Addis Ababa University

Addis Ababa Institute of Technology

Center of Information Technology and Scientific Computing

Department of Software Engineering

Course: Fundamentals of Electrical Circuits

Final -Exam for 1st Year 2nd Semester Software Engineering

Weight: 40 %		Time Allotted:	3.00 hrs.
Full Name:	_ID.No:		
Section:			

Instructions: Please Read Carefully Before Proceeding.

- 1. Read all of the instruction and all of the question before beginning the exam
- 2. This is a closed book, closed-notes examination.
- 3. There are 11 questions and Two bonus in this exam, totaling 40 points
- 4. On all the problems, please show your work clearly, to get full credit
- 5. Non programmable Calculators are allowed, but borrowing is not allowed
- 6. Your mobile phones must be turned off during the exam
- 7. Write your name and ID number on this page.
- 8. Please attempt each of the question rather than leaving unanswered or blank.
- 9. When you are told that time is up, please stop working on the test
- 10. This exam contains 8 pages, including this one. Thus, you must check that everything is complete.

Prepared By: Dr.Mani Sarma Vittapu.

Question	1	2	3	4	5	6	7	8	9	10	11
Maximum Marks	5	5	3	5	5	5	4	3	5	2	3
Earned Marks											
Total											

Good Luck!

1. Apply **Superposition principle** to find **Vo** in the circuit given below.(5 points)

2. For the circuit given below find the **io** using **Source Transformation**,(5 points)

3. Obtain the Thevenin and Norton Equivalent circuits for the circuit given below seen from the a-b terminals.(3points)

4. Obtain the Norton Equivalent when viewed from the terminals given (5 points) A) **a-b** B) **c-d**

- 5. For the circuit given below (5 point)
 - a) Obtain the Thevenin Equivalent (2 Points)
 - b) Calculate the current when RL= 8Ω (1 Point)
 - c) Find RL for maximum power deliverable to RL (1 point)
 - d) Determine the maximum power (1 Point)

- 6. Consider the following circuit with $\mathbf{v}(t) = \mathbf{12}e^{-3t}mV$ for $\mathbf{t} > \mathbf{0}$ and $\mathbf{i1}(\mathbf{0}) = -\mathbf{10}\mathbf{mA}$. Find (5 points).
 - a) i2(0)
- **b**) **i**1(t)
- c) **i2**(t)

7. Find the equivalent Capacitance at the terminal a-b of the following circuit. (4 points)

8. Find the **amplitude**, **frequency**, and **phase angle** of each of the given sinusoids. (3 Points)

a.
$$V(t) = -5\sin(10t-45)$$

b.
$$I(t) = -2.5\cos(2\pi t)$$

- 9. An RLC circuit with resistance (R=20Ω), capacitance of (C=20mF) and inductance of (L=20mH) which are connected in series, is exposed to frequency of 50Hz, with peak voltage (Em=100V) source. Then, (5 points)
 - a) What is the total impedance of the circuit?
 - b) What is the phase angle?
 - c) What is the power delivered? And the power factor?
 - d) How much capacitance be added to maximize the power in the circuit?

10. (**Bonus**) Determine *Leq*(equivalent inductance) that may be used to represent the inductive network (2 Points)

11. (Bonus) Explain generation of Sinusoidal wave? (3 points)

Problem: Find the amplitude, frequency, and phase angle of each of the given sinusoids.

- c. $V(t) = -5\sin(10t-45)$
- d. $I(t) = -2.5\cos(2\pi t)$