Mikrocontroller ATmega328P

- Arduino Standalone
- ATmega328P Daten, Externe Anschlüsse
- Arduino IDE Erfahrungen
- Rechteckschwingung Arduino (*.ino *.cpp)
- AVR Architektur
- Memory, SRAM Data Memory
- Arithmetic logic unit, Signalprocessing
- Register PORTB
- I/O-Port programmieren
- Mnemonic SBI, OUT
- GNU AVR-GCC
- Assembler: Quelle zum Opcode
- Gerd's AVR Simulator
- Programm schreiben, Assembler-Code
- Assembler-Code-Listing
- Simulation SIM 02
- Scope SIM_02, SIM_05
- Cycles
- Informationen

Thema	
ATmega328p	Den ATmega328p Microcontroller (μC) in seinen Funktionen kennen lernen.
Idee	Gerd's AVR Simulator
Aufgabe	Maximale Frequenz einer Rechteckschwingung?
	Experimentierbord mit ATmega328p Standalone.
	Physikalische Pins des ATmega328p.
	Erfahrungen mit Arduino.
	Interner Aufbau des ATmega328.
	Organisation der Speicher.
	CPU und Register
	Sprache Assembler
	Gerd's AVR Simulator
	Rechteckschwingung, Takte
Danksagung	Das Material von Gerhard Schmidt, DG4FAC, war sehr hilfreich bei der Erarbeitung des Themas. http://www.dg4fac.de/ http://www.avr-asm-tutorial.net/

Arduino Standalone

FTDI (USB-USART-Interface)

FTDI Tx an IC Pin #2 (Tx an Rx)
FTDI Rx an IC Pin #3 (Rx an Tx)
FTDI DTR an Kondensator
0 ,1 µF und weiter an IC Pin 1
FTDI Gnd an Steckbrett
FTDI 5V an Steckbrett

Quelle:

https://www.yuriystoys.com/2012/02/arduino-on-beadboard-uploading-your.html

ATmega328P Daten

Hersteller	Microchip (vormals Atmel)
Familie	8-Bit-Mikrocontroller
Architektur	RISC
Anzahl Instruktionen	131
Register	32 x 8
Quarz	16 MHz
	16 MIPS at 16 MHz
Flash Programm Speicher	32 KiB kibibyte
EEPROM	1 KiB kibibyte
SRAM	2 KiB kibibyte
Peripherie	Timer/Counter; PWM; ADC; USART; SPI; I ² C
Betriebsspannung	2,7 V bis 5,5 V

Quelle: © 2018 Microchip Technology Inc. Data Sheet Complete DS40002061A-page 1

Externe Anschlüsse

Quelle: Atmel-42735A-ATmega328/P_Datasheet_Complete-06/2016

Arduino PINOUT Diagramm

Quelle: The unofficial Arduino Uno Pinout Diagram

Arduino IDE Erfahrungen

Aufgabe:

Blinkende LED

Arduino:

ARDUINO PIN: Mikrokontroller: PHYSICAL PIN

Pin 13 Pin 19

Clock frequency

void setup() {

16 MHz

Arduino IDE Sketch

```
pinMode(13, OUTPUT); // Arduino PIN 13
void loop() {
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
```


Flash

924 Bytes

Analyse

Ablaufplan

Jede Anweisung kostet Zeit (cyles)!

- Zuweisung Zeit?
- digitalWrite() Zeit?

Frequenz = 1 / Periodendauer f = 1 / T 16 MHz = 1 / 62,5 ns 1 cyle = 1 Takt = 62,5 ns

$$\frac{16 \, MHz}{cyles} = \frac{1}{cyles *62,5 \, ns}$$

Wieviel Takte sind mindestens erforderlich, um eine 1 Periode zu erreichen?

Rechteckschwingung Arduino (*.ino)

Aufgabe: Arduino:

Mikrokontroller:

Rechteckschwingung

ARDUINO PIN: PHYSICAL PIN:

Ziel maximale Frequenz?

