Reprinted 1988

GROUNDWATER RESOURCES OF THE BERWICK-BLOOMSBURG-DANVILLE AREA, EAST-CENTRAL PENNSYLVANIA

CATALOGED IN PA DEP AND DONR Central Library Harrisburg, PA 17105

John H. Williams
David A. Eckhardt
U.S. Geological Survey

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF ENVIRONMENTAL RESOURCES
OFFICE OF RESOURCES MANAGEMENT
BUREAU OF
TOPOGRAPHIC AND GEOLOGIC SURVEY
Donald M. Hoskins, State Geologist

PREPARED IN COOPERATION WITH U.S. GEOLOGICAL SURVEY

GROUNDWATER RESOURCES OF THE BERWICK-BLOOMSBURG-DANVILLE AREA, EAST-CENTRAL PENNSYLVANIA

by John H. Williams and David A. Eckhardt
U.S. Geological Survey

Prepared by the United States Geological Survey, Water Resources Division, in cooperation with the Pennsylvania Geological Survey

PENNSYLVANIA GEOLOGICAL SURVEY

FOURTH SERIES

HARRISBURG

First Printing, 1987 Second Printing, 1988 Quotations from this report may be published if credit is given to the Pennsylvania Geological Survey

ISBN: 0-8182-0084-7

ADDITIONAL COPIES
OF THIS PUBLICATION MAY BE PURCHASED FROM
STATE BOOK STORE, P. O. BOX 1365
HARRISBURG, PENNSYLVANIA 17105

CONTENTS

	Page
Abstract	1
Introduction	2
Location and physiographic setting	2
Groundwater use	3
Methods of investigation	4
Acknowledgements	4
Geologic setting	4
Bedrock	4
Unconsolidated deposits	7
Hydrogeologic description of the aquifers	7
Bedrock aquifers	7
Glacial-outwash aquifer	10
Groundwater flow system	10
Water budget	10
Recharge	11
Movement and discharge	12
Water-level fluctuations	15
Water-yielding characteristics of the aquifers	18
Well construction	18
Well yield	20
Reported yield	20
Specific capacity	21
Effects of pumping rate on specific capacity	21
Effects of pumping duration on specific capacity	22
Recovery	23
Hydrogeologic factors affecting well yields	26
Water-bearing zones	26
Lithology	27
Topography	28
Fracture traces	28
Estimated well yield	
Well interference	29
Water-quality characteristics of the aquifers	32
Physical characteristics	32
Temperature	32
Turbidity	34
Chemical characteristics	35
Dissolved solids and specific conductance	38
Hardness	38
Iron and manganese	39
Nitrate	40
Chloride	40
Sulfate	40
Hydrogen sulfide	41
Trace elements	41
Petroleum products	41

C	un description of the equifore	Page
	ry description of the aquifers	42 42
	al outwash	42
	no Formation	
	Kill Formation	. 42 . 43 . 43 . 43 . 44 . 44 . 44 . 45
	mers Rock Formation	
	ell and Mahantango Formations	_
	ellus Formation	43
	idaga and Old Port Formations	43
	er and Tonoloway Formations	44
	Creek Formation	44
Bloor	nsburg Formation	44
Miffl	intown, Keefer, and Rose Hill Formations	44
Tusca	arora Formation	45
Summa	ry and conclusions	45
	ces	46
Factors	for converting inch-pound units to International System units (SI)	47
	ILLUSTRATIONS	
	FIGURES	
Figure	1. Maps showing the location, physiographic features, and population centers	
riguic	of the study area	2
	2. Map showing the structural setting of the study area	7
	3. Photograph showing planar fractures or joints developed in the Mahan-	
	tango Formation	8
	4. Photograph showing solution openings in the Keyser Formation	8
	5. Logs of well-bore flow in selected wells	13
	6. Generalized block diagram showing the effects of deep iron ore mines on	
	the groundwater resources in areas along the flanks of the ridge between	1.0
	Danville and Bloomsburg	16
	7. Photograph showing sand and gravel dredge pools along Fishing Creek west	16
	of Light Street	10
	hydrographs of corresponding water levels in wells Co-305 (glacial out-	
	wash) at Mifflinville and Co-307 (Tonoloway Formation) at Berwick	17
	9. Hydrographs showing a comparison of water-level fluctuations in wells	
	Co-310 and Co-190 at Bloomsburg for the 1981 calendar year	18
	10. Schematic drawing of a pumping well and the equation for determining	
	specific capacity	21
	11. Graphs of variable-rate pumping tests of wells Nu-158 and Nu-187	23
	12. Logs of well-bore flow in selected wells under pumping conditions	24
	13. Histograms showing the distribution of water-bearing zones with depth	27
	14. Hydrograph of water-level fluctuations observed in well Co-448 in response	
	to nearby industrial pumping, October 30 to November 17, 1981	32
	15. Generalized diagram showing the relationship among well spacing,	2.2
	bedding-related permeability, and groundwater flow in response to pumping	33
	16. Generalized block diagram showing the hydrologic relationship between	
	wells completed in the Mifflintown, Keefer, and Rose Hill Formations along	
	the flanks of Montour Ridge and its eastern extension between Danville and Bloomsburg	34
	and Diodiisouig	2"

			Page
Figure	17.	Hydrographs showing the effects of industrial pumping on water levels observed in test hole Co-154 and well Co-310 at Bloomsburg, August 19	
	18.	to September 9, 1981 Graph showing temperature logs of selected wells, a composite log based	35
		on median values for 26 wells, and the estimated geothermal gradient. Graph showing cumulative percentages of hardness for the Keyser and	35
		Tonoloway Formations, Harrell and Mahantango Formations, and Catskill Formation	39
		PLATE	
		(in pocket)	
Plate	1.	Geologic map of the Berwick-Bloomsburg-Danville area, east-central Penvania, showing the locations of wells and springs.	nsyl-
		TABLES	
			Page
Table	1.	Major groundwater users in the Berwick-Bloomsburg-Danville area	3
		Index to geophysical logs and well-bore-flow tests for selected wells	5
		Description of bedrock geologic units	6
		Hydrogeologic logs of selected wells	8
		Water budgets for selected drainage basins	11
	6.	Groundwater contribution to runoff for selected drainage basins	11
	7.	Summary of water-level changes in selected wells measured in December 1980 and April 1981	17
	8.	Summary of well and casing depths of domestic wells	19
		Summary of reported yields of domestic wells	20
		Summary of reported yields of nondomestic wells	20
	11.	Summary of specific capacities of pump-tested wells	22
	12.	Reduction of specific capacity in selected wells with increased pumping rate	25
	13.	Reduction of specific capacity in selected wells with increased pumping	
		duration	26
		Median specific capacities of wells by topographic setting	28
	15.	Comparison of the specific capacities of wells located on fracture traces with the specific capacities of all wells in the same hydrogeologic settings	28
	16.	Estimated 24-hour well yields of the aquifers	29
	17.	Results of multiple-well pumping tests	30
	18.	Median concentrations of selected dissolved constituents in the aquifers	36
	19.	Summary of field measurements of specific conductance and total hard-	
		ness in the aquifers	37
		Occurrence of hydrogen sulfide in the aquifers	41
		Chemical analyses of water from selected wells	48
		Trace-element and organic-indicator analyses of water from selected wells	52 53
		Record of selected wells and test holes	33 76
	47.	ALCOURS OF DETECTION STREET, AND ALCOUNTY OF THE PROPERTY OF T	/ U

GROUNDWATER RESOURCES OF THE BERWICK-BLOOMSBURG-DANVILLE AREA, EAST-CENTRAL PENNSYLVANIA

by
John H. Williams and David A. Eckhardt

ABSTRACT

The area of investigation is in the valley of the North Branch Susquehanna River and surrounding uplands, and occupies parts of Columbia, Luzerne, Montour, and Northumberland Counties in east-central Pennsylvania. Two major towns in the area, Bloomsburg and Danville, are supplied by surface water, but Berwick and other communities depend on groundwater, as do many industrial and commercial facilities and almost all rural homeowners.

The bedrock underlying the area is of Silurian, Devonian, and Mississippian age and includes gradational sequences of noncarbonate and carbonate lithologies. The bedrock units are folded in broad anticlinoria and synclinoria typical of the Appalachian Mountain section of the Valley and Ridge province. In the bedrock aquifers, groundwater flows through secondary-permeability features such as fractures, bedding-plane separations, and solution openings. The bedrock aquifers have a strong directional permeability along bedding strike. The development of secondary permeability is largely controlled by the amount of calcareous material in an aquifer, and the carbonate rock of the Keyser and Tonoloway Formations is, accordingly, the most productive bedrock aquifer.

Unconsolidated deposits of sand, gravel, silt, and clay, primarily of glacial origin, overlie much of the bedrock. The most extensive stratified deposit is the sand and gravel outwash of late Wisconsinan age that occupies the Susquehanna River and Fishing Creek valleys. Because of its high primary permeability, the glacial-outwash aquifer has a great capacity to receive, store, and transmit water.

Well yields for the aquifers were estimated from data on specific capacity, depth to waterbearing zones, and water levels. The median estimated well yields for the aquifers range from 5 gallons per minute for the Trimmers Rock Formation to 190 gallons per minute for glacial outwash. The highest yields from wells in the study area typically can be developed in the glacial-outwash aguifer and in bedrock aquifers containing significant amounts of carbonate rock. About one of every four wells completed in the outwash sand and gravel is capable of yielding 410 gallons per minute or more. About one of every four wells completed in the Keyser and Tonoloway Formations, the Onondaga and Old Port Formations, and the Wills Creek Formation is capable of yielding 620, 310, and 130 gallons per minute or more, respectively.

The results of 139 chemical analyses show that groundwater chiefly is the calcium bicarbonate type. Most groundwater tapped by wells is usable for domestic supply and human consumption, although hardness, iron, manganese, and hydrogen sulfide gas that exceed maximum recommended concentrations may cause problems locally. Water from aquifers containing carbonate rock generally is hard to very hard. Iron concentrations that exceed 300 µg/L were observed in 46 percent of the wells sampled and manganese concentrations that exceed 50 µg/L were observed in 40 percent of the wells. Hydrogen sulfide gas was detected in 9 percent of the wells sampled. Problems with concentrations that exceed recommended limits for these constituents are more common in groundwater from the Devonian rocks that contain black shale, although excess manganese also is a common problem in the glacial-outwash aquifer.

INTRODUCTION

This report concerns the hydrogeologic system of the Berwick-Bloomsburg-Danville area in east-central Pennsylvania. The aquifers that underlie the area, the groundwater flow system, and the water-yielding capabilities of the aquifers are described, the factors that affect well yields are discussed, and the quality of groundwater in the area is characterized. The study was conducted from September 1979 to September 1982 as part of the continuing appraisal of the groundwater resources of Pennsylvania by the U.S. Geological Survey and the Pennsylvania Geological Survey.

Groundwater is a main source of supply for domestic, municipal, industrial, and commercial use in the Berwick-Bloomsburg-Danville area. As the economic and population growth continues, the importance of developing and managing the groundwater resources becomes crucial. The information

in this report will assist municipal and waterauthority officials, planning boards, consulting geologists and engineers, well drillers, commercial and industrial concerns, regulatory agencies, and rural homeowners in the development and management of groundwater.

LOCATION AND PHYSIOGRAPHIC SETTING

The study area is in the valley of the Susquehanna River and surrounding uplands in east-central Pennsylvania (Figure 1). The 370-square-mile area includes the Berwick, Bloomsburg, Mifflinville, Millville, and Washingtonville 7½-minute quadrangles, and the northern halves of the Catawissa, Danville, and Riverside 7½-minute quadrangles. The area occupies central Columbia County, almost all of Montour County, and parts of west-central Luzerne and northern Northumberland Counties.

Figure 1. Location, physiographic features, and population centers of the study area.

INTRODUCTION 3

The area lies within the Appalachian Mountain section of the Valley and Ridge physiographic province. The topography ranges from relatively flat terraces and floodplains along the Susquehanna River and its major tributaries to steeply wooded slopes of mountain ridges. Altitudes range from 440 feet above sea level at the Susquehanna River at Danville to 1,760 feet above sea level on Knob Mountain, east of Orangeville. Major tributaries to the Susquehanna River include parts of Fishing Creek, Mahoning Creek, Catawissa Creek, Briar Creek, and Nescopeck Creek. The northwestern part of the study area is drained by Chillisquaque Creek, which flows to the West Branch Susquehanna River.

The major centers of population are found along the Susquehanna River and include Berwick, Nescopeck, Mifflinville, Bloomsburg, Catawissa, Danville, and Riverside. Interstate Route 80 transects the study area in an east-west direction.

GROUNDWATER USE

Table 1 shows an inventory of the major ground-water users in the Berwick-Bloomsburg-Danville area in 1980. The boroughs of Berwick, Bloomsburg, Catawissa, Danville, Mifflinville, Millville, and Orangeville have public water supplies and distribution systems. Bloomsburg and Danville are supplied by surface water. The Bloomsburg Water Authority withdraws about 2.5 Mgal/d (million gallons per day) from Fishing Creek, and the Danville Water Authority withdraws about 1.7 Mgal/d from the Susquehanna River. Merck Chemical Company withdraws about 0.5 Mgal/d from the Susquehanna River at Riverside.

In 1980, about 4.7 Mgal/d of water was obtained from wells and springs by the major groundwater users. Additional groundwater is pumped from wells and springs to meet rural domestic, agri-

Table 1. Major Groundwater Users in the Berwick-Bloomsburg-Danville Area

County	Name	Estimated groundwater withdrawal in 1980 (gal/d)	Aquifer	Source and remarks
Columbia	Bloomsburg Mills, Inc.	600,000	Old Port and Keyser Fms.	3 drilled wells pumped for 4 months for air conditioning
	Champion Valley Farms	500,000	Onondaga and Old Port Fms.	3 drilled wells pumped for cooling and cleaning
	Catawissa Water Authority	155,000	Catskill Fm.	6 drilled wells and 3 springs
	Consolidated Cigar Co.	_	Wills Creek Fm.	1 drilled well, pumped at 200 gal/min for air conditioning
	Keystone Water Co. (Berwick)	2,900,000	Old Port and Keyser Fms.	3 drilled wells
	Mifflin Township Water Authority	55,000	Glacial outwash	2 drilled wells
	Millville Water Authority	85,800	Alluvium and till; Mahantango Fm.	1 drilled well and 2 dug wells
	Orangeville Water Authority	13,800	Catskill Fm.	1 drilled well and 6 springs
	Scenic Knolls Water Co.	10,000	Wills Creek and Bloomsburg Fms.	3 drilled wells
	Schultz Electroplating, Inc.	6,000	Bloomsburg Fm.	1 drilled well
	Wonderview Water Co.	28,000	Trimmers Rock and Mahantango Fms.	3 drilled wells
Luzerne	Citizens Water Co.	8,000	Trimmers Rock Fm.	1 drilled well and 3 springs
Montour	Geisinger Medical Center	148,000	Mifflintown and Keefer Fms.	3 drilled wells (70 percent) and 1 spring
	Mahoning Township Water Authority	186,000	Keyser Fm. and upper member of Rose Hill Fm.	2 drilled wells
	TRW, Inc.	30,000	Keyser and Tonoloway Fms.	2 drilled wells
Northumber-	7771 T. F.		-	
land	Hillside Estates	6,000	Mahantango Fm.	2 drilled wells

cultural, and small commercial needs in areas outside those served by public supplies. Groundwater accounts for about half of the total water used in the study area.

METHODS OF INVESTIGATION

Nearly 800 wells and test holes were inventoried for measurements of well and casing depth, depth to water and water-bearing zones, and well yield and drawdown (Table 23). The inventory included almost all public-supply wells and most industrial and commercial wells. Selected springs also were inventoried (Table 24). Nine observation wells were drilled by the U.S. Geological Survey. Five of these 6-inch-diameter wells were completed in bedrock, and four wells having 6-inch-diameter slotted casing were completed in glacial outwash. Eleven auger holes were drilled in glacial outwash; four of the auger holes were cased with 2-inch-diameter slotted pipe. Information was collected on about 130 pumping tests; U.S. Geological Survey personnel conducted or assisted in most of the tests. Twentyeight of the pumping tests were multiple-well tests involving a pumping well and one or more observation wells. Borehole geophysical logs were run on 43 wells. Well-bore-flow tests were made in 25 wells (Table 2) by the brine-tracing method outlined by Patten and Bennett (1962). Continuous water-level records were obtained for varying periods of time at 16 wells. Synoptic water-level measurements were made on 79 wells along the Susquehanna River between Bloomsburg and Berwick in December 1980 and April 1981. Field determinations of specific conductance and hardness were obtained from 299 wells (Table 23), and water samples for laboratory analyses were collected from 139 wells (Tables 21

The bedrock geology was mapped by Inners (1978, 1981), Way (in press), Williams (1980), Berg and others (1980), and Nickelsen (1978, written communication). The geologic base map (Plate 1) was compiled by the U.S. Geological Survey and the Pennsylvania Geological Survey.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the cooperation and assistance of the landowners, companies, municipalities, and state agencies who provided information on wells, granted permission to drill test holes, and allowed access to wells.

Many well drillers provided information and assistance. Special thanks is extended to Gene Wieand of Wieand Brothers Drilling for his interest and time.

The Susquehanna River Basin Commission provided additional funds for detailed work along the Susquehanna River between Berwick and Bloomsburg. The authors thank Gregory Senko of the Commission for his able assistance in field work and data storage and retrieval. The authors also thank Timothy Gregorowicz and David Hassrick of Bloomsburg State College, Department of Geology, for field work on the well inventory.

GEOLOGIC SETTING

BEDROCK

The bedrock or consolidated rock that underlies the Berwick-Bloomsburg-Danville area is of Silurian, Devonian, and Mississippian age and includes sedimentary noncarbonate and carbonate lithologies. The bedrock units are briefly described in Table 3, and the areal distribution of the formations is shown on Plate 1.

Large-scale folding and subsequent erosion largely account for the outcrop patterns of the bedrock units shown on Plate 1. The bedrock has been folded into a series of anticlinoria and synclinoria (Figure 2). The major structural trend is N70–75 °E. Bedding dips typically are 35 to 45 degrees along the limbs of the folds. The Light Street fault, a major thrust fault, transects the study area. The fault generally follows the structural trend in the stratigraphic sequence of the Wills Creek Formation through the Mahantango Formation.

The bedrock has been systematically fractured by two major sets of joints. One set of planar fractures is oriented parallel to the structural grain (strike joints) and the other set is at right angles to the structural grain (dip joints). The joints range from continuous fractures that transect a large stratigraphic sequence to discontinuous breaks that are restricted to single beds. Most strike and dip joints are oriented normal to bedding planes. Strike joints fan across the major folds. The joints are moderately to steeply inclined and dip north and south in south- and north-dipping beds, respectively. Dip joints are approximately vertical regardless of structural setting (Inners, 1981). Oblique joints, irregular fractures, and cleavage-plane partings are also present. All fractures in the bedrock tend to close with depth because of increasing overburden pressures.

Table 2. Index to Geophysical Logs and Well-Bore-Flow Tests for Selected Wells 1

Well no.	Co-45	Co-60	Co-61	Co-62	Co-70	Co-85	Co-154	Co-190	Co-205	Co-206	Co-212
Depth of logs	270	226	350	120	473	444	40	400	244	60	120
8-					TYPE OI	F LOG					
Tempera-	х	х	х		X	X	X	x	x	X	X
ture	Α	^	^			^	^	Α	Α	^	^
Fluid con- ductance	Х	X	X	Х	Х	Х		X	X		X
Caliper	X	x	X	X	X	X		X	X	X	X
Electric	X		X	Х	X	X	X	X	X		
Gamma <i>Well-bore flow</i>	Х	х	Х	Х	Х	Х	X	X	X	X	
Nonpumping						х			х		Х
Pumping	X		х								X
Well no.	Co-245	Co-304	Co-305	Co-306	Co-307	Co-308	Co-310	Co-448	Co-452	Co-459	Co-460
Depth of											
logs	440	200	68	124	300	52	220	145	500	136	120
Tempera- ture	х	x	x	X	х	х	X	Х	X		Х
Fluid con- ductance	X	x		x	X			Х	X		X
Caliper	X	x		x	X		X	Х	X	X	X
Electric	X	X		X	X		X	X	X	X	X
Gamma	X	X	X	X	X	X			X	X	
Well-bore flow Nonpumping	x	х		x	x			X	X		х
Pumping											Х
Well no.	Co-461	Co-505	Co-562	Lu-438	Lu-452	Lu-453	Lu-454	Lu-471	Mt-29	Mt-30	Mt-31
Depth of											
logs	195	568	152	230	102	300	200	471	300	400	505
Tempera- ture	х	Х		x	х	X	Х	Х	X	X	X
Fluid con- ductance	Х	x		x		X	X	X	X	X	
Caliper	x	х	x	x	X	х	х	х	X	X	x
Electric	X	X	X	X		X	X	X	X	X	X
Gamma	X	X		X	x	X	X	X	X		X
Well-bore flow											
Nonpumping Pumping		Х		x x		Х	X	х	Х		
Well no.	Mt-108	Mt-154	Mt-175	Mt-181	Mt-186	Mt-255	Nu-157	Nu-158	Nu-187	Nu-188	
Depth of				101				1.4 150			
logs	265	156	285	250	276	223	300	300	96	72	
Tempera- ture	х	Х	х	х	х	х	Х	Х	х		
Fluid con- ductance	х	x	x	X	X	X	X	Х	x	X	
Caliper	X	х	х	х	X	Х	X	х	х	X	
Electric		X		x	X		X	X	X	X	
Gamma		x		x	X		X	X	X	X	
Well-bore flow Nonpumping					х	x		X			
Companiping					A	A		X.			

¹Logs and data on well-bore-flow tests are on file with the U.S. Geological Survey, Harrisburg, Pennsylvania.

Table 3. Description of Bedrock Geologic Units¹

System	Geologic unit	Thickness (feet)	Lithologic description
Mississippian	Mauch Chunk Formation	² 2,500	Interbedded grayish-red shale, siltstone, and sandstone calcareous in part.
	Pocono Formation	600-650	White to light-gray quartzitic sandstone and pebble conglomerate; some interbeds of dark-gray shale.
Devonian	Catskill Formation Duncannon Member	1,100	Repetitive fining-upward cycles of greenish-gray and grayish-red sandstone, grayish-red siltstone, and grayish-red shale that are mostly 30 to 65 feet thick.
	Sherman Creek Member Irish Valley Member	2,500 1,800-2,000	Interbedded grayish-red shale, siltstone, and sandstone. Interbedded shale, siltstone, and sandstone; alternating gray to greenish gray and grayish red in the upper part; mostly gray
	Trimmers Rock Formation	2,500	to greenish gray in the lower part. Predominantly interbedded gray to dark-gray siltstone and shale; considerable amount of sandstone in the upper part and shale in the lower.
	Harrell Formation Mahantango Formation	100	Dark-gray shale, interbedded with siltstone in the upper part
	Tully Member	50-60	Interbedded argillaceous limestone and calcareous shale; dark gray, fossiliferous.
	Lower member	1,100-1,200	Greenish to dark-gray shale, locally calcareous; some calcareous and fossiliferous siltstone beds in the upper part.
	Marcellus Formation Onondaga Formation	300 50–175	Dark-gray fissile shale, pyritic and carbonaceous. Interbedded gray argillaceous limestone and calcareous shale in the upper part; gray to dark-gray noncalcareous to very calcareous shale in the lower part.
	Old Port Formation	150	Variable lithologic sequence, consisting of dark-gray, slightly calcareous chert, locally sandy and fossiliferous, in the upper part; dark-gray calcareous shale in the middle part; dark-gray fine- to coarse-grained, cherty, fossiliferous limestone in the lower part.
Devonian and Silurian	Keyser Formation	125	Gray to bluish-gray limestone, fine- to coarse-grained, thin to thick-bedded; laminated, argillaceous and dolomitic in the upper part; coarse grained and highly fossiliferous in the middle part; nodular, argillaceous, and fossiliferous in the lower part calcareous shale interbeds increase in frequency in the upper part.
Silurian	Tonoloway Formation	200	Laminated, gray to dark-gray, fine-grained limestone; considerable dolomitic limestone and dolostone in the lower part calcareous shale interbeds increase in frequency and thickness toward base.
	Wills Creek Formation	600-700	Interbedded calcareous shale, argillaceous dolostone and limestone, and calcareous siltstone; gray, yellowish gray, and greenish gray in the upper part; variegated greenish gray yellowish gray, and grayish red purple in the lower part.
	Bloomsburg Formation	500	Grayish-red shale containing interbeds of grayish-red siltstone calcareous in part; 30-foot-thick interval of grayish-red sand stone in the upper part.
	Mifflintown Formation	200	Dark-gray limestone and calcareous shale in the upper part dark-gray calcareous shale containing interbeds of coarse grained limestone in the lower part.
	Keefer Formation	40	Light-gray quartzitic sandstone and siltstone containing in terbeds of greenish-gray shale.
	Rose Hill Formation Upper member	120	Interbedded shale, limestone, and sandstone; mostly gray to greenish gray.
	Middle member	60	Reddish-purple hematitic sandstone containing interbeds of greenish-gray to reddish-purple shale in the upper part.
	Lower member	720	Greenish-gray shale containing interbeds of gray calcareous sandstone and reddish-brown hematitic sandstone.
	Tuscarora Formation	350	Interbedded light-gray quartzitic sandstone and grayish-greer shale.

Adapted from Inners (1981).
Only the lower 1,000 feet is exposed in the study area.

Figure 2. Structural setting of the study area (from Inners, 1978; Inners and Way, 1979; Williams, 1980; Inners, 1981; and Way, in press).

UNCONSOLIDATED DEPOSITS

The unconsolidated deposits of sand, gravel, silt, and clay that overlie the bedrock are largely the result of glaciation. There is evidence that several glacial advances occurred during Pleistocene time. Early advances in pre-Wisconsinan time covered the study area. Early Wisconsinan glaciation covered approximately 20 percent of the area (Inners, 1978, 1981). The terminal moraine in the Susquehanna River valley near Berwick marks the extent of the latest glacial advance in late Wisconsinan time.

The glacial deposits can be broadly subdivided into two groups—nonstratified and stratified deposits. The nonstratified deposits are till, which is a generally unsorted mixture of clay, silt, sand, gravel, and boulders, largely of local origin, that was directly deposited by a glacier. Pre-Wisconsinan and Wisconsinan tills are found in the study area. Till masks the bedrock in much of the area and has a thickness of generally less than 20 feet, although deposits 50 to 100 feet thick are present locally along the southern base of Knob and Lee Mountains.

Stratified deposits include poorly to well-sorted sand, gravel, silt, and clay that were transported and deposited by glacial meltwater as ice-contact or outwash deposits. Pre-Wisconsinan stratified deposits, locally more than 50 feet thick, are found in the Light Street-Buckhorn area north of Bloomsburg. The most extensive stratified deposits are late Wisconsinan sand and gravel outwash deposits found in the Susquehanna River and Fishing Creek valleys. In general, the thickness and coarseness of

the outwash decrease downstream from the late Wisconsinan glacial border. Along the Susquehanna River upstream from Wapwallopen, silt and clay are locally interbedded with the outwash sand and gravel. Many of the recent alluvial and colluvial deposits in the area are reworked glacial sediments.

HYDROGEOLOGIC DESCRIPTION OF THE AQUIFERS

BEDROCK AQUIFERS

Groundwater in the bedrock formations is present in secondary openings along fractures and bedding-plane separations (Figure 3). Primary permeability of bedrock in the area is negligible. Solution of calcareous material, especially along fractures and bedding planes, greatly increases the secondary permeability of carbonate rock (Figure 4). The ability of the bedrock aquifers to store and transmit water, as well as to yield water to wells, depends on the size, interconnection, and spacing of secondary openings. Fractures and bedding-plane partings cause hairline separations that allow movement of groundwater. The separations in competent lithologies, such as sandstone, dolostone, and limestone, tend to remain more open than the separations in the less competent shales.

The size of secondary openings in carbonate lithologies may be greatly enlarged by removal of calcareous material. Openings several feet wide have been penetrated in wells drilled into the Tonoloway,

Figure 3. Planar fractures or joints developed in the Mahantango Formation. Groundwater occurs in secondary openings along fractures and bedding-plane separations in the bedrock aquifers.

Keyser, and Old Port Formations. Solution of calcareous material also appears to be important in the development of permeability in the dominantly noncarbonate rocks. As indicated by hydrogeologic logs of wells Co-306 and Nu-158 (Table 4), many water-bearing zones in the noncarbonate-rock aquifers appear to be associated with vein calcite and calcareous cement.

Figure 4. Solution openings in the Keyser Formation. Development of solution openings, primarily along fractures and bedding-plane separations, greatly increases the secondary permeability of carbonate rock.

In a stratigraphic sequence, the density of fractures differs from bed to bed, and some fractures may be restricted to single beds. In addition, the susceptibility of the rock to solution differs from bed to bed depending on the amount of calcareous material present. These factors, as well as the presence of bedding-plane separations, create

Table 4. Hydrogeologic Logs of Selected Wells

(Yields in parentheses are the discharges produced by the air-rotary drillstem at the given depth)

Depth (feet below land surface)	Hydrogeologic description
Co-305	
	Glacial outwash
0–39	Sand, grayish-brown, medium to coarse, containing quartz and rock fragments, and gravel, fine to coarse; pebble lithologies in gravel include sandstone, siltstone, shale, quartz-pebble conglomerate, quartzite, chert, and metamorphic rock.
39–55	Sand, grayish-brown, fine to coarse, containing quartz and rock fragments including particulate anthracite coal, and some fine gravel; pebble lithologies in gravel include those listed above plus anthracite coal.
55-65	Sand, grayish-brown, medium, containing quartz and rock fragments, and gravel, fine to coarse; gravel content increases toward base; casing slotted from 55 to 65 feet. Marcellus Formation
64-68	Shale, dark-gray, silty, noncalcareous.
Co-306	
	Glacial outwash
0-5	Sand, light-brown, silty, fine, and gravel, medium.
0-39	Sand, light-brown, fine, and gravel, medium to coarse. Water-bearing zone at 35 feet (3 gal/min, cased off). <i>Marcellus Formation</i>
39-55	Shale, gray, calcareous.
55-60	Shale, gray, calcareous; some vein calcite; water-bearing zone at 60 feet (3 gal/min).
60-70	Shale, gray, slightly calcareous; fossil fragment.
70–75	Shale, gray, calcareous; some vein calcite; water-bearing zone at 74 feet (20 gal/min).
75-80	Shale, gray, slightly calcareous.
80-85	Shale, gray, calcareous; calcite veins up to 0.1 inch wide.
85-125	Shale, gray, slightly calcareous; some vein calcite.

Table 4. (Continued)

Depth (feet below land surface)	Hydrogeologic description
Co-307	
	Glacial outwash
0-45	Sand, light-brown, medium, and gravel, fine to coarse; sandstone boulders at 27 and 32 feet; water-bearing
	zone at 37 feet (1 gal/min, cased off).
	Tonoloway Formation
45-55	Limestone, gray, fine-grained.
55-65	Limestone, light-gray, fine-grained; some vein calcite; water-bearing zone at 62 feet (3 gal/min).
65-70	Limestone, dark-gray, fine-grained; cuttings smelled of hydrogen sulfide during drilling.
70-80	Limestone, dark-gray, fine- and medium-grained; some vein calcite.
80-95	Limestone, gray and dark-gray, fine- and medium-grained; abundant vein calcite.
95~100	Limestone, gray, fine-grained, and vein calcite; weathered yellowish brown; water-bearing zone at 96 feet (20 gal/min).
100-105	Limestone, gray, fine-grained; some vein calcite; cuttings smelled of hydrogen sulfide during drilling.
105-112	Limestone, dark-gray, medium-grained; vein calcite, some coarse-grained.
112-113	Vein calcite, coarse-grained.
113-116	Limestone, dark-gray, fine- to medium-grained; some vein calcite.
116-120	Limestone, gray, fine- to medium-grained; water-bearing zone at 116 feet (40 gal/min).
120-125	Limestone, gray, fine-grained; abundant vein calcite.
125-130	Limestone, gray, fine- and medium-grained; some vein calcite.
130-135	Limestone, gray, fine-grained.
135-140	Limestone, light-gray, fine-grained, and vein calcite, coarse-grained.
140-150	Dolostone, light-gray, fine-grained.
150-155	Dolostone, light-gray, fine-grained, shaly; some vein calcite.
155-160	Dolostone, light-gray, fine-grained, shaly, and vein calcite, coarse-grained.
160-170	Dolostone, light-gray, fine-grained; some fine-grained pyrite.
170-180	Limestone, light-gray, fine-grained; yield increased between 120 and 180 feet (90 gal/min).
180-185	Limestone and dolostone, light-gray, fine-grained.
185-210	Dolostone, light-gray, fine-grained; some vein calcite.
210-215	Limestone and dolostone, light-gray, fine-grained, shaly; some vein calcite.
215–220	Limestone, light-gray, fine-grained. Wills Creek Formation
220-225	Dolostone, light-gray, fine-grained, and shale, greenish-gray.
225–235	Limestone, light-gray, fine-grained; some fine-grained pyrite.
235–240	Limestone and dolostone, light-gray, fine-grained, shaly; some fine-grained pyrite.
240-245	Limestone, gray, fine- and medium-grained.
245–255	Limestone, light-gray, fine- and medium-grained; some coarse-grained vein calcite.
255–265	Dolostone, gray, fine- and medium-grained, and shale, greenish-gray.
265–270	Dolostone and limestone, gray, fine- and medium-grained.
270–275	Limestone, gray, fine-grained.
275-280	Shale, greenish-gray, and dolostone, gray, fine-grained, shaly.
280-285	Dolostone, gray, fine-grained.
285-290	Limestone and dolostone, dark-gray, fine- and medium-grained.
290–293	Dolostone, gray, fine- and medium-grained; coarse-grained vein calcite at 292 feet.
293–295	Dolostone, gray, fine-grained, shaly.
295–300	Shale, greenish-gray, and dolostone, gray, fine-grained; yield increased between 280 and 300 feet (110 gal/min).
Nu-158	
	Mahantango Formation
0-15	Soil, brownish-orange, clayey; some fragments of shale.
15-35	Shale, gray, calcareous; brownish stains; water-bearing zones at 22 and 30 feet.
35-80	Shale, dark-gray, calcareous.
80-85	Shale, dark-gray, slightly calcareous.
85–95	Shale, dark-gray, calcareous; abundant vein calcite; some finely disseminated pyrite; water-bearing zone at 88 feet.
95-140	Shale, dark-gray, calcareous; some vein calcite and finely disseminated pyrite; water-bearing zone at 108 feet.
140-155	Shale, dark-gray, slightly calcareous.
155-160	Shale, dark-gray, calcareous; some vein calcite.
160-235	Shale, dark-gray, slightly calcareous; some brownish stains.
	, only income of the desired

abrupt changes in permeability at bedding contacts. These permeability changes at bedding contacts, the presence of strike joints, and a common bedding dip of 35 to 45 degrees cause the characteristic development of directional permeability in the bedrock aquifers along bedding strike.

In general, the bedrock aquifers display relatively small, discrete zones of high permeability that are surrounded by large blocks of unfractured, low-permeability rock. Overall, the bedrock aquifers display relatively low storage capabilities due to the large amount of unfractured rock.

GLACIAL-OUTWASH AQUIFER

Groundwater is present in primary openings between grains in unconsolidated deposits. The ability of the unconsolidated deposits to store and transmit water depends on grain size, degree of sorting, saturated thickness, and areal extent of saturation. Locally, only the late Wisconsinan outwash deposits have significant permeability and areal saturation. The sand and gravel deposits of the glacial-outwash aquifer are highly permeable and have significant storage capabilities. In general, the thickest saturated deposits are found along Fishing Creek upstream from Orangeville and along the Susquehanna River upstream from Mifflinville.

The areal extent of the outwash aquifer and its thickness observed in wells and test holes are shown on Plate 1. Generalized sections of the outwash aquifer in selected areas are also presented on Plate 1.

The glacial-outwash aquifer is discontinuous. Sections A-A' and C-C' indicate that thick glacial aquifers are present locally along the upper outwash-terrace area northeast of Beach Haven. The outwash aquifers occur up to 100 feet above the Susquehanna River. Along the Susquehanna River north of Wapwallopen, 70 feet of saturated glacial deposits occurs below the level of the river. However, as previously mentioned, significant amounts of silt and clay are found interbedded with the outwash sand and gravel in this area.

At Nescopeck (section D-D'), the Susquehanna River flows on bedrock, and the greatest aquifer thickness is present 3,000 feet away from the river. At Mifflinville (section E-E'), a buried channel is present about 1,000 feet away from the Susquehanna River. A bedrock high, in part, isolates the buried-channel-deposit aquifer from the river. The hydrogeologic log of one well, Co-305, completed in the glacial outwash of the buried channel is

presented in Table 4. A hydrogeologic section across the outwash terrace along Fishing Creek north of Orangeville (section F-F') indicates a relatively uniform aquifer thickness of about 50 feet of saturated deposits under the creek.

