LA2 10

KYB

Thrn, it's a Fact mathrnfact@gmail.com

November 20, 2020

Overview

Ch10. Analysis in vector spaces 10.2 Infinite-dimensional vector spaces

Infinite-dimensional vector spaces

Recall

ightharpoonup The set of all polynomials $\mathcal P$ is infinite-dimensional.

In this chapter, we will construct another infinite-dimensional vector spaces.

Definition

Let l^2 be the set of all infinite sequences $\{x_i\}_{i=1}^{\infty}$ of \mathbb{R} such that

$$\sum_{i=1}^{\infty} x_i^2 < \infty.$$

Wirte $x = \{x_i\}$.

Goal

We want to show l^2 is a vector space. The scalar multiplication is well-defined by $\alpha \cdot x = \{\alpha x_i\}$ because

$$\sum_{i=1}^{\infty} (\alpha x_i)^2 = \alpha^2 \left(\sum_{i=1}^{\infty} x_i^2 \right) < \infty.$$

But the addition is not easy.

Lemma (435)

Let a and b be two real numbers. Then

$$|2ab| \le a^2 + b^2.$$

Theorem (436)

For $x, y \in l^2$, define $x + y = \{x_i + y_i\}$. Then l^2 is a vector space over \mathbb{R} .

Innder product on l^2

We can define an inner produut on l^2 by

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i,$$

and a norm

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Theorem (437)

Let X be a vector space over \mathbb{R} , and let $\|\cdot\|$ be a norm on X. Then $\|\cdot\|$ is a continuous function.

Lemma (438)

For any positive integer n, the subset $\{e_1, e_2, \cdots, e_n\}$ of l^2 is linearly independent.

Corollary (439)

The space l^2 is infinite-dimensional.

Remark

The Bolzano-Weierstrass theorem fails in l^2 .

Let $\overline{B} = B_1(0)$ be the closure of the unit ball centered at 0. Then sequence $\{e_k\}$ belongs to \overline{B} . If $k \neq j$,

$$||e_k - e_j|| = \sqrt{2}.$$

So e_k is not a Cauchy sequence. Thus it has no convergent subsequences, and hence \overline{B} is not sequentially compact.

Banach and Hilbert spaces

Cauchy sequence

Let X be a normed space. We say a sequence $\{x_k\}$ is a Cauchy sequence if for all $\epsilon>0,$ there is N such that

$$n, m \ge N \implies ||x_n - x_m|| < \epsilon.$$

Definition

- ▶ *X* is complete if every Cauchy sequence in *X* converge.
- ightharpoonup In this case, we say X is a Banach space.
- ▶ If X is a complete inner product space, we say X is a Hilbert space.

10.2 Infinite-dimensional vector spaces

Example

Every finite-dimensional vector space is complete. So \mathbb{R}^n is a Hilbert space under the Euclidean dot product, or a Banach space under the l^1 or l^∞ norms (or any other norm).

Definition

Let S be any set and $f, f_k : S \to \mathbb{R}$.

- (1) $\{f_k\}$ converges to f pointwisely if for each $x \in S$ and for all $\epsilon > 0$, there is N such that $k \ge N$ implies $|f_k(x) f(x)| < \epsilon$.
- (2) $\{f_k\}$ converges to f uniformly if for all $\epsilon > 0$, there is N such that $k \ge N$ implies $|f_k(x) f(x)| < \epsilon$ for all $x \in S$.

The difference of above two definitions is that

- ightharpoonup in definition (1), N depends on x;
- ▶ in definition (2), N does not depend on x.

Example

 $L^{\infty}[a,b]$ norm on C[a,b] is defined by

$$||f||_{\infty} = \max\{|f(x)| : a \le x \le b\}.$$

Let $\{f_k\}$ be a sequence in C[a,b] and let $f:[a,b]\to\mathbb{R}$ be a function. Then

- $lackbox{} f_k o f$ in $\|\cdot\|_{\infty}$ if and only if $f_k o f$ uniformly.
- ▶ If $f_k \to f$ uniformly, then f is continuous.

