# Algorithmique avancée Examen

Les calculatrices ne sont pas autorisées.

Les exercices peuvent être traités dans le désordre.

La notation prendra en compte le soin et la clarté de la rédaction.

## Exercice 1.

## Partie I

- 1. Soit G un graphe orienté dont tous les sommets sont de degré sortant au moins 1. En considérant une feuille bien choisie d'un parcours en profondeur, justifier que G contient forcément un cycle orienté.
- 2. En utilisant le résultat de la question précédente, montrer que si tous les sommets d'un graphe sont de degré entrant au moins 1, ce dernier admet un cycle orienté.

## Partie II

On considère un ensemble de tâches  $u_1,\ldots,u_n$  à effectuer, certaines tâches devant être effectuées avant d'autres. On cherche à ordonner ces tâches de façon à ce que toutes les contraintes d'ordre soient respectées.

Il est possible de coder les contraintes sous la forme d'un graphe orienté G dont les tâches sont les sommets et tel qu'une arête  $(u_i, u_j)$  signifie que  $u_i$  doit être effectué avant  $u_j$ .

- 3. Montrer que si le problème d'ordonnancement a une solution, le graphe G est un graphe sans cycle orienté.
- 4. On suppose par la suite que le problème a une solution et donc que le graphe G est acyclique. Au vu des résultats de la partie I, justifier l'existence d'une tâche dont on est sûr qu'elle peut être effectuée avant toutes les autres.
- 5. En déduire un algorithme permettant soit d'ordonner les tâches de G en respectant les contraintes, soit de conclure que le problème ne peut pas être résolu.
- 6. Quelle est la complexité de cet algorithme?
- 7. L'appliquer au graphe composé de sommets notés A à F avec les contraintes suivantes :

A est effectuée avant F C est effectuée avant A et E B est effectuée avant D et ED est effectuée avant C et F

## Exercice 2.

1. Trouver un flot maximal dans le graphe de la Figure 1. Vous donnerez les différents chemins construits et la valeur associée.



FIGURE 1 -

- 2. Quelles sont les arêtes de la coupe minimale associée?
- 3. Soit G une instance d'un problème de flot maximal et soit f un flot maximal sur G. On considère une arête e de G et on augmente sa capacité de 1.

En vous basant sur des arbres de parcours, déterminez un algorithme de complexité  $\mathcal{O}(m)$  qui permet de déterminer si le flot f peut être aug menté.

## Exercice 3.

On considère la chaîne de Markov dont les états sont indexés par les lettres de A à G et dont la matrice de transition est

$$\begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1. Dessiner le graphe de cette chaîne.

- 2. Déterminer l'ensemble des états récurrents et transients.
- 3. Déterminer la distribution invariante sur la chaîne restreinte aux états  $C,\,D$  et F.
- 4. Que peut on dire de la distribution limite de la chaîne si la distribution initiale vérifie  $\mathbb{P}(s_0 = C) = 1$ ? (le point de départ est forcément C).
- 5. Même question si  $\mathbb{P}(s_0 = G) = 1$ .
- 6. Même question pour une distribution initiale quelconque. Comment mo difier la chaîne pour avoir une distribution limite unique en ne modifiant que peu les probabilités de transition?

## Exercice 4.

Le but de cet exercice est de développer un algorithme efficace pour déter miner le diamètre d'un arbre.

- 1. On considère un arbre T, et l'arbre T' obtenu en supprimant toutes les feuilles de T. Démontrer que diam(T) = diam(T') + 2 (il faut pour cela démontrer les deu inégalités  $\leq$  et  $\geq$ ).
- 2. Que peut on dire du diamètre d'un arbre qui a un ou deux sommets?
- 3. Déduire des questions précédentes un algorithme qui détermine le dia mètre d'un arbre.
- 4. Déterminer la complexité de votre algorithme.