Dot product of vectors | Coursera

Dot product of vectors

Practice Quiz • 15 min

Congratulations! You passed!
TO PASS 80% or higher
GRADE
100%

Dot product of vectors

TOTAL POINTS 6

1.

Question 1

As we have seen in the lecture videos, the dot product of vectors has a lot of applications. Here, you will complete some exercises involving the dot product.

We have seen that the size of a vector with two components is calculated using Pythagoras' theorem, for example the following diagram shows how we calculate the size of the orange vector

$$\left[\begin{matrix} r_1 \\ r_2 \end{matrix} \right]$$

$$r_1$$
 $\mathbf{r} = [r_2]$:

In fact, this definition can be extended to any number of dimensions; the size of a vector is the square root of the sum of the squares of its components. Using this information, what is the size of the vector

$$\mathbf{s} = \begin{bmatrix} 1\\3\\4\\2 \end{bmatrix}$$

1 / 1 point

$$\bigcap |\mathbf{s}| = \sqrt{10}$$

$$|s| = 30$$

$$|\mathbf{s}| = \sqrt{30}$$

$$|s| = 10$$

✓ Correct

The size of the vector is the square root of the sum of the squares of the components.

2.

Question 2

Remember the definition of the dot product from the videos. For two n component vectors, $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$.

What is the dot product of the vectors

$$\begin{bmatrix} -5 \\ 3 \\ 2 \\ 8 \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} -5 \\ 3 \\ 2 \\ 8 \end{bmatrix}$$
 and $\mathbf{s} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$?

$$r \cdot s = 1$$

$$\begin{bmatrix}
6 \\
-2 \\
0
\end{bmatrix}$$

$$r \cdot s = \begin{bmatrix}
-5 \\
6 \\
-2 \\
0
\end{bmatrix}$$

$$\begin{bmatrix} -4 \\ 5 \\ 1 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} -47 \\ 5 \\ 1 \\ 9 \end{bmatrix}$$

$$\mathbf{r} \cdot \mathbf{s} = \begin{bmatrix} 9 \end{bmatrix}$$

$$r \cdot s = -1$$

✓ Correct

The dot product of two vectors is the total of the component-wise products.

3. Question 3 The lectures introduced the idea of projecting one vector onto another. The following diagram shows the projection of \mathbf{s} onto \mathbf{r} when the vectors are in two dimensions:

Remember that the scalar projection is the *size* of the green vector. If the angle between **s** and **r** is greater than $\pi/2$, the projection will also have a minus sign.

We can do projection in any number of dimensions. Consider two vectors with three components,

$$\begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix} \text{ and } \mathbf{s} = \begin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}$$

What is the scalar projection of **s** onto **r**?

$$-\frac{1}{2}$$

 $\frac{1}{2}$

✓ Correct

The scalar projection of of ${\bf s}$ onto ${\bf r}$ can be calculated with the formula $\frac{{\bf s}\cdot{\bf r}}{|{\bf r}|}$

4. Question 4 Remember that in the projection diagram, the vector projection *is* the green vector:

Let

$$\begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ -4 \\ 0 \end{bmatrix} \text{ and let } \mathbf{S} = \begin{bmatrix} 10 \\ 5 \\ -6 \end{bmatrix}$$

What is the vector projection of $\bf s$ onto $\bf r$?

$$\begin{bmatrix}
6/5 \\
-8/5 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
6/5 \\
-8/5 \\
0
\end{bmatrix}$$

$$\begin{bmatrix} 30 \\ -20 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 30 \\ -20 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ -8 \\ 0 \end{bmatrix}$$

✓ Correct

The vector projection of \boldsymbol{s} onto \boldsymbol{r} can be calculated with the formula $\frac{\boldsymbol{s}\cdot\boldsymbol{r}}{\boldsymbol{r}\cdot\boldsymbol{r}}\boldsymbol{r}.$

5. Question 5 Let

$$\begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 12 \end{bmatrix}$

Which is larger, $|\mathbf{a} + \mathbf{b}|$ or $|\mathbf{a}| + |\mathbf{b}|$?

In fact, it has been shown that $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$ for every pair of vectors \mathbf{a} and \mathbf{b} . This is called the triangle inequality; try to think about it in the 2d case and see if you can understand why.

6.

Question 6

Which of the following statements about dot products are correct?

1 / 1 point

The scalar projection of S onto \mathbf{r} is always the same as the scalar projection of \mathbf{r} onto \mathbf{s} .

The size of a vector is equal to the square root of the dot product of the vector with itself.

✓ Correct

We saw in the video lectures that $|\mathbf{r}| = \sqrt{\mathbf{r} \cdot \mathbf{r}}$.

We can find the angle between two vectors using the dot product.

Correct

We saw in the lectures that $\mathbf{r} \cdot \mathbf{s} = |\mathbf{r}||\mathbf{s}| \cos \theta$, where θ is the angle between the vectors. This can then be used to find θ .

The vector projection of S onto r is equal to the scalar projection of S onto r multiplied by a vector of unit length that points in the same direction as r.

✓ Correct

The vector projection is equal to the scalar projection multiplied by $\frac{r}{|r|}$.