An Implementation of Sin and Cos Using Gal's Accurate Tables

Pascal Leroy (phl)

2025-02-02

This document describes the implementation of functions Sin and Cos in Principia. The goals of that implementation are to be portable (including to machines that do not have a fused multiply-add instruction), achieve good performance, and ensure correct rounding.

Overview

The implementation follows the ideas described by [GB91] and uses accurate tables produced by the method presented in [SZ05]. It guarantees correct rounding with a high probability. In circumstances where it cannot guarantee correct rounding, it falls back to the (slower but correct) implementation provided by the CORE-MATH project [SZG22] [ZSG+24]. More precisely, the algorithm proceeds through the following steps:

- perform argument reduction using Cody and Waite's algorithm in double precision (see [Mul+10, p. 379]);
- if argument reduction loses too many bits (i.e., the argument is close to a multiple of $\frac{\pi}{2}$), fall back to cr_sin or cr_cos;
- otherwise, uses accurate tables and a polynomial approximation to compute
 Sin or Cos with extra accuracy;
- if the result has a "dangerous rounding configuration" (as defined by [GB91]), fall back to cr_sin or cr_cos;
- otherwise return the rounded result of the preceding computation.

Notation and Accuracy Model

In this document we assume a base-2 floating-point number system with M significand bits¹ similar to the IEEE formats. We define a real function \mathfrak{m} and an integer function \mathfrak{e} denoting the *significand* and *exponent* of a real number, respectively:

$$x = \pm m(x) \times 2^{e(x)}$$
 with $2^{M-1} \le m(x) \le 2^M - 1$

Note that this representation is unique. Furthermore, if x is a floating-point number, $\mathfrak{m}(x)$ is an integer.

The *unit of the last place* of x is defined as:

$$\mathfrak{u}(x) \coloneqq 2^{\mathfrak{e}(x)}$$

In particular, $u(1) = 2^{1-M}$ and:

$$\frac{|x|}{2^{M}} < \frac{|x|}{2^{M} - 1} \le \mathfrak{u}(x) \le \frac{|x|}{2^{M - 1}} \tag{1}$$

We ignore the exponent bias, overflow and underflow as they play no role in this discussion.

Finally, for error analysis we use the accuracy model of [Higo2], equation (2.4): everywhere they appear, the quantities δ_i represent a roundoff factor such that $\delta_i < u = 2^{-M}$ (see pages 37 and 38). We also use θ_n and γ_n with the same meaning as in [Higo2], lemma 3.1.

 $^{^{1}}$ In binary64, M = 53.

Approximation of $\frac{\pi}{2}$

To perform argument reduction, we need to build approximations of $\frac{\pi}{2}$ with extra accuracy and analyse the circumstances under which they may be used and the errors that they entail on the reduced argument.

We start by defining the truncation function $\text{Tr}(\kappa, z)$ which clears the last κ bits of the significand of z:

$$\operatorname{Tr}(\kappa, z) := \lfloor 2^{-\kappa} \operatorname{m}(z) \rfloor 2^{\kappa} \operatorname{\mathfrak{u}}(z)$$

The definition of the floor function implies:

$$0 \le z - \operatorname{Tr}(\kappa, z) < 2^{\kappa} \mathfrak{u}(z)$$

Furthermore if the bits that are being truncated start with exactly k zeros we have the stricter inequality:

$$2^{\kappa'-1}\mathfrak{u}(z) \le z - \operatorname{Tr}(\kappa, z) < 2^{\kappa'}\mathfrak{u}(z) \quad \text{with} \quad \kappa' = \kappa - k \tag{2}$$

This leads to the following upper bound for the unit of the last place of the truncation error:

$$\mathfrak{u}(z - \operatorname{Tr}(\kappa, z)) < 2^{\kappa' - M + 1} \mathfrak{u}(z)$$

which can be made more precise by noting that the function $\mathfrak u$ is always a power of 2:

$$\mathfrak{u}(z - \operatorname{Tr}(\kappa, z)) = 2^{\kappa' - M} \mathfrak{u}(z) \tag{3}$$

