FCC ID: 2AGBW-LCN7700

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

Philips lighting (China) Investment Co., Ltd.

Segment Control Unit

Model No.: LCN7700

FCC ID: 2AGBW-LCN7700

Prepared for: Philips lighting (China) Investment Co., Ltd.

Building 9 #, Lane 888, Tianlin Road, Minhang District,

Shanghai.

Prepared By: Audix Technology (Shenzhen) Co., Ltd.

No. 6, Kefeng Road, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China

Tel: (0755) 26639496

Report Number : ACS-F16079

Date of Test : Mar.21~Apr.06, 2016

Date of Report : Nov.18, 2016

FCC ID: 2AGBW-LCN7700

TABLE OF CONTENTS

Des	scription	Page
1.	SUMMARY OF STANDARDS AND RESULTS	1-1
	1.1. Description of Standards and Results	
2.	GENERAL INFORMATION	
_,	2.1. Description of Device (EUT)	
	2.2. Block diagram of connection between the EUT and simulators	
	2.3. Test Information	
	2.4. Test Facility	
	2.5. Measurement Uncertainty (95% confidence levels, k=2)	
3.	EFFECTIVE ISOTROPIC RADIATED POWER	3-1
	3.1. Test Equipment	3-1
	3.1. Limit	
	3.2. Test Procedure:	3-2
	3.3. Test Results	3-3
4.	OUT OF BAND EMISSIONS AT ANTENNA TERMINALS AND BAND	EDGE 4-1
	4.1. Test Equipment	4-1
	4.2. Limit	
	4.3. Test Procedure	4-1
	4.4. Test result	4-1
5.	99% & 26dB Occupied Bandwidth Test	5-1
	5.1. Test Equipment	5-1
	5.2. Test Procedure	
	5.3. Test Results	5-1
6.	RF POWER OUTPUT TEST	6-1
	6.1. Test Equipment	6-1
	6.2. Limit	
	6.3. Test Procedure	6-1
	6.4. Test Results	6-2
7.	FIELD STRENGTH OF RADIATED SPURIOUS EMISSIONS	7-1
	7.1. Test Equipment	7-1
	7.2. Limit	7-2
	7.3. Test Procedure	7-2
	7.4. Test Results	7-1
8.	FREQUENCY STABILITY V.S. TEMPERATURE AND VOLTAGE	8-1
	8.1. Test Equipment	8-1
	8.1. Limit	8-1
	8.2. Test procedure:	8-1
9.	MODULATION CHARACTERISTICS	9-1
	9.1. Test Equipment	9-1
	9.2. Limit	
	9.3. Test Procedure	9-1
10.	DEVIATION TO TEST SPECIFICATIONS	10-1
11.	PHOTOGRAPH OF TEST	11-1
12.	PHOTOS OF THE EUT	
14.	1110105 OF 111E EU1	

FCC ID: 2AGBW-LCN7700

TEST REPORT CERTIFICATION

Applicant : Philips lighting (China) Investment Co., Ltd.

Product : Segment Control Unit

FCC ID : 2AGBW-LCN7700

(A) Model No. : LCN7700
(B) Serial No. : N/A
(C) Power Supply : DC 12V
(D) Test Voltage : DC 12V

Tested for comply with: FCC part 2, 22H & 24E Test Method: KDB971168 D01 v02r02

The device described above is tested by AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. to confirm comply with all the FCC part 2, 22H & 24E requirements.

The test results are contained in this test report and AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. is assumed full responsibility for the accuracy and completeness of these tests. This report contains data that are not covered by the NVLAP accreditation. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC and IC requirements.

This Report is made under FCC part 2, 22H & 24E. No modifications were required during testing to bring this product into compliance.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test: Mar.21~Apr.06, 2016 Report of date: Nov.18, 2016

Prepared by: Monica Liu for 1 Reviewed by:

Cindy Zhu / Assistant

Sunny Lu / Deputy Manager

AUDIX

信華科技 (深圳) 有限公司

Audix Technology (Shenzhen) Co., Ltd.

EMC部門報告專用章

Stamp only for EMC Dept. Report

Signature:

David Jin / Manager

Approved & Authorized Signer:

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT has been tested according to the applicable standards as referenced below.

EMISSION					
Description of Test Item	Standard	Results			
	2.1046(a)				
Effective Isotropic Radiated Power	22.913(a)	PASS			
	24.232(b)				
O . CD . LE	2.1051				
Out of Band Emissions at antenna Terminals and Band Edge	22.917(a)	PASS			
antenna Terminais and Band Edge	24.238(a)				
99% & 26dB Occupied Bandwidth	2.1049(h)	PASS			
	2.1046(a)				
RF Output Power	22.913(a)	PASS			
	24.232(b)				
	2.1053				
Field Strength of Spurious Emissions	22.917(a)	PASS			
	24.238(a)				
Frequency Stability vs.	22.355	DAGG			
Temperature and Voltage	24.235	PASS			
Modulation characteristics	2.1047	PASS			

AUDIX Technology (Shenzhen) Co., Ltd.

FCC ID: 2AGBW-LCN7700 page 2-1

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product : Segment Control Unit

Model No. : LCN7700

FCC ID : 2AGBW-LCN7700

Operating Frequency : GSM 850: 824-849MHz PCS 1900: 1850-1910MHz

Antenna Type and Gain : Smart Disc Antenna, 3.15dBi

Applicant : Philips lighting (China) Investment Co., Ltd.

Room 212, Block 2, Nanhai Ecool No.6 Xing Hua Road,

She Kou, Shenzhen, China

Manufacturer : Philips lighting (China) Investment Co., Ltd.

Room 212, Block 2, Nanhai Ecool No.6 Xing Hua Road,

She Kou, Shenzhen, China

Date of Test : Mar.21~Apr.06, 2016

Date of Receipt : Mar.19, 2016

Sample Type : Prototype production

2.2.Block diagram of connection between the EUT and simulators

(EUT: Segment Control Unit)

2.3.Test Information

TM1: GSM/GPRS mode with GMSK modulation

TM2: Edge mode with 8PSK modulation

TM1 has the Max power compared with TM2. So out of Band Emission at antenna terminals and Band edge. Field strength of Radiated Spurious emission were tested use TM1 mode.

