FLAPPY-LEARN

genetic algorithm learns to fly

FLAPPY BIRD

- released in 2013
- notoriously difficult
- ➤ addictive (caused major distractions among 1st year FMI UB students)
- objective: survive as long as possible
- controls: tap to "jump"
- ➤ rules: die upon hitting a pipe or leaving the screen

APPROACH

THE BIRD'S BRAIN

THE BIRD'S BRAIN

- simple neural network
- inputs: horizontal & vertical distance to next gap
 - distance to screen edge "contained" in y component
 - normalized [-1, +1]
- ➤ hidden layer: 5 neurons
 - tanh non-linearity (we don't use backprop)
- > output: % willingness to jump
 - sigmoid activation (it's a brain, right?)
 - fires if over 0.5

THE WORLD

- ➤ barrier position: anywhere from top to bottom edge
- gaps get increasingly smaller
 - until birds can no longer fit \Rightarrow force next generation
 - decay exponentially
- > a bird's brain is simulated multiple times per second

A GENERATION TAKING OFF

GENETIC OPERATORS

GENETIC SETTING

- > genome: a bird's brain
- > population: 10 genomes (one generation)
- ➤ fitness: the bird's age
- ➤ first generation: random network
 - weights: $\sim U[-1, +1]$
 - biases: zero
- > next generation: select, crossover and mutation
 - if none managed to pass a single barrier, wipe out (but keep best one)

SELECTION

- > who advances to the next generation
- ➤ fitness-proportionate roulette wheel selection
- ➤ keep the 3 fittest (elitism)
- > pick 2 lucky ones, at random
- ➤ add 1 random genome
 - combat staleness

HAVING FAITH PAYS OFF

CROSSOVER

- > offspring of two parents (one dominant, one recessive)
- > uniform recombination, binary mask
- > weights: inherited from dominant
- ➤ biases: 25% from recessive
- ➤ 3 couples:
 - fittest two
 - two random winners
 - two randomly selected

OVERCOMES ITS PARENTS

MUTATION

- vary genomes slightly
- real-valued, uniform mutation
- > 20% chance to apply to each neuron's weight
- \blacktriangleright $w \mapsto aw + b$; $a \sim U[0.85, 1.15], b \sim U[-0.2, +0.2]$
- > mutants:
 - the best one
 - the lucky ones
 - offsprings

current generation

next generation

RESULTS

LEARNING SPEED

CONVERGENCE SPEED

A CHAMPION IS BORN

TRY IT YOURSELF!

- > online demo: stefann.eu/flappy-learn
- > checkpointing, can save/load the bird's brain
 - repo contains parameters of the champion
- > source: github.com/stefan-niculae/flappy-learn
- written in JavaScript from the ground up
 - using the Phaser game engine
 - assets from kenney.nl (paid)

THANK YOU!