Wall- and Free-Stream Pressure Processing: Algorithmic Specification

Generated from the provided Python script

17th August 2025

Abstract

This document formalises, in pseudocode, the processing pipeline. The pipeline estimates a frequency response transfer function (H_1) between a reference (free-stream) microphone and a treated (wall) microphone, then performs coherence-weighted Wiener inverse filtering to recover an estimate of the reference signal from the treated measurements.

1 Notation and Inputs

Let x[n] denote the discrete-time reference pressure signal, and y[n] the treated, both sampled at f_s Hz. Frequency-domain quantities are indexed by k for Welch frequency bins and by r for the dense FFT grid used in deconvolution.

Spectral definitions Welch auto-spectra $S_{xx}[k]$, $S_{yy}[k]$ and cross-spectrum $S_{xy}[k]$ are computed with segment length N_{seg} , overlap N_{ov} , and Hann window $w[\cdot]$. The magnitude-squared coherence is

$$\gamma^{2}[k] = \frac{|S_{xy}[k]|^{2}}{S_{xx}[k] S_{yy}[k]} \in [0, 1]. \tag{1}$$

The FRF estimate is $H[k] = S_{xy}[k]/S_{xx}[k]$.

2 Algorithms

Algorithm 1 H_1 Transfer-Function Estimation

Inputs: Time series x[n] (reference), y[n] (treated), sampling rate f_s ; Welch parameters $N_{\text{seg}}, N_{\text{ov}}, w[\cdot]$.

Outputs: Frequency vector f[k]; complex FRF H[k]; coherence $\gamma^2[k]$.

- 1: Optionally de-mean x and y.
- 2: Compute $S_{xx}[k]$ and $S_{yy}[k]$ using Welch's method with $(N_{\text{seg}}, N_{\text{ov}}, w)$.
- 3: Compute cross-spectrum $S_{xy}[k]$ using the same Welch settings. \triangleright e.g. via a cross-spectral density routine
- 4: $H[k] \leftarrow S_{xy}[k]/S_{xx}[k]$.
- 5: $\gamma^2[k] \leftarrow \frac{|S_{xy}[k]|^2}{S_{xx}[k]S_{yy}[k]}$, clipped to [0,1].
- 6: Return $(f[k], H[k], \gamma^{2}[k])$.

Algorithm 2 Wiener Inverse Filtering for Trace Recovery

Inputs: Output y[n]; sampling rate f_s ; FRF samples (f[k], H[k]); coherence $\gamma^2[k]$; optional band-limit $[f_{\min}, f_{\max}]$; regulariser $\lambda \geq 0$; zero-padding $N_{\text{pad}} \geq 0$.

Outputs: Estimate $\hat{x}[n]$ of the input.

- 1: De-mean y.
- 2: $N \leftarrow \text{length}(y)$; $N_{\text{FFT}} \leftarrow N + N_{\text{pad}}$.
- 3: $Y[r] \leftarrow \text{rFFT}(y, N_{\text{FFT}}); f_r \leftarrow \text{rFFTFreq}(N_{\text{FFT}}, d = 1/f_s).$
- 4: Interpolate |H[k]| and $\phi[k] = \operatorname{unwrap}(\angle H[k])$ onto f_r to obtain $|H|_r$ and ϕ_r .
- 5: $H_r \leftarrow |H|_r e^{j\phi_r}$.
- 6: Interpolate $\gamma^2[k]$ onto f_r , clip to [0,1] to get γ_r^2 .
- 7: Compute inverse filter (Wiener form)

$$H_r^{-1} \leftarrow \gamma_r^2 \frac{H_r^*}{|H|_r^2 + \lambda},\tag{2}$$

or equivalently use $|H|_r^2 \leftarrow \max(|H|_r^2, \varepsilon)$ for numerical safety when $\lambda = 0$.

- 8: **if** $[f_{\min}, f_{\max}]$ provided **then**
- 9: Zero out H_r^{-1} for all $f_r \notin [f_{\min}, f_{\max}]$.

 \triangleright Band-limited inverse

- 10: Set DC: $H_r^{-1}[0] \leftarrow 0$.
- 11: $\hat{x}[n] \leftarrow iRFFT(Y[r] \cdot H_r^{-1}, N_{FFT})[0:N].$
- 12: **return** $\hat{x}[n]$.

Algorithm 3 Wall/Free-Stream Pressure Processing Pipeline

Inputs: Index i selecting a calibration file; processing constants $f_s, \nu_0, \rho_0, u_{\tau 0}, W, He, L_0, \Delta L_0, U, C$; mode sets $\mathcal{M}, \mathcal{N}, \mathcal{L}$.

Outputs: FRF plot and corrected-trace plot; arrays (f, H, γ^2) and recovered trace $\hat{x}[n]$.

- 1: Instantiate WallPressureProcessor with the given physical and processing parameters.
- 2: Load calibration test $(p_w[n], p_{fs}[n]) \leftarrow \text{load}(\texttt{fn_naked_pressures}[i])$.
- 3: Set ref $\leftarrow p_w$, trt $\leftarrow p_{fs}$.
- 4: $(f, H, \gamma^2) \leftarrow \text{H1 Transfer-Function Estimation}(\text{ref, trt}, f_s)$ $\triangleright \text{Alg. 1}$
- 5: Save a transfer-function figure: magnitude and phase of H vs. f, optionally with coherence overlay.
- 6: $\hat{x}[n] \leftarrow \text{WIENER INVERSE FILTERING}(\text{trt}, f_s, f, H, \gamma^2, [f_{\min}, f_{\max}], \lambda, N_{\text{pad}}) \rightarrow \text{Alg. 2}$
- 7: Define $t[n] \leftarrow n/f_s$.
- 8: Save a corrected-trace figure showing $\{ref(t), trt(t), \hat{x}(t)\}$.

3 Default Parameters (from the Script)

Unless otherwise stated, the following defaults are used in the reference implementation:

Quantity	Value
Sampling rate f_s Welch defaults Inverse filter band (example)	$N_{\text{seg}} = 4096, \ N_{\text{ov}} = 2048, \ w = \text{Hann}$ (0, 3000] Hz optional