

Data-Intensive Distributed Computing

CS 431/461 451/651 (Winter 2019)

Part 2: From MapReduce to Spark (2/2)
January 24, 2019

Adam Roegiest Kira Systems

These slides are available at http://roegiest.com/bigdata-2019w/

An Apt Quote

All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection.

- David Wheeler

MapReduce

Spark

Spark Word Count

```
val textFile = sc.textFile(args.input())
textFile
   .flatMap(line => tokenize(line))
   .map(word => (word, 1))
   .reduceByKey((x, y) => x + y)
   .saveAsTextFile(args.output())
```


What's an RDD? Resilient Distributed Dataset (RDD)

= immutable = partitioned

Wait, so how do you actually do anything?

Developers define *transformations* on RDDs

Framework keeps track of lineage

RDD Lifecycle

Transformation

Transformations are lazy: Framework keeps track of lineage

Actions trigger actual execution

Spark Word Count

RDDs and Lineage

Remember, transformations are lazy!

RDDs and Optimizations

Lazy evaluation creates optimization opportunities

RDDs and Caching

RDDs can be materialized in memory (and on disk)!

Spark works even if the RDDs are partially cached!

Spark Architecture

Hadoop MapReduce Architecture

An Apt Quote

All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection.

- David Wheeler

YARN

Hadoop's (original) limitations:

Can only run MapReduce
What if we want to run other distributed frameworks?

YARN = Yet-Another-Resource-Negotiator

Provides API to develop any generic distributed application
Handles scheduling and resource request
MapReduce (MR2) is one such application in YARN

YARN

Spark Programs

Scala, Java, Python, R

Spark context: tells the framework where to find the cluster

Use the Spark context to create RDDs

Spark Driver


```
sc.textFile(args.input())
textFile
.flatMap(line => tokenize(line))
```

.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(args.output())

What's happening to the functions?

Spark Driver


```
val textFile =
  sc.textFile(args.input())
```

textFile

```
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
```

.saveAsTextFile(args.output())

Note: you can run code "locally", integrate cluster-computed values!
Beware of the collect action!

Spark Transformations

Starting Points

Physical Operators

Narrow Dependencies:

Wide Dependencies:

Execution Plan

Wait, where have we seen this before?

Pig: Example Script

```
visits = load '/data/visits' as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlInfo = load '/data/urlInfo' as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);
store topUrls into '/data/topUrls';
```

Pig Query Plan

Pig: MapReduce Execution

Execution Plan

Kinda like a sequence of MapReduce jobs?

Can't avoid this!

But, what's the major difference?

Remember this?

Spark Shuffle Implementations

Hash shuffle

What happened to sorting?

Source: http://0x0fff.com/spark-architecture-shuffle/

Spark Shuffle Implementations

Sort shuffle

Remember this?

Reduce-like Operations

What happened to combiners?

Spark #wins

Richer operators

RDD abstraction supports optimizations (pipelining, caching, etc.)

Scala, Java, Python, R, bindings

Spark #wins

Spark #lose

Java serialization (w/ Kryo optmizations)
Scala: poor support for primitives

Two superpowers:

Associativity Commutativity (sorting)

The Power of Associativity

You can put parentheses where ever you want!

$$\left(\begin{array}{cccc} v_1 \oplus v_2 \oplus v_{\}} \oplus \left(v_4 \oplus v_5 \oplus v_6 \oplus v_7 \right) \oplus \left(v_8 \oplus v_9 \right) \\ \left(\begin{array}{cccc} v_1 \oplus v_{\}} \oplus \left(v_3 \oplus v_4 \oplus v_5 \right) \oplus \left(v_6 \oplus v_7 \oplus v_8 \oplus v_9 \right) \\ \left(\begin{array}{cccc} v_1 \oplus v_2 \oplus \left(v_3 \oplus v_4 \oplus v_5 \right) \oplus \left(v_6 \oplus v_7 \oplus v_8 \oplus v_9 \right) \\ \end{array} \right)$$

The Power of Commutativity

You can swap order of operands however you want!

$$\begin{bmatrix} v_1 \oplus v_2 \oplus v_{\}} \oplus (v_4 \oplus v_5 \oplus v_6 \oplus v_7) \oplus (v_8 \oplus v_9) \\ v_4 \oplus v_5 \oplus v_6 \oplus v_7) \oplus (v_1 \oplus v_2 \oplus v_3) \oplus (v_8 \oplus v_9) \\ v_8 \oplus v_9 \oplus (v_4 \oplus v_5 \oplus v_6 \oplus v_7) \oplus (v_1 \oplus v_2 \oplus v_3) \oplus (v_2 \oplus v_3) \end{bmatrix}$$

Implications for distributed processing?

You don't know when the tasks begin
You don't know when the tasks end
You don't know when the tasks interrupt each other
You don't know when intermediate data arrive

. . .

