MA 101 (Mathematics I)

Hints/Explanations for Examples in Lectures

Sequence

Example: The sequence $(\frac{n+1}{2n+3})$ is convergent with limit $\frac{1}{2}$. Proof: Let $\varepsilon > 0$. For all $n \in \mathbb{N}$, we have $|\frac{n+1}{2n+3} - \frac{1}{2}| = \frac{1}{4n+6} < \frac{1}{4n}$. There exists $n_0 \in \mathbb{N}$ such that $n_0 > \frac{1}{4\varepsilon}$. Hence $|\frac{n+1}{2n+3} - \frac{1}{2}| < \frac{1}{4n_0} < \varepsilon$ for all $n \geq n_0$ and so the given sequence is convergent with limit $\frac{1}{2n+3} = \frac{1}{2n+3} = \frac{1$

Example: The sequence (1, 2, 1, 2, ...) is not convergent.

Proof. If possible, let the given sequence (x_n) (say) be convergent with limit ℓ . Then there exists $n_0 \in \mathbb{N}$ such that $|x_n - \ell| < \frac{1}{2}$ for all $n \geq n_0$. Hence $|x_{2n_0} - \ell| < \frac{1}{2}$ and $|x_{2n_0+1} - \ell| < \frac{1}{2}$ and so $|2 - \ell| < \frac{1}{2}$ and $|1 - \ell| < \frac{1}{2}$. This gives $1 = |(2 - \ell) - (1 - \ell)| \leq |2 - \ell| + |1 - \ell| < 1$, which is a contradiction. Therefore the given sequence is not convergent.

Example: The sequence $(n^3 + 1)$ is not convergent.

Proof: If possible, let $(n^3 + 1)$ be convergent. Then there exist $\ell \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that $|n^3+1-\ell|<1$ for all $n\geq n_0\Rightarrow n^3<\ell$ for all $n\geq n_0$, which is not true. Therefore the given sequence is not convergent.

Example: The sequence $(\frac{3n+2}{2n+5})$ is bounded. Proof: For all $n \in \mathbb{N}$, $\left|\frac{3n+2}{2n+5}\right| = \frac{3n+2}{2n+5} < \frac{3n+2}{2n} = \frac{3}{2} + \frac{1}{n} \leq \frac{5}{2}$. Hence the given sequence is bounded.

Example: The sequence (1, 2, 1, 3, 1, 4, ...) is unbounded.

Proof. If possible, let the given sequence (x_n) (say) be bounded. Then there exists M>0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. This gives $n \leq M$ for all $n \in \mathbb{N}$, which is not true. Therefore the given sequence is unbounded.

Example: The sequence $(\frac{2n^2-3n}{3n^2+5n+3})$ is convergent with limit $\frac{2}{3}$. Proof: We have $\frac{2n^2-3n}{3n^2+5n+3} = \frac{2-\frac{3}{n}}{3+\frac{5}{n}+\frac{3}{n^2}}$ for all $n \in \mathbb{N}$. Since $\frac{1}{n} \to 0$, the limit rules for algebraic operations on sequences imply that the given sequence is convergent with limit $\frac{2-0}{3+0+0} = \frac{2}{3}$.

Example: The sequence $(\sqrt{n+1} - \sqrt{n})$ is convergent with limit 0.

Proof: For all $n \in \mathbb{N}$, $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} = \frac{\frac{1}{\sqrt{n}}}{\sqrt{1+\frac{1}{n}} + 1}$. Since $\frac{1}{n} \to 0$, the limit rules for algebraic operations on sequences imply that the given sequence is convergent with limit $\frac{0}{\sqrt{1+0}+1} = 0$.

Example: If $|\alpha| < 1$, then the sequence (α^n) converges to 0.

Proof. If $\alpha = 0$, then $\alpha^n = 0$ for all $n \in \mathbb{N}$ and so (α^n) converges to 0. Now we assume that $\alpha \neq 0$. Since $|\alpha| < 1$, $\frac{1}{|\alpha|} > 1$ and so $\frac{1}{|\alpha|} = 1 + h$ for some h > 0. For all $n \in \mathbb{N}$, we have $(1+h)^n = 1 + nh + \frac{n(n-1)}{2!}h^2 + \dots + h^n > nh \Rightarrow |\alpha|^n = \frac{1}{(1+h)^n} < \frac{1}{nh}$ for all $n \in \mathbb{N}$. Given $\varepsilon > 0$, we choose $n_0 \in \mathbb{N}$ satisfying $n_0 > \frac{1}{h\varepsilon}$. Then $|\alpha^n - 0| = |\alpha|^n < \frac{1}{n_0h} < \varepsilon$ for all $n \geq n_0$ and hence (α^n)

Alternative proof: Given $\varepsilon > 0$, we choose $n_0 \in \mathbb{N}$ satisfying $n_0 > \frac{\log \varepsilon}{\log |\alpha|}$. Then for all $n \geq n_0$, we have $|\alpha^n - 0| = |\alpha|^n \le |\alpha|^{n_0} < \varepsilon$ and hence (α^n) converges to 0. (This proof assumes the definition of logarithm.)

Example: If $\alpha > 0$, then the sequence $(\alpha^{\frac{1}{n}})$ converges to 1.

Proof. We first assume that $\alpha \geq 1$ and let $x_n = \alpha^{\frac{1}{n}} - 1$ for all $n \in \mathbb{N}$. Then $x_n \geq 0$ and $\alpha = (1 + x_n)^n = 1 + nx_n + \frac{n(n-1)}{2!}x_n^2 + \dots + x_n^n > nx_n$ for all $n \in \mathbb{N}$. So $0 \leq x_n < \frac{\alpha}{n}$ for all $n \in \mathbb{N}$. Since $\frac{\alpha}{n} \to 0$, by sandwich theorem, it follows that $x_n \to 0$. Consequently $\alpha^{\frac{1}{n}} \to 1$. If $\alpha < 1$, then $\frac{1}{\alpha} > 1$ and as proved above, $(\frac{1}{\alpha})^{\frac{1}{n}} \to 1$. It follows that $\alpha^{\frac{1}{n}} \to 1$.

Alternative proof: We first assume that $\alpha \geq 1$. For each $n \in \mathbb{N}$, applying the $A.M. \geq G.M$. inequality for the numbers $1, ..., 1, \alpha$ (1 is repeated n-1 times), we get $1 \le \alpha^{\frac{1}{n}} \le 1 + \frac{\alpha-1}{n}$. Since $\frac{\alpha-1}{n} \to 0$, by sandwich theorem, it follows that $\alpha^{\frac{1}{n}} \to 1$. The case for $\alpha < 1$ is same as given in

Example: The sequence $(n^{\frac{1}{n}})$ converges to 1.

Proof. For all $n \in \mathbb{N}$, let $a_n = n^{\frac{1}{n}} - 1$. Then for all $n \in \mathbb{N}$, $n = (1 + a_n)^n = 1 + na_n + \frac{n(n-1)}{2!}a_n^2 + a_n^2 +$ $\cdots + a_n^n > \frac{n(n-1)}{2!}a_n^2 \Rightarrow 0 \leq a_n^2 < \frac{2}{n-1}$ for all $n \in \mathbb{N}$. Since $\frac{2}{n-1} \to 0$, by sandwich theorem, it follows that $a_n^2 \to 0$ and so $a_n \to 0$. Consequently $n^{\frac{1}{n}} \to 1$.

Example: The sequence $((2^n + 3^n)^{\frac{1}{n}})$ converges to 3.

Proof. We have $3^n < 2^n + 3^n < 2.3^n$ for all $n \in \mathbb{N} \Rightarrow 3 < (2^n + 3^n)^{\frac{1}{n}} < 2^{\frac{1}{n}}.3$ for all $n \in \mathbb{N}$. Also, both the sequences (3,3,...) and $(2^{\frac{1}{n}}.3)$ converge to 3. (Note that $2^{\frac{1}{n}} \to 1$.) Hence by sandwich theorem, the given sequence converges to 3.

Alternative proof: Since $(2^n+3^n)^{\frac{1}{n}}=3[1+(\frac{2}{3})^n]^{\frac{1}{n}}$ for all $n\in\mathbb{N}$, we have $3<(2^n+3^n)^{\frac{1}{n}}\leq 3[1+(\frac{2}{3})^n]$ for all $n \in \mathbb{N}$. Also, both the sequences (3,3,...) and $(3[1+(\frac{2}{3})^n])$ converge to 3. (Note that $(\frac{2}{2})^n \to 0$.) Hence by sandwich theorem, the given sequence converges to 3.

Example: The sequence $(\frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}})$ converges to 1. Proof: We have $\frac{n}{\sqrt{n^2+n}} \leq \frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}} \leq \frac{n}{\sqrt{n^2+1}}$ for all $n \in \mathbb{N}$. Also, $\frac{n}{\sqrt{n^2+n}} = \frac{1}{\sqrt{1+\frac{1}{n}}} \to 1$ and $\frac{n}{\sqrt{n^2+1}} = \frac{1}{\sqrt{1+\frac{1}{n^2}}} \to 1$. Hence by sandwich theorem, the given sequence converges to 1.

Example: If $\alpha \in \mathbb{R}$, then the sequence $\left(\frac{\alpha^n}{n!}\right)$ is convergent.

Proof: Let $x_n = \frac{\alpha^n}{n!}$ for all $n \in \mathbb{N}$. If $\alpha = 0$, then $x_n = 0$ for all $n \in \mathbb{N}$ and so (x_n) converges to 0. If $\alpha \neq 0$, then $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{|\alpha|}{n+1} = 0 < 1$ and so (x_n) converges to 0.

