Вторая задача очень простая — одна формула из учебника. Даже нет алгоритмики. Сдавать будем сразу два задания.

Теория — стр. 28-36; 86-88; 88-91; 92-96

Задание r3z1

Построение точечной оценки.

Есть выборка. Знаем семейство распределения.

$$X^{(n)}=(x_1,\ldots,x_n),\,X_i\thicksim F(heta)$$

heta — неизвестный параметр, число и вектор

Хотим построить $\overset{\wedge}{ heta}(X^{(n)}).$ Оценка должна попадать в интервал.

Два метода: максимальное правдоподобие и моментов. ММП не всегда работает.

1. Метод максимального правдоподобия.

Рассмотрим функцию плотности. Она будет

совместная.
$$f_{x^{(n)}}(x_1,\ldots,x_n) = \prod_{i\,=\,1}^n f(x_i)$$

Формально, для дискретного распределния функции плотности не сущетсвует. Но есть соглашение:

$$f(x)=\mathbb{P}(X=x); \ f_{x^n}(x_1,\ldots,x_n)=\mathbb{P}(X_1=x_1,\ldots,X_n=x_n)= \ =\prod_{i=1}^n\mathbb{P}(X_i=x_i)$$

Программировать почти не надо. На листочке нужно принести расписывание и вывода формулы для точечной оценки. Решаем в общем виде. Потом общую формулу вносим в программу и загружаем в неё наши данные, получаем значение оценки. Нужно различать оценку (функция) и значение оценки.

Дана ф.плот или распределения, доп параметры, метод оценки.

$$f_{x^{(n)}}(x_1,\ldots,x_n\mid heta)=L(heta)$$
 — функция правдоподобия

Оценкой максимального правдоподобия называется: $\overset{\wedge}{ heta} = rgmax \, L(heta \mid X^{(n)})$, $X^{(n)}$ —

фиксированная.

Алгоритм:

1. Записать функцию правдоподобия. Всё отталкивается от неё. Будут нюансы, на консультации нужно будет поспрашивать! Иначе — каверзные вопросы. Функцию правдоподобия все способны найти.

Тут я вышел на 5 минут

Если θ — дискретна, то:

- 1. $L'(\theta)$
- $2.~L'(heta)=0 \implies heta_0$ крит.точка
- 3. I. $L'(\theta_0-arepsilon)>0,\ L'(\theta_0+arepsilon)<0$ II. $L''(\theta_0)<0$

Часто вместо функции правдоподобия используется логарифмическая функция $lpha(heta) = \ln L(heta)$. Нужно для использования формулы логарифма произведения.

2. Метод моментов.

Если для g(x) существует $\mathbb{E}\,g(x)=a(heta)$, то из ЗБЧ

следует: выборочные моменты сходятся к

теоретическим
$$\Big(rac{1}{n}\sum_{i=1}^n g(x_i)\stackrel{\mathbb{P}}{
ightarrow} a(heta)\Big).$$

Например:

$$\theta = (\theta_1, \, \theta_2)$$

 \mathbb{I} . X — абс. непрер.

$$egin{cases} rac{1}{n}\sum_{i=1}^n x_i = \int_\chi x f(x\mid heta)\,dx \ rac{1}{n}\sum_{i=1}^n x_i^2 = \int_\chi x^2 f(x\mid heta)\,dx \end{cases}$$

III. X — дискр.

$$egin{cases} rac{1}{n}\sum_{i=1}^n x_i = \sum_{x_i \in \chi} x_k imes p_k \ rac{1}{n}\sum_{i=1}^n x_i^2 = \sum_{x_i \in \chi} x_k^2 imes p_k \end{cases}$$

В зависимости от моментов, которые мы выбрали, ответы будут разные.

MLE — метод максимального правдоподобия. MOME — метод момента.

Задание r3z2

Интервальное оценивание

Построить оценивающее множество. $A(X^{(n)})$ — доверительное множество для параметра θ .

$$\mathbb{P}ig(heta\in A(X^{(n)})ig)\geq p^*(=1-lpha);$$

 p^* — коэф. доверия;

Q = (1 - lpha) imes 100% — надёжность доверительного интервала.

Три вида доверительных интервалов:

$$\mathbb{I}$$
. Двусторонний: $\mathbb{P}(\underline{\theta}< heta<\overline{ heta})\geq 1-lpha$; $(\underline{ heta},\,\overline{ heta})$

 \mathbb{II} . Правосторонний: $\mathbb{P}(\underline{\theta}<\overline{\theta})$; $(\underline{\theta},+\infty)$ (нижняя доверительная граница)

 \mathbb{III} . Левосторонний: $\mathbb{P}(\theta<\overline{\theta})\geq 1-lpha$; $(-\infty,\,\overline{ heta})$ (верхняя доверительная граница)

Для двустороннего вычисляем вернюю и нижнюю доверительную границу для коэф. надёжности $1-\frac{\alpha}{2}$

Может спросить: строили дов. интервал для мат ожидания норм. распределния. Нужна верняя дов. граница. Откуда эта формула берётся?! По методу опорной функции недостаточно. Основную мысль нужно рассказать.