CS 181 Homework 9

Charles Zhang, 305-413-659

June 1, 2021

Problem 1

The language L is not FSL.

Proof (by contradiction):

- Assume *L* is a finite state language.
- FSLs are closed under complementation, therefore \bar{L} must also be an FSL.
- We can define \bar{L} as the set of languages over Σ such that all runs of 0s must be of the same length.
- Since \bar{L} is an FSL, it must satisfy the conditions of the pumping lemma.
- Let *p* be the pumping length given by the pumping lemma.
- Let $w = 0^p 10^p$, noting that $w \in \bar{L}$.
- By Sipser's condition 1 of the pumping lemma, we know that w can be split into three parts such that w = abc and, for any $i \ge 0$, the string $w' = ab^i c$ is in \bar{L} .
- Sipser's condition 3 of the pumping lemma states that, when pumping w, it must be split such that $|ab| \le p$.
- Since w begins with p 0s, condition 3 guarantees that ab is made up entirely of 0s.
- Sipser's condition 2 of the pumping lemma states that, when pumping w, it must be split such that $|b| \ge 1$.
- Taken together with condition 3, this condition implies that b must contain at least one 0, and be made up entirely of 0s, therefore $b = 0^t$, where $p \ge t \ge 1$.
- We then pump the substring b using i = 2.
- $w' = 0^{p+t} 10^p$.
- Since we know that $t \ge 1 \ge 0$, we know that $p + t \ne p$.
- This means that w' is not a part of \bar{L} , as there exist runs of 0s that have different lengths.
- Thus, the pumping lemma is not satisfied, meaning that \bar{L} is not an FSL.
- This tells us that L doesn't follow the property that FSLs are closed under complementation, as \bar{L} is not an FSL, and a contradiction has been found \Longrightarrow .