Summer School on Digital Humanities

Web site: https://bit.ly/dt4h-gis

Augusto Ciuffoletti

10 giugno 2025

• The user installs a GIS application on the PC

- In this scenario
- Quantum
- Runs on Windo

The user installs a GIS application on the PC

User

In this scenario, the Web is a tool for exchanging data
 but it's not directly involved and the property of the prope

The user installs a GIS application on the PC

Üser

- In this scenario, the Web is a tool for exchanging data
 - but it is not directly involved

The user installs a GIS application on the PC

- In this scenario, the Web is a tool for exchanging data
 - but it is not directly involved
- Quantum GIS (QGIS) is an open-source GIS application
 - Developed and maintained by volunteers
 - First released in 2002.
 - Here we use version 3.34 Prom
- Runs on Wind

The user installs a GIS application on the PC

- In this scenario, the Web is a tool for exchanging data
 - but it is not directly involved
- Quantum GIS (QGIS) is an open-source GIS application
 - Developed and maintained by volunteers
 - First released in 2002.
 - Here we use version 3.34 Prising
- Runs on Window

The user installs a GIS application on the PC

- In this scenario, the Web is a tool for exchanging data
 - but it is not directly involved
- Quantum GIS (QGIS) is an open-source GIS application
 - Developed and maintained by volunteers
 - First released in 2002
 - Here we use version 3.34 Program
- Runs on Windows Linux

The user installs a GIS application on the PC

- In this scenario, the Web is a tool for exchanging data
 - but it is not directly involved
- Quantum GIS (QGIS) is an open-source GIS application
 - Developed and maintained by volunteers
 - First released in 2002
 - Here we use version 3.34 (Prizren)
- Runs on Windows, Linux, and

The user installs a GIS application on the PC

Üser

- In this scenario, the Web is a tool for exchanging data
 - but it is not directly involved
- Quantum GIS (QGIS) is an open-source GIS application
 - Developed and maintained by volunteers
 - First released in 2002
 - Here we use version 3.34 (Prizren)
- Runs on Windows, Linux, and macOS

- Acquires and aggregates layers from various formats
 - Includes/both local data and remote databases
- Enables ordation of new layers
- Among

4 D > 4 A > 4 B > 4 B > B 900

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
 - Enables ordation of new layers
- Among

(D) (A) (B) (B) (A)

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
- Enables creation of new layers
 - Populated with gustomized features

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
- Enables creation of new layers
 - Populated with customized features

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
- Enables creation of new layers
 - Populated with customized features
- Among final output options:
 - Savina a gittle
 - Save in QCIB\(orn
 - Publis

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
- Enables creation of new layers
 - Populated with customized features
- Among final output options:
 - Produce a graphic file (JPG, PNG, etc.)
 - Save in OGIS format
 - Publish divere VCGIS

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
- Enables creation of new layers
 - Populated with customized features
- Among final output options:
 - Produce a graphic file (JPG, PNG, etc.)
 - Save in QGIS format
 - Publish of the CG/S Cloud (plugin needs

- Acquires and aggregates layers from various formats
 - Includes both local data and remote databases
- Enables creation of new layers
 - Populated with customized features
- Among final output options:
 - Produce a graphic file (JPG, PNG, etc.)
 - Save in QGIS format
 - Publish on the QGIS Cloud (plugin needed)

Create a New Project

- Open QGIS and select Project -> Net
- Add a Raster Backgroung
 - Layer -> Da
 - Double
 - Use the
- Understanding
- - Various provide

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Laver

- Layer -> Data Sply ce Mahager -> XYZ Tile
- Double
- Use the
- Understandin
- The map
 - Various provide

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Date Spurce Manager -> XYZ Ti
- You
- Double
- Use the
- Undoretandii
- The mai
- - Various provide

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - Double of the Propietion
- Double-off
- Use the
- Understandi
- The man
- Various provide

You can also use the Ctrl-L instead of using the men

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-olick on OpenStreetMap
- Use the
- Understanding
- The maj
 - Various provide

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom
- Inderstanding the Busia

Various provider

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region
- Inderstanding the Basta/RAP
- The map is how displayed

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region

Understanding the Raster Layer

• The map is how displayed as a laster laye

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region

- The map is now displayed as a raster layer
 - Composed of multiple tiles similar to an image
 - Cannot be inodified within QG
- Various provider

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region

- The map is now displayed as a raster layer
 - Composed of multiple tiles, similar to an image
 - Cannot be modified within QGIS
- Various providers after raster lavers

