		Page No. Date		
7	> MLP is a type of	ortificial newal		
	of newtons. @ Plow.	more hidden lovers		
1	of newrons. @ Plow of MLP is Pinst input layers then one or more hidden layers depends on the dataset and an output			
	layer.			
		and the property of the second second		
	Différence between	MLP & SLP :-		
	#A O	1 010		
	MILP	SLP		
0	Contains hidden	No hidden layer is		
0	layers can solve:	priesent- can solve on		
	non-linear problem.	linear problem.		
(11)	Uses threesold (step)			
	Punc			
(11)	Uses non-linear	uses threshold		
	activation function	Punction.		
	like ReLU, Tanh,			
	Sigmoid.			
	Alace had augogodian	Clost courselves		
	Uses back propogation	leasning will		
	Roy training	leaning hac.		
	rom brunny			

. .

The auchitecture of MLP consists of three main types of layers such as an input layer one or more hidden layer and an output layer.

Role of input layer:

The input layer serves as the entry

point for the data into the newal

network. If the input data has n features

the input layer will have n newrons.

Role of hidden layers
Hidden layers are nesponsible for the

training of the data model. They are the:

hyper parameters that can be tuned. In

hidden layer weights & bias and activation

function are applied during the training.

(III) Role of oblight layer:

The output layer produces the final output of the model we can also calculate the loss with the help of output layer.

Loss = Actual value -

Predicted value.

	Page No. Date
0	Kavier/ Culorot inthalization:- Normal initialization:- wii ~ N (0,6)
	Pen in + Pen out Uni Poum distribution: weights will lie between - 16 [Pan in + Panout] Pen in + Panout]
<u>3</u>	He initialization Normal initialization: weights lies between (0,6) 6 = 2 Penin
(1)	Uniform distribution Weights lies between 1-6 to 6 Penin 1 Panout

Page No.	*		
	-	-	-
-			
Date			
	1		

Weight initialization is important becomes it we initialize weight convertly then optimization of loss Purction will be achieved in the least time.

94. Purpose of Activation Punction:
To Introduce non-linearity which allows

the network to model complex relationship

blw input & output.

O Non-linear activation Punctions enable the

stacking of multiple layer, each learning

different features.

Commonly used Activation Punction

(1) Sigmoid

Tanh 11 $P(x) = \frac{e^z - e^{-2}}{e^z + e^{-2}}$

(111) ReLU P(x) = max(0, z)

(10) Leaky Redu P(x) = max(0.012, Z

	Page No.
	Cate
0	Parametrized Relu
	$\Gamma(x) = \max(\alpha z, z)$
	•
05	Backpropogation is the process of adjusting the weights in a newtal network to minize the coss function. It is the key part of training phase.
(1)	Steps in Backpropogation!- Initialization of weights & bias rendomly
0	Porward pass
	Compute Loss
(10)	With authorst laugh weights.
(V)	Propogate these gradient backwards
	through the network.
(V)	Calculate the gradient descent of loss w. H. t output layer weights. Propogate these gradient backwards through the network. Update weights.
9 6.	Chopsing the numbers of hidden layers f newtons usually depends upon the problem statement or dataset. If the problem is simple then usually 1 to 3 hidden layers are sufficient.
	Theorem statement of dotabet.
	IP the problem is simple then usually.
1	1 to 3 hidden layers ave sufficient.