Scilab Textbook Companion for Physics- For Students Of Science And Engineering(Part 2) by D. Halliday and R. Resnick¹

Created by
Byragoni Spandana
Physics
Physics
IIT-B
College Teacher
Na
Cross-Checked by
Lavitha Pereira

October 22, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Physics- For Students Of Science And Engineering(Part 2)

Author: D. Halliday and R. Resnick

Publisher: Toppan, Tokyo, Japan

Edition: 2

Year: 1962

ISBN: 62-15336

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes	5
26 CHARGE AND MATTER	8
27 THE ELECTRIC FIELD	11
28 GAUSS S LAW	14
29 ELECTRIC POTENTIAL	16
30 CAPACITORS AND DIELECTRICS	19
31 CURRENT AND RESISTANCE	22
33 THE MAGNETIC FIELD	26
34 AMPERES LAW	30
35 FARADAYS LAW	33
36 INDUCTANCE	36
37 MAGNETIC PROPERTIES OF MATTER	40
38 ELECTROMAGNETIC OSCILLATIONS	43
39 ELECTROMAGNETIC WAVES	46
40 NATURE AND PROPOGATION OF LIGHT	47

41	REFLECTION AND REFRACTION PLANE WAVES AND PLANE SURFACESREFLECTION AND REFRACTION PLANE WAVES AND PLANE SURFACES	50
42	REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES	52
43	INTERFERENCE	55
44	DIFFRACTION	57
45	GRATING AND SPECTRA	59
46	POLARIZATION	63
47	LIGHT AND QUANTUM PHYSICS	65
48	WAVES AND PROPOGATION	68

List of Scilab Codes

Exa 26.1	Magnitude of total charges in a copper penny	8
Exa 26.2	Seperation between total positive and negative charges	8
Exa 26.3	Force acting on charge q1	9
Exa 26.4	Electrical and Gravitational force between two particles	9
Exa 26.5	Repulsive force between two protons in a nucleus of iron	10
Exa 27.1	Electric field strength	11
Exa 27.4	The point on the line joining two charges for the electric	
	field strength to be zero	11
Exa 27.9	Deflection of electron	12
Exa 27.11	Torque and work done by external agent on electric dipole	12
Exa 28.3	Electric field strength	14
Exa 28.4	Electric field strength at the nuclear surface	14
Exa 29.3	Magnitude of an isolated positive point charge	16
Exa 29.4	Electric potential at the surface of a gold nucleus	16
Exa 29.5	Potential at the center of the square	17
Exa 29.8	Mutual potential energy	17
Exa 29.9	Mutual potential energy	18
Exa 30.1	Plate area	19
Exa 30.5	To calculate Capacitance Free charge Electric field strength	
	Potential diffrence between plates	19
Exa 30.6	To calculate Electric displacement and Electric polari-	
	sation in dielectric and air gap	20
Exa 31.1	Current density	22
Exa 31.2	Drift speed	23
Exa 31.3	Resistance and resistiviy	23
Exa 31.4	Mean time and Mean free path	24
Exa 31.5	Power	24
Exa 33.1	Force acting on a proton	26

Exa 33.3	Torsional constant of the spring
Exa 33.4	Work done
Exa 33.5	Hall potential difference
Exa 33.6	Orbital radius Cyclotron frequency and Period of revo-
	lution
Exa 33.7	Magnetic induction and Deuteron energy
Exa 34.3	Distance
Exa 34.5	Magnetic field and Magnetic flux
Exa 34.9	Magnetic field and Magnetic dipole moment
Exa 35.1	Induced EMF
Exa 35.7	Induced elelctric field and EMF
Exa 36.1	Inductance of a toroid
Exa 36.2	Time
Exa 36.3	MAximum Current and Energy stored
Exa 36.4	Rate at which energy is stored and delivered and ap-
	peared
Exa 36.6	Energy
Exa 37.2	Orbital dipole moment
Exa 37.4	Change in magnetic moment
Exa 37.5	Precession frequency
Exa 37.6	Magnetic field strength Magnetisation Effective mag-
	netising current and Permeability
Exa 38.1	Current
Exa 38.2	Angular frequency
Exa 38.3	Angular frequency and time
Exa 38.5	Magnetic field
Exa 38.6	Calculation of current
Exa 39.6	Magnitude of electric and magnetic field
Exa 40.1	Force and energy reflected
Exa 40.2	Angular speed
Exa 40.3	Calculation of c
Exa 40.4	Percentage error
Exa 41.1	angel between two refracted beam
Exa 41.4	Index of glass
Exa 41.5	Angel
Exa 42.4	Location of image
Exa 42.5	Location of image
Exa 42.7	Location of image

Exa 42.8	Location of image	53
Exa 43.1	Angular position of first minimum	5
Exa 43.2	Linear distance	5
Exa 43.4	Refraction	6
Exa 43.5	Refraction	6
Exa 44.1	Calculation of wavelength	7
Exa 44.2		7
Exa 44.5	Current	8
Exa 44.7	delta y	8
Exa 45.1		69
Exa 45.2		69
Exa 45.3	Calculation of sodium doublet 6	60
Exa 45.4	Calculation of dispersion 6	60
Exa 45.5	Calculation of angels	61
Exa 46.1	Calculation of theta	3
Exa 46.2	Angle of refraction	3
Exa 46.3	Thickness of slab	64
Exa 47.1	velocity	5
Exa 47.2	Time calculation	5
Exa 47.3	Work function for sodium 6	6
Exa 47.4	Kinetic energy to be imparten on recoiling electron 6	6
Exa 47.5	Binding energy of hydrogen atom 6	57
Exa 1.1	Wavelength of particle	8
Exa 48.1	velocity and angular wavelength 6	8
Exa 48.2	Quantized energy	69
Exa 48.3	Quantum number 6	69
Exa 48.5	Position of electron	0
Eva 48.6		70

CHARGE AND MATTER

Scilab code Exa 26.1 Magnitude of total charges in a copper penny

```
//chapter26
//Example 1.1
clc
m=3.1 //mass of copper penny in grams
e=4.6*10^-18 //charge in coulombs
N0=6*10^23 //avogadro's number atoms/mole
M=64 //molecular weight of copper in gm/mole
//Calculation
N=(N0*m)/M; //No.of copper atoms in penny
n=N*e; //magnitude of the charges in coulombs
disp(q,"magnitude of the charges in coul is")
```

