Signal in the Code

A Message Detected in Life's Blueprint

Christoph Kovacs

May 29, 2025

Table of contents

LIS	of Figures	3
Lis	of Tables	4
W	come	5
Pr	ace	7
FΑ		8
1	.1 MathJax - mhchem	.1 11 11 14 14 17
Αļ	pendices 2	20
Α	nello world 2	20
В	Appendix 1 2	21

List of Figures

1.1	Matrix		13
1.2	A flowchart		15
1.3			18

List of Tables

1.3 Codon assignments for the Standard Code, contracted by the first two nucleotide bases. 14

Welcome

i Purpose & Goal

The Kodonian Project seeks to demonstrate that the Universal Genetic Code contains an embedded signal—an intentional, structured message—suggesting a deeper informational or even extraterrestrial origin behind the blueprint of life on Earth.

Inspiration

"Life writes in code. We're only beginning to read."

Preface

here we go... $\,$

1 + 1

[1] 2

FAQ

Find here answers to common questions around the topic of our Genetic Code Signal research.

i Are we serious?

Yes

Who is the main contributor of this project?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

i Has research in this area been conducted elsewhere?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros

hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

i What are the strongest arguments for a signal in the Genetic Code?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

What are the strongest arguments against a signal in the Genetic Code?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

i Evolution did it, didn't it?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sagittis posuere ligula sit amet lacinia. Duis dignissim pellentesque magna, rhoncus congue sapien finibus mollis. Ut eu sem laoreet, vehicula ipsum in, convallis erat. Vestibulum magna sem, blandit pulvinar augue sit amet, auctor malesuada sapien. Nullam faucibus leo eget eros hendrerit, non laoreet ipsum lacinia. Curabitur cursus diam elit, non tempus ante volutpat a. Quisque hendrerit blandit purus non fringilla. Integer sit amet elit viverra ante dapibus semper. Vestibulum viverra rutrum enim, at luctus enim posuere eu. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

1 Demo Site

1.1 MathJax - mhchem

1.2 R

1+1

1.3 Python

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Name	Short Name	Symbol	Block Sum	Side Chain Sum	Total Sum
STOP	Stop	*	0	0	0
Glycine	Gly	G	74	1	75
Alanine	Ala	A	74	15	89
Serine	Ser	\mathbf{S}	74	31	105
Proline	Pro	P	74	41	115
Valine	Val	V	74	43	117
Threonine	Thr	${ m T}$	74	45	119
Cysteine	Cys	\mathbf{C}	74	47	121
Leucine	Leu	L	74	57	131
Isoleucine	Ile	I	74	57	131
Asparagine	Asn	N	74	58	132
Aspartic Acid	Asp	D	74	59	133
Lysine	Lys	K	74	72	146
Glutamine	Gln	Q	74	72	146
Glutamic Acid	Glu	\mathbf{E}	74	73	147
Methionine/START	Met	${ m M}$	74	75	149

Name	Short Name	Symbol	Block Sum	Side Chain Sum	Total Sum
Histidine	His	Н	74	81	155
Phenylalanine	Phe	F	74	91	165
Arginine	Arg	\mathbf{R}	74	100	174
Tyrosine	Tyr	Y	74	107	181
Tryptophane	Trp	W	74	130	204

Expand for a list of Genetic Code variants Source Id Species GC01 Standard Code GC02Vertebrate Mitochondrial Code GC03Yeast Mitochondrial Code GC04 Mold, Protozoan, Coelenterate Mitochondrial Code GC05Invertebrate Mitochondrial Code GC06 Ciliate, Dasycladacean and Hexamita Nuclear Code GC07Deleted Kinetoplast Code GC09Echinoderm and Flatworm Mitochondrial Code GC10 Euplotid Nuclear Code GC11 Bacterial, Archaeal and Plant Plastid Code GC12Alternative Yeast Nuclear Code GC13 Ascidian Mitochondrial Code GC14 Alternative Flatworm Mitochondrial Code GC15 Blepharisma Nuclear Code GC16 Chlorophycean Mitochondrial Code GC21Trematode Mitochondrial Code GC22Scenedesmus Obliquus Mitochondrial Code GC23Thraustochytrium Mitochondrial Code GC24Pterobranchia Mitochondrial Code GC25Candidate Division SR1 and Gracilibacteria Code GC26Pachysolen Tannophilus Nuclear Code GC27Karyorelict Nuclear Code GC28 Condylostoma Nuclear Code GC29Mesodinium Nuclear Code GC30 Peritrich Nuclear Code GC31Blastocrithidia Nuclear Code

