

Operationalizing Data Science at Microsoft

María Medina Delivery Data Scientist @ Microsoft

Hello my name is

María Medina

@mariamedp

Delivery Data Scientist @ Microsoft Ingeniera Informática y Matemática 1ª promoción MDSF Afi

Agenda

- 1. Cloud & Azure
- 2. Artificial Intelligence in Azure
- 3. From predictions to production
- 4. Azure Machine Learning
- 5. AML Workshop

Before we start

1. Cloud & Azure

On premises vs. cloud computing

On premises vs. cloud computing

What is cloud?

Azure Regions

Types of cloud computing

laaS - Infrastructure as a Service

PaaS - Platform as a Service

SaaS - Software as a Service

What is Azure?

Edge Devices

Azure Stack Hub Azure Stack Edge

Azure Sphere

Azure Kinect

HoloLens

Identity

Serverless

Web

Mobile

Mixed Reality

Containers

Events + Integration

Databases

Analytics

AI + Machine Learning

Internet of Things

Media

Tools

Visual Studio

GitHub

PowerApps

Power BI

Infrastructure

Compute Networking Storage Security

Azure Services

Tour of Azure services (2019)

Azure Portal

Azure free pass: aka.ms/try-aml

portal.azure.com

2. Artificial Intelligence in Azure

Al in Azure

Al apps and agents

Azure Cognitive Services

Azure Bot Service

Knowledge mining

Cognitive Search

Machine learning

Azure Machine Learning
Azure Databricks
Azure Synapse

Cognitive Services

Azure Search

JFK Files Demo

Machine Learning

3. MLOps: from production to production

Why Azure Machine Learning?

¿Qué hice para conseguir estos resultados?

¿Cuál es la versión buena del modelo?

Olvidarte de que estás entrenando y apagar el ordenador

Más habitual entrenar modelos que hacer predicciones con ellos

El modelo ejecuta en local, pero no en producción

Tenemos el modelo en producción, pero no sabemos cómo lo está haciendo

La precisión está bajando... ¿cómo reentrenamos?

Tenemos un nuevo modelo... ¿cómo lo cambiamos?

Machine Learning Systems

Sculley et al., "Hidden Technical Debt in Machine Learning Systems", 2015

What is DevOps?

DevOps is the union of people, process, and products to enable continuous delivery of value to your end users.

Donovan Brown

DevOps practices

Version Control

Infrastructure as Code

Continuous Integration

Microservices

Continuous Delivery

Monitoring and logging

Team Data Science Process, Microsoft

Data Science Lifecycle

DevOps practices

Version Control

Infrastructure as Code

Continuous Integration

Microservices

Continuous Delivery

Monitoring and logging

MLOps practices

Version Control code, data & models

Continuous Integration training

Continuous Delivery model deployment

Infrastructure as Code

resources, compute & environments

Microservices

Azure Machine Learning ecosystem

Monitoring and logging

data & model monitoring

4. Azure Machine Learning

Azure Machine Learning (AML)

Asset management and orchestration services to assist in the lifecycle of model training and deployment workflows.

AML Workspace

AML Workspace elements

AML Experiments and Runs

Experiment

Grouping of many runs from a given script.

Always belongs to a workspace.

Stores information about runs

Run

Produced when you submit a script to train a model. Contains:

Metadata about the run (timestamp, duration etc.)

Metrics logged by your script.

Output files auto-collected by the experiment, or explicitly uploaded by you.

A snapshot of the directory that contains your scripts, prior to the run.

Run configuration

A set of instructions that defines how a script should be run in a given compute target.

AML Models and Model Registry

Model

A machine learning model is an artifact that is created by your training process. You then use a model to get predictions on new data.

A model is produced by a run in Azure Machine Learning. You can also use a model trained outside of Azure Machine Learning.

Model Registry

Keeps track of all the models in your Azure Machine Learning service workspace.

Models are identified by name and version.

You can provide additional metadata tags when you register the model, and then use these tags when searching for models.

You cannot delete models that are deployed.

AML Pipelines

Used for creating workflows in your machine learning projects (training, batch inference)

AML Pipelines

Used for creating workflows in your machine learning projects (training, batch inference)

AML end-to-end

Training with AML

Register models from experiments

Deploy Model with AML

Local

Azure Container Instances

Azure Kubernetes Service

+

Webservice

Inference with AML

Real-time inference

Webservices to serve real-time predictions upon request for a small number of records at a time.

Artifact: endpoint

Batch inference

Pipeline to periodically generate asynchronous predictions for all records in the data

Artifact: pipeline

Data Science Lifecycle with AML

Move from experimental code to production-ready code.

Training process is defined with an AML pipeline and executed using a remote compute cluster.

User-level access to AML needed for low-level testing and review.

Experimentation done locally or from compute instance using notebooks for flexibility and speed. Relies on AML workspace for tracking. User-level access needed to create experiments, manage artifacts, etc.

Production code launched from CI/CD pipelines. Uses AML Pipelines to manage ML flow. No user-level access, only via CI/CD pipelines. Reader access to AML might be needed.

Continuous Integration in MLOps

Continuous Deployment in MLOps

MLOps Architecture

MLOps Reference Architecture, Microsoft

5. Demo time!

Setup:

- 1. Create Machine Learning workspace in Azure
- 2. Download config.json file
- 3. Install python SDK

```
pip install azureml-sdk
```

- 4. Download sample notebooks from Github
 - First experiment
 - Train on remote cluster
 - Deploy real-time webservice

Resources

Azure free pass: aka.ms/try-aml

Azure Machine Learning documentation: <u>AML docs</u>

Azure Machine Learning examples: github repo

Python SDK documentation: <u>azureml docs</u>

Azure Data Science Certification: <u>learning path</u>

Microsoft MLOps Accelerator: microsoft/dstoolkit-mlops-base

Thank you!