

April 2007

HCPL-3700 AC/DC to Logic Interface Optocoupler

Features

- AC or DC input
- Programmable sense voltage
- Logic level compatibility
- Threshold guaranteed over temperature (0°C to 70°C)
- Optoplanar[™] construction for high common mode immunity
- UL recognized (file # E90700)
- VDE certified ordering option 'V', e.g., HCPL3700V

Applications

- Low voltage detection
- 5 V to 240 V AC/DC voltage sensing
- Relay contact monitor
- Current sensing
- Microprocessor Interface
- Industrial controls

Description

The HCPL-3700 voltage/current threshold detection optocoupler consists of an AlGaAs LED connected to a threshold sensing input buffer IC which are optically coupled to a high gain darlington output. The input buffer chip is capable of controlling threshold levels over a wide range of input voltages with a single resistor. The output is TTL and CMOS compatible.

Schematic

Package

TRUTH TABLE (Positive Logic)

Input	Output
Н	L
L	Н

A 0.1 μF bypass capacitor must be connected between pins 8 and 5.

Absolute Maximum Ratings (No derating required up to 70°C)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Value	Units	
T _{STG}	Storage Temperat	ure	-55 to +125	°C
T _{OPR}	Operating Temper	ature	-40 to +85	°C
T _{SOL}	Lead Solder Temp	perature	260 for 10 sec	°C
EMITTER				
I _{IN}	Input Current	Average	50 (Max.)	mA
		Surge, 3ms, 120Hz Pulse Rate	140 (Max.)	
		Transient, 10µs, 120Hz Pulse Rate	500 (Max.)	
V _{IN}	Input Voltage (Pins 2-3)		-0.5 (Max.)	V
P _{IN}	Input Power Dissipation ⁽¹⁾		230 (Max.)	mW
P _T	Total Package Pov	Total Package Power Dissipation ⁽²⁾		mW
DETECTOR	'			
Io	Output Current (Average) ⁽³⁾		30 (Max.)	mA
V _{CC}	Supply Voltage (Pins 8-5)		-0.5 to 20	V
Vo	Output Voltage (Pins 6-5)		-0.5 to 20	V
Po	Output Power Dissipation ⁽⁴⁾		210 (Max.)	mW

Notes:

- 1. Derate linearly above 70°C free-air temperature at a rate of 1.8 mW/°C.
- 2. Derate linearly above 70°C free-air temperature at a rate of 2.5 mW/°C.
- 3. Derate linearly above 70°C free-air temperature at a rate of 0.6 mA/°C.
- 4. Derate linearly above 70°C free-air temperature at a rate of 1.9 mW/°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	V _{CC} Supply Voltage		18	V
T _A	Operating Temperature	0	70	°C
f	Operating Frequency	0	4	kHz

Electrical Characteristics (T_A = 0°C to 70°C Unless otherwise specified)

