Homework 3

Simon Zheng 260744353

April 5th, 2018

1

1.1 a)

1.1.1 i)

- In general: 3000 (page) accesses (have to search everywhere)
- Concrete values: 3000 (page) accesses (same reason)

1.1.2 ii)

- In general: 3000 (page) accesses (unclustered index for range search not very useful)
- Concrete values: 3000 (similar reason)

1.1.3 iii)

- In general:
- Concrete values: 10 entries + 1 leaf page

1.1.4 iv)

- In general: 10+1 (using X index as it is more useful)
- Concrete values: Same thing

1.2 b)

Yes, especially on price, as it is very useful for range look-ups. It allows us to make less I/O since we can use the assumption that the range is in order on the pages.

2

2.1 a)

$$OuterPages + |Outer| \times (cost of finding matching tuples in inner relation)$$

= $3,000 + 200,000 \times (1 \ data \ page + 1 \ leaf \ page)) = 403,000$

where *Inner* is *Parts* since it has the primary key index.

2.2 b)

$$OuterPages + \frac{OuterPages}{|bp_{Outer}|} \times (InnerPages)$$
$$= 1,500 + \frac{1,500}{51-1} \times 3,000 = 91,500$$

where Outer is Parts and Inner is Catalog (as specified).

2.3 c)

We first calculate the number of passes for each and then add up the costs of sorting each and merging:

$$1 + \lceil \log_{50-1}(\frac{1,500}{50}) \rceil = 2$$
$$1 + \lceil \log_{50-1}(\frac{4,000}{50}) \rceil = 3$$
$$3,000 \times 3 + 1,500 \times 2 + 3,000 + 1,500 = 16,500$$

2.4

Number of output tuples: |Catalog| for all of them.

3

3.1 a)

 $\pi_{sname} \left(\left(\sigma_{country = 'China'}(Suppliers) \times \sigma_{pname = 'bearing'}(Parts) \right) \bowtie Catalog \right)$ We could also use projection after each selection to only project the column needed to join on and the column used in the final projection (pid and sname).

3.2 b)