Example: The sequence $(\frac{2^n}{n^4})$ is not convergent. Proof: If $x_n = \frac{2^n}{n^4}$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} |\frac{x_{n+1}}{x_n}| = \lim_{n \to \infty} \frac{2}{(1+\frac{1}{n})^4} = 2 > 1$. Therefore the sequence (x_n) is not convergent.

Example: The sequence $(1-\frac{1}{n})$ is increasing.

Proof. For all $n \in \mathbb{N}$, $\frac{1}{n+1} < \frac{1}{n}$ and so $1 - \frac{1}{n+1} > 1 - \frac{1}{n}$ for all $n \in \mathbb{N}$. Therefore the given sequence is increasing.

Example: The sequence $(n + \frac{1}{n})$ is increasing.

Proof. For all $n \in \mathbb{N}$, $(n+1+\frac{1}{n+1})-(n+\frac{1}{n})=1-\frac{1}{n(n+1)}>0 \Rightarrow n+1+\frac{1}{n+1}>n+\frac{1}{n}$ for all $n \in \mathbb{N}$. Therefore the given sequence is increasing.

Example: The sequence $(\cos \frac{n\pi}{3})$ is not monotonic.

Proof. Since $\cos \frac{\pi}{3} = \frac{1}{2}$, $\cos \frac{3\pi}{3} = -1$ and $\cos \frac{6\pi}{3} = 1$, we have $\cos \frac{\pi}{3} > \cos \frac{3\pi}{3} < \cos \frac{6\pi}{3}$ and hence the given sequence is neither increasing nor decreasing. Consequently the given sequence is not monotonic.

Example: Let $x_1 = 1$ and $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$. Then the sequence (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{2}$.

Proof: For all $n \in \mathbb{N}$, we have $x_{n+1} - x_n = \frac{1}{3}(1 - 2x_n)$. Also, $x_1 > \frac{1}{2}$ and if we assume that $x_k > \frac{1}{2}$ for some $k \in \mathbb{N}$, then $x_{k+1} = \frac{1}{3}(x_k + 1) > \frac{1}{3}(\frac{1}{2} + 1) = \frac{1}{2}$. Hence by the principle of mathematical induction, $x_n > \frac{1}{2}$ for all $n \in \mathbb{N}$. So (x_n) is bounded below. Again, from above, we get $x_{n+1} - x_n < 0$ for all $n \in \mathbb{N} \Rightarrow x_{n+1} < x_n$ for all $n \in \mathbb{N} \Rightarrow (x_n)$ is decreasing. Therefore (x_n) is convergent. Let $\ell = \lim_{n \to \infty} x_n$. Then $\lim_{n \to \infty} x_{n+1} = \ell$ and since $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$, we get $\ell = \frac{1}{3}(\ell + 1) \Rightarrow \ell = \frac{1}{2}$.

Alternative proof for showing that (x_n) is decreasing: We have $x_2 = \frac{2}{3} < 1 = x_1$ and if we assume that $x_{k+1} < x_k$ for some $k \in \mathbb{N}$, then $x_{k+2} = \frac{1}{3}(x_{k+1} + 1) < \frac{1}{3}(x_k + 1) = x_{k+1}$. Hence by the principle of mathematical induction, $x_{n+1} < x_n$ for all $n \in \mathbb{N}$.

Example: Let $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ for all $n \in \mathbb{N}$. Then the sequence (x_n) is convergent.

Proof: For all $m, n \in \mathbb{N}$ with m > n, we have $|x_m - x_n| = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots + \frac{1}{m!} \le \frac{1}{2^n} + \frac{1}{2^{n+1}} + \cdots + \frac{1}{2^{m-1}} = \frac{2}{2^n} (1 - \frac{1}{2^{m-n}}) < \frac{2}{2^n} < \frac{2}{n}$. Given $\varepsilon > 0$, we choose $n_0 \in \mathbb{N}$ satisfying $n_0 > \frac{2}{\varepsilon}$. Then for all $m, n \ge n_0$, we get $|x_m - x_n| < \frac{2}{n_0} < \varepsilon$. Consequently (x_n) is a Cauchy sequence in \mathbb{R} and hence (x_n) is convergent.

Example: Let $0 < \alpha < 1$ and let the sequence (x_n) satisfy the condition $|x_{n+1} - x_n| \le \alpha^n$ for all $n \in \mathbb{N}$. Then (x_n) is a Cauchy sequence.

Proof: For all $m, n \in \mathbb{N}$ with m > n, we have $|x_m - x_n| \leq |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \cdots + |x_{m-1} - x_m| \leq \alpha^n + \alpha^{n+1} + \cdots + \alpha^{m-1} = \frac{\alpha^n}{1-\alpha} (1 - \alpha^{m-n}) < \frac{\alpha^n}{1-\alpha}$. Since $0 < \alpha < 1$, $\alpha^n \to 0$ and so given any $\varepsilon > 0$, we can choose $n_0 \in \mathbb{N}$ such that $\frac{\alpha^{n_0}}{1-\alpha} < \varepsilon$. Hence for all $m, n \geq n_0$, we have $|x_m - x_n| < \frac{\alpha^{n_0}}{1-\alpha} < \varepsilon$. Therefore (x_n) is a Cauchy sequence.

Example: Let $0 < \alpha < 1$ and let the sequence (x_n) satisfy the condition $|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. Then (x_n) is a Cauchy sequence. Solution: For all $m, n \in \mathbb{N}$ with m > n, we have $|x_m - x_n| \le |x_n - x_{n+1}| + |x_{n+1} - x_{n+2}| + \cdots + |x_{m-1} - x_m| \le (\alpha^{n-1} + \alpha^n + \cdots + \alpha^{m-2})|x_2 - x_1| = \frac{\alpha^{n-1}}{1-\alpha}(1 - \alpha^{m-n})|x_2 - x_1| \le \frac{\alpha^{n-1}}{1-\alpha}|x_2 - x_1|$. Since $0 < \alpha < 1$, $\alpha^{n-1} \to 0$ and so given any $\varepsilon > 0$, we can choose $n_0 \in \mathbb{N}$ such that $\frac{\alpha^{n_0-1}}{1-\alpha}|x_2 - x_1| < \varepsilon$. Hence for all $m, n \ge n_0$, we have $|x_m - x_n| \le \frac{\alpha^{n_0-1}}{1-\alpha}|x_2 - x_1| < \varepsilon$. Therefore (x_n) is a Cauchy sequence.

Example: Let $x_1 = 1$ and let $x_{n+1} = \frac{1}{x_n+2}$ for all $n \in \mathbb{N}$. Then the sequence (x_n) is convergent and $\lim_{n \to \infty} x_n = \sqrt{2} - 1$.

Proof: For all $n \in \mathbb{N}$, we have $|x_{n+2} - x_{n+1}| = |\frac{1}{x_{n+1}+2} - \frac{1}{x_{n+2}}| = \frac{|x_{n+1} - x_n|}{|x_{n+1} + 2||x_{n+2}|}$. Now, $x_1 > 0$ and if we assume that $x_k > 0$ for some $k \in \mathbb{N}$, then $x_{k+1} = \frac{1}{x_k+2} > 0$. Hence by the principle of mathematical induction, $x_n > 0$ for all $n \in \mathbb{N}$. Using this, we get $|x_{n+2} - x_{n+1}| \le \frac{1}{4}|x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. It follows that (x_n) is a Cauchy sequence in \mathbb{R} and hence (x_n) is convergent. Let $\ell = \lim_{n \to \infty} x_n$. Then $\lim_{n \to \infty} x_{n+1} = \ell$ and since $x_{n+1} = \frac{1}{x_n+2}$ for all $n \in \mathbb{N}$, we get $\ell = \frac{1}{\ell+2} \Rightarrow \ell = -1 \pm \sqrt{2}$. Since $x_n > 0$ for all $n \in \mathbb{N}$, we have $\ell \ge 0$ and so $\ell = \sqrt{2} - 1$.

Example: If $x_n = (-1)^n (1 - \frac{1}{n})$ for all $n \in \mathbb{N}$, then $x_n \not\to 1$. In fact, (x_n) is not convergent.

Proof: Since $x_{2n-1} = (-1)^{2n-1}(1 - \frac{1}{2n-1}) = \frac{1}{2n-1} - 1 \rightarrow -1$, $x_n \not\to 1$. Again, since $x_{2n} = (-1)^{2n}(1 - \frac{1}{2n}) = 1 - \frac{1}{2n} \to 1 \neq -1$, (x_n) is not convergent.

Remark: Let (x_n) be a sequence in \mathbb{R} such that $x_{2n} \to \ell \in \mathbb{R}$ and $x_{2n-1} \to \ell$. Then $x_n \to \ell$. *Proof.* Let $\varepsilon > 0$. Since $x_{2n} \to \ell$ and $x_{2n-1} \to \ell$, there exist $n_1, n_2 \in \mathbb{N}$ such that $|x_{2n} - \ell| < \varepsilon$ for all $n \ge n_1$ and $|x_{2n-1} - \ell| < \varepsilon$ for all $n \ge n_2$. Taking $n_0 = \max\{2n_1, 2n_2 - 1\} \in \mathbb{N}$, we find that $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$. Hence $x_n \to \ell$.

Example: The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1. *Proof*: If (x_n) denotes the given sequence, then $x_{2n} = \frac{n}{n+1} = \frac{1}{1+\frac{1}{n+1}} \to 1$ and $x_{2n-1} = 1 \to 1$. Therefore (x_n) converges to 1.

