Artin: Factoring

James Pagan

February 2024

${\bf Abstract}$

The goal of this section is to characterize the polynomial ring $R[x_1,\ldots,x_n]$. In pursuit of this, we explore the properties of three special types of integral domains: Unique Factorization Domains, Principal Ideal Domains, and Euclidean Domains.

Contents

1	Unique Factorization Domains		2
	1.1	Terminology	2
	1.2	Definition	3
2	Principal Ideal Domains		
	2.1	Definition	3
	2.2	Relation with Unique Factorization Domains	4
	2.3	Greatest Common Divisor	5
3	Euclidean Domain		
	3.1	Definition	6
	3.2	Examples	6
	3.3	Relation with Principal Ideal Domains	7
4	The	e Polynomial Ring $\mathbb{Z}[x]$	7
	4.1	Primative Polynomials	8

1 Unique Factorization Domains

1.1 Terminology

Let R be an integral domain. Before we introduce unique factorization domains, we must define several terms for $a, b \in R$:

- 1. a divides b if $(b) \subseteq (a)$.
- 2. a is a **proper divisor** if b if $(b) \subset (a) \subset R$.
- 3. a and b are associates if (a) = (b).
- 4. a is **irreducible** if $(a) \subset R$ and there is no principal ideal (c) such that $(a) \subset (c) \subset R$.
- 5. p is a **prime element** if $p \neq 0$ and (p) is prime.

These may be equivalently expressed ideal-free (AbstractAlgebra/homework3.tex):

- 1. a divides b if b = aq for some $q \in R$.
- 2. a is a **proper divisor** of b if b = aq and neither a nor q is a unit.
- 3. a and b are associates if each divides the other that is, b = ua for some unit u.
- 4. *a* is **irreducible** if it has no proper divisors its only divisors are units and associates.
- 5. p is a **prime element** if $p \neq 0$ and p divides ab implies p divides a or p divides b.

A size function is a mapping $\sigma: R \setminus \{0\} \to \mathbb{Z}_{>0}$.

Theorem 1. Let R be an integral domain. Then all prime elements of R are irreducible.

Proof. Suppose that p is prime and that $(p) \subseteq (c) \subset R$. Hence there exists x such that p = cx, so $cx \in (p)$. We have two possibilities: $c \in (p)$ or $x \in (p)$.

Suppose for contradiction that $x \in (p)$. Then x = py for some y — substituting into the above equality yields

$$p = c(py) \implies p(1 - cy) = 0.$$

Since $p \neq 0$, we have 1 = cy — hence c is a unit and (c) = R, a contradiction. We must have $c \in (p)$, so (c) = (p). We conclude that (p) is irreducible.

1.2 Definition

A unique factorization domain R is an integral domain if for every nonzero $x \in R$, there exists a unit u and irreducible elements p_1, \ldots, p_n such that

$$x = up_1 \cdots p_n,$$

and this factorization is unique in the following sense: if there exists a second factorization

$$x = wq_1 \cdots q_m,$$

then n = m and there exists a bijection such that $(p_i) = (q_j)$ for each paired i, j (that is, p_i and q_j associate).

Theorem 2. Every irreducible element in a unique factorization domain is prime.

Proof. Suppose that (p) is not prime — then there exist $a, b \notin (p)$ such that $ab \in (p)$. Thus we have $(p) \subset (a)$. Since a is a nonunit, $(a) \subset R$, so

$$(p) \subset (a) \subset R$$
.

Hence (p) is not irreducible. Taking the contrapositive yields the desired result.

Hence, we could equivalently define unique factorization as decomposition to prime elements. In this sense, factoriation in R "terminates" if and only if R satisfies the ascending chain condition for principal ideals; namely, the chain

$$x \subseteq \bigcap_{i=1}^{\infty} (p_i) \subseteq \bigcap_{i=2}^{\infty} (p_i) \subseteq \bigcap_{i=3}^{\infty} (p_i) \subseteq \cdots$$

is stationary.

2 Principal Ideal Domains

2.1 Definition

A **principal ideal domain** is an integral domain in which all ideals are principal. It is clear that all such domains are Noetherian.

Theorem 3. Let R be a principal ideal domain. Then all nonzero prime ideals of R are maximal.

Proof. Let (p) be a prime ideal contained in the maximal ideal (m). Supposing for contradiction that

$$(p) \subset (m) \subset R$$
,

we obtain that (p) is not irreducible, which contradicts Theorem 1. Hence (p) = (m), so (p) is maximal.

