P1 Chapter 9: Trigonometric Ratios

Graph Transformation

There is no new theory here: just use your knowledge of transforming graphs, i.e. whether the transformation occurs 'inside' the function (i.e. input modified) or 'outside' the function (i.e. output modified).

Sketch $y = 4 \sin x$, $0 \le x \le 360^{\circ}$

Sketch $y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$

There is no new theory here: just use your knowledge of transforming graphs, i.e. whether the transformation occurs 'inside' the function (i.e. input modified) or 'outside' the function (i.e. output modified).

Sketch
$$y = 4 \sin x$$
, $0 \le x \le 360^{\circ}$

Sketch
$$y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$$

Sketch
$$y = \sin\left(\frac{x}{2}\right)$$
, $0 \le x \le 360^\circ$

Sketch
$$y = -\tan x$$
, $0 \le x \le 360^{\circ}$

Sketch
$$y = \sin\left(\frac{x}{2}\right)$$
, $0 \le x \le 360^{\circ}$

Exercise 9.6

Pearson Pure Mathematics Year 1/AS Page 75

Extension

[MAT 2013 1B] The graph of $y = \sin x$ is reflected first in the line $x = \pi$ and then in the line y = 2. The resulting graph has equation:

A)
$$y = \cos x$$

B)
$$y = 2 + \sin x$$

C)
$$y = 4 + \sin x$$

D)
$$y = 2 - \cos x$$

7

[MAT 2011 1D] What fraction of the interval $0 \le x \le 360^{\circ}$ is one (or both) of the inequalities:

$$\sin x \ge \frac{1}{2}, \qquad \sin 2x \ge \frac{1}{2}$$

true?

[MAT 2007 1G] On which of the axes is a sketch of the graph

Exercise 9.6

Pearson Pure Mathematics Year 1/AS Page 75

Extension

[MAT 2013 1B] The graph of $y = \sin x$ is reflected first in the line $x = \pi$ and then in the line y = 2. The resulting graph has equation:

A)
$$y = \cos x$$

B)
$$y = 2 + \sin x$$

C)
$$y = 4 + \sin x$$

D)
$$y = 2 - \cos x$$

Solution: C

[MAT 2011 1D] What fraction of the interval $0 \le x \le 360^{\circ}$ is one (or both) of the inequalities:

$$\sin x \ge \frac{1}{2}, \qquad \sin 2x \ge \frac{1}{2}$$

true?

Solution: $\frac{13}{24}$ (this is clear if you draw the graphs $y = \sin x$ and $y = \sin 2x$ on the same axes)

3 [MAT 2007 1G] On which of the axes is a sketch of the graph

$$y = 2^{-x} \sin^{2}(x^{2})$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0.1$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.$$

 2^{-x} and sin^2 are always positive eliminating (b). When x=0, y=0 eliminating (d). Multiplying by 2^{-x} causes the amplitude of the peaks to go down as x increases. The x^2 increases more rapidly as x increases, hence reducing the wavelength (i.e. distance between peaks). The answer is therefore (a).

Homework Exercise

1 Write down i the maximum value, and ii the minimum value, of the following expressions, and in each case give the smallest positive (or zero) value of x for which it occurs.

a cos x

b $4 \sin x$

 $\mathbf{c} \cos(-x)$

d $3 + \sin x$

 $e - \sin x$

f $\sin 3x$

2 Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $\cos \theta$ and $\cos 3\theta$.

3 Sketch, on separate sets of axes, the graphs of the following, in the interval $0 \le \theta \le 360^{\circ}$. Give the coordinates of points of intersection with the axes, and of maximum and minimum points where appropriate.

 $\mathbf{a} \quad \mathbf{v} = -\cos\theta$

b $y = \frac{1}{3} \sin \theta$ **c** $y = \sin \frac{1}{3} \theta$

d $y = \tan (\theta - 45^\circ)$

4 Sketch, on separate sets of axes, the graphs of the following, in the interval $-180^{\circ} \le \theta \le 180^{\circ}$. Give the coordinates of points of intersection with the axes, and of maximum and minimum points where appropriate.

 $\mathbf{a} \quad v = -2\sin\theta$

b $v = \tan (\theta + 180^{\circ})$ **c** $v = \cos 4\theta$

d $y = \sin(-\theta)$

5 Sketch, on separate sets of axes, the graphs of the following in the interval $-360^{\circ} \le \theta \le 360^{\circ}$. In each case give the periodicity of the function.

 $\mathbf{a} \quad v = \sin \frac{1}{2}\theta$

b $v = -\frac{1}{2}\cos\theta$

 $\mathbf{c} \quad y = \tan \left(\theta - 90^{\circ}\right)$

d $v = \tan 2\theta$

6 a By considering the graphs of the functions, or otherwise, verify that:

i $\cos \theta = \cos(-\theta)$ ii $\sin \theta = -\sin(-\theta)$ iii $\sin(\theta - 90^\circ) = -\cos \theta$.

b Use the results in **a ii** and **iii** to show that $\sin (90^{\circ} - \theta) = \cos \theta$.

c In Example 14 you saw that $\cos(\theta - 90^\circ) = \sin \theta$. Use this result with part **a** i to show that $\cos(90^{\circ} - \theta) = \sin \theta$.

Homework Exercise

- 7 The graph shows the curve $y = \cos(x + 30^\circ), -360^\circ \le x \le 360^\circ.$
 - a Write down the coordinates of the points where the curve crosses the x-axis. (2 marks)

b Find the coordinates of the point where the curve crosses the *y*-axis.

(1 mark)

- 8 The graph shows the curve with equation $y = \sin(x + k)$, $-360^{\circ} \le x \le 360^{\circ}$, where k is a constant.
 - a Find one possible value for k. (2 n

(2 marks)

- 9 The variation in the depth of water in a rock pool can be modelled using the function $y = \sin(30t)^\circ$, where t is the time in hours and $0 \le t \le 6$.
 - a Sketch the function for the given interval.

(2 marks)

b If t = 0 represents midday, during what times will the rock pool be at least half full?

(3 marks)

1 **a** i 1,
$$x = 0^{\circ}$$
 ii -1, $x = 180^{\circ}$
b i 4, $x = 90^{\circ}$ ii -4, $x = 270^{\circ}$
c i 1, $x = 0^{\circ}$ ii -1, $x = 180^{\circ}$
d i 4, $x = 90^{\circ}$ ii 2, $x = 270^{\circ}$
e i 1, $x = 270^{\circ}$ ii -1, $x = 90^{\circ}$
f i 1, $x = 30^{\circ}$ ii -1, $x = 90^{\circ}$

3 **a** The graph of $y = -\cos \theta$ is the graph of $y = \cos \theta$ reflected in the θ -axis

Meets θ -axis at (90°, 0), (270°, 0)

Meets y-axis at $(0^{\circ}, -1)$

Maximum at (180°, 1)

Minimum at $(0^{\circ}, -1)$ and $(360^{\circ}, -1)$

b The graph of $y = \frac{1}{3} \sin \theta$ is the graph of $y = \sin \theta$ stretched by a scale factor $\frac{1}{3}$ in the y direction.

Meets θ -axis at (0°, 0), (180°, 0), (360°, 0)

Meets y-axis at $(0^{\circ}, 0)$

Maximum at $(90^{\circ}, \frac{1}{3})$

Minimum at $(270^{\circ}, -\frac{1}{3})$

c The graph of $y = \sin \frac{1}{3}\theta$ is the graph of $y = \sin \theta$ stretched by a scale factor 3 in the θ direction.

Only meets axis at origin Maximum at (270°, 1)

d The graph of $y = \tan (\theta - 45^{\circ})$ is the graph of $\tan \theta$ translated by 45° in the positive θ direction.

