

Engenharia de Computação Computação Evolucionista Relatório 1

Sum of different powers

Professor: Samuel Costa Alves Basilio.Relator: Lorenzo Jordani Bertozzi Luz.

Leopoldina, MG

Entrega: 30/10/2024

I Introdução.

Neste estudo, trabalhamos com a Função de Soma de Diferentes Potências, uma função conhecida na otimização matemática devido à sua característica unimodal. O gráfico demonstrativo desta função é caracterizado por um paraboloide circula representado na "Figura 1", e a função é definida pelo somatório exemplificado na equação (1).

Figura 1: exemplo de plotagem da função de soma de deferente potenciações.

$$f(\mathbf{x}) = \sum_{i=1}^{d} |x_i|^{i+1} \tag{1}$$

Nesta função, **d** representa a dimensão do vetor **x**. A função é avaliada no hipercubo $x_i \in [-1,1]$ para $i=1,\ldots,d$, com um mínimo global $f(\mathbf{x}^*)=0$ em $\mathbf{x}^*=(0,\ldots,0)$. Esse problema é interessante para a otimização devido à sua simplicidade e à possibilidade de análise eficiente de métodos de busca em um espaço de baixa dimensão.

O objetivo deste projeto foi implementar a função da soma de diferentes potências e realizar duas abordagens de busca para encontrar o mínimo: uma busca sequencial e uma busca aleatória, ambas restritas ao domínio especificado. Em seguida, as avaliações dessas abordagens foram analisadas e visualizadas, a fim de comparar sua eficácia na localização do mínimo global.

CEFET-MG. Entrega: 30/10/2024

II Metodologia.

Para abordar a otimização do problema, inicialmente implementamos a função responsável pela soma de nossas potenciações, conforme apresentado no algoritmo 1. Em seguida, aplicamos dois métodos de busca distintos para analisar o desempenho e comportamento da função em diferentes sistemas de busca. O primeiro método, busca sequencial, examina cada elemento da sequência de forma linear até encontrar o resultado desejado [algoritmo 2]. O segundo método, busca aleatória, seleciona elementos de maneira não-determinística, com a intenção de explorar diferentes partes do espaço de busca para potencialmente melhorar a eficiência [algoritmo 3].

Algoritmo 1: Função soma_diferentes_potencias

```
def soma_diferentes_potencias(x):
    return sum(np.abs(x[i]) ** (i + 1) for i in range(len(x)))
```

Busca Sequencial

Nesta abordagem, o espaço de busca [1,1] foi discretizado em 1000 pontos uniformemente espaçados para avaliar a função de forma sequencial. Essa estratégia é adequada para espaços de baixa dimensão, uma vez que permite examinar sistematicamente o espaço de busca e identificar o mínimo.

Algoritmo 2: Busca_Sequencial

```
def busca_sequencial(d, avaliacoes):
    valores = []
    pontos = []
    start_time = time.time()
    for _ in range(avaliacoes):
        # Gera um vetor aleat rio dentro do intervalo [-1, 1]
          para cada dimens o
        x = np.random.uniform(-1, 1, d)
                        o soma_diferentes_potencias no ponto
        # Avalia a fun
        valor = soma_diferentes_potencias(x)
        valores.append(valor)
        pontos.append((x, valor))
    # Calcula o tempo de execu
    tempo_execucao = time.time() - start_time
    # Calcula e retorna as estat sticas
    return {
```

Entrega: 30/10/2024

```
'melhor': min(valores),
'pior': max(valores),
'media': np.mean(valores),
'mediana': np.median(valores),
'desvio_padrao': np.std(valores),
'tempo': tempo_execucao,
'pontos': pontos
}
```

Busca Aleatória

Nesta abordagem, realizamos 10 execuções independentes, onde cada execução gerou 1000 pontos aleatórios dentro do intervalo [1,1]. Em cada execução, a função foi avaliada em cada ponto gerado. Essa técnica permite uma exploração mais ampla e não estruturada do espaço, captando potenciais mínimos em regiões menos esperadas.

```
Algoritmo 3: Busca_Aleatória
```

```
def busca_aleatoria(d, avaliacoes):
    resultados = []
    for _ in range(10): # 10 execucoes independentes
        inicio = time.time()
        valores = []
        for _ in range(avaliacoes):
            x = np.random.uniform(limite_inf, limite_sup, d)
            valor = soma_diferentes_potencias(x)
            valores.append(valor)
        tempo_execucao = time.time() - inicio
        resultados.append({
            'melhor': min(valores),
            'pior': max(valores),
            'media': np.mean(valores),
            'mediana': np.median(valores),
            'desvio_padrao': np.std(valores),
            'tempo': tempo_execucao
        })
    return pd.DataFrame(resultados)
```

III Métricas e Análise Estatística.

