МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа 3.2.1

Сдвиг фаз в цепи переменного тока

Автор: Черниенко Владислав Антонович Группа Б01-110 **Цель работы:** изучить влияние активного сопротивления, индуктивности и ёмкости на сдвиг фаз между током и напряжением в цепи переменного тока.

В работе используются: генератор звуковой частоты ($\Im\Gamma$), двухканальный осциллограф (\Im O), магазин ёмкостей, магазин сопротивлений, катушка индуктивности, резисторы, универсальный измеритель импеданса (LCR-метр).

Теоретические сведения

Удобным, хотя и не очень точным, прибором для измерения фазовых соотношений служит электронный осциллограф. Можно предложить два способа измерения разности фаз.

В первом способе два сигнала U_1 и U_2 подаются на горизонтальную (канал X) и вертикальную (канал Y) развёртки осциллографа. Смещение луча по горизонтали и вертикали определяется выражениями

$$x = x_0 \cdot \cos(\omega t), \qquad y = y_0 \cdot \cos(\omega t + \psi),$$

где ψ — сдвиг фаз между напряжениями U_1 и U_2 , а x_0 и y_0 — амплитуды напряжений, умноженные на коэффициенты усиления соответствующих каналов осциллографа. Исключив время, после несложных преобразований найдём

$$\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 + \frac{2xy}{x_0y_0}\cos\psi = \sin^2\psi.$$

Полученное выражение определяет эллипс, описываемый электронным лучом на экране осциллографа. Ориентация эллипса зависит как от искомого угла ψ , так и от усиления каналов осциллографа. Для расчёта сдвига фаз можно измерить отрезки $2y_{x=0}$ и $2y_0$ (или $2x_{y=0}$ и $2x_0$) и, подставляя эти значения в уравнение эллипса, найти

$$\psi = \pm \arcsin\left(\frac{y_{x=0}}{y_0}\right).$$

Для правильного измерения отрезка $2y_{x=0}$ важно, *чтобы центр эллипса лежал на оси у*.

Второй способ заключается в непосредственном измерении сдвига фаз между сигналами на экране двухканального осциллографа. Напряжения U_1 и U_2 одновременно подаются на входные каналы Θ при включённой внутренней горизонтальной развёртке. При этом сигналы одновременно отображаются на экране. Измерение разности фаз в таком случае удобно проводить следующим образом:

- 1) подобрать частоту горизонтальной развёртки, при которой на экране укладывается чуть больше половины периода синусоиды;
- 2) отцентрировать горизонтальную ось;
- 3) измерить расстояние x_0 (см. рис. 1) между нулевыми значениями *одного* из сигналов, что соответствует разности фаз π ;
- 4) измерить расстояние x между нулевыми значениями двух синусоид и пересчитать в сдвиг по фазе: $\psi = \pi x/x_0$. На рис. 1 синусоиды на экране ЭО сдвинуты по фазе на $\pi/2$.

Экспериментальная установка

Схема установки для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на рис. 1. Эталонная катушка L, магазин ёмкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения — звуковому генератору (3Γ).

Рис. 1: Схема установки для исследования сдвига фаз между током и напряжением

Сигнал, пропорциональный току, снимается с сопротивления r, пропорциональный напряжению, — с генератора. Оба сигнала подаются на осциллограф (90), имеющий два канала вертикального отклонения. Измерение разности фаз можно проводить одним из двух описанных выше способов.

На практике часто используются устройства, называемые ϕ азовращателями, которые позволяют изменять фазу напряжения в широких пределах ($0 < \psi < \pi$). Схема фазовращателя, применяемого в данной работе, изображена на рис. 2. Она содержит два одинаковых резистора R_1 , смонтированных на отдельной плате, магазин сопротивлений R и магазин ёмкостей C.

