POWER TRANSISTOR DATABOOK

NATIONAL SEMICONDUCTOR

POWER TRANSISTOR

DATABOOK

92-Plus

TO-202

TO-220

TO-126

TO-3

Processes

7

2

3

4

5

6

Introduction

Here is the new Power Transistor catalog from National Semiconductor Corporation. It contains information on all of National's Power Transistors, as of this date.

Included in this catalog is a part number to process conversion listing and a reference guide showing all device types available for any process/package combination.

Because National is rapidly expanding its Power Transistor capability, if you don't find the device you want, contact your nearest sales representative for additional information.

Manufactured under one or more of the following U.S. patents: 3083262, 3189758, 3231797, 3303356, 3317671, 3518750, 3381071, 3408542, 3421025, 3426423, 3440498, 3519897, 3557431, 3560765, 3566218, 3571630, 3575609, 3579059, 3593069, 3597640, 3607469 3617859. 3631312. 3633052, 3638131, 3648071, 3651565, 3693248.

Ordering Information

Devices are identified by a part number consisting of both alpha and numeric digits. Part numbers may be either JEDEC or PRO Electron registered numbers, or in-house numbers. Examples of each follow.

1. 2N4918 JEDEC Registered Numbering System BD675 PRO Electron Type Designating Code

2.	92PU01	PACKAGE	PREFIX
		D40, D41	TO-202
	└─Device Number	D42, D43	TO-202
		D44, D45	TO-220
	Package Prefix	MJE	TO-126, TO-220
		NCBJ	TO-126
		NCBS	TO-39
		NCBT	TO-92
	•	NCBW	TO-220
		NSD	TO-202
		NSP	TO-220
		TIP	TO-220
		92P	92-Plus

Table of Contents

Lage maex.	'
Introduction	2
Ordering Information	3
Alpha-Numerical Index	9
Power Transistor Reference Guide	13
National Semiconductor Power Transistor Listing	17
Section 1—92-Plus	
92PE37A thru 92PE37C	1-3
92PE77A thru 92PE77C	1-3
92PE487 thru 92PE489	1-5
92PU01, 92PU01A	1-7
92PU51, 92PU51A	1-7
92PU05 thru 92PU07	1-9
92PU55 thru 92PU57	1-9
92PU10	1-11
92PU45, 92PU45A	1-13
321 043, 321 043A	1-13
A 11 A 180 AAA	
Section 2–TO-202	
NSDU01, NSDU01A	2-3
NSDU51. NSDU51A	2-3
NSDU05 thru NSDU07	2-5
NSDU55 thru NSDU57	2-5
NSDU45, NSDU45A	2-7
NSD3439. NSD3440	2-7
NSD102 thru NSD106	
NSD202 thru NSD206	
NSD131 thru NSD135	
NSD6178, NSD6179	
NSD6180, NSD6181	
NSE180, NSE181	
NSE170, NSE171	2-17
Section 3–TO-220	
D44C1 thru D44C12	3-3
D45C1 thru D45C12	3-3
NSP41	3-5
NSP41A	3-5
NSP41B	3-5
NSP41C.	3-5
	3-5
NSP42.	
NSP42A	3-5
NSP42B	3-5

Table of Contents (Continued)

Section 3—TO-220 (Continued)

NSP42C	3-5
NSP520, NSP521	3-7
NSP370, NSP371	3-7
2N4921 thru 2N4923	3-9
NSP4921 thru NSP4923	3-9
2N4918 thru 2N4920	3-9
NSP4918 thru NSP4920	
NSP5190 thru NSP5195	
TIP29	
TIP29A	
TIP29B	
TIP29C	
TIP30	
TIP30A	
TIP30B	
TIP30C	
TIP31	
TIP31A	•
TIP31B	
TIP31C	
TIP32	
TIP32A	
TIP32B	
TIP32C	
TIP61	
TIP61A	
TIP61B	
TIP61C	
TIP62	
TIP62A	
TIP62B	
TIP62C	
TIP110	
TIP111	
TIP112	
TIP115	
TIP116	
TIP117	
TIP120	
TIP125	
2N5293 thru 2N5298	
2N6106 thru 2N6111	3-31

Table of Contents (Continued)

Section 3—TO-220 (Continued)	
2N6121 thru 2N6123	3-33
2N6124 thru 2N6126	3-33
2N6129 thru 2N6131	
2N6132 thru 2N6134	
2N6288 thru 2N6293	3-37
Section 4-TO-126	
MJE800 thru MJE803	4-3
MJE700 thru MJE703	4-3
2N6037 thru 2N6039	4-7
2N6034 thru 2N6036	4-7
Section 5-TO-3	
2N3713 thru 2N3716	5-3
2N3789 thru 2N3792	5-3
2N5873, 2N5874	5-7
2N5871, 2N5872	5-7
2N5881, 2N5882	5-11
2N5879, 2N5880	5-11
2N6055, 2N6056	5-15
2N6053, 2N6054	5-15
Section 6—Processes	
Process 35 RF-HF Power Amplifier	6-3
Process 36 High Voltage Power	6-5
Process 37 Medium Power	6-7
Process 38 Medium Power	6-9
Process 39 Medium Power	
Process 77 Medium Power	
Process 78 Medium Power	
Process 79 Medium Power	
Process 2C Epitaxial Power	
Process 2E Epitaxial Power	
Process 2J Power Darlington	
Process 3C Epitaxial Power	
Process 3E Epitaxial Power	
Process 3J Power Darlington	
Process 4A Epitaxial Power	
Process 5A Epitaxial Power	p-33

Alpha-Numerical Index

2N3713	5-3
2N3714	5-3
2N3715	5-3
2N3716	5-3
2N3789	5-3
2N3790	5-3
2N3791	5-3
2N3792	5-3
2N4918	3-9
2N4919	3-9
2N4920	3-9
2N4921	3-9
2N4922	3-9
2N4923	3-9
2N5293	3-29
2N5294	3-29
2N5295	3-29
2N5296	3-29
2N5297	3-29
2N5298	3-29
2N5871	5-7
2N5872	5-7
2N5873	
2N5874	
2N5879	
2N5880	
2N5881	
2N5882	
2N6034	
2N6035	
2N6036	
2N6037	
2N6038	
2N6053.	
2N6054.	
2N6055.	
2N6056.	
2N6106.	
2N6107	
2N6108.	
2N6109	7.71
	3-31
2N6110	3-31 3-31
2N6110	3-31 3-31 3-31
2N6110. 2N6111. 2N6121.	3-31 3-31 3-31 3-33
2N6110. 2N6111. 2N6121. 2N6122.	3-31 3-31 3-31 3-33 3-33
2N6110. 2N6111. 2N6121.	3-31 3-31 3-31 3-33 3-33 3-33
2N6110. 2N6111. 2N6121. 2N6122. 2N6123.	3-31 3-31 3-31 3-33 3-33 3-33 3-33
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124.	3-31 3-31 3-31 3-33 3-33 3-33 3-33
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124. 2N6125.	3-31 3-31 3-33 3-33 3-33 3-33 3-33 3-33
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124. 2N6125. 2N6126.	3-31 3-31 3-33 3-33 3-33 3-33 3-33 3-33
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124. 2N6125. 2N6126. 2N6129.	3-31 3-31 3-33 3-33 3-33 3-33 3-33 3-35 3-35
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124. 2N6125. 2N6126. 2N6129. 2N6130.	3-31 3-31 3-33 3-33 3-33 3-33 3-33 3-35 3-35
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124. 2N6125. 2N6126. 2N6129. 2N6130. 2N6131.	3-31 3-31 3-33 3-33 3-33 3-33 3-35 3-35
2N6110. 2N6111. 2N6121. 2N6122. 2N6123. 2N6124. 2N6125. 2N6126. 2N6129. 2N6130. 2N6131. 2N6132.	3-31 3-31 3-33 3-33 3-33 3-33 3-35 3-35

Alpha-Numerical Index (Continued)

2N6289	3-37
	3-37
2N6291	
	3-37
2N6293	3-37
92PE37A	1-3
92PE37B	1-3
92PE37C	1-3
92PE77A	1-3
92PE77B	1-3
92PE77C	1-3
92PE487	1-5
92PE488	1-5
92PE489	1-5
92PU01	1-7
92PU01A	1-7
92PU05	1-9
92PU06	1-9
92PU07	1-9
92PU10	1-11
92PU45	1-13
92PU45A	1-13
92PU51	1-7
92PU51A	1-7
92PU55	1-9
92PU56	1-9
92PU57	1-9
D44C1	3-3
D44C2	3-3
D44C3	3-3
D44C4	3-3
D44C5	3-3
D44C6	3-3
D44C7	3-3
D44C8	3-3
D44C9	3-3
D44C10	3-3
D44C11	3-3
D44C12	3-3
D45C1	3-3
D45C2	3-3
D45C3	3-3
D45C4	3-3
D45C5	3-3
D45C6	3-3
D45C7	3-3
D45C8	3-3
D45C9	3-3
D45C10	3-3
D45C11	3-3
D45C12	3-3
MJE700	4-3
MJE701	4-3
MJE702	4-3
MJE703	4-3
MJE800	4-3

Alpha-Numerical Index (Continued)

MJE801	4-3
MJE802	4-3
MJE803	4-3
NSD102	2-11
NSD103	2-11
NSD104	2-11
NSD105	2-11
NSD106	2-11
NSD131	2-13
NSD132	2-13
NSD133	2-13
NSD134	2-13
NSD135	2-13
NSD202	2-11
NSD203	2-11
NSD204	2-11
NSD205	2-11
NSD206	2-11
NSD3439	2-9
NSD3440	2-9
NSD6178	2-15
NSD6179	2-15
NSD6180	2-15
NSD6181	2-15
NSDU01	2-3
NSDU01A	2-3
NSDU05	2-5
NSDU06	2-5
NSDU07	2-5
NSDU45	2-7
NSDU45A	2-7
NSDU51	2-3
NSDU51A	2-3
NSDU55	2-5
NSDU56	2-5
NSDU57	2-5
NSE170	2-17
NSE171	2-17
NSE180	2-17
NSE181	2-17
NSP41	3-5
NSP41A	3-5
NSP41B	3-5
NSP41C	3-5
NSP42	3-5
NSP42A	3-5
NSP42B	3-5
NSP42C	3-5
NSP370	3-7
NSP371	3-7
NSP520	3-7
NSP521	3-7
NSP4918	3-9
NSP4919	3-9
NSP4920	3-9
NSP4921	3-9
	J-3

Alpha-Numerical Index (Continued)

NSP4922	3-9
NSP4923	
NSP5190	
NSP5191	
NSP5192	
NSP5193	
NSP5194	
NSP5195	
Process 2E Epitaxial Power	
Process 2J Power Darlington	
Process 3C Epitaxial Power	
Process 3E Epitaxial Power	
Process 3J Power Darlington	
Process 4A Epitaxial Power	
Process 5A Epitaxial Power	
Process 35 RF-HF Power Amplifier.	
Process 36 High Voltage Power	
Process 37 Medium Power.	
Process 38 Medium Power.	
Process 39 Medium Power.	
Process 77 Medium Power	
Process 78 Medium Power	
Process 79 Medium Power	
TIP29	
TIP29A	
TIP29B	
TIP29C	
TIP30	
TIP30A	
TIP30B	3-15
TIP30C	3-15
TIP31	3-17
TIP31A	3-17
TIP31B	3-17
TIP31C	3-17
TIP32	3-17
TIP32A	3-17
TIP32B	3-17
TIP32C	3-17
TIP61	3-19
TIP61A	3-19
TIP61B	3-19
TIP61C	3-19
TIP62	3-19
TIP62A	
TIP62B	
TIP62C	
TIP110	
TIP111	
TIP112	
TIP115	
TIP116	
TIP117	
TIP120	
TIP125	3-25

Power Transistor Reference Guide

	,								PACK	KAGE						
		MAXIMUM RATINGS (Notes 1 and 2)	92 + (ECB) PD = 1 W @ TA = 25°C		92 + (EBC) PD = 1 W @ TA = 25°C		TO-202 (EBC) PD = 1.75 W @ TA = 25° C PD = 10 W @ TC = 25° C		TO-202 (BCE) PD = 1.75 W @ TA = 25°C PD = 10 W @ TC = 25°C		TO-126 $P_D = 1.5 \text{ W } @$ $T_A = 25^{\circ}\text{C}$ $P_D = 40 \text{ W } @$ $T_C = 25^{\circ}\text{C}$		TO-220 $P_D = 2 \text{ W } @$ $T_A = 25^{\circ}\text{ C}$ $P_D = 90 \text{ W } @$ $T_C = 25^{\circ}\text{ C}$		TO-3 PD = 150 W @ TC = 25°C	
			NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP
		BV _{CEO} = 50V, I _C = 1.5A, (P05)			92PU45 92PU45A		NSDU45 NSDU45A NSD151 NSD152 NSD153 NSD154 D40C1-8									
13	DARLINGTON POWER	BV _{CEO} = 100V, I _C = 6A, (P2J/3J)					5,00,0				NSP2102	BD676 BD676A BD678 BD678A BD680 BD680A MJE700-3 NSP2091 2N6034-6	NSP2100	NSP696 NSP696A NSP698 NSP698A NSP700 NSP700A NSP702 NSP2090 NSP2092 NSP2093 TIP115-7		
		BV _{CEO} = 100V, I _C = 10A, (P4K/5K)						`					TIP121 TIP122	TIP125-7	2N6055-9 2N6300 2N6301 MJ1000 MJ1001	2N6050-4 2N6298 2N6299 MJ900 MJ901
	'GE	BV _{CEO} = 500V, I _C = 100 mA, (P48)	92PE487 92PE488 92PE489		92PU10 92PU391 92PU392 92PU393		NSDU10 NSD131-5 NSD3439 NSD3440									
	HIGH VOLTAGE	BV _{CEO} = 350V, I _C = 500 mA, (P36)									MJE340 MJE341 MJE344 MJE3439 MJE3440 2N5655 2N5656 2N5657	,			-	

-3

Power Transistor Reference Guide

		92 +	(ECB)	92 +	(EBC)	TO-202	2 (EBC)	TO-20:	KAGE .	тс	0-126	TO	-220	Т т	0-3
	MAXIMUM RATINGS (Notes 1 and 2)	92 + (ECB) PD = 1 W @ TA = 25°C		P _D = 1 W @ T _A = 25°C		P _D = 1.75 W @ T _A = 25° C P _D = 10 W @ T _C = 25° C		P _D = 1.75 W @ T _A = 25°C P _D = 10 W @ T _C = 25°C		P _D = 1.5 W @ T _A = 25°C P _D = 40 W @ T _C = 25°C		P _D = 2 W @ T _A = 25°C P _D = 90 W @ T _C = 25°C		P _D = 150 W @ T _C = 25°C	
		NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP
	BV _{CEO} = 45V, I _C = 1.5A, (P37)	BD373A BD373A-10 BD373A-16 BD373A-25	}	BD371A BD371A-10 BD371A-16 BD371A-25 92PU01 92PU01A		D40D1-5 NSDU01-3 NSDU01A		D42C1-6 NSE180		BD135 MJE180 MJE720		,			
SE .	BV _{CEO} = 45V, I _C = 1.5A, (P77)				BD372A BD372A-10 BD372A-16 BD372A-25 92PU51 92PU51A		D41D1 D41D2 D41D4 D41D5 D41E1 NSDU51 NSDU51A NSDU52 NSD202 NSD203		D43C1-6 NSE170	,	BD136 MJE170 MJE710				
GENERAL PURPOSE	BV _{CEO} = 80V, I _C = 1.5A, (P38)	BD373B BD373B-10 BD373B-15 BD373B-25 BD373C-6 BD373C-10 BD373C-10 BD373C-16 92PE37A 92PE37B		BD371B BD371B-10 BD371B-16 BD371B-25 BD371C BD371C-6 BD371C-10 BD371C-10		D40D7 D40D8 D40D10 D40D11 D40D13 D40D14 D40E1 D40E5 D40E7 NSD005 NSD6178 NSD6179		D42C7-12 NSE181		BD137 MJÉ181 MJE721					
	BV _{CEO} = 80V, I _C = 1.5A, (P78)		BD372A BD372A-10 BD372A-16 BD372A-25 BD372B BD372B-10 BD372B-16 BD372B-25 BD372C-6 BD372C-6		BD370A-10 BD370A-10 BD370A-16 BD370A-25 BD370B BD370B-10 BD370B-16 BD370C-25 BD370C-6 BD370C-10		D41D7 D41D8 D41D10 D41D11 D41D13 D41D14 D41E5 D41E7 NSDU55 NSD6180 NSD6181		D43C7-12 NSE171		BD138 MJE171 MJE711				

__

Power Transistor Reference Guide

									PACK	AGE						
1			92 +	(ECB)	92 +	(EBC)	TO-202		TO-202	(BCE)	TO-	126	TO-2	220	TO)-3
		MAXIMUM RATINGS (Notes 1 and 2)	P _D = T _A =	1 W @ 25°C	P _D = T _A =	1 W @ 25°C	P _D = 1.7 T _A = 1 P _D = 1 T _C = 2	25°C 0 W @	P _D = 1.7 T _A = 3 P _D = 10 T _C = 2	25°C D W @	P _D = 1. T _A = P _D = 4 T _C =	25°C 0 W @	P _D = 2 T _A = 2 P _D = 90 T _C = 2	25°C) W @	P _D = 1	
1.			NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP
		BV _{CEO} = 80V, I _C = 1.5A, (P78) BV _{CEO} = 110V, I _C = 1.5A,	BD373D BD373D-6 BD373D-10	BD372C-16 92PE77A 92PE77B 92PE77C	BD371D BD371D-6	BD370C-16	NSDU06 NSDU07				BD139 MJE182			-		
		(P39)	BD3/3D-10		BD371D-10 92PU05 92PU06 92PU07		NSD104-6				MJE722	`				
		BV _{CEO} = 110V, I _C = 1.5A, (P79)		BD372D BD372D-6 BD372D-16		BD370D BD370D-6 BD370D-16 92PU55 92PU56 92PU57	NSDU56 NSDU57 NSDU204-6				BD140 MJE172 MJE712					
15	GENERAL PURPOSE	BV _{CEO} = 100V, I _C = 3A, (P2C/3C)				,					BD233 BD235 BD237 BD433 BD435 BD437 BD439 BD441 BD520 BD521 2N4921-3	BD234 BD236 BD238 BD434 BD436 BD438 BD440 BD442 MJE370 MJE520 MJE521 2N4918-20	D44C1 D44C2 D44C4 D44C5 D44C7 D44C8 D44C10 NSP520 NSP521 NSP577 NSP579 NSP581 NSP581 NSP2520 NSP4921-3 TIP29 TIP29A,B,C TIP31 TIP31A,B,C TIP61A,B,C	TIP32A,B,C TIP62 TIP62A,B,C		
		BV _{CEO} = 100V, I _C = 6A, (P2E/3E)									2N5190-2	MJE371 2N5193-5	D44C3 D44C6 D44C11 D44C12	D45C3 D45C6 D45C11 D45C12		

		l I						PAC	KAGE			-			
	MAXIMUM RATINGS	RATINGS PD = 1 W @) = 1 W @ PD = 1 W @		TO-202 (EBC) PD = 1.75 W @ TA = 25°C PD = 10 W @ TC = 25°C		TO-202 (BCE) PD = 1.75 W @ TA = 25°C PD = 10 W @ TC = 25°C		P _D = 1	TO-126 PD = 1.5 W @ TA = 25°C PD = 40 W @ TC = 25°C		-220 2 W @ - 25°C	TO-3 PD = 150 W @ TC = 25°C	
	(Notes 1 and 2)									PD = 4			90 W @ · 25°C		
		NPN	PNP	NPN	PNP	NPN	PNP	NPN	PNP .	NPN	PNP	NPN	PNP	NPN	PNP
SE	BVCEO = 100V, IC = 6A, (P2E/3E)											2N5293-8 2N6121-3	NSP42 NSP42A NSP42B NSP42C NSP371 NSP586 NSP588 NSP590 NSP596 NSP598 NSP598 NSP5193-5 2N6124-6 2N6132-4 NSP2490 NSP2490		
GENERAL PURPOSE	BVCEO = 100V, I _C = 8A, (P4A/5A)											NSP205 NSP2020 NSP2021 NSP2480-3 NSP3055 NSP5977-9 TIP41 TIP41A,B,C	NSP105 NSP2010 NSP2011 NSP2955 NSP5974-6 TIP42 TIP42A,B,C	2N3055 2N5873 2N5874 2N5877 2N5878 MJ2801 MJ2840,1 MJ3055	2N5871 2N5872 2N5875 2N5876 2N6594 MJ2901 MJ2940 MJ2941
	BV _{CEO} = 100V, I _C = 12A, (P4B/5B)	٠.	-					÷						2N3713-6 2N5632-4 2N5758-60 2N6253 2N6254 2N6371	2N3789-92 2N6226-31 MJ2955
	BVCEO = 100V, I _C = 15A, (P4C/5C)	,	2											2N5629-31 2N5758-60 2N5881 2N5882 2N6257 2N6258	2N5879 2N5880 2N6029-31

Note 1: BV_{CEO} and I_C values are maximum ratings. For specific conditions and limits, refer to individual process data sheets.

Note 2: Process numbers are in parentheses.