Pin 13 Pin 19

Clock frequency

16 MHz

Arduino IDE Sketch

```
boolean status = 0;
void setup() {
  pinMode(13, OUTPUT);
}

void loop() {
  status = !status;
  digitalWrite(13, status);
}
```


Flash

750 Bytes

Rechteckschwingung Arduino (*.cpp)

144 Bytes

Flash

Aufgabe: Arduino: Mikrokontroller:	Rechteckschwingung ARDUINO PIN: PHYSICAL PIN: Port B Data Register Port B Pin Data Port B Data Direction Register Port B Pin Data Direction Register Clock frequency	Ziel maximale Frequenz? Pin 13 Pin 19 PORTB PORTB5 DDRB DDB5 16 MHz
Arduino IDE Sketch	// SFR speci- int main(void) { DDRB = (1 << DDB5);	ames for AVR registers al function registers $f \approx 1,6 \text{ MHz}$ make PORTB5 as output $T \approx 624 \text{ ns}$ $\approx 1/10 \text{ vom Quarz}$

AVR Architektur

Harvard-Architektur RISC

Program **Flash** Memory for Application ...

Data Memory

- 32 x 8 General Purpose Working Registers
- I/O memory space wit 64 addresses, Ports
- Internal SRAM

ALU supports arithmetic and logic operations between registers or between a constant and a register

Digital Signal processing

Quelle: https://microchipdeveloper.com/8avr:avrcore

Memory

Quelle: © Atmel ATmega328P [DATASHEET] 7810D-AVR-01/15 page 17, 18

SRAM Data Memory

Arithmetic logic unit

Signalprocessing

Register PORTB

Quelle: © 2018 Microchip Technology Inc. Data Sheet Complete DS40002061A-page 100

I/O-Port programmieren

Mnemonic SBI

Quelle: © 2020 Microchip Technology Inc. Manual DS40002198A-page 116

Mnemonic OUT

Quelle: © 2020 Microchip Technology Inc. Manual DS40002198A-page 105

GNU AVR-GCC

Assembler: Quelle zum Opcode

Gerd's AVR Simulator

Programm schreiben				
Gerd's AVR Simulator	Starten (Zur detaillierte Anwendung siehe u. g. Handbuch.)			
	Projekt anlegen			
	Assembler-Programm in Editor eingeben			
	Quellcode assemblieren			
	Simulation			
Quelle:	http://www.avr-asm-tutorial.net/avr_sim/index_en.html http://www.avr-asm-tutorial.net/avr_sim/23/avr_sim_Handbuch_v23.pdf			

Assembler-Code

SIM_02.asm

```
1; Blink LED 2 MHz
 3 .nolist
 4 .include "m328pdef.inc" ; get definitions of ATmega328P
 5 .list
     → sbi DDRB, PB5 ; set bit PB5 in Direction-Port B
 9 loop:
                         ; jump target label "loop"
       sbi PORTB, PB5 ; set bit PB5 in Output-Port B
10
11
                         ; do nothing
       nop
12
                     ; do nothing
       nop
13
    cbi PORTB, PB5 ; clear bit PB5 in Output-Port B
14
       rjmp loop ; relative jump to label "loop"
15
16; End of source code
```

Assembler-Code-Listing

```
SIM 02.lst
          1 gavrasm Gerd's AVR assembler version 4.8 (C) 2020 by DG4FAC
          4 Path: C:\Users\enno \Desktop\Assembler-EBW\GerdsSimulator\SIM 02\
          5 Source file: SIM 02.asm
          6 Hex file: SIM 02.hex
          7 Eeprom file: SIM 02.eep
          8 Compiled: 09.05.2021, 12:38:34
          9 Pass:
         10
                1: ; Bli k LED 2 MHz
         11
         12
                2:
         13
                3: .nolist
         14
                6:
         15
                7: 000000 9A25
                                 sbi DDRB, PB5 ; set bit PB5 in Direction-Port B
         16
                8:
         17
               9: loop:
                                        ; jump target label "loop"
              10: 000001 9A2D sbi PORTB, PB5 ; set bit PB5 in Output-Port B
         18
         19
               11: 000002
                         0000
                                     ; do nothing
                                nop
                                              ; do nothing
         20
              12: 000003 0000 nop
              13: 000004 982D cbi PORTB, PB5 ; clear bit PB5 in Output-Port B
              14: 000005 CFFB rjmp loop ; relative jump to label "loop"
         23
              15:
               16: ; End of source code
         24
```

