Table des matières

1	Ana	alyse théorique des systèmes différentiels ordinaires :	1
	1.1	Définitions et premières propriétés	1
	1.2	Théorie locale	3
	1.3	Théorie globale	7
	1.4	Étude qualitative	11

1 Analyse théorique des systèmes différentiels ordinaires :

1.1 Définitions et premières propriétés

Soient $q \in \mathbb{N}^*$ et U un ouvert de $\mathbb{R} \times \mathbb{R}^q$ et

$$f:U\to\mathbb{R}^q$$

une application continue. On note ici $\|\cdot\|$ une norme dans \mathbb{R}^q .

Définition 1.1. On appelle équation différentielle ordinaire une équation du type

$$y'(t) = f(t, y(t)) \tag{1}$$

 $où(t,y(t)) \in U$.

Définition 1.2. Une solution de (1) sur un intervalle $I \subset \mathbb{R}$ est une fonction dérivable $y: I \to \mathbb{R}^q$ telle que

1. $\forall t \in I, \quad (t, y(t)) \in U$

2. $\forall t \in I$, y'(t) = f(t, y(t)).

Remarque 1.3. L'«inconnue» de l'équation (1) est donc en fait une fonction. Le qualificatif «ordinaire» pour l'équation différentielle (1) signifie que la fonction inconnue y dépend d'une seule variable t. Lorsqu'il y a plusieurs variables t_i et plusieurs dérivées $\partial y/\partial t_i$, on parle d'équations aux dérivées partielles (EDP).

Définition 1.4. Etant donné un point $(t_0, y_0) \in U$, le problème de Cauchy consiste à trouver une solution $y: I \to \mathbb{R}^q$ de (1) sur un intervalle I contenant t_0 dans son intérieur, telle que $y(t_0) = y_0$. On dit que (t_0, y_0) sont les données initiales du problème de Cauchy.

Définition 1.5. Soient $y: I \to \mathbb{R}^q$, $\widetilde{y}: \widetilde{I} \to \mathbb{R}^q$ des solutions de (1). On dit que \widetilde{y} est un prolongement de y si $\widetilde{I} \supset I$ et $\widetilde{y}|_{I} = y$.

Définition 1.6. - On dit qu'une solution $y: I \to \mathbb{R}^q$ est maximale si y n'admet pas de prolongement $\widetilde{y}: \widetilde{I} \to \mathbb{R}^q$ avec $\widetilde{I} \supseteq I$.

Théorème 1.7. Toute solution y se prolonge en une solution maximale \tilde{y} (pas nécessairement unique).

Démonstration. Supposons que y soit définie sur un intervalle I=|a,b| (cette notation désigne un intervalle ayant pour bornes a et b, incluses ou non dans I). Il suffira de montrer que y se prolonge en une solution $\widetilde{y}:|a,\widetilde{b}|\to\mathbb{R}^q(\widetilde{b}\geq b)$ maximale à droite, c'est-à-dire qu'on ne pourra plus prolonger \widetilde{y} au delà de \widetilde{b} . Le même raisonnement s'appliquera à gauche. Pour cela, on construit par récurrence des prolongements successifs $y_{(1)},y_{(2)}\ldots$ de y avec $y_{(k)}:|a,b_k[\to\mathbb{R}^q]$. On pose $y_{(1)}=y,b_1=b$. Supposons $y_{(k-1)}$ déjà construite pour un indice $k\geq 1$. On pose alors

$$c_k = \sup \{c; y_{(k-1)} \text{ se prolonge sur } | a, c[\}$$

On a $c_k \geq b_{k-1}$. Par définition de la borne supérieure, il existe b_k tel que $b_{k-1} \leq b_k \leq c_k$ et un prolongement $y_{(k)} : | a, b_k [\to \mathbb{R}^q \text{ de } y_{(k-1)} \text{ avec } b_k \text{ arbitrairement voisin de } c_k;$ en particulier, on peut choisir

