Logistic Regression Part 3

Dr Mehrdad Ghaziasgar

Senior Lecturer in Computer Science Department of Computer Science University of the Western Cape mghaziasgar@uwc.ac.za

Content

- Part 1:
 - Classification With Logistic Regression
 - Model Evaluation For Classification
- Part 2:
 - Overfitting and Underfitting
- Part 3:
 - Practical Issues With Classification

Content - Part 3

- Practical Issues
 - Introduction
 - · Polynomial Degree?
 - How Much to Regularize?
 - Training Set Size?

Practical Issues

- Overfitting and Underfitting
 - Introduction
 Polynomial Degree?
 - How Much to Regularize?
 - Training Set Size?

- In the previous part we discovered that the degree of polynomial that we use can affect accuracy:
 - Too low: the model will have high bias: too simple
 - Too high: the model will have high variance: too complex and "hugging" the data

- In the previous part we discovered that the degree of polynomial that we use can affect accuracy:
 - Too low: the model will have high bias: too simple
 - Too high: the model will have high variance: too complex and "hugging" the data
- We looked at bias and variance:
 - Bias: the model is too simple
 - The model doesn't fit either the train or test data well
 - Variance: the model is too complex
 - The model fits the train data VERY well but doesn't fit the test data well
 - In both cases: the model fails to predict the test data well (which is what we're interested in in the first place)

- We spoke about regularization using the parameter λ
 - Setting λ too high: high regularization all weights are reduced to almost zero high bias
- Setting λ too low (zero): no regularization model remains complex high variance
- Question is: how can we systematically / practically determine:
 - The best polynomial degree?

- We spoke about regularization using the parameter λ • Setting λ too high: high regularization - all weights are reduced to almost zero - high bias
- Setting λ too low (zero): no regularization model remains complex high variance
- Question is: how can we systematically / practically determine:

- We spoke about regularization using the parameter λ
 - Setting λ too high: high regularization all weights are reduced to almost zero high bias
- Setting λ too low (zero): no regularization model remains complex high variance
- Question is: how can we systematically / practically determine:
 - The best polynomial degree?
 - How much to regularize?
- ALL of these issues have to do with:
 - Diagnosing Bias vs Variance
 - Error on the train set vs Error on the CV/test set
- Also: how much data should we train on?
 - Preferable to use the least amount of data that helps: how much helps??
 - Is more data always better?

Practical IssuesPolynomial Degree?

- Overfitting and Underfitting
 - IntroductionPolynomial Degree?
 - How Much to Regularize?
 - Training Set Size?

Determining Polynomial Degree

- We split the data into Train-CV-Test sets
- ullet For each polynomial of degree ${\it d}$ we're comparing:
 - We train a hypothesis $h_{\theta}(x)$ of degree d on the Train set e.g.
 - for d = 1, $h_{\theta}(x) = \theta_0 + \theta_1 x$,
 - for d = 2, $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
 - etc.
 - Training gives us the best heta for $h_{ heta}(x)$ on the Train set (that minimizes the cost)
 - We pass in the (same) Train set to the cost function $J(\theta)$ to get the training error J_{train}
 - We pass in the CV set to the cost function J(heta) to get the CV error $J_{ ext{CV}}$
 - We plot these values on a graph (we'll see it later)
- ullet Pick the model with d that produces the best (lowest) $J_{
 m CV}$
- ullet Compute the error of this model on the Test set J_{test} which is taken as the generalization performance of the selected model

Determining Polynomial Degree

- E.g.

$$a = 1$$

10. $\boldsymbol{d} = 10 \longrightarrow$

$$\rightarrow$$

Assume that d = 4 gets the lowest J_{CV}

performance of the selected model

$$\min_{\boldsymbol{\theta}} \boldsymbol{J}(\boldsymbol{\theta})$$
 $\min_{\boldsymbol{\theta}} \boldsymbol{J}(\boldsymbol{\theta})$

