

Marked-up Paragraph:**RELATED APPLICATIONS**

This application is a divisional of U.S. Serial No. 09/971,682, filed May 1, 1998, now U.S. Patent No. 6,204,267, which, in turn, The present application claims priority to U.S. Serial Numbers 60/060,152, filed September 26, 1997, entitled METHODS OF MODULATING SERINE /THREONINE PROTEIN KINASE FUNCTION WITH QUINAZOLINE-BASED COMPOUNDS, by Tan et al. (Lyon & Lyon Docket No. 225/284) and 60/045,351, filed May 2, 1997, entitled METHODS OF MODULATING SERINE/THREONINE PROTEIN KINASE FUNCTION WITH 5-SUBSTITUTED QUINAZOLINE COMPOUNDS, by Tang et al. (Lyon & Lyon Docket No. 223/249), all of which are incorporated by reference herein in their entirety, including any drawings.

Marked-up Claim:

1. (Amended) A method of modulating the function of a serine/threonine protein kinase with a quinazoline-based compound substituted five-membered or six-membered aryl or heteroaryl ring, comprising the step of contacting cells expressing said serine/threonine kinase with said compound, or a pharmaceutically acceptable salt thereof, wherein said compound has the formula set forth in formula I or III:

wherein:

- (a) Z is oxygen, NX₁, or sulfur, where X₁ is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
- (b) n is 0, 1, 2, 3, or 4;
- (c) A₁, A₂, A₃, A₄ and A₅ are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_1 , A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_1 , A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

(d) R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are independently selected from the group consisting of:

(i) hydrogen;

(ii) saturated or unsaturated alkyl;

(iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;

(iv) halogen or trihalomethyl;

(v) a ketone of formula $-CO-X_4$, where X_4 is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;

(vi) a carboxylic acid of formula $-(X_5)_{n5}-COOH$ or ester of formula $-(X_6)_{n6}-COOX_7$, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where $n5$ and $n6$ are each independently 0 or 1;

(vii) an alcohol of formula $-(X_8)_{n8}-OH$ or an alkoxy moiety of formula $-(X_8)_{n8}-OX_9$, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where $n8$ is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;

(viii) $-NHCOX_{10}$, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;

(ix) $-SO_2NX_{11}X_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and

(x) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;

(e) any adjacent R_3 , R_4 , and R_5 or any adjacent R_6 , R_7 , R_8 , and R_9 are fused together to

form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of quinozaline ring to which R₃, R₄, and R₅ or R₆, R₇, R₈, and R₉ are attached; and

(f) R₁₁ and R₁₂ are independently selected from the group consisting of

(i) hydrogen;

(ii) saturated or unsaturated alkyl; and

(g) Z' is carbon, oxygen, sulfur, or nitrogen and R₁₃ and R₁₄ taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member.

11. (Amended) The method of claim 1, wherein said quinazoline-based compound has the formula set forth in structure I, II, or III:

(I)

(II)

(III)

wherein:

(a) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl;

(b) n is 0, 1, 2;

(c) A_1 , A_2 , A_3 , A_4 , and A_5 , and A_6 are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A_1 , A_2 , A_3 , A_4 and A_5 is nitrogen, oxygen, or sulfur, said A_1 , A_2 , A_3 , A_4 and A_5 is not substituted with R_6 , R_7 , R_8 or R_9 ;

(d) R_1 and R_2 are independently selected from the group consisting of:

(i) hydrogen;

(ii) saturated or unsaturated alkyl;

(iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and

(iv) halogen or trihalomethyl; and

(v) five-membered or six-membered heteroaryl ring moiety;

(e) R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , and R_9 , and R_{10} are independently selected from the group consisting of:

(i) hydrogen;

(ii) saturated or unsaturated alkyl;

(iii) NX_4X_5 , where X_4 and X_5 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and

(iv) halogen or trihalomethyl; and

(v) $-OX_7$, where X_7 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety;

(f) any adjacent R_3 , R_4 , and R_5 or any adjacent R_6 , R_7 , R_8 , and R_9 , and R_{10} are fused together to form a five-membered or six-membered aryl or heteroaryl ring moiety, wherein said five-membered or six-membered aryl or six-membered heteroaryl ring comprises two carbon atoms of the quinazoline ring to which R_3 , R_4 , and R_5 or R_6 , R_7 , R_8 , and R_9 are attached;

(g) R_{11} and R_{12} are independently selected from the group consisting of

(i) hydrogen;

(ii) saturated or unsaturated alkyl; and

(h) Z' is carbon, oxygen, sulfur, or nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member, wherein said ring

is optionally substituted with one, two, or three alkyl, halogen, trihalomethyl, carboxylate, and ester moieties.

