Linear Algebra Notes from TAU Course with Additional Information Lecturer: Dr. Eli Leher

Gabriel Domingues

2020 - 02 - 03

Contents

1	Sets	5	5
	1.1	Set Theory (Succinctly) and Logic	5
	1.2	Operations on Sets	6
	1.3	Axioms of Field	7
2	Line	ear Equations	8
	2.1	Linear Equations over a Field	8
	2.2	Gaussian Elimination	8
3	Line	ear Combinations	11
	3.1	Sequence of Tuples	11
	3.2	Linear Equation Systems on Tuples	13

	3.3	Basis and Subspaces of Tuples	14
4	Fun	ctions	16
	4.1	Basic Definitions	16
	4.2	Composition and Inverses	17
	4.3	One-Sided Inverses	20
5	Ma	trices	22
	5.1	Products on Matrices	22
	5.2	Matricial Functions	23
	5.3	Invertible Matrices	26
	5.4	Matrix Spaces	30
6	Det	erminants	32
	6.1	Multilinear Alternating Function	32
	6.2	Cramer's Rule and Adjungate Matrix	34
7	Rin	g of Polynomials	36
	7.1	Polynomials	36
	7.2	Axioms of Rings	37
8	Vec	tor Spaces	39
	8.1	Axioms of Vector Spaces	39
	8.2	Spans and Subspaces	40

	8.3	Basis and Dimension	42
9	Line	ear Transformations	46
	9.1	Linear Maps	46
	9.2	Kernel and Image and Dimension Theorem	47
	9.3	Isomorphism	50
10	Coo	rdinates	51
	10.1	Representing Function	51
	10.2	Change of Coordinates	53
11	Eige	enspace	56
	11.1	Eigenvectors	56
	11.2	Characteristic Polynomial	57
	11.3	Diagonalizing	58
12	Nor	med and Scalar Product Spaces	61
	12.1	Euclidean Product	61
	12.2	Orthogonality	64
	12.3	Orthogonal Sequences	66
	12.4	Orthogonal Maps	68
13	Dire	ect Sum	70
	13.1	Sum of Subspaces	70

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

1 Sets

1.1 Set Theory (Succinctly) and Logic

There will be no definition of a set. Instead, we postulate the existence of a relation \in (read as "is in").

It is axiom the existence of the empty set \varnothing , that is, $\exists \varnothing : \forall x, x \notin \varnothing$

Definition 1.1.1 (Principle of Double Inclusion). We define the following symbols:

Inclusion: $A \subseteq B \Leftrightarrow \forall x, x \in A \Rightarrow x \in B$

Equality: $A = B \Leftrightarrow A \subseteq B$ and $B \subseteq A \Leftrightarrow \forall x, x \in A \Leftrightarrow x \in B$

Proper Inclusion: $A \subsetneq B \Leftrightarrow A \subseteq B$ and $A \neq B$

It is also axiom the existence of the power set: Given a set A, there is a set $\mathcal{P}(A)$ so that: $x \in \mathcal{P}(A) \Leftrightarrow x \subseteq A$

We can create new sets by the Principle of Restricted Comprehension: Let A be a set and P a predicate (given an object, it is either True or False), then the following is a set: $\{x \in A \mid P(x)\}$

Example 1.1.1 (Set Difference). Let A and B be sets. Construct: $A \setminus B = \{x \in A \mid x \notin B\}$

We can construct the sets we will mainly use:

Natural Numbers $\mathbb{N} = \{0, 1, 2, \cdots\}$

Integer Numbers $\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$

Rational Numbers $\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z} \text{ and } n \in \mathbb{N} \setminus \{0\} \right\}$

Real Numbers \mathbb{R}

1.2 Operations on Sets

Definition 1.2.1 (Set Operations). For sets A and B these are sets (by axiom):

 $Union: A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Cartesian Product : $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

Definition 1.2.2 (Operation). An operation * on a set A is a map:

$$*: A \times A \to B$$

 $(a,b) \mapsto a * b$

This operation can have (or lack) multiple properties. These are the most important:

Properties	Definition
Closed	$\forall a, b \in A, \ a * b \in A$
Commutative	$\forall a, b \in A, \ a * b = b * a$
Associative	$\forall a, b, c \in A, (a * b) * c = a * (b * c)$
Neutral Element	$\exists e \in A : \forall a \in A, \ a * e = e * a = a$
Inverse Element	$\forall a \in A , \; \exists b \in A : \; a * b = b * a = e$

Definition 1.2.3 (Equivalence Relation). An equivalence relation on a set X is a predicate of two variables (has the value True or False), denoted $x \sim y$, that has these three properties:

Reflexivity	$\forall x \in X, \ x \sim x$
Symmetry	$\forall x, y \in X , \ x \sim y \iff y \sim x$
Transitivity	$\forall x, y, z \in X , \ x \sim y \ \land \ y \sim z \Rightarrow x \sim z$

1.3 Axioms of Field

Definition 1.3.1 (Field). A field F is a set with operations $(+: F \times F \rightarrow F, : F \times F \rightarrow F)$ iff:

Properties	Definition
Commutative	$\forall \alpha, \beta \in F, \ \alpha + \beta = \beta + \alpha$
Associative	$\forall \alpha, \beta, \gamma \in F, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
Neutral Element	$\exists 0 \in F : \forall \alpha \in F , \alpha + 0 = \alpha$
Inverse Element	$\forall \alpha \in F , \; \exists \beta \in F : \; \alpha + \beta = 0$
Associative	$\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
Distributive Right	$\forall \alpha, \beta, \gamma \in F, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
Distributive Left	$\forall \alpha, \beta, \gamma \in F, (\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$
Unital Element	$\exists 1 \in F : \forall \alpha \in F, \ 1 \cdot \alpha = \alpha$
Inverse Element	$\forall \alpha \in F \setminus \{0\}, \ \exists \beta \in F : \ \alpha \cdot \beta = 1$
Commutative	$\forall \alpha, \beta \in F, \ \alpha \cdot \beta = \beta \cdot \alpha$

Examples include $\mathbb Q$ and $\mathbb R$ with addition and multiplication of numbers.

2 Linear Equations

2.1 Linear Equations over a Field

Definition 2.1.1 (Linear Equation). A linear equation (over F) in the tuple

$$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in F^n, \text{ where we define } F^n = \overbrace{F \times F \times \cdots \times F}^{n \text{ times}}. \text{ is something of }$$

$$E : \sum_{i=1}^{n} a_i \cdot x_i = a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n = b$$

where $a_i, b \in F$. We denote the solution to E as sols(E). That is,

$$\operatorname{sols}(E) := \left\{ \underline{x} \in F^n \, \middle| \, \sum_{i=1}^n a_i \cdot x_i = b \right\}$$

Definition 2.1.2 (Homogeneous Equation). We say a linear equation H is homogeneous if b = 0.

Definition 2.1.3 (Linear Equation System). A system of k linear equations L is a sequence of linear equations (E_1, E_2, \dots, E_k) , for which we need to find $\underline{x} \in F^n$ that satisfies all equations. That is,

$$\operatorname{sols}(L) = \bigcap_{i=1}^{k} \operatorname{sols}(E_i) = \operatorname{sols}(E_1) \cap \operatorname{sols}(E_2) \cap \cdots \cap \operatorname{sols}(E_k)$$

2.2 Gaussian Elimination

Definition 2.2.1 (Leading Variable). We say x_i the leading variable of the linear equation $E: \sum_{k=1}^{n} a_i \cdot x_i$ iff $a_i \neq 0$ and $\forall j \in \{1, \dots, i\}, a_j = 0$.

Definition 2.2.2 (Canonical Form/ Row Reduced Echelon Form). A linear system is said to be in canonical form if:

- 1. The sequence of leading variables strictly increases
- 2. Equations without leading variables (zero equation) come at the end
- 3. Each leading variable appears only in one equation with coefficient 1

A system in the canonical form is very easy to solve since we can isolate the leading variables and make the others (if exist) free variables.

Example 2.2.1.

$$\begin{cases} x_1 + x_2 + x_3 &= 3 \\ 2x_1 - x_2 + 5x_3 &= 0 \end{cases} \Leftrightarrow \begin{cases} x_1 + 0 + 2x_3 &= 1 \\ 0 + x_2 - x_3 &= 2 \end{cases}$$

We can solve:
$$sols(L) = \left\{ \begin{pmatrix} 1 - 2t \\ 2 + t \\ t \end{pmatrix} \middle| t \in \mathbb{R} \right\}$$

Definition 2.2.3 (Elementary Operations). We define three types of elementary operation:

Operations	Calculation
Reordering the equations	$E_i \leftrightarrow E_j$
Multiplying one equation by a non-zero constant t	$E_i \to t \cdot E_i$
Add multiple of one equation to another	$E_i \to E_i - t \cdot E_j$

These operations are reversible, so they conserve the solutions. That is, the LES $M = \varphi(L)$ that we get after doing one of the elementary operations, is equivalent to L.

Theorem 2.2.1 (Gaussian Elimination Algorithm). Every LES is equivalent to a LES in canonical form.

Proof. Let $E_j: \sum_{i=1}^n a_{i,j} \cdot x_i = b_j$ and $L = (E_1, \dots, E_k)$. We prescribe the following algorithm to get into canonical form:

Algorithm 1 Gaussian Elimination Algorithm

```
for 1 \leq j \leq n do i \leftarrow r+1 while i \leq k and a_{i,j} = 0 do i \leftarrow i+1 end while if i < k then r \leftarrow r+1 do E_i \leftrightarrow E_r do E_j \rightarrow \frac{1}{a_{r,j}} \cdot E_j for 1 \leq m \leq k do if m \neq r then do E_m \rightarrow E_m - a_{m,j} \cdot E_r end if end for end if
```

3 Linear Combinations

3.1 Sequence of Tuples

Definition 3.1.1 (Tuple field operations). We define addition of tuple and multiplication by number as:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad and \quad t \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} := \begin{pmatrix} t \cdot x_1 \\ \vdots \\ t \cdot x_n \end{pmatrix}$$

Definition 3.1.2. (Linear Combination) Given tuples $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n \in F^k$ and numbers $\alpha_1, \alpha_2, \dots, \alpha_n \in F$ a linear combination is:

$$\sum_{i=1}^{n} \alpha_i \cdot \underline{v}_i = \alpha_1 \cdot \underline{v}_1 + \alpha_2 \cdot \underline{v}_2 + \dots + \alpha_n \cdot \underline{v}_n \in F^k$$

Definition 3.1.3 (Span of Sequence). For a set/sequence of tuples $S = (\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n)$, with $\underline{v}_i \in F^k$, we define:

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{n} \alpha_i \cdot \underline{v}_i \mid \alpha_i \in F \right\}$$

the set of all linear combinations

Proposition 3.1.1 (Span is closed). For any sequence S, Span(S) is closed under addition and multiplication by number.

Proof. Let $S = (\underline{v}_1, \underline{v}_2, \cdots, \underline{v}_n)$ then:

$$\left(\sum_{i=1}^{n} \alpha_{i} \cdot \underline{v}_{i}\right) + \left(\sum_{i=1}^{n} \beta_{i} \cdot \underline{v}_{i}\right) = \left(\sum_{i=1}^{n} (\alpha_{i} + \beta_{i}) \cdot \underline{v}_{i}\right) \in \operatorname{Span}(S)$$

$$\lambda \cdot \left(\sum_{i=1}^{n} \alpha_{i} \cdot \underline{v}_{i}\right) = \left(\sum_{i=1}^{n} (\lambda \cdot \alpha_{i}) \cdot \underline{v}_{i}\right) \in \operatorname{Span}(S)$$

Definition 3.1.4 (Linear Dependent and Independent sequences). We say $S = (\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n)$ is:

Linear Dependent if:

$$\exists (x_1, x_2, \cdots, x_n) \neq \underline{0} \in F^n : \sum_{i=1}^n x_i \cdot \underline{v}_i = \underline{0}$$

Linear Independent if:

$$\nexists (x_1, x_2, \cdots, x_n) \neq \underline{0} \in F^n : \sum_{i=1}^n x_i \cdot \underline{v}_i = \underline{0}$$

that is,

$$\forall (x_1, x_2, \dots, x_n) \in F^n, \ \sum_{i=1}^n x_i \cdot \underline{v}_i = \underline{0} \Rightarrow (x_1, x_2, \dots, x_n) = \underline{0}$$

Example 3.1.1 (Proportionality Condition). A sequence $S = (\underline{u}, \underline{v})$ is linear independent iff the two tuples are not proportional.

Definition 3.1.5 (Linear Dependency). We write the linear dependency of $S = (\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n)$:

$$LD(S) = sols \left(\sum_{i=1}^{n} \underline{v}_i \cdot x_i = \underline{0} \right)$$

Comment: Always given: $\underline{0} \subseteq LD(S)$

Proposition 3.1.2 (LI sequences have trivial LD). A sequence is Linear Independent iff $LD(S) = \{\underline{0}\}$.

Proof. We prove both directions:

- (⇒) By contrary, suppose there is $\underline{x} = (x_1, x_2, \dots, x_n) \neq \underline{0} \in LD(S)$, then S is not Linearly Independent
- (\Leftarrow) Let $\underline{x}=(x_1,x_2,\cdots,x_n)\in F^n:\sum_{i=1}^n x_i\cdot\underline{v}_i=\underline{0}$. Therefore, $\underline{x}\in\mathrm{LD}(S)=\{\underline{0}\}\Rightarrow\underline{x}=\underline{0}$

3.2 Linear Equation Systems on Tuples

Definition 3.2.1 (System as Tuples). For a linear system:

$$L : \begin{cases} E_1 : \sum_{i=1}^n a_{1,i} \cdot x_i = b_1 \\ E_2 : \sum_{i=1}^n a_{2,i} \cdot x_i = b_2 \\ \vdots \\ E_k : \sum_{i=1}^n a_{k,i} \cdot x_i = b_n \end{cases} \Leftrightarrow \sum_{i=1}^n \begin{pmatrix} a_{1,i} \\ a_{2,i} \\ \vdots \\ a_{k,i} \end{pmatrix} \cdot x_i = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix}$$

$$\text{If we define \underline{a}_i} = \begin{pmatrix} a_{1,i} \\ a_{2,i} \\ \vdots \\ a_{k,i} \end{pmatrix} \text{ and \underline{b}} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix} \text{ so that $L:$} \sum_{i=1}^n \underline{a}_i \cdot x_i = \underline{b}.$$

Proposition 3.2.1 (N&SC for solution). $L: \sum_{i=1}^{n} \underline{a}_i \cdot x_i = \underline{b} \text{ has a solution}$ iff $\underline{b} \in \text{Span}(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n)$

Lemma 3.2.1 (Homogeneous solutions are closed). Let $L: \sum_{i=1}^{n} \underline{a}_i \cdot x_i = \underline{0}$ be a homogeneous linear system, that is, a system of homogeneous linear equations. Then, sols(H) is closed under (tuple) addition and multiplication by number.

Proof. Let $\underline{x}, y \in sols(H)$ then:

$$\left(\sum_{i=1}^{n} \underline{a}_{i} \cdot (x_{i} + y_{i})\right) = \left(\sum_{i=1}^{n} \underline{a}_{i} \cdot x_{i}\right) + \left(\sum_{i=1}^{n} \underline{a}_{i} \cdot y_{i}\right) = \underline{0} + \underline{0} = \underline{0}$$

$$\left(\sum_{i=1}^{n} \underline{a}_{i} \cdot (\lambda \cdot x_{i})\right) = \lambda \cdot \left(\sum_{i=1}^{n} \underline{a}_{i} \cdot x_{i}\right) = \lambda \cdot \underline{0} = \underline{0}$$

Further, $\operatorname{sols}(H) = \operatorname{LD}(\underline{a}_1, \underline{a}_2, \cdots, \underline{a}_n)$, by definition. And, $\underline{0} \subseteq \operatorname{sols}(H)$, so $\operatorname{sols}(H) \neq \emptyset$

Corollary 3.2.1 (LD is closed). For any sequence S, LD(S) is closed under (tuple) addition and multiplication by number.

