统计线性模型2023秋期中回忆版

1. (同2022年秋hw1.1) (40 marks) Suppose an appliance store conducts a 5-month experiment to determine the effect of advertising on sales revenue. The results are shown below.

Advertising Expenditure x (hundreds of dollars)	1	2	3	4	5	
Sales Revenue y (thousands of dollars)	1	1	2	2	4	•

- (a) Draw a scatterplot of the data and comment the relationship between y and x.
- (b) What is your linear regression model? State the necessary assumptions.
- (c) Find the least squares line from the data and plot it on your scatterplot.
- (d) Test the hypothesis that the Advertising Expenditure has no effect of the Sales Revenue when a linear model is used (use $\alpha = 0.05$). State the null and alternative hypotheses. Draw the appropriate test conclusions.
- (e) Find a 95% confidence interval for β_1 (slope of the linear regression model). Interpret your results.
- (f) Eind the coefficient of determination for the linear regression model. Interpret your result.
- (g) Find a prediction for the mean Sales Revenue when 4 hundreds dollars are spent on advertising and its 95% interval. What is the 95% interval for the Sales Revenue?

It shows a rough linear relationship between y and x, but the worldhim is he strong

(D). A linear rogression model can be expressed as y= β, +β, x, + ξ, , ξ, ~ N(0, σ²).

main assumptions are:

ii) the relationship between y and to is linear

(ii) the variance of y is a constant

(iii) the observations are independent

(iv) (optional) y is distributed normally

(C)
$$\bar{x} = 3$$
 $\bar{y} = 2$

$$5xx = \bar{z}(x_{1} - \bar{x})^{2} = 10$$

$$5xy = \bar{z}(x_{1} - \bar{x})(y_{1} - \bar{y}) = 7$$

$$5yy = \bar{z}(y_{1} - \bar{y})^{2} = 6$$

$$\hat{\beta}_{1} = 5xy/5xx = 7/10 = 0.7$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} = 2 - 0.7*3 = -0.1$$
thus the least squares line is $y = -0.1 + 0.7 \pm$, which has been added to the scatterplot

(d)
$$H_0: \beta_1 = 0$$
 $V.S. H_1: \beta_1 \neq 0$ $n = 5$

$$SSE = \sum (y_1 - \hat{y}_1)^2 = 1.1$$

$$S^2 = \frac{SSE}{n-2} = 0.3667$$

$$t = \frac{\hat{\beta}_1}{(S/Sxx)^{N_2}} = \frac{0.7}{(0.3667/10)^2} = 3.6556$$

> to.025,3 = 3.1824

Thus, reject to, meaning the Adverting Expenditure has effect of the Sales Revenue.

(e)
$$t = \frac{\hat{\beta}_1 - \beta_1}{3/s_{xx}^{1/2}} \sim t_3$$
, $t = 95\%$ C. I. of β_1 is
$$\hat{\beta}_1 \neq t_{0.025,3} \cdot \frac{3}{s_{xx}^{1/2}}$$

$$= 0.7 + 3.1824 * \left(\frac{0.3667}{10}\right)^{1/2}$$

$$= (0.0906, 1.3094)$$

There is 95% chance that B. would take values between 0.0906 and 1.3094.

(f)
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = 1 - \frac{1.1}{6} = 0.8167$$

meaning 81.67% percent of the variations of the Soles Revenue can be explained by the model.

(3)
$$x_{h} = 4$$
, $\hat{Y}_{h} = \hat{\beta}_{0} + \hat{\beta}_{1} \times h = 2.7$
C.I. of $E(Y_{h})$ is
$$\hat{Y}_{h} = t_{0.025,3} \cdot s \cdot \sqrt{\frac{1}{n}} + \frac{(x_{h} - \overline{x})^{2}}{s \times x}$$

$$= (1.6445, 3.7559)$$
Predictive interval of Y_{h} af $X_{h} = 4$ is
$$\hat{Y}_{h} = t_{0.025,3} \cdot s \cdot \sqrt{1 + \frac{1}{n}} + \frac{(x_{h} - \overline{x})^{2}}{s \times x}$$

$$= (0.5028, 4.8972).$$

2. (20 marks) List at least two generalized inverse of A, verify it.

$$A = egin{bmatrix} 2 & 2 & 6 \ 1 & 0 & 2 \ 3 & 2 & 8 \end{bmatrix}$$

3. (同2022年秋hw3.2) (20 marks) Let $\boldsymbol{y}=(y_1,y_2,y_3)'$ be distributed as $N_3(\boldsymbol{\mu},\Sigma)$, where

$$m{\mu} = egin{pmatrix} 2 \ -1 \ 3 \end{pmatrix}, \quad m{\Sigma} = egin{pmatrix} 4 & 1 & 0 \ 1 & 2 & 1 \ 0 & 1 & 3 \end{pmatrix}.$$

- (a) Find the distribution of $\begin{pmatrix} y_1 y_2 + y_3 \\ 2y_1 + y_2 y_3 \end{pmatrix}$;
- (b) The conditional distribution of (y_1, y_2) given y_3 ;
- (c) The partial correlation between y_1 and y_2 given y_3 .

$$Q_{2} = \begin{pmatrix} y_{1} - y_{2} + y_{3} \\ 2y_{1} + y_{1} - y_{3} \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix} \sim \mathcal{N}(\mathcal{M}_{1}, \Xi_{1}).$$

$$\mathcal{M}_{1} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$

$$\Xi_{1} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 2 \\ 1 & 3 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 4 \\ 4 & 23 \end{pmatrix}.$$

(b)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mid y_3 \sim N(\mathcal{M}_2, \mathbb{Z}_2)$$
 $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_3 \\ y_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} y_1 \\$

4. (20 marks) $y \sim N_p(\mu, \sigma^2 \Sigma), \; \mu, \sigma^2, \sum$ is knows.

- (a) $E(y'\Sigma^{-1}y)$;
- (b) Distribution of $\frac{1}{\sigma^2}y'\Sigma^{-1}y$.

4.1 Random vector and matrix

lacksquare Let $m{Y}$ be a random vector with mean $m{\mu} = \mathsf{E}(m{Y})$ and $m{\Sigma} = \mathsf{Cov}(m{Y})$, then

$$\mathsf{E}(\mathbf{Y}'\mathbf{A}\mathbf{Y}) = \mathsf{tr}(\mathbf{A}\mathbf{\Sigma}) + \mathbf{\mu}'\mathbf{A}\mathbf{\mu}$$

where A is a symmetric matrix.

Ch 5.2 Non-Central χ^2 , F and t distributions

Theorem 5.1 Let $x_{p\times 1}\sim \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$ and \boldsymbol{A} be symmetric, then $q=x'\boldsymbol{A}x\sim\chi^2_{(r,\ \lambda)}$ where r denoting the rank of \boldsymbol{A} and $\lambda=\frac{\boldsymbol{\mu}'\boldsymbol{A}\boldsymbol{\mu}}{2}$ if and only if $\boldsymbol{A}\boldsymbol{\Sigma}$ is idempotent.