

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g :	= 3	30.00 psf	
Sloped Roof Snow Load, Ps :	= 2	20.62 psf	(ASCE 7-05, Eq. 7-2)
I_s :	=	1.00	
C_s :	=	0.91	
$C_{\rm e}$:	=	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 26.53 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applica analy hom are carract.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1522.71</u>	7323.81	k
Compressive Load =	4568.37	5424.69	k
Lateral Load =	<u>288.05</u>	3301.78	k
Moment (Weak Axis) =	<u>0.57</u>	0.29	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 184606.2 in-lbs Resisting Force Required = 2797.06 lbs A minimum 132in long x 40in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4661.77 lbs to resist overturning. Minimum Width = <u>40 in</u> in Weight Provided = 7975.00 lbs Sliding Force = 793.70 lbs Use a 132in long x 40in wide x 18in tall Friction = 0.4 Weight Required = 1984.24 lbs ballast foundation to resist sliding. Resisting Weight = 7975.00 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion 793.70 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 40in wide x 18in tall 36.67 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3987.50 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

ASD LC		1.0D ·	+ 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	40 in	41 in	42 in	43 in	40 in	41 in	42 in	43 in	40 in	41 in	42 in	43 in	40 in	41 in	42 in	43 in
FA	1281 lbs	1281 lbs	1281 lbs	1281 lbs	1917 lbs	1917 lbs	1917 lbs	1917 lbs	2291 lbs	2291 lbs	2291 lbs	2291 lbs	-727 lbs	-727 lbs	-727 lbs	-727 lbs
F _B	1299 lbs	1299 lbs	1299 lbs	1299 lbs	2323 lbs	2323 lbs	2323 lbs	2323 lbs	2609 lbs	2609 lbs	2609 lbs	2609 lbs	-3517 lbs	-3517 lbs	-3517 lbs	-3517 lbs
F _V	137 lbs	137 lbs	137 lbs	137 lbs	1401 lbs	1401 lbs	1401 lbs	1401 lbs	1143 lbs	1143 lbs	1143 lbs	1143 lbs	-1587 lbs	-1587 lbs	-1587 lbs	-1587 lbs
P _{total}	10555 lbs	10755 lbs	10954 lbs	11153 lbs	12215 lbs	12415 lbs	12614 lbs	12813 lbs	12875 lbs	13074 lbs	13273 lbs	13473 lbs	541 lbs	661 lbs	781 lbs	900 lbs
M	3244 lbs-ft	3244 lbs-ft	3244 lbs-ft	3244 lbs-ft	5728 lbs-ft	5728 lbs-ft	5728 lbs-ft	5728 lbs-ft	6456 lbs-ft	6456 lbs-ft	6456 lbs-ft	6456 lbs-ft	2666 lbs-ft	2666 lbs-ft	2666 lbs-ft	2666 lbs-ft
е	0.31 ft	0.30 ft	0.30 ft	0.29 ft	0.47 ft	0.46 ft	0.45 ft	0.45 ft	0.50 ft	0.49 ft	0.49 ft	0.48 ft	4.92 ft	4.03 ft	3.41 ft	2.96 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	239.6 psf	239.1 psf	238.6 psf	238.1 psf	247.9 psf	247.2 psf	246.5 psf	245.8 psf	255.1 psf	254.2 psf	253.3 psf	252.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	336.1 psf	333.2 psf	330.5 psf	327.8 psf	418.4 psf	413.5 psf	408.8 psf	404.3 psf	447.2 psf	441.6 psf	436.2 psf	431.1 psf	188.0 psf	87.9 psf	71.3 psf	66.0 psf

41 in

40 in

Ballast Width

7975 lbs 8174 lbs 8374 lbs 8573 lbs

42 in

43 in

Maximum Bearing Pressure = 447 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.33 \text{ ft}) =$

Use a 132in long x 40in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 3004.7 \text{ ft-lbs}$

Resisting Force Required = 1802.83 lbs S.F. = 1.67

Weight Required = 3004.72 lbs Minimum Width = 40 in in Weight Provided = 7975.00 lbs A minimum 132in long x 40in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		40 in			40 in			40 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	235 lbs	534 lbs	183 lbs	750 lbs	2120 lbs	710 lbs	87 lbs	156 lbs	35 lbs		
F _V	180 lbs	177 lbs	181 lbs	134 lbs	130 lbs	140 lbs	180 lbs	178 lbs	181 lbs		
P _{total}	10108 lbs	10407 lbs	10056 lbs	10149 lbs	11519 lbs	10109 lbs	2974 lbs	3043 lbs	2922 lbs		
М	707 lbs-ft	700 lbs-ft	713 lbs-ft	531 lbs-ft	529 lbs-ft	552 lbs-ft	706 lbs-ft	699 lbs-ft	708 lbs-ft		
е	0.07 ft	0.07 ft	0.07 ft	0.05 ft	0.05 ft	0.05 ft	0.24 ft	0.23 ft	0.24 ft		
L/6	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft	0.56 ft		
f _{min}	241.0 psf	249.5 psf	239.2 psf	250.7 psf	288.2 psf	248.6 psf	46.4 psf	48.7 psf	44.9 psf		
f _{max}	310.4 psf	318.2 psf	309.3 psf	302.9 psf	340.1 psf	302.8 psf	115.8 psf	117.3 psf	114.5 psf		

Maximum Bearing Pressure = 340 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 40in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 40in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.514 k 12.808 k 7.421 k <u>47%</u>	Rear Strut Maximum Axial Load = 5.033 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 68%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.280 k 12.808 k 7.421 k <u>31%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	•	Struts under compression are shown to demon

are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.425 in $0.425 \le 0.802$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 99 \text{ in}$$

$$J = 0.432$$

$$273.88$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_1 = 28.0 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.14

Weak Axis:

$$L_b = 9$$

$$J = 0.432$$
174.171

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 29.1$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 - \frac{k_1Bp}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

 $\phi F_L =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ k &= & 897074 \text{ mm}^4 \\ & & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \end{aligned}$$

2.788 k-ft

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

 $Sy = 0.599 \text{ in}^3$

$$M_{max}Wk = 1.152 \text{ k-ft}$$

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Weak Axis: Strong Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used

Rb/t = 18.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

h/t =

S1 =

m =

 $C_0 =$

Cc =

S2 =

 $\phi F_L =$

x =

Sy =

 $M_{max}Wk =$

Bbr -

 $S2 = \frac{k_1 Bbr}{}$

 $\phi F_L = 1.3 \phi y F c y$

mDbr

16.2

36.9

0.65

40

43.2 ksi

33.3 ksi

923544 mm⁴

2.219 in⁴

1.409 in³

3.904 k-ft

40 mm

 $\frac{\theta_y}{\theta_b}$ 1.3Fcy

Compression

 $M_{max}St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

1.375 in³

3.363 k-ft

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

Rev. 11.05.2015

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146^{\circ}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{5}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.3$$
 k_*Rn

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$m = 0.65$$

 $C_0 = 27.5$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\Phi_L = 1.3\Phi_Y + C_Y$$

$$\Phi_L = 43.2 \text{ ksi}$$

$$\Phi_L = 28.2 \text{ ksi}$$

$$\Phi_L = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$J = 0.942 \\ 87.2529$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

S1 =
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

S1 = $\frac{36.9}{m}$ m = 0.65
C₀ = 27.5
Cc = 27.5
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 77.3
 φF_L = 1.3 $\varphi \varphi F cy$
 φF_L = 43.2 ksi

$$\begin{array}{lll} \phi F_L St = & 28.2 \; ksi \\ lx = & 279836 \; mm^4 \\ & 0.672 \; in^4 \\ y = & 27.5 \; mm \\ Sx = & 0.621 \; in^3 \\ M_{max} St = & 1.460 \; k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ Iy = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