GROUNDWATER FLOW SYSTEM

WATER BUDGET

Precipitation in the Berwick-Danville area is about 40 inches per year. The precipitation represents about 700 million gallons per square mile per year and, except for through-flowing streams, is the source of all fresh water in the area. Water leaves the area as water vapor in the atmosphere, as streamflow, and as groundwater flow. A water budget represents a balance of the components of the hydrologic system as follows:

P = R + WL

where

P = annual precipitation, in inches

R = groundwater and surface-water runoff (total streamflow), in inches

WL = water loss (evapotranspiration), in inches

This form of the budget implies that groundwater flow across basin boundaries is negligible, and that changes in groundwater and soil-moisture storage also are negligible for the budget period.

Water budgets were calculated for the East Branch Chillisquaque Creek and Fishing Creek drainage basins above U.S. Geological Survey gaging stations 01553600 and 01539000 (Table 5). The locations of the gaging stations are shown on Plate 1. The period 1962–77 was used to represent average climatic conditions, the period 1963–66 was used for drier than average conditions, and the period 1972–75 was used for wetter than average conditions.

In the East Branch Chillisquaque Creek basin, about 43 percent of the average annual precipitation is discharged as streamflow, and most of the remainder is lost as evapotranspiration. Average annual water losses for the wet and dry periods were 45 and 66 percent, respectively. The basin is located in a lowland underlain by shale and is probably representative of similar settings in the study area.

In the Fishing Creek basin, about 57 percent of the average annual precipitation is discharged as streamflow. Average annual water losses for the wet

Table 5. Water Budgets for Selected Drain	age Basins	
---	------------	--

Basin name	U.S. Geological Survey gaging- station number	Drainage area (square miles)	Water years	Precipitation ¹ (inches)	Runoff (inches)	Percent runoff	Water loss (inches)	Percent water loss
East Branch	01553600	9.48	1962-77	40.4	17.2	43	23.2	57
Chillisquaque			1963-66	33.3	11.4	34	21.9	66
Creek			1972-75	50.3	27.1	54	22.8	45
Fishing	01539000	247	1962-77	40.4	22.9	57	17.5	43
Creek			1963-66	33.3	17.4	52	15.9	48
			1972-75	50.3	31.9	63	18.4	37

¹National Oceanic and Atmospheric Administration station at Millville.

and dry periods were 37 and 48 percent, respectively. Fishing Creek drains an upland area underlain by sandstone and shale and glacial deposits, mostly north of the study area. On the average, annual water losses are 6 inches less for Fishing Creek than for East Branch Chillisquaque Creek. The lower evapotranspiration for the Fishing Creek basin is attributed to lower annual temperatures and greater runoff from steeper slopes in the upland basin. Although the proportion of precipitation that was annual water loss varied, the amount of water losses remained relatively constant during dry and wet periods in both basins.

RECHARGE

The main source of groundwater recharge is precipitation. From May to September, when evapotranspiration rates are highest and there is a soil-moisture deficit, only a small proportion of rainfall reaches the water table. During the late fall, winter, and early spring, when evapotranspiration is minimal and the soil-moisture deficit has been satisfied, infiltrating rainfall and snowmelt readily recharge the groundwater system.

Groundwater recharge occurs in all areas upgradient from valley discharge points (streams and

springs), but the rate of recharge in any specific area is largely controlled by the slope of the land, the infiltration capacity of surficial cover, and the ability of the underlying aquifer to transmit water from the recharge area. The gentle topography and coarse texture of the glacial-outwash terraces provide important areas for recharge. Road surfaces, parking lots, rooftops, and other impermeable surfaces reduce the area available for groundwater recharge and increase runoff to streams.

Groundwater discharge to streams was determined by separating the base-flow component of total runoff on streamflow hydrographs. The groundwater discharge in Table 6 approximates the amounts of annual recharge (assuming that there is no change in storage from year to year and that groundwater evapotranspiration is negligible) in the selected drainage basins for water years 1964 (below average precipitation), 1970 (average precipitation), and 1973 (above average precipitation). By assuming that recharge equals groundwater discharge, recharge was estimated to average about 8.3 inches per year (270 (gal/min)/mi² [gallons per minute per square mile]) in the East Branch Chillisquaque Creek basin and about 15 inches per year (490 (gal/min)/mi²) in the Fishing Creek basin. On average, it is estimated that about one fourth of

Table 6. Groundwater Contribution to Runoff for Selected Drainage Basins

Water year		1964			1970			1973			1964, 1970, 197 Average	3
Basin name	Total runoff (inches)	Ground- water contri- bution (inches)	Percent ground- water									
East Branch Chillisquaque Creek	16.2	6.7	41	16.9	8.4	50	23.5	9.9	42	18.9	8.3	44
Fishing Creek	19.9	14.2	72	21.6	14.9	69	31.7	16.9	53	24.4	15.3	63

annual precipitation recharges the groundwater system.

MOVEMENT AND DISCHARGE

Groundwater moves through openings in the aquifer from areas of higher to areas of lower hydraulic head. The water table is a subdued expression of the topography. Therefore, in general, groundwater flow is from areas of higher to areas of lower elevation.

Three types of flow systems in the report area are local, intermediate, and regional. Much of the groundwater flow is local, and the nearest stream serves as the discharge point. Drainage divides of local groundwater flow systems coincide closely with surface-water divides. Groundwater in the intermediate system flows under local stream basins and discharges to downstream points of the streams or to larger streams. Only a very small percentage of groundwater flow bypasses the local and intermediate systems and becomes part of the deep, regional flow system.

As groundwater flows, hydraulic head is lost due to frictional resistance to flow through interstices and fractures. Thus, hydraulic-head gradients are an indication of aquifer permeability. Highly permeable aquifers have less resistance to flow, and, therefore, greater amounts of water are able to move through these rocks under smaller gradients. The relatively low gradients associated with the glacial-outwash terrace, less than 50 feet per mile, indicate high permeabilities. In contrast, head gradients in the upland areas underlain by lower-permeability rock of the Tuscarora and Pocono Formations may be greater than 1,000 feet per mile.

The greatest topographic gradients typically are across bedding strike, which is the direction of minimum permeability. Groundwater follows a steplike flow pattern in response to the variable permeabilities across bedding strike. In valleys where the highly permeable carbonate rocks of the Keyser and Tonoloway Formations form an effective drain, hydraulic-head gradients do not closely follow topographic gradients. Groundwater flow is largely toward the carbonate-rock aquifer and then along bedding strike within that aquifer toward points of discharge.

Wells that penetrate water-bearing zones having different hydraulic heads serve as a short circuit to the natural flow system. The amount of well-bore flow depends on the difference in head between water-bearing zones and the location and permeability of the zones. Well-bore flow may connect local, intermediate, or regional flow systems. Well-bore flow measured in eight wells is illustrated in Figure 5.

In uplands, deeper water-bearing zones have lower hydraulic heads than shallow zones, and the flow is downward. Water levels generally are lower in deeper wells than in shallow wells. Head differences between zones probably are on the order of tens of feet, but may be greater than 100 feet near large topographic breaks. Downward flow was measured in two wells, Co-245 and Nu-158, which are located in upland draws. The wells provide a short circuit that connects the local and intermediate flow systems. Downward flow decreases the amount of available drawdown to a well and may cause local dewatering of the shallow aquifer. Measured downward flows, about 1 to 5 gal/min (gallons per minute), exceed the amount that would normally be pumped from a domestic well, and, where such wells are closely spaced, the downward flow may exceed the local recharge rate.

In valleys, deeper water-bearing zones have higher hydraulic heads than shallow zones, and the flow is upward. Water levels generally are higher in deeper wells than in shallow wells. Composite water levels for wells that tap major deep waterbearing zones in discharge areas may be tens of feet higher than those for surrounding shallow wells. Some deep wells in valleys are flowing wells. In other wells, the upper water-bearing zones act as thieving zones, and no indication of upward flow can be seen at the land surface. Although upward flow increases the available drawdown to a well, it is not always desirable. Water produced from the deeper zones typically is higher in dissolved solids, and upward flow may contaminate shallow aquifers. Calcium sulfate water under high hydraulic head is present at a depth of 290 feet in well Mt-31. This well, located in a valley flat, taps the Old Port and Keyser Formations and yields water having a total-dissolved-solids content of 1,040 mg/L (milligrams per liter), which exceeds the recommended limit for drinking water set by the U.S. Environmental Protection Agency (1976a). Well Co-505, which had 13 gal/min of upward well-bore flow, is contrary to this generalization. The water produced from the major water-bearing zone at 550 feet in the well contained less than one half the total dissolved solids than the water produced from shallower zones.

Downward flow was measured in wells Co-304 and Lu-454, both of which are located in the Sus-

Water-bearing zone at 510 feet

Water-bearing zone at 182 feet

Tonoloway Formation

Geologic unit:

Well number: Co-304

Topographic setting: Terrace

Well depth: 200 feet

Well number: Co-245

Sherman Creek Member of the Catskill Formation Geologic unit:

Topographic setting: Upland draw

Well depth: 440 feet

Water-bearing zone at 204 feet

200

Water-bearing zone at 73 feet Water-bearing zone at 86 feet

60 P

DEPTH

bnbl wolad taat)

80

00

Water-bearing zone at 97 feet

120 404

160 180

Geologic unit: Tonoloway Formation Topographic setting: Terrace

Well number: Co-307

Tonoloway Formation

Geologic unit:

Well number: Co-505

300 feet Well depth:

Leaks out below casing at 40 feet Water-bearing zone at 275 feet Water-bearing zone at 112 feet Water-bearing zone at 460 feet Topographic setting: Terrace 570 feet Well depth: (feet below land surface)
(feet below land surface) 460 500 00 420

Well-bore flow in selected wells. Arrows and numbers signify direction and rate of flow in gallons per minute; N indicates no measurable flow. Figure 5.

Well number: Lu-453

Geologic unit: Mahantango Formation

300 feet Well depth:

Topographic setting: Terrace

Water-bearing zone at 145 feet

Water-bearing zone at 220 feet

surface)

Flowing at approximately 75 gallons per minute

20

40 160

Water-bearing zone at 75 feet 200 240 260 80 220

(feet below land

80

Water-bearing zone at 130 feet Water-bearing zone at 192 feet Well number: Lu-454 160 200L 120 404 180 00

Water-bearing zone at 257 feet

240

260 280 300

220

200

(feet below land surface) HT930

180

Geologic unit: Tonoloway Formation

Topographic setting: Terrace

Well depth: 200 feet

Well number: Nu-158

Geologic unit: Mahantango Formation

Topographic setting: Upland draw

Well depth: 300 feet

Lower member of the Rose Hill Formation

Geologic unit:

Well number: Mt-29

Topographic setting: Upland draw

300 feet

Well depth:

Water-bearing zone at 175 feet

Figure 5. (Continued).

quehanna River valley. Possibly, groundwater flows parallel to the river for a distance before discharging, or the lower water-bearing zones in these wells may be part of the regional flow system.

Upward flow is common in wells drilled in the interbedded sandstone, limestone, and shale of the Mifflintown, Keefer, and Rose Hill Formations on the limbs of the Berwick anticlinorium. This hydrogeologic setting is along the flanks of Montour Ridge and its eastern extension between Danville and Bloomsburg. Shales commonly are confining beds for coarser grained and calcareous beds in these formations. Large vertical head differences are found along the limbs of the anticlinorium, where steep topographic gradients parallel the bedding dip, and many flowing wells are encountered. Upward flows measured in wells were generally less than 10 gal/min. An extreme example is well Mt-29, where flow in the well was 75 gal/min upward from a water-bearing zone at a depth of 257 feet (Figure 5); the hydraulic head in the well was 69 feet above land surface.

The natural groundwater flow system has been altered along the flanks of the ridge between Danville and Bloomsburg in areas where deep mining of sedimentary iron ore in the upper part of the Rose Hill Formation occurred in the l800's (Inners and Williams, 1983). Abandoned deep mines can act as a drain, effectively dewatering overlying water-bearing zones. Wells drilled into the mines provide a short circuit for water perched by overlying confining shales (Figure 6). The most extensive deep mines are found in the Mahoning Creek gap at Danville and on the northern flank of the ridge northeast of Danville. Where the mines are flooded, they may serve as significant sources of water.

A more recent impact on the groundwater flow system from surficial mining activities was caused by sand and gravel dredging operations along Fishing Creek west of Light Street (Figure 7). Removal of sand and gravel in this area effectively increased aquifer permeability and caused the hydraulic gradient toward the creek to flatten. Reportedly, this caused the dewatering of shallow, dug wells (30 to 40 feet deep) in the town of Light Street.

Water-temperature gradients measured in most wells approach the geothermal gradient at depths greater than 300 feet below land surface. This indicates that most groundwater flow occurs within 300 feet of land surface. Fresh water circulates deeper than 600 feet below land surface in much of the study area. Saline water was encountered, however, in two wells drilled into the Marcellus and

Mahantango Formations at depths of 300 to 350 feet. The wells, Co-382 and Lu-471, are in valleys at altitudes of 580 and 500 feet above sea level, respectively.

WATER-LEVEL FLUCTUATIONS

Water levels in wells fluctuate in response to changes in recharge and discharge of the groundwater system. Water-level fluctuations primarily are caused by seasonal changes in recharge. Groundwater levels generally start to decline in April and continue to decline throughout the summer. During the summer, high evapotranspiration rates reduce the amount of water reaching the water table, even though rainfall is slightly higher in the summer than during the other seasons. Water levels tend to stabilize in early fall, primarily because of decreased evapotranspiration losses. Rain and snowmelt recharge the aquifers from late fall to early spring, and water levels rise. In well Co-45 at Bloomsburg, for the period 1970 to 1980, April and September showed the highest and lowest mean monthly water levels, respectively. The difference in mean water levels for these months was 2.1 feet.

Hydrographs of wells Co-305 and Co-307, and precipitation for the 1981 water year (October 1980 to September 1981), are shown in Figure 8. The greatest amount of recharge occurred during February. The water level in well Co-307, completed in the Tonoloway Formation, rose 6.4 feet during the month. The water level in well Co-305, completed in glacial outwash, rose 1.8 feet in February and early March. About 6 inches of precipitation fell during February. Although comparable amounts of precipitation occurred in June and July, evapotranspiration losses significantly reduced the amount of water reaching the aquifers. The water level in well Co-305 remained relatively stable during June and July, while the water level in well Co-307 declined 1.3 feet.

The median water-level rise for 79 wells in the Berwick-Bloomsburg area between December 22, 1980, and April 30, 1981, was 2.5 feet (Table 7). The seasonal water-level changes varied according to topography and aquifer lithology (Gerhart and Williams, 1981). On the average, the observed fluctuation on hilltops was three times greater than that in valleys. The wells in valleys are near the Susquehanna River or Fishing Creek, which have nearly constant heads and moderate seasonal water-level fluctuations. In hilltop and slope settings, shale aquifers show the least water-level fluctuation

Figure 6. Effects of deep iron-ore mines on the groundwater resources in areas along the flanks of the ridge between Danville and Bloomsburg (from Inners and Williams, 1983).

Figure 7. Sand and gravel dredge pools along Fishing Creek west of Light Street. Dredging operations reportedly caused the dewatering of shallow, dug wells in Light Street.

because the low permeability of the shale decreases the recharge and drainage capability. In valleys, the sand and gravel aquifer shows less water-level fluctuation than bedrock aquifers because of its greater storage capability (greater storage means greater volumes of water drained per foot of water-level decline).

Groundwater levels also fluctuate in response to changes in discharge from the aquifers due to pumping (Figure 9). The water level in well Co-310 at Bloomsburg, completed in the Keyser Formation, fluctuates in response to pumping of an industrial well field located about 2,500 feet to the east (Figure 9). The well field was pumped from June 2 to September 4, 1981 (except for 5 days in late June and early July) for air-conditioning water at a rate in the range of 500 to 1,000 gal/min. This increased discharge from the aquifer accentuated the seasonal

Figure 8. Precipitation at Millville in water year 1981 and corresponding water levels in wells Co–305 (glacial outwash) at Mifflinville and Co–307 (Tonoloway Formation) at Berwick.

Table 7. Summary of Water-Level Changes in Selected Wells Between December 1980 and April 1981

	Me	dian water-level fl		
Lithology	Hilltop	Slope	Valley	All
Sand and gravel		1.9 (2)	1.5 (10)	1.5 (12)
Shale	-0.1(2)	3.2 (25)	2.3 (12)	2.4 (39)
Sandstone and shale	7.8 (5)	4.8 (3)		6.3 (39)
Sandstone, limestone, and shale	10.7 (2)	6.6 (1)	1.9(1)	7.3 (4)
Carbonate rock and shale	6.1 (1)	1.6 (3)	3.4 (5)	2.8 (9)
Carbonate rock			2.5 (7)	2.5 (7)
All	6.9 (10)	3.0 (34)	2.3 (35)	2.5 (79)

¹Positive number denotes a water-level rise from December 1980 to April 1981. Number of wells is in parentheses.

water-level decline in well Co-310. The water level in well Co-310 declined 6.5 feet during this period. During the same time period, well Co-190, located nearby but not affected by pumpage, showed a water-level decline of less than 1 foot. The well field

was pumped on an intermittent basis until September 28. The water level in well Co-310 recovered 4.9 feet from September 28 to December 31, 1981, whereas the water level in well Co-190 rose only 0.3 foot during the same period.

Figure 9. Comparison of water-level fluctuations in wells Co–310 and Co–190 at Bloomsburg for the 1981 calendar year. Water levels in well Co–310 are affected by the pumping of an industrial well field for summer air-conditioning water.

WATER-YIELDING CHARACTERISTICS OF THE AQUIFERS

WELL CONSTRUCTION

In the area of investigation, dug wells, springs, and, most commonly, drilled wells are used for groundwater withdrawal. Air-rotary or cable-tool methods are used to drill wells.

Depths of drilled wells that were inventoried range from 33 to 610 feet. About 70 percent of the inventoried wells were drilled for domestic, small commercial, or other purposes for which yields of 5 to 10 gal/min are generally adequate. The median depth of domestic wells is 125 feet. The median depth of wells drilled for public, industrial, or other high-yield uses is 220 feet. Most domestic wells are 6 inches in diameter, and nondomestic wells range from 6 to 10 inches in diameter.

Casing is installed in wells to prevent surficial deposits and weathered bedrock from collapsing into the well bore and to prevent near-surface water from entering the well. Typically, steel casing is seated several feet into solid bedrock and the remainder of the well is completed as an open hole. Although most drillers prefer to complete domestic wells in bedrock, this is not always practical where thick saturated sand and gravel glacial deposits are

present. In these areas, the well may be completed as an open-ended cased hole, or the lower part of the casing may be slotted. Where the glacial-outwash aquifer is tapped for high-yield purposes, screens and natural or artificial gravel packs typically are used.

The depth of a domestic well depends on the yield capabilities of the aquifer, depth to water-bearing zones, and, in some cases, depth to solid bedrock. Deep wells are drilled at low-permeability sites not only to penetrate additional water-bearing zones, but also to provide well-bore storage. A statistical summary of well and casing depths of domestic wells for the various geologic units is given in Table 8.

Casing depths are related to the susceptibility of the aquifer to weathering and to the thickness of surficial deposits. The deepest casing depths are found in the Keyser and Tonoloway Formations because these carbonate rocks have the greatest susceptibility to weathering. About one of every four wells in these formations requires more than 100 feet of casing. Wells drilled into the friable sandstone beds locally found at the top of the Old Port Formation may require deep casing to prevent well-bore collapse. A domestic well (Nu-251) in Riverside that penetrated 3 feet of water-bearing sand at depth required 76 feet of casing. About one of every four domestic wells in the Sherman Creek Member of the Catskill Formation requires more

Table 8. Summary of Well and Casing Depths of Domestic Wells

		Well depth (feet		below land surface)			Casing	Casing depth (feet below land surface)	w land surface	
Aquifer	Number of wells	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range	Number of wells	75 Percent ¹	50 Percent ¹ (median)	25 Percent	Range
Sand and gravel Glacial outwash	6		35		19-64	S	[45		34-64
Sandstone and shale	r		361		000	ć		i		
Catskill Formation	112	l <u>6</u>	17.5	170	30-300	7 =	1 5	21 36	7	20-21 20-106
Duncannon Member	1	}	88	}	8	-	ī	5. 4. 5. 4.	r	001-07
Sherman Creek Member	58	100	125	175	30-300	57	21	36	09	20-100
Irish Valley Member	53	100	130	165	50-275	53	20	40	44	20-106
Trimmers Rock Formation	29	123	197	275	35-523	53	20	22	39	16-81
Shale Harrell and Mahantango Formations	146	06	125	175	31-470	130	20	22	40	5-132
Marcellus Formation	40	71	87	123	50-285	36	20	30	42	11-71
Bloomsburg Formation	16	116	175	211	75-265	1.5	20	20	30	16-57
Carbonate rock and shale Onondaga and Old Port Formations	30	61	93	156	30-335	28	23	35	48	13-85
Wills Creek Formation	43	70	86	170	25-300	37	23	40	7.1	16-190
Carbonate rock Keyser and Tonoloway Formations	28	80	169	210	47-348	26	29	43	100	20-250
Sandstone, limestone, and shale Mifflintown, Keefer, and Rose Hill Formations	38	125	182	223	73-394	33	21	40	51	13-121
Mifflintown and Keefer Formations	7	I	125		73-315	7	ı	36	1	20-50
Rose Hill Formation	31	128	189	223	1	27	20	41	51	13-121
Upper member	14	125	195	230	93-280	12	38	53	88	20-121
Middle and lower members	17	131	175	219	75-394	15	20	96	41	12.42

Percentage of wells in which depth is equaled or exceeded.

than 60 feet of casing because of thick deposits of till overlying much of its outcrop area.

Some wells drilled through the Mifflintown and Keefer Formations into the upper member of the Rose Hill Formation penetrate abandoned iron-ore mines (Figure 6). Four wells that intersect iron-ore mines required 70 to 121 feet of casing. One well that hit a mine void at 160 feet was abandoned, as casing to that depth was considered to be impractical (Inners and Williams, 1983).

Difficulties may arise where drilling is done through glacial-outwash deposits and highly weathered carbonate rock using an air-rotary rig. Lost air circulation is a common problem in both types of rock. In the outwash deposits, isolated boulders, which are found interbedded with the finer grained deposits, can cause drilling problems. In highly weathered carbonate rock, "floating" boulders (solid rock surrounded by weathered materials) may be a source of difficulty. Where the outwash deposits are saturated, sand, silt, and clay may flow, making it difficult to keep the hole open. A com-

mon practice used when drilling sand and gravel and weathered rock is drilling and driving. The repetitious procedure involves drilling very short intervals of rock followed by driving the casing through the drilled interval; in some wells, the casing is driven ahead of the drilled interval.

WELL YIELD

Reported Yield

The reported yields presented in Tables 9 and 10 were, for the most part, determined by the driller on the basis of a short-term drillstem or bailer test when the well was completed. Reported yields based on drillers' completion tests appear to approximate the maximum short-term yield of the wells in most cases, but may not be accurate under certain conditions. In aquifers of high permeability, such as sand and gravel or carbonate rock containing solution cavities, much of the water may be forced back into the aquifer during a drillstem test rather than

	Number	Median	R	Reported yield (g	gal/min)	
Aquifer	of wells	well depth - (feet below) land surface)	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range
Sand and gravel	4	44	_	20	_	15-50
Shale	168	122	5	10	15	.5-50
Sandstone and shale	163	150	6	8	10	.5-60
Sandstone, limestone, and shale	31	191	5	10	20	2-50
Carbonate rock and shale	63	110	6	12	20	2-100
Carbonate rock	28	165	10	20	30	3-150

¹Percentage of wells in which yield is equaled or exceeded.

Table 10. Summary of Reported Yields of Nondomestic Wells

	Niversham	Median	F	Reported yield (g	gal/min)	
Aquifer	Number of wells	well depth - (feet below) land surface)	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range
Sand and gravel	8	58	_	40	_	18-100
Shale	31	300	8	15	50	1-225
Sandstone and shale	19	300	20	32	64	3-100
Sandstone, limestone, and shale	7	305	_	93	_	10-300
Carbonate rock and shale	22	224	23	38	49	20-184
Carbonate rock	14	280	65	160	383	24-900

Percentage of wells in which yield is equaled or exceeded.

pushed to the surface. In deep wells of low or moderate yield, drillers' completion tests may not be long enough to distinguish between well-bore storage and well yield.

Nondomestic wells, which include municipal, industrial, and commercial wells, generally have higher reported yields than domestic wells because (1) nondomestic wells commonly are deeper and penetrate more water-bearing zones; (2) a greater proportion of nondomestic wells are located in valleys, the topographic setting that generally has the highest yields; (3) the average diameter of nondomestic wells is greater; and (4) many of the higher domestic yields are underestimated because drillers commonly do not determine exact discharges for yields exceeding those considered adequate for household use.

Specific Capacity

A better measure of the yield capabilities of a well is its specific capacity. Specific capacity is the discharge of a well in gallons per minute per foot of drawdown [(gal/min)/ft] (Figure 10). Specific capacities can be determined from drillstem and bailer tests, as well as actual pumping tests. Specific capacities of wells reported by drillers on the basis of drillstem and bailer tests are presented in Table 23. The rate at which the well was blown or bailed is the reported yield. The specific capacities reported by drillers are considered to be rough estimates and were not used in relating well yields to various hydrogeologic factors.

Pumping tests provide the most reliable data on specific capacity. One hundred fifteen wells were pump tested by drillers, consultants, and U.S. Geological Survey personnel. The specific capacities and the pumping rates and durations for these tests are given in Table 23. The specific-capacity data are summarized by aquifer in Table 11.

Effects of Pumping Rate on Specific Capacity

Variable-rate pumping-test data indicate that specific capacity decreases as the pumping rate increases. Specific capacity decreases with increasing pumping rate because of increases in well loss (i.e., frictional losses due to turbulence) and, in some cases, the lowering of the pumping water level during pumping below water-bearing zones. When the water level in a well is drawn below a producing zone, the zone becomes free flowing and is no longer progressively stressed by increasing drawdown. Any further increase in drawdown causes an increase in yield from lower zones only.

Figure 11 shows the results of variable-rate pumping tests on wells Nu-158 and Nu-187. In well Nu-187, the water levels associated with discharge rates of 16, 29, and 63 gal/min were above both producing zones. Decreases in specific capacity are attributed to aquifer and well losses only. About one third of the drawdown at 29 and 64 gal/min was due to these types of losses.

In well Nu-158, the pumping water level at a 24 gal/min pumping rate was above all of the water-bearing zones. Pumping at 60 gal/min drew the water level below the two shallowest zones at 22 and 30 feet. The pumping rate increase resulted in a 65

EXPLANATION

$$SC = \frac{Q}{B-A}$$

where

SC = Specific capacity, in gallons per minute per foot of drawdown

A = Depth to static water level, in feet below land surface

B = Depth to pumping water level, in feet below land surface

Q = Discharge, in gallons per minute

Figure 10. Schematic drawing of a pumping well and the equation for determining specific capacity.

Table 11. Summary of Specific Capacities of Pump-Tested Wells

	Number	Median well depth		Specific capac	rity [(gal/min).	/ft]
Geologic unit or lithology	of wells	(feet below) land surface)	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range
Glacial outwash	10	66	3.7	11	19	1.4-84
Catskill Formation	15	165	.16	.39	1.2	.08-3.8
Sherman Creek Member	13	275	.14	.39	1.8	.08-3.8
Irish Valley Member	2	91		.44		.3453
Trimmers Rock Formation	8	200	.06	.13	.37	.0355
Harrell and Mahantango Formations	16	263	.06	.27	.79	.03-2.5
Marcellus Formation Onondaga and Old Port	15	255	.07	.19	.50	.03-18
Formations Keyser and Tonoloway	13	259	1.2	3.2	9.3	.47–350
Formations	18	205	1.6	4.6	20	.35-280
Wills Creek Formation	15	170	1.8	3.1	5.3	.23-18
Bloomsburg Formation	5	228	.09	.18	.50	.0364
Mifflintown and Keefer Formations	3	250	_	.13	_	.1037
Rose Hill Formation	8	266	.05	.21	1.1	.03-1.4
Upper member	4	264	.16	.71	1.3	.10-1.4
Middle and lower members	4	201	.04	.06	.62	.0380
Shale	35	268	.07	.23	.50	.03-18
Sandstone and shale	23	200	.12	.22	.55	.03-3.8
Sandstone, limestone, and shale	11	250	.07	.13	.80	.03-1.4
Carbonate rock and shale	28	202	1.5	3.1	5.5	.23-350
Carbonate rock	18	205	1.6	4.6	20	.35-280

¹Percentage of wells in which specific capacity is equaled or exceeded.

percent reduction in specific capacity. At 75 gal/min, the water level was below all but the deepest producing zone. The decrease in specific capacity from the 60 to the 75 gal/min rate was 50 percent. Well-bore-flow tests during the pumping of well Nu-158 at 24 gal/min indicate that 75 percent of the well yield is produced by the water-bearing zones at 22 and 30 feet and 20 percent is produced by the zones at 88 and 108 feet (Figure 12).

The approximate doubling of discharge rate during pumping tests in 10 wells caused a 24 to 67 percent reduction in specific capacity (Table 12). The reduction in specific capacity for five wells in which the pumping water level fell below the water-bearing zone or zones ranged from 50 to 67 percent, and the median was 59 percent. The reduction in specific capacity for five wells in which aquifer and well losses were the only factors ranged from 24 to 41 percent, and the median was 38 percent.

Effects of Pumping Duration on Specific Capacity

Data from long-term pumping tests indicate that specific capacity decreases with increasing pumping time. The specific capacity of wells that are pumped continuously will decrease until (1) natural discharge from the groundwater system has been decreased by an amount equal to the pumping rate; (2) recharge to the groundwater system is increased by an amount equal to the pumping rate; or (3) the sum of decreased natural discharge and increased recharge equals the pumping rate (Carswell and Lloyd, 1979). Valleys, especially along the Susquehanna River and its major tributaries, are the best areas for decreasing natural discharge or inducing recharge from surface water. Upland areas near drainage-basin divides have the least amount of available water. The reduction of specific capacity after 24 hours of continuous pumping as

Figure 11. Variable-rate pumping tests of wells Nu-158 and Nu-187.

compared to 1-hour values in 15 wells ranged from 17 to 90 percent, and the median decrease was 38 percent (Table 13). On the average, about two thirds of the decrease in specific capacities occurred after 8 hours of pumping. Six wells pumped continuously for 48 hours had a median decrease in specific capacity of 12 percent from 24 to 48 hours.

Recovery

All domestic wells and most nondomestic wells are not pumped continuously but are shut off and allowed to recover between pumping periods. Recovery yield, the rate at which water flows into the well bore after pumping has stopped, is critical

in low-yield domestic wells that depend on well-bore storage and in nondomestic wells that are pumped beyond their long-term capacity during peak-demand periods. Recovery yield was measured after the completion of pumping tests in 13 wells that tap noncarbonate-rock aquifers. The median recovery yield measured in the wells at 40 feet of residual drawdown was 7.5 gal/min. The median recovery yield divided by the residual drawdown (40 feet) is 0.19 (gal/min)/ft. This recovery "specific capacity" is comparable to median specific capacities calculated from pumping tests for the various noncarbonate rocks. Lack of sufficient recovery data prevented a similar comparison for the other aquifers.

Well number: Co-85

Geologic unit: Sherman Creek Member of the

Catskill Formation

Topographic setting: Valley flat

Well depth: 448 feet

Well number: Lu-471

Geologic unit: Mahantango Formation

Topographic setting: Terrace

Well depth: 471 feet

Well number: Co-212

Geologic unit: Mahantango Formation

Topographic setting: Terrace

Well depth: 120 feet

Well number: Nu-158

Geologic unit: Mahantango Formation

Topographic setting: Upland draw

Well depth: 300 feet

Figure 12. Well-bore flow in selected wells under pumping conditions. Arrows and numbers signify direction and rate of flow in gallons per minute; N indicates no measurable flow.

Table 12. Reduction of Specific Capacity in Selected Wells with Increased Pumping Rate

	Well	Aquifer	Topographic setting	Lower pumping rate (gal/min)	Specific capacity at lower pumping rate [(gal/min)/ft]	Higher pumping rate (gal/min)	Specific capacity at higher pumping rate [(gal/min)/ft]	Percent reduction
retr gai	Co-205	Wills Creek Formation	Terrace	77	2.2	136	1.1	50
sw besusc Water-bear	Co-209	Sherman Creek Member of Catskill	Upland draw	7	.16	12	90.	62
ng rate below	Mt-1	Formation Tonoloway Formation	Valley flat	25	2.1	50	69.	<i>L</i> 9
e drawn	Mt-6	Upper member of Rose Hill Formation	Upland draw	20	1.4	110	89.	51
Increased evel to b zone or	Nu-158	Mahantango Formation	Upland draw	24	2.1	09	.87	59
I			Media	Median percent reduction	ion = 59			
рĢ	Co-52	Old Port Formation	Terrace	059	17	1,170	13	24
01 [97	Co-204	Wills Creek Formation	Terrace	85	12	140	7.4	38
ter le wate	Co-307	Tonoloway Formation	Теггасе	36	32	68	20	38
se wa	Mt-2	Keyser	Valley flat	100	13	200	7.7	41
ncreass ot cau trawn l	Nu-187	Keyser Formation	Terrace	16	Ξ	29	7.3	34
p u			Media	Median percent reduction =	ion = 38			

Table 13. Reduction of Specific Capacity in Selected Wells with Increased Pumping Duration

				Specific capa	acity [(gal/min)/ft	
Well number	Aquifer	Topographic setting	1-hour	8-hour ¹	24-hour ¹	48-hour
Co- 66	Sherman Creek Member of Catskill Formation	Upland draw	1.4	(51)	0.30 (72)	_
204	Wills Creek Formation	Terrace	11	9.6 (12)	9.0 (17)	7.8 (28)
207	Glacial outwash	do.	7.0	5.7 (19)	4.6 (35)	_
448	Old Port Formation	do.	25	9.0 (64)	2.6 (90)	_
505	Tonoloway Formation	do.	3.0	2.1 (30)	2.0 (34)	_
Lu-486	Glacial outwash	do.	28	21 (25)	18 (36)	16 (43)
Mt- 1	Tonoloway Formation	Valley flat	4.8	2.0 (58)	_	_
2	Keyser Formation	do.	20	12 (38)	10 (50)	8.3 (59)
4	do.	do.	12	7.1 (39)	5.0 (18)	_
6	Upper member of Rose Hill Formation	Upland draw	_	_	3.3	1.4
14	Keyser Formation	Valley flat	55	47 (15)	_	41 (25)
16	Old Port Formation	do.	6.5	5.9 (9)	5.3 (18)	-
18	do.	do.	1.1	.67 (39)		_
29	Lower member of Rose Hill Formation	Upland draw	_	.92	.80	.76
31	Keyser Formation	Valley flat	16	13 (20)	9.9 (38)	99.0 (44)
Nu-187	do.	do.	7.4	4.7 (36)	4.2 (43)	_ ` ′

¹Percent reduction from 1-hour specific capacity is in parentheses.

HYDROGEOLOGIC FACTORS AFFECTING WELL YIELDS

Water-Bearing Zones

The yield of a well depends largely on the size and number of water-bearing zones that it penetrates. As a well is drilled deeper and more water-bearing zones are penetrated, the yield of the well increases. In general, however, as well depth increases, the size of water-bearing zones decreases and the vertical distance between zones increases.

Figure 13 shows the distribution of water-bearing zones with depth for noncarbonate rocks, and for carbonate and interbedded carbonate and noncarbonate rocks. In general, the vertical spacing between water-bearing zones in noncarbonate aquifers is greater than that for aquifers that contain carbonate rock. In both groups of aquifers, the greatest

number of producing zones is between 50 and 100 feet below land surface. Between 100 and 300 feet below land surface, the vertical spacing of waterbearing zones increases more rapidly with depth in aquifers containing noncarbonate rocks than in aquifers containing carbonate beds. In both groups of aquifers, the greatest vertical spacing—about one producing zone for every 200 feet of hole sampled—is between 400 and 600 feet below land surface. The difference in well-yield capabilities between noncarbonate and carbonate aquifers is attributed, in part, to the difference in the number and spacing of producing zones and, in part, to the greater size of openings in the solution-prone rocks.

