Exercises –Boolean functions

Exercise 7.1.

For the following Boolean functions of 3 variables, given by their tables of values, write the corresponding *disjunctive canonical form* (*DCF*) and *conjunctive canonical form* (*CCF*). Using Veitch diagrams simplify the functions.

X	у	Z	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
0	0	0	0	1	1	1	0	1	0	1
0	0	1	1	1	1	0	1	0	0	0
0	1	0	0	0	1	0	1	1	1	1
0	1	1	1	0	0	1	0	1	0	0
1	0	0	1	0	1	0	0	0	1	0
1	0	1	0	1	0	0	1	0	1	1
1	1	0	0	0	0	1	1	1	0	1
1	1	1	1	1	0	1	0	0	1	0

Exercise 7.2.

Simplify the following Boolean functions of 4 variables using Veitch diagrams.

- 1. $f_1(x_1, x_2, x_3, x_4) = x_1x_2\bar{x}_3x_4 \lor x_1x_2x_3\bar{x}_4 \lor x_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1\bar{x}_$
- 2. $f_2(x_1, x_2, x_3, x_4) = x_1x_2x_3x_4 \lor x_1x_2x_3\bar{x}_4 \lor x_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor x_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1\bar{x}_2\bar{x}_$
- 3. $f_3(x_1, x_2, x_3, x_4) = \bar{x}_1 x_2 x_3 x_4 \vee \bar{x}_1 x_2 \bar{x}_3 \bar{x}_4 \vee \bar{x}_1 \bar{x}_2 x_3 \bar{x}_4 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \vee \bar{x}_1 \bar{x}_2 \bar{x}_3$
- 4. $f_4(x_1, x_2, x_3, x_4) = \bar{x}_1 x_2 \bar{x}_3 x_4 \lor x_1 x_2 \bar{x}_3 \bar{x}_4 \lor x_1 \bar{x}_2 x_3 \bar{x}_4 \lor x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \lor x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \lor \bar{x}_1 \bar{x}_2 x_3 \bar{x}_4 \lor x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \lor \bar{x}_1 \bar{x}_2 x_3 \bar{x}_4 \lor \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{$
- 5. $f_5(x_1, x_2, x_3, x_4) = x_1x_2x_3x_4 \lor x_1x_2\bar{x}_3x_4 \lor x_1x_2x_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2x_3\bar{x}_4 \lor x_1\bar{x}_2x_3\bar{x}_4 \lor x_1\bar{x}_$
- 6. $f_6(x_1, x_2, x_3, x_4) = x_1x_2x_3x_4 \lor \bar{x}_1x_2\bar{x}_3x_4 \lor \bar{x}_1x_2x_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1\bar{x}_$
- 7. $f_7(x_1, x_2, x_3, x_4) = x_1x_2x_3x_4 \lor \bar{x}_1x_2\bar{x}_3x_4 \lor \bar{x}_1x_2x_3\bar{x}_4 \lor x_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor x_1\bar{x}_2\bar{x}_$
- 8. $f_8(x_1, x_2, x_3, x_4) = x_1x_2x_3x_4 \lor x_1x_2\bar{x}_3x_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2x_3\bar{x}_4 \lor x_1\bar{x}_2x_3\bar{x}_4 \lor x_1\bar{x}_2x_3\bar{x}_4 \lor x_1\bar{x}_2x_3\bar{x}_4 \lor x_1\bar{x}_2\bar{x}_3\bar{x}_4 \lor x_$

Exercise 7.3.

Using Karnaugh diagrams, simplify the following Boolean functions:

1.
$$f_1(x_1, x_2, x_3) = \overline{x_1(x_2 \downarrow x_3)} \vee \overline{x_1 x_2 x_3} \vee \overline{(x_1 \lor (x_2 \uparrow x_3))} \vee x_1 x_2 \overline{x_3}$$

2.
$$f_2(x_1, x_2, x_3) = \overline{x_1 x_2 x_3} \lor x_1(\overline{x_2} \lor x_3) \lor (\overline{x_1} \lor (x_2 \uparrow \overline{x_3})) \lor x_1 \overline{x_2} x_3$$

3.
$$f_3(x_1, x_2, x_3) = \overline{x_1(x_2 \downarrow x_3)} \vee x_1 \overline{x_2 x_3} \vee \overline{(x_1 \vee (x_2 \uparrow x_3))} \vee x_1 x_2 x_3$$

4.
$$f_4(x_1, x_2, x_3) = \overline{x_1} \overline{x_2} \overline{x_3} \vee x_1 (\overline{x_2} \downarrow x_3) \vee \overline{(x_1 \vee (\overline{x_2} \uparrow x_3))} \vee x_1 \overline{x_2} x_3$$

