Суперкомпьютерные дни в России

Координированное сохранение контрольных точек с журналированием передаваемых данных и асинхронное восстановление расчетов после отказов

Бондаренко А.А.

Ляхов П.А.

Якобовский М.В

Москва 24 сентября 2018

Цель работы

Разработать принципы сохранения контрольных точек за время, меньшее характерной продолжительности безотказной работы системы, и алгоритмы, обеспечивающие, в случае отказа части оборудования, быстрое автоматическое возобновление расчета на работоспособной части вычислительного поля.

Задачи работы

- Разработать модель исполнения параллельной программы, содержащей различные техники обеспечения отказоустойчивости и выполняемой на вычислительных системах, подверженных частым отказам.
- Разработать алгоритм асинхронного восстановления после отказов, не требующий возврата большинства процессов к последней контрольной точке.

Отказы в высокопроизводительных вычислительных системах

- На данный момент:
 - Среднее время между отказами на высокопроизводительных вычислительных системах составляет менее одного дня
 - В стандарте MPI нет механизмов обеспечения отказоустойчивости
- Специалистами в области НРС утверждается, что на системах уровня Экзафлопс среднее время между отказами будет находиться в диапазоне от 9 часов до 1 часа
- 1. Bergman K. et al. Exascale computing study: Technology challenges in achieving exascale systems //Defense Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Tech. Rep. 2008. T. 15.
- 2. Bland W. et al. Lessons learned implementing user-level failure mitigation in MPICH //2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2015. C. 1123-1126.
- 3. Dongarra J., Herault T., Robert Y. Fault-Tolerance Techniques for High-Performance Computing. Springer, 2015. 320 p. DOI: 10.1007/978-3-319-20943-2
- 4. Cappello F., Geist A., Gropp W., Kale S., Kramer B., Snir M. Toward Exascale Resilience: 2014 update // Supercomputing frontiers and innovations. 2014. Vol.1, No. 1. P. 1–28.

Основные допущения многоуровневого метода

- Время между отказами случайная величина, имеющая экспоненциальное распределение.
- в системе могут происходить от 1 до k уровней (рассматриваемых типов) отказа;
- наступление отказов на разных уровнях независимые случайные величины;
- каждый уровень j имеет свою частоту отказа λ_j , свои накладные расходы на сохранение контрольной точки C_j и восстановление из контрольной точки R_j ;

Многоуровневое сохранение контрольных точек

- 1. Di S. et al. Optimization of multi-level checkpoint model for large scale HPC applications //Parallel and Distributed Processing Symposium, 2014 IEEE 28th International. IEEE, 2014. C. 1181-1190.
- 2. Benoit A. et al. Towards optimal multi-level checkpointing //IEEE Transactions on Computers. 2017. T. 66. №. 7. C. 1212-1226.
- 3. Di S. et al. Toward an optimal online checkpoint solution under a two-level HPC checkpoint model //IEEE Transactions on Parallel and Distributed Systems. 2017. T. 28. №. 1. C. 244-259.

Стандартная стратегия восстановления

Этапы восстановления расчета после отказа

Сохранение контрольных точек с журналированием передаваемых данных

Замечание: В данной работе для получения предварительных оценок полагаем, что накладные расходы на журналирование (logging) равны 0.

Асинхронное восстановление

Моделирование исполнения программ Итерационный метод оценки накладных расходов

- 2 времени счета «Т_{сотр}», «Т_{сиг}» для фиксации выполнения полезной работы и наступления событий (отказа, сохранения)
- работа продолжается, пока не будет выполнен базовый расчет (время полезной работы) Т_{сотр}
- наступление ошибок и времени сохранения определяется по текущему времени Т_{сиг}

 $iter \leftarrow 1$

while
$$T_{comp} < T_{max}$$
 do

$$TFS \leftarrow \text{get time for saves } (iter, T_{cur}, C_i)$$

$$LOF \leftarrow \text{get level of failure } (iter, T_{cur})$$

$$T_{comp} \leftarrow T_{comp} + get comp \ difference \ (LOF)$$

$$T_{cur} \leftarrow T_{cur} + get \ cur \ difference \ (LOF)$$

$$iter \leftarrow iter + get iter difference (LOF)$$

end while

return T_{cur}

10

get comp difference ()
get cur difference ()
get iter difference ()

Случай 2

Описание вычислительного эксперимента

- Время до наступления следующего отказа (этого уровня) является случайной величиной, которая подчиняется экспоненциальному распределению
- В работе рассматривается двухуровневая стратегия сохранения (в память соседнему процессу, в РФС)
- Тестовая задача расчет распределения тепла в тонкой пластине
- Рассматриваются 3 алгоритма, с координированным сохранением и
 - со стандартным восстановлением;
 - ❖ журналированием, с асинхронным восстановлением, recalc=2;
 - журналированием, с асинхронным восстановлением, recalc=5;
- Разработаны программы, реализующие моделирование исполнения параллельных программ и оценивающие накладные расходы итерационным методом
- Параллельные программы, в которых отказ происходит с помощью raise(SIGKILL), обработка отказа происходит с помощью функционала ULFM (MPIX_Comm_revoke(comm), MPIX_Comm_shrink, ...) (fault-tolerance.org)

