DÉRIVABILITÉ - ÉTUDE DE FONCTIONS

2.1 Dérivabilité d'une fonction en un point - dérivabilité sur un intervalle

Définitions 2.1

Soient f une fonction numérique définie sur un intervalle ouvert I et $a, b \in I$ tels que a < b.

(i) On dit que f est dérivable (resp. dérivable à droite, dérivable à gauche) au point a s'il existe un réel l tel que

$$\lim_{x \to a \text{ (resp. } a^+, a^-)} \frac{f(x) - f(a)}{x - a} = l.$$

l s'appelle le nombre dérivé (resp. nombre dérivé à droite, nombre dérivé à gauche) de f au point a et sera noté f'(a) (resp. $f'_d(a)$, $f'_q(a)$). On écrit :

$$\lim_{x \to a \text{ (resp. } a^+, a^-)} \frac{f(x) - f(a)}{x - a} = f'(a) \text{ (resp. } f'_d(a), f'_g(a)).$$

- (ii) On dit que f est dérivable sur I s'elle est dérivable en tout point de I.
- (iii) On dit que f est dérivable sur [a,b] s'elle est dérivable sur]a,b[, dérivable à droite de a et dérivable à gauche de b.

Propriété 2.2

$$f\text{est d\'erivable au point }a \Longleftrightarrow \begin{cases} f\text{ est d\'erivable à droite en }a,\\ f\text{ est d\'erivable à gauche en }a,\\ f'_d(a) = f'_g(a). \end{cases}$$

Conséquences:

(1) Si f est dérivable au point a alors (C_f) admet une tangente d'équation

$$y = f'(a)(x - a) + f(a)$$

au point (a, f(a)).

(2) Si f est dérivable à droite au point a alors (C_f) admet une demi-tangente d'équation

$$\begin{cases} y = f'_d(a)(x - a) + f(a) \\ x \geqslant a \end{cases}$$

9

au point (a, f(a)).

(3) Si f est dérivable à gauche au point a alors (C_f) admet une demi-tangente d'équation

$$\begin{cases} y = f'_g(a)(x - a) + f(a) \\ x \leqslant a \end{cases}$$

au point (a, f(a)).

(4) Si f est dérivable au point a, la fonction g définie par g(x) = f'(a)(x-a) + f(a) est appelée la fonction affine tangente à f (une approximation affine de f) au voisinage de a et on a :

$$x \simeq a \Longrightarrow f(x) \simeq g(x).$$

Exemple:

$$f(x) = \sqrt{x}, \ a = 1 \Longrightarrow g(x) = \frac{x+1}{2}$$

 $1,01 \simeq 1 \Longrightarrow f(1,01) \simeq g(1,01) \Longrightarrow \sqrt{1,01} \simeq 1,005$

Propriété 2.3

Si $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \pm \infty$ alors (C_f) admet une demi-tangente verticale d'équation x = a.

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = -\infty$$

$$\lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = +\infty$$

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = +\infty$$

$$\lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = +\infty$$

$$\lim_{x\to a^-}\frac{f(x)-f(a)}{x-a}=+\infty \qquad \qquad \lim_{x\to a^+}\frac{f(x)-f(a)}{x-a}=-\infty$$

Propriété 2.4

f est dérivable en $a \Rightarrow f$ est continue en a.

Opérations sur les fonctions dérivées 2.2

Propriété 2.5

Si f et g sont deux fonctions dérivables sur un intervalle I et $\alpha \in \mathbb{R}$ alors :

- (i) f + g est dérivable sur I et on a : (f + g)' = f' + g'.
- (ii) $f \times g$ est dérivable sur I et on a : $(f \times g)' = f' \times g + f \times g'$.
- (iii) αf est dérivable sur I et on a : $(\alpha f)' = \alpha f'$.
- (iv) Si de plus $g \neq 0$ sur I alors $\frac{1}{g}$ est dérivable sur I et on a : $\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$.
- (v) Si de plus $g \neq 0$ sur I alors $\frac{f}{g}$ est dérivable sur I et on a : $\left(\frac{f}{a}\right)' = -\frac{f'g g'f}{a^2}$.