Three helpful facts about principal ideal domains are as follows:

- 1. If $\mathfrak{a}_1 = (a_1)$ and $\mathfrak{a}_2 = (a_2)$ are principal ideals, then $\mathfrak{a}_1 \mathfrak{a}_2 = (a_1 a_2)$. This holds in any commutative ring.
- 2. Prime ideals cannot contain other prime ideals: if $(p_1) \subset (p_2)$ are prime, then the fact

$$(p_1) \subset (p_2) \subset R$$

implies that (p_1) is not irreducible — a contradiction.

3. All prime ideals are relatively prime. This is because if (p_1) and (p_2) are prime, we have

$$(p_1) \subseteq (p_1) + (p_2) \subseteq R$$

We cannot have $(p_1) = (p_1) + (p_2)$ by Fact 2; thus since (p_1) to be irreducible, we conclude that $(p_1) + (p_2) = R$.

4. If $(p_1), \ldots, (p_n)$ are prime ideals, then

$$(p_1) \cap \cdots \cap (p_n) = (p_1) \times \cdots \times (p_n) = (p_1 \cdots p_n).$$

2.2 Relation with Unique Factorization Domains

Theorem 4. All principal ideal domains are unique factorization domains.

Proof. Let R be a principal ideal domain and select $x \in R$. Then since R is Noetherian, factoring terminates: each ascending chain of principal ideals is stationary.

Let $(p_1), \ldots, (p_n)$ be the prime ideals which contain x. By Fact 4, we deduce that $x \in (p_1p_2\cdots p_n)$. Thus we can write x in the form

$$x = u_1 p_1 \cdots p_n$$
.

If u_1 is contained in prime ideals, then they must be among $(p_1), \ldots, (p_n)$. Hence we can express u_1 as a product of some p_1, \ldots, p_n times u_2 . Repeating at nauseum, we obtain a sequence u_1, u_2, \ldots which yields the stationary chain

$$(x) \subseteq (u_1) \subseteq (u_2) \subseteq \cdots$$
.

Hence there must exist $n \in \mathbb{Z}_{>0}$ such that $(u_n) = (u_{n+1}) = \cdots$. Thus we have $u_n = u \cdot u_{n+1}$ for some unit u. Recursive substitution into our expression for x yields

$$x = up_1^{e_1} \cdots p_n^{e_n},$$

which completes the existence portion of the proof. As per uniqueness, suppose that

$$up_1 \cdots p_n = x = wq_1 \cdots q_m$$

A quick induction on $\max\{m,n\}$ yields that since two primes on either side must be adjoints, we can divide and yield a number which factors uniquely. This completes the proof.

2.3 Greatest Common Divisor

Let R be an integral domain, and select $a, b \in R$. A **greatest common divisor** of a and b is an element $d \in R$ such that:

- 1. $d \mid a$ and $d \mid b$.
- 2. $c \mid a$ and $c \mid b$ implies $c \mid d$.

It is clear that GCDs are unique up to association by Condition 2 — thus we can speak of the GCD. If the only greatest common divisors of a and b are units, we set gcd(a, b) = 1 and call a, b relatively prime.

Theorem 5. Suppose R is a principal ideal domain. Then the generator of the ideal (a,b) is the greatest common divisor of a,b.

Proof. It is clear that $a, b \in (d)$ implies $d \mid a$ and $d \mid b$. We need only demonstrate the second condition. Thus, suppose $c \mid a$ and $c \mid b$ — hence $(a) \subseteq (c)$ and $(b) \subseteq (c)$. Thus

$$(d) = (a) + (b) \subset (c),$$

so $c \mid d$. We conclude that gcd(a, b) = d.

It is now easy to demonstrate that $gcd(a_1, a_2, ..., a_n) = gcd(a_1, gcd(a_2, ..., a_n))$. This yields the following lemma:

Lemma 1 (Bezout's Identity). If R is a principal ideal domain and $gcd(a_1, ..., a_n) = d$, there exist integers $b_1, ..., b_n$ such that $d = a_1b_1 + \cdots + a_nb_n$.

Much simpler than the proof in your 2nd Conest Math Notebook, right?

3 Euclidean Domain

3.1 Definition

An integral domain R is a **Euclidean domain** if there exists a size function σ such that $a \in R$ and nonzero $b \in R$ implies the existence of $q, r \in R$ such that a = bq + r, where $\sigma(r) < \sigma(b)$. It is clear that \mathbb{Z} is a Euclidean domain.

