Boston Housing with Linear Regression

With this data our objective is create a model using linear regression to predict the houses price

The data contains the following columns:

- CRIM: per capita crime rate by town.
- ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS: proportion of non-retail business acres per town.
- CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- NOX: nitrogen oxides concentration (parts per 10 million).
- RM: average number of rooms per dwelling.
- AGE: proportion of owner-occupied units built prior to 1940.
- **DIS**: weighted mean of distances to five Boston employment centres.
- · RAD: index of accessibility to radial highways.
- TAX: full-value property-TAX rate per \$10,000.
- PTRATIO:pupil-teacher ratio by town
- BLACK: 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town.
- LSTAT: lower status of the population (percent).
- MEDV: median value of owner-occupied homes in \$\$1000s

Prepare our enviroment

Boston.describe()

```
In [2]:
         import pandas as pd
         import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
         %matplotlib inline
         # Importing DataSet and take a look at Data
In [3]:
         Boston = pd.read_csv("boston.csv")
         Boston.head()
              CRIM
                     ZN INDUS CHAS
                                        NOX
                                                    AGE
                                                            DIS RAD
                                                                       TAX PTRATIO BLACK LSTAT M
                                                RM
Out[3]:
            0.00632 18.0
                            2.31
                                     0
                                       0.538
                                              6.575
                                                    65.2 4.0900
                                                                    1
                                                                      296.0
                                                                                 15.3
                                                                                       396.90
                                                                                                4.98
         1 0.02731
                     0.0
                            7.07
                                       0.469
                                              6.421
                                                     78.9 4.9671
                                                                      242.0
                                                                                 17.8
                                                                                       396.90
                                                                                                9.14
         2 0.02729
                     0.0
                           7.07
                                     0 0.469
                                              7.185
                                                    61.1 4.9671
                                                                      242.0
                                                                                 17.8
                                                                                       392.83
                                                                                                4.03
           0.03237
                     0.0
                            2.18
                                       0.458
                                              6.998
                                                    45.8 6.0622
                                                                    3 222.0
                                                                                 18.7
                                                                                       394.63
                                                                                                2.94
            0.06905
                                     0 0.458 7.147
                                                                    3 222.0
                                                                                 18.7
                                                                                       396.90
                                                                                                5.33
                           2.18
                                                    54.2 6.0622
         Boston.info()
In [4]:
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): # Column Non-Null Count Dtype 0 CRIM 506 non-null float64 1 506 non-null float64 2 **INDUS** 506 non-null float64 3 CHAS 506 non-null int64 4 506 non-null NOX float64 5 RM 506 non-null float64 6 506 non-null float64 AGE 7 DIS 506 non-null float64 8 RAD 506 non-null int64 float64 9 TAX 506 non-null 506 non-null float64 10 PTRATIO 11 BLACK 506 non-null float64 float64 12 506 non-null LSTAT

506 non-null

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

13 MEDV

0 1	F 4 7	
()))	1 /1 1	
ou c	1 7 1	

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500

float64

In [5]: Boston.plot.scatter('RM', 'MEDV', figsize=(6, 6))

Out[5]: <AxesSubplot:xlabel='RM', ylabel='MEDV'>

In this plot its clearly to see a linear pattern. Wheter more average number of rooms per dwelling, more expensive the median value is.

