Advanced Machine Learning

Differential Calculus

Differentiation, product and chain rules, vectors and matrices

Outline

- 1. Why Calculus?
- 2. Differentiation
- 3. Vector and Matrix Calculus

Why Calculus?

- Calculus is a fundamental tool of mathematical analysis
- In machine learning differentiation is fundamental tool in optimisation
- Integration is an essential tool in taking expectations over continuous distributions
- Both differentiation and integration crop up elsewhere
- This material will not be examined explicitly, but I assume elsewhere that you can do calculus

Back to Basics

- You have all done A-level maths so should be familiar with the rules of calculus
- But, it is easy to forget the rules and sometimes we use quite sophisticated tricks
- Although the sophisticated tricks really speed up calculations, it
 pays to be able to understand where these tricks come from.

Outline

- 1. Why Calculus?
- 2. Differentiation
- 3. Vector and Matrix Calculus

Differentiation

Polynomials

• $f(x) = x^2$

$$\frac{\mathrm{d}x^2}{\mathrm{d}x} = \lim_{\epsilon \to 0} \frac{(x+\epsilon)^2 - x^2}{\epsilon} = \lim_{\epsilon \to 0} \frac{(x^2 + 2\epsilon x + \epsilon^2) - x^2}{\epsilon}$$
$$= \lim_{\epsilon \to 0} 2x + \epsilon = 2x$$

$$\bullet \ (x+\epsilon)^n = (x+\epsilon)(x+\epsilon)\cdots(x+\epsilon) = x^n + n\epsilon x^{n-1} + O(\epsilon^2) = x^n + o(\epsilon^2)$$

$$\frac{\mathrm{d}x^n}{\mathrm{d}x} = \lim_{\epsilon \to 0} \frac{(x+\epsilon)^n - x^n}{\epsilon} = \lim_{\epsilon \to 0} nx^{n-1} + O(\epsilon) = nx^{n-1}$$

Linearity of derivatives

• Note that $f(x+\epsilon)=f(x)+\epsilon f'(x)+O(\epsilon^2)$ (from the definition of f'(x))

$$\frac{\mathrm{d}(af(x) + bg(x))}{\mathrm{d}x} = \lim_{\epsilon \to 0} \frac{(af(x + \epsilon) + bg(x + \epsilon)) - (af(x) + bg(x))}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{a\epsilon f'(x) + b\epsilon g'(x) + O(\epsilon^2)}{\epsilon}$$

$$= af'(x) + bg'(x)$$

Differentiation is a linear operation!

Linearity in Pictures

Product Rule

- Recall $f(x + \epsilon) = f(x) + \epsilon f'(x) + O(\epsilon^2)$
- If h(x) = f(x)g(x)

$$h'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon)g(x+\epsilon) - f(x)g(x)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\left(f(x) + \epsilon f'(x) + O(\epsilon^2)\right) \left(g(x) + \epsilon g'(x) + O(\epsilon^2)\right) - f(x)g(x)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{\epsilon \left(f'(x)g(x) + f(x)g'(x)\right) + O(\epsilon^2)}{\epsilon} = f'(x)g(x) + f(x)g'(x)$$

This is the product rule

Chain Rule

- Recall $f(x + \epsilon) = f(x) + \epsilon f'(x) + O(\epsilon^2)$
- Let h(x) = f(g(x))
- Then

$$h(x + \epsilon) = f(g(x + \epsilon)) = f(g(x) + \epsilon g'(x) + O(\epsilon^2))$$
$$= f(g(x)) + \epsilon g'(x) f'(g(x)) + O(\epsilon^2)$$

Thus

$$h'(x) = \lim_{\epsilon \to 0} \frac{h(x+\epsilon) - h(x)}{\epsilon} = g'(x)f'(g(x))$$

 This is the famous chain rule! Together with the product rule it means you can differentiate almost everything!

