PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-245446

(43)Date of publication of application: 07.09.2001

(51)Int.CI.

H02K 1/12 H₀₂K H₀₂K 3/04 H₀2K 3/48

5/04 H₀₂K H02K 19/22

(21)Application number: 2000-162210

(71)Applicant:

MITSUBISHI ELECTRIC CORP

(22)Date of filing:

31.05.2000

(72)Inventor:

ASAO YOSHITO **ADACHI KATSUMI**

MORISHITA AKIRA

(30)Priority

Priority number: 11368453

Priority date: 24.12.1999

Priority country: JP

(54) AC GENERATOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an AC generator capable of improving an alignment at a coil end, raising a space factor or the like of a conductor in a slot, and simplifying a manufacturing method. SOLUTION: The AC generator comprises a plurality of windings that, wherein a polyphase-stator winding 16 is composed of a lengthy element wire that is folded back at the outside of the slot 15a of the edge of a stator iron-core 15, are wound such that an internal layer and an external layer alternately seize a winding to the direction of a slot depth in the slot 15a. The stator iron-core 15 comprises a butt part that forms a cylindrical shape with butting and is extended to the axial direction.

LEGAL STATUS

[Date of request for examination]

31.05.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3476416

[Date of registration]

26.09.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-245446 (P2001-245446A)

(43)公開日 平成13年9月7日(2001.9.7)

(51) Int.Cl.'	51) Int.Cl. 7		FI		テーマコード(参考)	
H02K 1/1	2	H02K	1/12	Α	5H002	
1/1	3		1/18	C	5 H 6 O 3	
· 3/0	<u>.</u>	:	3/04	E	5 H 6 O 4	
3/4	3	;	3/48		5 H 6 O 5	
5/0	1	5/04		5H619		
	審査請求	有 請求項	の数17 OL	(全 26 頁)	最終頁に続く	
(21)出願番号	特度2000-162210(P2000-162210)	(71)出題人 000006013 三菱電機株式会社				
(22)出顧日	平成12年5月31日(2000.5.31)	東京都千代田区丸の内二丁目2番3号 (72)発明者 浅尾 淑人				
(31)優先権主張番号 特願平11-368453			東京都千代田区丸の内二丁目2番3号 三			
(32) 優先日 平成11年12月24日(1999.12.24)		菱電機株式会社内				
(33)優先權主張国	日本(JP)	(72)発明者 足立 克己 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内				
		(74)代理人	100057874	**************************************	c #1	
	;		弁理士 曾我	道服(外	6名)	

最終頁に続く

(54) 【発明の名称】 交流発電機

(57)【要約】

【課題】 この発明は、コイルエンドでの整列度、スロット内の導体の占積率等を高めることができ、かつ製造が簡単化された交流発電機を得る交流発電機を得る。 【解決手段】 この交流発電機は、多相固定子巻線16は、長尺の素線が、固定子鉄心15の端面側のスロット15a外で折り返されて、所定スロット数毎にスロット15a内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、前記固定子鉄心15は、突合わせることで円環状になる軸線方向に延びた突合わせ部を有している。

【特許請求の範囲】

【請求項1】 回転周方向に沿ってNS極を交互に形成する回転子と、この回転子を囲った固定子鉄心およびこの固定子鉄心に装着された多相固定子巻線を有する固定子とを備え、前記固定子鉄心は軸線方向に延びたスロットが周方向に所定ピッチで複数形成された交流発電機であって。

前記多相固定子巻線は、長尺の素線が、前記固定子鉄心の端面側の前記スロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、前記固定子鉄心は、突合わせることで円環状になる軸線方向に延びた突合わせ部を有している交流発電機。

【請求項2】 固定子鉄心は円弧状の分割鉄心部から構成された請求項1に記載の交流発電機。

【請求項3】 固定子鉄心は分離できない一体のコアバックを持つ請求項1あるいは請求項2に記載の交流発電機。

【請求項4】 回転周方向に沿ってNS極を交互に形成する回転子と、この回転子を囲った固定子鉄心およびこの固定子鉄心に装着された多相固定子巻線を有する固定子とを備え、前記固定子鉄心は軸線方向に延びたスロットが周方向に所定ピッチで複数形成された交流発電機であって、

前記多相固定子巻線は、長尺の素線が、前記固定子鉄心 の端面側の前記スロット外で折り返されて、所定スロッ ト数毎に前記スロット内でスロット深さ方向に内層と外 層とが交互に採るように巻装された巻線を複数有し、

前記固定子鉄心は、前記回転子側にあるとともにスロットを形成したティースを有する内周鉄心部と、この内周 鉄心部の外周面に嵌着された外周鉄心部とから構成された交流発電機。

【請求項5】 内周鉄心部は突合わせることで円環状になる突合わせ部を有している請求項4に記載の交流発電機

【請求項6】 突合わせ部は一箇所のみである請求項1 ないし請求項5の何れかに記載の交流発電機。

【請求項7】 外周鉄心部は分断部を有しており、この分断部から周方向に押し拡げることで曲率半径が大きくなるようになっている請求項4あるいは請求項5に記載の交流発電機。

【請求項8】 外周鉄心部は板状磁性部材を積層して形成された請求項4ないし請求項6の何れかに記載の交流発電機。

【請求項9】 外周鉄心部の板状磁性部材の板厚は内周 鉄心部の板状磁性部材の板厚よりも薄い請求項8に記載 の交流発電機。

【請求項10】 外周鉄心部の板状磁性部材の板厚は内 周鉄心部の板状磁性部材の板厚よりも厚い請求項8に記 載の交流発電機。 【請求項11】 外周鉄心部は板状磁性部材をスパイラル状に巻回した積層構造である請求項8ないし請求項1 0の何れかに記載の交流発電機。

【請求項12】 外周鉄心部は一体のパイプ形状である 請求項4ないし請求項6の何れかに記載の交流発電機、

【請求項13】 外周鉄心部の軸線方向の寸法は、内周 鉄心部の軸線方向の寸法より小さい請求項4ないし請求 項12の何れかに記載の交流発電機。

【請求項14】 外周鉄心部の径方向の肉厚寸法は、内 周鉄心部の径方向の肉厚寸法より小さい請求項4ないし 請求項13の何れかに記載の交流発電機。

【請求項15】 外周鉄心部の径方向の肉厚寸法は、内 周鉄心部の径方向の肉厚寸法より大きい請求項4ないし 請求項13の何れかに記載の交流発電機。

【請求項16】 外周鉄心部と内周鉄心部とは圧入されて一体化されている請求項4ないし請求項15の何れかに記載の交流発電機。

【請求項17】 固定子鉄心および内周鉄心部には、曲率半径を小さくする方向の押圧力を低減する切込み部が形成されている請求項1ないし請求項16の何れかに記載の交流発電機。

【請求項18】 突合わせ部はティースに形成されている請求項1ないし請求項16の何れかに記載の交流発電機

【請求項19】 内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されている請求項18に記載の交流発電機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えば内燃機関により駆動される交流発電機に関し、特に、乗用車、トラック等の乗り物に搭載される車両用交流発電機の固定子構造に関するものである。

[0002]

【従来の技術】図41は例えば日本特許第2927288号に記載された従来の車両用交流発電機の固定子の斜視図、図42は図41の固定子に適用される導体セグメントを示す斜視図、図43および図44はそれぞれ図41の固定子の要部をフロント側およびリヤ側から見た斜視図である。この固定子300は、固定子鉄心301と、固定子鉄心301に巻装された固定子巻線302と、スロット303内に装着されて固定子巻線302を固定子鉄心301に対して絶縁するインシュレータ304とを備えている。固定子鉄心301は、板状磁性部材である薄い鋼板を重ねて積層された円筒状の積層鉄心であり、軸方向に延びるスロット303が内周側に開口するように所定ピッチで周方向に複数設けられている。固定子巻線302は、多数の短尺の導体セグメント305を接合して所定の巻線パターンに構成されている。

【0003】導体セグメント305は、絶縁被覆された 矩形断面の銅線材を略U字状に成形したもので、6スロット(1磁極ピッチ)離れた2つのスロット303毎 に、軸方向のリヤ側から挿入されている。そして、導体 セグメント305のフロント側に延出する端部同士が接 合されて固定子巻線302を構成している。

【0004】具体的には、6スロット離れた各組のスロ ット303において、1本の導体セグメント305が、 リヤ側から、1つのスロット303内の外周側から1番 目の位置と、他のスロット303内の外周側から2番目 の位置とに挿入され、もう1本の導体セグメント305 が、リヤ側から、1つのスロット303内の外周側から 3番目の位置と、他のスロット303内の外周側から4 番目の位置とに挿入されている。そこで、各スロット3 03内では、導体セグメント305の直線部305aが 径方向に1列に4本並んで配列されている。そして、1 つのスロット303内の外周側から1番目の位置からフ ロント側に延出した導体セグメント305の端部305 bと、そのスロット303から時計回りに6スロット離 れた他のスロット303内の外周側から2番目の位置か らフロント側に延出した導体セグメント305の端部3 05bとが接合されて、2ターンの外層巻線が形成され ている。さらに、1つのスロット303内の外周側から 3番目の位置からフロント側に延出した導体セグメント 305の端部305bと、そのスロット303から時計 回りに6スロット離れた他のスロット303内の外周側 から4番目の位置からフロント側に延出した導体セグメ ント305の端部54bとが接合されて、2ターンの内 層巻線が形成されている。さらに、6スロット離れた各 組のスロット303に挿入された導体セグメント305 で構成される外層巻線と内層巻線とが直列に接続され て、4ターンの1相分の固定子巻線302が形成されて いる。同様にして、それぞれ4ターンの固定子巻線30 2が6相分形成されている。そして、これらの固定子巻 線302は3相分づつ交流結線されて、2組の3相固定 子巻線を構成している。

【0005】このように構成された従来の固定子300においては、固定子鉄心301のリヤ側では、同じ組のスロット303に挿入された2本の導体セグメント305のターン部305cが径方向に並んで配列されている。その結果、ターン部305cが周方向に2列に配列されて、リヤ側のコイルエンド群を構成している。一方、固定子鉄心301のフロント側では、1つのスロット303内の外周側から1番目の位置からフロント側に延出した導体セグメント305の端部305bと6スロット303内の外周側から3番目の位置からフロント側に延出した導体セグメント305の端部305bと6スロット離れたスロット305の端部305bと6スロット離れたスロットメント305の端部305bと6スロット離れたスロットメント305の端部305bと6スロット離れたスロットメント305の端部305bと6スロット離れたスロット