Simulation SIM_02

Scope SIM_02

Ergebnis f = 2 MHz T = 500 ns 2 MHz / 16 MHz 1 / 8 8 Takte (cyles)

Scope SIM_05

Ergebnis f = 2,667 MHz T = 375 ns 2,667 MHz / 16 MHz 1 / 6 6 Takte (cyles)

Cycles

	Α	В	C	D	Е	F	G	Н	1	J	K	L	М	N	0	Р
1																
2					f	16.000.000	1/ s									
3					T=1/f	0,0000000625	S									
4						0,0000625000	ms		0,0625	us		62,5	ns			
5	time	e at start of loop				0,0001250000	ms		0,125	us		125	ns			
6																
7															0	ns
8		SBI DDRB	2		cycle	0,0001250000	ms		0,125	us		125	ns		125	ns
9																
10	A	SBI PORTB	2		cycle	0,0001250000	ms		0,125	us		125	ns		250	ns
11		NOP	1		cyle	0,0000625000	ms		0,0625	us		62,5	ns		312,5	ns
12		NOP	1	4	cyle	0,0000625000	ms		0,0625	us		62,5	ns		375	ns
13		CBI PORTB	2		cyle	0,0001250000	ms		0,125	us		125	ns		500	ns
14	l	RJMP	2	4	cyle	0,0001250000	ms		0,125	us		125	ns		625	ns
15																
16		loop										500	ns			
17					f=1/T							2.000.000,00	Hz			
18												2.000,00	kHz			
19												2,00	MHz			
20																

Hardware	
Arduino UNO	Arduino UNO Board mit ATmega328p.
Standalone	ATmega328p auf Steckbrett
USB zu TTL Adapter	"FTDI232 USB to TTL Serial Adapter Module" zur Programmierung über die serielle Schnittstelle
ISP	ISP (In-System-Programmer)

Arduino auf Breadboard

Idee	Standalone ATmega328p
Arduino Standalone	https://www.arduino.cc/en/Main/Standalone https://www.arduino.cc/en/Tutorial/ArduinoToBreadboard https://www.mikrocontroller.net/articles/AVR-Tutorial: Equipment
FTDI Adapter	https://www.yuriystoys.com/2012/02/arduino-on-beadboard-uploading-your.html
Arduino ISP	https://www.arduino.cc/en/Main.ArduinoISP https://www.arduino.cc/en/uploads/Main/ArduinoISP WindowsDrivers.zip

Assem	h	lor I	Com	nil	lor
H22CIII	U	וכו	COIII	μı	וכו

Simulator

Gerd's AVR assembler

http://www.avr-asm-tutorial.net/avr_sim/index_en.html

http://www.avr-asm-tutorial.net/avr_sim/23/avr_sim_23_win64_debug.zip

Programmiersoftware: https://blog.zakkemble.net/avrdudess-a-gui-for-avrdude/
AVRDUDE GUI

Programmiersoftware: Vorhanden in:

AVRDUDE 6.3 ...\arduino-1.8.12\hardware\tools\avr\bin\avrdude.exe

Konfigurationsdatei in:
...\arduino-1.8.12\hardware\tools\avr\etc\avrdude.conf

Tutorials	
AVR-GCC-Tutorial	https://www.mikrocontroller.net/articles/AVR-GCC-Tutorial
WinAVR	https://www.mikrocontroller.net/articles/WinAVR
ArduinoISP	https://www.arduino.cc/en/Guide/ArduinoISP
AVR-Assembler lernen	http://www.avr-asm-tutorial.net/avr_de/absolute_beginner/starten/starten.html
Unterrichtsmaterial	https://www.rahner-edu.de/grundlagen/avr-assembler-teil-0/
AVR Assembler Einführung	https://rn-wissen.de/wiki/index.php?title=AVR Assembler Einf%C3%BChrung
Anfängerkurs G. Schmidt	http://www.avr-asm-download.de/beginner_de.pdf
AVR beginners	http://avrbeginners.net/
MICROCHIP	https://onlinedocs.microchip.com/pr/GUID-E06F3258-483F-4A7B-B1F8-69933E029363-en-US-2/index.html
MICROCHIP Defeloper	https://microchipdeveloper.com/8avr:start
Block Diagram	https://www.avrfreaks.net/forum/atmega328p-alu-and-multiplier-question?page=all