Symbol	Parame	ter	Test Conditions	Min.	Тур.	Max.	Unit
I _{TH+}	Input Threshold Current		$V_{IN} = V_{TH+}, V_{CC} = 4.5 \text{ V}$	1.96	2.4	3.11	mA
I _{TH-}	1		$V_O = 0.4 \text{ V, } I_O \ge 4.2 \text{mA}^{(5)}$	1.00	1.2	1.62	mA
V_{TH+}	Input Threshold Voltage	DC (Pins 2,3)	$V_{IN} = V_2 - V_3$ (Pins 1 & 4 Open) $V_{CC} = 4.5$ V, $V_O = 0.4$ V ⁽⁵⁾ $I_O \ge 4.2$ mA	3.35	3.8	4.05	V
V _{TH-}			$V_{IN} = V_2 - V_3$ (Pins 1 & 4 Open) $V_{CC} = 4.5$ V, $V_O = 2.4$ V ⁽⁵⁾ $I_O \ge 100\mu A$	2.01	2.5	2.86	V
V _{TH+}		AC (Pins 1,4)	$ V_{IN} = V_1 - V_4 $ (Pins 2 & 3 Open) $V_{CC} = 4.5 \text{ V}, V_O = 0.4 \text{ V}^{(5)}$ $I_O \ge 4.2 \text{ mA}$	4.23	5.0	5.50	V
V _{TH-}			$\begin{aligned} & V_{IN} = V_1 - V_4 \text{ (Pins 2 \& 3 Open)} \\ & V_{CC} = 4.5 \text{ V}, V_O = 2.4 \text{ V}^{(5)} \\ & I_O \leq 100 \mu A \end{aligned}$	2.87	3.7	4.20	V
I _{HYS}	Hysteresis		$I_{HYS} = I_{TH+} - I_{TH-}$		1.2		mA
V _{HYS}			$V_{HYS} = V_{TH+} - V_{TH-}$		1.3		V
V _{IHC1}	Input Clamp Voltage		$V_{IHC1} = V_2 - V_3$, $V_3 = GND$ $I_{IN} = 10$ mA, Pins 1 & 4 connected to Pin 3	5.4	6.3	6.6	V
V _{IHC2}			$V_{IHC2} = V_1 - V_4 , I_{IN} = 10mA$ (Pins 2 & 3 Open)	6.1	7.0	7.3	V
V _{IHC3}			V _{IHC3} = V ₂ - V ₃ , V ₃ = GND, I _{IN} = 15mA (Pins 1 & 4 Open)		12.5	13.4	V
V _{ILC}			$V_{ILC} = V_2 - V_3, V_3 = GND,$ $I_{IN} = -10mA$		-0.75		V
I _{IN}	Input Current		$V_{IN} = V_2 - V_3 = 5.0V$ (Pins 1 & 4 Open)	3.0	3.7	4.4	mA
V _{D1,2}	Bridge Diode		I _{IN} = 3mA		0.65		V
V _{D3,4}	Forward Voltage		I _{IN} = 3mA		0.65		V
V _{OL}	Logic LOW Output Voltage		$V_{CC} = 4.5 \text{ V}, I_{OL} = 4.2 \text{mA}^{(5)}$		0.04	0.4	V
I _{OH}	Logic HIGH Output Current		$V_{OH} = V_{CC} = 18V^{(5)}$			100	μΑ
I _{CCL}	Logic LOW Supply Current		$V_2 - V_3 = 5.0V, V_O = Open, V_{CC} = 5V$		1.0	4	mA
I _{CCH}	Logic HIGH Supply Current		V _{CC} = 18V, V _O = Open		0.01	4	μΑ
C _{IN}	Input Capacitance		f = 1MHz, V _{IN} = 0V (Pins 2 & 3, Pins 1 & 4 Open)		50		pF

Note:

5. Logic LOW output level at pin 6 occurs when $V_{IN} \ge V_{TH+}$ and when $V_{IN} > V_{TH-}$ once V_{IN} exceeds V_{TH+} . Logic HIGH output level at pin 6 occurs when $V_{IN} \le V_{TH-}$ and when $V_{IN} < V_{TH+}$ once V_{IN} decreases below V_{TH-} .

Switching Characteristics ($T_A = 25$ °C, $V_{CC} = 5$ V Unless otherwise specified)

Symbol	AC Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
T _{PHL}	Propagation Delay Time (to Output Low Level)	$R_L = 4.7 k\Omega, C_L = 30 pF^{(6)}$		6.0	15	μs
T _{PLH}	Propagation Delay Time (to Output High Level)	$R_L = 4.7 k\Omega, C_L = 30 pF^{(6)}$		25.0	40	μs
t _r	Output Rise Time (10-90%)	$R_L = 4.7k\Omega$, $C_L = 30pF$		45		μs
t _f	Output Fall Time (90-10%)	$R_L = 4.7k\Omega$, $C_L = 30pF$		0.5		μs
ICM _H I	Common Mode Transient Immunity (at Output High Level)	$ \begin{vmatrix} I_{IN} = 0 \text{ mA, } R_L = 4.7 k\Omega, \\ V_{O \text{ min}} = 2.0 \text{ V, } V_{CM} = 1400 V^{(7)(8)} \end{vmatrix} $		4000		V/µs
ICM _L I	Common Mode Transient Immunity (at Output Low Level)	$egin{aligned} I_{N} = 3.11 \text{mA}, \ R_{L} = 4.7 \text{k}\Omega, \ V_{O \ max} = 0.8 \text{V}, \ V_{CM} = 140 \text{V}^{(7)(8)} \end{aligned}$		600		V/µs

Package Characteristics (T_A = 0°C to 70°C Unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Withstand Insulation Voltage	$\begin{aligned} & \text{Relative humidity} < 50\%, \\ & T_A = 25^{\circ}\text{C}, \ t = 1 \ \text{min}, \\ & I_{I\text{-O}} \leq 2\mu A^{(9)(10)} \end{aligned}$	2500			V _{RMS}
R _{I-O}	Resistance (input to output)	$V_{IO} = 500 Vdc^{(9)}$		10 ¹²		Ω
C _{I-O}	Capacitance (input to output)	f = 1MHz, V _{IO} = 0Vdc		0.6		pF

Notes:

- T_{PHL} propagation delay is measured from the 2.5V level of the leading edge of a 5.0V input pulse (1µs rise time) to the 1.5 V level on the leading edge of the output pulse. T_{PLH} propagation delay is measured on the trailing edges of the input and output pulse. (Refer to Fig. 9)
- 7. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0$ V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8$ V). Refer to Fig. 10.
- 8. In applications where dV_{cm}/dt may exceed 50,000 V/ μ s (Such as static discharge), a series resistor, R_{CC} , should be included to protect the detector chip from destructive surge currents. The recommended value for R_{CC} is 240V per volt of allowable drop in V_{CC} (between pin 8 and V_{CC}) with a minimum value of 240 Ω .
- 9. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- The 2500 V_{RMS}/1 min. capability is validated by a 3.0 kV_{RMS}/1 sec. dielectric voltage withstand test.
- 11. AC voltage is instantaneous voltage for V_{TH+} & V_{TH-} .
- 12. All typicals at $T_A = 25$ °C, $V_{CC} = 5V$ unless otherwise specified.

Typical Performance Curves

Fig. 1 Logic Low Supply Current vs. Operating Supply Voltage

Fig. 2 Input Current vs. Input Voltage

Fig. 3 Input Current/Low Level Output Voltage

Fig. 4 Current Threshold/Voltage Threshold

Fig. 5 Propagation Delay vs. Temperature

Fig. 6 Rise and Fall Time vs. Temperature

Fig. 7 Logic High Supply Current vs. Temperature

Fig. 8 External Threshold Characteristics V+/V- vs. Rx

Fig. 9. Switching Test Circuit

Fig. 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms

Package Dimensions

Through Hole

0.4" Lead Spacing

Surface Mount

Recommended Pad Layout for Surface Mount Leadforms

Note:

All dimensions are in inches (millimeters)

Ordering Information

Option	Example Part Number	Description
No Suffix	HCPL3700	Shipped in Tubes
S	HCPL3700S	Surface Mount Lead Bend
SD	HCPL3700SD	Surface Mount; Tape and Reel
W	HCPL3700W	0.4" Lead Spacing
V	HCPL3700V	VDE0884
WV	HCPL3700WV	VDE0884; 0.4" Lead Spacing
SV	HCPL3700SV	VDE0884; Surface Mount
SDV	HCPL3700SDV	VDE0884; Surface Mount; Tape and Reel

Marking Information

Definiti	Definitions		
1	Fairchild logo		
2	Device number		
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)		
4	Two digit year code, e.g., '07'		
5	Two digit work week ranging from '01' to '53'		
6	Assembly package code		

Carrier Tape Specifications

Reflow Profile

- Peak reflow temperature: 225C (package surface temperature)
 Time of temperature higher than 183C for 60–150 seconds
 One time soldering reflow is recommended

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® HiSeC™ PowerSaver™ TinyBoost™ Across the board. Around the world.™ PowerTrench® i-Lo™ TinyBuck™ ActiveArray[™] ImpliedDisconnect™ Programmable Active Droop™ TinyLogic[®] TINYOPTO™ Bottomless™ IntelliMAX™ **OFET** Build it Now™ QS™ TinyPower™ ISOPLANAR™ QT Optoelectronics™ CoolFET™ MICROCOUPLER™ TinyWire™ CROSSVOLT™ Quiet Series™ TruTranslation™ MicroPak™ $\mathsf{CTL^{\mathsf{TM}}}$ RapidConfigure™ MICROWIRE™ μSerDes™ Current Transfer Logic™ RapidConnect™ . UHC® Motion-SPM™ DOME™ MSX™ ScalarPump™ UniFET™ E²CMOS™ MSXPro™ SMART START™ VCX™ EcoSPARK® SPM[®] Wire™ OCX^{TM}

EnSigna™ STEALTH™ OCXPro™ FACT Quiet Series™ OPTOLOGIC® SuperFET™ FACT[®] OPTOPLANAR® SuperSOT™3 FAST® $PACMAN^{TM}$ SuperSOT™6 FASTr™ PDP-SPM™ SuperSOT™8 FPS™ РОР™ SyncFET™ FRFET® Power220® $\mathsf{TCM}^{\mathsf{TM}}$

GlobalOptoisolator™ Power247[®] The Power Franchise[®]

GTO™ PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I25