lx Package

May 14, 2017

Type Package

Version 1.6

Title LX generic utilities

Date 2013-11-22
Author Alain Viari
Maintainer <alain.viari@inria.fr></alain.viari@inria.fr>
Description generic package used in all other LX packages.
License GPL
Depends methods
Imports parallel
Suggests xtable
RoxygenNote 5.0.1
R topics documented:
HELP.FILE.HANDLE
HELP.FILE.HANDLER
HELP.LX.OPTIONS
lx 6
lx.apply
lx.args
lx.barplot
lx.binsum
lx.close
lx.color.change
lx.color.light
lx.COLORS
ly crossprod

 lx.default.file.handler
 ...

 lx.density
 ...

 lx.doc
 ...

lx.Filter
lx.getargs
lx.gregexpr
lx.happly
lx.head
lx.hist
lx.in
lx.info
lx.iris
lx.key.trans
lx.lapply
lx.lazy
lx.list2str
lx.loess
lx.Map
lx.mapply
lx.maxima
lx.mixin
lx.napply
lx.new
lx.open
lx.options
lx.out
lx.peaks
lx.plot.inset
1x.prm.beta 35
lx.prm.binom
lx.prm.exp
lx.prm.gamma
lx.prm.nbinom
lx.prm.norm
lx.prm.pois
lx.rainbow
lx.read.char
lx.read.int16
lx.read.int32
lx.read.int64
lx.read.int8
lx.read.string
lx.recycle
lx.regex.quote
lx.register.file.handler
lx.remove.file.handler
lx.restore
lx.rev.dict
lx.rewind
lx.rnd.pop
lx.rnd.push
lx.rollsum
lx rotate 54

lx.rowMaxs	
	57
1	57
lx.sapply	58
1x.save	59
lx.saved	59
lx.scale	60
lx.seek	60
lx.serialize	61
lx.serialized	62
lx.shift	62
lx.smooth.median	63
lx.stack.is.empty	64
	65
	65
	66
	67
	68
1	68
	69
	70
1	, o 70
	71
	71
	, <u>.</u> 72
	, <u> </u>
	73
	73
J control of the cont	74
J control of the cont	75
	75
J control of the cont	76
√ 1	70 77
J control of the cont	, , 77
ϵ	77 78
	78
	79
11.7	19 80
	80
	81
	81
11	82
	82
11	83
	84
	84
	85
	85
	86
	87
1	88
print.Stack	89

4 HELP.FILE.HANDLE

HELP	.FILE.HANDLE	lx binary file handle	
Index			96
	tex.tag		93
	-		
	tex.fig.on		91
	tex.fig.off		90
	tex.close		89

Description

a file handle (called handle for short) is an R object (see notes) wrapping a binary file connection. (do not confuse with a HELP.FILE.HANDLER)

It is intended to provide a uniform interface for different file types within **lx** and its extensions.

a handle contains four mandatory fields:

- filename : a character string containing the file name (or url)
- type: a character string containing the file content type (default is "none")
- mode: a character string containing the file opening mode in lx.open
- connect: an R object containing the file physical connection, the type depends upon file type
- handler : a file handler object. see HELP.FILE.HANDLER

and some optional fields:

• header : file specific information (header, e.g. index table)

handles are openened and closed thru lx.open and lx.close functions.

files are opened as binary and lx provides the following binary IO functions to read fixed length bytes from them.

- lx.read.int8 : 8 bits integer(s)
- lx.read.int16: 16 bits integer(s)
- lx.read.int32 : 32 bits integer(s)
- lx.read.int64 : 64 (actually 53) bits integer(s)
- lx.read.string : basta string

Note

in practice a FILE.HANDLE is currently implemented as an R environment no write operations yet... time is short.

HELP.FILE.HANDLER 5

HELP.FILE.HANDLER

lx binary file handler

Description

a file handler (called handler for short) is an R object (see notes) wrapping binary file IO operations (do not confuse with a HELP.FILE.HANDLE).

a handler should implement all the following operations:

```
• accept: tell if file can be handled by this handler
```

open : open file close : close file

• seek : tell/seek into file

• read : read n bytes from file

API for these functions:

```
accept(filename, mode)
  filename: character string, name of file (see base::open)
 mode: character string, open mode (see base::open)
returns logical TRUE if the file can be handled by this handler
open(filename, mode)
  filename: character string, name of file (see base::open)
 mode: character string, open mode (see base::open)
returns physical connection
close(con)
  con: physical connection
returns (ignored)
seek(con, ...)
  con: physical connection
  ...: optional position (see lx::lx.seek)
returns current position in file as a (numeric) byte offset from the origin
read(con, n=1L)
 con: physical connection
 n: integer The (maximal) number of bytes to be read
returns a raw vector of at most n bytes (less if EOF reached)
```

Note

handlers have to be registered thru lx.register.file.handler.

1x maintain a stack of handlers that are used from top to bottom when opening a file (thru lx.open). the first handler accepting the filename argument (thru accept) is selected.

by default, a R binary file (accepting anything) is registered at the lowest stack position with name "default".

in practice a FILE.HANDLER is currently implemented as an R environment

6 lx

Description

Lx options: the following options can be accessed and modified by lx.options

name	descr.	default
verbose	be verbose	TRUE
use.threads	use multithreading	FALSE
mc.cores	number of cores to use	parallel::detectCores()
pg.verbose	lx.lapply use progress bar	TRUE
pg.options.style	progress bar style	1
pg.options.time	add system.time in progress bar	TRUE
tex.dir	temporary dir for tex files	tmp
tex.docclass	class of tex document	report
tex.packages	latex packages	tmp
tex.graphics.driver	tex graphics driver	pdf
tex.driver.options	graphics driver options	NULL
tex.graphics.ext	tex graphics file extension	NULL

note: tex.driver.options depends upon tex.graphics.driver you should usually change them together. e.g. with tex.graphics.driver=='jpeg' you may set tex.driver.options to list(units="in", res=600]

1x LX utilities

Description

Generic utilities used in LX packages.

These utilities are currently subdivised in different subpackages:

General programming utilities: functions are prefixed by 'lx' see ??lx for more

Latex/pdf reports: functions are prefixed by 'tex'

see ??tex for more

Details

Package: lx
Type: Package
Version: 1.0
Date: 2013-11-22
License: GPL

1x.apply 7

Author(s)

Alain Viari

lx.apply apply wrapper

Description

```
lx.apply will call different apply flavors depending upon the pg.verbose.argument:
if pg.verbose is TRUE then
   _use apply with progress bar
else
   _use apply without progress bar
```

Usage

```
lx.apply(X, MARGIN, FUN, ..., pg.verbose = lx.options("pg.verbose"))
```

Arguments

```
    an array, including a matrix. see apply.
    a vector giving the subscripts which the function will be applied over. see apply.
    the function to be applied. see apply.
    anything passed to FUN. see apply.
    use progress bar
```

Note

default value for pg.verbose is taken from lx.options and may therefore be controlled globally. there is no multithread flavor yet, see lx.lapply

```
n <- 100
lx.options(pg.verbose=TRUE)
system.time(x <- lx.apply(matrix(1:n, ncol=2), 1, function(x) sum(rnorm(5000*sum(x)))))
lx.options(pg.verbose=FALSE)
system.time(x <- lx.apply(matrix(1:n, ncol=2), 1, function(x) sum(rnorm(5000*sum(x)))))</pre>
```

8 lx.args

lx.args

get function actual arguments

Description

get list of actual arguments of function call. this is mostly useful to 1) retrieve arguments from function with undefined number of arguments and 2) to retrieve actual arguments as symbols (instead of values). this should be called within a function (not from top level). returned arguments are not evaluated but are returned as symbols, constants or language expression.

Usage

```
lx.args(pos = NULL, up.frame = 0L)
```

Arguments

pos

position of argument to extract. if NULL returns all arguments, including function name at pos=1. you can retrieve all arguments but function name by using pos=-1.

up.frame,

number of frame to go up to get caller. default (up=0) means to retrieve arguments from the function calling 1x.args; up=1 means the function calling the function calling 1x.args and so on up to top level.

Value

named list of actual (unevaluated) arguments or NULL if called from top-level

Note

pos is the position of argument i.e as declared in the function definition not in the function call. avoid calling lx.args as an argument of another function unless you are sure when/where it will actually be evaluated.

don't confuse this function with lx.getargs that handle command line arguments.

```
foo <- function(...) {
  args <- lx.args(-1)
  print(args)
}
foo(first=1, second=anything, "third", FUN=function(x) x+1)
foo <- function() {
  caller <- lx.args(1, 1)[[1]]
  cat("foo caller is:", caller, "\n")
}
bar <- function() foo()
bar()</pre>
```

1x.barplot

lx.barplot

barplot with values indicated on top of bars

Description

barplot with values indicated on top of bars

Usage

```
lx.barplot(x, col.text = "black", pos.text = 1, cex.text = 1, ...)
```

Arguments

```
x vector or matrix of values

col.text text color

pos.text text position (see text)

cex.text text magnification

... arguments to barplot
```

Value

same as barplot

Examples

```
## Not run:
lx.barplot(c(apple=10, orange=5, banana=15))
lx.barplot(c(apple=10, orange=5, banana=15), col.text='white', col=lx.COLORS)
## End(Not run)
```

lx.binsum

binned sum

Description

compute the jumping sum of k consecutive elements in vector. this is equivalent to sapply (seq.int(1, length(x), by=k) but is quicker.

Usage

```
lx.binsum(x, k, drop = FALSE)
```

Arguments

```
x vector
```

k number of consecutive elements to sum $(k \ge 1)$

drop drop the last element of result if length(x) is not a multiple of k.

10 lx.close

Value

vector of size ceiling(length(x) / k) if drop=FALSE or floor(length(x) / k) if drop=TRUE, containing the sum of k consecutive elements.

Note

if drop=FALSE and length(x) is not a multiple of k the last element will sum up less than k elements.

See Also

lx.rollsum for a rolling (instead of jumping) version

Examples

lx.close

close file handle

Description

close file handle

Usage

```
lx.close(handle)
```

Arguments

handle file handle (opened by lx.open)

Value

handle (modified)

Note

you should reassign handle on return since some internal fields have been modified

lx.color.change

Description

change color hue, saturation or value

Usage

```
lx.color.change(color, dh = 0, ds = 0, dv = 0)
```

Arguments

color	any of the three kinds of R color specifications, i.e., either a color name (as
	listed by colors()), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa"
	(see rgb), or a positive integer i meaning palette()[i]
dh	change in hue $(-1 \le dh \le 1)$
ds	change in saturation $(-1 \le ds \le 1)$
dv	change in value $(-1 \le dv \le 1)$

Value

modified color (as hexadecimal string)

Examples

lx.color.light

lighten or darken color

Description

lighten or darken color

Usage

```
lx.color.light(color, delta)
```

Arguments

Value

modified color (as hexadecimal string)

12 lx.crossprod

Examples

```
lx.color.light('red', 50) # => #ff8080
lx.color.light('red', -50) # => #800000
```

1x.COLORS

lx global colors

Description

Lx global colors:

name	descr.
lx.COLORS	a nice looking color scale from d3.scale.category10
lx.RED	semi-transparent red color for plots
lx.GREEN	semi-transparent green color for plots
lx.BLUE	semi-transparent blue color for plots
lx.GREY	semi-transparent grey color for plots
lx.LGREY	semi-transparent lightgrey color for plots
lx.TRANSP	semi-transparent white color for plots

See Also

lx.rainbow

lx.crossprod

generalized matrix cross-product

Description

compute cross-product of conformable matrices using any function of row and col.

Usage

```
lx.crossprod(x, y = NULL, FUN, ...)
```

Arguments

```
x nxm numerical matrix y mxn numerical matrix (if NULL then y = t(x))

FUN function called for each row and col as FUN(row, col,...)

other parameters to FUN
```

Value

```
nxn numerical matrix. where entry (i,j) is FUN(x[i,], y[,j],...)
```

Ix.default.file.handler

Note

usual matrix crosproduct corresponds to FUN=function(x, y) sum(x*y) (see examples)

See Also

crossprod

Examples

```
x <- matrix(1:10, ncol=2)
# usual crossproduct (not efficient)
lx.crossprod(t(x), x, function(x, y) sum(x*y))
# this is the same as (more efficient):
t(x) %*% x
# and the same as (more efficient):
crossprod(x)
# cross product with max
lx.crossprod(t(x), FUN=function(x, y) max(x*y))</pre>
```

lx.default.file.handler

create a default file handler

Description

the default file handler handles usual R binary files.

