Shannon Ioffe, Carmen Phaison COSC 336 2/03/2023

Assignment 0

Example 1: We define

$$S_n = 1 + 2 + \dots + n.$$

We present a proof of this formula without induction. We write S_n in two ways as follows:

$$S_n = 1 + 2 + \dots + (n - 1) + n$$

 $S_n = n + (n - 1) + \dots + 2 + 1$

Notice that on the right side we have two rows and n columns. In each column the sum of the two numbers is n+1. Indeed, the sum in the first column is 1+n=n+1, in the second column is 2+(n-1)=n+1, and so on.

So, if we add the two rows we obtain

$$2S_n = (n+1) + (n+1) + \dots + (n+1) = n \times (n+1).$$

and therefore $S_n = n(n+1)/2$.

Of course, there is also a proof by induction, but it is less fun.

Example 2: The following is a directed graph with 3 vertices and 3 edges:

Example 3: Here is a formula involving the greek letters α , β and ϵ :

$$\alpha^2 + \beta^2 = \epsilon^2.$$