Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Informatyka, rok II Zespół numer 3 Piotr Kucharski Dominik Zabłotny

Sprawozdanie z ćwiczenia nr 29

Fale podłóżne w ciałach stałych.

18 października 2017r

1 Wstęp

1.1 Cele ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga dla prętów różnych materiałów na podstawie pomiarów ich częstotliwości harmonicznych.

1.2 Wprowadzenie teoretyczne

1.2.1 Fala podłużna

Fala podłóżna jest to fala powstająca przez gwałtowne wychylenie ciała z położenia równowagi oraz dalszemu jego drganiu aż do momentu odzyskania równowagi. Szybkość rozchodzenia się tej fali zależy od bezwładności i sprężystości ciała.

1.3 Fala stojąca

Fala, której grzbiety i doliny nie przemieszaczją się. Powstaje na skutek interferencji dwóch takich samych fal podłużnych, w przypadku pręta przez odbicie fali o przeciwległy koniec do uderzonego młotkiem. Falę stojącą określa się równaniem:

$$y = 2A\sin kx \tag{1}$$

1.3.1 Moduł Younga

Wielkość charakteryzującą sprężystość materiału, będąca jego integralną częścią nazywamy modułem Younga oraz oznaczamy go jako E. Ogólny wzór na moduł Younga określa się jako stosunek naprężenia σ do względnego odkszałcenia liniowego ε materiału:

$$E = \frac{\sigma}{\varepsilon} \tag{2}$$

Po uwzględnieniu, że ćwiczenie przeprowadzane jest na prętach różnych materiałów, interferencji fali padającej i fali odbitej oraz prawa Hooke'a uzyskujemy wzór:

$$E = 4\rho l^2 f^2 \tag{3}$$

gdzie ρ to gęstość materiału, l - odległość między węzłami fali oraz f częstotliwość fali podłużnej. Tego wzoru będziemy używać do wykonania ćwiczenia.

1.3.2 Analiza Fouriera

Jest to proces badania drgań harmonicznych, polega na przedstawieniu funkcji okresowej w postaci nieskończonego szeregu trygonometrycznego (szeregu Fouriera). W naszym doświadczeniu wykorzystujemy program Zelscope, który realizuje algorytm FFT pozwalający na szybkie obliczenie transformaty Fouriera i przedstawia ją jako widmo fali na ekranie (analogicznie do oscyloskopu znanego z elektroniki). Będziemy odczytywać kolejne wartości drgań harmonicznych z ekranu.

1.4 Układ pomiarowy

Układ pomiarowy składa się z komputera z zainstalowanym oprogramowaniem Zelscope, mikrofonu podłączonego do komuptera, długich prętów wykonanych z różnych materiałów zawieszonych na nitkach w dwóch miejscach. Do wprawienia ciał w drgania użyjemy młotka, do pomiaru długości prętów użyjemy miary milimetrowej zwijanej, do pomiaru masy prętów użyjemy wagi elektronicznej firmy RAWAG model WTB 200 oraz do zmierzenia grubości materiałów w celu wyznaczenia ich objętości użyjemy suwmiarki.

Rysunek 1: Schemat układu pomiarowego

2 Wykonanie ćwiczenia

Wykonanie ćwiczenia dzieli się na dwa kroki stosowane dla każdego badanego pręta oraz jednej wspólnej analizy wyników.

2.1 Pomiary specyfikacji prętów

- Pomiar długości pręta za pomocą miary zwijanej.
- Pomiar grubości pręta za pomocą suwmiarki (w przypadku otwartego walca mierzymy promień zewnętrzny i wewnętrzny).
- Zważenie pręta w najlepszy możliwy sposób za pomocą wagi elektronicznej.
- Zapisanie wyników o danym ciele do tabeli.

2.2 Pomiar częstotliwości harmonicznych

- Osadzenie preta w niciach zamontowanych do stelaża.
- Przybliżenie mikrofonu do badanego pręta.
- Uderzenie młotkiem w pręt aby wprawić go w drganie.
- Zamrożenie odczytu programu Zelscope w momencie najlepszej widoczności widma fal harmonicznych.
- Odczyt sześciu pierwszych harmonicznych (jeżeli taką ilość udało się zaobserwować).

W przypadku niejednoznacznego odczytu częstotliwości harmonicznych nalezy powtórzyć pomiar.

