The Sums of Powers

Task

Find the number of ways that a given integer, X, can be expressed as the sum of the N^{th} power of unique, natural numbers.

Input Format

The first line contains an integer X.

The second line contains an integer N.

Constraints

- 1 <= X <= 1000
- 2 <= N <= 10

Output Format

Output a single integer, the answer to the problem explained above.

Sample Input 1

Sample Output 1

1

10

Sample Input 2

100 3

Sample Output 2

1

Sample Input 3

100

Sample Output 3

3

Explanation

Sample 1

If X=10 and N=2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers.

$$10 = 1^2 + 3^2$$

This is the only way in which ${\bf 10}$ can be expressed as the sum of unique squares.

Sample 2

100 can be expressed as the sum of the cubes of 1, 2, 3, 4.

(1+8+27+64=100). There is no other way to express 100 as the sum of cubes.

Sample 3

$$100 = 10^2 = 6^2 + 8^2 = 1^2 + 3^2 + 4^2 + 5^2 + 7^2$$