Problem 1 – Information Measures and Source Coding (30 Points)

(a) (10 Points) Consider a source X on the alphabet $\mathcal{X} = \{1, 2, 3\}$ having probabilities

$$P_X(1) = \frac{1}{2}, \quad P_X(2) = p, \qquad P_X(3) = \frac{1}{2} - p$$

for some $p \in (0, \frac{1}{2})$. For which value(s) of $p \in (0, \frac{1}{2})$ will the Shannon-Fano code give the same average codeword length as the Huffman code? Explain.

(b) (10 Points) Consider a length-n source sequence $\mathbf{X} \in \mathcal{X}^n$ whose probability mass function (PMF) is given by

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2} \left(\prod_{i=1}^{n} P_1(x_i) \right) + \frac{1}{2} \left(\prod_{i=1}^{n} P_2(x_i) \right),$$

for some PMFs P_1 and P_2 on the alphabet \mathcal{X} , where $\mathbf{x} = (x_1, \dots, x_n)$. Describe a fixed-length source encoding and decoding method for \mathbf{X} based on typical sets, and briefly explain why it can reconstruct \mathbf{X} with probability arbitrarily close to one for any rate $R > \max\{H(P_1), H(P_2)\}$, where H(P) denotes the entropy of a random variable with PMF given by P. (Note: You may use any properties of typical sets that we proved in class.)

(c) (10 Points) Consider the discrete random variable $X \sim \text{Bernoulli}(\frac{1}{2})$ (i.e., $P_X(0) = P_X(1) = \frac{1}{2}$) and the continuous random variable $Z \sim \text{Uniform}[0,1]$, and let $Y = \alpha X + Z$ for some $\alpha > 0$. Show that $h(Y) = \min\{1, \alpha\}$, where $h(\cdot)$ denotes the differential entropy.

Problem 2 - Channel Coding (30 Points)

(a) (8 Points) Consider a discrete memoryless channel of the following form with input alphabet $\mathcal{X} = \{1, 2, 3, 4\}$ and output alphabet $\mathcal{Y} = \{1, 2, 3, 4, 5, 6\}$:

The precise transition probabilities are not shown, but any absent transitions correspond to a transition probability of zero.

- (i) In at most two sentences, explain why the channel capacity is at least 1 bit/use.
- (ii) In at most two sentences, explain why the channel capacity cannot exceed 2 bits/use.
- (b) (12 Points) Consider the following erasure-type channel with 3 inputs, 5 outputs, and parameters $\alpha \in (0, \frac{1}{2})$ and $\beta \in (0, \frac{1}{2})$:

Using the formula $C = \max_{P_X} I(X;Y)$, prove that the capacity is $(1 - \alpha - \beta) \log_2 3$ bits/use.

(c) (10 Points) Consider a continuous memoryless channel described by Y = X + Z, where X is subject to a power constraint $\mathbb{E}[X^2] \leq P$, but in contrast with the AWGN channel in the lecture, the noise is correlated with the input: $Z = \alpha X + V$ for some $\alpha > 0$, where $V \sim N(0, \sigma^2)$ is independent of X. Starting with the formula

$$C = \max_{f_X : \mathbb{E}[X^2] \le P} I(X; Y),$$

find the channel capacity in terms of P, σ^2 , and α .

(Note: Recall that the differential entropy of an $N(0,\sigma^2)$ random variable is $\frac{1}{2}\log_2(2\pi e\sigma^2)$)

Problem 3 – Linear Codes (20 Points)

- 1. (8 Points) Consider the repetition code that maps $0 \to 00000$ and $1 \to 11111$. Interpreting this as a linear code, write down the generator matrix \mathbf{G} , the parity check matrix \mathbf{H} , and the minimum distance d_{\min} . Explanations are not required.
- 2. (12 Points) Let G_1 (respectively, G_2) be a generator matrix whose code has rate R_1 (respectively, R_2) and minimum distance $d_{\min,1}$ (respectively, $d_{\min,2}$). Suppose that G_1 and G_2 have the same number of rows, and consider the generator matrix

$$\mathbf{G} = \begin{bmatrix} \mathbf{G}_1 & \mathbf{G}_2 \end{bmatrix}.$$

Consider the linear code with generator matrix \mathbf{G} , and answer the following:

- (i) Show that the rate R of the code satisfies $R = \frac{1}{(1/R_1) + (1/R_2)}$.
- (ii) Show that the minimum distance d_{\min} of the code satisfies $d_{\min} \geq d_{\min,1} + d_{\min,2}$.
- (iii) Do there exist any G_1 and G_2 such that $d_{\min} > d_{\min,1} + d_{\min,2}$? Explain.

Problem 4 – Advanced Channel Coding (20 Points)

(a) (10 Points) Recall from the lecture that the binary symmetric channel (BSC) has $\mathcal{X} = \mathcal{Y} = \{0,1\}$ and flips the input with probability δ , and that the binary erasure channel (BEC) has $\mathcal{X} = \{0,1\}$ and $\mathcal{Y} = \{0,1,e\}$, and given any input, the output is e with probability ϵ and equals the input otherwise.

Consider the following channel with input X and output $Y = (Y_0, Y_1)$:

Here $\mathrm{BEC}(\epsilon)$ is a binary erasure channel with parameter $\epsilon \in (0,1)$, and $\mathrm{BSC}(\delta)$ is a binary symmetric channel with parameter $\delta \in (0,1)$ that not only provides the usual output (written as Y_0 here), but also outputs the value $Z = \mathbf{1}\{X \neq Y_0\}$ equaling 1 if a flip occurred, and 0 otherwise. We can view this channel $P_{Y|X}$ as being a BSC in which we get to "peek" at the noise a fraction $1 - \epsilon$ of the time.

Assuming that the "flip event" in the BSC and the "erasure event" in the BEC occur independently of each other, show that the overall channel has capacity $C = 1 - \epsilon H_2(\delta)$, where $H_2(\delta) = \delta \log_2 \frac{1}{\delta} + (1 - \delta) \log_2 \frac{1}{1 - \delta}$ is the binary entropy function.

(b) (10 Points) Consider a channel with input $X = (X_A, X_B, X_C)$ and output $Y = (Y_A, Y_B, Y_C)$, where X_A , X_B , X_C , Y_A , Y_B , and Y_C are all binary-valued, with values $\{0, 1\}$. The channel transition probabilities are described as follows:

$$(Y_A, Y_B, Y_C) = \begin{cases} (X_A, X_B, X_C) & \text{with probability } 1 - \delta \\ (1 - X_A, 1 - X_B, 1 - X_C) & \text{with probability } \delta. \end{cases}$$

That is, either all 3 bits are flipped or none of them are.

Let C_1 be a codebook for a binary symmetric channel with rate R_1 and error probability ϵ_1 . Describe how this codebook can be used to communicate over the above channel at rate $2 + R_1$ with error probability ϵ_1 .