PSALTer results panel

 $S = \iiint \left(\frac{1}{6} \left(6 t_{1}^{2} \mathcal{A}^{\alpha_{1}} \mathcal{A}^{\beta_{1}} + 6 \mathcal{A}^{\alpha\beta\chi} \mathcal{A}_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 12 t_{1}^{2} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} f^{\alpha_{1}} - 12 r_{1}^{2} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} f^{\alpha_{2}} + 12 r_{1}^{2} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} f^{\alpha_{2}} + 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 24 r_{1}^{2} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} - 12 r_{1}^{2} \partial_{\alpha} \mathcal{A}^{\alpha\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\alpha}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}} \partial_{\beta} \mathcal{A}_{\beta}^{\beta_{1}}$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$-2 i k^{0^+} \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$\frac{1}{2 i k \cdot 1 \cdot \sigma^{\perp}}^{\alpha} + \frac{1}{i \cdot \tau^{\perp}}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \frac{1}{\cdot} \sigma^{\perp} \alpha^{\beta} + \frac{1}{\cdot} \tau^{\parallel} \alpha^{\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k 2^{+}_{0} \sigma^{\parallel}^{\alpha\beta} + 2^{+}_{0} \tau^{\parallel}^{\alpha\beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi}_{\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\beta\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\chi\beta} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\gamma}_{\chi} - 3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau\ (\Delta+\mathcal{K})^{\gamma}_{\chi} - 3\ \partial_{\delta}\partial^{\alpha}\partial_{\chi}\partial^{\alpha}\tau\ ($	5
	$3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\ (\Delta+\mathcal{K})^{\alpha\chi} - 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}{}_{\tau}\ (\Delta+\mathcal{K})^{\chi\alpha} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\ (\Delta+\mathcal{K})^{\alpha\beta} + 3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}{}_{\tau}\ (\Delta+\mathcal{K})^{\beta\alpha} +$	
	$4 i k^{X} \partial_{\epsilon} \partial_{X} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{X} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{X} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{X} \sigma^{\alpha\beta\delta} +$	
	$6 \ i \ k^{X} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi \tau} \left(\Delta + \mathcal{K} \right)^{X \delta} - 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{X} - 4 \ i \ \eta^{\alpha \beta} \ k^{X} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$	

16

Massive spectrum

Total expected gauge generators:

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$
Square mass:	$-\frac{\frac{t_1}{2r_1}}{2r_1} > 0$
Spin:	2
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $r_{\cdot} < 0 \&\& t_{\cdot} > 0$