24.5 b/t =S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_1 =$ 28.2 ksi b/t =24.5 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-77.697	-77.697	0	0
2	M14	٧	-77.697	-77.697	0	0
3	M15	V	-122.096	-122.096	0	0
4	M16	V	-122.096	-122.096	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	177.594	177.594	0	0
2	M14	٧	136.155	136.155	0	0
3	M15	V	73.997	73.997	0	0
4	M16	У	73.997	73.997	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	658.979	2	1312.781	2	.585	1	.003	1	0	1	0	1
2		min	-814.142	3	-1751.425	3	-50.023	5	221	4	0	1	0	1
3	N7	max	.024	9	1165.237	1	381	12	0	12	0	1	0	1
4		min	218	2	-343.877	3	-221.579	4	44	4	0	1	0	1
5	N15	max	.021	9	3514.133	2	0	1	0	1	0	1	0	1
6		min	-2.4	2	-1171.318	3	-213.605	4	429	4	0	1	0	1
7	N16	max	2292.871	2	4172.842	2	0	11	0	11	0	1	0	1
8		min	-2539.827	3	-5633.701	3	-50.013	5	223	4	0	1	0	1
9	N23	max	.028	14	1165.237	1	6.264	1	.013	1	0	1	0	1
10		min	218	2	-343.877	3	-217.215	4	433	4	0	1	0	1
11	N24	max	658.979	2	1312.781	2	046	12	0	12	0	1	0	1
12		min	-814.142	3	-1751.425	3	-50.481	5	223	4	0	1	0	1
13	Totals:	max	3607.995	2	12618.38	2	0	1						
14		min	-4169.231	3	-10995.623	3	-799.494	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	65.069	1	487.934	2	-6.016	12	0	15	.155	1	0	4
2			min	4.344	12	-864.405	3	-131.898	1	016	2	.01	12	0	3
3		2	max	65.069	1	340.505	2	-4.895	12	0	15	.075	4	.675	3
4			min	4.344	12	-608.55	3	-101.082	1	016	2	.002	10	38	2
5		3	max	65.069	1	193.077	2	-3.775	12	0	15	.042	5	1.116	3
6			min	4.344	12	-352.695	3	-70.265	1	016	2	031	1	624	2
7		4	max	65.069	1	45.648	2	-2.655	12	0	15	.023	5	1.322	3
8			min	4.344	12	-96.839	3	-39.448	1	016	2	081	1	734	2
9		5	max	65.069	1	159.016	3	072	10	0	15	.006	5	1.293	3
10			min	4.344	12	-101.781	2	-20.557	4	016	2	103	1	708	2
11		6	max	65.069	1	414.871	3	22.186	1	0	15	004	12	1.03	3
12			min	2.456	15	-249.21	2	-16.584	5	016	2	097	1	547	2
13		7	max	65.069	1	670.726	3	53.003	1	0	15	004	12	.533	3
14			min	-5.597	5	-396.638	2	-14.851	5	016	2	062	1	251	2
15		8	max	65.069	1	926.582	3	83.82	1	0	15	.003	2	.18	2
16			min	-15.007	5	-544.067	2	-13.118	5	016	2	039	4	199	3
17		9	max	65.069	1	1182.437	3	114.637	1	0	15	.091	1	.746	2
18			min	-24.417	5	-691.496	2	-11.385	5	016	2	049	5	-1.166	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	65.069	1	838.925	2	-4.065	12	.016	2	.21	1	1.448	2
20			min	4.344	12	-1438.292	3	-145.454	1	0	3	.002	12	-2.367	3
21		11	max	65.069	1	691.496	2	-2.945	12	.016	2	.091	1	.746	2
22			min	4.344	12	-1182.437	3	-114.637	1	0	15	002	3	-1.166	3
23		12	max	65.069	1	544.067	2	-1.825	12	.016	2	.038	4	.18	2
24			min	4.344	12	-926.582	3	-83.82	1	0	15	005	3	199	3
25		13	max	65.069	1	396.638	2	705	12	.016	2	.018	5	.533	3
26		10	min	4.344	12	-670.726	3	-53.003	1	0	15	062	1	251	2
27		14	max	65.069	1	249.21	2	.74	3	.016	2	0	15	1.03	3
28		17	min	2.328	15	-414.871	3	-23.776	4	0	15	097	1	547	2
29		15	max	65.069	1	101.781	2	8.631	1	.016	2	003	12	1.293	3
30		13		-5.842	5	-159.016	3	-17.268	5	0	15	103	1	708	2
31		16	min				3				2	002	12	1.322	3
		16	max	65.069	1	96.839		39.448	1	.016					
32		47	min	-15.252	5	-45.648	2	-15.535	5	0	15	081	1	734	2
33		17	max	65.069	1	352.695	3	70.265	1	.016	2	.002	3	1.116	3
34		10	min	-24.662	5	-193.077	2	-13.802	5	0	15	052	4	624	2
35		18	max	65.069	1	608.55	3	101.082	1	.016	2	.048	1	.675	3
36			min	-34.071	5	-340.505	2	-12.07	5	0	15	057	5	38	2
37		19	max	65.069	1	864.405	3	131.898	1	.016	2	.155	1	0	2
38			min	-43.481	5	-487.934	2	-10.337	5	0	15	068	5	0	3
39	M14	1	max	45.541	4	540.176	2	-6.197	12	.012	3	.181	1	0	1
40			min	1.923	12	-690.556	3	-136.672	1	014	2	.012	12	0	3
41		2	max	36.131	4	392.747	2	-5.077	12	.012	3	.111	4	.544	3
42			min	1.923	12	-495.478	3	-105.855	1	014	2	.004	10	428	2
43		3	max	34.132	1	245.319	2	-3.957	12	.012	3	.064	5	.908	3
44			min	1.923	12	-300.4	3	-75.038	1	014	2	013	1	72	2
45		4	max	34.132	1	97.89	2	-2.837	12	.012	3	.036	5	1.094	3
46			min	1.923	12	-105.322	3	-44.221	1	014	2	068	1	877	2
47		5	max	34.132	1	89.756	3	524	10	.012	3	.009	5	1.101	3
48		Ť	min	.448	15	-50.685	1	-32.134	4	014	2	094	1	899	2
49		6	max	34.132	1	284.834	3	17.413	1	.012	3	004	12	.93	3
50		T .	min	-8.709	5	-196.968	2	-26.978	5	014	2	093	1	787	2
51		7		34.132	1	479.912	3	48.229	1	.012	3	004	12	.579	3
52		+-	max	-18.119	5	-344.396	2	-25.245	5	014	2	063	1	538	2
		0	min	34.132	1		3				3	.003			
53		8	max			674.99		79.046	1	.012			10	.05	2
54			min	-27.528	5	-491.825	2	-23.512	5	014	2	066	4	155	-
55		9	max	34.132	1	870.069	3	109.863	1	.012	3	.082	1	.372	1
56		40	min	-36.938	5	-639.254	2	-21.779	5	014	2	084	5	658	3
57		10	max	57.245	4	786.683	2	-3.884	12	.014	2	.197	1	1.017	2
58		4.4	min	1.923	12	-1065.147	3	-140.68	1	012	3	.002	12	-1. <u>545</u>	3
59		11	max		4	639.254		-2.764	12	.014	2	.111	4	.372	1
60			min	1.923	12	-870.069		-109.863	1	012	3	002	3	<u>658</u>	3
61		12		38.425	4	491.825	2	-1.644	12	.014	2	.063	5	.05	3
62			min	1.923	12	-674.99	3	-79.046	1	012	3	005	3	155	2
63		13		34.132	1	344.396	2	524	12	.014	2	.034	5	.579	3
64			min	1.923	12	-479.912	3	-48.229	1	012	3	063	1	538	2
65		14	max	34.132	1	196.968	2	1.012	3	.014	2	.007	5	.93	3
66			min	1.923	12	-284.834	3	-32.817	4	012	3	093	1	787	2
67		15	max	34.132	1	50.685	1	13.404	1	.014	2	003	12	1.101	3
68			min	1.923	12	-89.756	3	-27.123	5	012	3	094	1	899	2
69		16	max	34.132	1	105.322	3	44.221	1	.014	2	0	12	1.094	3
70			min	-6.447	5	-97.89	2	-25.391	5	012	3	068	1	877	2
71		17	max	34.132	1	300.4	3	75.038	1	.014	2	.004	3	.908	3
72			min	-15.857	5	-245.319	2	-23.658	5	012	3	069	4	72	2
73		18	max	34.132	1	495.478	3	105.855	1	.014	2	.07	1	.544	3
74		'	min	-25.267	5	-392.747	2	-21.925	5	012	3	087	5	428	2
75		10	max		1	690.556	3	136.672	1	.012	2	.181	1	0	1
_ , _		10	πιαλ	U-7. 1UZ		_ 000.000		100.012		.017		. 101			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]								_	
76			min	<u>-34.676</u>	5	-540.176	2	-20.192	5	012	3	106	5	0	3
77	M15	1	max	69.453	5	760.058	2	-6.104	12	.014	2	.212	4	0	2
78			min	-35.486	1	-383.386	3	-136.679	1_	01	3	.011	12	0	3
79		2	max	60.043	5	547.511	2	-4.984	12	.014	2	.146	4	.304	3
80			min	-35.486	1	-279.473	3	-105.862	1_	01	3	.005	10	599	2
81		3	max	50.633	5	334.964	2	-3.864	12	.014	2	.09	5	.512	3
82			min	-35.486	1	-175.56	3	-75.045	1_	01	3	013	1	-1.004	2
83		4	max	41.223	5	122.416	2	-2.744	12	.014	2	.051	5	.626	3
84			min	-35.486	1	-71.647	3	-51.025	4	01	3	068	1	-1.213	2
85		5	max	31.813	5	32.266	3_	571	10	.014	2	.014	5	.644	3
86			min	-35.486	1	-90.131	2	-42.872	4	01	3	094	1	-1.228	2
87		6	max	22.404	5	136.179	3	17.406	1_	.014	2	004	12	.567	3
88			min	-35.486	1	-302.678	2	-37.7	5	01	3	093	1	-1.048	2
89		7	max	12.994	5	240.092	3	48.223	1	.014	2	004	12	.394	3
90			min	-35.486	1	-515.225	2	-35.967	5	01	3	069	4	673	2
91		8	max	3.584	5	344.005	3	79.04	1	.014	2	.001	10	.126	3
92			min	-35.486	1	-727.773	2	-34.234	5	01	3	089	4	104	2
93		9	max	-2.462	12	447.918	3	109.857	1	.014	2	.082	1	.661	2
94			min	-35.486	1	-940.32	2	-32.501	5	01	3	118	5	237	3
95		10	max	-2.462	12	1152.867	2	-3.977	12	.01	3	.211	4	1.62	2
96			min	-35.486	1	-551.832	3	-140.674	1	014	2	.002	12	695	3
97		11	max	1.511	5	940.32	2	-2.857	12	.01	3	.145	4	.661	2
98			min	-35.486	1	-447.918	3	-109.857	1	014	2	001	3	237	3
99		12	max	-2.462	12	727.773	2	-1.737	12	.01	3	.086	5	.126	3
100			min	-35.486	1	-344.005	3	-79.04	1	014	2	004	3	104	2
101		13	max	-2.462	12	515.225	2	617	12	.01	3	.048	5	.394	3
102			min	-35.486	1	-240.092	3	-51.723	4	014	2	063	1	673	2
103		14	max	-2.462	12	302.678	2	.864	3	.01	3	.011	5	.567	3
104			min	-35.486	1	-136.179	3	-43.569	4	014	2	093	1	-1.048	2
105		15	max	-2.462	12	90.131	2	13.411	1	.01	3	003	12	.644	3
106		-10	min	-44.084	4	-32.266	3	-37.847	5	014	2	094	1	-1.228	2
107		16	max	-2.462	12	71.647	3	44.228	1	.01	3	0	12	.626	3
108			min	-53.493	4	-122.416	2	-36.114	5	014	2	074	4	-1.213	2
109		17	max	-2.462	12	175.56	3	75.045	1	.01	3	.003	3	.512	3
110		- ' '	min	-62.903	4	-334.964	2	-34.381	5	014	2	095	4	-1.004	2
111		18	max	-02.903 -2.462	12	279.473	3	105.862	1	.01	3	.07	1	.304	3
112		10	min	-72.313	4	-547.511	2	-32.648	5	014	2	122	5	599	2
113		19	max	-72.513 -2.462	12	383.386	3	136.679	1	.01	3	.181	1	0	2
114		19	min	-81.723	4	-760.058	2	-30.915	5	014	2	151	5	0	5
115	M16	1			5	710.047	2		12	.011	2	.16	4	0	2
	IVITO		max	68.075	1			-5.702						0	
116		2	min		<u> </u>	-342.148		-132.195 -4.582		014	3	.009	12		3
117		2	max	58.665 60.202	5	497.5	2	-4.562	12	.011 014	3	.107	4	.266	2
118		2	min	<u>-69.393</u>	1	-238.235	3					.003	10	<u>553</u>	
119		3	max	49.255	5	284.952	2	-3.462 -70.561	12 1	.011 014	3	.065	<u>5</u>	.437	2
120		1	min	-69.393	1	-134.322	3					03	_	912	
121		4	max	39.846	5	72.405	2	-2.342	12	.011	2	.038	5	.512	3
122			min	-69.393	1 -	-30.409	3	-39.745	10	014	3	081	1	-1.076	2
123		5	max	30.436	5	73.504	3	26	10	.011	2	.011	5	.493	3
124			min	-69.393	1	-140.142	2	-30.096	4	014	3	103	1	-1.045	2
125		6	max	21.026	5	177.417	3	21.889	1	.011	2	004	12	.378	3
126		_	min	-69.393	1	-352.69	2	-26.028	5	014	3	097	1	819	2
127		7	max	11.616	5	281.33	3	52.706	1	.011	2	004	12	.167	3
128			min	<u>-69.393</u>	1	-565.237	2	-24.295	5	014	3	063	1	398	2
129		8	max	2.207	5	385.243	3	83.523	1	.011	2	.002	2	.217	2
130			min	-69.393	1	-777.784	2	-22.562	5	014	3	059	4	138	3
131		9	max	-4.139	12	489.156	3	114.34	1	.011	2	.09	1	1.028	2
132			min	-69.393	1	-990.331	2	-20.829	5	014	3	078	5	539	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-4.139	12	1202.879	2	-4.378	12	.014	3	.209	1	2.033	2
134			min	-69.393	1	-593.069	3	-145.157	1	011	2	.004	12	-1.035	3
135		11	max	327	15	990.331	2	-3.258	12	.014	3	.107	4	1.028	2
136			min	-69.393	1	-489.156	3	-114.34	1	011	2	0	3	539	3
137		12	max	-4.139	12	777.784	2	-2.138	12	.014	3	.058	4	.217	2
138			min	-69.393	1	-385.243	3	-83.523	1	011	2	004	3	138	3
139		13	max	-4.139	12	565.237	2	-1.018	12	.014	3	.029	5	.167	3
140			min	-69.393	1	-281.33	3	-52.706	1	011	2	063	1	398	2
141		14	max	-4.139	12	352.69	2	.239	3	.014	3	.002	5	.378	3
142			min	-69.393	1	-177.417	3	-33.236	4	011	2	097	1	819	2
143		15	max	-4.139	12	140.142	2	8.928	1	.014	3	004	12	.493	3
144			min	-69.393	1	-73.504	3	-26.699	5	011	2	103	1	-1.045	2
145		16	max	-4.139	12	30.409	3	39.745	1	.014	3	002	12	.512	3
146			min	-69.393	1	-72.405	2	-24.966	5	011	2	081	1	-1.076	2
147		17	max	-4.139	12	134.322	3	70.561	1	.014	3	.001	3	.437	3
148			min	-72.414	4	-284.952	2	-23.234	5	011	2	076	4	912	2
149		18	max	-4.139	12	238.235	3	101.378	1	.014	3	.049	1	.266	3
150			min	-81.823	4	-497.5	2	-21.501	5	011	2	089	5	553	2
151		19	max	-4.139	12	342.148	3	132.195	1	.014	3	.156	1	0	2
152			min	-91.233	4	-710.047	2	-19.768	5	011	2	108	5	0	5