National Semiconductor Power Transistor Listing

PART NUMBER	PROCESS	· PART NUMBER	PROCESS	PART NUMBER	PROCESS	PART NUMBER	PROCESS
BD135	37	BD371B-16	38	BD377-16	38	BD680A	3J
BD136	77	BD371B-25	38	BD377-25	38	BD681	2J
BD137	38	BD371C	38	BD377-6	38	BD682	3J
BD138	78	BD371C-10	38	BD378	78	BD733	2C
BD139	39	BD371C-16	38	BD378-10	78	BD734	3E
BD140	79	BD371C-6	38	BD378-16	78	BD735	2C
BD201	2G	BD371D	39	BD378-25	78	BD736	3E
BD202	3G	BD371D-10	39	BD378-6	78	BD737	2C
BD233	2C	BD371D-6	39	BD379	39	BD738	3E
BD234	3C	BD372A	78	BD379-10	39	D40C1	05
BD235	2C	BD372A-10	78	BD379-16	39	D40C2	05
BD236	3C	BD372A-16	78	BD379-25	39 .	D40C3	05
BD237	2C	BD372A-25	78	BD379-6	39	D40C4	05
BD238	3C	BD372B	78	BD380D-6	79	D40C5	05
BD239	2C	BD372B-10	78	BD380	79	D40C7	05
BD239A	2C	BD372B-16	78	BD380-10	79	D40C8	05
BD239B	2C	BD372B-25	78	BD380-16	79	D40D1	38
BD239C	2C	BD372C	78	BD380-25	79	D40D10	38
BD240	3C	BD372C-10	78	BD433	2E	D40D11	38
BD240A	3C	BD372C-16	78	BD434	3E	D40D13	38
BD240B	3C	BD372C-6	78	BD435	2E	D40D14	38
BD240C	3C	BD372D	79	BD436	3E	D40D2	38
BD241	2C	BD372D-10	79	BD437	2E	D40D3	38
BD241A	2C	BD372D-6	79	BD438	3E	D40D4	38
BD241B	2C	BD373A	37	BD439	2E	D40D5	38
BD241C	2C	BD373A-10	37	BD440	3E	D40D7	38
BD242	3E	BD373A-16	37	BD441	2E	D40D8	38
BD242A	3E	BD373A-25	37	BD442	3E	D40E1	38
BD242B	3E	BD373B	38	BD533	2E	D40E5	38
BD242C	3E	BD373B-10	38	BD534	3E	D40E7	38
BD370A	78	BD373B-16	38	BD535	2E	D40N1	48
BD370A-10	78	BD373B-25	38	BD536	3E	D40N2	48
BD370A-16	78	BD3730	38	BD537	2E	D40N3	48
BD370A-25	78	BD3730-10	38	BD538	3E	D40N4	48
BD370B	78	BD373C-16	38	BD633	2C	D40N5	48
BD370B-10	78	BD373C-6	38	BD634	3C	D40P1	15
BD370B-16	78	BD373C	39	BD635	2C	D40P3	15
BD370B-25	78	BD373C-10	39	BD636	3C	D40P5	15
BD370C	78	BD373D-6	39	BD637	2C	D41D1	· 78
BD370C-10	78	BD375	38	BD638	3C	D41D10	78
BD370C-16	78	BD375-10	38	BD675	2J	D41D11	78 78
BD370C-6	78	BD375-16	38	BD675A	2J	D41D13	78 78
BD370D	79	BD375-25	38	BD676	3J	D41D13	78
BD370D-10		BD375-6	38	BD676A	3J	D41D14	78 78
BD370D-6	79	BD376	78	BD677	2J	D41D2 D41D4	78
BD371A	37	BD376-10	78	BD677A	2J	D41D4 D41D5	76 -78
BD371A-10		BD376-16	78	BD678	3J	D41D7	78
BD371A-16	37	BD376-25	78	BD678A	3J	D41D8	78
BD371A-25	37	BD376-23	78	BD679	2J	D41E1	78
BD371B	38	BD377	38	BD679A	2J	D41E5	78
BD371B-10	38	BD377-10	38	BD680	3J	D41E7	78
10							, 0

National Semiconductor Power Transistor Listing (Continued)

PART NUMBER	PROCESS	PART NUMBER	PROCESS	PART NUMBER	PROCESS	PART NUMBER	PROCESS
D42C1	37	D45C3	3E	NSDU45	05	NSP520	2C
D42C10	38	D45C4	3C	NSDU45A	05	NSP521	2C
D42C11	38	D45C5	3C	NSDU51	77	NSP575	2C
D42C12	38	D45C6	3E	NSDU51A	[*] 77	NSP576	3C
D42C2	37	D45C7	3C	NSDU52	. 77	NSP577	2C
D42C3	37	D45C8	3C	NSDU55	78	NSP578	3C
D42C4	37 ·	D45C9	3E	NSDU56	79	NSP579	2C
D42C5	37	D45H1	5A	NSDU57	79	NSP580	3C
D42C6	37	D45H10	5A	NSD102	37	NSP581	2C
D42C7	38	D45H11	5A	NSD103	37	NSP582	3C
D42C8	38	D45H2	5A	NSD104	39	NSP585	2E
D42C9	38	D45H4	5A	NSD105	39	NSP586	3E
D42R1	36	D45H5	5A	NSD106	39	NSP587	2E
D42R2	36	D45H7	5A	NSD123	08	NSP588	. 3E
D43C1	77	D45H8	5A	NSD127	15	NSP589	2E
D43C10	38	MJE170	77	NSD128	15	NSP590	3E
D43C11	78	MJE171	78	NSD129	15	NSP595	2E
D43C12	78	MJE172	79	NSD131	48	NSP596	3E
D43C2	77	MJE180	37	NSD132	48	NSP597	2E
D43C3	77	MJE181	38	NSD134	48	NSP5974	5A
D43C4	77	MJE182	39	NSD135	48	NSP5975	5A
D43C5	77	MJE340	36	NSD151	. 05	NSP5976	5A
D43C6	77	MJE341	36	NSD152	05	NSP5977	4A
D43C7	78	MJE3439	36	NSD153	05	NSP5978	4A
D43C8	78	MJE344	36	NSD154	05	NSP5979	4A
D43C9	78	MJE3440	36	NSD202	. 77	NSP598	3E
D44C1	2C	MJE370	3C	NSD202	77	NSP5980	5A
D44C10	2C	MJE371	3E	NSD204	79	NSP5981	5A
D44C11	2E	MJE520	2C	NSD205	79	NSP5982	5A
D44C12	2E	MJE521	2C	NSD205	79	NSP5983	4A
D44C2	2C	MJE700	3J	NSD3439	36	NSP5984	4A
D44C3	2E	MJE701	3J	NSD3440	36	NSP5985	4A
D44C4	2C	MJE702	3J	NSD457	48	NSP599	2E
D44C5	2C	MJE703	31	NSD458	48	NSP600	3E
D44C6	2E	MJE710	77	NSD459	48	NSP601	4A
D44C7	2C	MJE711	78	NSD6178	38	NSP602	5A
D44C8	2C	MJE712	, 79	NSD6179	38	NSP695	2J
D44C9	2E	MJE720	37	NSD6180	78	NSP695A	2J
D44H1	4A	MJE721	38	NSD6181	78	NSP696	23 3J
D44H10	4A	MJE722	39	NSE170	77	NSP696A	3J
D44H11	4A	MJE800	2J	NSE170	78	NSP697	2J
D44H2	4A	MJE801	2J	NSE180	37	NSP697A	2J
D44H4	4A	MJE802	2J	NSE181	38	NSP698	2J
D44H5	4A	MJE803	2J	NSE457	48	NSP698A	3J
D44H7	4A	NSDU01	37	NSE458	48	NSP699	. 2J
D44H8	4A	NSDU01A	37	NSE459	48	NSP699A	23 2J
D45C1	3C	NSDU02	37	NSP5191	46 . 2E	NSP700	2J
D45C10	3C	NSDU05	38	NSP5191	· 2E		3J
D45C11	3E	NSDU06	39	NSP5192	3E	NSP700A	33 2J
D45C12	3E	NSDU07	39	NSP5193	3E	NSP701 NSP105	2J 5A
D45C2	3C	NSDU10	48	NSP5194 NSP5195	3E		5A 5A
2.002	00		70	1491 9 199	JL	NSP2010	ЭA

National Semiconductor Power Transistor Listing (Continued)

PART NUMBER	PROCESS	PART NUMBER	PROCESS	PART NUMBER	PROCESS	PART NUMBER	PROCESS
NSP2011	5A	TIP131	4K	2N6050	5K	2N5871	5A
NSP2020	4A	TIP132	4K	2N6051	5K	2N5872	5A .
NSP2021	4A	TIP135	5K	2N6052	5K	2N5875	5A
NSP205	4A	TIP136	5K	2N6053	5K	2N5876	5A
NSP2090	3J	TIP137	5K	2N6054	5K	2N6594	5A
NSP2091	3J	TIP29	2C	2N6298	5K	2N3713	4B
NSP2092	3J	TIP29A	2C	2N6299	5K	2N3714	4B
NSP2093	3J	TIP29B	2C	2N5655	36	2N3715	4B
NSP2100	2J	TIP29C	2C	2N5656	36	2N3716	4B
NSP2101	2J	TIP30	3C	2N5657	36	2N5632	4B
NSP2102	2J	TIP30A	3C	2N4921	2C	2N5633	4B
NSP2103	2J	TIP30B	3C	2N4922	2C	2N5634	4B
NSP2370	3C	TIP30C	3C	2N4923	2C	2N5758	4B
NSP2480	4A	TIP31	2C	2N4918	3C	2N5759	4B
NSP2481	4A	TIP31A	2C	2N4919	3C	2N5760	4B
NSP2482	4A	TIP31B	2C	2N4920	3C	2N6253	4B
NSP2483	4A	TIP31C	2C	2N5293	2E	2N6254	4B
NSP2490	3E	TIP32	3C	2N5294	2E	2N6371	4B
NSP2491	3E	TIP32A	3C	2N5295	2E	2N3789	5B
NSP2520	2C	TIP32B	3C	2N5296	4 2E	2N3790	5B
NSP2955	5A	TIP32C	3C	2N5297	2E	2N3791	5B
NSP3054	2E	TIP41	4A	2N5298	2E	2N3792	5B
NSP3055	4A	TIP41A	4A	2N6121	2E	2N6226	5B
NSP370	3C	TIP41B	4A	2N6122	2E	2N6227	5B
NSP371	3C	TIP41C	4A	2N6123	2E	2N6228	5B
NSP3740	3C	TIP42	5A	2N6129	2E	2N6229	5B
NSP3741	3C	TIP42A	5A	2N6130	2E	2N6230	5B
NSP41	2E	TIP42B	5A	2N6131	2E	2N6231	5B
NSP41A	2E	TIP42C	5A	2N6288	2E	2N5629	. 4C
NSP41B	2E	TIP61	2C	2N6289	2E	2N5630	4C
NSP41C	2E	TIP61A	2C	2N6290	2E	2N5631	4C
NSP42	3E	TIP61B	2C	2N6291	2E	2N5758	4C
NSP42A	3E	TIP61C	2C	2N6292	2E	2N5759	4C
NSP42B	3E	TIP62	3C	2N6293	2E	2N5760	4C
NSP42C	3E	TIP62A	3C	2N6124	3E	2N5881	4C
NSP4918	3C	TIP62B	3C	2N6125	3E	2N5882	4C
NSP4919	3C	TIP62C	3C	2N6126	3E	2N6257	4C
NSP4920	3C	2N6386	2J	2N6132	3E	2N6258	4C
NSP4921	2C	2N6037	2J	2N6133	3E	2N5879	5C
NSP4922	2C	2N6038	2J	2N6134	3E	2N5880	5C
NSP4923	2C	2N6039	2J	2N6106	5A	2N6029	5C
NSP5190	2E	2N6034	3J	2N6107	5A	2N6030	5C
NSP702	3J	2N6035	3J	2N6108	5A	2N6031	5C
TIP110	2 J	2N6036	3J	2N6109	5A		
TIP111	2J	2N6055	4K	2N6110	5A		
TIP112	2J	2N6056	4K	2N6111	5A		
TIP115	3J	2N6057	4K	2N3055	4A		
TIP116	3J	2N6058	4K	2N5873	4A		
TIP117	3J	2N6059	4K	2N5874	4A		
TIP120	2J	2N6300	4K	2N5877	4A		
TIP130	4K	2N6301	4K	2N5878	4A		
			•••		-		

Section 1

92-Plus

			- the Annual Section S
,			
		•	

92-PLUS

NPN 92PE37A thru 92PE37C PNP 92PE77A thru 92PE77C

Complementary plastic power transistors employing double diffused planar structures and constructed with National's revolutionary "Epoxy B Concept" for exceptional reliability.

Features

High V_{CE} ratings:
 92PE37A, 77A — 45 V min. V_{CEO}
 92PE37B, 77B — 60 V min. V_{CEO}
 92PE37C, 77C — 80 V min. V_{CEO}

Exceptional power dissipation capability:

 $P_{TOT P} = 1.2 \text{ Watts } @ T_A = 25^{\circ} \text{C}$

Maximum Ratings

Parameter	Symbol	92PE37A 92PE77A	92PE37B 92PE77B	92PE37C 92PE77C	Units
Collector-Emitter Voltage	V _{CEO}	45	60	80	V _{DC}
Collector-Base Voltage	V _{CB}	45	60	80	V _{DC}
Emitter-Base Voltage	V _{EB}	5.0	5.0	5.0	V _{DC}
Collector Current (cont.)	Ic	1.0	1.0	1.0	ADC
Collector Current	I _{CM}	2.0	2.0	2.0	ADC
Power Dissipation $(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	Ртот	0.75 2.5	0.75 2.5	0.75 2.5	w w
Practical Power Dissipation*	P _{TOT P}	1.2	1.2	1.2	w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	167 50	167 50	167 50	°C/W °C/W

^{*} Practical Power Dissipation (i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board with total copper run area equal to 1 sq. in. minimum).

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 10 mA, I _B = 0 92PE37A, 77A 92PE37B, 77B 92PE37C, 77C	BV _{CEO}	45 60 80		V V V
Collector Cutoff Current V _{CB} = 60 V, I _E = 0 92PE37A, 77A V _{CB} = 80 V, I _E = 0 92PE37B, 77B V _{CB} = 100 V, I _E = 0 92PE37C, 77C	І _{СВО}		0.1 0.1 0.1	μΑ μΑ μΑ
Emitter Cutoff Current I _C = 0, V _{EB} = 5.0 V	I _{EBO}		100	nA
DC Current Gain $I_C = 50 \text{ mA}, V_{CE} = 2.0 \text{ V}$ $I_C = 250 \text{ mA}, V_{CE} = 2.0 \text{ V}$ $I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}$	h _{FE}	40 40 25		
Collector-Emitter Saturation Voltage $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 1000 \text{ mA}, I_B = 100 \text{ mA}$	V _{CE} (sat)		0.5 1.0	V
Base-Emitter ON Voltage I _C = 1000 mA, V _{CE} = 2.0 V	V _{BE(on)}		1.5	V
Current Gain Bandwidth Product $I_C = 200 \text{ mA}, V_{CE} = 5 \text{ V}, f = 100 \text{ MHz}$	f _T	. 50		MHz
Output Capacitance V _{CB} = 10 V, I _E = 0, f = 1 MHz	C _{ob}		30	pF

92-PLUS

92PE487 thru 92PE489

Triple diffused planar structures built with National's revolutionary "Epoxy B Concept." Designed to provide exceptional reliability and performance.

Features

- TV video output
- TV chroma output
- Line operated class "A" audio

Maximum Ratings

Parameter	Symbol	92PE487	92PE488	92PE489	Units
Collector-Base Voltage	V _{CB}	160	250	300	V _{DC}
Collector-Emitter Voltage	V _{CEO}	160	250	300	V _{DC}
Emitter-Base Voltage	V _{EB}	7	. 7	7	V _{DC}
Collector Current (cont.)	Ic	0.1	0.1	0.1	A _{DC}
Collector Current	I _{CM}	0.3	0.3	0.3	A _{DC}
Base Current	IB	50	50	50	mA _{DC}
Power Dissipation $(T_A = 25)$ $(T_C = 25)$		0.75 2.5	0.75 2.5	0.75 2.5	w w
Practical Power Dissipation*	P _{TOT P}	1.2	1.2	1.2	w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	71.4 12.5	71.4 12.5	71.4 12.5	°C/W °C/W

^{*} Practical Power Dissipation (i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board with total copper run area equal to 1 sq. in. minimum).

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics

Parameter		Symbol	Min.	Max.	Units
Collector-Emitter Sustain I _C = 5 mA, I _B = 0	ing Voltage 487 488 489	BVCEO	160 250 300		V _{DC} V _{DC} V _{DC}
Collector Cutoff Current V _{CB} = 100 V V _{CB} = 200 V V _{CB} = 250 V	487 488 489	СВО		50	nA
Emitter Cutoff Current V _{EB} = 3 V	•	I _{EBO}	,	50	, nA
DC Current Gain $I_C = 1 \text{ mA}, V_{CE} = 10 \text{ M}$ $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ M}$ $I_C = 30 \text{ mA}, V_{CE} = 10 \text{ M}$	V	h _{FE1} h _{FE2} h _{FE3}	15 15 30	,	
Collector-Emitter Saturat I _C = 30 mA, I _B = 6 m/	•	V _{CE(sat)}		1.0	Voc
High Frequency Knee Vo I _C = 50 mA	Itage	VCEK	typ. 15	. `	V _{DC}
Collector-Base Junction C	apacitance	C _{cb}		3.0	. pF
Transition Frequency I _C = 10 mA		f _T	typ	o. 50	. MHz

92-PLUS

Complementary plastic power transistors employing double diffused planar structures and constructed with National's revolutionary "Epoxy B Concept" for exceptional performance and reliability.

Applications

- Class "B" audio outputs/drivers
- General purpose switching and lamp drive in industrial and automotive circuits

NPN 92PU01, 92PU01A PNP 92PU51, 92PU51A

Maximum Ratings

Parameter	Symbol	92PU01 92PU51	92PU01A 92PU51A	Units
Collector-Emitter Voltage	V _{CEO}	30	40	V
Collector-Base Voltage	. V _{CB}	40	50	V
Emitter-Base Voltage	V _{EB}	5.0	5.0	V
Collector Current (cont.)	Ic	2.0	2.0	A
Power Dissipation (T _A = 25°C)	P _{DP} *	1.2	1.2	w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	167 50	167 50	°C/W °C/W

^{*}PDp = Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board with total copper run area equal to 1.0 in.2 minimum.

Typical Performance Characteristics

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 10 mA, I _B = 0	BV _{CEO}			
92PU01, U51 92PU01A, U51A		30 40		V
Collector Cutoff Current $V_{CB} = 40 \text{ V}, I_E = 0$ $V_{CB} = 50 \text{ V}, I_E = 0$	ІСВО		0.1 0.1	μA μA
Emitter Cutoff Current $V_{EB} = 5.0 \text{ V, } I_{C} = 0$			0.1	μΑ
DC Current Gain $I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 1000 \text{ mA}, V_{CE} = 1.0 \text{ V}$	h _{FE}	55 60 50		A .?
Collector-Emitter Saturation Voltage $I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$	V _{CE(sat)}		0.5	V
Base-Emitter ON Voltage I _C = 1.0 A, V _{CE} = 1.0 V	V _{BE(on)}		1.2	V
Current-Gain Bandwidth Product $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 20 \text{ MHz}$	f _t	50		MHz
Output Capacitance V _{CB} = 10 V, I _E = 0, f = 1 MHz	C _{ob}		30	pF

92-PLUS

Complementary plastic power transistors employing double diffused planar structures and constructed with National's revolutionary "Epoxy B Concept" for exceptional reliability.

Features

- High V_{CE} ratings
 92PU05, U55 = 60 V min. V_{CEO}
 92PU06, U56 = 80 V min. V_{CEO}
 92PU07, U57 = 100 V min. V_{CEO}
- Exceptional power-to-price ratio

NPN 92PU05 thru 92PU07 PNP 92PU55 thru 92PU57

Maximum Ratings

Parameter	Symbol	92PU05 92PU55	92PU06 92PU56	92PU07 92PU57	Units
Collector-Emitter Voltage	V _{CEO}	60	80	100	V _{DC}
Collector-Base Voltage	V _{CB}	60	80	100	V _{DC}
Emitter-Base Voltage	VEB	4.0	4.0	4.0	V _{DC}
Collector Current (cont.)	Ic	2.0	2.0	2.0	A _{DC}
Power Dissipation (T _A = 25°C)	P _{DP} *	1.2	1.2	1.2	w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	167 50	167 50	167 50	°C/W °C/W

^{*}P_{DP} = Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board with total copper run area equal to 1.0 in.² minimum.

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage 1 _C = 1.0 mA, 1 _B = 0	BV _{CEO}			
92PU05, U55 92PU06, U56 92PU07, U57		60 80 100	•	V V
	Ісво	·	0.1 0.1 0.1	μΑ μΑ μΑ
Emitter Cutoff Current I _C = 0, V _{EB} = 4.0 V	I _{EBO}		100	μΑ
DC Current Gain $I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 250 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 500 \text{ mA}, V_{CE} = 1.0 \text{ V}$	h _{FE}	80 50 20	•	
Collector-Emitter Saturation Voltage $I_C = 250$ mA, $I_B = 10$ mA $I_C = 250$ mA, $I_B = 25$ mA	V _{CE(sat)}		0.5 0.35	V V
Base-Emitter ON Voltage $I_C = 250 \text{ mA}, V_{CE} = 1.0 \text{ V}$	V _{BE(on)}		1.2	V
Current Gain Bandwidth Product $I_C = 200 \text{ mA}, V_{CE} = 5 \text{ V}, f = 100 \text{ MHz}$	f _t	50		MHz
Output Capacitance V _{CB} = 10 V, I _E = 0, f = 1 MHz	C _{ob}		30	pF

92-PLUS

92PU10

Triple diffused planar structures built with National's revolutionary "Epoxy B Concept." Designed to provide exceptional reliability and performance.

Applications

- TV video output
- TV chroma output
- Line operated class "A" audio

Maximum Ratings

Parameter	Symbol	Rating	Units
Collector-Base Voltage	V _{CB}	300	V_{DC}
Collector-Emitter Voltage	V_{CEO}	300	V_{DC}
Emitter-Base Voltage	V_{EB}	7	V_{DC}
Collector Current (cont.)	Ic	0.1	A_{DC}
Power Dissipation (T _A = 25°C)	*P _{DP}	1.2	W
Temperature	T_j , T_{stg}	-55 to +150	°C
Thermal Resistance	heta JC	167 50	°C/W °C/W

^{*}P_{DP} = Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board with total copper run area equal to 1.0 in.² minimum.

Typical Performance Characteristics

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 1 mA, I _B = 0	BV _{CEO}	300		V _{DC}
Collector Cutoff Current V _{CB} = 200 V	СВО		100	nA
Emitter Cutoff Current V _{EB} = 6 V	I _{EBO}		100	nA
DC Current Gain I _C = 1 mA, V _{CE} = 10 V	h _{FE1}	25		
DC Current Gain I _C = 10 mA, V _{CE} = 10 V	h _{FE2}	40		
DC Current Gain $I_C = 30 \text{ mA}, V_{CE} = 10 \text{ V}$	h _{FE3}	40		
Collector-Emitter Saturation Voltage $I_C = 30 \text{ mA}, I_B = 3 \text{ mA}$	V _{CE(sat)}		0.75	V _{DC}
Base-Emitter On Voltage $V_{CE} = 10 \text{ V}$ $I_{C} = 30 \text{ mA}$,	V _{BE(on)}		0.85	V _{DC}
Collector-Base Junction Capacitance V _{CB} = 20 V	C _{cb}		3.5	pF

92-PLUS

92PU45, 92PU45A

Monolithic, double diffused planar power Darlington structures employing National's "Epoxy B" plastic packaging concept for exceptional reliability in amplifier and driver applications.

