

EAST SEARCH

9/13/05

L#	Hits	Search String	Databases
S1	977	predict\$3 with mode\$1 with ((control near2 system\$1) or controller\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S2	118	S1 and ((plurality or multiple) near2 mode\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S3	117	S1 and ((smart or intelligent or learning) with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S4	210	S2 or S3	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S5	39	S4 and (actuator\$1 with sensor\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S6	97	S4 and (weight\$3 with ((control near2 system\$1) or controller\$1 or model\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S7	25	S2 and S3	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S8	11	S4 and (evaluat\$3 with model\$1 with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S9	16	S4 and (weight\$3 with initia\$4)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S11	39	S4 and ((predict\$3 or forecast\$3) with (future near2 state\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S12	13	S4 and (repeat\$3 with predict\$3)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S13	100	S4 and (predict\$3 with error\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S14	68	S6 and S14	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S15	140	S5 or S6 or S7 or S8 or S9 or S10 or S11 or S12 or S13 or S15	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S17	13	S4 and (weight\$3 with (fraction or part))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S18	20	S4 and (weight\$3 with (invest\$3 or modify\$3 or modification\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S19	977	predict\$3 with mode\$1 with ((control near2 system\$1) or controller\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S20	118	S17 and ((plurality or multiple) near2 mode\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S21	117	S17 and ((smart or intelligent or learning) with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S22	210	S18 or S19	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S23	39	S20 and (actuator\$1 with sensor\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S24	97	S20 and (weight\$3 with ((control near2 system\$1) or controller\$1 or model\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S25	25	S18 and S19	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S26	11	S20 and (evaluat\$3 with mode\$1 with ((control near2 system\$1) or controller\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S27	16	S20 and (weight\$3 with initia\$4)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S28	13	S20 and (weight\$3 with (fraction or part))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S29	39	S20 and ((predict\$3 or forecast\$3) with (future near2 state\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S30	20	S20 and (weight\$3 with (invest\$3 or modify\$3 or modification\$1))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S31	13	S20 and (repeat\$3 with predict\$3)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S32	100	S20 and (predict\$3 with error\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S33	68	S22 and S30	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S34	140	S21 or S22 or S23 or S24 or S25 or S26 or S27 or S28 or S29 or S31	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S35	3	S32 and (sum with weight\$1 with (one or "1"))	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S36	2	S20 and (fraction\$1 with weight\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S37	11	S17 and (fraction\$1 with weight\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB
S38	2	S17 and (error with (deviation or variance) with weight\$1)	US-PGPUB; USPAT; EPO; JPO; DERVENT; IBM_TDB

S39 US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
 S40 2 5,602,761.pn.
 S41 1 S38 and (noise near2 variance)
 S42 2 4,775,949.pn.
 S43 1 S40 and (noise near2 variance)
 S44 2 4,771,250.pn.
 S45 1 S43 and (noise near2 variance)
 S46 382377 700(("28", "44", "45", "30", "31").ccis.
 S47 5687 S45 and ((multiple or plurality) with models)
 S16 1076 S46 and ((predict\$3 or forecast\$3) with models)
 S48 205 S47 and (weights3 with model\$1)
 S49 259 S45 and ((multiple or plurality) with (predict\$3 or forecast\$3) with models)
 S50 61 S49 and (weights3 with model\$1)
 S51 383172 700(("28", "44", "45", "30", "31").ccis.
 S52 261 S51 and ((multiple or plurality) with (predict\$3 or forecast\$3) with models)
 S53 61 S52 and (weights3 with model\$1)
 S54 42 S52 and (weights3 with (adapt\$3 or modif\$4 or chang\$3 or increase\$3))
 S10 392 S51 and ((consensus or combination) near2 (predict\$3 or forecast\$3))
 S55 73 S55 and (weights3 with (adapt\$3 or modif\$4 or chang\$3 or increase\$3))
 S56 130 S55 and ((accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3))
 S57 24 S56 and S57
 S58 57 S51 and ((consensus) near2 (predict\$3 or forecast\$3))
 S59 8 S59 and (weights3 with (adapt\$3 or modif\$4 or chang\$3 or increase\$3))
 S60 8 S59 and ((accuracy or error\$1 or ability) near2 (predict\$3 or forecast\$3))
 S61 15 S60 or S61
 S62 212 (consensus near2 (predict\$3 or forecast\$3))
 S63 0 S63 and (investing near2 fraction)
 S64 3 (investing near2 fraction)
 S65 10 6,119,052.pn. or "6,027,112".pn. or "6,039,316".pn. or "6,834,811".pn.
 S66 6 2003002447 or "20030028275" or "2003012761".
 S67 985 ((plurality or multiple) near2 model\$1) with control\$3
 S68 24 S68 and (weights1 with model\$1 with control\$1)
 S69 71 S68 and (weights1 with model\$1)

09/973786 Warren Jackson et al.

