อิเล็กทรอนิกส์ในระบบเสียง

ระบบขยายเสียง

ระบบขยายเสียง

ระบบขยายเสียง

การทำงานของเครื่องขยายเสียง

อิเล็กทรอนิกส์ในระบบเสียง

Microphone

หลักการทำงานของไมโครโฟน

• ไมโครโฟน หมายถึง อุปกรณ์ทางอิเล็กทรอนิกส์ ทำหน้าที่เปลี่ยนคลื่นเสียง (Sound wave) หรืออากาศจากแหล่งกำเนิดเสียง เช่น เสียงพูด เสียงเพลง เสียงเครื่องดนตรี เป็น ต้น ให้เป็นสัญญาณไฟฟ้าความถี่เสียง ไหลไปตามสายไมโครโฟนสู่เครื่องขยายเสียง

ประเภทของไมโครโฟน : แบ่งตามวัสดุที่ใช้รับเสียง : Dynamic Microphone

การเปลี่ยนแปลง ของความคันอากาศ

การเปลี่ยนนปลงขอ แรงดันและกระแล

ประเภทของไมโครโฟน : แบ่งตามวัสดุที่ใช้รับเสียง : Ribbon/Ribbin Microphone

ประเภทของไมโครโฟน : แบ่งตามวัสดุที่ใช้รับเสียง : Condenser/Electret Microphone

ประเภทของไมโครโฟน : แบ่งตามวัสดุที่ใช้รับเสียง : Carbon Microphone

ประเภทของไมโครโฟน : แบ่งตามวัสดุที่ใช้รับเสียง : Crystal/Ceramic Microphone

ทิศทางการรับเสียง

- Microphone ไม่ว่าจะเป็น Dynamic หรือ Condenser จะมีทิศทางการรับเสียง อยู่หลายๆแบบขึ้นอยู่กับการออกแบบตามความต้องการในการใช้งาน ทิศทางการ รับเสียงหรือ Directional Pattern หรือเรียกว่า Polar Pattern จะมีอยู่หลักๆ 3 แบบคือ
- Omnidirectional ที่สามารถรับเสียงจากทุกทิศทางรอบ Microphone ได้ดัง เท่ากันหมด
- Unidirectional จะรับเสียงจากด้านหน้าของ Microphone ได้ดังที่สุดส่วนเสียง ที่อยู่ด้านข้าง Microphone จะเบาลง
- Bidirectional จะรับเสียงได้ดังที่สุดที่ด้านหน้าและด้านหลังของ Microphone และ Unidirectional ยังแบ่งได้อีกเป็น Cardioid, Supercardioid และ Hypercardioid

Omni directional / Nondirectional Microphone

• เป็นไมโครโฟนที่รับเสียงได้รอบทิศทาง เหมาะสำหรับการบันทึกเสียงทั่วไป เพราะมี การตอบสนองความถี่กว้าง แต่มีโอกาสที่จะเกิดเสียงรบกวนหรือเสียงหอนได้ง่าย และไม่ควรพูดห่างจากไมโครโฟนมากนัก

Unidirectional Microphone / Cardiod Microphone

• สามารถรับเสียงจากทางด้านหน้าได้ดีที่สุด ไล่มาด้านข้างเสียงจะลดลงเล็กน้อยแต่ยัง รับได้ดี ส่วนเสียงที่มาจากทางด้านหลังจะรับได้น้อยมาก ๆ หรือไม่ได้เลย จึงเหมาะ กับการใช้งานที่ไม่ต้องการให้เสียงบรรยากาศเข้ามามาก ๆ นิยมใช้ในสตูดิโอและงาน แสดงสด เพราะช่วยลดเสียงรบกวนจากทิศทางอื่น ๆ