Test Mode	Frequency (MHz)	СН
	824.2	128
GSM 850	836.6	190
	848.8	251
	1850.2	512
PCS 1900	1880.0	661
	1909.8	810

2.4. Test Facility

Site Description

Name of Firm : Audix Technology (Shenzhen) Co., Ltd.

No. 6, Kefeng Road, Science & Technology

Park, Nanshan District, Shenzhen,

Guangdong, China

3m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 90454 Valid Date: Jul.12, 2017

3m & 10m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 794232

Valid Date: Jul.12, 2017

RF Anechoic Chamber : Dimensions are:

[L]10m \times [W]5.5m \times [H]5m

EMC Lab. : Certificated by DAkkS, Germany

Registration No: D-PL-12151-01-00

Valid Date: Dec.15, 2016

Accredited by NVLAP, USA NVLAP Code: 200372-0 Valid Date: Mar.31, 2017

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Test Item	Uncertainty	
Uncertainty for Radiated Spurious Emission test in RF chamber	3.6dB	
Uncertainty for Conduction Spurious emission test	2.0dB	
Uncertainty for Output power test	0.8dB	
Uncertainty for Power density test	2.0dB	
Uncertainty for Frequency range test	$7x10^{-8}$	
Uncertainty for Bandwidth test	83 kHz	
Uncertainty for DC power test	0.1 %	
Uncertainty for test site temperature and	0.6	
humidity	3%	

3. EFFECTIVE ISOTROPIC RADIATED POWER

3.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	Apr.28,15	1 Year
2.	Preamplifier	Agilent	8449B	3008A02495	Apr.28,15	1 Year
3.	Preamplifier	Agilent	8447D	2944A11159	Apr.28,15	1Year
4.	Horn Antenna	ETS	3115	9510-4877	Oct.15,15	1 Year
5.	Bi-log Antenna	TESEQ	CBL6112D	25237	Jun.30,15	1 Year
6.	Antenna and turn table controller	СТ	SC100	CT-0091	N/A	N/A
7.	RF Cable	Hubersuhner	SUCOFLEX1 04/102	274094/4+2861 0/2	Apr.28,15	1 Year
8.	Test Software	AUDIX	e3	6.2009-5-21a(n)	N/A	N/A

Note: N/A means Not applicable.

3.1.Limit

22.913(a) Mobile station are limited to 7W ERP. Part 24.232(b) Mobile station are Limited to 2W EIRP.

3.2.Test Procedure:

The EUT was placed on a non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength(E in dBuV/m) was calculated.

ERP in frequency band 824.2-848.8MHz were measured using substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follow:

EIRP in frequency band 1850.2-1909.8MHz were measured using a substitution method. The EUT was replaced by a horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP=S.G. output (dBm) + Antenna Gain (dBd) - Cable Loss(dB)

EIRP= S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss(dB)

dBd=dBi-2.15dB

3.3.Test Results

EUT: Segment Control Unit		
M/N: LCN7700		
Test date: 2016-03-21	Pressure: 102.4±1.0 kpa	Humidity: 52.6±3.0%
Tested by: Alice_Yang	Test site: RF site	Temperature:22.8±0.6

GSM 850 Test Result:

The RBW, VBW of SPA for frequency

Below 1GHz was RBW= 300KHz, VBW=1MHz; Above 1GHz was RBW=1MHz, VBW=3MHz;

TM1

Test Mode	Frequency (MHz)	СН	Antenna Pol.	SPA Reading (dBuv)	Receive Antenna Factor (dB/m)	Receive Cable Loss (dB)	Field Strength (dBuv/m)
	824.2	128	V	120.64	21.14	3.88	145.66
			Н	120.64	21.14	3.88	145.66
GSM	836.6	190	V	120.58	21.27	3.88	145.73
850			Н	120.55	21.27	3.88	145.7
	848.8	251	V	120.68	21.34	3.92	145.94
			Н	120.57	21.34	3.92	145.83

S.G.output	Antenna Gain	Tx Cable loss	Result	Limit
(dBm)	(dBd)	(dB)	ERP/EIRP (dBm)	ERP/EIRP(dBm)
37.54	1	3.68	34.86	38.45
37.46	1	3.68	34.78	38.45
37.38	1	3.74	34.64	38.45
37.37	1	3.74	34.63	38.45
38.42	1	3.8	35.62	38.45
37.28	1	3.8	34.48	38.45

AUDIX Technology (Shenzhen) Co., Ltd.

FCC ID: 2AGBW-LCN7700 page 3-4

TM2

Test Mode	Frequency (MHz)	СН	Antenna Pol.	SPA Reading (dBuv)	Receive Antenna Factor (dB/m)	Receive Cable Loss (dB)	Field Strength (dBuv/m)
	824.2	128	V	114.58	21.14	3.88	139.6
	624.2	128	Н	114.14	21.14	3.88	139.16
GSM	836.6 848.8	190	V	114.38	21.27	3.88	139.53
850			Н	114.14	21.27	3.88	139.29
		251	V	114.04	21.34	3.92	139.3
			Н	114.11	21.34	3.92	139.37

S.G.output	Antenna Gain	Tx Cable loss	Result	Limit
(dBm)	(dBd)	(dB)	ERP/EIRP (dBm)	ERP/EIRP(dBm)
33.94	1	3.68	31.26	38.45
33.73	1	3.68	31.05	38.45
33.88	1	3.74	31.14	38.45
33.82	1	3.74	31.08	38.45
34.11	1	3.8	31.31	38.45
33.99	1	3.8	31.19	38.45

PCS 1900 Test Result:

The RBW, VBW of SPA for frequency Below 1GHz was RBW= 300KHz, VBW=1MHz;

Above 1GHz was RBW=1MHz, VBW=3MHz;

TM1

Test Mode	Frequency (MHz)	СН	Antenna Pol.	SPA Reading (dBuv)	Receive Antenna Factor (dB/m)	Receive Cable Loss (dB)	Field Strength (dBuv/m)
	1850.2	0.2 512	V	112.46	27.23	5.9	142.55
			Н	115.37	27.23	5.9	146.52
PCS	1880.0	.0 661	V	113.28	27.34	5.93	145.05
1900			Н	114.92	27.34	5.93	145.29
	1000.8	09.8 810	V	115.61	27.46	6.00	146.09
	1909.8		Н	117.52	27.46	6.00	147.04

