Master Degree in Computer Science

Information Retrieval

Introduction to language models

Prof. Alfio Ferrara

Department of Computer Science, Università degli Studi di Milano Room 7012 via Celoria 18, 20133 Milano, Italia alfio.ferrara@unimi.it

A language model in essentially a probability distribution over a sequence of words

$$p(w_1, w_2, ..., w_n)$$

which can be used for a surprisingly high number of tasks, including document search, document classification, text summarization, text generation, machine translation, and many others

Note: Instead of estimating the probability distribution of words, we can work at a finer granularity on the distribution of substrings of fixed length in words (e.g., characters, 2-chars blocks)

A LM may be used to guess the next word in a sequence

$$p(w_n | w_1, w_2, ..., w_{n-1})$$

Yesterday \rightarrow you \rightarrow studied, \rightarrow what \rightarrow are \rightarrow you \rightarrow doing \rightarrow ...? \rightarrow today

Example 2

Or to guess the author (or any other categorical attribute) of as text

$$p(author | w_1, w_2, ..., w_{n-1})$$

"Twenty years from now you will be more disappointed by the things that you didn't do than by the ones you did do" → Mark Twain

Example 3

Or to select the correct translation for a sentence

$$p(e_1, e_2, ..., e_n | w_1, w_2, ..., w_n)$$

"ci sono molti esempi"

- → "there are many examples"
- → "are there many examples"

- **1. Statistical Language Models**: Estimate the probability distribution of words by enforcing statistical techniques such as n-grams *maximum likelihood estimation* (MLE) or Hidden Markov Models (HMM)
- 2. Neural Language Models: Popularized by Bengio et al. 2003, each word is associated with an embedding vector of fixed size and a Neural Network is used to estimate the next word given a sequence of k preceding words

Natural language is often ambiguous and hard to understand

Really, Sherlock? No! You are clever

Leonard: "Hey, Penny. How's work?"
Penny: "Great! I hope I'm a waitress at the
Cheesecake Factory for my whole life!"
Sheldon: "Was that sarcasm?"

Penny: "No."

Sheldon: "Was that sarcasm?"

Penny: "Yes."

Finding a good man is like finding a needle in a haystack

Language has many possible levels of interpretation

Chain rule and Markov chain models

$$P(w_1 w_2 w_3 ... w_m) = \prod_{i}^{m} P(w_i \mid w_1, w_2, ..., w_{i-1})$$

 $P(\text{the taxi drivers are...}) = P(\text{the}) \times P(\text{taxi} \mid \text{the}) \times P(\text{drivers} \mid \text{the}, \text{taxi}) \times P(\text{are} \mid \text{the}, \text{taxi}, \text{drivers}) \times \dots$

Markov process: words are generated one at a time until the end of the sentence is generated

N-order Markov assumption: we assume that a word depends only on the previous *n* words

$$P(w_1 w_2 w_3 ... w_m) = \prod_{i=1}^{m} P(w_i \mid w_{i-n}, ..., w_{i-2}, w_{i-1}) \quad \text{with } n = 2 : P(w_1 w_2 w_3 ... w_m) = \prod_{i=1}^{m} P(w_i \mid w_{i-2}, w_{i-1})$$

 $P(\text{the taxi drivers are...}) = P(\text{the}) \times P(\text{taxi} \mid \text{the}) \times P(\text{drivers} \mid \text{taxi}) \times P(\text{are} \mid \text{drivers}) \times \dots$

Intuitively, we want to measure how **surprised** the model is to observe an event, given its probability. The surprise is inverse to the probability of the event.

$$S(x) = \log\left(\frac{1}{p(x)}\right) = -\log(p(x))$$

Surprise is a measure of how unlikely a single outcome of a possible event is. **Entropy** generalizes surprise as the expected value of the surprise across every possible outcome, that is the sum of the surprise of every outcome multiplied by the probability it happens

$$H(e) = -\sum_{i} p(e)_{i} \log(p(e)_{i})$$

The **perplexity** is then defined as the exponential of the entropy

$$PP(e) = 2^{H(e)}$$

We can use this idea for evaluating a test set and comparing the words there with the probabilities estimated by the model, to see how much *surprised* (how much perplexity) the model gets observing unseen data

Perplexity

Perplexity is a form of intrinsic evaluation for a model. In particular, we aim at evaluating the model performance independent of the specific tasks its executing.

Perplexity measures how uncertain a model is about the predictions it makes. Low perplexity means only that a model is confident, not accurate.

Text as a sequence

Textual data may be modeled as a sequence in many ways

$$P \rightarrow e \rightarrow r \rightarrow s \rightarrow 0 \rightarrow n$$

$$a \rightarrow person \rightarrow in \rightarrow a \rightarrow blue \rightarrow shirt$$

$$DT \longrightarrow NN \longrightarrow IN \longrightarrow DT \longrightarrow JJ \longrightarrow NN$$

Sequences in text are informative

Sequential information is not informative. The events that compose the sequence are independent one from the other.

$$a \rightarrow person \rightarrow in \rightarrow a \rightarrow blue \rightarrow shirt$$

Sequential information is informative. The order of words depends on the previous words.

Sequences in text are informative

Learning a sequence means that we can predict the next element of the sequence exploiting the sequence order assuming to keep a memory of the sequence elements

	g	g a	g a m
r	0.28	0.07	0
0	0.20	0	0
е	0.17	0	0.75
а	0.10	0	0
	0.10	0.19	0
m	0	0.15	0
#END	0	0	0.25

	а	0.59
	two	0.11
#START	the	0.04
#3IANI	an	0.03
	three	0.03
	people	0.02
	a	0.70
	blue	0.03
#STADT a norson in ———	black	0.03
#START a person in	an	0.03
	red	0.02
	the	0.02
	shirt	0.37
	jacket	0.20
#START a person in a blue	suit	0.08
#START a person in a blue——	hat	0.07
	kayak	0.03
	outfit	0.03

Applications of sequence learning

Using the notion of linear transformation as a building block, we can use sequence learning for several different tasks

Vector to sequence

Encoder-decoder

To deal with text sequences we need to change the learning model

Bag of words learning is not sequence learning

The food was bad, the service was good