Scilab code Exa 26.2 Separation between total positive and negative charges

```
1 // Chapter26
2 // Example 2
3 clc
4 F=4.5 // Force of attraction in nt
```

```
5 q=1.3*10^5 //total charge in coul
6 r=q*sqrt((9*10^9)/F);
7 disp(r, "Seperation between total positive and negative charges in meters is")
```

Scilab code Exa 26.3 Force acting on charge q1

```
1 //Chapter26
2 //example 3
3 clc
4 //given three charges q1, q2, q3
5 q1 = -1.0*10^{-6} / charge in coul
6 q2=+3.0*10^-6
7 q3 = -2.0*10^-6
8 r12=15*10^-2 //seperation between q1 and q2 in m
9 r13=10*10^-2 // seperation between q1 and q3 in m
10 angle=%pi/6 //in degrees
11 F12=(9.0*10^9)*q1*q2/(r12^2) //in nt
12 F13=(9.0*10^9)*q1*q3/(r13^2) //in nt
13 F12x=-F12; //ignoring signs of charges
14 F13x=F13*sin(angle);
15 F1x = F12x + F13x
16 F12y=0 // from fig. 263
17 F13y = -F13*\cos(angle);
18 F1y=F12y+F13y //in nt
19 disp(F1x,"X component of resultant force acting on
     q1 in nt is")
20 disp(F1y,"Y component of resultant force acting on
     q1 in nt is")
```

Scilab code Exa 26.4 Electrical and Gravitational force between two particles

```
//chapter26
//Example 4
clc
r=5.3*10^-11 //distance b/w elecctron and proton in the hydrogen atom in meter
e=1.6*10^-19 //charge in coul
G=6.7*10^-11 //gravitatinal constant in nt-m2/kg2
m1=9.1*10^-31 //mass of electron in kg
m2=1.7*10^-27 //mass of proton in kg
f1=(9*10^9)*e*e/(r^2) //coulmbs law
F2=G*m1*m2/(r^2) //gravitational force
disp(F1, "Coulomb force in nt is")
disp(F2, "Gravitational force in nt is")
```

Scilab code Exa 26.5 Repulsive force between two protons in a nucleus of iron

```
//chapter 26
//Example 5
clc
r=4*10^-15 //separation b/w proton annd nucleus in iron in meters
q=1.6*10^-19 //charge in coul
F=(9*10^9)*(q^2)/(r^2); //coulombs law
printf("Repulsive coulomb force F=%d nt",F)
```

THE ELECTRIC FIELD

Scilab code Exa 27.1 Electric field strength

```
//chapter27
//Example 1
clc
m=9.1*10^-31 //mass of electron in kg
g=9.8 //acceleration due to gravity in m/s
q=1.6*10^-19 //charge of electron in coul
disp("Electric field strength E=F/q where F=mg")
E=m*g/q
disp(E,"electric field strength in nt/coul is")
```

Scilab code Exa 27.4 The point on the line joining two charges for the electric field strength to be zero

```
1 //chapter27
2 //example 4
3 clc
4 //given
5 q1=1.0*10^-6 //in coul
```

```
6 q2=2.0*10^-6 //in coul
7 l=10 //sepearation b/w q1 and q2 in cm
8 disp("for the electric field strength to be zero the point should lie between the charges where E1=E2 ")
9 //"Refer to the fig 27.9"
10 //E1=electric fied strength due to q1
11 //E2=electric fied strength due to q2
12 disp("E1=E2 which implies q1/4 x 2 = q2/4 (1-x) 2")
13 x=1/(1+sqrt(q2/q1))
14 printf("Electric field strength is zero at x=%f cm", x)
```

Scilab code Exa 27.9 Deflection of electron

```
//chapter27
//example 9
clc
//given
==1.6*10^-19 //charge in coul
E=1.2*10^4 //electric field in nt/coul
x=1.5*10^-2 //length of deflecting assembly in m
K0=3.2*10^-16 //kinetic energy of electron in joule
//calculation
y=e*E*x^2/(4*K0)
disp(y,"Corresponding deflection in meters is")
```

Scilab code Exa 27.11 Torque and work done by external agent on electric dipole

```
1 //chapter 27
2 //Example 11
```

```
3 clc
4 //Given
5 q=1.0*10^-6 //magnitude of two opposite charges of a
       electric dipole in coul
6 d=2.0*10^-2 // seperation b/w charges in m
7 E=1.0*10^5 //external field in nt/coul
8 //calculations
9 //(a)Max torque if found when theta=90 degrees
10 //Torque =pEsin(theta)
11 p=q*d //electric dipole moment
12 T=p*E*sin(\%pi/2)
13 disp("(a) Maximum torque exerted by the fied in nt-m
     is")
14 disp(T)
15 //(b) work done by the external agent is the
     potential energy b/w the positions theta=180 and
     0 degree
16 W=(-p*E*cos(\%pi))-(-p*E*cos(0))
17 disp("(b) work done by the external agent to turn
     dipole end for end in joule is ")
18 disp(W)
```

GAUSS S LAW

Scilab code Exa 28.3 Electric field strength

```
//chapter 28
//Example 3
clc
//Given
r=1*10^-10 //radius of the atom in meter
Z=79 //gold atomic number
re=1.6*10^-19 //charge in coul
r=2*e //total positive charge in coul
E=(9.0*10^9)*q/r^2
disp(E,"Electric field strength at the surface of the gold atom in nt/coul is")
```

Scilab code Exa 28.4 Electric field strength at the nuclear surface

```
1 //chapter 28
2 //Example 4
3 clc
4 //given
```

```
5 r=6.9*10^-15 //radius of the gold nucleus in meter
6 Z=79 //gold atomic number
7 e=1.6*10^-19 //charge in coul
8 q=Z*e //total positive charge in coul
9 E=(9.0*10^9)*q/r^2
10 disp("Electric field strength at the surface of the gold atom in nt/coul is")
11 disp(E)
```

ELECTRIC POTENTIAL

Scilab code Exa 29.3 Magnitude of an isolated positive point charge

```
//chapter 29
//example 3
clc
//given
V=100 //electric potential in volts
r=10*10^-2 //in meters
epsilon0=8.85*10^-12 //coul2/nt-m2
disp("Potential due to a point charge is V=q/4*pi*epislon0*r")

q=V*4*%pi*epsilon0*r
disp(q,"Magnitude of positive point charge in coul is ")
```

Scilab code Exa 29.4 Electric potential at the surface of a gold nucleus

```
1 //chapter 29
2 //example 4
3 clc
```

```
4 //given
5 r=6.6*10^-15 //radius of the gold nucleus in meter
6 Z=79 //gold atomic number
7 e=1.6*10^-19 //charge in coul
8 q=Z*e //total positive charge in coul
9 epsilon0=8.85*10^-12 //coul2/nt-m2
10 V=q/(4*%pi*epsilon0*r)
11 disp(V,"Electric potential at the surface of the nucleus in volts is")
```

