Microeconomics Group45 吴熙楠 Homework02

Contents

1	Problem	1	2
2	Problem	2	2
3	Problem	3	3
4	Problem	4	3
5	Problem	5	4
6	Problem	6	5
7	Problem	7	5

1 Problem 1

Answer:

- (a)No, bacause $A \succeq B$ and $B \succeq C$, but $C \succ A$.
- (b)No, because $B \sim A$ and $C \sim B$, but $C \succ A$.
- (c)Yes, because if $x \succ y$, then x has over one teaspoon per cup than y, also if $y \succ z$, then y has over one teaspoon per cup than z. So x has over two teaspoons per cup than z, then $x \succ z$.

2 Problem 2

Answer:

- $(a)(x_A+2)(x_B+1)=U,$ for U is a constant and $U\geq 2, x_A, x_B\geq 0.$
- (b) Given that $U_1 = 3, U_2 = 4, U_3 = 5$, we can draw a figure as shown below.

(c)(Because U = 36 is so much bigger than U in the previous picture, I drew a new picture.)

3 Problem 3

Answer:

(a)
$$x_A + 2x_B = 40$$
, for $x_A, x_B \ge 0$

(a) $x_A + 2x_B = 40$, for $x_A, x_B \ge 0$ (b) $x_A = 40 - 2x_B$ and $x_A = \frac{U}{x_B}$, also we can know that if we choose the best bundle, then we have this equation: $-2 = -\frac{U}{x_P^2}$

We can figure out that $x_A = 20, x_B = 10$

(c)
$$U = x_A x_B = 20 \cdot 10 = 200$$

 $(d)m' = 20 + 3 \times 10 = 50$, for $p'_B = 3$ and m' = 50, according to question(c), we can calculate that $x'_A = 25, x'_B = \frac{25}{3}$

For $p'_B = 3$ and m = 40, also according to question(c), we can calculate that $x''_A = 20$, $x''_B = 20$ 20 3

Then we can calculate the substitution effect: $\Delta x_A^s = x_A' - x_A = 5, \Delta x_B^s = x_B' - x_B = -\frac{5}{3}$ and also the income effect: $\Delta x_A^n = x_A'' - x_A' = -5$, $\Delta x_B^n = x_B'' - x_B' = -\frac{5}{3}$

We can see that $\Delta x_A = x_A^s + x_A^n = 0, \Delta x_B = x_B^s + x_B^n = -\frac{10}{3}$

4 Problem 4

Answer:

(a) For the first week, $m = 7.5 \times 4 = 30$; and for the second week, $m' = 7.5 \times 2 + 7.5 \times 4 = 45$ Given that x_1 is the number of pounds Frank consumed tomatoes, and x_2 is the number of pounds Frank consumed beef. Then we can draw the graph below:

Line A is the budget line for the first week, and line B is the budget line for the second week.

(b)

The shaded area is the one he won't purchase with this budget.

5 Problem 5

Answer:

Yes, this consumer's choices violate the Weak Axiom of Revealed Preference.

Because for the first budget line, he chose A when he could choose A or B, so A was revealed preferred to B. But for the second budget line, he chose B when he could choose A or B. So his choices violate the Weak Axiom of Revealed Preference.

6 Problem 6

Answer:

- (a) The expected utility of buying insurance is $(0.9\sqrt{16-R}+0.1\sqrt{16-x-R})$.
- (b) The expected utility of not buying insurance is $3.85 (0.9\sqrt{16} + 0.05\sqrt{16} 7 + 0.05\sqrt{16} 12 = 3.85)$.
- (c)The equation: $0.9\sqrt{16-R}+0.1\sqrt{16-x-R}=3.85$, and R can be solved by this equation.

7 Problem 7

Answer:

(a) Given that α is the probability of planting A and $1-\alpha$ is the probability of planting B.

Then
$$U = 0.5\sqrt{2500 \times \alpha + 1600 \times (1 - \alpha)} + 0.5\sqrt{400 \times \alpha + 900 \times (1 - \alpha)}$$

We can solve that
$$\alpha = \frac{47}{90}$$
, $U = \frac{7\sqrt{230}}{3} \approx 35.387$

(b) If we only plant A, $U' = 0.5\sqrt{2500 - 400} + 0.5\sqrt{400 + 400} = 5\sqrt{21} + 10\sqrt{2} \approx 37.055$ We can know that $U' \approx 37.055 > U \approx 35.387$, so we can only plant A and buy insurance.