Indução e Definições Recursivas

Matemática Discreta Prof. Lucas Ismaily 2º Semestre de 2022

Aluno: [] Matrícula: [
L	_ · · · · · · · · · · · · · · ·	-

Indução:

- 1. Considere P(n) como a proposição que afirma que uma postagem de n centavos pode ser feita usando-se apenas selos de 3 e 5 centavos. Os itens desse exercício formam uma demonstração por indução completa de que P(n) é verdadeira para $n \ge 8$.
 - (a) Mostre que as proposições P(8), P(9) e P(10) são verdadeiras, completando o passo base da demonstração.
 - (b) Qual é a hipótese indutiva da demonstração?
 - (c) O que você precisa para demonstrar o passo de indução?
 - (d) Complete o passo de indução para $k \ge 10$.
 - (e) Explique por que esses passos mostram que esta prposição é verdadeira sempre que n > 8.
- 2. (a) Determine quais postagens podem ser feitas usando-se apenas selos de 4 e 11 centavos.
 - (b) Demonstre sua resposta de (a) usando o princípio da indução matemática. Certifique-se de afirmar explicitamente sua hipótese indutiva no passo de indução.
 - (c) Demonstre sua resposta de (a) usando a indução completa. Em que a hipótese indutiva dessa demonstração difere da demonstração usada com indução matemática?
- 3. Qual a quantidade de dinheiro que pode ser reunida usando apenas notas de \$2 e \$5? Demonstre sua resposta usando a indução completa.
- 4. Considere esta variação do jogo de Nim. O jogo começa com n cartas. Dois jogadores podem remover as cartas uma, duas ou três de cada vez. O jogador que remover a última carta, perde. Use a indução completa para mostrar que se cada jogador jogar com a melhor estratégia possível, o primeiro vence, se n=4j, 4j+2 ou 4j+3 para qualquer número inteiro não negativo j, e o segundo jogador vence no outro caso possível, quando n=4j+1 para qualquer número inteiro não negativo j.

- 5. Suponha que P(n) seja uma função proposicional. Determine se para cada número inteiro positivo n, a proposição P(n) deve ser verdadeira, e justifique sua resposta, se
 - (a) P(1) for verdadeira; para todos os números inteiros positivos n, se P(n) for verdadeira, então P(n+2) é verdadeira.
 - (b) P(1) e P(2) forem verdadeiros; para todos os números inteiros positivos n, se P(n) e P(n+1) forem verdadeiras, então P(n+2) é verdadeira.
 - (c) P(1) for verdadeira; para todos os números inteiros positivos n, se P(n) for verdadeira, então P(2n) é verdadeira.
 - (d) P(1) for verdadeira; para todos os números inteiros positivos n, se P(n) for verdadeira, então P(n+1) é verdadeira.
- 6. Mostre que, se a proposição P(n) for verdadeira para infinitos números inteiros positivos n e $P(n+1) \to P(n)$ for verdadeira para todos os números inteiros positivos n, então P(n) é verdadeira para todos os números inteiros positivos n.
- 7. O que há de errado com esta "demonstração" por indução completa?

Teorema: Para todo número inteiro não negativo n, 5n = 0.

Passo base: $5 \cdot 0 = 0$.

Passo de indução: Suponha que 5j=0 para todos os números inteiros não negativos j com $0 \le j \le k$. Escreva k+1=i+j, em que i e j são números naturais menores que k+1. Pela hipótese indutiva, 5(k+1)=5(i+j)=5i+5j=0+0=0.

Definições recursivas:

- 8. Encontre f(1), f(2), f(3) e f(4) se f(n) for definido recursivamente por f(0)=1 e para n=0,1,2,...
 - (a) f(n+1) = f(n) + 2.
 - (b) f(n+1) = 3f(n).
 - (c) $f(n+1) = 2^{f(n)}$.
 - (d) $f(n+1) = f(n)^2 + f(n) + 1$.
- 9. Encontre f(2), f(3), f(4) e f(5) se f(n) for definido recursivamente por f(0)=-1, f(1)=2 e para n=1,2,...
 - (a) f(n+1) = f(n) + 3f(n-1).
 - (b) $f(n+1) = f(n)^2 f(n-1)$.
 - (c) $f(n+1) = 3f(n)^2 4f(n-1)^2$.
 - (d) f(n+1) = f(n-1)/f(n).

- 10. Determine se cada uma das definições propostas abaixo é uma definição recursiva válida de uma função f a partir do conjunto dos números inteiros não negativos para o conjunto dos números inteiros. Se f for bem definida, encontre uma fórmula para f(n) quando n for um número inteiro não negativo e demonstre que sua fórmula é válida.
 - (a) f(0) = 0, f(n) = 2f(n-2) para $n \ge 1$
 - (b) f(0) = 1, f(n) = f(n-1) 1 para $n \ge 1$
 - (c) f(0) = 2, f(1) = 3, f(n) = f(n-1) 1 para n > 2
 - (d) f(0) = 1, f(1) = 2, f(n) = 2f(n-2) para $n \ge 2$
 - (e) f(0)=1, f(n)=3f(n-1) se n for impar e $n\geq 1$ e f(n)=9f(n-2) se n for par e $n\geq 2$
- 11. Dê uma definição recursiva da sequência $\{a_n\}, n=1,2,3,...$ se
 - (a) $a_n = 6n$.
 - (b) $a_n = 2n + 1$.
 - (c) $a_n = 10^n$.
 - (d) $a_n = 5$.
- 12. Seja F como uma função tal que F(n) é a soma dos primeiros n números inteiros positivos. Dê uma definição recursiva de F(n).
- 13. Dê uma definição recursiva de $P_m(n)$, o produto do número inteiro m pelo número inteiro não negativo n.

Nos exercícios a seguir, f_n é o n-ésimo número de Fibonacci.

- 14. Demonstre que $f_1 + f_3 + ... + f_{2n-1} = f_{2n}$ quando n é um número inteiro positivo.
- 15. Mostre que $f_0f_1+f_1f_2+...+f_{2n-1}f_{2n}=f_{2n}^2$ quando n é um número inteiro positivo.
- 16. Dê uma definição recursiva do conjunto dos números inteiros positivos que são multiplos de 5.
- 17. Dê uma definição recursiva do
 - (a) conjunto de números inteiros pares.
 - (b) conjunto de números inteiros positivos congruentes a 2 módulo 3.
 - (c) conjunto de números inteiros positivos não divisíveis por 5.
- 18. Use a indução estrutural para mostrar que $n(T) \ge 2h(T) + 1$, em que T é uma árvore binária completa, n(T) é igual ao número de vértices de T e h(T) é a altura de T.