```
plt.subplots(figsize=(12,8))
In [6]:
             sns.heatmap(Boston.corr(), cmap = 'RdGy', annot = True, fmt = '.1f')
             <AxesSubplot:>
Out[6]:
                                                                                                                                         1.0
                 CRIM
                         1.0
                                       0.4
                                              -0.1
                                                      0.4
                                                             -0.2
                                                                     0.4
                                                                                                  0.3
                                                                                                                 0.5
                                                      -0.5
                   ZN -
                        -0.2
                                1.0
                                       -0.5
                                               -0.0
                                                              0.3
                                                                     -0.6
                                                                                                          0.2
                                                                                                                        0.4
                                                                                                                                        - 0.8
                                -0.5
                                       1.0
                                                                            -0.7
               INDUS -
                         0.4
                                               0.1
                                                                                                  0.4
                                                                                                                                         0.6
                                -0.0
                                               1.0
                                                      0.1
                                                                                                                -0.1
                        -0.1
                                        0.1
                                                              0.1
                                                                     0.1
                                                                            -0.1
                                                                                   -0.0
                                                                                           -0.0
                                                                                                  -0.1
                                                                                                          0.0
                                                                                                                        0.2
                CHAS
                         0.4
                                                      1.0
                                                                            -0.8
                                                                                                  0.2
                 NOX -
                                               0.1
                                                                                                                                         - 04
                  RM
                        -0.2
                                0.3
                                               0.1
                                                             1.0
                                                                     -0.2
                                                                            0.2
                                                                                   -0.2
                                                                                                          0.1
                                                                                                                -0.6
                                                                                                                                        - 0.2
                 AGE
                         0.4
                                -0.6
                                               0.1
                                                             -0.2
                                                                     1.0
                                                                            -0.7
                                                                                    0.5
                                                                                           0.5
                                                                                                         -0.3
                  DIS
                                       -0.7
                                               -0.1
                                                      -0.8
                                                              0.2
                                                                     -0.7
                                                                            1.0
                                                                                    -0.5
                                                                                           -0.5
                                                                                                  -0.2
                                                                                                         0.3
                                                                                                                        0.2
                                                                                                                                        - 0.0
                                              -0.0
                                                                                                  0.5
                 RAD
                                                             -0.2
                                                                     0.5
                                                                                    1.0
                                                                                           0.9
                                                                                                                 0.5
                                                                            -0.5
                                               -0.0
                                                                     0.5
                                                                                    0.9
                                                                                           1.0
                                                                                                  0.5
                  TAX
                                                                                                                                         - -0.2
             PTRATIO -
                        0.3
                                -0.4
                                        0.4
                                              -0.1
                                                      0.2
                                                                     0.3
                                                                            -0.2
                                                                                    0.5
                                                                                           0.5
                                                                                                  1.0
                                                                                                         -0.2
                                                                                                                 0.4
                                                                                                                        -0.5
```

At this heatmap plot, we can do our analysis better than the pairplot.

NOX

0.1

-0.6

RМ

-0.3

AĠE

0.3

0.2

DİS

0.5

RÁD

-0.2

0.4

-0.5

-0.5

1.0

0.3

TÁX PTRÁTIOBLÁCK LSTAT MEDV

1.0

-0.7

0.3

-0.7

1.0

0.0

-0.1

0.2

Lets focus at the last line, where y = MEDV:

-0.5

INDUS CHAS

0.2

0.4

ΖŃ

CRIM

When shades of Red/Orange: the more red the color is on X axis, smaller the MEDV. Negative correlation

-0.4

-0.6

When light colors: those variables at axis x and y, they dont have any relation. Zero correlation When shades of Gray/BLACK: the more BLACK the color is on X axis, more higher the value med is. Positive correlation

Trainning Linear Regression Model

Define X and Y

BLACK -

LSTAT

MEDV

X: Varibles named as predictors, independent variables, features.

Y: Variable named as response or dependent variable

```
In [7]: X = Boston[['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX'
Y = Boston['MEDV']
```

Import sklearn librarys:

train_test_split, to split our data in two DF, one for build a model and other to validate. LinearRegression, to apply the linear regression.

```
from sklearn.model selection import train test split
 In [8]:
         from sklearn.linear model import LinearRegression
 In [9]:
         # Split DataSet
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3)
         print(f'Train Dataset Size - X: {X_train.shape}, Y: {Y_train.shape}')
In [10]:
         print(f'Test Dataset Size - X: {X test.shape}, Y: {Y test.shape}')
         Train Dataset Size - X: (354, 13), Y: (354,)
         Test Dataset Size - X: (152, 13), Y: (152,)
In [11]:
         # Model Building
         lm = LinearRegression()
         lm.fit(X train, Y train)
         predictions = lm.predict(X_test)
In [12]:
         # Model Visualization
         plt.figure(figsize=(6, 6))
         plt.scatter(Y_test, predictions)
         plt.xlabel('Y Test')
         plt.ylabel('Predicted Y')
         plt.title('Test vs Prediction')
```

Out[12]: Text(0.5, 1.0, 'Test vs Prediction')


```
In [13]: plt.figure(figsize=(6, 6))
    sns.regplot(x = X_test['RM'], y = predictions, scatter_kws={'s':5})
    plt.scatter(X_test['RM'], Y_test, marker = '+')
    plt.xlabel('Average number of rooms per dwelling')
    plt.ylabel('Median value of owner-occupied homes')
    plt.title('Regression Line Tracing')
```



```
In [14]: from sklearn import metrics

print('Mean Absolute Error:', metrics.mean_absolute_error(Y_test, predictions))
print('Mean Square Error:', metrics.mean_squared_error(Y_test, predictions))
print('Root Mean Square Error:', np.sqrt(metrics.mean_squared_error(Y_test, predictions))
Mean Absolute Error: 3.373916998524693
Mean Absolute Error: 3.473017034141040EE
```

Mean Absolute Error: 3.3/3916998524693 Mean Square Error: 24.201703414184955 Root Mean Square Error: 4.919522681539842

```
In [15]: # Model Coefficients
    coefficients = pd.DataFrame(lm.coef_.round(2), X.columns)
    coefficients.columns = ['coefficients']
    coefficients
```

Out[15]:		coefficients
	CRIM	-0.11
	ZN	0.03
	INDUS	0.06
	CHAS	3.60
	NOX	-21.13
	RM	4.28
	AGE	0.00
	DIS	-1.50
	RAD	0.31
	TAX	-0.01
	PTRATIO	-1.05
	BLACK	0.01

LSTAT

-0.53