Recall :- Contact Thm

Defin: A has less than ex equal coordinality than B if \exists an injection $f: A \rightarrow B$.

A has strictly lenex coordinality than B if A has lenex as equal coordinality than B but A doesnot have equal coordinality wat B.

Coollary: - 2th is uncountable Corollary: - There is no largest set.

Thm:- R is uncountable Read:- Contaks diagonal argument.

Recall that contesion products of 2 sets A and B is a set. Thus, ____ is also the contesion product of a finite sets.

 $\underbrace{Det'n}: - \text{ Let } I \text{ be a } (\text{possibly in finite}) \text{ set, and fas } x \in I, \\
\text{let } X_{\lambda} \text{ be a } 2 \text{ et. The contains product,} \\
\text{The } X_{\lambda} = \begin{cases} (X_{\lambda})_{i \in I} \in (\bigcup_{i \in I} X_{\lambda})^{T} \mid X_{\lambda} \in X_{\lambda} \neq A \in I \end{cases}$ $\underbrace{A \in X_{\lambda}}_{x \in I} = \begin{cases} (X_{\lambda})_{i \in I} \in (\bigcup_{i \in I} X_{\lambda})^{T} \mid X_{\lambda} \in X_{\lambda} \neq A \in I \end{cases}$

Recall: - is the set of functions I -> UX_

Exercise: - For any set I and X, TT X = XI

Recall the Lemma following the axiom of single chaice.

ZFC axioms (contd):
(12, Let I be a set and $X_{\chi} \neq \emptyset \forall \chi \in I$. Then

TT X_{χ} is non-empty. (Axiom of Choice)

- > Countex- institutive because it is non-constitutive
- \rightarrow Useful because it allows one to suppose the existence of functions, on \mathbb{R} (eq).
 - Def'n:- A choice function on X is a function $f:2^{x}/\phi \rightarrow X$ st $f(s) \in S \ \forall \ S \subseteq X, \ S \neq \phi$.
 - Exexcise: Existence of a choice function is equivolent to axiom of choice.

-: notication :-

Lemma: Let $E \subseteq \mathbb{R}$, $E \neq \emptyset$ st $sup(E) < \infty$ i.e., E is bold above. Then \exists a sequence, $(a_n)_{n>1}$, $a_n \in E$ $\forall n \geqslant 1$ st $\lim a_n = \sup(E)$

Proof of Lemma: Let, for NEW.

Note that $X_n \neq \emptyset$ as $Sup(E) - \frac{1}{n}$ is not an upper bound for E.
By AOC, we pick $Can \in X_n$.
By AOC, we pick $Can \in X_n$.
By the sondwich thm, we are done.

- Recall: Posets AKA positionly associated sets are of the form (X, \leq)
- Defin: Let (X, \leq) be a poset. A subset $Y \in X$ is called a chain/tetally esdessed if few any $y, z \in Y$ either $y \leq z$ or $z \leq y$.
- Defin:- Let (x, \le) be a poset and let $Y \subseteq X$. We say that y is a minimal (resp maximal) element of Y if $y \in Y$ and there is no $Z \in X$ at Z < Y (resp Z > Y)
- Example: (1, $X = 2^{(s)}$, (X, s) Min \Rightarrow 2, $Y = \{\{i, 2\}, \{2\}, \{2\}, \{2, 3\}, \{2, 3, 4\}, \{s\}\}\}$ Min: $\{2\}$, $\{s\}$ Max: $\{2, 3, 4\}$, $\{s\}$, $\{1, 2\}$ 3, $\{x = N, s\}$ Min: 0

 Max: Descrit exist.

Defin:- Let (X, \leq) be a poset and $Y \subseteq X$ be a choin. We say that Y is well-exdessed if every non-empty subset of Y has a minimal element and \leq is a well-exdesing, if it is a total exdex and X is well exdessed.

Example: - N is well-exclosed but Z, Q are not.

Well-Ordering Principle (or Arism 13):- Given any set X, 7 a well-ordering on X

Zosn's Lemma (or Axiom 13'): - Let (x, \leq) be a non-empty poset st every chain Y of x res on upper bound. Then X contains obtains one maximal element. $\Rightarrow \chi \in X \text{ st } \chi \in \chi \neq \chi \in Y$

Arism 13, 13', 13' are equivalent.

Proof of 13=>13":- Let P be a poset st every choin has an upper bound. Suppose P has no maximal element.

Using choice function, pick x , e P Since x , is not maximal

=> 3x, st xo<x,

Ily x, is not moximal =) Ix zet xo < x, < x.

Thus, we get a choin $r_0 < x_1 < \cdots$ Let x_{ω} be the upper bound. But x_{ω} is not maximal=) $\exists x_{\omega+1} st x_{\omega} < x_{\omega+1}$ Continue this way.

At some point, we will get a chain "losger" than the cardinality of P which is a <u>contradiction</u>. Thus P has a maximal element.