Example: If $x \in \mathbb{R}$, then there exists a sequence (r_n) of rationals converging to x. Similarly, if $x \in \mathbb{R}$, then there exists a sequence (t_n) of irrationals converging to x. *Proof.* For each $n \in \mathbb{N}$, there exist $r_n \in \mathbb{Q}$ and $t_n \in \mathbb{R} \setminus \mathbb{Q}$ such that $x - \frac{1}{n} < r_n < x + \frac{1}{n}$ and $x-\frac{1}{n} < t_n < x+\frac{1}{n}$. Since $x-\frac{1}{n} \to x$ and $x+\frac{1}{n} \to x$, by sandwich theorem, the sequence (r_n) of rationals converges to x and the sequence (t_n) of irrationals also converges to x.

Series

Example: The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ (where $a \neq 0$) converges iff |r| < 1.

Proof: If r = 1, then the given series becomes $a + a + \cdots$, which is not convergent, since $(s_n) = (na)$ does not converge as $a \neq 0$. We now assume that $r \neq 1$. Then $s_n = \sum_{i=1}^n ar^{i-1} = \frac{a}{1-r}(1-r^n)$ for all $n \in \mathbb{N}$. If |r| < 1, then $\lim_{n \to \infty} r^n = 0$ and so (s_n) converges to $\frac{a}{1-r}$. Therefore the given series converges (with sum $\frac{a}{1-r}$) if |r| < 1. If $|r| \ge 1$, then the sequence (r^n) does not converge and since $a \neq 0$, it follows that (s_n) does not converge. Hence in this case the given series is not convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent with sum 1.

Proof: Here $s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1}) = 1 - \frac{1}{n+1}$ for all $n \in \mathbb{N}$. Since $\lim_{n \to \infty} s_n = \lim_{n \to \infty} (1 - \frac{1}{n+1}) = 1 - \frac{1}{n+1}$

Example: The series $1 - 1 + 1 - 1 + \cdots$ is not convergent. Proof: Here $s_n = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd,} \end{cases}$

and so the sequence (s_n) is not convergent. Therefore the given series is not convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Proof: For all $n \ge 2$, we have $s_n = \sum_{k=1}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + \sum_{k=2}^n (\frac{1}{k-1} - \frac{1}{k}) = 2 - \frac{1}{n} < 2$. Hence the sequence (s_n) is bounded above and consequently by monotonic criterion for series, the given series is convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.

Proof: If possible, let the given series be convergent. Then by Cauchy criterion for series, there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{m} < \frac{1}{2}$ for all $m > n \ge n_0$. In particular, we get $\frac{1}{n_0+1} + \frac{1}{n_0+2} + \cdots + \frac{1}{2n_0} < \frac{1}{2}$. But $\frac{1}{n_0+1} + \frac{1}{n_0+2} + \cdots + \frac{1}{2n_0} \ge \frac{1}{2n_0} + \frac{1}{2n_0} + \cdots + \frac{1}{2n_0} = \frac{1}{2}$, and so we

get a contradiction. Hence the given series is not convergent.

Alternative proof: Let $s_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ for all $n \in \mathbb{N}$. Then $s_{2^n} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + \dots + (\frac{1}{2^{n-1}+1} + \dots + \frac{1}{2^n}) > 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + \dots + (\frac{1}{2^n} + \dots + \frac{1}{2^n}) = 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + \frac{n}{2}$ for all $n \in \mathbb{N}$. This shows the sequence (s_n) is not bounded. Hence (s_n) is not convergent and consequently $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{n^2+1}{(n+3)(n+4)}$ is not convergent.

Proof. Since $\frac{n^2+1}{(n+3)(n+4)} = \frac{1+\frac{1}{n^2}}{(1+\frac{3}{n})(1+\frac{4}{n})} \to 1$, we have $\frac{n^2+1}{(n+3)(n+4)} \not\to 0$ and so the given series is not convergent

Example: The series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$ is not convergent.

Proof. Since $(-1)^{2n} \frac{2n}{2n+2} = \frac{1}{1+\frac{1}{n}} \to 1$, we have $(-1)^n \frac{n}{n+2} \not\to 0$ and so the given series is not conver-

Example: The series $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$ is convergent.

Proof: We have $0 \le \frac{1+\sin n}{1+n^2} \le \frac{2}{n^2}$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} \frac{2}{n^2}$ is convergent, by comparison test, the given series is convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{1}{2^n + n}$ is convergent.

Proof: We have $0 < \frac{1}{2^n + n} < \frac{1}{2^n}$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is convergent, by comparison test, the given series is convergent.

Example: The series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$ is not convergent.

Proof: Since $\frac{1}{\sqrt{n(n-1)}} > \frac{1}{n} > 0$ for all $n \ge 2$ and since $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent, by comparison test, the given series is not convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$ is convergent.

Proof: Let $x_n = \frac{n}{4n^3-2}$ and $y_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Then $x_n, y_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{n^3}{4n^3-2}=\lim_{n\to\infty}\frac{1}{4-\frac{2}{n^3}}=\frac{1}{4}\neq 0.$ Since $\sum_{n=1}^{\infty}y_n$ is convergent, by limit comparison test, $\sum_{n=0}^{\infty} x_n$ is convergent.

Example: For $p \in \mathbb{R}$, the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent iff p > 1.

Proof: If $p \leq 0$, then $\frac{1}{n^p} \not\to 0$ and so the given series is not convergent. Now, let p > 0. Then $(\frac{1}{n^p})$ is a decreasing sequence of non-negative real numbers. Also, $\sum_{n=1}^{\infty} 2^n \cdot \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} (\frac{1}{2^{p-1}})^n$, being a geometric series, converges iff $\frac{1}{2^{p-1}} < 1$, i.e. iff p > 1. Hence by Cauchy's condensation test, the given series converges iff p > 1.

Example: For $p \in \mathbb{R}$, the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is convergent iff p > 1. Proof: Let $f(x) = \frac{1}{x(\log x)^p}$ for all x > 1. Then $f: (1, \infty) \to \mathbb{R}$ is differentiable and

 $f'(x) = -\frac{(\log x)^{p-1}(\log x + p)}{x^2(\log x)^{2p}} \le 0$ for all $x > \max\{1, e^{-p}\} = a$ (say). Hence f is decreasing on (a, ∞) and so $f(n+1) \le f(n)$ for all $n \ge n_0$, where $n_0 \in \mathbb{N}$ is chosen to satisfy $n_0 > a$. Thus the sequence $\left(\frac{1}{n(\log n)^p}\right)_{n=n_0}^{\infty}$ of non-negative real numbers is decreasing. Since the series $\sum_{n=n_0}^{\infty} 2^n \cdot \frac{1}{2^n (\log 2^n)^p} = \sum_{n=n_0}^{\infty} \frac{1}{(\log 2)^p n^p} \text{ is convergent iff } p > 1, \text{ by Cauchy's condensation test, } \sum_{n=n_0}^{\infty} \frac{1}{n (\log n)^p}$ is convergent iff p > 1. Consequently the given series is convergent iff p > 1

Example: The series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is convergent.

Proof. Taking $x_n = \frac{n}{2^n}$ for all $n \in \mathbb{N}$, we find that $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{1}{2} (1 + \frac{1}{n}) = \frac{1}{2} < 1$. Hence by the ratio test, the given series is convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is not convergent.

Proof: Taking $x_n = \frac{(2n)!}{(n!)^2}$ for all $n \in \mathbb{N}$, we find that $\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{4n+2}{n+1} = 4 > 1$. Hence by the ratio test, the given series is not convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$ is convergent. Proof: Taking $x_n = \frac{(n!)^n}{n^{n^2}}$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} |x_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n!}{n^n} = 0 < 1$ (since $\lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e} < 1$). Hence by the root test, the given series is convergent.

Example: The series $\sum_{n=1}^{\infty} \frac{5^n}{3^n+4^n}$ is not convergent.

Proof. Taking $x_n = \frac{5^n}{3^n + 4^n}$ for all $n \in \mathbb{N}$, we have $\lim_{n \to \infty} |x_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{5}{(3^n + 4^n)^{\frac{1}{n}}} = \frac{5}{4} > 1$ (since $\lim_{n\to\infty} (3^n + 4^n)^{\frac{1}{n}} = 4$, as shown earlier). Hence by the root test, the given series is not convergent.

Example: For $p \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n^p}$ is convergent iff p > 0.

Proof: For $p \leq 0$, $|(-1)^{n+1}\frac{1}{n^p}| = \frac{1}{n^p} \not\to 0$ and so $(-1)^{n+1}\frac{1}{n^p} \not\to 0$. Hence the given series is not convergent if $p \leq 0$. If p > 0, then $(\frac{1}{n^p})$ is a decreasing sequence of positive real numbers with $\frac{1}{n^p} \to 0$ and hence the given series converges by Leibniz's test.

Example: The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$ is convergent. Proof: Since $(n+1)^2 + \frac{1}{n+1} = n^2 + 1 + 2n + \frac{1}{n+1} > n^2 + \frac{1}{n}$ for all $n \in \mathbb{N}$, we get $\frac{n+1}{(n+1)^3+1} = \frac{1}{(n+1)^2 + \frac{1}{n+1}} < \frac{1}{n^2 + \frac{1}{n}} = \frac{n}{n^3+1}$ for all $n \in \mathbb{N}$. Hence $(\frac{n}{n^3+1})$ is a decreasing sequence of positive real numbers. Also, $\frac{n}{n^3+1} = \frac{\frac{1}{n^2}}{1+\frac{1}{n^2}} \to 0$. Therefore by Leibniz's test, the given alternating series is convergent.