S.G.output	Antenna Gain	Tx Cable loss	Result	Limit
(dBm)	(dBi)	(dB)	ERP/EIRP (dBm)	ERP/EIRP(dBm)
32.60	3.15	6.11	29.64	33
32.35	3.15	6.11	29.39	33
32.93	3.15	6.19	29.89	33
32.79	3.15	6.19	29.75	33
33.90	3.15	6.26	30.79	33
33.65	3.15	6.26	30.54	33
Conclusion, DA	CC			

Conclusion: PASS

TM2

Test Mode	Frequency (MHz)	СН	Antenna Pol.	SPA Reading (dBuv)	Receive Antenna Factor (dB/m)	Receive Cable Loss (dB)	Field Strength (dBuv/m)
	1850.2	1850.2 512	V	107.12	27.23	5.9	139.26
			Н	110.07	27.23	5.9	141.22
PCS	1880.0	0 661	V	107.88	27.34	5.93	140.21
1900			Н	109.37	27.34	5.93	141.06
	1000.8	8 810	V	110.06	27.46	6.00	141.85
	1909.8		Н	111.22	27.46	6.00	142.25

S.G.output	Antenna Gain	Tx Cable loss	Result	Limit
(dBm)	(dBi)	(dB)	ERP/EIRP (dBm)	ERP/EIRP(dBm)
31.53	3.15	6.11	28.57	33
31.25	3.15	6.11	28.29	33
31.16	3.15	6.19	28.12	33
31.09	3.15	6.19	28.05	33
30.95	3.15	6.26	27.84	33
30.77	3.15	6.26	27.66	33
Conclusion: PA	22			

Conclusion: PASS

4. OUT OF BAND EMISSIONS AT ANTENNA TERMINALS AND BAND EDGE

4.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum	Agilent	N9030A	MY51380221	Oct.17,15	1Year
2.	Spectrum	Agilent	E4446A	US44300459	Apr.28,15	1 Year
3.	Attenuator (20dB)	Agilent	8491B	MY39262165	Apr.28,15	1 Year
4.	RF Cable	Marvelous Microwave Inc	SFL402105FLEX	NO.1	Oct.17,15	1 Year
5.	HF Cable	Hubersuhner	Sucoflex104	274094/4	Apr.28,15	1 Year

4.2.Limit

FCC part 22.917(a), 24.238(a) the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log(Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

4.3.Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emission is any up to 10th harmonic. For the out of band: set RBW, VBW=1MHz, stat=30MHz, stop= 10 th harmonic. Limit=-13dBm Band Edge requirements: In 1Mhz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 % of bandwidth of fundamental emission of the transmitter any be employed to measure the out of band emission. Limit=-13dBm.

4.4.Test result

PASS (The testing data was attached in the next pages.)

FCC ID: 2AGBW-LCN7700

CH 251 Peak Search Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run PNO: Fast G #Atten: 30 dB **Next Peak** Mkr1 849.06 MHz Ref Offset 14 dB Ref 34.00 dBm 32.554 dBm 10 dB/div Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr-→Ref LvI More 1 of 2 Stop 1.0000 GHz Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.325 ms (9975 pts)

4-5 FCC ID: 2AGBW-LCN7700 PCS 1900MHz TM 1 CH 512 Agilent Spectrum Analyzer - Swept SA Peak Search TYPE MANNE Avg Type: Log-Pwr Avg|Hold>100/100 Marker 1 870.750952476 MHz Trig: Free Run #Atten: 20 dB **NextPeak** Mkr1 870.75 MHz -59.027 dBm Ref Offset 11.5 dB Ref 21.50 dBm 10 dB/div **Next Pk Right Next Pk Left** -73 H0 m Marker Delta Mkr→CF Mkr-Ref Lvi More Start 30.0 MHz Stop 1.0000 GHz 1 of 2 #Res BW 100 kHz **#VBW 300 kHz** Sweep 93.1 ms (9975 pts) gilent Spectrum Analyzer - Swept SA D4:13:40 PM May 03, 2016 TRACE D COMP. SEISEINT Peak Search Avg Type: Log-Pwr Avg|Hold>100/100 Marker 1 3.700120312813 GHz Trig: Free Run PNO: Fast 😱 #Atten: 36 dB **Next Peak** Mkr1 3.700 1 GHz Ref Offset 11.5 dB Ref 35.00 dBm -35,617 dBm 10 dB/div **Next Pk Right Next Pk Left** Marker Delta Mkr--CF Mkr-Ref Lvi More Stop 12.750 GHz Sweep 1.12 s (9975 pts) Start 1.000 GHz 1 of 2 #Res BW 100 kHz **#VBW 300 kHz**

CH 661

Stop 1.0000 GHz

Sweep 93.1 ms (9975 pts)

4-8

More

1 of 2

Start 30.0 MHz

#Res BW 100 kHz

FCC ID: 2AGBW-LCN7700 CH 810 Agilent Spectrum Analyzer - Swept SA Peak Search Avg Type: Log-Pwr Avg|Hold>100/100 Marker 1 871.237216764 MHz Trig: Free Run #Atten: 20 dB PNO: Fast (**)
IFGain:Low **NextPeak** Mkr1 871.24 MHz -58.946 dBm Ref Offset 11.5 dB Ref 21.50 dBm 10 dB/div **Next Pk Right** Next Pk Left -13 IIO rt Marker Delta Mkr→CF Mkr---Ref Lvi

#VBW 300 kHz

AUDIX Technology (Shenzhen) Co., Ltd.

