Inhaltsverzeichnis

1	Arbeitsgrundlagen					
	1.1	Huygenssches Prinzip	. 1			
	1.2	Beugungsintegral	2			
	1.3	Frauenhofer-Näherung	3			
	1.4	Frauenhofer'sche Beobachtungsart	4			
2	Arbeitsmittel					
	2.1	Versuchsaufbau	5			
	2.2	Messmittel	5			
	2.3	Messvorgang	6			
3	Aus	wertung	7			
4	Fehlerrechnung					
	4.1	Systematischer Fehler	8			
	4.2	Statischer Fehler	8			
	4.3	Gesamter Fehler	8			
5	Res	ultate und Diskussion	9			
6	Selb	oständigkeitserklärung	14			
Li	Literatur					
Li	Literatur					
Abbildungsverzeichnis						
7	7 Anhang					

1 Arbeitsgrundlagen

In diesem Abschnitt werden die Arbeitsgrundlagen zur Beugung und Interferenz für den Versuch erarbeitet.

1.1 Huygenssches Prinzip

Das huygensche Prinzip besagt, dass jeder Punkt einer Wellenfläche als Ausgangspunkt einer Elementarwelle betrachtet werden kann, die sich mit gleicher Phasengeschwindigkeit und Wellenlänge wie die ursprüngliche Welle ausbreitet. Durch die Überlagerung sämtlicher Elementarwellen ergibt sich die neue Lage der Wellenfront. Es bildet sich eine rücklaufende Welle, da die Elementarwelle eine Kugelform hat.

Abbildung 1: Eine Welle die sich aus Überlagerungen von Kugelwellen bildet. Mit den schwarzen Punkten sind die Punkte, welcher von einer Wellenfront erreicht wird, dargestellt. Dies ist der Ausgangspunkt für eine kugelförmige Elementarwelle.

Abbildung 2: Beugung einer ebenen Wellenfront an einem Spalt nach dem huygensschen Prinzip.

In Abbildung 2 wird das huygensche Prinzip auf die Beugung von Licht an Hindernissen angewandt. Eine ebene Wellenfront wird an einem Spalt gebeugt. Es entsteht näherungsweise eine Rechtecksform. Nach dem Prinzip der Interferenz kann die resultierende Welle durch Superposition aller Elementarwellen berechnen lässt.

1.2 Beugungsintegral

Die Beugung von Licht an eine beliebig geformte Blende kann mit dem Beugungsintegral berechnet werden. Dieses Beugungsintegral basiert auf dem Modell der Elementarwellen. Für das Beugungsintegral gibt es zwei Näherungen. Für das Nahfeld wird die Fresnel-Näherung und für das Fernfeld die Fraunhofer-Näherung angewandt. Das System, welches mit mittels Kirchhoffischen Beugungsintegral beschrieben wird skizziert. Die Formel 1.1 beschreibt wie man die Amplitude ϕ_P im Punkt P auf dem Beobachtungsschirm berechnet werden kann. Die Berechnung ist Abhängig von der Amplitude der Quelle a_Q , dem Betrag des Wellenvektors in der Quelle $k_0 = 2\pi/\lambda$, der Wellenlänge λ , den Neigungsfaktoren θ und θ_1 , den Abständen L, L_1 , d, d_1 und der Blendfunktion f(s). Bei einer vollkommenen undurchlässigen Blende beträgt die Blendfunktion f(s) = 0 und bei einer vollkommen durchlässigen Blende beträgt f(s) = 1.

$$\psi_p = \frac{a_Q \cdot k_0}{2 \cdot \pi \cdot i} \cdot \iint_{Blende} f(s) \cdot \frac{e^{i \cdot k_0 \cdot (d + d_i)}}{d \cdot d_1} \cdot \left[\frac{\cos \theta + \cos \theta_1}{2} \right] ds \tag{1.1}$$

Abbildung 3: Die Anordnung besteht aus einer Lichtquelle Q, einer Blende S, an der das Licht gebeugt wird und einem Beobachtungsschirm auf dem die auftreffende Lichtintensität an P untersucht wird.