Alternative proof: Since $0 < \frac{n}{n^3+1} < \frac{1}{n^2}$ for all $n \in \mathbb{N}$ and since the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by comparison test, the series $\sum_{n=1}^{\infty} |(-1)^{n+1} \frac{n}{n^3+1}| = \sum_{n=1}^{\infty} \frac{n}{n^3+1}$ converges. Thus $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^3+1}$ is an absolutely convergent series and hence it is convergent.

Example: If $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = s$, then $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \dots = \frac{3}{2}s$. *Proof*: We first note that by Leibniz's test, the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges.

Let $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = s$. (i) Then the series $\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \dots = \frac{1}{2}(1 - \frac{1}{2} + \frac{1}{3} - \dots)$ converges to $\frac{1}{2}s$. It follows that the series

 $0 + \frac{1}{2} - 0 - \frac{1}{4} + 0 + \frac{1}{6} - 0 - \frac{1}{8} + \cdots$ also converges to $\frac{1}{2}s$. Hence the series $(1+0)+(-\frac{1}{2}+\frac{1}{2})+(\frac{1}{3}-0)+(-\frac{1}{4}-\frac{1}{4})+(\frac{1}{5}+0)+\cdots$, which is the sum of the series (i) and (ii), converges to $s+\frac{1}{2}s=\frac{3}{2}s$. Therefore it follows that $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \dots = \frac{3}{2}s.$

Continuity

Example: $\lim_{n\to\infty} \frac{\sin(\sqrt{n+1}-\sqrt{n})}{\sqrt{n+1}-\sqrt{n}} = 1$ *Proof*: Since $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1}+\sqrt{n}} \to 0$, using the fact that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, we obtain $\lim_{n \to \infty} \frac{\sin(\sqrt{n+1} - \sqrt{n})}{\sqrt{n+1} - \sqrt{n}} = 1.$

Example: The function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x > 1, \end{cases}$

is not continuous at 1.

Proof: Since $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} (3x+2) = 5 \neq 4 = f(1)$, f is not continuous at 1.

Example: The function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$

is continuous at 0.

Proof. For all $x \neq 0 \in \mathbb{R}$, $|f(x) - f(0)| = |x \sin \frac{1}{x}| \leq |x|$ and hence given any $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we get $|f(x) - f(0)| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $|x - 0| < \delta$. Therefore f is continuous at 0.

Example: The function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$

is not continuous at 0.

Proof. If $x_n = \frac{2}{(4n+1)\pi}$ for all $n \in \mathbb{N}$, then the sequence (x_n) converges to 0, but $f(x_n) = \sin(4n+1)\frac{\pi}{2} = 1$ for all $n \in \mathbb{N}$ and so $f(x_n) \to 1 \neq 0 = f(0)$. Therefore f is not continuous at 0.

Example: $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist (in \mathbb{R}).

Proof: If $x_n = \frac{2}{(4n+1)\pi}$ and $y_n = \frac{1}{n\pi}$ for all $n \in \mathbb{N}$, then $x_n \to 0$ and $y_n \to 0$. However, since $\sin \frac{1}{x_n} = 1$ and $\sin \frac{1}{y_n} = 0$ for all $n \in \mathbb{N}$, we get $\sin \frac{1}{x_n} \to 1$ and $\sin \frac{1}{y_n} \to 0$. Therefore by the sequential criterion for limit, $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist (in \mathbb{R}).

Example: The function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$

is not continuous at any point of \mathbb{R} .

Proof. If $x_0 \in \mathbb{Q}$, then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n \to x_0$. Since $f(t_n) = 0$ for all $n \in \mathbb{N}$, $f(t_n) \to 0 \neq 1 = f(x_0)$. Hence f is not continuous at x_0 . Again, if $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x_0$. Since $f(r_n) = 1$ for all $n \in \mathbb{N}$, $f(r_n) \to 1 \neq 0 = f(x_0)$. Hence f is not continuous at x_0 .

Example: The function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ -x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$

is continuous only at 0.

Proof. Given any $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we have $|f(x) - f(0)| = |x| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $|x-0| < \delta$. Therefore f is continuous at 0. If $x_0 \neq 0 \in \mathbb{Q}$, then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n \to x_0$. Since $f(t_n) = -t_n$ for all $n \in \mathbb{N}$, $f(t_n) \to -x_0 \neq x_0 = f(x_0)$.

Hence f is not continuous at x_0 . Again, if $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x_0$. Since $f(r_n) = x_0$ for all $n \in \mathbb{N}$, $f(r_n) \to x_0 \neq -x_0 = f(x_0)$. Hence f is not continuous at x_0 .

Example: The equation $x^2 = x \sin x + \cos x$ has at least two real roots.

Proof: Let $f(x) = x^2 - x \sin x - \cos x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is continuous and $f(-\pi) = \pi^2 + 1 > 0$, f(0) = -1 < 0 and $f(\pi) = \pi^2 + 1 > 0$. Hence by the intermediate value theorem, the equation f(x) = 0 has at least one root in $(-\pi, 0)$ and at least one root in $(0, \pi)$. Thus the equation f(x) = 0 has at least two real roots.

Example: If $f:[0,1] \to [0,1]$ is continuous, then there exists $c \in [0,1]$ such that f(c) = c. *Proof.* Let g(x) = f(x) - x for all $x \in [0,1]$. Since f is continuous, $g:[0,1] \to \mathbb{R}$ is continuous. If f(0) = 0 or f(1) = 1, then we get the result by taking c = 0 or c = 1 respectively. Otherwise g(0) = f(0) > 0 and g(1) = f(1) - 1 < 0 (since it is given that $0 \le f(x) \le 1$ for all $x \in [0,1]$). Hence by the intermediate value theorem, there exists $c \in (0,1)$ such that g(c) = 0, i.e. f(c) = c.

Example: Let $f:[0,2]\to\mathbb{R}$ be continuous such that f(0)=f(2). Then there exist $x_1,x_2\in[0,2]$ such that $x_1 - x_2 = 1$ and $f(x_1) = f(x_2)$.

Proof. Let g(x) = f(x+1) - f(x) for all $x \in [0,1]$. Since f is continuous, $g:[0,1] \to \mathbb{R}$ is continuous. Also, g(0) = f(1) - f(0) and g(1) = f(2) - f(1) = -g(0), since f(0) = f(2). If g(0) = 0, then f(1) = f(0) and we get the result by taking $x_1 = 1$ and $x_2 = 0$. If $g(0) \neq 0$, then g(0) and g(1) are of opposite signs and hence by the intermediate value theorem, there exists $c \in (0,1)$ such that g(c) = 0, i.e. f(c+1) = f(c). We get the result by taking $x_1 = c+1$ and $x_2 = c$.

Example: There does not exist any continuous function from [0,1] onto $(0,\infty)$.

Proof. If $f:[0,1]\to(0,\infty)$ is continuous, then f must be bounded. Since $(0,\infty)$ is not a bounded set in \mathbb{R} , it follows that f cannot be onto.

Differentiation

Example: Let $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x (\neq 0) \in \mathbb{R}, \\ 0 & \text{if } x = 0. \end{cases}$ Then $f : \mathbb{R} \to \mathbb{R}$ is not differentiable at 0.

Proof. Since $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \sin\frac{1}{x}$ does not exist, f is not differentiable at 0.

Example: Let $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x (\neq 0) \in \mathbb{R}, \\ 0 & \text{if } x = 0. \end{cases}$ Then $f : \mathbb{R} \to \mathbb{R}$ is differentiable but $f' : \mathbb{R} \to \mathbb{R}$ is not continuous at 0.

Proof: Clearly f is differentiable at all $x \neq 0 \in \mathbb{R}$ and $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$ for all $x \neq 0 \in \mathbb{R}$. Also, for each $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we find that $|\frac{f(x) - f(0)}{x - 0}| = |x \sin \frac{1}{x}| \leq |x| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $0 < |x| < \delta$. Hence $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$ and consequently f is differentiable at $0 \in \mathbb{R}$. with f'(0) = 0. Thus $f : \mathbb{R} \to \mathbb{R}$ is differentiable. Again, since $\frac{1}{2n\pi} \to 0$ but $f'(\frac{1}{2n\pi}) \to -1 \neq f'(0)$, $f' : \mathbb{R} \to \mathbb{R}$ is not continuous at 0.

Example: Let $f(x) = \begin{cases} x^3 \sin \frac{1}{x} & \text{if } x (\neq 0) \in \mathbb{R}, \\ 0 & \text{if } x = 0. \end{cases}$ Then $f: \mathbb{R} \to \mathbb{R}$ is differentiable, $f': \mathbb{R} \to \mathbb{R}$ is continuous, but f' is not differentiable at 0. *Proof*: Clearly f is differentiable at all $x(\neq 0) \in \mathbb{R}$ and $f'(x) = 3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}$ for all $x(\neq 0) \in \mathbb{R}$. Also, for each $\varepsilon > 0$, choosing $\delta = \sqrt{\varepsilon} > 0$, we find that $|\frac{f(x) - f(0)}{x - 0}| = |x^2 \sin \frac{1}{x}| \le |x|^2 < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $0 < |x| < \delta$. Hence $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$ and consequently f is differentiable at 0 with f'(0) = 0. Thus $f : \mathbb{R} \to \mathbb{R}$ is differentiable.