Features

- Lamp driver
- Digit driver
- Directly compatible with bipolar and MOS I/C drive

Maximum Ratings

Parameter	Symbol	92PU45	92PU45A	Units
Collector-Emitter Voltage	V _{CES} *	40	50	V _{DC}
Collector-Base Voltage	V _{CB}	50	60	V _{DC}
Emitter-Base Voltage	V _{EB}	12	12	V _{DC}
Collector Current	Ic	2.0	2.0	A _{DC}
Power Dissipation ($T_A = 25^{\circ}C$)	P _{DP} **	1.0	1.0	w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	°c
Thermal Resistance	θ JC	200 62.5	200 62.5	°C/W °C/W

 $^{{}^{*}}V_{CES}$ for Darlington structure equivalent to V_{CEO} of output xtr.

Typical Performance Characteristics

^{**}P_{Dp} = Practical Power Dissipation, i.e., that power which can be dissipated with the device installed in a typical manner on a printed circuit board with total copper run area equal to 1.0 in.² minimum.

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Breakdown Voltage I _C = 1.0 mA, V _{BE} = 0	BV _{CES}	40		V
92PU45 92PU45A		50		V _{DC} V _{DC}
Collector-Base Breakdown Voltage $I_C = 100 \mu A$, $I_E = 0$	BV _{CBO}			
92PU45 92PU45A		50 60		V_{DC}
Emitter-Base Breakdown Voltage $I_E = 10 \mu A, I_C = 0$	BV _{EBO}	12		V _{DC}
Collector Cutoff Current $V_{CB} = 30 \text{ V}, I_E = 0$ 92PU45 $V_{CB} = 40 \text{ V}, I_E = 0$ 92PU45A	Ісво		100 100	NA NA
Emitter Cutoff Current VEB = 10 V, IC = 0	I _{EBO}		100	μΑ
DC Current Gain $I_C = 200 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_C = 500 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_C = 1000 \text{ mA}, V_{CE} = 5.0 \text{ V}$	hFE	25,000 15,000 4,000		
Collector-Emitter Saturation Voltage $I_C = 1000$ mA, $I_B = 2$ mA $I_C = 200$ mA, $I_B = 2$ mA	V _{CE(sat)}	,	1.5 1.0	V _{DC} V _{DC}
Base-Emitter Saturation Voltage $I_C = 1000 \text{ mA}$, $I_B = 2 \text{ mA}$	V _{BE(sat)}		2.0	V _{DC}
Base-Emitter ON Voltage $I_C = 1000 \text{ mA}, V_{CE} = 5 \text{ V}$	V _{BE(on)}		2.0	V _{DC}
Small Signal Current Gain $I_C = 200 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$	h _{FE}	1.0		

Section 2

TO-202

2

Complementary plastic power transistors employing double diffused planar structures and constructed with National's revolutionary "Epoxy B" concept for exceptional performance and reliability.

Applications

- Class B audio outputs/drivers
- General purpose switching and lamp drive in industrial and automotive circuits.

NPN NSDUO1, NSDUO1A PNP NSDU51, NSDU51A

Maximum Ratings

Parameter		Symbol	NSDU01 NSDU51	NSDU01A NSDU51A	Units
Collector-Emitter Vo	oltage	V _{CEO}	30	40	V
Collector-Base Volta	ge	V_{CB}	40	50	V
Emitter-Base Voltage	•	V_{EB}	5.0	5.0	٧
Collector Current (co	ont.)	Ιc	2.0	2.0	A
	$(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	P_{D}	1.75 10	1.75 10	W
Temperature		T_j , T_{stg}	-55 to +150	-55 to +150	°C
Thermal Resistance		$ heta_{ extsf{JC}}$	71.4 12.5	71.4 12.5	°C/W °C/W

Typical Performance Characteristics

Physical Dimensions

		•		
-ia	ヘサビハつ	Chara	~t~	riction

Parameter	Symbol	Min.	Max.	Units		
Collector-Emitter Sustaining Voltage I _C = 10 mA, I _B = 0 NSDU01, U51 NSDU01A, U51A	BV _{CEO}	30 40		V V		
Collector Cutoff Current $V_{CB} = 30 \text{ V}, I_E = 0 \text{ NSDU01, NSDU51}$ $V_{CB} = 40 \text{ V}, I_E = 0 \text{ NSDU01A, NSDU51A}$	I _{CBO}		0.1 . 0.1	. μΑ μΑ		
Emitter Cutoff Current $V_{EB} = 5.0 \text{ V, } I_{C} = 0$			0.1	μΑ		
DC Current Gain $I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 1000 \text{ mA}, V_{CE} = 1.0 \text{ V}$	hFE	55 , 60 50				
Collector-Emitter Saturation Voltage $I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$	V _{CE(sat)}		0.5	. v		
Base-Emitter ON Voltage I _C = 1.0 A, V _{CE} = 1.0 V	V _{BE(on)}		1.2	v		
Current-Gain Bandwidth Product $I_C = 50 \text{ mA}$, $V_{CE} = 10 \text{ V}$, $f = 20 \text{ MHz}$	f _t	50		MHz		
Output Capacitance V _{CB} = 10 V, I _E = 0, f = 1 MHz	C _{ob}		30	pF		

Physical Dimensions

NPN NSDU05 thru NSDU07 PNP NSDU55 thru NSDU57

Complementary plastic power transistors employing double diffused planar structures and constructed with National's Revolutionary "Epoxy B" concept for exceptional reliability.

Applications

High V_{CE} ratings

NSDU05, U55 = 60 V min. V_{CEO} NSDU06, U56 = 80 V min. V_{CEO} NSDU07, U57 = 100 V min. V_{CEO}

Exceptional power dissipation capability:

$$P_D = 1.75 \text{ Watts } @ T_A = 25 \text{ C}$$

Maximum Ratings

Parameter	Symbol	NSDU05 NSDU55	NSDU06 NSDU56	NSDU07 NSDU57	Units
Collector-Emitter Voltage	V _{CEO}	60	80	100	V _{DC}
Collector-Base Voltage	V _{CB}	60	80	100	V _{DC}
Emitter-Base Voltage	V _{EB}	4.0	4.0	4.0	V _{DC}
Collector Current (cont.)	Ic	2.0	2.0	2.0	ADC
Power Dissipation $(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	P _D	1.75 10	1.75 10	1.75 10	w w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	71.4 12.5	71.4 12.5	71.4 12.5	°C/W °C/W

Typical Performance Characteristics

Physical Dimensions

2

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 1.0 mA, I _B = 0	BV _{CEO}			
NSDU05, U55 NSDU06, U56 NSDU07, U57		60 80 100		· V V V
$ \begin{aligned} & \text{Collector Cutoff Current} \\ & \text{V}_{\text{CB}} = 60 \text{ V}, \text{I}_{\text{E}} = 0 & \text{NSDU05}, \text{U55} \\ & \text{V}_{\text{CB}} = 80 \text{ V}, \text{I}_{\text{E}} = 0 & \text{NSDU06}, \text{U56} \\ & \text{V}_{\text{CB}} = 100 \text{ V}, \text{I}_{\text{E}} = 0 & \text{NSDU07}, \text{U57} \end{aligned} $	І _{СВО}		0.1 0.1 0.1	μΑ μΑ μΑ
Emitter Cutoff Current I _C = 0, V _{EB} = 4.0 V	I _{EBO}		100	μΑ
DC Current Gain $I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 250 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 500 \text{ mA}, V_{CE} = 1.0 \text{ V}$	h _{FE}	80 50 20		
Collector-Emitter Saturation Voltage $I_C = 250 \text{ mA}$, $I_B = 10 \text{ mA}$ $I_C = 250 \text{ mA}$, $I_B = 25 \text{ mA}$	V _{CE} (sat)		0.5 0.35	V
Base-Emitter ON Voltage $I_C = 250$ mA, $V_{CE} = 1.0$ V	V _{BE(on)}		1.2	V
Current Gain Bandwidth Product $I_C = 200 \text{ mA}$, $V_{CE} = 5 \text{ V}$, $f = 100 \text{ MHz}$	ft	50		MHz
Output Capacitance V _{CB} = 10 V, I _E = 0, f = 1 MHz	C _{ob}		30	pF

Physical Dimensions

Sheared Tab

NSDU45, NSDU45A

Monolithic, double diffused planar power Darlington structures employing National's "Epoxy B" plastic packaging concept for exceptional reliability in amplifier and driver applications.

Maximum Ratings

Parameter	Parameter Symbol		NSDU45A	Units	
Collector-Emitter Voltage	V _{CES} *	40	50	· V _{DC}	
Collector-Base Voltage	V_{CB}	50	60	V_{DC}	
Emitter-Base Voltage	V_{EB}	12	12	V_{DC}	
Collector Current	lc	2.0	2.0	A _{DC}	
Power Dissipation $(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	P_{D}	1.75 10	1.75 10	W W	
Temperature	T_j , T_{stg}	-55 to +150	-55 to +150	°C	
Thermal Resistance	hetaJC	71.4 12.5	71.4 12.5	°C/W °C/W	

^{*} V_{CES} for Darlington structure equivalent to V_{CEO} of output xtr.

Typical Performance Characteristics

Electrical Characteristics

Parameter .	Symbol	Min.	Max.	Units
Collector-Emitter Breakdown Voltage I _C = 1.0 mA, V _{BE} = 0 NSDU45 NSDU45A	BV _{CES}	40 50		V _{DC}
Collector-Base Breakdown Voltage I _C = 100 μA, I _E = 0 NSDU45 NSDU45A	BV _{CBO}	50 60		V _{DC} V _{DC}
Emitter-Base Breakdown Voltage $I_E = 10 \mu A$, $I_C = 0$	BV _{EBO}	12		V_{DC}
Collector Cutoff Current $V_{CB} = 30 \text{ V, } I_E = 0 \text{ NSDU45}$ $V_{CB} = 40 \text{ V, } I_E = 0 \text{ NSDU45A}$	I _{CBO}		0.1 0.1	μΑ μΑ
Emitter Cutoff Current $V_{EB} = 10 \text{ V, I}_{C} = 0$	I _{EBO}		100	μΑ
DC Current Gain I _C = 200 mA, V _{CE} = 5.0 V I _C = 500 mA, V _{CE} = 5.0 V I _C = 1000 mA, V _{CE} = 5.0 V	h _{FE}	25,000 15,000 4,000	150,000	
Collector-Emitter Saturation Voltage $I_C = 1000 \text{ mA}, I_B = 2 \text{ mA}$ $I_C = 200 \text{ mA}, I_B = 2 \text{ mA}$	V _{CE(sat)}		1.5 1.0	V _{DC} V _{DC}
Base-Emitter Saturation Voltage $I_C = 1000 \text{ mA}, I_B = 2 \text{ mA}$	V _{BE(sat)}		2.0	V _{DC}
Base-Emitter ON Voltage $I_C = 1000 \text{ mA}, V_{CE} = 5 \text{ V}$	· V _{BE(on)}		2.0	V _{DC}
Small Signal Current Gain $I_C = 200 \text{ mA}$, $V_{CE} = 5.0 \text{ V}$, $f = 100 \text{ MHz}$	h _{FE} .	1.0		

Physical Dimensions

POWER TRANSISTORS

NSD3439, NSD3440

NPN Silicon power transistors designed to economically replace the popular 2N3439/2N3440. These plastic packaged, triple diffused, planar devices incorporate National's revolutionary "Epoxy B" concept to provide exceptional reliability.

Applications

- Audio, video and differential amplifiers
- High voltage, low current inverters
- Switching and series pass regulators

Maximum Ratings

Parameter	Symbol	NSD3439	NSD3440	Units
Collector-Emitter Voltage	V _{CEO}	350	250	V
Collector-Base Voltage	V _{CB}	450	300	V
Emitter-Base Voltage	V_{EB}	7	7	V
Collector Current (cont.)	Ic	1	1	Α
Power Dissipation $(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	P_{D}	1.75 10.0	1.75 10.0	W W
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	°C

Typical Performance Characteristics

Physical Dimensions TO-202

Electrical Characteristics

Parameter	.	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 10 mA		BV _{CEO}			,
· ·	3439		350	'	V
•	3440		250		V
Collector Cutoff Current		ICEO		-	
$V_{CE} = 300 \text{ V, } I_{B} = 0$	3439			20	μΑ
$V_{CE} = 2-V, I_B = 0$	3440			50	μΑ
Collector Cutoff Current		ICEX		P	
$V_{CE} = 450 \text{ V}, V_{BE(off)} = 1.5 \text{ V}$	3439	OLA.		500	μΑ
$V_{CE} = 300 \text{ V}, V_{BE(off)} = 1.5 \text{ V}$	3440			500	μΑ
Emitter Cutoff Current '		I _{EBO}		•	
$V_{EB} = 6 V, I_{C} = 0$		LBO		20	μΑ
DC Current Gain		h _{FE} ·		* •	
I _C = 2 mA, V _{CF} = 10 V			30		
$I_C = 20 \text{ mA}, V_{CF} = 10 \text{ V}$			40	160	
Collector-Emitter Saturation Voltage		V _{CE(sat)}			
I _C = 50 mA, I _B = 10 mA		V CE (sat)		0.5	V
Base-Emitter Saturation Voltage		V.		5.5	·
I _C = 50 mA, I _B = 10 mA		V _{BE(sat)}		1.3	;. V
0		_		1.5	, · · · · · · ·
Gain-Bandwidth Product		f _t	15		8.41.1
$I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}$.		15		MH
Output Capacitance		C_{ob}			
$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$				20	pF
Input Capacitance		, C _{ib}		•	
$V_{EB} = 5 \text{ V}, I_{C} = 0, f = 1 \text{ MHz}$				75	рF

Physical Dimensions

TYPE T

Flush Mounting

NSD102 thru NSD106 NSD202 thru NSD206

Complementary plastic power transistors designed for medium exceptional performance and reliability.

power applications in consumer and industrial sockets. These products feature planar double diffused structures packaged using National's revolutionary "Epoxy B" concept to provide

Low level audio outputs and drivers

General purpose switching

Maximum Ratings

Applications

Parameter	Symbol	NSD102, 103 NSD202, 203	NSD104, 105 NSD204, 205	NSD106 NSD206	Units
Collector-Emitter Voltage	V _{CEO}	45	80	100	V _{DC}
Collector-Base Voltage	V _{CB}	60	100	140	V _{DC}
Emitter-Base Voltage	V _{EB}	5	7	7	V _{DC}
Collector Current (cont.)	1 _C	1.5	1.0	1.0	A _{DC}
Power Dissipation $(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	P _D	1.75 10	1.75 10	1.75 10	w w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	71.4 12.5	71.4 12.5	·71.4 12.5	°C/W °C/W

Typical Performance Characteristics

Physical Dimensions TO-202

Floct	rical	Cha	racto	ristics

Lieutida Characteristics						
Parameter	Symbol	Min.	Max.	Units		
Collector-Emitter Sustaining Voltage	BV _{CEO}					
$I_C = 10 \text{ mA}, I_B = 0$						
102, 202, 103, 203		45		V _{DC}		
104, 204, 105, 205	1	80		V _{DC}		
106, 206		100		VDC		
Collector Cutoff Current	Ісво					
V _{CB} = rated			0.1	μΑ		
Emitter Cutoff Current	I _{EBO}			,		
V _{EB} = rated	1		0.1	μΑ		
DC Current Gain	h _{FE1}					
I _C = 10 mA, V _{CE} = 5 V	1					
102, 202		40				
103, 203		50		, i		
104, 204, 105, 205, 106, 206		20	,			
DC Current Gain	h _{FE2}					
$I_C = 100 \text{ mA}, V_{CE} = 5 \text{ V}$	"FE2					
102, 202		50	· 150			
103, 203		120	360			
104, 204	,	50	150	,		
105, 205		120	360			
106, 206		50	150			
DC Current Gain	h	50	150			
	h _{FE3}					
$I_C = 500 \text{ mA}, V_{CE} = 5 \text{ V}$		40				
102, 202						
103, 203		50				
106, 206		25				
DC Current Gain	h _{FE4}					
$I_C = 1000 \text{ mA}, V_{CE} = 5 \text{ V}$				-		
102, 202		25				
103, 203		30		,		
104, 204, 105, 205		10	,	,		
Collector-Emitter Saturation Voltage	V _{CE(sat)1}					
$I_C = 100 \text{ mA}, I_B = 10 \text{ mA}$			0.2	V _{DC}		
Collector-Emitter Saturation Voltage	V _{CE(sat)2}					
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	1			.		
102, 103, 202, 203			0.4	V _{DC}		
104, 105, 106, 204, 205, 206			0.5	V _{DC}		
	V _{BE(sat)}			i		
	I.					
$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$			1.2	VDC		
Collector Output Capacitance	Cob			1		
V _{CB} = 10 V	1		30	pF		
Gain Bandwidth Product	ft					
$I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 10 \text{ MHz}$		60		MHz		
Base-Emitter Saturation Voltage $I_C = 100$ mA, $I_B = 10$ mA $I_C = 500$ mA, $I_B = 50$ mA Collector Output Capacitance $V_{CB} = 10$ V Gain Bandwidth Product	C _{ob}	60	0.9 1.2	V _{DC} V _{DC} pF		

Physical Dimensions

Sheared Tab

POWER TRANSISTORS

NSD131 thru NSD135

Triple diffused planar structures built with National's revolutionary "Epoxy B" concept. Designed to provide exceptional reliability and performance.

Applications

- TV video output
- TV chroma output
- Line operated class "A" audio

Maximum Ratings

Parameter	Symbol	NSD131 NSD132	NSD133 NSD134	NSD135	Units
Collector-Base Voltage	V _{CB}	250	300	375	V _{DC}
Collector-Emitter Voltage	V _{CEO}	250	300	375	, ADC
Emitter-Base Voltage	V _{EB}	7	7	7	VDC
Collector Current (cont.)	Ic	0.1	0.1	0.1	A _{DC}
Power Dissipation ($T_A = 25^{\circ}C$) ($T_C = 25^{\circ}C$)	P _D	1.75 10	1.75 10	1.75 10	w w
Temperature	T _j , T _{stg}	-55 to +150	-55 to +150	-55 to +150	°c
Thermal Resistance	θ_{JA}	71.4 12.5	71.4 12.5	71.4 12.5	°C/W °C/W

Typical Performance Characteristics

Physical Dimensions

2

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 5 mA, I _B = 0	BV _{CEO}			
131, 13 133, 13		250 300		V _{DC}
135, 13) +	375	,	V _{DC} V _{DC}
Collector Cutoff Current V _{CB} = 150 V	ІСВО		100	μΑ
Emitter Cutoff Current V _{EB} = 6 V	I _{EBO}		100	μΑ
DC Current Gain $I_C = 1 \text{ mA}$, $V_{CE} = 10 \text{ V}$	h _{FE1}	15		
DC Current Gain $I_C = 10 \text{ mA}$, $V_{CE} = 10 \text{ V}$	h _{FE2}			•
131, 13 132, 13	33 34, 135	15 30		
DC Current Gain I _C = 30 mA, V _{CE} = 10 V	h _{FE3}			
` 131, 13 132, 13	33, 135 34	30 60	90. 180	
Collector-Emitter Saturation Voltage $I_C = 20 \text{ mA}$, $I_B = 2 \text{ mA}$	V _{CE (sat)}	ı	1.0	V _{DC}
Emitter-Base Saturation Voltage I _C = 20 mA, I _B = 2 mA	V _{BE(sat)}		0.85	V _{DC}
Collector-Base Junction Capacitance V _{CB} = 20 V	C _{cb}		3.0	pF

Physical Dimensions

Complementary double diffused planar transistors designed and manufactured with National's revolutionary "Epoxy B" concept. These devices are designed to replace the 2N2102, 2N6178, 2N6179 and the 2N4036, 2N6180, 2N6181 while providing superior reliability and free air power handling capability.

Applications

- Audio driver and output pairs
- Industrial switches
- Inverters/converters

NPN NSD6178, NSD6179 PNP NSD6180, NSD6181

Maximum Ratings

Parameter	Symbol	NSD6178 NSD6180	NSD6179 NSD6181	Units
Collector-Base Voltage	, V _{CB}	100	75	V
Collector-Emitter Voltage	V _{CEO}	75	50	V
Emitter-Base Voltage	· V _{EB}	5	5	. v
Collector Current	Ic	2	2	А
Power Dissipation $(T_A = 25^{\circ}C)$ $(T_C = 25^{\circ}C)$	P_{D}	1.75 10.0	1.75 10.0	W W
Temperature .	T_j , T_{stg}	-55 to +150	-55 to +150	°C

Typical Performance Characteristics

Physical Dimensions TO-202

2

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage	BV _{CEO}		:	
6178, 6180 6179, 6181		75 50	,	V V
Collector Cutoff Current V _{CE} = 60 V, I _B = 0 6178, 6180 V _{CE} = 45 V, I _B = 0 6179, 6181	ICEO		1.0 1.0	mA mA
Collector Cutoff Current $V_{CB} = 80 \text{ V}, I_E = 0$ 6178, 6180 $V_{CB} = 60 \text{ V}, I_E = 0$ 6179, 6181	СВО		0.5 0.5	mA mA
Emitter Cutoff Current $V_{EB} = 5 \text{ V}, I_C = 0$	(EBO		0.1	mA
DC Current Gain $I_C = 50 \text{ mA, } V_{CE} = 2 \text{ V}$ $I_C = 500 \text{ mA, } V_{CE} = 2 \text{ V}$ $I_C = 1000 \text{ mA, } V_{CE} = 2 \text{ V}$	h _{FE}	30 40 10	250	
Collector-Emitter Saturation Voltage $I_C = 500 \text{ mA}$, $I_B = 50 \text{ mA}$	V _{CE(sat)}		0.5	V
Base-Emitter Saturation Voltage $I_C = 500 \text{ mA}$, $I_B = 50 \text{ mA}$	V _{BE(sat)}		1.2	. V
Output Capacitance V _{CB} = 10 V, f = 1 MHz	C _{ob}		30.	pF
Gain Bandwidth Product $V_{CE} = 4 \text{ V, } I_{C} = 50 \text{ mA}$	f _t	50		MHz
Second Breakdown Collector Current $V_{CE} = 50 \text{ V}, t = 1.0 \text{ s}$	I _{S/B}	70		mA

Physical Dimensions

Double diffused planar power transistors designed with National's revolutionary "Epoxy B" concept to provide exceptional reliability.

