2022 SUMMER

업데이터 통계학 스터디

Chapter 7 – Point Estimation 1

Relative Efficiency

Relative Efficiency

Definition

Given two UEs $\hat{\theta}_1$ and $\hat{\theta}_2$ of θ , with variances $V(\hat{\theta}_1)$ and $V(\hat{\theta}_2)$, respectively, the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$ is defined to be the ratio.

$$eff(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}$$

(recall) Y_1, \dots, Y_n : $iid\ Unif(0, \theta)$

$$\hat{\theta}_1 = 2\overline{Y}, \quad \hat{\theta}_2 = \frac{n+1}{n} Y_{(n)}$$

Find the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$.

Consistency

Chebyshev Inequality

Consistency

<u>Idea</u>: Estimator should always get closed to the truth as number of observations increases.

<u>Definition</u> (Convergence in probability)

A sequence of random variables $X_1, \dots, X_2, \dots, X_n, \dots$ converges in probability to a random variable X ($X_n \xrightarrow{p} X$) if for any $\exists_{\varepsilon} > 0$,

$$P(|X_n - X| > \varepsilon) \xrightarrow{n \to \infty} 0 \iff P(|X_n - X| \le \varepsilon) \xrightarrow{n \to \infty} 1$$

$$\star X_n \xrightarrow{p} c$$
 if $P(|X_n - c| > \varepsilon) \xrightarrow{n \to \infty} 0$ or $P(|X_n - c| \le \varepsilon) \xrightarrow{n \to \infty} 1$

Consistency

<u>Definition</u> (Consistency)

 $\hat{\theta}_n$ based on $X_1, \dots, X_2, \dots, X_n$ is consistent for θ if $\hat{\theta}_n \overset{p}{\to} \theta$ as $n \to \infty$ for all values of θ .

Tools to show Consistency

Tool 1: Weak Law of Large Numbers (WLLN)

 X_1, \dots, X_n are *iid* with mean $E(X_i) = \mu < \infty$, then

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} \mu$$

Proof: By Using Chebyshev Inequality.

 Y_1, \dots, Y_n : $iid\ r.\ v$. Suppose that $E(Y^2) < \infty$ and $E(\log Y) < \infty$. Proof

1.
$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2} \stackrel{p}{\longrightarrow} E(Y^{2})$$

2.
$$\frac{1}{n}\sum_{i=1}^{n} log Y_{i} \xrightarrow{p} E(log Y)$$

Tools to show Consistency

Tool 2: Theorems on Limiting distributions

Suppose
$$W_n \xrightarrow{p} a$$
 and $V_n \xrightarrow{p} b$. Then,

1.
$$c_n W_n + d_n V_n \stackrel{p}{\longrightarrow} ca + db$$
. When $c_n \longrightarrow c$, $d_n \longrightarrow d$

2.
$$W_n V_n \stackrel{p}{\longrightarrow} ab$$

3.
$$W_n/V_n \xrightarrow{p} a/b$$
 if $b \neq 0$

4.
$$h(W_n) \xrightarrow{p} h(a)$$
 if h is continuous at a

Tools to show Consistency

• If
$$\overline{Y}_n \stackrel{p}{\longrightarrow} \mu$$
. Then,

$$\overline{Y}_n^2 \xrightarrow{p} \mu^2, \quad \sqrt{\overline{Y}_n} \xrightarrow{p} \sqrt{\mu}, \quad \log(\overline{Y}_n) \xrightarrow{p} \log(\mu) \quad (\text{if } \mu > 0)$$

- 1. Show that, Sample variance(S_n^2) is always a consistent estimator of population variance (σ^2).
- 2. S_n^2 is unbiased and consistent for σ^2 . Is S_n unbiased or consistent for σ ?

 Y_1, \dots, Y_n : iid $Exp(\theta), \theta > 0$.

Tools to show Consistency

Tool 3: Weak law of variance

If $\hat{\theta}_n$ is an UE of θ and $V(\hat{\theta}_n) \to 0$, $\hat{\theta}_n$ is consistent for θ .

Tool 3: Strong Law of variance

If $\hat{\theta}_n$ is an estimator of θ and $MSE(\hat{\theta}_n) \to 0$, $\hat{\theta}_n$ is consistent for θ .

Proof: By Using Chebyshev Inequality.

 Y_1, \dots, Y_n : iid $N(\mu, \sigma^2)$.

Are $\overline{Y}_n \& S_n^2$ consistent estimator for μ and σ respectively?

 Y_1, \dots, Y_n : iid $Unif(0, \theta)$.

Are $\hat{\theta}_1 = 2\overline{Y}$ and $\hat{\theta}_2 = \frac{n+1}{n} Y_n$ consistent estimator for θ ?

Definition

Suppose X_n is a random variable with CDF $F_n(x)$, $n=1,2,\cdots$. Then X_1,X_2,\cdots converges in distribution to a random variable X with CDF F(x) if

$$\lim_{n\to\infty} F_n(x) = F(x)$$

Theorem (Central Limit Theorem)

 Y_1, \dots, Y_n : random sample from a distribution with (μ, σ^2) . Then,

$$Z_n = \frac{\sum_{i=1}^n Y_i - E(\sum_{i=1}^n Y_i)}{\sqrt{Var(\sum_{i=1}^n Y_i)}} = \frac{\overline{Y}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N(0,1)$$

meaning that CDF of Z_n converges to the CDF of $N(0,1) \Rightarrow$

$$P(Z_n \le z) \to \Phi(z) \text{ for all } z$$

$$P(a \le Z_n \le b) = F_{Z_n}(b) - F_{Z_n}(a) \to \Phi(b) - \Phi(a)$$

Theorem (Mapping Theorem)

For sequence of r.v. X_1, \dots, X_n .

If $X_n \xrightarrow{D} X$, then $h(X_n) \xrightarrow{D} h(X)$ for any continuous function h.

Theorem (Limiting MGF Theorem)

 X_n has CDF $F_n(x)$ and MGF M(t;n) that exists for |t| < h. If there is a CDF

F(x) with MGF M(t), then X_n has a limiting distribution with CDF F(x).

 Y_1, \dots, Y_n : iid Bin(n, p). $\mu = np$ is a constant.

Find a limiting distribution of Y_n .

Theorem (Slutsky's Theorem)

$$U_n \xrightarrow{D} U$$
 and $W_n \xrightarrow{p} 1 \Rightarrow U_n/W_n \xrightarrow{D} U$.

Prove the following proposition.

$$U_n \xrightarrow{D} N(0,1) \Rightarrow W_n^2 \xrightarrow{D} \chi^2(1)$$

Prove the following proposition.

$$T_n \sim t(n) \Rightarrow T_n \xrightarrow{D} N(0,1)$$

Prove the following proposition. (σ^2 is known)

$$Y_1, \dots, Y_n$$
: iid $(\mu, \sigma^2) \Rightarrow \frac{\bar{Y}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{D} N(0,1)$

Prove the following proposition. (σ^2 is unknown)

$$Y_1, \dots, Y_n$$
: iid $(\mu, \sigma^2) \Rightarrow \frac{\bar{Y}_n - \mu}{S_n / \sqrt{n}} \xrightarrow{D} N(0,1)$