LAB 03 EC9560 — DATA MINING

2019/E/146

SEMESTER 7

03 NOV 2023

GROUP D

•	From the previous report, we have discussed Exploratory Data Analysis (EDA) using dtale library.
•	This report discusses klib (library). There is a way for EDA to use panda-profiling too.

First correlation matrix of training dataset and corresponding heatmap was found.

```
# Compute the correlation matrix
correlation_matrix = df.corr()
# Display the correlation matrix
print(correlation_matrix)
                                 Item_Weight Item_Visibility Item_MRP \
Item_Weight
                                    1.000000
                                                        -0.012049 0.024756
Item_Visibility
                                   -0.012049
                                                         1.000000 -0.001315
                                                        -0.001315 1.000000
Item MRP
                                    0.024756
                                                        -0.074834 0.005020
Outlet_Establishment_Year
                                   -0.008301
Item Outlet Sales
                                                        -0.128625 0.567574
                                    0.011550
Outlet_Years
                                    0.008301
                                                         0.074834 -0.005020
                                 Outlet_Establishment_Year Item_Outlet_Sales
Item_Weight
                                                     -0.008301
                                                                            0.011550
Item_Visibility
                                                     -0.074834
                                                                            -0.128625
Item MRP
                                                      0.005020
                                                                             0.567574
Outlet_Establishment_Year
                                                      1.000000
                                                                            -0.049135
Item Outlet_Sales
                                                     -0.049135
                                                                             1.000000
Outlet_Years
                                                     -1.000000
                                                                             0.049135
                                 Outlet_Years
Item Weight
                                      0.008301
Item Visibility
                                      0.074834
Item_MRP
                                     -0.005020
Outlet_Establishment_Year
                                     -1.000000
Item_Outlet_Sales
                                     0.049135
Outlet Years
                                      1.000000
 plt.figure(figsize=(8, 6)) # Set the figure size
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
 # Show the heatmap
 plt.show()
                                                                                   1.00
                                  -0.012
                                                   -0.0083
                                                            0.012
                                                                     0.0083
            Item_Weight
                                           0.025
                                                                                   0.75
            Item_Visibility
                                          -0.0013
                                                   -0.075
                                                             -0.13
                                                                     0.075
                                                                                  0.50
                                                                                  0.25
                                 -0.0013
                                                    0.005
               Item MRP -
                                                                     -0.005
                         0.025
                                                                                  0.00
  Outlet_Establishment_Year - -0.0083
                                  -0.075
                                           0.005
                                                            -0.049
                                                                                   -0.25
                                  -0.13
                                                    -0.049
                                                                     0.049
         Item_Outlet_Sales -
                                                                                   -0.50
                                                                                   -0.75
            Outlet_Years - 0.0083
                                  0.075
                                           -0.005
                                                             0.049
                                                                                   -1.00
                                                     Establishment Year
                                                                      Outlet_Years
                           tem Weight
                                                              tem_Outlet_Sales
```

To find it in percentage values, fmt = '.0%'

- From visualizing heatmap, we can conclude that Outlet_Years and Outlet_Establishment_Year has the -1 negative correlation.
- So, we can drop either one feature Outlet_Years or Outlet_Establishment_Year.
- But considering the datasets Outlet_Years were calculated from Outlet_Establishment_Year as Outlet_Establishment_Year contains large number values.
- It was normalized and a new feature Outlet_Years was created.
- So, we can drop Outlet_Establishment_Year.

From heatmap, we can see that Item_Outlet_Sales and Item_MRP are approximately positively correlated with each other (0.57) and Outlet_Years and Outlet_Establishment_Year are negatively highly correlated (-1).

9]: df = df.drop('Outlet_Establishment_Year', axis=1)

```
j: plt.figure(figsize=(10,5))
sns.heatmap(df.corr(),annot=True)
plt.show()
```

C:\Users\94774\AppData\Local\Temp\ipykernel_13316\3749504314.py:2: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only v alid columns or specify the value of numeric_only to silence this warning.

Let's consider about klib for EDA

```
]: import klib
```

Plotting graphs for categorical features.

Finding correlation matrix and heatmap using klib:

#correlation matrix
klib.corr_mat(df)

1]:		Item_Weight	Item_Visibility	Item_MRP	Item_Outlet_Sales	Outlet_Years
	Item_Weight	1.00	-0.01	0.02	0.01	0.01
	Item_Visibility	-0.01	1.00	-0.00	-0.13	0.07
	Item_MRP	0.02	-0.00	1.00	0.57	-0.01
	Item_Outlet_Sales	0.01	-0.13	0.57	1.00	0.05
	Outlet_Years	0.01	0.07	-0.01	0.05	1.00

: klib.corr_plot(df)

Feature-correlation (pearson)

We can plot distance graphs and analyze them further.


```
l: klib.missingval_plot(df)
No missing values found in the dataset.
```

Data cleaning using klib library:

DATA CLEANING USING KLIB LIBRARY

```
58]: # klib.clean - functions for cleaning datasets
       # performs datacleaning (drop duplicates & empty rows/cols, adjust dtypes,...)
       klib.data_cleaning(df)
       Shape of cleaned data: (8523, 11) - Remaining NAs: 0
       Dropped rows: 0
              of which 0 duplicates. (Rows (first 150 shown): [])
       Dropped columns: 0
              of which 0 single valued.
                                                        Columns: []
       Dropped missing values: 0
       Reduced memory by at least: 0.53 MB (-73.61%)
]: # cleans and standardizes column names, also called inside data_cleaning()
   klib.clean_column_names(df)
         item_weight item_fat_content item_visibility item_type item_mrp outlet_size outlet_location_type outlet_type item_outlet_sales new_item_type outlet
                                                                                              Supermarket
      0
              9 300
                                                                                         Tier 1
                           Low Fat
                                       0.016047
                                                    Dairy 249 8092
                                                                     Medium
                                                                                                                3735 1380
                                                                                                                                 Food
                                                                                              Supermarket
      1
              5.920
                           Regular
                                       0.019278 Soft Drinks
                                                          48.2692
                                                                     Medium
                                                                                         Tier 3
                                                                                                                443,4228
                                                                                                                                Drinks
                                                                                              Supermarket
              17.500
                           Low Fat
                                       0.016760
                                                    Meat
                                                         141.6180
                                                                     Medium
                                                                                         Tier 1
                                                                                                                2097.2700
                                                                                                                                 Food
                                                Fruits and
                                                                                                  Grocery
      3
              19.200
                                       0.000000
                                                          182.0950
                                                                                                                732.3800
                           Regular
                                                                     Medium
                                                                                         Tier 3
                                                                                                                                 Food
                                                Vegetables
                                                                                              Supermarket
              8.930
                         Non-Edible
                                       0.000000
                                                                                                                 994.7052
                                                           53.8614
                                                                        High
                                               Household
                                                                                                                            Consumable
                                                                                                   Type1
                                                                                         Tier 3 Supermarket
                                                   Snack
    8518
              6.865
                           Low Fat
                                       0.056783
                                                          214.5218
                                                                        High
                                                                                                                2778.3834
                                                                                                                                 Food
                                                   Baking
                                                                                              Supermarket
                                       0.046982
                                                          108.1570
                                                                                         Tier 2
    8519
              8.380
                            Regular
                                                                     Medium
                                                                                                                549 2850
                                                                                                                                 Food
                                                Health and
                                                                                              Supermarket
                                                                                                                                 Non-
                         Non-Edible
                                       0.035186
    8520
              10.600
                                                           85.1224
                                                                       Small
                                                                                         Tier 2
                                                                                                                1193.1136
                                                  Hygiene
                                                                                                                            Consumable
                                                                                              Supermarket
                                                   Snack
    8521
              7 210
                           Regular
                                       0 145221
                                                          103 1332
                                                                     Medium
                                                                                         Tier 3
                                                                                                                1845 5976
                                                                                                                                 Food
                                                   Foods
                                                                                              Supermarket
    8522
              14.800
                           Low Fat
                                       0.044878 Soft Drinks
                                                           75.4670
                                                                                         Tier 1
                                                                                                                 765.6700
                                                                                                                                 Drinks
                                                                       Small
```

