

Isopentyl Bromide

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

When isopentyl bromide (F), $(CH_3)_2CHCH_2CH_2Br$, reacts with hot aqueous ethanolic KOH, two products are formed: compound **G**, $C_5H_{12}O$, and compound **H**, $C_7H_{16}O$.

$$\begin{array}{c|cccc} CH_3 & H & H \\ \hline & & & \\ & & & \\ H & & C & C & C \\ \hline & & & \\ CH_3 & H & H \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Figure 1: Isopentyl bromide (F)

Part A

Hydroxide with ethanol

The hydroxide ion and ethanol can take part in an acid-base reaction. Write an equation to represent this. State symbols are not required.

Part B Compound G
What is compound G ?
Use the <u>structure editor</u> to generate a SMILES string.
In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.
<u>Using the structure editor</u>
Part C Compound H
What is compound H ?
Use the <u>structure editor</u> to generate a SMILES string.
In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.
<u>Using the structure editor</u>
Part D Type of reaction
State the type of reaction undergone by compound F

F with ammonia

Draw the structure of the product derived from compound **F** by reaction with concentrated aqueous ammonia.

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part F

Reaction with potassium cyanide

Draw the structure of the product derived from compound F by reaction with ethanolic potassium cyanide.

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

<u>Using the structure editor</u>

Adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 1, Question 10

Mechanism Types

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

Part B Reaction with chlorine
A non-polar organic compound undergoes a reaction with chlorine $[A_r({ m Cl})=35.5]$ when light is shone upon the reaction mixture. The relative molecular mass of the product is 34.5 greater than that of the original compound.
The reaction is most likely to be:
nucleophilic addition
free radical substitution
electrophilic addition
nucleophilic substitution
electrophilic substitution

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 23; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 21

Question deck:

Organic Reaction Intermediates

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

Part A Hydrobromic acid with ethene
Hydrogen bromide reacts with ethene to form bromoethane. Which of the following is the best description of the organic intermediate?
Its structure is planar
It has a negative charge
It is an electrophile
It is a free radical
It contains carbon, hydrogen and bromine

Part B

Carbocation intermediate

In which of the following reactions is a cation an intermediate?

- $CH_2=CH_2+Br_2\longrightarrow CH_2BrCH_2Br$
- $CH_3CH_3 + Cl_2 \longrightarrow CH_3CH_2Cl + HCl$
- $CH_3CH_2Cl + 2\,NH_3 \longrightarrow CH_3CH_2NH_2 + NH_4Cl$
- $\qquad CH_{3}CH_{2}Br + NaOH \xrightarrow{H_{2}O} CH_{3}CH_{2}OH + NaBr \\$

Part A adapted with permission from UCLES, A-Level Chemistry, 1988, Paper 3, Question 23; Part B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 22

Question deck:

Compounds from Haloalkanes

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

Part A	oounds from $\mathrm{C_{3}H_{7}Br}$		
$\mathrm{C_{3}H_{7}B}$	mpound C_3H_7Br undergoes a sequence $\mathbf{F} \xrightarrow{\mathrm{OH^-}(\mathrm{aq})} \mathbf{X} \xrightarrow{\mathrm{acidified} \ \mathrm{K_2Cr_2O_7}} \mathbf{Y} \xrightarrow{\mathrm{Tol}} \mathbf{Y}$ could be the formulae for \mathbf{X} , \mathbf{Y} and \mathbf{Z}	lens' reagent Z + silver mirror	
	x	Y	Z
A	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH_{2}COOH}$	$\mathrm{CH_{3}CH_{2}CHO}$
В	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH(OH)CH_{2}OH}$	$\mathrm{CH_{3}COOH}$
С	$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	$\mathrm{CH_{3}CH_{2}CHO}$	$\mathrm{CH_{3}CH_{2}COOH}$
D	$\mathrm{CH_{3}CH(OH)CH_{3}}$	$\mathrm{CH_{3}COCH_{3}}$	$\mathrm{CH_{3}COOH}$
	A		
	В		
	С		
	D		

Part B Compounds from chloroethane
Chloroethane is converted into a carboxylic acid containing one more carbon atom through a two-stage process.
Which of the following compounds could be the intermediate in the synthesis of the carboxylic acid?
ho CH ₃ CH ₂ CH ₂ CN
\bigcirc CH ₃ CH ₂ CN
○ CH ₃ CH ₂ OH
\bigcirc CH ₃ CH ₂ COOCH ₃
$\bigcirc \mathrm{CH_{3}CH_{2}CH_{2}NH_{2}}$

Part A adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 26; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 3, Question 25

Question deck:

Compounds from But-2-ene

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

Complete the reaction scheme shown below which starts with but-2-ene. In each of the boxes **A** to **D** give the principal organic product or intermediate compound.

Use the structure editor to generate a SMILES string.

Figure 1: Compounds from but-2-ene

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part A A			
A is:			

Part B				
B is:				
Part C C				
C is:				
Part D				
D				
D is:				
Adapted with permission fro	om UCLES, A-Level Chemistry,	June 1996, Chains and	Rings, Question 1	

Question deck:

Ketones with HCN Further

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

The initial product of the reaction between HCN and propanone gives **A** which is then subjected to a dehydration reaction to produce **B**.

$$CH_{3} \, COCH_{3} \xrightarrow{HCN} \mathbf{A} \xrightarrow{dehydration} \mathbf{B} \xrightarrow{hydrolysis} \mathbf{C}$$

Part A

Propanone with HCN

What is A?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part B

Dehydration

What is **B**?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part C Hydrolysis The product of the dehydration reaction **B** is hydrolysed under acidic conditions to give **C**.

