5.211	11.145	14.707	1.00 17.81	H	0
	ATOM	1213	CB	LYS-H	24	5. 314	8. 836	12.757	1.00 17.93	H	C
	ATOM	1214	CG	LYS H	24	5. 122	9. 431	11.369	1.00 19.08	H ·	Ç
	MOTA MOTA	1215 1216	CD CE	LYS H LYS H	24 24	3.979 4.1 44	8. 750 8. 839	10.648 9.143	1.00 19.14 1.00 23.91	H H	C C
50	ATOM	1217	NZ	LYS H	24	4. 196	10. 230	8. 631	1.00 20.21	H	N
	ATOM	1218	N	GLY H	25	6.845	11.842	13.340	1.00 14.95	H	N
	ATOM	1219	CA	GLY H	25	6.586	13.239	13.638	1.00 14.04	H	Ċ
	MOTA	1220	C	GLY H	25	7.403	13.847	14.769	1.00 13.80	H.	C
	ATOM	1221	0	GLY H	25	7. 427	15.068	14.909	1.00 13.20	H	0
55	ATOM	1222	N	GLU H	26	8.076	13.026	15.573	1.00 13.01	Н	N
	ATOM	1223	CA	GLU H	26	8.874	13.560	16.683	1.00 15.70	H	С

5	MOTA MOTA MOTA MOTA MOTA MOTA	1224 1225 1226 1227 1228	C O CB CG CD	GLU H GLU H GLU H GLU H	26 26 26 26 26	10. 331 11. 078 8. 789 7. 483 7. 346	13.897 14.380 12.625 12.816 11.908	16. 348 17. 196 17. 898 18. 668 19. 874	1.00 15.14 1.00 15.40 1.00 15.76 1.00 19.10 1.00 21.34	Н Н Н Н	C C C
10	ATOM ATOM ATOM ATOM ATOM ATOM	1229 1230 1231 1232 1233 1234		GLU H GLU H CYS H CYS H CYS H CYS H	26 26 27 27 27 27	8.322 6.249 10.716 12.048 11.749 12.256	11.730 11.395 13.641 13.958 14.611 14.170	20. 591 20. 097 15. 103 14. 582 13. 217 12. 188	1.00 22.66 1.00 22.32 1.00 15.31 1.00 14.35 1.00 14.44 1.00 15.00	Н Н Н Н Н	0 0 N C C
15	ATOM ATOM ATOM ATOM ATOM	1235 1236 1237 1238 1239	CB SG N CA C	CYS H CYS H PRO H PRO H PRO H	27 27 28 28 28	12.873 13.342 10.935 10.550 11.596	12.663 11.868 15.693 16.393 17.135	14. 404 15. 982 13. 204 11. 972 11. 142	1.00 16.45 1.00 16.62 1.00 12.78 1.00 12.72 1.00 13.51	H H H H	C S N C
20	ATOM ATOM ATOM ATOM ATOM	1240 1241 1242 1243 1244	O CB CG CD N	PRO H PRO H PRO H PRO H TRP H	28 28 28 28 29	11.334 9.414 9.872 10.409 12.763	17. 470 17. 300 17. 708 16. 411 17. 403	9. 989 12. 443 13. 785 14. 382 11. 715	1.00 14.79 1.00 10.56 1.00 12.39 1.00 13.71 1.00 13.66	Н Н Н Н	0 C C N
25	ATOM ATOM ATOM ATOM ATOM	1245 1246 1247 1248 1249	CA C O CB CG	TRP H TRP H TRP H TRP H TRP H	29 29 29 29 29	13.837 14.801 15.741 14.622 14.719	18.072 17.058 17.447 19.019 18.544	10. 981 10. 344 9. 651 11. 905 13. 333	1.00 12.45 1.00 13.04 1.00 12.14 1.00 10.27 1.00 10.51	Н Н Н Н	C C C
30	ATOM ATOM ATOM ATOM ATOM	1250 1251 1252 1253 1254	NE1 CE2 CE3	TRP H TRP H TRP H TRP H TRP H	29 29 29 29 29	12.961	17. 540 19. 009 17. 347 18. 235 20. 004	13. 818 14. 441 15. 159 15. 566 14. 590	1.00 9.50 1.00 9.92 1.00 9.49 1.00 9.72 1.00 8.87	Н Н Н Н Н	C N C C
35	ATOM ATOM ATOM ATOM ATOM	1255 1256 1257 1258 1259	CZ3 CH2 N CA	TRP H TRP H TRP H GLN H	29 29 29 30 30	13. 717 12. 381 12. 763 14. 566 15. 427	18. 424 20. 193 19. 404 15. 765 14. 723	16. 824 15. 842 16. 944 10. 573 10. 011	1.00 9.39 1.00 9.88 1.00 9.90 1.00 12.37 1.00 11.48	H H H H	C C N C
40	ATOM ATOM ATOM ATOM ATOM ATOM	1260 1261 1262 1263 1264 1265	C O CB CG CD OE1	GLN H GLN H GLN H GLN H GLN H	30 30 30 30 30 30	15. 253 14. 128 15. 090 15. 832 17. 291	14.653 14.696 13.363 12.180 12.090 11.810	8. 496 7. 987 10. 622 9. 982 10. 401 9. 587	1.00 11.76 1.00 10.36 1.00 12.28 1.00 13.59 1.00 11.47	H H H H	0 0 0 0
45	MOTA MOTA MOTA MOTA MOTA MOTA	1266 1267 1268 1269 1270	NE2 N CA	GLN H VAL H VAL H VAL H VAL H	30 31 31 31 31	18. 171 17. 548 16. 372 16. 369 16. 999 17. 922	12.306 14.542 14.468 13.155	11.675 7.785 6.327 5.865	1.00 15.48 1.00 9.74 1.00 10.70 1.00 7.92 1.00 9.83	H H H H	O N C C
50	MOTA MOTA MOTA MOTA MOTA	1271 1272 1273 1274 1275	CB CG1	VAL H VAL H VAL H LEU H LEU H	31 31 31 32 32	17. 194 17. 177 16. 641 16. 481 17. 034	12.641 15.635 15.534 16.996 12.600 11.384	6.501 5.698 4.167 6.142 4.773 4.193	1.00 12.57 1.00 11.09 1.00 9.42 1.00 7.29 1.00 10.90 1.00 10.82	Н Н Н Н Н	0 C C N
55	ATOM ATOM ATOM ATOM	1276 1277 1278 1279	C O CB CG	LEU H LEU H LEU H LEU H	32 32 32 32 32	17. 618 16. 902 15. 951 16. 394	11. 785 12. 294 10. 330 9. 157	2. 847 1. 984 3. 967 3. 082	1.00 10.82 1.00 12.58 1.00 13.53 1.00 10.99 1.00 12.15	н Н Н Н	C C C C

5	ATOM ATOM ATOM	1280 1281 1282		LEU H LEU H LEU H	32 32 33	17. 496 15. 200 18. 916	8.366 8.251 11.575	3.774 2.796 2.669	1.00 10.81 1.00 12.95 1.00 11.95	Н Н Н	C C N
	MOTA MOTA MOTA	1283 1284 1285		LEU H LEU H LEU H	33 33 33	19.566 19.777 20.252	11.921 10.668 9.649	1.411 0.585 1.090	1.00 13.59 1.00 14.19 1.00 13.59	Н Н Н	C C 0
10	ATOM ATOM ATOM	1286 1287 1288	CB CG	LEU H LEU H LEU H	33 33 33	20. 915 20. 843 22. 246	12.611 13.953 14.429	1.663 2.401 2.718	1.00 13.43 1.00 13.16 1.00 11.72	Н Н Н	C C C
	ATOM ATOM ATOM	1289 1290 1291		LEU H LEU H	33 34 34	20.103 19.423 19.553	14.981 10.757 9.636	1.546 -0.691 -1.611	1.00 14.08 1.00 16.19 1.00 17.59	Н Н Н	C N C
15	MOTA MOTA MOTA	1292 1293 1294	C O CB	LEU H LEU H	34 34 34	20. 384 20. 372 18. 165	10.026 11.177 9.184	-2.826 -3.261 -2.086	1.00 18.00 1.00 18.90 1.00 19.63	H H H	C 0 C
	ATOM ATOM ATOM	1295 1296 1297	CG CD1	LEU H LEU H	34 34 34	17.092 15.741 17.457	8. 859 8. 708 7. 595	-1.033 -1.712 -0.288	1.00 21.00 1.00 22.40 1.00 21.37	H H H	C C C
20	ATOM ATOM ATOM	1298 1299 1300	N CA C	VAL H VAL H VAL H	35 35 35	21.126 21.915 21.484	9. 066 9. 294 8. 174	-3.357 -4.553 -5.494	1.00 19.10 1.00 20.91 1.00 21.66	Н Н Н	N C C
25	ATOM ATOM ATOM	1301 1302 1303	0 C B	VAL H VAL H VAL H	35 35 35	21.512 23.438 23.846	7. 004 9. 229 7. 837	-5. 124 -4. 275 -3. 828	1.00 22.02 1.00 21.22 1.00 23.40	H H H	0 C C
	MOTA MOTA MOTA	1304 1305 1306		VAL H ASN H ASN H	35 37 37	24. 201 21. 049 20. 575	9. 641 8. 539 7. 557	-5.516 -6.694 -7.668	1.00 23.57 1.00 22.76 1.00 24.27	н н н	C N C
30	ATOM ATOM MOTA	1307 1308 1309	C O CB	ASN H ASN H ASN H	37 37 37	19. 473 19. 385 21. 721	6. 695 5. 502 6. 650	-7.049 -7.333 -8.130	1.00 24.89 1.00 25.83 1.00 25.18	н н н	Č O C
	MOTA MOTA MOTA	1310 1311 1312	CG OD1	ASN H ASN H ASN H	37 37 37	22. 904 22. 757 24. 090	7. 428 8. 269 7. 144	-8.674 -9.563 -8.142	1.00 27.92 1.00 26.24 1.00 29.79	Н Н Н	C O N
35	MOTA MOTA MOTA	1313 1314 1315	N CA C	GLY H GLY H GLY H	38 38 38	18.645 17.568 17.977	7. 300 6. 575 5. 678	-6.198 -5.545 -4.386	1.00 25.00 1.00 23.40 1.00 23.72	н н н	N C C
	MOTA MOTA MOTA	1316 1317 1318	O N CA	GLY H ALA H ALA H	38 39 39	17. 126 19. 268 19. 757	5. 033 5. 630 4. 791	-3.777 -4.070 -2.981	1.00 25.41 1.00 22.78 1.00 22.39	Н Н Н	O N C
40	MOTA MOTA MOTA	1319 1320 1321	C . O CB	ALA H ALA H ALA H	39 39 39	20.050 20.450 21.014	5. 607 6. 767 4. 056	-1.724 -1.807 -3.419	1.00 22.79 1.00 23.53 1.00 20.94	H H H	Č O C
45	MOTA MOTA MOTA	1322 1323 1324	N CA C	GLN H GLN H GLN H	40 40 40	19.848 20.098 21.574	4. 993 5. 658 6. 042	-0.562 0.714 0.824	1.00 22.25 1.00 22.90 1.00 22.41	н н н	N C C
	MOTA MOTA MOTA	1325 1326 1327	O CB CG	GLN H GLN H GLN H	40 40 40	22. 456 19. 720 19. 763	5. 192 4. 730 5. 385	0.716 1.871 3.247	1.00 22.51 1.00 22.59 1.00 25.18	H H H	0 C C
50	MOTA MOTA MOTA	1328 1329 1330	CD OE1	GLN H GLN H GLN H	40 40 40	19.409 18.430	4.415 3.676	4.363 4.270	1.00 26.21 1.00 26.38	H H	C 0
	ATOM ATOM	1331 1332	N Ca	LEU H LEU H	41 41	20. 198 21. 837 23. 206	4. 421 7. 324 7. 816	5.430 1.052 1.164	1.00 26.47 1.00 21.11 1.00 19.35	H H H	N N C
55	MOTA MOTA MOTA	1333 1334 1335	C O CB	LEU H LEU H	41 41 41	23. 585 24. 552 23. 419	8. 285 7. 800 8. 978	2.570 3.152 0.184	1.00 18.35 1.00 18.12 1.00 19.30	Н Н Н	C C

	ATOM	1335	CG	LEU H	41	24.745	9.744	0. 271	1.00 17.33	H	C
	MOTA	1337		LEU H	41	25.890	8.880	-0.246	1.00 14.99	H	C
5	ATOM	1338		LEU H	41	24.641	11.016	-0.540	1.00 16.13	H	C
	ATOM	1339	N	CYS H	42	22.816	9. 226	3.110	1.00 16.56	H	N
	MOTA	1340	CA	CYS H	42	23.108	9. 796	4.421	1.00 15.14	H	C
	MOTA	1341	C	CYS H	42	21.907	10.492	5.033	1.00 13.30	H	C
	ATOM	1.342	0	CYS H	42	20.851	10. 595	4.418	1.00 12.64	H	0
10	MOTA	1343	CB	CYS H	4.2	24.226	10.844	4. 291	1.00 15.11	H	С
	ATOM	1344	SG	CYS H	42	25.929	10.216	4.342	1.00 18.96	H	S
	ATOM	1345	N	GLY H	43	22.101	10.988	6. 251	1.00 11.79	H	N
	ATOM	1346	CA	GLY H	43	21.064	11.728	6.932	1.00 9.99	H	C
	ATOM	1347	С	GLY H	43	21.362	13.209	6.753	1.00 10.90	Н	Č
15	ATOM	1348	0	GLY H	43	22.362	13.580	6.138	1.00 12.00	H	0
13	ATOM	1349	N	GLY H	44	20.491	14.058	7. 281	1.00 11.43	Ĥ	Ň
	ATOM	1350	CA	GLY H	44	20.690	15. 493	7. 183	1.00 9.27	Ĥ	Ċ
	ATOM	1351	C	GLY H	44	19.747	16.195	8.143	1.00 9.66	Ĥ	č
	ATOM	1352	Ŏ	GLY H	44	18.884	15. 553	8. 741	1.00 8.35	H	Ö
	ATOM	1353	N	THR H	45	19.908	17.507	8. 293	1.00 10.40	H	. N
20	ATOM	1354	CA	THR H	45	19.062	18. 286	9.186	1.00 10.32	Ĥ	C
	ATOM	1355	C	THR H	45	18.500	19.512	8.470	1.00 12.51	Ĥ	Č
	ATOM	1356	Õ	THR H	45	19. 247	20.315	7.914	1.00 12.61	H	ŏ
	ATOM	1357	СB	THR H	45	19.856	18. 781	10.420	1.00 11.05	н	Č
	ATOM	1358	0G1	THR H	45	20.468	17.667	11.084	1.00 11.48	н	Ö
25	ATOM	1359	CG2	THR H	45	18.934	19.491	11.399	1.00 9.59	H	Č
	ATOM	1360	N	LEU H	46	17. 185	19.662	8. 475	1.00 12.48	H	N
	ATOM	1361	CA	LEU H	46	16.572	20. 824	7.840	1.00 12.40	H	C
	MOTA	1362	C	LEU H	46	16.689	21.980	8.829	1.00 12.78	Ĥ	č
	ATOM	1363	ŏ	LEU H		16.377	21.818	10.006	1.00 12.13	H	Ö
30	ATOM	1364	СB	LEU H	46	15.090	20. 553	7. 558	1.00 14.68	H	č
	ATOM	1365	CG	LEU H	46	14. 273	21.611	6.805	1.00 13.62	H	č
	ATOM	1366		LEU H	46	14.639	21.570	5. 321	1.00 13.32	H	Č
	ATOM	1367		LEU H	46	12.783	21.326	6.973	1.00 12.45	H	Č
	ATOM	1368	N	ILE H	47	17.163	23. 135	8.377	1.00 12.23	H	N
_	ATOM	1369	CA	ILE H	47	17. 252	24. 288	9. 275	1.00 12.00	п Н	C
35	ATOM	1370	C	ILE H	47	16.475	25. 470	8.686	1.00 15.20	H	Č
	ATOM	1371	Õ	ILE H	47	16.356	26. 523	9.312	1.00 17.65	H	
	ATOM	1372	CB	ILE H	47	18.727	24. 714	9.552	1.00 11.03	H	0 C
	ATOM	1373	CG1	ILE H	47	19.427	25. 098	8. 249	1.00 11.34	H	Č
	ATOM	1374		ILE H	47	19.476	23. 575	10. 248	1.00 12.51	H	
40	ATOM	1375		ILE H	47	20.815	25. 683	8.455	1.00 13.22	n H	C.
	ATOM	1376	N N	ASN H	48	15.944	25. 264	7. 481	1.00 13.22	H	C N
	ATOM	1377	CA	ASN H	48	15. 158	26. 245	6. 738	1.00 11.72	. H	C
	ATOM	1378	_	ASN H	48	14.312	25. 485		1.00 20.14	_	_
	ATOM	1379	0	ASN H	48	14.506	24. 288	5. 728 5. 536	1.00 20.14	H	C
45	ATOM	1380	CB	ASN H	48	16.071	27. 199	5.965	1.00 20.62	H	0
	MOTA	1381	CG	ASN H	48	16.437	28. 416	6.759	1.00 27.12	H	C
	ATOM	1382		ASN H	48					H	C
	ATOM	1383		ASN H		1 5.566 17.729	29.193	7.156	1.00 37.95	Н.	0
					48		28.600	6.998	1.00 33.59	H	N
50	MOTA ATOM	1384 1385	N Ca	THR H THR H	49 49	13.387	26.176	5.069	1.00 18.81	H	N
50						12.562	25. 521	4.055	1.00 19.09	H	C
	ATOM	1386	C	THR H	49	13.421	25. 187	2.838	1.00 18.19	• Н	C
	ATOM	1387	0	THR H	49	13.065	24. 315	2.044	1.00 19.04	H	0
	ATOM	1388	CB	THR H	49	11.400	26.419	3.570	1.00 16.92	H	C
	ATOM	1389	0G1	THR H	49	11.932	27.615	2. 989	1.00 18.22	H	0
55	ATOM	1390		THR H	49	10.485	26. 780	4.716	1.00 17.02	Н	С
	MOTA	1391	N	ILE H	50	14.559	25. 871	2.707	1.00 18.59	H	N

	ATOM	1392	CA	ILE H	50		15.469	25.674	1.576	1.00 18.42	F	1	С
5	MOTA	1393	C	ILE H	50		16.841	25.067	1.907	1.00 18.14	ł		Č
	ATOM	1394	Õ	ILE H	50		17. 499	24.507	1.025	1.00 17.04	Ē		Õ
	ATOM	1395	CB	ILE H	50		15.694	27.030	0.841	1.00 22.10		i.	Ç
		1396		ILE H			14. 481	27. 357	-0.030	1.00 21.65			Č
	ATOM				50						ŀ		C
	ATOM	1397		ILE H	50		16. 953	26. 987	-0.022	1.00 23.17	F		C
10	ATOM	1398		ILE H	50		14.338	26.454	-1.235	1.00 23.27	ŀ		С
	ATOM	1399	N	TRP H	51		17.274	25.160	3. 161	1.00 16.05	F	Ī	N
	MOTA	1400	CA	TRP H	51		18.592	24.655	3.528	1.00 15.56	ŀ	1	С
	ATOM	1401	С	TRP H	51		18.659	23.436	4.438	1.00 15.82	ŀ	I	С
	MOTA	1402	0	TRP H	51		17.932	23.321	5.424	1.00 16.64	ŀ		Ō
	ATOM	1403	ČВ	TRP H	51		19.423	25.775	4.149	1.00 16.33	ŀ		Č
15	ATOM	1404	ČĞ	TRP H	51		19. 593	26.967	3. 254	1.00 15.89	Ī		Č
				TRP H						1.00 15.03			
	ATOM	1405			51		18.847	28. 111	3. 261		ŀ		C
	ATOM	1406		TRP H	51		20.576	27.134	2. 224	1.00 15.03	ŀ		С
	MOTA	1407		TRP H	51		19.306	28.982	2.302	1.00 16.22	. 1		N
20	ATOM	1408		TRP H	51		20. 367	28. 409	1.651	1.00 16.38	ŀ		С
20	ATOM	1409	CE3	TRP H	51		21.615	26.330	1.730	1.00 16.52	ŀ	ł	С
	ATOM	1410	CZ2	TRP H	51		21.163	28.904	0.606	1.00 16.04	ŀ	1	C
	ATOM	1411	CZ3	TRP H	51		22.405	26.822	0.690	1.00 16.73	ŀ		С
	ATOM	1412		TRP H	51		22.173	28.100	0.142	1.00 16.02	ŀ		Ċ
	ATOM	1413	N	VAL H	52		19.571	22.536	4.091	1.00 14.41	ŀ		N
25	ATOM	1414	CA	VAL H	52		19. 794	21.306	4. 831	1.00 12.34	ŀ		C
20	ATOM	1415	C	VAL H	52		21. 270	21. 211	5. 218	1.00 12.54	ŀ		6
				VAL H									C
	MOTA	1416	0		52		22. 136	21.461	4.391		ŀ		0
	ATOM	1417	CB	VAL H	52		19.440	20.073	3.957	1.00 11.76	ŀ		C
	MOTA	1418		VAL H	52		19.909	18.800	4.632	1.00 8.59	ŀ		C
30	MOTA	1419		VAL H	52		17.935	20.022	3.700	1.00 12.24	F		С
	MOTA	1420	N	VAL H	53		21.549	20.869	6.474	1.00 11.58	ŀ	ł	N
	MOTA	1421	CA	VAL H	53		22.925	20.706	6.944	1.00 11.42	F	ł	С
	ATOM	1422	С	VAL H	53		23.198	19.206	7.023	1.00 11.69	ŀ	ł	С
	MOTA	1423	0	VAL H	53		22.431	18.470	7.629	1.00 12.13	ŀ	i	0
	ATOM	1424	CB	VAL H	53		23.141	21.326	8.357	1.00 11.61	. F		С
35	MOTA	1425	CG1	VAL H	53		24.522	20.923	8.910	1.00 6.99	I		Č
	ATOM	1426		VAL H	53		23.037	22.850	8. 284	1.00 9.62	Ī		č
	ATOM	1427	N	SER H	54		24. 280	18.757	6.397	1.00 11.72	ŀ		N
	ATOM-	1428	CA	SER H	54		24.642	17. 343	6.414	1.00 10.64	ŀ		
	MOTA	1429	C	SER H	54		26. 150	17. 233	6.651				C
										1.00 11.91	ŀ		Č
40	ATOM	1430	0	SER H	54		26.770	18.184	7.134	1.00 12.10	ŀ		0
	ATOM	1431	CB	SER H	54		24. 256	16.687	5.082	1.00 10.42	ŀ		C
	MOTA	1432	0G	SER H	54		24.369	15. 274	5. 154	1.00 11.65	ŀ		0
	ATOM	1433	N	ALA H	55		26.740	16.085	6.321	1.00 12.45	ŀ	ł	N
	MOTA	1434	CA	ALA H.	55		28.178	15.888	6.507	1.00 12.19	ŀ	ł	С
45	ATOM	1435	С	ALA H	55		28.911	15.910	5. 1 66	1.00 12.89	F	ł	С
45	ATOM	1436	0	ALA H	55		28.422	15.377	4.169	1.00 12.34	F	}	0
	ATOM	1437	CB	ALA H	55		28.440	14.565	7.219	1.00 10.54	ŀ		Č
	ATOM	1438	N	ALA H	56		30. 087	16.528	5. 146	1.00 11.36	ŀ		N
	ATOM	1439		ALA H	56		30.880	16.606	3.925	1.00 12.72	ŀ		
	ATOM	1440	C	ALA H	56			15. 244					C
50							31.315		3.387	1.00 13.03	ŀ		C
	MOTA	1441	0	ALA H	56		31. 283	15.021	2.172	1.00 13.79	ŀ		0
	ATOM	1442	CB	ALA H	56		32.122	17.481	4. 156	1.00 12.20	}		C.
	ATOM	1443	N	HIS H	57		31.720	14. 327	4.266	1.00 12.47	F		N
	ATOM	1444	CA	HIS H	57		32.187	13.025	3.791	1.00 14.60	H	i	С
	ATOM	1445	C	HIS H	57		31.136	12.203	3.039	1.00 16.39	I		C
55	ATOM	1446	0	HIS H	57		31.470	11.252	2. 332	1.00 16.35	Ī		Ö
	ATOM	1447	СВ	HIS H	57	٠.	32.798	12.200	4. 937	1.00 13.36	ŀ		Č
							35. 150	15. 200	1. 501	10.00	1	•	U

	ATOM	1448	CG HIS H	57	31.807	11.425	5.749	1.00 11.86	H	С
	ATOM	1449	ND1 HIS H	57	31.362	11.849	6.983	1.00 8.73	H	N
	ATOM	1450	CD2 HIS H	57	31.219	10.222	5. 530	1.00 9.58	Н	C
5	ATOM	1451	CE1 HIS H	57	30. 547	10.941	7. 491	1.00 9.27	H	Č
	ATOM	1452	NE2 HIS H	57	30. 443	9. 945	6.630	1.00 9.58	H	Ň
	ATOM	1453	N CYS H	58	29. 869	12.581	3. 175	1.00 16.13	H	N
	ATOM	1454	CA CYS H	58	28. 789	11.887	2. 485	1.00 16.13	H	Č
	ATOM		C CYS H	58	28. 880	12.061	0.967	1.00 15.55		
10		1455							H	C
	ATOM	1456	O CYS H	58	28. 248	11.329	0.208	1.00 14.79	H	0
	ATOM	1457	CB CYS H	58	27. 443	12. 426	2. 979	1.00 17.08	H	C
	ATOM	1458	SG CYS H	58	27. 023	11.898	4. 670	1.00 18.19	H	S
	ATOM	1459	N PHE H	59	29.675	13.030	0.532	1.00 15.81	H	N
4.5	ATOM	1460	CA PHE H	59	29. 826	13. 327	-0.883	1.00 14.61	H	C
15	ATOM	1461	C PHE H	59	31. 191	12.959	-1.475	1.00 14.54	H	С
	ATOM	1462	0 PHE H	59	31.504	13.349	-2.602	1.00 13.82	H	0
	MOTA	1463	CB PHE H	59	29. 517	14.816	-1.094	1.00 14.40	H	С
	ATOM	1464	CG PHE H	59	28. 188	15. 231	-0.517	1.00 15.03	H	C
	MOTA	1465	CD1 PHE H	59	27.008	14.984	-1.210	1.00 14.65	H	€
20	ATOM	1466	CD2 PHE H	59	28. 1 09	15.765	0.770	1.00 14.34	H	С
	ATOM	1467	CE1 PHE H	59	25.768	15. 252	-0.629	1.00 15.30	Н	C
	ATOM	1468	CE2 PHE H	59	26.875	16.033	1.358	1.00 14.77	Ħ	C
	ATOM	1469	CZ PHE H	59	25. 703	15.774	0.657	1.00 16.63	H	C
	ATOM	1470	N ASP H	60	31.986	12.195	-0.727	1.00 14.66	Н	N
25	ATOM	1471	CA ASP H	60	33. 313	11.761	-1.179	1.00 16.60	H	C
	ATOM	1472	C ASP H	60	33.310	10.997	-2.509	1.00 18.45	H	Ĉ
	ATOM	1473	0 ASP H	60	34.172	11.216	-3.358	1.00 17.09	H	0
	ATOM	1474	CB ASP H	60	33.979	10.872	-0.117	1.00 15.71	H	Č
	ATOM	1475	CG ASP H	60	34. 633	11.668	0.998	1.00 15.52	Н	C
	ATOM	1476	OD1 ASP H	60	34. 520	12.897	1.005	1.00 13.68	H	Ō
30	ATOM	1477	OD2 ASP H	60	35. 262	11.049	1.855	1.00 15.21	H	ŏ
	ATOM	1478	N LYS H	60A	32. 357	10.089	-2.687	1.00 21.04	H	Ň
	ATOM	1479	CA LYS H	60A	32. 303	9.306	-3.918	1.00 23.97	, H	Ċ
	ATOM	1480	C LYS H	60A	31.110	9.568	-4.830	1.00 24.27	Н	č
	ATOM	1481	O LYS H	60A	30.675	8.678	-5.558	1.00 24.87	H	ő
35	ATOM	1482	CB LYS H	60A	32. 372	7. 813	-3.599	1.00 26.20	H	Č
	ATOM	1483	CG LYS H	60A	33. 775	7. 323	-3. 279	1.00 32.13	H	Č
	ATOM	1484	CD LYS H	60A	34. 039	7. 276	-1.794	1.00 35.71	H	Č
	ATOM	1485	CE LYS H	60A	33. 231	6.169	-1.128	1.00 38.10	H	Č
	ATOM	1486	NZ LYS H	60A	33. 565	6.052	0.323	1.00 42.45	H	N
40	ATOM	1487	N ILE H	60B	30. 583	10. 785	-4.796	1.00 25.56	H	
	ATOM	1488	CA ILE H	60B	29. 454	11.132	-5.642	1.00 25.53	H	N
	ATOM	1489	C ILE H	60B	29. 979	11. 394	-7.049	1.00 28.48	H	C C
	MOTA					12.168		1.00 28.70		
	ATOM			60B			-5.143		H	0
	MOTA		CB ILE H	60B	28. 736	12.409		1.00 24.23	H	C
45					28. 147 27. 647	12.180	-3.746	1.00 22.79	H	C
	MOTA		CG2 ILE H	60B		12.807	-6.132	1.00 24.21	H	C
	ATOM		CD1 ILE H	60B	27.036	11.148	-3.688	1.00 19.86	Н	C
	ATOM		N LYS H	60C	29. 378	10.734	-8.034	1.00 29.76	H	N
	ATOM		CA LYS H	60C	29.764	10.902	-9.430	1.00 31.95	H	C
50	ATOM		C LYS H	60C	28.665		-10.169	1.00 31.45	H	C
	ATOM		O LYS H	60C	28. 942		-11.015	1.00 32.26	H	. 0
	ATOM		CB LYS H	60C	29.974		-10.091	1.00 35.12	H	C
	ATOM		CG LYS H	60C	31.059	8.679	-9.440	1.00 38.59	H	С
	ATOM		CD LYS H	60C	32.462	9. 191	-9.753	1.00 41.77	Н	C
55	ATOM		CE LYS H	60C	33.034		-11.024	1.00 43.81	H	С
	MOTA	1503	NZ LYS H	60C	32. 241	8.847	-12.257	1.00 46.15	H	N

	MOTA	1504	N	ASN H	60D	27.415	11.360 -9.834	1.00 30.75	Н	N
	MOTA	1505	CA	ASN H	60D	26.272	12.005 -10.464	1.00 29.53	Н	C
5	ATOM	1506	С	ASN H	60D	25.675	13.073 -9.549	1.00 28.25	H	Ċ .
	ATOM	1507	Ö	ASN H	60D	24.678	12.833 -8.858	1.00 26.07	H	ŏ
	MOTA	1508	ČВ	ASN H	60D	25.203	10.963 -10.803	1.00 32.77	H	č
	MOTA	1509	CG	ASN H	60D	25.726	9.853 -11.700	1.00 35.73		Č
									H	
10	MOTA	1510	OD1		60D	26.355	10.111 -12.727	1.00 37.75	H	0
, ,	ATOM	1511		ASN H	60D	25.454	8.609 -11.320	1.00 37.39	H.	N
	MOTA	1512	N	TRP H	61	26.279	14. 256 -9. 567	1.00 25.37	Н	Ŋ
	MOTA	1513	CA	TRP H	61	25.834	15.365 - 8.734	1.00 25.31	H	С
	ATOM	1514	С	TRP H	61	24.422	15.863 - 9.016	1.00 26.09	H	C
	MOTA	1515	0	TRP H	61	23.849	16.582 -8.203	1.00 25.00	Н	0
15 .	ATOM	1516	CB	TRP H	61	26.822	16.532 -8.839	1.00 24.50	Н	C
	MOTA	1517	CG	TRP H	61	28.179	16.178 -8.321	1.00 21.92	Н	С
	ATOM	1518	CD1	TRP H	61	29.211	15.634 -9.027	1.00 21.98	H	C
	MOTA	1519		TRP H	61	28.615	16.247 -6.961	1.00 20.82	H	Č
	MOTA	1520	NE1		61	30.262	15. 355 -8. 189	1.00 22.70	H	Ň
20	MOTA	1521		TRP H	61	29.921	15.722 -6.912	1.00 20.71	H	Ĉ
20	ATOM	1522		TRP H	61	28.025	16. 703 -5. 772	1.00 19.10	H	Č
	MOTA	1523		TRP H	61	30.651	15. 634 -5. 724	1.00 17.70	n H	Č ·
	ATOM	1523		TRP H	61	28. 749	16.616 -4.593	1.00 17.70		
									H	Č
	MOTA	1525		TRP H	61	30.050 23.858	16.084 -4.579	1.00 17.22	H	C
25	ATOM	1526	N	ARG H	62		15. 492 -10. 160	1.00 26.23	H	N
	MOTA	1527	CA	ARG H	62	22.503	15. 919 -10. 494	1.00 28.01	H	C
	ATOM	1528	C	ARG H	62	21.432	14. 938 -10. 009	1.00 26.66	H	C
	ATOM	1529	0	ARG H	62	20. 240	15. 216 -10. 125	1.00 25.99	H	0
	ATOM	1530	CB	ARG H	62	22.365	16. 136 -12. 007	1.00 31.33	H	C
22	ATOM	1531	CG	ARG H	62	22.965	17. 448 -12. 509	1.00 36.27	H	C
30	ATOM	1532	CD.	ARG H	62	22.697	17.657 -13.997	1.00 40.57	Н	C
	ATOM	1533	NE	ARG H	62	23.530	16. 804 -14. 844	1.00 44.43	H	·N
	ATOM	1534	CZ	ARG H	62	24.787	17. 078 -15. 190	1.00 46.30	Н	С
	ATOM	1535	NH1	ARG H	62	25.374	18. 192 -14. 770	1.00 46.47	H	N
	ATOM	1536	NH2	ARG H	62	25.462	16. 229 -15. 954	1.00 45.81	H	N
35	ATOM	1537	N	ASN H	63	21.854	13.802 -9.459	1.00 25.42	H	N
	ATOM	1538	CA	ASN H	63	20.917	12.797 -8.958	1.00 25.01	Н	С
	ATOM	1539	С	ASN H	63	20.829	12.745 -7.431	1.00 24.39	H	Č
	ATOM	1540	0	ASN H	63	20.573		1.00 24.25	H	Ŏ
	ATOM	1541	CB	ASN H	63	21.296	11.404 -9.468	1.00 27.47	H	Č
	ATOM	1542	CG	ASN H	63	21.396	11.341 -10.976	1.00 31.32	H	č
40	ATOM	1543	OD1		63	20.715	12.078 -11.686	1.00 31.92	H	ŏ
	MOTA	1544	ND2		63	22.238	10.442 -11.476	1.00 32.46	. Н	N
	ATOM	1545	N	LEU H		21.047	13. 875 -6. 767	1.00 21.76	H	N
	ATOM	1546	CA	LEU H	64	20.966	13.910 -5.309			_
	ATOM	1547	C	LEU H	64	19.568	14. 341 -4. 862	1.00 20.28 1.00 19.50	H H	C
45	ATOM	1548	Ö	LEU H	64	19.071	15. 395 -5. 268			C
								1.00 18.78	H	0
	ATOM	1549	CB	LEU H	64	22.018	14. 855 -4. 744	1.00 19.05	H	C
	ATOM	1550	CG	LEU H	64	23.464	14.363 -4.771	1.00 20.72	H	C
	ATOM	1551		LEU H	64	24. 424	15. 537 -4. 548	1.00 20.72	H	C
50	ATOM	1552		LEU H	64	23.654	13. 282 -3. 702	1.00 18.65	H	C
50	ATOM	1553	N	ILE H	65	18.938	13.520 -4.027	1.00 17.67	. Н	N
	ATOM	1554	CA	ILE H	65	17.589	13.810 -3.539	1.00 18.01	H	C
	ATOM	1555	C	ILE H	65	17.541	13.931 -2.015	1.00 16.76	H	C
	MOTA	1556	0	ILE H	65	18.200	13.172 -1.303	1.00 14.51	H	0
	ATOM	1557	CB	ILE H	65	16.592	12.692 -3.980	1.00 18.70	H	Ċ
55	ATOM	1558	CG1	ILE H	65	16.468	12.671 -5.508	1.00 19.21	H	Č
	ATOM	1559		ILE H	65	15.215	12.918 -3.352	1.00 19.44	H	č
									11	U

	ATO			ILE I		15. 788	13.897	-6.089	1.00 17.7		
	ATO		N	ALA F		16.774	14.903	-1.527	1.00 15.4		
5	ATO			ALA I		16.603	15:111	-0.097	1.00 15.4		
	ATO		С	ALA F		15.125	14.876	0.196	1.00 16.4°		
	AT(0	ALA I		14.254	15.513	-0.405	1.00 16.8		
	ATO		CB	ALA F		16.995	16,531	0.290	1.00 12.7		
	AT(N	VAL I		14.844	13.954	1.108	1.00 14.8	6 Н	N
10	ATO	M 1567	CA	VAL E	H 67	13.469	13.643	1.459	1.00 16.1	2 H	
	ATO	M 1568	С	VAL I	H 67	13.169	14.082	2.894	1.00 16.6	9 н	
	ATO	M 1569	0	VAL I	H 67	13.895	13.732	3.832	1.00 14.6		
	ATO		CB	VAL I		13.184	12.123	1.323	1.00 17.2		
	ATO			VAL I		11.695	11.856	1.492	1.00 18.4		
4.5	ATO			VAL I		13.652	11.616	-0.045	1.00 15.4		
15	ATO		N	LEU I		12.111	14.875	3.042	1.00 14.7		
	ATO			LEU I		11.662	15.368	4.341	1.00 14.9		
	ATO		Č	LEU I		10.368	14.648		1.00 14.4		
	ATO		Ŏ	LEU I		9.639	14.144	3.888	1.00 15.5		
	ATO		CB	LEU I		11.409	16.881	4. 282	1.00 11.0		
20	ATO			LEU I		12.589	17.836	4.542	1.00 14.2		
	ATO			LEU I		13. 204	17. 495	5.901	1.00 14.5		
	ATO			LEU I		13.645	17.729	3.445	1.00 12.5		
	ATO			GLY I		10.098	14.593	6.047	1.00 13.9		
	ATO			GLY I		8.890	13.951	6.547	1.00 13.7		
25	ATO			GLY I		8.913	12.438	6.465	1.00 17.1		
	ATO			GLY I		7.886	11.774	6.637	1.00 17.7		
	ATO			GLU I		10.096	11.889	6.211	1.00 16.90		N
	ATO			GLU I		10.275	10.454	6.101	1.00 16.5		
	ATO			GLU I		10.245	9.800	7.491	1.00 16.50		
30	ATO			GLU I		10.567	10.437	8.494	1.00 15.9		
	AT			GLU 1		11.602	10.174	5.387	1.00 19.0		
	AT	DM 1590	CG	GLU I	H 70	11.865	8.726	5.080	1.00 22.6		
	AT	DM 1591	CD	GLU I	H 70	10.684	8.066	4.398	1.00 25.3		
	AT	OM 1592	0E1	GLU I	H 70	10.563	8. 141	3.189	1.00 24.43	2 H	
35	AT			GLU 1		9.892	7.495	5.098	1.00 23.2	5 Н	
	AT			HISI		9.813	8.544	7.546	1.00 12.74	4 H	N
	AT		CA	HISI		9. 761	7.801	8.799	1.00 13.4	5 H	С
	AT			HISI			6.321	8.586	1.00 12.69		C
	AT			HIS		11.080	5.815	9.091	1.00 11.9		0
40	AT			HIS		8.380	7.919	9.455	1.00 12.6	5 H	С
40	AT			HIS		8. 219	7.045	10.659	1.00 14.7		
	AT			HIS		8.933	7.245	11.821	1.00 15.80		
	AT			HIS		7.488	5.922	10.857	1.00 15.60		C
	AT			HIS 1		8.652			1.00 15.50) Н	С
	AT			HIS		7.778	5.465	12.119	1.00 16.2		
45	AT			ASP 1		9.214	5.642	7.836	1.00 12.7		
	AT			ASP :		9.340	4.213	7.543	1.00 14.8		
	AT			ASP 1		9.726	4.058	6.078	1.00 14.8		C
	AT			ASP		8.931	4. 350	5.200	1.00 14.2		0
	AT			ASP :		7.988	3. 539	7.798	1.00 17.2		C
50	AT			ASP		8.012	2.046	7. 555	1.00 20.8		C
	TA			ASP :		8.887	1.559	6.837	1.00 18.9		0
	AT			ASP		7. 134	1.377	8. 082	1.00 22.75		0
	AT			LEU !		10.936	3. 587	5. 805	1.00 16.50		
	AT			LEU		11.385	3. 443	4. 423	1.00 16.3		c
55	AT			LEU !		10.650	2.377	3. 596	1.00 18.34		С
	AT	OM 1615	0	LEU 1	H 73	10.858	2. 282	2. 385	1.00 19.5	2 H	0

5 ATOM 1616 CB LEU H 73 12.895 3.171 4.397 1.00 16.177 H C C LEU H 73 13.769 4.110 5.247 1.00 17.81 H C ATOM 1618 CD1 LEU H 73 15.230 3.720 5.100 1.00 17.81 H C ATOM 1619 CD2 LEU H 73 15.230 3.720 5.100 1.00 15.70 H C ATOM 1520 N SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1520 CA SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1521 CA SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1522 CA SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1522 CA SER H 74 9.790 1.590 4.234 1.00 21.62 H C ATOM 1522 CA SER H 74 9.790 1.590 4.234 1.00 21.62 H C ATOM 1522 CA SER H 74 9.790 1.690 4.234 1.00 21.62 H C ATOM 1522 CA SER H 74 9.790 1.676 5.50 1.00 22.33 H O C ATOM 1525 CA SER H 74 9.740 1.00 17.81 1.00 22.87 H O ATOM 1526 CA SER H 74 9.740 1.00 17.81 1.00 22.87 H O ATOM 1526 CA SER H 74 9.740 1.00 17.81 1.00 22.87 H O ATOM 1526 CA SER H 74 9.740 1.00 17.81 1.00 22.87 H O ATOM 1526 CA SER H 74 9.740 1.00 17.81 1.00 22.87 H O ATOM 1527 CA GLU H 75 5.732 2.466 3.449 1.00 22.87 H O ATOM 1528 CA GLU H 75 5.732 2.466 3.449 1.00 24.78 H C C ATOM 1528 CA GLU H 75 5.732 2.466 3.449 1.00 24.78 H C C ATOM 1629 CA GLU H 75 5.732 2.466 3.449 1.00 25.10 H C ATOM 1633 CB GLU H 75 4.714 0.873 5.205 1.00 31.89 H C C ATOM 1633 CB GLU H 75 4.714 0.873 5.205 1.00 31.89 H C C ATOM 1633 CB GLU H 75 4.714 0.873 5.205 1.00 31.89 H C C ATOM 1633 CB GLU H 75 4.714 0.873 5.205 1.00 31.89 H C C ATOM 1633 CB GLU H 75 4.714 0.873 5.205 1.00 31.89 H C C ATOM 1638 CA HISH 76 4.830 0.568 H C C ATOM 1638 CA HISH 76 4.830 0.568 H C C ATOM 1638 CA HISH 76 4.830 0.568 H C C ATOM 1638 CA HISH 76 4.830 0.568 H C C ATOM 1638 CA HISH 76 4.830 0.568 H C C ATOM 1638 CA HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.830 0.568 H C C ATOM 1638 CH HISH 76 4.8									_					
ATOM 1518 CDI LEU H 73 15.230 3.720 5.100 1.00 15.70 H C ATOM 1520 N SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1521 CA SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1521 CA SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1521 CA SER H 74 74.7.575 0.880 3.242 1.00 23.33 H C ATOM 1522 C SER H 74 74.7.575 0.880 3.242 1.00 23.33 H C ATOM 1523 0 SER H 74 9.144 -0.769 4.308 1.00 22.33 H C ATOM 1523 0 SER H 74 9.144 -0.769 4.308 1.00 22.33 H C ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.33 H C ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.47 H C ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.47 H C ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.47 H C ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.57 H N ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.57 H N ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.57 H N ATOM 1525 0 G SER H 74 9.144 -0.769 4.308 1.00 22.57 H N ATOM 1527 0 G GLU H 75 5.688 9.394 3.040 1.00 22.57 H N ATOM 1528 0 G GLU H 75 5.688 9.394 3.040 1.00 25.52 H O ATOM 1630 0 G GLU H 75 6.318 4.749 1.00 24.78 H C C ATOM 1630 0 G GLU H 75 4.911 2.301 4.730 1.00 26.53 H C C ATOM 1630 0 G GLU H 75 4.911 2.301 4.730 1.00 26.53 H C C ATOM 1630 0 G GLU H 75 4.911 2.301 4.730 1.00 36.04 H O ATOM 1630 0 G GLU H 75 4.162 -1.102 4.013 1.00 36.04 H O ATOM 1630 0 G GLU H 75 4.162 -1.102 4.013 1.00 36.04 H O ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1635 0 G GLU H 75 4.931 0.00 24.38 H N ATOM 1644 NCL HIS H 76 4.934 0.00 24.00 1.00 24.38 H N ATOM 1645 0 G GLU H 75 6.586 0 G GLU H 75 6.00 0 G GLU H 75 6														
ATOM 1619 CD2 LEU H 73	5													
ATOM 1620 N SER H 74 9.790 1.590 4.234 1.00 19.10 H N ATOM 1822 C SER H 74 9.043 0.548 3.531 1.00 21.62 C C ATOM 1623 C SER H 74 9.043 0.548 3.531 1.00 21.62 C C ATOM 1624 CB SER H 74 6.867 0.078 2.626 1.00 22.33 H C ATOM 1624 CB SER H 74 8.439 -0.675 5.647 1.00 22.57 H N ATOM 1625 O SER H 74 8.439 -0.675 5.647 1.00 22.57 H N ATOM 1626 N GLU H 75 7.117 2.053 3.677 1.00 22.57 H N ATOM 1627 CA GLU H 75 7.117 2.053 3.677 1.00 22.57 H N ATOM 1628 C GLU H 75 5.5732 2.466 3.449 1.00 24.78 H C ATOM 1629 O GLU H 75 5.688 3.984 3.040 1.00 25.10 H C ATOM 1629 O GLU H 75 5.688 3.984 3.040 1.00 25.10 H C ATOM 1630 CB GLU H 75 5.688 3.984 3.040 1.00 25.10 H C ATOM 1630 CB GLU H 75 5.688 3.984 3.040 1.00 25.77 H N ATOM 1630 CB GLU H 75 4.911 2.301 4.730 1.00 25.53 H C ATOM 1633 CB GLU H 75 4.911 2.301 4.730 1.00 25.53 H C ATOM 1633 CB GLU H 75 3.839 0.065 4.700 1.00 33.67 H C ATOM 1633 N HISH 76 4.830 1.003 3.844 1.00 35.97 H O ATOM 1635 N HISH 76 4.830 1.603 3.844 1.00 35.97 H O ATOM 1635 N HISH 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1638 CB HISH 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1639 CB HISH 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1639 CB HISH 76 4.830 5.668 1.558 1.00 23.39 H C ATOM 1630 CB HISH 76 4.830 5.668 1.558 1.00 23.39 H C ATOM 1640 CC HISH 76 6.066 5.449 -0.671 1.00 33.57 H O ATOM 1640 CC HISH 76 6.066 5.449 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 76 6.066 5.449 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 77 6 6.266 5.489 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 77 6 6.066 5.489 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 76 6.066 5.489 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 76 6.262 B.330 C.300 1.00 25.10 H N ATOM 1640 CC HISH 77 6 6.262 B.330 C.300 1.00 25.10 H N ATOM 1640 CC HISH 76 6.066 5.489 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 76 6.066 5.489 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 76 6.066 5.489 -0.671 1.00 23.55 H C ATOM 1640 CC HISH 76 6.066 5.489 -0.671 1.00 23.50 H N ATOM 1654 CA SP H 77 3.6677 7.607 2.510 1.00 25.00 H C ATOM 1658 CA SP H 77 3.6677 7.607 2.510 1.00 25.00 H C ATOM 1658 CA SP H 79 3														
ATOM							1]		
10 ATOM 1622 C SER H 74				N										N
ATOM 1523 O SER H 74		ATOM	1621	CA	SER H	74		9.043	0.548	3.531	1.00 21.62]	H (С
ATOM 1624 CB SER H 74		ATOM	1622	C	SER H	74		7.575	0.880	3.242	1.00 23.33]	H (С
ATOM 1625 OG SER H. 74 ATOM 1626 N. CLU H. 75 ATOM 1627 CA GLU H. 75 ATOM 1628 C. GLU H. 75 ATOM 1630 CB CLU H. 75 ATOM 1630 CB CLU H. 75 ATOM 1630 CB CLU H. 75 ATOM 1631 CB CLU H. 75 ATOM 1632 CD GLU H. 75 ATOM 1634 CD GLU H. 75 ATOM 1634 CD GLU H. 75 ATOM 1634 CD GLU H. 75 ATOM 1635 CD GLU H. 75 ATOM 1634 CD GLU H. 75 ATOM 1634 CD GLU H. 75 ATOM 1635 CD GLU H. 75 ATOM 1635 CD GLU H. 75 ATOM 1636 CD GLU H. 75 ATOM 1636 CD GLU H. 75 ATOM 1636 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1636 CD GLU H. 75 ATOM 1636 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1636 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1637 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1638 CD GLU H. 75 ATOM 1639 CD GLU H. 75 ATOM 1640 CD GLU H. 75 ATOM 1	10	ATOM	1623	0	SER H	74		6.867	0.078	2.625	1.00 22.33]	H (0
ATOM 1625 OC SER H 74 ATOM 1626 N CLU H 75 ATOM 1627 CA GLU H 75 ATOM 1628 C CLU H 75 ATOM 1630 CB CLU H 75 ATOM 1640 CC CLU H 75 ATOM		MOTA	1624	CB	SER H	74		9.114	-0.769	4.308	1.00 20.45	3	. I	С
ATOM 1626 N GLU H 75 5.732 2.465 3.467 1.00 22.57 H N N ATOM 1628 C GLU H 75 5.688 3.934 3.040 1.00 25.10 H C ATOM 1629 O GLU H 75 5.688 3.934 3.040 1.00 25.82 H O ATOM 1630 CB GLU H 75 4.911 2.301 4.730 1.00 25.83 H C ATOM 1631 CG GLU H 75 4.911 2.301 4.730 1.00 26.53 H C ATOM 1632 CD GLU H 75 4.714 0.873 5.205 1.00 26.53 H C ATOM 1633 CD GLU H 75 4.714 0.873 5.205 1.00 26.53 H C ATOM 1633 CD GLU H 75 4.714 0.873 5.205 1.00 26.53 H C ATOM 1633 CD GLU H 75 4.714 0.873 5.205 1.00 26.53 H C ATOM 1633 CD GLU H 75 4.714 0.873 5.205 1.00 31.89 H C ATOM 1634 0E2 GLU H 75 4.714 0.873 5.205 1.00 31.89 H C ATOM 1635 N HIS H 76 4.934 4.275 2.000 1.00 24.98 H N N ATOM 1635 N HIS H 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1637 C HIS H 76 3.569 6.338 2.106 1.00 23.35 H O ATOM 1638 O HIS H 76 4.830 5.668 1.558 1.00 23.35 H O ATOM 1638 O HIS H 76 4.760 5.749 0.026 1.00 23.35 H O ATOM 1630 C ATOM 1638 C ATOM 1638 C ATOM 1638 C ATOM 1638 C ATOM 1639 C ATOM 1630 C ATOM 1640 C B HIS H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1640 C B HIS H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1640 C C HIS H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1640 C B HIS H 76 6.408 4.88 -1.558 1.00 28.58 H N N ATOM 1640 C B HIS H 76 6.408 4.88 -1.558 1.00 28.58 H N N ATOM 1640 C B HIS H 76 6.408 4.88 -1.598 1.00 28.58 H N N ATOM 1640 C C B HIS H 76 6.408 4.88 -1.598 1.00 28.58 H N N ATOM 1640 C C B HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1640 C C B HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1640 C C B HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1640 C C B HIS H 76 7.701 4.736 -1.929 1.00 19.38 H C ATOM 1640 C C B ASP H 77 3.667 7.607 2.510 1.00 19.38 H C ATOM 1640 C C B ASP H 77 3.667 7.607 2.510 1.00 19.38 H C ATOM 1650 C C ASP H 77 3.667 7.607 2.510 1.00 19.38 H C ATOM 1650 C C ASP H 77 3.667 7.625 1.00 18.10 19.00 19.00 H N ATOM 1650 C C ASP H 77 3.665 1.00 23.00 2.004 1.00 19.38 H C ATOM 1650 C C ASP H 77 3.665 1.00 19.30 1.00 19.38 H C ATOM 1650 C C ASP H 79 3.675 1.321 1.00 19.30 1.00 19.30 H C ATOM 1650 C C ASP H 79 3.931 1.305 1				0G	SER H	74								
ATOM 1527 CA GLU H 75 5.732 2.466 3.449 1.00 24.78 H C ATOM 1628 C GLU H 75 5.688 3.934 3.040 1.00 25.10 H C ATOM 1630 CB GLU H 75 4.911 2.301 4.730 1.00 25.52 H C ATOM 1630 CB GLU H 75 4.911 2.301 4.730 1.00 25.52 H C ATOM 1632 CD GLU H 75 4.911 2.301 4.730 1.00 25.53 H C ATOM 1632 CD GLU H 75 3.839 0.065 4.270 1.00 33.67 H C ATOM 1633 OEI GLU H 75 2.831 0.603 3.814 1.00 35.97 H O ATOM 1635 N HIS H 76 4.934 4.275 2.000 1.00 24.98 H N ATOM 1635 N HIS H 76 4.934 4.275 2.000 1.00 24.98 H N ATOM 1636 CA HIS H 76 4.934 4.275 2.000 1.00 24.98 H N ATOM 1637 C HIS H 76 4.934 4.275 2.000 1.00 24.98 H N ATOM 1638 O HIS H 76 4.934 4.275 2.000 1.00 24.93 H C ATOM 1638 O HIS H 76 4.934 4.275 2.000 1.00 24.93 H C ATOM 1638 O HIS H 76 4.760 5.749 0.026 1.00 23.39 H C ATOM 1636 CA HIS H 76 4.760 5.749 0.026 1.00 23.39 H C ATOM 1640 CC HIS H 76 6.056 5.469 -0.671 1.00 29.25 H C ATOM 1644 NDI HIS H 76 6.056 5.469 -0.671 1.00 29.25 H C ATOM 1644 NDI HIS H 76 6.408 4.488 -1.538 1.00 28.58 H N ATOM 1646 NDI HIS H 76 6.408 4.488 -1.538 1.00 28.58 H N ATOM 1646 NDI HIS H 76 6.408 4.488 -1.231 1.00 29.52 H C ATOM 1644 NDI HIS H 76 6.408 4.488 -1.232 1.00 29.52 H C ATOM 1646 NDI HIS H 76 6.408 4.488 -1.232 1.00 29.52 H C ATOM 1646 NDI HIS H 77 2.621 9.817 2.593 3.00 3.00 3.00 H N ATOM 1646 OE ASP H 77 2.621 9.817 2.593 3.00 3.00 3.00 H C ATOM 1650 CG ASP H 77 3.656 10.592 2.575 3.00 3.00 3.00														
ATOM 1628 C GLU H 75 S 5.688 3.934 3.040 1.00 25.10 H C ATOM 1630 CB GLU H 75 S 6.318 4.749 3.678 1.00 25.82 H O ATOM 1631 CG GLU H 75 S 4.911 2.301 4.730 1.00 26.53 H C ATOM 1631 CG GLU H 75 S 4.911 2.301 4.730 1.00 26.53 H C ATOM 1632 CD GLU H 75 S 4.714 O 873 5.205 1.00 31.89 H C C ATOM 1633 OEI GLU H 75 S 2.831 O 0.65 4.270 1.00 33.677 H O ATOM 1634 OE2 GLU H 75 S 2.831 O 0.603 3.814 1.00 35.97 H O ATOM 1635 N H 15 H 76 4.934 4.275 2.000 1.00 24.93 H N ATOM 1636 CA H S H 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1636 CA H S H 76 3.569 6.338 2.106 1.00 23.39 H C ATOM 1639 CB H S H 76 4.760 5.749 0.026 1.00 23.39 H C ATOM 1639 CB H S H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1644 ND1 H S H 76 7.159 6.288 -0.554 1.00 28.86 H C ATOM 1644 ND1 H S H 76 7.159 6.288 -0.554 1.00 28.86 H C ATOM 1644 ND1 H S H 76 7.101 4.736 -1.221 1.00 29.52 H C ATOM 1644 ND1 H S H 76 7.701 4.736 -1.221 1.00 29.52 H C ATOM 1645 N ASP H 77 3.677 7.607 2.510 1.00 20.79 H N ATOM 1645 N ASP H 77 2.509 8.359 2.973 1.00 19.33 H C ATOM 1645 N ASP H 77 2.509 8.359 2.973 1.00 19.33 H C ATOM 1649 CB ASP H 77 2.509 8.359 2.973 1.00 19.33 H C ATOM 1645 C ASP H 77 2.509 8.359 2.973 1.00 19.33 H C ATOM 1650 C ASP H 77 2.509 8.359 2.973 1.00 19.33 H C ATOM 1655 C ASP H 77 2.509 8.359 2.973 1.00 19.33 H C ATOM 1655 C ASP H 77 3.651 1.0230 2.004 1.00 1.00 1.00 H N ATOM 1655 C ASP H 79				CA	GLU H									
ATOM 1629 O GLU H 75	15			C										
ATOM 1630 CB GLU H 75														
ATOM 1631 CC GLU H 75														
ATOM 1632 CD GLU H 75														
20 ATOM 1633 OE1 GLU H 75														
ATOM 1635 N HIS H 75 4.162 -1.102 4.013 1.00 36.04 H N ATOM 1636 CA HIS H 76 4.934 4.275 2.000 1.00 24.98 H N ATOM 1636 CA HIS H 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1637 C HIS H 76 4.830 5.668 1.558 1.00 24.23 H C ATOM 1638 O HIS H 76 2.514 5.706 2.166 1.00 23.39 H C ATOM 1639 CB HIS H 76 4.760 5.706 2.166 1.00 25.30 H C ATOM 1639 CB HIS H 76 4.760 5.706 2.166 1.00 25.80 H C ATOM 1640 CC HIS H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1644 NDI HIS H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1640 CC HIS H 76 6.056 5.469 -0.671 1.00 29.25 H C ATOM 1642 CD2 HIS H 76 6.066 5.469 -0.554 1.00 28.86 H C ATOM 1642 CD2 HIS H 76 6.06408 4.488 -1.538 1.00 28.86 H C ATOM 1644 NDI HIS H 76 7.715 9.28 1.00 28.86 H C ATOM 1644 NDI HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1646 NA NEZ HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1646 CA ASP H 77 2.509 8.359 2.973 1.00 29.52 H C ATOM 1646 CA ASP H 77 2.509 8.359 2.973 1.00 19.38 H C ATOM 1646 CA ASP H 77 3.6677 7.607 2.510 1.00 20.79 H N ATOM 1646 CA ASP H 77 3.651 10.230 2.004 1.00 21.60 H O ATOM 1646 CA ASP H 77 3.651 10.230 2.004 1.00 21.60 H O ATOM 1649 CB ASP H 77 3.651 10.230 2.004 1.00 21.60 H O ATOM 1650 CG ASP H 77 3.384 8.946 5.308 1.00 19.03 H C ATOM 1651 OD1 ASP H 77 3.655 1.00 20.27 H C ATOM 1651 OD1 ASP H 77 3.954 9.946 4.848 1.00 19.03 H O ATOM 1655 CC GLY H 78 2.329 8.257 4.499 1.00 18.12 H C ATOM 1655 CD ASP H 77 3.954 9.946 4.848 1.00 19.03 H O ATOM 1655 CC GLY H 78 2.329 8.257 4.499 1.00 18.10 H N ATOM 1655 CC GLY H 78 2.325 11.930 2.326 1.00 18.10 H N ATOM 1655 CC GLY H 78 2.325 11.930 2.326 1.00 18.10 H N ATOM 1656 CC ASP H 79 3.954 9.946 4.848 1.00 19.03 H O ATOM 1657 N ASP H 79 3.954 9.946 4.848 1.00 19.03 H O ATOM 1656 CC ASP H 79 3.954 9.946 4.848 1.00 19.03 H O ATOM 1656 CC ASP H 79 3.955 12.625 4.091 1.00 19.01 H N ATOM 1656 CC ASP H 79 3.956 12.625 4.091 1.00 19.01 H N ATOM 1656 CC GLY H 78 2.325 11.00 18.55 H C ATOM 1656 CC GLY H 78 2.325 11.00 18.65 H C ATOM 1666 CC ASP H 79 3.956 12.625 4.091 1.00 19.01 H N C ATOM 1666 CC ASP H 79 2.45	20													
ATOM 1635 CA HIS H 76	20													
ATOM 1637 C HIS H 76														
ATOM 1637 C HIS H 76 3.569 6.338 2.106 1.00 23.39 H C ATOM 1639 CB HIS H 76 4.760 5.706 2.166 1.00 23.35 H O ATOM 1639 CB HIS H 76 4.760 5.749 0.026 1.00 25.80 H C ATOM 1640 CG HIS H 76 6.056 5.469 -0.671 1.00 29.25 H C ATOM 1641 ND1 HIS H 76 6.056 5.469 -0.671 1.00 29.25 H C ATOM 1641 ND1 HIS H 76 6.060 6.288 -0.554 1.00 28.86 H N ATOM 1642 CD2 HIS H 76 6.408 4.488 -1.558 1.00 28.86 H C ATOM 1643 CE1 HIS H 76 8.132 5.827 -1.321 1.00 29.52 H C ATOM 1644 NE2 HIS H 76 8.132 5.827 -1.321 1.00 29.52 H C ATOM 1644 NE2 HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1645 N ASP H 77 3.677 7.607 2.510 1.00 20.79 H N ATOM 1646 CA ASP H 77 2.509 8.359 2.973 1.00 19.38 H C ATOM 1648 CA ASP H 77 2.509 8.359 2.973 1.00 19.38 H C ATOM 1649 CB ASP H 77 2.621 9.817 2.533 1.00 18.66 H C ATOM 1649 CB ASP H 77 2.299 8.557 4.499 1.00 18.12 H C ATOM 1651 0D1 ASP H 77 3.651 10.230 2.004 1.00 21.60 H O ATOM 1651 0D1 ASP H 77 3.954 9.946 4.848 1.00 19.27 H C ATOM 1651 0D1 ASP H 77 3.954 9.946 4.848 1.00 19.27 H C ATOM 1653 N GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1655 C GLY H 78 2.351 1.980 2.326 1.00 18.19 H N ATOM 1655 C GLY H 78 2.352 14.197 2.675 1.00 18.55 H C ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 18.55 H C ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 18.55 H C ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 18.55 H C ATOM 1656 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1656 N ASP H 79 3.095 12.625 4.091 1.00 19.87 H C ATOM 1656 N ASP H 79 3.095 12.625 4.091 1.00 19.87 H C ATOM 1666 C A ASP H 79 3.095 12.625 4.091 1.00 19.87 H C ATOM 1666 C A ASP H 79 3.095 12.625 4.091 1.00 19.87 H C ATOM 1666 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1667 C GLY H 80 7.003 12.873 2.758 1.00 19.63 H C ATOM 1667 C GLY H 80 7.003 12.873 2.758 1.00 19.03 H C ATOM 1668 C A ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1666 C C ASP H 79 2.666 13.111 6.966 1.00 21.14 H C ATOM 1667 C GLY H 80 7.003 12.873 2.758 1.00 19.02 9.00 H C ATOM 1668 C C GLY H 80 7.003 12.873 2.758 1.00 19.02 9.00 H C ATOM 1668 C C GLY H 80 7.003 12.														
25														
ATOM 1639 CB HIS H 76														
ATOM 1640 CC HIS H 76 6.056 5.469 -0.671 1.00 29.25 H C ATOM 1641 ND1 HIS H 76 7.159 6.288 -0.554 1.00 28.58 H N C ATOM 1642 CD2 HIS H 76 6.408 4.488 -1.538 1.00 28.86 H C ATOM 1643 CE1 HIS H 76 8.132 5.827 -1.321 1.00 29.52 H C ATOM 1644 NE2 HIS H 76 7.701 4.736 -1.929 1.00 28.15 H N ATOM 1645 N ASP H 77 3.677 7.607 2.510 1.00 20.79 H N ATOM 1646 CA ASP H 77 2.509 8.359 2.973 1.00 19.38 H C ATOM 1646 CA ASP H 77 2.509 8.359 2.973 1.00 19.38 H C ATOM 1646 CA ASP H 77 2.621 9.817 2.533 1.00 18.66 H C ATOM 1648 0 ASP H 77 2.621 9.817 2.533 1.00 18.66 H C ATOM 1649 CB ASP H 77 2.299 8.257 4.499 1.00 21.60 H O ATOM 1650 CG ASP H 77 3.651 10.230 2.004 1.00 21.60 H O ATOM 1650 CG ASP H 77 3.854 9.946 5.308 1.00 19.27 H C ATOM 1652 DD2 ASP H 77 3.635 8.490 6.418 1.00 19.03 H O ATOM 1655 CD CG ASP H 77 3.635 8.490 6.418 1.00 19.03 H O ATOM 1655 CD CG ATOM 1654 CA GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1655 CD GLY H 78 2.352 14.197 2.675 1.00 18.10 H C ATOM 1655 CD GLY H 78 2.352 14.197 2.675 1.00 18.10 H C ATOM 1655 CD GLY H 78 2.352 14.197 2.675 1.00 18.10 H C ATOM 1655 CD GLY H 78 2.352 14.197 2.675 1.00 18.10 H C ATOM 1656 CD GLY H 78 2.352 14.197 2.675 1.00 18.79 H C ATOM 1656 CD GLY H 78 2.352 14.197 2.675 1.00 18.79 H C ATOM 1656 CD GLY H 78 2.352 14.197 2.675 1.00 18.79 H C ATOM 1656 CD GLY H 78 2.352 14.197 2.675 1.00 18.79 H C ATOM 1656 CD GLY H 79 3.910 13.580 4.227 1.00 18.79 H C ATOM 1656 CD GLY H 79 3.910 13.580 4.227 1.00 18.79 H C ATOM 1666 CD ASP H 79 3.910 13.580 4.227 1.00 18.79 H C ATOM 1666 CD ASP H 79 2.896 13.111 6.996 1.00 22.87 H O ATOM 1666 CD ASP H 79 2.896 13.111 6.996 1.00 22.87 H O ATOM 1666 CD GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1666 CD GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1666 CD GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1666 CD GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1666 CD GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1666 CD GLU H 80 7.062 13.811 1.565 1.00 19.00 19.10 H C ATOM 1666 CD GLU H 80 7.062 13.811 1.565 1.00 19.00 19.10 H C ATO	25													
ATOM 1641 NDI HIS H 76														
ATOM 1642 CD2 HIS H 76														
ATOM 1643 CE1 HIS H 76														
ATOM 1644 NE2 HIS H 76														
ATOM 1645 N ASP H 77 3.677 7.607 2.510 1.00 20.79 H N N ATOM 1646 CA ASP H 77 2.509 8.359 2.973 1.00 19.38 H C ATOM 1647 C ASP H 77 2.621 9.817 2.533 1.00 18.66 H C ATOM 1648 O ASP H 77 2.621 9.817 2.533 1.00 18.66 H C ATOM 1649 CB ASP H 77 3.651 10.230 2.004 1.00 21.60 H O ATOM 1650 CG ASP H 77 3.384 8.946 5.308 1.00 19.27 H C ATOM 1651 ODI ASP H 77 3.954 9.946 4.848 1.00 19.03 H O ATOM 1652 OD2 ASP H 77 3.635 8.490 6.418 1.00 19.03 H O ATOM 1652 OD2 ASP H 77 3.635 8.490 6.418 1.00 17.06 H O ATOM 1655 C GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1655 C GLY H 78 1.545 11.980 2.326 1.00 18.55 H C ATOM 1656 O GLY H 78 2.371 13.025 3.054 1.00 18.55 H C ATOM 1656 C ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1658 CA ASP H 79 3.095 12.625 4.091 1.00 18.63 H O ATOM 1659 C ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1665 CG ASP H 79 3.910 13.580 4.827 1.00 18.65 H O ATOM 1665 CG ASP H 79 3.910 13.580 4.827 1.00 18.65 H O ATOM 1665 CG ASP H 79 3.910 13.580 4.827 1.00 18.65 H O ATOM 1666 CG ASP H 79 3.910 13.580 4.827 1.00 18.65 H O ATOM 1666 CG ASP H 79 3.910 13.580 4.827 1.00 18.65 H O ATOM 1666 CG ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1666 CG ASP H 79 2.666 13.111 6.996 1.00 2.287 H O ATOM 1666 CG ASP H 79 2.450 12.148 7.704 1.00 2.287 H O ATOM 1666 CG AGU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CG GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CG GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CG GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.003 12.873 2.758 1.00 20.20 H C ATOM 1667 C GLU H 80 7.003 12.873 2.758 1.00 19.63 H C	30													
ATOM 1646 CA ASP H 77														
ATOM 1647 C ASP H 77														
ATOM 1648 0 ASP H 77 3.651 10.230 2.004 1.00 21.60 H 0 ATOM 1649 CB ASP H 77 2.299 8.257 4.499 1.00 18.12 H C ATOM 1650 CG ASP H 77 3.384 8.946 5.308 1.00 19.27 H C ATOM 1651 0D1 ASP H 77 3.954 9.946 4.848 1.00 19.03 H 0 ATOM 1652 0D2 ASP H 77 3.635 8.490 6.418 1.00 17.06 H 0 ATOM 1653 N GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1654 CA GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1655 C GLY H 78 2.371 13.025 3.054 1.00 18.55 H C ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 16.08 H 0 ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 18.55 H C ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1660 O ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 18.65 H 0 ATOM 1663 0D1 ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.002 13.811 1.6996 1.00 21.14 H C ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H 0 ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.002 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H 0 ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H 0 ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H 0														
35 ATOM 1649 CB ASP H 77 2.299 8.257 4.499 1.00 18.12 H C ATOM 1650 CG ASP H 77 3.384 8.946 5.308 1.00 19.27 H C ATOM 1651 OD1 ASP H 77 3.954 9.946 4.848 1.00 19.03 H O ATOM 1652 OD2 ASP H 77 3.635 8.490 6.418 1.00 17.06 H O ATOM 1653 N GLY H 78 1.566 10.592 2.755 1.00 18.19 H N 40 ATOM 1655 C GLY H 78 1.545 11.980 2.326 1.00 18.19 H N 40 ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 18.10 H C ATOM 1658 CA														
ATOM 1650 CG ASP H 77 3.384 8.946 5.308 1.00 19.27 H C ATOM 1651 OD1 ASP H 77 3.954 9.946 4.848 1.00 19.03 H O ATOM 1652 OD2 ASP H 77 3.635 8.490 6.418 1.00 17.06 H O ATOM 1653 N GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1655 C GLY H 78 1.566 10.592 2.755 1.00 18.10 H C ATOM 1655 C GLY H 78 2.371 13.025 3.054 1.00 18.55 H C ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 16.08 H O ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1659 C ASP H 79 3.910 13.580 4.827 1.00 18.30 H C ATOM 1660 O ASP H 79 3.910 13.580 4.827 1.00 18.30 H C ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1663 OD1 ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.28 H O ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 19.10 H O ATOM 1667 C GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.062 13.811 1.563 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.062 13.811 1.563 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.062 13.811 1.563 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.062 13.811 1.563 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.062 13.811 1.563 1.00 22.03 H C	25													
ATOM 1651 OD1 ASP H 77 3.954 9.946 4.848 1.00 19.03 H 0 ATOM 1652 OD2 ASP H 77 3.635 8.490 6.418 1.00 17.06 H 0 ATOM 1653 N GLY H 78 1.566 10.592 2.755 1.00 18.19 H N ATOM 1654 CA GLY H 78 1.545 11.980 2.326 1.00 18.10 H C ATOM 1655 C GLY H 78 2.371 13.025 3.054 1.00 18.55 H C ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 16.08 H O ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1665 C ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1666 CA ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1666 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1666 OD1 ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 22.87 H O ATOM 1665 N GLU H 80 7.003 12.873 2.758 1.00 22.28 H O ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1668 O GLU H 80 7.003 12.873 2.758 1.00 29.30 H C	35													
ATOM 1652 OD2 ASP H 77														
ATOM 1653 N GLY H 78														
40 ATOM 1654 CA GLY H 78														
ATOM 1655 C GLY H 78 2.371 13.025 3.054 1.00 18.55 H C ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 16.08 H O ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1659 C ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1660 O ASP H 79 6.014 14.676 4.543 1.00 18.65 H O ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1668 O GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 7.491 11.472 2.380 1.00 29.30 H C														
ATOM 1656 O GLY H 78 2.352 14.197 2.675 1.00 16.08 H O ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1659 C ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1660 O ASP H 79 6.014 14.676 4.543 1.00 18.65 H O ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C	40													
ATOM 1657 N ASP H 79 3.095 12.625 4.091 1.00 19.01 H N ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1659 C ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1660 O ASP H 79 6.014 14.676 4.543 1.00 18.65 H O ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C														
ATOM 1658 CA ASP H 79 3.910 13.580 4.827 1.00 18.79 H C ATOM 1659 C ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1660 O ASP H 79 6.014 14.676 4.543 1.00 18.65 H O ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1667 C GLU H 80 7.491 11.472 2.380 1.00 22.03 H C														
ATOM 1659 C ASP H 79 5.297 13.730 4.227 1.00 18.30 H C ATOM 1660 O ASP H 79 6.014 14.676 4.543 1.00 18.65 H O ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 7.491 11.472 2.380 1.00 29.30 H C														
ATOM 1660 O ASP H 79 6.014 14.676 4.543 1.00 18.65 H O ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
ATOM 1661 CB ASP H 79 4.034 13.164 6.295 1.00 19.58 H C ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C	45				A CP H									
ATOM 1662 CG ASP H 79 2.696 13.111 6.996 1.00 21.14 H C ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
ATOM 1663 OD1 ASP H 79 1.909 14.047 6.832 1.00 22.87 H O ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H O ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
ATOM 1664 OD2 ASP H 79 2.450 12.148 7.704 1.00 20.28 H 0 ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C 55 ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
50 ATOM 1665 N GLU H 80 5.685 12.799 3.364 1.00 19.12 H N ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H 0 ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C 55 ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
ATOM 1666 CA GLU H 80 7.003 12.873 2.758 1.00 20.29 H C ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C	50													
ATOM 1667 C GLU H 80 7.062 13.811 1.563 1.00 19.63 H C ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H O ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C	<i>50</i>													
ATOM 1668 O GLU H 80 6.185 13.815 0.699 1.00 19.10 H 0 ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
ATOM 1669 CB GLU H 80 7.491 11.472 2.380 1.00 22.03 H C ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
55 ATOM 1670 CG GLU H 80 6.528 10.659 1.571 1.00 29.30 H C														
A10M 1071 CD GLU H BU 6.895 9.188 1.567 1.00 29.90 H C	55													
		AIUM	1071	CD	GLU H	ชบ		o. 895	9.188	1.567	1.00 29.90	ŀ	i (C

