Unit 6 Optimization & Gradient Descent

Prof. Phil Schniter

ECE 4300: Introduction to Machine Learning, Sp20

Learning objectives

- Identify the cost function, parameters, and constraints in an optimization problem
- Compute the gradient of a cost function for scalar, vector, or matrix parameters
- Efficiently compute a gradient in Python
- Write the gradient-descent update
- Understand the effect of the stepsize on convergence
- Be familiar with adaptive stepsize schemes like the Armijo rule
- Understand the implications of convexity for gradient descent
- Determine if a loss function is convex

2/38

Outline

- Motivating Example: Build an Optimizer for Logistic Regression
- Gradients of Multi-Variable Functions
- Gradient Descent
- Adaptive Stepsize via the Armijo Rule
- Convexity

3 / 38

Motivation: Build an Optimizer for Logistic Regression

■ Recall the optimization problem for binary logistic regression with $y_i \in \{0,1\}$:

$$\boldsymbol{w}_{\mathsf{ml}} \triangleq \arg\min_{\boldsymbol{w}} \sum_{i=1}^{n} \left(\ln[1 + e^{z_i}] - y_i z_i \right) \text{ for } z_i = [1 \ \boldsymbol{x}_i^{\mathsf{T}}] \boldsymbol{w}$$

which has no closed-form solution. (For brevity, we use $w_0=b$ here.)

■ Previously, we used the LogisticRegression method in sklearn to solve it:

- Can we solve this problem ourselves?
- Yes! And the tools we will learn will be very useful later

4 / 38

Outline

- Motivating Example: Build an Optimizer for Logistic Regression
- Gradients of Multi-Variable Functions
- Gradient Descent
- Adaptive Stepsize via the Armijo Rule
- Convexity

Gradients and optimization

- lacksquare Often, we need to find the minimizer of a cost, i.e., $\widehat{m{w}} = rg \min_{m{w}} J(m{w})$
- lacksquare The gradient $abla J(oldsymbol{w})$ is very useful in this case
 - $lackbox{f V} J(\widehat{m w}) = {f 0}$ at the minimizer $\widehat{m w}$
 - $\nabla J(w)$ gives the direction of maximum increase and slope at w
 - $\nabla J(\boldsymbol{w})$ exists if $J(\cdot)$ is sufficiently smooth at \boldsymbol{w} .
 - We will assume this is the case

6 / 38

■ The gradient can also be used to linearly approximate a function (details later)

Definition of the gradient

- lacktriangle Consider a scalar-valued function $f(\cdot)$
- If the input is vector-valued, then the gradient is vector-valued:

$$\nabla f(\boldsymbol{w}) = \begin{bmatrix} \partial f(\boldsymbol{w})/\partial w_1 \\ \vdots \\ \partial f(\boldsymbol{w})/\partial w_d \end{bmatrix}$$

• If the input is matrix-valued, then the gradient is matrix-valued:

$$\nabla f(\mathbf{W}) = \begin{bmatrix} \partial f(\mathbf{W})/\partial w_{11} & \cdots & \partial f(\mathbf{W})/\partial w_{1k} \\ \vdots & & \vdots \\ \partial f(\mathbf{W})/\partial w_{d1} & \cdots & \partial f(\mathbf{W})/\partial w_{dk} \end{bmatrix}$$

■ The gradient always has the same dimensions as the input!

Example 1

• Cost:
$$f(\boldsymbol{w}) = w_1^2 + 2w_1w_2^3$$
, $\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

- Partial derivatives:
 - $\partial f(w)/\partial w_1 = 2w_1 + 2w_2^3$
 - $\partial f(\boldsymbol{w})/\partial w_2 = 6w_1w_2^2$
- Gradient: $\nabla f(\boldsymbol{w}) = \begin{bmatrix} 2w_1 + 2w_2^3 \\ 6w_1w_2^2 \end{bmatrix}$
- Example on right:
 - lacksquare computes $f(oldsymbol{w})$ & $\nabla f(oldsymbol{w})$ at $oldsymbol{w} = egin{bmatrix} 2 \\ 4 \end{bmatrix}$
 - gradient is a numpy array

```
def feval(w):
    # Function
    f = w[0]**2 + 2*w[0]*(w[1]**3)
    # Gradient
    df0 = 2*w[0]+2*(w[1]**3)
    df1 = 6*w[0]*(w[1]**2)
    fgrad = np.array([df0, df1])
    return f, fgrad
# Point to evaluate
w = np.array([2,4])
f, fgrad = feval(w)
```

