

Université de Montréal

FICHE RÉCAPITULATIVE

Analyse I

Julien Hébert-Doutreloux

Julien Hébert-Doutreloux —Page 2

Contents

1	Les nombre réels	3
2	Les intervalles	3
3	Les points	3
4	Les ensembles	3
5	Les théorème	4
6	Les propriétés	4
7	Suites numériques a) Limite d'une suite et suite bornée . b) Opération sur les limites . c) Sous-suites et suites monotones . d) Suites de Cauchy . e) Limite supérieure et limite inférieure .	4 4 5 5 5 5
In	ndex	6

Julien Hébert-Doutreloux —Page 3

1 Les nombre réels

Théorème 1. Les nombres réels sont ordonné tel que

$$\forall a, b \in \mathbb{R}_{\geq 0}, a+b \geq 0$$

$$a \in \mathbb{R}, \begin{cases} a < 0 \\ a = 0 \\ a > 0 \end{cases}$$

Théorème 2. Soit $\mathbb{R} \supset E \neq \emptyset$,

E borné supérieurement (resp. inférieurement) possède un supremum (resp. infimum) dans $\mathbb R$

Proposition 1. Soit $x, y \in \mathbb{R}, x > 0, x < y \implies \exists n \in \mathbb{N} \ tel \ que \ nx > y$

Définition 1.

$$x \in \mathbb{R}, |x| \le b \iff -b \le x \le b$$
$$x, y \in \mathbb{R}, |x \cdot y| = |x| \cdot |y|$$
$$\forall x, y \in \mathbb{R}, |x \pm y| \le |x| + |y|$$
$$\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x \pm y|$$

2 Les intervalles

Définition 2. I est un intervalle $\subset \mathbb{R}$ si lorsque $x, y \in I : x < y \implies \forall z \in \mathbb{R} : x < z < y$ est dans I

Définition 3. I est borné s'il possède un sup I = b et un inf I = a où $a, b \in \mathbb{R}$

Définition 4.

- Non-borné sup. : $\sup I \notin \mathbb{R}$
- Non-borné inf. : $\inf I \notin \mathbb{R}$
- \bullet Non-borné:

Définition 5. Voisinage centré en $x \in \mathbb{R}$ de rayon $\delta > 0$: $V(x, \delta)$ est l'intervalle ouvert

$$(x-\delta,x+\delta)$$

Définition 6. Voisinage pointé...: $V'(x, \delta) = V(x, \delta) \setminus \{x\}$

3 Les points

Définition 7. Un point $a \in E \subset \mathbb{R}$ est un point intérieur de E si

$$\exists \delta_{>0} : V(a, \delta) \subset E$$

Définition 8. Un point $a \in \mathbb{R}$ est un point d'accumulation de $E \subset \mathbb{R}$ si

$$\forall \delta_{>0}: V'(a,\delta) \cap E \neq \emptyset$$

Remarque : $a \notin E \Rightarrow a \notin E'$

Définition 9. Un point $a \in \mathbb{R}$ est un point adhérent de $E \subset \mathbb{R}$ si,

$$\forall \delta_{>0}, V(a,\delta) \cap E \neq \emptyset$$

Remarque:

$$a \in \bar{E} \implies a \in E'$$

 $a \in E \implies a \in \bar{E}$

Julien Hébert-Doutreloux -Page 4

4 Les ensembles

Définition 10. Soit $E \subset \mathbb{R}$, l'ensemble de ses point intérieur noté int E est tel que

$$int \ E = \{x \in E | \exists \delta_{>0}, V(x, \delta) \subset E\}$$
$$int \ E \subset E \subset \mathbb{R}$$