5	MOTA MOTA MOTA	1672 1673 1674		GLU H GLU H GLN H	i 80	7.315	8. 547 8. 707 14. 625	2. 597 0. 544 1. 541	1.00 27.84 1.00 32.19 1.00 18.82	Н Н Н	0 0 N .
	ATOM ATOM ATOM	1675 1676 1677	CA C O	GLN F GLN F GLN F	1 81 1 81	9.723 1 10.689	15.592 15.373 15.277	0. 482 -0. 065 0. 691	1.00 17.15 1.00 18.57 1.00 18.79	Н Н	C C
10	MOTA ATOM ATOM	1678 1679 1680	CG CD	GLN H	1 81 1 81	6.873 6.792	17.004 17.277 18.684		1.00 16.07 1.00 15.69 1.00 13.45	Н Н Н	CCC
	ATOM ATOM ATOM ATOM	1681 1682 1683 1684		GLN H GLN H SER H SER H	i 81 i 82	6.516 2 9.829	19.630 18.828 15.313 15.072	1.493 3.530 -1.384 -2.029	1.00 12.22 1.00 12.50 1.00 17.31 1.00 18.12	Н Н Н Н	O N N C
15	MOTA MOTA MOTA	1685 1686 1687	C O CB	SER I SER I	I 82 I 82	2 11.576 2 10.778	16. 299 16. 996 13. 867	-2.799 -3.428 -2.960	1.00 17.87 1.00 17.54 1.00 16.29	н н н	Č 0 C
20	MOTA MOTA MOTA	1688 1689 1690	OG N CA	SER I ARG I ARG I	1 83 1 83	3 12.878 3 13.447	13. 446 16. 563 17. 717	-3. 436 -2. 750 -3. 443	1.00 28.10 1.00 18.40 1.00 18.45	Н Н Н	O N C
	ATOM ATOM ATOM	1691 1692 1693	C O CB	ARG H	1 83 1 83	3 15.629 3 13.572	17. 401 16. 715 18. 906	-3. 998 -3. 354 -2. 486	1.00 20.13 1.00 21.06 1.00 18.69	H H H	0 C
25	ATOM ATOM ATOM ATOM	1694 1695 1696 1697	CG CD NE CZ	ARG I ARG I ARG I	i 83	3 11.544 3 10.393	19. 439 20. 319 21. 010 20. 444	-1.927 -2.947 -2.378 -2.131	1.00 19.20 1.00 17.18 1.00 14.55 1.00 16.58	H H H H	C C N C
30	ATOM ATOM ATOM	1698 1699 1700	NH1	ARG I	H 83	3 9.004 3 8.241	19.159 21.170 17.902	-2. 401 -1. 603 -5. 194	1.00 13.28 1.00 16.69 1.00 19.27	H H H	N N N
	ATOM ATOM ATOM	1701 1702 1703	CA C O	ARG I	1 84 1 84	4 17.392 4 17.015	17.697 18.641 19.746	-5. 788 -5. 075 -4. 689	1.00 20.61 1.00 18.87 1.00 16.00	H H H	. C . C
35	ATOM ATOM ATOM ATOM	1704 1705 1706 1707	CB CG CD NE	ARG I ARG I ARG I	H 84	4 15. 483 4 15. 845	18.037 17.186 17.288 16.600	-7. 283 -8. 127 -9. 604 -10. 451	1.00 23.54 1.00 29.19 1.00 34.52 1.00 40.99	H H H H	C C C N
	ATOM ATOM ATOM	1708 1709 1710	CZ NH1	ARG I	H 84	4 15.065 4 16.206	16. 298 16. 614	-11.733 -12.337 -12.417	1.00 44.71 1.00 46.58 1.00 46.99	H H H	C N N
40	ATOM ATOM ATOM	1711 1712 1713	N CA C	VAL I	H 85	5 19.622 5 20.229	18. 203 19. 049 19. 920	-4.888 -4.243 -5.341	1.00 17.74 1.00 16.85 1.00 17.99	H H H	N C C
45	MOTA ATOM ATOM MOTA	1714 1715 1716 1717	CB CG1	VAL I VAL I VAL I	H 89	5 20.732 5 21.763	19, 416 18, 207 19, 123 17, 289	-6. 259 -3. 557 -2. 907 -2. 507	1.00 17.19 1.00 16.36 1.00 14.96 1.00 13.28	H H H H	C C O
	MOTA MOTA MOTA	1718 1719 1720	N CA C	ALA I	H 80	6 19.992 6 20.504	21. 227 22. 181 22. 513	-5. 251 -6. 231 -6. 000	1.00 18.63 1.00 18.54 1.00 19.52	H H H	N C C
50	MOTA MOTA MOTA	1721 1722 1723	O CB N	ALA I ALA I GLN	H 80	6 22.692 6 19.671	22.847 23.471 22.426	-6.942 -6.193 -4.752	1.00 20.09 1.00 16.39 1.00 18.48	н н н	0 C N
55	MOTA MOTA MOTA MOTA	1724 1725 1726	CA C O	GLN I	H 8'	7 24.330 7 23.620	22. 739 22. 107 22. 030	-4.443 -3.149 -2.149	1.00 19.14 1.00 17.00 1.00 17.11	Н Н Н	C C 0
	VION	1727	CB	GLN 1	H 8'	7 23.986	24. 259	-4.376	1.00 20.74	H	C

_	ATOM ATOM ATOM	1728 1729 1730	CD OE 1	GLN H GLN H GLN H	87 87 87		25.425 25.587 25.068	24. 729 26. 134 27. 099	-4.330 -4.886 -4.328	1.00 23.3 1.00 28.6 1.00 31.5	57 I 99 I		C C 0
5	ATOM	1731		GLN H	87		26.305	26. 250	-5.999	1.00 30.5		ł	N
	MOTA ATOM	$\begin{array}{c} 1732 \\ 1733 \end{array}$		VAL H VAL H	88		25.574 26.239	21.645 21.047	-3.196 -2.047	1.00 14.		j	N
	ATOM	1734		VAL H	88 88		27.465	21.920	-1.772	1.00 14.0		i i	C.
	ATOM	1735		YAL H	88		28.404	21.946	-2.562	1.00 17.0		ł	Ö
10	ATOM	1736		VAL H	88		26.705	19.606	-2.347	1.00 14.8		Ī	Č
	MOTA	1737		VAL H	88		27.474	19.046	-1.155	1.00 14.		Ī	С
	ATOM	1738		VAL H	88		25.506	18.726	-2.680	1.00 14.4	, -		С
	ATOM	1739		ILE H	89		27.443	22.646	-0.662	1.00 15.4		I	N
15	MOTA MOTA	1740 1741		ILE H	89 89		28. 545 29. 390	23. 523 22. 884	-0.300 0.794	1.00 14.4 1.00 15.8		ł ł	C
	ATOM	1742		ILE H	89		28.897	22.549	1.876	1.00 15.		1 I	0
	ATOM	1743		ILE H	89		28.030	24. 884	0.190	1.00 13.			Č
	ATOM	1744		ILE H	89		27.072	25. 485	-0.847	1.00 14.8		Ī	Č
	MOTA	1745		ILE H	89		29.209	25.829	0.413	1.00 14.0		Ŧ	C
20	ATOM	1746		ILE H	89		26.360	26. 755	-0.384	1.00 13.		ł	С
	ATOM	1747		ILE H	90		30.674	22.724	0.500	1.00 15.0		ł	N
	ATOM ATOM	1748 1749		ILE H	90 90		31.619 32.777	22. 110 23. 066	1.421 1.691	1.00 15.1 1.00 15.0		i r	C
	ATOM	1750		ILE H	90		33. 197	23. 804	0.802	1.00 15.0			C 0
25	ATOM	1751		ILE H	90		32.151	20. 789	0.802	1.00 15.9			Č
	ATOM	1752		ILE H	90		31.018	19.759	0.760	1.00 15.			Č
	ATOM	1753		ILE H	90		33.339	20. 254	1.590	1.00 17.0	_	ł	С
	MOTA	1754		ILE H	90		31.365	18.486	0.005	1.00 19.5			C
	ATOM	1755		PRO H	91		33. 297	23. 081	2. 931	1.00 16.3			N
30	ATOM · ATOM	1756 175 7		PRO H PRO H	91 91		34. 415 35. 627	23. 971 23. 649	3. 259 2. 384	1.00 14.8 1.00 15.4			C
	ATOM	1758		PRO H	91		35. 917	22. 480	2. 120	1.00 13.4			0
	ATOM	1759		PRO H	91		34.692	23.657	4. 728	1.00 15.			Č
	ATOM	1760		PRO H	91	•	33.360	23. 185	5. 241	1.00 16.			Ċ
35	ATOM	1761		PRO H	91		32.867	22.319	4.118	1.00 15.			C
	ATOM	1762	N	SER H	92		36.336	24. 681	1.939	1.00 14.9	•		N
	ATOM ATOM	1763 1764	CA C	SER H SER H	92 92		37. 521 38. 598	24. 471 23. 704	1.114 1.888	1.00 15.0			C
	ATOM	1765	Ö	SER H	92		39.489	23. 104	1. 289	1.00 14.2 1.00 15.4			C 0
	MOTA	1766		SER H	92		38. 084	25. 813	0.643	1.00 14.3			C
40	MOTA	1767	0G	SER H	92		37.144	26.502	-0.166	1.00 15.0			Ō
	MOTA	1768	N	THR H	93		38. 497	23.701	3. 214	1.00 12.			N
	ATOM	1769	CA	THR H	93		39.461	23. 020	4.072	1.00 13.3	_	_	C
	MOTA MOTA	1770 1771	C 0	THR H			39. 182 39. 994	21.531 20.840	4.309	1.00 14.8			C
45	ATOM	1772	CB	THR H			39. 556	23. 716	5.448	1.00 15.4 1.00 14.8			0
	MOTA	1773		THR H			38. 249	23. 788	6.033	1.00 11.			Õ
	MOTA	1774		THR H			40.133	25. 140	5. 302	1.00 11.4			Č
	ATOM	1775	.N	TYR H			38.040	21.033	3.847	1.00 14.5			N
	MOTA	1776	CA	TYR H			37.724	19.618	4.024	1.00 14.		ł	С
50	ATOM	1777	C	TYR H			38. 482	18. 783	2. 989	1.00 14.			C
	MOTA	1778	0	TYR H			38. 558	19.151	1.822	1.00 14.2			0
	MOTA MOTA	1779 1780	CB CG	TYR H			36. 220 35. 874	19.366 17.888	3. 862 3. 785	1.00 12.8			Ç
	MOTA	1781		TYR H			35. 851	17. 101	4. 931	1.00 11.0			C
55	ATOM	1782		TYR H			35.656	17. 264	2.552	1.00 11.0			Č
	MOTA	1783		TYR H			35.629	15.728	4. 858	1.00 8.6			Č

5	MOTA MOTA MOTA MOTA MOTA MOTA	1784 1785 1786 1787 1788 1789	CE2 CZ OH N CA C	TYR H TYR H TYR H VAL H VAL H VAL H	94 94 94 95 95	35. 433 35. 424 35. 222 39. 048 39. 771 39. 041	15.888 15.130 13.773 17.664 16.775 15.431	2. 467 3. 631 3. 574 3. 423 2. 519 2. 436	1.00 8.29 1.00 9.43 1.00 11.83 1.00 13.98 1.00 13.14 1.00 12.82	H H H H H	C C O N C C
10	ATOM ATOM ATOM ATOM ATOM	1790 1791 1792 1793. 1794	O CB CG1	VAL H VAL H VAL H VAL H PRO H	95 95 95 95 96	38. 845 41. 219 41. 922 41. 992 38. 624	14. 761 16. 517 15. 540 17. 826 15. 025	3. 444 3. 006 2. 062 3. 065 1. 229	1.00 13.46 1.00 11.88 1.00 10.92 1.00 11.07 1.00 12.92	Н Н Н Н	0 C C C N
15	ATOM ATOM ATOM ATOM ATOM	1795 1796 1797 1798 1799	CA C O CB	PRO H PRO H PRO H PRO H PRO H	96 96 96 96 96	37. 922 38. 730 39. 957 37. 809 37. 671	13. 749 12. 604 12. 548 13. 620 15. 048	1. 062 1. 675 1. 525 -0. 453 -0. 885	1.00 11.72 1.00 13.96 1.00 15.05 1.00 9.89 1.00 12.78	н Н Н Н	C C C C C
20	ATOM ATOM ATOM ATOM ATOM	1800 1801 1802 1803 1804	CD N CA C	PRO H GLY H GLY H GLY H	96 97 97 97 97	38. 742 38. 038 38. 698 39. 107 39. 539	15. 730 11. 697 10. 574 10. 871 9. 967	-0.060 2.354 2.986 4.418 5.131	1.00 12.59 1.00 12.86 1.00 13.45 1.00 15.29 1.00 15.13	H H H H	C N C C
25	ATOM ATOM ATOM ATOM ATOM	1805 1806 1807 1808 1809	N CA C O CB	THR H THR H THR H THR H THR H	98 98 98 98 98	38. 972 39. 356 38. 173 37. 014 40. 417	12.127 12.509 12.924 12.798 13.631	4.846 6.202 7.082 6.679 6.185	1.00 15.09 1.00 15.44 1.00 15.39 1.00 15.40 1.00 16.79	H H H H	N C C O C
30	MOTA MOTA MOTA MOTA MOTA	1810 1811 1812 1813 1814	OG1 CG2 N CA C	THR H THR H THR H THR H THR H	99	39.864 41.631 38.469 37.429 37.206	14.813 13.193 13.433 13.783 15.251	5.605 5.375 8.275 9.236 9.633	1.00 16.68 1.00 17.03 1.00 14.02 1.00 14.07 1.00 14.00	H H H H	0 C N C
35	MOTA MOTA MOTA MOTA MOTA	1815 1816 1817 1818 1819	O CB OG1 CG2 N	THR H THR H THR H THR H ASN H	99 99 99 100	36. 111 37. 643 38. 973 37. 468 38. 219	15.605 12.963 13.187 11.465 16.102	10.086 10.532 11.022 10.265 9.473	1.00 11.58 1.00 16.74 1.00 17.73 1.00 15.58 1.00 11.56	H H H H	0 C 0 C N
40	ATOM ATOM ATOM ATOM ATOM	1820 1821 1822 1823 1824	CA C O CB CG	ASN H ASN H ASN H ASN H	100 100 100	38. 097 37. 189 37. 165 39. 485 39. 576	17.512 18.315 18.086 18.181 19.288	9.859 8.927 7.719 9.911 10.966	1.00 11.57 1.00 9.66 1.00 11.07 1.00 9.81 1.00 12.61	Н Н Н Н	C 0 C C
45	ATOM ATOM ATOM ATOM ATOM	1825 1826 1827 1828 1829		ASN H ASN H HIS H HIS H	100 101 101	40. 498 38. 633 36. 455 35. 552 34. 503	20.112 19.300 19.264 20.124 19.292	10.939 11.908 9.500 8.738 8.017	1.00 15.96 1.00 7.34 1.00 9.02 1.00 10.03 1.00 9.38	H H H H	0
50	ATOM ATOM ATOM ATOM ATOM	1830 1831 1832 1833 1834	O CB CG ND1	HIS H HIS H HIS H HIS H	101 101 101 101	34. 188 36. 347 37. 353 36. 997 38. 705	19.544 20.953 21.868 22.895 21.882	6.857 7.724	1.00 8.47 1.00 11.39 1.00 16.40 1.00 18.05	H H H H	O C C N C
55	ATOM ATOM ATOM ATOM ATOM	1835 1836 1837 1838 1839	CEI	HIS H HIS H ASP H ASP H ASP H	101 101 102 102	38. 086 39. 137 33. 958 32. 967 31. 567	23.501 22.906 18.305 17.407 18.022	9. 639 9. 103 8. 720 8. 148 8. 153	1.00 18.13 1.00 17.47 1.00 8.97 1.00 10.95 1.00 10.99	н н н н	C N N C C

	40014	1010	^	100 17		00 000	10 001	0.006	1 00 10 41	Tr	^
	ATOM	1840	0	ASP H		30. 699	17.621	8.935	1.00 10.41	H	0
_	ATOM	1841	CB	ASP H		32.971	16.092	8.928	1.00 9.16	·H	C
5	ATOM	1842	CG	ASP H		32.360	14.959	8.147	1.00 12.94	H	C
	ATOM	1843		ASP H		32.039	15.173	6.976	1.00 11.04	H	0
	ATOM	1844		ASP H		32. 216	13.870	8.703	1.00 12.25	H	0
	ATOM	1845	N	ILE H		31.351	18.993	7. 271	1.00 10.37	H	N
	ATOM	1846	CA	ILE H		30.061	19.672	7.192	1.00 8.57	H	C
10	MOTA	1847	C	ILE H		29. 730	20.071	5.760	1.00 9.30	H	C
	MOTA	1848	0	ILE H		30.621	20.374	4.962	1.00 8.92	H	0
	MOTA	1849	CB	ILE H		30.058	20.941	8.084	1.00 10.09	H	C ·
	ATOM	1850		ILE H		28. 677	21.607	8.072	1.00 7.85	H	C
	ATOM	1851		ILE H		31.120	21.923	7.591	1.00 9.32	H	C
15	ATOM	1852		ILE H		28. 502	22.665	9.152	1.00 11.15	H	C
	ATOM.	1853	N	ALA H		28. 442	20.055	5.437	1.00 9.70	. Н	N
	ATOM	1854	CA	ALA H		27.970	20.445	4.114	1.00 10.78	H	C
	ATOM	185 5	C	ALA H		2 6 . 639	21.173	4.248	1.00 12.66	H	C
	MOTA	1856	0	ALA H		25. 789	20.804	5. 063	1.00 11.86	H	0
20	MOTA	1857	CB	ALA H		27.807	19.217	3. 216	1.00 7.13	H	С
20	MOTA	1858	Ŋ	LEU H		26 . 482	22.226	3.454	1.00 14.56	H	N
	ATOM	1859		LEU H		25. 258	23.016	3.426	1.00 12.91	H	С
	ATOM	1860	С	LEU H		24.640	22. 753	2.057	1.00 12.76	H	C
	ATOM	1861	0	LEU H		25. 243	23.065	1.029	1.00 12.63	H	0
	ATOM	1862	CB	LEU H		25. 580	24.504	3.576	1.00 12.35	H	C
25	ATOM	1863	CG	LEU H		24. 389	25.466	3.494	1.00 12.09	H	C
	ATOM	1864		LEU H		23.413	25.197	4.641	1.00 9.27	H	С
	MOTA	1865		LEU H		24.903	26.892	3. 5 60	1.00 9.24	H	C
	MOTA	1866	N	LEU H		23, 445	22.172	2.046	1.00 12.35	H	N
	ATOM	1867		LEU H		22. 758	21.837	0.803	1.00 11.43	Ħ	C
30	MOTA	1868	C	LEU H		21.564	22.748	0.515	1.00 12.98	Н.	С
	ATOM	1869	0	LEU H		20. 726	22.978	1. 384	1.00 12.54	H	0
	ATOM	1870	CB	LEU H		22. 285	20.380	0.859	1.00 12.53	H	C
	MOTA	1871	CG	LEU H		23.263	19.202	0.659	1.00 14.01	H	C
	ATOM	1872		LEU H		24.503	19.322	1.539	1.00 12.26	H	С
35	MOTA	1873		LEU H		22.519	17.906	0.983	1.00 12.82	H	С
	ATOM	1874	N	ARG H		21.492	23. 278	-0.703	1.00 14.02	H	N
	ATOM	1875	CA	ARG H		20.370	24. 128	-1.077	1.00 16.64	H	C
	ATOM	1876	C	ARG H		19.397	23. 266	-1.873	1.00 16.72	H	C
	ATOM	1877	0	ARG H		19.791	22. 591	-2.819	1.00 18.56	H	0
40	ATOM	1878	CB	ARG H		20.822	25.313	-1.942	1.00 18.34	Н	C
40	ATOM	1879	CG	ARG H		19.754	26.410	-2.081	1.00 20.80	H	€
	ATOM	1880	CD	ARG H		19.992	27. 301	-3. 302	1.00 26.37	H	C
	ATOM	1881	NE	ARG H		21. 234	28.069	-3. 224	1.00 29.38	H	N
	ATOM	1882	CZ	ARG H		21.321	29. 337	-2.827	1.00 30.69	H	С
	ATOM	1883		ARG H			30.007	-2.463	1.00 31.39	Η.	N
45	ATOM	1884		ARG H		22. 503	29.940	-2.798	1.00 29.68	H	Ŋ
	ATOM	1885	N	LEU H		18. 131	23. 280	-1.480	1.00 16.62	H	N
	ATOM	1886	CA	LEU H		17.114	22.500	-2.170	1.00 17.28	H	C
	MOTA	1887	C	LEU H		16.608	23. 281	-3. 385	1.00 18.87	H	C
	ATOM	1888	0	LEU H		16.532	24.510	-3. 349	1.00 18.26	H	0
50	ATOM	1889	CB	LEU H		15.962	22.188	-1.208	1.00 15.65	H	С
	ATOM	1890	CG	LEU H		16.352	21.391	0.050	1.00 14.18	H	С
	ATOM	1891		LEU H		15. 134	21.191	0.953	1.00 10.37	H	C
	ATOM	1892	CD2	LEU H		16.942	20.041	-0.361	1.00 11.86	H	С
	ATOM	1893	N	HIS H		16.273	22.568	-4.457	1.00 20.64	H	N
55	ATOM	1894	CA	HIS H		15.790	23. 205	-5.683	1.00 22.07	H	С
-	ATOM	1895	C	HIS H	109	14.546	24.054	-5.430	1.00 21.71	H	Ċ

5	ATOM ATOM ATOM	1896 1897 1898	O CB CG	HIS H HIS H HIS H	109	14.399 15.467 15.022	25. 139 22. 155 22. 742	-5.986 -6.746 -8.048	1.00 21.72 1.00 24.90 1.00 28.69	Н Н Н	0 C C
3	ATOM ATOM ATOM	1899 1900 1901	CD2	HIS H HIS H	109	13. 921 15. 525 13. 766	22. 279 23. 762 22. 989	-8.738 -8.784 -9.842	1.00 31.80 1.00 30.89 1.00 31.18	. H H • H	N C C
10	ATOM ATOM ATOM	1902 1903 1904	NE2 N CA	HIS H GLN H GLN H	110 110	14.726 13.647 12.430	23. 895 23. 541 24. 252	-9.894 -4.603 -4.258	1.00 30.63 1.00 19.28 1.00 21.37	Н Н Н	N N C
	ATOM ATOM ATOM	1905 1906 1907	C O CB	GLN H GLN H	110 110	12. 219 12. 566 11. 230	24. 059 23. 014 23. 689	-2. 766 -2. 210 -5. 030	1.00 19.91 1.00 19.14 1.00 24.70	H H H	C C
15	ATOM ATOM ATOM	1908 1909 1910	CG CD OE1		110 110	11. 340 11. 188 11. 434	23.814 25.245 25.505	-6.551 -7.075 -8.254	1.00 33.11 1.00 37.50 1.00 42.27	H H H	0 0 0
20	ATOM ATOM ATOM ATOM	1911 1912 1913 1914	NEZ N CA C	GLN H PRO H PRO H PRO H	111 111	10.772 11.643 11.406 10.409	26. 168 25. 062 24. 959 23. 869	-6. 212 -2. 096 -0. 657 -0. 306	1.00 40.37 1.00 17.61 1.00 18.39 1.00 18.13	Н Н Н Н	N C C
	ATOM ATOM ATOM	1915 1916 1917	O CB CG	PRO H PRO H PRO H	111 111	9. 472 10. 882 10. 127	23.615 26.348 26.733	-1.056 -0.299 -1.540	1.00 18.13 1.00 18.29 1.00 18.48 1.00 17.21	H H H	0 0
25	MOTA MOTA MOTA	1918 1919 1920	CD N CA	PRO H VAL H VAL H	111 112 112	11.091 10.624 9.700	26.319 23.215 22.189	-2.632 0.831 1.286	1.00 15.77 1.00 17.13 1.00 17.69	H H H	Č. N C
	ATOM ATOM ATOM	1921 1922 1923	C O CB	VAL H VAL H VAL H	112 112	8. 573 8. 708 10. 371	22.915 24.088 21.195	2. 013 2. 364 2. 261	1.00 16.47 1.00 15.80 1.00 17.46	H -H H	C C
30	ATOM ATOM ATOM ATOM	1924 1925 1926 1927	CG2 N	VAL H VAL H	112 113	11. 412 10. 996 7. 463	20.374 21.945 22.222	1. 526 3. 419 2. 228	1.00 19.26 1.00 15.83 1.00 15.47	H H H	C C N
35	ATOM ATOM ATOM ATOM	1928 1929 1930	CA C O CB	VAL H VAL H VAL H	113 113	6.316 6.395 6.542 4.983	22. 806 22. 459 21. 290 22. 247	2. 912 4. 394 4. 759 2. 353	1.00 13.75 1.00 14.36 1.00 12.82 1.00 13.88	H H H H	0 0
	ATOM ATOM MOTA	1931 1932 1933	CG1	VAL H VAL H LEU H	113 113 114	3.808 4.951 6.305	22.974 22.381 23.467	2. 993 0. 821 5. 253	1.00 10.56 1.00 12.19 1.00 13.94	H H H	C C N
40	MOTA MOTA MOTA	1934 1935 1936	CA C O	LEU H LEU H	114 114	6.363 5.017 3.968	23. 199 22. 632 23. 236	6.679 7.122 6.898	1.00 15.06 1.00 15.96 1.00 15.97	H H H	C 0
45	ATOM ATOM ATOM	1937 1938 1939	CD1	LEU H LEU H	114 114	6.710 8.090 8.406	26.194	8.129	1.00 13.15 1.00 15.88 1.00 13.86	Н Н Н	C
45	ATOM ATOM ATOM ATOM	1940 1941 1942 1943	N CA C	LEU H THR H THR H THR H	115 115	9.173 5.057 3.846 4.087	23. 999 21. 453 20. 791 20. 219	7. 194 7. 732 8. 197	1.00 11.78 1.00 14.58 1.00 15.14	H H H	C N C
50	ATOM ATOM ATOM	1944 1945 1946	O CB	THR H THR H THR H	115 115	5. 158 3. 462 4. 431	20. 404 19. 627 18. 580	9. 591 10. 168 7. 268 7. 406	1.00 14.81 1.00 15.34 1.00 14.99 1.00 15.74	H H H H	C O C O
	ATOM ATOM ATOM	1947 1948 1949		THR H ASP H ASP H	115 116	3. 419 3. 094 3. 244	20. 084 19. 523 18. 904	5. 805 10. 130 11. 437	1.00 13.98 1.00 15.45 1.00 16.55	H H	C N C
55	ATOM ATOM	1950 1951	C 0	ASP H	116	4.359	17.849 17.519	11.416 12.460	1.00 17.00 1.00 16.90	H H	с 0

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1952 1953 1954 1955 1956 1957 1958 1959	CG ASP OD1 ASP OD2 ASP N HIS CA HIS C HIS		1. 934 0. 866 1. 166 -0. 270 4. 687 5. 733 7. 041 8. 001	18. 244 19. 254 20. 431 18. 844 17. 326 16. 307 16. 802 16. 040	11. 883 12. 283 12. 388 12. 496 10. 233 10. 105 9. 492 9. 372	1.00 18.41 1.00 20.47 1.00 20.75 1.00 23.70 1.00 15.90 1.00 16.55 1.00 16.30 1.00 15.70	н н н н н н	C C O O N C C O
10	ATOM ATOM ATOM ATOM MOTA	1960 1961 1962 1963 1964	CB HIS CG HIS ND1 HIS CD2 HIS CE1 HIS	H 117 H 117 H 117 H 117 H 117	5. 217 4. 102 2. 808 4. 103 2. 059	15. 115 14. 384 14. 857 13. 259 14. 056	9. 297 9. 970 9. 986 10. 723 10. 723	1.00 16.16 1.00 19.31 1.00 18.50 1.00 17.50 1.00 21.07	Н Н Н Н	C C N C C
15	ATOM ATOM ATOM ATOM ATOM	1965 1966 1967 1968 1969	CA VAL C VAL O VAL	H 118 H 118 H 118 H 118	2. 821 7. 078 8. 276 8. 493 7. 784	13. 080 18. 072 18. 655 20. 041 20. 984	11. 182 9. 103 8. 511 9. 095 8. 762	1.00 20.92 1.00 15.64 1.00 14.14 1.00 14.78 1.00 14.27	Н Н Н Н	N C C O
20	ATOM MOTA MOTA MOTA MOTA ATOM ATOM ATOM	1970 1971 1972 1973 1974 1975	CG1 VAL CG2 VAL N VAL CA VAL		8. 148 9. 381 7. 983 9. 486 9. 808 11. 329	18. 761 19. 463 17. 367 20. 147 21. 394 21. 501	6.990 6.413 6.393 9.970 10.653 10.766	1.00 14.64 1.00 12.73 1.00 12.56 1.00 15.25 1.00 13.86 1.00 14.17	Н Н Н Н Н	CCCNCC
25	ATOM ATOM ATOM ATOM ATOM	1976 1977 1978 1979 1980	O VAL CB VAL CG1 VAL CG2 VAL	H 119 H 119 H 119	12. 017 9. 177 9. 570 7. 656 11. 875	20. 499 21. 390 22. 641 21. 285 22. 718	10.956 12.081 12.856 11.974 10.644	1.00 13.56 1.00 15.77 1.00 16.33 1.00 16.16 1.00 13.65	н н н н н	0 C C N
30	ATOM ATOM ATOM ATOM ATOM	1981 1982 1983 1984 1985	C PRO O PRO CB PRO CG PRO	H 120 H 120 H 120 H 120 H 120	13. 325 13. 817 13. 085 13. 573 12. 355	22. 881 22. 966 23. 398 24. 172 24. 978	10.746 12.189 13.086 9.981 10.315	1.00 12.56 1.00 13.87 1.00 11.70 1.00 12.13 1.00 15.18	H H H H	C C O C C
35	ATOM ATOM ATOM ATOM ATOM	1986 1987 1988 1989 1990	N LEU CA LEU C LEU O LEU	H 120 H 121 H 121 H 121 H 121	11.230 15.054 15.688 16.359 16.826	23. 971 22. 521 22. 577 23. 944 24. 394	10. 203 12. 403 13. 713 13. 719 12. 676	1.00 14.55 1.00 12.25 1.00 11.41 1.00 12.91 1.00 12.87	H H H H	C N C C
40	ATOM ATOM ATOM ATOM ATOM	1991 1992 1993 1994 1995	CG LEU CD1 LEU CD2 LEU N CYS	H 121 H 122	16. 747 17. 592 16. 692 18. 640 16. 409	21. 472 21. 380 21. 104 20. 259 24. 610	13.838 15.124 16.320 14.978 14.867	1.00 10.88 1.00 9.26 1.00 7.01 1.00 7.10 1.00 13.27	Н Н Н Н	C C C N
45	ATOM ATOM ATOM ATOM ATOM	1996 1997 1998 1999 2000	C CYS O CYS CB CYS	H 122 H 122 H 122 H 122 H 122	17.034 18.556 19.202 16.657 14.893	25. 932 25. 919 25. 139 26. 684 26. 918	14. 925 14. 874 15. 571 16. 205 16. 573	1.00 15.06 1.00 15.31 1.00 16.54 1.00 15.03 1.00 16.60	H H H H	C C C S
50	ATOM ATOM ATOM ATOM ATOM	2001 2002 2003 2004 2005	CA LEU C LEU O LEU CB LEU	H 123 H 123 H 123 H 123 H 123	19.119 20.560 20.747 20.207 20.991	26. 793 26. 955 28. 048 29. 149 27. 466	14.046 13.970 15.018 14.876 12.590	1.00 14.53 1.00 12.48 1.00 12.30 1.00 13.28 1.00 11.93	H H H H K	N C C O C
55	ATOM ATOM	2006 2007	CG LEU CD1 LEU	H 123 H 123	22. 513 23. 142	27. 606 26. 211	12.445 12.479	1.00 12.58 1.00 9.53	H	C

										_
	ATOM	2008	CDZ	LEU H 123	22.865	28.312	11.147	1.00 10.47	H	C
	ATOM	2009	N	PRO H 124	21.497	27.762	16.093	1.00 12.74	H	N
5			ĊA	PRO H 124	21.708	28.760			Ĥ	
ŭ	MOTA	2010					17.149	1.00 12.16		C
	ATOM	2011	C	PRO H 124	22.827	29.747	16.881	1.00 13.37	Н.	C
	ATOM	2012	0	PRO H 124	23.639	29.535	15.984	1.00 13.97	H	0
				PRO H 124						
	MOTA	2013	CB		22.031	27.897	18.356	1.00 10.72	Н	С
	ATOM	2014	CG	PRO H 124	22.924	26.839	17.730	1.00 12.77	H	С
10	ATOM	2015	CD	PRO H 124	22, 205	26.505	16.408	1.00 10.59	H	C
	MOTA	2016	N	GLU H 125	22.860	30. 831	17.657	1.00 13.81	Н	N
	ATOM:	2017	CA	GLU H 125	23.947	31.800	17.533	1.00 14.83	H	€
	ATOM	2018	С	GLU H 125	25. 145	31.082	18.149	1.00 14.18	H	€
				GLU H 125						
	ATOM	2019	0		24.975	30. 182	18.972	1.00 13.59	H	0
15	ATOM	2020	CB	GLU H 125	23. 656	33. 085	18.319	1.00 15.94	H	C
	ATOM	2021	CG	GLU H 125	22.528	33.918	17.745	1.00 20.23	H	С
					22. 427	35. 292				č
	ATOM	2022	CD	GLU H 125			18.380	1.00 23.56	H	C
	ATOM	2023	0E1	GLU H 125	22.850	35. 449	19.526	1.00 21.49	\mathbf{H}_{\cdot}	0
	ATOM	2024	0E2	GLU H 125	21.912	36.198	17.728	1.00 25.49	H	0
					26.350				H	
20	ATOM	2025	N	ARG H 126		31.477	17.759	1.00 15.26		N
	MOTA	2026	CA	ARG H 126	27.557	30.836	18.258	1.00 16.72	H	C
	ATOM	2027	С	ARG H 126	27. 793	30.894	19.772	1.00 16.72	H	С
	ATOM	2028	ō	ARG H 126	28.012	29. 854	20.397	1.00 15.77	H	
										0
	ATOM	2029	CB	ARG H 126	28. 787	31.399	17.550	1.00 18.05	H	C
	ATOM	2030	CG	ARG H 126	30.075	30. 784	18.054	1.00 23.13	H	C
25	ATOM	2031	CD	ARG H 126	31.236	31.724	17.874	1.00 28.03	H	č
	ATOM	2032	NE	ARG H 126	31.769	31.681	16.524	1.00 30.56	Н	N
	ATOM	2033	CZ	ARG H 126	32.772	30.897	16.141	1.00 33.42	Н	C
	ATOM	2034	NH1	ARG H 126	33. 356	30.081	17.011	1.00 33.03	H	N
	ATOM	2035		ARG H 126	33. 199	30.945	14.886	1.00 33.65	Н	N
30	ATOM	2036	N	THR H 127	27.764	32.086	20.365	1.00 15.89	H	N
	MOTA	2037	CA	THR H 127	28.020	32.191	21.803	1.00 16.74	H	C
	ATOM	2038	Ċ	THR H 127	26.976	31. 448	22.634	1.00 15.42	H	
										C
	MOTA	2039	0	THR H 127	27. 320	30.816	23.630	1.00 15.65	H	0
	ATOM	2040	CB	THR H 127	28.124	33.669	22.277	1.00 19.12	H	С
05	ATOM	2041		THR H 127	26.860	34. 323	22.127	1.00 23.54	Н	Ō
35										
	MOTA	2042		THR H 127	29.175	34. 413	21.461	1.00 18.93	H	C .
	MOTA	2043	N	PHE H 128	25.710	31.522	22.234	1.00 12.93	Н	N
	ATOM	2044	CA	PHE H 128	24.650	30.798	22.938	1.00 12.70	·H	C
				PHE H 128	25.006	29.307	22.929			
	ATOM	2045	C					1.00 11.77	H	C
40	ATOM	2046	0	PHE H 128	24. 971	28.643	23.963	1.00 11.84	H	0
40	ATOM	2047	CB	PHE H 128	23.300	31.019	22.232	1.00 11.78	Н	C
	ATOM	2048	ĊG	PHE H 128	22.186	30.092	22.694	1.00 11.98	H	č
	ATOM	2049		PHE H 128	21. 783	30.057	24.026	1.00 13.78	Н	C
	ATOM	2050	CD2	PHE H 128	21.498	29.306	21.773	1.00 9.96	H	C
	ATOM	2051		PHE H 128	20.704	29.256	24.437	1.00 12.05	H	С
45										0
	ATOM	2052		PHE H 128		28.504	22.163	1.00 10.60	H	С
	ATOM	2053	CZ	PHE H 128	20. 021	28.480	23.503	1.00 12.84	H	С
	ATOM	2054	N	SER H 129	25.364	28.792	21.757	1.00 11.50	H	N
	MOTA		CA							
		2055		SER H 129	25.712	27.383	21.622	1.00 12.61	Н	C
	MOTA	2056	C	SER H 129	26.962	26.998	22.417	1.00 12.76	H.	С
50	MOTA	2057	0	SER H 129	27.008	25.929	23.023	1.00 12.80	H	0
	ATOM	2058	CB	SER H 129	25. 908	27.029				~
							20. 145	1.00 12.21	H	C
	ATOM	2059	0G	SER H 129	26.052	25.624	19.977	1.00 17.13	H	0
	ATOM	2060	N	GLU H 129A	27.969	27.868	22. 420	1.00 13.31	H	N
	ATOM	2061	CA	GLU H 129A	29. 217	27.603	23. 136	1.00 14.09		
									H	C
<i>55</i>	ATOM	2062	C	GLU H 129A	29. 128	27.730	24.657	1.00 14.85	H	C
	ATOM	2063	0	GLU H 129A	29. 707	26.921	25. 382	1.00 14.98	H	0
		_					- · -			•

	MOTA MOTA	2064 2065		GLU H GLU H	129A	30.328 30.715	28. 542 28. 369	22.639 21.172	1.00 14.74 1.00 14.19	H H	C
5	ATOM	2066		GLU H		31.780	29. 367	20.745	1.00 16.54	H	С
5	ATOM	2067		GLU H		31.941	30. 368	21.432	1.00 16.37	H	0
	MOTA	2068		GLU H		32.431	29.146	19.728	1.00 17.94	Н	0
	MOTA MOTA	2069 2070	N Ca	ARG H		28.410 28.310	28. 739 28. 957	25. 145 26. 589	1.00 15.04 1.00 16.21	H H	N C
	ATOM	2071	C	ARG H		27.114	28. 309	27. 267	1.00 10.21	H H	C
10	MOTA	2072	ŏ	ARG H		27.124	28. 110	28. 479	1.00 14.82	H	ŏ
	MOTA	2073	ČB	ARG H		28. 296	30.460	26.904	1.00 19.47	Ĥ	Č
	ATOM	2074	CG	ARG H		27.031	31.161	26.451	1.00 28.02	H	Č
	MOTA	2075	CD	ARG H		26.919	32.605	26.946	1.00 33.00	H	С
	MOTA	2076	NE	ARG H		27.978	33.478	26.447	1.00 36.47	H	N
15	MOTA	2077	CZ	ARG H		27.822	34.777	26.197	1.00 38.35	H	С
	ATOM	2078		ARG H		26.645	35.360	26.391	1.00 38.64	H	N
	MOTA	2079 2080	NHZ N	ARG H THR H		28. 845 26. 079	35. 500 27. 984	25.757 26.503	1.00 36.71 1.00 13.48	H H	N N
	MOTA MOTA	2081	CA	THR H		24. 897	27. 378	27. 094	1.00 13.48	H	C
20	ATOM	2082	C	THR H		24.611	25. 974	26.574	1.00 12.22	H	Č
	ATOM	2083	Ŏ	THR H		24.631	25.021	27.344	1.00 12.56	Ĥ	Õ
	ATOM	2084	CB	THR H		23.643	28. 263	26.872	1.00 13.41	Н	C
	ATOM	2085		THR H		23.841	29. 541	27.496	1.00 12.83	H	0
	ATOM	2086		THR H		22. 411	27.604	27.472	1.00 13.85	H	С
25	ATOM	2087	N	LEU H		24. 358	25. 839	25. 273	1.00 9.80	H	N
	MOTA	2088	CA C	LEU H		24. 043 25. 121	24. 533 23. 466	24.706 24.903	1.00 9.83 1.00 10.51	H	C
	ATOM ATOM	2089 2090	Ö	LEU H		24. 802	22. 292	25.092	1.00 10.51	H H	C 0
	ATOM	2091	СВ	LEU H		23.717	24. 661	23. 215	1.00 9.11	H	C
22	ATOM	2092	CG	LEU H		22. 473	25. 482	22.856	1.00 10.83	H	č
30	ATOM	2093		LEU H		22. 268	25.452	21.349	1.00 7.76	Н	Č
	ATOM	2094		LEU H		21. 249	24. 927	23. 580	1.00 8.60	H	C
	ATOM	2095	N	ALA H		26. 388	23.871	24.874	1.00 9.50	H	Ŋ
	MOTA	2096	CA	ALA H		27.495	22.929	25.038	1.00 11.11	H	C
35	ATOM ATOM	2097 2098	C 0	ALA H		27. 527 28. 209	22. 284 21. 277	26.417 26.614	1.00 12.05 1.00 14.06	H H	0 0
	ATOM	2099	СB	ALA H		28. 828	23. 627	24. 768	1.00 8.33	H	C
	ATOM	2100	N	PHE H		26. 794	22. 848	27. 372	1.00 11.37	Ĥ	N
	ATOM	2101	CA	PHE H		26.793	22. 291	28.714	1.00 11.44	H	Ċ
	ATOM	2102	C	PHE H		25.513	21.561	29.108	1.00 11.62	H	C
40	ATOM	2103	0	PHE H		25. 328	21.163	30. 260	1.00 10.42	Н	0
	ATOM	2104	CB	PHE H		27.180	23. 386	29.714	1.00 13.71	H	C
	ATOM	2105	CG	PHE H		28.562	23.937	29.469	1.00 12.82	H	C
	ATOM ATOM	2106 2107		PHE H		29.669 28.749	23.090 25.275	29. 491 29. 148	1.00 13.92 1.00 13.07	H H	C
45	ATOM	2108		PHE H		30.944	23. 567	29.190	1.00 15.14	H	C
	ATOM	2109		PHE H		30.017	25.765	28.844	1.00 13.32	H	č
	ATOM	2110	CZ	PHE H		31.118	24.911	28.863	1.00 14.84	Ħ	Č
	ATOM.	2111	N	VAL H		24.633	21.380	28.132	1.00 11.71	H	N
	ATOM	2112	CA	VAL H		23.418	20.617	28. 339	1.00 10.87	H	C.
50	MOTA	2113	C	VAL H		23.969	19. 201	28. 125	1.00 12.85	H	С
	MOTA	2114	0	VAL H		24.514	18.886	27.062	1.00 12.09	H	0
	ATOM ATOM	2115	CB	VAL H		22.344	20.956 19.946	27. 271	1.00 10.74	H	C
	ATOM	2116 2117		VAL H		21. 203 21. 806	22. 372	27.329 27.510	1.00 8.96 1.00 9.81	H H	C
55	ATOM	2118	N N	ARG H		23.847	18. 367	29. 147	1.00 12.84	H H	N
99	ATOM	2119	CA	ARG H		24. 368	17.008	29.114	1.00 14.10	H	C
	111 044			41		21.000	2000		11110	11	U

	ATOM	2120	C	ARG H		23. 977	16.147	27. 909	1.00 14.87	H	С
E	MOTA MOTA	2121 2122	O CB	ARG H		24. 831 23. 960	15. 767 16. 281	27. 104 30. 400	1.00 14.59 1.00 14.36	H H	0
5	ATOM	2123	CG	ARG H		24. 450	14.840	30. 485	1.00 17.60	H	C
	ATOM	2124	CD	ARG H		25.916	14.769	30.854	1.00 20.10	H	Č
	ATOM	2125	NE	ARG H		26.154	15.328	32.182	1.00 21.14	Н	N
	MOTA	2126	CZ	ARG H		27. 311	15.262	32.832	1.00 19.89	Н	C
10	MOTA	2127		ARG H		28. 356	14.659	32. 287	1.00 20.58	H	N
	ATOM ATOM	2128 2129	NH Z	ARG H PHE H		27. 419 22. 687	15. 795 15. 844	34. 035 27. 801	1.00 20.22 1.00 12.87	H • H	N N
	ATOM	2130	CA	PHE H		22. 164	14.986	26. 745	1.00 12.91	H	Č
	ATOM	2131	C	PHE H		21.591	15.697	25. 521	1.00 13.23	H	Č
15	ATOM	2132	0	PHE H		21.053	16.799	25.609	1.00 15.91	H	0
, 0	ATOM	2133	CB	PHE H		21.089	14.054	27.340	1.00 11.61	H	C
	ATOM	2134	CG	PHE H		21.640	12.996	28. 259	1.00 11.27	H	C
	ATOM ATOM	2135 2136		PHE H		22. 119 21. 694	11.794 13.205	27. 752 29. 631	1.00 12.29 1.00 12.45	H H	C C
	ATOM	2137		PHE H		22.648	10.812	28. 602	1.00 1243	H	C
20	ATOM	2138		PHE H		22. 219	12.235	30.485	1.00 13.43	H	Č
	ATOM	2139	CZ	PHE H		22.699	11.035	29.966	1.00 10.85	H	C
	ATOM	2140	N	SER H		21.718	15.030	24.378	1.00 13.39	Н	N
	ATOM	2141 2142	CA	SER H SER H		21.209	15.499 14.259	23. 095 22. 305	1.00 13.57 1.00 13.47	H	C
25	MOTA MOTA	2142	C 0	SER H		20. 797 21. 293	13.160	22. 559	1.00 13.47	H H	0
	ATOM	2144	СB	SER H		22. 285	16.249	22. 307	1.00 13.40	H	Č
	ATOM	2145	OG	SER H	136	22.576	17.513	22.881	1.00 14.55	H	Ŏ
	ATOM	2146	N	LEU H		19.903	14.441	21.341	1.00 12.22	H	N
	MOTA	2147	CA	LEU H		19.429	13.331	20.519	1.00 13.36	Н	C
30	ATOM ATOM	2148 2149	0 C	LEU H		20. 157 20. 391	13.217 14.216	19. 187 18. 509	1.00 13.34 1.00 12.33	H H	C
	MOTA	2150	CB	LEU H		17. 938	13.486	20. 228	1.00 12.33	H	0 . C
	ATOM	2151	CG	LEU H		16.941	13.480	21.385	1.00 15.66	H	Č
	ATOM	2152		LEU H	137	15.532	13.692	20.815	1.00 14.08	H	Č
35	MOTA	2153		LEU H		17.026	12.158	22.157	1.00 14.11	Н	C
	MOTA	2154	N	VAL H		20. 524	11.991	18.827	1.00 12.73	H	N
	MOTA MOTA	2155 2156	CA C	VAL H		21.170 20.216	11.715 10.733	17.550 16.870	1.00 12.09 1.00 12.01	H H	C
	ATOM	2157	ŏ	VAL H		19.675	9.836	17.513	1.00 12.01	Н	0
	MOTA	2158	CB	VAL H		22.585	11.077	17.720	1.00 13.28	H	č
40	ATOM	2159		VAL H	_	23. 551	12.094	18.330	1.00 8.61	H	C
	ATOM	2160		VAL H		22.506	9.842	18.600	1.00 11.66	Н	С
	MOTA MOTA	2161 2162	N CA	SER H SER H		20.002 19.061	10.897 10.041	15.573	1.00 12.22 1.00 11.00	H	N
	ATOM	2163	C	SER H		19.462	9.715	14.869 13.437	1.00 11.00	H H	C
45	ATOM	2164	ŏ	SER H		20. 324	10.378	12.856	1.00 10.04	H	Õ
	ATOM	2165	CB	SER H		17.693	10.722	14.870	1.00 11.90	H	č
	ATOM	2166	0G	SER H		17.823	12.060	14.405	1.00 9.32	Н	0
	ATOM	2167	N	GLY H		18.818	8.690	12.881	1.00 9.70	H	N
	ATOM	2168	CA C	GLY H		19.084	8.269	11.516	1.00 9.30	H	C
50	ATOM ATOM	2169 2170	0	GLY H		18.579 18.082	6.864 6.147	11.200 12.076	1.00 9.94 1.00 9.85	Н	C
	ATOM	2171	N	TRP H		18.698	6.479	9. 935	1.00 10.84	H H	O N
	ATOM	2172	CA	TRP H		18. 299	5.149	9.471	1.00 13.57	н Н	Ĉ
	ATOM	2173	С	TRP H	141	19.547	4.284	9.307	1.00 14.42	H	Č
55	ATOM	2174	0	TRP H		19.559	3. 338	8.518	1.00 14.11	H	0
	ATOM	2175	СВ	TRP H	141	17. 585	5. 251	8.119	1.00 11.62	H	C

