Sistemas de Arquivos

Os arquivos são gerenciados pelo sistema operacional e é mediante a implementação de arquivos que o sistema operacional estrutura e organiza as informações.

A parte do sistema responsável pela gerência é denominada sistema de arquivo que é a parte mais visível do sistema operacional, pois é uma atividade frequentemente utilizada pelos usuários.

Deve ocorrer de maneira uniforme independente dos diferentes dispositivos.

Arquivos

- Conjunto de registros definidos pelo sistema de arquivos
- Armazenados em diferentes dispositivos físicos.
- Constituído de informações logicamente relacionadas.
- Programa ou dados.

Arquivos

- Identificado por meio de um nome,
- Formado por uma sequência de caracteres.
- Em alguns sistemas operacionais, a identificação de um arquivo é composta por duas partes separadas por um ponto:

Nome_do_arquivo.extensão

Extensão de Arquivos

Extensão

Arquivo.c Arquivo fonte em C

Arquivo.cob Arquivo fonte em Cobol

Arquivo.exe Arquivo executável

Arquivo.obj Arquivo objeto

Arquivo.pas Arquivo fonte em Pascal

Arquivo.txt Arquivo texto

Arquivo.mp3 Arquivo de música

Arquivo.dll Arquivo de biblioteca dinâmica

Organização de Arquivos

- Consiste no modo como seus dados estão <u>internamente</u> <u>armazenados.</u>
- Quando o arquivo é criado, pode-se definir que organização será adotada que pode ser uma <u>estrutura suportada pelo sistema</u> <u>operacional ou definida pela própria aplicação.</u>
- A forma mais simples de organização de arquivos é através de uma sequência não-estruturada de bytes, onde o sistema de arquivos não impõe nenhuma estrutura lógica para os dados, a aplicação deve definir toda a organização.

Organização de arquivos

- A grande vantagem deste modelo é a flexibilidade para criar estruturas de dados, porém todo o controle de dados é de responsabilidade da aplicação.
- Alguns sistemas operacionais estabelecem diferentes organizações de arquivos e cada um deve seguir um modelo suportado pelo sistema de arquivos.
- As organizações mais conhecidas e implementadas são a sequencial, relativa e indexada.

Métodos de Acesso

- Acesso sequencial: arquivos armazenados em <u>fitas magnéticas</u>,
 o acesso era restrito à <u>leitura</u> na ordem em que eram <u>gravados</u>,
 sendo a gravação de arquivos possível <u>apenas no final</u>. Pode-se
 combinar o acesso sequencial com o direto e com isso acessar
 diretamente um arquivo e os demais em forma sequencial.
- Acesso direto: permite a leitura/gravação de um registro diretamente na sua posição. É realizado através do número de registro. Não existe restrição a ordem em que os registros são lidos ou gravados. Somente é possível quando é definido com registros e tamanho fixo.

Métodos de Acesso

 Acesso indexado ou por chave: o arquivo deve possuir uma área de índice onde existam ponteiros para os diversos registros e a partir desta informação, realiza-se um acesso direto.

Atributos

- São informações de controle que dependendo do sistema de arquivos variam, porém alguns como:
- Tamanho.
- Criador.
- Proteção.
- Data estão presente em quase todos.
- Alguns atributos especificados na criação do arquivo não podem ser mudados e outros são modificados e outros são modificados pelo próprio sistema operacional. E ainda existe alguns que podem ser alterados pelo usuário tais como proteção, tamanho e senha.

Atributos de arquivos

Atributos Descrição

Tamanho Especifica o tamanho do arquivo

Proteção Código e proteção de acesso

Dono Identifica o criador do arquivo

Criação Data e hora de criação do arquivo

Backup Data e hora do último backup realizado

Organização Indica organização lógica dos registros

Senha Senha necessária para acessar o arquivo

Diretórios

- Modo como o sistema organiza os diferentes arquivos contidos num disco. É a estrutura de dados que contém entradas associadas aos arquivos onde estão as informações como localização física, nome, organização, e demais atributos.
- Quando um arquivo é aberto, o S.O. procura a sua entrada na estrutura de diretórios, armazenando as informações do arquivo em uma tabela mantida na memória principal. Esta tabela contém todos os arquivos abertos, sendo fundamental para aumentar o desempenho das operações com arquivos.

Tipos de Sistema de Arquivo

- Tipo de estrutura que indica como os arquivos devem ser gravados e lidos pelo sistema operacional do computador.
- Determina como as informações podem ser guardadas, acessadas, copiadas, alteradas, nomeadas, e até apagadas.
- Há vários sistemas de arquivos disponíveis, para os mais diversos sistemas operacionais e para as mais variadas finalidades.

