批归一化

王树森

特征标准化

为什么要做特征标准化

人的特征向量 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$.

- 第一个维度是一个人的收入 (单位 dollars).
 - •假设它是从高斯分布中随机抽取的,均值为 3000,标准差为4002.
- 第二个维度是一个人的身高 (单位 inch).
 - ·假设它是从高斯分布中随机抽取的,均值为 69,标准差为 3².

为什么要做特征标准化

人的特征向量 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$.

- 第一个维度是一个人的收入 (单位 dollars).
 - •假设它是从高斯分布中随机抽取的,均值为 3000,标准差为4002.
- 第二个维度是一个人的身高 (单位 inch).
 - 假设它是从高斯分布中随机抽取的,均值为 69,标准差为 32.
- 最小二乘回归模型的Hessian矩阵

$$\mathbf{H} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T = \begin{bmatrix} 9137.3 & 206.6 \\ 206.6 & 4.8 \end{bmatrix} \times 10^3.$$

• Condition number: $\frac{\lambda_{max}(H)}{\lambda_{min}(H)} = 9.2 \times 10^4$.

条件数过大意味着梯度下降收敛速度慢!

译者注: Hessian矩阵为损失函数的二阶求导,可以用来衡量梯度。特征向量和特征值表示梯度下降的优化方向和收敛速度

condition number = 最大的收敛速度/最小的收敛速度

如果非常大,则表示收敛慢,甚至可能不收敛

为什么要做特征标准化

People's feature vectors: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$.

- 第一个维度是一个人的收入 (单位 thousand dollars).
 - •假设它是从高斯分布中随机抽取的,均值为 3,标准差为 0.42.
- 第二个维度是一个人的身高 (单位 foot).
 - •假设它是从高斯分布中随机抽取的,均值为 5.75 标准差为 0.25².
- 矩阵改变.
- 最小二乘回归模型的Hessian矩阵:

$$\mathbf{H} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{bmatrix} 9.1 & 17.2 \\ 17.2 & 33.1 \end{bmatrix}.$$

• Condition number: $\frac{\lambda_{\max}(H)}{\lambda_{\min}(H)} = 281.7$. (相较于 92K.)

一维数据的特征标准化

假设样本 x_1, \dots, x_n 是一维的.

- Min-max normalization: $x'_i = \frac{x_i \min(x_i)}{\max(x_i) \min(x_i)}$.
- After the scaling, the samples x_1', \dots, x_n' are in [0, 1].

一维 数据的特征标准化

Assume the samples x_1, \dots, x_n are one-dimensional.

• 标准化:
$$x_i' = \frac{x_i - \widehat{\mu}}{\widehat{\sigma}}$$
.

- $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 是样本平均值
- $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \hat{\mu})^2$ 是样本方差
- After the scaling, the samples x'_1, \dots, x'_n 均值为零,方差为 1.

高维 数据的特征标准化

- 对每个特征独立进行特征缩放
 - 例如, 在缩放'身高'特征时, 忽略'收入'特征

```
# Min-Max Normalization
import numpy

d = x.shape[1]
xmin = numpy.min(x, axis=0).reshape(1, d)
xmax = numpy.max(x, axis=0).reshape(1, d)
xnew = (x - xmin) / (xmax - xmin)
```

高维 数据的特征标准化

- 对每个特征独立进行特征缩放
 - 例如, 在缩放'身高'特征时, 忽略'收入'特征

```
# Standardization
import numpy

d = x.shape[1]
mu = numpy.mean(x, axis=0).reshape(1, d)
sig = numpy.std(x, axis=0).reshape(1, d)
xnew = (x - mu) / sig
```

批归一化

批量归一化: 隐藏层的标准化

- let $\mathbf{x}^{(k)} \in \mathbb{R}^d$ be the output of the k-th hidden layer.
- $\widehat{\mathbf{\mu}} \in \mathbb{R}^d$: sample mean of $\mathbf{x}^{(k)}$ evaluated on a batch of samples.
- $\widehat{\mathbf{\sigma}} \in \mathbb{R}^d$: sample std of $\mathbf{x}^{(k)}$ evaluated on a batch of samples.

• Standardization: $z_j^{(k)} = \frac{x_j^{(k)} - \widehat{\mu}_j}{\widehat{\sigma}_j + 0.001}$, for $j = 1, \dots, d$.