	MOTA	2176	CG TF	P H 141		16.213	5.852	8.198	1.00	9.53	H	С	
	MOTA	2177		P H 141		15.042	5.194	8.451	1.00	7.95	H	C	
5	MOTA	2178		UP H 141		15.868	7. 227	7.992	1.00	9.12	H	č	
				CP H 141		13.987	6.076	8.407		10.35	H	N	
	ATOM	2179											
	MOTA	2180		P H 141		14.465	7. 330	8. 131	1.00	9.30	H	C	
	MOTA	2181		P H 141		16.609	8. 381	7.700	1.00	6.96	H	C	
	MOTA	2182	CZ2 TF	P H 141		13.784	8.547	7.992	1.00	9.43	H	C	
10	MOTA	2183	CZ3 TF	P H 141		15.934	9.590	7.559	1.00	8.75	H	С	
	MOTA	2184	CH2 TF	P H 141		14.531	9.662	7.707	1.00	9.90	H	С	
	MOTA	2185		Y H 142		20.591	4.623	10.059		16.02	H	N	
	MOTA	2186		Y H 142		21.848	3. 898	9.988		15.99	Ĥ	Ċ	
	ATOM	2187		Y H 142		21.825	2.514	10.589		15.07	H	č	
15													
15	MOTA	2188		Y H 142		20.767	2.010	10.972	_	15.13	H	0	
	MOTA	2189		N H 143		23.006	1.904	10.672		16.63	H	N	
	ATOM	2190		N H 143,		23.162	0.556	11.212		17.93	H	C	
	ATOM	2191	C GI	N H 143		22.665	0.409	12.640	1.00	20.58	H	C	
	ATOM	2192	0 GI	N H 143		22.882	1.278	13.489	1.00	18.31	H.	0	
20	ATOM	2193		N H 143		24.628	0.110	11.167		18.10	H	C .	
20	ATOM	2194		N H 143		25. 228	-0.100	9.770		19.46	H	Č	
	ATOM	2195		N H 143		25. 525	1.199	9.043		21.99	H	č	
						25. 714							
	ATOM	2196		N H 143	•		2. 242	9.669		20.13	H	Q	
	ATOM	2197		N H 143		25.588	1.137	7.712		20.26	H	Ň	
25	ATOM	2198		EU H 144		22. 00 3	-0.714	12.898		21.01	H	N	
	ATOM	2199		EU H 144		21.481	-1.012	14.221		23.46	H	С	
	ATOM	2200		EU H 144		22. 57 3	-1.658	15.069	1.00	25.89	H	C	
	ATOM	2201	0 LI	EU H 144		22.507	-1.642	16.298	1.00	25.66	H	0	
	ATOM	2202		EU H 144		20.269	-1.944	14.101	1.00	21.41	H	С	
	ATOM ·	2203		EU H 144		19.080	-1.313	13.367		19.40	H	Č.	
30	ATOM	2204		EU H 144		17.980	-2.352	13.121		21.44	H	č	
	ATOM	2205		EU H 144		18.551	-0.157	14.199		14.43	H	č	
	ATOM	2206		EU H 145		23.574	-2. 226	14. 400		27. 35			
											H	N	
	ATOM	2207		EU H 145		24. 700	-2.875	15.067		32.19	H	C	
	ATOM	2208		EU H 145		25.976	-2.620	14.267		32.79	H	C	
35	ATOM	2209		EU H-145		25.916	-2.351	13.067		33.17	H	0	
	ATOM	2210	CB L	EU H 145		24.470	-4.391	15.18 6	1.00	33.26	H	С	
	MOTA	2211	CG L	EU H 145		23.588	-4.949	16.311	1.00	35.26	H	C	
	ATOM	2212	CD1 L1	EU H 145		22.133	-4.554	16.123	1.00	37.31	H	С	
	ATOM	2213	CD2 L1	EU H 145		23.704	-6.456	16.313		36.17	H	C.	
	ATOM	2214		SP H 146	•	27.124	-2.694	14.934		33.83	H	Ň	
40	ATOM	2215		SP H 146		28.404	-2.483	14. 266		35.01	H	Ċ	
	ATOM	2216		SP H 146		28. 493	-3.449	13.091		36.95	H		
												C	
	ATOM	2217		SP H 146		28. 380	-4.661	13. 268		36.80	H	0	
	MOTA	2218		SP H 146		29.562	-2.750	15.232		35.30	H	С	
45	MOTA	2219	CG A	SP H 146		30.922	-2.459	14.612		35.18	H	C	
43	ATOM	2220	OD1 A	SP H 146		31. 245	-1.297	14.431	1.00	33.00	H	0	
	ATOM	2221	OD2 A	SP H 146	٠	31.652	-3.406	14.310	1.00	36.91	H	0	
	ATOM	2222		RG H 147		28.679	-2.906	11.893		38.24	Н	N	
	ATOM	2223		RG H 147		28.782	-3.719	10.686			H	Ċ	
	ATOM	2224		RG H 147		27.507	-4. 535	10.434		39.24	H		
50	ATOM	2225										C	
= =				RG H 147		27.550	-5.613	9.842		40.33	H	0	
	ATOM	2226		RG H 147		29.995	-4.651	10.797		43.36	H	C	
	ATOM	2227		RG H 147		30.348	-5. 385	9.516		48.53	Н	C	
	MOTA	2228		RG H 147		31.593	-6. 237	9. 598	1.00	54.02	H	C	
	ATOM	2229		RG H 147		31.930	-6.977	8.484	1.00	56.36	H	N	
55	ATOM	2230	CZ A	RG H 147		32.980	-7. 784	8.361	1.00	58.31	H	C	
	ATOM	2231		RG H 147		33.811	-7. 965	9.381		58.01	H	Ň	
											**	41	

	ATOM	2232	NH2	ARG H 1	33. 199	-8.414	7. 215	1.00 58.04	Н	N
	ATOM	2233	N	GLY H I	26.372	-4.009	10.883	1.00 36.85	H	N
_	MOTA	2234	CA	GLY H 1	25. 109	-4.696	10.697	1.00 33.07	H	C
5	ATOM	2235	C	GLY H 1	24.277	-4.049	9.610	1.00 30.33	Н	C
	ATOM	2236	0	GLY H 1	24. 782	-3.246	8.826	1.00 29.52	Н	0
	ATOM	2237	N	ALA H 1	22.997	-4.398	9.562	1.00 28.41	Н	N
	ATOM	2238	CA	ALA H 1	22.091	-3.846	8.561	1.00 26.03	H	C
	ATOM	2239	С	ALA H 1	21.468	-2.542	9.048	1.00 23.50	H	C
10	ATOM	2240	0	ALA H 1	21.415	-2.283	10.249	1.00 21.67	H	0
	ATOM	2241	СB	ALA H 1	21.005	-4.850	8.248	1.00 27.18	H	C
	ATOM	2242	N	THR H 1	20. 98 6	-1.732	8: 112	1.00 22.99	Н	N
	MOTA	2243	CA	THR H 1	20.374	-0.455	8. 458	1.00 22.82	H	C
	ATOM	2244	С	THR H 1	18.923	-0. 593	8. 925	1.00 22.79	H	C
15	MOTA	2245	0	THR H 1	18.302	-1.651	8.783	1.00 21.21	H	0
	MOTA	2246	CB	THR H 1	20.450	0.538	7. 278	1.00 23.93	Н	C
	ATOM	2247		THR H 1	19.822	-0.027	6.122	1.00 22.56	Н	0
	ATOM	2248		THR H 1	21.903	0.865	6.956	1.00 22.44	H	C
	ATOM	2249	N	ALA H 1	18.389	0.484	9.493	1.00 20.52	Н	N
20	MOTA	2250	CA	ALA H 1	17.025	0.474	10.005	1.00 18.60	Н	C
	MOTA	2251	С	ALA H I	15.979	0.962	9.011	1.00 16.25	H	С
	MOTA	2252	0	ALA H 1	16.218	1.883	8. 237	1.00 16.12	Н	0
	ATOM	2253	CB	ALA H 1	16.951	1.303	11. 280	1.00 18.25	Н	C
	ATOM	2254	N	LEU H 1	14.811	0. 332	9.045	1.00 15.23	H	N
25	ATOM	2255	CA	LEU H 1	13.713	0.707	8.169	1.00 15.57	H	C
	ATOM	2256	C	LEU H 1	12.954	1.881	8.754	1.00 14.76	H	C
	ATOM	2257	0	LEU H 1	12.443	2. 720	8. 021	1.00 17.16	H	0
	ATOM	2258	CB	LEU H 1	12.770	-0.479	7. 962	1.00 15.57	H	C
	MOTA	2259	CG	LEU H 1	13.349	-1.531	7. 015	1.00 16.60	H	C
30	ATOM	2260		LEU H 1	12.575	-2.847	7. 125	1.00 16.63	H	C
	ATOM	2261		LEU H 1	13.302	-0.978	5.602	1.00 15.24	H	C
	ATOM	2262	N	GLU H 1	12.871	1.933	10.079	1.00 15.00	H	N
	MOTA MOTA	2263 2264	CA C	GLU H 1 GLU H 1	12.182	3. 025 3. 936	10.755 11.431	1.00 15.61	H	C
	ATOM	2265		GLU H 1	13. 198 14. 143	3. 465	12. 070	1.00 14.97	H	. C
35	ATOM	2266	0 CB	GLU H 1	14. 143	2.482	11.789	1.00 15.21 1.00 14.17	H H	C 0
	ATOM	2267	CG	GLU H 1	9.877	2. 482	11. 206	1.00 14.17	H	C
	ATOM	2268	CD	GLU H 1	8. 914	1.551	12. 274	1.00 23.96	H	Č
	ATOM	2269		GLU H 1	9. 164	0.504	12.851	1.00 23.53	H	0
	ATOM	2270		GLU H 1	7. 919	2. 249	12. 535	1.00 27.22	H	0
40	ATOM	2271	N	LEU H 1	13.000	5. 241	11.279	1.00 14.72	Н	N
	ATOM	2272	CA	LEU H 1	13.900	6. 234	11.864	1.00 13.82	H	Č
	ATOM	2273	C	LEU H I	14. 157	5. 954	13. 336	1.00 12.35	H	č
	MOTA	2274	Ŏ	LEU H 1	13. 223	5.883	14.127	1.00 13.95	H	ŏ
	ATOM	2275	CB	LEU H 1	13. 304	7. 635	11.725	1.00 14.43	H	Č
45	ATOM	2276	CG	LEU H 1	14. 144	8. 775	12.315	1.00 13.63	H	č
	ATOM	2277		LEU H 1	15.464	8.868	11.565	1.00 13.84	H	č
	MOTA	2278		LEU H 1	13.380	10.088	12. 210	1.00 13.06	H	č
	ATOM	2279	N	MET H I	15.424	5.805	13.701	1.00 12.83	H	Ň
	MOTA	2280	CA	MET H 1	15.798	5. 542	15.087	1.00 12.93	H	Ċ
50	ATOM	2281	C	MET H 1	16.366	6.812	15.739	1.00 12.73	H	Č
	ATOM	2282	Ō	MET H 1	16.871	7. 700	15.054	1.00 13.04	H	ŏ
	ATOM	2283	CB	MET H I	16.841	4.421	15.150	1.00 12.00	H	Č
	ATOM	2284	CG	MET H	16.461	3.125	14.429	1.00 12.49	H	č
	MOTA	2285	SD	MET H	15.054	2.200	15.133	1.00 13.73	H	Š
55	ATOM	2286	CE	MET H 1	15.766	1.648	16.690	1.00 12.82	H	Č
	ATOM	2287	N	VAL H 1	16.292	6.883	17.066	1.00 12.85	H	N
					 				**	11

5	ATOM ATOM ATOM	2288 2289 2290	0	VAL H VAL H VAL H	157	16.779 17.463 17.127	8.037 7.558 6.499	17. 813 19. 098 19. 642	1.00 11.88 1.00 13.44 1.00 12.26	Н Н Н	C C
	MOTA MOTA MOTA	2291 2292 2293	CG1 CG2	VAL H VAL H VAL H	157 157	15.606 14.621 16.142	9. 020 8. 382 10. 337	18. 126 19. 074 18. 685	1.00 9.61 1.00 9.52 1.00 11.73	H H H	C C
10	ATOM ATOM ATOM ATOM	2294 2295 2296 2297	CA C	LEU H LEU H LEU H LEU H	158 158	18. 425 19. 202 19. 660	8. 343 7. 999 9. 223	19. 574 20. 758 21. 545	1.00 12.79 1.00 11.41 1.00 13.56	H H H	N C C
	ATOM ATOM ATOM	2298 2299 2300	CB CG	LEU H LEU H	158 158	20. 119 20. 444 21. 465 20. 871	10. 215 7. 215 6. 879 5. 843	20. 963 20. 331 21. 414 22. 360	1.00 10.13 1.00 12.58 1.00 11.97 1.00 11.50	Н Н Н Н	0 C C
15	ATOM ATOM ATOM	2301 2302 2303	CD2 N CA	LEU H ASN H ASN H	158 159 159	22.740 19.547 19.973	6.350 9.138 10.216	20. 770 22. 869 23. 749	1.00 11.54 1.00 11.48 1.00 13.66	Н Н Н	. C N C
20	ATOM ATOM ATOM	2304 2305 2306	O CB	ASN H ASN H ASN H	159 159	21.419 21.701 19.092	9. 908 8. 835 10. 254	24. 142 24. 673 25. 004	1.00 12.37 1.00 13.12 1.00 15.32	- Н Н Н	C 0 C
	ATOM ATOM ATOM ATOM	2307 2308 2309 2310	OD1	ASN H ASN H ASN H VAL H	159 159	19.000 18.609 19.341 22.331	11.643 11.791 12.668 10.835	25. 621 26. 783 24. 843 23. 867	1.00 18.58 1.00 19.52 1.00 17.35 1.00 11.23	Н Н Н Н	C 0 N N
25	MOTA MOTA MOTA	2311 2312 2313	CA C	VAL H VAL H VAL H	160 160	23. 741 24. 309 23. 965	10.644 11.844 12.989	24. 196 24. 952 24. 658	1.00 10.26 1.00 11.62 1.00 11.36	H H H	C C 0
30	ATOM ATOM ATOM	2314 2315 2316	CG2	VAL H VAL H	160 160	24.608 24.175 24.506	10. 425 9. 147 11. 650	22. 926 22. 200 21. 989	1.00 11.37 1.00 9.21 1.00 7.47	Н Н Н	C C C
	MOTA MOTA MOTA MOTA	2317 2318 2319 2320	N CA C O	PRO H PRO H PRO H PRO H	161 161	25. 183 25. 804 27. 055 27. 822	11.590 12.652 13.199 12.458	25. 947 26. 746 26. 058 25. 445	1.00 10.82 1.00 11.11 1.00 10.16 1.00 9.67	Н Н Н Н	М С С О
35	ATOM ATOM ATOM	2321 2322 2323		PRO H PRO H PRO H	161 161	26. 129 26. 562 25. 505	11.944 10.594 10.264	28. 058 27. 575 26. 511	1.00 10.26 1.00 10.20 1.00 11.31	H H H	C C
40	MOTA MOTA MOTA	2324 2325 2326	N CA C	ARG H ARG H ARG H	162 162 162	27. 268 28. 411 29. 639	14. 499 15. 145 15. 171	26. 185 25. 560 26. 474	1.00 10.55 1.00 10.54 1.00 11.25	Н Н Н	N C C
	ATOM ATOM ATOM	2327 2328 2329	O CB CG	ARG H ARG H	162 162	29. 515 28. 004 29. 082	15. 158 16. 564 17. 391	27. 701 25. 152 24. 464	1.00 13.29 1.00 11.25 1.00 12.83	H H H	0 C C
45	ATOM ATOM ATOM ATOM	2330 2331 2332 2333	CD NE CZ	ARG H ARG H ARG H	162 162	28. 483 29. 498 29. 236 27. 979	18.669 19.534 20.576 20.886	23. 889 23. 303 22. 520 22. 217	1.00 9.42 1.00 9.59 1.00 11.68 1.00 11.81	H H H H	C N C N
	ATOM ATOM ATOM	2334 2335 2336		ARG H LEU H LEU H	162 163	30. 232 30. 825 32. 062	21. 318 15. 178 15. 230	22. 047 25. 872 26. 636	1.00 12.43 1.00 9.08 1.00 10.57	H H H	N N C
50	ATOM ATOM ATOM	2337 2338 2339	C O CB	LEU H LEU H	163 163 163	32. 991 33. 074 32. 835	16.323 16.570 13.907	26. 127 24. 923 26. 548	1.00 11.95 1.00 10.27 1.00 12.13	н Н Н	Č O C
55	ATOM ATOM ATOM	2340 2341 2342	CD2	LEU H LEU H	163 163	32. 369 31. 177 33. 540	12.650 12.034 11.658	27. 278 26. 547 27. 336	1.00 12.88 1.00 12.78 1.00 14.29	H H H	C C
	ATOM	2343	N	MET H	104	33.677	16.990	27.047	1.00 11.82	Н	N

	ATOM	2344	CA	MET H	164	34.654	17.980	26.633	1.00 12.80	Н	С
	ATOM	2345	С	MET H		35.782	17.109	26.081	1.00 12.63	H	C
5	MOTA	2346	0	MET H		35.980	15.977	26.532	1.00 10.67	H	Ō
	ATOM	2347	CB	MET H		35.107	18.825	27. 822	1.00 14.08	H	č
	ATOM	2348	CG	MET H		34.020	19.805	28. 259	1.00 18.16	H	Č
	MOTA	2349	SD	MET H		34.564	21.069	29.400	1.00 22.97	H	Š
	ATOM	2350	CE	MET H		35.402	22.150	28. 252	1.00 19.99	H	č
10	ATOM	2351	N	THR H		36.504	17.621	25. 095	1.00 12.59	H	Ň
	MOTA	2352	CA	THR H		37.554	16.849	24. 451	1.00 15.62	H	Ĉ
	ATOM	2353	Ċ	THR H		38.629	16.275	25. 375	1.00 16.25	H	č
	MOTA	2354	ŏ	THR H		39.064	15.143	25. 186	1.00 15.20	H	ő
	ATOM	2355	ČВ	THR H		38.172	17.679	23. 320	1.00 17.38	H	č
15	MOTA	2356		THR H		37.112	18.103	22.452	1.00 17.32	H	ő
	MOTA	2357		THR H		39.175	16.855	22.510	1.00 14.61	H	č
	MOTA	2358	N	GLN H		39.048	17.036	26.378	1.00 16.53	H	N
	MOTA	2359	CA	GLN H		40.055	16.541	27. 310	1.00 17.06	H	Č
	ATOM	2360	C	GLN H		39.549	15. 231	27. 923	1.00 17.05	H	č
22	ATOM	2361	ŏ	GLN H		40.284	14. 250	28.008	1.00 16.97	H	ŏ
20	MOTA	2362	СВ	GLN H		40.316	17.585	28.400	1.00 16.34	H	č
	ATOM	2363	CG	GLN H		41.362	17. 196	29. 432	1.00 18.36	H	č
	ATOM	2364	CD	GLN H		41.681	18.350	30. 373	1.00 18.67	H	č
	MOTA	2365		GLN H		42.310	19.329	29.973	1.00 22.60	H	ŏ
	ATOM	2366		GLN H		41.228	18. 249	31.618	1.00 14.45	H	N
25	ATOM	2367	N	ASP H		38. 290	15. 217	28.347	1.00 17.30	H	N
	MOTA	2368	CA	ASP H		37.707	14.010	28.916	1.00 17.76	H	Č
	ATOM	2369	C	ASP H		37.628	12.893	27.876	1.00 17.98	H	·č
	ATOM	2370	ŏ	ASP H		37. 922	11.739		1.00 18.09	H	ŏ
	MOTA	2371	CB	ASP H		36.302	14. 282	29.456	1.00 18.74	H	č
30	ATOM	2372	CG	ASP H		36.313	15.086	30.729	1.00 18.60	H	č
	ATOM	2373		ASP H		37.056	14. 726	31.625	1.00 19.37	H	ő
	ATOM	2374		ASP H		35.569	16.071	30.818	1.00 20.49	H	ŏ
	ATOM	2375	N	CYS H		37. 226	13. 227	26.651	1.00 17.56	H	N
	ATOM	2376	CA	CYS H		37.114	12. 210	25.608	1.00 18.06	H	Ĉ
35	ATOM	2377	C	CYS H		38.449	11.496	25.398	1.00 18.33	Ĥ	č
03	ATOM	2378	Ö	CYS H		38.508	10.270	25.404	1.00 17.46	H	ő
	ATOM	2379	CB	CYS H		36.658	12.829	24. 281	1.00 17.54	H	č
	ATOM	2380	SG	CYS H		36.253	11.592	23.003	1.00 18.27	H	Š
	ATOM	2381	N	LEU H		39.511	12. 271	25.202	1.00 18.38	Ĥ	N
	ATOM	2382	CA	LEU H		40.843	11.711	24.990	1.00 22.32	Ĥ	Ĉ
40	ATOM	2383	Č	LEU H		41.294	10.864	26.175	1.00 23.09	H	č
	ATOM	2384	0	LEU H		41.797	9.757	25.995	1.00 23.96	H	ŏ
	ATOM	2385	CB	LEU H		41.861	12.830	24.748	1.00 22.03	H	Č
	ATOM	2386	CG	LEU H		41.665	13.649	23.471	1.00 24.49	H	Č
	MOTA	2387		LEU H		42,705	14.766	23.403	1.00 24.94	H	Č
45	ATOM	2388		LEU H		41.779	12.733	22.260	1.00 23.41	H	č
	ATOM	2389	N	GLN H		41.103	11.377	27.386	1.00 22.94	Ħ	Ň
	ATOM	2390	CA	GLN H		41.508	10.651	28.584	1.00 24.75	H	Ċ
	ATOM	2391	Ċ	GLN H		40.732	9.350	28.756	1.00 26.16	Н	č
	ATOM	2392	0	GLN H		41.298	8.337	29.161	1.00 26.39	H	ŏ
50	ATOM	2393	ČВ	GLN H		41.333	11.532	29.837	1.00 21.09	Ĥ	č
	ATOM	2394	CG	GLN H		42.137	12.840	29. 793	1.00 20.61	Ĥ	Č
	ATOM	2395	CD	GLN H		42.114	13.623	31.103	1.00 19.91	'n	Č
	ATOM	2396		GLN H		41.153	13.560	31.874	1.00 19.12	Ĥ	ŏ
	ATOM	2397		GLN H		43.174	14.382	31. 348	1.00 16.44	H	N
55	ATOM	2398	N	GLN H		39. 442	9.379	28. 432	1.00 26.53	H	N
55	ATOM	2399	CA	GLN H		38. 576	8. 210	28. 572	1.00 26.34	H	Č
	711 010	4000	Un	ODIT II	riva	00.010	0.610	40.014	1.00 60.04	n	C

	ATOM	2400	C	GLN H	170A	38.536	7.266	27.371	1.00 26.09	Н	C
	ATOM	2401		GLN H		37.795	6.288	27. 386	1.00 26.50	Н	0
5	ATOM	2402		GLN H		37.146	8.655	28. 884	1.00 28.29	H	č
Ü											
	ATOM	2403		GLN H		36.957	9. 298	30. 236	1.00 30.52	H	C
	MOTA	2404		GLN H		35.513	9.682	30.478	1.00 34.79	Н	C
	MOTA	2405	0E 1	GLN H	1 70A	34.602	8.867	30. 290	1.00 37.17	Н	0 ·
	MOTA	2406	NE 2	GLN H	170A	35. 290	10.921	30.904	1.00 34.78	H	N
10	MOTA	2407	N	SER H		39.317	7.549	26.336	1.00 26.18	Н	N
	ATOM	2408	ĊA	SER H		39.317	6.696	25.159	1.00 28.66	H	Ĉ
	MOTA	2409	C.	SER H		40.585	5.848	25. 055	1.00 31.18	H	č
								25. 552	1.00 29.81	H	
	ATOM	2410	0	SER H		41.643	6.231				0
	ATOM	2411	CB	SER H		39. 153	7.544	23.890	1.00 27.91	H	C
15	ATOM	2412	0G	SER H	170B	37.912	8.239	23. 886	1.00 24.13	Н	0
	ATOM	2413	N	ARG H	170C	40.459	4.688	24.417	1.00 33.34	H	N
	ATOM	2414		ARG H		41.579	3.777	24.211	1.00 36.91	Н	C
	ATOM	2415	C	ARG H		42.471	4.323	23. 102	1.00 38.48	H	č
			_	ARG H		42.078	4.341	21.939	1.00 39.23	H	Õ
	ATOM	2416	0								
20	MOTA	2417	CB	ARG H		41.059	2.395	23.805	1.00 37.94	H	C
	MOTA	2418	CG	ARG H		40.558	1.530	24. 947	1.00 38.36	H	C
	MOTA	2419	CD	ARG H	17 0 C	41.710	0.756	25.572	1.00 39.49	H	С
	MOTA	2420	NE	ARG H	170C	42.369	-0.108	24.592	1.00 39.64	H	N
	ATOM	2421	CZ	ARG H	170C	41.864	-1.246	24.122	1.00 40.03	H	С
	ATOM	2422		ARG H		40.684	-1.686	24.540	1.00 41.69	Н	N
25	ATOM	2423		ARG H		42.540	-1.941	23. 217	1.00 41.52	H	N
	ATOM	2424	N	LYS H		43.670	4. 765	23. 459	1.00 41.32	H	N
							5. 306	22. 472	1.00 41.23		
	ATOM	2425	CA	LYS H		44.605				H	C
	MOTA	2426	_	LYS H		44. 971	4. 266	21.415	1.00 44.63	Н	C
	MOTA	2427	0	LYS H		45.314	3. 137	21.752	1.00 45.60	H	0
30	ATOM	2428		LYS H		45.876	5. 790	2 3. 170	1.00 44.06	H	С
	MOTA	2429	CG	LYS H	170D	45.660	6.974	24.098	1.00 43.63	H	С
	ATOM	2430	CD	LYS H	170D	45.336	8. 243	23.320	1.00 43.73	H	С
	MOTA	2431	CE	LYS H		44.179	8.998	23.957	1.00 42.88	H	С
	ATOM	2432	NZ	LYS H		42.919	8. 196	23.891	1.00 44.55	H	Ň
	ATOM	2433	N	VAL H		44. 897	4.647	20. 141	1.00 45.92	H	N
35	MOTA	2434	CA	VAL H		45. 229	3. 737	19. 050	1.00 47.38	Н	Ĉ
	ATOM -	2435	C	VAL H		46.174	4.403	18.038	1.00 48.37	H	C
	ATOM	2436	0	VAL H		46.307	5.628	18.008	1.00 48.59	H	0
	ATOM	2437	CB	YAL H		43. 955	3. 237	18.317	1.00 48.27	H	C
40	ATOM	2438		VAL H		43.053	2.478	19. 283	1.00 48.47	Н	€
40	ATOM	2439	CG2	YAL H	170E	43.195	4. 398	17.721	1.00 50.40	H	С
	ATOM	2440	N	GLY H	170F	46.828	3.580	17.220	1.00 49.26	H	N
	ATOM	2441	CA			47.778	4.055	16.227	1.00 49.68	H	C
	ATOM	2442	C	GLY H		47.456	5. 293	15.409	1.00 49.19	· Й	č
	ATOM	2443	ŏ	GLY H		47.643	6. 420	15. 869	1.00 49.83	Ħ	ŏ
45	ATOM	2444	N	ASP H		46. 988	5. 081	14. 181	1.00 49.23		
40										H	N
	ATOM	2445	CA	ASP H		46.666	6. 176	13. 262	1.00 48.00	H	C
	ATOM	2446	C	ASP H		45. 293	6.803	13.484	1.00 44.35	H	С
	ATOM	2447	0	ASP H		44.613	7.177	12.527	1.00 44.23	H	0
	ATOM	2448	CB	ASP H	170G	46.771	5.684	11.815	1.00 52.87	H	C
50	ATOM	2449	CG	ASP H		48. 206	5.571	11.341	1.00 56.13	H	Č
==	ATOM	2450		ASP H		48. 987	4.862	11. 981	1.00 59.14	H	ŏ
	ATOM	2451		ASP H		48. 545	6. 193	10. 325	1.00 58.70	H	0
					170H						
	ATOM	2452	N			44. 899	6.933	14. 745	1.00 39.99	H	N
	ATOM	2453	CA		170H	43.613		15.084	1.00 36.53	H	Č
55	ATOM	2454	C		170H	43. 583	9.003	14.727	1.00 32.15	H	C
	ATOM	2455	0	SER H	170H	44.501	9.747	15.056	1.00 31.87	H	0

	ATOM	2456	CB	SER H	170H	43.337	7.364	16.579	1.00 37.95	H	C
	ATOM	2457 -	0G		170H	42.120	7.987	16.949	1.00 42.60	H	Ō
5	MOTA	2458	N		1701	42.529	9.442	14.026	1.00 28.54	H	N
		2459					10.856		1.00 26.44	H	
	ATOM		CA		1701	42.433		13.660			C
	ATOM	2460	C		1701	42.405	11.701	14. 931	1.00 25.04	H	C
	ATOM	2461	0		1701	41.964	11.239	15. 981	1.00 24.79	H	0
	ATOM	2462	CB	PRO H	1701	41.112	10.921	12.900	1.00 24.88	H	С
10	ATOM	2463	CG	PRO F	[170 I	41.032	9. 575	12.255	1.00 26.28	H	С
	ATOM	2464	CD	PRO E	1701	41.466	8.658	13.376	1.00 26.49	Ħ	С
	MOTA	2465	N	ASN F		42.890	12.930	14.842	1.00 24.55	H	N
	ATOM	2466	CA	ASN E		42.884	13.820	15.994	1.00 24.55	H	Ċ
	ATOM	2467	C	ASN E		41.484	14. 376	16.174	1.00 21.18	H	Č
15	ATOM	2468	ŏ	ASN I		40.733	14.509	15. 211	1.00 19.35	H	ŏ
15											
	ATOM	2469	CB	ASN F		43.839	15.004	15. 788	1.00 26.79	H	C
	MOTA	2470	CG	ASN E		45. 269	14.576	15. 576	1.00 30.83	H	C
	ATOM	2471		ASN F		45.829	13.823	16.370	1.00 32.43	- Н	0
	ATOM	2472		ASN F		45.876	15.0 64	14. 499	1.00 33.68	H	N
20	ATOM	2473	N	ILE F		41.140	14.695	17.414	1.00 18.30	Н	N
	ATOM	2474	CA	ILE F	176	39.852	15. 290	17.716	1.00 17.01	H	С
	ATOM	2475	C	ILE F	176	40.181	16.773	17.786	1.00 17.25	H	C
	ATOM	2476	0	ILE F	176	40.800	17.232	18.740	1.00 18.43	H	0
	ATOM	2477	CB	ILE F	[176	39.306	14.807	19.077	1.00 16.65	H	C.
	ATOM	2478		ILE P		39. 186	13.277	19.073	1.00 15.60	H	Č
25	MOTA	2479		ILE H		37. 935	15.437	19.343	1.00 13.67	H	č
	ATOM	2480		ILE I		38. 827	12.685	20.411	1.00 17.27	H	č
	ATOM	2481	N	THR I		39. 784	17. 521	16.764	1.00 16.30		
										H	N
•	ATOM	2482	CA	THR I		40.094	18.945	16.712	1.00 15.04	H	C
22	ATOM	2483	Ç	THR I		39.060	19.829	17.400	1.00 14.07	H	C
30	ATOM	2484	0	THR 1		38. 107	19. 344	18.006	1.00 13.41	H	0
	MOTA	2485	CB	THR 1		40. 227	19.419	15. 258	1.00 16.10	H	C
	ATOM	2486	0G1	THR I		38. 926	19. 445	14.655	1.00 16.94	H	0
	ATOM	2487		THR 1		41. 149	18. 479	14.460	1.00 12.71	H ,	C
	ATOM	2488	N .	GLU F		39. 266	21.138	17.305	1.00 13.19	H	N
35	ATOM	2489	CA	GLU H	I 178	38. 351	22.106	17.893	1.00 14.78	H	С
	ATOM	2490	С	GLU I	I 178	37.062	22.188	17.074	1.00 13.86	H	C
	MOTA	2491	0	GLU I	I 178	36. 104	22.847	17.478	1.00 12.84	H	0
	ATOM	2492	CB	GLU H	I 178	39.009	23.490	17.955	1.00 18.37	H	C
	ATOM	2493	CG	GLU H		39.254	24.129	16.596	1.00 20.75	H	C
	ATOM	2494	CD	GLU F		40.674	23.943	16.096	1.00 27.62	H	č
40	ATOM	2495		GLU F		41.148	22.778	16.008	1.00 27.54	H	· ŏ
	ATOM	2496		GLU I		41.317	24.969	15. 785	1.00 30.43	• Н	ő
	ATOM	2497	N	TYR I		37.044	21.524	15. 921	1.00 12.57	H	N
	ATOM	2498	CA	TYR		35. 868	21.517	15. 056	1.00 11.69	H	C
	ATOM	2499	C	TYR I		35.042	20. 248	15. 265			
45									1.00 11.04	H	C
	ATOM	2500	0 CD	TYR I		34. 189	19.910	14. 444	1.00 11.12	H	0
	ATOM	2501	CB	TYR I		36. 317	21.637	13. 594	1.00 12.21	H	C
	ATOM	2502	CG	TYR		37.076	22. 924	13. 342	1.00 15.01	H	C
	ATOM	2503		TYR I		36.406	24. 148	13. 311	1.00 13.28	H	C
	ATOM	2504		TYR		38. 466	22. 927	13. 211	1.00 13.16	H	C
50	ATOM	2505		TYR		37.090	25. 344	13.163	1.00 15.33	H	. C
	ATOM	2506	CE 2	TYR I	1 179	39.169	24.124	13.062	1.00 16.25	H	Č
	ATOM	2507	CZ	TYR I		38.468	25.329	13.043	1.00 17.14	Ĥ	č
	ATOM	2508	OH	TYR I		39. 134	26. 519	12. 935	1.00 17.38	H	Õ
	ATOM	2509	Ŋ	MET I		35. 289	19.567	16. 383	1.00 11.28	H	N
<i>EE</i>	ATOM	2510	CA	MET I		34.607	18. 319	16. 711	1.00 10.08	H	C
55	ATOM	2511	C		1 180 1 180						
	מוטות	4011	U	mi i i	1 100	34. 345	18. 230	18. 210	1.00 10.42	Н	С

	ATOM	2512	0	MET H	180	34.873	19.014	18.992	1.00 11.63	H	.0	
	ATOM	2513	CB	MET H		35.498	17.122	16.359	1.00 10.13	H	C	
5	ATOM	2514	ÇĞ	MET H		36. 249	17. 191	15.046	1.00 11.90	H	Č	
	ATOM	2515	SD	MET H		37.417	15.806	14.948	1.00 13.02	H	Š	
	ATOM	2516	CE	MET H		38.056	16.055	13.327	1.00 10.31	H	č	
	MOTA	2517	N	PHE H		33.544	17.246	18.603	1.00 10.40	H	N .	
	ATOM			PHE H		33. 276	16. 987	20.012	1.00 10.40	H	Č	
10		2518	CA									
10	ATOM	2519	C	PHE H		32.745	15.564	20.107	1.00 11.92	H	C	
	ATOM	2520	0	PHE H		32.119	15.070	19.167	1.00 11.21	H	0	
	ATOM	2521	CB	PHE H		32. 293	18.010	20.600	1.00 10.04	H	C	
	ATOM	2522	CG	PHE H		30.857	17.822	20.179	1.00 11.23	H	C	
	ATOM	2523		PHE H		30.057	16.852	20.784	1.00 9.00	H	C	
15	ATOM	2524		PHE H		30.292	18.650	19.210	1.00 10.30	H	C	
	ATOM	2525		PHE H		28.712	16.711	20.434	1.00 10.61	. H	C	
	ATOM	2526	CE2	PHE H		28.941	18.518	18.848	1.00 9.40	Н	С	
	ATOM	2527	CZ	PHE H	181	28.152	17.548	19.464	1.00 9.56	H	C	
	ATOM	2528	N	CYS H	182	33.030	14.892	21.217	1.00 11.17	H	N	
20	ATOM	2529	CA	CYS H	182	32.576	13.525	21.408	1.00 13.43	H	C	
20	ATOM	2530	С	CYS H	182	31.306	13.494	22.220	1.00 12.56	Н	C	
	ATOM	2531	0	CYS H	182	31.047	14.379	23.040	1.00 13.75	H	0	
	ATOM	2532	CB	CYS H		33.605	12.685	22.166	1.00 14.35	H	C	
	ATOM	2533	SG	CYS H		35.315	12.691	21.563	1.00 16.95	H	S	
	ATOM	2534	N	ALA H		30.530	12.445	22.005	1.00 10.97	H	N	
25	ATOM	2535	CA	ALA H		29.290	12.254	22.731	1.00 12.15	H	C	
	ATOM	2536	C	ALA H		28.980	10.769	22.670	1.00 11.48	H	Č	
	ATOM	2537	Ŏ	ALA H		29.325	10.102	21.696	1.00 13.04	H	Ö	
	ATOM	2538	CB	ALA H		28.166	13.066	22.088	1.00 10.31	H	Č	
	ATOM	2539	N	GLY H		28. 352	10.244	23.714	1.00 11.65	H	Ň	
30	ATOM	2540	CA	GLY H		28.016	8.835	23.712	1.00 12.33	H	Ĉ	
	ATOM	2541	C	GLY H		28.474	8.038	24.916	1.00 13.73	H	Č	
	ATOM	2542	Õ	GLY H		28.543	8.545	26.041	1.00 13.45	H	ŏ	
	ATOM	2543	N	TYR H		28.793	6.773	24.667	1.00 14.73	H	Ň	
	ATOM	2544	CA	TYR H		29. 217	5.864	25.720	1.00 14.94	H	Ċ	
0.5	ATOM	2545	C	TYR H		30.395	5.029	25. 250	1.00 15.46	H	č	
35	MOTA	2546	ŏ	TYR H		30.509	4.702	24.070	1.00 16.46	H	Õ	
	ATOM	2547	CB	TYR H		28.065	4. 935	26. 112	1.00 16.53	. Н	Č	
	ATOM	2548	CG	TYR H		26.792	5.637	26.533	1.00 18.74	H	Č	
	ATOM	2549		TYR H		25. 937	6. 206	25.589	1.00 18.37	H	Č	
		2550		TYR H		26. 443	5. 731	27.878	1.00 20.30		Č	
40	ATOM									Н	C	
	ATOM	2551		TYR H		24.772	6.847	25.973	1.00 19.02	. Н	C	
	ATOM	2552		TYR H		25. 277	6.371	28. 273	1.00 19.18	Н	C	
	ATOM	2553	CZ	TYR H		24.448	6.925	27.317	1.00 19.19	H	C	
	ATOM	2554	OH	TYR H	184	23. 285	7.542	27.699	1.00 21.68	H	0	
45	ATOM	2555	N	SER H		31. 267	4.681	26. 185	1.00 15.70	H	N	
10	ATOM	2556	CA	SER H		32. 450	3.891	25.882	1.00 15.49	H	C	
	MOTA	2557	C	SER H		32.314	2.426	26.309	1.00 16.42	H	C	
	ATOM	2558	0	SER H		33. 294	1.680	26. 293	1.00 16.49	H	0	
	ATOM	2559	CB	SER H		33.655	4.506	26.579	1.00 15.34	H	C	
	ATOM	2560	OG	SER H		33. 478	4. 459	27.984	1.00 15.56	H	0	
50	ATOM	2561	N	ASP H		31.110	2.013	26.691	1.00 17.79	H	N	
	ATOM	2562	CA	ASP H		30. 898	0.633	27.116	1.00 20.64	H	С	
	ATOM	2563	С	ASP H		30. 358	-0.274	26.006	1.00 20.60	H	C	
	ATOM	2564	0	ASP H		29. 934	-1.397	26. 268	1.00 20.87	H	0	
	ATOM	2565	CB	ASP H		29. 962	0.589	28.330	1.00 20.43	H	C	
55	ATOM	2566	CG	ASP H		28.576	1.098	28.019	1.00 21.02	H	C	
	ATOM	2567	OD1	ASP H	186	28.330	1.483	26.884	1.00 21.60	Н	0	

	ATOM ATOM	2568 2569	OD2 N	ASP H GLY H		27.750 30.373	1.103 0.230	28.921 24.773	1.00 21.42 1.00 21.14	H H	0 N
5	ATOM	2570	CA	GLY H		29.914	-0.531	23.625	1.00 20.04	H	С
3	ATOM	2571	C	GLY H		28. 424	-0.780	23.493	1.00 21.04	H	C
	ATOM	2572	0	GLY H		28. 022	-1.702	22.789	1.00 22.73	H	0
	ATOM	2573	N	SER H		27. 597	0.046	24.126	1.00 20.16	» H	N
	ATOM	2574 2575	CA C	SER H		26. 153 25. 337	-0.151 0.830	24.068 23.225	1.00 18.78 1.00 17.55	n H	C
10	ATOM ATOM	2576	0	SER H		24. 298	0. 457	22.686	1.00 18.92	n H	0
	ATOM	2577	CB	SER H		25. 582	-0.127	25. 482	1.00 18.59	H	C
	ATOM	2578	0G	SER H		25.675	1. 186	26.011	1.00 20.17	H	ŏ
	ATOM	2579	N	LYS H		25.786	2.076	23.118	1.00 17.33	H	N
	ATOM	2580	CA	LYS H	188	25.020	3.091	22.390	1.00 15.93	H	С
15	ATOM	2581	С	LYS H		25.889	4.084	21.610	1.00 15.78	H	С
	ATOM	2582	0	LYS H		26. 883	4. 596	22.133	1.00 14.09	H	0
	ATOM	2583	CB	LYS H		24. 140	3.847	23.388	1.00 15.97	H	C
	ATOM	2584	CG	LYS H		23. 127	2.967	24.114	1.00 17.40	H	C
20	ATOM	2585	CD	LYS H		22. 386	3.732	25. 199	1.00 18.22	H	C
20	ATOM ATOM	2586 2587	CE NZ	LYS H		23. 253 23. 548	3.944 2.666	26.424 27.142	1.00 19.93	H	C
	ATOM	2588	NZ N	ASP H		25. 487	4.381	20.375	1.00 23.44 1.00 14.78	H H .	N N
	ATOM	2589	CA	ASP H		26. 254	5. 283	19.517	1.00 14.13	H	Č
	ATOM	2590	C	ASP H		25.516	5. 427	18.179	1.00 15.27	H	č
25	ATOM	2591	Õ	ASP H		24.557	4.698	17.911	1.00 12.95	H	Ŏ
	ATOM	2592	CB	ASP H		27.639	4.640	19.305	1.00 15.17	H	C
	MOTA	2593	CG	ASP H		28.650		18.606	1.00 14.51	. Н	C
	ATOM	2594		ASP H		28. 434		18.465	1.00 13.62	H	0
	ATOM	2595		ASP H		29.685	5.019	18.219	1.00 13.36	H	0
30	ATOM	2596	N	SER H		25. 930	6.393	17.363	1.00 12.60	Н	N
	ATOM ATOM	2597 2598	CA C	SER H		25. 358 26. 323	6.542 5.715	16.036 15.176	1.00 12.63	H	C
	ATOM	2599	0	SER H		27. 309		15. 697	1.00 14.47 1.00 14.59	H H	C 0
	ATOM	2600	CB	SER H		25. 337	8. 012	15. 595	1.00 12.32	H	C
	ATOM	2601	0G	SER H		26.590		15.775	1.00 16.00	· H	ő
35	ATOM	2602	N	CYS H		26.063		13.879	1.00 16.70	H	Ň
	ATOM	2603	CA	CYS H	191	26.932	4.786	13.023	1.00 18.01	H	C
	ATOM	2604	C	CYS H		27.094		11.651	1.00 18.15	H	C
	ATOM	2605	0	CYS H		26.502	6.469	11.374	1.00 18.84	H	0
40	ATOM	2606	CB	CYS H		26. 336	3.376	12.898	1.00 21.90	H	C
	MOTA MOTA	2607 2608	SG	CYS H LYS H		27. 470 27. 898		12.380	1.00 30.15	H	S
	ATOM	2609	N Ca	LYS H		28. 172	5. 271	10.800 9.446	1.00 16.09 1.00 17.53	H H	N C
	ATOM	2610	C	LYS H		26. 934		8.668	1.00 17.53	H	C
	ATOM	2611	ŏ	LYS H		26.914		8.097	1.00 13.65	H	Õ
45	ATON	2612	CB	LYS H		28. 898		8.638	1.00 21.05	H	č
	ATOM	2613	CG	LYS H		30. 199		9.262	1.00 26.03	H	Č
	ATOM	2614	CD	LYS H	192	30.964		8.330	1.00 30.74	H	C
	ATON	2615	CE	LYS H		30. 199		8.048	1.00 35.28	H	€
	ATOM	2616	NZ	LYS H		30. 941	0.599	7.093	1.00 36.87	H	N
50	ATOM	2617	N	GLY H		25. 910		8.635	1.00 15.41	H	N
	ATOM	2518	CA	GLY H		24.698		7.912	1.00 14.29	H	C
	MOTA	2619	C	GLY H		23. 928		8.471	1.00 14.66	H	C
	ATOM ATOM	2620 2621	O N	GLY H ASP H		23. 014 24. 287		7.822 9.673	1.00 13.96 1.00 13.02	H	0
55	ATOM	2622	CA	ASP H		23. 627		10.304	1.00 13.02	H H	N C
	MOTA	2623	C	ASP H		24. 319		9.972	1.00 11.87	л Н	C
	311 GIA	2320	•	11		5T. 013	5. 255	J. J. L	2.00 11.01	11	C

	ATOM	2624	0	ASP H 194		23.795	10.379	10.273	1.00 10.97			0
	ATOM	2625	CB	ASP H 194		23.585	7.780	11.821	1.00 11.34			C
5	ATOM	2626	CG	ASP H 194		22.824	6.530	12. 223	1.00 12.55	.]		C
	ATOM	2627		ASP H 194		21.676	6.411	11.836	1.00 11.16			0
	ATOM	2628		ASP H 194		23. 389	5.684	12.923	1.00 10.92			0
	ATOM	2629	N	SER H 195		25.492	9. 201	9.348	1.00 10.97			N
	ATOM	2630	CA	SER H 195		26. 290	10.359	8. 945	1.00 11.04		H	C
10	MOTA	2631	C	SER H 195		25. 454	11.500	8. 379	1.00 11.57			C
	MOTA	2632	0	SER H 195		24.571	11.285	7. 545	1.00 10.28			0
	MOTA	2633	CB	SER H 195		27. 316	9.943	7. 890	1.00 9.93		H	C
	MOTA	2634	0G	SER H 195		28. 260	9.039	8. 425	1.00 14.11			0
	ATOM	2635	N	GLY H 196		25. 753	12.717	8.824	1.00 12.35			N
15	ATOM	2636	CA	GLY H 196		25. 028	13.884	8.348	1.00 12.23		H	C
	ATOM	2637	C	GLY H 196		23.805	14. 182	9.189	1.00 13.45		H	C
	ATOM	2638	0	GLY H 196		23. 259	15. 286	9.146	1.00 13.77			0
	ATOM	2639	N CA	GLY H 197		23.383	13.187	9.962	1.00 13.04			N
	MOTA MOTA	2640 2641	CA	GLY H 197 GLY H 197		22. 222 22. 427	13.334 14.322	10.807 11.934	1.00 13.77 1.00 14.43			C
20	ATOM	2642	C 0	GLY H 197		23. 558	14. 522	12. 302	1.00 14.43			0
	ATOM	2643	N ·	PRO H 198		21.327	14.806	12. 516	1.00 13.21			N
	ATOM	2644	CA	PRO H 198		21.315	15. 772	13.615	1.00 13.30			C
	ATOM	2645	C	PRO H 198		21.761	15. 263	14. 981	1.00 11.88		H	Č
	ATOM	2646	ŏ	PRO H 198		21.559	14. 102	15.330	1.00 11.73			Õ
25	ATOM	2647	СB	PRO H 198		19.847	16.220	13.688	1.00 12.32			Č
	ATOM	2648	ĊĠ	PRO H 198		19.183	15.624	12.464	1.00 16.84		H	C
	ATOM	2649	CD	PRO H 198		19.960	14.396	12.164	1.00 14.30			C
	ATOM	2650	N	HIS H 199		22.378	16.166	15.730	1.00 10.39			N
	ATOM	2651	CA	HIS H 199	}	22.775	15.954	17.116	1.00 10.13]	H	С
30	ATOM	2652	С	HIS H 199)	22.028	17. 189	17. 599	1.00 10.86		H	C
	ATOM	2653	0	HIS H 199		22.509	18.312	17. 426	1.00 10.19		H	0
	ATOM	2654	CB	HIS H 199		24. 284	16. 121	17. 322	1.00 11.26		H	C
	ATOM	2655	CG	HIS H 199		24.698	16.134	18.765	1.00 9.49		H ··	C
	ATOM	2656		HIS H 199		24.605	17. 258	19.556	1.00 7.80			N
35	ATOM	2657		HIS H 199		25.174	15. 151	19.567	1.00 9.62			C
	ATOM	2658		HIS H 199		25. 006 25. 356	16.970 15.698	20. 782 20. 816	1.00 9.46		H	C
	ATOM ATOM	2659 2660	NEZ N	ALA H 200		20.826	16. 979	18.140	1.00 10.16 1.00 11.28			N N
	MOTA	2661	CA	ALA H 200		19.964	18.076	18. 578	1.00 11.23		H	C
	ATOM	2662	C	ALA H 200		19.879	18. 243	20.085	1.00 10.13		H	Č
40	ATOM	2663	Ŏ	ALA H 200		19.714	17. 281	20.819	1.00 8.59			ŏ
	MOTA	2664	ČВ	ALA H 200		18.567	17.893	17.991	1.00 8.70		H	Č
	ATOM	2665	N	THR H 20		19.968	19.488	20. 531	1.00 10.27			Ň
	MOTA	2666	CA	THR H 20	Į		19.795		1.00 11.65			C
	ATOM	2667	C	THR H 20		18.690	20.573	22.350	1.00 12.35		H	C
45	ATOM	2668	0	THR H 20		18.358	21.590	21.753	1.00 12.80		H	0
	ATOM	2669	CB	THR H 20	ł	21.189	20.616	22.322	1.00 10.77]	H	C
	MOTA	2670		THR H 20		22.354	19.955	21.814	1.00 9.62]	H	0
	MOTA	2671	CG2	THR H 20		21.307	20.769	23.823	1.00 5.98		H	C
	ATOM	2672	N	HIS H 20		18.012	20.084	23.379	1.00 12.93	.]		N
50	ATOM	2673		HIS H 20		16.799	20. 709	23.889	1.00 14.16		Н	C
	ATOM	2674	_	HIS H 20		17. 182	21.718	24.972	1.00 13.17		H	C
	ATOM	2675	0	HIS H 20		17. 953	21.406	25. 877	1.00 11.26			0
	ATOM	2676	€B	HIS H 20		15. 883	19.630	24.487	1.00 15.77		H	C
	ATOM	2677		HIS H 20		14. 461	20.062	24.661	1.00 19.01		H	C
55	ATOM	2678		HIS H 20		13. 551	19.330	25.399	1.00 20.89		H	N
	MOTA	2679	CDZ	HIS H 20	6	13.778	21.124	24. 172	1.00 17.67		H	С

	ATOM	2680	CE1	HIS H	202	12.374	19.925	25.356	1.00 18.13	H	С
	MOTA	2681		HIS F		12.484	21.016	24.617	1.00 20.03	Н	N
5	ATOM	2682	N	TYR H		16.654	22.932	24.878	1.00 13.14	H	N
_	ATOM	2683	CA	TYR H		16.949	23.947	25.882	1.00 14.38	H	Ċ
	MOTA	2684	C	TYR I		15.762	24.872	26.070	1.00 15.63	H	č
		2685		TYR F		15. 399	25.617	25. 160	1.00 17.55	H	ŏ
	ATOM		0								
	MOTA	2686	CB	TYR I		18.170	24.788	25. 495	1.00 11.34	H	C
10	ATOM	2687	CG	TYR I		18.555	25.767	26. 587	1.00 13.03	H	C
	ATOM	2688		TYR I		19. 202	25.328	27: 741	1.00 11.89	H	C
	ATOM	2689		TYR I		18. 224	27.118	26.494	1.00 11.33	H	C
	MOTA	2690		TYR I		19.510	26.208	28. 775	1.00 15.40	H	C
	ATOM	2691		TYR I		18.520	28.006	27.523	1.00 13.47	H	C
15	MOTA	2692	CZ	TYR I		19.163	27.544	28.660	1.00 15.28	H	С
	ATOM -	2693	ОН	TYR I	I 203	19.449	28.406	29.689	1.00 17.54	Н	0
	ATOM	2694	N	ARG I	I 204	15. 162	24.817	27. 254	1.00 17.36	H	N
	ATOM	2695	CA	ARG I	I 204	14.019	25.654	27.590	1.00 16.44	H	C
	ATOM	2696	С	ARG I	I 204	12.928	25.702	26.523	1.00 18.12	H	С
20	ATOM	2697	0	ARG I		12.544	26.774	26.054	1.00 19.33	H	0
20	ATOM	2698	CB	ARG I		14.507	27.068	27.931	1.00 18.74	H	С
	ATOM	2699	CG	ARG I		15. 268	27.102	29. 256	1.00 21.03	H	C
	ATOM	2700	CD	ARG I		15.852	28.461	29.633	1.00 23.39	H	C
	ATOM	2701	NE	ARG I		16.460	28.378	30.965	1.00 29.04	H	N
	ATOM	2702	CZ		1 204	17. 208	29.320	31.536	1.00 29.55	H	C
25	ATOM	2703		ARG I		17. 473	30.455	30.906	1.00 29.68	H	N
	ATOM	2704		ARG I		17.698	29.120	32.753	1.00 30.72	H	N
	ATOM	2705	N		1 205	12. 437	24. 528	26. 135	1.00 18.15	H	N
	ATOM	2706	CA	GLY I		11.366	24.455	25. 158	1.00 18.43	H	Ċ
	ATOM	2707	Č	GLY I		11.688	24.465	23. 672	1.00 17.94	H	č
30	ATOM	2708	Ö		1 205	10.773	24.325	22. 859	1.00 20.84	H	ŏ
	ATOM	2709	Ň		H 206	12. 957	24.613	23. 302	1.00 17.15	. H	N
	ATOM	2710	CA		I 206	13. 334	24.651	21.889	1.00 16.34	H	Č
	ATOM	2711	C		1 206	14.556	23.786	21.587	1.00 15.73	H	Č
	ATOM	2712	Õ		1 206	15. 485	23.715	22. 389	1.00 16.49	H	Ö
25	ATOM	2713	CB		H 206	13.608	26.111	21. 451	1.00 16.45	H	C
35	ATOM	2714		THR		12.396	26.859	21. 558	1.00 20.04	H	0
	ATOM	2715		THR		14.112	26.181	20.008	1.00 25.04	n H	C
	ATOM	2716	N N		H 207	14. 112	23.136	20. 424	1.00 13.73		
	ATOM	2717	CA		H 207	15. 639	22. 270	19. 995	1.00 14.13	H	N
	ATOM	2718	C		H 207	16.582	23.008	19. 953		H	C
40			0		H 207				1.00 11.84	H	C
	ATOM	2719 2720	CB		H 207	16.138	23.745 21.025	18.174	1.00 10.36	H	0
	MOTA				H 207	15.089		19. 297	1.00 10.05	H	C
	ATOM	2721	CG			14.342	20.115	20. 205	1.00 12.23	H	C
	ATOM	2722			H 207	13.032			1.00 11.57	H	C
45	ATOM	2723		TRP 1		14.871	18.974	20.891	1.00 12.27	H	C
	ATOM	2724			H 207	12. 711	19.197	21.446	1.00 10.79	H	N
	ATOM	2725			H 207	13. 821	18.425	21.659	1.00 11.69	H	C
	ATOM	2726			H 207	16. 130	18.362	20. 927	1.00 10.32	H	C
	MOTA	2727			H 207	13. 994	17.292	22.460	1.00 12.43	H	C
50	MOTA	2728			H 207	16.303	17. 233	21.722	1.00 13.70	H	C
50	MOTA	2729			H 207	15. 239	16.710	22.478	1.00 12.06	H	C
	MOTA	2730	N		H 208	17. 881	22.785	19.226	1.00 11.22	H	N
	MOTA	2731	CA		H 208		23.446	18.421	1.00 12.37	H	C
	ATOM	2732	С		H 208	19.912	22.457	17.832	1.00 12.09	H	C
	MOTA	2733	0		H 208	20. 175	21.413	18.422	1.00 11.35	H	0
55	MOTA	2734	CB		H 208	19.679	24.457	19. 281	1.00 10.64	H	С
	ATOM	2735	CG	TYR	H 208	18.818	25.521	19.927	1.00 11.14	H	C

5	MOTA MOTA MOTA MOTA MOTA MOTA	2736 2737 2738 2739 2740 2741	CD2 CE1		208 208 208 208	18. 192 18. 622 17. 391 17. 823 17. 211 16. 417	25. 297 26. 756 26. 279 27. 739 27. 496 28. 471	21. 155 19. 302 21. 746 19. 881 21. 102 21. 667	1.00 10.27 1.00 9.96 1.00 9.89 1.00 11.17 1.00 11.59 1.00 14.79	H H H H H	000000
10	ATOM ATOM ATOM ATOM	2742 2743 2744 2745 2746	N	LEU H LEU H LEU H LEU H	209 209 209 209	20. 479 21. 473 22. 838 23. 372 21. 538	22. 803 21. 956 22. 217 23. 328 22. 275	16.676 16.019 16.655 16.572 14.519	1.00 11.60 1.00 10.61 1.00 11.52 1.00 9.17 1.00 11.62	H H H H	N C C O C
15	MOTA MOTA MOTA MOTA MOTA	2747 2748 2749 2750	CG CD1 CD2 N	LEU H LEU H LEU H THR H	209 209 209 210	22. 533 22. 154 22. 530 23. 401	21.438 19.964 21.888 21.203	13. 703 13. 799 12. 253 17. 301	1.00 10.56 1.00 9.75 1.00 11.64 1.00 11.36	H H H H	C C N
20	MOTA MOTA MOTA MOTA MOTA	2751 2752 2753 2754 2755	CA C O CB OG1	THR H THR H THR H THR H THR H	210 210 210 210	24. 703 25. 788 26. 970 24. 631 23. 797	21. 362 20. 487 20. 801 21. 051 19. 907	17. 945 17. 322 17. 411 19. 464 19. 681 20. 227	1.00 12.32 1.00 11.28 1.00 11.33 1.00 11.07 1.00 12.24	H H H H	0 0 0 0
25	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2756 2757 2758 2759 2760 2761	N CA C O N	THR H GLY H GLY H GLY H GLY H ILE H	211 211 211 211	24.069 25.392 26.385 25.899 24.709 26.842	22. 232 19. 396 18. 527 17. 781 17. 781 17. 147	16. 685 16. 085 14. 861 14. 540 14. 174	1.00 11.51 1.00 11.49 1.00 12.62 1.00 12.53 1.00 10.55 1.00 12.70	Н Н Н Н Н	C N C C O N
30	MOTA MOTA MOTA MOTA MOTA MOTA	2762 2763 2764 2765 2766	CA C O CB	ILE H ILE H ILE H ILE H ILE H	212 212 212 212	26. 545 27. 240 28. 424 27. 094 26. 527	16. 371 15. 016 14. 961 17. 076 18. 498	12. 976 13. 116 13. 451 11. 716 11. 619	1.00 11.37 1.00 12.64 1.00 11.86 1.00 10.36 1.00 9.87	H H H H	00000
35	ATOM ATOM ATOM ATOM ATOM	2767 2768 2769 2770 2771	CG2	ILE H ILE H VAL H VAL H VAL H	212 212 213 213	26. 758 27. 194 26. 503 27. 086 28. 248	16. 270 19. 343 13. 930 12. 591 12. 608	10. 485 10. 538 12. 890 12. 969 11. 976	1.00 7.55 1.00 10.68 1.00 11.61 1.00 10.63 1.00 10.32	н н н н	CONCC
40	ATOM ATOM ATOM ATOM	2772 2773 2774 2775	O CB CG1 CG2	VAL H VAL H VAL H	213 213 213 213	28. 032 26. 054 26. 686 24. 850	12.764 11.512 10.123 11.575	10. 773 12. 562 12. 627 13. 486	1.00 10.80 1.00 8.77 1.00 7.54 1.00 9.35	Н Н Н Н	0 C C C
45	ATOM ATOM ATOM ATOM ATOM	2776 2777 2778 2779 2780	N CA C O CB	SER H SER H SER H SER H SER H	214 214 214 214	29. 476 30. 654 31. 527 31. 662 31. 525	12. 465 12. 533 11. 288 10. 694 13. 725	12. 473 11. 601 11. 510 10. 436 12. 015	1.00 10.48 1.00 10.02 1.00 10.29 1.00 10.45 1.00 10.33	H H H H	N C C O C
50	ATOM ATOM ATOM ATOM ATOM	2781 2782 2783 2784 2785	OG N CA C	SER H TRP H TRP H TRP H	215 215 215	32. 650 32. 144 32. 996 33. 186 32. 595	13. 856 10. 894 9. 715 9. 044 9. 440	11. 166 12. 616 12. 571 13. 919 14. 925	1.00 14.56 1.00 9.38 1.00 9.84 1.00 11.40 1.00 10.83	H H H H	0 N C C
55	ATOM ATOM ATOM ATOM ATOM	2786 2787 2788 2789 2790	CB CG CD1 CD2	TRP H TRP H TRP H TRP H TRP H	215 215 215 215	34.372 35.189 35.054 36.286 36.002	10.077 11.045 12.405 10.720 12.949	11. 979 12. 802 12. 851 13. 670 13. 690	1.00 11.73 1.00 11.23 1.00 12.73 1.00 12.20 1.00 12.73	H H H H	C C C C N
	MOTA	2791		TRP H		36.770	11.937	14.206	1.00 13.66	H	C

