We Claim:

1. A compound of the formula:

5 wherein:

X is = O or = S;

A is $=CR^1$ - or =N-;

The group -Y-Z- has the formula -O-CH₂- or -N=CH-;

R¹ is:

10 (a) (C_1-C_8) alkyl;

(b) $-C(=O)-R^5$;

(c) -C(=O)-NR⁶R⁷; or

(d) R³⁵, or R³⁶, (C₂-C₈)alkenyl, or (C₂-C₈)alkynyl {wherein each of said (C₂-C₈)alkenyl or (C₂-C₈)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of F, Cl, OH, -NH₂, R⁴⁰, and R⁴²};

R² is

(a) H, OH, or (C₁-C₈)alkyl;

(b) -C(=O)-R⁸;

20 (c) -(C=S)-R⁹ or -(C=S)-NR¹⁰R¹¹; or

(d) R³⁸ or R³⁹:

R³ is

(a) (C₁-C₈)alkyl;

(b) -C(=O)-R¹²;

25 (c) -C(=O)-NR¹³R¹⁴;

(d) $-NR^{15}-C(=O)-R^{16}$;

(e) -NR¹⁷-SO₂R¹⁸;

(f) $-NR^{19}-SO_n-NR^{20}R^{21}$ {wherein n is 1 or 2};

- (g) $-NR^{22}$ -(C=S)- R^{23} or $-NR^{22}$ -(C=S)- $NR^{23}R^{24}$;
- (h) R^{36} , (C_2-C_8) alkenyl, or (C_2-C_8) alkynyl {wherein each of said R^3 (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of $-(C=O)-O-(C_1-C_8)$ alkyl, $-O-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, -(C=O)alkyl, -
- (i) R^{37} , $-NH_2$, $-NH((C_2-C_8)alkenyl)$, $-NH((C_2-C_8)alkynyl)$, $-N((C_1-C_8)alkyl)((C_2-C_8)alkenyl)$, or $-N((C_1-C_8)alkyl)((C_2-C_8)alkynyl)$ {wherein each of said R^{26} (C_2-C_8)alkenyl or $(C_2-C_8)alkynyl$ is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} , R^{41} , and R^{42} }; or

10 (j) R³⁸;

5

25

30

R⁴ is selected from the group consisting of H, F, Br, Cl, and (C₁-C₈)alkyl;

 R^{5} is selected from the group consisting of H, (C1-C8)alkyl, (C1-C8)alkyl-O-, and R^{36}

Each R^6 and R^7 are independently selected from the group consisting of H, (C₁-C₈)alkyl, and R^{36} ;

 R^8 is selected from the group consisting of (C1-C8)alkyl, (C2-C8)alkenyl, (C2-C8)alkynyl, -NH2, R^{36} , and $R^{37};$

Each of R^9 , R^{10} and R^{11} are independently selected from the group consisting of H, $(C_1\text{-}C_8)$ alkyl, and R^{36} ;

20 R^{12} is selected from the group consisting of H, OH, (C_1-C_8) alkyl, (C_1-C_8) alkyl-O-, and R^{36} ;

R¹³ is H or (C₁-C₈)alkyl;

 R^{14} is selected from the group consisting of H, (C1-C8)alkyl, -CH2-(C=O)-O-(C1-C8)alkyl, and $R^{36};$

R¹⁵ is H or (C₁-C₈)alkyl;

 R^{16} is selected from the group consisting of H, (C_1-C_8) alkyl, (C_2-C_8) alkynyl, -NH₂, R^{36} , and R^{37} ;

wherein said R^{16} (C_2 - C_8)alkenyl or (C_2 - C_8)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} ;

R¹⁷ is selected from the group consisting of H, (C₁-C₈)alkyl, and R³⁶;

R¹⁸ is (C₁-C₈)alkyl or R³⁶;

 R^{19} , R^{20} , and R^{21} are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} ;

 R^{22} , R^{23} and R^{24} are independently selected from the group consisting of H, (C₁- C₈)alkyl, and R^{36} ;

10

15

20

25

30

35

R²⁵ is H or (C₁-C₈)alkyl;

