[a,b]のコンパクト性

Theorem. 閉区間 [a,b] $(a,b \in \mathbb{R})$ は \mathbb{R} の通常の位相に関してコンパクトである.

Proof. \mathfrak{C} を \mathbb{R} の閉区間 [a,b] の任意の開被覆とする. もし, [a,b] がコンパクトでないとすると

$$\left[a, \frac{a+b}{2}\right], \left[\frac{a+b}{2}, b\right]$$

の少なくともどちらか一方は $\mathfrak C$ に属する有限個の開集合によって被覆できない. それを $[a_1,b_1]$ とする. さらに

$$\left[a_1, \frac{a_1 + b_1}{2}\right], \left[\frac{a_1 + b_1}{2}, b_1\right]$$

の少なくともどちらか一方は $\mathfrak C$ に属する有限個の開集合によって被覆できない. それを $[a_2,b_2]$ とする.

同様にして、 でに属する有限個の開集合によって被覆できない閉区間列

$$[a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_n,b_n]\supset\cdots$$

を構成することができる. ただし, 2 つの閉区間とも有限個の開集合によって被覆できない場合は a_n を含む方を $[a_{n+1},b_{n+1}]$ とする. このとき, $[a_n,b_n]$ の区間幅は $b_n-a_n=2^{-n}(b-a)\to 0$ $(n\to\infty)$ となるから, Cantor の区間縮小定理より $c\in [a_n,b_n]$ $(\forall n\in\mathbb{N})$ となる $c\in\mathbb{R}$ がただ 1 つに定まる.

 $\mathfrak C$ は [a,b] を被覆しているから、c を含むある開集合 $O\in\mathfrak C$ が存在する。O は開集合であるから、ある $\varepsilon>0$ に対して $(c-\varepsilon,c+\varepsilon)\subset O$ となる。また、 $a_n,b_n\to c\ (n\to\infty)$ であるから、 $[a_N,b_N]\subset (c-\varepsilon,c+\varepsilon)$ となる十分大きな $N\in\mathbb N$ が存在する。

しかし, $[a_n, b_n]$ の構成の仕方からこれは矛盾である. よって, [a, b] はコンパクトである.