Proof

Suppose $f_k \to f$ uniformly. Assume that f is continuous (by the second property). For given $\epsilon > 0$, there is N such that for all $x \in [a,b]$ and $k \ge N$,

$$|f_k(x) - f(x)| < \epsilon.$$

Then $\max\{|f_k(x)-f(x)|: a\leq x\leq b\}<\epsilon$, so $\|f_k-f\|_\infty<\epsilon$. Hence $f_k\to f$ in $\|\cdot\|_\infty$. (continued)

Ex 10.2.2

Suppose $f \in C[a,b]$, $\{f_k\}$ is a sequence in C[a,b], and

$$||f_k - f||_{\infty} \to 0$$
 as $k \to \infty$.

Prove that $\{f_k\}$ converges uniformly to f on [a,b].

Proof

Suppose $f_k \to f$ in $\|\cdot\|_{\infty}$. For any $\epsilon > 0$, there is N such that

$$||f_k - f||_{\infty} < \epsilon \text{ for all } k \ge N.$$

Then for any $x \in [a, b]$,

$$|f_k(x) - f(x)| \le ||f_k - f||_{\infty} < \epsilon.$$

So $f_k \to f$ uniformly. (continued)

proposition

Let f_k be a sequence in C[a,b] and suppose $f_k \to f$ uniformly. Then f is continuous.

Proof

Let $\epsilon > 0$ be given. Let $x \in [a, b]$. Choose

- ▶ N so that $|f_k(y) f(y)| < \epsilon/3$ for all $y \in [a, b]$ and $k \ge N$.
- δ so that $||x-y||_{\infty} < \delta$ implies $|f_N(x) f_N(y)| < \epsilon/3$.

Then

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < \epsilon$$

for all $||x-y||_{\infty} < \delta$. Thus f is continuous.

Example

Let $f_k(x) = x^k$ on [0,1]. Then $f_k \to f$ pointwisely where

$$f(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & x = 1 \end{cases}.$$

This is a counter example that pointwise convergence implies uniform convergence.

Note that $\{x^k\}$ is not a Cauchy in $\|\cdot\|_{\infty}$. For $m \geq n$, $x^n > x^m$ for 0 < x < 1.

$$(x^{n} - x^{m})' = nx^{n-1} - mx^{m-1} = x^{n-1}(n - mx^{m-n})$$

Take m=2n. Then x^n-x^{2n} attains a maximum when $x=1/2^{1/n}$. Thus

$$||x^n - x^{2n}||_{\infty} = \left(\frac{1}{2^{1/n}}\right)^n - \left(\frac{1}{2^{1/n}}\right)^{2n} = \frac{1}{2} - \frac{1}{\sqrt{2}}.$$

Theorem (442)

C[a,b] is complete under the L^{∞} norm.

Proof

The proof is followed from the completeness of \mathbb{R} . At first, for each $x \in [a,b]$, $\{f_k(x)\}$ is a Cauchy sequence in \mathbb{R} . Then for each x, $f_k(x)$ converges to some real number, say f(x), i.e.

$$f(x) = \lim_{k \to \infty} f_k(x).$$

(continued)

Ex 10.2.3

Suppose $\{f_k\}$ is a Cauchy sequence in C[a,b] under the L^∞ norm that converges pointwise to $f:[a,b]\to\mathbb{R}$. Prove that $f_k\to f$ in the L^∞ norm.

Proof

Claim) f is continuous.

Let $\epsilon > 0$ be given. Let $x \in [a, b]$. Choose

- ▶ N_1 so that $||f_n f_m||_{\infty} < \epsilon/4$ for all $n, m \ge N_1$
- ▶ N_2 so that $|f_k(x) f(x)| < \epsilon/4$ for all $k \ge N_2$
- \bullet $\delta > 0$ so that $||x y||_{\infty} < \delta$ implies $|f_N(x) f_N(y)| < \epsilon/4$.