Usage

```
lx.default.file.handler(name)
```

Arguments

name

handler name

Details

a default handler (with name "default") is always added at the lowest position in handlers stack. So, usually you don't need to call this function. It is mostly intented for the case where you want to design your own handler, not starting from scratch. A typical case is to create a default R file handler and to override the accept function to specify which files to accept.

14 lx.doc

lx.density

Kernel Density Estimation

Description

this is a wrapper around density that workarounds a (known) bug with bw="SJ". The density function generates an error when bw="SJ" and length(x) > 46341. The message is: Error in bw.SJ(x, method = "ste") : sample is too sparse to find TD the workaround consists in sampling 46341 values.

Usage

```
lx.density(x, bw = "nrd0", ...)
```

Arguments

the data from which the estimate is to be computed.the smoothing bandwidth to be used (see density)any other parameter to density

Value

```
an object of class "density" (see density)
```

Note

the seed for sampling is always the same and therefore the procedure remains deterministic.

Examples

```
## Not run:
x <- lx.density(rnorm(50000), "SJ")
## End(Not run)</pre>
```

lx.doc

minimalist documentation about object

Description

return a minimalist description of an object (including lx.info if available) and its subfields (if any)

Usage

```
lx.doc(obj, depth = 2L, maxfields = 10L, .name = deparse(substitute(obj)),
   .prefix = ">", .indent = 0L)
```

lx.dup.handle 15

Arguments

obj an R object

depth maximum depth of subfields recursion

maxfields maximum number of subfields

.name name to print in header (usually internal)

.prefix header prefix (usually internal)

. indent current indentation level (usually internal)

See Also

lx.info

Examples

```
x <- lx.new('people', name='alain', age=10, hobbies=c('scuba', 'guitar')) lx.info(x) <- 'this is people class' lx.info(x$age) <- 'people age' lx.doc(x)
```

lx.dup.handle

duplicate file handle

Description

duplicate file handle with a new physical connection

Usage

```
lx.dup.handle(handle)
```

Arguments

handle file handle (opened by lx.open)

Details

this is mostly used in multithreading when accessing the same file (in read mode) by multiple threads.

Value

duplicated file handle

16 lx.false

lx.erase

erase previously saved or serialized object

Description

erase previously saved or serialized object

Usage

```
1x.erase(name)
```

Arguments

name

of first object used in lx.save or lx.serialize

See Also

```
lx.save lx.serialize
```

Examples

```
data(lx.iris)
tab <- lx.iris
lx.save(tab)
lx.erase('tab')</pre>
```

lx.false

always FALSE function

Description

this function always returns FALSE, whatever the arguments.

Usage

```
lx.false(...)
```

Arguments

... anything (ignored arguments)

Value

FALSE

lx.file.ext

lx.file.ext

filename extension

Description

filename extension

Usage

```
lx.file.ext(path)
```

Arguments

path

filename

Value

file (name) extension (excluding the leading dot)

Note

only purely alphanumeric extensions are recognized borrowed from package tools

Examples

```
lx.file.ext("dir/file.more.ext")
```

lx.file.no.ext

filename without extension

Description

filename without extension

Usage

```
lx.file.no.ext(path)
```

Arguments

path

filename

Value

filename without extension (and the leading dot)

Note

only purely alphanumeric extensions are recognized borrowed from package tools

18 Ix.getargs

Examples

```
lx.file.no.ext("dir/file.more.ext")
```

lx.Filter

Filter wrapper

Description

```
just like Filter but using lx.lapply internally.
```

Usage

```
lx.Filter(FUN, X, pg.verbose = lx.options("pg.verbose"),
  use.threads = lx.use.threads(), mc.cores = lx.options("mc.cores"),
  mc.preschedule = TRUE, mc.allow.recursive = FALSE)
```

Arguments

```
FUN the function to be applied. see lapply.

X an array, including a matrix. see lapply.

pg.verbose use progress bar

use.threads use multithreading

mc.cores The number of cores to use. see mclapply.

mc.preschedule perform prescheduling. see mclapply.

mc.allow.recursive allow recursive call. see mclapply.
```

Examples

```
lx.options(pg.verbose=TRUE)
lx.Filter(function(x) x%%2==0, 1:10)
lx.options(pg.verbose=FALSE)
lx.Filter(function(x) x%%2==0, 1:10)
```

lx.getargs

commandArgs parsing

Description

```
return a named list of command line arguments

Usage: call the R script as
/myfile.R -args myarg=something
or
R CMD BATCH -args myarg=something myfile.R

Then in R do
myargs <- getArgs()
to retrieve a named list of arguments
```

lx.gregexpr 19

Usage

```
lx.getargs(verbose = FALSE, defaults = NULL)
```

Arguments

verbose print verbage to screen

defaults a named list of defaults, optional

Value

a named list

Note

don't confuse this function with lx.args that handle function arguments.

Borrowed from: http://cwcode.wordpress.com/2013/04/16/the-joys-of-rscript/

Author(s)

Chris Wallace

lx.gregexpr gregexpr wrapper

Description

similar to gregexpr but argument text is a single character string and function returns a (possibly empty) integer vector of match positions.

Usage

```
lx.gregexpr(pattern, text, ...)
```

Arguments

pattern character string containing a regular expression text character string where matches are sought

... any parameter of gregexpr

Value

integer vector of positions where pattern is found or empty vector if no match

Note

the order of parameters is the same as in gregexpr, i.e. pattern first

See Also

lx.strchr

lx.head

Examples

```
lx.gregexpr('i', 'mississipi')
lx.gregexpr('[imsp]', 'mississipi')
lx.gregexpr('o', 'mississipi')
```

lx.happly

lx.lapply with duplicated file handle

Description

a version of lx.lapply that duplicates the file handle handle in each thread, this is useful when FUN needs read access to file since the file descriptor will be different in each thread, warning: don't use for write access since the write position is unpredictable.

Usage

```
lx.happly(X, FUN, handle, ..., pg.verbose = lx.options("pg.verbose"),
use.threads = lx.use.threads(), mc.cores = lx.options("mc.cores"))
```

Arguments

```
X an array, including a matrix. see lapply.

FUN the function to be applied. see lapply.

handle a file handle (see HELP.FILE.HANDLE)

... anything passed to FUN. see lapply.

pg.verbose use progress bar

use.threads use multithreading

mc.cores The number of cores to use. see mclapply.
```

Note

```
user's function FUN has the form FUN(x, handle, ...)
```

lx.head

head of vector

Description

same as head but limited to vectors and quicker

Usage

```
lx.head(x, n = 1L)
```

lx.hist 21

Arguments

```
x vector
```

n if positive take n first elements, if negative take all but n last elements

Value

```
vector of size n if n \ge 0, or of size length(x) - n if n < 0
```

See Also

head lx.tail

Examples

```
lx.head(1:10, 2) # => 1 2
lx.head(1:10, -2) # => 1 2 3 4 5 6 7
```

lx.hist

histogram plot with density

Description

histogram plot with density

Usage

```
lx.hist(x, col.density = "blue", ...)
```

Arguments

```
x vector of values for which the histogram is desiredcol.density density line colorarguments to hist
```

Value

same as hist

```
## Not run:
lx.hist(rnorm(1000))
## End(Not run)
```

lx.info

lx.in

quicker %in% for integer vectors

Description

works as %in% but much quicker and for integer vectors only.

Usage

```
lx.in(x, table, .threshold = 500)
```

Arguments

x integer vector: the values to be matched

table integer vector: the values to be matched against. (better if sorted increasingly)

threshold internal threshold on table length to switch between standard %in% and quicker

algorithm.

Value

A logical vector, indicating if a match was located for each element of x.

Note

table should be sorted increasingly. if not it will be sorted internally.

Examples

```
lx.in(1:10, 3:5)
lx.in(5e6, 1:1e7)
```

lx.info

set/get information on object

Description

```
to get object information:
lx.info(obj)
to set object information:
lx.info(obj) <- 'value'</pre>
```

Usage

```
lx.info(obj)
lx.info(obj) <- value</pre>
```

Ix.iris 23

Arguments

obj an R object value option value

See Also

lx.doc

Examples

```
x <- 1:3
lx.info(x) <- 'my array'
lx.info(x)
lx.doc(x)</pre>
```

lx.iris

nominal iris dataframe

Description

```
this is a version of iris with 3 nominal columns: species=c('setosa', 'versicolor', 'virginica') petal=c('small', 'large') sepal=c('small', 'large') used for testing and examples.
```

lx.key.trans

translate keys fom dictionnary

Description

translate keys in vector x to values from dictionnary dict

Usage

```
lx.key.trans(x, dict)
```

Arguments

x key or vector of keys

dict dictionnary (list indexed by keys, plus optional default value)

```
lx.key.trans('red', c(red='rouge', blue='bleu'))
lx.key.trans(c('red', 'blue'), c(red=1, green=2, blue=3))
lx.key.trans(c('red', 'pink'), c(red=1, green=2, blue=3))
lx.key.trans(c('red', 'pink'), c(red=1, green=2, blue=3, 0))
```

24 lx.lapply

lx.lapply lapply wrapper

Description

```
lx.lapply will call different lapply flavors depending upon the use.threads and pg.verbose.
arguments:
if use.threads is TRUE then
   __use mclapply
else if pg.verbose is TRUE then
   __use lapply with progress bar
else
   __use lapply without progress bar
```

Usage

```
lx.lapply(X, FUN, ..., pg.verbose = lx.options("pg.verbose"),
use.threads = lx.use.threads(), mc.cores = lx.options("mc.cores"),
mc.preschedule = TRUE, mc.allow.recursive = FALSE)
```

Arguments

```
X an array, including a matrix. see lapply.

FUN the function to be applied. see lapply.

... anything passed to FUN. see lapply.

pg.verbose use progress bar

use.threads use multithreading

mc.cores The number of cores to use. see mclapply.

mc.preschedule perform prescheduling. see mclapply.

mc.allow.recursive

allow recursive call. see mclapply.
```

Note

default value for use.threads and pg.verbose are taken from lx.options and may therefore be controlled globally.

See Also

lx.happly for a version dulpicating file handle.

```
n <- 100
lx.options(pg.verbose=TRUE)
system.time(x <- lx.lapply(1:n, function(x) rnorm(5000*x)))
lx.options(pg.verbose=FALSE)
system.time(x <- lx.lapply(1:n, function(x) rnorm(5000*x)))</pre>
```

lx.lazy 25

lx.lazy	conditionaly restore or set object	
---------	------------------------------------	--

Description

conditionaly restore or set object depending upon previously saved value

Usage

```
lx.lazy(object, setfun, ..., force = FALSE)
```

Arguments

object to set (existing or not)
setfun function to set object
... arguments of setfun

force force reexecution of setfun even if dump file does exist

Details

if file <object>.RData does exist then restore value from this file (unless force=TRUE) else execute setfun(...) and save result into dump file for later retrieval.

Examples

```
foo <- function(n) sum(rnorm(n)) # dummy n <- 100000000 system.time(lx.lazy(mynorm, foo, n)) # 10 s system.time(lx.lazy(mynorm, foo, n)) # <1 s
```

lx.list2str

convert named list to character string

Description

convert named list to character string of the form "key1<sep>value1<collapse>key2<sep>value2...."

Usage

```
lx.list2str(lst, sep = "=", collapse = ", ", quote = NA, ...)
```

Arguments

lst	named list
sep	separator between key and value
collapse	sep separator elements
quote	character to use for quoting character values(use NA to prevent quoting)
	arguments to format for formating elements

26 lx.loess

Value

character string

Note

list values should be atomic. vectors are printed as '[x,y,...]'. recursive lists or matrices are not (yet) handled.