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region

- The map is now displayed as a raster layer
 - Composed of multiple tiles, similar to an image
 - Cannot be modified within QGIS
- Various providers offer raster lavers

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region

- The map is now displayed as a raster layer
 - Composed of multiple tiles, similar to an image
 - Cannot be modified within QGIS
- Various providers offer raster layers
 - OpenStreetMap is a tree, open-source provider

Create a New Project

Open QGIS and select Project -> New

Add a Raster Background Layer

- Layer -> Data Source Manager -> XYZ Tiles
 - You can also use the Ctrl-L instead of using the menu
- Double-click on OpenStreetMap
- Use the control pad to zoom in on a specific region

- The map is now displayed as a raster layer
 - Composed of multiple tiles, similar to an image
 - Cannot be modified within QGIS
- Various providers offer raster layers
 - OpenStreetMap is a free, open-source provider

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the
- Choose

- Add nev
- The new law
- W- ---- D----
- We can edit the Demo

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)

We can edit the Demo

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 Anthis example use Point

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point

A coordinate system (FPSG:

10140111111111111

Define a Vector Layer

Add new Relds for

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)

40.40.45.45. 5 000

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point

e.g. Last visit, with troe Date

- A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer

Define a Vector Layer

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer

When finished, click O

e.g. Last visit with type Date and click Add to Fields List

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer
 - e.g. Last visit with type Date and click Add to Fields List
 - When finished, click Ok
- The new layer appears in the Layers Pane

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer
 - e.g. Last visit with type Date and click Add to Fields List
 - When finished, click Ok
- The new layer appears in the Layers Panel
 - To view the layers panel, View Panels and tick Layers
- Two layers shown, Deep and OpenStreet Map
- We can edit the Demo v

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer
 - e.g. Last visit with type Date and click Add to Fields List
 - When finished, click Ok
- The new layer appears in the Layers Panel
 - To view the layers panel, View -> Panels and tick Layers
- Two layers shown, Demo and OpenStreetMap
- We can edit the Demo vector lay

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer
 - e.g. Last visit with type Date and click Add to Fields List
 - When finished, click Ok
- The new layer appears in the Layers Panel
 - To view the layers panel, View -> Panels and tick Layers
- Two layers shown, Demo and OpenStreetMap

- Layer -> Create Layer -> New Shapefile Layer
 - Or use the New Shapefile icon in the toolbar (third icon in the second row)
- Choose:
 - A filename to save the layer (e.g., Demo)
 - The feature type: Point, Multipoint, Line, Polygon
 - In this example, use Point
 - A coordinate system (EPSG: 4326 WGS84)
- Add new fields for the features in the layer
 - e.g. Last visit with type Date and click Add to Fields List
 - When finished, click Ok
- The new layer appears in the Layers Panel
 - To view the layers panel, View -> Panels and tick Layers
- Two layers shown, Demo and OpenStreetMap
- We can edit the Demo vector layer

Further Configuration of a Layer

Double-click on the Demolayer to set its properties

Further Configuration of a Layer

- Double-click on the Demo layer to set its properties
 - In Symbology, choose the graphic symbol and adjust its properties
 - In Fields, applate feature attributes
 - EVROPA'S & A FRICA
 - points You Zahari English Cham

40.49.43.43. 3 000

Further Configuration of a Layer

- Double-click on the Demo layer to set its properties
 - In Symbology, choose the graphic symbol and adjust its properties

ロト 4月ト 4 三 ト 4 三 ト 9 9 6

Further Configuration of a Layer

- Double-click on the Demo layer to set its properties
 - In Symbology, choose the graphic symbol and adjust its properties
 - In Fields, update feature attributes

Further Configuration of a Layer

- Double-click on the Demo layer to set its properties
 - In Symbology, choose the graphic symbol and adjust its properties
 - In Fields, update feature attributes
 - you may want to add a new las t visit field

(D) (A) (B) (B) (A)

Further Configuration of a Layer

- Double-click on the Demo layer to set its properties
 - In Symbology, choose the graphic symbol and adjust its properties
 - In Fields, update feature attributes
 - you may want to add a new las t visit field
 - for this enable editing with the pencil and add (or delete) a field

Further Configuration of a Layer

- Double-click on the Demo layer to set its properties
 - In Symbology, choose the graphic symbol and adjust its properties
 - In Fields, update feature attributes
 - you may want to add a new las t visit field
 - for this enable editing with the pencil and add (or delete) a field
 - In Labels, select Single label and choose the field for labeling the points (e.g., select the name field)

