קווים כלליים לפתרון תרגיל בית 1

<u>: שאלה 1</u>

. אי-רציונלי אי-רציונלי שונים אי-רציונלי לכל p,q אי-רציונלי

 $(n \neq 0)$ ונניח שלמים, m,n שבר מצומצם $r=\frac{m}{n}$ שבר מניח בשלילה כי p ונניח בשלילה כי p ונניח $r=\sqrt{pq}$ ונניח בשלילה כי p ונניח p ונניח p וונניח בשלילה כי p וונניח p וונניח p או p בור p שבור p בור p שבר מצומצם. p שבר מצומצם. p וונניח p או p שבר מצומצם.

ב. הוכיחו כי $\sqrt[3]{2} + \sqrt[3]{4}$ אי-רציונלי.

 $r_1 + q$

(1

נסמן ($1-\sqrt[3]{2}$) באופן $q=\sqrt[3]{2}+\sqrt[3]{4}=\sqrt[3]{2}$, ונניח בשלילה כי מספר זה רציונלי. על ידי הכפלה ב- $1-\sqrt[3]{2}+\sqrt[3]{4}=\sqrt[3]{2}$ והעברת q=q אגפים נקבל: $\sqrt[3]{2}=\frac{q+2}{q+1}$. באופן דומה להוכחת $\sqrt[3]{2}$ לא רציונלי ניתן לקבל גם כי $\sqrt[3]{2}=\frac{q+2}{q+1}$ אינו רציונלי, אבל אם $\sqrt[3]{2}$ רציונלי (מסגירות לחיבור, כפר וחילוק בשדה, ונשים לב כי $1+\sqrt[3]{2}$ (אולכן $\sqrt[3]{2}$ רציונלי סתירה.

- ג. יהיו אי-רציונליים, אי-רציונליים המספרים המספרים . $q\in\mathbb{Q}$, r_1 , $r_2\in\mathbb{R}\backslash\mathbb{Q}$ ג. יהיו לקבוע! הוכיחו טענותיכם.
 - $r_1 + r_2 \qquad (2$
 - r_1q (4 r_1r_2 (3
 - (מסגירות הרציונליים לחיבור) רציונלי (מסגירות הרציונליים לחיבור) אי-רציונליי אחרת ר $r_1 = (r_1 + q) q$
 - $\sqrt{2} + \left(-\sqrt{2}\right) = 0 \in \mathbb{Q}$ לא ניתן לקבוע. למשל: $\sqrt[3]{2} + \sqrt[3]{2} + \sqrt[3]{2}$ אי-רציונלי, כפי שהוכח בסעיף קודם, אך
 - . (סעיף א) $\sqrt{2}\cdot\sqrt{3}\notin\mathbb{Q}$ אך אך א $\sqrt{2}\cdot\sqrt{2}=2\in\mathbb{Q}$ (סעיף א).
- נסמו לכפל, מסגירות רציונלים לכפל, מסגירות לקבוע $q \neq \mathbb{Q}$ נקבל קבל, לכל פון לקבוע קבור q = 0 נקבל נקבל פון לקבוע עבור q = 0 נקבל נקבל בין לכפל, כמו ב- (1).

<u>: 2</u> שאלה

אז למשוואה . $a \neq 0$ אז למשוואה

ינקבל, נקבל להניח בהשלמה לריבוע, נקבל את כל המחוברים אגף. נשתמש בהשלמה לריבוע, נקבל להניח a>0

אם $\sqrt{a}x+\frac{b}{2\sqrt{a}}=\pm\frac{b^2-4ac}{4a}$ נותן לנו: $ax^2+bx+c=0$ אם , $ax^2+bx+c=\left(\sqrt{a}x+\frac{b}{2\sqrt{a}}\right)^2-\frac{b^2-4ac}{4a}$. $ax^2+bx+c=\left(\sqrt{a}x+\frac{b}{2\sqrt{a}}\right)^2-\frac{b^2-4ac}{4a}$. $ax^2+bx+c=0$ זה נותן 2 פתרונות שונים עבור

לכל $a_i,b_i\in\mathbb{R}$ את הפולינום הריבועי $p(x)=\sum_{i=1}^n \left(a_ix+b_i\right)^2$ את הפולינום הריבועי p(x)

p(x)=0 - אינם כולם אפס, אז ל- a_1,\dots,a_n , b_1 , \dots,b_n שאם $.i=1,\dots,n$ לכל היותר פתרון ממשי אחד.