ト303内の外周側から3番目の位置からフロント側に 延出した導体セグメント305の端部305bとの接合 部とが、径方向に並んで配列されている。その結果、端 部305b同士の接合部が周方向に2列に配列されて、 フロント側のコイルエンド群を構成している。

【0006】上記構成の車両用交流発電機の固定子30 0では、固定子巻線302が、略U字状に成形された短 尺の導体セグメント305を固定子鉄心301のスロッ ト303にリヤ側から挿入し、フロント側に延出する導 体セグメント305の端部同士を接合して構成されてい るので、コイルエンド群は、多数の接合部から構成され ており、接合部同士が短絡しやすく、短絡事故が発生し 易かった。また、多数の短尺の導体セグメント305を 固定子鉄心301に挿入し、かつ、端部同士を溶接、半 田付け等により接合しなければならず、著しく作業性が 悪かった。また、導体セグメント305のスロット30 3への押し込み量は固定子鉄心301の軸方向長さ以上 を必要とし、絶縁被膜に傷を付けやすく、製品後の品質 を低下させていた。さらに、端部同士の接合時に、半田 垂れや溶接融けによる接合部間の短絡が頻発し、量産性 が著しく悪かった。

【0007】導体セグメント305を用いた従来の構成に対して、特開平8-298756号公報には、半円状の分割鉄心部のスロットに、予め平角導体をほぼ六角形状に複数回巻回して形成された複数個のコイルピースを挿入して構成された固定子構造が示されている。この固定子は、半円状の分割鉄心部のスロットに径外側方向にコイルピースが順次挿入されている。つまり、六角形状のコイルピースの対向する一つの辺部がスロットの内側の層である内周層に位置し、対向する辺部は所定の数のスロットを飛び越えて外側の層である外周層に位置するように挿入されている。

【0008】この固定子では、スロットから延出したコイルエンドの整列度が高いものの、分割鉄心部同士を結合する際に、既に一方の分割鉄心部のスロットにコイルピースの一方の辺部が挿入されているが、他方の分割鉄心部のスロットへのコイルピースの挿入作業は、分割鉄心部の連結作業を併せて行う必要性があるので、仮決め治具等を用いて煩雑な作業を行わなければならず、著しく生産性が悪かった。また、先にスロット内の内周層に挿入したコイルピースの奥の外周層に新たなコイルピースを挿入するときに、先のコイルピースを引き起こす必要性があるが、その際に先に挿入されているコイルピースのスロット内に残る辺部の複数の平角導線を回転させて引き起こしているので、スロット内の導体占積率の向上に制限があった。

【0009】また、特開平9-103052号公報には、スロット内の導体占積率向上のために、ストレート形状の素鉄心に、ストレート形状に成形された巻線群を、スロット深さ方向に挿入し、後行程で素鉄心を円筒

形状に曲げたものが開示されている。図45は、この工法で製造された固定子400の全体斜視図であり、巻線群の挿入は格段向上するものの、巻線群はスロット401間で周方向にストレートの渡り部を有するため、各スロット401から延出されるコイルエンド402の整列度が著しく悪く、コイルエンド402での径方向の寸法拡大と導体間の短絡が生じていた。また、ストレート形状の素鉄心をそのまま円筒化するには、かなりの曲げ力が必要で、スプリングバックも強く、円筒後の接合面に隙間が生じ、出力や磁気騒音の悪化を起こす等の問題点もあった。

[0010]

【発明が解決しようとする課題】日本特許第29272 88号に記載された従来の車両用交流発電機では、多数 の短尺の導体セグメント305を固定子鉄心301に挿 入し、かつ、端部同士を溶接、半田付け等により接合し なければならず、著しく作業性が悪く、また端部同士の 接合時に、半田垂れや溶接融けによる接合部間の短絡が 頻発し、量産性が著しく悪い等の問題点があった。

【0011】また、特開平8-298756号公報の交流発電機では、仮決め治具等を用いて煩雑な作業が伴い、固定子の組立作業性が悪く、またスロット内の導体の占積率が悪い等の問題点があった。

【0012】また、特開平9-103052号公報に記載された車両用交流発電機では、各スロット401から延出されるコイルエンド402の整列度が著しく悪く、コイルエンド402での径方向の寸法拡大と導体間の短絡が生じ易く、またストレート形状の素鉄心をそのまま円筒化するには、かなりの曲げ力が必要で、スプリングバックも強く、円筒後の接合面に隙間が生じ、出力や磁気騒音の悪化を起こす等の問題点もあった。

【0013】この発明は、かかる問題点を解決することを課題とするものであって、コイルエンドでの整列度、スロット内の導体の占積率等を高めることができ、かつ製造が簡単化された交流発電機を得ることを目的とする。

[0014]

【課題を解決するための手段】この発明の請求項1に係る交流発電機では、多相固定子巻線は、長尺の素線が、固定子鉄心の端面側のスロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、前記固定子鉄心は、突合わせることで円環状になる軸線方向に延びた突合わせ部を有している。

【0015】この発明の請求項2に係る交流発電機では、固定子鉄心は円弧状の分割鉄心部から構成されている。また、この発明の請求項3に係る交流発電機では、固定子鉄心は分離できない一体のコアバックを持っている。

【0016】この発明の請求項4に係る交流発電機で

は、多相固定子巻線は、長尺の素線が、前記固定子鉄心の端面側の前記スロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、前記固定子鉄心は、回転子側にあるとともにスロットを形成したティースを有する内周鉄心部と、この内周鉄心部の外周面に嵌着された外周鉄心部とから構成されている。

【0017】この発明の請求項5に係る交流発電機では、内周鉄心部は突合わせることで円環状になる突合わせ部を有している。

【0018】この発明の請求項6に係る交流発電機では、突合わせ部は一箇所のみである。

【0019】この発明の請求項7に係る交流発電機では、外周鉄心部は分断部を有しており、この分断部から 周方向に押し拡げることで曲率半径が大きくなるように なっている。

【0020】この発明の請求項8に係る交流発電機では、外周鉄心部は板状磁性部材を積層して形成されている

【0021】この発明の請求項9に係る交流発電機では、板状磁性部材の板厚は内周鉄心部の板状磁性部材の板厚よりも薄い。

【0022】この発明の請求項10に係る交流発電機では、板状磁性部材の板厚は内周鉄心部の板状磁性部材の板厚よりも厚い。

【0023】この発明の請求項11に係る交流発電機では、外周鉄心部は板状磁性部材をスパイラル状に巻回した積層構造である。

【0024】この発明の請求項12に係る交流発電機では、外周鉄心部は一体のパイプ形状である。

【0025】この発明の請求項13に係る交流発電機では、外周鉄心部の軸線方向の寸法は、内周鉄心部の軸線方向の寸法より小さい。

【0026】この発明の請求項14に係る交流発電機では、外周鉄心部の径方向の肉厚寸法は、内周鉄心部の径方向の肉厚寸法は、内周鉄心部の径方向の肉厚寸法より小さい。

【0027】この発明の請求項15に係る交流発電機では、外周鉄心部の径方向の肉厚寸法は、内周鉄心部の径方向の肉厚寸法より大きい。

【0028】この発明の請求項16に係る交流発電機では、外周鉄心部と内周鉄心部とは圧入されて一体化されている。

【0029】この発明の請求項17に係る交流発電機では、内周鉄心部には、曲率半径を小さくする方向の押圧力を低減する切込み部が形成されている。

【0030】この発明の請求項18に係る交流発電機では、突合わせ部はティースに形成されている。

【0031】この発明の請求項19に係る交流発電機では、内周鉄心部は、周方向の幅寸法が異なるティースを

有しており、突合わせ部は周方向の幅寸法が大きい方の ティースに形成されている。

[0032]

【発明の実施の形態】以下、この発明の各実施の形態の車両用交流発電機の構成を図に基づいて説明する。 実施の形態1.図1はこの発明の実施の形態1に係る車両用交流発電機の構成を示す断面図、図2はこの車両用交流発電機の固定子を示す斜視図、図3はこの車両用交流発電機における固定子巻線の1相分の結線状態を説明する正断面図、図4はこの車両用交流発電機の回路図、図5は図1の固定子の正断面図、図6は図1の固定子鉄心の一部正断面図、図7は図5の固定子の部分正断面図である。

【0033】この交流発電機は、アルミニウム製のフロントブラケット1及びリヤブラケット2から構成されたケース3と、このケース3内に設けられ一端部にアーリ4が固定されたシャフト6と、このシャフト6に固定されたランデル型の回転子7と、回転子7の両側面に固定されたファン5と、ケース3の内壁面に固定された固定子8と、シャフト6の他端部に固定され回転子7に電流を供給するスリップリング9と、スリップリング9に摺動する一対のブラシ10と、このブラシ10を収納したブラシホルダ11と、固定子8に電気的に接続され固定子8で生じた交流を直流に整流する整流器12と、ブラシホルダ11に嵌着されたヒートシンク17と、このヒートシンク17に接着されたヒートシンク17と、このヒートシンク17に接着され固定子8で生じた交流電圧の大きさを調整するレギュレータ18とを備えている。

【0034】回転子7は、電流を流して磁束を発生する回転子コイル13と、この回転子コイル13を覆って設けられその磁束によって磁極が形成される一対のボールコア20、21とから構成されている。一対のボールコア体20、21は、鉄製で、それぞれ8つの爪状磁極22、23が外周縁に周方向に等角ピッチで、かつかみ合うように対向してシャフト6に固着されている。