More on chain rules

We can also write the chain rule as

$$\frac{\mathrm{d}f(g(x))}{\mathrm{d}x} = \frac{\mathrm{d}f(g)}{\mathrm{d}g} \frac{\mathrm{d}g(x)}{\mathrm{d}x}$$

Sometimes this is neater or easier to remember

$$\frac{\mathrm{d}e^{\cos(x^2)}}{\mathrm{d}x} = \frac{\mathrm{d}e^{\cos(x^2)}}{\mathrm{d}\cos(x^2)} \frac{\mathrm{d}\cos(x^2)}{\mathrm{d}x^2} \frac{\mathrm{d}x^2}{\mathrm{d}x}$$
$$= e^{\cos(x^2)} \left(-\sin(x^2)\right) 2x$$
$$= -2x\sin(x^2) e^{\cos(x^2)}$$

Inverse functions

- Suppose $g(y)=f^{-1}(y)$ is the inverse of f(x) in the sense that $g(f(x))=f^{-1}(f(x))=x$
- Using the chain rule

$$\frac{\mathrm{d}g(f(x))}{\mathrm{d}x} = f'(x)g'(f(x)) = 1$$

since g(f(x)) = x

- So g'(f(x)) = 1/f'(x)
- Writing y=f(x) so that $x=f^{-1}(y)=g(y)$ we find g'(y)=1/f'(g(y)) that is

$$\frac{\mathrm{d}g(y)}{\mathrm{d}y} = \frac{1}{f'(g(y))} \qquad \qquad \frac{\mathrm{d}f^{-1}(y)}{\mathrm{d}y} = \frac{1}{f'(f^{-1}(y))}$$

Exponentials

• Note that $a^{b+c} = a^b a^c$ (that is we multiply a together b+c times)

• Now $e^{\epsilon} \approx (1 + \epsilon)$

• But $e^{x+\epsilon} = e^x e^{\epsilon} = e^x (1+\epsilon+O(\epsilon^2)) = e^x + \epsilon e^x + O(\epsilon^2)$

$$\frac{\mathrm{d}\mathrm{e}^x}{\mathrm{d}x} = \lim_{\epsilon \to 0} \frac{\mathrm{e}^{x+\epsilon} - \mathrm{e}^x}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon \mathrm{e}^x + O(\epsilon^2)}{\epsilon} = \mathrm{e}^x$$

Functions of Exponentials

• What about $f(x) = e^{cx}$

$$\frac{\mathrm{d}\mathrm{e}^{cx}}{\mathrm{d}x} = \frac{\mathrm{d}\mathrm{e}^{cx}}{\mathrm{d}cx} \frac{\mathrm{d}cx}{\mathrm{d}x} = c\mathrm{e}^{cx}$$

More generally using the chain rule

$$\frac{\mathrm{d}\mathrm{e}^{g(x)}}{\mathrm{d}x} = g'(x)\mathrm{e}^{g(x)}$$

• Also $a^{bc} = (a^b)^c$ (that is we multiply a together $b \times c$ times)

$$\frac{\mathrm{d}a^x}{\mathrm{d}x} = \frac{\mathrm{d}(\mathrm{e}^{\ln(a)})^x}{\mathrm{d}x} = \frac{\mathrm{d}\mathrm{e}^{\ln(a)x}}{\mathrm{d}x} = \ln(a)\mathrm{e}^{\ln(a)x} = \ln(a)a^x$$

Natural Logarithms

ullet The natural logarithm is defined as the inverse of e^x

$$\ln(e^x) = x \qquad \qquad e^{\ln(y)} = y$$

- Recall that if $g(y) = f^{-1}(y)$ then g'(y) = 1/f'(g(y))
- Consider $g(y) = \ln(y)$ and $f(x) = e^x$ (with $f'(x) = e^x$)

$$\frac{\mathrm{d}\ln(y)}{\mathrm{d}y} = \frac{1}{\mathrm{e}^{\ln(y)}} = \frac{1}{y}$$

Exponentials and Logarithms

Outline

- 1. Why Calculus?
- 2. Differentiation
- 3. Vector and Matrix Calculus

Derivatives in High Dimensions

- When working with functions $f: \mathbb{R}^n \to \mathbb{R}$ in many dimensions then there will typically be different derivative in different directions
- To compute the derivative in a direction $m{u} \in \mathbb{R}^n$ (where $\|m{u}\| = 1$) at a point $m{x} \in \mathbb{R}^n$ we use

$$\partial_{\boldsymbol{u}} F(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{f(\boldsymbol{x} + \epsilon \boldsymbol{u}) - f(\boldsymbol{x})}{\epsilon}$$

• If $u = \delta_i = (0, ..., 0, 1, 0, ..., 0)$ (i.e. $u_i = 1$) then

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = \lim_{\epsilon \to 0} \frac{f(\boldsymbol{x} + \epsilon \boldsymbol{\delta}_i) - f(\boldsymbol{x})}{\epsilon}$$