5.
$$f_5(x_1, x_2, x_3) = x_1(x_2 \downarrow x_3) \lor \overline{x_1} \overline{x_2} x_3 \lor \overline{(x_1 \lor (x_2 \uparrow x_3))} \lor \overline{x_1} x_2 \overline{x_3}$$

6.
$$f_6(x_1, x_2, x_3) = x_1 \overline{x_2} x_3 \vee \overline{x_1} (\overline{x_2} \downarrow x_3) \vee \overline{(x_1 \vee (x_2 \uparrow x_3))} \vee x_1 \overline{x_2} \overline{x_3}$$

7.
$$f_7(x_1, x_2, x_3) = \overline{x_1(x_2 \downarrow x_3)} \vee x_1 \overline{x_2 x_3} \vee \overline{(x_1 \vee (x_2 \uparrow x_3))} \vee x_1 \overline{x_2 x_3}$$

8.
$$f_8(x_1, x_2, x_3) = \overline{x_1 x_2 x_3} \lor x_1(x_2 \lor x_3) \lor \overline{(x_1 \lor (x_2 \uparrow x_3))} \lor \overline{x_1 x_2 x_3}$$

Exercise 7.4.

Simplify the following Boolean functions of 4 variables using Karnaugh diagrams.

1.
$$f_1(x_1,x_2,x_3,x_4) = x_1\bar{x}_4 \lor x_1x_2\bar{x}_3x_4 \lor \bar{x}_1x_2x_4 \lor \bar{x}_1x_3 \lor x_3\bar{x}_4;$$

2.
$$f_2(x_1,x_2,x_3,x_4) = x_1x_2 \lor x_1\overline{x_2}x_3x_4 \lor \overline{x_1}x_2x_4 \lor \overline{x_1}x_3 \lor x_2x_3$$
;

3.
$$f_3(x_1,x_2,x_3,x_4) = x_1x_4 \vee x_1\bar{x}_2\bar{x}_3\bar{x}_4 \vee \bar{x}_1\bar{x}_2\bar{x}_4 \vee \bar{x}_1\bar{x}_3 \vee x_3x_4;$$

4.
$$f_4(x_1,x_2,x_3,x_4) = x_1\bar{x}_2 \lor x_1x_2\bar{x}_3\bar{x}_4 \lor \bar{x}_1x_2\bar{x}_4 \lor \bar{x}_1x_3 \lor \bar{x}_2x_3;$$

5.
$$f_5(x_1, x_2, x_3, x_4) = x_3\bar{x}_4 \lor x_1x_2x_3x_4 \lor \bar{x}_3x_2x_4 \lor \bar{x}_1\bar{x}_3 \lor \bar{x}_1\bar{x}_4;$$

6.
$$f_6(x_1, x_2, x_3, x_4) = \bar{x}_1 \bar{x}_4 \vee \bar{x}_1 x_2 x_3 x_4 \vee x_1 x_2 x_4 \vee x_1 \bar{x}_3 \vee \bar{x}_3 \bar{x}_4;$$

7.
$$f_7(x_1, x_2, x_3, x_4) = \bar{x}_3 \bar{x}_4 \vee \bar{x}_1 x_2 \bar{x}_3 x_4 \vee x_2 x_3 x_4 \vee x_1 x_3 \vee x_1 \bar{x}_4;$$

8.
$$f_8(x_1,x_2,x_3,x_4) = x_3x_4 \vee x_1\bar{x}_2x_3\bar{x}_4 \vee \bar{x}_2\bar{x}_3\bar{x}_4 \vee \bar{x}_1\bar{x}_3 \vee \bar{x}_1x_4$$
.

Exercise 7.5.

Using Quine's method, simplify the following Boolean functions given by their values 0.

1.
$$f_1(0,1,0) = f_1(0,1,1) = f_1(1,0,1) = 0;$$

2.
$$f_2(0,0,0) = f_2(0,0,1) = f_2(1,1,1) = 0$$
;

3.
$$f_3(0,0,1) = f_3(0,1,0) = f_3(1,1,0) = 0$$
;

4.
$$f_4(0,0,0) = f_4(0,1,1) = f_4(1,0,0) = 0;$$

5.
$$f_5(0,0,0) = f_5(1,1,0) = f_5(1,1,1) = 0;$$

6.
$$f_6(0,1,0) = f_6(1,0,0) = f_6(1,0,1) = 0;$$

7.
$$f_7(0,1,1) = f_7(1,0,0) = f_7(1,1,1) = 0;$$

8.
$$f_8(0,0,1) = f_8(1,0,1) = f_8(1,1,0) = 0.$$

Exercise 7.6.

