Cálculo 1

Taxas relacionadas

(solução da tarefa)

Uma vez que o raio r=r(t) depende do tempo, o mesmo deve ocorrer com o volume do balão. Usando a fórmula para este volume podemos calculá-lo, em função do tempo, como segue

$$V(t) = \frac{4}{3}\pi r(t)^3.$$

Derivando os dois lados com respeito a t, e usando a Regra da Cadeia no lado direito, obtemos

$$\frac{d}{dt}V(t) = \frac{4}{3}\pi \frac{d}{dt}r(t)^{3} = 4\pi r(t)^{2} \frac{d}{dt}r(t) = 4\pi r(t)^{2}r'(t).$$

Na segunda igualdade acima usamos que $(f(x)^3)' = 3f(x)^2 f'(x)$, sempre que f é derivável.

Uma vez que o gás escapa à uma taxa de 2 L/min, a taxa de variação do volume é igual a -2. O sinal negativo indica que o volume está diminuindo, porque o gás está saindo. Deste modo $4\pi r(t)^2 r'(t) = -2$, o que nos fornece

$$r'(t) = -\frac{1}{2\pi} \frac{1}{r(t)^2}.$$

Fazendo $t = t_0$ na expressão acima, e usando $r(t_0) = 1$, concluímos que $r'(t_0) = -1/(2\pi)$, o que mostra que o raio está diminuindo à uma taxa de $1/(2\pi)$ m/min.

Para calcular a taxa de variação da área superficial S(t), basta derivar a expressão

$$S(t) = 4\pi r(t)^2,$$

com respeito a t, para obter

$$\frac{d}{dt}S(t) = 8\pi r(t)r'(t).$$

Substituindo o valor de r'(t) obtido mais acima, concluímos que

$$\frac{d}{dt}S(t) = \frac{-1}{r(t)}.$$