Universidade Federal de Alagoas

Instituto de Computação Exploração e Mineração de Dados

vulnerabilidade Relatório

Alunos:

Hyuri S. Maciel

Curso: Ciência da Computação Professor:Baldoino Fonseca

> Maceió-AL 23 de Maio, 2018

Conteúdo

1	Introdução	1
2	Analise das Correlações	3
3	Testes Estatísticos	4
4	Testes de Modelos	5
5	Conclusão	6

1 Introdução

Métricas de software têm sido objeto de pesquisa a setenta anos, e as expectativas eram altas que métricas existem para ajudar na tomada de decisões gerenciais durante o software ciclo da vida. Essencialmente qualquer métrica é uma tentativa de medir ou prever algum atributo (interno ou externo) de algum produto, processo ou recurso. Normalmente, os atributos internos são aqueles que podemos diretamente medir, e os externos aqueles que estamos interessados em descobrir.

Para analisar e tentar solucionar o problema de vulnerabilidade de software utilizamos as seguintes bases de dados :

- glibc
- httpd
- kernel
- mozila
- xen

Possuindo dois conjuntos das mesmas bases analisadas, possuindo um conjunto de base balanceada e outro não balanceado.

Cada base de dados descrita acima possui as seguinte variáveis:

- AltCountLineCode
- CountInput
- CountLineBlank
- CountLineCodeDec
- CountLineComment
- CountLinePreprocessor
- CountPath
- CountStmt
- CountStmtEmpt
- Cyclomatic

- CyclomaticStrict
- Knots
- \bullet MinEssentialKnots
- RatioCommentToCode
- $\bullet \ \, Alt Count Line Comment$
- CountLine
- CountLineCode
- CountLineCodeExe
- CountLineInactive
- CountOutput
- CountSemicolon
- \bullet CountStmtDecl
- \bullet CountStmtExe
- $\bullet \ \ Cyclomatic Modified$
- Essential
- MaxEssentialKnots
- MaxNesting

Também foram aplicados diferentes testes estatísticos. descrição das variáveis

2 Analise das Correlações

As correlações podem ser vistas nas figuras 1 e 2 as outras correlações podem ser encontradas no repositório Git.

Na maioria as correlações são semelhantes. A analise das correlações é aplicadas para todas as bases de dados. É notavel que existe uma melhor correlação quando as bases são dos dados balanceados como podemos observar na figura 1(a) e 2(a)

Figura 1: Correlação glibc.

Figura 2: Correlação httpd.

3 Testes Estatísticos

Analisamos as bases de dados apresentadas as variáveis balanceadas e não balanceadas, os resultados dos **boxplot** foi semelhante. em média as variáveis são diferentes, dependo ou no da base esta balanceada ou não. Podemos ver nas figuras 3, 4, 5, 6 e 7, algumas dessas relações, as outras estão no link Git.

Figura 3: glibc

Figura 4: httpd

Figura 5: kernel

Figura 6: mozilla

4 Testes de Modelos

Com intuito de testar e classificar as bases de dados usamos os modelos de classificação: KNN, Naive Bayes e SVM. Para avaliar a efetividade utilizamos as métricas: Accuracy, Precision, Recall e F1-Score.

Entre as técnicas analisadas a que obteve um melhor desempenho foi a SVM, todos os dados estão nas planilhas que estão contidas no link: Git.

Figura 7: xen

Tabela 1: SVM						
	Precision	Recall	F1	Accuracy		
glibc	1.00	1.00	1.00	1.00		
httpd	1.00	1.00	1.00	0.99		
xen	1.00	0.89	0.95	0.99		
$glibc_balanced$	1.00	1.00	1.00	0.35		
$httpd_balanced$	1.00	1.00	1.00	0.48		
kernel_balanced	1.00	1.00	1.00	0.62		
$mozilla_balanced$	1.00	1.00	1.00	0.58		
$xen_balanced$	1.00	1.00	1.00	0.55		

5 Conclusão

Observamos que as bases balanceadas apresentam um melhor desempenho apos observar as métricas analisadas, as desbalanceadas tem em média 98,9% de accuracy.

Observamos que o melhor classificar também é o SVM, para um melhor analise de métricas podemos utilizar essa técnica.

Alguns resultados da
o NaN porque podem ser do tipo 0/0. Como o conjunto de dados é pequeno, nem sempre sa
i as duas classes dentro de fold da validação cruzada. Um tratamento mais refinado nas bases pode ajustar esse problema.

As bases **kernel** e **mozilla** não balanceadas, não foi possível rodar, pois o computador não suportou.