1.3 Frauenhofer-Näherung

Die Fernfeld-Näherung des Beugungsintegral (Formel 1.1) entspricht die Frauenhofer-Näherung. Bei dieser Näherung wird angenommen, dass $L \gg |\overrightarrow{s}| = \sqrt{x^2 + y^2}$ und $L_1 \gg |\overrightarrow{p}| = \sqrt{x_p^2 + y_p^2}$. Der Term mit den Neigungsfaktoren θ und θ_1 kann in diesem Fall vernachlässigt werden. Zudem lässt sich wegen dieser Näherung $d \cdot d_1$ im Nenner durch $L \cdot L_1$ ersetzt. Der Ausdruck $d + d_1$ im Exponent enthält die Information zur Phase, deshalb darf hier nicht d durch L ersetzt werden. Sie können jedoch mit einer Taylor-Reihe vereinfacht werden. Wenn man diese Vereinfachungen vornimmt ergiebig sich die sogenannte Frauenhofer-Näherung, welche in der Formel 1.2 dargestellt ist. Sie lässt sich zur Formel 1.3 umformen, wenn man den Wellenvektor $\overrightarrow{K} = \frac{k_0}{L} \cdot \overrightarrow{p}$ einführt. Somit ist der Term unter dem Doppelintegral über die Blende gerade die Fourier-Transformierte der Blendfunktion f(s).

$$\psi_p \approx \frac{a_Q \cdot k_0}{2 \cdot \pi \cdot i} \cdot \frac{e^{i \cdot k_0 \cdot (L1 + L + \frac{p^2}{2L})}}{L \cdot L_1} \cdot \iint_{Blende} f(s) \cdot e^{-i \cdot k_0 \cdot \frac{((x \cdot x_p + y \cdot y_p))}{L}} \cdot ds \tag{1.2}$$

$$\psi_p \approx \frac{a_Q \cdot k_0}{2 \cdot \pi \cdot i} \cdot \frac{e^{i \cdot k_0 \cdot (L1 + L + \frac{p^2}{2L})}}{L \cdot L_1} \cdot \iint_{Blende} f(s) \cdot e^{-i \cdot \overrightarrow{K} \cdot \overrightarrow{s}} \cdot ds$$
 (1.3)

1.4 Frauenhofer'sche Beobachtungsart

Bei der Frauenhofer'sche Beobachtungsart wird das Interfernzmuster, wie in der Abbildung 4 dargestellt, in der Brennebene beobachtet. Dies geschieht in dem das Interferenzmuster durch eine Linse auf einen Schirm projiziert wird. Die Linse wird im Abstand f vor dem Schirm platziert. Das beobachtete Muster ist bis auf einen Skalierungsfaktor identisch zum Interferenzmuster, welches in grosser Entfernung von den Quellen beobachtet werden kann. Der Abstand von der Linse von den Quellen hat keinen Einfluss auf die Abmessung oder die Form des Interferenzmuster. Er bestimmt nur den erfassten Winkelbereich.

Abbildung 4: Frauenhofer'sche Beobachtungsart

Der Winkel ϕ_1 der Interferenz erster Ordnung kann mit dem Abstand y_1 von dem Hauptstrahl zum Extrema der ersten Ordnung und der Brennweite f der Linse wie folgt berechnen.

$$tan(\phi_1) = \frac{y_1}{f} \tag{1.4}$$

2 Arbeitsmittel

In diesem Kapitel wird der Versuchsaufbau, die Messmittel und der Messvorgang genauer erläutert.

2.1 Versuchsaufbau

Der Versuchsaufbau, wie in der Abbildung 5 aufgezeigt, beseht aus der Lichtquelle, dem zu messende Beugungsobjekt und einer Linse, welche auf einer Zeiss-Schiene montiert sind. Das zu beobachtenden Beugungsmuster kann am Ende der Schiene mit einer Messeinrichtung gemessen werden. Die Messeinrichtung ist auf einer Mattscheibe montiert.

