

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International Advanced Level In Mechanics M3 (WME03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log Number P75744A
Publications Code WME03_01_2406_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

•	bod	benefit of doubt
•	ft	follow through ,
		follow through o the symbol √ will be used for correct ft
•	cao	correct answer only
•	CSO	correct solution only.

- There must be no errors in this part of the question to obtain this mark
- ignore subsequent working isw answers which round to awrt
- SC special case
- or equivalent (and appropriate) oe
- dependent • d... or dep indep independent decimal places dp sf significant figures
- The answer is printed on the paper or ag- answer given or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(NB specific mark schemes may sometimes override these general principles)

- Rules for M marks:
 - o correct no. of terms
 - dimensionally correct
 - all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark, i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c)...then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft

Mechanics Abbreviations

M(A)	Taking moments about A
N2L	Newton's Second Law (Equation of Motion)
NEL	Newton's Experimental Law (Newton's Law of Impact)
HL	Hooke's Law
SHM	Simple harmonic motion
PCLM	Principle of conservation of linear momentum
RHS	Right hand side
LHS	Left hand side

Question Number	Scheme	Marks
1(a)	$T = \frac{\lambda a}{4a}$	B1

Question Number	Scheme	Marl	ks
	$T\cos\alpha = mg$	M1A1	
	$\frac{\lambda a}{4a} \times \frac{3}{5} = mg \implies \lambda = \frac{20mg}{3} *$	A1*	(4)
1(b)	$T\sin\alpha = kmg$	M1A1	
	$\frac{20mg}{3} \times \frac{1}{4} \times \frac{4}{5} = kmg$ $k = \frac{4}{3}$	M1	
	$k = \frac{4}{3}$	A1	(4)
			(8)
	Notes for question 1		
1(-)	Mark parts (a) and (b) together		
1(a)	Has of Hasks's Law		
B1	Use of Hooke's Law For a relevant equation in <i>T</i> . Must be dimensionally correct with the	correct	
M1	number of terms, condone sign errors and sin/cos confusion. Eg • Resolve vertically: $T \cos \alpha = mg$ • Parallel to string: $T = kmg \sin \alpha + mg \cos \alpha$ • Triangle of forces: $T = \sqrt{(mg)^2 + (kmg)^2}$		
A1	Correct unsimplified equation		
A1*	Given answer obtained from complete and correct working. Must incomplete of working before reaching the given answer.	lude a li	ne
1(b)			
M1	For a relevant equation in k (a second equation). Must be dimensional with the correct number of terms, condone sign errors and $\sin/\cos \cos $		ect
A1	Correct unsimplified equation		
M1	Complete method to produce an equation in k only (replace T and trig	g)	
A1	Any equivalent fraction. Accept 1.3 or better	<i></i>	
	Lami: $\frac{T}{\sin 90} = \frac{kmg}{\sin(180-\alpha)} = \frac{mg}{\sin(90+\alpha)}$ M0 for an EPE approach		

Question Number	Sch	eme	Marks
	O a d d d d		
	$\frac{\sin \theta =}{\frac{\sqrt{a^2 - d^2}}{a}} = \sqrt{\frac{a^2 - d^2}{a^2}} = \sqrt{1 - \frac{d^2}{a^2}}$	$\frac{\cos \theta =}{\frac{\sqrt{a^2 - d^2}}{a}} = \sqrt{\frac{a^2 - d^2}{a^2}} = \sqrt{1 - \frac{d^2}{a^2}}$	
2(a)	$R\cos\theta = mg$	$R\sin\theta = mg$	M1A1
	$R = \frac{mga}{d}$		A1 (3)
2(b)	$R\sin\theta = \frac{mv^2}{}$	$R\cos\theta = \frac{mv^2}{r}$	M1A1A1
	$\frac{mga}{d} \times \frac{\sqrt{a^2 - d^2}}{a} = \frac{mv^2}{\sqrt{a^2 - d^2}}$ $v = \sqrt{\frac{g(a^2 - d^2)}{d}}$		DM1
	$v = \sqrt{\frac{g(a^2 - d^2)}{d}}$		A1 (5)
			(8)
2(a)	Notes for	question 2	
M1	Resolve vertically to form an equation with the correct number of terms and the correct structure. Dimensionally correct, condone sign errors and sin/cos confusion		
A1	Correct equation		
A1	Correct answer.		
2(b)			1
M1	Form a horizontal equation of motion with the correct number of terms, condone sign errors and sin/cos confusion. Dimensionally correct. Accept $\frac{v^2}{r}$ or $r\omega^2$ for of acceleration. Condone use of a for radius at this point but M0 if a is used for acceleration.		
A1		An error in the acceleration term is oradius).	one error
A1	Correct equation (must use the correct form of acceleration and correct radius).		
DM1	Dependent on previous M. Eliminate R and trig to form an equation in v , g , a and d		
A1	Correct answer ISW		

