Understanding Linear Regression with a Single Neuron

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Using linear regression for prediction

Linear regression using a single neuron

Hand-crafting an MSE regression model

Hand-crafting a Ridge regression model

Comparing to scikit-learn's linear regression estimator

Linear Regression

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional data is analysed using statistics such as mean, median, standard deviation

Its often more insightful to view data in relation to some other, related data

Bidimensional data can be represented in a plane

We can draw any number of curves to fit such data

We can draw any number of curves to fit such data

A straight line represents a linear relationship

We could either make this curve pass through each point...

...Or in some sense "fit" the data in aggregate

A curve has a "good fit" if the distances of points from the curve are small

Overfitting by finding a very complicated curve often only hurts predictive accuracy

Often, a straight line works just fine

Finding the "best" such straight line is called Linear Regression

Regression not only gives us the equation of this line, it also signals how reliable the line is

High quality of fit

Low quality of fit

Prediction Using Regression

Given a new value of x, use the line to predict the corresponding value of y

Linear Regression can easily be extended to ndimensional data

Setting Up the Regression Problem

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause Explanatory variable

EffectDependent variable

Linear Regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

The first line has y-intercept A₁

The second line has y-intercept A₂

Minimizing Least Square Error

Minimizing Least Square Error

Minimizing Least Square Error

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

Gradient Descent

Neural Network Model

Network of interconnected layers

The weights and biases of individual neurons are determined during the training process

Regression: The Simplest Neural Network

Regression: The Simplest Neural Network

Regression: The Simplest Neural Network

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The actual training of a neural network happens via Gradient Descent Optimization

Linear Regression as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Linear Regression as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Constraints

Express relationship as a straight line

$$y = Wx + b$$

Linear Regression as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Constraints

Express relationship as a straight line

y = Wx + b

Decision Variables

Values of W and b

"Gradient Descent"

"Training" the Algorithm

Start Somewhere

"Gradient Descent"

Demo

Simple Regression Using Weights Biases and Autograd

Overfitted Models

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dropout (NNs only) - Intentionally turn off some neurons during training

Regularization

Penalize complex models

Add penalty to objective function

Penalty as function of regression coefficients

Forces optimizer to keep it simple

Regularization

Regularization reduces variance error But increases bias

Ordinary MSE Regression

Minimize

To find

A, B

The value of A and B define the "best fit" line

$$y = A + Bx$$

Ridge Regression

Minimize

+ α (|A|+ |B|)

To find

A, B

L-2 Norm of regression coefficients

α is a hyperparameter

The value of A and B still define the "best fit" line

$$y = A + Bx$$

Ridge Regression

α is a hyperparameter

The value of A and B still define the "best fit" line

$$y = A + Bx$$

Ridge Regression

Add penalty for large coefficients

Penalty term is L-2 norm of coefficients

Penalty weighted by hyperparameter α

Demo

Implementing Ridge Regression

Summary

Using linear regression for prediction

Linear regression using a single neuron

Hand-crafting an MSE regression model

Hand-crafting a Ridge regression model

Comparing to scikit-learn's linear regression estimator