Scilab code Exa 29.5 Potential at the center of the square

```
1 / \text{chapter } 29
2 // example 5
3 clc
4 //given
5 q1=1.0*10^-8 //in coul
6 q2 = -2.0*10^{-8} //in coul
7 q3=3.0*10^-8 //in coul
8 q4=2.0*10^-8 //in coul
9 a=1 //side of square in meter
10 epsilon0=8.85*10^-12 //coul2/nt-m2
11 //refer to the fig 29.7
12 r=a/sqrt(2) //distance of charges from centre in
     meter
13 V = (q1+q2+q3+q4)/(4*\%pi*epsilon0*r)
14 disp(V," Potential at the center of the square in
      volts is")
```

Scilab code Exa 29.8 Mutual potential energy

```
1 //chapter 29
2 //example 8
```

```
3 clc
4 //given
5 q1=1.6*10^-19 //charge in coul
6 q2=1.6*10^-19 //charge in coul
7 r=6.0*10^-15 //seperation b/w two protons in meter
8 epsilon0=8.85*10^-12 //coul2/nt-m2
9 U=(q1*q2)/(4*%pi*epsilon0*r)
10 disp("Mutual electric potential energy of two proton in joules is")
11 disp(U)
12 V=U/q1
13 disp(V,"Mutual electric potential energy of two proton in ev is")
```

Scilab code Exa 29.9 Mutual potential energy

```
1 / \text{chapter } 29
2 // example 9
3 clc
4 //given
5 q=1.0*10^-7 //charge in coul
6 a=10*10^-2 //side of triangle in meter
7 q1 = q
8 q2 = -4*q
9 q3 = 2 * q
10 epsilon0=8.85*10^-12 //coul2/nt-m2
11 disp("Total energy is the sum of each pair of
      particles ")
12 U=(1/(4*\%pi*epsilon0))*(((q1*q2)/a)+((q1*q3)/a)+((q2*q3)/a))
      *q3)/a))
13 disp(U," Mutual potential energy of the particles in
      joules is")
```

CAPACITORS AND DIELECTRICS

Scilab code Exa 30.1 Plate area

```
//chapter 30
//example 1
clc
//given
C=1.0 //capacitance in farad
d=1.0*10^-3 //separation b/w plates in meter
epsilon0=8.85*10^-12 //coul2/nt-m2
A=d*C/epsilon0
disp(A,"Plate area in square meter is")
```

Scilab code Exa 30.5 To calculate Capacitance Free charge Electric field strength Potential diffrence between plates

```
1 //chapter 30
2 //example 5
3 clc
```

```
4 //given
5 epsilon0=8.85*10^--12 //coul2/nt-m2
6 A=100*10^-4//area of the plate in square meter
7 d=1*10^-2 //separation b/w plates in meter
8 b=5*10^-3 //thickness of dielectric lab in meter
9 V0=100//in volts
10 k=7
11 //(a)
12 C0 = epsilon0 * A/d
13 disp(CO,"(a) Capacitance before the slab is inserted
      in farad is")
14 //(b)
15 q = C0 * V0
16 disp(q,"(b) Free charge in coul is")
17 //(c)
18 E0=q/(epsilon0*A)
19 disp(E0,"(c) Electric field strength in the gap in
      volts/meter is")
20 // (d)
21 E=q/(k*epsilon0*A)
22 disp(E,"(d) Electric field strength in the dielectric
       in volts/meter is")
23 //(e)
24 //Refer to fig30 -12
25 V = E0 * (d-b) + E*b
26 disp(V,"(e) Potential difference between the plates
      in volts is")
27 //(f)
28 C=q/V
29 disp(C, "Capacitance with the slab in place in farads
       is")
```

Scilab code Exa 30.6 To calculate Electric displacement and Electric polarisation in dielectric and air gap

```
1 / \text{chapter } 30
2 //example 6
3 clc
4 //given
5 epsilon0=8.85*10^--12 //coul2/nt-m2
6 A=100*10^-4//area of the plate in square meter
7 d=1*10^-2 //separation b/w plates in meter
8 \text{ VO} = 100 //\text{in volts}
9 E0=1*10^4 // Electric field in the air gap in volts/
10 k=7
11 \ k0=1
12 E=1.43*10^3 //in volts/metre
13 \quad D=k*E*epsilon0
14 P=epsilon0*(k-1)*E
15 //(a)
16 disp(D,"(a) Electric displacement in dielectric in
      coul/square metre is ")
17 disp(P," Electric polarisation in dielectric in coul/
      square meter is")
18 // (b)
19 \quad D0=k0*epsilon0*E0
20 disp(DO,"(b) Electric displacement in air gap in coul
      /square metre is ")
21 P0=epsilon0*(k0-1)*E0
22 disp(PO, "Electric polarisation in air gap in coul/
      square meter is")
```

CURRENT AND RESISTANCE

Scilab code Exa 31.1 Current density

```
1 / chapter 31
2 //example1
3 clc
4 //given
5 d1=0.10 //diameter of aluminium wire in inches
6 d2=0.064 //diameter of copper wire in inches
7 i=10 //current carried by composite wire in amperes
8 A1=%pi*(d1/2)^2 //crosssectional area of aluminium
      wire in square inches
9 A2=%pi*(d2/2)^2 //crosssectional area of copper wire
      in square inches
10 \quad j1=i/A1
11 j2=i/A2
12 disp(j1, "Current density in Aluminium wire in amp/
      square inches")
13 disp(j2, "Current density in copper wire in amp/
      square inches")
```

Scilab code Exa 31.2 Drift speed

```
//chapter 31
//example2
clc
//given
j=480//current density for copper wire in amp/cm2
No=6*10^23 //avagadro number in atoms/mole
M=64//molecular wt in gm/mole
d=9.0 //density in gm/cm3
e=1.6*10^-19//elecron charge in coul
n=d*NO/M
disp(n,"No.of free electrons per unit volume in atoms/mole")
Vd=j/(n*e)
disp(Vd,"Drift speed of electron in cm/sec is")
```

Scilab code Exa 31.3 Resistance and resistiviy

```
13 R1=p*11/A1
14 disp(R1,"(a) Resistance measured b/w the two square ends in ohm is")
15 12=1
16 A2=b*h
17 R2=p*12/A2
18 disp(R2,"(a) Resistance measured b/w the two opposite rectangular faces in ohm is")
```