Reported yields of individual water-bearing zones indicate a decrease in opening size with depth. The amount of decrease in opening size with depth is controlled by lithology. Yields of more than a few gallons per minute are uncommon for water-bearing

Figure 13. Distribution of water-bearing zones with depth.

zones below 300 feet in shale aquifers. Due to the more competent nature of coarse-grained beds, water-bearing zones remain more open to slightly greater depth in aquifers containing sandstones. Although one well reportedly penetrated a water-bearing zone having a yield of 40 gal/min at 450 feet, significant yields below 400 feet are believed to be uncommon in aquifers containing interbedded sandstone and shale.

Large yields may be obtained from deep zones in aquifers containing carbonate beds. In general,

the limestones of the Keyser and Tonoloway Formations show the greatest yield capability at depth. In well Co-505, completed in the Tonoloway Formation near Lime Ridge, a water-bearing zone at a depth of 550 feet reportedly yielded over 200 gal/min.

Lithology

Lithology is a major factor controlling well yield. Wells completed in the glacial-outwash aquifer have

the highest specific capacities. Specific capacities of these wells range from 1.4 to 84 (gal/min)/ft and have a median value of 11 (gal/min)/ft. In bedrock aguifers, well yields are closely related to the amount of carbonate rock penetrated. Wells in the carbonate-rock sequence (Keyser and Tonoloway Formations) have a median specific capacity of 4.6 (gal/min)/ft. The interbedded carbonate rocks and shales of the Onondaga, Old Port, and Wills Creek Formations have the next highest median specific capacity, 3.1 (gal/min)/ft. Specific capacities of wells in the Mifflintown, Keefer, and Rose Hill Formations, composed mostly of shale and sandstone with some limestone, have a range of 0.03 to 1.4 (gal/min)/ft. In general, the noncarbonate-rock aquifers, including the shales of the Harrell, Mahantango, Marcellus, and Bloomsburg Formations and the interbedded sandstones and shales of the Catskill and Trimmers Rock Formations, have specific capacities an order of magnitude less than those for the carbonate-rock aquifer.

Topography

Topographic position is a significant factor that affects well yield. Wells in valleys generally have the highest yields and wells on hilltops have the lowest (Table 14). The median specific capacity for wells in valleys is 3 to 24 times greater than the me-

Table 14. Median Specific Capacities of Wells by Topographic Setting

	Median sp	ecific capacity	[(gal/min)/ft]
Aquifer	Hilltop ¹	Slope ¹	Valley ^{1,2}
Shale	0.10(3)	0.17 (6)	0.31 (26)
Sandstone and shale	.04 (3)	.18 (7)	.39 (13)
Sandstone, limestone, and shale	.04 (2)	.10 (5)	.95 (4)
Carbonate rock and shale	.34 (1)	1.8 (3)	3.4 (24)
Carbonate rock	1.7 (1)	4.9 (1)	6.0 (16)

¹Number of wells is in parentheses.

dian for wells on hilltops. Wells on slopes show specific capacities between those for wells in valley and hilltop settings.

Differences in well yield among topographic settings are related to several factors: (1) valleys commonly are zones of more intense fracturing; (2) hydraulic gradients are toward valleys, and large volumes of water pass through these settings before

being discharged; and (3) greater saturated thicknesses of sand and gravel in valleys provide for more recharge, storage, and transmission of water to underlying bedrock aquifers.

Fracture Traces

Fracture traces are natural linear features visible on aerial photographs that possibly are surface expressions of zones of fracture concentration in the underlying bedrock. They generally consist of topographic, vegetational, and soil-tonal alinements. Hydrogeologists in some areas have reported that wells drilled on fracture traces have higher yields than randomly located wells (Lattman and Parizek, 1964).

Specific capacities of wells intentionally located on fracture traces by hydrogeologists were compared with the median specific capacity for all wells located in the same hydrogeologic settings (Table 15). Only six of the 12 wells located on fracture

Table 15. Comparison of the Specific Capacities of Wells Located on Fracture Traces with the Specific Capacities of All Wells in the Same Hydrogeologic Settings

	Fractur	e-trace wells	Madian specific
Hydrogeologic setting i	Well number	Specific capacity [(gal/min)/ft]	Median specific capacity of all wells in hydro- geologic setting
Carbonate rock; valley	Mt- 1 2 14 15 31	0.70 7.7 41 1.1 23	6.0
Carbonate rock and shale; valley	Mt- 16 17 32	5.3 2.7 .47	3.2
Shale; valley	Mt- 30 Nu-158	.07 .87	.31
Shale; slope	Nu-157	1.2	.15
Sandstone, limestone, and shale; valley	Mt- 29	.80	.95

^{1&}quot;Valley" includes valley flat, terrace, and upland draw settings.

traces had specific capacities greater than the corresponding median value. These data suggest that only a certain proportion of the linear features that were mapped on aerial photographs as fracture traces were actually underlain by zones of fracture concentration. Inaccurate field location may also

²Includes valley flat, terrace, and upland draw settings.

account for the lack of success at some fracture-trace sites.

ESTIMATED WELL YIELD

Table 16 shows estimated 24-hour well yields for the aquifers. The well yields were estimated from data on specific capacity, depth to water-bearing zones, and water levels. Specific capacities were adjusted to a common 24-hour pumping period based on the data in Table 13. The adjusted specific capacities were multiplied by the median available drawdown for each aquifer to obtain the estimated well yield. Available drawdown was defined as the difference in depth between the static water level and the shallowest water-bearing zone.

WELL INTERFERENCE

When the cones of depression of closely spaced pumped wells overlap, one well is said to interfere with another because of the increased drawdown that occurs in each well. The amount of interference is largely dependent on the degree of hydraulic connection between the water-bearing zones tapped by the wells, which varies widely from site to site. Data collected during this study, however, reveal the importance of bedding-related permeability in well-interference problems in bedrock aquifers.

The total yield of a group of closely spaced wells that are pumped simultaneously may be significantly less than the sum of yields of the individual wells that make up the well field. A good example of this type of interference problem is found at the Catawissa Water Authority well field. The pumping of well Co-84 at 50 gal/min causes 13 gal/min of cumulative well-bore flow in well Co-85, located about 100 feet away (Figure 12). The wells are connected by a common water-bearing zone penetrated in well Co-85 at 120 feet below land surface. Simultaneous pumping of these two wells significantly decreases their individual yields.

Table 17 shows the results of multiple-well pumping tests conducted by drillers, consultants, and

	N 11	Esti	mated well yield¹(ga	al/min)
Aquifer	Median available drawdown³	75 Percent ²	50 Percent ² (median)	25 Percent ²
Sand and gravel				
Glacial outwash	26	58	190	410
Sandstone and shale	42	5	10	16
Catskill Formation	41	5	10	36
Sherman Creek Member	43	5	11	50
Irish Valley Member	41	_	11	_
Trimmers Rock Formation	43	_	5	_
Shale	42	2	7	15
Harrell and Mahantango Formations	39	1	7	22
Marcellus Formation	47	3	8	23
Bloomsburg Formation	46	_	6	_
Carbonate rock and shale	38	46	100	210
Onondaga and Old Port Formations	33	40	91	310
Wills Creek Formation	40	47	99	130
Carbonate rock				
Keyser and Tonoloway Formations	44	47	180	620
Sandstone, limestone, and shale				
Mifflintown, Keefer, and Rose Hill Formations	70	3	10	56

¹Based on specific-capacity data adjusted to 24-hour pumping period and median available drawdown.

²Percentage of wells in which yield is equaled or exceeded.

³Based on data on depth to water-bearing zones and water levels.

Table 17. Results of Multiple-Well Pumping Tests

Length of test (hours)	Pumped well	Pumping rate (gal/min)	Drawdown (feet)	Observation well	Drawdown (feet)	Distance (feet)	Observation well	Drawdown (feet)	Distance (feet)	Remarks
						15	Glacial outwash		:	
9	Co-305	38	3.7	Co-311	0.5		Co-309	0.2	444	Aquifer for well Co-309 is Marcellus Formation.
3.5	Lu-455	36	2.9	Lu-454	1.0	6	I	I		Aquifer for well Lu-454 is Mahantango Formation.
8.5	Lu-491	150	22	Lu-450	5.4	I	Lu-490	5.9	100	Aquifer for well Lu-450 is Mahantango Formation.
						Cats	Catskill Formation			
3.5	Co-49	45+	38	Co-61	3+	06	Co-62	5.4	144	
7	Co-61	11	06	Co-49	1.0	06	Co-62	4.4	88	
48	Co-139	40	276	Co-140	89	350	I			Well Co-140 is 60 feet higher in altitude at ground surface
Ç	5	b	0.00	000	ī	C				than well Co-139.
84	C0-140	22	757	C0-139	4	320	I	I		
						Mahar	Mahantango Formation	no		
3	Lu-454	7.6	75	Lu-455	.2	6	I	I	I	Aquifer for well Lu-455 is glacial outwash.
2	Mt-178	15	50	Mt-153	6:	385	I	1	I	
2	Nu-157	18	15	Nu-185	2.3	390	ı	I	I	
40	Nu-158	09	70	Nu-157	+1	423	Nu-159	+	292	
				Nu-180	14	787	1	1	1	
						Marc	Marcellus Formation	-		
24	Mt-30	20	284	Mt-31	ε.	400	Mt-32	4.	530	Aquifer for well Mt-31 is Keyser Formation; aquifer for well Mt-32 is Old Port Formation
						,				
)nondaga ar	Onondaga and Old Port Formations	rmations		
24	Mt-16	160	30	M_{t-17}	14	15	I	1		
24	Mt-17	120	45	Mt-16	12	15	l		I	
24	Mt-32	73	155	Mt-30	o.	130	Mt-31	None	530	Aquifer for well Mt-30 is Marcellus Formation; aquifer for
28	Co-448	200	06	Co-441	-	200	Co-447	None	1.100	weii ivit-31 is neyset Folimation. Aquifer for well Co-447 is Tonoloway Formation.
24	Co-505	290	123	Co-441	None	009	Co-447	None	1,000	Aquifer for well Co-448 is Old Port Formation.
				Co-448	^ \	190	I	I		•
3	Co-307	36	1.1	Co-308	-:	258	1	1	I	Aquifer for well Co-308 is glacial outwash.
					,	Keyser and	Keyser and Tonoloway Formations	mations		
48	Mt-1	50	63	Mt-2	1.5	182	I	I	I	
72	Mt-2	200	26	Mt-1	20	182	I	I	I	
40	Mt-3	250	09	Mt-1	0.9	183	I	I	I	
2.3	Nu-187	16	1.4	Nu-188	4.	09	Nu-189	None	80	
47 (Nu-18/	63	5 5	Nu-191	∞. ¬	100		1;	1	Aquiter for well Nu-191 is glacial outwash.
1	001-UNI	71	13	/01-nN	4.	00	10U-189	None	30	
						Wills	Wills Creek Formation	и		
48	Co-204	140	19	Co-205	1.6	201	ı	ı	I	
48	Co-205	136	125	Co-204	1.5	201	l	1	I	
2	Co-571	175	16	Co-580	2.0	24	Co-581	ę.	34	
				Co-582	1.9	64	Co-583	4.	99	
						Rose	Rose Hill Formation			
4.3	Mt-29	70	92	Mt-123	40	460	Mt-124	None	330	Well Mt-123 is 40 feet higher in altitude at ground surface
										than the other wells.

U.S. Geological Survey personnel. If the aquifers were ideal aquifers (isotropic, homogeneous, and areally extensive), drawdown would decrease symmetrically and logarithmically away from the pumped well. However, drawdowns measured in observation wells during pumping tests were erratic, especially in the bedrock aquifers. The relatively low storage capabilities and discrete nature of permeability in the bedrock aquifers cause large differences in drawdown between wells that are in hydraulic connection with the pumped well and wells that are not in hydraulic connection with the pumped well. Drawdown in observation wells having good hydraulic connection with the pumping well may approach that observed in the pumping well, whereas little to no observable drawdown occurs in those wells that are poorly connected.

Saturated sand and gravel generally behaves more like an ideal aquifer than does fractured bedrock. Departure from ideal conditions in the glacialoutwash aquifer is largely caused by variations in the thickness of saturated sand and gravel. Test drilling shows that the thickness of the saturated sand and gravel can change from more than 50 feet to zero within several hundred feet. Drawdowns from a hypothetical pumping well in the outwash aquifer were simulated using the 2-D, finitedifference model of Trescott and others (1976) under some typical hydrologic conditions. Actual drawdown would depart from simulated drawdown depending on the nonhomogeneity and anisotropy of the aquifer and the presence of recharge or impermeable boundaries.

Simulated drawdowns after 48 hours of pumping in the glacial-outwash aquifer are as follows:

			Drawdow (feet)	n	
Pumping rate (gal/min)	Hydraulic conductivity (ft/day)	At pumped well		tance fr mped w (feet) 100	
50	100	10	4.0	1.4	0.1
100	100	24	8.4	2.8	.3
100	200	11	5.1	2.2	.4
200	200	30	11	4.4	.8

Saturated thickness = 40 feet. Specific yield = 0.15.

The simulated drawdowns are in the range observed during the limited number of tests conducted on the outwash aquifer.

During multiple-well pumping tests in the bedrock aquifers, significant interference was observed only between wells that tapped at least part of the

same stratigraphic interval. Maximum well interference observed during pumping tests 4 to 72 hours long in the various lithologies was as follows:

	Pum	ped well	Observa	tion well
Lithology	Pumping rate (gal/min)	Drawdown (feet)	Drawdown (feet)	Distance from pumped well (feet)
Shale	60	70	14	787
Sandstone and shale	55	252	74	350
Sandstone, shale, and limestone	75	65	40	460
Carbonate rock and carbonate rock and shale	200	26	20	180

The observation wells that showed the maximum interference occurred updip, downdip, or along strike from the pumping well. However, in each case, the observation well tapped some of the same beds as the pumping well. This observation reemphasizes the importance of bedding-related permeability in the bedrock.

Individual water-bearing zones developed along selected beds can be recognized over significant distances along strike in the bedrock aquifers. Well interference problems will occur between wells that tap these zones. A good example is found at the Champion Valley Farms well field at Lime Ridge. Well Co-448 is located about 900 feet west of the Champion Valley Farms well field (wells Co-197, Co-198, and Co-199), which is pumped at a rate of about 350 gal/min for 5.5 days per week. The pumping of the well field causes significant drawdown in well Co-448, as shown in Figure 14. Calcareous chert beds yielding about 200 gal/min were penetrated in well Co-448 at depths of 142 and 152 feet below land surface. Although well Co-448 was drilled to 180 feet, the well bore collapsed at the deeper water-bearing cavern at 152 feet. In the driller's log for well Co-199, water-bearing zones were indicated at 170 and 180 feet. Reportedly, well interference occurs between wells Co-198 and Co–199. According to the driller's log, well Co–108 penetrated water-bearing caverns at 120 and 130 feet below land surface. Well Co-108 is located 1,250 feet east of the well field. Wells Co-108, Co-198, Co-199, and Co-448 probably tap the same waterbearing zones developed along two solution-prone, calcareous chert beds in the Old Port Formation for a distance of more than 2,000 feet along bedding strike. Well Co-448 showed a 90 percent reduction in specific capacity from 1 to 24 hours of pumping, the largest reduction observed in all pumping

Figure 14. Water-level fluctuations observed in well Co–448 in response to nearby industrial pumping, October 30 to November 17, 1981.

tests. At least part of this decreased capacity caused by lowered water levels can be attributed to interference from pumping at wells Co-198 and Co-199.

It is worthwhile to note that negligible drawdown occurred in well Co-448 during the pumping of well Co-505 at 290 gal/min. Well Co-505 is about 190 feet across bedding strike from well Co-448 and is completed in the Keyser and Tonoloway Formations. The water level in well Co-505 does not appear to be affected by pumping of wells Co-198 and Co-199, even though it is at nearly the same distance from the pumping wells as is well Co-448.

Assuming a bedding dip of 35 degrees, flat topography, and well depths of 400 feet, wells located more than 500 feet across bedding strike typically will not show significant interference (Figure 15). Where bedding dips are more shallow, such as on the noses of major folds, well interference may occur at greater distances across bedding strike. In addition, where steep topographic gradients parallel bedding dip, such as along the flanks of Montour Ridge and its eastern extension,

interference may occur between wells located across strike at significant distances.

Well interference has been observed in two areas along the southern flank of the ridge about 1.5 miles east of Danville between nondomestic wells that tap deep, confined water-bearing zones in the Mifflintown, Keefer, and Rose Hill Formations and domestic wells located in an updip direction (Figure 16). In one area, when a deep, nondomestic well (Mt-29) was allowed to flow at 75 gal/min for about 4 hours, 40 feet of drawdown was observed in a domestic well (Mt-123) located about 460 feet updip of well Mt-29. No drawdown was observed during the test in another domestic well (Mt-124) located about 300 feet downdip. In a nearby area, the pumping of the Mahoning Township Water Authority well field (wells Mt-5 and Mt-6) affected water levels in two updip domestic wells located up to 700 feet away. No downdip wells were known to be affected.

The hydraulic connection between the bedrock and glacial-outwash aquifers largely depends on the amount of fracturing in the rock that separates water-bearing zones in the bedrock from the saturated sand and gravel. If a bedrock well penetrates water-bearing zones that intersect the bedrock-unconsolidated rock contact, pumping of the well can cause significant drawdown in wells completed in the glacial-outwash aquifer. An example of good interconnection of the glacialoutwash and bedrock aquifers is shown in Figure 17. Test hole Co-154, completed in glacial outwash and till, and well Co-310, completed in carbonate bedrock, display similar water-level fluctuations caused by the pumping of an industrial well field completed in the carbonate-rock aquifer located, respectively, about 4,000 and 2,500 feet away.

WATER-QUALITY CHARACTERISTICS OF THE AQUIFERS

PHYSICAL CHARACTERISTICS

Temperature

The temperature of groundwater is affected by the geothermal gradient, groundwater flow paths, air temperature, and, to a limited extent, the return of water used for air conditioning. The temperature of discharge water was measured from 85 wells sampled for laboratory analyses. In addition, temperature logs were run on 39 wells ranging in depth from 68 to 558 feet (Table 2).

Figure 15. Relationship among well spacing, bedding-related permeability, and groundwater flow in response to pumping.

The temperature of groundwater discharged by wells ranged from 51 °F to 59 °F, and the median was 54 °F. The temperature of water discharged from a well is largely dependent on the depth and relative yield of the water-bearing zones that it penetrates. Deeper zones typically produce warmer water than shallow zones due to the effect of the geothermal gradient. The geothermal gradient, as determined from temperature logs in wells at depths having minimal flow, is about 1 °F per 100 feet. For example, well Co–505, which has a major water-bearing zone at 550 feet, produces water having a temperature about 3 °F warmer than the median value for all wells.

Figure 18 shows temperature logs for wells Co-245, Co-452, and Co-505. A composite temperature log based on median values computed at 50-foot intervals for 26 deep wells also is presented.

The slope of the composite temperature gradient approaches that of the geothermal gradient below 300 feet. This indicates the lack of significant groundwater flow below 300 feet in most aquifers.

Well Co-452 provides an example of a temperature log representing typical hydrologic conditions. Flow in the well bore between water-bearing zones and, to some limited degree, in the aquifer itself masks the geothermal gradient in the upper 300 feet of the temperature log. Below this depth, the temperature gradient of water in the well bore is controlled by the geothermal gradient.

In wells that have flow between shallow and deep water-bearing zones, the effects of the geothermal gradient on the temperature of water in the well bore may be dampened. Downward flow moves colder water from shallow zones down the well bore, and upward flow moves warmer water from

Figure 16. Hydrologic relationship between wells completed in the Mifflintown, Keefer, and Rose Hill Formations along the flanks of Montour Ridge and its eastern extension between Danville and Bloomsburg.

deep zones up the well bore. The temperature gradients for the depth interval of 300 to 400 feet measured in well Co-245 (downward flow) was 0.4 °F per 100 feet and in well Co-505 (upward flow) was 0.1 °F per 100 feet.

Lloyd and Growitz (1977) found that in York County the temperature of shallow groundwater varied with seasonal changes in air temperature. Carswell and Lloyd (1979) found that in Monroe County the temperature of groundwater at about 300 feet below the water table varied with the average annual air temperature. Although sufficient temperature data are unavailable in this area, similar relationships between groundwater and seasonal and average-annual air temperatures are believed to exist in the Berwick-Bloomsburg-Danville area.

The temperature of groundwater also may be affected by the return of water used for cooling to an aquifer. The only well known to be used for the return of cooling water is well Co-69 in Berwick. During the summer, groundwater is pumped from well Co-68 at a rate of about 200 gal/min and is used for air conditioning. The warm water is then returned to the aquifer by well Co-69.

No groundwater heat pumps are known to be in operation in the study area, although there is good potential for the development of this alternative energy source. Groundwater heat pumps extract heat from well water using a refrigeration system. During the summer, the system may be reversed, and the heat pump can be used for cooling. The well yield typically needed for a groundwater heat pump, 5 to 15 gal/min, can be found in most local hydrogeologic settings. In settings where a sufficient yield may not be obtainable, such as on a hilltop underlain by sandstones and shales, more efficient heat pumps requiring less than 5 gal/min could be used.

Turbidity

Turbidity is a cloudiness in water caused by suspended material such as sand, silt, clay, or colloidal precipitates of iron or manganese. In most cases, turbidity in water produced from bedrock aquifers is negligible after wells have been developed. Turbidity may be a problem in wells that tap glacial deposits, where casing does not adequately seal water from overlying unconsolidated

Figure 17. Effects of industrial pumping on water levels observed in test hole Co–154 and well Co–310 at Bloomsburg, August 19 to September 9, 1981.

material, or where mud-filled solution zones are present in bedrock. As an example, well Mt-2, completed in the solution-prone Keyser Formation, had to be abandoned because of a recurring problem of suspended clay.

Dewatering of a water-bearing zone may cause a well that normally produces clear water to yield turbid water. The turbidity may be related to the drying and sloughing of clay and oxide coatings along dewatered fractures. Two wells have shown turbidity attributable to dewatering effects. Well Co-157 developed a turbidity problem during a period of low water levels in the early winter of 1980, but the turbidity cleared as water levels rose in February 1981. In well Nu-180, the water level dropped 14 feet during a 48-hour pumping test at a nearby well and turbid water was noticed; the turbidity persisted in well Nu-180 for several days after the pumping test ended.

Domestic wells drilled in glacial outwash commonly use open-ended casing, and fine particulate matter may be suspended in water from some of these wells. The use of well screens and gravel packs tends to prevent turbidity in properly developed wells in glacial outwash.

Figure 18. Temperature logs of selected wells, a composite log based on median values for 26 wells, and the estimated geothermal gradient.

Wells Co-154 and Co-308 in glacial outwash yielded groundwater having a black-colored turbidity. The source of the turbidity is probably particulate coal that enters the slotted casing during pumping. These wells were installed as observation wells and were not developed for water-supply use.

CHEMICAL CHARACTERISTICS

The chemical quality of groundwater in the Berwick-Bloomsburg-Danville area was evaluated on the basis of field determinations of specific conductance and hardness of water from 299 wells and laboratory chemical analyses of water from 139 wells. Field values of specific conductance and hardness are presented in Table 23. Results of the laboratory chemical analyses for major ions, metals, nutrients, and other common parameters are reported in Table 21. Most of the chemical analyses were done by the U.S. Geological Survey Laboratory in Doraville, Georgia, but data from other laboratory sources were used selectively. Additional analyses for selected trace metals and organic compounds were made on water from 18 wells (Table 22). The groundwater-quality data are summarized by aquifer in Tables 18 and 19.

In general, groundwater in the study area is mainly of the calcium bicarbonate type. The calcium bicarbonate water occurs in the glacial-outwash and shallow bedrock aquifers (generally less than 300 feet deep) where there is active circulation of

Table 18. Median Concentrations of Selected Dissolved Constituents in the Aquifers

(Concentrations are in milligrams per liter except where otherwise indicated)

Aquifer																Hardness (CaCO ₃)	ness	
7-11 12 250 475 13 3.8 6.7 1.3 3.0 0.1 0.2 0.01 95 49 26 1 5.7 10 1 1.6 .7 .4 .2 .7 .6 .1 .3 .01 15 .7 .0 19-23 12 220 28 12 4.0 5.4 .6 3.4 6.4 .1 1.9 .01 93 50 12 12-16 11 175 10 14 3.4 5.8 .6 11 7.0 .1 .2 .7 .6 .1 .9 .01 .9 .6 14 .1	Aquifer	Number of samples	Silica (SiO ₂)		(nM) əsənagnaM (J\gu)	Calcium (Ca)	(Magnesium (Mg)	(sN) muibo2	Potassium (K)	Sulfate (SO ₄)	(Chloride (Cl)	(H) (F)			Dissolved solids		Noncarbonate	
1 5.7 10 1 1.6 .7 .4 .2 .7 .6 .1 .3 .01 15 7 0 19-23 12 220 28 12 4.0 5.4 .6 11 7.0 .1 .9 .01 93 50 12 7 16 260 90 3.4 4.7 5.4 .6 1.1 7.0 .1 .2 .0 98 56 14 9.8 3.9 .1 .0 .1 .0 .1 .1 .0 .1 .1 .1 .0 .1 .2 .1 .1 .0 .1 .2 .0 .1 .1 .0 .0 .1 .1 .0 .1 .1 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .0	Glacial outwash	7-11	12	250	475	13	3.8	6.7	1.3	32	5.0	0.1	0.2	0.01	95	49	26	19
19-23 12 220 28 12 4.0 5.4 .6 3.4 6.4 .1 1.9 .01 93 50 12 12-16 11 175 10 14 3.4 5.8 .6 11 7.0 .1 2.4 .02 98 56 14 7 16 260 90 3.4 4.7 5.4 .6 1.4 4.4 .1 .1 .01 63 28 .1 18 14 660 55 24 3.8 8.6 16 4.4 .1 .1 .01 63 28 .1 .1 .01 63 28 .1 .1 .01 144 .1 .1 .01 .1 .1 .01 .1 .1 .01 .1 .1 .1 .01 .1 .1 .01 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	Mauch Chunk Formation	1	5.7	10	_	1.6	7.	4.	.2	7.	9:	Т.	£.	.01	15	7	0	7
12-16 11 175 10 14 3.4 5.8 6 11 7.0 1.1 2.4 0.2 98 56 14 14 14 14 14 14 14 1	Catskill Formation	19-23	12	220	28	12	4.0	5.4	9.	3.4	6.4	-:	1.9	.01	93	20	12	33
7 16 260 90 3.4 4.7 5.4 6 1.4 4.4 1.1 1.1 0.1 63 28 1 8 13 63 35 7.8 50 4.4 5 8.2 3.9 1.1 0.1 63 28 1 18 14 660 55 24 3.8 8.6 .6 16 4.4 .1 1.1 0.1 144 76 7 6-7 16 1,100 180 41 10 12 .9 46 23 .1 .0 144 76 7 3-8 7.3 510 5 56 18 15 2.1 48 20 .1 3.8 .0 30 10 31 34 44 3.8 .0 30 10 34 44 3.8 .0 30 30 30 32 34 3.2 34 3.2 <td< td=""><td>Sherman Creek Member</td><td>12–16</td><td>11</td><td>175</td><td>10</td><td>14</td><td>3.4</td><td>5.8</td><td>9.</td><td>11</td><td>7.0</td><td>т.</td><td>2.4</td><td>.02</td><td>86</td><td>99</td><td>14</td><td>36</td></td<>	Sherman Creek Member	12–16	11	175	10	14	3.4	5.8	9.	11	7.0	т.	2.4	.02	86	99	14	36
8 13 63 35 7.8 50 4.4 .5 8.2 3.9 .1 1.6 .01 78 42 11 18 14 660 55 24 3.8 8.6 .6 16 4.4 .1 .1 .01 144 76 7 6-7 16 1,100 180 41 10 12 .9 46 23 .1 .02 .01 265 160 22 3-8 7.3 510 5 6 18 15 2.1 48 20 .1 .02 .01 25 160 22 8-13 11 110 6 70 20 10 17 20 .1 2.9 .01 30 18 19 18 .1 2.0 .1 .0 .1 .0 .1 .0 .1 .1 .0 .1 .1 .1 .1 .2 <t< td=""><td>Irish Valley Member</td><td>7</td><td>16</td><td>260</td><td>90</td><td>3.4</td><td>4.7</td><td>5.4</td><td>9.</td><td>1.4</td><td>4.4</td><td>Т.</td><td>Т:</td><td>.01</td><td>63</td><td>28</td><td>-</td><td>16</td></t<>	Irish Valley Member	7	16	260	90	3.4	4.7	5.4	9.	1.4	4.4	Т.	Т:	.01	63	28	-	16
18 14 660 55 24 3.8 8.6 .6 16 4.4 .1 .1 .01 144 76 7 6-7 16 1,100 180 41 10 12 .9 46 23 .1 .02 .01 265 160 22 3-8 7.3 510 5 6 18 15 2.1 48 20 .1 3.8 .01 301 185 54 8-13 11 110 6 70 20 10 1.2 78 20 .1 .9 .01 301 185 54 8-12 8.4 25 8 38 12 5.4 37 .7 20 5.2 .1 2.9 .01 196 130 44 10-11 9.6 280 30 22 4.7 5.4 .5 16 9.0 .1 .6 .01 196 125 .7 23 15-17 7.4 85 125 21 <	Trimmers Rock Formation	∞	13	63	35	7.8	20	4.4	5.	8.2	3.9	Τ:	1.6	.01	78	42	11	24
6-7 16 1,100 180 41 10 12 .9 46 23 .1 .02 .01 265 160 22 3-8 7.3 510 5 6 18 15 2.1 48 20 .1 3.8 .01 301 185 54 8-13 11 110 6 70 20 10 1.2 78 20 .1 .9 .01 374 240 102 8-12 8.4 25 8 38 12 5.2 .1 2.9 .01 196 130 44 10-11 9.6 280 30 22 5.4 3.7 .7 20 5.2 .1 2.9 .01 196 130 44 10-11 9.6 28 4.7 5.4 .5 16 9.0 .1 .6 .01 196 130 44 18 15-17 7.4 85 125 21 4.0 .3 1.5 1.1 .0 .01 <td>Harrell and Mahantango Formations</td> <td>18</td> <td>14</td> <td>099</td> <td>55</td> <td>24</td> <td>3.8</td> <td>9.8</td> <td>9:</td> <td>16</td> <td>4.4</td> <td>Γ.</td> <td>Т.</td> <td>.01</td> <td>144</td> <td>9/</td> <td>7</td> <td>99</td>	Harrell and Mahantango Formations	18	14	099	55	24	3.8	9.8	9:	16	4.4	Γ.	Т.	.01	144	9/	7	99
tions 3-8 7.3 510 5 56 18 15 2.1 48 20 .1 3.8 .01 301 185 54 ons 8-13 11 110 6 70 20 10 1.2 78 20 .1 .9 .01 374 240 102 nons 8-12 8.4 25 8.4 25 .1 2.9 .01 374 240 102 10-11 9.6 280 30 22 5.4 3.7 .7 20 5.2 .1 2.9 .01 196 130 44 10-11 9.6 28 12 5.4 3.7 .7 20 5.2 .1 2.2 .09 135 .7 23 10-11 7.4 85 125 21 4.2 4.0 .3 1.2 4.1 .2 .04 .01 .0 .0 .0 .0 <td>Marcellus Formation</td> <td>2-9</td> <td>16</td> <td>1,100</td> <td>180</td> <td>41</td> <td>10</td> <td>12</td> <td>6.</td> <td>46</td> <td>23</td> <td>т.</td> <td>.00</td> <td>.01</td> <td>265</td> <td>160</td> <td>22</td> <td>130</td>	Marcellus Formation	2-9	16	1,100	180	41	10	12	6.	46	23	т.	.00	.01	265	160	22	130
3018 8-13 11 110 6 70 20 10 1.2 78 20 .1 .9 .1 .9 .01 374 240 102 8-12 8.4 25 8 38 12 5.3 .6 19 18 .1 2.9 .01 196 130 44 10-11 9.6 280 30 22 5.4 3.7 .7 20 5.2 .1 2.9 .01 196 130 44 ions 7 8.1 37 38 22 4.7 5.4 .5 16 9.0 .1 .6 .01 135 77 23 ions 15-17 7.4 85 125 21 9.9 2.5 .6 8.9 1.6 .2 .08 .01 100 91 8.0 4-5 9.5 28 7 21 4.0 .3 1.5 .2 .04 .01 90 84 18 11-12 7.0 360 160 17 10 1 10 9 1 - - -	Onondaga and Old Port Formations	3-8	7.3	510	5	99	18	15	2.1	48	20	Τ.	3.8	.01	301	185	54	118
8-12 8.4 25 8 38 12 5.3 .6 19 18 .1 2.9 .01 196 130 44 10-11 9.6 280 30 22 5.4 3.7 .7 20 5.2 .1 2.2 .9 .01 196 130 44 10-11 9.6 280 30 22 6.4 3.7 .7 20 5.2 .1 2.2 .9 .01 2.2 .9 125 77 23 15-17 7.4 85 125 21 9.9 2.5 .6 8.9 1.6 .2 .08 .01 100 91 8.0 4-5 9.5 28 7 21 4.2 4.0 .3 12 4.1 .2 .04 .01 90 84 18 11-12 7.0 360 160 17 10 1.3 .8 6.3 1.5 .2 .1 .01 100 91 7 - 300 50 - 250 - 250 25 0 1.7 10 - 500 - 500	Keyser and Tonoloway Formations	8-13	11	110	9	70	20	10	1.2	78	20	Т:	6:	.01	374	240	102	140
10-11 9.6 280 30 22 5.4 3.7 .7 20 5.2 .1 2.2 .7 23 ions 7 8.1 37 38 22 4.7 5.4 .5 16 9.0 .1 .6 .01 135 79 19 15-17 7.4 85 125 21 9.9 2.5 .6 8.9 1.6 .2 .08 .01 100 91 8.0 4-5 9.5 28 7 21 4.2 4.0 .3 12 4.1 .2 .04 .01 90 84 18 11-12 7.0 360 160 17 10 1.3 .8 6.3 1.5 .2 .04 .01 90 84 18 11-12 7.0 360 160 17 10 1.3 .8 6.3 1.5 .1 .01 100 91 7	Wills Creek Formation	8-12	8.4	25	∞	38	12	5.3	9.	19	18	Τ.	2.9	.01	196	130	44	108
ions 7 8.1 37 38 22 4.7 5.4 5 16 9.0 1 6 .01 135 79 19 15-17 7.4 85 125 21 9.9 2.5 6 8.9 1.6 2 08 .01 100 91 8.0 4-5 9.5 28 7 21 4.2 4.0 3 12 4.1 2 0.0	Bloomsburg Formation	10-11	9.6	280	30	22	5.4	3.7	7.	20	5.2	Τ.	2.2	60.	125	77	23	43
15-17 7.4 85 125 21 9.9 2.5 .6 8.9 1.6 .2 .08 .01 100 91 8.0 4-5 9.5 28 7 21 4.2 4.0 .3 12 4.1 .2 .04 .01 90 84 18 11-12 7.0 360 160 17 10 1.3 .8 6.3 1.5 .2 .1 .01 100 91 7 - 300 50 - - 250 250 1.7 10 - 500 - -	Mifflintown and Keefer Formations	7	8.1	37	38	22	4.7	5.4	5.	16	9.0	Т:	9:	.01	135	4	19	84
4-5 9.5 28 7 21 4.2 4.0 .3 12 4.1 .2 .04 .01 90 84 18 11-12 7.0 360 160 17 10 1.3 .8 6.3 1.5 .2 .1 .01 100 91 7 - 300 50 - - 250 250 1.7 10 - 500 - -	Rose Hill Formation	15-17	7.4	85	125	21	6.6	2.5	9:	8.9	1.6	2:	80.	.01	100	91	8.0	81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Upper member	4-5	9.5	28	7	21	4.2	4.0	ε.	12	4.1	7:	.04	.01	90	84	18	75
- 300 50 - 250 - 250 250 1.7 10 -	Middle and lower members	11-12	7.0	360	160	17	10	1.3	8.	6.3	1.5	.2	-:	.01	100	91	7	93
(U.S. Environmental Protection Agency, 1976a, b)	Recommended limit		1	300	50	I	1	250	I	250	250	1.7	10		200	Į	I	I
Agency, 1976a, b)	(U.S. Environmental Protection																	
	Agency, 1976a, b)																	

Table 19. Summary of Field Measurements of Specific Conductance and Total Hardness in the Aquifers

		pecific co µmho/cm	nductance at 25°C)				hardness as CaCO ₃)	
Aquifer	Number of samples	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Number of samples	75 Percent ¹	50 Percent ¹ (median)	25 Percent
Sand and gravel								
Glacial outwash	13	98	142	291	10	34	50	58
Sandstone and shale	102	77	111	161	96	34	34	51
Mauch Chunk Formation	. 2		20		2	_	17	_
Catskill Formation	68	70	100	156	57	34	34	51
Duncannon Member	1	_	60		1	_	17	_
Sherman Creek Membe	er 34	65	102	179	33	34	51	68
Irish Valley Member	33	82	100	149	33	34	34	51
Trimmers Rock Formation	on 32	103	133	176	27	34	51	51
Devonian shale	94	224	320	400	91	86	120	154
Harrell and Mahantango Formations	68	219	300	377	66	86	120	154
Marcellus Formation	26	299	366	452	25	77	137	162
Carbonate rock and shale	30	218	338	531	26	137	176	263
Onondaga and Old Port Formations	17	207	347	675	14	162	214	330
Wills Creek Formation	13	238	320	465	12	136	154	180
Carbonate rock Keyser and Tonoloway Formations	21	360	408	668	20	158	202	280
Silurian shale Bloomsburg Formation	10	131	205	405	7	51	86	103
Sandstone, limestone, and								
shale	29	147	180	225	29	60	86	103
Mifflintown and Keefer Formations	9	147	200	270	9	51	103	103
Rose Hill Formation	20	146	175	219	20	68	77	86
Upper member	7	145	200	230	7	68	68	86
Middle and lower members	13	140	70	210	13	60	86	95

Percentage of samples in which field measurement value was equaled or exceeded.

groundwater. A few wells completed in bedrock zones where groundwater does not actively circulate may tap water of the sodium chloride type. Only two of these "salt wells" (Co-471 and Co-382) were inventoried in the study area, and the problem of saline water in shallow aquifers is not widespread in this area of Pennsylvania. Sodium sulfate water was present in one well (Co-190) in the Marcellus Formation, and calcium sulfate water was present in two wells (Mt-31 and Nu-189) in the Keyser and Tonoloway Formations.

