1. If X_1,X_2,\ldots,X_n are i.i.d. random variables with mean μ and variance σ^2 , calculate the covariance \bar{X} and $X_i-\bar{X}$ for any $i=1,\ldots,n$.
2. A commercial for a manufacturer of household appliance claims that 3% of all its product require
a service call in the first year. A consumer protection association wants to check the claim by surveying 400 households that recently purchased one of the company's appliances. What is the probability that more than 5% require a service call within the first year?
(a) Calculate the probability using the approximate normal approach.
(b) Calculate the probability using the binomial distribution.
3. Suppose that X has normal distribution with mean μ = 10 and standard deviation σ = 2 .
Doing the following parts: (a) Calculate $P(6 < X < 14)$.

(b) Find the percentile c such that $P(X \le c) = 0.95$.
(c) A random sample of size 4, {X1,,X4}, is taken from the normal distribution with mean = 10 and standard deviation = 2. Find the probability that the average of this sample is at most 12.
4. Bits are sent over a communications channel in packets of 160. If the probability of a bit being corrupted (one error) over this channel is 0.2 and such errors are independent. Let X denotes the number of bits that are corrupted over this channels.
(a) What is the distribution of X? Can it be approximated as normal distribution?
(b) Approximately, what is the probability that more than 50 bits in a packet are corrupted?

5. A large population is described by the probability distribution

Х	f(x)
0	0.1
1	0.2
2	0.7

Let X₁ and X₂ be a random sample of size 2 from the distribution

- (a) Determine the sampling distribution of $max(X_1,X_2)$?
- (b) Determine the sampling distribution of X_1+X_2 ?