وَقُل رَّبِّ زِدْنِي عِلْمًا

Analog CMOS IC Design training @ ITI Under supervision of Dr.Hesham omran

Lab 11 (Mini Project 02) Fully-Differential Folded Cascode OTA + CMFB circuit Tools: Analog Designer's Toolbox (ADT) + Cadence

Mohamed nasser

ECE Senior 1 Student @ ASU

Gm/id Methodology

Pmos

Gm/id Methodology

■ Nmos

Folded+ CMFB network

Folded+ CMFB network

Hand Analysis

☐ Settling time spec:

$$ts = \frac{4.6}{t} = \frac{4.6}{Bwcl} \Rightarrow Bwcl = \frac{4.5}{100n} = 46M \frac{rad}{sec} = 7.3M \text{ hz}$$

$$GBW = Wu = Acl * BWcl = 2 * Bwcl = 90M \frac{rad}{sec} = 14.6 \text{ Mhz}$$

$$GBW = \frac{gm(ip)}{cout} = \frac{gm(ip)}{Cl + Cf(1 - B)} = \frac{gm(ip)}{Cl + \frac{3}{4}Cf} \Rightarrow gm(ip) = 130 \text{ us, let } gm = 160 \text{ us}$$

$$GSSSSMin = \frac{gm}{cout} = 20 \text{ for in } mairs \Rightarrow IP1 = 9u \text{ "to } act margin and solf loading"$$

assuming $\frac{gm}{id} = 20$ for in pairs \Rightarrow **IB1** = **9u** "to get margin and self loading"

☐ Dc open loop gain and CL gain specs:

$$LG = \frac{Vout}{If} * Aol(R) = \frac{Vout}{VfB} * Aol = \frac{Cf}{Cf + Cs + cself} * Aol = \frac{1}{4} * Aol \ge 60dB \Rightarrow Aol \ge 73 \ dB$$

☐ From phase margin spec:

$$PMcl = 90 - \arctan\left(\frac{wucl}{wpnd}\right) \ge 70 \Rightarrow Wpnd = 3 \ Wucl$$

 $we \ know \ that \ GX = \frac{1}{4} Wucl \Rightarrow GX = Wpnd \Rightarrow PMol \ge 37$

Hand Analysis

$$\square$$
 we will use split ratio = 1

$$IB2 = IB1 = 9u$$

- \square assuming $\frac{gm}{id}$ and L as a first step to make the design easier:
- ☐ Using charts ::

- input pairs: $\frac{gm}{id} = 20, l = 400n \Rightarrow \mathbf{w} = \mathbf{85u}$ current source devices (nmos): $\frac{gm}{id} = 10, L = 1u \Rightarrow \mathbf{w} = \mathbf{8.25u}$ current source devices (pmos): $\frac{gm}{id} = 10, l = 1u \Rightarrow \mathbf{w} = \mathbf{18u}$
- $\frac{gm}{id} = 15$, $L = 500n \Rightarrow w = 25u$ pmos & 7 u nmos cascode devices :

Hand Analysis

 $vin \geq -0.54 mv$

□
$$Vcacp \le VDD - VGS(5) - V*(4)$$

$$VGS(4) = 848.7m$$

$$V*(5) = \frac{2}{gm} = 200 \ mv$$

$$Vcasp \le 1.45 \ V$$
□ $Vcasn = VGS(3) + V*(2)$

$$V*(2) = \frac{2}{gm} = 200 \ mv$$

$$VGS(3) \Rightarrow From \ ADT = 752.3m$$

$$Vcasn \ge 960 \ mv$$
□ CMIR range:
$$CMIR_{high}: VDD - V*(6) - Vin \ge Vth(1)$$