Theorem 3.2.1 (General Solution of LES). Let L be a LES and H be the respective homogeneous system. Let $p \in sols(L)$ then:

$$sols(L) = \{ \underline{p} + \underline{q} \mid \underline{q} \in sols(H) \}$$

Proof. We use double inclusion:

$$(\supseteq) \ \forall \underline{q} \in \operatorname{sols}(H), \ \sum_{i=1}^{n} \underline{a}_{i} \cdot (p_{i} + q_{i}) = \sum_{i=1}^{n} \underline{a}_{i} \cdot p_{i} + \sum_{i=1}^{n} \underline{a}_{i} \cdot q_{i} = \underline{b} + \underline{0} = \underline{b} \Rightarrow p + q \in \operatorname{sols}(L)$$

$$(\subseteq) \ \underline{x} \in \operatorname{sols}(L) \Leftrightarrow \sum_{i=1}^{n} \underline{a}_{i} \cdot x_{i} = \underline{b} = \sum_{i=1}^{n} \underline{a}_{i} \cdot p_{i} \Leftrightarrow \sum_{i=1}^{n} \underline{a}_{i} \cdot \left(x_{i} - p_{i}\right) = \underline{0} \Rightarrow \underline{x} - p = q \in \operatorname{sols}(H)$$

Corollary 3.2.2 (Uniqueness of Solution). If $sols(H) = \{\underline{0}\}$ (trivial), then the solution of the linear system is either unique or empty.

3.3 Basis and Subspaces of Tuples

Definition 3.3.1 (Basis of Tuples). We say $S = (\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n)$ is a basis for a set $U \subseteq F^k$ if every element in U can be uniquely represented as linear combination of S, that is:

$$\forall \underline{u} \in U, \exists ! (\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{R}^n : \sum_{i=1}^n \alpha_i \cdot \underline{v}_i = \underline{u}$$

Theorem 3.3.1 (N&SC for a Basis). A sequence is a basis of its span iff the sequence is linear independent.

Proof. We know every element in the span can be represented as a linear combination of S. It rests to show uniqueness iff the sequence is linear independent.

- (\Rightarrow) Then, $\underline{0}$ has a unique representation, which is taking every coefficient 0. Hence, there is no other linear combination that gets $\underline{0}$, that is, S is linearly independent.
- (\Leftarrow) For any $\underline{u} \in U = \operatorname{Span}(S)$, we want $\sum_i \underline{v}_i \cdot x_i = \underline{u}$ to have a unique solution. Since a solution exists ($\underline{u} \in \operatorname{Span}(S)$), by the previous theorem, it is necessary and sufficient that the homogenous system has only trivial solution, that is, $\sum_i \underline{v}_i \cdot x_i = \underline{0}$ has only trivial solution. Meaning, the only linear combination of S that gives $\underline{0}$ is the one with all zeros. I.e. S is linearly independent.

If S is a basis of its span, we say the span is **exact**.

Definition 3.3.2 (Subspaces as Spans). A subset $U \subseteq F^k$ is a (finitely spanned) subspace of F^k if it is a span of some sequence.

4 Functions

4.1 Basic Definitions

Definition 4.1.1 (Function). A function $f: A \to B$ is defined as three sets:

- Domain: A
- Codomain/Range: B
- Graph/Table: $f \subseteq A \times B$

Such that: $\forall a \in A, \exists! b \in B : (a,b) \in f$

Instead of writing $(a,b) \in f$, we write f(a) = b. We call b the **image** of a and a the **source** of b.

Definition 4.1.2 (Image).

$$Im(f) = \{ b \in B \mid \exists a \in A : f(a) = b \} = \{ f(a) \mid a \in A \}$$

Definition 4.1.3 (Injectivity). Given $f: A \to B$ is called injective iff:

$$\forall a_1, a_2 \in A, \ a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

which is equivalent to: $\forall a_1, a_2 \in A$, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

Lemma 4.1.1 (Injectivity as Unique Solution). A function is injective iff:

$$\forall b \in \operatorname{Im}(f), \exists ! a \in A : f(a) = b$$

Proof. We prove both directions: Let $b \in \text{Im}(f)$.

- (\Rightarrow) By definition, $\exists a \in A : f(a) = b$. Let $a' \in A : f(a') = b = f(a) \Rightarrow a' = a$, so it is unique.
- (\Leftarrow) By contrary, if $\exists a_1, a_2 \in A, a_1 \neq a_2 : f(a_1) = b = f(a_2)$, then the source a of b is not unique.

Definition 4.1.4 (Surjectivity). Given $f: A \to B$ is called surjective iff: B = Im(f)

Lemma 4.1.2 (Surjectivity as existence of solution). A function is surjective iff:

$$\forall b \in B, \exists a \in A : f(a) = b$$

Proof. We prove both directions: Let $b \in B$.

- (\Rightarrow) By definition, $b \in B = \text{Im}(f) \Leftrightarrow \exists a \in A : f(a) = b$.
- (\Leftarrow) By contrary, if $\exists b \in B : \forall a \in A, f(a) \neq b$, then $B \setminus \text{Im}(f) \neq \emptyset \Rightarrow B \neq \text{Im}(f)$.

4.2 Composition and Inverses

Definition 4.2.1 (Bijectivity). A function is bijective iff it is both injective and surjective.

Theorem 4.2.1 (Reverse Table). The reverse graph of f, $g = \{(b, a) \in B \times A \mid (a, b) \in f\}$, defines a function iff f is bijective.

Proof. We prove both directions:

- (\Leftarrow) f is injective and surjective: $\forall b \in \text{Im}(f) = B$, $\exists ! a \in A : f(a) = b$. Putting g(b) = a instead of f(a) = b, by definition, we get that g is a function.
- (⇒) Using contrapositive, if it's not injective or not surjective, it is not invertible.
 - Not injective, $\exists a_1, a_2 \in A, a_1 \neq a_2 : f(a_1) = f(a_2) = b$, hence g(b) has two images.

– Not surjective $\exists b \in B : \forall a \in A, f(a) \neq b$, hence g(b) has no image.

Definition 4.2.2 (Composition). Let $f: A \to B$ and $g: B \to C$ be two functions (s.t. $\text{Im}(f) \subseteq \text{Dom}(g)$), the composition $g \circ f$ is the function:

$$h: A \to C$$

 $a \mapsto g(f(a))$

It is an associative operation.

Definition 4.2.3 (Commutative Diagram). A commutative diagram is a combination of maps as:

$$A \xrightarrow{f} B \downarrow_g$$

$$C$$

so that we can arrive at any point through any sequence of maps. In this simplest case, we must have $h = g \circ f$.

Theorem 4.2.2 (Character of Functions). Let $f: A \to B$ and $g: B \to C$.

- 1. $g \circ f$ injective $\Rightarrow f$ injective
- 2. $g \circ f$ surjective $\Rightarrow g$ surjective

Proof. We use the contrapositive

- 1. f is not injective: $\exists a_1, a_2 \in A, a_1 \neq a_2 : f(a_1) = f(a_2)$. By apply g to both sides, we get $g \circ f$ is not injective.
- 2. g is not surjective: $\exists c \in C : \forall b \in B, g(b) \neq c$. Letting b = f(a), we get $g \circ f$ is not surjective.

Definition 4.2.4 (Identity). For any set A we define:

$$Id_A: A \to A$$
$$a \mapsto a$$

Let $f: A \to B$, then: $f \circ \mathrm{Id}_A = f = \mathrm{Id}_B \circ f$

Theorem 4.2.3 (Reverse Table as Inverses). If f is bijective and $g: B \to A$ its inverse table, then:

$$g \circ f = \mathrm{Id}_A$$
$$f \circ g = \mathrm{Id}_B$$

Proof. Let
$$f(a) = b$$
: $\forall a \in A$, $(g \circ f)(a) = g(f(a)) = g(b) = a$ and $\forall b \in B$, $(f \circ g)(b) = f(g(b)) = f(a) = b$.

Lemma 4.2.1 (Uniqueness of Inverses). For any associative operation $*: A \times A \to A$ with neutral element (e), the inverses are unique.

Proof. Let a, a' be inverses of b. Then:

$$a' = a' * e = a' * (b * a) = (a' * b) * a = e * a = a$$

Corollary 4.2.1 (Uniqueness of Function Inverses). If f has an inverse wrt composition, then it is unique. Heretofore, we denote the inverse f^{-1} .

Lemma 4.2.2 (Composition of Inverses). For any associative operation $*: A \times A \to A$ with neutral element (e), if a and b are have inverses, then a*b has an inverse. In particular, $(a*b)^{-1} = b^{-1} * a^{-1}$

Proof. We show that $b^{-1} * a^{-1}$ is an inverse:

$$(b^{-1} * a^{-1}) * (a * b) = b^{-1} * (a^{-1} * a) * b = b^{-1} * e * b = b^{-1} * b = e$$

$$(a * b) * (b^{-1} * a^{-1}) = a * (b^{-1} * b) * a^{-1} = a * e * a^{-1} = a * a^{-1} = e$$

Corollary 4.2.2 (Inverse of Composition). The composition of bijective functions is again bijective.

Example 4.2.1 (Set of Functions). Let ${}^{A}A = \{f \mid f : A \to A\}$, we have:

- 1. AA is closed under composition
- 2. Composition is associative
- 3. There is a neutral element (Id_A)
- 4. If $f: A \to A$ is a bijection, then it has an inverse

Let $G_A = \{ f \in {}^AA \mid f \text{ is bijective} \}$, so that every element of AA that has an inverse is in G_A . Then, G_A is closed under composition.

4.3 One-Sided Inverses

Definition 4.3.1 (Left-Inverse). Let $f: A \to B$ be a function. A left-inverse is $g: B \to A$ such that: $g \circ f = \operatorname{Id}_A$

Lemma 4.3.1 (N&SC for existence of left-inverses). f has left inverse iff f is injective.

Proof. We prove both directions:

- (⇒) Since $g \circ f = \mathrm{Id}_A$ is injective, we must have f is injective.
- (\Leftarrow) Take any $a_0 \in A$. We define:

$$g(b) = \begin{cases} a & \text{if } b \in \text{Im}(f) \text{ where } f(a) = b \\ a_0 & \text{if } b \notin \text{Im}(f) \end{cases}$$

Definition 4.3.2 (Right-Inverse). Let $f: A \to B$ be a function. A right-inverse is $g: B \to A$ such that: $f \circ g = \mathrm{Id}_B$

Lemma 4.3.2 (N&SC for existence of right-inverses). f has right inverse iff f is surjective.

Proof. We prove both directions:

- (\Rightarrow) Since $f \circ g = \mathrm{Id}_B$ is surjective, we must have f is surjective.
- (\Leftarrow) We define g(b) are any source a of b (there may be many, we pick an arbitrary one).

Theorem 4.3.1 (Conservation of Character). Let $f: A \to B$ arbitrary and $g: B \to C$ bijective.

- 1. $g \circ f$ injective $\Leftrightarrow f$ injective
- 2. $g \circ f$ surjective $\Leftrightarrow f$ surjective

Proof. By the previous two lemmas:

- 1. $g \circ f$ injective $\Leftrightarrow \exists h_1 : C \to A : h_1 \circ (g \circ f) = \mathrm{Id}_A \Leftrightarrow f$ has left inverse $(h_2 = h_1 \circ g \Leftrightarrow h_1 = h_2 \circ g^{-1}) \Leftrightarrow f$ injective
- 2. $g \circ f$ surjective $\Leftrightarrow \exists h_1 : C \to A : (g \circ f) \circ h_1 = \operatorname{Id}_C$ eq. $f \circ h_1 = g^{-1}$ eq. $f \circ h_1 \circ g = \operatorname{Id}_A$ has right inverse $(h_2 = h_1 \circ g \Leftrightarrow h_1 = h_2 \circ g^{-1})$ $\Leftrightarrow f$ surjective

Lemma 4.3.3 (Functions to Equations).

$$E: f(x) = g(x)$$

$$F: h(f(x)) = h(g(x))$$

For general h: $sols(E) \subseteq sols(F)$. If h is injective: sols(E) = sols(F)

5 Matrices

5.1 Products on Matrices

Definition 5.1.1 (SumProd). Given two tuples $a, x \in F^n$, we define:

$$\underline{a} \bullet \underline{x} := \sum_{i=1}^{n} a_i \cdot x_i \in F$$

which is linear on both variables (distributive over addition and numbers move freely inside).

Definition 5.1.2 (SumProd with Sequences). Let $S = (\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n) \in (F^k)^n$, we can further define:

$$S \bullet \underline{x} := \sum_{i=1}^{n} \underline{a}_{i} \cdot x_{i} \in F$$

That way, we can write a linear system $L: \sum_{i=1}^n \underline{a}_i \cdot x_i = \underline{b}$ as $L: S \bullet \underline{x} = \underline{b}$.

Definition 5.1.3 (Matrices). The set $M_{k\times n}(F)$ (also denoted $F^{k\times n}$) has elements which are rectangles of numbers with k rows and n columns. It is equivalent (isomorphic) to $(F^k)^n$. If we take a sequence $S = (\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n) \in (F^k)^n$, we write the matrix A as:

$$A = \left(\begin{array}{cccc} | & | & & | \\ \underline{a}_1 & \underline{a}_2 & \cdots & \underline{a}_n \\ | & | & & | \end{array}\right)$$

We define multiplication by tuples (written side-by-side) as:

$$A\underline{x} = \begin{pmatrix} | & | & & | \\ \underline{a}_1 & \underline{a}_2 & \cdots & \underline{a}_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = S \bullet \underline{x} = \sum_{i=1}^n \underline{a}_i \cdot x_i$$

We can also define with rows:

$$A\underline{x} = \begin{pmatrix} - & \underline{r}_1 & - \\ - & \underline{r}_2 & - \\ & \vdots & \\ - & \underline{r}_k & - \end{pmatrix} \underline{x} = \begin{pmatrix} \underline{r}_1 \cdot \underline{x} \\ \underline{r}_2 \cdot \underline{x} \\ \vdots \\ \underline{r}_k \cdot \underline{x} \end{pmatrix}$$

Note that is operation is linear on \underline{x} (distributive over addition and numbers move freely inside). Also, we define $S_c(A) = (\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n)$, the column sequence, and $S_r(A) = (\underline{r}_1, \underline{r}_2, \dots, \underline{r}_k)$, the row sequence.

Proposition 5.1.1 (LES as Matrix Equations).

$$L: \sum_{i=1}^{n} \underline{a}_{i} \cdot x_{i} = \underline{b} \Leftrightarrow \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{k} \end{pmatrix}$$

We call the matrix A, we get: $L: A \underline{x} = \underline{b}$.

Definition 5.1.4 (Transpose). For $A \in M_{k \times n}(F)$ as a rectangle of numbers, we define:

$$A = \begin{pmatrix} | & | & & | \\ \underline{a}_1 & \underline{a}_2 & \cdots & \underline{a}_n \\ | & | & & | \end{pmatrix} \Rightarrow A^t = \begin{pmatrix} - & \underline{a}_1 & - \\ - & \underline{a}_2 & - \\ & \vdots & \\ - & \underline{a}_n & - \end{pmatrix} \in M_{n \times k}(F)$$

Lemma 5.1.1 (Transpose Changes Order). $(AB)^t = B^t A^t$

5.2 Matricial Functions

Definition 5.2.1 (Matricial Functions). Given $A \in M_{k \times n}(F)$, we define:

$$T_A: F^n \to F^k$$

 $x \mapsto A x$

Definition 5.2.2 (Linear Operation on Matrices). For $A, B \in M_{k \times n}(F)$, we define:

Sum:
$$T_{A+B} = T_A + T_B$$
, that is, $T_{A+B} : \underline{x} \mapsto T_A(\underline{x}) + T_B(\underline{x})$
Multiplication by number: $T_{\lambda A} = \lambda \cdot T_A$ that is, $T_{\lambda A} : \underline{x} \mapsto \lambda \cdot T_A(\underline{x})$

In terms of the original rectangles of numbers, they are defined analogously to the tuple addition and multiplication by a number.