Examples

```
11 <- list(a=1, b="you", c=1:3)
lx.list2str(11)</pre>
```

lx.loess

smooth data using local polynomial regression

Description

this is a wrapper around loess

Usage

```
lx.loess(x, y = NULL, span = 0.75, ...)
```

Arguments

```
    x vector of abscissa if y != NULL or time series values if y == NULL
    y vector of values
    span parameter which controls the degree of smoothing (see loess)
    ... other parameters to loess
```

Details

if just x is provided (i.e. y == NULL) then use x as values and seq_along(x) as abscissa.

Value

```
named list with following fields x: the original abscissa (see Details) y: the smoothed values loess: raw result from loess
```

See Also

loess

```
x <- hist(rnorm(5000), breaks='fd', plot=FALSE)
lx.loess(x$mids, x$counts)</pre>
```

1x.Map 27

lx.Map Map wrapper

Description

```
just like Map but using lx.mapply internally
```

Usage

```
lx.Map(FUN, ..., use.threads = lx.use.threads())
```

Arguments

FUN the function to be applied. see mapply.
... arguments to vectorize over. see mapply.
use.threads use multithreading

1x.mapply mapply wrapper

Description

```
lx.mapply will call different mapply flavors depending upon the use.threads.argument:
if use.threads is TRUE then
    __use mcmapply
else
    __use mapply (without progress bar)
```

Usage

```
lx.mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE,
use.threads = lx.use.threads(), mc.cores = lx.options("mc.cores"),
mc.preschedule = TRUE)
```

Arguments

```
FUN the function to be applied. see mapply.

... arguments to vectorize over. see mapply.

MoreArgs a list of other arguments to FUN. see mapply.

SIMPLIFY see mapply.

USE.NAMES see mapply.

use.threads use multithreading

mc.cores The number of cores to use. see mclapply.

mc.preschedule perform prescheduling. see mclapply.
```

28 lx.maxima

Note

default value for pg.verbose is taken from lx.options and may therefore be controlled globally. default values for SIMPLIFY and USE.NAMES is TRUE as in mapply, this usually slow down process considerably, you should consider using FALSE instead to speed up computations. there is no progress bar flavor yet

Examples

```
n <- 100 
 system.time(x <- lx.mapply(function(x, y) rnorm(5000*(x+y)), 1:n, 1:n)) 
 system.time(x <- lx.mapply(function(x, y) rnorm(5000*(x+y)), 1:n, 1:n, use.threads=TRUE))
```

lx.maxima

get maxima of a curve

Description

get maxima of a curve

Usage

```
lx.maxima(x, span = 0.2, eps = 0.1, ...)
```

Arguments

X	vector of numerical values
span	pre-smoothing parameter (see details)
eps	min ratio between highest and other reported maxima (see details)
	other parameters to loess

Details

if span > 0 then x is first smoothed using loess with parameter span. Then maxima are searched for. If eps >= 0 then x is expected to be a vector of positive values (typically a distribution) and only maxima with height >= eps * max(height) are returned. If eps < 0 then all maxima are returned (x can be any curve with positive and negative values)

Value

vector of indices of maxima (ordered by decreasing heights)

Note

the technique used to locate extrema is quite simple (change of sign of the derivative) and can easily be fooled by noisy data. this is the reason why data is first smoothed. this function displays better behavior on regular distributions provided by lx.density.

See Also

lx.peaks

lx.mfrow 29

Examples

```
x \leftarrow lx.density(c(rnorm(100, -1, 0.5), rnorm(100, 1, 0.5)))
x \in [lx.maxima(x = 0.5)]
```

lx.mfrow

determine best par(mfrow=c(x,y)) layout to fit for n plots

Description

```
determine best par(mfrow=c(x,y)) layout to fit for n plots
```

Usage

```
lx.mfrow(n)
```

Arguments

n

number of plots

See Also

par

Examples

```
opar <- par(no.readonly=TRUE)
par(mfrow=lx.mfrow(10))
# ... plots
par(opar)</pre>
```

lx.mixin

mixin named lists

Description

replace key values in lout by key values in lin.

Usage

```
lx.mixin(lout, lin, keys = intersect(names(lout), names(lin)))
```

Arguments

lout named list lin named list

keys character array of keys to replace. default is intersect(names(lout), names(lin))

30 lx.napply

Details

```
this is equivalent to
lout[keys] <- lin[keys]</pre>
```

```
and is typically used to override formal arguments by user's arguments to allow specifying only part of a list argument (see example below).
```

Value

named list

Examples

```
# replace
lx.mixin(list(a=1, c=3), list(a=10, b=20))

# replace and add
lx.mixin(list(a=1, c=3), lin<-list(a=10, b=20), names(lin))

# select
lx.mixin(NULL, lin<-list(a=10, b=20), intersect(names(lin), c("a", "c")))

# typical usage with function args
foo <- function(arg=list(a=1, b="foo")) {
   dft <- formals()
   arg <- lx.mixin(dft$arg, arg)
   arg
}
foo(list(a=2)) # => list(a = 2, b = "foo")
```

lx.napply

mapply with names

Description

```
\label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line
```

Usage

```
lx.napply(X, FUN, ..., use.threads = FALSE)
```

Arguments

```
X an array

FUN the function to be applied. see mapply.

... arguments to vectorize over. see mapply.

use.threads use multithreading
```

lx.new 31

Note

as an exception in the lx.?apply family, the default behavior is no thread

default values for SIMPLIFY and USE. NAMES is TRUE as in lx.mapply, this usually slow down process considerably, you should consider using FALSE instead to speed up computations.

Examples

```
11 <- list(a=1, b=2, c=3)
1x.napply(11, function(nam, val) paste(nam, val, sep="."))</pre>
```

lx.new

create an S3 instance of given class

Description

create an S3 instance of given class

Usage

```
lx.new(classname, ...)
```

Arguments

```
classname string or string vector of classnames
... anything accepted by list
```

Value

```
a named list of . . . fields with classname class attribute
```

See Also

class

```
x <- lx.new('people', name='alain', age=10)
class(x)
x$age</pre>
```

32 lx.options

lx.open

open (binary) file

Description

```
open (binary) file
```

Usage

```
lx.open(filename, mode = "rb", .handler = NULL)
```

Arguments

filename file name

mode open mode (see HELP.FILE.HANDLE)

. handler force use of given handler name (internal use only)

Value

file handle

Note

if you force handler (thru .handler) the handler\$accept test function will not be called.

See Also

HELP.FILE.HANDLE

lx.options

set or get lx options

Description

```
set or get lx options
```

Usage

```
lx.options(..., default = NULL)
```

Arguments

```
... arguments of the form key or key=value (see details)
default value for retrieving a single key (see details)
```

Ix.options 33

Details

```
Set form: lx.options(key=value [, key2=value, ...]) will set option key to value note: to remove a key then just set its value to NULL (lx.options(key=NULL)
```

```
Get form: lx.options(key, [key2, ...] [, default=value]) return the value(s) associated to key(s) note that key is either a symbol or a string, see examples below. a special form for retrieving a single key with a default value is: lx.options(key, default=value) finally, if called without argument: lx.options(), then the function returns the list of all current options.
```

Returned value: for set/get of **single key**: returns the associated value or (in get mode) default or NULL if key cannot be found

for set/get of multiple keys: returns a named list of key:value.

in get mode, if the key is not found, then the corresponding name is <NA> and value NULL

note that set and get mode can be intermixed (although this is a bit strange to do)

Value

for set/get of $single\ key$: returns the associated value or (in get mode) default or NULL if option cannot be found and has no default

for set/get of **multiple keys**: returns a named list of key:value. (note: in get mode if the key is not found, the name is <NA> and value NULL)

Note

```
as for options, key is a (uninterpreted) symbol or a character string. (for developpers: to use a variable value, use a do.call) see HELP.LX.OPTIONS for a list of current builtin options
```

```
lx.options(foo=123, bar=234)
lx.options(foo)
lx.options('foo')
lx.options(foobar, default=456)
lx.options(foo=NULL)
lx.options(foo, default=pi)
lx.options()
```

34 Ix.out

1x.out

printout information on stderr

Description

prints arguments on stderr if level >= lx.verbose()

Usage

```
lx.out(..., level = "info", with.mem = FALSE, with.caller = TRUE,
    up.frame = 0L)
```

Arguments

... zero or more objects which can be coerced to character (and which are pasted

together with no separator).

level verbose level.

with.mem if TRUE, additionaly printout memory usage

with.caller if TRUE, additionaly printout caller

up.frame if with.caller==TRUE, caller position in call stack (see details).

Details

if with.mem = TRUE this fonction will calls gc(), and may therefore slow down process.

the up.frame parameter indicates the number of frames to go up to get caller. default (up=0) means to retrieve arguments from the function calling lx.out; up=1 means the function calling the function calling lx.out and so on up to top level.

the up. frame parameter is useful if you called lx. out from an error reporting function and want to report the caller function (see examples below)

See Also

lx.verbose lx.warn, lx.warnif, lx.stopif

```
lx.out("pi=", pi, " and e=", exp(1))
lx.out("pi=", pi, " and e=", exp(1), with.mem=TRUE)

my_report <- function(...) lx.out("my report: ", ..., up.frame=1)
foo <- function() { x <- 1; my_report("x=", x) }
foo()</pre>
```

Ix.peaks 35

Description

get peaks position and width of a curve

Usage

```
lx.peaks(x, span = 0.2, eps.x = 0.1, eps.dx = eps.x, na.val = NA, ...)
```

Arguments

```
    vector of numerical values (typically a distribution)
    prameter (see details)
    eps.x
    eps parameter for x maxima (see details)
    eps.dx
    eps parameter for x derivative maxima (see details)
    na.val
    default width (see details)
    other parameters to loess
```

Details

if span > 0 then x is first smoothed using loess with parameter span. Then, maxima of x are search with lx.maxima using eps.x parameter. Then, foreach maximum, the closest maxima of x derivative are searched for to compute left and right peak boundaries. if no boundary is found then value is set to maximum.pos +/- na.val.

Value

list of three components:

```
    pos : vector of indices of peaks position (ordered by decreasing heights)
    left : vector of indices of peaks left side
    right : vector of indices of peaks right side
```

Note

if x is a normal distribution then band width is an estimate of 2*sd

the technique used to locate extrema is quite simple (change of sign of the derivative) and can easily be fooled by noisy data. this is the reason why data is first smoothed. this function displays better behavior on regular distributions provided by lx.density.

See Also

lx.maxima

36 lx.plot.inset

Examples

```
x <- lx.density(c(rnorm(100, -1, 0.3), rnorm(100, 1, 0.3)))
p <- lx.peaks(x$y)
## Not run:
   plot(x)
   abline(v=x$x[p$pos], col=1)
   abline(v=x$x[c(p$left, p$right)], col=2)
## End(Not run)</pre>
```

lx.plot.inset

add inset plot into current plot

Description

```
add a small (inset) plot in current plot
```

Usage

```
lx.plot.inset(..., inset.pos = c("tr", "tl", "br", "bl"), inset.alpha = 0.5,
inset.margin = 0.01)
```

Arguments

```
same arguments as in generic plot
inset.pos inset position 'tl', 'tr', 'bl', 'br'
inset.alpha inset size factor
inset.margin inset margin
```

Details

inset position indicate the poistion of the inset as tl:top-left, tr:top-right, bl=bottom-left, br:bottom-right

Ix.prm.beta 37

1x.prm.beta Re-parameterized Beta distribution
--

Description

Beta distibution reparameterized with mean and variance

Usage

```
lx.prm.beta(mean, sd)
lx.dbeta(x, mean, sd, ...)
lx.pbeta(x, mean, sd, ...)
lx.rbeta(n, mean, sd, ...)
```

Arguments

mean	vector of means
sd	vector of standard deviations
x	vector of quantiles
	other parameters to dbeta, pbeta and rbeta
n	number of observations

Value

lx.prm.beta returns the standard parameters of R library functions. **lx.dbeta** gives the density, **lx.pbeta** gives the distribution function and **lx.rbeta** generates random deviates.

