

Figure 1

Figure 2

310053192 • 011502

1 CGGATCCACT AGTAACGGCC GCCAGTGTGG TGGAATCCAT
CCTTCTATGT

51 AACAGGAAAG AGCTGTTCTT AGCCCAGAGA GGAGGGCACC
GTACGCCTGC

101 AGGAGCAGCT GGGTAGAGGA CACAGGAGAG CGATGGAGAC
AATATTTAAC

151 AGAAACAAAG AAGAGCATCC AGAGCCCATA AAAGCTGAGG
TGCAAGGTCA

201 GTTGCCCCT ACT TGGTGCAAG GGGTACTTCT CCGAAATGGC
CCAGGGATGC

251 ACACAATAGG GGACACTAAA TACAACCCT GGTTTGATGG
CTTGGCTCTG

301 CTGCACAGCT TCACGTTAA AAATGGTCAA GTTTACTACA
GAAGTAAGTA

351 CCTCCGAAGT GACACATACA ACTGCAATAT AGAAGCAAAC
CGAATCGTGG

401 TGTCTGAGTT TGGAACCATG GCTTATCCGG ATCCATGCAA
AAACATATTT

451 GCCAAGGCAT TCTCATACTT ATCTCACACC ATTCCCTGAGT
TCACGGACAA

501 CTGCCTGATC AACATTATGA AAACTGGGGA TGATTATTAT
GCTACCAGTG

551 AGACTAACTT CATCAGAAAA ATTGATCCAC AGACTCTGGA
GACACTAGAT

601 AAGGTAGACT ACAGCAAATA TGTAGCTGTA AACTTGGCAA
CTTCTCACCC

651 ACACATATGAC AGTGCTGGAA ATATTCTCAA CATGGGTACT
TCAATTGTTG

701 ATAAAGGGAG AACAAAATAT GTTCTCTTA AGATCCCTTC
CTCTGTACCA

751 GAAAAAGAAA AGAAGAAATC TTGTTTAAA CACCTGGAAG
TAGTATGCTC

801 CATCCCTTCT CGCTCCCTGC TCCAACCAAG CTACTACCAC
AGCTTTGGAA

851 TCACAGAAAA TTATATTGTG TTCATAGAGC AGCCATTAA
ACTGGATATT

901 GTCAAACTGG CAACTGCCTA CATCCGAGGT GTGAAC TG
CTTCCTGCCT

951 TTCCTTCAT AAGGAGGATA AGACGTGGTT TCACTTGTA
GACAGAAAGA

1001 CGAAAAAAGA AGTATCCACC AAGTTTACA CTGATGCTTT
GGTGCTTAT

1051 CACCACATAA ATGCTTACGA AGAAGATGGC CACGTTGTTT
TTGATATCGT

1101 TGCTTACAGA GACAATAGCT TGTACGATAT GTTTACTTA
AAAAAAACTGG

1151 ACAAAAGACTT TGAAGTGAAC AACAAAGCTTA CCTCCATCCC
AACCTGCAAG

1201 CGCTTGTTG TGCTCTGCA GTATGACAAG GATGCAGAAG
TAGGTTCTAA

1251 TTTAGTCAAA CTTCCAACCTT CCGCAACTGC TGTAAAAGAA
AAAGATGGCA

1301 GCATCTATTG TCAACCTGAA ATATTATGTG AAGGGATAGA
ACTGCCTCGT

1351 GTCAACTATG ACTACAATGG CAAAAAATAC AAGTATGTCT
ATGCAACAGA

1401 AGTCCAGTGG AGCCCAGTTC CTACAAAGAT TGCAAAACTG
AATGTCCAAA

1451 CAAAGGAAGT ACTGCACTGG GGAGAAGACC ACTGCTGGCC
CTCAGAGCCC

1501 ATCTTGTT CCAGCCCCGA TGCAAGAGAA GAGGATGAAG
GTGTTGTTT

1551 GACCTGTGTT GTGGTGTCTG AGCCAAATAA AGCACCCCTTC
CTACTCATCT

1601 TGGATGCTAA AACATTCAAA GAATTGGGCC GAGCCACAGT
TAACGTAGAA

1651 ATGCATCTGG ACCTGCATGG GATGTTATA CCACAGAATG
ATTGGGGGC

1701 TGAGACGGAA TAAAACGCTA TTGATCCGAC TACACAAACT
GAGACAACTT

1751 TCTACTGAAC ATGAGTTAAT ATCCCTTTA CCATTCAAGA
ACAACCATAT

1801 AACGACACAA AATGACTATG TATAATCTCT TAAATAATAG
ATATAATCCT