Applications

- Audio output and/or driver
- High frequency inverters/converters
- Series, shunt and switching regulators

NPN NSE180, NSE181 PNP NSE170, NSE171

Maximum Ratings

Parameter	Symbol	NSE180 NSE170	NSE181 NSE171	Units
Collector-Base Voltage	V _{CB}	60	80	' V
Collector-Emitter Voltage	V_{CEO}	40	60	V
Emitter-Base Voltage	V_{EB}	5	5	V
Collector Current	Ic	3	3	А
Power Dissipation ($T_A = 25^{\circ}C$) ($T_C = 25^{\circ}C$)	T_{j} , T_{stg}	1.75 10.0	1.75 10.0	W W
Temperature	T_j , T_{stg}	-55 to +150	-55 to +150	°c
Thermal Resistance	$ heta_{\sf JA}$	71.4 12.5	71.4 12.5	°C/W °C/W

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics

Parameter	Symbol	Min.	Max.	Units
Collector-Emitter Sustaining Voltage I _C = 10 mA, I _B = 0 NSE170, 180 NSE171, 181	BV _{CEO}	40 60		V
Collector Cutoff Current V _{CB} = 60 V, I _E = 0 NSE170, 180 V _{CB} = 80 V, I _E = 0 NSE171, 181	ГСВО		0.1 0.1	μA μA
Emitter Cutoff Current V _{BE} = 5.0 V, I _C = 0	(EBO		0.1	μΑ
DC Current Gain $I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 500 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 1.5 \text{ A}, V_{CE} = 1.0 \text{ V}$	h _{FE}	50 30 12	250 ′	
Collector-Emitter Saturation Voltage $I_C = 500 \text{ mA}$, $I_B = 50 \text{ mA}$ $I_C = 1.5 \text{ A}$, $I_B = 150 \text{ mA}$	V _{CE(sat)}		0.3 0.9	V
Base-Emitter Saturation Voltage $I_C = 1.5 A$, $I_B = 150 mA$	V _{BE(sat)}		1.5	V
Base-Emitter ON Voltage $I_C = 500 \text{ mA}, V_{CE} = 1.0 \text{ V}$	V _{BE(on)}		1.2	v
Gain Bandwidth Product I _C = 100 mA, V _{CE} = 10 V, f = 10 MHz	f _t	50		MHz

Physical Dimensions

Section 3

TO-220

NPN D44C1 thru D44C12 PNP D45C1 thru D45C12

NPN/PNP Complementary Silicon Power Transistors employing Epi-Base Mesa Technology for ideal performance in a variety of general purpose power and switching applications:

Applications

- · Audio Amplifiers
- Series, Shunt, Switching Regulators
- Inverters/Converters

These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated on-off operation where wide temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	C1, C2, C3	C4, C5, C6	C7, C8, C9	C10, C11, C12	Units
Collector-Base Voltage	V _{CB}	40	55	70	90	V
Collector-Emitter Voltage	V _{CEO}	30	45	60	80	V,
Emitter-Base Voltage	V _{EB}			5		V
Collector Current (continuous) (peak)	lc	4 6				Α
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$			3 2			W
Thermal Resistance	θ_{JA}	4.16 62.5				°C/W
Temperature Range	T _J , T _{STG}		-65 to	+150		°c

Typical Performance Characteristics

Physical Dimensions

R

NPN D44C1 thru D44C12 PNP D45C1 thru D45C12

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	4	Symbol	Min.	Max.	Units
Collector-Emitter Sustainin I _C = 100 mA, I _B = 0	g Voltage C1, C2, C3 C4, C5, C6 C7, C8, C9 C10, C11, C12	V _{СЕО}	30 45 60 80		V .
Collector Cutoff Current V _{CE} = V _{CB} Rated, V _{EB}	= 0	I _{CES}		10	μΑ
Emitter Cutoff Current V _{EB} = 5 V	•	ГЕВО		100	μΑ
DC Current Gain V _{CE} = 1 V, I _C = 0.2 A	C1, C4, C7, C10 C2, C5, C8, C11 C3, C6, C9, C12	h _{FE1}	25 40 40	_ 120 _	
DC Current Gain V _{CE} = 1 V, I _C = 1 A	C1, C4, C7, C10 C2, C5, C8, C11	h _{FE2}	10 20	, - -	
DC Current Gain $V_{CE} = 1 \text{ V, } I_C = 2 \text{ A}$	C3, C6, C9, C12	h _{FE3}	20	- .	
Collector Saturation Voltag $I_C = 1 A, I_B = 100 mA$	е .	V _{CE(S)}		0.5	V
Base Saturation Voltage $I_C = 1 A, I_B = 100 \text{ mA}$		V _{BE(S)}		1.3	V
Gain Bandwidth Product $V_{CE} = 4 \text{ V}, I_C = 20 \text{ mA}$	•	f _T	3		MHz

NPN NSP41 NSP41A NSP41B NSP41C PNP NSP42 NSP42A NSP42B NSP42C

NPN/PNP Complementary Silicon Power Transistors. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated on-off operation where wide operating temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	NSP41 NSP42	NSP41A NSP42A	NSP41B NSP42B	NSP41C NSP42C	Units
Collector-Base Voltage	V _{CB}	40	60 80 . 100			V
Collector-Emitter Voltage	V _{CEO}	40	60	80	100	v
Emitter-Base Voltage	V _{EB}		, ,	5	ı	v
Collector Current (continuous) (peak)	lc		.	5 7		А
Base Current	IB		3	3		А
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T		5 2	W		
Temperature Range	T _J , T _{STG}		°C			
Thermal Resistance	θ_{JA}		2 62	.5 ?.5		°C/W

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol		P41 P42	NSP NSP		NSP NSP		NSP NSP		Units
	<u> </u>	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 30 \text{ mA}$, $I_B = 0$	V _{CEO}	40		60		80		100		v
Collector Cutoff Current $V_{CE} = 30 \text{ V, } I_B = 0$ $V_{CE} = 60 \text{ V, } I_B = 0$	I _{CEO}		0.7 —		0.7		_ 0.7		_ 0.7	mA
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $V_{BE} = 0$	ICES		0.4		0.4		0.4		0.4	m A
Emitter Cutoff Current $V_{EB} = 5 \text{ V, I}_{C} = 0$	I _{EBO}		1		1		1		1	mA
DC Current Gain $V_{CE} = 4 \text{ V, } I_{C} = 0.3 \text{ A}$ $V_{CE} = 4 \text{ V, } I_{C} = 3 \text{ A}$	h _{FE}	30 15	75	30 15	75	30 15	75	30 15	75	
Base-Emitter "ON" Voltage V _{CE} = 4 V, I _C = 5 A	V _{BE(ON)}		. 2		2		2		2	V
Collector-Emitter Saturation Voltage $I_C = 5 A$, $I_B = 0.5 A$	V _{CE(S)}		1.5		1.5		1.5		1.5	٧
Small Signal Common Emitter Current Gain $V_{CE} = 10 \text{ V, } I_C = 0.5 \text{ A, } f = 1 \text{ kHz}$. h _{fe}	20		20		20		20	·	
Gain Bandwidth Product $V_{CE} = 10 \text{ V, } I_{C} = 0.5 \text{ A,}$ f = 1 MHz	f _T	3		3		3		3		MHz

NPN NSP520, NSP521 PNP NSP370, NSP371

NPN/PNP Silicon Power Transistors designed for general purpose amplifier and switching circuits — recommended for use in Class B audio amplifier outputs rated from 5 to 20 watts.

The devices are designed and manufactured using National's "Epoxy B Concept" and offer exceptional reliability in any application which involves repeated temperature excursions due to self heating effects. The "power cycling" capability of "Epoxy B Concept" products is unexcelled.

Maximum Ratings

		Pr	PNP NPN			
Parameter	Symbol	NSP370	NSP371	NSP520	NSP521	Units
Collector-Base Voltage	V _{CB}	30	40	30	40	. V
Collector-Emitter Voltage	V _{CEO}	30	40	30	40	V
Emitter-Base Voltage	V _{EB}	4	4	4	4	V
Collector Current (continuous) (peak)	Ic	3 7	4 8	3 7	4 8	Α
Base Current	IB	2	2	2	2	Α
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T		4 2	0		w ,
Temperature Range	T _J , T _{STG}		°c			
Thermal Resistance	θ_{JA}		3.1 62	25 2.5		°C/W

Typical Performance Characteristics

3

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol		2370 2520		P371 P521	Units	
		Min.	Max.	Min.	Max.		
Collector-Emitter Sustaining Voltage $I_C = 100 \text{ mA}, I_B = 0$	V _{CEO}	30	,	40		V	
Collector-Base Cutoff Current $V_{CB} = V_{CB}$ Rated, $I_E = 0$	I _{CBO}		100		100	μΑ	
Emitter-Base Cutoff Current $V_{EB} = 4.0 \text{ V}, I_C = 0$	I _{EBO}		100	,	100	μΑ	
DC Current Gain I _C = 1 A, V _{CE} = 1 V	h _{FE}	25		40			

Physical Dimensions TO-220

NPN/PNP Complementary Silicon Power Transistors employing Epitaxial Base Mesa Technology. This series is designed for driver circuits, switching and amplifier applications.

This family features National's TO-126 and TO-220 packages which are designed and manufactured using National's "Epoxy B Concept". The "Epoxy B Concept" offers exceptional reliability in applications involving repeated "ON"/"OFF" operation where wide temperature excursions are anticipated.

The NSP4918 through NSP4923 series is a direct replacement for the MJE4918 thru MJE4923 series.

NPN 2N4921 thru 2N4923 NSP4921 thru NSP4923 PNP 2N4918 thru 2N4920 NSP4918 thru NSP4920

Maximum Ratings

PARAMETER	, SYMBOL	2N4918 2N4921 NSP4918 NSP4921	2N4919 2N4922 NSP4919 NSP4922	2N4920 2N4923 NSP4920 NSP4923	UNITS
Collector-Base Voltage	V _{CB}	40	60	80	V
Collector-Emitter Voltage	VCEO	40	60	80	V
Emitter-Base Voltage	VEB	5	5	, 5	· v
Collector Current (Continuous) (Peak)	, Ic	1.0 3.0	1.0 3.0	1.0 3.0	A A
Base Current	IB	1.0	1.0	1.0	А
		2N4918 SERIES	1	NSP4918 SERIES	
Power Dissipation ($T_C = 25^{\circ}C$) ($T_A = 25^{\circ}C$)	PT	30 1.5		40 2.0	w w
Temperature Range	TJ, TSTG	−65 to +150		-65 to +150	°c
Thermal Resistance	0JC 0JC	4.16 83.3		3.125 62.5	°C/W °C/W

Typical Performance Characteristics

2N4921 thru 2N4923, 2N4918 thru 2N4920,

Electrical Characteristics (T_C = 25°C unless noted)

PARAMETER	SYMBOL	2N4918 2N4921 SYMBOL NSP4918 NSP4921		2N4 2N4 NSP4 NSP4	922 4918	2N4 2N4 NSP4 NSP4	UNITS	
		MIN	MAX	MIN	MAX	MIN	MAX	
Collector-Emitter Sustaining Voltage IC = 100 mA, IB = 0	BVCEO	40	-	60		80		V ·
Collector Cutoff Current VCE = 1/2 BVCEO Rating, IB = 0	ICEO		0.5		0.5		0.5	mA
Collector Cutoff Current VCE = BVCEO Rating, VBE = 1.5V "QFF",	CEX		0.1		0.1		0.1	mA
$V_{CE} = BV_{CEO}$ Rating, $V_{BE} = 1.5V$ "OFF", $T_{C} = 125^{\circ}C$			0.5		0.5		0.5	
Collector Cutoff Current VCB = VCB Rating, IE = 0	СВО		0.1		0.1		0.1	mA
Emitter Cutoff Current $V_{EB} = 5V, I_C = 0$	I _{EBO}		1.0		1.0		1.0	mA
DC Current Gain $I_C = 50 \text{ mA}, V_{CE} = 1V$ $I_C = 500 \text{ mA}, V_{CE} = 1V$ $I_C = 1A, V_{CE} = 1V$	hFE	40 20 10	100	40 20 10	100	40 20 10	100	
Collector-Emitter Saturation Voltage I _C = 1A, I _B = 100 mA	V _{CE} (S)		0.6		0.6		0.6	V
Base-Emitter Saturation Voltage $I_C = 1A$, $I_B = 100 \text{ mA}$	VBE(S)		1.3	ו	1.3		1.3	V
Base-Emitter "ON" Voltage $I_C = 1A$, $V_{CE} = 1A$	VBE(ON)		1.3		1.3		1.3	V
Gain Bandwidth Product IC = 250 mA, VCE = 10V, f = 1 MHz	fT ·	3		3		3		MHz

Typical Performance Characteristics (Continued)

2N4918 thru 2N4920 and NSP4918 thru NSP4920

Base-Emitter "ON" Voltage vs Collector Current

Collector-Emitter Saturation Voltage

Gain Bandwidth **Product vs Collector** Current

Typical Collector Capacitance vs Collector-Base Voltage

Maximum Power Dissipation vs Case Temperature

Typical Performance Characteristics (Continued) 2N4921 thru 2N4923 and NSP4921 thru NSP4923

Base-Emitter "ON"

Base-Emitter Saturation

Maximum Power

Gain Bandwidth

3. Base

Pin 1. Base 2. Collector 3. Emitter

POWER TRANSISTORS

NSP5190 thru NSP5195

NPN/PNP Complementary Silicon Power Transistors employing Epitaxial Base Mesa Technology. This series is a direct electrical replacement for the 2N5190-95 family of devices.

The NSP5190-95 family features National's TO-220 package which is designed and manufactured using National's "Epoxy B Concept." The Epoxy B Concept offers exceptional reliability in applications involving repeated on-off operation where wide temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	NSP5190 NSP5193	NSP5191 NSP5194	NSP5192 NSP5195	Units			
Collector-Base Voltage	V _{CB}	40	60	80	V			
Collector-Emitter Voltage	V _{CEO}	40	60	80	V			
Emitter-Base Voltage	V _{EB}		5		V			
Collector Current	Ic		4					
Base Current	I _B		1		А			
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T		60 2					
Temperature Range	T _J , T _{STG}		-65 to +150	:	°C			
Thermal Resistance	θ_{JA}		2.08 62.5		°C/W			

Typical Performance Characteristics

Physical Dimensions

TO-220

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol		5190 5193	NSP:	5191 5194	NSP5192 NSP5195		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 100 \text{ mA}, I_B = 0$	V _{CEO}	40		60		80	-	V
Collector Cutoff Current V _{CE} = V _{CEO} Rated, I _B = 0	I _{CEO}		1.0		1.0		1.0	mA
Collector Cutoff Current V _{CE} = V _{CEO} Rated, V _{EB} = 1.5 V (off)	ICEX		0.1		0.1		0.1	mA
$V_{CE} = V_{CEO}$ Rated, $V_{EB} = 1.5$ V (off), $T_{C} = 125^{\circ}$ C	•		2.0		2.0		2.0	
Collector Cutoff Current V _{CB} = V _{CEO} Rated, I _E = 0	I _{CBO}		0.1		0.1		0.1	mA
Emitter Cutoff Current $V_{EB} = 5 \text{ V, } I_{C} = 0$	I _{EBO}		1.0		1.0		1.0	mA
DC Current Gain I _C = 1.5 A, V _{CE} = 2.0 V I _C = 4 A, V _{CE} = 2 V	hFE	25 10	100	25 10	100	20 7	80	
Collector-Emitter Saturation Voltage $I_C = 1.5 \text{ A}, I_B = 150 \text{ mA}$ $I_C = 4 \text{ A}, I_B = 1.0 \text{ A}$	V _{CE(S)}		0.6 1.4		0.6 1.4		0.6 1.4	V
Base-Emitter "ON" Voltage I _C = 1.5 A, V _{CE} = 2 V	V _{BE(ON)}		1.2		1.2		1.2	٧
Gain-Bandwidth Product $I_C = 1 \text{ A, V}_{CE} = 10 \text{ V, f} = 1 \text{ MHz}$	fT	2		2	,	2		MHz

POWER TRANSISTORS

NPN TIP29 TIP29A TIP29B TIP29C PNP TIP30 TIP30A TIP30B TIP30C

NPN/PNP Complementary Silicon Power Transistors. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated on-off operation where wide operating temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	TIP29 TIP30	TIP29A TIP30A	TIP29B TIP30B	TIP29C TIP30C	Units		
Collector-Base Voltage	V _{CB}	40	60	80	100	V		
Collector-Emitter Voltage	V _{CEO}	40	60	80	100	. V		
Emitter-Base Voltage	V _{EB}			5 '		V		
Collector Current (continuous) (peak)	Ic			А				
Base Current (continuous)	I _B	1	0	.5		А		
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T		3	W				
Temperature Range	T _J , T _{STG}		-65 to	+150		°c		
Thermal Resistance	θ _{JC} θ _{JA}			16 2.5		°C/W		

Typical Performance Characteristics

Physical Dimensions

NPN TIP29, TIP29A, TIP29B, TIP29C PNP TIP30, TIP30A, TIP30B, TIP30C

Electrical Characteristics (T_C = 25°C unless noted)

	•									•
Parameter	Symbol		P29 P30		29A 30A		29B 30B		29C 30C	Units
<u> </u>		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage I _C = 30 mA, I _B = 0	V _{CEO}	40		60		80		100		V/
Collector Cutoff Current $V_{CE} = 30 \text{ V, I}_{B} = 0$ $V_{CE} = 60 \text{ V, I}_{B} = 0$	ICEO		0.3		0.3		_ 0.3		_ 0.3	mA
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $V_{BE} = 0$	I _{CES}		0.2		0.2		0.2		0.2	mA
Emitter Cutoff Current $V_{EB} = 5 \text{ V, } I_C = 0$, I _{EBO}		1		1		1		1	mA
DC Current Gain $V_{CE} = 4 \text{ V, } I_C = 0.2 \text{ A}$ $V_{CE} = 4 \text{ V, } I_C = 1 \text{ A}$	h _{FE}	40 15	75	40 15	75	40 15	75	40 15	75	
Base-Emitter "ON" Voltage $V_{CE} = 4 V, I_C = 1 A$	V _{BE(ON)}		1.3		1.3		1.3		1.3	V
Collector-Emitter Saturation Voltage $I_C = 1 A$, $I_B = 125 \text{ mA}$	V _{CE(S)}		0.7		0.7		0.7		0.7	V
Small Signal Common Emitter Current Gain	h _{fe}									
$V_{CE} = 10 \text{ V}, I_{C} = 0.2 \text{ A}, f = 1 \text{ kHz}$. 20		20		20		20		
Gain Bandwidth Product $V_{CE} = 10 \text{ V, } I_{C} = 0.2 \text{ A,}$ f = 1 MHz	f⊤	3		3		3		3		MHz

NPN TIP31 TIP31A TIP31B TIP31C PNP TIP32 TIP32A TIP32B TIP32C

NPN/PNP Complementary Silicon Power Transistors. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated on-off operation where wide operating temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	TIP31 TIP32	TIP31A TIP32A	TIP31B TIP32B	TIP31C TIP32C	Units			
Collector-Base Voltage	V _{CB} 40 60 80 100					V			
Collector-Emitter Voltage	V _{CEO}	40	40 60 80 100						
Emitter-Base Voltage	V _{EB}		5						
Collector Current (continuous) (peak)	lc		3 5						
Base Current	I _B		4	l		Α			
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P_T		40 2						
Temperature Range	T _J , T _{STG}		-65 to +150						
Thermal Resistance	θ_{JA}		3.1 62	25 !.5		°C/W			

Typical Performance Characteristics

Physical Dimensions

TO-220

NPN TIP31, TIP31A, TIP31B, TIP31C PNP TIP32, TIP32A, TIP32B, TIP32C

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol		P31 P32	TIP31A TIP32A		1	31B 32B	TIP31C TIP32C		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 30 \text{ mA}, I_B = 0$	V _{CEO}	40		60		80		100		V
Collector Cutoff Current $V_{CE} = 30 \text{ V, } I_B = 0$ $V_{CE} = 60 \text{ V, } I_B = 0$	ICEO		0.3	,	0.3		_ 0.3		 0.3	mA
Collector Cutoff Current VCE = VCEO Rated, VBE = 0	ICES		0.2		0.2		0.2		0.2	mA
Emitter Cutoff Current $V_{EB} = 5 V, I_C = 0$	I _{EBO}		1		1		1		1	mA
DC Current Gain V _{CE} = 4 V, I _C = 1 A V _{CE} = 4 V, I _C = 3 A	h _{FE}	25 10	50	25 10	50	25 10	50	25 10	50	
Base Emitter "ON" Voltage $V_{CE} = 4 \text{ V, } I_C = 3 \text{ A}$	V _{BE(ON)}		1.8		1.8		1.8		1.8	V
Collector-Emitter Saturation Voltage $I_C = 3 A$, $I_B = 375 mA$	V _{CE(S)}		1.2		1.2		1.2		1.2	v
Small Signal Common Emitter Current Gain	h _{fe}									
$V_{CE} = 10 \text{ V}, I_{C} = 0.5 \text{ A}, f = 1 \text{ kHz}$		20		20		20		20		
Gain Bandwidth Product $V_{CE} = 10 \text{ V, I}_{C} = 0.5 \text{ A,}$ f = 1 MHz	f _T	3		3		3		3 .		MHz

NPN TIP61 TIP61A TIP61B TIP61C PNP TIP62 TIP62A TIP62B TIP62C

NPN/PNP Complementary Silicon Power Transistors. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated on-off operation where wide operating temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	TIP61 TIP62	TIP61A TIP62A	TIP61B TIP62B	TIP61C TIP62C	Units		
Collector-Base Voltage	V _{CB}	40	60	80	100	V ′		
Collector-Emitter Voltage	V _{CEO}	40	60	80	100	V		
Emitter-Base Voltage	V _{EB}		V					
Collector Current (continuous) (peak)	Ic		0.5 1.5					
Base Current	I _B	, .	0.	.4	!	А		
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T		W					
Temperature Range	T _J , T _{STG}		°C					
Thermal Resistance	θ_{JA}		6.: 83	25 3.3		°C/W .		