153	M2	1	max	1137.58	2	2.077	4	.61	1	0	3	0	3	0	1
154			min	-1563.892	3	.51	15	-46.044	4	0	4	0	2	0	1
155		2	max	1137.96	2	2.044	4	.61	1	0	3	0	1	0	12
156			min	-1563.608	3	.497	12	-46.373	4	0	4	012	4	0	4
157		3	max		2	2.01	4	.61	1	0	3	0	1	0	12
158			min	-1563.323	3	.484	12	-46.703	4	0	4	024	4	001	4
159		4	max		2	1.977	4	.61	1	0	3	0	1	0	12
160			min	-1563.039	3	.471	12	-47.032	4	0	4	036	4	002	4
161		5		1139.098	2	1.943	4	.61	1	0	3	0	1	0	12
162			min	-1562.754	3	.458	12	-47.362	4	0	4	048	4	002	4
163		6		1139.477	2	1.91	4	.61	1	0	3	0	1	0	12
164			min	-1562.47	3	.445	12	-47.691	4	0	4	06	4	003	4
165		7	_	1139.856	2	1.877	4	.61	1	0	3	0	1	0	12
166			min	-1562.185	3	.432	12	-48.02	4	0	4	072	4	003	4
167		8		1140.235	2	1.843	4	.61	1	0	3	.001	1	0	12
168			min	-1561.901	3	.419	12	-48.35	4	0	4	085	4	004	4
169		9	max		2	1.81	4	.61	1	0	3	.001	1	0	12
170			min	-1561.617	3	.406	12	-48.679	4	0	4	097	4	004	4
171		10		1140.994	2	1.777	4	.61	1	0	3	.001	1	001	12
172		10	min	-1561.332	3	.393	12	-49.009	4	0	4	11	4	004	4
173		11		1141.373	2	1.743	4	.61	1	0	3	.002	1	001	12
174			min	-1561.048	3	.38	12	-49.338	4	0	4	122	4	005	4
175		12	_	1141.752	2	1.71	4	.61	1	0	3	.002	1	001	12
176				-1560.763	3	.367	12	-49.668	4	0	4	135	4	005	4
177		13		1142.132	2	1.676	4	.61	1	0	3	.002	1	003	12
178		10	min		3	.354	12	-49.997	4	0	4	148	4	006	4
179		14		1142.511	2	1.643	4	.61	1	0	3	.002	1	001	12
180		17	min	-1560.194	3	.341	12	-50.327	4	0	4	161	4	006	4
181		15		1142.89	2	1.61	4	.61	1	0	3	.002	1	002	12
182		13	min		3	.328	12	-50.656	4	0	4	173	4	002	4
183		16		1143.269	2	1.576	4	.61	1	0	3	.002	1	007	12
184		10	min	-1559.625	3	.315	12	-50.986	4	0	4	186	4	002	4
185		17		1143.649	2	1.543	4	.61	1	0	3	.002	1	007	12
186		17		-1559.341	3	.302	12	-51.315	4	0	4	2	4	002	4
		10		1144.028											
187		18			2	1.509	4	.61	1	0	3	.003	1	002	12
188		10	min		3	.289	12		4	0	4	213	4	008	4
189		19	max	1144.407	2	1.476	4	.61	1	0	3	.003	_1_	002	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
190			min	-1558.772	3	.276	12	-51.974	4	0	4	226	4	008	4
191	M3	1	max	604.052	2	8.013	4	1.003	4	0	3	0	1	.008	4
192			min	-734.244	3	1.897	15	.004	12	0	4	016	4	.002	12
193		2	max	603.882	2	7.243	4	1.544	4	0	3	0	1	.005	2
194			min	-734.372	3	1.716	15	.004	12	0	4	016	4	0	12
195		3	max		2	6.473	4	2.085	4	0	3	0	1	.003	2
196			min	-734.499	3	1.535	15	.004	12	0	4	015	4	0	3
197		4	max		2	5.703	4	2.625	4	0	3	0	1	0	2
198			min	-734.627	3	1.354	15	.004	12	0	4	014	4	002	3
199		5	max	603.371	2	4.933	4	3.166	4	0	3	0	1	0	15
200			min	-734.755	3	1.173	15	.004	12	0	4	013	4	003	3
201		6	max		2	4.163	4	3.706	4	0	3	0	1	001	15
202			min	-734.883	3	.992	15	.004	12	0	4	011	4	005	6
203		7	max	603.03	2	3.393	4	4.247	4	0	3	0	1	001	15
204			min	-735.011	3	.811	15	.004	12	0	4	009	5	006	6
205		8	max	602.86	2	2.623	4	4.787	4	0	3	0	1	002	15
206			min	-735.138	3	.63	15	.004	12	0	4	008	5	007	6
207		9	max		2	1.853	4	5.328	4	0	3	0	1	002	15
208		—	min	-735.266	3	.449	15	.004	12	0	4	006	5	008	6
209		10	max	602.519	2	1.083	4	5.868	4	0	3	0	1	002	15
210		10	min	-735.394	3	.239	12	.004	12	0	4	003	5	009	6
211		11	max		2	.423	2	6.409	4	0	3	0	1	002	15
212			min	-735.522	3	108	3	.004	12	0	4	0	5	009	6
213		12	max	602.178	2	094	15	6.949	4	0	3	.002	4	002	15
214		12	min	-735.649	3	558	3	.004	12	0	4	0	12	009	6
215		13	max		2	275	15	7.49	4	0	3	.005	4	003	15
216		13	min	-735.777	3	-1.228	6	.004	12	0	4	0	12	002	6
217		14	max		2	456	15	8.031	4	0	3	.009	4	003	15
218		17	min	-735.905	3	-1.998	6	.004	12	0	4	0	12	002	6
219		15	max		2	637	15	8.571	4	0	3	.012	4	002	15
220		13	min	-736.033	3	-2.768	6	.004	12	0	4	0	12	002	6
221		16	max		2	818	15	9.112	4	0	3	.016	4	001	15
222		10	min	-736.16	3	-3.538	6	.004	12	0	4	0	12	006	6
223		17	max		2	999	15	9.652	4	0	3	.02	4	0	15
224		17	min	-736.288	3	-4.308	6	.004	12	0	4	0	12	004	6
225		18	max		2	-4.306 -1.18	15	10.193	4	0	3	.024	4	0	15
226		10	min	-736.416	3	-5.078	6	.004	12	0	4	0	12	002	6
227		19			2	-1.361	15	10.733	4	0	3	.028	4	0	1
228		19	max	-736.544	3	-5.848	6	.004	12	0	4	.028	12	0	1
229	M4	1			1	0	1	378	12	0	1	.018	4	0	1
230	IVI4	<u> </u>	min	-346.177		0	1	-219.895		0	1	0	10	0	1
231		2		1162.341	1	0	1	378	12	0	1	0	12	0	1
232				-346.049		0	1	-220.043		0	1	008	4	0	1
233		3		1162.512		0	1	378	12	0	1	006 0	12	0	1
234		3		-345.921		0	1	-220.19	4	0	1	033	4	0	1
235		4		1162.682	1	0	1	378	12	0	1	033 0	12	0	1
236		4			3	0	1	-220.338		0	1	058	4	0	1
		E	min				1				1		12	_	1
237		5		1162.852	3	0	1	378	12	0	1	0	4	0	1
238		_		-345.666		0	•	-220.486		0		083		0	
239		6		1163.023		0	1	378	12	0	1	100	12	0	1
240		7				0	1	-220.633		0	1	109	4	0	1
241		7		1163.193		0	1	378	12	0	1	0	12	0	1
242				-345.41	3	0	1	-220.781		0	1	134	4	0	1
243		8		1163.364		0	1	378	12	0	1	0	12	0	1
244				-345.282		0	1	-220.928		0	1	16	4	0	1
245		9		1163.534		0	1	378	12	0	1	0	12	0	1
246			min	-345.155	3	0	1	-221.076	4	0	1	185	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1163.704	1	0	1	378	12	0	1	0	12	0	1
248			min	-345.027	3	0	1	-221.224	4	0	1	21	4	0	1
249		11	max	1163.875	1	0	1	378	12	0	1	0	12	0	1
250			min	-344.899	3	0	1	-221.371	4	0	1	236	4	0	1
251		12	max	1164.045	1	0	1	378	12	0	1	0	12	0	1
252			min	-344.771	3	0	1	-221.519	4	0	1	261	4	0	1
253		13	max	1164.215	1	0	1	378	12	0	1	0	12	0	1
254			min	-344.643	3	0	1	-221.667	4	0	1	287	4	0	1
255		14	max	1164.386	1	0	1	378	12	0	1	0	12	0	1
256			min	-344.516	3	0	1	-221.814	4	0	1	312	4	0	1
257		15		1164.556	1	0	1	378	12	0	1	0	12	0	1
258			min	-344.388	3	0	1	-221.962	4	0	1	338	4	0	1
259		16	max	1164.726	1	0	1	378	12	0	1	0	12	0	1
260			min		3	0	1	-222.109	4	0	1	363	4	0	1
261		17	max	1164.897	1	0	1	378	12	0	1	0	12	0	1
262			min	-344.132	3	0	1	-222.257	4	0	1	389	4	0	1
263		18	max	1165.067	1	0	1	378	12	0	1	0	12	0	1
264			min		3	0	1	-222.405	4	0	1	414	4	0	1
265		19		1165.237	1	0	1	378	12	0	1	0	12	0	1
266			min	-343.877	3	0	1	-222.552	4	0	1	44	4	0	1
267	M6	1	max		2	2.714	2	0	1	0	1	0	4	0	1
268	1110		min	-5032.512	3	232	3	-46.463	4	0	4	0	1	0	1
269		2	max		2	2.688	2	0	1	0	1	0	1	0	3
270			min	-5032.228	3	251	3	-46.792	4	0	4	012	4	0	2
271		3		3587.229	2	2.662	2	0	1	0	1	0	1	0	3
272			min	-5031.943	3	271	3	-47.122	4	0	4	024	4	001	2
273		4		3587.608	2	2.636	2	0	1	0	1	0	1	0	3
274		_	min	-5031.659	3	29	3	-47.451	4	0	4	036	4	002	2
275		5		3587.987	2	2.61	2	0	1	0	1	0	1	0	3
276		J	min	-5031.374	3	31	3	-47.781	4	0	4	048	4	003	2
277		6		3588.367	2	2.584	2	0	1	0	1	0	1	0	3
278			min	-5031.09	3	329	3	-48.11	4	0	4	061	4	003	2
279		7		3588.746	2	2.558	2	0	1	0	1	0	1	0	3
280			min	-5030.806	3	349	3	-48.44	4	0	4	073	4	004	2
281		8		3589.125	2	2.532	2	0	1	0	1	0	1	004 0	3
282		0	min	-5030.521	3	369	3	-48.769	4	0	4	085	4	005	2
283		9		3589.504	2	2.506	2	0	1	0	1	0	1	0	3
284		9	min	-5030.237	3	388	3	-49.099	4	0	4	098	4	005	2
285		10		3589.884	2	2.48	2	0	1	0	1	0	1	005 0	3
286		10	min	-5029.952	3	408	3	-49.428	4	0	4	111	4	006	2
287		11	may	3590.263	2	2.454	2	0	1	0	1	0	1	0	3
		11	min		3	427	3			0	4	123	4	007	2
288 289		12		3590.642	2	2.428	2	-49.758 0	1	0	1	123 0	1	007 0	3
290		12	min					-50.087				136		007	2
		12			3	447	3	0	1	0	4	0	4		_
291 292		13		3591.021 -5029.099	2	2.402	2			0	4		4	.001	2
		4.4	min		3	466	3	-50.417	4	0		149		008	
293		14		3591.401	2	2.376	2	0	1	0	11	0	1	.001	3
294		4.5	min		3_	486	3	-50.746	4	0	4	162	4	008	2
295		15		3591.78	2	2.35	2	0	1	0	1	0	1	.001	3
296		40	min		3_	505	3	-51.075	4	0	4	175	4	009	2
297		16		3592.159	2	2.324	2	0	1	0	1	0	1	.001	3
298			min		3	525	3	-51.405	4	0	4	188	4	01	2
299		17		3592.538	2	2.298	2	0	1	0	1	0	1	.002	3
300			min		3_	544	3	-51.734	4	0	4	201	4	01	2
301		18		3592.918	2	2.272	2	0	1	0	1	0	1	.002	3
302			min	-5027.677	3	564	3	-52.064	4	0	4	215	4	011	2
303		19	max	3593.297	2	2.246	2	0	1	0	_1_	0	1	.002	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304			min	-5027.392	3_	583	3	-52.393	4	0	4	228	4	011	2
305	M7	1		2128.953	2	8.014	6	.876	4	0	1	0	1	.011	2
306		_	min	-2277.662	3_	1.881	15	0	1	0	4	016	4	002	3
307		2		2128.783	2	7.244	6	1.417	4	0	1	0	1	.009	2
308			min	-2277.79	3_	1.7	15	0	1	0	4	016	4	003	3
309		3		2128.612	2	6.474	6	1.957	4	0	1	0	1_	.006	2
310			min	-2277.917	3_	1.519	15	0	1	0	4	015	4	005	3
311		4		2128.442	2	5.704	6	2.498	4	0	1	0	1	.004	2
312			min	-2278.045	3	1.338	15	0	1	0	4	014	4	006	3
313		5		2128.272	2	4.934	6	3.038	4	0	1	0	1	.002	2
314			min	-2278.173	3	1.157	15	0	1	0	4	013	4	007	3
315		6	max	2128.101	2	4.164	6	3.579	4	0	1_	0	1_	0	2
316			min	-2278.301	3	.976	15	0	1	0	4	012	4	008	3
317		7		2127.931	2	3.394	6	4.12	4	0	_1_	0	1	001	2
318			min	-2278.428	3	.77	12	0	1	0	4	01	4	008	3
319		8	max	2127.761	_2_	2.711	2	4.66	4	0	_1_	0	_1_	002	15
320			min	-2278.556	3	.47	12	0	1	0	4	008	4	008	3
321		9	max	2127.59	2	2.111	2	5.201	4	0	1	0	1	002	15
322			min	-2278.684	3	.17	12	0	1	0	4	006	4	009	3
323		10	max	2127.42	2	1.511	2	5.741	4	0	1	0	1	002	15
324			min	-2278.812	3	248	3	0	1	0	4	004	5	009	4
325		11	max	2127.249	2	.911	2	6.282	4	0	1	0	1_	002	15
326			min	-2278.939	3	698	3	0	1	0	4	001	5	009	4
327		12	max	2127.079	2	.311	2	6.822	4	0	1	.002	4	002	15
328			min	-2279.067	3	-1.148	3	0	1	0	4	0	1	009	4
329		13	max	2126.909	2	289	2	7.363	4	0	1	.005	4	002	15
330			min	-2279.195	3	-1.598	3	0	1	0	4	0	1	009	4
331		14	max	2126.738	2	472	15	7.903	4	0	1	.008	4	002	15
332			min	-2279.323	3	-2.048	3	0	1	0	4	0	1	008	4
333		15	max	2126.568	2	653	15	8.444	4	0	1	.011	4	002	15
334			min	-2279.451	3	-2.766	4	0	1	0	4	0	1	007	4
335		16	max	2126.398	2	834	15	8.984	4	0	1	.015	4	001	15
336			min	-2279.578	3	-3.536	4	0	1	0	4	0	1	006	4
337		17	max	2126.227	2	-1.015	15	9.525	4	0	1	.019	4	001	15
338			min	-2279.706	3	-4.306	4	0	1	0	4	0	1	004	4
339		18	max	2126.057	2	-1.196	15	10.066	4	0	1	.023	4	0	15
340			min	-2279.834	3	-5.076	4	0	1	0	4	0	1	002	4
341		19	max	2125.887	2	-1.377	15	10.606	4	0	1	.027	4	0	1
342			min	-2279.962	3	-5.846	4	0	1	0	4	0	1	0	1
343	M8	1	max	3511.067	2	0	1	0	1	0	1	.017	4	0	1
344			min	-1173.618	3	0	1	-214.407	4	0	1	0	1	0	1
345		2		3511.238	2	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-214.554	4	0	1	008	4	0	1
347		3	max	3511.408	2	0	1	0	1	0	1	0	1	0	1
348				-1173.362	3	0	1	-214.702	4	0	1	032	4	0	1
349		4		3511.578	2	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	-214.85	4	0	1	057	4	0	1
351		5	+	3511.749		0	1	0	1	0	1	0	1	0	1
352				-1173.107	3	0	1	-214.997	4	0	1	082	4	0	1
353		6		3511.919	2	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	-215.145	_	0	1	106	4	0	1
355		7		3512.089	2	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-215.292		0	1	131	4	0	1
357		8	+	3512.26	2	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-215.44	4	0	1	156	4	0	1
359		9		3512.43	2	0	1	0	1	0	1	0	1	0	1
360			min	-1172.596	3	0	1	-215.588		0	1	181	4	0	1
000								0.000							