$$Vth(1) = 750 \ mv, V*(6) = 200 mv$$

$$Vin \le 1.55 \ v$$

$$CMIR_{LOW}: Vcasn - VGS(3) - v*(3) - vin \le Vth(1)$$

$$Vth(1) = 750 \ mv, V*(3)140 \ mv, VGS(3) = 752 \ mv, let \ Vcasn = 1.1 \ v$$

cockpit

☐ Getting accurate sizing from cockpit adt

Design Variable	Value		^	Output Variable	Nominal	_
M1a(ID)	9u	*		DC Gain	10.78k	
M1a(L)	400n	-		BW	5.041k	
M2a(L)	1u	-		GBW	54.37MEG	
M3a(L)	500n	-		UGF	54.12MEG	
M4a(L)	500n	‡		PM	77.81	
M5a(L)	1u	+		Total Input	79.83u	
M6(L)	1u	-		Thermal Inpu	383.1a	
M1a(GM/ID)	20	-		Input Referre	3.034m	
M2a(GM/ID)	10	-		Area	247.2p	
M3a(GM/ID)	15	-		Cgg	123.2f	
M4a(GM/ID)	15	-		Itotal	36u	
M5a(GM/ID)	10	-		VDD	2.5	
M6(GM/ID)	10	-		VIN_CM	500m	
VDD[Nominal]	2.5	+	-	VOUT_CM	1.25	*

- ☐ What is the CM level at the OTA output?
- $\triangleright Vocm = 1.22 v$
- □What are the differential input and output voltages of the error amplifier? What is the relation between them?
- $\gt diff\ input = 0.027v$, difoutput = 0.027 , Acmfb = 1

- □ Diff small signal ccs
 - □ Plot diff gain (magnitude in dB and phase) vs frequency.

□ phase vs frequency

□Calculate circuit parameters (DC gain, BW, GBW, UGF, and PM).

□ Compare simulation results with hand calculations in a table (use SS parameters from OP simulation in your hand analysis) indices is from cockpit 456 M 41M 37.75

$$GBW = \frac{gm1}{cout} = \frac{gm1}{2pi(cl + Cself_{ota})} = \frac{182us}{0.5p + 50f} \approx 52 \text{ Mhz}$$

$$Aol = G_M R_{out} = gm1 * (((g_{m4} + g_{mb4}) * r_{o4} * r_{o5}) | | ((g_{m3} + g_{mb3}) * r_{o3} * (r_{o2} | | r_{o1})) = 182us((179u * \frac{1}{919n} * \frac{1}{427n}) | | (152us * \frac{1}{1.383u} * (1/1.57u | | 1/1.1u) \approx 6825$$

BW =	1	≈7.7 khz
DVV —	$\overline{2pi*(Cl+c_{self})*Rout}$	~1.1 KIIZ

	Simulation	Hand analysis
Ao	6700	6825
GBW	56 Mhz	52 Mhz
BW	8.4 K	7.7 k

□CMFB design:

- > error amplifier
- *Pmos DC is same as MX adjusting* 20% *of current*
- Input Nmos => gm/id = 20, l = 500n, i = 7.2u/2, => W = 13u
- $Tail\ CS => supply\ 0.4\ i_{tail}\ of\ folded\ (W*0.4)$
- > CD => to avoid loading
- *Pmos cs supply* 0.25 *Current supplied By M5 in folded W5* * 0.25
- $Pmos\ input:\ l=1u\ , i=9u/4\ , gm/id=15\ =>\ w=14.5u$
- > Vref value:
- Best Vref value = 950 mv Maximizing swing 2v *=> 1.5 (VDD |VGSP| + V * p)
- \Box Total current consumption = 14u < 50% of folded

- □What is the CM level at the OTA output? Why?
- \succ ≈ 936 mv as the cmfb network adjust M6 current to maitain the v_{ocm} neer to ≈ vref but as Mx in error amplifier and M6 in folded has different Vds it will be hard to have error = 0

- □What are the differential input and output voltages of the error amplifier? What is the relation between them?
- \triangleright diff input = 0.014, difoutput = 0.029, Acmfb \approx 2 "Gian of error amplifier"

- □ Diff small signal ccs
 - □ Plot diff gain (magnitude in dB and phase) vs frequency.

□phase vs frequency

□ Calculate circuit parameters (DC gain, BW, GBW, UGF, and PM).

Test	Output	Nominal	Spec	Weight	Pass/Fail
lab11:tb_part4:1	phase(v("/VODIFF" ?result "ac"))	<u>~</u>			
lab11:tb_part4:1	Ao	5.152k			
lab11:tb_part4:1	A0_dB	74.24			
lab11:tb_part4:1	GBW	54.7M			
lab11:tb_part4:1	UGF	53.98M			
lab11:tb_part4:1	BW	10.59k			
lab11:tb_part4:1	dB20(mag(v("/VODIFF" ?result "	<u>~</u>			
lab11:tb_part4:1	PM	-106.7			
lab11:tb_part4:1	(PM + 180)	73.3			

- ☐ What is the CM level at the OTA output? Why?
- \gt 932 mv , as the cmfb network works at making vocm = vref , but the appearnt error is due to the low gain of error gain

- ☐ What is the CM level at the OTA input? Why?
- ▶ 932mv = Vocm, in dc Cin is O.C, the cmfb adjust Vocm and Vocm adjust due to small dc res. we used, @ low freq it is unity feed back but flipped!