Question Number	Scheme	Marks
3(a)	$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{3\sqrt{x+1}}{4}$	M1
	$\frac{1}{2}v^2 = \frac{1}{2}(x+1)^{\frac{3}{2}} (+C)$	M1A1
	$x = 15, v = 8 \implies C = 0 \text{ so } v = (x+1)^{\frac{3}{4}} *$	A1* (4)
3(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = (x+1)^{\frac{3}{4}}$	M1
	$4(x+1)^{\frac{1}{4}} = t \ (+C)$	M1A1
	$x = 15, t = 0 \Rightarrow C = 8 \text{ so } 4v^{\frac{1}{3}} = t + 8$	M1
	$t = 4v^{\frac{1}{3}} - 8$	A1 (5)
	OB	
	OR	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{3}{4}v^{\bar{3}}$	M1
	$\frac{dv}{dt} = \frac{3}{4}v^{\frac{2}{3}}$ $3v^{\frac{1}{3}} = \frac{3}{4}t \ (+C)$	M1A1
	$t = 0, v = 8 \implies C = 6 \text{ so } 3v^{\frac{1}{3}} = \frac{3}{4}t + 6$	M1
	$t = 4v^{\frac{1}{3}} - 8$	A1 (5)
		(9)
3(a)	Notes for question 3	
<i>3(a)</i>	Set up a differential equation in <i>v</i> and <i>x</i> only	
M1	M0 if acceleration is $\frac{dv}{dx}$ or $\frac{dv}{dt}$	+1
	M0 if there is no differential equation eg starting with $\frac{1}{2}v^2 = \int \frac{3\sqrt{x^2}}{4}$	$\frac{1}{dx}$ dx
M1	Clear attempt to separate variables and integrate acceleration in terms of v and x . At least one of the powers must increase by 1.	
A1	Correct integration, condone missing + C	
A1*	Given answer obtained from complete and correct working. Must include use of the boundary conditions and the initial differential equation. A0 if +C is not dealt with correctly eg If +C is only considered <i>after</i> the square root.	
3(b)	The second secon	
M1	Set up a differential equation in x and t only. Using the given answe	
M1	Clear attempt to separate the variables and integrate in terms of x and t . At least one of the powers must increase by 1	
A1	Correct integration, condone missing + C	
M1	Use of boundary conditions in an integrated equation and use of (a) to form an equation in <i>v</i> and <i>t</i> . M0 if boundary conditions are not used.	
A1	Correct answer	
	OR	
M1	Set up a differential equation in <i>v</i> and <i>t</i> only	

Question Number	Scheme	Marks
M1	Clear attempt to separate the variables and integrate in terms of v and one of the powers must increase by 1	d t. At least
A1	Correct integration, condone missing + C	
M1	Use of boundary conditions in an integrated equation to form an equation in v and t . M0 if boundary conditions are not used.	
A1	Correct answer	

