作业9简答

李子钰, 肖子达

2021年12月10日

习题 1. Determine which pair of vectors are orthogonal:

$$1. \mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$$

$$2. \mathbf{y} = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$$

解答. 1. 直接计算

$$\langle \mathbf{u}, \mathbf{v} \rangle = 12 \times 2 + 3 \times (-3) + (-5) \times 3 = 24 - 9 - 15 = 0,$$

发现正交;

2. 直接计算

$$\langle {f u},{f v}
angle = (-3) imes 1 + 7 imes (-8) + 4 imes 15 + 0 imes (-7) = -3 - 56 + 60 + 0 = 1,$$
 发现不正交.

习题 2. Mark each statement true or false, and justify your answer.

- 1. $\langle \mathbf{v}, \mathbf{v} \rangle = \|\mathbf{v}\|^2$.
- 2. For any scalar c, $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$.
- 3. If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal.

- 4. For a square matrix A, vectors in Col(A) are orthogonal to vectors in Nul(A).
- 5. If vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ span a subspace W, and if \mathbf{x} is orthogonal to each \mathbf{v}_i for $i = 1, \dots, p$, then \mathbf{x} is in W^{\perp} .

解答. 本题只考虑 \mathbb{R}^n 中的内积.

- 1. 对的. 利用 $\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \mathbf{v} = \sum_{i=1}^n v_i^2 = \|\mathbf{v}\|^2$.
- 2. 对的. 利用 $\langle \mathbf{u}, c\mathbf{v} \rangle = \mathbf{u}^T(c\mathbf{v}) = c\mathbf{u}^T\mathbf{v} = c\langle \mathbf{u}, \mathbf{v} \rangle$.
- 3. 对的, 利用

$$\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle - \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = 4\langle \mathbf{u}, \mathbf{v} \rangle.$$

$$4.$$
 错误,例如取 $A=\begin{bmatrix}0&1\\0&0\end{bmatrix}$,注意列向量 $\begin{bmatrix}1\\0\end{bmatrix}\in \mathrm{Nul}(A)$,但是
$$\begin{bmatrix}1&0\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=1\neq 0,\, \mathbb{R}$$

5. 对的. 因为 W 中任何一个向量都能写成 $\sum_{i=1}^{p} c_i \mathbf{v}_i$ 的形式, 从而

$$\left\langle \mathbf{x}, \sum_{i=1}^{p} c_i \mathbf{v}_i \right\rangle = \sum_{i=1}^{p} c_i \left\langle \mathbf{x}, \mathbf{v}_i \right\rangle = 0.$$

习题 3. Verify the parallelogram law for vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^n :

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2)$$

解答. 直接展开

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle + \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle = 2\langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{v}, \mathbf{v} \rangle = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2) = 0.$$

习题 4. Show that if x is in both W and W^{\perp} , then $\mathbf{x} = 0$.

解答, 回忆 W^{\perp} 的定义

$$W^{\perp} = \left\{ \mathbf{v} \in \mathbf{R}^n : \forall \mathbf{w} \in W, \langle \mathbf{v}, \mathbf{w} \rangle = 0 \right\},\,$$

所以若 $\forall \mathbf{x} \in W \cap W^{\perp}$,则 x 作为 W^{\perp} 的元素一定与 W 的元素 x 正交,即 $\langle \mathbf{x}, \mathbf{x} \rangle = 0$,这推出 x = 0.

习题 5. Determine which set of vectors are orthogonal:

$$\begin{array}{c}
1. \begin{bmatrix} 2 \\ -7 \\ -1 \end{bmatrix}, \begin{bmatrix} -6 \\ -3 \\ 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}; \\
\begin{bmatrix} 3 \end{bmatrix}, \begin{bmatrix} 3 \end{bmatrix}$$

$$2. \begin{bmatrix} 3 \\ -2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 8 \\ 7 \\ 0 \end{bmatrix}.$$

解答. 1. 由于

$$\begin{bmatrix} -6 & -3 & 9 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = -18 - 3 - 9 = -30 \neq 0,$$

故不是正交集;

2. 直接计算

$$\begin{bmatrix} 3 & -2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ -3 \\ 4 \end{bmatrix} = -3 - 6 - 3 + 12 = 0,$$

$$\begin{bmatrix} 3 & -2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 8 \\ 7 \\ 0 \end{bmatrix} = 9 - 16 + 7 + 0 = 0,$$

$$\begin{bmatrix} -1 & 3 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 8 \\ 7 \\ 0 \end{bmatrix} = -3 + 24 - 21 + 0 = 0,$$

得到正交集.

