文字列方程式 について

稲永 俊介

文字列方程式

□ 定数記号集合 Σ と変数記号集合 V について, $(L, R) \in (\Sigma \cup V)^* \times (\Sigma \cup V)^*$ を文字列方程式と呼ぶ(通常 L = R と表記する).

例) $\Sigma = \{a, b\}$, $V = \{u, x, y, z\}$ とする. 文字列方程式

xauzau = yzbxaaby

は次の解 f (morphism) を持つ.

f(u) = bab, f(x) = abb, f(y) = ab, f(z) = ba について f(xauzau) = f(yzbxaaby) = abbababbaabab

文字列方程式の計算量の上界

アルゴリズム	計算量	この世で最も複雑な
Makanin 1977	Decidable	アルゴリズムの1つ
Jaffar 1990,	4-NEXPTIME	
Schulz 1990	非決定性チューリング機械で 2 ^{22^{2p(n)}} 時間	
Koscielski &	3-NEXPTIME	
Pacholski 1996	非決定性チューリング機械で 2 ^{22^{p(n)}} 時間	
Plandowski & Rytter	2-NEXPTIME	
1998	非決定性チューリング機械で 2 ^{2^{p(n)}} 時間	
Gutierrez 1998	EXPSPACE 決定性チューリング機械で $2^{p(n)}$ 領域	
Plandowski 1999	NEXPTIME 非決定性チューリング機械で $2^{p(n)}$ 時間	
Plandowski 2004	PSPACE 決定性チューリング機械で p(n) 領域	或
Jez 2016	PSPACE 決定性チューリング機械で p(n) 領域	或

n: 文字列多項式の記述長, p(n): n の任意の多項式

文字列方程式の計算量の上界

	= 1 5t 🖂]
アルゴリズム	計算量	
Makanin 1977	Decidable	
Jaffar 1990,	4-NEXPTIME	
Schulz 1990	非決定性チューリング機械で 2 ^{2^{2^{2p(n)}}} 時間	├ Makanin
Koscielski &	3-NEXPTIME	
Pacholski 1996	非決定性チューリング機械で 2 ^{22^{p(n)}} 時間	
Plandowski & Rytter	2-NEXPTIME	│ ├ LZ分解
1998	非決定性チューリング機械で 2 ^{2^{p(n)}} 時間	
Gutierrez 1998	EXPSPACE 決定性チューリング機械で $2^{p(n)}$ 領域	Makanin
Plandowski 1999	NEXPTIME 非決定性チューリング機械で $2^{p(n)}$ 時間]]] LZ分解
Plandowski 2004	PSPACE 決定性チューリング機械で p(n) 領域	
Jez 2016	PSPACE 決定性チューリング機械で p(n) 領域	Recompression

n: 文字列多項式の記述長, p(n): n の任意の多項式

文字列方程式の極小解の長さ

論文	極小解の長さの上界		
Makanin 1977	$2^{2^{2^{p(n)}}}$		
Plandowski 1999	$2^{2^{p(n)}}$		

n: 文字列多項式の記述長

知られている下界は $2^{p(n)}$

未解決問題(予想)とその帰結

予想1

記述長nの文字列方程式の極小解の長さの上界は $2^{p(n)}$ である.

予想2

文字列方程式の判定問題は NP に属する.

※文字列方程式は NP 困難 [Angluin, 1980]

定理1 [Plandowski & Rytter, 1998]

予想1 → 予想2

系1

予想2 → 文字列方程式は NP 完全

定理1の概要

定理1 [Plandowski & Rytter, 1998]

文字列方程式の極小解の長さMの上界が $2^{p(n)}$ ならば、文字列方程式の判定問題はNPに属する.

補題1 [Plandowski & Rytter, 1998]

文字列方程式の極小解の LZ 分解のサイズは $O(n^2\log^2M(\log n + \log\log M))$ で抑えられる.

n: 文字列多項式の記述長, M:極小解の長さ

定理1の概要

定理1 [Plandowski & Rytter, 1998]

文字列方程式の極小解の長さMの上界が $2^{p(n)}$ ならば、文字列方程式の判定問題はNPに属する.

- 1. 極小解の候補の LZ 分解が与えられたとする.
- 2. 1. の LZ 分解を文法に変換する.
- 3. 2. で求めた文法を方程式の左右に代入した式を2つの文法とみなして、等価性を判定する.
- → 補題1より、LZ分解のサイズは O(poly(n)polylog(M))2.3 は LZ分解のサイズの多項式時間.

補題1(再揭)

補題1 [Plandowski & Rytter, 1998]

文字列方程式の極小解の LZ 分解のサイズは $O(n^2\log^2M(\log n + \log\log M))$ で抑えられる.

n: 文字列多項式の記述長, M:極小解の長さ

次に示す補題2を用いて、補題1を証明している.

直感的には、極小解は繰り返し構造を多く含むことを 補題2で示している。

補題2

補題2 [Plandowski & Rytter, 1998]

文字列方程式 E の任意の極小解の任意の部分文字列は E の少なくとも1つのカットを含む、または触れている.

文字列方程式と圧縮

- □ 文字列方程式の極小解は繰り返しを多く含む
 - → LZ分解を用いると, 指数的に縮む.
- □ また Jez は、Recompression と呼ばれる LZ とは大きく異なる圧縮方法を用いて、 文字列方程式を解くアルゴリズムを提案している。
- ◆ また, 文字列方程式をデータ圧縮に応用する 研究も一部で始まっている(詳細不明).

Generalized Word Equations:

A New Approach to Data Compression

M. Kutwin, W. Plandowski, A. Zaroda, DCC 2019: 585

1 変数の文字列方程式

□ 変数の<u>種類数を1つ</u>に限定し、 両辺における変数の出現回数は任意とする.

例) xxbaababa = ababaxabx

この文字列方程式は 解 x = ababaababaを持つ.

1 変数の文字列方程式

□ 変数の種類数を1つに限定すると, 極小解の長さは<u>方程式の長さ未満</u>であることが 知られている.

論文	1変数文字列方程式の 極小解の長さの上界			
Khmelevskii 1971	cn			
Obono et al. 1994	4n (証明なし)			
Baba et al. 2003	n-1			

n: 文字列多項式の記述長

- □ $Y \in (\Sigma \cup \{x\})^*$ 中の変数 x の出現回数を $\#_x(Y)$ と書く.
- □ L = R を任意の1変数 文字列方程式とする.
 #_x(L) ≠ #_x(R) のとき, 解は一意に決まり,
 その長さは n 未満である [Obono et al. 1994].
- □ よって、以降は $\#_x(L) = \#_x(R)$ の場合を考える.

観察 [Baba et al. 2003]

A を1変数文字列方程式 L = R の解とする. $L \ge R$ それぞれの k 番目の x の出現位置の差 d_k が |A| 以下であるとき, A は d_k を周期に持つ.

		\mathcal{X}				$\boldsymbol{\mathcal{X}}$				
L		A					A			
	 \mathcal{X}							$\boldsymbol{\mathcal{X}}$		
R		A	 	A	 				\overline{A}	

補題3 [Baba et al. 2003]

p を 文字列方程式 L = R の解 A の周期の1つとする. このとき $|A| \ge \max_{1 \le k \le m} d_k + p - 1$ ならば、 A の接頭辞 A[1..|A|-p] もまた L = R の解である.

ただし
$$m = \#_{x}(L) = \#_{x}(R)$$

□ 前述の観察と、周期性補題を用いて証明できる.

補題4 [Baba et al. 2003]

 $\#_x(L) = \#_x(R)$ を満たす文字列方程式 L = R の極小解の長さは高々

 $\max_{1 \le k \le m} d_k + \min_{1 \le k \le m, d_k \ne 0} d_k - 2$

|A| ≥ max_{1≤k≤m} d_k + min_{1≤k≤m,dk≠0} d_k - 1
 を満たす極小解 A が存在すると仮定する.
 観察より、A は周期 p ≤ min_{1≤k≤m,dk≠0} d_k を持つ.
 補題3より、A[1..|A|-p] もこの文字列方程式の解となるが、これは A の極小性に反する.

1 変数の文字列方程式を解くアルゴリズム

アルゴリズム	計算時間
Charatonik & Pacholski 1991	$O(n^6)$
Obono et al. 1994	$O(n \log n)$
Dabrowski & Plandowski 2011	$O(n + \#_x \log n)$
Jez 2016	O(n)

n: 文字列多項式の記述長, #_x: 変数 x の出現回数

各アルゴリズムの概要1

- 1変数文字列方程式 $E: A_0 x A_1 x ... x A_r = x B_1 x ... x B_r$
- Obono et al. 1994: $O(n \log n)$
 - > 解の周期性を利用.
 - u, v を原始的 (primitive) な文字列とし, $|uv| \le |A_0B_1|$ を満たすとする.
 - $(uv)^k u$ が文字列方程式 E の解であるようなすべての k を O(n) 時間で求められる.
 - u と v の組の候補は O(log n) 個.

各アルゴリズムの概要2

- 1変数文字列方程式 $E: A_0 x A_1 x ... x A_r = x B_1 x ... x B_r$
- Dabrowski & Plandowski 2011: $O(n + \#_x \log n)$
 - Obono et al. のアルゴリズムの改良版.
 - ightharpoonup 文字列方程式の定数部分の文字列集合 $S = \{A_0, A_1, ..., A_r, B_1, ..., B_r\}$ を前処理して, 解の検証を高速化する.
 - ➤ Sに対する Aho-Corasik オートマトンを使って, Sの Prefix Table を O(n) 時間で構築.
 - ▶ 解1つあたり, O(#_x) 時間で検証可能.

各アルゴリズムの概要3

- 1変数文字列方程式 $E: A_0 x A_1 x ... x A_r = x B_1 x ... x B_r$
- ☐ Jez 2016: *O*(*n*)
 - 前述の2つのアルゴリズムとは異なり、 解の組合せ的性質は使わない。
 - Recompression のアルゴリズムによって、 方程式と解の候補の中の2グラムを 新しい文字に置き換えていく。
 - $O(n + \#_x \log n)$ 時間の手法を得たのち、 色々工夫して O(n) 時間にする.
 - 論文は50ページ...

2変数の文字列方程式

論文	2変数文字列方程式の 解の長さ
Ilie & Plandowski 2000	$\begin{aligned} x &\le 2n \\ y &\le 2n^2 \end{aligned}$

アルゴリズム	計算時間
Charatonik & Pacholski 1991	$O(n^{100})$
Ilie & Plandowski 2000	$O(n^6)$
Dabrowski & Plandowski 2004	$O(n^5)$

n: 文字列多項式の記述長

これから何をやるべきか?やれそうか?

- □ Recompression を使わずに1変数文字列方程式 を *O*(*n*) 時間で解くアルゴリズム?
- □ 2変数文字列方程式を o(n⁵) 時間で解く アルゴリズム?
- ◆ 3変数の文字列方程式の解の長さは O(n³)?
- ◆ 究極的には,予想1: 「文字列方程式の極小解の長さの上界は 2^{p(n)}」 が示せると素晴らしい.