1851 TTTAAGGCAC AGCGATGAGT TTTACTACAG GTAACGATAT
GCACAACTGG

1901 CATATAACTA TTCCAAAAGA AGAAGAACGA TCAGTGT
AGAACGTGCTA

1951 ATGTTGTACA TAACGGCGGC AGAGGGAACA GGAGAGAAAG
GTAACGGGAA

2001 TATTTAATAG AATATAGATT TCTGAGCAA TGAAGTGCAG
TATTTATGGT

2051 GTGATGCATG GCATGAGTCATAGGTCTG CAGCTCATGT
ATCTTTAGA

2101 GATCGTTCA AGATTGCAGC TTGTGATGCA AGTTTCTCC
AGCCAGAAAA

2151 CCTCATTTCAT ACCATCTGC TACTGGTAAT TCATACCAAT
GCATTTCTT

2201 GGTGCTCGAT TTACACTATA ACCAAAGTTA AGTATTACAT
TCAGGTGCTA

2251 CAACTTCATA ATTACAACC GAAACAAACA AGCAACACAGC
ACTTGCTTG

2301 CTAATAACCC CATGGTGTAT TTTCCCTTT TATGATGACA
AAACCAAGTA

2351 CATATGGTTT TATGTAGCAT TCAATTATAC TTCAGTGCTA
TTCCATCCTA

2401 ATGTTATAAG CAATTTGTAT TTAAATCAGT TTTCCGGAG
AATATCTGAC

2451 ATAACATTTC GTGTAATGAG ATGACTATGT TGTCTAAAGA
TGAACAGGAA

2501 TGTATCTTT ATTAGTATTG TTAATTGTGT TACTAATACT
ATGCATATGA

2551 ATGAGAGCAA TGTATTTCTA GGAGAACTCA GATATACATT
CAACAAATTTC

2601 TGTAGGTGAA AATGCATTAA CTGATGAAAG TTGAATCGTT
AATGAGGGAG

2651 AAAACTGGGT ATCCATCCAT CCAACTATGT TAGGTGTTCA
CCTGGTCTGT

2701 ATGTGACACC ACGCTGTTG GGTATCTCTC ACTTCACAT
ACCTGTTCTC

2751 ATGGTTCTG CTACTCACTG TATTTGCAG GAGAGAAACA
AAATGAAATC

2801 ACTGTCACCT ACTATGCCCATCACATAA GAACAATGGG
GCTTTGGTGA

2851 CTTGTTCATG ATTACATAAG ATGTTGCAG CAGAGCAGCA
ATAGAACCAA

2901 CACCATCCAC AGTTCTTGCT TGCTCTGTTA TGACTCCCTT
TGCTGTCTTT

2951 ATGGTTTGCA TGTATGAAGA ATACACTGCC TAATTCTAAT
GTTAAAAAGT

3001 CACTGGGGTC AGATCTAGAG CTTAAGTAAG CAGTCTGGGG
TTTCAAATG

3051 TTTATATGTT CCATAAAATG GAAATAAACCA CCTCCATAAT
AAAAAAAAAAA

3101 AAAAAAAAAA A

110531.02 110531.02

Figure 4
No. 1

Seq. ID

1 METIFNRNKE EHPEPIKAEV QGQLPTWLQG VLLRNGPGMH
TIGDTKYNHW

51 FDGLALLHSF TFKNGEVYYR SKYLRSDTYN CNIEANRIVV
SEFGTMAYPD

101 PCKNIFAKAF SYLSHTIPEF TDNCLINIMK TGDDYYATSE
TNFIRKIDPQ

151 TLETLDKVDY SKYVAVNLAT SHPHYDSAGN ILNMGTSIVD
KGRTKYVLFK

201 IPSSVPEKEK KKSCFKHLEV VCSIPSRSLL QPSYYHSFGI
TENYIVFIEQ

251 PFKLDIVKLA TAYIRGVNWA SCLSFHKEDK TWFHVFDRKT
KKEVSTKFYT

301 DALVLYHHIN AYEEDGHVVF DIVAYRDNSL YDMFYLKLD
KDFEVNNKLT

351 SIPTCKRFVV PLQYDKDAEV GSNLVKLPTS ATAVKEKDGS
IYCQPEILCE

401 GIELPRVNYD YNGKKYKYVY ATEVQWSPVP TKIAKLNQQT
KEVLHWGEDH

451 CWPSEPIFVP SPDAREEDEG VVLTCVVVSE PNKAPFLLIL
DAKTFKELGR

501 ATVNVEMHLD LHGMFIPQND LGAETE

2025 RELEASE UNDER E.O. 14176

Figure 5

Seq ID No. 4 and Seq ID No. 5