Scilab code Exa 31.4 Mean time and Mean free path

```
1 //chapter 31
2 //example4
3 clc
4 //given
5 m=9.1*10^-31 //in kg
6 n=8.4*10^28 //in m-1
7 e=1.6*10^-19 //in coul
8 p=1.7*10^-8 //in ohm-m
9 v=1.6*10^8 //in cm/sec
10 T=2*m/(n*p*e^2)
11 disp(T,"(a) Mean time b/w collisions in sec is")
12 Lambda=T*v
13 disp(Lambda,"(b) Mean free path in cm is")
```

Scilab code Exa 31.5 Power

```
1 //chapter 31
2 //example5
3 clc
4 //given
5 V=110 //in volt
6 R=24//ohms
```

```
7 P1=V^2/R
8 disp(P1,"(a)Power for the single coil in watts is")
9 P2=V^2/(R/2)
10 disp(P2,"(b)Power for a coil of half the length in watts is")
```

THE MAGNETIC FIELD

Scilab code Exa 33.1 Force acting on a proton

```
1 //chapter 33
2 //example1
3 clc
4 //given
5 K=5*10^6 //ev
6 e=1.6*10^-19 //in coul
7 K1=K*e //in joules
8 m=1.7*10^-27 //in kg
9 B=1.5 //wb/m
10 theta=%pi/2
11 v=sqrt(2*K1/m)
12 disp(v, "Speed of the proton in meters/sec is")
13 F=e*v*B*sin(theta)
14 disp(F, "Force acting on proton in nt is")
```

Scilab code Exa 33.3 Torsional constant of the spring

```
1 // chapter 33
```

```
2 //example3
3 clc
4 //given
5 N=250 //turns in coil
6 i=1.0*10^-4 //in amp
7 B=0.2 //wb/m2
8 h=2*10^-2// coil height in m
9 w=1.0*10^-2 //width of coil in m
10 Q=30 //angular deflectin in degrees
11 theta=%pi/2
12 A=h*w
13 k=N*i*A*B*sin(theta)/Q
14 disp(k,"Torssional constant in nt-m/deg is")
```

Scilab code Exa 33.4 Work done

```
1 //chapter 33
2 //example4
3 clc
4 //given
5 N=100 // turns in circular coil
6 i=0.10 //in amp
7 B=1.5// in wb/m2
8 a=5*10^-2 //radius of coil in meter
9 u=N*i*%pi*(a^2) //u is dipole moment
10 U1=(-u*B*cos(0))
11 U2=-u*B*cos(%pi)
12 W=U2-U1
13 disp(W," W0rk required to turn current in an external magnetic field from theta=0 to theta=180 degree in joule is ")
```

Scilab code Exa 33.5 Hall potential difference

```
//chapter 33
//example5
clc
//given
i=200 //current in the strip in amp
B=1.5 //magnetic field in wb/m2
n=8.4*10^28 //in m-3
e=1.6*10^-19 //in coul
h=1.0*10^-3 //thickness of copper strip in metre
w=2*10^-2 //width of copper strip in meter
//calculation
Vxy=i*B/(n*e*h)
disp(Vxy,"Hall potential difference aross strip in volt is")
```

Scilab code Exa 33.6 Orbital radius Cyclotron frequency and Period of revolution

```
1 // chapter 33
2 //example6
3 clc
4 //given
5 m=9.1*10^-31 // in kg
6 \text{ v=1.9*10^6} //\text{in m/sec}
7 q=1.6*10^-19 //charge in coul
8 B=1.0*10^-4 //in wb/m2
9 //calculations
10 //(A)
11 \quad r=m*v/(q*B)
12 disp(r,"(A) Orbit radius in meter is")
13 / (B)
14 f = q*B/(2*\%pi*m)
15 disp(f,"(B) Cyclotron frequency in rev/sec is")
16 //(C)
17 T = 1/f
```

```
18 disp(T, "(C) Period of revolution in sec is")
```

Scilab code Exa 33.7 Magnetic induction and Deuteron energy

```
1 // chapter 33
2 //example7
3 clc
4 //given
5 f0=12*10^6 //cyclotron frequency in cycles/sec
6 r=21//dee radius in inches
7 R=r*0.0254 //dee radius in meter
8 q=1.6*10^-19 //charge in coul
9 m=3.3*10^-27 //in kg
10 //(A)
11 B=2*\%pi*f0*m/q
12 disp(B,"(A) Magnetic induction needed to accelerate
       deuterons in wb/m2 is")
13 //(B)
14 K = ((q^2*B^2*R^2)/(2*m))
15 disp(K,"(B) Deuteron energy in joule is")
16 \text{ K1=K*(1/(1.6*10^-19))}
17 disp(K1," Deuteron energy in ev is")
```

AMPERES LAW

Scilab code Exa 34.3 Distance

```
1 //chapter 34
2 //example3
3 clc
4 //given
5 i1=100 //in amp
6 i2=20 //in amp
7 W=0.073 //weight of second wire W=F/l in nt/m
8 u0=4*%pi*10^-7 //in weber/amp-m
9 //calculations
10 d=u0*i1*i2/(2*%pi*W)
11 disp(d,"seperation between two wires in metres")
```

Scilab code Exa 34.5 Magnetic field and Magnetic flux

```
1 //chapter 34
2 //example5
3 clc
4 //given
```

```
5 l=1.0 //length of solenoid in meter
6 d=3*10^-2 //diameter of solenoid in meter
7 n=5*850 //number of layers and turns of wire
8 u0=4*%pi*10^-7 //in weber/amp—m
9 i0=5.0 //current in amp
10 //(A)
11 B=u0*i0*n
12 disp(B," Magnetic field at center in wb/m2 is")
13 //(B)
14 A=%pi*(d/2)^2
15 Q=B*A
16 disp(Q," Magnetic flux at the center of the solenoid in weber is")
```

Scilab code Exa 34.9 Magnetic field and Magnetic dipole moment

```
1 / \text{chapter } 34
2 //example9
3 clc
4 //given
5 e=1.6*10^-19 //in coul
6 R=5.1*10^-11 //radius of th enucleus in meter
7 f=6.8*10^15 //frequency with which electron
      circulates in rev/sec
8 u0=4*\%pi*10^-7 //in weber/amp—m
9 x=0 //x is any point on the orbit, since at center x
     =0
10 //(A)
11 i=e*f
12 B=u0*i*R^2*0.5/((R^2+x^2)^(3/2))
13 disp(B,"(A) Magnetic field at the center of the
      orbit in wb/m2")
14 N=1 //no.of turns
15 A = \%pi * R^2
16 \quad U=N*i*A
```

