Paradigmas de Programación

Compilación Inferencia de tipos Máquinas abstractas

1er cuatrimestre de 2024 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Introducción

Inferencia de tipos

Máquinas abstractas

Compiladores

¿Qué es un compilador?

Un compilador es un programa que traduce programas:

Entrada: programa escrito en un lenguaje fuente.

Salida: programa escrito en un **lenguaje objeto**.

Este proceso de traducción debe **preservar la semántica**. (O, mejor: aquellos aspectos que nos interesen de la semántica).

Compiladores

¿Para qué queremos un compilador?

Motivación principal

Traducir de lenguajes de alto nivel a lenguajes de bajo nivel.

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

```
movsd xmm0, QWORD PTR -32[rbp]
mulsd xmm0, xmm0
movsd xmm2, QWORD PTR -24[rbp]
movsd xmm1, QWORD PTR .LCO[rip]
mulsd xmm1, xmm2
mulsd xmm1, QWORD PTR -16[rbp]
subsd xmm0, xmm1
call sqrt@PLT
subsd xmm0, QWORD PTR -32[rbp]
movsd xmm1, QWORD PTR .LC1[rip]
divsd xmm0, xmm1
movsd xmm1, QWORD PTR -24[rbp]
mulsd xmm0, xmm1
movsd QWORD PTR -8[rbp], xmm0
```

Compiladores

Fases típicas de un compilador

programa fuente ANÁLISIS SINTÁCTICO árbol sintáctico ANÁLISIS SEMÁNTICO árbol sintáctico con anotaciones COMPILACIÓN representación intermedia **OPTIMIZACIÓN** representación intermedia optimizada GENERACIÓN DE CÓDIGO programa objeto

Introducción

Inferencia de tipos

Máquinas abstractas

Inferencia de tipos

Notación

Términos sin anotaciones de tipos:

$$U := x \mid \lambda x. U \mid UU \mid \text{True} \mid \text{False} \mid \text{if } U \text{ then } U \text{ else } U$$

Términos con anotaciones de tipos:

$$M ::= x \mid \lambda x : \tau . M \mid M M \mid True \mid False \mid if M then M else M$$

Notamos erase(M) al término sin anotaciones de tipos que resulta de borrar las anotaciones de tipos de M.

Ejemplo:
$$erase((\lambda x : Bool. x) True) = (\lambda x. x) True.$$

Inferencia de tipos

Definición

Un término U sin anotaciones de tipos es **tipable** sii existen:

```
un contexto de tipado \Gamma un término con anotaciones de tipos M un tipo \tau
```

tales que erase(M) = U y $\Gamma \vdash M : \tau$.

El **problema de inferencia de tipos** consiste en:

- Dado un término U, determinar si es tipable.
- En caso de que U sea tipable: hallar un contexto Γ, un término M y un tipo τ tales que erase(M) = U y Γ ⊢ M : τ.

Veremos un algoritmo para resolver este problema.

Inferencia de tipos

El algoritmo se basa en manipular tipos parcialmente conocidos.

Ejemplo — tipos parcialmente conocidos

- ▶ En *x* True sabemos que $x : Bool \rightarrow ?1$.
- ▶ En if x y then True else False sabemos que $x : ?2 \rightarrow Bool$.

Incorporamos incógnitas (?1, ?2, ?3, ...) a los tipos.

Vamos a necesitar resolver ecuaciones entre tipos con incógnitas.

Ejemplo — ecuaciones entre tipos

- ► $(?1 \rightarrow Bool) \stackrel{?}{=} ((Bool \rightarrow Bool) \rightarrow ?2)$ tiene solución: $?1 := (Bool \rightarrow Bool)$ y ?2 := Bool.
- ▶ $(?1 \rightarrow ?1) \stackrel{?}{=} ((\mathsf{Bool} \rightarrow \mathsf{Bool}) \rightarrow ?2)$ tiene solución: $?1 := (\mathsf{Bool} \rightarrow \mathsf{Bool})$ y $?2 := (\mathsf{Bool} \rightarrow \mathsf{Bool})$.
- $(?1 \rightarrow \mathsf{Bool}) \stackrel{?}{=} ?1$ no tiene solución.

