Session 3: DNA Sequencing Strategies and Quality Control

Emerging Approaches For Tumor Analyses in Epidemiological Studies

November 16, 2022 9:30 AM- 12:00 PM

Session Overview

- Introduction to Next Generation Sequencing (NGS)-DNA
- Quality Control: DNA and Library Preparation
- Sequencing Strategies and Study Design
- Quality Control: DNA Sequencing Data

Introduction to NGS-DNA

Next Generation Sequencing (NGS) Workflow

Specimen Collection/Selection

Most commonly used

Specimen/Sample Type Considerations

- Some commonly used tissue specimens
 - FFPE (<u>F</u>ormalin <u>F</u>ixed, <u>P</u>araffin <u>E</u>mbedded)
 - Fresh Frozen

- FFPE processing/storage leads to degraded and damaged DNA and RNA
- Use of FFPE specimens in downstream assays can be challenging
- Quality of DNA and RNA from fresh frozen specimens is generally higher

DNA Extraction and Purification

 All DNA extraction procedures aim to isolate the DNA from all other cell components

 Quality and quantity of extracted DNA will vary depending on specimen type, storage conditions, and extraction techniques.

Quality Control: DNA and Library Preparation

QC: DNA Sample Quantity

- Common Quantitative Methods
 - Spectrophotometry
 - Measures DNA quantity based on light absorbance at a wavelength of 260nm
 - Can overestimate quantity due to other molecules absorbing at the same wavelength as DNA
 - Also referred to as OD (optical density), Nanodrop (instrument)

Fluorometry

- Measures DNA quantity based on amount of fluorescence emitted from a binding dye specific to double stranded DNA
- In general, more accurate
- Also referred to as Picogreen (dye), Qubit (instrument)

tipbiosystems.com

QC: DNA Sample Quality

- Common Qualitative Methods
 - Electrophoresis
 - Size distribution of extracted DNA fragments is compared to a ladder with DNA fragments of known sizes
 - Qualitative scores like GQN, DIN, DV200 (depending on the instrument used) are all based on the size distribution of DNA fragments
 - o PCR
 - Measures amplifiability of DNA by PCR
 - Damaged DNA is more difficult to amplify
 - PCR primers that are farther apart will produce lower yield in low quality DNA

Low quality DNA

Impact of DNA QC on Sequencing Strategy

- Thresholds required for quantity, quality will vary a lot depending on the specific application and lab
- Lower Quantity of DNA
 - Targeted sequencing strategies may be more feasible
- Lower Quality of DNA
 - Exclude long read sequencing strategies
 - Short read sequencing strategies may require optimized lab procedures
 - Quality of sequencing data may still be lower
 - Very common for FFPE DNA
- In general, a low quantity or quality of DNA impacts your options for sequencing strategies.

Next generation DNA-Sequencing (NGS) Workflow

• What is library prep? It is converting genomic DNA into a format that is usable by the sequencer

Library Preparation

Create DNA fragments

2. Add platform-specific adapter sequences to every fragment

3. Amplify library molecules (optional)

- The most common steps are:
 Fragment, Add Adapters, PCR
 Amplify
- Your final "Library" is the set of DNA molecules from your specimen that are ready to sequence

Library Preparation-Adapters

Insert: Target DNA or RNA fragment from a given sample library

- Short dsDNA molecules (20-60bp)
- May Incorporate binding sites (for flow cells)
- Include sequencing primer sites
- May contain barcodes for pooling samples together on a sequencing run, or for unique molecular identification Example Illumina Library Molecule

 Example PacBio Library Molecule

QC: Library Quantity/Quality

- After library preparation, obtaining the size distribution (quality) and molar concentration (quantity/molecule count) is critical to ensuring that yields on expensive sequencing runs are maximized, and data quality is as good as it can be.
- Most common methods are similar to initial DNA QC:
 Electrophoresis, PCR, Fluorometry
- After this step, libraries are loaded onto the Sequencing instruments and data is generated!

Good Library Quality

Bad Library Quality

Impact of Library QC on Sequencing Success

- Quantity:
 - Accuracy of library quantitation is important
 - Loading too much library on a sequencing flowcell can impact data quality and reduce usable yield/coverage
 - Loading too little will also reduce yield
- Quality:
 - Presence of adapter dimers can reduce yield of usable data
 - Libraries that are too small will reduce efficiency of sequencing and reduce usable yield/coverage
 - Libraries that are too large will also reduce yield
 - Small libraries, adapter dimers very common for FFPE sample libraries
- Sequencing a library that is too big or too small, too much or too little can impact data yield and quality, and ultimately reduce your sequence coverage depth.