Example 2

Loss function:

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - ae^{-bx_i})^2, \quad \boldsymbol{w} = \begin{bmatrix} a \\ b \end{bmatrix}$$

- Fits an exponential model to data
- Partial derivatives:

$$\frac{\partial J(\boldsymbol{w})}{\partial a} = \sum_{i=1}^{n} (y_i - ae^{-bx_i})(-e^{-bx_i})$$
$$\frac{\partial J(\boldsymbol{w})}{\partial b} = \sum_{i=1}^{n} (y_i - ae^{-bx_i})(ax_ie^{-bx_i})$$

Gradient:

$$\nabla J(\mathbf{w}) = \begin{bmatrix} -\sum_{i=1}^{n} (y_i - ae^{-bx_i})e^{-bx_i} \\ a\sum_{i=1}^{n} (y_i - ae^{-bx_i})x_ie^{-bx_i} \end{bmatrix}$$

```
def Jeval(w):
    # Unpack vector
    a = w[0]
    b = w[1]
    # Compute the Loss function
    yerr = y-a*np.exp(-b*x)
    J = 0.5*np.sum(yerr*2)

# Compute the gradient
    dJ_da = -np.sum( yerr*np.exp(-b*x))
    dJ_db = np.sum( yerr*a*x*np.exp(-b*x))
    Jgrad = np.array([dJ_da, dJ_db])
    return J, Jgrad
```

First-order approximation of scalar-input functions

- lacksquare Consider function f(w) with scalar input w
- The Taylor series of f(w) at w_0 can be written as

$$f(w) = f(w_0) + \frac{df(w_0)}{dw}(w - w_0) + O((w - w_0)^2)$$

- $lacksquare O(\epsilon^2)$: "grows no faster than $C\epsilon^2$ for some C>0"
- The first-order Taylor approximation of f(w) at w_0 :

$$f(w) \approx f(w_0) + \frac{df(w_0)}{dw}(w - w_0)$$

- This approximates f(w) by a linear function in the neighborhood of w_0
- Note that $\frac{df(w_0)}{dw} = f'(w_0)$ is the slope at w_0
- What if the function has a *vector-valued* input?

First-order approximation of vector-input functions

- Consider function $f(\boldsymbol{w})$ with vector-valued input $\boldsymbol{w} = [w_1, \dots, w_d]^\mathsf{T}$
- Fix a point $\boldsymbol{w}_0 = [w_{01}, \dots, w_{0d}]^\mathsf{T}$
- Then the first-order Taylor approximation of f(w) at w_0 is

$$f(\boldsymbol{w}) = f(\boldsymbol{w}_0) + \sum_{j=1}^d \frac{\partial f(\boldsymbol{w}_0)}{\partial w_j} (w_j - w_{0j}) + O(\|\boldsymbol{w} - \boldsymbol{w}_0\|^2)$$

$$= f(\boldsymbol{w}_0) + \sum_{j=1}^d [\nabla f(\boldsymbol{w}_0)]_j [\boldsymbol{w} - \boldsymbol{w}_0]_j + O(\|\boldsymbol{w} - \boldsymbol{w}_0\|^2)$$

$$= f(\boldsymbol{w}_0) + \nabla f(\boldsymbol{w}_0)^\mathsf{T} (\boldsymbol{w} - \boldsymbol{w}_0) + O(\|\boldsymbol{w} - \boldsymbol{w}_0\|^2)$$

$$\approx f(\boldsymbol{w}_0) + \underbrace{\nabla f(\boldsymbol{w}_0)^\mathsf{T} (\boldsymbol{w} - \boldsymbol{w}_0)}_{\langle \nabla f(\boldsymbol{w}_0), \ \boldsymbol{w} - \boldsymbol{w}_0 \rangle} \text{ for } \boldsymbol{w} \text{ near } \boldsymbol{w}_0$$

- $lackbox{} \langle a,b
 angle riangleq a^\mathsf{T}b$ is the inner product for real-valued vectors
- This approximates f(w) by a linear function in the neighborhood of w_0

Phil Schniter (OSU)

