3D Data Processing Camera

Department of Software Convergence Hyoseok Hwang

Basic Question

- Which of these sensors works the same way as a camera?
 - A. gyroscope
 - B. strain gauge
 - C. photoresistor
 - D. pressure sensor
 - E. Accelerometer

Light

As a final grant of the first o

- A form of electromagnetic radiation
 - Observable by human eye: Wavelengths between 380nm and 750nm
- Exhibits both wave-like and particle-like properties
- This lecture is based-on Ray Optics

Concept of light field

Electromagnetic Spectrum

- Cameras generate a projected image of the world
- Leonardo da Vinci (1452-1519):
 - first record of camera obscura (1502)
- Johann Zahn (1685): first portable camera
- Joseph Nicéphore Niépce(1822)
 - first photo birth of photography
- Most cameras are based-on pinhole model

• Cameras generate a projected image of the world

- Shrinking aperture size
 - Large: superposition
 - Small: less light, diffraction

diffraction

2 mm

1 mm

0.6mm

0.35 mm

An Article of Article

• Camera as sampling machine in the light field

• Camera as Dimensionality reduction machine

Facilities of the state of the

• Projection can be tricky.

• However, it's the same thing that happens to humans.

A Sar Parks A Sar

- Cameras are a copy of the human eye
 - We make cameras that act "similar" to the human eye.

A Committee of the Comm

- Cameras are a copy of the human eye
 - We make cameras that act "similar" to the human eye.

camera

Retina

- Retina contains light sensitive cells that convert light energy into electrical impulses that travel through nerves to the brain
- Brain interprets the electrical signals to form images

- Two types of light-sensitive receptors
 - Cones
 - cone-shaped less sensitive operate in high light color vision
 - Rods
 - rod-shaped highly sensitive operate at night gray-scale vision

distribution of the rods and cones.

Digital camera

- A digital camera is a camera that captures photographs in digital memory.
- Conceptually, it consists of a lens and an image sensor that replaces the film.
- An image sensor detects and conveys information used to make an image.

Digital Imaging

- Invented in 1969 at AT&T Bell Labs by Willard Boyle and George E.
 Smith.
- Originally working on memory →"Charge 'Bubble' Devices", can be used as a shift register and as a linear and area imaging devices
- CCDs are electronic devices, which work by converting light into electronic charge in a silicon chip (IC). This charge is digitised and stored as an image file on a computer.
- In 2009, they were awarded the Nobel Prize for Physics

When the camera shutter opens

- Photon buckets (Cell) begin to store photons
- Until the camera shutter closes, then they convert stored photons to intensity values.

- Two main types of imaging sensors
 - CCD(Charged Coupled Device)
 - Convert electrons to voltage using readout circuitry separate from pixel
 - High sensitivity, lower noise
 - CMOS(Complementary Metal Oxide Semiconductor)
 - Convert electrons to voltage using per-pixel readout circuitry
 - Fast read-out, lower cost

Camera types

- Monocular camera
 - Single camera
- Stereo camera
 - Fixed multi(two) camera
 - Various base-line, angle
- Fisheye camera
 - Using Fisheye lens
 - Extremely wide view angle

Stereo camera

Fisheye image

Camera 종류

- 360 camera
 - Multiple camera set
 - Panorama image after image processing
 - Omni-directional camera
 - Using mirror

Omni directional camera and image

360 camera

Camera 종류

- Light-field camera
 - Sampling light field between two plane
 - Refocusing pictures
 - 3D scanning, modeling

LF camera system

Lytro

Refocusing example

Camera 종류

- Event camera
 - Novel sensor that measures only motion in the scene (x, y, t, θ)
 - Low-latency (~1us)
 - No motion blur, High Dynamic range

Event camera 소프트웨어융합학과

 In principle, an image sensor is a device that measures the amount of light.

• In principle, an image sensor is a device that measures the **amount of light.**

• In principle, an image sensor is a device that measures the **amount of light.**

 In principle, an image sensor is a device that measures the amount of light.

• In principle, an image sensor is a device that measures the **amount of light.**

• In principle, an image sensor is a device that measures the **amount of light.**

 In principle, an image sensor is a device that measures the amount of light.

• In principle, an image sensor is a device that measures the **amount of light.**

• In principle, an image sensor is a device that measures the **amount of light.**

Amount of photons: 2000

- Spatial division
 - 2D case

Digital image

- Image representation
 - Image sensors consist of a grid of cells which convert photons into electrical signals.
 - Each grid is called a pixel (picture + element)
 - a pixel, or picture element is a smallest addressable element of an image or display device

Digital image

- Image representation
 - All pixels are in the form of a grid.
 - It has a two-dimensional spatial resolution.
 - Therefore, we can treat image data as a matrix, of which value means intensity
 - Most of image processing can be conducted by matrix operation.