Tipos de Sistemas de Arquivo

Apple Macintosh (Mac OS)

```
HFS / HFS+
```

 Unix / Linux (FreeBSD, OpenBSD, Linux, Solaris, Red Hat, Android, etc.)

```
UFS / Ext / Ext2 / Ext3 / Ext4
```

• IBM (AIX, OS/2)

```
JFS / HPFS
```

Microsoft Windows

```
FAT 12 / FAT 16 / FAT 32 / FAT 64 (ExtFat)/ NTFS
```

Hierarchcal File System (HFS) HFS Extended (HFS+)

- Apple Computer
- Mac OS
- Floppy e Discos Rígidos
- Suporte read-only como CD-ROM's
- HFS+ (sucessor)

Unix File System (UFS)

UNIX

Composto das seguintes partes:

- Blocos no inicio da partição reservados para blocos de boot (inicializados separadamente do sistema de arquivos);
- Um superbloco, contendo um número mágico identificando-o como um sistema de arquivos UFS, e alguns outros números virtuais descrevendo sua geometria, estatísticas e parâmetros de ajuste comportamental;
- Uma coleção de grupos de cilindros. Cada grupo contendo os seguintes componentes:
 - Cópia de segurança do superbloco;
- Um cabeçalho de grupo de cilindros, com estatísticas, listas livres sobre o grupo de cilindros, similar a aqueles no superbloco;
 - Um número de nós, cada qual contendo atributos de arquivos;
 - Um números de bloco de dados;

Extended File System (Ext / Ext2 / Ext3)

```
Ext
 Linux
 Substituiu o MINIX (Minix FS)
 Limitado
 Tamanhos máximo (para volumes e nomes)
Ext 2
 Sistema de Arquivos
 File System do Linux
 Não possuía recurso Juornaling (checagem de arquivos rápida)
Ext 3
```

Foi adicionado o recurso Journaling

Extended File System (Ext4)

Alocação tardia

Melhora o desempenho e reduz a fragmentação, melhorando a alocação de blocos decisões com base no tamanho do arquivo.

Jornal checksumming

Checksums para melhorar a confiabilidade e o desempenho..

Suporte para tamanhos maiores de volumes e arquivos

Volumes com tamanho até 1 exabyte e arquivos com tamanho até 16 terabytes.

Compatível com versões anteriores

Compatível com ext3 e ext2

• O mais rápido sistema de arquivos de verificação

Bloco alocado, grupos e secções da tabela de onde são marcados como tal. Isso permite ignorá-los completamente em uma verificação e reduz o tempo necessário para verificar o sistema de arquivos do tamanho do ext4 para suportar.

High Performance File System (HPFS)

- OS/2 da IBM (antigamente)
- Linux (atualmente)
- Recursos parecidos com o NTFS
- Nome de arquivos com até 254 caracteres
- Partições de até 512GB
- Unidades de alocação de 512 bytes

Journaling File System (JFS)

- IBM / Linux.
- Disponível em licença Open Source.
- Permite que as partições do sistema sejam redimensionadas sem que seja necessário desligar o computador.
- Estrutura inode para armazenar a localização dos blocos de cada arquivo nas estruturas físicas do disco.
- Inicialmente o JFS sofreu uma perda de credibilidade devido a constantes instabilidades e defeitos, caso este que atualmente encontra-se resolvido e assim muito estável.

File Allocation Table (FAT)

• FAT 12

MS-DOS (antigamente) Windows XP (atualmente)
Partição de 16MB
Cluster de 512 bytes, 1K, 2K e 4K

FAT 16

16 bits

Armazenar no máximo 65526 cluster (menor unidade de alocação de arquivos reconhecido pelo sistema).

Não reconhece o volume total do disco.

File Allocation Table (FAT)

• FAT 32

28 bits

Tolerância a falhas

Mais rápida que NTFS

Nome dos arquivos até 256 caracteres

• FAT 64

Tamanho dos arquivos 16 Exabytes

Capacidade de 512 TB

Suporte para um número maior de arquivos no mesmo diretório.

Melhor alocação e gerência de espaço livre em disco devido à introdução de uma nova organização de memória (bitmap).

Aumento do tamanho do Cluster para 2^{255} bytes e implementação do limite até 32MB.

New Technology File System (NTFS)

- Permite arquivos com nomes longos de 255 caracteres;
- Aceita volumes de até 2 TB;
- O tamanho do arquivo é limitado apenas pelo tamanho do volume;
- Aceita nomes de volumes de até 32 caracteres;
- Oferece suporte a clusters de 512 bytes;
- É possível inserir imagem do sistema em um volume NTFS;
- É um sistema de arquivos muito mais seguro que o FAT permite políticas de segurança e gerenciamento;
- Melhor desempenho no geral;
- Volumes NTFS podem se recuperar de um erro mais facilmente.

Referências

Disponível em https://support.microsoft.com/pt-br/kb/100108

Acessado em 21/05/2016, as 15h14min.

TANENBAUM, Andrew S. Sistemas Operacionais Modernos, Ed. Prentice Hall .2010

- MACHADO, Francis B.. Arquitetura de Sistemas Operacionais, 4ª ED. RIO DE JANEIRO: LTC, 2007
- HOLCOMBRE, Charles; HOLCOMBRE, Jane. Dominando os Sistemas Operacionais.
 Ed. Alta Books. 2003
- TANENBAUM, Andrew S. Sistemas Operacionais: Projeto e Implementação. Ed. Bookman. 2008
- OLIVEIRA, Rômulo Silva de, CARISSIMI, Alexandre da Silva, TOSCANI, Simão Sirineo. Sistemas Operacionais. 7ª Ed. Porto Alegre Bookman, 2010
- SILBERCHATZ, Abraham. Fundamentos de Sistemas Operacionais. Ed. LTC. 2010
- FLYN, Ida M. Introdução aos Sistemas Operacionais. Ed. Cengag Learning. 2008
- SHAY, Wilian A. Sistemas Operaconais. 1996