Non-life — Assignment NL1

Niels Keizer* and Robert Jan Sopers[†]

September 16, 2016

Generating multinormal and multi-student r.v.'s

Q1

First we run the following script:

```
> set.seed(1)
> sum(duplicated(runif(1e6))) ## = 120
[1] 120
> sum(duplicated(rnorm(1e8))) ## = 0
[1] 0
```

The function duplicated returns a logical array where unique numbers are marked with 0 and duplicates are marked with 1 (the first occurrence of the number is marked with a 0). Summming this array thus gives the total number of duplicates. The uniform distribution gives 120 duplicates in a much smaller sample size than the normal distribution, which gives 0 duplicates.

In the assignment, the expected number of different numbers is derived to be

$$\mathbb{E}[N_n] = \frac{1 - f^n}{1 - f}$$

The number of duplicates is then given by $n - \mathbb{E}[N_n]$ We run the following script:

```
> m <- 2^32;n <- 1e6
> f <- 1 - 1/m
> num_dup_unif <- n - (1-f^n)/(1-f)
> num_dup_unif
[1] 116.3988
```

The expected result of 116.4 is quite close to the generated result. The outcome of 120 is therefore consistent with the assumption that runif produces different values uniformly.

^{*}Student number: 10910492 †Student number: 99999999

The resolution of rnorm is somewhere in the 2^{50} 's. Directly calculating $1 - f^n$ will give 1, because f is so close to 1. First, we use to approximation given in the assignment.

$$f^{n} = \left(1 - \frac{1}{m}\right)^{n} \approx 1 - \frac{n}{m} + \frac{n^{2}}{2m^{2}}$$

Inserting this into our equation for the number of different numbers gives

$$\frac{1-f^n}{1-f} \approx \frac{1-1+\frac{n}{m}-\frac{n^2}{2m^2}}{1-\left(1-\frac{1}{m}\right)} = \frac{\frac{n}{m}-\frac{n^2}{2m^2}}{\frac{1}{m}} = n-\frac{n^2}{2m}$$

This results in the following equation for the expected number of duplicates.

$$n - \left(n - \frac{n^2}{2m}\right) = \frac{n^2}{2m}$$

Next we check in R if the number of duplicates is consistent with values for m of 10^{15} , 10^{16} , 10^{17} or 10^{18} , when n is 10^{8}

```
> n_norm <- 1e8
> m_norm <- c(1e15,1e16,1e17,1e18)
> num_dup_norm <- n_norm^2/(2*m_norm)
> num_dup_norm
[1] 5.000 0.500 0.050 0.005
```

The obtained result seems to be consistent with a resolution of 10^{16} or higher.

$\mathbf{Q2}$

The following code is executed in R.

```
> n <- 200; p <- 0.52
> x <- c(0,cumsum(2*rbinom(n,1,p)-1))
> plot(x, type="l", lwd=1, ylab="state", xlab="step", main="1-dimensional random walk")
```

This gives the following biased random walk:

1-dimensional random walk

Q3

Given that $X, Y \sim N(0, 1)$, we want to transform (X, Y) into (X, Y^*) , with $Y^* = aX + bY$, with a, b chosen in such a way that $Var[Y^*] = 1$ and $r(X, Y^*) = 0.8$.

$$r(X, Y^*) = \frac{\mathbb{E}[XY^*] - \mathbb{E}[X]\mathbb{E}[Y^*]}{\sqrt{\text{Var}[X]\text{Var}[Y^*]}} = \frac{\mathbb{E}[aX^2 + bXY] - 0 * \mathbb{E}[Y^*]}{\sqrt{1 * 1}}$$
$$= a * \mathbb{E}[X^2] + b * \mathbb{E}[XY] = a(\text{Var}[X] - \mathbb{E}[X]^2) = a$$

Here we use that $\mathbb{E}[X] = 0$, $Var[X] = Var[Y] = Var[Y^*] = 1$. Also $\mathbb{E}[XY] = 0$, because X and Y are independent. Next we use the condition that the variance of Y^* must also be 1.

$$Var[Y^*] = Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab Cov[X, Y] = a^2 + b^2 = 1$$

We can conclude from this that a = 0.8 and $b = \sqrt{1 - a^2} = 0.6$.

In R code:

$$a \leftarrow .8; b \leftarrow sqrt(1 - a^2); Y \leftarrow a*X + b*Y$$

$\mathbf{Q4}$

The variance-covariance matrix Σ of the random vector (X, Y^*) is equal to the correlation matrix because $\text{Var}[X] = \text{Var}[Y^*] = 1$. It is given by the following expression.

$$\Sigma = \begin{pmatrix} \operatorname{Cov}[X, X] & \operatorname{Cov}[X, Y^*] \\ \operatorname{Cov}[Y^*, X] & \operatorname{Cov}[Y^*, Y^*] \end{pmatrix} = \begin{pmatrix} \operatorname{Var}[X] & r(X, Y^*) \\ r(X, Y^*) & \operatorname{Var}[Y^*] \end{pmatrix} = \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix}$$

Q_5

If A is to be the Cholesky decomposition of Σ , it should be a lower triangular matrix with real and positive entries and $AA^* = \Sigma$, where A^* is the conjugate transpose of A. Checking this gives

$$\begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1 & a \\ a & a^2 + b^2 \end{pmatrix} = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.8 \\ 0.8 & 1 \end{pmatrix} = \Sigma$$

Q6

We execute the following R code.

content...