9/13/05

EAST SEARCH

Results of search set S47
 Document Kind Codes Title
 US 20050168973 A1 Artificial miniature, landscape model with three dimensionally variable colored LEDs

Issue Date Current OR
 20050804 362/122
 Abstract

US 20050149209 A1	Adaptive multivariable process controller using model switching and attribute interpolation	20050707 700/30
US 20050128138 A1	Multiple model radar tracking filter and systems and methods employing same	20050616 342/195
US 20050108180 A1	Automatic working system	20050519 706/46
US 20050075875 A1	Data process unit and data process unit control program	20050407 704/231
US 20050075738 A1	Integrated optimization and control using modular model predictive controller	20050407 700/44
US 20050054450 A1	Remote control toy system, and controller, model and accessory device to be used in the same	20050310 463/58
US 20050050532 A1	Method, apparatus and computer program for compiling program using statistical information c	20050303 717/158
US 20050049761 A1	Vibration control apparatus for automotive vehicle	20050303 701/1
US 20050020784 A1	Process for preparing polyethylene	20050127 526/64
US 20040226152 A1	Real-time drilling optimization based on MWD dynamic measurements	20041223 175/25
US 20040223383 A1	Method for Design of Multi-objective Robust Controllers	20041111 700/29
US 20040208341 A1	System and method for tracking a global shape of an object in motion	20041021 382/103
US 20040199481 A1	Bayesian neural networks for optimization and control	20041007 706/21
US 20040155142 A1	SYSTEM AND METHOD FOR PERIODICALLY ADAPTIVE GUIDANCE AND CONTROL	20040812 244/3.11
US 20040123600 A1	ADAPTIVE MODEL-BASED CONTROL SYSTEMS AND METHODS FOR CONTROLLING A	20040701 60/773
US 20040083028 A1	Process control using on-line instrumentation and process models	20040429 700/269
US 20030195641 A1	State based adaptive feedforward PID controller	20031016 700/42
US 20030149603 A1	System and method for operating a non-linear model with missing data for use in electronic co	20030807 705/7
US 20030140023 A1	System and method for pre-processing input data to a non-linear model for use in electronic cc	20030724 706/21
US 20030120360 A1	Plant control apparatus	20030626 700/29
US 20030107514 A1	Method and apparatus for saving power in a global positioning system receiver	20030612 342/357.06
US 20030100972 A1	Reusable software components for invoking computational models	20030529 700/121
US 20030088565 A1	Method and system for mining large data sets	20030508 707/6
US 20030088322 A1	Kiln thermal and combustion control	20030508 700/53
US 20030074166 A1	Learning systems and methods for market-based control of smart matter	20030417 703/2
US 20030065409 A1	Adaptively detecting an event of interest	20030403 700/31
US 20030060945 A1	Vertical motion detector for air traffic control	20030327 701/4
US 20030046130 A1	System and method for real-time enterprise optimization	20030306 705/7
US 20020181799 A1	Dynamically reconfigurable signal processing circuit, pattern recognition apparatus, and image	20021205 382/260
US 20020090134 A1	System and method for providing a scalable objective metric for automatic video quality evalua	20020711 382/181
US 20020071614 A1	System and method for providing a scalable dynamic objective metric for automatic video qual	20020613 382/278
US 20020042667 A1	Vibration exciting apparatus and vibration testing system for structure using it	20020411 700/280
US 20010014834 A1	Adaptation to unmeasured variables	20010816 700/29
US 6876381 B2	System and method for providing a scalable objective metric for automatic video quality evalua	20050405 348/180
US 6845938 B2	System and method for periodically adaptive guidance and control	20050125 244/3.11
US 6823675 B2	Adaptive model-based control systems and methods for controlling a gas turbine	20041130 60/773
US 6812887 B2	Method and apparatus for saving power in a global positioning system receiver	20041102 342/357.12
US 6807448 B1	Weight identification method and feedback control method	20041019 700/28
US 6798919 B2	System and method for providing a scalable dynamic objective metric for automatic video qual	20040928 382/272
US 6795794 B2	Method for determination of spatial target probability using a model of multisensory processing	20040921 702/181
US 6745087 B2	Method for control of a plant	20040601 700/29
US 6725208 B1	Bayesian neural networks for optimization and control	20040420 706/23
US 6721668 B1	Vibration exciting apparatus and vibration testing apparatus for structure using same	20040413 702/54

