03. Convex functions

By Yang Lin¹ (2023 秋季, @NJU)

Contents

- 1 Basic properties and examples
- 2 Operations that preserve convexity
- 3 Conjugate function
- 4 Quasiconvex functions
- 5 Log-concave and log-convex functions
- 6 Convexity with respect to generalized inequalities

Definition $f: \mathbb{R}^n \to \mathbb{R}$ is convex if **dom** f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \mathbf{dom} f$, $0 \le \theta \le 1$

f is concave if -f is convex

f is strictly convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \mathbf{dom} f$, $x \neq y$ and $0 \leq \theta \leq 1$

Convex:

Affine: ax + b on **R**, for any $a, b \in R$

Exponential: e^{ax} , for any $a \in \mathbf{R}$

Powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$

Powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$

Negative entropy: $-x \log x$ on \mathbf{R}_{++}

Concave:

Affine: ax + b on **R**, for any $a, b \in R$

Powers: x^{α} on \mathbf{R}_{++} , for $0 \le \alpha \le 1$

Logarithmic: $\log x$ on \mathbf{R}_{++}

Affine functions are convex and concave; all norms are convex

Examples on \mathbb{R}^n

Affine function: $f(x) = a^T x + b$

Norms:
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

Affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

Spectral(maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f \colon \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g \colon \mathbf{R} \to \mathbf{R}$

$$g(t) = f(x + tv), \text{ dom } g = \{t : x + tv \in \text{dom}f\}$$

is convex (in t) for any x in $\operatorname{dom} f$, $v \in \mathbf{R}^n$

Can check convexity of f by checking convexity of functions of one variable

Example
$$f: \mathbf{S}^n \to \mathbf{R}$$
 with $f(X) = \log \det X$, $\operatorname{\mathbf{dom}} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$
$$= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$ g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \ x \in \mathbf{dom} \ f, \ \tilde{f}(x) = \infty, \ x \notin \mathbf{dom} \ f$$

often simplifies notation; for example, the condition

$$0 \leq \theta \leq 1 \Rightarrow \tilde{\mathit{f}}(\theta \mathit{x} + (1 - \theta \mathit{y})) \leq \theta \tilde{\mathit{f}}(\mathit{x}) + (1 - \theta) \tilde{\mathit{f}}(\mathit{y})$$

(as an inequality in $R \bigcup {\{\infty\}}$), means the same as the two conditions

- \square **dom** f is convex
- \square For $x, y \in \mathbf{dom} f$,

$$0 \le \theta \le 1 \Rightarrow f(\theta x + (1 - \theta y)) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is differentiable if **dom** f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \mathbf{dom} \ f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
, for all $x, y \in \mathbf{dom} \ f$

first-order approximation of f is global underestimator

Second-order condition

f is twice differentiable if $\operatorname{\mathbf{dom}} f$ is open and the Hassian $\nabla^2 f(x) \in \mathbf{S}^n$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \ i, j = 1, \dots, n$$

exists at each $x \in \mathbf{dom} f$

2nd-order condition: for twice differentiable f with convex domain

 \Box f is convex iff

$$\nabla^2 f(x) \succeq 0$$
, for all $x \in \mathbf{dom} \ f$

 \square If $\nabla^2 f(x) \succ 0$, for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

Quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$, $(P \in \mathbf{S}^n, \text{ convex if } P \succeq 0)$

$$\nabla f(x) = Px + q, \ \nabla^2 f(x) = P$$

Least-squares objective: $f(x) = ||Ax - b||_2^2$ (convex for any A)

$$\nabla f(x) = 2A^{T}(Ax - b), \ \nabla^{2} f(x) = 2A^{T}A$$

Quadratic-over-linear: $f(x, y) = x^2/y$ (convex for y > 0)

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

Log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp(x_k)$ is convex

$$abla^2 f(x) = \frac{1}{1^T z} \mathbf{diag}(z) - \frac{1}{(1^T z)^2} z z^T, \ (z_k = \exp(x_k))$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v.