 R^{26} is selected from the group consisting of -C(=O)-O-C(CH₃)₃, (C₁-C₈)alkyl, -(CR¹³R¹⁵)_t(C₃-C₁₀)cycloalkyl, -(CR¹³R¹⁵)_t(C₂-C₁₀)heterocyclyl, -(CR¹³R¹⁵)_t(C₆-C₁₀)aryl, and -(CR¹³R¹⁵)_t(C₁-C₁₀)heteroaryl; wherein t is an integer from 0 to 2;

or R²⁵ and R²⁶ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{27} is selected from the group consisting of (C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)heterocyclyl, (C₆-C₁₀)aryl, and (C₁-C₁₀)heteroaryl;

 R^{28} is selected from the group consisting of (C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)heterocyclyl, (C₆-C₁₀)aryl, and (C₁-C₁₀)heteroaryl;

R²⁹ is H or (C₁-C₈)alkyl;

 R^{30} is (C₁-C₈)alkyl, (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)heterocyclyl, (C₆-C₁₀)aryl, or (C₁-C₁₀)heteroaryl;

or R²⁹ and R³⁰ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

R³¹ is H or (C₁-C₈)alkyl;

 R^{32} is independently selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or R³¹ and R³² may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 $R^{33} \qquad \text{is} \qquad (C_1-C_8)\text{alkyl}, \qquad -(CR^{13}R^{15})_q(C_3-C_{10})\text{cycloalkyl}, \\ -(CR^{13}R^{15})_q(C_2-C_{10})\text{heterocyclyl}, \qquad -(CR^{13}R^{15})_q(C_6-C_{10})\text{aryl}, \qquad \text{or} \\ CR^{13}R^{15})_q(C_9-C_{10})\text{aryl}, \qquad \text{or} \\ CR^{13}R^{15})_q(C_9-C_{10})$

-(CR 13 R 15)_q(C₁-C₁₀)heteroaryl; wherein q is an integer from 0 to 2;

 $R^{34} \qquad \text{is} \qquad (C_1-C_8)\text{alkyl}, \qquad -(CR^{13}R^{15})_p(C_3-C_{10})\text{cycloalkyl}, \\ -(CR^{13}R^{15})_p(C_2-C_{10})\text{heterocyclyl}, \qquad -(CR^{13}R^{15})_p(C_6-C_{10})\text{aryl}, \qquad \text{or} \\$

-(CR 13 R 15) $_p$ (C $_1$ -C $_{10}$)heteroaryl; wherein p is an integer from 0 to 2;

Each R^{35} is independently selected from the group consisting of H, F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, and CF₃;

Each R^{36} is independently selected from the group consisting of (C₃-C₁₀)cycloalkyl, (C₂-C₁₀)heterocyclyl, (C₆-C₁₀)aryl, and (C₁-C₁₀)heteroaryl;

Each R^{37} is independently selected from the group consisting of -NR²⁵R²⁶ and R²⁷-O-:

 R^{38} is R^{28} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{28} via an R^{28} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{28} via an R^{28} ring nitrogen atom;

10

15

20

25

30

35

 R^{39} is $R^{29}R^{30}N$ -SO_n-; wherein n is 1 or 2;

wherein each of said (C_1 - C_8)alkyl, wherever it occurs in any of said R^1 (a)-(d), R^2 (a)-(d), R^3 (a)-(j), R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , R^{32} , R^{33} , R^{34} , R^{37} , R^{38} , and R^{39} is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_2 - C_8)alkenyl and R^{40} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in said $R^1(b)$ -(d), $R^2(b)$ -(d), $R^3(a)$ -(j), R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{30} , R^{32} , R^{33} , R^{34} , R^{36} , R^{37} , R^{38} , and R^{39} is independently unsubstituted or substituted with one to four substituents independently selected from R^{40} ;

 R^{40} is selected from the group consisting of (C₁-C₈)alkyl, R^{41} , R^{42} , and R^{43} ;

Each R^{41} is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, COOH, -C(=O)(C₁-C₈)alkyl, -C(=O)-O-(C₁-C₈)alkyl, -NH-SO₂-(C₁-C₈)alkyl, -NH-SO₂-(C₁-C₈)alkyl, and CF₃;