Using Quine's method, simplify the following Boolean functions given in *DCF* (disjunction of minterms):

1.
$$f_1(x_1,x_2,x_3)=m_0\vee m_3\vee m_4\vee m_5\vee m_6\vee m_7;$$

2.
$$f_2(x_1,x_2,x_3)=m_1\vee m_2\vee m_4\vee m_5\vee m_6\vee m_7;$$

3.
$$f_3(x_1,x_2,x_3)=m_1\vee m_2\vee m_3\vee m_4\vee m_5\vee m_7;$$

4.
$$f_4(x_1,x_2,x_3)=m_0\vee m_1\vee m_2\vee m_3\vee m_5\vee m_6;$$

5.
$$f_5(x_1,x_2,x_3)=m_0\vee m_1\vee m_2\vee m_4\vee m_6\vee m_7;$$

6.
$$f_6(x_1,x_2,x_3)=m_0\vee m_1\vee m_3\vee m_5\vee m_6\vee m_7;$$

7.
$$f_7(x_1,x_2,x_3)=m_0\vee m_1\vee m_2\vee m_3\vee m_4\vee m_7;$$

8.
$$f_8(x_1,x_2,x_3)=m_0\vee m_2\vee m_3\vee m_4\vee m_5\vee m_6$$
.

Exercise 7.7.

Simplify the following Boolean functions of 4 variables given by their values 1, using Quine's method.

- 1. $f_1(1,1,1,1) = f_1(1,1,0,1) = f_1(0,1,1,1) = f_1(1,1,0,0) = f_1(0,1,0,0) = f_1(0,0,0,0) = f_1(0,0,0,1) = f_1(0,0,1,1) = 1;$
- 2. $f_2(1,1,0,1) = f_2(0,1,0,1) = f_2(0,1,0,0) = f_2(0,0,0,0) = f_2(0,0,1,0) = f_2(1,0,1,1) = f_2(1,0,0,1) = f_2(0,0,1,1) = 1;$
- 3. $f_3(0,1,0,1) = f_3(0,1,0,0) = f_3(0,1,1,0) = f_3(1,0,1,0) = f_3(1,0,0,0) = f_3(0,0,1,0) = f_3(1,0,0,1) = f_3(1,0,0,1) = f_3(0,0,0,1) = 1;$
- 4. $f_4(0,1,0,1) = f_4(0,1,1,1) = f_4(1,1,1,0) = f_4(1,1,0,0) = f_4(0,1,1,0) = f_4(1,0,0,0) = f_4(0,0,0,0) = f$
- 5. $f_5(1,1,1,1) = f_5(0,1,0,1) = f_5(0,1,1,1) = f_5(1,1,1,0) = f_5(1,1,0,0) = f_5(1,0,0,0) = f_5(1,0,0,1) = f_5(0,0,0,1) = 1;$
- 6. $f_6(1,1,0,1) = f_6(0,1,0,1) = f_6(0,1,1,1) = f_6(1,1,1,0) = f_6(0,1,1,0) = f_6(1,0,1,0) = f_6(1,0,1,1) = f_6(1,0,0,1) = 1;$
- 7. $f_7(1,1,1,1) = f_7(1,1,0,1) = f_7(0,1,0,1) = f_7(0,1,0,0) = f_7(0,1,1,0) = f_7(0,0,1,0) = f_7(1,0,1,1) = f_7(0,0,1,1) = 1;$
- 8. $f_8(1,1,1,1) = f_8(1,1,1,0) = f_8(1,1,0,0) = f_8(1,0,0,0) = f_8(0,0,0,0) = f_8(0,0,1,0) = f_8(1,0,1,1) = f_8(1,0,1,1) = 1.$

Exercise 7.8.

Using Moisil's method simplify the following Boolean functions of 3 variables:

- 1. $f_1(x_1,x_2,x_3) = m_0 \vee m_1 \vee m_2 \vee m_5 \vee m_6$;
- 2. $f_2(x_1,x_2,x_3)=m_0\vee m_1\vee m_3\vee m_4\vee m_7$;
- 3. $f_3(x_1,x_2,x_3)=m_1\vee m_2\vee m_3\vee m_5\vee m_6$;
- 4. $f_4(x_1,x_2,x_3)=m_0\vee m_3\vee m_4\vee m_5\vee m_7$;
- 5. $f_5(x_1,x_2,x_3)=m_1\vee m_2\vee m_5\vee m_6\vee m_7;$
- 6. $f_6(x_1,x_2,x_3)=m_0\vee m_2\vee m_3\vee m_4\vee m_7$;
- 7. $f_7(x_1,x_2,x_3)=m_1\vee m_2\vee m_4\vee m_5\vee m_6;$
- 8. $f_8(x_1,x_2,x_3)=m_0\vee m_3\vee m_4\vee m_6\vee m_7$.