<u>page</u> <u>4</u>-10 FCC ID: 2AGBW-LCN7700 GSM 850MHz TM 1 CH 128 ilent Spectrum Analyzer - Swept SA Avg Type: RMS Avg|Hold: 100/100 Peak Search TRACE 1 2 3 4
TYPE A WOOM Marker 1 823.986000000 MHz Trig: Free Run #Atten: 30 dB PNO: Wide ---Next Peak Mkr1 823.986 MHz -31.352 dBm Ref Offset 14 dB Ref 30.00 dBm 10 dB/div Log Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→Ref LvI More 1 of 2 Stop 825.000 MHz Sweep 99.5 ms (1001 pts) Start 823.000 MHz #Res BW 5.1 kHz #VBW 10 kHz* CH 251 06:27:39 PM Apr 01, 2016 Peak Search Avg Type: RMS Avg|Hold: 100/100 Marker 1 849.026000000 MHz TRACE TO Trig: Free Run PNO: Wide ---#Atten: 30 dB **Next Peak** Mkr1 849.026 MHz -24.650 dBm Ref Offset 14 dB Ref 30.00 dBm 10 dB/div Log Next Pk Right Next Pk Left Marker Delta Mkr→CF Mkr→Ref LvI More 1 of 2 Start 848.000 MHz Stop 850.000 MHz #VBW 10 kHz* #Res BW 5.1 kHz Sweep 99.5 ms (1001 pts) Alignment Completed

<u>page 4-</u>11 FCC ID: 2AGBW-LCN7700 PCS 1900MHz TM 1 CH 512 Agilent Spectrum Analyzer - Swept SA Avg Type: RMS Avg|Hold: 100/100 Marker TYPE A THINKS Marker 1 1.849980000000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide ---IFGain:Low Select Marker Mkr1 1.849 980 GHz Ref Offset 11.5 dB Ref 30.00 dBm -29,595 dBm 10 dB/div Normal Delta Fixed^D Off **Properties** MANAGER STREET More Start 1.849000 GHz Stop 1.851000 GHz 1 of 2 #Res BW 5.1 kHz **#VBW 10 kHz*** Sweep 99.5 ms (1001 pts) CH 810 gilent Spectrum Analyzer - Swept SA ALIGNAUTO 03:46:18 PM May 03, 2016 SENSERINT Marker Avg Type: RMS Avg|Hold: 100/100 Marker 1 1.9100180000000 GHz PNO: Wide ---Trig: Free Run #Atten: 30 dB Select Marker Mkr1 1.910 018 GHz Ref Offset 11.5 dB Ref 30.00 dBm -27.536 dBm 10 dB/div Normal Delta Fixed^D Off Properties> مفعضه كالمراص الماحي يعاطمه More Stop 1.911000 GHz Sweep 99.5 ms (1001 pts) Start 1.909000 GHz 1 of 2 #Res BW 5.1 kHz **#VBW 10 kHz***

5. 99% & 26dB Occupied Bandwidth Test

5.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum	Agilent	E4446A	US44300459	Apr.28,15	1 Year
2.	Spectrum	Agilent	N9030A	MY51380221	Oct.18,15	1Year
3.	Attenuator (20dB)	Agilent	8491B	MY39262165	Apr.28,15	1 Year
4.	RF Cable	Marvelous Microwave Inc	SFL402105FLEX	NO.1	Oct.17.15	1 Year

5.2.Test Procedure

The EUT output RF connector was connected with a short a cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW>=3 times RBW, 99% bandwidth were measured, the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

5.3.Test Results

99% Bandwidth

EUT: Segment Control Unit		
M/N: LCN7700		
Test date: 2016-03-23	Pressure: 102.7±1.0 kpa	Humidity: 52.8±3.0%
Tested by: Alice_Yang	Test site: RF site	Temperature:22.2±0.6

Test Mode	СН	Frequency	99% ban (kH	Limit		
	CII	(MHz)	TM 1	TM 2	(KHz)	
GSM 850	CH128	824.2	243.79	246.85	N/A	
	CH190	836.6	242.21	234.55	N/A	
	CH251	848.8	242.53	243.88	N/A	
PCS 1900	CH512	1850.2	243.10	240.66	N/A	
	CH661	1880	245.20	236.53	N/A	
	CH810	1909.8	242.28	236.28	N/A	
Conclusion: PASS						

AUDIX Technology (Shenzhen) Co., Ltd.

FCC ID: 2AGBW-LCN7700 page 5-2

EUT: Segment Control Unit		
M/N: LCN7700		
Test date: 2016-03-23	Pressure: 102.7±1.0 kpa	Humidity: 52.8±3.0%
Tested by: Alice_Yang	Test site: RF site	Temperature:22.2±0.6

Test Mode	CH Frequency		26dB bar (kH		Limit	
Test Wode	CII	(MHz)	TM 1	TM 2	(KHz)	
	CH128	824.2	318.2	308.5	N/A	
GSM 850	CH190	836.6	320.1	296.2	N/A	
	CH251	848.8	315.8	318.2	N/A	
	CH512	1850.2	319.1	316.1	N/A	
GSM 1900	CH661	1880	319.7	316.8	N/A	
	CH810	1909.8	319.1	302.0	N/A	
Conclusion: PASS						

page

FCC ID: 2AGBW-LCN7700

CH251 nt Spectrum Analyzer - Occupied BW 08:59:57 PM Mar 23, 2016 Peak Search Center Freq: 848.800000 MHz Trig: Free Run Avg|Ho #Atten: 30 dB Radio Std: None Center Freq 848.800000 MHz Avg|Hold>100/100 Radio Device: BTS #IFGain:Low 848.842 MHz 30.386 dBm Ref Offset 14 dB Ref 40.00 dBm 10 dB/div Center 848.8 MHz #Res BW 10 kHz Span 1 MHz Sweep 9.6 ms #VBW 30 kHz **Total Power** 40.2 dBm Occupied Bandwidth 242.53 kHz -300 Hz Transmit Freq Error **OBW Power** 99.00 % x dB Bandwidth -26.00 dB 315.8 kHz x dB STATUS

TM 2 CH128

FCC ID: 2AGBW-LCN7700 page CH190 nt Spectrum Analyzer - Occupied BW 09:04:34 PM Mar 23, 2016 Peak Search Center Freq: 838.600000 MHz Trig: Free Run Avg|Ho #Atten: 30 dB Radio Std: None Center Freq 836.600000 MHz Avg|Hold>100/100 Radio Device: BTS #IFGain:Low 836.58 MHz Ref Offset 14 dB Ref 40.00 dBm 27.803 dBm 10 dB/div Center 836.6 MHz #Res BW 10 kHz Span 1 MHz Sweep 9.6 ms #VBW 30 kHz **Total Power** 36.1 dBm Occupied Bandwidth 234.55 kHz -3.032 kHz Transmit Freq Error **OBW Power** 99.00 % x dB Bandwidth -26.00 dB 296.2 kHz x dB

