Practice Final Exam

November 30th, 2021

"I have adhered to the Duke Community Standard in completing this assignment."

Signature:

Name:

You may use the following list of mathematical expressions.

Theorem. Every rank-r matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition

$$A = U\Sigma V^H = \left[\begin{array}{cc} U_1 & U_2 \end{array} \right] \left[\begin{array}{cc} \Sigma_1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} V_1^H \\ V_2^H \end{array} \right] = U_1\Sigma_1V_1^H,$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $U_1 \in \mathbb{C}^{m \times r}$, $U_2 \in \mathbb{C}^{m \times m - r}$, $V_1 \in \mathbb{C}^{n \times r}$, and $V_2 \in \mathbb{C}^{n \times n - r}$ have orthonormal columns. The diagonal matrix $\Sigma_1 \in \mathbb{R}^{r \times r}$ contains the non-zero singular values

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0.$$

Definition. For an $m \times n$ complex matrix A, the *pseudo-inverse* A^{\dagger} maps any vector $\underline{w} \in \mathbb{C}^m$ to the minimum-norm vector $\underline{v}^* \in \mathbb{C}^n$ that minimizes $\|A\underline{v} - \underline{w}\|$. In general, the pseudo-inverse can be written as $A^{\dagger} = V_1 \Sigma_1^{-1} U_1^H$ in terms of the compact SVD. The orthogonal projection onto the range of A is given by $P_{\mathcal{R}(A)} = AA^{\dagger}$. For full-rank A, if m > n, then $A^{\dagger} = (A^H A)^{-1} A^H$ and, if n > m, then $A^{\dagger} = A^H (AA^H)^{-1}$.

Definition. For any $p \in [1, \infty)$ and $\underline{v} \in \mathbb{C}^m$, the *vector p-norm* is defined to be $\|\underline{v}\|_p = \left(\sum_{i=1}^m |v_i|^p\right)^{1/p}$. By continuity, $\|\underline{v}\|_{\infty} = \max_{i \in \{1, \dots, m\}} |v_i|$. For a matrix $A \in \mathbb{C}^{m \times n}$, the induced *matrix p-norm* is

$$\|A\|_{p} \triangleq \sup_{\underline{v} \in \mathbb{R}^{n}: \|\underline{v}\|_{p} = 1} \|A\underline{v}\|_{p} = \begin{cases} \max_{j \in \{1, \dots, n\}} \sum_{i=1}^{m} |A_{i,j}| & \text{if } p = 1 \\ \max_{i \in \{1, \dots, m\}} \sum_{j=1}^{n} |A_{i,j}| & \text{if } p = \infty. \end{cases}$$

Fact. The inverse of a 2×2 matrix over a field is given in closed form by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Definition. For linearly independent vectors $\underline{v}_1, \dots, \underline{v}_n$ in an inner-product space, *Gram-Schmidt* returns

$$\underline{w}_j = \underline{v}_j - \sum_{i=1}^{j-1} \frac{\langle \underline{v}_j | \underline{w}_i \rangle}{\|\underline{w}_i\|^2} \underline{w}_i, \quad j \in \{1, 2, \dots, n\}.$$

Definition. A *Markov chain* with n states is a discrete random process X_1, X_2, \ldots defined by an $n \times n$ matrix P satisfying $[P^m]_{i,j} = \Pr(X_{t+m} = j | X_t = i)$ for all $m \in \mathbb{N}$ and $i, j \in \{1, 2, \ldots, n\}$. A state distribution, when represented a column vector $\underline{\pi} = (\pi_1, \ldots, \pi_n)^T$, is called *stationary* if $\underline{\pi}^T P = \underline{\pi}^T$.