Suponemos fijado un conjunto finito de constructores de tipos:

- ► Tipos constantes: Bool, Int,
- ► Constructores unarios: (List •), (Maybe •),
- ▶ Constructores binarios: $(\bullet \to \bullet)$, $(\bullet \times \bullet)$, (Either \bullet •),
- (Etcétera).

Los tipos se forman usando incógnitas y constructores:

$$\tau ::= ?n \mid C(\tau_1, \ldots, \tau_n)$$

La **unificación** es el problema de resolver sistemas de ecuaciones entre tipos con incógnitas.

Veremos primero un algoritmo de unificación.

Luego lo usaremos para dar un algoritmo de inferencia de tipos.

Una **sustitución** es una función que a cada incógnita le asocia un tipo.

Notamos:

$$\{?k_1 := \tau_1, \ldots, ?k_n := \tau_n\}$$

a la sustitución **S** tal que $\mathbf{S}(?k_i) = \tau_i$ para cada $1 \le i \le n$ y $\mathbf{S}(?k) = ?k$ para cualquier otra incógnita.

Si τ es un tipo, escribimos $\mathbf{S}(\tau)$ para el resultado de reemplazar cada incógnita de τ por el valor que le otorga \mathbf{S} .

Ejemplo — aplicación de una sustitución a un tipo

Si
$$S = \{?1 := Bool, ?3 := (?2 \rightarrow ?2)\}$$
, entonces:

$$\textbf{S}((?1 \rightarrow \mathsf{Bool}) \rightarrow ?3) = ((\mathsf{Bool} \rightarrow \mathsf{Bool}) \rightarrow (?2 \rightarrow ?2))$$

Un **problema de unificación** es un conjunto finito E de ecuaciones entre tipos que pueden involucrar incógnitas:

$$E = \{ \tau_1 \stackrel{?}{=} \sigma_1, \tau_2 \stackrel{?}{=} \sigma_2, \dots, \tau_n \stackrel{?}{=} \sigma_n \}$$

Un **unificador** para E es una sustitución S tal que:

$$\mathbf{S}(au_1) = \mathbf{S}(\sigma_1)$$
 $\mathbf{S}(au_2) = \mathbf{S}(\sigma_2)$
 \dots
 $\mathbf{S}(au_n) = \mathbf{S}(\sigma_n)$

En general, la solución a un problema de unificación no es única.

Ejemplo — problema de unificación con infinitas soluciones

$$\{?1 \stackrel{?}{=} ?2\}$$

tiene infinitos unificadores:

- ► {?1 := ?2}
- ► {?2 := ?1}
- ► {?1 := ?3, ?2 := ?3}
- ► {?1 := Bool, ?2 := Bool}
- **...**

Una sustitución S_A es más general que una sustitución S_B si existe una sustitución S_C tal que:

$$S_B = S_C \circ S_A$$

es decir, S_B se obtiene instanciando variables de S_A .

Para el siguiente problema de unificación:

$$E = \{ (?1 \rightarrow Bool) \stackrel{?}{=} ?2 \}$$

las siguientes sustituciones son unificadores:

- ▶ $S_1 = \{?1 := Bool, ?2 := (Bool \rightarrow Bool)\}$
 - ▶ $S_2 = \{?1 := Int, ?2 := (Int \rightarrow Bool)\}$
 - ▶ $S_3 = \{?1 := ?3, ?2 := (?3 \rightarrow Bool)\}$
 - ▶ $S_4 = \{?2 := (?1 \rightarrow Bool)\}$

¿Qué relación hay entre ellas? (¿Cuál es más general que cuál?).

Dado un problema de unificación E (conjunto de ecuaciones):

- Mientras $E \neq \emptyset$, se aplica sucesivamente alguna de las seis reglas que se detallan más adelante.
- La regla puede resultar en una falla.
- ▶ De lo contrario, la regla es de la forma $E \rightarrow_S E'$. La resolución del problema E se reduce a resolver otro problema E', aplicando la sustitución S.

