Análise de Algoritmos

CLRS₇

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Partição

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q tal que $p \le q \le r$ e

$$A[\textcolor{red}{p}\mathinner{.\,.} \textcolor{blue}{q}-1] \leq A[\textcolor{red}{q}] < A[\textcolor{red}{q}+1\mathinner{.\,.} \textcolor{blue}{r}]$$

Entra:

Partição

Problema: Rearranjar um dado vetor A[p..r] e devolver um índice q tal que $p \le q \le r$ e

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r]$$

Entra:

Sai:

 p
 r

 A
 99
 33
 55
 77
 11
 22
 88
 66
 33
 44

i j x A 99 33 55 77 11 22 88 66 33 44


```
Rearranja A[p..r] de modo que p \leq q \leq r e
A[p..q-1] < A[q] < A[q+1..r]
      PARTICIONE (A, p, r)
      1 \times \leftarrow A[r] > \times \text{ \'e o "piv\'o"}
      2 \quad i \leftarrow p-1
      3 para i \leftarrow p até r-1 faça
      4 se A[j] \leq x
                  então i \leftarrow i + 1
                          A[i] \leftrightarrow A[i]
      7 A[i+1] \leftrightarrow A[r]
      8 devolva i+1
```

Invariantes: no começo de cada iteração de 3-6,

(i0)
$$A[p..i] \le x$$
 (i1) $A[i+1..j-1] > x$ (i2) $A[r] = x$

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha	consumo de todas as execuç	ções da linha
1-2	$=2\Theta(1)$	
3	$=\Theta(n)$	
4	$=\Theta(n)$	
5-6	=2O(n)	
7-8	$=2\Theta(1)$	
total	$=\Theta(2n+4)+\mathrm{O}(2n)$	$=\Theta(n)$

Conclusão:

O algoritmo PARTICIONE consome tempo $\Theta(n)$.

Particione do Sedgewick

A implementação (em C) abaixo é a mais veloz na prática.

```
int partition(int a[], int lo, int hi)
{
  int i = lo;
  int j = hi + 1;
  int v = a[lo];
  while (TRUE) {
    while (a[++i] < v)
      if (i == hi) break;
    while (v < a[--j]);
    if (i >= j) break;
    exch(a, i, j);
  exch(a, lo, j);
  return j;
```

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

```
    p
    r

    A
    99
    33
    55
    77
    11
    22
    88
    66
    33
    44
```

Rearranja A[p..r] em ordem crescente.

QUICKSORT
$$(A, p, r)$$

1 se $p < r$
2 então $q \leftarrow \text{PARTICIONE}(A, p, r)$
3 QUICKSORT $(A, p, q - 1)$
4 QUICKSORT $(A, q + 1, r)$