Populate a Vector Layer (with Points) Select the Demo layer and Layer

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Ent -> Mod Pot
- Click on
- Repeat
- To move
- .
- To exit edit mode.
- -> Togale Editing

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Exit -> Add Paint Jeath

Populate a Vector Layer (with Points)

- Select the Demo layer and Layer -> Toggle editing
 - · Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ct//+) shortcut
 - The mouse pointer changes to a crosshai
- Click on
- Reneat
- To move

Toggle Editing

Populate a Vector Layer (with Points)

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair

Augusto Ciuffoletti

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A nox appears to serie at the fields
 - Repeat a Vou
- To move;

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like
- To move a point feature,
 - menu Edit Edit gentheir Milwe Feature
 - right click on the point to
 - drag to the

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like
- To move a point feature,
 - menu Edit -> Edit geometry -> Move Feature
 - right click on the point to in
 - o drag to the New
 - left click to displace the

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like
- To move a point feature,
 - menu Edit -> Edit geometry -> Move Feature
 - right click on the point to move
 - drag to the new position
 - left click to displace the selected per
- -> Togale Editing

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like
- To move a point feature,
 - menu Edit -> Edit geometry -> Move Feature
 - right click on the point to move
 - drag to the new position
 - left click to displace the selected point.
- To exit edit mode, right slick by the Debor layer and select Layer
 Toggle Editing

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like
- To move a point feature,
 - menu Edit -> Edit geometry -> Move Feature
 - right click on the point to move
 - drag to the new position
 - left click to displace the selected point
- To exit edit mode, right slick on the De layer and select Layer
 Toggle Editing

- Select the Demo layer and Layer -> Toggle editing
 - Or the pencil in the second toolbar
- Then select Edit -> Add Point feature
 - or the ctrl+. shortcut
 - The mouse pointer changes to a crosshair
- Click on the map to add a new point
 - A box appears to set feature fields
- Repeat as you like
- To move a point feature,
 - menu Edit -> Edit geometry -> Move Feature
 - right click on the point to move
 - drag to the new position
 - left click to displace the selected point
- To exit edit mode, right-click on the Demo layer and select Layer
 - -> Toggle Editing

- Right-click on the Demo layer and select Open Attribute Table
 - Use the
- Press ctrl
- Modi
- Press ct
- Add an Attrik
- Right-cli
- .

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to admist the view style
- Press ctrl+E/o/mable table aditing (or click the Pencilicon
- Modify at the values as
- Press ct
- Add an Attrib
 - Right-cli

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E/to enable table additing (or click the Pencilicon
- Modify attribute values as needed
- Press ct
- Add an Attrib
 - Right-cli
 - .

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the *Pencil* icon)
- Modify attribute values as needed
- Press ct
- Add an Attrib
 - Right-cli
 - N .

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the *Pencil* icon)
- Modify attribute values as needed
- A LL S
- Right-clie

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

Add an Attribute ("desc") to the Features

Right-click on the Domblave cand select Open Attribute Table

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

- Right-click on the Demo layer and select Open Attribute Table
 - Enable editing
 - Press ctriby to and a new relation and the New Field" button in the toolbar)
 - Set the name and type (e.g. "dese of type Text)
 - Click OK

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

- Right-click on the Demo layer and select Open Attribute Table
 - Enable editing
 - Press ctriby to add a new tield (or find the "New Field" button in the toolbar)
 - Set the name and type (e.g. "dese" of type Text)
 - Click OK

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

- Right-click on the Demo layer and select Open Attribute Table
 - Enable editing
 - Press ctrl+w to add a new field (or find the "New Field" button in the toolbar)
 - Set the name and type (e.g., "dese" of type Text)
 - Click OK

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

- Right-click on the Demo layer and select Open Attribute Table
 - Enable editing
 - Press ctrl+w to add a new field (or find the "New Field" button in the toolbar)
 - Set the name and type (e.g., "desc" of type Text)
 - Click OK

Update Feature Attributes

- Right-click on the Demo layer and select Open Attribute Table
 - Use the bottom-right icons to adjust the view style
- Press ctrl+E to enable table editing (or click the Pencil icon)
- Modify attribute values as needed
- Press ctrl+s to save

- Right-click on the Demo layer and select Open Attribute Table
 - Enable editing
 - Press ctrl+w to add a new field (or find the "New Field" button in the toolbar)
 - Set the name and type (e.g., "desc" of type Text)
 - Click OK