Super Cardiod / Hypercardiod

• มีองศาการรับเสียงด้านหน้าได้ดีที่สุดแต่แคบกว่า Cardioid คือรับเสียงจาก ด้านข้างได้น้อย มักนิยมใช้ในสถานการณ์ที่ต้องการแยกการบันทึกที่เน้น เจาะจงแหล่งกำเนิดเสียงใดแหล่งกำเนิดเสียงหนึ่ง เพราะให้ทิศทางการรับ เสียงที่แคบกว่า เช่น สำหรับงานพูด และร้องเพลง แต่สิ่งที่เพิ่มขึ้นมาคือ สามารถรับเสียงจากด้านหลังได้อีกด้วย ซึ่งอาจต้องระวังเสียงรบกวนจาก ด้านหลังด้วย

Bi-Direction Microphone

• เป็นไมค์ที่รับเสียงเฉพาะข้างหน้ากับด้านหลัง จะรับเสียงจากด้านข้าง ได้น้อยมากหรือไม่ได้เลย ส่วนมากใช้กับรายการทีวี

• ชนิดปรับทิศทางได้

OMNI BI-DIRECTIONAL CARDIOID CARDIOID SHOTGUN

Ultra Direction / Gun Microphone/ Shotgun Microphone

• เป็นไมค์ที่เฉพาะด้านหน้าและเฉพาะพื้นที่ เป็นไมค์ที่ใช้ส่วนใหญ่ใน

การถ่ายหนัง แต่ราคาสูง

ความไวในการรับเสียง (Sensitivity)

- คือ ระดับสัญญาณของแรงดันไฟฟ้าที่ไมโครโฟนผลิตขึ้น ซึ่งเกิดจากการเปลี่ยนคลื่นเสียงให้ เป็นคลื่นไฟฟ้า
- โดยทั่วไปแล้วบริษัทผู้ผลิตมักจะทดสอบโดยให้ไดอะแฟรมของไมโครโฟนรับคลื่นเสียง (ความถี่ 1 kHz) ที่มีแรงดันอากาศเท่ากับ 1 ปาสคาล (Pascal) แล้วคอยดูว่าไมโครโฟนจะ สามารถเปลี่ยนเป็นแรงดันไฟฟ้าได้ปริมาณไฟฟ้าที่กี่มิลลิโวลท์(mmV) นั่นคือที่มาของ หน่วย มิลลิโวลท์ / ปาสคาล
- ยกตัวอย่าง เช่น ไมโครโฟนที่มีค่า sensitivity เท่ากับ 28 mV / Pa จะมีความสามารถใน การเปลี่ยนคลื่นเสียงให้เป็นคลื่นไฟฟ้า ได้ดีกว่า ไมโครโฟนที่มีค่า sensitivity เท่ากับ 9 mV / Pa
- โดยทั่วไปแล้วค่าที่ติดลบน้อยๆ หมายความว่าไมโครโฟนตัวนั้นมีค่า sensitivity ที่ดีกว่า ค่าที่ติดลบมากๆ อย่างเช่น -28.84 dBu (28 mV / Pa) จะมี sensitivity ที่ดีกว่า -38.70 dBu (9 mV / Pa)

ความไวในการรับเสียง (Sensitivity)

- ไมโครโฟนประเภท Condenser มักจะมี Sensitivity ที่มากกว่า ไมโครโฟนแบบ Dynamic
- ค่าของ Microphone Sensitivity ไม่ได้เป็นตัวบ่งบอกถึงคุณภาพของเสียงแต่อย่างใด แต่ เป็นข้อมูลที่ช่วยให้เราสามารถเลือกไมโครโฟนให้เหมาะสมกับสภาพแวดล้อมและ สภาวะการณ์ได้ดียิ่งขึ้น
- Sensitivity เป็นค่าที่ใช้วัดประสิทธิภาพ หรือความไวต่อเสียงของ Microphone หน่วย เป็น Db โดยที่ 0 Db จะเท่ากับ 1 Volt/Microbar วัดที่ 1 Khz
- Condenser Microphone มีค่า Sensitivity เฉลี่ย -65 Db (High Sensitivity)
- Moving Coil Microphone มีค่า Sensitivity เฉลี่ย -75 Db (Medium Sensitivity)
- Ribbon Microphone มีค่า Sensitivity เฉลี่ย -85 Db (Low Sensitivity)