☐ Plot VODIFF vs frequency

☐ Use Measures or cursors to calculate circuit parameters (DC gain, CL BW, CL GBW)

lab11:part5_tb:1	AcI	1.999		
lab11:part5_tb:1	GBW_d	17.71M	> 14.4M	pass
lab11:part5_tb:1	BW_d	8.95M	> 7.16M	pass

☐ Plot loop gain in dB and phase vs frequency for the two simulations overlaid. Diff loop has higher gain

phase vs frequency for the two simulations overlaid.

☐ Compare GBW and PM of diff and CM loops. Comment.

Test	Output	Nominal	Spec	Weight	Pass/Fail
lab11:part5_tb:1	cmfb_LG_PM	83.84			
lab11:part5_tb:1	cmfb_LG	<u>~</u>			
lab11:part5_tb:1	cmfb_GBW_LG	2.323M			
lab11:part5_tb:1	cmfb_DC loop gain	722.6			

	Test	Output	Nominal	Spec	Weight	Pass/Fail
ı						
П	lab11:part5_tb:1	diff_LG_PM	87.82			
ı	lab11:part5_tb:1	diff_LG	<u>~</u>			
ı	lab11:part5_tb:1	diff_GBW_LG	7.381M			
ı	lab11:part5_tb:1	diff_DC loop gain	1.44k			

 \square *PM of diff loop is higher* \Rightarrow *More stable*

$$\Box BW_{cmfb} = \frac{GBW_{cmfb}}{DC \ gain \ _cmfb} = 3215hz$$

$$BW_{diff} = \frac{GBW_{diff}}{DC \ gain \ _diff} = 5125$$

$$t_{diff} = 0.62 \ t_{cmfb} \Rightarrow diff \ loop \ is \ faster$$

☐ Compare DC LG and GBW of the diff loop with those obtained from open-loop simulation. Comment

	Open loop (B=1)	LG IN Closed loop(B=1/5)
Dc loop gain	6.7 K	1.4K
GBW	54 Mhz	7.4 M hz

- ☐ Closing the loop gives us
- $\succ cout = Cl + Cf(1 B) \uparrow \uparrow GBW \downarrow \downarrow$
- $\gt LG = B * Aol = \gt B = \frac{Cf}{Cf + Cs + cself} = \frac{1}{4}$
- \triangleright $GX = B * GBW_ol$
- ☐ Closing the loop decreased the GBW and DC loop gain.

□ Plot the transient signals at VINP, VINN, VOUTP, VOUTN, and VOCM overlaid

- □ Do you notice any differential/CM ringing? Are both loops stable with adequate PM?
- No , just coupling , yes both are stable with adequate PM.
- □ Calculate the 1% settling time and compare it to the required specification.

Test	Output	Nominal	Spec	Weight	Pass/Fail
lab11:part5_tb:1	/vin+_b	<u>~</u>			
lab11:part5_tb:1	/vinb	<u>~</u>			
lab11:part5_tb:1	/VO-	<u>~</u>			
lab11:part5_tb:1	/VO+	<u>~</u>			
lab11:part5_tb:1	/VO CM	<u>~</u>			
lab11:part5 tb:1	riseTime(v("/VODIFF" ?result "tr	94.89n			

	spec	achieved
Rise time	100n	94n

☐ If the specification was not satisfied, what design changes could be a possible solution? Increase gm of input pair

□ Plot the transient signals at VINP, VINN, VOUTP, VOUTN, and VOCM overlaid

□ Do you notice any differential/CM ringing? Are both loops stable with adequate PM?

No , just coupling , yes both are stable with adequate PM.

□ Plot the transient signals at VIDIFF and VODIFF overlaid in the same figure.

□ Calculate the diff input and output peak-to-peak swings and the closed loop gain.

vid	<u>~</u>			
vod	<u>~</u>			
pp_vod	599.5m			
pp_vid	300m			
clgain	1.999			
	vod pp_vod	vod	vod	vod <a>

□ Swing spec