No começo da linha 3,

$$A[p ... q-1] \leq A[q] \leq A[q+1...r]$$

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

QUICKSORT (A, q + 1, r)
```

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

	p				q					r
Α	11	22	33	33	44	55	66	77	88	99

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

No começo da linha 3,

$$A[p \dots q-1] \le A[q] \le A[q+1 \dots r]$$

Consumo de tempo?

Rearranja A[p ... r] em ordem crescente.

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \mathsf{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

No começo da linha 3,

$$A[p \dots q-1] \le A[q] \le A[q+1 \dots r]$$

Consumo de tempo?

$$T(n) :=$$
consumo de tempo no pior caso sendo $n := r - p + 1$

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha		consumo de todas as execuções da linha			
1	=	?			
2	=	?			
3	=	?			
4	=	?			
-					

total =
$$????$$

Consumo de tempo

Quanto tempo consome em função de n := r - p + 1?

linha		consumo de todas as execuções da linha
1 2		$\Theta(1)$
_		$\Theta(n)$
3		T(k)
4	=	T(n-k-1)
-		

total =
$$T(k) + T(n-k-1) + \Theta(n+1)$$

T(n) := consumo de pior caso do QuickSort para um trecho do vetor com n elementos

$$0 \leq k := q - p \leq n - 1$$

Recorrência

$$T(n) :=$$
 consumo de tempo máximo quando $n = r - p + 1$

$$T(n) = T(k) + T(n-k-1) + \Theta(n)$$

Recorrência

$$T(n) :=$$
 consumo de tempo máximo quando $n = r - p + 1$

$$T(n) = T(k) + T(n-k-1) + \Theta(n)$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$T(n) \in \Theta(???)$$
.

Recorrência

$$T(n) :=$$
 consumo de tempo máximo quando $n = r - p + 1$

$$T(n) = T(k) + T(n-k-1) + \Theta(n)$$

Recorrência grosseira:

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$T(n) \in \Theta(n^2)$$
.

Demonstração: ... Exercício!

Recorrência cuidadosa

$$T(n):=$$
 consumo de tempo máximo quando $n=r-p+1$
$$T(n)=\max_{0\leq k\leq n-1}\{T(k)+T(n-k-1)\}+\Theta(n)$$

Recorrência cuidadosa

$$T(n) := ext{consumo de tempo } ext{máximo quando } n = r - p + 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + \Theta(n)$$

Versão simplificada:

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2}{T(n) \mid 1 \quad 1 \quad 2+2 \quad 5+3 \quad 9+4 \quad 14+5}$$

$$\downarrow k \text{ variando entre } 0 \text{ e } 2$$

Recorrência cuidadosa

$$T(n) :=$$
consumo de tempo máximo quando $n = r - p + 1$
$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + \Theta(n)$$

Versão simplificada:

$$T(0) = 1$$

$$T(1) = 1$$

$$T(n) = \max_{0 \le k \le n-1} \{ T(k) + T(n-k-1) \} + n \text{ para } n = 2, 3, 4, \dots$$

$$\frac{n \mid 0 \quad 1 \quad 2}{T(n) \mid 1 \quad 1 \quad 2+2 \quad 5+3 \quad 9+4 \quad 14+5}$$

Vamos mostrar que $T(n) \le n^2 + 1$ para $n \ge 0$.

Demonstração

Prova: Trivial para $n \le 1$. Se $n \ge 2$ então

$$T(n) = \max_{0 \le k \le n-1} \left\{ T(k) + T(n-k-1) \right\} + n$$

$$\stackrel{\text{hi}}{\le} \max_{0 \le k \le n-1} \left\{ k^2 + 1 + (n-k-1)^2 + 1 \right\} + n$$

$$= \cdots$$

$$= n^2 - n + 3$$

$$< n^2 + 1.$$

Prove que $T(n) \ge \frac{1}{2} n^2$ para $n \ge 1$.

Algumas conclusões

$$T(n) \in \Theta(n^2)$$
.

O consumo de tempo do QUICKSORT no pior caso é $O(n^2)$.

O consumo de tempo do QUICKSORT é $O(n^2)$.

Quicksort no melhor caso

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

Quicksort no melhor caso

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Quicksort no melhor caso

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n - 1} \{M(k) + M(n - k - 1)\} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge (n+1)\lg(n+1)$ para $n \ge 1$.

Quicksort no melhor caso

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge (n+1)\lg(n+1)$ para $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$,

Quicksort no melhor caso

$$M(n):=$$
 consumo de tempo mínimo quando $n=r-p+1$
$$M(n)=\min_{0\leq k\leq n-1}\{M(k)+M(n-k-1)\}+\Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge (n+1)\lg(n+1)$ para $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$, que é o mesmo que dizer que o QUICKSORT é $\Omega(n \lg n)$.

Mais algumas conclusões

$$M(n) \in \Theta(n \lg n)$$
.

O consumo de tempo do QUICKSORT no melhor caso é $\Omega(n \log n)$.

Na verdade . . .

O consumo de tempo do QUICKSORT no melhor caso é $\Theta(n \log n)$.

Análise de caso médio do Quicksort

Apesar do consumo de tempo de pior caso do QUICKSORT ser $\Theta(n^2)$, sua performance na prática é comparável (e em geral melhor) a de outros algoritmos cujo consumo de tempo no pior caso é $O(n \lg n)$.

Por que isso acontece?

Exercício

Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Exercício

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Vamos olhar a árvore da recorrência.

Árvore da recorrência

Os níveis da esquerda chegarão antes na base, ou seja, a árvore será inclinada para a direita.

Árvore da recorrência

soma em cada horizontal $\leq n$

número de "níveis" $\leq \log_{3/2} n$

T(n) = a soma de tudo

$$T(n) \leq n \log_{3/2} n + \underbrace{1 + \cdots + 1}_{\log_{3/2} n}$$

 $T(n) \in O(n \lg n)$.

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \text{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \mathsf{para} \ n=2,3,4,\dots$$

$$\begin{array}{cccc}
n & T(n) \\
\hline
1 & 1 \\
2 & 1+1+2=4 \\
3 & 1+4+3=8 \\
4 & 4+4+4=12
\end{array}$$

Vamos mostrar que $T(n) \leq 20 n \lg n$ para $n = 2, 3, 4, 5, 6, \dots$

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \mathsf{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

Vamos mostrar que $T(n) \leq 20 n \lg n$ para n = 2, 3, 4, 5, 6, ...

Para $n = 2 \text{ temos } T(2) = 4 < 20 \cdot 2 \cdot \lg 2.$

Para $n = 3 \text{ temos } T(3) = 8 < 20 \cdot 3 \cdot \lg 3$.

Suponha agora que n > 3. Então...

Continuação da prova

$$T(n) = T(\lceil \frac{n}{3} \rceil) + T(\lfloor \frac{2n}{3} \rfloor) + n$$

$$\stackrel{\text{hi}}{\leq} 20\lceil \frac{n}{3} \rceil \lg\lceil \frac{n}{3} \rceil + 20\lfloor \frac{2n}{3} \rfloor \lg\lfloor \frac{2n}{3} \rfloor + n$$

$$\leq 20\frac{n+2}{3} \lceil \lg \frac{n}{3} \rceil + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$< 20\frac{n+2}{3} (\lg \frac{n}{3} + 1) + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20\frac{n+2}{3} \lg \frac{2n}{3} + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20\frac{n}{3} \lg \frac{2n}{3} + 20\frac{2}{3} \lg \frac{2n}{3} + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

Continuação da continuação da prova

$$< 20n \lg \frac{2n}{3} + 14 \lg \frac{2n}{3} + n$$

$$= 20n \lg n + 20n \lg \frac{2}{3} + 14 \lg n + 14 \lg \frac{2}{3} + n$$

$$< 20n \lg n + 20n(-0.58) + 14 \lg n + 14(-0.58) + n$$

$$< 20n \lg n - 11n + 14 \lg n - 8 + n$$

$$= 20n \lg n - 10n + 14 \lg n - 8$$

$$< 20n \lg n - 10n + 7n - 8$$

$$< 20n \lg n$$

liiéééééssss!

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lfloor 9n/10 \rfloor) + n$$

para n = 2, 3, 4, ... e mostre que T(n) é $O(n \lg n)$.

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lfloor 9n/10 \rfloor) + n$$

para $n = 2, 3, 4, \ldots$ e mostre que T(n) é $O(n \lg n)$.

Note que, se o QUICKSORT fizer uma "boa" partição a cada, digamos, 5 níveis da recursão, o efeito geral é o mesmo, assintoticamente, que ter feito uma boa partição em todos os níveis.