Functions

```
lx.dbeta: density functionlx.pbeta: distribution functionlx.rbeta: random deviate
```

See Also

dbeta, pbeta and rbeta

38 lx.prm.binom

-			
l x	prm	.binom	

Re-parameterized Binomial distribution

Description

Binomial distibution reparameterized with mean and variance

Usage

```
lx.prm.binom(mean, sd)
lx.dbinom(x, mean, sd, ...)
lx.pbinom(x, mean, sd, ...)
lx.rbinom(n, mean, sd, ...)
```

Arguments

mean	vector of means
sd	vector of standard deviations
x	vector of quantiles
	other parameters to dbinom, pbinom and rbinom
n	number of observations

Value

lx.prm.binom returns the standard parameters of R library functions. **lx.dbinom** gives the density, **lx.pbinom** gives the distribution function and **lx.rbinom** generates random deviates.

Functions

- lx.dbinom: density function
- lx.pbinom: distribution function
- 1x.rbinom: random deviate

See Also

dbinom, pbinom and rbinom

lx.prm.exp

lx.prm.exp

Re-parameterized Exponential distribution

Description

Exponential distibution reparameterized with mean

Usage

```
lx.prm.exp(mean = 1)
lx.dexp(x, mean = 1, ...)
lx.pexp(x, mean = 1, ...)
lx.rexp(n, mean = 1, ...)
```

Arguments

mean	vector of means
X	vector of quantiles
• • •	other parameters to dexp, pexp and rexp
n	number of observations

Value

lx.prm.exp returns the standard parameters of R library functions. **lx.dexp** gives the density, **lx.pexp** gives the distribution function and **lx.rexp** generates random deviates.

Functions

```
1x.dexp: density function1x.pexp: distribution function1x.rexp: random deviate
```

See Also

```
dexp, pexp and rexp
```

40 lx.prm.gamma

lx.prm.gamma

Re-parameterized Gamma distribution

Description

Gamma distibution reparameterized with mean and variance

Usage

```
lx.prm.gamma(mean, sd)
lx.dgamma(x, mean, sd, ...)
lx.pgamma(x, mean, sd, ...)
lx.rgamma(n, mean, sd, ...)
```

Arguments

mean	vector of means
sd	vector of standard deviations
x	vector of quantiles
	other parameters to dgamma, pgamma and rgamma
n	number of observations

Value

lx.prm.gamma returns the standard parameters of R library functions. **lx.dgamma** gives the density, **lx.pgamma** gives the distribution function and **lx.rgamma** generates random deviates.

Functions

• lx.dgamma: density function

• lx.pgamma: distribution function

• 1x.rgamma: random deviate

See Also

dgamma, pgamma and rgamma

1x.prm.nbinom 41

lx.prm.nbinom	Re-parameterized Negative Binomial distribution
17. P	the parameterized fregulive Billomial distribution

Description

Negative Binomial distibution reparameterized with mean and variance

Usage

```
lx.prm.nbinom(mean, sd)
lx.dnbinom(x, mean, sd, ...)
lx.pnbinom(x, mean, sd, ...)
lx.rnbinom(n, mean, sd, ...)
```

Arguments

mean	vector of means
sd	vector of standard deviations
Х	vector of quantiles
	other parameters to dnbinom, pnbinom and rnbinom
n	number of observations

Value

lx.prm.nbinom returns the standard parameters of R library functions. **lx.dnbinom** gives the density, **lx.pnbinom** gives the distribution function and **lx.rnbinom** generates random deviates.

Functions

• 1x.dnbinom: density function

• 1x.pnbinom: distribution function

• 1x.rnbinom: random deviate

See Also

dnbinom, pnbinom and rnbinom

lx.prm.norm

Description

These functions are equivalent to dnorm, pnorm and rnorm. they are just provided for symetry with other re-parametrized distributions.

Usage

```
lx.prm.norm(mean, sd)
lx.dnorm(x, mean = 0, sd = 1, ...)
lx.pnorm(x, mean = 0, sd = 1, ...)
lx.rnorm(n, mean = 0, sd = 1, ...)
```

Arguments

mean	vector of means
sd	vector of standard deviations
x	vector of quantiles
	other parameters to dnorm, pnorm and rnorm
n	number of observations

Value

lx.prm.norm returns the standard parameters of R library functions. **lx.dnorm** gives the density, **lx.pnorm** gives the distribution function and **lx.rnorm** generates random deviates.

Functions

```
• 1x.dnorm: density function
```

• 1x.pnorm: distribution function

• 1x.rnorm: random deviate

See Also

dnorm, pnorm and rnorm

Ix.prm.pois 43

|--|

Description

These functions are equivalent to dpois, ppois and rpois. they are just provided for symetry with other re-parametrized distributions.

Usage

```
lx.prm.pois(mean)
lx.dpois(x, mean, ...)
lx.ppois(x, mean, ...)
lx.rpois(n, mean, ...)
```

Arguments

mean	vector of (non-negative) means
X	vector of quantiles
•••	other parameters to dpois, ppois and rpois
n	number of observations

Value

lx.prm.pois returns the standard parameters of R library functions. **lx.dpois** gives the density, **lx.ppois** gives the distribution function and **lx.rpois** generates random deviates.

Functions

```
lx.dpois: density functionlx.ppois: distribution functionlx.rpois: random deviate
```

See Also

dpois, ppois and rpois

44 lx.read.char

1χ	.rainbow	
IX.	. rainbow	

Description

similar to rainbow except that colors do not close circularly (i.e. start and end colors are not the same).

Usage

```
lx.rainbow(n, skip = 1/6, ...)
```

Arguments

```
n the number of required colors
skip end portion of color circle to remove (default=1/6)
... any argument of rainbow
```

rainbow color scale

Value

a character vector of colors

Examples

```
lx.rainbow(10)
```

lx.read.char
read character(s)

Description

read characters from file handle stopping or not on NULL chars.

Usage

```
lx.read.char(handle, n = 1L, skip.null = FALSE, .raw = FALSE,
    .chunk.size = 100L)
```

Arguments

handle file handle (opened by lx.open)

n integer, (maximum) number of chars to read

skip.null logical, skip over NULL (see details)
.raw logical, skip processing (see details)

. chunk. size (internal parameter) size of chunks to use when skip.null==FALSE and n < 0

Ix.read.int16

Details

Value

character string

Note

n is an integer, therefore limited to 2,147,483,647

See Also

lx.read.int8 to read bytes (including NULL), lx.read.string as an alternative form.

Examples

```
fh <- lx.open(lx.system.file('samples/test_bin.bst'))
s <- lx.read.char(fh, n=40)
nchar(s) # 5
lx.rewind(fh)
s <- lx.read.char(fh, n=40, skip=TRUE)
nchar(s, type="bytes") # 40
lx.close(fh)</pre>
```

lx.read.int16

read binary 16 bits integer(s)

Description

```
read binary 16 bits integer(s)
```

Usage

```
lx.read.int16(handle, n = 1L, signed = FALSE, little.endian = TRUE)
```

46 lx.read.int32

Arguments

handle file handle (opened by lx.open)

n number of integers to read

signed read signed integer(s)

little.endian integer encoding is little endian

Value

```
(vector of) integer(s)
```

Note

n is an integer, therefore limited to 2,147,483,647

Examples

```
fh <- lx.open(lx.system.file('samples/test_bin.bst'))
x <- lx.read.int16(fh, n=2)
lx.close(fh)</pre>
```

lx.read.int32

read binary 32 bits integer(s)

Description

```
read binary 32 bits integer(s)
```

Usage

```
lx.read.int32(handle, n = 1L, signed = FALSE, little.endian = TRUE)
```

Arguments

handle file handle (opened by lx.open)

n number of integers to read

signed read signed integer(s)

little.endian integer encoding is little endian

Value

```
(vector of) integer(s) if signed == TRUE else (vector of) double(s) without loss of precision
```

Note

```
n is an integer, therefore limited to 2,147,483,647
```

Ix.read.int64 47

Examples

lx.read.int64

read binary 64 (actually 53) bits integer

Description

read binary 64 (actually 53) bits integer

Usage

```
lx.read.int64(handle, n = 1L, signed = FALSE, little.endian = TRUE)
```

Arguments

```
handle file handle (opened by lx.open)

n number of integers to read

signed read signed integer(s)

little.endian integer encoding is little endian
```

Value

(vector of) double(s) with possible precision loss.

Note

```
since R double have 53 bits precision the return values are only exact for values in range [-2^53, 2^53] = [-900719925] and [0, 2^53] = [0, 9007199254740992] for unsigned long n is an integer, therefore limited to 2,147,483,647
```

```
fh <- lx.open(lx.system.file('samples/test_bin.bst'))
cod <- lx.read.int32(fh, n=1)
nseq <- lx.read.int32(fh, n=1)
s1 <- lx.read.string(fh)
siz1 <- lx.read.int64(fh, n=1)
crc1 <- lx.read.int32(fh, n=1)
s2 <- lx.read.string(fh)</pre>
```

48 lx.read.string

```
siz2 <- lx.read.int64(fh, n=1)
crc2 <- lx.read.int32(fh, n=1)
ss1 <- lx.read.char(fh, n=siz1)
ss2 <- lx.read.char(fh, n=siz2)
lx.close(fh)</pre>
```

lx.read.int8

read binary 8 bits integer(s)

Description

```
read binary 8 bits integer(s)
```

Usage

```
lx.read.int8(handle, n = 1L, signed = FALSE)
```

Arguments

```
handle file handle (opened by lx.open)

n number of integers to read

signed read signed integer(s)
```

Value

```
(vector of) integer(s)
```

Note

n is an integer, therefore limited to 2,147,483,647

Examples

```
fh <- lx.open(lx.system.file('samples/test_bin.bst'))
x <- lx.read.int8(fh, n=4)
lx.close(fh)</pre>
```

lx.read.string

read binary C-style or basta string

Description

```
a C-style string is null terminated character array a basta string is binary encoded in the following way
```

```
• int32 : string size
```

• chars+NULL : null terminated (C style) character array

Ix.recycle 49

Usage

```
lx.read.string(handle, with.size = TRUE)
```

Arguments

handle file handle (opened by lx.open)

with.size if true basta string else simple C-style string

Value

character string

Note

if with.size==FALSE this function is equivalent to lx.read.char(handle, n=-1L, skip=FALSE)

Examples

```
fh <- lx.open(lx.system.file('samples/test_bin.bst'))
cod <- lx.read.int32(fh, n=1)
nseq <- lx.read.int32(fh, n=1)
s1 <- lx.read.string(fh)
siz1 <- lx.read.int64(fh, n=1)
crc1 <- lx.read.int32(fh, n=1)
s2 <- lx.read.string(fh)
siz2 <- lx.read.int64(fh, n=1)
crc2 <- lx.read.int32(fh, n=1)
ss1 <- lx.read.char(fh, n=siz1)
ss2 <- lx.read.char(fh, n=siz2)
lx.close(fh)</pre>
```

lx.recycle

expand by recycling or shrink vector to given size

Description

given a vector x either shrink or expand by recycling to size n

Usage

```
lx.recycle(x, n)
```

Arguments

x vector

n positive integer

Value

vector of size n

50 lx.register.file.handler

See Also

lx.rotate

Examples

```
lx.recycle(1:3, 6)
lx.recycle(1:10, 6)
lx.recycle(1:10, 0)
```

lx.regex.quote

quote special characters used in regex

Description

quote special characters used in regex

Usage

```
lx.regex.quote(s)
```

Arguments

S

string or string vector

Examples

```
lx.regex.quote('the (lazy) dog')
```

```
lx.register.file.handler
```

register handler

Description

register handler at topmost position in handlers stack

Usage

```
lx.register.file.handler(handler)
```

Arguments

handler

: file handler

Note

if a handler with same name already exists in stack it is first removed and the new handler is added topmost.

lx.remove.file.handler 51

```
lx.remove.file.handler
```

remove file handler(s)

Description

remove handler from handlers stack

Usage

```
lx.remove.file.handler(name)
```

Arguments

name : name(s) of handler(s) to remove

lx.require

check and optionally install package

Description

check if package is present and install it if necessary

Usage

```
lx.require(package, install = TRUE, load = FALSE, tarball = NULL,
 silent = FALSE, ...)
```

Arguments

package	package name (as string or symbol)
install	perform installation if not installed
load	additionnaly load package
tarball	local tarball where to find package (in that case you should also specify ${\bf re-pos=NULL}$ in parameters
silent	do not print any message (see notes)

Details

. . .

first check if package is present in installed.packages. if not and if install is TRUE then install it using install.packages with provided arguments.

