Music Genre Classification

Megan Lyons

1. Intro

A music sharing platform wants to increase user experience during the upload process

- → Speed Make the upload process quicker
- Automation
 Automatically tag a genre
- → Simple

 Quick, easy and use-friendly

8 Genres

The Data

8000

Tracks

2308

Artists

2464

Albums

When were these songs released?

Track Recorded vs Released

Which genre is most popular

Number of Artists per genre

400%

More experimental tracks than instrumental

Number of Listens per genre

11 million

Electronic Listens

1.96 million

Folk Listens

Listen & Favourite Distribution

Extracting Features

Music Information Retrieval

- 1. Spectral Features
- 2. Temporal Features
- 3. MFCCs
- 4. Mel-Spectrograms

Classification Model

- 2 Final Models using different inputs:
- 1. Music features
- 2. Mel-Spectrograms

Confusion Matrix Test Data

Music Genre Classification - Conclusions

Music Features

Model is very poor at identifying Pop tracks

Further investigations:

- Further explore what features of these songs contribute to misclassification
- Misclassified most as Hip-Hop,Rock and Folk

Mel-Spectrogram images

Model very good at Electronic and Rock but it is over estimating the number of tracks

Further Investigations

- Accurately predicts 588 songs
- Predicts 1435

Future Work

More Data

Gather far more audio files, and run models on larger quantities of data.

One vs All

Use a one vs all approach to train. i.e. Pop or not Pop

Image Quality

Run CNN models on full images

4 Features

Explore different combinations of features for optimum results

Thank You

Questions:)

Appendix

Confusion Matrices for different models

Transfer Learning

43% Testing Accuracy

56% Training Accuracy

Neural Network

Accuracy: 0.472736 Precision: 0.451910 Recall: 0.472726 F1 score: 0.449037

Accuracy: 0.452000 Precision: 0.443987 Recall: 0.452000 F1 score: 0.434944

- 500

- 300

- 200

Random Forest

Support Vector Machine

