Theorem 2.

Let $K \subseteq \mathbb{R}^n$ be compact and $f: K \to \mathbb{R}^n$ be continuous. Then f is uniformly continuous on K.

Proof. Suppose towards contradiction that f is not uniformly continuous. Then $\exists \varepsilon > 0$ such that $\forall \delta > 0$, there exists $x, y \in K$ where $\|x - y\| < \delta$ while $\|f(x) - f(y)\| > \varepsilon$. Letting $\delta_k = \frac{1}{k}$ for $k \in \mathbb{N}$, there is then corresponding $x^{(k)}$ and $y^{(k)}$ such that $\|x^{(k)} - y^{(k)}\| \le \delta_k$ while $\|f(x^{(k)}) - f(y^{(k)})\|$. By compactness of K, there exists a subsequence $(x^{(k_j)})$ that converges to some $x \in K$. Then

$$0 \le \left\| y^{(k_j)} - x \right\| \le \underbrace{\left\| y^{(k_j)} - x^{(k_j)} \right\|}_{\le \frac{1}{k_j} \le \frac{1}{j}} + \left\| x^{(k_j)} - x \right\|.$$

In the limit as $j \to \infty$, the upper bound goes to 0. Thus $||y^{(k_j)} - x||$ goes to 0, hence $(y^{(k_j)})$ converges to x. Since f is continuous at x and $y, f(x^{(k_j)}) \to f(x)$ and $f(y^{(k_j)}) \to f(y)$ as $j \to \infty$. Thus

$$\left\| f(x^{(k_j)}) - f(y^{(k_j)}) \right\| \le \left\| f(x^{(k_j)} - f(x)) \right\| + \left\| f(x) - f(y^{(k_j)}) \right\|$$

which goes to 0 as $j \to \infty$, a contradiction. Thus f is uniformly continuous.

Def. Open Cover

Let $A \subseteq \mathbb{R}^n$. An **open cover** of A is a collection of open sets (G_α) in \mathbb{R}^n such that $A \subseteq \bigcup G_\alpha$.

Def. Topological Compactness

A set $K \subseteq \mathbb{R}^n$ is **topologically compact** if every open cover of K has a finite subcover. In other words, for any open cover (G_α) of K, there are $\{\alpha_1, \ldots, \alpha_n\}$ indices with $n < \infty$ such that $K \subseteq G_{\alpha_1} \cup \ldots \cup G_{\alpha_n}$.

Example 1. The set $I=(0,1)\subseteq\mathbb{R}$ is not topologically compact. Consider the candidate open cover $\bigcup_{x\in(0,1)}\left(\frac{x}{2},\frac{x+1}{2}\right)$. Let $x\in(0,1)$. Note that

$$x > 0 \implies 2x > x \implies x > \frac{x}{2}$$

 $x < 1 \implies 2x < x + 1 \implies x < \frac{x + 1}{2}$

Thus it is an open cover. Assume then there exists a finite subcover

$$\left(\frac{x_1}{2}, \frac{x_1+1}{2}\right) \cup \ldots \cup \left(\frac{x_n}{2}, \frac{x_n+1}{2}\right)$$

for $x_1, \ldots, x_n \in (0, 1)$. Take $x \in \min\{x_1, \ldots, x_n\} > 0$ and $0 < y < \frac{x}{2}$. Then $y \in (0, 1)$ but not in the subcover. Hence I cannot be topologically compact.

0.0.1 Compactness Equivalence

The goal of this section is to prove the following theorem.

Theorem. Sequential \Leftrightarrow Topological Compactness

A set $K \subseteq \mathbb{R}^n$ is topologically compact iff K is sequentially compact.

The approach will be to use the result being close and bounded is equivalent to sequential compactness as a bridge. That is, show that topological compactness is equivalent to being closed and bounded, and thus sequentially compact as well.

Lemma 2.

Let $K \subseteq \mathbb{R}^n$ be (topologically) compact and $F \subseteq K$ be closed in \mathbb{R}^n . Then F is also (topologically) compact.

Proof. Let (G_{α}) be an open cover of F. Note then that $K \subseteq F^c \cup \bigcup_{\alpha} G_{\alpha}$. Since F is closed, F^c is open and thus this is an open cover of K. Since K is topologically compact, there then exists $\alpha_1, \ldots, \alpha_n$ finite such that

 $K \subseteq G_{\alpha_1} \cup \ldots G_{\alpha_n} \cup F^c$. Since $F \subseteq K$, this is a finite cover of F as well. Hence F is compact. \diamondsuit

Theorem. Heine-Borel

Let $K \subseteq \mathbb{R}^n$. Then K is (topologically) compact iff K is closed and bounded.

Def. Closed Cube

A set $Q \subset \mathbb{R}^n$ is a **closed cube** if there exists closed intervals I_1, \ldots, I_n in \mathbb{R} such that $Q = I_1 \times \ldots \times I_n$.

Proof.

 \Leftarrow) Assume *K* is closed and bounded.

 \Diamond