CH251

STATUS

page

FCC ID: 2AGBW-LCN7700

CH810 Agilent Spectrum Analyzer - Occupied BW 02:04:01 PM May 03, 2016 Radio Std: None Center Freq: 1.909800000 GHz Trig: Free Run Avg|Hole #Atten: 30 dB Frequency Center Freq 1.909800000 GHz Avg|Hold>100/100 #IFGain:Low Radio Device: BTS 1.909777 GHz 28.640 dBm Ref Offset 11.5 dB Ref 40.00 dBm 10 dB/div Center Freq 1.909800000 GHz CF Step 100.000 kHz Center 1.91 GHz #Res BW 10 kHz Span 1 MHz Sweep 9.6 ms Man **#VBW 30 kHz** Occupied Bandwidth **Total Power** 38.4 dBm Freq Offset 242.28 kHz 0 Hz Transmit Freq Error -95 Hz **OBW Power** 99.00 % x dB Bandwidth 319.1 kHz x dB -26.00 dB STATUS

TM 2 CH512

FCC ID: 2AGBW-LCN7700 page CH661 Agilent Spectrum Analyzer - Occupied BW D3:23:37 PM May 03, 2016 Radio Std: None Center Freq: 1.880000000 GHz Trig: Free Run Avg|Hol #Atten: 30 dB Frequency Center Freq 1.880000000 GHz Avg|Hold>100/100 #IFGain:Low Radio Device: BTS 1.880061 GHz Ref Offset 11.5 dB Ref 40.00 dBm 26.343 dBm 10 dB/div Center Freq 1.880000000 GHz CF Step 100.000 kHz Center 1.88 GHz #Res BW 10 kHz Span 1 MHz Man Sweep 9.6 ms **#VBW 30 kHz** Occupied Bandwidth **Total Power** 35.6 dBm Freq Offset 236.53 kHz 0 Hz Transmit Freq Error 273 Hz **OBW Power** 99.00 % x dB Bandwidth 316.8 kHz -26.00 dB x dB STATUS

CH810

6. RF POWER OUTPUT TEST

6.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum	Agilent	E4446A	US44300459	Apr.28,15	1 Year
2.	Spectrum	Agilent	N9030A	MY51380221	Oct.18,15	1Year
3.	Power meter	Anritsu	ML2487A	6K00002472	Aug.21,15	1Year
4.	Power sensor	Anritsu	MA2491A	0033005	Aug.21,15	1Year
5.	Attenuator (20dB)	Agilent	8491B	MY39262165	Apr.28,15	1 Year
6.	RF Cable	Marvelous Microwave Inc	SFL402105FLEX	NO.1	Oct.17,15	1 Year

6.2.Limit

1. Part 22.913(a) Mobile station are limited to 7W and for Conducted Power we can use antenna Gain to calculate the limit, so the Conducted Power:

```
P_{\text{cod.}}(dBm) = EIRP(dBm) - Gain(dBi)
=7W(38.5dBm)-(3.15dBi-2.15dBi)
=37.5dBm
```

2. Part 24.232(b) Peak power measurement, Mobile station are limited to 2W and for conducted Power we can use antenna Gain to calculate the limit, so the Conducted Power:

```
P_{\text{cod.}}(dBm)=EIRP(dBm)-Gain(dBi)
=2W(33dBm)-3.15(dBi)
=29.85dBm
```

6.3.Test Procedure

The transmitter output was connected to calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power in dBm. The power output at the transmitter antenna port was determined by adding the value of attenuator to the power meter reading.

6.4.Test Results

EUT: Segment Control Unit					
M/N: LCN7700					
Test date: 2016-03-23	Pressure: 101.5±1.0 kpa	Humidity: 52.2±3.0%			
Tested by: Alice_Yang	Test site: RF Site	Temperature: 22.5±0.6			

Mode	Channel	TM1	TM2	Limit
CCM	128	34	30.2	37.5
GSM 850	190	33.5	30.3	37.5
830	251	33.4	30.1	37.5
D.G.G	512	29.3	28.2	29.85
PCS 1900	661	29.6	27.8	29.85
1900	810	30.3	27.3	29.85

7. FIELD STRENGTH OF RADIATED SPURIOUS EMISSIONS

7.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	Apr.28,15	1 Year
2.	Preamplifier	Agilent	8449B	3008A02495	Apr.28,15	1 Year
3.	Preamplifier	Agilent	8447D	2944A11159	Apr.28,15	1Year
4.	Horn Antenna	ETS	3115	9510-4877	Oct.15,15	1 Year
5.	Bi-log Antenna	TESEQ	CBL6112D	25237	Jun.30,15	1 Year
6.	Antenna and turn table controller	СТ	SC100	CT-0091	N/A	N/A
7.	RF Cable	Hubersuhner	SUCOFLEX1 04/102	274094/4+2861 0/2	Apr.28,15	1 Year
8.	Test Software	AUDIX	e3	6.2009-5-21a(n)	N/A	N/A

Note: N/A means Not applicable.

7.2.Limit

FCC part 22.917(a), 24.238(a) the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log(Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

7.3. Test Procedure

The EUT was placed on a non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and lowering of the test antenna from 4m to 1m.

ERP in frequency band 824.2-848.8MHz were measured using substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follow: EIRP in frequency band 1850.5-1909.8MHz were measured using a substitution method. The EUT was replaced by a horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP=S.G. output (dBm) + Antenna Gain (dBd)-Cable Loss (dB) EIRP=S.G. output (dBm) + Antenna Gain (dBi)-Cable Loss (dB)

