FUNCIONES CONTINUAS

f: E >> E' FUNCION. SON EQUIV:

- $(4\times)$ $(4\times)$ $(6\times2$ (5×4) (1)
- ► Y(Xn) ⊆ E, Xn → X SE TICK f(Xn) → f(X)
- · Y VEE' ABIERTO, F', V) SE ABKRTO

ENRCICIOS:

1) SER f: E-> E', SER DEE.

SUP flage E' ES AKUDO

~> (3 E>0) B(f(a), 2) = { f(a)}

(O<BE), THOO CS } C

 $d(x,\alpha) < \delta =$ $f(x) = f(\alpha)$

of ES LOC. CIE EN Q"

VAIE LAT (CELEE) 12: ATIFILY AN SIAV LATE (*) ENSURERS (*) SIAV

PENSAZ: DADO E'EM,

TORO DUNTO JE E' ES AISLADO SII HIE => E CONT SE TIENTE QUE JES 2) SER J: E->IR. ENTONCES J ES CONT SH YEVER (= > XEE: f(x) < x > E: f(x) > 2 = Vx 501 A3162705 (DEE) ABRIR NOTA2: UZ = f-(-00,01), VZ = f(0,+00) • f cour => V2, V2 ABIERDS (of E) (of t) (33x4) orsing. YEB(X,6) => f(Y) (B(F(X), E) $(f_{|X|-2},+\infty)\cap(\infty,f_{|X|+2})=(f_{|X|-2},f_{|X|+2})$ re, ye fix 1-E Ofix HE ES ABIERTO, Y CONTIENE A X MISSON OMOS BE (

3) Sea
$$E = \{1/m: meH\} \cup \{0\} \subseteq \Pi$$
 $E = \frac{1}{m} + \frac{1}{m} + \frac{1}{m}$

SEA $(E,d') \in M$, $y \in M$, $y \in E'$, $y \in E'$.

SETULIANDS $f : E \to E'$
 $f(x) = \{y, y, y, y \in E'\}$

SAN EQUIV:

 $f(x) = \{y, y, y, y \in E'\}$

SAN EQUIV:

 $f(x) = \{y, y, y, y \in E'\}$
 $f(x) = \{y, y, y, y \in E'\}$
 $f(x) = \{y, y, y, y \in E'\}$
 $f(x) = \{y, y$

242 f (2m) -> f(0) Sea 270, 652 az m>m0 => d(f(2m),y) < 2 (x) $m > m_0 = 3d(y_m, y) < 2$ 50 m. Tono mo/ m>mo => d(2m,0) / /m • SI Zm = 0, (*) VALE |Zm| ich. MI=m5 (ME), al 12. 1/m> /zm /= 1/m => m>m0 => d f (1/m), y) L 2 +12m) 4) SEAN (E,J), (E,J') EM. 9 DISTANCIA DEFINIMOS di (EXE') > IR, $d(x,x'), (y,y') = max { d(x,y), d(x',y')}$

Sea
$$f: E \rightarrow E'$$
 DEFINATION OF f

REQ $f: E \rightarrow E'$ DEFINATION OF f

REQ $f: E \rightarrow E'$ DEFINATION OF f

AFIRMO: f CONT \Rightarrow Off) ES CERRODO

DEM: SEA $(Xm, Ym) \subseteq Gf$
 $(Xm, f(Xn)) \xrightarrow{D} (X, Y)$ (2VP $Y = f(x)$)

COME $Xm \rightarrow X$ (EXERCICED),

Y f CO CONT, $f(Xm) \rightarrow f(X)$;

PROD TOMPSIÉN $f(Xm) \rightarrow f(X)$