习题 6. Show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ or $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbf{R}^2 or \mathbf{R}^3 respectively. Then express \mathbf{x} as a linear combination of the \mathbf{u}_i 's.

1.
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}, and \mathbf{x} = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$$

2.

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \ and \ \mathbf{x} = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}.$$

- **解答.** 1. 正交性可以直接验证 $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 12 12 = 0$. 设 $\mathbf{x} = a\mathbf{u}_1 + b\mathbf{u}_2$, 分别与 $\mathbf{u}_1, \mathbf{u}_2$ 作内积可以解出 $a = 3, b = \frac{1}{2}$.
 - 2. 正交性可以直接验证

$$\begin{split} \langle \mathbf{u}_1, \mathbf{u}_2 \rangle &= -1 + 1 = 0 \\ \langle \mathbf{u}_1, \mathbf{u}_3 \rangle &= 2 - 2 = 0 \\ \langle \mathbf{u}_2, \mathbf{u}_3 \rangle &= -2 + 4 - 2 = 0 \end{split}$$

设 $\mathbf{x} = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$, 分别与 \mathbf{u}_i 做内积后可得

$$a = \frac{\langle \mathbf{x}, \mathbf{u}_1 \rangle}{\|\mathbf{u}_1\|^2} = \frac{5}{2}, \quad b = \frac{\langle \mathbf{x}, \mathbf{u}_2 \rangle}{\|\mathbf{u}_2\|^2} = -\frac{3}{2}, \quad c = \frac{\langle \mathbf{x}, \mathbf{u}_3 \rangle}{\|\mathbf{u}_3\|^2} = 2.$$

- 习题 7. 1. Let $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in Span{ \mathbf{u} } and the other orthogonal to \mathbf{u} .
 - 2. Let $\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.
- **解答.** 1. 取与 \mathbf{u} 正交的 $\mathbf{v} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$,仿造前一题的方法,直接说明 $\mathbf{y} = -\frac{1}{5}\mathbf{u} + \frac{2}{5}\mathbf{v}$.
 - 2. 直接计算

$$dist = \left\| \mathbf{y} - \frac{\langle \mathbf{u}, \mathbf{y} \rangle}{\|\mathbf{u}\|^2} \mathbf{u} \right\| = 1.$$

习题 8. 1. Let U and V be $n \times n$ orthogonal matrices. Explain why UV remains an orthogonal matrix.

2. Let U be an orthogonal matrix, and construct V by interchanging some of the columns of U. Explain why V is an orthogonal matrix.

解答. 1. 直接验证

$$(UV)^{T}(UV) = V^{T}U^{T}UV = V^{T}I_{n}V = V^{T}V = I_{n}.$$

2. 此时我们可以把 U 写成 V = UP 的形式,这里

$$P = \begin{bmatrix} \mathbf{e}_{\pi(1)} & \mathbf{e}_{\pi(2)} & \cdots & \mathbf{e}_{\pi(n)} \end{bmatrix},$$

 $\pi: \{1,2,\cdots,n\} \to \{1,2,\cdots,n\}$ 为一个置换. 这样的 P 也是正交矩阵,然后由前一问立刻得到.

习题 9. Given $\mathbf{u} \neq 0$ in \mathbf{R}^n , let $L = \operatorname{Span}\{\mathbf{u}\}$. For $\mathbf{y} \in \mathbf{R}^n$, let $\operatorname{Refl}_L(\mathbf{y})$ be the reflection of \mathbf{y} with respect to L as shown in the figure

 $Show\ that$

$$\operatorname{Refl}_L(\mathbf{y}) = 2 \cdot \operatorname{proj}_L(\mathbf{y}) - \mathbf{y}$$

and that $\mathbf{y} \mapsto \operatorname{Refl}_L(\mathbf{y})$ defines a linear transformation.

解答. 利用 proj_L 是一个线性变换, 直接验证

$$\operatorname{Refl}_{L}(a\mathbf{x} + b\mathbf{y}) = a \cdot \operatorname{Refl}_{L}(\mathbf{x}) + b \cdot \operatorname{Refl}_{L}(\mathbf{y})$$

即可.