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10	max	3512.6	2	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-1172.468	2	0	1	-215.735	4_	0	<u>1</u> 1	205	4	0	1
363 364		11		3512.771 -1172.34	3	0	1	0 -215.883	4	0	1	23	4	0	1
365		12		3512.941	2	0	1	0	1	0	1	0	1	0	1
366		12	min		3	0	1	-216.031	4	0	1	255	4	0	1
367		13		3513.111	2	0	1	0	1	0	1	0	1	0	1
368		10		-1172.085	3	0	1	-216.178	4	0	1	28	4	0	1
369		14		3513.282	2	0	1	0	1	0	-	0	1	0	1
370			min	-1171.957	3	0	1	-216.326	4	0	1	305	4	0	1
371		15		3513.452	2	0	1	0	1	Ö	1	0	1	0	1
372			min	-1171.829	3	0	1	-216.473	4	0	1	329	4	0	1
373		16		3513.622	2	0	1	0	1	0	1	0	1	0	1
374				-1171.701	3	0	1	-216.621	4	0	1	354	4	0	1
375		17		3513.793	2	0	1	0	1	0	1	0	1	0	1
376				-1171.574	3	0	1	-216.769	4	0	1	379	4	0	1
377		18	max	3513.963	2	0	1	0	1	0	1	0	1	0	1
378			min	-1171.446	3	0	1	-216.916	4	0	1	404	4	0	1
379		19	max	3514.133	2	0	1	0	1	0	1	0	1	0	1
380			min	-1171.318	3	0	1	-217.064	4	0	1	429	4	0	1
381	M10	1	max	1137.58	2	1.983	6	038	12	0	1_	0	2	0	1
382			min	-1563.892	3	.446	15	-46.371	4	0	5	0	3	0	1
383		2	max		2	1.949	6	038	12	0	1	0	10	0	15
384			min	-1563.608	3	.438	15	-46.701	4	0	5	012	4	0	6
385		3	max	1138.339	2	1.916	6	038	12	0	_1_	0	10	0	15
386			min	-1563.323	3	.43	15	-47.03	4	0	5	024	4	0	6
387		4		1138.718	2	1.883	6	038	12	0	1_	0	10	0	15
388			min		3_	.422	15	-47.36	4_	0	5	036	4	001	6
389		5		1139.098	2	1.849	6	038	12	0	1_	0	10	0	15
390			min	-1562.754	3	.415	15	-47.689	4	0	5	048	4	002	6
391		6		1139.477	2	1.816	6	038	12	0	1	0	10	0	15
392		7	min	-1562.47	3	.407 1.782	15	-48.018	<u>4</u> 12	0	<u>5</u> 1	06	12	002	6
393 394				1139.856 -1562.185	3	.399	6 15	038 -48.348	4	0	5	073	4	003	15
395		8		1140.235	2	1.749	6	038	12	0	<u> </u>	073 0	12	003	15
396		0		-1561.901	3	.391	15	-48.677	4	0	5	085	4	003	6
397		9		1140.615	2	1.716	6	038	12	0	1	0	12	0	15
398		3		-1561.617	3	.383	15	-49.007	4	0	5	098	4	004	6
399		10		1140.994	2	1.682	6	038	12	0	1	0	12	0	15
400		10		-1561.332	3	.375	15	-49.336	4	0	5	11	4	004	6
401		11		1141.373	2	1.653	2	038	12	0	1	0	12	001	15
402				-1561.048	3	.367	15	-49.666	4	0	5	123	4	005	6
403		12		1141.752	2	1.627	2	038	12	0	1	0	12	001	15
404				-1560.763	3	.36	15	-49.995	4	0	5	136	4	005	6
405		13		1142.132	2	1.601	2	038	12	0	1	0	12	001	15
406				-1560.479	3	.352	15	-50.325	4	0	5	149	4	005	6
407		14		1142.511	2	1.575	2	038	12	0	1	0	12	001	15
408				-1560.194	3	.341	12	-50.654	4	0	5	162	4	006	6
409		15	max	1142.89	2	1.549	2	038	12	0	1	0	12	001	15
410				-1559.91	3	.328	12	-50.984	4	0	5	175	4	006	6
411		16		1143.269	2	1.523	2	038	12	0	1	0	12	001	15
412				-1559.625	3	.315	12	-51.313	4	0	5	188	4	007	6
413		17		1143.649	2	1.497	2	038	12	0	1	0	12	002	15
414				-1559.341	3	.302	12	-51.643	4	0	5	201	4	007	6
415		18		1144.028	2	1.471	2	038	12	0	1	0	12	002	15
416			_	-1559.057	3	.289	12	-51.972	4	0	5	214	4	007	6
417		19	max	1144.407	2	1.445	2	038	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