Understanding the gradient

- The gradient tells both the direction of maximum increase and the slope. Why?
- Choose a reference point w_0 , and look at slope in direction u (where ||u|| = 1)

$$\frac{f(\boldsymbol{w}_0 + \epsilon \boldsymbol{u}) - f(\boldsymbol{w}_0)}{\epsilon} = \frac{\nabla f(\boldsymbol{w}_0)^\mathsf{T}(\epsilon \boldsymbol{u}) + O(\epsilon^2)}{\epsilon}$$
$$\stackrel{\epsilon \to 0}{=} \nabla f(\boldsymbol{w}_0)^\mathsf{T} \boldsymbol{u} = \|\nabla f(\boldsymbol{w}_0)\| \underbrace{\left(\frac{\nabla f(\boldsymbol{w}_0)}{\|\nabla f(\boldsymbol{w}_0)\|}\right)^\mathsf{T} \frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}}_{\in [-1, 1]}$$

- Cauchy-Schwarz says $\frac{a^Tb}{\|a\|\|b\|} \in [-1,1]$ for any a,b, and that $\frac{a^Tb}{\|a\|\|b\|} = 1$ when a,b are colinear
- Thus $\|\nabla f(\boldsymbol{w}_0)\|$ is the maximum slope, and it occurs in the direction of $\nabla f(\boldsymbol{w}_0)$

First-order approximations of matrix-input funtions

- lacksquare Consider function $f(oldsymbol{W})$ with matrix-valued input $oldsymbol{W}=[w_{ij}]$
- lacksquare Fix a point $oldsymbol{W}_0$
- lacksquare The first-order Taylor approximation of $f(oldsymbol{W})$ at $oldsymbol{W}_0$ is

$$\begin{split} f(\boldsymbol{W}) &= f(\boldsymbol{W}_0) + \sum_{i=1}^d \sum_{j=1}^k \frac{\partial f(\boldsymbol{W}_0)}{\partial w_{ij}} (w_{ij} - w_{0,ij}) + O(\|\boldsymbol{W} - \boldsymbol{W}_0\|_F^2) \\ &= f(\boldsymbol{W}_0) + \sum_{j=1}^k \sum_{i=1}^d [\nabla f(\boldsymbol{W}_0)]_{ij} [\boldsymbol{W} - \boldsymbol{W}_0]_{ij} + O(\|\boldsymbol{W} - \boldsymbol{W}_0\|_F^2) \\ &= f(\boldsymbol{W}_0) + \operatorname{tr} \left\{ \nabla f(\boldsymbol{W}_0)^\mathsf{T} (\boldsymbol{W} - \boldsymbol{W}_0) \right\} + O(\|\boldsymbol{W} - \boldsymbol{W}_0\|_F^2) \\ &\approx f(\boldsymbol{W}_0) + \underbrace{\operatorname{tr} \left\{ \nabla f(\boldsymbol{W}_0)^\mathsf{T} (\boldsymbol{W} - \boldsymbol{W}_0) \right\}}_{\left\langle \nabla f(\boldsymbol{W}_0), \ \boldsymbol{W} - \boldsymbol{W}_0 \right\rangle} \text{ for } \boldsymbol{W} \text{ near } \boldsymbol{W}_0 \end{split}$$

- $\|A\|_F^2 = \sum_i \sum_j a_{ij}^2$ is the squared Frobenius norm
- $tr\{A\} \triangleq \sum_{i} a_{jj}$ is the trace (i.e., sum of diagonal elements)
- $lackbox{} \langle A,B \rangle \triangleq \operatorname{tr}\{A^\mathsf{T}B\} = \sum_i \sum_j a_{ij}b_{ij}$ is the inner product for real-valued matrices

Example 3

- Suppose that $f(\mathbf{W}) = \mathbf{a}^\mathsf{T} \mathbf{W} \mathbf{b} = \sum_i \sum_j a_i w_{ij} b_j$ for fixed vectors \mathbf{a} and \mathbf{b}
- lacksquare The partial derivatives are $rac{\partial f(m{W})}{\partial w_{ij}}=a_ib_j=[
 abla f(m{W})]_{ij}$ at any $m{W}$
- lacksquare The gradient matrix is $abla f(oldsymbol{W}) = oldsymbol{a} oldsymbol{b}^\mathsf{T}$ at any $oldsymbol{W}$
- lacksquare The linear approximation of $f(oldsymbol{W})$ at $oldsymbol{W}_0$ is

