

239 **CLAIMS**

240

241 I claim:

242

243

244 1. In a dynamic random access memory device, having a complementary-logic bitline pair
245 having true and inverted bitlines:

246

247 equilibrating means, connected to the bitline pair; and

248

249 biasing means, connected to only one of the bitlines;

250

251 wherein when said equilibrating and biasing means are activated together, the
252 bitline pair is thus equilibrated and biased.

253

254

255 2. The device of claim 1, wherein:

256

257 said equilibrating means comprises a first transistor, connected to the bitline pair,
258 such that when activated, the bitlines are shorted together;

259

260 said biasing means comprises a second transistor, connected to only one of the
261 bitlines and connected to a biasing node, such that when activated, the one of said
262 bitlines is shorted to said biasing node;

263

264 such that when said first and second transistors are activated together, said bitline
265 pair is equilibrated and biased.

266

267

268 3. The device of claim 2, wherein said biasing node is located next to said second
269 transistor.

270

271

272 4. The device of claim 2, wherein said biasing node is connected to a current-limiting
273 device, and wherein an n-channel substrate contact can be located next to said current-
274 limiting device without widening circuit area.

275

276

277 5. The device of claim 2, wherein an n-channel contact can be located next to said biasing
278 node, without widening circuit area.

279

280

281 6. In a dynamic random access memory device, having a biasing node, and first and second
282 complementary-logic bitline pairs each having a true and an inverted bitline:

283

284 first equilibrating means, able to short the bitlines of the first bitline pair together;

285

286 second equilibrating means, able to short the bitlines of the second bitline pair
287 together;

288

289 first biasing means, able to short only one of the bitlines of the first bitline pair to
290 the biasing node;

291

292 second biasing means, able to short only one of the bitlines of the second bitline
293 pair to the biasing node;

294

295 wherein the biasing node is interstitially located between said first and second
296 biasing means.

297

298

299 7. The device of claim 6, wherein:

300

301 said first equilibrating means comprises a first transistor, connected to the first
302 bitline pair, such that when said first transistor is activated, the first bitline pair is
303 shorted together;

304

305 said second equilibrating means comprises a second transistor, connected to the
306 second bitline pair, such that when said second transistor is activated, the second
307 bitline pair is shorted together;

308

309 said first biasing means comprises a third transistor, connected to only one of the
310 bitlines in the first bitline pair and connected to a biasing node, such that when said
311 third transistor is activated, the one of said bitlines of the first bitline pair is shorted
312 to said biasing node;

313

314 said second biasing means comprises a fourth transistor, connected to only one of
315 the bitlines in the second bitline pair and connected to said biasing node, such that
316 when said fourth transistor is activated, the one of said bitlines of the second bitline
317 pair is shorted to said biasing node;

318

319 wherein said first, second, third, and fourth transistors are activated together, thus
320 equilibrating and biasing the bitline pair.

321

322

323 8. The device of claim 7, wherein said biasing node is connected to a current-limiting
324 device, and wherein an n-channel substrate contact can be located next to said current-
325 limiting device without widening circuit area.

326

327

328 9. The device of claim 7, wherein an n-channel contact can be located next to said biasing
329 node, without widening circuit area.

330

331

332 10. In a dynamic random access memory device, having:

333

334 an equilibrate node;

335

336 a biasing node;

337

338 a complementary-logic bitline pair having true and inverted bitlines;

339

340 a first transistor, connected to said bitline pair and gated by said equilibrate node
341 such that when said equilibrate node is activated, said bitline pair is shorted
342 together and thus equilibrated;

343

344 a second transistor, connected to said true bitline and to said biasing node, and
345 gated by said equilibrate node, such that when said equilibrate node is activated,
346 said true bitline is shorted to said biasing node, thus biasing said true bitline;

347

348 a third transistor, connected to said inverted bitline and to said biasing node, and
349 gated by said equilibrate node, such that when said equilibrate node is activated,
350 said inverted bitline is shorted to said biasing node, thus biasing said inverted
351 bitline;

352

353 the improvement comprising:

354

355 conversion of one of said second and third transistors from a three-terminal device
356 to a two-terminal device, allowing said biasing node to be located next to

357 remaining unconverted of said second and third transistors, without widening
358 circuit area.

359

360

361 11. The device of claim 10, wherein said biasing node is connected to a current-limiting
362 device, and wherein an n-channel substrate contact can be located next to said current-
363 limiting device without widening circuit area.

364

365

366 12. The device of claim 10, wherein an n-channel contact can be located next to said
367 biasing node, without widening circuit area.

368

369

370 13. In a dynamic random access memory device, having:

371

372 an equilibrate node;

373

374 a biasing node;

375

376 a complementary-logic bitline pair having true and inverted bitlines;

377

378 a first transistor, connected to said bitline pair and gated by said equilibrate node
379 such that when said equilibrate node is activated, said bitline pair is shorted
380 together and thus equilibrated;

381

382 a second transistor, connected to said true bitline and to said biasing node, and
383 gated by said equilibrate node, such that when said equilibrate node is activated,
384 said true bitline is shorted to said biasing node, thus biasing said true bitline;

385

386 a third transistor, connected to said inverted bitline and to said biasing node, and
387 gated by said equilibrate node, such that when said equilibrate node is activated,
388 said inverted bitline is shorted to said biasing node, thus biasing said inverted
389 bitline;

390

391 the improvement comprising:

392

393 elimination of one of said second and third transistors, allowing said biasing node
394 to be located next to remaining of said second and third transistors, without
395 widening circuit area.

396

397

398 14. The device of claim 13, wherein said biasing node is connected to a current-limiting
399 device, and wherein an n-channel substrate contact can be located next to said current-
400 limiting device without widening circuit area.

401

402

403 15. The device of claim 13, wherein an n-channel contact can be located next to said
404 biasing node, without widening circuit area.

405

406