Let $N = \max\{N_1, N_2\}$. For $y \in [a, b]$ such that $||x - y||_{\infty} < \delta$,

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < \epsilon/4 + \epsilon/4 + |f_N(y) - f(y)|.$$

(continued)

Proof

Take N_3 so that N_3 so that $|f_k(y)-f(y)|<\epsilon/4$ for all $k\geq N_3$. Let $M=\max\{N,N_3\}$. Then $M\geq N$, thus

$$|f_N(y) - f(y)| \le |f_N(y) - f_M(y)| + |f_M(y) - f(y)| < \epsilon/4 + \epsilon/4.$$

So $||x-y||_{\infty} < \delta$ implies $|f(x)-f(y)| < \epsilon$, f is continuous.

It remains to show that $f_k \to f$ in $\|\cdot\|_{\infty}$. Choose

▶ N so that $||f_n - f_m||_{\infty} < \epsilon/2$ for all $n, m \ge N$.

Let $x \in [a,b]$. Then there is M such that $|f_k(x) - f(x)| < \epsilon/4$ for all $k \ge M$. Take $L = \max\{N,M\}$. For all $n \ge N$,

$$|f_n(x) - f(x)| \le |f_n(x) - f_L(x)| + |f_L(x) - f(x)| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Hence $||f_n - f||_{\infty} < \epsilon$ for all $n \ge N$.

Example

 $L^2(a,b)$ norm on ${\cal C}[a,b]$ is defined by

$$||f||_2 = \left[\int_a^b |f(x)|^2\right]^{1/2}.$$

Then L^2 norm is not equivalent to L^∞ because C[a,b] is not complete under $L^2(a,b)$.

(continued)

Example

Define $f_k \in C[0,1]$ by

$$f_k(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} - \frac{1}{k+1} \\ \frac{k+1}{2} \left(x - \frac{1}{2} + \frac{1}{k+1} \right), & \frac{1}{2} - \frac{1}{k+1} < x < \frac{1}{2} + \frac{1}{k+1} \\ 1, & \frac{1}{2} + \frac{1}{k+1} \le x \le 1 \end{cases}$$

In $L^2(0,1)$ norm,

$$||f_m - f_n||_{L^2(0,1)} \le \sqrt{\frac{2}{n+1}}.$$

So $\{f_k\}$ is a Cauchy sequence. Moreover, $f_k \to f$ under $L^2(0,1)$ where

$$f(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} \\ 1, & \frac{1}{2} < x \le 1 \end{cases}.$$

Hence $L^2(0,1)$ is not complete.

Remark

Let f(x) be any function such that

$$f(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2} \\ 1, & \frac{1}{2} < x \le 1 \\ \text{whatever} & x = \frac{1}{2} \end{cases}.$$

Then $f_k \to f$ in $L^2(0,1)$. This implies that in C[a,b] a sequence $\{f_k\}$ may converge to multiple functions.

Remark

 $\{f_k\}$ in above example is not a Cauchy in L^∞ norm because if it is a Cauchy, it converges to $f\in C[0,1]$ pointwisely. But $f_k\to f$ pointwisely where

$$f(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} \\ \frac{1}{2}, & x = \frac{1}{2} \\ 1, & \frac{1}{2} \le x \le 1 \end{cases}$$

Which is not continuous at $x = \frac{1}{2}$. It happens because if m > n,

$$f_m(x) - f_n(x) \le f_n\left(\frac{1}{2} - \frac{1}{m+1}\right) = \frac{n+1}{2}\left(\frac{1}{2} - \frac{1}{m+1} - \frac{1}{2} + \frac{1}{n+1}\right)$$
$$= \frac{1}{2} - \frac{1}{2}\frac{n+1}{m+1} = \|f_m - f_n\|_{L^{\infty}}$$

Take m = 2n + 1 and then

$$||f_{2n+1} - f_n||_{L^{\infty}} = \frac{1}{2} - \frac{1}{2} \frac{n+1}{2(n+1)} = \frac{1}{4}$$

10.2 Infinite-dimensional vector spaces

Ex 10.2.4

Let $f_k:[0,1]\to\mathbb{R}$ be defined by $f_k(x)=x^k$. Prove that $\{f_k\}$ is Cauchy under the $L^2(0,1)$ norm but not under the C[0,1] norm.

The End