Two-Term Approximation

In this scheme we approximate $\frac{\pi}{2}$ as the sum of two floating-point numbers:

$$\frac{\pi}{2} \simeq C_1 + \delta C_1$$

which are defined as:

$$\begin{cases} C_1 & \coloneqq \operatorname{Tr}\left(\kappa_1, \frac{\pi}{2}\right) \\ \delta C_1 & \coloneqq \left[\left[\frac{\pi}{2} - C_1\right]\right] \end{cases}$$

Equation (2) applied to the definition of C_1 yields:

$$2^{\kappa_1'-1}\,\mathfrak{u}\!\left(\frac{\pi}{2}\right) \leq \frac{\pi}{2} - \mathcal{C}_1 < 2^{\kappa_1'}\,\mathfrak{u}\!\left(\frac{\pi}{2}\right)$$

where $\kappa'_1 \leq \kappa_1$ accounts for any leading zeroes in the bits of $\frac{\pi}{2}$ that are being truncated. Accordingly equation (3) yields, for the unit of the last place:

$$\mathfrak{u}\left(\frac{\pi}{2}-C_1\right)=2^{\kappa_1'-M}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

Noting that the absolute error on the rounding that appears in the definition of δC_1 is bounded by $\frac{1}{2} \mathfrak{u} \left(\frac{\pi}{2} - C_1 \right)$, we obtain the absolute error on the two-term approximation:

$$\left| \frac{\pi}{2} - C_1 - \delta C_1 \right| \le \frac{1}{2} \mathfrak{u} \left(\frac{\pi}{2} - C_1 \right) = 2^{\kappa_1' - M - 1} \mathfrak{u} \left(\frac{\pi}{2} \right) \tag{4}$$

and the following upper bound for δC_1 :

$$|\delta C_1| < 2^{\kappa_1'} (1 + 2^{-M-1}) \mathfrak{u}\left(\frac{\pi}{2}\right)$$
 (5)

This scheme gives a representation with a significand that has effectively $2M - \kappa_1'$ bits and is such that multiplying C_1 by an integer less than or equal to 2^{κ_1} is exact.

Three-Term Approximation

In this scheme we approximate $\frac{\pi}{2}$ as the sum of three floating-point numbers:

$$\frac{\pi}{2} \simeq C_2 + C_2' + \delta C_2$$

which are defined as:

$$\begin{cases} C_2 & \coloneqq \operatorname{Tr}\left(\kappa_2, \frac{\pi}{2}\right) \\ C_2' & \coloneqq \operatorname{Tr}\left(\kappa_2, \frac{\pi}{2} - C_2\right) \\ \delta C_2 & \coloneqq \left[\left[\frac{\pi}{2} - C_2 - C_2'\right]\right] \end{cases}$$

Equation (2) applied to the definition of C_2 yields:

$$2^{\kappa_2'-1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \le \frac{\pi}{2} - C_2 < 2^{\kappa_2'} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \tag{6}$$

where $\kappa_2' \le \kappa_2$ accounts for any leading zeroes in the bits of $\frac{\pi}{2}$ that are being truncated. Accordingly equation (3) yields, for the unit of the last place:

$$\mathfrak{u}\left(\frac{\pi}{2}-C_2\right)=2^{\kappa_2'-M}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

Similarly, equation (2) applied to the definition of C'_2 yields:

$$\begin{split} 2^{\kappa_2''-1} \, \mathfrak{u} \bigg(\frac{\pi}{2} - C_2 \bigg) & \leq \frac{\pi}{2} - C_2 - C_2' < 2^{\kappa_2''} \, \mathfrak{u} \bigg(\frac{\pi}{2} - C_2 \bigg) \\ 2^{\kappa_2' + \kappa_2'' - M - 1} \, \mathfrak{u} \bigg(\frac{\pi}{2} \bigg) & \leq \\ & < 2^{\kappa_2' + \kappa_2'' - M} \, \mathfrak{u} \bigg(\frac{\pi}{2} \bigg) \end{split}$$

where $\kappa_2'' \leq \kappa_2$ accounts for any leading zeroes in the bits of $\frac{\pi}{2} - C_2$ that are being truncated. Note that normalization of the significand of $\frac{\pi}{2} - C_2$ effectively drops the zeroes at positions κ_2 to κ_2' and therefore the computation of C_2' applies to a significand aligned on position κ_2' .

