Matchings

Dr. Danny Nguyen Transcribed by Thomas Cohn

10/2/18

Defn: Let $G = (V_1 \sqcup V_2, E)$ be a bipartite graph. A matching $M \subset E$ is any collection of vertex-disjoint egdes. M is a perfect matching iff $|M| = |V_1| = |V_2|$.

Thm: (Halls) Let $S_1, \ldots, S_m \subset [n]$. There is a way to pick $x_i \in S_i$ s.t. $x_i \neq x_j, \forall i, j, \Leftrightarrow \forall$ subcollections S_{i_1}, \ldots, S_{i_k} , we have $|S_{i_1} \cup \cdots \cup S_{i_k}| \geq k \ (k \leq m)$.

Cor: $G = (V_1 \cup V_2, E)$ with $|V_1| = |V_2| = n$ has a perfect matching $\Leftrightarrow |N(x)| \ge |X| \ \forall X \subset V_1$.

Proof (Halls):

Necessary: Assume we can pick $x_i \in S_i$. Then $\forall S_{i_j}, x_{i_j} \in S_{i_j}$.

Sufficient: Induction on m.

m = 1: $|S_1| \ge 1$, so pick any $x_1 \in S_1$. m = k true, let's show m = k + 1.

Case 1: $|S_{i_1} \cup S_{i_2} \cup \cdots \cup S_{i_k}| \ge k$. Then we can choose any $x_{m+1} \in S_{m+1}$ and the statement still holds. Case 2: \exists some subcollection $|S_{i_1} \cup \cdots \cup S_{i_k}| = k$ for $x_{i_1} \in S_{i_1}, \ldots, x_{i_k} \in S_{i_k}$. S_{m+1} must have an eighbor outside this subcollection, or otherwise, the inductive hypothesis fails.

Define $S'_j = S_j \setminus \{S_{i_1}, \dots, S_{i_k}\}$. We know $\left|S_{i_1} \cup \dots \cup S_{i_k} \cup S_{i_{k+1}} \cup \dots \cup S_{i_{k+\ell}}\right| \ge k+\ell$. So $\left|S'_{i_{k+1}} \cup \dots \cup S'_{i_{k+\ell}}\right| = \ell + k - k = \ell$.

So by induction, we can pick $x_{k+1} \in S'_{k+1}, \dots, x_{k+\ell} \in S'_{k+\ell}$. \square

Defn: A maximal matching M is a matching with $|M| \ge |M'|$ for all matchings M'.

Defn: A subset $X \subset V$ is an edge cover if every edge is incident to at least one vertex $x \in X$.

Thm: (König) Assume $G = (V_1 \sqcup V_2, E)$ is a bipartite graph, perhaps without a perfect matching. Let $M \subset E$ be a maximal matching, and $C \subset V$ be a minimal edge cover. Then |M| = |C|. Proof:

 $|M| \leq |C|$: This is easily true; if our matching has size |C| + 1 or larger, then by the pigeonhole principle, two edges hit the same vertex.

 $|M| \ge |C|$: $\forall X \subset X_1$, $|N(x) \setminus Y_1| \ge |X|$. If not, we can decrease the size of the edge cover. Sort of a proof by picture. So for each element in C, pick a match.