Hay dos posibilidades:

- 1. $E = E_0 \rightarrow_{S_1} E_1 \rightarrow_{S_2} E_2 \rightarrow \ldots \rightarrow_{S_n} E_n \rightarrow_{S_{n+1}} falla$ En tal caso el problema de unificación E no tiene solución.
- 2. $E = E_0 \rightarrow_{\mathbf{S}_1} E_1 \rightarrow_{\mathbf{S}_2} E_2 \rightarrow \ldots \rightarrow_{\mathbf{S}_n} E_n = \emptyset$ En tal caso el problema de unificación E tiene solución.

$$\{x \stackrel{?}{=} x\} \cup E \xrightarrow{\text{Delete}} E$$

$$\{C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C(\sigma_1, \dots, \sigma_n)\} \cup E \xrightarrow{\text{Decompose}} \{\tau_1 \stackrel{?}{=} \sigma_1, \dots, \tau_n \stackrel{?}{=} \sigma_n\} \cup E$$

$$\{\tau \stackrel{?}{=} ?n\} \cup E \xrightarrow{\text{Swap}} \{?n \stackrel{?}{=} \tau\} \cup E \text{ si } \tau \text{ no es una incógnita}$$

$$\{?n \stackrel{?}{=} \tau\} \cup E \xrightarrow{\text{Elim}} \{?n := \tau\} (E)$$

$$\{?n \stackrel{?}{=} \tau\} \cup E \xrightarrow{\text{Elim}} \{?n := \tau\} (E)$$
si $?n$ no ocurre en τ

$$\{C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C'(\sigma_1, \dots, \sigma_m)\} \cup E \xrightarrow{\text{Clash}} \text{falla}$$
si $C \neq C'$

falla si $?n \neq \tau$ v ?n ocurre en τ

 $\{?n \stackrel{?}{=} \tau\} \cup E \xrightarrow{\text{Occurs-Check}}$

Teorema (Corrección del algoritmo de Martelli-Montanari)

- 1. El algoritmo termina para cualquier problema de unificación E.
- 2. Si E no tiene solución, el algoritmo llega a una falla.
- 3. Si E tiene solución, el algoritmo llega a \varnothing :

$$E=E_0 \rightarrow_{\textbf{S}_1} E_1 \rightarrow_{\textbf{S}_2} E_2 \rightarrow \ldots \rightarrow_{\textbf{S}_n} E_n=\varnothing$$

Además, $\mathbf{S} = \mathbf{S}_n \circ \ldots \circ \mathbf{S}_2 \circ \mathbf{S}_1$ es un unificador para E.

Además, dicho unificador es el *más general* posible. (Salvo renombre de incógnitas).

Definición (Unificador más general)

Notamos mgu(E) al unificador más general de E, si existe.

Ejemplo

Calcular unificadores más generales para los siguientes problemas de unificación:

- $ightharpoonup \{?1 \stackrel{?}{=} (?2 \rightarrow ?2), ?2 \stackrel{?}{=} (?1 \rightarrow ?1)\}$

El algoritmo \mathbb{W} recibe un término U sin anotaciones de tipos.

Procede recursivamente sobre la estructura de U:

- ▶ Puede fallar, indicando que *U* no es tipable.
- Puede tener éxito. En tal caso devuelve una tripla (Γ, M, τ), donde erase(M) = U y Γ ⊢ M : τ es válido.

Escribimos $\mathbb{W}(U) \leadsto \Gamma \vdash M : \tau$ para indicar que el algoritmo de inferencia tiene éxito cuando se le pasa U como entrada y devuelve una tripla (Γ, M, τ) .

Algoritmo \mathbb{W} de inferencia de tipos

```
\mathbb{W}(\mathsf{True}) \,\,\leadsto\,\, \varnothing \vdash \mathsf{True} : \mathsf{Bool}
```

$$\mathbb{W}(\mathsf{False}) \ \leadsto \ \varnothing \vdash \mathsf{False} : \mathsf{Bool}$$

 $\frac{?k}{\mathbb{W}(x)} \Leftrightarrow x : \frac{?k}{k} \vdash x : \frac{?k}{k}$

$$\mathbb{W}(U_2) \rightsquigarrow \Gamma_2 \vdash M_2 : \tau_2$$

$$\mathbb{W}(U_3) \rightsquigarrow \Gamma_3 \vdash M_3 : \tau_3$$

$$\mathbf{S} = \mathsf{mgu} \left(\begin{array}{c} \{\tau_1 \stackrel{?}{=} \mathsf{Bool}, \tau_2 \stackrel{?}{=} \tau_3\} \cup \\ \{\Gamma_i(\mathsf{x}) \stackrel{?}{=} \Gamma_j(\mathsf{x}) \mid i,j \in \{1,2,3\}, \ \mathsf{x} \in \Gamma_i \cap \Gamma_j\} \end{array} \right)$$