Propriété 2.6

Soient f et g deux fonctions dérivables sur I et J respectivement telles que $f(I) \subset J$, alors $f \circ g$ est dérivable et on a : $(f \circ g)' = g' \times (f' \circ g)$.

Conséquences:

(i) Si f est dérivable sur un intervalle I et $n \in \mathbb{N}^* \setminus \{1\}$, alors f^n est dérivable sur I et on a :

$$(f^n)' = nf'f^{n-1}.$$

(ii) Si f est dérivable sur un intervalle I et f>0 sur I, alors \sqrt{f} est dérivable sur I et on a :

$$\left(\sqrt{f}\right)' = \frac{f'}{2\sqrt{f}}.$$

Propriété 2.7

Soit f une fonction dérivable (donc continue) et strictement monotone sur I telle que f(I)=J, alors sa réciproque f^{-1} est dérivable sur J et on a :

$$(\forall x \in J) : (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Conséquences:

(1) La fonction $x \mapsto \sqrt[n]{x}$ est dérivable sur $]0, +\infty[$ avec $n \in \mathbb{N}^*$ et on a :

$$(\forall x \in]0, +\infty[) : (\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}.$$

(2) Si f>0 et dérivable sur I alors $\sqrt[n]{f}$ est dérivable sur I avec $n\in\mathbb{N}^*$ et on a :

$$\left(\sqrt[n]{f}\right)' = \frac{f'}{n\sqrt[n]{f^{n-1}}}.$$

2.3 Primitives d'une fonction

Définition 2.8

Soit f une fonction définie sur un intervalle I.

On appelle fonction primitive de f sur I toute fonction F dérivable sur I telle que

$$(\forall x \in I) : F'(x) = f(x).$$

Propriété 2.9

Soient f une fonction définie sur un intervalle I et F une primitive de f sur I.

Les fonctions primitives de f sur I sont les fonctions définies sur I par $x \mapsto F(X) + C$ où C est une constante réelle.

Propriété 2.10

Soient f une fonction définie sur un intervalle $I, x_0 \in I$ et $y_0 \in \mathbb{R}$.

Si f admet une fonction primitive sur I alors il existe une unique primitive G de f sur I telle que $G(x_0) = y_0$.

Propriété 2.11

Soient f et g deux fonctions définies sur un intervalle I et $k \in \mathbb{R}$.

Si F et G sont deux fonctions primitives de f et g respectivement sur I, alors F+kG est une primitive de f+kg sur I.

Tableau des primitives des fonctions usuelles

la fonction f	les primitives de f	intervalle
$x \mapsto k, \ k \in \mathbb{R}$	$x \mapsto kx + c, \ c \in \mathbb{R}$	\mathbb{R}
$x \mapsto x^n, \ n \in \mathbb{N}^*$	$x \mapsto \frac{x^{n+1}}{n+1} + c, \ c \in \mathbb{R}$	\mathbb{R}
$x \mapsto \frac{1}{x^2}$	$x \mapsto -\frac{1}{x} + c, \ c \in \mathbb{R}$	\mathbb{R}^*
$x \mapsto \frac{1}{x^n}, \ n \in \mathbb{N}^* \setminus \{1\}$	$x \mapsto -\frac{1}{n-1} \cdot \frac{1}{x^{n-1}} + c, \ c \in \mathbb{R}$	\mathbb{R}^*
$x \mapsto \frac{1}{\sqrt{x}}$	$x \mapsto 2\sqrt{x} + c, \ c \in \mathbb{R}$	$]0,+\infty[$
$x \mapsto x^r, \ r \in \mathbb{Q}^* \setminus \{-1\}$	$x \mapsto \frac{x^{r+1}}{r+1} + c, \ c \in \mathbb{R}$	$]0,+\infty[$
$x \mapsto \cos(x)$	$x \mapsto \sin(x) + c, \ c \in \mathbb{R}$	\mathbb{R}
$x \mapsto \sin(x)$	$x \mapsto -\cos(x) + c, \ c \in \mathbb{R}$	\mathbb{R}
$x \mapsto 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$x \mapsto \tan(x) + c, \ c \in \mathbb{R}$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi;k\in\mathbb{Z}\}$