Remarque: int E est un ouvert

Définition 11. Soit $E \subset \mathbb{R}$, l'ensemble de ses point d'accumulation noté E' est tel que

$$E' = \{x \in E | \forall \delta_{>0}, V'(x, \delta) \cap E \neq \emptyset \}$$

$$E' \subset \mathbb{R} \supset E$$

Remarque : "Ensemble dérivé de E"

$$E \ fini \implies E' = \emptyset$$

$$E in fini \Rightarrow E' = \emptyset$$

Définition 12. *Soit* $E \subset \mathbb{R}$,

$$E \ ouvert \iff int \ E = E$$

$$E \subset int \ E \subset E \subset \mathbb{R}$$

Définition 13. Ensemble fermé Soit $E \subset \mathbb{R}$,

$$E \ ferm\'e \iff E' \subset E$$

Définition 14. *Soit* $E \subset \mathbb{R}$,

$$E \ compact \iff E \ ferm\'e \ et \ born\'e$$

Ensemble compact si tout recouvrement ouvert de E possède un sous-recouvrement fini.

Définition 15. Recouvrement ouvert Ensemble O: collection d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 3. Soit O un recouvrement ouvert de $E \subset \mathbb{R}$

$$O' \subset O$$

sera appelé sous-recouvrement fini si O' est lui même un recouvrement ouvert de E et qu'il contient un nombre fini d'éléments.

Définition 16. Soit $E \subset \mathbb{R}$, la frontière de E noté Fr E = fr $E = \bar{E} \setminus \{int E\}$

$$\bar{E} \setminus \{int \ E\} \subset fr \ E \subset \bar{E} \setminus \{int \ E\}$$

5 Les théorème

Théorème 4 (Bolzano-Weierstrass). Tout ensemble borné et infini possède un point d'accumulation.

Théorème 5 (Heine-Borel). Soit $E \subset \mathbb{R}$, un recouvrement ouvert de E est un ensemble O d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 6 (Densité des nombres réels). Soit a < b deux nombres réels (resp. irrationels) dans les réels, alors

$$\exists x \in \mathbb{Q} \ (resp. \ \mathbb{Q}^C) : a < x < b$$

Théorème 7 (Corolaire). Soit a < b deux nombres réels, alors il existe un nombre infini de rationnels (resp. irrationels) entre a et b.

6 Les propriétés

Ouvert/Fermé/Compact

Proposition 2 ($\bigcup \bigcap$ ouvert). Soit $\{O_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble ouvert

- $\bigcup_{\lambda \in \Lambda} O_{\lambda} \ ouvert$
- $\bigcap_{\lambda \in \Lambda}^n O_\lambda$ ouvert $si |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 3 ($\bigcup \bigcap$ fermé). Soit $\{F_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble fermé

- $\bigcup_{\lambda \in \Lambda} F_{\lambda}$ fermé fermé si $|\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} F_{\lambda} ferm\acute{e}$

(i.e) Un nombre fini d'ensemble

Proposition 4 ($\bigcup \bigcap$ compact). Soit $\{K_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble compact

- $\bigcup_{\lambda \in \Lambda} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 5. • Ø ouvert

- $\bullet \ A, B \ ouverts \implies \begin{cases} A \cup B \ ouvert \\ A \cap B \ ouvert \end{cases}$
- ullet E ouvert \Longleftrightarrow E^C fermé
- $\bullet \ E \ ferm\acute{e} \Longleftrightarrow E' \subset E$
- $E \ compact \implies \sup E \in E$
- $\bullet \ F \ ferm\'e, E \ compact : F \subset E \subset \mathbb{R} \implies F \ compact$
- Soit $E \subset \mathbb{R}$

$$- int E = \bigcup_{O \subseteq E} O$$

(L'intérieur d'un ensemble E est la réunion de tous les ensembles ouvert contenue dans E)

- int E ouvert
- int E plus grand ouvert contenue dans E

Adhérence/Accumulation/Intérieur

Proposition 6. • $\bar{E} = E \cup E'$

- $(\bar{E}) = int (E^C)$
- \bullet \bar{E} $ferm\acute{e}$
- $A, B \subset \mathbb{R}$,