US 6609238 B1	Method of control cell placement to minimize connection length and cell delay	20030819 716/10
US 6604028 B2	Vertical motion detector for air traffic control	20030805 701/4
US 6600485 B1	Polygon data generation method and image display apparatus using same	20030729 345/419
US 6577908 B1	Adaptive feedback/feedforward PID controller	20030610 700/42
US 6575037 B2	Multiple degree of freedom vibration exciting apparatus and system	20030610 73/633
US 6560500 B2	Method and apparatus for manufacturing objects having optimized response characteristics	20030506 700/98
US 6532454 B1	Stable adaptive control using critic designs	20030311 706/14
US 6404581 B1	Adaptation to unmeasured variables	20020611 360/75
US 6373033 B1	Model-based predictive control of thermal processing	20020416 219/497
US 6310619 B1	Virtual reality, tissue-specific body model having user-variable tissue-specific attributes and a s:	20011030 345/420
US 6230062 B1	Adaptation to unmeasured variables	20010508 700/29
US 6207936 B1	Model-based predictive control of thermal processing	20010327 219/497
US 5930284 A	Multiple input electrode gap controller	19990727 373/50
US 5892691 A	Method, apparatus, and software product for generating weighted deformations for geometric	19990406 703/6
US 5774633 A	Supporting neural network method for process operation	19980630 706/25
US 5745580 A	Reduction of computational burden of adaptively updating control filter(s) in active systems	19980428 381/71.1
US 5546312 A	Use of spatial models for simultaneous control of various non-uniformity metrics	19960813 700/97
US 5522798 A	Control of a multi-channel drug infusion pump using a pharmacokinetic model	19960604 604/65
US 5475842 A	Method of compilation optimization using an N-dimensional template for relocated and replicated	19951212 717/160
US 5408405 A	Multi-variable statistical process controller for discrete manufacturing	19950418 700/31
US 5281179 A	Toy aircraft capable of circling in changeable radius	19940125 446/68
US 5272723 A	Waveform equalizer using a neural network	19931221 375/232
US 5010473 A	Method and apparatus for model-based control of an open-loop process	19910423 700/30
US 4623108 A	Airplane	19861118 244/13
US 20050128138 A	Multiple model radar tracking filter for radar system, has feed back loop to provide feedback si	20050616
EP 531712A2, A3, B1	Flight controller contg. neuronal network - is formed by training network as dynamic model of re	19930414
SU 1246110 A	Graph modelling circuit - has control unit based on logic gates to enable multiple branch model	19860723 NA

[Home](#) | [Login](#) | [Logout](#) | [Access Information](#) | [Alerts](#) |
Welcome United States Patent and Trademark Office

Search Results

[BROWSE](#)[SEARCH](#)[IEEE XPORE GUIDE](#) [e-mail](#)

Results for "((multiple models' and narendra and 'adaptive control')<in>metadata)"

Your search matched **16** of **1235066** documents.

A maximum of **100** results are displayed, **25** to a page, sorted by **Relevance** in **Descending** order.

» Search Options

[View Session History](#)[New Search](#)

Modify Search

((multiple models' and narendra and 'adaptive control')<in>metadata)

[»](#)

Check to search only within this results set

Display Format: Citation Citation & Abstract

» Key

IEEE JNL IEEE Journal or Magazine

IEE JNL IEE Journal or Magazine

IEEE CNF IEEE Conference Proceeding

IEE CNF IEE Conference Proceeding

IEEE STD IEEE Standard

Select Article Information

- 1. **Adaptive control using multiple models**
Narendra, K.S.; Balakrishnan, J.;
Automatic Control, IEEE Transactions on
Volume 42, Issue 2, Feb. 1997 Page(s):171 - 187
Digital Object Identifier 10.1109/9.554398
[AbstractPlus](#) | [References](#) | [Full Text: PDF\(724 KB\)](#) [IEEE JNL](#)
- 2. **Adaptive control of discrete-time systems using multiple models**
Narendra, K.S.; Xiang, C.;
Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
Volume 4, 16-18 Dec. 1998 Page(s):3978 - 3983 vol.4
Digital Object Identifier 10.1109/CDC.1998.761919
[AbstractPlus](#) | [Full Text: PDF\(476 KB\)](#) [IEEE CNF](#)
- 3. **Adaptive control of simple nonlinear systems using multiple models**
Narendra, K.S.; George, K.;
American Control Conference, 2002. Proceedings of the 2002
Volume 3, 8-10 May 2002 Page(s):1779 - 1784 vol.3
Digital Object Identifier 10.1109/ACC.2002.1023824
[AbstractPlus](#) | [Full Text: PDF\(533 KB\)](#) [IEEE CNF](#)
- 4. **Improving transient response of adaptive control systems using multiple switching**
Narendra, K.S.; Balakrishnan, J.;
Automatic Control, IEEE Transactions on
Volume 39, Issue 9, Sept. 1994 Page(s):1861 - 1866
Digital Object Identifier 10.1109/9.317113
[AbstractPlus](#) | [Full Text: PDF\(488 KB\)](#) [IEEE JNL](#)
- 5. **Stochastic adaptive control using multiple estimation models**
Narendra, K.S.; Driollet, O.A.;
American Control Conference, 2001. Proceedings of the 2001
Volume 2, 25-27 June 2001 Page(s):1539 - 1544 vol.2
Digital Object Identifier 10.1109/ACC.2001.945945
[AbstractPlus](#) | [Full Text: PDF\(488 KB\)](#) [IEEE CNF](#)
- 6. **Adaptive control using multiple models, switching, and tuning**

