

Name: Student ID: Signature:

Fall 2015 BSM 203 Logic Circuits Midterm Exam

Instructions:

- The duration of this exam is 90 mins.
- Note that there are 3 main questions and 2 bonus questions in this exam.
- Bonus questions will not be evaluated unless you work on all main questions.
- Be clear in your answers. You can use as many answer sheets as you need.
- If you write in Turkish, there will be a penalty for each sentence/word that you wrote.
- Please put your name and your number, and sign for both exam paper and answer sheets.

Questions:

1) [40points] Consider the following circuit.

a) Specify each gate output on the figure. You <u>can</u> simplify while writing the gate outputs whenever it is possible. Please write expression for F below.

b) Simplify the expression of F (without Karnaugh maps), you can use Appendix A.

Fall 2015 - BSM 203 Logic Circuits – Midterm Exam

c) Complete the truth table below.

а	b	С	d	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

d) Express F in minterm expansion.

F=

e) Show F on Karnaugh map.

- i) Specify the essential implicants.
- ii) Write the simplest form of F below.
- iii) Is there any static-1 hazard? If yes, write the hazard-free expression of F.

- f) Now consider $m_{2,}m_{12}$ and m_{14} are don't cares. Simplify F in
 - i) sum-of-product form
 - ii) product-of-sum form.

[60 points] Consider a circuit which has two 2-bit unsigned integers as inputs, A and B. Bits of A is shown as A_1A_0 and bits of B is shown as B_1B_0 . The circuit multiplies these two numbers and the output M is a 4-bit number ($M_3M_2M_1M_0$).

a) Complete the truth table below.

1	•	1					
A ₁	A_0	B ₁	B ₀	M_3	M_2	M_1	M_0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

b) Show the output M₁ on the Karnaugh map below.

- c) Specify M₁ in sum-of-product (AND-OR) form below.
- d) Design the circuit if number of inputs is limited to 3.
- e) Redesign the circuit with only NAND gates (you can add inverters if needed).
- f) The gate prices are shown Table I. Based on the table, which design is the cheapest?

BONUS A [30 pts]: Can you find a cheaper design?

BONUS B [30 pts]: Design the full circuit with minimum number of gates.

BONUS C [20 pts]: Can you design the full circuit by using a PLA?

Tablo 1

Gate	2-input	3-input	4-input
AND	3	5	8
OR	2	4	9
NAND	1.5	5	6
NOR	1.75	3	7
XOR	2	6	10
Inverter		1	

APPENDIX A

X + 0 = X	
X + 1 = 1	X.1 = X
X + X = X	X . 0 = 0
X + X' = 1	X . X = X
XY = YX	X . X' = 0
(XY)Z = X(YZ)=XYZ	X + Y = Y + X
X(Y + Z) = XY + XZ	(X+Y)+Z=X+(Y+Z)=X+Y+Z
XY + XY' = X	X + YZ = (X + Y)(X + Z)
X + XY = X	(X + Y)(X + Y') = X
(X + Y')Y = XY	X(X + Y) = X
(X + Y)' = X'Y'	XY' + Y = X + Y
(X + Y)(X' + Z) = XZ + X'Y	(XY)' = X' + Y'
$X \oplus 0 = X$	XY + X'Z = (X + Z)(X' + Y)
X ⊕ 1 = X′	$X \equiv 1 = X$
$X \oplus X = 0$	$X \equiv 0 = X'$
X ⊕ X′ = 1	$X \equiv X = 1$
$(X \oplus Y)' = X \equiv Y$	$X \equiv X' = 0$
XY + X'Z + YZ = XY + X'Z	$(X \equiv Y)' = X \oplus Y$
	(X + Y)(X' + Z)(Y + Z)=(X + Y)(X' + Z)