$$\begin{split} f(\boldsymbol{W}) &\approx f(\boldsymbol{W}_0) + \operatorname{tr}\{\nabla f(\boldsymbol{W}_0)^\mathsf{T}(\boldsymbol{W} - \boldsymbol{W}_0)\} \\ &= \boldsymbol{a}^\mathsf{T} \boldsymbol{W}_0 \boldsymbol{b} + \operatorname{tr}\{(\boldsymbol{a} \boldsymbol{b}^\mathsf{T})^\mathsf{T}(\boldsymbol{W} - \boldsymbol{W}_0)\} \\ &= \boldsymbol{a}^\mathsf{T} \boldsymbol{W}_0 \boldsymbol{b} + \operatorname{tr}\{\boldsymbol{b} \boldsymbol{a}^\mathsf{T}(\boldsymbol{W} - \boldsymbol{W}_0)\} \\ &= \boldsymbol{a}^\mathsf{T} \boldsymbol{W}_0 \boldsymbol{b} + \operatorname{tr}\{\boldsymbol{a}^\mathsf{T}(\boldsymbol{W} - \boldsymbol{W}_0) \boldsymbol{b}\} & \text{since } \operatorname{tr}\{\boldsymbol{B} \boldsymbol{A}\} = \operatorname{tr}\{\boldsymbol{A} \boldsymbol{B}\} \\ &= \boldsymbol{a}^\mathsf{T} \boldsymbol{W}_0 \boldsymbol{b} + \boldsymbol{a}^\mathsf{T}(\boldsymbol{W} - \boldsymbol{W}_0) \boldsymbol{b} & \text{since } \operatorname{tr}\{\boldsymbol{c}\} = \boldsymbol{c} \text{ for scalar } \boldsymbol{c} \\ &= \boldsymbol{a}^\mathsf{T} \boldsymbol{W} \boldsymbol{b} & \text{perfect approx since } \boldsymbol{f} \text{ is linear!} \end{split}$$

Example 3 in Python

- $\blacksquare \text{ Function } f(\boldsymbol{W}) = \boldsymbol{a}^\mathsf{T} \boldsymbol{W} \boldsymbol{b}$
 - In Python, use .dot for matrix multiplication
- Gradient $\nabla f(\boldsymbol{W}) = \boldsymbol{a}\boldsymbol{b}^\mathsf{T}$
 - Want to set fgrad[i,j]=a[i]b[j]
 - But want to avoid for-loops
 - Use Python broadcasting
 - \blacksquare a[:,None] is $m \times 1$
 - \blacksquare b[None,:] is $1 \times n$

```
def feval(W,a,b):
    # Function
    f = a.dot(W.dot(b))
    # Gradient -- Use python broadcastina
    fgrad = a[:,None]*b[None,:]
    return f, fgrad
# Some random data
n = 3
 = np.random.randn(m,n)
a = np.random.randn(m)
b = np.random.randn(n)
f, fgrad = feval(W,a,b)
```

Outline

- Motivating Example: Build an Optimizer for Logistic Regression
- Gradients of Multi-Variable Functions
- Gradient Descent
- Adaptive Stepsize via the Armijo Rule
- Convexity

Stationary points

lacksquare A stationary point of J is any $oldsymbol{w}$ such that

$$\nabla J(\boldsymbol{w}) = \mathbf{0}$$

 \blacksquare The unconstrained minimizer of a smooth cost J

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} J(\boldsymbol{w})$$

is one such stationary point

- In general, stationary points can be either
 - minimizers.
 - maximizers, or
 - saddle points
- But often we cannot explicitly solve $\nabla J(\boldsymbol{w}) = \boldsymbol{0}$
 - lacksquare Instead, use a numerical approach to find $\widehat{oldsymbol{w}}$

Gradient descent

- Goal: Find the minimizer of J(w), i.e., $\widehat{w} = \arg\min_{w} J(w)$
 - J(w) is called the objective or cost function
 - lacktriangle "unconstrained" optimization since no constraints on $oldsymbol{w}$
 - Will assume that $\nabla J(w)$ exists (i.e., J(w) is sufficiently smooth)
- Gradient descent (GD) algorithm:
 - Choose an initial $m{w}^0$, then iterate $m{w}^{k+1} = m{w}^k lpha_k
 abla J(m{w}^k)$ until convergence
 - $\alpha_k > 0$ is the stepsize or learning rate
 - lacksquare Often $oldsymbol{w}^0$ is chosen randomly
 - Basically, we take downhill steps until we reach the bottom