3.2 Examples

Theorem 6. $\mathbb{Z}[i]$ is a Euclidean domain.

Proof. Using the norm $||a+bi|| = a^2 + b^2$, we will divide a+bi by c+di. It is easy to deduce that there exist rationals r, s such that

$$\frac{a+bi}{c+di} = r+si.$$

Approximate r and s by integers: namely define $n, m \in \mathbb{Z}$ such that $|r - n| \leq \frac{1}{2}$ and $|s - m| \leq \frac{1}{2}$. Then we can express the above as

$$r + si = (n + mi) + (r - n) + i(s - m).$$

Expanding this out, we obtain a rather messy equation:

$$a + bi = (n + ni)(c + di) + ((r - n) + i(s - m))(c + di).$$

All that remains to be proven is that the right-most term has a norm less than c + di, which is equivalent to showing that (r - n) + i(s - m) has a norm less than one:

$$||(r-n)+i(s-m)|| = (r-n)^2 + (s-m)^2 \le \frac{1}{4} + \frac{1}{4} < 1.$$

This completes the proof.

For a field F, the ring F[x] is a field. I proved this in my contest algebra notes.

Theorem 7. All fields are Euclidean domains.

Proof. Let R be a field, and select $a, b \in F$. Then

$$a = b\left(\frac{a}{b}\right) + 0.$$

If σ is an arbitrary size function on R, then the caveat of remainder zero ensures that the above equations dictate a valid Euclidean division.

3.3 Relation with Principal Ideal Domains

Theorem 8. All Euclidean domains are principal ideal domains.

Proof. Let R be a Euclidean domain with size function σ and let $\mathfrak{a} \subseteq R$ be an ideal. If $\mathfrak{a} = 0$, then \mathfrak{a} is principal; otherwise, the Well-Ordering Theorem guarantees that there exists a nonzero element $a \in \mathfrak{a}$ of minimal size.

Let $b \in \mathfrak{a}$. Then there exist $q, r \in R$ such that

$$b = aq + r$$
,

where $\sigma(r) < \sigma(a)$. Since a is minimal, we must have r = 0, in which case $b \in (a)$. We conclude that $\mathfrak{a} = (a)$, so all ideals of R are principal.

We have thus attained a sequence of types of rings:

rings \subseteq commutative rings \subseteq integral domains \subseteq UFDs \subseteq PIDs \subseteq GDs \subseteq fields.

4 The Polynomial Ring $\mathbb{Z}[x]$

We have proved the following facts about polynomial rings: for any field F,

- 1. F[x] is a Euclidean domain.
- 2. $F[x_1, \ldots, x_n]$ is a unique factorization domain and Noetherian.

Polynomial rings over arbitrary commutative rings obey significantly fewer restrictions. This section characterizes the polynomial ring $\mathbb{Z}[x]$. There are two main tools in its study: first is the embedding

$$\mathbb{Z}[x] \subset \mathbb{Z}[x],$$

and second is reduction modulo some prime p: the mappings $\psi : \mathbb{Z}[x] \to \mathbb{F}_p[x]$.

4.1 Primative Polynomials

The following lemma is quite obvious:

Lemma 2. Let $f(x) = a_n x^n + \cdots + a_0$ have integer coefficients. Then the following are equivalent:

- 1. p divides each a_i .
- 2. p divides f in $\mathbb{Z}[x]$
- 3. f lies in the kernel of ψ_p .

A polynomial $f \in \mathbb{Z}[x]$ is called **primative** if the GCD of its coefficients is 1.

Lemma 3. Let $f(x) = a_n x^n + \cdots + a_0$ have integer coefficients. Then the following are equivalent:

- 1. f is primative.
- 2. f is not divisible by any prime p.
- 3. $\psi_p(f) \neq 0$ for all primes p.

Observe that an integer $n \in \mathbb{Z}[x]$ is a prime element if and only if it is prime. Thus $fg \in (p)$ implies that $f \in (p)$ or $g \in (p)$: stated differently, $p \mid fg$ implies $p \mid f$ or $p \mid g$.

Lemma 4 (Gauss' Lemma). The product of primative polynomials is primative.

Proof. Suppose that fg is not primative; then $p \mid fg$ for some prime integer p. Thus $p \mid f$ or $p \mid g$, so one of f and g must not be primative. Taking the contrapositive yields the desired result.

That would be an insanely long number theory problem, in terms of a crazy sequence of equations — and yet it falls so elegantly to the properties of prime ideals!