Each R^{42} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R⁴³ is independently selected from the group consisting of:

 $-NR^{31}R^{32}$; R^{33} -O-; and R^{34} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{34} via an R^{34} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{34} via an R^{34} ring nitrogen atom;

wherein each of said (C_1-C_8) alkyl, wherever it occurs in any of R^{40} and R^{41} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{44} and R^{45} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{42} or R^{43} , is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{47} selected from the group consisting of R^{47} , and R^{45} ;

Each R^{44} is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -NH₂, -CF₃, -C(=NH)-NH₂, -C(=NH)-NH-OH, -C(=NH)-NH-O-(C₁-C₈)alkyl, -(C=O)-O-(C₁-C₈)alkyl, -O-(C=O)-(C₁-C₈)alkyl, -(C=O)-(C₁-C₈)alkyl, -(C=O)-NH₂, -(C=O)-NH(C₁-C₈)alkyl, -(C=O)-N<[(C₁-C₈)alkyl]₂, -NH-(C=O)-(C₁-C₈)alkyl, R^{37} , and R^{38} ;

Each R^{45} is independently selected from the group consisting of (C_{3} - C_{10})cycloalkyl, (C_{2} - C_{10})heterocyclyl, (C_{6} - C_{10})aryl, and (C_{1} - C_{10})heteroaryl;

10

15

20

25

30

35

wherein each of said (C₁-C₈)alkyl wherever it occurs in any of said R⁴⁴ or R⁴⁵ is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R⁴⁶ and R⁴⁷;

wherein each of said (C_3 - C_{10})cycloalkyl, (C_2 - C_{10})heterocyclyl, (C_6 - C_{10})aryl, or (C_1 - C_{10})heteroaryl, wherever it occurs in any of said R^{43} or R^{44} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1 - C_8)alkyl, R^{46} and R^{47} ;

Each R^{47} is independently selected from the group consisting of (C₃-C₁₀)cycloalkyl; (C₂-C₁₀)heterocyclyl, (C₆-C₁₀)aryl, and (C₁-C₁₀)heteroaryl;

or a pharmaceutically acceptable salt thereof.

- 2. The compound according to claim 1 wherein R^3 is (C_1-C_8) alkyl substituted with one to four substituents independently selected from the group consisting of F, OH, -NH₂, (C_1-C_8) alkyl-NH-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_6-C_{10}) heteroaryl.
- The compound according to claim 1 wherein R³ is selected from the 3. (C₂-C₈)alkynyl, (C₃-C₆)cycloalkyl, consisting of (C₂-C₈)alkenyl, group C_{10})heterocyclyl, phenyl, and (C_1-C_{10}) heteroaryl; wherein each of said (C_2-C_8) alkenyl or (C2-C8)alkynyl is unsubstituted or substituted with one to three substituents independently selected from the group consisting of F, OH, -NH2, (C1-C8)alkyl-NH-, $[(C_1-C_8)alkyl]_2>N-, (C_3-C_{10})cycloalkyl, (C_2-C_{10})heterocyclyl, (C_6-C_{10})aryl, and (C_1-C_1)aryl, (C_2-C_1)heterocyclyl, (C_6-C_1)aryl, (C_1-C_1)heterocyclyl, (C_2-C_1)heterocyclyl, (C_6-C_1)heterocyclyl, (C_6-C_1)h$ C₁₀)heteroaryl: and wherein each of said (C₃-C₆)cycloalkyl, (C₂-C₁₀)heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C₁-C₈)alkyl, F, OH, -NH₂, $(C_1-C_8)alkyl-NH-, \quad [(C_1-C_8)alkyl]_2>N-, \quad (C_3-C_{10})cycloalkyl, \quad (C_2-C_{10})heterocyclyl, \quad (C_6-C_8)alkyl-NH-, \quad [(C_1-C_8)alkyl-NH-, \quad (C_3-C_{10})cycloalkyl, \quad (C_2-C_{10})heterocyclyl, \quad (C_6-C_8)alkyl-NH-, \quad (C_8-C_8)alkyl-NH-, \quad (C_8-C_8)alkyl-NH$ C_{10})aryl, and (C_1-C_{10}) heteroaryl.
- 4. The compound according to claim 1 wherein R^3 is $-C(=O)-NR^{13}R^{14}$ {wherein R^{13} is H or (C_1-C_8) alkyl}, wherein said R^{13} (C_1-C_4) alkyl is unsubstituted or substituted with one to four substituents independently selected from the group

