Ответы к коллоквиуму по курсу

"Математический анализ"

(1-ый семестр 2015/2016 учебного года, специальность "Информатика")

Определение предельной функции $f(x)\stackrel{X}{=}\lim_{n\to\infty}f_n(x)$ на $(\varepsilon-\delta)$ -языке:

для
$$\forall \ fix \ x \in X$$
 и для $\forall \ \varepsilon > 0 \Rightarrow \exists \ \nu = \nu(x, \varepsilon) \in \mathbb{R} \ | \ для \ \forall \ n \geqslant \nu(\varepsilon) \Rightarrow |f_n(x) - f(x)| \leqslant \varepsilon.$ (1)

Для обозначения равномерной сходимости $f_n(x)$ на X будем использовать запись:

$$f_n(x) \stackrel{X}{\rightrightarrows} f(x).$$
 (2)

1 Супремальный критерий равномерной сходимости функциональных последовательностей ($\Phi\Pi$) и замечания к нему

Теорема (Супремальный критерий равномерной сходимости $\Phi\Pi$).

$$f_n(x) \stackrel{X}{\Rightarrow} f(x) \Leftrightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \xrightarrow[n \to \infty]{} 0.$$
 (3)

$$r_n = \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon$$
, т.е. для $\forall \ \varepsilon > 0 \ \exists \ \nu(\varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu(\varepsilon) \Rightarrow 0 \leqslant r_n \leqslant \varepsilon$, т.е. $r_n \xrightarrow[n \to \infty]{} 0$.

Пусть выполнена (3), тогда

для
$$\forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \; для \; \forall \; n \geqslant \nu(\varepsilon) \; и \; для \; \forall \; x \in X \Rightarrow$$

$$\Rightarrow |f_n(x) - f(x)| \leqslant \sup_{x \in X} |f_n(x) - f(x)| = r_n \leqslant \varepsilon.$$

Таким образом, имеем (1), где ν зависит от $\forall \varepsilon > 0$ и не зависит от конкретного элемента множества X.

Замечания:

- 1. Если известно, что для $\forall n \in \mathbb{N}$ и для $\forall x \in X \Rightarrow |f_n(x) f(x)| \leqslant a_n$, где (a_n) б.м.п, то тогда имеем (2). Сформулированное утверждение даёт мажоритарный признак (достаточное условие) равномерной сходимости $\Phi\Pi$.
- 2. Если

$$\exists x_n \in X \mid g_n(x) = |f_n(x) - f(x)| \Rightarrow g_n(x) \xrightarrow[n \to \infty]{} 0,$$

то тогда равномерной сходимости нет, т.е. $f_n(x) \not\stackrel{X}{\Rightarrow} f(x)$. Это даёт достаточное условие (признак) неравномерной сходимости $\Phi\Pi$.

Для обозначения равномерной сходимости $\Phi P \sum u_n(x)$ на X будем использовать запись:

$$\sum u_n(x) \stackrel{X}{\rightrightarrows} . \tag{4}$$

Критерий Коши сходимости Φ Р: $(4) \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \;$ для $\forall \; n \geqslant \nu \; \;$ и для $\forall \; m \in \mathbb{N} \;$ и для $\forall \; x \in X \Rightarrow$

$$|S_{n+m}(x) - S_n(x)| = \left| \sum_{k=n+1}^{k=n+m} u_k(x) \right| \leqslant \varepsilon.$$
 (5)

Критерий Коши сходимости числовых последовательностей:

(6)

2 Мажорантный признак Вейерштрасса равномерной сходимости функционального ряда (ФР) и замечания к нему

Теорема (мажорантный признак Вейерштрасса равномерной сходимости ΦP).

Если Φ Р имеет на X сходяющуюся числовую мажоранту, то он равномерно сходится на X.

Доказательство. Доказательство с использованием критерия Коши сходимости числовых последовательностей и критерия Коши сходимости ΦP (5):

Т.к. $\sum a_n$ сходится, то

для
$$\forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \;$$
для $\forall \; n \geqslant \nu \;$ и для $\forall \; m \in \mathbb{N} \Rightarrow \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon.$ (7)

Если выполняется неравенство $|u_n(x)| \leqslant a_n$, для $\forall n \in \mathbb{N}$ и для $\forall x \in X$, то для частичных сумм $\Phi P \sum u_n(x)$ имеем: $|S_{m+n}(x) - S_n(x)| = \left|\sum_{k=n+1}^{n+m} u_k(x)\right| \leqslant \sum_{k=n+1}^{n+m} |u_k(x)| \leqslant \sum_{k=n+1}^{n+m} a_k = \left|\sum_{k=n+1}^{n+m} a_k\right| \leqslant \varepsilon$, это для $\forall n \geqslant \nu = \nu(\varepsilon)$ и для $\forall m \in \mathbb{N}$, что в силу (5) даёт (4).

