Employment and the Labor Force

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

Employment Concepts

- Labor Force: People who are working or looking for work
- Unemployed: People unable to find work
- Unemployment Rate:

Unemployed/LaborForce

Labor Force Participation Rate:

LaborForce/WorkingAgePop

Creating a Bar Plot

```
pct_unemployed
year
2011
           10.264992
2012
            9.373092
2013
            8.435212
2014
            7.226895
2015
            6.297886
2016
            5.750313
2017
            5.281027
```

```
sns.barplot(
  x = "year", y = "pct_unemployed",
  color = "cornflowerblue",
  data = employment)
```


print(hispanic_unemployment)

	year	pct_hisp_male_25to54_unemp	pct_hisp_female_25to54_unemp	
0	2011	9.352638	11.426135	
0	2012	8.062535	10.751855	
0	2013	6.915451	9.524808	
0	2014	5.724187	8.285590	
0	2015	5.040303	7.070101	
0	2016	4.568206	6.521980	
0	2017	4.184646	5.706956	


```
# Rename columns
col_rename = {"pct_hisp_male_25to54_unemp": "male",
             "pct_hisp_female_25to54_unemp": "female"}
hispanic_unemployment.rename(columns = col_rename, inplace = True)
# Melt data frame
tidy_unemp = hispanic_unemployment.melt(
        id_vars = "year",
        value_vars = ["male", "female"],
        var_name = "sex",
        value_name = "pct_unemployed")
```

```
# Rename columns
col_rename = {"pct_hisp_male_25to54_unemp": "male",
             "pct_hisp_female_25to54_unemp": "female"}
hispanic_unemployment.rename(columns = col_rename, inplace = True)
# Melt data frame
tidy_unemp = hispanic_unemployment.melt(
        id_vars = "year",
        # value_vars = ["male", "female"],
        var_name = "sex",
        value_name = "pct_unemployed")
```

```
pct_unemployed
    year
             sex
   2011
            male
                         9.352638
   2012
            male
                         8.062535
   2013
            male
                         6.915451
            male
   2014
                         5.724187
   2015
            male
                         5.040303
   2016
            male
                         4.568206
   2017
            male
                         4.184646
   2011
          female
                        11.426135
          female
   2012
                        10.751855
8
   2013
          female
                         9.524808
          female
10
   2014
                         8.285590
   2015
          female
                         7.070101
   2016
          female
                         6.521980
          female
   2017
13
                         5.706956
```


Creating a Grouped Bar Chart

Let's practice!

ANALYZING US CENSUS DATA IN PYTHON

Commuting Patterns

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

Commuting Tables

Commuting Subjects

- Means of transportation (car, public transit, etc.)
- Travel time
- Time leaving for/arriving at work

Commuting Geographies

- Residence: where people sleep
- Workplace: where people work; can use to determine workforce population for county, tract, etc.

Congestion Pricing in New York City

- Currently being debated in NYC (early 2019)
- Previous attempt failed (2007)
- Concerns over cost for low- and middle-income households

¹ Photo by Brian Jeffery Beggerly (CC BY 2.0)

Table B08519: Means Of Transportation To Work By Workers' Earnings In The Past 12 Months (In 2017 Inflation-Adjusted Dollars) For Workplace Geography

```
Total
   $1 to $9,999 or loss
   $10,000 to $14,999
   $15,000 to $24,999
   $25,000 to $34,999
   $35,000 to $49,999
   $50,000 to $64,999
   $65,000 to $74,999
   $75,000 or more
Car truck or van - drove alone
    <repeat income categories>
Car truck or van - carpooled
    <repeat income categories>
Public transportation (excluding taxicab)
    <repeat income categories>
etc...
```

API Response

```
print(r.json())
```

Reshaping the Data

```
# Read data row into list
data_row = r.json()[1][:-2]
# Break data row into list of lists
iter_len = 8
data = [data_row[i:i+iter_len] for i in range(0, len(data_row), iter_len)]
print(data)
```

```
[['10927', '9172', '19659', '22110', '32287', '32977', '15693', '106972'],
['3663', '2518', '5484', '5625', '8028', '7990', '3369', '22958'],
['139358', '97178', '200514', '184510', '255491', '240973', '116673', '700808'],
['16743', '9117', '15900', '13710', '17442', '20206', '10370', '85879'], ...]
```


Constructing the Data Frame

Constructing the Data Frame

print(manhattan)

```
0k
                           10k
                                    15k
                                                                      75k
                                                     50k
                                                             65k
drove_alone
                  10716
                          8965
                                  19294
                                                   31502
                                                           15519
                                                                   104078
carpooled
                   3740
                          2451
                                   5852
                                                    7994
                                                            3438
                                                                    22625
public
                 140957
                         99474
                                 197241
                                                  235158
                                                          111959
                                                                   654800
walked
                  16795
                          9045
                                  15451
                                                   20704
                                                           10663
                                                                    83681
                                   4515
                   3201
                          2209
                                                    6551
                                                            3029
                                                                    35572
taxi
worked_at_home
                                                                    19598
                   6854
                          3885
                                   5489
                                                    7776
                                                            2809
[6 rows x 8 columns]
```


Constructing the Heatmap

```
# Create heatmap of commuters by mode by income
sns.heatmap(manhattan, annot=manhattan // 1000, fmt="d", cmap="YlGnBu")
```


Let's practice!

