Výroková a predikátová logika - XII

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Základní algebraické teorie

ullet *Teorie grup* nad jazykem $L=\langle +,-,0 \rangle$ s rovností má axiomy

$$x+(y+z)=(x+y)+z$$
 (asociativita +)
 $0+x=x=x+0$ (neutralita 0 k +)
 $x+(-x)=0=(-x)+x$ (-x je inverzní prvek k x)

- Teorie komutativních grup má navíc ax. x + y = y + x (komutativita +)
- *Teorie okruhů* je jazyka $L = \langle +, -, \cdot, 0, 1 \rangle$ s rovností, má navíc axiomy

$$1 \cdot x = x = x \cdot 1$$
 (neutralita 1 k ·) $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (asociativita ·) $x \cdot (y + z) = x \cdot y + x \cdot z$, $(x + y) \cdot z = x \cdot z + y \cdot z$ (distributivita · k +)

- Teorie komutativních okruhů má navíc ax. $x \cdot y = y \cdot x$ (komutativita ·)
- Teorie těles stejného jazyka má navíc axiomy

$$x\neq 0 \to (\exists y)(x\cdot y=1)$$
 (existence inverzního prvku k ·) $0\neq 1$ (netrivialita)

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K \subseteq M(L)$ je <mark>třída struktur jazyka L.</mark> Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Není-li K uzavřená na el. ekvivalenci, není axiomatizovatelná.

Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

Důsledek kompaktnosti

Věta *Má-li teorie* T *pro každé* $n \in \mathbb{N}$ *alespoň* n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů c_i .
- Dle předpokladu má každá konečná část teorie T¹ model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- Jeho redukt na původní jazyk je hledaný nekonečný model teorie T.

Důsledek Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelné, právě když \overline{K} j jsou axiomatizovatelné.

 $D\mathring{u}kaz \ (\Rightarrow)$ Je-li T konečná axiomatizace K v uzavřeném tvaru, pak teorie s jediným axiomem $\bigvee_{\varphi \in T} \neg \varphi$ axiomatizuje \overline{K} . Nyní dokažme (\Leftarrow) .

- Nechť \overline{T} , \overline{S} jsou teorie jazyka \overline{L} takové, že M(T) = K, $M(S) = \overline{K}$.
- Pak M(T ∪ S) = M(T) ∩ M(S) = ∅ a dle věty o kompaktnosti existují konečné T' ⊆ T a S' ⊆ S takové, že ∅ = M(T' ∪ S') = M(T') ∩ M(S').
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K.

5/17

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- charakteristiky 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1+1+\cdots+1$ (+ aplikováno (p-1)-krát).
- charakteristiky p, kde p je prvočíslo, je-li p je nejmenší t.ž. $A \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií $T \cup \{p1 = 0\}$.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{p1 \neq 0 \mid p \in \mathbb{N}^+\}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

Důkaz Stačí dokázat, že \overline{K} není axiomatizovatelná. Kdyby $M(S) = \overline{K}$, tak $S' = S \cup T'$ má model \mathcal{B} , neboť každá konečná $S^* \subseteq S'$ má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech S^*). Pak ale $\mathcal{B} \in M(S) = \overline{K}$ a zároveň $\mathcal{B} \in M(T') = K$, což není možné.

Otevřená axiomatizovatelnost

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

Důkaz Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'. \square

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \leq n \\ i \neq j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.

Definovatelné množiny

Zajímá nás, které množiny lze v dané struktuře zadefinovat.

• Množina definovaná formulí $\varphi(x_1,...,x_n)$ ve struktuře \mathcal{A} je množina

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$$

Zkráceným zápisem, $\varphi^{\mathcal{A}}(\overline{x}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})]\}$, kde $|\overline{x}| = n$.

• Množina definovaná formulí $\varphi(\overline{x},\overline{y})$ s parametry $\overline{b}\in A^{|\overline{y}|}$ ve struktuře $\mathcal A$ je

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Např. pro $\varphi = E(x,y)$ je $\varphi^{\mathcal{G},b}(x,y)$ množina sousedů vrcholu b v grafu \mathcal{G} .

• Pro strukturu \mathcal{A} , množinu $\mathcal{B} \subseteq \mathcal{A}$ a $n \in \mathbb{N}$ označme $\overline{\mathrm{Df}}^n(\mathcal{A}, \mathcal{B})$ třídu všech množin $D \subseteq \mathcal{A}^n$ definovatelných ve struktuře \mathcal{A} s parametry z \mathcal{B} .

Pozorování $\operatorname{Df}^n(\mathcal{A}, B)$ je uzavřená na doplněk, sjednocení, průnik a obsahuje \emptyset , A^n . Tedy tvoří podalgebru potenční algebry $\mathcal{P}(A^n)$.

8/17

Definovatelnost a automorfismy

Ukážeme, že definovatelné množiny jsou invariantní vůči automorfismům.