Value

invisible(TRUE) if package is (now) available else invisible(FALSE)

any parameter of install.packages

52 lx.rev.dict

Note

silent will not silent the (possible) installation phase because its a bad idea to download and install anything without notification. to force complete silence see install.packages options (quietly and verbose).

you may silently check the existence of a package by lx.require(package, install=FALSE, load=FALSE, silent=

lx.restore

restore objects from dump file

Description

restore objects from dump file

Usage

```
lx.restore(name)
```

Arguments

name

of first object used in lx.save

See Also

lx.save

Examples

```
data(lx.iris)
tab1 <- tab2 <- lx.iris
lx.save(tab1, tab2)
remove(tab1, tab2)
lx.restore('tab1')</pre>
```

lx.rev.dict

reverse dictionnary

Description

reverse dictionnary

Usage

```
lx.rev.dict(dict)
```

Arguments

dict

dictionnary: a list indexed by keys (plus optional default value that is ignored)

Value

```
reverse dictionary: a list indexed by values
```

1x.rewind 53

Examples

```
dict <- list(warm=c('red'), cold=c('blue', 'green'), basic=c('red', 'blue', 'green'), 'white')
lx.rev.dict(dict)
# => list(red=c('warm', 'basic'), blue=c('cold', 'basic'), green=c('cold', 'basic'))
```

lx.rewind

rewind file handle

Description

rewind file handle opened by lx.open

Usage

```
lx.rewind(handle)
```

Arguments

handle

file handle (opened by lx.open)

Value

handle (invisible)

Note

this is a shorthand for lx.seek(handle, 0)

lx.rnd.pop

restore current global random seed

Description

pop current global random seed (.Random.seed) from internal stack this has to be used (in pairs with lx.rnd.push) to save current random seed and restore it later

Usage

```
1x.rnd.pop()
```

Value

(invisible) restored random seed

54 lx.rnd.push

Examples

```
set.seed(1)
x <- sample(letters, 3)
set.seed(1)
lx.rnd.push() # same as
set.seed(2) # lx.rnd.push(2)
y <- sample(letters, 3)
lx.rnd.pop()
z <- sample(letters, 3)
identical(x, z)</pre>
```

lx.rnd.push

save current global random seed

Description

push current global random seed (.Random.seed) into internal stack this has to be used (in pairs with lx.rnd.pop) to save current random seed and restore it later

Usage

```
lx.rnd.push(seed)
```

Arguments

seed

optional parameter, if specified then additionnaly set.seed(seed)

Value

(invisible) current random seed

```
set.seed(1)
x <- sample(letters, 3)
set.seed(1)
lx.rnd.push() # same as
set.seed(2) # lx.rnd.push(2)
y <- sample(letters, 3)
lx.rnd.pop()
z <- sample(letters, 3)
identical(x, z)</pre>
```

Ix.rollsum 55

lx.rollsum rolled sum

Description

compute the rolling sum of k consecutive elements in vector. this is equivalent to sapply ($seq_along(x)$, function(i) but is much quicker since it runs in O(n).

Usage

```
lx.rollsum(x, k, drop = FALSE)
```

Arguments

x vector

k number of consecutive elements to sum $(k \ge 1)$

drop drop the last (k-1) elements of result

Value

vector of size length(x) if (drop==F) or length(x)-k+1 if (drop==F), containing the sum of k consecutive elements.

Note

with drop==F the last (k-1) elements will sum up less than k elements.

See Also

lx.binsum for a jumping (instead of rolling) version

Examples

```
lx.rollsum(1:5, 2)  # => 3 5 7 9 5
lx.rollsum(rep(1,10), 3, TRUE) # => 3 3 3 3 3 3 3 3
```

lx.rotate

rotate vector circularly n times

Description

rotate vector circularly n times

Usage

```
lx.rotate(x, n = 1L)
```

56 lx.rowMaxs

Arguments

x vector

n number of rotations.

if > 0 rotate to left else rotate to right

Value

rotated vector

Examples

```
lx.rotate(1:5, 2) # => 3 4 5 1 2
lx.rotate(1:5, -2) # => 4 5 1 2 3
```

lx.rowMaxs

get maximum in rows

Description

find the maximum for each row of a matrix

Usage

```
lx.rowMaxs(x, ties.method = c("random", "first", "last"), what = c("value",
    "index"))
```

Arguments

x numerical matrix

ties.method a character string specifying how ties are handled. (see max.col) what a character string specifying what should be returned (see Value)

Value

- if what == "value" return a maximal value for each row
- if what == "index" return index of a maximal value for each row

Note

```
with what == "index" this function is identical to max.col
```

See Also

lx.rowMins

Ix.rowMins 57

lx.rowMins get minimum in rows

Description

find the minimum for each row of a matrix

Usage

```
lx.rowMins(x, ties.method = c("random", "first", "last"), what = c("value",
    "index"))
```

Arguments

x numerical matrix

ties.method a character string specifying how ties are handled. (see max.col) what a character string specifying what should be returned (see Value)

Value

- if what == "value" return a minimum value for each row
- if what == "index" return index of a minimum value for each row

Note

```
with what == "index" this function is identical to max.col(-x)
```

See Also

lx.rowMaxs

lx.sample base::sample wrapper

Description

this function calls base::sample(x, size, prob, replace) except for the case where prob != NULL and replace =: In this case base::sample is very slow (actually quadratic in the size of x and of size. This is replaced by the 'reservoir' technique of Efraimidis & Spirakis (see note)

Usage

```
lx.sample(x, size, replace = FALSE, prob = NULL)
```

58 lx.sapply

Arguments

x Either a vector of one or more elements from which to choose, or a positive

integer. (see sample)

size a non-negative integer giving the number of items to choose.

replace should sampling be with replacement

prob a vector of probability weights for obtaining the elements of the vector being

sampled.

Value

a vector of length size with elements drawn from either x or from the integers 1:x

Note

reference: P. Efraimidis and P.Spirakis, Information Processing Letters, 97, 181-185 (2006).

lx.sapply sapply wrapper

Description

```
lx.sapply will call different sapply flavors depending upon the pg.verbose.argument:
if pg.verbose is TRUE then
   __use sapply with progress bar
else
   __use sapply without progress bar
```

Usage

```
lx.sapply(X, FUN, ..., pg.verbose = lx.options("pg.verbose"))
```

Arguments

X an array, including a matrix. see lapply.

FUN the function to be applied. see lapply.

... anything passed to FUN. see lapply.

pg.verbose use progress bar

Note

default value for pg.verbose is taken from lx.options and may therefore be controlled globally. there is no multithread flavor yet, see lx.lapply

```
n <- 100
lx.options(pg.verbose=TRUE)
system.time(x <- lx.sapply(1:n, function(x) rnorm(5000*x)))
lx.options(pg.verbose=FALSE)
system.time(x <- lx.sapply(1:n, function(x) rnorm(5000*x)))</pre>
```

lx.save 59

lx.save

save objects into dump file

Description

save objects into dump file

Usage

```
lx.save(...)
```

Arguments

... list of objects to save

Details

the dump file name is <obj1>.RData where obj1 is the first object in . . .

See Also

lx.restore

Examples

```
data(lx.iris)
tab1 <- tab2 <- lx.iris
lx.save(tab1, tab2)
remove(tab1, tab2)
lx.restore('tab1')</pre>
```

lx.saved

tells if object has been previously saved

Description

tells if object has been previously saved

Usage

```
1x.saved(name)
```

Arguments

name

of first object used in 1x. save

See Also

lx.save

lx.seek

Examples

```
data(lx.iris)
tab <- lx.iris
lx.save(tab)
lx.saved('tab')</pre>
```

lx.scale

linearly rescale numeric vector to specified range.

Description

```
rescale numeric vector x to x' from range [f1, f2] to range [t1, t2] according to: x' = a.x + b where a=(t2-t1)/(f2-f1) and b = t1 - a.f1
```

Usage

```
lx.scale(x, to = c(0, 1), from = range(x, na.rm = TRUE), zerob = FALSE)
```

Arguments

x numeric vector

to output range (numeric vector of length two) from input range (numeric vector of length two).

if not specified, use the range of x

zerob force b=0. this is useful for rescaling differences

Value

rescaled vector

Examples

```
lx.scale(1:10)
lx.scale(1:10, c(1,10))
```

lx.seek

tell/seek file

Description

reposition file handle opened by lx.open

Usage

```
lx.seek(handle, ...)
```

Ix.serialize 61

Arguments

```
handle file handle (opened by lx.open)
... optional position in file
```

Details

if ... is absent then returns current position (ftell) else set the position to (numeric) argument.

Value

current position (before any move) as a (numeric) byte offset from the origin.

Note

for default (R) handler, position may exceed 32 bit integer.

Examples

```
fh <- lx.open(lx.system.file('samples/test_bin.bst'))
cod <- lx.read.int32(fh, n=1)
pos <- lx.seek(fh)
nseq <- lx.read.int32(fh, n=1)
lx.seek(fh, 0)
cod <- lx.read.int32(fh, n=1)
nseq <- lx.read.int32(fh, n=1)
lx.seek(fh, pos)
nseq <- lx.read.int32(fh, n=1)
lx.close(fh)</pre>
```

lx.serialize

serialize single object into file

Description

serialize single object into file

Usage

```
lx.serialize(object, name = NULL, ...)
```

Arguments

object object to serialize

name file name (without extension) if NULL then use symbol object

... additionnal options to saveRDS

Details

object is serialized into file named name.rds

lx.shift

See Also

```
lx.unserialize
```

Examples

```
data(lx.iris)
tab <- lx.iris
lx.serialize(tab) # create file \code{tab.rds}
duptab <- lx.unserialize('tab')</pre>
```

lx.serialized

tells if serialized object does exist

Description

tells if serialized object does exist

Usage

```
lx.serialized(name)
```

Arguments

name

of object used in lx.serialized

See Also

lx.serialize

Examples

```
data(lx.iris)
tab <- lx.iris
lx.serialize(tab) # create file tab.Rdata
lx.serialized('tab')</pre>
```

lx.shift

shift vector n times and pad with fill value

Description

shift vector n times and pad with fill value

Usage

```
lx.shift(x, n = 1L, fill = NA)
```

Ix.smooth.median 63

Arguments

```
x vector
```

n number of shifts.

if >= 0 shift to left else shift to right

fill value to fill

Value

shifted vector

Examples

```
lx.shift(1:5, 2, fill=0) # => 3 4 5 0 0 lx.shift(1:5, -2, fill=0) # => 0 0 1 2 3
```

lx.smooth.median

Tukey's median smoothing

Description

smooth data using iterative Tukey's median smoothing. this is typically intented for piecewise constant data (step function) to smooth signal whuile preserving edges. see http://dx.doi.org/10.1007/BFb0057597

Usage

```
lx.smooth.median(x, k = 3L, tol = 0)
```

Arguments

x numeric vector, the *dependent* variable to be smoothed

k vector of successive smoothing windows

tol tolerance for smoothing iterations (see details)

Details

the procedure runs as follows:

```
foreach window.size in k
  repeat
    x0 <- x
    x <- runmed(x0, window.size)
  while (rss(x0,x) < tol)
end</pre>
```

set tol to Inf to prevent iterations and to 0 (default) for full iterations.

