1. CARDIAC MUSCLE

- Is myogenic as it can contract without any stimulation by the central nervous system.
- It has the following structure:

- The junctions have a 'zig-zag' shape and are called **intercalated discs**.
- Intercalated discs.are cross-bands, which act as attachment sites between adjacent cells.
- There are gap junctions at the intercalated discs, between cell membranes, the cells are not fused together.
- Cardiac muscle **cells** also have the following properties:

	Allows:
BRANCHED (Y-SHAPED)	- fast propagation of electrical impulses to the walls of the heart = fast coordinated contraction
	- groups of cells to work together/synchronise
INTERCALATED DISCS	Hold cells together so they do not separate
ызсэ	 Allows rapid conduction of electrical impulses between cells
GAP JUNCTIONS	 Form channels that allow <u>continuous</u> flow, between cells, of:
GAF SUNCTIONS	- ions
	- electrical impulses
	- cytoplasm
MANY MITOCHONDRIA	More aerobic respiration to release more energy for continuous contractions

2. CONTROL OF THE CARDIAC CYCLE

- The sinoatrial node (SA node) in the wall of the right atrium initiates electrical impulses.
- These impulses spread across the walls of the atria, causing them to contract (= atrial systole)
- The impulses are prevented from reaching the walls of the ventricles by a layer of fibrous tissue.
- There is a delay (of about 0.09 seconds) before impulses are passed on from the atrioventricular node (AVN).
- This gives time for the ventricles to completely fill with blood before they contract.
- **Impulses** pass from the **AV node** along conducting fibres: the **Bundle of His** (in the septum between the ventricles) and then **Purkinje fibres** (in the ventricle walls).
- Impulses are carried to all parts of the walls of the ventricles and the base of the heart, leading to them contracting (= ventricular systole).
- A wave of contraction then moves upward from base to ventricles.
- This forces blood into the arteries.

THE ATRIOVENTRICULAR NODE (AVN)

- 1. RELAYS IMPULSES BETWEEN THE SAN AND VENTRICLES
 - 2. ALLOWS THE VENTRICLES TO CONTRACT
- 3. DELAYS IMPULSES SO THAT THE ATRIA EMPTY FULLY BEFORE THE VENTRICLES CONTRACT

3. ELECTROCARDIOGRAMS (ECGs)

• Electrical activity within the heart can be detected using an **electrocardiogram (ECG)**.

impulses initiated from the AV node spread across the heart and travel along Purkinje fibres to cause the ventricles to depolarize/contract

• The changes to the size of peaks and lengths of intervals can be used to detect heart problems.

4. HOW TO CALCULATE HEART RATE FROM R-WAVES

Time between **R waves** is used to calculate the **heart rate**.

This distance spans one heartbeat

Heart rate = 60 s = 75 beats per minute
 0.8 s

5. DEFIBRILLATORS

- A feature of a heart attack is ventricular fibrillation.
- This is when ventricles twitch due to fast and chaotic contraction of individual muscle cells.
- This makes the ventricles ineffective in pumping blood into the arteries.

Complexes normal, evenly spaced. Rate 60-100 bpm

Rapid, wide irregular ventricular complexes

- The **two metal paddles** of a **defibrillator (electrodes)** are applied to the patient's **chest** in a **diagonal line**, with the **heart** in the **middle**.
- The **defibrillator** first **detects** if the ventricles are **fibrillating**.
- If they are, it delivers an electrical discharge/shock to the heart.
- This depolarizes the cardiac muscle.
- (And) enables the **SAN** to regain control.
- (So) fibrillation is stopped and a normal heart rhythm is restored.

6. ARTIFICIAL PACEMAKERS

- For patients who have a:
 - malfunctioning SA node
 - heartbeat that is too slow/ fast/ irregular /fibrillations
 - block in the impulse conduction pathway generated by the SAN
- Artificial pacemakers contain a battery and pulse generator.
- It is placed under the skin below the collar bone.
- Wires are threaded through veins to deliver electrical impulses to the heart.
- It detects that the heart's natural rhythm is incorrect.
- It then sends electrical impulses to correct the heartbeat.
- It provides a regular impulse/constant rhythm.

7. HEART VALVES & HEART SOUNDS

• You have met this before in **Topic 6**.

DIFFERENCES in **PRESSURE** cause **VALVES** to **OPEN** or **CLOSE**

Look at what is **EITHER SIDE** of a **VALVE** and work out where the **PRESSURE** must **BE GREATER** to **OPEN** or **CLOSE** it

- The 1st heart sound ('lub') is made when the atrioventricular valves close.
- The 2nd heart sound ('dub') is made when the semilunar valves close.
- Murmurs (other sounds) can show problems such as leaking valves.
- Heart sounds can be detected using a stethoscope.

8. MEASURING HEART RATE (= NUMBER OF BEATS PER MINUTE)

Can use:

- radial pulse at the wrist
- carotid pulse in the neck
- stethoscope
- digital heart rate monitor

There is a positive correlation between exercise intensity and heart rate as:

Muscles require more energy

(So) more oxygen and glucose delivered to cells

(So) more aerobic respiration

(And) more (toxic) carbon dioxide is removed

(And) more lactic acid is taken to the liver and broken down/oxidised

9. INCIDENCE OF CORONARY HEART DISEASE (CHD)

Coronary heart disease is damage to the heart muscle due to blockage of the coronary arteries, typically by a blood clot

• Investigating CHD by experiment is unethical, so we analyse epidemiological data instead.

10. BLOOD PRESSURE

- Is the pressure of blood on the artery wall.
- Measured in mm Hg (mercury).
- By a sphygmomanometer or a digital blood pressure monitor

Systolic blood pressure

The **pressure** in your **arteries** during the **contraction** of the **ventricles**

20 Diastolic blood pressure

The **pressure** in your **arteries** when your **heart muscle** is **between beats/relaxed**

Sphygmomanometer

A **cuff** is placed around the **upper** arm and it is **inflated** to **constrict** the upper arm.

This **prevents blood** in the **arteries** from **entering** the **lower** arm.

The **cuff** is then **slowly deflated** and the doctor uses a **stethoscope** to listen for **sounds** of **blood flow** in the **artery** below the cuff.

When the **cuff pressure < systolic** pressure: First sound is heard = systolic blood pressure.

The cuff is **deflated further** and the doctor keeps listening.

When the **cuff pressure** < **diastolic** pressure. **No sound is heard = diastolic blood pressure.**

The chart shows how blood pressures are interpreted:

11. HYPERTENSION & THROMBOSIS

	HYPERTENSION	THROMBOSIS
What it is	High blood pressure	Blood clots forming
		inside blood vessels
Risk factors	Obesity	High LDL levels in blood
	• Lack of exercise	High levels of saturated fat
	Eating too much salt	and trans-fat in blood
	Drinking too much alcohol	• Inactivity on air flights
	Drinking too much coffee	Smoking tobacco
	Genetics	Hypertension
		Genetics
Can Cause		If blood clots block
	If loft untrooted, it can cause	coronary arteries,
	If left untreated, it can cause kidney damage, heart attack	a heart attack can occur.
	and stroke .	If blood clots block
		carotid arteries,
		a stroke can occur.