MATH 4108: Abstract Algebra II

Frank Qiang Instructor: Jennifer Hom

Georgia Institute of Technology Spring 2024

Contents

1	Jan. 8 — Rings and Fields	2
	1.1 Lots of Definitions	2

Lecture 1

Jan. 8 — Rings and Fields

1.1 Lots of Definitions

Recall the definitions of a ring and a field:

Definition 1.1 (Ring). A ring $R = (R, +, \cdot)$ is a non-empty set R together with two binary operations + and \cdot , called addition and multiplication respectively, which satisfy:

- (R1) Associative law for addition: (a+b)+c=a+(b+c) for all $a,b,c\in R$.
- (R2) Commutative law for addition: a + b = b + a for all $a, b \in R$.
- (R3) Existence of zero: There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
- (R4) Existence of additive inverses: For all $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.1
- (R5) Associative law for multiplication: (ab)c = a(bc) for all $a, b, c \in R$.
- (R6) Distributive laws: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

Definition 1.2 (Commutative ring). In this class, we will mostly be interested in *commutative rings*, which satisfy the following additional property for multiplication:

(R7) Commutative law for multiplication: ab = ba for all $a, b \in R$.

Definition 1.3 (Ring with unity). A ring with unity satisfies the additional property that

(R8) Existence of unity: There exists $1 \neq 0 \in R$ such that and a1 = 1a = a for $a \in R$.

Note that a ring need not be commutative to have a unity.

Definition 1.4 (Domain). A commutative ring with unity is called a *(integral) domain* if it has the following cancellation property:

- (R9) Cancellation: For all $a, b \in R$ and $c \neq 0$, ca = cb implies a = b.
- (R9') No zero divisors: For all $a, b \in R$, ab = 0 implies a = 0 or b = 0.

The conditions (R9) and (R9') are equivalent.

Definition 1.5 (Field). A commutative ring with unity is called a *field* if it has the following additional property for multiplicative inverses:

(R10) Existence of multiplicative inverses: For all $a \neq 0 \in R$, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$.

¹Note that we'll usually write a - b in place of a + (-b).

Example 1.5.1. Some examples of rings are $\mathbb{Z}/2\mathbb{Z}$, which also happens to be a field. The ring \mathbb{Z} is a domain. The set $M_{2\times 2}(\mathbb{R})$ is a non-commutative ring with unity, and has zero divisors. The ring \mathbb{Q} is a field.² The real polynomials in a single variable $\mathbb{R}[x]$ form a ring, which is a domain but not a field. The complex numbers \mathbb{C} and the real numbers \mathbb{R} both form a field. The even integers $2\mathbb{Z}$ form a commutative ring without unity. In general, $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring with unity, and is a field if and only if n is prime (and has zero divisors otherwise, if n is composite).

Remark. If $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group. If $(K, +, \cdot)$ is a field, then (K^*, \cdot) is an abelian group, where $K^* = K \setminus \{0\}$.

Definition 1.6 (Group of units). Let R be a commutative ring with unity. The group of units of R is

$$U = \{u \in R \mid \text{there exists } v \in R \text{ such that } uv = 1\}.$$

Exercise 1.1. Show that U is in fact a group under multiplication.

Definition 1.7 (Associate). If $a, b \in R$ such that a = ub for some $u \in U$, then a and b are called associates, denoted by $a \sim b$.

Exercise 1.2. Show that \sim is in fact an equivalence relation.

Example 1.7.1. The group of units of \mathbb{Z} is $\{1, -1\}$. The group of units of a field K is $K^* = K \setminus \{0\}$.

Exercise 1.3. Let $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Check the following:

- 1. R is a commutative ring with unity.
- 2. The group of units of R is $\{a+b\sqrt{2} \mid a,b\in\mathbb{Z}, |a^2-2b^2|=1\}$.

Definition 1.8 (Divisor). Let D be an integral domain, $a \in D \setminus \{0\}$, $b \in D$. Then a divides b, or a is a divisor or factor of b, denoted by a|b, if there exists $z \in D$ such that az = b. We write $a \nmid b$ if a does not divide b. We say that a is a proper divisor or that a properly divides b if z is not a unit.

Remark. Equivalent, a is a proper divisor of b if and only if a|b and $b\nmid a$.