Value

vector of smoothed values of the same length as x

64 lx.stack.is.empty

See Also

lx.loess, runmed

Examples

```
x <- c(rnorm(100, -1, 0.1), rnorm(100, 1, 0.1))
sx <- lx.smooth.median(x, c(3, 5, 15, 35))
## Not run:
plot(x)
lines(sx, col=2)
## End(Not run)</pre>
```

lx.stack.is.empty

tell if stack is empty

Description

tell if stack is empty

Usage

```
lx.stack.is.empty(stk)
```

Arguments

stk

Stack

Value

TRUE if stack is empty

Note

this implementation uses lists and is not efficient. this is mostly intended for storing small number of elements. if you need a better implementation, use the 'rstack' library

```
stk <- lx.stack.new()
stk <- lx.stack.push(stk, 1)
stk <- lx.stack.push(stk, "two")
stk <- lx.stack.push(stk, NULL)
stk <- lx.stack.push(stk, 1:4)
while (! lx.stack.is.empty(stk)) {
  stk <- lx.stack.pop(stk)
  val <- lx.stack.value(stk)
  lx.out(typeof(val), ": ", val)
}</pre>
```

Ix.stack.new 65

lx.stack.new

new (FILO) stack

Description

```
new (FILO) stack
```

Usage

```
lx.stack.new()
```

Value

empty stack

Note

this implementation uses lists and is not efficient. this is mostly intended for storing small number of elements. if you need a better implementation, use the 'rstack' library

Examples

```
stk <- lx.stack.new()
stk <- lx.stack.push(stk, 1)
stk <- lx.stack.push(stk, "two")
stk <- lx.stack.push(stk, NULL)
stk <- lx.stack.push(stk, 1:4)
while (! lx.stack.is.empty(stk)) {
  stk <- lx.stack.pop(stk)
  val <- lx.stack.value(stk)
  lx.out(typeof(val), ": ", val)
}</pre>
```

lx.stack.pop

pop value from stack

Description

pop top element from stack and store it in stk->value

Usage

```
lx.stack.pop(stk)
```

Arguments

stk

Stack

Value

modified stack

66 lx.stack.push

Note

no error is raised if stack is empty

this implementation uses lists and is not efficient. this is mostly intended for storing small number of elements. if you need a better implementation, use the 'rstack' library

Examples

```
stk <- lx.stack.new()
stk <- lx.stack.push(stk, 1)
stk <- lx.stack.push(stk, "two")
stk <- lx.stack.push(stk, NULL)
stk <- lx.stack.push(stk, 1:4)
while (! lx.stack.is.empty(stk)) {
  stk <- lx.stack.pop(stk)
  val <- lx.stack.value(stk)
  lx.out(typeof(val), ": ", val)
}</pre>
```

lx.stack.push

push value into stack

Description

push value into stack

Usage

```
lx.stack.push(stk, value)
```

Arguments

```
stk Stack
value any R object (including NULL)
```

Value

modified stack

Note

this implementation uses lists and is not efficient. this is mostly intended for storing small number of elements. if you need a better implementation, use the 'rstack' library

```
stk <- lx.stack.new()
stk <- lx.stack.push(stk, 1)
stk <- lx.stack.push(stk, "two")
stk <- lx.stack.push(stk, NULL)
stk <- lx.stack.push(stk, 1:4)
while (! lx.stack.is.empty(stk)) {
  stk <- lx.stack.pop(stk)</pre>
```

lx.stack.value 67

```
val <- lx.stack.value(stk)
lx.out(typeof(val), ": ", val)
}</pre>
```

lx.stack.value

get last popped value from stack

Description

get last popped value from stack

Usage

```
lx.stack.value(stk)
```

Arguments

stk

Stack

Value

last popped value

Note

this implementation uses lists and is not efficient. this is mostly intended for storing small number of elements. if you need a better implementation, use the 'rstack' library

```
stk <- lx.stack.new()
stk <- lx.stack.push(stk, 1)
stk <- lx.stack.push(stk, "two")
stk <- lx.stack.push(stk, NULL)
stk <- lx.stack.push(stk, 1:4)
while (! lx.stack.is.empty(stk)) {
  stk <- lx.stack.pop(stk)
  val <- lx.stack.value(stk)
  lx.out(typeof(val), ": ", val)
}</pre>
```

68 lx.strchr

lx.stopif

stop execution if condition is true

Description

stop execution if condition is true

Usage

```
lx.stopif(condition, ..., level = "error", up.frame = 0L, trace = TRUE)
```

Arguments

condition boolean value

... anything accepted by lx.out

level see lx.out up.frame see lx.out

trace printout traceback

Value

invisible(condition)

See Also

lx.out, lx.warn, lx.warnif

Examples

```
## Not run:
x <- -1
lx.stopif(x < 0, 'x=', x, ' is negative')
## End(Not run)</pre>
```

lx.strchr

find occurences of character(s) in string

Description

find occurences of character(s) in string

Usage

```
lx.strchr(s, chr = "")
```

lx.strrev 69

Arguments

s string where matches are sought chr string containing any character to find

Value

integer vector of positions where any char from chr is found or empty vector if no match

See Also

```
lx.gregexpr
```

Examples

```
lx.strchr('mississipi', 'i')
lx.strchr('mississipi', 'imsp')
lx.strchr('mississipi', 'o')
```

lx.strrev

reverse string

Description

reverse string

Usage

```
lx.strrev(s)
```

Arguments

s string or string vector

Value

vector of reversed strings

```
lx.strrev('the lazy dog')
```

70 lx.strtrim

lx.strsplit

split string around regexp

Description

this is awrapper around strsplit to simplify call when both s and split are simple strings.

Usage

```
lx.strsplit(s, split = "( |\t)+", trim = TRUE, ...)
```

Arguments

```
s string (or string vector)

split string (or string vector) containing regular expression(s) (unless you specify fixed = TRUE in ...) to use for splitting. see strsplit

trim also trim results using lx.strtrim

... other argument to strsplit
```

Details

the type of result depends upon the length of s. if s is a vector (length > 1) then this function behave exactly as strsplit and returns a list of string vectors. if s is a simple string (as this is often the case) then this function returns a simple string vector.

Value

vector of strings (or list of vectors of strings, see Details)

Examples

```
lx.strsplit('the lazy dog')
# is same as
strsplit('the lazy dog', ' ')[[1]]
lx.strsplit(c('the lazy', 'black dog'))
lx.strsplit('the lazy dog', 'y')
lx.strsplit('the lazy dog', 'y', fixed=TRUE)
```

 ${\tt lx.strtrim}$

trim leading or trailing blanks (spaces or tabs) in string

Description

trim leading or trailing blanks (spaces or tabs) in string

Usage

```
lx.strtrim(s, side = c("both", "left", "right"))
```

1x.strtrunc 71

Arguments

s string or string vector

side c('left', 'right', 'both') which end to trim

Examples

```
paste('>', lx.strtrim(' the lazy dog '), '<', sep='')</pre>
```

lx.strtrunc

truncate string

Description

truncate long string as "abcd...wxyz", usually for pretty printing

Usage

```
lx.strtrunc(s, width, between = "...")
```

Arguments

s string

width maximum width between string

Examples

```
lx.strtrunc("the lazy dog", 6)
```

1x.summary

a prettier summary for dataframes

Description

a prettier summary for dataframes

Usage

```
lx.summary(df)
```

Arguments

df a dataframe

Note

only works with numeric columns

```
lx.summary(iris[,-5])
```

72 lx.system.file

lx.sysinfo

wrapper to Sys.info

Description

get system and user information

Usage

```
lx.sysinfo(...)
```

Arguments

... 0 or more keys to Sys.info (if empty, then return all entries)

Value

```
a (possibly empty) vector of entries of Sys.info
```

Note

result may be NULL if Sys.info is not implemented

Examples

```
x <- lx.sysinfo()
x <- lx.sysinfo('user', 'machine')</pre>
```

lx.system.file

find names of R system files

Description

this is nearly identical to system. file but does not check at all for file existence.

Usage

```
lx.system.file(filename = "", package = "lx")
```

Arguments

filename

filename to append to path

package

package name

Value

```
<packageRootDir>/[filename]
```

Ix.table 73

lx.table

count or contingency table with specified levels

Description

```
same as table but force levels. (call factor on . . . then call table)
```

Usage

```
lx.table(..., levels = NULL)
```

Arguments

```
... same as table
levels
levels to force
```

Note

```
table is equivalent to lx.table(...)
```

See Also

lx.tables

Examples

```
x <- round(runif(10, 1, 10))
lx.table(x, levels=1:10)
y <- round(runif(10, 1, 10))
lx.table(x, y, levels=1:10)</pre>
```

lx.table.bycols

k-dimensional contingency table(s) from columns

Description

k-dimensional contingency table(s) from columns

Usage

```
lx.table.bycols(tab, by = colnames(tab))
```

Arguments

```
tab a table (matrix or dataframe) of nominal values
by a list of column indices or names (of length k \ge 2)
```

74 lx.table.bycoocs

Value

k-dimensional contingency table, defined as the contigency table of the first two columns stratified on other columns

Note

```
this is the same as table(tab[,by])
```

See Also

lx.tables

Examples

```
data(lx.iris)
tab <- lx.iris
# default: stratify by last dimensions (here sepal)
lx.table.bycols(tab)
# stratify by species (column index 1)
lx.table.bycols(tab, c(2,3,1))
# same as
lx.table.bycols(tab, c('petal', 'sepal', 'species'))</pre>
```

lx.table.bycoocs

cross table of co-occurences in sets

Description

cross table of co-occurences in sets

Usage

```
lx.table.bycoocs(lsets, levels = NULL)
```

Arguments

lsets a list of sets Si

levels elements to keep (if NULL keeps all elements)

Value

 $n \times n$ table where n = |union(Si)| and entry T[i,j] equals the number of co-occurences of elements i and j in sets. diagonal elements are the number of occurences of each element.

See Also

lx.tables

```
1 <- list(c('a'), c('a', 'b'), c('a', 'b', 'c'))
lx.table.bycoocs(l)</pre>
```

1x.table.byfacts 75

lx.table.byfacts

make contingency table(s) by factors in columns

Description

make contingency table(s) by factors in columns

Usage

```
lx.table.byfacts(tab, by = colnames(tab))
```

Arguments

tab a table (matrix or dataframe) of nominal values by a list of column indices or names (of length $k \ge 1$)

Value

a 2-dimensional contingency table T of size $f \times k$, where f = number of levels in tab[,by] and T[i,j] equals to the number of rows with factor i in column j

See Also

lx.tables

Examples

```
data(lx.iris)
tab <- lx.iris
lx.table.byfacts(tab)</pre>
```

lx.table.bymsets

cross table of multisets intersections

Description

cross table of multisets intersections

Usage

```
lx.table.bymsets(lsets, as.card = FALSE)
```

Arguments

lsets a list of n named multisets Mi each multiset can be specified as a list with re-

peated elements e.g. c('a', 'a', 'b', 'c', 'b') or, with as.card=TRUE, as a numeric

list e.g. c(a=2, b=2, c=1)

as.card use cardinality in multiset definition

76 lx.table.bypairs

Value

 $n \times m$ table T, where m = number of different elements in all Mi and T [i, j] equals to the number of elements j in multiset i

See Also

lx.tables

Examples

```
lsets <- list(A=c('a', 'a', 'b'), B=c('a'), C=c('a', 'b', 'b', 'c'), D=c('c')) lx.table.bymsets(lsets) lsets <- list(A=c(a=2, b=1), B=c(a=1), C=c(a=1, b=2, c=1), D=c(c=1)) lx.table.bymsets(lsets, as.card=TRUE)
```

lx.table.bypairs

pairwise contingency table(s) from columns

Description

pairwise contingency table(s) from columns

Usage

```
lx.table.bypairs(tab, by = colnames(tab))
```

Arguments

tab a table (matrix or dataframe) of nominal values by a list of column indices or names (of length $k \ge 2$)

Value

list of C(k, n) contingency tables crossing all pairs of columns in by

See Also

lx.tables

```
data(lx.iris)
tab <- lx.iris
lx.table.bypairs(tab)</pre>
```

1x.table.bysets 77

lx.table.bysets

cross table of sets intersections

Description

cross table of sets intersections

Usage

```
lx.table.bysets(lsets)
```

Arguments

lsets

a list of n named sets Si

Value

n x n table where entry T[i,j] equals the size of Si inter Sj

Note

```
aka outer(lsets, lsets, function(x,y) { length(intersect(x,y)) }) but outer does not work for this
```

See Also

lx.tables

Examples

```
lx.table.bysets(list(a=c(1,2), b=c(1,3), c=c(2,3,4))) # this the same as lx.table.bysets(list(a=c(1,2,2), b=c(1,3), c=c(2,3,4,3))) # since a, b, c are considered to as sets
```

lx.table.margins

add margins (total) to a 2-dimensional contingency table

Description

add margins (total) to a 2-dimensional contingency table

Usage

```
lx.table.margins(ctab, margin = c(1, 2))
```

Arguments

ctab 2-dimensional contingency table

margin which margin to add 1 (total by rows), 2 (total by columns) c(1,2) both margins

0 do nothing

78 lx.tail

See Also

lx.tables

Examples

```
data(lx.iris)
lx.table.margins(lx.table.bycols(lx.iris, by=1:2))
```

lx.tables

cross tabulation and contigency tables

Description

there are several lx function to built contingency tables.