418		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
A20	418			min	-1558.772	3	.276	12	-52.301	4	0	5	228	4	008	6
421	419	M11	1	max	604.052	2	7.955	6	.969	4	0	1	0	12	.008	6
422	420			min	-734.244	3	1.858	15	064	1	0	4	016	4	.002	15
424	421		2	max	603.882	2	7.185	6	1.51	4	0	1	0	12	.005	2
423	422			min					064	1		4	016	4	0	
A25			3			2				4	0	1		12	.003	
A25 A max 603.541 2 5.645 6 2.591 4 0 1 0 12 0 2 3 327 5 max 603.371 2 4.875 6 3.132 4 0 1 0 12 0 15 430 1 1 1 1 1 1 1 1 1										1		4	015			
A266			4							4		1				
A27												4	014		002	
A28			5									-				
A29													_			
430			6							4				_		
431																
432			7								_					_
433			<u> </u>													
434			8									_				
435																
436			a													
437			-										_			
438			10							-		-				
449			10										_			
Mathematical Process of the content of the conten			11										_	_		
441			11													
Heat Marie Marie			40								_		_			_
443			12	1												
4444			40							-		_	_	-		
Heat			13													
446			4.4					_					_			
15			14													
448										-			_			
449 16 max 601.497 2 857 15 9.078 4 0 1 .015 4 001 15 450 min -736.16 3 -3.596 4 064 1 0 4 0 1 006 4 451 17 max 601.327 2 -1.038 15 9.618 4 0 1 .019 4 001 15 452 min -736.288 3 -4.366 4 064 1 0 4 0 1 004 4 453 18 max 601.156 2 -1.219 15 10.159 4 0 1 .024 4 0 15 455 19 max 600.986 2 -1.4 15 10.699 4 0 1 .028 4 0 1 .028 4 0 1 .028 4<			15													
450			4.0							•			_			
451			16													
452											_		_			
453 18 max 601.156 2 -1.219 15 10.159 4 0 1 .024 4 0 15 454 min -736.416 3 -5.136 4 064 1 0 4 0 1 002 4 455 19 max 600.986 2 -1.4 15 10.699 4 0 1 .028 4 0 1 456 min -736.544 3 -5.906 4 064 1 0 4 0 1 0 1 457 M12 1 max 1162.171 1 0 1 -6.491 1 0 1 0 1 4 0 1 0 1 4 0 1 0 1 4 0 1 0 1 4 0 1 0 1 4 0 1 0 1			17	1												
454 min -736.416 3 -5.136 4 064 1 0 4 0 1 002 4 455 19 max 600.986 2 -1.4 15 10.699 4 0 1 .028 4 0 1 456 min -736.544 3 -5.906 4 064 1 0 4 0 1 0 1 457 M12 1 max 1162.171 1 0 1 6.491 1 0 1 0.017 4 0 1 458 min -346.177 3 0 1 -216.404 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td></t<>										-		_	_			
455 19 max 600.986 2 -1.4 15 10.699 4 0 1 .028 4 0 1 456 min -736.544 3 -5.906 4 064 1 0 4 0 1 0 1 457 M12 1 max 1162.171 1 0 1 6.491 1 0 1 .017 4 0 1 458 min -346.177 3 0 1 -216.404 4 0 1 0 1 0 1 4 0 1 0 1 0 1 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1<			18									_				
456 min -736.544 3 -5.906 4 064 1 0 4 0 1 0 1 457 M12 1 max 1162.171 1 0 1 6.491 1 0 1 .017 4 0 1 458 min -346.177 3 0 1 -216.404 4 0 1 0 1 0 1 459 2 max 1162.341 1 0 1 6.491 1 0 1 0 1 4 0 1 0 1 4 0 1 -007 4 0 1 4 0 1 -007 4 0 1 -460 1 -007 4 0 1 -460 1 -007 4 0 1 -462 1 -462 1 -463 1 -463 1 -463 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>								_								-
457 M12 1 max 1162.171 1 0 1 6.491 1 0 1 .017 4 0 1 458 min -346.177 3 0 1 -216.404 4 0 1 0 1 0 1 459 2 max 1162.341 1 0 1 6.491 1 0 1 0 1 460 min -346.049 3 0 1 -216.552 4 0 1 007 4 0 1 461 3 max 1162.512 1 0 1 6.491 1 0 1 .007 4 0 1 462 min -345.921 3 0 1 -216.699 4 0 1 .002 1 0 1 463 4 max 1162.852 1 0 1 6.491			19	max				15					.028			
458 min -346.177 3 0 1 -216.404 4 0 1 0 1 0 1 459 2 max 1162.341 1 0 1 6.491 1 0 1 0 1 460 min -346.049 3 0 1 -216.552 4 0 1 007 4 0 1 461 3 max 1162.512 1 0 1 6.491 1 0 1 .001 1 0 1 462 min -345.921 3 0 1 -216.699 4 0 1 -032 4 0 1 463 4 max 1162.682 1 0 1 6.491 1 0 1 .002 1 0 1 464 min -345.793 3 0 1 -216.847 4 0						3	-5.906	4		1	0	4		1	0	1
459 2 max 1162.341 1 0 1 6.491 1 0		<u>M12</u>	1_				0	1			0	_1_		4	0	1
460 min -346.049 3 0 1 -216.552 4 0 1 007 4 0 1 461 3 max 1162.512 1 0 1 6.491 1 0 1 .001 1 0 1 462 min -345.921 3 0 1 -216.699 4 0 1 032 4 0 1 463 4 max 1162.682 1 0 1 6.491 1 0 1 .002 1 0 1 464 min -345.793 3 0 1 -216.847 4 0 1 057 4 0 1 465 5 max 1162.852 1 0 1 6.491 1 0 1 .003 1 0 1 466 min -345.666 3 0 1 -216.994 <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>0</td> <td>1</td> <td></td> <td>4</td> <td>0</td> <td>_1_</td> <td>0</td> <td>1_</td> <td>0</td> <td>1</td>						3	0	1		4	0	_1_	0	1_	0	1
461 3 max 1162.512 1 0 1 6.491 1 0 1 .001 1 0 1 462 min -345.921 3 0 1 -216.699 4 0 1 032 4 0 1 463 4 max 1162.682 1 0 1 6.491 1 0 1 .002 1 0 1 464 min -345.793 3 0 1 -216.847 4 0 1 057 4 0 1 465 5 max 1162.852 1 0 1 6.491 1 0 1 .057 4 0 1 466 min -345.666 3 0 1 -216.994 4 0 1 082 4 0 1 467 6 max 1163.023 1 0 1			2													
462 min -345.921 3 0 1 -216.699 4 0 1032 4 0 1 463 4 max 1162.682 1 0 1 6.491 1 0 1 .002 1 0 1 464 min -345.793 3 0 1 -216.847 4 0 1057 4 0 1 465 5 max 1162.852 1 0 1 6.491 1 0 1 .003 1 0 1 466 min -345.666 3 0 1 -216.994 4 0 1 .003 1 0 1 467 6 max 1163.023 1 0 1 6.491 1 0 1 .003 1 0 1 468 min -345.538 3 0 1 -217.142 4 0 1107 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 .132 4 0 1 471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 .006 1 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1				+							-					
463 4 max 1162.682 1 0 1 6.491 1 0 1 .002 1 0 1 464 min -345.793 3 0 1 -216.847 4 0 1 057 4 0 1 465 5 max 1162.852 1 0 1 6.491 1 0 1 .003 1 0 1 466 min -345.666 3 0 1 -216.994 4 0 1 082 4 0 1 467 6 max 1163.023 1 0 1 6.491 1 0 1 .003 1 0 1 468 min -345.538 3 0 1 -217.142 4 0 1 -107 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 -132 4 0 1 470			3			1	0	1			0	1	.001	1	0	1
464 min -345.793 3 0 1 -216.847 4 0 1 057 4 0 1 465 5 max 1162.852 1 0 1 6.491 1 0						3	0	1		4	0	1		4	0	1
465 5 max 1162.852 1 0 1 6.491 1 0 1 .003 1 0 1 466 min -345.666 3 0 1 -216.994 4 0 1 082 4 0 1 467 6 max 1163.023 1 0 1 6.491 1 0 1 .003 1 0 1 468 min -345.538 3 0 1 -217.142 4 0 1 -1.07 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 -132 4 0 1 471 8 max 1163.364 1 0 1	463		4	max	1162.682	1	0	1	6.491	1	0	1	.002	1	0	1
465 5 max 1162.852 1 0 1 6.491 1 0 1 .003 1 0 1 466 min -345.666 3 0 1 -216.994 4 0 1 082 4 0 1 467 6 max 1163.023 1 0 1 6.491 1 0 1 .003 1 0 1 468 min -345.538 3 0 1 -217.142 4 0 1 -1.07 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 -132 4 0 1 471 8 max 1163.364 1 0 1						3	0	1	-216.847	4	0	1		4	0	1
467 6 max 1163.023 1 0 1 6.491 1 0 1 .003 1 0 1 468 min -345.538 3 0 1 -217.142 4 0 1 107 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 -132 4 0 1 471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1	465		5				0	1	6.491	1	0	1	.003	1	0	1
467 6 max 1163.023 1 0 1 6.491 1 0 1 .003 1 0 1 468 min -345.538 3 0 1 -217.142 4 0 1 107 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 -132 4 0 1 471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1						3		1		4		1		4	0	1
468 min -345.538 3 0 1 -217.142 4 0 1 107 4 0 1 469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 132 4 0 1 471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1			6			1	0	1			0	1		1	0	1
469 7 max 1163.193 1 0 1 6.491 1 0 1 .004 1 0 1 470 min -345.41 3 0 1 -217.29 4 0 1 -132 4 0 1 471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 -157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1						3		1				1		4		1
470 min -345.41 3 0 1 -217.29 4 0 1 132 4 0 1 471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1			7	_			0	1			0	1		1	0	1
471 8 max 1163.364 1 0 1 6.491 1 0 1 .005 1 0 1 472 min -345.282 3 0 1 -217.437 4 0 1 157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1								1		4		1		4		1
472 min -345.282 3 0 1 -217.437 4 0 1 157 4 0 1 473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1			8	+		1	0	1			0	1		1	0	1
473 9 max 1163.534 1 0 1 6.491 1 0 1 .006 1 0 1				1				1				1				_
			9			_		1								_
										_						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1163.704	1	0	1	6.491	1	0	1	.006	1	0	1
476			min	-345.027	3	0	1	-217.733	4	0	1	207	4	0	1
477		11	max	1163.875	1	0	1	6.491	1	0	1	.007	1	0	1
478			min	-344.899	3	0	1	-217.88	4	0	1	232	4	0	1
479		12	max	1164.045	1	0	1	6.491	1	0	1	.008	1	0	1
480			min	-344.771	3	0	1	-218.028	4	0	1	257	4	0	1
481		13	max	1164.215	1	0	1	6.491	1	0	1	.009	1	0	1
482			min	-344.643	3	0	1	-218.176	4	0	1	282	4	0	1
483		14	max	1164.386	1	0	1	6.491	1	0	1	.009	1	0	1
484			min	-344.516	3	0	1	-218.323	4	0	1	307	4	0	1
485		15		1164.556	1	0	1	6.491	1	0	1	.01	1	0	1
486			min	-344.388	3	0	1	-218.471	4	0	1	332	4	0	1
487		16	max	1164.726	1	0	1	6.491	1	0	1	.011	1	0	1
488			min	-344.26	3	0	1	-218.618	4	0	1	357	4	0	1
489		17	max	1164.897	1	0	1	6.491	1	0	1	.012	1	0	1
490			min	-344.132	3	0	1	-218.766	4	0	1	382	4	0	1
491		18	max	1165.067	1	0	1	6.491	1	0	1	.012	1	0	1
492			min	-344.005	3	0	1	-218.914	4	0	1	407	4	0	1
493		19	max	1165.237	1	0	1	6.491	1	0	1	.013	1	0	1
494			min	-343.877	3	0	1	-219.061	4	0	1	433	4	0	1
495	M1	1	max	131.903	1	864.372	3	43.463	5	0	2	.155	1	0	15
496			min	-10.337	5	-487.382	2	-65.01	1	0	3	068	5	016	2
497		2	max	132.393	1	863.363	3	44.705	5	0	2	.12	1	.241	2
498			min	-10.108	5	-488.728	2	-65.01	1	0	3	044	5	457	3
499		3	max	443.33	3	599.837	2	.736	5	0	3	.086	1	.486	2
500			min	-261.263	2	-643.769	3	-64.532	1	0	2	021	5	894	3
501		4	max		3	598.491	2	1.978	5	0	3	.052	1	.18	1
502			min	-260.773	2	-644.779	3	-64.532	1	0	2	02	5	554	3
503		5	max		3	597.145	2	3.219	5	0	3	.018	1	004	15
504			min	-260.283	2	-645.788	3	-64.532	1	0	2	019	5	213	3
505		6	max		3	595.799	2	4.46	5	0	3	0	12	.128	3
506			min	-259.793	2	-646.798	3	-64.532	1	0	2	02	4	46	2
507		7	max	444.8	3	594.453	2	5.702	5	0	3	003	12	.469	3
508			min	-259.303	2	-647.807	3	-64.532	1	0	2	05	1	774	2
509		8	max	445.167	3	593.107	2	6.943	5	0	3	006	12	.811	3
510			min	-258.813	2	-648.817	3	-64.532	1	0	2	084	1	-1.087	2
511		9	max		3	54.768	2	42.797	5	0	9	.052	1	.946	3
512			min	-205.439	2	.406	15	-98.69	1	0	3	102	5	-1.244	2
513		10	max		3	53.422	2	44.038	5	0	9	0	10	.923	3
514			min	-204.949	2	001	5	-98.69	1	0	3	079	4	-1.272	2
515		11		455.682		52.076	2	45.28	5	0	9	003	12	.901	3
516					2	-1.694	4	-98.69	1	0	3	067	4	-1.3	2
517		12		465.314	3	428.522	3	120.135	5	0	2	.083	1	.787	3
518				-151.021	2	-707.62	2	-63.22	1	0	3	167	5	-1.153	2
519		13			3	427.512	3	121.376	5	0	2	.05	1	.561	3
520					2	-708.966	2	-63.22	1	0	3	103	5	779	2
521		14		466.049	3	426.503	3	122.618	5	0	2	.017	1	.336	3
522					2	-710.312		-63.22	1	0	3	039	5	405	2
523		15		466.416	3	425.493	3	123.859	5	0	2	.027	5	.111	3
524			min	-149.551	2	-711.659	2	-63.22	1	0	3	017	1	051	1
525		16		466.784	3	424.483	3	125.1	5	0	2	.092	5	.346	2
526		<u>.</u>			2	-713.005	2	-63.22	1	0	3	05	1	113	3
527		17		467.151	3	423.474	3	126.342	5	0	2	.159	5	.723	2
528				-148.571	2	-714.351	2	-63.22	1	0	3	083	1	337	3
529		18	max	19.539	5	711.873	2	-4.139	12	0	5	.148	5	.364	2
530		10			1	-341.203	3	-92.499	4	0	2	119	1	167	3
531		10	max		5	710.527	2	-4.139	12	0	5	.108	5	.014	3
UUI		ן וא	шах	13.707	J	110.021		- 4 .138	14	U	J	.100	J	.014	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	
532			min	-132.192	1	-342.212	3	-91.257	4	0	2	156	1	011	2
533	M5	1	max	290.899	1	2876.527	3	75.059	5	0	1	0	1	.033	2
534			min	8.131	12	-1674.896	2	0	1	0	4	143	4	0	15
535		2	max	291.389	1	2875.517	3	76.301	5	0	1	0	1	.917	2
536			min	8.376	12	-1676.242	2	0	1	0	4	103	4	-1.516	3
537		3	max	1403.071	3	1740.15	2	34.383	4	0	4	0	1	1.76	2
538			min	-873.69	2	-1991.63	3	0	1	0	1	063	4	-2.975	3
539		4		1403.439	3	1738.804		35.624	4	0	4	0	1	.843	2
540			min	-873.2	2	-1992.64	3	0	1	0	1	045	4	-1.923	3
541		5		1403.806	3	1737.458	2	36.866	4	0	4	0	1	.021	9
542		T .	min	-872.71	2	-1993.649	3	0	1	0	1	026	4	872	3
543		6		1404.173	3	1736.112	2	38.107	4	0	4	0	1	.181	3
544		-	min	-872.22	2	-1994.659	3	0	1	0	1	006	5	991	2
		7				1734.765		39.349			4			1.233	3
545				1404.541	3		2		4	0	1	.015	4		
546			min	-871.73	2	-1995.668	3	0		0		0	1	<u>-1.907</u>	2
547		8		1404.908	3	1733.419	2	40.59	4	0	4	.036	4	2.287	3
548			min	-871.24	2	-1996.678	3	0	1	0	1_	0	1	-2.822	2
549		9		1416.693	3	184.529	2	138.396	4	0	1	0	1	2.631	3
550			min	-757.221	2	.405	15	0	1	0	1	144	4	-3.217	2
551		10	max		3	183.183	2	139.637	4	0	1_	00	1	2.547	3
552			min	-756.731	2	001	15	0	1	0	1	071	5	-3.314	2
553		11	max	1417.427	3	181.837	2	140.879	4	0	1_	.003	4	2.463	3
554			min		2	-1.601	6	0	1	0	1	0	1	-3.411	2
555		12	max	1429.506	3	1294.632	3	167.775	4	0	1	0	1	2.16	3
556			min	-642.35	2	-2105.825	2	0	1	0	4	236	4	-3.054	2
557		13	max	1429.874	3	1293.622	3	169.016	4	0	1	0	1	1.477	3
558			min	-641.86	2	-2107.171	2	0	1	0	4	147	4	-1.942	2
559		14	max	1430.241	3	1292.613	3	170.258	4	0	1	0	1	.795	3
560			min	-641.37	2	-2108.517	2	0	1	0	4	057	4	83	2
561		15	max	1430.609	3	1291.603	3	171.499	4	0	1	.033	4	.283	2
562			min	-640.88	2	-2109.863	2	0	1	0	4	0	1	002	13
563		16		1430.976	3	1290.594	3	172.741	4	0	1	.124	4	1.396	2
564			min	-640.39	2	-2111.209	2	0	1	0	4	0	1	568	3
565		17	max		3	1289.584	3	173.982	4	0	1	.215	4	2.511	2
566		111	min	-639.9	2	-2112.555	2	0	1	0	4	0	1	-1.249	3
567		18	max	-9	12	2409.463	2	0	1	0	4	.231	4	1.293	2
568		10	min		1	-1185.398	3	-26.616	5	0	1	0	1	653	3
569		19	max		12	2408.117	2	0	1	0	4	.218	4	.022	2
570		13	min	-290.321	1	-1186.408	3	-25.375	5	0	1	.210	1	027	3
571	M9	1	max		1	864.372	3	65.051	4	0	3	01	12	0	15
572	IVIÐ				12			4.343	12	0	4	155	1	016	2
573		2		6.015 132.393				66.293			3				
					1	863.363	3		4	0		008 12	12	.241	2
574			min	6.26	12	-488.728		4.343	12	0	4		1	4 <u>57</u>	3
575		3	max		3	599.837	2	64.532	1	0	2	006	12	.486	2
576			min		2	-643.769	3	4.303	12	0	3	086	1	<u>894</u>	3
577		4	max		3	598.491	2	64.532	1	0	2	004	12	.18	1
578		<u> </u>	min		2	-644.779	3	4.303	12	0	3	052	1	<u>554</u>	3
579		5	max		3	597.145	2	64.532	1	0	2	001	12	004	15
580			min	-260.283	2	-645.788	3	4.303	12	0	3	025	4	213	3
581		6		444.433	3	595.799	2	64.532	1_	0	2	.016	1	.128	3
582			min		2	-646.798	3	4.303	12	0	3	015	5	46	2