Замечания:

- 1. Принцип Вейерштрасса является лишь достаточным условием равномерной сходимости Φ P. На практике сходимость числовой мажоранты (a_n) либо находится с помощью соответствующих оценок $|u_n(x)|$ сверху, либо берут $a_n = \sup_{x \in X} |u_n(x)|$. В последнем случае получаем наиболее точную мажоранту, но в случае расходимости $\sum a_n$ даже для этой самой точной мажоранты ничего о равномерной сходимости Φ P сказать нельзя, т.е. требуются дополнительные исследования.
- 2. Обобщая признак Вейерштрасса, где используется сходимость числовой мажоранты признак равомерной сходимости ФР, используют функцию мажоранты, а именно получаем:

если
$$\exists \ v_n(x) \geqslant 0 \ : \ |u_n(x)| \leqslant v_n(x)$$
 для $\forall \ n \in \mathbb{N}$ и для $\forall \ x \in X$ и $\sum v_n(x) \stackrel{X}{\Rightarrow}$,

то тогда для $\Phi P \sum u_n(x)$ имеем (4).

3 Признак Дирихле равномерной сходимости ФР и следствие из него (признак Лейбница равномерной сходимости ФР)

Теорема (Признак Дирихле равномерной сходимости ΦP).

Пусть для $\Phi\Pi$ $a_n(x)$ частичные суммы $\sum a_n(x)$ ограничены в совокупности (равномерно на X), т.е.

для
$$\forall x \in X$$
 и для $\forall n \in \mathbb{N} \Rightarrow |a_1(x) + a_2(x) + \ldots + a_n(x)| \leqslant c,$ (8)

где c = const > 0, не зависит ни от n, ни от x. Если $\forall fix \ x \in X \Rightarrow (b_n(x))$ - числовая последовательность является монотонной, то в случае

$$(b_n(x)) \stackrel{X}{\Longrightarrow} 0, \tag{9}$$

имеем $\sum a_n(x)b_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Монотонная последовательность $(b_n(x))$ для $\forall fix \ x \in X$ позволяет так же, как и в ЧР, использовать на основе (8) оценку Абеля:

$$\left| \sum_{k=n+1}^{n+m} a_k(x) b_k(x) \right| \le 2c \left(|b_{n+1}(x)| + 2 |b_{n+m}(x)| \right). \tag{10}$$

Если выполняется (9), то тогда имеем:

для
$$\forall \ \varepsilon > 0 \ \text{по} \ \tilde{\varepsilon} = \frac{\varepsilon}{6c} > 0 \ \exists \ \nu(\varepsilon) \in \mathbb{R} \ | \ \text{для} \ \forall \ n \geqslant \nu(\varepsilon) \ \text{и} \ \text{для} \ \forall \ m \in \mathbb{N} \ \text{и} \ \text{для} \ \forall \ x \in X \Rightarrow |b_{n+1}(x)| \leqslant \tilde{\varepsilon} \ \text{и} \ |b_{n+m}(x)| \leqslant \tilde{\varepsilon},$$

поэтому для частичных сумм $S_n(x) = \sum\limits_{k=1}^n a_k(x)b_k(x)$ в силу (10) для $\forall \ n\geqslant \nu(\varepsilon)$ и для $\forall \ m\in\mathbb{N}$ и для $\forall \ x\in X$ имеем:

$$|S_{n+m}(x) - S_m(x)| = \left| \sum_{k=n+1}^{n+m} a_k(m) b_k(x) \right| \leqslant 2 \cdot c \cdot (\tilde{\varepsilon} + 2\tilde{\varepsilon}) = 6 \cdot c \cdot \tilde{\varepsilon} = \varepsilon. \text{ Отсюда по критерию Коши равномерной сходимости}$$

$$\Phi$$
Р следует, что $\sum a_n(x)b_n(x) \stackrel{X}{\Longrightarrow}$.

Следствие (Признак Лейбница равномерной сходимости ΦP).

Если $\forall \ fix \ x \in X$ последовательность $(b_n(x))$ является монотонной, то в случае $b_n(x) \stackrel{X}{\rightrightarrows} 0 \Rightarrow \sum (-1)^n b_n(x) \stackrel{X}{\rightrightarrows}$.

 \mathcal{A} оказательство. Следует из того, что в условии теоремы $a_n=(-1)^n$ не зависит от x, причём

$$\left|\sum_{k=1}^n a_k\right| \leqslant 1 = const,$$
 для $\forall \ n \in \mathbb{N}.$

Для обозначения поточечной сходимости $\Phi P \sum u_n(x)$ на X будем использовать запись:

$$\sum u_n(x) \stackrel{X}{\rightrightarrows} . \tag{11}$$

4 Признак Дини равномерной сходимости ΦP и следствие из него (теорема Дини для $\Phi \Pi$)

Теорема (Признак Дини равномерно сходящихся ΦP). Пусть

- 1. Члены $\Phi P \sum u_n(x)$ непрерывны и сохраняют один и тот же знак на $X = [a, b], \ для \ \forall \ n \in \mathbb{N}.$
- 2. $\sum u_n(x) \stackrel{X}{\to} S(x)$.

Тогда, если $S(x) = \sum_{n=1}^{\infty} u_n(x)$ - непрерывная функция на [a,b], т.е. $S(x) \in C([a,b])$, то $\sum u_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Рассмотрим на X = [a, b] остатки ряда $R_n(x) = u_{n+1}(x) + \ldots + \ldots = S(x) - S_n(x)$. Нетрудно видеть, что выполняются следующие свойства:

- 1. для $\forall \ fix \ n \in \mathbb{N} \Rightarrow \mathbb{R}_n(x)$ непрерывная функция на [a,b] как разность двух непрерывных функций.
- 2. для $\forall \ fix \ x \in X \Rightarrow \Phi\Pi \ (R_n(x))$ убывает в случае, когда $\forall \ u_n(x) > 0$, т.к. $R_n(x) = u_n(x) + R_{n+1}(x) \geqslant R_{n+1}(x)$, для $\forall \ n \in \mathbb{N}$.
- 3. Т.к. имеет место (11), то для $\forall fix \ x \in X \Rightarrow R_n(x) \stackrel{X}{\to} 0.$

Предположим, что рассматриваемая положительная поточечная сходимость на X ΦP не является равномерной сходимостью на X.