Após a execução de cada abordagem, calculamos as seguintes métricas estatísticas para avaliar a qualidade dos resultados:

- \bullet Melhor Resultado: O menor valor de f(x) encontrado.
- Pior Resultado: O maior valor de f(x) encontrado.
- Média e Mediana dos valores obtidos, para entender a tendência central.
- Desvio Padrão dos valores, indicando a variabilidade.
- Tempo de Execução de cada abordagem para avaliar a eficiência.

Ao analisar os dados retornados por cada um dos métodos de busca apresentados na Tabela 1, podemos destacar alguns resultados relevantes. Um exemplo é o valor 0.000032, evidenciado na tabela, que já na primeira execução se aproxima significativamente do mínimo global, apresentando uma aproximação notavelmente melhor em comparação à busca sequencial, cujo melhor resultado foi 0.000802. A partir da leitura da tabela, observamos também que todos os piores resultados se aproximam do valor máximo delimitado. Além disso, a média, a mediana e o desvio padrão em ambas as execuções permanecem muito próximos entre si, indicando uma consistência nos resultados obtidos.

Tabela 1: Tempos, velocidades, quantidades de movimento e energias cinéticas antes e depois do choque.

Exct.	Método	M. Result.	P. Result.	Média	Mediana	Des. Padrão	Tempo (s)
0	Aleatória 1	0.000032	1.987852	0.830303	0.823264	0.413810	0.167089
1	Aleatória 2	0.004758	1.986282	0.835616	0.825118	0.418093	0.249171
2	Aleatória 3	0.003394	1.981751	0.828679	0.819183	0.416077	0.213977
3	Aleatória 4	0.000851	1.967799	0.837403	0.830100	0.410394	0.087936
4	Aleatória 5	0.001545	1.988818	0.839105	0.833075	0.416778	0.081648
5	Aleatória 6	0.004149	1.989182	0.833446	0.824190	0.415491	0.082732
6	Aleatória 7	0.000292	1.987986	0.830655	0.821258	0.412791	0.115494
7	Aleatória 8	0.003654	1.975575	0.828647	0.817680	0.411342	0.089378
8	Aleatória 9	0.000811	1.990152	0.835524	0.825696	0.416902	0.093232
9	Aleatória 10	0.001182	1.979760	0.828607	0.822418	0.414876	0.097899
10	Sequencial	0.000802	1.991194	0.837366	0.832167	0.416223	0.051813

IV Resultados.

Para um melhor entendimento dos dados coletados, foram gerados dois tipos de gráficos de dispersão para facilitar a visualização. O primeiro é um gráfico bidimensional (2D), representado na Figura 2, onde é possível observar a variação dos pontos encontrados pela busca sequencial, com destaque para o melhor resultado identificado. O segundo consiste

CEFET-MG.

Entrega: 30/10/2024

em gráficos tridimensionais (3D), representados na Figura 3, que ilustram a formação da "onda" de crescimento das operações de soma de potências. Observa-se, a partir da visua-lização dos gráficos 3D, que os pontos encontrados se aproximam bastante do nosso objetivo inicial, conforme discutido na introdução deste relatório.

Figura 2: Plotagem Bidimensional da Busca Sequencia

Figura 3: Plotagem Tridimensional

Os resultados indicaram uma variação significativa na busca aleatória, evidenciada pelo desvio padrão, bem como pelos melhores e piores valores obtidos nas execuções. A busca sequencial, apesar de seu caráter sistemático, apresentou um valor de função constante, refletindo as limitações da discretização ao explorar o espaço de busca.

Conclusão.

 \mathbf{V}

Relatório 1

A análise das duas abordagens sugere que, para funções simples e bem definidas, como a Função de Soma de Diferentes Potências, a busca sequencial pode ser uma estratégia eficiente, embora limitada pela discretização imposta ao espaço de busca. Em contraste, a busca aleatória permite uma exploração mais ampla do espaço, sendo útil para identificar valores próximos ao mínimo, apesar de apresentar uma maior variabilidade nos resultados. Este estudo evidencia a importância de adaptar a abordagem de busca de acordo com a complexidade e a dimensionalidade da função alvo. Ele destaca que métodos estocásticos, como a busca aleatória, podem ser alternativas viáveis em problemas onde a otimização exata

não é essencial ou se torna impraticável, proporcionando soluções que balanceiam eficiência

VI Referências

e abrangência exploratória.

[1] Sum of different powers function. ([s.d.]). Sfu.ca. Recuperado 6 de novembro de 2024, de https://www.sfu.ca/ssurjano/sumpow.html

CEFET-MG.

Entrega: 30/10/2024