FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen Aufgabenblatt 2: ϵ -FA und Pumping-Lemma

Präsenzaufgabe 2.1:

1. Berechnen Sie die ϵ -Hülle, d.h. die Relation $R \subseteq Q \times Q$ mit

$$R = \{ (q, q') \mid (q, \epsilon) \vdash^* (q', \epsilon) \}$$

für den folgenden ϵ -NFA.

Lösung: Wir können die Relation auch als Vereinigung darstellen: $R := \bigcup_{i \geq 0} R_i$, wobei R_i die Menge der Zustandspaare darstellt, die über genau i ϵ -Kanten verbunden werden, d.h.

$$R_i = \{ (q, q') \mid (q, \epsilon) \vdash^i (q', \epsilon) \}$$

Wir lesen vom Zustandsdiagramm ab:

Für alle höheren Ordnungen (d.h. für $i \ge 3$) existieren keine neuen Verbindungen mehr. Damit ergibt sich:

$$R := \bigcup_{i \ge 0} R_i = \bigcup_{i=0}^{2} R_i = \frac{\begin{vmatrix} q_1 & q_2 & q_3 \\ q_1 & 1 & 1 & 1 \\ q_2 & 1 & 1 & 1 \\ q_3 & & & 1 \end{vmatrix}$$

Das Gleiche als Relation notiert ist dann:

$$R = \{(q_1, q_2), (q_2, q_3), (q_2, q_1), (q_1, q_3)\} \cup Id_Q$$

2. Konstruieren Sie für den obigen ϵ -FA einen äquivalenten ϵ -freien NFA.

Lösung: (Vgl. dazu die Definition in Satz 14.1.) Die Übergänge $q \xrightarrow{x} q''$ des äquivalenten ϵ -freien NFA ergeben sich, indem man zunächst im Orginalautomat mit beliebig vielen ϵ -Schritten von q zu einem q' und von dort mit x zu q'' gelangt. Die Endzustände ergeben sich, indem man "rückwärts", von den Endzuständen startend beliebig viele ϵ -Schritten läuft.

Präsenzaufgabe 2.2:

1. Zeigen Sie mit Hilfe des Pumping-Lemmas, dass die Sprache $L=\{a^kb^{2k}\mid k\in\mathbb{N}\}$ nicht regulär ist.

Lösung: Pumping Lemma: Sei L eine reguläre Sprache. Dann existiert eine Zahl n, so dass für alle $z \in L$ mit $|z| \ge n$ stets eine Zerlegung z = uvw existiert, so dass gilt:

- (i) $|uv| \leq n$
- (ii) $|v| \ge 1$
- (iii) $\forall i \in \mathbb{N} : uv^i w \in L$

Angenommen L wäre regulär. Wähle $z=a^nb^{2n}$ für die Zahl n des PL. Da $|z|\geq n$, muss es eine Zerlegung z=uvw mit obigen Eigenschaften geben. Dann muss $uv\in\{a\}^*$ sein, d.h. $v=a^l$ für ein l>0, denn nach (i) ist $|uv|\leq n$. Nach dem PL müsste dann das Wort $uv^0w=a^{n-l}b^{2n}$ in L sein, was aber nicht der Fall ist. Widerspruch.

2. Zeigen Sie, dass jede endliche Menge regulär ist.

Lösung: Sei $L = \{w_1, \dots, w_n\} \subseteq \Sigma^*$.

Mit einem GFA (folgt noch in der Vorlesung) können wir diese Menge akzeptieren, wenn wir nur zwei Zustände q_0 und q_1 haben und für jedes Wort $w_i \in L$ eine mit w_i beschriftete Kante von q_0 nach q_1 haben, wobei q_0 der Start- und q_1 der einzige Endzustand ist.

Alternativ können wir die Menge auch durch einen NFA akzeptieren. Wir definieren die Zustandsmenge als die Menge aller Suffixe der Worte aus L.

3. Die Sprache $L=\{a,ab,ac\}$ ist regulär. Zeigen Sie, dass das Pumping-Lemmas auch auf diese Sprache L zutrifft.

Lösung: Beachte: Das PL sagt nicht, dass jede reguläre Menge unendlich groß wäre. Dies könnte man annehmen, da eine Eigenschaft des PL besagt, dass $\{u\}\{v\}^*\{w\}\subseteq L$ gilt, d.h. dass eine unendliche Menge in L enthalten ist. Diese Eigenschaft gilt aber nur für hinreichend lange Worte. Für kürzere Worte ist nichts ausgesagt.

Für unsere Sprache L könnte nun n>2 sein. In diesem Fall gäbe es kein Wort z, für das etwas zu zeigen wäre, denn es gibt ja kein Wort z mit $|z|\geq n>2$, und das PL gilt trivialerweise.

Übungsaufgabe 2.3: Gegeben ist der folgende ϵ -FA A. Berechnen Sie für A die ϵ -Hülle und konstruieren Sie mit dem Verfahren der Vorlesung den zu A äquivalenten ϵ -freien NFA.

von 2

Übungsaufgabe 2.4:

von 4

1. Sei $w \in \{0,1\}^*$, dann bezeichnet \overline{w} das Wort, das man erhält wenn man in w alle 0 durch 1 ersetzt (und umgekehrt). Bsp. $\overline{100} = 011$.

Zeigen Sie mit Hilfe des Pumping-Lemmas, dass die Sprache $L = \{w\bar{w} \mid w \in \{0,1\}^*\}$ nicht regulär ist.

Übungsaufgabe 2.5:

von

1. Sei $L \subseteq \Sigma^*$ eine beliebige Sprache und $a \in \Sigma$. Definiere:

6

$$(L\%a) := \{ w \in \Sigma^* \mid \text{ es gibt ein Wort } wa \text{ in } L \}$$

L%a entsteht also aus L, wenn man nur auf a endende Worte aus L betrachtet und bei denen dieses letzte a streicht.

Zeige: Wenn $L\subseteq \Sigma^*$ eine beliebige reguläre Sprache ist, dann ist auch (L%a) regulär.

2. Sei $L \subseteq \Sigma^*$ eine reguläre Sprache. Zeigen Sie, dass dann auch die Menge der kürzesten Worte (KW):

$$KW(L) \ := \ \{w \in L \mid \text{ kein echtes Anfangsstück von } w \text{ ist auch in } L \ \}$$

eine reguläre Sprache ist.

Version vom 13. April 2012

Bisher erreichbare Punktzahl: 24