ประเภทของไมโครโฟน แบ่งตามความไวในการรับเสียง (sensitivity)

ความไวสูงมาก

• เช่น Gun Microphone, Long Gun Microphone , Parabolic Microphone

ความไวสูง

ประเภทของไมโครโฟน แบ่งตามความไวในการรับเสียง (sensitivity)

ความไวปานกลาง

ความไวต่ำ

Hand Held / Hand Microphone

Megaphone (โทรโข่ง)

แบบตั้งโต๊ะ (Desktop Microphone)

Zoom Mic

Wireless Mic

อาศัยการส่งตามคลื่นของระบบ F.M.
 คือช่วงคลื่นระหว่าง 88 – 108 MHz

Boom Mic

Headset

Clip Tie Microphone/ Lavaliere/Chest

ใช้ใน Studio

Microphone เฉพาะงาน

• เช่น กับเครื่องดนตรี เช่น violin, bass drum mic etc.

Stereo Microphone

ความต้านทางไฟฟ้า (Impedance)

- Impedance ของ Microphone คือค่าความต้านทานทางไฟฟ้าของ Microphone วัดที่ความถี่ 1 k Hz
- Output Impedance หรือ Source Impedance ของตัว ไมโครโฟน มีหน่วยเป็น โอห์ม และใช้สัญญาลักษณ์ $oldsymbol{\Omega}$ (เป็นภาษา กรีก อ่านว่า Omega)
- ไมโครโฟนที่มี Impedance ต่ำ จะมีข้อดีมากกว่า ไมโครโฟนที่มี Impedance สูง ซึ่งไมโครโฟนในระดับ professional ส่วนใหญ่ มักจะมีค่า Impedance ต่ำ

ประเภทของไมโครโฟน แบ่งตาม impedance

Low Impedance (less than 600 Ω)

มีค่า Impedance อยู่ในช่วง 200 ถึง 600 โอห์ม ซึ่งมีคุณภาพดีให้กำลังของสัญญาณ ออกสูง (High Power Output) ไม่มีเสียง รบกวน สามารถใช้กับสายยาว ๆ ได้แต่จะมี ความไวในการรับเสียงต่ำใช้ต่อร่วมกับเครื่อง ขยายเสียงที่ช่อง Low Impedance

Medium Impedance (600 Ω - 10,000 Ω)

มีค่า Impedance อยู่ในช่วง 600 - 10,000 โอห์ม ซึ่งมีคุณภาพดีให้กำลังของสัญญาณออก ปานกลาง (High Power Output) ไม่มีเสียง รบกวน สามารถใช้กับสายยาว ๆ ได้ประมาณ 25 ฟุต

ประเภทของไมโครโฟน แบ่งตาม impedance

High Impedance (greater than 10,000 Ω)

- Impedance สูง หรือมีค่าความต้านทานสูง (High Impedance) จะ มีค่าอยู่ในช่วง 5,10,50 หรืออาจถึง 100 กิโลโอห์ม (K $oldsymbol{\Omega}$)
- จะให้กำลังใจของสัญญาณออกมาต่ำ (Low Power Output) มีเสียง รบกวนได้ง่าย เช่นเสียงฮัม ยิ่งถ้าต่อสายยาว ๆ หรือเกิน กว่า 25 ฟุต ก็ยิ่งทำให้สูญเสียกำลังของสัญญาณมากขึ้น คุณภาพของเสียงจะ ลดลงด้วย ใช้ต่อร่วมกับเครื่องขยายเสียงโดยต่อช่องที่ช่อง High