Analysis of gradient descent

■ The Taylor series of J(w) at w^k is

$$J(\boldsymbol{w}) = J(\boldsymbol{w}^k) + \nabla J(\boldsymbol{w}^k)^{\mathsf{T}}(\boldsymbol{w} - \boldsymbol{w}^k) + O(\|\boldsymbol{w} - \boldsymbol{w}^k\|^2)$$

lacksquare Evaluating this at $oldsymbol{w} = oldsymbol{w}^{k+1}$ yields

$$J(\boldsymbol{w}^{k+1}) = J(\boldsymbol{w}^k) + \nabla J(\boldsymbol{w}^k)^{\mathsf{T}} (\boldsymbol{w}^{k+1} - \boldsymbol{w}^k) + O(\|\boldsymbol{w}^{k+1} - \boldsymbol{w}^k\|^2)$$

lacksquare From the GD update, we know $oldsymbol{w}^{k+1} - oldsymbol{w}^k = -lpha_k
abla J(oldsymbol{w}^k)$, and so

$$J(\boldsymbol{w}^{k+1}) = J(\boldsymbol{w}^k) - \alpha_k \nabla J(\boldsymbol{w}^k)^\mathsf{T} \nabla J(\boldsymbol{w}^k) + O(\alpha_k^2 || \nabla J(\boldsymbol{w}^k)||^2)$$

= $J(\boldsymbol{w}^k) - \alpha_k || \nabla J(\boldsymbol{w}^k)||^2 + O(\alpha_k^2 || \nabla J(\boldsymbol{w}^k)||^2)$

- Thus, if α_k is sufficiently small, then $J(\boldsymbol{w}^k)$ will not increase
 - Why? Can always make α_k small enough so that $C\alpha_k^2 < \alpha_k$ for any C > 0, in which case the middle term will dominate the last term

Local vs. global minimizers

- Definitions
 - $\widehat{\boldsymbol{w}}$ is a global minimizer if $J(\widehat{\boldsymbol{w}}) \leq J(\boldsymbol{w}) \ \forall \boldsymbol{w}$
 - $m{\hat{w}}$ is a local minimizer if $J(\hat{w}) \leq J(w) \ \forall w$ in some open neighborhood of \hat{w}
- In most cases, gradient descent only guarantees convergence to a local minimum
- For a convex function, any local minimum is a global minimum (more later)

Gradient of cross-entropy loss

■ Recall the binary logistic regression problem when $y_i \in \{0,1\}$:

$$m{w}_{\mathsf{ml}} riangleq rg \min_{m{w}} \ \underbrace{\sum_{i=1}^n \left(\ln[1 + e^{z_i}] - y_i z_i
ight)}_{\text{"cross entropy loss" } J(m{w}) \qquad \mathsf{for} \quad z_i = [1 \ m{x}_i^\mathsf{T}] m{w}$$

- To solve this problem, think of cost J(w) in two stages:
 - 1) linear transformation: z(w) = Aw for $A = [1 \ X]$
 - 2) separable function: $f(z) = \sum_{i=1}^n f_i(z_i)$ for $f_i(z_i) = \ln[1 + e^{z_i}] y_i z_i$ where $J(\boldsymbol{w}) = f(\boldsymbol{z}(\boldsymbol{w}))$

■ Then apply the multivariable chain rule:
$$\frac{\partial f(z(w))}{\partial w_j} = \sum_i \frac{\partial f(z)}{\partial z_i} \frac{\partial z_i(w)}{\partial w_j}$$

$$\blacksquare \text{ Here, } \frac{\partial f(\boldsymbol{z})}{\partial z_i} = \frac{1}{1 + e^{z_i}} e^{z_i} - y_i = \frac{1}{e^{-z_i} + 1} - y_i \text{ and } \frac{\partial z_i(\boldsymbol{w})}{\partial w_j} = a_{ij}$$

