

Углеродные наноструктурные имплантаты – инновационное медицинское решение

Основные требования к свойствам имплантатов:

- ✓ Прочность
- Биологическая инертность
- Остеокондуктивность
- ✓ Отсутствие помех при послеоперационной визуализации
- Удобство в работе

Свойства углеродных наноструктурных имплантатов:

- ✓ содержание углерода 99,9%; размер пор 500 микрон;
- ✓ биосовместимость, биологическая инертность;
- ✓ надежная опороспособность;
- ✓ плотность, близкая к костной ткани человека;
- ✓ легкость, высокая прочность;
- ✓ низкий удельный вес (в 4 раза легче титана);
- обладает высокой поверхностной энергией и электропроводностью;
- обеспечивает возможность получения качественного изображения при MPT, КТ без искажений;
- рентгенпрозрачность;
- обладает бактерицидными свойствами;
- форма позволяет создавать лекарственный контейнер для «адресной доставки» препаратов и/или размещать в нем остеоиндукторы, костные трансплантаты
- возможна интраоперационная обработка и моделирование формы и размера;
- ✓ возможно изготовление по индивидуальным размерам для пациента;
- идеальное решение для пациентов при планировании последующей лучевой терапии.

ОСОБЕННОСТИ УГЛЕРОДНЫХ НАНОСТРУКТУРНЫХ ИМПЛАНТАТОВ:

✓ Обеспечивают активный проростание новообразуемой кости в поры имплантата с образованием костно-углеродного блока, высокую опороспособность.

Предназначены для:

- полного или частичного замещения тел позвонков;
- замещения межпозвонковых дисков при их дегенеративно дистрофических поражениях;
- замещения дефектов при переломах костей верхних и нижних конечностей;
- замещения межфрагментарного диастаза при удлинении конечностей;
- восстановления высоты мыщелков бедренной и большеберцовой костей при их импакт-переломах;
- замещения дефектов костей свода черепа;
- ◆ для замещения дефектов при резекции остеомиелитических, туберкулезных и злокачественных образованиий.

Углеродные наноимплантаты выпускаются изделиями различных типов, включающих в себя широкую линейку типоразмеров.

Возможно изготовление имплантатов по индивидуальным размерам с учетом особенностей замещаемых дефектов костей или позвонков.

Углеродные наноструктурные имплантаты являются инновационными импортозамещающими медицинскими изделиями, технология производства которых защищена патентами.

Включены в международную глобальную номенклатуру медицинских изделий (GMND).

типы имплантатов

Для замещения дефектов тел позвонков

 Для замещения дефектов межпозвоночных дисков

Для замещения дефектов трубчатых костей

Тип 30

Тип 31

Для использовния при клиновидной остеотомии

Тип 28

Имплантаты контейнерного типа

Для комбинации с:

- ◆ алло- и/или аутокостью;
- гидроксиапатитом (ГА) или другими остеокондуктивными или остеоиндуктивными матриалами;
- тромбоцитарными взвесями;
- антибактериальными и антимикробными препаратами.

4

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

- ✓ дегенеративно-дистрофические поражения костной системы, в том числе позвонков, межпозвонковых дисков, суставов конечностей;
- ✓ воспалительные заболевания позвоночника туберкулез и остеомиелит;
- ✓ травмы скелета, требующие замещения дефектов длинных и коротких трубчатых костей и фиксации костных фрагментов;
- ✓ ложные суставы;
- ✓ опухолевые поражения костей для восполнения протяженных костных дефектов и формирования временных и / или постоянных протезов.
- ✓ варусная, вальгусная деформация оси сустава или кости, укороче ние / удлинение конечностей — корригирующие и удлиняющие остео томии с замещением новообразованных дефектов.

КЛИНИЧЕСКИЙ ПРИМЕР №1

Пациентка Б., 11 лет. Остеобластома тела С6 позвонка.

12 месяцев после операции – резекции тела позвонка, замещения дефекта тела УНИ (отмечен костно- углеродный блок).

КЛИНИЧЕСКИЙ ПРИМЕР №2

Пациент В., 57 лет. Диагноз: Неспецифический спондилит L2=3.

Деструкция тел L2-3 позвонков.

На КТ реконструкции: деструкция тел L2-3 позвонков.

Операция: резекция L2–3, передний спондилодез УНИ+ аутотрансплантатом.

КТ через 1 месяц после операции.

КТ через 12 месяцев после операции: сформировался костно-угле-родный блок.

6

Контактная информация

Компания «НаноТехМед Плюс» является отечественным инновационным предприятием по разработке технологий и промышленному производству медицинских изделий из углерода.

Идея выбора углерода в качестве материала для изготовления медицинских изделий базируется на его уникальном природном свойстве — высокой биологической совместимости.

Углерод, сам по себе являясь частицей живой природы, участвует в формировании всех тканей человеческого организма: около 70 % массы мышц и 40 % костной ткани человека состоят из углерода. Это уникальное свойство

углерода положено в основу разработки композиционного материала, который по своим физико-техническим и медико-биологическим характеристикам максимально приближен к кости человека.

В содружестве с ведущими специалистами в области травматологии, ортопедии, нейрохирургии, челюстнолицевой хирургии компания разрабатывает и внедряет новые медицинские технологии лечения и реабилитации пациентов, страдающих заболеваниями опорно-двигательного аппарата, с использованием углеродных наноструктурных имплантатов (УНИ).

Углеродные наноструктурные имплантаты разработаны и были впервые использованы в клинической практике в нашем институте. Поэтому есть все основания говорить, что в ряду современных материалов, применяемых в костно-суставной хирурги, углеродные имплантаты неизбежно займут достойное место. Думаю, что со временем эти имплантаты будут очень востребованы при лечении заболеваний, сопровождающихся утратой значительных по протяженности фрагментов костей — при воспалительных и опухолевых поражениях скелета, когда особое значение приобретает устойчивость материала к воздействию бактериального агента.

Мушкин А.Ю., д.м.н., профессор, руководитель отделения детской фтизиологии и ортопедии ФГБУ «СПб НИИ фтизиопульмонологии»

Углеродные материалы поражают своей биосовместимостью. Прочные и твердые, лег-кие и эластичные углеродные композиты могут стать основным конструкционным материалом в ортопедической имплантологии. Превосходные биомеханические свойства открывают перспективу создания уникальных узлов трения эндопротезов суставов, которые по работоспособности намного превзойдут все известные в настоящее время конструкции.

Гаврюшенко Н.С., д.т.н., профессор, руководитель испытательной лаборатории ФГБУ ЦИТО им. Н.Н. Приорова.

