Ekstra oppgaver med trigonometri:

Oppgave 1 I $\triangle ABC$ er siden AB lik 10,0 cm, siden AC lik 8,0 cm og $\angle A = 55^{\circ}$.

- a) Bestem arealet til trekant ABC ved regning.
- b) Regn ut lengden til siden BC.
- c) Bestem vinkel B.

Oppgave 2 I *ABCD* er alle sidekantene (*AB*, *BC*, *AD og DC*) 6 cm lange. I tillegg er diagonalen *BD* 6 cm lang.

- a) Tegn ABCD
- b) Finn lengden av diagonalen AC
- c) Finn arealet av *ABCD*

Oppgave 3

I trapeset ABCD er AB og CD de parallelle sidene. AB=2 AB=2, AC=1, $\angle A=90^{\circ}$ og $\angle BAC=v$.

Vis at arealet av trapeset kan uttrykkes som en funksjon av v slik:

$$A(v) = \frac{(2 + \cos v)\sin v}{2}$$

Løsning:

Oppgave 1 I $\triangle ABC$ er siden AB lik 10,0 cm, siden AC lik 8,0 cm og $\angle A = 55^{\circ}$.

Start med å tegne figur:

- a) Bestem arealet til trekant ABC ved regning. $A = \frac{1}{2} \cdot 10 \cdot 8 \cdot \sin 55^{\circ} = \underbrace{32,8 \text{cm}^2}_{=======}$
- b) Regn ut lengden til siden BC.

Bruker cosinussetning:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$= 10^{2} + 8^{2} - 2 \cdot 10 \cdot 8 \cdot \cos 55^{\circ}$$

$$\Rightarrow BC = a = \sqrt{10^{2} + 8^{2} - 2 \cdot 10 \cdot 8 \cdot \cos 55^{\circ}}$$

$$BC = 8.5cm$$

c) Bestem vinkel B. Bruker sinussetningen: (eller cosinus)

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

$$\Rightarrow \sin B = \frac{b \cdot \sin A}{a} = \frac{8 \cdot \sin 55^{\circ}}{8,5} \approx 0,770$$

$$v = 50,4^{\circ} \qquad \lor \qquad v = 180^{\circ} - 50,4^{\circ} = 129,6^{\circ}$$

 $NB \sin B = 0,770$ har to løsninger, men kun 1 passer,

129,6° går ikke i trekanten.(for stor vinkelsum)

Trekanten er entydig bestemt, derfor er det bare en vinkel som passer.

$$\angle B = 50,4^{\circ}$$

Oppgave 2 I *ABCD* er alle sidekantene (*AB*, *BC*, *AD og DC*) 6 cm lange. I tillegg er diagonalen *BD* 6 cm lang.

a) Tegn ABCD

b) Finn lengden av diagonalen AC

Vi ser at $\triangle ABD$ og $\triangle BCD$ er likesidede trekanter, og da får vi at $\angle A = \angle C = 60^{\circ}$ og $\angle B = \angle D = 120^{\circ}$.

Vi kan da bruke sinussetningen (eller cosinussetningen) for å finne AC, og får:

$$\frac{AC}{\sin B} = \frac{BC}{\sin \angle BAC} \implies \underline{AC} = \frac{6.0 \cdot \sin 120^{\circ}}{\sin 30^{\circ}} = \underline{10.4 \, cm}$$

c) Finn arealet av ABCD

$$Areal = 2 \cdot \left(\frac{1}{2}AB \cdot AD \cdot \sin A\right) = 6 \cdot 6 \cdot \sin 60^{\circ} = \underbrace{31,2\text{cm}^{2}}_{}$$

Oppgave 3

$$A(v) = \frac{(2 + \cos v)\sin v}{2}$$

Løsning:

Ser at
$$\angle CAD = 90^{\circ} - v$$
 og $\angle ACD = v$

$$\cos v = \frac{CD}{1}$$
 som gir $\underline{CD = \cos v}$
 $\sin v = \frac{AD}{1}$ som gir $\underline{AD = \sin v}$

Bruker vi formel for areal av trapes får vi

$$A = \frac{(AB + CD) \cdot AD}{2} = \frac{(2 + \cos v) \sin v}{2}$$

Husk vinkelsum i en trekant.