Universidade Federal do Rio de Janeiro Programa de Engenharia Elétrica

Alunos: Bernardo Bouzan

Elly Fonseca Bouzan

Leonardo Santoro

Professor: Afonso Celso Del Nero

Data: 17/10/2010

Otimização – Aspectos Teóricos

e Métodos Numéricos:

Trabalho 1

1 - Introdução

O relatório a seguir tem por objetivo apresentar brevemente o conceito utilizado nos métodos univariáveis da Seção Áurea, Fibonacci e de Interpolação Polinomial e, posteriormente, detalhar as construções de seus algoritmos a partir do software Matlab versão 7.8.0.

2 - Revisão Conceitual

2.1 – Método de Fibonacci

Dada uma função objetivo suave f(x), um intervalo inicial de busca I = [a,b] onde f(x) é unimodal e o número de iterações n que se deseja aplicar o algoritmo, deve-se obter um novo intervalo que contenha o mínimo da função objetivo no interior de [a,b].

2.1.1 – Algoritmo de Fibonacci

A - p =
$$\frac{1-\sqrt{5}}{1+\sqrt{5}}$$
; $\alpha = \frac{2}{1-\sqrt{5}} \frac{1-p^{n+2}}{1-p^{n+2}}$.
B - i = 1.
C - $x_1 = a$; $x_4 = b$; $L_{ini} = (b - a)$.
D - $x_2 = \alpha x_1 + (1 - \alpha) x_4$; $f_2 = f(x_2)$.
E - $x_3 = \alpha x_4 + (1 - \alpha) x_1$; $f_3 = f(x_3)$.
F - Se $f_2 < f_3$:
 $a = x_1$; $b = x_3$; $L_{fin} = (b - a)$.
Se i = n \longrightarrow I = [a,b] \longrightarrow FIM $\alpha = (L_{ini} - L_{fin})/L_{fin}$; i = i + 1.
Retornar a C.

G - Se $f_2 \ge f_3$:

$$a = x_2$$
; $b = x_4$; $L_{fin} = (b - a)$.
Se $i = n \longrightarrow I = [a,b] \longrightarrow FIM$

$$\alpha = (L_{ini} - L_{fin}) / L_{fin}$$
; $i = i + 1$.

Retornar a C.

2.2 - Método da Razão Áurea

A idéia básica consiste em dada uma função objetivo suave f(x), um intervalo inicial de busca [a,b] onde f(x) é unimodal e uma tolerância ε , reduzir o intervalo fornecido de forma que o mesmo seja inferior a tolerância desejada.

2.2.1 - Algoritmo da Razão Áurea

A -
$$x_1$$
= a; x_4 = b; L = (b - a); r = $\frac{(\sqrt{5}-1)}{2}$.
B - x_2 = r x_1 + (1 - r) x_4 .
C - x_3 = (1 - r) x_1 + r x_4 .
D - f_2 = f(x_2); f_3 = f(x_3).
E - Se f_2 < f_3 :
a = x_1 ; b = x_3 ; L = (b - a).
Se L < ε \longrightarrow I = [a,b] \longrightarrow FIM
$$x_3 = x_2$$
.
$$x_2$$
 = r a + (1 - r) b \longrightarrow Retornar a D.

F - Se $f_2 \ge f_3$:
a = x_2 ; b = x_4 ; L = (b - a).
Se L < ε \longrightarrow I = [a,b] \longrightarrow FIM
$$x_2 = x_3$$
.
$$x_3$$
 = (1 - r) a + r b \longrightarrow Retornar a D.

2.3 – Método de Interpolação Polinomial

A idéia central do algoritmo é, na vizinhança de um ponto mínimo, aproximar a função objetivo f(x) por parábolas quadráticas. Portanto, dado um intervalo de busca inicial I = [a,b], deve-se escolher um ponto p pertencente à I e calcular a equação da parábola g(x) que passa por a, b e p. Posteriormente, será necessário calcular o ponto x_{min} que causa um mínimo em

g(x) e descartar um ponto entre a, b e p utilizando como critério qual deles causa maior retorno em g(x). Deve-se então repetir todos os passos com o novo intervalo gerado até que a tolerância ε seja satisfeita.

2.3.1 - Algoritmo da Interpolação Quadrática

A -
$$x_1$$
= a; x_3 = b.