Typical Performance Characteristics

Physical Dimensions

TO-220

NPN TIP61, TIP61A, TIP61B, TIP61C PNP TIP62, TIP62A, TIP62B, TIP62C

Electrical Characteristics (T_C = 25°C unless noted)

		TIP61		TIP	61 A	TIP61B		TIP61C		
Parameter	Symbol	TII	P62		62A		62B		62C	Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 30$ mA, $I_B = 0$	V _{CEO}	40		60		80		100		٧
Collector Cutoff Current $V_{CE} = 30 \text{ V}, I_B = 0$ $V_{CE} = 60 \text{ V}, I_B = 0$	ICEO		0.3	-	0.3 		_ 0.3		_ 0.3	mA
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $V_{BE} = 0$	ICES		0.2		0.2		0.2		0.2	mA
Emitter Cutoff Current $V_{EB} = 5 \text{ V, I}_{C} = 0$	l _{EBO}		1		1		1		1	mA
DC Current Gain $V_{CE} = 4 \text{ V, } I_C = 50 \text{ mA}$ $V_{CE} = 4 \text{ V, } I_C = 0.5 \text{ A}$	h _{FE}	40 15	100	40 15	100	40 15	100	40 15	100	
Base-Emitter "ON" Voltage $V_{CE} = 4 V, I_C = 0.5 A$	V _{BE(ON)}		1.3		1.3		1.3		1.3	V
Collector-Emitter Saturation Voltage $I_C = 0.5 A$, $I_B = 60 mA$	V _{CE(S)}		0.7		0.7		0.7		0.7	V
Small Signal Common Emitter Current Gain	h _{fe}									
$V_{CE} = 10 \text{ V}, I_{C} = 50 \text{ mA}, f = 1 \text{ kHz}$		20		20		20		20		
Gain Bandwidth Product $V_{CE} = 10 \text{ V, I}_{C} = 50 \text{ mA,}$ f = 1 MHz	f _T	3		° 3		3		3		MHz

NPN/PNP Complementary Silicon Power Darlington Transistors. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated on-off operation where wide operating temperature excursions are anticipated.

NPN

Maximum Ratings

Parameter	Symbol	TIP110 TIP115	TIP111 TIP116	TIP112 TIP117	Units
Collector-Base Voltage	V _{CB}	60	80	100	V
Collector-Emitter Voltage	V _{CEO}	60	80	100	V
Emitter-Base Voltage	V _{EB}	5	5	5	V
Collector Current (continuo (peak)	us) (c	2 4	2 4	2 4	A A
Base Current (continuous)	IB	50	50	50	mA
Power Dissipation $(T_C = 2)$ $(T_A = 2)$		50 2	50 2	50 2	w w
Temperature Range	T _J , T _{STG}	-65 to +150	-65 to +150	-65 to +150	°c
Thermal Resistance	θ _{JC} θ _{JA}	2.5 62.5	2.5 62.5	2.5 62.5	°C/W °C/W

Connection Diagrams

Physical Dimensions

TO-220

Pin 1 - Base

2 - Collector 3 - Emitter

Collector is in electrical conduct with the mounting tab.

Electrical Characteristics (T_C = 25°C unless otherwise noted.)

	Parameter .		Test Condi	tions	TIP	110 115 Max	TIP	111 116 Max	TIP	112 117 Max	Units
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 30mA,	1 _B = 0	See Note 1	60	,	80		100		V
		V _{CE} = 30V,	I _B = 0		ľ	2					
ICEO	Collector Cutoff Current	V _{CE} = 40V,	1 _B = 0					2			mA
		V _{CE} = 50V,	I _B = 0							2	
I _{CBO}	Collector Cutoff Current	$V_{CB} = 60V$,	I _E = 0			1					
		V _{CB} = 80V,	1 _E = 0					1			mA
		$V_{CB} = 100V$,	1 _E = 0							1	
I _{EBO}	Emitter Cutoff Current	V _{EB} = 5V,	I _C = 0	,		2		2		2	mA
hee	Static Forward Current	$V_{CE} = 4V$,	1 _C = 1 A	See Notes 1 and 2	1000		1000		1000		
hFE	Transfer Ratio	V _{CE} = 4V,	$I_C = 2A$	See Notes 1 and 2	500		500		500		
V_{BE}	Base-Emitter Voltage	V _{CE} = 4V,	$I_C = 2A$	See Notes 1 and 2		2.8		2.8		2.8	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B = 8mA,	I _C = 2A	See Notes 1 and 2		2.5		2.5		2.5	V
V _F	Parallel Diode Forward Voltage Drop	I _C = -4 A,	I _B = 0			5.0		5.0		5.0	V

- NOTES: 1. These parameters must be measured using pulse techniques, $t_W = 300 \mu s$, duty cycle $\leq 2\%$.
 - 2. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within an inch from the device body.

Switching Time Test Circuits

Typical Characteristic Curves

TIP110, 111, 112

TIP115, 116, 117

TIP110, 111, 112

3

Typical Characteristic Curves (Continued)

TIP115, 116, 117

NPN TIP120 PNP TIP125

NPN/PNP Complementary Silicon Power Darlington Transistors. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially suitable for applications involving repeated "ON"/"OFF" operation where wide operating temperature excursions are anticipated.

Designed for complementary use.

- 65W at 25°C case temperature
- 5A rated collector current
- Min hpp of 1000 at 3V, 3A
- 50 mJ reverse energy rating

Maximum Ratings

PARAMETER	SYMBOL	TIP120	TIP125	UNITS
Collector-Base Voltage	V _{СВ}	60	-60	٧
Collector-Emitter Voltage	VCEO	60	-60	, v
Emitter-Base Voltage	VEB	5	-5	٧
Collector Current (Continuous)	Ic	5 .	-5	А
(Peak), (Note 1)		8	-8	А
Base Current (Continuous)	1 _B	0.1	-0.1	А
Safe Operating Areas at (or below) 25°C		(See Maximum Safe	(See Maximum Safe Operating Curves)	
Case Temperature				
Device Dissipation ($T_C \le 25^{\circ}C$)	PT	65	65	w
$(T_A \le 25^{\circ}C)$		2	. 2	W
Temperature Range	TJ, TSTG	−65 to +150	−65 to +150	°C
Lead Temperature, (Soldering, 10 seconds)		260	260	°C

Note 1: This value applies for $t_W \le 0.3$ ms, duty cycle $\le 10\%$.

Connection Diagrams

3

Electrical Characteristics (T_C = 25°C unless otherwise noted.)

	DADAMETED	CONDITIONS	TIP	120	TIP	TO	
	PARAMETER	(Note 3)	MIN	MAX	MIN	MAX	UNITS
V(BR)CEO	Collector-Emitter Breakdown Voltage	I _C = 30 mA, I _B = 0, (Note 2)	60		-60	-	٧
ICEO	Collector Cutoff Current	V _{CE} = 30V, I _B = 0		0.5		-0.5	mA
Ісво	Collector Cutoff Current	V _{CB} = 60V, I _E = 0		0.2		-0.2	mA
IEBO	Emitter Cutoff Current	V _{EB} = 5V, I _C = 0		2		-2	mA
hFE .	Static Forward Current Transfer Ratio	$V_{CE} = 3V$, $I_{C} = 0.5A$, (Notes 1 and 3) $V_{CE} = 3V$, $I_{C} = 3A$, (Notes 1 and 3)	1000 1000		1000 1000		
V_{BE}	Base-Emitter Voltage	$V_{CE} = 3V$, $I_{C} = 3A$, (Notes 1 and 3)		2.5		-2.5	V
VCE(SAT)	Collector-Emitter Saturation Voltage	$I_B = 12$ mA, $I_C = 3A$, (Notes 1 and 3) $I_B = 20$ mA, $I_C = 5A$, (Notes 1 and 3)		2 4		-2 -4	V V

Note 2: These parameters must be measured using pulse techniques, $t_W = 300 \,\mu s$, duty cycle $\leq 2\%$.

Note 3: These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.125 inch from the device body.

Note 4: All conditions for TIP125 are a negative value.

NPN TIP120

PNP TIP125

Note 5: Input pulse width is increased until $I_{CM} = 1A$. Note 6: Input pulse width is increased until $I_{CM} = -1A$.

FIGURE 1

Typical Performance Characteristics

NPN TIP120

PNP TIP125

Maximum Safe Operating Curves

NPN TIP120

Maximum Collector Current vs Unclamped Inductive Load

PNP TIP125

Maximum Collector Current vs Unclamped Inductive Load

Note 7: Above this point, the Safe Operating Area has not been defined.

3

Thermal Information Curves NPN TIP120, PNP TIP125

Physical Dimensions

TO-220

Pin 1 - Base

2 - Collector

3 - Emitter

Collector is in electrical conduct with the mounting tab.

2N5293 thru 2N5298

NPN General Purpose Silicon Power Transistors designed for medium power switching and amplifier applications in Military, Commercial and Industrial equipment.

These devices are designed and manufactured using National's "Epoxy B Concept." They are especially useful in applications involving repeated on-off operation where wide temperature excursions are anticipated. The transistor family is offered with straight leads or pre-formed for insertion in TO-66 sockets.

Maximum Ratings

Parameter	Symbol	2N5293 2N5294	2N5295 2N5296	2N5297 2N5298	Units
Collector-Base Voltage	V _{CB}	80	60	80	V
Collector-Emitter Voltage	V _{CEO}	70	40	60	V
Emitter-Base Voltage	VEB	7	5	5	V
Collector Current	Ic	4			А
Base Current	1 _B		2		А
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T	36 1.8			W
Temperature Range	T _J , T _{STG}	-65 to +150			°C .
Thermal Resistance	θ_{JC}		3.47	`	°C/W

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol		5293 5294		5295 5296		297 298	Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 100$ mA, $I_B = 0$	V _{CEO}	70		40		60		٧
Collector-Emitter Sustaining Voltage I_C = 100 mA, R_{BE} = 100 Ω	ICER	75		50		70		v
Collector-Emitter Sustaining Voltage I _C = 100 mA, V _{BE} = 1.5 V (off)		80		60		80		V
Collector Cutoff Current $V_{CE} = 65 \text{ V}, V_{BE} = 1.5 \text{ V} \text{ (off)}$ $V_{CE} = 35 \text{ V}, V_{BE} = 1.5 \text{ V} \text{ (off)}$	I _{CEX}		0.5 —		- 2		0.5 —	mA
Collector Cutoff Current $\begin{aligned} &V_{CE}=65\text{ V},\text{ V}_{BE}=1.5\text{ V}\text{ (off)},\\ &T_{C}=150^{\circ}\text{C}\\ &V_{CE}=35\text{ V},\text{ V}_{BE}=1.5\text{ V}\text{ (off)},\\ &T_{C}=150^{\circ}\text{C} \end{aligned}$	I _{CEX}		3		- 5		3 –	mA
Collector Cutoff Current V_{CE} = 50 V, R_{BE} = 100 Ω V_{CE} = 50 V, R_{BE} = 100 Ω , T_{C} = 150°C	ICER	,	0.5 2		-		0.5 2	mA
Emitter Cutoff Current $V_{EB} = 7 \text{ V, I}_{C} = 0$ $V_{EB} = 5 \text{ V, I}_{C} = 0$	· I _{EBO}		1 -		- 1		- 1	mA
DC Current Gain $V_{CE} = 4 \text{ V, } I_{C} = 500 \text{ mA}$ $V_{CE} = 4 \text{ V, } I_{C} = 1 \text{ A}$ $V_{CE} = 4 \text{ V, } I_{C} = 1.5 \text{ A}$	h _{FE}	30 - -	120 - -	- 30 -	- 120 -	- - 20	- - 80	,
Collector Saturation Voltage $I_C = 500 \text{ mA}$, $I_B = 50 \text{ mA}$ $I_C = 1 \text{ A}$, $I_B = 100 \text{ mA}$ $I_C = 1.5 \text{ A}$, $I_B = 150 \text{ mA}$	V _{CE(S)}		1.0 - -		- 1.0 -		- - 1.0	V
Base-Emitter "ON" Voltage $V_{CE} = 4 \text{ V, } I_C = 500 \text{ mA}$ $V_{CE} = 4 \text{ V, } I_C = 1 \text{ A}$ $V_{CE} = 4 \text{ V, } I_C = 1.5 \text{ A}$	V _{BE(ON)}		1.1 - -	,	- 1.3 -		- - 1.5	V
Gain Bandwidth Product $V_{CE} = 4 \text{ V}, I_{C} = 200 \text{ mA}$	f⊤	2		2		2		MHz

2N6106 thru 2N6111

PNP Power Transistors employing Epitaxial Base Mesa Technology. These devices are designed and manufactured using National's "Epoxy B Concept." They are especially useful in applications involving repeated on-off operation where wide temperature excursions are anticipated. The devices are offered with straight leads or pre-formed for insertion into TO-66 sockets.

Maximum Ratings

Parameter	Symbol	2N6110 2N6111	2N6108 2N6109	2N6106 2N6107	Units
Collector-Base Voltage	V _{CB}	40	60	80	· V
Collector-Emitter Voltage	V _{CEO}	30 .	50	70	V
Emitter-Base Voltage	V _{EB}		5	•	V
Collector Current (continuous)	Ic	7			А
Base Current (continuous)	IB		3		А
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T	40 1.8			W
Temperature Range	T _J , T _{STG}		-65 to +150		°c
Thermal Resistance	θ JC θ JA		3.125 69.4	,	°C/W

Typical Performance Characteristics

Physical Dimensions

13

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol	2N61	06/07	2N61	08/09	2N61	10/11	Units
	,	Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 100 \text{ mA}, I_B = 0$	V _{CEO}	70		50		30		V
Collector-Emitter Sustaining Voltage I_C = 100 mA, R_{BE} = 100 Ω	V _{CER}	80		60	,	40		V
Collector Cutoff Current $V_{CE} = 60 \text{ V}, I_B = 0$ $V_{CE} = 40 \text{ V}, I_B = 0$ $V_{CE} = 20 \text{ V}, I_B = 0$	I _{CEO}		1.0 _ _		- 1.0 -		- - 1.0	mA .
Collector Cutoff Current $V_{CE} = 75 \text{ V}, V_{BE} = 1.5 \text{ V} \text{ (off)}$ $V_{CE} = 56 \text{ V}, V_{BE} = 1.5 \text{ V} \text{ (off)}$ $V_{CE} = 37.5 \text{ V}, V_{BE} = 1.5 \text{ V} \text{ (off)}$	I _{CEX}		0.1 - -		_ 0.1 _		- - 0.1	mA
Collector Cutoff Current @ $T_C = 150^{\circ}$ C $V_{CE} = 70$ V, $V_{BE} = 1.5$ V (off) $V_{CE} = 50$ V, $V_{BE} = 1.5$ V (off) $V_{CE} = 30$ V, $V_{BE} = 1.5$ V (off)	ICEX		2 - -		_ 2 _		- - 2	mA
Emitter Cutoff Current $V_{EB} = 5 \text{ V, } I_{C} = 0$	I _{EBO}		1.0		1.0		1.0	mA
DC Current Gain V _{CE} = 4 V, I _C = 2 A V _{CE} = 4 V, I _C = 2.5 A V _{CE} = 4 V, I _C = 3 A V _{CE} = 4 V, I _C = 6.5 A	hfE	30 - - 5	150 —	30 - 5	_ 150 _	- - 30 5	- - 150	
Collector Saturation Voltage $I_C = 2.0 \text{ A}, I_B = 200 \text{ mA}$ $I_C = 2.5 \text{ A}, I_B = 250 \text{ mA}$ $I_C = 3.0 \text{ A}, I_B = 300 \text{ mA}$ $I_C = 6.5 \text{ A}, I_B = 1.63 \text{ A}$	V _{CE(S)}		1.0 - 2		1.0	٧	- 1.0 2	V
Base-Emitter "ON" Voltage $V_{CE} = 4 \text{ V, } I_{C} = 2 \text{ A}$ $V_{CE} = 4 \text{ V, } I_{C} = 2.5 \text{ A}$ $V_{CE} = 4 \text{ V, } I_{C} = 3.0 \text{ A}$	V _{BE(ON)}		1.5		1.5		1.5	V
Small Signal Current Gain $V_{CE} = 4 \text{ V}$, $I_C = 0.5 \text{ A}$, $f = 50 \text{ kHz}$	h _{fe}	20		20		20	,	
Gain Bandwidth Product $V_{CE} = 4 \text{ V}, I_C = 0.5 \text{ A}, f = 1 \text{ MHz}$	f _T	10		10		10		MHz
Collector-Base Capacitance V _{CB} = 10 V, f = 1 MHz	C _{ob}		250		250		250	pF

NPN 2N6121 thru 2N6123 PNP 2N6124 thru 2N6126

NPN/PNP Complementary Silicon Power Transistors employing Epi-Base Mesa Technology. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially useful in applications involving repeated on-off operation where wide temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	2N6121 2N6124	2N6122 2N6125	2N6123 2N6126	Units
Collector-Base Voltage	V _{CB}	45	. 60	80	V.
Collector-Emitter Voltage	V _{CEO}	45	60	80	V
Emitter-Base Voltage	V _{EB}	3	5	,	V
Collector Current (continuous)	Ic		4		A
Base Current	IB		1	•	. А
Power Dissipation (T _C = 25°C)	P _T		40		w
Derating Factor	1/θ _{JC}		320		MW/°C
Temperature Range	T _J , T _{STG}		-65 to +150		°c

Typical Performance Characteristics

Physical Dimensions TO-220

Electrical	Characteristics	(T _C = 25°C unless noted)
------------	-----------------	--------------------------------------

Parameter	Symbol	Min.	Max.	Units
Collector Sustaining Voltage I _C = 100 mA, I _B = 0 2N6121, 24 2N6122, 25 2N6123, 26	V _{CEO}	45 60 80		V
Collector Cutoff Current V _{CE} = V _{CEO} Rated, I _B = 0	ICEO		1.0	mA
Collector Cutoff Current V _{CE} = V _{CEO} Rated, V _{EB} = 1.5 V (off)	I _{CEX}		0.1	mA
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $V_{EB} = 1.5 V$ (off) $T_{C} = 125^{\circ}C$	ICEX		2.0	mA
Collector Cutoff Current V _{CB} = V _{CEO} Rated, I _E = 0	ГСВО		0.1	mA
Emitter Cutoff Current V _{EB} = 5 V, I _C = 0	I _{EBO}		1.0	mA
DC Current Gain I _C = 1.5 A, V _{CE} = 2 V 2N6121, 22, 24, 25 2N6123, 26	h _{FE1}	20 20	100 80	
DC Current Gain I _C = 4 A, V _{CE} = 2 V 2N6121, 22, 24, 25 2N6123, 26	h _{FE2}	10 7	 	
Collector Saturation Voltage $I_C = 1.5 A$, $I_B = 0.15 A$ $I_C = 4.0 A$, $I_B = 1 A$	V _{CE(S)}		0.6 1.4	V
Base-Emitter "ON" Voltage $I_C = 1.5 \text{ A, } V_{CE} = 2 \text{ V}$	V _{BE(ON)}		1.2	V
Gain-Bandwidth Product $I_C = 1 A$, $V_{CE} = 4 V$, $f = 1 MHz$	f _T	2.5		MHz
Small Signal Current Gain I _C = 100 mA, V _{CE} = 2 V, f = 1 kHz	h _{fe}	25		

NPN 2N6129 thru 2N6131 PNP 2N6132 thru 2N6134

NPN/PNP Complementary Silicon Power Transistors employing Epitaxial Base Mesa Technology. These devices are designed and manufactured using National's "Epoxy B Concept." They feature exceptional reliability and are especially useful in applications involving repeated on-off operation where wide temperature excursions are anticipated.

Maximum Ratings

Parameter	Symbol	2N6129 2N6132	2N6130 2N6133	2N6131 2N6134	Units
Collector-Base Voltage	V _{CB}	40	60	80	V
Collector-Emitter Voltage	V _{CEO}	40	60	80	V
Emitter-Base Voltage	V _{EB}	5	5	5	V
Collector Current	Ic	7	7	7	А
Base Current	l _B	3	3	3	А
Power Dissipation ($T_C = 25^{\circ}C$)	P _T	50	50	50	W
Derating Factor	1/θ _{JC}	400	400	400	MW/°C
Temperature Range	T _J , T _{STG}	-65 to +150	-65 to +150	-65 to +150	°C

Typical Performance Characteristics

Physical Dimensions TO-220

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol	Min.	Max.	Units
Collector Sustaining Voltage I _C = 100 mA, I _B = 0 2N6129, 32 2N6130, 33 2N6131, 34	V _{CEO} ·	40 60 80	J	V .
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $I_B = 0$	I _{CEO}		2	mA
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $V_{EB} = 1.5$ V (off)	ICEX		0.2	mA
Collector Cutoff Current $V_{CE} = V_{CEO}$ Rated, $V_{EB} = 1.5 V$ (off) $T_{C} = 125^{\circ}C$	ICEX		2	mA
Collector Cutoff Current $V_{CB} = V_{CEO}$ Rated, $I_E = 0$	I _{CBO}		0.1	mA
Emitter Cutoff Current $V_{EB} = 5 \text{ V, } I_{C} = 0$	I _{EBO}		1	mA
DC Current Gain I _C = 2.5 A, V _{CE} = 4 V	h _{FE1}	20	100	
DC Current Gain I _C = 7.0 A, V _{CE} = 4 V 2N6129, 30, 32, 33 2N6131, 34		7 .	- -	
Collector Saturation Voltage I _C = 7.0 A, I _B = 3 A 2N6129, 30, 32, 33 2N6131, 34	V _{CE(S)}		1.4 2.0	V
Base-Emitter "ON" Voltage $I_C = 2.5 \text{ A}, V_{CE} = 4 \text{ V}$	V _{BE(ON)}		2.0	V
Gain Bandwidth Product $V_{CE} = 4 \text{ V}$, $I_C = 1 \text{ A}$, $f = 1 \text{ MHz}$	f⊤	2.5		MHz .
Small Signal Current Gain V _{CE} = 4 V, I _C = 100 mA, f = 1 kHz	h _{fe}	25		

2N6288 thru 2N6293

NPN Power Transistors employing Epitaxial Base Mesa Technology. These devices are designed and manufactured using National's "Epoxy B Concept." They are especially useful in applications involving repeated on-off operation where wide temperature excursions are anticipated. The devices are offered with straight leads or pre-formed for insertion into TO-66 sockets.