$$c_k - b_k < \frac{1}{k}$$
 si $c_k < +\infty$
 $b_k > k$ si $c_k = +\infty$

La suite (c_k) est décroissante, car l'ensemble des prolongements de $y_{(k-1)}$ contient l'ensemble des prolongements de $y_{(k)}$; au niveau des bornes supérieures on a donc $c_k \ge c_{k+1}$. Si $c_k < +\infty$ à partir d'un certain rang, les suites

$$b_1 \le b_2 \le \ldots \le b_k \le \ldots \le c_k \le c_{k-1} \le \ldots \le c_1$$

sont adjacentes, tandis que si $c_k = +\infty$ quel que soit k on a $b_k > k$. Dans les deux cas, on voit que

$$\widetilde{b} = \lim_{k \to +\infty} b_k = \lim_{k \to +\infty} c_k$$

Soit $\widetilde{y}:|a,\widetilde{b}|\to\mathbb{R}^q$ le prolongement commun des solutions $y_{(k)}$, éventuellement prolongé au point \widetilde{b} si cela est possible. Soit $z:|a,c|\to\mathbb{R}^q$ un prolongement de \widetilde{y} . Alors z prolonge $y_{(k-1)}$ et par définition de c_k il s'ensuit $c\leq c_k$. A la limite il vient $c\leq \widetilde{c}$, ce qui montre que la solution \widetilde{y} est maximale à droite.

On suppose ici que l'ouvert U est de la forme $U = I \times \Omega$ où I est un intervalle de \mathbb{R} et Ω un ouvert de \mathbb{R}^q .

Définition 1.8. Une solution globale est une solution définie sur l'intervalle I tout entier.

Remarque 1.9. toute solution globale est maximale, mais la réciproque est fausse.

Exercice 1. Cherchons les solutions de l'équation suivante

$$y'(t) = y^2(t), \quad sur \ U = \mathbb{R} \times \mathbb{R}.$$
 (2)

Sont-elles globales ou maximale?

1.2 Théorie locale

Définition 1.10. La fonction $f: I \times \Omega \to \mathbb{R}^q$ est dite localement Lipschitzienne par rapport à la deuxième variable si : pour tout $(t_0, x_0) \in I \times \Omega$ il existe un voisinage $V_{(t_0, x_0)} = V$ et C > 0 tels que

$$||f(t, x_1) - f(t, x_2)|| \le C||x_1 - x_2||, \quad \forall (t, x_i) \in V, \quad i = 1, 2$$

Remarque 1.11. L'inégalité des accroissements finis montre que si $\partial_x f$ existe et si $(t,x) \mapsto \partial_x f(t,x)$ est continue (en particulier si f est C^1 sur $I \times \Omega$) alors f est localement Lipschitzienne par rapport à la deuxième variable.

Lemme 1.12. Le lemme de Grönwall : Soit φ une fonction continue de [a,b] dans \mathbb{R}^+ et $c \in [a,b]$. Supposons qu'il existe des constantes positives A,B telles que

$$\varphi(t) \le A + B \left| \int_{c}^{t} \varphi(s) ds \right|, \quad \forall t \in [a, b]$$

Alors

$$\varphi(t) \le Ae^{B|t-c|}, \quad \forall t \in [a, b]$$

Démonstration. Supposons $t \ge c$. Posons $F(t) = A + B \int_c^t \varphi(s) ds$ alors $F \in C^1$ et $\varphi(t) \le F(t)$ pour t dans [c, b]. On a $F'(t) = B\varphi(t) \le BF(t)$. On en déduit

$$\frac{d}{dt} \left[e^{-Bt} F(t) \right] = e^{-Bt} \left[F'(t) - BF(t) \right] \le 0, \quad \forall t \in [c, b]$$

donc

$$e^{-Bt}F(t) \le e^{-Bc}F(c) = Ae^{-Bc}, \quad \forall t \in [c, b]$$

d'où $\varphi(t) \le F(t) \le Ae^{B(t-c)}$.