It is straightforward to transform these inequalities using (6) to obtain bounds on C_2' :

$$2^{\kappa_2'} \bigg(\frac{1}{2} - 2^{\kappa_2'' - M}\bigg) \mathfrak{u}\bigg(\frac{\pi}{2}\bigg) < C_2' < 2^{\kappa_2'} (1 - 2^{\kappa_2'' - M - 1}) \, \mathfrak{u}\bigg(\frac{\pi}{2}\bigg)$$

Equation (3) applied to the definition of C'_2 yields, for the unit of the last place:

$$\begin{split} \mathbf{u} \Big(\frac{\pi}{2} - C_2 - C_2' \Big) &= 2^{\kappa_2'' - M} \, \mathbf{u} \Big(\frac{\pi}{2} - C_2 \Big) \\ &= 2^{\kappa_2' + \kappa_2'' - 2M} \, \mathbf{u} \Big(\frac{\pi}{2} \Big) \end{split}$$

Noting that the absolute error on the rounding that appears in the definition of δC_2 is bounded by $\frac{1}{2} \mathfrak{u} \left(\frac{\pi}{2} - C_2 - C_2' \right)$, we obtain the absolute error on the three-term approximation:

$$\left| \frac{\pi}{2} - C_2 - C_2' - \delta C_2 \right| \le \frac{1}{2} \mathfrak{u} \left(\frac{\pi}{2} - C_2 - C_2' \right) = 2^{\kappa_2' + \kappa_2'' - 2M - 1} \mathfrak{u} \left(\frac{\pi}{2} \right) \tag{7}$$

and the following upper bound for δC_2 :

$$|\delta C_2| < 2^{\kappa_2' + \kappa_2'' - M} (1 + 2^{-M-1}) \mathfrak{u}\left(\frac{\pi}{2}\right)$$
 (8)

This scheme gives a representation with a significand that has effectively $3M - \kappa_2' - \kappa_2''$ bits and is such that multiplying C_2 and C_2' by an integer less than or equal to 2^{κ_2} is exact.

Argument Reduction

Given an argument x, the purpose of argument reduction is to compute a pair of floating-point numbers $(\hat{x}, \delta \hat{x})$ such that:

$$\begin{cases} \hat{x} + \delta \hat{x} \cong x \pmod{\frac{\pi}{2}} \\ \hat{x} \text{ is approximately in } \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \\ |\delta \hat{x}| \leq \frac{1}{2} \, \mathfrak{u}(\hat{x}) \end{cases}$$

Argument Reduction for Small Angles

If
$$|x| < \left[\frac{\pi}{4}\right]$$
 then $\hat{x} = x$ and $\delta \hat{x} = 0$.

Argument Reduction Using the Two-Term Approximation

If $|x| \le 2^{\kappa_1} \left[\left[\frac{\pi}{2} \right] \right]$ we compute:

$$\begin{cases} n &= \left[\left[x \left[\frac{2}{\pi} \right] \right] \right] \\ y &= x - n C_1 \\ \delta y &= \left[n \delta C_1 \right] \right] \\ (\hat{x}, \delta \hat{x}) &= Two Difference(y, \delta y) \end{cases}$$

Let's first show that $|n| \leq 2^{\kappa_1}$.:

$$|x| \le 2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1)$$

$$|n| \le \left[2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1) \frac{2}{\pi} (1 + \delta_2) (1 + \delta_3) \right]$$

$$\le \left[2^{\kappa_1} (1 + \gamma_3) \right|$$

As long as $2^{\kappa_1}\gamma_3$ is small enough (less that 1/2), the rounding cannot cause n to exceed 2^{κ_1} . In practice we choose a relatively small value for κ_1 , so this condition is met

The product n C_1 is exact thanks to the κ_1 trailing zeroes of C_1 . The subtraction x-n C_1 is exact by Sterbenz's Lemma. Finally, the last step performs an exact addition² using algorithm 4 of [HLBo8].

