MI628 / ME920 - Inferência Causal

- Lista 3 -

Carlos Trucíos

Instruções

- A resolução da lista será discutida no dia 09/04 em sala de aula (a participação será avaliada). Os alunos apresentarão a solução e farão a discussão pertinente de cada um dos exercícios.
- Os exercícios computacionais deverão ser resolvidos com antecedencia de forma que seja possível ver o código, gráficos, tabelas e outros resultados obtidos (sugestão: Github / Colab / Posit Cloud).

Exercícios

1. [SRE] Assuma que $\tau_i = \tau \ \forall i=1,\cdots,n$. Considere a seguinte classe de estimadores para τ :

$$\hat{\tau}_{\omega} = \sum_{k=1}^{K} \omega_{[k]} \hat{\tau}_{[k]}.$$

- a. Quais as condições em $\omega_{[k]}$ s para que $\hat{\tau}_{\omega}$ seja não viesado para $\tau?$
- b. Quais as condições em $\omega_{[k]}$ s para que $\hat{\tau}_{\omega}$ tenha variância mínima?
- 2. [SRE] Um experimento foi conduzido para estudar a eficiencia de um medicamento para tratar a hiperplasia prostática benigna. Em cada centro, pacientes foram atribuidos aleatoriamente em três grupos: controle, finasterida 1mg e finasterida 5mg. O conjunto de dados multicenter.csv (disponível aqui) fornece, para cada centro, algumas estatísticas resumo para a pontuação dos sintomas (Y). Esta pontuação é a soma das respostas a nove questões (0-4) sobre diversos sintomas. Os resultados das colunas são:
 - center: ID dos centros,
 - n0, n1, n5: tamanho da amostra em cada um dos grupos (controle, finasterida 1mg e finasterida 5mg).
 - mean0, mean1, mean5: média dos resultados em cada um dos grupos (controle, finasterida 1mg e finasterida 5mg).

• sd0, sd1, sd5: desvio padrão dos resultados em cada um dos grupos (controle, finasterida 1mg e finasterida 5mg).

Estabeleça as hipóteses apropriadas e faça o teste correspondente, separadamente, para finasterida 1mg vs control e finasterida 5mg vs control. Considere cada centro como um estrato.

- 3. [SRE] Reanalize o dataset lalonde sob a perspective de Fisher e de Neyman.
 - Considere race (black, hisp, other)como estrato.
 - Considere marital status (married) como estrato.
 - Considere o high school diploma (nodegr) como estrato.
 - Discuta os resultados e compare com os obtidos sob CRE.
- 4. [ReM] Assuma que randomizamos $\mathbf{Z} = (Z_1, \dots, Z_n)$ segundo um CRE e aceitamos este se e somente se $\phi(\mathbf{Z}, \mathbf{X}) = 1$ (em que $\phi(\cdot)$ é um criterio de balanceamento pre-estabelecido):
 - a. Mostre que se $n_1=n_0$ e $\phi(\mathbf{Z},\mathbf{X})=\phi(1_n-\mathbf{Z},\mathbf{X})$ então $\hat{\tau}$ é não viesado para $\tau.$
 - b. Verifique que rerandomização utilizando a distância de Mahalanobis satisfaz $\phi(\mathbf{Z}, \mathbf{X}) = \phi(1_n \mathbf{Z}, \mathbf{X})$ se $n_1 = n_0$.
 - c. Dê um contra exemplo que ilustre que $\hat{\tau}$ é viesado para τ quando as condições acima não são satisfeitas.

Obs: $\phi(\mathbf{Z}, \mathbf{X})$ pode ser um critério geral. No caso visto em aula, $\phi(\mathbf{Z}, \mathbf{X}) = I(M \le a)$

5. [ReM] Mostre que

$$\hat{\tau}_F = \hat{\tau} - \hat{\gamma}_F' \hat{\tau}_X,$$

em que $\hat{\gamma}_F$ é o coeficiente de **X** na regressão por MQO de Y sob $(1, \mathbf{Z}, \mathbf{X})$.

- 6. [ReM] Reanalize o dataset Penn46_ascii.txt (disponível aqui). O conjunto de dados já foi analisado na aula 5 e consideramos treatment como indicador de tratamento (**Z**), log(duration) como resultado observado e quartes como variável estratificadora. Agora, queremos incluir todas as outras covariáveis na análise.
 - a. Realize ajustes por regressão dentro dos estratos do experimento e, em seguida, combine esses estimadores ajustados para estimar o efeito causal médio.
 - b. Reporte o estimador pontual, o erro padrão estimado e o intervalo de confiança de 95%.
 - c. Compare os resultados obtidos com aqueles sem ajuste por regressão.