Julien Hébert-Doutreloux —Page 6

$$-A \subset B \implies \bar{A} \subset \bar{B}$$

$$-\overline{A \cup B} \implies \bar{A} \cup \bar{B}$$

$$-int (A \cap B) = int (A) \cap int (B)$$

$$-int (A \cup B) = int (A) \cup int (B)$$

• Soit $A \subset \mathbb{R}_{\neq \emptyset}$,

$$- d(x, A) = \inf\{|x - a| : a \in A\} \text{ la distance } x \text{ de } A$$
$$- x \in \bar{A} \Longleftrightarrow d(x, A) = 0$$
$$- A \text{ ferm\'e et } d(x, A) = 0 \Longrightarrow x \in A$$

Proposition 7 (Supremum/Infimum). Soit $E \subset \mathbb{R}$ non-vide et borné,

$$\forall \varepsilon_{>0}, \exists x, y \in E : \begin{cases} \sup E - \varepsilon < x \le \sup E \\ \inf E \ge x < \inf E + \varepsilon \end{cases}$$

7 Suites numériques

a) Limite d'une suite et suite bornée

Définition 17. Une suite de nombres réels est une fonction de domain $\mathbb N$ et de champ (ou image) un sous-ensemble de $\mathbb R$

Définition 18. La suite $\{x_n\}$ converge (ou tend) vers la limite x si,

$$\forall \varepsilon_{>0}, \exists N : n > N \implies |x_n - x| < \varepsilon$$

Notation: $\lim_{n\to\infty} x_n = x \text{ ou } x_n \longrightarrow x$

Théorème 8 (Unicité). $Si \lim_{n \to \infty} x_n = x \ et \lim_{n \to \infty} x_n = y, \ alors \ x = y$

Définition 19. Une suite est bornée supérieurement si,

$$\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, |x_n| < M$$

Une suite est bornée inférieurment si,

$$\exists m \in \mathbb{R} : \forall n \in \mathbb{N}, |x_n| > m$$

Théorème 9. Toute suite convergent est bornée

b) Opération sur les limites

Théorème 10. $Si \lim_{n \to \infty} x_n = x \ et \lim_{n \to \infty} y_n = y,$

1.
$$\lim_{n \to \infty} (x_n \pm y_n) = x \pm y$$

2.
$$\lim_{n \to \infty} k \cdot x_n = k \cdot x, k \in \mathbb{R}$$

3.
$$\lim_{n \to \infty} x_n \cdot y_n = x \cdot y$$

4.
$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}, y \neq 0$$

Théorème 11. Soit $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = x$. Si $x_n \le y_n \le z_n$ pour tout entier positif n, alors $\lim_{n\to\infty} y_n = x$.

Théorème 12. Un point x_0 est un point d'accumulation d'un ensemble $E \subset \mathbb{R}$ si et seulement si il existe une suite $\{x_n\}$ d'éléments de E, $x_n \neq x_0, \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x_0$.

Julien Hébert-Doutreloux -Page 7

Théorème 13.

1.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} (x_n + y_n) = \pm \infty$$

2.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} (x_n \cdot y_n) = +\infty$$

3.
$$\lim_{n \to \infty} x_n = \pm \infty \land \lim_{n \to \infty} y_n = \mp \infty \implies \lim_{n \to \infty} (x_n \cdot y_n) = -\infty$$

4.
$$\lim_{n \to \infty} |x_n| = +\infty \iff \lim_{n \to \infty} \frac{1}{x_n} = 0$$

5.
$$\lim_{n \to \infty} x_n > 0 \land \lim_{n \to \infty} y_n = \pm \infty \implies \lim_{n \to \infty} x_n \cdot y_n = \pm \infty$$

Théorème 14. Soit $\{x_n\}$ une suite telle que $x_n \neq 0, \forall n \in \mathbb{N}$. Supposons que

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = L \in \mathbb{R}$$

a)
$$L < 1 \implies \lim_{n \to \infty} x_n = 0$$

b)
$$L > 1 \implies \lim_{n \to \infty} |x_n| = \pm \infty$$

c) Sous-suites et suites monotones

Définition 20. Soit $\{x_n\}$ une suite quelconque d'entiers positifs telle que $1 \le n_1 < n_2 < ...$ On appelle la suite $\{x_{n_k}\}$ une sous-suite de la suite $\{x_n\}$.

