	0	1	2	3	4	5
0						
1				0	1	2
2			0			
3			1			
4			2			
5			'			

What is known as a "block" in *mattris* is simply a list of coordinates in relation to the anchor. In the figure shown, the block is a "T" block, with coordinates

$$(0,1)$$
, $(1,1)$, $(2,1)$, and $(1,2)$.

Now, recall that a binary number of length N (such that N is a positive integer greater than zero) may represent values from 0 to $2^{N}-1$. To represent values from 0 to 3, we therefore only require 2 bits of information (as $2^{2}-1=3$). So, our coordinates from above may be written in binary as so:

Finally, we may combine these into a single binary integer:

These individual values are accessible using bit-wise operations, namely shifting (>> or <<), 'and' (&) and 'or' (|). As long as values are properly kept track of, this implementation is quite simple.