Punctaj total: 90p + 10p oficiu **Nume:** ______

Examen Analiză complexă

Subjecte:

- 1. (a) (5 p) Scrieti seria Taylor în 0 pentru funcția $f(z) = z^2 \cos z + \sin z$.
 - (b) (5 p) Determinați dacă funcția $f(x+iy) = 2x^2 4y^2 + 4ixy$ este olomorfă pe \mathbb{C} .
 - (c) (5 p) Dați exemplu de funcție olomorfă cu pol de ordin 3 în punctul $z_0 = 1$, pentru care res(f, 1) = 2.
 - (d) (5 p) Dați exemplu de doua funcții olomorfe $f,g:\mathbb{C}\setminus\{0\}\to\mathbb{C}$ cu pol în 0, cu $\operatorname{res}(f,0)=\operatorname{res}(g,0)=0$, astfel încât $\operatorname{res}(fg,0)=1$.
 - (e) (5 p) Calculați

$$\int_{|z-1|=1} (\overline{z}-1)dz.$$

- 2. (a) (10 p) Calculați numărul soluțiilor ecuației $z^5+iz^3-4z+i=0$ în $\{z\in\mathbb{C}\mid 1<|z|<2\}.$
 - (b) (10 p) Demonstrați că $\int_{|z|=1} \left(z+\frac{1}{z}\right)^{2m+1} dz = 2\pi i \operatorname{C}_{2m+1}^m$, pentru orice $m \in \mathbb{Z}, m \geq 1$.
- 3. (a) (25 p) Calculați $\int_0^\infty \frac{1}{x^4+x^2+1} dx.$
- 4. (10 p) Reprezentati grafic domeniul

$$\Omega = \{ z = x + iy \mid -1 < x - y < 1 \}$$

și determinați o aplicație biolomorfă între Ω și discul unitate.

- 5. (10 p) Considerăm polinomul $P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0$, unde $n \in \mathbb{N}$, $a_k \in \mathbb{C}$ pentru orice $0 \le k \le n-1$. Considerăm funcția $Q(z) = z^n P(\frac{1}{z})$. Demonstrați că:
 - 1. $\max_{|z|=1} |Q(z)| = \max_{|z|=1} |P(z)|$.
 - 2. $\max_{|z|=1} |P(z)| \ge 1$.

1) (1)
$$f(z)=z^{2}asz+sin(z)$$

2 Somin dozor. Taylor pt blewse time.

 $z^{2}=z^{2}$
 $assz=z^{2}$
 $assz=z^{2}$

(3) Polosod 3 in 1=) $(2-1)^3$ res (h, 1) = 2 =) week him (2-1) olim Serie Lower t este 2 $=) 2(2-1)^{-1}$ $=) 2(2-1)^{-1}$ $=) 2(2-1)^{-1}$

 $(2) = \frac{1}{2^2} + \frac{1}{2} = g(2) \cdot \text{ou polino sins}[f, g]$ res[g, g] = 0

 $f = \left(\frac{1}{2^2} + \frac{1}{2}t^2\right)^2 = \frac{1}{2^4} + 2 \cdot \frac{1}{2}t^2 \cdot \frac{1}{2^2} + \frac{1}{4}t^2 = \frac{1}{2^4} + \left(\frac{1}{2} \cdot 1\right) + \frac{1}{4}t^2$ $= \frac{1}{2^4} + \left(\frac{1}{2} \cdot 1\right) + \frac{1}{4}t^2$ NS(f, g, o) = 1

 $\frac{G[12-1]=1]=1}{\Re(\Theta)=1+2^{i\Theta}} + \frac{1}{2\pi} = \frac{1}{2\pi}$

= $\frac{1}{2}$ $\frac{$

2)
$$0 |z| |z| |z| |z| = 2$$
 $p(z) = 2^5 p(z) = 2^5 + iz^3 - 4z + i$
 $p(z) = 2^5 p(z) = 2^5 + iz^3 - 4z + i$
 $p(z) = 2^5 p(z) = 2^5 + iz^3 - 4z + i$
 $p(z) = 2^5 p(z) = 2^5 p(z) - 2^5 p(z) + 2^5 p(z) = 2^5 p$

SIZI=1 (2+ =/2m+1)2m+1 d2=? $P(t) = (2+\frac{1}{2})^{2m+1} = G_{k=0}^{2m+1} C_{2m+1} + \frac{2^{k}(1)}{2} = 0$ $= \sum_{k=0}^{2m+1} \frac{2k-(2m+1)}{k}$ Dor observed 2 (2m+1 2 = C. 2+ C. 23.... douthã, este ont ca felod, deci integrale 12/21 din 17/18/s1 single cont si Un Couchy . Deci Sizi=1 P(z)dz = Sizi=1 k=0 Czm+1 z 2k-(2m+1)dz = = 3 (2m+1) ft de = 5 f(k 5 2k-(2m+1)) + Track

3).
$$+\infty$$
 1 $dx.$, x^{4+x^2+1} fet noro

 $i = S$ $\frac{1}{\sqrt{4+x^2+1}}$ $dx.$
 $j = \frac{1}{2} + S$ $\frac{1}{\sqrt{4+x^2+1}}$ dx
 $p(x) = x^{4+x^2+1}$ $= 0$ $j = \frac{1}{2} + S$ $\frac{1}{\sqrt{4+x^2+1}}$ dx

Fie R > 0. Consider conturul:

$$\Re_1: L-R,R_3 \rightarrow \downarrow$$
 $\Re_1: L-R,R_3 \rightarrow \downarrow$
 $\Re_2: Lo; \pi_3 \rightarrow \downarrow$

$$x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$$

 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{2} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{2} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} - x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x + 1)$
 $x^{4} + x^{4} + 1 = (x^{4} + x + 1)(x^{4} + x$

=) Pt R mf. de more, ×1, ×3 se ofla in int conturuli.

Din TR. Rez. =) Spl(t) dt = 2 Ti (res (2, X1) + res(2, X3))

$$p(z) = \frac{1}{(z-x_1)(z-x_2)(z-x_3)(z-x_4)}$$

Nor
$$S_{p}h(z)dz = \frac{1}{2R}S_{R}h(z)dz + S_{R}zh(z)dz$$
 $i = \frac{1}{2R}\int_{-1}^{1} dz = \frac{1}{2R}S_{R}h(z)dz + S_{R}zh(z)dz$
 $i = \frac{1}{2R}\int_{-1}^{1} dz = \frac{1}{2R}\int_{-1}^{1} dz$

$$2x_{1} = .1 + i\sqrt{3}$$

$$2x_{2} = 1 - i\sqrt{3}$$

$$2x_{3} = .4 + i\sqrt{3}$$

$$2x_{4} = -1 - i\sqrt{3}$$

$$2(x_{1} - x_{4}) = .2$$

$$2(x_{3} - x_{4}) = .2$$

$$2(x_{3} - x_{4}) = .2$$

$$2(x_{3} - x_{4}) = .2 + 2i\sqrt{3}$$

$$2(x_{3} - x_{4}) = .2i\sqrt{3}$$

$$2(x_{3} - x_{4}) = .2i\sqrt{3$$

5)
$$P(z) = z^{m} \cdot P(\frac{1}{z})$$
 $a(z) = z^{m} \cdot P(\frac{1}{z})$
 $a(z) = z^{m$