Clearly $f': \mathbb{R} \to \mathbb{R}$ is continuous at all $x(\neq 0) \in \mathbb{R}$. Also, since $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$ and $\lim_{x\to 0} x \cos \frac{1}{x} = 0$ (similar to what we have shown earlier), we obtain $\lim_{x\to 0} f'(x) = 0 = f'(0)$, which shows that f' is continuous at 0. Thus $f': \mathbb{R} \to \mathbb{R}$ is continuous.

continuous at 0. Thus $f': \mathbb{R} \to \mathbb{R}$ is continuous. Again, $\lim_{x\to 0} \frac{f'(x)-f'(0)}{x-0} = \lim_{x\to 0} (3x\sin\frac{1}{x}-\cos\frac{1}{x})$ does not exist, because if $x_n = \frac{1}{2n\pi}$ and $y_n = \frac{1}{(2n+1)\pi}$ for all $n \in \mathbb{N}$, then $x_n \to 0$ and $y_n \to 0$, but $\lim_{n\to\infty} (3x_n\sin\frac{1}{x_n}-\cos\frac{1}{x_n}) = -1$ and $\lim_{n\to\infty} (3y_n\sin\frac{1}{y_n}-\cos\frac{1}{y_n}) = 1$. Therefore f' is not differentiable at 0.

Example: Let $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Then $f: \mathbb{R} \to \mathbb{R}$ is differentiable only at 0 and f'(0) = 0.

Proof: If $x_0(\neq 0) \in \mathbb{Q}$, then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n \to x_0$. Since $f(t_n) = 0$ for all $n \in \mathbb{N}$, $f(t_n) \to 0 \neq x_0^2 = f(x_0)$. Hence f is not continuous at x_0 . Also, if $u_0 \in \mathbb{R} \setminus \mathbb{Q}$, then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to u_0$. Since $f(r_n) = r_n^2 \to u_0^2 \neq 0 = f(u_0)$, f is not continuous at u_0 . Thus f is not continuous at any $x(\neq 0) \in \mathbb{R}$ and therefore f cannot be differentiable at any $x(\neq 0) \in \mathbb{R}$.

Again, for each $\varepsilon > 0$, choosing $\delta = \varepsilon > 0$, we find that $|\frac{f(x) - f(0)}{x - 0}| \le |x| < \varepsilon$ for all $x \in \mathbb{R}$ satisfying $0 < |x| < \delta$. Hence $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 0$ and consequently f is differentiable at 0 with f'(0) = 0.

Example: The equation $x^2 = x \sin x + \cos x$ has exactly two (distinct) real roots.

Proof: Let $f(x) = x^2 - x \sin x - \cos x$ for all $x \in \mathbb{R}$. Then $f : \mathbb{R} \to \mathbb{R}$ is differentiable (and hence continuous) with $f'(x) = x(2 - \cos x)$ for all $x \in \mathbb{R}$. Since $\cos x \neq 2$ for any $x \in \mathbb{R}$, the equation f'(x) = 0 has exactly one real root, viz. x = 0. As a consequence of Rolle's theorem, it follows that the equation f(x) = 0 has at most two real roots. Also, since $f(-\pi) = \pi^2 + 1 > 0$, f(0) = -1 < 0 and $f(\pi) = \pi^2 + 1 > 0$, by the intermediate value property of continuous functions, the equation f(x) = 0 has at least one root in $(-\pi, 0)$ and at least one root in $(0, \pi)$. Thus the equation f(x) = 0 has exactly two (distinct) real roots and so the given equation has exactly two (distinct) real roots.

Example: Find the number of (distinct) real roots of the equation $x^4 + 2x^2 - 6x + 2 = 0$. Solution: Taking $f(x) = x^4 + 2x^2 - 6x + 2$ for all $x \in \mathbb{R}$, we find that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable with $f'(x) = 4x^3 + 4x - 6$ and $f''(x) = 12x^2 + 4$ for all $x \in \mathbb{R}$. Since $f''(x) \neq 0$ for all $x \in \mathbb{R}$, as a consequence of Rolle's theorem, it follows that the equation f'(x) = 0 has at most one real root and hence the equation f(x) = 0 has at most two real roots. Again, since f(0) = 2 > 0, f(1) = -2 < 0 and f(2) = 14 > 0, by the intermediate value property of continuous functions, the equation f(x) = 0 has at least one real root in (0, 1) and at least one real root in (1, 2). Therefore the given equation has exactly two (distinct) real roots.

Example: $\sin x \ge x - \frac{x^3}{6}$ for all $x \in [0, \frac{\pi}{2}]$.

Proof: Let $f(x) = \sin x - x + \frac{x^3}{6}$ for all $x \in [0, \frac{\pi}{2}]$. Then $f: [0, \frac{\pi}{2}] \to \mathbb{R}$ is infinitely differentiable and $f'(x) = \cos x - 1 + \frac{x^2}{2}$, $f''(x) = \sin x + x$ and $f'''(x) = 1 - \cos x$ for all $x \in [0, \frac{\pi}{2}]$. Since $f'''(x) \ge 0$ for all $x \in [0, \frac{\pi}{2}]$, f'' is increasing on $[0, \frac{\pi}{2}]$. Hence $f''(x) \ge f''(0) = 0$ for all $x \in [0, \frac{\pi}{2}]$. This shows that f' is increasing on $[0, \frac{\pi}{2}]$ and so $f'(x) \ge f'(0) = 0$ for all $x \in [0, \frac{\pi}{2}]$. Thus f is increasing on $[0, \frac{\pi}{2}]$ and so $f(x) \ge f(0) = 0$ for all $x \in [0, \frac{\pi}{2}]$. Therefore $\sin x \ge x - \frac{x^3}{6}$ for all $x \in [0, \frac{\pi}{2}]$.

Example: If $f(x) = x^3 + x^2 - 5x + 3$ for all $x \in \mathbb{R}$, then f is one-one on [1,5] but not one-one on \mathbb{R} .

Proof: $f: \mathbb{R} \to \mathbb{R}$ is differentiable with $f'(x) = 3x^2 + 2x - 5$ for all $x \in \mathbb{R}$. Clearly $f'(x) \neq 0$ for all $x \in (1,5)$ and hence f is one-one on [1,5]. Again, since f(0) = 3, f(1) = 0 and f(2) = 5, by the intermediate value property of continuous functions, there exist $x_1 \in (0,1)$ and $x_2 \in (1,2)$ such that $f(x_1) = 1 = f(x_2)$. Therefore f is not one-one on \mathbb{R} .

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Then there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Proof. By the mean value theorem, there exist $\alpha \in (-1,0)$ and $\beta \in (0,1)$ such that $f'(\alpha) =$ $\frac{f(0)-f(-1)}{0-(-1)} = -5$ and $f'(\beta) = \frac{f(1)-f(0)}{1-0} = 10$. Hence by the intermediate value property of derivatives, there exist $c_1, c_2 \in (\alpha, \beta)$ (and so $c_1, c_2 \in (-1, 1)$) such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Example: If $f(x) = 1 - x^{2/3}$ for all $x \in \mathbb{R}$, then f has no local maximum or local minimum at any nonzero $x \in \mathbb{R}$. Further, f has a local maximum at 0.

Proof: $f: \mathbb{R} \to \mathbb{R}$ is differentiable at all $x(\neq 0) \in \mathbb{R}$ and $f'(x) = -\frac{2}{3}x^{-1/3} \neq 0$ for all $x(\neq 0) \in \mathbb{R}$. Hence f does not have local maximum or local minimum at any $x \neq 0$ $\in \mathbb{R}$. Again, since $f(x) \leq 1 = f(0)$ for all $x \in \mathbb{R}$, f has a local maximum at 0 (and the local maximum value is f(0) = 1).

Alternative method for showing local maximum at 0: Since f'(x) > 0 for all x < 0 and f'(x) < 0for all x > 0, f has a local maximum at 0.

Example: $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \frac{1}{2}$

Proof: Applying (first version of) L'Hôpital's rule, we obtain $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \frac{\frac{d}{dx}(\sqrt{1+x}-1)|_{x=0}}{\frac{d}{dx}(x)|_{x=0}} = \frac{1}{2}$.

Alternative proof: Applying (second version of) L'Hôpital's rule, we obtain $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \lim_{x\to 0} \frac{\frac{1}{2\sqrt{1+x}}}{1}$

Example: $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 + \cos 2x} = \frac{1}{4}$

 $\textit{Proof:} \text{ Applying L'Hôpital's rule twice, we obtain } \lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{1+\cos 2x} = \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-2\sin 2x} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x}{-4\cos 2x} = \frac{1}{4}.$

Example: $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = 0$

Proof: For all $x \neq 0 \in \mathbb{R}$, we have $0 \leq |x \sin \frac{1}{x}| \leq |x|$. Since $\lim_{x \to 0} |x| = 0$, by sandwich theorem (for limit of functions), we get $\lim_{x\to 0} |x\sin\frac{1}{x}| = 0$ and hence $\lim_{x\to 0} x\sin\frac{1}{x} = 0$. It follows that $\lim_{x\to 0} \frac{x^2\sin\frac{1}{x}}{\sin x} = \lim_{x\to 0} \frac{x\sin\frac{1}{x}}{\frac{\sin x}{x}} = \frac{\lim_{x\to 0} x\sin\frac{1}{x}}{\frac{\sin x}{x}} = \frac{0}{1} = 0$.

