INSTRUCTIONS:

- Please show ALL your work! Answers without supporting justification will not be given credit.
- Answer the questions in the white space provided. If you run out of room, use the back page.
- Write legibly and clearly mark the answer.
- Please note that use of any books or notes is not allowed. You are allowed to use the one page of handwritten letter-sized note that you brought. Use of calculators are allowed.
- If you write down the correct formula for an answer, you will get some partial credit regardless of whether you evaluated the exact values or not.
- Unless otherwise specified, you may use any valid method to solve a problem.

_ 11			
Full Name:			

Question	Points	Score
1	10	
2	4	
3	5	
4	10	
5	5	
6	4	
7	5	
8	12	
Total:	55	

This exam has 8 questions, for a total of 55 points.

The maximum possible point for each problem is given on the right side of the problem.

1. The exponential growth model

$$P = 300e^{0.01854t}$$

describes the population of a town t years after 1900. Use this model to solve the following problems. Remember to show your work.

(a) What was the population in the year 1900?

2

(b) What was the population in the year 1930?

2

(c) How long does it take for the population to be doubled?

3

(d) When will the town's population become **2400**?

3

5

2. Match the following graphs with the rational functions.

$$(I)\frac{x(x-3)^2}{(x-1)(x-4)^2} \qquad (II)\frac{x(x-3)^2}{(x-1)^2(x-4)} \qquad (III)\frac{x^2(x-3)}{(x-1)(x-4)^2} \qquad (IV)\frac{x^2(x-3)}{(x-1)^2(x-4)}$$

3. Find a possible polynomial function whose graph looks as follows.

3

Figure 2: Periodic curve

- 4. Consider a periodic trigonometric function f(x) whose graph looks as figure 2.
 - (a) Find the Amplitude of f(x).

(b) Find the Period of f(x).

(c) Find the formula of f(x).

5. The graph of arcsin(x) looks as follows.

Figure 3: Graph of arcsin(x)

Consider the function $g(x) = 2\arcsin(x+1)$.

- (a) Draw the graph of g(x).
- (b) Find the domain and range of g(x).

6. Suppose a function h(x) has a vertical asymptote at x = 4 and a horizontal asymptote at y = 3. Find the vertical and horizontal asymptotes of 3h(2x).

1

1

- 7. Determine which of the following statements are **True** or **False** and write **T/F** in the blank accordingly. Note that **T** means the statement is always true and **F** means the statement is not always true. *No explanation is necessary*.
 - (a) ______ If $\lim_{x\to 3+} f(x) = 5$ and f is continuous, then $\lim_{x\to 3-} f(x) = 5$.
 - (b) ______ If $\lim_{x \to 3-} f(x) = 5$ and $\lim_{x \to 3+} f(x) = 5$, then f(x) is continuous at x = 5.
 - (c) ______ If $\lim_{x \to 3-} f(x) = 2$ and $\lim_{x \to 3+} f(x) = 7$, then f(3) does not exist.
 - (d) ______ If f'(x) = g'(x) for all x, then f(x) = g(x).
 - (e) _____ The derivative of $f(x) = (x+1)^4$ at x = 0 is given by $\lim_{h \to 0} \frac{(1+h)^4 1}{h}$.

2

2

2

8. In this question we start with the graph of a function, and consider its properties to help us sketch the derivative. For the graph of y = k(x) shown in figure 4,

Figure 4: Graph of f(x)

- (a) For what values of x is k'(x) positive?
- (b) For what values of x is k(x) decreasing?
- (c) For what values of x is k'(x) = 0?
- (d) For what values of x is k'(x) not defined?
- (e) What does the end behaviour of k'(x) appear to be as $x \to \infty$ and as $x \to -\infty$?
- (f) Carefully sketch the graph of k'(x) on the axes given below.