Word Count: Baseline

```
class Mapper {
 def map(key: Long, value: String) = {
  for (word <- tokenize(value)) {</pre>
   emit(word, 1)
class Reducer {
 def reduce(key: String, values: Iterable[Int]) = {
  for (value <- values) {
   sum += value
  emit(key, sum)
```

Fancy Labels for Simple Concepts...

Semigroup =
$$(M, \bigoplus)$$

 $\bigoplus : M \times M \rightarrow M$, s.t., $\forall m_1, m_2, m_3 \ni M$
 $(m_1 \bigoplus m_2) \bigoplus m_3 = m_1 \bigoplus (m_2 \bigoplus m_3)$

Monoid = Semigroup + identity
$$\varepsilon$$
 s.t., $\varepsilon \oplus m = m \oplus \varepsilon = m$, $\forall m \ni M$

Commutative Monoid = Monoid + commutativity

$$\forall m_1, m_2 \ni M, m_1 \oplus m_2 = m_2 \oplus m_1$$

A few examples? (hint, previous slide!)

Back to these...

Computing the Mean: Version 1

```
class Mapper {
 def map(key: String, value: Int) = {
  emit(key, value)
class Reducer {
 def reduce(key: String, values: Iterable[Int]) {
  for (value <- values) {
   sum += value
   cnt += 1
  emit(key, sum/cnt)
```

Computing the Mean: Version 3

```
class Mapper {
 def map(key: String, value: Int) =
  emit(key, (value, 1))
class Combiner {
 def reduce(key: String, values: Iterable[Pair]) = {
  for ((s, c) <- values) {
   sum += s
   cnt += c
  emit(key, (sum, cnt))
class Reducer {
 def reduce(key: String, values: Iterable[Pair]) = {
  for ((s, c) <- values) {
   sum += s
   cnt += c
  emit(key, sum/cnt)
```

Wait, I've seen this before?

Co-occurrence Matrix: Stripes

```
class Mapper {
 def map(key: Long, value: String) = {
  for (u <- tokenize(value)) {</pre>
   val map = new Map()
   for (v <- neighbors(u)) {
    map(v) += 1
   emit(u, map)
                             Wait, I've seen this before?
class Reducer {
                                                                            RDD[(K, V)]
 def reduce(key: String, values: Iterable[Map]) = {
  val map = new Map()
  for (value <- values) {
                                                                           reduceByKey
   map += value
                                                                            f: (V, V) \Rightarrow V
  emit(key, map)
                                                                            RDD[(K, V)]
```

Computing the Mean: Version 2

```
class Mapper {
 def map(key: String, value: Int) =
  emit(key, value)
class Combiner {
 def reduce(key: String, values: Iterable[Int]) = {
  for (value <- values) {
   sum += value
   cnt += 1
  emit(key, (sum, cnt))
class Reducer {
 def reduce(key: String, values: Iterable[Pair]) = {
  for ((s, c) <- values) {
   sum += s
   cnt += c
  emit(key, sum/cnt)
```


Synchronization: Pairs vs. Stripes

Approach 1: turn synchronization into an ordering problem

Sort keys into correct order of computation

Partition key space so each reducer receives appropriate set of partial results Hold state in reducer across multiple key-value pairs to perform computation Illustrated by the "pairs" approach

Approach 2: data structures that bring partial results together

Each reducer receives all the data it needs to complete the computation Illustrated by the "stripes" approach

Commutative monoids!

Because you can't avoid this...

But commutative monoids help

Synchronization: Pairs vs. Stripes

Approach 1: turn synchronization into an ordering problem

Sort keys into correct order of computation

Partition key space so each reducer receives appropriate set of partial results Hold state in reducer across multiple key-value pairs to perform computation Illustrated by the "pairs" approach

What about this?

Approach 2: data structures that bring partial results together

Each reducer receives all the data it needs to complete the computation Illustrated by the "stripes" approach

Commutative monoids!

f(B|A): "Pairs"

$$(a, *) \to 32$$

Reducer holds this value in memory

$$(a, b_1) \rightarrow 3$$

 $(a, b_2) \rightarrow 12$
 $(a, b_3) \rightarrow 7$
 $(a, b_4) \rightarrow 1$

$$(a, b_1) \rightarrow 3 / 32$$

 $(a, b_2) \rightarrow 12 / 32$
 $(a, b_3) \rightarrow 7 / 32$
 $(a, b_4) \rightarrow 1 / 32$

•••

For this to work:

Emit extra (a, *) for every b_n in mapper Make sure all a's get sent to same reducer (use partitioner) Make sure (a, *) comes first (define sort order) Hold state in reducer across different key-value pairs

Two superpowers:

Associativity Commutativity (sorting)

When you can't "monoidify"

Sequence your computations by sorting

An Apt Quote

All problems in computer science can be solved by another level of indirection... Except for the problem of too many layers of indirection.

- David Wheeler

Exploit associativity and commutativity via commutative monoids (if you can)

Exploit framework-based sorting to sequence computations (if you can't)

Source: Wikipedia (Walnut)

