Modelo SIR

La solución analítica para el modelo SIR se puede abordar mediante un sistema de ecuaciones diferenciale

```
dS/dt = -beta * S * I / N
dI/dt = beta * S * I / N - gamma * I
dR/dt = gamma * I
```

1. Puntos de Equilibrio

Para encontrar los puntos de equilibrio, establecemos dS/dt = 0, dI/dt = 0 y dR/dt = 0:

```
Desde dS/dt = 0:

S = 0 o I = 0

Desde dI/dt = 0:

I(beta * S / N - gamma) = 0

I = 0 o S = gamma * N / beta

Desde dR/dt = 0:

I = 0
```

Resolviendo este sistema de ecuaciones, encontramos los puntos de equilibrio:

- Sin infección: (S = N, I = 0, R = 0)
 Endémico: (S = gamma * N / beta, I = 0, R = N S)
- Análisis de Estabilidad

Para analizar la estabilidad de los puntos de equilibrio, se utilizan métodos de análisis de estabilidad como e

```
\mathsf{J} = [[\partial \mathsf{f}/\partial \mathsf{S}, \, \partial \mathsf{f}/\partial \mathsf{I}, \, \partial \mathsf{f}/\partial \mathsf{R}], \, [\partial \mathsf{g}/\partial \mathsf{S}, \, \partial \mathsf{g}/\partial \mathsf{I}, \, \partial \mathsf{g}/\partial \mathsf{R}], \, [\partial \mathsf{h}/\partial \mathsf{S}, \, \partial \mathsf{h}/\partial \mathsf{I}, \, \partial \mathsf{h}/\partial \mathsf{R}]]
```

Evaluamos el Jacobiano en los puntos de equilibrio y analizamos los eigenvalores:

Si todos los eigenvalores tienen partes reales negativas, el punto de equilibrio es estable. Si alguno tiene parte real positiva, el punto es inestable.

3. Soluciones Especiales

En algunos casos, es posible encontrar soluciones explícitas bajo ciertas condiciones. Sin embargo, en muc

4. Conclusiones

El análisis de estabilidad proporciona información sobre cómo las poblaciones de susceptibles, infectados y