Unsupervised Learning

Geena Kim

Recommender System-continued

- Content-based
- Collaborative Filtering
 - Similarity
 - Matrix Factorization

Collaborative Filtering

- No need of hand-engineered features
- Domain-free
- Can learn latent info that are hard to profile using content filtering
- Generally more accurate about user preference
- May suffer from "cold-start" problem

TAPSON

The origin of the name: filtering documents in emails

, Goldberg et. al., (1992)

Collaborative Filtering

Collaborative filtering:

- Only consider past user behavior.
 (not content properties...)
- User-User similarity
- Item-Item similarity

Similarity-based Collaborative Filtering:

- Use similarity metric between users or items
- Use the similarity matrix directly or with clustering

Matrix Factorization Methods:

- Find latent features/factors
- Still needs the similarity matrix

Similarity

Distance-based

- D ~ inf
- Manhattan distance 🗝
- Euclidean distance
- Minkowski distance

$$\left(\sum_{i} \left(\times_{b}^{i} - \times_{b}^{i} \right)^{c} \right)^{1/c^{-s}}$$
similarity(a, b) =
$$\frac{1}{1 + \operatorname{dist}(a, b)}$$

Pearson Correlation

$$\frac{\operatorname{cov}(a,b)}{\operatorname{std}(a) * \operatorname{std}(b)} = \frac{\sum_{i} (a_i - \bar{a})(b_i - \bar{b})}{\sqrt{\sum_{i} (a_i - \bar{a})^2} \sqrt{\sum_{i} (b_i - \bar{b})^2}}$$

$$similarity(a, b) = 0.5 + 0.5 * pearson(a, b)$$

Cosine similarity

$$\frac{a \cdot b}{||a||||b||} = \frac{\sum_{i} a_{i} b_{i}}{\sqrt{\sum_{i} a_{i}^{2}} \sqrt{\sum_{i} b_{i}^{2}}} \quad - \quad \sim \quad$$

similarity(
$$a, b$$
) = $0.5 + 0.5 * \cos(\theta_{a,b})$

Jaccard similarity

set of users who rated item a

similarity
$$(a,b) = \frac{|U_a \cap U_b|}{|U_a \cup U_b|}$$

Similarity

Jaccard similarity

$$|U_a \cap U_b|$$

similarity
$$(a,b) = \frac{|U_a \cap U_b|}{|U_a \cup U_b|}$$

How do we choose which metric to use?

Example: Movie ratings by users

	HP1	HP2	HP3	$\widehat{\mathrm{TW}}$	SW1	SW2	SW3
$\nearrow A$	4	(5	1		
B^{-}	5	5	4)				
$\int C$				2	4	5	
D		3_					3
	1						

Intuitively, what info should a metric capture?

What should we do about missing values?

Example: Movie ratings by users

If we want to use Jaccard... we could

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			$\int \hat{5}$	1		
B	5	5	4)		
C				2	\mathcal{A}	5	
D		3					3

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	1			1	D		
B	1	1	1				
C				0	1	1	
D		1					1

What can we capture and cannot capture?

What about Cosine similarity?

	HP1	HP2	HP3	TW	SW1	SW2	SW3	Cosine is -1~1
\overline{A}	4			5	1			
B	5	5	4					
C				2	4	5		
D		3					3	
	I							
	HP1	HP2	HP3	TW	SW1	SW2	SW3	Now it can capture
\overline{A}	2/3			5/3	-7/3			Now, it can capture
B	1/3	1/3	-2/3					the opposite
C				-5/3	1/3	4/3		preferences
D		0					0	

Jaccard similarity calculation example

What to do with missing values?

Cosine similarity calculation example

$$\frac{(2/3)\times(1/3)}{\sqrt{(2/3)^2+(5/3)^2+(-7/3)^2}}\frac{(2/3)\times(1/3)}{\sqrt{(1/3)^2+(1/3)^2+(-2/3)^2}}=0.092$$

Cos(A,C)
$$\frac{(5/3)\times(-5/3)+(-7/3)\times(1/3)}{\sqrt{(2/3)^2+(5/3)^2+(-7/3)^2}\sqrt{(-5/3)^2+(1/3)^2+(4/3)^2}}=-0.559$$

Clustering the utility matrix

How do we deal with sparcity?

	HP1	HP2	HP3	$\widetilde{\mathrm{TW}}$	$\overline{\mathrm{SW1}}$	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

	HP	TW	SW
A	4	5	1
B	4.67		
C		2	4.5
D	3		3

Similarity Matrix

Raw utility matrix (e.g. movie ratings table)

(5)	Item							
		Α	В	С	D			
	Al	1	?	2	?			
	Bob	?	2	3	4			
User	Cat	3	?	1	5			
	Dan	?	2	?	?			
	Ed	2	?	?	1			

Similarity matrix (e.g. item-item)

	item 1	item 2	item 3	•••
item 1	1	0.3	0.2	
item 2	0.3	1	0.7	
item 3	0.2	0.7	1	
				\

Predicting missing values

	item 1	item 2	item 3	•••
item 1	1	0.3	0.2	
item 2	0.3	1	0.7	
item 3	0.2	0.7	1	

Using Neighborhood method

$$\operatorname{rating}(u, i) = \frac{\sum_{j \in I_u} \operatorname{similarity}(i, j) * (r_{u, j})}{\sum_{j \in I_u} \operatorname{similarity}(i, j)}$$

 $I_u = \text{ set of items rated by user } u$ $r_{u,j} = \text{ user } u$'s rating of item j

$$\operatorname{rating}(u,i) = \frac{\sum_{j \in I_u \cap N_i} \operatorname{similarity}(i,j) * r_{u,j}}{\sum_{j \in I_u \cap N_i} \operatorname{similarity}(i,j)}$$

 $I_u = \text{ set of items rated by user } u$ $r_{u,j} = \text{ user } u$'s rating of item j N_i is the n items which are most similar to item i

Predicting missing values

Using Latent factor model

$$R_{m \times n} \approx U_{m \times k} V_{k \times n}$$

k:# of latent featuresis a hyperparameter

Update U(i,k)

$$U(\mathbf{r},\mathbf{k}) = x = \frac{\sum_{j} v_{\bullet j}^{\mathbf{k}} \left(m_{\bullet j} - \sum_{k \neq \bullet} u_{\bullet k} v_{k' j} \right)}{\sum_{j} v_{\bullet j}^{2}}$$

Update V(k,j)

$$\sqrt{(k_{ij})} = \frac{\sum_{i} u_{ik} \left(m_{ij} - \sum_{k' \neq k} u_{ik'} v_{k'j} \right)}{\sum_{i} u_{ik}^{2}}$$

We can update more slowly & or & (step size or learning rate)

Using the smaller learning rate: $U(i,k) \leftarrow U(i,k) + 2 \Delta U(i,k)$ $V(k) \leftarrow V(k) + 1 \Delta V(k)$

References

[1] Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. *Communications of the Association of Computing Machinery*, 35(12), 61–70.

[2] Leskovec, J., Rajaraman, A., & Ullman, J. D., Mining Massive Datasets Ch.9 Recommender Systems http://infolab.stanford.edu/~ullman/mmds/ch9.pdf