补充练习题参考答案

第三章补充练习题

1.
$$A$$
; 2. C ; 3. D ; 4. $Z \sim N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$; 5. $Z \sim B(n_1 + n_2, p)$;

6.
$$P\{\max(X,Y) \ge 0\} = \frac{5}{7}$$
;

7. (1)
$$P\{\frac{1}{2} < X < \frac{3}{2}, 0 < Y < 4\} = \frac{5}{16}$$
 (2) $P\{1 \le X \le 2, 3 \le Y \le 4\} = \frac{1}{16}$;

8.
$$(1)k = \frac{1}{8}(2)P\{X < 1, Y < 3\} = \frac{3}{8}(3)P\{X < 1.5\} = \frac{27}{32}(4)P\{X + Y \le 4\} = \frac{2}{3}$$

(2) (a)
$$\frac{X \mid 0 \mid 1}{p_{i.} \mid 5/6 \mid 1/6}$$
, $\frac{Y \mid 0 \mid 1}{p_{.j} \mid 5/6 \mid 1/6}$ (b) $\frac{X \mid 0 \mid 1}{p_{i.} \mid 5/6 \mid 1/6}$, $\frac{Y \mid 0 \mid 1}{p_{.j} \mid 5/6 \mid 1/6}$

(3) (a)相互独立 (b) 不相互独立;

10. (1)
$$\frac{(X,Y)}{p_{ij}} \begin{vmatrix} (-3,1) & (-3,2) & (-3,3) & (-2,1) & (-2,2) & (-3,3) & (-1,1) & (-1,2) & (-1,3) \\ 0.1 & 0.05 & 0.1 & 0.1 & 0.05 & 0.1 & 0.2 & 0.1 & 0.2 \end{vmatrix}$$
;

(2)
$$V = \max(X, Y) \begin{vmatrix} 1 & 2 & 3 \\ p & 0.4 & 0.2 & 0.4 \end{vmatrix}$$

(3)
$$\frac{U = \min(X, Y) \begin{vmatrix} -3 & -2 & -1 \\ p & 0.25 & 0.25 & 0.5 \end{vmatrix}$$

	X	\mathcal{Y}_1	y_2	y_3	$P\{X = x_i\} = p_{i.}$	
•	X_1	$\frac{1}{24}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{4}$;
	x_2	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{3}{4}$	
	$p\{Y = y_j\} = p_{.j}$	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$	1	

12. (1)
$$1 \quad 0 \quad \frac{1}{8} \quad \frac{1}{8} \quad 0 \quad 0$$

$$2 \quad 0 \quad 0 \quad \frac{1}{8} \quad \frac{1}{8}$$

(2)
$$\frac{X}{p_{i}} = \frac{0}{1/4} = \frac{1}{1/4} = \frac{1}{1/4} = \frac{1}{2} = \frac{1}{1/4} =$$

13.
$$f_z(z) = \frac{1}{2b} \left[\Phi(\frac{z+b-\mu}{\sigma}) - \Phi(\frac{z-b-\mu}{\sigma}) \right];$$

14. (1)
$$f_X(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & \sharp \dot{\Xi} \end{cases}$$
, $f_Y(y) = \begin{cases} ye^{-y} & y > 0 \\ 0 & \sharp \dot{\Xi} \end{cases}$

(2)
$$f_{X|Y}(x|y) = \begin{cases} \frac{1}{y} & 0 < x < y \\ 0 & \sharp \dot{\Xi} \end{cases}, f_{Y|X}(y|x) = \begin{cases} e^{-y+x} & 0 < x < y \\ 0 & \sharp \dot{\Xi} \end{cases};$$

15. (1)
$$f(x,y) = \begin{cases} \lambda \mu e^{-(\lambda x + \mu y)} & x > 0, y > 0 \\ 0 & \text{ 其它} \end{cases}$$

(2)
$$f_{X|Y}(x|y) = f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0, y > 0 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

$$f_{Y|X}(y|x) = f_Y(y) = \begin{cases} \mu e^{-\mu y} & x > 0, y > 0 \\ 0 & \text{!!} \dot{\Xi} \end{cases};$$