ECON 6190 Section 5

Sept. 27,2024

Yiwei Sun

- 1. [Hong 6.8] Establish the following recursion relations for sample means and sample variances. Let \bar{X}_n and s_n^2 be the sample mean and sample variances based on random sample $\{X_1, X_2 \dots X_n\}$. Then suppose another observation, X_{n+1} , becomes available. Show:
 - (a) $\bar{X}_{n+1} = \frac{X_{n+1} + n\bar{X}_n}{n+1}$

(b)
$$ns_{n+1}^2 = (n-1)s_n^2 + \frac{n}{n+1}(X_{n+1} - \bar{X}_n)^2$$
.

Check solution

(b)

$$\frac{\text{Method 1}}{\text{N S}_{n+1}^{2}} = \frac{\text{def}}{\text{M}} \left(\frac{1}{M} \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n+1} \right)^{2} \right) \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} + X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} + X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} + X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} + X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} + X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} + X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} - X_{n+1} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} - X_{n} - X_{n} + X_{n} \right)^{2} \right)$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} - X_{n} - X_{n} + X_{n} - X_{n} + X_{n} \right)^{2}$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} - X_{n} - X_{n} + X_{n} - X_{n} - X_{n} + X_{n} - X_{n} - X_{n} + X_{n} \right)^{2}$$

$$= \sum_{i=1}^{n+1} \left(\left(X_{i} - X_{n} - X_{n}$$

$$= (n-1) S_n^2 + (X_{n+1} - \bar{X}_n)^2 - (n+1) \left(\frac{1}{n+1}\right)^2 (X_{n+1} - \bar{X}_n)^2$$

$$= (n-1) S_n^2 + \frac{n}{n+1} (X_{n+1} - \bar{X}_n)^2$$

Method #2 Start with RHS

$$\frac{(n-1)}{S_{n}^{2}} + \frac{n}{n+1} (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \frac{(n-1)}{(n-1)} \left(\frac{1}{n-1} \right) \frac{2}{n} (X_{1} - \bar{X}_{n})^{2} + \frac{n}{n+1} (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \frac{n}{n+1} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2} + (X_{n+1} - \bar{X}_{n})^{2} - \frac{1}{n+1} (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} - \frac{1}{n+1} (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} - \frac{1}{n+1} ((n+1)\bar{X}_{n+1} - (n+1)\bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} - (n+1) (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} - (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} - (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} - (X_{n+1} - \bar{X}_{n})^{2}$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n} + X_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n} + \bar{X}_{n+1} + \bar{X}_{n})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1} + 2(X_{n+1} - \bar{X}_{n})) (X_{i} - \bar{X}_{n+1} + \bar{X}_{n})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n+1})^{2} + 2 \sum_{i=1}^{n+1} (\bar{X}_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} + 2 \sum_{i=1}^{n+1} (X_{n+1} - \bar{X}_{n}) (X_{i} - \bar{X}_{n+1})$$

$$= \sum_{i=1}^{n+1} (X_{i} - \bar{X}_{n})^{2} + 2 \sum_{i=1}^{n+1} (X_{n} - \bar{X}_{n})^{2} + 2 \sum_{i=1}^{n+1} (X_{n} - \bar{X}_{n})^{2} + 2 \sum_{i=1}^{n+1}$$

Consider
$$\Theta$$
: $2\sum_{i=1}^{N+1} (X_{n+1}X_i - (X_{n+1})^2 - X_i X_n + X_u X_{n+1})$
= $2(X_{n+1}\sum_{i=1}^{N+1} X_i - (n+i)(X_{n+1})^2 - X_n\sum_{i=1}^{N+1} X_i + (n+i)(X_n X_{n+1}))$
= $(n+i)(X_{n+1})^2$
= $-(n+i)(X_n X_{n+1})$
= 0

$$\Rightarrow RHS = nS_{n+1}^{2} \qquad \blacksquare$$

- 2. [Hong 6.6] Suppose $\mathbf{X}^n = (X_1, \dots, X_n)$ is an iid $N(\underline{\mu}, \sigma^2)$ random sample, $\mathbf{Y}^n = (Y_1, \dots, Y_n)$ is an iid $N(\underline{\mu}, \sigma^2)$ random sample, and the two random samples are mutually independent. Let \bar{X}_n and \bar{Y}_n be the sample means of the first and second random samples, respectively, and let s_X^2 and s_Y^2 be the sample variances of the first and second random samples respectively. Find:
 - (a) the distribution of $(\bar{X}_n \bar{Y}_n)/\sqrt{2\sigma^2/n}$;

Theorem If x_i , i = 1, ..., n are iid $\mathcal{N}(u, r^2)$, then

1) Xn and 5° are independent

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

DEF Let
$$\{z_1, z_2, ..., z_r\}$$
 be iid $\mathcal{N}(0,1)$, then $\sum_{i=1}^{r} z_i^2 \sim \chi_r^2$

