Signal and Image Processing Group, Space Applications Centre, Indian Space Research Organisation, Ahmedabad, India - 380015.

Monte-Carlo Siamese Policy on Actor for Satellite Image Super Resolution

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop

Litu Rout*, Saumyaa Shah, S Manthira Moorthi and Debajyoti Dhar *Correspondence to lr@sac.isro.gov.in

Content

Introduction

Preliminaries and Notations

Proposed Methodology

Experiments

- Supervised and adversarial learning have been widely adopted in various vision tasks.
- Can another branch of AI, commonly known as Reinforcement Learning (RL) benefit such tasks?
- Explore plausible usage of RL in super resolution of remote sensing imagery

What is reinforcement learning?

- Supervised and adversarial learning have been widely adopted in various vision tasks.
- Can another branch of AI, commonly known as Reinforcement Learning (RL) benefit such tasks?
- Explore plausible usage of RL in super resolution of remote sensing imagery

What is reinforcement learning?

- Supervised and adversarial learning have been widely adopted in various vision tasks.
- Can another branch of AI, commonly known as Reinforcement Learning (RL) benefit such tasks?
- Explore plausible usage of RL in super resolution of remote sensing imagery

What is reinforcement learning?

- Supervised and adversarial learning have been widely adopted in various vision tasks.
- Can another branch of AI, commonly known as Reinforcement Learning (RL) benefit such tasks?
- Explore plausible usage of RL in super resolution of remote sensing imagery

What is reinforcement learning?

- Supervised and adversarial learning have been widely adopted in various vision tasks.
- Can another branch of AI, commonly known as Reinforcement Learning (RL) benefit such tasks?
- Explore plausible usage of RL in super resolution of remote sensing imagery

What is reinforcement learning?

- ► A straightforward implementation of RL is *not* adequate.
- Action variables are not fully known in most real-world environments.
- One way is to parameterize action variables by matrices, and train our policy network using Monte-Carlo sampling.

- ► A straightforward implementation of RL is *not* adequate.
- Action variables are not fully known in most real-world environments.
- One way is to parameterize action variables by matrices, and train our policy network using Monte-Carlo sampling.

- ► A straightforward implementation of RL is *not* adequate.
- Action variables are not fully known in most real-world environments.
- One way is to parameterize action variables by matrices, and train our policy network using Monte-Carlo sampling.

- ► Markov Property: Future is independent of past given present, i.e., $P(s_{t+1}|s_0, s_1, ..., s_t) = P(s_{t+1}|s_t)$.
- ▶ Markov Decision Process (MDP): MDP is defined as a tuple (S, A, R, P, γ) , where S is the continuous or discrete state space, A is the continuous or discrete action space, B is the immediate reward function, B is the transition probability, and $Y \in (0, 1)$ is the discount factor.
- A sample trajectory, $(s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_T, a_T, r_{T+1})$ sampled from policy π .

- ▶ Markov Property: Future is independent of past given present, i.e., $P(s_{t+1}|s_0, s_1, ..., s_t) = P(s_{t+1}|s_t)$.
- ▶ Markov Decision Process (MDP): MDP is defined as a tuple (S, A, R, P, γ) , where S is the continuous or discrete state space, A is the continuous or discrete action space, R is the immediate reward function, P is the transition probability, and $\gamma \in (0, 1)$ is the discount factor.
- A sample trajectory, $(s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_T, a_T, r_{T+1})$ sampled from policy π .

- ► Markov Property: Future is independent of past given present, i.e., $P(s_{t+1}|s_0, s_1, ..., s_t) = P(s_{t+1}|s_t)$.
- ▶ Markov Decision Process (MDP): MDP is defined as a tuple (S, A, R, P, γ) , where S is the continuous or discrete state space, A is the continuous or discrete action space, R is the immediate reward function, P is the transition probability, and $\gamma \in (0, 1)$ is the discount factor.
- A sample trajectory, $(s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_T, a_T, r_{T+1})$ sampled from policy π .

Goal: To find an optimal policy π^* that maximizes its expected reward.

$$\pi^* = \arg\max_{\pi \in \Pi} \mathcal{J}(\pi), \tag{1}$$

where Π is the set of policies and $\mathcal{J}(\pi)$ is the policy evaluation metric defined by,

$$\mathcal{J}(\pi) = \mathbb{E}_{\tau \in \pi} \left[\sum_{t=1}^{T+1} \gamma^{t-1} r_t \right]. \tag{2}$$

Here, T represents the time step of terminal state in each episode and τ is the trajectory.

