Théorème de convergence dominée et applications

Dans toute la suite (E, \mathcal{A}, μ) est un espace mesuré.

Exercice 1. Soit $f: E \longrightarrow \mathbb{C}$ une fonction intégrable. Montrer que

$$\sum_{n\geqslant 1} \frac{1}{n^2} \int_{\{|f|\leqslant n\}} |f|^2 d\mu < +\infty.$$

La réciproque est-elle vraie?

Exercice 2. Dans chacun des exemples suivants, déterminer la limite de la suite $(U_n)_{n\geqslant 1}$:

$$U_n = \sum_{k \geqslant 0} \frac{n}{nk^2 + k + 1}, \qquad U_n = \sum_{1 \leqslant i \leqslant 2n} \frac{n^2}{in^2 + i^2}, \qquad U_n = \sum_{k=1}^{n^2} \frac{\sin k}{k^2} \left(\frac{k}{k+1}\right)^n.$$

Exercice 3. Dans chacun des exemples suivants, déterminer la limite de la suite $(I_n)_{n>1}$:

$$I_n = \int_0^1 \frac{n}{1+x^2} \tanh(x/n) dx, \qquad I_n = \int_0^\infty \frac{n \exp(-x)}{nx+1} dx, \qquad I_n = \int_{]0,\infty[} \frac{\sin u}{u^2} \frac{u^{1/n}}{1+u^{1/n}} \lambda(du),$$

$$I_n = \int_0^n \frac{1}{n} \left(1 + \frac{t}{n}\right) \exp(-\frac{t}{n}) dt, \qquad I_n = \int_{\mathbb{R}} \frac{dt}{\pi(1+|t|^{2+\frac{1}{n}})},$$

où λ désigne la mesure de Lebesgue sur $\mathbb R.$

Exercice 4. Montrer que la fonction $f: x \longmapsto \frac{\sin x}{e^{2x} - 1}$ est intégrable sur $]0, \infty[$.

Établir la relation

$$\int_0^\infty \frac{\sin x}{e^{2x} - 1} \, dx = \sum_{n \geqslant 1} \frac{1}{1 + 4n^2}.$$

On pourra d'abord démontrer que, si x > 0, $f(x) = \sum_{n \ge 1} e^{-2nx} \sin x$.

Exercice 5. Soient $f: E \longrightarrow \mathbb{C}$ une fonction intégrable et $(A_n)_{n \geqslant 1} \subset \mathcal{A}$ une partition de E. Montrer que

$$\int_{E} f(x) \,\mu(dx) = \sum_{n \ge 1} \int_{A_n} f(x) \,\mu(dx).$$

Calculer l'intégrale sur \mathbb{R}_+ par rapport à la mesure de Lebesgue de $f(x) = \frac{1}{[x]!} \mathbf{1}_{x>0}$.

Exercice 6. Pour $n \ge 1$ et $x \in \mathbb{R}$, on pose $u_n(x) = e^{-nx} - 2e^{-2nx}$.

- 1. Montrer que $\sum u_n$ converge simplement sur \mathbb{R}_+^* et déterminer sa somme S.
- 2. Calculer, puis expliquer les résultats,

$$\int_0^\infty S(x) \, dx, \qquad \sum_{n \ge 1} \int_0^\infty u_n(x) \, dx.$$

Exercice 7. Soit F la fonction définie sur \mathbb{R}_+ par

$$F(t) = \int_0^\infty \left(\frac{\sin x}{x}\right)^2 e^{-tx} dx, \quad t \geqslant 0.$$

- 1. Montrer que F est continue sur \mathbb{R}_+ et \mathcal{C}^2 sur \mathbb{R}_+^* .
- 2. Calculer F'' et déterminer les limites de F(t) et F'(t) quand $t \to +\infty$.
- 3. En déduire une expression simple de F.

Exercice 8. Soit γ une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ telle que, pour tout réel β , $x \mapsto \exp(\beta x)$ est γ -intégrable.

- 1. Montrer que γ est finie?
- 2. Montrer que, pour tout réel β et tout p > 0, $x \mapsto \exp(\beta|x|)$ et $x \mapsto \exp(\beta|x|)|x|^p$ sont γ -intégrables.
- 3. Montrer que, pour tout complexe $z, x \longmapsto \exp(zx)$ est γ -intégrable sur $\mathbb R$ et que

$$\int_{\mathbb{R}} \exp(zx) \, \gamma(dx) = \sum_{n \ge 0} \frac{z^n}{n!} \int_{\mathbb{R}} x^n \, \gamma(dx).$$

4. Soit la fonction réelle F définie par :

$$F(t) = \int_{\mathbb{R}} \frac{\exp(tx)}{1 - t\cos(x)} \, \gamma(dx).$$

- (a) Montrer que F est continue sur]-1,1[.
- (b) Montrer que F est dérivable sur]-1,1[et donner une expression de F'. F est-elle \mathcal{C}^1 sur]-1,1[?
- (c) On suppose que γ a pour densité $x \longmapsto e^{-x^2/2}/\sqrt{2\pi}$ par rapport à la mesure de Lebesgue. Montrer que, si $t \notin]-1,1[$, F(t) n'est pas définie.

Exercice 9. Soient $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction intégrable par rapport à la mesure de Lebesgue et μ une mesure bornée sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On définit, pour $t \in \mathbb{R}$,

$$\widehat{f}(t) = \int_{\mathbb{R}} e^{itx} f(x) dx, \qquad \widehat{\mu}(t) = \int_{\mathbb{R}} e^{itx} \mu(dx).$$

- 1. Montrer que \hat{f} et $\hat{\mu}$ sont uniformément continue sur \mathbb{R} .
- 2. Montrer que si $x \longmapsto xf(x)$ est intégrable alors \widehat{f} est de classe \mathcal{C}^1 sur \mathbb{R} . Que faut-il supposer pour $\widehat{\mu}$ soit de classe \mathcal{C}^1 ?
- 3. Calculer \widehat{f} et $\widehat{\mu}$ dans les cas suivants :

$$f(x) = e^{-|x|}, \qquad f(x) = e^{-x} \mathbf{1}_{x \ge 0}, \qquad \mu = (\delta_{-1} + \delta_1)/2, \qquad \mu = \sum_{k \ge 0} e^{-\alpha} \frac{\alpha^k}{k!} \, \delta_k, \, \alpha > 0.$$

- 4. L'objectif est de calculer \hat{f} , notée g dans cette question, lorsque $f(x) = \frac{1}{1+x^2}$.
 - (a) Montrer que g est réelle et paire.
 - (b) Soit $(g_n)_{n\geqslant 1}$ la suite de fonctions définies par

$$g_n(t) = \int_{-n}^{n} \frac{e^{itx}}{1+x^2} dx, \quad n \geqslant 1, \quad t \in \mathbb{R}.$$

Montrer que g_n est \mathcal{C}^1 sur \mathbb{R} et que (g'_n) converge uniformément sur $[a, +\infty[$ pour tout a>0.

(c) En déduire que g est dérivable sur \mathbb{R}_+^* et que

$$\forall t > 0, \qquad g'(t) = \int_{\mathbb{R}} \frac{iu}{t^2 + u^2} e^{iu} du.$$

- (d) En déduire que g est deux fois dérivable sur \mathbb{R}_+^* et que g''(t)=g(t) pour tout t>0.
- (e) Calculer g(0) et $\lim_{t\to\infty} g(t)$. En déduire que, pour $t\in\mathbb{R}$, $g(t)=\pi\,e^{-|t|}$.

Exercice 10. Préciser le domaine de définition de la fonction

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

Montrer que B est C^1 sur son domaine de définition.