Théorème 15. Soit $\{x_n\}$ une suite convergente. Toute sous-suite de $\{x_n\}$ converge et a la même limite que la suite $\{x_n\}$.

Théorème 16 (Corollaire). Si une suite $\{x_n\}$ possède deux sous-suites qui convergent vers différentes valeurs, la suite $\{x_n\}$ diverge.

Théorème 17. Toute suite bornée possède une sous-suite convergente.

Définition 21. Une suite $\{x_n\}$ est dite croissante (resp. décroissante) si $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$ (resp. $x_n \geq x_{n+1}, \forall n \in \mathbb{N}$). Si pour tout entier positif $n, x_n < x_{n+1}$, la suite $\{x_n\}$ est dite strictement croissante. Si pour tout entier positif $n, x_n > x_{n+1}$, la suite $\{x_n\}$ est dite strictement décroissante. Une suite qui a une des ces propriétés est dite monotone

Théorème 18. Toute suite monotone bornée possède une limite (à partir d'un certain rang N).

Théorème 19. Un ensemble $E \subset \mathbb{R}$ est compact \iff toute suite $\{x_n\}$ d'éléments de E contient une soussuite qui converge vers un élément de E.

d) Suites de Cauchy

Définition 22. Une suite $\{x_n\}$ est appelée suite de Cauchy si

$$\forall \varepsilon_{>0}, \exists N_{(\varepsilon)} \in \mathbb{N} : \forall n > N \land \forall k \in \mathbb{N}, |x_{n+k} - X_n| < \varepsilon$$

ou pour tout couple d'entiers $n, m > N, |x_m - x_n| < \varepsilon$.

Théorème 20. Toute suite de Cauchy est bornée.

Théorème 21. Une suite convergente ⇐⇒ elle est de Cauchy.

e) Limite supérieure et limite inférieure

Définition 23. Un nombre réel x est appelé valeur d'adhérence d'une suite $\{x_n\}$ s'il existe une sous-suite de $\{x_n\}$ qui converge vers x.

Théorème 22. Soit $\{x_n\}$ une suite bornée et

$$A = \{x \mid \exists \{x_{n_k}\} \in \{x_n\} : \{x_{n_k}\} \longrightarrow x\}$$

L'ensemble A est non vide, borné et fermé.

Définition 24. On appelle limite supérieure (resp. limite inférieure) d'une suite bornée $\{x_n\}$ la plus petite borne supérieure (resp. la plus grande borne inférieure) de l'ensemble des valeurs d'adhérence de la suite.

\mathbf{Index}

A	L
Archimède Axiome de complétude	Limite inférieure
В	N
Bolzano-Weierstrass 4 Borné 3	Non-borné3
С	0
Caractérisation des points d'accumulation 6	Opération sur les limites6
Critère de Cauchy	Р
$f D$ Densité de $\Bbb R$	Point adhérent 3 Point d'accumulation 3 Point intérieur 3
Ensemble compact 4, 5 Ensemble des points d'accumulations 4 Ensemble des points intérieurs 4 Ensemble fermé 5 Ensemble ouvert 4, 5	S Sous-recouvrement ouvert 4 Sous-suite 7 Suite convergente 6 Suite de Cauchy 7 Suite monotone 7 Suite numérique 6 Supremum 6
Frontière	Т
Н	Trichotomie
Heine-Borel .4 I Infimum .6 Intervalle .3 Inégalité triangulaire .3	V Valeur absolue
	~ *