5	ATOM ATOM ATOM ATOM ATOM ATOM	2792 2793 2794 2795 2796 2797	CZ2	TRP H TRP H TRP H GLY H GLY H	215 215 215 216	36. 907 37. 852 37. 986 38. 445 34. 029 34. 308	9.520 11.986 9.569 10.796 8.020 7.298	14.044 15.100 14.936 15.451 13.928 15.151	1.00 11.80 1.00 11.52 1.00 11.59 1.00 12.21 1.00 12.15	H H H H	C C C N
10	ATOM ATOM ATOM ATOM ATOM	2798 2799 2800 2801 2802	C O N CA	GLY H GLY H GLN H GLN H	216 216 217 217	34. 988 35. 124 35. 435 36. 081 34. 986	6.002 5.684 5.255 3.982 2.937	13. 611 15. 792 15. 521 15. 544	1.00 14.20 1.00 15.78 1.00 17.05 1.00 17.07 1.00 19.04 1.00 17.72	H H H H H	C 0 N C
15	ATOM ATOM ATOM ATOM ATOM	2803 2804 2805 2806 2807	O CB CG CD	GLN H GLN H GLN H GLN H	217 217 217 217	34. 486 37. 136 37. 813 39. 254 39. 613	2. 579 3. 683 2. 342 2. 360 3. 063	16. 606 16. 579 16. 395 16. 845 17. 791	1.00 19.73 1.00 22.69 1.00 27.55 1.00 33.39 1.00 34.21	H H H H	0 C C
20	ATOM ATOM ATOM ATOM ATOM	2808 2809 2810 2811 2812		GLN H GLY H GLY H GLY H GLY H	217 219 219 219	40. 092 34. 606 33. 539 32. 283 32. 135	1. 576 2. 458 1. 482 2. 125 3. 347	16. 173 14. 364 14. 279 14. 835 14. 788	1.00 37.35 1.00 18.12 1.00 17.60 1.00 20.54 1.00 20.64	H H H H	N N C
25	ATOM ATOM ATOM ATOM ATOM	2813 2814 2815 2816 2817	N CA C O CB	CYS H CYS H CYS H CYS H	220 220 220 220 220	31. 381 30. 145 29. 893 29. 765 28. 981	1. 311 1. 824 1. 193 -0. 028 1. 549	15. 372 15. 943 17. 310 17. 432 14. 983	1.00 21.24 1.00 23.06 1.00 22.01 1.00 22.87 1.00 23.60	H H H H	N C C O C
30	ATOM ATOM ATOM ATOM ATOM	2818 2819 2820 2821 2822	SG N CA C	CYS H ALA H ALA H ALA H	221A 221A 221A 221A	29. 194 29. 830 29. 613 30. 719 30. 463	2. 422 2. 039 1. 586 0. 615 -0. 454	13. 398 18. 333 19. 704 20. 102 20. 660	1.00 28.32 1.00 21.07 1.00 21.19 1.00 20.46 1.00 21.19	H H H H	C C 0
35	ATOM ATOM ATOM ATOM ATOM ATOM	2823 2824 2825 2826 2827 2828	CB N CA C O CB	ALA H THR H THR H THR H THR H	221 221 221 221 221	28. 245 31. 953 33. 109 33. 530 33. 610 34. 273	0. 916 0. 992 0. 173 0. 484 1. 647	19. 833 19. 797 20. 121 21. 551 21. 943	1.00 20.8 1.00 20.10 1.00 19.79 1.00 18.64 1.00 17.97	H H H H	0
40	ATOM ATOM ATOM ATOM ATOM	2829 2830 2831 2832 2833	OG1 CG2 N CA C	THR H THR H VAL H VAL H VAL H	221 221 222 222	33. 854 35. 492 33. 776 34. 186 35. 458	0. 467 0. 169 -0. 386 -0. 560 -0. 402 0. 437	19. 151 17. 815 19. 485 22. 332 23. 721 23. 788	1.00 20.35 1.00 22.66 1.00 22.20 1.00 16.93 1.00 16.22 1.00 16.60	. Н Н Н Н	0 C N C
45	ATOM ATOM ATOM ATOM ATOM	2834 2835 2836 2837 2838	O CB CG1	VAL H VAL H VAL H VAL H GLY H	222 222 222 222	36. 424 34. 444 34. 994 33. 147 35. 444	0. 173 -1. 783 -1. 596 -2. 589 1. 458	23. 077 24. 388 25. 802 .24. 433	1.00 16.78 1.00 15.57 1.00 15.54 1.00 12.31	Н Н Н Н	C C C
50	ATOM ATOM ATOM ATOM ATOM	2839 2840 2841 2842 2843	CA C O N CA	GLY H GLY H GLY H HIS H	223 223 223 224	36. 603 36. 607 37. 602 35. 501 35. 418	2. 322 3. 503 4. 221 3. 716 4. 817	24. 639 24. 785 23. 834 23. 749 23. 122 22. 172	1.00 18.10 1.00 17.10 1.00 16.65 1.00 16.09 1.00 14.21 1.00 14.13	н н н н	N C C O N
55	ATOM ATOM ATOM ATOM	2844 2845 2846 2847	C O CB CG	HIS H HIS H HIS H HIS H	224 224 224	34. 054 33. 043 35. 772 37. 163	5. 490 4. 883 4. 324 3. 786	22. 169 22. 523 20. 768 20. 665	1.00 14.13 1.00 13.03 1.00 12.79 1.00 14.15 1.00 18.68	н н н н	C 0 C C

	ATOM	2848	NDI	HIS H	221	38. 273	4.602	20.632	1.00 22.89	Н	N
	ATOM	2849		HIS H		37.630	2. 516	20.690	1.00 18.87	H	Č
	ATOM	2850		HIS H		39.365	3.859	20.645	1.00 20.95	H	Č
5	ATOM	2851	NED	HIS H	224	39.002	2. 590	20.682	1.00 24.07	H	N
	ATOM	2852	N	PHE H		34.059	6. 758	21.772	1.00 12.58	H	N
	ATOM	2853	CA	PHE H		32.870	7. 597	21.709	1.00 12.38	H	C
								20. 270	1.00 13.20	H	
	ATOM	2854	C	PHE H		32.638	8.059				C
10	ATOM	2855	0 CD	PHE H		33.567	8. 102	19.459	1.00 13.13	H	0
	ATOM	2856	CB	PHE H		33.070	8.857	22.566	1.00 12.36	H	. C
	ATOM	2857	CG	PHE H		33.176	8.599	24.041	1.00 13.26 1.00 10.55	H	C
	ATOM	2858		PHE H		32.034	8. 486	24.826		H	C
	ATOM	2859		PHE H		34.422	8. 496	24.655	1.00 12.18	H	C
15	ATOM	2860		PHE H		32.132	8. 275	26. 197	1.00 11.54	Ĥ	C
	ATOM	2861		PHE H		34.528	8. 284	26.024	1.00 11.28	H	C
	ATOM	2862	CZ	PHE H		33.383	8. 173	26.797	1.00 11.86	H	C
	ATOM	2863	N	GLY H		31.401	8. 423	19.954	1.00 11.84	H	N
	ATOM	2864	CA	GLY H		31.141	8. 930	18.622	1.00 11.14	H	C
22	ATOM	2865	C	GLY H		31.706	10.345	18.564	1.00 11.37	H	C
20	ATOM	2866	0	GLY H		31.783	11.018	19.593	1.00 9.76	H	0
	ATOM	2867	N	VAL H		32.124	10.789	17.383	1.00 10.30	H	N
	ATOM	2868	CA	YAL H		32.664	12. 137	17.217	1.00 11.99	H	. C
	ATOM	2869	C	VAL H		31.711	12.893	16.279	1.00 12.30	. Н	C
	ATOM	2870	0	VAL H		31.308	12.376	15. 236	1.00 11.88	H	0
25	ATOM	2871		VAL H		34.096	12.119	16.597	1.00 13.42	H	C
	MOTA	2872		VAL H		34.725	13.503	16.711	1.00 10.66	H	C
	ATOM	2873		VAL H		34.977	11.081	17.304	1.00 11.39	H	C
	ATOM	2874	N	TYR H		31.360	14. 117	16.651	1.00 11.76	H	· N
	ATOM	2875	CA	TYR H		30.424	14. 913	15.868	1.00 11.60	H	C
30	ATOM	2876	C	TYR H		31.040	16. 251	15.458	1.00 11.78	H	C
	ATOM	2877	0	TYR H		31.870	16. 798	16.176	1.00 12.87	H	0
	ATOM	2878	€B	TYR H		29.147	15. 158	16.692	1.00 12.02	H	C
	ATOM	2879	CG	TYR H		28.446	13.883	17.159	1.00 13.58	H	C.
	ATOM	2880		TYR H		28.956	13. 112	18. 211	1.00 15.38	H	C
35	ATOM	2881		TYR H		27.302	13.425	16.515	1.00 12.87	H	C
03	ATOM	2882		TYR H		28.334		18.599	1.00 13.68	H	C
	MOTA	2883		TYR H		26.680	12. 235	16.894	1.00 11.86	H	C
	ATOM	2884	CZ	TYR H		27. 198	11.484	17.931	1.00 13.33	H	C
	ATOM	2885	0H	TYR H		26.570	10.310	18. 293	1.00 13.39	Ħ	0
	ATOM	2886	N	THR H		30.649	16.767	14. 296	1.00 10.21	H	N
40	MOTA	2887	CA	THR H		31.158	18.056	13.840	1.00 9.23	H	C
	MOTA	2888	C	THR H		30.612	19.105	14.817	1.00 9.22	H	C
	MOTA	2889		THR H		29.422			1.00 9.33	H	0
	ATOM	2890	CB	THR H			18.383	12.420	1.00 11.04	H	C
	MOTA	2891		THR H		31.037		11.519	1.00 10.26	H	0
45	ATOM	2892		THR H		31.246	19.712	11.935	1.00 8.87	H	C
	MOTA	2893	N	ARG H		31.473	19.993	15.309	1.00 7.76	H	N
	MOTA	2894	CA	ARG H		31.051	21.026	16.257	1.00 7.07	H	С
	ATOM	2895	Ç	ARG H		30.444	22.197	15.487	1.00 7.98	H	С
	MOTA	2896	0	ARG H		31.150	23. 158	15.134	1.00 6.49	H	0
50	MOTA	2897	CB	ARG H		32.251	21.505	17.093	1.00 8.54	H	C
	ATOM	2898	CG	ARG H		31.885	22.461	18.238	1.00 11.66	H	C
	ATOM	2899	CD	ARG H		33.104	22.903	19.054	1.00 14.39	H	C
	ATOM	2900	NE	ARG H		33.846	21.777	19.631	1.00 14.90	H	N
	ATOM	2901	CZ	ARG H		33.986	21.545	20.937	1.00 19.51	H	C
55	ATOM	2902	NH 1	ARG H	230		22.355	21.835	1.00 18.42	H	N
55	ATOM	2903	NH2	ARG H	230	34.694		21.356	1.00 18.54	H	N
									-		

	ATOM	2904	N	VAL H 23	8) 2	9.134	22.115	15. 243	1.00	7.40	Н	N
	ATOM	2905	CA	VAL H 23		8.396	23.132	14.485	1.00	8.02	H	Ċ
5	ATOM	2906	C	VAL H 23		8.582	24.590	14.906	1.00	8.03	H	č
5	ATOM	2907	Õ	VAL H 23		8.522	25.478	14.063		11.15	H	ŏ
	ATOM	2908	CB	VAL H 23		6.869	22.813	14. 453	1.00	8.34	H	č
		2909		VAL H 23		6.091	23.963	13. 789	1.00	6.76	H	č
	ATOM	2910		VAL H 23		6.631	21.536	13. 663	1.00	6.77	H	č
	ATOM		N N	SER H 23		8.812	24.846	16. 191	1.00	9.98	H	N
10	ATOM	2911	• .							10.61	H	
	ATOM	2912	CA	SER H 23		8.999	26.216	16.665				C
	ATOM	2913	Ç	SER H 23		0.141	26.942	15. 951		11.51	H	C
	ATOM	2914	0	SER H 23		0.116	28.162	15.815		13.83	H	0
	ATOM	2915	CB	SER H 23		9. 253	26. 225	18. 172	1.00	9.74	H	C
15	ATOM	2916	0G	SER H 23		0.328	25.366	18.508	1.00	9.99	H	0
	ATOM	2917	N	GLN H 23		1.138	26.192	15.500		10.91	H	N
	ATOM	2918	CA	GLN H 23		2.282	26.758	14.790		12.68	Н	C
	ATOM	2919	C	GLN H 23		1.957	27.212	13.365		12.56	H	C
	ATOM	2920	0_	GLN H 23		2. 715	27. 973	12.755		10.39	H	0
20	ATOM	2921	CB	GLN H 23		3.410	25.725	14.738		14.26	H	C
20	ATOM	2922	CG	GLN H 23		3.859	25. 290	16.109		17.78	H	C
	ATOM	2923	CD	GLN H 23		4.180	26.481	16.983		23.92	H	C
	ATOM	2924		GLN H 23		5.120	27. 221	16.702		22. 25	Н	0
	ATOM	2925		GLN H 23		3.383	26.687	18.045		25.97	Н	N
	ATOM	2926	N	TYR H 23		0.815	26.765	12.851		10.53	H	N
25	ATOM	2927	CA	TYR H 23		0.401	27.072	11.485		10.91	H-	C
	ATOM	2928	C	TYR H 23		9.164	27.970	11.338		11.10	H	С
	ATOM	2929	0	TYR H 23	34 2	8.663	28.137	10.232		12.26	H	0
	ATOM	2930	CB	TYR H 23		0.145	25.748	10.752		11.97	H	C
	ATOM	2931	CG	TYR H 23		1.359	24.833	10.717		10.28	H	C
30	ATOM	2932		TYR H 2		2.363	25.018	9. 765	1.00	9.58	H	C .
	ATOM	29 33		TYR H 2:		1.526	23.826	11.661	1.00	8.26	H	C
	ATOM	2934		TYR H 2		3.501	24. 231	9.756		10.13	Н	С
	ATOM .	2935		TYR H 23		2.673	23.022	11.665		10.83	H	C
	ATOM	29 3 6	CZ	TYR H 2		3.653	23. 236	10.707		10.93	H	C
35	ATOM	2937	0H	TYR H 23		4.782	22.464	10.691		11.60	H	0
	ATOM	2938	N	ILE H 2		8.670	28.549	12.428		10.49	Н	N
	MOTA	2939	CA	ILE H 2		7.473	29.389	12.341		12.21	H	С
	ATOM	2940	С	ILE H 2		7.624	30.539	11.343		13.01	H	C
	ATOM	2941	0	ILE H 2		6.790	30.710	10.455		13.67	Н	0
40	ATOM	2942	CB	ILE H 2		7.076	29. 971	13.725		12.39	H	С
40	ATOM	2943		ILE H 2		6.910	28.842	14.746		13.92	H	С
	ATOM	2944		ILE H 2		5.759	30.764	13.601		14.14	H	С
	ATOM	2945	CD1	ILE H 2		5.923		14.319			Н	C
	ATOM	2946	N	GLU H 2		8.680	31.331	11.493		15.53	H	N
	AŢOM	2947	CA	GLU H 2		8. 931	32. 449	1 0 . 582		16.27	H	C
45	MOTA	2948	C	GLU H 2		9.116	31.967	9.143		15.01	Н	C
	MOTA	2949	0	GLU H 2		8.608	32. 575	8. 199	1.00	15.26	H	0
	ATOM	2950	CB	GLU H 2		0.178	33. 222	11.023	1.00	20.86	H	C
	MOTA	2951	CG	GLU H 2		0.002	34.066	12.278	1.00	28.52	H	С
	MOTA	2952	CD	GLU H 2		9. 769	33. 243	13.535	1.00	35.96	H	С
50	MOTA	2953	0E1	GLU H 2	36 3	0.614	32, 384	13.848		39.48	H	0
	ATOM	2954	0E2	GLU H 2		8.742	33.466	14.205		39.32	H	0
	MOTA	2955	N	TRP H 2		9.848	30.873	8.979		13.41	Н	N
	MOTA	2956	CA	TRP H 2		0.098	30. 298	7.660		12.55	H	Ĉ
	MOTA	2957	С	TRP H 2		8.759	29.950	7.000		13.34	H	Ċ
55	MOTA	2958	0	TRP H 2		8. 524	30.268	5.828		12.48	Н	Ó
	MOTA	2959	CB	TRP H 2		0.950	29.023	7.807		12.29	H	Č
							**			-	==	-

5	ATOM ATOM ATOM ATOM	2960 2961 2962 2963	CD2	TRP H TRP H TRP H TRP H	237 237	3 3	1.424 2.421 0.927 2.577	28. 400 28. 860 27. 196 28. 019	6.509 5.690 5.897 4.612	1.00 10.83 1.00 11.49 1.00 11.56 1.00 11.23	.]	H H H H	C C C N
	ATOM ATOM ATOM	2964 2965 2966	CE2 CE3 CZ2	TRP H TRP H TRP H	237 237 237	3 2 3	1.675 9.922 1.448	26. 993 26. 276 25. 903	4. 711 6. 232 3. 856	1.00 10.61 1.00 11.81 1.00 10.86]]]	H H H	C C C
10	ATOM ATOM ATOM	2967 2968 2969 2970	CH2 N CA	TRP H TRP H LEU H LEU H	237 238 238	3 2 2	9.695 0.459 7.890 6.577	25. 186 25. 013 29. 289 28. 876	5. 379 4. 202 7. 762 7. 272	1.00 13.69 1.00 11.69 1.00 11.93 1.00 13.74]]]	H H H	C C N C
15	ATOM ATOM ATOM ATOM	2971 2972 2973 2974	CG	LEU H LEU H LEU H	238 238 238	2 2	5.660 5.006 5.906 6.619	30. 064 30. 106 27. 948 26. 607	6. 976 5. 937 8. 296 8. 530	1.00 14.26 1.00 15.47 1.00 11.48 1.00 12.33]	H H H H	C C C
20	ATOM ATOM ATOM ATOM	2975 2976 2977 2978		LEU H LEU H GLN H GLN H	238 239	2 2	6. 127 6. 393 5. 614 4. 761	25. 955 25. 696 31. 029 32. 202	9. 816 7. 330 7. 887 7. 696	1.00 9.88 1.00 11.54 1.00 16.12 1.00 18.31]	H H H H	C C N C
	ATOM ATOM ATOM ATOM	2979 2980 2981 2982	C O CB CG	GLN H GLN H GLN H	239 239	2 2	5. 149 4. 289 4. 809 4. 263	33. 011 33. 448 33. 099 32. 442	6. 463 5. 705 8. 930 10. 176	1.00 17.63 1.00 17.31 1.00 16.56 1.00 22.50	i I	H H H H	C C C
25	ATOM ATOM ATOM ATOM	2983 2984 2985 2986	CD OE1	GLN H GLN H GLN H LYS H	239 239 239	2 2 2	4. 217 5. 143 3. 144 6. 446	33. 393 34. 179 33. 321 33. 205	11. 348 11. 563 12. 124 6. 268	1.00 24.81 1.00 28.05 1.00 28.34 1.00 19.23]	H H H H	C O N N
30	ATOM ATOM ATOM ATOM	2987 2988 2989 2990	CA C O CB	LYS H LYS H LYS H LYS H	240 240 240	2 2 2	6. 944 6. 544 6. 068 8. 467	33. 958 33. 269 33. 915 34. 072		1.00 20.76 1.00 20.55 1.00 20.97 1.00 23.48		H H H H	0000
35	MOTA MOTA MOTA	2991 2992 2993	CG CD CE	LYS H LYS H LYS H	240 240 240	2 2 2	9.082 9.016 9.606	35. 190 34. 913 36. 071	4.391 2.900 2.101	1.00 30.47 1.00 34.65 1.00 38.36		H H H	C C C
	ATOM ATOM ATOM ATOM	2994 2995 2996 2997	NZ N CA C	LYS H LEU H LEU H LEU K	241 241 241	2 2 2	1.028 6.733 6.398 4.900	36. 326 31. 954 31. 187 31. 140	2. 469 3. 754 2. 560 2. 256	1.00 39.99 1.00 20.03 1.00 19.49 1.00 19.86		H H H H	N N C C
40	ATOM ATOM ATOM ATOM	2998 2999 3000 3001	O CB CG CD1	LEU H LEU H LEU H	241 241	. 2	4. 508 6. 948 8. 473 8. 870	31. 126 29. 763 29. 630 28. 191	1. 094 2. 680 2. 647 2. 990	1.00 18.70 1.00 19.02 1.00 19.62 1.00 18.89		H H H H	0 0 0 0
45	ATOM ATOM ATOM ATOM	3002 3003 3004 3005		LEU H MET H MET H MET H	241 242 242	2 2 2	9. 001 4. 058 2. 615 2. 142	30. 032 31. 106 31. 081 32. 421	1. 273 3. 287 3. 051 2. 477	1.00 14.59 1.00 21.92 1.00 24.59 1.00 27.60		H H H H	C N C C
50	MOTA MOTA MOTA	3006 3007 3008	O CB CG	MET H MET H MET H	242 242 242	2 2 2	11.097 11.854 12.003	32. 497 30. 746 29. 283	1.834 4.341 4.768	1.00 27.62 1.00 21.21 1.00 20.37		H H H	0 C C
	ATOM ATOM ATOM ATOM	3009 3010 3011 3012	SD CE N CA	MET H MET H ARG H ARG H	242 243 243	6 6 6	21. 011 21. 948 22. 924 22. 595	28. 815 29. 603 33. 472 34. 795	6. 206 7. 540 2. 703 2. 187	1.00 18.95 1.00 14.65 1.00 30.45 1.00 34.75		H H H H ·	S C N C
55	ATOM ATOM ATOM	3013 3014 3015	C O CB	ARG H ARG H ARG H	243	2	3. 270 3. 277 3. 048	35. 048 36. 176 35. 868	0.840 0.351 3.170	1.00 37.34 1.00 39.24 1.00 35.66		H H H	C C

5	ATOM ATOM ATOM ATOM ATOM ATOM	3016 3017 3018 3019 3020 3021		ARG H 243 ARG H 243 ARG H 243 ARG H 243 ARG H 243	22. 216 23. 094 24. 090 25. 137 25. 335 25. 997	35. 976 4. 429 36. 381 5. 600 37. 380 5. 218 37. 722 5. 965 37. 148 7. 147 38. 631 5. 519	1.00 37.59 1.00 42.39 1.00 45.18 1.00 46.96 1.00 45.77 1.00 47.07	H H H H H	C C N C N
10	ATOM ATOM ATOM ATOM	3022 3023 3024 3025	N CA C O	SER H 244 SER H 244 SER H 244 SER H 244	23.836 24.522 23.684 22.743	34.002 0.245 34.130 -1.034 33.644 -2.208 32.867 -2.042	1.00 39.09 1.00 40.99 1.00 42.62 1.00 41.83	H H H H	N C C
15	ATOM ATOM ATOM ATOM ATOM	3026 3027 3028 3029 3030	CB OG N CA	SER H 244 SER H 244 GLU H 245 GLU H 245 GLU H 245	25. 845 26. 705 24. 038 23. 330 23. 882	33. 363 -0. 994 33. 895 -0. 001 34. 113 -3. 400 33. 737 -4. 615 32. 431 -5. 165	1.00 41.34 1.00 43.40 1.00 44.75 1.00 46.58 1.00 46.31	Н Н Н Н	C O N C C
20	ATOM ATOM ATOM ATOM ATOM ATOM	3031 3032 3033 3034 3035 3036		GLU H 245 GLU H 245 GLU H 245 GLU H 245 GLU H 245 GLU H 245	25. 076 23. 470 22. 851 22. 994 22. 529 23. 571	32.157 -5.057 34.833 -5.672 36.164 -5.282 37.212 -6.369 38.339 -6.166 36.900 -7.417	1.00 46.57 1.00 49.32 1.00 53.68 1.00 56.49 1.00 58.31 1.00 57.52	H H H H H	0 0 0
25	ATOM ATOM ATOM ATOM ATOM	3037 3038 3039 3040 3041	N CA C O CB	PRO H 246 PRO H 246 PRO H 246 PRO H 246 PRO H 246	23. 013 23. 430 24. 612 24. 884 22. 174	31.605 -5.765 30.323 -6.334 30.488 -7.287 31.588 -7.770 29.846 -7.055	1.00 46.06 1.00 46.49 1.00 46.82 1.00 47.98 1.00 46.60	и н н н н	N C C O C
30	ATOM ATOM ATOM ATOM ATOM	3042 3043 3044 3045 3046	CG CD N CA	PRO H 246 PRO H 246 ARG H 247 ARG H 247 ARG H 247	21. 081 21. 563 25. 316 26. 455 26. 391	30.401 -6.206 31.803 -5.932 29.393 -7.545 29.420 -8.449 28.204 -9.360	1.00 46.59 1.00 45.49 1.00 45.68 1.00 45.13 1.00 43.90	н н н н н	C C N C
35	ATOM ATOM ATOM ATOM ATOM	3047 3048 3049 3050 3051	O CB CG CD NE	ARG H 247 ARG H 247 ARG H 247 ARG H 247 ARG H 247	26. 012 27. 772 27. 999 29. 351 29. 547	27.114 -8.930 29.416 -7.665 30.655 -6.806 30.585 -6.107 31.650 -5.121	1.00 43.91 1.00 46.78 1.00 48.61 1.00 50.94 1.00 52.94	н н н н	0 C C C N
40	ATOM ATOM ATOM ATOM ATOM	3052 3053 3054 3055 3056	CZ NH1	ARG H 247 ARG H 247 ARG H 247 PRO H 248 PRO H 248	28. 897 27. 988 29. 164 26. 754 26. 725	31.748 -3.962 30.846 -3.611 32.756 -3.142 28.378 -10.639 27.268 -11.595	1.00 53.90 1.00 53.30 1.00 54.90 1.00 42.02 1.00 40.10	Н Н Н Н	C N N C
45	MOTA MOTA MOTA MOTA MOTA	3057 3058 3059 3060 3061	C O CB CC CD	PRO H 248 PRO H 248 PRO H 248 PRO H 248 PRO H 248	27.396	26.040 -10.999 26.168 -10.238 27.826 -12.786 29.282 -12.741 29.600 -11.269	1.00 36.76 1.00 37.56 1.00 40.63 1.00 43.23 1.00 41.68	н Н Н Н Н	0 0 0 0
50	MOTA MOTA MOTA MOTA MOTA MOTA	3062 3063 3064 3065 3066	N CA C O N	GLY H 249 GLY H 249 GLY H 249 GLY H 249 VAL H 250	26. 897 27. 483 27. 004 26. 983 26. 627	24. 858 -11. 341 23. 636 -10. 818 23. 304 -9. 416 24. 164 -8. 536 22. 047 -9. 210	1.00 33.94 1.00 30.93 1.00 27.97 1.00 28.75 1.00 25.90	л Н Н Н	N C C O N
55	ATOM ATOM ATOM ATOM ATOM	3067 3068 3069 3070 3071	CA C O CB	VAL H 250 VAL H 250 VAL H 250 VAL H 250 VAL H 250	26. 137 27. 154 26. 866 25. 708 25. 243	21. 584 -7. 916 21. 751 -6. 785 22. 406 -5. 783 20. 091 -7. 989 19. 603 -6. 616	1.00 22.51 1.00 20.73 1.00 19.56 1.00 22.46 1.00 21.14	н н н н	0 0 0

	ATOM ATOM AOTA	3072 3073 3074	N	VAL LEU LEU	H	251		24.588 28.337 29.380	19.924 21.165 21.230	-9.000 -6.950 -5.929	1.00	22.82 18.48 18.83		H H H	C N C
5	MOTA	3075	C	LEU	H	251		30.070	22.588	-5.808	1.00	19.13		H	С
	ATOM ATOM	3076 3077		LEU LEU				30.520 30.431	23.164 20.146	-6.790 -6.192		18.06 16.90		H H	0
	ATOM	3078		LEU				31.581	20. 002	-5.186		17.64		H	C
10	MOTA	3079		LEU				31.029	19.732	-3.787		15.90		H	Č
10	MOTA	3080		LEU				32.504	18.862	-5.628		16.46		H	C
	ATOM	3081		LEU				30.151	23.096	-4.586		19.09		H	N
	ATOM	3082		LEU LEU				30.808 31.699	24.369	-4.342		18.91		H	C
	ATOM ATOM	3083 3084		LEU				31.261	24. 284 23. 835	-3.109 -2.054		19.51 20.23		H H	C 0.
15	ATOM	3085		LEU				29.777	25. 476	-4.129		19.71		H	C.
	ATOM	3086		LEU				30.362	26.831	-3.726		21.00		H	Č
	MOTA	3087		LEU				31.252	27.360	-4.845		21.46		H	Ċ
	ATOM	3088		LEU				29.237	27.808	-3.431		21.39		H	C
20	ATOM	3089	N	ARG				32.951	24.703	-3.247		17.62		H	N
20	MOTA	3090 3091		ARG ARG				33.869 34.015	24. 704 26. 150	-2.119		17.97		H	C
	ATOM ATOM	3092		ARG				34.559	26. 970	-1.688 -2.426		17.05 15.25		H H	0
	ATOM	3093		ARG				35. 230	24. 123	-2. 511		18.44		H	Ċ
	MOTA	3094		ARG				35.358	22.635	-2.232		20.42		H	Č
25	ATOM	3095		ARG				34.282	21.846	-2.952		21.21		H	С
	ATOM	3096		ARG				34.476	21.856	-4. 397		21.18		H	N
	ATOM ATOM	3097 3098	CZ	ARG ARG				35.307 36.028	21.047 20.152	-5. 047 -4. 380		22.46	•	H	C
	ATOM	3099		ARG				35.414	21.126	-4. 367		23.51 19.08		H H	N N
30	ATOM	3100	N	ALA				33.499	26. 458	- 0 . 501		16.11		H	N
	ATOM	3101	CA	ALA				33.542	27.815	0.028		15.47		H	C
	ATOM	3102	C	ALA				34.658	27.919	1.047		16.28		H	C
	ATOM	3103	0	ALA				34.879	27.003	1.843		15.62		H	0
	ATOM ATOM	3104 3105	CB N	ALA PRO				32.205 35.381	28. 179 29. 044	0.664 1.039		13.69 15.40		H H	C N
35	ATOM	3106		PRO				36.475	29. 191	1. 994		14.78		H	Č
	ATOM	3107	C	PRO				36.048	29. 162	3. 445		14.38		H	Č
	MOTA	3108	0	PR0	H	255		34.935	29.556	3. 798	1.00	13.71		H	0
	ATOM	3109	CB	PRO				37.116	30. 526	1.594		15.88		H	C
40	ATOM	3110	CC	PRO PRO				35.987 35.233	31. 294	0.995		15.99		H	C
	ATOM ATOM	3111 3112	CD N	PHE				36.943	30. 249 28. 663	0. 200 4. 281		16.40 13.80		H H	C N
	ATOM	3113	CA	PHE				36.701	28.616	5. 706		16.87		H	C
	ATOM	3114		PHE				38.005		6.408		17.50		H	Č
	ATOM	3115	0	PHE	H	256		39.049	28.394	6.067		18.45		H	0
45	ATOM	3116	CB	PHE				36.243	27. 240	6. 174		14.38		H	C
	ATOM ATOM	3117	CG	PHE PHE			-	35.955	27. 201	7.641		16.91		H	C
	ATOM	3118 3119		PHE				34.773 36.909	27. 744 26. 729	8. 141 8. 538		16.40 16.52		H H	C
	ATOM	3120		PHE				34.546	27. 828	9. 509		17.72		H	Č
50	ATOM	3121		PHE				36.692	26.809	9. 911		17. 93		H	Č
	MOTA	3122	CZ	PHE			•	35.510	27.362	10.398	1.00	18.72		H	C
	ATOM	3123	N	PRO				37.960	29. 830	7.413		18.95		H	N
	ATOM	3124	CA	PRO				36.765	30.512	7. 921		20.37		H	C
55	ATOM ATOM	3125 3126	C 0	PRO PRO				36.095 34.888	31.426 31.666	6. 893 7. 011		22.86 23.60		H H	C
55	ATOM	3127	CB	PRO				37. 299	31. 268	9. 136		20.14		H	0 C
					-•			J 200	3	100		-v. 1 f		41	U

5	ATOM ATOM ATOM ATOM ATOM	3128 3129 3130 3131 3132	CG PRO H 2 CD PRO H 2 OT PRO H 2 N THR T CA THR T	57 57 6 6	38.684 39.167 36.786 48.678 47.791 47.976	31.608 30.315 31.886 29.980 29.559 28.083	8. 721 8. 104 6. 001 30. 872 31. 995 32. 299	1.00 20.11 1.00 18.62 1.00 26.65 1.00 39.18 1.00 38.59 1.00 36.71	H H H T T	C C O N C C
10	ATOM ATOM ATOM ATOM	3133 3134 3135 3136 3137	C THR T O THR T CB THR T OG1 THR T CG2 THR T	6 6 6 6	48. 275 46. 308 45. 930 46. 064	27. 290 29. 771 28. 877 31. 202 27. 721	31. 410 31. 656 30. 600 31. 212 33. 562	1.00 37.09 1.00 40.14 1.00 41.93 1.00 42.09 1.00 35.02	T T T T	0 C O C N
15	ATOM ATOM ATOM ATOM	3138 3139 3140 3141 3142	N VAL T CA VAL T C VAL T O VAL T CB VAL T	7 7 7 7 7	47. 790 47. 919 46. 611 45. 876 49. 054	26. 335 25. 871 26. 663 26. 155	33.987 34.613 35.211 35.019	1.00 33.21 1.00 31.57 1.00 31.61 1.00 32.59	T T T T	0 0 0
20	ATOM ATOM ATOM ATOM ATOM	3143 3144 3145 3146 3147	CG1 VAL T CG2 VAL T N ALA T CA ALA T C ALA T	7 7 8 8	50. 380 48. 731 46. 320 45. 101 45. 239	26. 620 26. 920 24. 587 24. 023 23. 892 23. 743	34. 422 36. 288 34. 468 35. 023 36. 531 37. 055	1.00 31.03 1.00 31.27 1.00 29.98 1.00 29.21 1.00 28.58 1.00 28.70	T T T T	N C C O
25	ATOM ATOM ATOM ATOM ATOM ATOM	3148 3149 3150 3151 3152 3153	O ALA T CB ALA T N ALA T CA ALA T C ALA T O ALA T	8 9 9 9	46. 342 44. 828 44. 115 44. 121 44. 490 44. 425	23. 964 23. 964 23. 828 22. 387 21. 501	34. 402 37. 230 38. 673 39. 016 38. 161	1.00 28.98 1.00 25.62 1.00 25.80 1.00 26.18 1.00 25.07	T T T T	0 C N C C O
30	ATOM ATOM ATOM ATOM ATOM	3154 3155 3156 3157 3158	CB ALA T N TYR T CA TYR T C TYR T O TYR T	9 10 10 10	42. 744 44. 886 45. 240 44. 978 44. 754	24. 162 22. 157 20. 815 20. 661 21. 641	39. 233 40. 263 40. 701 42. 186 42. 896	1.00 22.93 1.00 24.93 1.00 25.50 1.00 25.20 1.00 23.18	T T T T	C N C C
35	MOTA ATOM ATOM ATOM ATOM ATOM MOTA	3159 3160 3161 3162 3163	CB TYR T CG TYR T CD1 TYR T CD2 TYR T CE1 TYR T	10 10 10 10 10	46.706 47.724 48.245 48.160 49.183	20. 493 21. 429 21. 199 22. 554 22. 072	40. 367 40. 975 42. 248 40. 277 42. 810	1.00 27.61 1.00 27.41 1.00 28.54 1.00 28.91 1.00 28.45	T T T T	0000
40	MOTA MOTA MOTA MOTA MOTA	3164 3165 3166 3167 3168	CE2 TYR T CZ TYR T OH TYR T N ASN T CA ASN T	10 10 10 11 11	49. 090 49. 595 50. 506 44. 992 44. 729	23. 429 23. 184 24. 061 19. 418 19. 119	40.827 42.088 42.626 42.647 44.045	1.00 29.62 1.00 29.24 1.00 33.96 1.00 25.50 1.00 25.22	T T T T	C O N C
45	ATOM ATOM ATOM ATOM ATOM	31 69 31 70 31 71 31 72 31 73	C ASN T O ASN T CB ASN T CG ASN T OD1 ASN T	11 11 11 11 11	43. 354 43. 197 45. 812 47. 105 48. 090	19. 624 20. 179 19. 735 18. 924 19. 321	44. 466 45. 553 44. 944 44. 954 45. 578	1.00 23.78 1.00 20.92 1.00 29.09 1.00 31.48 1.00 34.70	T T T T	C O C C O
50	ATOM ATOM ATOM ATOM	3174 3175 3176 3177	ND2 ASN T N LEU T CA LEU T C LEU T	11 12 12 12	47. 105 42. 356 41. 003 40. 594	17. 784 19. 441 19. 868 19. 011	44. 270 43. 602 43. 939 45. 126	1.00 32.60 1.00 23.43 1.00 22.96 1.00 22.88	T T T T	N N C C
55	ATOM ATOM ATOM ATOM ATOM ATOM	3178 3179 3180 3181 3182 3183	O LEU T CB LEU T CG LEU T CD1 LEU T CD2 LEU T N THR T	12 12 12 12 12 13	40. 726 40. 043 40. 003 41. 321 38. 859 40. 097	17. 792 19. 652 20. 731 20. 784 20. 437 19. 651	45.084 42.763 41.671 40.921 40.712 46.178	1.00 24.43 1.00 21.46 1.00 20.61 1.00 19.28 1.00 17.88 1.00 22.51	T T T T T	0 C C C N

	MOTA	3184	CA	THR T	13	39.719	18.946	47.394	1.00 22.60	T	С
	ATOM	3185	С	THR T	13	38. 387	19.434	47.936	1.00 21.35	T	С
5	ATOM	3186	0	THR T	13	38. 106	20.622	47.904	1.00 22.14	T	0
	MOTA	3187	CB	THR T	13	40. 786	19.172	48.494	1.00 24.31	Ţ	C
	ATOM	3188	0G I	THR T	13	42.087	18.887	47.965	1.00 28.20	Ţ	0
	MOTA	3189	CG2	THR T	13	40.524	18. 276	49.695	1.00 25.13	Ţ	C
	ATOM	3190	N	TRP T	14	37.570	18.517	48. 442	1.00 20.93	Ţ	N
10	MOTA	3191	CA	TRP T	14	36.290	18.896	49.022	1.00 21.26	Ţ	C
	ATOM	3192	C	TRP T	14	36. 445	19.101	50. 527	1.00 21.82	T	C
	ATOM ATOM	3193 3194	O CB	TRP T	14 14	37. 003 35. 233	18. 250 17. 816	51. 221 48. 775	1.00 22.88	T T	0
	ATOM	3195	CG	TRP T	14	34. 895	17.603	47. 331	1.00 20.57	Ť	C
4.5	ATOM	3196	CD1	TRP T	14	35. 525	16.769	46. 450	1.00 19.07	Ť	C
15	MOTA	3197		TRP T	14	33. 843	18. 238	46.602	1.00 18.11	Ť	Č
	ATOM	3198	NE I		14	34.925	16.845	45. 215	1.00 19.68	Ť	N
	ATOM	3199	CE 2		14	33.889	17.741	45. 281	1.00 20.45	Ť	Ĉ
	ATOM	3200		TRP T	14	32.863	19. 180	46.936	1.00 20.85	Ť	Č
22	ATOM	3201		TRP T	14	32.989	18. 155	44.292	1.00 20.30	Ť	Č
20	MOTA	3202		TRP T	14	31.964	19.592	45.953	1.00 20.57	Ť	Č
	MOTA	3203		TRP T	14	32.037	19.077	44.646	1.00 20.36	· Ī	Č
	ATOM	3204	N	LYS T	15	35.968	20.240	51.016	1.00 21.08	Ť	N
	MOTA	3205	CA	LYS T	15	36.005	20.568	52.439	1.00 20.11	T	Ċ
0.5	ATOM	3206	С	LYS T	15	34.534	20.651	52.818	1.00 19.45	T	С
25	MOTA	3207	0	LYS T	15	33.862	21.632	52.510	1.00 20.83	T	0
	MOTA	3208	CB	LYS T	15	36.700	21.918	52.663	1.00 21.44	T	C
	MOTA	3209	CG	LYS T	15	38.162	21.933	52.228	1.00 23.27	T	С
	ATOM	3210	CD	LYS T	15	38.990	20.995	53.097	1.00 28.61	Ť	С
	MOTA	3211	CE	LYS T	15	40. 296	20.589	52.427	1.00 31.74	T	С
30	ATOM	3212	NZ	LYS T	15	41.190	21.741	52.152	1.00 36.85	Ţ	N
	ATOM	3213	N	SER T	16	34. 035	19.613	53.478	1.00 17.55	Ţ	Ŋ
	ATOM	3214	CA	SER T	16	32.628	19.556	53.832	1.00 17.18	T	C
	ATOM	3215	C	SER T	16	32.363	19.073	55. 255	1.00 18.04	Ţ	, C
25	ATOM ATOM	3216 3217	O CB	SER T SER T	16	32.859 31.906	18.021	55.671	1.00 16.19	T	. 0
35	ATOM	3218	OG	SER T	16 16	30.500	18.639 18.633	52. 831 53. 032	1.00 17.42 1.00 16.16	T	C 0
	ATOM	3219	N	THR T	17	31.572	19.851	55. 988	1.00 10.10	T T	N.
	ATOM	3220	CA	THR T	17	31.199	19.523	57. 360	1.00 17.85	Ť	C
	ATOM	3221	C	THR T	17	29. 735	19.890	57.527	1.00 17.66	Ť	Č
10	ATOM	3222	ŏ	THR T	17	29.345	21.033	57. 293	1.00 17.63	Ť	Ö
40	ATOM	3223	ČВ	THR T	17	32.031	20.322	58.385	1.00 16.36	Ť	Č
	ATOM	3224	0G1	THR T	17	33.414	19.996	58. 231	1.00 18.91	Ţ	ō
	ATOM	3225	CG2	THR T	17	31.596	19.990	59.799	1.00 17.35	Ť	Č
	ATOM	3226	N	ASN T	18	28.922	18.922	57.935	1.00 18.02	T	N
45	ATOM	3227	CA	ASN T	18	27.493	19.160	58. 10 3	1.00 19.26	T	С
45	ATOM	3228	C	ASN T	18	26.901	19.764	56.837	1.00 18.10	T	C
	ATOM	3229	0	ASN T	18	26.039	20.643	56.886	1.00 18.37	T	0
	ATOM	3230	CB	ASN T	18	27. 238	20.073	59.301	1.00 20.54	T	C
	ATOM	3231	CG	ASN T	18	27. 792	19.494	60.579	1.00 23.12	T	С
50	ATOM	3232		ASN T	18	27. 706	18.288	60.804	1.00 22.01	T	0
50	ATOM	3233		ASN T	18	28.368	20.346	61.423	1.00 26.13	T	N
	ATOM	3234	N	PHE T	19	27. 394	19.269	55.706	1.00 18.27	T	N
	ATOM	3235	CA	PHE T	19	26.959	19.672	54.383	1.00 19.15	T	С
	ATOM	3236	Ç	PHE T	19	27.453	21.022	53.869	1.00 20.26	T	С
55	ATOM	3237	0	PHE T	19	27. 200	21.369	52.715	1.00 20.39	T	0
55	ATOM	3238	CB	PHE T	19	25.441	19.539	54.305	1.00 20.26	Ţ	C
	ATOM	3239	CG	PHE T	19	24.965	18.124	54. 530	1.00 21.59	T	С

	MOTA	3240	CD1	PHE T	19	25.184	17.144	53.565	1.00 21.66	T	С
5	ATOM	3241	CD2		19	24.371	17.755	55.731	1.00 22.37	T	С
J	ATOM	3242	CE1	PHE T	19	24.823	15.819	53.790	1.00 21.75	Ţ	С
	ATOM	3243	CE2	PHE T	19	24.003	16.425	55.970	1.00 24.36	T	С
	ATOM	3244	CZ	PHE T	19	24.232	15.456	54.995	1.00 22.96	T	C
	ATOM	3245	N	LYS T	20	28.162	21.779	54.706	1.00 19.77	T	N
	ATOM	3246	CA	LYS T	20	28.737	23.044	54. 252	1.00 18.78	Ť	С
10	ATOM	3247	C	LYS T	20	29.855	22.526	53.362	1.00 18.12	T	С
	ATOM	3248	0	LYS T	20	30.848	21.993	53.853	1.00 19.69	T	0
	ATOM	3249	CB	LYS T	20	29.326	23.831	55.414	1.00 20.11	T	С
	ATOM	3250	CG	LYS T	20	28.777	25.232	55.535	1.00 22.19	T	С
	MOTA	3251	CD	LYS T	20	29.115	26.090	54.338	1.00 21.31	T	С
15	ATOM	3252	CE	LYS T	20	28. 434	27.437	54.474	1.00 21.39	Ţ	С
	ATOM	3253	NZ	LYS T	20	28.973	28.453	53.548	1.00 23.07	Ţ	N
	MOTA	3254	N	THR T	21	29.692	22.684	52.056	1.00 16.64	T	N
	ATOM	3255	CA	THR T	21	30.643	22.143	51.100	1.00 16.45	T	C
	ATOM	3256	C	THR T	21	31.364	23.167	50.243	1.00 18.19	T	C
20	ATOM	3257	0	THR T	21	30.749	23.879	49.453	1.00 17.44	T	0
	ATOM	3258	CB	THR T	21	29.911	21.151	50.192	1.00 15.26	T	С
	ATOM	3259	0G1	THR T	21	29.179	20.236	51.016	1.00 16.35	T	0
	ATOM	3260	CG2	THR T	21	30.885	20.380	49.320	1.00 16.11	T	С
	ATOM	3261	N	ILE T	22	32.682	23.215	50.394	1.00 19.00	T	N
25	ATOM	3262	·CA	ILE T	22	33.511	24.146	49.648	1.00 19.12	T	С
	ATOM	3263	C	ILE T	22	34.603	23.396	48.896	1.00 18.47	Ţ	С
	ATOM	3264	0	ILE T	22	35.326	22.588	49.477	1.00 18.08	Ţ	0
	MOTA	3265	CB	ILE T	22	34.180	25.169	50.597	1.00 20.41	T	С
	MOTA	3266	CG1	ILE T	22	33.108	25.959	51.353	1.00 21.22	T	С
30	ATOM	3267		ILE T	22	35.075	26.121	49. 804	1.00 19.95	T	С
30	MOTA	3268	CD1	ILE T	22	33.673	26.948	52.352	1.00 21.24	T	С
	MOTA	3269	N	LEU T	23	34.711	23.658	47. 599	1.00 17.48	T	N
	MOTA	3270	CA	LEU T	23	35. 738	23.029	46. 783	1.00 18.70	T	С
	ATOM	3271	C	LEU T	23	36.967	23.925	46.847	1.00 17.63	Ŧ	C
	MOTA	3272	0	LEU T	23	36.859	25.141	46.691	1.00 18.23	T	0
35	MOTA	3273	CB	LEU T	23	35. 275	22.905	45. 329	1.00 19.42	Ţ	C
	ATOM	3274	CG	LEU T	23	36. 258	22.183	44. 399	1.00 21.43	T	С
	ATOM	3275		LEU T	23	36.325	20.714	44. 790	1.00 19.69	T	С
	ATOM	3276		LEU T	23	35.820	22. 334	42.944	1.00 17.72	T	С
	ATOM	3277	N	GLU T	24	38. 129	23.334	47.093	1.00 16.78	Ţ	Ŋ
40	ATOM	3278	CA	GLU T	24	39.367	24.102	47.165	1.00 18.87	Ţ	C
	ATOM	3279	C	GLU T	24	40.354	23.566	46.146	1.00 20.20	<u>T</u>	C
	ATOM	3280	0	GLU T	24	40.262	22.411	45. 735	1.00 20.83	Ţ	0 -
	ATOM	3281	CB	GLU T	24	39.968	24.025	48.575	1.00 18.72	Ţ	C
	ATOM	3282	CG	GLU T	24	39. 349	25.019	49.553	1.00 21.38	T	C
45	ATOM	3283	CD	GLU T	24	39.777	24.789	50. 988	1.00 23.65	Ţ	Ç
	ATOM	3284		GLU T	24	40.878	24. 291	51. 202	1.00 25.81	Ţ	0
	ATOM	3285		GLU T	24	39.008	25. 125	51.887	1.00 26.26	Ţ	0
	ATOM	3286	N	TRP T	25	41.300	24.401	45. 735	1.00 19.89	Ţ	Ŋ
	ATOM	3287	CA	TRP T	25	42. 280	23.965	44. 759	1.00 20.95	T	C
50	ATOM	3288	C	TRP T	25	43.524	24.843	44. 721	1.00 22.24	7	C
	ATOM	3289	0 CD	TRP T	25 25	43.635	25.829	45. 451	1.00 23.01	Ĩ	0
	ATOM	3290	CB	TRP T	25	41.629	23.912	43. 366	1.00 18.38	Ţ	C
	ATOM	3291	CG	TRP T TRP T	25 25	41.213	25. 252	42.815	1.00 16.29	Ĩ	C
	ATOM	3292		TRP T	25 25	41.994	26.133	42.115	1.00 16.76 1.00 14.79	T	C
55	MOTA	3293				39.917	25.856	42.911	1.00 14.79	Ţ	C
55	ATOM	3294		TRP T TRP T	25 25	41.260	27. 246	41.765		T	N
	ATOM	3295	UEZ	1 LT. T	20	39. 984	27. 102	42. 242	1.00 14.48	T	С

	ATOM	3296	CE3	TRP T	25	38.704	25.466	43.498	1.00 15.24	T	C
5	ATOM	3297	CZ2		25	38. 882	27. 960	42.141	1.00 14.18	Ť	č
_	ATOM	3298	CZ3	TRP T	25	37.606	26.320	43.399	1.00 14.21	Ť	Č
	ATOM	3299		TRP T	25	37. 705	27.554	42. 725	1.00 15.19	Ť	č
	ATOM	3300	N N	GLU T	26	44. 455	24.449	43.862	1.00 24.44	Ť	N
						45. 713	25. 148	43.644	1.00 27.06	Ť	Ĉ
	ATOM	3301	CA	GLU T	26						
10	ATOM	3302	C	GLU T	26	45. 713	25. 499	42. 159	1.00 28.34	Ţ	C
	ATOM	3303	0	GLU T	26	44. 953	24.918	41.384	1.00 26.89	T	Ŏ
	ATOM	3304	CB	GLU T	26	46. 889	24. 214	43. 939	1.00 28.64	Ţ	C
	ATOM	3305	ÇG	GLU T	26	46.993	23.741	45.376	1.00 34.94	Ţ	C
	ATOM	3306	CD	GLU T	26	47. 761	24.705	46. 253	1.00 39.39	Ţ	C
15	ATOM	3307		GLU T	26	47.870	24. 444	47.440	1.00 42.73	T	0
	ATOM	3308		GLU T	26	48. 255	25.713	45. 739	1.00 42.24	T	0
	ATOM	3309	N	PRO T	27	46.567	26.445	41.737	1.00 30.61	T	N
	ATOM	3310	CA	PRO T	27	47.516	27. 202	42.550	1.00 33.08	T	C
	ATOM	3311	С	PRO T	27	47.039	28.646	42.694	1.00 36.39	T	С
	ATOM	3312	0	PRO T	27	45.969	29.008	42. 204	1.00 37.38	T	0
20	ATOM	3313	CB	PRO T	27	48.781	27.116	41.722	1.00 31.05	T	C
	ATOM	3314	CG	PRO T	27	48. 232	27.369	40.350	1.00 29.94	T	C
	ATOM	3315	CD	PRO T	27	46.943	26.535	40.312	1.00 29.62	T	C
	ATOM	3316	N	LYS T	28	47.844	29.469	43.354	1.00 40.49	T	N
	ATOM	3317		LYS T	28	47.509	30.874	43.534	1.00 44.79	T	Ċ
25	ATOM	3318	C	LYS T	28	47.525	31.555	42.169	1.00 46.88	T	Č
20	ATOM	3319	0	LYS T	28	48.585	31.737	41.566	1.00 47.96	T	Ö
	ATOM	3320	СB	LYS T	28	48.518	31.537	44.472	1.00 45.11	Ť	č
	ATOM	3321	ĊĠ	LYS T	28	48. 533	30.923	45.859	1.00 46.65	Ť	č
	ATOM	3322	CD	LYS T	28	47.146	30.969	46.483	1.00 47.76	Ť	č
	ATOM	3323	CE	LYS T	28	47. 120	30. 295	47.843	1.00 49.21	Ť	č
30	ATOM	3324	NZ	LYS T	28	45.769	30. 375	48.468	1.00 50.84	Ť	Ŋ
	ATOM	3325	N	PRO T	29	46.342	31.942	41.667	1.00 47.94	Ţ	N
	ATOM	3326	ĊA	PRO T	29	46.170	32.602	40.371	1.00 48.83	T	Ċ
	ATOM	3327	C	PRO T	29	47. 026	33. 841	40. 130	1.00 49.78	Ť	č
	ATOM	3328	Ŏ	PRO T	29	46.997	34. 802	40. 899	1.00 49.58	Ť	ŏ
35	MOTA	3329	CB	PRO T	29	44.677	32. 914	40.339	1.00 48.24	Ť	Č
	ATOM	3330	CG	PRO T	29	44. 346	33. 102	41.778	1.00 47.36	Ť	Č
	ATOM	3331	CD	PRO T	29	45.074	31. 952	42.417	1.00 48.57	Ť	č
	ATOM	3332	N.	VAL T	30	47. 790	33. 795	39.044	1.00 50.46	Ť	Ŋ
	ATOM	3333	CA	VAL T	30	48.656	34. 894	38.640	1.00 51.62	Ť	Č
	ATOM	3334	C	VAL T	30	48. 245	35. 208	37. 210	1.00 51.40	Ť	č
40	ATOM	3335	Ď	VAL T	30	48.602	34. 479	36. 283	1.00 51.31	Ť	ŏ
	MOTA	3336	СB	VAL T	30	50.138	34. 482	38.664	1.00 51.31	Ť	
	MOTA	3337		VAL T	30	51.002	35.657	38. 258	1.00 52.42	T	C
	MOTA	3338		VAL T	30	50. 523	33. 993	40.055	1.00 52.42	Ť	C
								37.033			
45	MOTA	3339	N CA	ASN T	31	47.491	36. 291		1.00 50.80	Ţ	N
	MOTA	3340	CA	ASN T	31	46.994	36.652	35.709	1.00 49.64	Ţ	C
	ATOM	3341	C	ASN T	31	46.213	35. 437	35. 222	1.00 46.82	Ţ	C
	ATOM	3342	0	ASN T	31	46.349	35.007	34.077	1.00 46.96	Ţ	0
	ATOM	3343	CB	ASN T	31	48. 155	36. 952	34.760	1.00 52.08	Ţ	C
	ATOM	3344	CG	ASN T	31	48.857	38. 249	35.095	1.00 54.19	<u>T</u>	C
50	ATOM	3345		ASN T	31	48. 257	39. 322	35.032	1.00 56.94	T	0
	ATOM	3346		ASN T	31	50. 131	38. 160	35. 457	1.00 54.94	T	N
	ATOM	3347	N	GLN T	32	45.392	34.897	36.118	1.00 44.02	T	N
	ATOM	3348	CA	GLN T	32	44.597	33. 711	35.845	1.00 39.84	T	С
	ATOM	3349	C	GLN T	32	43.356	33. 696	36.732	1.00 36.22	T	С
55	ATOM	3350	0	GLN T	32	43.450	33. 789	37.956	1.00 36.42	T	0
•	MOTA	3351	CB	GLN T	32	45.457	32.474	36.107	1.00 40.02	T	Ċ
											-

5	ATOM ATOM ATOM ATOM	3352 3353 3354 3355	CG GLN T CD GLN T OEI GLN T NE2 GLN T	32 32 32 32	44.756 45.743 46.616 45.614	31.141 29.991 29.880 29.136	35. 996 36. 046 35. 189 37. 053	1.00 38.97 1.00 37.53 1.00 36.12 1.00 35.32	T T T	C C O N
	ATOM ATOM	3356 3357	N VAL T	33	42. 192 40. 930	33. 578 33. 555	36. 104 36. 824	1.00 33.32 1.00 31.20 1.00 26.24	T T	N C
10	ATOM ATOM	3358 3359	C VAL TO VAL TO CR. WAL T	33 33	40. 280 40. 698	32. 178 31. 375	36. 683 35. 851	1.00 24.67 1.00 23.37	T T	C 0
	ATOM ATOM ATOM	3360 3361 3362	CB VAL T CG1 VAL T CG2 VAL T	33 33 33	39.986 40.676 39.603	34.658 36.014 34.385	36. 296 36. 410 34. 854	1.00 25.12 1.00 23.86 1.00 26.27	T T T	C C C
15	ATOM ATOM	3363 3364	N TYR T CA TYR T	34 34	39. 260 38. 589	31. 911 30. 615	37. 493 37. 473	1.00 21.25 1.00 19.35	T T	N C
	ATOM ATOM ATOM	3365 3366 3367	C TYR T O TYR T CB TYR T	34 34 34	37.070 36.454 38.947	30.677 31.670 29.816	37. 428 37. 801 38. 728	1.00 18.92 1.00 18.57 1.00 18.40	T T T	C 0 C
20	ATOM ATOM	3368 3369	CG TYR T	34 34	40.416 41.125	29.582 28.667	38. 957 38. 182	1.00 20.44 1.00 18.46	T T	C
	MOTA MOTA MOTA	3370 3371 3372	CD2 TYR T CE1 TYR T CE2 TYR T	34 34 34	41.096 42.475 42.447	30. 259 28. 424 30. 021	39. 971 38. 412 40. 207	1.00 19.10 1.00 19.96 1.00 20.05	T T T	000
25	MOTA ATOM ATOM	3373 3374 3375	CZ TYR T OH TYR T N THR T	34 34 35	43.126 44.454 36.478	29. 102 28. 848 29. 581	39.426 39.669 36.974	1.00 20.10 1.00 24.65 1.00 16.56	T T T	C 0
23	ATOM MOTA	3376 3377	CA THR T C THR T	35 35	35. 034 34. 831	29. 429 27. 950	36.956 37.233	1.00 16.37 1.00 15.30	Ť T	N C C
20	ATOM ATOM ATOM	3378 3379 3380	O THR T CB THR T OG1 THR T	35 35 35	35. 490 34. 390 34. 409	27. 103 29. 799 31. 222	36.634 35.608 35.438	1.00 18.13 1.00 15.23 1.00 15.18	T T T	0 C 0
30	ATOM ATOM	3381 3382	CG2 THR T N VAL T	35 36	32. 941 33. 940	29. 336 27. 647	35. 581 38. 163	1.00 16.79 1.00 15.22	T T	C N
	ATOM ATOM ATOM	3383 3384 3385	CA VAL T C VAL T O VAL T	36 36 36	33.669 32.340 31.405	26. 271 25. 787 26. 568	38. 543 37. 974 37. 816	1.00 14.65 1.00 14.97 1.00 15.99	T T T	C C O
35	ATOM ATOM	3386 3387	CB VAL T	36 36	33. 638 33. 230	26. 153 24. 751	40.086 40.517	1.00 12.56 1.00 14.14	T T	C
	ATOM ATOM ATOM	3388 3389 3390	CG2 VAL T N GLN T CA GLN T	36 37 37	35.019 32.278 31.045	26. 496 24. 507 23. 903	40.652 37.624 37.136	1.00 13.80 1.00 14.43 1.00 14.45	T T T	C N C
40	ATOM ATOM	3391 3392	C GLN T O GLN T	37 37	30. 796 31. 733	22.668 21.976	37. 990 38. 381	1.00 14.47 1.00 14.47 1.00 14.12	T T	C O
	ATOM ATOM ATOM	3393 3394 3395	CB GLN T CG GLN T CD GLN T	37 37 37	31.152 31.085 30.857	23. 468 24. 583 24. 037	35. 671 34. 637 33. 234	1.00 14.86 1.00 14.48 1.00 13.74	T T T	C C C
45	ATOM ATOM	3396 3397	OE1 GLN T NE2 GLN T	37 37	31.300 30.175	22. 940 24. 807	32. 912 32. 393	1.00 13.95 1.00 10.80	T T	0 N
	ATOM ATOM ATOM	3398 3399 3400	N ILE T CA ILE T C ILE T	38 - 38 38	29. 533 29. 176 27. 965	22. 399 21. 231 20. 576	38. 287 39. 070 38. 417	1.00 14.90 1.00 14.60	T T	N C
50	ATOM ATOM	3401 3402	O ILE T	38 38	27. 150 28. 829	21. 252 21. 617	37. 788 40. 521	1.00 16.38 1.00 17.10 1.00 15.19	T T T	C 0 C
	ATON ATON	3403 3404	CG1 ILE T	38 38	28.607 27.601	20. 351 22. 530	41.358 40.539	1.00 14.88 1.00 10.78	T T	C
55	ATON ATON ATON	3405 3406 3407	CD1 ILE T N SER T CA SER T	38 39 39	28. 402 27. 857 26. 737	20. 620 19. 260 18. 529	42. 845 38. 557 37. 989	1.00 14.77 1.00 16.00 1.00 15.27	T T T	C N C

	ATOM	3408		SER T	39	26.642	17.157	38.622	1.00 15.45	T	C
	ATOM	3409		SER T	39	27. 511	16.748	39.382	1.00 16.91	T	0
5	MOTA	3410		SER T	39	26.948	18. 327	36.491	1.00 12.90	T	C
	ATOM	3411		SER T	39	27. 999	17.389	36.285	1.00 12.71	Ţ	0
	ATOM	3412		THR T	40	25. 569	16.453	38. 295	1.00 17.91	T	N
	ATOM	3413		THR T	40	25. 381	15.088	38.745	1.00 18.74	T	C
	ATOM	3414		THR T	40	25.637	14. 283	37. 480	1.00 21.10	Ţ	C
10	ATOM	3415		THR T	40	25.606	14.839	36.378	1.00 20.86	Ţ	0
	ATOM	3416		THR T	40	23.947	14.834	39.245	1.00 19.11	T	C
	ATOM	3417		THR T	40	23.002	15.399	38.325	1.00 17.75	T	0
	ATOM	3418		THR T	40	23. 755	15.448	40.620	1.00 17.44	T	C
	ATOM	3419		LYS T	41	25.896	12.989	37.639	1.00 24.75	Ţ	N
15	ATOM	3420		LYS T	41	26.183	12.079	36.527	1.00 26.61	Ţ	C
	ATOM	3421		LYS T	41	25. 427	12.345	35.224	1.00 26.89	T	C
	ATOM	3422		LYS T	41	26.032	12.422	34. 154	1.00 27.99	Ţ	÷0
	ATOM	3423		LYS T	41	25.922	10.637	36.970	1.00 31.82	T	C
	ATOM	3424		LYS T	41	26.089	9.598	35.873	1.00 37.07	T	C
20	ATOM	3425		LYST	41	25.717 25.812	8.204	36.371 35.253	1.00 39.57 1.00 40.27	T T	C C
	MOTA MOTA	3426 3427		LYS T	41 41	25. 454	7.175 5.808	35. 729	1.00 43.52	Ť	N
	ATOM	3428	N	SER T	42	24.108	12.473	35. 303	1.00 24.42	Ť	N
	ATOM	3429	CA	SER T	42	23. 324	12.413	34.105	1.00 24.43	T	C
	ATOM	3430	C	SER T	42	22.618	14.066	34.081	1.00 22.94	Ť	č
25	ATOM	3431	ŏ	SER T	42	21.641	14.244	33.360	1.00 25.38	Ť	Õ
	ATOM	3432	CB	SER T	42	22. 299	11.588	33.926	1.00 26.04	Ť	Č
	ATOM	3433	OG	SER T	42	21.442	11.505	35.048	1.00 31.07	Ť	ŏ
	ATOM	3434	N	GLY T	43	23. 114	15.017	34.866	1.00 19.49	Ť	Ň
	MOTA	3435	CA	GLY T	43	22.513	16.338	34.898	1.00 18.07	Ť	C
30	ATOM	3436	C	GLY T	43	23.352	17.340	34.125	1.00 15.78	Ť	Č
	ATOM	3437	Ō	GLY T	43	24.494	17.058	33.774	1.00 15.61	T	0
	ATOM	3438	N	ASP T	44	22.787	18.508	33.852	1.00 15.33	T	N
	ATOM	3439	CA	ASP T	44	23.500	19.543	33.119	1.00 15.18	T	С
	ATOM	3440	С	ASP T	44	24.586	20.168	33.991	1.00 15.75	T	C
35	ATOM	3441	0	ASP T	44	24.536	20.085	35.220	1.00 14.67	T	0
	ATOM	3442	CB	ASP T	44	22.532	20.645	32.664	1.00 14.49	T	C
	ATOM	3443	CG	ASP T	44	21.512	20.163	31.635	1.00 15.31	T	C
	ATOM	3444	OD1		44	21.724	19.121	31.012	1.00 11.39	T	0
	MOTA	3445	OD2		44	20.500	20.857	31.448	1.00 16.14	Ţ	0
40	ATOM	3446	N	TRP T	45	25.570	20.794	33. 356	1.00 15.26	T	N
	ATOM	3447	CA	TRP T	45	26.632	21.449	34.104	1.00 16.12	Ţ	C
	ATOM	3448	Č	TRP T	45	26. 155	22.832	34.532	1.00 16.65	T	C
	ATOM	3449	0	TRP T	45	25. 592	23.575	33.738	1.00 17.64	T	0
	ATOM	3450	CB	TRP T	45	27. 895	21.576	33. 259	1.00 14.65	T	C
45	ATOM	3451	CG	TRP T	45	28. 542	20. 254	32.967	1.00 16.11	T	C
	MOTA	3452		TRP T	45	28.359	19.476	31.859	1.00 14.82	Ţ	C
	ATOM	3453		TRP T	45	29.469	19.550	33.804	1.00 15.28	T	C
	ATOM	3454		TRP T	45 45	29.119	18.332	31.951	1.00 14.03 1.00 15.34	T	N
	ATOM	3455 3456		TRP T	45 45	29.812 30.044	18.352 19.814	33. 135 35. 056	1.00 13.34	T T	C
50	ATOM						17.420	33. 672	1.00 14.08		
	ATOM ATOM	3457 3458		TRP T	45 45	30. 708 30. 938	18.884	35. 595	1.00 14.08	T	C
	ATOM	3459		TRP T	45 45	30. 938	17.703	34. 899	1.00 15.15	T T	C
	ATOM	3459 3460	N N	LYS T	45 46	26.374	23. 165	35. 795	1.00 15.49	T	N
	ATOM	3461	CA	LYS T	46	25. 960	24.455	36. 323	1.00 17.49	Ť	C
55	ATOM	3462	€ €	LYS T	46	27. 218	25.240	36.702	1.00 16.41	T	Č
	ATOM	3463	Õ	LYS T	46	28. 109	24.704	37. 358	1.00 17.90	T	0
	AT OR	0400	J	D10 1	-10	20. 103	27. IUT	0000	1.00 11.30	1	U

