

دانشگاه صنعتی امیر کبیر دانشکده مهندسی کامپیوتر

گزارش تکلیف دوم درس یادگیری ماشین آشنائی با درخت تصمیم و ابزار weka

دانشجو: سید احمد نقوی نوزاد ش-د: ۹۴۱۳۱۰۶۰

> استاد: دکتر ناظرفرد

الف) آنترویی مجموعه بر اساس متغیر هدف (متغیر آخر هفته)

نکتهی قابل توجه در این سوال آن است که «هفته» در اینجا در واقع یک ویژگی به حساب نیامده و حکم یک feature را دارد؛ اما از آنجائی که حکم زمان ثبت داده را دارد میتواند حائز اهمیت باشد، چون با توجه به این که تعداد ۳ دادهی آموزشی تکراری داریم (دادههای ۶، ۹ و ۱۰ تکرار شدهاند)، میتوان با توجه به تفاوت زمانی ثبت آنها، از حذفشان صرف نظر کرده و ثبت مجدد آنها را به عنوان یک وزن برای دادههای مربوطه به حساب آورد. لذا در اینصورت وضعیت متغیر هدف در مجموعهی دادههای آموزشی مسئله به قرار زیر خواهد بود:

[6 Cinema, 2 Tennis, 1 Lesson, 1 Shopping]

حال برای محاسبهی آنتروپی این مجموعه بر اساس متغیر هدف (متغیر آخر هفته) داریم:

Entropy
$$(S) = -\frac{6}{10} \log^{\frac{6}{10}} - \frac{2}{10} \log^{\frac{2}{10}} - \frac{1}{10} \log^{\frac{1}{10}} - \frac{1}{10} \log^{\frac{1}{10}} = 1.5710 \leftarrow \text{Entropy before split}$$

ب) بهرهی اطلاعات ویژگیها

Feature		ature values istribution	Entropy	Information Gain	Split Entropy	GainRatio
	No	[5C, 0T, 0L, 0S]	0	InfoGain(S, quiz)=		$\frac{InfoGain(S,quiz)}{=}$
Quiz	Yes	[1C, 2T, 1L, 1S]	1.9219	1.5710-(.5*0+.5*1.9219)= .6100	1	$\frac{SplitEntropy(S, quiz)}{\frac{.6100}{1}} = .6100$
	Bad	[3C, 0T, 0L, 0S]	0	InfoCoin(C financial state)		InfoGain(S, finState)
Financial State	Good	[3C, 2T, 1L, 1S]	1.8424	InfoGain(S, financial state)= 1.5710-(.3*0+.7*1.8424)= .2813	.8813	$\frac{SplitEntropy(S, finState)}{\frac{.2813}{.8813}} = .3192$
	Sunny	[1C, 2T, 0L, 0S]	.9183	InfoGain(S, quiz)=		InfoGain(S, climate)
	Stormy	[3C, 0T, 0L, 1S]	.8113	1.5710-		$\frac{SplitEntropy(S, climate)}{SplitEntropy(S, climate)} =$
Climate	Rainy	[2C, 0T, 1L, 0S]	.9183	(.3*.9183+.4*.8113+.3*.9183) = .6955	1.5710	$\frac{.6955}{1.5710} = .4427$

ج) انتخاب ریشهی درخت تصمیم

در اینجا باید آن ویژگی را به عنوان ریشهی درخت تصمیم انتخاب نمائیم که اندازهی معیار مربوطه برای آن ویژگی نسبت به سایر ویژگیها بیشینه باشد.

Feature selection criterion	Selected feature as the Root of DT	Misclassified items	Conclusion
InfoGain	Climate	0	Overfitting
GainRatio	Quiz	0	Overfitting

همانطور که پیداست هیچ دادهای به اشتباه دستهبندی نشده و این نشان از overfitting الگوریتم درخت تصمیم بر روی دادههای آموزشی ما دارد.

درخت حاصل تا عمق یکم با توجه به معیار InfoGain به صورت زیر خواهد بود:

سوال دوم

بخش اول: آمادهسازی مجموعه داده

در اینجا باید با توجه به مقادیر و عنوان هر ویژگی، عددی (numerical) یا اسمی (nominal) بودن آن را تعیین نمود numeric و با توجه به اینکه پیشفرض weka برای دادههای ورودی numeric میباشد، میتوان برای تبدیل نوعدادههای Numeric بهره برد. داریم:

ID	Feature name	Feature type
1.	age	Numerical
2.	sex	Nominal
3.	chest pain type (4 values)	Nominal
4.	resting blood pressure	Numerical
5.	serum cholestoral in mg/dl	Numerical
6.	fasting blood sugar > 120 mg/dl	Nominal
7.	resting electrocardiographic results (values 0,1,2)	Nominal
8.	maximum heart rate achieved	Numerical
9.	exercise induced angina	Nominal
10.	oldpeak = ST depression induced by exercise relative to rest	Numerical
11.	the slope of the peak exercise ST segment	Numerical
12.	number of major vessels (0-3) colored by flourosopy	Numerical
13.	thal: 3 = normal; 6 = fixed defect; 7 = reversable defect	Nominal
14.	Healthy or Not	Nominal