12. (Amended) The method of claim 1, wherein said quinazoline-based compound has the formula set forth in formula **IV** or **V**:

wherein:

- (a) Z is oxygen or sulfur;
- (b) n is 0 or 1;
- (c) R₁ and R₂ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) NX₁X₂, where X₁ and X₂ are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iii) benzyl;
- (d) R₃, R₄, and R₅ are independently selected from the group consisting of:
 - (i) hydrogen; and
 - (ii) saturated or unsaturated alkyl;
 - (iii) NX₃X₄, where X₃ and X₄ are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and
- (e) R₆, R₇, R₈, R₉, and R₁₀ are independently selected from the group consisting of

- ____ (i) hydrogen;
- ____ (ii) saturated or unsaturated alkyl;
- ____ (iii) NX_5X_6 , where X_5 and X_6 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and
- ____ (iv) halogen or trihalomethyl;
- ____ (v) $C(X_7)_3$, where X_7 is selected from the group consisting of fluorine, chlorine, bromine, and iodine; and
- ____ (vi) methoxy;
- (f) R_{11} and R_{12} hydrogen; and
- (g) Z' is nitrogen and R_{13} and R_{14} taken together form a five-membered heteroaryl ring.

16. (Amended) The method of claim 1, wherein said quinazoline-based compound is selected from the group consisting of:

A-9

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

17. (Amended) A method of preventing or treating an abnormal condition in an organism, comprising the step of administering a quinazoline-based compound of formula I, II, or III to said organism:

wherein:

(a) Z is oxygen, NX₁, or sulfur, where X₁ is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;

(b) n is 0, 1, 2, 3, or 4;

(c) A₁, A₂, A₃, A₄, and A₅, and A₆ are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A₁, A₂, A₃, A₄ and A₅ is nitrogen, oxygen, or sulfur, said A₁, A₂, A₃, A₄ and A₅ is not substituted with R₆, R₇, R₈ or R₉;

(d) R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, and R₁₀ are independently selected from the group consisting of:

- (i) hydrogen;
- (ii) saturated or unsaturated alkyl;

(iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;

(iv) halogen or trihalomethyl;

(v) a ketone of formula $-CO-X_4$, where X_4 is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;

(vi) a carboxylic acid of formula $-(X_5)_{n5}-COOH$ or ester of formula $-(X_6)_{n6}-COOX_7$, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where $n5$ and $n6$ are each independently 0 or 1;

(vii) an alcohol of formula $-(X_8)_{n8}-OH$ or an alkoxy moiety of formula $-(X_8)_{n8}-OX_9$, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where $n8$ is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;

(viii) $-NHCOX_{10}$, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;

(ix) $-SO_2NX_{11}X_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and

(x) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;

(e) any adjacent R_3 , R_4 , and R_5 or any adjacent R_6 , R_7 , R_8 , and R_9 are fused together to form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of the quinozaline ring to which R_3 , R_4 , and R_5 or R_6 , R_7 , R_8 , and R_9 are attached; and

(f) R_{11} and R_{12} are independently selected from the group consisting of

(i) hydrogen;

(ii) saturated or unsaturated alkyl; and

(g) Z' is carbon, oxygen, sulfur, or nitrogen and R₁₃ and R₁₄ taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member.

26. (Amended) A quinazoline compound having the formula I, II, or III:

wherein:

(i) Z is oxygen, NX₁, or sulfur, where X₁ is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;

(ii) n is 0, 1, 2, 3, or 4;

(iii) A₁, A₂, A₃, A₄, and A₅, and A₆ are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,

provided that if any of A₁, A₂, A₃, A₄ and A₅ is nitrogen, oxygen, or sulfur, said A₁, A₂, A₃, A₄ and A₅ is not substituted with R₆, R₇, R₈ or R₉;

(iv) R₁ and R₂ are independently selected from the group consisting of:

(a) hydrogen;

(b) saturated or unsaturated alkyl;

(c) NX₂X₃, where X₂ and X₃ are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and

(d) halogen or trihalomethyl; and

(e) five-membered or six-membered heteroaryl ring moiety;

(v) $R_3, R_4, R_5, R_6, R_7, R_8, \underline{\text{and}} R_9$ and R_{10} are independently selected from the group consisting of:

- (a) hydrogen, provided that at least one of $R_3, R_4, R_5, R_6, R_7, R_8, R_9$ and R_{10} is a non-hydrogen moiety if R_2 is NH_2 ;
- (b) saturated or unsaturated alkyl, wherein said R_8 is not methyl when R_2 is NH_2 and when $n = 1$;
- (c) $\text{NX}_{132}\text{X}_{143}$, where X_{132} and X_{143} are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered aryl or heteroaryl ring moieties; and
- (d) halogen or trihalomethyl, wherein said R_8 is not chlorine or fluorine when R_2 is NH_2 and when $n = 1$;
- (e) a ketone of formula $-\text{CO-X}_4$, where X_4 is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
- (f) a carboxylic acid of formula $-(\text{X}_5)_{n5}\text{-COOH}$ or ester of formula $-(\text{X}_6)_{n6}\text{-COOX}_7$, where X_5, X_6 , and X_7 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where $n5$ and $n6$ are each independently 0 or 1;
- (g) an alcohol of formula $-(\text{X}_8)_{n8}\text{-OH}$ or an alkoxy moiety of formula $-(\text{X}_8)_{n8}\text{-OX}_9$, where X_8 and X_9 are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where $n8$ is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (h) $-\text{NHCOX}_{10}$, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;
- (i) $-\text{SO}_2\text{NX}_{11}\text{X}_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and
- (j) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;

