# **CIS 678 Machine Learning**

Introduction to Linear Algebra

#### Outline

- Proximity vs Distance Metric
- k-NN, our first ML model

- Let's we are give two data points: one, the **blue**, and the other is the **green** circle.



- Let's we are give two data points: one, the **blue**, and the other is the **green** circle.





Let's we are give two data points: one, the blue, and the other is the green circle.







- Let's we are give two data points: one, the **blue**, and the other is the **green** circle.



- Let's we are give two data points: one, the **blue**, and the other is the **green** circle.



Let's we are give two data points: one, the blue, and the other is the green circle.



Let's we are give two data points: one, the blue, and the other is the green circle.



Let's we are give two data points: one, the blue, and the other is the green circle.



to the Blue

Which color do you think (?) is most likely?



Decision Rule:  $|x_q - x_b| < |x_q - x_g|$ 

**Let's Move to Higher Dimensions!** 

- What is the distance between these two data  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  points (on a 2D plane)?





- What is the distance between these two data  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  points (on a 2D plane)?
- We can use the Cartesian coordinate system to quantify the location, and measure their distance.





- What is the distance between these two data  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  points (on a 2D plane)?
- We can use the Cartesian coordinate system to quantify the location, and measure their distance.
- We will learn several distance metrics.



- What is the distance between these two data  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  points (on a 2D plane)?
- We can use the Cartesian coordinate system to quantify the location, and measure their distance.
- We will learn several distance metrics.
- Let's start with <u>L1 distance</u> metrics also known as <u>Manhattan distance</u>



**L1 Distance**: The L1 distance between two points  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  is:

L1 Distance = 
$$|x_2 - x_1| + |y_2 - y_1|$$
  
=  $\Delta x + \Delta y$ 

That is, the L1 distance is the sum of the horizontal and vertical sides of the right triangle formed between the two points.



• L1 distance



- L1 distance between vectors [2, 3] and [0, 0]?





• L1 distance



- L1 distance between vectors [2, 3] and [0, 0]?

$$|2-0| + |3-0| = 5$$



• L1 distance



- L1 distance between vectors [2, 3] and [-3, 1]?





• L1 distance



- L1 distance between vectors [2, 3] and [-3, 1]?

$$|2 - (-3)| + |3 - 1| = 5 + 2 = 7$$



- What is the distance between these two data points (depicted on a 2D plane)?
- We can use the Cartesian coordinate system to quantify the location, and measure their distance.
- We will learn several distance metrics.
- Let's start with <u>L1 distance</u> metrics also known as <u>Manhattan distance</u>
- Another popular matrics we learned in High School, <u>L2 distance</u>, also known as <u>Euclidean distance</u>.



**L2 Distance**: The L2 distance between two points  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  is:

L2 Distance 
$$=\sqrt{|x_2-x_1|^2+|y_2-y_1|^2}$$
  $=\sqrt{\Delta x^2+\Delta y^2}$ 

That is, the L2 distance is the square root of the sum of the squares of the horizontal and vertical sides of the right triangle formed by the two points.



• L2 (or Euclidean) distance:



- L2 distance between vectors [2, 3] and [0, 0]?

- L2 distance between vectors [2, 3] and [-3, 1]?



• L2 (or Euclidean) distance:

- L2 distance between vectors [2, 3] and [0, 0] is:

$$\sqrt{(2-0)^2 + (3-0)^2} = \sqrt{13} = 3.61$$

- L2 distance between vectors [2, 3] and [-3, 1] is:

$$\sqrt{(2 - (-3)^2 + (3 - 1)^2} = \sqrt{29} = 5.39$$





- k-Nearest neighbors (k-NN)

 You are given a set of data points of two classes: red triangles, and blue squares



Example of k-NN classification. The test sample (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).

- You are given a set of data points of two classes: red triangles, and blue squares
- And asked to develop a ML model that can classify (a new data point )between these two classes.



Example of k-NN classification. The test sample (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).

- k-Nearest neighbors (k-NN)
  - Supervised learning
  - Non parametric (Distance based method)
  - Both for Classification and Regression solutions

Circles are drawn using L2/Euclidean
Distance



Example of k-NN classification. The test sample (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).



## **Another unique Distance metric**

- L1/Manhattan Distance
- L2/Euclidean distance
- Cosine distance

**Cosine Distance**: The Cosine distance between two points  $p_1(x_1, y_1)$  and  $p_2(x_2, y_2)$  is:

Cosine Distance = 
$$1 - \frac{p_1^T p_2}{\|p_1\| \|p_2\|}$$

That is, the Cosine distance is the angular distance between two data points.



#### **Cosine distance (angular)**





#### **Cosine distance (angular)**

Cosine distance between vectors [2, 3] and [0, 0] is



#### **Cosine distance (angular)**

Cosine distance between vectors [2, 3] and [-3, 1] is:



#### **Comparing Distances**

#### **Distance Ranges:**

- L1/Manhattan Distance: [0 ∞]
- L2/Euclidean Distance: [0 ∞]
- Cosine Distance: [0 2]

We will explore their advantages and disadvantages as the course progresses.

QA