583		7	max		3	594.453	2	64.532	1	0	2	.05	1	.469	3
584			min		2	-647.807	3	4.303	12	0	3	009	5	774	2
585		8	max		3	593.107	2	64.532	1	0	2	.084	1	.811	3
586			min	-258.813	2	-648.817	3	4.303	12	0	3	001	5	-1.087	2
587		9	max		3	54.768	2	98.69	1	0	3	003	12	.946	3
588			1	-205.439		.412	15	6.222	12	0	9	119	4	-1.244	2
														_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	455.314	3	53.422	2	98.69	1	0	3	0	1	.923	3
590			min	-204.949	2	.006	15	6.222	12	0	9	079	4	-1.272	2
591		11	max	455.682	3	52.076	2	98.69	1	0	3	.053	1	.901	3
592			min	-204.459	2	-1.647	6	6.222	12	0	9	049	5	-1.3	2
593		12	max	465.314	3	428.522	3	142.08	4	0	3	005	12	.787	3
594			min	-151.021	2	-707.62	2	3.764	12	0	2	195	4	-1.153	2
595		13	max	465.682	3	427.512	3	143.321	4	0	3	003	12	.561	3
596			min	-150.531	2	-708.966	2	3.764	12	0	2	12	4	779	2
597		14	max	466.049	3	426.503	3	144.563	4	0	3	001	12	.336	3
598			min	-150.041	2	-710.312	2	3.764	12	0	2	044	4	405	2
599		15	max	466.416	3	425.493	3	145.804	4	0	3	.032	4	.111	3
600			min	-149.551	2	-711.659	2	3.764	12	0	2	0	12	051	1
601		16	max	466.784	3	424.483	3	147.046	4	0	3	.11	4	.346	2
602			min	-149.061	2	-713.005	2	3.764	12	0	2	.003	12	113	3
603		17	max	467.151	3	423.474	3	148.287	4	0	3	.188	4	.723	2
604			min	-148.571	2	-714.351	2	3.764	12	0	2	.005	12	337	3
605		18	max	-5.948	12	711.873	2	69.45	1	0	2	.189	4	.364	2
606			min	-132.682	1	-341.203	3	-69.413	5	0	3	.007	12	167	3
607		19	max	-5.703	12	710.527	2	69.45	1	0	2	.16	4	.014	3
608			min	-132.192	1	-342.212	3	-68.172	5	0	3	.009	12	011	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.135	2	.008	3	1.099e-2	2	NC	1	NC	1
2			min	442	4	032	3	004	2	-2.596e-3	3	NC	1	NC	1
3		2	max	0	1	.199	3	.018	1	1.231e-2	2	NC	4	NC	1
4			min	442	4	002	9	01	5	-2.534e-3	3	857.519	3	NC	1
5		3	max	0	1	.386	3	.042	1	1.362e-2	2	NC	5	NC	2
6			min	442	4	072	1	012	5	-2.472e-3	3	473.588	3	4715.094	1
7		4	max	0	1	.5	3	.063	1	1.493e-2	2	NC	5	NC	3
8			min	442	4	116	1	009	5	-2.411e-3	3	372.053	3	3165.862	1
9		5	max	0	1	.528	3	.073	1	1.625e-2	2	NC	5	NC	3
10			min	442	4	113	1	003	5	-2.349e-3	3	353.918	3	2729.19	1
11		6	max	0	1	.47	3	.069	1	1.756e-2	2	NC	5	NC	3
12			min	442	4	065	1	0	10	-2.287e-3	3	394.584	3	2867.04	1
13		7	max	0	1	.345	3	.053	1	1.887e-2	2	NC	4	NC	2
14			min	442	4	004	9	003	10	-2.225e-3	3	525.551	3	3742.208	1
15		8	max	0	1	.186	3	.029	1	2.019e-2	2	NC	1	NC	2
16			min	442	4	.003	15	006	10	-2.163e-3	3	910.385	3	6895.663	1
17		9	max	0	1	.242	2	.024	3	2.15e-2	2	NC	4	NC	1
18			min	442	4	.004	15	012	2	-2.101e-3	3	1862.214	2	NC	1
19		10	max	0	1	.282	2	.024	3	2.281e-2	2	NC	3	NC	1
20			min	442	4	025	3	017	2	-2.039e-3	3	1348.476	2	NC	1
21		11	max	0	12	.242	2	.024	3	2.15e-2	2	NC	4	NC	1
22			min	442	4	.004	15	012	2	-2.101e-3	3	1862.214	2	NC	1
23		12	max	0	12	.186	3	.029	1	2.019e-2	2	NC	1	NC	2
24			min	442	4	.003	15	008	5	-2.163e-3	3	910.385	3	6895.663	1
25		13	max	0	12	.345	3	.053	1	1.887e-2	2	NC	4	NC	2
26			min	442	4	004	9	003	10	-2.225e-3	3	525.551	3	3742.208	1
27		14	max	0	12	.47	3	.069	1	1.756e-2	2	NC	5	NC	3
28			min	442	4	065	1	0	10	-2.287e-3	3	394.584	3	2867.04	1
29		15	max	0	12	.528	3	.073	1	1.625e-2	2	NC	5	NC	3
30			min	442	4	113	1	.001	10	-2.349e-3	3	353.918	3	2729.19	1
31		16	max	0	12	.5	3	.063	1	1.493e-2	2	NC	5	NC	3
32			min	442	4	116	1	.001	10	-2.411e-3	3	372.053	3	3165.862	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.386	3	.042	1	1.362e-2	2	NC	5	NC	2
34			min	442	4	072	1	0	10	-2.472e-3	3	473.588	3	4715.094	
35		18	max	0	12	<u>.199</u>	3	.018	1	1.231e-2	2	NC	4	NC	1
36			min	442	4	002	9	002	10	-2.534e-3	3	857.519	3	NC	1
37		19	max	0	12	.135	2	.008	3	1.099e-2	2	NC	1	NC NC	1
38		4	min	442	4	032	3	004	2	-2.596e-3	3	NC	1_	NC	1
39	M14	1_	max	0	1	.284	3	.007	3	6.307e-3	2	NC	1	NC	1
40			min	348	4	416	2	004	2	-5.036e-3	3	NC NC	1	NC NC	1
41		2	max	0	1	.538	3	.012	1	7.431e-3	2	NC 700,004	5	NC	1
42		1	min	348	4	<u>653</u>	2	015	5	-6.021e-3	3	780.304	3	NC NC	1
43		3	max	0	1	.756	3	.033	1	8.555e-3	2	NC 440.077	5	NC COEF COA	2
44		1	min	348	4	862	2	018	5	-7.006e-3	3	419.277	3	6055.204	1
45		4	max	0	1	.915	3	.053	1	9.679e-3	2	NC 040.700	5	NC 0770 400	2
46		-	min	348	4	-1.024	2	013	5	-7.991e-3	3	313.709	3	3779.483	1
47		5	max	0	1	1.002	3	.064	1	1.08e-2	2	NC 075.707	15	NC 0400,000	3
48			min	348	4	-1.129	2	003	5	-8.976e-3	3	275.727	3	3129.096	
49		6	max	0	1	1.016	3	.062	1	1.193e-2	2	NC 224 552	15	NC	2
50		-	min	348	4	<u>-1.173</u>	2	0		-9.961e-3	3	261.558		3202.471	1
51		7	max	0	1	.97	3	.049	1	1.305e-2	2	NC	15	NC	2
52			min	348	4	<u>-1.167</u>	2	003	10	-1.095e-2	3	263.922	2	4100.664	
53		8	max	0	1	.886	3	.029	4	1.417e-2	2	NC 070.5.47	15	NC 0770 444	2
54			min	348	4	<u>-1.125</u>	2	006	10	-1.193e-2	3	279.547	2	6778.444	4
55		9	max	0	1	.799	3	.022	3	1.53e-2	2	NC	5	NC	1
56		1.0	min	348	4	-1.073	2	011	2	-1.292e-2	3	301.477	2	NC	1
57		10	max	0	1	.758	3	.022	3	1.642e-2	2	NC	5	NC NC	1
58			min	348	4	<u>-1.047</u>	2	015	2	-1.39e-2	3	314.177	2	NC	1
59		11	max	0	12	<u>.799</u>	3	.022	3	1.53e-2	2	NC_	5	NC	1
60			min	348	4	<u>-1.073</u>	2	01 <u>5</u>	5	-1.292e-2	3	301.477	2	NC	1
61		12	max	0	12	.886	3	.027	1_	1.417e-2	2	NC NC	15	NC NC	2
62		10	min	348	4	<u>-1.125</u>	2	<u>017</u>	5	-1.193e-2	3	279.547	2	7421.056	1
63		13	max	0	12	.97	3	.049	1	1.305e-2	2	NC	15	NC	2
64		1.4	min	348	4	<u>-1.167</u>	2	011	5	-1.095e-2	3	263.922	2	4100.664	1
65		14	max	0	12	<u>1.016</u>	3	.062	1	1.193e-2	2	NC	15	NC	2
66			min	348	4	-1.173	2	0	5	-9.961e-3	3	261.558	2	3202.471	1
67		15	max	0	12	1.002	3	.064	1	1.08e-2	2	NC 075.707	15	NC	3
68		10	min	348	4	-1.129	2	0	10	-8.976e-3	3	275.727	3	3129.096	
69		16	max	0	12	<u>.915</u>	3	.053	1	9.679e-3	2	NC 040.700	5	NC 0770 400	2
70		+	min	<u>348</u>	4	<u>-1.024</u>	2	0		-7.991e-3	3	313.709	3	3779.483	
71		17	max	0	12	<u>.756</u>	3	.033	1	8.555e-3	2	NC	5	NC	2
72		10	min	348	4	862	2	0	10	-7.006e-3	3	419.277	3	6055.204	
73		18	max	0	12	.538	3	.02		7.431e-3		NC 700.004	5		1
74		40	min	348	4	653	2	002	10	-6.021e-3		780.304		9854.546	
75		19		0	12	.284	3	.007	3	6.307e-3	2	NC	1	NC NC	1
76		-	min	348	4	416	2	004	2	-5.036e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.29	3	.007	3	4.29e-3	3_	NC NC	1	NC NC	1
78			min	293	4	<u>416</u>	2	004	2	-6.538e-3	2	NC	1_	NC	1
79		2	max	0	12	<u>.464</u>	3	.012	1	5.127e-3	3_	NC	5	NC	1
80			min	293	4	711	2	021	5	-7.707e-3	2	670.323	2	8806.456	
81		3	max	0	12	<u>.617</u>	3	.033	1	5.964e-3	3_	NC 050.770	5	NC 2004 C	2
82			min	293	4	<u>968</u>	2	026	5	-8.875e-3	2	358.772	2	6031.8	1
83		4	max	0	12	.738	3	.053	1	6.802e-3	3_	NC 000.054	5	NC 0700 000	2
84		_	min	293	4	<u>-1.158</u>	2	02	5	-1.004e-2	2	266.654	2	3766.363	
85		5	max	0	12	.817	3	.064	1	7.639e-3	3_	NC	15	NC 0447.075	3
86			min	293	4	<u>-1.269</u>	2	006	5	-1.121e-2	2	232.023		3117.675	
87		6	max	0	12	.853	3	.062	1	8.476e-3	3_	NC	15	NC	2
88			min	293	4	<u>-1.299</u>	2	0		-1.238e-2	2	224.14	2	3188.342	
89		7	max	0	12	.852	3	.049	1_	9.313e-3	3	NC	15	NC	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	293	4	-1.26	2	002	10 -1.355e-2	2	234.436	2	4074.654	
91		8	max	0	12	.826	3	.036	4 1.015e-2	3	NC	5_	NC	2
92			min	293	4	-1.178	2	005	10 -1.472e-2	2	259.852	2	5488.319	4
93		9	max	0	12	.792	3	.025	4 1.099e-2	3	NC	5	NC	1
94			min	293	4	-1.089	2	01	2 -1.588e-2	2	293.968	2	7780.108	4
95		10	max	0	1	.774	3	.02	3 1.183e-2	3	NC	5_	NC	1
96			min	293	4	-1.046	2	014	2 -1.705e-2	2	314.152	2	NC	1
97		11	max	0	1	.792	3	.02	3 1.099e-2	3	NC	5	NC	1
98			min	293	4	-1.089	2	021	5 -1.588e-2	2	293.968	2	9625.179	5
99		12	max	0	1	.826	3	.027	1 1.015e-2	3	NC	5	NC	2
100			min	293	4	-1.178	2	024	5 -1.472e-2	2	259.852	2	7329.388	1
101		13	max	0	1	.852	3	.049	1 9.313e-3	3	NC	15	NC	2
102			min	293	4	-1.26	2	016	5 -1.355e-2	2	234.436	2	4074.654	1
103		14	max	0	1	.853	3	.062	1 8.476e-3	3	NC	15	NC	2
104			min	293	4	-1.299	2	002	5 -1.238e-2	2	224.14	2	3188.342	1
105		15	max	0	1	.817	3	.064	1 7.639e-3	3	NC	15	NC	3
106			min	293	4	-1.269	2	.001	10 -1.121e-2	2	232.023	2	3117.675	1
107		16	max	0	1	.738	3	.053	1 6.802e-3	3	NC	5	NC	2
108			min	292	4	-1.158	2	0	10 -1.004e-2	2	266.654	2	3766.363	1
109		17	max	0	1	.617	3	.039	4 5.964e-3	3	NC	5	NC	2
110			min	292	4	968	2	0	10 -8.875e-3	2	358.772	2	5081.04	4
111		18	max	0	1	.464	3	.026	4 5.127e-3	3	NC	5	NC	1
112			min	292	4	711	2	002	10 -7.707e-3	2	670.323	2	7412.019	4
113		19	max	0	1	.29	3	.007	3 4.29e-3	3	NC	1	NC	1
114		1	min	292	4	416	2	004	2 -6.538e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.119	2	.006	3 7.814e-3	3	NC	1	NC	1
116			min	126	4	098	3	003	2 -9.2e-3	2	NC	1	NC	1
117		2	max	0	12	.003	4	.018	1 8.92e-3	3	NC	4	NC	1
118			min	126	4	053	2	016	5 -1.01e-2	2	1151.368	2	NC	1
119		3	max	0	12	.028	3	.042	1 1.003e-2	3	NC	5	NC	2
120		1	min	126	4	189	2	02	5 -1.101e-2	2	642.613	2	4713.013	1
121		4	max	0	12	.054	3	.063	1 1.113e-2	3	NC	5	NC	3
122			min	126	4	266	2	016	5 -1.191e-2	2	514.914	2	3155.401	1
123		5	max	0	12	.046	3	.073	1 1.224e-2	3	NC	5	NC	3
124		1	min	126	4	271	2	007	5 -1.281e-2	2	507.318	2	2711.725	1
125		6	max	0	12	.006	12	.07	1 1.334e-2	3	NC	5	NC	3
126		1	min	126	4	208	2	.001	10 -1.371e-2	2	604.655	2	2835.76	1
127		7	max	0	12	.003	4	.054	1 1.445e-2	3	NC	4	NC	2
128		+ ′	min	126	4	092	2	001	10 -1.462e-2	2	937.912	2	3669.086	
129		8		<u>120</u> 0	12	.071	1	.03	1 1.556e-2	3	NC	4	NC	2
130		0	max min	126	4	134	3	004	10 -1.552e-2	2	2857.788	2	6595.043	
131		9	1 1	0	12	.176	2	.018	3 1.666e-2	3	NC	4	NC	1
132		9	max	126	4	199	3	008	2 -1.642e-2	2	1965.696	3	NC	1
		10			1		2				NC			1
133		10	max	<u> </u>		.233		.018	3 1.777e-2	3		4	NC NC	1
134		11	min	126	4	228	3	013	2 -1.732e-2	2	1526.007	3	NC NC	-
135		11	max	0	1	.176	2	.018	3 1.666e-2	3	NC	4	NC NC	1
136		40	min	126	4	199	3	012	5 -1.642e-2	2	1965.696	3	NC NC	1
137		12	max	0	1	.071	1	.03	1 1.556e-2	3	NC	4_	NC 0505.040	2
138		40	min	126	4	134	3	013	5 -1.552e-2	2	2857.788	2	6595.043	
139		13	max	0	1	.003	6	.054	1 1.445e-2	3_	NC 007.040	4_	NC	2
140			min	126	4	092	2	006	5 -1.462e-2	2	937.912	2	3669.086	
141		14	max	0	1	.006	12	.07	1 1.334e-2	3	NC	5_	NC	3
142			min	126	4	208	2	.001	10 -1.371e-2	2	604.655	2	2835.76	1
143		15	max	0	1	.046	3	.073	1 1.224e-2	3	NC	_5_	NC	3
144			min	126	4	271	2	.002	10 -1.281e-2	2	507.318	2	2711.725	
145		16	max	0	1	.054	3	.063	1 1.113e-2	3	NC	5	NC	3
146			min	126	4	266	2	.002	10 -1.191e-2	2	514.914	2	3155.401	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			LC
147		17	max	0	1	.028	3	.042	1	1.003e-2	3	NC	5	NC	2
148			min	126	4	189	2	0	10	-1.101e-2	2	642.613	2	4713.013	1
149		18	max	0	1	.003	6	.023	4	8.92e-3	3	NC	4	NC	1
150			min	126	4	053	2	001	10	-1.01e-2	2	1151.368	2	8550.216	4
151		19	max	0	1	.119	2	.006	3	7.814e-3	3	NC	1	NC	1
152			min	126	4	098	3	003	2	-9.2e-3	2	NC	1	NC	1
153	M2	1	max	.006	2	.006	2	.005	1	1.215e-3	5	NC	1	NC	1
154	1712		min	008	3	011	3	419	4	-1.288e-4	1	8703.53	2	132.214	4
155		2		.006	2	.006	2	.005	1	1.281e-3	5	NC	1	NC	1
156			max		3		3	384		-1.202e-4	1	9900.208	2	143.995	
		2	min	008		01			4		_				4
157		3	max	.005	2	.005	2	.004	1	1.348e-3	5_	NC	1	NC 457,000	1
158			min	007	3	01	3	<u>35</u>	4	-1.116e-4	_1_	NC	_1_	157.992	4
159		4	max	.005	2	.004	2	.004	1	1.414e-3	_5_	NC	_1_	NC	1
160			min	007	3	009	3	317	4	-1.03e-4	<u> 1</u>	NC	1_	174.782	4
161		5	max	.005	2	.003	2	.003	1	1.481e-3	5_	NC	_1_	NC	1
162			min	006	3	009	3	284	4	-9.445e-5	1	NC	1	195.151	4
163		6	max	.004	2	.003	2	.003	1	1.547e-3	5	NC	1	NC	1
164			min	006	3	008	3	251	4	-8.588e-5	1	NC	1	220.189	4
165		7	max	.004	2	.002	2	.003	1	1.614e-3	5	NC	1	NC	1
166			min	006	3	008	3	22	4	-7.73e-5	1	NC	1	251.443	4
167		8	max	.004	2	.001	2	.002	1	1.68e-3	5	NC	1	NC	1
168		Ŭ	min	005	3	007	3	19	4	-6.872e-5	1	NC	1	291.166	4
169		9	max	.003	2	0	2	.002	1	1.75e-3	4	NC	1	NC	1
		- 9		005	3	007	3	161	4	-6.015e-5	1	NC	1	342.756	4
170		40	min								_		_		
171		10	max	.003	2	0	2	.002	1	1.819e-3	4	NC	1	NC 444.500	1
172			min	004	3	006	3	<u>135</u>	4	-5.157e-5	1_	NC	1_	411.522	4
173		11	max	.003	2	0	2	.001	1	1.888e-3	_4_	NC	_1_	NC	1
174			min	004	3	006	3	109	4	-4.299e-5	<u> 1</u>	NC	1_	506.154	4
175		12	max	.002	2	0	2	0	1	1.958e-3	4_	NC	_1_	NC	1
176			min	003	3	005	3	086	4	-3.442e-5	1_	NC	1_	641.689	4
177		13	max	.002	2	0	15	0	1	2.027e-3	4	NC	1_	NC	1
178			min	003	3	005	3	065	4	-2.584e-5	1	NC	1	846.054	4
179		14	max	.002	2	0	15	0	1	2.097e-3	4	NC	1	NC	1
180			min	002	3	004	3	047	4	-1.726e-5	1	NC	1	1176.106	4
181		15	max	.001	2	0	15	0	1	2.166e-3	4	NC	1	NC	1
182		1.0	min	002	3	003	3	031	4	-8.686e-6	1	NC	1	1763.055	4
183		16	max	.001	2	0	15	0	1	2.236e-3	4	NC	1	NC	1
184		10	min	001	3	002	3	019	4	-8.525e-7	3	NC	1	2970.181	4
		47													
185		17	max	0	2	0	15	0	1	2.305e-3	4	NC	1	NC 04.47.000	1
186		40	min	0	3	002	3	009	4	5.323e-8	12	NC		6147.933	
187		18	max	0	2	0	15	0	1	2.374e-3	4	NC	1_	NC	1
188			min	0	3	0	3	003	4	6.409e-7	12	NC	_1_	NC	1
189		19	max	0	1	0	1	0	1	2.444e-3	_4_	NC	_1_	NC	1
190			min	0	1	0	1	0	1	1.229e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-4.129e-7	12	NC	1_	NC	1_
192			min	0	1	0	1	0	1	-5.756e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.012	4	7.109e-6	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-3.743e-5	5	NC	1	NC	1
195		3	max	0	3	0	15	.023	4	5.052e-4	4	NC	1	NC	1
196		Ť	min	0	2	003	6	0	12	1.309e-6	12	NC	1	NC	1
197		4	max	.001	3	003 001	15	.033	4	1.046e-3	4	NC	1	NC	1
198			min	0	2	001 005	6	<u>.033</u>	12	2.17e-6	12	NC	1	NC	1
		F					_						1		1
199		5	max	.001	3	001	15	.043	4	1.586e-3	4	NC NC		NC NC	
200		_	min	001	2	007	6	0	12	3.031e-6	12	NC NC	1_	NC NC	1
201		6	max	.002	3	002	15	.052	4	2.126e-3	4	NC	1	NC	1
202			min	001	2	009	6	0	12	3.892e-6	12	NC	1_	NC	1
203		7	max	.002	3	002	15	.06	4	2.667e-3	4	NC	1_	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

