Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

AYUDANTÍA 2

23 de Septiembre, 2021

PROBLEMAS

P1 Demuestre que si $\mathbb{P}[X \geq 0, Y \geq 0] = \alpha$ para $(X, Y) \sim \mathcal{N}_2(\mu, \Sigma)$, donde $\mu = (0, 0)^T$ y

$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

entonces $\rho = \cos[(1-2\alpha)\pi]$.

P2 Una aproximación utilizada en estadística es la llamada Aproximación de Stirling-Laplace, que afirma que

$$\Gamma(n+1) \approx \sqrt{2\pi n} (\frac{n}{e})^n$$

cuando n es suficientemente grande. Más precisamente se tiene el siguiente resultado asintótico

$$\lim_{n \to \infty} \frac{\Gamma(n+1)}{\sqrt{2\pi n} (n/e)^n} = 1$$

Demuestre utilizando la aproximación de Stirling-Laplace, que si $U_n = (U_n^1, U_n^2, \dots, U_n^n)$ es un vector aleatorio tal que $U_n/\sqrt{n} \sim \mathrm{U}(S_n)$, entonces $U_n^1 \xrightarrow{d} Z \sim \mathcal{N}(0,1)$

Hint: Utilize el **Teorema de Slutsky** y el **Resultado 2** de la clase de Distribuciones de contornos elípticos.

- [P3] (a) Sea un conjunto de variables aleatorias $\{X_i\}_{i=1}^n$ IID, provenientes de una distribución Poiss (λ) , encuentre un estadístico suficiente para λ .
 - (b) Sea un conjunto de vectores aleatorios $\{(X_i,Y_i)\}_{i=1}^n$ IID, con función de densidad

$$f(x, y, \theta) = \exp\left(-(\theta x + \frac{y}{\theta})\right)$$
 $x \ge 0, y \ge 0, \theta > 0$

Encuentre un estadístico suficiente para θ .

(c) Sea un conjunto de variables aleatorias $\{X_i\}_{i=1}^n$ IID, provenientes de una distribución $Gamma(\theta, 1)$, encuentre un estadístico suficiente para θ .

 $\boxed{\mathbf{P4}}$ Sea el conjunto de vectores aleatorios $\{(X_i,Y_i)\}_{i=1}^n$ IID con distribución normal bivariada, dada por la siguiente función de densidad

$$f(x,y,\rho) = \frac{1}{2\pi\sqrt{(1-\rho^2)}} \exp\left\{ \left(-\frac{1}{2(1-\rho^2)} (x^2 - 2\rho xy + y^2) \right) \right\}$$

- (a) Pruebe que marginalmente tanto X_i como Y_i son normales estándar. ¿Qué sucede cuando $\rho=0$
- (b) Hallé $E[X_i^2],\!E[Y_i^2]$ Y $E[X_iY_i]$
- (c) Encuentre un estadístico suficiente para ρ