Prof. Eduardo Gontijo Carrano - DEE/EE/UFMG

Confiabilidade de Sistemas

Testes de Confiabilidade

Introdução

- * Testes são parte essencial de um programa de desenvolvimento de um produto.
- * Programa integrado de testes:
 - * Testes de funcionalidade (requisitos).
 - * Testes de ambiente.
 - * Testes de confiabilidade.
 - * Testes de segurança.

- * Os testes de confiabilidade são necessários para garantir que o produto é confiável dentro de seu ciclo de vida previsto.
 - * nem sempre é possível analisar todas as causas possíveis de falhas.
 - * muitas vezes são ignoradas iterações físicas/químicas ou efeitos conjuntos que podem levar a falha.

- * O situação "ideal" para o responsável pelo teste é a não ocorrência de falhas.
- No entanto, um teste bem sucedido depende da ocorrência de falhas.
 - * Geralmente as falhas devem ser "estimuladas" com o intuito de tornar o teste mais rápido.
- * Idealmente o teste de confiabilidade deve revelar todas as fraquezas do sistema.

- * Os testes devem ser divididos em duas categorias:
 - * Testes de Sucesso: testes em que as falhas são indesejáveis.
 - * Testes de Falha: testes em que as falhas são forçadas.

Testes de Sucesso

- * Testes típicos:
 - * testes estatísticos.
 - * testes funcionais.
 - * testes de ambiente.
- * Os Testes de Sucesso geralmente ocorrem na etapa de Verificação do DfR.

Testes de Falha

- * Testes típicos:
 - * testes de confiabilidade.
 - testes de segurança.
- * Os resultados dos testes devem ser reportados, indicando a falha, o efeito e indicando ações corretivas possíveis.

- * Os Testes de Falha devem iniciar assim que o sistema/ produto está disponível em hardware e devem ocorrer até a etapa de <u>Verificação</u> do DfR.
- * Tendo em vista que os custos de correção/alteração aumentam com o andamento do desenvolvimento do projeto, os testes devem ser programados de forma a ocorrer o mais cedo possível.

Planejamento dos Testes de Confiabilidade

- Utilizando os dados da análise do projeto:
 - * Os dados obtidos na análise do projeto devem ser utilizados como suporte para construir o plano dos testes de confiabilidade.
 - * Se no FMECA uma falha é classificada como altamente crítica, os Testes de Confiabilidade devem garantir que a chance de ocorrência dessa falha é baixa durante a vida útil do produto, respeitada a condição de uso.
- * Inevitavelmente os Testes de Confiabilidade vão identificar falhas não consideradas durante a análise do projeto.

Variabilidade

- * A variabilidade entre unidades pode afetar consideravelmente a confiabilidade do sistema.
- * Os Testes de Confiabilidade devem ser capazes de cobrir os efeitos da variabilidade nos modos de falha esperados e não esperados.
- * Os Testes de Confiabilidade podem ser planejados com base nos resultados obtidos pela variação de parâmetros (análise de sensibilidade) ou testes estatísticos para confirmar o efeito da variabilidade.

- * Os Testes de Confiabilidade devem ser realizados em vários itens, com o intuito de "filtrar" os efeitos da variabilidade.
- * A escolha do número de itens a serem testados deve levar em conta:
 - * A controlabilidade das variáveis envolvidas.
 - * A criticalidade da falha.
 - O custo dos testes e do hardware de teste.

Teste de Ambiente

- * O produto deve ser testado nas condições ambientais a que ele pode estar sujeito. Exemplos de fatores que devem ser testados:
 - * Temperatura, vibração, choque mecânico, humidade, potência de entrada e saída, tensão, sujeira, poeira, contaminantes, fungos, gases, poluição, pessoas, etc.
- * Os testes devem garantir que os requisitos de ambiente são atendidos.

Testes de Vibração

- * Devem cobrir toda a faixa prevista de frequências e intensidades (ressonâncias).
- * Testes usuais:
 - * Shake (ondas senoidas).
 - * Troca de frequências.
 - * Aceleração de pico.

Testes de Temperatura

* Testes usuais:

- * Temperatura constante: avalia a funcionalidade do sistema em temperaturas muito altas ou muito baixas.
- * Ciclos de Temperatura e Choque Térmico: avaliam a fadiga do sistema, tendo em conta os coeficientes de expansão térmica.
 - * Oscilam entre temperaturas muito altas e muito baixas.

Testes de Compatibilidade Eletromagnética

- * Especialmente relevante em dispositivos eletrônicos.
 - * Perda de dados devido a interferência eletromagnética (EMI).
- * O sistema deve ser submetido a interferências eletromagnéticas e transitórios para confirmar seu bom funcionamento sob essas circunstâncias.
- * Os níveis de EMI e transitórios devem ser escolhidos de forma a cobrir de forma adequada o ambiente de uso.
- * Geralmente são feitos em câmaras anecoicas.

