Probabilistic graphical models, Assignment 3

Siddharth Bhat (20161105)

March 21st, 2020

6.8, Q1:

Monotonicity of VC dimension

Let $\mathcal{H}' \subseteq \mathcal{H}$. We wish to show that $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$.

Recall that the definition of VCdimis is that $VCdim(\mathcal{H})$ is the maximal size of a set $C \subseteq \mathcal{X}$ which can be *shattered* by \mathcal{H} .

Expanding the definition of shattering, we get that the $VCdim(\mathcal{H})$ is the maximal size of a set $C \subseteq X$ such that \mathcal{H} restricted to C is the set of all functions from C to $\{0, 1\}$.

Now, If $C \subseteq \mathcal{X}$ is shattered by $\mathcal{H}' \subseteq \mathcal{H}$, then this means that:

$$|\{f|_C : f \in H'\}| = 2^{|C|}$$

Since $\mathcal{H}' \subseteq \mathcal{H}$, we can replace \mathcal{H}' with \mathcal{H} in the above formula to arrive at:

$$|\{f|_C : f \in H\}| = 2^{|C|}$$

So, clearly, $VCdim(\mathcal{H}') \leq VCdim(\mathcal{H})$. However, there might be a set that is *larger* than C that can be shattered by \mathcal{H} . This lets us get the strict equality $VCdim(\mathcal{H}) < VCdim(\mathcal{H})$ in certain cases — that is, we *cannot* assert that $VCdim(\mathcal{H}) \leq VCdim(\mathcal{H}')$. For example, if we choose $\mathcal{H}' = \emptyset$ where \mathcal{H} is a hypothesis class with $VCdim(\mathcal{H}) = 1$. Then $VCdim(\emptyset) = 0 < 1 = VCdim(\mathcal{H})$.