Data Structure & Algorithm

Big O

(Độ phức tạp của thuật toán)

1. Định nghĩa

Làm thế nào để đánh giá 1 chương trình có tốt / hiệu quả hay không?

- Bộ nhớ | Space complexity
- > Thời gian | Time complexity

Là bộ nhớ mà chương trình / thuật toán cần sử dụng khi thực thi / run chương trình đó.

- > O(1): Nếu chỉ sử dụng 1 bộ nhớ cố định.
- > O(n), O(n^2),...: Thay đổi theo input của bài toán.

Mục tiêu:

Tìm được một phương án tối ưu (bộ nhớ) cho một vấn đề nào đó.

Problem: Given an array **nums**, write a function to move all 0's to the end of it while maintaining the relative order of the non-zero elements.

Input: [0,1,0,3,12]

Output: [1,3,12,0,0]

Cách 1: Sử dụng thêm 1 mảng T để lưu các giá trị khác 0, rồi ghi lại vào mảng nums.

```
int n = nums.length;
int[] T = new int[n];
int iT = 0;
for (int i = 0; i < n; i++) {
   if(nums[i] != 0){
      T[iT++] = nums[i];
   }
}</pre>
```

O(n)

Cách 2: Xử lý trực tiếp trên mảng nums.

```
int n = a.length;
int curIndex = 0;
for (int i = 0; i < n; i++)
{
    if(a[i] != 0) {
        a[curIndex++] = a[i];
    }
}</pre>
```

0(1)

Giải quyết vấn đề về bộ nhớ:

> Tối ưu cách làm / phương pháp.

Nâng cấp bộ nhớ. (*)

Các bài luyện tập tối ưu bộ nhớ: #array

Bài toán Fibonaci.

Daily LeetCode Challenge [35]: 509. Fibonacci Number (#recursion)

The Brown Box • 24 luot xem • 6 ngày trước

[DailyLeetCodeChallenge][35]: 509. Fibonacci Number (#recursion) Url: https://leetcode.com/problems/fibonacci-number/ Tags: #recursion Source Code:

$$F_n = F_{n-1} + F_{n-2}$$

Bài toán Fibonaci.

```
Cách 1
                                                                                   Cách 2
                                                           public int fib2(int n) {
                                                              int[] F = new int[31];
public int fib1(int n) {
                                                              F[0] = 0; F[1] = 1;
  if(n <= 1) return n;</pre>
                                                              for (int i = 2; i <= n; i++) {
  return fib1(n-1) + fib1(n-2);
                                                                F[i] = F[i-1] + F[i-2];
                                                              return F[n];
```

>> Thực nghiệm...

Làm sao để biết 1 chương trình chạy nhanh hay chạy chậm?

> Làm sao để miêu tả mức độ nhanh/chậm của một chương trình?

>> Big O notation! <<

Định nghĩa: Độ phức tạp (về thời gian) Là tổng thời gian / số phép tính toán mà chương trình cần để thực thi chương trình.

Example:

```
for (int i = 0; i < 10; i++) {
  int t = 2*i;
  System.out.println(" 2 * " + i + " = " + t);
}</pre>
```

```
for (int i = 0; i < 10; i++) {
  int t = 2*i;
  System.out.println(" 2 * " + i + " = " + t);
                        i = 0: 1
                        i<10: 10
                        i++: 10
                        2*i: 10
                        t = : 10
                        Print: 10 * 4
                        Sum: 81 = 8 *10 + 1
```

```
for (int i = 0; i < 10; i++) {
  int t = 2*i;
  System.out.println(" 2 * " + i + " = " + t);
                        i = 0: 1
                        i<n: n
                        i++: n
                        2*i: n
                        t = : n
                        Print: n * 4
                        Sum: = 8 *_{n} + 1
```

> Định nghĩa:

g(n) được gọi là O của f(n) nếu tồn tại C (>0, không phụ thuộc vào n) và n0 sao cho với mọi n > n0, ta luôn có:

$$f(n) \leftarrow C.g(n)$$


```
Example:

f(n) = 8*n+1
g(n) = n
C = 9
n0 = 1
```

```
Với mọi n > n0 ta luôn có: C.g(n) >= f(n)
Với mọi n > 1 ta luôn có: 9.n >= 8.n + 1
```

Độ phức tạp: O(n)

O(1)	Độ phức tạp hằng số	
O(log n)	Độ phức tạp logarit	
O(n)	Độ phức tạp tuyến tính	
O(n^k)	Độ phức tạp đa thức	
O(k^n)	Độ phức tạp hàm mũ	

Cách xác định ngắn gọn độ phức tạp:

O(1,2,3)	O(1)
O(log2n, log3n,)	O(log n)
O(n + 100, n+1000)	O(n)
O(n^k + n^k-1,)	O(n^k)
O(k^n + k^n-1,)	O(k^n)

> Quy tắc cộng:

$$> O = O(k1) + O(k2) = O(n)$$

Quy tắc nhân:

$$> O = O(k1) * O(k2) = O(n^2)$$

Example 2: Tìm giá trị x trong mảng arr

```
int[] arr = new int[n];
int x = 10;
for (int i = 0; i < arr.length; i++) {
    if(arr[i] == x)
    {
        System.out.println("Found X at " + i);
        break;
    }
}</pre>
```

Xác định với tình huống xấu nhất (worst case)

5. Xác định độ phức tạp của một số thuật toán

Tìm kiếm nhị phân	O(log n)
Tìm kiếm tuần tự	O(n)
Sắp xếp nổi bọt Duyệt ma trận 2 chiều	O(n^2)
Fibonaci	O(2^n)
•••	•••

Data Structure & Algorithm

Please Like and Subcribe