Testando Confiabilidade e Durabilidade: Testes Acelerados

- * Tem o intuito de garantir que os sistemas são confiáveis e duráveis quando em serviço.
- * Abordagem convencional: a confiabilidade é tratada com uma característica de desempenho funcional, que pode ser medida pelo teste de itens no tempo.
 - * Tempo de operação / número de falhas = estimativa para o tempo médio entre falhas (MTBF).
- * Abordagem inadequada para garantia da confiabilidade: tenta mostrar o sucesso do uso.

- * Paradigma adequado: deve-se também testar para causar falhas e não só testar para demonstrar sucesso.
- * Amostras devem ser testadas até falhas para se inferir sobre as propriedades de resistência e fadiga do sistema.

- * Suponha que um sistema que está sendo projetado tem com especificação 40 graus como temperatura máxima de operação:
 - * Em qual temperatura esse sistema deve ser testado?
 - Uma falha ocorrida a um teste a 42 graus é relevante?
 - * Essa falha poderia ocorrer a 35 graus em outra unidade (variabilidade).
 - * Essa falha poderia ocorrer dentro da faixa de temperatura especificada durante o tempo de garantia (falha dependente do tempo).
 - * Combinações de, por exemplo 35 graus e uma pequena variação na tensão (dentro da especificação) poderiam levar a uma falha.
 - * Falhas ocorridas a 50 ou 60 graus são representativas?
 - * Como definir o limiar em que a falha pode ser ignorada?

- * Essas não são as perguntas corretas!
- * Após a ocorrência de uma falha, deve-se perguntar:
 - * Essa falha pode ocorrer em uso?
 - * É possível prevenir a ocorrência dessa falha em uso?
- * Só faz sentido utilizar altos níveis de estresse caso existam evidências de que é possível aprimorar o projeto.
 - * Aprimorar ou não é uma decisão gerencial:
 - * Depende de custo, retorno, tempo, etc.

- * Sucessivos testes levam a uma distribuição de falhas tendo em vista o fator de estresse analisado.
- * Geralmente é difícil estimar adequadamente a distribuição nas caudas (melhores e piores items).
- * Melhorias na confiabilidade causam um deslocamento da distribuição.
- * Pode-se substituir grandes amostras por testes mais rígidos.

Falhas transitórias e permanentes

Estudo de falha por fadiga

- * O objetivo não é estimar com precisão as distribuições, mas melhorar o projeto.
 - Arrastar as distribuições para a direita.
- * Informações sobre as tendências centrais das distribuições e alguma variabilidade no entorno são, em geral, suficientes.

- * Normalmente, as falhas não são oriundas de um único fator de estresse ou carga.
- * Combinações desses fatores geralmente levam às falhas.
- * Princípio básico de Confiabilidade de Projetos: deve-se aumentar os estresses para provocar falhas e usar a informação dessas falhas para aumentar a durabilidade e a confiabilidade do sistema.
 - * DESIGN-ANALYZE-VERIFY do ciclo DfR.

- * Razões para se utilizar níveis de estresse "pouco representativos":
 - * As causas de falha do sistema em uso são muito incertas.
 - * As probabilidades e durações até falta também são muito incertos.
 - * O custo de testes é geralmente muito alto.
 - * Estimar e corrigir falhas durante o desenvolvimento é consideravelmente mais barato que em uso.

Testes Acelerados

- * Testa-se o produto em níveis de estresse e carga acima dos especificados, acelerando assim a ocorrência de falhas.
 - * Reduz o tempo e custo de desenvolvimento.
- * Os elementos de ambiente (temperatura, vibração, humidade, etc) devem ser considerados nos testes acelerados.

* É fundamental entender os mecanismos potenciais de falhas e os limites de projeto para se desenvolver um bom teste acelerado.

Abordagem de Teste para Testes Acelerados

- (1) Determinar quais falhas podem ocorrer em uso.
- (2) Listar as aplicações e fatores de estresse que podem levar a essas falhas.
- (3) Identificar os fatores de estresse que podem ser incluídos no teste, com maior chance de causar falhas previstas e imprevistas.
- (4) Aplicar um único fator de estresse, próximo do nível máximo de especificação, e aumentar o nível em degraus até a primeira falha.

- (5) Determinar a causa e tomar alguma ação para melhoria do projeto (permanente ou temporária).
- (6) Continuar aumentando o estresse para identificar novas causas de falhas (ou novos níveis para as já conhecidas), e tomar ações como no passo (5).
- (7) Continuar até que todos os modos de falha temporários e permanentes do fator de estresse em questão sejam descobertos e, corrigir em projeto os que são tecnologicamente e economicamente viáveis. Repetir para outros fatores de estresse individuais.
- (8) Decidir quando parar (limite tecnológico, de teste, financeiro, carga, etc).
- (9) Repita o processo utilizando fatores de estresse combinados.

Planejamento de Testes

- * Os testes podem começar na etapa de projeto (Design), mas geralmente são mais aplicados nas etapas de verificação (Verify) e validação (Validation).
- * No projeto e verificação, os testes são geralmente aplicados para se avaliar preocupações de projeto ou identificar mecanismos de falha. Geralmente se aplicam a partes menores do sistema.
- * Na validação os testes são feitos geralmente a nível de sistema, com o objetivo de verificar se este está adequado para produção.