7-1 FCC ID: 2AGBW-LCN7700 page

7.4. Test Results

GSM 850 Mode

Spurious emis	sions
EUT: Segment	Control Unit

M/N: LCN7700 Power: DC 12V

Tested by: Alice_yang Test Date: 2016-04-06 Test site: RF Chamber

Humidity: 52.1±3.0% Pressure: 101.6±1.0kpa Temperature: 23.2±0.6

Test result

Test Mode: GSM 850 TX CH Low Mode 824.2MHz

Frequency (MHz)	Antenna polarization	S.G Output (dBm)	Antenna Gain (dBi/dBd)	Cable Loss (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Conclusion
, ,	1		, ,		, ,			
191.99	Н	-61.55	2.8	1.32	-60.07	-13	47.07	PASS
624.61	Н	-58.51	5.2	3.04	-56.35	-13	43.35	PASS
733.25	Н	-50.64	5.4	3.39	-48.63	-13	35.63	PASS
869.13	Н	-20.92	5.7	3.86	-19.08	-13	6.08	PASS
1648.40	Н	-32.60	7.9	5.68	-30.38	-13	17.38	PASS
2472.60	Н	-37.63	7.5	7.47	-37.60	-13	24.60	PASS
3296.80	Н	-41.73	9.6	8.74	-40.87	-13	27.87	PASS
187.14	V	-63.87	2.6	1.32	-62.59	-13	49.59	PASS
633.34	V	-61.33	5.2	3.10	-59.23	-13	46.23	PASS
733.25	V	-57.65	5.4	3.39	-55.64	-13	42.64	PASS
869.20	V	-30.21	5.7	3.86	-28.37	-13	15.37	PASS
1648.40	V	-33.00	7.9	5.68	-30.78	-13	17.78	PASS
2472.60	V	-40.31	7.5	7.47	-40.28	-13	27.28	PASS
3296.80	V	-42.87	9.6	8.74	-42.01	-13	29.01	PASS

FCC ID: 2AGBW-LCN7700 page 7-2

CC ID: 2AGB	W-LCN//00						ра	ge /-2
Test Mode:	· GSM 850	TX CH Mid	Mode 836 6	<u></u>				
					57.10	12	44.10	DAGG
190.05	Н	-58.46	2.6	1.32	-57.18	-13	44.18	PASS
647.89	Н	-57.02	5.2	3.10	-54.92	-13	41.92	PASS
745.86	Н	-50.62	5.4	3.45	-48.67	-13	35.67	PASS
881.66	Н	-20.35	5.7	3.86	-18.51	-13	5.51	PASS
1673.20	Н	-29.08	7.9	5.72	-26.90	-13	13.90	PASS
2509.80	Н	-40.47	9.6	7.55	-38.42	-13	25.42	PASS
3346.40	Н	-43.23	9.6	8.77	-42.40	-13	29.40	PASS
188.11	V	-62.46	2.6	1.32	-61.18	-13	48.18	PASS
647.89	V	-60.27	5.2	3.10	-58.17	-13	45.17	PASS
745.86	V	-56.50	5.4	3.45	-54.55	-13	41.55	PASS
881.66	V	-31.02	5.7	3.86	-29.18	-13	16.18	PASS
1673.20	V	-31.16	7.9	5.72	-28.98	-13	15.98	PASS
2509.80	V	-41.94	9.6	7.55	-39.89	-13	26.89	PASS
3346.40	V	-45.16	9.6	8.77	-44.33	-13	31.33	PASS
Test Mode :	: GSM 850	TX CH High	Mode 848.8	8MHz				
191.99	Н	-57.74	2.8	1.32	-56.26	-13	43.26	PASS
653.71	Н	-56.28	5.2	3.15	-54.23	-13	41.23	PASS
759.44	Н	-50.68	5.4	3.50	-48.78	-13	35.78	PASS
893.72	Н	-21.50	5.7	3.92	-19.72	-13	6.72	PAS
1697.60	Н	-26.38	7.9	5.80	-24.28	-13	11.28	PAS
2546.40	Н	-39.04	9.6	7.63	-37.07	-13	24.07	PAS
3395.20	Н	-43.87	9.6	8.79	-43.06	-13	30.06	PASS
188.11	V	-62.73	2.6	1.32	-61.45	-13	48.45	PASS
648.86	V	-61.27	5.2	3.10	-59.17	-13	46.17	PASS
759.44	V	-55.72	5.4	3.50	-53.82	-13	40.82	PAS
893.30	V	-27.54	5.7	3.92	-25.76	-13	12.76	PASS
1697.60	V	-29.52	7.9	5.80	-27.42	-13	14.42	PASS
2546.40	V	-40.40	9.6	7.63	-38.43	-13	25.43	PASS
3395.20	V	-47.00	9.6	8.79	-46.19	-13	33.19	PASS

FCC ID: 2AGBW-LCN7700 page 7-3

PCS 1900 Mode

Spurious emissions

EUT: Segment Control Unit

M/N: LCN7700

Power: DC 12V

Test Date: 2016-04-29 Test site: RF Chamber Tested by: Alice_yang

Temperature: 23.5±0.6 | Humidity: 52.9±3.0% | Pressure: 102.4±1.0kpa

Test result

Test Mode: PCS 1900 TX CH Low Mode 1850.2MHz

Frequency (MHz)	Antenna polarization	S.G Output (dBm)	Antenna Gain (dBi/dBd)	Cable Loss (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Conclusion
194.90	Н	-57.85	2.7	1.32	-56.47	-13	43.47	PASS
624.61	Н	-61.60	5.2	3.04	-59.44	-13	46.44	PASS
875.84	Н	-62.41	5.7	3.86	-60.57	-13	47.57	PASS
959.26	Н	-63.08	5.9	4.16	-61.34	-13	48.34	PASS
2108.00	Н	-54.18	8.4	6.69	-52.47	-13	39.47	PASS
3264.00	Н	-48.48	9.6	8.73	-47.61	-13	34.61	PASS
3700.40	Н	-45.28	9.6	8.93	-44.61	-13	31.61	PASS
188.11	V	-61.49	2.6	1.32	-60.21	-13	47.21	PASS
624.61	V	-63.80	5.2	3.04	-61.64	-13	48.64	PASS
875.84	V	-68.24	5.7	3.86	-66.40	-13	53.40	PASS
953.44	V	-66.54	5.9	4.10	-64.74	-13	51.74	PASS
2108.00	V	-52.97	8.4	6.69	-51.26	-13	38.26	PASS
3264.00	V	-46.96	9.6	8.73	-46.09	-13	33.09	PASS
3700.40	V	-44.06	9.6	8.93	-43.39	-13	30.39	PASS

