## Fortune 1000 Companies by HDI

Rafael Coelho, Gunay Azizova

### **Project Overview**

#### Topic

Top 1000 American Company Performance vs. HDI(Human Development Index)

#### **Datasets**

D1: Fortune 1000, 2023 (Kaggle Dataset)
D2: HDI of US States, 2022
(Web Scraping Wikipedia)

#### Why

We wanted to have a business case project related to the economy sphere, which also has solid data.

#### **Hypothesis**

H0: Company Concentration vs. HDI H1: Impact of Top Sectors on HDI H2: Company Revenue vs. HDI



#### Fortunes 1000

An annual list of the 1000 largest public American companies maintained by Fortune.

- american public companies
- ranked by revenue

#### **HDI** (Human Development Index)

An index used by United Nations, composed of:

- life expectancy
- education (years of schooling)
- per capita income

# Project Overview: Data Cleaning & Analysis

- Data Cleaning of Dataset 1 (Cleaning)
  - Renaming, filling null values, lowercase values, converting data, dropping columns, etc.
- Web Scraping of Dataset 2 (Cleaning & Wrangling)
  - o Making numerical values usable, dropping non-state values, renaming
- Merging & Exporting of both Datasets to Excel
  - Goal was to preserve the datasets both in their merged and individual formats, in order to avoid risk
- Visualization through Tableau
  - Connected to our data source (Excel DF)
  - Created Charts based on the data, in separate Worksheets
  - Combined primary Charts into a final Dashboard
  - Publish to Tableau Public & Exported the Charts



# Data Wrangling and Cleaning

The Attempt ->

The Main Challenge: Table with alternating Rowspans

| 16 | North Dakota | 0.934 |
|----|--------------|-------|
|    | Rhode Island |       |
| 18 | * Illinois   | 0.932 |
| 19 | Alaska       | 0.931 |
|    | Nebraska     |       |
|    | Utah         |       |

Key Takeaway:
There is always a
different path:)

**The Solution:** Pandas (read\_html method)

```
url = 'https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_Human_D
tables = pd.read_html(url)
df=tables[0]
```

```
for i in soup.find_all("tr"):
    if i == 0:
        continue
    for j in i.find all("td"):
        ### J BECOMES DEFINED
        temp var = j.get_text().strip()
        ### J BECOMES DEFINED
        if "." in temp var:
            temp_var = temp_var.split(" ")[0]
            if "~" in temp var:
                temp var = temp var[1:]
        try:
            temp var = float(temp var)
        except:
            if len(j) >= 3:
                state list.append(temp var)
            else:
                if "-" in temp var:
                    rank list.append(0)
                else:
                    if temp var[-1] == "]":
                        temp_var = temp_var.split(" [")[0]
                        state list.append(temp var)
                        last state = temp var
                    else:
                        state list.append(temp var)
                        last_state = temp_var
                        #print(last state)
                        #print(temp var)
        else:
            if temp var < 0.999999 :
                hdi list.append(temp var)
                last hdi = temp var
            else:
                rank list.append(temp_var)
                last rank = temp var
        temp var = str(temp var)
```

## Teamwork & Project Management

#### **Project Structure**

 From the get-go, we defined how we want to approach the Project and we stuck to it

## Data Selection -> Data Processing -> Analysis -> Visualization

- It was important to us to completely finish a Step, before moving on to the next
- We actively used GitHub and avoided any merge conflicts

#### **Teamwork**

- Strong Collaboration
- Aligned on Project Goals

#### Creative Approach to Blockers

 Being open to different approaches kept us from blocking project progress.

#### **Exchange of Knowledge**

- GitHub: risk management
- Tableau: friendly visualisation

## Conclusion & Insights: Human Health Development by State<sup>1</sup>



### HO: Company concentration is negative on HDI



#### H<sub>0</sub> is FALSE

- No clear correlation between **Top 5/Bottom 5** states by Fortune 1000 companies and HDI.
- High-concentration states (California, Texas, New York) rank neutrally, outside the top/bottom 20% in HDI.



## H1: Company Concentration in Top Sectors Positively Correlates with State HDI

Top states by HDI & top sectors



## H2: States with Top Revenue-Generating Companies Show Positive HDI Correlation



## Thank you!

## **ARCHIVE**

### **Project Overview**

**Topic:** Top 1000 American Company Performance vs. HDI(Human Development Index)

Why: We wanted to have a business case project related to the economy sphere, which also has solid data.

**Dataset 1** -> Kaggle Dataset, contains 2023 performance of Top 1000 American Companies

Dataset 2 -> Webscraping Wikipedia, contains 2022\* HDI performance of American States

**H0:** States with a higher concentration of top companies exhibit a negative correlation with Human Development Index (HDI) scores, suggesting that economic concentration in corporate hubs may not directly translate into broader human development outcomes.

**H1:** States with a high concentration of the highest contributing sectors to the US Economy (Health, Services & Finance), have a positive correlation to the their HDI.

**H2:** States with highest revenue-generating Fortunes 1000 companies, have a positive correlation with their HDI.

## **Exploratory Data Analysis:**

- Initial structuring and accessing of the Data & Data Frames on Python
- In sequence, Dataframes were explored on Tableau:
  - To better visualize and understand our results
  - To come to conclusions regarding our key hypothesis



#### Fortunes 1000

An annual list of the 1000 largest public American companies maintained by Fortune.

- american public companies
- ranked by revenue

#### **HDI** (Human Development Index)

An index used by United Nations, composed of:

- life expectancy
- education (years of schooling)
- per capita income