B -
$$x_2 = r x_1 + (1 - r) x_3$$
.

$$C - f_1 = f(x_1); f_2 = f(x_2); f_3 = f(x_3).$$

$$D - x_{min} = \frac{(x_2^2 - x_3^2)f_1 + (x_3^2 - x_1^2)f_2 + (x_1^2 - x_2^2)f_3}{2(x_n - x_n)f_n + (x_n - x_n)f_n + (x_n - x_n)f_n},$$

$$f_{min} = f(x_{min}).$$

E - Se
$$\exists$$
 i tal $|x_{min} - x_i| < \varepsilon \longrightarrow \text{FIM}$

F - Se
$$(x_3 - x_{min}) (x_{min} - x_2) > 0$$
: k = 1;

Senão: k = 3.

G - Se
$$f_2 > f_{min}$$
:

$$x_k = x_2$$
; $f_k = f_2$; $k = 2$.

$$H - x_{4-k} = x_{min}$$
; $f_{4-k} = f_{min}$ Retornar a D.

3 – Manual de Execução dos Algoritmos

Todos os códigos estão presentes para consulta no ANEXO 1.

Para inicializar um dos métodos, a função *optimize* deve ser executada a partir da linha de comando do Matlab, conforme mostrado na Figura 1.

Figura 1 – Iniciando a execução da função Optimize

Nota-se que, uma vez iniciada a função, deve-se escolher qual método será utilizado para reduzir o intervalo de busca inicial, sendo 1 correspondente ao método de Fibonacci, 2 à Seção Áurea e 3 à Interpolação Polinomial.

3.1 – Método de Fibonacci

Conforme descrito na seção 2.1, uma vez escolhido o método de Fibonacci, deve-se definir o intervalo de busca inicial, e também o número de iterações que o algoritmo realizará. A Figura 2, apresentada a seguir, exemplifica o uso do método considerando $f(x) = (x-4)^3 + 4(x-4)^2 + 1$ (definida em fun.m), intervalo de busca inicial $I_0 = [0, 10]$ e número de iterações n = 10.

Figura 2 – Método de Fibonacci para I₀ = [0,10], n = 10

Observando-se a função objetivo proposta acima, pode-se calcular analiticamente e constatar que a mesma apresenta um ponto de mínimo em x=4. Utilizando o Método de Fibonacci com apenas 10 iterações, pode-se afirmar que o mínimo procurado encontra-se no interior do intervalo $I_f=[3,9506,\ 4,0826]$, conforme Figura 3. A Figura 4 exibe a evolução do enquadramento de busca a cada iteração.

Figura 3 – Resultado do método de Fibonacci para n=10.

Figura 4 – Fibonacci: Evolução do enquadramento de busca para $I_0 = [0,10]$ e n = 10.

Com apenas 22 iterações, o método de Fibonacci praticamente converge para x=4, conforme Figuras 5 e 6.

Figura 5 – Resultado do método de Fibonacci para n = 22.

Figura 6 – Fibonacci: Evolução do enquadramento de busca para $I_0 = [0,10]$ e n = 22.

3.2 – Método da Seção Áurea

De acordo com a seção 2.2, para execução do algoritmo da Seção Áurea, deve-se definir o intervalo de enquadramento inicial I_0 e também a tolerância desejada para o tamanho do intervalo desejado. Inicialmente será considerada novamente a função objetivo $f(x) = (x-4)^3 + 4(x-4)^2 + 1$, assim como o intervalo de busca inicial $I_0 = [0, 10]$. Para que seja possível a comparação entre o desempenho alcançado com esse método e o de Fibonacci, será considerada a tolerância $\epsilon = 4,0826$ - 3,9506 = 0,132 (resultado obtido anteriormente com 10 iterações). A Figuras 7 e 8 exibem os resultados para os valores de entrada mostrados acima.

Figura 7 – Resultados para o Método da Razão Áurea para $I_0 = [0,10]$ e $\epsilon = 0.132$.

Figura 8 – Razão: Evolução do enquadramento de busca para $I_0 = [0,10]$ e $\epsilon = 0.132$.

Nota-se, a partir das Figuras 7 e 8, que para a mesma função objetivo usada anteriormente, o método da Seção Áurea realiza apenas 9 iterações, enquanto Fibonacci necessitou de 10. O intervalo final encontrado foi $I_f = [3,9512,\,4,0828]$, mostrando que de fato o mesmo contém o ponto de mínimo x = 4, calculado analiticamente.