To compute the overall error on argument reduction, first remember that, from equation (4), we have:

$$C_1 + \delta C_1 = \frac{\pi}{2} + \zeta$$
 with $\left| \zeta \right| \le 2^{\kappa_1' - M - 1} \mathfrak{u} \left(\frac{\pi}{2} \right)$

$$|\delta y| \geq n \ 2^{\kappa_1'-1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \geq 2^{\kappa_1'+M-2} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \mathfrak{u}(n)$$

where we used the bound given by equation (1). Now the computation of n can result in a value that is either in the same binade or in the binade below that of x. Therefore $\mathfrak{u}(n) \geq \frac{1}{2} \mathfrak{u}(x)$ and the above inequality becomes:

$$|\delta y| \ge 2^{\kappa_1' + M - 3} \operatorname{u}\left(\frac{\pi}{2}\right) \operatorname{u}(x)$$

plugging $u\left(\frac{\pi}{2}\right) = 2^{1-M}$ we find:

$$|\delta y| \ge 2^{\kappa_1' - 2} \, \mathfrak{u}(x)$$

Therefore, as long as $\kappa_1' > 2$, there exist arguments x for which $|\delta y| > |y|$.

²The more efficient *QuickTwoDifference* is not usable here. First, note that |y| is an integral multiple of $\mathfrak{u}(x)$ and therefore, when not zero, may be as small as $\mathfrak{u}(x)$. Ignoring rounding errors we have:

The error computation proceeds as follows:

$$y - \delta y = x - n C_1 - n \delta C_1 (1 + \delta_4)$$

= $x - n(C_1 + \delta C_1) - n \delta C_1 \delta_4$
= $x - n\frac{\pi}{2} - n(\zeta + \delta C_1 \delta_4)$

from which we deduce an upper bound on the absolute error of the reduction:

$$\begin{split} \left| y - \delta y - \left(x - n \frac{\pi}{2} \right) \right| &\leq 2^{\kappa_1} 2^{\kappa_1'} (2^{-M-1} + 2^{-M} + 2^{-2M-1}) \, \mathfrak{u} \left(\frac{\pi}{2} \right) \\ &= 2^{\kappa_1 + \kappa_1' - M} \left(\frac{3}{2} + 2^{-M-1} \right) \mathfrak{u} \left(\frac{\pi}{2} \right) \\ &< 2^{\kappa_1 + \kappa_1' - M + 1} \, \mathfrak{u} \left(\frac{\pi}{2} \right) \end{split}$$

where we have used the upper bound for δC_1 given by equation (5).

If we want $\hat{x} + \delta \hat{x}$ to be correctly rounded with κ_3 extra bits of accuracy, the error must be less than 2^{κ_3} half-units of the last place of the result:

$$2^{\kappa_1 + \kappa_1' - M + 1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) \leq 2^{-\kappa_3 - 1} |\mathfrak{u}(\hat{x})| \leq 2^{-\kappa_3 - M} |\hat{x}|$$

which leads to the following condition on the reduced angle:

$$|\hat{x}| \ge 2^{\kappa_1 + \kappa_1' + \kappa_3 + 1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) = 2^{\kappa_1 + \kappa_1' + \kappa_3 - M + 2}$$

The rest of the implementation assumes that $\kappa_3 = 18$ to achieve correct rounding most of the time and detect cases of dangerous rounding. If we choose $\kappa_1 = 8$ we find that $\kappa_1' = 5$ (because there are three consecutive zeroes at this location in the significand of $\frac{\pi}{2}$) and the desired accuracy is obtained as long as $|\hat{x}| \ge 2^{-20} \simeq 9.5 \times 10^{-7}$.

