Perceptron Learning

Error Correction Learning

Prepare the input signals and the teacher signal

 $x_{p1}, x_{p2}, ..., x_{pm}$: the *p*th input signals y_p : the *p*th teacher signal

where m is the number of inputs, P is the number of data set.

- For the cases of OR function (or AND function), m = 2, and P=4.
- For such cases, the teacher signal is given. It is called supervised learning.
- If the teacher signal is not given, it is called unsupervised learning.

Error Correction Learning (cont'd)

For a given input signal, the weight and the threshold are adjusted, based on the error between the teacher signal and the output of the neuron, by

$$w_i^{new} = w_i^{old} + \eta (y_p - out) x_{pi} \quad (1 \le i \le m)$$

where, η <1 is learning rate with a small positive value, and (y_p - out) is usually given by

$$(y_p - out) = \begin{cases} 1 & \text{when } y_p = 1, out = 0 \\ -1 & \text{when } y_p = 0, out = 1 \\ 0 & \text{when } y_p = out \end{cases}$$

Only when the output and the teacher signal are different, the weight is corrected.

Gradient Descent Method

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$\begin{aligned} \boldsymbol{\theta}^* &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \mathcal{L}(f(x^{(i)}; \boldsymbol{\theta}), y^{(i)}) \\ \boldsymbol{\theta}^* &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) \end{aligned}$$

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\theta)}{\partial \theta}$
- 4. Update weights, $\theta \leftarrow \theta \eta \frac{\partial J(\theta)}{\partial \theta}$
- 5. Return weights