Pour $t \leq c$ on pose $G(t) = A + B \int_t^c \varphi(s) ds$ alors $G \in C^1, \varphi(t) \leq G(t)$ et

$$G'(t) = -B\varphi(t) \ge -BG(t)$$

d'où $\frac{d}{dt}\left(e^{Bt}G(t)\right)\geq 0$ ce qui implique $e^{Bt}G(t)\leq e^{Bc}G(c)$ d'où

$$\varphi(t) \le G(t) \le Ae^{B(c-t)}$$
.

Soient a, b deux réels positifs et (t_0, y_0) un point de $\mathbb{R} \times \mathbb{R}^q$. Posons

$$Q = \{(t, y) \in \mathbb{R} \times \mathbb{R}^q : |t - t_0| \le a, ||y - y_0|| \le b\}$$
(3)

On considère une fonction continue $f: Q \to \mathbb{R}^q$ et soit M > 0 tel que :

$$||f(t,x)|| \le M, \quad \forall (t,x) \in Q$$
 (4)

On suppose d'autre part qu'il existe C > 0 telle que

$$||f(t,x) - f(t,y)|| \le C||x - y||, \quad \forall (t,x) \in Q, \forall (t,y) \in Q$$
 (5)

On a alors le théoreme suivant :

A. OUARDI Page 4

Théorème 1.13. Cauchy-Lipschitz précisé : Sous les conditions (4) et (5)

l'équation (1) possède une solution (y, J) telle que

1.
$$J = [t_0 - T, t_0 + T]$$
 avec $T = \min(a, \frac{b}{M}),$

2.
$$y(t_0) = y_0$$

2.
$$y(t_0) = y_0,$$

3. $(s, y(s)) \in Q, \forall s \in J.$

Il n'y a pas d'autre solution qui vérifie 1, 2, 3.

Démonstration. Soit $T = \min\left(a, \frac{b}{M}\right)$. Définissons la suite de fonctions y_k par

$$y_0(t) = y_0, \quad y_k(t) = y_0 + \int_{t_0}^t f(s, y_{k-1}(s)) ds, \ k \ge 1, \quad |t - t_0| \le T$$
 (6)

Point 1: Pour $k \in \mathbb{N}$ et $|s - t_0| \le T$, $(s, y_k(s)) \in Q$.

C'est vrai pour k=0, supposons le vrai pour k-1. Alors

$$||y_k(t) - y_0|| \le \left| \int_{t_0}^t ||f(s, y_{k-1}(s))|| ds \right| \le M |t - t_0| \le M \cdot \frac{b}{M} = b$$
 (7)

Point 2 : On a

$$||y_k(t) - y_{k-1}(t)|| \le M \cdot \frac{C^{k-1} |t - t_0|^k}{k!}, \quad k \ge 1, \quad |t - t_0| \le T$$
 (8)

Cela est vrai pour k=1, d'après (7). Supposons le vrai pour l'indice k-1. Alors d'après (5)

$$||y_{k}(t) - y_{k-1}(t)|| \leq \left| \int_{t_{0}}^{t} ||f(s, y_{k-1}(s)) - f(s, x_{k-2}(s))|| ds \right|$$

$$\leq C \left| \int_{t_{0}}^{t} ||y_{k-1}(s) - y_{k-2}(s)|| ds \right|$$

$$\leq C \left| \int_{t_{0}}^{t} M \cdot \frac{C^{k-2} |s - t_{0}|^{k-1}}{(k-1)!} ds \right| \leq M \cdot \frac{C^{k-1} |t - t_{0}|^{k}}{k!}$$

Point 3: On déduit de (8), $||y_k(t) - y_{k-1}(t)|| \le \frac{M}{C} \frac{(CT)^k}{k!}, |t - t_0| \le T$. La série de terme général $\frac{(CT)^k}{kl}$ étant convergente il s'ensuit que la suite (y_k) converge uniformément sur $[t_0 - T, t_0 + T] = J$ vers une fonction y continue telle que $||y(t) - y_0|| \le b$. Il résulte de (5) que $f(s, y_{k-1}(s))$ converge uniformément vers f(s, y(s)) sur J. On peut donc passer à la limite dans (6) et on trouve que y vérifie

$$y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds$$

Il s'ensuit que y est C^1 , que $y(t_0) = y_0$ et que y est solution de (1) avec la donnée initiale $y(t_0) = y_0$.

