Name:	
VIP ID:	

- Write your name and your VIP ID in the space provided above.
- The test has six (6) pages, including this one.
- Show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given at the right of each problem number.
- There is an extra-credit problem on the last page, together with a table of Laplace Transforms. Points obtained in the extra-credit problem will be added to the score of exam #1.

Page	Max	Points
2	40	
3	20	
4	20	
5	20	
Total	100	

Problem 1 (40 pts—10 pts each). Find the Laplace transform of the following functions:

(a)
$$f(x) = 2x^3 - 7x + 4$$

$$F(s) = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

(b)
$$f(x) = 3e^{2x} - 7e^{-8x} + \cos\left(\frac{\pi}{2}x\right)$$

$$F(s) = \tag{s > 1}$$

(c)
$$f(x) = 5x^2 \sin(3x)$$

$$F(s) = \boxed{ (s >)}$$

(d)
$$f(x) = 3xe^{-2x}\sin x$$

$$F(s) = \boxed{ (s >)}$$

Problem 2 (20 pts—10 pts each). Find the inverse Laplace transform of the following functions in the given domains.

(a)
$$F(s) = \frac{3s-2}{s^2+2s-15}$$
, $(s > 3)$

$$f(x) =$$

(b)
$$F(s) = \frac{4(s-2)}{(s-2)^2 + 16}, (s > 2)$$

$$f(x) =$$

Problem 3 (20 pts). Use the definition of the Laplace transform to find that

$$\mathcal{L}{5\cos 2x} = \frac{5s}{s^2 + 4} \text{ for } s > 0.$$

MATH 242 Test #2 Fall 2018 Page 5/6

Problem 4 (20 pts). Use techniques based on the Laplace transform to solve the initial value problem $y'' + y' - 2y = e^x$ that satisfies $y(0) = 0, y'(0) = \frac{4}{3}$. Compute the numerical value of all relevant constants.

f(x)	$\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x) dx$				
1	$\frac{1}{s}$	s > 0	$cf(x)\pm g(x)$	$cF(s) \pm G(s)$	s > max(a, b)
x^n	$\frac{n!}{s^{n+1}}$	s > 0	$e^{\alpha x}f(x)$	$F(s-\alpha)$	$s > a + \alpha$
$e^{\alpha x}$	$\frac{1}{s-\alpha}$	$s > \alpha$	$x^n f(x)$	$(-1)^n F^{(n)}(s)$	s > a
$\sin \beta x$	$\frac{\beta}{s^2 + \beta^2}$	s > 0	f'(x)	sF(s) - f(0)	
$\cos \beta x$	$\frac{s}{s^2 + \beta^2}$	s > 0	f''(x)	$s^2F(s) - sf(0) - f'(0)$	

Problem 5 (20 pts–extra credit for exam #1). Solve the previous problem using either the method of variation of parameters, or undetermined coefficients. Do compute the value of all relevant constants.