Por último, será considerado como tolerância o intervalo calculado a partir de Fibonacci para n = 22 iterações. Nesse caso, ϵ = 4,0001 - 3,9997 = 0,0004, conforme Figuras 9 e 10.

Figura 9 – Resultados para o Método da Razão Áurea para I_0 = [0,10] e ϵ = 0.0004.

Figura $10-Razão \acute{A}urea$: Evolução do enquadramento de busca para I_0 = [0,10] e ϵ = 0.0004.

O resultado mostra que o número de iterações necessárias para atingir a tolerância especificada foi o mesmo obtido pelo algoritmo de Fibonacci.

3.3 - Método de Interpolação Polinomial

Conforme descrito na seção 2.3, para execução do método de Interpolação Polinomial, deve-se especificar, além da função objetivo, o intervalo de enquadramento inicial I_0 e o fator de tolerância ϵ . Novamente serão utilizados $f(x) = (x-4)^3 + 4(x-4)^2 + 1$ (definida em fun.m) e intervalo de busca inicial $I_0 = [0, 10]$. Inicialmente, foi escolhida a tolerância $\epsilon = 0.01$, como mostrado nas Figuras 11 e 12.

Figura 11 - Resultados para o Método da Interpolação Quadrática para I_0 = [0,10] e ϵ = 0.01.

Figura 12 - Interpolação Quadrática: Evolução do enquadramento de busca para I_0 = [0,10] e ϵ = 0.01.

Note que apesar de a tolerância inserida ao algoritmo ser $\epsilon=0.01$, o método é interrompido quando existe x_i tal que $|x_{min}-x_i|<\epsilon$, sendo x_{min} correspondente ao ponto de mínimo da parábola interpolada g(x). Assim, nos casos em que x_{min} calculado para g(x) não é idêntico ao ponto de mínimo calculado analiticamente para a função objetivo f(x), o ponto encontrado ao fim do método de interpolação quadrática não necessariamente estará na tolerância especificada inicialmente pelo usuário.

Por fim, pode-se observar que com apenas 4 iterações, o algoritmo acima se aproximou do mínimo analítico possuindo apenas 0,1 % de erro.

Repetindo-se a simulação, porém com tolerância ϵ = 0,001, chega-se aos resultados das Figuras 13 e 14.

Figura 13 - Resultados para o Método da Interpolação Quadrática para $I_0 = [0,10]$ e $\epsilon = 0.001$

Figura 14 - Interpolação Quadrática: Evolução do enquadramento de busca para $I_0 = [0,10]$ e $\epsilon = 0.001$.

Dessa vez, o algoritmo encontra o ponto de mínimo calculado analiticamente sem erros, porém o número de iterações permaneceu como i = 4.

Por último, foi implementado o algoritmo de Brent, que possui idéia semelhante a apresentada anteriormente, conforme ANEXO I. Novamente, a tolerância especificada pelo usuário não necessariamente será atendida pelo ponto de mínimo encontrado através do método.

Utilizando I_0 = [0,10] e ϵ = 0.001, os resultados apresentados nas Figuras 15 e 16 são alcançados.

Figura 15 - Resultados para o Método de Brent para $I_0 = [0,10]$ e $\epsilon = 0.001$

Figura 16 - Brent: Evolução do enquadramento de busca para I_0 = [0,10] e ϵ = 0.001.

Conforme resultados obtidos, concluiu-se que o método de Brent apresentou desempenho inferior ao obtido pelo da Interpolação Quadrática, uma vez eu foram necessárias 8 iterações para o algoritmo atender ao critério de parada especificado, e o erro obtido no cálculo foi de 0.785 %.

ANEXO I

- fun.m

```
function [f]=fun(x) f = (x-4)^3 + 4*(x-4)^2 + 1; % define a função objetivo f(x)
```

