PROBLEMAS DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA

1^{er} Curso de Grado en Ingeniería Informática – Curso 22/23 1^{er} curso del Doble Grado en Informática y Matemáticas – Curso 22/23

TEMA 4: Diodos

1.- En el circuito de la figura se emplea un diodo de silicio con la característica representada, siendo $V_{AA} = 7 \text{ V y R} = 1 \text{ k}\Omega$.

- a) Representar en la misma gráfica la ecuación de malla del circuito (recta de carga).
- b) Determinar gráficamente la corriente en el diodo y la tensión entre sus extremos.
- c) ¿Cuánta potencia disipa el diodo?
- d) ¿Cuál será la potencia disipada del diodo si se cambia R a 2 kΩ? ¿Y a 5 kΩ?

2.- Obtener la tensión de salida, V_o , así como el punto de trabajo (valores de V_D y de I_D) del diodo de la siguiente figura. Utilizar el modelo de la tensión umbral, con $V_\gamma = 0.6$ V. Tomar R = 10 Ω y $V_i = 1$ V. ¿Qué ocurriría si el valor de V_i fuera 3 V? Obtener V_o , V_D e I_D para este caso.

3.- Para el siguiente circuito, considerando para el diodo $V\gamma=0.6~V~y~R_d=0~\Omega~y$ suponiendo que $R_b=100~k\Omega~y~r_i=R_L=1~k\Omega$:

- a) Obtener el estado del diodo y el valor de V_L si V_i = 0.3 V.
- b) Repetir para $V_i = -0.7 \text{ V}$.

4.- Encontrar Vo para:

a)
$$V_1 = 5 V y V_2 = 5 V$$

b)
$$V_1 = 5 V y V_2 = 0 V$$

c)
$$V_1 = 0 V y V_2 = 5 V$$

d)
$$V_1 = 0 V y V_2 = 0 V$$

siendo:

$$R_1=R_2=2\ k\Omega$$

$$R_3 = 18 \text{ k}\Omega$$

$$V\gamma = 0.65 V$$

¿Qué función lógica podría realizar este circuito?

- 5. Los diodos del circuito son idénticos, siendo $V_{\gamma} = 0.6 \text{ V y } R_d = 0 \Omega$.
 - a) Explicar razonadamente por qué ambos diodos no pueden conducir simultáneamente.
 - b) Encontrar el valor de v_i que hace que el diodo superior pase de estar en corte a conducir.
 - c) Encontrar el valor de v_i que hace que el diodo inferior pase de estar en corte a conducir.
 - d) Razonar en qué estados se encontrarán los diodos para cada intervalo de valores posibles de la tensión de entrada, sabiendo que v_i puede tomar cualquier valor real.

6.- Suponer en la siguiente figura el Zener con V_{γ} = 0.6 V y R_d = 0 Ω en directa y V_Z = 5 V y R_Z = 10 Ω en inversa, con R =20 Ω . Encontrar el valor de v_o en los casos siguientes:

a)
$$v_i = 4 \text{ V}$$

b)
$$v_i = -4 \text{ V}$$

$$c) v_i = -6 V$$

7.- En el circuito de la figura:

- a) Hallar el punto de polarización del diodo cuando a1) $v_i = 12 \text{ V}$; a2) $v_i = 25 \text{ V}$.
- b) Calcular el valor que debe tomar v_i para que el diodo pase b1) de corte a conducción inversa; b2) de corte a conducción directa.
- c) Razonar cuál será el estado del diodo en cada rango de valores posibles de la tensión vi.

En todos los apartados, emplear para el diodo Zener un modelo lineal en sus diferentes regiones, con $V_Z = 10 \text{ V}$, $R_Z = 0 \Omega$; $V_\gamma = 0.6 \text{ V}$, $R_d = 0 \Omega$ y $R_1 = R_2 = 10 \text{ k}\Omega$.

- **8.-** Asumiendo el modelo lineal de la tensión umbral para los diodos LED con $V_{\gamma} = 1.2 \text{ V y } R_d = 0 \Omega$:
 - a) Explicar razonadamente por qué ambos diodos no pueden encontrarse simultáneamente encendidos.
 - b) Encontrar el valor de v_i que hace que el diodo D₁ pase de estar apagado a encenderse.
 - c) Encontrar el valor de v_i que hace que el diodo D₂ pase de estar apagado a encenderse.
 - d) Razonar, para cada intervalo de valores posibles de la tensión de entrada, cuál será el estado de los diodos y obtener vo, sabiendo que vi puede tomar cualquier valor real.

- **9.-** En el circuito de una malla, ambos diodos Zener son idénticos, con $V_{\gamma}=0.6~V~y~R_{d}=0~\Omega$ en directa, $V_{Z}=3~V~y~R_{Z}=10~\Omega$ en inversa. Tomando $R=2~k\Omega$:
 - *a)* Estudiar las combinaciones posibles de estados de ambos diodos.
 - b) Encontrar el valor o valores de v_i que producen el paso de corte a conducción de los diodos.
 - c) Obtener v_o para las distintas situaciones posibles.
 - d) Esbozar un ciclo de la tensión de salida suponiendo que la tensión de entrada sea $v_i(t) = 10V \cdot sen(\omega t)$ y haciendo $R_z = 0 \Omega$.

