Winner Prediction in IPL Match

Gaurav Anand Shivam Shakti Sunil Kumar Vishal Kumar

Dataset

- From Kaggle.
- Ball by ball details for all IPL matches between 2008 - 2017.
- Matches.csv file has information about the match venue, result, toss, umpire etc...
- Deliveries.csv file has ball by ball data of all the matches.
- 636 matches.

Phases

We formulate our Problem in a formal way.

Features are extracted and new features are formed.

Results of previous phases are compared and concluded.

Analysis of data is done to understand the important features.

Run different models and compare the result.

Problem Formulation

Given

m	Match
T_i	I^{th} team playing m, $i \in \{1,2\}$
O(m)	Outcome of toss of m
L(m)	Venue of m
$H(T_1, T_2)$	History of of the matches played between T_1 and T_2
P(T,m)	Set of all players in team T playing m
C(p,m)	Career statistics of p playing m

Predict

W(m)	Winner of m
------	-------------

Data Analysis

Data Analysis ...

Data Analysis ...

Feature Extraction

01	Teams	Team 1 and Team 2
02	Venue	
03	Toss Outcome	
04	Previous History	Outcome of previous matches between both the teams
05	Umpire	We can drop this feature but we were curious to observe

New Feature Development

Model a Batsman, p

M_{p}	Total matches played by p
B_{ρ}	Total innings p had batted in
R_{p}	Total runs scored by p
Bat _p	Batting average of p
100s	Total centuries by p
50s, 30s	Total half centuries and 30s by p

Method

$$u = \sqrt{\frac{B_p}{M_p}}$$

$$v = w_1 \times 100s + w_2 \times 50s + w_3 \times 30s$$

$$w = w_4 \times v + w_5 \times Bat_p$$

$$C_p = u \times w$$

$$N_p = \frac{C_p}{max(C_p)}$$

C_{ρ}	Career score of p	
N _p	Normalised Career score of p	

New Feature Development ...

Model a Bowler, p

M_{ρ}	Total matches played by p
B_{ρ}	Total innings p had bowled in
W_{p}	Total wickets taken by p
Eco _p	Economy of p
Avg _p	Bowl average of p
5s, 3s	Total 5 and 3 wicket hauls by p

Method

$$u = \sqrt{\frac{B_p}{M_p}}$$

$$v = w_1 \times 5s + w_2 \times 3s$$

$$w = Eco_p \times Avg_p$$

$$C_p = \frac{u \times v}{w}$$

$$N_p = \frac{C_p}{max(C_p)}$$

C_{ρ}	Career score of p
N_{p}	Normalised Career score of p

New Feature Development ...

$$Bat_A = \sum_{p \in P(A,m)} N_{p_{bat}}$$

$$Bowl_A = \sum_{p \in P(A,m)} N_{p_{bowl}}$$

$$Bat_B = \sum_{p \in P(B,m)} N_{p_{bat}}$$

Bowl
$$_{B} = \sum_{p \in P(B,m)} N_{p_{bowl}}$$

Strength of team A wrt B

$$SAB = \frac{Bat_A}{Bowl_B} - \frac{Bat_B}{Bowl_A}$$

> SAB is our new feature

Training and Testing

Training and Testing ...

Feature Selection :- We used Random Forest Classifier

Around 5 features were removed.

PCA: Features	Variance(%)
First 6	~62
7-12	~33
Rest	< 5%

Model Comparisons

54%

Random Forest

Folds = 10

- bootstrap=True
- min samplesleaf=5
- n estimators=2000

55%

Decision Tree

Criterion': entropy

max_features':No

Max_depth': 5

Folds = 10

ne

•

58%

Logistic Regression

Folds = 10

- C': 0.01
- Solver' : sag

56%

K Nearest Neighbour

Folds = 10

MLP

Folds = 10

- leaf_size': 1
- 'metric': ' cityblock'
 - N_neighbors': :29

- Solver:'sgd',
- Alpha:1e3,
- hidden layer sizes:(9)

Classifier Accuracy and Cross Validation

Note: Red line is testing on training data and blue line is testing on test data

Classifier Accuracy and Cross Validation

Conclusion

- 1. Problem of determining the winner of cricket match.
- 2. Key Features: Players statistics and team history.
- 3. Prediction Score ~ 55%
- 4. Best score on Kaggle = 49%, so our model beats that.

Thankyou!