WHAT IS CLAIMED IS:

1. A scan type exposure apparatus wherein a pattern of an original is lithographically transferred to a substrate sequentially while the original and the substrate are scanningly moved relative to exposure light, said apparatus comprising:

a photodetector disposed/at a position

optically conjugate with the original; and
storing means for storing correction
information with respect to an output of said
photodetector, in relation to different positions of
the original to be illuminated with the exposure
light, such that, in the lithographic pattern
transfer, the output of said photodetector can be
corrected by use of the correction information.

- 2. An apparatus according to Claim 1, wherein the correction information concerns information corresponding to a light quantity of reflection light at each different positions of the original illuminated with the exposure light.
- 3. An exposure method, comprising the steps of:
 lithographically transferring a pattern of an
 original sequentially to a substrate while scanningly
 moving the original and the substrate relative to
 exposure light;

10

15

10

20

25

correcting, in the transfer of the pattern of the original to the substrate, an output of a photodetector disposed at a position optically conjugate with the original by use of predetermined correction information corresponding to different positions of the original to be illuminated with the exposure light.

- 4. A method according to Claim 3, wherein the correction information concerns information corresponding to a light quantity of reflection light at each different positions of the original illuminated with the exposure light.
- 5. An exposure apparatus for lithographically transferring a pattern of an original onto a substrate, comprising:
 - a first photodetector disposed at a position optically conjugate with the original;
 - a second photodetector for detecting reflection light from the original; and

storing means for storing correction information with respect to an output of said first photodetector in relation to different positions of the original, on the basis of outputs of said first and second photodetectors, such that, in the lithographic pattern transfer, the output of said

The first field with the control of the control of

SHXX SP5 first photodetector can be corrected by use of the correction information.

6. An exposure apparatus, comprising;
an illumination optical system for
illuminating an original with exposure light from a
light source;

a projection optical system for projecting a pattern of the original, illuminated by the illumination optical system, onto a substrate;

a photodetector disposed at a position optically conjugate with the original;

control means for controlling an output of the light source on the basis of an output of the photodetector; and

correcting means for reducing an influence of reflection light from the original, on the basis of an output of the photodetector as the original is illuminated by the illumination optical system.

20

25

15

10

7. An apparatus according to Claim 6, wherein said correcting means operates to reduce or remove the influence of the reflection light, while referring to an output of said photodetector in a state in which the original is illuminated by said illumination optical system and in which there is no reflection light coming the pattern surface of the original and

10

15

20

directed back to said photodetector.

8. An apparatus according to Claim 6, wherein said correcting means includes reflection light detecting means for detecting any reflection light from the original, as illuminated by said illumination optical system, and being directed back to said illumination optical system, and wherein said correcting means operates to reduce or remove the influence of the reflection light, while referring to a result of detection by said detecting means.

9. An apparatus according to Claim 6, wherein said exposure apparatus is a scan type exposure apparatus in which exposure is performed while the original and the substrate are scanningly moved relative to the illumination light from said illumination optical system and to said projection optical system, wherein said correcting means is operable to reduce or remove any influence of the reflection light at each movement positions in the scan motion, and wherein said control means is operable to control an output of said light source on the basis of an output of said photodetector, with the influence of the reflection light at each movement positions in the scan motion being reduced or removed.

10

15

20

SHA DE

An apparatus according to Claim 7,/wherein said exposure apparatus is a scan type exposure apparatus in which exposure is performed while the original and the substrate are scanningly moved relative to the illumination light from said illumination optical system and to said projection optical system, wherein said light source comprises a discharge lamp, wherein said correcting means operates so that (i) outputs of said photodetector in relation to each movement positions are obtained beforehand while an applied electric power to said discharge lamp are kept constant and while the scan motion is performed at a speed lower than an ordinary scan speed, (ii) during the above procedure, an output of said photodetector in a state in which there is no light coming from the original and directed to said photodetector is obtained, (iii) in actual exposure of the substrate, at start of the scan motion, an output of said photodetector in a state in which there is no reflection light coming from the original and directed back to said photodetector is obtained, and (1v) at each movement positions in the scan motion, any influence of reflection light is removed or reduced on the basis of the above output and the outputs having been obtained beforehand, and wherein said control means controls, at each movement positions in the scan motion, the output of said light source on the basis

of an output of said photodetector with the influence of reflection light being removed or reduced.

