## Chapter 10 Error Detection and Correction

- หน้าที่ของ data link layer คือ framing, addressing(Header), flow control, error control(Trailer) และ media access control
- ประเภทของ error
- 1. Single bit error
- 2. Burst error (>1 บิต)
- เทคนิคการตรวจจับ Error คือ เพิ่ม redundancy bit เข้าไปที่ท้ายข้อมูล
- Detection method มี 3 วิธี
  - Parity check (ทำที่ Layer1)
  - Cyclic redundancy check (ทำที่ Layer2)
  - Checksum (ทำที่ Layer4)
- 1. Parity check
  - คือการ add parity bit เข้าไปที่ข้อมูล โดยนับเลข 1 ของข้อมูล
  - Even-parity -> ทำให้จำนวนเลข 1 เป็นเลขคู่
  - Odd-parity -> ทำให้จำนวนเลข 1 เป็นเลขคี่
  - สามารถ detect ได้เฉพาะจำนวนบิต error เป็นเลขคี่ (1บิต,3บิต)
- two-dimensional parity check จะตรวจสอบบิตผิดหลายตัวได้ แล้วแต่ ตำแหน่งที่ผิด
- 2. Cyclic redundancy check
  - เช็คโดยวิธีการหาร
  - Trailer เก็บเศษจากการหาร
- ตรวจ Error พบ 100% ในกรณี 1) จำนวนบิต error เป็นเลขคี่ 2) burst error มีความยาว ≤ กำลังสูงสุดของ polynomial ตัวหาร

```
Ex. bu dataword 1010011110 112= divisor 10111
 a.) ur code word n'z's orn sender
      divisor = x 4 x + x + 1
    - คั้งนาร
     10111) 10100111100000 - 75'0' 400 6
           ⊕ 10111
                11/11
              A10111
                             codeword fixi
                 10001
                 10111
                              10100111101010
                   11000
                   10111
                                     redundancy bits
                    11110-
                    10111
                    10010
                     10111
                      1010
b) du cheek monate (Tist error)
            100/10/110
    10111 10100t11101010
         10111
            11111
            10111
             10001
             1011)
               11001
               10111
                11100
                10111
                10111
                 10111
                  00 lard 0 ⇒ no error
```

## 3. Checksum

- Trailer ตัวส่ง เก็บ 1 compliment ของผลลัพธ์จากการ Sum
- ตัวรับจะต้อง Sum ค่าทั้งหมด จะต้องได้เป็น -0 แล้วทำ 1'compliment จะได้ เลข 0 ทั้งหมด จึงจะถูกต้อง



- Error Correction
  - มี 2 วิธีคือ 1. ส่งใหม่ และ 2. Hamming Code



- m คือ จำนวนบิตข้อมูล , r คือจำนวน redundancy bit
- จำนวน redundancy bit ที่เหมาะสมต้องเป็นไปตามสูตร

$$2^r \ge m + r + 1$$

- ตำแหน่งของ redundancy bit คือ  $2^n$  ; n=0,1,2,...

| 11 | 10 | 9 | 8                     | 7 | 6 | 5 | 4     | 3 | 2              | 1     |
|----|----|---|-----------------------|---|---|---|-------|---|----------------|-------|
| d  | d  | d | <i>r</i> <sub>8</sub> | d | d | d | $r_4$ | d | r <sub>2</sub> | $r_1$ |

## - ค่าของ redundancy bit คือ parity bit ของบิตที่มันดูแล คือ

 $r_1$  ดูแลบิต 1,3,5,7,9,11,... [1 เว้น 1]

 $r_2$  ดูแลบิต 2-3,6-7,10-11 [2 เว้น 2]

 $\Upsilon_4$  ดูแลบิต 4-7,12-15 [4 เว้น 4]

 $\Upsilon_{8}$  ดูแลบิต 8-15,... [8 เว้น 8]