Computing cost and gradient

- Usually we want to compute $both \ J(\boldsymbol{w})$ and $\nabla J(\boldsymbol{w})$
- Forward pass: Compute cost:
 - First compute z = Aw
 - Then $f_i(z_i) = \ln[1 + e^{z_i}] y_i z_i$ = $-\ln(\frac{e^{z_i}}{1 + e^{z_i}}) + (1 - y_i) z_i$
 - Finally $J(\boldsymbol{w}) = f(\boldsymbol{z}) = \sum_i f_i(z_i)$
- Backward pass: Compute gradient:
 - Recall $\frac{\partial J(\boldsymbol{w})}{\partial w_j} = \sum_i a_{ij} [\nabla f(\boldsymbol{z})]_i$ where $[\nabla f(\boldsymbol{z})]_i = \frac{1}{1+e^{-z_i}} - y_i$
 - $\bullet \ \mathsf{So} \ \nabla J(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial J(\boldsymbol{w})}{\partial w_0} \\ \vdots \\ \frac{\partial J(\boldsymbol{w})}{\partial w_0} \end{bmatrix} = \boldsymbol{A}^\mathsf{T} \nabla f(\boldsymbol{z})$

```
# Create a function with all the parameters
def feval param(w, X, y):
    Compute the loss and gradient given w.X.v
    # Construct transform matrix
    n = X.shape[0]
    A = np.column stack((np.ones(n,), X))
    # The loss is the binary cross entropy
    z = A.dot(w)
    pv = 1/(1+np \cdot exp(-z))
    f = np.sum((1-y)*z - np.log(py))
    # Gradient
    df dz = py-y
    fgrad = A.T.dot(df dz)
    return f, fgrad
```

Python approach #1: Use a "lambda function"

When implementing gradient descent in Python, we want a cost/gradient evaluation function that only depends on \boldsymbol{w}

- First create a function that
 - computes cost & gradient
 - lacksquare given $oldsymbol{w}, oldsymbol{X}, oldsymbol{y}$
- Then create a lambda function that
 - fixes X, y at training values
 - same as "anonymous function" in Matlah:

```
feval = @(w) feval_param(w, Xtr, ytr)
```

```
feval = lambda w: feval_param(w,Xtr,ytr)
# You can now pass a parameter like w0
f0, fgrad0 = feval(w0)
```

```
# Create a function with all the parameters
def feval param(w,X,y):
    Compute the loss and gradient given w, X, v
    # Construct transform matrix
    n = X.shape[0]
    A = np.column stack((np.ones(n,), X))
    # The loss is the binary cross entropy
    z = A.dot(w)
    py = 1/(1+np.exp(-z))
    f = np.sum((1-y)*z - np.log(py))
    # Gradient
    df dz = py-y
    fgrad = A.T.dot(df dz)
    return f, fgrad
```

Python approach #2: Create a "class"

Another approach is to create a "class" (i.e., object-oriented programming)

- Includes an constructor that
 - lacksquare loads data (X, y)
 - does pre-computations
 - called during instantiation:

```
log_fun = LogisticFun(Xtr,ytr)
```

- Includes an feval function to
 - compute cost & gradient
 - using data stored in the class

```
# Call the function
f, fgrad = log_fun.feval(w0)
```

```
class LogisticFun(object):
   def __init__(self,X,y):
        Class to compute loss & gradient for binary logistic re
        The constructor takes the training features 'X' and re-
        self.X = X
        self.y = y
        n = X.shape[0]
        self.A = np.column stack((np.ones(n,), X))
    def feval(self,w):
        Compute the loss and gradient for a given weight vector
        # The loss is the binary cross entropy
        z = self.A.dot(w)
        py = 1/(1+np.exp(-z))
        f = np.sum((1-self.y)*z - np.log(py))
        # Gradient
        df dz = py-self.y
        fgrad = self.A.T.dot(df dz)
        return f, fgrad
```

Always check your gradient implementation!

- lacksquare Pick $oldsymbol{w}_0$ and $oldsymbol{w}_1$ that are close together
- Check that $J(\boldsymbol{w}_1) J(\boldsymbol{w}_0) \approx \nabla J(\boldsymbol{w}_0)^\mathsf{T} (\boldsymbol{w}_1 \boldsymbol{w}_0)$

```
# Take a random initial point
p = X.shape[1]+1
w0 = np.random.randn(p)
# Perturb the point
step = 1e-6
w1 = w0 + step*np.random.randn(p)
# Measure the function and gradient at w0 and w1
f0, fgrad0 = log fun.feval(w0)
fl, fgrad1 = log fun.feval(w1)
# Predict the amount the function should have changed based on the gradient
df est = fgrad0.dot(w1-w0)
# Print the two values to see if they are close
print("Actual f1-f0 = %12.4e" % (f1-f0))
print("Predicted f1-f0 = %12.4e" % df est)
  Actual f1-f0
                  = -4.3270e-04
  Predicted f1-f0 = -4.3271e-04
```