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} z_{k} v_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \ge 0$$

since $(\sum_k z_k v_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

Geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}_{++}^n is concave (similar proof as for log-sum-exp)

 α -sublevel set of $f: \mathbf{R}^n \to \mathbf{R}$

$$C_{\alpha} = \{ x \in \mathbf{dom} \ f | f(x) \le \alpha \}$$

Sublevel sets of convex functions are convex (converse is false)

Epigraph of $f: \mathbb{R}^n \to \mathbb{R}$

epi
$$f = \{(x, t) \in \mathbf{R}^{n+1} | x \in \mathbf{dom} \ f, f(x) \le t\}$$

f is convex if and only if **epi** f is a convex set

Jensen' s inequality: if f is convex, then for $0 \le \theta \le 1$,

$$\mathit{f}(\theta x + (1 - \theta)y) \leq \theta \mathit{f}(x) + (1 - \theta)\mathit{f}(y)$$

Extension: if f is convex, then

$$f(\mathbf{E}z) \leq \mathbf{E}f(z)$$

for any random variable z

Basic inequality is special case with discrete distribution $p(x) = \theta, p(y) = 1 - \theta$

Practical methods for establishing convexity of a function:

- 1. Verify definition (often simplified by restricting to a line)
- 2. For twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. Show that f is obtained from simple convex functions by operations that preserve convexity
 - □ Nonnegative weighted sum
 - \square Composition with affine function
 - □ Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective

Positive weighted sum & composition with affine function:

Nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

Sum: f_1+f_2 convex if f_1, f_2 convex (extends to infinite sums, integrals)

Composition with affine function: f(Ax + b) is convex if f is convex

Example:

□ Log barrier for linear inequalities

$$f(x) = -\log(b_i - a_i^T x), \mathbf{dom} \ f = \{x | a_i^T x < b_i, \ i = 1, ..., m\}$$

 \square (Any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum:

If f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex **Example**:

- \square Piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- \square Sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*-th largest component of x) proof.

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} | 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum: if f(x, y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

Example:

- \square Support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- \square Distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||$$

 \square Maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with scalar functions: composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if: (1) g convex, h convex, \tilde{h} nondecreasing; (2) g concave, h convex, \tilde{h} nonincreasing

proof. (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

note: monotonicity must hold for extended-value extension \tilde{h} **Example**:

- \square exp g(x) is convex if g is convex
- \square 1/g(x) is convex if g is concave and positive

Vector composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x))$$

f is convex if: (1) g_i convex, h convex, \tilde{h} nondecreasing in each argument; (2) g_i concave, h convex, \tilde{h} nonincreasing in each argument

proof. (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^{T} \nabla^{2} h(g(x)) g'(x) + \nabla h(g(x))^{T} g''(x)$$

note: monotonicity must hold for extended-value extension \tilde{h} **Example**:

- \square $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- \square $\log \sum_{i=1}^{m} \log g_i(x)$ f g_i are convex

Minimization: if f(x, y) is convex in (x, y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

Example:

 \Box $f(x, y) = x^T A x + 2x^T B y + y^T C y$ with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \ C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x$ g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

 \square Distance to a set: $\operatorname{\mathbf{dist}}(x,S) = \inf_{y \in S} ||x-y||$ is convex if S is convex

Perspective of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$

$$g(x, t) = tf(x/t), \mathbf{dom}g = \{(x, t)|x/t \in \mathbf{dom}\ f, t > 0\}$$

g is convex if f is convex

Example:

- \Box $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x / t$ is convex for t > 0
- □ Negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}_{++}^2
- \square If f is convex, then

$$g(x) = (c^{T}x + d)f((Ax + b)/(c^{T}x + d))$$

is convex on $\{x | c^T x + d > 0, (Ax + b)/(c^T x + d) \in \mathbf{dom} \ f\}$

3 The conjugate function

The conjugate of a function f is

$$f^*(y) = \sup_{x \in \mathbf{dom}} (y^T x - f(x))$$

 f^* is convex (even if f is not) will be useful in chapter 5

3 The conjugate function

Examples:

 \square Negative logarithm $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (xy + \log x) = \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise.} \end{cases}$$

 \square Strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}_{++}^n$

$$f^{*}(y) = \sup_{x} \left(y^{T}x - (1/2)x^{T}Qx \right) = \frac{1}{2}y^{T}Q^{-1}y$$

 $f \colon \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\operatorname{\mathbf{dom}} f$ is convex and the sublevel sets

$$S_{\alpha} = \{ x \in \mathbf{dom} \ f | f(x) \le \alpha \}$$

are convex for all α

f is quasiconcave if -f is quasiconvex f is quasilinear if it is quasiconvex and quasiconcave

Examples:

- 1. $\sqrt{|x|}$ is quasiconvex on **R**
- 2. $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} | z \ge x\}$ is quasilinear
- 3. $\log x$ is quasilinear on \mathbf{R}_{++}
- 4. $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- 5. Linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}$$
, **dom** $f = \{x | c^T x + d > 0\}$

is quasilinear

6. Distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \text{ dom } f = \{x | \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

internal rate of return:

Cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)

We assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$

Present value of cash flow x, for interest rate r:

$$PV(x, r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$$

Internal rate of return is smallest interest rate for which PV(x, r) = 0:

$$IRR(x) = \inf\{r \ge 0 | PV(x, r) = 0\}$$

IRR is quasiconcave: superlevel set is intersection of halfspaces

$$IRR(x) \ge R \iff \sum_{i=0}^{n} (1+r)^{-i} x_i \ge 0 \text{ for } 0 \le r \le R$$

Properties:

1. Modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \Longrightarrow f(\theta x + (1-\theta)y) \le \max\{f(x), f(y)\}$$

2. First-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \Longrightarrow \nabla f(x)^T (y-x) \le 0$$

3. Sums of quasiconvex functions are not necessarily quasiconvex

A positive function f is log-concave if $\log f$ is concave

$$f(\theta x + (1-\theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

Example:

- \square Powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- □ Many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

 \square Cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

Properties of log-concave functions

Twice differentiable f with convex domain is log-concave if and only if

$$f(x)\nabla^2 f(x) \leq \nabla f(x)\nabla f(x)^T$$

for all $x \in \mathbf{dom} f$

Product of log-concave functions is log-concave

Sum of log-concave functions is not always log-concave

Integration: if $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)

Consequences of integration property

Convolution f * g of log-concave functions f and g is log-concave

$$(f * g)(x) = \int f(x-y)g(y) dy$$

if $C \subseteq \mathbf{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \mathbf{prob}(x + y \in C)$$

is log-concave

proof. write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y)dy, \ g(u) = \begin{cases} 1, & u \in C \\ 0, & u \notin C, \end{cases}$$

p is pdf of y

Example: yield function

$$Y(x) = \mathbf{prob}(x + w \in S)$$

 $x \in \mathbf{R}^n$: nominal parameter values for product

 $w \in \mathbf{R}^n$: random variations of parameters in manufactured product

S: set of acceptable values

If S is convex and w has a log-concave pdf, then

Y is log-concave

Yield regions $\{x | Y(x) \ge \alpha\}$ are convex

6 Convexity with respect to generalized inequalities

 $f \colon \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1-\theta)y) \leq_K \theta f(x) + (1-\theta)f(y)$$

for $x, y \in \mathbf{dom} \ f, 0 \le \theta \le 1$

example $f: \mathbf{S}^m \to \mathbf{S}^m$, $f(X) = X^2$ is \mathbf{S}_+^m -convex

proof. for fixed $z \in \mathbf{R}^m$, $z^T X^2 z = ||Xz||_2^2$ is convex in X, i.e.,

$$z^{T}(\theta X + (1-\theta)Y)^{2}, \ z \leq \theta z^{T}X^{2}z + (1-\theta)z^{T}Y^{2}z$$

for
$$X, Y \in \mathbf{S}^m, 0 \le \theta \le 1$$

Therefore $(\theta X + (1-\theta) Y)^2 \leq \theta X^2 + (1-\theta) Y^2$