数据结构第十节课官方笔记

目录

- 一、课件下载及重播方法
- 二、 本章/教材结构图
- 三、本章知识点及考频总结
- 四、配套练习题
- 五、 其余课程安排

一、课件下载及重播方法

二、教材结构图

三、本章知识点及考频总结

(一) 选择题 (共6道)

- 1. 一棵具有 n 个顶点的生成树有仅有 **n-1** 条边,但有 n-1 条边的图不一定是生成树。同一个图可以有不同的生成树。
- 2. 由深度优先搜索所得的生成树称之为深度优先生成树,简称为 DFS 生成树;而由广度优先搜索所得的生成树称之为广度优先生成树,简称为 BFS 生成树。例如,从图 G₈ 的顶点 v₀

出发, 所得的 DFS 生成树和 BFS 生成树如图 6.16 所示。

(a) 无向图G₈

图 6.16 图 G₈ 的 DFS 和 BFS 生成树

- 3. **最小生成树定义**:给定一个带权图,构造带权图的一棵生成树,使树中所有边的<mark>权总和</mark>为最小。
- 4. 最小生成树的构造算法: Prim 普里姆算法和 kruskal 克鲁斯卡尔算法

普里姆算法的时间复杂度是 O(n²), 与网中边数无关。

克鲁斯卡尔算法的时间复杂度为 O(eloge)

5. <u>迪杰斯特拉</u> (Dijkstra) 提出了按路径长度递增的顺序产生诸顶点的最短路径算法,称之为迪杰斯特拉算法。

图 6.19 有向图 G₁₀

表 6.3 迪杰斯特拉算法中 D 数组的变化情况

终点	从 v ₁ 到各终端的 D 值和最短路径的求解过程							
	i=2	i=3	i=4	i=5				
D[2] v ₂	10 (v ₁ , v ₂)	5 (v ₁ , v ₃ , v ₂)						
D[3] v ₃	3 (v ₁ , v ₃)							
D[4] v ₄	20 (v ₁ , v ₄)	20 (v ₁ , v ₄)	10 (v ₁ , v ₃ , v ₂ , v ₄)					
D[5] v ₅	ω (ν ₁ , ν ₅)	18 (v ₁ , v ₃ , v ₅)	1 2 2	ran i				
\mathbf{v}_{j}	\mathbf{v}_3	v ₂	V ₄	V ₅				
S	$\{v_1, v_3\}$	$\{v_1, v_2, v_3\}$	$\{v_1, v_2, v_3, v_4\}$	$\{v_1, v_2, v_3, v_4, v_5\}$				

表 6.2 v₁ 到其他各顶点的最短路径表

源点	最短路径	终 点	路径长度	
\mathbf{v}_1	\mathbf{v}_1 , \mathbf{v}_3 , \mathbf{v}_2	\mathbf{v}_2	5	
v_1	V ₁ , V ₃	v ₃	3	
\mathbf{v}_1	v_1, v_3, v_2, v_4	V ₄	10	
\mathbf{v}_1	v_1, v_3, v_5	V ₅	18	

6. 可进行拓扑排序的图只能是有向无环图。

(二) 主观题 (共1道)

利用普里姆算法,给出求图 6.17(a)所示的无向网络的最小生成树的过程。

图 6.17 最小生成树的构造过程示意图

inedge	2	3	4	5	6	U	V-U	说明
ver lowcost	① 6	1	① 5			{1}	{2, 3, 4, 5, 6}	U(1,3)边最短
ver lowcost	③ 5	0	1) 5	③ 6	3 4	{1, 3}	{2, 4, 5, 6}	U (3, 6) 边最短
ver lowcost	3 5	0	⑥ 2	3 6	0	{1, 3, 6}	{2, 4, 5}	U (6, 4) 边最短
ver lowcost	③ 5	0	0	③ 6	0	{1, 3, 6, 4}	{2, 5}	U (3, 2) 边最知
ver lowcost	0	0	0	2	0	{1, 3, 6, 4, 2}	{5}	U(2,5)边最短
ver lowcost	0	0	0	0	0	{1, 3, 6, 4, 2, 5}	φ	

图 6.18 克鲁斯卡尔最小生成树的生成过程

四、配套练习题

1、对下图进行拓扑排序,可以得到的拓扑序列是()。

A:a b c d e

B:b a c d e

C:b c a d e

D:a b d c e

- 2、可进行拓扑排序的图只能是()。
- A:有向图
- B:无向图
- C:有向无环图
- D:无向连通图
- 3、下列关于有向无环图 G 的拓扑排序序列的叙述中,正确的是 ()。
- A:存在且唯一
- B:存在且不唯一
- C:存在但可能不唯一
- D:无法确定是否存在

[参考答案]: BCC

五、其余课程安排