	ATOM	3464	CB	LYS T	46	25.070	24. 223	37.545	1.00 18.63	T	C
	MOTA	3465	CG	LYS T	46	24.011	25. 285	37.794	1.00 25.36	T	C
	ATOM	3466	CD	LYS T	46	24.421	26. 245	38.886	1.00 27.44	T	C
5	ATOM	3467	CE	LYS T	46	23. 245	27.096	39.336	1.00 30.02	Ť	Č
	ATOM	3468	NZ	LYS T	46	22. 215	26. 308	40.063	1.00 30.73	Ť	Ň
						27. 299	26. 499	36. 276	1.00 16.11	Ť	
	ATOM	3469	N	SER T	47						N
	ATOM	3470	CA	SER T	47	28.460	27. 334	36.582	1.00 14.72	Ţ	C
10	MOTA	3471	C	SER T	47	28. 330	28. 031	37. 928	1.00 13.96	Ţ	C
	ATOM	3472	0	SER T	47	27. 244	28. 454	38.319	1.00 13.03	Ţ	0
	ATOM	3473	CB	SER T	47	28.678	28. 386	35. 488	1.00 11.64	T	С
	ATOM	3474	0G	SER T	47	29.306	27.819	34.350	1.00 15.92	T	0
	ATOM	3475	N	LYS T	48	29.456	28.163	38.619	1.00 13.74	T	N
	MOTA	3476	CA	LYS T	48	29.503	28.794	39.935	1.00 15.63	T	C
15	ATOM	3477	C	LYS T	48	30.801	29. 581	40.095	1.00 15.18	Ť	Ċ
	ATOM	3478	Ö	LYS T	48	31.774	29. 346	39.376	1.00 14.77	Ť	ŏ
	ATOM	3479	CB	LYS T	48	29.447	27. 724	41.033	1.00 13.97	Ť	Č
							26. 747	40.906	1.00 15.98	Ť	Č
	ATOM	3480	CG.	LYS T	48	28. 293					
20	ATOM	3481	CD	LYS T	48	27.363	26. 832	42.093	1.00 19.94	Ţ	C
20	ATOM	3482	CE	LYS T	48	26.789	28. 221	42.253	1.00 19.83	Ţ	C
	ATOM	3483	NZ	LYS T	48	25.892	28.306	43.425	1.00 18.63	Ţ	N
	MOTA	3484	N	CYS T	49	30.806	30.508	41.046	1.00 16.26	T	N
	MOTA		, CA	CYS T	49	31.993	31. 308	41.339	1.00 17.07	T	C
	MOTA	3486	C	CYS T	49	32.635	31.844	40.058	1.00 17.80	T	C
25	MOTA	3487	0	CYS T	49	33. 815	31.627	39.784	1.00 17.68	T	0
	ATOM	3488	CB	CYS T	49	32.975	30.448	42.144	1.00 15.94	T	C
	ATOM	3489	SG	CYS T	49	32.249	29.824	43.705	1.00 18.32	T	S
	ATOM	3490	N	PHE T	50	31.826	32.568	39.293	1.00 19.09	T	N
	MOTA	3491	CA	PHE T	50	32.208	33.145	38.006	1.00 19.69	T	C
20	MOTA	3492	C	PHE T	50	33. 438	34.046	38.020	1.00 18.93	Ť	Č
30	MOTA	3493	ŏ	PHE T	50	33.462	35.073	38. 687	1.00 19.65	Ť	Ŏ
	ATOM	3494	CB	PHE T	50	31.018	33. 925	37. 437	1.00 21.03	Ť	Č
	ATOM	3495	CG	PHE T	50	29. 705	33. 212	37. 598	1.00 22.82	Ť	č
	ATOM	3496		PHE T	50	29.410	32.090	36. 834	1.00 23.21	Ť	č
				PHE T	50	28.791	33.626	38. 562	1.00 24.00	Ť	
35	ATOM	3497									C
	ATOM	3498		PHE T	50	28. 225	31. 388	37.031	1.00 22.86	T	C
	ATOM	3499		PHE T	50	27. 604	32.929	38. 768	1.00 24.77	T	C
	ATOM	3500	CZ	PHE T	50	27. 324	31.808	38.000	1.00 24.10	· <u>T</u>	C
	ATOM	3501	N	TYR T	51	34.454	33.646	37. 264	1.00 19.61	Ţ	Ŋ
40	MOTA	3502	CA	TYR T	51	35.694	34.404	37. 135	1.00 19.80	Ţ	C
40	ATOM	35 0 3	С	TYR T	51	36.2 6 2	34.886	38. 459	1.00 20.72	T	С
	ATOM	3504	0	TYR T	51	36.662	36.043	38. 590	1.00 20.88	T	0
	ATOM	3505	CB	TYR T	51	35.470	35.601	36. 212	1.00 20.21	T	C
	ATOM	3506	CG	TYR T	51	34.778	35.245	34.915	1.00 21.19	T	С
	ATOM	3507		TYR T	51	35.358	34.354	34.011	1.00 20.94	T	C
45	ATOM	3508		TYR T	51	33.536	35.795	34.596	1.00 22.01	T	С
	ATOM	3509		TYR T	51	34.717	34.021	32.820	1.00 23.56	T	Č
	ATOM	3510		TYR T	51	32.888	35. 471	33. 409	1.00 23.16	Ť	Č
	ATOM	3511	CZ	TYR T	51	33.481	34. 586	32. 527	1.00 25.31	Ť	Č
			OH	TYR T	51		34. 271	31.353	1.00 29.02	Ť	ã
50	ATOM	3512				32.835					
50	ATOM	3513	N	THR T	52	36.300	33. 989	39. 436	1.00 20.20	Ţ	N
	ATOM	3514	CA	THR T	52	36.828	34. 301	40.754	1.00 19.96	Ť	C
	ATOM	3515	C	THR T	52	38.348	34. 188	40.741	1.00 20.71	T	C
	ATOM	3516	0	THR T	52	38.916	33.409	39.970	1.00 19.97	Ţ	0
	ATOM	3517	CB	THR T	52	36.283	33. 317	41.816	1.00 19.38	T	С
55	ATOM	3518		THR T	52	36.848	33.631	43.094	1.00 18.27	T	0
	ATOM	3519	CG2	THR T	52	36.651	31.878	41.452	1.00 20.27	T	С

		0500	N.T.	mun m	r 0	20.007	24 072	41 505		T	Nī .
	ATOM	3520	N	THR T	53	39.007	34.973 34.911	41.585 41.688	1.00 20.41	Ť.	N C
	ATOM	3521	CA	THR T	53	40. 460 40. 862	34. 112	42. 934	1.00 22.43 1.00 23.31	Ť	C
5	ATOM ATOM	3522 3523	C 0	THR T	53 53	42.042	33.872	43.178	1.00 24.50	Ť	Ö
	ATOM	3524	CB	THR T	53	41.094	36.318	41.751	1.00 21.43	Ť	Č
	ATOM	3525	0G1	THR T	53	40. 475	37.077	42. 793	1.00 23.60	Ť	ŏ
	ATOM	3526		THR T	53	40.919	37.039	40. 423	1.00 20.43	Ť	Č
	ATOM	3527	N	ASP T	54	39. 878	33.701	43.727	1.00 24.66	Ť	N
10	ATOM	3528	CA	ASP T	54	40.170	32.907	44.910	1.00 24.86	Ť	Ċ
	ATOM	3529	C	ASP T	54	40.341	31.467	44.447	1.00 24.57	T	C
	ATOM	3530	0	ASP T	54	39.991	31.124	43.311	1.00 23.26	T	0
	ATOM	3531	CB	ASP T	54	39.027	32.991	45.920	1.00 28.59	T	C
	ATOM	3532	CG	ASP T	54	38.695	34.418	46.307	1.00 31.77	T	C
15	ATOM	3533	0D1	ASP T	54	39.607	35.179	46.642	1.00 35.02	T	0
	ATOM	3534	OD2	ASP T	54	37. 529	34.759	46.279	1.00 36.17	T	0
	ATOM	3535	N	THR T	55	40.888	30.625	45.316	1.00 20.61	Ţ	N
	ATOM	3536		THR T	55	41.088	29.230	44.969	1.00 18.26	T	C
	MOTA	3537	C	THR T	55	40.114	28.339	45.741	1.00 18.54	Ţ	C
20	ATOM	3538	0	THR T	55	40.483	27. 264	46.222	1.00 16.66	T	0
	MOTA	3539	CB	THR T	55	42.526	28.806	45.266	1.00 17.06	Ţ	C
	ATOM	3540	0G1	THR T	55	42.852	29.159 29.500	46.612 44.321	1.00 17.45 1.00 19.50	T T	0
	ATOM	3541 3542		THR T	55 5 6	43. 488 38. 871	28.804	45.857	1.00 15.86	T	N
	MOTA MOTA	3543	N CA	GLU T	56	37.822	28.072	46.553	1.00 17.50	Ť	C
25	ATOM	3544	C	GLU T	5 6	36. 462	28.477	45.999	1.00 16.59	Ť	Ç
	MOTA	3545	Õ	GLU T	56	36. 294	29.576	45. 475	1.00 15.56	Ť	ŏ
	ATOM	3546	СВ	GLU T	56	37. 837	28.387	48.053	1.00 17.92	Ť	Č
	ATOM	3547	CG	GLU T	5 6	37. 396	29.809	48.374	1.00 20.51	T	C
20	ATOM	3548	CD	GLU T	56	37. 265	30.061	49.859	1.00 24.03	T	C
30	ATOM.	3549		GLU T	5 6	38. 221	29.802	50.582	1.00 26.81	T	0
	ATOM	3550	OE2	GLU T	56	36. 205	30.518	50. 287	1.00 26.27	T	0
	ATOM	3551	N	CYS T	57	35.490	27.586	46.129	1.00 16.04	T	N
	ATOM	3552	CA	CYS T	57	34. 147	27.870	45.665	1.00 16.17	Ţ	C .
35	ATOM	3553	C	CYS T	57	33.140	27.164	46.552	1.00 15.98	Ţ	C
	ATOM	3554	0	CYS T	57	33. 225	25.954	46.754	1.00 14.72	Ţ.	0
	MOTA	3555	CB	CYS T	57	33.963	27.403	44. 219	1.00 17.24	Ţ	C
	MOTA MOTA	3556	SG	CYS T ASP T	57 58	32. 314 32. 187	27.793 27.918	43.557 47.084	1.00 17.97 1.00 14.99	T T	S N
	MOTA	3557 3558	N Ca	ASP T	58	31. 172	27.326	47. 934	1.00 14.99	T .	Č
40	ATOM	3559	C	ASP T	58	30. 115	26.677	47.061	1.00 16.95	Ť	č
	MOTA	3560	ŏ	ASP T	58	29.477	27.340		1.00 17.86	Ť	Õ
	ATOM	3561	ČВ	ASP T		30. 526	28.385	48.829	1.00 16.18	Ť	Č
	MOTA	3562	CG	ASP T	58	29.436	27.806	49.715	1.00 17.55	Ţ	C
	ATOM	3563		ASP T	58	29. 529	26.636	50.053	1.00 15.23	T	0
45	MOTA	3564	OD2	ASP T	58	28.502	28.531	50.073	1.00 18.41	Ţ	0
	ATOM	3565	N	LEU T	59	29.939	25.373	47. 227	1.00 16.87	T	N
	ATOM	3566	CA	LEU T	59	28. 951	24.643	46.449	1.00 16.97	T	C
	ATOM	3567	С	LEU T		27. 832	24.092	47.331	1.00 17.59	T	С
	ATOM	3568	0	LEU T		27. 077	23. 218	46.916	1.00 19.55	T	0
50	ATOM	3569	CB	LEU T		29.638	23.513	45.682	1.00 14.54	Ţ	C
	ATOM	3570	CG	LEU T		30.694	24.010	44.686	1.00 16.18	Ţ	C
	ATOM	3571		LEU T		31.435	22.828	44.072	1.00 13.02.	Ţ	C
	ATOM	3572		LEU T		30.019	24.850	43.606	1.00 14.07	Ţ	C
	ATOM	3573	N	THR T		27. 718	24.630 24.199	48. 541 49. 495	1.00 18.48 1.00 20.05	T	N
55	ATOM	3574	CA	THR T		26. 701			1.00 20.03	T	C
	ATOM	3575	С	THR T	ŲΨ	25. 274	24. 228	48.952	1.00 20.01	T	C

	MOTA	3576	0	THR T	60	24.558	23.230	49.030	1.00 20.04	T	0
	ATOM	3577	CB	THR T	60	26.748	25.062	50.779	1.00 20.92	T	С
5	ATOM	3578	0G1	THR T	60	28.024	24.909	51.415	1.00 21.02	T	0
	ATOM	3579		THR T	60	25.654	24.647	51.747	1.00 19.78	T	C
	ATOM	3580	N	ASP T	61	24.859	25.368	48.405	1.00 20.95	T	N
	ATOM	3581		ASP T	61	23.500	25.507	47.884	1.00 22.33	T	C
	ATOM	3582	C	ASP T	61	23.142	24. 529	46.778	1.00 21.88	Ť	Č
10	ATOM	3583	Õ	ASP T	61	21.967	24. 220	46.574	1.00 23.89	Ť	ŏ
10	ATOM	3584	CB	ASP T	61	23. 252	26.934	47.391	1.00 23.16	Ť	Č
				ASP T	61	23. 321	27.947	48. 507	1.00 26.60	Ť	Č
	ATOM	3585	CG				27.550	49.659	1.00 28.12	Ť	Ŏ
	ATOM	3586		ASP T	61	23.175					
	ATOM	3587		ASP T	61	23.511	29.127	48. 221	1.00 31.54	T	0
15	ATOM	3588	N	GLU T	62	24.146	24.042	46.060	1.00 20.11	Ţ	N
	MOTA	3589	CA	GLU T	62	23.890	23.102	44.986	1.00 21.57	Ţ	C
	ATOM	3590	С	GLU T	62	23.774	21.671	45.504	1.00 21.37	T	C
	ATOM	3591	0	GLU T	62	22.848	20.950	45.130	1.00 22.03	T	0
	ATOM	3592	CB	GLU T	62	2 4.996	23.179	43.925	1.00 20.82	. T	С
20	ATOM	3593	CG	GLU T	62	25. 21 1	24.565	43.313	1.00 22.54	T	С
20	MOTA	3594	CD	GLU T	62	23.923	25.198	42.794	1.00 26.23	T	C
	ATOM	3595	0E1	GLU T	62	23.135	24.492	42.164	1.00 25.97	T	0
	ATOM	3596	0E2	GLU T	62	23.717	26.403	43.012	1.00 24.60	T	0
	ATOM	3597	N	ILE T	63	24.693	21.257	46.375	1.00 19.96	T	N
	ATOM	3598	CA	ILE T	63	24.65 6	19.887	46.878	1.00 20.43	T	С
25	ATOM	3599	C	ILE T	63	23.529	19.576	47.870	1.00 20.80	T	С
	ATOM	3600	0	ILE T	63	23.082	18.434	47.951	1.00 19.50	T	0
	ATOM	3601	CB	ILE T	63	26.035	19.460	47.477	1.00 20.40	T	C
	ATOM	3602		ILE T	63	26.424	20.356	48.654	1.00 19.56	T	C
	ATOM	3603		ILE T	63	27.105	19.513	46.398	1.00 18.09	T	Č
30	ATOM	3604		ILE T	63	25.877	19.894	49.986	1.00 19.85	T	C
	ATOM	3605	N	VAL T	64	23.047	20.576	48.603	1.00 20.09	Ť	Ň
	ATOM	3606	CA	VAL T	64	21.967	20.334	49.558	1.00 20.93	Ť	Ċ
	ATOM	3607	C	VAL T	64	20.614	20.092	48.875	1.00 23.72	Ť	. Č
	ATOM	3608	ŏ	VAL T		19.638	19.736	49.537	1.00 21.27	Ť	ő
	ATOM	3609	СВ	VAL T	64	21.804	21.501	50.568	1.00 20.02	Ť	Č
35	ATOM	3610	-	VAL T	64	23.093	21.690	51.358	1.00 20.46	Ť	Č
	ATOM	3611		VAL T		21, 405	22.775	49.842	1.00 20.40	Ť	C
	ATOM	3612	N N	LYS T	65	20. 553	20. 294	47.559	1.00 25.23	Ţ	N
	ATOM	3613	CA	LYS T		19.318	20.065	46.809	1.00 28.22	Ť	
	ATOM	3614	C	LYS T		18. 978	18.574	46.822	1.00 27.03	T.	C
40	ATOM	3615	0	LYS T		17.812	18. 194	46.764	1.00 28.54		
	ATOM		CB	LYS T						T	0
		3616				19.466	20.565	45.366	1.00 30.57	T	C
	ATOM	3617	CG	LYS T		19.579	22.081	45. 256	1.00 32.86	Ţ	C
	ATOM	3618	CD	LYS T		19.681	22.544	43.811	1.00 35.41	Ţ	C
45	ATOM	3619	CE	LYS T	65	19.767	24.064	43. 735	1.00 37.84	Ţ	C
45	ATOM	3620	NZ	LYS T		19.813	24. 564	42.334	1.00 39.60	<u>T</u>	N
	ATOM	3621	N	ASP T		20.014	17.742	46.879	1.00 26.86	T	N
	ATOM	3622	CA	ASP T		19.877	16.291	46.956	1.00 24.78	T	С
	ATOM	3623	C	ASP T		21.205	15.780	47. 494	1.00 23.00	T	С
	ATOM	3624	0	ASP T		22.125	15.490	46. 734	1.00 21.38	T	0
50	ATOM	3625	CB	ASP T		19.609	15.669	45.586	1.00 26.36	T	C
	ATOM	3626	€G	ASP T		19.251	14. 188	45.680	1.00 29.40	T	C
	MOTA	3627	0D1	ASP T	66	19.538	13.568	46.722	-1.00 28.55	Ţ	0
	MOTA	3628		ASP T		18.695	13.648	44.717	1.00 31.14	T	0
	ATOM	3629	N	VAL T		21.300	15.672	48.814	1.00 22.91	T	N
<i>55</i>	ATOM	3630	CA	VAL T		22.530	15. 221	49.452	1.00 22.94	Ť	Ċ
55	ATOM	3631	C	YAL T		22. 927	13.783	49.125	1.00 24.63	Ť	č
	111 010	000.	~			-0.001					0

	ATOM	3632	0	VAL		67	24.071	13.390	49.356	1.00 24.10		T	0
5	ATOM	3633	CB	VAL		67	22. 449	15. 384	50.992	1.00 22.47		T	С
5	ATOM	3634		VAL		67	22. 180	16.846	51.350	1.00 17.69		T	€
	ATOM	3635	CG2	VAL		67	21.364	14.488	51.563	1.00 19.93		T	С
	ATOM	3636	N	LYS	T	68	21.998	13.003	48.578	1.00 26.06		T	N
	ATOM	3637	CA	LYS	T	68	22. 284	11.608	48.239	1.00 27.04		T	C
	ATOM	3638	С	LYS	Τ	68	22.873	11.395	46.850	1.00 26.31		Ť	Č
10	ATOM	3639	0	LYS		68	23.342	10.304	46.531	1.00 24.28		Ť	ŏ
	ATOM	3640	CB	LYS		68	21.024	10.759	48. 401	1.00 28.46		Ť	Č
	ATOM	3641	CG	LYS		68	20.634	10. 547	49.850	1.00 30.19		Ť	C
	ATOM	3642	CD	LYS		68	19. 389	9. 699	49.975			Ť	Č
	ATOM	3643	CE	LYS		68	19.115	9. 356	51.425	1.00 34.80		Ť	C
15	ATOM	3644	NZ	LYS		68	20. 235	8. 569	52.002	1.00 38.91		Ť	
	ATOM	3645	N	GLN		69	22. 848	12. 436	46.025				N
	ATOM	3646	CA	GLN		69	23. 404	12. 450	44.681	1.00 26.68		T	N
	ATOM	3647	C	GLN						1.00 24.77		T	C
	ATOM	3648				69	24.924	12.389	44. 739	1.00 23.29		Ţ	C
	ATOM	3649	O CB	GLN GLN		69	25. 501	12.750	45.762	1.00 22.51		T	0
20	ATOM	3650				69	22.901	13.519	43. 829	1.00 27.54		T	C
			CC	GLN		69	21.556	13. 274	43. 173	1.00 32.96		Ţ	C
	ATOM ATOM	3651	CD	GLN		69	21.628	12. 171	42. 135	1.00 35.85		Ţ	C
		3652	OE I	GLN		69	22.338	12.292	41.138	1.00 37.60		Ţ	0
	ATOM	3653		GLN		69	20.901	11.084	42. 369	1.00.39.16		T	N
25	ATOM	3654	N	THR		70	25.562	11.995	43.640	1.00 21.11		T	N
	ATOM	3655	CA	THR		70	27.013	12.016	43. 531	1.00 20.59		T	С
	ATOM	3656	C	THR		70	27. 345	13. 152	42.570	1.00 20.22		T	C
	ATOM	3657	0	THR		70	26.917	13.149	41.414	1.00 19.62		T	0
	ATOM	3658	CB	THR		70	27.570	10.687	42.978	1.00 19.99		T	C
20	MOTA	3659	0G1	THR		70	27.344	9.643	43. 931	1.00 21.36		T	0
30	MOTA	3560		THR		70	29.067	10.802	42.728	1.00 18.95		T	€
	MOTA	3661	N	TYR		71	28.102	14.127	43.061	1.00 18.76		T	N
	MOTA	3662	CA	TYR		71	28.462	15.292	42. 271	1.00 17.58	_	T	С
	MOTA	3663	C	TYR		71	29.885	15.284	41.752	1.00 17.20		T	C
	MOTA	3664	0	TYR		71	30.786	14.721	42.366	1.00 17.10		T	0
35	MOTA	3665	CB	TYR		71	28.263	16.572	43.095	1.00 15.82		T	C
	MOTA	3666	CG	TYR		71	26.852	16.779	43. 587	1.00 15.19		T	C
	MOTA	3667	CD1	TYR		71	26.381	16.119	44.729	1.00 15.57		T	С
	MOTA	3668		TYR		71	25.967	17.598	42.887	1.00 14.29		T	С
	ATOM	3669		TYR		71	25.065	16.268	45.155	1.00 14.24		T	C
40	ATOM	3670		TYR		7 i	24.649	17.752	43.302	1.00 14.12		T	С
	MOTA	3671	CZ	TYR	T	71	24.205	17.083	44. 435	1.00 15.17		T	C
	ATOM	3672	0H	TYR	T	71	22.901	17.226	44.844	1.00 13.94		T	0
	MOTA	3673	N	LEU	T	72	30.077	15.926	40.609	1.00 17.96		T	N
	ATOM	3674	CA	LEU		72	31.397	16.052	40.017	1.00 18.23		T	C
	ATOM	3675	С	LEU	T	72	31.517	17.536	39.729	1.00 17.51		T	Č
45	ATOM	3676	0	LEU	T	72	30.556	18.179	39.300	1.00 17.06		T	Ö
	ATOM	3677	CB	LEU		72	31.500	15.256	38.712	1.00 22.12		Ť	Č
	MOTA	3678	CG	LEU		72	32.895	14.972	38.119	1.00 26.17		Ť	Č
	ATOM	3679	CD1	LEU		72	33.519	16.243	37.563	1.00 28.99		Ť	Č
	MOTA	3680		LEU		72	33.792	14.356	39. 182	1.00 25.19		T	C
50	MOTA	3681	N	ALA		73	32.686	18.089	40.003	1.00 17.91		T	N
	ATOM	3682	CA	ALA	T.	73	32.928	19.496	39.751	1.00 16.95		Ī	C
	ATOM	3683	C	ALA		73	34.197	19.592	38. 922	1.00 16.12		T	Č
	ATOM	3684	Ŏ	ALA		73	34.947	18.624	38. 809	1.00 18.51		I T	
	ATOM	3685	ČB	ALA		73	33.092	20. 240	41.065	1.00 15.31		r T	0 C
55	ATOM	3686	N	ARG		74	34.415	20. 746	38.312	1.00 15.74			
	ATOM	3687	CA	ARG		74	35.613	20. 140	37.524	1.00 13.02		Γ	N
	111010	0001	Un	ıπ/ O	1	1.4	30.013	40.900	31. 324	1.00 14.43		ľ	С

	MOTA	3688	С	ARG T	74	35.926	22.453	37.535	1.00 14.10	T	С	
	ATOM	3689	ŏ	ARG T	74	35.024	23. 293	37.512	1.00 13.27	Ť	Õ	
5									1.00 13.57			
	ATOM	3690	CB	ARG T	74	35.444	20.438	36.090		Ţ	C	
	ATOM	3691	CG	ARG T	74	34. 246	20.959	35. 312	1.00 15.95	Ţ	C	
	ATOM	3692	CD	ARG T	74	34.070	20. 161	34.015	1.00 15.26	Ţ	C	
	ATOM	3693	NE	ARG T	74	32.983	20. 6 58	33.173	1.00 11.15	T	N	
	ATOM	3694	CZ	ARG T	74	32.545	20.051	32.071	1.00 13.10	T	C	
10	ATOM	3695	NH1		74	33.093	18.910	31.661	1.00 9.53	T	N	
	ATOM	3696		ARG T	74	31.562	20. 594	31.364	1.00 10.82	Ť	N	
	ATOM	3697	N	VAL T	75	37. 211	22.767	37.599	1.00 14.14	Ţ	N	
	ATOM	3698	ÇA	VAL T	75	37.672	24.147	37.643	1.00 15.10	T	С	
	ATOM	3699	С	VAL T	75	38.307	24.589	36.333	1.00 16.01	T	C	
15	ATOM	3700 -	0	VAL T	75	39.301	24. 0 16	35.896	1.00 14.34	T	0	
	ATOM	3701	CB	VAL T	75	38.708	24.336	38.773	1.00 15.28	Т	C	
	ATOM	3702		VAL T	75	39.280	25.747	38.731	1.00 13.98	Ť	č	
	ATOM	3703		VAL T	75	38.058	24.065	40.122	1.00 14.39	Ť	č	
				PHE T						_		
	ATOM	3704	N		76	37.722	25.604	35. 708	1.00 18.72	Ţ	N	
20	ATOM	3705	CA	PHE T	76	38. 247	26.140	34.450	1.00 21.14	Ţ	C	
	ATOM	3706	С	PHE T	76	39.211	27. 272	34.780	1.00 22.66	T	С	
	ATOM	3707	0	PHE T	76	38. 992	28.035	35.723	1.00 23.68	T	0	
	ATOM	3708	CB	PHE T	76	37.112	26.668	33.583	1.00 23.60	Т	С	
	ATOM	3709	CG	PHE T	76	36.199	25.596	33.052	1.00 28.84	T	С	
05	ATOM	3710	CDI	PHE T	76	36.660	24.654	32.152	1.00 31.44	T	C	
25	ATOM	3711		PHE T	76	34.880	25. 521	33.486	1.00 31.69	Ť	Č	
	ATOM	3712		PHE T	76	35.818	23.652	31.671	1.00 33.34	Ť	č	
	ATOM	3713		PHE T	76	34.034	24.522	33.008	1.00 34.41	Ť		
										=	C	
	ATOM	3714	CZ	PHE T	76	34.505	23.589	32.101	1.00 30.45	<u>T</u>	C	
30	ATOM	3715	N	SER T	77	40. 282	27. 369	34.000	1.00 24.37	· <u>T</u>	N	
30	ATOM	3716	CA	SER T	77	41.287	28.410	34.182	1.00 25.59	T	C	
	ATOM	3717	С	SER T	77	41.337	29.303	32.953	1.00 27.03	. Т	С	
	ATOM	3718	0	SER T	77	41.322	28.817	31.823	1.00 25.41	T	0	
	ATOM	3719	CB	SER T	77	42.668	27.793	34.401	1.00 26.08	T	С	
	ATOM	3720	0G	SER T	77	42.714	27.056	35.604	1.00 28.24	Ť	Ō	
35	ATOM	3721	N	TYR T	78	41.398	30.610	33.188	1.00 29.89	Ť	Ň	
	ATOM	3722	CA	TYR T	78	41.465	31.601	32.119	1.00 31.65	Ť	C	
	ATOM	3723	C	TYR T	78	42.636	32.537	32.414				
									1.00 33.58	Ţ	C	
	ATOM	3724	0	TYR T	78	43.009	32.726	33.572	1.00 34.76	T	0	
	ATOM	3725	CB	TYR T	78	40.173	32.413	32.073	1.00 31.59	T	C .	
40	ATON	3726	CG	TYR T	78	38.919	31.579	31.943	1.00 31.52	T	C	
	ATOM	3727	CDI		78	38. 505	31.093	30.706	1.00 29.66	T	C	
	ATOM	3728	CD2	TYR T	78	38.147	31.274	33.062	1.00 30.05	T	C	
	ATOM	3729	CE1	TYR T	78	37.352	30.331	30.587	1.00 30.62	T	Č	
	ATOM	3730	CE2	TYR T		36.998			1.00 30.31	Ť	č	
	ATOM	3731	CZ	TYR T	78	36.604	30.044	31.716	1.00 30.37			
45	ATOM	3732	OH	TYR T	78	35. 458	29. 296	31.607		T	C	
	ATOM	3733						21.007	1.00 31.28	Ţ	0	
			N	PRO T	79	43. 236	33.132	31.372	1.00 35.05	Ţ	N	
	ATOM	3734	CA	PRO T	79	44.365	34.047	31.573	1.00 35.74	T	C	
	MOTA	3735	С	PRO T	79	43.914	35.395	32.139	1.00 36.81	T	С	
	ATOM	3736	0	PRO T	79	43.932	35.611	33.352	1.00 37.66	Ţ	0	
50	ATOM	3737	CB	PRO T	79	44.949	34.178	30.173	1.00 35.23	Ť	Č	
	ATOM	3738	CG	PRO T	79	43.723	34. 105	29.313	1.00 35.61	Ť	č	
	ATOM	3739	CD	PRO T	79	42.960	32.951	29.935	1.00 35.09	Ť	Č	
	ATOM	3740	N	GLU T	91						C	
						38. 161	24.891	23.662	1.00 26.53	Ţ	N	
	ATOM	3741	CA	GLU T	91	37.694	24.757	25.073	1.00 26.00	Ţ	C	
<i>55</i>	ATOM	3742	C	GLU T	91	38.810	25.160	26.043	1.00 26.45	T	C	
	ATOM	3743	0	GLU T	91	39. 991	24.986	25.748	1.00 24.05	· T	0	
										-	-	

	ATOM	3744	СВ	GLU T	91	37. 238	23.315	25.331	1.00 24.69	T	C
	ATOM	3745	CG	GLU T	91	36.117	22.857	24.384	1.00 22.94	Ť	Č
	ATOM	3746	CD	GLU T	91	35. 711	21.405	24.588	1.00 20.53	Ť	č
5	MOTA	3747		GLU T	91	36. 581	20.582	24.780	1.00 21.42	Ť	Ŏ
-		3748		GLU T	91	34. 525	21.111	24.538	1.00 21.55	Ť	Õ
	ATOM			PRO T		38. 443	25. 714	27.212	1.00 27.49	Ť	N
	ATOM	3749	N		92	39. 402	26. 153	28. 232	1.00 28.13	Ť	C
	ATOM	3750	CA	PRO T	92			28. 998	1.00 27.90	Ť	C
	MOTA	3751	C	PRO T	92	40.087	25.028				
10	MOTA	3752	0	PRO T	92	39.618	23.893	29.012	1.00 28.67	T	0
	ATOM	3753	CB	PRO T	92	38. 545	27.016	29.148	1.00 29.05	Ţ	C
	ATOM	3754	CG	PRO T	92	37. 243	2 6 . 282	29.135	1.00 30.13	T	C
	MOTA	3755	CD	PRO T	92	37.063	25.993	27.650	1.00 28.84	T	C
	MOTA	3756	N	LEU T	93	41.199	25.361	29.642	1.00 28.40	T	N
15	MOTA	3757	CA	LEU T	93	41.944	24.392	30.435	1.00 27.14	T	C
	MOTA	3758	C	LEU T	93	41.152	24. 159	31.710	1.00 24.86	T	C
	ATOM	3759	0	LEU T	93	40.576	25.094	32. 268	1.00 23.66	T	0
	ATOM	3760	CB	LEU T	93	43. 327	24.936	30.797	1.00 29.29	T	С
	MOTA	3761	CG	LEU T	93	44. 208	25.476	29.665	1.00 33.20	T	C
20	MOTA	3762		LEU T	93	45. 541	25.928	30.247	1.00 34.70	T	С
	MOTA	3763		LEU T	93	44.426	24.412	28.604	1.00 34.85	T	С
	ATOM	3764	N	TYR T	94	41.108	22.912	32.162	1.00 23.07	T	N
	ATOM	3765	CA	TYR T	94	40. 379	22.584	33.379	1.00 20.97	Ţ	C
	ATOM	3766	C	TYR T	94	40.878	21.296	34.007	1.00 19.78	T	C
25	ATOM	3767	0	TYR T	94	41.676	20.562	33.422	1.00 18.62	T	0
	ATOM	3768	CB	TYR T	94	38.875	22.454	33.104	1.00 20.47	T	C
	ATOM	3769	CG	TYR T	94	38. 496	21.246	32.272	1.00 21.39	T	С
	ATOM	3770		TYR T	94	38. 595	21.268	30.877	1.00 20.22	T	С
	ATOM	3771		TYR T	94	38.054	20.071	32.883	1.00 19.95	T	С
30	ATOM	3772		TYR T	94	38. 266	20.149	30.113	1.00 20.60	T	С
30	ATOM	3773		TYR T	94	37. 719	18.947	32.128	1.00 20.65	T	С
	ATOM	3774	CZ	TYR T	94	37.828	18.993	30.747	1.00 21.30	T	C
	MOTA	3775	OH	TYR T	94	37. 508	17.881	30.004	1.00 21.41	T	0
	ATOM	3776	N	GLU T	95	40.380	21.035	35. 207	1.00 18.35	T	N
	ATOM	3777	CA	GLU T	95	40.733	19.857	35. 976	1.00 19.30	T	C
35	MOTA	3778	С	GLU T	95	39. 452	19.393	36.660	1.00 18.34	T	С
	MOTA	3779	0	GLU T	95	38.667	20.216	37.133	1.00 17.95	T	0
	ATOM	3780	CB	GLU T	95	41.782	20.231	37.028	1.00 22.02	T	С
	MOTA	3781	CG	GLU T	95	42.241	19.097	37.936	1.00 28.22	T	С
	ATOM	3782	CD	GLU T	95	43.004	18.024	37. 189	1.00 30.84	T	С
40	ATOM	3783		GLU T	95	43.404	18.269	36.044	1.00 34.07	T	0
	MOTA	3784	OE 2	GLU T	95	43.205	16.957	37.753	1.00 31.49	T	0
	ATOM	3785	N	ASN T	96	3 9. 233	18.084	36.697	1.00 15.73	T	N
	ATOM	3786	CA	ASN T	96	38.052	17.537	37. 348	1.00 16.84	T	С
	ATOM	3787	С	ASN T	96	38. 375	17.281	38.815	1.00 16.63	T	С
45	MOTA	3788	0	ASN T	96	39.526	17.045	39.172	1.00 17.38	T	0
	MOTA	3789	CB	ASN T	96	37.623	16.211	36.703	1.00 15.17	T	С
	ATOM	3790	CG	ASN T	96	37.110	16.381	35. 279	1.00 18.47	T	C
	ATOM	3791		ASN T	96	36.458	17.371	34. 957	1.00 16.54	T	0
	ATOM	3792		ASN T	96	37.384	15.394	34. 425	1.00 16.63	T	N
50	MOTA	3793	N	SER T	97	37. 355	17.335	39.660	1.00 15.24	T	N
	MOTA	3794	CA	SER T	97	37.523	17.068	41.082	1.00 17.45	Ť	Ċ
	ATOM	3795	C	SER T	97	37.125	15.613	41.313	1.00 18.06	Ť	Č
	ATOM	3796	Ō	SER T	97	36.594	14.958	40.419	1.00 18.60	Ť	Ŏ
	ATOM	3797	СB	SER T	97	36.575	17. 935	41.893	1.00 16.21	Ť	Č
. -	ATOM	3798	0G	SER T	97	35. 238	17.519	41.660	1.00 15.25	Ť	ŏ
55	MOTA	3799	N	PRO T	98	37.402	15.076	42.508	1.00 19.40	Ť	Ŋ
	014	5.00				J	20.0.0			•	• • •

	MOTA	3800	CA	PRO T	98	36.991	13.686	42.710	1.00 19.93	T	C
	ATOM	3801		PRO T	98	35.478	13.714	42.878	1.00 19.53	T	С
5	ATOM	3802	0	PRO T	98	34.907	14.767	43. 139	1.00 20.13	. T	0
	ATOM	3803	CB	PRO T	98	37.716	13.289	43.997	1.00 22.25	T	С
	MOTA	3804	CG	PRO T	98	37.885	14.595	44.720	1.00 22.51	T	С
	ATOM	3805	CD	PRO T	98	38. 269	15.537	43.606	1.00 21.78	T	C
	MOTA	3806	N	GLU T	99	34.819	12.579	42.708	1.00 19.80	T	N
10	MOTA	3807	CA	GLU T	99	33.378	12.555	42.872	1.00 20.54	T	С
	MOTA	3808	С	GLU T	99	33.076	12.827	44. 334	1.00 20.49	T	C
	ATOM	3809	0	GLU T	99	33.882	12.511	45. 21 0	1.00 20.7%	T	0
	ATOM	3810	CB	GLU T	99	32.819	11.198	42.464	1.00 23.90	T	С
	ATOM	3811	CG	GLU T	99	33.062	10.850	41.009	1.00 30.24	T	С
15	ATOM	3812		GLU T	99	32.382	9. 561	40.609	1.00 34.08	T	С
	ATOM	3813		GLU T	99	32.625	8. 547	41.256	1.00 39.49	. T	0
	ATOM	3814		GLU T	99	31.619	9.578	39.661	1.00 37.57	T	0
	ATOM	3815	N	PHE T		31.921	13.422	44.603	1.00 19.39	T	N
	ATOM	3816		PHE T		31.552	13.723	45. 974	1.00 20.04	T	С
20	ATOM	3817	C	PHE T		30.099	13.404	46. 279	1.00 19.86	Ţ	C
	ATOM	3818	0	PHE T		29. 195	13.977	45.684	1.00 22.07	Ţ	0
	MOTA	3819	CB	PHE T		31.810	15.202	46. 285	1.00 18.94	Ţ	C
	ATOM	3820	CG	PHE T		31.554	15.570	47. 721	1.00 17.26	T	C
	ATOM	3821		PHE T		32.348	15.051	48.734	1.00 17.16	T.	C
25	ATOM	3822		PHE T		30.506	16.417	48.063	1.00 17.80	Ţ	C
20	MOTA	3823		PHE T		32.102	15.369	50.072	1.00 18.82	Ţ	C
	MOTA MOTA	3824		PHE T		30. 252 31. 053	16.739 16.212	49. 402 50. 405	1.00 18.00 1.00 14.11	T T	C C
	ATOM	3825 3826	CZ N	PHE T THR T		29. 880	12.486	47. 213	1.00 14.11	T	N
	ATOM	3827	CA.	THR T		28. 529	12. 125	47. 618	1.00 19.19	T	C
30	ATOM	3828	C	THR T		28. 359	12.669	49.032	1.00 19.73	Ť	Č
00	ATOM	3829	Ö	THR T		28. 774	12.041	50.005	1.00 19.00	Ť	Ő
	ATOM	3830	CB	THR T		28. 339	10.602	47.616	1.00 19.88	Ť	č
	ATOM	3831	0G1	THR T		28.767	10.075	46.353	1.00 19.78	Ť	Õ
	ATOM	3832		THR T		26.869	10.252	47.842	1.00 16.06	Ť	Č
35	ATOM	3833	N	PRO T		27.740	13.851	49.159	1.00 20.90	T	N
55	ATOM	3834	CA	PRO T		27.512	14.514	50.450	1.00 20.65	T	C
	ATOM	3835	С	PRO T		27.112	13.595	51.599	1.00 21.85	T	С
	ATOM	3836	0	PRO T	102	27.826	13.483	52.594	1.00 22.55	T	0
	ATOM	3837	CB	PRO T	102	26.426	15.539	50.126	1.00 20.56	T	C
10	ATOM	3838	CG	PRO T		26.710	15.892	48.691	1.00 19.84	T	C
40	ATOM	3839	CD	PRO T		27.008	14.540	48.079	1.00 20.33	T	C
	MOTA	3840	N	TYR T		25.964	12.946	51.458	1.00 21.87	T	N
	ATOM	3841	CA	TYR T		25. 441	12.050	52.484	1.00 22.45	Ţ	C
	ATOM	3842	C	TYR T		26.464	11.034	53.003	1.00 22.95	Ţ	C
45	ATOM	3843		TYR T		26. 534	10.774	54. 200	1.00 23.24	Ţ	. 0
45	ATOM	3844	CB	TYR T		24. 222	11.308	51.936	1.00 23.18	Ţ	C
	ATOM	3845	CG	TYR T		23.404	10.588	52.983	1.00 23.57	Ţ	C
	ATOM	3846		TYR T		22.458	11.272	53.747	1.00 23.47	T	C
	ATOM	3847		TYR T		23.559	9.220	53. 197	1.00 22.61	T	C
50	ATOM	3848		TYR T		21.684	10.612	54.693	1.00 23.51	Ţ	C
50	ATOM	3849		TYR T		22. 785	8.548	54. 145	1.00 23.64	T	C
	MOTA	3850	CZ	TYR T TYR T		21.852	9. 251	54.885 55.824	1.00 23.20 1.00 24.87	T	C
	ATOM ATOM	3851 3852	OH N	LEU T		21.089 27.256	8.602 10.465	52. 101	1.00 24.87	T T	0 N
	ATOM	3853	CA	LEU T		28. 250	9.468	52.474	1.00 23.07	T	N C
55 I	ATOM	3854	C	LEU T		29.579	10.006	53.000	1.00 22.83	T	C
	ATOM	3855	Õ	LEU T		30. 272	9.307	53.743	1.00 23.44	T	0
	AIUm	0000	v	TLO I	107	00.616	J. JUI	00.170	1.00 60.77	1	v

5	ATOM ATOM ATOM ATOM ATOM ATOM	3856 3857 3858 3859 3860 3861	CD2 N CA	LEU T GLU T GLU T	104 104 104 105 105	28. 546 27. 414 27. 973 26. 797 29. 957 31. 243	8. 550 7. 715 6. 885 6. 808 11. 225 11. 733	51. 285 50. 680 49. 531 51. 747 52. 627 53. 092	1.00 22.13 1.00 23.01 1.00 20.25 1.00 20.91 1.00 23.91 1.00 25.61	T T T T	C C C N
10	ATOM ATOM ATOM ATOM ATOM	3862 3863 3864 3865 3866	C O CB CG CD	GLU T GLU T GLU T GLU T GLU T	105 105 105	31.364 32.473 32.281 31.867 32.602	13.110 13.529 11.599 12.121 11.421	53. 752 54. 080 51. 967 50. 611 49. 471	1. 00 24. 53 1. 00 24. 54 1. 00 26. 37 1. 00 28. 41 1. 00 27. 99	T T T T	C O C C
15	ATOM ATOM ATOM ATOM ATOM	3867 3868 3869 3870 3871		GLU T GLU T THR T THR T THR T	105 106 106	33.821 31.950 30.258 30.367 30.738	11. 326 10. 979 13. 813 15. 112 14. 856	49.516 48.543 53.973 54.632 56.091	1.00 27.95 1.00 27.09 1.00 23.46 1.00 22.92 1.00 24.04	T T T T	0 0 N C
20	ATOM ATOM ATOM ATOM ATOM	3872 3873 3874 3875 3876	0 CB 0G1	THR T THR T THR T THR T ASN T	106 106 106 106	30. 143 29. 052 29. 308 28. 009 31. 728	14.002 15.919 17.265 15.312 15.587	56. 752 54. 586 55. 010 55. 506 56. 588	1.00 22.58 1.00 21.63 1.00 21.19 1.00 21.52 1.00 22.90	T T T T	0 C 0 C
25	ATOM ATOM ATOM ATOM	3877 3878 3879 3880	CA C O CB	ASN T ASN T ASN T	107 107 107 107	32.171 31.108 30.380 33.424	15. 417 15. 795 16. 773 16. 252	57. 965 58. 978 58. 799 58. 232	1.00 24.07 1.00 24.33 1.00 24.71 1.00 24.30	T T T	C C O C
30	ATOM ATOM ATOM ATOM ATOM	3881 3882 3883 3884 3885	ND2 N CA	ASN T ASN T ASN T LEU T LEU T	107 107 108 108	34.633 35.037 35.223 31.017 30.068	15. 725 14. 582 16. 553 15. 006 15. 279	57. 507 57. 707 56. 657 60. 041 61. 110	1.00 25.25 1.00 29.41 1.00 28.39 1.00 24.30 1.00 24.22	T T T T	C O N N C
35	MOTA MOTA MOTA MOTA MOTA	3886 3887 3888 3889 3890	C O CB CG CD1	LEU T LEU T LEU T LEU T	108 108 108	30.744 31.870 29.772 29.094 29.156	16.309 16.105 13.998 12.904 11.562	62. 007 62. 452 61. 890 61. 062 61. 786	1.00 22.82 1.00 21.51 1.00 25.35 1.00 27.74 1.00 27.60	T T T T	C C C
40	MOTA MOTA MOTA MOTA MOTA	3891 3892 3893 3894 3895	CD2 N CA C	LEU T GLY T GLY T GLY T	109 109 109	27.659 30.066 30.648 30.829 30.240	13.318 17.425 18.461 18.004 17.003	60. 786 62. 252 63. 084 64. 520 64. 927	1.00 28.49 1.00 23.68 1.00 22.92 1.00 23.12 1.00 21.62	T T T T	C N C C
45	ATOM ATOM ATOM ATOM	3896 3897 3898 3899	N CA C	GLN T GLN T GLN T GLN T	110 110 110 110	31.656 31.869 30.527 29.916	18. 718 18. 378 18. 570 19. 630	65. 281 66. 683 67. 381 67. 276	1.00 21.54 1.00 21.94 1.00 21.65 1.00 21.94	T T T	N C C O
45	ATOM ATOM ATOM ATOM ATOM	3900 3901 3902 3903 3904	CB CG CD OE1 NE2	GLN T GLN T GLN T GLN T	110 110 110	32.919 33.166 34.203 34.139 35.162	19.304 19.045 19.979 21.189 19.419	67. 313 68. 802 69. 398 69. 207 70. 132	1.00 21.36 1.00 21.0k 1.00 21.94 1.00 24.10 1.00 21.56	T T T T	C C C O N
50	ATOM ATOM ATOM ATOM	3905 3906 3907 3908	N CA C	PRO T PRO T PRO T PRO T	111 111 111 111	30.045 28.762 28.920 30.032	17. 542 17. 651 18. 496 18. 876	68. 094 68. 790 70. 043 70. 408	1.00 23.09 1.00 22.88 1.00 24.37 1.00 24.44	T T T	N C C O
55	ATOM ATOM ATOM	3909 3910 3911	CB CD	PRO T PRO T PRO T	111	28.418 29.425 30.641	16. 198 15. 358 16. 217	69. 141 68. 352 68. 322	1.00 23.56 1.00 23.39 1.00 22.94	T T T	C C C

	ATOM	3912	N	THR 1	112	27.797	18.769	70.697	1.00 25.07		T	N
	ATOM	3913	CA	THR 1		27.762	19.552	71.918	1.00 25.43		Ť	Ċ
5	ATON	3914	C	THR 1		26.764	18.915	72.880	1.00 26.70		Ť	Č
	ATOM	3915	Õ	THR 1		25.616	18.681	72.512	1.00 26.69		Ť	ŏ
	ATOM	3916	CB	THR 1		27. 295	21.001	71.645	1.00 27.11		Ť	Č
	ATOM	3917	0G1			28. 261	21.673	70.830	1.00 29.22		Ť	Ö
		3918		THR 1		27. 114	21.765	72.955	1.00 25.22			
40	ATOM										T	C
10	ATOM	3919	N	ILE 1		27. 202	18.626	74.102	1.00 26.55		T	N
	ATOM	3920	CA	ILE 1		26. 314	18.057	75.111	1.00 27.02		T	C
	ATOM	3921	C	ILE 1	113	25. 371	19.181	75.536	1.00 28.66		T	C
	MOTA	3922	0	ILE 1			20.228	76.010	1.00 29.26		T	0
	ATOM	3923	CB	ILE 7		27.117	17.541	76.337	1.00 26.73		T	C
15	ATOM	3924		ILE 1		27.926	16.305	75. 935	1.00 24.38		T	C
	ATOM	3925		ILE 1		26.179	17.208	77.490	1.00 25.10		T	C
	ATOM	3926	CD1	ILE 1		28.821	15.766	77.021	1.00 27.02		T	С
	ATOM	3927	N	GLN 1	114	24.073	18.967	75.347	1.00 30.54		T	N
	ATOM	3928	CA	GLN 1	114	23.069	19.967	75.690	1.00 31.98		Ţ	С
20	ATOM	3929	С	GLN 1	114	22.772	20.033	77.185	1.00 33.02		T	С
	ATOM	3930	0	GLN 7	114	22.588	21.119	77.739	1.00 33.20		Ţ	0
	ATOM	3931	CB	GLN 1	114	21.773	19.688	74.926	1.00 32.72		T	C
	ATOM	3932	CG	GLN 1		20.714	20.773	75.070	1.00 34.48		T	Ċ
	ATOM	3933	CD	GLN 1		19.499	20.516	74.199	1.00 36.97		T	Ċ
	ATOM	3934		GLN 1		18.648	19.686	74.523	1.00 39.79		T	Õ
25	ATOM	3935		GLN 7		19.421	21.218	73.077	1.00 37.84		Ť	N
	ATOM	3936	N	SER 1		22.721	18.873	77.833	1.00 34.02		T	N
	ATOM	3937	CA	SER 7		22.442	18.810	79.262	1.00 34.71		Ť	Ċ
	ATOM	3938	C	SER-		22. 528	17.392	79.811	1.00 36.31		T .	č
	ATOM	3939	Ŏ	SER 1		22.729	16.429	79.072	1.00 34.54		Ť	ŏ
30	ATOM	3940	СB	SER 1		21.041	19.350	79.544	1.00 34.16		Ť	Č
	ATOM	3941	0G	SER T		20.056	18.493	78.989	1.00 34.47		Ť	ŏ
	ATOM	3942	N	PHE 1		22.384	17. 286	81.126	1.00 39.39		Ť	Ņ
	ATOM	3943	ĊA	PHE 7		22.391	16.006	81.814	1.00 43.50		Ť	Č
	ATOM	3944	C	PHE 7		21.700	16.155	83.160	1.00 45.33		Ť	.C
35	ATOM	3945	ŏ	PHE 1		22.130	16.930	84.013	1:00 46.10		Ť	0
33	ATOM	3946	CB	PHE 1		23.816	15.449	81.990	1.00 43.81		Ť	Č
	ATOM	3947	CG	PHE 1		24.829	16.456	82.449	1.00 44.31		Ť	Č
	ATOM	3948			116	25.669	17.079	81.532	1.00 44.31		T	C
	ATOM	3949		PHE		24.976	16.753	83. 797	1.00 45.66		T	Č
	ATOM	3950		PHE 1		26.643	17.977	81.949	1.00 45.00		T	Č
40	ATOM	3951		PHE 1		25. 946	17.651	84. 227	1.00 45.84			C
	ATOM	3952	CZ	PHE		26. 783	18.264	83. 299	1.00 40.21		T	C
	ATOM	3953	N	GLU 1		20. 609	15.416	83. 331	1.00 47.39		T T	C
	ATOM	3954	CA	GLU 1		19.832	15.465	84. 561				N
									1.00 50.33		T	Ç
45	ATOM	3955	C	GLU 7	1117	19.909	14.160	85.340	1.00 51.09	•	T	C
	ATOM	3956	0	GLU 1		19.858	13.073	84.765	1.00 50.21		Ţ	0
	ATOM	3957	CB	GLU 1		18.368	15.770	84. 239	1.00 52.68		Ţ	C
	ATOM	3958	CG	GLU 1		17.499	16.012	85.462	1.00 54.67		T	С
	ATOM	3959	CD	GLU 1		16.035	16.159	85.114	1.00 56.19		T	C
50	ATOM	3960		GLU 1		15. 263	16.548	85.987	1.00 58.48		Ţ	0
50	MOTA	3961		GLU		15.671	15.878	83.971	1.00 57.72		T	0
	MOTA	3962	N		118	20.026	14. 278	86.657	1.00 52.53		T	N
	MOTA	3963	CA	GLN :		20.091	13.113	87.524	1.00 53.52		T	С
	ATOM	3964	С	GLN ?		18.790	12.987	88.307	1.00 53.74		T	C
	MOTA	3965	0	GLN :		18.292	13.967	88.863	1.00 52.43		T	0
55	MOTA	3966	CB	GLN 1		21.268	13.237	88.495	1.00 55.69		T	C
•	MOTA	3967	CG	GLN 3	118	21.248	14.505	89.345	1.00 58.28		T	Ċ

	ATOM	3968	CD	GLN 1	118	22.398	14.581	90.341	1.00 59.98	T	C
	MOTA	3969	0E 1	GLN 7	118	22.559	15.585	91.038	1.00 60.49	T	. 0
5	ATOM	3970	NE 2	GLN 1	118	23.198	13.520	90.417	1.00 59.89	T	' N
5	ATOM	3971	N	VAL 7	119	18.236	11.780	88.336	1.00 54.32	T	' N
	ATOM	3972	CA	VAL 7	119	16.999	11.527	89.064	1.0055.20	T	, С
	ATOM	3973	C	VAL 7	119	17.342	10.874	90.400	1.00 55.28	T	, С
	ATOM	3974	0	VAL 1	119	17.050	11.421	91.465	1.00 55.61	T	, 0
40	ATOM	3975	CB	VAL 1	119	16.056	10.592	88.270	1.00 55.27	T	, С
10	ATOM	3976	CG1	VAL 7	119	14.808	10.294	89.089	1.00 55.95	T	
	ATOM	3977	CG2	VAL 7	119	15.675	11.239	86.948	1.00 55.25	T	
	ATOM	3978	N	GLY 7	120	17.968	9.705	90.330	1.00 54.96	T	
	ATOM	3979	CA	GLY 1		18.357	8.992	91.531	1.00 55.01	T	
	ATOM	3980	С	GLY 7	120	19.681	8. 294	91.305	1.00 55.06	T	. С
15	ATOM	3981	0	GLY 1	120	20.739	8.802	91.681	1.00 54.95	Т	. 0
	ATOM	3982	N	THR 1	121	19.622	7.124	90.680	1.00 54.66	T	
	ATOM	398 3	CA	THR 7	121	20.824	6.356	90.388	1.00 54.74	T	
	ATOM	3984	С	THR 1	121	21.039	6.232	88.876	1.00 53.59	Т	
	MOTA	3985	0	THR 7	121	21.706	5.311	88.406	1.00 53.56	T	0
20	ATOM	398 6	CB	THR 7		20.743	4.945	91.010	1.00 55.32	T	, С
	ATOM	3987	0G1	THR 7		21.985	4. 259	90.805	1.0056.26	T	
	ATOM	3988		THR 7		19.607	4. 145	90.379	1.00 55.25	T	
	ATOM	3989	N	LYS 7		20.474	7.171	88.122	1.00 52.48	T	
	MOTA	3 990	CA	LYS 7		20.599	7. 178	86.669	1.00 51.79	T	
25	ATOM	3991	С	LYS		20.720	8.611	86.155	1.00 50.74	T	
	ATOM	3992	0	LYS 1		20. 121	9.532	86.713	1.00 50.69	T	
	ATOM	3993	CB	LYS 7		19.385	6.493	86.038	1.00 52.21	Ţ	
	ATOM	3994	CG	LYS 1		19. 206	5.042	86.475	1.00 53.53	T	
	ATOM	3995	CD	LYS 7		17.813	4. 797	87.036	1.00 55.85	. <u>T</u>	
30	ATOM	3996	CE	LYS 7		17. 508	5. 721	88.216	1.00 57.36	Ţ	
	ATOM	3997	NZ	LYS 7		16. 108	5.599	88.713	1.00 55.80	Ţ	
	ATOM	3998	N ·	VAL 3		21.498	8. 792	85.091	1.00 48.62	Ţ	
	MOTA	3999	CA	VAL 1		21.712	10.111	84.504	1.00 46.58	T	
	MOTA	4000	C	VAL 3		21.280	10.170	83.040	1.00 44.65	T	
35	MOTA	4001 4002	O CB	VAL 3		21.533	9. 248	82.267	1.00 45.12	T	
	ATOM ATOM	4002	CG1	VAL 1		23. 207 23. 439	10.519 11.859	84.597 83.907	1.00 46.69	T T	
	ATOM	4003		VAL 7		23. 630	10.599	86.055	1.00 46.11 1.00 46.67	T	
	ATOM	4005	N N	ASN 1		20. 622	11.261	82.670	1.00 40.01	T	
	MOTA	4006	CA	ASN 1		20. 022	11. 456	81.301	1.00 42.00	T	
40	MOTA	4007	C	ASN 3		21.069	12.470	80.604	1.00 38.83	T	
	MOTA	4008	Ö	ASN I		21.026	13.655	80.915	1.00 38.66	T	
	ATOM	4009	ČВ	ASN T		18. 725	11.957	81. 282	1.00 42.92	T	
	ATOM	4010	CG	ASN 7		18. 287	12.420	79.904	1.00 45.20	Ť	
	ATOM	4011		ASN		18. 444	11.703	78.917	1.00 47.86	Ī	
45	MOTA	4012		ASN T		17. 728	13.623	79.833	1.00 46.71	Ť	
	MOTA	4013	N	YAL 1		21.892	11.999	79.674	1.00 35.58	Ĩ	
	ATOM	4014	CA	VAL 1		22. 779	12.890	78. 934	1.00 34.22	T	
	ATOM	4015	C	VAL 1		22. 150	13.178	77.576	1.00 32.94	Ť	
	MOTA	4016	0	VAL 3		21.938	12.273	76.776	1.00 32.50	Ī	
50	ATOM	4017	CB	VAL :		24. 180	12. 264	78.723	1.00 33.64	Ī	
	ATOM	4018		VAL '		25. 051	13. 205	77.897	1.00 33.24	Ť	
	ATOM	4019		VAL 1		24.840	11.994	80.069	1.00 31.46	T	
	ATOM	4020	N	THR ?		21.835	14.442	77.332	1.00 31.93	T	
55	ATOM	4021	CA	THR ?		21.225	14.847	76.078	1.00 31.44	T	
	ATOM	4022	C	THR 7	126	22. 246	15.541	75.181	1.00 30.53	Т	
	ATOM	4023	0	THR ?		22.995	16.406	75.631	1.00 30.92	T	
						-		ı	-	_	-