Policy Gradient: Policy, π is parameterized by θ where the objective is to find optimal set of parameters θ^* that maximizes expected reward,

$$\theta^* = \arg\max_{\theta} \mathcal{J}(\theta), \tag{3}$$

$$\mathcal{J}(\theta) = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \pi_{\theta}(s, a) R_{s, a}, \tag{4}$$

where $d^{\pi_{\theta}}(s)$ is a stationary distribution of Markov chain for π_{θ} and $R_{s,a}$ is the reward function for state s and action a.

Famous Likelihood Trick: Parameters are updated by $\theta \leftarrow \theta + \Delta \theta$, where $\Delta \theta$ is computed as

$$\Delta \theta = \nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}\left[R_{s,a} \nabla_{\theta} \log \pi_{\theta}(s,a)\right]. \tag{5}$$

Policy Gradient: Policy, π is parameterized by θ where the objective is to find optimal set of parameters θ^* that maximizes expected reward,

$$\theta^* = \arg\max_{\theta} \mathcal{J}(\theta), \tag{3}$$

$$\mathcal{J}(\theta) = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \pi_{\theta}(s, a) R_{s, a}, \tag{4}$$

where $d^{\pi_{\theta}}(s)$ is a stationary distribution of Markov chain for π_{θ} and $R_{s,a}$ is the reward function for state s and action a.

Famous Likelihood Trick: Parameters are updated by $\theta \leftarrow \theta + \Delta \theta$, where $\Delta \theta$ is computed as

$$\Delta \theta = \nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}\left[R_{s,a} \nabla_{\theta} \log \pi_{\theta}(s, a)\right]. \tag{5}$$

Feature Extractor Network, $\Phi(s)$ parameterized by θ_f operates on each state, $s \in \mathbb{R}^{H \times W \times C}$,

$$\tilde{\mathbf{s}} = \Phi(\mathbf{s}; \theta_f), \ \tilde{\mathbf{s}} \in \mathbb{R}^{H \times W \times \tilde{C}},$$
 (6)

where H, W, C, and \tilde{C} represent height, width, input channels, and number of feature maps, respectively.

The output of neural network, $\Phi(s; \theta_f)$ is computed by

$$\Phi(s;\theta_f) := FE_n(FE_{n-1}(\ldots(FE_0(s)))), \qquad (7)$$

where FE represents Feature Extraction block

Feature Extractor Network, $\Phi(s)$ parameterized by θ_f operates on each state, $s \in \mathbb{R}^{H \times W \times C}$,

$$\tilde{\mathbf{s}} = \Phi(\mathbf{s}; \theta_f), \ \tilde{\mathbf{s}} \in \mathbb{R}^{H \times W \times \tilde{C}},$$
 (6)

where H, W, C, and \tilde{C} represent height, width, input channels, and number of feature maps, respectively.

The output of neural network, $\Phi(s; \theta_f)$ is computed by,

$$\Phi(s; \theta_f) := FE_n(FE_{n-1}(\dots(FE_0(s)))), \qquad (7)$$

where FE represents Feature Extraction block.

Actor Network (AN), $\Omega_{\theta_a}(.)$ parameterized by θ_a performs parametric actions on the latent representation of state space, \tilde{s} .

$$RB(x) = x + \lambda h(x), \tag{8}$$

Agent performs sequence of actions, $a_n^{BB}(.)$ and the intermediate states are computed by,

$$\tilde{\mathbf{s}}_n = a_n^{RB}(\tilde{\mathbf{s}}_{n-1}), \ n = 1, 2, \dots, N,$$
 (9)

where N represents total number of action variables in our MDP.

Actor Network (AN), $\Omega_{\theta_a}(.)$ parameterized by θ_a performs parametric actions on the latent representation of state space, \tilde{s} .

$$RB(x) = x + \lambda h(x), \tag{8}$$

Agent performs sequence of actions, $a_n^{RB}(.)$ and the intermediate states are computed by,

$$\tilde{s}_n = a_n^{RB}(\tilde{s}_{n-1}), \ n = 1, 2, \dots, N,$$
 (9)

where N represents total number of action variables in our MDP.

Transition Blocks (*TB*) map latent space into state space.

$$\hat{\mathbf{s}} = TB_m \left(TB_{m-1} \left(\dots \left(TB_0 \left(\tilde{\mathbf{s}}_N \right) \right) \right) \right) \tag{10}$$

NB: Each TB consists of one convolution and one LeakyReLU unit.