Taylor

• If we expand $f(x + \epsilon u)$ to first order in ϵ

$$f(\boldsymbol{x} + \epsilon \boldsymbol{u}) = f(\boldsymbol{x}) + \epsilon \boldsymbol{u}^{\mathsf{T}} \boldsymbol{g}(\boldsymbol{x}) + O(\epsilon^2)$$

then
$$g_i(\boldsymbol{x}) = \frac{\partial f(\boldsymbol{x})}{\partial x_i}$$

ullet Recall we defined the vector of first order derivatives of $f(m{x})$ to be the gradient

$$m{\nabla} f(m{x}) = egin{pmatrix} rac{\partial f(m{x})}{\partial x_1} \\ rac{\partial f(m{x})}{\partial x_2} \\ \vdots \\ rac{\partial f(m{x})}{\partial x_n} \end{pmatrix}$$

Thus

$$f(\boldsymbol{x} + \epsilon \boldsymbol{u}) = f(\boldsymbol{x}) + \epsilon \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\nabla} f(\boldsymbol{x}) + O(\epsilon^2)$$

This is the start of the high-dimensional Taylor expansion

Computing Gradients 1

• We can compute the gradient by writing out f(x) componentwise and performing the partial derivative with respect to x_i

$$\nabla w^{\mathsf{T}} \mathbf{M} w = \begin{pmatrix} \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_3} \\ \vdots \end{pmatrix} \sum_{i,j} w_i M_{ij} w_j = \begin{pmatrix} \sum_j M_{1j} w_j + \sum_i w_i M_{i1} \\ \sum_j M_{2j} w_j + \sum_i w_i M_{i2} \\ \sum_j M_{3j} w_j + \sum_i w_i M_{i3} \\ \vdots \end{pmatrix} = \mathbf{M} w + \mathbf{M}^{\mathsf{T}} w$$

 It is tedious to compute these things component-wise, but when you need to understand what is going on then go back to the basics

Computing Gradients 2

- A slicker way is just to expand $f(\boldsymbol{x} + \epsilon \boldsymbol{u})$
- ullet Consider $f(oldsymbol{x}) = oldsymbol{x}^\mathsf{T} oldsymbol{M} oldsymbol{x} + oldsymbol{a}^\mathsf{T} oldsymbol{x}$

$$f(\boldsymbol{x} + \epsilon \boldsymbol{u}) = (\boldsymbol{x} + \epsilon \boldsymbol{u})^{\mathsf{T}} \mathbf{M} (\boldsymbol{x} + \epsilon \boldsymbol{u}) + \boldsymbol{a}^{\mathsf{T}} (\boldsymbol{x} + \epsilon \boldsymbol{u})^{\mathsf{T}}$$

$$= f(\boldsymbol{x}) + \epsilon (\boldsymbol{u}^{\mathsf{T}} \mathbf{M} \boldsymbol{x} + \boldsymbol{x}^{\mathsf{T}} \mathbf{M} \boldsymbol{u} + \boldsymbol{a}^{\mathsf{T}} \boldsymbol{u}) + O(\epsilon^{2})^{\mathsf{T}}$$

$$= f(\boldsymbol{x}) + \epsilon \boldsymbol{u}^{\mathsf{T}} (\mathbf{M} \boldsymbol{x} + \mathbf{M}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{a}) + O(\epsilon^{2})$$

using $oldsymbol{x}^\mathsf{T} oldsymbol{M} oldsymbol{u} = oldsymbol{u}^\mathsf{T} oldsymbol{M}^\mathsf{T} oldsymbol{x}$ and $oldsymbol{a}^\mathsf{T} oldsymbol{u} = oldsymbol{u}^\mathsf{T} oldsymbol{a}^\mathsf{T}$

• But
$$f(\boldsymbol{x} + \epsilon \boldsymbol{u}) = f(\boldsymbol{x}) + \epsilon \boldsymbol{u}^\mathsf{T} \boldsymbol{\nabla} f(\boldsymbol{x}) + O(\epsilon^2)$$
 so

$$\nabla f(x) = \mathbf{M}x + \mathbf{M}^{\mathsf{T}}x + a\mathbf{I}$$

Differentiating Matrices

ullet Often we have loss functions with respect to a matrix W, e.g.