Next generation DNA-Sequencing (NGS) Workflow

Tailoring Sequencing Strategies for Study Design and Purposes

Sequencing-Major Platforms

	illumına	ion torrent	PacBi•	NANOPORE Technologies
Read Length	Short Read (commonly 75bp-250bp; up to 600bp)	Short Read (commonly 100bp-250bp; up to 600bp)	Long Read: Up to 20kb or more	Long Read: Up to 30kb or more
Common applications	WGS, WES, targeted capture	Targeted amplification panels	WGS, targeted (difficult regions), base mod detection	WGS, targeted (difficult regions), base mod detection
Instruments	High Throughput: NovaSeq Low Throughput: NextSeq, MiSeq, iSeq	S5	Sequel II	Hight Throughput: PromethION Low Throughput: Flongle, MinION, GridION
What is DNA sequenced on?	Flow Cell	Chip	SMRT Cell	Flow Cell

Platform and Instrument Use Cases @ CGR

Genomic Content Being Targeted

Major Sequencing Platforms-Specs

Sequencing Platform	Instrument	Data Type	Read Length N50 (bp)	Read Accuracy (%)	Throughput per Run (Gb)	Cost per Gb (\$)	Instrument Throughput per year (Gb)
PacBio	Sequel II	HiFi	10,000-20,0000	>99	15-30	50-100	10,000
		Long	10,000-60,000		2-20	50-500	20,000-100,000
Oxford	MinION/GridION	Ultra-long	100,000-200,000	97-99	0.5-2	500-2,000	1,000-5,000
Nanopore	PromethION	Long	10,000-60,000		50-100	20-40	3,000,000
Ion Torrent	S5	Single-end	100-600	98-99	0.3-50	30-300	10,000
	MiSeq	Paired-end	36-600	99.9	0.5-15	100-600	1,500
Illumina	NovaSeq	Paired-end	35-500	(33.3)	65-3,000	4-30	1,200,000

Different DNA Sequencing Strategies

Whole genome sequencing

Whole exome sequencing

- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

- Sequencing region: whole exome
- Sequencing Depth: >50X ~ 100X
- Identify all kinds of variants including SNPs, INDELs and SV in coding region.
- Cost effective

Targeted sequencing

- Sequencing region: specific regions (could be customized)
- Sequencing Depth: >500X
- Identify all kinds of variants including SNPs, INDELs in specific regions
- Most Cost effective

Targeted sequencing: Hybridization Capture vs. Amplicon Sequencing

https://www.thermofisher.com/ https://www.illumina.com/

Targeted sequencing: Hybridization Capture vs. **Amplicon Sequencing** https://www.thermofisher.com/ https://www.illumina.com/

	Hybridization Capture	Amplicon Sequencing
Principle	Capture by hybridization to biotinylated probes & isolated by magnetic pulldown	Amplified and purified using pools of carefully designed oligo probes
Size	20kb-62Mb regions. Typically >50 genes	A few to hundreds of genes in a single run. Typically <50 genes
Sample input	Higher input required (1-250ng for library prep)	Lower sample input required (needle biopsy aspirate or cDNA) (10-100ng)
Variant types	More comprehensive for all variant types	Ideal for SNVs and indels
Homologous regions (e.g. pseudogenes) Hypervariable regions (e.g. TCR) Di/Tri nucleotide repeat regions (e.g. MSI)	Difficulty distinguishing between the regions, resulting in non-specific enrichment	Better enrichment with specifically designed PCR primers
Overall	More comprehensive method, but more expensive with longer hands-on time and turnaround time	Less comprehensive, more affordable, and easier workflow

Targeted Sequencing - Common Panels

Gene Panel	Gene Count	Sample Type	Variants	Notes
Oncomine Comprehensive Plus	500+	DNA, RNA	SNVs, indels, CNVs, fusions, splice variants	Include TMB and MSI assays for potential immunotherapy applications. Also assess 46 genes in HRR pathway
TruSight RNA Pan- Cancer Panel	1385	RNA	SNVs, indels, fusions, novel transcripts, expression	Enables quantitative measurement of gene expression as well as the detection of gene fusions with both known and novel gene fusion partners.
MSK-IMPACT	505	DNA	SNVs, Indels, CNVs, fusions	Includes genes important in development and behaviour of tumors nominated by researchers and experts from across MSK. All actionable targets are also included.

