Предел последовательности

Математический анализ — это раздел математики, который изучает поведение числовых функций на основании предельного перехода. А именно, оказывается интересно изучать, как ведёт себя функция в окрестности некоторой точки. Так мы приходим к понятию предела функции в точке.

Оказывается, что для изучения предельных свойств функций прежде всего необходимо построить теорию пределов числовых последовательностей.

Определение. Пусть x_1, x_2, x_3, \ldots — последовательность действительных чисел (пишут $\{x_n\}_{n=1}^{\infty}$). Действительное число a называется npedeлом последовательности $\{x_n\}$, если верно следующее. Какую бы малую окрестность числа a мы не брали, с какого-то момента в этой окрестности оказываются ВСЕ члены последовательности $\{x_n\}$. Формально,

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall n > N : |x_n - a| < \varepsilon.$$

В таком случае пишут $a = \lim_{n \to \infty} x_n$ или $x_n \xrightarrow[n \to \infty]{} a$. Говорят, что предел равен $+\infty$, если

$$\forall B > 0 \,\exists N \in \mathbb{N} \,\forall n > N : x_n > B.$$

Аналогично определяется предел $-\infty$.

1. Найдите предел последовательности x_n , где

(a)
$$x_n = \frac{n-1}{n}$$
; (b) $x_n = \frac{n}{2^n}$; (c) $x_n = \frac{(\ln n)^{10}}{\sqrt{n}}$; (d) $x_n = n^{1/n}$.

Теорема 1 (Арифметические операции под знаком предела). Пусть $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ — две последовательности, причём $x_n \to a, y_n \to b$. Тогда

- $x_n \pm y_n \rightarrow a \pm b$;
- $x_n y_n \to ab$;
- Ecau $y \neq 0$, mo $\frac{x_n}{y_n} \rightarrow \frac{a}{b}$.
- **2.** Найдите предел последовательности x_n , где

(a)
$$x_n = \frac{3n^2-1}{2n^2-n+2}$$
;

(b)
$$x_n = \frac{P(n)}{Q(n)}$$
, где P и Q — многочлены;

(c)
$$x_n = \frac{n+1}{\sqrt{n^2+2n}}$$
;

Определение. Пусть $\{x_n\}$, $\{y_n\}$ — две последовательности.

- Если $\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} 0$, то говорят, что последовательность x_n есть *о-малое относи- тельно* последовательности y_n , и пишут $x_n = o(y_n)$.
- Если $\frac{x_n}{y_n}$ ограничено сверху, то говорят, что последовательность x_n есть О-большое относительно последовательности y_n , и пишут $x_n = O(y_n)$
- Если $x_n = o(1)$, то x_n называют бесконечно малой последовательностью.
- Последовательности x_n и y_n называются эквивалентными, если $\lim_{n\to\infty}\frac{x_n}{y_n}=1$.
- **3.** Найдите предел последовательности x_n , где $x_n = \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$.
- **4.** Докажите, что последовательность $\left(1+\frac{1}{n}\right)^n$ сходится.

Определение. Предел последовательности $\left(1+\frac{1}{n}\right)^n$ называется числом Эйлера и обозначается как $e=2.718281828459045\ldots$

5. Найдите предел последовательности x_n , где

(a)
$$x_n = \left(1 - \frac{1}{n}\right)^n$$
; (b) $x_n = \left(1 + \frac{1}{n(n+2)}\right)^n$; (c) $x_n = \left(\frac{n^2+1}{n^2-2}\right)^{n^2}$.