(vi) any adjacent R_3 , R_4 , and R_5 or any adjacent R_6 , R_7 , R_8 , and R_9 are fused together to form a five-membered or six-membered heteroaryl or six-membered aryl ring moiety, wherein said five-membered or six-membered heteroaryl or six-membered aryl ring comprises two carbon atoms of the quinozaline ring to which R_3 , R_4 , and R_5 or R_6 , R_7 , R_8 , and R_9 are attached;

(vii) R_{11} and R_{12} are independently selected from the group consisting of

- (i) hydrogen;
- (ii) saturated or unsaturated alkyl; and

(viii) Z' is carbon, oxygen, sulfur, or nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member.

27. (Amended) A quinazoline compound having the formula I, II, or III:

wherein:

(a) Z is oxygen, NX_1 , or sulfur, where X_1 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl;

(b) n is 0, 1, 2;

(c) A₁, A₂, A₃, A₄, A₅, and A₆ are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur.

provided that if any of A₁, A₂, A₃, A₄ and A₅ is nitrogen, oxygen, or sulfur, said A₁, A₂, A₃, A₄ and A₅ is not substituted with R₆, R₇, R₈ or R₉;

(d) R_1 and R_2 are independently selected from the group consisting of:

- (i) hydrogen;
- (ii) saturated or unsaturated alkyl;
- (iii) NX_2X_3 , where X_2 and X_3 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and
- (iv) halogen or trihalomethyl; and
- (v) five-membered or six-membered heteroaryl ring moiety;

(e) R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , and R_9 and R_{10} are independently selected from the group consisting of:

- (i) hydrogen, ~~provided that at least one of R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} is a non-hydrogen moiety if R_2 is NH_2~~ ;
- (ii) saturated or unsaturated alkyl, ~~wherein said R_8 is not methyl when R_2 is NH_2 and when $n = 1$~~ ;
- (iii) NX_4X_5 , where X_4 and X_5 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and
- (iv) halogen or trihalomethyl, ~~wherein said R_8 is not chlorine or fluorine when R_2 is NH_2 and when $n = 1$~~ ;
- (v) $C(X_6)_3$, where X_6 is selected from the group consisting of fluorine, chlorine, bromine and iodine;
- (vi) $-OX_7$, where X_7 is selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and a five-membered or six-membered aryl or heteroaryl ring moiety;

(f) any adjacent R_3 , R_4 , and R_5 or any adjacent R_6 , R_7 , R_8 , and R_9 and R_{10} are fused together to form a five-membered or six-membered aryl or heteroaryl ring moiety, wherein said five-membered or six-membered aryl or six-membered heteroaryl ring comprises two carbon atoms of the quinazoline ring to which R_3 , R_4 , and R_5 or R_6 , R_7 , R_8 , and R_9 are attached;

(g) R_{11} and R_{12} are independently selected from the group consisting of

- (i) hydrogen;
- (ii) saturated or unsaturated alkyl; and

(h) Z' is carbon, oxygen, sulfur, or nitrogen and R_{13} and R_{14} taken together form a five-membered or six-membered heteroaryl ring with Z' as a ring member, wherein said ring is optionally substituted with one, two, or three alkyl, halogen, trihalomethyl, carboxylate, and ester moieties.

28. (Amended) A quinazoline compound having the structure set forth in formula IV or V:

wherein:

- (a) Z is oxygen or sulfur;
- (b) n is 0 or 1;
- (c) R₁ and R₂ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) NX₁X₂, where X₁ and X₂ are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
 - (iii) benzyl;
- (d) R₃, R₄, and R₅ are independently selected from the group consisting of:
 - (i) hydrogen; and
 - (ii) saturated or unsaturated alkyl; and
 - (iii) NX₃X₄, where X₃ and X₄ are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl;
- (e) R₃, R₄, R₅, R₆, R₇, R₈, R₉, and R₁₀ are independently selected from the group consisting of

— (i) hydrogen provided that at least one of R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , and R_{10} is a non-hydrogen moiety if R_2 is NH_2 ;

— (ii) saturated or unsaturated alkyl, wherein said R_8 is not methyl when R_2 is NH_2 and when $n = 1$;

— (iii) NX_5X_6 , where X_5 and X_6 are independently selected from the group consisting of hydrogen and saturated or unsaturated alkyl; and

— (iv) halogen or trihalomethyl, wherein said R_8 is not chlorine or fluorine when R_2 is NH_2 and when $n = 1$;

— (v) $\text{C}(\text{X}_7)_3$, where X_7 is selected from the group consisting of fluorine, chlorine, bromine, and iodine; and

— (vi) methoxy;

(f₂) R_{11} and R_{12} hydrogen; and

(g₂) Z' is nitrogen and R_{13} and R_{14} taken together form a five-membered heteroaryl ring.

