1. Draw picture.

2- Axes-

3. Initial's final events.

4. Vorable table

5. Choose equation à solvi.

6. Check answer's Sign & magnitude. (1) dx = 1/2 (Vity) Dt

(a) $V_F = V_i + a \Delta t$

(3) DX = V; At + 5a(et)

(4) DX = 4 St - = a (st)

 $(5) V_f^2 = V_i^2 + 2aax$

1. A car moving at 10m/s hits the brakes 100m before a wall. It stops *right* before colliding. How long were the brakes applied? Assume the acceleration is constant.

Δx	
v_{ix}	
V _{fx}	
a_x	
Δt	

2. A car slows down at -4 m/s² until it is moving at 17m/s to the right. The car travels 30m during its acceleration. How long does the car accelerate?

Δx	
v_{ix}	
Vfx	
a_{x}	
Δt	

NOTES:

You will get two possible solutions, but only one makes sense.

- 3. A ball is dropped two meters above the ground.
- (a) How fast is it moving when it hits the ground?
- (b) How long does it take to hit the ground?

Δy	
v_{iy}	
v_{fy}	
a_{y}	
Δt	

NOTES:

- Work on one question at a time.
- For the first question, find the DKDC variable as usual.
- When you solve the second equation, there is no DKDC variable, so you can choose whichever equation you like.

- 4. I throw a ball in the air at 5m/s.
- (a) How long until it reaches the top of its flight?

Δy	
viy	
v _{fy}	
a_y	
Δt	

(b) How long does it take to hit your hand again?

Δy	
viy	
v _{fy}	
a_y	
Δt	

NOTES:

For (b), let the initial event be the moment it leaves your hand, and the final event be the moment it returns to your hand.

1. A car moving at 10m/s hits the brakes 100m before a wall. It stops *right* before colliding. How long were the brakes applied? Assume the acceleration is constant.

Δx	100m
v_{ix}	10 m/s
v_{fx}	0 m/s
a_x	DKDC
Δt	NEED

initial event:

car starts slowing down

final event:

car stops right at the wall

$$\Delta x = \frac{1}{2}(v_{ix} + v_{fx})\Delta t$$

$$100 = 5\Delta t \implies \Delta t = \boxed{20 \,\mathrm{s}}$$

2. A car slows down at -4 m/s² until it is moving at 17m/s to the right. The car travels 30m during its acceleration. How long does the car accelerate?

Δx	30m
v_{ix}	DKDC
v_{fx}	17 m/s
a_x	-4 m/s^2
Δt	NEED

initial event:

car starts slowing down

final event:

car is moving at 17m/s

$$\Delta x = v_f \Delta t - \frac{1}{2} a (\Delta t)^2$$

$$0 = 2(\Delta t)^2 + 17 \Delta t - 30 = (x+10)(2x-3)$$

$$\Delta t = \frac{-17 \pm \sqrt{17^2 - 4(2)(-30)}}{2(2)} = \{-10 \text{ s}, 1.5 \text{ s}\}$$

Only the positive solution makes sense.

NOTES:

You will get two possible solutions, but only one makes sense.

- 3. A ball is dropped two meters above the ground.
- (a) How fast is it moving when it hits the ground?
- (b) How long does it take to hit the ground?

(a)	Δy	2m
	viy	0 m/s
	v_{fy}	NEED
	a_y	$+9.8 \text{ m/s}^2$
	Δt	DKDC

initial event:

The ball is dropped.

final event:

The ball hits the ground.

$$v_f^2 = v_i^2 + 2a\Delta y$$

 $v_f = \sqrt{0 + 2(9.8)(2)} = 6.26 \,\text{m/s}$

(b) Choose the simplest equation.

$$\Delta y = \frac{1}{2}(v_i + v_f)\Delta t$$

$$\Delta t = \frac{\Delta y}{\frac{1}{2}(v_i + v_f)} = \frac{2}{\frac{1}{2}(0 + 6.26)} = \boxed{0.64 \,\mathrm{s}}$$

NOTES:

- Work on one question at a time.
- For the first question, find the DKDC variable as usual.
- When you solve the second equation, there is no DKDC variable, so you can choose whichever equation you like.