Most groundwater tapped by wells is acceptable for domestic supply and human consumption,

although hardness, iron and manganese, and hydrogen sulfide gas in excess of recommended limits cause problems locally. These water-quality problems are generally associated with certain bedrock units. Hardess of groundwater, caused primarily by dissolved calcium and magnesium, causes "scale" encrustation in pipes and boilers, and poor lathering of soap products. Iron and manganese may impart a bitter taste to water and cause staining of plumbing fixtures and laundry. Hydrogen sulfide gas commonly is present in groundwater from dark-shale aquifers, such as the Harrell, Mahantango, or Marcellus Formations.

The gas imparts a disagreeable (rotten egg) odor when it effervesces from tap water. In the following sections, these dissolved constituents and others that affect the quality of groundwater in the Berwick-Bloomsburg-Danville area are discussed.

Dissolved Solids and Specific Conductance

The concentration of dissolved solids typically is used as a criterion of water quality and for comparison of water from different hydrogeologic settings. In groundwater that is not affected significantly by man's activities, the concentration of dissolved solids in groundwater, and the corresponding specific conductance, is governed chiefly by the composition of the rock material through which the water passes and by the length of time the water is in contact with this material. Some of the dissolved solids in groundwater, however, are derived initially from atmospheric precipitation. Wood (1980) estimated that precipitation that has been concentrated by evaporation and transpiration may account for about 35 mg/L of the total dissolved solids reaching the groundwater system. Man's activities, such as application of fertilizers and pesticides, waste disposal in landfill and sewage systems, de-icing of highways using salts, and accidental spills of chemical compounds, may affect the type and increase the amount of dissolved solids in groundwater.

Specific conductance is a measure of the electrical conductivity of an aqueous solution at a given temperature, and results are reported in micromhos per centimeter (μ mho/cm) at 25 °C. Because the conductivity of water is directly related to concentrations of certain dissolved constituents in a sample, specific conductance (which is easily measured in the field) commonly is used as a measure of dissolved-solids concentration.

Total dissolved solids, in milligrams per liter, of a sample of groundwater in the Berwick-Bloomsburg-Danville area can be estimated by multiplying the field value of specific conductance in micromhos per centimeter by 0.63. This equivalence factor was developed from data obtained from all aquifers in the area. It agrees with results from other areas in Pennsylvania (Johnson, 1970; Carswell and Lloyd, 1979; Becher and Root, 1981). The relationship between dissolved solids and specific conductance varies from this value for individual geologic units. The differences are due in part to the varying effects on specific conductance

of the different dissolved constituents derived from the geologic units.

The highest median dissolved-solids concentrations and specific conductances were observed in groundwater from the Harrell-to-Wills Creek stratigraphic sequence (Tables 18 and 19). Water from the carbonate-rock aquifer, the Keyser and Tonoloway Formations, has the highest median dissolved-solids concentration (374 mg/L) and specific conductance (408 μ mho/cm). In general, the dissolved-solids concentration increases as the carbonate content increases in an aquifer. In the calcium bicarbonate groundwater common in most of the Berwick-Bloomsburg-Danville area, calcium and magnesium make up most of the dissolved solids, although sodium, chloride, and sulfate also may contribute.

The maximum recommended limit for total dissolved solids in drinking water is 500 mg/L (U.S. Environmental Protection Agency, 1976a). The equivalent of this level for specific conductance is about $860 \, \mu \text{mho/cm}$. Nine wells (3 percent of total wells) had dissolved-solids concentrations or specific conductances greater than the recommended limit. The high level of dissolved solids in these wells generally is due to excessive sodium chloride, calcium sulfate, or sodium sulfate in bedrock zones where groundwater does not actively circulate.

Hardness

The hardness of water depends chiefly upon the concentrations of calcium and magnesium in solution. As a result, aquifers containing soluble carbonate rock generally show the greatest hardness. Water having excess hardness causes scale incrustation in pipes and boilers, requires more soap for lathering, and readily leaves a curd deposit on bathtubs and wash basins.

Total hardness may be expressed as milligrams per liter of CaCO₃. Ranges of hardness are expressed in the following descriptive terms (Hem, 1970):

Soft 0-60 mg/LModerately hard 61-120 mg/LHard 121-180 mg/LVery hard >180 mg/L

Hardness increases as the carbonate content increases in an aquifer, as shown in Figure 19. Groundwater from glacial-outwash and Mississip-

Figure 19. Cumulative percentages of hardness for the Keyser and Tonoloway Formations, Harrell and Mahantango Formations, and Catskill Formation.

pian and Devonian sandstone and shale aquifers, such as the Mauch Chunk, Catskill, and Trimmers Rock Formations, generally is soft, whereas groundwater from aquifers containing shales that are locally calcareous, such as the Harrell, Mahantango, and Bloomsburg Formations, is moderately hard. The carbonate rocks of the Keyser and Tonoloway Formations commonly yield very hard water.

The U.S. Environmental Protection Agency does not specify drinking-water standards for total hardness, but the American Water Works Association (Bean, 1962) suggests that water should not contain more than 80 mg/L of hardness. Fifty-three percent of the field measurements for hardness (Table 23) exceeded the suggested limit. Water conditioners installed in plumbing systems reduce hardness to more acceptable levels by replacing calcium

and magnesium ions in solution with sodium ions, but those people who must reduce their dietary intake of sodium should be aware of this.

Iron and Manganese

Iron and manganese commonly are found in low concentrations in groundwater, but these metals may constitute an objectionable impurity even at low concentrations. Recommended limits for iron (300 μ g/L [micrograms per liter]) and for manganese (50 μ g/L) have been established by the U.S. Environmental Protection Agency (1976a) because an excess of either metal may cause a bitter taste and staining on laundry and plumbing fixtures. Natural sources of iron and manganese are sulfides, oxides, and hydroxides common in most rocks and soils. Slightly acidic, poorly buffered groundwater

may dissolve up to 5,000 μ g/L of iron (Hem, 1970). As water pressure is lowered during withdrawal of groundwater from an aquifer and the water is exposed to air, ferrous iron in solution oxidizes and precipitates as reddish-brown ferric iron. This precipitate may stain or even clog pumps, pipes, and plumbing fixtures. Manganese precipitation leaves a black stain and also may clog pumps and plumbing systems. Concentrations of less than 1,000 μ g/L iron or 300 μ g/L manganese may be effectively treated by filters attached to the plumbing systems.

Concentrations of iron greater than the recommended limit may be found in groundwater from any aquifer in the Berwick-Bloomsburg-Danville area. Dissolved iron exceeded 300 µg/L in 46 percent of water samples. The problem of iron is most noticeable in the Devonian shales of the Harrell, Mahantango, and Marcellus Formations, from which 17 of the 25 samples exceeded the recommended limit. The median concentration of iron was 660 µg/L in the Harrell and Mahantango Formations and 1,100 µg/L in the Marcellus Formation. The highest concentration of iron was observed in the Harrell and Mahantango Formations in well Co-60 (2,900 μ g/L). Iron concentrations greater than 1,000 μ g/L also were observed in groundwater from glacial outwash, and from the Marcellus, Onondaga, and Old Port Formations.

Excessive concentration of manganese is also a problem in many aquifers. About 40 percent of the water samples exceeded the recommended limit for manganese. Groundwater from glacial outwash had the highest median concentration of manganese (600 μ g/L) and the highest individual concentration (8,100 μ g/L) in well Co-308. Fourteen of 17 samples from the Marcellus Formation and the middle and lower members of the Rose Hill Formation contained manganese in excess of the recommended limit.

Nitrate

Nitrate typically is the principal form of nitrogen in groundwater, but nitrite or ammonium may be present in reducing environments where dissolved oxygen has been depleted from the groundwater. Sources of nitrate generally are associated with biological material. This includes fecal waste from stock animals and humans, and nitrate produced in soils and leguminous plants by nitrification of atmospheric nitrogen. Fertilizers and decaying mulch also supply nitrate. In general, excess nitrate in soils dissolves with infiltrating water and reaches

the groundwater system primarily during recharge events.

The maximum recommended concentration of nitrate in drinking water is 10 mg/L, expressed as nitrogen (U.S. Environmental Protection Agency, 1976a). Nitrate levels higher than this may cause methemoglobinemia in infants, and families using springs, dug wells, or inadequately cased drilled wells near on-lot septic systems or other sources of nitrates should be aware of potential problems with their water.

Median nitrate concentrations for the geologic units are less than 1 mg/L, except for the Bloomsburg, Catskill, Trimmers Rock, Old Port and Onondaga, and Wills Creek Formations. The elevated median concentrations may be traced to agricultural fertilizers and rural septic systems in these areas. Only one well sampled, Co-188, contained nitrate (17 mg/L as N) in excess of the recommended limit, and failure of the on-lot septic system at this site is the suspected cause.

Chloride

Primary sources of chloride in groundwater in the study area are evaporite deposits and connate brines, and contamination by de-icing salts, septic and sewage systems, and solid-waste disposal. The highest median concentrations of dissolved chloride were observed in the groundwater from the Marcellus-to-Wills Creek stratigraphic sequence. The concentrations in these formations probably reflect the lithologic presence of chloride in this stratigraphic sequence, although man-made contamination may affect concentrations in some wells.

The recommended limit for chloride in drinking water is 250 mg/L (U.S. Environmental Protection Agency, 1976b), primarily for reasons of taste. One well (Lu-471) tapped saline water in the Mahantango Formation that contained 1,500 mg/L of chloride. Another well in the Marcellus Formation, Co-382, contained water with 1,300 mg/L of chloride. Both of these wells are deeper than 300 feet, are located in valleys, and tap saline water from shales of low permeability. The saline water from deep zones in the valleys probably represents connate water that has been diluted but not flushed completely in areas of restricted groundwater circulation. Although the potential exists for saline water in deep wells in valleys underlain by shale, the problem does not appear to be widespread in the study area.

Sulfate

Solution of evaporite deposits (for example, gypsum) and oxidation of pyrite (FeS₂) and other sulfides are the most common sources of sulfate in the study area, although industrial and municipal wastes also may introduce sulfate to groundwater. The highest median concentrations of sulfate were observed in groundwater from the Marcellus, Onondaga and Old Port, and Keyser and Tonoloway Formations. Groundwater from four wells contained sulfate concentrations that exceeded the recommended limit of 250 mg/L (U.S. Environmental Protection Agency, 1976a) for drinking water; these wells were Co-307 (Tonoloway and Wills Creek Formations), Mt-31 (Keyser Formation), Nu-189 (Tonoloway Formation), and Co-190 (Marcellus Formation). Man-made contamination is suspected in well Co-190.

The upper part of the Silurian stratigraphic sequence contains evaporite deposits. As exemplified by wells Co-307 and Mt-31, wells drilled in valley-discharge areas that penetrate the Keyser-to-Wills Creek sequence at depth may produce groundwater having relatively high sulfate concentrations. In general, however, the shallow flow system in this gypsum-bearing sequence has been flushed of sulfate by active circulation of groundwater. Well Nu-189, which is only 120 feet deep and produced water having a sulfate concentration of 1,300 mg/L, is an exception to this generalization.

Hydrogen Sulfide

Hydrogen sulfide is a gas formed from decomposition of organic matter and sulfide or sulfate minerals in an acidic reducing environment. The rotten egg odor of hydrogen sulfide is distinctive and can be detected in water containing concentrations less than 0.5 mg/L (Hem, 1970). Hydrogen sulfide concentrations may be reduced to less objectionable levels by aeration or chemical treatment.

Hydrogen sulfide was detected in 58 of 651 wells, or in about 9 percent of the wells. It was observed most commonly in wells in Devonian shale aquifers (Table 20), such as the Harrell, Mahantango, and Marcellus Formations. Williams (1980) noted that about 28 percent of wells in the Devonian shale in the Danville area contained hydrogen sulfide. Hydrogen sulfide was detected in two wells, Co-154 and Co-308, drilled in glacial outwash. In both of these wells, the dissolved gas may come from upward flow of groundwater and gas into the glacial outwash from underlying Devonian shale bedrock.

Table 20. Occurrence of Hydrogen Sulfide in the Aquifers

Aquifer	Number of wells containing H ₂ S	Number of wells inventoried	Percent occurrence
Glacial outwash	2	20	10
Mauch Chunk Formation	0	3	0
Pocono Formation	0	0	
Catskill Formation	1	122	.8
Trimmers Rock Formation	11	82	13
Harrell and Mahantango Formations	26	157	17
Marcellus Formation	10	48	21
Onondaga and Old Port Formations	5	50	10
Keyser and Tonoloway Formations	1	45	2.2
Wills Creek Formation	1	5.5	1.8
Bloomsburg Formation	1	26	3.8
Mifflintown and Keefer Formations	0	12	0
Rose Hill Formation	0	31	0
Total	58	651	8.9

Trace Elements

Elements that typically are present in groundwater at concentrations of less than 1.0 mg/L commonly are called trace elements (Hem, 1970). Results of 18 analyses for selected trace elements in the groundwater of Columbia and Luzerne Counties are in Table 22. Many of the wells were selected for analyses because contamination was suspected, and the results may not represent widespread water-quality characteristics of the aguifers. The analyses show that concentrations of analyzed trace elements, except for concentrations in test hole Co-154, are lower than the recommended limits for drinking water set by the U.S. Environmental Protection Agency (1976a, 1976b). The concentration of nickel in test hole Co-154 was 16,000 µg/L, which may indicate local contamination caused by nearby waste disposal.

Petroleum Products

Spills or leaks of gasoline and other petroleum products can seriously degrade groundwater quality. The solubility of gasoline in water is about 50 mg/L (McKee and others, 1972), but an odor and taste threshold exists at about 0.005 mg/L (Matis, 1971). Petroleum products readily absorb to soil particles, particularly in the unsaturated zone, and slow release of the fuel to infiltrating water may

preclude use of groundwater in an affected area for an extended period of time. The odor of a petroleum product was detected in two isolated wells in the study area, well Co-60 at Millville and well Co-310 at Bloomsburg. The source or cause of contamination was not determined for either well.

SUMMARY DESCRIPTION OF THE AQUIFERS

GLACIAL OUTWASH

Stratified deposits of glacial-outwash sand and gravel are present in the Susquehanna River and Fishing Creek valleys. The thickest, most areally extensive saturated sand and gravel deposits are found along the Susquehanna River upstream from Mifflinville and along Fishing Creek above Orangeville.

The median estimated well yield for the glacialoutwash aquifer is 190 gal/min. About one of every four wells is capable of yielding 410 gal/min or more. Where the outwash aquifer is tapped for high yields, well screens and natural or artificial gravel packs are used. Drilling problems associated with the outwash deposits include the loss of air circulation when using air-rotary equipment, isolated boulders deflecting drilling bits, and flowing sand, silt, and clay filling the well bore.

Water from the glacial-outwash aquifer generally is soft and has very low to moderate concentrations of dissolved solids. The median dissolved solids concentration is 95 mg/L. Manganese concentrations in excess of the recommended limit are a common problem. Wells that are without screens or are improperly developed may produce water containing suspended sediment.

MAUCH CHUNK FORMATION

The Mauch Chunk Formation consists of interbedded grayish-red shale, siltstone, and sandstone, and is in part calcareous. It crops out only in the northeastern and southeastern corners of the study area, and little information is available on the water-yielding and water-quality characteristics of the aquifer. Reported yields for two domestic wells, 150 and 200 feet deep, that are located in valleys are 10 and 20 gal/min, respectively. Water-quality data from two wells indicate that the aquifer yields

soft water having very low concentrations of dissolved solids.

POCONO FORMATION

The Pocono Formation, which consists of white to light-gray quartzitic sandstone and conglomerate and some interbeds of dark-gray shale, forms the crest of Knob, Lee, and Catawissa Mountains. No information is available on the water-yielding and water-quality characteristics of the Pocono Formation, but its upland setting suggests that wells completed in the aquifer would be deep and low yielding. The aquifer probably yields soft water having a low concentration of dissolved solids.

CATSKILL FORMATION

The Catskill Formation consists of interbedded shale, siltstone, and sandstone that form a broad, dissected highland. The formation is divided into the Duncannon, Sherman Creek, and Irish Valley Members.

Only limited information on the water-yielding and water-quality characteristics of the Duncannon Member is available. An 85-foot-deep well reportedly yielded 30 gal/min of soft water having a very low concentration of dissolved solids.

The median estimated well yield for the Sherman Creek Member is 11 gal/min. About one of every four wells drilled in the Sherman Creek Member is capable of yielding 50 gal/min or more. The median depth of domestic wells is 125 feet. About one of every four domestic wells requires 60 feet of casing or more, because thick glacial deposits overlie much of the outcrop area at the base of Knob and Lee Mountains. The aquifer generally yields soft to moderately hard water having a very low to low concentration of dissolved solids. The median dissolved-solids concentration is 98 mg/L.

The median estimated well yield for the Irish Valley Member, based on only two pump-tested wells, is 11 gal/min. The median depth of domestic wells is 130 feet, and about three of every four domestic wells are 165 feet deep or less. The aquifer generally yields soft water that has very low to low concentrations of dissolved solids. The median dissolved-solids concentration is 63 mg/L.

The maximum interference observed between wells in the Catskill Formation occurred during a 48-hour test, in which the pumping of a well at 55

gal/min caused 74 feet of drawdown in a well located 350 feet away.

TRIMMERS ROCK FORMATION

The Trimmers Rock Formation consists of interbedded gray to dark-gray siltstone and shale, with sandstone in the upper part. It has a median estimated well yield of 5 gal/min. The aquifer underlies a wide range of topographic settings, and well yields vary accordingly. About one of every four domestic wells is more than 275 feet deep. The median depth of casing for domestic wells completed in the aquifer is 22 feet. Water from the aquifer generally yields soft water having a low dissolved-solids concentration. The median dissolved-solids concentration is 78 mg/L. Hydrogen sulfide is a common problem in water from the lower part of the aquifer, where dark-gray shale is abundant.

HARRELL AND MAHANTANGO FORMATIONS

The Harrell Formation consists of dark-gray shale. Interbeds of siltstone are present in the upper part. The Mahantango Formation is composed of greenish-gray to dark-gray shale, which is locally calcareous.

The median estimated well yield for the Harrell and Mahantango Formations is 7 gal/min. About one of every four wells completed in the aquifer is capable of yielding 22 gal/min or more. About three of every four domestic wells are 175 feet deep or less and have less than 40 feet of casing.

The aquifer generally yields moderately hard to hard water that has moderate amounts of dissolved solids. The median concentration of dissolved solids is 144 mg/L. Excessive iron and manganese are common water-quality problems. About 17 percent of wells completed in the aquifer yield water containing hydrogen sulfide. One 470-foot-deep domestic well yielded saline water having a chloride concentration of 1,500 mg/L.

The maximum interference between wells observed in the aquifer occurred during a 40-hour test in which the pumping of one well at 60 gal/min caused 14 feet of drawdown in another well located 787 feet away.

MARCELLUS FORMATION

The Marcellus Formation consists of dark-gray fissile shale. The median estimated well yield for the aquifer is 8 gal/min. About one of every four wells completed in the Marcellus Formation is capable of yielding 23 gal/min or more. The median well and casing depths for domestic wells are 87 feet and 30 feet, respectively.

The Marcellus Formation generally yields the poorest quality water of all aquifers in the study area. It contains moderately hard to hard water that has moderate to high concentrations of dissolved solids. The median concentration of dissolved solids is 265 mg/L. High concentrations of iron and manganese are a common water-quality problem. Hydrogen sulfide was found to be a problem in about 21 percent of the wells in the Marcellus Formation. A 320-foot-deep domestic well produced saline water having a chloride concentration of 1,300 mg/L.

ONONDAGA AND OLD PORT FORMATIONS

The Onondaga Formation is composed of interbedded gray to dark-gray calcareous shale and gray argillaceous limestone. The Old Port Formation consists of interbedded dark-gray chert, calcareous shale, and limestone. Friable sandstone is present locally in the upper part of the Old Port Formation.

The median estimated yield of the Onondaga and Old Port Formations is 91 gal/min. About one of every four wells drilled in the aquifer will potentially yield 310 gal/min or more. About three of every four domestic wells are less than 157 feet deep. The median depth of casing for domestic wells is 35 feet, although one well that penetrated friable sandstone at depth required 76 feet of casing to prevent the well from filling with sand.

In one example, individual water-bearing solution zones developed along two calcareous chert beds in the Old Port Formation were penetrated by wells over a distance of 2,000 feet. High-yield wells that tap such common zones will show significant well interference.

The Old Port and Onondaga Formations generally yield hard to very hard water having moderate to very high concentrations of dissolved solids. The median dissolved-solids concentration is 301 mg/L.

Water-quality problems caused by hydrogen sulfide and excessive iron and manganese concentrations occur locally.

KEYSER AND TONOLOWAY FORMATIONS

The Keyser Formation is composed of gray to bluish-gray, thin- to thick-bedded limestone. The limestone is, in part, argillaceous and dolomitic. The Tonoloway Formation consists of laminated, gray to dark-gray limestone; dolostone occurs in the lower part. These two formations are the primary carbonate-rock aquifer in the study area.

The median estimated well yield for the Keyser and Tonoloway Formations is 180 gal/min. About one of every four wells completed in the carbonaterock aquifer will potentially yield 620 gal/min or more. Deep water levels and significant thicknesses of weathered rock are associated with the aquifer. As a result, about one of every four domestic wells is more than 210 feet deep and requires 100 feet, or more, of casing. Wells that penetrate mud-filled solution zones that are not cased off may produce turbid water.

During a multiple-well pumping test lasting 72 hours in the carbonate-rock aquifer, a well pumped at 200 gal/min caused 20 feet of drawdown in an observation well located 182 feet away. Twenty-six feet of drawdown was observed in the pumping well. In another example of well interference in the aquifer, pumping during the summer months from a high-production well field caused significant drawdown (about 5 feet) in a well located 2,500 feet away.

The Keyser and Tonoloway Formations generally yield hard to very hard water that has moderate to high concentrations of dissolved solids. The median dissolved-solids concentration of 374 mg/L is the highest of all of the aquifers. The highest median sulfate concentration, 78 mg/L, was also observed in water from the carbonate-rock aquifer, and water from three wells exceeded the recommended limit for sulfate. High concentrations of sulfate are most common in water from deep wells drilled in valley discharge areas of the carbonate-rock aquifer.

WILLS CREEK FORMATION

The Wills Creek Formation is composed of interbedded calcareous shale, argillaceous dolostone and limestone, and calcareous siltstone. The formation is gray, yellowish gray, and greenish gray in the upper part and variegated greenish gray, yellowish gray, and grayish red purple in the lower part. The median estimated well yield for the Wills Creek Formation is 99 gal/min. About one of every four wells completed in the aquifer is capable of yielding 130 gal/min or more. Domestic wells have a median depth of 98 feet. About one of every four domestic wells completed in the aquifer requires 71 feet or more of casing because of significant thicknesses of weathered bedrock.

The Wills Creek Formation generally yields hard to very hard water that has moderate to high concentrations of dissolved solids. The median dissolved-solids concentration for the aquifer is 196 mg/L.

BLOOMSBURG FORMATION

The Bloomsburg Formation consists of grayishred shale containing interbeds of siltstone. The median estimated well yield for the aquifer is 6 gal/min. About one of every four domestic wells is 211 or more feet deep, and about three of every four domestic wells have 30 feet or less of casing.

The Bloomsburg Formation generally yields soft to moderately hard water having moderate to high concentrations of dissolved solids. The median dissolved-solids concentration is 125 mg/L. In general, the water quality of the aquifer is good, and concentrations of dissolved constituents in excess of recommended limits are uncommon.

MIFFLINTOWN, KEEFER, AND ROSE HILL FORMATIONS

The Mifflintown Formation consists mostly of dark-gray calcareous shale and limestone. The Keefer Formation is composed of light-gray quartz-itic sandstone and siltstone containing interbeds of greenish-gray shale. The Rose Hill Formation is divided into three members. The upper member consists of mostly gray to greenish-gray, interbedded shale, limestone, and sandstone; the middle member consists of reddish-purple sandstone containing interbeds of greenish-gray to reddish-purple shale in the upper part; and the lower member consists of greenish-gray shale containing interbeds of gray calcareous sandstone and reddish-brown hematitic sandstone.

The median estimated well yield for the Mifflintown, Keefer, and Rose Hill Formations is 10 gal/min. About one of every four wells completed

in the aquifer is capable of yielding 56 gal/min or more. The aquifer underlies a wide range of topographic settings, and well yields vary accordingly. Specific-capacity data suggest that valley wells drilled in the aquifer are about 10 and 20 times more productive than wells drilled on slopes and hilltops, respectively. In general, deep domestic wells are drilled in upland areas because of significant depths to water-bearing zones. About one of every four domestic wells in the aquifer is 223 feet deep or more.

During the 1800's, deep mining of iron ore in the uppermost Rose Hill Formation occurred in areas along the flanks of the ridge between Danville and Bloomsburg. Now abandoned, these deep mines serve as effective drains that dewater overlying rocks in the Mifflintown and Keefer Formations. Deep wells that are cased below the mines may be required in this setting. It is possible that flooded deep mines could provide significant quantities of good-quality water.

In the Mifflintown, Keefer, and Rose Hill Formations the median depth of casing in domestic wells is 40 feet. However, four domestic wells that penetrated iron ore mines at depth required 70 to 121 feet of casing.

During a multiple-well test lasting 4 hours in the Rose Hill Formation, allowing a well to flow at 75 gal/min caused 40 feet of drawdown in a well located 460 feet away. Interference between wells also was reported during the pumping of a municipal well field. Significant drawdown occurred in domestic wells up to 700 feet away.

The Mifflintown, Keefer, and Rose Hill Formations generally yield moderately hard water having low to moderate concentrations of dissolved solids. Median dissolved-solids concentrations are as follows: Mifflintown and Keefer Formations, 135 mg/L; upper member of the Rose Hill Formation, 90 mg/L; and middle and lower members of the Rose Hill Formation, 100 mg/L. Iron and manganese concentrations that exceed recommended limits are common problems in the middle and lower members of the Rose Hill Formation.

TUSCARORA FORMATION

The Tuscarora Formation consists of interbedded light-gray quartzitic sandstone and grayishgreen shale. No information is available on the groundwater resources of the Tuscarora Formation, but its upland setting suggests that wells completed in the aquifer will be deep and low yielding. The aquifer probably yields soft water having a low dissolved-solids concentration.

SUMMARY AND CONCLUSIONS

The Berwick-Bloomsburg-Danville area annually receives an average of 40 inches of precipitation, about one fourth of which recharges the groundwater system. Groundwater is contained in unconsolidated glacial deposits and the underlying bedrock, and it flows from areas of greater altitude to points of discharge (springs and streams) under the gravitational influence of hydraulic-head gradients. In 1980, about 4.7 Mgal/d of water was obtained from wells and springs by the major groundwater users in the study area.

The most important unconsolidated-rock aquifer is the glacial-outwash deposits found along the Susquehanna River and Fishing Creek. The sand and gravel deposits of the glacial-outwash aquifer are highly permeable and have significant storage capabilities. Locally, up to 50 to 70 feet of saturated outwash is present in the Susquehanna River and Fishing Creek valleys.

The bedrock aquifers are gradational sequences of sandstone, shale, and carbonate rock. Groundwater in the bedrock aquifers moves along secondary permeability features, such as fractures and bedding-plane separations. The size of secondary openings in carbonate rocks can be greatly enlarged by removal of calcareous material. The most significant amount of carbonate rock is found in the Wills Creek-to-Onondaga stratigraphic sequence. Within this sequence, the carbonate rock of the Keyser and Tonoloway Formations forms the most favorable bedrock aquifer for obtaining high-yield wells.

The yield of a well depends largely on the size and number of water-bearing zones that it penetrates. The size and number of water-bearing zones decreases with increasing depth, although high yields may occur from deep water-bearing zones in aquifers containing carbonate beds.

Lithology is a major factor controlling well yields. Carbonate-rock and interbedded carbonate-rock and shale aquifers have median specific capacities more than 10 times greater than shale and interbedded sandstone and shale aquifers. Wells completed in sand and gravel of the glacial-outwash aquifer may have the highest specific capacities.

Topography is another significant factor that affects well yields. The median specific capacities for wells in valleys is from 3 to 24 times greater than the medians for wells on hilltops. Wells on slopes

have specific capacities between those for wells in valley and hilltop settings.

The specific capacity of a well decreases with increasing pumping rate and duration of pumping. Doubling of the pumping rate in selected wells caused a 24 to 67 percent reduction in specific capacity. The median reduction for wells in which the pumping water level fell below a water-bearing zone or zones was 59 percent. The median reduction for wells in which aquifer and well losses were the only factors was 38 percent. The reduction of specific capacity after 24 hours of continuous pumping as compared to 1-hour values in selected wells ranged from 17 to 90 percent, and the median decrease was 38 percent. On the average, about two thirds of the decrease in specific capacities occurred after 8 hours of pumping.

The bedrock aquifers have a strong directional permeability along bedding strike. During multiple-well pumping tests in the bedrock aquifers, significant interference was observed only between wells that tapped at least part of the same stratigraphic interval. Interference between wells that are competing for the same water increases the drawdown in each well and will reduce the available specific capacity of each well. The degree of interference is largely dependent on the hydraulic connection between the water-bearing zones that the wells mutually tap.

The groundwater in the Berwick-Bloomsburg-Danville area is chiefly of the calcium bicarbonate type, and most water tapped by wells is acceptable for domestic supply and human consumption. Concentrations of hardness, iron, and manganese that exceed recommended limits, however, may cause some problems in certain aquifers. Hardness in water, caused principally by dissolved calcium and magnesium, is chiefly a problem in aquifers containing carbonate rock. Accordingly, the carbonate rocks of the Keyser and Tonoloway Formations generally yield very hard water, whereas water from shales that are locally calcareous, such as in the Mahantango and Marcellus Formations, is moderately hard. Groundwater from the glacial-outwash aguifer and the sandstone and shale aguifers, such as the Catskill and Trimmers Rock Formations, generally is soft.

Iron and manganese concentrations that exceed recommended limits can be found in groundwater from any aquifer in the study area, although problems are most noticeable in the Devonian shales of the Harrell, Mahantango, and Marcellus Formations. Excessive dissolved manganese commonly was observed in groundwater from glacial outwash,

the Marcellus Formation, and the middle and lower members of the Rose Hill Formation. Excessive iron and manganese are problems to the extent that the metals impart a bitter taste to water, stain fixtures and laundry, and clog plumbing systems, but water conditioning will alleviate the most serious problems

Hydrogen sulfide gas, which imparts a rotten egg odor to groundwater, was detected in 58 of 651 wells, or in about 9 percent of the total. It was present most commonly in wells in the Devonian shale aquifers, such as the Harrell, Mahantango, and Marcellus Formations.

REFERENCES

- Bean, E. H. (1962), *Progress report on water-quality criteria*, American Water Works Association Journal, v. 54, p. 1313–1331.
- Becher, A. E., and Root, S. 1. (1981), Groundwater and geology of the Cumberland Valley, Cumberland County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 50, 95 p.
- Berg, T. M., Edmunds, W. E., Geyer, A. R., and others, compilers (1980), *Geologic map of Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Map 1, scale 1:250,000, 3 sheets.
- Carswell, L. D., and Lloyd, O. B., Jr. (1979), Geology and groundwater resources of Monroe County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 47, 61 p.
- Gerhart, J. M., and Williams, J. H. (1981), Recovery of ground-water levels from drought conditions in two areas of the Susquehanna River basin in Pennsylvania, Pennsylvania Geology, v. 12, no. 3, p. 2-6.
- Hem, J. D. (1970), Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey Water-Supply Paper 1473, 2nd ed., 363 p.
- Inners, J. D. (1978), Geology and mineral resources of the Berwick quadrangle, Luzerne and Columbia Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 174c, 34 p.
- _____(1981), Geology and mineral resources of the Bloomsburg and Mifflinville quadrangles and part of the Catawissa quadrangle, Columbia County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 164cd, 152 p.
- Inners, J. D., and Way, J. H. (1979), *The Light Street thrust fault, northeastern Pennsylvania*, Geological Society of America Abstracts with Programs, v. 11, no. 1, p. 17.
- Inners, J. D., and Williams, J. H. (1983), Clinton iron-ore mines of the Danville-Bloomsburg area, Pennsylvania: their geology, history, and present-day environmental effects, Annual Field Conference of Pennsylvania Geologists, 48th, Danville, Pa., Guidebook, p. 53-63.
- Johnston, H. E. (1970), Ground-water resources of the Loysville and Mifflintown quadrangles in south-central Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 27, 96 p.
- Lattman, L. H., and Parizek, R. R. (1964), *Relationship between fracture traces and the occurrence of ground water in carbonate rocks*, Journal of Hydrology, v. 2, p. 73–91.

- Lloyd, O. B., Jr., and Growitz, D. J. (1977), Ground-water resources of central and southern York County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 42, 93 p.
- Matis, J. R. (1971), Petroleum contamination of ground water in Maryland, Ground Water, v. 9, no. 6, p. 57-61.
- McKee, J. E., Laverty, F. B., and Hertel, R. (1972), *Gasoline in ground water*, Journal of the Water Pollution Control Federation, v. 44, p. 293-302.
- Patten, E. P., and Bennett, G. D. (1962), *Methods of flow measurement in well bores*, U.S. Geological Survey Water-Supply Paper 1544-C, p. C1-C28.
- Trescott, P. C., Pinder, G. F., and Larson, S. P. (1976), Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments, U.S. Geological Survey Techniques of Water-Resources Investigations TW1 7-C1, 116 p.

- U.S. Environmental Protection Agency (1976a), National primary drinking water regulations, Report EPA-57019-76-001.
- (1976b), National secondary drinking water regulations, Report EPA-57019-76-000.
- Way, J. H. (in press), Geology and mineral resources of the Washingtonville and Millville quadrangles, Montour and Columbia Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 154cd.
- Williams, J. H. (1980), *The hydrogeology of the Danville area, Pennsylvania*, State College, Pennsylvania State University, M.S. thesis, 251 p.
- Wood, C. R. (1980), Groundwater resources of the Gettysburg and Hammer Creek Formations, southeastern Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 49, 87 p.

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

Multiply inch-pound units	By	To obtain SI units
inch	2.540	centimeter (cm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km²)
gallon per minute (gal/min)	0.06308	liter per second (L/s)
million gallons per day (Mgal/d)	3,785	kiloliter per day (kL/d)
gallon per minute per foot [(gal/min)/ft]	0.2069	liter per second per meter $[(L/s)/m]$
gallon per minute per square mile [(gal/min)/mi ²]	0.2436	liter per second per square kilometer [(L/s)/km ²]
micromhos (µmho)	1.0	microsiemens (μS)

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius (°C) as follows: °F = 1.8 °C + 32

Milligrams per liter (mg/L) is an expression of concentration that is equivalent to parts per million (ppm) and is equal to 1,000 micrograms per liter (μ g/L). Micrograms per liter is equivalent to parts per billion (ppb).

