Proof Checker Notes

Yu-Yang Lin

July 30, 2015

1 Syntax Grammar

(types)
$$\tau := bool \mid \tau \to \tau \mid nat \mid list \tau$$

(hypotheses) $A , B := \top \mid \bot \mid A \land B \mid A \lor B \mid A \supset B \mid \forall x : \tau . A \mid \exists x : \tau . A \mid t = t : \tau$
(terms) $e , t := x \mid tt \mid true \mid false \mid [\] \mid t :: t \mid zero \mid suc(t)$
(term context) $\psi := . \mid \psi, x : \tau$
 $\psi \vdash t : \tau$
 $\psi \vdash A prop$

2 Specification rules for terms and propositional hypotheses

Note: functions are included as term types, but not directly as term constructors. Instead, function terms are added into the term context (ψ) manually. This simplifies the checker since function type inference is not required.

2.1 Terms

Natural Numbers:

$$\frac{\psi \vdash \text{zero : nat}}{\psi \vdash \text{suc(t) : nat}} \quad \text{(nat-suc-n)}$$

Booleans:

$$\frac{}{\psi \vdash \mathsf{true} : \mathsf{bool}} \quad \mathsf{(bool\text{-}true)} \qquad \frac{}{\psi \vdash \mathsf{false} : \mathsf{bool}} \quad \mathsf{(bool\text{-}false)}$$

Lists:

$$\frac{\psi \vdash [\] : \text{list t}}{\psi \vdash [\] : \text{list t}} \quad \text{(list-nil)} \qquad \frac{\psi \vdash \mathsf{t}' : \mathsf{t}}{\psi \vdash \mathsf{t}' : \mathsf{t}'' : \text{list t}} \quad \text{(list-cons)}$$

Variables:

$$\frac{x:\tau\in\psi}{\psi\vdash x:\tau}\quad \text{(var)}$$

Application:

$$\frac{\psi \vdash t : \tau \to \tau' \qquad \psi \vdash t' : \tau}{\psi \vdash t \; t' : \tau'} \quad (app)$$

2.2 Propositions

Truth and Falsity Propositions:

$$\frac{}{\psi \vdash \top \text{ prop}} \quad (\top \text{-prop}) \qquad \qquad \frac{}{\psi \vdash \bot \text{ prop}} \quad (\bot \text{-prop})$$

Binary Relation Propositions:

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \land B \text{ prop}} \quad (\land\text{-prop})$$

$$\frac{\psi \vdash A \operatorname{prop} \qquad \psi \vdash B \operatorname{prop}}{\psi \vdash A \lor B \operatorname{prop}} \quad (\lor \operatorname{-prop})$$

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \supset B \text{ prop}} \quad (\supset \text{-prop})$$

$$\frac{\psi \vdash t: \tau \qquad \psi \vdash t': \tau}{\psi \vdash (t = t': \tau) \text{ prop}} \quad \text{(eq-prop)}$$

Quantifier Propositions:

$$\frac{\psi, x : \tau \vdash A \text{ prop}}{\psi \vdash \forall x : \tau. A \text{ prop}} \quad (\forall \text{-prop})$$

$$\frac{\psi, x : \tau \vdash A \text{ prop}}{\psi \vdash \exists x : \tau. \text{ A prop}} \quad (\exists \text{-prop})$$

3 Implementation rules for type inference and checking

3.1 Syntax grammar

(infer)
$$e := x \mid e \mid true \mid false \mid zero \mid suc(e)$$

(check) $v := v :: v \mid nil \mid e$

Type Inferece Rule:

$$\overset{-}{\psi}\vdash\overset{-}{t}\Rightarrow\overset{+}{\tau}$$

Type Checking Rule:

$$\bar{\psi} \vdash \bar{t} \Leftarrow \bar{\tau}$$

3.2 Term type inference

Variables:

$$\frac{x:\tau\in\psi}{\psi\vdash x\Rightarrow\tau}\quad \text{(var)}$$

Application:

$$\frac{\psi \vdash t \Rightarrow \tau \rightarrow \tau' \qquad \psi \vdash t' \Leftarrow \tau}{\psi \vdash t \ t' \Rightarrow \tau'} \quad (app)$$

Natural Numbers:

$$\frac{\psi \vdash \mathsf{zero} \Rightarrow \mathsf{nat}}{\psi \vdash \mathsf{suc}(\mathsf{t}) \Rightarrow \mathsf{nat}} \quad \text{(nat-suc-n)}$$

Booleans:

$$\frac{}{\psi \vdash \text{true} \Rightarrow \text{bool}}$$
 (bool-false) $\frac{}{\psi \vdash \text{false} \Rightarrow \text{bool}}$ (bool-false)

