实验三 负反馈放大电路 实验报告

姓名: 李显昱

学号: <u>2018011498</u>

班级: 自83

日期: 2020.4.23

目录 1

目录

1	实验目的	2
2	实验内容 2.1 引入电压并联负反馈 2.2 负反馈放大电路的闭环测试 2.3 选做: 电流并联负反馈放大电路研究	2
3	整体数据表格整理(仿真 + 硬件)	9
4	思考题	9
5	实验小结	14

1 实验目的 2

1 实验目的

- (1) 熟悉负反馈放大电路的组态,深入理解负反馈对放大电路性能的影响;
- (2) 掌握负反馈条件下电路静态与动态的测量方法。

2 实验内容

2.1 引入电压并联负反馈

·理论估算

根据电压并联负反馈放大电路组态进行计算,可得:

$$\dot{A_{usf}} = \frac{\dot{U_o}}{\dot{U_s}} = \frac{R_f}{R_s}$$

所以由题意可得,因为 $\dot{A_{usf}}=\frac{\dot{U_o}}{\dot{U_s}}=-10$,所以 $R_s=10k\Omega$ 。

• 仿真测量

如图 1可得,当 $R_s=9.2k\Omega$, $A_{usf}=-10.0054\approx-10$,所以后面的仿真,都将取 $R_s=9.2k\Omega$ 。

图 1: R_s 仿真

2.2 负反馈放大电路的闭环测试

• 理论估算

开环时的输入电阻为:

$$R_i = R_{g1} / / R_{g2} + R_{g3} = 1033.53k\Omega$$

输出电阻为:

$$R_o = R_c = 3.3k\Omega$$

利用诺顿定理将电压源及其内阻等效并到 R_i 中可以得到 $R_i'=R_i//R_s=9.90k\Omega$ 开环时的放大倍数取实验二中的理论计算值 $\dot{A}_u=-144.41$ 。

因为为电压并联负反馈放大电路,可以得到:

$$1 + \dot{A}\dot{F} = 144.41 \times \frac{9.90}{100} = 14.27$$

所以有:

$$R_{if} = \frac{R_{i'}}{1 + \dot{A}\dot{F}} = \frac{9.90}{14.27} = 693\Omega$$

$$R_{of} = \frac{R_o}{1 + \dot{A}\dot{F}} = \frac{3.3}{14.27} = 231\Omega$$

・仿真测量 A_{usf}

如图 2为测量电压放大倍数的仿真电路。图 3(a)和图 3(b)为测量电压放大倍数时的输入电流和输入电压。可以得到:

$$\dot{A}_u = \frac{\dot{U_{oppk}}}{U_{ippk}} = \frac{-997.761mV}{99.722mV} = -10.0054$$

100kΩ vct2v 50kΩ R8 **∈210kΩ** R2 R9 9.2kΩ C5 R11 V2 910kΩ 10µF 50mVpk R10 2kHz 0° R12 ≲300kΩ **≨4.6909kΩ** R6 C1 R5 47µF

图 2: Ausf 测量仿真电路图

·仿真测量 R_{if}

针对负反馈放大电路的输入电阻 R_{if} ,通过图 3(b)可以看到在输入端未加电阻时,测量得到的输出电压为 $U_{o1}=997.761$,再加有电阻之后,如图 4(b)得到此时输出电压为 $U_{o2}=498.190 mV$,所以此时可测得输入电阻:

$$R_{if} = 772\Omega$$

·仿真测量 R_{of}

针对负反馈放大电路的输出电阻 R_{of} ,通过图 5(b)可以看到在输入端未加电阻时,测量得到的输出电压为 $U_{o'}=1.019V$,再加有电阻之后,如图 3(b)得到此时输出电压为 $U_{ol}=997.761mV$,所以此时可

图 3: Ausf 测量仿真示波器波形图

图 4: 负反馈放大电路测量输入电阻 R_i 示波器波形图

测得输出电阻:

$$R_{of} = 213\Omega$$

(a) 测量输出电阻电路

(b) 计算输出电阻所需 U_o

图 5: 负反馈放大电路测量输出电阻 R。示波器波形图

·仿真测量 f_L 和 f_H

针对负反馈放大电路的 f_L 和 f_H 的测量,如图 6(a)和图 6(b)可得:

 $f_L = 18.899 Hz$

 $f_H = 8.956 MHz$

(a) f_L 的测量

(b) f_H 的测量

图 6: 利用波特仪对负反馈放大电路的 f_L 和 f_H 的测量

在第六周的两级放大电路中的仿真过程中,可以得到没有加负反馈的两级放大电路的 $f_L=224.187Hz$ 且 $f_H=551.92kHz$,通过对比可以发现 $f_L=18.899Hz<224.187Hz$ 且 $f_H=8.956MHz>551.92kHz$,可以得到在引入负反馈之后,频带展宽明显。

2.3 选做: 电流并联负反馈放大电路研究

·理论估算

$$\begin{split} \dot{F} &= \frac{I_f}{I_o} = \frac{R_{e1}}{R_{e1} + R_f} = \frac{0.2}{0.2 + 2} = 0.091 \\ \dot{A} &= \frac{U_o R_g}{U_i R_c} \approx g_m R_{i2} \dot{A}_{u2} \cdot \frac{R_g}{R_c} = 2.85 \times 2.92 \times 9.37 \cdot \frac{910}{3.3} = 21502.8 \end{split}$$

$$1 + \dot{A}\dot{F} = 1957.75$$

$$R_{if} = \frac{R_g}{1 + \dot{A}\dot{F}} = 464.8\Omega$$

$$R_{of} = R_c \approx 3.3k\Omega$$

・仿真测量 A_{usf}

如图 7为测量电压放大倍数时的输入电流和输入电压。可以得到:

$$\dot{A}_u = \frac{\dot{U_{oppk}}}{\dot{U_{ippk}}} = \frac{707.746mV}{99.881mV} = 7.09$$

图 7: Ausf 测量仿真电路图

·仿真测量 R_{if}

针对负反馈放大电路的输入电阻 R_{if} ,通过图 7可以看到在输入端未加电阻时,测量得到的输出电压为 $U_{o1}=707.746$,再加有电阻之后,如图 8(b)得到此时输出电压为 $U_{o2}=370.899mV$,所以此时可测得输入电阻:

$$R_{if} = 0.31k\Omega$$

(b) 计算输入电阻所需 Uo2

图 8: 负反馈放大电路测量输入电阻 R_i 示波器波形图

·仿真测量 R_{of}

针对负反馈放大电路的输出电阻 R_{of} ,通过图 9(b)可以看到在输入端未加电阻时,测量得到的输出电压为 $U_{ol}=940.916mV$,再加有电阻之后,如图 7得到此时输出电压为 $U_{ol}=707.746mV$,所以此时可测得输出电阻:

$$R_{of} = 3.29k\Omega$$

(a) 测量输出电阻电路

(b) 计算输出电阻所需 $U_{o'}$

图 9: 负反馈放大电路测量输出电阻 Ro 示波器波形图

图 10为电压并联负反馈放大电路的面包板实物连线图。

图 10: 面包板电路图

#	1	H- L- +	4 TY /4	. 二 /)	<i>→</i>	・ ロケ ニ ト	一人。	14.11111111111111111111111111111111111
7	١.	田ボナ	ᄔᆘᄊᆡ	コンゴ雨	$\mu_{\Lambda} \vee \mu_{\Pi}$	1.混合 乙川	☆とれま	性测量
~~~	т.	- 11/11-7	ローフハンハ	, <i>//</i> ~ <i>//</i> /	ハヘノくし	ユエローショ	1011	

	$R_s/k\Omega$	$\dot{A_{usf}}$	$R_{if}/\Omega$	$R_{of}/\Omega$	$f_L/Hz$	$f_H/MHz$
理论值	10	-10	693	231		
仿真值	9.2	-10.0054	772	213	18.899	8.956
实测值	9.91	-9.40	737	186	51	

表 2: 电压并联负反馈放大电路电压放大倍数的测量

	VC =: Classification of the state of the sta					
	$\dot{U_{oppk}}/mV$	$\dot{U_{ippk}}/mV$	$\dot{A_u}$			
理论值			-10			
仿真值	-997.761	99.722	-10.0054			
实测值	-940	100	-9.40			

#### 表 3: 电压并联负反馈放大电路动态特性 (输入电阻) 的测量

			( 1	
	$R_1/k\Omega$	$U_{o1}/mV$	$U_{o2}/mV$	$R_{if}/\Omega$
仿真值	10	997.761	498.190	772
实测值	1.197	940	845	737

表 4: 电压并联负反馈放大电路动态特性 (输出电阻) 的测量

	$R_L/k\Omega$	$U_o'/V$	$U_{oL}/V$	$R_{of}/\Omega$
 仿真值	10	1019	997.761	213
实测值	1.0	952	803	186

表 5: 选做: 电流并联负反馈放大电路动态特性测量

	V 01 10 100 1000 1 1000 1	26/20/20/10/10/10/10/10/10/10/10/10/10/10/10/10	•
	$\dot{A_{usf}}$	$R_{if}/k\Omega$	$R_{of}/k\Omega$
理论值		464.8	3.3
仿真值	7.09	0.31	3.29
实测值	7.57	0.401	3.76

表 6: 选做: 电流并联负反馈放大电路电压放大倍数的测量

	$\dot{U_{oppk}}/mV$	$\dot{U_{ippk}}/mV$	$\dot{A_u}$
仿真值	707.746	99.881	7.09
实测值	734	97	7.57

# 3 整体数据表格整理(仿真 + 硬件)

# 4 思考题

- 1. 在两级放大电路中,第一级为场效应管放大电路,输入电阻很大,引入并联负反馈后,输入电阻很小,为什么?
  - 答: 第一: 并联负反馈的理论中推导时电源为恒流源, 所以实验中通过电压源和电压源内阻利用诺



图 11: 电压并联负反馈放大电路:Ausf



图 12: 电压并联负反馈放大电路:R_{if}U_{o2}



图 13: 电压并联负反馈放大电路: $R_{of}U_{o'}$ 



图 14: 电压并联负反馈放大电路:RofUol



图 15: 电压并联负反馈放大电路:fL



图 16: 选做: 电流并联负反馈放大电路: $A_{usf}$ 



图 17: 选做: 电流并联负反馈放大电路: $R_{if}U_{o2}$ 



图 18: 选做: 电流并联负反馈放大电路: $R_{of}U_{o'}$ 

5 实验小结 14

	14 1. (Cliff. Bold) 1 (15 (25 (25 (25 (25 (25 (25 (25 (25 (25 (2						
	$R_1/k\Omega$	$U_{o1}/mV$	$U_{o2}/mV$	$R_{if}/k\Omega$			
 仿真值	6	707.746	370.899	0.31			
实测值	3.007	734	390	0.401			

表 7: 洗做: 电流并联负反馈放大电路动态特性 (输入电阻) 的测量

表 8: 选做: 电流并联负反馈放大电路动态特性 (输出电阻) 的测量

$R_L/k\Omega$	$U_o'/V$	$U_{oL}/V$	$R_{of}/k\Omega$	
仿真值	10	940.916	707.746	3.29
实测值	10	1010	734	3.76

顿定理进行等效,随后等效内阻再与输入回路并联,因为场效应管放大电路输入电阻很大,所以并 联后电阻即约等于等效内阻。第二:根据负反馈效应,有关系:

$$R_{if} = \frac{R_i}{1 + \dot{A}\dot{F}}$$

因为 $1 + \dot{A}\dot{F}$ 在深度负反馈的时候很大,所以引入并联负反馈后,输入电阻变小很多。

#### 2. 在选做电路中, 引入电流并联负反馈前后, 输出电阻为什么基本不变?

答:从图中可以看出,输出端和反馈引出端不是一个端,一个处于集电极,一个处于发射极。在交流通路中,反馈回路与一个受控电流源串联。而利用加压求流法计算输出电阻时,与反馈回路串联的受控电流源上没有电流,相当于断路,导致反馈回路不影响输出电阻大小。所以引入电流并联负反馈不影响输出电阻,所以输出电阻基本不变。

# 5 实验小结

这是第一次拿到口袋仪器完整的进行一次实验,在做此次硬件实验的时候也完成了前两个实验的硬件部分,感觉在实验中,因为设置的输入信号过小,信号受外界干扰还是比较强的。但总体还是比较顺利地完成了三个实验。这个过程中,对口袋仪器地使用更加熟练了,不再是纸上谈兵了。

感谢老师、助教们与同学们的帮助!