- Also panels specific to certain cancers and diseases
- One can customize specific genes or regions of interests too

Different DNA Sequencing Strategies

Intron Exon RNA DNA shearing Biotin Adaptor Magnetic Beads Biotin receptor Ligate adaptors Biotinylated RNA library "Baits" Biotin receptor conjugated magnetic beads Hybridization Exon capture Full down Wash Beads and Digest RNA Sequencing Choi et al. 2018

Bioinformatics pipeline for WES is somewhat similar to WGS, with the need to specify WES capture platforms bed files

WES - Common Capture Platforms

Bioinformatics pipeline for WES is somewhat similar to WGS, with the need to specify WES capture platforms bed files

Platform	Target Capture Region Length	Required input quantity	Bed file links
Agilent SureSelect Human All Exon v8	35.1 Mb	10-400ng of DNA	https://kb.10xgenomics.com/hc/en- us/articles/115004150923-Where-can-l-find- the-Agilent-Target-BED-files-
Roche KAPA HyperExome	43 Mb - targeting hg38 genome assembly	100ng DNA	Download HG38 Design Files for the KAPA HyperExome Probes Download hg19 Design Files for the KAPA HyperExome Probes
Illumina TruSeq	45 Mb	100ng of DNA	https://emea.support.illumina.com/downloads/truseq-exome-product-files.html

Sequencing Strategies and Study Design

	Ge	enomic Strategies	
Research area	Targeted Panel	WES	WGS
Coding driver genes	Pre-defined genes only	Yes - <i>De novo</i> discovery possible	Yes - <i>De novo</i> discovery possible
Non-coding	Pre-defined regions only	No	Best
Structural variant	Limited	Limited	Best
Tumor evolution	Limited	Limited	Best
Copy number analysis	Limited	Limited	Best
Mutational signatures	Being developed	Limited and potentially biased	Best
Gene fusion	Pre-defined regions only	Limited	Best - <i>De novo</i> discovery possible

Benefits of Long Read Sequencing with Respect to Study Design

Study Design	Short Read WGS (SRS, e.g. Illumina)	Long Read Sequencing (LRS, e.g. PacBio)
Copy Number Estimation	Relies heavily on PCR -> GC content bias (dependence between read coverage and GC content) -> influence copy number estimation	Does not rely on PCR -> Unbiased by GC content
Structural Variants (SVs)	Limited mostly to small SVs	Increased sensitivity and accuracy, better detection of large SVs (>50bp)
Genome Assembly and Resolution of Repeat-Heavy Regions	Limited resolution for repetitive regions	"Close the gaps" in the genome assembly Higher resolution for repetitive regions
Haplotype Phasing	Direct phasing is limited as SNVs are required to be on the same reads	Increased sensitivity and accuracy
Pseudogenes	Homologous pseudogenes might impact mapping rates and variants calling in functional counterparts	Better distinguishment of pseudogenes vs functional counterparts. Better identification of pseudogenes

Sequencing Strategies Comparison - Illumina

	Targeted Sequencing	WES	WGS
Cost (per sample)	\$50-200	\$90-200	\$600-1500
DNA Quantity Required	50-200ng	50-200ng	200-1000ng (PCR free)
DNA Quality Required	Amenable FFPE	Amenable to FFPE	FFPE not generally used
Standard Coverage Depth	>100x	>40x (germline) >100x (somatic)	>30x (germline) >80x (somatic)
Samples (Per Run)	Up to 384	Up to 384	Up to 48

Sequencing Strategies Comparison - PacBio

	Targeted Sequencing	WES	WGS
Cost (per sample)	\$15-\$200		~\$1500-5000
DNA Quantity Required	50-500 ng		>3-5 ug*
DNA Quality Required	Required High quality		Very high quality
Standard Coverage Depth	>100x		10-30x
Samples (Per Run)	12-384		1

Targeted Sequencing - Common Panels

Gene Panel	Gene Count	Sample Type	Variants	Notes
Oncomine Comprehensive Plus	500+	DNA, RNA	SNVs, Indels, CNVs, Fusions, Splice variants	Include TMB and MSI assays for potential immunotherapy applications. Also assess 46 genes in HRR pathway.
TruSight RNA Pan- Cancer Panel	1385	RNA	SNVs, Indels, Fusions, Novel Transcripts, Expression	Enables quantitative measurement of gene expression as well as the detection of gene fusions with both known and novel gene fusion partners.
MSK-IMPACT	505	DNA	SNVs, Indels, CNVs, Fusions,	Includes genes important in development and behavior of tumors nominated by researchers and experts from across MSK. All actionable targets are also included.

Quality Control: DNA Sequencing Data

Next generation DNA-Sequencing (NGS) Workflow

Common NGS Data QC

- Sequencing data quality control
 - QC <u>before</u> read mapping
 - Flowcell and Sample-level metrics
 - Tools: FastQC, FASTX toolkit
 - QC <u>after</u> read mapping
 - Sample-level metrics
 - Tools: samtools, picard, verifybamid, FASTQ screen, somalier

Data QC before read mapping

- Lab generating the sequence data should be able to provide a table of **Flow Cell level metrics**
- May include Total Yield (Gb) for the Flow Cell, sequence error rates, Q30%, # passed filter reads, etc.
- These should match to Illumina's published specifications for the Flow Cell
- Impact: Low Yield leads to lower coverage; low Q30s or high error rates may impact variant calls

Data QC before read mapping

- Sample level metrics (read length, read quality)
- Many of these can be assessed with FastQC-tool to help visualize your current fastq files
- FASTX toolkit-also has tools to help address QC issues that are discovered
- Can flag additional quality issues with the data before mapping is performed.