TABLE 21. CHEMICAL ANALYSES OF WATER FROM SELECTED WELLS

(Quantities are in milligrams per liter except where otherwise indicated)

F 0									
Spe- c1fic con- duc- tance (µmho/cm at 25°C)		109 608 103 123 804 804 93 180 180 142		18			155 155 183 388 183 123 222 75 46 63 164 164 228 228		58 49 100 170 148 79 150
pH (units)		6.9 6.1 6.7 6.7 6.4 6.4 6.5 6.5		0.9			6.0 7.8 6.9 7.0 7.0 7.9 7.9 7.9 7.9 6.9 6.9		5.9 6.1 7.6 7.8 6.9
Alka- linity (CaCO ₃)		76 260 15 15 400 23 23 17 17 17		7			20 17 17 26 26 46 7 38 38 38 13 44 44 14 45		6 16 12 71 71 60 33
Noncar- bonate hard- ness (CaCO ₃)		222 222 36 36 1 1 5		0			333 333 34 37 37 37 37 37 37 37 40 00 00 00		14 1 13 0 0 0 37
Hard- ness (CaCO ₃)		110 39 280 42 370 31 59 56 49		7			60 46 60 60 110 58 50 19 19 19 85 87		20 25 52 58 50 50
Dis- solved solids		144 66 331 80 472 59 125 125 		15			108 95 110 90 162 230 230 78 78 134 100 26 100 125		43 36 53 101 100 63 93
Ortho- phos- phorus (P)		.050 .050 .000 .010 .010 .010 .100		<.010					010 050 010 010 020
Nitro- 9en (NO ₂ +NO ₃ , as N)		3.5 3.5 2.8 2.8 3.2 3.2 3.2 .01 .01 .16		.28			20		3.7 .14 .15 .11 .09
Fluo- ride (F)		0,00000111		<.1			0.10.1.1.1.1.1.1.0.1.0.1.1		
Chlo- ride (Cl)	I	10 4.7 13 5.0 12 3.6 10 3.0 1.8	TION	9.	NOI	Member	4.0 9.6 8.0 6.5 10.5	ber	2.7 14. 5.7 4.4 1.4
Sulfate (SO ₄)	GLACIAL OUTWASH	31 16 22 22 32 32 14 11 11 35 37	8	.7	CATSKILL FORMATION	Creek	51 29 29 12 35 14 11 11 2.3 2.3 2.5 1.0 1.0	n Valley Membe	1.4 5 2 1.0 11 4.2
Potas- sium (K)	79	1.13.88.51.1	MAUCH	.2	CAT	Sherman	1011112000800400	Irish	0587.047
Sodium (Na)		2.8 11 3.9 15 3.2 7.5 7.3 7.3		4.			6.3 6.3 7 7 10 10 3.2 4.0 8.1 10 10		2.2 2.2.8 6.4 6.4 7.4 4.4
Magne- sium (Mg)		20 22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25		.7			8 008 1 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Calcium (Ca)		9.4 80 11 110 7.1 7.2 14 14		1.6			14		2.8 2.0 2.9 17 12 3.4
Manga- nese (Mn) (ug/L)		2,100 3,500 8,100 3,000 600 		7			0 70 70 610 380 61 1,20 10 1,200 10,206 1,206 340		13 90 40 150 130 480 40
Iron (Fe) (µ9/L)		100 230 10 10 250 14,000 8,200 1,600 3,550 3,560 40		10			150 370 200 <10 <10 920 30 10 40 620 520 2,000 220		260 210 260 260 260 36 2,500 1,600
Silica (SiO ₂)		7.8 10 12 17 17 9.9 19 11 11		5.7			12		9.8 16 10 18 20 20
Oate of sample		8/10/71 3/ 3/82 12/ 8/81 10/20/80 8/ 3/81 6/ 3/81 7/ 2/81 11/ 6/80 1/25/73 11/ 13/73		6/24/81			2/ 8/68 8/12/80 1/ 8/68 6/23/76 6/23/76 8/18/81 4/14/81 6/10/81 8/27/81 8/27/81 11/ 5/81 11/ 5/81 9/22/81		2/23/82 6/ 3/81 6/25/81 10/ 8/81 11/ 9/81 2/23/82 8/ 6/80
Well number		Co- 80 111 154 305 308 379 Lu-452 486 490 491		Lu-422			CO- 49 61 66 84 84 845 872 872 873 871 871 871 871 871 871 871 871 871 871		Co-244 377 421 562 567 585 Nu-162

	67 100 112 119 153 74 149	4	55 86		820 492 72 72 324 464 1136 1124 71 284 248 248 248 248 248 234 4,720 220 220 98		480 2,180 364 314 300 		782 571 		264		686 416
	6.0 6.6 6.1 7.4 6.6 7.0 7.9		6.9		8.0 6.1 7.8 7.1 7.1 7.7 7.7 7.7 7.7 8.0 8.0 8.0 8.0 8.0 7.7 7.7 8.0 7.7 8.0 7.7 8.0 7.7 8.0 7.7 8.0 7.7 8.0 7.0 8.0 7.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7		7.4		7.7		7.2 7.4 6.5		7.3 6.8 7.7
	9 31 10 50 15 16 52 100		13		25 130 130 130 130 27 27 27 27 110 110 110 120 57 57 57 57 57 57 57 57 57 57		140 430 110 120 100		200 170 100		116 114 60 120 128		125 180 167 184
	10 10 27 27 0 38 12 12 0		19		77 13 130 130 19 10 17 10 150 150		63 0 67 4 12 12		140 72 		54 26 53		0 130 43
	19 41 37 42 53 28 64 92		18 29		80 130 21 21 130 180 180 190 110 110 110 110 110 110 110 110 11		200 120 130 130 300		340 240 126		170 140 110 200 240		120 310 210 180
	49 68 73 82 82 96 51 97		44 54		267 267 267 48 194 261 261 174 174 161 161 161 165 165 165		265 1,600 212 198 178 840 297		492 306 268		296 274 156 832 438		434 372 250 374
	(0.010 (.010 (.010 (.010 (.010 (.010 (.010		<.010 <.010				, 010 , 010 , 020 , 020 , 000 , 000		0.000 <.010		.020		.010
	3.6 1.4 6.0 6.0 4.9 1.9 .90		.06		. 28 		3.0 .02 .01 .01 .13		3.2 .02		5.0 7.0 4.3 .10		4.8 .01 4.0 1.4
			1:1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1111212		<0.1 <.1 		1 1		1:1:0
ON	2.9 3.8 6.6 6.6 5.6 5.6 4.0		9.4	2	172 83 5.7 15 86 86 2.0 2.0 2.0 12 11.3 6.3 3.6 1.4.1 1,500		28 23 14 2.0 3.2 155 35		59 38 2.0		20 20 11 7.0		132 66 20 20
ROCK FORMATION	5.0 6.9 8.3 5.6 24 8.1 15	FORMATION	9.7	MAHANTANGO FORMATION	15 31 .4 18. 22. 22. 23. 24. 23. 24.	FORMATION	46 760 47 38 26 20 61	A FORMATION	76 40 46	FORMATION	 34 210 50	FORMATION	78 62 20 61
TR1MMERS RO	0.1 1.2 1.0 1.0 5.7 7.	HARRELL	.3	MAHANTAN	2.2 2.6 6.0 6.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	MARCELLUS	22.00.4.4.9.1.0	ONONDAGA	2.7	OLO POR	117:11	KEYSER	1
	2.6 3.9 3.7 9.6 4.9 13.6 13.6		3.0		107 29 3.0 18 11 11 5.7 3.8 1.3 10 10 10 10 10 10 10 10 10 10 10 10 10		9.6 500 4.5 14 7.3		28 15		5		18 8.7
	2.2. 2.3. 2.0. 2.0. 2.0. 3.0. 3.0. 3.0.		2.5		3.5 11.2 2.5 2.5 3.2 3.2 3.2 7.4 6.9 6.9 6.4 3.4 6.7 3.7 7.5 6.7		13 8.6 9.6 10 7.2 26 26 15		23 15 8.0		6.2 20 20 20		118 25
	3.8 11 5.8 5.2 9.8 5.9		3.0		26 35 4.1 4.9 13 13 13 13 13 19 19 27 27 27		60 32 32 37 41 78 40		100 72 38		35 48 65		94 65 33
	220 220 85 85 34 34 35		90		3,000 3,000 3,000 20 20 20 20 20 20 20 20 43 60 60 60 60		270 200 200 70 160 1,500		410 20 0		10000		430 10 0
	1,700 1,700 190 120 74 26 52		1,700		29,000 2,200 1,800 7,900 7,900 100 100 100 120 120 120 120 120 120 1		1,100 320 530 3,000 7,000 14,000		60 400 3,350		100 0 620 11,000 1,100		2,000 40 1,100
	11 12 9.7 20 13 10 13		15 86		8.5 12.7 6.7 17.7 14 14 16 17 16 13 11 8.1 20 21 21		9.5 11 15 18 16 16		7.3		7.7		2.3
	4/ 8/82 2/23/82 4/ 2/82 2/18/82 8/ 3/81 2/23/82 11/12/81 3/ 3/82		8/20/81 8/26/81		12/18/73 5/14/81 8/20/81 6/24/81 6/24/81 8/13/81 7/22/81 8/12/81 11/18/81 11/18/81 8/26/81 1/22/81 8/26/81 1/22/81 8/26/81 1/22/81 8/26/81		4/14/81 8/26/81 6/23/81 7/15/81 8/5/80 9/13/73 4/13/81		9/23/81 8/ 4/81 9/17/73		4/ 1/68 4/ 1/68 8/13/81 9/ 4/73 1/29/74		4/ 1/68 8/ 4/81 5/24/71 4/16/74
	Co-215 354 364 365 365 368 Mt-160 237		Co-336 Lu-371		Co- 56 60 126 212 320 333 335 454 468 Lu-372 434 453 456 471 Mt-153 Nu-157		CO-187 190 306 452 Lu-438 Mt- 30		Co-188 441 Mt- 17		Co- 58 59 183 Mt- 16		Co- 57 310 Mt- 2 14

TABLE 21. (CONTINUED)

Spe- cific con- duc- tance (µmho/cm at 25°C)	1	557 796 2,070		282 736 505 294		644 		387 		287 135 300 225 164 171
pH (7.7		7.7 7.5 7.4 8.2		7.5.0 7.8 7.9 7.9 7.1 7.1 7.1		7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.		7.9 6.5 7.4 7.9 6.1 8.0
Alka- linity (CaCO ₃)		140 120 140 130		94 120 150 140		140 1105 110 110 110 120 120 87 87 87 87 98		46 67 119 31 31 230 23 23 38		100 31 95 84 4 65
Noncar- bonate hard- ness (CaCO ₃)		120 230 1,200		290 290 84 23		120 5 120 120 40 57 57 86 89 33		110 0 16 13 20 20 20 23 23 24 25 25 26 27		288 288 19 19 14 0
Hard- ness (CaCO ₃)		550 240 370 1,400		130 410 230 160 258	į	260 110 110 130 230 180 180 180 140 130 130		150 64 35 44 44 110 110 81 320 77 77 60		140 59 110 69 46 79 110
Ois- solved solids		1,040 345 518 1,890		163 521 278 175 382		375 220 219 166 296 217 217 174 163 163		213 130 60 76 70 128 113 459 148 125 93		166 83 179 136 88 88 97 135
Ortho- phos- phorus (P)		090 .010. .010.		.010. .010. .060. .010.		010 010 010 010 010 010		0.710 -110 .130 .010 .070 .020 .020 .020 .020		.010.020.020.010.010.010.010
Nitro- 9en (NO ₂ +NO ₃ , as N)		.00 6.4 4.4 .12		1.7 .86 .83 .05		4.8 4.8 3.0 2.8 1.6 6.3 7.7		5.0 2.2 2.2 2.9 2.9 2.5 2.5 8.9 1.5		. 58 2.9 3.6 3.1 4.8 .04
Fluo- ride (F)		.1.4		1.6.1.1		~;;;;:::::;;;;				
Chlo- ride (Cl)	INUEO)	76 38 46 13	N	6.3 6.6 31 2.9 7.0	NO	29 18 19 10 10 12 12 12 23 29 29 15	N	56 2.5 1.0 1.0 5.2 1.0 8.5 10 11 6.7	FORMATIONS	9.0 12 12 8.5 32 3.5 2.4
Sulfate (SO ₄)	FORMATION (CONTINUEO)	625 84 190 1,300	OLOWAY FORMATION	28 270 48 23 110	CREEK FORMATION	140 15 12 12 26 82 82 32 23 32 32 14 8.6	MSBURG FORMATION	30 20 7.3 16 2.0 7.7 7.7 20 36 36 32 20	ANO KEEFER F	30 7 24 19 16 .7
Potas- sium (K)	KEYSER FOR	2.0	1.00 1.00 1.7	. 6 1.0 1.7 1.7 .5 .5	.6 1.0 1.7 .5 .5	6.117.8.9.112.7.9.9	BLOOMSB	1.1	MIFFLINTOWN	4480186.
Sodium (Na)	×	22 34 10					71. 7.0 6.0 6.0 7.0 8.0 8.0 1.2 3.9		9. 1 2. 2 3. 0 5. 1 7. 1 7. 1 8. 3 7. 8 7. 8 7. 8 7. 8 7. 8 7. 8	MIF
Magne- sium (Mg)		28 13 24 120		8.7 33 18 19 20		25 8.7 8.7 20 20 7.6 10 15		11 3.0 3.4 3.4 6.9 6.9 8.9 3.6		6.8 4.7 7.4 6.4 7.8
Calcium (Ca)		152 75 107 350		38 110 64 34 64		63 33 34 34 38 38		43 12 15 32 21 24 28 28 18	1	46 18 38 20 11 22 30
Manga- nese (Mn) (µg/L)		0 8 8 0 0		10 80 20 20 0		50 50 50 60 10 7 7 8 8 8 9 10 60 60		130 30 8 180 30 5,300 5,300		1,500 1,500 38 27 100 65
Iron (Fe) (µ9/L)		300 9 13 390		10 460 110 370		1,900 20 20 20 10 10 10 230 230 170		280 250 760 1,100 980 6,200 8,000 30		100 111 37 410 8
Silica (SiO ₂)		 11 20		12 16 8.4 9.2		12 11 9.3 9.6 7.0 7.1 7.1		12 14 20 8.8 9.2 9.2 8.1 10 10 10 16		8.3 7.2 14 7.9 6.2 8.1
Oate of sample		12/29/72 12/ 3/81 11/24/81 11/24/81		10/20/80 7/ 1/81 6/ 3/81 10/13/81 4/23/74		7/ 7/81 5/13/73 5/13/73 8/13/81 8/ 4/81 8/ 5/80 10/23/80 6/25/81 6/23/81 7/22/81		4/ 9/81 5/13/73 7/21/81 7/21/81 7/21/81 7/29/81 7/29/81 7/29/81		2/17/82 2/23/82 2/17/82 2/17/82 2/18/82 12/17/81 3/3/82
Well		Mt -31 Nu-187 188 189		Co-304 307 410 505 Mt- 15		Co- 70 86 87 106 159 201 204 205 404 413 453		Co- 45 88 357 371 437 455 460 461 462 569		Co-128 157 331 332 355 570 586

		216 208 262 146 156		240 246 200 178 96 164 164 162 78
		7.9 7.9 8.0 7.7		5.7.7.7.7.8.8.4.9.9.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
		88 75 81 69 51		120 110 100 93 45 68 68 140 74 93 41 36
		21 28 0 15		23 23 7 7 8 8 11 67 67 67 16 3
		110 100 67		110 120 100 53 79 210 76 91 57 39
		117 128 46 90 84		126 118 102 57 57 93 100 100 129
		<pre><.010 <.010 <.010 <.010 <.010 <.010</pre>		
		.04 .03 .01 <.10		
		, , , , , ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		4.1 1.6 20 1.0 9.8	S	6.1.1.9 1.1.9 1.1.8 1.1.8 1.1.8 1.1.1
L FORMATION	Member	12 32 21 8.9 2.2	-ower Member	6.5 14 4.7 4.7 3.3 2.6 14 3.7 11 3.2 11 6.0
ROSE HILL	Upper		Middle and L	1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
		2.7 4.0 66 4.6 2.4		6
		12 11 11 4.2 3.3		13 14 6.3 8.8 12 10 9.7 9.7
		24 23 20 21		24 28 17 17 17 63 14 21 7
1		76 140 140 7		90 160 340 120 10 <10 <10 130 200 330 510 440
		140 54 54 9 28		400 360 1,500 700 30 10 90 80 80 30 1,300
		8.4 11 9.5 9.7 7.6		7.2 10 7.5 7.3 6.1 6.0 6.2 6.3 6.7 7.5
		10/ 6/81 11/12/81 2/23/82 4/ 8/82 2/23/82		7/14/80 9/22/81 8/18/81 8/17/81 9/22/81 9/22/81 9/23/81 9/23/81 9/23/81 9/23/81
		Mt-181 185 221 227 235		Mt- 29 36 123 123 176 214 245 247 248 249 250 250

TABLE 22, TRACE-ELEMENT AND ORGANIC-INDICATOR ANALYSES OF WATER FROM SELECTED WELLS

						ā	Dissolved trace metals (µg/L)	trace ug/L)	metals							Organic (m	Organic indicator (mg/L)	
Well number	Geo- logic unit ²	Date of sample	(sA) ɔinəsıA	Beryllium (Be)	(Եշ) տաքանեշ	(x2) muimord3	Hexavalent (⁶⁺ 13) muimordo	Copper (Cu)	Cyanide (CN)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	(92) muinəfə2	(nZ) ɔn iZ	Oil and grease	Dissolved organic	Suspended organic	Phenol (µg/L)
Co-154	Qgo	12- 8-81	-		-	<10	₽	42	<10	е е	<0.1 1	1,600	<u>^</u>	400	^ 	7.2	3.3	m
190	Dimr	8-26-81	5	<10	2	10	$\stackrel{\sim}{\Box}$	e	<10	2	.2	2	<u>^</u>	10	-	3.7	>5.0	.^
308	Ógo	8- 3-81	20	0	-	10	$\stackrel{\sim}{\Box}$	2	<10	П	<.1	2	<u>^</u>	10	2	1.0	-	-
310	DSk	8- 4-81	12	1	1	10	$\stackrel{\sim}{\Box}$	П	<10	-	·.1	4	$\stackrel{\diamond}{\Box}$	4	-	2.0	-	0
357	Sb	7-21-81	2	<u>^</u>	1	<10	0	35	<10	m	·.1	П	0	7	0	8.5	1	0
371	Sb	7-21-81	10	^ 1	∴	<10	0	13	<10	m	·.1	1	0	10		4.	ļ	0
436	Dcs	8-27-81	П	<10	2	<10	$\stackrel{\diamond}{\Box}$	œ	<10	m	.2	4	<u>^</u>	10	-	0.9	.2	<u>^</u>
453	Swc	7-22-81	1	<u>^</u>	^ 1	10	0	24	<10	12	<.1	-	0	4>	0	9.	-	0
454	Dmh	7-22-81	П	<u>^</u>	^ 1	<10	0	98	<10	19	·.1	18	1	09	П	×.3	-	0
455	Sb	7-21-81	2	~ 1	e	<10	0	13	<10	m	<u>.</u>	2	0	20	-	e.	-	0
457	Swc	7-30-81	e	1	1	10	∴	က	<10	1	·.1	2	1	6		3.4	.2	80
460	Sb	7-29-81	1	<u>.</u>	2	<10	∵	14	-	32	·.1	4	0	06	1	1		1
461	Sb	7-28-81	22		1	<10	< <u>1</u>	11	<10	12	.1	15	0	160	0	15	3.4	0
462	Sb	7-29-81	2	1	-	10	~ 1	53	<10	1	·.1	4	<u>^</u>	100	0	4.0	e.	2
463	Sb	7-29-81	4	П	П	10		œ	<10	1	·,1	4	< ₁	20	0	10	1	4
569	Sb	12- 8-81	2	<u>^</u>	<1	<10		24	<10	1	·.1	5	<1	15	<u>^</u>	5.6	.1	^ 1
570	ES.	12-17-81	1	<u>^</u>	2	10	$\stackrel{\sim}{\Box}$	<u>^</u>	<10	^ 1		^ 1	<u>^</u> 1	2	<u>^</u> 1	ლ.	.2	2
Lu-434	Dmh	7-30-81	1	П	П	10	<u>^</u>	2	<10	1	1	2	<1	4	0	4.2	;	9
Recommended limit ³	ed limit ³		20		10	909	209	⁴ 1,000	200	50	2		10 45	⁴ 5,000			-	4.1

¹Analyzing agency: U.S. Geological Survey, Central Laboratory, Atlanta, Georgia.

Qgo, Glacial outwash; Dcsc, Sherman Creek Member of Catskill Formation; Dmh, Mahantango Formation; Dmr, Marcellus Formation; DSk, Keyser Formation; Swc, Wills Creek Formation; Sb, Bloomsburg Formation; Smk, Mifflintown and Keefer Formations. ²Geologic unit:

 $^{^3}$ U.S. Environmental Protection Agency (1976a, 1976b).

 $^{^{\}mathrm{t}}\mathrm{The}$ given level is for controlling undesirable taste and odor quality.

TABLE 23. RECORD OF SELECTED WELLS AND TEST HOLES

Well location: The number is that assigned to identify the well or test hole. It is prefixed by a two-letter abbreviation of the county. The lat-long is the coordinates, in degree and minutes, of the southeast corner of a 1-minute quadrangle within which the well is located.

Use: A, air conditioning; C, commercial; H, domestic and small commercial; I, irrigation; N, industrial;

O, observation; P, public supply; R, recreation; S, stock; T, institution; U, test hole.

Topographic setting: C, stream channel; H, hilltop; S, hillside; T, terrace; V, valley flat; W, upland draw.

Aquifer: Qal, alluvium; Qgo, glacial outwash; Qt, till; Mmc, Mauch Chunk Formation; Dcd, Duncannon Member of Catskill Formation; Dcsc, Sherman Creek Member of Catskill Formation; Dciv, Irish Valley Member of Catskill Formation; Dtr, Trimmers Rock Formation; Dh, Harrell Formation; Dmh, Mahantango Formation; Dmr, Marcellus Formation; Don, Dnondaga Formation; Do, Dld Port Formation; Dsk, Keyser Formation; Sto, Tonoloway Formation; Swc, Wills Creek Formation; Sb, Bloomsburg Formation; Smk, Mifflintown and Keefer Formations; Sru, upper member of Rose Hill Formation; Srm, middle member of Rose Hill Formation; Srl, lower member of Rose Hill Formation.

Lithology: dls, dolostone, limestone, and shale; ls, limestone; lsd, limestone and dolostone; lss, limestone and shale; sd, sand; sg, sand and gravel; sh, shale; sls, sandstone, limestone, and shale; slt, silt; sssh, sandstone and shale.

Static water level: Depth--F, flows but head is not known; minus sign indicates that water level is above land surface.

Date--month/last two digits of year.

Reported yield: gal/min, gallons per minute.

Specific capacity: (gal/min)/ft, gallons per minute per foot of drawdown.

Pumping rate: gal/min, gallons per minute. Where no pumping rate is indicated, specific capacities were determined from drillstem and bailer test data reported by drillers.

Hardness: mg/L, milligrams per liter.

Specific conductance: $\mu mho/cm$ at 25°C, micromhos per centimeter at 25 degrees Celsius.

TABLE 23.

_								
Well Number	location	Owner	Oriller	Year completed	Use	Alti- tude of land surface (feet)	Topo- graphic	Aquifer/
Manipel	Lat-Long	Owner	OF FITTER	compreted	036	(1660)	setting	lithology COLUM8IA
Co- 1	4100-7627	Howers			Н	490	Т	Q90/s9
45 47	4100-7626 4107-7632	U.S. Geological Survey Millville Water Authority	Ralph Meyers 	1970 - - -	0 P	690 630	И	Sb/sh Qal/sg
48 49	4059-7627 4057-7627	Magee Carpet Co. Catawissa Water Authority			N P	475 480	T V	Do/lss Ocsc/sssh
51	4059-7627	8loomsburg Mills, Inc.	Kohl 8rothers	1940	A	490	Ţ	0o/1ss
52 53	4059-7627 4059-7627	do . do .	do . do .	1944 1964	A A	490 490	T T	0o/lss Do/lss
56	4107-7632	Millville Water	Norman Hagenbuch	1953	P	630	Ÿ	Dmh/sh
57	4103-7613	Authority Keystone Water Co.	Cresswell	1957	Р	500	Т	0Sk/1s
58	4103-7613	do .	do .	1957	Р	500	T	Do/1ss
59 60	4103-7613 4107-7631	do. Jerre Wright	do .	1957 	P C	500 630	7 V	Do/lss Dmh/sh
61	4056-7627	Catawissa Water Authority			Р	480	V	Dcsc/sssh
62 63	4056-7627 4059-7626	do. Bloomsburg Packing Co.	Kohl 8rothers	 1946	P N	485 480	V	Ocsc/sssh Dmr/sh
66 68	4104-7624 4103-7614	Orangeville Water Co. Consolidated Cigar	R. R. Hornberger Joseph Wright	1963 1957	P A	670 540	W T	Ocsc/sssh Swc/dls
69 70	4103-7614 4103-7615	Corp. do. Keystone Water Co.	do. Cresswell	1957 1957	A P	540 525	T T	Swc/dls Swc/dls
84	4057-7627	Catawissa Water			Р	475	٧	Ocsc/sssh
85	4057-7627	Authority do.	Alvin Swank and Son	1981	Р	480	٧	Ocsc/sssh
86	4102-7619	Scenic Knolls		1950	Р	605	S	Swc/dls
87 88	4102-7619 4102-7619	do . do .	R. R. Hornberger	1964 1966	P P	610 675	S S	Swc/dls Sb/sh
90	4104-7619	Yohey	Champion	1978	н	980	Н	Ociv/sh
91	4100-7621 4101-7621	G. 8reisch	do.	1978	Н	920	V Н	Otr/sssh
92 93	4101-7621	J. Johnson Pete Oiehl	Stackhouse Champion	1972 1977	H	500 670	S	Dmr/sh Ociv/sssh
94	4100-7618	8. 0iehl	do .	1977	Н	740	S	Ociv/sssh
95 96	4104-7616 4105-7616	Steve Yeager Stanley Belles	do. W. C. Fenstemaker	1978 1970	H	630 970	S S	Dmh/sh Dcsc/sssh
97	4105-7616	Ronald Davis	Champion	1968	H	1,055	Н	Ociv/sssh
98	4101-7618	Don Shrader	Roy Zimmerman	1967	Н	510	Ţ	Dmr/sh
99 100	4105-7620 4105-7620	Alan Nagle Edward Fink	Champion do.	1973 1971	H	940 930	S S	Dcsc/sssh Dcsc/sssh
101	4104-7621	Robert Markle	do.	1978	Н	945	S	Dcsc/sssh
102 103	4101-7622 4103-7618	Bloomsburg Carpet St. Peter's Church	R. R. Hornberger do.	1966 1967	N H	495 700	T H	DSk/ls Sb/sh
104	4100-7615	Pennsylvania Department of Transportation	do .	1966	Н	880	S	Ocsc/sssh
105 106	4104-7618 4102 - 7621	0. Oickson	do. Stackhouse	1966 1977	H	500 645	T S	Dmr/sh Swc/dls
1D8	4101-7620	Poloron	R. R. Hornberger	1970	N	510	٧	Do/lss
109 110	4102-7622 4102-7622	Schultz Electroplating do.	do. do.	1973 1973	N N	705 7D5	S S	Sb/sh Sb/sh
111	4106-7622	Fred Cleaver, Jr.	Clifton Buck	1968	Н	616	Ţ	Q90/s9
112 113	4105-7624 4105-7624	Norpole Raymond Ribble	R. R. Hornberger Virgil 8uck	1980	H	580 590	T T	Qgo/sg Ocsc/sssh
113	4106-7622	Ray Messersmith	Stackhouse	1980 	H	580	Τ̈́	Dcsc/sssh
115	4104-7624	Keith Musselman	Champion	1975	H	920	S	Dosc/sssh
116 117	4102-7624 4103-7625	Donald Thomas Judy Krumheller	Stackhouse do.	1973 1972	H	69D 550	H S	Swc/dls Dcsc/sssh
118	4103-7623	Graig Gibney	Champion	1974	Н	955	S	Dciv/sssh
119 120	4103-7625 4103-7624	Ed Campbell R. Whitmeyer	Stackhouse Alvin Swank and Son	1977 1979	H	555 1,000	S S	Dcsc/sssh Dtr/sssh
121	4102-7604	Charles & aylor	R. R. Hornberger	1973	Н	820	S	Otr/sssh
122 123	4104-7623 4104-7623	Edward Haugh James Cox	do. do.	1966 1968	Н	890 880	W W	Dciv/sssh Dciv/sssh
123	4104-7623 41D2-7624	Harry Wenner	go. Stackhouse	1968	H	775	S	Dmh/sh
125	4102-7624	Kingston	Champion	1975	H	650	S	Dmh/sh
126 127	4102-7625 4102-7625	Steve Truesdale Robert Beers	Ronald Randler R. R. Hornberger	1978 1977	H	620 530	W T	Dmh/sh Dmh/sh
128	4101-7624	Pennsylvania Power and Light Co.	do.	1972	С	720	S	Smk/lss
129 130	4101-7628 4101-7628	Carl Welliver do.	do .	1967	H	560 520	S V	Dmh/sh Qgo/sg
131	4101-7628	Jim Kreamer	Clifton Buck	1974	Н	615	S	Smk/sls
132 133	4100-7624 4100-7624	Joe Crawford Venice Koons	Stackhouse Champion	1976 1970	H	485 485	V	OSk/1s Dmr/sh

		-		Static lev	water el						T
Total depth below land surface (feet)	Casir Oepth Oi (feet) (i	iameter	Oepth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
COUNTY											
18 282 12	32 	6	115;163	11 83	6/80 4/81	1 60	.03/1	1		480	Co- 1 45 47
202 205	48 14	8 10		42 11	1/30 8/80		5.6/185 1.2/45	24 3			48 49
498 550 420 500	94 115 77 21	8 10 12 8		25 35 30	3/58 11/64 11/64	 60	3.2/542 13/1,170 3.8/620 .23/39	8 24 24 5	462 57	980 345	51 52 53 56
160 90 87 225 375	63 75 58 40	12 12 12 8	92;140;200	31 30 32 5 14	6/81 6/81 6/81 5/81 7/80		280/300 340/200 350/300 2.5/15 .19/8	24 24 24 1 1	200 240 184 124	540	57 58 59 60 61
275 525 465 284	14 42 16	6 8 6 10		11 7 64	8/80 5/46 10/63	225 200	.42/16 .39/28	1 25 	51 	100	62 63 66 68
151 473	75	10 12	120;140;260; 340;390;420;	37	5/81	380	5.3/83	1	240	675	69 70
250	28	8	450			55					84
448	30	8	30;60;95;			100					85
190 402 415 275 200 70 165 150 150 150 120 150 100 125 95 175 80	42 20 20 22 20 20 44 40 20 71 20 20 90 36 30 47	 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	120;270 70;103;157 205 125;160 42;68 130;158 135 130 60;70 74;98 120 75 105 60;90 75	80 48 25 114 32	8/66 9/81 5/71 8/66 11/80 5/66	8 5 8 5 6 30 15 5 10 20 5 12 15 8 40 3 30 30	.02/		290 34 68 17 222 102	470 90 183 51 516 200	86 87 88 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
173 300 390 495 47 33 62 120 175 151 61 100 193 400 215 75 223 125 100 66 200 175 125 47 53	21 184 27 21 46 34 55 70 98 31 40 42 60 20 33 33 50 65 100 36 41	068666661666666666666666666666666666666	110;165 130;220;280 33 62 105;150 38;60 75 165;190 175 59;89;91 190 105;116 40;63 76;93;130 105 47 45	20 101 34 40 40 40 18 13 24 12 80 7 48 7 18 40 40 40 40 40 40 40 40 40 40	12/66 11/80 7/70 6/73 6/73 7/68 4/76 6/80 6/80 10/66 6/80 4/77 10/72 8/80 6/80 4/77 10/72	350 9 5 20 50 20 7 14 8 12 8 12 8 15 8 13 30 10 10 30	1.1/200 1.7/ 1.7/	24	120 254 51 34 51 68 17 85 17 68 34 103 171 137 68 51 308	140 600 101 82 70 125 50 135 100 120 58 218 218 260	106 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

TABLE 23.

							1	
						Alti-		
Well	location					tude of land	Торо-	
Number	Lat-Long	Owner	Oriller	Year completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Co-134	4100-7624	Isola	Champion	1970	Н	480	٧	Dmr/sh
135 136	4101-7625 4100-7625	Donald Meckley Amoco	Champion	1967 1974	H H	750 495	S V	Sru/sls Sto/lsd
137	4100-7627	Mary Hill	Stackhouse	1978	Н	8 4 D	S	Sru/sls
138	4057-7626	Catawissa Water Authority			Р	480	٧	Dcsc/sssh
139	4056-7626	do.	Alvin Swank and Son	1979	Р	780	W	Dcsc/sssh
140 141	4056-7626 4101-7619	do. U.S. Geological Survey	do . 	1979 1979	P 0	720 500	W T	Dcsc/sssh Ogo/sg
142	41D1-7618	do.		1979	0	505	Т	Q90/sg
143 144	4102-7617 4100-7618	do. do.		1979 1979	0 U	490 570	T S	Q90/sg Q t /sd
146	4102-7618	do.		1979	Ū	505	T	Q90/s9
147 148	4102-7618 4102-7617	do . do .		1979 1979	U U	500 520	T T	Qgo/sg Qgo/slt
149	4102-7618	do.		1979	Ü	510	T	Q90/31 C
150 151	4103-7616 4104-7625	do . do .		1979 1979	U U	495 585	T W	Q9o/s9 Qt/sd
152	4D59-7628	do.		1979	U	470	T	Qgo/sd
153 154	4059-7628 4059-7628	ป.S. Geological Survey do.		1979 1979	U O	465 470	T T	Qgo/sg Qgo/sg
155	4056-7627	Susquehanna Dairy		1979	N	520	S	Ocsc/sssh
156	4102-7625	Association Willard Thomas	Clifton Buck	1956	Н	550	Т	Swc/dls
157	4101-7624	James Magee	R. R. Hornberger	1968	H	785	S	Smk/sls
158 159	4102-7621	Robert Neyhard	do.	1966 1975	H	760 485	H V	Sb/sh Swc/dls
160	4102-7617 4102-7617	Harold Wertman do.	do .	1975	H H	485	٧	Qgo/sg
161	4101-7622	Bloomsburg Carpet	R. R. Hornberger	1977	N	495	٧	Sto/1sd
162	4101-7621	Industries Col-Mont Vo-Tech	do.	1967	Р	565	S	Swc/dls
163	4101-7622	Robert Holdren	do.	1966	Н	500	V	Sto/lsd
164 165	4101-7622 4101-7621	John Wolf Cindy Yorty	Alvin Swank and Son	1880 198D	H H	520 485	S V	Swc/dls Dmh/sh
166	4101-7621	Claire Wagner	Stackhouse	1972	Н	490	٧	Dmh/sh
167 168	4101-7620 4101-7619	Gerald Young Walter Hause	R. R. Hornberger Alvin Swank and Son	1966 1979	H	495 520	V	Omh/sh DSk/1s
169	4101-7619	John Horeck	Champion	1973	H	520	V	Sto/1sd
17D	4103-7614	Pennsylvania Department of Transportation		1977	U	548	T	Q90/s9
173 182	41D3-7613	do.	Vincil Punk	1977 1975	U H	472 525	C V	Do/lss Oon/lss
183	4101-7620 4101-762D	David Belles Richard Huber	Virgil Buck Champion	1976	H	515	V	Do/1ss
184 185	4106-7637	Allen Gardner	Virgil Buck	1977	H H	780 660	Н	Omh/sh Omh/sh
186	4104-7614 4058-7628	Drew Heckman J. Streater	Champion R. R. Hornberger	1968 1968	Ī	470	S V	Omh/sh
187	4059-7628	L. Wintersteen			Н	490	٧	Dmr/sh
188	4059-7628	do .	D. D. Haushausen	1935	H	490	V	Oon/lss Dmr/sh
189 190	4059-7626 4100-7626	Kawneer, 1nc. do.	R. R. Hornberger do.	1966 1966	N N	470 475	V	Omr/sh
191	4059-7624	Wonderview Water Co.	do.	1967	Р	630	S	Otr/sssh
192	4059-7624	do.			Р	760	S	Dtr/sssh
193	4D59-7624	do.	R. R. Hornberger	1977	P	760	S	Dtr/sssh
195	4103-7616	Joseph Alley	Champion	1972 1963	H N	515 500	V T	Swc/dls Do/lss
196 197	4101-7620 4101-7621	Champion Valley Farms do.		1963	N N	500	Ť	Do/1ss
198	4101-7621	do.	D. D. Harris	1964	N	500	Ţ	Do/lss
199 200	4101-7621 4103-7637	do. Paul Whalon	R. R. Hornberger Virgil Buck	1968 1972	N H	500 575	T S	Do/lss Dmh/sh
201	4103-7615	John OiBattista	Champion	1975	Н	530	V T	Swc/dls
2D2 203	4101-7620 4101-7620	Scott Sweeny do.			H	5D5 505	T	Qgo/sg Dmr/sh
204	4102-7619	Columbia County Development Authority	R. E. Kresge	1970	N	510	T	Swc/dls
2D5	4102-7619	do.	do.	1970	N	510	Т	Swc/dls
206	4102-7617	Mifflin Township Water Authority	R. R. Hornberger	1971	Р	490	Т	Q90/s9
2D7	4102-7617	do.	do.	1974	Р	490	Ţ	Qgo/sg
209 210	410D-7618 4D56-7627	do. Catawissa Lumber Co.	Kohl Brothers	1970 	P N	600 550	W S	Dcsc/sssh Ocsc/sssh
211	4056-7627	do.			N	525	S	Ocsc/sssh
212 213	4101-762D 41D1-7620	Helen Rupert do.			H H	5D0 500	T T	Dmr/sh Qgo/sg
214	41D1-7625	Paul Eyerly	R. R. Hornberger	1978	Н	695	Н	Smk/s1s
217 218	42D2-7617 4106-7633	Lupini R. Eckroth	 Stackhouse	- 1978	H H	505 740	T S	Dmr/sh Dmh/sh
210	4100-7000	N. LUNI VIII	JUNEA HOUSE	15/0	11	7.70	0	

(CONTINUED)

				water			-		-	
Total depth below land surface (feet)	Casing Oepth Oiame		Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (9al/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
75 280 75 173	30 6 51 6 40 6 61 6		20 60 5 33	3/70 1/67 6/80 6/80	12 8 15 8	.10/3	1	111 68	220 85	Co-134 135 136 137 138
400 400 37 47 62	43 8 42 8 32 2 42 2 57 2		20 23 21	6/80 6/80 6/80	60 60 	.16/45 .22/55 	48 48 			139 140 141 142 143 144 146
 40	 35	 	 12	 6/80	 	 				147 148 149 150 151 152 153 154
200 68 73 215 70 30 40	63 6 41 6 18 6 24 6 17 6	67 90;148;174	 43 50 16 17 10	6/80 6/66 6/80 6/80 12/80	20 15 12	1.1/		135 51 103 290 256	220 135 210 515 345	155 156 157 158 159 160 161
155 95 25 175 60 63 80 100	74 6 22 6 47 6 31 6 72 6 40 6	59 50 85	53 1 13 13 25 49	6/80 8/66 6/80 6/80 6/80 6/80	12 2 14 3 35 7	1.8/40 .13/ .08/	48 	325 307 256 290 188 222	360 455 380 420 260 360	162 163 164 165 166 167 168 169
80 225 275 75 500	50 6 40 6 20 6 20 6 32 8	50;80 175 100;200;250	30 F 12	6/80 8/68 7/68	10 5 3 12	 1.4/250	 12	188 137 	280 205 	173 182 183 184 185 186
86 119 355 415	26 6 24 10	 - 41;59;94;177 40;68;118; 156;308	6	7/80 12/66 7/80	30 12 100	18/32 .06/20 .41/20	1 3 1	188 308 120	490 820 2,500	187 188 189 190
395 375 410 75 268 550 600 500 92 100 34 110 273	81 6	261 265;335;367 53 50;170;180 85;92 70 	35 21 47 25 35 33 38 31	1/67 7/80 7/80 6/68 8/80 7/80 12/80 10/80	30 30 10 80 250 440 6 85	.11/28 .10/15 1.3/218 1.9/10 7.4/141	48 24 1 48	 154 170 180	 400 400 430	191 192 193 195 196 197 198 199 200 201 202 203 204
248 60	62 6 57 6	, , -	32 29	8/80 8/80	77 85	1.1/136 11/55	48			205 206
63 310 500 465 120 33 315 65 348	53 8 70 8 55 6 37 6 21 6	80;200 	42 78 32 20 90 52	8/70 8/80 12/80 9/80 1/78 12/80	70 12 3 3 2 1	4.4/102 .06/ .50/16 	2	86 120 137 137 137	295 300 340 250 360	207 209 210 211 212 213 214 217 218

TABLE 23.