17 disp(U,"(B) Equivalent magnetic dipole moment in amp-m2 is ")

FARADAYS LAW

Scilab code Exa 35.1 Induced EMF

```
1 //chapter 35
2 //example1
3 clc
4 //given
5 l=1.0 //length of solenoid in meter
6 \text{ r=3*10^--2} //\text{radius} \text{ of solenoid in meter}
7 n=200*10^2 //number of turns in solenoid per meter
8 u0=4*\%pi*10^-7 //in weber/amp—m
9 i=1.5 //current in amp
10 N=100 //no.of turns in a close packed coil placed at
       the center of solenoid
11 d=2*10^-2 //diameter of coil in meter
12 delta_T=0.050 //in sec
13 / (A)
14 B = u0 * i * n
15 disp(B, "Magnetic field at center in wb/m2 is")
16 //(B)
17 A = \%pi*(d/2)^2
18 Q = B * A
19 disp(Q," Magnetic flux at the center of the solenoid
      in weber is")
```

```
20 delta_Q=Q-(-Q)
21 E=-(N*delta_Q/delta_T)
22 disp(E,"Induced EMF in volts is ")
```

Scilab code Exa 35.7 Induced elelctric field and EMF

```
1 // chapter 35
2 //example7
3 clc
4 //given
5 //refer to fig 35-16
6 B=2 //magnetic field in wb/m2
7 l=10*10^{-2} //in m
8 \text{ v=1.0} //\text{in m/sec}
9 q=1.6*10^-19 //charge in coul
10 disp("Let S be the frame of reference fixed w.r.t
      the magnet and Z be the frame of reference w.r.t
      the loop")
11 / (A)
12 E=v*B
13 disp(E,"(A) Induced electric field in volt/m
      observed by Z")
14 //(B)
15 F = q * v * B
16 disp(F,"(B) Force acting on charge carrier in nt w.
      r.t S is")
17 F1 = q * E
18 disp(F1,"
                 Force acting on charge carrier in nt w
      .r.t Z is")
19 //(C)
20 \text{ emf1=B*1*v}
21 disp(emf1,"(C) Induced emf in volt observed by S is
      ")
22 \text{ emf2=E*1}
23 disp(emf2, "Induced emf in volt observed by Z is")
```

INDUCTANCE

Scilab code Exa 36.1 Inductance of a toroid

```
1 //chapter 36
2 //example1
3 clc
4 //given
5 u0=4*%pi*10^-7//in weber/amp-m Mu-not=u0
6 N=10^3//no.of turns
7 a=5*10^-2//im meter
8 b=10*10^-2 //in meter
9 h=1*10^-2// in metre
10 L=(u0*N^2*h)/(2*%pi)*log(b/a)
11 disp(L,"Inductance of a toroid of recyangular cross section in henry is")
```

Scilab code Exa 36.2 Time

```
1 //chapter 36
2 //example2
3 clc
```

```
4 //given
5 L=50 //inductance in henry
6 R=30 //resistance in ohms
7 t0=log(2)*(L/R)
8 disp(t0, "Time taken for the current to reach one—half of its final equilibrium in sec is")
```

Scilab code Exa 36.3 MAximum Current and Energy stored

```
//chapter 36
//example3
clc
//given
L=5 //inductance in henry
V=100 //emf in volts
R=20 //resistance in ohms
i=V/R
disp(i,"Maximum current in amp is")
U=(L*i^2)/2
disp(U,"Energy stored in the magnetic field in joules is")
```

Scilab code Exa 36.4 Rate at which energy is stored and delivered and appeared

```
//chapter 36
//example4
clc
//given
L=3//inductance in henry
R=10 //resistance in ohm
V=3 //emf in volts
t=0.30//in sec
```

```
9 T=0.30 //inductive time constant in sec
10 //(a)
11 i = (V/R) * (1 - \exp(-t/T))
12 P1=V*i
13 disp(P1,"The rate at which energy is delivered by the
        battery in watt is")
14 //(b)
15 P2=i^2*R
16 disp(P2, "The rate at which energy appears as Joule
      heat in the resistor in watt is")
17 //(c)
18 \operatorname{disp}("\operatorname{Let} D=\operatorname{di}/\operatorname{dt}")
19 D=(V/L)*exp(-t/T)// in amp/sec
20 P3=L*i*D
21 disp(P3,"The desired rate at which energy is being
      stored in the magnetic field in watt is")
```

Scilab code Exa 36.6 Energy

```
1 //chapter 36
2 //example6
3 clc
4 //given
5 epsilon0=8.9*10^-12//in coul2/nt-m2
6 E=10<sup>5</sup>/elelctric field in volts/meter
7 B=1 //magnetic field in weber/meter2
8 u0=4*\%pi*10^-7//in weber/amp-m
                                     Mu-not=u0
9 a=0.1 //side of the cube in meter
10 V0=a^3 //volume of the cube in meter3
11 //(a)
12 U1=epsilon0*E^2*V0/2 //in elelctric field
13 disp(U1,"(a) Energy required to set up in the given
     cube on edge in electric field in joules is")
14 //(b)
15 U2=(B^2/(2*u0))*V0
```

16 disp(U2,"(b) Energy required to set up in the given cube on edge in magnetic field in joules is")

MAGNETIC PROPERTIES OF MATTER

Scilab code Exa 37.2 Orbital dipole moment

```
1 //chapter 37
2 //example2
3 clc
4 //given
5 e=1.6*10^-19 //in coul
6 r=5.1*10^-11 //radius of hydrogen atom in meter
7 m=9.1*10^-31// mass of electron in kg
8 epsilon0=8.9*10^-12 //in coul2/nt-m2
9 p=((e^2)/4)*sqrt(r/(%pi*epsilon0*m))
10 disp(p,"Orbital dipole moment in amp-m2 is")
```

Scilab code Exa 37.4 Change in magnetic moment

```
1 //chapter 37
2 //example4
3 clc
```

```
4 //given
5 e=1.6*10^-19 //in coul
6 r=5.1*10^-11 //radius of hydrogen atom in meter
7 m=9.1*10^-31// mass of electron in kg
8 epsilon0=8.9*10^-12 //in coul2/nt-m2
9 B=2 //in wb/m2
10 delta_p=(e^2*B*r^2)/(4*m)
11 disp(delta_p, "Change in Orbital dipole moment in amp -m2 is + 0r -")
```