$$L(\mathbf{W}) = (\mathbf{a}^\mathsf{T} \mathbf{W} \mathbf{b} - c)^2 \mathbf{I}$$

- ullet We might want to find the minimum with respect to W_{ullet}
- ullet This occurs at a point $oldsymbol{W}^*$ where $L(oldsymbol{W})$ does not increase as we change $oldsymbol{W}$ in any way!
- ullet That is, we seek a W^* such that, for any matrices ${f U}$

$$L(\mathbf{W}^* + \epsilon \mathbf{U}) - L(\mathbf{W}^*) = O(\epsilon^2)$$

Generalised Gradient

We can generalise the idea of gradient to matrices

$$\frac{\partial L(\mathbf{W})}{\partial \mathbf{W}} = \begin{pmatrix} \frac{\partial L(\mathbf{W})}{\partial W_{11}} & \frac{\partial L(\mathbf{W})}{\partial W_{12}} & \dots & \frac{\partial L(\mathbf{W})}{\partial W_{1m}} \\ \frac{\partial L(\mathbf{W})}{\partial W_{21}} & \frac{\partial L(\mathbf{W})}{\partial W_{22}} & \dots & \frac{\partial L(\mathbf{W})}{\partial W_{2m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial L(\mathbf{W})}{\partial W_{n1}} & \frac{\partial L(\mathbf{W})}{\partial W_{n2}} & \dots & \frac{\partial L(\mathbf{W})}{\partial W_{nm}} \end{pmatrix} \blacksquare$$

From an identical argument we used for vectors

$$L(\mathbf{W} + \epsilon \mathbf{U}) = L(\mathbf{W}) + \epsilon \operatorname{tr} \mathbf{U}^{\mathsf{T}} \frac{\partial L(\mathbf{W})}{\partial \mathbf{W}} + O(\epsilon^{2}) \mathbf{I}$$

where

$$\operatorname{tr} \mathbf{U}^{\mathsf{T}} \mathbf{G} = \sum_{i} \left[\mathbf{U}^{\mathsf{T}} \mathbf{G} \right]_{ii} = \sum_{ij} U_{ji} G_{ji} = \sum_{ij} U_{ij} G_{ij} = \langle \mathbf{U}, \mathbf{G} \rangle$$

Example

Suppose

$$L(\mathbf{W}) = (\mathbf{a}^\mathsf{T} \mathbf{W} \mathbf{b} - c)^2$$

then

$$L(\mathbf{W} + \epsilon \mathbf{U}) = (\mathbf{a}^{\mathsf{T}}(\mathbf{W} + \epsilon \mathbf{U})\mathbf{b} - c)^{2} = (\mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{b} + \epsilon \mathbf{a}^{\mathsf{T}}\mathbf{U}\mathbf{b} - c)^{2}$$
$$= L(\mathbf{W}) + 2\epsilon (\mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{b} - c) (\mathbf{a}^{\mathsf{T}}\mathbf{U}\mathbf{b}) + O(\epsilon^{2}) \mathbf{I}$$

Now

$$\mathbf{a}^{\mathsf{T}}\mathbf{U}\mathbf{b} = \sum_{ij} a_i U_{ij} b_j = \sum_{ij} U_{ji} a_j b_i = \operatorname{tr} \mathbf{U}^{\mathsf{T}} \mathbf{a} \mathbf{b}^{\mathsf{T}}$$

Thus
$$\frac{\partial L(\mathbf{W})}{\partial \mathbf{W}} = 2\left(\mathbf{a}^{\mathsf{T}}\mathbf{W}\mathbf{b} - c\right)\mathbf{a}\mathbf{b}^{\mathsf{T}}$$

Traces

The trace of a matrix is the sum of its diagonal elements

$$\operatorname{tr} \mathbf{A} = \operatorname{tr} \mathbf{A}^{\mathsf{T}} = \sum_{i} A_{ii}$$

- Clearly trcA = ctrA
- Also tr(A + B) = trA + trB
- We note that

$$\operatorname{tr} \mathbf{A} \mathbf{B} = \sum_{i,j} A_{ij} B_{ji} = \sum_{i,j} B_{ij} A_{ji} = \operatorname{tr} \mathbf{B} \mathbf{A}$$

It follows that

$$trABCD = trDABC = trCDAB = trBCDA$$

Quick Matrix Differentiation

Let

$$\partial_{\mathbf{U}} f(\mathbf{X}) = \lim_{\epsilon \to 0} \frac{f(\mathbf{X} + \epsilon \mathbf{U}) - f(\mathbf{X})}{\epsilon} = \operatorname{tr} \mathbf{U}^{\mathsf{T}} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$