2.3 Oblicznanie koniecznych wartości

Z zapisanych danych pomiarowych należy obliczyć gęstość ciała daną wzorem:

$$\rho = \frac{m}{V} \tag{4}$$

gdzie m to zmierzona masa ciała oraz V to objętość ciała obliczona odpowiednio dla każdego pręta z odpowiednich wielkości. Pręty są różnymi figurami przestrzennymi, przez wykorzystujemy odpowiedni wzór dla:

ullet walca o promieniu podstawy r oraz wysokości h

$$V = \pi r^2 h \tag{5}$$

ullet prostopadłościanu prawidłowego czworokątnego o krawędzi podstawy a oraz wysokości h

$$V = a^2 h ag{6}$$

 $\bullet\,$ otwartego walca o promieniu zewnętrznym podstawy R, promieniu wewnętrznym podstawy r oraz wysokości h

$$V = \pi (R^2 - r^2)h \tag{7}$$

Do oblicznia długości fali λ zastosujemy zależność stosunku długości pręta L do numeru harmonicznej fali n:

$$\lambda = \frac{2L}{n} \tag{8}$$

Odległość l między węzłami fali stojącej stanowi połowę jej długości:

$$l = \frac{1}{2}\lambda\tag{9}$$

Do obliczenia predkości rozchodzenia się fali zastosujemy wzór:

$$V = 2lf (10)$$

3 Opracowanie danych pomiarowych

3.1 Wyniki pomiarów

Zmierzone wielkości próbek zostały zapisane w tabeli 1, gdzie zapisano również wyniki wyliczonych wartości obliczonych za pomocą wzorów (3), (4), (5) i (6). W kolejnych tabelach przestawione zostaną wyniki pomiarów zarejestrowanych częstotliwości dla kolejnych harmonicznych każdego materiału.

Materiał	Kształt	Masa [kg]	Długość [m]	Objętość [m²]	Gęstość [kg/m³]
Aluminium	Walec	0.030	0.561	$1.102 \cdot 10^{-5}$	2720.326
Mosiądz	Walec	0.237	0.998	$2.821 \cdot 10^{-5}$	8401.275
Stal	Prostopadłościan	2.794	1.802	$3.710 \cdot 10^{-4}$	7529.529
Stal	Walec	1.138	1.800	$1.470 \cdot 10^{-4}$	7741.496
Żeliwo szare	Walec otwarty	0.760	1.800	$1.095 \cdot 10^{-4}$	6940.639

Tablica 1: Dane pomiarowe dla pięciu próbek

Analiza Aluminium $l=0.561\mathrm{[m]}$			
Nr harmonicznej Częstotliwość f [Hz]		Długość fali λ [m] Prędkość fali v [n	
1	2411.76	1.122	2705.994
2	4941.18	0.561	2772.001
3	7382.35	0.374	2760.998
4	9823.53	0.281	2760.411

Tablica 2: Wyniki pomiarów i obliczeń dla aluminium (z 4 pomiarów)

Prędkość średnia fali:

$$v_{sr} = 2749.851 \, [\text{m/s}]$$

Z podanych wartości możemy obliczyć wartość modułu Young'a ze wzoru (3) dla aluminium:

$$E=20.570\,\mathrm{[GPa]}$$

Analiza Mosiądzu $l=0.998\mathrm{[m]}$			
Nr harmonicznej	Częstotliwość f [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]
1	1776.47	1.996	3545.834
2	3458.82	0.998	3451.902
3	5152.94	0.665	3426.705
4	6835.29	0.499	3410.810
5	8653.53	0.399	3452.758
6	10294.12	0.333	3427.942

Tablica 3: Wyniki obliczeń dla mosiądzu

Prędkość średnia fali:

$$v_{sr} = 3452.659 \, [\text{m/s}]$$

Z podanych wartości możemy obliczyć wartość modułu Young'a ze wzoru (3) dla mosiądzu:

$$E=100.15\,\mathrm{[GPa]}$$

Analiza Stali nr 1 $l=1.802~\mathrm{[m]}$			
Nr harmonicznej	Częstotliwość f [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]
1	1400.00	3.604	5045.600
2	2905.88	1.802	5236.396
3	4305.88	1.201	5171.362
4	6670.59	0.901	6010.202
5	7905.88	0.721	5700.139
6	8623.53	0.601	5182.742

Tablica 4: Wyniki obliczeń dla stali w kształcie prostopadłościanu

Prędkość średnia fali:

$$v_{sr} = 5391.074 \, [\text{m/s}]$$

Z podanych wartości możemy obliczyć wartość modułu Young'a ze wzoru (3) dla stali w kształcie prostopadłościanu:

$$E=218.836\,\mathrm{[GPa]}$$

Analiza Stali nr 2 $l=1.800~\mathrm{[m]}$			
Nr harmonicznej	Częstotliwość f [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]
1	1400.00	3.600	5040.000
2	2905.88	1.800	5230.584
3	4305.88	1.200	5167.056
4	5811.76	0.900	5230.584
5	7211.78	0.720	5192.482
6	8623.53	0.600	5174.118