Scilab code Exa 37.5 Precession frequency

```
//chapter 37
//example5
clc
//given
u=1.4*10^-26 //in amp-m2
B=0.50 //wb/m2
Lp=0.53*10^-34 //in joule-sec
fp=u*B/(2*%pi*Lp)
disp(fp, "Precession frequency of phoyon in given magnetic field in cps is")
```

Scilab code Exa 37.6 Magnetic field strength Magnetisation Effective magnetising current and Permeability

```
1 //chapter 37
2 //example6
3 clc
4 //given
5 n=10*10^2 //turns/m
6 i=2 //in amp
7 B=1.0 //in wb/m
```

```
8 u0=4*\%pi*10^-7 //in wb/amp—m
9 / (A)
10 \text{ H=n*i}
11 disp(H,"(A) Magnetic field strength in amp/m is")
12 / (B)
13 M = (B - u0 * H) / u0
14 disp("(B) Magnetisation is Zero when core is
     removed")
15 disp(M," Magnetisation when thecore is replaced in
      amp/m")
16 //(C)
17 disp("(C)) Effective magnetizing current i=i(M,0)=M
      *(2*\%pi*r0/N0)=M/n")
18 i=M/n
19 disp(i," Effective magnetizing current in amp is")
20 //D
21 Km=B/(u0*H)
22 disp(Km,"(D) Permeability ")
```

ELECTROMAGNETIC OSCILLATIONS

Scilab code Exa 38.1 Current

```
1 //Example 1
2 //Chapter 38
3 clc()
4 V_o=50// in volts
5 C=1*10^-6 //in farad
6 L=10*10^-3
7 i_m=V_o*(sqrt(C/L))
8 disp(i_m,"Max current in amps")
```

Scilab code Exa 38.2 Angular frequency

```
1 //chapter 38
2 //Example 2
3 clc
4 //given
5 L=10*(10^-3) // in henry
```

```
6 C=(10)^-6 //in farad
7 w=sqrt(1/(L*C))
8 disp(" Angular frequency in radians/sec=")
9 disp(w)
```

Scilab code Exa 38.3 Angular frequency and time

```
1 //chapter 38
2 //Example 3
3 clc
4
5
6 //given
7 L=10*(10^-3) // in henry
8 C=(10)^-6 //in farad
9 R=0.1 //in ohm
10 w=sqrt(1/(L*C))
11 disp(" Angular frequency in radians/sec=")
12 disp(w)
13 t=(2*L*log(2))/R
14 disp(" time in sec=")
15 disp(t)
```

Scilab code Exa 38.5 Magnetic field

```
1 //chapter 38
2 //Example 5
3 clc
4 //given
5 m_0=(4*%pi*10^-7)//in weber
6 e_0=(8.9*10^-12)
7 R=5*10^-2//meters
8 dEbydT=10^12
```

```
9 B=(0.5*m_0*e_0*R*dEbydT)
10 disp(" magnetic field in weber/m^2=")
11 disp(B)
```

Scilab code Exa 38.6 Calculation of current

```
1 //chapter 38
2 //Example 6
3 clc
4 //given
5 m_0=(4*%pi*10^-7)//in weber
6 e_0=(8.9*10^-12)
7 R=5*10^-2//meters
8 dEbydT=10^12
9 i_d=(e_0*%pi*R*R*dEbydT)
10 disp(" current in amp=")
11 disp(i_d)
```

ELECTROMAGNETIC WAVES

Scilab code Exa 39.6 Magnitude of electric and magnetic field

```
1 //Example 6
2 //chapter 39
3 clc()
4 r=1//in m
5 p=10^3//
6 m=4*%pi*10^-7//weber/amp-m
7 c=3*10^8
8 x=2*%pi
9 E_m=(1/r)*(sqrt((p*m*c)/x))
10 disp(E_m, "The value of E in volts/meter=")
11 B=E_m/c
12 disp(B, "B in weber/meter^2")
```

NATURE AND PROPOGATION OF LIGHT

Scilab code Exa 40.1 Force and energy reflected

```
//chapter 40
//Example 1
clc()
u=(10)*(1.0)*3600// in Joules
c=3*10^8// in m/sec
t=3600//in sec
disp("solution (a)")
disp(u,"energy reflected from mirror in joule=")
p=(2*u)/c
disp(p,"momentum after i hr illumination in kg-m/sec=")
disp("solution (b)")
f=p/t
disp(f,"force in newton=")
```

Scilab code Exa 40.2 Angular speed

```
1 // chapter 40
2 // example 2
3 clc()
4 theta=1/1440
5 c=3*10^8// in m/sec
6 l=8630 //in m
7 w=(c*theta)/(2*1)
8 disp(w,"Angular speed in rev/sec=")
```

Scilab code Exa 40.3 Calculation of c

```
1 //chapter 40
2 //example 3
3 clc()
4 l=15.6//in cm
5 n=8
6 lambda_g=(2*1)/n
7 disp(lambda_g,"lambda_g in cm=")
8 lambda=3.15//in cm
9 f=9.5*10^9//cycles/sec
10 c=lambda*f
11 disp(c,"value of c in m/sec=")
```

Scilab code Exa 40.4 Percentage error

```
1 //Example 4
2 //chapter 4
3 clc()
4 v_1=25000//miles/hr
5 u=25000//miles/hr
6 c=6.7*10^8//miles/hr
7 x=1+((v_1*u)/(c)^2)
```

```
9 v=(v_1+u)/x
10 disp(v, "Speed of light in miles/hour=")
```

REFLECTION AND REFRACTION PLANE WAVES AND PLANE SURFACESREFLECTION AND REFRACTION PLANE WAVES AND PLANE SURFACES

Scilab code Exa 41.1 angel between two refracted beam

```
1 //example_2
2 //chapter 41
3 theta_1=30
4 n_qa=1.4702
5 theta2=asind(sind(theta_1)/n_qa)
6 disp("For 4000 A beam, theta_2 in degree=")
7 disp(theta2)
```

```
9 theta_1=30
10 n_qa=1.4624
11 theta2=asind(sind(theta_1)/n_qa)
12 disp("For 5000 A beam, theta_2 in degree=")
13 disp(theta2)
```

Scilab code Exa 41.4 Index of glass

```
1 //example 4
2 // chapter 41
3 clc()
4 disp("Index reflection=")
5 n=1/sind(45)
6 disp(n)
```

Scilab code Exa 41.5 Angel

```
//Example 4
//Chapter 41
clc()
n2=1.33
n1=1.50
theta_c=asind(n2/n1)
disp(theta_c,"Angle theta_c in degree=")
disp("Actual angle of indices =45 is less than theta_c, so there \n is no internal angle reflection")
disp("angle of refraction=")
x=n1/n2
theta_2=asind(x*sind(45))
disp(theta_2,"theta_2 in degree=")
```

