Лабораторная работа № 6

Статическая маршрутизация VLAN

Джахангиров Илгар Залид оглы

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	17
5	Контрольные вопросы	18

Список иллюстраций

3.1	Логическая область проекта с добавленным маршрутизатором	6
3.2	Конфигурация маршрутизатора	7
3.3	Конфигурация маршрутизатора	8
3.4	Настройка порта 24 как trunk-порта	8
	Конфигурация VLAN-интерфейсов маршрутизатора	ç
3.6	Конфигурация VLAN-интерфейсов маршрутизатора	10
3.7	Конфигурация VLAN-интерфейсов маршрутизатора	11
3.8	Проверка доступности оконечных устройств	12
3.9	Проверка доступности оконечных устройств	13
	Проверка доступности оконечных устройств	14
3.11	Проверка доступности оконечных устройств	15
	Передвижения пакета ІСМР по сети	16

1 Цель работы

Настроить статическую маршрутизацию VLAN в сети.

2 Задание

- 1. Добавить в локальную сеть маршрутизатор, провести его первоначальную настройку.
- 2. Настроить статическую маршрутизацию VLAN.
- 3. При выполнении работы необходимо учитывать соглашение об именовании

3 Выполнение лабораторной работы

Откроем файл .pkt, в котором мы выполняли предыдущую лабораторную работу(где уже есть сеть с какой-то настройкой).

В логической области проекта разместим маршрутизатор Cisco 2811, подключим его к порту 24 коммутатора msk-donskaya-sw-1 в соответствии с таблицей портов (рис. ??).

Рис. 3.1: Логическая область проекта с добавленным маршрутизатором

Используя приведённую в лабораторной работе последовательность команд по первоначальной настройке маршрутизатора, сконфигурируем маршрутизатор,

задав на нём имя, пароль для доступа к консоли, настроем удалённое подключение к нему по ssh

Рис. 3.2: Конфигурация маршрутизатора

Рис. 3.3: Конфигурация маршрутизатора

Haстроем порт 24 коммутатора msk-donskaya-sw-1 как trunk-порт.

Настройка порта 24 как trunk-порта

Рис. 3.4: Настройка порта 24 как trunk-порта

На интерфейсе f0/0 маршрутизатора msk-donskaya-gw-1 настроем виртуальные интерфейсы, соответствующие номерам VLAN. Согласно таблице IP-адресов (сделанной ранее) зададим соответствующие IP-адреса на виртуальных интерфейсах. Для этого используем приведённую в лабораторной работе последовательность команд по конфигурации VLAN-интерфейсов маршрутизатора

```
msk-donskaya-cahanqirov-gw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-donskaya-cahanqirov-gw-l(config)#interface f0/0
msk-donskaya-cahanqirov-gw-1(config-if)#interface f0/0.2
msk-donskaya-cahanqirov-gw-1(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.2, changed state to up
msk-donskaya-cahanqirov-gw-1(config-subif) #encapsulation dot1Q 2
msk-donskaya-cahanqirov-gw-1(config-subif) #ip address 10.128.1.1 255.255.255.0
msk-donskaya-cahanqirov-gw-l(config-subif) #description management
msk-donskaya-cahanqirov-gw-1(config-subif)#exit
msk-donskaya-cahanqirov-gw-1(config)#interface f0/0.3
msk-donskava-cahangirov-gw-1(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.3, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.3, changed state to up
msk-donskaya-cahanqirov-gw-1(config-subif)#encapsulation dot1Q 3
msk-donskaya-cahanqirov-gw-1(config-subif) #ip address 10.128.0.1 255.255.255.0
msk-donskaya-cahanqirov-gw-l(config-subif)#description servers
msk-donskaya-cahangirov-gw-1(config-subif)#interface f0/0.101
msk-donskaya-cahanqirov-gw-l(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.101, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.101, changed state to up
msk-donskava-cahangirov-gw-1(config-subif)#ip address 10.128.3.1 255.255.255.0
% Configuring IP routing on a LAN subinterface is only allowed if that
subinterface is already configured as part of an IEEE 802.10, IEEE 802.1Q,
or ISL vLAN.
msk-donskaya-cahanqirov-gw-l(config-subif)#description dk
msk-donskaya-cahanqirov-gw-l(config-subif) #exit
msk-donskava-cahangirov-gw-1(config)#interface f0/0.102
msk-donskaya-cahanqirov-gw-l(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.102, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.102, changed state to up
msk-donskaya-cahanqirov-gw-1(config-subif) #encapsulation dot1Q 102
msk-donskaya-cahanqirov-gw-1(config-subif) #ip address 10.128.4.1 255.255.255.0 msk-donskaya-cahanqirov-gw-1(config-subif) #description departments
msk-donskaya-cahanqirov-gw-l(config-subif) #exit
msk-donskaya-cahanqirov-gw-1(config)#interface f0/0.103
msk-donskaya-cahanqirov-gw-1(config-subif)#
%LINK-5-CHANGED: Interface FastEthernet0/0.103, changed state to up
LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0.103, changed state to up
```