Abbildung 5: Versuchsaufbau, des Laser, optische Elemente und der Mattscheibe

2.2 Messmittel

Gerätebezeichnung	Тур	Messmittel-Nr.
Laser	He-Ne-Laser 632.8nm	
Linse	f=2030mm	

Tabelle 1: Messmittel die für den Versuchsaufbau genutzt wurden.

2.3 Messvorgang

Bei diesem Versuch werden drei verschiedene Messungen durchgeführt. Diese Unterversuche sind:

- Beugung am Spalt und Antispalt
- Beugung am Loch und Antiloch
- Beugung am Doppelspalt

2.3.1 Beugung am Spalt und Antispalt

Bei diesem Versuch werden die Abstände symmetrisch liegender Minima n-ter Ordnung bestimmt. Nach der Beugungstheorie mittels Regression kann aus diesen Werten die Breite des Spalts oder Drahtes berechnet werden. Dieser Messvorgang kann angewendet werden um den Durchmesser eines Haares oder einer Faser zu bestimmen.

2.3.2 Beugung am Loch und Antiloch

Wie in dem Versuch 2.3.1 wird anhand der beobachteten Minimas der Durchmesser des Loches bzw. mittleren Durchmesser der Teilchen berechnet. Wenn Pollenkörner untersucht werden, entsteht bei der Fraunhofer'scher Beobachtungsart dasselbe Interferenzmuster wie für ein einzelnes Objekt. In diesem Fall steigt die Intensität proportional zur Zahl der Beugungszentren an. Wenn sich verschiedene Interferenzmuster überlagern entsteht ein etwas verschwommenes Bild, welches dem mittleren Durchmesser entspricht.

2.3.3 Beugung am Doppelspalt

3 Auswertung

Die Aufgabe war es die verschiedenen Breiten und Durchmesser der verschiedenen Proben zu untersuchen. Die sollte jedoch nicht auf dem normalen Weg geschehen wie in der Aufgabenstellung. Herr Minawisawa gab uns am Labortag die zusätzliche Aufgabe eben diese Breiten mit der optischen Fourietransormations Beziehung zu lösen.

Aus den Arbeitsgrundlagen und der Signalverarbeitung ist bekannt was die Rücktransformierte einer Sinc-Funktion einem Rechteck entspricht. Unten stehen die beiden Formel.

$$rec(s) = \sigma(s + \frac{T}{2}) - \sigma(s - \frac{T}{2})$$
(3.1)

$$sinc(s) = \frac{sin(s)}{s} \tag{3.2}$$

Wenn man diese Formeln vergleicht und mit etwas Aufwand umformt. Kann man erkennen, dass sich folgende Formel daraus ergibt.

$$T = \frac{2 \cdot \lambda \cdot L}{d0} \tag{3.3}$$

Wobei T dem gewünschten Wert entspricht. Dabei entspricht λ der Wellenlänge des Lichtes. Es wurde ein roter Laser verwendet mit der Wellenlänge 6.33e-7. Die eigentlich gemessene Grösse ist d0. Sie stellt den Abstand zwischen zwei Nullstellen dar.

Aus diesen Werten wurden mithilfe von Formel 3.3 die Spaltbreite, Antispaltbreite und den Lochdurchmesser errechnet. Jedoch sind das einfache algebraische Gleichungen. Es wird an dieser Stelle darauf verzichtet diese zu visualisieren. Im Kapitel 5 werden die einzelnen Werte visualisiert und mit ihren theoretischen Werten verglichen.

49e - 6Spalt $50\mu m$: Spalt $200\mu m$: 196e - 6Antispalt 0.33mm: 331e - 6124e - 6Antispalt 0.124mm: Loch $150\mu m$: 69e - 696e - 6Loch $100\mu m$: 70e - 6Gitter $70\mu m$: 616e - 7Doppelspalt $40\mu m$:

Tabelle 2: Errechnete Endwerte

4 Fehlerrechnung

Die Fehlerrechnung für die wird anhand diesen Formel durchgeführt. Alle Berechnungen wurden in einem Matlabfile gerechnet, welches im Anhang hinterlegt ist.

Der Fehler bildet sich aus einem systematischen und einem statistischen Fehler.

