1 Trees

A graph is called a **tree**, if it is connected and has no cycles. A **star** is a tree with one vertex adjacent to all other vertices.

Theorem 1

For every simple graph G with $n \geq 1$ vertices, the following four properties are equivalent

- (A) G is connected and has no cycles;
- (B) G is connected and has n-1 edges;
- (C) G has n-1 edges and no cycles;
- (D) For every pair u, v of vertices in G, there is exactly one u, vpath.

Proof.
$$A \Rightarrow B \Rightarrow C \Rightarrow D \Rightarrow A$$

Problem 1 Let T be a tree and let P and Q be two disjoint paths of the same length in T. Prove that T contains another path longer than P and longer than Q.

Problem 2 Let $d_1 \geq d_2 \geq \ldots \geq d_n > 0$ be n integers. Prove that there is a tree T with degrees d_1, \ldots, d_n if and only if

$$d_1 + d_2 + \ldots + d_n = 2n - 2.$$

2 Graceful labeling of trees.

Definition 1

A graph G is said to be **decomposable** into subgraphs H_1, \ldots, H_m , if no H_i has an isolated vertex, and $\{E(H_1), E(H_2), \ldots, E(H_m)\}$ is a partitioning of E(H). If all $\{H_i\}$ are isomorphic to a graph H, G is called H-decomposable.

How to construct a T-decomposition of K_7 ; M-decomposition of K_7 ?

Given a labeling ϕ of the vertices of a graph G, for every edge uv, the length of uv is defined as $|\phi(u) - \phi(v)|$.

Definition 2

Given a labeling ϕ of the vertices of a graph G, for every edge uv, the length of uv is defined as $|\phi(u) - \phi(v)|$.

Given a tree T=(V,E) with n vertices, a labeling of its vertices with integers $0,1,\ldots,n-1$ is called **graceful** if

- 1. different vertices have different labels; and
- 2. the lengths of the edges are distinct integers $1, 2, \ldots, n-1$.

Conjecture 1 (Ringel, 1964) For any tree T with m edges $(m \ge 0)$, graph K_{2m+1} is T-decomposable.

Theorem 2 If T is a tree with m edges which has a graceful labeling, then K_{2m+1} is decomposable into 2m + 1 copies of T.

Proof. Label the vertices of K_{2m+1} by 0, 1, 2, ..., 2m; view the vertices as placed around a circle. Let $\phi: V(T) \to \{0, 1, ..., m\}$ be a graceful labeling of T. The 2m+1 copies of T are constructed by the following rule:

For k = 0, ..., 2m, the vertices of k^{th} copy are k, k+1, ..., k+m, where the addition k+m is understood in the "modular" sense: 2m+1=0. Vertices k+i and k+j, in the k^{th} copy of T are adjacent iff i and j are adjacent in the graceful labeling of T.

Finish the proof.

Problem 3 Construct graceful labelings of the trees below.

Problem 4 Construct an S-decomposition of K_{13} for the tree S below:

Definition 3 A tree T is called uniform, if $\exists r \in V(T)$ such that all vertices on the same distance from r have the same vertex degrees. Let (a_0, a_1, \ldots, a_k) denote the string(T), k is the largest distance from r to any vertex in T, and a_i denotes the degree of the vertices on the distance i from r

Examples of uniform trees; the shaded vertex is the root.

Problem 5 Given (a_0, a_1, \ldots, a_k) , construct a graceful labeling of the corresponding uniform tree.

3 Universal rooted trees

Definition 4 Let $S(V, E; x_0)$ and $T(U, F; y_0)$ be two directed rooted trees with all edges directed "from" the root. Tree S is said to be embedable into T, if there is a one-to-one mapping $f: V \to U$, from V into U such that

- 1. $f(x_0) = y_0$; and
- 2. for every edge $x'x'' \in E$ of S, the pair f(x')f(x'') is an edge in T.

Definition 5 A rooted tree U is called n-universal if every rooted tree S with at most n vertices can be embedded into U.

Symbolic representation of rooted trees.

 B_1, B_2, B_3, B_4 are the branches of S; all branches are also rooted trees.

How to construct a (smallest) n-universal rooted tree?

Theorem 3 Prove that for every $n \ge 1$, U_n is an n-universal rooted tree. Let $\alpha(n)$ denote the number of vertices in the tree U_n . Then,

$$\alpha(n) = 1 + \alpha(n-1) + \alpha(\lfloor \frac{n-1}{2} \rfloor) + \alpha(\lfloor \frac{n-1}{3} \rfloor) + \ldots + \alpha(\lfloor \frac{n-1}{n-1} \rfloor).$$

4 Uniform trees

Definition 6 1. A tree with one vertex is uniform.

- 2. If S is a uniform tree and $k \ge 1$ is an integer, then the following tree T is also uniform: the root of T has k branches, each isomorphic to S.
- 3. The set of uniform trees consists of those trees can be obtained by repeated applications of #2.

Theorem 4 A tree T is uniform iff the vertex degree of any two vertices on the same distance from the root of T have the same vertex degree.

Proof.

Theorem 5 Let $\beta(n)$ denote the number of uniform trees with at most n vertices. Then

$$\beta(n) = 1 + \beta(n-1) + \beta(\lfloor \frac{n-1}{2} \rfloor) + \beta(\lfloor \frac{n-1}{3} \rfloor) + \ldots + \beta(\lfloor \frac{n-1}{n-1} \rfloor).$$

Proof.

Corollary 1

$$\forall n \ge 1, \ \alpha(n) = \beta(n).$$

Theorem 6 For an arbitrary tree T(V, E), let $\beta(T)$ denote the number of non-isomorphic uniform trees that can be embedded into T. Then

$$\beta(T) = |V(T)|.$$

Proof. By induction on the number n of vertices of T.

For n=1, the statement is straightforward.

Let it be correct for all trees with $\leq n-1$ vertices, and let T be a tree with n vertices. Denote B_1, B_2, \ldots, B_r the branches of the root of T. For each of these branches, $|B_i| < n$, therefore

$$\forall i = 1, \dots, r, \quad \beta(B_i) = |V(B_i)|.$$

For any uniform tree embedable in exactly s branches, we create s nonisomorphic uniform tree embedable into T, as shown on the Figure below.

A uniform tree is embeddable into three branches of T

Three distinct uniform trees are embeddable into T