Рис. 3.5: Конфигурация VLAN-интерфейсов маршрутизатора

Рис. 3.6: Конфигурация VLAN-интерфейсов маршрутизатора

```
interface FastEthernet0/0
no ip address
duplex auto
speed auto
interface FastEthernet0/0.2
description management
encapsulation dot1Q 2
ip address 10.128.1.1 255.255.255.0
interface FastEthernet0/0.3
description servers
encapsulation dot1Q 3
ip address 10.128.0.1 255.255.255.0
interface FastEthernet0/0.101
description dk
no ip address
interface FastEthernet0/0.102
description departments
encapsulation dot10 102
ip address 10.128.4.1 255.255.255.0
interface FastEthernet0/0.103
description adm
encapsulation dot1Q 103
ip address 10.128.5.1 255.255.255.0
interface FastEthernet0/0.104
description other
encapsulation dot1Q 104
ip address 10.128.6.1 255.255.255.0
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
interface Vlanl
no ip address
shutdown
ip classless
ip flow-export version 9
```

Рис. 3.7: Конфигурация VLAN-интерфейсов маршрутизатора

Проверим доступность оконечных устройств из разных VLAN. Зайдем в терминал ПК (dk-donskaya-dmbelicheva), посмотрим его ipconfig, увидим ip-адрес 10.128.3.201. Попробуем сначала пропинговать ПК из этой же сети. Как и раньше пингование проходит успешно

Рис. 3.8: Проверка доступности оконечных устройств

Теперь попробуем пропинговать устройства из другой сети, по началу будет возникать задержка, потому что коммутаторы обучаются, но при повторном пингование задержка пропадает (рис. ??).

```
C:\>ping 10.128.3.202

Pinging 10.128.3.202 with 32 bytes of data:

Reply from 10.128.3.202: bytes=32 time=7ms TTL=128
Reply from 10.128.3.202: bytes=32 time=2ms TTL=128
Reply from 10.128.3.202: bytes=32 time<1ms TTL=128
Reply from 10.128.3.202: bytes=32 time=5ms TTL=128
Ping statistics for 10.128.3.202:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 7ms, Average = 3ms</pre>
```

Рис. 3.9: Проверка доступности оконечных устройств

```
C:\>ping 10.128.3.202
Pinging 10.128.3.202 with 32 bytes of data:
Reply from 10.128.3.202: bytes=32 time=7ms TTL=128 Reply from 10.128.3.202: bytes=32 time=2ms TTL=128
Reply from 10.128.3.202: bytes=32 time<1ms TTL=128
Reply from 10.128.3.202: bytes=32 time=5ms TTL=128
Ping statistics for 10.128.3.202:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 7ms, Average = 3ms
C:\>ping 10.128.4.201
Pinging 10.128.4.201 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.4.201:
     Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 10.128.5.201
Pinging 10.128.5.201 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.5.201:
     Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 10.128.6.201
Pinging 10.128.6.201 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.6.201:
  Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Рис. 3.10: Проверка доступности оконечных устройств

```
C:\>ping 10.128.0.2
Pinging 10.128.0.2 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.0.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 10.128.0.3
Pinging 10.128.0.3 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.0.3:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 10.128.0.4
Pinging 10.128.0.4 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.0.4:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>ping 10.128.0.5
Pinging 10.128.0.5 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 10.128.0.5:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
C:\>
```

Рис. 3.11: Проверка доступности оконечных устройств

Используя режим симуляции в Packet Tracer, изучим процесс передвижения пакета ICMP по сети. Изучим содержимое передаваемого пакета и заголовки задействованных протоколов.

Сначала отправим пакет между устройствами в одной сети . Пакет движется через коммутаторы, к маршрутизатору не идет. Передача проходит успешно.

Рис. 3.12: Передвижения пакета ІСМР по сети

4 Выводы

В результате выполнения лабораторной работы я настроил статическую маршрутизацию VLAN в сети.

5 Контрольные вопросы

1. Охарактеризуйте стандарт IEEE 802.1Q.

IEEE 802.1Q — открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности к VLAN по сетям стандарта IEEE 802.3 Ethernet.

Так как 802.1Q не изменяет заголовки кадра (фрейма), то сетевые устройства, которые не поддерживают этот стандарт, могут передавать трафик без учёта его принадлежности к VLAN. Поскольку данный стандарт является открытым, он используется для построения «транковых» портов между оборудованием различных производителей. 802.1Q помещает внутрь фрейма тег, который передает информацию о принадлежности трафика к VLAN.

2. Опишите формат кадра IEEE 802.1Q.

Спецификация 802.1 Q определяет 12 возможных форматов инкапсуляции долнительного поля в кадры MAC-уровня. Эти форматы определяются в зависимости от трех типов кадров (Ethernet II, LLC в нормальном формате, LLC в формате Token Ring), двух типов сетей (802.3/Ethernet или Token Ring/FDDI) и двух типов меток VLAN (неявных или явных). Имеются также определенные правила трансляции исходных кадров Ethernet или Token Ring в помеченные кадры и обратной трансляции помеченных кадров в исходные.

Поле идентификатора протокола меток (Tag Protocol Identifier,TPI) заменило поле EtherType кадра Ethernet, которое заняло место после двухбайтного поля метки VLAN.

В поле метки VLAN имеется три подполя.

Подполе Priority предназначено для хранения трех бит приоритета кадра, что позволяет определить до 8 уровней приоритетов. Однобитный признак TR-Encapsulation показывает, содержат ли данные, переносимые кадром, инкапсулированный кадр формата IEEE (признак равен 1) 802.5 или же они соответствуют типу внешнего кадра (признак равен 0).

С помощью этого признака можно туннелировать трафик сетей Token Ring на коммутируемых магистралях Ethernet.

12-битный идентификатор VLAN (VID) уникально идентифицирует VLAN, к которой относится данный кадр.

Максимальный размер кадра Ethernet увеличивается при применении спецификации IEEE 802.1 Q не 4 байта- с 1518 байт до 1522 байт.