ANALYSE MULTIRESOLUTRION # un outil pour la construction de bases d'ondelettes

Pour construire des bases d'ondelettes orthonormées, les théoriciens Mallat et Meyer ont introduit la notion d'analyse multirésolution.

Définition :

Une analyse multirésolution est une suite $\{V_k\}_{k\in\mathbb{Z}}$ de sous-espaces fermés de $\mathcal{L}^2(\mathbb{R})$ tels que :

- $\forall (k,l) \in \mathbb{Z}^2, f \in V_k \iff f(-2^k l) \in V_k \# \text{ propriété d'invariance par translation}$
- $\forall k \in \mathbb{Z}, V_{k+1} \subset V_k$
- $\forall k \in \mathbb{Z}, f \in V_k \iff f\left(\frac{\cdot}{2}\right) \in V_{k+1}$
- $\lim_{j \to \infty} V_k = \bigcap_{k \in \mathbb{Z}} V_k = \emptyset$
- $\lim_{j \to -\infty} V_k = \overline{\bigcap_{k \in \mathbb{Z}} V_k} = \mathcal{L}^2(\mathbb{R})$ où la notation \overline{A} désigne l'adhérence de A.
- $\exists \varphi, \{\varphi(.-n)\}_{n\in\mathbb{Z}}$ forme une base orthonormée de V_0 .

 φ est appelée fonction d'échelle associée à l'analyse multirésolution. Cette fonction permet notamment la connaissance de la suite $\{V_k\}_{k\in\mathbb{Z}}$ et ainsi la déduction d'une base orthonormée de V_k pour tout $k\in\mathbb{Z}$. On peut alors définir une ondelette associée à l'analyse multirésolution : il s'agira de toute fonction ψ qui forme avec ses translatées entières une base orthonormée de W_0 , supplémentaire orthogonal de V_1 dans V_0 . En effet, il découle de la définition de W_k que $\mathcal{L}^2(\mathbb{R}) = \bigoplus_{k\in\mathbb{Z}} W_k$.

Par suite la famille $\left\{\frac{1}{\sqrt{2^m}}\psi\left(\frac{\cdot-2^mn}{2^m}\right)\right\}_{(m,n)\in\mathbb{Z}^2}$ forme une base orthonormée de $\mathcal{L}^2(\mathbb{R})$.

Les espaces W_k pour $k \in \mathbb{Z}$ sont appelés espaces des détails. Ils ne forment pas une famille d'espaces emboîtés mais les propriétés d'échelles et d'invariance par translation sont conservées. En effet, pour $k \in \mathbb{Z}$, W_{k-1} est orthogonal à V_{k-1} , d'où W_{k-1} orthogonal à W_k en vertu de l'égalité $\mathcal{L}^2(\mathbb{R}) = \underbrace{\longrightarrow}_{k} W_k$.