Term type checking

Lists:

$$\frac{\psi \vdash [] \Leftarrow \text{list t}}{\psi \vdash [] \Leftarrow \text{list t}} \quad \text{(list-nil)} \qquad \frac{\psi \vdash t' \Leftarrow t \qquad \psi \vdash t'' \Leftarrow \text{list t}}{\psi \vdash t' :: t'' \Leftarrow \text{list t}} \quad \text{(list-cons)}$$

Inference Case:

$$\frac{\psi \vdash t \Rightarrow \tau' \qquad \tau = \tau'}{\psi \vdash t \Leftarrow \tau} \quad (app)$$

3.4 Propositions type checking

Truth and Falsity Propositions:

$$\frac{}{\psi \vdash \top \text{ prop}} \quad (\top \text{-prop}) \qquad \frac{}{\psi \vdash \bot \text{ prop}} \quad (\bot \text{-prop})$$

Binary Relation Propositions:

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \land B \text{ prop}} \quad (\land \text{-prop})$$

$$\frac{\psi \vdash A \operatorname{prop} \qquad \psi \vdash B \operatorname{prop}}{\psi \vdash A \vee B \operatorname{prop}} \quad (\vee\operatorname{-prop})$$

$$\frac{\psi \vdash A \text{ prop} \qquad \psi \vdash B \text{ prop}}{\psi \vdash A \supset B \text{ prop}} \quad (\supset \text{-prop})$$

$$\frac{\psi \vdash t \Leftarrow \tau \qquad \psi \vdash t' \Leftarrow \tau}{\psi \vdash (t = t' \Leftarrow \tau) \text{ prop}} \quad \text{(eq-prop)}$$

Quantifier Propositions:

$$\frac{\psi, x \Leftarrow \tau \vdash A \text{ prop}}{\psi \vdash \forall x \Leftarrow \tau. A \text{ prop}} \quad (\forall \text{-prop})$$

$$\frac{\psi, x \Leftarrow \tau \vdash A \text{ prop}}{\psi \vdash \exists x \Leftarrow \tau. A \text{ prop}} \quad (\exists \text{-prop})$$

3.5 Function signatures

infer_term : $\psi \to {\mathsf t} \to {\mathsf \tau}$ option

check_term : $\psi \to t \to \tau \to unit option$ check_prop : $\psi \to A \to unit option$

val infer_term : ctx -> term -> tp option

val check_term : ctx -> term -> tp -> unit option

val check_prop : ctx -> prop -> unit option

4 Well-formedness of proofs

4.1 Syntax grammar

$$(proofs) \quad p \ , q \quad ::= \quad by \ H \\ \quad | \quad (p \ , q) \\ \quad | \quad let \ (H',H'') = H \ in \ p \\ \quad | \quad (p \ , q) \ either \\ \quad | \quad match \ [H] : (A \lor B) \ with \ (\\ \quad | \quad A \ [H'] : p \ -> C \\ \quad | \quad B \ [H''] : q \ -> C \)$$

$$(hypotheses \ context) \qquad \Gamma \quad ::= \quad \cdot \\ \quad | \quad \Gamma \ , H : A \\ \quad | \quad Assume \ A \ [H] \ , p$$

$$\psi; \Gamma \quad \vdash p : A \\ \quad \psi \quad \vdash \Gamma$$

4.2 Rules

Truth and Falsity:

$$\frac{}{\psi;\Gamma\vdash\top:C}\quad (\top R)\qquad \qquad \frac{}{\psi;\Gamma,H:\bot\vdash Absurd\ H:C}\quad (\bot L)$$

Conjunction:

$$\frac{\psi; \Gamma, H: A \land B, H': A, H'': B \vdash p: C}{\psi; \Gamma, H: A \land B \vdash let (H', H'') = H \text{ in } p: C} (\land L)$$

$$\frac{\psi;\Gamma\vdash p:A\qquad \psi;\Gamma\vdash q:B}{\psi;\Gamma\vdash (p,q):A\wedge B}\quad (\land R)$$

Disjunction:

$$\frac{\psi; \Gamma, H: A \vee B, H': A \vdash p: C \qquad \psi; \Gamma, H: A \vee B, H'': B \vdash q: C}{\psi; \Gamma, H: A \vee B \vdash match [H] \text{ with(A [H']: p | B [H'']: q): C}} (\lor L)$$

$$\frac{\psi; \Gamma \vdash p : A}{\psi; \Gamma \vdash \text{Left } p : A \lor B} \quad (\lor R_1)$$

$$\frac{\psi; \Gamma \vdash q : B}{\psi; \Gamma \vdash \text{Right } q : A \lor B} \quad (\lor R_2)$$