Batch Normalization: Standardization of Hidden Layers

- Let $\mathbf{x}^{(k)} \in \mathbb{R}^d$ be the output of the k-th hidden layer.
- $\hat{\mu} \in \mathbb{R}^d$: sample mean of $\mathbf{x}^{(k)}$ evaluated on a batch of samples.
- $\widehat{\sigma} \in \mathbb{R}^d$: sample std of $\mathbf{x}^{(k)}$ evaluated on a batch of samples.
- $\gamma \in \mathbb{R}^d$: scaling parameter (trainable).
- $\beta \in \mathbb{R}^d$: shifting parameter (trainable).
- Standardization: $z_j^{(k)} = \frac{x_j^{(k)} \widehat{\mu}_j}{\widehat{\sigma}_j + 0.001}$, for $j = 1, \dots, d$.
- Scale and shift: $x_j^{(k+1)} = z_j^{(k)} \cdot \gamma_j + \beta_j$, for $j = 1, \dots, d$.

Batch Normalization: Standardization of Hidden Layers

- Let $\mathbf{x}^{(k)} \in \mathbb{R}^d$ be the output of the k-th hidden layer.
- $\hat{\mu} \in \mathbb{R}^d$: Non-trainable. Just record them in the forward pass;
- $\widehat{\sigma} \in \mathbb{R}^d$: use them in the backpropagation.
- $\gamma \in \mathbb{R}^d$: scaling parameter (trainable).
- $\beta \in \mathbb{R}^d$: shifting parameter (trainable).
- Standardization: $z_j^{(k)} = \frac{x_j^{(k)} \widehat{\mu}_j}{\widehat{\sigma}_i + 0.001}$, for $j = 1, \dots, d$.
- Scale and shift: $x_j^{(k+1)} = z_j^{(k)} \cdot \gamma_j + \beta_j$, for $j=1,\cdots,d$.

Backpropagation for Batch Normalization Layer

• Standardization:
$$z_j^{(k)} = \frac{x_j^{(k)} - \widehat{\mu}_j}{\widehat{\sigma}_j + 0.001}$$
, for $j = 1, \dots, d$.

• Scale and shift: $x_j^{(k+1)} = z_j^{(k)} \circ \gamma_j + \beta_j$, for $j=1,\cdots,d$.

Backpropagation for Batch Normalization Layer

- Standardization: $z_j^{(k)} = \frac{x_j^{(k)} \widehat{\mu}_j}{\widehat{\sigma}_j + 0.001}$, for $j = 1, \dots, d$.
- Scale and shift: $x_j^{(k+1)} = z_j^{(k)} \circ \gamma_j + \beta_j$, for $j=1,\cdots,d$.

We know $\frac{\partial L}{\partial x_j^{(k+1)}}$ from the backpropagation (from the top to $x^{(k+1)}$.)

• Use
$$\frac{\partial L}{\partial \gamma_j} = \frac{\partial L}{\partial x_j^{(k+1)}} \frac{\partial x_j^{(k+1)}}{\partial \gamma_j} = \frac{\partial L}{\partial x_j^{(k+1)}} z_j^{(k)}$$
 to update γ_j ;

• Use
$$\frac{\partial L}{\partial \beta_j} = \frac{\partial L}{\partial x_j^{(k+1)}} \frac{\partial x_j^{(k+1)}}{\partial \beta_j} = \frac{\partial L}{\partial x_j^{(k+1)}}$$
 to update β_j .

Backpropagation for Batch Normalization Layer

• Standardization:
$$z_j^{(k)} = \frac{x_j^{(k)} - \widehat{\mu}_j}{\widehat{\sigma}_j + 0.001}$$
, for $j = 1, \dots, d$.

• Scale and shift:
$$x_j^{(k+1)} = z_j^{(k)} \circ \gamma_j + \beta_j$$
, for $j=1,\cdots,d$.

We know $\frac{\partial L}{\partial x_i^{(k+1)}}$ from the backpropagation (from the top to $x^{(k+1)}$.)

Compute
$$\frac{\partial L}{\partial z_j^{(k)}} = \frac{\partial L}{\partial x_j^{(k+1)}} \frac{\partial x_j^{(k+1)}}{\partial z_j^{(k)}} = \frac{\partial L}{\partial x^{(k+1)}} \gamma.$$

Compute
$$\frac{\partial L}{\partial x_j^{(k)}} = \left| \frac{\partial L}{\partial z_j^{(k)}} \right| \frac{\partial z_j^{(k)}}{\partial x_j^{(k)}} = \left| \frac{\partial L}{\partial z_j^{(k)}} \right| \frac{1}{\widehat{\sigma}_j + 0.001}$$
 and pass it to the lower layers.