DEF Let
$$Z \sim \mathcal{N}(0,1)$$
 and $Q \sim \chi^2$ be independent. Then $T = \sqrt{\frac{2}{9}} \sim t_r$

(a) (b) (c) see solution

(d) the distribution of $(\bar{X}_n - \bar{Y}_n)/\sqrt{(s_X^2 + s_Y^2)/n}$;

$$\frac{\overline{X}_{N} - Y_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} \sim \mathcal{N}(0, 1)$$

$$\frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} = \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} = \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} \sim \mathcal{N}(0, 1)$$

$$= \int \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} \sim \mathcal{N}(0, 1)$$

$$= \int \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} = \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} \sim \mathcal{N}(0, 1)$$

$$= \int \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} = \frac{\overline{X}_{N} - \overline{Y}_{N}}{\sqrt{\frac{2\sigma^{2}}{N}}} =$$

$$\left(\frac{\bar{x}-\bar{y}}{\sqrt{\frac{z\sigma^2}{n}}}\right)$$
 and $\left(\frac{S_x^2+S_y^2}{z\sigma^2}\right)$ are also independent.

$$\Rightarrow \frac{\bar{x}_{n} - \bar{y}_{n}}{\sqrt{s_{x}^{2} + s_{y}^{2}}} \sim t_{z(n-1)}$$

(e) the distribution of $(\bar{X}_n - \bar{Y}_n)/\sqrt{s_n^2/n}$, where s_n^2 is the sample variance of the difference sample $\mathbf{Z}^n = (Z_1, Z_2 \dots Z_n)$, where $Z_i = X_i - Y_i$, $i = 1, 2 \dots n$.

$$\frac{Z_{i} = \chi_{i} - \gamma_{i}}{\sum_{n} \frac{Z_{n}}{n}} = \frac{Z_{n}}{\sqrt{\frac{2\sigma^{2}}{n}}} \cdot \frac{Z_{n} \cdot \chi_{n-1}}{\sqrt{\frac{S_{n}^{2}}{n}}} = \frac{Z_{n}}{\sqrt{\frac{S_{n}^{2}}{n}}} \cdot \frac{Z_{n}^{2}}{\sqrt{\frac{S_{n}^{2}}{n}}} = \frac{Z_{n}}{\sqrt{\frac{S_{n}^{2}}{n}}} \cdot \chi_{n-1}^{2}$$

Sime In and Si are independent,

$$\frac{\bar{x} - \bar{y_n}}{\sqrt{\frac{s_n^2}{n}}} \sim t_{n-1}$$

4. [Final exam, 2022] Let $\{X_1, \ldots X_n\}$ be i.i.d with pdf $f(x \mid \theta) = e^{-(x-\theta)} \mathbf{1}\{x \geq \theta\}$. Show $Y = \min \{X_1, \dots X_n\}$ is a sufficient statistic for θ without using the Factorization Theorem.

$$I(x) = e^{-(x-e)}I(x \ge e) \iff f(x) = e^{-(x-e)}, x \ge e$$

$$f(x) = e^{-(x-e)}I(x \ge e) \iff f(x) = e^{-(x-e)}, x \ge e$$

Property of Indicator function: $E[1|\{x \in A\}] = P(x \in A)$

Property of Indicator function:
$$E[1] \times A] = P(X \in A)$$

WTS:
$$\frac{P(X \mid \theta)}{q(t(X) \mid \theta)}$$
is not a function of θ over the sample space

of
$$f(x_1,...,x_n) = \begin{cases} e^{-\sum_{i=1}^n x_i} e^{ne}, & \min_i x_1,...,x_n \end{cases} \ge 0.$$

$$P(x_1,...,x_n) = \begin{cases} e^{-\sum_{i=1}^n x_i} e^{ne}, & \min_i x_1,...,x_n \end{cases} \ge 0.$$

$$P(Y \in Y) = P(\min\{x_1, ..., x_n\} \in Y)$$
= 1 - P(\min\{x_1, ..., x_n\} > Y)
= 1 - P(\pi_1 > Y, \pi_2 > Y, ... \pi_n > Y)
= 1 - \frac{11}{11}P(\pi_1 > Y)
= \frac{1}{11}P(\pi_1 > Y)
= \frac{1}{1} - e^{-n(y-\theta)}, \text{ for } y > \text{ for } y >

$$\Rightarrow paf af y \qquad for y < \theta, P(xi>y) = 1$$

$$\Rightarrow paf af y \qquad for y>0$$

$$\Rightarrow paf af y \qquad for y>0$$

$$\Rightarrow paf af y \qquad for y>0$$

$$\Rightarrow \frac{P(x_1, \dots, x_n \mid \theta)}{q(y_1 \theta)} = \frac{e^{-\frac{n}{\sum_{i=1}^n x_i}}}{n e^{-n(min \mid x_1, \dots x_n)}} \text{ for } \min(x_1, \dots x_n) \ge 0.$$

Y NOT A function of O

= min fx1, ..., xn} is a s.s.