	ATOM	4024	CB	THR T	126	20.035	15.801	76.333	1.00 32.80	T	C
	ATOM	4025		THR T		19.046	15.126	77. 123	1.00 34.45	Ť	0
5	ATOM	4026		THR T		19.404	16. 248	75.018	1.00 33.11	Ť	Č
						22. 273	15. 144	73. 91.5	1.00 28.54	Ť	N
	ATOM	4027	N .	VAL T							
	MOTA	4028	CA	VAL T		23. 181	15.720	72. 931	1.00 28.68	Ţ	C
	ATOM	4029	С	VAL T		22. 381	16.700	72.074	1.00 29.29	T	C
	MOTA	4030	0	VAL T	127	21.293	16.376	71.596	1.00 28.57	T	0
10	ATOM	4031	CB	VAL T	127	23.776	14.631	72.009	1.00 27.25	T	С
	ATOM	4032	CG1	VAL T	127	24.740	15.260	71.013	1.00 28.11	. T	С
	ATOM	4033		VAL T		24.478	13.567	72.837	1.00 26.10	T	С
	ATOM	4034	N	GLU T		22. 923	17.896	71.880	1.00 30.12	Ť	Ň
	ATOM	4035	CA	GLU T		22. 248	18. 920	71.094	1.00 32.79	Ť	Ĉ
15						22.060		69.642	1.00 32.75	Ť	Č
73	ATOM	4036	C	GLU T			18.489				
	ATOM	4037	0	GLU T		23.005	18. 051	68. 987	1.00 32.52	Ţ	0
	ATOM	4038	CB	GLU T		23.049	20. 222	71.146	1.00 35.07	T	Ç
	ATOM	4039	CG	GLU T		22. 327	21.419	70.558	1.00 39.25	T	C
	ATOM	4040	CD	GLU T	128	23.162	22.68 1	70.624	1.00 42.60	T	С
20	ATOM	4041	0E1	GLU T	128	24.132	22.785	69.872	1.00 42.38	T	0
	ATOM	4042	0E2	GLU T	128	22.842	23.549	71.436	1.00 44.49	T	0
	ATOM	4043	N	ASP T		20.834	18.602	69.146	1.00 34.87	T	N
	ATCM	4044	CA	ASP T		20. 543	18. 234	67.765	1.00 38.67	Ť	· Ĉ
	ATOM	4045	C	ASP T		21.016	19.404	66.908	1.00 39.15	Ť	č
	ATOM	4046	Ö	ASP T		20. 271	20.355	66.684	1.00 40.95	Ť	ŏ
25										T	Č
	ATOM	4047	CB	ASP T		19.038	18.020	67.571	1.00 41.05		
	ATOM	4048	CG	ASP T		18. 721	17.167	66.354	1.00 44.26	Ţ	C
	MOTA	4049		ASP T		19.421	17.291	65.355	1.00 45.06	Ţ	0
	ATOM	4050	0D2	ASP T		17.768	16.387	66.411	1.00 46.55	Ţ	0
	MOTA ·	4051	N	GLU T	130	22.259	19.328	66.442	1.00 39.21	T.	N
30	ATOM	4052	CA	GLU T	130	22.859	20.388	65.639	1.00 39.23	T	С
	ATOM	4053	C	GLU T	130	22. 242	20.531	64.257	1.00 37.36	T	С
	ATOM	4054	0	GLU T	130	21.867	19.548	63.627	1.00 35.82	T	0
	ATOM	4055	CB	GLU T		24.362	20.145	65.485	1.00 43.16	T	С
	ATOM	4056	CG	GLU T		25. 175	21.419	65.294	1.00 46.75	Ť	Č
35	ATOM	4057	CD	GLU T		26.607	21.139	64.891	1.00 48.44	Ť	Č
55	ATOM	4058		GLU T		26.819	20.722	63.766	1.00 52.82	Ť	ő
		4059		GLU T		27.496	21.331	65.701	1.00 49.66	· T	Ö
	MOTA										
	MOTA	4060	N	ARG T		22. 151	21.768	63. 785	1.00 36.07	T	N
	ATOM	4061	CA	ARG T		21.590	22.024	62.473	1.00 34.72	Ţ	Č
40	ATOM	4062	C	ARG T		22.631	21.836	61.377	1.00 32.32	T	C
	MOTA	4063	0	ARG T		23. 838	21.925	61.612	1.00 30.97	T	0
	ATOM	4064	CB	ARG T	131	21.000	23.436	62.402	1.00 37.34	T	C
	MOTA	4065	CG	ARG T	131	21.948	24.547	62.807	1.00 41.83	T	С
	MOTA	406 6	CD	ARG T	131	21.330	25.901	62.509	1.00 43.91	T	C
	MOTA	4067	NE	ARG T		22.022	26.999	63.178	1.00 45.56	T	N
45	MOTA	4068	CZ	ARG T		21.691	28. 280	63.048	1.00 45.22	Ť	C
	MOTA	4069		ARG T		20.679	28.634	62.265	1.00 44.75	Ť	Ň
	ATOM	4070		ARG T		22. 362	29. 208	63.715	1.00 46.22	Ť	N
						22.141	21.556				
	ATOM	4071	N	THR T				60.177	1.00 29.36	Ţ	N
50	ATOM	4072	CA	THR T		22.989	21.343	59.013	1.00 25.98	Ţ	c
50	ATOM	4073	C	THR T		22.664	22. 438	58. D 08	1.00 26.04	Ţ	C
	ATOM	4074	0	THR T		21.750	23. 236	58.220	1.00 25.67	T	0
	MOTA	4075	CB	THR T		22.689	19.986	58.351	1.00 24.12	T	С
	ATOM	4076	0G1	THR T	132	21.425	20.061	57.680	1.00 19.80	T	0
	MOTA	4077		THR T		22.621	18.874	59.403	1.00 22.09	T	C
55	ATOM	4078	N	LEU T		23.410	22.471	56.912	1.00 26.23	T	N
	MOTA	4079	ĊA	LEU T		23. 181	23.459	55.867	1.00 28.66	Ť	Ċ
	11 1 010	1010	O/I	DEU I	100	20. 101	20. 103	00.001	2.00 20.00	1	·

	MOTA	4080	C	LEU T	133	22.060	23.029	54.922	1.00 31.07	T	C
	ATOM	4081	Ō	LEU T		21.664	23.788	54.038	1.00 31.66	Ţ	0
5	ATOM	4082	СВ	LEU T		24.466	23.700	55.069	1.00 25.94	Ť	Č
5						25.457	24.719	55.645	1.00 24.82	Ť	č
	ATOM	4083	CG		133						
	ATOM	4084		LEU T		24.818	26.095	55.618	1.00 23.33	Ţ	C
	ATOM	4085	CD2	LEU T		25.873	24. 336	57.068	1.00 23.50	Τ	C
	ATOM	4086	N	YAL T	134	21.553	21.812	55.104	1.00 32.72	T	N
10	MOTA	4087	CA	YAL T	134	20.475	21.309	54.260	1.00 35.27	T	С
	ATOM	4088	С	VAL T		19. 203	22.086	54.557	1.00 37.69	T	C
	ATOM	4089	ŏ	VAL T		18.691	22.045	55.671	1.00 37.30	T	0
		4090	CB	VAL T		20. 207	19.803	54.508	1.00 33.94	Ť	č
	ATOM		-					53.652	1.00 33.34	Ť	Č
	ATOM	4091	CG1		134	19.038	19. 335				
15	ATOM	4092			134	21.453	18.992	54.189	1.00 30.83	Ţ	C
	ATOM	4093	N	ARG T	135	18. 7 02	22.803	53.558	1.00 42.86	T	N
	ATOM	4094	CA	ARG T	135	17. 485	23. 587	53.720	1.00 48.17	T	С
	ATOM	4095	С	ARG T	135	16.268	22.895	53.123	1.00 51.28	T	C
	ATOM	4096	0.	ARG T	135	16.332	22.333	52.031	1.00 52.30	T	0
	MOTA	4097	CB	ARG T		17.636	24.960	53.063	1.00 48.77	T	C
20	ATOM	4098	CG	ARG T		17.844	26. 107	54.032	1.00 51.28	Ť	Ċ
			CD	ARG T		17. 150	27.366	53.522	1.00 53.42	Ť	č
	ATOM	4099								Ť	
	ATOM	4100	NE	ARG T		17.342	28.513	54.408	1.00 54.39		N
	ATOM	4101	CZ	ARG T		18.442	29. 260	54.454	1.00 54.74	T	C
	ATOM	4102	NH1	ARG T		19.473	28.995	53.659	1.00 53.86	T	N
25	ATOM	4103	NH2	ARG T	135	18.512	30. 276	55.303	1.00 55.25	T	N
	ATOM	4104	N	ARG T	136	15.161	22.938	53.855	1.00 55.32	T	N
	MOTA	4105	CA	ARG T	136	13.905	22.355	53.401	1.00 59.86	T	С
	MOTA	4106	С	ARG T		12.764	23.218	53.912	1.00 60.84	T	С
	ATOM	4107	0	ARG T		12.685	23.514	55.105	1.00 60.73	T	0
30	ATOM	4108	ČB	ARG T		13.740	20.917	53.903	1.00 62.06	T	Č
			CG	ARG T		14.704	19.926	53. 266	1.00 65.96	Ť	č
	MOTA	4109				14. 066	18. 552	53.079	1.00 68.51	Ť	Č
	ATOM	4110	CD	ARG T							
	ATOM	4111	NE	ARG T		13.514	18.011	54.320	1.00 71.12	T	N
	ATOM	4112	CZ	ARG T		13.019	16.784	54.453	1.00 72.57	Ţ	C
35	ATOM	4113	NH 1	ARG T		12.999	15. 95 1	53.420	1.00 73.26	Ţ	N
	ATOM	4114	NH2	ARG T	136	12.542	16.387	55.625	1.00 73.03	T	N
	ATOM	4115	N	ASN T	137	11.888	23.623	52.998	1.00 62.35	T	N
	ATOM	4116	CA	ASN T	137	10.751	24.473	53.330	1.00 63.21	T	С
	ATOM	4117	С	ASN T		11.254	25.891	53.602	1.00 62.33	T	С
	ATOM	4118	Ö	ASN T		11.409	26.685	52.674	1.00 63.22	T	0
40	ATOM	4119	СВ	ASN T		10.001	23. 924	54. 552	1.00 65.32	Ť	č
	ATOM	4113	CG	ASN 1		9.422	22. 542	54. 311	1.00 67.61	Î	Č
						10.147	21.596		1.00 69.63	Ť	Ô
	ATOM	4121	OD1					54.002		_	
	MOTA	4122		ASN 1		8. 108	22.419	54.456	1.00 69.48	Ţ	N
4.5	ATOM	4123	N	ASN 1		11.518	26. 205	54.867	1.00 60.71	T	N
45	ATOM	4124	CA	ASN 7	138	12.003	27. 531	55. 234	1.00 58.80	T	C
	ATOM	4125	С	ASN 1	138	12.940	27.486	56.445	1.00 56.17	T	C
	ATOM	4126	0	ASN 7		13.061	28.467	57.179	1.00 56.57	T	0
	MOTA	4127	ČВ	ASN 7		10.823	28.464	55.542	1.00 60.66	T	C
	ATOM	4128	CG	ASN 1		9.842	28. 582	54. 381	1.00 62.38	Ť	č
50							27.631	54. D49	1.00 62.68	Ť	Õ
	ATOM	4129		ASN T		9.132		59.043 59.766			
	ATOM	4130		ASN 1		9.801	29.756	53. 760	1.00 63.11	Ţ	N
	ATOM	4131	N		139	13.606	26.352	56.649	1.00 52.17	T	N
	MOTA	4132	CA		139	14.520	26. 197	5 7 . 777	1.00 48.11	Ţ	С
	ATOM	4133	С	THR	139	15.641	25.203	57. 483	1.00 43.77	T	C
55	ATOM	4134	0		Г 139	15.649	24.548	56.442	1.00 43.95	T	0
	ATOM	4135	ČВ		139	13.772	25.709	59.040	1.00 49.28	Ţ	Č
	111 Old	1100	UD	1111		10.112	20.100	55.515			J

5	ATOM ATOM ATOM ATOM ATOM	4136 4137 4138 4139 4140		THR T THR T PHE T PHE T PHE T	139 140 140	13.083 12.77 16.580 17.71:	26.755 25.102 3 24.184	59. 516 58. 412 58. 284	1.00 48.22 1.00 49.39 1.00 39.50 1.00 34.81 1.00 33.69	T T T T	0 C N C C
10	ATOM ATOM ATOM ATOM ATOM ATOM	4141 4142 4143 4144 4145 4146	CD2	PHE T PHE T PHE T PHE T PHE T	140 140 140 140	16.85 18.968 19.538 20.222 19.404 20.776	24.782 25.956 25.772 27.247	58. 924 58. 177 56. 980 58. 679	1.00 33.95 1.00 31.68 1.00 29.78 1.00 28.87 1.00 29.29 1.00 27.26	T T T T	0 C C C C C
15	ATON ATON ATON ATON ATON	4147 4148 4149 4150 4151	CE2 CZ N CA C	PHE T PHE T LEU T LEU T LEU T	140 140 141 141 141	19.948 20.634 17.648 17.374	28. 341 28. 142 21. 758 20. 446 20. 056	57. 999 56. 803 58. 325 58. 890 59. 849	1.00 28.58 1.00 26.93 1.00 31.02 1.00 29.31 1.00 28.67	T T T T	C C N C C
20	ATOM ATOM ATOM ATOM ATOM	4152 4153 4154 4155 4156		LEU T LEU T LEU T LEU T LEU T	141 141 141	19.654 17.285 16.220 16.308 14.830	19.389 19.545 18.356	57. 788 56. 706 55. 761	1.00 27.90 1.00 28.83 1.00 29.79 1.00 27.88 1.00 29.65	T T T T	0 C C
25	ATOM ATOM MOTA ATOM ATOM	4157 4158 4159 4160 4161	N CA C O CB	SER T SER T SER T SER T SER T	142 142 142 142	18. 116 19. 096 19. 816 19. 422 18. 406	19.359 18.930 17.689 17.099	60. 916 61. 900 61. 389 60. 380	1.00 26.59 1.00 25.72 1.00 25.43 1.00 24.69 1.00 24.53	T T T	N C C O
30	ATOM ATOM ATOM ATOM ATOM	4162 4163 4164 4165 4166	OG N CA C	SER T LEU T LEU T LEU T LEU T	142 143 143 143	17. 693 20. 866 21. 632 20. 768 20. 931	3 17.393 6 17.287 2 16.117 6 14.862	63. 142 62. 095 61. 700 61. 714	1.00 27.31 1.00 25.42 1.00 26.13 1.00 27.25 1.00 27.17	T T T T	0 N C C
35	ACTA MOTA ATOM ATOM ATOM	4167 4168 4169 4170 4171		LEU T LEU T LEU T LEU T ARG T	143 143 143	22. 830 23. 975 24. 572 25. 043 19. 833	15.082 15.759 14.903	62.080 60.854 63.153	1.00 28.10 1.00 29.33 1.00 30.74 1.00 33.30 1.00 28.42	T T T T	C C C C
40	ATOM ATOM ATOM ATOM ATOM	4172 4173 4174 4175 4176	CA C O CB	ARG T ARG T ARG T ARG T	144 144 144 144	18. 973 17. 850 17. 338 18. 403 17. 723	13.700 12.676 13.411 12.059	61.687 61.244 64.127 64.285	1.00 29.34 1.00 29.34 1.00 30.63 1.00 28.19 1.00 29.87	T T T	C O C C
45	ATON ATOM ATOM ATOM ATOM	4177 4178 4179 4180 4181	NH2	ARG T ARG T ARG T ARG T	144 144 144 144	17. 594 18. 861 19. 583 19. 198 20. 698	11.246 7 10.183 5 9.378 9.904	66.358 66.017 65.039 66.682	1.00 29.47 1.00 29.59 1.00 28.70 1.00 28.08 1.00 27.54	T T T T	C N C N
50	ATOM ATOM ATOM ATOM ATOM	4182 4183 4184 4185 4186	N CA C O CB	ASP T ASP T ASP T ASP T	145 145 145 145	17. 469 16. 438 16. 940 16. 198 16. 147	3 15.093 14.472 5 13.793 7 16.578	60.275 58.970 58.263 60.007	1.00 29.51 1.00 30.78 1.00 29.67 1.00 30.38 1.00 31.56	T T T T	N C C O C
55	ATON ATON ATON ATON ATON	4187 4188 4189 4190 4191		ASP T ASP T ASP T VAL T VAL T	145 145 146	15. 239 14. 327 15. 430 18. 219 18. 871	7 16.520 18.385 14.719	61.530 61.356 58.670	1.00 33.74 1.00 37.12 1.00 31.92 1.00 27.99 1.00 25.95	T T T T	C 0 0 N C

	ATOM	4192	С	VAL T 146	19. 245	12.750	57.474	1.00 26.46	T	C
	MOTA	4193		VAL T 146	18.922	12.024	56.541	1.00 27.73	T	
5	ATOM	4194		VAL T 146	20.168	15.048	57.164	1.00 24.95	Т	
	ATOM	4195		YAL T 146	20.901	14.461	55.960	1.00 20.92	T	
	ATOM	4196		VAL T 146	19.823	16.519	56.916	1.00 20.74	T	
	ATOM	4197		PHE T 147	19.929	12.305	58. 524	1.00 26.36	T	
	ATOM	4198		PHE T 147	20.369	10.912	58.619	1.00 25.98	Ī	
10	ATOM	4199		PHE T 147	19.379	9.919	59. 236	1.00 27.12	Ī	
, 0	ATOM	4200		PHE T 147	19.536	8.708	59.084	1.00 25.23	Ī	
	ATOM	4201		PHE T 147	21.689	10.844	59.389	1.00 24.48	Ţ	
	ATOM	4202		PHE T 147	22. 844	11.465	58.662	1.00 25.86	· ī	
	ATOM	4203		PHE T 147	23.388	10.848	57.546	1.00 25.81	Ī	
	ATOM	4204		PHE T 147	23.377	12.681	59.082	1.00 26.68	Ī	
15	ATOM	4205		PHE T 147	24. 450	11.429	56. 852	1.00 27.09	Ī	
	MOTA	4206		PHE T 147	24. 435	13. 267	58. 398	1.00 26.05	Ţ	
	MOTA	4207		PHE T 147	24. 972	12.639	57. 280	1.00 25.43	Ī	
	ATOM	4208		GLY T 148	18.368	10.421	59.930	1.00 27.07	Ī	
	MOTA	4209		GLY T 148	17.406	9.526	60.542	1.00 30.74	Î	
20	ATOM	4210		GLY T 148	18.079	8. 427	61.347	1.00 31.33	Ī	
	ATOM	4211		GLY T 148	18.894	8.710	62. 227	1.00 31.75	Ī	
	ATOM	4212		LYS T 149	17.757	7.174	61.033	1.00 31.90	Ī	
	ATOM	4213		LYS T 149	18.319	6.024	61.745	1.00 30.48	Ī	
	MOTA	4214		LYS T 149	19.784	5.707	61.448	1.00 29.20	Î	
25	ATOM	4215	ŏ	LYS T 149	20.391	4.894	62. 143	1.00 28.53	Ī	
	ATOM	4216		LYS T 149	17.480	4.771	61.475	1.00 32.10	Ī	
	ATOM	4217		LYS T 149	17.526	4. 284	60.036	1.00 34.68	Ī	
	ATOM	4218		LYS T 149	16.654	3.045	59.849	1.00 38.94	j	
	ATOM	4219	CE	LYS T 149	16.596	2.617	58.390	1.00 39.85	Í	
30	ATOM	4220		LYS T 149	17.943	2. 260	57.865	1.00 42.88	ī	
	ATOM	4221	N	ASP T 150	20.356	6.318	60.416	1.00 28.28	i	
	ATOM	4222	CA	ASP T 150	21.763	6.060	60.103	1.00 27.67	j	
	ATOM	4223	Ċ.	ASP T 150	22.698	6.678	61.142	1.00 26.20	Ī	
	ATOM	4224	Ö	ASP T 150	23.859	6. 283	61.257	1.00 26.29	1	
05	MOTA	4225	СВ	ASP T 150	22.137	6.620	58.727	1.00 28.41	1	
35	ATOM	4226	CG	ASP T 150	21.631	5.765	57.592	1.00 30.84	ī	
	ATOM	4227		ASP T 150	21.557	4.547	57.765	1.00 30.37	7	
	ATOM	4228		ASP T 150	21.330	6.319	56.530	1.00 31.25	ī	
	ATOM	4229	N		22.186	7.645	61.897	1.00 24.20	7	
	ATOM	4230		LEU T 151	22.978	8.342	62.901	1.00 24.32	7	
40	ATOM	4231	Č.	LEU T 151	22.800	7.847	64.333	1.00 23.19	1	
	ATOM	4232	Õ	LEU T 151	21.681	7.654	64.805	1.00 23.35	1	
	ATOM	4233	CB	LEU T 151	22.651	9.839	62.858	1.00 23.48	7	
	ATOM	4234	CG	LEU T 151	23.299	10.741	63.916	1.00 24.55	7	
	ATOM	4235		LEU T 151	24.791	10.863	63.649	1.00 21.55	7	
45	ATOM	4236		LEU T 151	22.638	12.117	63.885	1.00 24.04	1	
	ATOM	4237	N	ILE T 152	23.917	7.639	65.020	1.00 23.69	3	
	ATOM	4238	CA	ILE T 152	23.882	7. 235	66.419	1.00 23.13	7	
	MOTA	4239	C	ILE T 152	24.886	8. 111	67.154	1.00 23.28	7	
	ATOM	4240	Ŏ	ILE T 152	25.736	8.752	66.537	1.00 24.54	7	
50	ATOM	4241	СB	ILE T 152	24.287	5.747	66.643	1.00 22.81	7	
	ATOM	4242		ILE T 152	25.799	5. 584	66.493	1.00 22.58	7	· Č
	ATOM	4243		ILE T 152	23.534	4. 839	65.672	1.00 23.41	1	
	MOTA	4244		ILE T 152	26.322	4. 228	66.945	1.00 22.76	7	
	ATOM	4245	N	TYR T 153	24.779	8. 150	68.472	1.00 23.49	1	
<i>55</i>	ATOM	4246	CA	TYR T 153	25711	8. 920	69. 271	1.00 24.51	j	
33	ATOM	4247	C	TYR T 153	26.359	7. 984	70.274	1.00 24.18	1	
	עו טונו	7671	U		20.003	1. 504		VU DT. 10		

	ATOM	4248	0	TYR				5. 715	7.078	70.802		24.71		Ţ	0
	ATOM	4249	CB	TYR				4. 995	10.067	69.984		23.63		T	C
5	MOTA	4250	CG	TYR				4. 745	11.256	69.081	1.00			T	C
	ATOM	4251		TYR				5. 805	12.036	68. 6 23		23. 7.1	•	T	C
	ATOM	4252		TYR				3. 454	11.597	68.677		22.84		T	C
	ATOM	4253		TYR				5. 590	13. 130	67. 786		21.55		T	C
	ATOM	4254		TYR				3. 226	12.690	67.839		22.98		T	C
10	ATOM	4255	C2	TYR				4. 301	13.450	67.399				Ţ	C
	MOTA	4256	OH	TYR				4.092	14. 527	66.575		21.50		T	0
	ATOM	4257	N	THR				7. 647	8. 193	70.506		23.44		Ţ	N
	ATOM	4258	CA	THR				8. 403	7.381	71.438		23.84		Ţ	C
	ATOM	4259	C	THR				8. 830	8. 250	72.615				T	C
15	ATOM	4260	0	THR				9. 260	9. 387	72. 431		25. 59		Ţ	0
	ATOM	4261	CB	THR				9.640	6. 783	70. 741		24. 28		Ţ	Ç
	ATOM	4262		THR				9. 212	5.846	69.742		24.66		Ţ	0
	ATOM	4263		THR				30. 540	6.081	71.740		27.90		Ţ	C
	ATOM	4264	N	LEU				8. 685	7. 715	73. 822		26.46		T	N
20	ATOM	4265	CA	LEU				29.056	8. 428	75.036		29.00		T	C
	ATOM	4266	C	LEU				30. 286	7.788	75.670		31.35		Ţ	Č
	ATOM	4267	0	LEU				30.356	6.570	75. 831		33. 70		T	0
	ATOM	4268	CB	LEU				27. 894	8.416	76.039		26.23		T	C
	ATOM	4269	CG	LEU				28. 112 28. 263	9.127 10.620	77.381		26.86 25.42		T T	C
25	ATOM	4270		LEU LEU		155		26. 203 26. 941	8.851	77. 155 78. 307		24.97		T	C
	ATOM ATOM	4271 4272	N N	TYR				31. 254	8. 625	76.014		33.72		Ť	N
	ATOM	4273	CA	TYR				32. 494	8.198	76.649		36.80		Ī	C
	ATOM	4274	C	TYR				32.466	8.870	78.016		37.49		Ť	Č
	ATOM	4275	ŏ	TYR				32.747	10.061	78. 125		37. 28		Ť	Ö
30	ATOM	4276	CB	TYR				33.690	8.703	75.835		39.78		T	Ç
	ATOM	4277	CG	TYR				35.056	8. 392	76.413		44. 27		Ť	Č
	ATOM	4278		TYR		156		35.633	7.130	76.262		45.90		Ť	Č
	ATOM	4279		TYR				35.787	9.374	77.085		46.33		Ť	Č
	ATOM	4280		TYR				36.908	6.856	76.762	1.00	46.82		T	C
35	ATOM	4281		TYR				37.060	9.110	77.590		46.50		T	С
	MOTA	4282	CZ	TYR				37.614	7851	77.424	1.00	47.92		T	С
	ATOM	4283	OH	TYR			;	38.875	7. 593	77.914	1.00	48.85		T	0
	MOTA	4284	N	TYR	T	157	;	32.098	8.113	79.047		38.10		T	N
	ATOM	4285	CA	TYR	T	157		32.017	8.650	80.404		39.51		T	С
40	ATOM	4286	C	TYR				32.911	7. 927	81.407	1.00	41.43		T `	С
	MOTA	4287	0	TYR	T	157		33. 153	6.729	81.286		41.55		T	0
	ATOM	4288	CB	TYR				30.566	8.627	80.905		37.07		T	C
	ATOM	4289	CG	TYR.	-			29.924	7. 255	81.019		36.59		T .	C .
	ATOM	4290		TYR				29.578	6.520					Ţ	C
45	MOTA	4291		TYR				29.622	6.712	82.269		36.44		T	C
43	ATOM	4292		TYR				28.942	5. 282	79.990		36.96		T	C
	ATOM	4293		TYR				28.989	5.478	82.388		36. 19		T	C
	ATOM	4294	CZ	TYR				28.649	4.768	81.247		37.43		T	C
	MOTA	4295	OH	TYR				28.011	3.554	81.362		35. 29		T	0
50	ATOM	4296	N	TRP				33.393	8.666	82.402		44.59		T	N
50	ATOM	4297	CA	TRP				34. 266	8. 101			48. 36		T	Č
	ATOM	4298	C	TRP				33.941	8.612	84.822		50.71 50.01		T	C
	ATOM	4299	0	TRP				33.389	9.700	84.989		48.77		T T	0
	MOTA	4300 4301	CB CG	TRP TRP				35.727 36.071	8.414 9.873	83. 092 83. 156		50.02		T	C
55	ATOM ATOM	4301		TRP				36. 242	10.631	84. 281		50.02		T	C C
55	ATOM	4302		TRP				36. 291	10. 752	82.045		50. 16		Ť	C
	ALOM	4000	UD 4	IUL	i	100		00.431	10. (04	02.040	1.00	JU. 23		1	U

	ATOM ATOM	4304 4305		TRP TRP	158 158	36.557 36.595	11.924 12.027	83.940 82.574	1.00 50.45 1.00 49.97	T T	N C
5	ATOM	4306			158		10.585	80.653	1.00 50.09	Ţ	Č
	ATOM	4307			158		13.131	81.760	1.00 49.43	T	C
	ATOM	4308			158		11.685	79.843	1.00 50.00	Ţ	С
	ATOM	4309	CH2		158	36.834	12.941	80.402	1.00 50.53	T	C
	ATOM	4310	N		159		7. 815	85.826	1.00 54.36	T	N
10	ATOM	4311	CA		159	34.053	8.167	87.220	1.00 57.78	T	C
	ATOM	4312	C		159		9.024	87. 735	1.00 58.65	Ţ	C
	ATOM	4313	0		159		10.173	87. 325	1.00 60.01	Ţ	0
	ATOM	4314	CB		159	33.911	6.887	88.053	1.00 59.26	Ţ	C
	ATOM	4315	CG		159		7.081	89.416	1.00 61.42	Ţ	C
15	ATOM	4316	CD		[159	33.503	5.877	90. 322	1.00 63.98	Ţ	C
	ATOM	4317	CE NZ		T 159	32.979 31.501	4. 584 4. 599	89. 712 89. 542	1.00 65.42 1.00 67.11	T T	C N
	ATOM ATOM	4318 4319	NZ N		T 160		8. 460	88.622	1.00 60.77	T	N
	ATOM	4319	CA		160 160		9. 152	89. 198	1.00 62.01	Ť	C
	ATOM	4321	C		T 160		8. 228	90.157	1.00 62.68	T	Č
20	ATOM	4322	ŏ		T 160		8.043	91.303	1.00 63.75	Ť	Ŏ
	ATOM	4323	ČB		T 160		10.413	89.952	1.00 62.64	Ť	Č.
	ATOM	4324	0G		T 160		11.441	89.063	1.00 63.25	T	0
	ATOM	4325	N		T 164	39.552	4.169	84.389	1.00 46.65	T	N
	ATOM	4326	CA		T 164		3. 681	84.302	1.00 46.62	T	C
25	MOTA	4327	С		T 164		4.314	83.161	1.00 45.68	Ţ	С
	ATOM	4328	0		T 164		5. 415	83. 296	1.00 45.48	Ţ	0
	ATOM	4329	N		T 165		3.611	82.036	1.00 45.62	Ţ	Ņ
	ATOM	4330	CA		T 165		4.100	80.859	1.00 44.77	Ţ	Ç
00	ATOM	4331	C		T 165		3.385 2.178	80.697 80.921	1.00 42.99 1.00 43.15	T T	C 0
30	ATOM	4332 4333	O CB		T 165 T 165		3. 885	79. 593	1.00 43.13	T	C
	ATOM ATOM	4334	CG		T 165		4.851	79. 404	1.00 51.07	Ť	Č ·
	ATOM	4335	CD		T 165		4.652	80.424	1.00 53.07	Ť	č
	ATOM	4336	CE		T 165		3. 252	80.348	1.00 55.53	Ť	Č
35	ATOM	4337	NZ		T 165		2.954	79.005	1.00 58.19	T	N
55	ATOM	4338	N		T 166		4.135	80.309	1.00 40.32	T	N
	ATOM	4339	CA		T 166		3.573	80. 103	1.00 38.29	T .	C
	ATOM	4340	С		T 166		4.137	78.818	1.00 36.09	Ţ	Ç
	ATOM	4341	0		T 166		5.268	78. 427	1.00 32.41	Ţ	0
40	ATOM	4342	CB		T 166		3.892	81. 297	1.00 40.50	Ţ	C
	ATOM	4343	CG		T 166		3.306	82.617	1.00 43.96	Ţ	C .
	ATOM	4344	CD		T 166 T 166		3. 752 3. 265	83. 767 85. 107	1.00 45.60 1.00 47.87	T T	C C
	ATOM ATOM	4345 4346	CE N2		1 166 T 166		3. 791		1.00 47.01	T T	N
	ATOM	4347	N		T 167		3. 347	78. 172	1.00 33.24	Ť	N
45	ATOM	4348			T 167		3.771	76. 926	1.00 32.13	Ť	C
	ATOM	4349	C	THR	T 167		3. 355	76. 799	1.00 30.44	Ť	č
	ATOM	4350	Ö		T 167		2.318	77.316	1.00 29.24	Ť	Ō
	ATOM	4351	CB		T 167		3.205	75.719	1.00 33.05	T	C
	ATOM	4352			T 167		3.632	74.502	1.00 34.90	T	0
50	ATOM	4353			T 167		1.686	75.767	1.00 34.83	T	C
	ATOM	4354	N	ALA	T 168	28.616	4.184	76.102	1.00 27.66	T	N ·
	ATOM	4355	CA		T 168		3.934	75.866	1.00 27.24	Ţ	С
	ATOM	4356	C		T 168		4.359	74. 434	1.00 26.54	Ţ	C
	ATOM	4357	0		T 168		5.159	73.853	1.00 26.79	Ţ	0
55	ATOM	4358	CB		T 168		4.738	76.847	1.00 25.11	Ĩ	C
	MOTA	4359	N	LYS	T 169	25.815	3.818	73.864	1.00 25.71	T	N

	MOTA	4360	CA	LYS T	1,69	25. 421	4.174	72.503	1.00 24.30	T	C
5	ATOM	4361	С	LYS T	169	23.912	4.341	72.416	1.00 23.34	Ţ	С
	ATOM	4362	0	LYS T		23, 165	3.613	73.056	1.00 25.30	Ţ	0
	ATOM	4363	СВ	LYS T		25.898	3.108	71.519	1.00 25.23	T	C
	ATOM	4364	CG	LYS T		27.401	2. 925	71.531	1.00 24.44	Ť	č
	ATOM	4365	CD	LYS T		27.864	1. 937	70. 489	1.00 25.08	Ť	č
				LYS T		29.368	1.780	70. 552	1.00 22.30	τ̈́	Č
10	ATOM	4366	CE								
	ATOM	4367	ΝZ	LYS T		29.879	1.009.	69.398	1.00 25.32	Ţ	N
	ATOM	4368	N	THR T		23.467	5. 309	71.625	1.00 24.63	Ţ	N
	ATOM	4369 ·	CA	THR T		22.040	5.574	71.475	1.00 24.26	Ţ	C
	MOTA	4370	С	THR T		21.680	5.871	70.023	1.00 26.19	Ţ	C
15	ATOM	4371	0	THR T	170	22.491	6.408	69.269	1.00 26.16	T	0
75	MOTA	4372	CB	THR T	170	21.607	6.783	72.335	1.00 22.44	T	C
	ATOM	4373	0G1	THR T	170	20.202	7.008	72.178	1.00 21.98	T	0
	ATOM	4374		THR T		22.361	8.040	71.907	1.00 20.38	T	Ċ
	ATOM	4375	N	ASN T		20.463	5.518	69.631	1.00 27.31	T	N
	ATOM	4376	CA	ASN T		20.018	5.777	68.272	1.00 29.89	Ť	Ċ
20	MOTA	4377	C	ASN T		19.207	7.071	68. 202	1.00 28.8€	Ť	č
		4378	Õ	ASN T		18.659	7. 416	67. 158	1.00 30.77	Ť	ŏ
	ATOM		CB	ASN T		19. 201	4.596	67. 744	1.00 34.19	T	
	ATOM	4379									C
	ATOM	4380	CG	ASN T		17.917	4. 401	68.497	1.00 38.11	T	C
	ATOM	4381		ASN T		17.919	4. 219	69.714	1.00 43.07	Ţ	0
25	ATOM	4382		ASN T		16.803	4. 433	67.778	1.00 42.28	Ţ	N
	ATOM	4383	N	THR T		19.129	7. 781	69.324	1.00 27.79	Ţ	N
	ATOM	4384	CA	THR T		18.432	9.063	69.385	1.00 27.05	T	С
	ATOM	4385	С	THR T		19.487	10.072	69.863	1.00 26.35	T	C
	ATOM	4386	0	THR T	172	20.678	9.898	69.593	1.00 24.98	Ţ	0
22	MOTA	4387	CB	THR T	172	. 17.242	9.030	70.381	1.00 26.35	Ţ	C
30	MOTA	4388	0G1	THR T	172	17. 732	8.790	71.704	1.00 29.03	T	0
	ATOM	4389	CG2	THR T	172	16.258	7.930	70.009	1.00 26.97	T	C
	ATOM	4390	N	ASN T	173	19.065	11.119	70.559	1.00 24.76	T	N
	ATOM	4391	CA	ASN T		20.008	12.112	71.061	1.00 26.67	T.	C
	ATOM	4392	C	ASN T		20.147	12.074	72.578	1.00 26.96	T	C
35	ATOM	4393	Ŏ	ASN T		20.741	12.974	73.167	1.00 26.63	T	Ō
	ATOM	4394	CB	ASN T		19.583	13.517	70.632	1.00 27.09	T	Č
	ATOM	4395	CG	ASN T		19.974	13.829	69.206	1.00 27.88	Ť	Č
	ATOM	4396		ASN T		19.682	13.064	68. 291	1.00 28.96	Ť	ŏ
	ATOM	4397		ASN T		20.642	14.960	69.009	1.00 29.78	Ť	N
	ATOM	4398	N	GLU T		19.617	11.028	73. 206	1.00 26.96	Ť	N
40	ATOM	4399	CA	GLU T		19.680	10.906	74.659	1.00 28.12	Ť	Č
			C	GLU T		20. 340	9.619	75. 143	1.00 26.22	Ť	Č
	ATOM	4400			- , -				1.00 26.22	_	
	ATOM	4401	0	GLU T		20. 215	8.569	74. 523		T T	0
	ATOM	4402	CB	GLU T		18. 268	11.012	75. 241	1.00 32.01	_	Č.
45	ATOM	4403	CG	GLU T			12.365		1.00 39.60	Ţ	Č
43	ATOM	4404	CD	GLU T		16.095	12.313	75. 150	1.00 45.20	Ţ	C
	MOTA	4405		GLU T		15.439	11.627	74.350	1.00 47.98	Ţ	0
	ATOM	4406	0E2	GLU T		15.575	12.951	76.068	1.00 49.78	T	0
	ATOM	4407	N	PHE 7	175	21.047	9.722	76. 262	1.00 26.73	T	N
	ATOM	4408	CA	PHE T	175	21.730	8. 591	76.877	1.00 26.52	T	С
50	ATOM	4409	С	PHE T	175	21.161	8.402	78. 280	1.00 29.29	T	C
	ATOM	4410	0	PHE T		21.052	9.367	79.037	1.00 29.51	T	0
	ATOM	4411	CB	PHE 1		23. 228	8.873	77.012	1.00 23.85	Ť	č
	MOTA	4412	ĊĞ	PHE T		23.968	8.919	75.710	1.00 23.33	Ť	č
	ATOM	4413		PHE 1		24. 315	7.743	75.051	1.00 22.59	Ť	č
	MOTA	4414		PHE T		24. 345	10.139	75.154	1.00 21.95	Ť	ç
55	ATOM			PHE				73. 154		T	Č
	W I OM	4415	CEI	inc	110	25. 034	7.780	10.001	1.00 24.26	1	U

	MOTA	4416	CE2	PHE T	175	25.063	10.189	73.956	1.00 23.03	T	С
	ATOM	4417	CZ	PHE T		25.408	9.006	73.304	1.00 22.27	Ť	
5	ATOM	4418	N	LEU T		20, 791	7.171	78.622	1.00 31.93	Ţ	
	ATOM	4419		LEU T		20.276	6.873	79.959	1.00 34.35	Ť	
	ATOM	4420	C	LEU T		21.250	5.879	80.574	1.00 35.33	Ť	
	ATOM	4421	Õ	LEU T		21. 255	4. 705	80.211	1.00 36.35	Ť	
	ATOM	4422	-	LEU T		18.875	6. 254	79.890	1.00 34.93	Ť	
10	ATOM	4423		LEU T		18.220	5.937	81.243	1.00 36.34	Ţ	
	ATOM	4424		LEU T		18.025	7.218	82.039	1.00 36.74	Ţ	
	ATOM	4425		LEU T		16.876	5. 250	81.022	1.00 37.90	T	
	ATOM	4426	N	ILE T		22.083	6.355	81.494	1.00 36.14	. <u>T</u>	
	ATOM	4427	CA	ILE T		23.080	5.500	82.125	1.00 38.18	Ţ	
15	ATOM	4428	C	ILE T		22.968	5.430	83.643	1.00 39.89	T	
	ATOM	4429	0	ILE T		22.350	6. 284	84. 274	1.00 38.85	T	
	ATOM	4430	CB	ILE T		24.510	5.974	81.795	1.00 38.42	T	
	MOTA	4431		ILE T		24.750	7.358	82.407	1.00 38.45	T	
	ATOM	4432	CG2	ILE T	177	24.712	6.009	80.288	1.00 38.52	T	
20	ATOM	4433	CD1	ILE T		26. 208	7.791	82.420	1.00 39.58	T	
20	ATOM	4434	N	ASP T		23. 589	4.403	84.215	1.00 42.03	T	
	ATOM	4435	CA	ASP T	178	23.602	4.192	85.657	1.00 45.50	· T	С
	MOTA	4436	C	ASP T	178	24.802	4.914	86.259	1.00 47.95	T	С
	ATOM	4437	0	ASP T		25.866	4.984	85.645	1.00 48.69	T	
	ATOM	4438	CB	ASP T		23.704	2.699	85.969	1.00 45.09	T	С
25	ATOM	4439	CG	ASP T	178	22.462	1.935	85.572	1.00 45.52	T	
	ATOM	4440		ASP T		22.561	0.737	85.367	1.00 46.53	T	
	ATOM	4441		ASP T		21.402	2.543	85.480	1.00 47.77	T	
	ATOM	4442	N	VAL T		24.630	5.447	87.463	1.00 51.00	T	
	ATOM	4443	CA	VAL T		25.709	6.158	88.138	1.00 54.37	T	
30	ATOM	4444	С	VAL T		25.697	5.894	89.638	1.00 57.41	T	
	ATOM	4445	0	VAL T		24.634	5.808	90.257	1.00 58.33	T	
	ATOM	4446	CB	VAL T		25.610	7.684	87.912	1.00 53.68	T	
	ATOM	4447	CG1	VAL T		25.755	8.002	86. 434	1.00 54.55	T	
	ATOM	4448		VAL T		24. 285	8. 206	88. 445	1.00 53.15	Ť	
35	ATOM	4449	N	ASP T		26.884	5.760	90.218	1.00 60.20	Ť	
00	ATOM	4450	CA	ASP T		27.008	5. 526	91.649	1.00 63.22	Ť	
	ATOM	4451	C	ASP T		26.787	6.854	92.363	1.00 64.55	Ť	
	ATOM	4452	Õ	ASP T		27. 554	7. 800	92. 178	1.00 64.55	Ť	
	ATOM	4453	ČВ	ASP T		28. 398	4.974	91. 981	1.00 65.14	. T	
	MOTA	4454	CG		180	28.659	3.620	91.339	1.00 67.56	T	
40	ATOM	4455		ASP T		28.706	3.545	90.113	1.00 69.02	Ť	
	MOTA	4456		ASP T			2.641	92.072	1.00 69.35	T	
	ATOM	4457	N	LYS T		25.730	6. 924	93. 169	1.00 66.14	Ť	
	ATOM	4458	-	LYS T		25.400			1.00 66.70	Ť	• • •
	ATOM	4459	C	LYS T		26.589		94. 679	1.00 66.19	Ť	
45	ATOM	4460	ŏ	LYS T		27.464	7.941	95. 110	1.00 66.44	T	
	ATOM			LYS T		24. 230	7.895	94. 858	1.00 68.20	Ť	
		4461	CB			22.910	7. 573	94. 166	1.00 70.66	T	
	MOTA	4462	CG	LYS T						T	
	ATOM	4463	CD	LYS T		21.747	7.534	95.154	1.00 71.98		
50	ATOM	4464	CE	LYS T		21.915	6. 434	96.194	1.00 73.05	T	
	ATOM	4465	NZ	LYS T		21.906	5.071	95.589	1.00 74.30	Ţ	
	ATOM	4466	N	GLY T		26.613	10.011	94.851	1.00 65.88	T	
	ATOM	4467	CA	GLY T		27.698	10.647	95. 578	1.00 65.07	Ţ	
	MOTA	4468	Č	GLY T		29.030	10.580	94.856	1.00.64.52	Ţ	
55	MOTA	4469	0	GLY T		30.085	10.552	95.488	1.00 64.76	Ţ	
	ATOM	4470	N	GLU T		28. 985	10.558	93. 528	1.00 63.96	T	
	MOTA	4471	CA	GLU T	183	30.197	10.496	92.722	1.00 63.00	Т	, C

	ATOM	4472	С	GLU T	109	30.012	11.349	91.471	1.00 60.60	T	С
5	ATOM	4473	0	GLU T		28. 948	11.336	90. 854	1.00 60.74	Ţ	0
_	ATOM	4474	CB	GLU T		30.493	9.047	92. 333	1.00 65.51	T	С
	MOTA	4475	CG	GLU T	183	31.877	8.829	91.749	1.00 69.10	T	C
	ATOM	4476	CD	GLU T	183	32.986	9.080	92.755	1.00 70.99	T	C
	ATOM	4477	OE I	GLU T		33.103	10.209	93. 234	1.00 72.19	Ť	0
	ATOM	4478		GLU T		33.730	8. 143	93.056	1.00 71.72	Ť	Ö
10											
, •	ATOM	4479	N	ASN T		31.052	12.089	91.100	1.00 57.69	Ţ	N
	ATOM	4480	CA	ASN T		30.987	12.959	89. 933	1.00 54.65	T	, C
	ATOM	4481	C	ASN T	184	31.475	12.282	88. 654	1.00 51.10	T	C
	ATOM	4482	0	ASN T	184	32.494	11.589	88.647	1.00 49.50	T	0
	ATOM	4483	CB	ASN T		31.797	14.236	90.185	1.00 57.28	T	C
15	ATOM	4484	CG	ASN T		31.324	14.996	91.415	1.00 59.82	Ť	č
		4485		ASN T		31.448	14.517	92. 545	1.00 62.30	T	
	ATOM		0D1								0
	ATOM	4486		ASN T		30.775	16.187	91.200	1.00 60.42	Ţ	N
	ATOM	4487	N	TYR T		30. 733	12.492	87. 572	1.00 46.87	T	N
	ATOM	4488	CA	TYR T	185	31.072	11.919	86. 276	1.00 43.13	T	C
20	ATOM	4489	С	TYR T	185	31.282	13.009	85. 232	1.00 40.25	T	С
	ATOM	4490	0	TYR T		30.614	14.042	85.257	1.00 38.63	Ŧ	0
	ATOM	4491	CB	TYR T		29.955	10.999	85. 772	1.00 42.93	Ť	č
				TYR T		29.806	9.679	86. 491	1.00 43.09	Ť	č
	ATOM	4492	CG								
	ATOM	4493		TYR T		29.313	9.618	87. 794	1.00 43.56	T	C
25	ATOM	4494		TYR T		30.126	8.483	85.852	1.00 42.77	T	C
	ATOM	4495	CE 1	TYR T		29.137	8.400	88.441	1.00 44.38	T	С
	ATOM	4496	CE2	TYR T	185	29.955	7.260	86.489	1.00 44.41	T	С
	ATOM	4497	CZ	TYR T	185	29.459	7. 225	87.784	1.00 44.61	T	С
	ATOM	4498	OH	TYR T		29.273	6.016	88.413	1.00 46.20	Т	0
	ATOM	4499	N	CYS I		32.215	12.773	84. 318	1.00 37.22	Ť	N
30							13.711	83. 233	1.00 35.28		
	ATOM	4500	CA	CYS T		32.469				T	C
	ATOM	4501	C	CYS T		32.033	12.986	81.964	1.00 33.69	T	C
	ATOM	4502	0	CYS T		32.113	11.757	81.884	1.00 33.01	T	0
	ATOM	4503	CB		186	33.948	14.084	83.145	1.00 34.62	T	C
	ATOM	4504	SG	CYS T	186	34.609	15.088	84.517	1.00 35.26	T	S
35	ATOM	4505	N	PHE 1		31.579	13.745	80.974	1.00 31.82	T	N
	ATOM	4506	CA		187	31.085	13.164	79.737	1.00 29.80	T	C
	ATOM	4507	C		187	31.657	13.778	78. 465	1.00 28.26	Ť	č
	MOTA	4508	Õ	PHE 1		32. 121	14.918	78. 451	1.00 25.87	Ť	Ö
	MOTA	4509	CB		187	29.559	13. 280	79. 711	1.00 31.70	Ţ	C
40	ATOM	4510	CG		187	28. 892	12.750	80.950	1.00 32.92	Ţ	Ç
	MOTA	4511		PHE 1		28. 78 3	11.381	81.167	1.00 32.88	T	С
	MOTA	4512	CD2	PHE 1	187	28.401	13.623	81. 919	1.00 34.37	T	C
	ATOM	4513	CE 1	PHE 1	187	28. 196	10.887	82.330	1.00 32.44	T	С
	ATOM	4514		PHE 1		27.812	13.137	83.088	1.00 33.58	T	С
	ATOM	4515	CZ	PHE 1		27.711	11.767	83. 292	1.00 33.15	Ť	č
45	ATOM	4516	N	SER I		31.612	12.992	77. 397	1.00 27.99	Ť	N
	MOTA	4517	CA	SER 1		32.079	13.406	76.083	1.00 26.65	Ţ	C
	ATOM	4518	C		188		12.557	75.071	1.00 26.06	T	С
	ATOM	4519	0	SER T	188	31.268	11.335	75. 203	1.00 25.10	T	0
	ATOM	4520	CB	SER 1		33.580	13.165	75.941	1.00 27.85	T	С
50	ATOM	4521	ŌĞ	SER 1		34.034	13.597	74.670	1.00 28.63	Ť	ō
	ATOM	4522	N	VAL 1		30. 737	13. 200	74.068	1.00 25.94	Ť	
						29. 977		73.056			
	ATOM	4523	CA	YAL 1			12.476		1.00 25.53	Ţ	C
	MOTA	4524			189	30. 585	12. 579	71.667	1.00 26.44	Ţ	C
	ATOM	4525			189	31.397	13.462	71.381	1.00 27.25	T	0
<i>55</i>	ATOM	4526			189	28.510	12.967	72.986	1.00 26.62	T	C
	ATOM	4527		VAL	F 189	27.850	12.822	74.353	1.00 23.61	T	
	•	-				_				-	•

	ATOM	4528	CG2	VAL T	180	28.459	14.412	72.503	1.00 25.43	T	C
	ATOM	4529	N	GLN T			11.677	70.794			
_						30.160			1.00 26.03	T	N
5	ATOM	4530	CA	GLN T		30.670	11.627	69.438	1.00 25.75	T	C
	ATOM	4531	С	GLN T		29.562	11.173	68.495	1.00 24.90	T	С
	ATOM	4532	0	GLN T		28.825	10. 238	68.803	1.00 24.21	T	0
	ATOM	4533	CB	GLN T	190	31.845	10.651	69.415	1.00 27.57	T	С
	ATOM	4534	CG	GLN T	190	32.563	10.466	68.103	1.00 29.40	T	c
10	ATOM	4535	CD	GLN T		. 33.803	9.605	68.276	1.00 31.44	Ť	Č
70	ATOM	4536		GLN T		33. 738	8. 525	68.864	1.00 32.92	Ť	Õ
	ATOM	4537		GLN T		34. 937	10.079	67.770	1.00 32.32	Ť	N
	ATOM	4538	N	ALA T		29. 428	11.854	67.361	1.00 23.85	T	N
	ATOM	4539	CA	ALA T		28. 415	11.496	66.374	1.00 22.47	Ţ	C
15	MOTA	4540	С	ALA T		29.016	10.401	65.504	1.00 22.81	T	С
	ATOM	4541	0	ALA T	191	30.212	10.424	65.214	1.00 22.19	T	0
	ATOM	4542	CB	ALA T	191	28.05 1	12.702	65.529	1.00 20.37	T	C
	ATOM	4543	N	VAL T	192	28.195	9.438	65.099	1.00 22.73	T	N
	ATOM	4544	CA	VAL T		28.684	8. 332	64.286	1.00 23.06	T	Ċ
	MOTA	4545	C	VAL T		27.636	7.854	63.285	1.00 25.12	Ť	č
20	ATOM	4546	0	VAL T		26.435	7. 911	63.549	1.00 25.90	Ť	Õ
	ATOM	4547	CB	VAL T		29.080	7. 124	65.182	1.00 24.31	T	Č
	ATOM	4548		YAL T		29.694	6.023	64.347	1.00 23.66	Ţ	C
	ATOM	4549		VAL T		30.051	7. 564	66.272	1.00 23.45	T	C
25	ATOM	4550	N	ILE T		28.102	7. 409	62.125	1.00 25.32	Ţ	N
23	MOTA	4551	CA	ILE T		27.233	6.856	61.098	1.00 27.61	T	. С
	ATOM	4552	С	ILE T		27.881	5. 519	60.772	1.00 29.11	T	С
	ATOM	4553	0	ILE T	193	28.734	5.429	59.887	1.00 31.53	T	0
	ATOM	4554	CB	ILE T	193	27.188	7.746	59.845	1.00 28.13	T	C
	ATOM	4555	CG1	ILE T	193	26.516	9.078	60.190	1.00 27.35	T	С
30	ATOM	4556	CG2	ILE T	193	26.420	7.039	58.734	1.00 26.33	T	С
	ATOM	4557		ILE T		26.511	10.072	59.058	1.00 31.00	Ť	Č
	ATOM	4558	N	PRO T		27.496	4. 462	61.506	1.00 29.13	Ť	Ň
	ATOM	4559	CA	PRO T		28.006	3.091	61.360	1.00 30.19	Ť	Č
	ATOM	4560	C	PRO T		28. 153	2.557	59.940	1.00 29.68	Ť	č
_											
35	ATOM	4561	0	PRO T		29.168	1.954	59.605	1.00 30.22	Ţ	0
	ATOM	4562	CB	PRO T		27.020	2.268	62.187	1.00 29.86	Ţ	C
	ATOM	4563	CG	PRO T		26.631	3. 224	63. 273	1.00 30.63	T	C
	ATOM	4564	CD	PRO T		26.402	4.501	62.493	1.00 28.23	T	C
	ATOM	4565	N	SER T		27.142	2.773	59. 109	1.00 31.11	T	N
40	ATOM	4566	CA	SER T		27.172	2.294	57.732	1.00 33.61	T	С
	ATOM	4567	С	SER T	195	28.304	2.882	56.894	1.00 36.37	T	С
	ATOM	4568	0	SER T	195	28.653	2.331	55.848	1.00 37.68	T	0
	ATOM	4569	CB	SER T	195	25.841	2.594	57.049	1.00 33.34	T	С
	MOTA	4570	0G	SER T	195	25.592	3.987	57.025	1.00 33.89	T	0
	ATOM	4571	N	ARG T		28.876	3.994	57.350	1.00 37.43	Ī	Ň
45	ATOM	4572	ĊA	ARG T		29.956	4. 654	56.626	1.00 38.17	Ť	Ċ
	ATOM	4573	C	ARG T		31.279	3. 915	56.617	1.00 40.14	Ť	č
	ATOM	4574	Õ	ARG T		31.567	3. 104	57.497	1.00 39.73	Ť	
				ARG T							0
	ATOM	4575	CB			30. 201	6.055	57. 181	1.00 36.13	Ţ	C
50	ATOM	4576	CG	ARG T		29. 241	7. 107	56.686	1.00 34.25	Ţ	C
50	ATOM	4577	CD	ARG T		29.764	8.479	57.042	1.00 33.30	Ţ	C
	ATOM	4578	NE	ARG T		28.936	9.540	56. 486	1.00 32.53	T	N
	ATOM	4579	CZ	ARG T		29.210	10.835	5 6 . 592	1.00 33.06	T	С
	ATOM	4580	NH1	ARG T	196	30. 299	11.234	57.238	1.00 30.86	T	N
	ATOM	4581	NH2	ARG T	196	28.397	11.730	56.048	1.00 29.51	T	N
55	ATOM	4582	N	THR T		32.082	4.227	55.604	1.00 42.50	T	N
	ATOM	4583	CA	THR T		33. 405	3. 645	55. 435	1.00 43.94	Ť	Ċ
	111 014	1000	O/I			55. 700	0.010	00. 100	70.07	1	U

		•								
	MOTA	4584	С	THR T 197	34. 437	4.714	55.802	1.00 43.45	T	С
_	ATOM	4585	Ŏ	THR T 197	35. 368	4. 458	56.567	1.00 43.73	Ţ	ō
5	ATOM	4586	CB	THR T 197	33.623	3. 181	53.976	1.00 45.61	Ť	Č
	MOTA	4587		THR T 197	33.452	4. 291	53.086	1.00 48.03	Ť	Ŏ
	MOTA	4588		THR T 197	32.618	2.094	53.608	1.00 46.03	Ť	č
	MOTA	4589	N	VAL T 198	34. 254	5.917	55. 263	1.00 42.98	Ť	N
	ATOM	4590	CA	VAL T 198	35.149	7. 039	55.546	1.00 42.58	Ť	Ċ
10	MOTA	4591	C	VAL T 198	34. 383	8.062	56.371	1.00 41.57	Ť	Č
		4592	0	VAL T 198	33. 159	8. 109	56.308	1.00 38.93		
	MOTA MOTA	4593	CB	VAL T 198	35. 6 41	7. 720	54. 250	1.00 42.24	. T T	0
				VAL T 198			53.390			C
	MOTA MOTA	4594 4595		VAL 1 198	36.388 34.461	6.713 8.318	53.490	1.00 43.81 1.00 41.73	T	C C
15	ATOM	4596	N N	ASN T 199	35. 104	8. 882	57.133	1.00 41.78	T T	N
75										
	ATOM	4597	CA	ASN T 199	34.483	9.898	57.985	1.00 34.68	T	C
	MOTA	4598	C	ASN T 199 ASN T 199	33. 289	9. 315 9. 884	58. 741 58. 732	1.00 32.52	T	C
	MOTA	4599	0		32. 201			1.00 31.11	Ţ	0
	MOTA	4600	CB	ASN T 199	34.016	11.092	57.147	1.00 36.34	T	C
20	MOTA	4601 4602	CG	ASN T 199 ASN T 199	35.137 36.227	11.723 11.962	56.352 56.872	1.00 38.20 1.00 39.82	T	. C
	MOTA	4603		ASN T 199	34. 871	12.012	55.083	1.00 38.88	T T	O N
	MOTA MOTA	4604	NDZ N	ARG T 200	33. 497	8. 183	59.404	1.00 32.29	T	N
	ATOM	4605	CA	ARG T 200	32. 422	7. 528	60.137	1.00 32.29	T.	
	ATOM	4606	C	ARG T 200	32. 422	8. 205	61.459	1.00 32.10	T	C
25	ATOM	4607	Ö	ARG T 200	30.988	8. 077	61.968	1.00 29.26	T	0
	ATOM	4608	CB	ARG T 200	32.769	6.053	60.390	1.00 29.20	T	C
	ATOM	4609	CG	ARG T 200	33.974	5. 832	61.294	1.00 40.10	Ť	Č
	ATOM	4610	CD	ARG T 200	34.403	4.361	61.385	1.00 44.11	Ť	Č
	ATOM	4611	NE	ARG T 200	33.484	3. 524	62.159	1.00 46.39	Ť	N
30	ATOM	4612	CZ	ARG T 200	32.419	2. 896	61.665	1.00 46.92	Ť	Č
	ATOM	4613		ARG T 200	32.113	2. 992	60.378	1.00 46.68	Ť	Ŋ
	ATOM	4614		ARG T 200	31.656	2. 161	62.465	1.00 47.08	Ť	N
	ATOM	4615	N	LYS T 201	33.053	8. 942	62.008	1.00 28.96	Ť	N
	ATOM	4616	CA	LYS T 201	32. 831	9. 589	63. 292	1.00 28.86	Ť	Ċ
05	ATOM	4617	C	LYS T 201	33. 277	11.042	63. 325	1.00 26.57	Ť	Č
35	ATOM	4618	Ō	LYS T 201	34.194	11.441	62.611	1.00 26.41	Ť	Ŏ
	ATOM	4619	CB	LYS T 201	33.576	8. 814	64. 384	1.00 30.67	. T	Č
	ATOM	4620	CG	LYS T 201	33.328	7.319	64.358	1.00 33.65	Ţ	Č
	ATOM	4621	CD	LYS T 201	34.438	6.565	65.065	1.00 38.71	T	Č
	ATOM	4622	CE	LYS T 201	34.446	6.850	66.550	1.00 42.37	Ť	Č
40	ATOM	4623	NZ	LYS T 201	33.187	6.371	67.184	1.00 45.63	Ţ	N
	ATOM	4624	N	SER T 202	32.614	11.830	64.161	1.00 25.68	T	N
	ATOM	4625	CA	SER T 202	32.967	13. 233	64.326	1.00 26.09	Ţ	С
	ATOM	4626	С	SER T 202	34.038	13. 257	65.415	1.00 25.74	Ţ	С
	ATOM	4627	0	SER T 202	34.424	12.212	65.929	1.00 25.97	T	0
45	MOTA	4628	CB	SER T 202	31.754	14.033	64.803	1.00 25.44	T	С
	ATOM.	4629	OG	SER T 202	31.439	13.699	66.145	1.00 24.76	T	0
	ATOM	4630	N	THR T 203	34. 523	14.441	65.764	1.00 25.64	T	N
	ATOM	4631	CA	THR T 203	35.507	14.545	66.829	1.00 26.70	· T	С
	MOTA	4632	C	THR T 203	34.734	14.575	68.150	1.00 26.56	T	С
50	ATOM	4633	0	THR T 203	33.542	14.890	68.170	1.00 26.32	T	0
	ATOM	4634	CB	THR T 203		15.839	66.709	1.00 27.27	T	Č
	ATOM	4635	OG 1	THR T 203	35.447	16.964	66.678	1.00 29.25	T	0
	ATOM	4636		THR T 203	37.178	15.821	65.441	1.00 26.74	T	С
	ATOM.	4637	N	ASP T 204		14.244	69.247	1.00 26.24	T	N
<i></i>	ATOM	4638		ASP T 204		14.245	70.561	1.00 25.07	Ť	C
<i>55</i>	ATOM	4639	C	ASP T 204		15.648	70.904	1.00 23.20	Ť	Č
										-

											•		
	ATOM	4640	0	ASP 1	204	34. 92	5 16.638	70. 557	1.00 22.	85		. T	0 .
5	ATOM	4641	CB	ASP 1	204	35. 77		71.629	1.00 26.	47		T	C
	MOTA	4642	CG	ASP 7		36. 32		71.360	1.00 28.			T	, C
	ATOM	4643		ASP 7		35. 559		71. 438	1.00 28.			Ţ	0
	MOTA	4644		ASP 1		37.51		71.071	1.00 31.			Ţ	0
	ATOM	4645	N Ca	SER I		33.14		71. 580	1.00 22.			T	N
10	ATOM ATOM	4646 4647	C	SER T		32. 580 33. 383		71.994 73.179	1.00 21. 1.00 20.			T	C
	ATOM	4648	Õ	SER 1		34. 23		73. 720	1.00 20.			T T	C 0
	ATOM	4649	CB	SER 1		31. 13		72. 458	1.00 21.			Ť	Č
	ATOM	4650	0G	SER 1		31.104		73.694	1.00 22.			Ť	ŏ
	ATOM	4651	N	PRO 7		33.14		73. 583	1.00 20.			T	N
15	ATOM	4652	CA	PRO 1		33. 893		74. 733	1.00 21.			T	С
	ATOM	4653	C	PRO 7		33.46		75.947	1.00 23.			T	С
	ATOM	4654	0	PRO 1		32. 334		75. 998	1.00 23.			Ţ	0
	ATOM	4655	CB	PRO T		33. 420		74.840	1.00 19.			T	C
20	ATOM ATOM	4656 4657	CG CD	PRO 1	206	33. 146 32. 43		73. 403 72. 884	1.00 20. 1.00 18.			T T	C C
	ATOM	4658	N	VAL 1		34. 36		76. 912	1.00 24.			Ť	N
	ATOM	4659	CA	YAL 1		34. 05		78. 109	1.00 26.			Ť	Ċ
	ATOM	4660	C	VAL 7		33.169		79.072	1.00 28.			T	Č
	MOTA	4661	0	VAL 1		33. 403		79.320	1.00 29.		*	T	0 .
25	ATOM	4662	CB	VAL 7		35. 348		78. 851	1.00 25.			Ţ	C
	ATOM	4663		VAL 7		35.004		80.105	1.00 25.			T	C
	ATOM ATOM	4664 4665	N N	VAL 3	207	36.23 32.14		77. 930 79. 598	1.00 23. 1.00 31.			T T	C N
	ATOM	4666	CA	GLU 1		31. 23		80. 556	1.00 31.			T	C
	ATOM	4667	Č	GLU 7		31.17		81. 785	1.00 34.			Ť	Č
30	MOTA	4668	0	GLU 7	208	31.03	2 16.161	81.662	1.00 33.			Ť	Ō
	ATOM	4669	CB	GLU 7		29.83		79.953	1.00 33.			T	C ·
	ATOM	4670	CG		208	29.72		78. 893	1.00 37.			T	C
	ATOM	4671	CD	GLU 1	208	30.12		79. 422 80. 373	1.00 40.			T	C
35	ATOM ATOM	4672 4673		GLU 7		29.50 31.06		78. 887	1.00 42.			T T	0 0
	ATOM	4674	N		7 209	31. 29		82. 970	1.00 36.			Ť	N N
	ATOM	4675	CA	CYS 1		31.25		84.196	1.00 38.			T	Ċ
	ATOM	4676	С	CYS	Γ 209	30.08	4 17.610	85.068	1.00 39	82		T	С
	ATOM	4677	0		209	29.73		85.110	1.00 39.			T	0
40	ATOM	4678	CB	CYS	209	32.55		84.984	1.00 37.			Ţ	C
	ATOM	4679	SG		209	34.09		84.069	1.00 36.			T	S
	ATOM ATOM	4680 4681	N CA		Γ 210 Γ 210	28.35	1 16.656 4 16.964	85. 767 86. 635	1.00 42. 1.00 44.			T T	N C
	MOTA	4682	C		Γ 210	28.85		87. 987	1.00 44.			T	Č
	ATOM	4683	Ŏ		Γ 210	28.35		88. 460	1.00 48		•	Ť	ŏ
45	ATOM	4684	CB		r 210	27.46		86.805	1.00 46			T	C
	ATOM	4685	CG		F 21·0	28.11			1.00 48			T	C C
	ATOM	4686	SD		Γ 210	27.13		87. 366	1.00 51			Ţ	S
	ATOM	4687	CE		[210	25.67		88. 260	1.00 50			T	C
50	MOTA	4688	OT CA		210	29.74		88.541	1.00 47			T	0
	ATOM ATOM	4689 4690	CA	CA (C 1 C 2	8.11 36.51		3. 761 68. 287	1.00 33 1.00 30			C C	C C
	ATOM	4691	CA		3	48.45		90.635	1.00 32			C	C
	ATOM	4692	CA	CA	C 4	44.63		91.244	1.00 29			č	č
	ATOM	4693	CA	CA	3	43.91	6 27.507	90.375	1.00 26.	. 33		Č	C C
<i>55</i>	ATOM	4694	CA		6	41.66			1.00 31.			С	С
	ATOM	4695	CA	CA	C 7	29.81	2 29.126	89. 307	1.00 52	. 4()		С	С