Definition 5.2.3 (Matrix Multiplication). We define: $T_{AB} = T_A \circ T_B$. Notice that, if $A \in M_{k \times n}(F)$ and $B \in M_{r \times m}(F)$, for AB to be defined, we need n = r. Hence, $T_A : F^n \to F^k$ and $T_B : F^m \to F^n$. As a rectangle of numbers:

$$T_{A}(T_{B} \underline{x}) = A \left(B \underline{x} \right) = A \begin{pmatrix} | & | & | \\ \underline{b}_{1} & \underline{b}_{2} & \cdots & \underline{b}_{n} \\ | & | & | & | \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = A \left(\sum_{i=1}^{n} \underline{b}_{i} \cdot x_{i} \right)$$

$$= \sum_{i=1}^{n} A(\underline{b}_{i}) \cdot x_{i} = \begin{pmatrix} | & | & | \\ A(\underline{b}_{1}) & A(\underline{b}_{2}) & \cdots & A(\underline{b}_{n}) \\ | & | & | \end{pmatrix} \underline{x}$$

$$\Rightarrow AB = \begin{pmatrix} | & | & | \\ A(\underline{b}_{1}) & A(\underline{b}_{2}) & \cdots & A(\underline{b}_{n}) \\ | & | & | \end{pmatrix}$$

Equivalently, we calculate as follows:

$$\begin{pmatrix} - & \underline{r}_1 & - \\ - & \underline{r}_2 & - \\ \vdots & \\ - & \underline{r}_k & - \end{pmatrix} \begin{pmatrix} | & | & & | \\ \underline{b}_1 & \underline{b}_2 & \cdots & \underline{b}_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} \underline{r}_1 \bullet \underline{b}_1 & \underline{r}_1 \bullet \underline{b}_2 & \cdots & \underline{r}_1 \bullet \underline{b}_n \\ \underline{r}_2 \bullet \underline{b}_1 & \underline{r}_2 \bullet \underline{b}_2 & \cdots & \underline{r}_2 \bullet \underline{b}_n \\ \vdots & \vdots & \ddots & \vdots \\ \underline{r}_n \bullet \underline{b}_1 & \underline{r}_n \bullet \underline{b}_2 & \cdots & \underline{r}_n \bullet \underline{b}_n \end{pmatrix}$$

Notice it is not commutative.

Definition 5.2.4 (Identity Matrix). Let $\underline{e}_i \in F^n$ be such that the *i*-th component is 1 and every other is 0. Then:

$$A\underline{e}_{i} = \begin{pmatrix} | & | & & | \\ \underline{a}_{1} & \underline{a}_{2} & \cdots & \underline{a}_{n} \\ | & | & & | \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \underline{a}_{i}$$

The $(n \times n)$ identity matrix is defined:

$$I_{n} = \begin{pmatrix} | & | & & | \\ \underline{e}_{1} & \underline{e}_{2} & \cdots & \underline{e}_{n} \\ | & | & & | \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

the diagonal of all ones. Also, notice: $\mathrm{Id}_{F^n} = T_{I_n}$.

Lemma 5.2.1 (Matrix of Transformation). Let $T: F^n \to F^k$ be a matricial function. Its corresponding matrix is:

$$[T] = \begin{pmatrix} | & | & | \\ T(\underline{e}_1) & T(\underline{e}_2) & \cdots & T(\underline{e}_n) \\ | & | & | \end{pmatrix}$$

That is, the matrix is uniquely determined by the function.

Proof. If A and B are two matrices that define the same matricial function, then, for $i \in \{1, 2, \dots, n\}$:

$$\underline{a}_i = A \underline{e}_i = T(\underline{e}_i) = B \underline{e}_i = \underline{b}_i$$

hence, every column is the same, so A = B.

Definition 5.2.5 (Kernel). Given a matricial function T_A , we define:

$$\ker(T_A) = \{\underline{x} \in F^n \mid T_A(\underline{x}) = \underline{0}\}$$

Notice $\{0\} \subseteq \ker(T_A)$. We further write $\operatorname{sols}(A) = \ker(T_A) = \operatorname{sols}(A \underline{x} = \underline{0})$.

Lemma 5.2.2 (N&SC for Injectivity). T_A is injective iff $\ker(T_A) = \{\underline{0}\}.$

Proof. We prove both directions:

$$(\Rightarrow)$$
 $T(\underline{x}) = \underline{0} = T(\underline{0}) \Rightarrow \underline{x} = \underline{0}$, that is, $\{\underline{0}\} \supseteq \ker(T_A)$.

$$(\Leftarrow) \ T(\underline{x}) = T(y) \Rightarrow T(\underline{x} - y) = \underline{0} \Rightarrow \underline{x} - y = \underline{0} \Rightarrow \underline{x} = y$$

5.3 Invertible Matrices

Definition 5.3.1 (Inverse of a Matrix). Given a matricial function T_A : $F^n \to F^k$, we seek to find its inverse (if it exists). We define the inverse matrix as the matrix of the matrical function $T_A^{-1} = T_{A^{-1}}$. That is, A^{-1} is the unique matrix that $A^{-1}A = I$ and $AA^{-1} = I$

Definition 5.3.2 (General Linear Group). The set of invertible matrices is denoted $GL_n(F)$.

Lemma 5.3.1 (Inverse of Transpose). $(A^t)^{-1} = (A^{-1})^t$

Proof.

$$A A^{-1} = I \Rightarrow (A A^{-1})^t = I^t = I \Rightarrow (A^{-1})^t A^t = I$$

 $A^{-1} A = I \Rightarrow (A^{-1} A)^t = I^t = I \Rightarrow A^t (A^{-1})^t = I$

By uniqueness of inverses, we have the proof.

Corollary 5.3.1 (Transpose of Invertible is Invertible). A^t is invertible $\Leftrightarrow A$ is invertible.

We proceed to apply the Gaussian Elimination to matrices, as any linear equation system can be written as something of the form $A \underline{x} = \underline{b}$.

Definition 5.3.3 (Elementary Functions). We define the following types of (invertible) elementary functions $\varphi: F^k \to F^k$

Operations	φ	φ^{-1}
Reordering the variables	$x_i \leftrightarrow x_j$	$x_i \leftrightarrow x_j$
Multiplying one variable by a non-zero constant t	$x_i \to t \cdot x_i$	$x_i \to \frac{1}{t} \cdot x_i$
Add multiple of one variable to another	$x_i \to x_i - t \cdot x_j$	$x_i \to x_i + t \cdot x_j$

Notice that those are matricial functions. We further denote $\Phi = [\varphi]$

Definition 5.3.4 (Leading Coefficient). We say x_i the leading coefficient of

the tuple
$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
 iff $a_i \neq 0$ and $\forall j : 1 \leq j < i, \ a_j = 0.$

Definition 5.3.5 (Canonical Form / Reduced Row Echelon Form). A matrix is said to be in canonical form or rref (row reduced echelon form) if:

- 1. The leading coefficient of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- 2. 0 rows come at the end.
- 3. The leading coefficient of each row is 1.
- 4. Each column containing a leading 1 (called pivot column) has zeros everywhere else.

An important example of a matrix in rref is the identity matrix. We also say T_A is in canonical form.

Proposition 5.3.1 (Gaussian Elimination on Matrices). For every matricial function T_A , $\exists \varphi_1, \varphi_2, \cdots, \varphi_r$ elementary : $\varphi_r \circ \cdots \circ \varphi_2 \circ \varphi_1 \circ T_A = T_R$ is in canonical form.

Therefore, T_A has "same character" (i.e. injective or surjective) as T_R .

Proof. Follows directly from the Gaussian Elimination Algorithm. \Box

Theorem 5.3.1 (N&SC for Inverting RREF). Let $R \in M_{k \times n}(F)$ be in canonical form. Then, R is invertible iff n = k and R = I.

Proof. First, notice that the number of leading coefficients is min(n, k). We have two cases:

- 1. If n < k, there is a row of $\underline{0}$.
- 2. If n > k, there is a column without a leading coefficient.

Now, we look:

- 1. If there is a row of $\underline{0}$, then T_R is not surjective, because it doesn't map to \underline{e}_k (last row).
- 2. Suppose that there is a column without a leading coefficient, say, \underline{a} , the *i*-th column. We apply T_R to the tuple \underline{x} :

$$x_j = \begin{cases} -a_j & \text{if } j\text{-th column is pivot} \\ 1 & \text{if } j = i \\ 0 & \text{else} \end{cases}$$

Hence, $T_R(\underline{x}) = \underline{0} \Rightarrow \underline{0} \neq \underline{x} \in \ker(T_A) \Rightarrow T_A$ is not injective.

Therefore, if $n \neq k$, T_R is not bijective. However if n = k and R still has a row of $\underline{0}$ or a column without a leading coefficient, T_R is still not bijective. The remaining case it exactly when n = k and R = I, which is trivially invertible.

Corollary 5.3.2 (Invertibility from RREF). A matrix is invertible iff it's rref is I Corollary 5.3.3 (Character of Dimension). For every matricial function T_A :

- 1. If n < k, T_A is not surjective.
- 2. If n > k, T_A is not injective.

In order to invert a matrix A we write the augmented matrix $(A \mid I)$ and apply elementary functions until we get $(I \mid A^{-1})$.

Example 5.3.1.
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -2 & 1 \end{pmatrix}$$

Hence,
$$A^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$$

Definition 5.3.6 (Row Equivalence). Two matrices are **row equivalent**, written:

$$A \leftrightarrow B \Leftrightarrow \exists \Phi_1, \Phi_2, \cdots, \Phi_r \ elementary : A = \Phi_1 \Phi_2 \cdots \Phi_r B$$

Lemma 5.3.2 (N&SC for Row Equivalence). $A \leftrightarrow B \Leftrightarrow \exists M \in GL_k(F) : A = MB$

Proof. By Gaussian Elimination Theorem, a matrix is invertible iff it is row equivalent to the identity. \Box

Lemma 5.3.3 (Row Equivalence Relation). Row equivalence is an equivalence relation:

Proof. We choose the matrices so that $A \leftrightarrow B \Leftrightarrow \exists M \in GL_k(F) : A = MB$. Reflexive: Take I; Symmetric: Take M^{-1} ; Transitive: Take $M_1 M_2$. \square

5.4 Matrix Spaces

Definition 5.4.1 (Sols, Cols and Rows). *Given*

$$A = \begin{pmatrix} | & | & & | \\ \underline{a}_1 & \underline{a}_2 & \cdots & \underline{a}_n \\ | & | & & | \end{pmatrix} = \begin{pmatrix} - & \underline{r}_1 & - \\ - & \underline{r}_2 & - \\ & \vdots & \\ - & \underline{r}_k & - \end{pmatrix} \in M_{k \times n}(F)$$

we define:

$$cols(A) = Span(S_c(A)) = Span(\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n)$$

$$rows(A) = cols(A^t) = Span(S_r(A)) = Span(\underline{r}_1, \underline{r}_2, \dots, \underline{r}_k)$$

$$sols(A) = sols(A\underline{x} = \underline{0}) = LD(S_c(A)) = LD((\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n))$$

Lemma 5.4.1 (Fundamental Theorem on Gaussian Elimination).

$$A \leftrightarrow B \Leftrightarrow \operatorname{rows}(A) = \operatorname{rows}(B) \Leftrightarrow \operatorname{sols}(A) = \operatorname{sols}(B)$$

Proof. We prove each one:

$$\Leftrightarrow \operatorname{rows}(A) = \operatorname{rows}(B)$$

$$(\Rightarrow) \operatorname{rows}(A) = \operatorname{cols}(A^t) = \operatorname{cols}(B^t M^t) = \operatorname{cols}(B^t) = \operatorname{rows}(B)$$

(
$$\Leftarrow$$
) By contrary, if $\operatorname{rows}(A) \neq \operatorname{rows}(B) \Rightarrow \operatorname{cols}(A^t) \neq \operatorname{cols}(B^t)$. If $\operatorname{rows}(A) \setminus \operatorname{rows}(B) \neq \varnothing \Rightarrow \exists x \in \mathbb{R}^n : \begin{cases} \exists y \in \mathbb{R}^n : A^t \underline{y} = \underline{x} \\ \nexists z \in \mathbb{R}^n : B^t \underline{z} = \underline{x} \end{cases}$, then, $\nexists M \in \operatorname{GL}_k(F) : A = MB : \text{ otherwise } B^t (M^t \underline{y}) = \underline{x}$. The same if $\operatorname{rows}(B) \setminus \operatorname{rows}(A) \neq \varnothing$.

$$\Leftrightarrow \operatorname{sols}(A) = \operatorname{sols}(B)$$

$$(\Rightarrow) \ \underline{x} \in \operatorname{sols}(A) \Leftrightarrow \underline{0} = A \,\underline{x} = M \,B \,\underline{x} \Leftrightarrow B \,\underline{x} = \underline{0} \Leftrightarrow \underline{x} \in \operatorname{sols}(B)$$

(\Leftarrow) By contrary, if $\operatorname{sols}(A) \setminus \operatorname{sols}(B) \neq \varnothing \Rightarrow \exists x \in \mathbb{R}^n : \begin{cases} A \underline{x} = \underline{0} \\ B \underline{x} \neq \underline{0} \end{cases}$, then, $\nexists M \in \operatorname{GL}_k(F) : B = MA : \text{ otherwise } B \underline{x} = 0$. The same if $\operatorname{sols}(B) \setminus \operatorname{sols}(A) \neq \varnothing$.

Lemma 5.4.2. Let R be in canonical form. Then, either R = I or it is (up to an exchange of columns):

$$\left(\begin{array}{c|c} I_r & L \\ \hline 0 & 0 \end{array}\right) \Rightarrow \operatorname{sols}(R) = \operatorname{cols}\left(\begin{array}{c|c} -L \\ \hline I_{n-r} \end{array}\right)$$

(up to the same exchange of rows).

Example 5.4.1. We have:

$$R = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix} \Rightarrow \operatorname{sols}(R) = \operatorname{cols} \begin{pmatrix} -2 & -3 \\ 1 & 0 \\ 0 & -4 \\ 0 & 1 \end{pmatrix}$$

We had to switch columns 2 and 3 in R, we performed the same switch to rows in the shape.

Theorem 5.4.1 (Rank-Dimension).

$$\dim \operatorname{cols}(A) = \dim \operatorname{rows}(A)$$

Proof. Let R be the rref form of A. Since R = M A for some $M \in GL_k(F)$, we get: rows(A) = rows(R), by the lemma above and dim cols(A) = dim cols(R) since T_M is an isomorphism. Therefore, we only need to prove for the rref form. From the previous lemma, dim rows(A) = r (number of pivot columns). Also dim cols(A) = n - dim sols(A) = n - (n - r) = r.

