# **Computer Networks**

Lecture on

**Packet Transmission Issues** 

## **Plan of This Lecture**

- How to achieve communication reliability?
- Network congestion problem
- Packet delay

## **Communication Reliability**

## **Problems**

- Corrupted message
  - Noise at transmission medium
- Lost message
  - Noise at transmission medium
  - o Buffer overload in network switches or in the terminal device
- Duplicated messages
  - o Due to retransmissions or bad configuration of communication protocols
- Modified message order
  - o Due to multipath propagation in switched networks

#### **Solutions**

- Corrupted message
  - o Bit error detection
  - o Bit error correction using an error correcting code, e.g. Hamming code
- Lost message
  - Flow control mechanisms
  - Message numbering
  - o Positive or negative acknowledgments (ACKs or NACKs)
  - Retransmission timers
- Duplicated messages
  - Message numbering

How long the number should be?

- Modified message order
  - Message numbering

## **Bit Error Detection**

Bit parity check for every byte sent

- used in asynchronous lines

Cyclic Redundancy Check codes

- used in synchronous lines

- Check sum of all bytes of a message
  - o supplementary check on network & transport layers

#### Longer frame

- Higher probability of bit errors
- Better efficiency, i.e.  $(\frac{payload bits}{transmitted bits})$  rate

#### Shorter frame

- Lower probability of bit errors
- Lower efficiency

Radio links - higher probability of serial bit errors

• Parallel transmission of several frames can change a serial error to several single-bit errors

| b0 | b1 | b2 |   | bN | <b>CRC</b> <sub>B</sub> |
|----|----|----|---|----|-------------------------|
| c0 | c1 | c2 | : | cN | $CRC_C$                 |
|    |    |    | : |    |                         |
| x0 | x1 | x2 |   | xN | $CRC_X$                 |

Transmission order: b0, c0, ..., b1, c1, ..., b2, c2, ...

## **Message Repetition**

- Each message is sent two or three times or with error-correcting code in very noisy networks
- Using positive acknowledgement ACK
  - o Sender sets a timer for each message sent

Arriving ACK cancels the respective timer

- o When a timer fires the message is retransmitted and the timer is set
- Number of retransmissions is limited
- Using negative acknowledgement NACK
  - o Recipient sends NACK when it gets a message out of sequence
  - o Recipient sets a timer for each sent NACK
  - Sender retransmit the message pointed by NACK

How long to store the message?

How to set the timer?

#### **ACKs**

- Needlessly take bandwidth in reliable links
- Slower retransmission
- Recommended for unreliable links

#### **NACKs**

- Can be frequent in unreliable links
- Faster retransmission
- Recommended for reliable links
- Periodic ACKs help to free buffers

A retransmission can be too late — if long delay

• then forward error correction or even multiple-transmission of the same packet

## Flow control – Send and Wait (Bit Alternate Protocol)



Jacek Wytrębowicz

7

# This is why ACKs must be numbered

## Reasons for ACK delay:

- Transmission time
- Signal propagation time
- Buffering time by every process on the path
- Recipient processed another task

### Messages are buffered by:

- operating systems
- communication hardware



# Flow control – XON/XOFF Protocol

- Is efficient while processing a message, the next are transmitted
- Do not guarantee message delivery (by itself)

Input buffer can store N messages



A message size can be 1 byte

# Flow control – Sliding Window Mechanism

- Is efficient while processing a message, the next are transmitted
- Guarantee message delivery



Parameters to be set: window size and number of messages to be sent without ACK

# **Network Congestion**

Source of the problem:



Retransmissions of dropped packets can lead to the *congestion collapse* 

# **Effects of the Congestion Collapse**







## Communication suffers from

- queueing delay
- packet loss
- blocking of new connections

## **Techniques Used to Avoid the Collapse**

- Congestion control reactive
  helps the network to recover from the congestion state
  - o exponential backoff
    - as in CSMA/CD Ethernet & Wi-Fi
  - o transmission window reduction in TCP
  - o explicit notifications
  - o some queuing & scheduling mechanisms with active queue management
- Congestion avoidance proactive allows a network to operate in the region of low delay and high throughput
  - o admission control
  - o some queuing & scheduling mechanisms

# **Packet Delay**

| Delay                                | Where               | Example                                                                                     |  |
|--------------------------------------|---------------------|---------------------------------------------------------------------------------------------|--|
| Bandwidth                            | per-<br>transmitter | Sending 1 Mb at 10 Mb/s will take 100 ms                                                    |  |
| Propagation                          | per-link            | At twisted pair wire, coax, fibre: $\simeq 2/3$ of the light speed, thus $\simeq 200$ km/ms |  |
| Store-and-forward                    | per-switch          | Transmission time of the frame                                                              |  |
| Queuing                              | per-switch          | Generally less than 10 ms and often is less than 1 ms; at bad moments this can exceed 1 s   |  |
| Total packet from sender to receiver | per-path            | Sum of the above for each switch and link                                                   |  |

#### Store-and-forward

- A switch receives entire packet, checks its CRC, and then decides to retransmit it

### Fast-forward

- A switch receives header with addresses, and then decides to retransmit the packet

## **Summary**

- Reliability problems & solutions
  - o Bit error detection
  - o Message repetition
  - Flow control mechanisms
    - Send and wait
    - Xon/Xoff
    - Sliding window
- Network congestion
  - o Effects of the congestion collapse
  - o Techniques used to avoid the collapse
- Packet delay

## **Questions**

- 1. What are the causes of communication reliability problems?
- 2. What are the mechanisms used to make communication reliable?
- 3. Which frames are better long or short and why?
- 4. What size of frames is more efficient in transmission over noisy radio channels?
- 5. What size of frames is more efficient in transmission over reliable fibre cables?
- 6. What are pros & cons of positive and negative acknowledgements?
- 7. Under which conditions error-correcting codes or repeated frames should be used?
- 8. Why Bit Alternate Protocol is inefficient?
- 9. What is the aim of XON/XOFF protocol?
- 10. What for we define low and high water marks for data buffers?
- 11. Explain sliding window mechanism.
- 12. Why do we need congestion control and avoidance mechanisms?
- 13. Why the ring network topology is congestion resistant?
- 14. What techniques are used to avoid the congestion collapse?
- 15. What are the elements of total packet delay?
- 16. Explain the fast-forward technique.