4.1 Systematischer Fehler

Dieser Fehler s_{syst} besteht aus zwei Messfehler, welche die Messresultate beeinflussen. Diese Messfehler entstehen bei der Messung der Strecke zwischen zwei Minima des Interferenzmusters, sowie bei der Messung der Strecke von der Linse bis zum Schirm. Die Fehlerrechnung wurde mit folgender Formel durchgeführt. Dazu wurde die Formel 4.1 partiell abgeleitet.

$$s_{syst} = \sqrt{\left(\frac{\partial R}{\partial x} \cdot s_x\right)^2 + \left(\frac{\partial R}{\partial y} \cdot s_y\right)^2} \tag{4.1}$$

4.2 Statischer Fehler

Dieser Fehler kann direkt aus den Berechnungen von Excel übernommen werden. In der Tabelle 1 ist der statische Fehler s_{stat} aufgeführt.

4.3 Gesamter Fehler

Mit der Geometrischen Addition kann der Gesamtfehler aus dem statischen und dem systematischen Fehler berechnet werden.

$$s_{tot} = \sqrt{(s_{sys})^2 + (s_{stat})^2} \tag{4.2}$$

Die Berechnungen wurden mit Matlab durchgeführt und das entsprechende File im Anhang hinterlegt. Die Resultate sind in der folgenden Tabelle 3 aufgeführt.

 $\pm 7e - 7$ Spalt $50\mu m$: $\pm 6e - 6$ Spalt $200\mu m$: $\pm 3e - 6$ Antispalt 0.33mm: Antispalt 0.124mm: $\pm 1e - 6$ $\pm 4e - 6$ Loch $150\mu m$: Loch $100\mu m$: $\pm 4e - 6$ $\pm 5e - 6$ Gitter $70\mu m$: Doppelspalt $40\mu m$: $\pm 5e - 7$

Tabelle 3: Fehler der Fehlerrechnung

5 Resultate und Diskussion

Die theoretischen Werte und ihre gemessen Pendants sind in Tabelle 4 gezeigt. Die gemessen Werte stimmen relativ gut, jedoch gibt es einige Ausreisser. Das Loch mit $150\mu m$ Durchmesser ist mit grosser Wahrscheinlichkeit falsch beschriftet. Die Messung des Doppelspalten hat einen Fehler der grösser ist als bei den andern Messungen. Auf die Gründe wird in entsprechenden Kapitel eingegangen. Für die anderen wird ein visueller Vergleich dargestellt.

```
Spalt 50\mu m:
                        49e - 6
                                    \pm 7e - 7
                        196e - 6
                                   \pm 6e - 6
   Spalt 200\mu m:
Antispalt 0.33mm:
                        331e - 6
                                   \pm 3e - 6
Antispalt 0.124mm:
                        124e - 6
                                   \pm 1e - 6
   Loch 150\mu m:
                        69e - 6
                                   \pm 4e - 6
                        96e - 6
                                    \pm 4e - 6
   Loch 100\mu m:
   Gitter 70\mu m:
                        70e - 6
                                    \pm 5e - 6
                        616e - 7
                                   \pm 5e - 7
Doppelspalt 40\mu m:
```

Tabelle 4: Errechnete Endwerte

Vergleich Spalt 50µm

Abbildung 6: Vergleich der gemessenen Werten mit den Theoretischen des $50\mu m$ Spalts

Vergleich Spalt 200µm

Abbildung 7: Vergleich der gemessenen Werten mit den Theoretischen des $200\mu m$ Spalts

Vergleich Antispalt 0.33mm

Abbildung 8: Vergleich der gemessenen Werten mit den Theoretischen des 0.33mm Antispalts

Abbildung 9: Vergleich der gemessenen Werten mit den Theoretischen des 0.124mm Antispalts

Abbildung 10: Vergleich der gemessenen Werten mit den Theoretischen des $100\mu m$ Loch

Abbildung 11: Vergleich der gemessenen Werten mit den Theoretischen des $70\mu m$ Gitter

Loch $150\mu m$

Zu sehen ist im visuellen Vergleich 12, dass der theoretisch Wert weit entfernt der Messung liegt. Auch liegt die Messung nicht innerhalb der Toleranz der Messprobe. Dies

legt nahe, dass entweder die Auswertung, die Messung oder die Probe fehlerhaft sind.

