Build Instructions for the PNT Integrity Library

This repository contains the top level CMake project for building the IS4S PNT Integrity Library, User Interface and their dependencies.

System Requirements

The PNT Integrity Library is written in a cross-platform manner using C++. While it is expected to work on a wide variety of platforms it has been tested on the following operating systems:

```
* Ubuntu Linux 16.04, 18.04 & 20.04
* MacOS 10.15
* Windows 10
```

The following additional tools are needed to build the library:

```
* CMake 3.5 or greater
* C++14 compliant compiler (e.g. Clang 3.3+, GCC 4.7+, MSVC 2015+)
```

Dependencies

The PNT Integrity Library is designed to require as few third party dependencies as possible to support building on a wide variety of platforms. Two dependencies are required in addition to the libraries provided in the package. The Eigen (https://eigen.tuxfamily.org) C++ template library for linear algebra is required by the base PNT Integrity library. The FFTW (http://fftw.org) package is optionally required and is needed to use the acquisition check. QT (https://www.qt.io) is required to build and run the user interface

Both packages can be installed following instructions on their respective websites. Eigen is a header-only package and can be installed by downloading a release from the project web site and extracting to a local folder. FFTW binaries are avaiable for a range of platforms from the project web site.

Alternatively, a package manager can be used to install the dependencies. For MacOS the <u>Homebrew (https://brew.sh)</u> package manager is recommended. The <u>Chocolatey (https://chocolatey.org)</u> package manager is recommended for Windows. Instructions on installing the required and optional dependencies using package managers on the supported operating systems are provided in the following sections.

Ubuntu / Debian

Install Eigen by running:

```
sudo apt install libeigen3-dev
```

Optionally install FFTW by running:

```
sudo apt install libfftw3-dev
```

Install Qt5 on Ubuntu by running:

sudo apt install qtdeclarative5-dev qtwebengine5-dev libqt5charts5-dev

MacOS

Install Eigen by running:

brew install eigen

Optionally install FFTW by running:

brew install fftw

Install Qt5 on MacOS by running:

brew install qt

If you encounter CMake build errors when finding QT this may help:

export CMAKE PREFIX PATH=/usr/local/Cellar/qt/[version]/

Windows

Install Eigen by running:

choco install eigen

Chocolatey does not provide binaries for FFTW. They can be downloaded and installed directly from the project website: http://www.fftw.org/install/windows.html (http://www.fftw.org/install/windows.html)

For instructions on installing Qt on Windows platform click here (https://doc.qt.io/qt-5/windows.html).

Unpackaging

Skip this step if cloning directly from GitHub / Gitlab

Extract the release archive:

unzip release.zip cd release

Building

Building can be performed ether with a script or manually with commands.

Script

Execute the provided build script to build

./build.sh

Build Commands

Generate build files using cmake

mkdir build

To build the PNT Integrity library

cmake ../ -DCMAKE BUILD TYPE=Release -DBUILD KIT=FALSE

By default, this will generate Unix Makefiles for the package. Project files can be generated for other build systems or IDEs by selecting an alternative CMake generator (https://cmake.org/cmake/help/v3.15/manual/cmake-generators.7.html).

Build the libraries by running:

make

Installing

The libraries can be optionally installed to the user's system by running:

make install