ANALYZING US CENSUS DATA IN PYTHON

Migration

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

ACS Mobility Tables - Common Columns

Table names "B07xxx", generally with columns like these:

- Total living in area (current residence)
 - Same house 1 year ago (i.e. did not move)
 - Moved within county
 - Moved from a different county, same state
 - Moved from a different state
 - Moved from abroad

ACS Mobility Tables - Additional Features

- Mobility crossed with:
 - Age
 - Educational Attainment
 - Income
 - Citizenship Status
 - etc.
- Tables based on residence 1 year ago
- Puerto Rico (e.g. B07001PR: Geographical Mobility in the Past Year by Age for Current Residence in Puerto Rico)

Going to California

```
print(to_cali_2016)
```

```
move_status persons
0 same_house 32740745
1 within_county 3581323
2 within_state 1062756
3 different_state 501384
4 abroad 305148
```


Migration Flows

Table 1. State-to-State	Migration Flo	ows¹: 2016								
Dataset: 2016 American	Community S	urvey 1-Yea	r Estimates							
Universe: Population 1 y	ear and over									
	Population 1	1 year and	0	4	Same	state of	Different sta	te of residen	ice 1 year ag	0
	ove	-	Same house	1 year ago	residence	1 year ago	To	tal	Alaba	ama
Current residence in	Estimate	MOE	Estimate	MOE	Estimate	MOE	Estimate	MOE	Estimate	MOE
United States ²	319,361,956	+/- 30,974	272,660,098	+/- 208,903	36,952,658	+/- 198,593	7,552,536	+/- 73,712	99,892	+/- 7,271
Alabama	4,810,126	+/- 3,913	4,141,850	+/- 18,249	529,994	+/- 17,409	122,220	+/- 9,811	N/A	N/A
Alaska	731,760	+/- 1,282	593,897	+/- 7,921	100,004	+/- 6,403	31,300	+/- 3,641	423	+/- 337
Arizona	6,851,836	+/- 4,173	5,586,753	+/- 30,225	938,077	+/- 26,500	273,257	+/- 14,805	894	+/- 543
Arkansas	2,949,650	+/- 3,135	2,484,705	+/- 17,957	384,811	+/- 15,832	71,083	+/- 6,657	2,057	+/- 1,295
California	38,783,436	+/- 10,247	33,594,813	+/- 62,303	4,337,251	+/- 59,356	514,758	+/- 19,678	3,045	+/- 1,187
Colorado	5,476,928	+/- 3,255	4,466,067	+/- 27,786	754,712	+/- 24,804	223,260	+/- 12,315	2,328	+/- 1,640
Connecticut	3,541,758	+/- 2,975	3,116,440	+/- 16,535	323,316	+/- 14,648	75,586	+/- 6,930	1,102	+/- 930
Delaware	942,073	+/- 1,325	817,779	+/- 9,121	85,147	+/- 8,425	33,400	+/- 3,275	148	+/- 253
District of Columbia	672,022	+/- 1,765	538,547	+/- 7,335	64,166	+/- 6,120	58,154	+/- 4,335	140	+/- 161
Florida	20,401,575	+/- 7,828	17,176,492	+/- 49,542	2,387,227	+/- 43,437	605,018	+/- 21,606	11,353	+/- 2,540

State-to-State Migration Matrix

print(state_to_state.head())

		Alabama	Alaska	Arizona		Wisconsin	Wyomina	Puerto Rico
Λla	bama	NaN	576.0	1022.0	• • •	874.0	539.0	335.0
Ala		423.0	NaN	1176.0	• • •	260.0	291.0	848.0
Ari	zona	894.0	1946.0	NaN	• • •	6736.0	925.0	1462.0
Ark	ansas	2057.0	103.0	836.0	• • •	539.0	178.0	857.0
Cal	ifornia	3045.0	4206.0	33757.0		7354.0	2674.0	1102.0

State-to-State Migration Heatmap

sns.heatmap(state_to_state, cmap="YlGnBu")

Let's practice!

ANALYZING US CENSUS DATA IN PYTHON

Is the Rent Too Damn High?

