Homework 02: Accumulated Reward

Tuesday, March 22, 2022 10:54 AM

1) Given the world defined by the following transition function $f_{MT}(s, a)$, the reward function $f_{R}(s, a, s_{f}) = f_{R}(s_{f})$ and 4 = 0.9:

$$\begin{array}{cccc} a_1 & a_2 \\ s_1 & s_2 & s_2 \\ s_1 & s_3 & s_3 \\ s_3 & s_3 & s_1 \\ s_4 & s_1 & s_4 \\ \end{array} \qquad \begin{array}{ccccc} f_R(s_f) = \begin{array}{cccc} s_1 & 2 \\ s_2 & 1 \\ s_3 & -1 \\ s_4 & 10 \end{array}$$

© Calculate the accumulated reward function $f_{AB}(T_1)$ for the trajectory: $T_1 = s_1, s_2, s_3, s_1, s_2, s_1$

(b) Calculate the accumulated remard function far(I1) for the trajectory:

$$f_{AR}(\tau_1) = 2 + \gamma(1) + \gamma^2(-1)$$

$$\frac{1}{f_{AR}(\tau_1)} = 2 + 0.9(1) + (0.9)^2(-1)$$

$$f_{AR}(\tau_2) = 2.09$$

@Calculate the accumulated reward function far (T1) for the trayectory:

Solution $\begin{array}{c}
T_3 = S_{11}S_{11}S_{21} \\
2 & 1 \\
S_{21} \longrightarrow S_{21}
\end{array}$ $\begin{array}{c}
F_{AR} \left(T_3\right) = 2 + \gamma(1) \\
= 2 + 0.9(1) \\
= 2 + 0.9 \\
\hline
\left\{f_{AR} \left(T_3\right) = 2.9\right\}$

Given the world defined by the transition function $P_{MT}(s_f|s,a)$, the reward function $f_R(s_f,s,a)=f_R(s_f)$ and $\gamma=0.6$:

a Calculate the accumulated reward function $f_{AR}(T_1)$ for the trayectory: $T_1=S_1,S_2,S_3,S_1,S_2,S_1$

$$F_{AR}(\tau_{i}) = 1 + \gamma(-1) + \gamma^{2}(2) + \gamma^{3}(1) + \gamma^{4}(2)$$

$$= 1 + (0.6)(-1) + (0.6)^{2}(2) + (0.6)^{3}(1) + (0.6)^{4}(2)$$

$$F_{AR}(\tau_{i}) = 1.59$$

b Calculate the accumulated reward function $f_{AB}(T_2)$ for the trajectory: $T_2 = S_3$, S_1 , S_3

Solution

© Calculate the accumulated reward function $f_{AR}(T_3)$ for the trayectory: $T_3=s_3$, s_1 , s_2

Solution

3) Given the world defined by the following graph, the reward function $f_R(s_f, s, a)$ and $\gamma = 0.8$

(a) Calculate the accumulated reward function $f_{AR}(T_i)$ for the trajectory: $T_1=S_1, S_2, S_3, S_5, S_4, S_3, S_5$

Solution

(b) Calculate the accumulated reward function $f_{AR}(T_2)$ for the trajectory: T_2 = s, , s₃, s₅, s₄

Solution

© Calculate the accumulated reward function $f_{AR}(T_3)$ for the trajectory: $T_3 = s_{4_1} s_{5_2}, s_{5_3}$

with
$$V=0.8$$

$$f_{AR}(T_3) = -1 + V(6)$$

$$= -1 + (0.8)(6)$$

$$= -1 + V.8$$

$$f_{AR}(T_3) = 3.8$$

Given the world defined by the following graph where 0.84, means a with probability 0.8, and so on, and with the following reward function and 400.7

(a) Calculate the accumulated reward function $f_{AR}(I_1)$ for the trayectory:

Solution

$$f_{AR} < 1 + (0.7)(-3) + (0.7)(0) + 0.7^{3}(-1) + 0.7^{4}(-1) = -1.68$$

 $\stackrel{\textstyle \leftarrow}{b}$ Calculate the accumulated reward function $f_{AR}(\tau_2)$ for the trayectory :

Solution

$$t_2$$
= s_2 , s_5 , s_4 , s_3
 t_3
 t_4
 t_5
 t_5
 t_5
 t_6
 t_7
 t_8
 t_8

(c) Calculate the accumulated reward function $f_{AR}(\tau_2)$ for the trayectory :

T3= 59,51,53

Solution

$$\begin{cases} 0.7 & -3 & 0.4 \\ 0.2 & 0.3 & -1 \\ 0.3 & 0.3 & -1 \\ 0.3 & 0.3 & -1 \\ 0.4 & 0.3 & -1 \\ 0.$$