Problems:

1. True or False:

- (a) 2.5 pt If $\|\cdot\|$ is a norm on a vector space V, then $d(\underline{u},\underline{v}) = \|\underline{u} \underline{v}\|$ is a metric on V.
- (b) 2.5 pt If A is an $n \times n$ matrix over F whose columns span the space F^n , then A is invertible.
- (c) **2.5 pt** Let the matrix $A \in \mathbb{C}^{m \times n}$ define a linear mapping between from \mathbb{C}^n to \mathbb{C}^m . Using the standard inner product to define the four fundamental subspaces associated with A, it follows that $\mathcal{N}(A) = \mathcal{R}(A^H)^{\perp}$.
- (d) **2.5 pt** Consider the Banach space $V = \mathbb{R}^n$ with norm $\|\underline{v}\| = \sum_{i=1}^n |v_i|$ and subspace W. Then, the vector $\arg\min_{v'\in W} \|\underline{v} \underline{v'}\|$ is called the orthogonal projection of \underline{v} onto W.
- (e) **2.5 pt** Let V be a vector space and $f: V \to \mathbb{R}$ be a convex functional on V. Then, for all $\underline{u}, \underline{v} \in V$, we have $\alpha f(\underline{u}) + (1 \alpha)f(\underline{v}) \leq f(\alpha \underline{u} + (1 \alpha)\underline{v})$.
- (f) **2.5 pt** Let $P \in \mathbb{C}^{n \times n}$ be a projection matrix. Then, $P\underline{v} = \underline{v}$ for all $\underline{v} \in \mathcal{R}(P)$.

2. Short answer questions.

- (a) **2.5 pt** For $A \in \mathcal{C}^{m \times n}$ with compact SVD $A = U_1 \Sigma_1 V_1^H$, give an expression for the orthgonal projection matrix onto the range of A.
- (b) **2.5 pt** Let V be an inner product space and $\underline{v}_1, \underline{v}_2 \in V$ be linearly independent vectors. Give an expression for a vector \underline{w}_2 such that \underline{v}_1 and \underline{w}_2 form an orthogonal basis for span $(\underline{v}_1, \underline{v}_2)$.
- (c) **2.5 pt** What do we call an $n \times n$ matrix A where SAS^{-1} is diagonal for some invertible S?
- (d) **2.5 pt** Let T be a linear transformation from V to W. If V is finite-dimensional, then what does the rank-nullity theorem say about the range and nullspace of T.

- 3. Let V be a real inner product space and $\underline{w}_1, \underline{w}_2 \in V$ be vectors. Let $\underline{\hat{v}}$ be the best approximation of $\underline{v} \in V$ by vectors in $W = \operatorname{span}(\underline{w}_1, \underline{w}_2)$.
 - (a) **5 pt** State the normal equations that s_1, s_2 must satisfy for $\underline{\hat{v}} = s_1 \underline{w}_1 + s_2 \underline{w}_2$

Now, consider the collection of points $\{(x_i, y_i)\}$ in \mathbb{R}^2 given by

$$\{(0,2),(1,2),(2,4),(3,8)\}.$$

The goal is to fit these points to a line by solving

$$\min_{s_1, s_2} \sum_{i=1}^{4} (y_i - s_1 - s_2 x_i)^2.$$

- (b) **5 pt** Let $V = \mathbb{R}^4$ be the standard real inner product space. Find vectors $\underline{v}, \underline{w}_1, \underline{w}_2 \in V$ such that the optimal s_1, s_2 are given by the normal equations from part (a).
- (c) 5 pt Find optimal values for s_1 and s_2 .
- (d) **5 pt** Find the squared error achieved by the optimal values of s_1, s_2 .
- 4. The real matrix A and its compact SVD decomposition are defined by

$$A = \begin{bmatrix} \frac{1}{3} & -\frac{1}{2} & \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{2} & \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{5}{6} & 0 & -\frac{2}{3} \\ \frac{1}{3} & \frac{5}{6} & 0 & -\frac{2}{3} \end{bmatrix} = U_1 \Sigma_1 V_1^T = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & 0 \end{bmatrix}^T.$$