10

15

20

25

30

35

consisting of F, OH, -NH₂, R⁴¹, and R⁴²; wherein each of said R³⁶ is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_6-C_{10}) aryl, (C_1-C_{10}) heteroaryl, (C_2-C_{10}) heterocyclyl, (C_1-C_8) alkyl-NH-, and $[(C_1-C_8)$ alkyl]₂>N-; and wherein each of said (C_6-C_{10}) aryl substituent is unsubstituted or substituted with one to three substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, -CF₃, and OH.

- 5. The compound according to claim 1 wherein R³ is $-NR^{15}$ -C(=O)-R¹6; wherein R¹6 is (C_1-C_8) alkyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, R³³-O-, CN, -NH₂, (C_1-C_8) alkyl-NH-, -NH- $(CR^{13}R^{15})_t(C_3-C_{10})$ cycloalkyl, -NH- $(CR^{13}R^{15})_t(C_2-C_{10})$ heterocyclyl, -NH- $(CR^{13}R^{15})_t(C_6-C_{10})$ aryl, or -NH- $(CR^{13}R^{15})_t(C_1-C_{10})$ heteroaryl-NH- {wherein t is an integer from 0 to 2}, $[(C_1-C_8)$ alkyl]₂>N-, $[(C_1-C_8)$ alkyl] $[(C_3-C_{10})$ cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl; wherein said R³³ is (C_1-C_8) alkyl, $-(CR^{13}R^{15})_q(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_q(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_q(C_6-C_{10})$ aryl, or $-(CR^{13}R^{15})_q(C_1-C_{10})$ heteroaryl; and wherein q is an integer from 0 to 2.
- 6. The compound according to claim 5 wherein said (C_3-C_{10}) cycloalkyl substituent wherever it occurs is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 7. The compound according to claim 5 wherein said (C_6-C_{10}) aryl substituent wherever it occurs is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, Br, CN, OH, and CF₃.
- 8. The compound according to claim 5 wherein said (C_2-C_{10}) heterocyclyl substituent wherever it occurs is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_1-C_8) alkyl, $-(C=O)-(C_1-C_8)$ alkyl, -(C=O
- 9. The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=0)- R^{16} ; wherein R^{16} is (C_2-C_8) alkenyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl; wherein said (C_6-C_{10}) aryl substituent is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, Br, CN, OH, and CF₃; and wherein said (C_2-C_{10}) heterocyclyl substituent is unsubstituted or substituted with one or

10

15

20

25

30

two substituents independently selected from the group consisting of (C_1-C_8) alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-O-(C_1-C_8)$ alkyl, $-S-(C_1-C_8)$ alkyl, F, Br, OH, and CF₃.