Example: $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x}} = 1$

Proof: Let $f(x) = (\frac{\sin x}{x})^{\frac{1}{x}}$ for all $x \neq 0 \in \mathbb{R}$. Then f(x) > 0 for all $x \in (-1,1) \setminus \{0\}$ and we have $\lim_{x\to 0} \log f(x) = \lim_{x\to 0} \frac{\log(\frac{\sin x}{x})}{x} = \lim_{x\to 0} \frac{x\cos x - \sin x}{x\sin x}$ (applying L'Hôpital's rule) $= \lim_{x\to 0} \frac{-x\sin x}{\sin x + x\cos x}$ (applying L'Hôpital's rule again) $= \lim_{x\to 0} \frac{-\sin x}{\sin x + \cos x} = 0$ (since $\lim_{x\to 0} \frac{\sin x}{x} = 1$). By the continuity of the exponential function, it follows that $\lim_{x\to 0} f(x) = e^0 = 1$.

Example: $\lim_{x \to \infty} \frac{x - \sin x}{2x + \sin x} = \frac{1}{2}$ *Proof*: Since $\left|\frac{\sin x}{x}\right| \le \frac{1}{x}$ for all x > 0 and since $\lim_{x \to \infty} \frac{1}{x} = 0$, we get $\lim_{x \to \infty} \frac{\sin x}{x} = 0$. Consequently $\lim_{x \to \infty} \frac{x - \sin x}{2x + \sin x} = \lim_{x \to \infty} \frac{1 - \frac{\sin x}{x}}{2 + \frac{\sin x}{x}} = \frac{1}{2}.$

Example: The sequence $(\frac{\log n}{n})$ is convergent with $\lim_{n\to\infty} \frac{\log n}{n} = 0$.

Proof: Let $f(x) = \frac{\log x}{x}$ for all x > 0. Then applying L'Hôpital's rule, we obtain $\lim_{x \to \infty} f(x) = 1$ $\lim_{x\to\infty}\frac{1/x}{1}=0$. Therefore by the sequential criterion of limit, the sequence $(f(n))=\frac{x\to\infty}{n}$ converges to 0.

Example: $1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$ for all x > 0. Proof: Let x > 0 and let $f(t) = \sqrt{1+t}$ for all $x \in [0,x]$. Then $f:[0,x] \to \mathbb{R}$ is twice differentiable and $f'(t) = \frac{1}{2\sqrt{1+t}}$, $f''(t) = -\frac{1}{4(1+t)^{3/2}}$ for all $t \in [0,x]$. By Taylor's theorem, there exists $c \in (0,x)$ such that $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(c) = 1 + \frac{x}{2} - \frac{x^2}{8} \cdot \frac{1}{(1+c)^{3/2}}$. Since $0 < \frac{1}{(1+c)^{3/2}} < 1$, we get $1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1 + x} \le 1 + \frac{x}{2}.$

Example: For the power series $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$, the radius of convergence is 1 and the interval of convergence is [-1,1]

Proof. If x = 0, then the given series becomes $0 + 0 + \cdots$, which is clearly convergent. Let $x(\neq 0) \in \mathbb{R}$ and let $a_n = \frac{x^n}{n^2}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x|$. Hence by ratio test, $\sum_{n=1}^{\infty} a_n$ is convergent (absolutely) if |x| < 1, *i.e.* if $x \in (-1,1)$ and is not convergent if |x| > 1, *i.e.* if $x \in (-\infty, -1) \cup (1, \infty)$. Therefore the radius of convergence of the given power series is 1. Again, if |x| = 1, then $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and hence $\sum_{n=1}^{\infty} a_n$ is also convergent. Therefore the interval of convergence of the given power series is [-1,1].

Example: For the power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$, the radius of convergence is 4 and the interval of convergence is (-3, 5].

Proof: If x=1, then the given series becomes $0+0+\cdots$, which is clearly convergent. Let $x(\neq 1) \in \mathbb{R}$ and let $a_n = \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{4} |x-1|$. Hence by ratio test, $\sum_{n=1}^{\infty} a_n$ is convergent (absolutely) if $\frac{1}{4}|x-1| < 1$, *i.e.* if $x \in (-3,5)$ and is not convergent if $\frac{1}{4}|x-1| > 1$, *i.e.* if $x \in (-\infty, -3) \cup (5, \infty)$. Therefore the radius of convergence of the given power series is 4. Again, if x = -3, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent. If x = 5, then $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent by Leibniz test, since $(\frac{1}{n})$ is a decreasing sequence of positive real numbers and $\lim_{n\to\infty} \frac{1}{n} = 0$. Therefore the interval of convergence of the given power series is (-3,5].

Example: The Maclaurin series for e^x converges to e^x for all $x \in \mathbb{R}$.

Proof: If $f(x) = e^x$ for all $x \in \mathbb{R}$, then $f: \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f^{(n)}(x) = e^x$ for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$. Hence the Maclaurin series for e^x is the series $1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$, where $x \in \mathbb{R}$. For x = 0, the Maclaurin series of e^x becomes $1 + 0 + 0 + \cdots$, which clearly converges to $e^0 = 1$. Let $x \neq 0 \in \mathbb{R}$. The remainder term in the Taylor expansion of e^x about the point 0 is given by $R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c_n) = \frac{x^{n+1}}{(n+1)!} e^{c_n}$, where c_n lies between 0 and x. Since $e^{c_n} < e^x$ if x > 0 and $e^{c_n} < 1$ if x < 0, we get $|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!} e^x$ if x > 0 and $|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$ if x < 0. Also, since $\lim_{n \to \infty} \frac{|x|^{n+2}}{(n+2)!} \cdot \frac{(n+1)!}{|x|^{n+1}} = \lim_{n \to \infty} \frac{|x|}{n+2} = 0 < 1$, we get $\lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ and hence it follows that $\lim_{n \to \infty} R_n(x) = 0$. Therefore the Maclaurin series of e^x converges to e^x .

Example: The Maclaurin series for $\sin x$ converges to $\sin x$ for all $x \in \mathbb{R}$.

Proof. If $f(x) = \sin x$ for all $x \in \mathbb{R}$, then $f: \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f^{(2n-1)}(x) = x$ $(-1)^{n+1}\cos x$, $f^{(2n)}(x)=(-1)^n\sin x$ for all $x\in\mathbb{R}$ and for all $n\in\mathbb{N}$. Hence the Maclaurin series for $\sin x$ is the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!}$, where $x \in \mathbb{R}$. For x = 0, the Maclaurin series of $\sin x$ becomes $0-0+0-\cdots$, which clearly converges to $\sin 0=0$. Let $x(\neq 0)\in\mathbb{R}$. The remainder term in the Taylor expansion of $\sin x$ about the point 0 is given by $R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c_n)$, where c_n lies between 0 and x. Since $|\sin c_n| \le 1$ and $|\cos c_n| \le 1$, we get $|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$. Also,

since $\lim_{n\to\infty} \frac{|x|^{n+2}}{(n+2)!} \cdot \frac{(n+1)!}{|x|^{n+1}} = \lim_{n\to\infty} \frac{|x|}{n+2} = 0 < 1$, we get $\lim_{n\to\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ and hence it follows that $\lim_{n\to\infty} R_n(x) = 0$. Therefore the Maclaurin series of $\sin x$ converges to $\sin x$.

Example: The Maclaurin series for $\cos x$ converges to $\cos x$ for all $x \in \mathbb{R}$.

Proof: If $f(x) = \cos x$ for all $x \in \mathbb{R}$, then $f: \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f^{(2n-1)}(x) = (-1)^n \sin x$, $f^{(2n)}(x) = (-1)^n \cos x$ for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$. Hence the Maclaurin series for $\cos x$ is the series $1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, where $x \in \mathbb{R}$. For x = 0, the Maclaurin series of $\cos x$ becomes $1 - 0 + 0 - \cdots$, which clearly converges to $\cos 0 = 1$. Let $x \neq 0 \in \mathbb{R}$. The remainder term in the Taylor expansion of $\sin x$ about the point 0 is given by $R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c_n)$, where c_n lies between 0 and x. Since $|\sin c_n| \le 1$ and $|\cos c_n| \le 1$, we get $|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$. Also, since $\lim_{n \to \infty} \frac{|x|^{n+2}}{(n+2)!} \cdot \frac{(n+1)!}{|x|^{n+1}} = \lim_{n \to \infty} \frac{|x|}{n+2} = 0 < 1$, we get $\lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ and hence it follows that $\lim_{n \to \infty} R_n(x) = 0$. Therefore the Maclaurin series of $\cos x$ converges to $\cos x$.

Example: If $f(x) = x^5 - 5x^4 + 5x^3 + 12$ for all $x \in \mathbb{R}$, then f has a local maximum only at 1 and a local minimum only at 3.

Proof: $f: \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f'(x) = 5x^2(x-1)(x-3)$, $f''(x) = 10x(2x^2-6x+3)$, $f'''(x) = 30(2x^2-4x+1)$ for all $x \in \mathbb{R}$. Since f'(x) = 0 iff x = 0, 1, or 3, f has neither a local maximum nor a local minimum at any point of $\mathbb{R} \setminus \{0,1,3\}$. Again, since f''(1) = -10 < 0, f''(3) = 90 > 0, f''(0) = 0 and $f'''(0) = 30 \neq 0$, f has a local maximum at 1 (with local maximum value f(1) = 13), f has a local minimum at 3 (with local minimum value f(3) = -15) and f has neither a local maximum nor a local minimum at 0.

Integration

Example: Let $f(x) = x^4 - 4x^3 + 10$ for all $x \in [1, 4]$. Then for the partition $P = \{1, 2, 3, 4\}$ of [1, 4], U(f, P) = 11 and L(f, P) = -40.

