

Problem Statement

- Given a question title and html markup of body,
 predict the appropriate tags/labels
- Kaggle Competition

Motivation

- Easier Posting
- Better organization and search
- Tag synonyms
 - □ Eg: Java5 vs Java5.0 vs Java-5.0
- More tags for questions with less tags

Dataset

- Kaggle Competition Dataset
- □ ~8 GB of data
- □ 6,034,196 (~6 million) Questions
- All 110 StackExchange sites
 - StackOverflow, MathOverflow, AskUbuntu etc
- Each question
 - Id, Title, Html markup of body, set of tags

Dataset(cont.)

- \sim 42,000 unique tags
- Most frequent Tags:
 - C#, Java, php, javascript, android, jquery, C++, python, iPhone, asp.net, mySQL, html, .net, ios, Objective-C

Technical Challenges

Number of tags not constant

Figure 1: Distribution of the number of tags per document

Technical Challenges(cont.)

- Tag Synonyms
 - Similar objects can get tagged differently
 - zombie and zombies zombie process in Unix
 - xmlparser, xmlparsing parser of xml file
 - xsltproc abbreviation of xsltprocessor
- Html Markups
 - Not just plain-text classification
 - Contains code-snippets, URLs etc.

Baseline System

- Saha et al, A discriminative model approach for suggesting tags automatically for stackOverflow questions
- Tenth International Workshop on Mining Software Repositories, IEEE Press, 2013

Baseline System(cont.)

- Train classifier for every tag (frequent)
- For new question,predict likelihoodscore per tag
- Take output as top k tags

Baseline System(cont.)

- Code not available
 - Implemented ourselves
- Average accuracy
 - **68.47%**
- Similar accuracy achieved in Part 1 of project (within reasonable fluctuations)

Scope for improving Baseline

- Evaluation metric
 - Not a good criteria
 - Precision vs Recall
 - Better evaluation criteria recall
- Synonyms tags not handled
- >73% questions have code snippets
 - Programming language detection
 - Inference based on code snippets
- □ Baseline Recall@5 ~52.4%

Experimental Evaluation

- Meta features
 - Number of code segments
 - Punctuations used in code snippet
 - Number of "a href" tags
 - Number of links occurring
- Different Classifiers Logistic Regression, SGD
 Classifier, LinearSVC
- Increasing weight of title than body of question
- □ Recall ~54.0%

- Doc2Vec
 - Gives continuous vector representations of documents
 - Trained on pre-processed question data
- Recall Drops by 1% (approx)
 - Possible reasons:
 - Overfitting due to some features
 - Doc2vec performs good on plain text, not code snippets
 - Tried with non-code text

- KMeans with Word2Vec
 - Used Google's Pre-trained Word2Vec model
 - Cluster word embeddings using kMeans
 - Add cluster ids to title and body

■ Marginal improvement (less than 0.5%), not significant

- Tag synonymy
 - Scrapped data for synonymous tags from stackOverflow website
 - Replace all synonym tags with their master synonym
 - □ 3365 pairs of synonyms
 - □ Recall ~55.5%

- Term Affinity
 - Measure of co-occurrence

- $\square TagTerm_{se}(tag) = 1 \prod_{t \in se} (1 Aff(tag, t))$
- Recall ~56.1%

Summary of techniques

Technique	Recall	Accuracy
Baseline	~52.4%	68%
Meta- features/Classifiers/ Title Weight	~54.0%	
Doc2Vec	Drops by 1%	
KMeans with Word2Vec	~54.5%	
Tag synonymy	~55.5%	
Term affinity	~56.1%	75%

Further Work

 Exploit co-occurrence of tags like, java and android, microsoft-sdk and C#, flask and python

- Get tag synonyms by stemming etc.
- Handle other than frequent tags

References

- A. Goldbloom, "Kaggle," http://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction, 2013, [Online; accessed 13-November-2013].
- K. Saha, R. K. Saha, and K. A. Schneider. A discriminative model approach for suggesting tags automatically for stack overow questions. In Proceedings of the Tenth International Workshop on Mining Software Repositories, pages 7376. IEEE Press, 2013
- Xin Xia, David Lo, Xinyu Wang, Bo Zhou, Tag Recommendation in Software Information Sites, Proceedings of the 10th Working Conference on Mining Software Repositories, IEEE Press, 2013
- Stanford Project Document: http://cs229.stanford.edu/proj2013/SchusterZhuCheng-PredictingTagsforStackOverflowQuestions.pdf
- Clayton Stanley and Michael D Byrne. 2013. Predicting tags for stackoverflow posts. In Proceedings of ICCM 2013

Any Questions?