Hilbert basis tim: R noetherian => R(X) noetherian.

L(f) = Leaving coeff of f.

Ex: Let $J \subset R(X)$ be a subgroup s.t. RJ = J. Thun $C_{L}(J) = \{ Coeff of X^{*} \text{ in } f(X) : f(X) \in J \}$ is an ideal in R.

ideal $\tilde{I} \subset R[x] \longrightarrow I = L(\tilde{I}) \subset R$ is an ideal (proved yesterday) R is noetherian so $I = (\alpha_1, \dots, \alpha_N) \cap R$.

We get $g_i(x)$, $g_i(x)$, ..., $g_N(x) \in \widehat{T}$ s.t. $L(g_i) = a_i$, $d_i = d_{ij}(g_i)$

Division: $\forall g(x) \in \vec{f} \exists \vec{g}(x) \in \vec{l} \text{ s.t. } g(x) = \vec{g}(x) \text{ m.} (g_1(x), ..., g_N(x))$ and $\deg(\vec{g}) < D = \max\{d_1, ..., d_N\}$

Pf $g(x) = Y \times^{N} + \cdots$ $M < D \Rightarrow nothing to Le.$ $M \ge D \Rightarrow Y \in L(\hat{x}) \Rightarrow Y = Y, \alpha, + \cdots + r_N \alpha_N$ for some $Y_1, \dots, r_N \in \mathbb{R}$ $\tilde{g}(x) = g(x) - Y, g_1(x) \times^{N-d_1} - \cdots - r_N g_N(x) \times^{M-d_N}$ has degree less than g. Continue this process.

Propose R Noetherian, $D \in \mathbb{Z}_{\geq 1} \Rightarrow \frac{R(X)}{(X^D)}$ is no therian

More generally, if $J \in R(X)/(X^D)$ is an abelian group

Sit. $R \cdot J \in J$, then $\exists f_1(X), ..., f_n(X) \in J$ s.t. $J = R \cdot f_1(X) + R \cdot f_2(X) + \cdots + R \cdot f_n(X)$.

Page 1

Using proposition, we finish Pf of HBT: $\tilde{I} \subset R[x]$ an ideal. we found $g_1(x_0, \dots, g_N(x)) \in \tilde{I}$ S.L. $\forall j \in \tilde{I}$, $\exists \tilde{g} \in \tilde{I}$ s.t. $j = \tilde{g} \mod (g_1, \dots, g_N)$ and $\exists e_g(\tilde{g}) \in D$. $\tilde{I}_{(2D)} = \{f(x) \in \tilde{I} : \deg(f) \in D\}$ $\tilde{I}_{(2D)}$ is an abulian subject $R[\tilde{I}_{(2D)} = \tilde{I}_{(2D)}]$.

As we will see in the proof of (a_1) , (e_2) take $J = \pi(\tilde{I}_{(2D)}) \in R^{(2D)}$ we will get $f_1(x_1), \dots, f_l(x_l) \in \tilde{I}_{(2D)}$ S.E. $\tilde{I}_{(2D)} = R \cdot f_1(x_l) + \dots + R \cdot f_l(x_l)$ $\Rightarrow \tilde{I} = (J_1, \dots, J_{2D}, J_1, \dots, J_{g})$ is finitely guarated.

Pf of (a): For each K = 30, ..., D-13, define Ck(J) = {a \in R: 3 f(n=axk+*xk"+...**) = 5]

Claim:
$$C_k(J) \subset R$$
 is an ideal. $(E \times)$

$$\begin{pmatrix} \alpha_1^{(k)}, \dots, \alpha_{m_k}^{(k)} \end{pmatrix} \text{ for some } \alpha_i^{(j)} \in O$$

V K∈ {0, ..., D-1}, i∈ {1, ..., mk}.

Cleim every element in J is a linear combination

(coefficients from R) of
$$\{f_1^{(0)}, \dots, f_{m_0}^{(0)}, f_1^{(1)}, \dots, f_{m_{N_0}}^{(1)}, \dots, f_{m_{N_0}}^{(0)}, \dots, f_{m_{N_0}}^{(0)}\}$$

Let
$$g(x) = Y \cdot \chi^{\ell} + \frac{w_{ij}}{w_{ij}} \in J$$
.

Thun $\widehat{g}(x) = g(x) - \sum_{j=1}^{m_{\ell}} v_{j} f_{j}^{(\ell)}(x)$ has higher degree (where $Y = \sum_{j=1}^{\ell} v_{j} \chi_{j}^{(\ell)}$)

Note: REXI is weetherin if R is.

(or: R[X1,..., XN] is Noetherian

Hilbert's original Statement:

Find.

Way ICK(x,,...,xn) i's finitely generated

Decomposition Theorem: $N = P_1^{K_1} \cdots P_k^{K_k}$ in integers uniquely.

Any ideal $I \subset R$ (where R is noetherium)

Can be written as $I = Q_1 \cap Q_2 \cap \cdots \cap Q_k$ Where $Q_1, \dots, Q_k \subset R$ are primary ideals

(uniqueness only up to $K \subseteq k$)

Primary ideal: $Q \subseteq R$ is primary if $ab \in Q$, $a \notin Q$, $\Rightarrow b^n \in Q$ for some $n \ge 1$.

Quiz tomoron: Ideals in 5-1R.