Argument Reduction Using the Three-Term Approximation

If $|x| \le 2^{\kappa_2} \left[\frac{\pi}{2} \right]$ we compute:

$$\begin{cases} n &= \left[\left\| x \right\| \frac{2}{\pi} \right] \right] \\ y &= x - n C_2 \\ y' &= n C'_2 \\ \delta y &= \left[n \delta C_2 \right] \\ (z, \delta z) &= QuickTwoSum(y', \delta y) \\ (u, \delta u) &= TwoDifference(y, z) \\ (\hat{x}, \delta \hat{x}) &= (u, \delta u - \delta z) \end{cases}$$

The products n C_2 and n C_2' are exact thanks to the κ_2 trailing zeroes of C_2 and C_2' . The subtraction x-n C_2 is exact by Sterbenz's Lemma. QuickTwoSum performs an exact addition using algorithm 3 of [HLBo8]; it is usable because clearly $|\delta y| < |y'|$. TwoDifference performs an exact subtraction using algorithm 4 of [HLBo8]. Note that the last three operations in the sequence are effectively an implementation of the middle version of ThreeSum in figure 7 of [HLBo8]

It is straightforward to show, like we did in the preceding section, that:

$$|n| \leq \left[2^{\kappa_2}(1+\gamma_3)\right]$$

and therefore that $|n| \le 2^{\kappa_2}$ as long as $2^{\kappa_2} \gamma_3 < 1/2$.

To compute the overall error on argument reduction, first remember that, from equation (7), we have:

$$C_2 + C_2' + \delta C_2 = \frac{\pi}{2} + \zeta_1$$
 with $|\zeta_1| \le 2^{\kappa_2' + \kappa_2'' - 2M - 1} \mathfrak{u}(\frac{\pi}{2})$

Let ζ_2 be the relative error introduced by *ThreeSum*. Lemma 11 of [HLBo8] indicates that $|\zeta_2| < 2^{-2M}$. The error computation proceeds as follows:

$$y - y' - \delta y = (x - n C_2 - n C_2' - n \delta C_2 (1 + \delta_4)) (1 + \zeta_2)$$

$$= \left(x - n \frac{\pi}{2} - n(\zeta_1 + \delta C_2 \delta_4)\right) (1 + \zeta_2)$$

$$= x - n \frac{\pi}{2} - n(\zeta_1 + \delta C_2 \delta_4) (1 + \zeta_2) + \left(x - n \frac{\pi}{2}\right) \zeta_2$$

from which we deduce an upper bound on the absolute error of the reduction:

$$\begin{split} \left| y - y' - \delta y - \left(x - n \frac{\pi}{2} \right) \right| \\ & \leq 2^{\kappa_2 + \kappa_2' + \kappa_2''} (2^{-2M-1} + 2^{-2M} + 2^{-3M-1}) (1 + 2^{-2M}) \, \mathfrak{u} \left(\frac{\pi}{2} \right) + 2^{-2M} \frac{\pi}{4} \\ & = 2^{\kappa_2 + \kappa_2' + \kappa_2'' - 2M} \left(\frac{3}{2} + 2^{-M-1} \right) (1 + 2^{-2M}) \, \mathfrak{u} \left(\frac{\pi}{2} \right) + 2^{-2M} \frac{\pi}{4} \\ & < 2^{\kappa_2 + \kappa_2' + \kappa_2'' - 2M + 1} \, \mathfrak{u} \left(\frac{\pi}{2} \right) + 2^{-2M} \frac{\pi}{4} \end{split}$$

A sufficient condition for the reduction to be correctly rounded with κ_3 extra bits of accuracy is for this error to be less than $2^{-\kappa_3-1}|\mathfrak{u}(\hat{x})|$ which itself is less than $2^{-\kappa_3-M}|\hat{x}|$. Therefore we want³:

$$\begin{aligned} |\hat{x}| &\geq 2^{\kappa_3 - M} \left(2^{\kappa_2 + \kappa_2' + \kappa_2'' + 1} \, \mathfrak{u}\left(\frac{\pi}{2}\right) + \frac{\pi}{4} \right) \\ &= 2^{\kappa_3 - M} \left(2^{\kappa_2 + \kappa_2' + \kappa_2'' - M + 2} + \frac{\pi}{4} \right) \end{aligned}$$

and it is therefore sufficient to have:

$$|\hat{x}| \ge 2^{\kappa_3 - M} (2^{\kappa_2 + \kappa_2' + \kappa_2'' - M + 2} + 1)$$