Definition 5.4.2 (Rank). We call

rank(A) = dim cols(A) = dim rows(A) = number of pivot columns

6 Determinants

6.1 Multilinear Alternating Function

Definition 6.1.1 (Determinant). We define the determinant function det : $(F^n)^n \to F$ so that:

Operations	Calculation
Multilinearity	$\det(\alpha \cdot \underline{u} + \beta \cdot \underline{v}, \cdots) = \alpha \cdot \det(\underline{u}, \cdots) + \beta \cdot \det(\underline{v}, \cdots)$
Alternating	$\det(\underline{u}, \cdots, \underline{v}, \cdots) = -\det(\underline{v}, \cdots, \underline{u}, \cdots)$
Normalized	$\det(\underline{e}_1,\underline{e}_2,\cdots,\underline{e}_n)=1$

Moreover, we have: $det(\underline{u}, \underline{u}, \cdots) = 0$

For a square matrix, we use the sequence of columns:

$$\det(A) = \det(\underline{a}_{1}, \underline{a}_{2}, \cdots, \underline{a}_{n}) = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{vmatrix}$$

Proposition 6.1.1 (Change in Determinants). For elementary operations, we have those relations:

Operations	φ	$\det(\Phi A)$
Reordering the equations	$x_i \leftrightarrow x_j$	$\det(A)$
Multiplying one equation by a non-zero constant t	$x_i \to t \cdot x_i$	$t \det(A)$
Add multiple of one equation to another	$x_i \to x_i - t \cdot x_j$	$\det(A)$

Definition 6.1.2 (Permutation). A permutation is a bijective function σ : $\{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$. A transposition is the simplest type of permutation which consist of only switching two numbers, every permutation can be written as a composition of transpositions. We define $\operatorname{sgn}(\sigma) = (-1)^{\# \operatorname{transpositions}}$.

Theorem 6.1.1 (Leibnitz Formula).

$$\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$$

Proof. By linearity:

$$\det(A) = \sum_{k_1=1}^n \sum_{k_2=1}^n \cdots \sum_{k_n=1}^n \det\left(\underline{e}_{k_1}, \underline{e}_{k_2}, \cdots, \underline{e}_{k_n}\right) \prod_{i=1}^n a_{i, k_i}$$

we get the formula by noticing:

$$\det \left(\underline{e}_{k_1}, \underline{e}_{k_2}, \cdots, \underline{e}_{k_n}\right) = \begin{cases} 0 & \text{if one of } k_i\text{'s are equal} \\ \operatorname{sgn}(\sigma) & \text{otherwise, where } \sigma(i) = k_i \end{cases}$$

Corollary 6.1.1. $det(AB) = det(A) \cdot det(B)$

Theorem 6.1.2 (Laplace Formula). The (i, j) minor of A, denoted $A_{i, j}$, is the matrix we get when we delete the i-th row and j-th column. For arbitrary column j:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$

Proof. By linearity on the j-th column:

$$\det(A) = \sum_{i=1}^{n} a_{i,j} \det(\cdots, \underline{a}_{j-1}, \underline{e}_{i}, \underline{a}_{j+1}, \cdots)$$

And we calculate:

$$\det(\cdots, \underline{a}_{j-1}, \underline{e}_i, \underline{a}_{j+1}, \cdots) = (-1)^{i+j} \det(\underline{e}_i, \cdots, \underline{a}_{j-1}, \underline{a}_{j+1}, \cdots)$$

$$= (-1)^{i+j} \det(\underline{e}_i, \cdots, \underline{a}_{j-1} - a_{i,j-1} \cdot \underline{e}_i, \underline{a}_{j+1} - a_{i,j+1} \cdot \underline{e}_i, \cdots)$$

$$= (-1)^{i+j} \det(A_{i,j})$$

Corollary 6.1.2 (Determinant on Upper Triangular Matrix). If U is an upper triangular matrix, det(U) is the product of the elements in the main diagonal.

Theorem 6.1.3 (N&SC for Invertibility). A is invertible iff $det(A) \neq 0$

Proof. We prove both directions:

- $(\Rightarrow) \exists B \in M_n(F) : AB = I, \text{ so that } \det(A) \cdot \det(B) = 1 \Rightarrow \det(A) \neq 0$
- (\Leftarrow) $A = \Phi_r \cdots \Phi_2 \Phi_1 R \Rightarrow \det(A) = t \det(R), t \neq 0$. R is upper diagonal and $\det(R) \neq 0$ hence, the diagonal has no zeros, i.e. R = I.

6.2 Cramer's Rule and Adjungate Matrix

Definition 6.2.1 (Adjungate). Given $A \in M_n(F)$, we define $adj(A) \in M_n(F)$ such that:

$$adj(A)_{i,j} = (-1)^{i+j} det(A_{j,i})$$

Lemma 6.2.1 (Adjungate Formula).

$$adj(A) A = det(A) I$$

Proof. Sufficient to notice:

$$\sum_{i=1}^{n} (-1)^{i+j} a_{i,k} \det(A_{i,j}) = \begin{cases} \det(A) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

Since if $j \neq k$ we have the determinant with repeated columns.

Corollary 6.2.1 (Inverse Formula). If $det(A) \neq 0$:

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

Theorem 6.2.1 (Cramer's Rule). If A is invertible, then the solution \underline{x} of $A\underline{x} = \underline{b}$ is such that:

$$x_i = \frac{\det(B_i)}{\det(A)}$$

where B_i is the matrix we get from A by replacing its i-th column by \underline{b} .

Proof.

$$\underline{x} = A^{-1} \underline{b} = \frac{1}{\det(A)} \operatorname{adj}(A) \underline{b}$$

notice that: $\sum_{i=1}^{n} (-1)^{i+j} b_i \det(A_{i,j}) = \det(B_i).$

7 Ring of Polynomials

7.1 Polynomials

Definition 7.1.1 (Polynomial is c_{00}). A polynomial is a sequence $p \in F^{\infty}$ such that almost all of its components (i.e. except finitely many) are 0. We will write with a dummy variable X:

$$p = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \\ 0 \\ \vdots \end{pmatrix} \Rightarrow p(X) = a_0 + a_1 X + a_2 X^2 \cdots a_n X^n$$

Using the dummy letter, we get the set F[X]. Its polynomial function is defined with substitution into p(X).

Definition 7.1.2 (Operations on Polynomials).

$$(a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} = (a_n + b_n)_{n=0}^{\infty}$$
$$t \cdot (a_n)_{n=0}^{\infty} = (t \cdot a_n)_{n=0}^{\infty}$$
$$(a_n)_{n=0}^{\infty} \cdot (b_n)_{n=0}^{\infty} = \left(\sum_{k=0}^{n} a_k \cdot b_{n-k}\right)_{n=0}^{\infty}$$

The last one being convolution, which is such that: $(p \cdot q)(X) = p(X) \cdot q(X)$.

Definition 7.1.3 (Degree). Let deg : $F[X] \to \mathbb{N}$ as: deg $(p) = n \Leftrightarrow a_n \neq 0$ and $\forall i > n$, $a_i = 0$.

Theorem 7.1.1 (Euclidean Division of Polynomials). Let $a, b \in F[X]$, then, $\exists ! q, r \in F[X] : a = b \cdot q + r \text{ and } \deg(r) < \deg(b)$

Proof. If deg(a) < deg(b), it is immediate that $a = b \cdot 0 + a$. Now, if $deg(a) = n \ge deg(b) = k$, we work by induction on n. Let $a(X) = a_n X^n + \cdots$ and

 $b(X) = b_k X^k + \cdots$. Notice that $a(X) - \frac{a_n}{b_k} X^{n-k} \cdot b(X)$ is a polynomial with degree less than n, hence, we use our induction hypothesis.

Corollary 7.1.1 (Divisibility of Roots). Let $p \in F[X]$ and $\alpha \in F : p(\alpha) = 0$. Then $\exists q \in F[X] : p(X) = (X - \alpha)q(X)$.

Lemma 7.1.1 (Sequence of Surprises). A sequence of non-zero polynomials $S = (p_1, p_2, \dots, p_n)$ with distinct degree, that is:

$$\forall i, j \in \{1, 2, \dots, n\} : i \neq j, \deg(p_i) \neq \deg(p_j)$$

is linearly independent.

Proof. Without loss of generality, let they be in ascending order of degree: $\deg p_1 < \deg p_2 < \cdots < \deg p_n$. We write:

$$\alpha_1 \cdot p_1(X) + \alpha_2 \cdot p_2(X) + \dots + \alpha_n \cdot p_n(X) = 0$$

If we look at deg p_n , we get: $\alpha_n \cdot X^{\deg p_n} = 0 \Rightarrow \alpha_n = 0$. Apply induction, with base case that a sequence of only one non-zero element is LI.

Theorem 7.1.2 (Multiplicity). Given $p \in F[X] \setminus \{0\}$ and $\lambda \in F$, there is a unique $\mu \in \mathbb{N}$ and $q \in F[X]$ where $q(\lambda) \neq 0$ such that $p(X) = (X - \lambda)^{\mu} q(X)$. The unique μ is called the (algebraic) multiplicity of λ in p (denote $am(\lambda)$) or $\mu_p(\lambda)$).

Proof. If $p(\lambda) \neq 0$, we're done. Else $p(X) = (X - \lambda) q_1(X)$. If $q_1(\lambda) \neq 0$, we're done. Else $p(X) = (X - \lambda)^2 q_2(X)$. It continues at most until $p(X) = a(X - \lambda)^{\deg p}$.

Proposition 7.1.1 (Multiplicity with Derivatives). $\mu_p(\lambda) = \mu \Leftrightarrow p(\lambda) = p'(\lambda) = \cdots = p^{(\mu-1)}(\lambda) = 0$ and $p^{(\mu)}(\lambda) \neq 0$.

7.2 Axioms of Rings

Definition 7.2.1 (Ring). A ring R is a set with operations $(+: R \times R \rightarrow R, \cdot: R \times R \rightarrow R)$ iff:

Properties	Definition
Commutative	$\forall \alpha, \beta \in R, \ \alpha + \beta = \beta + \alpha$
Associative	$\forall \alpha, \beta, \gamma \in R, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
Neutral Element	$\exists 0 \in R : \forall \alpha \in R , \alpha + 0 = \alpha$
Inverse Element	$\forall \alpha \in R , \exists \beta \in R : \alpha + \beta = 0$
Associative	$\forall \alpha, \beta, \gamma \in R, \ \alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
Distributive Right	$\forall \alpha, \beta, \gamma \in R, \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
Distributive Left	$\forall \alpha, \beta, \gamma \in R, (\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$
Unital Element	$\exists 1 \in R : \forall \alpha \in R, \ 1 \cdot \alpha = \alpha$

Examples include F[X] and $M_n(F)$ with addition and multiplication of polynomials and matrices, respectively. Also, notice that fields are special cases of rings.

8 Vector Spaces

8.1 Axioms of Vector Spaces

Definition 8.1.1 (Vector Space). A vector space V over a field F is a set with operations $(+: V \times V \to V, :: F \times V \to V)$ iff:

Properties	Definition
Commutative	$\forall u, v \in V , \ u + v = v + u$
Associative	$\forall u, v, w \in V, (u+v) + w = u + (v+w)$
Neutral Element	$\exists 0 \in V : \forall u \in V , u + 0 = u$
Inverse Element	$\forall u \in V , \; \exists v \in V : \; u + v = 0$
Associative	$\forall u \in V, \ \forall \alpha, \beta \in F, \ \alpha \cdot (\beta \cdot u) = (\alpha \cdot \beta) \cdot u$
Distributive Right	$\forall u, v \in V, \ \forall \alpha \in F, \ \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$
Distributive Left	$\forall u \in V, \ \forall \alpha, \beta \in F, \ (\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$
Unitary	$\forall u \in V, \ 1_F \cdot u = u$

Usually, + is called addition and \cdot is called scalar multiplication. Also, we often denote the inverse of addition as -u.

Definition 8.1.2 (Group). The set G is a group with operation $*: G \times G \rightarrow G$ iff:

Properties	Definition
Associative	$\forall a, b, c \in G, (a*b)*c = a*(b*c)$
Neutral Element	$\exists e \in G : \forall a \in G, \ a * e = e * a = a$
Inverse Element	$\forall a \in G , \exists b \in G : a * b = b * a = e$

Further, if the operation is commutative, the group is abelian. A field F is

both an abelian group (F, +) and an abelian group $(F \setminus \{0\}, \cdot)$. Moreover, a vector space is an abelian group (V, +).

Example 8.1.1. $F^n, F^{k \times n}, F[X]$ and F^{∞} are vector spaces we saw before.

The set SV of all functions from a set S is to a vector space V is again a vector space with + and \cdot inherited from V as follows:

$$(f+g)(s) = f(s) + g(s)$$
$$(\alpha \cdot f)(s) = \alpha \cdot f(s)$$

If U and V are vector spaces over F, then $U \times V$ is a vector space again a vector space with + and \cdot inherited from U and V as follows:

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2)$$

 $\alpha \cdot (u, v) = (\alpha \cdot u, \alpha \cdot v)$

The following is also a vector space $F_n[X] = \{ p \in F[X] \mid \deg(p) \le n \}.$

8.2 Spans and Subspaces

Definition 8.2.1 (Finite Span). For a set $S \subseteq V$, we define:

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{k} \alpha_i \cdot v_i \mid k \in \mathbb{N}, v_i \in S, \alpha_i \in F \right\}$$

If S is finite, or at least countable, we may write it as a sequence.

Definition 8.2.2 (Vector Subspace). Given a vector space $(V, F, +, \cdot)$, a subset U is a linear subspace if $(U, F, +|_{U \times U}, \cdot|_{F \times U})$ is a vector space, where $+|_{U \times U}$ and $\cdot|_{F \times U}$ are the operations + and \cdot restricted to U. Particularly, we just need to check:

- 1. U is non-empty
- 2. U is closed under addition
- 3. U is closed under scalar multiplication

Definition 8.2.3 (Finitely Spanned Vector Spaces). Given a vector space V over F, we say it is finitely spanned, if $\exists S \in V^k$: Span(S) = V, for some k finite.

Definition 8.2.4 (Spanning Sequence). Given a subspace U, we say $S \in V^k$, for k finite, is a spanning sequence of U if: $U = \operatorname{Span}(S)$. Equivalently, we write U is spanned by S. Note, since U is a linear subspace, $\operatorname{Span}(S) \subseteq U \Leftrightarrow S \subseteq U$.

Lemma 8.2.1 (Concatenation on Span). Let $S = (v_1, v_2, \dots, v_n) \in V^n$ and $T = (v_1, \dots, v_n, u) = S + u \in V^{n+1}$. Then:

- 1. $\operatorname{Span}(T) \supseteq \operatorname{Span}(S)$
- 2. $\operatorname{Span}(T) = \operatorname{Span}(S) \Leftrightarrow u \text{ is a linear combination of } S$
- 3. T is linearly independent iff S is linearly independent and $u \notin \text{Span}(S)$

Proof. For each one:

1. Span(S)
$$\ni \sum_{i=1}^{n} \alpha_i \cdot v_i = 0 \cdot u + \sum_{i=1}^{n} \alpha_i \cdot v_i \in \text{Span}(T)$$
.

- 2. (\Leftarrow) We only need \subseteq . Let $u = \sum_{i=1}^{n} \beta_i \cdot v_i$ so that $\operatorname{Span}(T) \ni \beta \cdot u + \sum_{i=1}^{n} \alpha_i \cdot v_i = \sum_{i=1}^{n} (\beta \cdot \beta_i + \alpha_i) \cdot v_i \in \operatorname{Span}(S)$.
 - $(\Rightarrow) \text{ For } \beta \neq 0, \text{ Span}(T) \ni \beta \cdot u + \sum_{i=1}^{n} \alpha_i \cdot v_i = \sum_{i=1}^{n} \beta_i \cdot v_i \in \text{Span}(S) \Rightarrow$ $u = \sum_{i=1}^{n} \frac{\beta_i \alpha_i}{\beta} \cdot v_i.$
- 3. (\Leftarrow) $\beta \cdot u + \sum_{i=1}^{n} \alpha_i \cdot v_i = 0$. Since $u \notin \text{Span}(S)$, $\beta = 0$. Since S is linearly independent $\alpha_1 = \cdots = \alpha_n = 0$.