A simple implementation of gradient descent

- We now implement gradient descent
- Inputs:
 - feval: function that computes cost & gradient
 - lacksquare initial parameters $oldsymbol{w}^0$
 - \blacksquare learning rate α
 - \blacksquare number of iterations m
- Outputs:
 - lacksquare final parameters $oldsymbol{w}^m$
 - history of cost & parameters (for debugging)

```
def grad opt simp(feval, winit, lr=1e-3,nit=1000):
    Simple gradient descent optimization
    feval: A function that returns f, fgrad, the objective
            function and its gradient
    winit: Initial estimate
            learning rate
    nitt
            Number of iterations
    # Initialize
    wn = winit
    # Create history dictionary for tracking progress per iteration.
    # This isn't necessary if you just want the final answer, but it
    # is useful for debugging
    hist = {'w': [], 'f': []}
    # Loop over iterations
    for it in range(nit):
        # Evaluate the function and gradient
        f0, fgrad0 = feval(w0)
        # Take a gradient step
        w0 = w0 - lr*fgrad0
         # Save history
        hist['f'].append(f0)
        hist['w'l.append(w0)
    # Convert to numpy arrays
    for elem in ('f', 'w'):
        hist[elem] = np.array(hist[elem])
    return w0, f0, hist
```

Gradient descent for logistic regression

- random initialization
- 1000 iterations
- convergence is slow!
- test accuracy is poor!
 - weights not converged

```
def predict(X,w):
    z = X.dot(w[1:]) + w[0]
    yhat = (z > 0)
    return yhat

yhat = predict(Xts,w)
acc = np.mean(yhat == yts)
print("Test accuracy = %f" % acc)

Test accuracy = 0.968198
```

```
# Initial condition
winit = np.random.randn(p)

# Parameters
feval = log_fun.feval
nit = 1000
lr = 1e-4

# Run the gradient descent
w, f0, hist = grad_opt_simp(feval, winit, lr=lr, nit=nit)

# Plot the training loss
t = np.arange(nit)
plt.semilogx(t, hist['f'])
plt.grid()
```


Effect of stepsize (or learning rate)

- stepsize too small ⇒ slow convergence
- stepsize too large ⇒ instability (overshoots optimal solution)

Outline

- Motivating Example: Build an Optimizer for Logistic Regression
- Gradients of Multi-Variable Functions
- Gradient Descent
- Adaptive Stepsize via the Armijo Rule
- Convexity

The Armijo approach to adaptive stepsize

Recall our gradient-descent analysis result:

$$J(\boldsymbol{w}^{k+1}; \alpha_k) = J(\boldsymbol{w}^k) - \alpha_k \|\nabla J(\boldsymbol{w}^k)\|^2 + O(\alpha_k^2 \|\nabla J(\boldsymbol{w}^k)\|^2)$$

- Armijo rule:
 - Fix some $c \in (0,1)$, usually $c = \frac{1}{2}$
 - At each k, choose some stepsize $\alpha_k > 0$ such that

$$J(\boldsymbol{w}^{k+1}; \alpha_k) \leq J(\boldsymbol{w}^k) - c \alpha_k \|\nabla J(\boldsymbol{w}^k)\|^2$$

- lacksquare Cost is guaranteed to decrease at each iteration (unless $abla J(oldsymbol{w}^k) = oldsymbol{0}$)
- \blacksquare Decreases by some fraction c of that predicted by linear approximation of $J(\boldsymbol{w}^{k+1})$
- A simple Armijo-based α_k -update:
 - If Armijo rule passes: accept $w^{(k+1)}$ and set $\alpha_{k+1} = \beta_{\mathsf{incr}} \alpha_k$ for some $\beta_{\mathsf{incr}} > 1$
 - If Armijo rule fails: reject $w^{(k+1)}$ and set $\alpha_{k+1} = \beta_{\mathsf{decr}} \alpha_k$ for some $\beta_{\mathsf{decr}} < 1$
- Or use line-search, meaning test several α_k at each k and choose the best
 - More accurate but more expensive than simple Armijo

Armijo rule illustrated

■ Recall Armijo rule: fix $c \in (0,1)$ and accept any stepsize $\alpha_k > 0$ satisfying

$$J(\boldsymbol{w}^{k+1}; \alpha_k) \leq \underbrace{J(\boldsymbol{w}^k) - c \alpha_k \|\nabla J(\boldsymbol{w}^k)\|^2}_{\triangleq y_c(\alpha_k)}$$

- Curve shows $J(\boldsymbol{w}^{k+1}; \alpha_k)$ versus α_k
 - line-search would give samples of this
- Dashed line shows $y_1(\alpha_k)$ versus α_k
 - this is the $J(\boldsymbol{w}^{k+1})$ predicted by linear approximation of $J(\boldsymbol{w}^k)$
- Dotted line shows $y_{\frac{1}{2}}(\alpha_k)$ versus α_k
 - purple bars show set of $\{\alpha_k\}$ satisfying the Armijo rule with $c=\frac{1}{2}$
 - what about other values of $c \in (0, 1)$?