204	004	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
206			0			_				_						•
207			<u> </u>													
208			0													
209			9													
210			10													
211			10													
1212			11													
12																
19			12											_		
215			12													
14			12													
218			13													
18			1/													
229			14													
220			15											_		
221			10													
222			16													
223			10													
224			17											_		
18			11/													
226			18											_		
19 max .006 3 0 5 .163 4 9.152e-3 4 NC 1 NC 1			10													
228			10													
229 M4			13											1		
230		M4	1					_				-		1		
231		IVIT				_										
232			2							_				•		_
233 3 max									_							
234			3											•		-
235																
236			4											•		
237																
238			5													
239			Ť													
240 min 0 3 005 3 098 4 -2.07e-4 5 NC 1 252.642 4 241 7 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 2 242 min 0 3 004 3 086 4 -2.07e-4 5 NC 1 288.304 4 243 8 max .002 1 .003 2 0 12 1.879e-5 1 NC 1			6											1		
241 7 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 2 242 min 0 3 004 3 086 4 -2.07e-4 5 NC 1 288.304 4 243 8 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 244 min 0 3 004 3 074 4 -2.07e-4 5 NC 1 333.648 4 245 9 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td>1</td><td></td><td></td></td<>						_						5		1		
242 min 0 3 004 3 086 4 -2.07e-4 5 NC 1 288.304 4 243 8 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 244 min 0 3 004 3 074 4 -2.07e-4 5 NC 1 333.648 4 245 9 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 246 min 0 3 004 3 063 4 -2.07e-4 5 NC 1 392.553 4 247 10 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <th< td=""><td></td><td></td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>1</td><td></td><td>_</td></th<>			7							_				1		_
243 8 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 244 min 0 3 004 3 074 4 -2.07e-4 5 NC 1 333.648 4 245 9 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 246 min 0 3 004 3 063 4 -2.07e-4 5 NC 1 392.553 4 247 10 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 247.08 4 -2.07e-4 5 NC 1 471.08 4 -2.07e-4 5 NC 1 471.08 4 -2.07e-4 5 NC 1 NC 1 NC 1						_								1		
244 min 0 3 004 3 074 4 -2.07e-4 5 NC 1 333.648 4 245 9 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 246 min 0 3 004 3 063 4 -2.07e-4 5 NC 1 392.553 4 247 10 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 248 min 0 3 003 3 053 4 -2.07e-4 5 NC 1 471.08 4 249 11 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 250 min 0 3 003 3			8		.002	1				12		1		1		1
245 9 max .002 1 .003 2 0 12 1.879e-5 1 NC 1 NC 1 246 min 0 3 004 3 063 4 -2.07e-4 5 NC 1 392.553 4 247 10 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 248 min 0 3 003 3 053 4 -2.07e-4 5 NC 1 471.08 4 249 11 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 250 min 0 3 003 3 043 4 -2.07e-4 5 NC 1 ND 1 251 12 max .001 1 .002 <					_	3			074			5		1		4
246 min 0 3 004 3 063 4 -2.07e-4 5 NC 1 392.553 4 247 10 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 248 min 0 3 003 3 053 4 -2.07e-4 5 NC 1 471.08 4 249 11 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 250 min 0 3 003 3 043 4 -2.07e-4 5 NC 1 579.144 4 251 12 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 252 min 0 3 003 3			9		.002									1		
247 10 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 248 min 0 3 003 3 053 4 -2.07e-4 5 NC 1 471.08 4 249 11 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 250 min 0 3 003 3 043 4 -2.07e-4 5 NC 1 579.144 4 251 12 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 252 min 0 3 003 3 034 4 -2.07e-4 5 NC 1 733.899 4 253 13 max 0 1 .002									063			5		1		4
248 min 0 3 003 3 053 4 -2.07e-4 5 NC 1 471.08 4 249 11 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 250 min 0 3 003 3 043 4 -2.07e-4 5 NC 1 579.144 4 251 12 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 252 min 0 3 003 3 034 4 -2.07e-4 5 NC 1 733.899 4 253 13 max 0 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 254 min 0 3 002 3 <			10											1		
249 11 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 250 min 0 3 003 3 043 4 -2.07e-4 5 NC 1 579.144 4 251 12 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 252 1 NC 1									053			5		1		4
250 min 0 3 003 3 043 4 -2.07e-4 5 NC 1 579.144 4 251 12 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 252 min 0 3 003 3 034 4 -2.07e-4 5 NC 1 733.899 4 253 13 max 0 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 254 min 0 3 002 3 026 4 -2.07e-4 5 NC 1 967.183 4 255 14 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 256 min 0 3 002 3 <td< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>			11											1		
251 12 max .001 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 252 252 min 0 3003 3034 4 -2.07e-4 5 NC 1 733.899 4 253 253 13 max 0 1 .002 2 0 12 1.879e-5 1 NC 1 S67.183 4 255 14 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 S67.183 4 256 1 NC 1 NC <t< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td>043</td><td>4</td><td></td><td>5</td><td></td><td>1</td><td></td><td>4</td></t<>						3			043	4		5		1		4
252 min 0 3 003 3 034 4 -2.07e-4 5 NC 1 733.899 4 253 13 max 0 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 254 min 0 3 002 3 026 4 -2.07e-4 5 NC 1 967.183 4 255 14 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 256 min 0 3 002 3 018 4 -2.07e-4 5 NC 1 1343.765 4 257 15 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 258 min 0 3 001 3 -			12		.001					12		1		1		1
253 13 max 0 1 .002 2 0 12 1.879e-5 1 NC 1 NC 1 254 min 0 3002 3026 4 -2.07e-4 5 NC 1 967.183 4 255 14 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 256 min 0 3002 3018 4 -2.07e-4 5 NC 1 1343.765 4 257 15 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 258 min 0 3001 3012 4 -2.07e-4 5 NC 1 2012.95 4 259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1									034			5		1		4
254 min 0 3 002 3 026 4 -2.07e-4 5 NC 1 967.183 4 255 14 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 256 min 0 3 002 3 018 4 -2.07e-4 5 NC 1 1343.765 4 257 15 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 258 min 0 3 001 3 012 4 -2.07e-4 5 NC 1 2012.95 4 259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1			13		0					12		1		1		1
255 14 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 256 min 0 3 002 3 018 4 -2.07e-4 5 NC 1 1343.765 4 257 15 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 258 min 0 3 001 3 012 4 -2.07e-4 5 NC 1 2012.95 4 259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1						3			026	4		5		1		4
256 min 0 3 002 3 018 4 -2.07e-4 5 NC 1 1343.765 4 257 15 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 258 min 0 3 001 3 012 4 -2.07e-4 5 NC 1 2012.95 4 259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1			14		0	1				12	1.879e-5	1		1		1
257 15 max 0 1 .001 2 0 12 1.879e-5 1 NC 1 NC 1 258 min 0 3 001 3 012 4 -2.07e-4 5 NC 1 2012.95 4 259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1									018		-2.07e-4	5		1		4
258 min 0 3001 3012 4 -2.07e-4 5 NC 1 2012.95 4 259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1			15							12				1		
259 16 max 0 1 0 2 0 12 1.879e-5 1 NC 1 NC 1									012	4		5		1		4
			16											1		
<u> 200 </u>	260			min	0	3	001	3	007	4	-2.07e-4	5	NC	1	3387.465	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
261		17	max	0	1	0	2	0	12	1.879e-5	1	NC	1	NC	1
262			min	0	3	0	3	004	4	-2.07e-4	5	NC	1	6997.555	4
263		18	max	0	1	0	2	0	12	1.879e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-2.07e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.879e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-2.07e-4	5	NC	1	NC	1
267	M6	1	max	.019	2	.023	2	0	1	1.266e-3	4	NC	4	NC	1
268			min	027	3	033	3	422	4	0	1	1672.927	3	131.11	4
269		2	max	.018	2	.021	2	0	1	1.331e-3	4	NC	4	NC	1
270			min	025	3	031	3	388	4	0	1	1775.541	3	142.795	4
271		3	max	.017	2	.019	2	0	1	1.396e-3	4	NC	4	NC	1
272			min	024	3	029	3	353	4	0	1	1891.497	3	156.676	4
273		4	max	.016	2	.017	2	0	1	1.461e-3	4	NC	4	NC	1
274			min	022	3	027	3	319	4	0	1	2023.497	3	173.329	4
275		5	max	.015	2	.015	2	0	1	1.526e-3	4	NC	4	NC	1
276			min	021	3	025	3	286	4	0	1	2175.014	3	193.532	4
277		6	max	.014	2	.014	2	0	1	1.591e-3	4	NC	4	NC	1
278			min	019	3	024	3	253	4	0	1	2350.592	3	218.367	4
279		7	max	.013	2	.012	2	0	1	1.656e-3	4	NC	1	NC	1
280			min	018	3	022	3	222	4	0	1	2556.295	3	249.367	4
281		8	max	.012	2	.01	2	0	1	1.722e-3	4	NC	1	NC	1
282			min	016	3	02	3	192	4	0	1	2800.39	3	288.77	4
283		9	max	.011	2	.009	2	0	1	1.787e-3	4	NC	1	NC	1
284			min	015	3	018	3	163	4	0	1	3094.458	3	339.945	4
285		10	max	.01	2	.007	2	0	1	1.852e-3	4	NC	1	NC	1
286			min	013	3	016	3	136	4	0	1	3455.232	3	408.162	4
287		11	max	.008	2	.006	2	0	1	1.917e-3	4	NC	1	NC	1
288			min	012	3	014	3	11	4	0	1	3907.815	3	502.043	4
289		12	max	.007	2	.005	2	0	1	1.982e-3	4	NC	1	NC	1
290		<u>'</u>	min	01	3	012	3	087	4	0	1	4491.662	3	636.512	4
291		13	max	.006	2	.004	2	0	1	2.047e-3	4	NC	1	NC	1
292			min	009	3	01	3	066	4	0	1	5272.544	3	839.285	4
293		14	max	.005	2	.003	2	0	1	2.112e-3	4	NC	1	NC	1
294			min	007	3	009	3	047	4	0	1	6368.857	3	1166.805	4
295		15	max	.004	2	.002	2	0	1	2.177e-3	4	NC	1	NC	1
296		10	min	006	3	007	3	032	4	0	1	8017.413	3	1749.34	4
297		16	max	.003	2	.001	2	0	1	2.242e-3	4	NC	1	NC	1
298		10	min	004	3	005	3	019	4	0	1	NC	1	2947.671	4
299		17	max	.002	2	<u></u>	2	0	1	2.307e-3	4	NC	1	NC	1
300		T '	min	003	3	003	3	009	4	0	1	NC	1	6103.545	4
301		18	max	.001	2	0	2	0	1	2.372e-3	4	NC	1	NC	1
302		1.0	min	001	3	002	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.437e-3	4	NC	1	NC	1
304		1.0	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306	1417	•	min	0	1	0	1	0	1	-5.73e-4	4	NC	1	NC	1
307		2	max	.001	3	0	2	.012	4	0.700 1	1	NC	1	NC	1
308			min	001	2	003	3	0	1	-4.453e-5	5	NC	1	NC	1
309		3	max	.002	3	0	2	.023	4	4.849e-4	4	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	003 001	15	.033	4	1.014e-3	4	NC	1	NC	1
312			min	003	2	008	3	0	1	0	1	NC	1	NC	1
313		5	max	.004	3	002	15	.043	4	1.543e-3	4	NC	1	NC	1
314		J	min	004	2	002 01	3	<u>.043</u>	1	0	1	NC NC	1	NC	1
315		6	max	.006	3	002	15	.052	4	2.072e-3	4	NC	1	NC	1
316			min	005	2	002 011	3	<u>.052</u>	1	0	1	8583.185	3	NC	1
317		7	max	.005	3	002	15	.06	4	2.601e-3	4	NC	1	NC	1
JII			πιαλ	.001	J	002	IJ	.00	_ +	2.0016-3		INO		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
318			min	006	2	013	3	0	1	0	1	7668.377	3	NC	1
319		8	max	.008	3	003	15	.068	4	3.13e-3	4	NC	1	NC	1
320			min	007	2	014	3	0	1	0	1	7127.379	3	NC	1
321		9	max	.009	3	003	15	.076	4	3.659e-3	4	NC	1	NC	1
322			min	008	2	014	3	0	1	0	1	6848.438	3	NC	1
323		10	max	.01	3	003	15	.083	4	4.188e-3	4	NC	1	NC	1
324			min	009	2	015	3	0	1	0	1	6781.474	3	NC	1
325		11	max	.011	3	003	15	.091	4	4.717e-3	4	NC	1	NC	1
326			min	01	2	015	3	0	1	0	1	6913.98	3	NC	1
327		12	max	.012	3	003	15	.098	4	5.246e-3	4	NC	1	NC	1
328			min	011	2	014	3	0	1	0	1	7265.361	3	NC	1
329		13	max	.013	3	003	15	.105	4	5.775e-3	4	NC	1_	NC	1
330			min	012	2	013	3	0	1	0	1	7894.635	3	NC	1
331		14	max	.014	3	003	15	.113	4	6.304e-3	4	NC	1_	NC	1
332			min	013	2	012	3	0	1	0	1	8841.196	4	NC	1
333		15	max	.015	3	002	15	.121	4	6.833e-3	4	NC	_1_	NC	1
334			min	014	2	011	3	0	1	0	1	NC	1	NC	1
335		16	max	.017	3	002	15	.129	4	7.362e-3	4	NC	1_	NC	1
336			min	015	2	009	3	0	1	0	1	NC	1	NC	1
337		17	max	.018	3	001	15	.138	4	7.891e-3	4	NC	1_	NC	1
338			min	017	2	008	1	0	1	0	1	NC	1_	NC	1
339		18	max	.019	3	0	15	.148	4	8.42e-3	4	NC	1_	NC	1
340			min	018	2	007	1	0	1	0	1_	NC	1_	NC	1
341		19	max	.02	3	0	15	.159	4	8.949e-3	4	NC	_1_	NC	1
342			min	019	2	005	1	0	1	0	1	NC	1_	NC	1
343	M8	1_	max	.008	2	.017	2	0	1	0	_1_	NC	_1_	NC	1
344			min	003	3	02	3	159	4	-2.488e-4	4	NC	1_	156.212	4
345		2	max	.008	2	.016	2	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
346			min	003	3	019	3	146	4	-2.488e-4	4	NC	1_	169.922	4
347		3	max	.007	2	.015	2	0	1	0	_1_	NC	_1_	NC	1
348			min	002	3	018	3	133	4	-2.488e-4	4	NC	1_	186.236	4
349		4	max	.007	2	.014	2	0	1	0	_1_	NC	_1_	NC	1
350			min	002	3	017	3	121	4	-2.488e-4	4	NC	1_	205.828	4
351		5	max	.007	2	.013	2	0	1	0	_1_	NC	_1_	NC	1
352			min	002	3	015	3	108	4	-2.488e-4	4	NC	1_	229.619	4
353		6	max	.006	2	.012	2	00	1	0	_1_	NC	_1_	NC	1
354			min	002	3	014	3	096	4	-2.488e-4	4	NC	_1_	258.883	4
355		7	max	.006	2	.011	2	0	1	0	_1_	NC	1_	NC	1
356			min	002	3	013	3	084	4	-2.488e-4	4	NC	_1_	295.43	4
357		8	max	.005	2	.01	2	0	1	0	1	NC	1	NC	1
358			min	002	3	012	3	073	4	-2.488e-4	4	NC NC	1	341.901	4
359		9	max	.005	2	.009	2	0	1	0	1	NC NC	1_	NC 400,000	1
360		40	min	002	3	011	3	062	4	-2.488e-4	4	NC NC	1_	402.269	4
361		10	max	.004	2	.008	2	0	1	0	1_1	NC	1_	NC	1
362		4.4	min	001	3	01	3	<u>051</u>	4	-2.488e-4	4	NC NC	1_	482.747	4
363		11	max	.004	2	.008	2	0	1	0	1_1	NC NC	1	NC FOO 400	1
364		40	min	001	3	009	3	042	4	-2.488e-4	4	NC NC	1	593.496	4
365		12	max	.003	2	.007	2	0	1	0	1_1	NC NC	1_1	NC 750,000	1
366		40	min	001	3	008	3	033	4	-2.488e-4	4	NC NC	1_1	752.096	4
367		13	max	.003	2	.006	2	0	1	0	1_1	NC NC	1_1	NC	1
368		4.4	min	0	3	007	3	025	4	-2.488e-4	4	NC NC	1	991.177	4
369		14	max	.002	2	.005	2	0	1	0	1_1	NC NC	1	NC	1
370		4.5	min	0	3	006	3	018	4	-2.488e-4	4	NC NC	1_	1377.118	
371		15	max	.002	2	.004	2	0	1	0	1_1	NC	1_1	NC 2002 020	1
372		10	min	0	3	<u>004</u>	3	012	4	-2.488e-4	4	NC NC	1	2062.939	
373		16	max	.001	2	.003	2	0	1	0	1_1	NC NC	1	NC	1
374			min	0	3	003	3	007	4	-2.488e-4	4	NC	<u>1</u>	3471.634	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	00	2	.002	2	00	1_	0	_1_	NC	_1_	NC	1
376			min	0	3	002	3	003	4	-2.488e-4	4	NC	1_	7171.541	4
377		18	max	0	2	0	2	0	1	0	1_	NC	1	NC	1
