TD 8 : Fonctions continues

Études locales et manipulations :

Exercice 1. (*)

Montrer en revenant à la définition que $f(x) = \frac{3x-1}{x-5}$ est continue en tout point de $\mathbb{R} \setminus \{5\}$.

Exercice 2. (*)

Soit A une partie non vide de \mathbb{R} . Pour $x \in \mathbb{R}$, on pose $f(x) = \inf\{|y - x|, y \in A\}$. Montrer que f est continue en tout point de \mathbb{R} .

Exercice 3. (**)

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = |x| + \sqrt{x - |x|}$. Étudier la continuité de
- 2. Soit $g \in \mathcal{C}^0(\mathbb{R})$, à quelle condition la fonction f définie par f(x) = |x| + g(x - |x|) est-elle continue?

Exercice 4. (**)

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q} \\ x+1 & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Montrer que f est discontinue en tout point.

Exercice 5. (*)

Dire si les fonctions suivantes sont prolongeables par continuité à \mathbb{R} tout entier :

- 1. $f(x) = \sin(1/x) \text{ si } x \neq 0$;
- 2. $g(x) = \sin(x)\sin(1/x)$ si $x \neq 0$;
- 3. $h(x) = \cos(x)\cos(1/x)$ si $x \neq 0$.

Exercice 6. (**)

Trouver pour $(a,b) \in (\mathbb{R}^{+*})^2 : \lim_{x \to 0^+} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$.

Exercice 7. (*)

Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

a)
$$g(x) = \frac{1}{x} \ln \frac{e^x + e^{-x}}{2}$$
;

b)
$$h(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$$
.

Exercice 8. (**)

- 1. Démontrer que $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x} = 1$.
- 2. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.
- 3. Démontrer que $\lim_{x\to 0} \frac{1}{x} (\sqrt{1+x+x^2} 1) = \frac{1}{2}$.

Exercice 9. (*)

Calculer lorsqu'elles existent les limites suivantes

- a) $\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$ b) $\lim_{x \to -\infty} \frac{x^2 + 2|x|}{x}$
- c) $\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$ d) $\lim_{x \to 0} \frac{\sqrt{1 + x} \sqrt{1 + x^2}}{x}$
- $e) \lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$
- $f) \lim_{x \to 1} \frac{x-1}{x^{n}-1}$
- g) $\lim_{x \to 2} \frac{x^2 4}{x^2 3x + 2}$ h) $\lim_{x \to +\infty} \sqrt{x + 5} \sqrt{x 3}$

Exercice 10. (***)

Étudier l'existence d'une limite et la continuité éventuelle en chacun de ses points de la fonction définie sur $]0,+\infty[$ par f(x)=0 si x est irrationnel et $f(x) = \frac{1}{p+q}$ si x est rationnel égal à $\frac{p}{q}$, la fraction $\frac{p}{q}$ étant irréductible.

Groupe IPESUP Année 2022-2023

Exercice 11. (**)

Calculer, lorsqu'elles existent, les limites suivantes :

$$\lim_{x \to \alpha} \frac{x^{n+1} - \alpha^{n+1}}{x^n - \alpha^n},$$

$$\lim_{x \to 0} \frac{\tan x - \sin x}{\sin x (\cos 2x - \cos x)},$$

$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x},$$

$$\lim_{x \to \alpha^{+}} \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x^{2} - \alpha^{2}}}, \quad (\alpha > 0)$$

$$\lim_{x \to 0} x E\left(\frac{1}{x}\right),\,$$

$$\lim_{x \to 2} \frac{e^x - e^2}{x^2 + x - 6},$$

 $\lim_{x \to +\infty} \frac{x^4}{1 + x^\alpha \sin^2 x}, \text{ en fonction de } \alpha \in \mathbb{R}.$

Exercice 12. (**)

Déterminer les limites suivantes, en justifiant vos calculs

1.
$$\lim_{x \to 0^+} \frac{x+2}{x^2 \ln x}$$

2.
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 3}{x \ln x}$$

3.
$$\lim_{x \to 0^+} \frac{\ln(3x+1)}{2x}$$

4.
$$\lim_{x \to 0^+} \frac{x^x - 1}{\ln(x+1)}$$

5.
$$\lim_{x \to -\infty} \frac{2}{x+1} \ln \left(\frac{x^3+4}{1-x^2} \right)$$

6.
$$\lim_{x \to +\infty} \frac{e^x - e^{x^2}}{x^2 - x}$$

7.
$$\lim_{x \to +\infty} \left(\frac{x+1}{x-3} \right)^x$$

8.
$$\lim_{x \to +\infty} \left(\frac{e^x + 1}{x + 2} \right)^{\frac{1}{x+1}}$$

9.
$$\lim_{x \to +\infty} \frac{x^{(x^{x-1})}}{x^{(x^x)}}$$

10.
$$\lim_{x \to +\infty} \frac{x\sqrt{\ln(x^2+1)}}{1+e^{x-3}}$$

Équations fonctionnelles

Exercice 13. (*)

On cherche à déterminer toutes les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant, pour tout $x \in \mathbb{R}$, f(2x) - f(x) = x.

