TRANSFERT DE FLUIDE ENTRE 2 RESERVOIRS

L'irrigation d'un domaine exige un débit de 40 l/s et utilise une pompe centrifuge.

- A- La conduite d'aspiration (en amont de la pompe) a un diamètre de 200 mm, une longueur totale 8m, un coefficient de perte de charge linéaire $\lambda = 0.02$, et comprend :
- une crépine ($CS_1 = 3,5$);
- un coude à 135° ($CS_2 = 0.15$);
- un cône de raccordement à la pompe ($CS_3 = 0,1$).
 - 1- Calculer la vitesse moyenne dans la conduite d'aspiration. De quel régime d'écoulement s'agitil?
 - 2- Calculer le nombre de Reynolds dans la conduite d'aspiration.
 - 3- Calculer la perte de charge linéaire dans la conduite d'aspiration.
 - 4- Calculer les pertes de charge singulières respectives de la crépine, du coude et du cône de raccordement.
 - 5- Calculer la somme des pertes de charge singulières et linéaire dans la conduite d'aspiration.
 - B- La conduite de refoulement de diamètre 175 mm, de longueur 160 m, de coefficient de perte de charge linéaire $\lambda = 0.02$, comprend :
 - un cône divergent de raccordement à la pompe ($CS_4 = 0.25$);
 - une vanne de réglage ouverte $(CS_5 = 0,2)$;
 - 3 coudes à 90° ($CS_6 = 0.2$ pour chaque coude);
 - un clapet de retenue ($CS_7 = 1,5$);
 - un débouché dans le réservoir supérieur ($CS_8 = 0,5$).
 - 1- Calculer la vitesse moyenne dans la conduite de refoulement.
 - 2- Calculer le nombre de Reynolds dans la conduite de refoulement.
 - 3- Calculer la perte de charge linéaire dans la conduite de refoulement.
 - 4- Calculer les pertes de charge singulières respectives du cône, de la vanne des trois coudes du clapet et du débouché dans le réservoir.
 - 5- Calculer la somme des pertes de charge singulières et linéaire dans la conduite de refoulement.
 - C- La hauteur géométrique totale d'élévation est de 17 m. Calculer la hauteur nette que doit fournir la pompe.

Données : masse volumique de l'eau $\rho = 10^{3}$ kgm⁻³ ; viscosité de l'eau $\mu = 10^{-3}$ Pa.s.

MESURE DE DEBIT AVEC UN VENTURI

Dans une canalisation horizontale de diamètre D=8 cm, on veut mesurer le débit d'eau. On intercale un tube de Venturi (D=8 cm, d=2 cm). La dénivellation h du mercure dans un tube en U peut être mesurée avec précision. On donne :

- la masse volumique de l'eau : ρeau = 1000 kg/m3,
- la masse volumique du mercure : ρ_{mercure} = 13600 kg/m3,
- l'accélération de la pesanteur : g = 9,81 m/s2.

- 1- Ecrire l'équation de continuité. En déduire la vitesse moyenne d'écoulement V_B au col dans la section S_B en fonction de la vitesse V_A dans la section S_A .
- 2- En appliquant la relation fondamentale de l'hydrostatique entre les points A' et B' relative à l'équilibre du mercure, déterminer la différence de pression : $(P_{A'} P_{B'})$ en fonction de g, $\rho_{mercure}$, $Z_{A'}$ et $Z_{B'}$.
- 3- De même, déterminer l'expression de la différence de pression (P_A - $P_{A'}$) en fonction de g, ρ_{eau} , $Z_{A'}$ et $Z_{A'}$.
- 4- De même, déterminer l'expression de la différence de pression (P_B-P_B) en fonction de g, ρ_{eau} , Z_B et Z_B .
- 5- En utilisant les équations établies dans les questions 2), 3) et 4), donner la relation entre (P_A-P_B) en fonction de $\rho_{mercure}$, ρ_{eau} , g et h.
- 6- En faisant l'hypothèse que l'eau est un fluide parfait, et en appliquant le théorème de Bernoulli entre A et B, donner l'expression de la vitesse d'écoulement V_A en fonction de ρ_{eau} , $\rho_{mercure}$, g et h.
- 7- En déduire l'expression du débit volumique Q_v en fonction de $D,\,\rho_{mercure},\,\rho_{eau},\,g,\,h.$
- 8- Faire une application numérique pour une dénivellation h = 8 mm.