Тогда по правилу де Моргана имеем: $\exists \ \varepsilon_0 > 0 \ | \ \text{для} \ \forall \ \nu \in \mathbb{R} \ \exists \ n(\nu) \geqslant 0 \ \text{и} \ \exists \ x(\nu) \in X \ | \ R_{n\nu}(x_\nu) > \varepsilon_0$. Для простоты будем считать, что $\exists \ x_n \in X \ | \ R_n(x_n) > \varepsilon_0$. По принципу выбора из ограниченной последовательности x_n можно выбрать сходящуюся подпоследовательность, т.е. $x_{nk} \xrightarrow[n_k \to \infty]{} x_0$, при этом в силу использования X = [a,b] - компакт, получаем, что $x_0 \in X$. Если зафиксируем $m \in \mathbb{N}$, то для $\forall \ n_k \geqslant m \Rightarrow R_{nk}(x_{nk}) > \varepsilon_0$, по свойствам остаткам будем иметь, что $R_m(x_{nk}) \geqslant R_{nk}(x_{nk}) > \varepsilon_0$. В неравенстве $R_m(x_{nk}) > \varepsilon_0$, переходя к пределу при $n_k \to \infty$ для $\forall \ m \in \mathbb{N}$, получаем в силу непрерывности $R_n(x) : R_m(x_0) = \lim_{n_k \to \infty} R_m(x_{nk}) \geqslant x_0$, что противоречит последнему из свойств

остатка, а именно $R_m(x_0) \xrightarrow{X}$ при $m \to \infty$, поэтому из нашего предположения следует, что выполняется $R_m(x_0) \to 0$, противоречие, т.е. выполняется $\sum u_n(x) \stackrel{X}{\Rightarrow}$.

Следствие ($Teopema\ \mathcal{A}uhu\ \partial na\ \Phi\Pi$).

Если для $\Phi\Pi$ $f_n(x), n \in \mathbb{N}$ на X = [a, b] выполняются свойства:

- 1. для $\forall f_n(x) \in C([a,b])$ и для $\forall fix \ x \in X \Rightarrow f_n(x)$ монотонна.
- 2. $f_n(x) \xrightarrow{X} f(x)$. Тогда, если $f(n) \in C([a,b])$, то $f_n(x) \stackrel{X}{\rightrightarrows}$.

Доказательство. следует из того, что члены рассматриваемой $\Phi\Pi$ $f_n(x)$ можно рассматривать как частичные суммы соответствующего ΦP с общим членом

$$\begin{cases} u_n(x) = f_n(x) - f_{n-1}(x), \\ f_0(x) = 0. \end{cases}$$
 (12)

Действительно, $S_n(x) = f_n(x) - f_0(x) = f_n(x)$, для $\forall n \in \mathbb{N}$.

А далее к соответствующему ФР применима теорема Дини равномерной сходимости ФР.

Пусть x_0 - предельная точка множества сходимости $X\subset\mathbb{R}$ для $\Phi P\sum u_n(x)$. Будем говорить, что в $\sum u_n(x)$ возможен почленный предельный переход $x \to x_0$, если

$$\exists \lim_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{n=1}^{\infty} u_n(x), \tag{13}$$

причём получившийся в левой части (13) ЧР является сходящимся.

В частности, если $x_0 \in X$ и $\forall u_n(x)$ непрерывен в некоторой окрестности точки x_0 , и значит, для $\forall n \in \mathbb{N} \exists \lim_{x \to \infty} u_n(x) = 0$ $u_n(x_0)$, то в случае выполнения (13) для суммы S(x) ФР $\sum u_n(x)$ при $x \to x_0$ имеем:

$$\exists \lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x) = \sum_{n=1}^{\infty} u_n(x_0) = S(x), \tag{14}$$

что соответствует непрерывности S(x) в точке $x_0 \in X$.

Теорема о непрерывности суммы равномерно сходящегося ФР и заме-5 чания к ней

Теорема (о непрерывности суммы равномерно сходящегося ΦP).

Если все члены $u_n(x), n \in \mathbb{N}, \Phi P \sum u_n(x)$ непрерывны на X = [a, b], то в случае равномерной сходимости этого ряда на [a,b] его сумма S(x) будет непрерывной функцией на [a,b].

Доказательство. Требуется обосновать (14) для $\forall \; x_0 \in [a,b]$, причём в случае концевых значений $x_0 = a, \; x_0 = b$ будем использовать соответствующие односторонние пределы, т.е. рассматривать одностороннюю непрерывность.