Tvrzení Nechť $D \subseteq A^n$ je množina definovatelná ve struktuře \mathcal{A} z parametrů \overline{b} a h je automorfismus \mathcal{A} , který je identický na \overline{b} . Pak h[D] = D.

Důkaz Nechť $D=\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}).$ Pak pro každé $\overline{a}\in A^{|\overline{x}|}$

$$\overline{a} \in D \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[he(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$$

$$\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h\overline{a}, \overline{y}/h\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow h\overline{a} \in D. \quad \Box$$

Např. graf $\mathcal G$ má právě jeden netriv. automorfismus h zachovávající vrchol 0.

Navíc množiny $\{0\}$, $\{1,4\}$, $\{2,3\}$ jsou definovatelné z parametru 0. Tedy $Df^1(\mathcal{G},\{0\}) = \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$

Rekurzivní a rekurzivně spočetné množiny

Které problémy jsou algoritmicky řešitelné?

- Intuitivní pojem "algoritmus" lze přesně formalizovat (např. pomocí TS).
- Při vhodném kódování přirozenými čísly problém reprezentujeme jako množinu kódů vstupů, na které je odpověď ano (kladné instance). Např.
 SAT = { [\varphi] | \varphi je splnitelný výrok v CNF }.
- Množina $A \subseteq \mathbb{N}$ je <u>rekurzivní</u>, pokud existuje algoritmus, který <u>pro každý</u> vstup $x \in \mathbb{N}$ skončí a zjistí zda $x \in A$ (výstup <u>ano/ne</u>). Říkáme, že takový algoritmus rozhoduje, zda $x \in A$.
- Množina A ⊆ N je rekurzivně spočetná (r. s.), pokud existuje algoritmus, který pro každý vstup x ∈ N skončí, právě když x ∈ A. Říkáme, že takový algoritmus rozpoznává, že x ∈ A. Ekvivalentně, A je r. s. pokud existuje algoritmus, který na výstup postupně generuje všechny prvky A.

Pozorování Pro každé $A \subseteq \mathbb{N}$ platí, že \overline{A} je rekurzivní $\Leftrightarrow \overline{A}$, \overline{A} jsou r. s.

Rozhodnutelné teorie

Dá se pravdivost sentence v dané teorii algoritmicky rozhodovat?.

Předpokládáme (vždy), že jazyk L je rekurzivní. Teorie T nad L je rozhodnutelná, je-li Thm(T) rekurzivní, jinak je Thm(T) rekurzivní, jinak je Thm(T) rekurzivní,

Tvrzení Pro každou teorii T jazyka L s rekurzivně spočetnou axiomatikou,

- (i) Thm(T) je rekurzivně spočetná,
- (ii) je-li navíc T kompletní, je Thm(T) rekurzivní, t.j. T je rozhodnutelná.

 $extit{Dukaz}$ Konstrukce systematického tabla z T s $F \varphi$ v kořeni předpokládá danou enumeraci axiomů T. Má-li T r. s. axiomatiku, je možné ji poskytnout algoritmicky. Pak konstrukce dává algoritmus, který rozpoznává $T \vdash \varphi$. Je-li navíc T kompletní, pak pro každou sentenci φ platí $T \not\vdash \varphi \Leftrightarrow T \vdash \neg \varphi$. Tedy paralelní konstrukce systematických tabel z T s $F \varphi$ resp. $T \varphi$ v kořeni poskytuje algoritmus pro rozhodování, zda $T \vdash \varphi$.

Rekurzivně spočetná kompletace

Co když efektivně popíšeme všechny jednoduché kompletní extenze?

Řekneme, že množina všech (až na ekvivalenci) jednoduchých kompletních extenzí teorie T je rekurzivně spočetná, existuje-li algoritmus $\alpha(i,j)$, který generuje i-tý axiom j-té extenze (při nějakém očíslování), případně oznámí, že (takový axiom či extenze) neexistuje.

Tvrzení Má-li teorie T rekurzivně spočetnou axiomatiku a množina všech (až na ekvivalenci) jejích jednoduchých kompletních extenzí je rekurzivně spočetná, je T rozhodnutelná.

Důkaz Díky r. s. axiomatice poskytuje konstrukce systematického tabla z T s $F\varphi$ v kořeni algoritmus pro rozpoznání $T \vdash \varphi$. Pokud ale $T \not\vdash \varphi$, pak $T' \vdash \neg \varphi$ v nějaké jednoduché kompletní extenzi T' teorie T. To lze rozpoznat paralelní postupnou konstrukcí systematických tabel pro $T\varphi$ z jednotlivých extenzí. V i-tém stupni se sestrojí tabla do i kroků pro prvních i extenzí. \Box

Příklady rozhodnutelných teorií

Následující teorie jsou rozhodnutelné, ačkoliv jsou nekompletní.

- teorie čisté rovnosti; bez axiomů v jazyce $L = \langle \rangle$ s rovností,
- ullet teorie unárního predikátu; bez axiomů v jazyce $L=\langle U \rangle$ s rovností, kde U je unární relační symbol,
- teorie hustých lineárních uspořádání DeLO*,
- teorie algebraicky uzavřených těles v jazyce $L=\langle +,-,\cdot,0,1\rangle$ s rovností, s axiomy teorie těles a navíc axiomy pro každé $n\geq 1$,

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0),$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$ (· aplikováno (k-1)-krát).

- teorie komutativních grup,
- teorie Booleových algeber.

Rekurzivní axiomatizovatelnost

Dají se matematické struktury "efektivně" popsat?

- Třída $K \subseteq M(L)$ je rekurzivně axiomatizovatelná, pokud existuje teorie T jazyka L s rekurzivní axiomatikou a M(T) = K.
- Teorie T je rekurzivně axiomatizovatelná, pokud M(T) je rekurzivně axiomatizovatelná.

Tvrzení Pro každou konečnou strukturu A v konečném jazyce s rovností je $\overline{\text{Th}(A)}$ rekurzivně axiomatizovatelná. Tedy, $\overline{\text{Th}(A)}$ je rozhodnutelná.

Důkaz Nechť $A = \{a_1, \ldots, a_n\}$. Teorii $\operatorname{Th}(\mathcal{A})$ axiomatizujeme jednou sentencí (tedy rekurzivně) kompletně popisující \mathcal{A} . Bude tvaru "existuje právě n prvků a_1, \ldots, a_n splňujících právě ty základní vztahy o funkčních hodnotách a relacích, které platí ve struktuře \mathcal{A} ."

Příklady rekurzivní axiomatizovatelnosti

Následující struktury A mají rekurzivně axiomatizovatelnou teorii Th(A).

- $\langle \mathbb{Z}, \leq \rangle$, teorií diskrétních lineárních uspořádání,
- ⟨ℚ, ≤⟩, teorií hustých lineárních uspořádání bez konců (DeLO),
- $\langle \mathbb{N}, S, 0 \rangle$, teorií následníka s nulou,
- $\langle \mathbb{N}, S, +, 0 \rangle$, tzv. Presburgerovou aritmetikou,
- $\bullet \ \langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, teorií reálně uzavřených těles,
- ullet $\langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$, teorií algebraicky uzavřených těles charakteristiky 0.

Důsledek Pro uvedené struktury je Th(A) rozhodnutelná.

Poznámka Uvidíme, že ale $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ *rekurzivně axiomatizovat nelze.* (Vyplývá to z první Gödelovy věty o neúplnosti).

Robinsonova aritmetika

Jak efektivně a přitom co nejúplněji axiomatizovat $\underline{\mathbb{N}}=\langle\mathbb{N},S,+,\cdot,0,\leq\rangle$? Jazyk aritmetiky je $L=\langle S,+,\cdot,0,\leq\rangle$ s rovností.

Robinsonova aritmetika Q má axiomy (konečně mnoho)

$$S(x) \neq 0$$

$$S(x) = S(y) \rightarrow x = y$$

$$x + 0 = x$$

$$x + S(y) = S(x + y)$$

$$x \cdot S(y) = x \cdot y + x$$

$$x \neq 0 \rightarrow (\exists y)(x = S(y))$$

$$x \leq y \leftrightarrow (\exists z)(z + x = y)$$

Poznámka Q je velmi slabá, např. nedokazuje komutativitu či asociativitu operací +, · ani tranzitivitu \leq . Nicméně postačuje například k důkazu existenčních tvrzení o numerálech, která jsou pravdivá v $\underline{\mathbb{N}}$.

Např. pro
$$\varphi(x,y)$$
 tvaru $(\exists z)(x+z=y)$ je
$$Q \vdash \varphi(\underline{1},\underline{2}), \quad \textit{kde } \underline{1} = S(0) \textit{ a } \underline{2} = S(S(0)).$$

Peanova aritmetika

Peanova aritmetika PA má axiomy

- (a) Robinsonovy aritmetiky Q,
- (b) schéma indukce, tj. pro každou formuli $\varphi(x, \overline{y})$ jazyka L axiom

$$(\varphi(0,\overline{y}) \wedge (\forall x)(\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y}))) \to (\forall x)\varphi(x,\overline{y}).$$

Poznámka PA je poměrně dobrou aproximací $\operatorname{Th}(\underline{\mathbb{N}})$, dokazuje všechny základní vlastnosti platné v $\underline{\mathbb{N}}$ (např. komutativitu +). Na druhou stranu existují sentence pravdivé v $\underline{\mathbb{N}}$ ale nezávislé v PA.

Poznámka V jazyce 2. řádu lze axiomatizovat $\underline{\mathbb{N}}$ (až na izomorfismus), vezmeme-li místo schéma indukce přímo axiom indukce (2. řádu)

$$(\forall X) \ ((X(0) \land (\forall x)(X(x) \to X(S(x)))) \to (\forall x) \ X(x)).$$