32. (Amended) A quinazoline compound which is selected from the group consisting of:

33. (Amended) A pharmaceutical composition comprising a quinazoline compound of any one of claims 26-32 26, 27, 31 or 32 or salt thereof, and a physiologically acceptable carrier or diluent.

34. (Amended) A method for synthesizing a compound of claim 26, comprising the steps of:

(a) reacting a first reactant with a second reactant to yield said compound, wherein said first reactant has a structure of formula XI:

and wherein said second structure has a structure of formula (XII) or (XIII):

wherein,

- (a) Z is oxygen or sulfur;
- (b) n is 0, 1, 2, 3, or 4;
- (c) A₁, A₂, A₃, A₄, and A₅ and A₆ are independently selected from the group consisting of carbon, nitrogen, oxygen, and sulfur,
provided that if any of A₁, A₂, A₃, A₄ and A₅ is nitrogen, oxygen, or sulfur,
said A₁, A₂, A₃, A₄ and A₅ is not substituted with R₆, R₇, R₈ or R₉;
- (d) R₁ and R₂ are independently selected from the group consisting of:
 - (i) hydrogen;
 - (ii) saturated or unsaturated alkyl;
 - (iii) NX₂X₃, where X₂ and X₃ are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and
 - (iv) halogen or trihalomethyl; and
 - (v) five-membered or six-membered heteroaryl ring moiety;
- (e) R₃, R₄, R₅, R₆, R₇, R₈, and R₉ and R₁₀ are independently selected from the group consisting of:
 - (i) hydrogen, provide that at least one of R₃, R₄, R₅, R₆, R₇, R₈, R₉ and R₁₀ is a non-hydrogen moiety if R₂ is NH₂;
 - (ii) saturated or unsaturated alkyl, wherein said R₈ is not methyl when R₂ is NH₂ and when n = 1;
 - (iii) NX₂₁₃X₁₄₃, where X₁₃₂ and X₁₄₃ are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and five-membered or six-membered aryl or heteroaryl ring moieties;
 - (iv) halogen or trihalomethyl, wherein said R₈ is not chlorine or fluorine when R₂ is NH₂ and when n = 1;
 - (v) a ketone of formula -CO-X₄, where X₄ is selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties;
 - (vi) a carboxylic acid of formula -(X₅)_{n5}-COOH or ester of formula -(X₆)_{n6}-COOX₇, where X₅, X₆, and X₇ are independently selected from the group consisting of alkyl and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n₅ and n₆ are 0 or 1;
 - (vii) an alcohol of formula -(X₈)_{n8}-OH or an alkoxy moiety of formula -(X₈)_{n8}-OX₉, where X₈ and X₉ are independently selected from the group consisting of alkyl

and five-membered or six-membered heteroaryl or six-membered aryl ring moieties and where n_8 is 0 or 1, and where said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;

(viii) $-\text{NHCOX}_{10}$, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties, wherein said ring moieties are optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester;

(ix) $-\text{SO}_2\text{NX}_{11}\text{X}_{12}$, where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and five-membered or six-membered heteroaryl or six-membered aryl ring moieties; and

(x) a five-membered or six-membered heteroaryl or six-membered aryl ring moiety optionally substituted with one or more substituents selected from the group consisting of alkyl, halogen, trihalomethyl, carboxylate, and ester moieties;

(f) any adjacent R_3 , R_4 , and R_5 or any adjacent R_6 , R_7 , R_8 , and R_9 , and R_{10} are fused together to form a five-membered or six-membered aryl or heteroaryl ring wherein said five-membered or six-membered aryl or heteroaryl ring comprises two carbon atoms of the quinazoline ring to which R_3 , R_4 , and R_5 or R_6 , R_7 , R_8 , and R_9 are attached;

(g) R_{11} and R_{12} are independently selected from the group consisting of

- (i) hydrogen; and
- (ii) saturated or unsaturated alkyl; and

(b) collecting a precipitate comprising said compound.

37. (Amended) The method of any one of claims 34, 35, or 36 wherein said first reactant and said second reactant are mixed in one or more solvents selected from the group consisting of dimethyl sulfoxide, potassium tert-butoxide, and sodium hydride.