بخش دوم: بارگذاری و بررسی دادهها

حال اگر بخواهیم سه ویژگی که بهتر از بقیه می توانند برچسب کلاس را توصیف نمایند معرفی نمائیم، می توانیم از ابزار Attribute Evaluator به Select attributes نرم افزار weka استفاده نمائیم؛ که در آن می توان پس از تنظیم Select attribute به Ranker به Search Mode و نیز تنظیم GainRatioAttributeEval و یا هم به ایدازه ی معیار مربوطه برای آنها، به صورت نزولی مشاهده نمود. داریم:

Information Gain		GainRatio		
Attribute	InfoGain Value	Attribute	GainRatio Value	
13 thal	0.208556	13 thal	0.171204	
3 chestPain	0.192202	12 numMajVess	0.17015	
12 numMajVess	0.165916	10 oldPeak	0.148019	
9 exercIndcAng	0.129915	9 exercIndcAng	0.142054	
8 maxHeartRateAchv	0.12028	8 maxHeartRateAchv	0.123102	
10 oldPeak	0.119648	3 chestPain	0.111511	
11 slpPeakExcerSTsgmnt	0.109917	11 slpPeakExcerSTsgmnt	0.110026	
2 sex	0.066896	2 sex	0.073773	
1 age	0.056726	1 age	0.056747	
7 restElecRslt		7 restElecRslt	0.022886	

	0.024152		
6 fastBldSgr	0.000193	6 fastBldSgr	0.000318
5 serumChlst	0	5 serumChlst	0
4 restBldPrss	0	4 restBldPrss	0

همانطور که پیداست سه ویژگی اول برای هر معیار، بهتر از سایرین میتوانند برچسب کلاس را توصیف نمایند و همانطور که از نمودار پراکندگی کلاسی ویژگیها نیز پیداست، میتوان تخمین زد که مثلا برای معیار Information Gain ، سه ویژگی برتر قیدشده دارای پراکندگی کمتری در دستهبندی دادهها بوده و به عبارتی دارای آنتروپی کمتری میباشند و در نتیجه برای مسئلهی دستهبندی مناسبتر میباشند.

بخش سوم: ساخت درخت تصمیم

الف)

برای دادههای آموزشی و البته انتخاب آخرین متغیر (HealthyOrNot) به عنوان متغیر هدف، confusion matrix به صورت زیر خواهد بود:

	A=1	B=2
A=1	145	5
B=2	9	111

معیارهای مختلف ارزیابی برای دادههای آموزشی به قرار زیر است:

Class of interest	TP Rate (Recall)	FP Rate	Precision	F-Measure
1	.967	.075	.942	.954
2	.925	.033	.957	.941

ب)

Class of		F-Measure				
interest	β=.5	β=1	β=2			
1	.947	.954	.962			
2	.950	.941	.931			

معیار F-Measure در واقع مقدار میانگین موزون (harmonic mean) حاصله از مقادیر F-Measure معیار Frecision بوده و شدت سودمندی بازیابی اطلاعات را (با توجه این که یک کاربر، β بار به Precision بیشتر از Precision اهمیت می دهد.

Precision بنابراین مثلا در اینجا برای کلاس ۱، با توجه به اینکه مقدار خروجی weka بنابراین مثلا در اینجا برای کلاس ۱، با توجه به اینکه مقدار F-Measure یا همان میانگین موزون(هارمونیک) بنا به حکم، به سمت میباشد، در نتیجه با افزایش پارامتر β ، مقدار

Recall که بیشتر میباشد متمایل گشته و افزایش میبابد و با کاهش β نیز کاهش میبابد. برای کلاس ۲ نیز با توجه به کمتر بودن مقدار Recall از Precision، با افزایش β مقدار جدن مقدار Recall که کمتر میباشد متمایل شده و کاهش میبابد و با کاهش β نیز از آن فاصله گرفته و افزایش میبابد.

لازم به ذکر است که به ازای مقدار یک برای پارامتر β ، نتایج حاصله از weka و قسمت «ب» با یکدیگر برابر می باشند و این نشان از آن دارد که نرمافزار weka در واقع از معیار $F_{.5}-Measure$ به جای weka و این نشان از آن دارد که نرمافزار Recall در واقع از معیار $F_{.5}-Measure$ دارد تا Precision دارد تا $F_{.5}-Measure$ و یا $F_{.5}-Measure$ دارد تا استفاده می نماید.