	ATOM	4696	CA	CA	С	8	37.68	4 33.223	91.461	1.00 43.18	. С	C
5	ATOM	4697	CA	CA	С	9	50.86		89.468	1.00 40.17	C	
_	ATOM	4698	C11	267	I	1	35.87	3 7.021	10.051	1.00 13.34	I	
	ATOM	4699	02	267	I	1	35.03	0 7.274	10.906	1.00 12.12	I	0
	ATOM	4700	N4	267		1	35.75		8.778	1.00 14.34	I	N
	ATOM	4701	C10	267	I	1	34.58	8.190	8.382	1.00 15.61	I	С
10	ATOM	4702	C13	267	I	1	34.63	1 8.529	6.895	1.00 13.61	I	C
70	ATOM	4703	C14	267	I	1	35.84	5 9.376	6.522	1.00 13.67	I	C
	ATOM	4704	C9	267		1	33.29		8.715	1.00 14.50	I	C
	ATOM	4705	01	267		1	33. 21		8.578	1.00 14.69	I	
	ATOM	4706	N3	267		1	32.29		9.171	1.00 12.44	I	
	ATOM	4707	C8	267		1	31.02		9.430	1.00 10.00	I	-
15	ATOM	4708	C6	267		1	31.56		11.579	1.00 10.55	I	-
	ATOM	4709	C7	267		1	31.36		12.955	1.00 12.08	I	
	ATOM	4710	C2	267		1	30.41		13.646	1.00 12.47	I	
	ATOM	4711	C3	267		1	29.62		12.916	1.00 12.14	I	
	ATOM	4712	C4	267		1	29.82		11.556	1.00 10.96	I	
20	ATOM	4713	C5	267		1	30.79		10.882	1.00 12.08	I	
	ATOM	4714	C1	267		1	30.24		15.109	1.00 12.72	I	
	ATOM	4715	N1	267		1	30.85		15.820	1.00 11.13	I	
	ATOM	4716	C15	267		1	35.71		5.051	1.00 12.95	I	-
	ATOM	4717	05 NC	267		1	35.47		4. 192	1.00 17.02	I	-
25	ATOM	4718	N6	267		1	35.85		4.801	1.00 14.07	I	N
	ATOM ATOM	4719	C16 N5	267 267		1	38.33		10.843 11.391	1.00 14.85 1.00 13.27	I	C
	ATOM	4720 4721	C12				36.89 37.17		10.381	1.00 15.21	I I	N
	ATOM	4722	SI	267		1 1	36.14		10. 361	1.00 18.24	I	C S
	ATOM	4723	04	267		1	36. 27		12.112	1.00 17.03	Ī	0
30	ATOM	4724	03	267		1	36. 87		9. 787	1.00 17.05	I	
	ATOM	4725	C25			1	34. 41		10.599	1.00 17.32	I	
	ATOM	4726	C26			i	33. 72		10.336	1.00 16.35	Ī	
	ATOM	4727	N2	267		1	29. 43		15.770	1.00 11.70	Ī	
	ATOM	4728	06	267		î	32. 71		10.988	0.00 16.69	Î	
35	ATOM	4729	07	267		ī	34. 20		9.486	0.00 16.69	Ī	
	ATOM	4730	C21			ī	41.91		13.982	0.00 15.00	Ī	
	MOTA	4731	C22			1	42.33		12.625	0.00 14.96	Ĭ	
	ATOM	4732	C23			1	41.53		11.673	0.00 14.93	I	
	ATOM	4733	C18	267	I	1	40.23		12.078	0.00 14.96	I	
40	ATOM	4734	C19	267	I	1	39.81	7 5.521	13.406	0.00 14.95	I	
	ATOM	4735	C20	267	I	1	40.62	4.846	14.378	0.00 14.99	I	
	ATOM	4736	N7	267		1	41.68		10.332	0.00 14.91	I	
	MOTA	4737	C24			1	40.58		9.888	0.00 14.90	Ī	С
	MOTA	4738	C17	267	I	1	39.65	6.359	10.924	0.00 15.02	I	С
45	ATOM	4739		WAT		1	9.82		12.743	1.00 14.47	W	0
43	ATOM	4740	0H2			2	21.09		10. 275	1.00 7.31	₩	
	ATOM	4741	OH2			3	32. 30		24. 267	1.00 9.92	₩	
	ATOM	4742		WAT		4	24.66		24.602	1.00 12.63	¥	
	MOTA	4743		TAW		5	10. 32		13.052	1.00 13.81	¥	_
50	ATOM	4744		WAT		6	12. 73		-6.440	1.00 7.53	17	
50	MOTA	4745		WAT		7	33.04		0.011	1.00 12.00	17	
	ATOM	4746		WAT		8	27. 80		18. 401	1.00 6.67	₩.	
	ATOM	4747		TAW		9	29. 29		15. 340	1.00 10.47	₩	
	ATOM _	4748		WAT		10	6.54		8. 949	1.00 8.19	₩	
	ATOM	4749		WAT		11	34. 70		33. 297	1.00 18.07	₩ 	
55	ATOM	4750		WAT		12	27. 52		21.120	1.00 12.95	₩.	
	MOTA	4751	OHZ	WAT	W	13	41.01	7 11.884	9. 347	1.00 16.81	₩	0

	ATOM	1759	OHO WAT III		29. 276	13.613	29.743	1.00 19.27	TO	0
	ATOM	4752	OH2 WAT W	14		16. 246	35.000		W.	0
5	ATOM	4753	OH2 WAT W	15	40.567		23.686	1.00 18.02		
	ATOM	4754	OH2 WAT W	16	25.516	15. 164		1.00 10.81	₩	0
	ATOM	4755	OH2 WAT W	17	41.029	15.604	9.020	1.00 16.62	₩	0
	ATOM	4756	OH2 WAT W	18	8. 271	20. 932	21.125	1.00 20.96	77	0
	ATOM	4757	OH2 WAT W	19	34. 181	16. 292	63.608	1.00 25.92	W	0
10	ATOM	4758	OH2 WAT W	20	34. 774	18.566	11.988	1.00 9.54	. 🌹	0
	ATOM	4759	OH2 WAT W	21	14. 232	27. 939	10.813	1.00 20.22	<u> </u>	0
	ATOM	4760	OH2 WAT W	22	25.655	24.820	17. 299	1.00 8.83	¥	0
	ATOM	4761	OH2 WAT W	23	33. 138	16.360	29.823	1.00 14.28	W	0
	ATOM	4762	OH2 WAT W	24	7. 284	23.996	14.905	1.00 15.88	77	0
4.5	ATOM	4763	OH2 WAT W	25	22. 950	17.820	10.222	1.00 11.07	W	0
15	ATOM	4764	OH2 WAT W	26	6. 303	9.578	6.184	1.00 13.56	W	0
	ATOM	4765	OH2 WAT W	27	20.934	2. 177	72.570	1.00 20.66	W	0
	ATOM	4766	OH2 WAT W	28	5.602	17.093	14.953	1.00 13.98	.₩	0
	ATOM	4767	OH2 WAT ₩	29	25.530	19.981	23.409	1.00 11.61	₩	0
	ATOM	4768	OH2 WAT W	3 0	36.724	8. 439	21.083	1.00 16.21	77	Ò
20	ATOM	4769	OH2 ₩AT ₩	31	5. 701	26.405	4.405	1.00 23.01	₩	0
	MOTA	4770	OH2 WAT W	32	6.195	19. 147	-1.275	1.00 25.93	W	0
	MOTA	4771	OH2 WAT W	33	27. 238	18.873	27.707	1.00 12.95	77	0
	ATOM	4772	OH2 WAT W	34	10.019	19.300	22.404	1.00 20.89	₩	0
	MOTA	4773	OH2 WAT W	35	18.660	17.642	24.646	1.00 12.31	₩	0
25	ATOM	4774	OH2 WAT W	36	27.000	8.766	-7.917	1.00 12.95	₩	0
	ATOM	4775	OH2 WAT ₩	37	20. 499	17.083	29.622	1.00 11.97	₩	0
	ATOM	4776	OH2 ₩AT ₩	38	37.642	19.584	20.497	1.00 7.27	W	0
	MOTA	4777	OH2 WAT W	39	28. 905	6.346	21.635	1.00 15.10	· ₩	0
	ATOM	4778	OH2 WAT W	40	19.368	3.656	12. 781	1.00 8.09	W	0
30	ATOM	4779	OH2 WAT W	41	29.481	7.328	6.028	1.00 18.76	W	• 0
30	ATOM	4780	OH2 ₩AT ₩	42	31.853	30.028	11.019	1.00 11.55	₩	0
	MOTA	4781	OH2 WAT W	43	30.815	5.845	28. 771	1.00 18.94	77	0
	MOTA	4782	OH2 WAT W	44	7.816	13.593	10.596	1.00 12.04	₩	0
	MOTA	4783	OH2 WAT ₩	45	20. 264	8.396	8. 487	1.00 14.53	W	0
	MOTA	4784	OH2 WAT W	46	12.987	12.795	6.319	1.00 13.34	W	. 0
35	MOTA	4785	OH2 WAT W	47	23.619	18.649	37. 291	1.00 20.21	₩ .	
	MOTA	4786	OH2 ₩AT ₩	48	18. 254	6.979	24. 266	1.00 20.22	W	0
	ATOM	4787	OH2 WAT W	49	25. 729	5.521	54.904	1.00 29.74	₩	0
	MOTA	4788	OH2 WAT W	50	33.846	31.445	49. 694	1.00 24.01	W	0
	MOTA	4789	OH2 WAT W	51	1. 203	22.687	6.517	1.00 15.75	₩	0
40	MOTA	4790	OH2 WAT W	52	18.931	1.545	17. 773	1.00 11.88	₩	0
	MOTA	4791	OH2 WAT W	53	39. 260	17.313	6. 209	1.00 11.31	<u>₩</u>	0
	ATOM	4792	OH2 WAT W	54	11.858	29.857	13. 454	1.00 17.79	₩	0
	ATOM	4793	OH2 WAT W	55	39.076	22.410	-1.485	1.00 9.18	77	0
	ATOM	4794	OH2 WAT ₩	56	26. 485	33. 714	15. 886	1.00 19.67	₩	0
45	ATOM	4795	OH2 WAT W	57	37.050	20. 790	0. 260	1.00 15.14	¥	0
	MOTA	4796	OH2 WAT W	58	27. 797	26.672	32. 268	1.00 28.03	W	0
	ATOM	4797	OH2 WAT W	59	18. 324	13.670	16.592	1.00 14.91	W	0
	ATOM	4798	OH2 WAT ₩	60	17. 408	28.124	11.960	1.00 22.12	₩	0
	ATOM	4799	OH2 WAT W	61	30.927	20.411	26. 562	1.00 11.62	77	0
50	ATOM	4800	OH2 WAT W	62	9. 546	29. 554	23. 251	1.00 25.92	₩	0
50	MOTA	4801	OH2 WAT W	63	19.679	15.880	80. 100	1.00 32.98	₩	0
	ATOM	4802	OH2 WAT W	64	32. 325	25. 087	22. 495	1.00 35.63	₩	0
	ATOM	4803	OH2 WAT W	65	30.276	24. 296	21.082	1.00 13.13	¥	0
	ATOM	4804	OH2 WAT W	66	13.503	-0.011	12. 178	1.00 16.78	₩	0
	ATOM	4805	OH2 WAT W	67	32.301	3.759	18.886	1.00 15.31	W	0
55	ATOM	4806	OH2 WAT W	68	17. 841	15.087	24. 535	1.00 17.04	₩	0
	ATOM	4807	OH2 WAT W	69	32.212	-1.864	17. 231	1.00 33.57	₩	0

	MOTA MOTA	4808 4809	OH2	W TAW	71	31.942 41.741	24.676	24. 949 35. 656	1.00 14.32 1.00 25.77	₩ ₩	0
5	MOTA	4810 4811		WAT W		7.065 30.082		6. 381 75. 060	1.00 22.12 1.00 21.78	₩	0
	ATOM ATOM	4812		WAT W		4. 031		-0.177	1.00 21.73	יו קל	0
	ATOM	4813		WAT W		35.845		53.696	1.00 21.03		Ŏ
	MOTA	4814		WAT W		36.526		76.854	1.00 17.50	A	0
10	ATOM	4815	OH2	WAT		31.251		23. 047	1.00 17.45	₩,	0
	ATOM ATOM	4816 4817		WAT W		21.143 25.623	_	65. 628 68. 925	1.00 35.20 1.00 23.69	- Y7 - Y7	0
	ATOM	4818		WAT W		31.465		-2.078	1.00 23.03	· 17	Ö
	ATOM	4819		WAT W		24.891	29.425	38. 535	1.00 32.19	W	0
15	ATOM	4820	OH2	WAT W		26.966		47. 300	1.00 31.18	¥	0
15	ATOM	4821		WAT W		29.620		-0. 291	1.00 38.61	W	0
	ATOM	4822		WAT		33.991		-1.768	1.00 21.41	77	0
	MOTA MOTA	4823 4824		W TAW		36.100 37.135		-1.640 40.383	1.00 18.06 1.00 20.11	. W	0
	ATOM	4825		WAT		11.337		8. 469	1.00 15.10	Ÿ	0
20	ATOM	4826		WAT W		38.668		26. 489	1.00 15.24	Ÿ	ŏ
	ATOM	4827		WAT W		34.405		12.156	1.00 10.82	W	0.
	ATOM	4828		WAT		27. 246		18.461	1.00 22.71	₩	0
	ATOM	4829		TAW TAW		27.552 18.593		20. 143 27. 671	1.00 13.91	₩	0
25	ATOM ATOM	4830 4831		WAT W		36.799		73. 777	1.00 20.14 1.00 30.67	₩ ₩	0
25	ATOM	4832		WAT		9.790		2. 101	1.00 22.36	¥	Ö
	ATOM	4833		WAT Y		24. 239	29.551	51.184	1.00 26.73	¥	Ō
	MOTA	4834		WAT Y		29.035		45. 452	1.00 17.18	₩	0
	ATOM	4835	OH2	WAT		34.661		23. 110	1.00 15.24	W.	0
30	ATOM ATOM	4836 4837		Y TAW		21.314 30.880		-7. 614 28. 970	1.00 27.82 1.00 18.73	₩	0
	ATOM	4838		WAT		28.850		29.169	1.00 18.73	17 17	0
	ATOM	4839		WAT Y		42.030		13.248	1.00 26.15	₩	0
	ATOM	4840		WAT Y		3.956	12.762	-2.958	1.00 27.96	W	0
35	ATOM	4841		WAT		16.051		16.848	1.00 14.41	197	0
00	ATOM	4842		WAT		27.365		64.773	1.00 38.96	₩	0
	ATOM ATOM	4843 4844		TAW TAW		17.747 37.627		5.871 42.976	1.00 23.60 1.00 24.96	₩ ₩	0
	ATOM	4845		TAW		24.719		59.681	1.00 24.50	Y7	Ö
	ATOM	4846		WAT		17.686		13.933	1.00 20.39	Ÿ	ŏ
40	ATOM	4847		WAT V		-0.184		13.296	1.00 46.49	₩	0
	ATOM	4848		WAT		15. 373		25. 333	1.00 21.46	₩	0
	MOTA	4849		TAW		30.768 25.218		34.177 34.700	1.00 33.90	₩	0
	MOTA MOTA	4850 4851		TAW TAW		7. 40		1. 736	1.00 33.99 1.00 32.04	₩ ₩	0
45	MOTA	4852		WAT		20.038		15. 272	1.00 23.28	₩.	ő
	ATOM	4853		WAT		15.360		24.066	1.00 16.94	W	Ō
	ATOM	4854		WAT		19.92		60.577	1.00 40.46	₩	0
	MOTA	4855		WAT Y		32.50		25.889	1.00 19.53	₩	. 0
	ATOM	4856		WAT		30.61		4. 387	1.00 18.60	₩	0
50	MOTA MOTA	4857 4858		WAT Y		26. 479 22. 375		55.645 40.919	1.00 36.63 1.00 40.52	₩	0
	MOTA	4859		WAT		39. 62		32. 220	1.00 28.34	₩	ő
	ATOM	4860	OH2	WAT Y	R 122	48.06	3 29.461	95.001	1.00 27.75	Ÿ	ŏ
	MOTA	4861		WAT		31.89	7 32.419	0.487	1.00 30.32	₩	0
55	ATOM	4862		WAT		20. 73		18.413	1.00 26.72	₩	0
	MOTA	4863	OH2	₩AT '	W 125	31.09	6.561	53.456	1.00 25.11	₩	0

	ATOM	4864	OH2 WAT	W 126	45.312	37.218	40.612	1.00 33.55	W	0
5	ATOM	4865	OH2 WAT		1.538	17.016	8.474	1.00 19.86	W	0
	ATOM	4866	OH2 WAT	W 128	29.731	9.406	-1.174	1.00 20.25	₩	0
	ATOM	4867	OH2 WAT		27.305	38.491	25.414	1.00 28.22	W	0
	ATOM	4868	OH2 WAT		28.077	29. 238	30.743	1.00 23.73	W	0
	ATOM	4869	OH2 WAT		26.574	28.140	51.775	1.00 15.37	W	0
10	ATOM	4870	OH2 WAT		19.946	5.062	76.332	1.00 36.71	¥	0
	MOTA	4871	OH2 WAT		10.627	12.756	10.004	1.00 22.21	¥	0
	ATOM	4872	OH2 WAT		11.190	-1.258	13.067	1.00 23.85	77	0
	ATOM	4873	OH2 WAT		3. 651	9.620	16.508	1.00 29.13	¥	0
	MOTA	4874	OH2 WAT		24.584	34. 295	21.191	1.00 23.76	M.	0
15	ATOM	4875	OH2 WAT		24. 301	30. 242	41.148	1.00 33.00	7 7	0
	MOTA	4876	OH2 WAT		19.879	15.502	31.848	1.00 24.77	A	0
	MOTA	4877	OH2 WAT		31.486	28. 385	56.405 27.914	1.00 20.53 1.00 25.39	FF FF	0
	MOTA	4878	OH2 WAT		15. 743 35. 109	41.487 22.703	77. 680	1.00 23.33	₩ ₩	0
	ATOM ATOM	4879 4880	OH2 WAT		22. 799	24. 131	34.328	1.00 24.16	W.	0
20	ATOM	4881	OH2 WAT		19.856	25. 294	47. 782	1.00 36.17	W W	0
	ATOM	4882	OH2 WAT		7. 019	28. 800	5.810	1.00 26.6	₩	ŏ
	ATOM	4883	OH2 WAT			19.657	90.022	1.00 34.12	¥7	ŏ
	ATOM	4884	OH2 WAT			8. 498	28. 737	1.00 16.55	W	Ö
	ATOM	4885	OH2 WAT		25.461	2.178	29.528	1.00 31.87	. W	0
25	ATOM	4886	OH2 WAT			2.587	66.923	1.00 38.76	¥	0
	ATOM	4887	OH2 WAT	₩ 149		31.491	93.878	1.00 37.57	¥	0
	ATOM	4888	OH2 WAT	W 150		23.326	29.568	1.00 28.12	₩	0
	MOTA	4889	OH2 WAT		50.138	29.041	96.866	1.00 27.78	W	0
	ATOM	4890	OH2 WAT			21.458	38. 404	1.00 25.84	₩	0
30	MOTA	4891	OH2 WAT			31.334	13.807	1.00 35.9h	¥	0
	ATOM	4892	OH2 WAT			32.238	87. 047	1.00 33.44	₩	0
	MOTA	4893	OH2 WAT			15.072	-3.898	1.00 34.95 1.00 32.96	₩.	0
	ATOM	4894	OH2 WAT			28.002 14.352	43. 965 30. 918	1.00 32.90	W W	0
	ATOM ATOM	4895 4896	OH2 WAT			6.040	5. 325	1.00 25.62	₩	0
35	ATOM	4897	OH2 WAT			2.761	0. 289	1.00 33.92	Ψ̈́	Õ
	ATOM	4898	OH2 WAT			14.749	12.622	1.00 23.15	Ÿ	ŏ
	ATOM	4899	OH2 WAT			28.427	68. 038	1.00 30.48	Ÿ	ŏ
	ATOM	4900	OH2 WAT			4.454	76.352	1.00 33.53	W	Ŏ
	ATOM	4901	OH2 WAT			37.763	35.688	1.00 48.32	. W	0
40	MOTA	4902	OH2 WAT			3.355	5.768	1.00 28.13	₩	0
	ATOM	4903	OH2 WAT			30.331	5. 95 5	1.00 44.11	W	0
	MOTA	4904	OH2 WAT			27.903	-4.961	1.00 27.15	₩	0
	MOTA	4905	OH2 WAT			10.311	-5.754	1.00 31.75	· W	0
	MOTA	4906	OH2 WAT			4.482	21.032	1.00 44.53	- \	0
45	ATOM	4907	OH2 WAT			15.944	48. 372	1.00 38.35	W	0
	ATOM	4908	OH2 WAT			25.697	20. 938	1.00 21.61	W	0
	ATOM	4909	OH2 WAT			26. 268	86.643	1.00 30.58	₩	0
	MOTA	4910	OH2 WAT			9.693	-0.969	1.00 34.66	W	0
	MOTA	4911	OH2 WAT			13.989 -0.001	8.086 3.800	1.00 34.97 1.00 32.29	₩	0
50	MOTA MOTA	4912 4913	OH2 WAT			31.513	1.418	1.00 32.23	₩ ₩	0
	ATOM	4914	OH2 WAT			40. 562	31. 950	1.00 34.23	W	0
	ATOM	4914	OH2 WAT			31.784	48. 268	1.00 38.43	₩ ₩	0
	ATOM	4916	OH2 WAT			31. 307	3. 076	1.00 21.18	₩	ő
	ATOM	4917	OH2 WA			14.818	-1.815	1.00 30.86	W	ŏ
55	MOTA	4918	OH2 WAT			9.957	46.073	1.00 34.20	₩	ŏ
	ATOM	4919	OH2 WA			28. 333	8. 565	1.00 16.99	Ÿ	Ö
	J. 1 V.		G.1.2 1771		21.011				.,	•

	MOTA	4920	0H2	WAT	W	182	36.688	10.228	42.234	1.00 32.93		W	0
	MOTA	4921	0H2	WAT	W	183	3.251	31.546	9.757	1.00 29.65		W	Ö
5	MOTA	4922	OH2	WAT			18.321	2.574	-0.484	1.00 32.80		W	Õ
	MOTA	4923	0H2	WAT			5. 637	5.762	14. 955	1.00 32.54		¥	Õ
	MOTA	4924		WAT			15.673	14.210	25. 757	1.00 34.67		₩	0
	MOTA	4925		WAT		187	40.626	21.784	27. 626	1.00 34.07		W	
	ATOM	4926		WAT			42.987	22. 261	89. 602	1.00 27.87			0
10	MOTA	4927		WAT								P 7	0
							14.638	39.203	19.516	1.00 32.86		M.	Ŏ
	ATOM	4928		WAT			11.036	30.934	11.072	1.00 31.17		₩	0
	ATOM	4929		WAT		191	33.710	31.642	9.747	1.00 31.14		W	0
	ATOM	4930		WAT			20.870	6.918	26.506	1.00 33.93		¥	0
	ATOM	4931		TAW			28.954	1.020	74.566	1.00 34.78		W	0
15	MOTA	4932		WAT			37.700	14.002	57.999	1.00 52.48		¥	0
	ATOM	4933		WAT		195	2.310	11.077	13.236	1.00 36.20		¥	0
	MOTA	4934		WAT			29.084	-0.199	11.021	1.00 39.14		¥	0
	ATOM	4935		WAT			41.032	19.200	6.700	1.00 29.69		₩	0
	ATOM	4936		WAT			12.343	28.516	23.498	1.00 25.52		₩	0
20	MOTA	4937		WAT			28.735	31.233	43.028	1.00 25.67		W	0
	ATOM	4938	0H2	WAT	W	200	44.326	3.129	25.867	1.00 53.33		W	0
	ATOM	4939	OH2	WAT	₩	201	28.603	7.431	-2.611	1.00 30.53		W	Ō
	ATOM	4940		WAT		202	33.156	26.217	56.692	1.00 26.43		¥	Õ
	MOTA	4941		WAT			36. 278	15.450	-4.311	1.00 26.09		W	ŏ
	ATOM	4942		WAT			38.154	8.018	19.062	1.00 37.43		W	ŏ
25	ATOM	4943		WAT			9.837	28.610	10.272	1.00 31.67		W	Õ
	ATOM	4944		TAW		206	14.373	16.403	26.718	1.00 36.07		Ψ̈́	0
	ATOM	4945		TAW			37. 593	16.593	70.391	1.00 29.23	:	77	ő
	ATOM	4946		WAT			0.132	11.716	9. 251	1.00 33.00		''	Õ
	ATOM	4947		WAT		209	25.144	28. 339	31.889	1.00 49.28		¥	Ö
30	ATOM	4948		WAT			7. 440	16.389	-2.874	1.00 20.15		W	0
	ATOM	4949		WAT			7. 530	29. 833	8. 482	1.00 20.13		W	
	ATOM	4950		WAT			21.589	17. 888	38.999	1.00 33.73		W	0
	ATOM	4951		WAT		213	42. 227	19.920	8.912				0
	ATOM	4952		WAT			18.081	13.134	53. 952	1.00 24.14		W	0
	ATOM	4953		WAT			28.604			1.00 46.05		W	0
35						216		36.515	31. 266	1.00 35.94	•	W	0
	ATOM	4954		WAT			21.979	38. 636	47. 184	1.00 45.57		W	0
	ATOM	4955		WAT			37.628	28. 720	13.544	1.00 35.13		₩	0
	ATOM	4956		WAT			13.553	15. 154	18. 167	1.00 30.54		W	0
	ATOM	4957		WAT			32.654	30.845	47.076	1.00 25.26		₩	0
40	ATOM	4958		WAT		220	-2.842	14.831	8. 115	1.00 33.07		¥	0
	ATOM	4959		WAT			18.483	15.571	-7.984	1.00 30.86		W	0
	ATOM	4960		WAT			3. 270	25.714	5.665	1.00 26.54		₩	0
	ATOM	4961		WAT		223	50.144	24.757	82.596	1.00 34.50		W	0
	MOTA	4962		WAT			26. 242	11.203	31.526	1.00 30.44		W	0
15	MOTA	4963		WAT			18.073	-1.159	18.149	1.00 34.53		₩	0
45	ATOM	4964		WAT			47.321	29.376	85.710	1.00 34.51		W	0
	ATOM	4965	OH2	₩AT	V	227	22.195	20.381	42.496	1.00 30.12		W	0
	MOTA	4966	0 H2	WAT	¥	228	3.659	2.259	0.190	1.00 34.67		¥	0
	ATOM	4967	0H2	WAT	W	229	40.557	0.237	20.769	1.00 28.72		¥	0
	ATOM	4968	0H2	WAT	W	230	21.900	26.386	53.079	1.00 26.13		W	Ŏ
50	ATOM	4969		WAT		231	7.647	31.085	26.330	1.00 35.78		¥	Ö
	MOTA	4970		TAW			13.007	21.995	27.742	1.00 38.60		Ÿ	ŏ
	ATOM	4971		WAT			45. 245	0.872	24.555	1.00 46.33		Ţ,	Ö
	ATOM	4972		WAT			18.696	16.785	50.319	1.00 37.87		₩ ₩	0
	MOTA	4973		WAT			31.471	4.379	68.498	1.00 43.22		Y	0
	MOTA	4974		TAW			44.018	19.076	33. 450	1.00 32.66		W	0
	ATOM	4975		WAT			23.071	24. 930	30.360	1.00 23.93		n ₩	
	WIAM	7010	0117	HAT.	ıī	וטט	23.011	67. JUV	30. 300	1.00 20.50		17	0

	ATOM	4976	OH2	TAW	w	238	35.628	33. 217	93.628	1.00 33.30	1	Y	0
	ATOM	4977	0H2				35. 847	25. 095	70. 900	1.00 44.01			Õ
5	ATOM	4978	OH2				22. 701	20.328	82.692	1.00 39.98			Ö
J	ATOM	4979	OH2				7. 838	12.303	-1.787	1.00 33.86		_	0
							28. 268	21.326	68. 248	1.00 34.80		7	0
	MOTA	4980	OH2					24.146	8.061				
	ATOM	4981	OH2				-0.770			1.00 34.90			0
	ATOM	4982	OH2					6.075	7.064	1.00 31.06			0
10	MOTA	4983	OH2				23.502	28.608	54.003	1.00 28.10			0
	MOTA	4984	OH2				34.476	12.129	8. 573	1.00 22.78		Y	0
	ATOM	4985		₩AT			11.730	40.646	20. 091	1.00 43.62			0
	MOTA	4986	OH2				20. 358	23.090	67.179	1.00 43.07			0
	ATOM	4987	OH2				33. 233	30.859	32.765	1.00 29.52			0
15	ATOM	4988	OH2	WAT	¥	250	34. 971	29.300	13. 451	1.00 24.97			0
	ATOM	4989	OH2	WAT	₩	251	21.456	30.121	50.897	1.00 51.79	1	V	0
	MOTA	4990	OH2	WAT	₩	252	38. 432	11.736	55. 327	1.00 41.69	Ţ	₹	0
	MOTA	4991	0H2	WAT	W	253	42.192	23.969	9.558	1.00 58.78	ſ	Ÿ	0
	MOTA	4992		WAT			45. 254	27.469	47.916	1.00 33.81	Ţ	¥	0
22	ATOM	4993		WAT			34.867	39.746	60.424	1.00 51.82		R	0
20	ATOM	4994		WAT			7.714	11.590	23. 225	1.00 47.38			0
	ATOM	4995		WAT			11.234	37.040	13.444	1.00 45.19			0
	ATOM	4996		WAT			5. 250	24.259	16.611	1.00 35.12			Õ
	ATOM	4997		WAT			30. 634	7. 333	46.566	1.00 64.60			Ō
	ATOM	4998		WAT			41.043	28.449	49.954	1.00 34.29			Õ
25	ATOM	4999		WAT			27. 833	42.178	56.031	1.00 38.43			Ö
	ATOM	5000		WAT			36.007	23.861	20.102	1.00 26.54		₹	Õ
	MOTA	5001		WAT			47.752	24. 361	74. 233	1.00 52.97			Õ
	MOTA	5002		WAT		264		19.480	-9.352	1.00 39.53			Õ
	MOTA	5002		WAT			27.553	31.025	88. 317	1.00 52.14			0
30	ATOM	5003		WAT			27. 439	6.871	2. 671	1.00 32.14			0
00	ATOM	5004		WAT			28. 522	39.164	45.564	1.00 33.43			0
				WAT			43.870	22. 301	47. 233	1.00 40.78			0
	ATOM	5006		WAT			35.079	36.340	52.168	1.00 44.82			0
	MOTA	5007						34.163	23.718	1.00 27.05			0
	MOTA	5008		WAT			23. 451	22.554	71.076	1.00 27.03			
35	ATOM	5009		WAT			30.957		80.920				0
	MOTA	5010		WAT			38.744	7.564		1.00 40.95	. 1		0
	ATOM	5011		WAT			13.936	30.988	30.446	1.00 41.06		₩ no	0
	ATOM	5012		WAT			23.419	17.708	86. 267	1.00 59.87			0
	ATOM.	5013		WAT			21.017	0. 277	3.695	1.00 50.07		₩	0
40	ATOM	5014		WAT			21.549	22.757	36.427	1.00 45.15		₩ 117	0
	ATOM	5015		WAT			37. 355	12.567	39.061	1.00 34.74		₩ 50	0
	MOTA	5016		TAW			2.783	23.907	15.169	1.00 48.05		₩	0
	ATOM	5017		WAT			32.292	35.378	41.347	1.00 45.51		₩	0
	ATOM	5018		WAT			24. 285	8. 129	48.241	1.00 36.55		¥	0
45	ATOM	5019		WAT			9.135	10.036	-0.985	1.00 36.77		₩	0
45	MOTA	5020				282	9.648	4.536	20.435	1.00 35.26		W	0
	ATOM	5021				283	37.143	14.114	86.099	1.00 40.95		W	0
	MOTA	5022				284	9.020	35. 287	33.571	1.00 41.52		₩	0
	ATOM	5023		WAT			-1.612	10.514	3.421	1.00 51.73		W	0
	MOTA	5024				286	42.982	17.337	41.377			W	0
50	MOTA	5025	0H2	TAW	Y	287	34.957	31.854	45.389	1.00 25.75		W	0
	ATOM	5026				288	3.170	28.704	16.548	1.00 47.39		W	0
	ATOM	5027		WAT			4.236	26.437	18.194	1.00 40.60		W	0
55	ATOM	5028				290	11.780	0.909	19.173	1.00 31.13		W	0
	ATOM	5029		WAT			35.076	18.990	60.316	1.00 38.09		W	0
	ATOM	5030				292	-0.662	15. 295	21.926	1.00 52.48		W	Ō
	ATOM	5031				293	42.355	22. 441	69.467	1.00 43.05		 W	Õ
	014				.,		-2.000					••	-

	MOTA	5032	OH2 1	VAT W	294		36.115	8.550	0.838	1.00 34.86	Y	7	0
	MOTA	5033	OH2 1				5. 539	38. 578	29.277	1.00 41.01	W.		Ŏ
5	ATOM	5034	OH2				-0.774	16.342	12.374	1.00 44.15	Y.		Ŏ
	MOTA	5035	OH2 1				20. 248	19.074	34.881	1.00 32.03	¥.		ŏ
	MOTA	5036	OH2 /				22.485	11.810	37.890	1.00 40.55	W.		Ŏ
	ATOM	5037		VAT W			42.707	16.687	11.459	1.00 42.38	ų.		Ö
	ATOM	5038	OH2 1				40.839	15.634	41.011	1.00 38.21	Y.		ŏ
10	ATOM	5039		VAT W			20.094	24.068	71.878	1.00 70.09	Ϋ́		ŏ
10	ATOM	5040	OH2				31.865	-0.414		1.00 41.10	ή.		ŏ
	ATOM	5041		YAT W			20, 743	26.537	50.189	1.00 45.73	Υ. 		Ö
	ATOM	5042		YAT W			44.143	13.662	12.378	1.00 40.41	N.		ŏ
	ATOM	5043		W TAW			40.498	25. 176	54.332	1.00 46.48	γ, γ		ŏ
	ATOM	5044		W TAN			35.746	6.890	18.386	1.00 32.88	W.		Ŏ
15	ATOM	5045		W TAV			14.855	41.757		1.00 44.75	W.		0
	ATOM	5045	OH2				18.143	-0.909	20.903	1.00 45.80	и И		0
				W TAN				7.517	-5.357	1.00 43.80	7i		0
	ATOM	5047		M TAN		•	29.441	20.038	-9.566	1.00 48.48	п <i>1</i> 7		
	ATOM	5048		MAT W			33.031	8.376	$\frac{-3.300}{2.930}$	1.00 37.72			0
20	MOTA MOTA	5049 5050		MAT W				12.995	39. 392	1.00 28.46	V V		0
				n ian ₩TAW			19.453	26. 455	33.576	1.00 49.37	n Y		0
	MOTA MOTA	5051 5052		MAT W			32.900	12.710	60. 296	1.00 43.04	, 1		0
		5052 5053		MAT W			35.171	34.093	47.106	1.00 46.97	η γ		0
	MOTA MOTA	5054		MAT W			42.577	27.086	48. 235	1.00 40.03	n 1		0
25	ATOM	5054 5055		n ian Wataw		,	8.900	30.335	4.530	1.00 36.15	ų. V		0
	ATOM	5056		TAW			30.817	33. 985	69.076	1.00 46.39	ų. V		0
	MOTA	5057		WAT W			19.929	3. 244	55.862	1.00 64.43	¥		0
	ATOM	5058		WAT ₩			23.376	1.981	90. 249	1.00 39.58	Y		0
	ATOM	5059		WAT W			40.437	5. 728	17.654	1.00 39.03	A.		ŏ
30	ATOM	5060		WAT W			9.640	35. 993	11.234	1.00 42.43	Ÿ.		0
30	ATOM	5061		WAT W			16.153	42.346	23. 466	1.00 34.97	Ž,		0
	ATOM	5062		WAT W			35.436		64.215	1.00 57.86	Ÿ		0
	ATOM	5063		WAT W		•	4.918	16.942	5. 288	1.00 10.46	Y		ŏ
	ATOM	5064		WAT W			18.390	21. 278	-9.254	1.00 31.50	Ÿ		ŏ
	ATOM	5065		WAT W			1.490	16.464	5. 809	1.00 20.84	Ÿ		0
35	ATOM	5066		WAT Y			2.997	16.779	3. 328	1.00 19.39	,		ŏ
	ATOM	5067		WAT Y			6.139		-0.292	1.00 48.96	Y		ŏ
	ATOM	5068			330		35. 510	12.689	47.619	1.00 31.05		Y	ŏ
	ATOM	5069		WAT Y			27. 536	5.618	-0.676	1.00 54.07		Ÿ	ŏ
	ATOM	5070		WAT V			43.643	19.826	17. 185	1.00 59.51		Ÿ	ŏ
40	ATOM	5071		WAT Y			19.184	30.073	10.467	1.00 46.29		Ÿ	0
	ATOM	5072		WAT P			31.305	28.910	32.552	1.00 37.09		Ÿ	ŏ
	ATOM	5073		WAT P			9.970	0.903	-1.332	1.00 48.94		, V	Ŏ
	ATOM	5074			336			21.451		1.00 46.05			ŏ
	ATOM	5075			337		25.589		19. 101	1.00 50.70		7	Ŏ
45	ATOM	5076			338		16.211	15.273	77. 481	1.00 45.46		Ÿ	Ö
	ATOM	5077			339		4.566	4.778	9. 222	1.00 38.03		Ÿ	ŏ
	ATOM	5078			340		24.583		-12.370	1.00 38.31		7	ŏ
	MOTA	5079		TAW			41.377	15.443	47. 138	1.00 42.95		7	0
	MOTA	5080			342		46.584	22.712	72.438	1.00 50.39	. 7		0
50	MOTA	5081			343		37.742	-1.808	21. 784	1.00 43.11		Ÿ	Ö
•	ATOM	5082			344		19.595	0.633	24. 707	1.00 42.68		T 7	0
	ATOM	5083			344		20.648	23.506	31. 934	1.00 42.03		₹	0
	MOTA	5084			346		5. 215	28.843	9. 509	1.00 47.44		7	0
	ATOM	5085			347		-1.391	17.437	9.148	1.00 44.39		T }	0
55	ATOM	5086			348		37.699	11.437	32. 487	1.00 44.39		n 17	0
55					349				35. 581				
	ATOM	5087	Onz	uwi j	349		21.639	34.577	99.901	1.00 39.86	1	V	0

	ATOM	5088	OH2 WAT	₩ 350	19.819	24.919	38.691	1.00 51.89	₩	0
	ATOM	5089	OH2 WAT		34. 940	35. 726	43. 895	1.00 60.97	77	ō
	MOTA	5090	OH2 WAT		37. 201	17.622	58.850	1.00 43.91	W	Ö
5	ATOM	5091	OH2 WAT		29. 384	35.815	62.018	1.00 33.90	W.	Ō
	MOTA	5092	OH2 WAT		34.042	37.937	56.652	1.00 31.53	Ÿ	Ŏ
	MOTA	5093	OH2 WAT		. 18.864	-1.487	3. 101	1.00 49.21	Ŵ	Ō
	ATOM	5094	OH2 WAT		45.897	16.661	41.685	1.00 45.52	77	ŏ
	MOTA	5095	OH2 WAT		46.644	36.386	90. 281	1.00 51.76	₩	Ŏ
10	ATOM	5096	OH2 WAT		25.350	25.538	31.973	1.00 43.63	W	Ō
	MOTA	5097	OH2 WAT		34.925	5.802	29.713	1.00 38.77	¥	ŏ
	MOTA	5098	OH2 WAT		33.389	12.245	-5.833	1.00 38.52	Ÿ	Ō
	ATOM	5099	OH2 WAT		13.401	36.615	6.966	1.00 60.27	Ÿ	Ŏ
	ATOM	5100		₩ 362	29.038	14.217	36.874	1.00 43.15	W	ŏ
15	MOTA	5101	OH2 WAT		43.754	18.992	93.095	1.00 43.98	W	ŏ
	ATOM	5102	OH2 WAT		24. 549	4.764	4. 197	1.00 50.16	₩	õ
	ATOM	5103	OH2 WAT		43.227	13.919	19.497	1.00 58.10	Ÿ	ŏ
	ATOM	5104	OH2 WAT		10.214	33.407	9.945	1.00 50.53	Ÿ	Õ
	ATOM	5105	OH2 WAT		17.413	19.604	27.704	1.00 31.46	W	Õ
20	ATOM	5106	OH2 WAT		28.562	31.651	91.027	1.00 58.43	Ŷ	Ŏ
	ATOM	5107	OH2 WAT		39. 915	9. 085	8. 229	1.00 51.34	¥	Ö
	ATOM	5108	OH2 WAT		37.715	6.403	1.728	1.00 49.76	₩	Ō
	ATOM	5109	OH2 WAT		45.177	11.389	17.053	1.00 38.62	W	0
	ATOM	5110	OH2 WAT		-1.495	16.407	5.919	1.00 24.58	. ₩	0
25	ATOM	5111	OH2 WAT		17.928	10.777	-8.990	1.00 48.78	W	0
	ATOM	5112	OH2 WAT		49.671	41.399	35.418	1.00 39.49	W	0
	ATOM	5113	OH2 WAT		-2.896	22.960	9.444	1.00 64.43	W	0
	ATOM	5114	OH2 WAT	₩ 376	44.242	20.119	13.114	1.00 43.91	₩	0
	ATOM	5115	OH2 WAT	₩ 377	45.998	27.498	65.911	1.00 52.62	W	0
30	ATOM	5116	OH2 WAT	W 378	54.712	25. 922	87. 283	1.00 44.48	W	0
	ATOM	5117	OH2 WAT		9. 336	21.221	24.256	1.00 39.28	₩ .	0
	ATOM	5118	OH2 WAT		5.711	10.622	25.188	1.00 45.01	. \Y	0
	ATOM	5119	OH2 WAT		22.065	36.408	12.747	1.00 59.06	₩	0
	ATOM	5120	OH2 WAT			10.821		1.00 40.75	¥	0
35	ATOM	5121	OH2 ₩AT		39. 595	1.633	12.436	1.00 49.31	. ₩	0
	ATOM	5122	OH2 WAT		11.084	30. 834	0.209	1.00 39.09	₩	0
	ATOM	5123	OH2 WAT		16.720	27. 264	-4.002	1.00 41.06	₩.	0
	ATOM	5124	OH2 WAT	₩ 386	31.056	0. 281	79.010	1.00 38.99	W	0
	ATOM	5125	OH2 WAT		19. 887	9. 930	45.039	1.00 49.86	W	0
40	ATOM	5126	OH2 WAT		36.655	37.162	45.509	1.00 47.87	A	0
,,,	ATOM	5127	OH2 WAT		27.630	7. 903	30.948	1.00 41.08	₩	0
	ATOM	5128	OH2 WAT		22.128	23.087	-9.666	1.00 41.60	₩ ₩	0
	ATOM	5129	OH2 WAT		16.596	34. 405	7.509	1.00 52.09	₩	0
	ATOM	5130	OH2 WAT		18.187	37. 051	16.426	1.00 58.25	W	0
45	ATOM	5131	OH2 WAT		20.557	35.471	15.670	1.00 30.35	W	0
40	MOTA	5132	OH2 WAT		38.852	10.942	68.815	1.00 56.37	W	0
	ATOM	5133	OH2 WAT		14.789	20.103	63.603	1.00 69.08 1.00 45.92	W.	0
	MOTA	5134	OH2 WAT		35.781 32.425	9.917 7.986	61.122 44.362	1.00 43.92	W	0
	ATOM	5135	OH2 WAT			29. 239		1.00 46.65		0
50	MOTA	5136	OH2 WAT		39.173 33.925	28. 356	58. 940 71. 709	1.00 46.03	₩	0
50	ATOM	5137	OH2 WAT				39. 837	1.00 40.21		0
	ATOM	5138	OH2 WAT		26.195	11.085	9. 983	1.00 37.46	₩ ₩	0
	ATOM	5139	OH2 WAT		40.425	2.450 -1.394	7.667	1.00 56.86	₩ W	0
	ATOM	5140	OH2 WAT		28.452 22.460	2. 393	0.537	1.00 36.38	17 197	0
<i>EE</i>	ATOM ATOM	5141 5142	OH2 WAT		20.613	0.672	-0.814	1.00 40.38	₩	0
55	END	3146	UAL MAI	ii 404	20.013	0.012	0.014	1.00 01.12	11	U
	שוונע									

Table 37 Coordinate data of the complex between Compound
(2) and human factor VIIa/soluble tissue factor (around the inhibitor)

	CRYST1	71	.28	A 82	.320	123.380	90.00	90.00	90.00 P212	101	
10	ATOM	1	N	ILE H	16	22.059	3. 893	14.020	1.00 5.70		M
	ATOM	2	ČA	ILE H	16	21.957	4. 124	15. 491	1.00 6.52	H H	N
	MOTA	3	C	ILE H	16	22.005	2. 782	16. 220	1.00 7.66		C
	ATOM	4	Õ	ILE H	16	21. 209	1.883			H	C
	ATOM	5	-	ILE H				15.942	1.00 8.62	H	0
15			CB		16	20.628	4. 834	15.856	1.00 7.20	H	C
	ATOM	6		ILE H	16	20.515	6.174	15. 119	1.00 6.97	H	C
	ATOM	7		ILE H	16	20.545	5.036	17.365	1.00 7.03	H	C
	ATOM	8		ILE H	16	21.554	7. 217	15. 521	1.00 6.54	H	C
	ATOM	9	N	VAL H	17	22.947	2.646	17. 144	1.00 8.63	H .	N
20	ATOM	10	CA	VAL H	17	23.087	1.417	17.916	1.00 9.50	H	С
	ATOM	11	C	VAL H	17	22.570	1.634	19.338	1.00 9.85	H	. С
	ATOM	12	0	VAL H	17	23.002	2.553	20.026	1.0010.72	H	0
	ATOM	13	CB	VAL H	17	24.566	0.964	18.008	1.00 9.85	H	С
	ATOM	14		VAL H	17	24.659	-0.327	18.813	1.00 10.27	H	С
	ATOM	15	CG2	VAL H	17	25.148	0.754	16.613	1.00 9.47	H	С
25	ATOM '	16	N	LEU H	4 1	22.072	7.406	1.097	1.00 11.66	H	N
	ATOM	17	CA	LEU H	41	23.440	7.899	1.213	1.00 11.08	H	C
	ATOM	18	C	LEU H	41	23.808	8.366	2.624	1.00 10.34	H	C
	ATOM	19	0	LEU H	41	24. 765	7.871	3.224	1.00 10.61	H	0
	ATOM	20	CB	LEU H	41	23.657	9.058	0.226	1.00 10.87	H	C
30	ATOM -	21	CG	LEU H	41	25.000	9.801	0.273	1.00 11.44	Н	C
	MOTA	22	CD1	LEU H	41	26.115	8.893	-0.221	1.00 11.67.	H	C
	MOTA	23	CD2	LEU H	41	24.921	11.048	-0.582	1.00 11.04	Н	Ċ
	ATOM	24	N	CYS H	42	23.032	9.307	3.153	1.00 8.47	H	N
	ATOM	25	CA	CYS H	42	23.314	9.885	4.457	1.00 6.60	H	Ċ
35	ATOM	26	C	CYS H	42	22.102	10.577	5.061	1.00 6.35	Ĥ	č
35	ATOM	27	0	CYS H	42	21.038	10.660	4. 448	1.00 8.58	Ĥ	ŏ
	ATOM	28	CB	CYS H	42	24. 421	10. 935	4. 309	1.00 6.00	H	Č
	ATOM	29	SG	CYS H	42	26. 138	10.338	4. 348	1.00 7.26	H	Š
	ATOM	30	N	GLY H	43	22. 291	11.087	6. 272	1.00 4.57	H	N
	ATOM	31	CA	GLY H	43	21. 248	11.827	6.949	1.00 3.67	H	Č
40	ATOM	32	C	GLY H	43	21.549	13. 308	6.764	1.00 3.83	H	Č
	ATOM	33	ŏ	GLY H	43	22. 525	13.686	6. 104	1.00 3.03	H	0
	ATOM	34	Ň	ALA H	55	26.992	16. 158	6.411	1.00 5.39	H	N
	ATOM	35	CA	ALA H	55	28. 424	15. 958	6.611	1.00 5.35		
	ATOM	36	C	ALA H	55	29. 160	15. 980	5. 277		H	C
45	ATOM		-		55	28.674			1.00 6.95	H	Ç
		37	0.	ALA H	55		15. 441	4. 279	1.00 6.34	H	0
	ATOM	38	CB	ALA H		28.681	14.624	7.326	1.00 4.19	H	C
	ATOM	39	N	ALA H	56	30.333	16.606	5. 265	1.00 6.14	H	N
	ATOM	40	CA	ALA H	56	31.142	16.694	4.053	1.00 7.74	H	C
50	ATOM	41	C	ALA H	56	31.552	15. 332	3.488	1.00 6.96	H	С
50	ATOM	42	0	ALA H	56	31.487	15. 118	2. 276	1.00 8.41	Н	0
	ATOM	43	CB	ALA H	56	32.399	17.532	4.319	1.00 6.48	Н	С
	ATOM	44	N	HIS H	57	31.971	14.412	4.355	1.00 5.95	H	N
	ATOM	45	CA	HIS H	57	32.419	13. 103	3.889	1.00 6.77	H	С
	ATOM	46	С	HIS H	57	31.358	12. 282	3.151	1.00 8.28	Н	C
55	ATOM	47	0	HIS H	57	31.685	11.304	2.476	1.00 8.26	H	0
	ATOM	48	CB	HIS H	57	33.021	12.288	5.046	1.00 5.22	H	Č

	1501	40	00	****		00.00		5 040			_		
	MOTA	49	CG	HIS H	57	32.02		5.846	1.00	4.67	1		
	MOTA	50		HIS H	57	31.55		7.074	1.00	2.15	ŀ		
5	ATOM	51		HIS H	57	31.43		5.613	1.00	3.66	I	I C	
	ATOM	52	CE1	HIS H	57	30. 730	0 11.032	7. 564	1.00	2.30	ŀ	I C	
	ATOM	53	NE2	HIS H	57	30.630	6 10.038	6.698	1.00	3.94	ŀ		
	ATOM	54	N	CYS H	58	30.090		3. 267	1.00	7.28	ŀ		
	ATOM	55	CA	CYS H	58	29.00		2.584	1.00	8.91	Ì		
40	ATOM	56	C	CYS H	58	29.128		1.069	1.00	9.73	H		
10	ATOM	57	ŏ	CYS H	58	28. 490		0.317					
									1.00	7.76	F		
	ATOM	58	CB	CYS H	58	27.660		3. 035	1.00	7.86	F		
	ATOM	59	SG	CYS H	58	27.170		4.706	1.00	6.38	H		
	ATOM	60	N	PHE H	59	29.963		0.628		10.76	H		
15	ATOM	61	CA	PHE H	59	30.114		-0.790	1.00	9.91	H		
	ATOM	62	C	PHE H	59	31.481	12.971	-1.364	1.00	9.71	H		
	ATOM	63	0	PHE H	59	31.804		-2.496	1.00	8.14	F		
	ATOM	64	CB	PHE H	59	29.804		-1.020	1.00	9.77	H		
	ATOM	65	CG	PHE H	59	28.484		-0.422		10.32	H		
	ATOM	66		PHE H	59	27. 28		-1.083	1.00	7.39	H		
20	ATOM	67		PHE H	59	28.430		0.846		11.05	H		
	ATOM	68		PHE H	59	26.06		-0.493	1.00	9.49			
	ATOM										H		
		69		PHE H	59	27. 214		1.447		11.89	H		
	ATOM	70	CZ	PHE H	59	26.023		0. 776		10.25	H		
0.5	ATOM	71	N	ASP H	60	32. 273		-0.591	1.00	8.71	H		
25	ATOM	72	CA	ASP H	60	33.596		-1.041	1.00		H		
	MOTA	73	C	ASP H	60	33.570		-2.370		13.85	F	C	
	MOTA	74	0	ASP H	60	34. 394		-3. 250	1.00	13.33	H	0	
	MOTA	75	CB.	ASP H	60	34. 25	5 10.904	0.016	1.00	9.72	H	. C	
	ATOM	76	CG	ASP H	60	34.859	11.694	1.157	1.00	10.46	H		
30	ATOM	77	0D1	ASP H	60	34.673		1.191	1.00	8.35	H		
	ATOM	78		ASP H	60	35.514		2.020	1.00	9.24	H		
	ATOM	79	N	LYS H		32.634		-2.522		15.64	H		
	ATOM	80		LYS H		32.579		-3.755		19.34	H		
	ATOM	81	Č	LYS H		31.40		-4.690		19.44	H		
	ATOM	82	Ö	LYS H		30.97							
35	ATOM							-5.420		19.48	H		
		83	CB	LYS H		32.624		-3.441		21.25	H		
	ATOM	84	CG	LYS H		34.024		-3.136		25.19	H		
	ATOM	85	CD	LYS H		34. 297		-1.650		28.66	H		
	ATOM	86	CE	LYS H		33.594		-1.041		31.51	H		
40	ATOM	87	NZ	LYS H		33.91		0.412		35.53	H		
40	ATOM	88	N	ILE H	90	30.97		0.695	1.00	7.99	. Н		
	ATOM	89	CA	ILE H	90	31.91		1.623	1.00	7.65	H	C	
	ATOM	90	C	ILE H	90	33.092		1.866	1.00	7.29	H	C	
	MOTA	91	0	ILE H	90	33.544	4 23.761	0.953	1.00	9.45	H	0	
	ATOM	92	CB	ILE H		32.42		1.016		7.65	H		
45	ATOM	93		ILE H		31.298		1.061	1.00	8.19	H		
	MOTA	94		ILE H		33.66		1.732	1.00	8. 25	H		
	ATOM	95		ILE H		31.620		0.319	1.00	9.60	· H		
	ATOM	96	N	TYR H		38.31		3.982	1.00	8.73			
											H		
50	ATOM	97	CA	TYR H		37.97		4.148	1.00	7.55	H		
50	ATOM	98	C	TYR H		38. 72		3.130	1.00	7.25	H		
	ATOM	99	0	TYR H		38. 80		1.959	1.00	6.40	H		
	ATOM	100	CB	TYR H		36.464		3.969	1.00	5.85	H		
	ATOM	101	CG	TYR H		36.110		3.920	1.00	4.59	H		
	MOTA	102		TYR H		36,088	3 17.157	5.082	1.00	4.45	H		
55	ATOM	103	CD2	TYR H	94	35.884		2.700	1.00	4.26	H		
	ATOM	104		TYR H		35.859		5.035	1.00	2.80	H		
		-			-	22.300						. •	

5	ATOM ATOM ATOM ATOM	105 106 107 108	CE 2 CZ OH N	TYR H TYR H TYR H VAL H	94 94 94 95	35. 35.	646 1 462 1	5. 907 5. 163 3. 796 7. 656	2. 642 3. 814 3. 767 3. 584	1.00 1.00 1.00 1.00	3. 12 1. 93 5. 06 8. 23	:	H H H H	C C O N
	ATOM ATOM ATOM	109 110 111	CA C O	YAL H YAL H YAL H	95 95 95	39. 39. 39.	989 1 293 1 141 1	6. 748 5. 393 4. 692	2. 713 2. 622 3. 625	1.00 1.00 1.00	8. 13 9. 13 8. 17		H H H	C C 0
10	ATOM ATOM ATOM ATOM	112 113 114 115	CG1 CG2 N	VAL H VAL H VAL H PRO H	95 95 95 96	42. 42. 38.	160 .1 173 1 863 1	6. 523 5. 530 7. 848 5. 005	3. 225 2. 315 3. 271 1. 410		8. 63 7. 79 9. 62 10. 15	•	H H H	C C C N
15	ATOM ATOM ATOM ATOM	116 117 118 119	C O CB	PRO H PRO H PRO H PRO H	96 96 96 96	38. 40. 38.	988 1 221 1 171 1	3. 716 2. 623 2. 655 3. 536	1.237 1.928 1.917 -0.279	1.00 1.00 1.00 1.00	10.07 9.71 10.21 9.81		H H H H	C C C C
20	ATOM ATOM ATOM ATOM	120 121 122 123		PRO H PRO H GLY H GLY H	96 96 97 97	39. 38.	062 1 280 1	4. 949 5. 673 1. 675 0. 571	-0.776 0.110 2.534 3.222	1.00 1.00 1.00 1.00	9. 61 8. 77 7. 35 7. 72		H H H H	C C N C
	ATOM ATOM ATOM ATOM	124 125 126 127	C O N CA	GLY H GLY H THR H THR H	97 97 98 98	39 <i>.</i> 39.	656 187 1	0. 853 9. 934 2. 112 2. 474	4.670 5.404 5.091 6.456	1.00 1.00 1.00 1.00	8. 31 5. 90 8. 38 8. 75		H H H H	C O N C
25	ATOM ATOM ATOM ATOM	128 129 130 131	C O CB	THR H THR H THR H THR H	98 98 98 98	38. 37. 40.	347 1 197 1 639 1	2. 901 2. 726 3. 572 4. 798	7. 301 6. 888 6. 474 5. 939	1.00 1.00 1.00 1.00	9. 32 9. 82 10. 03 9. 30	:	H H H H	C O C O
30	ATOM AOTA ATOM	132 133 134	CG2 N CA	THR H THR H THR H	.98 99 99	41. 38. 37.	841 1 622 1 576 1	3. 123 3. 478 3. 853	5.636 8.470 9.411	1.00 1.00 1.00	7. 92 6. 94 7. 19		H H H	C N C
35	ATOM ATOM ATOM ATOM	135 136 137 138		THR H THR H THR H THR H	99 99	36. 37. 39.	267 1 761 1 126 1	5. 330 5. 704 3. 028 3. 133	9.811 10.221 10.697 11.128	1.00 1.00 1.00 1.00	7.60 4.56 9.01 8.28		H H H H	C C O
35	ATOM ATOM ATOM ATON	139 140 141 142	CG2 N CA C	THR H ASN H ASN H	100	38. 38.	405 1 280 1	1.556 6.163 7.573 8.369	10.444 9.703 10.093 9.157	1.00 1.00 1.00 1.00	8. 22 4. 83 6. 56 6. 18		H H H H	C N C C
40	ATOM ATOM ATOM	143 144 145	O CB CG	ASN H ASN H ASN H	100 100 100	37. 39. 39.	. 299 1 . 669 1 . 760 1	8. 109 8. 244 9. 337	7. 957 10. 151 11. 227	1.00 1.00 1.00	6.48 3.59 7.18		H H H	0 C C
45	ATOM ATOM ATOM ATOM	146 147 148 149		ASN H ASN H HIS H HIS H	100 101	38. 36.	. 809 1 . 638 1 . 725 2	20. 162 19. 340 19. 338 20. 178	11. 222 12. 156 9. 718 8. 940	1.00 1.00 1.00 1.00	9.38 1.98 6.06 6.01		H H H H	0 N N C
	ATOM ATOM ATOM ATOM	150 151 152 153	C O CB CG	HIS H HIS H HIS H	101 101	34. 36.	. 433 1 . 510 2	19.325 19.562 21.018 21.853	8. 198 7. 017 7. 927 8. 541	1.00 1.00 1.00 1.00	6.65 6.05 6.18 9.14	•	H H H H	0 0 0
50	ATOM ATOM ATOM	154 155 156	ND1 CD2 CE1	HIS H HIS H	101 101 101	37. 38. 38.	. 331 2 . 935 2 . 470 2	22.852 21.824 23.401	9. 456 8. 387 9. 839	1.00 1.00 1.00	10.10 8.84 9.36		H H H	N C C
55	ATOM ATOM ATOM ATOM	157 158 159 160	NEZ N CA C	ASP H ASP H ASP H	102 102	34. 33.	. 136 1 . 170 1	22. 795 18. 341 17. 436 18. 055	9. 206 8. 891 8. 279 8. 310	1.00 1.00 1.00 1.00	5.86 4.35 4.62 5.36		H H H H	N C C