Accessory

กันสะเทือน

Pop Filter

อุปกรณ์ลดเสียงระเบิด เช่นเสียงตัว 'พ' P

Accessory

Mic Clip ขาจับไมโครโฟนชนิดหนีบ

คอห่าน

Stand Mic

Accessory

Shock Mount

Phantom Power Supply

ตัวอย่าง Spec ไมโครโฟน

Technical specifications	
Polar pattern	cardioid
Frequency range	60 to 20,000 Hz
Sensitivity	30 mV/Pa (-30 dBV)
Max. SPL ปกติจะวัดที่ THD .5% และ 1%	115 dB (k=1 %)
Equivalent noise level เป็น noise ที่เกิดขึ้นจากตัวไมโดรโฟนเอง	27 dB-A
มี 2 มาตรฐานคือ	
1.The dB(A) scale will weight the SPL	
according to the ear¹s sensitivity,	
especially filtering out low	
frequency noise. Good results	
(very low noise) in this scale are	
usually below 15 dB(A). 2. The CCIR 468-1 scale uses a	
different weighting, so in this scale,	
good results are below 25 to 30 dB.	

Signal/noise ratio (A-weighted)	67 dB
Impedance	200 ohms
Recommended load impedance	>2000 ohms
Supply voltage	9 to 52 V phantom power to DIN/IEC
Current consumption	<2 <u>mA</u>
Connector	3-pin XLR
Cable	3 m (10 ft.)
Finish	matte black
Dimensions	97 x 67 x 20 mm (3.9 x 2.6 x 0.8 in.)
Net weight	100 g (3.5 oz.)
Shipping weight	400 g (14 oz.)

จากสเปคจะทำให้ทราบว่า

- 1. ประเภทของไมโครโฟน เช่น ริบบ้อน คอนเดนเซอร์ หรือไดนามิค เป็นต้น
- 2. มุมในการรับเสียงเช่น รอบตัว ทางเดียว สองทาง
- 3. ลักษณะการนำไปใช้งาน เช่นในสตูดิโอ นอก สถานที่ หรือแบบติดหน้าอก (chest microphone)
- 4. การตอบสนองความถี่ เพื่อให้เหมาะกับลักษณะงาน เช่นเสียงพูด เสียงทั่วไป เสียงเครื่องดนตรีเช่น ไวโอลิน
- 5. กำลังออก (out put) ไมโครโฟนที่ดีเยี่ยม กำลังออก ไม่เกิน -53 dBm(db)
- 6. เอ้าท์พุทอิมพีแดนซ์
- 7. ความไวของไมโครโฟน(sensitivity)

- 8. ลักษณะการใช้งานพิเศษ เช่นสวิตซ์ voice/music
- 9. ลักษณะของขั้วต่อสาย เช่นแคนนอนหรือ XLR เป็นต้น
- 10. คุณลักษณะพิเศษ เช่นฉายกันเสียงลม (wind screen) ทำเสียงก้อง บางตัว เป็นได้ทั้งไร้สายและชนิดมีสาย
- 11. อุปกรณ์ที่ให้มาด้วย ว่ามีอะไรบ้างและ เท่าไรเช่นสายไมโครโฟน
- 12. ลักษณะที่จำเป็นอื่นๆ เช่น น้ำหนัก วัสดุ ที่ใช้ทำ
- 13. ยี่ห้อและตัวแทนจำหน่าย

การใช้งานและการรักษาไมโครโฟน

- เลือกไมโครโฟนชนิดที่เหมาะสมกับสถานการณ์โดยพิจารณาทั้งใน เรื่องทิศทางการรับเสียง ช่วงการตอบสนองความถี่เสียงความไวใน การรับเสียงและลักษณะการใช้งาน
- ระยะห่างจากไมโครโฟนถึงผู้พูด ถ้าเป็นไมโครโฟนที่มีความไวต่อการ รับเสียงมากควรอยู่ห่างประมาณ 4 นิ้ว ถึง 1 ฟุต หากใกล้มากจะทำ ให้เสียงเพี้ยนหรือฟังไม่รู้เรื่อง
- อย่าเคาะหรือเป่าไมโครโฟนเป็นอันขาด อาจทำให้ไมโครโฟนขาด ชำรุด และระวังอย่าให้ล้มหรือตกหล่นจากที่สูง และระวังอย่าให้ถูกน้ำ

