Optimierung von Sensornetzen

Daniel Kniese Mitja Richter

1. März 2013

- Sensornetze
 - statische Netze
 - mobile Netze
- 2 Problemaufbau
 - Einsatzgebiet
 - Vonoroi-Partitionen
 - Aufgabenstellung
 - Annahmen
 - Algorithmus
- Wofür brauchen wir KI?
 - Annahmen
 - Neuronale Netze
- 4 Ergebnisse
- 5 Fazit

- Sensornetze
 - statische Netze
 - mobile Netze
- 2 Problemaufbau
- 3 Wofür brauchen wir KI?
- 4 Ergebnisse
- Fazit

Anwendungen statischer Netze

Vorteile statischer Sensornetze

Anwendungen mobiler Sensornetze

- militärische Überwachung (Beispiele)
- Überwachung des Ökosystems (Beispiele)

Vorteile mobiler Netze

Vorteile:

- großer Einsatzbereich
- skalierbar
- flexibel
- Infrastruktur

- Sensornetze
- 2 Problemaufbau
 - Einsatzgebiet
 - Vonoroi-Partitionen
 - Aufgabenstellung
 - Annahmen
 - Algorithmus
- Wofür brauchen wir KI?
- 4 Ergebnisse

Einsatzgebiet

Sensorfunktion

Sensorfunktion

Sensornetze **Problemaufbau** Wofür brauchen wir KI? Ergebnisse Fazit Einsatzgebiet Vonoroi-Partitionen Aufgabenstellung Annahmen Algorithmus

Aufteilung

Vonoroi-Partitionen

Gegeben sei:

- Menge $S \subset \mathbb{R}^2$
- Menge $P = \{p_1, p_2, ..., p_n\} \subset S$

Dann sei die Menge der Vonoroi-Partitionen $\{V_1(P), V_2(P), ..., V_n(p)\}$ gegeben durch:

•
$$V_i(P) = \{q \in S | ||q - p_i|| \le ||q - p_j||, \forall p_j \in P\}$$

Vonoroi-Partitionen

Vonoroi-Partitionen

Was ist das Ziel?

Was ist das Ziel

Wie wird dieses Ziel formalisiert

• Unverlässlichkeit der Sensorinformationen eines Roboters mit einer quadratischen Funktion f(x):

$$f(||q-p_i||) = \frac{1}{2}(||q-p_i||)^2$$

- Systemperformanz wird in Abdeckungsfunktion gemessen: $H(p_1,...,p_n) = \sum_{i=1}^N \int_{V_i} \frac{1}{2} (\|q-p_i\|)^2 \phi(q) dq$
- $\bullet \ \ Minimierung \to Optimalit"at$

Vergleich Vonoroi-Partition und Festkörper

Schwerpunkt über Sensorfunktion \longrightarrow Schwerpunkt über Dichtefunktion

Festkörpereigenschaften

Bestimmte Eigenschaften können auch auf Vonoroi-Partitionen übertragen werden:

• Massemoment:

$$M_{V_i} = \int_{V_i} \phi(q) dq$$

Erstes Moment:

$$L_{V_i} = \int_{V_i} q\phi(q)dq$$

• Schwerpunkt: $C_{V_i} = \frac{M_{V_i}}{L_{V_i}}$

$$C_{V_i} = \frac{M_{V_i}}{L_{V_i}}$$

Optimierung

Vereinfachung für Optimierung:

•
$$\frac{\delta H}{\delta p_i} = -\int_{V_i} (q-p_i)\phi(q)dq = -M_{V_i}(C_{V_i}-L_{V_i})$$

- \rightarrow Optimalität wenn Roboter in jeweiligen Schwerpunkten der Vonoroi-Partitionen
 - ullet Finden globaler Minima ist NP-Hart o Beschränkung auf lokale Minima

Wie bewegt sich der Roboter?

Bewegung des Roboters modelliert durch:

•
$$\dot{p}=u_i$$

wobei das control law u_i gegeben ist durch:

$$\bullet \ u_i = k_i(p_i - C_{V_i})$$

 p_i macht Gradientenabstieg

Annahmen

- Sensorfunktion bekannt
- Sensorfunktion konstant
- Roboter kann eigene Vonoroi-Partition berechnen

Algorithmus zur Optimierung von h

Loop:

- Abstand zu anderen Robotern berechnen
- eigene Vonoroi-Partition berechnen
- den Schwerpunkt C_{V_i} berechnen
- control-input $u_i = k_i(p_i C_{V_i})$ anwenden

- Sensornetze
- 2 Problemaufbau
- Wofür brauchen wir KI?
 - Annahmen
 - Neuronale Netze
- 4 Ergebnisse
- Fazit

Annahmen

- Sensorfunktion nicht bekannt
- Robotor kann Funktionswert an seiner Stelle messen
- Sensorfunktion konstant
- Roboter kann eigene Vonoroi-Partition berechnen

Neuronales Netzwerk zur Abschätzung von H

- Sensornetze
- 2 Problemaufbau
- 3 Wofür brauchen wir KI?
- 4 Ergebnisse
- Fazit

- Sensornetze
- 2 Problemaufbau
- 3 Wofür brauchen wir KI?
- 4 Ergebnisse
- Fazit