8523 rows × 11 columns

You can see what has happened in the above code below:

item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_size	outlet_location_type	outlet_type	item_outlet_sales	nev
9.300000	Low Fat	0.016047	Dairy	249.809204	Medium	Tier 1	Supermarket Type1	3735.137939	
5.920000	Regular	0.019278	Soft Drinks	48.269199	Medium	Tier 3	Supermarket Type2	443.422791	
17.500000	Low Fat	0.016760	Meat	141.617996	Medium	Tier 1	Supermarket Type1	2097.270020	
19.200001	Regular	0.000000	Fruits and Vegetables	182.095001	Medium	Tier 3	Grocery Store	732.380005	
8.930000	Non-Edible	0.000000	Household	53.861401	High	Tier 3	Supermarket Type1	994.705200	
6.865000	Low Fat	0.056783	Snack Foods	214.521805	High	Tier 3	Supermarket Type1	2778.383301	
8.380000	Regular	0.046982	Baking Goods	108.156998	Medium	Tier 2	Supermarket Type1	549.284973	
10.600000	Non-Edible	0.035186	Health and Hygiene	85.122398	Small	Tier 2	Supermarket Type1	1193.113647	
7.210000	Regular	0.145221	Snack Foods	103.133202	Medium	Tier 3	Supermarket Type2	1845.597656	
14.800000	Low Fat	0.044878	Soft Drinks	75.467003	Small	Tier 1	Supermarket Type1	765.669983	

rows x 11 columns

eans and standardizes column names, also called inside data_cleaning()
.clean_column_names(df)

ite	m_weight	item_	_fat_content	item_visibility	item_type	item_mrp	outlet_size	outlet_location_type	outlet_type	item_outlet_sales	new_
	9.300		Low Fat	0.016047	Dairy	249.8092	Medium	Tier 1	Supermarket Type1	3735.1380	
	5.920		Regular	0.019278	Soft Drinks	48.2692	Medium	Tier 3	Supermarket Type2	443.4228	
	17.500		Low Fat	0.016760	Meat	141.6180	Medium	Tier 1	Supermarket Type1	2097.2700	
	19.200		Regular	0.000000	Fruits and Vegetables	182.0950	Medium	Tier 3	Grocery Store	732.3800	

Now, converts datatypes more efficient,

```
: df.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 8523 entries, 0 to 8522
  Data columns (total 11 columns):
  # Column
                            Non-Null Count Dtype
     item_weight 8523 non-null float64
item_fat_content 8523 non-null object
item_visibility 8523 non-null float64
item_type 8523 non-null object
                           8523 non-null float64
     item_mrp
     outlet size 8523 non-null object
     outlet_location_type 8523 non-null object
   7 outlet type 8523 non-null object
   8 item outlet sales 8523 non-null float64
  9 new_item_type
                           8523 non-null
                                             object
  10 outlet_years
                            8523 non-null int64
  dtypes: float64(4), int64(1), object(6)
  memory usage: 732.6+ KB
: # converts existing to more efficient dtypes, also called inside data cleaning()
  df=klib.convert_datatypes(df)
  df.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 8523 entries, 0 to 8522
  Data columns (total 11 columns):
   # Column
                           Non-Null Count Dtype
                            -----
                           8523 non-null float32
   0 item weight
   1 item_fat_content 8523 non-null category
   2 item_visibility 8523 non-null float32
                           8523 non-null category
   3 item_type
      item_mrp 8523 non-null float32
outlet_size 8523 non-null category
outlet_location_type 8523 non-null category
   4
   5
   6
      outlet_type 8523 non-null category
   7
   8 item_outlet_sales 8523 non-null float32
   9 new_item_type 8523 non-null
                                            category
   10 outlet_years
                            8523 non-null int8
  dtypes: category(6), float32(4), int8(1)
  memory usage: 192.9 KB
```

!]: # pools subset of cols based on duplicates with min. loss of information klib.pool_duplicate_subsets(df)

2]:

	item_visibility	item_mrp	item_outlet_sales	pooled_vars
0	0.016047	249.809204	3735.137939	0
1	0.019278	48.269199	443.422791	1
2	0.016760	141.617996	2097.270020	2
3	0.000000	182.095001	732.380005	3
4	0.000000	53.861401	994.705200	4
8518	0.056783	214.521805	2778.383301	8518
8519	0.046982	108.156998	549.284973	8519
8520	0.035186	85.122398	1193.113647	8520
8521	0.145221	103.133202	1845.597656	8521
8522	0.044878	75.467003	765.669983	8522

8523 rows x 4 columns

Label Encoding:

Preprocessing Task before Model Building

Label encoding

Here label encoding is used to convert categorical data into numerical format to process the data effectively.

For example:

Consider Item_Fat_Content feature.

Low Fat - 0

Non-Edible - 1

Regular - 2

DISCUSSION: Until now data preprocessing is going on for the dataset and preparing for the model building.	
Until now data preprocessing is going on for the dataset and preparing for the model	
	DISCUSSION: