Introduction to Logic, Part I, Chapter I by Patrick Suppes - exercises

Dominik Lenda

April 26, 2021

1 Decomposing concepts

When a sentence that is not a tautology may become one?

Exercise 4.

In the following examples determine the truth value of the compoind sentences from the given truth values of the component sentences.

- (i) "Galileo was born before Descartes" is true.
- (ii) "Descartes was born in the sixteenth century" is true.
- (iii) "Newton was born before Shakespeare" is false.
- (iv) "Racine was a compatriot of Galileo" is false.
- (a) If Galileo was born before Descartes, then Newton was not born before Shakespeare.
 - Answer: $true \rightarrow \neg false$ is true
- (b) If either Racine was a compatriot of Galileo or Newton was born before Shakespeare, then Descartes was born in the sixteenth century. Answer: $(false \lor false) \rightarrow true$ is true
- (c) If Racine was not a compatriot of Galileo, then either Descartes was not born in the sixteenth century or Newton was born before Shakespeare. Answer: $\neg false \rightarrow (\neg true \lor false)$ is false

Exercise 5.

Let

N = New York is larger than Chicago

W =New York is north of Washington

C =Chicago is larger than New York

N, W are true and C is false.

Which of the following sentences are true?

(a) $N \vee C$ is true

- (b) $N \wedge C$ is false
- (c) $-N \wedge -C$ is false
- (d) $N \leftrightarrow -W \lor C$ is false
- (e) $W \vee -C \rightarrow N$ is true
- (f) $(W \vee N) \rightarrow (W \rightarrow -C)$ is true
- (g) $(W \leftrightarrow -N) \leftrightarrow (N \leftrightarrow C)$ is true
- (h) $(W \to N) \to [(N \to -C) \to (-C \to W)]$ is true

Exercise 6.

Let

P =Jane Austen was contemporary of Beethoven

Q = Beethoven was a contemporary of Gauss

R = Gauss was a contemporary of Napoleon

 $S={\it Napoleon}$ was a contemporary of Julius Caesar

P, Q, and R are true, and S is false.

Find the truth values of the following sentences:

- (a) $(P \wedge Q) \wedge R$ is true
- (b) $P \wedge (Q \wedge R)$ is true
- (c) $S \to P$ is true
- (d) $P \to S$ is false
- (e) $(P \wedge Q) \wedge (R \wedge S)$ is false
- (f) $P \wedge Q \leftrightarrow R \wedge -S$ is true
- (g) $(P \leftrightarrow Q) \rightarrow (S \leftrightarrow R)$ is false
- (h) $(-P \leftarrow Q) \leftarrow (S \leftarrow R)$ is true
- (i) $(P \to -Q) \to (S \leftrightarrow R)$ is true
- (j) $(P \to Q)[(Q \to R) \to (R \to S)]$ is false
- (k) $P \to [Q \leftrightarrow (R \to S)]$ is false

Exercise 7.

Let P be a sentence such that for any sentence Q the sentence $P \vee Q$ is true. What can be said about the truth value of P.

Answer: P is true

Exercise 8.

Let P be a sentence such that for any sentence Q the sentence $P \wedge Q$ is false. What can be said about the truth value of P.

Answer: P is false

Exercise 9.

If $P \leftrightarrow Q$ is true, what can be said about the truth value of $P \lor -Q$? Answer: $P \lor -Q$ is true

Exercise 10.

(a) $P \vee Q$ is **not** a tautology.

1	p	q	$p \lor q$
[Γ	T	T
1	Γ	F	T
1	F	T	T
1	F	F	F

(b) $P \vee -P$ is a tautology

$$\begin{array}{c|c} p & p \lor -p \\ \hline T & T \\ F & T \end{array}$$

(c) $P \lor Q \to Q \lor P$ is a tautology.

P	Q	$P \lor Q \to Q \lor P$
T	T	T
T	F	T
F	T	T
F	F	T

(d) $P \to (P \lor Q) \lor R$ is a tautology.

1 —	7 (1	v &) v It is a tautology.
P	Q	R	$P \to (P \lor Q) \lor R$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T
	$\begin{array}{ c c }\hline P \\\hline T \\\hline T \\\hline T \\\hline T \\\hline F \\\hline F \\\hline \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(f) $(P \to Q) \to (Q \to P)$ is **not** a tautology.

3

$$\begin{array}{c|c|c} P & Q & P \rightarrow Q) \rightarrow (Q \rightarrow P) \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ F & F & T \\ \end{array}$$

(g) $[(P \to Q) \leftrightarrow Q] \to P$ is **not** a tautology.

P	Q	$[(P \to Q) \leftrightarrow Q] \to P$
T	T	T
T	F	T
F	T	F
F	F	T

(h) $P \to [Q \to (Q \to P)]$ is a tautology.

