

Optimization:

(I) find the max submatrix sum where submatrix starts at <u>now = 0</u> & end at

30W = N-1

$$=\frac{4(4+1)}{2} = M(M+1)$$

$$= \frac{M(M41)}{2}$$

Submatrices starting at 70w = 0 & ending at 70w = N-1.

arviij: sum of ith

Kadane's Algo => find the max subarray sum.

(2) find the max submatrix sum where submatrix starts at mu=0 l end at any row.

-	0	١	2	3	Ч	L
0,	-3	4	2	2	9	
	-9	-3	3	3	-3	
2	-1	6	-4	4	-10)

T-4	7	-13	-2	\ \ \	
[9	14	13		3	

 $0ms = -\infty$ for (Start = 0; Start < N; Start ++) (=> (0) for [end = Start; end < N; end++) 1 M [for (j=0; j<M; j++) {

arr[j] += mat [end] [j]

3 radane's Algorian Sum(arr)

M [value = max Sub Array Sum(arr)

- max (ans, value); 3×3 Start => 0 to 2. end => Staded to 2. Start = 2 end = 0 mar sum subarray = (14) = ans end = 1 N*N/M+M/ 0ma = 22⇒ TC: O(N2 * M) C Best Approach TC

SC:
$$O(M)$$

end= 2

$$Arr \Rightarrow 2 2 19$$

$$Val= 23$$

$$Aux = 23$$

$$Aux = 1, end \Rightarrow 8, 1, 2$$

Start = 1, end =>
$$\%$$
, \bot , 2

Start = 1, end = 1

$$\frac{-2|-8|}{23}$$

$$\frac{23}{23}$$

Start = 1, end = 2

Oms = 23

Start =
$$2$$
, end = 2
 $3 \mid 6 \mid -3$

value = 9
 $0 \mid 3 \mid 6$
 $0 \mid$

$$\begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
 $\begin{bmatrix} -3 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 2 \\$

$$-1*abs(-3)$$