Question	Scheme	Marks	
Number 4(a)	a = 3 (m)	B1	
τ(α)		Бі	
	$\frac{38}{3} = \frac{2\pi}{\omega} \Longrightarrow \omega = \frac{3\pi}{19}$	M1A1	
	$x = -a\cos\omega t \Rightarrow v = a\omega\sin\omega t$ or similar	M1	
		IVII	
	$v = 3 \times \frac{3\pi}{19} \sin\left(\frac{3\pi}{19} \times \frac{95}{60}\right)$	M1	
	$= \frac{9\pi\sqrt{2}}{38}, 1.1, 1.05, 1.052, \dots \text{ (m h}^{-1}\text{)}$	A1 (6)	
4 (b)	$-1.5 = 3\cos\frac{3\pi t}{19}$	M1A1ft	
	$t = \frac{38}{9} \text{ (h)}$	A1	
	Time is 16:13 or 16:14	A1 (4)	
		(10)	
	Notes for question 4		
4(a)			
B 1	a = 3 seen or implied		
M1	For use of $T = \frac{2\pi}{\omega}$ to give an equation in ω where $T = 2 \times \frac{19}{3}$ (dou	able the time	
	between 12:00 and 18:20). Condone use of $T = 760$ min or 45600 s	seconds.	
A1	A correct equation using hrs, min or seconds.		
	Form a relevant equation in v and t using their a and ω		
M1	Eg $x = a \cos(\omega t) \Rightarrow x = a \omega \sin(\omega t)$		
IVII	• $x = -a\cos(\omega t) \Rightarrow v = a\omega\sin(\omega t)$ • $x = a\cos(\omega t) \Rightarrow v = -a\omega\sin(\omega t)$		
M1	• $x = a \cos(\omega t) = (2.12)$ $\Rightarrow v^2 = \omega^2 (a^2 - x^2)$ Use correct equation with an appropriate value of t		
A1	Correct answer, must be positive and must be in metres per hour.		
4(b)			
	A complete method to find the required time eg		
	• Use of $-1.5 = a \cos \omega t$ to find required time is $\frac{1}{\omega} \cos^{-1} \left(\frac{x}{a} \right)$		
M1	• Use of 1.5 = $a \sin \omega t$ to find required time is $\frac{1}{4} \operatorname{Period} + \frac{1}{\omega} \sin^{-1} \left(\frac{x}{a}\right)$		
	• Use of $1.5 = a \cos \omega t$ to find required time is $\frac{1}{\omega} \cos^{-1} \left(\frac{x}{a}\right)$ sub	otracted from	
	18:20		
A1ft	A correct equation, ft on their a and ω $\frac{1}{4} \left(\frac{38}{3} \right) + \frac{1}{\omega} \sin^{-1} \left(\frac{x}{a} \right)$		
	A correct t value in hours or minutes or seconds		
A1	$t = \frac{38}{9}$ (h), $t = \frac{760}{3}$ (min) $t = 15200$ (s)		
A1	For the correct time . Accept 4.13pm or 4.14 pm or 16:13 or 16:14		

Question Number	Scheme	Marks
5(a)	$\overline{x} = \frac{\pi \int_{0}^{4r} x \left(\frac{1}{4}x\right)^{2} dx}{\frac{4\pi r^{3}}{3}} \text{or} \overline{x} = \frac{\pi \int_{0}^{4r} x \left(r - \frac{1}{4}x\right)^{2} dx}{\frac{4\pi r^{3}}{3}}$	M1A1
	$=\frac{3}{256r^3} \left[x^4 \right]_0^{4r}$	A1
	$=3r^*$	A1*
5(b)		(4)
	$\begin{array}{ c c c c c }\hline & Cone & Cylinder & S \\\hline Mass ratio & \frac{4\pi r^3}{3} & \pi \left(\frac{1}{2}r\right)^2 \times r & \left(\frac{4\pi r^3}{3} - \pi \left(\frac{1}{2}r\right)^2 \times r\right) \\\hline & \frac{4}{3} & \frac{1}{4} & \frac{13}{12} \\\hline Distance & & & \frac{1}{2}r & & \overline{y} \\\hline rom & & & & \frac{1}{2}r & & \overline{y} \\\hline plane face & & & & & \overline{y} \\\hline \end{array}$	B1
	$\left(\frac{4\pi r^3}{3} \times 3r\right) - \left(\pi \left(\frac{1}{2}r\right)^2 \times r\right) \left(4r - \frac{1}{2}r\right) = \left(\frac{4\pi r^3}{3} - \pi \left(\frac{1}{2}r\right)^2 \times r\right) \overline{y}$	M1A1
	$\overline{y} = \frac{75}{26}r *$	A1*
		(5)
5(c)	$\tan \alpha = \frac{r}{4r - \frac{75}{26}r}$	M1A1
	$\tan \alpha = \frac{26}{29}$	A1
		(3)
	Notes for question 5	(12)
5(a)		
M1	Correct method to find the distance of the centre of mass from vertex $\frac{\pi \int_{0}^{4r} xy^{2} dx}{4\pi r^{3}}$ face, using $\bar{x} = \frac{0}{4\pi r^{3}}$. The formula must be correct but allow multiple if it appears in both numerator and denominator or cancellary.	v a constant

