Домаћи задатак 1 - Фурије-Моцкинова метода елиминације

1. случај

input Систем линеарних неједначина у облику $Ax \geq b$ где $A \in \mathbb{R}^m \times \mathbb{R}^n$, $x \in \mathbb{R}^n$ и $b \in \mathbb{R}^m$. (input подаци: матрица A, вектор b)

output Одређивање интервала за једно x_k k=1,...,n а онда у зависности од избора x_k одредити интервале за преостале непознате.

тест1

input Систем линеарних неједначина

$$7x + 2y - 2z \ge 4$$
$$-x - y - z \ge -4$$
$$-2x + 3y + z \ge 1$$
$$5x - y + z \ge -2$$

output $x \ge 0$. Стави $x = 1 \to \frac{3}{8} \le y \le 5$. Стави $y = 4 \to -3 \le z \le -1$.

2. случај

input Систем линеарних неједначина у облику $Ax \geq b$ где $A \in R^m \times R^n, \ x \in R^n$ и $b \in R^m.$ (input подаци: матрица A, вектор b и тачка $x^0 = (x_1^0,...,x_n^0)$) output Да ли тачка $x^0 = (x_1^0,...,x_n^0)$ припада скупу решења система $Ax \geq b$.

$\mathbf{т}\mathbf{e}\mathbf{c}\mathbf{\tau}2$

input Тачка (-1,1,1) и систем линеарних неједначина

$$7x + 2y - 2z \ge 4$$
$$-x - y - z \ge -4$$
$$-2x + 3y + z \ge 1$$
$$5x - y + z \ge -2$$

output Не припада.

3. случај Фурије-Моцкиновом методом елеиминације решити проблем линеарног програмирања у облику

$$(min) c^T x$$

 $\pi.o. Ax \le b$
 $x \ge 0$

(input подаци: вектор <math>c, матрица A, вектор b) (output подаци: минимум функције циља)**тест**<math>3 input:

$$c = (-1, -3)$$

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$b = (6, 8)$$

,

output: -15.33