Implication:

$$\frac{\psi; \Gamma, H: A \supset B \vdash p: A \qquad \psi; \Gamma, H: A \supset B, H': B \vdash q: C}{\psi; \Gamma, H: A \supset B \vdash (p, B [H'] \text{ via } H, q): C} \quad (\supset L)$$

$$\frac{\psi; \Gamma, H: A \vdash p: B}{\psi; \Gamma \vdash (Assume A [H], p): A \supset B} \quad (\supset R)$$

Using hypotheses:

$$\psi; \Gamma, [H]: A \vdash by H: A$$
 (by)

$$\frac{\psi; \Gamma \vdash p : A}{\psi; \Gamma \vdash p \text{ Therefore A : A}} \quad \text{(therefore)}$$

4.3 Function signature

$$\texttt{check_proof} \; : \quad \psi \to \Gamma \to \; \mathsf{P} \; \to \; \mathsf{A} \; \to \; \mathsf{unit} \; \mathsf{option}$$

5 Quantifiers in proofs

5.1 Rules

Existentials:

$$\frac{\psi; \Gamma \vdash t : \tau \qquad \psi; \Gamma \vdash p : [x \mapsto t] A}{\psi; \Gamma \vdash \text{Choose } t; p : \exists x : \tau.A} \quad (\exists R)$$

$$\frac{\psi, y: \tau; \Gamma, H: \exists x: \tau.A, H': [x \mapsto y]A \vdash p: C}{\psi; \Gamma, H: \exists x: \tau. A \vdash let (y, H') = H \text{ in } p: C}$$
(\(\exists L\)

Universals:

$$\frac{\psi, y : \tau; \Gamma, \vdash p : [x \mapsto y] A}{\psi; \Gamma \vdash \text{Assume } y : \tau \cdot p : \forall x : \tau.A} \quad (\forall R)$$

$$\frac{\psi; \Gamma \vdash t : \tau \qquad \psi; \Gamma, H : \forall x : \tau . A, H' : [x \mapsto t] A \vdash p : C}{\psi; \Gamma, H : \forall x : \tau . A \vdash let H' = H \text{ with } t \text{ in } p : C} \quad (\forall L)$$

5.2 Substituting terms into variables

subs =
$$[x \mapsto z]$$

6 α-equivalence

6.1 Terms

Variables:
$$\frac{x \stackrel{\alpha}{=} x}{} (var \stackrel{\alpha}{=})$$

Booleans:
$$\frac{\alpha}{\text{true} \stackrel{\alpha}{=} \text{true}} \quad \text{(bool-true} \stackrel{\alpha}{=} \text{)} \qquad \frac{\alpha}{\text{false} \stackrel{\alpha}{=} \text{false}} \quad \text{(bool-false} \stackrel{\alpha}{=} \text{)}$$

Natural Numbers:

$$\frac{1}{\text{zero} \stackrel{\alpha}{=} \text{zero}} \quad \text{(nat-zero} \stackrel{\alpha}{=} \text{)} \qquad \frac{t \stackrel{\alpha}{=} t'}{\text{suc(t)} \stackrel{\alpha}{=} \text{suc(t')}} \quad \text{(nat-suc-n} \stackrel{\alpha}{=} \text{)}$$

Lists:

$$\frac{1}{\left[\right] \stackrel{\alpha}{=} \left[\right]} \quad \text{(list-nil} \stackrel{\alpha}{=} \text{)} \qquad \frac{e \stackrel{\alpha}{=} e' \quad v \stackrel{\alpha}{=} v'}{e::v \stackrel{\alpha}{=} e'::v'} \quad \text{(list-cons} \stackrel{\alpha}{=} \text{)}$$

Application:

$$\frac{e \stackrel{\alpha}{=} e' \qquad v \stackrel{\alpha}{=} v'}{e \stackrel{\alpha}{=} e' \stackrel{\alpha}{=} v'} \quad (var \stackrel{\alpha}{=})$$

6.2 Propositions

Truth and Falsity:

$$\frac{}{\top \stackrel{\alpha}{=} \top} \quad (\top \stackrel{\alpha}{=}) \qquad \frac{}{\perp \stackrel{\alpha}{=} \perp} \quad (\perp \stackrel{\alpha}{=})$$