(\Rightarrow) By contrary, $\beta \cdot u + \sum_{i=1}^{n} \alpha_i \cdot v_i = 0$, let $u = \sum_{i=1}^{n} \beta_i \cdot v_i$, set $\beta = 1$ and $\alpha_i = -\beta_i$, so we found a linear dependency. If $u \in \text{Span}(S)$, . If S is linearly dependent we set $\beta = 0$ and use any $(\alpha_1, \dots, \alpha_n) \in \text{LD}(S) \setminus \{0\}$.

8.3 Basis and Dimension

Definition 8.3.1 (Hamel Basis). A set B is called a (Hamel) basis of a vector space V iff

1. Any finite subset is linearly independent

2.
$$\forall v \in V, \exists ! \underline{x} \in F^k, (b_1, b_2, \dots, b_k) \subseteq B : \sum_{i=1}^h x_i \cdot b_i = v$$

If B is finite, or at least countable, we write it as a sequence. Heretofore, we only consern ourselves with this case.

Lemma 8.3.1 (N&SC for Basis). B is a basis of $U \subseteq V$ iff B is a spanning sequence of U and linearly independent.

Theorem 8.3.1 (Maximality of Basis). Let V be a vector space over F, and $A \in V^k$ be a linearly independent sequence in V. Moreover, let S be any spanning sequence of V ($V = \operatorname{Span}(S)$). Then: $\#A \leq \#S$.

Proof. Let $S=(v_1,v_2,\cdots,v_n)\in V^n$ such that $V=\operatorname{Span}(S)$ and $T=(u_1,u_2,\cdots,u_k)\in V^k$ with k>n. We want to show that T is linearly dependent. Since $V=\operatorname{Span}(S)$, we can find coefficients such that:

$$u_i = \sum_{j=1}^{n} a_{i,j} \cdot v_j$$

To find LD(T) we solve $\sum_{i=1}^{k} x_i \cdot u_i = 0$, that is,

$$\sum_{i=1}^{n} \left(\sum_{i=1}^{k} a_{i,j} \cdot x_i \right) \cdot u_j = 0$$

In particular, that solves $L = \left\{ \sum_{i=1}^k a_{i,j} \cdot x_i = 0 \mid j \in \{1, 2, \dots, n\} \right\}$ belongs to LD(T). Notice this is a linear equation system of k variables and n equations, with n < k. Thereofore, there is a non-trivial solution. \square

Corollary 8.3.1 (Equality on Dimension). Let B_1 and B_2 be two bases of V. Then, $\#B_1 = \#B_2$.

Definition 8.3.2 (Dimension). Let V be a vector space over F, that has a finite basis B. We define:

dim V := #B

Corollary 8.3.2 (Sequence larger than dimension). For every $S \in V^k$, if $k > \dim V$, S is linearly dependent.

Lemma 8.3.2 (Exact Span). Let $S = (v_1, v_2, \dots, v_n) \in V^n$. Then S contains a basis of Span(S).

Proof. S of course spans $\operatorname{Span}(S)$. If S is linearly independent, we are done. Conversly, if S is linearly dependent, $\exists v_i \in S$ that is a linear combination of the rest. Take T such that $T++v_i=S$. Notice $\operatorname{Span}(T)=\operatorname{Span}(S)$. Since S is finite, the algorithm terminates.

Corollary 8.3.3 (Finite Span is very easy). Every linear space which is finitely spanned has a basis (and therefore a dimension).

Definition 8.3.3 (Extension of Basis). Let U be a linear subspace of V and $S = (v_1, v_2, \dots, v_n) \in V^n$. Then S can be extended to a basis of U iff: $\exists T \supseteq S : T$ is a basis of U.

Lemma 8.3.3 (Steinitz Exchange Lemma). The necessary and sufficient criteria for S to be able to be extended to basis are:

- 1. $S \subset U$
- 2. S is linearly independent

Proof. One direction (\Rightarrow) is trivial. The other: (\Leftarrow) By contrary, it is clear that $\operatorname{Span}(S) \subseteq U$ and S is a basis of $\operatorname{Span}(S)$. If $\operatorname{Span}(S) = U$, we are done. Conversly, if $\operatorname{Span}(S) \subsetneq U$, $\exists u \neq 0 \in U \setminus \operatorname{Span}(S)$. Take $T = S + + \underline{u}$, since $u \notin \operatorname{Span}(S)$. See that T is also linearly independent and $T \subset U$. Since $\dim V$ is finite, the algorithm terminates (hence, $\#S \leq \dim V$).

Proposition 8.3.1 (Dimension of Subspace). Let U be a linear subspace of V. Then the following statements hold:

- 1. U has a basis
- 2. $\dim U \leq \dim V$
- 3. $\dim U = \dim V \Leftrightarrow U = V$

Proof. We prove each one:

- 1. If $U = \{0\}$, we're done. Otherwise, pick $u \neq 0 \in U$ and set S = (u). It fulfills the condition for extension. Hence, U has a basis.
- 2. If $\dim U > \dim V$, there is a $\dim U$ -long linearly independent sequence in V. Contradiction.
- 3. Let B be a basis of U. If $\exists v \in V \setminus U$, then B ++ v is a dim $U + 1 = \dim V + 1$ -long linearly independent sequence. Contradiction.

Theorem 8.3.2 (Size of Sequence). Let $S \in V^k$

- 1. If $k > \dim V$, then S is linearly independent
- 2. If $k < \dim V$, then $\operatorname{Span}(S) \subsetneq V$
- 3. If k = n then either S is a basis of V or both $\mathrm{Span}(S) \subsetneq V$ and S is linearly dependent

9 Linear Transformations

9.1 Linear Maps

Definition 9.1.1 (Linear Map). A linear map between vector spaces V and W over the same field F is a function $T: V \to W$ such that:

Additive	$\forall u, v \in V, \ T(u+v) = T(u) + T(v)$
Homogeneous	$\forall \alpha \in F, \forall v \in V, T(\alpha \cdot v) = \alpha \cdot T(v)$

written as one:

Linearity
$$\forall \alpha, \beta \in F, \forall u, v \in V, T(\alpha \cdot u + \beta \cdot v) = \alpha \cdot T(u) + \beta \cdot T(v)$$

equivalently, these diagram commute:

Definition 9.1.2 (Homomorphisms and Endomorphisms). Denote the set of all linear maps $T: V \to W$ as Hom(V, W). Also, Hom(V, V) = End(V).

Lemma 9.1.1 (Operations on Linear Map). Let V and W be linear spaces over F.

- 1. If T and S are linear transformations $V \to W$, then $T \pm S$ and $\alpha \cdot T$ are linear transformations $V \to W$.
- 2. If $T:V\to W$ and $S:W\to U$, are linear transformations, then $S\circ T:V\to U$ is a linear transformation.

3. If $T:V\to W$ is an invertible linear transformation, then $T^{-1}:W\to V$ is a linear transformation.

Proof. 1. and 2. are trivial. We prove 3. First, notice $\mathrm{Id}_V:V\to W$ is a linear transformation.

$$T^{-1}(\alpha \cdot T(u) + \beta \cdot T(v)) = T^{-1} \circ T(\alpha \cdot u + \beta \cdot v)$$

= $Id_V(\alpha \cdot u + \beta \cdot v) = \alpha \cdot u + \beta \cdot v = \alpha \cdot T^{-1}(T(u)) + \beta \cdot T^{-1}(T(v))$

Corollary 9.1.1 (Linear Maps are Vector Spaces). Hom(V, W) is a vector space over F wrt to the operations we defined for ${}^{S}V$. Further, $\operatorname{End}(V)$ is a ring with composition.

9.2 Kernel and Image and Dimension Theorem

Lemma 9.2.1 (Image of Linear Map). Let $T: V \to W$ is linear transformation, then Im(T) is a linear subspace of W.

Proof. Im(T) is closed under addition and scalar multiplication: $\alpha \cdot T(u) + \beta \cdot T(v) = T(\alpha \cdot u + \beta \cdot v) \in \text{Im}(T)$ and is not empty since $T(0_V) = 0_W$. \square

Definition 9.2.1 (Sequence Map). Let V, W be two vectors spaces over F. Let $f: V \to W$ be a function and $S = (v_1, v_2, \dots, v_k) \in V^k$, we define:

$$f(S) = (f(v_1), f(v_2), \cdots, f(v_k)) \in W^k$$

Lemma 9.2.2 (Span and LD of Sequence Map). Let $T: V \to W$ be a linear transformation and $S \in V^k$ be a sequence in the domain.

- 1. If V = Span(S), then Im(T) = Span(T(S))
- 2. In particular, if $\dim V < \dim W$ then T is not surjective
- 3. $LD(T(S)) \supseteq LD(S)$
- 4. If T is injective, then LD(T(S)) = LD(S).

Proof. We prove each one:

1.
$$u \in \text{Im}(T) \Leftrightarrow \exists v \in V = \text{Span}(S) : u = T(v) = T\left(\sum_{i=1}^{k} \alpha_i \cdot v_i\right) = \sum_{i=1}^{k} \alpha_i \cdot T(v_i) \Leftrightarrow u \in \text{Span}(T(S)).$$

- 2. Take a basis B of V: $\dim \operatorname{Im}(T) = \operatorname{Span}(T(B)) \le \#T(B) = \dim V < \dim W \Rightarrow \operatorname{Im}(T) \subsetneq W$.
- 3. $\underline{x} \in \mathrm{LD}(S) \Rightarrow S \bullet \underline{x} = \underline{0}_V \Rightarrow T(S) \bullet \underline{x} = T(S \bullet \underline{x}) = \underline{0}_W \Rightarrow \underline{x} \in \mathrm{LD}(T(S)).$
- 4. If T is injective, there is a left inverse, so that: $\underline{x} \in LD(T(S)) \Rightarrow T(S \bullet \underline{x}) = T(S) \bullet \underline{x} = 0_W \Rightarrow S \bullet \underline{x} = 0_V \Rightarrow \underline{x} \in LD(S)$.

Definition 9.2.2 (Kernel). Let $T: V \to W$ be a linear transformation, the kernel is the set: $\ker(T) = \{v \in V \mid T(v) = 0_W\}$

Lemma 9.2.3 (Kernel of linear map is Subspace). The kernel is a linear subspace of V.

Proof. $\ker(T)$ is closed under addition and scalar multiplication: $u, v \in \ker(T) \Rightarrow 0 = \alpha \cdot T(u) + \beta \cdot T(v) = T(\alpha \cdot u + \beta \cdot v) \Rightarrow \alpha \cdot u + \beta \cdot v \in \ker(T)$ and is not empty since $T(0_V) = 0_W \Rightarrow 0_V \in \ker(T)$.

Lemma 9.2.4 (N&SC for Injectivity of Linear Map). Let $T: V \to W$ be a linear transformation.

- 1. T is injective $\Leftrightarrow \ker(T) = \{0_V\}.$
- 2. For V finetely spanned, T is injective $\Leftrightarrow \dim \operatorname{Im}(T) = \dim V$.

Proof. We prove each one:

1. We prove both directions:

- (\Rightarrow) $T(u) = 0_W = T(0_V) \Rightarrow u = 0_V$, that is, $\{0_V\} \supseteq \ker(T)$.
- (\Leftarrow) $T(u) = T(v) \Rightarrow T(u v) = 0_W \Rightarrow u v = 0_V \Rightarrow u = v$
- 2. We prove both directions: Let B be a basis of V.
 - (\Rightarrow) LD(T(B)) = LD $(B) = \{0\} \Rightarrow T(B)$ is linearly independent, meaning dim Im(T) = dim Span T(B) = dim V.
 - (\Leftarrow) dim Span $T(B) = \dim \operatorname{Im}(T) = \dim V$. Hence T(B) is linearly independent, which implies $\ker(T) = \{0_V\}$.

Theorem 9.2.1 (Dimension Theorem). If V is finitely spanned, for any linear transformation $T: V \to W$:

$$\dim V = \dim \ker(T) + \dim \operatorname{Im}(T)$$

Proof. V is finitely spanned vector space $(\dim V = n)$ and $\ker(T)$ is a linear subspace of V, therefore $\ker(T)$ is finitely spanned, hence it has a basis $A = (a_1, a_2, \dots, a_k)$, where $k = \dim \ker(T)$.

Since A is a linear independent, we can extend it to a basis of V, call it A++B, where $B=(b_1,b_2,\cdots,b_{n-k})$ is the remainder of the extension.

Let us show that T(B) is a basis for Im(T): Im(T) = Span(T(B)) is easy since Im(T) = Span(T(A++B)) = Span(T(A)++T(B)) = Span(T(B)),

we only need to prove T(B) is linearly independent: $0 = \sum_{i=1}^{n-k} x_i \cdot T(b_i) =$

$$T\left(\sum_{i=1}^{n-k} x_i \cdot b_i\right) \Leftrightarrow \operatorname{Span}(B) \ni \sum_{i=1}^{n-k} x_i \cdot b_i \in \ker(T) = \operatorname{Span}(A) \Rightarrow x_1 = x_2 = \cdots = x_{n-k} = 0 \text{ since } \operatorname{Span}(A) \cap \operatorname{Span}(B) = \emptyset. \text{ Hence, } \dim\operatorname{Im}(T) = n-k \quad \Box$$

Corollary 9.2.1 (Character from Dimension). We have the ternary:

- 1. If $\dim V > \dim W$, then T is not injective.
- 2. If $\dim V < \dim W$, then T is not surjective.

3. If $\dim V = \dim W$, then T is either bijective or it is neither surjective nor injective.

Corollary 9.2.2 (Sequence Dimensions). If we use for F_S (to be defined on the next section), we get: For any sequence $S \in V^n$:

$$n = \dim LD(S) + \dim Span(S)$$

Corollary 9.2.3 (Dimension of Cols and Rows). For a matricial function T_A , $A \in M_{k \times n}(F)$ and for the matricial function T_{A^t} , we get:

$$n = \dim \operatorname{sols}(A) + \dim \operatorname{cols}(A)$$

 $k = \dim \operatorname{sols}(A^t) + \dim \operatorname{rows}(A)$

9.3 Isomorphism

Definition 9.3.1 (Isomorphisms). A linear transformation $T: V \to W$ is an:

- 1. monomorphism if it is injective
- 2. epimorphism if it is surjective
- 3. isomorphism if it is bijective

Definition 9.3.2 (Isomorphic Vector Spaces). Two vectors spaces are **isomorphic**, denoted $V \cong W$, if there exists a **bijective** linear transformation $T: V \to W$, that is, an isomorphism.

Proposition 9.3.1 (Isomorphism Equivalence Relation). *Isomorphism of vector spaces is an equivalence relation.*

Proof. We choose the following maps: Reflexivity: Take the identity Id_V : $V \to V$; Symmetry: Take the inverse function (which exists, since it is bijective); Transitivity: Take the composition (which is linear and bijective).

10 Coordinates

10.1 Representing Function

Definition 10.1.1 (Sequence Function and Coordinate Map). For $S \in V^n$, we define the sequence function:

$$F_S: F^n \to V$$
$$x \mapsto S \bullet x$$

which is a linear map. Moreover: $ker(F_S) = LD(S)$ and $Im F_S = Span(S)$.

If $n = \dim V$ and B is a basis of V, F_B is bijective, so there is an (linear) inverse function $Q_B = F_B^{-1} : V \to F^{\dim V}$ which is called the coordinate function of S. We further denote $Q_B(v) = [v]_B$.

