SBML Model Report

Model name: "Benson2014 - FAAH inhibitors for the treatment of osteoarthritic pain"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Niel Benson² at February seventh 2014 at 11:43 a.m. and last time modified at April 28th 2014 at 3:59 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	5
species types	0	species	39
events	0	constraints	0
reactions	75	function definitions	0
global parameters	155	unit definitions	0
rules	27	initial assignments	0

Model Notes

Benson2014 - FAAH inhibitors for the treatment of osteoarthritic pain

Evaluation of fatty acid amide hydrolase (FAAH) as a target for osteoarthritic pain in humans, using an integrated systems pharmacology model.

¹EMBL-EBI, viji@ebi.ac.uk

²Xenologiq, Canterbury, Kent, UK, neil@xenologiq.com

The SBML version of the model is obtained from the supplementary material of the corresponding paper (see below).

This model is described in the article: A systems pharmacology perspective on the clinical development of Fatty Acid amide hydrolase inhibitors for pain. Benson N, Metelkin E, Demin O, Li GL, Nichols D, van der Graaf PH.CPT Pharmacometrics Syst Pharmacol. 2014 Jan 15;3:e91. Abstract:

The level of the endocannabinoid anandamide is controlled by fatty acid amide hydrolase (FAAH). In 2011, PF-04457845, an irreversible inhibitor of FAAH, was progressed to phase II clinical trials for osteoarthritic pain. This article discusses a prospective, integrated systems pharmacology model evaluation of FAAH as a target for pain in humans, using physiologically based pharmacokinetic and systems biology approaches. The model integrated physiological compartments; endocannabinoid production, degradation, and disposition data; PF-04457845 pharmacokinetics and pharmacodynamics, and cannabinoid receptor CB1-binding kinetics. The modeling identified clear gaps in our understanding and highlighted key risks going forward, in particular relating to whether methods are in place to demonstrate target engagement and pharmacological effect. The value of this modeling exercise will be discussed in detail and in the context of the clinical phase II data, together with recommendations to enable optimal future evaluation of FAAH inhibitors.

This model is hosted on BioModels Database and identifiedby: MODEL1402030000.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains five compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Default		0000290	3	1	litre	\checkmark	
BRAIN		0000290	3	1.45000004768372	1	Z	Default
PLASMA		0000290	3	2.6489999294281	1	7	Default
ROB		0000290	3	65.3000030517578	1	7	Default
MEC		0000290	3	$1.49999996210681 \cdot 10^{-5}$	1	$\overline{\mathbf{Z}}$	Default

3.1 Compartment Default

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

3.2 Compartment BRAIN

This is a three dimensional compartment with a constant size of 1.45000004768372 litre, which is surrounded by Default.

SBO:0000290 physical compartment

3.3 Compartment PLASMA

This is a three dimensional compartment with a constant size of 2.6489999294281 litre, which is surrounded by Default.

SBO:0000290 physical compartment

3.4 Compartment ROB

This is a three dimensional compartment with a constant size of 65.3000030517578 litre, which is surrounded by Default.

SBO:0000290 physical compartment

3.5 Compartment MEC

This is a three dimensional compartment with a constant size of $1.49999996210681 \cdot 10^{-5}$ litre, which is surrounded by Default.

SBO:0000290 physical compartment

4 Species

This model contains 39 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
A_b	A_b	BRAIN	$\text{mol} \cdot 1^{-1}$		
0_b	O_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
P_b	P_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
L_b	L_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
S_b	S_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
NAPE_b	NAPE_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
NOPE_b	NOPE_b	BRAIN	$\operatorname{mol} \cdot 1^{-1}$		\Box
NPPE_b	NPPE_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
NLPE_b	NLPE_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
NSPE_b	NSPE_b	BRAIN	$\operatorname{mol} \cdot 1^{-1}$		\Box
FAAH_b	FAAH_b	BRAIN	$\operatorname{mol} \cdot 1^{-1}$		\Box
$FAAHinh_b$	FAAHinh_b	BRAIN	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
A_r	A_r	ROB	$\operatorname{mol} \cdot 1^{-1}$		\Box
0_r	ъО	ROB	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
P_r	P_r	ROB	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
L_r	L_r	ROB	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
S_r	S_r	ROB	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
NAPE_r	$NAPE_r$	ROB	$\operatorname{mol} \cdot 1^{-1}$		\Box
$NOPE_r$	NOPE_r	ROB	$\operatorname{mol} \cdot 1^{-1}$		\Box
NPPE_r	NPPE_r	ROB	$\text{mol} \cdot l^{-1}$		\Box
NLPE_r	$NLPE_r$	ROB	$\text{mol} \cdot l^{-1}$		\Box
NSPE_r	NSPE_r	ROB	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
FAAH_r	FAAH_r	ROB	$\text{mol} \cdot l^{-1}$	\Box	\Box
FAAHinh_r	FAAHinh_r	ROB	$\operatorname{mol} \cdot 1^{-1}$		
A_m	$A_{-}m$	MEC	$\operatorname{mol} \cdot 1^{-1}$		
O_m	O_m	MEC	$\operatorname{mol} \cdot 1^{-1}$		
P_m	P_m	MEC	$\operatorname{mol} \cdot 1^{-1}$		
L_m	L_m	MEC	$\operatorname{mol} \cdot 1^{-1}$		
S_m	S_m	MEC	$\operatorname{mol} \cdot 1^{-1}$		
FAAH_m	FAAH_m	MEC	$\operatorname{mol} \cdot 1^{-1}$		
${\tt FAAHinh_m}$	FAAHinh_m	MEC	$\operatorname{mol} \cdot 1^{-1}$		
A_p	$A_{-}p$	PLASMA	$\text{mol} \cdot 1^{-1}$		\Box
q_0	$O_{-}p$	PLASMA	$\operatorname{mol} \cdot 1^{-1}$		
P_p	P_p	PLASMA	$\operatorname{mol} \cdot 1^{-1}$		
L_p	L_p	PLASMA	$\operatorname{mol} \cdot 1^{-1}$		
S_p	S_p	PLASMA	$\operatorname{mol} \cdot 1^{-1}$		
PFM_gut	PFM_gut	Default	$\operatorname{mol} \cdot 1^{-1}$		
PFM_p	PFM_p	Default	$\text{mol} \cdot 1^{-1}$		\Box
PFM_r	PFM_r	Default	$\text{mol} \cdot l^{-1}$		\Box

5 Parameters

This model contains 155 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
AG2_b		0.000		
Dose		10.000		
ED50		0.530		
${\tt Emax_PFM}$		0.773		
${ t FAAH}_{ t}$		78.000		
Gut		1.650		
H		0.480		
Heart		0.310		
Kd_AG2		3424.000		
Kd_CB1_A		239.200		
$\mathtt{Ki}_{-}\mathtt{A}$		230.000		
$\mathtt{Ki}_{-}\mathtt{L}$		1000.000		
$ ext{Ki}_{-} ext{O}$		240.000		
$\mathtt{Ki}_\mathtt{P}$		6700.000		
$\mathtt{Ki}_{\mathtt{-}}\!\mathtt{S}$		840.000		
Kidney		0.280		
Km_FAAH_A		8200.000		
Km_FAAH_L		10800.000		
Km_FAAH_O		52200.000		
Km_FAAH_P		543000.000		
Km_FAAH_S		10000.000		
Km_NA_PE		2800.000		
Km_NL_PE		1000.000		
Km_NO_PE		2900.000		
Km_NP_PE		3300.000		
Km_NS_PE		3400.000		
Km_PFM		26.100		\Box
$Km_p_m_A$		1.000		
Kp_b_PF		1.300		\Box
${\tt Kp_m_PF}$		1.300		\Box
Kp_r_PF		1.500		\Box
$\mathtt{Ktr}_{\mathtt{p}\mathtt{m}\mathtt{A}}$		1.890		
$\mathtt{Ktr}_{\mathtt{p}\mathtt{m}\mathtt{L}}$		2.770		
$\mathtt{Ktr}_\mathtt{p}_\mathtt{m}_\mathtt{O}$		9.070		
$\mathtt{Ktr}_\mathtt{p}_\mathtt{m}_\mathtt{P}$		2.650		
$Ktr_p_m_S$		30.010		
$\mathtt{Ktr}_{\mathtt{p}\mathtt{r}\mathtt{A}}$		0.620		

Id	Name	SBO	Value	Unit	Constant
Ktr_p_r_L			0.890		
Ktr_p_r_0			2.800		
Ktr_p_r_P			0.850		
Ktr_p_r_S			9.190		
LEU			0.025		
LIVER			1.690		
Leucocyt	es		0.025		\Box
Lungs			1.172		
M_A			347.500		\Box
M_L			323.500		\Box
$M_{-}O$			325.500		\Box
M_P			299.500		
M_PF			455.400		
M_S			321.500		\Box
Muscles			35.000		\Box
PLD_b			10^{7}		
$\mathtt{PLD}_\mathtt{r}$			10^{7}		\Box
Pancreas			0.077		
R_PF			0.600		\Box
Spleen			0.192		
Testis			0.036		
Thymus			0.029		
${\tt Vm_PFM}$			1511.000		
${\tt Vmax_NAT}$			300.000		
Vss_PFM			58.328		
a_FAAH_A			1.000		
a_FAAH_L			1.150		
a_FAAH_O			5.700		\Box
a_FAAH_P			37.800		
a_FAAH_S			1.000		
$\mathtt{a}_{-}\mathtt{NAT}_{-}\mathtt{A}$			1.000		
$\mathtt{a}_{-}\mathtt{NAT}_{-}\mathtt{L}$			8.600		
a_NAT_0			13.000		
a_NAT_P			0.420		\Box
a_NAT_S			1.000		
b_FAAH_Br	ain		0.197		
b_FAAH_Gu	ıt		0.034		
b_FAAH-			0.069		
$_{ extsf{L}}$ Kidney					
b_FAAH-			0.000		
_Leucocyt	ces				
b_FAAH_Li	ver		1.000		

Id	Name	SBO	Value	Unit	Constant
b_FAAH_Lungs			0.032		
b_FAAH_MEC			0.137		
b_FAAH-			0.030		
$_\mathtt{Spleen}$					
b_FAAH-			0.126		
$_{ extsf{ extstyle T}}$ Testis					
b_NAAA_Brain			0.600		
b_NAAA_Gut			0.200		
b_NAAA_Heart			0.200		
b_NAAA-			0.600		
$_\mathtt{Kidney}$					
b_NAAA_Liver			1.000		
b_NAAA_Lungs			14.000		
b_NAAA-			8.000		
_Spleen					
b_NAAA-			0.600		
$_{ extsf{L}}Testis$					
b_NAAA-			4.000		
$_{ extsf{ iny Thymus}}$					
b_NAT_Brain			1.667		
b_NAT_Heart			1.000		
b_NAT_Kidney			0.667		
b_NAT-			0.000		
_Leucocytes					
b_NAT_Lungs			0.033		
b_NAT-			0.333		
$_$ Muscles					
b_NAT-			0.333		\Box
$_{ t L}$ Pancreas					
b_NAT_Testis			0.667		
e1			0.000		
k_NA_PE			202.000		
k_NL_PE			100.000		
k_NO_PE			230.000		
k_NP_PE			270.000		
k_NS_PE			280.000		\Box
k_deg_FAAH			0.005		
$\mathtt{k}_{-}\mathtt{inh}$			1.100		
kabs_PFM			2.200		
kcat_FAAH			18000.000		
kcl_A			1.740		
kcl_L			1.250		

Id	Name	SBO	Value	Unit	Constant
kcl_0			2.500		\Box
kcl_P			2.610		\Box
kcl_S			1.200		
kin_PFM			0.117		
klinear_PF	M		0.080		
$\mathtt{kout_PFM}$			0.180		
$\mathtt{ktr}_{\mathtt{m}}\mathtt{p}\mathtt{A}$			150.000		
$ktr_m_p_L$			0.000		
$\mathtt{ktr}_{\mathtt{m}}\mathtt{p}_{\mathtt{0}}$			10.000		\Box
$ktr_m_p_P$			10.000		\Box
$ktr_m_p_S$			10.000		\Box
ktr_r_p			100.000		
$\mathtt{p}_{-}\mathtt{A}$			0.051		
p_L			0.016		
p0			0.098		\Box
$p_{-}P$			0.615		
pS			0.191		\Box
t			0.000		
F_PFM			0.000		
MD			0.000		
PF_p			0.000		
PF_b			0.000		
PF_r			0.000		
PF_m			0.000		
$FAAH_D_b$			0.000		
$slag1_b$			0.000		
$slag2_b$			0.000		
den_b			0.000		
${\tt FAAH_D_r}$			0.000		
c_NAT_ROB			0.000		
${\tt slag1_r}$			0.000		
$slag2_r$			0.000		
den_r			0.000		
c_FAAH_ROB			0.000		\Box
c_NAAA_ROB			0.000		
$FAAH_D_m$			0.000		
$F_{-}r$			0.000		
$PFG_{-}p$			0.000		
$AG_{-}p$			0.000		\Box
$\mathtt{OG}_{-}\mathtt{p}$			0.000		
PG_p			0.000		
$LG_{-}p$			0.000		\Box

Id	Name	SBO	Value	Unit	Constant
SG_p			0.000)	
CB1_b			0.000)	
tid			0.000)	

6 Rules

This is an overview of 27 rules.

6.1 Rule F_PFM

Rule F_PFM is an assignment rule for parameter F_PFM:

$$F_PFM = \frac{Emax_PFM \cdot Dose}{ED50 + Dose}$$
 (1)

6.2 Rule MD

Rule MD is an assignment rule for parameter MD:

$$MD = [PFM_gut] + 1000000.0 \cdot Dose \cdot F_PFM$$
 (2)

6.3 Rule PF_p

Rule PF_p is an assignment rule for parameter PF_p:

$$PF_{p} = \frac{\frac{1.0}{M.PF} \cdot [PFM_{p}]}{Vss_PFM}$$
 (3)

6.4 Rule PF_b

Rule PF_b is an assignment rule for parameter PF_b:

$$PF_{-}b = PF_{-}p \cdot Kp_{-}b_{-}PF \tag{4}$$

6.5 Rule PF_r

Rule PF_r is an assignment rule for parameter PF_r:

$$PF_{-}r = PF_{-}p \cdot Kp_{-}r_{-}PF \tag{5}$$

6.6 Rule PF_m

Rule PF_m is an assignment rule for parameter PF_m:

$$PF_{-}m = PF_{-}p \cdot Kp_{-}m_{-}PF \tag{6}$$

6.7 Rule FAAH_D_b

Rule FAAH_D_b is an assignment rule for parameter FAAH_D_b:

$$FAAH_D_b = 1.0 + \frac{[A_b]}{Km_FAAH_A} + \frac{[O_b]}{Km_FAAH_O} + \frac{[P_b]}{Km_FAAH_P} + \frac{[L_b]}{Km_FAAH_L} + \frac{[S_b]}{Km_FAAH_S}$$
(7)

6.8 Rule slag1_b

Rule slag1_b is an assignment rule for parameter slag1_b:

$$slag1_b = \frac{[NAPE_b]}{Km\ NA\ PE} + \frac{[NOPE_b]}{Km\ NO\ PE} + \frac{[NPPE_b]}{Km\ NP\ PE} + \frac{[NLPE_b]}{Km\ NI\ PE} + \frac{[NSPE_b]}{Km\ NS\ PE}$$
(8)

6.9 Rule slag2_b

Rule slag2_b is an assignment rule for parameter slag2_b:

$$slag2_b = \frac{[A_b]}{Ki A} + \frac{[O_b]}{Ki O} + \frac{[P_b]}{Ki P} + \frac{[L_b]}{Ki L} + \frac{[S_b]}{Ki S}$$
(9)

6.10 Rule den_b

Rule den_b is an assignment rule for parameter den_b:

$$den_b = 1.0 + slag1_b + slag2_b$$
 (10)

6.11 Rule FAAH_D_r

Rule FAAH_D_r is an assignment rule for parameter FAAH_D_r:

$$FAAH_D_r = 1.0 + \frac{[A_r]}{Km_FAAH_A} + \frac{[O_r]}{Km_FAAH_O}$$

$$+ \frac{[P_r]}{Km_FAAH_P} + \frac{[L_r]}{Km_FAAH_L} + \frac{[S_r]}{Km_FAAH_S}$$

$$(11)$$

6.12 Rule c_NAT_ROB

Rule c_NAT_ROB is an assignment rule for parameter c_NAT_ROB:

6.13 Rule slag1_r

Rule slag1_r is an assignment rule for parameter slag1_r:

$$slag1.r = \frac{[NAPE.r]}{Km.NA.PE} + \frac{[NOPE.r]}{Km.NO.PE} + \frac{[NPPE.r]}{Km.NP.PE} + \frac{[NLPE.r]}{Km.NL.PE} + \frac{[NSPE.r]}{Km.NS.PE}$$
(13)

6.14 Rule slag2_r

Rule slag2_r is an assignment rule for parameter slag2_r:

$$slag2_{r} = \frac{[A_{r}]}{Ki_{r}A} + \frac{[O_{r}]}{Ki_{r}O} + \frac{[P_{r}]}{Ki_{r}P} + \frac{[L_{r}]}{Ki_{r}L} + \frac{[S_{r}]}{Ki_{r}S}$$
(14)

6.15 Rule den_r

Rule den_r is an assignment rule for parameter den_r:

$$den_r = 1.0 + slag1_r + slag2_r \tag{15}$$

6.16 Rule c FAAH ROB

Rule c_FAAH_ROB is an assignment rule for parameter c_FAAH_ROB:

$$c_FAAH_ROB = LIVER \cdot b_FAAH_Liver + Gut \cdot b_FAAH_Gut + Spleen \\ \cdot b_FAAH_Spleen + Kidney \cdot b_FAAH_Kidney + Lungs \cdot b_FAAH_Lungs \\ + Testis \cdot b_FAAH_Testis + Leucocytes \cdot b_FAAH_Leucocytes$$
 (16)

6.17 Rule c_NAAA_ROB

Rule c_NAAA_ROB is an assignment rule for parameter c_NAAA_ROB:

6.18 Rule FAAH_D_m

Rule FAAH_D_m is an assignment rule for parameter FAAH_D_m:

$$FAAH_D_m = 1.0 + \frac{[A_m]}{Km_FAAH_A} + \frac{[O_m]}{Km_FAAH_O} + \frac{[P_m]}{Km_FAAH_B} + \frac{[L_m]}{Km_FAAH_L} + \frac{[S_m]}{Km_FAAH_S}$$
(18)

6.19 Rule F_r

Rule F_r is an assignment rule for parameter F_r:

$$F_{\perp}r = \frac{1500.0 \cdot [FAAH_{\perp}r]}{[FAAHinh_{\perp}] + [FAAH_{\perp}r]}$$
(19)

6.20 Rule PFG_p

Rule PFG_p is an assignment rule for parameter PFG_p:

$$PFG_p = \frac{0.0010 \cdot [PFM_p]}{Vss_PFM}$$
 (20)

6.21 Rule AG_p

Rule AG_p is an assignment rule for parameter AG_p:

$$AG_{p} = 0.0010 \cdot [A_{p}] \cdot M_{A}$$
 (21)

6.22 Rule OG_p

Rule OG_p is an assignment rule for parameter OG_p:

$$OG_{p} = 0.0010 \cdot [O_{p}] \cdot M_{O}$$
 (22)

6.23 Rule PG_p

Rule PG_p is an assignment rule for parameter PG_p:

$$PG_{p} = 0.0010 \cdot [P_{p}] \cdot M_{P}$$
 (23)

6.24 Rule LG_p

Rule LG_p is an assignment rule for parameter LG_p:

$$LG_{p} = 0.0010 \cdot [L_{p}] \cdot M_{L}$$
 (24)

6.25 Rule SG_p

Rule SG_p is an assignment rule for parameter SG_p:

$$SG_p = 0.0010 \cdot [S_p] \cdot M_S$$
 (25)

6.26 Rule CB1_b

Rule CB1_b is an assignment rule for parameter CB1_b:

$$CB1_b = \frac{\frac{[A.b]}{Kd.CB1_A} + \frac{AG2_b}{Kd.AG2}}{1.0 + \frac{[A.b]}{Kd.CB1_A} + \frac{AG2_b}{Kd.AG2}}$$
(26)

6.27 Rule tid

Rule ${\tt tid}$ is an assignment rule for parameter ${\tt tid}:$

$$tid = \frac{t}{24.0} \tag{27}$$

16

7 Reactions

This model contains 75 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	vA_degr_b	vA_degr_b	$A_b \xrightarrow{FAAH_b, FAAH_b, A_b} \emptyset$	
2	v0_degr_b	vO_degr_b	$O_b \xrightarrow{FAAH_b, FAAH_b, O_b} \emptyset$	
3	vP_degr_b	vP_degr_b	$P_{-}b \xrightarrow{FAAH_{-}b, FAAH_{-}b, P_{-}b} \emptyset$	
4	vL_degr_b	vL_degr_b	$L_b \xrightarrow{FAAH_b, FAAH_b, L_b} \emptyset$	
5	vS_degr_b	vS_degr_b	$S_b \xrightarrow{FAAH_b, FAAH_b, S_b} \emptyset$	
6	vNAPE_syn_b	vNAPE_syn_b	$\emptyset \longrightarrow NAPE_b$	
7	vNOPE_syn_b	vNOPE_syn_b	$\emptyset \longrightarrow NOPE_b$	
8	vNPPE_syn_b	vNPPE_syn_b	$\emptyset \longrightarrow NPPE_b$	
9	vNLPE_syn_b	vNLPE_syn_b	$\emptyset \longrightarrow NLPE_b$	
10	$vNSPE_syn_b$	vNSPE_syn_b	$\emptyset \longrightarrow NSPE_b$	
11	vA_syn_b	vA_syn_b	$NAPE_b \xrightarrow{NAPE_b} A_b$	
12	vO_syn_b	vO_syn_b	$NOPE_b \xrightarrow{NOPE_b} O_b$	
13	vP_syn_b	vP_syn_b	$NPPE_b \xrightarrow{NPPE_b} P_b$	
14	vL_syn_b	vL_syn_b	$NLPE_b \xrightarrow{NLPE_b} L_b$	
15	vS_syn_b	vS_syn_b	$NSPE_b \xrightarrow{NSPE_b} S_b$	
16	vFAAH_syn_b	vFAAH_syn_b	$\emptyset \longrightarrow FAAH_b$	
17	${\tt vFAAH_degr_b}$	vFAAH_degr_b	$FAAH_b \xrightarrow{FAAH_b} \emptyset$	
18	${\tt vFAAH_inh_b}$	vFAAH_inh_b	$FAAH_b \xrightarrow{FAAH_b} FAAHinh_b$	

No	Id	Name	Reaction Equation	SBO
19	vFAAH_inh_degr- _b	vFAAH_inh_degr_b	$FAAHinh_b \xrightarrow{FAAHinh_b} \emptyset$	
20	vA_UE_b	vA_UE_b	$A_b \xrightarrow{A_b} \emptyset$	
21	vO_UE_b	vO_UE_b	$O P \xrightarrow{Q P} \emptyset$	
22	vP_UE_b	vP_UE_b	$P_b \xrightarrow{P_b} \emptyset$	
23	vL_UE_b	vL_UE_b	$L_b \xrightarrow{L_b} \emptyset$	
24	vS_UE_b	vS_UE_b	$Sb \xrightarrow{Sb} \emptyset$	
25	vA_degr_r	vA_degr_r	$A \perp \xrightarrow{FAAH \perp r, FAAH \perp r, A \perp r} \emptyset$	
26	v0_degr_r	vO_degr_r	$O.r \xrightarrow{FAAH.r, FAAH.r, O.r} \emptyset$	
27	vP_degr_r	vP_degr_r	$P_{-}r \xrightarrow{FAAH_{-}r, FAAH_{-}r, P_{-}r} \emptyset$	
28	vL_degr_r	vL_degr_r	$L_{-}r\xrightarrow{FAAH_{-}r, FAAH_{-}r, L_{-}r} \emptyset$	
29	vS_degr_r	vS_degr_r	$S_r \xrightarrow{FAAH_r, FAAH_r, S_r} \emptyset$	
30	vNAPE_syn_r	vNAPE_syn_r	$\emptyset \longrightarrow NAPE_r$	
31	${\tt vNOPE_syn_r}$	vNOPE_syn_r	$\emptyset \longrightarrow NOPE_r$	
32	${\tt vNPPE_syn_r}$	vNPPE_syn_r	$\emptyset \longrightarrow \text{NPPE.r}$	
33	${\tt vNLPE_syn_r}$	vNLPE_syn_r	$\emptyset \longrightarrow NLPE_r$	
34	vNSPE_syn_r	vNSPE_syn_r	$\emptyset \longrightarrow NSPE$ r	
35	vA_syn_r	vA_syn_r	$NAPE_r \xrightarrow{NAPE_r} A_r$	
36	vO_syn_r	vO_syn_r	$NOPE_{-r} \xrightarrow{NOPE_{-r}} O_{-r}$	
37	vP_syn_r	vP_syn_r	$NPPE_r \xrightarrow{NPPE_r} P_r$	
38	vL_syn_r	vL_syn_r	$NLPE_r \xrightarrow{NLPE_r} L_r$	
39	vS_syn_r	vS_syn_r	$NSPE_{\underline{r}} \xrightarrow{NSPE_{\underline{r}}} S_{\underline{r}}$	
40	${\tt vFAAH_syn_r}$	vFAAH_syn_r	$\emptyset \longrightarrow FAAH_r$	

Nº	Id	Name	Reaction Equation	SBO
41	vFAAH_degr_r	vFAAH_degr_r	$FAAH_r \xrightarrow{FAAH_r} \emptyset$	
42	$vFAAH_inh_r$	vFAAH_inh_r	$FAAH_r \xrightarrow{FAAH_r} FAAHinh_r$	
43	vFAAH_inh_degr- _r	vFAAH_inh_degr_r	$FAAHinh_r \xrightarrow{FAAHinh_r} \emptyset$	
44	vA_UE_r	$vA_{-}UE_{-}r$	$A \cdot x \xrightarrow{A \cdot x} \emptyset$	
45	vO_UE_r	vO_UE_r	$0 \xrightarrow{\nabla} 0$	
46	vP_UE_r	vP_UE_r	$P_{-}r \xrightarrow{P_{-}r} \emptyset$	
47	vL_UE_r	vL_UE_r	$L_{-} \xrightarrow{L_{-} r} \emptyset$	
48	vS_UE_r	vS_UE_r	$S_{-} \xrightarrow{S_{-}} \emptyset$	
49	vA_degr_m	vA_degr_m	$A_{-m} \xrightarrow{FAAH_{-m}, FAAH_{-m}, A_{-m}} \emptyset$	
50	vO_degr_m	vO_degr_m	$O_{-m} \xrightarrow{FAAH_{-m}, FAAH_{-m}, O_{-m}} \emptyset$	
51	vP_degr_m	vP_degr_m	$P_m \xrightarrow{FAAH_m, \ FAAH_m, \ P_m} \emptyset$	
52	vL_degr_m	vL_degr_m	$L_m \xrightarrow{FAAH_m, FAAH_m, L_m} \emptyset$	
53	vS_degr_m	vS_degr_m	$S_m \xrightarrow{FAAH_m, FAAH_m, S_m} \emptyset$	
54	$vFAAH_syn_m$	vFAAH_syn_m	$\emptyset \longrightarrow FAAH_m$	
55	vFAAH_degr_m	vFAAH_degr_m	$FAAH_m \xrightarrow{FAAH_m} \emptyset$	
56	vFAAH_inh_m	vFAAH_inh_m	$FAAH_m \xrightarrow{FAAH_m} FAAHinh_m$	
57	vFAAH_inh_degr- _m	vFAAH_inh_degr_m	$FAAHinh_m \xrightarrow{FAAHinh_m} \emptyset$	
58	vA_m_p	vA_m_p	$A_m \xrightarrow{A_m, A_p} A_p$	
59	vo_m_p	vo_m_p	$O_{-m} \xrightarrow{O_{-m}, O_{-p}} O_{-p}$	

N⁰	Id	Name	Reaction Equation	SBO
60	vP_m_p	vP_m_p	$P_{-}m \xrightarrow{P_{-}m, P_{-}p} P_{-}p$	
	vL_m_p	vL_m_p	$L_m \xrightarrow{L_m, L_p} L_p$	
62	vS_m_p	vS_m_p	$S_m \xrightarrow{S_m, S_p} S_p$	
63	vA_b_m	vA_b_m	$A_b \xrightarrow{A_b, A_m} A_m$	
64	$v0_b_m$	vO_b_m	$O_b \xrightarrow{O_b, O_m} O_m$	
65	vP_b_m	vP_b_m	$Pb \xrightarrow{Pb, Pm} Pm$	
66	vL_b_m	vL_b_m	$L_b \xrightarrow{L_b, L_m} L_m$	
67	vSbm	vS_b_m	$Sb \xrightarrow{Sb, Sm} Sm$	
68	vA_r_p	vA_r_p	$A.r \xrightarrow{A.r, A.p} A.p$	
69	$v0_r_p$	vO_r_p	$O_{-}r \xrightarrow{O_{-}r, O_{-}p} O_{-}p$	
70	vP_r_p	vP_r_p	$P_{-r} \xrightarrow{P_{-r}, P_{-p}} P_{-p}$	
71	vL_r_p	vL_r_p	L _ \xrightarrow{L} _ \xrightarrow{L} _ \xrightarrow{L} _ p	
72	vS_r_p	vS_r_p	$S_{-}r \xrightarrow{S_{-}r, S_{-}p} S_{-}p$	
73	absorp	absorp	$PFM_gut \longrightarrow PFM_p$	
74	dist	dist	$PFM_p \xrightarrow{PFM_p, PFM_r} PFM_r$	
75	elim	elim	$PFM_{-}p \xrightarrow{PFM_{-}p} \emptyset$	

7.1 Reaction vA_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vA_degr_b

Reaction equation

$$A_b \xrightarrow{FAAH_b, FAAH_b, A_b} \emptyset$$
 (28)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
A_b	A_b	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
$FAAH_b$	FAAH_b	
$FAAH_b$	$FAAH_b$	
A_b	A_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \frac{\text{vol}(\text{BRAIN}) \cdot [\text{FAAH_b}] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_A} \cdot [\text{A_b}]}{\text{Km_FAAH_A} \cdot \text{FAAH_D_b}}$$
(29)

7.2 Reaction v0_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vO_degr_b

Reaction equation

$$O_{-}b \xrightarrow{FAAH_{-}b, FAAH_{-}b, O_{-}b} \emptyset$$
 (30)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
0_b	O_b	

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
FAAH_b	FAAH_b	
$FAAH_b$	FAAH_b	
0_b	O_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \frac{\text{vol}(\text{BRAIN}) \cdot [\text{FAAH_b}] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_O} \cdot [\text{O_b}]}{\text{Km_FAAH_O} \cdot \text{FAAH_D_b}}$$
(31)

7.3 Reaction vP_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vP_degr_b

Reaction equation

$$P_{-}b \xrightarrow{FAAH_{-}b, FAAH_{-}b, P_{-}b} \emptyset$$
 (32)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
P_b	P_b	

Modifiers

Table 11: Properties of each modifier.

Id	Name	SBO
FAAH_b	FAAH_b	
$FAAH_b$	FAAH_b	
P_b	P_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{3} = \frac{\text{vol}(\text{BRAIN}) \cdot [\text{FAAH_b}] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_P} \cdot [\text{P_b}]}{\text{Km_FAAH_P} \cdot \text{FAAH_D_b}}$$
(33)

7.4 Reaction vL_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vL_degr_b

Reaction equation

$$L.b \xrightarrow{\text{FAAH_b}, \text{FAAH_b}, L.b} \emptyset \tag{34}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
L_b	L_b	

Table 13: Properties of each modifier.

Id	Name	SBO
FAAH_b	FAAH_b	
$FAAH_b$	$FAAH_b$	
$L_{-}b$	L_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \frac{\text{vol}\left(\text{BRAIN}\right) \cdot \left[\text{FAAH_b}\right] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_L} \cdot \left[\text{L_b}\right]}{\text{Km_FAAH_L} \cdot \text{FAAH_D_b}} \tag{35}$$

7.5 Reaction vS_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vS_degr_b

Reaction equation

$$S_b \xrightarrow{FAAH_b, FAAH_b, S_b} \emptyset$$
 (36)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
S_b	S_b	

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
FAAH_b	FAAH_b	
$FAAH_b$	FAAH_b	
S_b	S_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \frac{\text{vol}(\text{BRAIN}) \cdot [\text{FAAH_b}] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_S} \cdot [\text{S_b}]}{\text{Km_FAAH_S} \cdot \text{FAAH_D_b}}$$
(37)

7.6 Reaction vNAPE_syn_b

This is a fast irreversible reaction of no reactant forming one product.

Name vNAPE_syn_b

Reaction equation

$$\emptyset \longrightarrow NAPE_b$$
 (38)

Product

Table 16: Properties of each product.

Id	Name	SBO
NAPE_b	NAPE_b	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(BRAIN) \cdot Vmax_NAT \cdot p_A \cdot a_NAT_A \cdot b_NAT_Brain$$
 (39)

7.7 Reaction vNOPE_syn_b

This is a fast irreversible reaction of no reactant forming one product.

Name vNOPE_syn_b

Reaction equation

$$\emptyset \longrightarrow NOPE_b$$
 (40)

Product

Table 17: Properties of each product.

Id	Name	SBO
NOPE_b	NOPE_b	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(BRAIN) \cdot Vmax_NAT \cdot p_O \cdot a_NAT_O \cdot b_NAT_Brain$$
 (41)

7.8 Reaction vNPPE_syn_b

This is a fast irreversible reaction of no reactant forming one product.

Name vNPPE_syn_b

Reaction equation

$$\emptyset \longrightarrow NPPE_b$$
 (42)

Product

Table 18: Properties of each product.

Id	Name	SBO
NPPE_b	NPPE_b	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(BRAIN) \cdot Vmax_NAT \cdot p_P \cdot a_NAT_P \cdot b_NAT_Brain$$
 (43)

7.9 Reaction vNLPE_syn_b

This is a fast irreversible reaction of no reactant forming one product.

Name vNLPE_syn_b

Reaction equation

$$\emptyset \longrightarrow NLPE_b$$
 (44)

Product

Table 19: Properties of each product.

Id	Name	SBO
NLPE_b	NLPE_b	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(BRAIN) \cdot Vmax_NAT \cdot p_L \cdot a_NAT_L \cdot b_NAT_Brain$$
 (45)

7.10 Reaction vNSPE_syn_b

This is a fast irreversible reaction of no reactant forming one product.

Name vNSPE_syn_b

Reaction equation

$$\emptyset \longrightarrow NSPE_b$$
 (46)

Product

Table 20: Properties of each product.

Id	Name	SBO
NSPE_b	NSPE_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(BRAIN) \cdot Vmax_NAT \cdot p_S \cdot a_NAT_S \cdot b_NAT_Brain$$
 (47)

7.11 Reaction vA_syn_b

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vA_syn_b

Reaction equation

$$NAPE_b \xrightarrow{NAPE_b} A_b$$
 (48)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
NAPE_b	NAPE_b	

Table 22: Properties of each modifier.

Id	Name	SBO
NAPE_b	NAPE_b	

Table 23: Properties of each product.

Id	Name	SBO
A_b	A_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \frac{\frac{\text{vol(BRAIN)} \cdot PLD_b \cdot k_NA_PE \cdot [NAPE_b]}{\text{Km_NA_PE}}}{\text{den_b}}$$
(49)

7.12 Reaction v0_syn_b

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vO_syn_b

Reaction equation

$$NOPE_b \xrightarrow{NOPE_b} O_b \tag{50}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
NOPE_b	NOPE_b	

Table 25: Properties of each modifier.

Id	Name	SBO
NOPE_b	NOPE_b	

Table 26: Properties of each product.

Id	Name	SBO
0_b	O_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \frac{\frac{\text{vol(BRAIN)} \cdot \text{PLD_b} \cdot \text{k_NO_PE} \cdot [\text{NOPE_b}]}{\text{Km_NO_PE}}}{\text{den_b}}$$
 (51)

7.13 Reaction vP_syn_b

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vP_syn_b

Reaction equation

$$NPPE_b \xrightarrow{NPPE_b} P_b \tag{52}$$

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
NPPE_b	NPPE_b	

Table 28: Properties of each modifier.

Id	Name	SBO
NPPE_b	NPPE_b	

Table 29: Properties of each product.

Id	Name	SBO
P_b	P_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \frac{\frac{\text{vol(BRAIN)} \cdot \text{PLD_b} \cdot \text{k_NP_PE} \cdot [\text{NPPE_b}]}{\text{Km_NP_PE}}}{\text{den_b}}$$
 (53)

7.14 Reaction vL_syn_b

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vL_syn_b

Reaction equation

$$NLPE_b \xrightarrow{NLPE_b} L_b \tag{54}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
NLPE_b	NLPE_b	

Table 31: Properties of each modifier.

Id	Name	SBO
NLPE_b	NLPE_b	

Table 32: Properties of each product.

Id	Name	SBO
L_b	L_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \frac{\frac{\text{vol(BRAIN)} \cdot \text{PLD_b} \cdot \text{k_NL_PE} \cdot [\text{NLPE_b}]}{\text{Km_NL_PE}}}{\text{den_b}}$$
 (55)

7.15 Reaction vS_syn_b

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vS_syn_b

Reaction equation

$$NSPE_b \xrightarrow{NSPE_b} S_b$$
 (56)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
NSPE_b	NSPE_b	

Table 34: Properties of each modifier.

Id	Name	SBO
NSPE_b	NSPE_b	

Table 35: Properties of each product.

Id	Name	SBO
S_b	S_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \frac{\frac{\text{vol(BRAIN)} \cdot \text{PLD_b} \cdot \text{k_NS_PE} \cdot [\text{NSPE_b}]}{\text{Km_NS_PE}}}{\text{den_b}}$$
(57)

7.16 Reaction vFAAH_syn_b

This is a fast irreversible reaction of no reactant forming one product.

Name vFAAH_syn_b

Reaction equation

$$\emptyset \longrightarrow FAAH_b$$
 (58)

Product

Table 36: Properties of each product.

Id	Name	SBO
FAAH_b	FAAH_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(BRAIN) \cdot FAAH_t \cdot b_FAAH_Brain \cdot k_deg_FAAH$$
 (59)

7.17 Reaction vFAAH_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vFAAH_degr_b

Reaction equation

$$FAAH_b \xrightarrow{FAAH_b} \emptyset \tag{60}$$

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
FAAH_b	FAAH_b	

Modifier

Table 38: Properties of each modifier.

Id	Name	SBO
FAAH_b	FAAH_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(BRAIN) \cdot k_{deg}FAAH \cdot [FAAH_b]$$
 (61)

7.18 Reaction vFAAH_inh_b

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vFAAH_inh_b

Reaction equation

$$FAAH_b \xrightarrow{FAAH_b} FAAHinh_b \tag{62}$$

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
FAAH_b	FAAH_b	

Modifier

Table 40: Properties of each modifier.

Id	Name	SBO
FAAH_b	FAAH_b	

Product

Table 41: Properties of each product.

Id	Name	SBO
FAAHinh_b	FAAHinh_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}(BRAIN) \cdot k_{-}inh \cdot [FAAH_{-}b] \cdot PF_{-}b$$
 (63)

7.19 Reaction vFAAH_inh_degr_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vFAAH_inh_degr_b

Reaction equation

$$FAAHinh_b \xrightarrow{FAAHinh_b} \emptyset$$
 (64)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
FAAHinh_b	FAAHinh_b	

Modifier

Table 43: Properties of each modifier.

Id	Name	SBO
FAAHinh_b	FAAHinh_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}(BRAIN) \cdot k_{deg}FAAH \cdot [FAAHinh_b]$$
 (65)

7.20 Reaction vA_UE_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vA_UE_b

Reaction equation

$$A_b \xrightarrow{A_b} \emptyset \tag{66}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
A_b	A_b	

Modifier

Table 45: Properties of each modifier.

Id	Name	SBO
A_b	A_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(BRAIN) \cdot b_FAAH_Brain \cdot kcl_A \cdot [A_b]$$
 (67)

7.21 Reaction v0_UE_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vO_UE_b

Reaction equation

$$O_-b \xrightarrow{O_-b} \emptyset \tag{68}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
0_b	O_b	

Modifier

Table 47: Properties of each modifier.

Id	Name	SBO
0_b	O_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(BRAIN) \cdot b_FAAH_Brain \cdot kcl_O \cdot [O_b]$$
 (69)

7.22 Reaction vP_UE_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vP_UE_b

Reaction equation

$$P_{-}b \xrightarrow{P_{-}b} \emptyset \tag{70}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
P_b	P_b	

Modifier

Table 49: Properties of each modifier.

Id	Name	SBO
P_b	P_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(BRAIN) \cdot b_FAAH_Brain \cdot kcl_P \cdot [P_b]$$
 (71)

7.23 Reaction vL_UE_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vL_UE_b

Reaction equation

$$L_{-}b \xrightarrow{L_{-}b} \emptyset \tag{72}$$

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
L_b	L_b	

Table 51: Properties of each modifier.

Id	Name	SBO
L_b	L_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{BRAIN}) \cdot \text{b_FAAH_Brain} \cdot \text{kcl_L} \cdot [\text{L_b}]$$
 (73)

7.24 Reaction vS_UE_b

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vS_UE_b

Reaction equation

$$S_{-b} \xrightarrow{S_{-b}} \emptyset \tag{74}$$

Reactant

Table 52: Properties of each reactant.

Id	Name	SBO
S_b	$S_{-}b$	

Modifier

Table 53: Properties of each modifier.

Id	Name	SBO
S_b	S_b	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(BRAIN) \cdot b_FAAH_Brain \cdot kcl_S \cdot [S_b]$$
 (75)

7.25 Reaction vA_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vA_degr_r

Reaction equation

$$A_{.T} \xrightarrow{FAAH_{.T}, FAAH_{.T}, A_{.T}} \emptyset$$
 (76)

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
A_r	A_r	

Modifiers

Table 55: Properties of each modifier.

Id	Name	SBO
FAAH_r	FAAH_r	
${\tt FAAH_r}$	$FAAH_r$	
$\mathtt{A}_{-}\mathtt{r}$	$A_{\perp}r$	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \frac{\text{vol}(\text{ROB}) \cdot [\text{FAAH}_\text{I}] \cdot \text{kcat}_\text{FAAH} \cdot \text{a}_\text{FAAH}_\text{A} \cdot [\text{A}_\text{I}]}{\text{Km}_\text{FAAH}_\text{A} \cdot \text{FAAH}_\text{D}_\text{I}}$$
(77)

7.26 Reaction v0_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vO_degr_r

Reaction equation

$$O_{\perp} \xrightarrow{\text{FAAH}_{\perp}, \text{ FAAH}_{\perp}, O_{\perp}} \emptyset$$
 (78)

Table 56: Properties of each reactant.

Id	Name	SBO
0_r	O_r	

Table 57: Properties of each modifier.

Id	Name	SBO
${\tt FAAH_r}$	FAAH_r	
${\tt FAAH_r}$	FAAH_r	
0_r	O_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \frac{\text{vol}(\text{ROB}) \cdot [\text{FAAH_r}] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_O} \cdot [\text{O_r}]}{\text{Km_FAAH_O} \cdot \text{FAAH_D_r}}$$
(79)

7.27 Reaction vP_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vP_degr_r

Reaction equation

$$P_{\mathcal{I}} \xrightarrow{\text{FAAH_r}, \text{ FAAH_r}, P_{\mathcal{I}}} \emptyset \tag{80}$$

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
P_r	P_r	

Table 59: Properties of each modifier.

Id	Name	SBO
$FAAH_r$	FAAH_r	
${\tt FAAH_r}$	FAAH_r	
P_r	P_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \frac{\text{vol}(\text{ROB}) \cdot [\text{FAAH_r}] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_P} \cdot [\text{P_r}]}{\text{Km_FAAH_P} \cdot \text{FAAH_D_r}}$$
(81)

7.28 Reaction vL_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vL_degr_r

Reaction equation

$$L_{\mathcal{I}} \xrightarrow{\text{FAAH.r.}, \text{FAAH.r.}, L_{\mathcal{I}}} \emptyset \tag{82}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
L_r	L_r	

Table 61: Properties of each modifier.

Id	Name	SBO
$FAAH_r$	FAAH_r	
${\tt FAAH_r}$	$FAAH_{r}$	
L_r	L_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \frac{\text{vol}(\text{ROB}) \cdot [\text{FAAH_r}] \cdot \text{kcat_FAAH_ } \cdot \text{a_FAAH_L} \cdot [\text{L_r}]}{\text{Km_FAAH_L} \cdot \text{FAAH_D_r}}$$
(83)

7.29 Reaction vS_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vS_degr_r

Reaction equation

$$S_{\perp} \xrightarrow{\text{FAAH}_{\perp}, \text{ FAAH}_{\perp}, S_{\perp}} \emptyset$$
 (84)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
S_r	S_r	

Modifiers

Table 63: Properties of each modifier.

Id	Name	SBO
FAAH_r	FAAH_r	
${\tt FAAH_r}$	FAAH_r	
$S_{-}r$	S_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \frac{\text{vol}(\text{ROB}) \cdot [\text{FAAH_r}] \cdot \text{kcat_FAAH_a_FAAH_S} \cdot [\text{S_r}]}{\text{Km_FAAH_S} \cdot \text{FAAH_D_r}}$$
(85)

7.30 Reaction vNAPE_syn_r

This is a fast irreversible reaction of no reactant forming one product.

Name vNAPE_syn_r

Reaction equation

$$\emptyset \longrightarrow NAPE_r$$
 (86)

Product

Table 64: Properties of each product.

Id	Name	SBO
NAPE_r	NAPE_r	

Kinetic Law

Derived unit not available

$$v_{30} = V_{\text{max_NAT}} \cdot p_{\text{_}A} \cdot a_{\text{_}NAT_{\text{_}A}} \cdot c_{\text{_}NAT_{\text{_}ROB}}$$
(87)

7.31 Reaction vNOPE_syn_r

This is a fast irreversible reaction of no reactant forming one product.

Name vNOPE_syn_r

Reaction equation

$$\emptyset \longrightarrow NOPE_r$$
 (88)

Product

Table 65: Properties of each product.

Id	Name	SBO
NOPE_r	NOPE_r	

Kinetic Law

Derived unit not available

$$v_{31} = V_{\text{max_NAT}} \cdot p_{\text{_}O} \cdot a_{\text{_}NAT_{\text{_}O}} \cdot c_{\text{_}NAT_{\text{_}ROB}}$$
(89)

7.32 Reaction vNPPE_syn_r

This is a fast irreversible reaction of no reactant forming one product.

Name vNPPE_syn_r

Reaction equation

$$\emptyset \longrightarrow NPPE_r$$
 (90)

Product

Table 66: Properties of each product.

Id	Name	SBO
NPPE_r	NPPE_r	

Kinetic Law

Derived unit not available

$$v_{32} = Vmax_NAT \cdot p_P \cdot a_NAT_P \cdot c_NAT_ROB$$
 (91)

7.33 Reaction vNLPE_syn_r

This is a fast irreversible reaction of no reactant forming one product.

Name vNLPE_syn_r

Reaction equation

$$\emptyset \longrightarrow NLPE_{\mathcal{I}}$$
 (92)

Product

Table 67: Properties of each product.

Id	Name	SBO
NLPE_r	NLPE_r	

Kinetic Law

Derived unit not available

$$v_{33} = \text{Vmax_NAT} \cdot \text{p_L} \cdot \text{a_NAT_L} \cdot \text{c_NAT_ROB}$$
 (93)

7.34 Reaction vNSPE_syn_r

This is a fast irreversible reaction of no reactant forming one product.

Name vNSPE_syn_r

Reaction equation

$$\emptyset \longrightarrow NSPE_r$$
 (94)

Product

Table 68: Properties of each product.

Id	Name	SBO
NSPE_r	NSPE_r	

Kinetic Law

Derived unit not available

$$v_{34} = \text{Vmax_NAT} \cdot p_S \cdot a_\text{NAT_S} \cdot c_\text{NAT_ROB}$$
 (95)

7.35 Reaction vA_syn_r

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vA_syn_r

Reaction equation

$$NAPE_{J} \xrightarrow{NAPE_{J}} A_{J}$$
 (96)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
NAPE_r	NAPE_r	

Table 70: Properties of each modifier.

Id	Name	SBO
NAPE_r	NAPE_r	

Table 71: Properties of each product.

Id	Name	SBO
A_r	A_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \frac{\frac{\text{vol}(\text{ROB}) \cdot \text{PLD_r} \cdot \text{k_NA_PE} \cdot [\text{NAPE_r}]}{\text{Km_NA_PE}}}{\text{den_r}}$$
(97)

7.36 Reaction v0_syn_r

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vO_syn_r

Reaction equation

$$NOPE_r \xrightarrow{NOPE_r} O_r$$
 (98)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
NOPE_r	NOPE_r	

Table 73: Properties of each modifier.

Id	Name	SBO
NOPE_r	NOPE_r	

Table 74: Properties of each product.

Id	Name	SBO
0_r	O_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \frac{\frac{\text{vol(ROB)} \cdot \text{PLD_r} \cdot \text{k_NO_PE} \cdot [\text{NOPE_r}]}{\text{Km_NO_PE}}}{\text{den_r}}$$
(99)

7.37 Reaction vP_syn_r

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vP_syn_r

Reaction equation

$$NPPE_r \xrightarrow{NPPE_r} P_r \tag{100}$$

Reactant

Table 75: Properties of each reactant.

Id	Name	SBO
NPPE_r	NPPE_r	

Table 76: Properties of each modifier.

Id	Name	SBO
NPPE_r	NPPE_r	

Table 77: Properties of each product.

Id	Name	SBO
P_r	P_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \frac{\frac{\text{vol(ROB)} \cdot \text{PLD_r} \cdot \text{k_NP_PE} \cdot [\text{NPPE_r}]}{\text{Km_NP_PE}}}{\text{den_r}}$$
(101)

7.38 Reaction vL_syn_r

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vL_syn_r

Reaction equation

$$NLPE_{.}r \xrightarrow{NLPE_{.}r} L_{.}r \tag{102}$$

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
NLPE_r	NLPE_r	

Table 79: Properties of each modifier.

Id	Name	SBO
NLPE_r	NLPE_r	

Table 80: Properties of each product.

Id	Name	SBO
L_r	L_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \frac{\frac{\text{vol(ROB)} \cdot \text{PLD_r.k_NL_PE} \cdot [\text{NLPE_r}]}{\text{Km_NL_PE}}}{\text{den_r}}$$
(103)

7.39 Reaction vS_syn_r

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vS_syn_r

Reaction equation

$$NSPE_r \xrightarrow{NSPE_r} S_r \tag{104}$$

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
NSPE_r	NSPE_r	

Table 82: Properties of each modifier.

Id	Name	SBO
NSPE_r	NSPE_r	

Table 83: Properties of each product.

Id	Name	SBO
S_r	S_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \frac{\frac{\text{vol(ROB)} \cdot \text{PLD.r.k.NS.PE} \cdot [\text{NSPE.r}]}{\text{Km.NS.PE}}}{\text{den.r}}$$
(105)

7.40 Reaction vFAAH_syn_r

This is a fast irreversible reaction of no reactant forming one product.

Name vFAAH_syn_r

Reaction equation

$$\emptyset \longrightarrow FAAH.r$$
 (106)

Product

Table 84: Properties of each product.

Id	Name	SBO
FAAH_r	FAAH_r	

Kinetic Law

Derived unit not available

$$v_{40} = FAAH_t \cdot c_FAAH_ROB \cdot k_deg_FAAH$$
 (107)

7.41 Reaction vFAAH_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vFAAH_degr_r

Reaction equation

$$FAAH_{-r} \xrightarrow{FAAH_{-r}} \emptyset$$
 (108)

Reactant

Table 85: Properties of each reactant.

Id	Name	SBO
FAAH_r	FAAH_r	

Modifier

Table 86: Properties of each modifier.

Id	Name	SBO
FAAH_r	FAAH_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{41} = \text{vol}(\text{ROB}) \cdot \text{k_deg_FAAH} \cdot [\text{FAAH_r}]$$
 (109)

7.42 Reaction vFAAH_inh_r

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vFAAH_inh_r

Reaction equation

$$FAAH_r \xrightarrow{FAAH_r} FAAHinh_r$$
 (110)

Table 87: Properties of each reactant.

Id	Name	SBO
FAAH_r	FAAH_r	

Table 88: Properties of each modifier.

Id	Name	SBO
FAAH_r	FAAH_r	

Product

Table 89: Properties of each product.

Id	Name	SBO
FAAHinh_r	FAAHinh_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{ROB}) \cdot \text{k_inh} \cdot [\text{FAAH_r}] \cdot \text{PF_r}$$
 (111)

7.43 Reaction vFAAH_inh_degr_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vFAAH_inh_degr_r

Reaction equation

$$FAAHinh_r \xrightarrow{FAAHinh_r} \emptyset$$
 (112)

Table 90: Properties of each reactant.

Id	Name	SBO
FAAHinh_r	FAAHinh_r	

Table 91: Properties of each modifier.

Id	Name	SBO
FAAHinh_r	FAAHinh_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol}(\text{ROB}) \cdot \text{k_deg_FAAH} \cdot [\text{FAAHinh_r}]$$
 (113)

7.44 Reaction vA_UE_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vA_UE_r

Reaction equation

$$A.r \xrightarrow{A.r} \emptyset \tag{114}$$

Reactant

Table 92: Properties of each reactant.

Id	Name	SBO
A_r	A_r	

Modifier

Table 93: Properties of each modifier.

Id	Name	SBO
A_r	A_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{44} = c_NAAA_ROB \cdot kcl_A \cdot [A_r]$$
 (115)

7.45 Reaction v0_UE_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vO_UE_r

Reaction equation

$$O_{-r} \xrightarrow{O_{-r}} \emptyset$$
 (116)

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
0_r	r_0	

Modifier

Table 95: Properties of each modifier.

Id	Name	SBO
0_r	n_O	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = c_NAAA_ROB \cdot kcl_O \cdot [O_r]$$
 (117)

7.46 Reaction vP_UE_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vP_UE_r

Reaction equation

$$P \perp \xrightarrow{P \perp r} \emptyset \tag{118}$$

Table 96: Properties of each reactant.

Id	Name	SBO
P_r	P_r	

Table 97: Properties of each modifier.

Id	Name	SBO
P_r	P_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = c_NAAA_ROB \cdot kcl_P \cdot [P_r]$$
 (119)

7.47 Reaction vL_UE_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vL_UE_r

Reaction equation

$$L.r \xrightarrow{L.r} \emptyset \tag{120}$$

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
L_r	L_r	

Table 99: Properties of each modifier.

Id	Name	SBO
L_r	L_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = c_NAAA_ROB \cdot kcl_L \cdot [L_r]$$
 (121)

7.48 Reaction vS_UE_r

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vS_UE_r

Reaction equation

$$S.r \xrightarrow{S.r} \emptyset \tag{122}$$

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
S_r	S_r	

Modifier

Table 101: Properties of each modifier.

Id	Name	SBO
S_r	S_r	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = c_NAAA_ROB \cdot kcl_S \cdot [S_r]$$
 (123)

7.49 Reaction vA_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vA_degr_m

Reaction equation

$$A_{-m} \xrightarrow{FAAH_{-m}, FAAH_{-m}, A_{-m}} \emptyset$$
 (124)

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
A_m	A_m	

Modifiers

Table 103: Properties of each modifier.

Id	Name	SBO
${\tt FAAH_m}$	FAAH_m	
${\tt FAAH_m}$	$FAAH_m$	
A_m	A_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = \frac{\text{vol}(\text{MEC}) \cdot [\text{FAAH_m}] \cdot \text{kcat_FAAH_A} \cdot [\text{A_m}]}{\text{Km_FAAH_A} \cdot \text{FAAH_D_m}}$$
(125)

7.50 Reaction v0_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vO_degr_m

Reaction equation

$$O_{-m} \xrightarrow{FAAH_{-m}, FAAH_{-m}, O_{-m}} \emptyset$$
 (126)

Table 104: Properties of each reactant.

Id	Name	SBO
O_m	O_m	

Table 105: Properties of each modifier.

Id	Name	SBO
FAAH_m	FAAH_m	
${\tt FAAH_m}$	$FAAH_m$	
O_m	O_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{50} = \frac{\text{vol}\left(\text{MEC}\right) \cdot \left[\text{FAAH_m}\right] \cdot \text{kcat_FAAH} \cdot \text{a_FAAH_O} \cdot \left[\text{O_m}\right]}{\text{Km_FAAH_O} \cdot \text{FAAH_D_m}} \tag{127}$$

7.51 Reaction vP_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vP_degr_m

Reaction equation

$$P_{-m} \xrightarrow{FAAH_{-m}, FAAH_{-m}, P_{-m}} \emptyset$$
 (128)

Reactant

Table 106: Properties of each reactant.

Id	Name	SBO
P_m	P_m	

Table 107: Properties of each modifier.

Id	Name	SBO
${\tt FAAH_m}$	$FAAH_m$	
$\texttt{FAAH}_\texttt{m}$	$FAAH_m$	
P_m	P_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = \frac{\text{vol}(\text{MEC}) \cdot [\text{FAAH_m}] \cdot \text{kcat_FAAH_e} \cdot [\text{P_m}]}{\text{Km_FAAH_D_m}}$$
(129)

7.52 Reaction vL_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vL_degr_m

Reaction equation

$$L_{-m} \xrightarrow{\text{FAAH_m, FAAH_m, L_m}} \emptyset \tag{130}$$

Reactant

Table 108: Properties of each reactant.

Id	Name	SBO
L_m	L_m	

Table 109: Properties of each modifier.

Id	Name	SBO
$FAAH_m$	$FAAH_m$	
${\tt FAAH_m}$	$FAAH_m$	
L_m	L_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = \frac{\text{vol}(\text{MEC}) \cdot [\text{FAAH_m}] \cdot \text{kcat_FAAH_L} \cdot [\text{L_m}]}{\text{Km_FAAH_L} \cdot \text{FAAH_D_m}}$$
(131)

7.53 Reaction vS_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by three modifiers.

Name vS_degr_m

Reaction equation

$$S_{m} \xrightarrow{\text{FAAH}_{m}, \text{ FAAH}_{m}, S_{m}} \emptyset$$
 (132)

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
S_m	S_m	

Modifiers

Table 111: Properties of each modifier.

Id	Name	SBO
FAAH_m	FAAH_m	
${\tt FAAH_m}$	$FAAH_m$	
S_m	$S_{-}m$	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{53} = \frac{\text{vol}(\text{MEC}) \cdot [\text{FAAH_m}] \cdot \text{kcat_FAAH_s} \cdot [\text{S_m}]}{\text{Km_FAAH_S} \cdot \text{FAAH_D_m}}$$
(133)

7.54 Reaction vFAAH_syn_m

This is a fast irreversible reaction of no reactant forming one product.

Name vFAAH_syn_m

Reaction equation

$$\emptyset \longrightarrow FAAH_m$$
 (134)

Product

Table 112: Properties of each product.

Id	Name	SBO
FAAH_m	FAAH_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = \text{vol}(\text{MEC}) \cdot \text{FAAH}_{\text{L}} \cdot \text{b}_{\text{FAAH}_{\text{MEC}}} \cdot \text{k}_{\text{deg}_{\text{L}}} \text{FAAH}$$
 (135)

7.55 Reaction vFAAH_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vFAAH_degr_m

Reaction equation

$$FAAH_{-m} \xrightarrow{FAAH_{-m}} \emptyset$$
 (136)

Reactant

Table 113: Properties of each reactant.

Id	Name	SBO
FAAH_m	FAAH_m	

Table 114: Properties of each modifier.

Id	Name	SBO
FAAH_m	FAAH_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\text{MEC}) \cdot \text{k_deg_FAAH} \cdot [\text{FAAH_m}]$$
 (137)

7.56 Reaction vFAAH_inh_m

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name vFAAH_inh_m

Reaction equation

$$FAAH_m \xrightarrow{FAAH_m} FAAHinh_m$$
 (138)

Reactant

Table 115: Properties of each reactant.

Id	Name	SBO
FAAH_m	FAAH_m	

Modifier

Table 116: Properties of each modifier.

Id	Name	SBO
FAAH_m	FAAH_m	

Product

Table 117: Properties of each product.

Id	Name	SBO
FAAHinh_m	FAAHinh_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol}(\text{MEC}) \cdot \text{k_inh} \cdot [\text{FAAH_m}] \cdot \text{PF_m}$$
 (139)

7.57 Reaction vFAAH_inh_degr_m

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name vFAAH_inh_degr_m

Reaction equation

$$FAAHinh_m \xrightarrow{FAAHinh_m} \emptyset$$
 (140)

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
FAAHinh_m	FAAHinh_m	

Modifier

Table 119: Properties of each modifier.

Id	Name	SBO
FAAHinh_m	FAAHinh_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{57} = \text{vol}(\text{MEC}) \cdot \text{k_deg_FAAH} \cdot [\text{FAAHinh_m}]$$
 (141)

7.58 Reaction vA_m_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vA_m_p

Reaction equation

$$A_{-m} \xrightarrow{A_{-m}, A_{-p}} A_{-p} \tag{142}$$

Reactant

Table 120: Properties of each reactant.

Id	Name	SBO
A_m	A_m	

Modifiers

Table 121: Properties of each modifier.

Id	Name	SBO
A_m	A_m	
$A_{-}\!p$	A_p	

Product

Table 122: Properties of each product.

Id	Name	SBO
$\mathbf{q}_{-}\mathbf{A}$	$A_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = \frac{\text{vol}(\text{MEC}) \cdot \text{ktr_m_p_A} \cdot ([\text{A_m}] - [\text{A_p}] \cdot \text{Ktr_p_m_A})}{[\text{A_m}] + [\text{A_p}] + \text{Km_p_m_A}}$$
(143)

7.59 Reaction vo_m_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vo_m_p

Reaction equation

$$O_{-}m \xrightarrow{O_{-}m, O_{-}p} O_{-}p$$
 (144)

Table 123: Properties of each reactant.

Id	Name	SBO
O_m	O_m	

Table 124: Properties of each modifier.

Id	Name	SBO
0_m	O_m	
$0_{-}p$	O_p	

Product

Table 125: Properties of each product.

Id	Name	SBO
0_p	O_p	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{vol}(\text{MEC}) \cdot \text{ktr_m_p_O} \cdot ([\text{O_m}] - [\text{O_p}] \cdot \text{Ktr_p_m_O})$$

$$(145)$$

7.60 Reaction vP_m_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vP_m_p

Reaction equation

$$P_{-m} \xrightarrow{P_{-m}, P_{-p}} P_{-p} \tag{146}$$

Table 126: Properties of each reactant.

Id	Name	SBO
P_m	P_m	

Table 127: Properties of each modifier.

Id	Name	SBO
P_m	P_m	
$P_{-}\!p$	$P_{-}p$	

Product

Table 128: Properties of each product.

Id	Name	SBO
$P_{-}p$	$P_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{vol}(\text{MEC}) \cdot \text{ktr_m_p_P} \cdot ([P_m] - [P_p] \cdot \text{Ktr_p_m_P})$$

$$(147)$$

7.61 Reaction vL_m_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vL_m_p

Reaction equation

$$L_{-m} \xrightarrow{L_{-m}, L_{-p}} L_{-p} \tag{148}$$

Table 129: Properties of each reactant.

Id	Name	SBO
L_m	L_m	

Table 130: Properties of each modifier.

Id	Name	SBO
L_m	L_m	
L_p	$L_{-}p$	

Product

Table 131: Properties of each product.

Id	Name	SBO
$L_{-}p$	$L_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{61} = \text{vol}(\text{MEC}) \cdot \text{ktr_m_p_L} \cdot ([\text{L_m}] - [\text{L_p}] \cdot \text{Ktr_p_m_L})$$
(149)

7.62 Reaction vS_m_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vS_m_p

Reaction equation

$$S_{-m} \xrightarrow{S_{-m}, S_{-p}} S_{-p}$$
 (150)

Table 132: Properties of each reactant.

Id	Name	SBO
S_m	S_m	

Table 133: Properties of each modifier.

Id	Name	SBO
S_m	S_m	
S_p	$S_{-}p$	

Product

Table 134: Properties of each product.

Id	Name	SBO
Sp	$S_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{vol}(\text{MEC}) \cdot \text{ktr_m_p_S} \cdot ([S_m] - [S_p] \cdot \text{Ktr_p_m_S})$$

$$(151)$$

7.63 Reaction vA_b_m

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vA_b_m

Reaction equation

$$A_b \xrightarrow{A_b, A_m} A_m \tag{152}$$

Table 135: Properties of each reactant.

Id	Name	SBO
A_b	A_b	

Table 136: Properties of each modifier.

Id	Name	SBO
A_b	A_b	
A_m	A_m	

Product

Table 137: Properties of each product.

Id	Name	SBO
A_m	$A_{-}\!m$	

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \frac{\text{vol}(\text{MEC}) \cdot \text{ktr_m_p_A} \cdot ([\text{A_b}] - [\text{A_m}])}{[\text{A_m}] + [\text{A_b}] + \text{Km_p_m_A}}$$
(153)

7.64 Reaction v0_b_m

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vO_b_m

Reaction equation

$$O_b \xrightarrow{O_b, O_m} O_m \tag{154}$$

Table 138: Properties of each reactant.

Id	Name	SBO
0_b	O_b	

Table 139: Properties of each modifier.

Id	Name	SBO
0_b	O_b	
0_m	O_m	

Product

Table 140: Properties of each product.

Id	Name	SBO
O_m	O_m	

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = \text{vol}(\text{MEC}) \cdot \text{ktr}_{-}\text{m}_{-}\text{p}_{-}\text{O} \cdot ([\text{O}_{-}\text{b}] - [\text{O}_{-}\text{m}])$$
 (155)

7.65 Reaction vP_b_m

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vP_b_m

Reaction equation

$$P_{-}b \xrightarrow{P_{-}b, P_{-}m} P_{-}m \tag{156}$$

Table 141: Properties of each reactant.

Id	Name	SBO
P_b	P_b	

Table 142: Properties of each modifier.

Id	Name	SBO
P_b	P_b	
P_m	P_m	

Product

Table 143: Properties of each product.

Id	Name	SBO
P_m	$P_{-}m$	

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = \text{vol}(\text{MEC}) \cdot \text{ktr}_{-}\text{m}_{-}\text{p}_{-}\text{P} \cdot ([\text{P}_{-}\text{b}] - [\text{P}_{-}\text{m}])$$
 (157)

7.66 Reaction vL_b_m

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vL_b_m

Reaction equation

$$L_b \xrightarrow{L_b, L_m} L_m \tag{158}$$

Table 144: Properties of each reactant.

Id	Name	SBO
L_b	L_b	

Table 145: Properties of each modifier.

Id	Name	SBO
L_b	L_b	
$L_{\!m}$	L_m	

Product

Table 146: Properties of each product.

Id	Name	SBO
L_m	$L_{-}m$	

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{vol}(\text{MEC}) \cdot \text{ktr}_{-}\text{m}_{-}\text{p}_{-}\text{L} \cdot ([\text{L}_{-}\text{b}] - [\text{L}_{-}\text{m}])$$

$$(159)$$

7.67 Reaction vS_b_m

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vS_b_m

Reaction equation

$$S_{-b} \xrightarrow{S_{-b}, S_{-m}} S_{-m}$$
 (160)

Table 147: Properties of each reactant.

Id	Name	SBO
S_b	S_b	

Table 148: Properties of each modifier.

Id	Name	SBO
S_b	S_b	
S_m	S_m	

Product

Table 149: Properties of each product.

Id	Name	SBO
S_m	$S_{-}m$	

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = \text{vol}(\text{MEC}) \cdot \text{ktr_m_p_S} \cdot ([S_b] - [S_m])$$

$$(161)$$

7.68 Reaction vA_r_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vA_r_p

Reaction equation

$$A.r \xrightarrow{A.r, A.p} A.p \tag{162}$$

Table 150: Properties of each reactant.

Id	Name	SBO
A_r	A_r	

Table 151: Properties of each modifier.

Id	Name	SBO
A_r	A_r	
A_p	A_p	

Product

Table 152: Properties of each product.

Id	Name	SBO
$\mathtt{A}_{-}\mathtt{p}$	$A_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = \frac{\text{vol}(\text{PLASMA}) \cdot \text{ktr.r.p.} \cdot ([\text{A.r}] - [\text{A.p}] \cdot \text{Ktr.p.r.A})}{[\text{A.r}] + [\text{A.p}] + \text{Km.p.m.A}}$$
(163)

7.69 Reaction $v0_r_p$

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vO_r_p

Reaction equation

$$O.r \xrightarrow{O.r, O.p} O.p \tag{164}$$

Table 153: Properties of each reactant.

Id	Name	SBO
0_r	O_r	

Table 154: Properties of each modifier.

Id	Name	SBO
0_r	O_r	
0_p	O_p	

Product

Table 155: Properties of each product.

Id	Name	SBO
q_0	$O_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{vol}(\text{PLASMA}) \cdot \text{ktr.r.p} \cdot ([\text{O.r}] - [\text{O.p}] \cdot \text{Ktr.p.r.O})$$
(165)

7.70 Reaction vP_r_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vP_r_p

Reaction equation

$$P.r \xrightarrow{P.r, P.p} P.p \tag{166}$$

Table 156: Properties of each reactant.

Id	Name	SBO
P_r	P_r	

Table 157: Properties of each modifier.

Id	Name	SBO
P_r	P_r	
$P_{-}\!p$	$P_{-}p$	

Product

Table 158: Properties of each product.

Id	Name	SBO
$P_{-}p$	$P_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{vol}(\text{PLASMA}) \cdot \text{ktr.r.p} \cdot ([\text{P.r}] - [\text{P.p}] \cdot \text{Ktr.p.r.P})$$
(167)

7.71 Reaction vL_r_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vL_r_p

Reaction equation

$$L \underline{r} \xrightarrow{L \underline{r}, L \underline{p}} L \underline{p}$$
 (168)

Table 159: Properties of each reactant.

Id	Name	SBO
L_r	L_r	

Table 160: Properties of each modifier.

Id	Name	SBO
L_r	L_r	
L_p	$L_{-}p$	

Product

Table 161: Properties of each product.

Id	Name	SBO
L_p	$L_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{71} = \text{vol}(\text{PLASMA}) \cdot \text{ktr_r_p} \cdot ([\text{L_r}] - [\text{L_p}] \cdot \text{Ktr_p_r_L})$$
(169)

7.72 Reaction vS_r_p

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name vS_r_p

Reaction equation

$$S.r \xrightarrow{S.r, S.p} S.p \tag{170}$$

Table 162: Properties of each reactant.

Id	Name	SBO
S_r	S_r	

Table 163: Properties of each modifier.

Id	Name	SBO
S_r	S_r	
$\mathtt{S}_{-}\!\mathtt{p}$	$S_{-}p$	

Product

Table 164: Properties of each product.

Id	Name	SBO
$S_{-}p$	$S_{-}p$	

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{vol}(\text{PLASMA}) \cdot \text{ktr.r.p} \cdot ([\text{S.r}] - [\text{S.p}] \cdot \text{Ktr.p.r.S})$$
(171)

7.73 Reaction absorp

This is a fast irreversible reaction of one reactant forming one product.

Name absorp

Reaction equation

$$PFM_gut \longrightarrow PFM_p \tag{172}$$

Table 165: Properties of each reactant.

Id	Name	SBO
PFM_gut	PFM_gut	

Product

Table 166: Properties of each product.

Id	Name	SBO
PFM_p	PFM_p	

Kinetic Law

Derived unit not available

$$v_{73} = \text{kabs_PFM} \cdot \text{MD}$$
 (173)

7.74 Reaction dist

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name dist

Reaction equation

$$PFM_{-p} \xrightarrow{PFM_{-p}, PFM_{-r}} PFM_{-r}$$
 (174)

Reactant

Table 167: Properties of each reactant.

Id	Name	SBO
PFM_p	PFM_p	

Modifiers

Table 168: Properties of each modifier.

Id	Name	SBO
PFM_p PFM_r	PFM_p PFM_r	

Product

Table 169: Properties of each product.

Kinetic Law

Derived unit contains undeclared units

$$v_{74} = \text{kout_PFM} \cdot [\text{PFM_p}] - \text{kin_PFM} \cdot [\text{PFM_r}]$$
 (175)

7.75 Reaction elim

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name elim

Reaction equation

$$PFM_{-p} \xrightarrow{PFM_{-p}} \emptyset \tag{176}$$

Reactant

Table 170: Properties of each reactant.

Id	Name	SBO
PFM_p	PFM_p	

Modifier

Table 171: Properties of each modifier.

Id	Name	SBO
PFM_p	PFM_p	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = \text{klinear_PFM} \cdot [\text{PFM_p}] + \frac{\frac{\text{Vm_PFM} \cdot [\text{PFM_p}]}{\text{Km_PFM} + \frac{[\text{PFM_p}]}{\text{Vss_PFM}}}}{\text{Vss_PFM}}$$
(177)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species A_b

Name A_b

Initial concentration 0.7493309 mol·1⁻¹

This species takes part in seven reactions (as a reactant in vA_degr_b, vA_UE_b, vA_b_m and as a product in vA_syn_b and as a modifier in vA_degr_b, vA_UE_b, vA_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{A}_{-}\mathbf{b} = |v_{11}| - |v_{1}| - |v_{20}| - |v_{63}| \tag{178}$$

8.2 Species O_b

Name Ob

Initial concentration 20.77858 mol·1⁻¹

This species takes part in seven reactions (as a reactant in v0_degr_b, v0_UE_b, v0_b_m and as a product in v0_syn_b and as a modifier in v0_degr_b, v0_UE_b, v0_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t}O_{-}b = |v_{12}| - |v_{2}| - |v_{21}| - |v_{64}| \tag{179}$$

8.3 Species P_b

Name P_b

Initial concentration $6.541209 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in vP_degr_b, vP_UE_b, vP_b_m and as a product in vP_syn_b and as a modifier in vP_degr_b, vP_UE_b, vP_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t} P_{-}b = |v_{13}| - |v_{3}| - |v_{22}| - |v_{65}| \tag{180}$$

8.4 Species L_b

Name L_b

Initial concentration $2.319571 \text{ mol} \cdot 1^{-1}$

This species takes part in seven reactions (as a reactant in vL_degr_b, vL_UE_b, vL_b_m and as a product in vL_syn_b and as a modifier in vL_degr_b, vL_UE_b, vL_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t} L_b = |v_{14}| - |v_4| - |v_{23}| - |v_{66}| \tag{181}$$

8.5 Species S_b

Name S_b

Initial concentration $3.427807 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in vS_degr_b, vS_UE_b, vS_b_m and as a product in vS_syn_b and as a modifier in vS_degr_b, vS_UE_b, vS_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{S}_{-}\mathbf{b} = |v_{15}| - |v_{5}| - |v_{24}| - |v_{67}| \tag{182}$$

8.6 Species NAPE_b

Name NAPE_b

Notes precursor of anandamide

Initial concentration $3.879041 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vA_syn_b and as a product in vNAPE-_syn_b and as a modifier in vA_syn_b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NAPE}_{-b} = v_6 - |v_{11}| \tag{183}$$

8.7 Species NOPE_b

Name NOPE_b

Notes precursor of oleoyl ethanolamide

Initial concentration $8.814287 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v0_syn_b and as a product in vNOPE-syn_b and as a modifier in v0_syn_b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NOPE}_{-b} = v_7 - v_{12} \tag{184}$$

8.8 Species NPPE_b

Name NPPE_b

Notes precursor of palmitoyl ethanolamide

Initial concentration $1.732296 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vP_syn_b and as a product in vNPPE-_syn_b and as a modifier in vP_syn_b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NPPE}_{-b} = v_8 - v_{13} \tag{185}$$

8.9 Species NLPE_b

Name NLPE_b

Notes precursor of linoleoyl ethanolamide

Initial concentration $7.550331 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vL_syn_b and as a product in vNLPE-_syn_b and as a modifier in vL_syn_b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NLPE}_{-b} = v_9 - v_{14} \tag{186}$$

8.10 Species NSPE_b

Name NSPE_b

Notes precursor of stearoyl ethanolamide

Initial concentration $1.272629 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vS_syn_b and as a product in vNSPE-_syn_b and as a modifier in vS_syn_b).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NSPE}_{\mathbf{b}} = |v_{10}| - |v_{15}| \tag{187}$$

8.11 Species FAAH_b

Name FAAH_b

Initial concentration $15.366 \text{ mol} \cdot 1^{-1}$

This species takes part in 15 reactions (as a reactant in vFAAH_degr_b, vFAAH_inh_b and as a product in vFAAH_syn_b and as a modifier in vA_degr_b, vA_degr_b, vO_degr_b, vO_degr_b, vP_degr_b, vP_degr_b, vL_degr_b, vS_degr_b, vS_degr_b, vFAAH_degr_b, vFAAH_inh_b).

$$\frac{d}{dt}FAAH_b = |v_{16}| - |v_{17}| - |v_{18}|$$
 (188)

8.12 Species FAAHinh_b

Name FAAHinh_b

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vFAAH_inh_degr_b and as a product in vFAAH_inh_b and as a modifier in vFAAH_inh_degr_b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FAAHinh}_{b} = v_{18} - v_{19} \tag{189}$$

8.13 Species A_r

Name A_r

Initial concentration 0.5419204 mol·l⁻¹

This species takes part in seven reactions (as a reactant in vA_degr_r, vA_UE_r, vA_r_p and as a product in vA_syn_r and as a modifier in vA_degr_r, vA_UE_r, vA_r_p).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{A}_{\cdot\mathbf{r}} = |v_{35}| - |v_{25}| - |v_{44}| - |v_{68}| \tag{190}$$

8.14 Species 0_r

Name O_r

Initial concentration $14.23822 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in v0_degr_r, v0_UE_r, v0_r_p and as a product in v0_syn_r and as a modifier in v0_degr_r, v0_UE_r, v0_r_p).

$$\frac{\mathrm{d}}{\mathrm{d}t}O_{-}r = |v_{36}| - |v_{26}| - |v_{45}| - |v_{69}| \tag{191}$$

8.15 Species P_r

Name P_r

Initial concentration $4.121915 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in vP_degr_r, vP_UE_r, vP_r_p and as a product in vP_syn_r and as a modifier in vP_degr_r, vP_UE_r, vP_r_p).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{P} \cdot \mathbf{r} = |v_{37}| - |v_{27}| - |v_{46}| - |v_{70}| \tag{192}$$

8.16 Species L_r

Name L_r

Initial concentration $1.705466 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in vL_degr_r, vL_UE_r, vL_r_p and as a product in vL_syn_r and as a modifier in vL_degr_r, vL_UE_r, vL_r_p).

$$\frac{\mathrm{d}}{\mathrm{d}t} L_{\mathbf{T}} = |v_{38}| - |v_{28}| - |v_{47}| - |v_{71}| \tag{193}$$

8.17 Species S_r

Name S_r

Initial concentration 2.515968 mol·1⁻¹

This species takes part in seven reactions (as a reactant in vS_degr_r, vS_UE_r, vS_r_p and as a product in vS_syn_r and as a modifier in vS_degr_r, vS_UE_r, vS_r_p).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{S}_{..}\mathbf{r} = |v_{39}| - |v_{29}| - |v_{48}| - |v_{72}| \tag{194}$$

8.18 Species NAPE_r

Name NAPE_r

Notes precursor of anandamide

Initial concentration $4.241633 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vA_syn_r and as a product in vNAPE-syn_r and as a modifier in vA_syn_r).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NAPE}_{\mathbf{r}} = |v_{30}| - |v_{35}| \tag{195}$$

8.19 Species NOPE_r

Name NOPE_r

Notes precursor of oleoyl ethanolamide

Initial concentration $9.638198 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v0_syn_r and as a product in vNOPE-syn_r and as a modifier in v0_syn_r).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NOPE}_{\mathbf{r}} = |v_{31}| - |v_{36}| \tag{196}$$

8.20 Species NPPE_r

Name NPPE_r

Notes precursor of palmitoyl ethanolamide

Initial concentration $1.894222 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vP_syn_r and as a product in vNPPE-_syn_r and as a modifier in vP_syn_r).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NPPE}.\mathbf{r} = |v_{32}| - |v_{37}| \tag{197}$$

8.21 Species NLPE_r

Name NLPE_r

Notes precursor of linoleoyl ethanolamide

Initial concentration $8.256095 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vL_syn_r and as a product in vNLPE-_syn_r and as a modifier in vL_syn_r).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NLPE}.\mathbf{r} = |v_{33}| - |v_{38}| \tag{198}$$

8.22 Species NSPE_r

Name NSPE_r

Notes precursor of stearoyl ethanolamide

Initial concentration $1.391587 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vS_syn_r and as a product in vNSPE-_syn_r and as a modifier in vS_syn_r).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NSPE} \mathbf{r} = v_{34} - v_{39} \tag{199}$$

8.23 Species FAAH_r

Name FAAH_r

Initial concentration $2.165868 \text{ mol} \cdot 1^{-1}$

This species takes part in 15 reactions (as a reactant in vFAAH_degr_r, vFAAH_inh_r and as a product in vFAAH_syn_r and as a modifier in vA_degr_r, vA_degr_r, vO_degr_r, vO_degr_r, vP_degr_r, vP_degr_r, vL_degr_r, vS_degr_r, vS_degr_r, vFAAH_degr_r, vFAAH_inh_r).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{FAAH.r} = |v_{40}| - |v_{41}| - |v_{42}| \tag{200}$$

8.24 Species FAAHinh_r

Name FAAHinh_r

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vFAAH_inh_degr_r and as a product in vFAAH_inh_r and as a modifier in vFAAH_inh_degr_r).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FAAHinh}_{r} = |v_{42}| - |v_{43}| \tag{201}$$

8.25 Species A_m

Name A_m

Initial concentration $0.97761 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vA_degr_m, vA_m_p and as a product in vA_b_m and as a modifier in vA_degr_m, vA_m_p, vA_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{A} \cdot \mathbf{m} = |v_{63}| - |v_{49}| - |v_{58}| \tag{202}$$

8.26 Species 0_m

Name O_m

Initial concentration 16.3219 mol·l⁻¹

This species takes part in six reactions (as a reactant in v0_degr_m, vo_m_p and as a product in v0_b_m and as a modifier in v0_degr_m, vo_m_p, v0_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t}O_{-}m = |v_{64}| - |v_{50}| - |v_{59}| \tag{203}$$

8.27 Species P_m

Name P_m

Initial concentration $5.809415 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in vP_degr_m, vP_m_p and as a product in vP_b_m and as a modifier in vP_degr_m, vP_m_p, vP_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t} P_{-} m = |v_{65}| - |v_{51}| - |v_{60}| \tag{204}$$

8.28 Species L_m

Name L_m

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vL_degr_m, vL_m_p and as a product in vL_b_m and as a modifier in vL_degr_m, vL_m_p, vL_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t} L m = |v_{66}| - |v_{52}| - |v_{61}| \tag{205}$$

8.29 Species S_m

Name S_m

Initial concentration $2.968774 \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in vS_degr_m, vS_m_p and as a product in vS_b_m and as a modifier in vS_degr_m, vS_m_p, vS_b_m).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{S}_{-}\mathbf{m} = |v_{67} - v_{53}| - |v_{62}| \tag{206}$$

8.30 Species FAAH_m

Name FAAH m

Initial concentration $10.686 \text{ mol} \cdot l^{-1}$

This species takes part in 15 reactions (as a reactant in vFAAH_degr_m, vFAAH_inh_m and as a product in vFAAH_syn_m and as a modifier in vA_degr_m, vA_degr_m, vO_degr_m, vO_degr_m, vP_degr_m, vP_degr_m, vL_degr_m, vS_degr_m, vS_degr_m, vFAAH_degr_m, vFAAH_inh_m).

$$\frac{d}{dt}FAAH_m = |v_{54}| - |v_{55}| - |v_{56}|$$
(207)

8.31 Species FAAHinh_m

Name FAAHinh_m

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vFAAH_inh_degr_m and as a product in vFAAH_inh_m and as a modifier in vFAAH_inh_degr_m).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FAAHinh}_{\mathrm{m}} = |v_{56}| - |v_{57}| \tag{208}$$

8.32 Species A_p

Name A_p

Initial concentration $0.8740574 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in vA_m_p , vA_r_p and as a modifier in vA_m_p , vA_r_p).

$$\frac{d}{dt}A_{-}p = |v_{58}| + |v_{68}| \tag{209}$$

8.33 Species O_p

Name O_p

Initial concentration 5.085073 mol·1⁻¹

This species takes part in four reactions (as a product in vo_m_p , vo_r_p and as a modifier in vo_m_p , vo_r_p).

$$\frac{d}{dt}O_{-}p = v_{59} + v_{69} \tag{210}$$

8.34 Species P_p

Name P_p

Initial concentration $4.849307 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a product in vP_m_p , vP_r_p and as a modifier in vP_m_p , vP_r_p).

$$\frac{d}{dt}P_{-}p = |v_{60}| + |v_{70}| \tag{211}$$

8.35 Species L_p

Name L_p

Initial concentration $1.916254 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in vL_m_p , vL_r_p and as a modifier in vL_m_p , vL_r_p).

$$\frac{d}{dt}L_{-p} = v_{61} + v_{71} \tag{212}$$

8.36 Species S_p

Name S_p

Initial concentration $0.273772 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a product in vS_m_p , vS_r_p and as a modifier in vS_m_p , vS_r_p).

$$\frac{d}{dt}S_{-p} = |v_{62}| + |v_{72}| \tag{213}$$

8.37 Species PFM_gut

Name PFM_gut

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in absorp).

$$\frac{\mathrm{d}}{\mathrm{d}t} PFM_{-}gut = -v_{73} \tag{214}$$

8.38 Species PFM_p

Name PFM_p

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in dist, elim and as a product in absorp and as a modifier in dist, elim).

$$\frac{d}{dt}PFM_{-}p = |v_{73}| - |v_{74}| - |v_{75}|$$
(215)

8.39 Species PFM_r

Name PFM_r

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in dist and as a modifier in dist).

$$\frac{\mathrm{d}}{\mathrm{d}t} PFM \mathbf{r} = v_{74} \tag{216}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany