Architektura Systemów komputerowych Procesor Intel 8086

Wykonanie: Kamila Marcinek nr albumu: 13731

Spis treści

1.	Założenia projektowe	1
	Procesor Intel 8086	
	Polecenia symulowane	3
4	Projekt	2

1. Założenia projektowe

Projekt zakłada przygotowanie symulatora rejestrów procesora Intel 8086.

Projekt zawiera:

- Symulację rozkazu MOV dla rejestrów AX, BX, CX, DX
- Symulację rozkazu XCHG dla rejestrów AX, BX, CX, DX

Języki programowania wykorzystane w projekcie:

- HTML
- CSS
- JavaScript

Wykorzystane technologie:

Bootstrap 5.2.0(beta-1)

2. Procesor Intel 8086

Procesor Intel 8086 jest 16-bitowymm mikroprocesorem. Wprowadzony został na rynek w 1978 roku przez firmę Intel w następstwie za 8-bitowego procesora 8080/8085. Procesor został wzbogacony o nowe rozwiązania takie jak:

- Rozszerzenie możliwości adresowania operandów
- Wprowadzenie segmentacji obszaru pamięci
- Mechanizmy dla pracy wieloprocesowej

Mikroprocesor składa się z dwóch w większości niezależnie pracujących części:

- Execution Unit (EU) układ wykonawczy
- Bus Interface Unit (BIU) układ sterowania magistralami

Do zadań układu wykonawczego należą dekodowanie oraz wykonywanie kolejnych rozkazów za pomocą jednostki arytmetyczno-logicznej ALU, rejestru znaczników, rejestrów arytmetycznych ogólnego przeznaczenia oraz rejestrów roboczych. Układ EU komunikuje się za pomocą układu sterującego magistralami

W zależności od sposobu wysterowania mikroprocesor 8086 może pracować w trybach:

- minimalnym przewidzianym do pracy jednoprocesorowych
- maksymalnym przewidzianym do pracy wieloprocesorowych.

W zależności od rodzaju rozkazu mogą wystąpić maksymalnie cztery cykle

- pobranie rozkaz zostaje pobrany z pamięci operacyjnej do procesora,
- odczyt obliczony zostaje adres pobrania danych, a następnie argument jest odczytywany i wprowadzany do procesora
- wykonanie wykonanie operacji
- zapis obliczony zostaje adres i wykonywany jest zapis do pamięci

Procesor posiada 4 rejestry ogólnego przeznaczenia:

- AX akumulator
- BX rejestr bazowy
- CX rejestr zliczający
- DX rejestr danych

Procesor posiada 4 rejestry wskaźnikowo-indeksowe:

- SP wskaźnik stosu
- BP wskaźnik bazy
- SI rejestr indeksowy źródła
- DI rejestr indeksowy przeznaczenia

Procesor posiada 4 rejestry segmentowe:

- CS rejestr segmentowy programu
- DS rejestr segmentowy danych
- ES rejestr segmentowy dodatkowy
- SS rejestr segmentowy stosu

Wskaźnik rozkazów – rejestr IP, łącznie z rejestrem CS adresuje rozkazy do wykonania. IP wskazuje adres względem początku segmentu programu (offset).

W mikroprocesorze istnieje wiele możliwości adresowania argumentów, wymienionych w rozkazach. Argumenty można umieszczać w samych rozkazach, w pamięci lub urządzeniach I/O.

Sposoby adresowania pamięci w procesorze Intel 8086:

- bezpośrednie wykorzystywane przy prostych operacjach przemieszczenia
- pośrednie wykorzystuje jeden indeks bazowy i (lub) jeden z rejestrów indeksowych

3. Polecenia symulowane

MOV

przeznaczony do przesyłania słów lub bajtów w operacjach typu rejestr-pamięć z (do) dowolnych rejestrów. Rozkaz ten może też przesyłać do pamięci dane określone w trybie prostym bez pośrednictwa rejestru.

XCHG

służy do wymiany zawartości rejestrów i pamięci. Argumentem rozkazu nie mogą być rejestry segmentowe.

4. Projekt

Projekt został udostępniony pod adresem: https://karmelova.github.io/Projekt_Architektura/

Strona jest responsywna i został utworzony w zamyśle mobile-first. Poniżej załączam zrzuty ekranów z urządzeń.

Wersja mobilna (Samsung Galaxy S9 Plus):

Wersja desktop:

Architektura plików projektu:

Projekt Architektura/

- src/
 - o index.html główny plik html
 - o css/
 - style.css plik zawierający kaskadowe arkusze stylów
 - o js/
- scripts.js plik zawierający skrypty JavaScript
- index.html plik służący tylko do przekierowania na właściwą stronę