Transition Blocks (TB) map latent space into state space.

$$\hat{s} = TB_m \left(TB_{m-1} \left(\dots \left(TB_0 \left(\tilde{s}_N \right) \right) \right) \right) \tag{10}$$

NB: Each TB consists of one convolution and one LeakyReLU unit.

Siamese Policy Network (SPN) estimates their discrepancy,

$$\Psi_{\theta_p}(\hat{s}, s^*) = \Phi_{\theta_p}(\hat{s}) * \Phi_{\theta_p}(s^*) + b, \tag{11}$$

where $b \in \mathbb{R}$ and $\Phi_{\theta_p}(.)$ represents the CNN in each branch with shared parameters θ_p .

Probabilistic confidence:

$$\pi_{\theta_p}(s, a) = \frac{1}{1 + \exp(-\Psi_{\theta_p}(\hat{s}, s^*))}.$$
 (12)

Siamese Policy Network (SPN) estimates their discrepancy,

$$\Psi_{\theta_p}(\hat{s}, s^*) = \Phi_{\theta_p}(\hat{s}) * \Phi_{\theta_p}(s^*) + b, \tag{11}$$

where $b \in \mathbb{R}$ and $\Phi_{\theta_p}(.)$ represents the CNN in each branch with shared parameters θ_p .

Probabilistic confidence:

$$\pi_{\theta_{\rho}}(s, a) = \frac{1}{1 + \exp(-\Psi_{\theta_{\rho}}(\hat{s}, s^*))}.$$
 (12)

Lemma I: Training AN

Let $\theta_{fa} = \{\theta_f, \theta_a\}$ and $\mathcal{J}(\theta_{fa})$ denote the expected return accumulated by the agent with a given policy π_{θ_p} ,

$$\mathcal{J}(\theta_{fa}) = \mathbb{E}\left[R_{s,a}\right] = \mathbb{E}\left[-(\hat{s} - s^*)^2\right]. \tag{13}$$

The parameters are updated by, $\theta_{\textit{fa}} \leftarrow \theta_{\textit{fa}} + \Delta \theta_{\textit{fa}}$ where,

$$\Delta\theta_{fa} = \mathbb{E}\left[-2\left(\hat{s} - s^*\right) \ \nabla_{\theta_{fa}}\left(TB_{[m]}\left(\Omega_{\theta_a}\left(\Phi_{\theta_f}\left(s\right)\right)\right)\right)\right]. \tag{14}$$

Here, [m] represents a set of $\{0, 1, ..., m\}$. By stochastic gradient ascent, the update equation becomes

$$\Delta\theta_{fa} = -\alpha \left(\hat{\mathbf{s}} - \mathbf{s}^*\right) \nabla_{\theta_{fa}} \left(TB_{[m]} \left(\Omega_{\theta_a} \left(\Phi_{\theta_f} \left(\mathbf{s} \right) \right) \right) \right), \tag{15}$$

where α denotes step size

Lemma I: Training AN

Let $\theta_{fa} = \{\theta_f, \theta_a\}$ and $\mathcal{J}(\theta_{fa})$ denote the expected return accumulated by the agent with a given policy π_{θ_p} ,

$$\mathcal{J}(\theta_{fa}) = \mathbb{E}\left[R_{s,a}\right] = \mathbb{E}\left[-(\hat{s} - s^*)^2\right]. \tag{13}$$

The parameters are updated by, $\theta_{\textit{fa}} \leftarrow \theta_{\textit{fa}} + \Delta \theta_{\textit{fa}}$ where,

$$\Delta\theta_{fa} = \mathbb{E}\left[-2\left(\hat{\mathbf{s}} - \mathbf{s}^*\right) \nabla_{\theta_{fa}}\left(TB_{[m]}\left(\Omega_{\theta_a}\left(\Phi_{\theta_f}\left(\mathbf{s}\right)\right)\right)\right)\right]. \tag{14}$$

Here, [m] represents a set of $\{0, 1, ..., m\}$. By stochastic gradient ascent, the update equation becomes

$$\Delta\theta_{fa} = -\alpha \left(\hat{\mathbf{s}} - \mathbf{s}^*\right) \nabla_{\theta_{fa}} \left(TB_{[m]} \left(\Omega_{\theta_a} \left(\Phi_{\theta_f} \left(\mathbf{s} \right) \right) \right) \right), \tag{15}$$

where α denotes step size

Lemma I: Training AN

Let $\theta_{fa} = \{\theta_f, \theta_a\}$ and $\mathcal{J}(\theta_{fa})$ denote the expected return accumulated by the agent with a given policy π_{θ_p} ,

$$\mathcal{J}(\theta_{fa}) = \mathbb{E}\left[R_{s,a}\right] = \mathbb{E}\left[-(\hat{s} - s^*)^2\right]. \tag{13}$$