- lx.table : count or contingency table with full levels
- lx.table.bycols : k-dimensional contingency table(s) from columns
- lx.table.bypairs : pairwise contingency table(s) from columns
- lx.table.byfacts: count or contingency table by factors in columns
- lx.table.bysets : cross table of sets intersections
- lx.table.bymsets : cross table of multisets intersections
- lx.table.bycoocs : cross table of co-occurences in sets
- lx.table.margins : add margins (total) to a 2-dimensional contingency table

lx.tail

tail of vector

Description

same as tail but limited to vectors and quicker

Usage

```
lx.tail(x, n = 1L)
```

Arguments

x vector

n if positive take n last elements, if negative take all but n first elements

Value

```
vector of size n if n \ge 0, or of size length(x) - n if n < 0
```

1x.tapply 79

See Also

tail lx.head

Examples

```
lx.tail(1:10, 2) # => 9 10
lx.tail(1:10, -2) # => 3 4 5 6 7 8 9 10
```

lx.tapply

tapply-like with specified levels

Description

similar to tapply but force levels and call FUN on empty subsets.

Usage

```
lx.tapply(x, by, FUN, levels = NULL, ...)
```

Arguments

x an atomic object, typically a vector

by a vector of factors (or anything that can be converted to factors) of same length

as x

FUN the function to be applied

levels levels to force

... optional arguments to FUN

Value

a vector of the same length as levels (or levels(by) if levels==NULL), each value is the result of calling FUN on the subset of x at given level.

See Also

lx.tables

```
xval <- c( 1,  2,  3,  0,  1 )
group <- c('a', 'b', 'c', 'a', 'a')
lx.tapply(xval, by=group, length)
lx.tapply(xval, by=group, sum)
lx.tapply(xval, by=group, length, levels=c('a', 'b', 'd'))</pre>
```

80 lx.traceback

lx.tobase

get number representation

Description

get base representation of a positive numeric (accurate up to 53 bits)

Usage

```
lx.tobase(num, base = 16L, prefix = "")
```

Arguments

num positive (unsigned) numeric value
base representation base (2 <= base <= 36)
prefix prefix to add (e.g. '0x' for hexadecimal)

Value

string

Examples

```
lx.tobase(123, prefix="0x") # 0x7b
```

lx.traceback

print call traceback

Description

print call traceback on stderr

Usage

```
lx.traceback(level = "debug", up.frame = 0L)
```

Arguments

level see lx.out up.frame see lx.out

Value

invisible(traceback list from traceback)

Ix.true 81

lx.true

always TRUE function

Description

this function always returns TRUE, whatever the arguments.

Usage

```
lx.true(...)
```

Arguments

... anything (ignored arguments)

Value

TRUE

lx.unserialize

 ${\it unserialize\ object\ from\ }$ name.rds

Description

```
unserialize object from name.rds
```

Usage

```
lx.unserialize(name, ...)
```

Arguments

```
name of object used in lx.serialized ... additionnal options to readRDS
```

See Also

```
lx.serialize
```

```
data(lx.iris)
tab <- lx.iris
lx.serialize(tab) # create file tab.Rdata
duptab <- lx.unserialize('tab')</pre>
```

82 lx.use.threads

1x.upper2vect

get matrix upper triangle as vector

Description

get matrix upper triangle as vector

Usage

```
lx.upper2vect(x, diag = FALSE, bycol = TRUE)
```

Arguments

x nxn square numerical matrix

diag logical should the diagonal be included?

bycol logical order result by columns

Value

numerical vector of matrix upper triangle

Note

if matrix is not square, a warning is emitted but result (on the smaller dimension) is still returned

See Also

```
upper.tri, lx.vect2upper
```

Examples

```
x <- matrix(1:16, ncol=4)
y <- lx.upper2vect(x, diag=TRUE)
xx <- lx.vect2upper(y, diag=TRUE)</pre>
```

lx.use.threads

tell if lx can use multithreading

Description

multithreading is on when lx.options(use.threads) is TRUE and lx.options(mc.cores) > 1

Usage

```
lx.use.threads()
```

Note

threads are implemented in the parallel library by using fork, and will run parallel processes even if lx.options(mc.cores) is greater than the actual number of cores. In this case the overall process may slow donw considerably.

1x.vect2upper 83

lx.vect2upper make matrix from upper triangle vector
--

Description

this is the inverse of lx.upper2vect

Usage

```
lx.vect2upper(x, diag = FALSE, bycol = TRUE, symmetrize = TRUE,
na.val = NA)
```

Arguments

x	numerical vector
diag	logical is the diagonal included in x ? (see lx.upper2vect)
bycol	logical is x ordered by columns? (see lx.upper2vect)
symmetrize	logical should result be symmetrized
na.val	numerical value for NA (see note)

Value

numerical matrix

Note

undefined values (i.e. diagonal if diag=FALSE and lower matrix if symmetrize=FALSE) are set to na.val

See Also

lx.upper2vect

```
x <- matrix(1:16, ncol=4)
y <- lx.upper2vect(x, diag=TRUE)
xx <- lx.vect2upper(y, diag=TRUE)</pre>
```

84 lx.warn

lx.verbose

set/get verbose level

Description

```
set mode: lx.verbose(level) where level is either an integer value or one of "debug" (=0);
"info" (=10); "warning" (=20); "error" (=100)
get mode: lx.verbose()
```

Usage

```
lx.verbose(level)
```

Arguments

level

verbose level (see description)

Value

```
in get mode: return current verbose level
in set mode return previous verbose level (i.e. before set)
```

Examples

```
p <- lx.verbose("debug") # set to debug and return previous lx.verbose(p) # restore to previous value
```

lx.warn

emit warning

Description

prints warning on stderr

Usage

```
lx.warn(..., level = "warning", up.frame = 0L)
```

Arguments

```
... anything accepted by lx.out
```

level see lx.out up.frame see lx.out

See Also

```
lx.out, lx.warnif, lx.stopif
```

```
lx.warn('pi=', pi, with.mem=TRUE)
```

lx.warnif 85

lx.warnif

emit warning if condition is true

Description

emit warning if condition is true

Usage

```
lx.warnif(condition, ..., level = "warning", up.frame = 0L)
```

Arguments

condition boolean value

... anything accepted by lx.out

level see lx.out up.frame see lx.out

Value

invisible(condition)

See Also

lx.out, lx.warn, lx.stopif

Examples

```
x <--1
lx.warnif(x < 0, 'x=', x, ' is negative')
```

lx.wt.mean

weighted mean

Description

weighted mean

Usage

```
lx.wt.mean(x, w = NULL, na.rm = TRUE)
```

Arguments

x a numeric vector

w a numeric vector of (positive) weights

na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds

86 lx.wt.var

Value

weighted mean of x

Examples

```
lx.wt.mean(1:2, 1:2)
```

lx.wt.var

weighted variance

Description

weighted variance

Usage

```
lx.wt.var(x, w = NULL, as.repeat = TRUE, na.rm = TRUE)
```

Arguments

x a numeric vector

w a numeric vector of (positive) weights

as.repeat a logical value indicating whether weights should be interpreted as repeated

measures or not (see details).

na.rm a logical value indicating whether NA values should be stripped before the com-

putation proceeds

Details

there is no single accepted formula for the weighted variance. It depends whether weights should be interpreted as repeats of the same measure (in which case they usually are integers summing up to the total number of measures) (as.repeat=TRUE) or if thet should be interpreted as a 'confidence' attached to each measure (as.repeat=FALSE).

Value

weighted variance of x

```
lx.wt.var(1:2, 1:2)
var(c(1, 2, 2)) # should be the same as previous
lx.wt.var(1:2, 1:2, as.repeat=FALSE) # but this is different
lx.wt.var(1:2, rep(1,2))
var(1:2) # should be the same as previous
```

Ix.zero 87

Description

look for a zero (root) of a continuous monotonic function by dichotomic search i.e. return value x such that fun(x) = 0.

this function is similar to uniroot but additionally returns a lower and upper bound of root (see details).

Usage

Arguments

fun	monotonic function on interval xmin, xmax
xmin	minimum value of x
xmax	maximum value of x
xtol	tolerance on x (see details)
ytol	tolerance on y=0 (see details)
maxiter	max number of iterations (see details)
with.interval	logical, provide lower and upper bounds for root
	additional arguments to fun
.errorBound	logical, raise error if zero is not between xmin and xmax boundaries.

Details

fun should be monotonic (either increasing or decreasing) if not, the result will (probably) be wrong. Since the zero must be located between xmin and xmax, fun(xmin) and fun(xmax) should be of opposite sign else an error is raised, unless .errorBound = FALSE in which case the closest boundary is returned (and niter is set to NA)

the algorithm proceeds by dichotomic search (bissection) and convergence is achieved when at least one of the following criterion is satisfied:

- fun(x) = 0 +/- ytol
- the change in x for one step is less than xtol
- the maximum number of iterations is reached

if with interval == TRUE then a lower and upper bound for root are additionally provided. Unless the maximum number of iterations has been reached, the result guarantees that [lower, upper] is the largest interval such that for all x in [lower+/-xtol, upper+/-xtol] fun(x)=0 +/- ytol

88 print.LXFileHandle

Value

a named list with 4 components:

• root: the root value

• lower: root lower bound (see details)

• upper: root upper bound (see details)

• niter: number of iterations

Note

the algorithm is far from beeing optimal and is usually slower than uniroot. So, if you don't care about lower and upper bounds, you better have to use to uniroot instead.

if zero is reached at xmin (resp. xmax) boundary, then the lower (resp. upper) bound is truncated.

either xmin or xmax may be a pole (i.e. fun(x) = Inf) but not both.

there is no need to set xtol or ytol below .Machine\$double.eps.

Examples

```
# simple functions
lx.zero(function(x) x^2 - 0.2^2, ytol=1e-3)
lx.zero(function(x) log(x) - log(0.3), ytol=1e-3)
lx.zero(function(x) x - pi, xmax=10, ytol=1e-3)
lx.zero(function(x) pi - x, xmax=10, ytol=1e-3)
# out of bounds
tryCatch(lx.zero(function(x) x - 2), error=function(e) NA)
lx.zero(function(x) x - 2, .errorBound=FALSE)
# interval
lx.zero(function(x) x^5, ytol=1e-3) # interval is truncated
lx.zero(function(x) x^5, ytol=1e-3, xmin=-1)
# poles
lx.zero(function(x) (x-0.5)/x/(2-x))
```

print.LXFileHandle

print method for LXFileHandle

Description

print method for LXFileHandle

Usage

```
## S3 method for class 'LXFileHandle'
print(x, ...)
```

Arguments

```
x file handle (opened by lx.open)
```

... further arguments passed to or from other methods.

print.Stack 89

Value

```
(invisible) x
```

print.Stack

print method for Stack

Description

print method for Stack

Usage

```
## S3 method for class 'Stack'
print(x, ...)
```

Arguments

x Stack

further arguments passed to or from other methods.

