ESERCITAZIONE DI MATLAB I

Corso di ANALISI NUMERICA anno accademico 2020-2021

- 1 Scrivere un programma di tipo function che assegnato un vettore di n+1 nodi (numerati da 1 a n+1) ed un intero $j \in \{1, \dots, n+1\}$ costruisce e disegna la base di Lagrange ℓ_j costruita sui nodi assegnati. Si effettui il disegno di $\ell_j(x)$ per valori di x nell' intervallo dei nodi.
- 2 Utilizzando la function di cui al punto 1 verificare (graficamente) le proprieta' di tutte le basi $\ell_j(x), j \in \{1, \dots, n+1\}$ (cardinalita' e partizione dell' unita).
- 3 Utilizzando la function di cui al punto 1, scrivere un programma che assegnato un vettore $\mathbf{f} = (f_1, \dots, f_{n+1})$ ed un vettore di nodi $\mathbf{nodi} = (nodi_1, \dots, nodi_{n+1})$ costruisce il polinomio interpolante $p_n(nodi_i) = f_i$, $i = 1, \dots, n+1$ e lo disegna insieme ai dati (per valori di x nell' intervallo dei nodi).
- 4 Nel caso di n+1 nodi uniformi in [-5,5], utilizzare il programma del punto precedente per uno studio (grafico, nell' intervallo dei nodi) della convergenza della successione $\{p_n(x), n=3,4,5,6,\cdots\}$ dei polinomi interpolanti la funzione f da cui sono letti i dati nel caso $f(x) = \frac{1}{1+x^2}$ e $f(x) = \sin(2\pi x)$.
- 5 Nel caso di nodi di Chebyshev in [-5,5] utilizzare il programma del punto 3 per uno studio (grafico, nell' intervallo dei nodi) della convergenza della successione $\{p_n(x), n = 3, 4, 5, 6, \cdots\}$ dei polinomi interpolanti la funzione f da cui sono letti i dati nel caso $f(x) = \frac{1}{1+x^2}$ e $f(x) = \sin(2\pi x)$.
- 6 Scrivere un programma di tipo function che assegnato un vettore di n+1 nodi uniformi (numerati da 1 a n+1) in [a,b], costruisce e disegna il polinomio ω_{n+1} nell' intervallo dei nodi al variare di n=4,6,8,10,12.
- 7 Scrivere un programma di tipo function che assegnato un vettore di n+1 nodi di Chebyshev (numerati da 1 a n+1) in [a,b], costruisce e disegna il polinomio ω_{n+1} nell' intervallo dei nodi, al variare di n=4,6,8,10,12.

- 7bis Scrivere un programma di tipo function che assegnato un intervallo [a,b] ed un intero n costruisce e disegna i 3 polinomi monici ω_{n+1}^u , ω_{n+1}^T , ω_{n+1}^r rispettivamente associati ai nodi uniformi, Chebyshev e random in [a,b]. Si confrontino i risultati al variare di n=4,8,12.
 - 8 Scrivere un programma di tipo function che assegnato un vettore di n+1 nodi (numerati da 1 a n+1) costruisce e disegna per $j \in \{1, \dots, n+1\}$ una coppia di base di Hermite U_j , V_j , nell' intervallo dei nodi. Si fissi inizialmente n=1.
 - 9 Utilizzando la function di cui al punto 8 verificare (in modo grafico) le proprieta' delle basi di Hermite $U_j, V_j, j \in \{1, \dots, n+1\}$ (si rappresentino graficamente le "direzioni" interpolate).
 - 10 Utilizzando la function di cui al punto 8, scrivere un programma che assegnati due vettori $\mathbf{f} = (f_1, \dots, f_{n+1}), \mathbf{g} = (g_1, \dots, g_{n+1})$ ed un vettore di nodi $\mathbf{nodi} = (nodi_1, \dots, nodi_{n+1})$ costruisce il polinomio interpolante $p_n(nodi_i) = f_i, \quad p'_n(nodi_i) = g_i, \quad i = 1, \dots, n+1$ e lo disegna insieme ai dati (incluse le "direzioni" interpolate).
 - 11 Scrivere un programma di tipo function che assegnato un intero n ed un intervallo [a, b] costruisce e disegna le n + 1 basi di Berstein in [a, b].
 - 12 Scrivere un programma che assegnata una funzione f ed un intero n utilizzi la function di cui al punto 11 per costruire e disegnare il polinomio di Berstein $B_n(f,n)$. Si testi programma con $f(x) = \frac{1}{1+25x^2}$, $x \in [-1,1]$ ed n = 4, 5, 6, 7, 8, 9, 10.
 - 13 Scrivere un programma di tipo function che assegnato un vettore di 5 nodi costruisce e disegna la B-spline di grado 3 di nodi corrispondenti.
 - 14 Scrivere un programma che costruisce il polinomio parametrico interpolante (con parametrizzazione uniforme) dati estratti da una curva parametrica a scelta (sia uniformemente distribuiti che non).
 - 15 Scrivere un programma che costruisce il polinomio parametrico interpolante (con parametrizzazione arco della curva) dati sperimentali (sia uniformemente distribuiti che non).