

Flexible Plugin

Benjamin Gilles, François Faure, Maxime Tournier, Matthieu Nesme

Objectives

Deformable solid simulation

- Modularity
- Unification of mesh-based and mesh-free methods
- Code reusability
- Method comparison

PRINCIPLES

Solve equations of motion

e.g.: static, explicit, implicit...

Independent degrees of freedom

e.g.: Points, rigid frames, affine frames, angles...

Interpolation method using shape function

e.g.: barycentric, moving least squares, skinning..

Mapped quantities

e.g.: strain, displacement..

Energy, constitutive law

e.g.: kinetic, elastic, external...

Quadrature method

e.g.: midpoint, Gauss, elastons...

	Linear FEM St Venant Kirchoff	Linear FEM Corotational	Meshless Neo-Hookean	Frame-based Neo-Hookean
Independant DOFs				
Interpolation				
Shape function				
Strain				
Constitutive law				
Quadrature method				

	Linear FEM St Venant Kirchoff	Linear FEM Corotational	Meshless Neo-Hookean	Frame-based Neo-Hookean
Independant DOFs	Points			
Interpolation	Linear			
Shape function	Barycentric			
Strain	Green-Lagrange			
Constitutive law	Hooke			
Quadrature method	midpoint			

	Linear FEM St Venant Kirchoff	Linear FEM Corotational	Meshless Neo-Hookean	Frame-based Neo-Hookean
Independant DOFs	Points	Points • • •		
Interpolation	Linear	Linear		
Shape function	Barycentric	Barycentric		
Strain	Green-Lagrange	Corotational		
Constitutive law	Hooke	Hooke		
Quadrature method	midpoint	midpoint		

	Linear FEM St Venant Kirchoff	Linear FEM Corotational	Meshless Neo-Hookean	Frame-based Neo-Hookean
Independant DOFs	Points	Points • • •	Points • • •	
Interpolation	Linear	Linear	Moving Least Square	
Shape function	Barycentric	Barycentric	Radial	
Strain	Green-Lagrange	Corotational	Invariants	
Constitutive law	Hooke	Hooke	Neo-Hookean	
Quadrature method	midpoint	midpoint	midpoint	

	Linear FEM St Venant Kirchoff	Linear FEM Corotational	Meshless Neo-Hookean	Frame-based Neo-Hookean
Independant DOFs	Points	Points • • •	Points • • •	Affine Frames
Interpolation	Linear	Linear	Moving Least Square	Linear
Shape function	Barycentric	Barycentric	Radial	Voronoï-based
Strain	Green-Lagrange	Corotational	Invariants	Principal Stretches
Constitutive law	Hooke	Hooke	Neo-Hookean	Neo-Hookean
Quadrature method	midpoint	midpoint	midpoint	midpoint

Basic Demos

2 Implemented Components

DOF Types

- Nodes
- Particles (2d, 3d)
- Rigid, Affine, Quadratic Frames
- Deformation Gradients
 - 1d, 2d, 3d
 - Up to 2nd order (F + dF)
- Strain
- Regular tensor (2x2, 3x1, 3x2, 3x3)
- Principal Stretches
- Up to 3rd order
- (Deviatoric) Invariants of the Cauchy Green deformation tensor
- To do:
 - Higher order invariants
 - Angles

DOF Types - Notation

Type Spatial Dimension Material Dimension Order

- Deformation gradient F
- Strain
- Tensor E
- Principal Stretches U
- Invariants I

- Examples
 - A deformation gradient in 3d space for 2d material, order 1 (triangle FEM)
 - → **F321**
 - A strain tensor in 2d space for 1d material, order 1 (2d spring)
 - → **E211**

Shape Functions

- Barycentric based on topology
- Shepard and Hat functions based on Euclidean distances
- Voronoï based on geodesic distances in images [Faure11]

- To do :
- High order elements
- Diffusion distances

Deformation Mapping

- Linear mapping
 - Vec2, Vec3 → Vec3, F (1d, 2d, 3d)
 - Rigid, Affine, Quadratic Frames → Vec3, F, dF
- Moving Least Squares
 - Vec3 → Vec3, F
 - Rigid, Affine, Quadratic Frames → Vec3, F, dF
- Extension, Volume mappings
 - Vec3 → d, v

Strain Mapping

- Green-Lagrange Strain
 - F33 → E33, F32 → E32, F31 → E31
- Corotational Strain (invertible QR, polar, invertible SVD)
 - F33 → E33, F32 → E32, F31 → E31, F22 → E22
- Principal Stretches (invertible)
 - F33 → E33, F32 → E32
- Invariants
- F33 → I33
- Plasticity (relative strain) E → E [Muller04,Irving04]

- To do:
- Check geometric stiffness for corotational / invariants!!
- Complete 2d mappings

Quadrature

- Topology-based sampling and weighting
 - Gauss-Legendre quadrature (order 0 and 1)
- Image-based
 - Uniform sampling → mid-point integration
 - Sampling driven by weight linearity → elastons [Martin10]
- To do:
- Implementation for higher order elements
- Other rules (Newton Cotes, Gauss Kronrod, ...)

Materials

- Hooke (isotropic+viscosity, transverse, anisotropic)
- Neo-Hookean (+stabilization [Teran12])
- Mooney-Rivlin
- Ogden
- Volume Preservation

• Inhomogeneous properties defined in images

- To do:
- More materials

Misc

- ImageDensityMass
 - A « clean » mass computed from a density image
 - Particles, Affine & Quadratic Frames
 - To do:
 - Rigid Frame

3 Conclusion

Avantages

- Modularity
 - Code reusability
 - Easier implementation (focus on one part)
 - Share progress on specific area
- Method Comparison

Drawbacks

- More Memory
 - Every DOFs at each stage (deformation gradient, strain)
- Some optimisations are not trivial
 - Corotational Hexa FEM

- To do:
- Meta-ForceField internally using Flexible Components DOF per DOF

Future Works

- Extend to methods not based on the continuum mechanics
 - Shape matching

Coupling with other plugins

Coupling with other plugins

- Image
- Sampling and interpolation weights for meshless methods
- Definition of heterogeneous material properties
- Visualisation
- SofaPython
 - Visualisation
 - Control of material properties (e.g. plasticity and anisotropy of plant cells)
- Compliant
 - Assembly & solvers friendly

S MORE DEMOS

NOM DU CHAPITRE Sous-titre facultatif

NOM DU CHAPITRE

Sous-titre facultatif

Thank you

Flexible Plugin