Накладные расходы при разных стратегиях восстановления

Параметры C = [1 6], R = [0.5 4], T_6 = 3600, MTBF = [1800 36000]

Стандартная	Асинхронная, recalc=2	Асинхронная, recalc=5
\bar{t} = 187, σ = 130	\bar{t} = 142, σ = 72	\bar{t} = 113, σ = 30
t_{min} = 90, t_{max} = 1391	t_{min} = 85, t_{max} = 975	t_{min} = 85, t_{max} = 387
\bar{n}_1 = 2.1 \bar{n}_2 = 0.1,	$ \bar{n}_1 = 2.1 \ \bar{n}_2 = 0.1, \Delta T = 45(24\%)$	$ \bar{n}_1$ =2.1 \bar{n}_2 =0.1, ΔT =74(40%)
0000 1800 1600 1200 1400 1200 1400 1200 1400 1400 1200 1400	2000 1800 1400 1200 1000 800 400 200 100 200 300 400 500 600 700 800 900	1200 1000 800 400 200 100 150 200 250 300 350 400
$\overline{t} = 146$	\bar{t} = 121	$\bar{t} = 77$
$\bar{n}_1 = 2, \bar{n}_2 = 0$	$\bar{n}_1 = 2, \bar{n}_2 = 0, \Delta T = 25(17\%)$	$\bar{n}_1 = 2, \bar{n}_2 = 0, \Delta T = 69(47\%)$
$\bar{n}_1 = 2, \bar{n}_2 = 0$		

Накладные расходы при разных стратегиях восстановления

Параметры C = [1 6], R = [0.5 4], T_6 = 3600, MTBF = [360 1800]

	· ·	
Стандартная	Асинхронная, recalc=2	Асинхронная, recalc=5
\bar{t} = 638, σ = 164	\bar{t} = 488, σ = 97	\bar{t} = 400, σ = 53
t_{min} = 312, t_{max} = 1520	t_{min} = 301, t_{max} = 1001	t_{min} = 297, t_{max} = 744
\bar{n}_1 = 11.8 \bar{n}_2 = 2.4,	\bar{n}_1 =11.4 \bar{n}_2 =2.3, ΔT =150(24%)	\bar{n}_1 =11.1 \bar{n}_2 =2.2, ΔT =238(37%)
7 10000 350 400 600 800 1000 1200 1400	350 250 200 150 300 400 500 600 700 800 900 1000	400 350 250 200 150 300 350 400 450 500 550 600 650 700 750
$\frac{\circ}{II}$ \bar{t} = 714	\bar{t} = 626	\bar{t} = 620
\vec{z} \vec{n}_1 =14, \vec{n}_2 =4	$\bar{n}_1 = 14, \bar{n}_2 = 4, \Delta T = 88(12\%)$	\bar{n}_1 =14, \bar{n}_2 =4, ΔT = 94(13%)
\bar{n}_1 =14, \bar{n}_2 =4		13

Накладные расходы при разных стратегиях восстановления

Параметры C = [1 6], R = [0.5 4], T_6 = 3600, MTBF = [180 900]

Стандартная	Асинхронная, recalc=2	Асинхронная, recalc=5
\bar{t} = 955, σ = 184	\bar{t} = 744, σ = 116	\bar{t} = 604, σ = 65
t_{min} = 483, t_{max} = 2012	t_{min} = 446, t_{max} = 1363	t_{min} = 441, t_{max} = 918
\bar{n}_1 = 25.3 \bar{n}_2 = 5.1,	\bar{n}_1 =24.2 \bar{n}_2 =4.9, ΔT =211(22%)	\bar{n}_1 =23.3 \bar{n}_2 =4.7, ΔT =351(37%)
Итерационный, N = 1000 350 250 500 1000 1500 2000	400 350 250 200 150 500 600 700 800 900 1000 1100 1200 1300	350 300 250 250 150 450 500 550 600 650 700 750 800 850 900
$\frac{9}{11}$ \bar{t} = 1051	\bar{t} = 926	\bar{t} = 730
\bar{n}_1 = 24, \bar{n}_2 = 6	$\bar{n}_1 = 23, \bar{n}_2 = 6, \Delta T = 125(12\%)$	$ \bar{n}_1 = 21, \bar{n}_2 = 6, \Delta T = 321(31\%)$
In the second se		14

Заключение

Результаты, полученные итерационным методом оценки накладных расходов, показывают, что для асинхронного метода восстановления:

- применение 2 процессов для пересчета, позволяет сократить накладные расходы на 20 % и более,
- применение 5 процессов для пересчета, позволяет сократить накладные расходы на 35 % и более.

Вычислительный эксперимент на тестовой задаче с осуществлением отказа mpi-процессов с помощью функции raise(SIGKILL) и последующим восстановлением параллельного приложения с помощью функций ULFM показал, что для асинхронного метода восстановления:

- применение 2 процессов для пересчета, позволяет в некоторых случаях сократить накладные расходы до 17 %, но не менее чем на 12%,
- применение 5 процессов для пересчета, позволяет в некоторых случаях сократить накладные расходы до 47 %, но не менее чем на 13%.

Спасибо за внимание

bondaleksey@gmail.com Бондаренко A.A. pavel.lyakhov@phystech.edu Ляхов П.А. lira@imamod.ru Якобовский М.В