BJT AS A SWITCH

Switching Operation

Figure 4–23 illustrates the basic operation of a BJT as a switching device. In part (a), the transistor is in the cutoff region because the base-emitter junction is not forward-biased. In this condition, there is, ideally, an *open* between collector and emitter, as indicated by the switch equivalent. In part (b), the transistor is in the saturation region because the base-emitter junction and the base-collector junction are forward-biased and the base current is made large enough to cause the collector current to reach its saturation value. In this condition, there is, ideally, a *short* between collector and emitter, as indicated by the switch equivalent. Actually, a small voltage drop across the transister of up to a few tenths of a volt normally occurs, which is the saturation voltage, $V_{CE(sat)}$.

Conditions in Cutoff As mentioned before, a transistor is in the cutoff region when the base-emitter junction is not forward-biased. Neglecting leakage current, all of the currents are zero, and V_{CE} is equal to V_{CC} .

$$V_{\text{CE(cutoff)}} = V_{\text{CC}}$$

Conditions in Saturation As you have learned, when the base-emitter junction is forward-biased and there is enough base current to produce a maximum collector current, the transistor is saturated. The formula for collector saturation current is

$$I_{\text{C(sat)}} = \frac{V_{\text{CC}} - V_{\text{CE(sat)}}}{R_{\text{C}}}$$

Since $V_{\text{CE(sat)}}$ is very small compared to V_{CC} , it can usually be neglected. The minimum value of base current needed to produce saturation is

$$I_{\text{B(min)}} = \frac{I_{\text{C(sat)}}}{\beta_{\text{DC}}}$$

Normally, I_B should be significantly greater than $I_{B(min)}$ to ensure that the transistor is saturated.

- (a) For the transistor circuit in Figure 4–24, what is V_{CE} when $V_{IN} = 0 \text{ V}$?
- (b) What minimum value of I_B is required to saturate this transistor if β_{DC} is 200? Neglect $V_{CE(sat)}$.
- (c) Calculate the maximum value of $R_{\rm B}$ when $V_{\rm IN}=5$ V.

(a) When $V_{IN} = 0$ V, the transistor is in cutoff (acts like an open switch) and

$$V_{CE} = V_{CC} = 10 \text{ V}$$

(b) Since $V_{CE(sat)}$ is neglected (assumed to be 0 V),

$$I_{\text{C(sat)}} = \frac{V_{\text{CC}}}{R_{\text{C}}} = \frac{10 \text{ V}}{1.0 \text{ k}\Omega} = 10 \text{ mA}$$

$$I_{\text{B(min)}} = \frac{I_{\text{C(sat)}}}{\beta_{\text{DC}}} = \frac{10 \text{ mA}}{200} = 50 \text{ } \mu\text{A}$$

This is the value of I_B necessary to drive the transistor to the point of saturation. Any further increase in I_B will ensure the transistor remains in saturation but there cannot be any further increase in I_C .

(c) When the transistor is on, $V_{\rm RE} \cong 0.7$ V. The voltage across $R_{\rm R}$ is

$$V_{R_{\rm B}} = V_{\rm IN} - V_{\rm BE} \cong 5 \,\rm V - 0.7 \,\rm V = 4.3 \,\rm V$$

Calculate the maximum value of $R_{\rm B}$ needed to allow a minimum $I_{\rm B}$ of 50 $\mu{\rm A}$ using Ohm's law as follows:

$$R_{\rm B(max)} = \frac{V_{R_{\rm B}}}{I_{\rm B(min)}} = \frac{4.3 \text{ V}}{50 \,\mu\text{A}} = 86 \text{ k}\Omega$$

Determine the minimum value of I_B required to saturate the transistor in Figure 4–24 if β_{DC} is 125 and $V_{CE(sat)}$ is 0.2 V.

A Simple Application of a Transistor Switch