Armijo example in Python

 The simple Armijo method applied to logistic regression


```
yhat = predict(Xts,w)
acc = np.mean(yhat == yts)
print("Test accuracy = %f" % acc)
```

```
Test accuracy = 0.989399
```

```
for it in range(nit):
    # Take a gradient step
    w1 = w0 - lr*fgrad0
    # Evaluate the test point by computing the objective function, f1,
   # at the test point and the predicted decrease, df est
    fl, fgrad1 = feval(w1)
   df est = fgrad0.dot(w1-w0)
    # Check if test point passes the Armijo condition
    alpha = 0.5
   if (f1-f0 < alpha*df est) and (f1 < f0):
        # If descent is sufficient, accept the point and increase the
        # learning rate
        lr = lr*2
        f0 = f1
        fgrad0 = fgrad1
        w0 = w1
    else:
        # Otherwise, decrease the learning rate
        lr = lr/2
```

What values of β_{incr} , β_{decr} are being used?

Outline

- Motivating Example: Build an Optimizer for Logistic Regression
- Gradients of Multi-Variable Functions
- Gradient Descent
- Adaptive Stepsize via the Armijo Rule
- Convexity

Local minimizers of convex functions

- Theorem: if f(w) is convex and w is a local minimizer, then w is a global minimizer
- Implications for optimization:
 - Recall: with proper stepsize, gradient descent converges to a local minimizer
 - But local minimizers are not always global minimizers!
 - With a convex function, gradient descent converges to a global minimizer

Unit 6 **FCF 4300** 34 / 38

Convex sets

■ A set D is convex if, for any $x,y \in D$ and $t \in [0,1]$ $tx + (1-t)y \in D$

- Examples:
 - Circle, square, ellipse
 - \mathbb{R}^n
 - lacksquare a hyperplane in \mathbb{R}^n
 - lacksquare the half-space $\{oldsymbol{x}: oldsymbol{A} oldsymbol{x} \leq oldsymbol{b}\}$ for any matrix $oldsymbol{A}$ and vector $oldsymbol{b}$

a convex set

a nonconvex set

Convex functions

- A function $f(x) \in \mathbb{R}$ is convex if
 - 1) its domain D is a convex set, and
 - 2) for any $x,y\in D$ and $t\in [0,1]$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

- Examples:
 - f(x) = ax + b
 - $f(x) = a^{\mathsf{T}}x + b$
 - $f(x) = ax^2 + bx + c \text{ iff } a \ge 0$
 - lacksquare norms are convex (e.g., $\|oldsymbol{x}\|$, $\|oldsymbol{x}\|_1$)
 - f(x) is convex if f''(x) exists everywhere and $f''(x) \ge 0$
 - vector case: Hessian must exist everywhere and be positive semidefinite
 - lacksquare if f and g are convex, then so are f+g and $f(g(\cdot))$
 - RSS, logistic loss, and their L1 or L2 regularized versions are all convex

Optimization topics that we did not cover

- Our Armijo-based optimizer is okay, but not nearly as fast as methods in sklearn
- There are many topics that we did not cover, e.g.,
 - Newton's method and quasi-Newton methods (i.e., matrix-valued α_k)
 - non-smooth optimization (i.e., gradient does not exist everywhere)
 - constrained optimization
- Take an optimization class and learn more!
 - ECE-5759 (Autumn)

Learning objectives

- Identify the cost function, parameters, and constraints in an optimization problem
- Compute the gradient of a cost function for scalar, vector, or matrix parameters
- Efficiently compute a gradient in Python
- Write the gradient-descent update
- Understand the effect of the stepsize on convergence
- Be familiar with adaptive stepsize schemes like the Armijo rule
- Understand the implications of convexity for gradient descent
- Determine if a loss function is convex

Phil Schniter (OSU) Unit 6 ECE 4300 38 / 38