ADATSZERKEZETEK ÉS ALGORITMUSOK

Verem fogalma

LIFO: last-in, first-out

Köznapi fogalma

Mókus

Borz

Nyuszi

Sün

Sorrend az elemek betétele előtt:

Mókus

Borz

Nyuszi

Sün

Sorrend miután az összes elem kikerült:

A verem ADT axiomatikus leírása

E alaptípus feletti V verem típus jellemzése

- Műveletek jelentése
 - Üres verem létrehozása
 - Üres a verem?
 - Elem betétele a verembe
 - Elem kivétele a veremből
 - Felső elem lekérdezése
- Figyelem!
 - A műveletek között nem szerepel "isfull" művelet!

Műveletek

• empty
$$\rightarrow V$$

• isempty
$$V \rightarrow L$$

• push
$$V \times E \rightarrow V$$

• pop
$$V \rightarrow V \times E$$

- top $V \rightarrow E$
- Megszorítások:
 - pop és top értelmezési tartománya
 - *V*\{empty}

A verem ADT axiomatikus leírása

Axiómák

- isempty(empty)
 - Vagy: $v = \text{empty} \rightarrow \text{isempty}(v)$
- isempty $(v) \rightarrow v = \text{empty}$
- \neg isempty(push(v, e))
- pop(push(v,e)) = (v,e)
- push(pop(v)) = v
- top(push(v, e)) = e

Verem ADT – Műveletek matematikai magyarázata

- A típushoz tartozó műveleteket formálisan specifikáljuk.
 - Ezek függvények: egy adott halmaz (értelmezési tartomány) elemeihez rendelnek hozzá egy másik halmaz (értékkészlet) elemei közül.
 - Saját típus (Verem) esetén: isempty $V \rightarrow L$ push $V \times E \rightarrow V$
 - Ez utóbbi esetén a művelethez felírhatók példák: adott v verem és e elem párhoz hozzárendelünk egy v vermet.
 - Ahhoz, hogy a művelet "megfelelően" működjön matematikai módon leírjuk a viselkedését.
 - Ezek az axiómák!
 - pop(push(v,e)) = (v,e)
 - push(pop(v)) = v

A verem ADT funkcionális leírása

- Matematikai reprezentáció
 - a verem rendezett párok halmaza $v = \{(e_1, t_1), \dots (e_i, t_i) | \ a \ t_i \ \text{komponensek különbözőek} \}$
 - 1.komponens: a veremben elhelyezett (push) érték
 - 2.komponens: a verembe helyezés (push) időpontja
- Megszorítás (invariáns)
 - az idő értékek különbözők
- A valóságban nem így implementáljuk!

A verem ADT funkcionális leírása

- A "pop" specifikációja:
 - Állapottér
 - $V \times E$ (Állapottér típusai: $V = \{(e_i, t_i), ...\}$ • v e (Állapottér változói)
 - Paramétertér
 - V és v'
 - Előfeltétel és utófeltétel:
 - Ef = $(v = v' \land v' \neq \emptyset)$
 - Uf = $\left(\left(v = v' \setminus \{ (e_j, t_j) \} \right) \land \left(e = e_j \right) \land \left((e_j, t_j) \in v' \right) \land \left(\forall i ((e_i, t_i) \in v' \land i \neq j) : t_j > t_i \right) \right)$

Verem

Műveletek jelölése

Verem – ADS

Lineáris adatszerkezet

Elemek száma

- Felépített adatszerkezet
 - Az adatszerkezet elemeinek száma a feldolgozás során rögzített vagy változtatható
 - A rögzített nem jelenti, hogy a tárolt adatok nem megváltoztathatók
- Adatelemek száma
 - Fix
 - A tárolható adatelemek számának felső korlátja a létrehozáskor (esetleg fordítási időben) rögzített.
 - Változó
 - A memória mérete (illetve kapcsolódó technikai korlátok) szab határt az adatelemek számának

02/2 EA

Reprezentáció

- Aritmetikai ábrázolás:
 - egy max hosszú vektor (ez az elemek tömbje) elements[1..max]
 - a verem tetejének mutatója head ∈ [0, max] head=0 ⇔ üres a verem
 - Választási lehetőség, hogy hova mutat a head
 - Az első szabad helyre
 - Az utolsó elfoglalt helyre

Reprezentáció

v.push(17) után

v.pop() után

- Műveletek pszeudokódja/struktogramja:
 - v.empty-- üresre állítja a vermetv.head ← 0
 - v.isempty
 - -- Üres a verem? Logikai értéket ad vissza return (v.head=0)
 - v.isfull
 - -- Tele van a verem? Logikai értéket ad vissza return (v.head=max)

```
v.push(e)

        -- e-t beteszi a v verem tetejére if v.isfull
            then error "túlcsordulás"
            else v.head ← v.head +1
            v.elements[v.head] ← e
            end if
```



```
v.pop

        kiveszi a legfelső elemet és visszaadja if v.isempty
        then error "alulcsordulás"
        else v.head ←v.head -1
        return v.elements[v.head+1]
        end if
```

```
v.top

        lekérdezi a legfelső elemet
        if v.isempty
            then error "alulcsordulás"
            else return v.elements[v.head]
            end if
```

Reprezentáció

Láncolt ábrázolás (gyakorlaton)

Sor, Prioritásos sor

Következő téma