					1			
							1.000	
						Alti- tude of		
Well	location			Year		land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Owner	Oriller	completed	Use	(feet)	setting	lithology
Co-219	4105-7633	Oale Stiner	R. R. Hornberger	1967	Н	845	Н	Dmh/sh
220 222	4106-7633 4106-7633	S and S Auto Works Ted Heaps	Clifton Buck Stackhouse	1978 1980	H H	660 670	V	Dmh∕sh Omh∕sh
223	4106-7633	do .	do.	1980	Н	680	V	Dmh/sh
224 226	4106-7633 4106-7633	do. James Nolan	do. Virgil Buck	1980 1978	H	675 750	V H	Omh/sh Omh/sh
227	4104-7630	Stackhouse	Stackhouse	1978	н	800	S	Otr/sssh
228 229	4103-7631 4103-7631	Dave Ortman do.	do.	1978	H H	1,000 1,000	H H	Otr/sssh Dtr/sssh
230	4103-7631	Jack Rowe	Stackhouse	1973	Н	985	Н	Otr/sssh
231 232	4102-7631 4102-7631	Roy Ruckle do.	Clifton Buck do.	1975 1960	H	750 770	V	Otr/sssh Dtr/sssh
233	4102-7631	do.	Stackhouse	1978	Н	770	٧	Dtr/sssh
234 235	4106-7631 4106-7631	Charles Laver Stine	Clifton Buck	1974	H H	795 620	S V	Dmh∕sh Omh∕sh
236	4104-7631	do.	R. R. Hornberger	1980	S	760	V	Otr/sssh
237 238	4103-7632 4104-7630	Eckroth Frank Stackhouse	Virgil Buck Stackhouse	1969 1973	H C	940 775	H C	Otr/sssh Otr/sssh
239	4104-7630	do .	do .	1963	Н	770	V	Otr/sssh
240 241	4103-7631 4104-7631	Sandler L. Millard	Stackhouse	1978	H H	930 980	S H	Otr/sssh Ociv/sssh
242	4104-7631	Cluane Bardo	do.	1974	S	760	S	Otr/sssh
243 244	4103-7632 4103-7632	Oavid Bowers Outch Hill Church	Stackhouse do.	1973 1977	H H	840 935	S S	Otr/sssh Otr/sssh
245	4057-7627	Catawissa Bottling	Alvin Swank and Son	1981	N	550	W	Ocsc/sssh
246	4104-7630	Randy Lawton	Stackhouse	1972	Н	590	S	Dciv/sssh
248 249	4104-7636 4104-7634	James Cyphers Dale Zeisloft	Ronald Randler Stackhouse	1966	H H	555 645	V S	Dmh/sh Dmh/sh
250	4105-7634	Donald Zeisloft	Clifton Buck	1974	Н	680	S	Omh/sh
251 252	4104-7634 4102-7633	Steve Zeisloft Urlich	do. Stackhouse	1975 1978	H H	650 1,050	S H	Dmh/sh Otr/sssh
253	4103-7635	Myron Oiehl	Clifton Buck	1967	Н	940	S	Otr/sssh
254 255	4105-7634 4106-7631	Rishel Jerry Boone	do . do .	1980	H H	635 740	W H	Dmh/sh Omh/sh
256	4135-7606	Raymond Williams	R. R. Hornberger	1966	Н	745	S	Omh/sh
257 258	4106-7633 4107-7632	William Schneeweis Dale Stackhouse	do. Virgil Buck	1976 1978	H H	720 805	S H	Dmh/sh Omh/sh
301	4100-7622	U.S. Radium Corp.	Wieand Brothers	1979	0	490	Ţ	Q90/s9
302 303	4100-7622 4100-7622	do. do.	do. do.	1980 1979	0	490 490	T T	Q90/s9 Q90/sg
304	4102-7617	U.S. Geological Survey	Alvin Swank and Son	1980	0	490	T	Sto/lsd
305	4101-7618	do .	do.	1980	0	515	Ţ	Q90/s9
306 307	4101-7621 4102-7616	do. do.	do. do.	1980 1980	0	490 505	T	Umr/sn Sto/lsd
308	4102-7616	do.	do.	1980	0	495	Ţ	Q90/s9
309 310	4102-7618 4100-7626	R. Lupini William Coombs	Alvin Swank and Son	1980	H C	510 490	T T	Dmr/sh OSk/ls
311	4101-7618	Foster Hudelson			Н	510	Т	Q90/s9
312 313	4058-7631 4101-7616	Ray Gross Wilkes Pools	R. R. Hornberger	1968	H C	630 880	S S	Oon/lss Oscs/sssh
314	4058-7631	Lycoming Sand Co.	Champion	1977	Н	645	V	OSk/ls
315 316	4059-7630 4102-7620	James Roth Arden Sitler	R. R. Hornberger Champion	1977 1970	H H	700 740	S S	Sb/sh Sb/sh
317	4103-7619	Orvil Weaver	do .	1972	Н	745	T	Oh/sh
318 320	4103-7619 4103-7619	do. Charles Sheatler	do .	1976 1971	H U	740 720	Ť	Dmh/sh Dmh/sh
321	4103-7619	do .	Charries	1976	Н	720	T T	Omh/sh Omh/sh
322 323	4103-7619 4103-7619	do. Powlus	Champion do.	1976 1971	H H	705 580	V	Swc/dls
324 325	4103-7619 4103-7619	C. Hornberger James Powlus	do. do.	1971 1971	H H	585 585	V V	Swc/dls Swc/dls
325 326	4103-7619	Carl Strausser	00.	1958	Н	560	V	Swc/dls
327 328	4103-7618 4103-7619	Jesse Traugh Orvil Weaver	R. R. Hornberger Champion	1967 1972	H H	540 750	V T	Swc/dls Dh/sh
329	4102-7613	Lew Andrezzi	do.	1969	Н	500	T	Omh/sh
330 331	4100-7624 4059-7628	Liberty Chevrolet Jeff Fritz	 Stackhouse	1980	H H	490 500	T V	Sto/lsd Smk/sls
332	4059-7629	Bell Telephone Co.	Wieand Brothers	1974	C	500	V	Smk/sls
333 334	4104-7614 4104-7614	Randall Kishbaugh do.	Champion do.	1978 1975	H	800 805	S S	Dmh∕sh Omh∕sh
335	4104-7618	O. Tyson	do.	1977	Н	700	S	Omh/sh
336 337	4104-7618 4104-7615	Slovic Eskin	do. Roy Zimmerman	1975 1967	H H	785 710	S S	Oh/sh Omh/sh
340	4103-7618	Ralph Kelchner	Champion	1972	Н	580	T	0Sk/1s
341	4103-7618	Lillian Robbins	do.	1974	Н	570	Т	Swc/dls

RECORD OF WELLS

	_	Т	T							
		0 - 11 (-)	Statio lev	: water /el						
Total depth below land surface (feet)	Casing Depth Diameter (feet) (inches)	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
205 320 300 185 72 30 80 40 90 65 123 123 240 123 200 104	21 6 20 6 20 6 20 6 40 6 20 6 20 6 20 20 41 6 21 6 21 6 40 6	25;63 130;175 27 65;87 118 180 101 62;128	26 10 12 18 15 18 40 31 13 15 37 49	9/80 9/80 9/80 9/80 9/80 9/80 10/80 10/80 10/80 10/80 11/80	2 1 1 4 2 1 6 10 12 6 15	.03/03/5 .03/103/03/06/07/	1 1 1	120 17 17 17 188 68 51 34 51 34 51 120 51 34 34 34 34 34 34 34 34	285 750 775 775 520 190 130 78 135 92 210 360 350 144 92 165 125 200 195 58	Co-219 220 222 223 224 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
90 90 420 123 70 175 55 60 130 115 175 140 35 35 37 200	40 8 28 6 22 6 22 6 20 6 52 6 21 6 20 6 22 6 35 6 30 6 37 6 58 6	72;94;204; 412 85 55;85 70;120 65 51 80;130 45;65;108 30 110;130 73;86;97; 182	32 10 16 27 32 40 19 12 15 8 30 28	2/81 7/66 11/80 11/80 5/75 11/80 5/67 11/80 6/66 10/76 2/78 12/80	8 4 10 6 5 6 100	.12/40 .05/15/20/21/05/06/21/19	22	120 103 86 120 137 154	385 315 305 120 385 420 280	245 246 248 249 250 251 252 253 254 255 256 257 258 301 302 303 304
68 300 53 69	68 6 42 6 47 6	60;74 62;96;116; 150;275	32 21 37 26 38	12/80 6/81 12/80 7/81 9/80	50 25 120 6	10/38 1.7/17 89/20 1.4/12 .44/5	6 1 1 1	54 188 428	118 395 800 800 220	305 306 307 308 309
360 35 52 150 95 175 75 100 100 200 150 40 50 50 85 93 100 125 125 350 150 100 150 150 150 100 100 1	40 8 22 6 45 6 20 6 20 6 40 6 20 6 6 20 6 40 6 30 6 6 16 6 80 6 40 6 28 6 30 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 2	42 130 90 75;145 40;63 70 127 45 45 45 88 75 100;115 84;262 80 130 85 88;100;128	21 32 15 10 27 35 12 15 7 50 11 12 2 31 44 50 36 23 15	12/80 10/80 6/68 11/77 11/80 11/80 11/80 11/80 10/67 8/72 12/80 12/80 12/80 12/80 12/80 12/80 12/80 12/80 12/80 12/80 12/80	250 9 8 6 8 15 20 20 10 50 5 10 20 5 10 8 10 8 10 14 20	3.9/7524/ 3.9/	1	19 137 154 103 68 	730 340 345 345 300 280	310 311 312 313 314 315 316 317 318 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 340 341 341 342 343 344 345 346 347 348 349 349 349 349 349 349 349 349

TABLE 23.

						Alti- tude of		
Well	location					land	Topo-	
Number	Lat-Long	0wner	Driller	Year completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Co-342	4103-7619	Bertie Dennis	Clifton Buck	1967	H	565	W	Dmh/sh
343	4103-7619	Nelson Kulf	do.	1967	Н	605	S	Dmh/sh
344	4101-7620	Columbia County Development Authority		1977	U	515	T	Q90/s9
345	4102-7619	do.		1977	U	510	Т	Q90/s9
346 347	4102-7619 4101-7619	do. do.		1977 1977	U U	520 520	T T	Q90/s9 Q90/s9
348	4102-7619	Robert Krum	Stackhouse	1980	Н	510	T	Do/lss
349 350	4101-7619 4058-7630	do. W. Diehl	R. R. Hornberger	1960	H	510 910	T H	Do/lss Otr/sssh
351	4058-7630	R. Fetterman	Wieand Brothers	1960		575	S	Dmh/sh
353 354	4100-7631 4100-7632	R. Snyder Eugene Wagner	Stackhouse R. R. Hornberger	1973 1966	H C	625 880	S W	Dmh/sh Dtr/sssh
355	4101-7625	James Vance			Н	700	Н	Smk/sls
356 357	4103-7623 4102-7622	Robert Thomas Roland Michael	Alvin Swank and Son	1976 1940	H	755 735	S W	Dmh/sh Sb/sh
358	4102-7624	Hock			Н	670	S	Sb/sh
359 360	4102-7624 4102-7621	do. B. F. Haney	Clifton Buck	 1969	H	700 640	S W	Sb/sh Swc/dls
361	4102-7622	Robert Eckrote	do.	1968	Н	630	S	Swc/dls
362 363	4103-7621 4057-7628	George Acornley Charles Karns	Alvin Swank and Son	1975	H	700 480	S V	Dmh/sh Dcsc/sssh
364	4058-7629	Mildred Oeussen			Н	860	H	Dtr sssh
365 366	4058-7627 4059-7626	Pierce Breech Fay Young	Alvin Swank and Son	1973	H	77.5 82.5	H H	Otr/sssh Dtr/sssh
367	4058-7626	Charles Creasy			Н	830	Н	Dtr/sssh
368 369	4058-7625 4104-7616	William Slusser Kenneth Helm	Clifton Buck		H H	885 640	H S	Dtr/sssh Dmh/sh
370	4104-7615	Jay Welsh	Champion	1976	Н	675	S	Dmh/sh
371 372	4102-7622 4103-7629	Benard Bafile Clair Hock	Stackhouse Clifton Buck	1978 1971	H C	745 540	S V	Sb/sh Ocsc/sssh
373	4059-7627	ARCO	Wieand Brothers	1980	0	480	Ť	Swc/dls
374 375	4104-7617 4106-7628	John Fester George Duncan	R. R. Hornberger Virgil Buck	1967 1977	H	680 730	T S	Dmh/sh Omh/sh
376	4106-7628	do.	do.	1963	Н	700	W	Dmh/sh
377 378	4104-7628 4105-7626	N. Gross Richard Puterbaugh	do. R. R. Hornberger	1978 1966	H H	1,010 9 4 5	Н S	Ociv/sssh Ociv/sssh
379	4105-7624	Matthew Zoppetti		1971	Н	580	٧	Q90/s9
380	4107-7632	Millville Water Authority		1980	Р	630	٧	Qa1/sg
381 382	4102-7624	William Botke	Alvin Swank and Son		H H	760 585	S V	Sto/lsd Dmh/sh
383	4106-7626	Amos Harvey	Clifton Buck	1976	Н	970	S	Dtr/sssh
384 385	4106-7626 4107-7625	P. Cain Calvin Brown	Virgil Buck Clifton Buck	1978 1967	H H	1,005 635	S V	Dtr/sssh Dmh/sh
386	4106-7624	Joseph White	do.	1974	Н	810	Н	Dtr/sssh
387 388	4103-7625 4105-7627	R. Kile Francis Purcell	Stackhouse Clifton Buck	1978 1974	H H	785 860	S S	Dcsc/sssh Dciv/sssh
389	4103-7615	Sam's Auto Sales		1981	Н	520	T	Swc/dls
390 391	4104-7628 4104-7628	Robert Dewald Carl Shaner	Clifton Buck R. R. Hornberger	1968 1966	H H	945 890	H W	Dcsc/sssh Dcsc/sssh
392	4104-7628	Harry Welliver	Clifton Buck	1967	Н	940	Н	Ociv/sssh
393 394	4103-7628 4102-7628	Howard Funk Charles Turner	do. R. R. Hornberger	1967 1966	H H	960 820	H H	Dcsc/sssh Otr/sssh
395	4104-7629	David Walters		1974	Н	655	٧	Dtr/sssh
396 397	4104-7630 4104-7630	do . do .	Clifton Buck	1974 1974	H H	585 585	V	Ociv/sssh Dciv/sssh
398	4103-7629	Columbia Asphalt Co.			Н	620	S	Dcsc/sssh
399 400	4103-7629 4104-7615	do. John Magrone			C H	590 565	S W	Ocsc/sssh Ogo/sg
401	4104-7615	do.	J. F. Harrison	1979	Н	565	W	Dmr/sh
402 404	4102-7618 4100-7629	Briar Heights Lodge Quality Inn	R. R. Hornberger do.	1976 1973	C	590 645	W H	Sb/sh Swc/dls
405	4101-7630	Joseph Levan	Stackhouse	1972	Н	590	W	Dmh/sh
406 407	4105-7615 4106-7621	Rothery Earl Eveland	Champion R. R. Hornberger	1974 1977	H H	1,055 635	S V	Dciv/sssh Qgo/sg
408	4104-7620	Donald Miller	do.	1966	Н	685	W	Otr/sssh
409 410	4105-7624 4101 - 7629	Matthew Zoppetti Craig Laidacker	R. R. Hornberger	1973 1966	H H	575 475	V W	Qgo/sg Sto/lsd
411	4104-7628	George Crawford	Stackhouse	1975	Н	950	Н	Dcsc/sssh
412 413	4101-7627 4100-7625	Barbara Pfleegor Mariano Construction Co.	R. R. Hornberger Stackhouse	1973 1981	H H	585 500	W V	Dmh/sh Swc/dls
414	4105-7615	Richard Oent	Champion	1974	Н	1,015	S	Dciv/sssh
415 416	4105-7615 4105-7615	Edward Shultz Alex Keris	do. do.	1976 1975	H H	1,030 1,020	S S	Dciv/sssh Dciv/sssh
417	4105-7615	Edmund Persans	do.	1974	Н	1,020	S	Dciv/sssh
418 419	4105-7615 4105-7615	Harold Grasley Drue Hoffman	do.	1972 1966	H H	1,050 1,040	H S	Ocsc/sssh Dciv/sssh
420	4105-7615	Gary Kreischer	Champion	1977	Н	980	S	Dciv/sssh

RECORD OF WELLS

				Statio							
Total			Depth(s)	Static lev							
depth below	Casi	ng	to water-	Oepth below			Specific capacity			Specific conduc-	
land surface		iameter	bearing zone(s)	land surface	Oate measured	Reported yield	[(gal/min)/ft]/ pumping rate	Pumping period	Hard- ness	tance (µmho/cm	Well
(feet)		inches)	(feet)	(feet)	(mo/yr)	(gal/min)	(gal/min)	(hours)	(mg/L)	at 25°C)	number
46 65	25 40	6 6	42 61	7 28	5/67 5/67	9 10	. 26/ - . 43/ -				Co-342 343
25 25	23 20	6 6									344 345
25 25 25	24	6									346 347
120 54	85 39	6				6					348 349
303 98	35	6		67 19	12/80 11/78	1					350 351
147 300	30 29	6 7	 82;198;258	26 48	12/78 10/78	 30	.12/		 51	101	353 354
125	 75	6		57 50	12/80 12/80				51 	169 	355 356
115 	18 - - -	6 		45 37	12/80 12/80						357 358
81				13 25	12/80 12/80						359 360
47 125	28 20	6 6	45 	18 28	8/68 12/80	20 	1.3/				361 362
82 160				33 32 66	12/80 12/80 12/80				51 51	109 98	363 364 365
300				31 31	12/80 12/80 12/80						366 367
120 150	32 55	6 6		42 14	12/80 12/80						368 369
125 174	40	6	70;120	43 37	12/80 3/81		.18/3	1	 51	110	370 371
85				9 15	4/81 4/81		.67/17	2	51 	177 	372 373
115 130	35 23	6 6 6	75;85;108 90;120	75 17	5/67 5/81	8 7	. 20/ . 06/		103	210	374 375
68 170 90	20 32 45	6	87;155 50;78	17 56 27	5/81 6/81 5/81	7 5	.06/		137 17 34	340 45 63	376 377 378
45 18	45 18	6 48				100			34 34	94 140	379 380
200	184	6		139	5/81	70	4.9/7	1			381
320 100	31	6	60;100	F 	1/81	4				4500	382 383
230 51 207	20 40 23	6 6 6	175;210 48 175	90 12 145	12/78 9/67 11/74	5 21 4	.04/ 1.1/ .06/		34 68	85 125	384 385 386
248 76	62 47	6	123;241 72	28	9/74	20 8	.17/		34	104	387 388
133	23	6	78;130	38 64	5/81 12/68	 7	.12/		180	495	389 390
175 134	20 	6 6	71;138 77;130	- 71	11/67	8 10	.18/		68 34	160 86	391 392
127 255	20 23	6	94;125 176	72 67	4/67 8/66	10 2	.20/		51	110	393 394
56 50 50	41 30 30	6 6 6	56 45 43	 8	 8/74	7 10	.37/				395 396 397
 				29 60	4/81 4/81	 					398 399
30 67	 65	6	 65	23 28	5/81 5/81	 40	4.0/				400 401
414 179	20 106	6 10		19 69	2/76 5/73	200 75			 154	300	402 404
75 100	29 40	6	74 80			17 8			51 	148	405 406
40 435 64	43 24 64	6 6 6	45;97;376	19 15 10	1/77 6/66 4/73	15 3 20	1.00/		34	300	407 408 409
63 198	30 21	6	60 198	34 93	10/66 6/81	10 6	.53/		189 51	425 120	410 411
31 73	22	6		6	6/81 6/81	30 20	3.6/8	- - -	137	320	412 413
150 175	21 75	6	115 135			6 6					414 415
150 175	60 60 20	6 6	120 154	 76	 6 /01	7 10			17	47	416 417
150 130 100	20 106 70	6 6 6	133 110;125 78	76 65 	6/81 10/66	8 7 8	.13/		34 86 	71 200 	418 419 420
	_					_					

TABLE 23.

						Alti-		
Well	location					tude of land	Торо-	
	1			Year		surface	graphic	Aquifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
Co-421	41D5-7615	William Kreischer	Champion	1977	Н	89D	S	Dciv/sssh
422	41D6-7616	Camp Louise	do.	1969	Н	1,120	S	Mmc/sssh
423	4107-7616	do.	Charries	1070	Н	1,13D	S	Mmc/sssh
424 425	4105-7615 4106-7615	Eugene Collins Kenneth Hess	Champion do.	197D 1973	H	1,040 1,020	H S	Dciv/sssh Dcsc/sssh
426	4106-7615	Donald Lynn	do.	1973	H	990	S	Dcsc/sssh
427	41D6-7616	Leonard Wilkinson	do.	1974	Н	930	S	Dcsc/sssh
428 429	4105-7616 4104-7617	Lester Seely Lewis Abrams	do. R. R. Hornberger	1975 1977	H H	925 900	S S	Dciv/sssh
430	4106-7616	David Hook	Champion	1974	Н	940	S	Dtr/sssh Dcsc/sssh
431	4105-7616	Joseph Zowalski	do.	1972	Н	985	S	Dcsc/sssh
432	4105-7616	Kenneth Slusser	do.	1974	Н	990	S	Dcsc/sssh
433 434	4105-7616 4105-7616	David Whitenight John Stevens	do. do.	1977 1976	H	960 950	S S	Dciv/sssh Dciv/sssh
435	4106-7614	Jack Dent	do.	1973	н	1,000	Š	Dciv/sssh
436	4104-7625	Klingerman Boarding		1960	Н	580	V	Dcsc/sssh
437 438	4101-7625 4106-7614	Light Street Grange Curtis Fultz	 Champion	1929 1972	H	595 1,020	S S	Sb/sh
439	4106-7614	Jack Beck	do.	1972	Н	980	W	Dciv/sssh Dcsc/sssh
440	4105-7613	Reba Richards			Н	710	W	Dtr/sssh
441	4101-7621	Gary Swisher			Н	500	Ţ	Don/lss
443 446	4101-7621 4101-7621	William Jones Baker Trailer Park			H P	5D0 520	T S	Dmr/sh Sto/lss
448	4101-7621	Champion Valley Farms	Wieand Brothers	1981	N	5D0	Ţ	Do/lss
452	4101-7622	Bloomsburg Water Co.	R. R. Hornberger	1967	Р	500	T	Dmr/sh
453	4101-7627	Gary Hock	Alvin Swank and Son	1979	Н	650	S	Swc/dls
454	4101-7627	Thomas Shaffer		1980	H	610	Š	Dmh/sh
455	4102-7622	E. O. Franz, Sr.		1960	Н	695	S	Sb/sh
456	4101-7627	Columbia County Waste Authority 1	Stackhouse	1974	0	640	W	Sto/1sd
457	4101-7627	Columbia County Waste Authority 4			Н	650	S	Swc/dls
458	4101-7627	Columbia County Waste Authority 5	Stackhouse	1974	0	655	S	Swc/dls
459	4101-7627	Columbia County Waste	do.	1974	0	665	н	Sto/lsd
460	4101-7627	Authority 6 Columbia County Waste	do.	1974	D	530	W	Sb/sh
461	4101-7627	Authority 7 Columbia County Waste	do.	1974	0	64D	W	Sb/sh
462	4101-7627	Authority 8 M. Anderson			Н	490	٧	Sb/sh
463	41D1-7627	Shultz			Н	490	٧	Sb/sh
464	4100-7614	Cy Mowery	R. R. Hornberger	1966	Н	1,025	S	Dcd/sssh
465 466	4100-7614 4102-7613	Lee Schell Richard Yoder	Champion	1976 1974	H	930 782	H S	Dcsc/sssh Dtr/sssh
467	4101-7620	Helen Rupert		1981	H	500	Ţ	Dmr/sh
468	41D1-7620	do.		1981	Н	500	T	Dmr/sh
469 470	4106-7613 4106-7613	William Carrathers Martin Carrathers	Champion do.	1972 1972	H	1,010 982	S S	Doso/sssh Doso/sssh
471	4100-7614	Pennsylvania Department	R. R. Hornberger	1966	H	835	W	Dcsc/sssh
		of Transportation	Ü					
472 473	4101-7614 4105-7618	Arlen Payne	Champion	1974 1975	Н	804 950	S S	Dciv/sssh Dcsc/sssh
474	41D5-7618	Frank Rivera Jay Welsh	Champion	1974	H	940	S	Dcsc/sssh
501	4105-7618	David Laubach	do.	1973	Н	950	S	Dcsc/sssh
502	4103-7617	Briar Creek Park	Alvin Swank and Son	1973	Р	670	Н	Swc/dls
503 504	4105-7617 4105-7618	Darvin Bower John Hrinda	Champion	1977 19 5 8	H H	1,010 880	S W	Doso/sssh Doso/sssh
505	4101-7621	Champion Valley Farms	Wieand Brothers	1981	N	500	Ť	Sto/1sd
506	41D4-7619	Wayne Girton	Champion	1975	Н	950	S	Dcsc/sssh
507	4104-7619	Clarence O'Neal	do.	1973	Н	975	Н	Dcsc/sssh
508	4105-7618	Robert Gower	do.	1972	Н	965	Н	Dcsc/sssh
509	4105-7618	Doyle Keck	do.	1972	Н	980	Н	Dosc/sssh
510 511	4105-7617 4105-7617	William Farrell Karl Pennebaker	do. do.	1973 1974	H H	970 1,000	H S	Doso/sssh Doso/sssh
512	4105-7618	John Shultz	do.	1978	н	940	S	Dcsc/sssh
513	4105-7618	Shultz	do.	1974	Н	950	S	Dosc/sssh
514 515	41D4-7617 4104-7617	Thelma Keck do.	do. Stackhouse	1972 1979	H H	750 750	S S	Dciv/sssh Dciv/sssh
516	41D5-7618	Rodney Diehl	Champion	1972	Н	910	S	Dcsc/sssh
517	4105-7618	Cindy Weaver	do.	1974	Н	91D	S	Dcsc/sssh
518 519	41D5-7618 41D5-7618	R. Samsel	do.	1977	H H	925 1,025	S S	Dcsc/sssh Dcsc/sssh
520	4105-7618	Eldon Benjamin John Babich	do.	1968 1968	Н	825	W	Dtr/sssh
521	4058-7629	A and S Auto Body	Stackhouse	1979	Н	495	V	Dmr/sh
522	4100-7614	Michael Bobraski	R. R. Hornberger	1977	Н	925	W H	Dcsc/sssh Dciv/sssh
523	41D1-7615	Gary Frace	Champion	1970	Н	870	П	DC 1 1/ 333[]

			Static lev	water						T
Total depth below land surface (feet)	Casing Oepth Oiame		Oepth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
100 150 185 100 100 125 125 90 100 100 175 100 125 150 90 145 175 175 155	20 60 60 60 60 60 60 60 60 60 60 60 60 60	66 140;175 66 85 66 80 115 66 60 66 80 66 84 140 74 66 120 6 80;162 155 6 80;162 155 175 175 175 175 175 175 175 175	32 113 10 26 30 55 15 29 80 19 19 14 26	6/81 6/81 6/81 1/79 6/81 1/77 8/72 6/81 8/81 7/81 7/72 4/82 4/82 4/82 8/81	6 8 10 8 12 8 8 5 10 7 5 6 7 12 16 10	.12/4	3 1 1	34 17 17 17 17 34 68 34 17 103 51 34 34 291 395	93 19 20 41 47 78 158 74 47 278 112 87 150 580	Co-421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 443 446
500 220			28 25 63 120	5/81 7/81 7/81 6/79	60 24	.84/34 	1 	137 120 34 	335 255 70 234	452 453 454 455 456
			101	7/81		2.7/9	1	171	290	457
170	29	5 92	54	7/79					213	458
190	39	6 130	114	7/81		1.7/11	1	137	275	459
125	26	5 26	9	7/81	15	.36/3	1	86	200	460
200	29	86;96;125;170	77	7/81	12	.05/2	2		920	461
85 125 100 106 90 105 100 80	30 6 20 6 60 6 80 6		45 40 30 33 65 7	12/66 4/76 6/81 7/81 9/72 6/66	 30 22 6 8 8 50	 .13/5 .05/3 3.9/	 1 1	17 34 34 120 120	60 97 108 300 330	462 463 464 465 466 467 468 469 470 471
165 125 100 250 125 36 570	42 6 35 6 	6 96 5 65 6 100	27 23 111 84 15	8/81 8/81 8/81 8/81 11/81 9/81	10 8 7 6 360	 .34/25 3.4/9 2.4/20 2.0/280	 8 1 1 24	17 34 34 154	34 50 67 300	472 473 474 501 502 503 504 505
125 120 135 200 150 100 125 125 323 75 150 150 85 123 135	40 25 36 40 80 35 42 20 42 40 80 80 60 70 20 41 23	550 550 550 6 95 6 105 6 118 6 80 6 120 6 78 6 103 6 98 6 6 95;120 6 130 6 130 6 39;71;80 6 39;71;80 6 55;127 75;150	113 74 40 48 5 29 15 60	8/81 8/81 7/72 8/72 11/72 8/81 4/68 9/81 3/77	 6 8 10 5 8 8 6 7 3 8 8 10 10 5	.08/3	1	34 34 34 86 17 51 68 51	70 84 60 205 47 180 350 185 153	506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

TABLE 23.

