

# ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ»

ΚΑΤΕΥΘΥΝΣΗ

#### «ΔΙΟΙΚΗΣΗ, ΑΝΑΛΥΤΙΚΗ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΧΕΙΡΗΣΕΩΝ»

Master of Science in
Business Administration, Analytics and Information Systems

# **Data Analysis (Business Statistics) - Optimization**

**Assignment 3:** 

**Probabilities Exercises** 

Κωνσταντίνος Κουτσομπίνας

### Exercise 1

| Table 1 | Time | that | accid | ent | happened |
|---------|------|------|-------|-----|----------|
|---------|------|------|-------|-----|----------|

|           |            | 8 am - 4 pm | 4 pm - 12 mid. | 12 mid 8 am |
|-----------|------------|-------------|----------------|-------------|
| Alcohol   | Not at all | 41          | 28             | 16          |
| influence | High       | 10          | 20             | 33          |
|           | Very high  | 8           | 29             | 45          |

#### A1. Calculate the probabilities that a car accident:

(i) happened between 8 am and 4 pm (A) :

$$P(A) = \frac{41 + 10 + 8}{41 + 10 + 8 + 28 + 20 + 29 + 16 + 33 + 45} = \frac{59}{230} \approx 0.26 = 26\%$$

(ii) happened subject to high alcohol influence (B):

$$P(B) = \frac{10 + 20 + 33}{230} = \frac{63}{230} \approx 0.27 = 27\%$$

(iii) happened subject to very high alcohol influence (C) given that it happened between 4 pm - 12 mid. (D):

$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{\frac{29}{230}}{\frac{28 + 20 + 29}{230}} = \frac{29}{77} \approx 0.38 = 38\%$$

(iv) happened between 12 mid. - 8 am (E) given that the driver did not operate subject to alcohol influence (F):

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{16}{230}}{\frac{41+28+16}{230}} = \frac{16}{84} \approx 0.19 = 19\%$$

(iv) is due to high alcohol influence (G) or happened between 12 mid. - 8 am (H):

$$P(G \cup H) = P(G) + P(H) - P(G \cap H) = \frac{10 + 20 + 33 + 16 + 45}{230} = \frac{124}{230} \approx 0.54 = 54\%$$

A2. Are the very high alcohol influence (A) and the chance of a car accident between 12 mid. - 8 am (B) independent events?

In order for A and B to be independent events the following must be true:

$$P(A \cap B) = P(A)P(B)$$

So lets calculate:

$$P(A) = \frac{8 + 29 + 45}{230} = \frac{82}{230} \approx 0.36 = 36\%$$

$$P(B) = \frac{16 + 33 + 45}{230} = \frac{94}{230} \approx 0.41 = 41\%$$

$$P(A \cap B) = \frac{45}{230} = \frac{82}{230} \approx 0.20 = 20\%$$

$$P(A)P(B) = 36\% \times 41\% = 14.76\%$$

#### So $P(A)P(B) \neq P(A \cap B) \Rightarrow$ A and B are not independent

- B. TOYS Company produces toys. After a quality control on produced toys, the company has found that the probability of a defective product is 3%. The quality control department installed a diagnostic machine in the production line that
  - identifies defective toys with probability 98%
  - decides wrongly that a toy is defective with probability 0.1%

According to the statement we define the events:

A: toy is defective

A': toy is not defective (compliment of A),

B: diagnostic machine decides defectiveness

B': diagnostic machine decides non defectiveness.

The data now translates to:

- P(A) = 3% (P(A') = 97%)
- P(B|A) = 98%
- P(B|A') = 0.1%

(i) If a toy is selected randomly, what is the probability that the diagnostic machine decides defectiveness?

$$P(B) = P(B|A)P(A) + P(B|A')P(A') = 0.98 \times 0.03 + 0.001 \times 0.97 \approx 0.03 = 3\%$$

(ii) What is the probability that the toy is defective while the diagnostic machine decides that it is not?

$$P(A|B') = \frac{P(A \cap B')}{P(B')} = \frac{P(B'|A)P(A)}{P(B')} = \frac{(1-P(B|A))P(A)}{1-P(B)} = \frac{0.02 \times 0.03}{0.97} \approx 0.0006 = 0.06\%$$

### **EXERCISE 2**

- 1. What is the probability of being born on Wednesday; 1/7
- 2. What is the probability that the Athens Stock Exchange will be open for business on Christmas day this year? 0 , experimental probability
- 3. What is the probability that the price of gasoline will be higher next year than this year? How did you arrive at your answer?  $p \in [0,1]$  subjective probability
- 4. What is the probability of throwing exactly 7 with two dice? 6/36 (from dice rolling table)
- 5. What is the probability that the difference between the numbers showing when two dice are rolled is 2? 8/36 (from dice rolling table)

## **EXERCISE 3**

With respect to the Testing for Covid-19,

1. Calculate P(T) when P(T|B) = 0.99 and P(T|B') = 0.05

!Note we assume that P(B) = 0.1% = 0.001

$$P(T) = P(T|B)P(B) + P(T|B')P(B') = 0.99 \times 0.001 + 0.05 \times 0.999 \approx 0.05 = 5\%$$

2. Calculate P(B|T) and P(B|T') if P(T|B) = 0.99 and P(T|B') = 0.05

$$P(B|T) = \frac{P(B \cap T)}{P(T)} = \frac{P(T|B)P(B)}{P(T)} = \frac{0.99 \times 0.001}{0.05} \approx 0.0198 = 1.98\%$$

$$P(B|T') = \frac{P(B \cap T')}{P(T')} = \frac{P(T'|B)P(B)}{P(T')} = \frac{0.01 \times 0.001}{0.95} \approx 0.00001 = 0.001\%$$