1.
$$d = 1$$
 \rightarrow $\min_{\theta} J(\theta)$ to get $\theta^{(1)}$ \rightarrow plot $J_{\text{train}}(\theta^{(1)})$, $J_{\text{cv}}(\theta^{(1)})$
2. $d = 2$ \rightarrow $\min_{\theta} J(\theta)$ to get $\theta^{(2)}$ \rightarrow plot $J_{\text{train}}(\theta^{(2)})$, $J_{\text{cv}}(\theta^{(2)})$

Compute the error of this model on the Test set $I_{test}(\theta^{(4)})$ which is taken as the generalization

$$\rightarrow$$

$$\rightarrow$$

 $\min J(\theta) \text{ to get } \theta^{(10)} \longrightarrow \text{plot } J_{\text{train}}(\theta^{(10)}), J_{\text{CV}}(\theta^{(10)})$

$$\rightarrow$$

$$\rightarrow$$

Determining Polynomial Degree

• The plot of the two errors $J_{ ext{train}}$ and $J_{ ext{cv}}$ versus the parameter we're optimizing i.e. d:

- **Determining Polynomial Degree** Bias:
- $J_{\text{train}} pprox J_{\text{CV}}$ and both errors are large

- Variance:
- $J_{\rm train} \approx 0$ and $J_{\rm cv}$ is large so
- $J_{\rm cv} \gg J_{\rm train}$

Practical Issues

How Much to Regularize?

- Overfitting and Underfitting
 - Introduction
 Polynomial Degree?
 - How Much to Regularize?
 - Training Set Size?

- We're using a high-order polynomial e.g. $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$
- We split the data into Train-CV-Test sets
- For a range of λ values that we're comparing e.g. 0, 0.02, 0.04, 0.08 ... 5.12, 10.24:
 - We train the regularized hypothesis $h_{ heta}(x)$ using λ on the Train set e.g.
 - Training gives us the best heta for $h_{ heta}(x)$ on the Train set (that minimizes the cost)
 - We pass in the (same) Train set to the cost function J(heta) to get the training error $J_{ ext{train}}$
 - We pass in the CV set to the cost function J(heta) to get the CV error $J_{ ext{CV}}$
 - We plot these values on a graph (we'll see it later)
- Pick the model with λ that produces the best (lowest) $J_{
 m CV}$
- ullet Compute the error of this model on the Test set J_{test} which is taken as the generalization performance of the selected model

- E.g.
- 1. $\lambda = 0$ $\rightarrow \min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \text{ to get } \boldsymbol{\theta}^{(1)}$ $\rightarrow \text{plot } J_{\text{train}}(\boldsymbol{\theta}^{(1)}), J_{\text{CV}}(\boldsymbol{\theta}^{(1)})$ 2. $\lambda = 0.02$ $\rightarrow \min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \text{ to get } \boldsymbol{\theta}^{(2)}$ $\rightarrow \text{plot } J_{\text{train}}(\boldsymbol{\theta}^{(2)}), J_{\text{CV}}(\boldsymbol{\theta}^{(2)})$
- 2. $\lambda = 0.02$ $\rightarrow \min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \text{ to get } \boldsymbol{\theta}^{(2)}$ $\rightarrow \text{plot } J_{\text{train}}(\boldsymbol{\theta}^{(2)}), J_{\text{cv}}(\boldsymbol{\theta}^{(2)})$...

 6. $\lambda = 0.64$ $\rightarrow \min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \text{ to get } \boldsymbol{\theta}^{(6)}$ $\rightarrow \text{plot } J_{\text{train}}(\boldsymbol{\theta}^{(6)}), J_{\text{cv}}(\boldsymbol{\theta}^{(6)})$
 - 10. $\lambda = 10.24$ \rightarrow $\min_{\theta} J(\theta)$ to get $\theta^{(10)}$ \rightarrow plot $J_{\text{train}}(\theta^{(10)}), J_{\text{cv}}(\theta^{(10)})$
 - Assume that $\lambda = 0.64$ gets the lowest $J_{\rm CV}$
 - Compute the error of this model on the Test set $J_{\text{test}}(\theta^{(6)})$ which is taken as the generalization performance of the selected model
 - Generally good idea to increase λ by doubling/tripling it everytime