Найдём, как зависит сдвиг фаз между входным напряжением $U_{\rm bx}=U_0\cdot\cos(\omega t)$ (точки 1 и 2 на рис. 2) и выходным напряжением $U_{\rm bhx}$ (точки 3 и 4) от соотношения между импедансами сопротивления R и ёмкости C. Для соответствующих комплексных амплитуд имеет место соотношение:

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{2} \frac{R + \frac{i}{\omega C}}{R - \frac{i}{\omega C}}.$$
 (1)

Числитель и знаменатель (1) — комплексно-сопряжённые величины, модули которых одинаковы. Поэтому амплитуда выходного напряжения не зависит от R, и всегда равна $U_0/2$. Сдвиг фаз между выходным и входным напряжениями равен

$$\psi = \arg\left(\frac{U_{\text{вых}}}{U_{\text{вх}}}\right) = 2 \cdot \arctan\left(\frac{1}{\omega RC}\right).$$

Он может меняться от $\psi = \pi$ при $R \to 0$ до $\psi = 0$ при $R \to \infty$.

Рис. 2: Схема установки для исследования фазовращателя

Ход работы/Обработка результатов эксперимента

1. RC-цепь. Запишем параметры установки: ёмкость конденсатора C=0,5 мк Φ , сопротивление r=12,4 Ом, частота источника $\nu=1000$ Гц. Модуль реактивного сопротивления равен: $X_1=\frac{1}{\omega C}=318,3$ Ом. Измерим зависимость сдвига фаз от сопротивления R в диапазоне от 300 Ом до 3200 Ом. Для этого будем измерять сдвиг x одной синусоиды относительно другой в делениях экрана осцилографа и половину периода одной из синусоид x_0 . Для повышения точности будем увеличивать синусоиду, дабы лучше разрешить сдвиг. Полученные результаты занесём в табл. 1.

R, Om	x_0 , дел	х, дел	Δx , дел	ψ , рад	$\Delta \psi$, рад
318,31	5,0	1,2	0,10	0,75	0,06
636,62	5,0	0,8	0,10	0,55	0,07
1273,24	5,0	0,4	0,10	0,27	0,07
1591,55	5,0	0,3	0,10	0,20	0,07
1909,86	10,2	0,6	0,05	0,18	0,02
2546,48	10,2	0,4	0,05	0,12	0,02
2864,79	10,2	0,4	0,05	0,12	0,02
3183,10	10,2	0,3	0,05	0,09	0,02

Таблица 1: Зависимость сдвига фаз от сопротивления в RC-цепи

Согласно теории мы должны получить зависимость:

$$\tan(\psi) = \frac{1}{\omega C R_{\Sigma}}.$$

$\tan(\psi)$	0,94	0,61	0,27	0,21	0,19	0,12	0,12	0,09
$\Delta \tan(\psi)$	0,06	0,07	0,07	0,07	0,02	0,02	0,02	0,02
$1/\omega CR_{\Sigma}$	0,96	0,49	0,25	0,20	0,17	0,12	0,11	0,10

Таблица 2: Данные для построения графика $\tan(\psi) = f(1/\omega CR_{\Sigma})$

Рис. 3: График зависимости $tan(\psi) = f(1/\omega CR_{\Sigma}), (k = 1,00 \pm 0,05)$

2. RL-цепь. Аналогично RC-цепи проведём замеры и занесём все данные в табл. 3. Реактивное сопротивление: $X_2 = \omega L = 314, 2$ Ом.

R, Om	x_0 , дел	х, дел	Δx , дел	ψ , рад	$\Delta \psi$, рад
314,16	8,2	3,5	0,10	1,34	0,04
628,32	8,2	3,3	0,10	1,26	0,04
1256,64	8,2	2,7	0,10	1,03	0,04
1570,80	8,2	2,5	0,10	0,96	0,04
1884,95	8,2	2,3	0,10	0,88	0,04
2513,27	8,2	2,0	0,10	0,77	0,04
2827,43	8,2	1,8	0,10	0,69	0,04
3141,59	8,2	1,6	0,10	0,61	0,04

