# 2<sup>nd</sup> Assignment

Carmine Tommaso Recchiuto

Experimental Robotics Laboratory Carmine Tommaso Recchiuto

You have the following environment, with four markers in the environment, with IDs 11, 12, 13, and 15.



Develop a ROS package that lets a mobile robot endowed with a camera:

- find all markers in the environment
- go back to the initial position

However, you have some hints about the position of marker. You know that:

- marker 11 is visible from the position x = 6.0, y = 2.0
- marker 12 is visible from the position x = 7.0, y = -5.0
- marker 13 is visible from the position x = -3.0, y = -8.0
- marker 15 is visible from the position x = -7.0, y = -1.5

Implement the assignment both in simulation (the world file assignment2.world is given) and with the real robot.

You can implement the task in groups of 4-5 persons. Feel free to split the work, by having different persons working on certain aspects of the task (e.g. robot model, simulation, marker detection, ...)

#### Requirement:

- you should use ROSPLAN (or PlanSys2) to plan the actions of the robot

Working with the real robot, you can connect to your Rosbot by following this procedure:

- connect to the network TP\_LINK (Password is 03694008)
- login in ssh to husarion@<husarion\_ip> (192.168.1.xxx).
- you can turn on the graphical interface as indicated in: https://husarion.com/tutorials/howtostart/rosbot---quick-start/

- once connected, run the tutorial\_2 launch file:

roslaunch tutorial pkg all.launch

This will start the drivers of the camera and of the robot controller

- to run the aruco\_ros package directly on the rosbot, please use: <a href="https://github.com/pal-robotics/aruco\_ros/tree/melodic-devel">https://github.com/pal-robotics/aruco\_ros/tree/melodic-devel</a>. Alternatively, you can run it on your pc by sharing the ROS master. Also, you can use the scp protocol to copy files on the rosbot.

- In simulation, you can spawn the rosbot in the gazebo environment (<a href="https://github.com/husarion/rosbot ros">https://github.com/husarion/rosbot ros</a>)

```
In ROS,
roslaunch gazebo_ros empty_world.launch
roslaunch rosbot_bringup rosbot_gazebo.launch
```

- In ROS2 the Rosbot package should work only with the "humble" version and a specific. If you don't have that version, but you want to use ROS2, feel free to use one of the other robots used during the class

#### ROS2

The simulation part can be totally done in ROS2 (in case, using a different robot instead of the Rosbot)

Concerning the interaction with the real robot, since only ROS is currently installed on the robot, you can use the ROS-ROS2 bridge:

https://github.com/ros2/ros1\_bridge

Please carefully follow the ReadMe if you are going to use it.

#### Additional Requirements:

- Create a flowchart of your code, or describe it in pseudocode (<u>Pseudocode Examples (unf.edu)</u>)
- Add a video to your ReadMe, showing the behaviour of your code both with the real robot and in simulation
- Publish the new package on your own repository.
- Deadline: 31 December 2023

#### **Evaluation**

- Code performance
- Code structure and clarity
- Respect of the requirements
- Organization of the repository (e.g., README in which you describe what the code does (possibly with flowchart or pseudocode), how to run the code, possible improvements, ... )

Experimental Robotics Lab Carmine Tommaso Recchiuto