

2023 NCHC Hackathon - Final Report TXM-AI-Group

Team Members:

Tai-Yue, Li (NSRRC) \ Ci-Hong, Ciou (NSRRC) \ Chun-Chieh Wang (NSRRC)

Team Mentor:

Warren Tseng (NVIDIA)

Medical CT

X-ray Micro-CT (PXM)

X-ray Nano-CT (TXM)

Low Resolution (100 μm) Large 3D volume (whole body) Middle Resolution (1 μm)
Middle 3D volume (centimeter^3)

High Resolution (60 nm) Small 3D volume (15x15x15 μm³)

Low	Resolution	High
Large	Volume	Small

- Problem trying to solve
- 1. Uneven light sources cause blurriness in sample images, necessitating extra time for capturing background images for correction.
- 2. This method is time-consuming, especially when capturing large area images, making it challenging to obtain ideal background images.

• Image to Image translation (pix2pix)

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G) + \text{lambda2*L3(G)}$$

Total loss = GAN loss + a*U-net loss + b*fft loss

Ref fft

- Calculating loss for additional fft dimensions will increase computational costs.
- Software: TensorFlow 2.10.0
- Hardware: Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz (16 core) with a A6000 gpu

Without fft loss Raw image Ref image Model Generate image Generate image Generate image

- Acceleration strategy
 - > Software: Using MONAI with several common acceleration tools
 - ➤ Hardware: AMD EPYC 7742 64-Core Processor with a A100 gpu-40G

Generate fft

Accelerating Training for X-ray Background Correction Model

Acceleration tools benchmark test

Accelerating Training for X-ray Background Correction Model

Train Background Correction Model without fft

Accelerating Training for X-ray Background Correction Model

Train Background Correction Model with fft

Energy Efficiency

Application Speedup

without fft

INPUTS		
# CPU Cores	64	
# GPUs (A100)	1	
Application Speedup	4.5x	

Node Replacement 18.0x

GPU NODE POWER SAVINGS			
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings
Compute Power (W)	19,756	6,500	13,256
Networking Power (W)	834	93	741
Total Power (W)	20,590	6,593	13,997

Node Power efficiency 3.1x

ANNUAL ENERGY SAVINGS PER GPU NODE			
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings
Compute Power (kWh/year)	173,063	56,940	116,123
Networking Power (kWh/year)	7,306	814	6,492
Total Power (kWh/year)	180,368	57,754	122,615

\$/kWh	\$ 0.34
Annual Cost Savings	\$ 41,689.05
3-year Cost Savings	\$ 125,067.16
Metric Tons of CO2	87
Gasoline Cars Driven for 1 year	19
Seedlings Trees grown for 10 years	1,437
(source: Link)	

incicicy		with fft
	INPUTS	
# CPU Cores		
# GPUs (A100)		

Node Replacement 119.4x

GPU NODE POWER SAVINGS			
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings
Compute Power (W)	131,340	6,500	124,840
Networking Power (W)	5,545	93	5,452
Total Power (W)	136,885	6,593	130,292

29.9x

20.8x **Node Power efficiency**

ANNUAL ENERGY SAVINGS PER GPU NODE			
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings
Compute Power (kWh/year)	1,150,538	56,940	1,093,598
Networking Power (kWh/year)	48,570	814	47,757
Total Power (kWh/year)	1,199,109	57,754	1,141,355

\$/kWh	\$ 0.34
Annual Cost Savings	\$ 388,060.72
3-year Cost Savings	\$ 1,164,182.15
Metric Tons of CO2	809
Gasoline Cars Driven for 1 year	175
Seedlings Trees grown for 10 years	13,377

(source: Link)

Results and Final Profile

Before After Speedup

- Dataset: 10000
- Max epoch : 300
- Before training time without fft : ~44.17 hr
- Before training time with : ~156.67 hr
- After training time without fft : ~4.9 hr (x9, reduce 39.27 hr)
- After training time with fft : \sim 7.2 hr (x22, reduce 149.47 hr)

Future

- Further utilizing MONAI's functionalities with datasets like smartdataset and precisiondataset to expand training data and enhance training.
- Employing diverse data augmentation techniques to increase model accuracy.
- Exploring different models to study effective methods for improving background correction accuracy.
- Conducting a systematic study on the impact of FFT loss on the model.

Summary

- In this recent Hackathon, I've acquired extensive knowledge on techniques for accelerating model training using GPUs, including optimization tools in MONAI and PyTorch. Additionally, I've learned to leverage Nsight profiling tools to pinpoint computational bottlenecks in code.
- These techniques can expedite the development of X-ray background removal models, addressing issues stemming from the non-uniformity of light sources in synchrotron nano CT facilities.
- This will save considerable acquisition time and enhance the efficiency of nano CT scans, ultimately accelerating progress in paleontology, biomedical research, materials science, energy, and other related fields."

Thanks