DM547 øvelsestimer 20-09-19

Jonas Eriksen

20. september 2019

Antal fremmødte:

Opgave 1.7.18

Vi skal vise at hvis $n, m \in \mathbb{Z}$ og $m \cdot n$ er lige, så er m lige eller n lige.

Bruger kontraposition: n ulige $\land m$ ulige $\Rightarrow m \cdot n$ ulige.

Vi skriver n=2r+1 og m=2k+1, hvor $r,k\in\mathbb{Z}$ jf. def. af ulige heltal.

$$m \cdot n = (2k+1)(2r+1)$$
$$= 4kr + 2k + 2r + 1$$
$$= 2\underbrace{(2kr + k + r)}_{\in \mathbb{Z}} + 1$$

Nederste linje er ulige jf. def. af ulige heltal.

Opgave 1.7.29

Vi skal vise at hvis $n \in \mathbb{Z}^+$, så er n ulige hvis og kun hvis 5n+6 er ulige (altså " \Leftrightarrow ").

Pf. " \Rightarrow " (kontrapositionsbevis):

Kontraposition: $n \text{ lige} \Rightarrow 5n + 6 \text{ lige for } n \in \mathbb{Z}.$

n=2k hvor $k\in\mathbb{Z}$ jf. def. af lige heltal.

$$5n + 6 = 5(2k) + 6$$
$$= 10k + 6$$
$$= 2\underbrace{(5k + 3)}_{\in \mathbb{Z}}$$

Nederste linje er lige jf. def. af lige heltal. Pf. "

"

"

"

(direkte bevis):

n=2s+1 hvor $s\in\mathbb{Z}$ jf. def. af ulige heltal.

$$5n + 6 = 5(2s + 1) + 6$$

$$= 10s + 5 + 6$$

$$= 10s + 11$$

$$= 2\underbrace{(5s + 5)}_{\in \mathbb{Z}} + 1$$

Nederste linje er ulige jf. def. af ulige heltal.

Opgave 1.7.36

Er denne ræsonnering for at finde løsningen på ligningen $\sqrt{2x^2 - 1} = x$ korrekt?

- 1. $\sqrt{2x^2 1} = x$ er givet.
- 2. $2x^2 1 = x^2$ fås ved at kvadrere begge sider af (1).
- 3. $x^2 1 = 0$ fås ved at fratrække x^2 fra begge sider af (2).
- 4. (x-1)(x+1) = 0 fås ved at fås ved at faktorisere venstresiden af $x^2 1$.
- 5. x = 1 eller x = -1 hvilket følger af at hvis ab = 0 så er a = 0 eller b = 0.

Nej.

Den går galt i trin (2), fordi informationen om at x er ikke-negativ går tabt. Denne information er nødvendig fordi kvadratrodsfunktionen ikke er defineret for negative tal. Havde informationen været med, var x = -1 blevet forkastet til sidst. Udover dette er argumentationen rigtig.

Opgave 1.7.41

Vi skal vise at mindst ét af de reelle tal $a_1, a_2, \dots a_n$ er større end eller lig med gennemsnittet af disse tal. Bagefter skal vi redegøre for, hvilken bevismetode, der blev brugt.

(Modstridsbevis.)

Lad $A = 1/n \cdot \sum_{i=1}^{n} a_i$ (gns.). Antag (til modstrid) $a_i < A$ for i = 1, ..., n. Det følger at

$$a_1 + a_2 + \dots + a_n < n \cdot A. \tag{1}$$

Vi ved at A er givet ved

$$A = \frac{1}{n} \cdot \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n} \iff A \cdot n = a_1 + a_2 + \dots + a_n$$
 (2)

Ved at substituere udtrykket for $A \cdot n$ fra eq. (2) ind i eq. (1), får vi

$$a_1 + a_2 + \cdots + a_n < a_1 + a_2 + \cdots + a_n$$

hvilket er en modstrid. Det vil sige at vores antagelse var forkert, hvoraf det følger, at det vi skulle vise er sandt.

Opgave 1.7.43

Vis at hvis $n \in \mathbb{Z}$, så er disse fire udsagn ækvivalente:

- (i) n er lige
- (ii) n+1 er ulige
- (iii) 3n+1 er ulige
- (iv) 3n er lige

Viser at $(i) \Leftrightarrow (ii)$, $(iii) \Leftrightarrow (iv)$ og $(i) \Leftrightarrow (iv)$. Vi bruger definitionerne $n = 2k, k \in \mathbb{Z}$ når n er lige og $n = 2k + 1, k \in \mathbb{Z}$ når n er ulige.

$$(i) \Leftrightarrow (ii): n = 2k \Leftrightarrow n+1 = 2k+1$$

$$(iii) \Leftrightarrow (iv): 3n+1=2k+1 \Leftrightarrow 3n=2k$$

$$(i) \Leftrightarrow (iv): n = 2k \Leftrightarrow 3n = 3(2k) = 6k = 2(3k)$$

Vha. disse biimplikationer kan man 'komme fra' alle udsagn til alle udsagn. Derfor har vi nu vist, at de fire udsagn er ækvivalente.

