MAT-206/360: Inferencia Estadística

Certamen 1. Octubre 23, 2018

Tiempo: 90 minutos Profesor: Felipe Osorio

- 1. (25 pts) Asuma que X_1, \ldots, X_n son variables aleatorias independientes con $X_i \sim \mathsf{N}(\alpha + \beta z_i, 1)$ donde z_1, \ldots, z_n son constantes observadas y α , β son parámetros desconocidos. Muestre que la distribución conjunta para $\mathbf{X} = (X_1, \ldots, X_n)^{\top}$ forma una familia exponencial e identifique las estadísticas T_1 y T_2 .
- 2. (25 pts) Suponga la variable aleatoria X con función de densidad

$$f(x;\theta) = \begin{cases} \frac{\exp\{-\frac{1}{2}(x-\theta)^2\}}{\sqrt{2\pi}\Phi(\theta)}, & x > 0, \\ 0, & \text{en otro caso,} \end{cases}$$

Nombre: _

donde $\Phi(\cdot)$ denota la CDF de la distribución normal estándar. Determine la función generadora de momentos así como la esperanza y varianza de X.

- **3.** Considere variables aleatorias independientes X_1, \ldots, X_n y Y_1, \ldots, Y_n desde una distribución $\mathsf{N}(\mu, \sigma^2)$ y $\mathsf{N}(\mu, \lambda \sigma^2)$, respectivamente, donde μ es conocido.
- **a.** (10 pts) Suponga que $\sigma^2 > 0$ es conocido. Obtenga el MLE de $\lambda > 0$.
- **b.** (15 pts) Asuma que ámbos σ^2 y λ son desconocidos. Obtenga el MLE de $\boldsymbol{\theta} = (\sigma^2, \lambda)^{\top}$.
 - 4. Suponga X_1,\ldots,X_n variables aleatorias IID con densidad común

$$f(x;\theta) = \frac{\theta \exp(\theta x)}{2 \sinh(\theta)}, \quad x \in (-1,1),$$

y sea $Y_i = I\{X_i > 0\}$. Si $\theta = 0$ los X_i 's son uniformemente distribuídos en (-1,1)

a. (10 pts) Presente una ecuación de estimación para el MLE, $\widehat{\theta}_X$ basado en X_1,\dots,X_n .

b. (15 pts) Halle el MLE, $\widehat{\theta}_Y$ basado en Y_1, \dots, Y_n .

Pauta de corrección:

