

Data-driven prognostic model for temperature field in additive manufacturing based on the high-fidelity thermal-fluid flow simulation

Fan CHEN (4th year PHD student)

Email: e0348805@u.nus.edu

Supervisor: Prof. Wentao YAN

Email: mpeyanw@nus.edu.sg

Problem

Overall framework

Temperature field parameterization

Curve-fitting of the $T(n_T)$ isothermal points at the l^{th} layer

Output variables: a_1, a_2, b

Accuracy of the isotherms extraction (Inconel 625)

The grain evolution and thermal stress are essentially determined by the temperature field at and around the molten pool boundary (1000~1560 K).

Two main factors:

- . Contour numbers
- 2. Mesh size of the simulation

 N_T temperature contours

Below 1000 K, the solid-state phase transformations barely occur and the residual stresses do not change much.

Temperature field parameterization

Output variable: L

Curve shape and temperature gradient in two regions are quite different.

Fitting of the isothermal points of $(T(n_T) \pm \Delta T)$ K

MMLDT CSET 2021 National University of Singapore

Fitting of the reference lines

Output variables: Δx , θ , L

Longitudinal symmetric plane

(Inconel 625)

Input: manufacturing parameters for the thermal-fluid flow simulation samples

Data-driven algorithms

[V, P]

Output: the geometry features of the isotherms

 $[a_1, a_2, b, L, \theta, \Delta x, T_{peak}]$

Data-driven algorithms

Gaussian process regression (GPR)

$$f = [f(x_1), f(x_2), \dots, f(x_n)]^{\top}$$

$$P_0(f \mid X) \sim \mathcal{N}(f \mid 0, K(X, X))$$

$$\left[egin{array}{c} oldsymbol{Y} \ oldsymbol{f}_{*} \end{array}
ight] \sim \mathcal{N}\left(oldsymbol{0}, \left[egin{array}{ccc} oldsymbol{K}(oldsymbol{X},oldsymbol{X}) + \sigma_{n}^{2}oldsymbol{I} & oldsymbol{K}(oldsymbol{X},oldsymbol{X}_{*}) \ oldsymbol{K}(oldsymbol{X}_{*},oldsymbol{X}) & oldsymbol{K}(oldsymbol{X}_{*},oldsymbol{X}_{*}) \end{array}
ight]
ight)$$

$$\begin{cases} P_0(\boldsymbol{f}_* \mid \boldsymbol{X}_*) \sim \mathcal{N}\left(\mu_*, \sigma_*^2\right) \\ \mu_* = \boldsymbol{K}\left(\boldsymbol{X}_*, \boldsymbol{X}\right) \left[\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I}\right]^{-1} \boldsymbol{f} \\ \sigma_*^2 = \boldsymbol{K}\left(\boldsymbol{X}_*, \boldsymbol{X}_*\right) - \boldsymbol{K}\left(\boldsymbol{X}_*, \boldsymbol{X}\right) \left[\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I}\right]^{-1} \boldsymbol{K}\left(\boldsymbol{X}, \boldsymbol{X}_*\right) \end{cases}$$

Quadratic regression (QR)

$$\eta = \beta_0 + \sum_{j=1}^k \beta_j x_j + \sum_{j=1}^k \beta_{jj} x_j^2 + \sum_{i=1, j=2}^k \beta_{ij} x_i x_j$$

Two main factors:

- High accuracy
- Fast predicting speed

Feedforward neuronal network

$$\begin{cases} w_{ji}^{(s)}(n+1) = w_{ji}^{(s)}(n) + \eta \delta_{j}^{(s)}(n) x_{\text{out},i}^{(s-1)}(n) \\ \delta_{j}^{(s)}(n) = \left(d(n) - x_{\text{out},j}^{(s)}(n) \right) \varphi^{(s)\prime} \left(v_{j}^{(s)}(n) \right) \text{ (output layer)} \\ \delta_{j}^{(s)}(n) = \left(\sum_{k=1}^{n_{s+1}} \delta_{k}^{(s+1)}(n) w_{kj}^{(s+1)}(n) \right) \varphi^{(s)\prime} \left(v_{j}^{(s)}(n) \right) \text{ (hidden layer)} \end{cases}$$