				T	-			
Well	location					Alti- tude of land	Торо-	
Number	Lat-Long	Owner	Oriller	Year completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Co-524 525 526	41D1-7615 4101-7616 4106-7621	Glen Whitmore James Hyde Twin 8ridges County	Champion do. Wieand 8rothers	1970 1974 1976	H H P	830 865 625	H S T	Dciv/sssh Dtr/sssh Qgo/sg
527 528 555 556 557 558 569 560 561 562 563 564 565 566 567 570 571 572 573 574 575 576 577 578 584 585	4106-7621 4105-7619 4100-7614 4100-7615 4101-7618 4104-7619 4104-7619 4104-7619 4104-7620 4103-7619 4105-7621 4105-7621 4105-7621 4105-7621 4059-7627 4059-7627 4059-7627 4059-7627 4059-7631 4059-7631 4059-7631 4059-7631 4059-7631 4059-7631 4059-7631 4059-7632 404-7631 4059-7632 4059-7632 404-7631	Park Ruth Sterner David McMurtrie Mike Grant Kenneth Haskell Gordon Derr Charmaine Keefer Edward Ruckel John Rakich Charles Wike Hitoshi Sato Rodney Grasley Gerald Wolfe Lester Dietterick Ronald Davis William Correll William Berger Evelyn Stauffer Harold 8uch ARCO do. R. Snyder 8enard George William McGinley Ben Mourey Kenneth Girton Rohrbach Farms R. Faust	Champion Champion do. Clifton 8uck Clifton 8uck Champion do. Ronald Randler Champion Clifton 8uck Champion do. Stackhouse Clifton Buck Stackhouse Wieand 8rothers do. do. Alvin Swank and Son do. R. R. Hornberger do. Roy Zimmerman Stackhouse	1967 1973 1981 1969 1970 1968 1976 1973 1976 1981 1978 1978 1978 1978 1979 1980 1980 1980 1980 1973 1977 1969 1977	H H H H H H H H H H H H H H H H H H H	625 900 925 870 902 510 875 960 960 880 685 600 1,00D 1,055 780 595 73D 770 480 480 625 1,000 900 825 790 965 970 685	H S H M M M M S L L L L S H S M H S S H S S A H S S A H S L L L S M M M M M M M M M M M M M M M	Qgo/sg Ocsc/sssh Dcsc/sssh Dcsc/sssh Dciv/sssh Dmh/sh Dcsc/sssh Ociv/sssh Otr/sssh Otr/sssh Ociv/sssh Ociv/sssh Ociv/sssh Smk/sls Swc/dls Swc/dls Swc/dls Swc/dls Swc/dls Smk/sls Srl/sls Srl/sls Sru/sls Dcsc/sssh Ociv/sssh
586	4101-7625	Scerbo Medical Center	Stackhouse	1981	н	685	н	Smk/s1s LUZERNE
Lu-368 369 370 371 372 373 375 376 377 378 380 381 382 383 384 385 417	4104-7609 4105-7612 4105-7611 4105-7611 4105-7611 4104-7611 4106-7612 4105-7613 4105-7610 4102-7610 4102-7610 4102-7610 4102-7610 4102-7610 4102-7610 4102-7610	8each Haven Fire Virgil Rhinard Arthur Varner Herb 8rader 8ill Weadon Nebbie OiAugstine 8art Gunther Harold Kessler Larue 8ogart Earl Keller Larry Kline do. Oonald Steinhaver Whitmire Tom Aten Roland Oeischaine Pennsylvania Department of Transportation	Champion R. R. Hornberger Champion do. do. do. R. R. Hornberger Champion do. do. Champion Champion do. do Champion Champion Champion Champion	1973 1966 1974 1972 1974 1974 1967 1973 1976 1973 1974 1974 1974 1974	C	540 1,010 820 840 810 640 1,020 91D 880 1,D1D 880 940 910 900 875 960 480		Dmh/sh Dciv/sssh Oh/sh Oh/sh Dmh/sh Dmr/sh Dcsc/sssh Otr/sssh Dtr/sssh Dciv/sssh Dciv/sssh Dciv/sssh Dciv/sssh Dciv/sssh Dciv/sssh Dciv/sssh Dciv/sssh
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 436 437 437	4103-7613 4104-7608 4105-7608 4104-7610 4104-7610 4104-7610 4104-7610 4104-7609 4104-7609 4104-7608 4104-7608 4104-7613 4104-7613 4104-7613 4104-7613 4104-7610 4104-7610 4104-7610 4104-7610 4104-7610 4104-7610 4104-7610	do. Salem Township Michail Mont Steven Zwolinski Gene Kmetovicz Wellington Oavenport Gene Killian Steve Molnor Robert Price George Griffin Robert Price Fred Hummel Clarence Fox 8ennie Naunczek do. Robert Pinterich William Davis Russel Burke Sheldon Molyneaux Watts Pennsylvania Power and	Champion do. Clifton Buck do Clifton Buck Champion R. R. Hornberger Reichard R. R. Hornberger Champion Champion do. do. do. do. do. Virgil 8uck	1977 1970 1972 1968 1967 1967 1976 1957 1973 1976 1946 1977 1976 1976 1973 1973 1973	U H H H H H H H P H H C H H H H H U	486 580 560 540 570 515 535 560 645 560 540 5DD 640 640 525 560 538 740 820	C S S S V S S T T S T V S S S V S S H S	Dmr/sh Omh/sh Omh/sh Dmh/sh Omh/sh Omh/sh Omh/sh Dmh/sh Dmh/sh Dmh/sh Dmh/sh Dmh/sh Omh/sh
440 441 442	4105-7608 4105-7608 4105-7608	Light Co. do. do. do.		1970 1970 197D	U U U	722 677 661	S T T	Dmh/sh Qgo/sg Dmh/sh

(CONTINUED)

				5tatic lev							
Total depth below land surface (feet)		ng Diameter	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	5pecific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
90 175 50	40 20 47	6 6 8	70 145 	64 7	9/81 9/81	10 6 60			34 51	95 111 	Co-524 525 526
28 200 300 75 150 55 275 200 200 151 75 40 80 175 98 81 120 300 68 30 147 175 125 190 115 235 198	31 35 40 40 56 33 40 45 28 20 20 80 20 57 20 20 68 30 30 40 42 90 80 64 	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	115;173 65 90;130 52 150;250 160 176 70 55 38 62;78 81;120;230	10 67 19 46 4 35 109 18 20 14 26 29	7/67 9/81 7/68 10/81 9/81 11/81 11/81 10/68 12/81 9/80 9/80 4/82 12/78 10/78	20 8 30 20 20 8 10 6 20 6 10 20 8 20 16 16 20 19 18 15	 .65/ .14/9 .30/ 3.8/17 .34/12 2.0/ .11/175 3.1/10 	 4 1 2 5 5 	17 68 68 51 120 17 51 68 103 68 34 103	53 225 160 115 120 26 148 137 158 225 86 220	527 528 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 584 585 586
COUNTY	25		70	**							
100 95 125 100 125 275 215 300 125 125 140 140 170 175 125 275 16	25 40 113 68 40 30 21 35 20 80 42 20 40 21	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	70 55;85 120 75 98 60;240 119;210 180;215 86 105 80;130 85;135 125;165 130;155 95 140;270	40 25 34 38 80 35 	4/73 10/66 12/80 12/80 9/67 4/74 	12 9 7 12 6 4 3 5 7 8 15 25 6 8	.14/		128 85 103 85 34	255 111 210 220 125 	Lu-368 369 370 371 372 373 375 376 377 378 380 381 382 383 384 385 417
49 175 100 145 85 100 150 160 98 125 90 55 125 100 175 100 100 50 230 445	20 20 20 21 21 29 20 109 62 80 16 20 20 20 20 20 20 21	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	155 76 64;82 57;92 132 120;155 87 120 72 140 80 85 35 85;220	5 36 22 111 63 62 48 25 14 35 7 2	7/80 8/68 12/67 7/80 10/80 7/80 8/73 7/80 7/80 7/80 7/80 7/80	12 6 20 14 20 6 20 10 15 10 5 6 8 15		1	171 171 171 103 120 171 171 86 86 68 154 120 154 137 154 137	295 230 300 120 220 340 345 200 220 190 310 255 335 295 410 340 340	418 419 420 421 422 423 424 425 426 427 428 430 431 432 433 434 436 437 438
74 231 198	117 68	6 6		65 54	12/70 12/70						440 441 442

TABLE 23.

						I		
						Alti- tude of		
Well	location					land	Торо-	
RCTT	1000001011	_		Year		surface	graphic	Aguifer/
Number	Lat-Long	Owner	Oriller	completed	Use	(feet)	setting	lithology
Lu-443	4105-7608	Pennsylvania Power and	• -	1970	U	657	S	Dmh/sh
Eu-443	4103-7008	Light Co.		1370	U	037	3	Diliti7 3tt
444	4105-7608	do .		1970	U	643	S	Dmh/sh
445	4105-7608	do .		1970	U	663	S	Dmh/sh
446 447	4105-7608 4105-7608	do. do.		1970 1970	U U	642 640	S S	Qal/sg Dmh/sh
448	4105-7608	do.		1970	U	683	S	Omh/sh
449	4105-7608	do.		1970	Ŭ	663	Ť	Qgo/sg
450	4105-7608	do.		1970	U	607	T	Qgo/sg
451	4105-7611	Samuel Knorr	Clifton Buck	1967	Н	860	S	Otr/sssh
452 453	4104-7609	U.S. Geological Survey	Alvin Swank and Son	1980	0	645 550	T S	Qgo/sg
454	4104-7609 4103-7611	do. do.	Alvin Swank and Son	1980 1980	0	530	1	Omh/sh Dmh/sh
455	4103-7611	do.	do.	1980	0	530	Ť	Qgo/sg
4 56	4104-7609	Brad Smith	do.	1980	Н	580	T	Dmh/sh
457	4101-7613	John Robbins	Champion	1976	Н	510	V	Otr/sssh
458	4104-7608	Malvern Wolfe	do.	1970	Н	500	Ţ	Oh/sh
459 460	4202-7609 4203-7612	Hoyt Readler Robert Selic	R. R. Hornberger Champion	1967 1975	H H	975 580	S T	Ociv/sssh Dmh/sh
461	4105-7611	Wilson Vandermark	R. R. Hornberger	1959	Н	945	Ś	Otr/sssh
462	4105-7611	Gerald Karchner	do.	1967	Н	835	S	Oh/sh
463	4105-7612	Richard Bognar		1976	Н	880	S	Otr/sssh
464	4105-7611	Oebra Golomb	Champion	1970	Н	700	W	Dmh/sh
465 466	4104-7613 4104-7613	Bennie Naunczek Larry Feissnor	do. do.	1971 1973	H H	780 760	S S	Dmh/sh Omh/sh
468	4103-7612	William Seigfred		1976	Н	500	T	Dmr/sh
469	4103-7612	Walter Ryman		1980	S	590	Н	Dmh/sh
471	4103-7609	Rudy Felix			Н	500	Ţ	Omh/sh
472	4105-7608	Pennsylvania Power and Light Co.		1970	U	649	S	Dmh/sh
473	4105-7608	do.		1970	U	702	S	Omh/sh
474	4105-7608	do .		1970	U	667	S	Omh/sh
475	4105-7608	do .		1970	U	680	S	Omh/sh
476	4105-7608	do.		1970	U	683	S W	Omh/sh
477 478	4105-7608 4105-7608	do.		1970 1970	U U	646 667	S	Omh/sh Omh/sh
479	4105-7608	do.		1970	U	704	S	Omh/sh
481	4105-7609	William Sink			Н	675	T	Dmh/sh
482	4103-7611	William Zettle		1958	Н	615	Ţ	Dmh/sh
483	4106-7607	Pennsylvania Power and Light Co.		1973	U	505	7	Otr/sssh
484	4105-7607	do.		1973	U	505	Т	Qgo/sg
485	4105-7607	do.			U	505	T	Qgo/sg
486	4105-7607	do .		1973	N	501	Ī	Qgo/sg
487 488	4105-7607 4105-7607	do. do.		1972 1972	N U	505 505	T	Qgo/sg Qgo/sg
489	4105-7608	do.		1972	Ŭ	505	Ť	Qgo/sg
490	4105-7608	do.		1973	N	615	T	Qgo/sg
491	4105-7608	do.		1973	N	620	Ţ	Qgo/sg
492 493	4106~7610	John Krisanda	Champion	1975 1973	H	940 885	S W	Otr/sssh Ociv/sssh
493	4106-7610 4106-7610	Lemuel Sitler George Honse	do. do.	1973	Н	805	W	Ociv/sssh
495	4106-7610	Frank Peters	do.	1976	н	930	S	Ociv/sssh
496	4106-7610	do.	do.	1972	Н	940	S	Ociv/sssh
497	4106-7609	Russel Baer	do.	1981	Н	880	S	Ociv/sssh
498 499	4106-7610 4106-7611	Thomas Holloway Frank Bloom	do. do.	1974 1976	H	960 1,040	S S	Ocsc/sssh Ocsc/sssh
500	4106-7611	Harold Seward	GO •	1976	Н	922	S	Ocsc/sssh
501	4102-7610	Mark Adams		1974	Н	910	Н	Ociv/sssh
502	4101-7611	Callahan	Champion	1974	Н	930	Н	Ocsc/sssh
503	4102-7611	Orville Benjamin	Champian	1974	Н	903	S	Otr/sssh
504 505	4105-7613 4105-7613	Harry Bombushime Oonald McCoy	Champion do.	1973 1974	H	1,040 960	H W	Otr/sssh Otr/sssh
506	4105-7613	Michael Kennedy	do.	1974	Н	1,000	W	Otr/sssh
507	4100-7608	Charles Jurewicz		1974	Н	990	Н	Mmc/sssh
508	4101-7612	Oavid Fuller		1974	Н	865	S	Ocsc/sssh
509	4106-7612	Jim Switzer	Champion	1972	Н	1,015	S W	Ociv/sssh
510 512	4101-7612 4107-7609	Wilton Shiner Robert Boston	Roy Zimmerman	1967 1973	H	842 878	W S	Ocsc/sssh Ocsc/sssh
512	4107-7610	William Crisbell	Champion do.	1973	U	885	S	Ocsc/sssh
514	4106-7610	Nick Oalberto	do.	1976	U	1,030	W	Ociv/sssh
515	4106-7610	Paul Reichard	do.	1973	Н	950	W	Ociv/sssh
516	4104-7610	Beach Haven Community Board		1968	Н	510	V	Omh/sh
517	4106-7608	Pennsylvania Power and Light Co.	Champion	1977	Н	520	Т	Otr/sssh

Tohal			Oanth(a)	Static lev	water el						
Total depth below	Casing		0epth(s) to water-	Oepth below			Specific capacity			Specific conduc-	
land surface (feet)	Depth Oia	meter ches)	bearing zone(s) (feet)	land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	[(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	tance (µmho/cm at 25°C)	Well number
110	9	6		17	9/70						Lu-443
227 144 168 263 117 208 176 117 300 200 55 130 35 175 90 130 200 125	38 42 17 101 95 52 100 56 56 55 50 30 45 55	6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 113 92;145;220 75;130 33 120;135 110 145 120 140;195 90	32 21 29 35 29 62 14 32 62 51 22 20 36 12 64 25 60 8	12/70 12/70 12/70 12/70 12/70 12/70 12/70 8/80 10/80 12/80 10/80 12/80 11/67 6/76	 8 20 5 6 30 12 5 15 10 10 25	 .09/ 84/60 .05/4 .13/10 12/36 .10/	1 2 3 4	34 34 68 103 34 86 	75 237 237 233 138 82 135	444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 460 461 462 463 464
125 100 175 85 340 470	20 30	6 6 6 6 6	70;95 155 40;70 340	8 30 100 5 81 22 31	8/71 3/73 6/76 12/80 12/80 12/70	12 10 25 35	.03/2	 1		4450	464 465 466 468 469 471 472
 50 196 54	25	6 1 1 8		34 27 28 18 5 26 6 4 93 16	12/70 12/70 12/70 10/70 12/70 12/70 12/70 4/81 4/81 1/73		 				473 474 475 476 477 478 479 481 482 483
91 444 588 75 555 23 1000 1000 1500 1500 1500 1500 1255 125 1250 245 2300 3000 125 3000 125 3000 125 125 1200 185 75 112 175 110 150 125 51	75 20 20 20 20 20 20 25 32 60 37 32 20 20 20 21 24 30 30 30 70 20 20 20 21	8 2 12 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		12 7 24 9 17 10 50 30 160 20 50 40 35 35 45 12	5/81 5/81 8/72 12/73 11/73 11/72 2/76 3/74 4/74 7/74 8/74 3/74 4/74 7/74 11/72 11/72 11/72	 6 12 5 6 8 10 6 8 22 18 2 6 6 7 20 20 6 3 6 6 10 6 6	16/495 27/9 1.6/65 7.0/150	54 1 7 9	54 70 49 46 34 51 34 51 34	180 200 142 136 102 88 94 140 140	484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 512 513 514 515 516
100	62	6	73	24	8/80		.43/15	8		140	517

TABLE 23.

Well Number	location	Owner	Driller	Year completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/
				l			1	MONTOUR
Mt- 1	4D58-7634	Mahoning Township	Moody and Associates	1969	Р	610	V	Sto/lsd
2	4058-7634	Authority do.	do.	1969	Р	610	٧	DSk/ls
3 4	4058-7634 4058-7634	do. do.	Wieand Brothers do.	1978 1978	P P	610 61D	V	DSk/1s OSk/1s
5	4058-7635	do.	R. R. Hornberger	1966	Р	790	W	Sru/sls
6	4058-7635	do.	do.	1960	Р	790	W	Sru/sls
7 8 9 10 11 12 14 15	4058-7635 4058-7635 4057-7634 4057-7634 4057-7634 4059-7638 4059-7638	do. do. Maria Joseph Manor do. do. Red Roof Inn do.	do. do. do. do. Wieand Brothers	1960 1960 1960 1961 1965 1973 1973	P T T T C	850 85D 535 535 540 535 50D 500	S V V V V V	Srm/sls Srm/sls Omh/sh Dmh/sh Dmh/sh Dmh/sh DSk/ls Sto/lsd
16	4059-7638	Sheraton Inn	do .	1978	С	505		Do/lss
17	4059-7638	do.	do .	1973	С	505	V V	0on/1ss
18 19 20 21 22	4059-7638 4058-7636 4058-7636 4058-7636 4058-7634	Holiday Inn Geisinger Medical Center do. do. Frosty Valley Country Club	R. R. Hornberger R. R. Hornberger	1967 1961 1961 1965 1966	C T T I	515 56D 560 560 640	V W W W	Oo/lss Smk/sls Smk/sls Smk/sls Swc/dls
23 24 25 26 27	4058-7633 4059-7637 4057-7636 4057-7636 4057-7636	C. Seitz Sunnybrook Park TRW, Inc. do. Roselon Yarns, Inc.	Ronald Randler do. R. R. Hornberger do. do.	1978 1978 1975 1967	H N N	660 490 467 467 470	S V T T	DSk/ls Sru/sls DSk/ls Sto/lsd Swc/dls
29	4058-7634	Charles Keiter	Wieand Brothers	1979	Р	895	W	Srl/sls
30 31 32	4059-7638 4059-7638 4059-7638	Holiday Inn do. do.	do. do. do.	1973 1972 1973	CCC	520 515 515	V V V	Omr/sh OSk/1s Do/1ss
33 34 35	4059-7637 4058-7644 4057-7632	David Shoemaker Steve Rine Brown Catering	R. R. Hornberger Wieand Brothers R. R. Hornberger	1975 1975 1968	H C	58D 670 9D0	S H W	Swc/dls DSk/ls Otr/sssh
36 37 38 39 40 41 42 43 44 45 46	4058-7641 4058-7642 4059-7642 4059-7641 4059-7641 4058-7643 4058-7642 4059-7641 4058-7633	Mitchell Duffy Eugene Appleman Robert Foust Earnest Bower Robert Reedy Paul Appleman Donald Golder George Buckley P. Kohl Arthur Reedy Pennsylvania Society for Prevention of	do. Wieand Brothers Ronald Randler R. R. Hornberger Ronald Randler do. Ronald Randler do. R. R. Hornberger do. R. R. Hornberger	1976 1972 1976 1967 1967 1975 1968 1967 1966 1968	*****	955 620 660 638 620 590 630 590 650 630 645	H S S S S S S S S S S S S S S S S S S S	Sr1/s1s Dmr/sh Dmh/sh Dmh/sh Dtr/sssh Dmh/sh Omh/sh Omh/sh Dmh/sh Sto/1sd
47	4058-7633	Cruelty to Animals Chester Adams	do .	1967	Н	660	S	0Sk/1s
48 49	4058-7632 4058-7632	Robert Fry Stuart Hartman	do. Ronald Randler	1975 1974	H	670 690	S S	Do/lss DSk/ls
50 51	4058-7632 4058-7632	Clewell Vending William Linker	do. Wieand Brothers	1967 1975	H	630 67D	V S	Dmr/sh Dmh/sh
52 53	4058-7634 4058-7634	Harry Stamey D. Schuller	R. R. Hornberger do.	1973 1974	H	750 650	S S	Sb/sh Swc/dls
54 55	4058-7634 4058-7634	Harold Henry Harvey Houseknect	do. do.	1968 1977	H	730 630	S S	Sb/sh Sto/1sd
56 57	4058-7634 4058-7639	Robert Albertini Paul Earlston	do. Ronald Randler	1975 1973	H	715 900	S S	Sb/sh Srl/sls
58 59	4058-7639 4101-7638	George Lewellyn Randall Billmeyer	R. R. Hornberger Wieand Brothers	1967 1977	H	780 880	W H	Srl/sls Otr/sssh
60 61	4100-7642 4100-7642	Peter Cooper R. Hedding	do. Ronald Randler	1977 1978	н Н	600 720	S S	Dh/sh Oh/sh
62	4100-7642	James Dunkle	do .	1969	Н	730	S S	Dmh/sh Dtr/sssh
63 64	4101-7640 4100-7643	William Starr Henry Schmidt	do . do .	1977 1978	H	740 520	V	Dmr/sh
65 66	41D1-7642 4101-7643	M. Stahl Kenneth Permar	Wieand Brothers R. R. Hornberger	1979 1967	H	530 580	S S	Do/lss Do/lss
67 68	4102-7641 4102-7641	Rick Burkhart John Tanner	Ronald Randler R. R. Hornberger	1977 197D	H	540 580	S S	Do/lss Don/lss
69 70	4101-7643 4101-7638	Ralph Swartz William McMichael	Ronald Randler R. R. Hornberger	1976 1966	H	525 635	S W	Do/lss Dtr/sssh

						т —			_	Г	Т
				Static lev	water el						
Total depth below land	Cas	ing	0epth(s) to water- bearing	Oepth below land	Oate	Reported	Specific capacity [(gal/min)/ft]/	Pumping	Hard-	Specific conduc- tance	
surface (feet)		Oiameter (inches)	zone(s) (feet)	surface (feet)	measured (mo/yr)	yield (gal/min)	pumping rate (gal/min)	period (hours)	ness (mg/L)	(µmho/cm at 25°C)	Well number
COUNTY			1								
332	114	8	122	47	8/69	50	.70/50	12	205	370	Mt- 1
328	92	8	99;191;241	46	8/69	300	7.7/200	72		416	2
298 298	42 112	6 10	99;277	116	11/78	15 	3.8/200	48			3 4
305 312	59 43	7 6	95;130;198; 287;290;302 60;207;245;		1/66 9/60	300 125	1.1/75 1.4/50	72 			5 6
			258;275;312			10					7
						10					8
610 257	35 45	8 7	210;350;430			62 50					9 10
210						50					11
350				7	11/80	10 200	41/330	24			12 14
205 259	65 70	8 8		19 15	4/74 4/74	80	1.1/73	24			15
309	45	8	51;88;210;	15	10/73	600	5.3/158	24			16
95	36	8	237;239;285 40;50;65; 70;80	15	10/73	125	2.7/122	24			17
200		7		5	9/67	60	.67/80	8			18 19
300 400	34 34	7				60					20
314	63	7				190		~			21
213	22	8	45;183;207	F	7/66	100	2.5/				22
213	119	6	175;210	96	7/78	30	.88/				23 24
93 200	21 109	6 10	90	5 23	8/78 4/75	30 450	.67/ 19/500	24			25
100		6		28			38/85	8			26
308	73	10	150;185;230; 280	30	6/67		18/380	24			27
300	42	8	175;257	-69	7/80	200	.80/103		120	240	29
438 505	36 31	8 8	82;130;280 290	- F	6/80	10 900	.07/20 9.0/207	24 60		1,000	30 31
218	35	8	45;80;95;	12	1/74	80	.47/73	24			32
215	63	6	130;155 140;203	68	10/78	4					33
223 390	93 40	6 7	202 84;140;256;	115	 5/68	25 60	.22/60				34 35
215	20	6	315;369;384 140;195	80	11/78	2			120	239	36
127	20	6	50;70;85			15					37
40	27	5	40	15	6/76	30	3.0/				38
90 223	21 20	6 6	70;82 200	20 7	3/67 7/67	5 1	.07/				39 40
33	20	6		1	11/78	25					41
95 76	5 51	6 6	31;60;80 74			5 30	.06/				42 43
35	15	6	34	4	11/78	20	1.00/				44
200	21	6	190	8	7/66	5	.03/				45
75	57	6	65	35	7/68	40	1.00/				46
165	21	6	70;118;163	60	8/67	20	.31/~				47
215	41	6		41	11/78	2					48
169 88	42 44	6 6	165 75;85	82	11/78	5 10	.13/				49 50
123	20	6	74;86	19	11/78	8	.13/				51
150	21	6		44	8/73	8					52
155	42	6	100-164-100	20	10/74	8	07.4				53
215 185	51 124	6 6	102;164;189 170	50 125	7/68 8/77	12 20	.07/				54 55
195	41	6				6					56
153	26	5	 			5					57
75 398	40 21	6 6	53;60;64;68	1 125	6/67 6/80	30 1	.41/	1		270	58 59
98	20	6	42;68	F	6/80	20	.55/9	1	154	368	60
150	31	6	145	26	10/78	4	.03/				61
122 202	20 27	6 6	90;120 188	60 48	9/69 6/80	3	.03/			107	62 63
93	11	6	80	11	10/78	10	.14/				64
173	64	6	136;150	28	6/80	20				315	65
95 83	51 50	6 6	65;90;91 80	30 44	4/67 12/77	50 20	.77/ .51/			440 105	66 67
90	46	6	56;68;86	43	7/70	12				205	68
86	39	6	80	33	6/80	20	.77/		~ ~ =	165	69
175	20	6	40;75;130		12/66	3	.03/				70

TABLE 23.

	·-						1	
						Alti-		
Well	location					tude of land	Торо-	
Number	Lat-Long	Owner	Driller	Year completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Mt- 71	41D0-7639	Anna Schenk	Ronald Randler	1967	Н	895	S	Dtr/sssh
72 73	4100-7639 41DD-7639	Andras Roland Reedy	do. do.	1966 1966	H H	900 900	S S	Dtr/sssh Dtr/sssh
74	4101-7640	Harry Hawkins	do.	1969	Н	542	S	Dmr/sh
75	4102-7639	Russell Hendrickson	R. R. Hornberger	1976	Н	620	S	Dmr/sh
76 77	4102-7638	Leon Vandine	do.	1976	Н	62D	S	Dmr/sh
78	4100-7639 4100-7640	Edward Barry Ronald Horne	Wieand Brothers Ronald Randler	1976 1977	H H	680 825	W S	Dtr/sssh Dtr/sssh
79	4102-764D	Village Inn	R. R. Hornberger	1974	Ċ	509	V	Don/lss
80	4103-7640	Oanville Area Jointure Schools	do.	1968	Т	565	S	Do/lss
81 82	4103-7640 4103-7640	Bell Telephone Co. Rand Parker	Champion	1975	H H	540 520	S	00/lss
83	4102-7641	Wayne Leighow	R. R. Hornberger Wieand Brothers	1966 1977	Н	530	S V	Do/lss Oo/lss
84	4102-7641	Jesse Kelley			H	530	V	0o/1ss
85	4102-7640	Marvin Funk	D. D. Haushausau	1957	H	525	V	Dmr/sh
86 87	4104-7641 4103-7642	L. Martz Jerry Gresh	R. R. Hornberger Wieand Brothers	1968 1977	H H	520 760	V S	Oo/lss Sto/lsd
88	4103-7642	Richard Hoffman	do.	1976	H	74D	S	Sto/1sd
89	4104-7642	Dean Hebner	R. R. Hornberger	1976	Н	665	S	Do/lss
90 91	4103-7641 4103-7641	Jay Sitler Lon Tarr	Wieand Brothers do.	1976 1977	H	582 680	S S	0Sk/ls
92	4104-7640	William McMichael	R. R. Hornberger	1969	Н	515	V V	OSk/ls Omr/sh
93	4105-7638	Clarence McMichael	do.	1967	Н	580	W	Omh/sh
94	41D5-7638	Jimmy Holdren	do.	1966	Н	605	S	Dmh/sh
95 96	4106-7638 4107-7638	Dale Sommers Karl McWilliams	do. do.	1968 1966	H H	665 720	S S	Omh/sh Dmh/sh
97	4106-7637	Allen Dewald	do.	1967	H	712	S	Dmh/sh
98	4106-7637	Hershey	do.	1966	Н	712	S	Dmh/sh
99 100	4106-7637 4106 - 7637	McGargle George Holdren	Clifton Buck R. R. Hornberger	1968 1968	H	680 730	S S	Dmh/sh Dmh/sh
101	4106-7637	Bryon Sheatler	Virgil Buck	1978	H	660	S	Dmh/sh
102	4103-7639	Richard Baker	Ronald Randler	1966	Н	530	V	Dmr/sh
103 104	4102-7638 4103-7637	Fred Moser Norma Bartlett	R. R. Hornberger	1967	H H	565 525	V	Dmr/sh
105	4103-7636	Harvey Oavis	Virgil Buck R. R. Hornberger	1972 1973	H	640	S W	Dmh/sh Dmh/sh
106	4103-7637	Wayne Day	do.	1973	Н	550	Š	Dmh/sh
107	4104-7637	S. Stoltzfus	Ronald Randler	1979	Н	535	S	Dmh/sh
108 109	41D4-7638 4104-7639	Jonas Beiler Robert McMichael	do. R. R. Horπberger	1976 1967	H H	535 545	S V	Dmr/sh Dmr/sh
110	4104-7638	Sanford Brown	Wieand Brothers	1974	H	565	v	Dmh/sh
112	4106-7643	David Strouse	Ronald Randler	1980	Н	610	S	Dmr/sh
113 114	4106-7643 4106-7641	Mary Hall Joseph Davis	do. Stackhouse	1966 1972	H H	605 575	S V	Dmr∕sh Omr∕sh
115	4106-7641	Exchange Grange	Ronald Randler	1967	Н	580	V	Omh/sh
116	4106-7641	Warrior Run School	R. R. Hornberger	1966	T	645	S	Dmr/sh
117 118	4106-7640	Franklin Shupp David Litchard	Ronald Randler	1967	H	665	Н	Omh/sh
119	4106-7641 4106-7642	Robert Brouse	R. R. Hornberger Ronald Randler	1967 1968	H H	640 590	S S	Dmh/sh Dmh/sh
120	4107-7642	Hal Thomas	Wieand Brothers	1976	H	650	S	Dmh/sh
121	4107-7640	Leonard Lyons	Ronald Randler	1969	S	685	S	Dmh/sh
122 123	4107-7640 4058-7634	James Turri Edward James	R. R. Hornberger Stackhouse	1975 1975	H H	670 940	S W	Dmh/sh Srl/sls
124	4058-7634	Kenneth Ackerman	Kraemer	1979	H	875	W	Srl/sls
125	4102-7641	Roy_Ulrich	R. R. Hornberger	1967	Н	560	S	Do/1ss
126 127	4102-7644 4102 - 7644	O. Fleming James Temple	Norman Hagenbuch	1969 1967	H H	670 550	N A	Swc/dls Swc/dls
128	4102-7644	Wayne Mincemoyer	R. R. Hornberger Wieand Brothers	1972	Н	560	V	Sto/lsd
129	4104-7643	Earl Harris	do.	1976	Н	660	S	Sto/1sd
130	41D3-7642	Guy McCollum	R. R. Hornberger	1967	H	7D0	S	Sto/lsd
131 132	4102-7643 4105-7644	Frank Smith Edward Beachel	Wieand Brothers R. R. Hornberger	1977 1966	H H	72D 540	S V	OSk/ls Don/lss
133	4106-7642	Ronald Miller	do.	1967	Н	565	V	Omh/sh
134	4106-7643	Albert Brown	do.	1967	H	605	S	Omr/sh
135 136	4100-7643 4100-7643	Ronald Randler Alicia Bridge	Ronald Randler do.	1976 1979	H H	600 620	S S	Dmh/sh Dmh/sh
137	4100-7643	Richard Smith	do.	1977	Н	60D	S	Dmh/sh
138	41D0-7641	Kenneth Burrows	R. R. Hornberger	1972	R	740	S	Dmh/sh
139 140	4101-7641	Loren Girton D. Ale	do.	1972	Н	660 620	S S	Dmh/sh
140	4101-7643 4101-7643	Grace Bankus	Wieand Brothers Ronald Randler	1978 1968	H H	620 510	Λ 2	Do/lss Do/lss
142	4101-7644	John Styer	R. R. Hornberger	1968	Н	580	S	Do/1ss
143	4102-7640	James Betz	Ronald Randler	1967	Н	520	٧	00/lss
144 145	4104-7641 4104-7640	Maynard Lawton Kenneth Bryfogle	do. Gordon Hill	1969 1980	H C	525 525	V	Do/lss Do/lss
146	4104-7640	Pennsylvania Power and	R. R. Hornberger	1980	R	645	Y H	Omr/sh
140								
147	4105-7639	Light Co. do.	do.	1972	R	560	S	Omr/sh

			Statio	: water						
Total depth below land surface (feet)	Casing Oepth Oiamete (feet) (inches		Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
167 195 173 82 110 80 398 160 29 215	20 6 27 6 31 6 20 6 20 6 20 6 20 6 16 6 23 6 44 7	50;70;165 55;135;193 45;125;170 80 55;95 68 65 155 85;158;210	36 55 35 1 42 1 20 73 5	5/67 6/66 6/66 7/69 6/80 6/80 6/80 6/80 1/68	40 10 5 6 12 15 1 7 12 30	.82/ .07/ .04/ .07/ .08/ .19/		170	265 295 183 162 347	Mt- 71 72 73 74 75 76 77 78 79 80
150 130 73 30 210 60 298 298 155 173 348 205 415 225 304 70 130 170 257 155 155 84 50 218 80 250 180 268 81 346 118 75 70 35 215 122 184 200 1755 150 136 128 300 248 200 1755 150 136 128 300 33 80 223 195 248 215 123 102 77 82 430 150 122 45 160 48 388 150 255	30 6 25 6 6 20 6 6 6 20 6 6 6 20 6 6 6 20 6 6 6 20 6 6 6 20 6 6 6 6	75;130 86;115 37 29;49;56 255 248 60 120;147 316;330 175;205 45;87;196;296 175;215 117 50;56 100;120 164 210 121;149 30;80;140 25;50;84 46;48 75;210;218 180 60;260 63 236;251 73 68 33 118;184 85;120 50;105;180 45;78 203 105 120 165;225;285 25;27 185 170;189 150;198 26;195 50 69 100 75 78 178 178 778 97;101 30;44 69;157 42 38 97;101 30;44 69;157	17 16 15 2 46 157 7 7 5 5 20 17 25 20 17 25 10 6 20 16 5 5 15 7 4 6 6 32 22 25 10 11 11 12 15 15 10 10 11 11 11 11 11 11 11 11 11 11 11	7/66 6/80 2/68 2/68 5/76 7/80 7/80 7/80 6/66 4/68 8/66 7/80 8/66 5/68 2/68 5/78 5/66 6/67 12/66 6/67 11/67 12/66 6/67 11/67 7/80 7/80 7/80 7/80 7/80 7/80 7/80 7/8	8 3 60 50 10 3 15 30 3 2 2 1 1 30 2 2 4 6 15 4 10 1 2 1 4 4 11 7 12 15 15 10 1 1 1 1 1 1 1 1 1 1 1 1 1			900 171 103 188 282 120 137 120 103 34 34 530 180 180 154 171 154 171 154 120 188	2,400 328 388 401 379 605 381 554 399 253 399 1,150 448 210 120 208 408 367 325 300 442	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 130 131 132 133 134 135 136 137 138 139 140 141 141 151 161 177 178 189 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 149 140 141 141 142 143 144 145 146 147 148 148 148 148 148 148 148 148
200 150	41 6 42 6	75;90;140;200 	7 20	7/80 7/80	23 30	.44/30	12	137 307	480 640	147 148

TABLE 23.