Таблица 3: Зависимость сдвига фаз от сопротивления RL-цепи

Согласно теории мы должны получить зависимость:

$$\tan(\psi) = \frac{\omega L}{R_{\Sigma}}.$$

$\tan(\psi)$	4,27	3,16	1,68	1,42	1,21	0,96	0,82	0,70
$\Delta \tan(\psi)$	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
$\omega L/R_{\Sigma}$	0,96	0,49	0,25	0,20	0,17	0,12	0,11	0,10

Таблица 4: Данные для построения графика $\tan(\psi) = f(\omega L/R_{\Sigma})$

Рис. 4: График зависимости $\tan(\psi)=f(\omega L/R_{\Sigma}),\,(k=4,20\pm0,33)$

3. RLC-цепь. Для RLC-цепи рассчитаем частоту резонанса (C=0,5 мк $\Phi,\ r=12,4$ Ом, L=50 мГн):

$$u_0 = \frac{1}{2\pi\sqrt{LC}} = 1007 \, \Gamma$$
ц.

	R = 0	0 Ом		R = 100 Om				
ν, Гц	x_0	x	$ \psi $	ν, Гц	x_0	x	$ \psi $	
870	2,9	1,0	1,08	800	3,1	0,8	0,81	
900	2,8	0,9	1,01	850	3,0	0,6	0,63	
930	2,7	0,6	0,70	900	2,8	0,4	0,45	
960	2,6	0,4	0,48	950	2,5	0,2	0,25	
1000	2,5	0,05	0,06	1000	2,5	0	0	
1030	2,4	0,4	0,52	1050	2,4	0,2	0,26	
1060	2,4	0,6	0,79	1100	2,4	0,4	0,52	
1090	2,3	0,7	0,96	1150	2,2	0,6	0,86	

Таблица 5: Сдвиг фаз в RLC-цепи

R = 0 Om										
$ \psi /\pi$	0,34	0,32	0,22	0,15	0,02	0,17	0,25	0,30		
ν/ν_0	0,86	0,89	0,92	0,95	0,99	1,02	1,05	1,08		
	R = 100 Om									
$ \psi /\pi$	0,26	0,20	0,14	0,08	0,00	0,08	0,17	0,27		
ν/ν_0	0,79	0,84	0,89	0,94	0,99	1,04	1,09	1,14		

Таблица 6: Данные для построения графика $|\psi|/\pi = f(\nu/\nu_0)$

Результаты таблицы отразим в графике на рис. 5. Синими точками показано изменение сдвига фаз при R=0 Ом, красными – при R=100 Ом.

Рассчитаем добротность цепи экспериментально по формуле:

$$Q = \frac{\nu_0}{2\Delta\nu},$$

получим

$$Q_0 = 6,9 \pm 1,8$$
 $Q_{100} = 3,0 \pm 0,4.$

Рассчитаем добротность цепи теоретически по формуле:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}},$$

получим

$$Q_0 = 6,8 Q_{100} = 2,2.$$

Рис. 5: График зависимости $|\psi|/\pi = f(\nu/\nu_0)$

Фазовращатель. Нарисуем векторную диаграмму для случая $\psi = \pi/2$:

Рис. 6: Векторная диаграмма для $\psi=\pi/2$

По расчётам получим R=318,5 Ом. На практике же получили значение $R=330\pm10$ Ом. Погрешность при практическом измерении оценена как шаг дискретезации (поворот какой-либо из ручек магазина), при котором отсутствуют заметные глазу изменения на осциллографе.

Вывод

В ходе данной лабораторной работы была проверена теоретическая зависимость сдвига фаз от параметров системы, экспериментально была рассчитана добротность системы в RLC-цепи и сравнена с теоретическим значением. Результат, полученный при изучении RL-цепи, не совпал с теоретическими прогнозами. Скорее всего, данное несовпадение случилось в следствие

неисправности оборудования (т.к. во время проведения лабораторной работы экспериментаторы столкнулись с рядом трудностей в работе приборов), но не исключается и факт ошибки экспериментаторов.