Maximum Ratings

Parameter	Symbol	2N6288 2N6289	2N6290 2N6291	2N6292 2N6293	Units
Collector-Base Voltage	V _{CB}	40	60	80	V
Collector-Emitter Voltage	V _{CEO}	30	50	70	V
Emitter-Base Voltage	V _{EB}		5		V
Collector Current (continuous)	lc		7		Α
Base Current (continuous)	IB		3		А
Power Dissipation $(T_C = 25^{\circ}C)$	P _T		40		w
$(T_A = 25^{\circ}C)$			1.8		
Temperature Range	T _J , T _{STG}		-65 to +150		°C
Thermal Resistance	θ_{JC}		3.125		°C/W
	θ_{JA}	1	69.4		

Typical Performance Characteristics

Physical Dimensions

Electrical Characteristics (T_C = 25°C unless noted)

Parameter	Symbol	2N62	92/93	2N62	90/91	2N62	88/89	Units
		Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Emitter Sustaining Voltage $I_C = 100 \text{ mA}, I_B = 0$	V _{CEO}	70		50		30	·	V
Collector-Emitter Sustaining Voltage I_C = 100 mA, R_{BE} = 100 Ω	V _{CER}	80		60		40	•	V
Collector Cutoff Current $\begin{aligned} &V_{CE}=60 \text{ V, I}_{B}=0\\ &V_{CE}=40 \text{ V, I}_{B}=0\\ &V_{CE}=20 \text{ V, I}_{B}=0 \end{aligned}$	I _{CEO}		1.0 - -	·	_ 1.0 _		- 1.0	mΆ
Collector Cutoff Current $V_{CE} = 75 \text{ V, } V_{BE} = 1.5 \text{ V (off)}$ $V_{CE} = 56 \text{ V, } V_{BE} = 1.5 \text{ V (off)}$ $V_{CE} = 37.5 \text{ V, } V_{BE} = 1.5 \text{ V (off)}$	I _{CEX}		0.1 - -		– 0.1 –		- - 0.1	mA
	ICEX		2 - -		 2 		- - 2	mA
Emitter Cutoff Current V _{EB} = 5 V, I _C = 0	I _{EBO}		1.0	,	1.0		1.0	mA
DC Current Gain V _{CE} = 4 V, I _C = 2 A V _{CE} = 4 V, I _C = 2.5 A V _{CE} = 4 V, I _C = 3.0 A V _{CE} = 4 V, I _C = 6.5 A	h _{FE}	30 - - 5	150 	 30 5	 150 	- - 30 5	 150	
Collector Saturation Voltage $I_C = 2.0 \text{ A}$, $I_B = 200 \text{ mA}$ $I_C = 2.5 \text{ A}$, $I_B = 250 \text{ mA}$ $I_C = 3.0 \text{ A}$, $I_B = 300 \text{ mA}$ $I_C = 6.5 \text{ A}$, $I_B = 1.63 \text{ A}$	V _{CE(S)}		1.0 - - 2		- 1.0 - 2		- - 1.0 2	V .
Base-Emitter "ON" Voltage $V_{CE} = 4 \text{ V}, I_C = 2 \text{ A}$ $V_{CE} = 4 \text{ V}, I_C = 2.5 \text{ A}$ $V_{CE} = 4 \text{ V}, I_C = 3.0 \text{ A}$	V _{BE} (ON)		1.5		1.5	,	1.5	V
Small Signal Current Gain $V_{CE} = 4 \text{ V, } I_{C} = 0.5 \text{ A, } f = 50 \text{ kHz}$	h _{fe}	20		20	*	20		
Gain Bandwidth Product $V_{CE} = 4 \text{ V, } I_{C} = 0.5 \text{ A, } f = 1 \text{ MHz}$	f⊤	. 4		4		4		MHz
Collector-Base Capacitance V _{CB} = 10 V, f = 1 MHz	C _{ob}		250		250		250	pF .

Section 4

TO-126

NPN/PNP Complementary Silicon Darlington Power Transistors employing Epitaxial Base Mesa Technology. This series is designed to replace discrete driver and output stages in complementary audio amplifier applications.

The MJE700-703 and MJE800-803 family features National's TO-126 package which is designed and manufactured using National's "Epoxy B Concept." The "Epoxy B Concept" offers exceptional reliability in applications involving repeated on-off operation where wide temperature excursions are anticipated.

NPN MJE800 thru MJE803 PNP MJE700 thru MJE703

Maximum Ratings

Parameter	Symbol	MJE700, MJE701 MJE800, MJE801	MJE702, MJE703 MJE802, MJE803	Units
Collector-Base Voltage	V _{CB}	60	80	V
Collector-Emitter Voltage	V _{CEO}	60	80	V
Emitter-Base Voltage	V _{EB}	5	5	V
Collector Current (continuous)	Ic	4.0	4.0	А
Base Current	I _B	100	100	mA
Power Dissipation $(T_C = 25^{\circ}C)$ $(T_A = 25^{\circ}C)$	P _T	40 1.5	40 1.5	W W
Temperature Range	T _J , T _{STG}	-55 to +150	-55 to +150	°c
Thermal Resistance,	θ_{JA}	3.125 83.3	3.125 83.3	°C/W °C/W

Connection Diagrams

Physical Dimensions

- Pin 1. Emitter 2. Collector 3. Base
- When mounting the device, torque not to exceed
- 6.0 in lb.
 If lead bending is required, use suitable clamp or other supports between transistor case and point of bend.

4

Electrical Characteristics (T_C = 25°C unless otherwise noted.)

Characteristic		Min	Max	Units
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) (I _C = 50 mA _{DC} , I _B = 0) MJE700, MJE701, MJE800, MJE801 MJE702, MJE703, MJE802, MJE803	BV _{CEO}	60 80	-	V _{DC}
Collector Cutoff Current $(V_{CE} = 30 V_{DC}, I_B = 0)$ MJE700, MJE701, MJE800, MJE801 $(V_{CE} = 40 V_{DC}, I_B = 0)$ MJE702, MJE703, MJE802, MJE803	I _{CEO}	_ _	500 500	μA _{DC}
Collector Cutoff Current $(V_{CB} = Rated BV_{CEO}, I_E = 0)$ $(V_{CB} = Rated BV_{CEO}, I_E = 0, T_C = 100^{\circ}C)$	Ісво	- -	0.2 2.0	mA _{DC}
Emitter Cutoff Current \sim (V _{BE} = 5.0 V _{DC} , I _C = 0)	I _{EBO}	_	2.0	mA _{DC}
ON CHARACTERISTICS				
DC Current Gain (Note 1) $ (I_C = 1.5A_{DC},V_{CE} = 3.0V_{DC}) \text{MJE700, MJE702, MJ+800, MJE802} \\ (I_C = 2.0A_{DC},V_{CE} = 3.0V_{DC}) \text{MJE701, MJE703, MJE801, MJE803} $	h _{FE}	750 750		_
Collector-Emitter Saturation Voltage (Note 1) (I _C = 1.5 A _{DC} , I _B = 30 mA _{DC}) MJE700, MJE702, MJE800, MJE802 (I _C = 2.0 A _{DC} , I _B = 40 mA _{DC}) MJE701, MJE703, MJE801, MJE803	V _{CE(sat)}	- -	2.5 2.8	V _{DC}
Base-Emitter On Voltage (Note 1) $(I_C = 1.5A_{DC},V_{CE} = 3.0V_{DC})$ MJE700, MJE702, MJE800, MJE802 $(I_C = 2.0A_{DC},V_{CE} = 3.0V_{DC})$ MJE701, MJE703, MJE801, MJE803	V _{BE(on)}		2.5 2.5	V _{DC}
Parallel Diode Forward Voltage Drop $(I_C = -4 A, I_B = 0)$	V _F	_	5.0	V _{DC}
DYNAMIC CHARACTERISTICS				
Small Signal Current Gain $(I_C = 1.5 A_{DC}, V_{CE} = 3.0 V_{DC}, f = 1.0 MHz)$	h _{fe}	1.0	_	_

NOTES: 1. Pulse Test: Pulse width ≤ 300 µs, duty cycle ≤ 2.0%.

Typical Characteristic Curves

(T_C = 25°C unless otherwise noted.)

MJE700-MJE703

Typical Characteristic Curves (Continued)

MJE800-MJE803

POWER DERATING

Switching Time Test Circuits

Typical Switching Characteristics

NPN/PNP Complementary Silicon Darlington Power Transistors employing Epitaxial Base Mesa Technology. This series is designed for general purpose amplifier and low speed switching applications.

The 2N6034-39 family features National's TO-126 package which is designed and manufactured using National's "Epoxy B Concept." The "Epoxy B Concept" offers exceptional reliability in applications involving repeated on-off operation where wide temperature excursions are anticipated.

NPN 2N6037 thru 2N6039 PNP 2N6034 thru 2N6036

Maximum Ratings

Parameter	Symbol	2N6034 2N6037	2N6035 2N6038	2N6036 2N6039	Units
Collector-Base Voltage	V _{CB}	40	60	80	V
Collector-Emitter Voltage	V _{CEO}	40	60	80	V
Emitter-Base Voltage	V _{EB}	5	5	5	V
Collector Current (continuous) (peak)	lc	4.0 8.0	4.0 8.0	4.0 8.0	A A
Base Current	IB	100	100	100	mA
Power Dissipation ($T_C = 25^{\circ}C$) ($T_A = 25^{\circ}C$)	P _T	40 1.5	40 1.5	40 1.5	W W
Temperature Range	T _J , T _{STG}	-65 to +150	-65 to +150	-65 to +150	°c
Thermal Resistance	θ JC θ JA	3.125 83.3	3.125 83.3	3.125 83.3	°C/W °C/W

Connection Diagrams

Physical Dimensions

- Pin 1. Emitter 2. Collector 3. Base
- J. Dase

When mounting the device, torque not to exceed 6.0 in lb.
If lead bending is required, use suitable clamp or other supports between transistor case and point

Electrical Characteristics (T_C = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Units
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage		V _{CEO(sus)}			v_{DC}
$(I_C = 100 \text{ mA}_{DC}, I_B = 0$	2N6034, 2N6037		40	_	
	2N6035, 2N6038		60	-	
	2N6036, 2N6039		80	_	
Collector Cutoff Current		ICEO	ž.		mA_{DC}
$(V_{CE} = 20 V_{DC}, I_{B} = 0)$	2N6034, 2N6037	020	_	0.5	
$(V_{CE} = 30 V_{DC}, I_B = 0)$	2N6035, 2N6038		· _	0.5	
$(V_{CE} = 40 V_{DC}, I_B = 0)$	2N6036, 2N6039			0.5	
Collector Cutoff Current		losy			mΛ
$(V_{CE} = 40 V_{DC}, V_{BE(off)} = 1.5 V_{DC})$	2N6034, 2N6037	ICEX		0.5	mA_{DC}
	•			1	•
$(V_{CE} = 60 V_{DC}, V_{BE(off)} = 1.5 V_{DC})$	2N6035, 2N6038))	_	0.5	
$(V_{CE} = 80V_{DC}, V_{BE(off)} = 1.5V_{DC})$	2N6036, 2N6039		man.	0.5	
$(V_{CE} = 40 V_{DC}, V_{BE(off)} = 1.5 V_{DC},$	0110004 0110007	1 . 1			
$T_C = 125^{\circ}C$	2N6034, 2N6037			2.0	
$(V_{CE} = 60 V_{DC}, V_{BE(off)} = 1.5 V_{DC},$	0110005 0110000				
$T_{C} = 125^{\circ}C)$	2N6035, 2N6038			2.0	
$(V_{CE} = 80 V_{DC}, V_{BE(off)} = 1.5 V_{DC},$,		
T _C = 125°C)	2N6036, 2N6039		-	2.0	
Collector Cutoff Current		I _{CBO}			mADC
$(V_{CB} = 40 V_{DC}, I_{E} = 0)$	2N6034, 2N6037			0.5	
$(V_{CB} = 60 V_{DC}, I_{E} = 0)$	2N6035, 2N6038			0.5	
$(V_{CB} = 80 V_{DC}, I_{E} = 0)$	2N6036, 2N6039			0.5	
Emitter Cutoff Current		I _{EBO}			mA_DC
$(V_{BE} = 5.0 V_{DC}, I_{C} = 0)$,EBO	_	2.0	111/100
ON CHARACTERISTICS	· · · · · · · · · · · · · · · · · · ·			L	
DC Current Gain		b		T	
$(I_C = 0.5 A_{DC}, V_{CE} = 3.0 V_{DC})$		hFE	, EOO	1	_
$(I_C = 2.0 A_{DC}, V_{CE} = 3.0 V_{DC})$			500 750	15,000	
				15,000	
$(I_C = 4.0 A_{DC}, V_{CE} = 3.0 V_{DC})$		1.	100		
Collector-Emitter Saturation Voltage		' V _{CE(sat)}			V_{DC}
$(I_C = 2.0 A_{DC}, I_B = 8.0 mA_{DC})$	•		_	2.0	
$(I_C = 4.0 A_{DC}, I_B = 40 mA_{DC})$			-	3.0	
Base-Emitter Saturation Voltage		V _{BE(sat)}			V_{DC}
$(I_C = 4.0 A_{DC}, I_B = 40 mA_{DC})$		22(000)	_	4.0	, - 0
Base-Emitter On Voltage		V			V
$(I_C = 2.0 A_{DC}, V_{CE} = 3.0 V_{DC})$		V _{BE(on)}		2.8	V _{DC}
				2.0	
Parallel Diode Forward Voltage Drop		V _F		1	V_{DC}
$(I_C = -4 A, I_B = 0)$,	5.0	
DYNAMIC CHARACTERISTICS				su.	
Magnitude of Small-Signal Current Gain		h _{fe}			
$(I_C = 0.75 A_{DC}, V_{CE} = 10 V_{DC}, f = 1.$	OMHz)	1	25	_	
					٠
Output Capacitance	ONCORA ONCORE ONCORE	C _{ob}		200	рF
$(V_{CB} = 10 V_{DC}, I_E = 0, f = 0.1 MHz)$			_	200	
	2N6037, 2N6038, 2N6039	1		100	

^{*} Indicates JEDEC Règistered Data.

Switching Time Test Circuits

Typical Switching Characteristics

2N6034, 2N6035, 2N6036

2N6037, 2N6038, 2N6039

Section 5

T0-3

NPN 2N3713 thru 2N3716 PNP 2N3789 thru 2N3792

NPN/PNP complementary silicon power transistors are for medium-speed switching and amplifier applications.

Maximum Ratings (T_C = 25°C unless otherwise noted)

PARAMETER	SYMBOL	2N3713, 2N3715 2N3789, 2N3791	2N3714, 2N3716 2N3790, 2N3792	UNIT
Collector-Base Voltage	. V _{CB}	. 80	100	V
Collector-Emitter Voltage	VCEO	60	. 80	V
Emitter-Base Voltage	VEB	7.0	7.0	V
Collector Current	IC	10	10	А
Base Current (Continuous)	IB	4.0	4.0	А
Power Dissipation	PD	150	150	w
Thermal Resistance	θ JC	1.17	1.17	°C/W
Junction Operating and Storage Temperature Range	T _J , T _{STG}	-65 to +200	−65 to +200	°C

Typical Performance Characteristics

Safe Operating Area 2N3713, 2N3715, 2N3789 and 2N3791

Safe Operating Area 2N3714, 2N3716, 2N3790 and 2N3792

Electrical Characteristics (T_C = 25°C unless otherwise noted)

PARAMETER		SYMBOL	MIN	MAX	UNIT
Collector-Emitter Sustaining Voltage (Note 1)		VCEO(SUS)			V
$(I_C = 20 \text{ mA}, I_B = 0)$	2N3713, 2N3715,		60		
	2N3789, 2N3791				
	2N3714, 2N3716,		80		ļ
•	2N3790, 2N3792				l
Collector-Emitter Cutoff Current		ICEX			mA
$(V_{CE} = 80V, V_{BE} = -1.5V)$	2N3713, 2N3715,			1.0	
	2N3789, 2N3791	1			
$(V_{CE} = 100V, V_{BE} = -1.5V)$	2N3714, 2N3716,			1.0	
	2N3790, 2N3792		İ		
$(V_{CE} = 60 \text{ V}, V_{BE} = -1.5 \text{V}, T_{C} = 150^{\circ}\text{C})$	2N3713, 2N3715,		1	10	
	2N3789, 2N3791	,		5.0	
$(V_{CE} = 80V, V_{BE} = -1.5V, T_{C} = 150^{\circ}C)$	2N3714, 2N3716			10	
•	2N3790, 2N3792	-		5.0	
Emitter- Base Cutoff Current		IEBO			mA
(V _{EB} = 7V)				5.0	
DC Current Gain (Note 1)		hFE			ŀ
(IC = 1A, VCE = 2V)	2N3713, 2N3714,	""	25	90	ŀ
(10 17) *GE 2*7	2N3789, 2N3790	1		ور ا	l
	2N3715, 2N3716,	1	50	150	ļ
	2N3791, 2N3792				Ì
$(I_C = 3A, V_{CE} = 2V)$	2N3713, 2N3714,		15		İ
30 02	2N3789, 2N3790				1
	2N3715, 2N3716,		30		1
	2N3791, 2N3792				ì
Collector-Emitter Saturation Voltage (Note 1)	•	VCE(SAT)			V
(IC = 4A, IB = 0.4A)	2N3789, 2N3790	02(6,11)		1.0	
(I _C = 5A, I _B = 0.5A)	2N3713, 2N3714			1.0	ĺ
-	2N3715, 2N3716	1		0.8	
	2N3791, 2N3792			1.0	1
Base-Emitter Saturation Voltage (Note 1)		V _{BE} (SAT)			V
(IC = 4A, IB = 0.4A)	2N3789, 2N3790	DEGOATT		2.0	1
$(I_C = 5A, I_B = 0.5A)$	2N3713, 2N3714		ļ	2.0	
, -	2N3715, 2N3716,			1.5	
	2N3791, 2N3792			ŀ	
Base-Emitter Voltage (Note 1)		VBE		1	V
(I _C = 3A, V _{CE} = 2V)		, BL		1.5	
Current Gain—Bandwidth Product		f-			MHz
(VCE = 10V, IC = 0.5A, f = 1 MHz)		fT	4.0	1	IVITIZ
•			1.0	1	
Small Signal Current Gain		h _{fe}	1		
$(V_{CE} = 10V, I_{C} = 0.5A, f = 1 MHz)$			4.0		

Note 1: Pulse test – pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.

Typical Performance Characteristics (Continued)

2N3713 thru 2N3716

Voltage Variations

1.4

1.2

0.6

0.2

10

VBE(SAT) — BASE-EMITTER SATURATION VOLTAGE (V)

5N

0.01

DC Current Gain vs Collector

= _40°C

= 175°C

100 200

IR - BASE CURRENT (mA)

T (NOTE 2) T

DC Current Gain vs Collector

Gain Bandwidth Product vs Collector Current

IC - COLLECTOR CURRENT (A)

0.1

Maximum Power Dissipation vs Case Temperature

Transconductance

Forward Characteristics vs Collector Current

Maximum Power Dissipation vs Case Temperature

Physical Dimensions

TO-3 Metal Can Package 98 Order Number 2N3713, 2N3714, 2N3715, 2N3716, 2N3789, 2N3790, 2N3791 or 2N3792

These complementary silicon power transistors are designed for general purpose power amplifier and switching applications.

- Low collector-emitter saturation voltage—V_{CE}(sat) = 1.0 V_{DC} max, @ I_C = 4.0 A_{DC}
- Low leakage current ICEX = 0.25 mADC max
- Excellent dc current gain—hFE = 20 min, @ IC = 2.5 ADC
- High current gain—bandwidth product—fT = 4.0 MHz @ IC = 0.25 ADC

NPN 2N5873, 2N5874 PNP 2N5871, 2N5872

Maximum Ratings

PARAMETER	SYMBOL	2N5871 2N5873	2N5872 2N5874	UNIT
Collector-Emitter Voltage	VCEO	60	80	V
Collector-Base Voltage	V _{CB}	60	80	V
Emitter-Base Voltage	VEB	5.0	5.0	\ \ \
Collector Current—Continuous	IC '	7.0	7.0	A
Peak		15	15	A
Base Current	IB	2.0	2.0	A
Total Device Dissipation @ $T_C = 25^{\circ}C$	PD	115) w
Derate above 25°C		0.658		w/°c
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-65 to +200	−65 to +200	°c

Thermal Characteristics

PARAMETER	SYMBOL	MAX	UNIT
Thermal Resistance, Junction to Case	θ JC	1.52	°C/W

Note 1: Indicates JEDEC registered data. All above values meet or exceed present JEDEC registered data.

PARAMETER		SYMBOL	MIN	MAX	UNI
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 1)		VCEO(sus)			l v
$(I_C = 100 \text{ mA}, I_B = 0)$	2N5871, 2N5873		60		
	2N5872, 2N5874		80		
Collector Cutoff Current		ICEO			m/
$(V_{CE} = 30V, I_B = 0)$	2N5871, 2N5873			0.5	
$(V_{CE} = 40V, I_B = 0)$	2N5872, 2N5874	1		0.5	
Collector Cutoff Current		ICEX		ĺ	m
$(V_{CE} = 60V, V_{BE(OFF)} = 1.5V)$	2N5871, 2N5873			0.25	
$(V_{CE} = 80V, V_{BE(OFF)} = 1.5V)$	2N5872, 2N5874	1	,	0.25	ŀ
$(V_{CE} = 60V, V_{BE(OFF)} = 1.5V, T_{C} = 150^{\circ}C)$	2N5871, 2N5873	1		2.0	
$(V_{CE} = 80V, V_{BE}(OFF) = 1.5V, T_{C} = 150^{\circ}C)$	2N5872, 2N5874			2.0	
Collector Cutoff Current		СВО			m,
$(V_{CB} = 60V, I_{E} = 0)$	2N5871, 2N5873	1 .080		0.25	
$(V_{CB} = 80V, I_{E} = 0)$	2N5872, 2N5874			0.25	
Emitter Cutoff Current					
		IEBO		1.0	m,
(V _{EB} = 5.0V, I _C = 0) ON CHARACTERISTICS				L	L
dc Current Gain (Note 1)		hFE			<u> </u>
(I _C = 0.5A, V _{CE} = 4V)			35		
(IC = 2.5A, VCE = 4V)		1	20	100	
$(I_C = 7A, V_{CE} = 4V)$			4.0		
Collector-Emitter Saturation Voltage (Note 1)	•	Vorten			l v
(IC = 4V, IB = 0.4A)		VCE(sat)		1.0	ľ
(I _C = 7A, I _B = 1.75A)				2.0	
-					١.,
Base-Emitter Saturation Voltage (Note 1)		VBE(sat)		2.5	\
(I _C = 7A, I _B = 1.75A)					
Base-Emitter ON Voltage (Note 1)		VBE(on)		1.5	V
(I _C = 2.5A, V _{CE} = 4V)				<u> </u>	L
DYNAMIC CHARACTERISTICS Current Coin Pandwidth Product (Note 2)			4.0	1	8.71
Current-Gain—Bandwidth Product (Note 2)		fŢ	4.0	1	MH
$(I_C = 0.25A, V_{CE} = 10V, f_{test} = 1 MHz)$					
Output Capacitance		C _{ob}			pF
$(V_{CB} = 10V, I_{E} = 0, f = 1 \text{ MHz})$	2N5871, 2N5872			300	
,	2N5873, 2N5874			200	
Small-Signal Current Gain		h _{fe}	20	1	
$(I_C = 0.5A, V_{CE} = 4V, f = 1 \text{ kHz})$		1 .		1	

^{*}Indicates JEDEC registered data

Note 1: Pulse test: pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.