	MOTA	161	0	ASP H 10			17.713	9. 154	1.00	5. 27	H		0
	MOTA	162	CB	ASP H 10			16.095	9.016	1.00	1.00	H		C
5	ATOM	163	CG	ASP H 10			14.992	8. 238	1.00	3.93	H		C
	ATOM	164		ASP H 10			15.219	7.067	1.00	5.39	H		0
	ATOM	165		ASP H 10			13.889	8. 794	1.00	2.41	H		0
	ATOM	166	N	ILE H 10			18.972	7. 381	1.00	5.02	H		N
	ATOM	167	CA	ILE H 10			19.659	7. 309	1.00	3.77	H		С
10	MOTA	168	C	ILE H 10			20.059	5.874	1.00	4.55	H		C
	ATOM	169	0	ILE H 10			20.349	5.094	1.00	4.54	H		0
	ATOM	170	CB	ILE H 10			20.931	8. 201	1.00	4.83	H		C
	ATOM	171		ILE H 10			21.570	8. 259	1.00	2.69	H		C
	ATOM	172		ILE H 10			21.931	7.664	1.00	2.18	H		C
15	ATOM	173		ILE H 10			22.730	9. 246	1.00	1.00	H		C
	ATOM	174	N	VAL H 13			12.090	18. 785	1.00	5.55	H		N
	ATOM	175	CA	VAL H 13			11.812	17. 509		6.30	H		C
	ATOM	176	C	VAL H 13			10.842	16.823	1.00	6.56	H		Ç
	ATOM	177	0	VAL H 13		741	9.990	17.479	1.00	7.54	H		0
20	ATOM	178	CB	VAL H 13			11.165	17. 677	1.00	6.77	H		C
	ATOM	179		VAL H 13			12.166	18. 324	1.00	3.97	H		C
	ATOM	180		VAL H 13		614	9.906	18. 515	1.00	5.04	H		C
	ATOM	181	N	SER H 13	9 20.		10.967	15. 512	1.00	6.69 5.72	H		N
	MOTA	182	CA	SER H 13		611	10.114 9.790	14.805 13.370	1.00		H		C
25	ATOM ATOM	183 184	C 0	SER H 13 SER H 13			10.431	12. 787	1.00 1.00	6.17 5.98	H		C
20	ATOM	185	C B	SER H 13			10. 431	14.815	1.00	6.76	H		0 C
	MOTA	186	OG	SER H 13			12.120	14. 327	1.00	4.59	H		Ö
	ATOM	187	N	GLY H 14		741		9. 987	1.00	8.09	H		N
	ATOM	188	CA	GLY H 14		997	4. 032	9. 902	1.00	6.84	H		C
30	ATOM	189	C	GLY H 14		957	2.626	10.456	1.00	7. 70	H		č
30	ATOM	190	Õ	GLY H 14		900	2.125	10.850	1.00	7.86	H		Ö
	ATOM	191		GLN H 14		126	1.993	10.480	1.00	9.91	Ĥ		N
	ATOM	192	CA	GLN H 14		278	0.628	10.976		11.50	H		Ċ
	ATOM	193	C	GLN H 14		843		12.425		11.62	H		Ċ
35	ATOM	194	Ö	GLN H 14		133	1.360	13.255		10.73	H		0
33	ATOM	195	CB	GLN H 14		737	0.158	10.868		10.78	ŀ		C
	ATOM	196	CG	GLN H 14		309	0.056	9.452	1.00	13.60	ŀ	[C
	ATOM	197	CD	GLN H 14		651	1.411	8.850	1.00	1 6 . 26	F	[C
	ATOM	198	0E1	GLN H 14		652	2.430	9.542	1.00	13.61	F	I	0
40	ATOM	199	NE 2	GLN H 14	3 25.	952	1.425	7. 555	1.00	15.87	ŀ	[N
40	ATOM	200	N	LEU H 14			-2.024	14.132		17.85	H		N
	ATOM	201	CA	LEU H 14			-2.630	14.718		21.26	H		C
	ATOM	202	C	LEU H 14			-2.317	13.805		22.2 3	F		C
	MOTA	203	0	LEU H 14				12.610			I		0
	ATOM	204		LEU H 14				14.816		21.41	ŀ		C
45	ATOM	205	CG	LEU H 14			-4.748	15.699		24.05	ŀ		C
	ATOM	206		LEU H 14			-6. 251	15.465		22.91	ŀ		C
	ATOM	207		LEU H 14			-4.437	17.166		24. 83	ŀ		C
	ATOM	208	N	ASP H 14			-2.314	14.374		24.68	ŀ		N
	ATOM	209	CA	ASP H 14			-2.054	13.600		28. 79	ŀ		C
50	ATOM	210	C	ASP H 14			-3. 221	12.634		30.65	ŀ		C
	ATOM	211	0	ASP H 14			-4.379	13.046		29. 72	ŀ		0
	ATOM	212	CB	ASP H 14			-1.974	14.534		30. 17	ŀ		Ç
	ATOM	213	CG	ASP H 14			-1.707	13.795		31.88	ŀ		C
	ATOM	214		ASP H 14			-0.995	12.767		32. 57	ŀ		0
55	ATOM	215		ASP H 14			-2.199	14. 257		35. 02	ŀ		0
	ATOM	216	N	ARG H 14	1 28.	838	-2.918	11.348	1.00	34.10	ŀ	ı	N

	ATOM	217	CA	ARG H 147	28.968	-3.964	10.338	1.00 37.74	H	С
	ATOM	218	C	ARG H 147	27.620	-4.672	10.137	1.00 36.36	H	
_		219	Ö		27.580	-5. 856	9. 805			
5	ATOM			ARG H 147				1.00 38.70	H	
	ATOM	220	CB	ARG H 147	30.023	-4. 977	10.794	1.00 41.63	Н	
	ATOM	221	CG	ARG H 147	30.984	-5.462	9. 731	1.00 48.94	Н	
	MOTA	222	CD	ARG H 147	32.085	-6.279	10.395	1.00 55.34	H	C
	ATOM	223	NE	ARG H 147	33.126	-6.706	9.465	1.00 60.79	Н	N
10	ATOM	224	CZ	ARG H 147	34.228	-7.360	9.826	1.00 63.32	H	
70	ATOM	225		ARG H 147	34.439	-7.667	11.100	1.00 64.90	H	
	ATOM	226		ARG H 147	35.122	-7. 708	8.912	1.00 64.23	H	
	ATOM	227	N	LEU H 158	18.599	8. 382	19.520	1.00 04.23		
									H	
	ATOM	228		LEU H 158	19.340	8. 024	20.727	1.00 7.23	Н	
15	ATOM	229	C	LEU H 158	19.751	9. 261	21.527	1.00 8.93	Н	
	ATOM	230	0	LEU H 158	20.116	10. 290	20.953	1.00 8.07	H	
	ATOM	231	CB	LEU H 158	20.603	7.253	20.336	1.00 6.49	H	С
	ATOM	232	CG	LEU H 158	21.572	6.875	21.454	1.00 6.44	H	
	ATOM	233		LEU H 158	20.931	5.804	22.334	1.00 7.20	H	
	ATOM	234		LEU H 158	22.886	6.374	20.853	1.00 6.24	H	
20	ATOM	235	N	VAL H 160	22.440	10.884	23.870	1.00 6.69	H	
	ATOM	236	CA	VAL H 160	23.841	10.699	24. 231	1.00 5.16	H	
				VAL H 160						
	ATOM	237	C		24.363	11.899	25.015	1.00 6.46	H	
	ATOM	238	0	VAL H 160	23.972	13.038	24.761	1.00 6.24	H	
25	ATOM	239		VAL H 160	24.748	10.493	22.977	1.00 4.79	H	
25	ATOM	240		VAL H 160	24.364	9. 202	22.248	1.00 2.87	H	С
	ATOM	241	CG2	VAL H 160	24.636	11.690	22.033	1.00 4.14	H	С
	ATOM	242	N	ARG H170C	40.277	4.649	25.092	1.00 26.96	H	N
	ATOM	243	CA	ARG H170C	41.408	3.742	25.040	1.00 30.88	H	
	ATOM	244	С	ARG H170C	42.455	4. 322	24.096	1.00 33.02	H	
30	ATOM	245	Ö	ARG H170C	42.180	4. 560	22.920	1.00 32.09	H	
	ATOM	246	СB	ARG H170C	40.952	2. 368	24.546	1.00 32.33	H	
		247	CG	ARG H170C	42.066	1.343	24.417	1.00 36.16		
	ATOM								H	
	ATOM	248	CD	ARG H170C	41.510	-0.012	24.014	1.00 39.39	H	
	ATOM	249	NE	ARG H170C	42.563	-0.955	23.649	1.00 41.61	. Н	
35	ATOM	250	CZ	ARG H170C	42.345	-2.177	23.169	1.00 44.13	H	
	ATOM	251		ARG H170C	41.105	-2.617	22.992	1.00 45.02	H	N
	ATOM	252	NH2	ARG H170C	43.370	-2.959	22.859	1.00 45.11	Н	N
	ATOM	253	N	LYS H170D	43.650	4.565	24.622	1.00 36.30	H	N
	MOTA	254	CA	LYS H170D	44.737	5.114	23.820	1.00 39.96	H	С
	ATOM	255	C	LYS H170D	45.045	4.165	22.667	1.00 39.79	Н	
40	ATOM	256	Ó	LYS H170D	45.328	2.986	22.881	1.00 39.51	H	
	ATOM	257	CB	LYS H170D	45.986	5. 302	24.685	1.00 43.00	H	-
	ATOM	258	CG	LYS H170D	47. 201	5. 802	23. 921	1.00 47.37	H	
	ATOM	259		LYS H170D	48. 433	5.842		1.00 51.67	H	
45	ATOM	260	CE	LYS H170D	49.673	6. 249	24.028	1.00 54.05	H	
	ATOM	261	NZ	LYS H170D	49.975	5. 293	22.924	1.00 55.60	H	
	ATOM	262	N	VAL H170E	44.983	4.679	21.445	1.00 39.89	H	
	ATOM	263	CA	VAL H170E	45.250	3.860	20.269	1.00 40.30	H	С
	ATOM	264	C	VAL H170E	46.447	4.372	19.472	1.00 41.06	H	
	ATOM	265	0	VAL H170E	47.128	5. 312	19.888	1.00 41.71	Н	
50	ATOM	266	CB	VAL H170E	44. 015	3. 799	19.340	1.00 40.64	H	
	ATOM	267		VAL HITOE	42.876	3. 065	20.034	1.00 40.47	H	
	ATOM	268		VAL H170E	43.582	5. 199	18.958	1.00 40.92	H	
	ATOM	269	N	GLY H170F	46.700	3. 741	18.330	1.00 40.52	Н	
	ATOM	270	CA	GLY H170F	47.814	4. 140	17.492	1.00 39.24	H	
55	ATOM	271	C	GLY H170F	47.649	5. 534	16.920	1.00 38.47	Н	
	MOTA	272	0	GLY H170F	47, 270	6.468	17.630	1.00 38.87	H	0

5	MOTA MOTA MOTA	273 274 275	N CA C	ASP H170G ASP H170G ASP H170G	47. 932 47. 823 46. 433	5. 672 6. 955 7. 192	15.629 14.951 14.370	1.00 36.20 1.00 34.41 1.00 31.26	Н Н Н	N C C
	ATOM ATOM ATOM	276 277 278	O CB CG	ASP H170G ASP H170G ASP H170G	46. 265 48. 869 50. 282	7. 306 7. 049 7. 112	13. 155 13. 839 14. 377	1.00 30.19 1.00 38.35 1.00 42.44	Н Н Н	C C
10	ATOM ATOM ATOM	279 280 281	N	ASP H170G ASP H170G SER H170H	45.438	8.077 6.200 7.265	15. 111 14. 069 15. 245	1.00 43.77 1.00 44.37 1.00 27.38	Н Н Н	0 0 N
	ATOM ATOM ATOM	282 283 284	CA C O	SER H170H SER H170H SER H170H	44.066 43.830 44.628	7.501 9.008 9.817	14. 822 14. 677 15. 149	1.00 23.64 1.00 20.46 1.00 19.96	Н Н Н	C 0
15	ATOM ATOM ATOM	285 286 287	CB OG N	SER H170H SER H170H PRO H1701	43.096 43.323 42.733	6.902 7.430 9.403	15.846 17.142 14.013	1.00 24.30 1.00 24.12 1.00 17.84	Н Н Н	C 0 N
20	ATOM ATOM ATOM ATOM	288 289 290 291	CA C O CB	PRO H170I PRO H170I PRO H170I PRO H170I	42.432 42.402 41.933 41.066	10.826 11.597 11.090 10.798	13. 826 15. 146 16. 162 13. 142	1.00 15.01 1.00 13.81 1.00 11.82 1.00 14.13	Н Н Н	0 0
	ATOM ATOM ATOM	292 293 294	CG CD N	PRO H1701 PRO H1701 ASN H 175	41. 112 41. 716 42. 918	9. 519 8. 562 12. 819	13. 142 12. 359 13. 358 15. 137	1.00 14.13 1.00 15.60 1.00 16.03 1.00 13.26	H H H H	C C N
25	ATOM ATOM ATOM	295 296 297	CA C O	ASN H 175 ASN H 175 ASN H 175	42.911 41.540 40.813	13.627 14.261 14.420	16. 347 16. 497 15. 520	1.00 15.22 1.00 12.70 1.00 9.75	Н Н Н	C C
	ATOM ATOM ATOM ATOM	298 299 300 301		ASN H 175 ASN H 175 ASN H 175 ASN H 175	43.964 45.367 45.726 46.178	14. 744 14. 217 13. 159 14. 963	16. 280 16. 081 16. 597 15. 338	1.00 19.16 1.00 22.90 1.00 28.38 1.00 26.32	H · H H	C C 0
30	ATOM ATOM ATOM	302 303 304	N CA C	ILE H 176 ILE H 176 ILE H 176	41. 190 39. 922 40. 253	14. 609 15. 270 16. 759	17. 729 18. 015 18. 040	1.00 28.32 1.00 12.09 1.00 10.80 1.00 9.92	H H H H	N N C C
35	ATOM ATOM ATOM	305 306 307	O CB CG1	ILE H 176 ILE H 176 ILE H 176	40. 856 39. 373 39. 207	17. 248 14. 856 13. 335	18. 992 19. 391 19. 451	1.00 8.78 1.00 10.52 1.00 11.68	н Н Н	0 C C
	ATOM ATOM ATOM	308 309 310	CD1 N	ILE H 176 ILE H 176 MET H 180	38. 032 38. 867 35. 459	15. 533 12. 816 19. 555	19.636 20.830 16.502	1.00 7.03 1.00 15.04 1.00 3.00	Н Н	C C N
40	ATOM ATOM ATOM ATOM	311 312 313	CA C O	MET H 180 MET H 180 MET H 180	34. 757 34. 487 35. 007	18. 321 18. 263 19. 075	16.843 18.344 19.114	1.00 3.79 1.00 4.77 1.00 6.30	Н Н Н	C 0
45	ATOM ATOM ATOM ATOM	314 315 316 317	CB CG SD CE	MET H 180 MET H 180 MET H 180 MET H 180	37. 565	17. 105 17. 162 15. 805 16. 035	16. 499 15. 169 15. 057 13. 399	1.00 3.93 1.00 5.58 1.00 6.35	H H H	C C
	ATOM ATOM ATOM	318 319 320	N CA C	PHE H 181 PHE H 181 PHE H 181	38. 175 33. 677 33. 379 32. 851	17. 288 17. 034 15. 608	18. 745 20. 151 20. 242	1.00 4.33 1.00 3.48 1.00 3.80 1.00 4.05	Н Н Н Н	C N C C
50	MOTA MOTA MOTA	321 322 323	O CB CG	PHE H 181 PHE H 181 PHE H 181	32. 219 32. 371 30. 939	15. 111 18. 051 17. 853	19. 304 20. 719 20. 273	1.00 3.48 1.00 4.63 1.00 6.12	H H H	0 C
	ATOM ATOM ATOM	324 325 326	CD1 CD2	PHE H 181 PHE H 181 PHE H 181	30. 134 30. 370 28. 777	16. 881 18. 706 16. 767	20. 863 19. 323 20. 519	1.00 3.60 1.00 4.58 1.00 4.70	н Н Н	CCC
55	ATOM ATOM ATOM	327 328		PHE H 181 PHE H 181	29. 018 28. 220	18. 601 17. 634	18. 973 19. 572	1.00 4.10 1.00 2.41 1.00 4.05	H H	C

	ATOM ATOM	329 330	N CA	CYS H 182 CYS H 182	33.142 32.684	14. 938 13. 571	21. 349 21. 539	1.00 3.27 1.00 4.42	H H	N C
5	ATOM	331	С	CYS H 182	31.373	13.550	22. 298	1.00 3.93	H	С
	ATOM	332	0	CYS H 182	31.061	14.473	23.047	1.00 4.77	H	0
	ATOM	333	CB	CYS H 182	33.685	12.758	22.352	1.00 5.96	Н	С
	ATOM	334	SG	CYS H 182	35.402	12.734	21.771	1.00 5.85	H	S
	ATOM	335	N	ALA H 183	30.619	12.476	22.112	1.00 3.91	H	N
10	ATOM	336	CA	ALA H 183	29. 356	12. 290	22. 810	1.00 5.23	H	C
	ATOM	337	C	ALA H 183	29.000	10.813	22.723	1.00 5.27	Н	C
	ATOM	338	0	ALA H 183	29.318	10.150	21.740	1.00 7.26	Н	0
	ATOM	339	CB	ALA H 183	28. 254	13. 152	22. 178	1.00 2.74	H	C
	MOTA	340	N	GLY H184A	28.361	10.289	23.760	1.00 7.33	H	N
15	ATOM	341	CA	GLY H184A	27. 986	8. 890	23. 741	1.00 6.69	H	C
	ATOM	342	C	GLY H184A	28. 482	8. 101	24. 936	1.00 8.17	H	C
	ATOM	343	0	GLY H184A	28.615	8.634	26.042	1.00 6.87	H	0
	ATOM	344	N	TYR H 184	28.771	6.825	24. 699	1.00 7.70	H	N
	ATOM	345		TYR H 184	29. 224	5. 921	25. 750	1.00 8.19	H	C
20	ATOM	346 347	C 0	TYR H 184 TYR H 184	30.406 30.506	5.068 4.712	25. 288 24. 114	1.00 7.75 1.00 6.46	H H.	C 0
	ATOM ATOM	348		TYR H 184	28.074	5.004	26.176	1.00 8.95	H	C
	ATOM	349	CG	TYR H 184	26.813	5. 725	26.615	1.00 10.41	H	C
	ATOM	350		TYR H 184	25.924	6. 256	25. 681	1.00 10.78	H	č
	ATOM	351		TYR H 184	26.515	5.881	27.967	1.00 10.54	H	č
25	ATOM	352		TYR H 184	24.771	6.923	26.080	1.00 12.32	H	. č
	ATOM	353		TYR H 184	25.369	6.542	28.378	1.00 12.08	H	C
	ATOM	354	CZ	TYR H 184	24.500	7.061	27.429	1.00 13.74	H	C
	ATOM	355	OH	TYR H 184	23.357	7.705	27.829	1.00 15.66	H	0
	ATOM	356	N	LYS H 188	25.832	2.110	23.136	1.00 8.03	H	N
30	ATOM	357	CA	LYS H 188	25.079	3.077	22.349	1.00 7.40	H	С
	ATOM	358	C	LYS H 188	25. 957	4.081	21.605	1.00 9.19	H	C
	ATOM	359	0	LYS H 188	26.946	4. 585	22.147	1.00 7.00	H	0
	ATOM	360	CB	LYS H 188	24. 123	3. 820	23. 283	1.00 8.96	H	C -
	ATOM	361	CG	LYS H 188	23.123	2.911	24.006 25.051	1.00 9.81	H	C
35	ATOM	362	CD	LYS H 188 LYS H 188	22. 325 23. 15 7	3. 672 3. 965	26. 292	1.00 11.33 1.00 14.58	H H	C
	ATOM ATOM	363 364	CE NZ	LYS H 188	23. 107	2.721	27.048	1.00 14.55	Н	N
	MOTA	365	N	ASP H 189	25, 570	4. 397	20.373	1.00 14.37	H	N
	ATOM	366		ASP H 189	26. 350	5. 319	19.560	1.00 8.44	H	Ċ
	ATOM	367	Č	ASP H 189	25.650	5.465	18. 209	1.00 8.51	Ĥ	č
40	ATOM	368	Ö	ASP H 189	24.752	4.686	17.886	1.00 7.47	H	Õ
	MOTA	369	CB	ASP H 189	27, 755	4.705	19.393	1.00 9.61	H	С
	ATOM	370	CG	ASP H 189	28. 738	5.610	18.677	1.00 8.64	H	С
	MOTA	371	O D1	ASP H 189	28. 457	6.811	18.489	1.00 9.82	H	0
	ATOM	372	OD2	ASP H 189	29.819	5.098	18.313	1.00 6.31	H	0
45	MOTA	373	N	SER H 190	26.013	6.486	17.441	1.00 6.24	H	N
	MOTA	374	CA	SER H 190	25. 450	6.628	16.106	1.00 6.22	H	С
	MOTA	375	С	SER H 190	26. 395	5. 773	15.249	1.00 7.07	H	C
	MOTA	376	0	SER H 190	27. 367	5. 221	15.775	1.00 5.91	H	0
	ATOM	377	CB	SER H 190	25. 450	8. 101	15.658	1.00 4.21	H	C
50	ATOM	378	0G	SER H 190	26. 703	8. 733	15.861	1.00 4.59	H	0
	ATOM	379	N	CYS H 191	26. 128	5.641	13.953	1.00 8.36	H	N
	ATOM	380	CA	CYS H 191	26. 992	4. 823	13.099	1.00 7.99	H	C
	ATOM	381	C.	CYS H 191 CYS H 191	27.131	5. 428	11.698	1.00 8.96	H	C
	ATOM ATOM	382 383	O CB	CYS H 191	26. 507 26. 446	6. 442 3. 384	11.388 13.036	1.00 8.95 1.00 8.01	H H	0 C
55	MOTA	384	SG	CYS H 191	27.624	2. 981	12.512	1.00 11.48	n K	S
	V I OW	904	50	010 11 131	41.044	£. VO1	16.012	1.00 11.40	n	J

	MOTA	385	N	LYS H	192	27.955	4.804	10.861	1.00	9.23	H	N
_	MOTA	386	CA	LYS H		28. 232	5. 291	9. 508	1.00		H	Č
5						27.042						
	ATOM	387	Č	LYS H			5.787	8.691	1.00	9.74	Н	C
	ATOM	388	0	LYS H		27.089	6.885	8. 131	1.00	9.42	H	0
	ATOM	389	CB	LYS H		28.996	4. 221	8.720	1.00	12.99	H	С
	ATOM	390	CG	LYS H	192	30,288	3.788	9.406	1.00	17.47	Н	С
	ATOM	391		LYS H		31.180	2.948	8.509	1.00		Н	Č
10	ATOM	392	CE	LYS H		32.448	2.535	9. 258	1.00		H	Č
						33.427						
	ATOM	393		LYS H			1.809	8.395	1.00		H	N ·
	MOTA	394	N	GLY H		25.983	4.989	8.623	1.00	9.29	H	N
	ATOM		CA	GLY H		24.806	5. 380	7.863	1.00	9.11	H	С
	MOTA	396	С	GLY H	193	24.059	6.573	8.433	1.00	10.62	H	С
15	ATOM	397	0	GLY H	193	23.188	7.141	7.774	1.00	12.70	Н	0
	MOTA	398	N	ASP H		24.386	6.959	9.662	1.00	8.84	H	N
	ATOM		CA	ASP H		23.744	8. 108	10.289	1.00	7.33	H	
												C
	ATOM	400	C	ASP H		24.475	9.412	9.972	1.00	7.03	H	, C
	ATOM	401	0	ASP H		23.989	10.492	10.312	1.00	7.04	H	0
20	MOTA	402	CB	ASP H		23.688	7.917	11.802	1.00	5.37	Н	С
	ATOM	403	CG	ASP H	194	22.927	6.671	12.195	1.00	7.85	H	С
	MOTA	404	001	ASP H	194	21.737	6.572	11.833	1.00	6.73	H	0
	ATOM	405		ASP H		23.519	5.794	12.857	1.00	4.09	H	Ö
	ATOM	406	N	SER H		25.634	9. 301	9. 324	1.00	5.06	H	N
				SER H		26.449	10.454	8. 960				
25	ATOM	407	CA						1.00	5.57	H	C
	ATOM	408	C	SER H		25.629	11.601	8. 387	1.00	6.93	Н	С
	ATOM	409	0	SER H		24.730	11.391	7.573	1.00	4.66	Н	0
	MOTA	410	CB	SER H		27.521	10.050	7.939	1.00	4.83	Н	С
	MOTA	411	0G	SER H	195	28.461	9. 156	8.509	1.00	2.83	H.	0
	MOTA	412	N	GLY H	196	25.958	12.817	8.816	1.00	7.56	H	N
30	MOTA	413	CA	GLY H		25. 253	13.994	8. 337	1.00	7.44	H	Ċ
	MOTA		C	GLY H		24.032	14. 324	9.174	1.00	7. 23	H	Č
	MOTA		Ö	GLY H		23. 564	15. 460	9. 178	1.00	7.34		
		415									H	0
	MOTA	416	N	GLY H		23. 520	13.325	9. 888	1.00	7.25	H	N
	MOTA	417	CA	GLY H		22.351	13.517	10.721	1.00	5.90	Н	Ç
35	MOTA	418	C	GLY H		22.572	14.494	11.858	1.00	6.34	H	С
	ATOM	419	0	GLY H	197	23.707	14.824	12.195	1.00	7.23	Н	0
	ATOM	420	N	HIS H	199	22.592	16.228	15.752	1.00	4.65	Н	N
	ATOM	421	CA	HIS H	199	22.920	16.007	17.151	1.00	2.63	H	C
	ATOM	422	C	HIS H		22.168	17.243	17.628	1.00	3.93	H	Č
	ATOM	423	ŏ	HIS H		22.668	18.366	17.497	1.00	4.27	H	ő
40	ATOM	424	CB	HIS H		24. 424	16. 155	17. 391	1.00			
										4.75	H	C
	ATOM	425	CG	HIS H		24.812	16.159	18.838	1.00	3.77	Н	С
	ATOM	426		HIS H		24.693	17.275	19.636	1.00	1.00	• Н	N
	MOTA	427		HIS H		25.308		19.633	1.00	4.02	H	С
	ATOM	428	CE1	HIS H	199	25.103	16.987	20.858	1.00	2.26	H	С
45	ATOM	429	NE2	HIS H	199	25.481	15.721	20.883	1.00	2.92	H	N
	ATOM	430	N	ILE H		26.974	17.242	14.214	1.00	5.45	Н	N
	ATOM	431	CA	ILE H		26.692	16.454	13.021	1.00	5.68	H	Ċ
	ATOM	432	C	ILE H		27.372	15.092	13.160	1.00	6.39		
											Н	C
F.C.	ATOM	433	0	ILE H		28.561	15.029	13.458	1.00	7.22	Н	0
50	ATOM	434	CB	ILE H		27. 265	17. 133	11.753	1.00	5. 98	H	С
	ATOM	435		ILE H		26.699	18.545	11.606	1.00	4.14	H	C
	ATOM	436		ILE H		26.943	16.296	10.522	1.00	5.31	H	С
	ATOM	437		ILE H		27.426	19.368	10.561	1.00	3.83	H	Č
	MOTA	438	N	VAL H		26.620	14.010	12.962	1.00	6.29	Ĥ	N
55	ATOM	439	CA	VAL H		27. 187	12.661	13.039	1.00	3.02	H	
55	ATOM		C									C
	N I UM	440	U	VAL H	413	28.340	12.692	12.046	1.00	3.61	H	С

5	ATOM ATOM ATOM ATOM ATOM	441 442 443 444 445	CB CG1 CG2 N	VAL H 213 VAL H 213 VAL H 213 VAL H 213 SER H 214	28.130 26.149 26.792 24.959 29.557	12.905 11.581 10.194 11.599 12.491	10.846 12.617 12.636 13.578 12.540	1.00 3.84 1.00 1.61 1.00 1.00 1.00 1.00 1.00 4.04	Н Н Н Н	0 0 0 0 0 1
10	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	446 447 448 449 450 451	C O CB OG	SER H 214 SER H 214 SER H 214 SER H 214 SER H 214 TRP H 215	30. 728 31. 619 31. 766 31. 561 32. 746 32. 225	12.582 11.349 10.778 13.794 13.898 10.946	11.675 11.577 10.497 12.101 11.343 12.689	1.00 5.26 1.00 3.67 1.00 3.00 1.00 4.06 1.00 7.47 1.00 2.06	H H H H H	C C O C O N
15	ATOM ATOM ATOM ATOM ATOM	452 453 454 455 456	C O CB CG	TRP H 215 TRP H 215 TRP H 215 TRP H 215 TRP H 215	33. 094 33. 247 32. 628 34. 489 35. 298	9.779 9.099 9.491 10.148 11.099	12.667 14.018 15.007 12.120 12.983	1.00 4.11 1.00 5.89 1.00 5.44 1.00 5.71 1.00 6.60	H H H H	C C C C
20	MOTA MOTA MOTA MOTA MOTA	457 458 459 460 461	CD2 NE1 CE2 CE3	TRP H 215 TRP H 215 TRP H 215 TRP H 215 TRP H 215	35. 174 36. 374 36. 106 36. 855 36. 979	12. 459 10. 755 12. 985 11. 962 9. 546	13.046 13.870 13.910 14.433 14.244	1.00 8.26 1.00 7.17 1.00 6.83 1.00 7.22 1.00 6.60	Н Н Н Н	C C N C C
25	MOTA MOTA MOTA MOTA MOTA	462 463 464 465 466	CZ3 CH2 N CA	TRP H 215 TRP H 215 TRP H 215 GLY H 216 GLY H 216	37. 912 38. 035 38. 488 34. 086 34. 336	11. 996 9. 578 10. 799 8. 070 7. 332	15. 351 15. 161 15. 703 14. 043 15. 265	1.00 4.55 1.00 7.36 1.00 6.87 1.00 6.33 1.00 8.66	H H H H	C C N C
30	ATOM ATOM ATOM ATOM ATOM	467 468 469 470 471	O N CA C	GLY H 216 GLY H 216 GLN H 217 GLN H 217 GLN H 217	35. 004 34. 914 35. 684 36. 346 35. 284	6. 017 5. 543 5. 422 4. 148 3. 065	14. 932 13. 795 15. 906 15. 669 15. 765	1.00 9.66 1.00 9.71 1.00 10.43 1.00 10.60 1.00 10.61	H H H H	C 0 N C C
35	ATOM ATOM ATOM ATOM ATOM	472 473 474 475 476	CB CG CD OE1	GLN H 217 GLN H 217 GLN H 217 GLN H 217 GLN H 217	34. 858 37. 449 38. 205 39. 564 40. 134	2. 695 3. 919 2. 612 2. 605 1. 540	16. 858 16. 701 16. 498 17. 171 17. 427	1.00 13.71 1.00 12.43 1.00 14.99 1.00 18.06 1.00 19.54	H H H H	0 0 0 0 0
40	ATOM ATOM ATOM ATOM ATOM	477 478 479 480 481	N CA C O	GLN H 217 GLY H 219 GLY H 219 GLY H 219 GLY H 219	40. 103 34. 854 33. 803 32. 536 32. 436	3. 794 2. 563 1. 563 2. 218 3. 446	17. 443 14. 612 14. 596 15. 126 15. 163	1.00 13.50 1.00 10.68 1.00 11.37 1.00 11.52 1.00 11.41	H H H H	N N C C
45	ATOM ATOM ATOM ATOM ATOM	482 483 484 485 486	C O CB	CYS H 220 CYS H 220 CYS H 220 CYS H 220 CYS H 220	31.569 30.317 30.052 29.975 29.170	1.266 0.037 1.658	17.420 17.508 15.099	1.00 11.97 1.00 11.90 1.00 11.82 1.00 12.68 1.00 11.56	Н Н Н Н	N C C O C
50	ATOM ATOM ATOM ATOM ATOM	487 488 489 490 491	N CA C O	CYS H 220 ALA H221A ALA H221A ALA H221A ALA H221A	29. 346 29. 916 29. 691 30. 806 30. 547	2. 521 2. 084 1. 588 0. 616 -0. 493	13.505 18.462 19.817 20.198 20.677	1.00 8.67 1.00 10.74 1.00 10.47 1.00 10.93 1.00 11.08	H H H H	S N C C O
55	ATOM ATOM ATOM ATOM ATOM	492 493 494 495 496	CB N CA C	ALA H221A THR H 221 THR H 221 THR H 221 THR H 221	28. 336 32. 046 33. 237 33. 708 33. 859	0.901 1.045 0.249 0.543 1.706	19. 914 19. 968 20. 274 21. 695 22. 075	1.00 11.15 1.00 9.44 1.00 8.66 1.00 8.04 1.00 7.03	H H H H	C N C C

5	ATOM ATOM ATOM ATOM ATOM	497 498 499 500 501	OG1 TH CG2 TH N VA CA VA	L H L H	221 221 222 222	34. 391 33. 983 35. 634 33. 926 34. 386	0.578 0.265 -0.225 -0.508 -0.361	19. 289 17. 951 19. 623 22. 480 23. 862	1.00 1 1.00 1.00	8. 20 10. 25 11. 22 7. 75 7. 14	} } } }		C O C N C
10	ATOM ATOM ATOM ATOM ATOM ATOM	502 503 504 505 506 507	0 VA CB VA CG1 VA CG2 VA		222 222 222 222	35. 637 36. 567 34. 705 35. 329 33. 426 35. 632	0.508 0.304 -1.745 -1.558 -2.564 3.718	23. 904 23. 132 24. 507 25. 893 24. 629 23. 234	1.00 1.00 1.00 1.00 1.00	7.56 7.65 6.51 6.03 4.73 6.63	F F F F F	[([(C O C C C N
15	ATOM ATOM ATOM ATOM ATOM	508 509 510 511 512	CA HI C HI C HI CB HI	S H S H S H S H S H	224 224 224 224 224	35. 512 34. 148 33. 127 35. 840 37. 279	4. 808 5. 500 4. 906 4. 300 3. 936	22. 269 22. 271 22. 618 20. 862 20. 682	1.00 1.00 1.00 1.00 1.00	7. 22 7. 59 8. 49 8. 31	H H H H	[C C C C
20	ATOM ATOM ATOM ATOM ATOM	513 514 515 516 517	ND1 HI CD2 HI CE1 HI NE2 HI	S H S H S H	224 224 224 224	38. 276 37. 899 39. 448 39. 247 34. 157	4. 881 2. 731 4. 277 2. 973 6. 770	20. 572 20. 668 20. 501 20. 557 21. 881	1.00 1 1.00 1 1.00 1	10.97 12.41	H H H	[N C C N
25	ATOM ATOM ATOM ATOM ATOM	518 519 520 521 522	CA PH C PH O PH CB PH	E H E H E H E H	225 225 225 225	32.960 32.725 33.657 33.151 33.293	7. 596 8. 038 8. 075 8. 870 8. 634	21.822 20.381 19.573 22.659 24.136	1.00 1.00 1.00 1.00 1.00	6.04 7.09 9.02 5.47 6.44	H H H H	[(((C C C C C
30	ATOM ATOM ATOM ATOM ATOM	523 524 525 526 527		E H E H E H	225 225 225 225 225	32.171 34.554 32.303 34.694 33.565	8. 572 8. 511 8. 397 8. 335 8. 280	24.954 24.716 26.333 26.089 26.900	1.00 1.00 1.00 1.00	2.41 4.55 5.42 5.19 3.44	H H H H		C C C C
35	ATOM ATOM ATOM ATOM ATOM	528 529 530 531 532	CA GI C GI O GI N V	Y H Y H Y H Y H L H	226 226 226 227	31. 485 31. 197 31. 753 31. 837 32. 151	8. 392 8. 893 10. 313 10. 990 10. 760	20.065 18.734 18.667 19.695 17.479	1.00 1.00 1.00 1.00	5. 55 5. 43 5. 81 4. 00 3. 76	H H H H	[([([]	N C C O N
40	ATOM ATOM ATOM ATOM	533 534 535 536 537	C Y/ O Y/ CB Y/ CG1 V/	T H T H T H T H	227 227 227 227	32.693 31.800 31.436 34.142 34.725	12. 107 12. 883 12. 389 12. 088 13. 500	17. 312 16. 347 15. 277 16. 764 16. 812	1.00 1.00 1.00 1.00 1.00	5. 52 5. 53 3. 89 5. 30 3. 32	E F H H	[([([(C C C C C
45	ATOM ATOM ATOM ATOM ATOM	538 539 540 541 542	CA TY	R H R H R H R H	228 228 228 228	35.000 31.467 30.566 31.190 32.007	11. 126 14. 108 14. 947 16. 277 16. 833	17. 576 16. 734 15. 959 15. 556 16. 282	1.00 1.00 1.00 1.00 1.00	1.00 5.76 5.23 4.97 4.90	H H H H	[] [(C N C C O
50	ATOM ATOM ATOM ATOM ATOM	543 544 545 546 547	CG TY CD1 TY CD2 TY CE1 TY	R H	228 228 228 228	29. 291 28. 564 29. 046 27. 432 28. 408	15. 203 13. 935 13. 138 13. 500 11. 929	16. 781 17. 216 18. 264 16. 531 18. 603	1.00 1.00 1.00 1.00 1.00	6. 43 7. 32 8. 15 6. 35 9. 05	H H H H	[([(C C C C
55	MOTA MOTA MOTA MOTA MOTA	548 549 550 551 552	OH T	R H R H R H R H R H	228 228 229	26.801 27.287 26.647 30.807 31.329	12. 316 11. 532 10. 347 16. 784 18. 067	16.857 17.885 18.158 14.389 13.929	1.00 1.00 1.00 1.00 1.00	7. 95 8. 70 8. 64 4. 04 4. 70	H H H H	[([([]	C C O N C

	MOTA	553	С	THR H	229	30.782	19. 121	14.900	1.00 3.38	H	С
	MOTA	554	0	THR H	229	29.590	19.133	15. 181	1.00 3.30	H	0
5	MOTA	555	CB	THR H	229	30.836	18.381	12.504	1.00 5.34	H	Ċ
	ATOM	556	0G1			31.188	17. 301	11.627	1.00 6.83	H	ŏ
	MOTA	557		THR H		31.461	19.668	11.998	1.00 2.01	H	č
	ATOM	558		142 I	1		7. 018	10. 285	1.00 12.37		
					1	35.781				Ī	C
10	ATOM	559	02	142 I	1	34.889	7. 239	11.100	1.00 10.13	Ī	0
10	ATOM	560	N4	142 I	1	35.803	7. 455	9.001	1.00 10.92	I	N
	MOTA	561		142 I	1	34.710	8. 250	8. 481	1.00 9.56	I	С
	MOTA	562		142 I	1	34.848	8. 535	6.994	1.00 8.40	I	С
	MOTA	563			1	36.165	9.222	6.602	1.00 6.40	l	C
	MOTA	564	C9	142 I	1	3 3 . 397	7.494	8.773	1.00 10.00	I	C
15	MOTA	565	01	142 I	1	3 3. 289	6.279	8.607	1.00 8.42	I	0
	ATOM	566	N3	142 I	1	32.427	8. 295	9. 230	1.00 8.14	I	N
	ATOM	567	C8	142 I	1	31.166	7.668	9.494	1.00 7.12	Ī	Ĉ
	ATOM	568	C6	142 I	i	31.799	6. 529	11.670	1.00 3.93	İ	č
	ATOM	569	C7	142 I	î	31.539	6. 286	13.035	1.00 6.62	İ	Č
	ATOM	570	C2	142 I	1	30.475	6.947	13.697	1.00 4.23	Ī	C
20			C3	142 I	1	29.626	7. 773	12.954		I	
	MOTA	571		142 I						_	C
	ATOM	572	C4		1	29.868	7. 994	11.603	1.00 5.96	Ĭ	C
	ATOM	573	C5	142 I	1	30.952	7. 384	10.951	1.00 6.87	Ī	C
	ATOM	574	C1	142 I	1	30.247	6.782	15. 131	1.00 4.86	Ī	C
25	MOTA	575	N1	142 I	1	30.808	5. 783	15.789	1.00 2.27	I	N
	ATOM	576		142 I	ì	36.036	9. 591	5.142	1.00 7.7]	1	C
	ATOM	577	05	142 I	1	35.840	8.729	4.291	1.00 11.38	I	0
	ATOM	578	N6	142 I	1	36.066	10.898	4.897	1.00 - 6.65	Ī	N.
	MOTA	579	C16	142 I	1	37.992	7.122	11.404	1.00 12.61	I	C
	ATOM	580	N5	142 I	1	36.563	5. 104	11.541	1.00 16.04	I	N
30	ATOM	581	C12	142 I	1	37.009	6.187	10.696	1.00 13.72	I	С
	ATOM	582	S1	142 I	1	36.372	3.520	10.904	1.00 19.57	Ī	S
	ATOM	583	04	142 I	1	35.680	3.703	9.668	1.00 20.77	Ĭ	Õ
	ATOM	584	03	142 I	1	35.734	2.849	11.987	1.00 18.06	Ī	Ŏ
	ATOM	585	C29		ī	37.958	2.804	10.578	1.00 19.56	Ī	Č
35	ATOM	586		142 I	i	38. 640	3. 369	9.320	1.00 26.52	Î	č
00	ATOM	587	N2	142 I	i	29.435	7. 589	15.802	1.00 2.52	Ţ	N
	ATOM	588		142 I	i	40. 253	6.007	11.120	1.00 13.78	Ī	Č
	ATOM	589	C17		1	39. 172	6. 378	11.945	1.00 12.60	Ī	Č
	ATOM	590		142 I	î	39. 260	5. 996	13. 297	1.00 13.94	Ĭ	Č
	ATOM	591		142 I	1	40.362	5. 257	13. 785	1.00 13.34	I	
40					-		4. 868			_	C
	ATOM	592		142 I	1	41.430		12.954	1.00 14.31	I	C
	ATOM	593	C21	142 I	1	41.350	5. 273	11.615	1.00 12.85	I	C
	ATOM	594		142 I	1	45.001	3.681	13.710	1.00 18.09	Į	C
	ATON	595		142 I	1	43.904	4.357	13.114	1.00 16.71	i	C
45	ATOM	596		142 I	1	42.573	4.077	13.477	1.00 15.00	I	C
	ATOM	597		142 I		42.385	3.038	14.411	1.00 17.61	I	C .
	ATOM	598		142 I	1	43.473	2.352	15.002	1.00 18.20	I	. C
	ATOM	599	C26	142 I	1	44.803	2.684	14.686	1.00 18.30	I	С
	ATOM	600	0H2	WAT W	2	21.173	10.598	10.229	1.00 2.46	₩	0
	MOTA	601		WAT W		41.236	15.367	9.038	1.00 9.89	¥	0
50	MOTA	602		W TAW		39. 351	17.218	6. 324	1.00 2.98	W	ŏ
	ATOM	603		WAT W		28. 951	6.415	21.747	1.00 8.07	Ÿ	Ö
	ATOM	604		W TAW		36. 844	8. 297	21.377	1.00 8.16	₩	0
	MOTA	605		WAT W		29. 393	7.360	5. 894	1.00 10.69	W	
	ATOM			W TAW							0
<i>E =</i>		606				40.618	0.517	20.963	1.00 12.88	W.	0
55	ATOM	607		WAT		20.474	8.594	8.383	1.00 2.92	W	0
	MOTA	608	UHZ	WAT W	43	33. 354	15.140	0.160	1.00 4.35	₩	0

	MOTA	609	OH2	WAT	W	52	41.064	11.721	9.444	1.00 11.25	P	7	0
	MOTA	610	OH2	WAT	W	55	31.078	4.628	20.839	1.00 19.21	P	7	0
5	ATOM	611	OH2	TAW	W	73	31.424	2.387	23.087	1.00 16.83	7	7	0
J	MOTA	612	OH2	WAT	W	90	34. 297	16.904	-1.657	1.00 8.85	9	7	0
	MOTA	613	0H2	WAT	¥	92	34. 705	15.756	12.306	1.00 4.39	P	7	0
	ATOM	614	OH2	WAT	W	97	32.609	3.792	18.618	1.00 10.06	P	7	0
	ATOM	615	OH2	WAT	W	113	29.869	9.653	-1.073	1.00 13.89	¥	7	0
10	MOTA	616	OH2	WAT	¥	115	27.599	8.830	20.107	1.00 6.50	P	7	0
10	ATOM	617	OH2	WAT	₩	119	35.741	6.643	18.640	1.00 13.65	Y	7	0
	MOTA	618	OH2	WAT	W	132	38.202	7.871	19.316	1.00 21.67	P	7	0
	ATOM	619	OH2	WAT	W	133	39.823	6.712	17.466	1.00 16.74	7	7	0
	ATOM -	620	OH2	WAT	Y	167	45.149	0.561	24.578	1.00 31.52	7	7	0
	ATOM	621	0H2	WAT	₩	169	26.773	3.657	5.750	1.00 20.71	Ÿ	7	0
15	ATOM	622	OH2	WAT	₩	179	33.910	15.111	-3.886	1.00 26.31	V		0
	ATOM	623	OH2			183	22.630	6.394	5.218	1.00 17.19	Y		0
	ATOM	624	OH2	WAT	¥	190	41.408	8.993	17.609	1.00 38.16	P	7	0
	ATOM	625	0H2	WAT	₩	208	28.879	7.652	-2.728	1.00 25.34	Y	7	0
	ATOM	626		WAT		211	40.187	8.447	20.906	1.00 29.06	P	7	0
20	ATOM	627		WAT			41.040	14.573	12.781	1.00 21.90	P	7	0
	ATOM	628	OH2		W	279	28.609	-2.348	19.633	1.00 16.06	P	7	0
	ATOM	629	OH2			287	27.925	-2.786	17.100	1.00 28.20	Ą	7	0
	ATOM	630		₩AT			29. 248	10.608	15.460	1.00 4.55	¥		0
	ATOM	631		WAT		294	34.711	11.933	8.259	1.00 18.60	. 7	7	0
25	ATOM	632		WAT			36.499	8.641	1.251	1.00 16.68	Y		0
	ATOM	633			W	302	33.346	8.640	3.104	1.00 31.25	þ		0
	ATOM	634		WAT			38.929	-1.342	19.839	1.00 27.36	P	7	0
	MOTA	635		WAT			24.988	4.849	4.100	1.00 39.67	¥		0
	MOTA	636		WAT		321	38.601	-1.114	16.775	1.00 24.51	7		0
30	ATOM	637		WAT			39.896	8.788	8. 314	1.00 40.66	Y		0
	ATOM	638		WAT		335	44.187	13.742	12.663	1.00 29.57	Y		0
	ATOM	639		WAT		337	27. 275	6.739	2.616	1.00 23.30	Ţ		0
		640		WAT			34.463	4.647	6.797	1.00 34.65	Ţ		0
	ATOM	641		WAT		358	35.750	-0.120	8.819	1.00 35.63	Ţ		0
35	ATOM	642_					38. 235	6.328	7. 390	1.00 28.92	Ţ		0
	MOTA	643		WAT		388	42.864	7. 185	8. 805	1.00 39.53	Ī		0
	ATOM	644		WAT		390	31.573	8. 191	0.869	1.00 38.78	Ţ		0
	ATOM	645		WAT			41.353		8.074	1.00 36.07	Ţ		0
	ATOM	646		WAT		402	29.643	-0.022	10.304	1.00 38.02	Ţ		0
40	ATOM	647		WAT WAT		433	44.330 29.301	8.280	11.373	1.00 43.93	7		0
	ATOM	648		WAT				-0.100	7. 598	1.00 43.24	7		0
	ATOM ATOM	649 650		WAT		446	38.570	9.454	-0.831	1.00 41.14	Į		0
							42.864	11.302	1.981	1.00 29.17		7	0
	ATOM	651		WAT WAT		448 452	44.322	12.556	8.806	1.00 50.64	7		0
45	ATOM	652 653		WAT			41.748 38.170	10.947 6.670	19.697	1.00 41.61		7	0
	ATOM	០១১	UHZ	WAI	n	404	38.110	0.010	2.158	1.00 38.30	١	7	0
	END												

Claims

1. A compound of Formula (1):

wherein

5

10

35

40

45

50

55

R₁ represents a group selected from the following formulae:

[wherein R_8 represents an amino group, an aminomethyl group or

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acyl group or an alkoxycarbonyl group having an optionally substituted linear or branched C_1 - C_6 alkyl as its alkyl moiety, R_{10} represents an amino group, one of X and Y represents =CH- and the other represents =N-)];

 $\rm R_2$ represents a hydrogen atom or a linear or branched $\rm C_1\text{-}C_6$ alkyl group;

R₃ represents:

or

[wherein m represents an integer of 1 to 6, and R_{11} represents:

-CONH₂,

5

(wherein R₁₂ represents a hydrogen atom or a linear or branched C₁-C₃ alkyl group) or

10

15

R₄ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

R₅ represents a linear or branched C₁-C₆ alkyl group or -CH₂-R₁₃ (wherein R₁₃ represents an optionally substituted anyl group or an optionally substituted heterocyclic group);

R₆ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group; and

R₇ represents an optionally substituted linear or branched C₁-C₆ alkyl group or -SO₂-R₁₄ (wherein R₁₄ represents an optionally substituted linear or branched C₁-C₈ alkyl group)

or a tautomer or enantiomer of the compound, or a hydrate or pharmaceutically acceptable salt thereof.

20

The compound according to claim 1, wherein. R₅ in Formula (1) is a linear or branched C₁-C₆ alkyl group or-CH₂- R_{13} , in which R_{13} represents a group selected from the following formulae:

25

30

35

[wherein

R₁₅ represents a hydrogen atom, an optionally substituted aryl group, a C₁-C₃ alkyl group which may be substituted with a halogen atom, a linear or branched C₁-C₃ alkoxy group, a halogen atom, an arylcarbonyl group, an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety, a nitro group, or an amino group;

R₁₆ represents a hydrogen atom or a linear or branched C₁-C₆ alkyl group;

 R_{17} represents a hydrogen atom, a hydroxy group, a linear or branched C_1 - C_6 alkyl group, a linear or branched C₁-C₆ alkoxy group, -O-(CH₂)_n-OH (wherein n represents an integer of 1 to 5), -O-(CH₂)_o-COOH (wherein p represents an integer of 1 to 5), -O-(CH₂)_q-NH₂ (wherein q represents an integer of 1 to 5),

40

45

50

(wherein R₁₉ represents a hydrogen atom, a hydroxy group, a carboxyl group, a linear or branched C₁-C₆ alkyl group, a halogen atom, a linear or branched C₁-C₆ alkoxy group, or an alkoxycarbonyl group having a linear or $branched\ C_1-C_3\ alkyl\ as\ its\ alkyl\ moiety),\ or\ -OSO_2-R_{20}\ (wherein\ R_{20}\ represents\ a\ linear\ or\ branched\ C_1-C_6\ alkyl\ represents\ allowed\ constraints$ group or a benzyl group); and

R₁₈ represents a hydrogen atom, a linear or branched C₁-C₆ alkyl group, a linear or branched C₁-C₆ alkylsulfonyl group, or an optionally substituted arylsulfonyl group].

55

The compound according to claim 1 or 2, wherein R₇ in Formula (1) is a linear or branched C₁-C₆ alkyl group or a group of the following formula:

[wherein k represents an integer of 0 to 3, and R_{21} represents a hydrogen atom or -NHR₂₂ (wherein R_{22} represents a linear or branched C_1 - C_3 alkyl group or an alkylcarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety)] or

15 [wherein R₁₄ represents:

5

10

20

45

- (i) an optionally substituted linear or branched C_1 - C_6 alkyl group (wherein said alkyl group may be substituted with a carboxyl group or an alkoxycarbonyl group having a linear or branched C_1 - C_3 alkyl as its alkyl moiety); or (ii) - CH_2 - R_{23} (wherein R_{23} represents an optionally substituted phenyl group)].
- 4. The compound according to any one of claims 1 to 3, wherein R₃ in Formula (1) is a group of the following formula:

or

[wherein m represents an integer of 1 to 3, and R₁₁ represents:

(wherein R₁₂ represents a hydrogen atom or a methyl group) or

50 5. The compound according to any one of claims 1 to 4, wherein R₁ in Formula (1) is a group selected from the following formulae:

[wherein R₈ represents:

5

20

35

40

45

50

10 R₉ N --- C--- NH

- (wherein R₉ represents a hydrogen atom, an amino group, a hydroxy group, an acyl group, or an alkoxycarbonyl group having an optionally substituted linear or branched C₁-C₆ alkyl as its alkyl moiety)].
 - **6.** The compound according to any one of claims 1 to 5, wherein R₂ in Formula (1) is a hydrogen atom or a linear or branched C₁-C₃ alkyl group.
 - 7. The compound according to any one of claims 1 to 6, wherein R₄ in Formula (1) is a hydrogen atom or a linear or branched C₁-C₃ alkyl group.
- 8. The compound according to any one of claims 1 to 6, wherein R₆ in Formula (1) is a hydrogen atom or a linear or branched C₁-C₃ alkyl group.
 - 9. The compound according to claim 1, wherein R₃ in Formula (1) is -(CH₂)_m-R₁₁ (wherein m and R₁₁ are as defined in claim 1).
- 30 10. The compound according to claim 1, wherein in Formula (1), R₃ is a group of the following formula:

OH-

and R₇ is -SO₂-R₁₄ (wherein R₁₄ is as defined in claim 1).

11. The compound according to claim 1, wherein in Formula (1), R₁ is a group selected from the following formulae:

[wherein R₈ represents:

10

(wherein R_9 represents a hydrogen atom, an amino group, a hydroxy group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, an isobutyryl group, an isobutyryl group, a methoxycarbonyl group, an ethoxycarbonyl group, a t-butoxycarbonyl group or a benzyloxycarbonyl group)];

R₂ is a hydrogen atom or a methyl group;

R₃ is a group of the following formula:

15

20

25 or

35

R₄ is a hydrogen atom or a methyl group;

R₅ is a linear or branched C₁-C₄ alkyl group or -CH₂-R₁₃ [wherein R₁₃ represents a group selected from the following formulae:

45

(wherein

 R_{15} represents a hydrogen atom, a t-butyl group, a methoxy group, a bromine atom, a chlorine atom, a benzoyl group, or a phenyl group which may be substituted with a methoxy group or a trifluoromethyl group or a nitro group or an amino group;

50

 R_{17} represents a hydrogen atom, a hydroxy group, a methyl group, a linear or branched C_1 - C_3 alkoxy group, -O-(CH_2) $_n$ -OH (wherein n represents an integer of 1 to 3), -O-(CH_2) $_p$ -COOH (wherein p represents an integer of 1 to 3), -OSO $_2$ - R_{20} (wherein R_{20} represents an ethyl group, an n-propyl group, an i-propyl group or a benzyl group), a benzyloxy group, a 3- or 4-hydroxybenzyloxy group, or a 3- or 4-carboxybenzyloxy group; and

55

R₁₈ represents a hydrogen atom, a methyl group, a methanesulfonyl group or a benzenesulfonyl group)];

R₆ is a hydrogen atom or a methyl group; and

 R_7 is a linear or branched C_1 - C_4 alkyl group or a group of the following formula:

5

[wherein k represents an integer of 0 to 2, and R_{21} represents a hydrogen atom or -NHR $_{22}$ (wherein R_{22} represents a methyl group or an acetyl group)] or

10

-SO₂-R₁₄

 $[wherein \ R_{14} \ represents \ a \ benzyl \ group, \ a \ 2-, \ 3- \ or \ 4-carboxybenzyl \ group, \ or \ an \ optionally \ substituted \ linear \ or \ an \ optionally \ substituted \ linear \ or \ an \ optionally \ substituted \ linear \ or \ an \ optionally \ substituted \ linear \ or \ an \ optionally \ substituted \ linear \ or \ an \ optionally \ substituted \ linear \ or \ optionally \ substituted \ linear \ or \ optionally \ substituted \ linear \ or \ optionally \ substituted \ linear \ optionally \ substituted \ line$ $branched\,C_1-C_4\,alkyl\,group\,(wherein\,said\,alkyl\,group\,may\,be\,substituted\,with\,a\,carboxyl\,group\,or\,an\,alkoxycarbonyl\,group\,ar\,a$ group having a linear or branched C₁-C₃ alkyl as its alkyl moiety)].

15

12. The compound according to claim 1. which is selected from the following formulae:

20

30

25

40

45

35

55

20

25

30

35

45

50

- 15 13. A pharmaceutical composition comprising the compound according to claim 1.
 - **14.** An antithrombotic agent comprising the compound according to claim 1.
 - **15.** A blood coagulation factor VIIa inhibitor comprising the compound according to claim 1.
 - 16. A crystal of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor.
 - 17. The crystal according to claim 16, wherein the low-molecular weight reversible factor VIIa inhibitor is a compound of Formula (1) (wherein each symbol is as defined in claim 1).
 - 18. A method for preparing a crystal of a complex between human factor VIIa/human soluble tissue factor and a lowmolecular weight reversible factor VIIa inhibitor, which comprises the following steps (i) to (iii):
 - (i) preparing human factor VIIa/human soluble tissue factor, which is co-crystallizable with the low-molecular weight reversible factor VIIa inhibitor;
 - (ii) preparing a concentrated sample for crystallization to add the low-molecular weight reversible factor VIIa inhibitor; and
 - (iii) obtaining the crystal of the complex: between human factor VIIa/human soluble tissue factor and the lowmolecular weight reversible factor VIIa inhibitor from the concentrated sample for crystallization prepared in (ii) to add a seed crystal of a complex between a low-molecular weight irreversible or reversible factor VIIa inhibitor and human factor VIIa/human soluble tissue factor.
- 19. The method according to claim 18, wherein the low-molecular weight reversible factor VIIa inhibitor is a compound 40 of Formula (1) (wherein each symbol is as defined in claim 1).
 - 20. A medium carrying a part or all of structure coordinate data of a complex between human factor VIIa/human soluble tissue factor and a low-molecular weight reversible factor VIIa inhibitor, wherein said data are obtainable by X-ray crystal structure analysis of the crystal according to claim 16 or 17.
 - 21. A method for computationally designing a low-molecular weight reversible factor VIIa inhibitor using the coordinate data according to claim 20.
 - 22. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Asp60 side chain, Tyr94 side chain and Thr98 main chain of the human factor VIIa H chain.
 - 23. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with Lys192 side chain of the human factor VIIa H chain.
 - 24. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with at least one of Val170E, Gly170F, Asp170G, Ser170H, Pro17I and Gln217 of the human factor VIIa H chain.

- 25. The method according to claim 21, wherein the low-molecular weight reversible factor VIIa inhibitor is designed to have a substituent capable of interacting with the S4 subsite of the human factor VIIa H chain through a hole extending from the S4 site to the S4 subsite.
- 26. A low-molecular weight reversible factor VIIa inhibitor designed by the method according to any one of claims 21 to 25.
 - 27. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa:

Class [A-1]:

10

15

20

25

30

35

40

45

50

 H_2N H_2N X_1 X_2 X_3 X_4 X_4 X_5

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

(wherein R₂₃ represents a 6 or 5-membered aromatic ring containing a heteroatom(s)).

28. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite of human factor VIIa:

Class IB-1]:

Class [B-2]:

Class [B-3]:

5

10

15

25

30

40

45

$$\begin{cases} ---R_{25}-R_{24} & \begin{cases} \\ \\ \end{cases} ----R_{25} \end{cases}$$

(wherein R₂₄ represents the same partial structures defined as Class [B-2], and R₂₅ represents a 6 or 5-membered aromatic ring containing a heteroatom(s))
Class [B-4]:

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]).

29. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site of human factor VIIa:

Class [C-1]:

$$R_{28}$$
 R_{28}
 R_{28}
 R_{28}

$$A_{28}$$
 A_{3} A_{28} A_{3} A_{28} A_{3}

(wherein X₃ represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom(s))
 Class [C-2]:

(wherein X_4 represents NH, S or O, and X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} each independently represent N or CH).

30. The low-molecular weight reversible factor VIIa inhibitor according to claim 26, which comprises any one of the partial structures shown in the following Class [A-1] or [A-2] as a partial structure capable of interacting with the S2 site of human factor VIIa, any one of the partial structures shown in the following Class [B-1], [B-2], [B-3] or [B-4] as a partial structure capable of interacting with the S1 subsite, and any one of the partial structures shown in the following Class [C-1] or [C-2] as a partial structure capable of interacting with the S4 site:

Class [A-1]:

$$H_2N$$
 H_2N X_1 H_2N X_1 X_2 X_3

(wherein X_1 represents O or NH, and X_2 represents a hydrogen atom or a methyl group) or Class [A-2]:

$$\xi - R_{23} - NH_{2}$$

(wherein R_{23} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)); Class [B-1]:

Class [B-2]:

Class [B-3]:

$$\xi - R_{25} - R_{24}$$
 $\xi - R_{25}$

(wherein R_{24} represents the same partial structures defined as Class [B-2], and R_{25} represents a 6 or 5-membered aromatic ring containing a heteroatom(s)) Class [B-4]:

(wherein R_{27} represents a C_1 - C_3 alkylene group, R_{24} represents the same partial structures defined as Class [B-2], and R_{26} represents the same partial structures defined as Class [B-3]); and Class [C-1]:

$$R_{28}$$

$$\begin{cases}
X_3 \\
R_{28}
\end{cases}$$

$$R_{28}$$

$$R_{28}$$
 X_3 R_{28} X_3

(wherein X_3 represents O, NH or CH₂, and R₂₈ represents a 6 or 5-membered aromatic ring containing a heteroatom(s)) Class [C-2]:

(wherein X_4 represents NH, S or O, and X_5 , X_6 , X_7 , X_8 , X_9 and X_{10} each independently represent N or CH).

Fig. 1

Fig. 2

Fig. 3

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/00883

	NFICATION OF SUBJECT MATTER Cl ⁷ C07K5/062, C07K5/065, C07K G01N33/68, G06F17/50	C5/078, C07K14/745, G01	N33/15,			
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07K5/062, C07K5/065, C07K5/078, C07K14/745, G01N33/15, G01N33/68, G06F17/50						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CA (STN), MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
A	14 December, 2000 (14.12.00), & EP 1059302 A1	ma Deut GmbH.), 200053976 A 200106005 A 1189929 A2	1-30			
A	WO 00/58346 A1 (Sanofi-Synth 05 October, 2000 (05.10.00), & FR 2791683 A1 & AU	elabo), 200033017 A	1~30			
A	WO 00/41531 A2 (Genentech), 20 July, 2000 (20.07.00), & EP 1144373 A2 & AU & NO 200103462 A & CZ	200033451 A 200102508 A3	1-30			
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
"A" docum conside "E" earlier date "L" docum cited to special docum means docum than th	I categories of cited documents: ent defining the general state of the art which is not need to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is n establish the publication date of another citation or other t reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later the priority date claimed actual completion of the international search [ay, 2002 (10.05.02)	priority date and not in conflict with the understand the principle or theory and document of particular relevance; the considered novel or cannot be considered step when the document is taken alone document of particular relevance; the considered to involve an inventive stee combined with one or more other such	nt of particular relevance; the claimed invention cannot be red to involve an inventive step when the document is and with one or more other such documents, such ation being obvious to a person skilled in the art not member of the same patent family ng of the international search report			
	nailing address of the ISA/	Authorized officer				
Japanese Patent Office						
Facsimile No		Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/00883

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	WO 00/15658 A1 (Aventis Pharma Deut GmbH.), 23 March, 2000 (23.03.00), & EP 987274 A1	1-30		
A	DENNIS, M. S. et al., Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 2000, Vol.404, No.6777, pages 465 to 470	1-30		
A	PIKE, A. C. et al., Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc. Natl. Acad. Sci. USA. 1999, Vol.96, No.16, pages 8925 to 8930	1-30		

Form PCT/ISA/210 (continuation of second sheet) (July 1998)