Cursul 12 V) Parolvarea ecuatiilar reliniare · Brollema: Vrem sa resolvam ecuatio neliniare ocrecore pentru XE[0,6] $x^4 - 3xe^{2x} + \cos(3x) - 2 = 0$ P(se) Probeloma este echivalenta cu o determima x* ε[0, α] 0. î. β (x*)=0 pontru o functie l'ocracare.

1) Metoda l'isoctiei: Presuperom P & & ([0,0]) si P101. P1010. Vom irola solutio într-un interval pe core il înjumatatim succesiv.

· Algoritm (metodo lusectici) Initializari: a = a, lo = a, £0 = \frac{a_0 + lo}{2} 1 m = 0 For time P(Xm) > E: $Dac\bar{a}$ $\rho(a_m) \cdot \rho(x_m) = 0$: $a_{m+1} = a_m, l_{m+1} = \mathcal{X}_m$ altel: $Q_{m+1} = \mathcal{X}_m, \ Q_{m+1} = Q_m$ $\mathcal{X}_{m+1} = \frac{Q_{m+1} + Q_{m+1}}{2}$ m = m + 1· Estimarea erarii Portru orice $m \ge 1$, $Q_0(\mathfrak{X}^*) = |\mathfrak{X}_m - \mathfrak{X}^*| \le \frac{Q_m - \alpha_m}{2} = \frac{Q_m - \alpha_m}{2}$ · Consecinta: Retem astfel estimo de câte iteratii arem nevoie pontru a aproxima soluția oricarei ocuații ne-

liniare
$$\beta(x) = 0$$
 pe $[a,b]$ cu a vroare alisalità maximà ε :

 $|x^* - x_m| \leq \frac{a-a}{2^m} < \varepsilon \stackrel{\cdot}{=} > 2^m > \frac{a-a}{\varepsilon}$
 $\varepsilon = 0$ $|x =$

· Teorema (Brounuer) Fie \$\Pi \mathcal{E}([a, @]) a.i. \$\Pi(\tau, @]) \subseteq \tau_0. Atunci Dare un runct Pire, ** [a, b] Daca, in plus, & a derivalilà si 3 le 10,1) a. î. | \$\P'(\x) | < k, \x € [0, l], princted fix este unic. Demonstrație: -> Existenta: Fie g: [a, l] -> R, g(x)= P(x)-x ge 6 ([0, e]) =)]x " e[a,e] a.2. g(a)>0 si g(le) co. g(æ*)=0 (=) \$\P(\x^*) = \x^* Interpretaro grafica:

Inicitate:
$$\beta_{n}$$
. $\exists \ \mathcal{X}^{*} \neq \widetilde{\mathcal{X}}^{*} \in [a, a]$ pot. fixe $|\mathcal{X}^{*} - \widetilde{\mathcal{X}}^{*}| = |\Phi(\mathcal{X}^{*}) - \Phi(\widetilde{\mathcal{X}}^{*})|$

Din teoroma lui Lagrange, $\exists \ \vec{\beta}$ inte \mathcal{X}^{*} astfal incat $|\mathcal{X}^{*} - \widetilde{\mathcal{X}}^{*}| = |\Phi'(\vec{\beta})|(\mathcal{X}^{*} - \widetilde{\mathcal{X}}^{*})|$
 $< k \mid \mathcal{X}^{*} - \widetilde{\mathcal{X}}^{*} \mid < |\mathcal{X}^{*} - \widetilde{\mathcal{X}}^{*}| = |\Phi'(\vec{\beta})|(\mathcal{X}^{*} - \widetilde{\mathcal{X}}^{*})|$

Obfinitie (Vitera de convergența)

Sirul $\int \mathcal{X}_{m}^{2} \int_{m_{2}}^{\infty} Converge \ catse \ \mathcal{X}^{*}$ cu ritera de convergența $|\mathcal{X}^{*} - \mathcal{X}_{m}| = C$
 $\exists c \geq 0 \ a. \ l. \ \lim_{m \to \infty} \frac{|\mathcal{X}^{*} - \mathcal{X}_{m-1}|^{n}}{|\mathcal{X}^{*} - \mathcal{X}_{m-1}|^{n}} = C$

Exemplu: Metada lipacției

 $\lim_{m \to \infty} \frac{|\mathcal{X}^{*} - \mathcal{X}_{m-1}|}{|\mathcal{X}^{*} - \mathcal{X}_{m-1}|} = \lim_{m \to \infty} \frac{l - 0}{2^{m}} = \frac{1}{2}$

=) Metada lipacției are a ritera de convergența de converge

· Teorema (Comergento metodei de pot. Pix) Daca D satisface insterello tearemei lui Brouwer, sirul generat de metoda de princt list (xo € [a, le] correcore $\mathcal{L}_{m} = \mathcal{Q}(\mathcal{L}_{m-1}), \forall m \geq 1$ converge cotre unicul punct lix a lui Ф, x* e[o, le]. Mai mult, i) Daca \$\Phi(x*) \pmo, vitero este liniora. ii) Daca PEG ([0,0]) si D'(x")=0, vitra este patratica. (7=2) Demonstrație: $\mathscr{X}^* - \mathscr{X}_m | = | \Phi(\mathscr{X}^*) - \Phi(\mathscr{X}_{m-1})|$ $= |\Phi'(3)/\mathcal{X} - \mathcal{X}_{m-1}|$ $|x^*-x_{m-1}|<\ldots$ < h " | x " - 20 | Cum k < 1, $\lim_{m \to \infty} \mathfrak{X}_m = \mathfrak{X}^*$

i)
$$\frac{|\mathcal{X}^{*}-\mathcal{X}_{m-1}|}{|\mathcal{X}^{*}-\mathcal{X}_{m-1}|} = \frac{|\mathcal{D}(\mathcal{X}^{*})-\mathcal{D}(\mathcal{X}_{m-1})|}{|\mathcal{X}^{*}-\mathcal{X}_{m-1}|}$$

Dim Th. Lagrange, $\exists \ \mathcal{J}_{m-1} \text{ intro } \mathcal{X}_{m-1}, \mathcal{N} : \mathcal{X}^{*}:$

$$\frac{|\mathcal{X}^{*}-\mathcal{X}_{m-1}|}{|\mathcal{X}^{*}-\mathcal{X}_{m-1}|} = |\mathcal{D}^{+}(\mathcal{J}_{m-1})| \xrightarrow{m \to \infty} |\mathcal{D}^{+}|\mathcal{X}^{*}| \in [G_{N}]$$

$$= |\mathcal{N}_{m}| |\mathcal{X}^{*}-\mathcal{X}_{m-1}| = |\mathcal{D}^{+}(\mathcal{J}_{m-1})| \xrightarrow{m \to \infty} |\mathcal{D}^{+}|\mathcal{X}^{*}| \in [G_{N}]$$

$$= |\mathcal{N}_{m}| |\mathcal{X}_{m-1}| = |\mathcal{D}^{+}(\mathcal{X}_{m-1})| = |\mathcal{X}_{m-1}| |\mathcal{X}_{m-1}| = |\mathcal{X}_{m-1}|$$