Для $fix\ x_0 \in [a,b]$ придадим произвольные приращения $\Delta x \in \mathbb{R} \mid (x_0 + \Delta x) \in [a,b]$ и рассмотрим соответствующие приращения суммы $\Phi P \sum u_n(x)$:

$$\Delta S(x_0) = S(x_0 + \Delta x) - S(x_0).$$

Из равномерной сходимости Φ Р $\sum u_n(x)$ на $X=[a,b]\Rightarrow$ для $\forall\ \varepsilon>0\ \exists\ \nu=\nu(\varepsilon)\in\mathbb{R}\ |$ для $\forall\ n\geqslant \nu,\$ и для $\forall\ x\in[a,b]$ для частичных сумм $S_n(x)=u_1(x)+u_2(x)+\ldots+u_n(x)$ ряда $\sum u_n(x)$ имеем: $|S_n(x)-S(x)|\leqslant \varepsilon$.

Отсюда, в частности, для $x=x_0\in X$ и $x=x_0+\Delta x\in X\Rightarrow$

$$\begin{cases} |S_n(x_0) - S(x_0)| \leq \varepsilon, \\ |S_n(x_0 + \Delta x) - S(x_0 + \Delta x)| \leq \varepsilon. \end{cases}$$
(15)

Далее из непрерывности $\forall u_n(x)$ в $x_0 \in [a,b]$ следует непрерывность частичных сумм в x_0 (как конечных сумм непрерывных функций).

В силу этого, для $\forall \varepsilon \exists \delta > 0 : для \forall |\Delta x| \leqslant \delta \Rightarrow$

$$\Rightarrow |S_n(x_0 + \Delta x) - S_n(x_0)| \leqslant \varepsilon. \tag{16}$$

Таким образом, в силу (15), (16) имеем: для $\forall \varepsilon > 0$, выбирая $n \geqslant \nu$ и рассматривая $\forall |\Delta x| \leqslant \delta$, имеем:

 $|\Delta S(x_0)| = |S_n(x_0) - S(x_0) + S_n(x_0 + \Delta x) - S_n(x_0) + S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \le |\Delta S(x_0)| = |S_n(x_0) - S(x_0) + S_n(x_0 + \Delta x) - S_n(x_0) + S_n(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \le |\Delta S(x_0)| = |S_n(x_0) - S_n(x_0) + S_n(x_0 + \Delta x) - S_n(x_0) + S_n(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \le |\Delta S(x_0)| + |\Delta S(x_0)|$

$$\leqslant |S_n(x_0) - S(x_0)| + |S_n(x_0 + \Delta x) - S_n(x_0)| + |S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \leqslant \varepsilon + \varepsilon + \varepsilon = 3 \cdot \varepsilon.$$

Поэтому получаем: для $\forall \ \varepsilon \ \exists \ \delta > 0$: для $\forall \ |\Delta x| \leqslant \delta \Rightarrow |\Delta S(x_0)| \leqslant M \cdot \varepsilon, M = const = 3 > 0$. Отсюда по М-лемме для Φ 1 Π следует, что $\Delta S(x_0) \underset{\Delta x \to 0}{\to} 0$, что на языке приращений равносильно (14). При этом, т.к. из равномерной сходимости следует поточечная сходимость ЧР в правой части (14) будет сходящимся.

Замечания:

- 1. Доказанную теорему часто называют теоремой Стокса-Зейделя или теоремой Стокса-Зайделя.
- 2. В условии доказанной теоремы равномерную сходимость можно заменить для произвольного множества $X\subset\mathbb{R}$ на локальную равномерную сходимость. Будем говорить, что $\Phi P \sum u_n(x)$ сходится локально равномерно на $X\subset\mathbb{R},$ если для $orall~[a,b]\subset X\Rightarrow\sum u_n(x)(x)\stackrel{[a,b]}{
 ightharpoonup}$. У $\sum u_n(x)$ может быть локальная равномерная сходимость на X, но может не быть полной (????) равномерной сходимости на X. В случае локальной равномерной сходимости $\sum u_n(x)$ на X берём $\forall x_0 \in X$ и заключаём её в некоторый отрезок $x_0 \in [a,b] \subset X$. Т.к. есть равномерная сходимость для $\sum u_n(x)$ на этом отрезке, то по доказанной теореме сумма S(x) в случае непрерывности $\forall u_n(x)$ на X будет непрерывна на $[a,b]\subset X$ и, в частности, непрерывна в $x_0\in X$, а т.к. это можно сделать для $\forall \ x_0\in X$, то тем самым получаем непрерывность S(x) на $X\subset\mathbb{R}$ даже в случае, когда нет равномерной сходимости ΦP на X.

6 Теорема о почленном интегрировании равномерно сходящегося ФР

Теорема (о почленном интегрировании равномерно сходящихся ΦP).

Если $\forall u_n(x) \in C([a,b]),$

для $n \in \mathbb{N}$, то в случае, когда $\sum u_n(x) \stackrel{[a,b]}{\Rightarrow}$, возможно почленное интегрирование этого ряда на [a,b], т.е.

$$\exists \int_{a}^{b} S(x)dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} u_n(x)\right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x)dx. \tag{17}$$

Доказательство. На основании теоремы о непрерывности суммы равномерно сходящихся ΦP получим, что сумма ряда $S(x) = \sum_{n=1}^{\infty} u_n(x)$ будет непрерывна на [a,b], а значит, интегрируема на [a,b].

Используя частичные суммы для $\sum u_n(x)$, рассмотрим частичные суммы $T_n = \int_0^b S_n(x) dx =$

$$=\int\limits_{a}^{b}\sum\limits_{k=1}^{n}u_{k}(x)dx=\sum\limits_{k=1}^{n}\int\limits_{a}^{b}u_{k}(x)dx$$
для ЧР правой части (17).