Question Number	Scheme	Marks	
	must be replaced with $y = \frac{1}{4}x$ or $y = r - \frac{1}{4}x$. Condone a gradient of $\pm \frac{r}{h}$ if h is		
	later replaced with $4r$. There must be an attempt to integrate the numerator		
	$4\pi r^3$		
	the power of x must increase by 1. The denominator of $\frac{4\pi r^3}{3}$ is give	en in the	
	question. Condone sight of vol = $\pi \int_{0}^{4r} (\frac{1}{4}x)^2 dx$ as denominator. Igno		
	the method mark.		
	Correct equation for the distance of the centre of mass from vertex of	r plane face.	
	$\overline{x} = \frac{\pi \int_{0}^{4r} x \left(\frac{1}{4}x\right)^{2} dx}{\frac{4\pi r^{3}}{}} \text{or} \overline{x} = \frac{\pi \int_{0}^{4r} x \left(r - \frac{1}{4}x\right)^{2} dx}{\frac{4\pi r^{3}}{}} \text{Ignore limits.}$		
A1	$\overline{x} = \frac{0}{0}$ or $\overline{x} = \frac{0}{0}$ Ignore limits		
	$\frac{4\pi r^3}{2}$ $\frac{4\pi r^3}{2}$		
	3 3		
	A correct expression for the distance of the centre of mass from vert		
	face following integration and division by $\frac{4\pi r^3}{3}$. Limits must be con-	rrect at this	
A1	3		
	point. $\frac{3}{256r^3} \left[x^4 \right]_0^{4r}$ or $\frac{3}{4r^3} \left[\frac{r^2x^2}{2} - \frac{rx^3}{6} + \frac{x^4}{64} \right]_0^{4r}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Given answer obtained from complete and correct working. If distance is		ice is found	
	from plane face this must be subtracted to find required distance.		
5(b)			
B1	Correct mass ratios		
B1	Correct distances (for their parallel axis) Ignore signs. Form a moments equation with correct number of terms (allow about	t a narallal	
M1	axis). Equation must be dimensionally correct (mass ratio × distance		
A1	Correct unsimplified equation	<i>)</i> ·	
	Given answer obtained from complete and correct working. Working	g should	
A1*	include a line of simplification. The simplification could occur betw	een the	
	moments equation and the given answer or in the initial stage eg in a	table.	
5 (c)	Has of ton to obtain an accretion for a relevant and a substitute of	.1	
	Use of tan to obtain an equation for a relevant angle, allow reciproca	П	
M1	75		
	$4r - \frac{75}{26}r$		
A1	For a correct equation, condone reciprocal.		
A1 Correct answer, $\tan \alpha = \frac{26}{29}$ o.e. Must be an exact value for $\tan \alpha$			
	A0 if they got straight to α .		