Montrons l'unicité. Supposons que \tilde{y} soit une autre solution dans J de (1) telle que $\tilde{y}(t_0) = y_0$ et $(s, \tilde{y}(s)) \in Q, s \in J$. Alors

$$||y(t) - \tilde{y}(t)|| \le \left| \int_{t_0}^t ||f(s, y(s)) - f(s, \tilde{y}(s))|| ds \right|, \quad t \in [t_0 - T, t_0 + T]$$

$$\le C \int_{t_0}^t ||y(s) - \tilde{y}(s)|| ds$$

Appliquons l'inégalité de Grönwall (lemme (1.12)) à $\varphi(t) = ||y(t) - \tilde{y}(t)||, A = 0$, B = C. On déduit que $||y(t) - \tilde{y}(t)|| = 0$, $t \in [t_0 - T, t_0 + T]$.

Corollaire 1.14. Théorème de Cauchy-Lipschitz : Soit $f: I \times \Omega \to \mathbb{R}^q$ une fonction continue, localement Lipschitzienne par rapport à la deuxième variable. Pour tout point $(t_0, y_0) \in I \times \Omega$ il existe une solution unique de l'équation (1) dans un voisinage de t_0 telle que

$$y(t_0) = y_0$$

Démonstration. Soit $(t_0, y_0) \in I \times \Omega$. Il existe a et b positifs tels que

$$Q = \{(t, y) : |t - t_0| \le a, ||y - y_0|| \le b\} \subset V_{(t_0, y_0)} = V$$

où V est le voisinage de (t_0, y_0) dans lequel f est localement Lipschitzienne par rapport à y. Comme f est continue sur $I \times \Omega$ elle est bornée sur Q par M. Alors (4) et (5) sont satisfaites. Il suffit d'appliquer le théorème (1.13).

Nous allons voir que si f est seulement supposée continue on a encore existence locale d'une solution mais **on peut perdre l'unicité**.

Comme précédemment on commence par la situation modèle. Soient donc $(t_0, y_0) \in \mathbb{R} \times \mathbb{R}^q$, a, b deux réels positifs et

$$Q = \{(t, y) \in \mathbb{R} \times \mathbb{R}^q : |t - t_0| \le a, ||y - y_0|| \le b\}$$

Soient f une fonction continue sur Q et M > 0 tels que (4) soit verifié.

Théorème 1.15. Arzela, Péano Le problème (1) admet une solution (y, J), où $J = [t_0 - T, t_0 + T]$, $T = \min(a, \frac{b}{M})$, telle que $y(t_0) = y_0$.

Démonstration. Admis (voir [1] p.359).

Corollaire 1.16. Soit $f: I \times \Omega \to \mathbb{R}^q$ une fonction continue. Pour tout point $(t_0, y_0) \in I \times \Omega$ il existe une solution de l'équation (1) dans un voisinage de t_0 telle que $y(t_0) = y_0$.

Démonstration. C'est une conséquence immédiate du théorème (1.15).

Exemple 1.17. Ce problème de Cauchy admet deux solutions sur \mathbb{R}

$$\begin{cases} \frac{dx}{dt}(t) = 3x^{\frac{2}{3}}(t) \\ x(0) = 0 \end{cases}$$

1.3 Théorie globale

Théorème 1.18. (Unicité globale) Supposons f continue sur $I \times \Omega$ et localement Lipschitzienne par rapport à la deuxième variable. Soient (y_1, J_1) et (y_2, J_2) deux solutions de (1) telles que $J_1 \cap J_2 \neq \phi$. Si il existe un point $t_0 \in J_1 \cap J_2$ tel que $y_1(t_0) = y_2(t_0)$ alors $y_1(t) = y_2(t)$ sur $J_1 \cap J_2$.