Proof: Since $f'(x) = 4x^2(x-3)$ for all $x \in [1,4]$, we have f'(x) < 0 for all $x \in (1,3)$ and f'(x) > 0 for all $x \in (3,4)$. Hence f is strictly decreasing on [1,3] and strictly increasing on [3,4]. Consequently $\sup\{f(x): x \in [1,2]\} = f(1) = 7$, $\sup\{f(x): x \in [2,3]\} = f(2) = -6$, $\sup\{f(x): x \in [3,4]\} = f(4) = 10$ and $\inf\{f(x): x \in [1,2]\} = f(2) = -6$, $\inf\{f(x): x \in [2,3]\} = f(3) = -17$, $\inf\{f(x): x \in [3,4]\} = f(3) = -17$. Therefore U(f,P) = 7(2-1) + (-6)(3-2) + 10(4-3) = 11 and L(f,P) = (-6)(2-1) + (-17)(3-2) + (-17)(4-3) = -40.

Example: Let $k \in \mathbb{R}$ and let f(x) = k for all $x \in [0,1]$. Then $f: [0,1] \to \mathbb{R}$ is Riemann integrable on [0,1] and $\int\limits_0^1 f(x) \, dx = k$.

Proof: Clearly f is bounded on [0,1]. Let $P = \{x_0, x_1, ..., x_n\}$ be any partition of [0,1]. Clearly $M_i = k = m_i$ for i = 1, ..., n and hence $U(f, P) = L(f, P) = \sum_{i=1}^n k(x_i - x_{i-1}) = k$. Consequently

 $\int_{0}^{\overline{1}} f(x) dx = k = \int_{0}^{1} f(x) dx.$ Therefore f is Riemann integrable on [0,1] and $\int_{0}^{1} f(x) dx = k$.

Example: Let $f(x) = \begin{cases} 0 & \text{if } x \in (0,1], \\ 1 & \text{if } x = 0. \end{cases}$

Then $f:[0,1]\to\mathbb{R}$ is Riemann integrable on [0,1] and $\int_0^1 f(x)\,dx=0$.

Proof: Clearly f is bounded on [0,1]. Let $P = \{x_0, x_1, ..., x_n\}$ be any partition of [0,1]. Then

 $m_i = 0$ and $M_i \ge 0$ for i = 1, ..., n and so L(f, P) = 0 and $U(f, P) \ge 0$. Hence $\int_{0}^{1} f(x) dx = 0$ and $\int_{0}^{\overline{1}} f(x) dx \ge 0$. Again, if $0 < \varepsilon < 1$, then considering the partition $P_1 = \{0, \frac{\varepsilon}{2}, 1\}$ of [0, 1], we get $0 \le \int_{0}^{\overline{1}} f(x) dx \le U(f, P_1) = \frac{\varepsilon}{2} < \varepsilon$ and consequently $\int_{0}^{\overline{1}} f(x) dx = 0$. Therefore f is Riemann integrable on [0, 1] and $\int_{0}^{1} f(x) dx = 0$.

Example: Let $f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}, \\ 0 & \text{if } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Then $f:[0,1]\to\mathbb{R}$ is not Riemann integrable on [0,1].

Proof: Clearly f is bounded on [0,1]. Let $P = \{x_0, x_1, ..., x_n\}$ be any partition of [0,1]. Since every interval contains a rational as well as an irrational number, we get $M_i = 1$ and $m_i = 0$ for i = 1, ..., n and hence $U(f, P) = \sum_{i=1}^{n} (x_i - x_{i-1}) = 1$ and L(f, P) = 0. Consequently $\int_{0}^{1} f(x) dx = 1$

and $\int_{\underline{0}}^{1} f(x) dx = 0$. Since $\int_{0}^{\overline{1}} f(x) dx \neq \int_{\underline{0}}^{1} f(x) dx$, f is not Riemann integrable on [0,1].

Example: Let f(x) = x for all $x \in [0,1]$. Then $f: [0,1] \to \mathbb{R}$ is Riemann integrable on [0,1] and $\int_{0}^{1} f(x) dx = \frac{1}{2}$.

Proof: Clearly f is bounded on [0,1]. For each $n \in \mathbb{N}$, $P_n = \{0, \frac{1}{n}, ..., \frac{n}{n} = 1\}$ is a partition of [0,1]. Also, $L(f,P_n) = \frac{1}{n}(0+\frac{1}{n}+\cdots+\frac{n-1}{n}) = \frac{1}{2}-\frac{1}{2n} \to \frac{1}{2}$ and $U(f,P_n) = \frac{1}{n}(\frac{1}{n}+\cdots+\frac{n}{n}) = \frac{1}{2}+\frac{1}{2n} \to \frac{1}{2}$. Hence f is Riemann integrable on [0,1] and $\int_{0}^{1} f(x) dx = \frac{1}{2}$.

Example: Let $f(x) = x^2$ for all $x \in [0,1]$. Then $f: [0,1] \to \mathbb{R}$ is Riemann integrable on [0,1] and $\int_0^1 f(x) dx = \frac{1}{3}$.

Proof: Clearly f is bounded on [0,1]. For each $n \in \mathbb{N}$, $P_n = \{0, \frac{1}{n}, ..., \frac{n}{n} = 1\}$ is a partition of [0,1]. Also, $L(f, P_n) = \frac{1}{n}(0 + \frac{1}{n^2} + \dots + \frac{(n-1)^2}{n^2}) = (1 - \frac{1}{n})(\frac{1}{3} - \frac{1}{6n}) \to \frac{1}{3}$ and $U(f, P_n) = \frac{1}{n}(\frac{1}{n^2} + \dots + \frac{n^2}{n^2}) = (1 + \frac{1}{n})(\frac{1}{3} + \frac{1}{6n}) \to \frac{1}{3}$. Hence f is Riemann integrable on [0,1] and $\int_{0}^{1} f(x) dx = \frac{1}{3}$.

Example: $\frac{1}{3\sqrt{2}} \le \int_{0}^{1} \frac{x^2}{\sqrt{1+x}} dx \le \frac{1}{3}$

Proof. Since $1 \leq \sqrt{1+x} \leq \sqrt{2}$ for all $x \in [0,1]$, we get $\frac{x^2}{\sqrt{2}} \leq \frac{x^2}{\sqrt{1+x}} \leq x^2$ for all $x \in [0,1]$. Since all the given functions are continuous and hence Riemann integrable on [0,1], we get $\int_0^1 \frac{x^2}{\sqrt{2}} \, dx \leq \int_0^1 \frac{x^2}{\sqrt{1+x}} \, dx \leq \int_0^1 x^2 \, dx \Rightarrow \frac{1}{3\sqrt{2}} \leq \int_0^1 \frac{x^2}{\sqrt{1+x}} \, dx \leq \frac{1}{3}.$

Example: $\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right] = \log 2$

Proof. Let $f(x) = \frac{1}{1+x}$ for all $x \in [0,1]$. Considering the partition $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n} = 1\}$ of [0,1] for each $n \in \mathbb{N}$ (and taking $c_i = \frac{i}{n}$ for i = 1, ..., n), we find that

 $S(f, P_n) = \sum_{i=1}^n f(\frac{i}{n})(\frac{i}{n} - \frac{i-1}{n}) = \sum_{i=1}^n \frac{1}{n+i}$. Since $f: [0, 1] \to \mathbb{R}$ is continuous, f is Riemann integrable

on [0,1] and hence $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{n+i}=\lim_{n\to\infty}S(f,P_n)=\int_0^1f(x)\,dx=\log(1+x)|_{x=0}^1=\log 2.$

Example: $\int_{1}^{\infty} \frac{1}{t^p} dt$ converges iff p > 1.

Proof: For all x > 1, we have $\int_{1}^{x} \frac{1}{t^p} dt = \frac{1}{1-p}(x^{1-p}-1)$ if $p \neq 1$ and $\int_{1}^{x} \frac{1}{t} dt = \log x$. Hence $\lim_{x \to \infty} \int_{1}^{x} \frac{1}{t^p} dt = \frac{1}{1-p}$ if p > 1 and $\lim_{x \to \infty} \int_{1}^{x} \frac{1}{t^p} dt = \infty$ if $p \leq 1$. Therefore $\int_{1}^{\infty} \frac{1}{t^p} dt$ converges iff p > 1.

Example: The improper integral $\int_{-\infty}^{\infty} e^t dt$ is not convergent.

Proof: In order that the improper integral $\int\limits_{-\infty}^{\infty}e^t\,dt$ converges, both $\int\limits_{-\infty}^{0}e^t\,dt$ and $\int\limits_{0}^{\infty}e^t\,dt$ must converge. However, $\int\limits_{0}^{\infty}e^t\,dt$ does not converge, because $\lim_{x\to\infty}\int\limits_{0}^{x}e^t\,dt=\lim_{x\to\infty}(e^x-1)=\infty$. Hence $\int\limits_{-\infty}^{\infty}e^t\,dt$ is not convergent.

Example: The improper integral $\int_{0}^{\infty} \frac{1}{1+t^2} dt$ converges.

Proof: Since $\lim_{x\to\infty}\int_0^x \frac{1}{1+t^2} dt = \lim_{x\to\infty} \tan^{-1} x = \frac{\pi}{2}$, the given improper integral converges.

Example: The improper integral $\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$ converges.

Proof: Since $0 \le \frac{\sin^2 t}{t^2} \le \frac{1}{t^2}$ for all $t \ge 1$ and since $\int_1^\infty \frac{1}{t^2} dt$ converges, by the comparison test, $\int_1^\infty \frac{\sin^2 t}{t^2} dt$ converges.

