Prof. Dr. Özlem Imamoglu

Nur die Aufgaben mit einem * werden korrigiert.

1.1. MC Fragen: Supremum und Infimum auf \mathbb{R} . Wählen Sie die einzig richtige Antwort.

(a) 2 ist eine obere Schranke von [0, 1).

□ Ja

□ Nein

(b) Wenn $A \subset B$ und A ein Maximum besitzt, dann besitzt auch B ein Maximum.

 \Box Ja

□ Nein

(c) $\min\{\frac{k}{k+2}\mid k\in\mathbb{N}\}=0$. Hier ist $\mathbb{N}=\{0,1,2,\ldots\}$ die Menge der natürlichen Zahlen.

 \Box Ja

□ Nein

(d) Sei S eine nichtleere, nach oben beschränkte Teilmenge von \mathbb{R} und sei $a \in \mathbb{R}$ ihr Supremum. Dann gilt:

 \square für jedes $\varepsilon > 0$ existiert eine obere Schranke b von S, so dass $a - \varepsilon < b < a$;

 $\hfill \square$ $S \setminus \{a\}$ besitzt ein Maximum;

 \square a ist das Infimum der oberen Schranken.

*1.2. Axiome der reellen Zahlen. Zeigen Sie, dass für alle $x, y, u, v \in \mathbb{R}$, wobei $x \leq y$ und $u \leq v$, folgendes gilt:

 $x+u \leq y+v.$

1.3. Supremum und Infimum I. Seien $a, b \in \mathbb{R}$, mit a > 0 und S eine nichtleere, von oben beschränkte Menge. Beweisen Sie, dass folgendes gilt:

$$\sup_{x \in S} (ax + b) = a \sup_{x \in S} x + b.$$

*1.4. Supremum und Infimum II. Bestimmen Sie, falls vorhanden, das Infimum, Supremum, Minimum und Maximum der folgenden Teilmengen der reellen Zahlen:

$$A_1 = \left\{ x^2 - 5x + 6 \mid x \in \mathbb{R} \right\},$$

$$A_2 = \left\{ \frac{1}{2+k} + \frac{1}{3+m} \mid k, m \in \mathbb{N} \right\}.$$

- 1.5. Komplexe Zahlen Wiederholung. Finden Sie für jede der folgenden komplexen Zahlen \boldsymbol{z}
 - ihre kartesische Form A + iB,
 - ihren Betrag |z|,
 - ihr Konjugiertes \bar{z} ,
 - ihr Reziprokes 1/z (in kartesischer Form):

$$z_1 = -42,$$
 $z_2 = -\frac{1}{i},$ $z_3 = \frac{1-i}{1+i},$ $z_4 = \cos \alpha + i \sin \alpha,$ $z_5 = \sin \alpha + i \cos \alpha,$ $z_6 = 2022 + i^{2021},$ $z_7 = (1+i)^6,$

wobei $\alpha \in \mathbb{R}$.

Hinweis: Vielleicht möchten Sie z_7 zuerst in trigonometrischer Form schreiben.

Bemerkung: Die kartesische Form darf nicht i in dem Nenner erhalten! Z.B. 1+i ist OK, 1/(1+i) nicht.