Document 3: Reduced Row Echelon Form and Rank

Definition: The rank of a matrix A is the number of leading 1s in the reduced row echelon form of A.

Corollary: Consider $A_{m \times n} x_{n \times 1} = b_m$.

- 1. $\operatorname{rank}(A) \leq m \wedge \operatorname{rank}(A) \leq n$. Proof: There is at most one leading 1 in each row or colum of the reduced row echelon form.
- 2. Let A, b be matrices. Define an augmented matrix [A|b]. Then, $\operatorname{rank}(A) = m \to Ax = b$ is consistent. Proof: Let c be any nonzero number. A redundancy is defined as $[0+0+\cdots+0|c]$. There is a leading 1 in each row, so $[0+0+\cdots+0|c] \notin A$
- 3. If rank(A) = n then Ax = b has at most one solution.
- 4. $\operatorname{rank}(A) < n \to \operatorname{there} \operatorname{are} n \operatorname{rank}(A)$ free parameters. Either Ax = b is inconssitent or it has ∞ -many solutions.

Definition: a matrix is considered consistent if it represents a system of linear equations that has 1 or more solutions. If the system has no solution, or equally if the matrix has a determinant of 0, then the matrix is considered inconsistent. Now, consider the following matrices.

$$A = \begin{bmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ a_{m1} \cdots a_{mn} \end{bmatrix}_{mxn}, B = \begin{bmatrix} b_{11} \cdots b_{1n} \\ \vdots \\ b_{m1} \cdots b_{mn} \end{bmatrix}_{mxn}, C = \begin{bmatrix} c_{11} \cdots c_{1n} \\ \vdots \\ c_{r1} \cdots c_{rn} \end{bmatrix}_{nxr}$$

Basic matrix algebra is defined as follows. Let k be a scalar, and use matrices A, B and C.

- 1. Equality: $A = B \leftrightarrow a_{ij} = b_{ij}$ where i and j are typical indices for rows and columns in matrices A and B.
- 2. Addition/Subtration: $A \pm B = [a_{ij} \pm b_{ij}]$. In other words $A \pm B$ is a matrix where every value at indices i, j is equal to $a_{ij} \pm b_{ij}$.
- 3. Scalar Multiplication: $kA = [ka_{ij}]$. In other words kA is a matrix where every value at indices i, j is equal to ka_{ij} .

4. Matrix Multiplication: $P_{mxr} = A_{mxn}C_{nxr}$. Where elements of P are determined using the following process. Let i represent indices for rows, drawn from the domain $1 \le i \le m$. Let j represent indices for columns, drawn from the domain $1 \le j \le r$. Elements of the matrix are defined $p_{ij} = \sum_{k=1}^{n} a_{ik}c_{kj}$.

Product of matricies are defined this way in order to preserve constancy with the composition of linear transformations.

Algebra of Vectors:

Let
$$\vec{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, A_{mxn} be a matrix with m rows and n columns.

We will use these definitions as we explore the matrix representations of vectors and performing algebra with them. Below, we have these definitions of vector algebra.

1. Scalar Multiplication:
$$k\vec{u} = \begin{bmatrix} ku_1 \\ \vdots \\ ku_n \end{bmatrix}$$
.

2. Dot Product (Scalar Product of Vectors): $\vec{u} \cdot \vec{v} = u_1 v_1 + \dots + u_n v_n$.

3. Outer Product (Not Cross Product):
$$\vec{u} \times \vec{v} = \begin{bmatrix} u_1 v_1 & u_1 v_2 & \cdots & u_1 v_n \\ \vdots & & & \\ u_n v_1 & u_n v_2 & \cdots & u_n v_n \end{bmatrix}$$

4. Matrix Multiplication: Matrices can be divided into columns and multiplied by a vector in parts. This is equivalent to simple matrix multiplication defined before. An equation demonstrating this multiplication can be found below.

$$A\vec{x} = \begin{bmatrix} A_1 | A_2 | \cdots | A_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A_1 x_1 + A_2 x_2 + \cdots + A_n x_n$$

.

Linear Combinations:

Finally, we say that a vector $\vec{b} \in \mathbb{R}^n$ is a linear combination if there exists scalars c_1, \dots, c_m , and vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m \in \mathbb{R}^n$ such that $\vec{b} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_m \vec{v}_m$. Additionally, the right hand side is considered the span of the vector.