- 10. The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=O)- R^{16} ; wherein R^{16} is (C_1-C_{10}) heteroaryl unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_1-C_8) alkyl, -(C=O)- (C_1-C_8) alkyl, - (C_1-C_8) alkyl
 - 11. The compound according to claim 10 wherein said R¹⁶ is pyridinyl.
- The compound according to claim 1 wherein R^3 is $-NR^{15}$ - $C(=O)-R^{16}$; wherein R^{16} is (C_3-C_{10}) cycloalkyl unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, CN, OH, NH₂, CF₃, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl; wherein said (C_6-C_{10}) aryl substituent is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, Br, CN, OH, and CF₃; and wherein said (C_2-C_{10}) heterocyclyl substituent is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_1-C_8) alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, -(C=O)
- 13. The compound according to claim 12 wherein said R^{16} . (C_3-C_{10}) cycloalkyl is selected from the group consisting of cyclopropyl and cyclohexyl.
- 14. The compound according to claim 12 wherein said $(C_6\text{-}C_{10})$ aryl substituent is unsubstituted.
- 15. The compound according to claim 1 wherein R^3 is $-NR^{15}$ - $C(=O)-R^{16}$; wherein R^{16} is (C_2-C_{10}) heterocyclyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1$
- 16. The compound according to claim 15 wherein said R^{16} (C_2 - C_{10})heterocyclyl is selected from the group consisting of piperazinyl, piperidinyl, pyrrolidinyl, pyrrolidinonyl, thiadiazolyl, tetrahydroisoquinolinyl, tetrahydronaphthalenyl, and indanyl.
- 17. The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=O)- R^{16} ; wherein R^{16} is phenyl unsubstituted or substituted with one to three substituents independently selected from the group consisting of (C_1-C_8) alkyl, (C_1-C_8) alkyl-O-, F, Cl, Br, CN, OH, and CF_3 .
- 18. The compound according to claim 1 wherein R¹ is (C₁-C₈)alkyl substituted with one to two substituents independently selected from the group

10

15

20

25

30

35

consisting of F, CI, -OH, -NH₂, (C₁-C₈)alkyl-NH-, [(C₁-C₈)alkyl]₂>N-, and (C₁-C₈)alkyl-O-; wherein each of said (C₁-C₈)alkyl substituent, wherever it occurs, is independently unsubstituted or substituted with one to three substituents independently selected from the group consisting of -NH₂, (C₁-C₈)alkyl-NH-, [(C₁-C₈)alkyl]₂>N-, -O-(C=O)-(C₁-C₈)alkyl, (C₂-C₁₀)heterocyclyl, (C₆-C₁₀)aryl, and (C₁-C₁₀)heteroaryl.

- 19. The compound according to claim 1 wherein R^1 is (C_2-C_8) alkenyl or (C_2-C_8) alkynyl; wherein each of said (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to two substituents independently selected from the group consisting of -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, (C_2-C_{10}) heterocyclyl, and (C_1-C_{10}) heteroaryl; wherein each of said (C_1-C_8) alkyl substituent, wherever it occurs, is independently unsubstituted or substituted with one to three substituents independently selected from the group consisting of -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, -O-(C=O)- (C_1-C_8) alkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 20. The compound according to claim 1 wherein R^1 is R^{36} selected from the group consisting of H, Cl, and Br.
- The compound according to claim 1 wherein R^1 is selected from the group consisting of $(C_3\text{-}C_6)$ cycloalkyl, $(C_2\text{-}C_{10})$ heterocyclyl, phenyl, and $(C_1\text{-}C_{10})$ heteroaryl; wherein each of said $(C_2\text{-}C_{10})$ heterocyclyl, phenyl, or $(C_1\text{-}C_{10})$ heteroaryl is unsubstituted or substituted with one to three substituents independently selected from the group consisting of $(C_1\text{-}C_8)$ alkyl, F, Cl, -NH₂, -OH, $(C_1\text{-}C_8)$ alkyl-NH-, and $[(C_1\text{-}C_8)$ alkyl]₂>N-; wherein each of said $(C_1\text{-}C_8)$ alkyl substituent, wherever it occurs, is unsubstituted or substituted with one to three substituents selected from -NH₂, $(C_1\text{-}C_8)$ alkyl-NH-, $[(C_1\text{-}C_8)$ alkyl]₂>N-, -O-(C=0)- $(C_1\text{-}C_8)$ alkyl, $(C_2\text{-}C_{10})$ heterocyclyl, $(C_6\text{-}C_{10})$ aryl, and $(C_1\text{-}C_{10})$ heteroaryl.
- 22. The compound according to claim 1 wherein R^1 is $-C(=O)-R^5$, wherein R^5 is (C_1-C_8) alkyl-O- or (C_2-C_{10}) heterocyclyl.
- 23. The compound according to claim 1 wherein R^1 is $-C(=O)-NR^6R^7$; wherein each of said R^6 and R^7 are independently H or (C_1-C_8) alkyl; and wherein each of said R^6 and R^7 (C_1-C_8) alkyl are unsubstituted or substituted with one to three substituents independently selected from the group consisting of OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, (C_2-C_{10}) heterocyclyl, and (C_1-C_{10}) heteroaryl.
- 24. The compound according to claim 1 wherein R^2 is H or (C_1-C_8) alkyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, (C_2-C_{10}) heterocyclyl, and (C_1-C_{10}) heteroaryl.