Training		Evalu	ation on tes	st split	
Data	Correctly	Incorrectly	Total	Mean	Root
Percentage	Classified	Classified	Number	Absolute	Mean
	Instances	Instances	of Test	Error	Squared
			Instances		Error
10 %	177	66	243	.2937	.5015
	(72.84%)	(27.16%)			
20 %	163	53	216	.2477	.4839
	(75.46%)	(24.54%)			
30 %	142	47	189	.2634	.4641
	(75.13%)	(24.87%)			
40 %	120	42	162	.2713	.4949
	(74.07%)	(25.93%)			
50 %	98	37	135	.2654	.4905
	(72.59%)	(27.41%)			
60 %	79	29	108	.2708	.4778
	(73.15%)	(26.85%)			
70 %	62	19	81	.2329	.4366
	(76.54%)	(23.46%)			
80 %	40	14	54	.2581	.4543
	(74.07%)	(25.93%)			
90 %	16	11	27	.4010	.6207
	(59.26%)	(40.74%)			

همانطور که پیداست به ازای اندازه ی مجموعه ی دادههای آموزشی از ۱۰ تا ۸۰ درصد کل مجموعه ی داده، خطای تست (از هر دو نوع MAE یا MAE) چندان نوسانی نداشته و به ازای اندازه ی ۹۰ درصد، ناگهان میزان خطای تست افزایش

(0

Training Data	Tree Spec. (Unpruned		Tree Spec. (Pruned)		
Percentage	Size of the	Number	Size of the	Number	Total
	Tree	of Leaves	Tree	of Leaves	Number
					of Test Instances
10 %	62	36	43	25	243
20 %	62	36	43	25	216
30 %	62	36	43	25	189
40 %	62	36	43	25	162
50 %	62	36	43	25	135
60 %	62	36	43	25	108
70 %	62	36	43	25	81
80 %	62	36	43	25	54
90 %	62	36	43	25	27

همانطور که پیداست در عین این که با عملیات هرس کردن، اندازه ی درخت حاصل کاهش یافته و این مسئله جهت جلوگیری از بیش برازش می باشد؛ اما با تغییر سهم دادههای آموزشی اندازه ی درخت هرسشده و درخت هرسنشده تغییری نمی کند و این مسئله حاکی از آن است که الگوریتم ما بنا به هر تعداد از دادههای آموزشی، درخت تصمیم یکسانی تولید می نماید.

و)

Training	Unpruned	Pruned
Data	Tree	Tree
Percentage	RMSE	RMSE
60 %	.4778	.4666
100 %	.2035	.2430

همانطور که قابل مشاهده است، در حالت ۶۰ درصد داده ی آموزشی، با هرسکردن درخت تصمیم، میزان خطای RMSE کاهش مییابد؛ و این نشان از آن دارد که درخت نهائی با عملیات هرسکردن و حذف نودهای بیفایده، از حالت OverFitting خارج شده و نسبت به دادههای تست عملکرد بهتری از خود نشان می دهد. اما در مورد ۱۰۰ درصد دادههای آموزشی مشاهده می شود که خطای RMSE افزایش می یابد و این نشان دهنده ی آن است که درخت تصمیم نسبت به دادههای آموزشی می OverFit شده و کوچکترین جزئیات را نیز در نظر گرفته است و در نتیجه با عملیات هرسکردن و اعمال مجدد دادههای آموزشی به عنوان دادههای تست، شاهد افزایش خطای تست خواهیم بود.

چرا که در مورد انتخاب بخشی از مجموعه ی داده به عنوان دادههای آموزشی و نه همه ی آن، اگر اندازه ی درخت بسیار بزرگ باشد، خطر OverFitting نسبت به دادههای آموزشی و Generalization ضعیف نسبت به نمونههای جدید یا همان مجموعه ی تست افزایش می یابد و از طرفی یک درخت بسیار کوچک نیز ممکن است قادر به ضبط اطلاعات ساختاری

حائز اهمیت درباره ی فضای نمونه نباشد. هر چند دشوار است که بگوئیم در چه زمانی الگوریتم یادگیری درخت تصمیم باید توقف نماید، چرا که غیر ممکن است که بگوئیم فرضاً با اضافه کردن یک نود اضافه میزان خطا به سبک چشمگیری کاهش خواهد یافت و این مسئله البته تحت عنوان «اثر افق» شناخته می شود.

در اینجا نیز (۶۰ درصد دادههای آموزشی) با هرس کردن درخت تصمیم نتایج تست بهتری حاصل شده و خطر بیشبرازش نسبت به دادههای آموزشی کاهش مییابد.

(;

Test Option:	10-Fold	Cross-validation
--------------	---------	------------------

Unpruned								Pruned						
Tree Spec.		Classification Summary			Test Errors		Tree Spec.		Classification Summary			Test Errors		
Size of the Tree	Number of Leaves	Correctly Classified Instances	Incorrectly Classified Instances	Total Number of Instances	MAE	RMSE	Size of the Tree	Number of Leaves	Correctly Classified Instances	Incorrectly Classified Instances	Total Number of Instances	MAE	RMSE	
85	50	199 (73.70%)	71 (26.30%)	270	.2779	.4854	58	33	197 (72.96%)	73 (27.4%)	270	.2856	.4747	