Démonstration. Si $J_1 \cap J_2 = \{t_0\}$, il n'y a rien à prouver. Sinon $J_1 \cap J_2$ est un intervalle $]\alpha, \beta[$. Supposons $t_0 \in]\alpha, \beta[$. Notons $A = \{t \in]\alpha, \beta[: y_1(t) = y_2(t)\}.$

- $t_0 \in A$ par hypothèse.
- A est fermé dans $]\alpha, \beta[$ car $y_1 y_2$ est continue.
- A est ouvert : soit $t_1 \in A$. Il existe ε positif tel que $]t_1 \varepsilon, t_1 + \varepsilon[\subset]\alpha, \beta[$.

D'après le théorème de Cauchy-Lipschitz le problème $y'(t) = f(t, y(t)), \ y(t_1) = y_1(t_1)$ admet une solution unique dans un petit voisinage de t_1 contenu dans $]\alpha, \beta[$, donc dans $J_1 \cap J_2$. Comme y_1 et y_2 sont aussi solutions de ce problème, il existe un voisinage \mathcal{O} de t_1 dans lequel $y_1 = y_2$ i.e. \mathcal{O} est contenu dans A. On en déduit que $A =]\alpha, \beta[$. Par continuité, $y_1 = y_2$ dans $J_1 \cap J_2$. Supposons $J_1 \cap J_2 = [t_0, \beta[$. Le problème y'(t) = f(t, y(t)),

 $y(t_0) = y_1(t_0)$, admet une solution unique dans $[t_0, t_0 + \delta]$. Donc il existe t'_0 intérieur à $J_1 \cap J_2$ tel que $y_1(t'_0) = y_2(t'_0)$. D'après ci-dessus, $y_1 = y_2$ dans $]t_0, \beta[$ et donc dans $[t_0, \beta)$.

Théorème 1.19. (Existence d'une solution maximale) Soit f une fonction continue de $I \times \Omega$ dans \mathbb{R}^q . Par tout point (t_0, y_0) de $I \times \Omega$ il passe une solution maximale (y, J) où J est un intervalle ouvert dans I. Si de plus f est localement Lipschitzienne par rapport à la deuxième variable, cette solution maximale est unique.

Démonstration. Admis (voir [1] p.371).

Cas où f est définie sur $]a,b[\times \mathbb{R}^q]$:

Théorème 1.20. Soit (y, J) une solution maximale de (1), où $J =]T_*, T^*[$. Alors

$$\begin{cases} ou \ bien \ T^* = b \\ ou \ bien \ T^* < b \ et \ \lim_{t \to T^*} \|y(t)\| = +\infty \end{cases}$$

de même

$$\begin{cases} ou \ bien \ T_* = a \\ ou \ bien \ T_* > a \ et \ \lim_{t \to T_*} \|y(t)\| = +\infty \end{cases}$$

Démonstration. Si $T^* = b$ il n'y a rien à démontrer. Supposons $T^* < b$. Si ||y(t)|| ne tend pas vers $+\infty$ c'est que : $\exists C > 0 : \forall \delta > 0, \exists t : |t - T^*| \le \delta$ et $||y(t)|| \le C$. Par conséquent il existe une suite (t_k) tendant vers T^* telle que $||y(t_k)|| \le C$. Soient α et β deux réels tels que : $T_* < \alpha < T^* < \beta < b$. Soient d un nombre positif quelconque et M > 0 tels que $||f(t,y)|| \le M$ pour $t \in [\alpha,\beta]$ et $||y|| \le C + d$. Fixons k_1 tel que $t_{k_1} \ge \alpha$ et $t_{k_1} + \frac{d}{M} > T^*$; cela est possible car $(t_k) \to T^*$. Notons

$$Q_{k_1} = \{(t, y) : 0 \le t - t_{k_1} \le \beta - t_{k_1}, ||y - y(t_{k_1})|| \le d\}.$$

