(NASA-CR-167989) LOW STRAIN, LONG LIFE CREEP PATIGUE OF AF2-1DA AND INCO 718 (Pratt and Whitney Aircraft Group) 152 p CSCL 11F HC AOS/MF AOI

N84-10268

Unclas 63/2642313

			
1. Report Number NASA CR-167989	2. Govt Accession No.	3. Recipient's Catalog N	lumber
4.Title (and Subtitle)		5. Report Date	
LOW STRAIN LONG LIFE	NO0 510	April 1983	
CREEP-FATIGUE OF AF2-1DA AND I	NCO /18	6. Performing Organizat	ion Code
7. Author(s) A. B. Thakker, B. A. Cowles		8. Performing Organizat FR-15652	ion Report No.
		<u> </u>	
9. Performing Organization Name and Address United Technologies Corporation		10. Work Unit No.	
Pratt & Whitney Aircraft Group		44 - Control on Control	
Government Products Division		11. Contract or Grant N NAS3-22387	10.
P.O. Box 2691, West Palm Beach, FL	33402	1480-22001	
12. Sponsoring Agency Name and Address		13. Type of Report and	Period Covered
National Aeronautics and Space Admini	stration	Contractor Report	
Washington, D. C. 20546			
		14. Sponsoring Agency	Code
15. Supplementary Notes		4	•
Project Manager, Dr. G. R. Halford			
NASA Lewis Research Center, Clevelan	d, Ohio		
16. Abstract			
Two aircraft turbine disk alloys their low strain long life creep-fatigue		DA and INCO 718 we	ere evaluated for
Static (tensile and creep rupture	e) and cyclic properties	of both alloys were ch	aracterized. The
controlled strain LCF tests were condu	ucted at 760°C (1400°F)	and 649°C (1200°F) f	or AF2-1DA and
INCO 718, respectively. Hold times	were varied for tensile	, compressive and ter	sile/compressive
strain dwell (relaxation) tests. Stress (c	creep) hold behavior of A	AF2-1DA was also eval	uated.
Generally, INCO 718 exhibited n	nore pronounced reduct	ion in cyclic life due to	hold than AF2-
1DA. The percent reduction in life for	or both alloys for strain	ı dwell tests was grea	ter at low strain
ranges (longer life regime). Changin			
corresponding reductions in life. The			ilure mechanism
was predominantly transgranular for A	F2-1DA and intergranu	lar for INCO 718.	
17 Key Woods	40 51-4-11 41	nn Statomant	
17. Key Words		on Statement	
Creep-Fatigue INCO 718 Strain Control AF2-1DA	Unclassi	ified — Unlimited	
Strain Control AF2-1DA Low Cycle Fatigue (LCF) Strain Hole	d		
Life Prediction Stress Hole			
Low Strain-Long Life Turbine Di			
	ISKS		
	ISKS		
	curity Classif. (of this page)	21. No. of Pages	22. Price*
		21. No. of Pages	22. Price*

TABLE OF CONTENTS

Section	Page
INTRODUCTION	1
MATERIAL PROCUREMENT AND BASIC MECHANICAL PROPERTIES	2
Material Description, Composition, Heat Treatment and Qualification Tensile And Creep-Rupture Properties	2 5
BASIC LOW CYCLE FATIGUE PROPERTIES	23
Specimen Design, Experimental Procedure and Data Reduction	23 32
CREEP — FATIGUE PROPERTIES	39
Strain Hold Tests Stress Hold Tests	39 51
METALLOGRAPHIC EVALUATIONS	70
GATORIZED® AF2-1DA INCO 718	71 78
CONCLUSIONS AND SUMMARY	79
APPENDIX A — REGRESSION PLOTS VERSUS CYCLES TO FAILURE	80
APPENDIX B — STRESS RANGE VS CYCLE PLOTS FOR GATORIZED® AF2-1DA AND INCO 718	120
APPENDIX C — LCF RESULTS FOR GATORIZED® AF2-1DA AND INCO 7.8	136
REFERENCES	141

PRECEDING PAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS

Figure	
1	Typical AF2-1DA Pancake Microstructure Following Solution Heat Treatment
2	Typical Inconel 718 Microstructure Following Solution Heat Treatment
3	Tensile and Creep Rupture Specimen
4	Extensometer Systems Used For Determining Poisson's Ratio for AF2- 1DA and Inconel 718. Also Shown Are Tensile Load Train and Fur- nace System
5	Close-up of Axial and Diametric Extensometer Systems Used To Determine Poisson's Ratio for GATORIZED® AF2-1DA and INCO 718
6	Average Monotonic Tensile Stress-Strain for AF2-1DA at 760°C (1400°F)
7	Average Monotonic Tensile Stress-Strain for Inconel 718 at 649°C (1200°F)
8	Creep Rupture Characterization of AF2-1DA at 760°C (1400°F)
9	Creep Rupture Characterization of INCO 718 at 649°C (1200°F)
10	Creep Strain vs Time for AF2-1DA at 760°C (1400°F)
11	Creep Strain vs Time for INCO 718 at 649°C (1200°F)
12	Strain Control Low Cycle Fatigue (LCF) Specimen (Cylindrical Gage) for Gatorized® AF2-1DA
13	Strain Control Low Cycle Fatigue (LCF) Specimen (Cylindrical Gage) for Inconel 718
14	Servohydraulic Closed-Loop LCF Test Machine
15	Blowup of LVDT Extensometer Setup
16	Typical LCF Cycle, Re -1
17	Composite Experimental Fatigue Life Model Using Summation of Elastic and Inelastic Strain Components
18	Total Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle GATORIZED® AF2-1DA Data at 760°C (1400°F)
19	Total Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle INCO 718 Data at 649°C (1200°F)

Figure	
20	Stress Range vs Inelastic Strain Range for AF2-1DA, 760°C (1400°F), 30 cpm, Strain Ratio of -1
21	Stress Range vs Inelastic Strain Range for INCO 718, 649°C (1200°F), 30 cpm, Strain Ratio of -1
22	Typical Hysteresis Loops for GATORIZED® AF2-1DA Cyclic Strain Controlled LCF Tests (Test Frequency = 0.5 Hz; Temp = 760°C (1400°F); Cycles Shown Taken at N _{f/2}); R _c = -1
23	Typical Stress Strain Hysteresis Loops for JNCO 718 Cyclic-Strain-Controlled LCF Tests (Test Frequency = 0.5 Hz; Temp. = 649°C (1200°F); Cycles Shown Taken at $N_{t/2}$); $R_{\epsilon} = -1$
24	Typical Tensile Strain Hold LCF Test
25	Peak Tensile Strain Hold Time Data Results for GATORIZED® AF2-1DA at 760°C (1400°F)
26	Peak Tensile Strain Hold Time Test Results for INCO 718 at 649°C (1200°F)
27	Typical Compressive Strain Hold LCF Test
28	Peak Compressive Strain Hold Time Test Results for GATORIZED® AF2-1DA at 760°C (1400°F)
29	Peak Compressive Hold Time Test Results for INCO 718 at 649°C (1200°F)
30	Typical Tensile-Compressive Strain Hold LCF Test
31	Peak Ten. and Comp. Strain Hold Data for GATORIZED® AF2-1DA at 760°C
32	Peak Tensile and Compressive Strain Hold Data for INCO 718 at 649°C (1200°F)
33	Typical Tensile Stress Hold LCF Test
34	Idealized First-Cycle Hysteresis Plots for Tensile Stress-Hold LCF Testing
35	Typical Compressive Stress Hold LCF Test
36	Typical Tensile-Compressive Stress Hold LCF Test
37	Peak Stress Hold Data for GATORIZED® AF2-1DA at 760° (1400°F),

The state of the s

Figure	
38	Typical Stress-Hold, Stress Control LCF Test
39	Creep Extension (Ratcheting Type) Data for AF2-1DA at 760°C (1400°F), R _e = Variable
40	$0.2^{c_{\ell}}$ Yield Strength vs Temperature for AF2-1DA (Reference 3)
41	Temperature Effect on Strain Hold Data for GATORIZED® AF2-1DA R _e = -1
42	Temperature Effect on Strain Hold Data for AF2-1DA 30 cpm, Total Strain Range 1% Strain Ratio of -1
43	Mean Stress vs Total Strain Range for a Typical Turbine Disk Alloy
44	Mean Stress Effect on LCF Data for GATORIZED® AF2-1DA at 760°C (1400°F), 30 cpm, R _c = -0
4 5	Typical All Tensile Strain Hold LCF Test
46	Strain Ratio Effect on Continuous Cycle Data for INCO 718 at 649°C (1200°F), 30 cpm
47	GATORIZED® AF2-1DA Strain Control LCF Fracture Faces
48	SEM Fractographs of GATORIZED® AF2-1DA Samples No. 14 (Top) and No. 21 (Bottom) Showing Faceted Stage I Origin (a), Heavily Oxidized Transgranular Fracture (b), and Surface Origins (c), Oxidized Transgranular Fracture With Striations (d)
49	SEM Fractographs of GATORIZED® AF2-1DA Samples No. 31 (Top) and No. 73 (Bottom) Showing Surface Origin (a), Transgranular Fracture (b), Stage I Faceted Origins (c), and Transgranular Fracture With Secondary Cracking
50	INCO 718 Strain Control LCF Fracture Faces
51	SEM Fractograph of INCO 718 Samples No. 10 (Top) and No. 29 (Bottom) Showing Intergranular Fracture at Origin (a and c) Turning Transgranular at a Later Stage (b and d)
52	SEM Fractograph of INCO 718 Samples No. 42 (Top) and No. 50 (Bottom) Showing Mixed Mode Fracture at Origin (a) Turning Transgranular (b), Intergranular Fracture (c) Turning Transgranular With Distinct Striation Marks
A-1	Elastic Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)

Figure		Page
A-2	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)	83
A-3	Total Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)	84
A-4	Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)	88
A-5	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)	89
A-6	Total Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (140°F)	90
A-7	Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)	94
A-8	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)	95
A -9	Total Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F).	96
A-10	Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at 649°C (1200°F)	99
A-11	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at 649°C (1200°F)	100
A-12	Total Strain Range vs Cycles to Failure for Fully Reversed Peak Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at 649°C (1200°F)	101
A-13	Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	105
A-14	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	106
A -15	Total Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C	107

Figure		Page
A-16	Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	11:
A-1'ı	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	112
A-18	Total Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	113
A-19	Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile and Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	117
A-20	Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile and Compressive Strain 150 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	118
A-21	Total Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile and Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)	119
B-1	Stress Range vs Cycles for AF2-1DA at 760°C (1400°F) (30 cpm, R = 1)	122
B-2	Stress Range vs Cycles for AF2-1DA at 760°C (1400°F) (30 cpm, R = 1)	124
B-3	Stress Range vs Cycles for AF2-1DA at 760°C (1400°F) (30 cpm, R = 1)	127
B-4	Stress Range vs Cycles for INCO 718 at 649°C (1200°F) (0.5 Hz 30 cpm)	129
B-5	Stress Range vs Cycles for INCO 718 649°C (1200°F) (0.5 Hz 30 cpm)	130
B-6	Stress Range vs Cycles for INCO 718 649°C (1200°F) (0.5 Hz 30 cpm)	133
B-7	Stress Range vs Cycles for INCO 718 649°C (1200°F) (0.5 Hz 30 cpm)	135

The second of th

7

LIST OF TABLES

Table	
1	Qualification Test Results — AF2-1DA Test Results
2	Chemical Composition of Nickel Base Alloy AF2-1DA-100 Mesh Powder
3	Qualification Test Results — INCO 718*
4	Chemical Composition of INCO 718*
5	Tensile Properties for GATORIZED® AF2-1DA at 760°C (1400°F)
6	Tensile Properties for INCO 718 at 649°C (1200°F)
7	Tensile Stress-Strain Results for GATORIZED® AF2-1DA at 760°C (1400°F)
8	Tensile Stress-Strain Results for INCO 718 at 649°C (1200°F)
9	Creep-Rupture Properties of GATORIZED® AF2-1DA at 760°C (1400°F)
10	Creep-Rupture Properties of INCO 718 at 649°C (1200°F)
11	Continuous Cycle Controlled Strain LCF Results for GATORIZED ² AF2-1DA
12	Continuous Cycle Controlled Strain LCF Results for INCO 718
13	Tensile Strain Hold Controlled Strain LCF Results for GATORIZED® AF2-1DA
14	Tensile Strain Hold Controlled Strain LCF Results for INCO 718
15	Compressive Strain Hold Controlled Strain LCF Results for GATOR-IZED® AF2-1DA
16	Compressive Strain Hold Controlled Strain LCF Results for INCO 718
17	Tensile and Compressive Strain Hold Controlled Strain LCF Results for GATORIZED® AF2-1DA
18	Tensile and Compressive Strain Hold Controlled Strain LCF Results for INCO 718
19	Stress Hold Controlled Strain LCF Results for GATORIZED® AF2-1DA
20	Creep Extension (Ratcheting Type) LCF Results for GATORIZED®

LIST OF TABLES (Continued)

Table		Page
21	LCF Results for GATORIZED® AF2-1DA	63
22	Continuous Cycle LCF Results for GATORIZED® AF2-1DA	66
23	Strain Hold Effects at Re = 0 for INCO 718	68
24	Controlled Strain Low-Cycle Fatigue Samples Characterized by Fractography	70
25	Summary of Fractographic and Metallographic Studies	71
A-1	Continuous Cycle Controlled Strain (AF2-1DA) Cyclic Properties	81
A-2	0.5 Minute Tensile Strain Hold (AF2-1DA) Cyclic Properties	85
A-3	2.0 Minutes Tensile Strain Hold (AF2-1DA) Cyclic Properties	86
A-4	15.0 Minutes Tensile Strain Hold (AF2-1DA) Cyclic Properties	87
A-5	0.5 Minute Compressive Strain Hold (AF2-1DA) Cyclic Properties	91
A-6	2.0 Minutes Compressive Strain Hold (AF2-1DA) Cyclic Properties	92
A-7	15.0 Minutes Compressive Strain Hold (AF2-1DA) Cyclic Properties	93
A-8	Tensile and Compressive 0.5 Minute Hold (AF2-1DA) Cyclic Properties	97
A-9	Continuous Cycle Controlled Strain (INCO 718) Cyclic Properties	98
A-10	0.5 Minute Tensile Strain Hold (INCO 718) Cyclic Properties	
A-11	2.0 Minutes Tensile Strain Hold (INCO 718) Cyclic Properties	103
A-12	15.0 Minutes Tensile Strain Hold (INCO 718) Cyclic Properties	104
A-13	0.5 Minute Compressive Strain Hold (INCO 718) Cyclic Properties	108
A-14	2.0 Minutes Compressive Strain Hold (INCO 718) Cyclic Properties	109
A-15	15.0 Minutes Compressive Strain Hold (INCO 718) Cyclic Properties .	110
A-16	0.5 Minute Tensile and Compressive Strain Hold (INCO 718) Cyclic Properties	114
A-17	2.0 Minutes Tensile and Compressive Strain Hold (INCO 718) Cyclic Properties	115
A-18	15 Minutes Tensile and Compressive Strain Hold (INCO 718) Cyclic Properties	116

LIST OF TABLES (Continued)

T'able		Pag
B-1	Continuous Cycle Controlled Strain	12
B-2	Peak Tensile Strain 15 Min Hold	12
B-3	Peak Compressive Strain 15 Min Hold	12
B-4	Peak Tensile Stress Hold	120
B-5	Continuous Cycle Controlled Strain	128
B-6	Peak Tensile Strain 15 Min Hold	13
B-7	Peak Compressive Strain 15 Min Hold	13
B-8	Peak Tensile and Compressive Strain 15 Min Hold	134
C-1	LCF Results for GATORIZED® AF2-1DA Testing Conducted at 760°C (1400°F) at 0.5 Hz (30 cpm) Ramp Frequency	137
C-2	LCF Results for INCO 718 Testing Conducted in Air at 649°C (1200°F) at 0.5 Hz (30 cpm) Ramp Frequency	139

SUMMARY

Two aircraft turbine disk alloys, GATORIZED® AF2-1DA and INCO 718 were evaluated for their low strain long life creep-fatigue behavior.

Static (tensile and creep rupture) and cyclic properties of both witoys were characterized. The controlled strain LCF tests were conducted at 760°C (1400°F) and 649°C (1200°F) for AF2-1DA and INCO 718, respectively. Hold times were varied for tensile, compressive and tensile/compressive strain hold (relaxation) tests. Stress (creep) hold behavior of AF2-1DA was also evaluated.

Generally, INCO 718 exhibited more pronounced reduction in cyclic life due to hold than AF2-1DA. The percent reduction in life for both alloys for strain hold tests was greater at low strain ranges (longer life regime). Changing hold time from 0 to 0.5, 2.0 and 15.0 min. resulted in corresponding reductions in life. The continuous cycle and cyclic/hold initiation was predominantly transgranular for AF2-1DA and intergranular for INCO 718.

INTRODUCTION

The use of advanced, high-strength materials and processing techniques has resulted in reduced weight and increased performance for modern aircraft gas turbine engines. High-strength, corrosion-resistant nicke!-based superalloys are generally used for turbine disk applications in these engines. The cost of superalloy turbine disks has increased dramatically in the last decade, due largely to the use of complex shapes and edvanced materials and processing. At the same time, increased performance requirements have resulted in decreased cyclic lives for these components, and greatly increased engine life cycle costs. Since these disks are often low-cycle fatigue (LCF) limited (References 1 through 4), as a rate prediction of component fatigue life is essential to maximize reliability and safety, while simultaneously minimizing potentially enormous component replacement costs resulting from overconservatism.

Aircraft gas turbine engine disks are frequently limited in service life due to LCF. Fatigue life predictions for high-strength nickel-based superalloy turbine disks are complicated by the small cyclic inelastic strains exhibited by these alleys under the stress-temperature-time cycles of interest. Consequently, a realistic approach to fatigue life predictions for these alloys is to consider the relationship between total (inelastic plus elastic) cyclic strains and cyclic life. At temperatures within the creep range, it is necessary to develop a model that considers temperature, waveform, and time, in addition to cyclic strain range. It was felt that a model could be developed for fatigue life prediction of aircraft turbine disk alloys which is compatible with the method of Strainrange Partitioning. The accuracy of the life prediction system is partly contingent upon experimental simulation of the true mechanical behavior of materials.

Typical engine disk-loading imposes low cyclic strains at critical locations and may yield long LCF lives (10⁴ to 10⁵ cycles). Inelastic strains at these conditions are similarly quite low, yet can have a large effect on LCF life. At emperatures in the creep range of an alloy, time-dependent inelastic strains may be induced which are important, yet difficult to handle analytically in the design of aircraft gas turbine engine components.

The objective of the program was to generate the data base required for development of the model. The alloys selected for evaluation were the high-strength nickel based turbine disk alloys:

AF2-1DA, produced by the GATORIZING® isothermal forging process, and INCO 718 in bar stock form.

This program included tensile, creep-rupture, and axially loaded strain-controlled LCF tests for initiation under both cyclic and cyclic/hold conditions at 760°C (1400°F) for AF2-1DA alloy and at 650°C (1200°F) for INCO 718. This data base is required to develop an LCF life prediction model, which can analytically handle the effects of temperature, frequency, hold time, and waveshape in the cyclic life regime required by the gas turbine industry.

MATERIAL PROCUREMENT AND BAS. MECHANICAL PROPERTIES

Material Description, Composition, Heat Treatment and Qualification

Two nickel-base superalloys for aircraft gas engine disks were evaluated for resistance to cyclic crack initiation at low strain-range, long-life conditions. The alloys selected for evaluation were GATORIZED® AF2-1DA (produced from prealloyed powder) and INCO 718 (produced from ingot and tested in bar stock form).

GATORIZED® AF2-1DA. — The AF2-1DA alloy was produced using prealloyed powder and was vacuum atomized by Homogenous Metals, Inc., from a vacuum induction melted ingot. The starting powder conforming to AMS-5833 both in chemistry and particle size was filled into eight 15.2 cm (6 in.) cans with a 0.64 cm (0.25 in.) wall thickness. After an 8-hour soak at 1093°C (2000°F) each can was extruded at Reactive Metals, Inc., through a 5.46 cm (2.150 in.) extrusion die. After decanning all extrusions they were machined into mults, a proximately 19.0 cm (7.5 in.) long. Mults were then isothermally, superplastically, forged using the GATORIZING® process into pancakes at 1121°C (2050°F) at a strain rate of 0.05 mm/mm/min, and fully heat treated in four lots. Ten of the GATORIZED® AF2-1DA forgings approximately 15.2 cm (6.0 in.) × 1.58 cm (0.625 in.) high were received from NASA. This material was processed and forged earlier by Pratt & Whitney under contract NAS3-20947. The pertinent processing, composition, heat treatment, and material qualification details are as follows.

Based on gradient bar studies, the solution heat-treatment was devised as follows:

```
1133°C (2075°F) — Vacuum and hold for 45 min.

1204°C (2200°F) — heat at rate of 1 deg per min; hold for 1 hr followed by an argon quench.
```

The AMS 5856 stabilization and precipitation heat-treat cycle consisting of the following:

```
1121°C (2050°F) — 2 hr — Air Cool

704°C (1300°F) — 12 hr — Air Cool

815°C (1500°F) — 8 hr — Air Cool
```

Typical microstructure following solution heat treatment for all four lots are shown in Figure 1. No preferential directionality of grain structure was seen in 100× photomicrographs.

A total of four pancakes, one from each heat treat lot, were selected for mechanical properties evaluation under Contract NAS3-20947 (Reference 5). The chemical composition and material qualification test data are presented in Tables 1 and 2. Overall, the material did not meet specification requirements. It was however, considered suitable for the purposes of this program. Creep and Stress rupture were below specification parameters. The tensile data had excellent ductilily, but was marginal in Room Temperature 0.2% yield strength and 816°C (1500°F) tensile strength.

Inconel 718. — Inconel 718 is a nickel-based superalloy widely used in current production gas turbine engines. This alloy is used in compressor and turbine disk applications with maximum operating temperatures approaching 649°C (1200°F). This material was furnished by NASA in the form of 25.4 mm (1.0 in) OD centerless ground bar stock. The material was originally supplied by ATEK Metals Company, Woodlawn, Ohio, for use under a separate contract "NASA Benchmark Notch Tes. for Life Prediction" (Reference 6) program. The material was from Teledyne ALLVac Heat No. 5108. Vendor Supplied composition and certification test

ORIGINAL PAGE IS

results are listed in Tables 3 and 4 along with specification minimum and typical average properties. The material met all minimum specification requirements.

Kallings

Heat Treat Lot 1

Mag: 100X

Heat Treat Lot 2

ASTM Grain Size 1-3

Mag: 100X

Heat Treat Lot 3

Mag: 100X

Heat Treat Lot 4

FD 144891

Figure 1. — Typical AF2-1DA Pancake Microstructure Following Solution Heat Treatment

The INCO 718 as received (annealed) bar stock was fully heat treated to a solution cycle. The heat treatment details are as follows:

968°C (1775°F) — 1 hr — He Quench

718°C (1325°F) — 8 hr — Furnace Cool 38°C (100°F/hr)

to 612°C (1150°F) — 8 hr — Air Cool to Room Temperature

TABLE 1. — QUALIFICATION TEST RESULTS — AF2-1DA TEST RESULTS

										Rupture				Creep	
			Tensile				$816^{\circ}C$	816°C (1500°F)	551.6	551.6 MPa (80 ksi)	ksi)	760°C (1400°F)	760°C (1400°F) 482.6 MPa (70 ksi)	(70 ksi)
Heat		Test										Life	Life	Elong	ASTM
Treat	•	Temp	,	YS	L	TS	Elong	RA	Life	Elong	RA	0.1%	0.5%	100 hr	Grain
Lot No.	၁	(°F)	MPa	(ksi)	MPa	(ksi)	%	%	hr	%	%	hr	hr	%	Size
-	918	RT (1500)	969.4	(140.6) (136.7)	1529.9 1025.9	(221.9) (148.8)	20.0	23.0	15.4	7.4	10.0	30.7	78.6	0.246	1
8	816	RT 3 (1500)	948.7 943.9	(137.6) (136.9)	1524.4 1043.2	(221.1) (151.3)	20.0 21.3	24.5 30.6	14.4	12.1	14.6	17.5	44.9	0.390	-
m	816	RT (1500)	924.6 881.8	(134.1) (127.9)	1514.8 997.7	(219.7) (144.7)	18.0 20.0	21.6 30.2	18.5	9.3	12.9	3600	73.3	0.261	-
4	816	RT (1500)	924.6 939.1	(134.1)	1498.9 1019.0	(217.4) (147.8)	19.3 24.7	21.9	50.9	89 65	10.9	23.1	64.9	0.219	-
AMS 5881	R 816	RT (1500)	965.3 861.8	(140.0)	1316.0 1034.2	(190.0)	10.0	12.0 32.0	23.0	6.0	1	ì	100	l	1

TABLE 2. — CHEMICAL COMPOSITION OF NICKEL BASE ALLOY AF2-1DA-100 MESH POWDER

Producer: Homogeneous Metals, Inc. NMI Heat \times 3229/30R

	R	equired wt %	Actual*
Chemical Composition	min	max	wt %
Carbon	0.30	0.35	0.31
Manganese	_	0.10	0.01
Silicon	_	0.10	0.002
Phosphorus	_	0.015	0.005
Sulphur		0.015	0.04
Chromium	11.50 -	12.50	12.45
Cobalt	9.50 -	10.50	10.36
Molybdenum	2.50 -	3.50	3.13
Tungsten	5.50 -	6.50	
Titanium	2.75 -	3.25	2.84
Fantalum	1.00 -	2.00	
Aluminum	4.20 -	4.80	4.42
Boron	0.01 -	0.02	0.015
Zirconium	0.05 -	0.15	0.10
Oxygen		0.010 (100 ppm)	0.0041 (41 ppm)
Nitrogen	_	0.005 (50 ppm)	0.0006 (6 ppm)
Iron	_	1.00	0.10
Lead		0.0002 (2 ppm)	0.0001 (1 ppm)
Bismuth	_	0.00005 (0.5 ppm)	0.00001 (0.1 ppm)
Nickel		Remainder	Remainder

An optical micrograph taken after heat treatment is shown in Figure 2. The resulting microstructure was fine grained and uniform with average ASTM grain size of 7 or 8.

Tensile And Creep-Rupture Properties

Tensile Testing. — Tensile tests were conducted for GATORIZED® AF2-1DA and INCO 718 to establish the average values for the mechanical properties listed below:

- 1. Modulus of elasticity
- 2. Poisson's ratio
- 3. 0.2% offset yield
- 4. Ultimate strength
- 5. True fracture strength
- 6. Strain-hardening exponent
- 7. Reduction of area
- 8. Elongation.

All tensile tests were conducted per ASTM E8-69, "Tension Testing of Metallic Materials" using smooth round specimens with a 0.640 cm (0.252 in.) gage diameter and a 5.08 cm (2.220 in.) reduced section gage length as shown in Figure 3. The strain rate was maintained at 0.005 mm/mm/min (0.005 in./in./min) to the yield point and at a crosshead speed of 0.64 mm/min (0.025 in./min) from the yield point to the fracture point.

QUA IFICATION TEST RESULTS - INCO 718* TABLE 3. —

v⊹,;

	Lemi	Temper ure	S	UTS	0.2%	0.2% YS	Elongation,	RA,	Hard.
Source	၁	E.	MPa	ksi	MPa	ksi	%	%	R
a. Mec	a. Mechanical Properties	rties							
Vendor	21	70	1413	205	1152	167	21.2	41.2	43.6
Spec	21	2	1241	180	1034	150	12.0	15.0	38-48
Pyp Avg	21	2	1386	201	1165	169	18.0	30.0	j
Vendor	649	1200	1152	167	966	139	21.8	48.3	1
Spec	649	1200	1000	145	862	126	10.0	15.0	38-48
Typ Avg	649	1200	1110	181	972	141	19.0	35.0	1
b. Stre	b. Strees Rupture.								
Source	Temperature	ture °F	Stress MPa ksi		Life, hr	Elongation, %	RA , %		
Vendor	649	1200	769 110			25.8	l		
Spec		1200			0.5	>5.0	ı		

c. Grain Size

Vendor: Avg ASTM 10 Spec Avg < ASTM 4 with Max ASTM 2

*25.4 mm (1.0 in.) diameter centerless ground bar stock Teledyne Allvac heat No. 5108, Spec B50TFISAS-10, ATEK No. AT802370 Ref 5

ţ

TABLE 4. —CHEMICAL COMPOSITION OF INCO 718*

Chemical	Weigh	t Percent
Composition	Required	Actual
Al	0.3-0.7	0.49
В	0.006 Max	0.004
C	0.02-0.08	0.042
Cb+Ta	4.75-5.50	5.14
Co	1.0 Max	0.53
Cr	17.0-21.0	17.42
Cu	0.30 Max	0.05
Fe	15.0-21.0	Bal
Mn	0.35 Max	0.16
Mo	2.80-3.30	2.93
Ni	50.0-55.0	52.08
P	0.015 Max	0.004
S	0.015 Max	0.002
Si	0.35 Max	0.10
Ti	0.75-1.15	1.05

Inconel 718, 25.4 mm (1.0 in.) diameter centerless ground bar stock Teledyne Allvac heat No. S108, Spec. B50TFISAS-10, ATEK No. AT802370 (Reference 6)

Mag: 120×

ASTM Grain Size 7-8

FD 258490

Figure 2. — Typical Inconel 718 Microstructure Following Solution Heat Treatment

۰۰ اس

Figure 3 - Tensile and Creep Rupture Specimen

から のこの 日本の 大田田の ないしている

8

Tensile testing was performed on a Tinius Olsen 266.8-kN (60,000 lb) capacity tensile machine. To measure specimen strain for elevated temperature tests, an averaging-type linear variable displacement transducer (LVDT) extensometer system was used. A correction factor based on prior strain gage data was applied to displacement measured by this extensometer output. This allowed strain determination over the actual gage length of the specimen. Specimen load was determined by the tensile machine load measuring system. For determining Poisson's ratio, a diametric extensometer was used in conjunction with the axial extensometer (Figures 4 and 5). For each specimen, the Poisson's ratio was established by relating the elastic diametric and axial strain.

The modulus of elasticity was determined according to ASTM E231, "Static Determination of Young's Modulus at Low and Elevated Temperatures," from the stress-strain curves generated during each tensile test.

The strain hardening exponent (η) was established in this program from the tensile tests using the method developed by Avery and Findley (Reference 7). Strain hardening is expressed by the relationships:

$$\sigma = K \epsilon^{\eta}$$

where:

- いったいこので、 あまるをおからい

 σ = true stress

ει = true inelastic strain

K = constant equal to the true stress at unit true strain.

True stress (σ) and true strain (ϵ) were calculated using the relationships:

$$\sigma = S (1 + e) \text{ and }$$
 $\epsilon = \ln (1 + e)$

where:

A STATE OF THE PROPERTY OF THE

S = engineering stress, load/initial area

e = engineering strain, change per unit length based on initial gage length

The tensile properties established for three GATORIZED® AF2-1DA and two INCO 718 specimens tested at 760°C (1400°F) and 649°C (1200°F) are listed in Tables 5 and 6, respectively. Stress-strain parameters, up to 2.5% plastic strain, were also established for each specimen tested for both materials and are listed in Table 7 and 8. Average curves of stress vs strain for the AF2-1DA and INCO 718 specimens tested are illustrated in Figures 6 and 7.

Creep Rupture Testing. — Creep rupture tests were conducted at 760°C (1400°F) for AF2-1DA and 649°C (1200°F) for INCO 718 to define the stress rupture curve between 10 and 1000 hours and to determine the following parameters for each test:

- 1. Strain on loading
- 2. Transient creep strain between initial loading and achievement of steady state creep

- 3. Steady state creep rate
- 4. Strain at onset of tertiary creep
- 5. Reduction of area after rupture
- Elongation after rupture.

Creep tests were conducted per ASTM E139-70, "Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials," where applicable, using round, smooth specimens. A similar test specimen to that used for tensile test was used and is shown in Figure 3.

Tests were conducted on a 53.4-kN (12,000 lb) capacity Arcweld Model JE creep-rupture machine.

Five tests for AF2-1DA and four tests for INCO 718 were conducted in an iterative sequence to ensure time to rupture between 10 and 1000 hr. An LVDT extensometer was attached to each test specimen, and the extensometer output was fed to a data logger. This unit was coupled to a magnetic tape drive for data storage, and an IBM 3033 computer to allow automatic recording and data reduction.

The stress rupture response of AF2-1DA at 760°C (1400°F) and INCO 718 at 649°C (1200°F) is illustrated in Figures 8 and 9. Five creep rupture tests were required per contractual requirements for AF2-1DA, however, three additional tests were conducted without extensiometry, to further define the stress rupture curve shown in Figure 8. The creep rupture curves for both materials used to establish the various creep parameters are illustrated in Figures 10 and 11. The required creep parameters and all related data are listed in Tables 9 and 10.

FAE 177526

Figure 4. — Extensometer Systems Used for Determining Poisson's Ratio for AF2-1DA and Inconel 718. Also Shown Are Tensile Load Train and Furnace System

FAE 177529

Figure 5. — Close-up of Axial and Diametric Extensometer Systems Used To Determine Poisson's Ratio for GATORIZED® AF2-1DA and INCO 718

TABLE 5. — TENSILE PROPERTIES FOR GATORIZED® AF2-1DA AT 760°C (1400°F)

F V...

PL 0.2% Yield Ultimate Strength* EL R.A. MPa (ksi) MPa (ksi) MPa (%) (%) (%) MF 703.3 (102.0) 908.0 (131.7) 1087.3 (157.7) 1305.9 (189.4) 24.0 22.3 1 730.2 (105.9) 936.3 (135.8) 1097.0 (159.1) 1307.2 (189.6) 23.0 25.3 1 738.4 (107.1) 916.3 (132.9) 1123.8 (163.0) 1311.4 (190.2) 20.0 19.0 1				Strength	ngth			True F	True Fracture	Duct	Ductility	Modulus of	10.87		Strain
MPa (ksi) MPa (ksi) MPa (ksi) MPa (ksi) MPa (ksi) MPa (ksi) MPa MPa×10' (ksi×10') Ratio 908.0 (131.7) 1087.3 (180.4) 24.0 22.3 130.0 (26.1) 0.35 936.3 (135.8) 1097.0 (159.1) 1307.2 (189.6) 23.0 25.3 175.1 (25.4) 0.38 916.3 (132.9) 1123.6 (163.0) 1311.4 (190.2) 20.0 19.0 175.1 (25.4) 0.34 0.30**	Specimen	F	7.	0.2%	Yield	Ultir	nate	Strer	ıgth*	EL	R.A.	Elast	icity ,	Poisson's	Hardening
908.0 (131.7) 1087.3 (157.7) 1305.9 (189.4) 24.0 22.3 130.0 (26.1) 0.35 0.31** 936.3 (135.8) 1097.0 (159.1) 1307.2 (189.6) 23.0 25.3 175.1 (25.4) 0.38 0.31** 916.3 (132.9) 1123.8 (163.0) 1311.4 (190.2) 20.0 19.0 175.1 (25.4) 0.34 0.30**	No.	MPn	(ksi)	MPa	(ksi)	MPa	(ksi)	MPa	(ksi)	(%)	(%)	MPa×10'	(ksi×10')	Ratio	Exponent
730.2 (105.9) 936.3 (135.8) 1097.0 (159.1) 1307.2 (189.6) 23.0 25.3 175.1 (25.4) 0.38 0.31** 738.4 (107.1) 916.3 (132.9) 1123.8 (163.0) 1311.4 (190.2) 20.0 19.0 175.1 (25.4) 0.34 0.30**	AF2-1DA1	703.3	(102.0)	908.0	(131.7)		(157.7)	1305.9	(189.4)		22.3	130.0	(26.1)	0.35	0.136
738.4 (107.1) 916.3 (132.9) 1123.8 (163.0) 1311.4 (190.2) 20.0 19.0 175.1 (25.4) 0.34 0.30**	AF2-1DA2			936.3	(135.8)		(159.1)	1307.2	(189.6)	23.0	25.3	175.1	(25.4)	0.38	0.117
	AF2-1DA3	738.4	(107.1)	916.3	(132.9)	1123.8	(163.0)	1311.4	(190.2)	20.0	19.0	175.1	(25.4)	0.34	0.136

* Actual fracture load divided by the area at fracture.

TABLE 6. — TENSILE PROPERTIES FOR INCO 718 AT 649°C (1200°F)

* ****

Strain	's Hardening		1	960:0
	Poisson	Ratio	0.29	0.30
Modulus of	ticity	(ksi×10')	10.2 42.5 153.8 (22.3)	(24.3)
	Elas	$MPa \times 10$	153.8	52.2 167.5 (24.3)
Ductility	R.A	(4.)	42.5	52.2
1	EL	(%)	10.2	12.0
racture	Strength **	(ksi)	(207.7)	(232.4)
True F	Stren	MPa	1432.0	1602.4
	Ultimate	(ksi)	(147.9)	(156.1)
	Ulti	MPa	1019.7	1076.3
Strength	02"; Yield	(ksi)	881.2 (127.8) 1019.7 (147.9)	(131.8)
Stre	02%	MPa	881.2	908.7
	7	(kst)	664.0 (96.3)	(102.7)
	n PL	MPa	664.0	708.1
	Specimen	No	4	٠

TENSILE STRESS-STRAIN RESULTS FOR GATORIZED® AF2-1DA AT 760°C (1400°F) 4.22 4.91 5.35 6.09 6.74 7.30 8.52 9.65 110.78 114.17 116.39 22.7.04 Strair S/N AF2-1DA3 (134.4) (137.7) (140.5) (149.5) (153.2) (159.1) (161.9) (107.9) (119.3) (124.4) (129.1) (132.2) Stress 743.9 822.5 856.3 890.1 911.5 926.7 949.4 968.7 968.7 987.3 1030.8 1116.3 1116.3 1116.3 Strain S/N AF2-1DA2 (105.9) (121.8) (126.9) (131.0) (133.8) (136.0) (139.5) (142.6) (145.0) (151.1) (151.3) (157.6) (158.9) Stress 730.2 839.8 874.9 903.2 922.5 937.7 961.5 Strain 3.91 4.78 5.22 5.91 6.57 7.26 8.35 9.52 10.70 14.91 16.26 19.35 26.78 31.96 S/N AF2-1DA1 (116.4) (126.9) (131.9) (138.5)(102.0)(141.3)Stress 909.4 935.6 954.9 974.2 895.6 7 TABLE PL 0.025 0.025 0.050 0.100 0.150 0.200 0.400 0.400 0.500 0.500 1.500 1.500 2.500

1041.8 1060.4 1086.6 1095.6 1097.0

(147.3) (150.5) (154.9) (156.5) (136.9)

1015.6 1037.7 1068.0 1079.0 1081.8

TABLE 8. — TENSILE STRESS-STRAIN RESULTS FOR INCO 718 AT 649°C (1200°F)

		S/N	1		S/N 5	
Offset	St	ress	Strain	Sti	ress	Strain
(PCT)	MPa	(ksi)	m/m × 10 ⁻³	MPa	(ksi)	$m/m \times 10^{-3}$
PL	664.0	(96.3)	4.34	708.1	(102.7)	4.25
0.025	775.4	(112.6)	5.31	814.3	(118.1)	5.13
0.050	£18.4	(118.7)	5.84	846.7	(122.8)	5.62
0.100	846.0	(122.7)	6.59	877.7	(127.3)	6.33
0.150	867.4	(125.8)	7.30	899.1	(130.4)	6.99
0.200	881.2	(127.8)	7.83	909.7	(131.8)	7.52
0.500	923.2	(133.9)	11.28	955.6	(138.6)	10.97
1.000	957.7	(138.9)	16.86	989.4	(143.5)	16.50
1.500	979.1	(142.0)	22.35	1012.2	(146.8)	21.99
2.000	992.9	(144.0)	27.61	1026.6	(148.9)	27.26

Figure 6. — Average Monotonic Tensile Stress-Strain for AF2-1DA at 760°C (1400°F)

Figure 7. — Average Monotonic Tensile Stress-Strain for Inconel 718 at 649°C (1200°F)

Figure 8. — Creep Rupture Characterization of AF2-1DA at 760°C (1400°F)

Figure 9. — Creep Rupture Characterization of INCO 718 at 649°C (1200°F)

يراجة ٢

Figure 10. - Creep Strain vs Time for AF2-1DA at 760°C (1400°F)

- }

r 😓 🛴

Figure 11. — Creep Strain vs Time for INCO 718 at 649°C (1200°F)

CREEP-RUPTURE PROPERTIES OF GATORIZED® AF2.1DA AT 760°C (1400°F) TABLE 9. —

Strain Transient Steady State Onset of Kuptu.e Ruptu.e EL MFa (ksi) (%)	Stress On Loading!'' Creep Strain'' Greep Rate Tentiary Creep''' Time EL F MPa (ksi) (%) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Strain at</th> <th></th> <th></th> <th></th>							Strain at			
Stress On Loading*** Creep Strain** Creep Rate Tertiary Creep*** Tine EL 51.1. (%) (%) (%) (hr) (%) 51.1. (75) (%) (%) (hr) (%) 51.1. (75) (333 0.172 0.0028 0.438 518.1 4.8 551.6 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 586.1 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	ess On Loading(1) Creep Strain(2) Creep Rate Tertiary Creep(1) Tine EL (75) (%) (%) (hr) (%) (hr) (%) (75) (333 0.172 0.0028 0.428 518.1 4.8 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 (85) 0.385 0.578 0.0137 0.0137 0.921 177.0 8.1 (95) 0.465 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 o indicated stress level was all elastic. ial loading and achievement of steady state creep. 2.775 28.5 14.9				Strain	Transient	Steady State	Onset of	Rupture		
MPa (ksi) (%) </th <th>(kst) (%) (%) (%) (hr) (%) (75) 0.333 0.172 0.0028 0.428 518.1 4.8 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 (95) 0.465 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 ial loading and achievement of steady state creep. and onset of teatiery creep. 2.775 28.5 14.9</th> <th>Specimen</th> <th></th> <th>688</th> <th>On Loading"</th> <th>Creep Strain(2)</th> <th>Creep Rate</th> <th>Tertiary Creep(4)</th> <th>Time</th> <th>EL</th> <th>RA</th>	(kst) (%) (%) (%) (hr) (%) (75) 0.333 0.172 0.0028 0.428 518.1 4.8 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 (95) 0.465 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 ial loading and achievement of steady state creep. and onset of teatiery creep. 2.775 28.5 14.9	Specimen		688	On Loading"	Creep Strain(2)	Creep Rate	Tertiary Creep(4)	Time	EL	RA
517.1 (75) 0.333 0.172 0.0028 0.428 518.1 4.8 551.6 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 586.1 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(75) 0.333 0.172 0.0028 0.428 518.1 4.8 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 (85) 0.385 0.578 0.0137 0.921 146.9 8.7 (95) 0.465 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 ind loading and achievement of steady state creep. and onest of teatiery creep. 2.775 28.5 14.9	No.		(ksi)	(%)	(%)	(%/hr)	(%)	(hr)	(%)	(%)
55.1.6 (80) 0.347 0.281 0.0073 0.692 295.6 7.4 586.1 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 586.1 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(80) 0.347 0.281 0.0073 0.692 295.6 7.4 (85) 0.385 0.578 0.0137 0.921 146.9 8.7 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 (95) 0.485 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 ial loading and achievement of steady state creep.	T-3	517.1		0.333	0.172	0.0028	0.428	518.1	4.8	9.5
586.1 (85) 0.385 0.578 0.0137 0.921 0.921 177.0 8.1 655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(85) 0.385 0.578 0.0137 0.921 . 177.0 8.1 (95) 0.465 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 o indicated stress level was all elastic. ial loading and achievement of steady state creep.	C-1	551.6		0.347	0.281	0.0073	0.692	295.6	7.4	13.4
586.1 (85) 0.385 0.578 0.0137 0.921 177.0 8.1 655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(85) 0.385 0.578 0.0137 0.921 177.0 8.1 (95) 0.465 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 o indicated stress level was all elastic. ial loading and achievement of steady state creep. 2.775 28.5 14.9	င္ပ	586.1						146.9	8.7	16.4
655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(95) 66.8 6.8 6.8 (95) (95) 0.435 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 ial loading and achievement of steady state creep.	-	586.1		0.385	0.578	0.0137	0.921	177.0	8.1	80 63
655.0 (95) 0.435 0.581 0.0951 2.007 46.4 10.2 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(95) 0.435 0.581 0.0951 2.007 46.4 10.2 (100) 0.466 0.666 0.1890 2.775 28.5 14.9 ial loading and achievement of steady state creep.	\mathbf{T}_2	655.0						66.8	6.8	13.1
689.5 (100) 2.775 22.9 8.0 689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(100) 0.466 0.666 0.3890 2.775 28.5 14.9 to indicated stress level was all elastic. ial loading and achievement of steady state creep.	က	655.0		0.435	0.581	0.0951	2.007	46.4	10.2	15.4
689.5 (100) 0.466 0.666 0.1890 2.775 28.5 14.9	(100) 0.466 0.566 0.3890 2.775 28.5 14.9 o indicated stress level was all elastic. ial loading and achievement of steady state creep.	7	689.5	_					22.9	8.0	16.2
	Strain on loading to indicated stress level was all elastic. Strain between initial loading and achievement of steady state creep.	έź	689.5	_	0.466	0.666	0.1890	2.775	28.5	14.9	18.1

CREEP-RUPTURE PROPERTIES OF INCO 718 AT 649°C (1200°F) TABLE 10. —

			Str	Strain			Strain at			
			On L	On Loading	Transient	Steady State	Onset of	Rupture		
Specimen	-	Stress	Elastic	Plastic	Creep Strain(1)	Creep Rate	Tertiary Creep(2)	Time	EL	RA
No.	MPa	(ksi)	(%)	(%)	(%)	(%/hr)	(%)	(hr)	(%)	(%)
1	620.5	<u>6</u>	0.450	0.005	0.072	0.0013	0.184	494.8	28.0	61.3
3	723.9	(102)	0.476	0.009	0.070	0.0053	0.163	116.0	23.7	56.8
₹	758.4	(110)	0.581	0.012	0.080	0.0134	0.233	48.3	14.8	52.3
5	827.4	(120)	0.597	0.060	0.175	0.0502	0.335	20.1	13.1	15.9
Strain	between init	ial loadin	g and ach	ievement	11 Strain between initial loading and achievement of steady state creep; includes plastic strain occurring	ep; includes plasti	11. Strain between initial loading and achievement of steady state creep; includes plastic strain occurring on loading. 12. Strain between initial loading and onest of testion, cream includes plastic strain occurring on loading.	n loading.		

22

BASIC LOW CYCLE FATIGUE PROPERTIES

Strain control LCF tests characterized the behavior of the AF2-1DA and INCO 718 under both cyclic and cylic/hold conditions. All testing was performed under isothermal conditions at 760°C (1400°F) for AF2-1DA and at 649°C (1200°F) for INCO 718 which represents maximum operating temperatures for the fracture critical areas of an advanced engine turbine components. In addition, strain control LCF tests were done at other mean stresses, mean strains, variable cyclic hold times, and hold modes (stress hold vs strain hold) to determine the corresponding effects on LCF life. The latter two additional testing types are dicussed later in this report under Creep-Fatigue Evaluations.

Specimen Design, Experimental Procedure and Data Reduction

Specimen Design. — The smooth, cylindrical test specimen used in this program is shown schematically in Figure 12. Specimens of this general configuration have been used extensively for uniaxially loaded strain control LCF testing.

The ratio of net thread area to gage area was increased fom 3:1 to 5:1 for INCO 718 specimens to minimize possibility of thread failure. This modified version for cylindrical specimens (Figure 13) was used for all INCO '718 cyclic tests.

Specimens were machined by fine mechanical grinding, followed by polishing to provide a smooth surface condition with minimum residual stresses.

All test specimens were visually examined prior to testing in normal light and with fluorescent penetrant to screen for machining anomalies or surface discontinuities. Additionally randomly selected samples underwent through dimensional inspection to ensure conformance to print requirements.

Experimental Procedure. — Currently, there are no ASTM or other accepted industry-wide standards for elevated temperature controlled strain LCF testing. The techniques and specimen for data generation and analysis to be used in this program are discussed below. Where applicable, they conform to ASTM Recommended Practice for Room Temperature Low-Cycle Fatigue Testing (E606).

All testing machines were controlled under a system of calibration and preventive maintenance schedules. System accuracies are within 2%. Approved calibration procedures, records, and National Bureau of Standards (NBS) traceability were retained for all test equipment from which data were obtained.

Isothermal strain-controlled LCF characteristics were determined for this program using servohydraulic, closed-loop-on-axial strain, LCF testing machines designed and built at P&WA/GPD. A typical test machine with controls and readout instrumentation is shown in Figure 14.

Specimen axial strain were measured and controlled by means of a proximity probe extensometer (Figure 15). The extensometer were spring-loaded, rounded knife-edge contact points located within the cylindrical gage length of the specimen. Specimen axial strain causes a relative displacement of the knife edges which was picked up by the proximity probe. The strain output signal from the proximity probe was sent to the electronic control console for demodulation, amplification, filtering, and data processing.

KFAE 199790

FD 219067

Figure 12. — Strain Control Low Cycle Fatigue (LCF) Specimen (Cylindrical Gage) for Gatorized® AF2-1DA

r 🐶 ...

Section A-A

Dia. at the Center of Gage Only. See Note (2)

Gage Section to be 8 AA Fine Grind Finish, Followed by a Final Polish in the Longitudinal Direction to Remove Circumferential Machining Marks

Identification Markings Permitted Only on Ends of Specimen

400

All Diameters to be Concentric Within 0.001 Fir.

No Undercut Parmitted

<u>ල</u>

Smaller than at Tangent Points

All Dimensions are in Inches

⊕@

Strain Control Low Cycle Fatigue (LCF) Specimen (Cylindrical Gage) for Inconel 718 Figure 13.

ORIGINAL PAGE 19 OF POOR QUALITY

KFAE 215467

Figure 14. — Servohydraulic Closed-Loop LCF Test Machine

ORIGINAL PAGE 18 OF POOR QUALITY

FE 200944

Figure 15. — Blowup of Extensometer Setup

Load measurement was obtained by a commercial tension-compression load cell and associated electronic equipment for amplification and processing.

An x-y recorder was used for recording load vs strain plots at predetermined cyclic intervals during testing. The recorder was calibrated with the extensometer so that the ratio of specimen collar deflection to x-y recorder pen movement in the x direction was known. The y axis of the x-y recorder was calibrated with the load cell so the ratio of specimen load to x-y recorder y axis pen movement was known. Digital output of all variables (strain, load, temperature) was monitored.

In ad lition, dual pen stripchart recorders gave a periodic data record of stress range and strain range vs time, inelastic strain vs time for crack initiation determination, and for determination of cycles a particular percent change in stress range drop.

The command signal for the strain cycle was produced by a triangular wave signal generator with feedback from the extensometer output to complete the closed-loop-on-strain circuit necessary for the triangular strain waveform. The frequency and ramp of the triangular wave, and therefore, the strain rate can be adjusted from 11×10^{-5} to 6×10^{-2} cm/cm/sec.

For the hold tests, an adjustable timing circuit in the cycle control unit of the LCF testing machine was used to maintain hold at the required stress or strain. The specimen was strained at the rate set by the signal generator until the required strain (or stress) limit was attained. At this point, the signal generator was switched to a timed "sense and hold" sequence which then maintained the strain (or stress) for the prescribed time period or until a final strain limit was reached. Then the signal generator ramped in the reverse direction to charge the strain at the proper strain rate to the opposite limit. When the set point was reached, the command signal reversed direction, and the cycle was repeated.

One advantageous feature of these function generator was their ability to be controlled or switched at one endpoint by one variable (i.e., stress) and swit wed at the other endpoint of the test cycle by a second variable (i.e., strain). In addition, a stress hold could be programmed on one end of the test cycle which used strain as the final control limit (i.e., the variable to be held was relatively independent of the variable which controls the final endpoints).

The continuous cycle strain-controlled LCF tests were conducted at constant total strain ranges to establish cycles to failure in the 10^2 to 10^6 cyclic life range.

The cyclic LCF tests were performed using a sawbooth strain vs time waveform at a frequency of 0.50 Hz (30 cpm). The strain cycle was fully reversed (mean strain equal to zero, $R\epsilon$ minimum strain/maximum strain = -1.0). A typical cyclic LCF test waveform and hysteresis loop are shown in Figure 16.

All specimens were cycled to failure in the strain-controlled test mode. Load-strain hysteresis plots were obtained at intervals throughout the life of the specimen.

The number of cycles to complete specimen separation (N_f) , and the number of cycles to produce a 5% drop in the cyclic load range (N_5) were determined for each test. The changes in specimen compliance causing the drop in cyclic load range was used as an indicator for crack initiation.

 $\Delta \sigma$ =Total Stress Range $\Delta \epsilon_{l}$ =Total Strain Range = $\Delta \epsilon_{R}$ + $\Delta \epsilon_{l}$ $\Delta \epsilon_{i}$ =Inelastic Strain Range $\Delta \epsilon_{\theta}$ =Elastic Strain Range = $\Delta \epsilon_{l}$ - $\Delta \epsilon_{l}$ R_i =Minimum Strain/Maximum Strain f =Cyclic Frequency

FD 135463A

Figure 16. — Typical LCF Cycle, Re -1

The total strain and the elastic and inelastic strain components were determined at the specimen half-life $(N_{\rm f}/2)$ from the hysteresis plots taken during each test. The strain components are described in Figure 16.

All tests were conducted in air at 760°C (1400°F) for AF2-1DA and at 649°C (1200°F), respectively. Temperature was controlled uniformly over the specimen gage section using calibrated thermocouple temperature readout and control instrumentation.

Data Analysis. — All specimens were cycled to failure with load-strain hysteresis plots obtained at intervals throughout the life of the specimen. Stripchart monitoring of creep strain, stress relaxation, and stress or strain ranges were obtained. The number of cycles to first indication of failure by cracking, N_o, was determined by the first indication of deviation in the stabilized stre. range or by deviation in the inelastic compliance vs life stripchart plot.

In addition, where applicable, the following were determined: (a) the number of cycles to 10% drop in the stabilized ratio of peak tensile stress to peak compressive stress, N_i ; (b) the number of cycles to 5 and 50% drop in the stabilized load rage, N_5 and N_{50} ; and (c) the cycles to failure by complete separation of the specimen, N_c

From the hysteresis plots obtained during each test, the total, elastic, inelastic, and creep strain ranges at the half-life cycle, $N_{t/2}$, were calculated. Further, the stress range, stress relaxation per cycle, and mean stress were reported at $N_{t/2}$.

The cyclic hardening or softening percentage defined as

$$CHP = \frac{\Delta \sigma_{N_{t2}} - \Delta \sigma_{1}}{\Delta \sigma_{1}} \times 100\%,$$

where

CHP = Cyclic Hardening (Softening) Percentage, $\Delta \sigma_{Ni/2}$ = stress range at half life,

and

 $\Delta \sigma_1$ = stress range on 1st cycle

were obtained.

Results for each cyclic test are summarized in Appendixes B and C which include:

- 1. Number of cycles to first indication of failure by cracking, No.
- 2. Number of cycles to 10 percent drop in stabilized ratio of peak tensile stress to peak compressive stress, N;
- 3. Number of cycles to 5 percent drop in stablilized load range, N₅
- 4. Number of cycles to 50 percent drop in stabilized load range, N_{50}
- Number of cycles to failure by complete separation of the specimen, N_e
- Total strain range at N_{f/2}
- Elastic strain range at N_{f/2}
- Inelastic strain range at N_{1/2}
- 9. Creep strains per cycle at N_{f/2}
- Stress range at N_{f/2}
- 11. Amount of stress relaxation per cycle at $N_{f/2}$
- 12. Mean stress at N_{f/2}
- 13. Average cyclic frequency of the test
- 14. Cyclic hardening or softening percentage.

The load range vs number of cycles, N curves were plotted for each test and are contained in Appendix A.

ORIGINAL PARE 18 OF POOR QUALITY

The N_f life data for each test waveform were plotted vs total, elastic, and inelastic strain range. Regression analysis was performed to establish mean life curves for the above data.

The regression model used for the cyclic (0.50 Hz, 30 cpm) tests is a composite exponential function of the form $Y = AN^B + CN^D$, which relates total strain range (Y) to cyclic life (N). The inelastic strain component in this model is the AN^B term, and the elastic strain component consists of the CN^D terms. The inelastic strain was statistically regressed as a log-linear (straight line on log-log paper) function $(Y_1 = AN^B)$. The elastic strain had the best statistically regressed curve fit as a nonlinear log (straight line on log-log paper) function $(Y_B = CN^D)$.

Inelastic strain range data for all alloys has been adjusted to conform to the following reporting system:

If measured
$$\Delta \epsilon_i$$
 was:
$$\frac{Then \ reported \ \Delta \epsilon_i \ was}{0.00005 < \Delta \epsilon_1 < 0.00015}$$

$$0.00001$$

This was required due to the relative inaccuracy of the inelastic strain data on this order of magnitude and due to the significant effect that these data could exhibit on the linear regressions of inelastic strain. Inelastic strain range data less than 0.0001 (< 0.0001) as reported, were not used for regression analyses.

The methodology of summing independent log-linear (or nonlinear) regressions of the elastic and inelastic strain components $(Y = Y_I + Y_E)$ where Y = total strain, $Y_I = \text{inelastic strain}$, and $Y_E = \text{elastic strain}$) has been used with excellent agreeement with the actual total strain data generated in this program. Figure 17 illustrates this method of component strain summation.

Figure 17. — Composite Experimental Fatigue Life Model Using Summation of Elastic and Inelastic Strain Components

The coefficients and exponents of this model can be rearranged into a more general form:

$$\Delta \epsilon_{\mathbf{T}} = \mathbf{A}(\mathbf{N}_{\mathbf{f}})^{\mathbf{B}} + \mathbf{C}(\mathbf{N}_{\mathbf{f}})^{\mathbf{D}}$$

The basic composite exponential function model may be expanded and modified to account for the effects of varying hold time, mean strain (or mean stress) effects, and hold mode (strain-hold or stress-hold).

Also the cyclic inelastic strains can be separated into two categories: time independent or plastic strain, and time dependent or creep strain. The total cyclic inelastic strain may be partitioned into four basic categories:

 $\Delta \epsilon_{pp}$: tensile plastic strain reversed by compressive plastic strain $\Delta \epsilon_{cc}$: tensile creep strain reversed by compressive creep strain

 $\Delta \epsilon_{cp}$: tensile creep strain reversed by compressive plastic strain

 $\Delta \epsilon_{pc}$: tensile plastic strain reversed by compressive creep strain.

It may then be possible to establish strain-life relationships for each of the four generic cycle types. The strain-life relations are expressed in the form

$$\Delta \epsilon_{ij} = A_{ij} N_{ij}^{Bij}$$

where the first subscript refers to the predominant tensile inelastic strain component (i.e., plastic or creep), and the second subscript refers to the corresponding predominant compressive component.

Upon completion of testing, all data was screened statistically for outliers based on the mean regression lives established for each alloy. Spurious observations were repeated when necessary. Any test results which appeared incongruous were subjected to metallographic and fractographic evaluation to aid in explanation of the anomaly.

Continuous Cycle Fatigue Properties

Completely Reversed Continuous Cycle. — Isothermal axial strain controlled LCF tests were performed on AF2-1DA at 760°C (1400°F) and on INCO 718 at 649°C (1200°F) under completely reversed strain conditions. Six tests each were performed at a frequency of 0.5 Hz (30 cpm) using a triangular strain vs time waveform. The tests were performed in an iterative sequence to define the number of cycles to failure between 100 and 100,000 cycles.

The test results are summarized in Tables 11 and 12 for GA CORIZED® AF2-1DA and INCO 718, respectively. The baseline strain vs life curves are plotted in Figures 18 and 19, respectively.

The results of LCF test are presented in Tables 11 and 12 as N_f — cycles to failure (complete separation, of the test specimen as a function of total strain range, $\Delta\epsilon_T$. The total strain range for half-life ($N_{f/2}$ hysteresis loop) was analyzed to separate elastic ($\Delta\epsilon_e$) and inelastic strain ($\Delta\epsilon_I$) strain components. Stress range for the first cycle 1 ($\Delta\Sigma_1$) and for the half-life cycle ($\Delta\Sigma_{Nf/2}$) and mean stress at half-life (Σ_m) are also presented. The hardening and softening behavior of each test as compared to its initial cycle were also computed as per method discussed previously.

ORIGINAL PAGE TO OF POOR QUALITY

TABLE 11. - CONTINUOUS CYCLE CONTROLLED STRAIN LCF RESULTS FOR GATORIZED® AF2-1DA Testing Conducted in Air at 760°C (1400°F) at 0.3 Hz (30 cpm) Ramp Frequency, R_i = -1

		Stra	Strain (m/m at N _{f/2})	N _{f/2})		Mean Stress	Stress	Stress Range	Range		×	T. (Min)
1.150 0.335 - 26.3 (-3.8) 2050.5 (297.4) 2208.4 (320.3) 7.7 Hardening 114 1.085 0.175 - 40.7 (-5.9) 1500.9 (275.7) 1971.2 (285.9) 3.7 Hardening 221 0.930 0.070 - 29.9 (-4.3) 1762.0 (254.1) 1730.6 (251.0) 1.2 Softening 678 0.720 0.015 - 54.5 (-7.9) 1418.3 (206.7) 1386.5 (201.1) 2.2 Softening 4,967 1 0.645 0.006 - 38.3* (5.6) 1208.7 (175.3) 1190.7 (172.7) 1.5 Softening 27,087 9 0.495 39.5 (-5.7) 982.5 (142.5) 974.2 (141.3) 0.9 Softening 196,667 6,5	Rai	286	Elastic %	Inelastic %	Creep %	N MPa	//2 (ksi)	Cycle 1 MPa (ksi)	N//3 MPa (ksi)	Cyclic Stability %	Cycles to Failure	Time to Failure
1.085 0.175 — -40.7 (-5.9) 1500.9 (275.7) 1971.2 (285.9) 3.7 Hardening 221 0.930 0.070 — -29.9 (-4.3) 1762.0 (254.1) 1730.6 (251.0) 1.2 Softening 678 0.720 0.015 — -54.5 (-7.9) 1418.3 (205.7) 1386.5 (201.1) 2.2 Softening 4,967 1 0.645 0.006 — 38.3* (5.6) 1208.7 (175.3) 1190.7 (172.7) 1.5 Softening 27,087 9 0.495 — -39.5 (-5.7) 982.5 (142.5) 974.2 (141.3) 0.9 Softening 196,667 6,5	i	485	1.150	0.335	ı	-26.3	(-3.8)		2208.4 (320.3)	7.7 Hardening	114	4
0.930 0.070 — -29.9 (-4.3) 1752.0 (254.1) i.730.6 (251.0) 1.2 Softening 678 0.720 0.015 — -54.5 (-7.9) 1418.3 (205.7) 1386.5 (201.1) 2.2 Softening 4,967 1 0.645 0.005 — 38.3* (5.6) 1208.7 (175.3) 1190.7 (172.7) 1.5 Softening 27,087 9 0.495 0.005 — -39.5 (-5.7) 982.5 (142.5) 974.2 (141.3) 0.9 Softening 196,667 6,5	-	760	1.085	0.175	ţ	-40.7	(-5.9)		1971.2 (285.9)	3.7 Hardening	221	11
0.720 0.015 — -54.5 (-7.9) 1418.3 (206.7) 1386.5 (201.1) 2.2 Softening 4,967 0.645 0.005 — 38.3* (5.6) 1208.7 (175.3) 1190.7 (172.7) 1.5 Softening 27,087 0.495 0.005 — -39.5 (-5.7) 982.5 (142.5) 974.2 (141.3) 0.9 Softening 196,667 6,4		8	0.930	0.070	1	-29.9	(-4.3)			1.2 Softening	678	83
0.645 0.005 — 38.3* (5.6) 1208.7 (175.3) 1190.7 (172.7) 1.5 Softening 27,087 0.495 0.005 — -39.5 (-5.7) 982.5 (142.5) 974.2 (141.3) 0.9 Softening 196,667 6	0	735	0.720	0.015	ţ	-54.5	(-7.9)			2.2 Softening	4,957	165
0.495 0.005 — -39.5 (-5.7) 982.5 (142.5) 974.2 (141.3) 0.9 Softening 196,667	0	929	0.645	0.005	ļ	38.3*	(5.6)	1208.7 (175.3)		1.5 Softening	27,087	903
	Ö	200	0.495		1	-39.5	(-5.7)	982.5 (142.5)		0.9 Softening	196,667	6,555

ORIGINAL PAGE 19 OF POOR QUALITY

TABLE 12. — CONTINUOUS CYCLE CONTROLLED STRAIN LCF RESULTS FOR INCO 718

T. (Min)	Time to	82	88	112	172	7,913	18,031	
X	Cycles to Foilure	642	825	3,362	5,163	237,391	540,944	
(m/m at N _{II}) Mean Stress Stress Range	Cyclic Stability	25.7 Softening	24.0 Softening	24.8 Softening	20.6 Softening	11.8 Softening	5.7 Softening	
Range	N/2 MPa (ksi)	1394.8 (202.3)	1323.1 (191.9)	1235.5 (179.2)	1236.2 (179.3)	1249.2 (181.2)	1159.0 (168.1)	
Stress Range	Cycle 1 MPa (ksi)	1876.1 (271.1)	1740.9 (252.5)	1643.0 (238.3)	1555.5 (225.6)	1416.9 (205.5)	1228.2 (178.2)	
Stress	//2 (ksi)	(0.0)	(0.0)	(-4.6)	-31.7 (-4.6)	(-2.6)	(6.1)	
Mean Stress	N _{f/3} MPa (ksi)	0.0	0.0	-31.7	-31.7	-17.9 (-2.6)	-35.2 (-5.1)	
	Creep %	1	ı	ı	I	i	ı	
N _{f/2})	Inelastic %	0.735	0.468	0.250	0.210	0.100	0.079	
Strain (m/m at N _{IR})	Elastic %	0.765	0.782	0.750	0.720	0.700	0.671	:: P
Strai	Range %	1.500	1.250	1.000	0.930	0.800	0.750	DATE DAY
	Spec S/N	თ	9	67	10	=	4	and.

FD 258491

Figure 18. — Total Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle GATORIZED® AF2-1DA Data at 760°C (1400°F)

FD 258492

Figure 19. — Total Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle INCO 718 Data at 649°C (1200°F)

ORIGINAL PAGE IS

In addition, the hysteresis plots generated periodically were analyzed to determine (1) the number of cycles to first indication of failure by cracking, N_o ; (2) number of cycles to 10 percent drop in stabilized ratio of peak tensile stress to peak compressive stress, N_i ; (3) number of cycles to 5 and 50 percent drop in stabilized load range N_5 and N_{50} ; and (4) stress range vs cycle (plots are summarized in Appendix B).

A good agreement is shown in Figure 19 between P&WA and G.E. Data (Reference 8) for INCO 718 generated at similar temperatures and strain ratios. G.E. data are slightly lower at longer lives which may be attributable to frequency effect. All of G.E. data were generated at 0.33 Hz (20 cpm).

Significant cyclic softening was observed at half-life for INCO 718 compared to AF2-1DA. INCO 718 exhibited significant softening for all strain range levels. The magnitude of softening was proportional to the total strain range.

The stress range vs inelastic strain ranges plots for both AF2-1DA and INCO 718 were log-log linear and are shown in Figures 20 and 21, respectively.

Figure 20. — Stress Range vs Inelasti. Strain Range for AF2-1DA, 760°C (1400°F), 30 cpm, Strain Ratio of -1

Figures 22 and 23 illustrate typical stress-strain hysteresis loops at half life for AF2-1DA and INCO 718 respectively.

Figure 21. — Stress Range vs Inelastic Strain Range for INCO 718 649°C (1200°F) 30

Figure 22. — Typical Hysteresis Loops for GATORIZED® AF2-1DA Cyclic Strain Controlled LCF Tests (Test Frequency = 0.5 Hz; Temp = 760°C (1400°F); Cycles Shown Taken at N_{f/2}); R_c = -1

ORIGINAL PERSON TO OF POOR QUALITY

r 🐶 💒

FD 258496

Figure 23. — Typical Stress Strain Hysteresis Loops for INCO 718 Cyclic-Strain-Controlled LCF Tests (Test Frequency = 0.5 Hz; Temp. = 649°C (1200°F); Cycles Shown Taken at $N_{\rm f/2}$); $R_{\rm e}$ = -1

CREEP — FATIGUE PROPERTIES

Significant differences occur in the local stress-strain-time material response for different fracture critical locations of aircraft engine turbine disks. Boltholes in disk web areas, for example, may be sufficiently constrained by surrounding essentially elastic material so that their LCF-creep behavior may be approximated by a stress relaxation, or strain-hold cycle. Blade attachment areas at the disk rim, however, may experience some net section creep and, consequently, may be better represented by a creep hold, or constant stress-hold cycle.

Initial waveforms for this phase of testing were selected in an attempt to evaluate differences between a stress-hold cycle (creep hold) and a strain-hold cycle (stress relaxation). Additional waveforms separated the contributions of mean stress and progressively increasing mean strains (due to cyclically unreversed creep) on the LCF life.

Tests were conducted to investigate differences between a basic creep, or stress hold cycle and the relaxation, or strain hold cycle. Both tensile and compressive strain hold types individually and combined were used.

Strain Hold Tests

The strain was held constant for these tests at either maximum tensile, compressive, or tensile and compressive peak strain. The peak stress was allowed to relax for a specified time.

These tests were performed at the same temperature, mean strain, and ramp frequency as the continuous cyclic tests mentioned above, but had a hold time at the maximum peak strain (stress relaxation). The balance of the cycle was performed using the basic frequency used above. Three tests were conducted each of three different hold times of 0.5, 2 and 15 min per cycle. The tests were performed in an iterative sequence to define the number of cycles to failure from 1,000 cycles to a number of cycles equivalent to 1000 hours of testing. The tests were done at 760°C (1400°F) for AF2-1DA® and at 649°C (1200°F) for INCO 718.

Peak Tensile Strain Hold. — These tests had a hold time at maximum peak tensile strain (stress relaxation). A typical peak tensile strain hold cycle is shown in Figure 24. The test results for both GATORIZED® AF2-1DA and INCO 718 are summarized in Tables 13 and 14, respectively. The total strain range vs cycles to failure for all three (0.5 min, 2 min and 15 min) hold times are plotted in Figures 25 and 26 for GATORIZED® AF2-1DA and INCO 718, respectively.

All of the tensile strain hold tests for AF2-1DA had negative mean stresses. Only 15 minute hold cycles showed detrimental effects of hold time compared to continuous cycle data (Figure 25). Stress range at half-life for AF2-1DA indicated little or no (hardening or softening) compared to INCO 718. The degree of strain softening for INCO 718 was higher for the high strain range tests than for the lower strain range tests. Also evident is the degrading effect of hold time on INCO 718 life. Almost all of the tests for INCO 718 showed reduction in cyclic life for tensile strain hold data compared to fully reversed continuous cycle (solid line in Figure 26). The magnitude of life reduction was greater at lower total strain ranges than at the higher total strain ranges.

 $\begin{array}{lll} \Delta\sigma & = \text{Total Stress Range} \\ \Delta\sigma_c & = \text{Creep Relaxation Stress} \\ \Delta\epsilon_t & = \text{Total Strain Range} = \Delta\epsilon_e + \Delta\epsilon_i \\ \Delta\epsilon_i & = \text{Inelastic Strain Range} \\ \Delta\epsilon_c & = \text{Creep Strain Range} = \Delta\epsilon_c / \text{E} \\ \Delta\epsilon_e & = \text{Elastic Strain Range} = \Delta\epsilon_i - \Delta\epsilon_i \\ \text{R} & = \text{Minimum Strain/Maximum Strain} \\ \text{f} & = \text{Ramp Frequency (Equivalent to 30 cpm No-Dwell Test)} \\ \text{E} & = \text{Elastic Modulus} \end{array}$

FD 135462B

Figure 24. Typical Tensile Strain Hold LCF Test

Peak Compressive Strain Hold. — Peak compressive strain was held 0.5, 2.0 and 15.0 minutes for these tests. A typical compressive strain hold cycle is shown in Figure 27. A minimum of three tests were done with each of three different hold times of 0.5, 2, and 15 minute per cycle for both alloys.

ORIGINAL PAGE 19 OF POOR QUALITY

TABLE 13. — TENSILE STRAIN HOLD CONTROLLED STRAIN LCF RESULTS FOR GATORIZED® AF2-1DA

.

11.

これには、これの日本における日本の一つ

いいではないのではない 日本の大学 大学 というこう

T_f (min) Time to Failure 211 496 9280 634 1,661 10,939 2,962 10,764 52,947 N, Cycles to Failure 7 396 928 17,400 312 812 5,380 197 716 3,522 Testing Conducted in Air at 760°C (1400°F) AT 0.5 Hz (30 CPM) Ramp Frequency Exclusive of Hold, R, = Cyclic Stability % Hardening Hardening Softening Hardening Softening Softening Softening Softening Softening 5.2 1.6 4.0 1.9 3.6 6.7 1.7 0.8 1.5 Stress Range (321.8) (293.3) (223.3) (277.5) (252.5) (202.3) (308.1) (281.8) (171.6) $N_f/2$ MPa (ksi) 2218.7 2022.2 1539.6 1913.3 1740.9 1394.8 2124.3 1942.9 1183.1 (306.0) (288.7) (232.6) (272.9) (254.6) (206.3) (314.2) (292.4) (184.0) Stress Range Cycle 1 MPa (ksi) 2109.8 1990.5 1603.7 1881.6 1755.4 1415.5 2166.3 2016.0 1268.6 (-29.3) (-34.8) (-25.2) (-16.3) (-19.3) (-22.3) (-16.5) (-18.8) (-19.3) Mean Stress N_f/2 MPa (ksi) -112.4 -133.1 -153.8 -113.8 -129.6 -133.1 -202.0 -239.9 -173.7 Creep % (tensile) 0.093 0.044 0.008 0.110 0.075 0.024 0.126 0.080 0.027 Inelastic 0.238 0.115 0.028 0.205 0.138 0.055 0.270 0.150 0.060 Strain (m/m at N_d/2) Elastic 1.007 0.910 0.722 0.995 0.892 0.713 0.940 Strain 15.0 min Hold Peak Tensule Strain 0.5 min Hold Strain 2.0 min Hold Range % 1.245 1.025 0.750 1.200 1.030 0.768 1.210 1.000 0.750 Peak Tensile Peak Tenaile

16 17 18

2 8 2

3 2 2 2

TABLE 14. — TENSILE STRAIN HOLD CONTROLLED STRAIN LCF RESULTS FOR INCO 718

Testing Conducted in Air at 649°C (1200°F) at 0.5 Hz (30 CPM) Ramp Frequency Exclusive of Hold, R_i = -1

•		Strain (m/m at N _e /2)	n at N _e /2)		Mean	Mean Stress	Stres	Stress Range	Str	Stress Range		z`	T_{f} (mun.)
S.per S/N	Range %	Elastic %	Inelastic %	Creep %	N MPa	N ₄ /2 MPa (ksi)	C) MP	Cycle 1 MPa (ksi)	MP	N _t /2 MPa (kei)	Cyclic Stability	Cycles to Failure	Time *0 Failure
Posk Tens	Peek Tensule Strain 0.5 min Hold	min Hold		(tensile)									
13	1.250	0.710	0.540	0.023	-29.6	(-4.3)	1766.4	(256.2)	1309.3	(189.9)		909	323
12	1.060	0.690	0.370	0.043	6.9	(-1.0)	1671.3	(242.4)	1225.2	(1.77.1)	26.7 Softening	1,506	803
14	0.800	0.625	0.175	0.020	-43.4	(-6.3)	1403.7	(203.6)	1110.7	(161.1)		24,026	12,814*
Pocak Tensi	Peak Tensile Strain 2.0 min Hold	min Hold											
ន	1.250	0.750	0.500	0.031	-67.0	(-9.7)	1757.4	(254.6)	1328.7	(192.5)		870	1,769
16	1.000	0.650	0.350	0.046	-28.3	(-4.1)	1540.9	(223.5)	1193.5	(173.1)	22.6 Softening	1,506	3,060
11	0.850	0.665	0.185	0.025	-70.3	(-10.2)	1492.0	(216.4)	1137.6	(165.0)		3,941	8,013
Peak Tensi	Peak Tensile Strain 15.0 min Hold	min Hold											
21	1.275	0.785	0.490	0.050	-47.6	(-6.9)	1780.2	(258.2)	1383.8	(200.7)		238	8,068
19	1.015	0.740	0.275	0.048	-70.3	(-10.2)	1730.6	(251.0)	1334.1	(193.5)	22.9 Softening	1,329	19,979
8	0.840	0.690	0.150	0.024	-14.5	(-2.1)	1483.1	(215.1)	1245.9	(180.7)		5,041	75,783
*Possible	extensometer	*Possible extensometer induced failure											
DNF	. DNF - Did Not Fail			:	į		:						

ORIGINAL PAGE IS OF POOR QUALITY

FD 258497

Figure 25. — Peak Tensile Errain Hold Tin Data Results for GATORIZED® AF2-1DA at 760°C (1400°F)

FD 258498

Figure 26. — Peak Tensile Strain Hold Time Test Results for INCO 718 at 649°C (1200°F)

ORIGINAL PAGE IS OF POOR QUALITY

FD 173390

Figure 27. - Typical Compressive Strain Hold LCF Test

The test results for GATORIZED® AF2-1DA and INCO 718 are summarized in Tables 15 and 16, respectively. The assessment of cyclic life debit for both alloys is depicted in Figures 28 and 29.

The effect of compressive strain hold cycle on failure life of both alloys was observed to be detrimental compared to tensile strain hold cycle. The plausible explanation could be the presence of positive mean stresses. The life debit due to compressive strain hold on INCO 718 (Figure 29) was more pronounced compared to AF2-1DA (Figure 28). The magnitude of life debit increased at lower strain ranges and higher hold time (15 min as compared to 0.5 min) for INCO 718.

Peak Tensile and Compressive Strain Hold. — A combination tensile and compressive strain hold LCF test was done similar to those strain hold tests mentioned above but having a hold period at both the peak tensile and peak compressive strains of the cycle. A typical cycle is shown in Figure 30. A total of three tests were performed at 0.5 min hold time for GATORIZED® AF2-1DA. INCO 718 was characterized at all three hold times (0.5, 2.0 and 15.0 min).

The test results are summarized in Tables 17 and 18 for both alloys. Figures 31 and 32 show the comparison of peak tensile and compressive strain hold tests with continuous cycle data.

TABLE 15. — COMPRESSIVE STRAIN HOLD CONTROLLED STRAIN LCF RESULTS FOR GATORIZED® AF2-1DA

!		Stroin (m/m at N,/2)	1 of N,/2)		Mean	Mean Stress	Stres	Stress Range	Str	Stress Range			×	T_{i} (min)
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	MPc	N/2 MPa (ksi)	C) MP	Cycle 1 MPa (ksi)	MP	N _r /2 MPa (kei)	Cycli	Cyclic Stability %	Cycles to Failure	Time to Failure
k Compr	Peak Compressive Strain 0.5 Hold	0.5 Hold		(compressive)										
23	1.215	1.030	0.185	0.076	31.0	(4.5)	1967.8	(286.4)	1936.0	(280.8)		Softening	270	ž
83	1.015	0.925	060'0	0.047	35.2	(6.1)	1773.3	(257.2)	1752.0	(264.1)	1.2	Softening	980	1 8
8	0.505	0.00	0.000	9000	111.7	(18.2)	922.5	(133.8)	1.196	(138.4)		Hardening	31,174	16,626
ık Compt	Peak Compressive Strain 2.0 min Hold	2.0 min Hold								-				
8	1.200	0.950	0.250	0.106	56.5	(8.2)	1965.7	(286.1)	2060.5	(297.4)		Hardening	186	376
8	1.005	0.895	0.110	0.058	83.4	(12.1)	1705.8	(247.4)	1709.9	(248.0)	0.5	Hardening	36 0	811
31	0.525	0.515	0.010	600'0	150.3	(21.8)	820.8	(137.9)	7.796	(144.7)		Hardening	22,163	46,066
k Compt	ressive Strain	Peak Compressive Strain 15.0 min Hold												
35	1.200	0.930	0.270	0.123	105.5	(16.3)	1906.4	(278.5)	1980 2	(287.2)	3.9	Hardening	179	2,691
88	1.015	0.885	0.130	0.067	165.1	(22.5)	1744.4	(253.0)	1674.7	(242.9)	3.9	Softening	282	4,285
L	0.750	0.735	0.015	0.020	191.7	(27.8)	1358.3	(197.0)	1323.8	(192.0)	2.6	Softening	1,166	17,379

TABLE 16. — COMPRESSIVE STRAIN HOLD CONTROLLED STRAIN LCF RESULTS FOR INCO 718

		T _f (min)	P. ilure	88. 84.	5,067	1,521 3,227	13,973	7,883	48,663
- 1		N _f Cycles to	Pailure	690	9,600	748 1,587	6,872	525 1,336	3,237
lus Hold, R _. = -1		Cyclic Stability	88	25.7 Softening 28.2 Softening		28.8 Softening 25.8 Softening	I.8 Softening	22.8 Softening 18.0 Softening	0.6 Softening
Testing Conducted in Air at 649°C (1200°F) at 0.5 Hz (30 CPM) Ramp Frequency Plus Hold, R = -1		Stress Range N _i /2 ((187.9) 2 (176.2) 2		(184.9) 2 (174.7) 2		(187.4)	
'M') Ram		is .	M	1296.5 1214.8 1100.4		1274.8		1341.6	7.534
z (30 CP		Cycle 1	(R81)	(253.0) (238.3) (201.0)		(252.5) (235.4) (193.5)	Ì	(252.0) (228.6) (196.5)	
аt 0.5 Н	6	0.5	M	1744.3 1643.0 1385.8		1740.9 1623.0 1334.1		1737.6 1576.2 1348.0	
1200°F)	Mean Street	N/2	1	(-3.0) (0.0) (1.8)		(-1.5) (-0.5) (8.9)		(7.1) (10.7) (3.3)	
649°C (Men	7 8		-20.7 0.0 12.4		-10.3 -3.4 61.4		49.0 73.8 22.8	
n Air at		Creep %	(compressive)	0.026 0.030 0.021		0.040 0.020 0.020		0.066 0.041 0.010	
nducted i	at N,/2)	Inelastic %		0.488 0.286 0.160		0.500 0.300 0.135		0.430 0.250 0.100	
Testing Co	Strain (m/m at N,/2)	Elastic %	Peak Compressive Strain 0.5 min Hold	0.762 0.735 0.640	Peak Compressive Strain 2.0 min Hold	0.725 0.700 0.665	Peak Compressive Strain 15.0 min Hold	0.780 0.750 0.700	
		Range %	ressive Strain	1.250 1.020 0.800	essive Strain	1.255 1.000 0.800	maive Strain	1.210 1.000 0.800	
	1	Spec S/N	Peak Compa	ន្ទន	Peak Compr	ននៈន	Peak Compre	30 31 32	

THE PROPERTY OF A PARTY OF THE PARTY OF THE

ORIGINAL PAGE 15 OF POOR QUALITY

FD 258499

Figure 28. — Peak Compressive Strain Hold Time Test Results for GATORIZED® AF2-1DA at 760°C (1400°F)

FD 258500

Figure 29. — Peak Compressive Hold Time Test Results for INCO 718 at 649°C (1200°F)

ORIGINAL PAGE IS OF POOR QUALITY

Figure 30. — Typical Tensile-Compressive Strain Hold LCF Test

が

ORIGINAL PARRIA OF POOR QUALITY

TABLE 17. — TENSILE AND COMPRESSIVE STRAIN HOLD CONTROLLED STRAIN LCF RESULTS FOR GATORIZED® AF2-1DA

	Testing C	Testing Conducted in Air	at	0°C (1	760°C (1400°F) at 0.5 Hz (30 CPM) Ramp Frequency	t 0.5 Hz	(30 CPN	1) reamp	Frequenc	y Plus Hola, $\kappa_i = -1$	7 7	
	Strain (m)	Strain (m/m at N _i /2)		Mean	Hean Stress	Stress	Range	Str	Stress Range		N,	T_{I} (min)
1	Elastic %	Inelastic %	Creep %	N MPo	N _i /2 MPa (ksi)	MP	Cycle 1 MPa (ksi)	MP	N/2 MPa (kai)	Cyclic Stability	Cycles to Failure	Time to
ے ا	Peak Tensile and Compressive Strain 0.5 Min Hold	0.5 Min Hold	(ten.) (como)									
	0.970 0.845 0.490	0.240 0.155 0.010	0.085 0.063 0.056 0.056 0.009 0.009	6.9 -17.9 -56.5	(1.0) (-2.6) (-8.2)	1836.8 1738.2 961.8	(266.4) (252.1) (139.5)	1967.8 1734.0 958.4	(285.4) (251.5) (139.0)	0.7 Hardening 0.2 Softening 0.4 Softening	96 771 26,919	99 797 287,82

TABLE 18. TENSILE AND COMPRESSIVE STRAIN HOLD CONTROLLED STRAIN LCF RESULTS FOR INCO 718

Testing Conducted in Air at 640°C (1200°F) at 0.5 Hz (30 CPM) Ramp Frequency Plus Hold, R, = -1

		Strain (m/	Strain (m/m at N _e /2)			Mean	Mean Stress	Stres	Stress Range	j.	Strees Pondo				
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	ام	MPo	N _f /2 MPa (kei)	0 3	Cycle 1		N,/2	Cych	Cyclic Stability	Cycles to	T_f (min) Time to
Peak Tens	ile and Compi	Peak Tensile and Compressive Strain 0.5 Min Hold	.5 Min Hold	(ten.) (comp)	(duo				1	7 PM	a (wat)		5 %	Failure	Failure
88 84 24	1.295 0.980 0.765	0.630 0.630 0.586	0.620 0.350 0.170	0.030	0.048	-40.7 -6.9 -24.8	(-5.8) (-1 0) (-3 6)	i794.0 1649.9 1344.5	(280.2) (239.3) (195.0)	1253.5 1158.3 1091.4	(181.8) (168.0) (158.3)	30.1 29.8 19.6	Softening Softening Softening	649 1,632 3,411	671 1,696 3,524
Peak Tensi	ile and Compr	Peak Tensile and Compressive Strain 2.0 Min Hold	.0 Min Hold								•		1		
51 41	1.200 0.980 0.800	0.650 0.715 0.625	0.550 0.285 0.175	0.042	0.036 0.021 0.030	55.8 9.0 35.9	(8.1) (1.3) (6.2)	1734.0 1624.4 1338.3	(251.5) (235.6) (194.1)	1192.8 1186.9 1106.6	(173.0) (172.0) (160.5)	30.9 27.0 17.3	Softening Softening Softening	723 750 286	2,916 5,061
Peak Tensi	le and Compr	Peak Tensile and Compressive Strain 15.0 min Hold	5.0 min Hold												
8 23 88	1.205 1.000 0.800	0.655 0.625 0.615	0.550 0.375 0.185	0.067 0 0.047 0 0.050 0	0.060	-24.8 -24.8 11.0	(-3.6) (-3.6) (1.6)	1776.8 1712.7 1397.6	(267.7) (248.4) (202.7)	1269.7 1288.7 1158.3	(182.7) (186.9) (168.0)	29.1 24.8 17.2	Softening Softening Softening	25 45 25	9,641 14,837 26,538**
*Possible t	*Possible extensometer i	*Possible extensometer induced feilure.												•	

ORIGINAL FACE 13 OF POOR QUALITY

FD 261851

Figure 31. — Peak Tensile and Compressive Strain Hold Data for GATORIZED® AF2-1DA at 760°C

The effect of tensile and compressive hold time on failure life of AF2-1DA was somewhat less than observed for INCO 718 (Figures 31 and 32). As noted previously for tensile only and compressive only strain hold, the magnitude of life degradation due to hold cycle on INCO 718 was higher for lower strain ranges and higher hold time duration. As expected for a balanced loop, the mean stresses for all tests for both alloys were (at or near) zero.

Stress Hold Tests

Completely reversed strain-controlled fatigue tests were performed having a hold time at the peak tensile stress, and a ramp frequency, mean strain, and temperature similar to the cyclic tests. The tensile stress was held at a constant value until the specimen crept to a preselected maximum tensile strain limit, whereupon the balance of the cycle was completed using the basic frequency as described before. Because of cyclic hardening or softening of the specimen, it was necessary to periodically increase or decrease the peak tensile creep stress in order to maintain a repetitive time per cycle. Three different maximum tensile stress levels were selected. For each tensile stress level, the total strain range was iteratively selected to define the number of cycles to failure from 100 cycles to a number of cycles equivalent to 1,000 hours of testing. Tensile stress hold tests were performed only on GATORIZED® AF2-1DA.

Tensile Stress Hold. — Tensile stress hold tests were conducted for GATORIZED® AF2-1DA at peak tensile stress of 620.5 MPa (90 ksi), 482.5 MPa (70 ksi) and 310.3 MPa (45 ksi) at 760°C (1400°F). The tensile stress was held constant until the specimen had crept to a preselected maximum tensile strain limit, then the specimen was unloaded in the compression direction such that the strain cycle was completely reversed. A typical tensile stress hold LCF cycle is shown in Figure 33. Idealized first-cycle hystercsis loops for tensile stress hold LCF testing are shown in Figure 34.

ORIGINAL PAGE PO

Figure 32. — Peak Tensile and Compressive Strain Hold Data for INCO 718 at 649°C (1200°F)

ORIGINAL PAGE IS

FD 135465A

Figure 33. — Typical Tensile Stress Hold LCF Test

Compressive Stress Hold. — Compressive stress LCF tests were done at 620.5 MPa (90 ksi) and 482.5 MPa (70 ksi) peak compressive stress similar to the tensile stress hold tests, with the exception that the hold period was held at the maximum compressive stress. The compressive stress was held constant until the specimen crept to a preselected maximum compressive strain limit, then the specimen was loaded in the tension direction such that the strain cycle was completely reversed. Two different maximum compressive stress levels were selected to define

ORIGINAL PAGE IS

LCF life from 100 cycles to a number of cycles equivalent to 1000 hours of testing. A typical hysteresis loop and test cycle is presented in Figure 35.

FD 135458

Figure 34. — Idealized First-Cycle Hysteresis Plots for Tensile Stress-Hold LCF Testing

FD 173392

Figure 35. — Typical Compressive Stress Hold LCF Test

Combination Tensile and Compressive Stress Hold. — Combination tensile and compressive stress hold LCF tests were done similar to the stress hold tests mentioned above but having a hold period at both the peak tensile and peak compressive stresses of the cycle. This test cycle is illustrated in Figure 36. Two tests were performed at 620.5 MPa (90 ksi) peak tensile and compressive peak stress.

The combination tensile and compressive stress hold test could simply be conducted with preselected tensile and compressive stresses with fixed hold times at both ends. A small amount of cyclic creep ratcheting may occur if the tensile and compressive creep rates are not equal.

The test results for all stress hold tests for GATORIZED® AF2-1DA are enumerated in Table 19.

The test results showing percent strain range vs life for all stress hold tests and continuous cycle tests are plotted in Figure 37.

The tensile stress hold effect on cyclic life of AF2-1DA seems negligible for 620.5 MPa (90 ksi) and 482.5 MPa (70 ksi) hold cycles. The 310-3 MPa (45 ksi) peak stress hold test ran 41,595 min. (approx 700 hours) and was discontinued. Compressive only and tensile and compressive stress hold tests generally showed life debit (Figure 37).

ORIGINAL PAGE 150 OF POOR QUALITY

Figure 36. - Typical Tensile-Compressive Stress Hold LCF Test

Auxiliary Tests. — Several additional tests were performed to enhance understanding of high temperature creep-fatigue behavior. Most of these tests were done on GATORIZED® AF2-1DA.

Creep-Extension (Ratcheting) of AF2-1DA. — Significant differences occur in the local stress-strain-time material response for different fracture critical locations of aircraft engine turbine disks. Boltholes in disk web areas, for example, may be sufficiently constrained by surrounding essentially elastic material so that their LCF-creep behavior may be approximated by a stress relaxation, or strain-hold cycle. Blade attachment areas at the disk rim, however, may experience some net section creep and, consequently, may be better represented by a creep hold, or constant stress hold cycle.

Initial waveforms for this phase of testing were selected in an attempt to evaluate differences between a stress-hold cycle (creep hold) and a strain-hold cycle (stress relaxation). Additional waveforms separated the contributions of mean stress and progressively increasing mean strains (due to cyclically unreversed creep) on the LCF life.

In an attempt to separate effects of the high net accumulated creep strain and the effects of mean stress, an additional hold cycle was run with a constant peak (mean stress) but kept total reversed strain range constant. There was significant creep strain (cyclically unreversed) for the stress-hold cycle.

A typical stress-hold, stress control LCF test cycle is shown in Figure 38. The test results are summarized in Table 20 and are plotted in Figure 39.

ORIGINAL PROTE 11 OF POOR QUALITY

TABLE 19. — STRESS HOLD CONTROLLED STRAIN LCF RESULTS FOR GATORIZED® AF2-1DA Testing Conducted in Air at 760°C (1400°F) at 0.5 Hz (30 CPM) Ramp Frequency Plus Hold, R = -1

-		Strain (m/m at N _i /2)	m at N,/2)		Mea	Mean Stress	Stres	Stress Range	S	Stress Range		χ,	T, (min)
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	M	$N_f/2$ MPa (kst)	O, W	Cycle 1 MPa (kst)	MP	N _f /2 MPa (ksi)	Cyclic Stability	Cycles to	Time to
Peak Tens	ile 620.5 MPa	Peak Tensile 620.5 MPa (90 ksi) Stress Hold	Hold	Ten. Comp.									
3	1.200	0.905	0.295	û i a û	228.9	(-33.2)	1638.9	(237.7)	1692.0	(245.4)	3.2 Hardening	883	5,212
4 ∞	1.00	C:900	0.100	0.050	-167.5	(-24.3)	1586.5	(230.1)	1603.7	(232.6)	1.1 Hardening	836	1,585
esk Tens	ile 482.5 MPa	Peak Tensile 482.5 MPa (70 ksi) Stress Hold	Hold										
6	0.750	0.725	0.925	0.020	-150.3	(-21.8)	1252.8	(181.7)	1256.9	(182.3)	0.3 Hardening	7,407	31,950*
eak Tensi	ile 310.3 MPa	Peak Tensile 310.3 MPa (45 ksi) Stress Hold	Hold										
51	0.500	0.485	0.015	0.015	-140.7	(-20.4)	912.9	(132.4)	912.9	(132.4)	00 Stable	1,287	41,595**
eak Comp	pressive 482.5 1	Peak Compressive 482.5 MPa (70 ksi) Stress Hold	blod serve										
73	0.750	0.725	0.025	- 0.025	160.6	(23.3)	1285.2	(136.4)	13203	(191.5)	2.9 Hardening	2,053	12,300
eak Comp	pressive 620.5 1	Peak Compressive 620.5 MPa (97 kai) Stress Hold	tress Hold										
52	1.200	0.925	0.275	- 0.175		(34.4)	1674.0	(242.8)	1713.3	(248.5)	2.4 Softening	8	1.095
19	1.000	0.895	0.105	0.050		(28.7)	1592.7	(231.0)	1641.0	(238.0)	3.0 Hardening	540	4,275
eak Comp	pressive and To	Peak Compressive and Tensile 620 5 MPa (90 ksi) Stress Hold	Pa (90 ksi) St	tress Hold									
72	1.190	0.660	0.530	0.470 0.440		(1.0)	1241.1	(180.0)	1228.0	(178.1)	1 1 Hardening	8	20.250
65	1.000	0.675	0.325	0.275 0.240	0.0	(0.0)	1241.1	(180.0)	1241.1	(180.0)	3.0 Stable	317	22,332

ः _{स्}रः . . .

ORIGINAL PACE IS

Figure 37. — Peak Stress Hold Data for GATOR!ZED® AF2-1DA at 760° (1400°F), $R_{\epsilon} = -1$

ORIGINAL TO STATE OF POOR QUALITY

FD 164819

Figure 38. - Typical Stress-Hold, Stress Control LCF Test

6,631

..DNF - Did Not Fail

CREEP EXTENSION (RATCHETING TYPE) LCF RESULTS FOR GATORIZED® AF2-1DA TABLE 20. —

· •...

		Strain (m/m at N,/2)	at N,/2)		Mear	Mean Stress	Stree	Stress Range	Str	Stress Range		×	T, (min)
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	I MP.	N,/2 MPa (ksi)	S W	Cycle 1 MPa (ksi)	MP	N _I /2 MPa (ksi)	Cyclic Stability %	Cycles to Failure	Time to Failure
reep Exte	Creep Extension (Ratcheting Type) (0.5 min Hold at 8274 MPa (120 ksi))	ing Type) Pa (120 kai))											
69	1.150	1.025	0.125	0.075	-81.4	-81.4 (-11.8)	1823.0	(264.4)	1823.0	1823.0 (264.4)	0.0 Stable	361	180
2 min Hol	(2 min Hold at 827.4 MPa (120 ksi))	a (120 ksi))											
88	1.150	1.035	0.115	0.075	-80.0	(~11.6)	1823.0	(264.4)	1823.0	(284.4)	0.0 Stable	3	213
15 min H	(15 min Hold at 8:7.4 MPa 120 ksi))	Pa 120 ksi))											
66 15 min He	66 1.350 1.065 (15 min Hold at 372.3 MPa (54 ksi))	1.065 Pa (54 ksi))	0.286	0.210	-68.9	(-10.0)	1808.5	(262.3)	1808.5	(262.3)	0.0 Stable	61	870
70	0.563	0.555	0.008	ţ	-147.5 (-21.4)	(-21.4)	1037.0	(150.4)	1037.0	(150.4)	0.0 Stable	3,754	5,631

OF POOR QUALITY

FD 164819

Figure 39. — Creep Extension (Ratcheting Type) Data for AF2-1DA at 760° C (1400°F), R_{i} = Variable

Of three tests that were conducted at 827-4 MPa (120 ksi), no cyclic degradation was observed for 0.5 min hold, whereas significant reduction was evident for 2 min and 15 min hold cycles. At lower peak stress level 372.3 MPa (54 ksi), same percent reduction of life for 15 min hold test cycle was observed. The creep extension (ratcheting type) cycle seems detrimental compared to tensile strain hold cycle for the similar hold duration.

Alternate Temperature Tests for GATORIZEDD AF2-1DA at 649°C (1200°F). — Three representative tests were performed at total strain range of 1.0%, and at an air ate temperature of 649°C (1200°F) to ascertain strain rate and creep effects. In ν investigations, (Reference 3) it was observed that the fall-off in strength for AF2-1DA bega. at ~ 700 °C (1300°F) and it was a strong function of strain rate. (Figure 40.)

The three tests were conducted, one each, under (1) continuous fully reversed cycle, (2) 2 min tensile strain hold, and (3) 2 min compressive strain hold cycles.

The test results are summarized in Table 21 and are plotted in Figure 41. The 760°C (1400°F) temperature does show a degrading influence for all three cycle types compared to 649°C (1200°F) tests. The comparison of failure lines at both temperatures is further graphically illustrated in the bar chart (Figure 42.) A cyclic credit of 2 minute compressive strain hold was observed at 649°C (1200°F) compared to life debit at 760°C (1400°F).

FD 261855

Figure 40.— 0.2% Yield Strength vs Temperature for AF2-1DA (Reference 3)

The test results are summarized in Table 21 and are plotted in Figure 40.

Mean Stress Effect Tests. — Mean stress has been reported by several investigators to be a parameter having primary influence on LCF life. An investigation was undertaken to ascertain this effect. All of the earlier continuous cycle testing was conducted at $R_i = -1$ where mean stress was at or near zero. Additional tests were scheduled at $R_i = 0$ (all tensile strain cycles). In general, strain R ratio imparts little effect at high total strain ranges and large effects at lower strain ranges. At the lower strain ranges, mean stress is generally high. At high strain ranges, mean stress approaches zero. The effect of decreasing mean stress with increasing strain range (for all-tensile strain tests) is shown in Figure 43. It should be noted that the yield stress was a critical factor in determining at what total strain range the mean stress reduction begins.

The mean stress was varied from 0 MPa (0 ksi) to 344.7 MPa (ksi). Test results for GATORIZED® AF2-1DA are summarized in Table 22 and are plotted in Figure 44.

Generally, cyclic life seems to be insensitive to mean stress variations for AF2-1DA under fully reversed loading conditions and at 760°C (1400°F), Figure 44.

Zero Strain Ratio Tests (INCO 718). — A limited number of tests were conducted on INCO 718 at zero strain ratios ($R_c = 0$) to distinguish between oxidation degradation and time at temperatur. ffects. Continuous cycle (nonhold) and hold (strain hold) tests were conducted for INCO 718 at 649°C (1200°F). A typical (nonhold) LCF cycle with $R_c = 0$ is shown in Figure 45 at 649°C (1200°F). The test results are summarized in Table 23 and are plotted in Figure 46.

ORIGINAL PAGE 18 OF POOR QUALITY

TABLE 21. — LCF RESULTS FOR GATORIZED® AF2-1DA

Testing Conducted in Air at 649°C (1200°F) at 0.5 Hz (30 CPM) Ramp Frequency Plus Hold, R, = -1

r te

		Strain (m/m at N,/2)	1 at N ₁ /2)		Mean	Mean Stress	Stres	Stress Range	St	Stress Range		γ.	T. (min)
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	MP	N _r /2 MPa (ksi)	Ç.₩	Cycle 1 MPa (ksi)	MF	N/2 MPa (kei)	Cyclic Stability	Cycles to	Time to
Alternate ' (2 min Te	Alternate Temperature 649°C (1200°F) (2 min Tensile Strain Hold)	49°C (1200°F) old)		Ten. Comp									
62	1.000	0.910	0.090	0.018	-56.5	(-8.2)	1847.1	(267.9)	1769.9	(256.7)	4.2 Softening	1,577	3,207
(2 min Cot	(2 min Compressive Strain Hold)	in Hold)											
æ	1.000	0.910	0.090	0.011	-6.9	(-1.0)	1758.9	(255.1)	1769.2	(256.6)	5.9 Hardening	1,406	2,867
(Continuous Cycle)	us Cycle)												
Z	1.000	0.900	0.100	I	40.7	(6.9)	1811.3 (262.7)	(282.7)	1955.4	1955.4 (283.6)	8.0 Hardening	862	8

Figure 41.— Temperature Effect on Strain Hold Data for GATORIZED® AF2-1DA $R_{\epsilon} = -1$

Figure 42.— Temperature Effect on Strain Hold Data for AF2-1DA 30 cpm, Total Strain Range 1% Strain Ratio of -1

ORIGINAL FALL OF POOR QUALITY

Note: For "Fully Reversed Strain" Tests, the Mean Stress is Nearly Zero at All Strain Ranges

FD 156324

Figure 43. - Mean Stress vs Total Strain Range for a Typical Turbine Disk Alloy

As discussed before, the mean stress for all tensile strain cycle tests tends to zero at higher strain ranges, thus minimizing any mean stress influence on life. This can be seen from Figure 46 for continuous cycle data. At lower strain ranges, all tensile cycles have higher mean stress compared to fully reversed cycles and show mean stress effect – i.e., lower cyclic life. The same behavior was observed for tensile and compressive hold cycles at higher strain ranges $(1.0\,\%)$ where all tensile cycle and fully reversed cycle lives are comparable. The reduced life for R=0 at lower strain range was not observed for tensile strain hold cycle.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 22. — CONTINUOUS CYCLE LCF RESULTS FOR GATORIZED® AF2-1DA

		Tes	Testing Conducted in		ir at 76	0°C (140	00°F) at	0.5 Hz ((30 CPM	Ramp F1	Air at 760°C (1400°F) at 0.5 Hz (30 CPM) Ramp Frequency, R _i = 0		
		Strain (m/	Strain (m/m at N _p /2)		Mean	Mean Stress	Strea	18 Range	1S	ress Range		N.	T. (min)
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	NPa MPa	N _r /2 MPa (ksi)	Ω ₩	Cycle 1 MPa (ksi)	N	N/2 MPa (kai)	Cyclic Stability	Cycles to	lime to
Stress	fean Stress Effect												
	0.815	0.790	0.025		370.2	(53.7)	1427.2	(207.0)	1425.1	(206.7)	0.1 Softenine	1 340	45
	0.500	0.495	9000		359.9	(52.2)	912.9	(132.4)	894.9	(129.8)	1.2 Softening	300 201	
	0.800	0.782	0.018		164.7	(23.9)	1411.4	(204.7)	1316.2	(180.9)	7.2 Softenine	4 178	130
	1.000	0.980	0.020		50.7	(11.7)	1702.3	(246.9)	1678.2	(243.4)	1.4 Softenine	8 -	3 8
	1515	1 245	0.270		14.9	(1)	0000	(0 000)	0 07 10	(6.50)		9011	3

r .

Figure 44. — Mean Stress Effect on LCF Data for GATORIZED® AF2-1DA at 760°C (1400°F), 30 cpm, R = 0

Figure 45. - Typical All Tensile Strain Hold LCF Test

TABLE 23. — STRAIN HOLD EFFECTS AT Re = 0 FOR INCO 718

 $r \gg \frac{\sigma}{n}$

Testing Conducted in Air at 649°C (1200°F) at 0.5 Hz (30 CPM) Ramp Frequency (Discretionary Tests)

		Strain (m/m at N,/2)	n at N,/2)		Mea	Mean Stress	Stres	Stress Range	Str	Stress Range		Z,	T_f (min.)
Spec S/N	Range %	Elastic %	Inelastic %	Creep %	MP	N _f /2 MPa (ksi)	Cy MPc	Cycle 1 MPa (ksi)	MF	N _t /2 MFa (ksi)	Cyclic Stability %	Cycles to Failure	Time to Failure
Continuous Cycle	B Cycle			Ten. Comp			:						
43	1.000	0.720	0.280		52.4	(7.6)	1507.9	(218.7)	1232.8	(178.8)	18.2 Softening	1,504	25
48	0.800	0.690	0.110		152.4	(22.1)	1283.1	(186.1)	1178.3	(170.9)	8.2 Softening	7,690	726.
Peak Tens.	Peak Tensile Strain Hold 1.0 r.un	1 1.0 r.in											
45	1.000	0.705	0.295	0.029	-15.9	(-2.3)	1544.4	(224.0)	1260.4	(182.8)	18.4 Softening	933	1,897
49	0 780	0.640	0.140	0.023	-70.3	(-10.2)	1305.9	(189.4)	1172.8	(170.1)	10.2 Softening	16,665	33,886
Peak Com	Peak Compressive Strain Hold 2.0 min	Hold 2.0 min											
52	1.000	0.715	0.285	0.032	65.2	(9.6)	1545.1	(224.1)	1181.8	(171.4)	9.6 Softening	1,493	3,036
æ	0.800	0.655	0.145	0.020	131.0	(19.0)	1330.7	(193.0)	1171.4	(169.9)	12.0 Softening	3,181	6,468

- C. 14-75

ORIGINAL TOTAL TO

FD 261858

Figure 46. — Strain Ratio Effect on Continuous Cycle Data for INCO 718 at 649°C (1200°F), 30 cpm

URIGINAL FAST OF POOR QUALL

METALLOGRAPHIC EVALUATIONS

Fractographic and metallographic studies were performed on strain control low-cycle fatigue samples for both GATORIZED® AF2-1DA and INCO 718. Representative high and low strain range cyclic and cyclic/hold samples from each of the alloys were characterized to determine the mechanisms of crack initiation, especially in the low-strain long-life regime. These studies were done by direct viewing of the fracture with a scenning electron microscope (SEM). The metallographic section taken through the origin of each sample enabled identification of both the location and character of the fatigue origin, and the morphology of the early stage of crack growth.

The sample numbers and corresponding test conditions for both alloys are listed in Table 24. The results are summarized in Table 25. The general observations for both alloys are as follows.

TABLE 24. — CONTROLLED STRAIN LOW-CYCLE FATIGUE SAMPLES CHARAC-TERIZED BY FRACTOGRAPHY

	Spec.	Type	Temp.	$\Delta\epsilon_T^{(1)}$	
	S/N	Test	°C	%	$N_f^{(2)}$
AF2-1DA	14	Continuous cycle (Re = -1)	760	0.500	196,657
	18	0.5 min ten strain hold	760	0.750	17,400
	21	2.0 min ten. strain hold	760	0.768	5300
	26	15.0 min ten. strain hold	760	0.750	3522
	30	0.5 min comp. strain hold	760	0.505	31174
	31	2.0 min comp. strain hold	760	0.525	22163
	41	0.5 min ten. and comp. strain hold	760	0.500	1156
	47	15.0 min comp. strain hold	760	0.750	25919
	62	2.0 min ten. strain hold	649	1.000	1577
	63	2.0 min comp. strain hold	649	1.000	1405
	64	Continuous cycle (R = -1)	649	1.000	862
	66	827.4 MPa (120 ksi) creep extension	760	1.350	61
	73	482.5 MPa (70 ksi) comp. stress hold	760	0.750	2053
INCO 718	10	Continuous cycle $(R_{\epsilon} = -1)$	649	0.930	5163
	14	0.5 min ten. strain hold	649	0.800	24026
	17	2.0 min ten. strain hold	649	0.850	3941
	19	15.0 min ten. strain hold	649	1.015	1329
	26	0.5 min comp. strain hold	649	0.800	9500
	29	2.0 min comp. strain hold	649	0.800	6872
	31	15.9 min comp. strain hold	649	1.000	1335
	37	15.0 min ten. and comp. strain hold	649	1.000	494
	41	2.0 rain ten. and comp. strain hold	649	0.800	2358
	42	0.5 min ten. and comp. temp strain hold	649	0.765	3411
	48	Continuous cycle ($R_{\epsilon} = 0$)	649	0.800	7690
	50	2.0 min. comp. strain hold (Re = 0)	649	0.800	3181
	33	0.5 min ten. and comp. strain hold	649	1.295	649
	38	0.5 min ten. and comp strain hold	649	0.980	1632
	51	2.0 min ten. and comp strain hold	649	1.200	723

TABLE 25. — SUMMARY OF FRACTOGRAPHIC AND MUTALLOGRAPHIC STUDIES

Initiation I oxidized origin, transgranular face origin, oxidized, transgranular origin, oxidized, transgranular origin, oxidized, transgranular origin, secondary cracks, intermixed le origins, Ti, Cr may be carbides present
face origin, oxidized, transgranular e origin, oxidized, transgranular e origin, secondary cracks, intermixed
e origin, oxidized, transgranular e origin, secondary cracks, intermixed
e origin, secondary cracks, intermixed
• •
le origins, Ti, Cr may be carbides present
fects, probably transgranular
d origin, transgranular cleavage fracture
le origins, transgranular
le origina, transgranular
le origins, oxidized, transgranular
le origins, Stage I facets, transgranular
le origins, Stage I facets, transgranular
le origins - Stage I, facet, transgranular
I faceted origin, intergranular, turning to transgranular
intergranular cracking
intergranular cracking
intergranular cracking
I faceted intergranular origin, turning to transgranular cracking
I faceted intergranular crigin, turning to transgranular cracking
ie origins, intergranular fracture
le origins, intergranular fracture
at scratch, intergranular fracture
smeared, mixed fracture
I faceted origin, intergranular
at machining mark, intergranular, turning to transgranular
at machining marks, mixed fracture
at surface, intergranular switching to mixed mode
le origins, intergranular.

L = Low Strain Range

GATORIZED® AF2-1DA

The SEM examination of all AF2-1DA elevated temperature failures showed that the crack nucleation sites for the dominant cracks were from surface or near surface location rather than internal origins. The continuous cycle (Figure 47A) as well as cyclic/hold samples (Figure 47B, C and D) exhibited multiple origins. The most prevalent mode of initiation and early growth for all the samples examined was transgranular initiation normal to the tensile direction. On the fracture surface, these sites were usually flat and featureless as shown in Figures 48 and 49 for different specimens. In each case, the shape of the crack and the morphology of the tear lines indicated that the crack originated at the specimen's surface, although there was generally no obvious microstructural feature or defect that could be associated with the origin. One exception was for specimen No. 18 where initiation nucleated at a subsurface void. The microscopic resolution was limited, in the area of the origin due to oxidation and rubbing of the fracture surfaces during fatigue cycling.

- (a) S/N 14, Cyclic, $\Delta \epsilon_t =$ 0.5%, 196,657 Cycles
- (a) S/N 14, Gyclic, $\Delta \epsilon_1 = 0.5\%$, 105(307 Gycles (b) S/N 21, 2.0 Min Ten. Strain Hold, $\Delta \epsilon_1 = 0.75\%$, 10,939 Cycles (c) S/N 31, 2.6 Min Comp Strain Hold, $\Delta \epsilon_1 = 0.525\%$, ^2,163 Cycles (d) S/N 73, Peak Comp 482.5 MPa (70 ksi) Stress Hold, 2,053 Cycles

TD 261873

Figure 47. — GATORIZED® AF2-1DA Strain Control LCF Fracture Faces

Figure 48. — SEM Fractographs of GATORIZED® AF2-1DA Samples No. 14 (Top) and No. 21 (Bottom) Showing Faceted Stage I Origin (a), Heavily Oxidized Transgranular Fracture (b), and Surface Origins (c), Oxidized Transgranular Fracture With Striations (d)

Figure 49. — SEM Fractographs of GATORIZED® AF2-1DA Samples No. 31 (Top) and No. 73 (Bottom) Showing Surface Origin (a), Transgranular Fracture (b), Stage i Faceted Origins (c), and Transgranular Fracture With Secondary Acking

- (a) S/N 10, Continuous Cycle, $\Delta\epsilon_t=0.930,\,5,163$ Cycles (b) S/N 29, Peak Comp Strain 2.0 Min Hold, 6,872 Cycles (c) S/N 42, Peak Ten. and Comp Strain 0.5 Min Hold, 3,411 Cycles
- (d) S/N 50, Peak Comp Strain 2.0 Min Hold (R = 0) 3,181 Cycles

FD 261876

Figure 50. - INCO 718 Strain Control LCF Fracture Faces

Figure 51. — SEM Fractograph of INCO 713 Samples No. 10 (Top) and No. 29 (Bottom) Showing Intergranular Fracture at Origin (a and c) Turning Transgranular at a Later Stage (b and d)

FD 261878

Figure 52. — SEM Fractograph of INCO 718 Samples No. 42 (Top) and No. 50 (Bottom) Showing Mixed Mode Fracture at Origin (a) Turning Trunsgranular (b), Intergranular Fracture (c) Turning Transgranular With Distinct Striation Marks

The compressive stress hold failure (Sample No. 73) showed Stage I i coted crack nucleation (Figure 49C) followed by transgranular fracture with clear indications of secondary cracking (Figure 49D). The surface-subsurface transition (SST) phenomenon observed in other studies (Reference 3) where dominant crack nucleation at a near surface pore for high strain range tests changed to crack nucleation at a subsurface metallic inclusion was not confirmed here.

The grain structure for this alloy, as reported earlier was coarser (ASTM 1-3) for all four heat treat lots.

'ACO 718

INCO 718 fractures also nucleated at or near surface locations. The continuous cycle (Figure 50A) and cyclic/hold sample (Figures 50B, C, and D) initiations were predominantly multiple surface origins. Cracking generally began as stage I mode and changed subsequently to transgranular in most cases. Figures 51 and 52 A and C show a typical cross-sectional view of intergranular crack initiation from the specimen's surface. Cracking occurred on grain boundaries perpendicular to the tensile stress axis. The subsequent crack growth was primarily transgranular or mixed mode with clear evidence of striation marks (Figures 51 and 52 C and D).

ne INCO 718 had finer grain size (ASTM 7-8) compared to AF2-1DA.

CONCLUSIONS AND SUMMARY

Two aircraft turbine disk alloys, GATORIZED® AF2-1DA and INCO 718, were evaluated for their low strain long life creep-fatigue behavior.

Static (tensile and creep rupture) and cyclic properties of both alloys were evaluated. The controlled strain LCF tests were conducted at 760°C (1400°F) and 649°C (1200°F) for AF2-1DA and INCO 718 respectively. Hold times were varied for tensile, compressive and tensile/compressive strain hold (relaxation) tests. Additionally, stress (creep) hold behavior of AF2-1DA was evaluated.

The results of this experimental program are summarized as follows:

- Generally, INCO 718 exhibited a more significant reduction in fatigue life due to hold than AF2-1DA.
- 2. At low strain ranges (long life), the percent reduction in life for both alloys for strain hold were generally larger.
- 3. All tensile strain cycle ($R_{\epsilon} = 0$) tests indicated lower cyclic lives compared to fully reversed strain cycle ($R_{\epsilon} = -1$) tests especially for INCO 718. This was due to higher mean stresses at comparable strain ranges.
- 4. Changing hold time from zero to 0.5, 2.0, and 15.0 min. resulted in corresponding reductions in life. Reductions in life could be attributable to exposure time at temperature as well as cyclic creep deformation damage.
- 5. INCO 718 showed far greater life than AF2-1DA for fully reversed continuous cycle tests at 649°C (1200°F). This could be attributed to lower tensile strength (higher ductility) for INCO 718. However, no appreciable differences were seen under hold cycles for the conditions tested.
- 6. Mean stress and accumulated creep strain (in stress hold cycles) for both alloys significantly affected LCF life. Life differences between stress hold and strain hold cycles are attributed to mean stress and cumulative creep strains.
- 7. Metallographic and fractographic evaluations were performed on failed strain control LCF specimens. Crack initiation for cyclic tests were generally transgranular for AF2-1DA alloys while for INCO 718 they were generally intergranular, except where cracks initiated in voids and inclusions.

APPENDIX A REGRESSION PLOTS VERSUS CYCLES TO FAILURE

This Appendix contains regressed typical plots of elastic strain ($\Delta \epsilon_{\rm e}$), inelastic strain ($\Delta \epsilon_{\rm I}$) and total strain ($\Delta \epsilon_{\rm T}$) vs cycles to failure for GATORIZED® AF2-1DA and INCO 718 for few selected groups of tests. The regression equations for all other groups of cycle types which had at least three data points for three distinct strain ranges.

TABLE A-1. — CONTINUOUS CYCLE CONTROLLED STRAIN (AF2-1DA) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH. 2% SY (KSI)	0.15821E+03	
STRENGH COEFF., K'	0.46850E+03	
STRAIN-HARD EXP., N'	0.17469E+00	
FATIGUE STRENGH COEFF., SIGMA	0.28064E+03	0.988
FATIGUE STRENGH EXP. B	-0.11563E+00	
FATIGUE DUCTILITY COEFF., EF'	0.53207E-01	0.928
FATIGUE DUCTILITY EXP., C	-0.66192E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		
INELASTIC STRAIN RANGE = C*(CYCL	ES TO FAILURE)**O	
C= 0.67263E+01 D=-0.66195E+0	0	
ELASTIC STRAIN RANGE = A*(CYCLES	TO FAILURE)**B	
A= 0.20211E+01 B=-0.11564E+0	0	
TOTAL STRAIN RANGE = A*(CYCLES ,	3 FATILIZE NER + CHICYCLES	TO FATILIDE NE
	0 C= 0 67263F+01 D	

Figure A-1. — Elastic Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)

Figure A-2. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed
Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)

Figure A-3. — Total Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain AF2-1DA Data at 760°C (1400°F)

TABLE A-2. - 0.5 MINUTE TENSILE STRAIN HOLD (AF2-1DA) CYCLIC PROPERTIES

		R-SQUARE
YIELD STREM (H. 2% SY (KSI)	0.14032E+03	
STRENGH COSFF., K'	0.36761E+03	
STRAIN-HARD EXP., N'	0.15497E+00	
FATISUE STRENGH COEFF., SIGMA	0.21673E+03	0.940
FATIGUE STRENGH EXP. B	-0.82824E-01	
FATIGUE DUCTILITY COEFF., EF'	0.33061E-01	0.920
FATIGUE DUCTILITY EXP., C	-0.53445E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		· · · · · · · · · · · · · · · · · · ·
INELASTIC STRAIN RANGE = C*(CYCLES	TO FAILURE)**D	
C= 0.45656E+01 D=-0.53445E+00		
ELASTIC STRAIN RANGE = AMICYCLES T	O FAILURE)**B	
A= 0.15975E+01 B=-0.82865E-01		
TOTAL STRAIN RANGE = A*(CYCLES TO	FAILURE)**B + C*(CYCLES	TO FAILURE 1**D
A= 0.15975E+01 B=-0.82865E-01		D=-0.53445E+00

TABLE A-3. — 2.9 MINUTES TENSILE STRAIN HOLD (AF2-1DA) CYCLIC PROPERTIES

2.0 MIN TEMSILE STRAIN DWELL CYCLIC PROPERTIES

A= 0.19523E+01

		R-SQUARE
YIELD STRENGTH 2% SY (KSI)	0.15002E+03	
STRENGH COEFF., K'	0.71494E+03	
STRAIN-HARD EXP., N'	0.25126E+00	
FATIGUE STRENGI COEFF., SIGMA	0.27091E+03	1.000
FATIGUE STRENGH EXP. B	-0.11712E+00	
FATIGUE DUCTILITY COEFF., EF'	0.21020E-01	0.998
FATIGUE DUCTILITY EXP., C	-0.46615E+00	
EQUATIONS ALD COEFFICIENTS		
STRATN - LIFE DESPONSE		
STRAIN - LIFE RESPONSE INELASTIC STRAIN RANGE = C*(CYCLES	TO FAILURE)**D	
STRAIN - LIFE RESPONSE INELASTIC STRAIN RANGE = C*(CYCLES C= 0.30439E+01 D= 0.46618E+00	TO FAILURE)**D	
INELASTIC STRAIN RANGE = C*(CYCLES		

TOTAL STRAIN RANGE = A*(CYCLES TO FAILURE)**B + C*(CYCLES TO FAILURE)**D

C= 0.30439E+01

D=-0.46618E+00

B=-0.11724E+00

1-2

TABLE A-4. — 15.0 MINUTES TENSILE STRAIN HOLD (AF2-1DA) CYCLIC PROPERTIES

		R-SQUARE
 YIELD STRENGTH, .2% SY (KSI)	0.13204E+03	
STRENGH COEFF., K'	0.48540E+03	
STRAIN-HARD EXP., N'	0.20949E+0u	
FATIGUE STRENGH COEFF., SIGMA	9.23656E+03	6.981
 FATIGUE STRENGH EXP.,B	-0.11075E+00	
FATIGUE DUCTILITY COEFF., EF'	0.32353E-01	0.996
FATIGUE DUCTILITY EXP., C	-0.52584E+00	
 EQUATIONS AND COEFFICIENTS		
 STRAIN - LIFE RESPONSE		
 INELASTIC STRAIN RANGE = C*(CYCLES	TO FAILURE)**D	
C= 0.44962E+01 D=-0.52587E+00		
 ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	
A= 0.17105E+01 B=-0.11022E+00		
 TOTAL STRAIN RANGE = A*(CYCLES TO F)	TINDETER A CECOPIES	TO EATHER INC

Figure A-4. — Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)

Figure A-5. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)

Figure A-6. — Total Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)

TABLE A-5. — 0.5 MINUTE COMPRESSIVE STRAIN HOLD (AF2-1DA) CYCLIC PROPERTIES

	R-SQUARE
YIELD STRENGTH. 2% SY (KSL)	0.15753E+03
STRENGH COEFF., K'	0.56269E+03
STRAIN-HARD EXP., N'	0.20486E+00
FATIGUE STRENGH COEFF., SIGMA	0.37126E+03 0.989
FATIGUE STRENGH EXP.B	
FATIGUE DUCTILITY COEFF., EF'	0.13135E+00 0.997
FATIGUE DUCTILITY EXP., C	-0.77399E+00
EQUATIONS AND COEFFICIENTS	
STRAIN - LIFE RESFONSE	
INELASTIC STRAIN RANGE = CHICYCLES	TO FAILURE)**D
C= 0.15364E+02 D=-3.77399E+00	
ELASTIC STRAIN RANGE = AMICYCLES TO	FAILURE)**B
A= 0.25957E+01 B=-0.15858E+00	
TOTAL STRAIN RANGE = A*(CYCLES TO F	AILURE)**B + C*(CYCLES TO FAILURE)**D
A= 0.25957E+01 B=-0.15858E+00	C= 0.15364E+02 D=-0.77399E+00

TABLE A-6. — 2.0 MINUTES COMPRESSIVE STRAIN HOLD (AF2-1DA) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH. 2X SY (KSI)	0.14027E+03	
STRENGH COEFF., K'	0.48989E+03	
STRAIN-HARD EXP., N'	0.20124E+00	
FATIGUE STRENGH COEFF., SIGMA	0.27037E+03	0.996
FATIGUE STRENGH EXPB	-0.13159E+00	
FATIGUE DUCTILITY COEFF., EF'	0.52148E-01	0.990
FATIGUE DUCTILITY EXP., C	-0.65391E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		***************************************
INELASTIC STRAIN RANGE = C*(CYCLES	TO FAILURE)**D	
C= 0.66291E+01		
ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	
A= 0.19256E+01 B=-0.13163E+00		
TOTAL STRAIN RANGE = A*(CYCLES YO FA	AILURE)**B + C*(CYCLES	TO FAILURE)**D
A= 0.19256F+01	C= 0.66291F+01 F	E-0 65391F+00

TABLE A-7. — 15.0 MINUTES COMPRESSIVE STRAIN HOLD (AF2-1DA) CYCLIC PROPERTIES

YIELD STRENGTH. 2% SY (KSI) STRENGH COEFF., K'	0.12367E+03	
STRENGH COEFF., K'		
	0.20652E+03	
STRAIN-HARD EXP., N'	0.82514E-01	
FATIGUE STRENGH COEFF., SIGHA		999
FATIGUE STRENGH EYP.	-0.12592E+00	
FATIGUE DUCTILITY CCFFF., EF' FATIGUE DUCTILITY EXP., C		000
railede Ducilliii Exp., C	-0.15261E+01	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		
INELASTIC STRAIN RANGE = C*(CYCLES TO C= 0.73362E+03 D=-0.15261E+01	FAILURE)**O	
ELASTIC STRAIN RANGE - A*(C) LES TO F	'JLURE)**B	
A= 0.17981E+01 B=-0.12663E400		
TOTAL STRAIN RANGE = A*(CYCLES TO FAI		
A= 0.17981E+01 B=-0.12603E÷00	C= 0.73362E+03 D=-0.1926	16+01
STRESS - STRAIN RESPONSE		
TOTAL STRAIN = STRESS/E + (STRESS/K')	**(1/N')	

Figure A-7. — Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)

Figure A-8. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)

Figure A-9. — Total Strain Range vs Cycles to Failure for Fully Reversed Peak Compressive Strain 15.0 Minutes Hold AF2-1DA Data at 760°C (1400°F)

Service Services

ORIGINAL PAGE 19 OF POOR QUALITY

TABLE A-8. — TENSILE AND COMPRESSIVE 0.5 MINUTE HOLD (AF2-1DA) CYCLIC PROPERTIES

	R-SQUARE
0.13483E+03	
0.48682E+03	
0.20659E+00	
0.26094E+03	0.966
-0.12979E+00	
0.48866E-01	0.939
-0.62827E+00	
	
TO FAILURE)**D	
D FAILURE)**B	
FAILURE)**B + C*(CYCL	ES TO FAILURE)**D
C= 0.63234E+01	D=-0.62827E+00
	0.48682E+03 0.20659E+00 0.26094E+03 -0.12979E+00 0.48866E-01 -0.62827E+00 TO FAILURE)**D

TABLE A-9. — CONTINUOUS CYCLE CONTROLLED STRAIN (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH. 2% SY (KSI)	0_88229E+02	
STRENGH COEFF., K'	0.13442E+03	
STRAIN-HARD EXP., N'	0.67753E-01	
FATIGUE STRENGH COEFF., SIGNA	0.10433E+0?	0.899
FATIGUE STRENGH EXP. B	0.20759E-0	
FATIGUE DUCTILITY COEFF., EF'	0.23754E-01	0.933
FATIGUE DUCTILITY EXP., C	-0.30639E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		
INELASTIC STRAIN RANGE = C*(CYCLES	TO FAILURE)**D	·
C= 0.38419E+01		
ELASTIC STRAIN RANGE = AM CYCLES TO	FAILURE)**B	···
A= 0.88495E+00 B=-0.20874E-01		
TOTAL STRAIN RANGE = A*(CYCLES TO FA	AILURE)**B + C*(CYCLES	TO FAILURE)**D
A= 0.88495E+00 B=-6.20874E-01	C= 0.38419E+01	D=-0.30640F+00

これ 東の大学です。

Figure A-10. - Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at 649°C (1200°F)

ORIGINAL PAGE IS

Figure A-11. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at 649°C (1206°F)

Figure A-12. — Total Strain Range vs Cycles to Failure for Fully Reversed Peak Continuous Cycle Controlled Strain Hold Cycle INCO 718 Data at 649°C (1200°F)

V...

TABLE A-10. — 0.5 MINUTE TENSILE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STREAGTH. 2% SY (KSI)	0.80368E+02	
STRENGH COEFF., K'	0.16441E+03	
STRAIN-HARD EXP., N°	0.11517E+00	
FATIGUE STRENGH COEFF., SIGHA	0.10586E+03	0.999
FATIGUE STRENGH EXP. B	-0_34613E-01	
FATIGUE DUCTILITY COEFF., EF'	0.21879E-01	0.991
FATIGUE DUCTILITY EXP., C	-0.30055E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		
INELASTIC STRAIN RANGE = C*(CYCLES TO C= 0.35534E+01) FAILURE)**D	······································
ELASTIC STRAIN RANGE = A*(CYCLES 70 F	FAILURE 1**B	
A= 0.88976E+00 B=-0.34911E-01		
TOTAL STRAIN RANGE = A*(CYCLES TO FAI	·	
A= 0.88976E+00 B=-0.34911E-01	C= 0.35534E+01	D=-0.30055E+00

TABLE A-11. - 2.0 MINUTES TENSILE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENET 22 SY (KSI)	0_83811E+02	
STRENGH COEFF . K'	0.34276E+03	
STRAIN-LIRE E. P., N'	0.22664E+00	
FATIGUE STEEL H COEFF., SIGNA	0.26864E+03	0.453
FATIGUE STROUGH EXP.B	-0.14927E+00	
FATIGUT DUCT LITY COEFF., EF'	0.34123E+00	1.008
FATIGUE DUCTACITY EXP., C	-0.65863E+00	
EQUATIONS AND COEFFICIENTS	-	
STRAIN - LIFE RESPONSE	-	
INELASTIC STRIIN RANGE = C*(CYCLES 70 C= 0.4.201E+02	D FAILURE)**D	
ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE 1**B	
A= 0.20910E+01 B=-0.14884E+00		
TOTAL STRAIN RANGE = AMICYCLES TO FAI	ELURE)**B + C*(CYCLE	S TO FAILURE)**D
A= 0.2091 E+01 B=-0.14884E+00	C= 0.43201E+02	D=-0.65859E+00

TABLE A-12. — 15.9 MINUTES TENSILE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH2X SY (KSI)	0_89395E+02	
STRENGH COEFF., K'	0.17572E+03	
STRAIN-HARD EXP., N'	0.10875E+00	
FATIGUE STRENGH COFFF., SIGMA	0.13599E+03	0.995
FATIGUE STRENGH EXI B	0.57451E-01	
FATIRUE DUCTILITY COEFF., EF'	0.94721E-01	0.991
FATIGUE DUCTILITY EXP., C	-0.52829E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		
INELASTIC STRAIN RANGE = C*(CYCLES	TJ FAILURE)**D	
C= 0.13133E+02 D=-0.52834E+00		
ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	
A= 0.11227E+01 B=-0.57451E-01		
TOTAL STRAIN RANGE = A*(CYCLES TO F	AILURE)**B + C*(CYCLES	TO FAILURE)**D
A= 0.11227E+01 B=-0.57451E-01	C= 0.13133E+02	D: -0.52834F+00

一年十二年 大阪とり大田田の

Figure A-13. — Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)

Figure A-14. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)

OF POOR QUALITY

Figure A-15. — Total Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)

TABLE A-13. — 0.5 MINUTE COMPRESSIVE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH. 2X SY (KSI)	0.87951E+02	
STRENGH COEFF., K'	0.25787E+03	
STRAIN-HARD EXP., N'	0.17309E+00	
FATIGUE STRE GH COEFF., SIGMA	0.15497E+03	0.910
FATIGUE STRENGH EXP. B	0.73605E-01	
FATIGUE DUCTILITY COEFF., EF'	0.52757E-01	1.000
FATIGUE DUCTILITY EXP., C	-0.42525E+00	
EQUATIONS AND COEFFICIENTS	·	
STRAIN - LIFE RESPONSE		·
INELASTIC STRAIN RANGE = C*(CYCLES T	O FATILIDE 1440	
C= 0.78573E+01 D=-0.42520E+00	• • • • • • • • • • • • • • • • • • •	
ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	
A= 0.12641E+01 B=-0.73605E-01		
TOTAL STRAIN RANGE = A*(CYCLES TO FA	ILURE)**B + C*(CYCLES TO	FAILURE)**D
A= 1.12641E+01 B=-0.73605E-01	C= 0.78573E+01 D=-0	.42520E+00

TABLE A-14. - 2.0 MINUTES COMPRESSIVE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

			R-SQUARE
YIELD STRENGTH. 2% SY	(KSI)	0.83101E+02	
STRENGH COEFF., K'		0.12451E+03	
STRAIN-HARD EXP., N'		0.65064E-01	
FATIGUE STREAGH COEFF.	SIGMA	0.11123E+03	0.994
FATIGUE STRENGH EXP. B		-0.38129E-01	
FATIGUE DUCTILITY COEFF	., EF'	0.17672E+00	0.997
FATIGUE DUCTILITY EXP.,	C	-0.58603E+00	
EQUATIONS AND COEFFICIE	ENTS		
STRAIN - LIFE RESPONSE			
INELASTIC STRAIN RANGE	= C*(CYCLES	TO FAILURE) #*D	
C= 0.23535E+02).58607E+00		
ELASTIC STRAIN RANGE =	A*(CYCLES TO	O FAILURE)**B	
A= 0.93106E+00 B=0).38369E-01		
TOTAL STRAIN RANGE = A	(CYCLES TO	FAILURE)**B + C*(CYCLE	S TO FAILURE)**D
A= 0.93106E+00 B=-6	0.38369E-01	C= 0.23535E+02	D=-0.58607E+00

TABLE A-15. — 15.0 MINUTES COMPRESSIVE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

			R-SQUARE
 YIELD STRENGTH. 22	SY (KSI)	0.90119E+02	
STRENGH COEFF., K'		0.14243E+03	
STRAIN-HARD EXP., P	4.	0.73651E-01	
FATIGUE STRENGH COL	eff., Sigma	0.13888E+03	0.966
 FATIGUE_STRENGH_EXI		-0.60491E-01	
FATIGUE DUCTILITY	COEFF., EF'	0.70993E+00	0.974
FATIGUE DUCTILITY I	EXP., C	-0.82133E+00	
 EQUATIONS AND COEF	FICIENTS		
 STRAIN - LIFE RESPO	DNSE		-
 INELASTIC STRAIN RA	ANGE = C*(CYCLES)	TO FAILURE)**D	
 INELASTIC STRAIN RACE 0.80345E+02	D=-0.82127E+00	TO FAILURE)**D	
 	D=-0.82127E+00		
 C= 0.80345E+02 ELASTIC STRAIN RANG	D=-0.82127E+00		
 C= 0.80345E+02 ELASTIC STRAIN RANG A= 0.11515E+01	D=-0.82127E+00 GE = A*(CYCLES TO B=-G.61273E-01		S TO FAILURE)**D

ORIGINAL PAGE IS

Figure A-16. — Elastic Strain Range vs Cycles to Failure for Fully Reversed Peak
Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C
(1200°F)

ORIGINAL PAGE IS

Figure A-17. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak Tensile Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)

Figure A-18. — Total Strain Range vs Cycles to Failure for Fully Reversed Peak
Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C
(1200°F)

TABLE A-16. — 0.5 MINUTE TENSILE AND COMPRESSIVE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH. 2% SY (KSI)	0.74330E+02	
STRENGH COEF K'	0.13562E+03	
STRAIN-HARD EXP., N'	0.96761E-01	
FATIGUE STRENGH COEFF., SIGMA	0.13455E+03	0.969
FATIGUE STRENGH EXP. B	-0.76122E-01	
FATIGUE DUCTILITY COEFF., EF'	0.92144E+00	0.983
FATIGUE DUCTILITY EXP., C	-0.78671E+00	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		
INELASTIC STRAIN WANGE = CM(CYCLES TO	FAILURE)**D	
C= 0.10681E+03		
ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	
A= 0.11028E+01 B=-0.76055E-01		
TOTAL STRAIN RANGE = A*(CYCLES TO FA:	MENER . CHICANTA	70 F17118F1vv0

TABLE A-17. - 2.0 MINUTES TENSILE AND COMPRESSIVE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-SQUARE
YIELD STRENGTH. 2% SY (KSI)	0.83447E+02	
STRENGH COEFF., K'	0.18701E+03	
STRAIN-HARD EXP., N'	0.13574E+00	
FATIGUE STRENGH COEFF., SIGHA	0.23925€+03	0.489
FATIGUE STRENGH_EXPB	0.147?1E+00	
FATIGUE DUCTILITY COEFF., EF'	0.61409E+01	0.639
FATIGUE DUCTILITY EXP., C	-0.10845E+ 0 1	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE RESPONSE		, _
INELASTIC STRAIN RANGE = C*(CYCLES 1 C= 0.57950E+03	O FAILURE)**D	
ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	
A= 0.18625E+01 B=-0.14806E+00		
TOTAL STRAIN RANGE = A*(CYCLES TO FA		
4= 0.18625F+01 R:-0.16806F+00	C= A 4794AF+A4 H	\=_A

The second of th

ORIGINAL PAGE IS

TABLE A-18. — 15 MINUTES TENSILE AND COMPRESSIVE STRAIN HOLD (INCO 718) CYCLIC PROPERTIES

		R-3QUARE
YIELD STRENGTH, .2X SY (KSI)	0.74419E+02	
STRENGH COEFF., K'	0.10887E+03	
STRAIN-HARD EXP., N'	0.61221E-01	
FATIGUE STRENGH COEFF., SIGNA	0.12016E+03	0.890
FATIGUE STRENGH EXP.,B	-0.70660E-01	
FATIGUE DUCTILITY COEFF., EF'	0.50079E+01	0.988
FATIGUE DUCTILITY EXP., C	-0.11542E+01	
EQUATIONS AND COEFFICIENTS		
STRAIN - LIFE KESPONSE		
STRAIN - LIFE ASSPONSE INCLASTIC STRAIN RANGE = C*(CYCLES)	TO FAILURE)**D	
	TO FAILURE)**D	
INCLASTIC STRAIN RANGE = C*(CYCLES		
INCLASTIC STRAIN RANGE = C*(CYCLES C= 0.44987E+03 D=-0.11540E+01		
INCLASTIC STRAIN RANGE = C*(CYCLES C= 0.44987E+03 D=-0.11540E+01 ELASTIC STRAIN RANGE = A*(CYCLES TO	FAILURE)**B	TO FAILURE)**D

Figure A-19. - Elastic Scrain Range vs Cycles to Failure for Fully Reversed Peak Tensile and Compressive Strain 15.0 Minutes Hold Cycle INCO 718 Data at 649°C (1200°F)

Figure A-20. — Inelastic Strain Range vs Cycles to Failure for Fully Reversed Peak
Tensile and Compressive Strain 15.0 Minutes Hold Cycle INCO 718
Data at 649°C (1200°F)

Figure A-21. — Total Strain Range vs Cycles to Failure for Fully Reversed Peak
Tensile and Compressive Strain 15.0 Minutes Hold Cycle INCO 718
Data at 649°C (1200°F)

APPENDIX B STRESS RANGE VS CYCLE PLOTS FOR GATOP!ZED* AF2-1DA AND INCO 718

This appendix contains stress range vs cycle plots for selected cyclic tests for GATOR-IZED® AF2-1DA and INCO 718. Also included are the tabulations containing: (1) the number of cycles to first indication of failure by cracking, N_o , which was determined by first indication of deviation (by 2%) in the stabilized stress range; (2) the number of cycles to 10% drop in the stabilized ratio of peak tensile stress to peak compressive stress, N_{10} ; (3) the number of cycles to 5 and 50% drop in the stabilized load range. N_5 and N_{50} ; and (4) the cycles to failure by complete separation of the specimen, N_f

TABLE B-1. — CONTINUOUS CYCLE CONTROLLED STRAIN

	ERCENT										ION CONDITION
	98 I L I ZEC				STRS ANG		NG			STRS ANG	NUMBER OF
	AD DROP		CYCLES		KSI	MPA				(KSI)	CYCLES
0	2.0 5.0 10.0 20.0 50.0		35 39 44 58 		291 282 269 238 149	2009 1948 1845 1640 1025				297.4	1.0
		N 10 =	4 7	CYCL	ES, RATIO	CHANGED	BY	10%	;	NF = 114	
O	2.0 5.0 10.0 25.0 50.0		255 292 300 308		276 267 253 211 141	1901 1843 1746 1455 970				281.3	177.0
		N 10 =	321	CYCL	ES,RATIO	CHANGED	вт	10%	;	NF = 321	
Δ	2.0 5.0 10.0 25.0 50.0	[(277 456 660 667 677		256 248 235 196 131	1765 1711 1621 1351 900				261.2	64.0
		N 10 = 0	678	CYCL	ES,RATIO	CHANGED	ВҮ	10%	;	NF = 678	
*	2.0 5.0 10.0 25.0 50.0	1 1	4579 4754 4847 4884		195 189 179 149	1345 1304 1235 1029 686				199.1	2715.0
		N 13 = 6	4839	CYCL	ES,RATIO	CHANGED	BY	10%	;	NF = 4957	
×	2.0 5.0 10.0 25.0 50.0	6	21651 22397 23697 26984		167 162 153 128 85	1150 1115 1056 880 587				170.2	21168.0
		N 10 = 2	26969	CYCL	ES,RATIO	CHANGED	ВҮ	10%	;	NF = 27087	
٥	2.0 5.0 10.0 25.0 50.0	1 1 1	186538 195244 196246 196633		138 134 126 105 70	950 920 872 727 484				140.5	99733.0
		N 10 = 1	161061	CICL	ES,AATIO	снамовы	61	10%	;	NF = 196657	

Stress Range vs Cycles for AF2-1DA at 760° C (1400°F) (30 cpm, R = 1) Figure B-1.

122

TABLE B-2. — PEAK TENSILE STRAIN 15 MIN HOLD

PER	CENT							STABILIZAT	ION CONDITION
STAB	ILIZEO)	STRS RNG	STRS RN	G			STRS ANG	NUMBER OF
LOAD	DROP	CYCLES	KSI	MPA				(KSI)	CYCLES
1 2	2.0 5.0 0.0 20.0	133 167 189 191	306 297 281 250 156	2109 2044 1937 1722 1076				312.1	56.0
		N ₁₀ =197	CYCLES, RATIO	CHANGED	ВҮ	10%	;	NF=197	
1 2	0.0 0.0 0.0 0.0	542 648 674 696	275 266 252 224 140	1894 1836 1739 1546 966				280.3	412.0
		N ₁₀ =689	CYCLES, RATIO	CHANGED (ВΥ	10%	;	NF = 716	
5 1 2	0.0 0.0 0.0 0.0	2849 3191 3306 3359	168 163 154 137 86	1159 1124 1065 946 592				171.6	1662.
		N ₁₀ =3244	CYCLES, RATIO	CHANGED 8	ВΥ	10%	;	NF = 3522	

Stress Range vs Cycles for AF2-1DA at 760° C (1400°F) (30 cpm, R = 1) Figure B-2.

. . ..

TABLE B-3. — PEAK COMPRESSIVE STRAIN 15 MIN HOLD

PE	RCENT						STABILIZATI	ION CONDITION
STF	ABILIZEC)	STRS RNG	STRS RNG			STRS RNG	NUMBER OF
LOF	AD DROP	CYCLES	KSI	MPA			(KSI)	CYCLES
<u> </u>	2.0 5.0 10.0 25.0 50.0	157 158 160 166 177	281 273 258 215 144	1940 1881 1782 1485 990			287.2	91.0
		N ₁₀ =179	CYCLES, RATIO	CHANGED BY	10%	;	NF=179	
O	2.0 5.0 10.0 25.0 50.0	236 239 242 254 276	238 230 218 182 121	1638 1588 1504 1254 836			242.4	97.0
		N ₁₀ =285	CYCLES, RATIO	CHANGED BY	10%	:	NF= 285	
Δ	2.0 5.0 10.0 25.0 50.0	1013 1129 1131 1138 1149	190 184 174 145 97	1307 1267 1201 1001 667			193.5	573.0
		N ₁₀ = 1156	CYCLES, RATIO	CHANGED BY	10%	;	NF=115E	

TABLE B-4. — PEAK TENSILE STRESS HOLD

STA	RCENT BILIZEC ND DROP	CYCLES	STAS RNG KSI	STRS RNG MPA		STABILIZAT STRS RNG (KSI)	ON CONDITION NUMBER OF CYCLES
<u>n</u>	2.0 5.0 10.0 25.0 50.0	255 255 257 260	236 229 217 181 121	1630 1580 1497 1248 832		241.3	3.0
		N10 = 263	CYCLES, RATIO	CHANGED BY	10%;	NF= 263	
0	2.0 5.0 10.0 25.0 50.0	567 725 783 823	230 223 212 176 118	1589 1540 1459 1216 811		235.2	300.3
		N ₁₀ =815	CYCLES, RATIO	CHANGED BY	10%;	NF = 836	
Δ	2.0 5.0 10.0 20.0 50.0	5109 5971 6150 6525	178 172 163 145 91	1224 1187 1124 1000 625		181.2	1639.0
		N ₁₀ =7407	CYCLES, RATIO	CHANGED BY	10%;	NF= 7407	
	2.0 5.0 10.0 25.0 50.0	919 948 999 1170	130 126 119 99 66	894 867 821 685 456		132,4	100.0
		N ₁₀ =1287	CYCLES, RATIO	CHANGED BY	10%;	NF = 1287	

Stress Range vs Cycles for AF2-1DA at 760°C (1400°F) (30 cpm, R

TABLE B-5. — CONTINUOUS CYCLE CONTROLLED STRAIN

m 4000

STA	RCENT BILIZED D DROP	l	CYCLES		STRS ANG	STAS R	NG				TABILIZATI TRS ANG (KSI)	ON CONDITION NUMBER OF CYCLES
	2.0 5.0 10.0 50.0 95.0		1 2 6 530 542		271 262 249 138 14	1866 1809 1714 952 95					276.2	1.0
		N 10	=518	EYCI	ES,RATIO	CHANGED	BY	10%	;	NF=	542	
	2.0 5.0 10.0 50.0 95.5		1 3 7 806		254 246 233 130 13	1751 1697 1608 893 89					259.1	1.0
		N 10	=772	CYC	ES,RATIO	CHANGED	В٢	10%	;	NF=	825	
Δ	2.0 5.0 10.0 50.0 95.0		2 5 23 3125 3354		235 228 216 120 12	1620 1571 1488 827 83					239.8	1.0
		N 10	=3362	CYC	LES,RATIO	CHANGED	ВΥ	10%	:	NF=	3362	
*	2.0 5.0 10.0 50.0 95.0		2 6 40 5163 5163		220 213 202 112 11	1514 1467 1390 772 77					224.0	1.0
		N 10	=5163	c . C	LES,RATIO	CHANGED	ВΥ	10%	;	NF=	: 5163	
*	2.6 5.0 10.0 50.0 95.0		5 47 2180 237390 237390		203 197 186 104 10	1399 1356 1285 714 71					207.0	1.0
		N 16	=237391	CYC	LES,RATIO	CHANGED	Bi	10%	;	NF=	: 237391	
¢	2.0 5.0 10.0 50.0 95.0		2957		171 165 157 87 9	1177 1141 1081 600 60					174.1	1.0
		N 10	=429497	LIC	LES,AATIO	CHANGED	В	10%	;	NF=	540944	

the general section

Stress Range vs Cycles for INCO 718 at 649°C (1200°F) (0.5 Hz 30 cpm)

Stress Range vs Cycles for INCO 718 649°C (1200°F) (0.5 Hz 30 cpm) Figure B-5.

ORIGINAL FROM 13 OF POOR QUALITY

TABLE B-6. — PEAK TENSILE STRAIN 15 MIN HOLD

PE	RCENT							STABILIZATI	ON CONDITION
STA	BILIZEC)	STRS RNG	STRS RNO	3			STRS RNG	NUMBER OF
LOF	O DROP	CYCLES	KSI	MPA				(KSI)	CYCLES
0	2.0 5.0 10.0 50.0 95.0	1 2 6 527	253 245 232 129 13	1745 1691 1602 890 89				258.2	1.0
		N ₁₀ =487	CYCLES, RATIO	CHANGED E	3 Y	10%	;	NF= 538	
O	2.0 5.0 10.0 50.0 95.0	2 12 1317	244 237 224 124 12	1682 1631 1545 858 86				249.0	1.0
		N ₁₀ =1271	CYCLES, RATIO	CHANGED E	3 Y	10%	;	NF= 1329	
Δ	2.0 5.0 10.0 50.0 95.0	2 8 58 	209 202 192 107 11	1439 1395 1322 734 73			٠	213.0	1.0
		N ₁₀ =4767	CYCLES, RATIO	CHANGED E	3 Y	10%	;	NF = 5041	

TABLE B-7. — PEAK COMPRESSIVE STRAIN 15 MIN HOLD

PE	RCENT			١				STABILIZAT	ION CONDITION
STE	ABILIZEC)	STRS ANG	STRS AND	3			STRS RNG	NUMBER OF
LOS	AD DROP	CYCLES	KSI	MPA				(KSI)	CYCLES
Ö	2.0 5.0 10.0 50.0 95.0	1 3 7 508 	247 239 227 126 13	1703 1651 1564 869 87				252.0	1.0
		N ₁₀ =489	CYCLES, RATIO	CHANGED E	3Y 1	٥٪	:	NF = 525	
Ø	2.0 5.0 10.0 50.0 95.0	5 18 73 1314	224 217 206 114 11	1545 1497 1419 788 79				228.6	1.0
		$N_{10} = 1243$	CYCLES, RHTIO	CHANGED E	3Y 1	0%	;	NF= 1335	
Δ	2.0 5.0 10.0 50.0 95.0	4 41 344 3227 	194 188 178 99 10	1334 1293 1225 681 68				197.5	1.0
		N ₁₀ =3176	CYCLES, RATIO	CHANGED E	3Y 1	0%	;	NF = 3237	

Stress Range vs Cycles for INCO 718 649°C (1200°F) (0.5 Hz 30 cpm) ļ Figure B-6.

TABLE B-8. — PEAK TENSILE AND COMPRESSIVE STRAIN 15 MIN HOLD

PERCENT				STABILIZATIO	N CONDITION
STABILIZED	STRS RNG	STRS RNG		STAS RNG	NUMBER OF
LOAD DROP CY	CLES KSI	MPA		(KSI)	CYCLES
① 2.0 1 5.0 2 10.0 4 50.0 3 95.6 -	253 245 232 19 129 - 13	1741 1688 1599 888 89		257.7	1.0
N ₁₀ =2	OS CYCLES, RATIO	CHANGED BY	10%;	NF = 321	
	243 236 224 75 124 94 12	1679 1627 1542 857 86		248.5	1.0 .
N ₁₀ =4	94 CYCLES, RATIO	CHANGED BY	10%;	NF = -294	
10.0 79	162 14 177 92 167 34 93 - 9	1250 1217 1153 641 64		185.8	1.0
N ₁₀ =81	10 CYCLES, RATIO	CHANGED BY	10%;	NF = 840	

The state of the s

Stress Range vs Cycles for INCO 718 649°C (1200°F) (0.5 Hz 30 cpm) Figure B-7. —

APPENDIX C LCF RESULTS FOR GATORIZED* AF2-1DA AND INCO 718

This appendix contains the results of all cyclic tests for GATORIZED® AF2-1DA and INCO 718 along with pertinent strain range parameters (total, elastic, inelastic, and creep) stress parameters (mean stress, initial cycle and half life ranges), hardening and softening characteristics at half life, and cycles/time to failure for each test performed under this program.

ORIGINAL PAGE 13 OF POOR QUALITY

																										•				Ī																
LIFE	(HIN.)	,	·	.i.	23.	155.	933.	6555.		211.	20.2	9280.		72.7		1051.	10131.		2962.	10764.	52947.		144.	459	16626.			376.	811.	45065.		2691	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17379.		9	707	25783.			5232.			31950.(B)		41595.
FAILURE	(CYC.)	,	114.	321.	678.	4957.	27087.	196657.		395	460	17400.		•	216	512.	-		197.	716.	3522.		270.	880.	31174.		!	185.	399.	22163.		170	285	1156.		ž	. [25919.		,	263.		;	7407.		1287.
Li Li	Lire (KSI)		320.3	285.9	251.0	201.1	172.7	141.3		321.8	7 206	223.3			27.55	252.5	5.707		308.1	281.8	171.6		280.8	255.1	139.4			297.4	248.0	144.7		287.2	242.0	192.0		986	203.4	139.0			245.4			182.3		132.4
	HALF L		2208.4	1971.2	1730.6	1386.5	1150.7	974.2		2218.7	0 0000	1539.6		,	1913.3	1740.9	0.4.0		2124.3	1942.9	1183.1		1936.0	1752.0	1.195		1	2050.5	1709.9	997.7		3989.	1474.7	1323.6		a 7.70r	1724.0	958.4			1692.0			1255.9	6	712.9
TRESS	(KSI)		297.4	275.7	254.1	202.7	175.3	142.5		306.0	2000	232.6			272.9	254.0 204.0	503.3		314.2	292.4	184.0		285.4	257.2	133.8		1	285.1	247.4	137.9		276.5	254.0	197.0		266.6	250.4	139.5		ļ	230.1	***	- 1	181.7	Ş	135.4
	INITAL (NPA)		2050.5	1900.9	1752.0	1418.3	1209.7	982.5		2309.8	1000	1603.7		,	1681.6	1/25.4 A 76.6	G-C747		2166.3	2016.0	1268.6		1967.8	773	922.5		1	1965.7	1705.8	950.8		1936.4	1744.4	1353.3		9 2581	1738.2	961.8		6	1586.5	•		1252.8		775.9
TRESS	(KSI)		-3.8	-5.9	-4.3	-7.9	5.6	-5.7		-16.5		-22.3		;	4.01-	118.6			-29.3	54.5	-25.2		4.5	5.1	16.2		,	8.5	12.1	21.8		15.3		27.8		-	1 6	9.8	l	;	-55.2) ; ;	- 1	-21.8	Š	1.02-
MEAN STRESS	(MPA)	,	-26.3	-40.7	-29.9	-54.5	38.3	-39.5		-112.4	177	-153.8		•	-113.6	-127.	7.661		-202.0	-239.9	-173.7		31.0	35.2	111.7		i	56.5	83.4	150.3		105.8	155	191.7			0.7[-	-56.5		6	-228.9			-159.3	•	1.041-
ç	(COMP.)																						0.075	0.047	0.005		1	0.105	0.053	0.000		0.123	0.067	0.020	1 1376	•	0.03	0.009								
ш	CKEEP (TEN.)	z							TESTS		990	0.003	TECTE		0.110	0.075	0.05		0.126	0.080	0.027	11511	1				DWELL				DWF1 1				N C N C	. אל ה	0.00	600.0		SIRESS DEELL	0.210))	STRESS DWELL	0.020	STRESS DIELL	0.015
ZSTRAIN RANG	INCLASIIC	CONTROLLED STRAIN	0.335	0.175	0.070	0.015	0.005	0.005	MIN DWELL		מני פ	0.028	MYN OUE		607.0	טידים מענים מענים	660.0	.O MIN DWELL	0.270	0.150	0.060	O S MTN DIME!!		0.000	0.005		2.0 MIN.	0.250	0.110	0.010	MTM G 21		0.130	0.015	SCTVE STBATH	-	140	0.010			0.100) 1		620.0	5 KST) STR	610.0
% % % % % % % % % % % % % % % % % % %	T I CYTE	CYCLE CONTRO	1.150	1.035	0.930	0.720	0.645	0.495	STRAIN 0.5	•	6	0.722	CTDATM 9 0	J	666	2,63,0	61/13	15	0.940	0.850	0.690	COMPRESSIVE STRAIN	1.030	0.925	0.500		COMFRESSIVE STRAIN	0.950	0.895	0.515	TVE STRATE		0.885	0.735	AND COMPRESSIVE	0 920	0.770	0.430		620.5MPA(90 KSI)	0.505	<u> </u>	432.5HPA(70 KSI)	62/.0	310.3KPA(45 KSI)	0.400
S/N	יסואר	S.non.		~ 1 ~ 1			0	14 0.560	PEAK TENSILE	1.245	, –	_	BEAK TENSTIE	I SOO	٠,	20 1.050 21 n 768	•	TENSILE	~	н	26 0.750	DEAK COMODESS		-	30 0.505		¥'	-	34 1.305	31 0.525	DEAK COMBDESSIVE		_		DEAK TENSTIE	210	1 _	10		AK LENSILE	45 1.200		IK TENSILE	49 0.750	PEAK TENSILE	004.0 14

1 7 7

TABLE C-1. — LCF RESULTS FOR GATORIZED® AF2-1DA TESTING CONDUCTED AT 760°C (1400°F) AT 0.5 Hz (30 cpm) RAMP FREQUENCY

3

5031.

3734.

870.

262.3 150.4

262.3

1808.5 1037.0

150.4

180. 213.

264.4 264.4

1823.0 1823.0 1808.5 1037.0

264.4 264.4

1823.0

-11.8 -11.6 -10.0 -21.4

-81.4

0.075 0.075 0.210

(15 MIN. DWELL & 627.4MPA(120 KSI)) 66 1.350 1.065 0.285

(15 MIN. DWELL & 372.3MPA(54 KSI)) 70 0.563 0.555

69 1.150 1.025 0.125 (2 MIN. DWELL a 827.4MPA(120 KSI)) 69 1.150 1.035 0.115

-80.0 -68.9

1823.0

1095. 4275. (B) 20250. 22332.(B) 12300. 3207. 45. 3680. 139. 39. 2857. 1340. 107996. 4179. 1169. 1577. 1405. 2053. 862. 26. 317. 69. 540. 191.5 248.5 238.0 178.1 160.0 206.7 129.8 190.9 243.4 311.3 256.7 256.6 283.6 1226.0 1241.1 1425.1 894.9 1316.2 2678.2 2146.3 2713.3 1641.0 1769.9 1769.2 1955.4 267.9 242.8 231.0 180.0 180.0 207.0 132.4 204.7 246.9 293.8 262.7 186.4 255.1 1411.4 1702.3 2025.7 1674.0 1241.1 1427.2 912.9 1758.9 1285.2 1847.1 1811.3 23.3 34.4 0.0 53.7 52.2 23.9 11.7 -8.2 5.9 6.9 370.2 359.9 164.7 80.7 14.2 237.2 197.9 160.6 -56.5 -6.9 40.7 STRESS DWELL 0.440 0.240 0.025 0.175 0.011 PEAK COMPRESSIVE 482.5MPA(70 KSI) STRESS DWELL STRESS DWELL PEAK COMPRESSIVE & TENSILE 620.5HPA(90K3I) 72 1.190 0.660 0.530 0.470 65 1.090 0.675 0.325 0.275 0.018 CREEP EXTENSION (RATCHETING TYPE) (0.5 MIN. DWELL 8027.4MPA(120 KSI)) 69 1.150 1.025 0.125 PEAK f2 IPRESSIVE 620.5MfA(90 KSI) 52 1.200 0.925 0.275 61 1.000 0.895 0.105 (2 MIN COMPRESSIVE STRAIN DWELL)
63 1.000 0.910 0.090
(CONTINUOUS LYCLE)
64 1.000 0.000 649C(1200F) 0.025 0.005 0.018 0.020 0.270 ALTERNATE TEMPERATURE 649C(1): (2 MIN TENSILE STRAIN DWELL) 62 1.000 0.910 0.090 0.495 0.782 0.980 1.245 0.725 0.790 EFFECT STRESS 0.800 1.000 1.515 0.750 0.815 MEAN ... 55 0 53 0 3 0 4 1

- FAILED AT EXTENSOMETER CONTACT POINT A - DID NOT FAIL B - FAILED AT EX

TABLE C-1. — LCF RESULTS FOR GATORIZED® AF2-1DA TESTING CONDUCTED

bree.

4.

子であるとなる

AT 760°C (1400°F) AT 0.5 Hz (30 cpm) RAMP FREQUENCY (Continued)

ORIGINAL PAGE IS OF POOR QUALITY

18. 28. 112. 172. 7913. 8088. 19979. 75783.(A) 9641. 14837. 25228.(C) 323. (B) 803. 12814.(B) 1769. 3060. 8013.(B) (HEN.) 7893. 20070. 48663. 1521. 3227. 13973. 671. 1686. 3524. 368. 1297. 5067. 2916. 3061. 9511. AILURE LIFE 542. 825. 3362. 5163. 237391. 540944. 606. 1505. 24026. 538. 1329. 5041. 690. 2432. 9500. 870. 1505. 3941. 525. 1335. 3237. 748. 1587. 6872. 649. 1632. 3411. 723. 759. 2358. 321. 494. 840. LIFE (KSI) 184.9 174.7 170.6 202.3 191.9 179.2 179.3 181.2 200.7 193.5 180.7 189.9 177.7 161.1 192.5 173.1 165.0 187.9 176.2 159.6 194.5 187.4 174.7 161.6 168.0 158.₹ 173.0 172.0 160.5 182.7 186.9 168.0 1309.3 1225.2 1110.7 1383.8 1334.1 1245.9 1295.5 1214.6 1100.4 1274.8 1204.4 1176.2 1341.0 1291.4 1204.5 1253.5 1158.3 1091.4 1192.8 1185.9 1106.6 1394.8 1323.1 1235.5 1236.2 1249.2 1159.0 1328.7 1193.5 1137.6 1259.7 1288.7 1158.3 STRESS RANGE 256.2 242.4 203.6 254.6 223.5 216.4 258.2 251.0 215.1 252.5 235.4 193.5 252.0 228.6 195.5 260.2 239.3 195.0 (KSI) 271.1 252.5 238.3 225.6 205.5 253.0 238.3 201.0 251.5 235.6 194.1 257.7 248.4 202.7 1876.1 1740.9 1643.0 1555.5 1416.9 1766.4 1671.3 1403.7 1757.4 1540.9 1492.0 1780.2 1730.6 1483.1 1744.3 1643.0 1385.8 1740.9 1623.0 1334.1 1794.0 1649.9 1344.5 1734.0 1624.4 1338.3 1776.8 1712.7 1797.6 1737.5 1576.2 1348.0 (KSI) -9.7 -4.1 -19.2 -6.9 -10.2 -2.1 -3.0 1.8 -0.5 8.9 7.1 0.0 0.4 4.6 6.6 6.6 6.6 6.6 6.6 -5.9 -1.0 -3.6 8.1 5.3 -3.6 13.6 13.6 TEAN STRESS -20.7 0.0 12.4 (MPA) 0.0 0.0 -31.7 -31.7 -17.9 -29.6 -6.9 -43.4 -67.0 -28.3 -70.3 -47.6 -70.3 -14.5 -10.3 -3.4 61.4 49.0 73.8 22.0 -40.7 -6.9 -24.8 55.8 9.0 35.9 -24.8 -24.8 11.0 (CONP.) DWELL 0.048 0.028 0.016 0.055 0.041 0.010 0.036 0.021 0.030 DWELL (TEN.)
(S CYCLE CUITROLLED STRAIN(R =-1)
0.765 9.735
0.782 0.468
0.750 0.250
0.720 0.210
0.700 0.100
0.671 0.079 HIN. N 0.5 MIN. 0.057 0.030 0.016 N 2.0 MIN. 0.042 0.021 0.026 AND COMPRESSIVE STRAIN 15.0 I 0.655 0.550 0.067 0.625 0.375 0.047 0.615 0.185 0.050 0.023 0.050 0.031 MIN. STRAIN DWELL DELL DWELL AND COMPRESSIVE STRAIN 0.0.675 0.620 0.0.0.630 0.350 0.0.595 0.170 0.0.630 AND COMPRESSIVE STRAIN 2. 0.650 0.550 0.0 0.715 0.265 0.175 0.0 MIN. DWELL Z STRAIN RANGE ELASTIC INELASTIC 2.0 MIN. 8 0.500 0.300 0.135 0.5 MIN. 0.500 0.350 0.185 0.488 0.285 0.160 0.430 0.250 0.100 CCMPRESSIVE STRAIN 0 1.250 0.762 0 1.020 0.735 0 0.800 0.640 0 ESSIVE STRAIN 2 0.725 0.700 0.665 15.0 0.5 2.0 COMPRESSIVE 15.0 M 1.210 0.780 1.000 0.750 0.800 0.700 STRAIN (0.710 0.690 0.625 STRAIN 0.750 0.650 0.665 STRAIN 0.785 0.740 0.690 PEAK TENSILE A 33 1.295 33 0.980 42 0.765 PEAK TENSILE : 23 1.250 16 1.000 17 0.850 PEAK TENSILE / 51 1.200 54 0.980 41 0.800 FPEAK TENSILE / 35 1.205 37 1.000 36 0.800 K TENSILE 1.275 1.015 0.840 CONTINUOUS (9 1.500 6 1.250 2 1.000 10 0.930 11 0.800 4 C TENSII 1.250 1.060 0.800 1.250 1.020 0.800 1.225 1.210 1.000 0.800 TOTAL PEAK 22] 52] 26 [PE AK 21 1 1 1 1 1 2 4 0 2 4 0

IN AIR AT

- LCF RESULTS FOR INCO 718 TESTING CONDUCTED 649°C (1200°F) AT 0.5 Hz (30 cpm) RAMP FREQUENCY

TABLE C-2.

The state of the s

Section of the Section

بسم ا ا

TABLE C.2. — LCF RESULTS FOR INCO 718 TESTING CONDUCTED IN AIR AT 649°C (1200°F) AT 0.5 Hz (30 cpm) RAMP FREQUENCY (Continued)

	8		.•	33886.(B)		•	•
	35		1897	3389		32,03	6468.
1506.	7690.		933.	16665.		1493.	3181.
178.8	170.9		182.8	170.1		171.4	169.9
1232.8	1178.3		1260.4	1172.8		1181.8	1171.4
218.7	186.1		224.0	189.4		224.1	193.0
1567.9	1283.1		1544.6	1305.9		1545.1	1330.7
7.6	22.1		-2.3	-10.2		9.6	19.0
52.4	152.4		-15.9	-70.3		66.2	131.0
					_	₩.032	0.020
IN(R =0)		LL(R =0)	670.0	0.023	DWELLIR =0		
OLLED STRA 0.280	0.110	O MIN. DWE	0.295	0.140	N 2.0 MIN.	0.285	0.145
CYCLE CONTR 0.720	0.690	STRAIN 2.	0.705	0.640	SSIVE STRAI	0.715	0.655
CONTINUOUS CYCLE CONTROLLED STRAIN(R =0)	48 U.SUG	PEAK TENSIL!	45 1.000 0.705 0.295 0.029	49 0.780	PEAK COMPRESSIVE STRAIN 2.0 MIN. DWELLIR	52 1.000	50 0.800

A - DID NOT FAIL

B - FAILED AT EXTENSOMETER CONTACT POINT

C - OVERLOAD AT NEXT CYCLE

REFERENCES

- Halford, G. R. and A. J. Nachtigall, "The Strainrange Partitioning Behavior of an Advanced Gas Turbine Disk Alloy, AF2-1DA," Journal of Aircraft, Vol. 17, No. 8, August 1980, pp 598-604.
- Halford, G. R. and S. S. Manson, "Life Prediction of Thermal-Mechanical Fatigue Using Strainrange Partitioning," Thermal Fatigue of Materials and Components, ASTM STP 612 1976, pp 239-254.
- 3. Hyzak, J. M., "The Effect of Defects on the Fatigue Crack Initiation Process in Two P/M Superalloys," Ph.D. Dissertation, Carnegie-Mellor University.
- 4. Cowles, B. A., J. R. Warren, and F. K. Haake, "Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys," NASA CR-165123 August 1980.
- 5. Domes, P. A., W. N. Sharpe, M. Ward, and J. Yau," Benchmark Notch Test for Life Prediction," NASA CR-165571 June 1982.
- Newett, P. E., "Production of AF2-1DA Superalloy Forgings," FR-10522, NASA Contract NAS3-20947.
- 7. Avery, D. H., and W. N. Findley, "Quasi-Static Mechanical Testing," Brown University, Advanced Research Projects Agency, Department of Defense Contract SD-86.
- 8. Shahani, V., and H. G. Popp, "Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys," NASA-CR-159433 June 1978.