【0035】固定子8は、図2に示されるように、軸方・ 向に延びるスロット15aが周方向に所定ピッチで複数 形成された円筒状の積層鉄心からなる固定子鉄心15 と、固定子鉄心15に巻装された多相固定子巻線16 と、各スロット15a内に装着されて多相固定子巻線1 6と固定子鉄心15とを電気的に絶縁するインシュレー タ19とを備えている。そして、多相固定子巻線群16 は、1本の素線30が、固定子鉄心15の端面側のスロ ット15a外で折り返されて、所定スロット数毎にスロ ット15a内でスロット深さ方向に内層と外層とを交互 に採るように波巻きされて巻装された巻線を複数備えて いる。ここでは、固定子鉄心15には、回転子7の磁極 数(16)に対応して、3相固定子巻線160を2組収 容するように、96のスロット15aが等間隔に形成さ れている。また、素線30には、例えば絶縁被覆された 長方形の断面を有する長尺の銅線材が用いられる。ま

た、フロントブラケット1およびリヤブラケット2の軸方向の端面には、吸気孔1a、2a形成され、排気孔1b、2bがフロントブラケット1およびリヤブラケット2の外周両肩部に固定子巻線16のフロント側およびリヤ側のコイルエンド群16a、16bの径方向外側に対向して設けられている。

【0036】固定子鉄心15は、ティース51で径方向に切断された突合わせ部を有しており、8分割された分割鉄心部15Aから構成されている。分割鉄心部15Aは、板厚0.35mmのSPCC材を積層して外周部をレーザ溶接して一体化されている。この各分割鉄心部15Aのコアバック50の寸法t1は3.6mm、スロット15aの幅寸法t2は、底部から開口部15bまでほぼ一定で1.9mmである。

【0037】次に、1相分の固定子巻線群161の巻線 構造について図3を参照して具体的に説明する。1相分 の固定子巻線群161は、それぞれ1本の素線30から なる第1乃至第4の巻線31~34から構成されてい る。そして、第1巻線31は、1本の素線30を、スロ ット番号の1番から91番まで6スロットおきに、スロ ット15a内の外周側から1番目の位置と外周側から2 番目の位置とを交互に採るように波巻きして構成されて いる。第2巻線32は、素線30を、スロット番号の1 番から91番まで6スロットおきに、スロット15a内 の外周側から2番目の位置と外周側から1番目の位置と を交互に採るように波巻きして構成されている。第3巻 線33は、素線30を、スロット番号の1番から91番 まで6スロットおきに、スロット15a内の外周側から 3番目の位置と外周側から4番目の位置とを交互に採る ように波巻きして構成されている。第4巻線34は、素 線30を、スロット番号の1番から91番まで6スロッ トおきに、スロット15a内の外周側から4番目の位置 と外周側から3番目の位置とを交互に採るように波巻き して構成されている。そして、各スロット15a内に は、素線30が長方形断面の長手方向を径方向に揃えて 径方向に1列に4本並んで配列されている。

【0038】そして、固定子鉄心15の一端側において、スロット番号の67番から延出する第1巻線31の端部31aと、スロット番号の61番から延出する第3巻線33の端部33aとが接合され、スロット番号の67番から延出する第3巻線33の端部33bと、スロット番号の61番から延出する第4巻線34の端部34aとが接合され、さらにスロット番号の55番から延出する第4巻線34の端部34bと、スロット番号の61番から延出する第2巻線32の端部32aとが接合されて、4ターンの巻線の固定子巻線群161が形成されている。なお、第1巻線31の他端部31bが口出し線(O)となり、第2巻線32の他端部32bが中性点(N)となる。

【0039】同様にして、素線30が巻装されるスロッ

ト15aを1つづつずらして6相分の固定子巻線161が形成されている。そして、図4に示されるように、固定子巻線群161が星型結線されて2組の3相固定子巻線群160が形成され、各3相固定子巻線群160がそれぞれ整流器12に接続されている。各整流器12の直流出力は並列に接続されて合成される。なお、各組の3相固定子巻線群160は30°の位相差で固定子鉄心15に巻装されている。

【0040】ここで、第1乃至第4巻線31~34を構成するそれぞれの素線30は、1つのスロット15aから固定子鉄心15の端面側に延出し、折り返されて6スロット離れたスロット15aに入るように波巻きに巻装されている。そして、それぞれの素線30は、6スロット毎に、スロット深さ方向(径方向)に関して、内層と外相とを交互に採るように巻装されている。固定子鉄心15の端面側に延出して折り返された素線30のターン部30aがコイルエンドを形成している。そこで、固定子鉄心15の両端において、ほぼ同一形状に形成されたターン部30aが周方向に、かつ、径方向に互いに離間して、2列となって周方向に整然と配列されてコイルエンド群16a、16bを形成している。

【0041】上記構成の車両用交流発電機では、予め筒状の多相固定子巻線16を形成する。この後、多相固定子巻線16の外周側から各分割鉄心部15Aを半径内側方向に押し付けて、各開口部15bから各スロット15a内に第1ないし第4巻線31~34を挿入する。この挿入前には、各スロット15aの開口部15bはインシュレータ19で覆われており、第1ないし第4巻線31~34の挿入の結果、第1ないし第4巻線31~34と分割鉄心部15Aのスロット15aの内壁面との間にはインシュレータ19が介在する。

【0042】このように構成された車両用交流発電機では、電流がバッテリ(図示せず)からブラシ10およびスリップリング9を介して回転子コイル13に供給され、磁束が発生される。この磁束により、一方のボールコア20の爪状磁極22がN極に着磁され、他方のボールコア21の爪状磁極23がS極に着磁される。一方、エンジンの回転トルクがベルトおよびプーリ4を介してシャフト6に伝達され、回転子7が回転される。そこで、多相固定子巻線16に回転磁界が与えられ、多相固定子巻線16に起電力が発生する。この交流の起電力が整流器12を通って直流に整流されるとともに、その大きさがレギュレータ18により調整され、バッテリに充電される。

【0043】そして、リヤ側においては、ファン5の回転により、外気が整流器12のヒートシンクおよびレギュレータ18のヒートシンク17にそれぞれ対向して設けられた吸気孔2aを通じて吸い込まれ、シャフト6の軸に沿って流れて整流器12およびレギュレータ18を冷却し、その後ファン5により遠心方向に曲げられて多

相固定子巻線16のリヤ側のコイルエンド群16bを冷却し、排気孔2bより外部に排出される。一方、フロント側においては、ファン5の回転により、外気が吸気孔1aから軸方向に吸い込まれ、その後ファン5により遠心方向に曲げられて多相固定子巻線16のフロント側のコイルエンド群16aを冷却し、排気孔1bより外部に排出される。

【0044】このように、この実施の形態1によれば、 多数の導体セグメント305を1本ずつスロットに挿入 する従来技術に比べて、予め筒状の多相固定子巻線16 を形成し、この後、多相固定子巻線16の外周側から各 分割鉄心部15Aを半径内側方向に押し付けて、各開口 部15bから各スロット15a内に第1ないし第4巻線 31~34を挿入しており、固定子鉄心15に対する多 相固定子巻線16の組み付け作業性が向上する。なお、 第1ないし第4巻線31~34の挿入時に、第1ないし 第4巻線31~34とスロット15aの内壁面との間に インシュレータ19が簡単に介在される。また、多相固 定子巻線16を構成する第1乃至第4巻線31~34は それぞれ1本の素線30(連続線)により作製されてい るので、従来の固定子150のように、多数の短尺の導 体セグメント154を固定子鉄心151に挿入し、か つ、端部154b同士を溶接、半田付け等により接合す る必要がなく、固定子8の生産性を著しく向上させるこ とができる。また、コイルエンドが素線30のターン部 30aで構成されるので、コイルエンド群16a、16 bにおける接合箇所は第1乃至第4巻線31~34の端 部同士の接合部および渡り結線接合部のみとなり、接合 カ所が著しく削減される。これにより、接合による絶縁 被膜の消失に伴う短絡事故の発生が抑えられるので、優 れた絶縁性が得られる。また、溶接による導体の軟化が なく、固定子としての剛性が高くなり、磁気騒音を低減 できる。

【0045】また、コイルエンド群16a、16bは、ターン部30aを周方向に互いに干渉することなく整然と配列して構成されている。これにより、導体セグメント205の端部54b同士を接合している従来のコイルエンド群に比べて、コイルエンド群の固定子鉄心15の端面からの延出高さを低くできる。これにより、コイルエンド群16a、16bにおける通風抵抗が小さくなり、回転子7の回転に起因する風音を低減させることができる。また、コイルエンドのコイルの漏れリアクタンスが減少し、出力・効率が向上する。

【0046】また、4本の素線30がスロット15a内に径方向に1列に配列され、ターン部30aが周方向に2列に並んで配列されている。これにより、コイルエンド群16a、16bを構成するターン部30aがそれぞれ径方向に2列に分散されるので、コイルエンド群16a、16bの固定子鉄心15の端面からの延出高さを低くできる。その結果、コイルエンド群16a、16bに

おける通風抵抗が小さくなり、回転子7の回転に起因する風音を低減させることができる。

【0047】また、素線30のターン部30aで連結された直線部が長方形断面に形成されているので、直線部をスロット15a内に収容したときに、直線部30bの断面形状がスロット形状に沿った形状となっている。これにより、分割鉄心部15Aの多相固定子巻線16への挿入性が向上するとともに、スロット15a内における素線30から固定子鉄心15への伝熱を向上させることができる。

【0048】実施の形態2. 図8はこの発明の実施の形 態2に係る車両用交流発電機の固定子60の斜視図、図 9は図8の固定子60の固定子鉄心61の正断面図、図 10は図9のX-X線に沿った断面図である。なお、以 下の実施の形態の説明において同一、または相当部分に ついては同一符号を付して説明する。この実施の形態で は、固定子60は、軸方向に延びるスロット61aが周 方向に所定ピッチで複数形成された円筒状の積層鉄心か らなる固定子鉄心61と、固定子鉄心61に巻装された 多相固定子巻線16と、各スロット15a内に装着され て多相固定子巻線16と固定子鉄心61とを電気的に絶 縁したインシュレータ19とを備えている。固定子鉄心 61は、回転子7の磁極数(16)に対応して3相固定 子巻線160を2組収容するように96のスロット15 aが等間隔に形成された内周鉄心部62と、この内周鉄 心部62に圧入されたパイプ状の外周鉄心部63とを備 えている。内周鉄心部62は、ティース51で径方向に 切断されて、8分割の分割鉄心部62Aから構成されて いる。この分割鉄心部62Aは突合わせ部を有してお り、板厚O.35mmのSPCC材を積層して外周部を レーザ溶接して一体化されている。この各分割鉄心部6 2Aのコアバック50の寸法も1は1mm、外周鉄心部 63の厚さt2は2.6mmである。

【0049】上記構成の車両用交流発電機では、予め筒状の多相固定子巻線16を形成する。この後、多相固定子巻線16の外周側から各分割鉄心部62Aを半径内側方向に押し付けて、各開口部15bから各スロット15a内に第1ないし第4巻線31~34を挿入する。この挿入前には、各スロット15aの開口部15bはインシュレータ19で覆われており、第1ないし第4巻線31~34と分割鉄心部62Aのスロット15aの内壁面との間にはインシュレータ19が介在する。その後、図11に示すように、内周鉄心部62に外周鉄心部63を圧入して固定子60が製造される。

【0050】この実施の形態2によれば、多数の導体セグメント305を1本ずつスロットに挿入する従来技術に比べて、予め筒状の多相固定子巻線16を形成し、この後、多相固定子巻線16の外周側から各分割鉄心部6

2Aを半径内側方向に押し付けて、各開口部15bから 各スロット15a内に第1ないし第4巻線31~34を 挿入しており、固定子鉄心61に対する多相固定子巻線 16の組み付け作業性が向上する。また、内周鉄心部6 2は、厚さ0.35mm鋼板を積層して構成されている が、実施の形態1のものと比較して、屈曲される内周鉄 心部62のコアバック部50aの寸法t1が小さいため ストレート形状の分割素鉄心を屈曲して分割鉄心部62 Aを容易に形成することができる。また、内周鉄心部6 2のコアバック部50aの寸法t1が小さく、内周鉄心 部62の剛性が低いため外周鉄心部63の径方向外側か らの規制によって分割鉄心部62Aが全体に径内側方向 に圧縮され、内周鉄心部62と外周鉄心部63との間の 隙間は小さくなり、磁気性能の低下を抑制することがで きる。また、筒状の外周鉄心部63を内周鉄心部62に 嵌合することで内周鉄心部63を外側から保持している ので、構造的に良好な内径真円度を容易に得ることがで き、また固定子鉄心61自体の剛性を向上させることが でき、電磁音等の発生を抑制することができる。

【0051】実施の形態3.図12はこの発明の実施の 形態3に係る車両用交流発電機の固定子65の斜視図、 図13は図12の固定子鉄心67の要部断面図である。 この実施の形態3では、固定子65の外周鉄心部66が 環状の板状部材を積層し、レーザ溶接で一体化して構成 されている点が、実施の形態2の外周鉄心部63と異な る。この実施の形態3では、外周鉄心部66が積層構造 であるので、実施の形態2の効果を得ることができると ともに、外周鉄心部66の表面での渦電流の発生を抑制 し、磁気性能が向上する。

【0052】なお、外周鉄心部66は環状の板状部材を複数枚積層して構成されているが、図14及び図15に示すように、長尺の板状の磁性部材69をスパイラル状に巻回して外周鉄心部68を形成し、この外周鉄心部68を図示していない内周鉄心部の外側に嵌合して固定子鉄心67を製造するようにしてもよい。この場合には、打ち抜き加工が不要となる分固定子鉄心67の製造が容易になる。

【0053】実施の形態4.図16はこの発明の実施の形態4に係る車両用交流発電機の固定子70を示す斜視図、図17は図16の固定子鉄心71の正断面図、図18は図16の固定子巻線の1相分の結線状態を説明する説明図、図19および図20は固定子巻線を構成する巻線群の製造工程を説明する図である。図21は図16の固定子巻線を構成する内層側の素線群を示す図であり、図21(a)はその側面図、図21(b)はその平面図である。図22は図16の固定子巻線を構成する外層側の素線群を示す図であり、図22(a)はその側面図、図22(b)はその平面図である。図23は図16の固定子巻線を構成する素線の要部を示す斜視図、図24は図16の固定子巻線を構成する素線の配列を説明する図

である。

【0054】この実施の形態4の車両用交流発電機では、固定子70は、図16に示されるように、軸方向に延びるスロット15aが周方向に所定ピッチで複数形成された円筒状の積層鉄心からなる固定子鉄心71と、固定子鉄心71に巻装された多相固定子巻線16と、各スロット15a内に装着されて多相固定子巻線16と、各スロット15a内に装着されて多相固定子巻線16と固定子鉄心71とを電気的に絶縁するインシュレータ19とを備えている。固定子鉄心71は、内周鉄心部73と、この内周鉄心部73に嵌着された筒状の外周鉄心部76とから構成されている。外周鉄心部76は、SPCC材を複数枚積層してレーザ溶接で一体化して構成されている。なお、外周鉄心部76は、図14及び図15で説明したように、磁性部材を螺旋状に巻回して構成してもよい。パイプ状のものであってもよい。

【0055】次に、1相分の固定子巻線群161の巻線 構造について図18を参照して具体的に説明する。 実施 の形態1では、4ターン一括巻きであったが、この巻線 構造は、途中分断構造を有する点で異なる。1相分の固 定子巻線群161は、それぞれ1本の素線30からなる 第1乃至第4の巻線31~34から構成されている。そ して、第1巻線31は、1本の素線30を、スロット番 号の1番から91番まで6スロットおきに、スロット1 5a内の外周側から1番目の位置と外周側から2番目の 位置とを交互に採るように波巻きして構成されている。 第2巻線32は、素線30を、スロット番号の1番から 91番まで6スロットおきに、スロット15a内の外周 側から2番目の位置と外周側から1番目の位置とを交互 に採るように波巻きして構成されている。第3巻線33 は、素線30を、スロット番号の1番から91番まで6 スロットおきに、スロット15a内の外周側から3番目 の位置と外周側から4番目の位置とを交互に採るように 波巻きして構成されている。第4巻線34は、素線30 を、スロット番号の1番から91番まで6スロットおき に、スロット15a内の外周側から4番目の位置と外周 側から3番目の位置とを交互に採るように波巻きして構 成されている。そして、各スロット15a内には、素線 30が長方形断面の長手方向を径方向に揃えて径方向に 1列に4本並んで配列されている。

【0056】そして、固定子鉄心71の一端側において、スロット番号の1番から延出する第1巻線31の端部31aと、スロット番号の91番から延出する第3巻線33の端部33bとが接合され、さらにスロット番号の1番から延出する第3巻線33の端部33aと、スロット番号の91番から延出する第1巻線31の端部31bとが接合されて、2ターンの巻線が形成されている。また、固定子鉄心71の他端側において、スロット番号の1番から延出する第2巻線32の端部32aと、スロット番号の91番から延出する第4巻線34の端部34bとが接合され、さらにスロット番号の1番から延出す

る第4巻線34の端部34aと、スロット番号の91番から延出する第2巻線32の端部32bとが接合されて、2ターンの巻線が形成されている。

【0057】さらに、スロット番号の61番と67番とから固定子鉄心15の一端側に延出する第2巻線32の素線30の部分が切断され、スロット番号の67番と73番とから固定子鉄心15の一端側に延出する第1巻線31の素線30の部分が切断される。そして、第1巻線31の切断端31cと第2巻線32の切断端32cとが接合されて、第1乃至第4巻線31~34を直列接続してなる4ターンの1相分の固定子巻線群161が形成されている。なお、第1巻線31の切断端31cと第2巻線32の切断端32cとの接合部が渡り結線接続部となり、第1巻線31の切断端31dと第2巻線32の切断端32dとがそれぞれ口出し線(0)および中性点(N)となる。

【0058】同様にして、素線30が巻装されるスロット15aを1つづつずらして6相分の固定子巻線161が形成されている。そして、図4に示したように、固定子巻線群161が3相分づつ星型結線されて2組の3相固定子巻線群160を形成し、各3相固定子巻線群160がそれぞれ整流器12に接続されている。各整流器12の直流出力は並列に接続されて合成される。

【0059】次に、固定子70の組立方法について具体的に説明する。まず、図19に示されるように、12本の長尺の素線30を同時に同一平面上で雷状に折り曲げ形成する。ついで、図20に矢印で示されるように、直角方向に治具にて折り畳んでゆき、図21に示される素線群35Aを作製する。さらに、同様にして、図22に示されるように、渡り結線および口出し線を有する素線群35Bを作製する。なお、各素線30は、図23に示されるように、ターン部30aで連結された直線部30bが6スロットピッチ(6P)で配列された平面状パターンに折り曲げ形成されている。そして、隣り合う直線部30bが、ターン部30aにより、素線30の幅

(W)分ずらされている。素線群35A、35Bは、このようなパターンに形成された2本の素線30を図24に示されるように6スロットピッチずらして直線部30 bを重ねて配列された素線対が1スロットピッチづつずらして6対配列されて構成されている。そして、素線30の端部が素線群35A、35Bの両端の両側に6本づつ延出されている。また、ターン部30aが素線群35A、35Bの両側部に整列されて配列されている。

【0060】また、台形形状のスロット36aが所定の ピッチ(電気角で30°)で形成されたSPCC材を所 定枚数積層し、その外周部をレーザ溶接して、図25に 示されるように、直方体の衆鉄心36を作製する。

【0061】そして、図26(a)に示されるように、 帯状の素インシュレータ72を素鉄心36のスロット3 6aに載置し、その後図26(b)ないし図26(d) に示すようにし、2つの素線群35A、35Bの各直線 部30bを各スロット36a内に押し入れる。その押入 途中で、スロット36a間の素インシュレータ72のつなぎ部72aを切断し、これによりインシュレータ19 が形成され、その後2つの素線群35A、35Bの直線 部30bは、インシュレータ19により素鉄心36と絶縁されてスロット36a内に4本並んで収納される。図27は、このときの全体正面図である。

