

Curalign: Smart Medical Data Synthetic Generator

Presentation Deck for GenAl Hackathon

Slide 1: Title & Problem Statement

til Curalign

Smart Medical Data Synthetic Generator for Rare Disease Research

The Challenge

- Rare diseases affect 300+ million people globally
- Limited available data for AI/ML model training
- Privacy concerns with real patient data
- High costs of clinical data collection
- Regulatory compliance requirements

Our Solution

Generate realistic, privacy-safe synthetic medical data for rare disease research and diagnosis development.

Slide 2: Market Opportunity

Massive Market Need

Market Size

- Global Healthcare Al Market: \$15.1B by 2024
- Synthetic Data Market: \$3.5B by 2030
- Rare Disease Market: \$242B by 2026

Key Stakeholders

- Pharmaceutical Companies: Drug development & clinical trials
- Research Institutions: Academic studies & publications
- Healthcare Technology Companies: Al model training
- Regulatory Bodies: Safe, compliant data for validation

Pain Points We Solve

- Insufficient rare disease data
- Privacy regulation compliance
- ✓ High cost of real data acquisition
- Slow model development cycles

Slide 3: Solution Overview

Curalign Platform

Core Features

- 1. **6 Rare Disease Types**: Hemophilia, ALS, Cystic Fibrosis, Huntington's, Marfan, Sickle Cell
- 2. **Al-Powered Generation**: Rule-based logic with extensible LLM integration
- 3. Privacy by Design: 100% synthetic, HIPAA-compliant data
- 4. Role-Based Access: Admin, Researcher, Viewer permissions
- 5. Multiple Export Formats: CSV, JSON, FHIR-compatible

Key Differentiators

Sub-second generation speed

(<1s per record)

Medical accuracy validation

(clinical parameter validation)

AD

Comprehensive audit trail

(full generation history)

Quality metrics

(completeness, consistency, realism scores)

Slide 4: Technical Architecture

Modern, Scalable Architecture

Technology Stack

- Frontend: Streamlit (web interface)
- **Backend**: Python + Faker (data generation)
- Al Layer: Rule-based summarization (extensible to LLMs)
- Data: Pandas (processing), Local storage (logs)
- Security: Role-based access control

Key Components

- **Medical Data Generator**: Disease-specific parameter engine
- **Quality Assurance:** Real-time validation and scoring
- **Export Engine:** Multiple format support
- 4. Audit System: Complete user activity tracking
- 5. Al Summary Agent: Automated patient record summarization

Performance Metrics

1000

95%+

99.9%

Generation Speed

per record

Scalability

records per batch

Accuracy

clinical parameter accuracy

Uptime

availability

Made with GAMMA

Slide 5: Demo Walkthrough

Live System Demonstration

User Journey

1

Authentication

Role-based login system

2

Disease Selection

Choose from 6 rare diseases

3

Configuration

Set generation parameters

4

Data Generation

Real-time synthetic data creation

5

Quality Review

Validate generated records

6

Export

Download in multiple formats

Key Features to Show

- Real-time generation with progress tracking
- Interactive data table with filtering and sorting
- Al-generated summaries with different detail levels
- Quality metrics dashboard with scoring
- Export functionality with multiple formats
- Audit logging with user activity tracking

Sample Generated Data

Show realistic patient records with:

- Demographics (age, gender, ethnicity)
- Vital signs (heart rate, blood pressure)
- Symptoms (disease-specific patterns)
- Lab results (normal vs abnormal ranges)
- Treatment history

Slide 6: Market Validation

Evidence of Market Need

Industry Insights

- Over 85% of rare diseases have no FDA-approved treatment
- Clinical AI models fail due to small, unbalanced datasets
- Synthetic data recognized as a safe alternative by regulatory bodies (FDA, EMA)

2023 McKinsey report:

"Synthetic data generation will be essential for unlocking the next phase of Al-driven healthcare."

Stakeholder Interviews

- Clinical Researcher: "We can't train disease prediction models without large patient datasets."
- WhealthTech CTO: "Synthetic data will allow us to move faster without legal roadblocks."
- Al Engineer: "Fine-tuning LLMs on synthetic data gave 28% performance boost in edge cases."

Slide 7: Responsible Al & Security

Privacy, Ethics & Guardrails

Data Protection

- 100% synthetic: no PII/PHI used
- V HIPAA-aligned structure
- V No storage of actual patient data

Guardrails

- Prompt moderation filters on any LLM component
- V Disease-specific input validation
- Automated outlier detection for unusual outputs

Role-Based Access (RBAC)

- Admin: Full access
- Researcher: View + generate
- Viewer: View only
- Permissions enforced at generation + export layers

Audit Trail

- The Log user actions with timestamps
- Track all generation prompts & export events
- Simulate AWS IAM-style policy control

Slide 8: Deployment Strategy

Infrastructure

- Streamlit App: Hosted via AWS
 EC2 / Streamlit Cloud
- Data Storage: Amazon S3 (if required for batch storage)
- Audit Logs: Amazon
 CloudWatch (or flat file in MVP)
- Authentication: AWS Cognito or simulated RBAC
- Scalability: Docker-compatible, deployable via AWS Lambda for serverless operation

DevOps Flow

- CI/CD pipeline using GitHub +
 GitHub Actions
- Simple build/deploy automation
- Optionally containerized using Docker

Testing

- Unit tested generation logic
- Manual testing of UI flow
- Functional testing using synthetic edge cases

Slide 9: Business Model & Monetization

Future Potential & Scalability

Target Customers

- Biotech and pharma companies
- Healthcare Al startups
- Clinical research organizations
- AI/ML academic institutions

Monetization Model

- SaaS Model: Pay per disease + record count
- 🔬 API Access: Premium access to synthetic data endpoints
- Qustom Data Packages: Tailored datasets for Al training
- **Enterprise Licensing**: For large R&D teams

Expansion Possibilities

Add more disease domains

(oncology, cardiology, etc.)

Plug into real-time model training platforms

Offer synthetic data validation score API