EchoType: A Novel Finger-Assisted Touch-free Text-entry System Without Training

YANG Qiang

2018/9/27

CONTENTS

Motivation

Related Work

Observation

System Design

Evaluation

- 02 Related work
- 03 Observation
- 04 System design
- 05 Evaluation

PC

Mobile phone

Wearable devices

Wearable devices

Finger is too big to input text on small screens.

02 Related work

- 03 Observation
- 04 System design
- 05 Evaluation

Related Work

Speech Recognition

Wi-Fi

Widraw: Enabling hands-free drawing in the air on commodity wifi devices, MobiCom 2015.

RF signal

Rf-idraw: virtual touch screen in the air using rf signals. ACM SIGCOMM 2014.

Tagoram: Real-time Tracking of Mobile RFID Tags to High Precision Using COTS Devices, ACM Mobicom 2014.

Sensors

Typingring: A wearable ring platform for text input. Mobisys 2015.

FingerIO: Using Active Sonar for Fine-Grained Finger Tracking. CHI 2016.Wei Wang et.al.

LLAP: Device-Free Gesture Tracking Using Acoustic Signals. ACM Mobicom 2016. Sangki Yun et.al.

Strata: Fine-Grained Acoustic-based Device-Free Tracking. ACM Mobisys 2017.

- 01 Motivation
- 02 Rationale

03 Observation

- 04 System design
- 05 Evaluation

Doppler Effect

Doppler shift

A,B,C

T9 Keyboard

- 01 Motivation
- 02 Rationale
- 03 Observation

04 System design

05 Evaluation

Scheme design

1 How to group these characters according to basic strokes?

How to map basic strokes to unique Doppler shifts?

Stroke Order

http://www.superenglishkid.com/2014/11/stroke-order-worksheet-for-teaching-how.html

Grouped by the first stroke

- I,T,Z,J
- B,E,F,H,K,L,D,P,R
- / A,M,N
- V,W,X,Y
- **C,G,O,Q,S,U**

Letter adjustment

Modified Strokes

2 Stroke adjustment

Final scheme design

Preliminary user study

Learning overhead

Average accuracy per min

Preliminary user study

After training (15 mins)

Words per min

Accuracy of letters in 15th min

Workflow

Problems

How to extract the Doppler shift profile?

How to segment the continuous time series to some single strokes?

How to recognize which the stroke is?

How to build a linguistic model using recognized strokes?

Spectrum subtraction

Normalization

Binarization

horizontal

Problems

How to extract the Doppler shift profile?

How to segment the continuous time series to some single strokes?

How to recognize which the stroke is?

How to build a linguistic model using recognized strokes?

Segmentation

Segmentation

Based on acceleration (noise-robust first differentiator)

Start point: |acc|>30

End point: continuous 15 zeros

Segmentation

Problems

How to extract the Doppler shift profile?

How to segment the continuous time series to some single strokes?

How to recognize which the stroke is?

How to build a linguistic model using recognized strokes?

Stroke detection

Template

Stroke detection

Problems

Word detection

```
Input: stroke sequence I;
Output: candidate words W;
Candidate I=correct(I);
W=Ø;
for each I belongs to [candidate I] do
  words=findtree(Dictionary,I);
  W=WUwords;
end for
for each word belongs to [W] do
  find P(word);
  compute P(si|li) of this word;
end for
W=sort(W) by [P(word)*\pi P(si|li)];
```

Recommend according to POSTERIOR PROBABILITY

- 01 Motivation
- 02 Rationale
- 03 Observation
- 04 System design

05 Evaluation

Stroke

Different strokes

Different users

Stroke

Different scenarios

Strokes in different scenarios

Words

Before correction

After correction(words)