Value

(invisible) stk

tex.close

close tex report file

Description

close tex report file

Usage

```
tex.close(tex, compile = TRUE, ...)
```

Arguments

tex handle (as returned by tex.open)

compile if TRUE, call tex.compile to produce pdf
... any argument to tex.compile (see note)

Value

invisible(tex)

Note

a useful argument is clean=TRUE that remove all auxiliary files created during the conversion

90 tex.fig.off

tex.compile

compile tex report file

Description

```
compile tex report file
```

Usage

```
tex.compile(tex, ...)
```

Arguments

tex handle (as returned by tex.open)

... any argument passed to tools::texi2pdf

Value

invisible(tex)

tex.fig.off

end tex graphics

Description

```
end tex graphics
```

Usage

```
tex.fig.off(tex, ...)
```

Arguments

tex handle (as returned by tex.fig.on)
... any attribute to latex:includegraphics

Value

tex

Note

it is important to reaffect tex handle upon return since the internal components have been modified

tex.fig.on 91

tex.fig.on

start new tex graphics

Description

```
start new tex graphics
```

Usage

```
tex.fig.on(tex, ...)
```

Arguments

tex handle (as returned by tex.open)
... any argument to graphics driver

Value

tex

Note

it is important to reaffect tex handle upon return since the internal components have been modified this function opens the graphic driver defined in lx.options('tex.graphics.driver') (default to 'pdf') with options lx.options('tex.driver.options'). with 'jpeg', 'png' and 'tiff' drivers, you may set the 'units' and 'res' options in lx.options('tex.driver.options') (typical values are units='in' and res=300).

tex.installed

check if latex is properly installed

Description

check if latex is properly installed

Usage

```
tex.installed(cmd = "pdflatex", warn = TRUE)
```

Arguments

cmd latext command to check warn issue warning on error

Value

logical

Note

this function uses system('which command') and therefore only works on Unix

92 tex.out

tex.open

open new tex report file

Description

open new tex report file

Usage

```
tex.open(name = "report", title = name, author = lx.sysinfo("user"),
    prolog = NULL)
```

Arguments

name file basename title report title author report author

prolog function to add user's specific latex commands in document prolog. called as

prolog(texHandle)

Value

tex handle

Note

the actual tex file is lx.options(tex.dir)/name.tex and the final pdf file is name.pdf

tex.out

output line(s) to tex report file

Description

```
output line(s) to tex report file
```

Usage

```
tex.out(tex, ..., lf = FALSE)
```

Arguments

tex handle (as returned by tex.open)
... any argument supported by cat

1f add a latex linefeed \\ at end of line

Value

invisible(tex)

tex.print 93

See Also

tex.print for formatted output

tex.print

print formatted argument to tex report file

Description

print formatted argument to tex report file

Usage

```
tex.print(tex, x, ...)
```

Arguments

tex handle (as returned by tex.open)x an object to print (see details)... any argument supported by print variant

Details

if x is of class xtable then just call the S3 method print on x. else, first format x using xtable then call print x should be of a type handled by xtable. see tex.out for simple output.

Value

invisible(tex)

Note

this requires the xtable package that will be internally installed if not already present (using internal distribution)

See Also

tex.out for simple output

94 tex.subsection

tex.section

start new tex section

Description

start new tex section

Usage

```
tex.section(tex, name, numbered = TRUE)
```

Arguments

tex handle (as returned by tex.open)

name section name

numbered should section be numbered

Value

invisible(tex)

tex.subsection

start new tex subsection

Description

start new tex subsection

Usage

```
tex.subsection(tex, name, numbered = TRUE)
```

Arguments

tex handle (as returned by tex.open)

name section name

numbered should section be numbered

Value

invisible(tex)

tex.tag 95

tex.tag

output tex tag to tex report file

Description

```
output tex tag as
```

 $\end{argument} $$ \end{argument} $$ \operatorname{$\end{argument}} \operatorname{$\end{argument}} $$ \operatorname{$\end{argument}} $$$

Usage

```
tex.tag(tex, tag = NULL, value = NULL, attr = NULL, prepend = FALSE)
```

Arguments

tex handle (as returned by tex.open)

 $\begin{array}{ccc} \text{tag name} & \\ \text{value} & \text{tag value} \\ \text{attr} & \text{tag attribute(s)} \end{array}$

prepend if TRUE append attributes before value. default is FALSE, append attributes

after value.

Value

invisible(tex)

Index

%in%, 22	lx.binsum, 9, <i>55</i>
	1x.BLUE (1x.COLORS), 12
apply, 7	lx.close, 4, 10
	lx.color.change, 11
barplot, 9	lx.color.light, 11
	lx.COLORS, 12
cat, 92	lx.crossprod, 12
class, 31	lx.dbeta(lx.prm.beta), 37
colors, 11	lx.dbinom(lx.prm.binom), 38
crossprod, 13	lx.default.file.handler, 13
dhata 27	lx.density, 14, 28, 35
dbeta, 37	1x.dexp (1x.prm.exp), 39
dbinom, 38	lx.dgamma(lx.prm.gamma), 40
density, 14	lx.dnbinom(lx.prm.nbinom), 41
dexp, 39	lx.dnorm(lx.prm.norm), 42
dgamma, 40 dnbinom, 41	1x.doc, 14, 23
dnorm, 42	lx.dpois (lx.prm.pois), 43
do.call, 33	lx.dup.handle, 15
dpois, 43	lx.erase, 16
иро13, 43	lx.false, 16
factor, 73	lx.file.ext, 17
Filter, <i>18</i>	lx.file.no.ext, 17
format, 25	lx.Filter, 18
	lx.getargs, 8, 18
gregexpr, 19	1x. GREEN (1x. COLORS), 12
	1x.gregexpr, 19, 69
head, 20, 21	1x. GREY (1x. COLORS), 12
HELP.FILE.HANDLE, 4, 5, 20, 32	1x.happly, 20, 24
HELP.FILE.HANDLER, 4, 5	1x.head, 20, 79
HELP.LX.OPTIONS, $6, 33$	1x.hist, 21
hist, <i>21</i>	1x.in, 22
	1x.info, 15, 22
install.packages, 51, 52	lx.info<- (lx.info), 22
installed.packages, 51	1x.iris, 23
iris, 23	1x.key.trans, 23
lannly 18 20 24 58	1x.lapply, 6, 7, 18, 20, 24, 58
lapply, 18, 20, 24, 58	1x.1azy, 25
list, 31	1x.LGREY (1x.COLORS), 12
loess, 26, 28, 35 lx, 6	1x.1ist2str, 25
1x, 0 1x-package (1x), 6	1x.11st2st1, 25 1x.1oess, 26, 64
lx.apply, 7	1x.10e33, 20, 07 1x.Map, 27
1x.apply, 7 1x.args, 8, 19	1x.mapply, 27, 27, 31
lx.barplot, 9	1x.maxima, 28, 35
1. σαι ρ10ι, γ	17. maxima, 20, 33

INDEX 97

1x.mfrow, 29	<pre>lx.rpois(lx.prm.pois), 43</pre>
lx.mixin, 29	lx.sample, 57
lx.napply, 30	lx.sapply, 58
lx.new, 31	1x.save, 16, 52, 59, 59
lx.open, 4, 5, 10, 15, 32, 44, 46–49, 53, 60,	lx.saved, 59
61, 88	lx.scale, 60
lx.options, 6, 7, 24, 28, 32, 58	lx.seek, 60
lx.out, 34, 68, 80, 84, 85	lx.serialize, 16, 61, 62, 81
lx.pbeta(lx.prm.beta), 37	lx.serialized, 62
<pre>lx.pbinom(lx.prm.binom), 38</pre>	lx.shift, 62
lx.peaks, 28, 35	lx.smooth.median, 63
lx.pexp(lx.prm.exp), 39	lx.stack.is.empty, 64
lx.pgamma(lx.prm.gamma), 40	lx.stack.new, 65
lx.plot.inset, 36	lx.stack.pop, 65
<pre>lx.pnbinom(lx.prm.nbinom), 41</pre>	lx.stack.push, 66
<pre>1x.pnorm(1x.prm.norm), 42</pre>	lx.stack.value, 67
<pre>lx.ppois(lx.prm.pois), 43</pre>	lx.stopif, 34, 68, 84, 85
lx.prm.beta, 37	1x.strchr, 19, 68
lx.prm.binom, 38	lx.strrev, 69
1x.prm.exp, 39	lx.strsplit, 70
lx.prm.gamma, 40	lx.strtrim, 70, 70
lx.prm.nbinom, 41	lx.strtrunc,71
1x.prm.norm, 42	1x.summary, 71
lx.prm.pois, 43	lx.sysinfo, 72
1x.rainbow, <i>12</i> , 44	lx.system.file,72
lx.rbeta(lx.prm.beta), 37	lx.table, 73, 78
<pre>lx.rbinom(lx.prm.binom), 38</pre>	lx.table.bycols, 73, 78
lx.read.char,44	lx.table.bycoocs, 74, 78
lx.read.int16, 4, 45	lx.table.byfacts, 75, 78
lx.read.int32, 4, 46	lx.table.bymsets, 75, 78
lx.read.int64, 4, 47	lx.table.bypairs, 76, 78
lx.read.int8, 4, 45, 48	lx.table.bysets, 77, 78 lx.table.margins, 77, 78
lx.read.string, 4, 45, 48	lx. tables, 73–78, 78, 79
lx.recycle, 49	lx. tail, 21, 78
lx.RED (lx.COLORS), 12	lx. tapply, 79
lx.regex.quote, 50	lx. tobase, 80
lx.register.file.handler, 5, 50	lx.traceback, 80
<pre>lx.remove.file.handler,51</pre>	1x. TRANSP (1x. COLORS), 12
lx.require, 51	1x. true, 81
1x.restore, 52, 59	lx.unserialize, 62, 81
lx.rev.dict, 52	1x.upper2vect, 82, 83
lx.rewind, 53	1x.use.threads, 82
<pre>lx.rexp(lx.prm.exp), 39</pre>	1x.vect2upper, 82, 83
lx.rgamma(lx.prm.gamma), 40	1x.verbose, <i>34</i> , 84
<pre>lx.rnbinom(lx.prm.nbinom), 41</pre>	1x.warn, 34, 68, 84, 85
1x.rnd.pop, 53, 54	lx.warnif, <i>34</i> , <i>68</i> , <i>84</i> , 85
1x.rnd.push, 53, 54	lx.wt.mean, 85
<pre>1x.rnorm(1x.prm.norm), 42</pre>	lx.wt.var, 86
lx.rollsum, <i>10</i> , 55	lx.zero, 87
lx.rotate, 50, 55	•
1x.rowMaxs, 56, 57	Map, 27
lx.rowMins, <i>56</i> , <i>57</i>	mapply, 27, 28, 30

98 INDEX

max.col, <i>56</i> , <i>57</i>	texi2pdf, 90
mclapply, 18, 20, 24, 27	text, 9
mcmapply, 27	traceback, 80
options, 33	uniroot, <i>87</i> , <i>88</i> upper.tri, <i>82</i>
palette, 11	
par, 29	
pbeta, <i>37</i>	
pbinom, 38	
pexp, 39	
pgamma, 40	
plot, 36	
pnbinom, 41	
pnorm, 42	
ppois, 43	
print, 93	
print.LXFileHandle, 88	
print.Stack, 89	
print. Stack, 69	
rainbow, 44	
rbeta, 37	
rbinom, 38	
readRDS, 81	
rexp, 39	
rgamma, 40	
rgb, 11	
rnbinom, 41	
rnorm, 42	
rpois, 43	
runmed, 64	
sample, 58	
sapply, 58	
saveRDS, 61	
set.seed, 54	
strsplit, 70	
Sys.info, 72	
table, <i>73</i>	
tail, 78, 79	
tapply, 79	
tex.close, 89	
tex.compile, 89, 90	
tex.fig.off, 90	
tex.fig.on, 90, 91	
tex.installed, 91	
tex.open, 89–92, 92, 93–95	
tex.out, 92, 93	
tex.print, 93, 93	
tex.section, 94	
tex. subsection, 94	
tex. tag, 95	
con. cug, 70	