```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    import re
    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.tree import plot_tree
```

In [2]: df=pd.read_csv("C4_framingham - C4_framingham.csv")
 df

Out[2]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
0	1	39	4.0	0	0.0	0.0	0	0
1	0	46	2.0	0	0.0	0.0	0	0
2	1	48	1.0	1	20.0	0.0	0	0
3	0	61	3.0	1	30.0	0.0	0	1
4	0	46	3.0	1	23.0	0.0	0	0
4233	1	50	1.0	1	1.0	0.0	0	1
4234	1	51	3.0	1	43.0	0.0	0	0
4235	0	48	2.0	1	20.0	NaN	0	0
4236	0	44	1.0	1	15.0	0.0	0	0
4237	0	52	2.0	0	0.0	0.0	0	0

4238 rows × 16 columns

In [3]: df1=df.fillna(value=0) df1

Out[3]:

r	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	hea
)	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	
)	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	
	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	
	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	
ļ	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	
	1.0	0.0	0	1	0	313.0	179.0	92.0	25.97	
	43.0	0.0	0	0	0	207.0	126.5	80.0	19.71	
1	20.0	0.0	0	0	0	248.0	131.0	72.0	22.00	
	15.0	0.0	0	0	0	210.0	126.5	87.0	19.16	
)	0.0	0.0	0	0	0	269.0	133.5	83.0	21.47	

In [4]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4238 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4238 non-null	float64
5	BPMeds	4238 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4238 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4238 non-null	float64
13	heartRate	4238 non-null	float64
14	glucose	4238 non-null	float64
15	TenYearCHD	4238 non-null	int64

dtypes: float64(9), int64(7)
memory usage: 529.9 KB

```
In [6]: |df1.columns
Out[6]: Index(['male', 'age', 'education', 'currentSmoker', 'cigsPerDay', 'BPMeds',
                   prevalentStroke', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP',
                  'diaBP', 'BMI', 'heartRate', 'glucose', 'TenYearCHD'],
                dtype='object')
 In [7]: df2=df1[['male', 'age', 'education', 'currentSmoker', 'cigsPerDay', 'BPMeds',
                  'prevalentStroke', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP',
                  'diaBP', 'BMI', 'heartRate', 'glucose', 'TenYearCHD']]
          df2
 Out[7]:
         r cigsPerDay BPMeds prevalentStroke prevalentHyp diabetes totChol sysBP diaBP
                                                                                         BMI hea
                  0.0
                           0.0
                                           0
                                                                     195.0
                                                                           106.0
                                                                                   70.0 26.97
                  0.0
                           0.0
                                           0
                                                       0
                                                                0
                                                                    250.0
                                                                           121.0
                                                                                   81.0 28.73
         )
                 20.0
                           0.0
                                           0
                                                       0
                                                                    245.0
                                                                           127.5
                                                                                   80.0 25.34
                 30.0
                           0.0
                                           0
                                                       1
                                                                0
                                                                    225.0
                                                                           150.0
                                                                                   95.0 28.58
                 23.0
                                                       0
                                                                    285.0
                                                                           130.0
                           0.0
                                           0
                                                                0
                                                                                   84.0 23.10
                  ...
                                                       ...
                                                                                   ...
                                           0
                                                       1
                                                                    313.0
                                                                           179.0
                                                                                   92.0 25.97
                  1.0
                           0.0
                                                                0
                 43.0
                           0.0
                                           0
                                                       0
                                                                    207.0
                                                                           126.5
                                                                                   80.0 19.71
                 20.0
                           0.0
                                           0
                                                       0
                                                                0
                                                                    248.0
                                                                           131.0
                                                                                   72.0 22.00
                 15.0
                           0.0
                                                       0
                                                                0
                                                                    210.0
                                                                           126.5
                                                                                   87.0 19.16
                                           0
                  0.0
                           0.0
                                                       0
                                                                    269.0
                                                                           133.5
                                                                                   83.0 21.47
 In [8]: df2[ 'TenYearCHD'].value_counts()
 Out[8]: 0
                3594
                644
          1
          Name: TenYearCHD, dtype: int64
 In [9]: x=df2.drop( 'TenYearCHD',axis=1)
          y=df2[ 'TenYearCHD']
In [10]:
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.70)
In [11]: rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
Out[11]: RandomForestClassifier()
```

```
In [12]: parameters = {'max_depth':[1,2,3,4,5],
                       'min_samples_leaf':[5,10,15,20,25],
                       'n_estimators':[10,20,30,40,50]}
In [13]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='ac
         grid_search.fit(x_train,y_train)
Out[13]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [14]: grid_search.best_score_
Out[14]: 0.847365423661665
In [15]: rfc_best =grid_search.best_estimator_
In [16]: plt.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','
 In [ ]:
 In [ ]:
```