Math 327 Homework 1

Sathvik Chinta

October 7th, 2022

1. Recall that in the textbook, a function $f:A\to B$ is said to be invertible f is one-to-one and onto. (This is also called bijection in some literature.) Show that a function $f:A\to B$ is invertible if and only if there is a function $g:B\to A$ such that $g\circ f=$ identity function on A and $f\circ g=$ identity function on B.

We first prove that if there exists a function $B \to A$ such that $g \circ f = identity$ function on A and $f \circ g = identity$ function on B, then f is invertible.

A function F is called the identity function given that F(x) = x. We are given that f(g(x)) = x and g(f(x)) = x. We want to prove that f is both one-to-one and onto.

Let f(g(x)) = f(g(y)). Given that this is the identity function, we know that f(g(x)) = x and f(g(y)) = y. As such, x = y. So, f(g(x)) is one-to-one.

We know that f(g(x)) = x. Let $y \in B$. We want to show that for some $x \in A$, f(g(x)) = y. Since f(g(x)) is the identity function, we know that f(g(y)) = y. As such, when x = y, f(g(x)) = y. So, f(g(x)) is onto.

With similar lines of reasoning as above, we know that g(f(x)) is both one-to-one and onto as well.

Let $a \in B$. Since $f \circ g$ is the identity function, there exists $b \in B$ such that f(g(b)) = a. So, if $x = g(b) \in B$, then f(x) = a. As such, f is onto. By a similar line of reasoning, g is also onto.

Let $x \in A$ and $y \in A$. Let f(g(x)) = f(g(y)). Since

- 2. Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Prove that f and g are injective, then so is g \circ f.

Let g(f(x)) = g(f(y)). Since g is injective, we know that f(x) = f(y). Since f is injective, we know that x = y. So, g(f(x)) is injective.

(b) Suppose g \circ f is surjective. Does it follow that f is surjective?

Let $a \in B$. Since $g \circ f$ is surjective, there exists $x \in A$ such that g(f(x)) = a. However, we do not know if f(x) = a. As such, f is not surjective.

(c) Suppose g o f is surjective. Does it follow that g is surjective?

Let $a \in C$. Since $g \circ f$ is surjective, there exists $b \in B$ such that g(f(b)) = a. So, if $x = f(b) \in B$, then g(x) = a. As such, g is surjective.

- 3. Let f: $A \to B$. For a set $E \subset A$, the set $F(E) \subset B$ is defined by $F(E) = \{f(a) : a \in E\}$, and is called the image of E. For $F \subset B$, the set $f^{-1}(F) \subset A$ is defined by $f^{-1}(F) = \{a \in A : f(a) \in F\}$ and is called the inverse image of F.
 - (i) Let $E \subset A$. Prove that $E \subset f^{-1}(f(E))$. Give an example to show that the inclusion may be strict. What happens when f is injective?
 - (ii) Let Λ be a set and that each $\lambda \in \Lambda$, let E_{λ} be a subset of A. Prove that

$$f(\cup_{\lambda \in \Lambda} E_{\lambda}) = \cup_{\lambda \in \Lambda} f(E_{\lambda}) \text{ and } f(\cap_{\lambda \in \Lambda} E_{\lambda}) \subset \cup_{\lambda \in \Lambda} f(E_{\lambda})$$

Give an example in which the last inclusion is proper. What happens when f is injective?