Intercepts of the Quadratic Given a quadratic $p(t) = at^2 + bt + c$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

Casel: $\Delta > 0$ $t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the t-intercepts of multiplicity 1. p(0) = c computes the single p-intercept.

$$p(0) = c$$
 computes the t-intercepts of muttipticity 1.
 $p(0) = c$ computes the single p-intercept.
Example 1.

 $p(t) = -t^2 - 9t - 8$ compute its discriminant \triangle : $\triangle = 49 > 0$

$$t_{1,2}=-8,-1$$
 $p(0)=-8$ p-intercept.

50

p(0) = -48 p-intercept.

Example 3. $p(t) = -4t^2 - 80t - 500 \text{ compute its discriminant } \triangle:$

 $\triangle = -1600 < 0$

p(0) = -500 p-intercept.

