

Выпускная квалификационная работа

«Исследование изображений плевральных выпотов для ранней диагностики заболеваний»

Научный руководитель: Доцент кафедры МОВС, к.ф.-м.н. Замятина Е.Б. Работу выполнил студент механико-математического факультета группы ПМИ-1,2-2015 Заманов Мухтар

Актуальность и цель

Актуальность — своевременное определение злокачественного заболевания.

Цель – определить по фотографическому изображению плевральной жидкости пациента, болен ли он онкологическим заболеванием.

При работе непосредственно с самим изображением анализа плевральной жидкости больного человека необходимо найти различные паттерны, по которым и диагностируется определённое заболевание.

Задачи

Список задач:

- Реализовать модуль программы, который осуществляет предварительную обработку изображений с использованием функций библиотеки **OpenCV**.
- Разработать архитектуру **сверточной** нейронной сети для решения поставленной задачи.
- Реализовать модуль программы, отвечающий за распознавание изображений, и пользовательский интерфейс.
- Обучить нейронную сеть с использование возможностей библиотеки **Keras**.
- Осуществить анализ результатов распознавания после обучения и сформулировать выводы.

Предварительная обработка изображения

. 1 Приведение изображения к квадратному виду

7

• Устранение шумовых помех (фильтрация изображения)

3

• Бинаризация изображения

Фильтрация изображения

Original Image Gaussian 2D Convolution Averaging Median BilateralFiltering

Бинаризация изображения

Original Image

Повороты изображений

Проблема – малое количество исходных данных.

Решение проблемы — жёсткие преобразования, а именно, 40 поворотов изображений на 9 градусов.

Сверточные нейронные сети

Сверточные нейронные сети (convolutional neural networks, CNN) — это широкий класс архитектур, основная идея которых состоит в том, чтобы переиспользовать одни и те же части нейронной сети для работы с разными маленькими, локальными участками входов.

Традиционно сверточная нейронная сеть содержит в себе следующие типы слоев:

- Сверточный
- Субдискретизирующий
- Активационный
- Полносвязный

0	1	2	1
4	1	0	1
2	0	1	1
1	2	3	1

4	2	2
4	1	1
2	3	3

Сравнение точности распознавания для различных архитектур

Имя архитектуры	Популярная архитектура, лежащая в основе	Точность
Архитектура 1	VGG16	95,71%
Архитектура 2	VGG16	63,92%
Архитектура 3	AlexNet	67,34%
Архитектура 4	AlexNet	81,71%
Архитектура 5	Inception	59,21%

Финальная архитектура CNN

Распознавание изображений

Заключение

Использована библиотека Keras.

Разработаны различные архитектуры сверточных нейронных сетей.

Получен результат 95,71%.

Дальнейшие пути исследования — применение комбинированных методов распознавания.

Спасибо за внимание!

Заманов Мухтар Mishaz020@mail.ru