Claims

- [c1] 1. A method of motion detection for a 3D comb filter video decoder, suitable for use in a National Television Standards Committee (NTSC) system, comprising: sampling a composite video signal to obtain and register a plurality of sampling data $F_{m}P_{x,y}$, wherein $F_{m}P_{x,y}$ represents a sampling data of the composite video signal from the m^{th} frame in x^{th} line at y^{th} pixel; and judging whether the composite video signal to be a motion state or a still state, according to the sampling data of $F_{m+1}P_{x,y}$, $F_{m}P_{x,y}$, $F_{m-1}P_{x,y}$, and $F_{m-2}P_{x,y}$.
- [c2] 2. The method ofmotion detection recited in claim 1, wherein the step of judging whether the composite video signal to be the motion state or the still state comprises: using the sampling data of F P, F P, F P, and F P to calculate and obtain a plurality of maximum differences MD, wherein MD represents the maximum difference for the yth pixel in the xth line; selecting the maximum differences for any adjacent four pixels to take an average, for obtaining a plurality of motion factors MF, wherein MF represents the motion factor for the yth pixel in the xth line; and

detecting the motion factor MF to judge whether the composite video signal to be the motion state or the still state.

- 3. The method ofmotion detection recited in claim 2, wherein the step of sampling the composite video signal comprises using a sampling frequency, which is four times of a subcarrier signal of the composite video signal, to sample, wherein the subcarrier signal is sampled at phase angles of 0, 0.5π , π , and 1.5π .
- 4. The method ofmotion detection recited in claim 3, wherein the MD is calculated by MD = Max{|F|P F|P| F P | }.
- [c5] 5. The method ofmotion detection recited in claim 4, wherein the MF_{x,y} is obtained by: selecting the maximum differences for any adjacent four pixels including the MD_{x,y}, and taking an average, so as to obtain a plurality of averaged maximum differences AMD_{x,h}, wherein the AMD_{x,h} represents the average maximum differences for the hth pixel of the xth line, in which h is a positive integer, and a calculation formula of AMD_{x,h} = $(MD_{x,h} + MD_{x,h+1} + MD_{x,h+2} + MD_{x,h+3}) / 4$ is used; and

taking a minimum from the averaged maximum differences, so as to obtain a motion factor $MF_{x,y}$, wherein $MF_{x,y}$

represents the motion factor for the y^{th} pixel of the x^{th} line.

[c6] 6. The method ofmotion detection recited in claim 5, wherein a minimum is obtained from a number of the adjacent averaged maximum differences and the $MF_{x,y}$ is obtained by

MFx,y = Min(AMDx,y, AMDx,y-1, AMDx,y-2, AMDx,y-3).

[c7] 7. The method ofmotion detection recited in claim 5, wherein a minimum is obtained from a number of the adjacent averaged maximum differences and the $MF_{x,y}$ is obtained by

 $MF_{x,y} = Min(AMD_{x,y}, AMD_{x,y-3}).$

[08] 8. The method ofmotion detection recited in claim 5, wherein the step of detecting the motion factor $MF_{x,y}$ to judge whether the composite video signal to be the motion state or the still state for the y^{th} pixel in the x^{th} line comprises:

providing a threshold value; and

comparing the MF with the threshold value, wherein the y^{th} pixel in the x^{th} line of the composite video signal is judged as the motion state when the MF is greater than the threshold value, otherwise the still state is judged.

[c9] 9. The method ofmotion detection recited in claim 8, wherein the $MF_{x,y}$ is the motion factor for the m^{th} frame.