1. Soit f une telle fonction. Démontrer que, pour tout $x \in \mathbb{R}$ et pour tout $n \ge 1$, on a

$$f(x) - f(x/2^n) = \sum_{k=1}^{n} \frac{x}{2^k}.$$

2. Répondre au problème posé.

Exercice 14. (***)

Soit f une fonction définie sur un voisinage de 0 telle que $\lim_{x\to 0} f(x) = 0$ et $\lim_{x\to 0} \frac{f(2x)-f(x)}{x} = 0$. Montrer que $\lim_{x\to 0} \frac{f(x)}{x} = 0$. (Indication. Considérer $g(x) = \frac{f(2x)-f(x)}{x}$.)

Exercice 15. (*)

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour chaque $x \in \mathbb{R}$, f(x) = f(2x). Montrer que f est constante.

Exercice 16. (**)

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, telle que pour chaque $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Exercice 17. (***)

Soit f une fonction réelle d'une variable réelle définie et continue sur un voisinage de $+\infty$. On suppose que la fonction f(x+1) - f(x) admet dans \mathbb{R} une limite ℓ quand x tend vers $+\infty$. Etudier l'existence et la valeur eventuelle de $\lim_{x\to +\infty} \frac{f(x)}{x}$. Groupe IPESUP Année 2022-2023

Fonctions continues sur un intervalle

Exercice 18. (*)

Soit I un intervalle, k > 0 et $f: I \to \mathbb{R}$ vérifiant :

$$\forall (x,y) \in I^2, |f(x) - f(y)| \le k|x - y|.$$

Démontrer que f est continue sur I. La fonction f est-elle uniformément continue?

Exercice 19. (*)

Démontrer que l'équation $\cos x = \frac{1}{x}$ admet une infinité de solutions dans \mathbb{R}_+^* .

Exercice 20. (**)

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue surjective.

- 1. Démontrer que 0 admet un nombre infini d'antécédents.
- 2. Plus généralement, démontrer que tout réel admet un nombre infini d'antécédents.

Exercice 21. (**)

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue. On suppose que $x \mapsto \frac{f(x)}{x}$ admet une limite finie l < 1 en $+\infty$. Démontrer que f admet un point fixe.

Exercice 22. (**)

Une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Exercice 23. (**)

Trouver f bijective de [0,1] sur lui-même et discontinue en chacun de ses points.

Exercice 24. (***)

Soit $f: I \to \mathbb{R}$ une fonction monotone. Montrer que l'ensemble de ses points de discontinuité est fini ou dénombrable.

Exercice 25. (**)

Soit $f:[0,1] \to [0,1]$ une fonction continue. Démontrer que f admet toujours au moins un point fixe.

Exercice 26. (**)

Soit f une fonction continue sur \mathbb{R} admettant une période T. Prouver que f est uniformément continue.

Exercice 27. (***)

Soient $f, g : [a, b] \to \mathbb{R}$ deux fonctions continues. Pour $t \in \mathbb{R}$, on pose

$$h(t) = \sup\{f(x) + tg(x); x \in [a, b]\}.$$

Montrer que h est lipschitzienne.

Exercice 28. (***)

Une fonction f définie sur un intervalle $I \subset \mathbb{R}$ est SCI (pour semi-continue inférieurement) si

$$\forall x_0 \in I, \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I,$$
$$|x - x_0| \le \eta \quad \Rightarrow \quad f(x) \ge f(x_0) - \varepsilon.$$

- 1. (a) Montrer qu'une fonction continue sur un intervalle est SCI.
 - (b) Déterminer une fonction SCI qui n'est pas continue.
- (a) Montrer que la somme de deux fonctions SCI sur un intervalle I est encore une fonction SCI.
 - (b) Montrer que le produit de deux fonctions SCI n'est pas forcément une fonction SCI.
- 3. Soit f une fonction SCI sur un segment I.
 - (a) Montrer que f est minorée.
 - (b) Montrer qu'il existe $x_0 \in I$ tel que $f(x_0) = \inf_{x \in I} f(x)$.