Question Number	Scheme	Marks
6(a)	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mgr(1-\cos\theta)$	M1A2
	$mg\cos\theta = \frac{mv^2}{r}$	M1A1
	Eliminate v^2 and solve for $\cos \theta$	M1
	$\cos\theta = \frac{2gr + u^2}{3gr} *$	A1*
	3	(7)
6(b)	$\cos\theta = \frac{4}{5}$	B1
	$v^2 = rg\cos\theta \qquad \left(v = \sqrt{\frac{4rg}{5}}\right)$	M1
	Horiz cpt at C : $H = v \cos \theta$ $\left(H = \frac{4}{5}\sqrt{\frac{4rg}{5}} = \sqrt{\frac{64rg}{125}}\right)$	
	Vert cpt at C : $V = \sqrt{(v \sin \theta)^2 + 2gr \cos \theta}$ $\left(V = \sqrt{\frac{236rg}{125}}\right)$	
	Speed at C : W where 1 (2 $2gr$)	M1 M1
	A to C: $\frac{1}{2}m\left(W^2 - \frac{2gr}{5}\right) = mgr$ OR B to C: $\frac{1}{2}m\left(W^2 - v^2\right) = mgr\cos\theta$ $\left(W = \sqrt{\frac{12rg}{5}}\right)$	
	$\tan \alpha = \frac{V}{H} = \frac{\sqrt{W^2 - H^2}}{H} = \frac{V}{\sqrt{W^2 - V^2}}$ $= \frac{\sqrt{59}}{\sqrt{W^2 - V^2}}$	DM1
	$=\frac{\sqrt{59}}{4}$	A1
		(6)
	Notes for question 6	(13)
6(a)	Notes for question 6	
M1	Use conservation of energy to form a dimensionally correct equation present and no extras. Condone sign errors and sin/cos confusion. A should be resolved has been resolved.	
A1	An unsimplified equation with at most one error.	
A1	A correct unsimplified equation.	
M1	Use N2L to form an equation of motion towards <i>O</i> . Equation must be dimensionally correct. All terms present and no extras. Condone significon confusion. Anything that should be resolved has been resolved Allow this mark with or without <i>R</i> .	n errors and

Question Number	Scheme	Marks	
	Condone $\pm R + mg \cos \theta = \frac{mv^2}{r}$		
A1	Correct equation ($R = 0$ must be used now at some point) A0 if R never becomes 0		
M1	Solve to find an expression for $\cos \theta$ in terms g , r and u		
A1*	Given answer obtained from correct and complete working. Working include a line with v^2 eliminated before reaching the given answer.	g should	
6(b)			
B1	For $\cos \theta = \frac{4}{5}$ seen or implied		
M1	Solve to find v in terms of g , r and θ		
M1	 Correct method to find at least one of H, V or W in terms of g, r and θ Condone finding H², V² or W² Equation must be dimensionally correct. All terms present and no extras. Condone sign errors and sin/cos confusion. Anything that should be resolved has been resolved. M0: If they use the speed from (a) instead of v 		
M1	Correct method to find any two of H , V or W in terms of g , r and θ Condone finding H^2 , V^2 or W^2 Equation must be dimensionally correct. All terms present and no extras. Condone sign errors and sin/cos confusion. Anything that should be resolved has been resolved. M0: If they use the speed from (a) instead of v		
DM1	Dependent on previous two M's. Complete method to find $\tan \alpha$ Condone if they go straight to $\alpha = \tan^{-1}()$ and never state $\tan \alpha = \tan^{-1}()$		
A1	A correct value for $\tan \alpha \frac{\sqrt{59}}{4}$ Accept any equivalent surd, eg $\sqrt{\frac{59}{16}}$ exact. A0 if they go straight to α and never find $\tan \alpha$	but must be	