Binary Relations:

$$\frac{A \stackrel{\alpha}{=} A' \qquad B \stackrel{\alpha}{=} B'}{A \wedge B \stackrel{\alpha}{=} A' \wedge B'} \quad (\wedge \stackrel{\alpha}{=})$$

$$\frac{A \stackrel{\alpha}{=} A' \qquad B \stackrel{\alpha}{=} B'}{A \vee B \stackrel{\alpha}{=} A' \vee B'} \quad (\vee \stackrel{\alpha}{=})$$

$$\frac{A \stackrel{\alpha}{=} A' \qquad B \stackrel{\alpha}{=} B'}{A \supset B \stackrel{\alpha}{=} A' \supset B'} \quad (\supset \stackrel{\alpha}{=})$$

Equality:

$$\frac{t_1 \stackrel{\alpha}{=} t_1' \qquad t_2 \stackrel{\alpha}{=} t_2' \qquad \tau \stackrel{\alpha}{=} \tau'}{(t_1 = t_2 : \tau) \stackrel{\alpha}{=} (t_1' = t_2' : \tau')} \quad (=\stackrel{\alpha}{=})$$

Quantifiers:

$$\frac{\mathsf{M}\,z\,.\,(x\,z)\,\mathsf{B} \stackrel{\alpha}{=} (x\,z)\,\mathsf{B}' \qquad \tau \stackrel{\alpha}{=} \tau'}{\exists x\,:\,\tau\,.\,\mathsf{B} \stackrel{\alpha}{=} \exists y\,:\,\tau'\,.\,\mathsf{B}'} \quad (\exists \stackrel{\alpha}{=})$$

$$\frac{\forall z . (x z) B \stackrel{\alpha}{=} (x z) B' \qquad \tau \stackrel{\alpha}{=} \tau'}{\forall x : \tau. B \stackrel{\alpha}{=} \forall y : \tau'. B'} \quad (\forall \stackrel{\alpha}{=})$$

6.3 Swapping variable names

$$swap = (x z)$$

val swap_term : var -> var -> term -> term
val swap_prop : var -> var -> prop -> prop

7 Induction in proofs

7.1 Rules through predicates

Natural Numbers:

$$\frac{\psi; \Gamma \vdash p : P(zero) \qquad \psi, n : nat ; \Gamma, H : P(n) \vdash q : P(suc(n))}{\psi; \Gamma \vdash (Induction on nat: case zero : p ; case suc(n) : [H], q) : (\forall m : nat . P(m))}$$
 (induction-nat)

Lists:

$$\frac{\psi; \Gamma \vdash p : P([]) \qquad \psi, x : \tau, xs : \text{list } \tau; \Gamma, H : P(xs) \vdash q : P(x :: xs)}{\psi; \Gamma \vdash (\text{Induction on list: case } [] : p ; \text{case } (x :: xs) : [H], q) : (\forall ys : \text{list } \tau . P(ys))}$$
 (induction-list)

Booleans:

$$\frac{\psi; \Gamma \vdash p : P(\text{ true }) \qquad \psi; \Gamma \vdash q : P(\text{ false })}{\psi; \Gamma \vdash (\text{Induction on bool: case true } : p ; \text{ case false } : q) : (\forall b : \text{bool } . P(b))}$$
 (induction-bool)

7.2 Rules through substitution

Natural Numbers:

$$\frac{\psi; \Gamma \vdash p : [m \mapsto \text{zero}] C \qquad \psi, n : \text{nat}; \Gamma, H : [m \mapsto \text{zero}] C \vdash q : [m \mapsto \text{suc}(n)] C}{\psi; \Gamma \vdash (\text{Ind-Nat: zero} : p ; \text{suc}(n) : [H], q) : (\forall m : \text{nat} . C)}$$
 (induction-nat)

Lists:

$$\frac{\psi; \Gamma \vdash p : [ys \mapsto []] C \qquad \psi, x : \tau, xs : \text{list } \tau; \Gamma, H : [ys \mapsto xs] C \vdash q : [ys \mapsto x :: xs] C}{\psi; \Gamma \vdash (\text{Ind-List: }[] : p ; (x :: xs) : [H], q) : (\forall ys : \text{list } \tau . C)}$$
 (induction-list)

Booleans:

$$\frac{\psi; \Gamma \vdash p : [b \mapsto \text{true}] C}{\psi; \Gamma \vdash (\text{Ind-Bool: true} : p ; \text{false} : q) : (\forall b : \text{bool} . C)}$$
 (induction-bool)

8 Equality in proofs

8.1 Abstract congruence closure [1, p. 4–7]

8.1.1 Definition

Rewrite-Rules:

D-rule:
$$f(c_0,...c_k) \to c$$
 where f is a term constructor and c_i are constants in K C -rule: $c \to d$ where c and d are constants in K

