Équations, Inéquations et Systèmes

Plan du chapitre 2

- I- Équations et inéquations du seconde degré à une inconnue 33

COURS

- Í Équations et inéquations du seconde degré à une inconnue
 - 1. Équations du seconde degré à une inconnue

Définition 1:

Toute équation s'écrit sous la forme $ax^2 + bx + c = 0$ avec a, b et c des nombres réels et $a \ne 0$ s'appelle équation du seconde degré à une inconnue.

- Tout nombre t tel que $at^2 + bt + c = 0$ appelé solution ou racine de cette équation.
- Le nombre $\Delta = b^2 4ac$ le discriminant de l'équation $ax^2 + bx + c = 0$.
- 3 L'écriture $ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 \frac{\Delta}{4a^2}\right]$.

Propiété 1:

Soient a, b et c des nombres réels tels que $a \ne 0$. L'ensemble de solutions de l'équation $ax^2 + bx + c = 0$ dans \mathbb{R} :

- 1 Si $\Delta < 0$ alors $S = \emptyset$.
- 2 Si $\Delta = 0$ alors $S = \{-\frac{b}{2a}\}.$
- 3 Si $\Delta > 0$ alors $S = \{\frac{-b + \sqrt{\Delta}}{2a}; \frac{-b \sqrt{\Delta}}{2a}\}.$

Application:

Résoudre dans IR les équations suivantes :

$$2x^2 + 3x - 5 = 0$$

$$2 \quad x^2 + x + \frac{1}{4} = 0$$

$$3 \quad x^2 - 3x + 4 = 0$$

Solution:

a - Somme et produit des racines

Propiété 2:

Si l'équation $ax^2 + bx + c = 0$ admet deux solutions x_1 et x_2 dans \mathbb{R} , alors :

$$x_1 + x_2 = -\frac{b}{a}$$

$$2 x_1 \times x_2 = \frac{c}{a}$$

Propiété 3:

Soient s et p deux nombres réels.

- Le système (S): $\begin{cases} x+y=s \\ xy=p \end{cases}$ admet une solution si et seulement si $s^2-4p \ge 0$.
- Les réels x et y sont solutions de l'équation $X^2 sX + p = 0$.
- L'ensemble de solution du système (S) est $S = \{(x; y); (y; x)\}.$
- 4 Un tel système est appelé un système symétrique.

Application:

- Sachant que 1 est une solution de $2026x^2 x 2025 = 0$, trouver la deuxième solution.
- Résoudre dans \mathbb{R} le système suivant : $\begin{cases} x + y = 13 \\ xy = 12 \end{cases}$

2. Signe d'un trinôme du seconde degré

Propiété 1:

Soit $ax^2 + bx + c$ un trinôme de seconde degré tel que a, b et c des réels et $a \ne 0$ et soit Δ son discriminant. On a les cas suivants :

Si Δ < 0 alors le tableau de signe de $ax^2 + bx + c$:

x	-∞	+∞
$ax^2 + bx + c$	signe de	
ux + vx + c	a	

Si $\Delta = 0$ alors le tableau de signe de $ax^2 + bx + c$:

x	-∞		$-\frac{b}{2a}$		+∞
$ax^2 + bx + c$		signe de	0	signe de	
ux + bx + c		а		а	

Si $\Delta > 0$ alors le tableau de signe de $ax^2 + bx + c$ (On suppose que $x_1 < x_2$):

x	-∞		x_1		x_2		+∞
$ax^2 + bx + c$		signe de	0	signe	0	signe de	
ux + vx + c		a		opposé de <i>a</i>		а	

Remarque 1:

Pour résoudre une inéquations du seconde degré à une inconnue on se base sur l'étude de signe d'un trinôme.

Exemple 1:

2	Résoudre dans \mathbb{R}^+ l'inéquation $x^2 - 2x + 3 \le 0$
	Λ
	<u> </u>

3. Équations et inéquations du premier degré à deux inconnues

On note \mathbb{R}^2 l'ensemble des couples (x, y) tels que $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

Définition 1:

Tout équations de la forme (E): ax + by + c = 0 où a, b et c des nombres réels tels que $a \ne 0$ ou $b \ne 0$ appelée équation du premier degré à deux inconnues x et y.

Un coupe (x_0, y_0) est une solution de l'équation (E) si et seulement si $ax_0 + by_0 + c = 0$.

Remarque 1:

Pour résoudre dans \mathbb{R}^2 l'équation ax + by + c = 0. On calcule x en fonction de y ou bien y en fonction de x.

Résoudre dans \mathbb{R}^2 l'équation 2x - y - 3 = 0.

Une droite (*D*) d'équation cartésienne ax + by + c = 0 détermine deux demi-plan ouverts :

- L'un est l'ensemble des points M(x,y) tels que : ax + by + c > 0
- 2 L'autre est l'ensemble des points M(x, y) tels que : ax + by + c < 0

Application:

- Résoudre graphiquement les inéquations :
 - a x + 2y 2 < 0
 - b $2x + y + 2 \ge 0$
- 2 En déduire les solutions du système : (S) : $\begin{cases} x + 2y 2 < 0 \\ 2x + y + 2 \ge 0 \end{cases}$

II Les systèmes des équations

1. Systèmes de deux équations du premier degré à deux inconnue

On considère le système (S): $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$ tel que a, b, c, a', b' et c' des réels.

Le nombre ab' - a'b appelé le déterminant du système (S) noté $D = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b$

Et on pose $D_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} = cb' - c'b$ et $D_y = \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} = ac' - a'c$.

Propiété 1:

- Si D = 0 alors deux cas se présents :
 - Si $D_x \neq 0$ ou $D_y \neq 0$ alors le systèmes n'admet pas de solutions.
 - b Si $D = D_x = D_y = 0$ alors le système admet une infinité de solutions.
- Si $D \neq 0$ alors le système (S) (appelé système de Cramer) admet une solution unique dans \mathbb{R}^2 donnée par :

$$x_0 = \frac{D_x}{D} = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{D} \text{ et } y_0 = \frac{D_y}{D} = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{D}$$

Et on écrit $S = \{(x_0, y_0)\}.$

Exemple 1:

Résoudre par la méthode du déterminant dans \mathbb{R}^2 les systèmes :

$$(S_1): \begin{cases} x+2y=4\\ -x+4y=2 \end{cases}$$
 $(S_2): \begin{cases} 3x+y=7\\ 2x-y=8 \end{cases}$

.....

•••••	
• • • • • • • • • • • • • • • • • • • •	
 •••••	
•••••	
•••••	
 	 ······

2. Systèmes de n équations du premier degré à n inconnues ($2 \le n \le 4$)

Exemple 1:

Application:

Résoudre dans
$$\mathbb{R}^4$$
 le système suivante : $(S) = \begin{cases} x - y + 2z + 3t = 0 \\ y - 2z - t = 0 \\ -2z + 4t = 0 \\ y - t = 0 \end{cases}$