Further, for a sequence $S \in V^k$, we write $[S]_B = Q_B(S) \in M_{\dim V \times k}(F)$

Theorem 10.1.1 (Dimension Equality). For V and W finitely spanned, we have:

- 1. $V \cong F^{\dim V}$
- 2. $\dim_F V = \dim_F W \Leftrightarrow V \cong W$

Proof. Let B be a basis for V. To show $V \cong F^{\dim V}$, take the coordinate function Q_B . To show the isomorphism $\dim_F V = \dim_F W \Leftrightarrow V \cong W$, take $F_C \circ Q_B$, where C is a basis for W.

Corollary 10.1.1 (Linear Maps are Sequence Functions). Every linear map $T: F^n \to V$ is a sequence function $F_{T(E)}$, with $E = (\underline{e}_1, \underline{e}_2, \cdots, \underline{e}_n)$ is the standard basis.

Corollary 10.1.2 (Linear Maps are Matricial Functions). Every linear map $T: F^n \to F^k$ is a matricial function. Moreover, every bijective linear transformation $T: V \to F^n$ is a coordinate map.

Definition 10.1.2 (Representing Function). Let B be a basis for V and C a basis for W. Let $f: V \to W$ be any function. Then, there is a function f_C^B such that the following diagram commutes.

$$V \xrightarrow{f} W$$

$$\downarrow_{Q_B} \qquad \downarrow_{Q_C}$$

$$F^{\dim V} \xrightarrow{f_C^B} F^{\dim W}$$

In particular, $f_C^B = Q_C \circ f \circ Q_B^{-1} = Q_C \circ f \circ F_B$. so that $f(v) = u \Leftrightarrow f_C^B([v]_B) = [u]_C$. Moreover, $f = Q_C^{-1} \circ f_C^B \circ Q_B = F_C \circ f_C^B \circ Q_B$.

Proposition 10.1.1 (Character of Representing Function).

$$f is \begin{cases} injective \\ surjective \\ bijective \\ linear \end{cases} iff f_C^B is$$

Definition 10.1.3 (Representing Matrix). If f is linear, then f_C^B is a matricial function (by lemma). We call $[f_C^B]$ (also denoted $[f]_C^B$) the representing matrix of f in B, C.

Proposition 10.1.2 (Calculation of Representing Matrix). For $T: V \to W$ a linear map:

$$[T]_C^B = [T(B)]_C = \begin{pmatrix} & | & & | & & | \\ & [T(\underline{b}_1)]_C & [T(\underline{b}_2)]_C & \cdots & [T(\underline{b}_{\dim V})]_C \\ & | & & | & & | \end{pmatrix}$$

We can algorithmically compute $[T]_C^B$ by Gauss-Jordan Elimination: Take E is a (usually standard) basis for W: $\Big([C]_E \mid [T(B)]_E\Big) \to \Big(I \mid [T]_C^B\Big)$.

Proposition 10.1.3 (Representation of Composition).

$$U \xrightarrow{g} V \xrightarrow{f} W$$

$$\downarrow Q_A \qquad \downarrow Q_B \qquad \downarrow Q_C$$

$$F^{\dim U} \xrightarrow{g_B^A} F^{\dim V} \xrightarrow{f_C^B} F^{\dim W}$$

we have the following: $(g \circ f)_C^A = g_B^A \circ f_C^B$, for the diagram to commute.

10.2 Change of Coordinates

Definition 10.2.1 (Change-of-Coordinates Matrix). The change of coordinates in one vector space:

$$V \xrightarrow{Q_B} V \xrightarrow{Q_C} F^{\dim V} \xrightarrow{Q_C^B} F^{\dim V}$$

Where $Q_C^B = Q_C \circ Q_B^{-1} = F_C^{-1} \circ F_B$ is the change of coordinate function. We denote $M_C^B = [Q_C^B]$. So that:

$$M_C^B [v]_B = [v]_C$$

Equivalently, we define: $M_C^B = [\mathrm{Id}_V]_C^B$. Notice in a standard basis $E \colon M_C^B = [C]_E^{-1}[B]_E$

Proposition 10.2.1 (Changing Basis). For a linear map $T: V \to W$

$$F^{\dim V} \xrightarrow{T_F^E} F^{\dim W}$$

$$Q_E \downarrow V \xrightarrow{T} W \downarrow Q_C^F \downarrow$$

$$\downarrow Q_B \qquad Q_C \downarrow \swarrow$$

$$F^{\dim V} \xrightarrow{T_C^B} F^{\dim W}$$

We get:

$$T_C^B = Q_C \circ T \circ Q_B^{-1} = Q_C \circ \left(Q_F^{-1} \circ Q_F \circ T \circ Q_E^{-1} \circ Q_E \right) \circ Q_B^{-1}$$
$$= \left(Q_C \circ Q_F^{-1} \right) \circ T_F^E \circ \left(Q_E \circ Q_B^{-1} \right) = Q_C^F \circ T_F^E \circ Q_E^B$$

$$\Rightarrow [T]_C^B = M_C^F [T]_F^E M_E^B.$$

For $V=W,\ B=C$ and $E=F,\ we\ get:\ [T]_B=M_B^E\ [T]_E\ M_E^B$.

Proposition 10.2.2 (Calculation of Change-of-Coordinates Matrix).

$$M_C^B = [B]_C = Q_C(B) = \begin{pmatrix} & | & & | & & | \\ & [\underline{b}_1]_C & [\underline{b}_2]_C & \cdots & [\underline{b}_n]_C \\ & | & & | & & | \end{pmatrix}$$

Proposition 10.2.3. We have a type of transitive law: $M_C^B = M_D^B M_C^D$

Further, we can algorithmically compute M_C^B by Gauss-Jordan Elimination: Take E as standard basis and apply $\left([B]_E \ \middle|\ [C]_E\right) \to \left(I \ \middle|\ M_C^B\right)$.

Definition 10.2.2 (Conjugation). Let $P \in GL_n(F)$. The function:

$$\Theta_P: M_n(F) \to M_n(F)$$

 $A \to P^{-1} A P$

is called the conjugation (function) of P. Notice it is linear, and also:

$$\Theta_P(AB) = \Theta_P(A) \cdot \Theta_P(B)$$

(it is a ring homomorphism, i.e. it preserves the ring structure)

Further, $\Theta_P^{-1} = \Theta_{P^{-1}}$, so it is a bijection.

Definition 10.2.3 (Similar Matrices). Given two matrices $A, B \in M_n(F)$, we say:

$$A \sim B \Leftrightarrow \exists P \in GL_n(F) : \Theta_P(A) = P^{-1}AP = B$$

the matrices are similar

Lemma 10.2.1 (Similarity Equivalence Relation). The similarity of matrices is an equivalence relation.

Proof. We take the conjugation with the following matrices:

Reflexive: Take I.

Symmetric: Take P^{-1} .

Transitive: Take the product/composition.

Theorem 10.2.1 (Similar Matrices represent the same Linear Map). Let V be a finitely spanned vector space over F.

- 1. Let $T: V \to V$ be a linear transformation and B and C be two basis of V. Then: $[T]_B = \Theta_P([T]_C)$ where $P = M_B^C$.
- 2. $\forall A, A' \in M_{\dim V}(F)$, $A \sim A' \Rightarrow \exists T \in \text{End}(V)$ and B, C basis of $V: [T]_B = A$ and $[T]_C = A'$.

Proof. We prove each one:

- 1. Simply notice: $[T]_B = M_C^B [T]_C M_B^C = (M_B^C)^{-1} [T]_C M_B^C$.
- 2. Let P be such that $A = \Theta_P(A')$. Let B be any basis of V. Simply define $T = Q_B^{-1} \circ T_A \circ Q_B$, so that $[T]_B = A$. Now, define C as: [C] = [B] P so that $P = M_B^C$. By the previous stament, $T_C = \Theta_P^{-1}([T]_B) = \Theta_{P^{-1}}(A) = A'$.

11 Eigenspace

11.1 Eigenvectors

Definition 11.1.1 (Eigenspace and Eigenvectors). Let V be a linear space over the field F and $T: V \to V$ be a linear transformation.

We say $v \in V \setminus \{0\}$ is an eigenvector of T if $\exists \lambda \in F : T(v) = \lambda \cdot v$. We define:

$$\operatorname{Eig}_{\lambda}(T) = \{ v \in V \mid T(v) = \lambda \cdot v \} = \ker(T - \lambda \cdot \operatorname{Id}_{V})$$

notice it is a linear subspace of V.

Definition 11.1.2 (Eigenvalue). The number λ is an eigenvalue of T if $\text{Eig}_{\lambda}(T) \supseteq \{0\}$.

Lemma 11.1.1 (Eigenspaces are disjoint).

$$\lambda \neq \mu \Rightarrow \operatorname{Eig}_{\lambda}(T) \cap \operatorname{Eig}_{\mu}(T) = \{0\}$$

Proof. Let $v \in \operatorname{Eig}_{\lambda}(T) \cap \operatorname{Eig}_{\mu}(T) \Rightarrow T(v) = \lambda \cdot v = \mu \cdot v \Rightarrow (\lambda - \mu) \cdot v = 0 \Rightarrow v = 0$. So, $\operatorname{Eig}_{\lambda}(T) \cap \operatorname{Eig}_{\mu}(T) \subseteq \{0\}$. Moreover, $\operatorname{Eig}_{\lambda}(T) \cap \operatorname{Eig}_{\mu}(T) \supseteq \{0\}$ is clear.

Lemma 11.1.2 (Power of Linear Maps). If λ is an eigenvalue of $T: V \to V$, then $\forall k \in \mathbb{N}$, λ^k is an eigenvalue of $T^k = \underbrace{T \circ T \circ \cdots \circ T}_{k \text{ times}}$. Moreover, $\operatorname{Eig}_{\lambda}(T) \subseteq \operatorname{Eig}_{\lambda^k}(T^k)$

Proof. If λ is an eigenvalue, there is at least one eigenvector $u \neq 0$. Therefore, $T^k(u) = T^{k-1}(\lambda \cdot u) = \lambda \cdot T^{k-1}(u) = \cdots = \lambda^k \cdot u$, hence λ^k is an eigenvalue of T^k . Further, we showed $u \in \text{Eig}_{\lambda}(T) \Rightarrow u \in \text{Eig}_{\lambda^k}(T^k)$.

Lemma 11.1.3 (Reciprocal of Eigenvalue). If T is invertible, λ^{-1} is an eigenvalue of T^{-1} .

Proof. If T is invertible: $u = T^{-1} \circ T(u) = T^{-1}(\lambda \cdot u) = \lambda \cdot T^{-1}(u) \Rightarrow T^{-1}(u) = \lambda^{-1} \cdot u$, hence λ^{-1} is an eigenvalue of T^{-1} . Further, observe that T invertible $\Rightarrow T$ injective $\Rightarrow \ker(T) = \{0\} \Rightarrow \lambda = 0$ is not an eigenvalue. \square

Corollary 11.1.1 (N&SC for Invertibility). If $\lambda = 0$ is an eigenvalue of T, then T is not invertible.

11.2 Characteristic Polynomial

Proposition 11.2.1 (Determinant in Finite Case). Let $V = F^n$ and $T = T_A : F^n \to F^n$, for a matrix A. We have:

$$\{0\} \subsetneq \operatorname{Eig}_{\lambda}(T) = \ker (T - \lambda \operatorname{Id}_{V}) = \operatorname{sols}(A - \lambda I) \Leftrightarrow \det (A - \lambda I) = 0$$

Definition 11.2.1 (Characteristic Polynomial). We define

$$p_A(\lambda) = \det(\lambda I - A)$$

the characteristic polynomial of A (which is a monic polynomial). Notice the eigenvalues of T_A are exactly the roots of p_A .

Theorem 11.2.1 (Cayley-Hamilton).

$$p_A(A) = 0$$

Proof. Let $B = \operatorname{adj}(\lambda I - A)$. First, we must have $(\lambda I - A)B = \det(\lambda I - A)I = p_A(\lambda)I$. Now, we can expand B as $B = \sum_{k=0}^{n-1} \lambda^k B_i$. Now,

$$p_{A}(\lambda) I = (\lambda I - A) B = (\lambda I - A) \sum_{k=0}^{n-1} \lambda^{k} B_{i}$$

$$= \sum_{k=0}^{n-1} \lambda^{k+1} B_{i} - \sum_{k=0}^{n-1} \lambda^{k} A B_{i} = \lambda^{n} B_{n-1} + \sum_{k=1}^{n-1} \lambda^{k} (B_{k-1} - A B_{k}) - A B_{0}$$

$$p_{A}(\lambda) I = \sum_{k=0}^{n} c_{k} \lambda^{k} I \Rightarrow \begin{cases} B_{n-1} = c_{n} I = I \\ B_{k-1} - A B_{k} = c_{k} I \\ -A B_{0} = c_{0} I \end{cases}$$

Therefore,

$$p_A(A) = \sum_{k=0}^n A^k (c_k I) = A^n B_{n-1} + \sum_{k=1}^{n-1} A^k (B_{k-1} - A B_k) - A B_0$$
$$= A^n B_{n-1} + \sum_{k=1}^{n-1} A^k B_{k-1} - \sum_{k=1}^{n-1} A^{k+1} B_k - A B_0$$
$$= A^n B_{n-1} + A B_0 - A^n B_{n-1} - A B_0 = 0$$

11.3 Diagonalizing

Definition 11.3.1 (Diagonalizable Matrix). A matrix is diagonalizable if is similar to a diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, or, equivalently $\exists P \in \operatorname{GL}_n(F) : A = P \Lambda P^{-1}$.

Theorem 11.3.1 (EigenBasis). If $P^{-1}AP$ is a diagonal matrix $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, then $\forall \underline{p}_i \in S_c(P)$, $A\underline{p}_i = \lambda \cdot \underline{p}_i$.

Proof. $P^{-1}AP = \Lambda \Leftrightarrow AP = P\Lambda$:

$$AP = A \begin{pmatrix} | & | & | \\ \underline{p}_{1} & \underline{p}_{2} & \cdots & \underline{p}_{n} \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ A(\underline{p}_{1}) & A(\underline{p}_{2}) & \cdots & A(\underline{p}_{n}) \\ | & | & | \end{pmatrix}$$

$$= P\Lambda = P \begin{pmatrix} | & | & | \\ \lambda_{1} \cdot \underline{e}_{1} & \cdots & \lambda_{n} \cdot \underline{e}_{n} \\ | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | \\ \lambda_{1} \cdot P(\underline{e}_{1}) & \cdots & \lambda_{n} \cdot P(\underline{e}_{n}) \\ | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | \\ \lambda_{1} \cdot \underline{p}_{1} & \lambda_{2} \cdot \underline{p}_{2} & \cdots & \lambda_{n} \cdot \underline{p}_{n} \\ | & | & | & | \end{pmatrix}$$

Corollary 11.3.1 (N&SC for Diagonalizability). A is diagonalizable iff there is a sequence on n linearly independent eigentuples p_{j} (called an eigenbasis).

Theorem 11.3.2 (Sylvester's law of Inertia). Every symmetric matrix is diagonalizable

Definition 11.3.2 (Geometric Multiplicity).

$$\operatorname{gm}_A(\lambda) = \dim \operatorname{Eig}_{\lambda}(T_A) = \dim \operatorname{sols}(A - \lambda I)$$

Definition 11.3.3 (Algebraic Multiplicity). $\operatorname{am}_A(\lambda)$ is the multiplicity of $\lambda \in F$ in the polynomial p_A .

Lemma 11.3.1 (AM-GM Inequality). $\forall \lambda \in F$, $\operatorname{am}_A(\lambda) \geq \operatorname{gm}_A(\lambda)$.

Theorem 11.3.3 (N&SC for Diagonalizability). A is a diagonalizable iff p_A can be split into linear factors and $\forall \lambda \in F$, $\operatorname{am}_A(\lambda) = \operatorname{gm}_A(\lambda)$.