Note 2: $f_T = |h_{fe}| \cdot f_{test}$.

Typical Performance Characteristics

Maximum Power Dissipation vs Case Temperature

Safe Operating Area

DC Current Gain vs Collector Current 2N5871, 2N5872

DC Current Gain vs Collector Current 2N5873, 2N5874

Forward Characteristics vs Collector Current 2N5871, 2N5872

Forward Characteristics vs Collector Current 2N5873, 2N5874

Physical Dimensions

TO-3 Metal Can Package 98 Order Number 2N5871, 2N5872, 2N5873 or 2N5874

NPN 2N5881, 2N5882 PNP 2N5879, 2N5880

These complementary silicon high power and power transistors are designed for general-purpose power amplifier and switching applications.

- Collector-emitter sustaining voltage
 VCEO(sus) = 60V min 2N5879, 2N5881
 = 80V min 2N5880, 2N5882
- dc current gain—hFE = 20 min @ IC = 6A
- Low collector—emitter saturation voltage—VCE(sat) = 1V max @ I_C = 7A
- High current—gain-bandwidth product—fT = 4 MHz min @ IC = 1A
- Recommended for new circuit designs

Maximum Ratings*

PARAMETER	SYMBOL	2N5879 2N5881	2N5880 2N5882	UNIT
Collector-Emitter Voltage	VCEO	60	80	V
Collector-Base Voltage	√ V _{CB}	60	80	V
Emitter-Base Voltage	VEB	5.0	5.0	V
Collector Current — Continuous Peak	IC	15 30	15 30	А
Base Current	1 _B	5.0	5.0	А
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	160 0.915	160 0.915	w/°c
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	−65 to +200	°c

Thermal Characteristics

PARAMETER	SYMBOL	MAX	UNIT
Thermal Resistance, Junction to Case	θ JC	1.1	°C/W

^{*}Indicates JEDEC registered data. Limits and conditions differ on some parameters and re-registration reflecting these changes has been requested. All above values meet or exceed present JEDEC registered data.

Electrical Characte	istics* (T _C = 25°C unless otherwise noted)	

PARAMETER		SYMBOL	MIN	MAX	UNIT
OFF CHARACTERISTICS				L	,
Collector-Emitter Sustaining Voltage (Note 1)		VCEO(sus)			V
$I_C = 200 \text{ mA}, I_B = 0)$	2N5879, 2N5881	020 (000)	60		1
	2N5880, 2N5882		80	'	
Collector Cutoff Current		ICEO			mA
$(V_{CE} = 30V, I_B = 0)$	2N5879, 2N5881			1.0	l
$(V_{CE} = 40V, I_B = 0)$	2N5880, 2N5882			1.0	1
Collector Cutoff Current		ICEX			mA
$(V_{CE} = 60V, V_{BE(off)} = 1.5V)$	2N5879, 2N5881			0.5	
$(V_{CE} = 80V, V_{BE(off)} = 1.5V)$	2N5880, 2N5882			0.5	
$(V_{CE} = 60V, V_{BE(off)} = 1.5V, T_{C} = 150^{\circ}C)$	2N5879, 2N5881	1		5.0	
$(V_{CE} = 80V, V_{BE(off)} = 1.5V, T_{C} = 150^{\circ}C)$	2N5880, 2N5882			5.0	
Collector Cutoff Current		СВО			mA
$(V_{CB} = 60V, I_{E} = 0)$	2N5879, 2N5881			0.5	
$(V_{CB} = 80V, I_{E} = 0)$	2N5880, 2N5882	}		0.5	
Emitter Cutoff Current		IEBO		1.0	mA
$(V_{EB} = 5V, I_{C} = 0)$					
ON CHARACTERISTICS					
DC Current Gain (Note 1)		hFE			
$(I_C = 2A, V_{CE} = 4V)$			35		
$(I_C = 6A, V_{CE} = 4V)$			20	100	
$(I_C = 15A, V_{CE} = 4V)$			4.0		
Collector-Emitter Saturation Voltage (Note 1)		VCE(sat)			V
$(I_C = 7A, I_B = 0.7A)$				1.0	
$(I_C = 15A, I_B = 3.75A)$	•			4.0	
Base-Emitter Saturation Voltage (Note 1)		VBE(sat)		2.5	V
$(I_C = 15A, I_B = 3.75A)$					
Base-Emitter On Voltage (Note 1)	*	VBE(on)		1.5	· V
(I _C = 6A, V _{CE} = 4V)					
DYNAMIC CHARACTERISTICS	,				
Current Gain—Bandwidth Product (Note 2)	,	fT	4.0		MHz
$(I_C = 1A, V_{CE} = 10V, f_{test} = 1 MHz)$					
Output Capacitance		Cob			pF
$(V_{CB} = 10V, I_E = 0, f = 100 \text{ kHz})$	2N5879, 2N5880			600	ļ
	2N5881, 2N5882			400	
Small-Signal Current Gain		h _{fe}	20		
$(I_C = 2A, V_{CE} = 4V, f = 1 \text{ kHz})$					

^{*}Indicates JEDEC registered data

Note 1: Pulse test: pulse width $\leq 300 \ \mu s$, duty cycle $\leq 2\%$.

Note 2: $f_T = |h_{fe}| \cdot f_{test}$.

Typical Performance Characteristics

Physical Dimensions

TO-3 Metal Can Package 98 Order Number 2N5879, 2N5880, 2N5881 or 2N5882

These Darlington complementary silicon power transistors are designed for general-purpose amplifier and low-speed switching applications.

- High dc current gain hFE = 3000 typ @ IC = 4A
- Collector-emitter sustaining voltage @ 100 mA

VCEO(sus) = 60V min - 2N6053, 2N6055, 2N6298, 2N6300

= 80V min - 2N6054, 2N6056,

2N6299, 2N6301

■ Low collector-emitter saturation voltage

VCE(sat) = 2V m

= 2V max @ IC = 4A = 3V max @ IC = 8A

Monolithic construction with built-in base-emitter shunt resistors

NPN 2N6055, 2N6056 PNP 2N6053, 2N6054

Maximum Ratings*

PARAMETER	SYMBOL	2N6053 2N6055	2N6054 2N6056	UNIT
Collector-Emitter Voltage	V _{CEO}	60	80	V
Collector-Base Voltage	V _{CB}	60	80	V
Emitter-Base Voltage	VEB	5.0	5.0	V
Collector Current—Continuous —Peak	IC	8.0 16	8.0 16	А
Base Current	IB	120	120	mA
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate Above $25^{\circ}C$	PD	100 0.571	75 0.428	W W/°C
Operating and Storage Junction Temperature Range	TJ, TSTG	-65 to +200	-65 to +200	°C

Thermal Characteristics

PARAMETER	SYMBOL	MAX	UNIT
Thermal Resistance, Junction to Case	, θJC .	1.75	°C/W

^{*}Indicates JEDEC registered data

Schematic Diagrams

PARAMETER	t .	SYMBOL	MIN	MAX	UNIT
OFF CHARACTERISTICS	,				
Collector-Emitter Sustaining Voltage (Note 1)	VCEO(sus)			V.
$(I_C = 100 \text{ mA}, I_B = 0)$	2N6053, 2N6055		60		,
	2N6054, 2N6056		80		
Collector Cutoff Current		ICEO			mA
$(V_{CE} = 30V, I_{B} = 0)$	2N6053, 2N6055			0.5	
$(V_{CE} = 40V, I_B = 0)$	2N6054, 2N6056			0.5	
Collector Cutoff Current		ICEX			mA
(VCE = Rated VCB, VBE(off) = 1.5V)) OZA		0.5	
$(V_{CE} = Rated V_{CB}, V_{BE(off)} = 1.5V, T_{CE}$; = 150°C			5.0	ļ
Emitter Cutoff Current		¹EBO			mA
$(V_{BE} = 5V, I_{C} = 0)$		1		2.0	
ON CHARACTERISTICS (Note 1)				I	L
dc Current Gain		hFE			
$(I_C = 4A, V_{CE} = 3V)$			750	18000	
(IC = 8A, VCE = 3V)			100	,	
Collector-Emitter Saturation Voltage		VCE(sat)		,	V
(I _C = 4A, I _B = 16 mA)		02(001)		2.0	}
$(I_C = 8A, I_B = 80 \text{ mA})$	•			3.0	
Base-Emitter Saturation Voltage		VBE(sat)	1		V
(IC = 8A, IB = 80 mA)		DE (sat)		4.0	•
Base-Emitter On Voltage		Vor			lv
(IC = 4A, VCE = 3V)		VBE(on)		2.8	v
DYNAMIC CHARACTERISTICS			<u> </u>	2.0	· ·
Magnitude of Common Emitter Small-Signal	Short-Circuit Current	h _{fe}			I
Transfer Ratio		1 10.			
$(I_C = 3A, V_{CE} = 3V, f = 1 MHz)$	•		4.0		
Output Capacitance		Cob			pF
(V _{CB} = 10V, I _E = 0, f = 0.1 MHz)	2N6053, 2N6054			300	
	2N6055, 2N6056			200	1
Small-Signal Current Gain		h _{fe}			
(IC = 3A, VCE = 3V, f = 1 kHz)		···ie	300		

^{*}Indicates JEDEC registered data

Note 1: Pulse test: pulse width = 300 μ s, duty cycle \leq 2%.

Typical Performance Characteristics

Physical Dimensions

STYLE 1: Pin 1: Emitter 2: Base Case: Collector

TO-3 Metal Can Package 98 Order Number 2N6053, 2N6054, 2N6055 or 2N6056

Section 6

Processes

Process 35 NPN RF-HF Power Amplifier

DESCRIPTION

Process 35 is a double diffused silicon epitaxial device.

APPLICATION

This device is designed for use in the output stage of 4W AM Citizens Band (27 MHz) transmitters with capabilities to withstand infinite VSWR at rated output.

PRINCIPAL DEVICE TYPES:

TO-39	MRF8004
TO-126	MRF472
TO-220	2SC1678

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
P _{OUT}	f = 27 MHz, I _C (Avg) = 415 mA, (Figure 1)	3.0	3.5		W
η	V _{CC} = 12V, P _{IN} = 0.4W	60	70		%
h _{fe}	I _C = 100 mA, V _{CE} = 5V, f = 20 MHz	6.0	12		
C_{ob}	V _{CB} = 10V		25	35	pF
H _{FE}	I _C = 100 mA, V _{CE} = 1V	30	70	150	
V_{CES}	I _C = 1.0A, I _B = 100 mA		0.2	0.5	V
BV _{CER}	$I_C = 1 \text{ mA}, R_{BE} = 10\Omega$	65			V
BVEBO	I _E = 100 μA	3			V
I _{CBO}	V _{CB} = 40V			10	μΑ
I _{CEO}	V _{CE} = 40V		,	100	μΑ
I _{EBO}	V _{EB} = 2.0V			10	μΑ
SOA	V _{CE} = 30V, t = 1 sec	500			mA

Safe Operating Area Curve

Process 35 Base-Emitter Saturation Collector-Emitter DC Current Gain vs Voltage vs Collector Saturation Voltage vs IC vs VCE Collector Current Collector Current V_{CE} = 1V V_{CEISAT}) ~ COLLECTOR-EMITTER SATURATION VOLTAGE (V) 1.1 IC -COLLECTOR CURRENT (mA) V_{BE(SAT)} – BASE EMITTER SATURATION VOLTAGE (V) hre - DC CURRENT GAIN 0.9 100 300 0.8 0.15 50 200

0.81

I_C - COLLECTOR CURRENT (A)

0.05 0.1

I_C - COLLECTOR CURRENT (A)

I_C - COLLECTOR CURRENT (A)

V_{CE} - COLLECTOR-EMITTER VOLTAGE (V)

C1, C2 = 9.0–180 pF ARCO 463 C3, C4 = 5.0–80 pF ARCO 462 C5 = 0.01 μ F Disc C6 = 0.1 μ F Disc

Co = U. μr Usc RFC 1 4 turns No. 32 enameled wire wound on Indiana General Bead No. 57-1692 RFC 2 15 μH chock JW. Miller #4624 L1 — 0.22 μH molded choke L2 — 1 μH molded choke

FIGURE 1. 27 MHz Test Circuit

Process 36 NPN High Voltage Power

DESCRIPTION

Process 36 a non-overlay double-diffused silicon epitaxial device.

APPLICATION

This device is designed for use in horizontal driver, class A off-line amplifier and off-line switching applications.

AVAILABLE DEVICE TYPES

2N5655 MJE340 MJE343 2N5656 MJE341 MJE344 2N5657 MJE342

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
BVCEO	I _{CE} = 1 mA*	200	300		V
BVCBO	I _{CB} = 100 μA	225	325	,	V
BVEBO	I _{EB} = 10 μA	6	,		V
ICEO	V _{CE} = 200V			50	μΑ
СВО	V _{CB} = 225V			1	μΑ
1 _{EBO}	V _{EB} = 5V			1	μΑ
HFE	I _C = 50 mA, V _{CE} = 10V* I _C = 100 mA, V _{CE} = 10V* I _C = 250 mA, V _{CE} = 10V* I _C = 500 mA, V _{CE} = 10V*	25 30 15 10	190 200 60 25	300	·
VCE(SAT)	I _C = 100 mA, I _B = 10 mA*		0.08	0.5	V
VCE(SAT)	I _C = 500 mA, I _B = 100 mA*		0.175	0.5	V
VBE(SAT)	I _C = 500 mA, I _B = 100 mA*		0.9	1.2	V
V _{BE} (ON)	I _C = 100 mA, V _{CE} = 10V*		0.7	1.0	V
f _t	I _C = 50 mA, V _{CE} = 10V, f = 20 MHz	10	60		MHz
Cob	V _{CB} = 10V			15	pF
C _{ib}	V _{BE} = 0.5V			125	pF .
I _{SB}	V _{CE} = 100V, T = 1 second	200			mA
PD(MAX)	TO-126 TO-202			25 15	W W
$ heta_{ extsf{jc}}$	TO 126 TO 202			5.0 8.33	°C/W °C/W
θ jA	TO-202			69.4	°C/W

^{*}Pulse test, pulse width = 300 µs

Process 36

Typical Normalized Pulsed

Process 37 NPN Medium Power

DESCRIPTION

Process 37 is a double diffused silicon epitaxial planar device. Complement to Process 77.

APPLICATION

This device was designed for general purpose medium power amplifiers and switching circuits that require collector currents to 1A.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 10 mA	25		45	V
BV _{CBO}	$I_C = 100\mu A$	50	!		V
BV _{EBO}	I _E = 100μA	5	7		V
Ісво	V _{CB} = BV _{CEO}		50	500	nA
I _{EBO}	V _{EB} = 5V		0.1	100	μΑ
h _{FE}	$I_{\rm C} = 500 \rm mA, V_{\rm CE} = 1V$	100		400	
V _{CE(SAT)}	I _C = 1A, I _B = 0.1A	İ	0.2	0.5	V
V _{BE(SAT)}	I _C = 1A, I _B = 0.1A		0.95	1.5	V
f_T	I _C = 100 mA, V _{CE} = 10V		300		MHz
Сово	V _{CB} = 10V			20	pF

AVAILABLE DEVICE TYPES

TO-202 (Package 35) 92 PLUS (Package 91)

NSD102 NSD103 92PU01 92PU01A

NSDU01 NSDU01A

TO-126 (Package 38)

BD135 TO-202 (Package 36)

D42C1

D42C2

D42C3

D42C4

D42C5

D42C6 NSE 180

92 PLUS (Package 90)

92PE37A BD373A

Process 37

Typical Normalized Pulsed Current Gain vs Collector

Typical Normalized Pulsed Current Gain vs Collector

Base-Emitter "ON" Voltage vs Collector

Base-Emitter Saturation Voltage

Collector-Emitter Voltage vs Collector Current

Gain Bandwidth
Product vs Collector
Current

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area

Maximum Power Dissipation vs Ambient Temperature (TO-202)

Process 38 NPN Medium Power

DESCRIPTION

Process 38 is a double diffused silicon epitaxial planar device. Complement to Process 78.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 10 mA	45		80	V
BV _{CBO}	I _C = 100μA	90	١.	160	V
BV_{EBO}	ι _E = 100μΑ	5	7		V
I _{CBO}	V _{CB} = BV _{CEO}		50	500	nA
I _{EBO}	V _{EB} = 5V		0.1	100	μΑ
h _{FE}	I _C = 100 mA, V _{CE} = 1V	150		500	
V _{CE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.2	0.5	V
V _{BE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.8	1.4	V
f_{T}	I _C = 100 mA, V _{CE} = 10V		250		MHz
C _{OBO}	V _{CB} = 10V			15	pF

AVAILABLE DEVICE TYPES

TO-202 (Package 35) 92 PLUS (Package 91)

NSDU05 92PU05 NSD6178 BD371B NSD6179 BD371C

TO-202 (Package 36) TO-126 (Package 38)

D42C7 BD137 D42C8

D42C9 NSE181

92 PLUS (Package 90)

92PE37B BD373B BD373C

Typical Normalized Pulsed Current Gain vs Collector Current

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector

Base-Emitter Saturation Voltage vs Collector Current

Collector-Emitter Saturation Voltage

Gain Bandwidth **Product vs Collector** Current

Collector-Base Capacitance vs Collector-Base

Safe Operating Area TO-202

Maximum Power Dissipation vs Ambient Temperature (TO-202)

Process 39 NPN Medium Power

DESCRIPTION

Process 39 is a double diffused silicon epitaxial planar device. Complement to Process 79.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 10 mA	80		110	V
BV _{CBO}	I _C = 100μA	160		220	V
BV _{EBO}	I _E = 100μΑ	5	7		V
I _{CBO}	V _{CB} = BV _{CEO}		50	500	nA
I _{EBO}	V _{EB} = 5V		0.1	100	μΑ
h _{FE}	I _C = 100 mA, V _{CE} = 1V	100		350	
V _{CE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.2	0.5	V
V _{BE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.95	1.5	V
f _T	I _C = 100 mA, V _{CE} = 10V		120		MHz
С _{ОВО}	V _{CB} = 10V			12	pF

AVAILABLE DEVICE TYPES

TO-202 (Package 35)

NSD104

NSD105

NSD106

NSDU06 NSDU07

92 PLUS (Package 90)

92PE37C

BD373D

92 PLUS (Package 91)

92PU06

92PU07

BD371D

TO-126 (Package 38)

BD139

Process 39

Typical Normalized Pulsed Current Gain vs Collector

Typical Normalized Pulsed Current Gain vs Collector

Base-Emitter "ON" Voltage vs Collector

Base-Emitter Saturation Voltage

Collector-Emitter Saturation Voltage

Gain Bandwidth Product vs Collector Current

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area TO-202

Maximum Power Dissipation vs Ambient Temperature (TO-202)

Process 77 PNP Medium Power

DESCRIPTION

Process 77 is a double diffused silicon epitaxial planar device. Complement to Process 37.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
BV _{CEO}	I _C = 10 mA	25		45	, V
BV _{CBO} ,	$I_C = 100\mu A$	40			V
BV _{EBO}	$I_{E} = 100\mu A$	5	7		, v
I _{CBO}	V _{CB} = BV _{CEO}	}	50	500	nA .
I _{EBO}	V _{EB} = 5V		0.1	100	μΑ
h _{FE}	$I_{\rm C} = 500 \text{mA}, V_{\rm CE} = 1 \text{V}$	50		250	
V _{CE(SAT)}	I _C = 1A, I _B = 0.1A		0.3	0.5	V
V _{BE(SAT)}	I _C = 1A, I _B = 0.1A		1.0	1.5	ν ,
f _T	I _C = 100 mA, V _{CE} = 10V		200		MHz
Сово	V _{CB} = 10V			20	pF

AVAILABLE DEVICE TYPES

TO-202 (Package 35) 92 PLUS (Package 91)

NSD202 92PU51 NSD203 92PU51A NSDU51 BD370A

NSDU51A

TO-126 (Package 38)

TO-202 (Package 36) BD136 D43C1

D43C2

D43C3 D43C4

D43C5

D43C6 NSE170

92 PLUS (Package 90)

92PE77A BD372A

Process 77

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector Current

Base-Emitter Saturation Voltage

Collector-Emitter Saturation Voltage vs Collector Current

Gain Bandwidth Product vs Collector

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area

Maximum Power Dissipation vs Ambient Temperature

Process 78 PNP Medium Power

DESCRIPTION

Process 78 is a double diffused silicon epitaxial planar device complement to Process 38.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
BV _{CEO}	I _C = 10 mA	45		80	V
BV _{CBO}	I _C = 100μA	75		110	V
BV_{EBO}	I _E = 100μA	5	7		V
I _{CBO}	V _{CB} = BV _{CEO}		50	500	nA
I _{EBO}	V _{EB} = 5V		0.1	100	μΑ
h _{FE}	I _C = 100 mA, V _{CE} = 1V	50		250	
V _{CE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.2	0.5	v
V _{BE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.95	1.4	v
f_{T}	I _C = 100 mA, V _{CE} = 10V	50		,	MHz
C _{OBO}	V _{CB} = 10V			15	pF

AVAILABLE DEVICE TYPES

TO-202 (Package 35) TO-126 (Package 38)

BD138

NSDU55

NSD6180

NSD6181

TO-202 (Package 36)

D43C7

D43C8

D43C9

NSE171

92 PLUS (Package 90)

92PE77B

BD372B

BD372C

92 PLUS (Package 91)

92PU55

BD370B

BD370C

Process 78

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter 'ON''
Voltage vs Collector
Current

Base-Emitter Saturation Voltage vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Gain Bandwidth Product vs Collector

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area TO-202

Maximum Power Dissipation vs Ambient Temperature

Process 79 PNP Medium Power

DESCRIPTION

Process 79 is a double diffused silicon epitaxial planar device complement to Process 39.