The parameters are updated by, $\theta_{\textit{fa}} \leftarrow \theta_{\textit{fa}} + \Delta \theta_{\textit{fa}}$ where,

$$\Delta\theta_{fa} = \mathbb{E}\left[-2\left(\hat{\mathbf{s}} - \mathbf{s}^*\right) \nabla_{\theta_{fa}}\left(TB_{[m]}\left(\Omega_{\theta_a}\left(\Phi_{\theta_f}\left(\mathbf{s}\right)\right)\right)\right)\right]. \tag{14}$$

Here, [m] represents a set of $\{0, 1, ..., m\}$. By stochastic gradient ascent, the update equation becomes

$$\Delta\theta_{fa} = -\alpha \left(\hat{\mathbf{s}} - \mathbf{s}^*\right) \nabla_{\theta_{fa}} \left(TB_{[m]} \left(\Omega_{\theta_a} \left(\Phi_{\theta_f} \left(\mathbf{s} \right) \right) \right) \right), \tag{15}$$

where α denotes step size.

Lemma II: Training SPN

Let $\mathcal{J}(\theta_p)$ denotes the expected return accumulated by the agent with fixed set of parameters (θ_{fa}), then

$$\mathcal{J}(\theta_{p}) = \mathbb{E}_{\theta_{p}}[r] = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \pi_{\theta}(s, a) R_{s, a}. \tag{16}$$

Using stochastic gradient ascent, the parameters are updated using the famous likelihood trick as given by

$$\theta_{p} \leftarrow \theta_{p} + \Delta \theta_{p}, \ \Delta \theta_{p} = \nabla_{\theta_{p}} \mathcal{J}(\theta_{p}) = \beta R_{s,a} \nabla_{\theta_{p}} \log \pi_{\theta} (s, a),$$
 (17)

where β denotes step size

Lemma II: Training SPN

Let $\mathcal{J}(\theta_p)$ denotes the expected return accumulated by the agent with fixed set of parameters (θ_{fa}), then

$$\mathcal{J}(\theta_{p}) = \mathbb{E}_{\theta_{p}}[r] = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \pi_{\theta}(s, a) R_{s, a}. \tag{16}$$

Using stochastic gradient ascent, the parameters are updated using the famous likelihood trick as given by

$$\theta_{p} \leftarrow \theta_{p} + \Delta \theta_{p}, \ \Delta \theta_{p} = \nabla_{\theta_{p}} \mathcal{J}(\theta_{p}) = \beta R_{s,a} \nabla_{\theta_{p}} \log \pi_{\theta} (s, a),$$
 (17)

where β denotes step size.

Theorem I: Training SPOA

Let $\theta = \{\theta_f, \theta_a, \theta_p\}$ and $\mathcal{J}(\theta)$ denotes the expected return. The parameters of SPOA (θ) are updated by $\theta \leftarrow \theta + \Delta \theta$ where,

$$\Delta \theta = \Delta \theta_p + \Delta \theta_{fa}. \tag{18}$$

Please refer to our paper for a detailed proof of Theorem I.

Proposed Methodology

Siamese Policy On Actor


```
Result: SPOA parameters. \theta
initialize \theta:
for episode = 1, 2, ..., E do
        initialize empty replay buffer D:
        while D not full do
                Sample initial state, s_0 \sim \mathbb{U}:
                Sample corresponding goal state, s*;
        end
        for actor=1,2,...,A do
                Take parametric sequential actions on D:
               Compute \Delta \theta_{fq} = -\alpha \left( \hat{\mathbf{s}} - \mathbf{s}^* \right) \nabla_{\theta_{fq}} \left( TB_{[m]} \left( \Omega_{\theta_s} \left( \Phi_{\theta_t} \left( \mathbf{s} \right) \right) \right) \right);
               Update \theta_{f2} \leftarrow \theta_{f2} + \Delta \theta_{f2}:
        end
        for policy=1,2,...,P do
               Given actor parameters \theta_{fa}, follow parametric policy
                  \pi_{\theta_n}(s, a) on \mathbb{D};
               Compute \Delta \theta_p = \beta R_{s,a} \nabla_{\theta_n} \log \pi_{\theta} (s,a);
               Update \theta_D \leftarrow \theta_D + \Delta \theta_D;
        end
        for spoa=1,2,...,S do
                Follow policy with implicit actions on D:
               Compute new \Delta \theta_n and \Delta \theta_{fa};
               Compute \Delta \theta = \Delta \theta_p + \Delta \theta_{fa};
               Update \theta \leftarrow \theta + \Delta \dot{\theta};
        end
end
```

Algorithm 1: Monte-Carlo Siamese Policy On Actor

Figure: Learning dynamics. We use a forward window of size 10.

