Big Transfer (BiT): General Visual Representation Learning

Dmitry Medvedev

Moscow State University

BiT: General Idea

[Kolesnikov et al., 2020]

Big Model & Big Data

Fine-tuning for visual task of any size

Architectures

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7:	7×7, 64, stride 2					
				3×3 max pool, strid	e 2			
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FL	OPs	1.8×10^{9}	3.6×10 ⁹	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹		

Upstream Pre-Training: Data

Модель	Данные	Объем	Число классов	Label per Image
BiT-L	JFT-300M	300 M	19 K	~1.26
BiT-M	ImageNet-21k	14.2 M	21 K	≥ 1
BiT-S	ILSVRC-2012	1.28 M	1 K	1

Upstream Pre-Training

- Scale
- Batch Normalization -> Group Normalization + Weight Standardization
- SGD + momentum
- Аугментации: Crop + Horizontal Flip

Model	Num. Epochs	Ir decay by 10 after epochs
-S & -M	90	30, 60, 80
-L	40	23, 30, 37

Image	Warm-up	Weight decay	Batch	Images
Size	steps		Size	per chip
224 x 224	5000	1e-4	4096	8

Upstream Pre-Training

Batch Normalization

[Santurkar et al. 2020]

Batch Normalization

The internal Covariate Shift Hypothesis

Experiment: Input Distribution


```
Algorithm 1 "Noisy" BatchNorm
  1: % For constants n_m, n_v, r_m, r_v.
 3: for each layer at time t do
           a_{i,j}^t \leftarrow \textit{Batch-normalized activation for unit } j \textit{ and sample } i
 5:
          for each i do
                                                                     \triangleright Sample the parameters (m_i^t, v_i^t) of D_i^t from D_i
              \mu^t \sim U(-n_\mu, n_\mu)
               \sigma^t \sim U(1, n_\sigma)
           for each i do
                                                                                                        \triangleright Sample noise from D_i^t
10:
                for each j do
11:
                     m_{i,j}^t \sim U(\mu - r_\mu, \mu + r_\mu)
12:
                     s_{i,j}^t \sim \mathcal{N}(\sigma, r_{\sigma})
13:
                     a_{i,j}^t \leftarrow s_{i,j}^t \cdot a_{i,j} + m_{i,j}^t
14:
```

In experiments, $n_{\mu}=0.5,\,n_{\sigma}=1.25\,\mathrm{and}\,r_{\mu}=r_{\sigma}=0.1$

Experiment: Gradient and Loss Variation

Experiment: Gradient and Loss Variation

(a) loss landscape

(b) gradient predictiveness

At a particular training step, we measure the variation (shaded region) in loss (a) and L2 changes in the gradient (b) as we move in the gradient direction.

Theoretical Results

$$|f(x_1-f(x_2))| \leq L||x_1-x_2||$$

$$\left|\left|
abla_{y_j}\hat{L}
ight|
ight|^2 \leq rac{\gamma^2}{\sigma_j^2} \left(\left|\left|
abla_{y_j}L
ight|
ight|^2 - rac{1}{m}\langle 1,\,
abla_{y_j}L
angle^2 - rac{1}{m}\langle
abla_{y_j}L,\, \hat{y_j}
angle^2
ight)$$

What is the difference with division by a constant?

Batch Norm Problems

Group Normalization

[Wu & He, 2018]

Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

Group Normalization: realization

$$egin{aligned} y_i &= \gamma \hat{x_i} + eta \ \hat{x}_i &= rac{1}{\sigma_i} (x_i - \mu_i) \ \mu_i &= rac{1}{m} \sum_{k \in S_i} x_k \ \sigma_i &= \sqrt{rac{1}{m} \sum_{k \in S_i} (x_k - \mu_i)^2} + \epsilon \ S_i &= \left\{ k \, | \, k_n = i_n, \, \left\lfloor rac{k_C}{C/C}
ight
floor = \left\lfloor rac{i_C}{C/C}
ight
floor
ight\} \end{aligned}$$

```
# x: input features with shape [N,C,H,W]
# gamma, beta: scale and offset, with shape [1,C,1,1]
# G: number of groups for GN

N, C, H, W = x.shape
x = tf.reshape(x, [N, G, C // G, H, W])

mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True)
x = (x - mean) / tf.sqrt(var + eps)

x = tf.reshape(x, [N, C, H, W])

return x * gamma + beta
```

def GroupNorm(x, gamma, beta, G, eps=1e-5):