57 10 EEHPEPIKAEVQGQLPTWLQGVLLR..NGPGMHTIGDTKYNHWFDGLALL
 69 20 EELSSPLTAHVTGRIPLWLTGSLLRCFTGPGLFEVGSEPFYHLFDGQALL
 105 58 HSFTFKNGEVYYRSKYLRSDTYNCNIEANRIVVSEFG..TMAYPDPCKNI
 119 70 HKFDFKEGHVTYHRRFIRTDAYVRAMTEKRIVITEFGFTCAFPDPCKNI
 155 106 FAKAFSYLSHTIPEFTDNCLINIMKTGDDYYATSETNFIRKIDPQTLEL
 167 120 FSRRFFSYFRGV..EVTDNALVNYPVGEDYYACTETNFITKINPETLETI
 203 156 ..DKVDYSKYVAVNLATSHPHYDSAGNILNMGT SIVDKGRTKYVLFKIPS
 217 168 FTKQVDLCNYVSVNGATAHPHIENDGTVNIGNCFGKNFSIAYNIVKIPP
 253 204 SVPEKEKKSCFKHLEVVC SIPSRSLLQPSYYHSFGITENYIVFIEQPK
 266 218 LQADKEDPISKFTS.EIVVQFFCSDRFKPSYVHSFGLTPNYIVFVETPVK
 300 254 LDIVKLATAY.IRGVNWASCL.SFHKEDK.TWFHFVDRKTKEVSTKFYT
 316 267 INLFKFLSSWSLWGANYMDCFESFTNETMGVWLHIADKKRKKYLNNKYRT
 344 301 DALVLYHHINAYEEDGHVVFDIVAYRDNSL...YDMFYLKLDKDFE...
 366 317 SPFNLFHINTYEDNGFLIVDLCCWKGFEFVNYFTLYLANLRENWEEVK
 391 345 VNNKLTSIPTCKRFVVPLQYDKDAEVGSNLVKLP.TSATAV..KEKDGSI
 415 367 KNARKAPQPEVRRYVLPLNIDK.ADTGKNLVTLPNTTATAILCSDEFTTI
 436 392 YCQPEILCEG....IELPRVNYD.YNGKKYKYVYATEVQWSPVPTKIAKL
 464 416 WLEPEVLFGSGPRQAFEFPOQINYQKYCGKPYTYAYGLGLNHF.VPDRLCKL

437 NVQTKEVLH..WGEDHCWPSEPIFVPSPDAREEDEGVVLTCAVVSEPNKA
 484 ||| .||| | | :||||| ||| ||| :|||. || .
 465 NVKTKETWFTVWQEPDSYPSEPIFVSHPDALEEDDGVVLSVVSPGAGQK
 514 .
 485 P.FLLILDAKTFKELGRA..TVNVEMHLDLHGMF 515
 | :|||||.|||.||| : . |||:
 515 PAYLLILNAKDLSEVARAEEFTVEINIPVTEHGLF 548

Fig. 6 shows a 10% polyacrylamide gel with E.coli expressed β,β -carotene 15,15'-monooxygenase after affinity tag purification; lane 1 and lane 2: 2 fractions from the Co^{2+} -chelate column showing the main band at 60 kD; lane 3: low range molecular weight marker (Bio Rad).

Fig. 7 shows an HPLC profile of the reaction mixture at the end of an activity assay for the β,β -carotene 15,15'-monooxygenase following the procedure in example 1. The first peak in the chromatogram represents the internal standard, while the second peak corresponds to retinal as the only product formed during the central cleavage with β -carotene as substrate.

Fig. 8 confirms that the product peak in Fig. 7 is indeed retinal. A sample which was positive in the activity assay (green (upper) chromatogram) was spiked with retinal and analysed in second HPLC run (red (lower) chromatogram). The chromatograms of the two runs were then overlayed.

10003192 011502