Narendra, K.S.; Driollet, O.A.;
Adaptive Systems for Signal Processing, Communications, and Control Sympc
SPCC. The IEEE 2000
1-4 Oct. 2000 Page(s):159 - 164
Digital Object Identifier 10.1109/ASSPCC.2000.882464
[AbstractPlus](#) | Full Text: [PDF\(544 KB\)](#) IEEE CNF

- 7. Adaptive control of discrete-time systems using multiple models**
Narendra, K.S.; Cheng Xiang;
Automatic Control, IEEE Transactions on
Volume 45, Issue 9, Sept. 2000 Page(s):1669 - 1686
Digital Object Identifier 10.1109/9.880617
[AbstractPlus](#) | [References](#) | Full Text: [PDF\(464 KB\)](#) IEEE JNL
- 8. Design issues in stochastic adaptive control of discrete-time systems using multiple models**
Xiang, C.; Narendra, K.S.;
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on
Volume 2, 10-13 Dec. 2002 Page(s):2183 - 2188 vol.2
[AbstractPlus](#) | Full Text: [PDF\(426 KB\)](#) IEEE CNF
- 9. Improving transient response of adaptive control systems using multiple switching**
Narendra, K.S.; Balakrishnan, J.;
Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on
15-17 Dec. 1993 Page(s):1067 - 1072 vol.2
Digital Object Identifier 10.1109/CDC.1993.325348
[AbstractPlus](#) | Full Text: [PDF\(420 KB\)](#) IEEE CNF
- 10. Nonlinear adaptive control using neural networks and multiple models**
Chen, L.; Narendra, K.S.;
American Control Conference, 2000. Proceedings of the 2000
Volume 6, 28-30 June 2000 Page(s):4199 - 4203 vol.6
Digital Object Identifier 10.1109/ACC.2000.877012
[AbstractPlus](#) | Full Text: [PDF\(460 KB\)](#) IEEE CNF
- 11. A switching scheme for adaptive control using multiple models**
Fujinaka, T.; Omatsu, S.;
Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceeding
International Conference on
Volume 5, 12-15 Oct. 1999 Page(s):80 - 85 vol.5
Digital Object Identifier 10.1109/ICSMC.1999.815525
[AbstractPlus](#) | Full Text: [PDF\(344 KB\)](#) IEEE CNF
- 12. Adaptation and learning using multiple models, switching, and tuning**
Narendra, K.S.; Balakrishnan, J.; Ciliz, M.K.;
Control Systems Magazine, IEEE
Volume 15, Issue 3, June 1995 Page(s):37 - 51
Digital Object Identifier 10.1109/37.387616
[AbstractPlus](#) | Full Text: [PDF\(1252 KB\)](#) IEEE JNL
- 13. Multiple model based adaptive control of robotic manipulators**
Ciliz, M.K.; Narendra, K.S.;
Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on
Volume 2, 14-16 Dec. 1994 Page(s):1305 - 1310 vol.2
Digital Object Identifier 10.1109/CDC.1994.411141
[AbstractPlus](#) | Full Text: [PDF\(436 KB\)](#) IEEE CNF

- 14. Intelligent control of robotic manipulators: a multiple model based approach**
Ciliz, M.K.; Narendra, K.S.;
Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Proceedings. 1995 IEEE/RSJ International Conference on Volume 2, 5-9 Aug. 1995 Page(s):422 - 427 vol.2
Digital Object Identifier 10.1109/IROS.1995.526251
[AbstractPlus](#) | Full Text: [PDF\(669 KB\)](#) IEEE CNF

- 15. Intelligent control using neural networks and multiple models**
Lingji Chen; Narendra, K.S.;
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on Volume 2, 10-13 Dec. 2002 Page(s):1357 - 1362 vol.2
[AbstractPlus](#) | Full Text: [PDF\(419 KB\)](#) IEEE CNF

- 16. Intelligent control using fixed and adaptive models**
Balakrishnan, J.; Narendra, K.S.;
American Control Conference, 1995. Proceedings of the Volume 1, 21-23 June 1995 Page(s):597 - 601 vol.1
[AbstractPlus](#) | Full Text: [PDF\(456 KB\)](#) IEEE CNF

Indexed by

[Help](#) [Contact Us](#) [Privacy & Terms](#)
© Copyright 2005 IEEE –