On a : $\sup_{Q_{k_1}} \|f(t,y)\| \le M$. En effet si $(t,y) \in Q_{k_1}$ on a $t \in [\alpha,\beta]$ et $\|y\| \le \|y(t_{k_1})\| + \|y-y(t_{k_1})\| \le C+d$. Le point $(t_{k_1},y(t_{k_1}))$ est dans Q_{k_1} où f est continue et bornée par

M; on déduit du théorème (1.15) que le problème

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_{k_1}) = y(t_{k_1}) \end{cases}$$

admet une solution x sur $[t_{k_1}, t_{k_1} + T]$ où $T = \min \left(\beta - t_{k_1}, \frac{d}{M}\right)$. Montrons que $t_{k_1} + T > T^*$. Si $T = \beta - t_{k_1}, t_{k_1} + T = \beta > T^*$. Si $T = \frac{d}{M}, t_{k_1} + \frac{d}{M} > T^*$ par hypothèse. La fonction

$$\tilde{y}(t) = \begin{cases} y(t) & t \in]T_*, t_{k_1}] \\ x(t) & t \in [t_{k_1}, t_{k_1} + T] \end{cases}$$

est une solution de (1) qui prolonge y au delà de T^* , ce qui contredit la maximalité de T^* .

Corollaire 1.21. Critère de prolongement : Soit (y, J) une solution de (1) où $J =]\alpha, \beta[, a < \alpha < \beta < b.$ Supposons qu'il existe $\delta > 0, A > 0$ tels que $||y(t)|| \le A$ pour tout $t \in [\beta - \delta, \beta[$ (respectivement $]\alpha, \alpha + \delta]$) alors y peut être prolongée au delà de β (resp. au delà de α) en une solution de (1).

Le corollaire (1.21) est une conséquence du théorème (1.20); cependant il peut se démontrer plus simplement.

Démonstration. Puisque $\beta < b, f$ est continue sur $[\beta - \delta, \beta] \times \mathbb{R}^q$. Notons K le compact

$$K = \{(t, y) \in \mathbb{R} \times \mathbb{R}^q : t \in [\beta - \delta, \beta], ||y|| \le A\}$$

Par hypothèse, si $t \in [\beta - \delta, \beta[, (t, y(t)) \in K]$. Notons C_0 le sup de f sur K. Si $t_1, t_2 \in [\beta - \delta, \beta[, l'équation (1) fournit$

$$||y(t_1) - y(t_2)|| \le \left| \int_{t_1}^{t_2} ||f(t, y(t))|| dt \right| \le C_0 |t_1 - t_2|$$

On en déduit que (y(t)) est de Cauchy pour t tendant vers β . Par conséquent $\lim_{t\to\beta}y(t)=\ell$. Considérons le problème de Cauchy

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(\beta) = \ell \end{cases}$$

La fonction f étant continue sur $]a,b[\times\mathbb{R}^q]$ ce problème admet une solution x définie sur $[\beta,\beta+\varepsilon]$. La fonction

$$\tilde{y}(t) = \begin{cases} y(t) & t \in]\alpha, \beta[\\ x(t) & t \in [\beta, \beta + \varepsilon] \end{cases}$$

est alors une fonction C^1 sur $]\alpha, \beta + \varepsilon]$. En effet $\lim_{t \to \beta} y(t) = \ell = x(\beta)$ et

$$\lim_{\substack{t \to \beta \\ t < \beta}} y'(t) = \lim_{\substack{t \to \beta \\ t < \beta}} f(t, y(t)) = f(\beta, \ell) = x'(\beta).$$

En outre c'est une solution de (1) sur $]\alpha, \beta + \varepsilon]$.

Remarque 1.22. Le théorème (1.20) renforce la conclusion du corollaire (1.21). En effet ce dernier montre que $\varlimsup_{t\to T^*} \|y(t)\| = +\infty$ tandis que le théorème (1.20) montre que $\|y(t)\|$ tend vers $+\infty$ lorsque t tend vers T^* .