Pinhole camera model

A control of the cont

- Image plane (virtual)
 - A plane that symmetrizes the actual projected plane (sensor) with respect to the origin (pinhole).
 - Intuitive and easy calculation
- Coordinate system
 - Camera coordinate (3D)
 - Center: pinhole
 - Image plane: (xk, yk, k)
 - World coordinate (3D, optional)
 - C_w to $C_c \rightarrow X_c = T_w^C X_w$
 - Image(pixel) coordinate (2D, [u v])
 - Focal length: distance to image plane

Image format

- Resolution
 - Precision of the sensor
 - Size of image
 - VGA: 640 x 480
 - HD: 1280 x 730
 - FHD: 1920 x 1080
 - UHD(4K): 3840 x 2160
- Aspect ratio
 - The ratio of its width to its height

Image format

- Field of view (FOV)
 - The extent of the observable world
 - Expressed in degrees
 - It depends on the <u>camera's sensor size</u> and the <u>lens's focal length</u>

20mm

35mm: 63°,

15mm Fisheye: 180°

400mm

400mm: 6°

Different focal length B합학과 Same sensor size

Same focal length Different sensor size

Image sensor size

A Shart and a shar

- Pixel size (= Cell size)
 - Size of each pixel(cell) of the image sensor
 - Larger pixel size : less noise, high dynamic range

- Sensor size
 - Sensor size = resolution x pixel size
 - 35mm(DSLR, Full frame) vs 8~10 mm (smart phone)
 - Large sensor: high resolution, large cell size
- Camera bump (카툭튀)
 - For high resolution
 - For high dynamic range

Lens

- Why lens?
 - A lens is a tool used to bring light to a fixed focal point.
 - To collect more light rays in the same direction
 - To implement FOV beyond linear model

• We can still consider a camera with a lens as a pinhole model.

- Pros.
 - To implement FOV beyond linear model
 - Ex. fisheye camera, smartphone

- Cons.
 - Lens has focal length → Out focusing
 - Chromatic aberration → Refraction varies with wavelength
 - Spherical aberration → Radial distortion

- Out focusing
 - Focal length is defined for each lens
 - Need to change the focal length depending on the distance of the object.

- Chromatic aberration
 - chromatic distortion and spherochromatism
 - Refraction varies with wavelength

- Radial distortion
 - Spherical aberration
 - Solution: S/W calibration, Aspherical Lens, small aperture

Spherical aberration

Radial distortion and warping image

The first of the f

- Aperture (조리개)
 - Opening size of the lens
 - Wider: more light, more aberration, narrow depth of field
 - Aperture are notated as f/stops (F-number)

F number (F-stop)

- Represent amount of light to the sensor
 - Aperture size of f/x = Focal length(f) / x
 - Ex) f/2 of 50mm focal length camera: Aperture size (25mm)
 - Depth of field
 - the distance between the nearest and the furthest objects that are in acceptably sharp focus

- We learned that each pixel value is the brightness value of light (=amount of photons)
- This means the image can represent intensity value only > grayscale
- Question) How can get color images?
 - Hint) Consider the human case.
- Solution
 - A. Use sensors that respond differently to different wavelengths.
 - B. Use another method

A Section of the sect

- Solution
 - B. Use another method
- Filtering
 - Capture Red wavelength
 - Capture Green wavelength
 - Capture Blue wavelength

• Then, concatenate them

Pixel of an RGB image are formed from the corresponding pixel of the three component images

- Remember that
 - No color image is exist
 - We save and display brightness divided by R, G, B

Display pixel

- Color filter
 - We filtering wavelength
 - Only pass rays, of which wavelength are red, green, blue

Sequential color filter

- Color filter array
 - A mosaic of tiny color filters placed over the pixel sensors of an image sensor to capture color information.
 - Get R, G, B images at once → Reduction of spatial resolution

- Color filter array
 - Pixels estimate their R, G, B values by interpolation
 - When a pixel has a R, B, or B value, the pixel use the value
 - When a pixel does not have R, G, or B value, mix up neighborhood values.

?	1	?	/	?	
?	?	* *	?	?	?
?	1	?	/	?	1
?	?	?	?	?	Ť
?		?		?	1
?	?	?	?	?	?

?	?	?	?	?	?
1	?	1	?		?
?	X X	?	?	?	?
1	?	/	?		?
?	?	?	?	?	?
	?		?		?

- Color filter array
 - Pixels estimate their R, G, B values by interpolation
 - When a pixel has a R, B, or B value, the pixel use the value
 - When a pixel does not have R, G, or B value, mix up neighborhood values.

Bayer image

Interpolated image

Various color filter array

End of the class

QnA