10

15

20

25

30

35

The compound according to claim 1 wherein R^2 is $-C(=O)-R^8$, wherein R^8 is selected from the group consisting of (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, $-NH_2$, and R^{37} selected from the group consisting of (C_1-C_8) alkyl- NH_2 , (C_1-C_8) alkyl- NH_3 , wherever it occurs, is and (C_1-C_8) alkyl- NH_3 , wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{40} selected from the group consisting of F, NH_3 , NH_3 , NH

wherein each of said R^{40} (C_1 - C_8)alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{44} independently selected from the group consisting of OH, -NH₂, (C_1 - C_8)alkyl-NH-, $[(C_1$ - C_8)alkyl]₂>N-, and (C_3 - C_{10})cycloalkyl-NH-;

wherein each of said each of said R^{40} (C_3 - C_{10})cycloalkyl, (C_2 - C_{10})heterocyclyl, (C_6 - C_{10})aryl, or (C_1 - C_{10})heteroaryl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{47} selected from the group consisting of (C_1 - C_8)alkyl, OH, -NH₂, (C_1 - C_8)alkyl-NH-, [(C_1 - C_8)alkyl]₂>N-, and (C_3 - C_{10})cycloalkyl-NH-; and

wherein each of said R^{47} (C₁-C₈)alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, -NH₂, (C₁-C₈)alkyl-NH-, [(C₁-C₈)alkyl]₂>N-, and (C₃-C₁₀)cycloalkyl-NH.

The compound according to claim 1 wherein R^2 is $-C(=O)-R^8$, wherein R^8 is selected from the group consisting of (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl; wherein each of said R^8 (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to four substituents independently selected from R^{40} selected from the group consisting of (C_1-C_8) alkyl, F, OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl; wherein each of said R^{40} (C_1-C_8) alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{44} independently selected from the group consisting OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, and (C_3-C_{10}) cycloalkyl-NH-; wherein each of said R^{40} (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to four substituents independently selected from R^{47} selected from the group consisting of (C_1-C_8) alkyl, OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, and (C_3-C_{10}) cycloalkyl-NH-; wherein each of

said R^{47} (C₁-C₈)alkyl, wherever it occurs, is unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, -NH₂, (C₁-C₈)alkyl-NH-, [(C₁-C₈)alkyl]₂>N-, and (C₃-C₁₀)cycloalkyl-NH.

- 27. The compound according to claim 1 wherein said R³ is on position 8 of said compound of the formula I.
- 28. The compound according to claim 1 wherein said R^4 is on position 7 of said compound of the formula I.
- 29. The compound according to claim 1 wherein said R^4 is H on position 7 of said compound of the formula I.
 - 30. The compound according to claim 1 wherein X is =0.
- 31. The compound according to claim 1 wherein the group -Y-Z- has the formula -N=CH-.
- 32. The compound according to claim 1 selected from the group consisting of:

15

5

10

20

CIH.H₂Ñ

CIH.H₂N H H CH₃

10

5

a pharmaceutically acceptable salt or solvate thereof.

- 33. A pharmaceutical composition comprising:
- (a) an effective amount of a CHK-1-inhibiting agent that is a compound15 according to claim 1; or a pharmaceutically acceptable salt thereof;

