Data Analytics y Data Science

Sebastian Arpón, PhD

Fisico y Data Scientist MetricArts

github.com/sarpon

Evolución procesamiento de datos

 1890: Se usa la máquina tabuladora de Hollerith para procesar los datos del censo de EE.UU.

 1951: Se diseña el primer computador electrónico con fines comerciales, UNIVAC I.

Costo del cómputo

 Desde la invención de los computadores electrónicos, tanto el precio como el tamaño han disminuido sostenidamente.

Tsunami de datos

- Durante las últimas décadas la sociedad en su conjunto se ha digitalizado.
- Mayor capacidad de cómputo y tecnología más asequible han permitido un crecimiento explosivo de los datos.

Los datos crecen a una tasa anual del 40%.

Se estima una producción de 45 ZB para el 2020.

Fuente: Oracle, 2012

Comunidad Open Source

- Una mayor variedad y cantidad de datos trae consigo nuevos desafíos.
- Desarrollo continuo de herramientas y métodos para analizar los datos.
- Transición de software empaquetado y comercial a uno desarrollado por comunidad open source.

Casos notables

Análisis de uso de Taxis y Uber en NYC Open Data+Open Source

An Uber car. SPENCER PLATT / GETTY IMAGES

AUG 10, 2015 AT 2:06 PM

Uber Is Serving New York's Outer Boroughs More Than Taxis Are

But most of its rides, like those of taxis, still start in Manhattan.

Fuente: FiveThirtyEight

New York City's Edges Are Uber-Heavy

Share of all Uber, yellow cab and green cab pickups that were by Ubers from April through September 2014, by census tract

¿Qué es el Analytics?

 Analytics es entendido como el uso intensivo de datos, estadística y análisis cuantitativo, modelos predictivos y explicativos y gestión basada en hechos para dar soporte al proceso de toma de decisiones, la creación de ventajas competitivas y la generación de valor en las organizaciones.

Tipos de datos

- Los datos son el punto de partida para todo análisis.
- Tipos de datos de acuerdo a organización
 - Estructurados: Están altamente organizados.
 Se almacenan en una base de datos relacional.

Año	PIB (\$ Millones)	Consumo Eléctrico (GWh)
1993	32.559.292	21.011,3
1994	34.416.724	22.730,7
1995	38.028.591	24.910,2
1996	40.831.596	27.969,0
1997	43.526.546	30.351,5
1998	44.944.340	33.015,8
1999	44.616.349	35.921,3
2000	46.605.199	38.867,4

Tipos de datos

 No estructurados: Son datos crudos y no están organizados. Deben ser procesados y transformados para luego ser almacenados en una base de datos.

Evolución del Analytics

2015

2006

1993

1991

Software comercial

 Los dos software más usados por las empresas en Chile y el mundo son SAS y SPSS

Sas

 SAS (Statistical Analysis System) fue desarrollado en la Universidad de North Carolina (EE.UU.) y fue planteado originalmente para analizar grandes cantidades de datos agrícolas.

SPSS (Statistical Package for the Social Sciences)
 fue desarrollado en la Universidad de Stanford
 (EE.UU.) y fue planteado para analizar datos en las
 Ciencias sociales.

Lenguajes de programación

 Los lenguajes más usados por la comunidad de Data Science son Python y R. Se estima que Python tiene más de 30M de usuarios y R más de 16M.

• R es más funcional y los módulos de análisis estadísitico vienen incorporados.

 Python es más orientado a objetos y deben cargarse módulos para hacer análisis.

R vs Python

R		Python	
1.	Big community who creates	1.	Scalability
	libraries	2.	General purpose language
2.	Free	3.	Easy to learn
3.	Early adopter in explanatory	4.	Good in machine learning
	and predictive modeling.	5.	Big community
4.	Easy to connect to data	6.	Free
	sources, including NoSQL		
	and webscraping.		
1.	Can be slow with big	1.	Not as strong in explanatory
	datasets		modeling
2.	Steep learning curve	2.	Choice of version: 2.7 or
3.	No official support		3.5?
4.	No user interface	3.	No user interface
		4.	No official support

¿Qué es la Ciencia de datos?

- La Ciencia de datos o Data Science es un campo interdisciplinario que se ocupa de los procesos y sistemas usados en la extracción de conocimiento a partir del análisis de datos.
- Se dice interdisciplinario pues requiere conocimientos de los campos de la computación, matemáticas y estadística.

Carácter interdisciplinario

Diagrama de Venn para Data Science Drew Conway (2010)

¿Qué hace un Data Scientist?

- Profesional que posee las herramientas y los conocimientos necesarios para:
 - Recolectar y filtrar datos de diversas fuentes
 - Explorar de manera efectiva un set de datos
 - Obtener información valiosa oculta en los datos
 - Construir modelos que permitan tomar decisiones informadas.

Data Scientist: Persona que es mejor en estadística que cualquier ingeniero de software y que es mejor en ingeniería de software que cualquier estadístico.

Visualizaciones

 Las visualizaciones juega un rol importante en todo el proceso de análisis de datos. Permiten explorar los datos, examinar resultados y comparar cualitativamente los modelos.

Construcción de modelos

- La construcción y validación de modelos son es clave para los objetivos.
- Permiten entender el comportamiento del sistema, definir cantidades de interés, buscar outliers en los datos y últimamente hacer

análisis predictivo.