【0062】次に、図28(a)に示すように、素線群 35A、35Bが挿入された帯状の素鉄心36を円筒状 に丸め、その端面同士を当接、溶接して突合わせ部77 を形成して、図28(b)に示されるように、円筒状の 内周鉄心部73を得る。このとき、スロット15aの開 口部15bの幅P2はスロット36aの幅P1よりも小 さい。なお、直線状の素鉄心36を曲げ変形する前に、 予め素鉄心36の両端部のみを曲げ加工しており、素鉄 心36の端面同士を当接した際に、当接部を含む内周鉄 心部73の良好な真円度が得られるように施されてい る。そして、図18に示される結線方法に基づいて、各 素線30の端部同士を結線して固定子巻線群161を形 成する。その後、SPCC材を複数枚積層してレーザ溶 接で一体化した円筒状の外周鉄心部76を内周鉄心部7 3に圧入して固定子70が製造される。なお、図29に 示すように、外周鉄心部76の軸線方向の寸法が内周鉄 心部73の軸線方向の寸法よりも小さくなっており、固 定子鉄心71の両外周縁部には段部78が形成されてい る。また、外周鉄心部76の板厚が0.15mm、内周 鉄心部73の板厚が0.35mmであり、外周鉄心部7 6の板厚が内周鉄心部73の板厚よりも小さい。

【0063】上記実施の形態では、2つの素線群35 A、35Bの直線部30bを素鉄心36のスロット36 a内に収納した状態で帯状の素鉄心36を円筒状に丸 め、その端面同士を当接させて溶接しており、多数の導 体セグメント154を1本ずつスロットに挿入する従来 技術に比べて、固定子70の組立作業性が大幅に向上す る。また、素鉄心36を円筒状に曲げ加工して内周鉄心。 部73を形成し、その後円筒状の外周鉄心部76を圧入 して固定子鉄心71の剛性を高めているが、外周鉄心部 76の圧入前の内周鉄心部73の外径寸法は、外周鉄心 部76の内径寸法よりも若干大きくなっており、外周鉄 心部76の圧入時に、内周鉄心部73の形状は外周鉄心 部76で規制され、内周鉄心部73の真円度を高めるこ とができる。また、突合わせ部77は、ティース51に 設けられているので、素線群35A、35Bの直線部3 0bを素鉄心36のスロット36a内に収納した状態で 素鉄心36を円筒状に曲げることができるとともに、溶 接接合を行うことができ、また、溶接接合作業時に2つ の素線群35A、35Bの素線30を損傷するようなこ とはない。

【0064】また、この実施の形態では、内周鉄心部7

3の径方向の厚さ(固定子鉄心71のコアバック50の一部を構成している。)は外周鉄心部76の径方向の厚さ(コアバック50の一部を構成している。)よりも小さくなっており、素鉄心36は確実に円筒化される。また、この内周鉄心部73は外周鉄心部76で剛性が高められ、また突合わせ部77では強固に接合され、突合わせ部77での磁路抵抗を小さく抑えることができる。なお、固定子鉄心71の周方向の主な磁路は、磁界発生源である回転子7に近い内側で占めることになるが、内周鉄心部のコアバック部の厚さが外周鉄心部のコアバック部の厚さよりも大きいときには、磁路は主に内周鉄心部で占めることになり、内周鉄心部の外周面と外周鉄心部の内周面との間の隙間に起因した磁気抵抗の影響を小さく抑えることができる。

【0065】また、素鉄心36のスロット36aは開口 部に向かって拡大した台形形状であり、また固定子70 のティース51間のスロット15a内の周方向の幅寸法 はほぼ直線部30bの寸法と同一であるので、2つの素 線群35A、35Bの各直線部30bは各スロット36 a内に、ティース先端に干渉されることなく、円滑に押 し入れられるとともに、素鉄心36の曲げ変形の際に は、ティース51と直線部30bとが互いに押圧して変 形するようなことは防止される。また、素鉄心36の曲 げ変形の際には、SPCC材の歪み変形に起因して素鉄 心36の両面36A、36Bには波状の変形が生じ易い が、この実施の形態では、複数箇所で軸線方向に延びた 溶接部75で複数のSPCC材は固く一体化され、素鉄 心36の剛性が高くなっており、波状変形は抑制され る。なお、この溶接部75は、等分間隔でなく、また軸 線方向で分断されていてもよい。

【0066】また、上記実施の形態では、固定子鉄心71の両外周縁部には、段部78が形成されており、この段部78をフロントブラケット1及びリアブラケット2の端面に係止することができる。また、外周鉄心部76の板厚が0.15mm、内周鉄心部73の板厚が0.35mmで、外周鉄心部76は薄い板厚の鋼材が積層されており、外周鉄心部76での渦電流の発生が抑制され、発電機の出力が向上する。

【0067】実施の形態5.図30はこの発明の実施の 形態5の要部断面図である。この実施の形態5では、外 周鉄心部79の板厚が0.5mmであり、外周鉄心部の 板厚が0.15mmから0.5mmに大きくなった点を 除いては、実施の形態4と同一である。板厚が大きくなった分、外周鉄心部76は剛性がより高められ、突合わ せ部77ではより強固に接合され、突合わせ部77での 磁路抵抗をより小さく抑えることができる。

【0068】実施の形態6.図31はこの実施の形態6の固定子80の斜視図、図32は図31の固定子80の固定子鉄心81の正断面図であり、固定子鉄心81の外周鉄心部82には一箇所径方向に延びた接離可能な分断

部83が形成されている。実施の形態4、5では、円筒状の内周鉄心部73の外側に円筒状の外周鉄心部76を圧入したが、この実施の形態6では、分断部83で外周鉄心部82を押し拡げ、内周鉄心部73の径方向から押し入れることで、内周鉄心部73と外周鉄心部82とが一体化されており、組立作業性が向上する。また、一体後には外周鉄心部82の弾性力で内周鉄心部73の円筒形状が保持されるようになっている。

【0069】実施の形態7.図33はこの発明の実施の形態7の固定子鉄心84の正断面図である。この固定子鉄心84は、コアバック部85aの径方向寸法が2.6 mmの内周鉄心部85と、径方向の肉厚が1mmの外周鉄心部86とから構成されている。内周鉄心部85のスロット15aの底面には切込み部87が形成されている。この実施の形態では、図34に示す素鉄心88を円筒形状に曲げ変形して内周鉄心部85を形成している。内周鉄心部85のコアバック部85aの厚さが外周鉄心部86のコアバック部86aの厚さ(外周鉄心部86の肉厚)よりも大きく、曲げ変形に大きな荷重が必要となるが、切込み部87を設けたことにより、曲げ荷重を低減することができる。なお、素鉄心88の切込み部87の隙間は曲げ変形された後では当接して無くなる。

【0070】実施の形態8. 図35はこの発明の実施の 形態8の固定子鉄心90の正断面図、図36は図35の 固定子鉄心90の要部拡大図である。上記各実施の形態 では、各組巻線群は30°の位相差で固定子鉄心に巻装 されていたが、この実施の形態では36°の位相差で固 定子鉄心90に巻装されている。この実施の形態8で は、内周鉄心部91のティース92、93の周方向の幅 寸法が交互に異なっており、隣接した開口部94、95 の径方向に延びた中心線間の間隔が電気角で24度及び 36度の繰り返しである。また、内周鉄心部91の突合 わせ部77は幅広のティース93に設けられている。内 周鉄心部91は、周方向の幅寸法が異なるティース9 2,93を有しており、突合わせ部77は周方向の幅寸 法が大きい方のティース93に形成されているので、突 合わせ部77でもティース93の剛性は高く、巻線をス ロット内に確実に装着することができる。また、周方向 の幅寸法が異なることで、スロット15aの開口部15 bの径方向に延びた中心線間の間隔を不均一に形成で き、発生電圧の変動及び騒音を低減することができる。 【0071】実施の形態9.図37はこの発明の実施の 形態9の固定子200の部分正面図で、図中巻線は省略 されている。この実施の形態9の固定子鉄心200は、 図38は図37の固定子鉄心200の要部拡大図であ る。この固定子鉄心200は、2分割された内周鉄心部 201と、内周鉄心部201を囲った円環状の外周鉄心 部203とから構成されている。外周鉄心部203の内 壁面には周方向に等間隔でかつ軸線方向に延びて溝部2 04が形成されている。この溝部204には、内周鉄心

部201のティース207の先端部が嵌着されている。 溝部204には凸部206が形成され、ティース207 の先端部には凸部206に係合する凹部205が形成されている。この実施の形態9では、内周鉄心部201に 固定子卷線(図示せず)を取り付けた後、この内周鉄心部201の軸線方向から外周鉄心部203を、凸部206に凸部206が嵌着するように差し入れることで、固定子が組み付け作業が終了する。この実施の形態では、上記各実施の形態とは異なり、周方向面にしか分割面を有していないので、組み付け作業性が簡単となる。なお、この実施の形態では、内径部で隣接したティースの先端部同士が繋がっており、若干出力が低下するため固定子の組立後に内径部を削除して開口部を形成するようにしてもよい。

【0072】実施の形態10. 図39は、この発明の実 施の形態10の固定子100の斜視図、図40は、図3 9の固定子100の固定子鉄心101の正断面図であ る。この実施の形態10では、鉄心101の突合わせ部 102は1ケ所であり、実施の形態4乃至9に示す固定 子鉄心とは異なり外周鉄心部を持っていない。即ち、実 施の形態4乃至9に示す固定子鉄心では、固定子鉄心の コアバックは内周鉄心部のコアバックと外周鉄心部との 2つの別個の部分で構成されているが、この実施形態で は、素鉄心のコアバック103の厚さを3.6mmとし て実施の形態4乃至9に示す外周鉄心部が廃止され、固 定子鉄心101のコアバック103が分離できない一体 のものとされている。 突合わせ部 102は、実施の形態 8と同様に周方向の幅寸法が大きいティース93に形成 されている。巻線等の他の構成については、実施の形態 4から8と同様である。この実施形態では、外周鉄心部 を挿入する工程が省略できる。なお、素鉄心を円筒形状 に曲げ変形する際の曲げ荷重は大きくなり、鉄心の内径 真円度を向上し難いが、後工程で、固定子の内径を加工 仕上げする場合、大きな問題とはならない。また、本構 成においては、内周側の環状鉄心部と外周鉄心部間の隙 間に起因する出力低下と、鉄心の剛性低下による磁気騒 音の悪化を抑制できる。

【0073】なお、上記各実施の形態の何れにおいても、直方体の鉄心のスロットに巻線群を挿入した後、径方向からティース先端を加工治具を押し当て塑性変形させて、スロットの開口部を狭めても良い。また、上記各実施の形態では、素線群の固定子鉄心への挿入時に、予め鉄心側にインシュレータを挿入したり、また長尺のインシュレータを直方体の鉄心上に載置し、その上から素線群を挿入するようにして、インシュレータも同時にスロット内に収容しているが、素線群のスロット収容部にインシュレータを予め巻き付けて、鉄心に挿入するようにしてもよい。さらに、予め、素線群のスロット収容部を絶縁樹脂でモールドしておいても良い。この場合、量産性が格段に向上する。また、上記各実施の形態では、

直方体の鉄心を丸めて作製した環状の鉄心を外装鉄心に 挿入した後、焼きバメにより一体化するものでもよい。 【0074】

【発明の効果】以上説明したように、この発明の請求項1に係る交流発電機では、多相固定子巻線は、長尺の素線が、固定子鉄心の端面側のスロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、前記固定子鉄心は、突合わせることで円環状になる軸線方向に延びた突合わせ部を有しているので、巻線は長尺の素線の連続巻きで構成され、コイルエンドの整列度、スロット内の巻線の占積率を高めることができるとともに、固定子の製造作業が簡単化される。【0075】また、この発明の請求項2に係る交流発電機では、固定子鉄心は円弧状の分割鉄心部から構成されているので、多相固定子巻線に対して分割鉄心部を径方向から押し入れるようにして固定子を製造することができ、固定子の製造作業性が向上する。

【0076】また、この発明の請求項3に係る交流発電機では、固定子鉄心は分離できない一体のコアバックを持つものであるので、外周鉄心部を挿入する工程が省略できる。素鉄心を円筒形状に曲げ変形する際の曲げ荷重は大きくなり、鉄心の内径真円度を向上し難いが、後工程で、固定子の内径を加工仕上げする場合、大きな問題とはならない。また、本構成においては、内周側の環状鉄心部と外周鉄心部間の隙間に起因する出力低下と、鉄心の剛性低下による磁気騒音の悪化を抑制できる。

【0077】また、この発明の請求項4に係る交流発電機では、多相固定子巻線は、長尺の素線が、前記固定子鉄心の端面側の前記スロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、前記固定子鉄心は、回転子側にあるとともにスロットを形成したティースを有する内周鉄心部と、この内周鉄心部の外周面に嵌着された外周鉄心部とから構成されているので、巻線は長尺の素線の連続巻きで構成され、コイルエンドの整列度、スロット内の巻線の占積率を高めることができるとともに、内周鉄心部の軸線方向から外周鉄心部を挿入して内周鉄心部と外周鉄心部とを一体化でき、固定子の製造作業が簡単化される。

【0078】また、この発明の請求項5に係る交流発電機では、内周鉄心部は突合わせることで円環状になる突合わせ部を有しているので、複数の巻線群をストレート状態の内周鉄心部のスロットに挿入すればよく、作業が簡単であり、また内周鉄心部の曲げるのに必要とする力も軽減されて、固定子の製造作業が簡単化される。また、外周鉄心部により、固定子の剛性は向上し、かつ突合わせ部での隙間の発生が低減され、磁気抵抗が小さく、出力が向上する。

【0079】また、この発明の請求項6に係る交流発電

機では、突合わせ部は一箇所のみであるので、内周鉄心部の剛性が高く、電磁騒音の発生も低減される。また、隙間が生じる突合わせ部も一箇所だけなので、磁気抵抗が小さく、出力が向上する。

【0080】また、この発明の請求項7に係る交流発電機では、外周鉄心部は分断部を有しており、この分断部から周方向に押し拡げることで曲率半径が大きくなるようになっているので、内周鉄心部に外周鉄心部に嵌着する際の作業性が向上する。

【0081】また、この発明の請求項8に係る交流発電機では、外周鉄心部は板状磁性部材を積層して形成されているので、外周鉄心部での渦電流の発生を抑制でき、出力が向上する。

【0082】また、この発明の請求項9に係る交流発電機では、外周鉄心部の板状磁性部材の板厚は内周鉄心部の板状磁性部材の板厚よりも薄いので、外周鉄心部での渦電流の発生をより抑制でき、出力が向上する。

【0083】また、この発明の請求項10に係る交流発電機では、外周鉄心部の板状磁性部材の板厚は内周鉄心部の板状磁性部材の板厚よりも厚いので、固定子全体の剛性を主に外周鉄心部でまかない、内周鉄心部の板状磁性部材の板厚をより薄くできる。

【0084】また、この発明の請求項11に係る交流発電機では、外周鉄心部は板状磁性部材をスパイラル状に 巻回した積層構造であるので、外周鉄心部の生産性が向上する。

【0085】また、この発明の請求項12に係る交流発電機では、外周鉄心部は一体のパイプ形状であるので、 剛性の高い固定子を得ることができる。

【0086】また、この発明の請求項13に係る交流発電機では、外周鉄心部の軸線方向の寸法は、内周鉄心部の軸線方向の寸法よりの小さいので、外周縁部をわざわざ切欠き加工を施すことなく、固定子をブラケットに係止することができる。

【0087】また、この発明の請求項14に係る交流発電機では、外周鉄心部の径方向の肉厚寸法は、主要磁気回路となる内周鉄心部の径方向の肉厚寸法よりも小さいので、出力の低減を抑えることができる。

【0088】また、この発明の請求項15に係る交流発電機では、外周鉄心部の径方向の肉厚寸法は、内周鉄心部の径方向の肉厚寸法より大きいので、内周鉄心部が剛性の高い外周鉄心部で支持され、電磁騒音の発生を抑制でき、また内周鉄心部の真円度をより向上することができる。

【0089】また、この発明の請求項16に係る交流発電機では、外周鉄心部と内周鉄心部とは圧入されて一体化されているので、内周鉄心部と外周鉄心部との密着性がよく、それだけ磁気抵抗を低減できる。

【0090】また、この発明の請求項17に係る交流発 電機では、内周鉄心部には、曲率半径を小さくする方向 の押圧力を低減する切込み部が形成されているので、曲 げ加工が容易となる。

【0091】また、この発明の請求項18に係る交流発電機では、突合わせ部はティースに形成されているので、突合わせ作業が簡単であり、また主要磁束の方向に沿った分断面であるので、出力低下を抑えることができる。

【0092】また、この発明の請求項19に係る交流発電機では、内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されているので、突合わせ部でもティースの剛性は高く、巻線をスロット内に確実に装着することができる。また、周方向の幅寸法が異なることで、スロットの開口部の径方向に延びた中心線間の間隔を不均一に形成でき、発生電圧の変動及び騒音を低減することができる。

【図面の簡単な説明】

- 【図1】 この発明の実施の形態1に係る車両用交流発電機の断面図である。
- 【図2】 図1の固定子の斜視図である。
- 【図3】 図1の固定子巻線の1相分の結線状態を説明する正面図である。
- 【図4】 図1の車両用交流発電機の回路図である。
- 【図5】 図1の固定子の断面図である。
- 【図6】 図1の固定子鉄心の断面図である。
- 【図7】 図1の固定子鉄心に巻線が挿入される様子を示す図である。
- 【図8】 この発明の実施の形態2に係る車両用交流発電機の固定子の斜視図である。
- 【図9】 図8の固定子鉄心の断面図である。
- 【図10】 図9の固定子鉄心のX-X線に沿った断面図である。
- 【図11】 図9の内周鉄心部に外周鉄心部が挿入される様子を示す図である。
- 【図12】 この発明の実施の形態3に係る車両用交流 発電機の固定子の斜視図である。
- 【図13】 図12の固定子鉄心の要部断面図である。
- 【図14】 外周鉄心部の製造途中の説明図である。
- 【図15】 図14の外周鉄心部のXV-XV線に沿った断面図である。
- 【図16】 この発明の実施の形態4に係る車両用交流 発電機の固定子の斜視図である。
- 【図17】 図16の固定子鉄心の正面図である。
- 【図18】 図16の固定子巻線の1相分の結線状態を 説明する説明図である。
- 【図19】 この発明の実施の形態4に係る車両用交流 発電機に適用される固定子巻線を構成する巻線群の製造 工程を説明する図である。
- 【図20】 この発明の実施の形態4に係る車両用交流 発電機に適用される固定子巻線を構成する巻線群の製造

工程を説明する図である。

- 【図21】 この発明の実施の形態4に係る車両用交流 発電機に適用される固定子巻線を構成する内層側の素線 群を示す図である。
- 【図22】 この発明の実施の形態4に係る車両用交流 発電機に適用される固定子巻線を構成する外層側の素線 群を示す図である。
- 【図23】 この発明の実施の形態4に係る車両用交流 発電機に適用される固定子巻線を構成する素線の要部を 示す斜視図である。
- 【図24】 この発明の実施の形態4に係る車両用交流 発電機に適用される固定子巻線を構成する素線の配列を 説明する図である。
- 【図25】 図17の内周鉄心部の曲げ変形前の素鉄心の斜視図である。
- 【図26】 (a)、(b)、(c)、(d)は図25 の素鉄心に巻線が挿入される手順を説明した図である。
- 【図27】 図16の固定子巻線を構成する素線群の鉄心への装着状態を示す平面図である。
- 【図28】 (a)、(b)は図17の内周鉄心部の曲 げ加工を説明するための図である。
- 【図29】 図17の要部断面図である。
- 【図30】 この発明の実施の形態5に係る車両用交流 発電機に適用される固定子鉄心の要部断面図である。
- 【図31】 この発明の実施の形態6に係る車両用交流 発電機に適用される固定子の全体斜視図である。
- 【図32】 図31の固定子鉄心の断面図である。
- 【図33】 この発明の実施の形態7に係る車両用交流 発電機に適用される固定子鉄心の断面図である。
- 【図34】 図33の内周鉄心部の曲げ変形前の素鉄心の斜視図である。
- 【図35】 この発明の実施の形態8に係る車両用交流 発電機に適用される固定子鉄心の断面図である。
- 【図36】 図35の固定子鉄心の要部拡大図である。
- 【図37】 この発明の実施の形態9に係る車両用交流 発電機に適用される固定子鉄心の断面図である。
- 【図38】 図37の固定子鉄心の要部拡大図である。
- 【図39】 この発明の実施の形態10に係る車両用交流発電機の固定子の斜視図である。
- 【図40】 図39の固定子に適用される固定子鉄心の 平面図である。
- 【図41】 従来の車両用交流発電機の固定子の斜視図である。
- 【図42】 図41の固定子に適用される導体セグメントの斜視図である。
- 【図43】 図41の固定子の要部をフロント側および リヤ側から見た斜視図である。
- 【図44】 図41の固定子の要部をリヤ側から見た斜視図である。
- 【図45】 従来の車両用交流発電機の他の例の固定子

(13) 101-245446 (P2001-24e58

の斜視図である。

【符号の説明】

1 フロントブラケット、2 リヤブラケット、7 回 転子、8,60,65,70,80 固定子、15,61,67,71,81,84,90,200固定子鉄 心、15A 分割鉄心部、15a,36a スロット、15b,94,95 開口部、16,16A 多相固定子巻線、16a フロント側のコイルエンド群、16b リヤ側のコイルエンド群、30,40,400 素

【図1】

1:フロントプラケット 16:多相固定子**4線** 2:リヤプラケット 16a:フロント側の 7:回転子 コイルエンド辞 8:図定子 16b:リヤ側の

8: 固定子 16b: リヤ側の 15: 固定子鉄心 コイルエンド群

【図4】

線、31,41 第1巻線、32,42 第2巻線、3 3,43 第3巻線、34,44第4巻線、36,88 素鉄心、50 コアバック、51,92,93,20 7ティース、62,73,85,91,201 内周鉄 心部、62A 分割鉄心部、63,66,76,68, 82,86,203 外周鉄心部、69 磁性部材、7 2 素インシュレータ、72a つなぎ部、75 溶接部、77,96突合わせ部、78 段部、83 分断部、87 切込み部。

【図2】

【図3】

【図34】

【図35】

【図37】

【図39】

【図42】

【図40】

【図41】

【図45】

400

【手続補正書】

【提出日】平成12年9月28日(2000.9.28)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 回転周方向に沿ってNS極を交互に形成する回転子と、この回転子を囲った固定子鉄心およびこの固定子鉄心に装着された多相固定子巻線を有する固定

子とを備え、前記固定子鉄心は軸線方向に延びたスロットが周方向に所定ピッチで複数形成された交流発電機であって、

前記多相固定子巻線は、長尺の素線が、前記固定子鉄心の端面側の前記スロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外層とが交互に採るように巻装された巻線を複数有し、

前記固定子鉄心は、突合わせることで円環状になる軸線方向に延びた突合わせ部を有している交流発電機。

【請求項2】 固定子鉄心は円弧状の分割鉄心部から構成された請求項1に記載の交流発電機。

【請求項3】 固定子鉄心は分離できない―体のコアバックを持つ請求項1あるいは請求項2に記載の交流発電機。

【請求項4】 回転周方向に沿ってNS極を交互に形成する回転子と、この回転子を囲った固定子鉄心およびこの固定子鉄心に装着された多相固定子巻線を有する固定子とを備え、前記固定子鉄心は軸線方向に延びたスロットが周方向に所定ピッチで複数形成された交流発電機であって、

前記多相固定子巻線は、長尺の索線が、前記固定子鉄心 の端面側の前記スロット外で折り返されて、所定スロット数毎に前記スロット内でスロット深さ方向に内層と外 層とが交互に採るように巻装された巻線を複数有し、

前記固定子鉄心は、前記回転子側にあるとともにスロットを形成したティースを有する内周鉄心部と、この内周 鉄心部の外周面に嵌着された外周鉄心部とから構成された交流発電機。

【請求項5】 内周鉄心部は突合わせることで円環状になる突合わせ部を有している請求項4に記載の交流発電機。

【請求項6】 突合わせ部は一箇所のみである請求項1 ないし請求項5の何れかに記載の交流発電機。

【請求項7】 外周鉄心部は分断部を有しており、この 分断部から周方向に押し拡げることで曲率半径が大きく なるようになっている請求項4あるいは請求項5に記載 の交流発電機。

【請求項8】 外周鉄心部は板状磁性部材を積層して形成された請求項4ないし請求項6の何れかに記載の交流発電機。

【請求項9】 外周鉄心部の板状磁性部材の板厚は内周 鉄心部の板状磁性部材の板厚よりも薄い請求項8に記載 の交流発電機。

【請求項10】 外周鉄心部の板状磁性部材の板厚は内 周鉄心部の板状磁性部材の板厚よりも厚い請求項8に記 載の交流発電機

【請求項11】 外周鉄心部は板状磁性部材をスパイラル状に巻回した積層構造である請求項8ないし請求項1 0の何れかに記載の交流発電機。

【請求項12】 外周鉄心部は一体のパイプ形状である 請求項4ないし請求項6の何れかに記載の交流発電機。

【請求項13】 外周鉄心部の軸線方向の寸法は、内周 鉄心部の軸線方向の寸法より小さい請求項4ないし請求 項12の何れかに記載の交流発電機。 【請求項14】 外周鉄心部の径方向の肉厚寸法は、内 周鉄心部の径方向の肉厚寸法より小さい請求項4ないし 請求項13の何れかに記載の交流発電機。

【請求項15】 外周鉄心部の径方向の肉厚寸法は、内 周鉄心部の径方向の肉厚寸法より大きい請求項4ないし 請求項13の何れかに記載の交流発電機。

【請求項16】 外周鉄心部と内周鉄心部とは圧入されて一体化されている請求項4ないし請求項15の何れかに記載の交流発電機。

【請求項17】 固定子鉄心および内周鉄心部には、曲率半径を小さくする方向の押圧力を低減する切込み部が 形成されている請求項1ないし請求項16の何れかに記載の交流発電機。

【請求項18】 突合わせ部はティースに形成されている請求項1ないし請求項16の何れかに記載の交流発電機。

【請求項19】 <u>固定子鉄心</u>および内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されている請求項18に記載の交流発電機。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0031

【補正方法】変更

【補正内容】

【0031】この発明の請求項19に係る交流発電機では、<u>固定子鉄心および</u>内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されている。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0092

【補正方法】変更

【補正内容】

【0092】また、この発明の請求項19に係る交流発電機では、固定子鉄心および内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されているので、突合わせ部でもティースの剛性は高く、巻線をスロット内に確実に装着することができる。また、周方向の幅寸法が異なることで、スロットの開口部の径方向に延びた中心線間の間隔を不均一に形成でき、発生電圧の変動及び騒音を低減することができる。

【手続補正書】

【提出日】平成13年4月27日(2001.4.27)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 回転周方向に沿ってNS極を交互に形成する回転子と、この回転子を囲った固定子鉄心およびこの固定子鉄心に装着された多相固定子巻線を有する固定子とを備え、前記固定子鉄心は軸線方向に延びたスロットが周方向に所定ピッチで複数形成された交流発電機であって、

上記多相固定子巻線は、連続線からなる素線が、上記固定子鉄心の端面側の上記スロット外で折り返されて、所定スロット数毎に上記スロット内でスロット深さ方向に内層と外層とを交互に採るように巻装された巻線を複数有し、上記複数の巻線は、複数本の上記素線を同時に折り畳んで形成された少なくとも1組の素線群で構成され、上記素線群は、直線部がターン部により連結されて所定スロットピッチで配列され、かつ、隣り合う該直線部が該ターン部によりスロット深さ方向に内層と外層とを交互に採るようにずらされたパターンに形成された2本の上記素線を、互いに上記所定スロットピッチずらして上記直線部を重ねて配列してなる素線対が、1スロットピッチづつずらされて上記所定スロット数と同数対配列されて構成され、

前記固定子鉄心は、突合わせることで円環状になる軸線方向に延びた突合わせ部を有している交流発電機。

【請求項2】 固定子鉄心は円弧状の分割鉄心部から構成された請求項1に記載の交流発電機。

【請求項3】 固定子鉄心のスロットの底面と外周面と の間のコアバックは、分離できない一体である請求項1 あるいは請求項2に記載の交流発電機。

【請求項4】 回転周方向に沿ってNS極を交互に形成する回転子と、この回転子を囲った固定子鉄心およびこの固定子鉄心に装着された多相固定子巻線を有する固定子とを備え、前記固定子鉄心は軸線方向に延びたスロットが周方向に所定ピッチで複数形成された交流発電機であって、

上記多相固定子巻線は、連続線からなる素線が、上記固定子鉄心の端面側の上記スロット外で折り返されて、所定スロット数毎に上記スロット内でスロット深さ方向に内層と外層とを交互に採るように巻装された巻線を複数有し、上記複数の巻線は、複数本の上記素線を同時に折り畳んで形成された少なくとも1組の素線群で構成され、上記素線群は、直線部がターン部により連結されて所定スロットピッチで配列され、かつ、隣り合う該直線

部が該ターン部によりスロット深さ方向に内層と外層と を交互に採るようにずらされたパターンに形成された2 本の上記素線を、互いに上記所定スロットピッチずらし て上記直線部を重ねて配列してなる素線対が、1スロッ トピッチづつずらされて上記所定スロット数と同数対配 列されて構成され、

前記固定子鉄心は、前記回転子側にあるとともにスロットを形成したティースを有する内周鉄心部と、この内周 鉄心部の外周面に嵌着された外周鉄心部とから構成された交流発電機。

【請求項5】 内周鉄心部は突合わせることで円環状になる突合わせ部を有している請求項4に記載の交流発電機

【請求項6】 突合わせ部は一箇所のみである請求項1 ないし請求項5の何れかに記載の交流発電機。

【請求項7】 外周鉄心部は分断部を有しており、この分断部から周方向に押し拡げることで曲率半径が大きくなるようになっている請求項4あるいは請求項5に記載の交流発電機。

【請求項8】 外周鉄心部は板状磁性部材を積層して形成された請求項4ないし請求項6の何れかに記載の交流発電機。

【請求項9】 外周鉄心部の板状磁性部材の板厚は内周 鉄心部の板状磁性部材の板厚よりも薄い請求項8に記載 の交流発電機。

【請求項10】 外周鉄心部の板状磁性部材の板厚は内 周鉄心部の板状磁性部材の板厚よりも厚い請求項8に記 載の交流発電機。

【請求項11】 外周鉄心部は板状磁性部材をスパイラル状に巻回した積層構造である請求項8ないし請求項1 0の何れかに記載の交流発電機。

【請求項12】 外周鉄心部は一体のパイプ形状である 請求項4ないし請求項6の何れかに記載の交流発電機。

【請求項13】 外周鉄心部の軸線方向の寸法は、内周 鉄心部の軸線方向の寸法より小さい請求項4ないし請求 項12の何れかに記載の交流発電機。

【請求項14】 外周鉄心部と内周鉄心部とは圧入されて一体化されている請求項4ないし請求項13の何れかに記載の交流発電機。

【請求項15】 固定子鉄心および内周鉄心部には、曲率半径を小さくする方向の押圧力を低減する切込み部が形成されている請求項1ないし請求項14の何れかに記載の交流発電機。

【請求項16】 突合わせ部はティースに形成されている請求項1ないし請求項<u>14</u>の何れかに記載の交流発電機。

【請求項17】 固定子鉄心および内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されてい

る請求項16に記載の交流発電機。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

[0014]

【課題を解決するための手段】この発明の請求項1に係 る交流発電機では、多相固定子巻線は、連続線からなる 素線が、上記固定子鉄心の端面側の上記スロット外で折 り返されて、所定スロット数毎に上記スロット内でスロ ット深さ方向に内層と外層とを交互に採るように巻装さ れた巻線を複数有し、上記複数の巻線は、複数本の上記 素線を同時に折り畳んで形成された少なくとも1組の素 線群で構成され、上記素線群は、直線部がターン部によ り連結されて所定スロットピッチで配列され、かつ、隣 <u>り合う該直線部が該ターン部によりスロット深さ方向に</u> 内層と外層とを交互に採るようにずらされたパターンに 形成された2本の上記素線を、互いに上記所定スロット ピッチずらして上記直線部を重ねて配列してなる素線対 が、1スロットピッチづつずらされて上記所定スロット 数と同数対配列されて構成され、上記前記固定子鉄心 は、突合わせることで円環状になる軸線方向に延びた突 合わせ部を有している。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】この発明の請求項2に係る交流発電機では、固定子鉄心は円弧状の分割鉄心部から構成されている。また、この発明の請求項3に係る交流発電機では、固定子鉄心のスロットの底面と外周面との間のコアバックは、分離できない一体である。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】この発明の請求項4に係る交流発電機では、多相固定子巻線は、連続線からなる素線が、上記固定子鉄心の端面側の上記スロット外で折り返されて、所定スロット数毎に上記スロット内でスロット深さ方向に内層と外層とを交互に採るように巻装された巻線を複数有し、上記複数の巻線は、複数本の上記素線を同時に折り畳んで形成された少なくとも1組の素線群で構成され、上記素線群は、直線部がターン部により連結されて所定スロットピッチで配列され、かつ、隣り合う該直線部が該ターン部によりスロット深さ方向に内層と外層とを交互に採るようにずらされたパターンに形成された2

本の上記素線を、互いに上記所定スロットピッチずらして上記直線部を重ねて配列してなる素線対が、1スロットピッチづつずらされて上記所定スロット数と同数対配列されて構成され、前記固定子鉄心は、前記回転子側にあるとともにスロットを形成したティースを有する内周鉄心部と、この内周鉄心部の外周面に嵌着された外周鉄心部とから構成されている。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0026

【補正方法】削除

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0027

【補正方法】削除

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

【0028】この発明の請求項<u>14</u>に係る交流発電機では、外周鉄心部と内周鉄心部とは圧入されて一体化されている。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】この発明の請求項<u>15</u>に係る交流発電機では、内周鉄心部には、曲率半径を小さくする方向の押圧力を低減する切込み部が形成されている。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】この発明の請求項<u>16</u>に係る交流発電機では、突合わせ部はティースに形成されている。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0031

【補正方法】変更

【補正内容】

【0031】この発明の請求項<u>17</u>に係る交流発電機では、固定子鉄心および内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されている。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0036

【補正方法】変更

【補正内容】

【0036】固定子鉄心15は、ティース51の径方向に切断された突合わせ部を有しており、8分割された分割鉄心部15Aから構成されている。分割鉄心部15Aは、板厚0.35mmのSPCC材を積層して外周部をレーザ溶接して一体化されている。この各分割鉄心部15Aのスロット15aの底面と分割鉄心部15Aの外周面との間のコアバック50の寸法t1は3.6mm、スロット15aの幅寸法t2は、底部から開口部15bまでほぼ一定で1.8mmである。コアバック50は分離できない一体である。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0074

【補正方法】変更

【補正内容】

[0074]

【発明の効果】以上説明したように、この発明の請求項 1に係る交流発電機では、多相固定子巻線は、連続線か らなる素線が、上記固定子鉄心の端面側の上記スロット 外で折り返されて、所定スロット数毎に上記スロット内 でスロット深さ方向に内層と外層とを交互に採るように 巻装された巻線を複数有し、上記複数の巻線は、複数本 の上記素線を同時に折り畳んで形成された少なくとも1 組の素線群で構成され、上記素線群は、直線部がターン 部により連結されて所定スロットピッチで配列され、か つ、隣り合う該直線部が該ターン部によりスロット深さ 方向に内層と外層とを交互に採るようにずらされたパタ ーンに形成された2本の上記素線を、互いに上記所定ス ロットピッチずらして上記直線部を重ねて配列してなる 素線対が、1スロットピッチづつずらされて上記所定ス ロット数と同数対配列されて構成され、上記前記固定子 鉄心は、突合わせることで円環状になる軸線方向に延び た突合わせ部を有しているので、巻線は連続巻きで構成 され、コイルエンドの整列度、スロット内の巻線の占積 率を高めることができるとともに、固定子の製造作業が 簡単化される。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】0076

【補正方法】変更

【補正内容】

【0076】また、この発明の請求項3に係る交流発電機では、固定子鉄心のスロットの底面と外周面との間のコアバックは、分離できない一体であるので、外周鉄心部を挿入する工程が省略できる。素鉄心を円筒形状に曲げ変形する際の曲げ荷重は大きくなり、鉄心の内径真円度を向上し難いが、後工程で、固定子の内径を加工仕上げする場合、大きな問題とはならない。また、本構成に

おいては、内周側の環状鉄心部と外周鉄心部間の隙間に 起因する出力低下と、鉄心の剛性低下による磁気騒音の 悪化を抑制できる。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】0077

【補正方法】変更

【補正内容】

【0077】また、この発明の請求項4に係る交流発電 機では、多相固定子巻線は、連続線からなる素線が、上 記固定子鉄心の端面側の上記スロット外で折り返され て、所定スロット数毎に上記スロット内でスロット深さ 方向に内層と外層とを交互に採るように巻装された巻線 を複数有し、上記複数の巻線は、複数本の上記素線を同 時に折り畳んで形成された少なくとも1組の素線群で構 成され、上記素線群は、直線部がターン部により連結さ れて所定スロットピッチで配列され、かつ、隣り合う該 直線部が該ターン部によりスロット深さ方向に内層と外 層とを交互に採るようにずらされたパターンに形成され た2本の上記素線を、互いに上記所定スロットピッチず らして上記直線部を重ねて配列してなる素線対が、1ス ロットピッチづつずらされて上記所定スロット数と同数 対配列されて構成され、前記固定子鉄心は、前記回転子 側にあるとともにスロットを形成したティースを有する 内周鉄心部と、この内周鉄心部の外周面に嵌着された外 周鉄心部とから構成されているので、巻線は素線の連続 巻きで構成され、コイルエンドの整列度、スロット内の 巻線の占積率を高めることができるとともに、内周鉄心 部の軸線方向から外周鉄心部を挿入して内周鉄心部と外 周鉄心部とを一体化でき、固定子の製造作業が簡単化さ れる。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】0087

【補正方法】削除

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】0088

【補正方法】削除

【手続補正17】

【補正対象書類名】明細書

【補正対象項目名】0089

【補正方法】変更

【補正内容】

【0089】また、この発明の請求項<u>14</u>に係る交流発電機では、外周鉄心部と内周鉄心部とは圧入されて一体化されているので、内周鉄心部と外周鉄心部との密着性がよく、それだけ磁気抵抗を低減できる。

【手続補正18】

【補正対象書類名】明細書

(26))01-245446 (P2001-24e58

【補正対象項目名】0090

【補正方法】変更

【補正内容】

【0090】また、この発明の請求項<u>15</u>に係る交流発電機では、内周鉄心部には、曲率半径を小さくする方向の押圧力を低減する切込み部が形成されているので、曲げ加工が容易となる。

【手続補正19】

【補正対象書類名】明細書

【補正対象項目名】0091

【補正方法】変更

【補正内容】

【0091】また、この発明の請求項<u>16に係る交流発</u> 電機では、突合わせ部はティースに形成されているの で、突合わせ作業が簡単であり、また主要磁束の方向に 沿った分断面であるので、出力低下を抑えることができ る。

【手続補正20】

【補正対象書類名】明細書

【補正対象項目名】0092

【補正方法】変更

【補正内容】

【0092】また、この発明の請求項<u>17</u>に係る交流発電機では、固定子鉄心および内周鉄心部は、周方向の幅寸法が異なるティースを有しており、突合わせ部は周方向の幅寸法が大きい方のティースに形成されているので、突合わせ部でもティースの剛性は高く、巻線をスロット内に確実に装着することができる。また、周方向の幅寸法が異なることで、スロットの開口部の径方向に延びた中心線間の間隔を不均一に形成でき、発生電圧の変動及び騒音を低減することができる。

フロントページの続き

(51) Int. Cl.7

識別記号

H 0 2 K 19/22

(72) 発明者 森下 瞭

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 FI H02K 19/22 テーマコード(参考)

Fターム(参考) 5H002 AA07 AB01 AB04 AC06 AC07

ACO8 AC10 AE01

5H603 AA10 BB02 BB07 CA01 CA05

CB01 CB26 CC05 CC17 CD02

CD06 CD22 CE02 CE05 FA02

5H6O4 AAO8 BBO3 BB10 BB14 CCO1

CC05 CC13 DB01 QB14

5H605 AA08 BB04 BB10 CC01 FF01

GG04

5H619 AA01 AA05 AA10 BB02 BB06

BB17 PP01 PP04 PP05 PP14

PP35