Learning Consolidation Data Modeling Using RDBMS (DDL & DML)

Learning Objectives

- What is RDBMS?
- Introduction of SQL
- Introduction to Alter commands
- Define Unique, NOT NULL Constraint

Definition of RDBMS

A Relational Database Management System (RDBMS) is a Database Management System (DBMS)
in which there is a relationship among database tables.

Structured Query Language (SQL)

- SQL is a structured query language used to write structured queries that an RDBMS can understand.
- It manages data in a relational database management system (RDBMS).
- SQL is the first commercial language introduced for E.F. Codd's Relational Model of the database.
- It is used to perform all types of data operations on an RDBMS.
- Multiple vendors provide RDBMS like Oracle, MySQL, etc.
- SQL queries must be standardized for all vendors.
- A programmer's query must function for both Oracle and MySQL.
- ANSI SQL provides this standardization.
- All SQL queries must follow the protocols that ANSI SQL provides.

The syntax:

```
ALTER TABLE table_name
ADD(column_name datatype);
```

The below command adds a new column marks of type integer to the Student table.

ALTER TABLE student ADD (marks INT);

Alter Command

The alter command is used for altering the table structure. It can be used for:

- Adding a column to the existing table.
- Renaming any existing column.
- Changing the datatype of any column or modifying its size.
- Dropping a column from the table.

Alter Command - Drop a Column

The ALTER command can be used to drop or remove columns.

The syntax:

```
ALTER TABLE table_name DROP(column_name);
```

The below command will drop the age column from the table student.

```
ALTER TABLE student DROP (age);
```


The syntax:

```
ALTER TABLE table_name modify(column_name datatype);
```

The below command will modify the name column of the student table, to now hold up to 300 characters.

```
ALTER TABLE student MODIFY(name varchar(300));
```

Alter Command - Modify an Existing Column

The ALTER command can be used to modify the data type of any existing column.

Types of SQL Constraints

There are six different types of SQL constraints.

Note – We will only discuss about Primary and Foreign Key Constraints only.

Not Null Constraint

- The Not Null constraint can be applied to a database table column if you do not want the column to hold null values.
- It ensures that the column values are not null.

CREATE TABLE School.Student(student_roll_no INT Primary Key, name VARCHAR(100)
NOT NULL,age INT);

Unique Constraint

- The Unique constraint ensures that the column values of a table are unique.
- More than one column of the table can be unique in nature.

CREATE TABLE School.Student(student_roll_no INT Primary Key, name VARCHAR(100)
NOT NULL UNIQUE,age INT);

Default Constraint

The default constraint is used to assign a default value to a column if the values are not specified when inserting data into the table.

```
CREATE TABLE School.Student(student roll no INT Primary Key, name VARCHAR(100)
NOT NULL, age INT CHECK (age > 0), city VARCHAR (50) DEFAULT 'Mumbai';
```


Primary Key Constraint

- The primary key constraint uniquely identifies each row in a database table.
- It must contain a unique value and should not be null.
- The constraint can be applied while creating the table.
- The primary key rollNo must be a unique value and cannot be null.

CREATE TABLE School.Student(rollNo INT Primary Key, name VARCHAR(100), age INT);

Foreign Key Constraint – Customer and Orders

Customer_id	Customer_Name	address
101	Adam	Bangalore
102	Alex	Delhi
103	Stuart	Rohtak

Order_id	order_Name	Customer_id
10	Order1	101
11	Order2	103
12	Order3	102

```
CREATE table Customer (customer id int PRIMARY KEY, customer name
varchar(50) NOT NULL , address varchar(50));
```

CREATE table Orders (order id int PRIMARY KEY, order name varchar (60) NOT NULL, customer id int FOREIGN KEY REFERENCES Customer(customer id));