- (a) $\mathbf{5}$ pt Give two orthonormal bases, one for the range of A and the other for the range of A^T .
- (b) **5 pt** Let $\underline{\hat{v}}$ denote the projection of $\underline{v} = [8 \ 4 \ 0 \ -4]^T$ onto the range of A. Compute $\underline{\hat{v}}$.
- (c) **5 pt** Find the minimum-norm solution \underline{v}^* of the linear system $A\underline{v} = \begin{bmatrix} 12 & 12 & -6 & -6 \end{bmatrix}^T$.
- (d) $\mathbf{5}$ **pt** Using the four fundamental subspaces, give a formula based on the compact SVD for the matrix that projects orthogonally onto the nullspace of A^T .
- 5. Let $V = \mathbb{R}^m$ be the standard inner-product space with subspaces $A, B \subseteq V$ whose intersection is $C = A \cap B$. Let the matrices P_A, P_B, P_C define orthogonal projections onto A, B, C. Starting from $\underline{v}_0 \in V$, the alternating projection algorithm generates the sequence

$$\underline{v}_{n+1} = \begin{cases} P_A \underline{v}_n & \text{if } n \text{ even} \\ P_B \underline{v}_n & \text{if } n \text{ odd.} \end{cases}$$

(a) **5 pt** – Suppose m=2, $A=\operatorname{span}\{\underline{a}\}$, and $B=\operatorname{span}\{\underline{b}\}$, where $\underline{a}=(1,2)^T$ and $\underline{b}=(2,1)^T$. Draw picture illustrating these subspaces and compute the projection matrices P_A , P_B , and P_C .

- (b) 5 pt Using the above setup, compute \underline{v}_n for n=1,2,3 starting from $\underline{v}_0=25\underline{b}=(50,25)^T$.
- (c) **5 pt** What do you observe about \underline{v}_n ? Compare \underline{v}_n to \underline{v}_{n-1} and \underline{v}_{n-2} . How are they related?
- (d) **5 pt** For all $n \ge 0$, prove that, for some $\alpha_{n+1} \in \mathbb{R}$, we have $\underline{v}_{n+1} = \alpha_{n+1}\underline{a}$ if n is even and $\underline{v}_{n+1} = \alpha_{n+1}\underline{b}$ if n is odd. Assuming that $\underline{v}_0 = \alpha_0\underline{b}$, find a recursive formula for α_n and evaluate it numerically. Hint: Try using the formulas $P_A = \underline{a}\,\underline{a}^T/\|\underline{a}\|^2$ and $P_B = \underline{b}\,\underline{b}^T/\|\underline{b}\|^2$.
- (e) **5 pt** Now, consider the alternating projection algorithm for the convex sets C_1 and C_2 below. These two half-spaces are defined by vertical/horizontal hatch lines. On the figure, draw 3 steps of alternating projection: $\underline{v}_1 = P_{C_1}(\underline{v}_0)$, $\underline{v}_2 = P_{C_2}(\underline{v}_1)$, and $\underline{v}_3 = P_{C_1}(\underline{v}_2)$ starting from \underline{v}_0 .

6. Consider a Markov chain X_1, X_2, \ldots with states $S = \{1, 2, 3\}$ and transition probability matrix

$$P = \begin{bmatrix} \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

where $P_{i,j} = \Pr(X_{t+1} = j \mid X_t = i)$ for $i, j \in \mathcal{S}$.

- (a) **5 pt** Compute the probability that $X_{t+2} = 3$ given that $X_t = 1$?
- (b) **5 pt** This Markov chain has a unique stationary distribution $\underline{\pi} = [\pi_1 \ \pi_2 \ \pi_3]^T$. Find it.

4

- (c) $\mathbf{5}$ \mathbf{pt} Assume this Markov chain converges to the same stationary distribution $\underline{\pi}$ from any initial state distribution \underline{u} (i.e., $\|\underline{u}^T P^n \underline{\pi}^T\| \to 0$ for some norm and all \underline{u}). Use this to show that the matrix sequence P^n converges to the rank-1 matrix $P^* = \underline{1}\,\underline{\pi}^T$, where $\underline{1}$ is a column vector of ones and $\underline{\pi}$ is a column vector containing the stationary distribution (i.e., each row of P^* equals the stationary distribution). Hint: Try using the standard basis for \mathbb{R}^3 .
- (d) **5 pt** Use induction on n to prove that $(P \underline{1}\underline{\pi}^T)^n = P^n \underline{1}\underline{\pi}^T$ for $n \ge 1$. Hint: Use the facts $P\underline{1} = \underline{1}$ and $\underline{\pi}^T P = \underline{\pi}^T$.