2013-2014 学年线性代数 I (H) 期末

任课老师: 统一命卷 考试时长: 120 分钟

- 一、 (10 分) 映射 $T: \mathbf{R}^3 \to \mathbf{R}^2$ 由 $T(x_1, x_2, x_3) = (2x_1 + 3x_2 x_3, x_1 + x_3)$ 定义.
 - (1) 证明 T 是线性映射.
 - (2) 给出 T 关于 \mathbb{R}^3 和 \mathbb{R}^2 的标准基的矩阵表示.
 - (3) 给出T的核 ker(T)的一组基.
- 二、(10 分) 记 $V = \{f : \mathbf{R} \to \mathbf{R} | f \text{ 可导 } \}$, 即 V 是由实数导自身的全体可导函数所构成的集合.
 - (1) 试给出 V 上加法和数乘运算, 使 V 成为实线性空间, 并写出 V 中的零向量.
 - (2) 记 $S = \{f_1, f_2, f_3\}$, 其中

$$f_1(x) = x; f_2(x) = \sin x; f_3(x) = e^x, \forall x \in \mathbf{R}.$$

证明 $S \in V$ 的线性无关子集.

- 三、 $(10 \, \mathcal{G})$ 设 $(\, ,\,)$ 是实线性空间 V 的内积, $B=\{v_1,v_2,\ldots,v_n\}$ 是 V 的一组单位正交基
 - (1) 证明: 对任意的 $x, y \in V$, 有 $(x, y) = \sum_{i=1}^{n} (x, v_i)(y, v_i)$.
 - (2) 设 $x = \sum_{i=1}^{n} (-1)^{i} v_{i}$ 和 $y = \sum_{i=1}^{n} v_{i}$ 的夹角是 θ , 求 $\cos \theta$, 并指出 x 和 y 是否正交.
- 四、(10 分)设 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是 4 维实线性空间 **R**⁴ 的列向量,已知 4 阶行列式 $|(\alpha_1, \alpha_2, \alpha_3, \beta_1)| = d_1, |(\beta_2, \alpha_3, \alpha_2, \alpha_1)| = d_2$. 求下面 4 阶方阵的行列式.
 - (1) $A = (3\alpha_1 100\alpha_2, 7\alpha_2, \alpha_3, \beta_1).$
 - (2) $B = (5\beta_1 + 6\beta_2, \alpha_1, \alpha_2, \alpha_3).$
- 五、 (10 分) 设域 **F** 上 n 维线性空间 V 的非零向量都是线性映射 $T:V\to V$ 的特征向量.
 - (1) 证明 T 是数乘映射,即存在 $\lambda \in \mathbf{F}$,使得对于任何 $v \in V$,有 $T(v) = \lambda v$.
 - (2) 给出 T 的秩和零度 (T 的零度 = $\dim(\ker(T))$).

六、
$$(10 \ \%)$$
 令 $A = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & x & y \end{pmatrix}$, 其特征多项式 $f(\lambda) = \lambda^3 + \lambda + 2$.

- (1) 求 x 和 y 的值.
- (2) 若将 A 看作实矩阵, A 是否可对角化? 为什么?
- (3) 若将 A 看作复矩阵, A 是否可对角化? 为什么?
- 七、 $(10 \, \text{分})$ 设 $A \, \text{和} \, B \, \text{分别是} \, m \times n \, \text{和} \, n \times m \, \text{矩阵}.$
 - (1) 设 $\lambda \neq 0$. 证明 $\lambda \neq m \times m$ 矩阵 AB 的特征值当且仅当 $\lambda \neq m \times n$ 矩阵 BA 的特征值.
 - (2) 证明 $I_m AB$ 是可逆矩阵当且仅当 $I_n BA$ 是可逆矩阵 (I_m 是 m 阶单位矩阵, I_n 是 n 阶单位矩阵).
- 八、 (10 分) 设实二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 4x_1x_2 4x_2x_3$.
 - (1) 求实对称矩阵 A, 使 $f(x_1, x_2, x_3) = (x_1, x_2, x_3)A(x_1, x_2, x_3)^T$.
 - (2) 求可逆矩阵 P, 使 $P^{T}AP$ 是 A 的相合规范形.
 - (3) 给出 f 的正惯性指数和负惯性指数,并指出 f 是否正定或负定.
- 九、(20分)判断下面命题的真伪. 若它是真命题,给出一个简单证明; 若它是伪命题,举一个具体的反例将它否定.
 - (1) 域 \mathbf{F} 上所有 n 阶不可逆方阵所构成的集合是 n 阶矩阵空间 $M_n(\mathbf{F})$ 的子空间.
 - (2) 对称矩阵 A 的伴随矩阵 A* 也是对称矩阵.
 - (3) 设 $A \neq m \times n$ 矩阵, $I_m \neq m$ 阶单位阵, $B = (A|I_m) \neq A$ 的增广矩阵, 则 B 的秩 r(B) = m.
 - (4) 若 $\dim(V) = n, \dim(W) = m$,且 n < m,则任何线性映射 $T: V \to W$ 都不可能是满射.