Sets:

$$D: \{D\text{-rule}\}$$

$$C: \{C\text{-rule}\}$$

$$E: \{(t=t): \tau\}$$

$$K: \{x \mid x \notin E\}$$

$$R: D \cup C$$

Closure Construction:

build_acc:
$$\frac{(\emptyset, E, \emptyset)}{(K, \emptyset, R)}$$
 where R is the abstract congruence closure (ACC) of E

8.1.2 Sate transition rules

Extension:
$$\frac{(K, E[t], R) \qquad t = f(c_0, ..., c_k) \qquad c_i \in K \land c \notin K}{(K \cup \{c\}, E[c], R \cup \{t \rightarrow c : D\})}$$
 (Ext)

Simplification:
$$\frac{(K, E[t], R \cup \{t \to c : D\})}{(K, E[c], R \cup \{t \to c : D\})}$$
 (Sim)

Orientation1:
$$\frac{(K \cup \{c\}, E \cup \{t = c\}, R\})}{(K \cup \{c\}, E, R \cup \{t \rightarrow c : D\})}$$
 (Ori1)

Orientation2:
$$\frac{(K \cup \{c,d\}, E \cup \{c=d\}, R\}) \qquad c < d}{(K \cup \{c,d\}, E, R \cup \{c \rightarrow d : C\})}$$
 (Ori2)

Orientation3:
$$\frac{(K \cup \{c,d\}, E \cup \{c=d\}, R\}) \qquad d < c}{(K \cup \{c,d\}, E, R \cup \{d \rightarrow c : C\})}$$
 (Ori2)

Deletion:
$$\frac{(K, E \cup \{t = t\}, R\})}{(K, E, R\})}$$
 (Del)

Deduction1:
$$\frac{(K, E, R \cup \{t \to c : D, t \to d : D\})}{(K, E \cup \{c = d\}, R \cup \{t \to d : D\})}$$
(Ded1)

Deduction2:
$$\frac{(K, E, R \cup \{c \rightarrow c' : C, c \rightarrow d : C\})}{(K, E \cup \{c' = d\}, R \cup \{c \rightarrow d : C\})}$$
(Ded2)

Collapse:
$$\frac{(K, E, R \cup \{s[c] \rightarrow c' : D, c \rightarrow d : C\})}{(K, E, R \cup \{s[d] \rightarrow c' : D, c \rightarrow d : C\})}$$
(Col)

Composition:
$$\frac{(K, E, R \cup \{t \to c : D, c \to d : C\})}{(K, E, R \cup \{t \to d : D, c \to d : C\})}$$
(Com)

8.2 Equality through congruence

$$\frac{\psi ; \Gamma \vdash H_i : (t_i = t'_i) : \tau_i \qquad \forall i \in \{1...n\} . \overrightarrow{t_i = t'_i} \vDash t = t'}{\psi ; \Gamma \vdash \text{By Equality (} H_0, ..., H_n) : (t = t' : \tau)}$$
 (eq)

9 Spine application and hypotheses labelling

9.1 Rules for proofs

$$\begin{array}{lll} (\text{simple-proofs}) & \text{spf} ::= & [H] \text{ with s} \mid [H] \mid \text{Left spf} \mid \text{Right spf} \mid (\text{spf} \,, \text{spf}) \\ & (\text{proofs}) & p ::= & \dots \mid [H] \text{ with s} \mid \text{We know } [H] : \text{A because spf} \,, p \\ & (\text{spines}) & s ::= & \cdot \mid [H] \,, \text{s} \mid \text{t} \,, s \\ & & \text{check_simple_pf} & :: & \text{spf} \rightarrow \text{unit option} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

9.2 Rules for spline application

Rules:

$$\frac{\psi; \Gamma \vdash . : A \gg A}{\psi; \Gamma \vdash [H] : A \vdash s : B \gg C} \qquad (id\text{-spine-app})$$

$$\frac{\psi; \Gamma, [H] : A \vdash s : B \gg C}{\psi; \Gamma \vdash [H], s : A \supset B \gg C} \qquad (\supset\text{-spine-app})$$

$$\frac{\psi \vdash t : \tau \qquad \psi; \Gamma \vdash s : [t \mapsto x] \ A \gg C}{\psi; \Gamma \vdash t, s : \forall x : \tau . A \gg C} \qquad (\forall\text{-spine-app})$$

Function signatures:

apply_spine ::
$$\psi \to \Gamma \to s \to A \to B$$
 option apply_spine :: $ctx \to hyps \to spine \to prop \to prop$ option

References

[1] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure. *J. Autom. Reasoning*, 31(2):129–168, 2003.