- optimize.m

```
function optimize
clear all;
clc;
format long;
fprintf(1,'\n OPTIMIZE \n\n');
% ----- Entradas
fun='fun';
method = input('> Escolha o método de otimização: \n > 1 para Fibonacci \n
> 2 para Razão Áurea \n > 3 para Interpolação (Brent) \n > ');
if method == 1
    fprintf(1,'\n\n Método escolhido: Fibonacci \n');
    I1(1) = input('> Digite o valor inferior do intervalo inicial: ');
    I1(2) = input('> Digite o valor superior do intervalo inicial: ');
    nit = input('> Digite o número de reduções desejadas: ');
    [I,cont it] = fibonacci(fun,I1,nit);
    fprintf(1,strcat('\n Intervalo
Final = [', num2str(I(1)), ';', num2str(I(2)), ']'));
    fprintf(1,strcat('\n Número de Iterações=',num2str(cont it),'\n\n'));
end
if method == 2
    fprintf(1,'\n\n Método escolhido: Razão Áurea \n');
    I1(1) = input('> Digite o valor inferior do intervalo inicial: ');
    I1(2) = input('> Digite o valor superior do intervalo inicial: ');
    eps = input('> Digite a tolerância para o critério de parada: ');
    [I,cont_it] = aurea(fun,I1,eps);
    fprintf(1,strcat('\n Intervalo
Final=[', num2str(I(1)),';', num2str(I(2)),']'));
```

```
fprintf(1,strcat('\n Número de Iterações=',num2str(cont_it),'\n\n'));
end

if method == 3

    fprintf(1,'\n\n Método escolhido: Interpolação (Brent) \n');

I1(1) = input('> Digite o valor inferior do intervalo inicial: ');
I1(2) = input('> Digite o valor superior do intervalo inicial: ');
eps = input('> Digite a tolerância para o critério de parada: ');

[I,cont_it] = brent(fun,I1,eps);

fprintf(1,strcat('\n Intervalo Final=',num2str(I)));
fprintf(1,strcat('\n Número de Iterações=',num2str(cont_it),'\n\n'));
end
```

- fibonacci.m

```
function [I,cont it] = fibonacci(fun,I1,nit)
% ----- Fibonacci
                              A-----D
k = nit+1;
p = (1-sqrt(5))/(1+sqrt(5));
alpha = (2/(1+sqrt(5)))*(1-p^k)/(1-p^(k+1));
a = I1(1);
b = I1(2);
for cont_it = 1 : nit
   x1 = a;
   x4 = b;
   Lini = a - b;
   x2 = alpha*x1 + (1-alpha)*x4;
   x3 = alpha*x4 + (1-alpha)*x1;
    [f1] = feval(fun, x1);
    [f4]=feval(fun,x4);
    [f2]=feval(fun,x2);
    [f3] = feval(fun, x3);
   plot(cont it, x1, 'r.');
   hold on
   plot(cont it, x2, 'b.');
   plot(cont it, x3, 'g.');
   plot(cont_it,x4,'k.');
    if f2 < f3
        a = x1;
       b = x3;
       Lfin = a - b;
        alpha = (Lini - Lfin) / (Lfin);
```

```
else
       a = x2;
       b = x4;
       Lfin = a - b;
   end
end
I = [x1 x4]';
legend('x1','x2','x3','x4');
',num2str(cont_it)));
xlabel('Iteração');
ylabel('x');
- aurea.m
function [I,cont it] = aurea(fun,I1,eps)
% ----- Razao Áurea
                             A-----D
xa = I1(1);
xd = I1(2);
xc = (((xd)-xa)*((-1+sqrt(5))/2)+xa);
xb = xd - (xc - xa);
[fa]=feval(fun,xa);
[fd]=feval(fun,xd);
[fc]=feval(fun,xc);
[fb]=feval(fun,xb);
intervalo = xd - xa;
cont it = 0;
while (intervalo > eps)
   cont it = cont it + 1;
   plot(cont_it,xa,'r.');
   hold on
   plot(cont_it,xb,'b.');
   plot(cont it,xc,'g.');
   plot(cont it,xd,'k.');
   if fb > fc
       xa = xb;
       fa = fb;
       xb = xc;
       fb = fc;
       % D nao muda
       xc = xa + xd - xb;
       [fc]=feval(fun,xc);
   else
       xd = xc;
```

fd = fc;

```
xc = xb;
fc = fb;
% A nao muda
xb = xd + xa - xc;
[fb]=feval(fun,xb);
end

intervalo = norm(xd - xa);
end

I = [xa xd]';

legend('A','B','C','D');
title(strcat('I = [',num2str(I(1)),';',num2str(I(2)),'] - Núm Iterações = ',num2str(cont_it)));
xlabel('Iteração');
ylabel('x');
```

