

Exploring the effectiveness of combined lightweight models in the detection of mental health disorders

Roberto Huerta Ponce

Dra. Gemma Bel-Enguix

Dra. Helena Montserrat Gómez Adorno

The importance of early detection

Social media contains valuable traces of people's emotional and behavioral expressions.

Analyzing these posts may help recognize patterns potentially related to mental health risks.

Limitations of current models

Several works have adopted BERT-based models for the detection of mental health conditions.

Limitations of large language models

Related Work

Feature Attention Network (FAN) (Song et al., 2018):

Transformer-based models (DistilRoBERTa) (Zhao et al., 2024):

Our proposal

Dataset used

6

Suchintika Sarkar. **Sentiment Analysis for Mental Health Dataset*** Kaggle. Disponible en: [https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health/data]

Feature extraction

VADER: Analyzes sentiment.

TF-IDF: Captures word relevance in each document's context.

► LDA: Extracts latent topics present in the text.

Base models

- Logistic Regression
- K-Nearest Neighbors (KNN)
- Random Forest
- Gradient Boosting
- Multilayer Perceptron (MLP)

Each model "sees" the text differently.

Ablation and Weighted Model Combination

Model Pool (15 models):

5 classical models × 3 features

TF-IDF: {XGB, MLP, RF, KNN, LogReg}

VADER: {XGB, MLP, RF, KNN, LogReg}

LDA: {XGB, MLP, RF, KNN, LogReg}

Ablation Iterative:

Removed models:

VADER: XGB, MLP, RF, LogReg

LDA: XGB, MLP

Final Ensemble (9 models):

TF-IDF: XGB, MLP, KNN, LogReg, RandomForest

VADER: KNN

LDA: RandomForest, KNN, LogReg

Model	Weight
$XGB_{-}TFIDF$	0.2913
$\mathrm{MLP}_{-}\mathrm{TFIDF}$	0.2372
$RandomForest_LDA$	0.194
KNN_VADER	0.0855
KNN_LDA	0.0849
KNN_TFIDF	0.0618
$LogReg_TFIDF$	0.0439
$RandomForest_TFIDF$	0.001
${ m LogReg_LDA}$	0.0005

Ensemble performance evaluation

Metrics used:

Model	F1 Macro (avg)	Time (min)	Memory (MB)	Processing
DistilRoBERTa	78.32 %	25.6	2,608.63	GPU
Our proposal	70.3 %	6.02	501.92	CPU
Base proposal	64.6 %	3.5	182.21	CPU

10

Platform	CPU Model	Physical Cores	Logical Cores	Frequency	GPU
Colab (with CPU)	Intel Xeon virtualized	1	2	$2.2~\mathrm{GHz}$	No
Colab (with GPU)	Intel Xeon @ 2.2GHz	1	2	2.2 GHz	Tesla T4

torch.cuda.max_memory_allocated() for GPU (VRAM) psutil.Process().memory_info().rss for CPU (RAM)

Not all models see the same

Models are complementary because each captures different aspects.

LIME evidence — both correct

LIME shows that each model focuses on different words or topics.

Correct label: Suicidal

mlp + lda =>
Suicidal

knn + vader => Suicidal

rediction probabilities	
Suicidal	0.33
Depression	0.24
Stress	0.15
Normal	0.12
Other	0.16

Text with highlighted words

i am so fucking tired i have gotten diagnosed with bpd a few months ago and its made how i feel and why i feel that way a lot clearer to me but it does not make me want to end it any less i have been failing in life and loosing all of my friends and i just cannot take it anymore i really want to fucking kill myself i am so tired thinking of ending it

Text with highlighted words

i am so fucking tired i have gotten diagnosed with bpd a few months ago and its made how i feel and why i feel that way a lot clearer to me but it does not make me want to end it any less i have been failing in life and loosing all of my friends and i just cannot take it anymore i really want to fucking kill myself i am so tired thinking of ending it

LIME evidence — only one correct

Even when models focus on similar words, they may classify differently.

Correct label: Normal

mlp + Ida => Stress

logistic regression + Ida => Normal

Prediction probabilities		
Normal	0.53	
Depression	0.13	
Stress	0.12	
Anxiety	0.07	
Other	0.15	

Text with highlighted words

things were so good again just like the beginning then the yelling comes back i got really sick and had to go to the hospital and he refused to come and visit me when i was home he told me i was dense for expecting him to come hang out with me when i have such a deadly disease it was mrsa and not that deadly

Text with highlighted words

things were so good again just like the beginning then the yelling comes back i got really sick and had to go to the hospital and he refused to come and visit me when i was home he told me i was dense for expecting him to come hang out with me when i have such a deadly disease it was mrsa and not that deadly

LIME evidence — both incorrect

Even when models focus on similar words, they may still fail.

Correct label: Suicidal

Random forest + tfidf => Depression

knn + vader => Depression

Prediction probabilities		
Depression	0.26	
Stress	0.19	
Bipolar	0.18	
Normal	0.17	
Other	0.20	

Text with highlighted words

i have been sat here with a knife for the past minutes debating if i should go through with it or not nobody likes me and the rest of my life is not worth living anymore i do not know what to do

Text with highlighted words

i have been sat here with a knife for the past minutes debating if i should go through with it or **not** nobody likes me and the rest of my life is **not** worth living anymore i do **not** know what to do

What we learned from this work

- Lightweight models capture complementary linguistic features.
- Ensemble reduces time and computational cost.
- Interpretability remains fully accessible.
- Combining multiple linguistic techniques improves performance

Next steps and research directions

- Incorporate additional linguistic features (domain-specific lexicons)
- Explore alternative ensemble methods
- Evaluate the approach on larger and diverse datasets

Before closing...

Source:

https://www.reddit.com/r/CourageTheCowardlyDog/comments/19b24g4/there is no such thing as perfect youre beautiful/?utm_source=share&utm_medium=web3x&utm_name =web3xcss&utm_term=1&utm_content=share_button

Thank you for your attention.

Project materials available online:

https://github.com/Rob erhp/SCAI_presentation

References

- World Health Organization. (n.d.). Depression. World Health Organization. Retrieved May 26, 2024, from https://www.who.int/es/health-topics/depression
- 2. Song, H., You, J., Chung, J.W., & Park, J.C. (2018). Feature Attention Network: Interpretable Depression Detection from Social Media. <u>ACL Anthology</u>
- 3. Zhao, Z., & Wang, J. (2024). Exploring the Potential of Large Language Model in Predictive Mental Health Diagnosis of Athletes. Advances in Education, Humanities and Social Science Research.
- 4. Suchintika Sarkar. Sentiment Analysis for Mental Health Dataset. Kaggle.

 https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health/data