Proof. We use the previous theorem to show that p_A can be split into linear factors and $\forall \lambda \in F$, $\operatorname{am}_A(\lambda) = \operatorname{gm}_A(\lambda) \Leftrightarrow$ there is an eigenbasis for A. Notice, from the lemma above:

$$n = \sum_{\lambda \in F} \operatorname{am}_A(\lambda) \ge \sum_{\lambda \in F} \operatorname{gm}_A(\lambda)$$

- (\Rightarrow) Each $\operatorname{Eig}_{\lambda}(T_A)$ has a basis B_{λ} , which are linearly independent from each other so $B = B_{\lambda_1} + + B_{\lambda_2} + + \cdots + + B_{\lambda_N}$ is a linearly independent set. Further, $n = \sum_{\lambda \in F} \operatorname{am}_A(\lambda) = \sum_{\lambda \in F} \operatorname{gm}_A(\lambda)$, so the length of B is n. Hence, it is an eigenbasis.
- (\Leftarrow) By contrary, if $\exists \lambda \in F : \operatorname{am}_A(\lambda) > \operatorname{gm}_A(\lambda) \Rightarrow n > \sum_{\lambda \in F} \operatorname{gm}_A(\lambda)$. If there is an eigenbasis B, $\dim \operatorname{Span}(B) = \sum_{\lambda \in F} \operatorname{gm}_A(\lambda) < n$, contradiction.

Definition 11.3.4 (Diagonalizable Linear Map). Let V be a finitely spanned vector space over F and $T: V \to V$ be a linear transformation. T is called diagonalizable if there is a basis B of V such that $[T]_B$ is diagonal.

Lemma 11.3.2 (EigenBasis of Linear Map). If $B = (b_1, b_2, \dots, b_n)$ satisfies that $[T]_B$ is diagonal, then each b_i must be an eigenvector of T.

Proof. Let $[T]_B = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, then:

$$\underline{e}_i = Q_B(b_i) \Rightarrow T_B(\underline{e}_i) = \lambda_i \cdot \underline{e}_i \Rightarrow T(b_i) = \lambda_i \cdot b_i$$

Moreover, $T(v) = \lambda \cdot v \Leftrightarrow [T]_B [v]_B = \lambda \cdot [v]_B$.

Example 11.3.1. $V = \mathbb{Q}_1[X]$,

$$T: \mathbb{Q}_1[X] \to \mathbb{Q}_1[X]$$

 $a+bX \mapsto (a+2b) + (2a+b)X$

If we pick E = (1, X), we find $A = [T]_E = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, calculating: $p_A(\lambda) = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1)$.

$$\operatorname{sols}(A - 3I) = \operatorname{sols}\begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} = \operatorname{Span}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\operatorname{sols}(A + I) = \operatorname{sols}\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = \operatorname{Span}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Pulling it back to V: $\operatorname{Eig}_3(T) = \operatorname{Span}(1+X)$ and $\operatorname{Eig}_{-1}(T) = \operatorname{Span}(1-X)$. Now, if we pick the basis B = (1+X, 1-X), $[T]_B = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

12 Normed and Scalar Product Spaces

12.1 Euclidean Product

Definition 12.1.1 (Norm). Let V be a linear space over \mathbb{R} . A norm is a function $\|\cdot\|:V\to\mathbb{R}$ such that:

Positive-Definite	$\forall u \in V, \ u = 0 \Leftrightarrow u = 0$
Homogeneous	$\forall \alpha \in K, \forall u \in V, \ \alpha \cdot u\ = \alpha \cdot \ u\ $
Triangle Inequality	$\forall u, v \in V, u + v \le u + v $

Definition 12.1.2 (Normalizing). We say u is a **unit vector** if ||u|| = 1. If $u \neq 0$, its normalized vector is $\widehat{u} = \frac{1}{||u||} \cdot u$.

Definition 12.1.3 (Scalar/Inner Product). An scalar product is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ such that:

Homogeneous	$\forall \alpha \in K, \ \forall u, v \in V, \ \langle \alpha \cdot u, v \rangle = \langle u, \alpha \cdot v \rangle = \alpha \cdot \langle u, v \rangle$
Distributivity	$\forall u, v \in V, \begin{cases} \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \\ \langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \end{cases}$
Symmetric	$\forall u, v \in V, \ \langle u, v \rangle = \langle v, u \rangle$

If we have:

Positivity
$$\forall u \in V, \langle u, u \rangle \ge 0 \text{ and } \langle u, u \rangle \Leftrightarrow u = 0$$

the scalar product is said to be Euclidean (positive). A vector space with a positive scalar product is called a Euclidean space.

Example 12.1.1. We have these examples:

$$\mathbb{R}^{n}, Sumprod: \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} \bullet \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \sum_{i=1}^{n} x_{i} \cdot y_{i} = x_{1} y_{1} + x_{2} y_{2} + \dots + x_{n} y_{n}.$$

 \mathbb{R}^n , Sumprod with (positive-definite) symmetric matrix A:

$$x \underset{A}{\bullet} y = x \bullet (Ay) = (Ax) \bullet y = x^t A y = \sum_{i=1}^n \sum_{j=1}^n x_i \cdot y_j \cdot a_{ij}$$

$$\mathbb{R}[X]$$
, Integration: $\langle p,q\rangle = \int_0^1 p(x) \cdot q(x) dx$

$$M_n(F)$$
, Trace: $\langle A, B \rangle = \operatorname{tr}(A^t B)$

Definition 12.1.4 (Induced Norm). With a Euclidean scalar product, we can induce a norm, that is, we define

$$||u|| := \sqrt{\langle u, u \rangle}$$

which we can check it obeys all the axioms.

Theorem 12.1.1 (Cauchy-Schwarz).

$$\forall\, u,v \in V\,, \ |\,\langle u,v\rangle\,| \leq \|u\|\cdot\|v\|$$

Proof. Let
$$t = \frac{\langle u, v \rangle}{\|v\|^2}$$

$$\langle u - t \cdot v, u - t \cdot v \rangle \ge 0$$

$$\Leftrightarrow \langle u, u \rangle - 2t \langle u, v \rangle + t^2 \langle v, v \rangle \ge 0$$

$$\Leftrightarrow \|u\|^2 - \frac{2|\langle u, v \rangle|^2}{\|v\|^2} + \frac{|\langle u, v \rangle|^2}{\|v\|^2} \ge 0$$

$$\|u\|^2 \|v\|^2 - |\langle u, v \rangle|^2 > 0$$

We have the result, with equality if, and only if:

$$u = \frac{\langle u, v \rangle}{\|v\|^2} v$$

That is, the vectors are parallel.

Theorem 12.1.2 (Polarization). A norm $\|\cdot\|$ is induced by a scalar product iff

$$\forall u, v \in V, \|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2$$

Further, the scalar product is defined by: $\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$

Proof. We prove each direction:

- (\Rightarrow) We have: $||u+v||^2 = ||u||^2 + 2\langle u,v\rangle + ||v||^2$ and $||u-v||^2 = ||u||^2 2\langle u,v\rangle + ||v||^2 \Rightarrow ||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$
- (\Leftarrow) We prove that $\langle u, v \rangle = \frac{\|u + v\|^2 \|u v\|^2}{4}$ satisfies the definition of scalar product. We need to use the Cauchy functional equation.

Definition 12.1.5 (Gram Matrix). From a basis $B = (b_1, b_2, \dots, b_n)$ of V, an Euclidean space, we define:

$$Gram(B) = \begin{pmatrix} \langle b_1, b_1 \rangle & \langle b_1, b_2 \rangle & \cdots & \langle b_1, b_n \rangle \\ \langle b_2, b_1 \rangle & \langle b_2, b_2 \rangle & \cdots & \langle b_2, b_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle b_n, b_1 \rangle & \langle b_n, b_2 \rangle & \cdots & \langle b_n, b_n \rangle \end{pmatrix} = [\langle b_i, b_j \rangle]_{ij}$$

Lemma 12.1.1 (Calculating Scalar Products). Let $x, y \in V$, then:

$$\langle x, y \rangle = [x]_B^t \operatorname{Gram}(B)[y]_B = [x]_B {\bullet \atop \operatorname{Gram}(B)}[y]_B$$

Proof. Let $[x]_B = (x_1, x_2, \dots, x_n)$ and $[y]_B = (y_1, y_2, \dots, y_n)$, In every scalar product, by linearity:

$$\left\langle \sum_{i=1}^{n} x_i \cdot b_i , \sum_{j=1}^{n} y_j \cdot b_j \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot y_j \cdot \langle b_i, b_j \rangle$$

12.2 Orthogonality

Definition 12.2.1 (Orthogonal). We say $u, v \in V : u \perp v \text{ iff } \langle u, v \rangle = 0$

Example 12.2.1. Let $E = (\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n)$ be the standard basis of \mathbb{R}^n , then $\langle \underline{e}_i, \underline{e}_j \rangle = \underline{e}_i \cdot \underline{e}_{,j} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$, that is, they are both orthogonal and normalized.

Definition 12.2.2 (Orthogonal Complement). Given a subset of $U \subseteq V$, we define:

$$U^{\perp} = \{ v \in V \mid \forall u \in U, \ u \perp v \} = \{ v \in V \mid \forall u \in U, \ \langle u, v \rangle = 0 \}$$

Lemma 12.2.1 (Complement is Subspace). For any subset $U \subseteq V$, U^{\perp} is a linear subspace of V.

Proof. We check each condition:

- 1. $0 \in U^{\perp}$, since $\forall v \in V$, $\langle 0, v \rangle = \langle v, 0 \rangle = 0$
- 2. $v, w \in U^{\perp} \Rightarrow \forall u \in U$, $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle = 0 + 0 + = 0 \Rightarrow v + w \in U^{\perp}$

 $3. \ v \in U^{\perp} \Rightarrow \forall \, u \in U \, , \ \langle u, \alpha \cdot v \rangle = \alpha \cdot v \in U^{\perp}$

Proposition 12.2.1 (Double Perp). For any $U \subseteq V$, $U \subseteq U^{\perp \perp} = (U^{\perp})^{\perp}$

Definition 12.2.3 (Orthogonal Sets). We write $v \perp U \Leftrightarrow \forall u \in U, v \perp u \Leftrightarrow v \in U^{\perp}$ and $U \perp W \Leftrightarrow \forall u \in U, w \in W, u \perp w$

Lemma 12.2.2 (N&SC for Orthogonality).

$$U\perp W\Leftrightarrow U\subseteq W^\perp\ and\ W\subseteq U^\perp$$

Proposition 12.2.2 (Spans don't change the Complement). $S \perp T \Leftrightarrow \operatorname{Span}(S) \perp \operatorname{Span}(T)$.

Lemma 12.2.3. If $A, B \subseteq V$ and $A \perp B$, then $A \cap B \subseteq \{0\}$.

Proof. Let $v \in A \cap B \Rightarrow v \in A$ and $v \in B$, $A \perp B \Rightarrow \langle v, v \rangle = 0 \Rightarrow v = 0$. \square

Lemma 12.2.4 (Rows Perp Sols). In \mathbb{R}^n , $S = (a_1, a_2, \dots, a_k)$:

$$S^{\perp} = \operatorname{sols} \begin{pmatrix} - & \underline{a}_1 & - \\ - & \underline{a}_2 & - \\ & \vdots & \\ - & \underline{a}_k & - \end{pmatrix} = \operatorname{sols}[S]^t$$

Then, for every matrix $A \in M_{n \times k}(F)$ rows $(A) \perp \operatorname{sols}(A)$, in the standard scalar product.

Proof. Let
$$S = S_r(A) \Rightarrow \operatorname{rows}(A)^{\perp} = S_r(A)^{\perp} = \operatorname{sols}(A) \Rightarrow \operatorname{rows}(A) \subseteq \operatorname{rows}(A)^{\perp \perp} = \operatorname{sols}(A)^{\perp} \Rightarrow \operatorname{rows}(A) \perp \operatorname{sols}(A)$$

Definition 12.2.4 (Projection onto one vector). Let $u \in V \setminus \{0\}$, we define $\operatorname{proj}_u = \frac{\langle u, \cdot \rangle}{\|u\|^2} \cdot u$, that is $\operatorname{proj}_u : V \to V$ so that $\operatorname{proj}_u : v \mapsto \frac{\langle u, v \rangle}{\|u\|^2} \cdot u$, which is linear due the linearity of the scalar product.

Lemma 12.2.5 (Calculations on Projection). We have:

- 1. $\ker(\operatorname{proj}_u) = \{u\}^{\perp}$
- 2. $\operatorname{Im}(\operatorname{proj}_u) = \operatorname{Span}(u)$
- 3. $\operatorname{proj}_u^2 = \operatorname{proj}_u$
- 4. $u \perp w \Rightarrow \operatorname{proj}_u \circ \operatorname{proj}_w = \operatorname{proj}_w \circ \operatorname{proj}_u = 0$, the zero map.

Proof. We prove each one:

1. By definition:
$$\ker(\operatorname{proj}_u) = \left\{ v \in V \mid \operatorname{proj}_u(v) = \frac{\langle u, v \rangle}{\|u\|^2} \cdot u = 0 \right\}$$
 since $u \neq 0$, we get: $\ker(\operatorname{proj}_u) = \{ v \in V \mid \langle u, v \rangle = 0 \} = \{u\}^{\perp}$

- 2. Notice $\operatorname{proj}_u(\lambda \cdot u) = \lambda \cdot u \Rightarrow \operatorname{Span}(u) \subseteq \operatorname{Im}(\operatorname{proj}_u)$. Also, $\operatorname{Im}(\operatorname{proj}_u) \subseteq \operatorname{Span}(u)$ is trivially given by the definition of proj_u .
- 3. $\operatorname{proj}_{u}^{2}(v) = \operatorname{proj}_{u}\left(\frac{\langle u, v \rangle}{\|u\|^{2}} \cdot u\right) = \frac{\langle u, v \rangle}{\|u\|^{2}} \cdot \operatorname{proj}_{u}(u) = \frac{\langle u, v \rangle}{\|u\|^{2}} \cdot u = \operatorname{proj}_{u}(v)$
- 4. $u \perp w \Rightarrow \operatorname{Im}(\operatorname{proj}_w) = \operatorname{Span}(w) \subseteq \{u\}^{\perp} = \ker(\operatorname{proj}_u)$ then, we must have $\forall v \in V$, $\operatorname{proj}_w(\operatorname{proj}_u(v)) = 0 \Rightarrow \operatorname{proj}_u \circ \operatorname{proj}_w = 0$.

12.3 Orthogonal Sequences

Definition 12.3.1 (Orthogonal/Orthonormal Sequences). Let V be an Euclidean space, $K = (e_1, e_2, \dots, e_k) \in V^k$ is called **orthogonal** if: $0 \notin K$ and $\forall i, j \in \{1, 2, \dots, n\} : i \neq j, e_i \perp e_j$.

It is called **orthonormal** if it is orthogonal and $\forall i \in \{1, 2, \dots, k\}$, $||e_i|| = 1$. **Proposition 12.3.1** (Kronecker Delta). A sequence $K = (e_1, e_2, \dots, e_k) \in V^k$ is orthonormal iff $\langle e_i, e_j \rangle = \delta_{ij}$. Moreover, it is orthogonal iff $\langle e_i, e_j \rangle = ||e_i||^2 \delta_{ij}$.

Theorem 12.3.1 (Orthogonal Sequences are LI). Let $K = (e_1, e_2, \dots, e_n)$ be orthogonal, then K is LI.