REFLECTION AND REFRACTION SPHERICAL WAVES AND SPHERICAL SURFACES

Scilab code Exa 42.4 Location of image

```
1 //example_4
2 //chapter 42
3 clc()
4 n1=1
5 n2=2
6 o=20//in cm
7 r=10//in cm
8 disp("x=n2/i")
9 x=((n2-n1)/r)-(n1/o)
10 disp(x)
11 i=n2/x
12 disp(i,"The value of i in cm=")
```

Scilab code Exa 42.5 Location of image

```
1 //example_5
2 //chapter 42
3 clc()
4 n1=2
5 n2=1
6 o=15//in cm
7 r=-10//in cm
8 disp("x=n2/i")
9 x=((n2-n1)/r)-(n1/o)
10 disp(x)
11 i=n2/x
12 disp(i,"The value of i in cm=")
```

Scilab code Exa 42.7 Location of image

```
1 //Example 7
2 //chapter 42
3 clc()
4 n=1.65
5 r_1=40//in cm
6 r_2=-40//in cm
7 disp("x=1/f in cm=")
8 x=(n-1)*((1/r_1)-(1/r_2))
9 disp(x)
10 disp("f=1/x")
11 f=1/x
12 disp(f,"f in cm=")
```

Scilab code Exa 42.8 Location of image

```
1 //Example 8
```

```
2 //chapter 42
3 clc()
4 o=9//in c
5 f=24//in cm
6 x=(1/f)-(1/o)
7 disp("x=1/i in cm=")
8 disp(x)
9 i=1/x
10 disp("i in cm=")
11 disp(i)
12 disp("lateral magnification =")
13 m=-(i/o)
14 disp(m)
```

INTERFERENCE

Scilab code Exa 43.1 Angular position of first minimum

```
1 //Example
2 //chapter 43
3 //given
4 m=1
5 lambda=546*10^-9
6 d=0.10*10^-3//in m
7 sin_theta=((m-0.5)*lambda)/(d)
8 disp(sin_theta,"sin_theta =")
9 theta=asind(sin_theta)
10 disp(theta,"angle_in_degree=")
```

Scilab code Exa 43.2 Linear distance

```
1 //Example 2
2 //chapter 43
3 delta=546*10^-9//in meter
4 D=20*10^-2//in meter
5 d=0.10*10^-3///in meter
```

```
6 delta_y=(delta*D)/d
7 disp(delta_y, "Linear distence in meter=")
```

Scilab code Exa 43.4 Refraction

```
1 //Example 4
2 //chapter 43
3 d=3200//in A
4 n=1.33
5 \text{ for } m=1:2
       lambda_max = (2*d*n)/(m+0.5)
6
       lambda_min = (8500/m)
7
       disp(m, "when m=")
8
       disp(lambda_max, "lambda_max=")
9
       disp(lambda_min, "lambda_min=")
10
11 end
```

Scilab code Exa 43.5 Refraction

```
1 //Example 5
2 //chapter 43
3 clc()
4 lambda=5000//in A
5 n=1.38
6 for m=0:3
7     disp(m,"when m=")
8     d=((m+0.5)*lambda)/(2*n)
9     disp(d,"d in A=")
10 end
```

DIFFRACTION

Scilab code Exa 44.1 Calculation of wavelength

```
1 //example 1
2 //chapter 44
3 clc()
4 m=1
5 lambda=6500//in A
6
7 a=(m*lambda)/sind(30)
8 disp(a,"a in A=")
```

Scilab code Exa 44.2 Calculation of wavelength

```
1 //Example 2
2 //Chapter 44
3 lambda=6500
4 lambda_1=lambda/1.5
5 disp(lambda_1," wavelength in A=")
```

Scilab code Exa 44.5 Current

```
1 //chapter 44
2 //Example 5
3 clc
4 //given
5 m_0=(4*%pi*10^-7)//in weber
6 e_0=(8.9*10^-12)
7 R=5*10^-2//meters
8 dEbydT=10^12
9 i_d=(e_0*%pi*R*R*dEbydT)
10 disp(" current in amp=")
11 disp(i_d)
```

Scilab code Exa 44.7 delta y

```
1 //chapter 44
2 //example 7
3 //given
4 clc()
5
6 lambda=480*10^-9//in m
7 d=0.10*10^-3//in m
8 D=50*10^-2// in m
9 a=0.02*10^-3
10 delta_y=(lambda*D)/d
11 disp("solution (a)")
12 disp(delta_y,"D in m=")
```

GRATING AND SPECTRA

Scilab code Exa 45.1 calculation of angel

```
1 //example 1
2 //chapter 45
3 clc()
4 m=1
5 lambda=4000//in A
6 d=31700//in A
7 theta=asind((m*lambda)/d)
8 disp(theta, "The first order diffraction pattern in degree=")
```

Scilab code Exa 45.2 Calculation of angel theta

```
1 //chapter 45
2 //example 2
3 //given
4 clc()
5 m=1
6 lambda=5890//in A
```

```
7 d=25400//in A
8 theta=asind((m*lambda)/d)
9 disp("solution (a)")
10 disp(theta,"The first order diffraction pattern in degree=")
11 disp("solution (b)")
12 //given
13 del_lambda=5.9//in A
14 delta_theta=(m*(del_lambda))/(d*cosd(theta))
15 disp(delta_theta,"Angle of seperation in degree=")
```

Scilab code Exa 45.3 Calculation of sodium doublet

```
//Example 3
//chapter 45
//Given
lambda=5890//A
m=3
delta_lambda=(5895.9-5890.0)//in A
R=lambda/(delta_lambda)
disp(R,"Resolving power=")
N=(R/m)
disp(N,"Number of rulings needed is=")
```

Scilab code Exa 45.4 Calculation of dispersion

```
1 //Example 4
2 //Chapter 45
3 clc()
4 m=3
5 m1=5
6 lambda=5460//in A
7 d=31700//in A
```

```
8 theta=asind((m*lambda)/d)
9 disp(theta,"The first order diffraction pattern in degree=")
10 D=m/(d* cosd(theta))
11 disp("Solution (a)")
12 disp(D,"The dispersion in radian/A=")
13 disp("Solution (b)")
14 N=8000
15 lambda=5460
16 R=N*m1
17 delta_lambda=lambda/R
18 disp(delta_lambda,"Wave length difference in A=")
```