An apparatus according to Claim 8, wherein said exposure apparatus is a scan type exposure apparatus in which exposure is performed while the original and the substrate are scanningly moved relative to the illumination light from said illumination optical system and to said projection optical system, wherein said light source comprises a discharge lamp, wherein said correcting means operates so that (i) outputs of said/photodetector and outputs of said reflection light detecting means in relation to each movement positions are obtained beforehand while an applied electric power to said discharge lamp are kept constant and while the scan motion is performed at a speed/lower than an ordinary scan speed, and (ii) in actual exposure of the substrate, at each movement positions in the scan motion, any influence of reflection light is removed or reduced on the basis of an/output of said photodetector and a result of detection by said reflection light detecting means, and wherein said control means controls, at each movement positions in the scan motion, the output of said light source on the basis of an output of said photodetector with the influence of reflection light being removed or reduced.

25

20

10

With the same of t

12. An exposure method, comprising the steps of:
lithographically transferring, to a substrate
and through a projection optical system, a pattern of
an original illuminated by an illumination optical
system for illuminating the original with exposure
light from a light source;

controlling an output of the light source on the basis of an output of a photodetector disposed at a position optically conjugate with the original; and

reducing an influence of reflection light from the original, on the basis of an output of the photodetector as the original is illuminated by the illumination optical system.

15

20

25

10

as a scan type exposure method in which exposure is performed while the original and the substrate are scanningly moved relative to the illumination light from the illumination optical system and to the projection optical system, wherein the light source comprises a discharge lamp, wherein outputs of the photodetector in relation to each movement positions are obtained beforehand while an applied electric power to the discharge lamp are kept constant and while the scan motion is performed at a speed lower than an ordinary scan speed, wherein,

According to the property of the state of th

Programme Annie An

10

20

25

15

during the above procedure, an output of the photodetector in a state in which there is no light coming from the original and directed to the photodetector is obtained, wherein, in actual exposure of the substrate, at start of the scan motion, an output of the photodetector in a state in which there is no reflection light coming from the original and directed back to the photodetector is obtained, wherein, at each movement postitions in the scan motion, any influence of reflection light is removed or reduced on the basis of the above output and the outputs having been obtained beforehand, and wherein, at each movement positions in the scan motion, the output of the light source is controlled on the basis of an output of said/photodetector with the influence of reflection light/being removed or reduced.

A method according to Claim 12, wherein said exposure method/is a scan type exposure method in which exposure/is performed while the original and the substrate are scanningly moved relative to the illumination light from the illumination optical system and/to the projection optical system, wherein the light/source comprises a discharge lamp, wherein outputs of the photodetector and outputs of reflection light detecting means, for detecting reflection light refledted from the original back to the illumination

optical system, are obtained beforehand in relation to each movement positions while an applied electric power to the discharge lamp are kept constant and while the scan motion is performed at a speed lower than an ordinary scan speed, and wherein, in actual exposure of the substrate, at each movement positions in the scan motion, any influence of reflection light is removed or reduced on the basis of an output of the photodetector and a result of detection by the reflection light detecting means and wherein the output of the light source is controlled on the basis of an output of the photodetector with the influence of reflection light being removed or reduced.

15. An apparatus according to Claim 2 or 5, wherein the correction information includes information corresponding to the light quantity of reflection light from the substrate.

16. A method according to Claim 4 or 12. wherein the correction information includes information corresponding to the light quantity of reflection light from the substrate.

17. A device manufacturing method, comprising the steps of:

transferring, by exposure, a pattern of an

20

15

10

Season Se

original onto a substrate by use of an exposure apparatus as recited in any one of Claims 1, 5 and 6; and

developing the substrate having the pattern transferred thereto.

10

15

20