

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA

ANÁLISE NUMÉRICA

Exercícios de Interpolação Polinomial

1. Considere a tabela de uma função f:

x	2	4	6
f(x)	8	-3	-7

Determine:

- (a) Os polinómios de Lagrange.
- (b) O polinómio interpolador de Lagrange.
- (c) Um valor aproximado de f(5).
- 2. Considere os valores da temperatura ambiente observados em determinadas horas do dia:

h	8	10	13	20
T	14°	18°	27°	15°

Determine o polinómio interpolador de Lagrange e utilize-o para calcular um valor aproximado da temperatura às 16h10m.

3. Considere uma função para a qual só se conhecem os seguintes valores tabelados:

x	1	3	4	5
f(x)	1	1.732	2	2.236

- (a) Construa a tabela de diferenças divididas.
- (b) Utilize a fórmula de Newton com diferenças divididas para calcular $P_1(x)$, $P_2(x)$ e $P_3(x)$.
- (c) Obtenha valores aproximados de f(2) calculando $P_1(2), P_2(2)$ e $P_3(2)$.
- (d) Sabendo que $f(x) = \sqrt{x}$, determine um majorante para o erro absoluto cometido em cada uma das aproximações.
- 4. Considere uma função f para a qual só se conhecem os seguintes valores tabelados:

\boldsymbol{x}	1.00	1.05	1.10	1.15	1.20
f(x)	1.000000	1.024695	1.048809	1.072381	1.095445

- (a) Construa a tabela das diferenças finitas.
- (b) Recorra à fórmula simplificada de Gregory-Newton com diferenças finitas para calcular um valor aproximado de f(1.13), através do polinómio interpolador P_n com n = 1, 2, 3, 4.

5. Seja f uma função de classe $C^4(\mathbb{R})$, tal que

$$f(1) = 0, f[0,1] = 2, f[-1,0,1] = 0 \text{ e } f[-1,0,1,2] = 2.$$

- (a) Determine o polinómio P_3 de grau menor ou igual a 3 que interpola f nos nós -1,0,1 e 2. Calcule $P_3\left(\frac{1}{2}\right)$.
- (b) Calcule as diferenças divididas f[1, 2] e f[0, 1, 2].
- 6. Considere uma função f polinimial de grau 2 para a qual só se conhecem os seguintes valores:

x	-2	-1	0	1
f(x)	12	4	-2	y

- (a) Indique o valor de y e determine o polinómio interpolador de f com grau menor ou igual a 3.
- (b) Considerando os três primeiros pontos, determine o polinómio interpolador de Lagrange. O resultado seria o mesmo caso considerasse os quatro pontos? Justifique.
- 7. Considere o seguinte suporte de interpolação:

x	-2	0	2	4
f(x)	-17	5	-5	y

que se sabe representar o polinómio $P(x) = x^3 + a_2x^2 + a_1x + 5$.

- (a) Que relação existe entre o polinómio interpolador que passa nos três primeiros pontos e o polinómio P?
- (b) Qual o valor de f[-2, 0, 2, 4]?
- (c) Se $\Delta^2 f(0) = 16$, qual o valor de f(4)?
- 8. A velocidade v (em m/s) de uma partícula em função do tempo t (em s) é dada na seguinte tabela:

- (a) Determine o polinómio interpolador de v de maior grau.
- (b) Calcule uma aproximação de v(4).
- (c) Considerando os 4 primeiros instantes, calcule um valor aproximado de v(4) pela fórmula simplificada de Gregory-Newton. Compare com o resultado obtido em b) e justifique.
- (d) Utilize a interpolação inversa para calcular o 1º instante t em que a velocidade é 5m/s.

2

9. Considere a seguinte tabela:

x	-3	-1	1	3
f(x)	-33	14	-2	-5

- (a) Sabendo que a função tabelada é contínua e estritamente monótona em [-1, 3], determine por interpolação inversa o zero da função situado no intervalo [-1, 1], utilizando o maior número possível de nós. Justifique a escolha dos nós.
- (b) Obtenha o polinómio interpolador de f que passa nos últimos três nós. Se determinasse o zero deste polinómio no intervalo [-1,1] obteria o mesmo resultado que na alínea anterior? Justifique.