Scilab code Exa 45.5 Calculation of angels

```
1 //Example 5
2 //chapter 45
3 clc()
4 a_0=5.63//A
5 d=a_o/sqrt(5)
6 lambda=1.10//in A
7 disp(d, "Interplanar spacing d in A=")
9 disp("diffracted beam occurs when m=1,m=2 and m=3")
10 disp("when m1=1, theta in degree=")
11 m1=1
12 x = (m1*lambda)/(2*d)
13 theta_1=asind(x)
14 disp(theta_1)
15 disp("when m1=2, theta in degree=")
16 \quad m2=2
17 x = (m2*lambda)/(2*d)
18 \text{ theta}_2=asind(x)
19 disp(theta_2)
20 disp("when m1=3, theta in degree=")
```

```
21 m3=3
22 x=(m3*lambda)/(2*d)
23 theta_3=asind(x)
24 disp(theta_3)
```

POLARIZATION

Scilab code Exa 46.1 Calculation of theta

```
1 //example 1
2 //chapter 46
3 theta=acosd(1/sqrt(2))
4 disp(180-theta, "Polarization angle theta=")
```

Scilab code Exa 46.2 Angle of refraction

```
1 //example 2
2 // Chapter 46
3 theta_p= atand(1.5)
4 disp(theta_p,"theta_p in degrees")
5 sin_theta_r= sind(theta_p)/1.5
6 theta_r=asind(sin_theta_r)
7 disp(theta_r,"angle of refraction from snells law in degrees=")
```

Scilab code Exa 46.3 Thickness of slab

```
1 //Example 3
2 //chapter 46
3 // from the equation
4 lambda=5890//A
5 n_e=1.553
6 n_o=1.544
7 s=(n_e)-(n_o)
8 x=(lambda)/(4*s)
9 //textbook answer is wrong
10 disp(x,"The value of x in m=")
```

LIGHT AND QUANTUM PHYSICS

Scilab code Exa 47.1 velocity

```
1 // Chapter 47
2 // Example1
3 k=20//in nt/m
4 m=1//in kg
5 // solution
6 v=(sqrt((k)/(m)))*(1/(2*%pi))
7
8 disp("velocity in cycles/s")
9 disp(v)
```

Scilab code Exa 47.2 Time calculation

```
1 //Example 2
2 //chapter 47
3 P=(10^(-3))*(3*10^(-18))/(300)
4 disp(P, "Power in j-sec")
```

```
5 s=1.6*(10^(-19))
6 t=(5*s)/P
7 disp(t,"time reqired in sec =")
8 one_sec=0.000277778// hr
9 in_hour=one_sec*t
10 disp(in_hour,"time required in hour")
```

Scilab code Exa 47.3 Work function for sodium

```
1 //Example_3
2 //Chapter 47
3 h=6.63*10^(-34) // in joule/sec
4 v=4.39*10^(14) // cycles/sec
5 E_o=h*(v)
6 disp(E_o, "Energy in joule=")
```

Scilab code Exa 47.4 Kinetic energy to be imparten on recoiling electron

```
//Example 4
disp("solution a")
h=(6.63)*10^-34
m=9.11*10^-31
c=3*10^8
delta_h=(h/(m*c))*(1-cos(90))
disp(delta_h, "compton shift in meter")
disp("solution b")
delta=1*10^-10
k=(h*c*delta_h)/(delta*(delta+delta_h))
disp(k, "Kinetic energy in joules")
```

Scilab code Exa 47.5 Binding energy of hydrogen atom

```
1 //example5
2 m=9.11*10^-31//in kg
3 e=8.85*10^-12// in coul^2/nt-m^2
4 h=6.63*10^-34//in j-sec
5 E=(-m*(e^4))/(8*(e^2)*(h^2))
6 disp(E,"Binding energy of hydrogen in joule")
```

WAVES AND PROPOGATION

Scilab code Exa 1.1 Wavelength of particle

```
1 //Chapter 48
2 //Example1
3 k=100*(1.6*(10^-19))
4 m=9.1*(10^-31)
5 //solution
6 v=sqrt(((2*k)/(m)))
7
8 disp("velocity in m/s")
9 disp(v)
10 h=6.6*(10^-34)
11 p=5.4*(10^-34)
12 lambda=h/p
13 disp("wavelength in A")
14 disp(lambda)
```

Scilab code Exa 48.1 velocity and angular wavelength

```
1 //Chapter 48
2 //Example1
3 k=100*(1.6*(10^-19))
4 m=9.1*(10^-31)
5 //solution
6 v=sqrt(((2*k)/(m)))
7
8 disp("velocity in m/s")
9 disp(v)
10 h=6.6*(10^-34)
11 p=5.4*(10^-34)
12 lambda=h/p
13 disp("wavelength in A")
14 disp(lambda)
```

Scilab code Exa 48.2 Quantized energy

```
1 //Example 2
2 //given data
3 n=1
4 h=(6.6)*10^-34 //j/sec
5 m=9.1*(10^-31)//in kg
6 l=1*(10^-9)//in m
7 //Solution
8 E=(n^2)*((h^2)/(8*m*(l^2)))
9 disp("Energy in Joule=")
10 disp(E)
```

Scilab code Exa 48.3 Quantum number

```
1 //Example3
2 //given
3 m=10^-9//in kg
```

```
4 v=10^-6//in m/s
5 l=10^-4//in m
6 h=(6.6)*(10^-34)//j/s
7 E=(0.5)*m*(v^2)
8
9 disp("Energy in joule=")
10 disp(E)
11
12 n=(1/h)*(sqrt(8*m*E))
13 disp("Quantum number=")
14 disp(n)
```

Scilab code Exa 48.5 Position of electron

```
1 //Example 5
2 //given
3 \text{ m=9.1*(10^--31)}//\text{in kg}
4 v = 300 / / in m / s
5 h=6.6*(10^-34)// in j-s
6 p = m * v
7 disp("The electron momentum in kg-m/s=")
8 disp(p)
9 \text{ delta_p=}(0.0001)*p
10
11 disp("delta_p in kg-m/s=")
12 disp(delta_p)
13
14 delta_x=(h/delta_p)
15 disp("Minimum uncertainaity in m=")
16 disp(delta_x)
```

Scilab code Exa 48.6 Position of electron

```
1  //Example_6
2  m=0.05 // in kg
3  v=300 //m/s
4  delta_p=m*v
5  disp("Momentum in kg-m/s=")
6  disp(delta_p)
7  delta_x=(6.6*10^-34)/delta_p
8  disp("delta_x in meter=")
9  disp(delta_x)
```