

NTE74141 Integrated Circuit TTL – BCD-to-Decimal Decoder/Driver 16-Lead DIP Type Package

Description:

The NTE74141 is a second–generation BDC–to–decimal decoder in a 16–lead DIP type package designed specifically to drive cold–cathode indicator tubes. This decoder demonstrates an improved capability to minimize switching transients in order to maintain a stable display.

Full decoding is provided fo all possible input states. Fo binary inputs 10 through 15, all the outputs are off. Therefore the NTE74141, combined with a minimum of external circuitry, can use these invalid codes in blanking leading– and/or trailing–edge zeros in a display. The ten high–performance NPN output transistors have a maximum reverse current of 150 microamperes at 55 volts.

Low forward-impedance diodes are also provided for each input to clamp negative-voltage transitions in order to minimize transmission-line effects. Power dissipation is typically 80 milliwatts. The NTE74141 is characterized for operation over the temperature range of 0° to +70°C.

Features:

- Drives Gas-Filled Cold-Cathode Indicator Tubes Directly
- Fully Decoded Inputs Ensures all Outputs are Off for Invalid Codes
- Input Clamping Diodes Minimize Transmission-Line Effects

Absolute Maximum Ratings: $(T_A = 0^\circ \text{ to } +70^\circ \text{C unless otherwise specified})$	
Supply Voltage (Note 1), V _{CC}	7V
Input Voltage	5.5V
Current Into Any Output (Off–State)	2mA
Operating Free–Air Temperature Range, T _A	0° to +70°C
Storage Temperature Range, T _{stg}	. –65° to +150°C

Note 1. Voltage values are with respect to network ground terminal.

Recommended Operating Characteristics:

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}		4.75	5.0	5.25	V
Off-State Output Voltage			_	_	60	V
Operating Free-Air Temperature	T _A		0	_	70	°C

<u>Electrical Characteristics:</u> $(T_A = 0^{\circ} \text{ to } +70^{\circ}\text{C}, \text{ Note } 2, \text{ Note } 3 \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
High-Level Input Voltage	V _{IH}	1		2	_	-	V
Low-Level Input Voltage	V _{IL}			_	_	0.8	V
Input Clamp Voltage	V _{IK}	V _{CC} = MIN, I _I = -5mA		_	_	-1.5	V
On-State Output Voltage	V _{O(on)}	$V_{CC} = MIN, I_O = 7mA$		_	_	2.5	V
Off-State Output Voltage for Input Counts 0 Thru 9	$V_{O(off)}$	V_{CC} = MAX, I_{O} = 0.5mA		60	_	_	V
Off-State Reverse Current	I _{O(off)}	$V_{CC} = MAX, V_O = 55V$		_	_	50	μΑ
Off-State Reverse Current for	I _{O(off)}	$V_{CC} = MAX$, $T_A = +55^{\circ}C$		_	_	5	μΑ
Input Counts 10 Inru 15	Input Counts 10 Thru 15 $V_O = 30V$ T_A	$T_A = +70^{\circ}C$	_	_	15	μΑ	
Input Current at Maximum Input Voltage	II	$V_{CC} = MAX, V_I = 5.5V$		_	_	1	mA
High-Level Input Current A Input	I _{IH}	V _{CC} = MAX, V _I = 2.4V		_	_	40	μΑ
B, C, or D Input	1			_	_	80	μΑ
Low-Level Input Current A Input	I _{IL}	$V_{CC} = MAX, V_I = 0.4V$		_	_	-1.6	mA
B, C, or D Input	1			_	-	-3.2	mA
Supply Current	I _{CC}	V _{CC} = MAX, Note 4		_	16	25	mA

- Note 2. For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operating Conditions".
- Note 3. Typical value is at V_{CC} = 5V, T_A = +25°C. Note 4. I_{CC} is measured with all inputs grounded and outputs open.

Function Table:

	Inp	Output		
Α	В	С	D	ON †
L	L	L	L	0
L	L	L	Н	1
L	L	Н	L	2
L	L	Н	Н	3
L	Н	L	L	4
L	Н	L	Н	5
L	Н	Н	L	6
L	Н	Н	Н	7
Н	L	L	L	8
Н	L	L	Н	9
Н	L	Н	L	NONE
Н	L	Н	Н	NONE
Н	Н	L	L	NONE
Н	Н	L	Н	NONE
Н	Н	Н	L	NONE
Н	Н	Н	Н	NONE

H = HIGH Level, L = LOW Level

† All other outputs are OFF

Pin Connection Diagram Output 8 1 16 Output 0 Output 9 2 15 Output 1 Input A 3 14 Output 5 Input D 4 13 Output 4 V_{CC} 5 12 GND Input B 6 11 Output 6 Input C 7 10 Output 7 Output 2 8 9 Output 3 16