10.- Para el siguiente circuito:

- a) Demostrar que si D_{z1} está en corte, no pueden conducir los otros dos diodos (D_R y D_{z2}).
- b) Calcular v_o para las siguientes posibilidades:
 - b1) Todos los diodos en corte.
 - b2) D_{z1} en inversa y D_R y D_{z2} en corte.
 - b3) Dz1 en directa y DR y Dz2 conduciendo.
 - b4) Dz1 en directa y DR y Dz2 en corte.
- c) Encontrar el valor o valores de v_i que producen el paso de corte a conducción de los diodos.

Suponer en todos los apartados que las resistencias de los diodos son despreciables ($R_d = R_Z = 0 \ \Omega$) y que las tensiones Zener son iguales (de valor V_Z) y mayores que sus umbrales de conducción directa (de valor V_γ).

SOLUCIONES DE LOS PROBLEMAS

Grado en Ingeniería Informática y Doble grado en Informática y Matemáticas

TEMA 4: Diodos

- **1.- a)** $(V_D, I_D) = (0.63 \text{ V}, 6.4 \text{ mA})$
 - **b)** $P \cong 4.03 \text{ mW}$
 - c) $P(R = 2 \text{ k}\Omega) = 1.92 \text{ mW}$; $P(R = 5 \text{ k}\Omega) = 0.72 \text{ mW}$
- **2.-** Si $V_i = 1$ V: $V_0 = 0$ V. Punto de trabajo: $V_D = 0.5$ V, $I_D = 0$ A Si $V_i = 3$ V: $V_0 = 0.6$ V. Punto de trabajo: $V_D = 0.6$ V, $I_D = 60$ mA
- **3.- a)** D en corte, punto de trabajo: $V_D = -0.294 \text{ V}$, $I_D = 0 \text{ A y V}_L = 2.94 \text{ mV}$
 - **b)** D conduce, punto de trabajo: $V_D = 0.6 \text{ V}$, $I_D = 44 \mu\text{A} \text{ y V}_L = -0.05 \text{ V}$
- **4.- a)** $V_o = 5 \text{ V}$
 - **b)** $V_o = 1.085 \text{ V}$
 - **c)** $V_o = 1.085 \text{ V}$
 - **d)** $V_o = 0.88 \text{ V}$

Función lógica: AND

- **5.- b)** $v_i = 1.8 \text{ V}$
 - c) $v_i = -1.8 \text{ V}$
 - d) Si $v_i < -1.8$ V, el diodo superior está en corte y el inferior conduce

Si $-1.8 \text{ V} < v_i < 1.8 \text{ V}$, ambos diodos están en corte

Si v_i > 1.8 V, el diodo superior conduce y el inferior está en corte

- **6.- a)** $v_0 = 3.4 \text{ V}$
 - **b)** $v_0 = 0 V$
 - **c)** $v_0 = -\frac{2}{3} V$
- 7.- a1) $(V_D, I_D) = (-6 \text{ V}, 0 \text{ A}); \text{ a2}) (V_D, I_D) = (-10 \text{ V}, -0.5 \text{ mA})$
 - **b1)** $v_i = 20 \text{ V}$; **b2)** $v_i = -1.2 \text{ V}$
 - c) Si v_i < -1.2 V, Zener estará en conducción directa

Si $-1.2 \text{ V} < v_i < 20 \text{ V}$, Zener estará en corte

Si v_i > 20 V, Zener estará en conducción inversa

SOLUCIONES DE LOS PROBLEMAS

Grado en Ingeniería Informática y Doble grado en Informática y Matemáticas

- **8.- b)** $v_i = 13.2 \text{ V}$
 - **c)** $v_i = -11.2 \text{ V}$
 - **d)** $v_i < -11.2 \text{ V}$, D_2 está conduciendo y D_1 en corte. $v_o = \frac{2v_i 11.2}{3}$ -11.2 V < $v_i < 13.2 \text{ V}$, D_1 y D_2 en corte. $v_o = v_i$

$$v_i > 13.2 \text{ V}, D_1$$
 está conduciendo y D_1 en corte. $v_o = \frac{2v_i + 13.2}{3}$

- 9.- a) Ambos en corte, en conducción directa o en conducción inversa.
 - **b)** $v_i = -1.2 \text{ V}$ (pasa de corte a conducción directa) y $v_i = 6 \text{ V}$ (corte a conducción inversa)
 - c) $v_i < -1.2 \text{ V}$, $v_o = -1.2 \text{ V}$

$$-1.2 \text{ V} < v_i < 6 \text{ V}, v_o = v_i$$

$$v_i > 6 \text{ V}, v_o = \frac{600 + v_i}{101}$$

10.- b1) $v_0 = 0$

b2)
$$v_0 = (v_i - V_z) \frac{R_2}{R_1 + R_2}$$

b3)
$$v_o = -V_z - V_\gamma$$

b4)
$$v_o = (v_i + V_\gamma) \frac{R_2}{R_1 + R_2}$$

c) Conmutación de D_{z1} de corte a conducción inversa: $v_i = V_z$

Conmutación de D_{z1} de corte a conducción directa: $v_i = -V_{\gamma}$

Conmutación de D_R y D_{z2} de corte a conducción: $v_i = -\frac{(v_z + v_\gamma)}{R_2}(R_1 + R_2) - V_\gamma$