Group Normalization: cases

# groups (G)						
64	32	16	8	4	2	1 (=LN)
24.6	24.1	24.6	24.4	24.6	24.7	25.3
0.5	-	0.5	0.3	0.5	0.6	1.2

# channels per group						
64	32	16	8	4	2	1 (=IN)
24.4	24.5	24.2	24.3	24.8	25.6	28.4
0.2	0.3	-	0.1	0.6	1.4	4.2

Group division. We show ResNet-50's validation error (%) in ImageNet, trained with 32 images/GPU. (Top): a given number of groups. (Bottom): a given number of channels per group. The last rows show the differences with the best number.

Group Normalization: better than BN?

ImageNet classification error vs. batch sizes. This is a ResNet-50 model trained in the ImageNet training set using 8 workers (GPUs), evaluated in the validation set

Group Normalization: better than BN?

Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation error (right) vs. numbers of training epochs. The model is ResNet-50.

Weight Standardization

[Qiao et al., 2019]

Weight Standardization

Weight Standardization

 $y = \hat{W} * x; \hat{W} \in \mathbb{R}^{O imes I} ext{ denotes the weights in the layer}$

* denotes the convolution operation

$$egin{align} \hat{W} &= \left[\hat{W}_{i,j} | \hat{W}_{i,j} = rac{W_{i,j} - \mu_{W_{i,.}}}{\sigma_{W_{i,.} + \epsilon}}
ight] \ \mu_{W_{i,.}} &= rac{1}{I} \sum_{j=1}^{I} W_{i,j} \ \sigma_{W_{i,.}} &= \sqrt{rac{1}{I} \sum_{i=1}^{I} \left(W_{i,j} - \mu_{W_{i,.}}
ight)^2} \ \end{cases}$$

Weight Standardization: Lipschitzness

$$\langle \dot{W}_{c,.}=W_{c,.}-rac{1}{I}1\langle 1,\,W_{c,.}
angle
angle$$

$$\hat{W}_{c,.}=\dot{W}_{c,.}/igg(\sqrt{rac{1}{I}\langle 1,\, \dot{W}_{c,\,.}^{o2}
angle}igg)$$

$$\left|\left|
abla_{\dot{W}_{c,.}}L
ight|
ight|^2=rac{1}{\sigma_{W_{c,.}}}igg(\left|\left|
abla_{\hat{W}_{c,.}}L
ight|
ight|^2-rac{1}{I}\langle\hat{W}_{c,.},\,
abla_{\hat{W}_{c,.}}L
angle^2igg)$$

$$\left|\left|
abla_{W_{c,.}}L
ight|
ight|^2=\left|\left|
abla_{\dot{W}_{c,.}}L
ight|
ight|^2-rac{1}{I\cdot\sigma_{W_c^2}}\langle 1,
abla_{\hat{W}_{c,.}}L
angle^2$$

Weight Standardization: better than BN?

Comparing BN, GN, and WS used with GN on ImageNet and COCO. On ImageNet, BN is trained with large batch sizes while GN and GN+WS are trained with 1 image/GPU. On COCO, BN is frozen for micro-batch training. GN+WS still outperforms both BN and GN comfortably.

	Plain Conv	Weight Std.
Batch Norm.	75.6	75.8
Group Norm.	70.2	76.0

Top-1 accuracy of ResNet-50 trained from scratch on ILSVRC-2012 (BiT-S) with a batch-size of 4096.

