# 기계학습 (2022년도 2학기)

**Linear Classification I** 

전북대학교 컴퓨터공학부

#### **Overview**

- Classification: predicting a discrete-valued target
  - Binary classification: predicting a binary-valued target
- Examples
  - predict whether a patient has a disease, given the presence or absence of various symptoms
  - classify e-mails as spam or non-spam
  - predict whether a financial transaction is fraudulent

#### **Overview**

#### Binary linear classification

- classification: predict a discrete-valued target
- **binary**: predict a binary target  $t \in \{0,1\}$ 
  - Training examples with t = 1 are called positive examples, and training examples with t = 0 are called negative examples.
- **linear**: model is a linear function of x, followed by a threshold

$$z = \mathbf{w}^T \mathbf{x} + b$$

$$y = \begin{cases} 1 & \text{if } z \ge r \\ 0 & \text{if } z < r \end{cases}$$

### Some simplifications

#### Eliminating the threshold

■ We can assume without loss of generality that the threshold r = 0:

$$\mathbf{w}^T \mathbf{x} + b \ge r \iff \mathbf{w}^T \mathbf{x} + \underbrace{b - r}_{\triangleq b'} \ge 0$$

#### **Eliminating the bias**

■ Add a dummy feature  $x_0$  which always takes the value 1. The weight  $w_0$  is equivalent to a bias (i.e.  $w_0 \equiv b$ ) ( $\mathbf{x}$ 에  $x_0$ 를 추가해서 차원을 확장)

### **Simplified model**

$$z = \mathbf{w}^T \mathbf{x}$$

$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

### **Examples**

- Let's consider some simple examples to examine the properties of our model
- Forget about generalization and suppose we just want to learn Boolean functions

### **Examples**

■ This is our "training set"

#### **NOT**

$$egin{array}{c|cccc} x_0 & x_1 & t \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

- What conditions are needed on  $w_0$ ,  $w_1$  to classify all examples?
  - When  $x_1 = 0$ , need:  $w_0 x_0 + w_1 x_1 > 0 \iff w_0 > 0$
  - When  $x_1 = 1$ , need:  $w_0 x_0 + w_1 x_1 < 0 \iff w_0 + w_1 < 0$
- Example solution:  $w_0 = 1$ ,  $w_1 = -2$
- Is this the only solution?

### **Examples**

### **AND**

| (0 | $x_1$ | <i>X</i> <sub>2</sub> | t                       |                                                                                                                                      |
|----|-------|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 0     | 0                     | 0                       | need: $w_0 < 0$                                                                                                                      |
| 1  | 0     | 1                     | 0                       | need: $w_0 + w_2 < 0$                                                                                                                |
| 1  | 1     | 0                     | 0                       | need: $w_0 + w_1 < 0$                                                                                                                |
| 1  | 1     | 1                     | 1                       | need: $w_0 + w_1 + w_2 > 0$                                                                                                          |
|    |       | 1 0<br>1 0            | 1 0 0<br>1 0 1<br>1 1 0 | $egin{array}{c cccc} x_1 & x_2 & t \\ \hline 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$ |

Example solution:  $w_0 = -1.5$ ,  $w_1 = 1$ ,  $w_2 = 1$ 

7

#### **Input Space**, or **Data Space** for **NOT** example



- Training examples are points
- Hypotheses w can be represented by half-spaces

$$H_{+} = \{ \mathbf{x} : \mathbf{w}^{T} \mathbf{x} \ge 0 \}, H_{-} = \{ \mathbf{x} : \mathbf{w}^{T} \mathbf{x} < 0 \}$$

- The boundaries of these half-spaces pass through the origin (why?)
- The boundary is the decision boundary:  $\{x : \mathbf{w}^T \mathbf{x} = 0\}$

왜 아래쪽 영역이 + 클래스인가? → 아래 영역의 임의의 점과 (w0,w1)의 내적을 구하면?

- In 2-D, it's a line, but think of it as a hyperplane
- If the training examples can be separated by a linear decision rule, they are linearly separable.

### **Weight Space**



- Hypotheses w are points
- Each training example x specifies a half-space w must lie in to be correctly classified
- For NOT example:
  - $x_0 = 1, x_1 = 0, t = 1 \implies (w_0, w_1) \in \{\mathbf{w} : w_0 > 0\}$
  - $x_0 = 1, |x_1 = 1, t = 0 \implies (w_0, w_1) \in \{\mathbf{w} : w_0 + w_1 < 0\}$
- The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible

- The **AND** example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice:



- The visualizations are similar, except that the decision boundaries and the constraints need not pass through the origin.
  - The origin in our visualization may not have all coordinates set to 0!

Visualizations of the AND example

#### **Data Space**



Slice for 
$$x_0 = 1$$

- Recall constraints:
  - $w_0 < 0$
  - $w_0 + w_2 < 0$
  - $w_0 + w_1 < 0$
  - $w_0 + w_1 + w_2 > 0$
- Why are only 3 constraints shown?

#### Weight Space



Slice for  $w_0 = -1$ 

■ Some datasets are not linearly separable, e.g. **XOR** 



Proof coming next lecture...

#### **Overview**

■ Recall: binary linear classifiers. Targets  $t \in \{0,1\}$ 

$$z = \mathbf{w}^T \mathbf{x} + b$$
$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

- How can we find good values for w, b?
- If training set is separable, we can solve for w, b using linear programming
- If it's not separable, the problem is harder

#### **Loss functions**

- Instead: define loss function then try to minimize the resulting cost function
  - Recall: cost is loss averaged over the training set
- Seemingly obvious loss function: 0-1 loss

$$\mathcal{L}_{0-1}(y,t) = \left\{ egin{array}{ll} 0 & ext{if } y=t \ 1 & ext{if } y 
eq t \end{array} 
ight.$$
 $= \mathbb{I}[y 
eq t]$ 

### Attempt 1: 0-1 loss

■ As always, the cost *J* is the average loss over training examples; for 0-1 loss, this is the error rate:

$$\mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[y^{(i)} \neq t^{(i)}]$$

■ Visualization of cost function in weight space for 3 examples: J=1/3



### Attempt 1: 0-1 loss

- Problem: how to optimize? In general, a hard problem
- (Guruswami and Raghavendra) "For arbitrary  $\epsilon$ ,  $\sigma > 0$ , we prove that given a set of examples-label pairs from the hypercube a fraction  $(1-\epsilon)$  of which can be explained by a halfspace, it is NP-hard to find a halfspace that correctly labels a fraction  $\left(\frac{1}{2} + \delta\right)$  of the examples."

### Attempt 1: 0-1 loss

- Let's try the one optimization tool in our arsenal: gradient descent
- Chain rule:

$$\frac{\partial \mathcal{L}_{0-1}}{\partial w_j} = \frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}$$

- But  $\frac{\partial L_{0-1}}{\partial z}$  is zero everywhere it's defined!
  - $\frac{\partial L_{0-1}}{\partial z} = 0$  means that changing the weights by a very small amount probably has no effect on the loss.
  - The gradient descent update is a no-op.



### **Attempt 2: Linear Regression**

- Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as a surrogate loss function.
  - 0-1 loss 는 문제를 가장 정확하게 설명하지만 SGD기반 optimization이 불가능하기 때문에 0-1 loss를 근사하는 연속함수를 고려
- One problem with  $L_{0-1}$ : defined in terms of final prediction, which inherently involves a discontinuity
- Instead, define loss in terms of  $\mathbf{w}^T \mathbf{x} + b$  directly
  - Redo notation for convenience:  $y = \mathbf{w}^T \mathbf{x} + b$

### **Attempt 2: Linear Regression**

- We already know how to fit a linear regression model. Can we use this instead?
  - 0-1 loss의 surrogate loss로 squared error loss를 고려

$$y = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$
 $\mathcal{L}_{\mathrm{SE}}(y, t) = \frac{1}{2} (y - t)^2$ 

- Doesn't matter that the targets are actually binary.
- For this loss function, it makes sense to make final predictions by thresholding y at  $\frac{1}{2}$  (why?)

```
→ t ∈ {0,1}
```

### **Attempt 2: Linear Regression**

### The problem:



- The loss function hates when you make correct predictions with high confidence!
- If t=1, it's more unhappy about y=10 than y=0.  $\mathcal{L}_{\text{SE}}(y,t)=\frac{1}{2}(y-t)^2$

### **Attempt 3: Logistic Activation Function**

- There's obviously no reason to predict values outside [0, 1]. Let's squash y into this interval.
- The logistic function is a kind of sigmoidal, or S-shaped, function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



■ A linear model with a logistic nonlinearity is known as log-linear:

$$z = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$$
  
 $y = \sigma(z)$ 

$$\mathcal{L}_{\mathrm{SE}}(y, t) = \frac{1}{2}(y - t)^{2}$$

• Used in this way,  $\sigma$  is called an activation function, and z is called the logit.

### **Attempt 3: Logistic Activation Function**

#### The problem:

The problem:  $y=\sigma(z)$  (plot of  $L_{SE}$  as a function of z, assuming t=1)  $\mathcal{L}_{\mathrm{SE}}(y,t)=\frac{1}{2}(y-t)^2$ 

$$z = \mathbf{w}^{ op} \mathbf{x} + b$$
 $y = \sigma(z)$ 
 $\mathcal{L}_{\mathrm{SE}}(y, t) = \frac{1}{2}(y - t)^2$ 



$$\frac{\partial \mathcal{L}}{\partial w_j} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_j}$$
$$w_j \leftarrow w_j - \alpha \frac{\partial \mathcal{L}}{\partial w_j}$$

- For  $z \ll 0$ ,  $\frac{\partial \mathcal{L}}{\partial z} \approx 0$  (check!)  $\Longrightarrow \frac{\partial \mathcal{L}}{\partial w_i} \approx 0 \Longrightarrow$  update to  $w_j$  is small
- If the prediction is really wrong, shouldn't you take a large step?

- Because  $y \in [0, 1]$ , we can interpret it as the estimated probability that t = 1.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
  - → 더 높은 confidence를 가진 예측에 대해 틀린 경우 더 많은 penalty를 부과
- Cross-entropy loss captures this intuition:

(두 확률분포가 얼마나 유사한지를 측정하는 정도로 이해할 수 있음)

$$\mathcal{L}_{\mathrm{CE}}(y,t) = \left\{ egin{array}{ll} -\log y & ext{if } t=1 \ -\log(1-y) & ext{if } t=0 \end{array} 
ight. \ = -t\log y - (1-t)\log(1-y) \end{array}$$



$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

$$y = \sigma(z)$$

$$= \frac{1}{1 + e^{-z}}$$

$$\mathcal{L}_{CE} = -t \log y - (1-t) \log(1-y)$$



 $(L_{CE}$ 의 gradient 유도 과정은 <u>여기</u>의 pp. 5-7을 참고)

- Problem: what if t=1 but you're really confident it's a negative example  $(z \ll 0)$ ?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$y = \sigma(z)$$
  $\Rightarrow y \approx 0$   $\mathcal{L}_{\text{CE}} = -t \log y - (1-t) \log(1-y)$   $\Rightarrow \text{ computes } \log 0$ 

 Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$\mathcal{L}_{\mathrm{LCE}}(z,t) = \mathcal{L}_{\mathrm{CE}}(\sigma(z),t) = t\log(1+e^{-z}) + (1-t)\log(1+e^{z})$$

Numerically stable computation:

$$E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)$$

■ Comparison of loss functions:



#### **Comparison of gradient descent updates:**

■ Linear regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

Logistic regression:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

 Not a coincidence! These are both examples of matching loss functions, but that's beyond the scope of this course.