## Porównanie sposobów Interpolacji oraz Aproksymacji

Aga Patro

## Zadana funkcja

 $e^{-4sin(x)}$ 

na przedziale -4pi do 3pi



Zagadnienie Lagrange'a: Wielomian interpolujący w postaci Lagrange'a

Najmniejszy błąd maksymalny otrzymałam dla 40 węzłów o rozłożeniu Czebyszewa: 8.7484

Widoczny efekt Rungego pojawia się dla 10 węzłów przy rozmiesczeniu równoległym

Wraz ze wzrostem liczby węzłów rosną wartości błędów



Wykres dla najmniejszego błędu maksymalnego



Wykres przedstawiający efekt Rungego

Zagadnienie Lagrange'a: Wielomian interpolujący w postaci Newtona

Najmniejszy błąd maksymalny otrzymałam dla 30 węzłów o rozłożeniu Czebyszewa: 20.6808

Widoczny efekt Rungego pojawia się dla 15 węzłów przy rozmiesczeniu równoległym

Wraz ze wzrostem liczby węzłów rosną wartości błędów



Wykres dla najmniejszego błędu maksymalnego

Rungego



## Zagadnienie Lagrange'a postać Lagrange vs Newton

najmniejszy błąd maksymalny

liczba węzłów dla najmniejszego błędu

efekt Rungego dla

wykres na najmniejszego błędu maksymalnego





Wniosek: Dla zagadnienia Lagrange'a, zalecany jest wybór interpolacji Newtona

Zagadnienie Hermite'a: Wielomian interpolujący w postaci Newtona

Najmniejszy błąd maksymalny otrzymałam dla 20 węzłów o rozłożeniu Czebyszewa: 17.2075

Widoczny efekt Rungego pojawia się dla 10 węzłów przy rozmiesczeniu równoległym







Wykres przedstawiający efekt Rungego

## Postać Newtona zagadnienie Lagrange vs Hermite'a

najmniejszy błąd maksymalny

liczba węzłów dla najmniejszego błędu

efekt Rungego dla

wykres na najmniejszego błędu maksymalnego





Wniosek: Dla interpolacji Newtona, zalecany jest wybór zagadnienia Lagrange'a (z powodu braku błędów komputerowych)

#### Funkcje sklejane: drugiego stopnia

Przyjęte warunki brzegowe:

1)  $S_1'(x_1) = 0$ 

2)  $S_1'(x_1) = f_1'(x_1)$ 

Dla względnie małej liczby węzłów (< 60) najmniejszy błąd maksymalny otrzymałam dla 60 dla warunku 2): 0.7250

Im wyższa liczba węzłów, tym mniejsze wartości błędów



50

## Funkcje sklejane: trzeciego stopnia

Przyjęte warunki brzegowe:

- 1)  $S''(x_1) = S''(x_n) = 0$
- 2)  $S'''(x_1) = C_1'''(x_1) i$  $S'''(x_n) = C_n'''(x_n)$

Dla względnie małej liczby węzłów (< 60) najmniejszy błąd maksymalny otrzymałam dla 60 węzłów dla warunku 2): 0.2836

Im wyższa liczba węzłów, tym mniejsze wartości błędów



Wykres dla najmniejszego błędu maksymalnego



Wykres dla warunku 2) dla 5

węzłów



węzłów

## Funkcje sklejane drugi stopień vs trzeci stopień

najmniejszy błąd maksymalny

liczba węzłów dla najmniejszego błędu

efekt Rungego dla

wykres na najmniejszego błędu maksymalnego





Wniosek: Mimo, że dla funkcji sklejanej trzeciego stopnia błąd maksymalny jest niższy, obie metody są efektywne i spełniają swoje zadanie

# Aproksymacja średniokwadratowa wielomianami algebraicznymi

| Max<br>stopień | Liczba punktów |         |         |          |           |           |  |  |  |  |
|----------------|----------------|---------|---------|----------|-----------|-----------|--|--|--|--|
|                | 10             | 15      | 20      | 25       | 30        | 35        |  |  |  |  |
| 3              | 54.32          | 200.91  | 69.40   | 81.91    | 54.33     | 83.16     |  |  |  |  |
| 5              | 124.92         | 103.19  | 50.04   | 680.87   | 185.72    | 510.71    |  |  |  |  |
| 6              | 62.76          | 62.69   | 70.62   | 1423.52  | 115.46    | 112.41    |  |  |  |  |
| 8              | 53.59          | 53.59   | 53.6    | 53.59    | 53.66     | 53.59     |  |  |  |  |
| 11             | 86.56          | 2899.91 | 822.42  | 13686.15 | 47129.54  | 173429.17 |  |  |  |  |
| 15             | 34.55          | 3745.47 | 4705.08 | 90360.0  | 311106.19 | 968759.89 |  |  |  |  |
| 20             | 41.10          | 133.46  | 1106.45 | 1476.99  | 36070.17  | 64623.76  |  |  |  |  |
| 25             | 39.78          | 28.1    | 1138.59 | 15933.52 | 7982.44   | 3244.46   |  |  |  |  |
| 30             | 40.07          | 25.95   | 214.0   | 961.45   | 4686.68   | 5319.0    |  |  |  |  |
| 35             | 40.02          | 25.5    | 83.72   | 636.5    | 7062.6    | 4106.23   |  |  |  |  |



Wykresy dla różnej liczby punktów dyskretyzacji:







# Aproksymacja średniokwadratowa wielomianami trygonometrycznymi

| Max<br>stopień | Liczba punktów |       |       |       |       |       |       |       |  |  |  |
|----------------|----------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|                | 5              | 7     | 10    | 20    | 30    | 50    | 80    | 100   |  |  |  |
| 2              | 47.39          | 36.41 | 27.81 | 14.73 | 14.18 | 14.5  | 14.68 | 14.72 |  |  |  |
| 3              | _              | 55.64 | 33.15 | 22.29 | 22.75 | 23.33 | 23.53 | 23.63 |  |  |  |
| 5              | _              | _     | _     | 33.86 | 30.74 | 31.58 | 32.07 | 32.06 |  |  |  |
| 10             | _              | _     | -     | _     | 45.78 | 45.31 | 46.64 | 47.10 |  |  |  |
| 14             | _              |       | -     | _     | _     | 47.94 | 52.32 | 52.34 |  |  |  |
| 20             | _              | _     | _     | _     | _     | 48.37 | 53.49 | 53.45 |  |  |  |
| 24             | _              | _     | _     | _     | _     | _     | 53.82 | 53.76 |  |  |  |



Wykresy dla różnej liczby punktów dyskretyzacji: od lewej 7, 10, 20







## Aproksymacja średniokwadratowa algebraiczne vs trygonometryczne

Czy otrzymujemy funkcję podobną do aproksymowanej?





Wniosek: Do aproksymacji, zaleca się użycie wielomianów trygonometrycznych