Downstream Tasks

	BiT-L	Generalist SOTA	Specialist SOTA
ILSVRC-2012	$\textbf{87.54}\pm\textbf{0.02}$	86.4 [57]	88.4 [61]*
CIFAR-10	99.37 ± 0.06	99.0 [19]	-
CIFAR-100	93.51 ± 0.08	91.7 [55]	-
Pets	96.62 ± 0.23	95.9 [19]	97.1 [38]
Flowers	99.63 ± 0.03	98.8 [55]	97.7 [38]
VTAB (19 tasks)	$\textbf{76.29}\pm\textbf{1.70}$	70.5 [58]	

	ILSVRC- 2012	CIFAR- 10	CIFAR- 100	Pets	Flowers	VTAB-1k (19 tasks)
BiT-S (ILSVRC-2012) BiT-M (ImageNet-21k)	81.30 85.39	97.51 98.91	86.21 92.17	93.97 94.46	89.89 99.30	66.87 70.64
Improvement	+4.09	+1.40	+5.96	+0.49	+9.41	+3.77

VTAB: The Visual Task Adaptation Benchmark

 P_{T} Adapt on D_T Test Adaptation Algorithm Upstream Data 96.3 Model 79.7

[Zhai et al., 2020]

VTAB: The Visual Task Adaptation Benchmark

object identification, scene classification, pathology detection, counting, localization, and 3D geometry -> classification

Category	Dataset	Train size	Classes	Reference
Natural	Caltech101	3,060	102	(Li et al., 2006)
Natural	CIFAR-100	50,000	100	(Krizhevsky, 2009)
Natural	DTD	3,760	47	(Cimpoi et al., 2014)
Natural	Flowers102	2,040	102	(Nilsback & Zisserman, 2008)
Natural	Pets	3,680	37	(Parkhi et al., 2012)
Natural	Sun397	87,003	397	(Xiao et al., 2010)
Natural	SVHN	73,257	10	(Netzer et al., 2011)
 Specialized 	EuroSAT	21,600	10	(Helber et al., 2019)
 Specialized 	Resisc45	25,200	45	(Cheng et al., 2017)
 Specialized 	Patch Camelyon	294,912	2	(Veeling et al., 2018)
Specialized	Retinopathy	46,032	5	(Kaggle & EyePacs, 2015)
 Structured 	Clevr/count	70,000	8	(Johnson et al., 2017)
 Structured 	Clevr/distance	70,000	6	(Johnson et al., 2017)
 Structured 	dSprites/location	663,552	16	(Matthey et al., 2017)
 Structured 	dSprites/orientation	663,552	16	(Matthey et al., 2017)
 Structured 	SmallNORB/azimuth	36,450	18	(LeCun et al., 2004)
 Structured 	SmallNORB/elevation	36,450	9	(LeCun et al., 2004)
Structured	DMLab	88,178	6	(Beattie et al., 2016)
Structured	KITTI/distance	5,711	4	(Geiger et al., 2013)

Fine-tuning: BiTHyperRule

- SGD + momentum 0.9;
- initial Ir = 0.003; decay the learning rate by 10 at 30%, 60% and 90% of the training steps
- Batch Size = 512
- Augmentation: random crops + horizontal flips
- MixUp, with $\alpha = 0.1$, for medium and large tasks

Dataset size (number of examples)	Schedule length (fine-tuning)	Use MixUp? (mixing parameter $\alpha = 0.1$)
less than 20K	500 steps	No
20k-500k	10K steps	Yes
more than 500k	20K steps	Yes

Input Image area	1 step: resize to	2 step: random crop to
< 96 x 96	160 x 160	128 x 128
> 96 x 96	448 x 448	384 x 384
R152x4 & > 96 x 96	512 x 512	480 x 480

mixup: beyond empirical risk minimization

[Zhang et al., 2018]

Image

Label [1.0, 0.0] [0.0, 1.0] [0.7, 0.3] cat dog

mixup: empirical risk minimization (ERM)

$$f \in \mathcal{F}; \ (x,\,y) \, \sim \, P(X,\,Y)$$
 $P_{\delta}(x,\,y) \, = \, rac{1}{n} \sum_{i=1}^n \delta(x=x_i,y=y_i)$

$$R(f) = \int l(f(x),\,y) dP(x,\,y) \qquad \qquad R_\delta(f) = \int l(f(x),\,y) dP_\delta(x,y) = rac{1}{n} \sum_{i=1}^n l(f(x_i),\,y_i)$$

mixup: empirical vicinal risk minimization

$$P_{
u}(ilde{x},\, ilde{y})=\,rac{1}{n}\sum_{i=1}^{n}
u(ilde{x},\, ilde{y}|x_i,\,y_i)$$

$$u(ilde{x},\, ilde{y}|x_i,y_i)\,=\,Nig(ilde{x}-x_i,\,\sigma^2ig)\delta(ilde{y}=y_i)$$

$$R_{\nu}(f) = \frac{1}{m} \sum_{i=1}^{m} l(f(\tilde{x}_i), \, \tilde{y}_i)$$

$$\lambda \sim \operatorname{Beta}(lpha,lpha), \operatorname{for}lpha \in (0,\infty)$$

$$\mu(ilde{x},\, ilde{y}|\,x_i,\,y_i)=rac{1}{n}\sum_{j}^{n}E_{\lambda}[\delta(ilde{x}=\lambda\cdot x_i+(1-\lambda)\cdot x_j,\, ilde{y}=\lambda\cdot y_i+(1-\lambda)\cdot y_j)]$$

What is mixup doing?

Prediction errors in-between training data. Evaluated at $x = \lambda + xi(1-\lambda)xj$, a prediction is counted as a "miss" if it does not belong to {yi, yj}. The model trained with mixup has fewer misses.

Effect of mixup ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).

What is mixup doing?

Model	Method	Epochs	Top-1 Error	Top-5 Error
ResNet-50	ERM (Goyal et al., 2017) $mixup \ \alpha = 0.2$	90 90	23.5 23.3	6.6
ResNet-101	ERM (Goyal et al., 2017) mixup $\alpha = 0.2$	90 90	22.1 21.5	5.6
ResNeXt-101 32*4d	ERM (Xie et al., 2016) ERM mixup $\alpha = 0.4$	100 90 90	21.2 21.2 20.7	5.6 5.3
ResNeXt-101 64*4d	ERM (Xie et al., 2016) mixup $\alpha = 0.4$	100 90	20.4 19.8	5.3 4.9
ResNet-50	ERM $mixup \ \alpha = 0.2$	$\frac{200}{200}$	23.6 22.1	7.0 6.1
ResNet-101	$\overline{\text{ERM}}$ $mixup \ \alpha = 0.2$	$\frac{200}{200}$	22.0 20.8	6.1 5.4
ResNeXt-101 32*4d	$\begin{array}{c} \hline \text{ERM} \\ \textit{mixup } \alpha = 0.4 \end{array}$	$\frac{200}{200}$	21.3 20.1	5.9 5.0

BiT Interesting results: Data & Model Sizes

BiT Interesting results: Data & Model Sizes

BiT Interesting results: Few-Shot training

BiT Interesting results: VTAB

Literature

https://arxiv.org/abs/1912.11370 - Big Transfer

https://arxiv.org/pdf/1803.08494.pdf - Group Normalization

https://arxiv.org/pdf/1903.10520v1.pdf - Weight Standardization

https://arxiv.org/pdf/1710.09412.pdf - mixup

https://arxiv.org/pdf/1805.11604.pdf - How Does Batch Normalization Help Optimization?

<u>https://www.youtube.com/watch?v=EvAVCxZJN2U&feature=emb_logo</u> - How Does Batch Normalization Help Optimization? (video)