Opgave 1.8.11

Vi skal vise at der er 100 positive heltal efter hinanden, der ikke er kvadrattal. Er beviset konstruktivt eller ikke-konstruktivt?

 $2500=50^2$ og $2601=51^2$ og kvadrattalsfunktionen er voksende, så 2501 til 2600 er ikke kvadrattal.

Konstruktivt eksistensbevis.

Opgave 1.8.32

Vis at der der ikke er nogle heltalsløsninger for x og y til ligningen $2x^2 + 5y^2 = 14$.

Betragt leddet $5y^2$. Observér at $y \in \{-1,0,1\}$, fordi hvis |y| > 1, så er $5y^2 > 14$. Leddet kan derfor kun antage værdierne $5 \cdot (-1)^2 = 5 \cdot 1^2 = 5$ eller $5 \cdot 0^2 = 0$.

Det følger at x kan antage værdien

$$2x^2 + 0 = 14 \Leftrightarrow x^2 = \frac{14}{2} = 7 \Leftrightarrow x = \sqrt{7} \notin \mathbb{Z}$$

og

$$2x^{2} + 5 = 14 \Leftrightarrow x^{2} = \frac{14 - 5}{2} = 4, 5 \Leftrightarrow x = \sqrt{4, 5} \notin \mathbb{Z}$$

Altså kan vi konkludere at der ikke er nogle heltalsløsninger for x og y.

Opgave fra hjemmeside

Lad $n \in \mathbb{N}$ og P(n) være udsagnet

$$\sum_{i=0}^{n} 3^{i} = \frac{1}{2} (3^{n+1} - 1)$$

I denne opgave skal vi bevise at P(n) er sand for alle $n \in \mathbb{N}$.

1) Hvad er udsagnet P(0)?

$$P(0): 3^0 = \frac{1}{2}(3^{0+1} - 1).$$

2) Bevis P(0), d.v.s. udfør basisskridtet.

$$P(0): 3^0 = 1 = \frac{1}{2}(3^{0+1} - 1) = \frac{1}{2}(3^1 - 1) = \frac{1}{2} \cdot 2 = 1$$

3) Opskriv induktionsantagelsen.

Vi antager at P(k) er sandt for et vilkårligt heltal $k \geq 0$, dvs.:

$$\sum_{i=0}^{k} 3^{i} = \frac{1}{2} (3^{k+1} - 1)$$

4) Hvad skal der bevises i induktionsskridtet?

Det skal bevises at $P(k) \Rightarrow P(k+1)$. Med andre ord skal vi vise, at det følger af vores induktionsantagelse P(k) at udsagnet P(k+1) også er sandt.

(Helt konkret skulle vi gerne ende med $\sum_{i=0}^{k+1} 3^i = \frac{1}{2} (3^{(k+2}-1))$

5) Unfør induktionsskridtet. Angiv hvor du bruger induktionsantagelsen.

$$\sum_{i=0}^{k+1} 3^i = 3^0 + 3^1 + \dots + 3^k + 3^{k+1}$$

$$= \frac{1}{2} (3^{k+1} - 1) + 3^{k+1}$$
 (Ifig. induktionsantagelsen)
$$= \frac{3^{k+1} - 1 + 2 \cdot 3^{k+1}}{2}$$

$$= \frac{3 \cdot 3^{k+1} - 1}{2}$$
 (Samler leddene i tælleren)
$$= \frac{3^{k+2} - 1}{2}$$

$$= \frac{1}{2} (3^{k+2} - 1)$$
 (Trækker 1/2 ud af brøk)

6) Forklar, hvorfor disse skridt udgør et bevis for at P(n) er sand for alle $n \in \mathbb{N}$.

Brug stige-/domino-analogien.

Opgave 1.7.42

Vi skal bruge opgave 1.7.41 til at vise, at hvis de 10 første positive heltal placeres rundt om en cirkel i en vilkårlig rækkefølge, så eksisterer der tre heltal i på hinanden følgende

lokationer rundt om cirklen, der har en sum større end eller lig med 17.

Observation 1: Der er 10 tripletter når de 10 første heltal placeres rundt om en cirkel (lav illustration med cirkel):

$$A_1 = a_1 + a_2 + a_3$$

$$A_2 = a_2 + a_3 + a_4$$

$$A_3 = a_3 + a_4 + a_5$$

$$\vdots$$

$$A_{10} = a_{10} + a_1 + a_2$$

Observation 2: a_i for i = 1, ..., 10 indgår i præcis 3 tripletter.

Vi kender ikke værdien af A_1, \ldots, A_{10} men deres samlede sum må være

$$\sum_{i=1}^{10} A_i = (a_1 + a_2 + a_3) + (a_2 + a_3 + a_4) + \dots + (a_{10} + a_1 + a_2)$$
 (Jf. observation 1)

$$= 3 \cdot (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10})$$
 (Jf. observation 2)

$$= 3 \cdot (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)$$

$$= 3 \cdot 55$$

$$= 165$$

Så den gennemsnitlige værdi af en triplet er

$$\frac{165}{10} = 16.5$$

Da $16, 5 \notin \mathbb{Z}$ må der $\exists i : A_i \geq 17$ jf. modstriden fra opgave 1.7.41.