การใช้งานและการรักษาไมโครโฟน

- อย่าวางสายไมโครโฟนควบคู่หรือใกล้ชิดหรือตัดผ่านกับสายไฟฟ้ากระแสสลับ (AC. Cord) เพราะจะทำให้มีสัญญาณความถี่ของกระแสไฟฟ้าไปรบกวน สัญญาณเสียง
- ขณะใช้ไมโครโฟน หากมีเสียงหวีดหรือเสียงหอน อาจเป็นเพราะใช้ไมโครโฟนใกล้ กับลำโพงมากเกินไป หรืออาจจะหันด้านหน้าของไมโครโฟนไปตรงกับทิศทาง ด้านหน้าของลำโพง ทำให้เสียงเกิดการย้อนกลับ (Feedback) ต้องเปลี่ยน ตำแหน่งการตั้งไมโครโฟนใหม่ให้ถูกต้อง
- การใช้ไมโครโฟนนอกสถานที่หรือกลางแจ้งมักจะมีเสียงรบกวนจากลมพัดและ เสียงรอบข้างมาก โดยเฉพาะไมโครโฟนที่มีความไวในการรับเสียงสูง ควรใช้ อุปกรณ์กันเสียงรบกวน (Wind Screen) สวมป้องกัน จะทำให้เสียงมีความ ชัดเจนแจ่มใสมีคุณภาพดีขึ้น

การใช้งาน

 ไมโครโฟนไดนามิค ส่วนใหญ่แล้วจะใช้งานสำหรับ Live และระยะไม่ เกิน 6 ฟุต เสียงไม่ค่อยได้รายละเอียดมากนัก

• ไมโครโฟนริบบ้อนจะให้รายละเอียดได้มาก แต่ค่อนข้างเปราะบางกว่า

ไดนามิค และราคาแพง

การใช้งาน

Capacitor Microphone ในปัจจุบันมีคุณภาพดีขึ้นมาก ถ้าต้องการใช้เป็น Vocal Microphone ควรเลือก Diaphragm ขนาดใหญ่ ใช้แหล่งจ่ายไฟ Phantom Power 48V ซึ่งในปัจจุบันที่ Mixer มักจะมีแหล่งจ่ายไฟ Phantom Power ไว้ให้กับไมโครโฟนคาพาซิเตอร์(capacitor Microphone)มีความไวสูง และสามารถเลือกมุมในการรับเสียงได้ง่ายกว่า ไดนามิค อย่างไรก็ตามไมโครโฟน Capacitor จะมีราคาสูงกว่า Dynamic

การใช้งาน

• ต้องระมัดระวังอย่าต่อไมโครโฟนไดนามิคหรือ Ribbon Microphone กับแหล่งจ่ายไฟ Phantom Power หรือ แหล่งจ่ายโดยเฉพาะ หรือ จาก Mixer ที่สำหรับจ่ายไฟเลี้ยงให้กับไมโครโฟนคอนเด็นเซอร์ โดย เด็ดขาด เนื่องจากจะทำให้ไมโครโฟนชำรุด

ระบบการขยายเสียง :: ระบบเสียงโมโน(Mono)

ระบบการขยายเสียง :: Mono ที่ใช้ลำโพงสองตัว

ระบบการขยายเสียง :: ระบบสเตอริโอ

ระบบการขยายเสียง :: ตำแหน่งการวาง

ระบบการขยายเสียง :: ระบบ Surround

Single-Amplification

เพาเวอร์แอมป์

Next

• Week12-อิเล็กทรอนิกส์ในระบบเสียง - เครื่องขยายเสียง(Amplifier)

