第五章 IIR 数字滤波器设计 课 程 作 业

- 【5.1】给定性能指标为 f_p =100Hz, R_p =1dB, f_{st} =400Hz, A_s =15dB。
- (1) 设计一个模拟<mark>低通巴特沃斯滤波器</mark>,求出系统函数 H(s)。提示:写出表达式即可, Ωc 的具体数值无需带入 H(s)。
- (2) 画出系统函数 H(s) 的极点位置图。
- (3) 试分析 3dB 截止频率 Ωc 取值大小变化时,通带和和阻带会发生何种变化。
- 【5.2】设计一 Butterworth 带通滤波器,其3dB 边界频率分别为 f_1 = 90 kH_Z 和 f_2 = 110 kH_Z ,在阻带 f_3 = 120 kH_Z 处的最小频率衰减大于10dB ,采样频率 f_s = 400 kH_Z 。
- 【5.3】给定性能指标为 $\omega_p = 0.2\pi$, $R_p = 1 \, \mathrm{dB}$, $\omega_{st} = 0.8\pi$, $A_s = 15 \, \mathrm{dB}$ 。
- (1) 采用<mark>冲激响应不变法</mark>,设对 $h_a(t)$ 等间隔取样的周期为 $T = 1/f_s = 1/1000$ (s),写出 H(s) 相应的数字滤波器的系统函数 $H_1(z)$ 的表达式。提示:写出表达式即可, Ωc 和 T 的具体数值无需带入 H(s)。
- (2) 给定数字域指标时,试分析为何 T 减小无法彻底解决混叠问题。
- (3) 画出系统函数 $H_1(z)$ 的并联型结构。
- 【5.4】给定性能指标为 $\omega_p = 0.2\pi$, $R_p = 1 \, \mathrm{dB}$, $\omega_{st} = 0.8\pi$, $A_s = 15 \, \mathrm{dB}$ 。
- (1) 采用 $\mathbf{双线性变换法}$,求出 H(s) 相应的数字滤波器的系统函数 $H_2(z)$ 。
- (2) 试分析为何 T 的取值不影响双线性变换法的设计结果。
- (3) 画出系统函数 $H_2(z)$ 的直接 II 型结构。

δ	$\lg(\delta)$	$\lg(10^{0.1\delta}-1)$	$\sqrt[2]{10^{0.1\delta}-1}$	$\sqrt[4]{10^{0.1\delta}-1}$	$\sqrt[6]{10^{0.1\delta}-1}$
1	0.00	-0.59	0.51	0.71	0.80
2	0.30	-0.23	0.76	0.87	0.91
3	0.48	0.00	1.00	1.00	1.00
4	0.60	0.18	1.23	1.11	1.07
5	0.70	0.33	1.47	1.21	1.14
6	0.78	0.47	1.73	1.31	1.20
7	0.85	0.60	2.00	1.42	1.26
8	0.90	0.73	2.30	1.52	1.32
9	0.95	0.84	2.64	1.62	1.38
10	1.00	0.95	3.00	1.73	1.44
15	1.18	1.49	5.53	2.35	1.77
20	1.30	2.00	9.95	3.15	2.15
25	1.40	2.50	17.75	4.21	2.61
30	1.48	3.00	31.61	5.62	3.16

θ	$tan(\theta)$
0.05π	0.16
0.10π	0.32
0.15π	0.51
0.20π	0.73
0.25π	1.00
0.30π	1.38
0.35π	1.96
0.40π	3.08
0.45π	6.31