Algolab 2015 Radiation Therapy Solution

Antonis Thomas

16 December 2015

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1 c_0 + x_1 c_1 + x_2 c_2 + x_3 c_3 + x_1^2 c_4 + x_1 x_2 c_5 + x_1 x_3 c_6 + x_2^2 c_7 + x_2 x_3 c_8 + x_3^2 c_9$$

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1\,c_0 + x_1\,c_1 + x_2\,c_2 + x_3\,c_3 + x_1^2\,c_4 + x_1\,x_2\,c_5 + x_1\,x_3\,c_6 + x_2^2\,c_7 + x_2\,x_3\,c_8 + x_3^2\,c_9$$

Solution

Modeling

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1 c_0 + x_1 c_1 + x_2 c_2 + x_3 c_3 + x_1^2 c_4 + x_1 x_2 c_5 + x_1 x_3 c_6 + x_2^2 c_7 + x_2 x_3 c_8 + x_3^2 c_9$$

Solution

Modeling

LP

- healthy cells h_i and tumor cells t_i in \mathbb{R}^3 (1 < h + t < 50)
- Polynomial p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1 c_0 + x_1 c_1 + x_2 c_2 + x_3 c_3 + x_1^2 c_4 + x_1 x_2 c_5 + x_1 x_3 c_6 + x_2^2 c_7 + x_2 x_3 c_8 + x_3^2 c_9$$

Solution

- Modeling
 - ΙP
- Implementation Details

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1c_0 + x_1c_1 + x_2c_2 + x_3c_3 + x_1^2c_4 + x_1x_2c_5 + x_1x_3c_6 + x_2^2c_7 + x_2x_3c_8 + x_3^2c_9$$

Solution

Modeling

LP

Implementation Details

number types, etc

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_j) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1c_0 + x_1c_1 + x_2c_2 + x_3c_3 + x_1^2c_4 + x_1x_2c_5 + x_1x_3c_6 + x_2^2c_7 + x_2x_3c_8 + x_3^2c_9$$

Solution

Modeling

LP

Implementation Details

number types, etc

Generating the polynomials

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1c_0 + x_1c_1 + x_2c_2 + x_3c_3 + x_1^2c_4 + x_1x_2c_5 + x_1x_3c_6 + x_2^2c_7 + x_2x_3c_8 + x_3^2c_9$$

Solution

Modeling

LP

Implementation Details

number types, etc nested *for* loops

Generating the polynomials

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1\,c_0 + x_1\,c_1 + x_2\,c_2 + x_3\,c_3 + x_1^2\,c_4 + x_1\,x_2\,c_5 + x_1\,x_3\,c_6 + x_2^2\,c_7 + x_2\,x_3\,c_8 + x_3^2\,c_9$$

Solution

Modeling

LP

2/5

- Implementation Details
- Generating the polynomials
- Find the best degree

number types, etc

nested for loops

- healthy cells h_i and tumor cells t_j in \mathbb{R}^3 $(1 \le h + t \le 50)$
- **Polynomial** p: of minimal degree d, s.t. $p(h_i) > 0$ for i = 1, ..., h, $p(t_i) < 0$ for j = 1, ..., t

Example: Polynomial of degree 2

$$1\,c_0 + x_1\,c_1 + x_2\,c_2 + x_3\,c_3 + x_1^2\,c_4 + x_1\,x_2\,c_5 + x_1\,x_3\,c_6 + x_2^2\,c_7 + x_2\,x_3\,c_8 + x_3^2\,c_9$$

Solution

- Modeling
- Implementation Details
- Generating the polynomials
- Find the best degree

number types, etc

LP

2/5

umber types, etc

nested for loops

binary search on d

Problem: we can not use > or < for the constraints:

Problem: we can not use > or < for the constraints:

• Option 1 (additional variable $0 \le \epsilon \le 1$) $p(h_i) \ge \epsilon$ for i = 1, ..., h, $p(t_j) \le 0$ for j = 1, ..., t Cells can be separated if there exists a *positive* ϵ

Problem: we can not use > or < for the constraints:

- Option 1 (additional variable $0 \le \epsilon \le 1$) $p(h_i) \ge \epsilon$ for i = 1, ..., h, $p(t_j) \le 0$ for j = 1, ..., t Cells can be separated if there exists a *positive* ϵ
- Option 2 (scaling) $p(h_i) \ge 1$ for i = 1, ..., h, $p(t_j) \le -1$ for j = 1, ..., t

Problem: we can not use > or < for the constraints:

- Option 1 (additional variable $0 \le \epsilon \le 1$) $p(h_i) \ge \epsilon$ for $i = 1, \ldots, h$, $p(t_j) \le 0$ for $j = 1, \ldots, t$ Cells can be separated if there exists a *positive* ϵ
- Option 2 (scaling) $p(h_i) \ge 1$ for i = 1, ..., h, $p(t_j) \le -1$ for j = 1, ..., t

Implementation Details

• Number types Observe $|x_1| < 2^{10}$. Therefore $x_1^{30} \approx 2^{300}$.

Problem: we can not use > or < for the constraints:

- Option 1 (additional variable $0 \le \epsilon \le 1$) $p(h_i) \ge \epsilon$ for $i = 1, \ldots, h$, $p(t_j) \le 0$ for $j = 1, \ldots, t$ Cells can be separated if there exists a *positive* ϵ
- Option 2 (scaling) $p(h_i) \ge 1$ for i = 1, ..., h, $p(t_j) \le -1$ for j = 1, ..., t

Implementation Details

Number types

Observe $|x_1| < 2^{10}$. Therefore $x_1^{30} \approx 2^{300}$.

IT and ET: any exact type, like

CGAL::Gmpz Or CGAL::Gmpzf Or CGAL::MP_Float

Problem: we can not use > or < for the constraints:

- Option 1 (additional variable $0 \le \epsilon \le 1$) $p(h_i) \ge \epsilon$ for $i = 1, \ldots, h$, $p(t_j) \le 0$ for $j = 1, \ldots, t$ Cells can be separated if there exists a *positive* ϵ
- Option 2 (scaling) $p(h_i) \ge 1$ for i = 1, ..., h, $p(t_j) \le -1$ for j = 1, ..., t

Implementation Details

Number types

Observe $|x_1| < 2^{10}$. Therefore $x_1^{30} \approx 2^{300}$.

IT and ET: any exact type, like

CGAL::Gmpz or CGAL::Gmpzf or CGAL::MP_Float

Cycling

Use CGAL::QP BLAND

Generating the polynomials

```
for (int i = 0; i <= degree; ++i)
for (int j = 0; j <= degree-i; ++j)
for (int k = 0; k <= degree-i-j; ++k) {
    /* term x_1^i * x_2^j * x_3^k */
    pw(p.x1,i)*pw(p.x2,j)*pw(p.x3,k);
}</pre>
```

For efficiency, you can also precompute the values of pw(p.x[1-3],i) for i=0,...,30

Finding the minimum degree d

• To find the minimum degree *d*:

Finding the minimum degree d

- To find the minimum degree *d*:
 - Fast exponentiation to find upper bound u;

Finding the minimum degree d

- To find the minimum degree *d*:
 - Fast exponentiation to find upper bound u;
 - ▶ Binary search in the interval $\left[\frac{u}{2}, u\right]$.