$$\mathbb{W}(\mathsf{if} \ U_1 \ \mathsf{then} \ U_2 \ \mathsf{else} \ U_3) \rightsquigarrow \mathbf{S}(\Gamma_1) \cup \mathbf{S}(\Gamma_2) \cup \mathbf{S}(\Gamma_3) \vdash \\ \mathbf{S}(\mathsf{if} \ M_1 \ \mathsf{then} \ M_2 \ \mathsf{else} \ M_3) : \mathbf{S}(\tau_2)$$

 $\mathbb{W}(U_1) \rightsquigarrow \Gamma_1 \vdash M_1 : \tau_1$

$$\mathbb{W}(U) \rightsquigarrow \Gamma_1 \vdash M : \tau$$

$$\mathbb{W}(V) \rightsquigarrow \Gamma_2 \vdash N : \sigma$$
?k es una incógnita fresca
$$\mathbf{S} = \text{mgu}\{\tau \stackrel{?}{=} \sigma \rightarrow ?k\} \cup \{\Gamma_1(x) \stackrel{?}{=} \Gamma_2(x) : x \in \Gamma_1 \cap \Gamma_2\}$$

$$\mathbb{W}(U|V) \rightsquigarrow \mathbf{S}(\Gamma_1) \cup \mathbf{S}(\Gamma_2) \vdash \mathbf{S}(M|N) : \mathbf{S}(?k)$$

$$\frac{\mathbb{W}(U) \rightsquigarrow \Gamma \vdash M : \tau \qquad \sigma = \begin{cases} \Gamma(x) & \text{si } x \in \Gamma \\ \text{una incógnita fresca } ?k & \text{si no} \end{cases}}{\mathbb{W}(\lambda x. U) \rightsquigarrow \Gamma \ominus \{x\} \vdash \lambda x : \sigma. M : \sigma \rightarrow \tau}$$

Teorema (Corrección del algoritmo W)

- 1. Si U no es tipable, $\mathbb{W}(U)$ falla al resolver alguna unificación.
- Si U es tipable, W(U) → Γ ⊢ M : τ, donde erase(M) = U y Γ ⊢ M : τ es un juicio válido.
 Además, Γ ⊢ M : τ es el juicio de tipado más general posible. Más precisamente, si Γ' ⊢ M' : τ' es un juicio válido y erase(M') = U, existe una sustitución S tal que:

$$\Gamma' \supseteq S(\Gamma)$$
 $M' = S(M)$
 $\tau' = S(\tau)$

Ejercicio. Aplicar el algoritmo de inferencia sobre los siguientes términos:

- ▶ λx. λy. y x
- \triangleright $(\lambda x. x x)(\lambda x. x x)$

Introducción

Inferencia de tipos

Máquinas abstractas

Un compilador minimalista

Imaginemos una máquina con tres instrucciones:

$$LDI(n)$$
 ADD MUL

Un programa ℓ (lista de instrucciones) opera sobre una *pila* π :

$$\begin{array}{c|cccc} \operatorname{LDI}(n) : \ell & \pi & \longrightarrow & \ell & n : \pi \\ \operatorname{ADD} : \ell & m : n : \pi & \longrightarrow & \ell & (n+m) : \pi \\ \operatorname{MUL} : \ell & m : n : \pi & \longrightarrow & \ell & (n*m) : \pi \\ \end{array}$$

Consideremos la siguiente gramática de expresiones aritméticas:

$$E ::= n | E + E | E * E$$

Una expresión se puede **compilar** a una lista de instrucciones:

$$\begin{array}{rcl}
\mathcal{C}\{n\} &=& \mathrm{LDI}(n) \\
\mathcal{C}\{E_1 + E_2\} &=& \mathcal{C}\{E_1\}; \mathcal{C}\{E_2\}; \mathrm{ADD} \\
\mathcal{C}\{E_1 * E_2\} &=& \mathcal{C}\{E_1\}; \mathcal{C}\{E_2\}; \mathrm{MUL}
\end{array}$$

Un compilador minimalista

Ejemplo — compilación

```
C\{(2*3) + (4*5)\}\ = LDI(2): LDI(3): MUL: LDI(4): LDI(5): MUL: ADD
```

	código	pila
	LDI(2): LDI(3): MUL: LDI(4): LDI(5): MUL: ADD	[]
\rightarrow	LDI(3): MUL: LDI(4): LDI(5): MUL: ADD	2
\rightarrow	MUL: LDI(4): LDI(5): MUL: ADD	3:2
\rightarrow	LDI(4): LDI(5): MUL: ADD	6
\rightarrow	LDI(5): MUL: ADD	4:6
\rightarrow	MUL: ADD	5:4:6
\rightarrow	ADD	20 : 6
\rightarrow		26

Un compilador para el cálculo- λ con booleanos

Veremos cómo definir un compilador:

- Lenguaje fuente: términos del cálculo- λ con booleanos.
- Lenguaje objeto: código para la máquina abstracta SECD.

El compilador implementa la estrategia call-by-value. La evaluación de una aplicación $M\ N$ es de izquierda a derecha.

Una **máquina abstracta** es una abstracción de la arquitectura real. Es sencillo traducir su código a un lenguaje de bajo nivel.

La máquina SECD

La máquina SECD trabaja con los siguientes tipos de datos:

Las instrucciones de la máquina son:

Un estado de la máquina es una 4-upla (ℓ, π, e, d) . Lo notamos así:

código	pila	entorno	dump
--------	------	---------	------

La máquina SECD — transiciones

Los estados son de la forma código pila entorno dump.

La máquina SECD

Ejemplo de ejecución de la máquina SECD

Compilación del cálculo- λ a la máquina SECD

Definición del compilador

Dada una lista de variables $\omega = [z_1, \dots, z_n]$ y un término M del cálculo- λ , definimos una lista de instrucciones $\mathcal{C}_{\omega}\{M\}$ por recursión estructural sobre M:

```
 \begin{array}{lll} \mathcal{C}_{\omega}\{\mathsf{True}\} & = & \mathsf{LDB}(\mathsf{tt}) \\ \mathcal{C}_{\omega}\{\mathsf{False}\} & = & \mathsf{LDB}(\mathsf{ff}) \\ \mathcal{C}_{\omega}\{\mathsf{if}\ M\ \mathsf{then}\ N\ \mathsf{else}\ P\} & = & \mathcal{C}_{\omega}\{M\}; \mathsf{TEST}(\mathcal{C}_{\omega}\{N\}, \mathcal{C}_{\omega}\{P\}) \\ \mathcal{C}_{\omega}\{x\} & = & \mathsf{LD}(i) \\ & & \mathsf{si}\ i\ \mathsf{es}\ \mathsf{el}\ \mathsf{menor}\ \mathsf{indice}\ \mathsf{t.q.}\ \omega[i] = x \\ \mathcal{C}_{\omega}\{\lambda x.\ M\} & = & \mathsf{MKCLO}(\mathcal{C}_{x:\omega}\{M\}; \mathsf{RET}) \\ \mathcal{C}_{\omega}\{M\ N\} & = & \mathcal{C}_{\omega}\{M\}; \mathcal{C}_{\omega}\{N\}; \mathsf{AP} \\ \end{array}
```

Compilación del cálculo- λ a la máquina SECD

Ejemplo de compilación

Compilación del cálculo- λ a la máquina SECD

Teorema (Corrección del compilador)

Sea M un término cerrado del cálculo- λ y v un valor booleano. Son equivalentes:

- 1. $M \rightarrow^* v$
- 2. $C_{[]}\{M\} \mid [] \mid [] \mid [] \longrightarrow^* [] \mid v : \pi \mid e \mid d$ para ciertos π, e, d .

Otras máquinas abstractas

Origen de la máquina SECD:

P. J. Landin. *The mechanical evaluation of expressions*. 1964. Se puede extender para incorporar otras características.

Hay otros esquemas de compilación a máquinas abstractas:

- 1. Máquina de Krivine para evaluación call-by-name.
- 2. Máquina ZINC de Leroy.
- 3. Máquina de Sestoft, para evaluación "lazy" (call-by-need).
- 4. Máquina de Crégut, para evaluar términos con variables libres.

. . .