Experiments Analysis on CelebA

Figure: Qualitative analysis on CelebA. SPOA performs favourably against compared approaches.

Experiments Analysis on IRS-1C

Figure: Qualitative analysis on IRS-1C. SPOA performs reasonably well on IRS-1C imagery.

Experiments Comparison with State-of-the-art

Metrics	PSNR	SSIM	SRE	SAM	NIQE	Ma's	PI
BiCubic	57.51	0.9939	46.48	17.25	5.50	3.77	5.86
SRCNN [14]	59.15	0.9964	48.10	14.14	5.73	4.88	5.42
LapSRN [28]	59.31	0.9964	48.08	13.98	5.08	5.96	4.56
DRLN [2]	59.32	0.9964	48.10	13.97	4.21	6.03	4.08
SPOA(DRLN)	58.89	0.9960	47.94	14.69	3.65	6.60	3.52
SPOA(DRLN)+SA	59.33	0.9966	48.20	13.81	5.02	5.54	4.74
SPOA(DRLN)+SA+VGG	59.22	0.9963	48.23	14.13	4.30	6.20	4.05
SPOA(DRLN)+VGG	58.98	0.9961	47.94	14.60	4.16	6.56	3.80
GT	-	-	-	-	2.05	7.01	2.52

Table: Comparison with state-of-the-art methods.

Experiments Analysis on WorldView-2

Figure: Qualitative analysis on WorldView-2.

- Explored plausible usage of RL to address complex supervised problems.
- DRL based Monte-Carlo policy gradient approach to solve model-free MDPs.
- Theoretical results of Siamese policy network with implicit action space.
- ▶ Demonstrated in a super resolution environment where action variables are not apparent.
- Experimented on remote sensing and non-remote sensing imagery.

- Explored plausible usage of RL to address complex supervised problems.
- DRL based Monte-Carlo policy gradient approach to solve model-free MDPs.
- Theoretical results of Siamese policy network with implicit action space.
- ▶ Demonstrated in a super resolution environment where action variables are not apparent.
- Experimented on remote sensing and non-remote sensing imagery.

- Explored plausible usage of RL to address complex supervised problems.
- DRL based Monte-Carlo policy gradient approach to solve model-free MDPs.
- Theoretical results of Siamese policy network with implicit action space.
- ▶ Demonstrated in a super resolution environment where action variables are not apparent.
- Experimented on remote sensing and non-remote sensing imagery.

- Explored plausible usage of RL to address complex supervised problems.
- DRL based Monte-Carlo policy gradient approach to solve model-free MDPs.
- Theoretical results of Siamese policy network with implicit action space.
- ▶ Demonstrated in a super resolution environment where action variables are not apparent.
- Experimented on remote sensing and non-remote sensing imagery.

- Explored plausible usage of RL to address complex supervised problems.
- DRL based Monte-Carlo policy gradient approach to solve model-free MDPs.
- Theoretical results of Siamese policy network with implicit action space.
- ▶ Demonstrated in a super resolution environment where action variables are not apparent.
- Experimented on remote sensing and non-remote sensing imagery.

A Few Noteworthy Extensions

- Extension of SPOA to wide variety of problems currently solved using supervised learning.
- Explore broad spectrum of reinforcement learning algorithms in this framework.
- Study how well SPOA figures out matrix representation of actions by *hiding* known action variables in RL benchmarks

A Few Noteworthy Extensions

- Extension of SPOA to wide variety of problems currently solved using supervised learning.
- Explore broad spectrum of reinforcement learning algorithms in this framework.
- Study how well SPOA figures out matrix representation of actions by *hiding* known action variables in RL benchmarks.

A Few Noteworthy Extensions

- Extension of SPOA to wide variety of problems currently solved using supervised learning.
- Explore broad spectrum of reinforcement learning algorithms in this framework.
- Study how well SPOA figures out matrix representation of actions by *hiding* known action variables in RL benchmarks.