Tableau des primitives et les opérations.

la fonction f définie sur I	une primitive de f sur I	conditions
u' + v'	u + v	
u'v + v'u	uv	
$\frac{u'v - v'u}{v^2}$	$\frac{u}{v}$	$v \neq 0 \text{ sur } I$
$u'u^n, n \in \mathbb{N}^*$	$\frac{u^{n+1}}{n+1}$	
$\frac{u'}{u^2}$	$-\frac{1}{u}$	$u \neq 0 \text{ sur } I$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u > 0 sur I

$\frac{u'}{(\sqrt[n]{u})^{n-1}}, \ n \in \mathbb{N}^*$	$n\sqrt[n]{u}$	u > 0 sur I
$u'u^r, \ r \in \mathbb{Q}^* \setminus \{-1\}$	$\frac{x^{r+1}}{r+1} + c$	u > 0 sur I
$x \mapsto u'(ax+b), \ a \in \mathbb{R}^* \ et \ a \in \mathbb{R}$	$x \mapsto \frac{1}{a}u(ax+b)$	$]0,+\infty[$
$u'\sin(u)$	$-\cos(u)$	
$u'\cos(u)$	$\sin(u)$	
$\frac{u'}{\cos^2(u)}$	$\tan(u)$	$u \neq \frac{\pi}{2} + k\pi; \forall k \in \mathbb{Z}$

2.4 Branches infinies

La droite d'équation y = ax + b est une asymptote oblique à (C_f) au voisinage de $\pm \infty$ $\iff \lim_{x \to \pm \infty} (f(x) - (ax + b)) = 0$

Attention \triangle

$$\lim_{x\to\pm\infty}(f(x)-ax)=\pm\infty \Rightarrow \begin{array}{c} (C_f) \text{ admet une branche parabolique suivant La droite} \\ \text{d'équation } y=ax \text{ au voisinage de } \pm\infty \end{array}$$

Asymptotes:

Les branches paraboliques :

2.5. CONCAVITÉ

2.5 Concavité

x		\overline{a}	
f''	_	0	+
(C_f)	concave	 	convexe

x		a	
f''	+	0	_
(C_f)	convexe	 	concave

M(a, f(a)) est un point d'inflexion

Propriété 2.12

Si f" s'annule en a de I et change de signes au voisinage de a, alors le point A(a, f(a)) est un point d'inflexion de (C_f) .

Propriété 2.13

Si f' s'annule en a de I et ne change pas de signes au voisinage de a, alors le point A(a, f(a)) est un point d'inflexion de (C_f) .

2.6 Parité - symétrie - périodicité

Parité - periodicité :

type de f	définition	conséquences
f est paire	$(\forall x \in D_f) : \begin{cases} -x \in D_f \\ f(-x) = f(x) \end{cases}$	\star il suffit de l'étudier sur $D_f \cap \mathbb{R}^+$
	·	$\star (C_f)$ est symetrique par $\%$ à (OY)
f est impaire	$(\forall x \in D_f) : \begin{cases} -x \in D_f \\ f(-x) = -f(x) \end{cases}$	\star il suffit de l'étudier sur $D_f \cap \mathbb{R}^+$
		\star (C_f) est symetrique par $\%$ à O
f est périodique	$\forall x \in D_f$: $\begin{cases} x + T \in D_f \\ f(x + T) = f(x) \end{cases}$	il suffit de l'étudier sur
de période $T (T > 0)$		un intervalle de longueur T

Symetrie:

proprièté	équivalent à	conséquences
la droite $x = a$ est un	$(\forall x \in D_f) : \begin{cases} 2a - x \in D_f \\ f(2a - x) = f(x) \end{cases}$	il suffit de l'étudier sur
axe de symetrie de (C_f)		$D_f \cap [a, +\infty[$
la point $\Omega(a,b)$ est un		il suffit de l'étudier sur
centre de	$(\forall x \in D_f) : \begin{cases} 2a - x \in D_f \\ f(2a - x) = 2b - f(x) \end{cases}$	$D_f \cap [a, +\infty[$
symetrie de (C_f)	`	