GG	Gly	GA	Asp Glu	AG	Ser Arg	АА	Asn Lys	
	75		280		279		278	1517
GC	A l a	GT	Val	AC	Thr	AT	lle Met	41 x 37
	89		117		119		280	
CG	Arg	CA	His Gln	TG	Cys Stop Trp	TA	Tyr Stop	
	174		301		325		181	1628
СС	Pro	СТ	Leu	TC	Ser	П	Phe Leu	44 x 37
	115		131		105		296	
		92	22	20	3145			
25 x 37							x 37	85 x 37

Figure 1.1: Matrix

	Balanophoraceae Plastid Code
	Cephalodiscidae Mitochondrial Code Enterosoma Code
GC35	Peptacetobacter Code
0.000	Anaerococcus and Onthovivens Code
GC37	Absconditabacterales Code

				T 11 1 6	0 1
Codon	Amino Acids	Nucleon BL	Nucleon SC	Nucleon Totalstandard	3: Codon assignments for the l Code, contracted by the
\overline{AA}	N, K	74	58	132 ^{first two}	nucleotide bases.
AC	\mathbf{T}	74	45	119	
\overline{AG}	S, R	74	31	105	
AT	I, M	74	57	131	
CA	H, Q	74	81	155	
CC	P	74	41	115	
CG	R	74	100	174	
CT	${f L}$	74	57	131	
GA	D, E	74	59	133	
GC	A	74	15	89	
GG	G	74	1	75	
GT	V	74	43	117	
TA	Y, *	74	107	181	
TC	\mathbf{S}	74	31	105	
TG	C, *, W	74	47	121	
TT	F, L	74	91	165	

1.4 Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

1.5 ASCII Table

```
8
                                                                A B C D E F
          1
                 2
                       3
                            4
                                  5
                                        6 7
                                                         9
0
                                   §
%
1
                       \#
                             $
2
                                        &
                             4
                 2
                                              7
3
     0
                                   5
                                         6
                                                     8
                                                          9
                                                    Η
                                                                      K L
                 В
                            D
                                  \mathbf{E}
                                        \mathbf{F}
                                               \mathbf{G}
                                                         Ι
                                                                J
                                                                                 M N
4
     @
           A
                      \mathbf{C}
                                                                                             Ο
                       \mathbf{S}
                                                                \mathbf{Z}
5
      Ρ
           Q
                 {\bf R}
                             Τ
                                   U
                                         V
                                              W
                                                    \mathbf{X}
                                                          Y
6
                                                    h
                                                          i
                             d
                                        f
                                                                      k
                                   e
                                                                                  {\rm m}
     p
           \mathbf{q}
                 r
                       \mathbf{S}
                             \mathsf{t}
                                   u
                                        \mathbf{v}
                                               W
                                                    X
                                                          у
     Ç
É
                                                          ë
                                                    ê
8
           ü
                 é
                       \hat{\mathbf{a}}
                             \ddot{\mathrm{a}}
                                   à
                                        \mathring{\mathrm{a}}
                                              ç
                                                                è
                                                          Ö
                                                                Ü
                             ö
                                                    \ddot{\mathrm{y}}
9
                 Æ
                                                                            £
           æ
                      ô
                                   ò
                                         û
                                              ù
                                                                      ¢
                                                                                              f
                             ñ
                 ó
                       ú
                                   Ñ
                                                     į
В
\mathbf{C}
D
Е
           \beta \Gamma
                             \sum
                                                          \Theta \Omega
                                         μ
                                                                            \infty
F
           \pm
```


A full width figure.

Reach and engagement of campaigns

Low Reach

High Reach

$$\begin{bmatrix} G & A \\ C & T \end{bmatrix} \otimes \begin{bmatrix} G & A \\ C & T \end{bmatrix} = \begin{bmatrix} GG & GA & AG & AA \\ GC & GT & AC & AT \\ CG & CA & TG & TA \\ CC & CT & TC & TT \end{bmatrix}$$

1.6 2D Molecule

As outlined by Crick and Orgel (1973), pp. 16-18, we find this below. Also by referencing this, we end up there¹, as outlined in Figure 1.2. Also refer to Figure 1.1 for more details.

This is a span that has the class Crick, F. H. C., and L. E. Orgel. 1973. aside which places it in the marging): without a tentucken maker 1016/00 19-1035(73)90110-3.

¹ Here is the footnote.

- 1.6.1 References
- 1.6.2 Supplementary Material

A hello world

B Appendix 1

here we go...

1 + 1

[1] 2