(Pages : 3)

4692

Reg. No.:....

Name:

Fifth Semester B.Tech. Degree Examination, September 2014 (2008 Scheme) (Special Supplementary)

08.502 : DIGITAL SIGNAL PROCESSING (TA)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

Determine the 4 point DFT of the following pair of sequences in the most efficient method x[n] = [1, 0, 1, 1] y[n] = [1, 2, 1, 2].

2. Consider the length 12 sequence defined for $0 \le n \le 11$,

$$x[n] = [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]$$

Evaluate the following functions without computing DFT.

- i) X(0)
- ii) $\sum_{k=0}^{11} X(k)$
- 3. If the complex multiplication time of a particular computer is 0.5 µs and the addition time is much, much smaller, roughly how long will it take to compute a 1024 point DFT using FFT. Assume multiplications are done sequentially.
- A. Suppose x[n] is a sequence defined as x[n] = [0, 1, 2, 3, 5, 6, 7].
 - a) Illustrate $x[(n-2) \mod 8]$.
 - b) If the 8 point DFT of x[n] is X(k), what is the 8 point DFT of $x[(n-2) \mod 8]$?

P.T.O.

- 5. What is Gibb's phenomenon? How can its effect be reduced?
- 6. Is impulse invariant method inappropriate for designing high pass filter? Why or LUN why not?
 - 7. A filter is specified by its impulse response h[n] given by

$$h[n] = -\frac{1}{3}8[n+1] + \frac{1}{2}8(n) - \frac{1}{3}8[n-1]$$

Is the filter IIR or FIR? Is it physically realizable? Justify your answer.

- 8. Draw the block diagram of the system to convert sampling rate from 1 kHz to Mb 1.5 kHz.
 - 9. What is sub band coding?
- 10. Compare floating point arithmetic with fixed point arithmetic. $(10\times4=40 \text{ Marks})$

PART – B
Answer any two questions from each Module.

MODULE-I

 $(10\times2=20 \text{ Marks})$

11. The impulse response of a filter is given as h[n] = [1, 2, -1]. Find the output if the n input sequence is x[n] = [2, 6], using DFT. Check the answer by finding linear convoluter.

10

- b) Determine the DET of the contraction of 8 point radix-2 DIT FFT algorithm.

b) Determine the DFT of the signal x[n] = [1, 1, -1, -1, 1].

4

18. a) Determine the 4 point DFT of the following pair of sequences in the most efficient method.

x[n] = [1, 2, 1, 2] g[n] = [1, 0, 0, 1].

3

b) How do we perform linear filtering of long sequences using DFTs?

4

c) Define Discrete Cosine Transform.

3

,		MODULE – II (10×2=20 Mar	rks)
714.	Th	e specification of a filter is given below $0.8 \le H(\omega) \le 1.0$ $0 \le \omega \le 0.2\pi$ $ H(\omega) \le 0.2$ $0.6\pi \le \omega \le \pi$	
	De	sign a Butterworth digital filter satisfying specifications.	10
_	a) b) c)	What is the condition to be satisfied for linear phase characteristics of a FIR filter? Why ideal filter is not physically realizable? Compare FIR filter and IIR filter. Write the frequency response of any two window functions used in FIR filter design.	2 2 3
		Realize the following transfer function with minimum number of multipliers. $H(z) = \frac{1}{4} + \frac{1}{2}z^{-1} + \frac{3}{4}z^{-2} + \frac{1}{2}z^{-3} + \frac{1}{4}z^{-4}.$ Realize on FID filter with impulse recovery biological transfer.	5
ws.	هو	Realize an FIR filter with impulse response h[n] given by $h[n] = \left(\frac{1}{2}\right)^{h} [u[n] - u[n-4]].$	5
	,	MODULE – III (10×2=20 Mari	•
M6 11.		What are limit cycles?	2
	b)	What is the effect of quantization of filter coefficients in the performance of a digital filter?	4
	•	What are the errors generated by A/D process?	4
тр 78.	a) b)	Derive the frequency domain representation of an upsampled signal. For the system shown, find the expression for y[n] in terms of x[n].	5 5
∿6 ^{19.}	a)	Discuss the basic features of a digital signal processing chip. What are the programming tools required for DSP processors.	5 5
his	b)	What are the programming tools required to both processors. (6×10=60 Marks)	