Proof. Let
$$K = (e_1, e_2, \cdots, e_k) \in V^k$$
, let $(\alpha_1, \alpha_2, \cdots, \alpha_k) \in F^k$ such that:
$$\sum_{i=1}^k \alpha_i \cdot e_i = 0 \Rightarrow 0 = \left\langle e_i, \sum_{j=1}^k \alpha_j \cdot e_j \right\rangle = \sum_{j=1}^k \alpha_j \cdot \left\langle e_i, e_j \right\rangle = \alpha_i \Rightarrow (\alpha_1, \alpha_2, \cdots, \alpha_k) = 0$$

Lemma 12.3.1 (Coordinates in Orthogonal Basis). Let $K = (e_1, e_2, \dots, e_n)$ is an orthogonal basis of V, then, for any $v \in V$:

$$[v]_K = \begin{pmatrix} \frac{\langle e_1, v \rangle}{\|e_1\|^2} \\ \vdots \\ \frac{\langle e_n, v \rangle}{\|e_n\|^2} \end{pmatrix} \quad that is, \quad v = \sum_{i=1}^n \operatorname{proj}_{e_i}(v) = \sum_{i=1}^n \frac{\langle e_i, v \rangle}{\|e_i\|^2} \cdot e_i$$

Proof. Let
$$v = \sum_{i=1}^{n} x_i \cdot e_i$$

$$\Rightarrow \langle e_i, v \rangle = \left\langle e_i, \sum_{j=1}^n x_j \cdot e_j \right\rangle = \sum_{j=1}^n x_j \cdot \langle e_i, e_j \rangle = \sum_{j=1}^n x_j \cdot \|e_i\|^2 \, \delta_{ij} = x_i \cdot \|e_i\|^2$$

Theorem 12.3.2 (Parseval's Identity). Let $K = (e_1, e_2, \dots, e_n)$ is an orthonormal basis of V, then, for any $v \in V$:

$$||v||^2 = \sum_{i=1}^n |\langle e_i, v \rangle|^2$$

Proof. From the lemma above:

$$v = \sum_{i=1}^{n} \langle e_i, v \rangle \cdot e_i \Rightarrow \langle v, v \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle e_i, v \rangle \cdot \langle e_j, v \rangle \cdot \overbrace{\langle e_i, e_j \rangle}^{\delta_{ij}} = \sum_{i=1}^{n} |\langle e_i, v \rangle|^2$$

Theorem 12.3.3 (Gram-Schmidt Process). Let $S = (v_1, v_2, \dots, v_n) \in V^n$ be a linearly independent sequence, then there is a orthonormal sequence $K = (e_1, e_2, \dots, e_n)$ such that $\operatorname{Span}(K) = \operatorname{Span}(S)$. In particular:

$$u_{1} = v_{1} \qquad e_{1} = \frac{u_{1}}{\|u_{1}\|}$$

$$u_{2} = v_{2} - \operatorname{proj}_{u_{1}}(v_{2}) \qquad e_{2} = \frac{u_{2}}{\|u_{2}\|}$$

$$u_{3} = v_{3} - \operatorname{proj}_{u_{1}}(v_{3}) - \operatorname{proj}_{u_{2}}(v_{3}) \qquad e_{3} = \frac{u_{3}}{\|u_{3}\|}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$u_{k} = v_{k} - \sum_{i=1}^{k-1} \operatorname{proj}_{u_{i}}(v_{k}) \qquad e_{k} = \frac{u_{k}}{\|u_{k}\|}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$u_{n} = v_{n} - \sum_{i=1}^{n-1} \operatorname{proj}_{u_{i}}(v_{n}) \qquad e_{n} = \frac{u_{n}}{\|u_{n}\|}$$

Proof. To prove (u_1, u_2, \dots, u_n) is orthogonal, we use induction:

Base
$$\operatorname{proj}_{u_1}(u_2) = \operatorname{proj}_{u_1}(v_2) - \operatorname{proj}_{u_1}^2(v_2) = \operatorname{proj}_{u_1}(v_2) - \operatorname{proj}_{u_1}(v_2) = 0 \Rightarrow u_2 \in \ker(\operatorname{proj}_{u_1}) = \{u_1\}^{\perp} \Rightarrow u_2 \perp u_1$$

Step
$$j \in \{1, \dots, k-1\}$$
: $\operatorname{proj}_{u_j}(u_k) = \operatorname{proj}_{u_j}(v_k) - \sum_{i=1}^{k-1} \operatorname{proj}_{u_j}(\operatorname{proj}_{u_i}(v_k)) = \operatorname{proj}_{u_j}(v_k) - \operatorname{proj}_{u_j}^2(v_k) = 0 \Rightarrow u_k \in \ker(\operatorname{proj}_{u_j}) = \{u_j\}^{\perp} \Rightarrow u_k \perp u_j$

To prove the span is the same, notice $\dim \mathrm{Span}(K) = n = \dim \mathrm{Span}(S)$ and $K \subset \mathrm{Span}(S)$.

Corollary 12.3.1 (Finite Span is easy). Every finitely spanned Euclidean vector space has an orthonormal basis.

12.4 Orthogonal Maps

Definition 12.4.1 (Orthogonal Map). For two Euclidean spaces $(V, \langle \cdot, \cdot \rangle_V)$ and $(W, \langle \cdot, \cdot \rangle_W)$. A linear map $Q: V \to W$ is orthogonal if preserves the scalar product, that is:

$$\forall\, u,v \in V\,,\; \langle Q(u),Q(v)\rangle_W = \langle u,v\rangle_V$$

Lemma 12.4.1 (Geometrical Properties). Let Q be an orthogonal map. We have:

- 1. $\forall u, v \in V, \ u \perp v \Leftrightarrow Q(u) \perp Q(v)$
- 2. $\forall u \in V, ||Q(u)|| = ||u||$
- 3. Q is injective.
- 4. If λ is an eigenvalue of Q, then $|\lambda| = 1$

Proof. We prove each one:

- 1. $\forall u, v \in V$, $u \perp v \Leftrightarrow 0 = \langle u, v \rangle_V = \langle Q(u), Q(v) \rangle_W \Leftrightarrow Q(u) \perp Q(v)$
- 2. $\forall u \in V$, $||Q(u)||^2 = \langle Q(u), Q(u) \rangle = \langle u, u \rangle = ||u||^2$
- 3. $u \in \ker(Q) \Rightarrow 0 = ||Q(u)|| = ||u|| \Rightarrow u = 0 \Rightarrow \ker(Q) = \{0\}$
- 4. If λ is an eigenvalue, there is a $u \neq 0$ such that $Q(u) = \lambda \cdot u \Rightarrow ||u|| = ||Q(u)|| = ||\lambda \cdot u|| = |\lambda| \cdot ||u|| \Rightarrow |\lambda| = 1$

Definition 12.4.2 (Gram Matrix). For $A \in M_{k \times n}(F)$, we define:

$$Gram(A) = A^t A$$

Lemma 12.4.2 (N&SC of Orthonormality). For $A \in M_{k \times n}(F)$, $S_c(A)$ is orthonormal $\Leftrightarrow \operatorname{Gram}(A) = I$

Corollary 12.4.1 (Rotation Equation). $Q: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal map $\Leftrightarrow \operatorname{Gram}([Q]) = [Q]^t[Q] = I$

Proposition 12.4.1. This coincides with the definition we had before by taking the sumprod as the inner product and writing the sequence as a matrix.

Proposition 12.4.2 (Orthogonal Coordinate Maps). K is an orthonormal sequence iff Q_K (coordinate map) is an orthogonal map.

Proof. By definition, K is orthonormal iff Gram(K) = I so, by a previous lemma:

$$\langle u, v \rangle = [u]_K^t \operatorname{Gram}(K)[v]_K = Q_K(u) \cdot \left(\operatorname{Gram}(K) Q_K(v) \right)$$

Hence, $Gram(K) = I \Leftrightarrow Q_K(u) \cdot Q_K(v) = \langle u, v \rangle$

13 Direct Sum

13.1 Sum of Subspaces

Definition 13.1.1 (Sum of Subspaces). Let V be a linear space and U and W subspaces of V.

$$U + W := \{u + w \mid u \in U , w \in W\}$$

Lemma 13.1.1 (Analog of "Union" of Subspaces). We have:

- 1. U + W is a linear subspace of V.
- 2. If $U = \operatorname{Span}(S)$ and $W = \operatorname{Span}(T)$, then $U + W = \operatorname{Span}(S + + T)$

Proof. We prove each one:

1. $0+0=0 \in U+W$, $(u_1+w_1)+(u_2+w_2)=(u_1+u_2)+(w_1+w_2) \in U+W$, $\alpha \cdot (u+w)=(\alpha \cdot u)+(\alpha \cdot w) \in U+W$.

2.
$$U+W = \left\{ \sum_{i=1}^{n} a_i \cdot s_i + \sum_{j=1}^{k} b_j \cdot t_j \mid a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_k \in \mathbb{R} \right\} = \operatorname{Span}(S+T)$$

Corollary 13.1.1 (Inequality of Dimensions). For finitely spanned subspaces U, W:

$$\dim U, \dim W \le \dim(U+W) \le \dim U + \dim W$$

Lemma 13.1.2 (Intersection of Subspaces is Subspace). Let $U, W \subseteq V$ be subspaces. Then, $U \cap W$ is also a subspace.

Proof. $0 \in U$ and $0 \in W \Rightarrow 0 \in U \cap W$. $u_1, u_2 \in U \cap W \Rightarrow u, v \in U$ and $u, v \in W \Rightarrow u + v, \alpha \cdot u \in U$ and $u + v, \alpha \cdot u \in W$ since they are subspaces, $\Rightarrow u + v, \alpha \cdot u \in U \cap W$.

Definition 13.1.2 (Direct Sum). If $U \cap W = \{0\}$, we write $U \oplus W = U + W$.

Definition 13.1.3 (Sum Function). We define the sum function as:

$$\Sigma: U \times W \to U + W$$
$$(u, w) \mapsto u + w$$

Lemma 13.1.3 (Kernel and Image of Sum). We have:

- 1. $\ker(\Sigma) \cong U \cap W$
- 2. $\operatorname{Im}(\Sigma) = U + W$

Proof. We prove each one:

1. $\ker(\Sigma) = \{(u, w) \in U \times W \mid u + w = 0\} = \{(u, -u) \in U \times W\}$, so we need $u \in U$ and $u \in W$, so: $\ker(\Sigma) = \{(u, -u) \mid u \in U \cap W\} \cong U \cap W$, with the map $u \mapsto (u, -u)$.

2. $\operatorname{Im}(\Sigma) = \{\Sigma(u,w) = u + w \mid u \in U \;,\; w \in W\} = U + W$

Theorem 13.1.1 (Grassman's Formula). For V finetely spanned:

$$\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$$

Proof. $\dim(U \times W) = \dim U + \dim W$, use the dimension theorem with Σ . \square

Theorem 13.1.2 (Equivalence of Direct Sum). The following are equivalent:

- 1. $U \cap W = \{0\}$
- 2. Every $v \in U + W$ has an **unique** representation as a sum v = u + w where $u \in U$ and $w \in W$
- 3. Σ is an isomorphism.

Proof. We prove the directions:

- $(1 \Leftrightarrow 3) \iff \Sigma \text{ is an isomorphism} \Rightarrow U \cap W \cong \ker \Sigma = \{\underline{0}\} \Rightarrow U \cap W = \{0\}.$ $(\Rightarrow) \text{ If } U \cap W = \{0\} \Rightarrow \ker \Sigma = \{0\}.$
- $(2 \Leftrightarrow 3)$ Trivial, since we can find an inverse for Σ , and shows Σ^{-1} is a function.

Definition 13.1.4 (Decomposition). If $U \oplus W = V$, we say that W is the complement of U (or U,W are complement subspaces) in this case, every $v \in V$ has an **unique** representation as a sum v = u + w where $u \in U$ and $w \in W$, called the U-W decomposition of V. We can write the representation as $\Sigma^{-1}(v)$.

13.2 Orthogonal Decomposition

Lemma 13.2.1 (Properties of Orthogonal Complement). For any subspaces $U, W \subseteq V$

- 1. $U \cap U^{\perp} = \{0\}$
- 2. $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$

Proof. We prove each one:

- 1. Double Inclusion:
 - (⊇) Trivially given.
 - (\subseteq) $v \in U \cap U^{\perp} \Rightarrow v \in U$ and $\forall u \in U$, $\langle u, v \rangle = 0 \Longrightarrow \langle v, v \rangle = 0 \Rightarrow v = 0$
- 2. Double Inclusion:

$$(\supseteq) \ v \in U^{\perp} \cap W^{\perp} \Rightarrow \begin{cases} \forall \, u \in U \,, \ \langle u, v \rangle = 0 \\ \forall \, w \in W \,, \ \langle w, v \rangle = 0 \end{cases} \Rightarrow \forall \, u \in U + W \,, \ \langle u, v \rangle = 0$$
$$0 \Rightarrow v \in (U + W)^{\perp}$$

- (\subseteq) By contrary: $v \notin U^{\perp} \cap W^{\perp} \Rightarrow$ either:
 - (a) $v \notin U^{\perp} \Rightarrow \exists u \in U : \langle u, v \rangle \neq 0$
 - (b) $v \notin W^{\perp} \Rightarrow \exists w \in W : \langle w, v \rangle \neq 0$
 - $\Rightarrow \exists u \in U + W : \langle u, v \rangle \neq 0 \Rightarrow v \notin (U + W)^{\perp}$

Theorem 13.2.1 (Orthogonal Decomposition). Let V be a finitely spanned Euclidean space and U a linear subspace. Then:

$$V = U \oplus U^{\perp}$$

Proof. Let K be an orthonormal basis for U. Let $\sum_{i=1}^{\dim U} x_i \cdot e_i = u \in U$.

We want to prove that $\forall v \in V$, $\exists u \in U : (v - u) \in U^{\perp}$. It is necessary and sufficient to check $\forall e_i \in K$, $(v - u) \perp e_i$, which has unique solution: $x_i = \langle v, e_i \rangle$ (by orthonormality).

Corollary 13.2.1 (Dimension of the Complement).

$$\dim U^{\perp} = \dim V - \dim U$$

Lemma 13.2.2 (Double Perp). Let V finite-dimensional vector space. For any subspace $U \subseteq V : U^{\perp \perp} = U$.

Proof. We use the orthogonal decomposition:

$$\dim U^{\perp \perp} = \dim V - \dim U^{\perp} = \dim V - (\dim V - \dim U) = \dim U$$

Since $U \subseteq U^{\perp \perp}$ is given, by Dimension Equality, $U^{\perp \perp} = U$.

Corollary 13.2.2. $U^{\perp} + W^{\perp} = (U \cap W)^{\perp}$

Definition 13.2.1 (Projections). Let the following classes of functions:

$$\pi_j:(a_1,a_2,\cdots,a_n)\mapsto a_j$$

we define:

Projection: $P_U = \pi_1 \circ \Sigma_{U \times W}^{-1}$

Complement/Rejection: $P_W = \pi_2 \circ \Sigma_{U \times W}^{-1} = Id_V - P_U$

Lemma 13.2.3 (Orthogonal Projection in a Basis). Let $P_U = \pi_1 \circ \Sigma_{U \times U^{\perp}}^{-1}$ be the projection map and $K = (e_1, e_2, \cdots, e_{\dim U})$ an ON basis of U. Then:

$$P_U: v \mapsto \sum_{i=1}^{\dim U} \langle v, e_i \rangle \cdot e_i$$

Proof. As before, with the proof of the Orthogonal Decomposition Theorem, let $u = \sum_{i=1}^{\dim U} \langle v, e_i \rangle \cdot e_i$, then $\forall e_i \in K$, $(v-u) \perp e_i \Rightarrow v-u \in U^{\perp}$. And by the uniqueness of the orthogonal projection, we have the desired result. \square