Требуется доказать, что $\lim_{n\to\infty}T_n=\int\limits_{-b}^bS(x)dx.$

Из равномерной сходимости $\sum u_n(\stackrel{a}{x})$ на [a,b] получим, что для $\forall \ \varepsilon>0 \ \exists \ \nu=\nu(\varepsilon) \ |$ для $\forall \ n\geqslant \nu$ и для $\forall \ x\in [a,b]\Rightarrow$

$$|S(x) - S_n(x)| = \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \varepsilon \tag{18}$$

Отсюда получаем, что $\left| \int\limits_a^b S(x) dx - I_n \right| = \left| \int\limits_a^b S(x) dx - \int\limits_a^b S_n(x) dx \right| = \left| \int\limits_a^b (S(x) - S_n(x)) dx \right| \leqslant$ $\leqslant \int \left| S(x) - S_n(x) \right| dx \leqslant \int\limits_a^b \varepsilon dx = M\varepsilon, \text{ где } M = b - a = const \geqslant 0.$

Таким образом, для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \ | \$ для $\forall \ n \geqslant \nu \Rightarrow \left| \int\limits_a^b S(x) dx - I_n \right| \leqslant M \varepsilon,$ поэтому по М-лемме сходимости ЧП следует, что

$$\exists \lim_{n \to \infty} I_n = \int_a^b S(x) dx = \int_a^b \left(\sum_{k=1}^\infty u_k(x) \right) dx,$$

что равносильно (17).

7 Теорема о почленном дифференцировании ФР

Теорема (о почленном дифференцировании ΦP).

Пусть $\Phi P \sum u_n(x)$ на X = [a, b] удовлетворяет условиям:

- 1. $\sum u_n(x) \stackrel{X}{\rightarrow}$,
- 2. $\exists u_{n}^{'}(x)$, непрерывная для $\forall n \in \mathbb{N}, x \in X$.

Тогда, если

$$\sum u_{n}^{'}(x) \stackrel{X}{\rightrightarrows} \tag{19}$$

то рассматриваемый $\Phi P \sum u_n(x)$ можно почленно дифференцировать на [a,b], т.е.

$$\exists \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{k=1}^{\infty} u_k'(x), \text{для } \forall x \in X.$$
 (20)

Доказательство. В силу (19), по условию 2 рассматриваемой теоремы получаем, что по теореме об интегрировании $\Phi P \sum u'_n(t)$ можно почленно интегрировать на $\forall [a,x] \subset [a,b]$, т.е.

$$\exists \int_{a}^{x} \left(\sum_{n=1}^{\infty} u'_{n}(t) \right) dt = \sum_{n=1}^{\infty} \int_{a}^{x} u'_{n}(t) dt = \sum_{n=1}^{\infty} [u_{n}]_{t=a}^{t=x} = \sum_{n=1}^{\infty} (u_{n}(x) - u_{n}(a)).$$

Отсюда в силу условия 1 (поточечная сходимость для $\sum u_n(x)$) получаем, что

$$\exists \ S(x) = \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} u_n(a) + \int_{a}^{x} \sum_{n=1}^{\infty} u'_n(t) dt.$$

Используя далее *теорему Барроу* о дифференцировании интеграла с переменным верхним пределом от непрерывной подынтегральной функции, получаем:

$$\exists \ S^{'}(x) = \left(const\right)^{'} + \left(\int\limits_{a}^{x} \left(\sum\limits_{n=1}^{\infty} u_{n}^{'}(t)\right) dt\right)_{x}^{'} = \sum\limits_{n=1}^{\infty} u_{n}^{'}(x),$$

что соответствует (20).

Под степенным рядом будем подразумевать ФР вида

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$
 (21)

где fix $x_0 \in \mathbb{R}$ - центр для CтP, а $\forall a_n \in \mathbb{R}$ - соответствующая числовая последовательность (коэффициенты CmP).

8 Теорема Абеля о сходимости степенного ряда (СтР) и замечание к ней.

Теорема Абеля (о сходимости степенных рядов).

Если СтР (21) сходится при $x=x_1\neq x_0$, то он будет сходится абсолютно для любого x, где

$$|x - x_0| < |x_1 - x_0|. (22)$$

Доказательство. Из сходимости ряда $\sum_{n=0}^{\infty} a_n (x_1 - x_0)^n$ следует в силу необходимого условия сходимости ЧР, что $a_n(x_1-x_0)^n \xrightarrow[n\to\infty]{} 0$, а т.к. \forall ЧП является ограниченной, то $\exists M=\mathrm{const}>0: |a_n(x_1-x_0)^n|\leqslant M$, для \forall $n\in\mathbb{N}$, т. е.

$$|a_n| \leqslant \frac{M}{|x_1 - x_0|^n}. (23)$$

Для $\forall x$, удовлетворяющего (22), в силу (23) получаем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \stackrel{(23)}{\leqslant} \frac{M |x-x_0|^n}{|x_1-x_0|^n} = Mq^n$$
, где $q = \frac{|x-x_0|}{|x_1-x_0|} \in [0;1[$.

