RSAConference2019 Asia Pacific & Japan

Singapore | 16–18 July | Marina Bay Sands

SESSION ID: FLE-W03

Battling Snapdragon and Kirin: Data Extraction from Chinese Android Phones

James Lan

Officer-In-Charge (OC) Team, Technology Crime Forensic Branch, Singapore Police Force

The Presentation outline

- Introduction to basic terminology
- Attack surfaces on
 - Xiaomi Android smartphone powered by Qualcomm Snapdragon premsm8994
 - Huawei Android smartphone powered by Kirin pre-970
- Demonstration
- Conclusion

RSA Conference 2019 Asia Pacific & Japan

DISCLAIMER

This research is solely based on open source information and reverse-engineering of executables

RSAConference2019 Asia Pacific & Japan

Introduction

Overview of Qualcomm boot process for Xiaomi phone (Qualcomm Snapdragon pre-msm8994)

Qualcomm boot process for Xiaomi phone in a Nutshell

- Emergency Download mode
- Three modes of boot up
- Secure boot
- Unlock bootloader

End Goal: Access User Data (AUD)

- Complex problem to solve
- Unlock bootloader will wipe user data
- Boot images are verified
 - No Custom ROM
- Android > 6 ~= encrypted

user data

RSA Conference 2019 Asia Pacific & Japan

Xiaomi Android smartphone powered by Qualcomm Snapdragon pre-msm8994

Attacking surfaces

Attacking surfaces – s.s.h.

- Emergency Download Mode (EDL)
- Recovery
- Fastboot

System

- Bootloader
- aboot
- Android

Software

- Chip-off
- JTAG
- ISP (In-System Programming)

Hardware

Attack surfaces

System attack surface

Software attack surface

Bootloader, aboot and Android

Hardware attack surface

- Chip-off
- JTAG

ISP

In-System Programming

RSAConference2019 Asia Pacific & Japan

Xiaomi Android smartphone powered by Qualcomm Snapdragon pre-msm8994

Demo – XiaoMi Android smartphone powered by Qualcomm Snapdragon pre-msm8994 era with Full Disk Encryption with user password

RSA Conference 2019 Asia Pacific & Japan

Introduction to Kirin

Overview of Android boot process

Kirin boot process for Huawei phone in a Nutshell

- Factory mode
- Four modes of boot up
- Secure boot
- Unlock bootloader
 (Ceased unlock service)
 - User unlock
 - Unlock bootloader
 - Full bootloader unlock
 - Full changes to all partitions

End Goal: Access User Data (AUD)

- Complex problem to solve
- Unlock bootloader will/will not wipe user data
- Boot images are verified
 - No Custom ROM
- Android > 6 ~= encrypted

user data

Fastboot

RSA°Conference2019 Asia Pacific & Japan

Huawei Android smartphone powered by Kirin pre-970

Attacking surfaces

Attacking surfaces – s.s.h.

- Factory mode
- Recovery 1 and 2
- Fastboot

System

- xloader
- Android
- Manufacture mode

Software

- Chip-off
- JTAG
- ISP (In-System Programming)

Attack surfaces

Attack surfaces

- Factory mode
- Recovery 1 and 2
- Fastboot
 - No fastbootboot

fastboot.exe flash recovery .\recoveryp.img

Software attack surface

- xloader
- Android
- Manufacture mode

Reversing Fastboot

 Loading address
 0x07000000

 File offset
 0x0800|

```
    f
    volumnkey_down_press_process_func
    RON
    63

    f
    volumnkey_up_down_press_process_func
    RON
    64

    f
    volumnkey_up_press_process_func
    RON
    65

    f
    wait_coulometer_work
    RON
    66

    f
    wait_chdog_enable_from_pv
    RON
    67
```

```
{
  v2 = 30;
  while ( (*(unsigned int
  {
    mdelay(80i64);
    if ( !--v2 )
```

Permanent FB bootloader unlock

```
v0 = get_operators((_int64)"nve");
      v18 = 0x138164;
      v17 = 1164;
       strncpy(&v19, "FBLOCK", 7164);
       v1 = *(unsigned int ( fastcall **)( int64 *))v0;
      \sqrt{20} = 1164;
      if ( v1(&v17) )
        cprintf("Read nv fblock info failed\n");
        log buffer(( int64)"Read nv fblock info failed\n", v3, v4, v5, v6, v7
        result = 0164;
       else
41
        result = 121 == 0;
44
45
46
      cprintf("can not get nve_ops!\n");
       log buffer(( int64)"can not get mve ops!\n", v18, v11, v12, v13, v14, v
      result - 0164;
    return result;
   0001F200 nve fblock info:42 (701EA00)
```

```
000E9BF0
000E9C00
000E9C10
000E9C20
000E9C30
000E9C40
000E9C50
                      v0 = get_operators((_int64)"getmode");
                      if ( |v@ | (*(unsigned int (**)(void))v8)() )
                9.33
                                 0x70FCAA4 = nve fblock info();
                          goto LABEL 5:
                  37
                  38
                  39
                         complex 70FCAA4 - 1;
                                       - oeminfo_lock_stat_info();
                      v1 - oeminfo_root_type_info();
```

Hardware attack surface

- Chip-off
- JTAG

- ISP
 - In-System Programming

Power

On

RSA°Conference2019 Asia Pacific & Japan

Huawei Android smartphone powered by Kirin pre-970

Demo - Huawei Android smartphone powered by P8 Lite ALE-L21 with Full Disk Encryption - Bootloop

Apply What You Have Learned Today

- Identify the types of mobile phones in your organization
 - Their Android, Kernel, security patches versions
- Remediation actions could be
 - Baseline all the mobile phones
 - Apply security patches to the mobile phones
 - Perform a vulnerability testing of the mobile phones
 - Remain the pristine state of the bootloader

RSA Conference 2019 Asia Pacific & Japan

Thank You