page 7-4 <u>FCC ID: 2AGBW-LCN7700</u> Test Mode: PCS 1900 TX CH Mid Mode 1880.0MHz 191.99 2.6 1.32 -55.64 -13 42.64 **PASS** Η -56.92 3.04 -59.32 **PASS** 624.61 Η 5.2 -13 46.32 -61.48 875.84 -60.53 47.53 **PASS** Η 5.7 3.86 -13 -62.37959.26 5.9 **PASS** Η 4.16 -61.46 -13 48.46 -63.20 2452.00 Η 9.5 7.43 -51.24 -13 48.24 **PASS** -53.31 2985.00 9.6 8.56 -48.19 -13 35.19 **PASS** Η -49.23 3760.00 9.6 8.96 -44.61 -13 **PASS** Η 31.61 -45.25190.05 V 2.6 1.32 -59.19 -13 46.19 **PASS** -60.47624.61 V 5.2 3.04 -61.51 -13 48.51 **PASS** -63.67 875.84 V 5.7 3.86 -66.37 -13 53.37 **PASS** -68.21 953.44 V 5.9 4.10 -64.15 51.15 **PASS** -13 -65.95 2452.00 V 9.5 7.43 -50.27 37.27 **PASS** -13 -52.34 2985.00 V 9.6 -49.55 **PASS** 8.56 -13 36.55 -50.59 V 9.6 8.96 **PASS** 3760.00 -46.47 -13 33.47 -47.11 Test Mode: PCS 1900 TX CH High Mode 1909.8MHz 194.90 2.7 -55.24 42.24 **PASS** Η 1.32 -13 -56.62 624.61 Η 3.04 -59.50 46.50 **PASS** 5.2 -13 -61.66 **PASS** 875.84 5.7 47.15 Η 3.86 -60.15-13 -61.99 **PASS** 959.26 5.9 -13 48.56 Η 4.16 -61.56 -63.30 2394.00 Η 8.6 7.32 -49.57 -13 36.57 **PASS** -50.85 3108.00 Η 9.6 8.65 -44.24 -13 31.24 **PASS** -45.19 32.35 3819.60 Η 9.6 8.99 -45.35 -13 **PASS** -45.96 190.05 V 2.6 -58.48 45.80 **PASS** 1.32 -13 -59.76 **PASS** 624.61 V 5.2 3.04 -62.19-13 49.19 -64.35 **PASS** 875.84 5.7 V 3.86 -66.13-13 53.13 -67.97 953.44 V 5.9 4.10 50.80 -63.80-13 **PASS** -65.60 2394.00 V 8.6 7.32 -52.43 -13 49.43 **PASS** -53.71 3108.00 V 32.17 **PASS** 9.6 8.65 -45.17-13 -46.12 V 3819.60 9.6 8.99 -46.60 -13 33.60 **PASS** -47.21 Remark: All the emission were detected belong to narrowband spurious emission

FCC ID: 2AGBW-LCN7700 page 8-1

8. FREQUENCY STABILITY V.S. TEMPERATURE AND VOLTAGE

8.1.Test Equipment

				<u> </u>		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	PXA Signal Analyzer	Agilent	N9030A	MY51380221	Oct.18,15	1 Year
2.	HF Cable	Hubersuhner	Sucoflex104	274094/4	Apr.28,15	1 Year
3.	Attenuator (10dB)	Mini-Circuits	VAT-10+	NO.1	NCR	NCR
4.	Temperature controller	Terchy	MHQ-120cluB	A60223	Apr.24,15	Apr.24,16

Note: NCR means no calibration required(calibrated with system).

8.1.Limit

Frequency Tolerance: +/-2.5ppm for 850MHz band +/-2.5ppm for 1900MHz band

8.2.Test procedure:

The equipment under test was connected to an external DC power supply and input rated voltage. Reference power supply voltage for these tests is DC 12V. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the Spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25 degree operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20 degree. After the temperature stabilized for approximately 30 minutes record the frequency. Repeat step measure with 10 degree per stage until the highest temperature of 50 degree reached.

FCC ID: 2AGBW-LCN7700 page 8-1

EUT: Segment Control Unit		
M/N: LCN7700		
Test date: 2016-04-01	Pressure: 102.1±1.0 kpa	Humidity: 52.0±3.0%
Tested by: Alice-Yang	Test site: RF site	Temperature:22.8±0.6

Frequency Error vs ,Voltage

Test Band	Test Mode	Test Channel	Test Temp	Test Volt	Freq Error (Hz)	Freq .vs.rated (ppm)	Verdict
			TN	VL	23	0.027906	Pass
		LCH		VN	20	0.024266	Pass
				VH	21	0.025479	Pass
				VL	4	0.004781	Pass
	GSM/TM1	MCH	TN	VN	3	0.003586	Pass
				VH	2	0.002391	Pass
		НСН		VL	6	0.007069	Pass
			TN	VN	4	0.004713	Pass
				VH	5	0.005891	Pass
GSM 850			TN	VL	-16	-0.01941	Pass
		LCH		VN	-13	-0.01577	Pass
				VH	-11	-0.01335	Pass
				VL	-12	-0.01434	Pass
	GSM/TM2	MCH	TN	VN	-12	-0.01434	Pass
				VH	-14	-0.01673	Pass
			VL	-12	-0.01414	Pass	
		НСН	TN	VN	-13	-0.01532	Pass
				VH	-15	-0.01767	Pass

FCC ID: 2AGBW-LCN7700 page 8-2

	Frequency Err	ror vs ,Temp	perature				
Test Band	Test Mode	Test Channel	Test Volt	Test Temp	Freq Error (Hz)	Freq .vs.rated (ppm)	Verdict
				-30	25	0.030332	Pass
				-20	20	0.024266	Pass
				-10	15	0.018199	Pass
				0	19	0.023053	Pass
		LCH	VN	10	21	0.025479	Pass
				20	20	0.024266	Pass
				30	20	0.024266	Pass
				40	17	0.020626	Pass
				50	19	0.023053	Pass
				-30	7	0.008367	Pass
			VN	-20	3	0.003586	Pass
				-10	5	0.005977	Pass
				0	4	0.004781	Pass
		MCH		10	-1	-0.0012	Pass
GSM 850	GSM/TM1			20	3	0.003586	Pass
				30	1	0.001195	Pass
				40	4	0.004781	Pass
				50	2	0.002391	Pass
				-30	6	0.007069	Pass
				-20	6	0.007069	Pass
				-10	3	0.003534	Pass
				0	5	0.005891	Pass
		НСН	VN	10	7	0.008247	Pass
				20	4	0.004713	Pass
				30	3	0.003534	Pass
				40	6	0.007069	Pass
				50	4	0.004713	Pass