Meets θ -axis at (45°, 0), (225°, 0) Meets y-axis at (0°, -1) (Asymptotes at θ = 135° and θ = 315°)

4 a This is the graph of $y = \sin \theta$ stretched by scale factor -2 in the *y*-direction (i.e. reflected in the θ -axis and scaled by 2 in the *y*-direction).

Meets θ -axis at (-180°, 0), (0, 0), (180, 0) Maximum at (-90°, 2) Minimum at (90°, -2).

b This is the graph of $y = \tan \theta$ translated by 180° in the negative θ direction.

As $\tan \theta$ has a period of 180° $\tan (\theta + 180^{\circ}) = \tan \theta$ Meets θ -axis at $(-180^{\circ}, 0)$, (0, 0), $(180^{\circ}, 0)$ Meets y-axis at (0, 0) **c** This is the graph of $y = \cos \theta$ stretched by scale factor $\frac{1}{4}$ horizontally.

Meets θ-axis at $(-157\frac{1}{2}^{\circ}, 0)$, $(-112\frac{1}{2}^{\circ}, 0)$, $(-67\frac{1}{2}^{\circ}, 0)$, $(-22\frac{1}{2}^{\circ}, 0)$, $(22\frac{1}{2}^{\circ}, 0)$, $(67\frac{1}{2}^{\circ}, 0)$, $(112\frac{1}{2}^{\circ}, 0)$, $(157\frac{1}{2}^{\circ}, 0)$ Meets y-axis at (0, 1)

Maxima at (-180°, 1), (-90°, 1), (0, 1), (90°, 1), (180°, 1) Minima at (-135°, -1), (-45°, -1), (45°, -1), (135°, -1)

d This is the graph of $y = \sin \theta$ reflected in the *y*-axis. (This is the same as $y = -\sin \theta$.)

Meets θ -axis at $(-180^{\circ}, 0)$, $(0^{\circ}, 0)$, $(180^{\circ}, 0)$ Maximum at $(-90^{\circ}, 1)$ Minimum at $(90^{\circ}, -1)$

5 a Period = 720°

b Period = 360°

c Period = 180°

d Period = 90°

6 a i y = cos (-θ) is a reflection of y = cos θ in the y-axis, which is the same curve, so cos θ = cos (-θ).

ii $y = \sin(-\theta)$ is a reflection of $y = \sin \theta$ in the *y*-axis.

 $y = -\sin(-\theta)$ is a reflection of $y = \sin(-\theta)$ in the θ -axis, which is the graph of $y = \sin \theta$, so $-\sin(-\theta) = \sin \theta$.

iii $y = \sin(\theta - 90^\circ)$ is the graph of $y = \sin \theta$ translated by 90° to the right, which is the graph of $y = -\cos \theta$, so $\sin(\theta - 90^\circ) = -\cos \theta$.

- **b** $\sin (90^{\circ} \theta)$ = $-\sin (-(90^{\circ} - \theta)) = -\sin (\theta - 90^{\circ})$ using (a) (ii) = $-(-\cos \theta)$ using (a) (iii) = $\cos \theta$
- c Using (a)(i) $\cos (90^{\circ} \theta) = \cos (-(90^{\circ} \theta))$ = $\cos (\theta - 90^{\circ})$, but $\cos (\theta - 90^{\circ}) = \sin \theta$, so $\cos (90^{\circ} - \theta) = \sin \theta$

- 7 **a** $(-300^{\circ}, 0), (-120^{\circ}, 0), (60^{\circ}, 0), (240^{\circ}, 0)$
 - **b** $\left(0^{\circ}, \frac{\sqrt{3}}{2}\right)$
- 8 **a** $y = \sin(x + 60^\circ)$
 - **b** Yes could also be a translation of the cos graph, e.g. $y = \cos(x 30^{\circ})$
- 9 a

b Between 1 pm and 5 pm