Test 2

1. success = 12, only needs to find I success

10 Ex= 1/p = 1/2 = 5 Varx= $\frac{(1-p)}{p^2} = \frac{.8}{.04} = \frac{80}{4} = 20$

(6) EX=-2.5 + 0.25 + 5:25 EY=0+1.8+.7

$$=-1+0+1.25$$
 = 2.5
= .25 or $\frac{1}{4}$

$$P(x=2, 1=0)=.3$$
 $P(x=5)=.25$ $P(y=7)=.1$ X

$$3 \neq .25 \cdot .1$$
: they are not independent

$$3.6P(x>25) = \int_{25}^{\infty} 20x^2 dx = -\frac{20}{x}\Big|_{25}^{\infty} = 0 - \left(-\frac{20}{25}\right) = \frac{4}{5}\left(\text{Pert }\alpha\right)$$

7 (b)
$$CDF = SPDF$$
 ... $S = 20x^2 = S = 20x^2 = -\frac{20}{x}$

S. exponential distribution does not depend on the past,

$$u=s=1/\lambda$$
, $\lambda=1/s$ $f_{\kappa}(y)=\frac{1}{5}e^{-\frac{1}{3}x}$
 $\int_{6}^{\infty} \frac{e^{-\frac{x}{3}}}{s} = -e^{-\frac{x}{3}} \Big|_{6}^{\infty} = 0 + e^{-6/s} = \frac{1}{6}e^{6/s}$

. T. @ we can tell both are binomial v (2 trick) X 1 0 PY 1/2 PY 1/2 PY 1/2

イーメーナ・・・ナメン

8.
$$f_{x}N = \frac{1}{18}$$
 for $[2,20]$ $f_{x}^{(6)} = 27$
8. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}^{(6)} = 27$
8. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}^{(6)} = 27$
8. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}^{(6)} = 27$
8. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
8. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_{x}N = \frac{1}{18}$ for $[2,20]$ $f_{x}N = 27$
9. $f_$