C ID: 2AGBW-L	.CN7700						page 8
				-30	-16	-0.01941	Pass
				-20	-17	-0.02063	Pass
				-10	-16	-0.01941	Pass
				0	-10	-0.01213	Pass
		LCH	VN	10	-15	-0.0182	Pass
				20	-13	-0.01577	Pass
				30	-12	-0.01456	Pass
				40	-14	-0.01699	Pass
				50	-15	-0.0182	Pass
				-30	-15	-0.01793	Pass
			-20	-16	-0.01913	Pass	
			VN	-10	-12	-0.01434	Pass
				0	-11	-0.01315	Pass
CCM 050	CCN4/TN42	MCH		10	-10	-0.01195	Pass
GSM 850	GSM/TM2			20	-12	-0.01434	Pass
				30	-13	-0.01554	Pass
				40	-12	-0.01434	Pass
				50	-9	-0.01076	Pass
				-30	-18	-0.02121	Pass
				-20	-15	-0.01767	Pass
				-10	-12	-0.01414	Pass
				0	-16	-0.01885	Pass
	НСН	VN	10	-12	-0.01414	Pass	
			20	-13	-0.01532	Pass	
				30	-12	-0.01414	Pass
				40	-11	-0.01296	Pass
				50	-13	-0.01532	Pass

FCC ID: 2AGBW-LCN7700 page 8-4

Frequency I	Error vs ,Volta	age					
Test Band	Test Mode	Test Channel	Test Temp	Test Volt	Freq Error (Hz)	Freq .vs.rated (ppm)	Verdict
				VL	15	0.008107	Pass
		LCH	TN	VN	17	0.009188	Pass
				VH	19	0.010269	Pass
				VL	14	0.007447	Pass
	GSM/TM1	МСН	TN	VN	16	0.008511	Pass
				VH	18	0.009574	Pass
		НСН	TN	VL	17	0.008901	Pass
				VN	20	0.010472	Pass
GG3.1.1000				VH	21	0.010996	Pass
GSM 1900		LCH	TN	VL	-15	-0.00811	Pass
				VN	-16	-0.00865	Pass
				VH	-18	-0.00973	Pass
				VL	-14	-0.00745	Pass
	GSM/TM2	MCH	TN	VN	-17	-0.00904	Pass
				VH	-18	-0.00957	Pass
				VL	-14	-0.00733	Pass
		НСН	TN	VN	-18	-0.00943	Pass
				VH	-21	-0.011	Pass

FCC ID: 2AGBW-LCN7700 page 8-5

Test Band	Test Mode	Test Channel	Test Volt	Test Temp	Freq Error (Hz)	Freq .vs.rated (ppm)	Verdict
				-30	19	0.010269	Pass
			-20	16	0.008648	Pass	
				-10	17	0.009188	Pass
				0	15	0.008107	Pass
		LCH	VN	10	16	0.008648	Pass
				20	17	0.009188	Pass
				30	15	0.008107	Pass
				40	16	0.008648	Pass
				50	14	0.007567	Pass
				-30	20	0.010638	Pass
				-20	18	0.009574	Pass
				-10	18	0.009574	Pass
				0	17	0.009043	Pass
		MCH	VN	10	15	0.007979	Pass
GSM 1900	GSM/TM1			20	16	0.008511	Pass
				30	16	0.008511	Pass
				40	17	0.009043	Pass
				50	15	0.007979	Pass
				-30	24	0.012567	Pass
				-20	22	0.01152	Pass
				-10	20	0.010472	Pass
				0	21	0.010996	Pass
	НСН	VN	10	18	0.009425	Pass	
			20	20	0.010472	Pass	
				30	19	0.009949	Pass
				40	20	0.010472	Pass
				50	20	0.010472	Pass

C ID: 2AGBW-L	.CN7700						page 8
				-30	-20	-0.01081	Pass
				-20	-18	-0.00973	Pass
				-10	-19	-0.01027	Pass
				0	-17	-0.00919	Pass
		LCH	VN	10	-16	-0.00865	Pass
			20	-16	-0.00865	Pass	
				30	-15	-0.00811	Pass
				40	-13	-0.00703	Pass
			50	-15	-0.00811	Pass	
			-30	-21	-0.01117	Pass	
			VN	-20	-19	-0.01011	Pass
				-10	-18	-0.00957	Pass
				0	-15	-0.00798	Pass
		МСН		10	-16	-0.00851	Pass
GSM 1900	GSM/TM2			20	-17	-0.00904	Pass
				30	-14	-0.00745	Pass
				40	-16	-0.00851	Pass
				50	-15	-0.00798	Pass
				-30	-22	-0.01152	Pass
				-20	-20	-0.01047	Pass
				-10	-21	-0.011	Pass
				0	-20	-0.01047	Pass
		НСН	VN	10	-19	-0.00995	Pass
				20	-18	-0.00943	Pass
				30	-17	-0.0089	Pass
				40	-18	-0.00943	Pass
				50	-16	-0.00838	Pass

FCC ID: 2AGBW-LCN7700 page 9-1

9. MODULATION CHARACTERISTICS

9.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Validity Date	Cal. Interval
1.	RF Cable	Mini-Circults	CBL-1M-SMS M+	99670	Oct.17,15	Oct.16,16	1Year
2.	Universal Radio Communication Tester		CMU200	117194	Jan.12,16	Jan.12,17	1Year
3.	Temperature controller	Terchy	MHQ-120cluB	A60223	Apr.24,15	Apr.24,16	1Year

9.2.Limit

N/A

9.3.Test Procedure

- 1. Connect the RF output port to the wireless communication tester and establish the link
- 2. Use the "Modulation character" functions of the communication tester performs the test.

FCC ID: 2AGBW-LCN7700 page 9-2

TM 2

FCC ID: 2AGBW-LCN7700 page 9-3

TM 2

CC ID: 2AGBW-LCN7700	page 10-1
10.DEVIATION TO TEST SPECIFICATIONS	
[NONE]	