

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F29FA1

Foundations I

Class Test 2015/16

13 October 2015 Duration: 0.5 Hours

Answer ALL questions

- **1.** Let $M = ((\lambda y'.((z(\lambda x.(yx)))y'))z).$
 - (a) Remove as many parenthesis as possible from the term M given above without changing its meaning. (1)
 - **(b)** Give the subterms of M. (1)
 - (c) Give the result of M[z := y']. (1)
 - (d) η -reduce M to an η -normal form M_1 and then give the β -normal form of M_1 . (1)
 - (e) β -reduce M to a β -normal form M_2 and then give the η -normal form of M_2 . (1)
 - (f) Give the $\beta\eta$ -normal form of M. (1)
- **2.** Suppose that A, B, and C are three lambda terms and the only things you know about A, B and C are the following three facts:

 - **(b)** $A =_{\alpha} B$.
 - (c) $B \to_{\beta} C$. (1)
 - $\mathbf{(d)} \ B =_{\beta} C. \tag{1}$
 - (e) A is not weakly β -normalising. (1)
- **3.** Let $A \equiv \lambda x.x\Omega$ false and $B \equiv \lambda xy.y\Omega$ where $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$ and false $\equiv \lambda xy.y$.
 - (a) State whether A is weakly β -normalising. Justify your answer. (1)
 - (b) Define strong normalisation and show that A is not strongly β -normalising. (1)
 - (c) Is B weakly β -normalising? Justify your answer. (1)
 - (d) Is AB weakly β -normalising? Justify your answer. (1)