APPLICATION

This device was designed for general purpose medium power amplifier and switching circuits that require collector currents to 1A.

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
BV _{CEO}	I _C = 10 mA	80		110	V
BV _{CBO}	I _C = 100 μA	110		140	V
BV_{EBO}	I _E = 100 μA	5	7		V
I _{CBO}	V _{CB} = BV _{CEO}		50	500	nA
I _{EBO}	V _{EB} = 5V		0.1	100	μΑ
h _{FE}	I _C = 100 mA, V _{CE} = 1V	25		150	
V _{CE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.2	0.5	V
V _{BE(SAT)}	I _C = 500 mA, I _B = 50 mA		0.9	1.4	· V
f _T	I _C = 100 mA, V _{CE} = 10V	50	120		MHz
Сово	V _{CB} = 10V			15	pF

AVAILABLE DEVICE TYPES

TO-202 (Package 35)

NSD204

NSD205

NSD206

NSDU56

NSDU57

92 PLUS (Package 90)

92PE77C BD372D

92 PLUS (Package 91)

92PU56

92PU57

BD370D

TO-126 (Package 38)

BD140

Process 79

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector

Base-Emitter Saturation Voltage vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Gain Bandwidth Product vs Collector

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area

Maximum Power Dissipation vs Ambient Temperature (TO-202)

Process 2C NPN Epitaxial Power

DESCRIPTION

Process 2C is a double epitaxial silicon mesa with diffused emitter.

APPLICATION

This device was designed for general purpose power amplifier and switching circuits where a large safe operating area is required.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 100 mA, (Note 1)	30		100	V
BV _{CBO}	I _C = 1 mA	60	1	200	V
BV _{EBO}	I _E = 1mA	5	8		V
ICEO	V _{CE} = BV _{CEO} - 10V		10	300	μΑ
Ісво	V _{CB} = BV _{CEO}		0.1	10	μΑ
I _{EBO}	V _{EB} = 5V		10	100	. μΑ
h _{FE}	I _C = 1.0A, V _{CE} = 1V, (Note 1)	15		200	
V _{CE(SAT)}	I _C = 2.0A, I _B = 0.3A, (Note 1)			0.5	V
V _{BE(ON)}	I _C = 2.0A, V _{CE} = 2.0V, (Note 1)			1.0	V
SOA	V _{CE} = 33.3V, t = 1 sec	0.9			Α
f _T	I _C = 0.5A, V _{CE} = 2V	4			MHz
t _d	$I_C = 1A$, $I_{B1} = I_{B2} \approx 0.1A$, $V_{CC} = 40V$		0.05		μs
t _r	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.25		μs
t _s	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.75		μs
t _f	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.25		μs
P _{D(MAX)}	то-220			40	w
	TO-126			30	W
	TO-202			12.5	W
θ _{jc}	TO-220 TO-126			3.125 4.167	°C/W °C/W
	TO-202			10.0	°C/W

Note 1: Pulsed measurement = 300 µs pulse width.

AVAILABLE DEVICE TYPES

TO-220 (Pa	ackage 37)			TO-126 (Package 38)
DC44C1 DC44C2 DC44C4 DC44C5 DC44C7 DC44C8 DC44C10	NSP520 NSP521 NSP4921 NSP4922 NSP4923 TIP29 TIP29A	TIP29B TIP29C TIP31 TIP31A TIP31B TIP31C TIP61	TIP61A TIP61B TIP61C	2N4921 2N4922 2N4923 MJE520 MJE521

Process 2C

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector Current

Base-Emitter Saturation Voltage vs Collector

Collector-Emitter Saturation Voltage

Gain Bandwidth Product vs Collector

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area TO-220

Safe Operating Area

Safe Operating Area TO-202

Maximum Power
Dissipation vs Case
Temperature

Switching Circuit

DUTY CYCLE = 1.0% PW = 5-10jis GENERATOR = HP1900A

N

Process 2E NPN Epitaxial Power

DESCRIPTION

Process 2E is a double epitaxial silicon mesa with diffused emitter.

APPLICATION

This device was designed for general purpose power amplifier and switching circuits where a large safe operation area is required.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 100 mA, (Note 1)	30	60	100	V
BV _{CBO}	I _C = 1 mA	50		200	٧
BV_{EBO}	I _E = 1mA	5	8		٧
I _{CEO}	V _{CE} = BV _{CEO}		50	300	μΑ
I _{CBO}	V _{CB} = BV _{CEO}		10	100	μΑ
I _{EBO}	V _{EB} = 5V		50	1000	μΑ
h _{FE}	I _C = 1.5A, V _{CE} = 2.0V, (Note 1)	20		200	
V _{CE(SAT)}	I _C = 4.0A, I _B = 0.6A, (Note 1)			0.6	V
V _{BE(QN)}	I _C = 4.0A, V _{CE} = 2.0V, (Note 1)			1.3	V
SOA	V _{CE} = 33.3V, t = 1 sec	1.2			А
f_{T}	I _C = 0.5A, V _{CE} = 2V, f = 1 MHz	4			MHz
t _d	$I_{C} = 1.0A$, $I_{B1} = 0.1A$, $I_{B2} = 0.1A$, $V_{CC} = 30V$		0.10		μs
t _r	$I_{C} = 1.0A$, $I_{B1} = 0.1A$, $I_{B2} = 0.1A$, $V_{CC} = 30V$		0.25	·	μs
t _s	I _C = 1.0A, I _{B1} = 0.1A, I _{B2} = 0.1A, V _{CC} = 30V		0.35		μs
t _f	$I_{C} = 1.0A$, $I_{B1} = 0.1A$, $I_{B2} = 0.1A$, $V_{CC} = 30V$	•	0.23		μs
P _{D(MAX)}	TO-220			50	w
	TO-126	•		40	W
,	TO-202			15	' W
θ_{jc}	TO-220			3.5	°C/W
	TO-126 TO-202			3.125 8.33	°C/W °C/W

Note 1: Pulsed measurement = $300\mu s$ pulse width

AVAILABLE DEVICE TYPES

2N6289

2N6121

TO-220 (Package 37)			TO-126 (Package 38)
2N5293	2N6122	2N6290	D44C11	NSP5192	2N5190
2N5294	2N6123	2N6291	D44C12	NSP5193	2N5191
2N5295	2N6129	2N6292	NSP41		2N5192
2N5296	2N6130	2N6293	NSP41A		
2N5297	2N6131	D44C3	NSP41B		,
2N5298	2N6288	D44C6	NSP41C		

NSP5190

D44C9

Process 2E

Typical Normalized Pulsed **Current Gain vs Collector**

Base-Emitter "ON" Voltage vs Collector

Base-Emitter Saturation Voltage vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Gain Bandwidth **Product vs Collector**

Typical Collector Capacitance vs Collector-Base Voltage

Safe Operating Area TO-220

Safe Operating Area TO-126

Safe Operating Area TO-202

Maximum Power Dissipation vs Case Temperature

Switching Circuit

DUTY CYCLE = 1.0% PW = 5-10µs GENERATOR = HP1900A

N

Process 2J NPN Power Darlington

DESCRIPTION

Process 2J is a double epitaxial silicon mesa device. Complement to Process 3J.

APPLICATION

This device was designed for use in driver and output stages of complementary audio amplifier circuits. It is also well suited for solenoid driver applications.

PARAMETER	TEST CONDITIONS	MIŅ	TYP	MAX	UNITS
BV _{CEO}	I _C = 100 mA	30		100	V
BV _{CBO}	I _C = 100μA	50		120	٧
BV _{EBO}	I _E = 2 mA	5			V
I _{CEO}	V _{CE} = 1/2 BV _{CEO}			0.5	mA
I _{CBO}	V _{CB} = BV _{CEO}			200	μΑ
I _{EBO}	V _{EB} = 5V			2.0	mA
h _{FE}	I _C = 2A, V _{CE} = 3V	500		15,000	
V _{CE(SAT)}	I _C = 5A, I _B = 2.0 mA			3.0	V
V _{BE(ON)}	I _C = 5A, V _{CE} = 3V			2.5	V
Сово	V _{CB} = 10V		30		pF
h _{FE}	I _C = 1A, V _{CE} = 3V, f = 1 MHz	1	9	'	
t _{ON}	I _C = 6A, V _{CE} = 30V, (Figure 1)		1.25		μs
t _{OFF}	I _C = 6A, V _{CE} = 30V, (Figure 1)		2.75		μs

AVAILABLE DEVICE TYPES

TO-126 (Package 38) . TO-220 (Package 37)

 2N6037
 2N6386

 2N6038
 TIP110

 2N6039
 TIP111

 MJE800
 TIP112

 MJE801
 NSP2100

 MJE802
 NSP2101

 MJE803
 NSP2102

 NSP2103
 NSP2103

Process 2J

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector Current

Base-Emitter Saturation Voltage vs Collector

Collector-Emitter Saturation Voltage

Safe Operating Area TO-126

Safe Operating Area
TO-220

Maximum Power Dissipation vs Case Temperature

Switching Times vs

FIGURE 1

N

Process 3C PNP Epitaxial Power

DESCRIPTION

Process 3C is a double epitaxial silicon mesa with diffused emitter.

APPLICATION

This device was designed for general purpose power amplifier and switching circuits where a large safe operating area is required.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 100 mA, (Note 1)	30		100	V
ВV _{сво}	I _C = 1 mA	50		200	V
BV _{EBO}	I _E = 1mA	5	6.5		V
I _{CEO}	V _{CE} = BV _{CEO} - 10V		10	300	μΑ
Гсво	V _{CB} = BV _{CEO}	}	0.1	10	μΑ
I _{EBO}	V _{EB} = 5V		10	100	μΑ
h _{FE}	I _C = 1.0A, V _{CE} = 1V, (Note 1)	15		200	
V _{CE(SAT)}	I _C = 2.0A, I _B = 0.3A, (Note 1)			0.5	V
V _{BE(ON)}	I _C = 2.0A, V _{CE} = 2.0V, (Note 1)			1.0	, A
SOA	V _{CE} = 33.3V, t = 1 sec	0.9			A
f _T	I _C = 0.5A, V _{CE} = 2V	4		j	MHz
t _d	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.03		μs
t _r	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.20		μs
t _s	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.26		μs
t _f	$I_C = 1A$, $I_{B1} = I_{B2} = 0.1A$, $V_{CC} = 40V$		0.20		μs
P _{D(MAX)}	TO-220			40	w
	TO-126 TO-202			30 12.5	w w
$\theta_{ m jc}$	TO-220		′	3.125	°C/W
	TO-126			4.167	°C/W
	TO-202			10.0	°C/W

Note 1: Pulsed measurement = 300µs pulse width.

AVAILABLE DEVICE TYPES

TO-220 (Package 37)

TO-126 (Package 38)

D45C1	D45C7	NSP370	TIP30	TIP32	TIP62	2N4918
D45C2	D45C8	NSP4918	TIP30A	TIP32A	TIP62A	2N4919
D45C4	D45C10	NSP4919	TIP30B	TIP32B	TIP62B	2N4920
D45C5	D45C11	NSP4920	TIP30C	TIP32C	TIP62C	MJE370

Process 3C

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector Current

Base-Emitter
Saturation Voltage

Collector-Emitter Saturation Voltage vs Collector Current

Gain Bandwidth Product vs

Typical Collector Capacitance vs Collector-Base Voltage

Safe Operating Area TO-220

Safe Operating Area TO-126

Safe Operating Area TO-202

Maximum Power Dissipation vs

Switching Circuit

Process 3E PNP Epitaxial Power

DESCRIPTION

Process 3E is a double epitaxial silicon mesa with diffused emitter.

APPLICATION

This device was designed for general purpose power amplifier and switching circuits where a large safe operation area is required.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 100 mA, (Note 1)	30	60	100	V
BV _{CBO}	I _C = 1 mA	40		150	v
BV _{EBO}	I _E ≈ 1mA	5	8		v
I _{CEO}	V _{CE} = BV _{CEO}		50	300	μΑ
Гсво	V _{CB} = BV _{CEO}		10	100	μΑ
I _{EBO}	V _{EB} = 5V		50	1000	μΑ
h _{FE}	$I_C = 1.5A, V_{CE} = 2.0V, (Note 1)$	20		170	,
V _{CE(SAT)}	$I_C = 4.0A, I_B = 0.6A, (Note 1)$		}	0.65	V
V _{BE(ON)}	I _C = 4.0A, V _{CE} = 2.0V, (Note 1)			1.3	V
SOA	V _{CE} = 33.3V, t = 1 sec	. 1.2	1		А
f _T	I _C = 0.5A, V _{CE} = 2V, f = 1 MHz	4			MHz
t _d	I _C = 1.0A, I _{B1} = 0.1A, I _{B2} = 0.1A, V _{CE} = 30V		0.10		μs
t _r .	$I_C = 1.0A$, $I_{B1} = 0.1A$, $I_{B2} = 0.1A$, $V_{CE} = 30V$		0.25		μs
t _s	I _C = 1.0A, I _{B1} = 0.1A, I _{B2} = 0.1A, V _{CE} = 30V		0.40		μs
t _f	$I_C = 1.0A$, $I_{B1} = 0.1A$, $I_{B2} = 0.1A$, $V_{CE} = 30V$		0.23		μs
P _{D(MAX)}	TO-220 TO-126 TO-202			50 40 15	w w w
$ heta_{ ext{jc}}$	TO-220 TO-126 TO-202			2.5 3.125 8.33	°C/W °C/W °C/W

Note 1: Pulsed measurement = 300 µs pulse width.

AVAILABLE DEVICE TYPES

TO-220 (Package 37	TO-126 (Package 38)		
2N6106	2N6124	D45C3	NSP42B	2N5193
2N6107	2N6125	D45C6	NSP42C	2N5194
2N6108	2N6126	D45C9	NSP371	2N5195
2N6109	2N6132	D45C12	NSP5193	MJE371
2N6110	2N6133	NSP42	NSP5194	

2N6111 2N6134 NSP42A NSP5195

Process 3E

Typical Normalized Pulsed Current Gain vs Collector Current

Base-Emitter "ON" Voltage vs Collector

Base-Emitter
Saturation Voltage
vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Gain Bandwidth Product vs Collector

Collector-Base Capacitance vs Collector-Base Voltage

Safe Operating Area TO-220

Safe Operating Area TO-126

Safe Operating Area TO-202

Maximum Power
Dissipation vs Case

Switching Circuit

N

Process 3J PNP Power Darlington

DESCRIPTION

Process 3J is a double epitaxial silicon mesa device. Complement to Process 2J.

APPLICATION

This device was designed for use in driver and output stages of complementary audio amplifier circuits. It is also well suited for solenoid driver applications.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 100 mA	30		100	V
BV _{CBO}	I _C = 100μA	50		120	V
BV _{EBO}	I _E = 2 mA	5			V
I _{CEO}	V _{CE} = 1/2 BV _{CEO}			0.5	mA
I _{CBO}	V _{CB} = BV _{CEO}			200	μΑ
I _{EBO}	V _{EB} = 5V			2.0	mA
h _{FE}	$I_C = 2A$, $V_{CE} = 3V$	500			
V _{CE(SAT)}	$I_{\rm C} = 5A$, $I_{\rm B} = 2.0 \text{mA}$			3.3	٧.
V _{BE(ON)}	I _C = 5A, V _{CE} = 3V	}		2.8	V
Сово	V _{CB} = 10V		35		pF
h _{FE}	I _C = 1A, V _{CE} = 3V, f = 1 MHz		4	•	}
t _{ON}	I _C = 6A, V _{CE} = 30V, (Figure 1)		2.0		
t _{OFF}	I _C = 6A, V _{CE} = 30V, (Figure 1)		2.6		

AVAILABLE DEVICE TYPES

TO-126 (Package 38)

2N6034

2N6035

2N6036

MJE700

MJE701 MJE702

MJE703

TO-220 (Package 37)

TIP115

TIP116

TIP117 ,

NSP2090

NSP2091

NSP2092

NSP2093

Process 3J

Typical Normalized Pulsed Current Gain vs Collector

Base-Emitter "ON" Voltage vs Collector

Base-Emitter Saturation Voltage

Collector-Emitter Saturation Voltage

Safe Operating Area TO-126

Safe Operating Area TO-220

Maximum Power
Dissipation vs Case

Switching Times vs

Figure 1.

Process 4A Epitaxial Power

DESCRIPTION

Process 4A is a double epitaxial silicon NPN mesa device with diffused emitter.

APPLICATION

This device was designed for general purpose power amplifier and switching circuits where a large safe operating area is required.

DADAMETED	TEST SOURIZIONS	T	7.00		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 200 mA, (Note 1)	40		100	- V
BV _{CBO}	I _C = 1 mA	60			V
BV _{EBO}	I _E = 0.5 mA	5	7		V
I _{CEO}	V _{CE} = BV _{CEO} - 10V		10	200	μΑ
I _{сво}	V _{CB} = BV _{CEO} + 20V		1	20	μΑ
I _{EBO}	V _{EB} = 5V		1	500	μΑ
h _{FE}	I _C = 2.5 A, V _{CE} = 2V	20		160	
V _{CE(SAT)}	I _C = 4 A, I _B = 0.4 A	ļ	0.4	0.6	V
V _{BE(ON)}	I _C = 5 A, V _{CE} = 2V		1.1	1.3	V
SOA	I _C = 3 A, t = 1 sec	30			V
f _t	I _C = 0.5 A, V _{CE} = 5V, f = 1 MHz	2	8		
t _d	$I_C = 5 A, I_{B1} = I_{B2} = 0.5 A$ $V_{CC} = 40V$		0.07		μs
t _r	$I_C = 5 A$, $I_{B1} = I_{B2} = 0.5 A$, $V_{CC} = 40V$		0.8		μs
t _s	$I_C = 5 A$, $I_{B1} = I_{B2} = 0.5 A$, $V_{CC} = 40V$		0.4	,	μs
t _f	$I_C = 5 A$, $I_{B1} = I_{B2} = 0.5 A$, $V_{CC} = 40V$		0.5		μs
P _{D(MAX)}	ТО-220	60		1	
$ heta_{ extsf{jc}}$	ТО-220			2.08	°C/W

Note 1: Pulsed measurement = 300 μ s pulse width.

AVAILABLE DEVICE TYPES

NSP5977	NSP3055	D44H1	D44H10
NSP5978	2N6098, 2N6099	D44H2	D44H11
NSP5979	2N6102, 2N6103	D44H4	NSP2480
NSP2020	2N6100, 2N6101	D44H5	NSP2481
NSP2021	2N6486	D44H7	NSP2482
NSP205	2N6487	D44H8	NSP2483

Process 4A

Typical Normalized Pulsed Current Gain vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Base-Emitter Saturation Voltage vs Collector Current

Base-Emitter "ON" Voltage vs Collector

Gain Bandwidth Product

Junction Capacitance

Safe Operating Area TO-220

Maximum Power Dissipation vs Case

Process 5A Epitaxial Power

DESCRIPTION

Process 5A is a double epitaxial silicon PNP mesa device with a diffused emitter.

APPLICATION

This device was designed for general purpose power amplifier and switching circuits where a large safe operating area is required.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BV _{CEO}	I _C = 200 mA, (Note 1)	40		100	V
BV _{CBO}	I _C = 1 mA	60		150	V
BV _{EBO}	I _E = 0.5 mA	5	7		V
I _{CEO}	V _{CE} = BV _{CEO} - 10V		10	200	μΑ
I _{CBO}	$V_{CB} = BV_{CEO} + 20V$		1	20	μΑ
I _{EBO} ,	V _{EB} = 5V		1	500	μΑ
h _{FE}	I _C = 2.5 A, V _{CE} = 2V	20		200	
V _{CE(SAT)}	I _C = 4 A, I _B = 0.4 A		0.5	0.6	V
V _{BE(ON)}	I _C = 5 A, V _{CE} = 2V		1.2	1.3	V
SOA	I _C = 3 A, t = 1 sec	30			V
f _t	I _C = 0.5 A, V _{CE} = 5V, f = 1 MHz	2			
t _d	$I_C = 5 \text{ A}, I_{B1} = I_{B2} = 0.5 \text{ A}$ $V_{CC} = 40 \text{V}$		0.03		μs
t _r	$I_C = 5 A$, $I_{B1} = I_{B2} = 0.5 A$, $V_{CC} = 40V$		0.27		μs
t _s	$I_C = 5 \text{ A}, I_{B1} = I_{B2} = 0.5 \text{ A},$ $V_{CC} = 40 \text{V}$		0.3		μs
t _f	$I_C = 5 \text{ A}, I_{B1} = I_{B2} = 0.5 \text{ A},$ $V_{CC} = 40 \text{V}$		0.37		μs
P _{D(MAX)}	TO-220	60			
$ heta_{ exttt{jc}}$	TO-220			2.08	°C/W

Note 1: Pulsed measurement = 300 μ s pulse width.

AVAILABLE DEVICE TYPES

NSP5974	NSP2955	D45H4
NSP5975	2N6489	D45H5
NSP5976	2N6490	D45H7
NSP2010	2N6491	D45H8
NSP2011	D45H1	D45H10
NSP105	D45H2	D45H11

Process 5A

Typical Normalized Pulsed Current Gain vs Collector Current

Collector-Emitter Saturation Voltage vs Collector Current

Base-Emitter "ON" Voltage vs Collector

Gain Bandwidth Product

Junction Capacitance vs Reverse Bias Voltage

Safe Operating Area TO-220

Maximum Power Dissipation vs Case

National Semiconductor Corporation 2900 Semiconductor Drive Santa Clara. California 95051 (408) 737-5000 TWX: 910-339-9240

National Semiconductor GmbH 808 Fuerstenfeldbruck Industriestrasse 10 West Germany Telephone: (08141) 1371 Telex: 05-27649

NS Electronics (HK) Ltd. 4 Hing Yip Street, 11th Floor Kwun Tong Kowloon, Hong Kong Telephone: 3-411241-8 Telex: 73866 NSE HK HX

NS International Inc. Miyake Bldg. 6F, 1-9 Yotsuya Shinjuku-Ku Tokyo 160, Japan Telephone: 03-355-3711 Telex: J28592

NS Electronics Pty. Ltd. CNR-Stud Road & Mountain Highway Bayswater, Victoria 3153, Australia Telephone: 03-729-6333 Telex: 32096