• The plot of the two errors J_{train} and J_{cv} versus the parameter we're optimizing i.e. λ :

train

("just right")

- Bias:
- $J_{\text{train}} pprox J_{\text{CV}}$ and both errors are large

Error J

 $J_{\text{train}} \approx 0$ J_{cv} is large $J_{\text{cv}} \gg J_{\text{train}}$

Jtrain

(variance)

Variance:

(bias)

 $J_{\rm train} \approx 0$ and $J_{\rm cv}$ is large so

train

 $J_{\rm cv} \gg J_{\rm train}$

 $Soh_{\theta}(x) \approx \theta_0$

Practical Issues

Training Set Size?

- Overfitting and Underfitting
 - Introduction
 Polynomial Degree?
 - How Much to Regularize?
 - Training Set Size?

Determining How Much Training Data To Use

- In this case, we've got a specific model (possible with a given regularization value) that we want to analyse; we're going to vary the number of samples we use for training $m_{\rm train}$ i.e. Train set size
- For m_{train} ranging from (some appropriate minimum) to (some maximum) in steps of (reasonable step size):
 - We train a hypothesis $h_{ heta}(x)$ using only $m_{ ext{train}}$ examples in the Train set
 - Training gives us the best θ for $h_{\theta}(x)$ on the Train set (that minimizes the cost) We pass in the (same) Train set (same m_{train}) to the cost function $J(\theta)$ to get the
 - training error J_{train} • We pass in the entire CV set to the cost function $J(\theta)$ to get the CV error J_{CV}
 - · We plot these values on a graph (we'll see it later)
- Determine if the model has high Bias or high Variance using the graph (later):
 - If it has high Bias: try adding more features e.g. new features, higher-order terms, etc.
 - If it has high Variance: try:
 - Regularizing
 - Collecting more training data

Determining How Much Training Data To Use

• The plot of the two errors J_{train} and J_{CV} versus the parameter we're optimizing i.e. m_{train} :

Determining How Much Training Data To Use

• The plot of the two errors J_{train} and J_{cv} versus the parameter we're optimizing i.e. m_{train} :

- This kind of a plot is called a "learning curve"
- It gives some indication of how the model is "learning" as training examples are increasing
- In general, this is what a learning curve looks like
- If J_{CV} is low, then the model performs well: call it a day. If not:
- The learning curve will take a specific shape depending on whether the model has bias or variance (next slides)
- · We can then react accordingly

Determining How Much Training Data To Use - High Bias

- If the model suffers from high bias, what will the learning curve will look like?
- E.g. Imagine using a straight line $h_{ heta}(x)= heta_0+ heta_1x$ to fit non-linear data as below

Determining How Much Training Data To Use - High Bias

- If the model suffers from high bias, what will the learning curve will look like?
- E.g. Imagine using a straight line $h_{\theta}(x) = \theta_0 + \theta_1 x$ to fit non-linear data as below

- A high bias model is about the worst you can have
- In this case: no amount of data will help
 - Don't waste time/money collecting more data
- The model is just too simple
- Only one solution: back to the drawing board to make the model more complex
 - Add new features
 - · Add higher-order features
 - · Add combinations of features

Determining How Much Training Data To Use - High Variance

- If the model suffers from high variance, what will the learning curve will look like?
- E.g. Imagine using an extremely high-order polynomial $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_{50} x^{50}$ to fit data as below!

Determining How Much Training Data To Use - High Variance

- If the model suffers from high variance, what will the learning curve will look like?
- E.g. Imagine using an extremely high-order polynomial $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_{50} x^{50}$ to fit data as below!
 - · A high variance model is can be worked on
 - · In this case: more data can help
 - Extrapolating the curves to the right will bring $J_{
 m CV}$ lower and lower
 - Before collecting more data, consider first:
 - Regularizing the model (as seen before)
 - If it doesn't work: try reducing the polynomial order (as seen before)
 - If those don't work: try using/collecting more data

THE END

Of Logistic Regression