הוא סכום של ביטויים אי-שליליים, ולכן יכול להיות שווה ל- 0 אם ורק אם כל אחד מהביטויים בנפרד שווה p(x) , $a_1x+b_1=0$ לכל $a_ix+b_i=0$ הוא הפיתרון היחיד של $a_ix+b_i=0$ לכל, כלומר $a_ix+b_i=0$ לכל היותר פתרון של $a_ix+b_i=0$ לכן ל- $a_ix+b_i=0$ יש לכל היותר פתרון אחד.

-ג. יהיו אי שוויון הבא, הנקרא אי שוויון קושי . a_1,\dots,a_n , $b_1,\dots,b_n\in\mathbb{R}$ ג. יהיו שוורץ :

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

ניעזר בסעיפים קודמים : עבור $p(x)=\sum (a_ix+b_i)^2=\left(\sum a_i^2\right)x^2+2(\sum a_ib_i)x+\sum b_i^2$ מסעיף בי חייב להתקיים $p(x)=(a_ix+b_i)^2=(a_ib_i)x+\sum b_i^2=(a_ib_i)x+\sum b_i^2=(a_ix+b_i)^2=(a_ix+b_i)x+\sum b_i^2=(a_ix+b_i)x^2+2(a_$

$$.\frac{1}{n} \leq \sum_{i=1}^n y_i^2$$
 כך שמתקיים $.\sum_{i=1}^n y_i = 1$ הוכיחו כי: y_1 , ... , $y_n \in \mathbb{R}$ ד. יהיו

. נשתמש באי-שוויון קושי שוורץ עבור $a_i=y_i$ ובין את הדרוש, נשתמש באי-שוויון קושי שוורץ עבור

<u>: 3 שאלה</u>

הוכיחו באינדוקציה או בכל דרך אחרת את הנוסחאות הבאות:

א. אם $\sum_{i=1}^n a_i = \frac{(a_1+a_n)n}{2}$: או מתקיים a_n+d (זהו סכום , a_1 , a_2 , a_3 , a_4) או סדרה חשבונית).

 $\sum_{i=1}^{n+1}a_i=\sum_{i=1}^na_i+a_{n+1}=rac{(a_1+a_n)n}{2}+$: עבור $a_1=a_1$ נניח כי מתקיים עבור $a_1=a_1$ נניח כי מתקיים עבור $a_1=a_1$ ניתן להראות (באינדוקציה פשוטה) כי $a_1+nd=a_{n+1}+a_{n+1}-nd$ ניתן להראות (באינדוקציה פשוטה) כי $a_1+a_1=\frac{na_1+(n+1)a_{n+1}+a_{n+1}-nd}{2}$ כנדרש. $\sum_{i=1}^{n+1}a_i=\frac{(a_1+a_{n+1})(n+1)}{2}$

$$\sum_{i=1}^n a_i = rac{a_1ig(q^n-1ig)}{q-1}$$
 : ב. אם $a_1,q\in\mathbb{R}$ ונגדיר $a_1,q=a_1q^n$ ונגדיר $a_1,q\in\mathbb{R}$ ב. אם לזהו סכום סדרה הנדסית).

$$\sum_{i=1}^{n+1}a_i=\sum_{i=1}^na_i+a_{n+1}=rac{a_1(q^n-1)}{q-1}+:$$
עבור $a_1=a_1$ נניח כי מתקיים עבור $a_1=a_1$ נניח $a_1=a_1$ נכדרש. $a_1=a_1$ כנדרש. $a_1q^n=rac{a_1(q^n-1)+(q-1)a_1q^n}{q-1}=rac{a_1(q^{n+1}-1)}{q-1}$

