Lab2: Binary GCD Algorithm

1. Objective

Write an assembly program to implement the Binary GCD algorithm.

2. Background

Read the article below that discusses the Euclidean algorithm and Binary GCD (Stein's algorithm).

Euclidean algorithm for computing the greatest common divisor: https://cp-algorithms.com/algebra/euclid-algorithm.html

Video tutorial: How to Find the Greatest Common Divisor by Using the Euclidian Algorithm

Toy example: compute gcd(48, 18) with both methods.

Euclidean algorithm (mod-based)

- Start with a=48, b=18. Replace (a, b) with (b, a mod b) until b=0.
- $48 \mod 18 = 12 \Rightarrow (a, b) = (18, 12).$
- $18 \mod 12 = 6 \Rightarrow (a, b) = (12, 6)$.
- $12 \mod 6 = 0 \Rightarrow (a, b) = (6, 0).$
- Stop; gcd = 6.

Binary GCD (Stein's algorithm, shift/subtract)

- Start u=48, v=18.
- Both even: factor 2 repeatedly. Common power of two = 2 since 48=16×3 and 18=2×9 share one 2. Record shift=1; divide both by 2 once ⇒ u=24, v=9.
- Make both odd: u even, v odd \Rightarrow u >>= ctz(u) (right shift u by ctz(u) bit positions). 24 \rightarrow 3 (divide by 8) \Rightarrow u=3, v=9.
- Both odd: replace the larger by the difference and make even again.
 - \circ v>u \Rightarrow v = v u = 9 3 = 6; make odd: 6 \rightarrow 3 (divide by 2 twice) \Rightarrow v=3.
- Now u=3, $v=3 \Rightarrow v-u=0 \Rightarrow v=0$.
- Stop; gcd odd part = u = 3. Restore common factor: $3 \ll \text{shift} = 3 \times 2 = 6$.

Both algorithms return 6, but Euclid uses division/modulo each step, while binary GCD uses only shifts, subtraction, and comparisons, which can be faster on hardware where division is expensive.

How to implement ctz()

ctz() stands for "count trailing zeros". It returns the number of consecutive 0-bits at the least-significant end of an integer's binary representation. For example, ctz(48) = 4 because $48 = 0b0011 \ 0000$ ends with four zeros, and ctz(18) = 1 because 18 = 0b10010 ends with one zero. In the binary GCD (Stein's) algorithm, ctz(x) gives the largest power of 2 dividing x, so dividing by $2^ctz(x)$ quickly removes all factors of two.)

ARMv7 does not have a native CTZ instruction, but you can implement it with bit-reverse + CLZ "count leading zeros.".

ctz(x) = clz(rbit(x)) (handle the case of x=0 separately.)

For nonzero x, ctz(x) = clz(rbit(x)) because reversing the bits turns trailing zeros into leading zeros. Using $x = 0b0010\ 1100\ (44)$, rbit over 8 bits yields $0b0011\ 0100$, which has 2 leading zeros, so ctz(x) = 2.

This trick only works for non-zero input x, since many implementations of ctz/clz consider input x = 0 as undefined behavior for performance reasons. So please define ctz(0)=32 explicitly before calling ctz(x) for x!=0.

3. Lab Steps

Start with the Assembly program below that implements the Euclidean algorithm, modify it to implement the Binary GCD algorithm.

Computing the Euclidean Algorithm in raw ARM Assembly

https://www.youtube.com/watch?v=665rzOSSxWA

https://github.com/LaurieWired/Assembly-Algorithms/tree/main/GCD

5 Report

Please use the project report template and submit the report in PDF format. Submit a separate source file for the Binary GCD algorithm.