Musa Al-hassy and Zinovy Diskin

July 20, 2020

1 Background

In this section, let \mathcal{A} and \mathcal{B} be categories. We will use the notation $\mathsf{Obj}\,\mathcal{X}$, $\mathsf{Hom}\,\mathcal{X}$, src , tgt , $_{\circ}$, $_{\circ}$, Id to refer to the objects of a category \mathcal{X} , its homsets, the source object assignment, the target object assignment, the (forward/diagrammatic) composition operation, and for the identity operations; respectively.

Definition 0: Lifting

Let $F : \mathsf{Obj} \mathcal{A} \to \mathsf{Obj} \mathcal{B}$ be a function on objects. Define a **lift**^a for F to be a family G_A of functions on arrows, for each object $A : \mathcal{A}$:

$$G_A: \operatorname{Hom}(A,-) \leftarrow_{\mathcal{A}} \operatorname{Hom}(FA,-)$$

$$\begin{array}{ccc}
A & \xrightarrow{u} & A' \\
\downarrow^F & \uparrow^G_A & \downarrow^F \\
B & \xrightarrow{v} & B'
\end{array}$$

^aThe diagram suggests the name 'lift' since arrows in the bottom category \mathcal{B} are assigned to arrows in the top category \mathcal{A} .

This paper adheres to the following *colouring discipline* for diagrams: Items in hand are coloured black, whereas *derived* elements are coloured in blue. Intermediary elements, such as those that are output of one transformation but input to another, will be coloured grey.

Example 0: Common Liftings

- \diamond For F the identity function, the identity function $\alpha \mapsto \alpha$ is a lift.
- \diamond For $\mathcal{A} = \mathcal{B} = \mathcal{S}et$, the category of sets and functions, and F a bijective map on sets, we may take $G_A(v) = F \circ v \circ F^{-1}$ where $A' = F^{-1} \Big(\{v(b) \mid b \in F(A)\} \Big)$.

In general, F acts as a form of 'query' on \mathcal{A} -objects that yields local, focused, information. Then the lift G allows us to transport the local transformation —e.g., the set comprehension above— to the global setting.

 \diamond Recall that a functor F is an *obfibration* if given any source object $A:\mathcal{A}$ and an \mathcal{B} -arrow $u:FA\to B'$, there is universal \mathcal{A} -arrow $G_A(u):A\to A'$ with $F(G_A(u))=u$.

Every opfibration is thus a lift as witnessed by the G_A arrows. As such, out notion of lifts generalises the idea of opfibrations by dropping the universality requirement.

Definition 1: Stable Lifting

A lifting is **stable** if it preserves identities.

$$G_A\left(\mathsf{Id}_{FA}\right) = \mathsf{Id}_{FA}$$
 (STABILITY)

Definition 2: Sectional Lifting

Let $F: A \to B$ be a *functor*, then a lifting for its object mapping is **sectional** if F's morphism mapping is a post-inverse to each member of the family:

$$F(G_A \alpha) = \alpha$$
 (Sectional)

Definition 3: Delta Lens

A delta lens^a is a functor that has a stable sectional lifting.

More explicitly, a delta lens is a tuple $(\mathcal{A}, \mathcal{B}, \mathsf{get}, \mathsf{put})$ consisting of two categories \mathcal{A} and \mathcal{B} , along with a functor $\mathsf{get} : \mathcal{A} \to \mathcal{B}$ that has put as its lifting that satisfies both (STABILITY) and (SECTIONAL).

^aThis is also known as a *very-well behaved delta lens* that lacks the PutPut law, which usually does not hold in applications and so we ignore it.

Theorem 0: Delta Lenses form a subcategory " δ -Lens" of $\mathcal{C}at$

The identity functor is clearly a delta lens; it remains to show that the composition of functors that are delta lenses is again a delta lens. Indeed, if F_1 and F_2 are functors with stable sectional liftings G_1 and G_2 , respectively, then $F_1 \circ F_2$ has $A \mapsto G_{2A} \circ G_{1A}$ as a stable sectional lifting: Each property is immediately verified by, in the following diagram, starting with the given black elements then following the G_i 's to obtain the required blue elements.

$$A \xrightarrow{u} A'$$

$$\downarrow F_1 \quad \uparrow G_{1_A} \downarrow F_1$$

$$B \xrightarrow{v} B'$$

$$\downarrow F_2 \quad \uparrow G_{2_A} \downarrow F_2$$

$$C \xrightarrow{w} C'$$

2 Asymmetric Edit Delta Lenses

Definition 4: Edit Space

An edit space is an (cloven) obfibration a .

