Ćwiczenia z Sieci komputerowych Lista 2

- 1. W 10-Mbitowym Ethernecie sygnał rozchodzi się z prędkością 10⁸ m/s. Standard ustala, że maksymalna odległość między dwoma komputerami może wynosić co najwyżej 2,5 km. Oblicz, jaka jest minimalna długość ramki (wraz z nagłówkami).¹
- 2. Rozważmy rundowy protokół Aloha we współdzielonym kanale, tj. w każdej rundzie każdy z n uczestników usiłuje wysłać ramkę z prawdopodobieństwem p. Jakie jest prawdopodobieństwo P(p, n), że jednej stacji uda się nadać (tj. że nie wystąpi kolizja)? Pokaż, że P(p, n) jest maksymalizowane dla p = 1/n. Ile wynosi $\lim_{n\to\infty} P(1/n, n)$?
- **3.** Jaka suma kontrolna CRC zostanie dołączona do wiadomości 1010 przy założeniu że CRC używa wielomianu $x^2 + x + 1$? A jaka jeśli używa wielomianu $x^7 + 1$?
- **4.** Pokaż, że CRC-1, czyli 1-bitowa suma obliczana na podstawie wielomianu G(x) = x + 1, działa identycznie jak bit parzystości.
- 5. Załóżmy, że wielomian G(x) stopnia n stosowany w CRC zawiera składnik x^0 . Pokaż, że jeśli wybierzemy dowolny odcinek długości n z wiadomości i dowolnie go zmodyfikujemy (zmienimy dowolną niezerową liczbę bitów w nim), to zostanie to wykryte. Czy taka własność zachodzi, jeśli G(x) nie zawiera składnika równego x^0 ?
- **6.** Pokaż, że suma CRC stosująca wielomian $G(x) = x^3 + x + 1$ wykryje wszystkie podwójne błędy (zmianę wartości dwóch bitów), które są oddalone od siebie o nie więcej niż 6 bitów (tj. pomiędzy dwoma zmienianymi bitami jest nie więcej niż 5 innych bitów).
- 7. Załóżmy, że wyliczamy sumę CRC dla 4-bitowej wiadomości używając wielomianu $G(x) = x^3 + x + 1$; wtedy wiadomość wraz z sumą ma długość 7 bitów. Załóżmy, że co najwyżej jeden z tych 7 bitów został przekłamany. Pokaż, jak odbiorca takiego komunikatu może wykryć i skorygować takie przekłamanie.
- 8. Pokaż, że kodowanie Hamming(7,4) umożliwia skorygowanie jednego przekłamanego bitu.
- **9.** W pewnym kanale każdy przesyłany bit zostaje przekłamany (niezależnie) z prawdopodobieństwem 1/100. Rozważmy dwa scenariusze wysyłania 100 bitów danych.
 - ▶ Dane wysyłamy w ramce bez dodatkowego kodowania. Ramka jest dostarczona poprawnie, jeśli żaden z bitów nie jest przekłamany.
 - ▶ Każde 4 bity kodujemy za pomocą kodowania Hamming(7,4) w postaci 7-bitowego bloku. (czyli wysyłamy (7/4)·100 bitów). Ramka jest dostarczona poprawnie, jeśli każdy z 7-bitowych bloków jest dostarczony poprawnie. 7-bitowy blok jest dostarczony poprawnie, jeśli zawiera co najwyżej jeden przekłamany bit.

Oszacuj, ile wynosi prawdopodobieństwo poprawnego dostarczenia ramki w obu scenariuszach.²

 $^{^{1}}$ Można założyć, że 10 Mbit $=10^{7}$ bit. W rzeczywistości sygnał rozchodzi się ok. 2 razy szybciej, ale opóźnienia występują nie tylko w kablu.

²Wykorzystywane formuły powinny być poprawne, ale do konkretnych wyliczeń możesz użyć kalkulatora.

10 .	Dana jest deterministyczna funkcja skrótu h zwracająca na podstawie tekstu liczbę m-bitową. Losu-
	jemy $2^{m/2}$ tekstów i obliczamy na nich funkcję h . Zakładamy tutaj, że przy takim losowaniu tekstu x ,
	h(x) jest losową (wybraną z rozkładem jednostajnym) liczbą m -bitową. Pokaż, że prawdopodobień-
	stwo, że wsród wylosowanych tekstów istnieją dwa o takiej samej wartości funkcji h jest $\Omega(1)$.

Materiały do kursu znajdują się w systemie SKOS: https://skos.ii.uni.wroc.pl/.

Marcin Bieńkowski

³Dlaczego ten fakt jest istotny okaże się na wykładzie 11. Albo już się okazało.