Example: The improper integral $\int_{1}^{\infty} \frac{dt}{t\sqrt{1+t^2}}$ converges.

Proof: Let $f(t) = \frac{1}{t\sqrt{1+t^2}}$ and $g(t) = \frac{1}{t^2}$ for all $t \ge 1$. Then $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \lim_{t \to \infty} \frac{1}{\sqrt{1+\frac{1}{t^2}}} = 1$. Since $\int_{1}^{\infty} g(t) dt$ converges, by the limit comparison test, $\int_{1}^{\infty} f(t) dt$ also converges.

Example: the improper integral $\int_{0}^{\infty} \frac{\cos t}{1+t^2} dt$ converges.

Proof: Since $\int_0^1 \frac{\cos t}{1+t^2} dt$ exists (in \mathbb{R}) as a Riemann integral, $\int_0^\infty \frac{\cos t}{1+t^2} dt$ converges iff $\int_1^\infty \frac{\cos t}{1+t^2} dt$ converges. Now $\left|\frac{\cos t}{1+t^2}\right| \leq \frac{1}{t^2}$ for all $t \geq 1$ and $\int_1^\infty \frac{1}{t^2} dt$ converges. Hence by comparison test, $\int_1^\infty \left|\frac{\cos t}{1+t^2}\right| dt$ converges and consequently $\int_1^\infty \frac{\cos t}{1+t^2} dt$ converges. By our remark at the beginning, $\int_0^\infty \frac{\cos t}{1+t^2} dt$ converges.

Alternative proof: We have $\left|\frac{\cos t}{1+t^2}\right| \leq \frac{1}{1+t^2}$ for all $t \geq 0$. Also, since $\lim_{x \to \infty} \int_0^x \frac{1}{1+t^2} dt = \lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$, $\int_0^\infty \frac{1}{1+t^2} dt$ converges. Hence by comparison test, $\int_0^\infty \left|\frac{\cos t}{1+t^2}\right| dt$ converges and consequently $\int_0^\infty \frac{\cos t}{1+t^2} dt$ converges.

Example: The improper integral $\int_{1}^{\infty} \frac{\sin t}{t} dt$ converges.

Proof: Let $f(t) = \frac{1}{t}$ and $g(t) = \sin t$ for all $t \ge 1$. Then $f: [1, \infty) \to \mathbb{R}$ is decreasing and $\lim_{t \to \infty} f(t) = 0$. Also, for all $x \ge 1$, we have $\left| \int_{1}^{x} g(t) dt \right| = |\cos 1 - \cos x| \le |\cos 1| + |\cos x| \le 2$.

Hence by Dirichlet's test, $\int_{1}^{\infty} f(t)g(t) dt$ converges.

Example: $\int_{-t^p}^{1} dt$ converges iff p < 1.

Proof: $\int_{-t^p}^1 \frac{1}{t^p} dt$ exists (in \mathbb{R}) as a Riemann integral if $p \leq 0$. So let p > 0. Then for 0 < x < 1, we have $\int_{x}^{1} \frac{1}{t^{p}} dt = \frac{1}{1-p} (1-x^{1-p})$ if $p \neq 1$ and $\int_{x}^{1} \frac{1}{t} dt = -\log x$. Hence $\lim_{x \to 0+} \int_{x}^{1} \frac{1}{t^{p}} dt = \frac{1}{1-p}$ if p < 1 and $\lim_{x\to 0+} \int_{x}^{1} \frac{1}{t^{p}} dt = \infty \text{ if } p \geq 1. \text{ Therefore } \int_{x}^{1} \frac{1}{t^{p}} dt \text{ converges iff } p < 1.$

Example: The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.

Proof: Since $\frac{dy}{dx} = x(x^2+2)^{\frac{1}{2}}$ for all $x \in [0,3]$, the length of the given curve from x=0 to x=3is $\int_{0}^{3} \sqrt{1 + x^{2}(x^{2} + 2)} dx = \int_{0}^{3} (x^{2} + 1) dx = 12.$

Example: The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\int_{0}^{2\pi} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} dt$.

Proof: The parametric equations of the given ellipse are $x = a \cos t$, $y = b \sin t$, where $0 \le t \le 2\pi$. Since $\frac{dx}{dt} = -a \sin t$ and $\frac{dy}{dt} = b \cos t$ for all $t \in [0, 2\pi]$, the perimeter of the given ellipse is $\int_{0}^{2\pi} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt.$ (This integral does not have a simple expression in terms of a and b.)

Example: The length of the curve $x = e^t \sin t$, $y = e^t \cos t$, $0 \le t \le \frac{\pi}{2}$.

Proof. Since $\frac{dx}{dt} = e^t \cos t + e^t \sin t$ and $\frac{dy}{dt} = e^t \cos t - e^t \sin t$ for all $t \in [0, \frac{\pi}{2}]$, the required length is $\int_{0}^{\frac{\pi}{2}} \sqrt{(e^t \cos t + e^t \sin t)^2 + (e^t \cos t - e^t \sin t)^2} dt = \sqrt{2} \int_{0}^{\frac{\pi}{2}} e^t dt = \sqrt{2} (e^{\frac{\pi}{2}} - 1).$

Example: The length of the cardioid $r = 1 - \cos \theta$ is 8. *Proof*: Since $\frac{dr}{d\theta} = \sin \theta$ for all $\theta \in [0, \pi]$, by symmetry, the length of the given cardioid is $2\int_{0}^{\pi} \sqrt{(1-\cos\theta)^2 + \sin^2\theta} \, d\theta = 4\int_{0}^{\pi} \sin\frac{\theta}{2} \, d\theta = 8.$

Example: The area above the x-axis which is included between the parabola $y^2 = ax$ and the circle $x^2 + y^2 = 2ax$, where a > 0, is $(\frac{3\pi - 8}{12})a^2$.

Proof. Solving $y^2 = ax$ and $x^2 + y^2 = 2ax$, we obtain the x-coordinates of the common points on the given parabola and the circle as 0 and a. Therefore the required area is

 $\int_{0}^{a} (\sqrt{2ax-x^2}-\sqrt{ax}) dx = (\frac{3\pi-8}{12})a^2$. (The integral $\int_{0}^{a} \sqrt{2ax-x^2} dx$ can be evaluated by the substitution $x = 2a\sin^2\theta$.

Example: The area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and also inside the circle $r = \frac{3}{2}a$ is $(\frac{7\pi}{4} - \frac{9\sqrt{3}}{8})a^2$.

Proof: At a point of intersection of the cardioid $r = a(1 + \cos \theta)$ and the circle $r = \frac{3}{2}a$, we have $a(1+\cos\theta)=\frac{3}{2}a$. So $\theta=\frac{\pi}{3}$ corresponds to a point of intersection. Hence by symmetry, the area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and inside the circle $r = \frac{3}{2}a$ is

$$2\left[\frac{1}{2}\int_{0}^{\pi/3} (\frac{3}{2}a)^2 d\theta + \frac{1}{2}\int_{\pi/3}^{\pi} a^2 (1+\cos\theta)^2 d\theta\right] = (\frac{7\pi}{4} - \frac{9\sqrt{3}}{8})a^2.$$

Example: A solid lies between planes perpendicular to the x-axis at x=0 and x=4. The cross sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y = -\sqrt{x}$ to the parabola $y = \sqrt{x}$. Then the volume of the solid is 16.

Proof: The length of the diagonal of the cross-sectional square at a distance x from the origin is $2\sqrt{x}$ and hence the cross-sectional area at a distance x from the origin is 2x. Therefore the volume of the solid is $\int_{0}^{4} 2x \, dx = 16$.

Example: The volume of a sphere of radius r is $\frac{4}{3}\pi r^3$.

Proof: The volume of a sphere of radius r is same as the volume of the solid generated by revolving the semi-circular area bounded by the curve $y = \sqrt{r^2 - x^2}$ between x = -r and x = r about the x-axis. Hence the required volume is $\int_{-r}^{r} \pi(r^2 - x^2) dx = \frac{4}{3}\pi r^3$.

Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2. Then the volume of the portion bored out is $\frac{28}{3}\pi$.

2. Then the volume of the portion bored out is $\frac{28}{3}\pi$. Proof: The required volume is $V_1 - V_2$, where V_1 is the volume of the solid sphere of radius 2 and V_2 is the volume of the solid generated by revolving the plane region common to $x^2 + y^2 \le 4$ and $y \ge \sqrt{3}$ about the x-axis. We know that $V_1 = \frac{32}{3}\pi$. Also, solving $x^2 + y^2 = 4$ and $y = \sqrt{3}$,

we get x = -1, 1 and so $V_2 = \int_{-1}^{1} \pi(4 - x^2 - 3) dx = \frac{4}{3}\pi$. Therefore the required volume is $\frac{28}{3}\pi$.

Example: The volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis, and bounded by the section $x = x_1$ are $2\pi ax_1^2$ and $\frac{8}{3}\pi\sqrt{a}((a+x_1)^{\frac{3}{2}}-a^{\frac{3}{2}})$ respectively.

Proof. The required volume is $\int_{0}^{x_1} 4\pi ax \, dx = 2\pi ax_1^2$ and the required surface area is

$$\int_{0}^{x_{1}} 2\pi \sqrt{4ax} \sqrt{1 + \frac{a}{x}} dx \text{ (since } \frac{dy}{dx} = \frac{2a}{y}) = \frac{8}{3}\pi \sqrt{a} ((a + x_{1})^{\frac{3}{2}} - a^{\frac{3}{2}}).$$