Relatório 3 | Laboratório de Física1 | Aluno: Leonardo C. Rossato

Inclinação do Plano (θ) em Graus

10

Resposta LETRA f)

Resposta LETRA i)

у	х	X²	t	
0,18	0,0000	0,0000	0,0000	Resposta Letra h)
0,16	-0,0155	0,0002	0,1838	
0,14	-0,033	0,0011	0,2599	
0,12	-0,0500	0,0025	0,3184	
0,10	-0,0690	0,0048	0,3676	
0,08	-0,0908	0,0082	0,4110	
0,06	-0,1160	0,0135	0,4502	
0,04	-0,1465	0,0215	0,4863	
0,02	-0,1853	0,0343	0,5199	
0,01	-0,2149	0,0462	0,5359	
0,00	-0,2750	0,0756	0,5514	

Equação Movimento no Eixo Horizontal (Eixo X)

 $x(t) = x_0 + v_x t$

Equação Movimento no Eixo Vertical (Eixo y)

$$S(t) = S_0 + v_{0y}t + (at^2)/2$$

 $ay = 1,184 \text{ m} / \text{s}^2$

Equação de variação temporal da bolinha (Queda Livre)

$$t = Raiz(2\Delta y / a_y)$$

*OBS: o tempo foi calculado usando a Equação de Variação temporal da Bolinha (haja vista que não tinha informações empíricas dos valores de t)

Relatório 3 | Laboratório de Física1 | Aluno: Leonardo C. Rossato

Inclinação do Plano (θ) em Graus

10

Resposta Gráfica LETRA j)

Resposta LETRA j)				Velocidade Elxo y
у	x	X ²	t	Vy
0,18	0,0000	0,0000	0,0000	0,0000
0,16	-0,0155	0,0002	0,1838	0,2176
0,14	-0,033	0,0011	0,2599	0,3078
0,12	-0,0500	0,0025	0,3184	0,3769
0,10	-0,0690	0,0048	0,3676	0,4352
0,08	-0,0908	0,0082	0,4110	0,4866
0,06	-0,1160	0,0135	0,4502	0,5331
0,04	-0,1465	0,0215	0,4863	0,5758
0,02	-0,1853	0,0343	0,5199	0,6155
0,01	-0,2149	0,0462	0,5359	0,6345
0,00	-0,2750	0,0756	0,5514	0,6529

Cálculo Velocidade Eixo y V_y = V₀ + a_yt

 $ay = 1,184 \text{ m} / \text{s}^2$

Resposta LETRA j) Interpretação Gráfico

Acredito que esse gráfico mostra a variação relativa das componentes de posições do eixo x e y. Consequentemente, pode-se associar essa variação com uma velocidade relativa entre as componentes Vx e Vy, obtendo um comportamento linear da forma: $y(x^2) = ax + b$, onde a = -0.0185; b = 0.156

Relatório 3 | Laboratório de Física1 | Aluno: Leonardo C. Rossato

Inclinação do Plano (θ) em Graus				sposta FRA L)
	10			Velocidade Elxo y
у	х	X ²	t	Vy
0,18	0,0000	0,0000	0,0000	0,0000
0,16	-0,0155	0,0002	0,1838	0,2176
0,14	-0,033	0,0011	0,2599	0,3078
0,12	-0,0500	0,0025	0,3184	0,3769
0,10	-0,0690	0,0048	0,3676	0,4352
0,08	-0,0908	0,0082	0,4110	0,4866
0,06	-0,1160	0,0135	0,4502	0,5331
0,04	-0,1465	0,0215	0,4863	0,5758
0,02	-0,1853	0,0343	0,5199	0,6155
0,01	-0,2149	0,0462	0,5359	0,6345
0,00	-0,2750	0,0756	0,5514	0,6529

Resposta Gráfica da LETRA m)

0,2000

0,3000

t - Eixo temporal

Resposta LETRA g)

0,2000

0,0000

0,0000

0,1000

Cálculo da Velocidade Eixo Y	Cálculo Aceleração No Eixo Y		
$V_y = Vsen(\theta) = (a_y)t$	a _y = 0,7gsen(θ) = 0,7*9,8*0,1736		
então: $V_y = (a_y)t / sen(\theta)$	a _y = 1,184 m / s ²		

Resposta da LETRA m)

0,4000

0,5000

A inclinação da função $V_y(t)$ é o valor da aceleração vertical da bola. Ou seja, o coeficiente ângular da função linear $V_y(t)$ resulta no mesmo valor do Cálculo da Aceleração da LETRA g) = ay = 0,7gsen(θ) = 1,18 m / s²