Abbildung 12: Vergleich der gemessenen Werten mit den Theoretischen des $150\mu m$ Loch

Um einen Fehler bei der Auswertung auszuschliessen wurden die Messwert mit einer alternativen Variante ausgewertet. Mit QtiPlot ist Abbildung 13 entstanden. Mit ihr ist gut zu sehen, dass die alternative Variante die selben Resultate liefert. Dadurch kann man sagen, dass wahrscheinlich kein Auswertungsfehler vorliegt.

Alternative Berechnung mit Fit

Abbildung 13: Überprüfung des gemessenen Lochs mit Alternativer Messmethode

Des Weiteren kann ein Messungsfehler ausgeschlossen werden, weil alle andern Messungen stimmen. Somit bleibt nur noch die falsche Beschriftung der Messprobe übrig. Wir vermuten dies ist die Fehlerquelle.

Doppelspalt $40\mu m$

Wicht ist das Mann Brot einfrieren kann. Dadurch wird die Haltbarkeit massiv erhöht. Die Messung des Doppelspalt stellte eine Schwierigkeit dar. Durch die schwachen Minimas auf der Blende, war die Messung schwierig. Dadurch sind die grossen Fehler entstanden.

Vergleich Doppelspalt

Abbildung 14: Vergleich der gemessenen Werten mit den Theoretischen des Wert Doppelspalts

6 Selbständigkeitserklärung

Mit meiner Unterschrift bestätige ich, dass ich d	das Laborheft selbständig verfasst habe.
Ort und Datum:	
Simon Zoller	

Literatur

- [1] Minamisawa, R. (22.10.2015). M1 Geschwindigkeit einer Pistolenkugel. Windisch, FHNW.
- [2] Waffen Zimmi Bülach. (2017).
http://www.waffenzimmi.ch/pressluftpistole-haemmerli-480-junior-p-4526.html.

Literatur

Abbildungsverzeichnis

1	Eine Welle die sich aus Uberlagerungen von Kugelwellen bildet. Mit	
	den schwarzen Punkten sind die Punkte, welcher von einer Wellenfront	
	erreicht wird, dargestellt. Dies ist der Ausgangspunkt für eine kugelförmige	
	Elementarwelle	1
2	Beugung einer ebenen Wellenfront an einem Spalt nach dem huygensschen	
	Prinzip	2
3	Die Anordnung besteht aus einer Lichtquelle Q , einer Blende S , an der	
	das Licht gebeugt wird und einem Beobachtungsschirm auf dem die	
	auftreffende Lichtintensität an P untersucht wird	2
4	Frauenhofer'sche Beobachtungsart	4
5	Versuchsaufbau, des Laser, optische Elemente und der Mattscheibe . .	5
6	Vergleich der gemessenen Werten mit den Theoretischen des $50\mu m$ Spalts	9
7	Vergleich der gemessenen Werten mit den Theoretischen des $200 \mu m$ Spalts	10
8	Vergleich der gemessenen Werten mit den Theoretischen des $0.33mm$	
	Antispalts	10
9	Vergleich der gemessenen Werten mit den Theoretischen des $0.124mm$	
	Antispalts	11
10	Vergleich der gemessenen Werten mit den Theoretischen des $100 \mu m$ Loch	11
11	Vergleich der gemessenen Werten mit den Theoretischen des $70\mu m$ Gitter	11
12	Vergleich der gemessenen Werten mit den Theoretischen des $150 \mu m$ Loch	12
13	Überprüfung des gemessenen Lochs mit Alternativer Messmethode	12
14	Vergleich der gemessenen Werten mit den Theoretischen des Wert Dop-	
	pelspalts	13

7 Anhang

Der Anhang wird per E-Mail an renato.minamisawa@fhnw.ch verdendet.

- Excel-Tabelle $Pistolenversuch_v1$
- Matlab-File Fehlerrechnung