^aFor computing purposes, existence is most useful when taken *constructively*: It is not enough for something to merely exist, but rather a (computable) construction of the thing must be provided for an existence claim to be reasonable. As such, our opfibrations are cloven by default.

Formally, an edit space is a tuple $(A, \mathcal{M}, \mathsf{control}, \mathsf{apply})$ consisting of:

- 1. a category of "Active processes",
- 2. a category of "Motions", or 'Mechanics', —these delimit the behaviour of processes; 'contracts, metamodels, specifications'
- 3. a functor control: $\mathcal{A} \to \mathcal{M}$ that indicates how a process is controlled or behaved,
- 4. a lifting apply: $\mathsf{Hom}_{\mathcal{A}}(A,-) \leftarrow \mathsf{Hom}_{\mathbb{M}}(\mathsf{control}A,-)$ where we interpret $\mathsf{apply}_A(\phi:\mathsf{control}A \to M)$ as "the execution of the ϕ -update to A's permitted behaviour".
- 5. such that the lifting produces op-Cartesain arrows:

Given any $v: M \to M'$ and any $A: \mathsf{Obj}\,\mathcal{A}$ with control A = M, we have that

$$control(apply_A v) = v$$
 (OVER)

(EDITSECTIONAL)

It is universal with this property: For any other A-arrow $u: A \to A'$, each factorisation of control u through v uniquely determines a factorisation of u through $apply_A v$.

Definition 5: Edit Space Lens

Let $\mathsf{control}_1: \mathcal{A} \to \mathcal{M}$ and $\mathsf{control}_2: \mathcal{B} \to \mathcal{N}$ be edit spaces —with liftings apply_1 and apply_2 , respectively. Define an $\mathsf{edit}\ \delta\text{-lens}$ to be a functor $\mathsf{get}: \mathcal{M} \to \mathcal{N}$ with a family of $\mathit{functions}\ \mathsf{put}_A: \mathsf{Hom}_{\mathcal{A}}(A,-) \leftarrow \mathsf{Hom}_{\mathcal{B}}\big((\mathsf{control}_1\, \mathring{\,}\, \mathsf{get}\, \mathring{\,}\, \mathsf{apply}_2)\, A,-\big)$ satisfying (STABILITY), (EDITSECTIONAL), and the following commutativity condition; i.e., $\mathsf{apply}_1 = \mathsf{get}\, \mathring{\,}\, \mathsf{apply}_2\, \mathring{\,}\, \mathsf{put}.$

control₂

B'

Theorem 1: Edit Delta Lenses form a subcategory " $\varepsilon\delta$ -Lens" of δ -Lens

 $put \, {}^{\circ}_{1} \, control_{1} \, {}^{\circ}_{2} \, get =$

Opfibrations are known to form a category; details can be found in [Jac99].

Now to the main theorem.

A'

Given a functor $F: \mathcal{A} \to \mathcal{B}$, define the category \mathcal{A}/\mathcal{B} to have objects the pairs $(A: \mathsf{Obj}\,\mathcal{A}, B: \mathsf{Obj}\,)$ with FA = B, and to have arrows $(A, B) \to (A', B')$ to be pairs $(u: A \to_{\mathcal{A}} A', v: B \to_{\mathcal{B}} B')$ such that the resulting square commutes; i.e., FA = B, FA' = B', and Fu = v. Composition and identities are inherited from \mathcal{A} and \mathcal{B} , and the required conditions are met due to the functoriality of F.

Theorem 2: $\varepsilon \delta$ -Lenses are δ -Lenses between certain categories

More precisely: If get is an $\varepsilon\delta$ -lens from $\mathsf{control}_1: \mathcal{A} \to \mathcal{M}$ to $\mathsf{control}_2: \mathcal{B} \to \mathcal{N}$, then get induces a δ -lens from \mathcal{A}/\mathcal{M} to \mathcal{B}/\mathcal{N} .

Proof. Define the functor $get': \mathcal{A}/\mathcal{M} \longrightarrow \mathcal{B}/\mathcal{M}$ and family put' by the following equations:

```
\begin{array}{lcl} \gcd'(x,y) & = & (\operatorname{apply_2} \operatorname{get} \operatorname{control_1} x, \ \operatorname{get} y) \\ \\ \operatorname{put}'_{A,M}(x,y) & = & (\operatorname{put}_A x, \ \operatorname{control_1} \operatorname{put}_A \operatorname{apply_2} y) \end{array}
```

Functoriality of get' is inherited from get. It remains to show that this has put' as a stable sectional lifting.

- \diamond Stability follows from the stability of put_A .
- ♦ Sectional:

References

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics 141. Amsterdam: North Holland, 1999 (cit. on p. 4).