Question Number	Scheme	Marks	
7(a)	$\frac{1}{2}mU^{2} - \frac{1}{2}mv^{2} = \frac{2mgx^{2}}{2l}$ $v^{2} = U^{2} - \frac{2gx^{2}}{l} *$	M1 A1A1	
	$v^2 = U^2 - \frac{2gx^2}{l} *$	A1* (4)	
7 (b)	$2v\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{4gx}{l}$	M1A1	
	$\ddot{x} = -\frac{2g}{l}x$, SHM $(\omega = \sqrt{\frac{2g}{l}})$	A1	
	$Period = \frac{2\pi}{\omega} = \pi \sqrt{\frac{2l}{g}} *$	DM1A1* (5)	
7(c)	$\sqrt{\frac{gl}{2}} = a\sqrt{\frac{2g}{l}} \qquad \mathbf{OR} \qquad 0 = \frac{gl}{2} - \frac{2ga^2}{l}$ $a = \frac{1}{2}l$	M1	
	$a = \frac{1}{2}l$	A1	
	time from $x = a$ to $x = \frac{1}{4}l$, t given by: $\frac{1}{4}l = \frac{1}{2}l\cos\sqrt{\frac{2g}{l}}t$	M1	
	$t = \frac{\pi}{3} \sqrt{\frac{l}{2g}}$	A1	
	Time = $\frac{1}{4}$ period + time from $x = a$ to $x = \frac{1}{4}l$	M1	
	$=\frac{5\pi}{6}\sqrt{\frac{l}{2g}}$	A1 (6)	
		(15)	
7(a)	Notes for question 7		
M1	Use conservation of energy equation with 2KE terms and 1EPE term. Note there are rearrangements. Dimensionally correct, terms of the correct structure, condone sign errors. EPE of the form $\frac{1}{2}k x^2$		
A1	For an unsimplified equation with at most one error		
A1	For a correct unsimplified equation		
A1*	Given answer obtained from complete and correct working. Must include a line of working before reaching the given answer.		
7(b)	Note: In (b) it is possible to score M1A1A0 DM1A1*		
M1	For differentiating wrt x. Powers of v and x to reduce by 1 and $\frac{dv}{dx}$ seen.		
A1	M0 for an approach that does not involve differentiating with respect A correct differentiated equation	n to a eg N2L	
A1	Correct SHM equation. Must use \ddot{x} for acceleration and conclude S	SHM	
DM1	Dependent on previous M. Correct use of period = $\frac{2\pi}{\omega}$		

Question Number	Scheme	Marks	
A1*	Given answer correctly obtained. Must include a line of working bet $\ddot{x} = -\omega^2 x$ and the given answer. Eg period $= \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{2g}{l}}} = \pi \sqrt{\frac{2l}{g}}$ Or $\omega = \sqrt{\frac{2g}{l}}$, period $= 2\pi \sqrt{\frac{l}{2g}} = \pi \sqrt{\frac{2l}{g}}$	ween	
7(c)			
M1	For use of $U = a\omega$ OR energy equation with $v = 0$ and $x = a$ to find the amplitude.		
A1	For correct amplitude, $\frac{\iota}{2}$		
M1	For a complete method to find the partial time with their calculated a and their ω • Use of $x = a\cos(\omega t)$ where $\frac{1}{4}l = \frac{1}{2}l\cos\sqrt{\frac{2g}{l}}t$ to give a partial time. • Use of $x = a\sin(\omega t)$ where $\frac{1}{4}l = \frac{1}{2}l\sin\sqrt{\frac{2g}{l}}t$ to give a partial time.		
A1	For a correct partial time • Use of $x = a\cos(\omega t) \Rightarrow t = \frac{1}{\omega} \frac{\pi}{3}$ • Use of $x = a\sin(\omega t) \Rightarrow t = \frac{1}{\omega} \frac{\pi}{6}$ or $\frac{1}{\omega} \frac{5\pi}{6}$		
M1	For a complete method to find the total time • Using $x = a \cos(\omega t)$ Total time = $\frac{1}{4}$ period + time from $x = a$ to $x = \frac{1}{4}l$ = $\frac{1}{4}\pi\sqrt{\frac{2l}{g}} + \frac{\pi}{3}\sqrt{\frac{l}{2g}}$ • Using $x = a \sin(\omega t)$ with $\frac{1}{\omega} \frac{5\pi}{6}$ Total time = $\frac{1}{\omega} \frac{5\pi}{6}$ • Using $x = a \sin(\omega t)$ with $\frac{1}{\omega} \frac{\pi}{6}$ Total time = $\frac{1}{2}$ period – time from $x = 0$ to $x = \frac{1}{4}l$ Total time = $\frac{1}{2}\pi\sqrt{\frac{2l}{g}} - \frac{\pi}{6}\sqrt{\frac{l}{2g}}$		
A1	Correct answer of $\frac{5\pi}{6}\sqrt{\frac{l}{2g}} = \frac{5\pi}{3}\sqrt{\frac{l}{8g}} = \pi\sqrt{\frac{25l}{72g}}$ o.e		