Tablica 5: Wyniki obliczeń dla stali w kształcie prostopadłościanu

Prędkość średnia fali:

$$v_{sr} = 5172.471 \, [\text{m/s}]$$

Z podanych wartości możemy obliczyć wartość modułu Young'a ze wzoru (3) dla stali w kształcie walca:

$$E = 207.119 \, {\rm [GPa]}$$

Analiza Żeliwa Szarego $l=1.800~\mathrm{[m]}$			
Nr harmonicznej	Częstotliwość f [Hz]	Długość fali λ [m]	Prędkość fali v [m/s]
1	1023.53	3.600	3684.708
2	2058.82	1.800	3705.876
3	3082.35	1.200	3698.820
4	4117.65	0.900	3705.885
5	5152.94	0.720	3710.117
6	6176.47	0.600	3705.882

Tablica 6: Wyniki obliczeń dla żeliwa szarego

Prędkość średnia fali:

$$v_{sr} = 3701.881 \, [\text{m/s}]$$

Z podanych wartości możemy obliczyć wartość modułu Young'a ze wzoru (3) dla żeliwa szarego w kształcie walca otwartego:

$$E = 95.114 \, [{
m GPa}]$$

3.2 Analiza niepewności

Mamy do czynienia z niepewnością typu B, ponieważ pomiar był wykonywany tylko raz. Znana jest dokładność przyrządów mierniczych równa działką elementarnym, stąd wnioskujemy że dokładności pomiarów są równe ich wartością, dlatego:

3.2.1 Niepewności pomiaru długości prętów (miarka w rolce)

$$u(l)={\sf działka\ elementarna}=1\ [{\sf mm}]$$

3.2.2 Niepewności pomiaru promienia/szerokości prętów (suwmiarka)

$$u(r) = działka elementarna = 0.1 [mm]$$
 (12)

3.2.3 Niepewności pomiaru masy prętów (waga RADWAG WTB 200)

$$u(m) = \mathsf{dziafka} \ \mathsf{elementarna} = 1 \ \mathsf{[g]}$$
 (13)

3.2.4 Niepewności pomiaru zarejestrowanej częstotliwości (komputer z podłączonym mikrofonem)

$$u(f) = 25 \text{ [Hz]} \tag{14}$$

Niepewność obliczeń wykonanych na podstawie pozyskanych danych możemy przedstawić za pomocą wzorów:

3.2.5 Niepewność gęstości

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial m}u(m)\right)^2 + \left(\frac{\partial \rho}{\partial l}u(l)\right)^2 + \left(\frac{\partial \rho}{\partial r}u(r)\right)^2} = \sqrt{\left(\frac{1}{l\pi r^2}u(m)\right)^2 + \left(\frac{-m}{l^2\pi r^2}u(l)\right)^2 + \left(\frac{-2m}{l\pi r^3}u(r)\right)^2}$$

Materiał	Aluminium	Mosiądz	Stal nr 1	Stal nr 2	Żeliwo szare
Niepewność gęstości $u(\rho)$ [kg/m 3]	236.206	773.854	105.059	303.677	562.319

Tablica 7: Wyniki obliczeń niepewności gęstości

3.2.6 Niepewność długości fali

$$u(\lambda) = \sqrt{\left(\frac{2}{n}u(l)\right)^2}$$

3.2.7 Niepewność prędkości fali

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$

Materiał	Aluminium	Mosiądz	Stal nr 1	Stal nr 2	Żeliwo szare
Niepewność prędkości fali $u(v)$ [m/s]	28.461	50.026	90.143	90.044	90.023

Tablica 8: Wyniki obliczeń niepewności prędkości fali

3.2.8 Niepewność modułu Young'a

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho}u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v}u(v)\right)^2} = \sqrt{\left(v^2u(\rho)\right)^2 + \left(2\rho v u(v)\right)^2}$$

Materiał	Aluminium	Mosiądz	Stal nr 1	Stal nr 2	Żeliwo szare
Niepewność modułu Young'a $u(E)$ [GPa]	1.836	9.6707	7.929	10.863	8.987

Tablica 9: Wyniki obliczeń niepewności modułu Young'a

4 Podsumowanie

5 Wnioski