/			/ 1
	P	Q	$P \rightarrow [Q \rightarrow (Q \rightarrow P)]$
	T	T	T
	T	F	T
	F	T	T
	F	F	T

(i) $P \wedge Q \rightarrow P \vee R$ is a tautology.

/		•		0.0
	P	Q	R	$P \wedge Q \rightarrow P \vee R$
	T	T	T	T
	T	T	F	T
	T	F	T	T
	T	F	F	T
	F	F	F	T
	F	F	T	T
	F	T	F	T
	F	T	T	T

(j) $[P \lor (-P \land Q)] \lor (-P \land -Q)$ is a tautology.

' /	L	1	
	P	Q	$ [P \lor (-P \land Q)] \lor (-P \land -Q)$
	T	T	T
	T	F	T
	F	T	T
	F	F	T

(k) $P \wedge Q \rightarrow (P \leftrightarrow Q \vee R)$ is a tautology.

	-0	. (
P	Q	R	$P \land Q \to (P \leftrightarrow Q \lor R)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	F	F	T
F	F	T	T
F	T	F	T
F	T	T	T

(l)
$$[P \land Q \rightarrow (P \land -P \rightarrow Q \lor -Q)] \land (Q \rightarrow Q)$$
 is a tautology. $P \land Q \mid [P \land Q \rightarrow (P \land -P \rightarrow Q \lor -Q)] \land (Q \rightarrow Q)$

P	Q	$ P \land Q \rightarrow (P \land -P \rightarrow Q \lor -Q) \land (Q \rightarrow Q) $
T	T	T
T	F	T
F	T	T
F	F	T
		'

Exercise 11.

If P and Q are distinct atomic sentences, which of the following are tautologies?

(a) $P \leftrightarrow Q$ is **not** a tautology.

P	Q	$P \leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

(b) $P \leftrightarrow P \lor P$ is a tautology.

$$\begin{array}{|c|c|c|}\hline P & P \leftrightarrow P \lor P \\\hline T & T \\\hline F & T \\\hline \end{array}$$

(c) $P \vee Q \leftrightarrow Q \vee P$ is a tautology.

$$\begin{array}{c|cccc} P & Q & \leftrightarrow Q & \lor P & \text{is a tauto} \\ \hline P & Q & P & \lor Q & \leftrightarrow Q & \lor P \\ \hline T & T & & T & \\ T & F & & T & \\ F & T & & T & \\ F & F & & T & \\ \end{array}$$

(d) $(P \to Q) \leftrightarrow (Q \to P)$ is **not** a tautology.

$$\begin{array}{c|c} (P \to Q) \leftrightarrow (Q \to P) \text{ is not a } G \\ \hline P \quad Q \quad (P \to Q) \leftrightarrow (Q \to P) \\ \hline T \quad T \quad & T \\ T \quad F \quad & F \\ F \quad T \quad & F \\ F \quad F \quad & T \\ \hline \end{array}$$

(e) $(P \leftrightarrow P) \leftrightarrow P$ is a tautology.

$$\begin{array}{c|c} P & (P \leftrightarrow P) \leftrightarrow P \\ \hline T & T \\ F & T \end{array}$$

Exercise 12.

On the basis of ordinary usage construct truth tables for the sentential connectives used in the following examples:

(a) Not both P and Q.

P	Q	$-(P \wedge Q)$
T	T	F
T	F	T
F	T	T
F	F	T

(b) Neither P nor Q.

	P	Q	$-(P \lor Q)$
ſ	T	T	F
	T	F	F
	F	T	F
	F	F	T

Exercise 13.

Give examples of sentences P and Q (not necessarily atomic) such that the following compound sentences are tautologies.

(a) $P \wedge Q$ is **not** a tautology.

	P	Q	$P \wedge Q$
Ì	T	T	T
	T	F	F
	F	T	F
	F	F	F

Changing atomic sentences P and Q into compound sentences $P_1 \vee -P_2$ and Q into $Q_1 \vee -Q_2$ makes the whole sentence tautology.

$\mid P$	Q	$ (P_1 \vee -P_2) \wedge (Q_1 \vee -Q_2) $	
T	T	T	
$\mid T$	F	T	
$\mid F$	T	T	
$\mid F$	F	T	

			•			
(b)) $P \vee (P \wedge -Q)$ is not a tautology.					
	P	Q	$P \vee (P \wedge -Q)$			
	T	T	T			
	T	F	F			
	F	T	F			
	F	F	F			

Changing atomic sentences P and Q into compound sentences $P_1 \vee -P_2$ and Q into $Q_1 \vee -Q_2$ makes the whole sentence tautology.

P	Q	
T	T	T
T	F	T
F	T	T
F	F	T