Таким образом, мы получили сходящуюся мажоранту, ибо ряд $\sum_{n=0}^{\infty} Mq^n = M \sum_{n=0}^{\infty} q^n$ сходится при $q \in [0;1[$. По признаку сравнения сходимости ЧР имеем, что для $\forall \, x$, удовлетворяющего (22), ряд (21) будет сходиться.

Замечание.

Из полученных выше результатов следует, что если рассмотреть множество X_0 всех x, удовлетворяющих (22), то имеем, что $X_0 \subset X$, т.е. X_0 - некоторое подмножество множества X сходимости для (21).

9 Формула Даламбера для вычисления радиуса сходимости СтР.

Теорема (формула Даламбера для вычисления радиуса сходимости СтР).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,\tag{24}$$

то для радиуса сходимости ряда (21) имеем:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|. \tag{25}$$

Доказательство.

Без ограничения общности будем считать, что в (21) $\forall a_n \neq 0$. Т.к. СтР (21) сходится при $x = x_0$, то рассмотрим случай $x \neq x_0$.

Если $x\in I=\ \]x_0-R\ ;\ x_0+R\ \ [$, где $R\geqslant 0$, то по признаку Даламбера сходимости ЧР для (21) имеем:

$$\exists d = \lim_{n \to \infty} \frac{\left| a_{n+1}(x - x_0)^{n+1} \right|}{\left| a_n(x - x_0)^n \right|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| \stackrel{(25)}{=} \frac{|x - x_0|}{R}.$$

В силу того, что $x \in I$ и, значит, $|x-x_0| < R$, получаем, что d < 1 и СтР (21) будет сходящимся. Если d > 1, т.е. $|x-x_0| > R$, то (21) расходится. Таким образом, (25) будет радиусом сходимости для (21).

Формула Коши для вычисления радиуса сходимости СтР и замечания 10 к ней.

Теорема (формула Коши для вычисления радиуса сходимости CmP).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \sqrt[n]{|a_n|},\tag{26}$$

то для радиуса сходимости ряда (21) имеем:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$$
 (27)

 $extit{Доказательство}$ проведём по тойже схеме, что и в предыдущей теореме.

Т.к. случай $x=x_0$ тривиален (в данной точке ряд всегда сходится), то рассмотрим случай $x\neq x_0$. По признаку Коши сходимости ЧР для (21) получаем:

$$\exists \ k = \lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} \stackrel{(27)}{=} \frac{|x - x_0|}{R}.$$

Если k < 1, т. е. $|x - x_0| < R$, то СтР (21) сходится.

Если k > 1, т. е. $|x - x_0| > R$, то СтР (21) расходится.

Таким образом, в силу определения, величина (27) будет радиусом сходимости для (21).

Замечания:

- 1. В силу связи между признаками Даламбера и Коши сходимости ЧР, в случае, когда предел (25) не существует (ни конечный, ни бесконечный), предел (27) может существовать, и в этом смысле формула Коши (27) предпочтительнее, чем (25).
- 2. Можно показать, что в случае, когда в (27) нет ни конечного, ни бесконечного предела, радиус сходимости для (21) всегда можно вычислить по формуле Коши-Адамара, использующей понятие верхнего предела последовательности:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$
 (28)

Под верхним пределом последовательности подразумевается верхняя грань (supremum) множества конечных пределов всех сходящихся подпоследовательностей рассматриваемой последовательности.

11 Теорема о локальной равномерной сходимости СтР, замечания к ней и следствие из неё (о равенстве степенных рядов).

Теорема (о локальной равномерной сходимости СтР).

Если СтР (21) имеет ненулевой радиус сходимости, то этот ряд (21) сходится равномерно на любом отрезке из интервала сходимости данного ряда.

Доказательство.

Рассмотрим $\forall \ [a,b] \subset I = \ \Big] \ x_0 - R \ ; \ x_0 + R \ \Big[\ , \ \text{где} \ R > 0 \ \text{-} \ \text{радиус сходимости CTP (21)}.$ Имеем:

$$x_0 - R < a < b < x + R \Rightarrow -R < a - x_0 < b - x_0 < R \Rightarrow \begin{cases} |a - x_0| < R, \\ |b - x_0| < R. \end{cases}$$
(29)

Полагая $r=\max\left\{ \ \left|a-x_{0}\right|,\ \left|b-x_{0}\right|\
ight\}$, в силу (29) получаем:

$$0 \leqslant r < R. \tag{30}$$

Отсюда для $\forall x \in [a, b]$ получаем:

$$|x - x_0| \le \max \{ |a - x_0|, |b - x_0| \} = r,$$

поэтому для $\forall n \in \mathbb{N}_0$ имеем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \leqslant |a_n| r^n = c_n$$
 - мажоранта.

Применяя к ряду c_n обобщённый признак Коши сходимости ЧР, получаем:

$$\exists \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|} = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} r^n = r \cdot \underbrace{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}_{\stackrel{1}{=}} \stackrel{(28)}{=} \frac{r}{R} \stackrel{(30)}{<} 1,$$

а значит, ряд $\sum c_n$ сходится.

Таким образом, мы получили равномерно сходящуюся числовую мажоранту, и поэтому, по мажорантному признаку Вейерштрасса для Φ P, рассматриваемый CtP (21) будет равномерно сходиться на \forall [a, b] \subset I.