Definition 1.9 (Subring). A subring U of a ring R is a non-empty subset of R with the property that for all $a, b \in R$, $a, b \in U$ implies $a + b \in U$ and $ab \in U$, and $a \in U$ implies $-a \in U$.

Remark. Equivalently, U is a subring of R if and only if $a, b \in U$ implies $a - b \in U$ and $ab \in U$.

Remark. We automatically have $0 \in U$ since we can pick any $a \in U$, and then $0 = a - a \in U$.

Definition 1.10 (Subfield). A *subfield* of a field K is a subset E containing at least two elements such that $a, b \in E$ implies $a - b \in E$ and $a \in E, b \in E \setminus \{0\}$ implies $ab^{-1} \in E$. If E is a subfield and $E \neq K$, then we say E is a *proper* subfield.

Remark. As before, we can replace the last condition with the equivalent statement that $a, b \in E$ implies $ab \in E$ and $a \in E \setminus \{0\}$ implies $a^{-1} \in E$.

Definition 1.11 (Ideal). An *ideal* of R is a non-empty subset I of R with the properties that $a, b \in I$ implies $a - b \in I$ and $a \in I, r \in R$ implies $ra \in I$.

Remark. All ideals are subrings, but the converse is not true in general.

Example 1.11.1. The integers \mathbb{Z} form a subring of \mathbb{R} but not an ideal.

²In fact, \mathbb{Q} is somehow the smallest field containing \mathbb{Z} .

Remark. We trivially have that $\{0\}$ and R are both ideals of R. An ideal I is called *proper* if $\{0\} \subseteq I \subseteq R$.

Theorem 1.1. Let $A = \{a_1, \ldots, a_n\}$ be a finite subset of a commutative ring R. Then the set

$$Ra_1 + \dots + Ra_n = \{x_1a_1 + \dots + x_na_n \mid x_i \in R\}$$

is the smallest ideal of R containing A.

Proof. See Howie. Check this is indeed an ideal and is contained in any other ideal containing A. \square

Definition 1.12 (Ideals generated by elements of a ring). The set $Ra_1 + \cdots + Ra_n$ is the *ideal generated* by a_1, \ldots, a_n , denoted by $\langle a_1, \ldots, a_n \rangle$. If the ideal is generated by a single element $a \in R$, then we say that $Ra = \langle a \rangle$ is a *principal ideal*.

Example 1.12.1. In \mathbb{Z} , the ideal $\langle 2 \rangle = 2\mathbb{Z}$ are the even numbers. We have $\langle 2, 3 \rangle = \mathbb{Z}$, but $\langle 6, 8 \rangle = \langle 2 \rangle$.

Theorem 1.2. Let D be an integral domain with group of units U and let $a, b \in D \setminus \{0\}$. Then

- 1. $\langle a \rangle \subseteq \langle b \rangle$ if and only if b|a,
- 2. $\langle a \rangle = \langle b \rangle$ if and only if $a \sim b$,
- 3. $\langle a \rangle = D$ if and only if $a \in U$.

Proof. See Howie. \Box

Definition 1.13 (Homomorphism of rings). A homomorphism from a ring R to a ring S is a mapping $\varphi: R \to S$ such that $\varphi(a +_R b) = \varphi(a) +_S \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.

Example 1.13.1. The zero mapping $\varphi(a) = 0$ is always a homomorphism. The inclusion map $\iota : 2\mathbb{Z} \to \mathbb{Z}$ or $\iota : \mathbb{Z} \to \mathbb{Q}$ is a homomorphism.

Theorem 1.3. Let R, S be rings and $\varphi : R \to S$ a homomorphism. Then

- 1. $\varphi(0_R) = 0_S$,
- 2. $\varphi(-r) = -\varphi(r)$ for all $r \in R$,
- 3. the image $\varphi(R)$ is a subring of S.

Proof. See Howie. \Box

Definition 1.14 (Monomorphism). Let $\varphi : R \to S$ be a homomorphism. If φ is injective, we say that φ is a *monomorphism* or an *embedding*.

Example 1.14.1. The inclusion map $\varphi : \mathbb{Z} \to \mathbb{R}$ given by $\varphi(n) = n$ is an embedding.