- * O planejamento do mecanismo de validação deve levar em conta vários aspectos:
 - * Características de confiabilidade das partes.
 - * Características do ambiente de uso.
 - * Possíveis mecanismos de falha.
 - * Modelos acelerados, etc.
- * Em alguns casos existem normas que estabelecem procedimentos mínimos de teste.

- * Em um cenário ideal, todos os fatores de estresse deveriam ser aplicados simultaneamente às mesmas unidades de teste, em uma experimento combinatório.
- * Na prática, os testes geralmente só podem ser feitos de forma sequencial.
- * Testes paralelos:
 - * Reduzem o tempo de teste e desenvolvimento.
 - * Dependem de um rigoroso entendimento das interações entre os mecanismos de falha e os fatores de estresse.
 - * Mecanismos de falha decorrentes de efeitos combinados devem ser testados juntos, enquanto que mecanismos não correlacionados podem ser tratados separadamente.

Eficácia das Ações Corretivas

- * Quando uma alteração é feita no projeto com o intuito de corrigir uma causa de falha, é necessário repetir o processo que causou a falha para identificar se a ação corretiva foi efetiva.
 - * Ações corretivas podem, eventualmente, não funcionar.
- * A eficácia esperada da ação corretiva deve ser levada em conta durante as análises.

Analisando os Dados de Confiabilidade

Gráfico de Pareto

- * A maior parte das faltas é decorrente de um número pequeno de causas.
- * Uma análise dos dados de falha pode ajudar a resolver a maior parte das faltas com o uso racional dos recursos disponíveis.

Exemplo: dados de falha em relatórios de garantia de uma máquina de lavagem doméstica.

- * Program switch: 77 falhas devido à circuito aberto na armadura do motor do timer; 10 falhas por problema de enrolamento do motor do timer; 10 outras falhas. Taxa de risco decrescente durante o período de garantia.
- * Outlet pump: 79 falhas devido a vazamentos na blindagem, que permitiram água nas bobinas; 21 outras falhas. Taxa de risco crescente.
- * **High level switch:** 58 falhas nos pontos de solda, causando curto circuito; 10 outras falhas. Taxa de risco decrescente.

- * Ações corretivas:
 - * Timer Motor e High Level Switch: problemas construtivos.
 - * Outlet pump: problema de adequação ou uso.
- * Supondo que ações corretivas sejam tomadas nesses três fatores e que essas ações sejam 80% efetivas, o número de chamadas de garantia iria reduzir em 40%.

Análise de Dados de Testes Acelerados

$$Life = A \cdot \epsilon^{-X(Stress)}$$

$$Life = A \cdot Stress^{-X}$$

- * A: constante empírica.
- * X: constante / função que relaciona nível de estresse e tempo.

Fator de Aceleração

* Razão entre o tempo de vida do sistema em condição de campo e em condição de teste (acelerado).

$$AF = \frac{L_{field}}{L_{Test}}$$

$$t_{field} = t_{test} \cdot AF$$

$$R_{field}(t) = R_{test}(t/AF)$$

$$h_{field}(t) = \frac{1}{AF} h_{test}(t/AF)$$

Modelos de Aceleração

- * Temperatura:
 - * Modelo de Arrhenius

$$AF = \exp\left[\frac{E_A}{k} \left(\frac{1}{T_{field}} - \frac{1}{T_{test}}\right)\right]$$

- EA: energia de ativação do processo.
- k: constante de Boltzmann.
- T_{field} e T_{test}: temperaturas absolutas (em K).

- * Temperatura:
 - * Modelo de Temperatura-Humidade de Peck:

$$AF = \left(\frac{RH_{test}}{RH_{field}}\right)^m \exp\left[\frac{E_A}{k} \left(\frac{1}{T_{field}} - \frac{1}{T_{test}}\right)\right]$$

- m: constante de potência de humidade.
- RH: humidade relativa.

- * Tensão:
 - * Modelo exponencial:

$$AF = \exp\left[B(V_{test} - V_{field})\right]$$

B: parâmetro de aceleração de tensão.

- * Vibração:
 - * Vibração Senoidal:

$$AF = \left(\frac{G_{RMS\ test}}{G_{RMS\ field}}\right)^{b}$$

Vibração Aleatória:

$$AF = \left(\frac{G_{peak-test}}{G_{peak-field}}\right)^b$$

b: expoente de fadiga.

Análise Estatística de Dados de Testes Acelerados

- * As conclusões obtidas com os modelos "prontos" são baseados em sistemas genéricos.
- * Os dados observados em testes podem ser utilizados para ajustar distribuições de probabilidade para o tempo até falha em testes acelerados.
- * Geralmente softwares são utilizados para ajustar estes modelos:
 - * Ex.: ReliaSoft ALTA e WinSMITH.