- interpolação.m

```
function [I,cont it] = interpolacao(fun,I1,eps)
x(1) = I1(1);
x(3) = I1(2);
x(2) = 0.5*(x(1) + x(3));
 [f(1)] = feval(fun, x(1));
 [f(3)] = feval(fun, x(3));
 [f(2)] = feval(fun, x(2));
cont_it = 0;
xmin = 0.5*((((x(2)^2 - x(3)^2)*f(1)) + ((x(3)^2 - x(1)^2)*f(2)) + ((x(1)^2)*f(2)) + ((x(1)^2)*f(2))
 -x(2)^2 + f(3))/(((x(2) - x(3)) + f(1)) + ((x(3) - x(1)) + f(2)) + ((x(1) - x(2))^2)
x(2))*f(3)));
 [fmin]=feval(fun,xmin);
while ((abs(xmin - x(1)) > eps) \&\& (abs(xmin - x(2)) > eps) \&\& (abs(xmin - x(2)) > eps) &&
x(3)) > eps)
                cont it = cont it + 1;
                plot(cont_it,x(1),'r.');
                hold on
                plot(cont_it,x(2),'b.');
                plot(cont_it, x(3), 'g.');
                 if (x(3) - xmin) * (xmin - x(2)) > 0
                                k = 1;
                 else
                                 k = 3;
                 end
                 if (fmin < f(2))
                           x(k) = x(2);
                            f(k) = f(2);
```

```
k = 2;
              end
             x(4-k) = xmin;
              f(4-k) = fmin;
              [f(1)] = feval(fun, x(1));
              [f(3)] = feval(fun, x(3));
              [f(2)] = feval(fun, x(2));
xmin = 0.5*((((x(2)^2 - x(3)^2)*f(1)) + ((x(3)^2 - x(1)^2)*f(2)) + ((x(1)^2)*f(2)) + ((x(1)^2)*f(2))
-x(2)^2 + f(3))/((x(2) - x(3)) + f(1)) + ((x(3) - x(1)) + f(2)) + ((x(1) - x(2))^2)/((x(2) - x(3)) + f(3))
x(2))*f(3)));
              [fmin] = feval(fun, xmin);
end
X = [abs(xmin - x(1)); abs(xmin - x(2)); abs(xmin - x(3))];
xminimo = min(X, [], 1) + xmin;
I = xminimo;
legend('A','B','C');
title(strcat('Valor Minimo = [',num2str(I),'] - Núm Iterações =
',num2str(cont_it)));
xlabel('Iteração');
ylabel('x');
- brent.m
function [I,cont_it] = brent(fun,I1,eps)
% ----- Brent
a = I1(1);
b = I1(2);
c = 0.5*(3.0 - sqrt(5.0));
x = a + c*(b - a);
v = x;
w = x;
d = 0;
e = d;
[fa]=feval(fun,a);
[fb]=feval(fun,b);
[fx]=feval(fun,x);
[fv]=feval(fun,v);
[fw]=feval(fun,w);
cont it = 0;
while (true)
              cont_it = cont_it + 1;
```

m = 0.5*(a + b);

tol = sqrt(eps)*abs(x) + eps;

```
t2 = 2.0*tol;
if (abs(x - m) \le t2 - 0.5*(b - a))
   break;
else
   p = 0;
   q = 0;
   r = 0;
   if (abs(e) > tol)
        r = (x - w) * (fx - fv);
        q = (x - v) * (fx - fw);
       p = (x - v)*q - (x - w)*r;
        q = 2.0*(q - r);
        if (q > 0.0)
           p = -p;
        else
           q = -q;
        end
       r = e;
        e = d;
   end
    if (abs(p) < abs(0.5*q*r) && p < q*(a - x) && p < q*(b - x))
        d = p/q;
        u = x + d;
        if (u - a < t2 || b - u < t2)
            if (x < m)
                d = tol;
            else
               d = -tol;
            end
        end
   else
        if (x < m)
           e = b;
        else
           e = a;
        end
        e = e - x;
        d = c*e;
   end
   if (abs(d) >= tol)
       u = x + d;
   else
        if (d > 0.0)
           u = x + tol;
        else
          u = x - tol;
        end
   end
    [fu]=feval(fun,u);
   if (fu <= fx)
       if (u < x)
           b = x;
        else
           a = x;
        end
        v = w;
        fv = fw;
        w = x;
```

```
fw = fx;
            x = u;
            fx = fu;
        else
            if (u < x)
               a = u;
            else
               b = u;
            end
            if (fu <= fw || w == x)
                v = w;
                fv = fw;
                w = u;
                fw = fu;
            else if (fu \leftarrow fv \mid | v == x \mid | v == w)
                   v = u;
                    fv = fu;
                end
            end
       end
   end
end
I = [x]';
```