Exercice 2. Soit $f: I \times \mathbb{R}^q \to \mathbb{R}^q$ où I =]a, b[. Supposons que f soit continue et bornée i.e.

$$\exists M > 0 : |f(t,y)| \le M, \quad \forall (t,y) \in I \times \mathbb{R}^q$$

Montrer que toute solution du problème (1) est globale.

Par exemple le problème sur $\mathbb{R} \times \mathbb{R}$:

$$\begin{cases} x'(t) = \frac{x^2(t)}{1+x^2(t)} \\ x(0) = x_0 \end{cases}$$

admet pour tout $x_0 \in \mathbb{R}$ une solution unique définie sur $]-\infty, +\infty[$.

Exercice 3. Soit $I =]\alpha, \beta[$ un intervalle ouvert de \mathbb{R} , a et b deux fonctions continues de I dans \mathbb{R}^+ et $f \in \mathcal{C}^1$ ($I \times \mathbb{R}^n, \mathbb{R}^n$) telle que

$$\forall (t, y) \in I \times \mathbb{R}^n, \quad \langle f(t, y), y \rangle \leqslant a(t) ||y||^2 + b(t)$$

Soit $t_0 \in I$ et y la solution maximale de

$$\begin{cases} y' = f(t, y) \\ y(t_0) = 0. \end{cases}$$

Montrer que y est définie sur $[t_0, \beta[$ (on pourra étudier $t \longrightarrow ||y(t)||^2)$.

Cas où f est définie sur $]a,b[\times\Omega]$:

Théorème 1.23. Soit (x, J) une solution de (1) où $J =]\alpha, \beta[$, $a < \alpha < \beta < b$. Supposons qu'il existe $\delta > 0$ et un compact K_0 de Ω tels que $x(t) \in K_0$ pour tout $t \in [\beta - \delta, \beta[$ (resp. $t \in]\alpha, \alpha + \delta[$) alors x peut être prolongée au delà de β (resp. au delà de α) en une solution de (1).

Corollaire 1.24. Soit $(x, J), J =]T_*, T^*[$, une solution maximale de (1). Alors

- 1. ou bien $T^* = b$, ou bien $T^* < b$ et pour tout compact de Ω il existe $t < T^*$ tel que $x(t) \notin K$.
- 2. Énoncé analogue pour T_* .

Le corollaire peut être aussi énoncé en disant : si $T^* < b$ il existe une suite $(t_n) \subset]T_*, T^*$ [telle que $(x(t_n))$ converge vers un point de la frontière de Ω ou vers l'infini (si Ω est non borné).

Exercice 4. On considère l'équation différentielle x' = -1/x, c'est-à-dire F(t,x) = -1/x, pour $(t,x) \in \mathbb{R} \times]0, +\infty[$, donc $I = \mathbb{R}$ et $\Omega =]0, +\infty[$. Soit $x_0 \in \Omega$, on veut résoudre le problème de Cauchy pour la donnée $x(0) = x_0$. Determiner l'expression explicite de la solution maximale, est-elle globale? Trouver t vérifiant $x(t) \notin K$ pour tout K compact de Ω .

1.4 Étude qualitative

Définition 1.25. On note y_z la solution de

$$\begin{cases} y'(t) = f(t, y) \\ y(t_0) = z \end{cases}$$

On dira que y_{z_0} est stable s'il existe deux constantes positives ϵ et C telles que pour tout $z \in \mathbb{R}^q$ tel que $||z-z_0|| \le \epsilon$ et $t \ge t_0$ on a $||y_z(t)-y_{z_0}(t)|| \le C ||z-z_0||$. La solution est dite asymptotiquement stable si elle est stable et si il existe une fonction $\gamma: [t_0, +\infty [\to \mathbb{R}^+ \text{ continue avec } \lim_{t \to +\infty} \gamma(t) = 0 \text{ telle que pour tout } z \in \mathbb{R}^q \text{ tel que } ||z-z_0|| \le \epsilon \text{ et } t \ge t_0 \text{ on a } ||y_z(t)-y_{z_0}(t)|| \le \gamma(t)||z-z_0||$.