What is C?

Use the <u>structure editor</u> to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part A and B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 28; Part C created for isaacphysics.org by R. Less

Question deck:

More Nitriles

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

Part A Reaction with cyanide ions
Which of the following compounds could be the product of a reaction involving a <u>nucleophilic</u> attack by cyanide ions in aqueous ethanolic solution?
$(CH_3)_2CHCN$
CH ₃ CONH ₂
ho CH ₂ =CHCN
$\bigcirc \mathrm{CH_{3}CH_{2}CH_{2}CH_{2}NH_{2}}$

Hydrolysis of CS

CS has the structure shown below, is an active component of 'tear gas' and is readily hydrolysed.

Figure 1: Structure of CS

Which of the following is a possible hydrolysis product of CS?

A
$$CH = C$$
 CH_2NH_2
 CH_2NH_2

$$\mathsf{B} \qquad \bigcirc \mathsf{CH} = \mathsf{C} \qquad \mathsf{COOH}$$

c
$$CH_2CH$$

$$\mathbf{D}$$
 OH

Figure 2: Possible hydrolysis products of CS

____A

() E

 \bigcirc

D	

Part A adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 23; Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 25

Question deck:

Role of Reagent

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level P1

Part A **Bradosol** Bradosol is a compound used for the relief of sore throats. It is produced in the following reaction. OCH₂CH₂Br Figure 1: Bradosol synthesis What is the role of compound **Y** in this reaction? a ligand an electrophile a nucleophile a reducing agent

Part B Inorganic reagent In which reaction does the inorganic reagent act as a nucleophile? $CH_3CH_2Br + NaOH \longrightarrow CH_3CH_2OH + NaBr$ $CH_3CH=CH_2 + Br_2 \longrightarrow CH_3CHBrCH_2Br$ $CH_3CH=CH_2 + HCl \longrightarrow [CH_3CH_2NH_3]^+Cl^ CH_3CH_3 + Cl_2 \xrightarrow{h\nu \text{ (light)}} CH_3CH_2Cl + HCl$

Part A adapted with permission from UCLES, A-Level Chemistry, June 1998, Paper 3, Question 19; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 20

Question deck:

Reaction Types

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level C1

Part A

Sunburn ointment

Many sunburn ointments contain benzocaine which relieves the pain caused by sunburn. It can be made in the laboratory by using the following reaction scheme.

Figure 1: Preparation of benzocaine

Which of the following statements about this reaction scheme are correct?

- 1 Step 1 is an oxidation.
- 2 Step 2 is an esterification.
- **3** Step 3 is a reduction.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 1 and 3 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 2 only is correct

3 only	y is correct	
Part B Aldol		
	omposer Borodin was also a research chemist who dinbine to form a compound commonly known as aldolion ${ m II}$).	
(I) 2 CH ₃ CH	$O \longrightarrow CH_3CH(OH)CH_2CHO$	
(II) CH ₃ CH($(OH)CH_2CHO \longrightarrow CH_3CH = CHCHO + H_2O$	
Which of the f	following best describes reactions I and II?	
	I	II
A	addition	elimination
В	addition	reduction
С	elimination	reduction
D	substitution	elimination
A		
В		
_ c		
D		

Part A adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 36; Part B adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 21

Question deck:

Classifying Organic Reactions 1

Subject & topics: Chemistry | Organic | Reactions Stage & difficulty: A Level C1

One of the reasons organic chemists use skeletal formulae is to draw attention to the functional groups a molecule contains. These contain atoms other than carbon and hydrogen, so-called heteroatoms. Many different functional groups are possible, but it is often useful to keep track of the number of bonds that a given carbon atom has to electronegative atoms, the 'level' of a particular functional group. The electronegative elements include the halogens, oxygen, nitrogen and sulfur and will be represented by the symbol E; general alkyl groups are represented by an R. Some examples are shown below, but there are many other possibilities.

Keeping track of the functional group level can be a useful way of understanding a large number of organic reactions.

In every one of the reactions in this question, no carbon-carbon bonds are broken or formed.

During **oxidation** reactions, the functional group level will be found to increase as new C-E bonds are formed at the expense of C-H bonds.

During **reduction** reactions, the functional group level is found to decrease as new C-H bonds are formed at the expense of C-E bonds.

During **hydrolysis** reactions, the functional group level of every carbon remains the same, but the addition of water (hydro) may be used to split (lyse) functional groups, and / or replace some bonds to electronegative atoms with new bonds to oxygen. Different hydrolysis reactions may require different conditions with some only taking place at a significant rate with acid or alkali present.

Each of the following ten reactions takes place with a single reagent. Classify each one as either an **oxidation**, a **reduction**, or a **hydrolysis reaction**. Simply tick the appropriate box.

Part B

Reaction 2

- Oxidation
- Reduction
- Hydrolysis

Part C Reaction 3

- Oxidation
- Reduction
- Hydrolysis

Part D
Reaction 4

- Oxidation
- Reduction
- Hydrolysis

Part E

Reaction 5

- Oxidation
- Reduction
- Hydrolysis

Part F

Reaction 6

- Oxidation
- Reduction
- Hydrolysis

- Reduction
- Oxidation
- Hydrolysis

Part H Reaction 8

- Hydrolysis
- Reduction
- Oxidation

Part I Reaction 9

- Oxidation
- Reduction
- Hydrolysis

Part J Reaction 10

- Oxidation
- Reduction
- Hydrolysis