Support vector regression (SVR), Linear regression (LR)

Model setting

Fitting function for isotherms

Ellipse function:
$$\frac{(x-x_f)^2}{a^2} + \frac{y^2}{b^2} = 1$$

Polynomial function: $y = c_1 (x - x_f)^{index} + c_2$

Mean square errors:
$$MSE = \frac{1}{n_s} \sum_{i=1}^{n_s} (Y_i - \hat{Y}_i)^2$$

(Tested on No. 1~ No. 26)

Fitting performance of different functions

10th layer of sample no. 26

Training data sets: no.1~ no.26

Performance (MSE) of different algorithms on different output variables

Layer numbers <i>L</i>				
Algorith	hm 1000 K	$1200~\mathrm{K}$	$1400~\mathrm{K}$	$1560~\mathrm{K}$
LR	10.04	7.96	8.04	7.77
QR	3.62	3.35	3.77	4.04
SVR	13.81	13.12	12.58	12.27
GPR	2.58	3.42	4.04	4.46

L layers

	Slope angle θ				
A	lgorithm	$1000~\mathrm{K}$	$1200~\mathrm{K}$	$1400~\mathrm{K}$	$1560~\mathrm{K}$
	LR	0.3218	0.3973	0.3577	0.2708
	QR	0.2171	0.1822	0.1291	0.1110
	SVR	0.3616	0.4267	0.3768	0.3018
	GPR	0.1219	0.0432	0.0016	0.0096

Model setting

Training data sets: no.1~ no.26

Performance (MSE) of different algorithms on different output variables

	Relative distance Δx			
A	lgorithm	1200 K	1400 K	1560 K
	LR	2.79	8.20	6.59
	QR	2.03	5.75	4.84
	SVR	3.11	10.82	8.13
	GPR	5.87	14.83	8.65

Different training datasets

Testing Sample no. 41 V =1 m/s P =40 W

Predicted isotherms of Region 2

Temperature field reconstruction

Training: No. 1~40

Testing Sample: no. 41, V=1 m/s, P=40 W

Node Q

MMLDT National University of Singapore

Thermal stress history on node P

(Similar trend and level)

Thermal stress history on node P

Due to the small level of the Y-Y and Z-Z stress components, the deviations affect less on the Mises-stress.

Training: No. 1~40

Testing Sample no. 42, V = 1 m/s, P = 85 W

Grain growth

Average grain volume:

Data-driven prediction: 1032.2µm3₂₂

Ground truth: 1285.5µm3.

Deviation: 19.7 %

Less grains with high aspect ratios in the prediction due to the under prediction of the molten pool depth.

Computational cost

The computational cost of the data-driven predicted model is reduced by at least 70 %.

	Node number	CFD data	Data-driven prediction
Case 1	21620 (12 CPUs)	70 min	20 min
Case 2	168636 (24 CPUs)	$11h\ 15\ \mathrm{min}$	$2~\mathrm{h}~14~\mathrm{min}$

Application: Data-driven predicted 5-track 3-layer AM case

Step: Step-1 Increment 0: Step Time = 0.000

- No heat transfer
- No thermal-fluid flow calculation
- No CFD temperature files loading

The simulation case with 1400+ steps can be finished within 36 CPU hours, which is nearly impossible for other thermo-mechanical models.

Thank you

Fan Chen

Email: <u>e0348805@u.nus.edu</u>

Yan group website: https://blog.nus.edu.sg/yanwt/

Fan Chen, Min Yang, Wentao Yan*, Data-driven prognostic model for temperature field in additive manufacturing based on the high-fidelity thermal-fluid flow simulation. (under review)