If we choose $\kappa_3=18$ as above, and $\kappa_2=18$ we find that $\kappa_2'=13$ and $\kappa_2''=14$. Therefore, the desired accuracy is obtained as long as $|\hat{x}| \geq 65 \times 2^{-41} \simeq 3.0 \times 10^{-11}$.

Fallback

If any of the conditions above is not met, we fall back on the CORE-MATH implementation.

Accurate Tables and Their Generation

Computation of the Functions

Sin

Near Zero

For \hat{x} near zero we evaluate:

$$\widehat{x^{2}} = [[\hat{x}^{2}]] = \hat{x}^{2}(1 + \delta_{1})$$

$$\widehat{x^{3}} = [[\hat{x}\hat{x^{2}}]] = \hat{x}^{3}(1 + \delta_{1})(1 + \delta_{2})$$

$$\widehat{p} = [[a\widehat{x^{2}} + b]] = (a\hat{x}^{2}(1 + \delta_{1}) + b)(1 + \delta_{3})$$

$$s(x) := \hat{x} + [[[\widehat{x^{3}}\widehat{p}]] + \delta\hat{x}]$$

$$= \hat{x} + (\hat{x}^{3}(1 + \delta_{1})(1 + \delta_{2})(a\hat{x}^{2}(1 + \delta_{1}) + b)(1 + \delta_{3})(1 + \delta_{4}) + \delta\hat{x})(1 + \delta_{5})$$

$$= \hat{x} + a\hat{x}^{3}(1 + \theta_{5}) + b\hat{x}^{5}(1 + \theta_{4}) + \delta\hat{x}(1 + \delta_{5})$$

³Note that this bound is not particularly strict, because when $|\hat{x}|$ is small, the upper bound $\frac{\pi}{4}$ on the second term is very pessimistic, and it dominates the right hand side.

References

- [GB91] S. Gal and B. Bachelis. "An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard". In: *ACM Transactions on Mathematical Software* 17.1 (Mar. 1991), pp. 26–45.
- [Higo2] N. J. Higham. *Accuracy and Stability of Numerical Algorithms*. Society for Industrial and Applied Mathematics, 2002.
- [HLBo8] Y. Hida, X. S. Li, and D. H. Bailey. "Library for Double-Double and Quad-Double Arithmetic". Preprint at https://www.davidhbailey.com/dhbpapers/qd.pdf. May 8, 2008.
- [Lin81] S. Linnainmaa. "Software for Doubled-Precision Floating-Point Computations". In: *ACM Transactions on Mathematical Software* 7.3 (Sept. 1981), pp. 272–283.

 DOI: 10.1145/355958.355960.
- [Mul+10] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres. *Handbook of Floating-Point Arithmetic*. Birkhäuser, 2010.
- [SZo5] D. Stehlé and P. Zimmermann. "Gal's accurate tables method revisited". In: 17th IEEE Symposium on Computer Arithmetic (ARITH'05) (Cape Cod, MA, USA, June 27–29, 2005). Ed. by P. Montuschi and E. Schwarz. IEEE Computer Society, June 2005, pp. 257–264. DOI: 10.1109/ARITH.2005.24.
- [SZG22] A. Sibidanov, P. Zimmermann, and S. Glondu. "The CORE-MATH Project". In: 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH). IEEE, Sept. 2022, pp. 26-34. DOI: 10.1109/ARITH54963.2022.00014. eprint: https://inria.hal.science/hal-03721525v3/file/coremath-final.pdf.
- [ZSG+24] P. Zimmermann, A. Sibidanov, S. Glondu, et al. *The CORE-MATH Project*. Software. Apr. 2024.