How Many CPU Cores is an FPGA Worth?

Authors: Mikhail Asiatici, Damian Maiorano, Paolo Ienne

Karthik B K <karthik.bk@incoresemi.com> 07 February 2023

Outline

- 1. An Overview
- 2. The Study
- 3. The Big Question

An Overview

The Motivation

- FPGAs best performance per watt?
- · Design complexity vs designer productivity
- Short turn-around times (back to Moore's law?)

This Paper

This paper -

- Presents a hybrid version of pS⁵¹
- Evaluates the performance on CPU-FPGA hybrid systems
- Presents the reality of CPU-FPGA hybrid systems as it is today

¹state-of-the-art string sorting algorithm for multi-core shared memory CPUs

The Potential

- Irregular memory access patterns need solving? (described in a later paper)
- Average RTL designer can be more productive
- Are domain-specific accelerators the way to go? (open question)

The Study

A Quick Look At S⁵, pS⁵, and pHS⁵

- · Quick sort, sample sort the basis
 - pick a pivot, move it to the end, iterate till l < r
 - pick 'p' pivots voila! parallelization
 - S⁵ super alphabets faster comparisons²
- pS^5 the kernels
 - Classification based on common prefixes and splitters
 - MKOS and insertion sort size based

²LCP grows in size every iteration

The Classification Step

- massively parallel
- sorts into buckets based on <,=,>
- each splitter's tree one PE in the AFU

The Runtime

- · Classification massively parallel easily split to PEs
- MKQS includes classification ^a

^ageneralization of the three- way partitioning step

The Speedup

- adding 1 FPGA 6 PEs (full infra)
- data is english text (complete sentences)
- · longer LCPs are more frequent
- · (upper) with single CPU thread
- (lower) with multiple (nproc) CPU threads
- **notice Y scale

adding 1 FPGA -- 6 PEs

The Big Question

What Did The Authors Learn?

What Did The Authors Learn? (contd.)

- · adding a cpu core on the same die best solution
- fpga speedup is never enough additional power consumption
- But
 - FPGA needs seperate infra
 - · changing the number of dies adding cpu/fpga
 - pS⁵ specific parallelizable runtime 100%
 - better ocm more speedup?
 - · will this ever be feasible? (open question)

OPEN FOR DISCUSSIONS

FPGAS ARE NOT YET A CLEAR WINNER WHEN COMPETING WITH COMPLEX HIGHLY OPTIMIZED PARALLEL SOFTWARE RUNNING ON HIGH-PERFORMANCE CPUS.

Inside a PE

Some Parameters

Table 1 Properties of the datasets used to evaluate our system.

	n	$\frac{D}{N}$	Avg. string length	Parallel S ⁵ steps	Sequential S ⁵ steps
URLs	161M	96.3%	66.9	12	69
Wikipedia	131M	29.8%	81.9	1	21
Random	617M	58.8%	17.4	1	0

Table 3 Parameters used for our cost/benefit analysis.

	CPU (fixed/per core)	FPGA
Silicon area (mm ²)	306 (96/15) [25]	144 [25, 26]
Equivalent area	5,200 (1,600/250) [27]	1,800 [27]
Power (W)	120 (15/7.5) [28]	21.8

Some More Results

(f) Speedup on Random to pS⁵ with the same number of threads

(a) Sequential reads: string pointers and characters have the same order in memory. Fetching the string characters involves non-contiguous but sequential reads.

(b) Random reads: string pointers and characters do not have the same order. Fetching the string characters involve random reads.