Remarque 1.26. Plus intuitivement, une solution y_{z_0} est dite stable si les solutions dont la condition initiale est proche de z_0 restent proches de y_{z_0} au cours du temps. y_{z_0} est dite asymptotiquement stable si en plus les solutions convergent vers y_{z_0} (Une solution non stable est dite instable).

Définition 1.27. Un système différentiel autonome est un système de la forme

$$\dot{y}(t) = f(y(t)) \tag{9}$$

Un point d'équilibre (ou point critique, ou point stationnaire) du système est un point y_0 tel que $f(y_0) = 0$.

Lemme 1.28. Supposons que le problème de Cauchy

$$\begin{cases} y'(t) = f(t, y(t)), & \forall t \ge 0 \\ y(t_0) = y_0 \end{cases}$$

admette une unique solution notée ($I_{y_0}, \varphi_{y_0}(t)$) alors

- 1. $\varphi_{y_0}(t) < \varphi_{x_0}(t), \forall t \in I_{y_0} \cap I_{x_0} \text{ si } y_0 < x_0.$
- 2. Si $\varphi_{y_0}(t)$ est bornée alors la solution est définie sur $[t_0, +\infty [$ et $\lim_{t \to +\infty} \varphi_{y_0}(t) = \bar{y}$ où \bar{y} est un point stationnaire.

Remarque 1.29. Le 1) du lemme signifie que : deux trajectoires ne peuvent pas se couper.

Définition 1.30. Soit y_0 un point d'équilibre du système (9).

- y_0 est dit stable si : pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que, si y est une solution de (9) qui à un instant t_0 vérifie $||y(t_0) y_0|| < \delta$, on a
 - 1. y est définie pour tout $t \geq t_0$,
 - 2. $||y(t) y_0|| < \epsilon$ pour tout $t \ge t_0$
- y₀ est dit instable si il n'est pas stable.
- y_0 est dit asymptotiquement stable si : il existe $\delta > 0$ tel que si y est une solution de (9), qui à un instant t_0 vérifie $||y(t_0) y_0|| < \delta$ on a
 - 1. y est définie pour $t \ge t_0$
 - 2. $\lim_{t \to +\infty} y(t) = y_0.$

Remarque 1.31. Ici le temps $t = t_0$ ne joue pas de rôle particulier; on pourrait le remplacer par le temps t = 0 sans changer la définition car, le système étant autonome, si y(t) est une solution $y(t + t_0)$ est encore une solution.

Si y_0 est un point d'équilibre du système (9) en posant $\tilde{y}(t) = y(t) - y_0$ et $g(y) = f(y + y_0)$ on se ramène au cas où $y_0 = 0_q$.

Si l'origine est un point d'équilibre du système, au voisinage, la fonction f est approximée par premier terme de son développement de Taylor c'est-à dire $f'(0_q)y$ où $f'(0_q) = J_f(0_q)$ est une matrice carrée (matrice jacobienne de f).

Théorème 1.32. Soit $y^* \in \mathbb{R}^q$ tel que $f(y^*) = 0$. On note $A = J_f(y^*)$ la matrice jacobienne de f en y^* .

- 1. Si toutes les valeurs propres de A sont de partie réelle strictement négative, alors y* est un équilibre asymptotiquement stable de l'équation (9).
- 2. Si toutes les valeurs propres de A sont de partie réelle strictement positive, alors y* est un équilibre instable de l'équation (9).

Démonstration. Admis.

Références

- [1] Hervé Queffélec, Claude Zuily, Analyse pour l'agrégation. Dunod (2013).
- [2] Francinou, Gianella, Nicolas, Oraux X-ENS Analyse 4.
- [3] Xavier Gourdon, Les Maths en Tête. Analyse. Ellipses.