- Select a layer and click the Open Attribute Jable button in the

- Select a layer and click the Open Attribute Table button in the toolbar
- Click ctrl+i or the abacus icon in the attribute lable window
- Input a native find the new field (e.g., Lat)
- Choose
- Enter the
- istance(@geometry
- Ine distan

- Note: to see me
- EPSG: 3857. Using the trai

- Select a layer and click the Open Attribute Table button in the toolbar
- Click ctrl+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose & Moe
- Enter the following
- The divis
 - I Ne dista

- Select a layer and click the Open Attribute Table button in the toolbar
- Click CTRL+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the
- Enter the tollowing formula
- The distance Wastick takes
 - The distance function takes
 - - pte: to see meters of versely is
 - e transform function

- Select a layer and click the Open Attribute Table button in the toolbar
- Click ctrl+i or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the field (e.g., *Decimal Number*)
- Enter the following formula in the Expres
- distance(@geometry, makelpoint)
 - The distance function takes

For each point compute a new field with distance from Rome in degrees

- Select a layer and click the Open Attribute Table button in the toolbar
- Click CTRL+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the field (e.g., *Decimal Number*)
- Enter the following formula in the Expression box

distance(@geometry, make_point(12.5, 41.9))

The distance function takes to

For each point compute a new field with distance from Rome in degrees

- Select a layer and click the Open Attribute Table button in the toolbar
- Click CTRL+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the field (e.g., *Decimal Number*)
- Enter the following formula in the Expression box

- The distance function takes two points
 - @geometry is the one corresponding to the row in the table
 - make_point(12.5 41/9) corresponds to Rome (long, lat)
- FPSG-3857 Using the trans

For each point compute a new field with distance from Rome in degrees

- Select a layer and click the Open Attribute Table button in the toolbar
- Click CTRL+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the field (e.g., *Decimal Number*)
- Enter the following formula in the Expression box

- The distance function takes two points
 - @geometry is the one corresponding to the row in the table
 - make_point(12.5, 41.9) corresponds to Rome (long, lat)
- Note: to see meters conversible is needed, from EPSG: 4326 to EPSG: 3857, using the transform function

For each point compute a new field with distance from Rome in degrees

- Select a layer and click the Open Attribute Table button in the toolbar
- Click CTRL+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the field (e.g., *Decimal Number*)
- Enter the following formula in the Expression box

- The distance function takes two points
 - @geometry is the one corresponding to the row in the table
 - make_point(12.5, 41.9) corresponds to Rome (long,lat)
- Note: to see meters conversion is needed, from EPSG: 4326 to EPSG: 3857, using the transform function

For each point compute a new field with distance from Rome in degrees

- Select a layer and click the Open Attribute Table button in the toolbar
- Click CTRL+I or the abacus icon in the attribute table window
- Input a name for the new field (e.g., Lat)
- Choose a type for the field (e.g., *Decimal Number*)
- Enter the following formula in the Expression box

- The distance function takes two points
 - @geometry is the one corresponding to the row in the table
 - make_point(12.5, 41.9) corresponds to Rome (long,lat)
- Note: to see meters conversion is needed, from EPSG: 4326 to EPSG: 3857, using the transform function

Save Your Work

- Save the project in QGIS native format (Ctrl+S or Project -> Save)
- Export as an image (Project -> Import/Export -> Export Map to Image)
- Export in a wortable visit Property SE port DXF

Save Your Work

- Save the project in QGIS native format (Ctrl+S or Project -> Save)
- Export as an image (Project -> Import/Export -> Export Map to Image)
- Export in a wortable vector to mat (Project) > Export

Save Your Work

- Save the project in QGIS native format (Ctrl+S or Project -> Save)
- Export as an image (Project -> Import/Export -> Export Map to Image)
- Export in a portable vector format (Project -> Export DXF)

GUI Toolbar Icons (Quick Reference)

Lab Activity

- (Basic) North of La Spezia, there is a region called "Cinque Terre".
 The name comes from five fishing villages: Corniglia, Manarola,
 Vernazza, Monterosso, and Riomaggiore. Set a Point for each
 village and display a label with its name on the map.
- (Intermediate) Draw a sea route visiting all the villages, starting from Levanto (another small town to the north). For this create a new LineString vector, enable editing, select Add Linear Element and mark waypoints with the left button. Right button to close the LineString.
- (Intermediate) Convert the line to a new layer of vertices using Vector -> Geometry Tools -> Extract Vertices
- (Advanced) Compute the longitude and latitude of these points, and label each one with a string "(long, lat)" using the concat function in the calculator.

