Facultad de Ciencias Programa FOGEC ÁLGEBRA I 1er. semestre 2021 Prof. Mario Marotti

CLASE No. 8

Funciones trigonométricas

Concepto de función

Definición: Una **función** es cualquier relación en la cual todo elemento del conjunto de partida **A** tiene a lo sumo una **imagen** en **B** (conjunto de llegada o codominio).

Observa que los elementos x_4 y x_5 del conjunto de partida NO TIENEN IMAGEN, decimos entonces que no pertenecen al **dominio** $D = \{x_1, x_2, x_3\}$ de la función y escribimos:

$$f: D \rightarrow B$$

Los elementos de B que tienen preimagen en A (esto es, que reciben flecha) forman el **recorrido de la función.**

Las funciones con las cuales trabajaremos son funciones $f: \mathbf{D} \to \mathbf{R}$ donde el domino \mathbf{D} es un subconjunto de \mathbf{R} . Esto es, el conjunto de partida y el de llegada son conjuntos de números reales.

Clasificación de funciones

1. Funciones invectivas

Definición: Una función es **inyectiva** si todo elemento del codominio B tiene **a lo sumo una** preimagen. O dicho con más precisión:

$$x \neq y$$
 \Rightarrow $f(x) \neq f(y)$

Ejemplo 1:

La función que a cada estudiante de la clase le asigna su edad, no es inyectiva, ya que debe haber varios estudiantes con la misma edad.

La función que a cada estudiante de la clase le asigna su RUT es inyectiva. No hay dos estudiantes con el mismo RUT.

Ejemplo 2:

De las siguientes funciones hay una inyectiva y otra no. Descúbranlas.

Ejemplo 3::

Investiguemos la función f: $\mathbf{R} \rightarrow \mathbf{R}$ tal que

$$f(x) = x^2$$

Se observa que:

$$f(+2) = +4$$
 $f(-2) = +4$

Por lo tanto los elementos +2 y -2 tiene la misma imagen +4. **No es inyectiva.**

2. Funciones sobrevectivas

Definición: Una función es **sobreyectiva** si todo elemento del conjunto de llegada B tiene **por lo menos** una preimagen. O dicho con más precisión, el **recorrido** de la función es igual al **codominio** B.

3. Funciones biyectivas

Definición: Una función es **biyectiva** si es inyectiva y sobreyectiva a la vez.

Para pensar: Quiero construir una función biyectiva, entre un conjunto A de 7 elementos y otro conjunto B. ¿Cuántos elementos deberá tener B para poder hacerlo?

A las funciones biyectivas se les llama también correspondencia biunívocas.

Dominio De Una Función

A la derecha puedes ver la gráfica de la función:

$$f(x) = \frac{x}{x - 2}$$

Observa que para x = 2, nos queda 2/0. Está prohibido dividir por cero, por lo tanto no

existe ningún y en correspondencia con x = 2. Decimos entonces que f(2) no existe. $f(x) \exists \forall x \neq 2$.

Por lo tanto el **dominio de la función** será:

$$D(f) = \{x \text{ tal que } x \in \mathbf{R}, x \neq 2 \}$$
$$D(f) = \mathbf{R} - \{2\}$$

No hay ningún punto en el gráfico de la función que tenga abscisa x=2. Por tanto, la gráfica de la función no puede cortar a la recta vertical x=2. Es una función discontinua en x=2.

Funciones trigonométricas

Hemos visto la clase pasada como extender las definición de seno, coseno y tangente de un ángulo a cualquier ángulo α . Para ello, usamos la circunferencia trigonométrica y encontramos que las coordenadas del punto P que se mueve sobre ella, son

$$P(\cos \alpha, \sin \alpha)$$

Exploremos ahora a esos valores de seno, coseno y tangente, expresándolos como funciones del ángulo α .

La función seno:

$$y = f(x) = \sin x$$

La función coseno:

$$y = f(x) = \cos x$$

La función tangente:

$$y = f(x) = \operatorname{tg} x$$

Se puede observar que las funciones seno y coseno son funciones continuas, es decir, su gráfico puede trazarse sin interrupciones, sin tener que levantar el lápiz del papel.

La función tangente, en cambio, no es continua.

Recordando que:

$$tg x = \frac{sen x}{\cos x}$$

Se observa que en aquellos valores donde el coseno se anula, la función tangente no está definida. Éstos son, los múltiplos impares de $\frac{\pi}{2}$. Por tanto, el dominio de existencia de la función

$$y = f(x) = tg x$$

es:

$$D(f) = R - \left\{ x \text{ tal que } x = \frac{2k+1}{2} \cdot \pi \text{ con } k \in Z \right\}$$

Es decir, existe para todo x, excepto en:

$$\left\{ \dots, -\frac{5}{2}\pi, -\frac{3}{2}\pi, -\frac{\pi}{2}, +\frac{\pi}{2}, +\frac{3}{2}\pi, +\frac{5}{2}\pi, \dots \right\}$$

En esos valores, la función tangente no está definida.