:4 שאלה

: מתקיים $n\in\mathbb{N}$ מתקיים או בכל דרך אחרת כי לכל

$$1 + 8 + 27 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

עבור שני איברים ובסכום סדרה שני עבור בבינום עבור הנדסית, נשתמש בהנחת, נשתמש משתקיים עבור תובסכום איברים ובסכום חדרה משאלה תבור n=1

$$\left(1+2+\cdots+n+(n+1)\right)^2 = \left((1+\cdots+n)+(n+1)\right)^2 = \left(1+2+\cdots+n+(n+1)\right)^2 = \left(1+2+\cdots+n+(n+1)\right)^$$

<u>שאלה 5:</u>

 $a_{n+2}=a_{n+1}+a_n$ -ו , $a_1=a_2=1$ לכל די קביעת מגדירים על את סדרת פיבונציי מגדירים על ידי קביעת

.
$$a_n = \frac{\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)}{\sqrt{5}}$$
 : הוכיחו באינדוקציה או בכל דרך אחרת כי למעשה מתקיים

ינקבל: תבונציי ובהנחת האינדוקציה נקבל: n עבור n נקבל 1=1. נניח שמתקיים עד n ונשתמש בהגדרת סדרת פיבונציי ובהנחת האינדוקציה נקבל:

$$a_{n+1} = a_n + a_{n-1} =$$

$$\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}+\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\left(\left(\frac{1+\sqrt{5}}{2}\right)+1\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\left(\left(\frac{1-\sqrt{5}}{2}\right)+1\right)\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\left(\frac{3+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\left(\frac{3-\sqrt{5}}{2}\right)\right)$$

$$\cdot\left(\frac{3+\sqrt{5}}{2}\right)=\left(\frac{1+\sqrt{5}}{2}\right)^{2},\;\left(\frac{3-\sqrt{5}}{2}\right)=\left(\frac{1-\sqrt{5}}{2}\right)^{2},\;\left(\frac{3-\sqrt{5}}{2}\right)=\left(\frac{1-\sqrt{5}}{2}\right)^{2}$$

שאלה 6:

מייצג a_n .(כלומר, את שלילת הטענות הבאות, רשמו את הטענה ההפוכה לה איבר כללי של סדרה נתונה כלשהי.

- $a_n < M$ כך ש- $n \in \mathbb{N}$ א. לכל מספר ממשי
- $|a_n-L|<arepsilon$ מתקיים N>N מתקיים לכל מספר סבעי שלכל מספר אלכל פול לכל ב. לכל
 - m,n>N המקיימים m,n המפרים טבעיים אלכל שני מספרים כך שלכל אני arepsilon>0 המקיימים $|a_n - a_m| < \varepsilon$: מתקיים
 - $a_n \geq M$ מתקיים $n \in \mathbb{N}$ כך שלכל M מתקיים מספר ממשי
 - $|a_n-L| \geq \varepsilon$ כך שלכל N קיים טבעי n>N המקיים טבעי arepsilon>0 ב.
 - $.|a_n-a_m|\geq \varepsilon$ כך שלכל n,m>Nהמקיימים שני שלכל כך שלכל כך שלכל $\varepsilon>0$ המקיימים ג.

:7 שאלה

עבור כל אחד משני הביטויים הבאים, מצאו ביטוי שווה התלוי ב-n ובכל אחת מארבע פעולות החשבון האלמנטריות פעם אחת לכל היותר. הוכיחו את טענותיכם.

$$\sum_{k=2}^{n} \frac{1}{k(k-1)} \quad . \aleph$$

$$\prod_{j=2}^n \left(1 - \frac{1}{j^2}\right) \quad .$$

$$\frac{n-1}{n}$$
 .

$$\frac{n+1}{2n}$$
 .2

ב. $\frac{-1}{2n}$ ניתן להוכיח ישירות דרך סכום / מכפלה טלסקופיים או באינדוקציה.