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

Definitions

Different ways of calculating rent:

- Contract Rent: Rent paid on a lease
- **Gross Rent**: Rent plus utilities; utilities may be included in contract rent on some leases, paid separately by the renter on other leases

Rent burden:

- Rent Burden: Paying 30% or more of household income in rent
- Severe Rent Burden: Paying 50% or more of household income in rent

Table B25074: HH Income By Gross Rent As a Percentage of HH Income in the Past 12 Months

```
Total
   Less than $10,000
       Less than 20.0 percent
       20.0 to 24.9 percent
       25.0 to 29.9 percent
       30.0 to 34.9 percent
       35.0 to 39.9 percent
       40.0 to 49.9 percent
       50.0 percent or more
       Not computed
   $10,000 to $19,999
   $20,000 to $34,999
   $35,000 to $49,999
   $50,000 to $74,999
   $75,000 to $99,999
   $100,000 or more
```

United States Rent Share of Income, ACS 2012-2016

	total	42835169
ı	inc_under_10k	5558843
ı	inc_under_10k_rent_under_20_pct	57052
ı	inc_under_10k_rent_20_to_25_pct	58042
ı	inc_under_10k_rent_25_to_30_pct	208806
ı	inc_under_10k_rent_30_to_35_pct	177709
ı	inc_under_10k_rent_35_to_40_pct	102565
	inc_under_10k_rent_40_to_50_pct	150153
ı	inc_under_10k_rent_over_50_pct	3381537
	<pre>inc_under_10k_rent_not_computed</pre>	1422979
	inc_10k_to_20k	7027373
	inc_10k_to_20k_rent_under_20_pct	213000
	etc	

Calculating Rent Burden

```
print(rent.columns[10:19])
```


Calculating Rent Burden

```
rent["inc_10k_to_20k_rent_burden"] = 100 * (
    rent["inc_10k_to_20k_rent_30_to_35_pct"] +
    rent["inc_10k_to_20k_rent_35_to_40_pct"] +
    rent["inc_10k_to_20k_rent_40_to_50_pct"] +
    rent["inc_10k_to_20k_rent_over_50_pct"]
    rent["inc_10k_to_20k"] -
    rent["inc_10k_to_20k_rent_not_computed"]
```

Calculating Rent Burden

```
print(rent["inc_10k_to_20k_rent_burden"])
```

0 87.008024

Name: inc_10k_to_20k_rent_burden, dtype: float64

Calculating Rent Burden in a Loop

Calculating Rent Burden in a Loop

```
# Create new data frame with just the geography name
rent_burden = rent["name"]
# Loop over the list of income categories
for income in incomes:
    # Construct column names
    rent_burden[income] =
        100 * (rent[income + "_rent_30_to_35_pct"] +
        rent[income + "_rent_35_to_40_pct"] +
        rent[income + "_rent_40_to_50_pct"] +
        rent[income + "_rent_over_50_pct"]) / (
        rent[income] - rent[income + "_rent_not_computed"])
```

United States Rent Burden by Income Category

print(rent_burden.squeeze())

name	United States
inc_under_10k	92.1685
inc_10k_to_20k	87.008
inc_20k_to_35k	74.7448
inc_35k_to_50k	43.0434
inc_50k_to_75k	21.0937
inc_75k_to_100k	9.11853
inc_over_100k	3.14882
Name: 0, dtype:	object

Let's practice!

ANALYZING US CENSUS DATA IN PYTHON

Congratulations!

ANALYZING US CENSUS DATA IN PYTHON

Lee Hachadoorian

Asst. Professor of Instruction, Temple University

Decennial Census of Population and Housing

- Full count conducted every 10 years
- Covers core demographic topics
- Available for smallest geographies

American Community Survey

- Annual survey of 1.5% of households
- Covers a wide range of social and economic topics
- Available for 1-year and 5-year averages
- Pay attention to Margins of Error
- Limited availability for smallest geographies

Census Topics

Some topics we covered

- Race
- Hispanic Origin
- Employment and Labor Force
- Commuting
- Migration
- Home Value/Rent
- Health Insurance
- Computer/Internet Access

Some topics not covered

- Disability Status
- Veteran Status
- Industry and Occupation
- Poverty
- School Enrollment
- Grandparents as Caregivers
- Marital Status
- Language Spoken at Home

pandas

- Data aggregation with groupby()
- Joining data with merge()
- Tidy data: pivot() and melt()

- pandas Foundations
- Manipulating DataFrames with pandas
- Merging DataFrames with pandas

seaborn

- Introduction to Data Visualization with Python
- Data Visualization with Seaborn

geopandas

- Working with Geospatial Data in Python
- Visualizing Geospatial Data in Python

Have fun exploring the Census!

ANALYZING US CENSUS DATA IN PYTHON