El problema de la no inyectividad de las funciones trigonométricas

Ninguna de las funciones trigonométricas es inyectiva. Lo podemos ver resolviendo la siguiente ecuación que ya resolvimos antes:

$$sen \alpha = +\frac{1}{2}$$

Recordando los resultados de la clase pasada en el intervalo [0°, 360°[:

$$\alpha = 30^{\circ}$$
 o $\alpha = 150^{\circ}$.

Por tanto,

$$S = \left\{ \frac{\pi}{6} + 2 \cdot \pi \cdot k \ con \ k \ \in Z \right\} \cup \left\{ \frac{5\pi}{6} + 2 \cdot \pi \cdot k \ con \ k \ \in Z \right\}$$

Analicemos el problema a través de la gráfica de la función seno:

Al resolver un problema, debemos tener en cuenta todas las posibles soluciones, para elegir la o las que sirvan al problema en cuestión.

Sobreyectividad en R de las funciones trigonométricas

Observando sus gráficos, puede observarse que las funciones seno y coseno sólo toman valores en el intervalo [-1,+1]. Por tanto, ambas son funciones:

$$f: R \rightarrow [-1, +1]$$

No son sobreyectivas en \mathbf{R} . El recorrido de ellas es [-1, +1].

Ejemplo:

Resolver la siguiente ecuación:

$$\cos^2 x - 3 \cdot \cos x + 2 = 0$$

Aplicamos el cambio de variable:

$$w = \cos x$$

$$w^2 - 3w + 2 = 0$$

Factorizando:

$$(w-1)\cdot(w-2)=0$$

De donde deducimos:

$$w = 1$$
 o $w = 2$

Deshacemos ahora el cambio de variable:

$$\cos x = 1$$
 o $\cos x = 2$

La ecuación $\cos x = 1$ tiene solución $\{0^\circ\}$ en $[0^\circ, 360^\circ]$, por tanto su solución general es:

$$x = \{0 + 2\pi k, \operatorname{con} k \in Z\}$$

o más sencillo:

$$x = \{2\pi k, \operatorname{con} k \in Z\}$$

En cambio, la ecuación:

$$\cos x = 2$$

 $\begin{array}{c|c}
0 \\
2\pi \\
4\pi \\
6\pi \\
...
\end{array}$ Recorrido
[-1, +1]

no tiene solución ya que 2 no pertenece al recorrido [-1, +1].

Periodicidad de las funciones trigonométricas:

A los efectos de encontrar todas las soluciones de una ecuación es conveniente ver que **las funciones trigonométricas son periódicas**. Es decir existe un número T, llamado período tal que:

$$f(x+T)=f(x)$$

En el caso de seno y coseno, el período es $T=2\pi$. La función tangente tiene período $T=\pi$.

Por tanto, para encontrar todas las soluciones de una ecuación trigonométrica, debemos, en el caso de buscar soluciones en seno y coseno, encontrar aquellas que pertenecen al intervalo $[0,2\pi[$ o $[0^\circ,360^\circ[$ y luego sumarles a éstas, múltiplos enteros de 2π .

En el caso de ecuaciones en tangente, basta con explorar las soluciones en el intervalo $[0, \pi[$ o $[0^{\circ}, 180^{\circ}]$ y sumar múltiplos enteros de π .

Ejemplo:

Encuentre amplitud máxima, período y amplitud inicial de la función:

$$f(x) = 5 \cdot \text{sen}(3x - 7)$$

Solución:

La amplitud máxima es:

$$A_{m\acute{a}x} = 5$$

ya que seno sólo puede tomar valores en el intervalo [-1, +1] Por tanto:

$$-5 \le f(x) \le +5$$

La **amplitud inicial** se calcular reemplazando x = 0:

$$A_o = 5 \cdot sen (3 \cdot 0 - 7)$$

$$A_0 = 5 \cdot sen(-7)$$

Recuerden que el argumento de seno se escribe en radianes, por tanto,

$$\pi$$
 rad ----- 180°
-7 rad ----- x
 $x \approx -401^{\circ}$

Nota: la otra alternativa en este punto, es ingresar el dato directamente en radianes a la calculadora.

$$A_o = 5 \cdot (-0.65)$$

$$A_o = -3.25$$

Finalmente el período lo calculamos así:

$$3(x+T) - 7 - (3x - 7) = 2\pi$$

$$3x + 3T - 7 - 3x + 7 = 2\pi$$

$$3T = 2\pi$$

Finalmente, el **período** es:

$$T = \frac{2\pi}{3}$$

Ejercicios:

1. Encuentre amplitud máxima, período y amplitud inicial:

$$g(x) = -8.\cos(4x - 2)$$

Respuesta:
$$A_{m\acute{a}x} = 8$$
; T = $\frac{\pi}{2}$; $A_i = +3,33$

2. Encuentre amplitud máxima, período y amplitud inicial:

$$h(x) = 3 \cdot \operatorname{tg}(2x + 1)$$