

NPTEL ONLINE CERTIFICATION COURSES

DIGITAL CONTROL IN SMPCs AND FPGA-BASED PROTOTYPING

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 01: Introduction to Digital Control in SMPCs

Lecture 04: Overview of Digital Control Implementation Platforms

CONCEPTS COVERED

- Example of CMOS based digital circuit implementation
- Difference between ASIC and LUT based implementation
- Embedded control platforms ASIC, FPGA, uC
- Digital control platforms in this course
- Why HDL based implementation and FPGA prototyping?

TWO-input AND Gate - An Example

$$y = AB$$

$$y = AB = \overline{\overline{AB}} = \overline{\overline{A}} = \overline{\overline{A}}$$

$$\forall = AB = \overline{\overline{AB}} = \overline{\overline{A}} + \overline{B}$$

$$\forall = \overline{AB} = \overline{\overline{A}} + \overline{B}$$

$$\forall = \overline{AB} = \overline{\overline{A}} + \overline{B}$$

CMOS Implementation of a TWO-input AND Gate

$$y = AB = \overline{\overline{AB}} = \overline{\overline{A} + \overline{B}} = \overline{\overline{x}}$$

VLL

CMOS Implementation of a TWO-input AND Gate

Problems

Fixed hardware

Number of transistor =6

Look-up-table (LUT) of a TWO-input Digital Logic

A	B	y	A ->
0	0	y_o	$B \longrightarrow$
0	1	$\left\langle y_{1}\right\rangle$	Question:
1	0	y_2	
1	1	$\left\langle y_3 \right\rangle$	Flexible hardware
			>

Each y_K can take either '0' or 1

Total number of possible two-input functions $2^4 = 16$

In general = 2^{2^N} N= no of input

LUT based Implementation of a TWO-input Digital Logic

A	B	y
0	0	y_{o}
0	1	$y_{_1}$
	0	$y_2^{}$
1	1	$y_{_{3}}$

Total transistor for FOUR SRAM cells = 24

CMOS Implementation of a TWO-input Digital MUX

Total transistor =6 (including inverter)

LUT and ASIC Implementation of a TWO-input AND Gate

For 2 Input ASIC AND gate

Total no of transistor =6

For 2 Input LUT based AND gate

- 4 SRAM cells → 24 transistors
- 2 2-input (input side) MUX → (12-2) = 10 transistors
- 1 2-input (input side) MUX → 6 transistors

Total no of transistor =40

$TWO\text{-}input\ AND\ Gate-Comparing\ LUT\ and\ ASIC\ Implementation$

Method	Description	Benefits	Limitations
ASIC	6 -Transistors	Hardware	Fixed design, high
	√	optimized, power	$\underline{\mathrm{NRE}}$ cost, long
		efficient	development time
LUT	40 transistors	Configurable	Expensive
	\checkmark	hardware, low	hardware, power
		NRE cost, short	hungry, large
l		development time	component cost
		1	

FPGA Kit for This Course

Xilix FPGA [Numato Lab]

FPGA vs ASIC Implementation

FPGA vs CPLD

 $Source - \underline{Outsourceit.today}$

FPGA vs Microcontroller vs. ASIC Solutions

Micro	FPGA		
Write software.	Design hardware.		
Typically executes one instruction at a time.	All parts of your circuit can operate independently.		
Fixed maximum clock speed.	Maximum clock speed is dependent on your design.		
A handful of I/O pins that can be accessed in small groups (typically eight) at a time.	Many I/O pins that can all be accessed simultaneously.		

RAM based and needs to be programed after power on (the Mojo does this automatically).

Power usage depends on your design but typically requires more

Fixed peripherals that limit the devices you can connect. Can interface with virtually any digital device.

memory.

Usually store programs in nonvolatile (persistent)

Often very power efficient with advanced sleep modes.

Source - fpgakey.com

FPGA and Microcontrollers in This Course

- Verilog HDL based implementation and
 Xilinx Spartan 6 FPGA prototyping
- Introduction to STM32 microcontroller and selected hardware demonstrations
- Introduction to C2000 microcontroller and selected hardware demonstrations

Why Verilog HDL based Implementation?

CONCLUSION

- Example of CMOS based digital circuit implementation
- Difference between ASIC and LUT based implementation
- Embedded control platforms ASIC, FPGA, uC
- Digital control platforms in this course
- Why HDL based implementation and FPGA prototyping?

