

General information

Designation

Dalbergia latifolia

Typical uses

Veneer; decorative plywood; speciality items: cutlery handles; brush backs; billiard cue butts; fancy turnery articles, woodwind instruments, boatbuilding, agricultural implements.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family		1	Natural				
Base material		Wood (tropical)					
Renewable content		100				%	
Composition detail (polymers and natura	al materials	s)					
Wood		•	100			%	
Price							
Price		* 6	5.7	-	10.8	USD/kg	
Price per unit volume		* 5	5.63e3	-	1.1e4	USD/m^3	
Physical properties							
Density		8	340	-	1.02e3	kg/m^3	
Mechanical properties							
Young's modulus		* 1	12.1	-	14.8	GPa	
Yieldstrength (elastic limit)		* 6	52.3	-	76.1	MPa	
Tensile strength		* (97.6	-	119	MPa	
Elongation		* 2	2.18	-	2.66	% strain	
Compressive strength		5	57.2	-	69.9	MPa	
Flexural modulus		1	11	-	13.5	GPa	
Flexural strength (modulus of rupture)		1	105	-	128	MPa	
Shear modulus		* ().9	-	1.1	GPa	
Shear strength		1	13	-	15.9	MPa	
Bulk modulus		* 2	2.39	-	2.68	GPa	
Poisson's ratio		* (0.35	-	0.4		
Shape factor		5	5				
Hardness - Vickers		* 1	12.6	-	15.4	HV	
Hardness - Brinell		* 7	72.5	-	88.7	НВ	
Hardness - Janka		* -	12.6	-	15.4	kN	

Rosewood (dalbergia latifolia) (l)

Fatigue strength at 10^7 cycles	* 31.5	-	38.5	MPa			
Mechanical loss coefficient (tan delta)	* 0.0068	-	0.0083				
Differential shrinkage (radial)	0.15	-	0.18	%			
Differential shrinkage (tangential)	0.23	-	0.26	%			
Radial shrinkage (green to oven-dry)	2.4	-	3	%			
Tangential shrinkage (green to oven-dry)	5.2	-	6.4	%			
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%			
Work to maximum strength	81.3	-	99.4	kJ/m^3			
Impact & fracture properties							
Fracture toughness	* 8.8	-	10.7	MPa.m^0.5			
Thermal properties							
Glass temperature	77	-	102	$\mathcal C$			
Maximum service temperature	120	-	140	$\mathcal C$			
Minimum service temperature	* -73	-	-23	$\mathcal C$			
Thermal conductivity	* 0.4	-	0.49	W/m.℃			
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃			
Thermal expansion coefficient	* 2	-	11	µstrain/℃			
Electrical properties							
Electrical resistivity	* 6e13	-	2e14	µohm.cm			
Dielectric constant (relative permittivity)	* 9.05	-	11.1				
Dissipation factor (dielectric loss tangent)	* 0.11	-	0.134				
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m			
Magnetic properties							
Magnetic type Non-magnetic							
Optical properties							
Transparency	Opaque						
Critical materials risk							
Contains >5wt% critical elements?	No						
Durability							
Water (fresh)	Limited	use					
Water (salt)	Limited use						
Weak acids	Limited use						
Strong acids	Unaccep	otab	le				
Weak alkalis	Accepta	ble					
Strong alkalis	Unacceptable						

Rosewood (dalbergia latifolia) (l)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.12	-	1.24	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0843	-	0.0932	kg/kg
Fine machining energy (per unit wt removed)	* 6.96	-	7.7	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.522	-	0.577	kg/kg
Grinding energy (per unit wt removed)	* 13.5	-	14.9	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.01	-	1.12	kg/kg

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	√
Biodegrade	√

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse			
Reference			
Shape			