2023年《概率论与数理统计》期末试题

注意事项:

- 1. 答卷前, 考生务必将自己的姓名和准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。请认真核对监考员在答上所粘贴的条形码上 的姓名、准考证号与您本人是否相符。

一、 填空题 (共 10 题, 每空 3 分, 共 30 分)

1.	设 A 、	B 为 \dagger	目互独立的两个	〉随机事件 ,	已知	P(A) =	= 0.8, P(B)	=0.5,则	$P(A \cup B)$) =
----	---------	-----------------	---------	----------------	----	--------	-------------	--------	---------------	-----

- 2. 掷一颗灌了水银的骰子,出现"6 点"的概率为 $\frac{1}{2}$,如果连续投掷 3 次,则至少有一次出现"6 点"的概率为
- 3. 三个人独立地破译同一份密码,已知各人能译出的概率分别为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, 则密码能被译出的概率是
- 5. X,Y 均服从参数为 1 的指数分布,且 X,Y 相互独立,则随机向量 (X,Y) 的概率密度函数为 f(x,y) = _____
- 6. 设随机变量 X 的概率分布如下,则 $E[(X-1)(X-2)] = ________$

X	0	1	2
P	0.5	0.2	0.3

- 7. 设随机变量 X 在区间 [2,4] 上服从均匀分布, 那么 $D(\sqrt{3}X-2)$ =
- 8. 已知 D(X) = 25, D(Y) = 16, $\rho_{XY} = 0.4$, 则 D(X + Y) =
- 9. 设 X 服从参数为 λ 的泊松分布, 且已知 $P\{X=1\}=P\{X=2\}$, 那么 EX=
- 10. 已知随机变量 $X \sim N(2, \sigma^2)$ (σ 未知), 而且已知 $P\{2 < X < 4\} = 0.3$, 则 $P\{X < 0\} = 0.3$

二、选择

1. 设 A,B,C 是三个随机事件,已知 $P(A)=P(B)=P(C)=\frac{1}{4},$ $P(AB)=\frac{1}{8},$ P(BC)=P(AC)=0, 则 A,B,C 中至少有一个发生的概率是【 】

(A)
$$\frac{3}{4}$$
 (B) $\frac{5}{8}$ (C) $\frac{3}{8}$

2. 设随机变量
$$X$$
 的概率密度函数为 $f(x) = \begin{cases} \cos x, a < x < b \\ & \text{, 则区间 } [a,b] \text{ 为 } \mathbf{I} \mathbf{J} \\ 0, & \mathbf{其它} \end{cases}$

(A)
$$\left[\frac{\pi}{2},\pi\right]$$

(B)
$$\left[0, \frac{\pi}{2}\right]$$
 (C) $[0, \pi]$

(C)
$$[0, \pi]$$

(D)
$$\left[\frac{3\pi}{2}, \frac{7\pi}{4}\right]$$

3. 设随机变量 $X \sim U[0,2]$, 则随机变量 Y = 3X - 1 的密度函数是【】

(A)
$$f(y) = \begin{cases} \frac{1}{6} & \text{if } 0 \le y \le 2\\ 0 & 其他 \end{cases}$$

(B)
$$f(y) = \begin{cases} \frac{1}{6} & \text{if } -1 \le y \le 5 \\ 0 & 其他 \end{cases}$$

(C)
$$f(y) = \begin{cases} \frac{y+1}{6} & \text{if } 0 \leq y \leq 2 \\ 0 & 其他 \end{cases}$$

(D)
$$f(y) = \begin{cases} \frac{y+1}{6} & \text{if } -1 \leq y \leq 5 \\ 0 & 其他 \end{cases}$$

4. 设 X, Y 是任意两个随机变量,则以下命题正确的是【】

(A)
$$E(XY) = E(X)E(Y)$$

(B)
$$D(XY) = D(X)D(Y)$$

(C)
$$E(X + Y) = E(X) + E(Y)$$

(D)
$$D(X + Y) = D(X) + D(Y)$$

5. 设随机变量 $X \sim N(\mu, 16)$, 随机变量 $Y \sim N(\mu, 25)$, 记 $\alpha = P\{X \geq \mu + 4\}, b = P\{Y \leq \mu + 4\}$ $\mu - 5$ }. 则【】

(A) 对任何 μ , 都有 a < b

(B) 对任何 μ , 都有 a > b

(C) 对任何 μ , 都有 a=b

(D) 不能确定 a 与 b 的大小关系

三、 计算

- 1. 甲、乙两台机床加工同一种零件, 出现次品的概率分别为 0.03 和 0.02, 已知甲机床加工 的零件比乙机床多一倍, 现将两机床加工的零件放在一起. 求 (1) 随机取出的零件是合格 品的概率; (2) 若取出的零件是次品, 求它是乙机床加工的概率.
- 2. 某地调查表明, 考生外语成绩近似服从正态分布, 平均成绩为 77 分, 97 分以上的学生占 总数的 2.3%, 求成绩在 67 分到 87 分之间的学生占总数的百分之几? ($\Phi(1)$ = $0.841, \Phi(2) = 0.977$
- 3. 设二维随机变量 (X,Y) 的联合概率分布为

X Y	-1	0	1	
0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	
1	$\frac{1}{6}$	0	$\frac{1}{6}$	

求 (1) 关于 X, Y 的边缘概率分布; (2) 判断 X, Y 是否独立; (3) Z = X + Y 的概率分布; (4) XY 的数学期望 E(XY).

- 4. 设连续型随机变量 X 的概率密度函数为 $f(x) = \begin{cases} kx & \text{if } 0 < x \le 1 \\ 0 & \text{其它.} \end{cases}$ 求 (1) k; (2) 分布函 数 F(x); (3) 期望 EX; (4) 方差 DX.
- 5. 已知 X 在区间 [0,2] 上服从均匀分布, $Y = \min(X,1)$, 求 EY.

- 6. 假设测量的随机误差 X 服从正态分布 $N(0,10^2)$ 。 (1) 求每次测量误差的绝对值大于 19.6 的概率 p; (2) 求在 100 次独立重复测量中, 至少有三次测量误差的绝对值大于 19.6 的概率, 并用泊松分布求概率的近似值 α . ($\Phi(1.96)=0.975$)
- 7. 对敌阵地进行 100 轮炮击, 每轮命中炮弹数的数学期望为 2, 标准差为 1.5, 试应用中心极限定理求这 100 轮炮击中, 有 180 枚到 220 枚炮弹命中的概率。注: $\Phi(1.333)=0.9082$