Pila en Hardware

Pila del procesador

- Guarda las direcciones de retorno en el llamado a subrutinas
- Se compone de un arreglo de contadores y un apuntador para seleccionar uno de ellos

Li R0, #1

LI R1, #7

B CICLO

RET

CALL SUMA

SWI R1, 0x5

ADD R1, R1, R0

0	Li R0, #1			
1	LI R1, #7			
2	CALL SUMA			
3	SWI R1, 0x5			
4	B CICLO			
5	ADD R1, R1, R0			
6	RET			

LI RO, #1

LI R1, #7

SP

1

PC(0) = 2

PC(1) = 5

PC(2) = 0

PC(3) = 0

PC(4) = 0

PC(5) = 0

PC(6) = 0

PC(7) = 0

PC(SP) = 5

0	Li R0, #1				
1	LI R1, #7				
2	CALL SUMA				
3	SWI R1, 0x5				
4	B CICLO				
5	ADD R1, R1, R0				
6	RET				

ADD R1, R1, R0

SP

1

PC(0) = 2

PC(1) = 6

PC(2) = 0

PC(3) = 0

PC(4) = 0

PC(5) = 0

PC(6) = 0

PC(7) = 0

PC(SP) = 6

0	Li R0, #1				
1	LI R1, #7				
2	CALL SUMA				
3	SWI R1, 0x5				
4	B CICLO				
5	ADD R1, R1, R0				
6	RET				

SP PC(0) = 30 PC(1) = 6PC(2) = 0PC(3) = 0PC(4) = 0PC(5) = 0PC(6) = 0

PC(7) = 0

PC(SP) = 3

0	Li R0, #1			
1	LI R1, #7			
2	CALL SUMA			
3	SWI R1, 0x5			
4	B CICLO			
5	ADD R1, R1, R0			
6	RET			

SWI R1, 0x5

SP

PC(0) = 2
PC(1) = 6
PC(2) = 0

PC(3) = 0

PC(4) = 0

PC(5) = 0

PC(6) = 0

PC(7) = 0

PC(SP) = 2

0	LI R0, #1				
1	LI R1, #7				
2	CALL SUMA				
3	SWI R1, 0x5				
4	B CICLO				
5	ADD R1, R1, R0				
6	RET				

LI RO, #1

Entidad de la Pila en Hardware

Tabla de control de la pila

clr	clk	WPC	UP	DW	Operación
1	Х	X	X	X	SP = 0 PILA(0, 1,, 7) = 0
0	†	0	0	0	SP = SP PILA(SP) ++
0	1	1	0	0	SP = SP PILA (SP) = PCin
0	1	1	1	0	SP ++ PILA(SP) = PCin
0	†	0	0	1	SP – PILA(SP) ++
X	Х	X	X	X	Pcout = PILA(SP)

Estructura interna de la Pila en Hardware

clr	clk	L	Е	Operación
1	Χ	Χ	X	Q = 0
0		0	1	Q = Q + 1
0	1	1	0	Q = D
0	1	0	0	Q = Q

clr	clk	UP	DW	Operación
1	X	Χ	Χ	SP = 0
0	1	0	0	SP = SP
0	1	1	0	SP ++
0	1	0	1	SP

SP = 3 && WPC = 1 => "00001000", "000000000"

SP = 3 && WPC = 0 => "00000000", "00001000"