						T		
						Alti-		
						tude of		
Well	location					land	Topo-	
Number	Lat Long	Ownon	Oriller	Year	Use	surface (feet)	graphic	Aquifer/
Number	Lat-Long	0wner	oritier	completed	056	(Teet)	setting	lithology
Mt-149	4106-7640	Richard Hess		1969	Н	570	S	Omr/sh
150	4107-7639	Joseph Murray	R. R. Hornberger	1975	Н	700	W	Omh/sh
151 152	4107-7637 4100-7641	Ross McCollum Kenneth Burrows	do. do.	1977 1968	H H	765 780	H S	Dmh/sh Otr/sssh
153	4100-7636	Oaniel Wetzel	Alvin Swank and Son	1980	H	550	v	Omh/sh
154	4059-7635	Pinebrook Homes	Stackhouse	1980	Н	735	S	Sru/sls
156	4100-7636	Carl Hartman	R. R. Hornberger	1976	Н	560 825	S V	Dmh/sh
157 158	4102-7635 4100-7636	Linda Synder Gary Morris	do.	1967 1976	H	690	V H	Otr/sssh Omh/sh
159	4100-7637	Joe Hess	R. R. Hornberger	1975	H	808	S	Otr/sssh
160	4100-7637	do.	do .	1974	Н	760	S	Otr/sssh
161 162	4100-7637 4100-7637	8en Hess do.	do. do.	1975 1977	H	810 849	S H	Otr/sssh Otr/sssh
163	4100-7637	do.	Neil Negley	1978	H	852	H	Otr/sssh
164	4102-7635	Clyde Gray	R. R. Hornberger	1977	Н	890	S	Ociv/sssh
165	4102-7633	Mike Mausteller	do.	1968	Н	1,143	H V	Ociv/sssh
166 167	4104-7637 4059-7636	Oonald Robbins Kocker Lot 3	Ronald Randler Virgil Buck	1967 1978	H H	549 540	S	Omh/sh Swc/dls
168	4059-7636	Kocker Lot 4	do.	1978	H	540	S	Swc/dls
169	4059-7636	Kocker Lot 5	do .	1978	Н	540	S S	Swc/dls
170 171	4059-7636 4059 - 7636	Kocker Lot 6 Kocker Lot 7	do. do.	1978 1978	H H	540 540	S S	Swc/dls Swc/dls
172	4059-7636	Kocker Lot 9	do.	1978	Н	540	S	Swc/dls Swc/dls
173	4104-7604	Kenneth 8ryfogle	Gordon Hill	1980	C	525	٧	0o/1ss
175	4104-7638	Jonas Beiler	Ronald Randler	1976	Н	535	S	Dmr/sh
176 177	4058-7634 4059-7634	Mark Cook L. Santini	do.	1981	H	1,030 1,280	S H	Srl/sls Srl/sls
178	4100-7636	Joseph Siats	Wieand 8rothers	1981	H	555	Ÿ	Omh/sh
181	4059-7635	Joseph Cady	Stackhouse	1981	Н	725	S	Sru/sls
182	4059-7636	Kocker Lot 14	Virgil 8uck	1979	Н	540	S	Swc/dls
183 184	4059-7636 4059-7636	Kocker Lot 9 Kocker Lot 8	do. do.	1979 1979	H	540 540	S S	Swc/dls Swc/dls
185	4058-7635	Pinebrook Homes	Stackhouse	1981	н	810	Š	Sru/sls
186	4057-7632	Keener	do .	1981	Н	930	Н	Otr/sssh
187 188	4058-7631 4058-7631	William 8arnes do.	do. R. R. Hornberger	1981	H	740 760	S S	Otr/sssh Otr/sssh
189	4058-7634	Robert McCaffery	do.	1975	H	650	S	Swc/dls
190	4103-7640	Washingtonville Town		1928	U	570	٧	0o/1ss
1.01	4104 7620	Hall		1.020	Τ.	CAC	٧	Omh/sh
191	4104-7639	Oairyman's Coop Association		1928	T	545	٧	Ollin / Sti
194	4058-7636	Geisinger Medical Center		1930	T	590	S	Sb/sh
202	4059-7638	Outch Pantry	R. R. Hornberger	1974	C	510	V	0o/1ss
203 20 4	4059-7638 4059 - 7638	do. Metal Wire Recovery	do. do.	1973 1967	C N	510 510	V	0o/1ss Swc/dls
205	4059-7638	do.	do.	1966	N	510	Ÿ	Swc/dls
206	4059-7639	Howard Johnson's	Kohl Brothers	1973	C	630	٧	Omr/sh
207	4059-7639	do.	do.	1973	С	630	٧	Omr/sh
208	4058-7638	Wayne Bassett	~ ~ ~	1977	Н	905	Н	Sr1/s1s
209	4058-7638	James Connell	Alvin Swank and Son	1978	H	940	S	Srl/sls
210	4059-7643	E. Hildebrand	Ronald Randler	1978	Н	685	S	Omh/sh
211 212	4058-7643 4059-7644	M. Prowant R. Schreck	Roy Zimmerman do.	1973 1976	H	615 600	U H	OSk/ls Omh/sh
213	4058-7644	C. Rine	R. R. Hornberger	1958	H	520	W	Omh/sh
214	4059-7634	Milton Hartman	do.	1975	Н	875	W	Srl/sls
215 216	4058-7635 4058-7635	Truman Mitchell Russell Weaver	do .	1976 1966	H	740 600	S S	Sb/sh Swc/dls
217	4057-7636	Myron Fenstermac	do. Norman Hagenbuch	1968	Н	515	S	Swc/dls
218	4058-7635	Lewis Riley	R. R. Hornberger	1967	Н	600	S	Swc/dls
219	4057-7635	Charles Confer	do .	1976	Н	585	S	Sto/lsd
220 221	4058~7634 4058~7635	George Pappas W. Raup	Wieand 8rothers Virgil Buck	1977 1978	H H	720 765	S S	Sb/sh Sru/sls
222	4058-7636	John Hubicki	R. R. Hornberger	1967	H	680	S	Sru/sls
223	4058-7634	James Blue		1966	Н	810	S	Smk/sls
22 4 225	4057-7635 4058-7637	Kline Albeck Glen Hagenbuch	R. R. Hornberger Ronald Randler	1967 1968	H H	565 570	S S	Swc/dls Srl/sssh
226	4057-7635	John Krum	do.	1967	Н	582	S	Sto/1sd
227	4058-7636	Goven Saienni	R. R. Hornberger	1966	Н	680	S	Sru/sls
228	4058-7636	John Hubicki	do.	1968	Н	680	S V	Sru/sls
229	4059-7638	Pennsylvania Oepartment of Transportation	Kohl Brothers	1970	Н	515	٧	Swc/dls
231	4100-7639	George Oietr		1968	Н	620	W	Oh/sh
232	4059-7638	May's Orive-In		1968	Н	510	W	00/1ss
233 234	4100-7636 4059-7635	Jay Hummer John 8urke	Wieand Brothers	1974 1975	H	670 605	S S	Dmh∕sh Omr∕sh
235	4059-7637	Larry Mordan	Ronald Randler	1977	Н	575	S	Sru/sls
236	4059-7639	Mobil		1966	Н	580	S	Omh/sh
237	4100-7636	Scott Edmeads	Wieand Brothers	1977	Н	555	٧	Otr/sssh

T 4.1		0	Statio lev	water vel						
Total depth below land surface (feet)	Casing Oepth Oiameter (feet) (inches		Oepth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
70 135 195 506 125 153 100 215 195 135 275 275 315 105 153 76 95 140 170 170 170 170 170 175 250 285 189 175 250 170 200 145 223 273 200 197 115 230	31 6 20 6 20 6 25 6 35 6 40 6 20 6 21 6 20 6 20 6 20 6 20 6 20 6 32 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6	90;185 89;134;291 25 120 92;98 80 92;101 25;73 60;75 90;120 85;160 95;160 90;150 80;110;145 160;235 60;115;160 95;170 95;140 100;160 100;160	14 5 25 60 4 11 51 40 35 5 30 50 40 45 40 40 18 6 17 165 2 73 30 30 30 30 30 30 30 30 30 3	7/80 7/80 7/80 7/80 7/80 8/68 8/80 9/80 10/80 4/75 11/80 9/67 11/78 7/78 11/78 9/78 11/78 9/78 11/78 11/78 9/78 11/78 11/80 4/81 8/81 8/81 8/81 8/81 10/81 5/79 5/79 5/79 5/79 5/79 11/81 11/81 11/81	4 3 15 15 1 10 3 6 5 15 15 5 15 5 15 5 12 5 7 25 25 6 6 6 5 20 18 5 14 50 10		2	188 120 239 200 86 52 103 34 51 34 103 154 103 68 86 103 154 103 154 103 68 86 103 1 154 103 154	450 310 280 86 250 252 285 90 77 180 132 355 550 185 115 222 200 230 160 160	Mt-149 150 151 152 153 154 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 175 176 177 178 181 182 183 184 185 186 187 188
200			20		25					191
528 75 190 70 175 300 400	28 10 20 6 22 6 36 8 119 7 98 8 60 8	36;50;65 35;105;165 120;180;240 95;160;245;	68 15 20 11 -3 5 20	1/30 4/74 9/73 1/67 8/66 5/73	28 120 	. 15/26 3.1/165 3.5/55 . 50/70 . 14/30	11 8 4 19 24			194 202 203 204 205 206 207
394 263 126 110 305 120 175 215 190 80 95 190 198 200 115 100 216 210 88 255 205 260	42 6 41 6 20 6 40 6 60 6 41 6 20 6 43 6 81 6 20 6 51 6 34 6 91 6 20 6 81 6 46 6 6	320;370 215;370 135;185 53;68 85 180 135 120;180 69;96 60;90;98 150;205 65;205 84 120;150;248 86;175;200	70 8 52 50 28 40 66 30 30 57 49 102 57 20 30 16	10/77 11/78 6/78 10/78 11/66 3/68 12/67 10/66 8/77 7/78 12/67 6/67 9/81 8/67 10/66 2/68 1/70	2 6 7 6 15 3 5 4 5 6 7 20 30 4 20	 		51 51 17 68 68	98 280 165	208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
155 175 175 155 128 95 198	22 6 21 6 21 6 30 6 54 6 21 6 18 6	38;81;124;137 114;165 43;80;143;155 120 40;89 180	30	5/68 6/68 10/78 10/78 11/78 11/66 5/77	10 6 6 4 10 20 60	.07/ .04/ .50/ .31/		68	148 220	231 232 233 234 235 236 237

TABLE 23.

at-Long 59-7639 00-7637 00-7636 00-7636 59-7638 00-7637 59-7637 58-7637 58-7637 58-7641 08-7643 08-7643 58-7637 56-7637 56-7637 56-7637	Owner ARCD Joseph Kistner Darwin Oitty Howard Tanner Stewart Venblehn Mark Roberts First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse James Styer	Driller Ronald Randler Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1974 1968 1967 1967 1967 1968 1977 1979 1980 1981 1978 1979 1979 1979 1982 1980 1980 1979 1979 1980 1980 1979 1979	Use H H H H H H H H H H H H H H H H H H	560 605 640 680 495 635 530 595 545 565 8D0 1,010 750 1,030 595 570 605 565 465 485 580	Setting SSSHWSSSHHHHSSSHH	Dmh/sh Dmh/sh Dmh/sh Dmh/sh Sb/sh Dmh/sh Sb/sh Srl/sls Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls Dtr/sssh Otr/sssh Dtr/sssh Dtr/sssh Dtr/sssh
00-7637 00-7637 00-7636 59-7638 00-7637 59-7637 58-7637 58-7637 58-7637 58-7641 08-7643 58-7634 58-7634 56-7637 56-7637 56-7637	Joseph Kistner Darwin Oitty Howard Tanner Stewart Venblehn Mark Roberts First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1968 1967 1967 1968 1977 1979 1980 1981 1978 1978 1979 1979 1979 1982	H H H H H H H H H H H H H H H H H H H	605 640 680 495 635 530 595 545 565 870 1,010 750 1,030 595 570	S S H W S S S H H H H S S H NO S S Y Y	Dmh/sh Dmh/sh Omh/sh Sb/sh Dmh/sh Swc/dls Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls Otr/sssh Dtr/sssh
00-7637 00-7636 59-7638 59-7637 59-7637 59-7637 58-7637 58-7638 58-7637 58-7641 08-7643 08-7643 08-7643 58-7634 56-7637 56-7637 56-7637	Darwin Oitty Howard Tanner Stewart Venblehn Mark Roberts First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1967 1967 1967 1968 1977 1979 1980 1981 1978 1978 1979 1979 1979 1982	H H H H H H H H H H H H H H H H H H H	640 680 495 635 530 595 545 565 800 870 1,010 750 1,030 595 570 605 565 465 485	S H W S S S H W S H H H S S H NO	Dmh/sh Omh/sh Sb/sh Dmh/sh Swc/dls Srl/sls Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls Oth/sssh Dtm/sh Dmh/sh Dmh/sh Dmh/sh Dciv/sssh
00-7636 59-7638 00-7637 59-7637 59-7637 58-7637 58-7638 58-7638 58-7641 08-7643 08-7643 08-7643 58-7635 58-7637 56-7637 56-7637 56-7637 56-7637 56-7634	Howard Tanner Stewart Venblehn Mark Roberts First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1967 1967 1968 1977 1979 1980 1981 1978 1978 1979 1979 1979 1982	H H H H H H H H H H H H H H H H H H H	680 495 635 530 595 545 565 870 1,010 750 1,030 595 570 605 565 465 485	H W S S S S H H H S S S H W S S S S V V	Omh/sh Sbb/sh Dmh/sh Swc/dls Srl/sls Sb/sh Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls Dtr/sssh Dtr/sssh Dtr/sssh Otr/sssh Dtr/sssh Dtr/sssh Otr/sssh Dtr/sssh Dtr/sssh
59-7638 00-7637 59-7637 59-7637 58-7637 58-7637 58-7637 58-7641 08-7643 08-7643 58-7635 58-7637 56-7637 56-7637 56-7637 56-7637 56-7637	Stewart Venblehn Mark Roberts First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1967 1968 1977 1979 1980 1981 1978 1978 1980 1979 1979 1982	H H H H H H H H H H H H H H H H H H H	495 635 530 595 545 565 8D0 870 1,010 750 1,030 595 570 605 565 465 485	W S S S S H H H S S S H W S S S S V V	Sb/sh Dmh/sh Swc/dls Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls Dtr/sssh Otr/sssh Otr/sssh Otr/sssh Dmh/sh Dmh/sh Dmh/sh Dciv/sssh
00-7637 59-7637 58-7637 58-7637 58-7637 58-7637 58-7641 08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637	Mark Roberts First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1968 1977 1979 1980 1981 1978 1978 1979 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	635 530 595 545 565 8D0 870 1,010 750 1,030 595 570 605 565 465 485	S S S H H H H S S H S S V V	Dmh/sh Swc/dls Srl/sls Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
59-7637 58-7637 59-7637 58-7637 58-7637 58-7643 08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637 56-7634	First Baptist Church James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger Stackhouse	1977 1979 1980 1981 1978 1978 1980 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	530 595 545 565 8D0 870 1,010 750 1,030 595 570 605 565 465 485	S S H W S S H H H S S S H W S S S V V	Swc/dls Srl/sls Sb/sh Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls Oth/ssh Dmh/sh Dmh/sh Dmh/sh Dmh/sh Dciv/sssh
58-7637 59-7637 58-7638 58-7637 58-7641 08-7643 08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637 56-7634 56-7634	James Hagenbuch Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	do. do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do R. R. Hornberger do. do. Ronald Randler	1979 1980 1981 1978 1978 1980 1979 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	545 565 800 870 1,010 750 1,030 595 570 605 565 465 485	S H H H S S H NO S W S S S V V	Srl/sls Sb/sh Srl/sls Srl/sls Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
58-7637 58-7638 58-7637 58-7641 08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7634 56-7634	Walter Halterman Gordon Raup Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	do. Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do R. R. Hornberger do. do. Ronald Randler	1981 1978 1978 1980 1979 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	565 8D0 870 1,010 750 1,030 595 570 605 565 465 485	W S H H S S H NO	Sb/sh Sr1/s1s Sr1/s1s Sr1/s1s Dtr/sssh Dtr/sssh Sru/s1s Sr1/s1s Sr1/s1s Dmh/sh Dmh/sh Dmh/sh Ociv/sssh
58-7638 58-7637 58-7641 08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637 56-7634 56-7634	Wayne Myers George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Virgil Buck Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do R. R. Hornberger do. do. Ronald Randler	1978 1978 1980 1979 1979 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	8D0 870 1,010 750 1,030 595 570 605 565 465 485	S H H H S S S H NO S S V V	Sr1/s1s Sr1/s1s Sr1/s1s Dtr/sssh Dtr/sssh Sru/s1s Sr1/s1s RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh
58-7637 58-7641 08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637 56-7637 56-7634 56-7634	George Wagner B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Ronald Randler Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do R. R. Hornberger do. Ronald Randler	1978 1980 1979 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	870 1,010 750 1,030 595 570 605 565 465 485	H H S S H NO S W	Srl/sls Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
58-7641 08-7643 08-7643 08-7635 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637 56-7634 56-7634	B. Ludwig E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do R. R. Hornberger do. do. Ronald Randler	1980 1979 1979 1982 1980 1980 1979 1967 1966 1960	H H H H H H H H H H H H H H H H H H H	1,010 750 1,030 595 570 605 565 465 485	H S S H NO S W	Srl/sls Dtr/sssh Dtr/sssh Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
08-7643 08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7637 56-7634 56-7634	E. Oonahue G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Wieand Brothers do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger do. do. Ronald Randler	1979 1979 1982 1980 1980 1979 1967 1966 1960	н н н Р Р	750 1,030 595 570 605 565 465 485	H S S H NO S W S S	Dtr/sssh Dtr/sssh Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
08-7643 58-7635 58-7634 56-7637 56-7637 56-7637 56-7634 56-7635 06-7644	G. Leonard J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	do. R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger do. do. Ronald Randler	1979 1982 1980 1980 1979 1967 1966 1960	н н н Р Р	750 1,030 595 570 605 565 465 485	S S H NO S W S S V V	Dtr/sssh Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
58-7635 58-7634 56-7637 56-7637 56-7637 56-7634 56-7635 06-7644	J. Stanko Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	R. R. Hornberger Stackhouse Wieand Brothers do. R. R. Hornberger do. do. Ronald Randler	1982 1980 1980 1979 1967 1966 1960	Р Р Н Н Н	750 1,030 595 570 605 565 465 485	S H NO	Sru/sls Srl/sls RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
56-7637 56-7637 56-7637 56-7637 56-7634 56-7635 06-7644	Thomas Forney Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Stackhouse Wieand Brothers do. R. R. Hornberger do. do. Ronald Randler	1982 1980 1980 1979 1967 1966 1960	Р Р Н Н Н	595 570 605 565 465 485	H NO	Sr1/s1s RTHUMBERLAN Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
56-7637 56-7637 56-7637 56-7637 56-7634 56-7635 06-7644	Fisher Realty do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	Wieand Brothers do. R. R. Hornberger do. do. Ronald Randler	1980 1979 1967 1966 1960	Р Н Н Н	595 570 605 565 465 485	S W S S V	Dmh/sh Dmh/sh Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
56-7637 56-7637 56-7637 56-7634 56-7635 06-7644	do. Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	do. R. R. Hornberger do. do. Ronald Randler	1980 1979 1967 1966 1960	Р Н Н Н	570 605 565 465 485	W S S V V	Dmh/sh Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
56-7637 56-7637 56-7634 56-7635 06-7644	Haefner Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	R. R. Hornberger do. do. Ronald Randler	1979 1967 1966 1960	Н Н Н	605 565 465 485	S S V V	Dmh/sh Dmh/sh Ociv/sssh Dciv/sssh
56-7637 56-7634 56-7635 06-7644	Larry Bohner Allen Shaffer Wayne Brouse Thelma Strouse	R. R. Hornberger do. do. Ronald Randler	1967 1966 196D	н н н	565 465 485	S V V	Dmh/sh Ociv/sssh Dciv/sssh
56-7634 56-7635 06-7644	Allen Shaffer Wayne Brouse Thelma Strouse	do. do. Ronald Randler	1966 196D	H H	465 485	V V	Ociv/sssh Dciv/sssh
56-7635 06-7644	Wayne Brouse Thelma Strouse	do. Ronald Randler	196D	Н	485	V	Dciv/sssh
06-7644	Thelma Strouse	Ronald Randler					
			19/4				
00-7044	uallies Styer		1974	H	560	S	Don/lss
57-7637	William Snyder	R. R. Hornberger	1972	Н	525	Ţ	Swc/dls
56-7639	Richard Heller	Ronald Randler	1969	H	475	Ť	DSk/1s
56-7639	Harold Whitenight	R. R. Hornberger	1967	Н	460	T	Dmh/sh
57-7637	Daniel Fitzgerald	do.	1967	Н	470	T	Swc/dls
57-7638	Ralph Shannon	do.	1966	Н	530	T	Dmr/sh
57-7638	Fred Reed	do.	1966	C	530	T	Dmr/sh
57-7637	Arthur Fryling	do.	1966	Н	500	Ţ	Swc/dls
56-7637	Nevin Beishline	do.	1966	Н	610	S V	Dmh/sh
57-7637 57-7639	Stanley Adler	Norman Hagenbuch Virgil Buck	1966 1978	H	550 495	Ť	Dmh/sh Swc/dls
56 - 7638	Riverside Church Schmidt	R. R. Hornberger	1970	Н	540	Ś	Dtr/sssh
57-7637	Alex Dshirak	Ronald Randler	1976	H	470	Ť	Don/lss
57-7637	Raymond Howell	R. R. Hornberger	1967	Н	480	Ť	Do/1ss
57-7639	Terry Fry	do.	1977	Н	485	Ţ	Swc/dls
56-7637 56-7637	F. Maresa Adam Rivito	Wieand Brothers	1976 1977	H H	605 7D5	S S	Dmh/sh Dtr/sssh
56-7637	Pinebrook Homes	Stackhouse	1981	Н	615	S	Dmh/sh
57-7638	Shirley Steffen	R. R. Hornberger	1966	Н	470	Ť	Sb/sh
57-7637	Time Markets	Alvin Swank and Son	1973	Н	480	T	DSk/1s
57-7637	David Cooper			Н	48D	T	DSk/ls
57-7637	Fred Geringer	Alvin Swank and Son	1972	Н	480	Ţ	Sto/1sd
57-7637	do.						Q90/s9
57-7637							Qgo/sg Otr/sssh
55-7646 55-7645						. V	Sto/1sd
55-7645 55-7645							Dmh/sh
1 1 = 7 (144 7)							Dmr/sh
					470	V	Sb/sh
55-7645 57-7639		R. R. Hornberger	1977	Н	470	V	Swc/dls
55-7645		do.	1976	H	470	V	Swc/dls
55-7645 57 - 7639		do	1975	Н	500	S	Sb/sh Do/lss
57 - 57 - 55 - 55 -	-7637 -7637 -7646 -7645 -7645 -7645 -7639 -7640	-7637 do7637 S. Wintersteen -7646 Beverly Cook -7645 Richard Smith -7645 Steve Klinger -7645 Scott Erdman -7639 D. Barnhart -7640 James Thomas -7640 Charles Brogan	-7637 do7637 S. Wintersteen7646 Beverly Cook7645 Richard Smith7645 Steve Klinger7645 Scott Erdman7639 D. Barnhart Ronald Randler -7640 James Thomas R. R. Hornberger	-7637 do7637 S. Wintersteen 1977 -7646 Beverly Cook 1977 -7645 Richard Smith 1974 -7645 Steve Klinger 1977 -7645 Scott Erdman 1977 -7645 Scott Erdman Ronald Randler 1978 -7640 James Thomas R. R. Hornberger 1977 -7640 Charles Brogan do. 1976 -7641 William Cole do. 1975	-7637 do H -7637 S. Wintersteen H -7646 Beverly Cook H -7645 Richard Smith 1977 H -7645 Steve Klinger 1977 H -7645 Scott Erdman 1977 H -7645 Scott Erdman 1977 H -7640 James Thomas R. R. Hornberger 1978 H -7640 Charles Brogan do. 1976 H -7641 William Cole do. 1975 H	-7637 do H 480 -7637 S. Wintersteen H 465 -7646 Beverly Cook 1977 H 640 -7645 Richard Smith 1974 H 560 -7645 Steve Klinger 1977 H 540 -7645 Scott Erdman 1977 H 550 -7639 D. Barnhart Ronald Randler 1978 H 470 -7640 James Thomas R. R. Hornberger 1977 H 470 -7640 Charles Brogan do. 1976 H 470	-7637 do H 480 T -7637 S. Wintersteen H 465 T -7646 Beverly Cook 1977 H 640 S -7645 Richard Smith 1974 H 560 V -7645 Steve Klinger 1977 H 540 S -7645 Scott Erdman 1977 H 550 S -7639 D. Barnhart Ronald Randler 1978 H 470 V -7640 James Thomas R. R. Hornberger 1977 H 470 V -7640 Charles Brogan do. 1976 H 470 V -7641 William Cole do. 1975 H 500 S

(CONTINUED)

Total			Oepth(s)	Statio lev	water el						
depth below land surface (feet)	0epth	Oiameter (inches)	to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conductance (umho/cm at 25°C)	Well
131	45	6		29	5/74	8					Mt-238
74	22	6	40;61	20	5/68	6	.11/				239
70 95	34 40	6 6	60;68 55;68;85	30 30	10/67 4/67	10 7	.25/				240 241
76	23	6	65	13	7/67	25	.68/				242
82	20	6	65;70;80	42	7/68	30	3.8/				243
70	20	6	55;65	10	1/77	20					244
261 265	13 16	6 6	100;255	116	9/81	20 3	.36/		68	160 380	245 247
137	15	6	260 130	59 59	9/81 9/81	20	.27/		171 86	160	247
80	20	6	60;75	20	9/78	8	.13/		86	180	249
191	14	6	185	82	11/78	7	.08/		51	170	250
97	43	6	87			10			51	78	251
523 448	42 39	6 6	178 100	82	6/79	1					252 253
200	105	6									254
223	40	6	76	46	4/82	6	.05/3	1	86	210	255
COUNTY											
300 300	42 22	6 6	56;91;115;148 22;30;88;	26 4	5/80 7/80	20 60	1.2/18 .87/60	2 40	51 86	100 181	Nu-157 158
300	22	0	108;289	4	7780	00	.07/00	40	00	101	130
130				56	5/80						159
95	39	6	45;87;91	44	7/67	8	.16/				160
80	32	6	60;75	29	6/80	7	.14/		51	190	161
83 80	14	6	41 75	25	8/80	35 	.53/15	1	51 	150	162 164
74	13	6	70 70								165
175	106	6		40	10/72	6					166
75	21	6		25	2/69	35	1.2/	-~-			167
105	20	6	27;103	25	6/67	40	.50/				168
150 63	31 32	6 6	140 58	20 10	3/67 9/66	3 6	.03/				169 170
75	38	6	45;61	20	12/66	10	.20/				171
95	69	6		40	9/66	7	.16/	-~-	~		172
155	31	6	71;109;146	20	11/66	4	.03/				173
65 110	27 87	6 6	40;55;60 110	16	11/66	25 10	.74/				174 175
180	60	6		17	11/78						176
61	29	6	55	13	4/76	18	.49/				177
335	41	6	48;71;104; 203;309	43	7/67	20	.07/				178
98	92	6	98	53	11/78	40					179
125	20		300	38 76	5/80						180
398 123	20	6 	300	76 38	12/78 11/81	2 12			51	135	184 185
70	20	6	50;60	20	7/66	20	. 57 /				186
96	83	6	86;95	32	11/81	40	4.2/63	24	188	600	187
80			69	32	11/81		.88/12	2	274	795	188
120 4 7				31 32	11/81 11/81		.35/7	1	855	2,100 625	189 190
				21	12/81						191
205	60	6	134;175	100	5/77	7			-~-		193
185	167	6	166 105	20	6/74	150					194
226 151	42 63	6 6	165;195	85 2	11/77 11/77	5 8					195 196
137	21	6	64;140 130	16	8/78	20	. 24 /				190
42	33	6	38	~		100					198
53	40	6	49	16	1/76	50					199
75	57 76	6		20	8/75	10					200
90	76	6	70	68	1/80	14					251

TABLE 24, RECORD OF SELECTED SPRINGS

Spring location: The number is that assigned to identify the spring. It is prefixed by a two-letter abbreviation of the county. The lat-long is the coordinates, in degrees and minutes, of the southeast corner of a 1-minute quadrangle within which the spring is located.

Use: H, domestic; P, public supply; T, institution.

Topographic setting: S, hillside; T, terrace; W, upland draw.

Aquifer: Qgo, glacial outwash; Dcsc, Sherman Creek Member of the Catskill Formation; Smk, Mifflintown and Keefer Formations.

Lithology: sg, sand and gravel; sls, sandstone, limestone, and shale; sssh, sandstone and shale.

Reported discharge: gal/min, gallons per minute.

Reported	(gal/min)	18	14	14	10	2	1
Aquifer/	lithology	Dcsc/sssh	Dcsc/sssh	Dcsc/sssh	Dcsc/sssh	68/060	Smk/sls
Topographic	setting	A	S	S	M	-	M
Altitude of land surface	(feet)	029	1,280	1,200	770	490	540
	Use	Ь	۵	Ь	۵	Ξ	⊢
	Name of spring	No. 1	Upper Hoffman	Lower Hoffman	Gensel	!	1
	Owner	Orangeville Water Co.	Catawissa Water Authority	·op	. op	P. Hartkorn	Geisinger Medical Center
Spring location	Lat-Long	Co-Sp-2 4104-7624	4056-7626	4056-7626	4056-7626	4101-7622	Mt-Sp-1 4058-7636
Spring	Number	Co-Sp-2	4	5	9	6	Mt-Sp-1

DEPARTMENT OF ENVIRONMENTAL RESOURCES W 61, Plate 1
BERWICK-BLOOKSBURG-DANVILLE AREA

76 "10" 76*07'30*

SECTIONS OF THE GLACIAL-OUTWASH AQUIFER

MEDIAN SPECIFIC CAPACITIES OF BEDROCK WELLS BY LITHOLOGY AND TOPOGRAPHIC SETTING $^{\rm I}$ Lathology Median specific capacity [gal/min)/ft] Hillop Slope Valley

			_ '	
Harrell, Mahantango, Marcellus, and Bloomsburg Formations	Shale	0.10	0.17	0.31
Catakill and Trimmers Buck Formations	Sandstone and shale	.04	,18	,39
Mifflintown, Keefer, and Rose Ilili Formations	Sandstone, limestone, and shale	.04	.10	.9%
Onondaga, Old Port, and Wills Creek Formations	Carbonate rock and shale	*,84	1.8	3,4
Keyner and Tonoloway	Carbonate rock	*1.7	² 4.0	6.0

Taken in part from Table 14. Based on only me pump-tested well.

EXPLANATION

_	UNIT	GEOLOGIC DESCRIPTION	WATER-BEARING PROPERTIES	QUALITY OF WATER
QUATERNARY	GLACIAL GUTWASIL Qqq	Sand and gravel, containing some clay, alt, coibles, and boulders.	Median specific capacity of pump-tested wills is 11 (gal/min)/R. Median estimated will yield is 100 gal/min, About one of every four wells is equable of yielding 410 gal/min or more. Screena and gravel packs are needed for high-yield wells.	Very low to moderate dissolved solids (98 to 291 amholem). For (34 to 58 mg/L). Excessive marganese is a com- mon problem. Wells that do not have screens may produce water containing suspended sediment.
MISSISSIPPIAN	MAUCH CHUNK FORMATION Mrc	Interhedded grayish-red shale, silt- stone, and sandatone; calcareous in part.	Scant data. Reported yields for two domestic wells (100 and 200 feet deep) are 10 and 20 galimin.	Data from two wells show very low dissolved solids (20 amho/cm) and soft water (less than 17 mg/L hardness).
MISSI	TOSMATION No.	White to light-gray quartritic sand- atone and conglomerate; some inter- beds of dark-gray shale.	No data. Due to upland setting, wells would probably be deep and low yielding.	No data.
DEVONIAN	DUNCANNON MEMBER Ded	Fining-upward cycles of sandstone, silistone, and shale; grayish red and greenish gray.	Scant data. Reported yield for an 85-foot- deep domestic well is 30 gal/min.	Data from one well show very low dissolved solids (60 amho/cm) and soft water (17 mg/L hardness).
	SHERMAN CREEK MEMBER	Interbedded grayish-red shale, slit- stone, and sandstone.	Median specific capacity of pump-tested wells is 0.795 (galmin)/ft. Median estimated well is 0.795 (galmin)/ft. Median estimated well yield is 11 galmin. About one of every four wells is capable of yielding 50 galmin or more. About one of every four domestic wells repairse 60 feet of casing or more because of thick glacial deposits.	Very low to low dimetreed solids (65 to 179 arthofem). Soft to moderately hard (34 to 68 mg/L).
	HUSH VALLEY MEMBER Dow	Interbedded gray, greenish-gray, and grayish-red shale, all stores, and sand-stone.	Specific capacities for two pump-toeted wells are 0.34 and 0.63 (nal/min)/ft. Median estimated well yield is 11 gal/min. About three of very four domestic wells are 165 feet deep or less.	Very low to low dissolved solids (82 to 149 amhorem). Soft (34 to 51 mg/L).
	TRIMMERS ROCK FORMATION	Interbedded gray to dark-gray sitt- stope and shale; considerable amount of sandstone in the upper part.	Median specific capacity of pump-tested wells is 0.13 gral/min/H. Median estimated well yield is 5 gal/min. About one of every four domestic wells is 275 feet deep or more.	Low dissolved solids (163 to 176 ambolem). Soft (34 to 51 mg/L). Hydro- gen sulfide is a common problem in water from the lower part of the squifer.
	HARRELL AND MAIBANTANGO FORMATIONS, UNDIVIDED	Harroll Formation—Dark-gray shale, interbedded with siliatane in the upper part. Mahantango Formation—Greeniah-gray to dark-gray shale, locally calcarcotts.	Median specific capacity of polyap-tested wells is 0.37 (gal/mic/th. Median estimated well yield is 7 gal/mic, About one of every four wells is capable of yielding 22 gal/mic or more. About three of every four do- mestic wells are 176 feet deep or less.	Moderate dimolyed solids (219 to 377 ambo/cml. Moderately hard to hard (86 to 154 mg/L). Hydrogen suffide and ex- oessev sire and managemene are common problems. A 470-foot-deep domestic well, Lu-471, produced saline water (1,500 mg/L chloride).
	MARCELLUS FORMATION Dre	Dark-gray fisaile shale.	Median specific capacity of pump-trated wells is 0.19 (gal/min)Tt. Median estimated well yield is 8 gal/min. About one of every four web is capable of yielding 25 gal/min or more. About three of every four do- mestic wells are 123 feet deep or less.	Moderate to high dissolved nobids (209 to 452 amboten). Moderately hard to hard (77 to 162 mg/L). Hydrogen sulfide gas and excessive iron and manganese are common problems. A 320-foot-deep domestic well, Co-352, produced saline water (1,300 mg/L chloride).
	ONONDAGA AND OLD FORT FORMATIONS, UNDIVIDED	Onondaga Formation—Intertecided gray angiliaecous limeatone and calcarcous shale in the upper part; gray to dark-gray noncalcarcous to very calcarcous shale in the lower part. Old Port Formation—Dark-gray chert, calcarcous shale, and lime- stonic, friable and stone is locally present at the top.	Median specific capacity of pump-tested well is 3.2 (gal/may/N. Median estimated will yeld is 3) gal/man. About one of every four wells is capable of yielding 310 gal/min or move. About three of every four domestic wells are 165 feet deeps or least. A demester well has pertextued finale sausi- sions at depth required 76 feet of casing	Moderate to very high dissolved solids COT to 6TG ambeient. Hard to very hard (1/G to 250 pg.L.) Hydrogen sulfae gas attention from the continent prof- lems.
	KEYSER AND TONOLOWAY FORMATIONS, UNDIVIDED	Keyser Formation—Gray to bluish- gray linestone. Touoloway Formation—Laminated, gray to dark gray limestone; dolo- stone in the lower part.	Median specific capacity of pump-teeted wells is 4 6 (galmin)rt. Median estimated well yield is 180 galmin. About one of every four wells is capable of yielding COS galmin or more. About one of every four domestic wells is more than 210 feet deep and re- quires 100 or more feet of casing	Moderate to very high dissolved solids (300 to 668 archolomi, Hard to very hard (188 to 280 mg/L). Three wells, Co307, Mr-31, and Nu-189, produced water containing, respectively, 270, 625, and 1,300 mg/L sulfate
	WILLS CREEK FORMATION 5wc	Intertedded calcareous shale, argilla- ceous dolostone and Ilmestone, and calcareous sitistone, gray, yellowish gray, and greenish gray in the upper part; variegated greenish gray, yellowish gray, and grayish red pur- ple in the lower part.	Median specific capacity of pump-tested wells as 3 1 (gallmin) ft. Median estimated well yield is 19 gallmin. About one of every four wells is capable of picking 180 gallmin or more. About three of every four domestic wells are 170 feet deep or less.	Moderate to high dissolved while (238 to 465 anth-fem). Hard to very hard (138 to 180 mg/L).
	BLOOMSBURG FORMATION 50	Graylah-red shale containing inter- beds of graylah-red siltatuse.	Median specific capacity of pump-tested wells in 0.18 (gal/min) ft. Median estimated well yield in 6 gal/min. About one of every four domestic wells in 211 feet deep or more	Moderate to high dissolved solids [13] to 403 jumbolent. Soft to moderately hard (51 to 103 mg/L).
	MIFFLINTOWN AND REFERRE FORMATIONS, UNDIVIDED See Minimum See Formation — Dark gray calcureous shale and limestone. Weeler Formation — Light gray quartitle analytics and sliptone contamination. The see of the state of the sta		Median specific capacity of pump-tested wells is 0.13 (gal/min)th for the Miffun-	Low to moderate dissolved solids [147 to 270 ambo'cm). Soft to moderately hard [51 to 103 mg/L).
	NEMBER NEMBER	Interbedded shale, limestone, and sandstone; gray to greenish gray.	wells is 0.13 (garminy); for the Millin- tion and Keefer Formations and 0.21 (galmin) if for the Rose [10] Formation Median estimated well polyll in 10 gal min About one of every four well sis explide of yielding file galmin or more Alsout one of every four democitie wells is 223 feet ideas to make the control of the control of the con- trol of the control of the control of the con- trol of the control of the control of the con- trol of the control of the control of the con- trol of the c	Low to moderate dissolved solids [145 to 2230 grabocen). Moderately hard p88 to 88 inge lik
	MIDDLE AND LOWER MEMBERS, UNDIVIDED	Middle member—Reddish-purple sandships containing interfects of greenish-gray to reddeb purple stude in the upper part. Lower member—directish-gray shale containing interfects of gray cal- carrous sandshine and reddish-brown hernatitic sandstone	yelding for gallinhor more. Alcud one of every four domestic well is 1222 feet sleep or more. Four definestic wells that pene- trated hid free on remines required 70 to 124 feet of easing.	Low to moderate dissolved solds (140 to 210 archivem). Moderately hard piot to 93 mg/L. Excessive from and manganese are a common problem.
	TISCARDRA FORMATION	Interbedded light-gray quartritic sandstone and grayish green shale.	No data. Due to upland setting, wells would probably be deep and low yielding	An data. Probably low throodered solutioned soft water

SYMBOLS

Spring and county spring number Saturated thickness of glacial outwash, in feet

U.S. Geological Survey stream gaging station and station number

Line of cross section of the glacial outward aquifer

Well and county well number

Thrust fault

Test hole and county number

ISBN: 0-8182-00