LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING OPTIMERING 2011-12-20 kl 08-13

Students may use the formulae sheet and a pocket calculator. All solutions should be properly justified.

- 1. a) Give the definition of a convex set in \mathbb{R}^n . (0.2)
 - b) For the set $S = \{(0,0), (2,2), (1,0), (1,-1)\}$, sketch the convex hull H(S) in the xy-plane and provide its analytical description by linear inequalities. The number of inequalities should be as small as possible. (0.3)
 - c) Give the definition of a separating hyperplane for two sets A and B in \mathbb{R}^n . (0.2)
 - d) Find the equation for a separating hyperplane for the set H(S) from 1b) and the point (0,-1).
- **2.** We apply Newton's method to the function $f(x,y) = (x+1)^2 + (x+y)e^{x+y}$ in \mathbf{R}^2 starting at $(x_0,y_0) = (0,0)$ and obtain the sequence $\{(x_k,y_k)\}_{k\geq 0}$.
 - a) Calculate the first iteration and show that $(x_1, y_1) = (-1, 0.5)$. (0.3)
 - b) Suppose that after k iterations we get $(x_k, y_k) = (-1, \mu)$. Calculate the next iteration and show that $(x_{k+1}, y_{k+1}) = (-1, \frac{\mu^2}{1+\mu})$. (0.4)
 - c) Combine the results of 2a) and 2b) and show that the sequence (x_k, y_k) converges. What is the limit? Is the limit the global minimum? Does the global minimum exist? (0.3)
- 3. We apply the Simplex method to the LP problem

$$\max(2x_1 + 4x_2 + 5x_3) \text{ subject to } \begin{cases} x_1 + x_2 + x_3 &= 5, \\ -x_1 + 2x_2 + x_3 &\leq 2, \\ x_1 + 3x_2 + 2x_3 &\leq 8, \\ x_1, x_2, x_3 &\geq 0. \end{cases}$$

- a) To initialize the Simplex method, pick an initial basic feasible solution of your choice. What is the corresponding extreme point? (0.3)
- b) Proceed with the Simplex method and solve the problem. (0.3)
- c) State the dual LP problem and solve it by the CSP¹. (0.4)

Please turn over

¹CSP stands for Complementary Slackness Principle

- **4.** a) Prove that the sum of two convex functions is a convex function. (0.2)
 - b) To solve the problem $\min f(x)$ subject to $g_k(x) \leq 0$, k = 1, ..., m the penalty function method can be used. Show that the modified function appearing in the method

$$F(x) = f(x) + \mu \sum_{k=1}^{m} \max\{0, g_k(x)\}^2, \qquad \mu \ge 0,$$

is convex on \mathbf{R}^n if the functions f and all g_k are convex there. (0.4)

- c) Find all $\alpha \in \mathbf{R}$ such that the function $f(x,y) = (xy)^{\alpha}$ is concave on $\{(x,y) \in \mathbf{R}^2 \mid x > 0, y > 0\}.$ (0.4)
- **5.** We would like to solve the problem

$$\min(x^2 + 2xy + 2y^2) \quad \text{subject to } 2y + x^2 \ge 1, \ x \ge 0.$$

- a) Show that the minimum exists. (0.2)
- b) Show that the constraints satisfy the CQ condition (i.e. there are no CQ points). You may prove it either algebraically or geometrically (in both cases, a convincing explanation is necessary). (0.2)
- c) Calculate KKT points and solve the problem. (0.4)
- d) Sketch the constraints in the xy-plane and illustrate graphically that the point (0,0.5) satisfies the necessary condition for local minimum (in terms of ∇f). (0.2)
- 6. We would like to solve the modified problem from 5

$$\min(x^2 + 2xy + 2y^2)$$
 subject to $2y + x^2 \ge 1$, $x \ge 0$, $y \ge 0$,

by the duality principle.

- a) Taking $X = \{x \ge 0, y \ge 0\}$, calculate the dual function Θ . (Hint: minimize with respect to x-variable first.) (0.3)
- b) Solve the dual problem and then solve the primal problem by showing no duality gap. (0.2)
- c) Prove the theorem you used in 6b), i.e. prove that if there exist feasible \bar{x} and (\bar{u}, \bar{v}) such that $f(\bar{x}) = \Theta(\bar{u}, \bar{v})$ then \bar{x} is the global minimum for the primal problem. (0.5)

Merry Christmas, Folks!