Seringkali perancang program perlu mengurutkan sekumpulan data yang dimiliki untuk memudahkan pemrosesan selanjutnya terhadap data tersebut. Pengurutan adalah sebuah algoritma dasar yang sering diperlukan dalam pembuatan program. Berbagai algoritma pengurutan telah diciptakan dan dapat digunakan. Pemahaman tentang beberapa algoritma pengurutan dasar perlu diketahui, termasuk cara penggunaannya dalam program.

Sorting atau pengurutan data adalah proses yang sering harus dilakukan dalam pengolahan data. Sort dalam hal ini diartikan mengurutkan data yang berada dalam suatu tempat penyimpanan, dengan urutan tertentu baik urut menaik (ascending) dari nilai terkecil sampai dengan nilai terbesar, atau urut menurun (descending) dari nilai terbesar sampai dengan nilai terkecil. Sorting adalah proses pengurutan.

Pengurutan internal (internal sort), yaitu pengurutan terhadap sekumpulan data yang disimpan dalam media internal komputer yang dapat diakses setiap elemennya secara langsung. Dapat dikatakan sebagai pengurutan tabel. Pengurutan eksternal (external sort), yaitu pengurutan data yang disimpan dalam memori sekunder, biasanya data bervolume besar sehingga tidak mampu untuk dimuat semuanya dalam memori.

Dalam courseware ini, hanya akan dibahas algoritma pengurutan internal, dengan data berada dalam array satu dimensi. Algoritma pengurutan internal yang utama antara lain: Bubble Sort, Selection Sort, Insertion Sort, Shell Sort, Merge Sort, Radix Sort, Quick Sort, Heap Sort. Dalam courseware ini hanya akan dibahas tiga metode sort yang pertama yang dianggap mudah, yaitu: Bubble Sort, Selection Sort dan Insertion Sort.

Bubble sort adalah proses pengurutan sederhana yang bekerja dengan cara berulang kali membandingkan dua elemen data pada suatu saat dan menukar elemen data yang urutannya salah. Ide dari Bubble sort adalah gelembung air yang akan "mengapung" untuk table yang terurut menaik (ascending). Elemen bernilai kecil akan "diapungkan" (ke indeks terkecil), artinya diangkat ke "atas" (indeks terkecil) melalui pertukaran. Karena algoritma ini melakukan pengurutan dengan membandingkan elemen-elemen data satu sama lain, maka bubble sort termasuk ke dalam jenis algoritma comparison-based sorting. Proses dalam Bubble sort dilakukan sebanyak N-1 langkah (pass) dengan N adalah ukuran array. Pada akhir setiap langkah ke-I, array L[0..N] akan terdiri atas dua bagian, yaitu bagian yang sudah

terurut L[0..l] dan bagian yang belum terurut L[I+1..N-1]. Setelah langkah terakhir, diperoleh array L[0..N-1] yang terurut menaik.

Algoritma Selection sort memilih elemen maksimum/minimum array, lalu menempatkan elemen maksimum/minimum itu pada awal atau akhir array (tergantung pada urutannya ascending/descending). Selanjutnya elemen tersebut tidak disertakan pada proses selanjutnya. Karena setiap kali selection sort harus membandingkan elemen-elemen data, algoritma ini termasuk dalam comparison-based sorting. Seperti pada algoritma Bubble Sort, proses memilih nilai maksimum /minimum dilakukan pada setiap pass. Jika array berukuran N, maka jumlah pass adalah N-1. Terdapat dua pendekatan dalam metode pengurutan dengan Selection Sort. Algoritma pengurutan maksimum (maximum selection sort), yaitu memilih elemen maksimum sebagai basis pengurutan. Algoritma pengurutan minimum (minimum selection sort), yaitu memilih elemen minimum sebagai basis pengurutan.

Insertion sort adalah sebuah algoritma pengurutan yang membandingkan dua elemen data pertama, mengurutkannya, kemudian mengecek elemen data berikutnya satu persatu dan membandingkannya dengan elemen data yang telah diurutkan. Karena algoritma ini bekerja dengan membandingkan elemen-elemen data yang akan diurutkan, algoritma ini termasuk pula dalam comparisonbased sort.

Ide dasar dari algoritma Insertion Sort ini adalah mencari tempat yang "tepat" untuk setiap elemen array, dengan cara sequential search. Proses ini kemudian menyisipkan sebuah elemen array yang diproses ke tempatnya yang seharusnya. Proses dilakukan sebanyak N-1 tahapan (dalam sorting disebut sebagai "pass"), dengan indeks dimulai dari 0.

Proses pengurutan dengan menggunakan algoritma Insertion Sort dilakukan dengan cara membandingkan data ke-i (dimana i dimulai dari data ke-2 sampai dengan data terakhir) dengan data berikutnya. Jika ditemukan data yang lebih kecil maka data tersebut disisipkan ke depan sesuai dengan posisi yang seharusnya.

Misal terdapat array satu dimensi L, yang terdiri dari 7 elemen array (n=7). Array L sudah berisi data seperti dibawah ini dan akan diurutkan secara ascending dengan algoritma Insertion Sort.

Proses Sorting merupakan proses mengurutkan data yang berada dalam suatu tempat penyimpanan, dengan urutan tertentu baik urut menaik (ascending) dari nilai terkecil sampai dengan nilai terbesar, atau urut menurun (descending) dari nilai terbesar sampai dengan nilai terkecil. Terdapat dua macam proses pengurutan, yaitu pengurutan internal (internal sort) dan pengurutan eksternal (external sort). Bubble sort adalah proses pengurutan sederhana yang bekerja dengan cara berulang kali membandingkan dua elemen data pada suatu saat dan menukar elemen data yang urutannya salah. Algoritma Selection sort memilih elemen maksimum/minimum array, lalu menempatkan elemen maksimum/minimum itu pada awal atau akhir array (tergantung pada urutannya ascending/descending). Algoritma Insertion Sort, mencari tempat yang "tepat" untuk setiap elemen array, dengan cara sequential search. Proses ini kemudian menyisipkan sebuah elemen array yang diproses ke tempatnya yang seharusnya.