Batch Normalization Layer in Keras

- Let $\mathbf{x}^{(k)} \in \mathbb{R}^d$ 是 k 维隐藏层的输出.
- $\hat{\mu}$, $\hat{\sigma} \in \mathbb{R}^d$: 不可训练的 参数.
- γ , $\beta \in \mathbb{R}^d$: 可训练的 参数.
- Standardization: $z_j^{(k)} = \frac{x_j^{(k)} \widehat{\mu}_j}{\widehat{\sigma}_j + 0.001}$, for $j = 1, \dots, d$.
- Scale and shift: $x_j^{(k+1)} = z_j^{(k)} \cdot \gamma_j + \beta_j$, for $j=1,\cdots,d$.

- Let $\mathbf{x}^{(k)} \in \mathbb{R}^d$ 是 k 维隐藏层的输出.
- $\hat{\mu}$, $\hat{\sigma} \in \mathbb{R}^d$: 不可训练的 参数.
- γ , $\beta \in \mathbb{R}^d$: 可训练的 参数.

困难: 有 4d 个参数存储在内存中. d 可能会非常大!

例如:

- The 1st Conv Layer in VGG16 Net outputs a $150 \times 150 \times 64$ tensor.
- The number of parameters in a single Batch Normalization Layer would be 4d = 1.44M.

Solution:

• Make the 4 parameters $1\times1\times64$, instead of $150\times150\times64$.

u can be very large:

Solution:

- Make the 4 parameters $1\times1\times64$, instead of $150\times150\times64$.
- How?
- A scalar parameter for a slice (e.g., a 150×150 matrix) of the tensor.
- Of course, you can make the parameters $150 \times 1 \times 1$ or $1 \times 150 \times 1$.


```
from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Conv2D(10, (5, 5), input shape=(28, 28, 1)))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(20, (5, 5)))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(100))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.Dense(10, activation='softmax'))
```

Tarray (tarray)	011+211+	Chana	Param #
Layer (type)		Shape	Param #
conv2d_1 (Conv2D)	(None,	24, 24, 10)	260
batch_normalization_1 (Batch	(None,	24, 24, 10)	40
activation_1 (Activation)	(None,	24, 24, 10)	0
max_pooling2d_1 (MaxPooling2	(None,	12, 12, 10)	0
conv2d_2 (Conv2D)	(None,	8, 8, 20)	5020
batch_normalization_2 (Batch	(None,	8, 8, 20)	80
activation_2 (Activation)	(None,	8, 8, 20)	0
max_pooling2d_2 (MaxPooling2	(None,	4, 4, 20)	0
flatten_1 (Flatten)	(None,	320)	0
dense_1 (Dense)	(None,	100)	32100
batch_normalization_3 (Batch	(None,	100)	400
activation_3 (Activation)	(None,	100)	0
dense_2 (Dense)	(None,	10)	1010
Total params: 38,910 Trainable params: 38,650			

Non-trainable params: 260

Train the model (with Batch Normalization) on MNIST (n = 50,000).

```
Train on 50000 samples, validate on 10000 samples
Epoch 1/3
50000/50000 [================ ] - 29s 580us/step -
loss: 0.1599 - acc: 0.9595 - val loss: 0.1165 - val acc: 0.9644
Epoch 2/3
50000/50000 [=================== ] - 26s 516us/step -
loss: 0.0468 - acc: 0.9858 - val loss: 0.0562 - val acc: 0.9822
Epoch 3/3
50000/50000 [=============== ] - 25s 508us/step -
loss: 0.0325 - acc: 0.9902 - val loss: 0.0494 - val acc: 0.9832
```

Train the model (without Batch Normalization) on MNIST (n = 50,000).

Without Batch Normalization, it takes 10x more epochs to converge.

总结

特征变化

- 使所有特征的尺度具有可比性
- 为什么? 更优的Hessian矩阵条件数 → 更快收敛

特征变化

- 使所有特征的尺度具有可比性
- 为什么? 更优的Hessian矩阵条件数→更快收敛
 - 方法:
 - - 最小-最大归一化:将特征缩放到[0,1]区间。
 - - 标准化: 使每个特征具有零均值和单位方差。

批归一化

- 隐藏层的特征标准化。
- 为什么?加速收敛。
- 2个可训练参数: 平移和缩放。
- 2个不可训练参数:均值和方差。

批归一化

- -隐藏层的特征标准化。
- 为什么?加速收敛。
- 2个可训练参数: 平移和缩放。
- 2个不可训练参数:均值和方差。
- Keras 提供了 layers.BatchNormalization()。
- 将 BN 层放在卷积层 (Conv) 之后, 激活函数 (Activation) 之前。