• E.g.

$$\begin{aligned} \partial_{\boldsymbol{u}} \mathrm{tr} \boldsymbol{A} \boldsymbol{X} \boldsymbol{B} &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \mathrm{tr} \boldsymbol{A} \left(\boldsymbol{X} + \epsilon \boldsymbol{U} \right) \boldsymbol{B} - \mathrm{tr} \boldsymbol{A} \boldsymbol{X} \boldsymbol{B} \\ &= \mathrm{tr} \; \boldsymbol{A} \boldsymbol{U} \boldsymbol{B} \boldsymbol{I} = \mathrm{tr} \; \boldsymbol{B}^\mathsf{T} \boldsymbol{U}^\mathsf{T} \boldsymbol{A}^\mathsf{T} \boldsymbol{I} = \mathrm{tr} \; \boldsymbol{U}^\mathsf{T} \boldsymbol{A}^\mathsf{T} \boldsymbol{B}^\mathsf{T} \boldsymbol{I} \end{aligned}$$

thus

$$\frac{\partial \operatorname{tr} \mathbf{A} \mathbf{X} \mathbf{B}}{\partial \mathbf{X}} = \mathbf{A}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{I}$$

Log Determinants

- We often come across logarithms of determinants of matrices, $\log(|\mathbf{M}|)$
- For GP we want to choose ${\bf K}$ to maximise the marginal likelihood, $\log(|{\bf K}+\sigma^2{\bf I}|)$
- To find the derivative of log(|X|) we consider

$$\log(|\mathbf{X} + \epsilon \mathbf{U}|) = \log(|\mathbf{X}(\mathbf{I} + \epsilon \mathbf{X}^{-1}\mathbf{U})|) \mathbf{I}$$
$$= \log(|\mathbf{X}||\mathbf{I} + \epsilon \mathbf{X}^{-1}\mathbf{U}|) \mathbf{I}$$
$$= \log(|\mathbf{X}|) + \log(|\mathbf{I} + \epsilon \mathbf{X}^{-1}\mathbf{U}|) \mathbf{I}$$

- \star Using |AB| = |A||B|
- \star Using $\log(ab) = \log(a) + \log(b)$

Determinants

$$|\mathbf{I} + \epsilon \mathbf{M}| = \begin{vmatrix} 1 + \epsilon M_{11} & \epsilon M_{12} \\ \epsilon M_{21} & 1 + \epsilon M_{22} \end{vmatrix} = (1 + \epsilon M_{11})(1 + \epsilon M_{22}) - \epsilon^2 M_{21} M_{12}$$
$$= 1 + \epsilon (M_{11} + M_{22}) + O(\epsilon^2)$$

Putting it Together

Recall

$$\log(|\mathbf{X} + \epsilon \mathbf{U}|) - \log(|\mathbf{X}|) = \log(|\mathbf{I} + \epsilon \mathbf{X}^{-1}\mathbf{U}|) \mathbf{I}$$

$$= \log(1 + \epsilon \operatorname{tr} \mathbf{X}^{-1}\mathbf{U} + O(\epsilon)^{2}) \mathbf{I}$$

$$= \epsilon \operatorname{tr} \mathbf{X}^{-1}\mathbf{U} + O(\epsilon)^{2} \mathbf{I}$$

$$= \epsilon \operatorname{tr} \mathbf{U}^{\mathsf{T}}(\mathbf{X}^{-1})^{\mathsf{T}} + O(\epsilon) \mathbf{I}$$

using
$$\log(1+x) = x + \frac{x^2}{2} + \cdots$$

- Thus $\partial_u \log(|\mathbf{X}|) = \operatorname{tr} \, \mathbf{U}^\mathsf{T} \big(\mathbf{X}^{-1}\big)^\mathsf{T}$
- Or

$$\frac{\partial \log(|\mathbf{X}|)}{\partial \mathbf{X}} = (\mathbf{X}^{-1})^{\mathsf{T}}$$

Summary

- With care you can differentiate most expressions
- The chain and product rule are incredibly powerful tools
- We can generalise differentiation to vectors and matrices
- There are a number of surprisingly useful results see The Matrix
 Cookbook
- Next stop: integration