378			min	0	3	001	3	001	4	-2.488e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0		NC	1_	NC	1
380	1440		min	0	1	0	1	0	1	-2.488e-4	4_	NC NC	1_	NC	1
381	<u>M10</u>	1	max	.006	2	.006	2	0	12	1.264e-3	4	NC	1_	NC 404,000	1
382			min	008	3	011	3	421	4	9.349e-6	12		2	131.362	4
383		2	max	.006	2	.006	2	0	12	1.328e-3	4	NC	1_	NC 4.40.000	1
384		2	min	008	3	01	3	387	4	8.762e-6	12	9900.208	2	143.069	4
385		3	max	.005	2	.005	2	0	12	1.393e-3	4	NC NC	1	NC	1
386		1	min	007	3	01	3	353	4	8.174e-6	12	NC NC	1_	156.977	4
387		4	max	.005	2	.004	2	0	12	1.458e-3	4	NC NC	1	NC 470,000	1
388		-	min	007	3	009	3	319	4	7.586e-6	12	NC NC		173.662	4
389		5	max	.005	2	.003	2	0	12	1.523e-3	4	NC NC	1	NC 102.004	1
390			min	006	3	009	3	285	4	6.999e-6	12	NC NC	1_	193.904	4
391		6	max	.004	2	.003	2	0	12	1.588e-3	4	NC NC	1_	NC 040 700	1
392		7	min	006	3	008	3	253	4	6.411e-6	12	NC NC	1_	218.786	4
393		7	max	.004	2	.002	2	0	12	1.652e-3	4	NC	1	NC 040,040	1
394			min	006	3	008	3	222	4	5.823e-6	12	NC NC	1_	249.846	4
395		8	max	.004	2	.001	2	0	12	1.717e-3	4		1	NC 200 225	1
396			min	005	3	007	3	191	4	5.212e-6	<u>10</u>	NC NC	1_	289.325	4
397		9	max	.003	2	0	2	0	12	1.782e-3	4	NC NC	1_4	NC	1
398		40	min	005	3	007	3	163	4	4.532e-6	10	NC NC	1_	340.599	4
399		10	max	.003	2	0	2	0	12	1.847e-3	4	NC NC	<u>1</u> 1	NC	1
400		4.4	min	004	3	006	3	135	4	3.851e-6	10			408.947	4
401		11	max	.003	2	0	2	0	12	1.912e-3	4	NC NC	1	NC F02.04	1
402		40	min	004	3	006	3	<u>11</u>	4	3.17e-6	<u>10</u>	NC NC	1	503.01	4
403		12	max	.002	2	0	2	0	12	1.976e-3	4	NC NC	1	NC COZ ZOO	1
404 405		13	min	003 .002	2	<u>005</u> 0	2	087 0	12	2.489e-6 2.041e-3	<u>10</u> 4	NC NC	1	637.738 NC	1
406		13	max	002	3	005	3	066	4	1.808e-6		NC NC	1	840.906	4
407		1.1	min	003 .002	2	005	2	<u>066</u> 0			<u>10</u>	NC NC	1	NC	1
		14	max	002	3	004	3		12	2.106e-3	4	NC NC	1		
408		15	min			004 0		047	4	1.128e-6 2.171e-3	10	NC NC	1	1169.065 NC	1
409 410		15	max	.001 002	3	003	15	0 032	12	4.467e-7	<u>4</u> 10	NC NC	1	1752.745	
411		16	min	.002	2	003 0	15	032 0	12	2.236e-3	4	NC NC	1	NC	1
412		10	max	001	3	002	3	019	4	-3.127e-7	2	NC NC	1	2953.458	
413		17	min		2	<u>002</u> 0	15	<u>019</u> 0	12	2.3e-3	4	NC NC	1	NC	1
414		17	max min	<u> </u>	3	002	3	009	4	-8.467e-6	1	NC	1	6115.721	4
415		10	max	0	2	002 0	15	<u>009</u> 0		2.365e-3		NC NC	1	NC	1
416		10	min	0	3	0	4	003	4	-1.704e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	003	1	2.43e-3	4	NC	1	NC	1
418		19	min	0	1	0	1	0	1	-2.562e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	8.171e-6	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	-5.712e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.012	4	-4.481e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-3.904e-5	4	NC	1	NC	1
423		3	max	0	3	0	15	.023	4	4.931e-4	4	NC	1	NC	1
424			min	0	2	004	4	0	1	-2.239e-5	1	NC	1	NC	1
425		4	max	.001	3	004 001	15	.033	4	1.025e-3	4	NC	1	NC	1
426		_	min	0	2	005	4	0	1	-3.767e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	.042	4	1.558e-3	4	NC	1	NC	1
428			min	001	2	002	4	<u>.042</u>	1	-5.295e-5	1	NC	1	NC	1
429		6	max	.002	3	007	15	.051	4	2.09e-3	4	NC	1	NC	1
430			min	001	2	002	4	0	1	-6.823e-5	1	NC	1	NC	1
431		7	max	.002	3	003	15	.06	4	2.622e-3	4	NC	1	NC	1
TO 1			πιαλ	.002	J	000	IJ	.00	1 4	2.0226-3	_	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	002	2	011	4	0	1	-8.351e-5	1_	8763.383	4	NC	1
433		8	max	.002	3	003	15	.068	4	3.154e-3	_4_	NC	_1_	NC	1
434			min	002	2	012	4	001	1	-9.879e-5	1_	7851.536	4	NC	1
435		9	max	.003	3	003	15	.076	4	3.686e-3	4	NC	_1_	NC	1
436			min	002	2	013	4	001	1	-1.141e-4	1_	7310.544	4	NC	1
437		10	max	.003	3	003	15	.083	4	4.218e-3	4_	NC	2	NC	1
438			min	003	2	013	4	002	1	-1.293e-4	1	7045.671	4	NC	1
439		11	max	.004	3	003	15	.091	4	4.751e-3	4	NC	2	NC	1
440			min	003	2	014	4	002	1	-1.446e-4	1	7017.727	4	NC	1
441		12	max	.004	3	003	15	.098	4	5.283e-3	4	NC	2	NC	1
442			min	003	2	013	4	002	1	-1.599e-4	1	7228.01	4	NC	1
443		13	max	.004	3	003	15	.105	4	5.815e-3	4	NC	1	NC	1
444			min	004	2	012	4	002	1	-1.752e-4	1	7720.721	4	NC	1
445		14	max	.005	3	003	15	.113	4	6.347e-3	4	NC	1	NC	1
446			min	004	2	011	4	003	1	-1.905e-4	1	8606.054	4	NC	1
447		15	max	.005	3	002	15	.121	4	6.879e-3	4	NC	1	NC	1
448			min	004	2	01	4	003	1	-2.057e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	.13	4	7.412e-3	4	NC	1	NC	1
450			min	004	2	008	4	004	1	-2.21e-4	1	NC	1	NC	1
451		17	max	.006	3	002	15	.139	4	7.944e-3	4	NC	1	NC	1
452			min	005	2	006	4	004	1	-2.363e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	.149	4	8.476e-3	4	NC	1	NC	1
454		'	min	005	2	004	1	004	1	-2.516e-4	1	NC	1	NC	1
455		19	max	.006	3	<u>.00+</u>	15	.16	4	9.008e-3	4	NC	1	NC	1
456		13	min	005	2	002	1	005	1	-2.669e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.005	2	.005	1	-1.445e-6	12	NC	1	NC	2
458	IVIIZ		min	0	3	006	3	16	4	-2.125e-4	4	NC	1	154.94	4
459		2		.003	1	.004	2	.004	1	-2.125e-4 -1.445e-6		NC	1	NC	2
			max	<u>.003</u>	3	00 4	3		4	-1.445e-6		NC	1	168.534	4
460		3	min					147			4		1		
461		3	max	.002 0	3	.004	3	.004 134	1 4	-1.445e-6	12	NC NC	1	NC	2
462		1	min			006				-2.125e-4	4			184.708	
463		4	max	.002	1	.004	2	.004	1	-1.445e-6	<u>12</u>	NC	1	NC 004.405	2
464		-	min	0	3	005	3	122	4	-2.125e-4	4	NC NC	1_	204.135	4
465		5	max	.002	1	.004	2	.003	1	-1.445e-6	<u>12</u>	NC	1	NC 007.704	2
466			min	0	3	005	3	<u>109</u>	4	-2.125e-4	4_	NC NC	1_	227.724	4
467		6	max	.002	1	.003	2	.003	1	-1.445e-6	12	NC	1	NC 050.74	2
468		_	min	0	3	005	3	097	4	-2.125e-4	4_	NC	_1_	256.74	4
469		7	max	.002	1	.003	2	.003	1	-1.445e-6		NC	1	NC	2
470			min	0	3	004	3	085	4	-2.125e-4	4	NC	1_	292.979	4
471		8	max	.002	1	.003	2	.002	1	-1.445e-6		NC	1	NC	1
472			min	0	3	004	3	073	4	-2.125e-4		NC	1	339.057	4
473		9	max	.002	1	.003	2	.002	1	-1.445e-6		NC	_1_	NC	1
474			min	0	3	004	3	062	4	-2.125e-4		NC	1_	398.915	4
475		10	max	.001	1	.002	2	.002	1	-1.445e-6	12	NC	1_	NC	1
476			min	0	3	003	3	052	4	-2.125e-4	4	NC	1_	478.711	4
477		11	max	.001	1	.002	2	.001	1	-1.445e-6	12	NC	_1_	NC	1
478			min	0	3	003	3	042	4	-2.125e-4		NC	1	588.523	4
479		12	max	.001	1	.002	2	.001	1	-1.445e-6	12	NC	1	NC	1
480			min	0	3	003	3	033	4	-2.125e-4		NC	1	745.781	4
481		13	max	0	1	.002	2	0	1	-1.445e-6		NC	1	NC	1
482			min	0	3	002	3	025	4	-2.125e-4	4	NC	1	982.837	4
483		14	max	0	1	.001	2	0	1	-1.445e-6		NC	1	NC	1
484			min	0	3	002	3	018	4	-2.125e-4		NC	1	1365.508	_
485		15	max	0	1	.002	2	0	1	-1.445e-6		NC	1	NC	1
486		13	min	0	3	001	3	012	4	-2.125e-4	4	NC	1	2045.51	4
487		16	max	0	1	<u>001</u> 0	2	<u>012</u> 0	1	-2.125e-4 -1.445e-6		NC	1	NC	1
488		10			3	001	3		4	-1.445e-0 -2.125e-4		NC	1	3442.239	_
400			min	0	J	001	J	007	4	-2.1206-4	4	INC		3442.239	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-1.445e-6	12	NC	1	NC	1
490			min	0	3	0	3	003	4	-2.125e-4	4	NC	1	7110.662	4
491		18	max	0	1	0	2	0	1	-1.445e-6	12	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-2.125e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-1.445e-6	<u>12</u>	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-2.125e-4	4_	NC	1_	NC	1
495	<u>M1</u>	1_	max	.008	3	.135	2	.442	4	1.027e-2	2	NC	1_	NC NC	1
496			min	004	2	032	3	0	12	-2.179e-2	3	NC NC	1_	NC NC	1
497		2	max	.008	3	.065	2	.431	4	6.392e-3	4	NC	4	NC NC	1
498		2	min	004	2	015	3	004	4	-1.078e-2	3	1652.422 NC	2	NC NC	1
499 500		3	max	.008 004	3	.012 009	2	.418 005	1	1.1e-2 -1.18e-4	3	798.176	<u>5</u> 2	9290.949	
501		4	min max	.008	3	.055	3	.406	4	9.538e-3	4	NC	5	NC	1
502		4	min	004	2	093	2	005	1	-4.486e-3	3	505.484	2	6539.255	
503		5	max	.008	3	.1093	3	.394	4	8.181e-3	2	NC	5	NC	1
504		J	min	004	2	18	2	003	1	-8.854e-3	3	365.817	2	5144.41	5
505		6	max	.007	3	.167	3	.381	4	1.226e-2	2	NC	15	NC	1
506			min	004	2	264	2	001	1	-1.322e-2	3	288.727	2	4305.067	5
507		7	max	.007	3	.223	3	.367	4	1.633e-2	2	NC	15	NC	1
508			min	004	2	339	2	0	3	-1.759e-2	3	243.147	2	3734.217	4
509		8	max	.007	3	.269	3	.354	4	2.04e-2	2	9866.151	15	NC	1
510			min	004	2	398	2	0	12	-2.196e-2	3	216.152	2	3324.473	4
511		9	max	.007	3	.3	3	.339	4	2.307e-2	2	9230.797	15	NC	1
512			min	004	2	436	2	0	1	-2.228e-2	3	202.087	2	3066.279	4
513		10	max	.007	3	.311	3	.322	4	2.479e-2	2	9036.914	15	NC	1
514			min	004	2	449	2	0	12	-1.991e-2	3	197.963	2	2983.66	4
515		11	max	.007	3	.303	3	.304	4	2.651e-2	2	9230.462	15	NC	1
516			min	004	2	436	2	0	12	-1.755e-2	3	202.775	2	3037.37	4
517		12	max	.007	3	.278	3	.284	4	2.553e-2	2	9865.379	15	NC	1
518			min	004	2	397	2	0	1	-1.494e-2	3	218.224	2	3237.609	
519		13	max	.006	3	.236	3	.261	4	2.047e-2	2	NC	<u>15</u>	NC	1
520			min	004	2	335	2	0	1	-1.196e-2	3	248.146	2	3788.326	
521		14	max	.006	3	.184	3	.237	4	1.54e-2	2	NC	<u>15</u>	NC	1
522		4.5	min	004	2	<u>257</u>	2	0	12	-8.979e-3	3	299.333	2	4962.322	4
523		15	max	.006	3	.125	3	.211	4	1.034e-2	2	NC 207 407	5_	NC 7550 050	1
524		4.0	min	004	2	172	2	0	12	-6.001e-3	3	387.487	2	7550.058	
525		16	max	.006	3	.063	3	.186	4	7.739e-3	4	NC 550.809	5	NC NC	1
526 527		17	min	004	3	085	3	162	1 <u>2</u>	-3.022e-3 8.792e-3	<u>3</u>	NC	5	NC NC	1
528		17	max	.006	2	.004 006	2	.163 0	12	-4.393e-5	3	900.055	2	NC NC	1
529		1Ω	min max	003 .006	3	006 .06	2	.143		8.105e-3	2	NC	4	NC NC	1
530		10	min	003	2	049	3	0	12	-3.37e-3	3	1910.346	2	NC	1
531		19	max	.006	3	.119	2	.126	4	1.629e-2	2	NC	1	NC	1
532		10	min	003	2	098	3	0	1	-6.843e-3	3	NC	1	NC	1
533	M5	1	max	.024	3	.282	2	.442	4	0.0400 0	1	NC	1	NC	1
534	1110		min	017	2	025	3	0	1	-4.328e-6	4	NC	1	NC	1
535		2	max	.024	3	.136	2	.433	4	5.634e-3	4	NC	5	NC	1
536			min	017	2	009	3	0	1	0	1	794.34	2	NC	1
537		3	max	.024	3	.037	3	.422	4	1.11e-2	4	NC	5	NC	1
538			min	017	2	029	2	0	1	0	1	373.248	2	7712.521	4
539		4	max	.024	3	.138	3	.409	4	9.041e-3	4	NC	15	NC	1
540			min	016	2	226	2	0	1	0	1	228.073	2	5795.887	4
541		5	max	.023	3	.278	3	.396	4	6.985e-3	4	8356.816	15	NC	1
542			min	016	2	44	2	0	1	0	1	160.315	2	4831.18	4
543		6	max	.023	3	.435	3	.381	4	4.929e-3	4	6423.905	15	NC	1
544			min	016	2	652	2	0	1	0	1	123.797	2	4226.011	4
545		7	max	.022	3	.589	3	.367	4	2.874e-3	4	5309.658	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	015	2	845	2	0	1	0	1_	102.626	2	3771.017	-
547		8	max	.022	3	.718	3	.353	4	8.178e-4	4_	4662.652	<u>15</u>	NC	1
548			min	015	2	-1	2	0	1	0	1_	90.282	2	3372.778	
549		9	max	.022	3	.801	3	.339	4	0	1_	4331.181	<u>15</u>	NC	1
550		40	min	015	2	<u>-1.098</u>	2	0	1	-2.793e-6	5	83.941	2	3062.792	4
551		10	max	.021	3	.831	3	.322	1	0 -2.677e-6	1	4231.363	<u>15</u>	NC 3006.208	4
552		11	min	015 .021	3	<u>-1.131</u> .81	3	.304	4	0	<u>5</u> 1	82.087 4331.337	<u>2</u> 15	NC	1
553 554			max	014	2	-1.098	2	304 0	1	-2.56e-6	5	84.243	2	3072.463	
555		12		.02	3	<u>-1.096</u> .74	3	.285	4	6.303e-4	4	4663.011	15	NC	1
556		12	max	014	2	997	2	<u>.265</u>	1	0.3036-4	1	91.278	2	3184.217	4
557		13	max	.02	3	.626	3	.262	4	2.215e-3	4	5310.369	15	NC	1
558		13	min	014	2	834	2	0	1	0	1	105.223	2	3716.708	
559		14	max	.019	3	.483	3	.236	4	3.8e-3	4	6425.263	15	NC	1
560		17	min	014	2	633	2	0	1	0	1	129.682	2	5091.926	
561		15	max	.019	3	.324	3	.209	4	5.384e-3	4	8359.456	15	NC	1
562			min	013	2	414	2	0	1	0	1	173.211	2	8856.18	4
563		16	max	.018	3	.163	3	.183	4	6.969e-3	4	NC	15	NC	1
564			min	013	2	202	2	0	1	0	1	257.407	2	NC	1
565		17	max	.018	3	.013	3	.159	4	8.554e-3	4	NC	5	NC	1
566			min	013	2	017	2	0	1	0	1	446.152	2	NC	1
567		18	max	.018	3	.121	2	.14	4	4.343e-3	4	NC	5	NC	1
568			min	013	2	114	3	0	1	0	1	993.17	2	NC	1
569		19	max	.018	3	.233	2	.126	4	0	1	NC	1	NC	1
570			min	013	2	228	3	0	1	-2.149e-6	4	NC	1	NC	1
571	M9	1	max	.008	3	.135	2	.442	4	2.179e-2	3	NC	1_	NC	1
572			min	004	2	032	3	0	1	-1.027e-2	2	NC	1_	NC	1
573		2	max	.008	3	.065	2	.432	4	1.078e-2	3	NC	4	NC	1
574			min	004	2	015	3	0	12	-5.046e-3	2	1652.422	2	NC	1
575		3	max	.008	3	.012	3	.421	4	1.106e-2	4_	NC	_5_	NC	1
576			min	004	2	009	2	0	12	-3.792e-5	<u>10</u>	798.176	2	8062.81	4
577		4	max	.008	3	.055	3	.409	4	8.747e-3	5	NC	5	NC	1
578		_	min	004	2	093	2	0	12	-4.107e-3	2	505.484	2	5943.578	
579		5	max	.008	3	.109	3	.395	4	8.854e-3	3_	NC 005.047	5_	NC 4070.044	1
580		_	min	004	2	18	2	0	12	-8.181e-3	2	365.817	2	4870.041	4
581		6	max	.007	3	.167	3	.381	4	1.322e-2	3	NC	<u>15</u>	NC	1
582		7	min	004	3	<u>264</u>	3	0	10	-1.226e-2	3	288.727	<u>2</u>	4206.647 NC	4
583			max	.007	2	.223	2	.367	1	1.759e-2		NC 243.147	<u>15</u> 2	3732.275	4
584 585		8	min	004 .007	3	339 .269	3	0 .353	4	-1.633e-2 2.196e-2	3	9847.976	15	NC	1
586		0	max min		2	398	2	<u>.333</u>	1	-2.04e-2		216.152	2	3348.442	
587		9	max	.007	3	.3	3	.339	4	2.228e-2	3	9213.969	15	NC	1
588		9	min	004	2	436	2	<u></u> 0	12	-2.307e-2	2	202.087	2	3059.087	
589		10	max	.007	3	.311	3	.322	4	1.991e-2	3	9020.467	15	NC	1
590		10	min	004	2	449	2	0	1	-2.479e-2	2	197.963	2	2984.585	
591		11	max	.007	3	.303	3	.304	4	1.755e-2	3	9213.601	15	NC	1
592			min	004	2	436	2	0	1	-2.651e-2	2	202.775	2	3045.881	4
593		12	max	.007	3	.278	3	.284	4	1.494e-2	3	9847.237	15	NC	1
594			min	004	2	397	2	0	12	-2.553e-2	2	218.224	2	3215.062	
595		13	max	.006	3	.236	3	.262	4	1.196e-2	3	NC	15	NC	1
596			min	004	2	335	2	0	10	-2.047e-2	2	248.146	2	3786.394	4
597		14	max	.006	3	.184	3	.236	4	8.979e-3	3	NC	15	NC	1
598			min	004	2	257	2	001	1	-1.54e-2	2	299.333	2	5077.639	
599		15	max	.006	3	.125	3	.21	4	6.001e-3	3	NC	5	NC	1
600			min	004	2	172	2	003	1	-1.034e-2	2	387.487	2	8128.949	5
601		16	max	.006	3	.063	3	.184	4	6.864e-3	5	NC	5	NC	1
602															

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.004	3	.161	4	8.62e-3	4	NC	5	NC	1
604			min	003	2	006	2	005	1	-3.686e-4	1	900.055	2	NC	1
605		18	max	.006	3	.06	2	.141	4	4.185e-3	5	NC	4	NC	1
606			min	003	2	049	3	003	1	-8.105e-3	2	1910.346	2	NC	1
607		19	max	.006	3	.119	2	.126	4	6.843e-3	3	NC	1	NC	1
608			min	003	2	098	3	0	12	-1.629e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	BC. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.