IN THE CLAIMS:

5

10

1. (Currently Amended) A device for pulling single crystals, comprising:

a crucible with a support[[,]]; and

a heater and at least one heat-insulating screen, characterized in that the <u>said</u> heater is made of a starting flexible carbon-bearing material in the form of a cylinder whose ends are fixed between coaxially arranged rigid rings of carbon material that are connected to a power supply, wherein the heater is made so that the wall thereof has its thickness determined from the relationship:

$$\delta \cdot \rho \cdot c = 500$$
 to 8500 J/m².K, wherein:

 δ - heater wall thickness, m;

 ρ - density of the material the heater is made of, kg/m³; and

c - specific heat of the material the heater is made of (at working temperature), J/kg.K.

2. (Currently Amended) The device according to claim 1, characterized in that the wherein said rings of carbon material are connected to the power supply through heat-insulating screens.

- 3. (Currently Amended) The device according to claim 1, characterized in that wherein a layer of silicon nitride is provided on the heater surface on the inner and/or outer side thereof.
 - 4. (Currently Amended) The device according to claim 1, characterized in that the said

crucible or the support is made of silicon nitride.

- 5. (Currently Amended) The device according to claim 1, characterized in that the wherein said crucible and the support are made of silicon nitride so as to be integral with one another.
- 6. (Currently Amended) The device according to claim 1, characterized in that the wherein said carbon-bearing material of the heater is further sealed with pyrolytic carbon and/or silicon carbide.
- 7. (Currently Amended) The device according to claim 1, characterized in that it further comprises further comprising a heat-insulator of fabric and/or felt made of silica or quartz fibers.
 - 8. (New) A device for pulling single crystals, comprising:
 - a holding means for retaining a fluid;
 - a means for supporting said holding means;
 - a heat-insulating screen; and

5

a cylindrical heater made of a carbon-containing material whose ends are fixed between coaxially arranged rigid rings of a carbon material that are connected to a power source, said heater wall thickness being determined from the relationship:

$\delta \cdot \rho \cdot c = 500$ to 8500 J/m².K, wherein:

 δ - heater wall thickness, m;

10

- ρ density of the material the heater is made of, kg/m³; and
- c specific heat of the material the heater is made of (at working temperature), J/kg.K.
- 9. (New) The device according to claim 8, wherein said rings are connected to the power supply through heat-insulating screens.
- 10. (New) The device according to claim 8, wherein a layer of silicon nitride is provided on the heater surface on the inner and/or outer side thereof.
- 11. (New) The device according to claim 8, said holding means and supporting means are made of silicon nitride.
- 12. (New) The device according to claim 8, wherein said holding means and supporting means are made of silicon nitride so as to be integral with one another.
- 13. (New) The device according to claim 8, wherein said carbon-containing material of the heater is further sealed with pyrolytic carbon and/or silicon carbide.
 - 14. (New) The device according to claim 8, further comprising a heat-insulator of

fabric and/or felt made of silica or quartz fibers.