Data QC after read mapping

- After fastq files are QC'ed, and reads are aligned to the reference genome,
 additional QC should be done on the aligned reads/BAM files
 - Duplicate rates
 - Insert size
 - Coverage depth
 - Contamination
 - Sex concordance, relatedness
- MultiQC-a reporting tool that parses output of many tools to help visualize QC checks of the BAM files

Duplicates

- PCR amplification (during library prep or sequencing)
 creates copies of library molecules, called "duplicates".
- For most DNA sequencing applications, duplicate copies of the same molecule need to be removed from the data, keeping only one copy.
- Your duplicate rate tells you what percentage of your reads are being removed.
- Tools: picard, samtools
- General rule: expect lower duplicate rates for WGS, WES with high quality DNA, higher duplicate rates for Targeted panels or low quality/low quantity DNA.
- Impact of neglecting to remove duplicates: can bias or cause false variant calls
- Impact of high duplicate rates: can reduce overall coverage

Duplicate Rates	WGS	WES	rargeted	
Good DNA Quality/Quantity	low	low	mid	
Low DNA	mid	mid	high	

Quality/Quantity

Insert size of the library

Insert Size: 250bp

Impact of shorter insert size: reduction in coverage, possible small increase in false variant calls

Coverage Depth

- After read mapping and deduplication, coverage depth is calculated at each location being targeted.
- Coverage is generally reported as the mean depth across all target regions-some regions might have deeper or shallower coverage than the mean.
- Tools: picard, samtools
- Impact: With lower coverage depth, some variant calls will be missed.

Figure 1. Illustration of coverage depth. Blue bars represent target genomic regions, black bars indicate unique mapped reads, and shaded boxes show various coverage depths across the target region. In this example, coverage of target regions ranges from 1X to 5X; required coverage depth varies widely across applications.

Contamination

- Inter-Sample Contamination:
 - one human sample contaminating another human sample
 - Tool: VerifyBamID
 - Impact: High levels can lead to false variant calls
- Inter-Species Contamination
 - A non-human sample contaminates a human sample
 - Tool: FASTQ screen
 - o Impact: High levels can reduce coverage, lead to false variant calls if reads map

Sex Concordance

Data shown here is from 1000 Genomes data. Tool: Somalier

Impact: Analyzing data with incorrect subject-level information can lead to false conclusions

Next generation DNA-Sequencing (NGS) Workflow

Appendix-Additional Slides for Reference

Illumina Sequencing

A. Clustering

B. High-throughput sequencing

C. Demultiplexing samples and read mapping

- Library molecules are loaded onto flow cells.
- Individual library molecules are clonally amplified into clusters.
- Clusters are sequenced using a Sequencing By Synthesis method (SBS) utilizing reversible terminator nucleotides that are fluorescently labeled
- Fluorescence is capture in images for each cycle of sequencing and the signal for each cluster is interpreted.

Ion Torrent Sequencing

- Library molecules undergo emulsion PCR on beads.
- After amplification, the emulsion is broken and the amplified beads are loaded into wells on the sequencing chip.
- Nucleotides are incorporated sequentially onto the chip; base incorporations for a given well/bead are interpreted as pH changes due to the release of Hydrogen.

PacBio Sequencing

- DNA Polymerase and sequencing primer are bound to the hairpin adapters on library molecules.
- The bound library molecules are loaded into wells (ZMWs) on a SMRTcell
- Once the polymerase is activated, it unzips the library molecule into a circle as it incorporates nucleotides, which are fluorescently labeled
- Nucleotide incorporation is capture in real time as a movie of fluorescent signals
- Each individual molecule can be read through many times; these are analytically combined into a single HiFi (or CCS) read that is highly accurate
- Great for repetitive regions, STR or AT/GC rich loci that are difficult to sequence or map with short reads, or where phasing across long regions is useful
- Highest accuracy of long-read platforms

Oxford Nanopore Sequencing

- Motor protein unwinds dsDNA
- Single-stranded DNA (negatively charged) is driven through the nanopore due to voltage applied across the membrane
- As nucleotides pass through the nanopore, the current change is measured and used to determine which nucleotide was incorporated
- Great for repetitive regions, STR or AT/GC rich loci that are difficult to sequence or map with short reads
- Opportunity for the longest reads of any platform