Замечания:

- 1. Из доказанной теоремы следует, что любой СтР сходится локально равномерно на интервале своей сходимости.
- 2. Применяя теорему Стокса-Зейделя для Φ Р и учитывая, что в (21) все слагаемые являются непрерывными функциями на I, в силу локальной равномерной сходимости (21) на I, внутри интервала сходимости сумма любого СтР (21) будет являться непрерывной функцией.

Следствие (о равенстве CmP).

Если для СтР (21) с непрерывной суммой $S_n(x)$ есть степенной ряд $\sum_{n=0}^{\infty} b_n (x-x_0)^n$ с соответствующей суммой T(x), причём T(x) = S(x) в некоторой окрестности центра разложения x_0 , то тогда и сами СтР совпадают, т.е. $a_n = b_n$, для $\forall n \in \mathbb{N}_0$.

Доказательство. Пусть имеем, что

$$S(x) = a_0 + a_1(x - x_0) + \dots = b_0 + b_1(x - x_0) + \dots = T(x).$$

В силу непрерывности S(x) и T(x) в соответствующей окрестности точки x_0 при $x \to x_0$, получаем:

$$a_0=\lim_{x o x_0}S(x)=\lim_{x o x_0}T(x)=b_0,$$
 отсюда
$$a_1(x-x_0)+a_2(x-x_0)^2+\ldots=b_1(x-x_0)+b_2(x-x_0)^2+\ldots.$$

Таким образом, для $\forall x \neq x_0$ имеем:

$$a_1 + a_2(x - x_0) + \ldots = b_1 + b_2(x - x_0) + \ldots$$

Используя опять соответствующую окрестность точки x_0 , при $x \to x_0$, получим, что $a_1 = b_1$ и так далее (по ММИ).

12 Теорема о дифференцировании СтР, замечания и следствие из неё.

Теорема (о дифференцировании СтР).

Сумма СтР (21) внутри его интервала сходимости является непрерывной дифференцируемой функцией, причём у продифференцированного СтР будет тот же радиус (а, значит, и интервал) сходимости, что и у исходного ряда (21).

Доказательство. По теореме о почленном дифференцировании ΦP и замечанию к ней достаточно показать, что возможно почленное дифференцирование (21) на \forall отрезке $[a,b] \subset I =]$ $x_0 - R$; $x_0 + R$ [.

- 1. В (21) слагаемые $u_n(x) = a_n(x-x_0)^n$, $n \in \mathbb{N}_0$ являются непрерывно дифференцируемыми функциями для $\forall \, x \in [a;b]$ т.к. $\exists \, u_n'(x) = na_0(x-x_0)^{n-1}$ непрерывная на [a;b].
- 2. Так как \forall СтР (21) сходится поточечно внутри своего интервала сходимости, то $\sum_{n=0}^{\infty}u_n(x)\xrightarrow[n=0]{\text{для }\forall\ [a;b]\subset I}S(x).$

Осталось показать, что продифференцированный СтР

$$\sum_{n=0}^{\infty} u_n'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x - x_0)^n \stackrel{[a;b]}{\rightrightarrows}.$$

Используя формулу Коши-Адамара, имеем:

$$\widetilde{R} = \frac{1}{\frac{\lim_{n \to \infty} \sqrt[n]{(n+1)|a_{n+1}|}}{\sqrt[n]{(n+1)|a_{n+1}|}}} = \frac{1}{\frac{\lim_{n \to \infty} \left(\sqrt[n]{n+1} \sqrt[n]{|a_{n+1}|}\right)}} = \left[\frac{\sqrt[n]{n+1} \frac{1}{n \to \infty} 1,}{\sqrt[n]{|a_{n+1}|} + \left(\sqrt[n+1]{|a_{n+1}|}\right)^{\frac{n+1}{n}}}\right] = \frac{1}{\frac{\lim_{n \to \infty} \left(\sqrt[n+1]{|a_{n+1}|}\right)^{\frac{n+1}{n}}}{\lim_{n \to \infty} \left(\sqrt[n+1]{|a_{n+1}|}\right)^{\frac{n+1}{n}}}} = \left[\frac{\frac{n+1}{n} \frac{1}{n \to \infty} 1,}{\lim_{n \to \infty} \sqrt[n+1]{|a_{n+1}|}}\right] = \frac{1}{\frac{1}{R}} = R.$$

Значит, у исходного и продифференцированного рядов один и тот же радиус, а, значит, и интервал, сходимости. Тогда, в силу того, что \forall CTP сходится локально равномерно, получаем, что $\sum\limits_{n=0}^{\infty}u_n'(x)\stackrel{[a;b]}{\Rightarrow}S'(x)$.

Причём, в силу непрерывности слагаемых, S(x) будет непрерывно дифференцируема на $\forall [a;b] \subset I$, а, значит, и для $\forall x \in I$.

Замечания:

- 1. Применяя последовательно дифференцирование к СтР (21), получим по ММИ, что сумма ряда (21) будет бесконечное число раз дифференцируемой функцией.
- 2. Можно показать, что дифференцирование CTP хоть и сохраняет интервал сходимости, но в общем случае ne ynyumaem его множество сходимости в том смысле, что если, например, исходный ряд (21) находится на какомто из концов интервала I $(x=x_0\pm R)$, то продифференцированный ряд уже может расходиться на этом конце.

Следствие.