(b) an effective amount of an anti-neoplastic agent or therapeutic radiation:

and

5

10

15

20

25

30

- (c) a pharmaceutically acceptable carrier for said CHK-1-inhibiting agent.
- 34. A composition containing a compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof and an anti-neoplastic agent as a combined preparation for the simultaneous, separate or sequential use in treating a neoplasm.
- 35. The composition according to claim 34 wherein the anti-neoplastic agent is selected from the group consisting of alkylating agents, antibiotics and plant alkaloids, hormones and steroids, synthetic agents having anti-neoplastic activity, antimetabolites and biological molecules having anti-neoplastic activity.
- 36. The composition according to any one of claims 34 or 35 wherein the anti-neoplastic agent is selected from the group consisting of Ara-c, VP-16, cis-platin, adriamycin, 2-chloro-2-deoxyadenosine, 9- β -D-arabinosyl-2-fluoroadenine, carboplatin, gemcitabine, camptothecin, paclitaxel, BCNU, 5-fluorouracil, irinotecan, and doxorubicin.
- 37. A method for treating a neoplasm which comprises administering to a mammal in need thereof, an anti-neoplastic agent in combination with a compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof.
- 38. The method of claim 37, wherein the anti-neoplastic agent is selected from the group consisting of Ara-c, VP-16, cis-platin, adriamycin, 2-chloro-2-deoxyadenosine, 9- β -D-arabinosyl-2-fluoroadenine, carboplatin, gemcitabine, camptothecin, paclitaxel, BCNU, 5-fluorouracil, irinotecan, and doxorubicin.
- 39. A method for treating a neoplasm which comprises administering to a mammal in need thereof, therapeutic radiation having an anti-neoplastic effect in combination with compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof.
- 40. A method for enhancing the anti-neoplastic effect of an anti-neoplastic agent in a mammal which comprises administering to a mammal in need thereof, a compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof, in combination with an antineoplastic agent.
- 41. A method for enhancing the anti-neoplastic effect of therapeutic radiation in a mammal which comprises administering to a mammal in need thereof, a

10

15

20

25

30

compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof, in combination with therapeutic radiation having an anti-neoplastic effect.

- 42. A method for the treatment of a condition which can be treated by the inhibition of protein kinases in a mammal, including a human, comprising administering to a mammal in need thereof, a compound according to claim 1 or a pharmaceutically acceptable salt or solvate thereof.
- 43. The method of claim 42 wherein said condition is selected from the group consisting of connective tissue disorders, inflammatory disorders, immunology/allergy disorders, infectious diseases, respiratory diseases, cardiovascular diseases, eye diseases, metabolic diseases, central nervous system (CNS) disorders, liver/kidney diseases, reproductive health disorders, gastric disorders, skin disorders and cancers.
- 44. The method of claim 43, wherein said protein kinases are selected from the group consisting of Checkpoint kinase 1 (CHK-1), Checkpoint kinase 2 (CHK-2), Cyclin dependent kinase 1 (CDK1), Serum and glucocorticoid regulated kinase (SGK), Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), Lymphoid T cell tyrosine kinase (LCK), Mitogen activated protein kinase-2 (MAPK-2), Mitogen- and stress-activated protein kinase 1 (MSK1), Rho kinase (ROCK-II), P70 S6 kinase (p70S6K), cAMP (adenosine 3',5' cyclic monophosphate)-dependent protein kinase (PKA), Mitogen activated protein kinase (MAPK), Mitogen activated protein kinase (PKA), Protein kinase C-related kinase 2 (PRK2), 3'-Phosphoinositide dependent kinase 1 (PDK1), Fyn kinase (FYN), Protein kinase C (PKC), Protein Kinase C Beta 2 (PKCβII), Protein Kinase C Gamma (PKCγ), Vascular endothelial growth factor receptor 2 (VEGFR-2), Fibroblast growth factor receptor (FGFR), Phosphorylase kinase (PHK), Wee1 kinase (Wee1), and Protein Kinase B (PKB).
 - 45. The method of claim 43, wherein said protein kinases are selected from the group consisting of Checkpoint kinase 1 (CHK-1), Checkpoint kinase 2 (CHK-2), Mitogen activated protein kinase (MAPK), Mitogen activated protein kinase-1 (MAPK-1), Mitogen activated protein kinase-2 (MAPK-2), Vascular endothelial growth factor receptor 2 (VEGFR-2), Fibroblast growth factor receptor (FGFR), Phosphorylase kinase (PHK), Protein Kinase B alpha (PKBα), and Wee1 kinase (Wee1).