Universidad Nacional San Cristóbal de Huamanga Facultad de Ingeniería de Minas, Geología y Civil Escuela Profesional de Ingeniería de Sistemas

Laboratorio N°11

Asignatura: Sistemas Eléctricos y Electrónicos

Docente: Lezama Cuellar Christian

Alumno: Vargas Gálvez Alex

Serie: 200 Par

Huamanga - Ayacucho, Perú

Agosto 2023

Resistores en paralelo

I. Objetivos

Al finalizar esta experiencia, usted estará capacitado para:

- 1. Medir la corriente en circuito conectados en paralelo
- 2. Usar estos valores para comprobar la ley de las corrientes de Kirchhoff

II. Conocimientos previos

La ley de las corrientes de Kirchhoff afirma que la sima algebraica de las corrientes que fluyen hacia un nodo cualquiera de un circuito es igual a cero. Definiremos las corrientes que fluyen hacia el nodo como positivas, y corrientes que fluyen desde el nodo como negativas. Esto es una simple convención.

Para comprobar la ley de las corrientes, mediremos todas las corrientes que circular desde y hacia un nodo.

Para medir corrientes en un nodo, conecte el extremo (-) del medidor al nodo, y el extremo (+) al componente entrante o saliente

III. Autoevaluación de entrada

- 1. La suma algebraica de las corrientes fluye desdé y hacia un nodo cualquiera de un circuito es cero
- 2. Estudie la siguiente figura

1 ig. 11.

Si PS-1 es igual a $6VR_1=6.8k, R_2=3.3k, R_3=1.2klaintensidad$ quela fuenteproporcionaes: <math display="inline">7.70mA

IV. Equipo

El siguiente equipo es necesario para realizar el experimento

1. Modulo experimental

2. DMM (multímetro digital)

V. Procedimiento

- 1. Efectué los cálculos para el circuito de la fig 1.2
- 2. Lleve la salida de las fuentes a 0V. conecte el circuito
- 3. Lleve la salida de ps a 6V
- 4. Mida y anote las corrientes que circulan desde/hacia el nodo a través de R_1 , R_2yR_3 (dichas corrientes serán negativas)
 - Ahora mida y anote la corriente que ingresa en el nodo desde la fuente de alimentación. Esta corriente será considerada positiva
- 5. Para calcular la corriente total en el nodo, sume las cuatro corrientes algebraicamente (respetando sus signos) La suma de las corrientes en el nodo = (-0.88mA 1.82mA 5.00mA = -770mA)
- 6. Lleve la salida de PS-1 a 0V. Estudie el circuito de la figura 11.3

- 7. Conecte el circuito como se indica en la figura 11.3
- 8. Fije la salida de PS-1 en 6V, y la salida de PS-2 en -3V
- 9. Mida y anote la corriente que circula por R_1, R_2, R_3 y R_4
- 10. Para calcular la corriente total en el nodo, sume las cuatro corrientes algebraicamente (respetando sus signos).
 - Suma de las corrientes en el nodo = 0.88mA + 1.82mA + 5mA + 2.05mA = 9.75mA

VI. Autoevaluación

- 1. La corriente total que sale de un nodo es: la suma total de las corrientes que entran al nodo.
- 2. La suma de las corrientes de un nodo es: igual a 0.

3. Si en la figura 11.1 todas las resistencias son del mismo valor y la fuente de tensión PS-1 = 12 V la relación entre la corriente total que fluye por cada resistor es: proporcional al valor de la fuente de voltaje.

VII. Conclusiones

Cuando se conectan resistencias en paralelo, sus terminales están conectados de manera que ambos extremos de cada resistencia estén conectados al mismo par de nodos o puntos del circuito. Si las resistencias en paralelo tienen el mismo valor la intensidad es proporcional a la fuente de voltaje como se aprecia en la figura anterior.

VIII. Anexo