Если на интервале $I=]x_0-R$; x_0+R [бесконечно дифференцируемая функция f(x) представляется в виде $f(x)=\sum_{n=0}^{\infty}a_n(x-x_0)^n$, для $\forall \ x\in I$, то для неё СтР (21) будет являться соответствующим рядом Тейлора в окрестности $f^{(n)}(x_0)$

точки x_0 , т. е. для $\forall \ a_n=rac{f^{(n)}(x_0)}{n!}, \ n\in\mathbb{N}_0.$

Доказательство. Действительно, дифференцируя почленно n раз равенство

$$f(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n + \ldots$$

в силу доказанной теоремы получим:

$$\exists f^{(n)}(x) = n! \cdot a_n + (n+1)! \cdot a_{n+1}(x - x_0) + \dots$$

Отсюда при $x \to x_0$ имеем:

$$n! \cdot a_n = \lim_{x \to x_0} f^{(n)}(x) = f^{(n)}(x_0) \quad \Leftrightarrow \quad a_n = \frac{f^{(n)}(x_0)}{n!},$$

т.е. $\forall a_n$ - коэффициент в разложении в ряд Тейлора.

13 Теорема о замене переменной в несобственных интегралах (НИ) и замечание к ней.

Теорема (о замене переменных в НИ).

Будем одновременно рассматривать как НИ-1, так и НИ-2.

Пусть f(x) определена для $\forall x \in [a; b[$, где либо $b = +\infty$ (НИ-1), либо $f(b-0) = \infty$ (НИ-2).

Если функция $x(t) = \phi(t)$ - непрерывно дифференцируема для $\forall t \in [\alpha; \beta[$ и строго монотонна, то в случае, когда:

$$\begin{cases} \phi(\alpha)=a,\\ \phi(\beta-0)=b. \end{cases}$$
, интеграл
$$\int\limits_a^b f(x)dx$$
, где $b=+\infty$ (НИ-1) либо $f(b-0)=+\infty$ (НИ-2), сходится тогда и только тогда, когда сходится интеграл

$$\int_{\Omega}^{\beta} f(\phi(t))\phi'(t)dt. \tag{31}$$

При этом справедлива формула замены переменных в НИ:

$$\int_{a}^{b} f(x)dx = \begin{bmatrix} x = \phi(t) \Rightarrow dx = \phi'(t)dt, \\ x \Big|_{a=\phi(\alpha)}^{b=\phi(\beta-0)} \end{bmatrix} = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt,$$
 (32)

причём в правой части (32) может стоять как НИ, так и интеграл Римана.

Доказательство. Следует из соответствующей теоремы о замене переменных в ОИ (интеграле Римана).

Для доказательства, выбирая для $\forall \gamma \in [\alpha; \beta[$, в силу строгой монотонности $\phi(t)$, получаем что $\phi(\gamma) \in [a; b[$. При этом для $\forall c \in [a; b[$ $\exists ! \gamma \in [\alpha; \beta[$.

Тогда по теореме о замене переменных в ОИ имеем:

$$\int_{a}^{c} f(x)dx = \begin{bmatrix} x = \phi(t) \Rightarrow dx = \phi'(t)dt, \\ x|_{a=\phi(\alpha)}^{c} \Rightarrow \exists ! \ \gamma \in [\alpha; \beta[, c = \phi(t) \Rightarrow t|_{\alpha}^{\beta}.] \end{bmatrix} = \int_{\alpha}^{\gamma} f(\phi(t))\phi'(t)dt.$$

Отсюда, переходя к пределу и учитывая, что $\gamma \to \beta - 0 \Rightarrow c \to b - 0$, получаем (32).

Замечание.

Для НИ-2 вида $\int_{-\infty}^{b-0} f(x)dx$ после замены переменных имеем:

$$t=\left.\frac{1}{b-x}\right|_{\frac{1}{b-x}>0}^{+\infty},\ \text{а для }\ x|_a^{b-0}\,,$$

отсюда получаем: $x=b-\frac{1}{t} \Rightarrow dx=\frac{dt}{t^2} \Rightarrow \int\limits_a^b f(x)dx=\int\limits_{-1}^{+\infty} \frac{f(b-\frac{1}{t})}{t^2}dt.$

Тем самым мы *свели НИ-2 к соответствующему НИ-1*. Дальнейшее исследование которого, например, на сходимость, можно проводить с помощью полученных ранее условий сходимости НИ-1.

- 14 Формула двойной подстановки для НИ и интегрирование по частям в НИ.
- 15 Признак существования равномерного частного предела для непрерывных $\Phi 2\Pi$.
- 16 Критерий Гейне равномерной сходимости $\Phi 2\Pi$ и замечания к нему.
- 17 Теорема о предельном переходе в собственных интегралах, зависящих от параметра (СИЗОП) и замечания к ней.
- 18 Теорема о почленном дифференцировании СИЗОП.
- 19 Теорема о предельном переходе в несобственных интегралах, зависящих от параметра (НИЗОП), следствие из неё и замечание к ней.
- 20 Теорема об интегрировании НИЗОП и замечания к ней.
- 21 Теорема о почленном дифференцировании НИЗОП и замечание к ней.
- 22 Вычисление интеграла Дирихле и его обобщения.
- 23 Лемма Фруллани.
- 24 Первая теорема Фруллани.
- 25 Вторая теорема Фруллани.
- 26 Третья теорема Фруллани.