Übungsblatt 3 Elias Gestrich

Aufgabe 1: Einheitsbälle

Aufgabe 2:

(a) Norm \implies konvex: Sei $x, y \in B$ ($||x||, ||y|| \le 1$), zu zeigen $\forall \lambda \in (0, 1) : ||\lambda x + (1 - \lambda)y|| \le 1$. Sei ein $\lambda \in (0, 1)$ gegeben, so gilt:

$$\begin{aligned} \|\lambda x + (1 - \lambda)y\| &\leq \|\lambda x\| + \|(1 - \lambda)y\| \\ &= \lambda \|x\| + (1 - \lambda) \|y\| \\ &\leq \lambda + (1 - \lambda) \\ &= 1 \end{aligned}$$

was zu zeigen war.

Nicht Norm \Longrightarrow nicht konvex: Wenn $\|\cdot\|$ keine Norm, sondern nur eine Quasinorm ist, zu zeigen $\exists x, y \in B, \lambda \in [0,1] : \|\lambda x + (1-\lambda)y\| > 1$. Da $\|\cdot\|$ keine Norm, aber eine Quasinorm existiert $\tilde{x}, \tilde{y} \in X : \|\tilde{x} + \tilde{y}\| > \|\tilde{x}\| + \|\tilde{y}\|$, wähle 2

solche \tilde{x}, \tilde{y} . Œ $\|\tilde{x}\| \ge \|\tilde{y}\|$. Es folgt:

$$\|\tilde{x}\| + \|\tilde{y}\| < \|\tilde{x} + \tilde{y}\|$$

$$1 < \left\| \frac{\tilde{x}}{\|\tilde{x}\| + \|\tilde{y}\|} + \frac{\tilde{y}}{\|\tilde{x}\| + \|\tilde{y}\|} \right\|$$
(*)

 $\begin{array}{l} \text{mit } 1 \geq \left\| \frac{\tilde{x}}{\|\tilde{x}\| + \|\tilde{y}\|} \right\| \geq \left\| \frac{\tilde{y}}{\|\tilde{x}\| + \|\tilde{y}\|} \right\| \text{ und } \left\| \frac{\tilde{x}}{\|\tilde{x}\| + \|\tilde{y}\|} \right\| + \left\| \frac{\tilde{y}}{\|\tilde{x}\| + \|\tilde{y}\|} \right\| = \frac{\|\tilde{x}\| + \|\tilde{y}\|}{\|\tilde{x}\| + \|\tilde{y}\|} = 1. \\ \text{W\"{a}hle } x \coloneqq \frac{\tilde{x}}{\|\tilde{x}\|}, y \coloneqq \frac{\tilde{y}}{\|\tilde{y}\|} \text{ und } \lambda \coloneqq \frac{\|\tilde{x}\|}{\|\tilde{x}\| + \|\tilde{y}\|}, \text{ sodass gilt:} \end{array}$

$$\begin{split} \|\lambda x + (1-\lambda)y\| &= \left\| \frac{\|\tilde{x}\|}{\|\tilde{x}\| + \|\tilde{y}\|} \cdot \frac{\tilde{x}}{\|\tilde{x}\|} + \left(1 - \frac{\|\tilde{x}\|}{\|\tilde{x}\| + \|\tilde{y}\|}\right) \cdot \frac{\tilde{y}}{\|\tilde{y}\|} \right\| \\ &= \left\| \frac{\tilde{x}}{\|\tilde{x}\| + \|\tilde{y}\|} + \left(\frac{\|\tilde{x}\| + \|\tilde{y}\| - \|\tilde{x}\|}{\|\tilde{x}\| + \|\tilde{y}\|}\right) \cdot \frac{\tilde{y}}{\|\tilde{y}\|} \right\| \\ &= \left\| \frac{\tilde{x}}{\|\tilde{x}\| + \|\tilde{y}\|} + \left(\frac{\|\tilde{y}\|}{\|\tilde{x}\| + \|\tilde{y}\|}\right) \cdot \frac{\tilde{y}}{\|\tilde{y}\|} \right\| \\ &= \left\| \frac{\tilde{x}}{\|\tilde{x}\| + \|\tilde{y}\|} + \frac{\tilde{y}}{\|\tilde{x}\| + \|\tilde{y}\|} \right\| \end{split}$$

- (b) Für eine Quasinorm ist zu zeigen:
 - (i) $\forall x \in \mathbb{R}^n : ||x||_n = 0 \iff x = 0$:

 \Longrightarrow : Gegeben $||x||_p = 0$, also

$$\sum_{j=1}^{n} |x_j|^p = 0 \implies x_j = 0 \quad \forall j = 1, \dots, n$$

Was zu zeigen war

 $\Leftarrow=:$ trivial.

(ii) $\forall x \in \mathbb{R}^n, \lambda \in \mathbb{R} : \|\lambda x\|_p = |\lambda| \cdot \|x\|_p$:

$$\|\lambda x\|_{p} = \left(\sum_{j=1}^{n} |\lambda x_{j}|^{p}\right)^{\frac{1}{p}}$$

$$= \left(\sum_{j=1}^{n} |\lambda|^{p} \cdot |x_{j}|^{p}\right)^{\frac{1}{p}}$$

$$= \left(|\lambda|^{p} \sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}}$$

$$= (|\lambda|^{p})^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}}$$

$$= |\lambda| \cdot \|x\|_{p}$$

2 3

(iii) $\exists c \in \mathbb{R} : \forall x, y \in R^n : \|x + y\|_p \le c \left(\|x\|_p + \|y\|_p\right)$: Für $1 \le p < \infty$, ist $\|\cdot\|_p$ laut Vorlesung eine Norm, für 0 : $Sei <math>0 gegeben, setze <math>p' := \frac{1}{p}$, so dass $1 < p' < \infty$. Es gilt also $(x^{p'})'' = p'(p'-1)x^{p'} > 0$, also $x^{p'}$ konvex, daher gilt, für a, b > 0: $(a+b)^{p'} \ge a^{p'}$ und $(a+b)^{p'} \ge b^{p'}$, daraus folgt $(a+b)^{p'} \ge \frac{1}{2} \left(a^{p'} + b^{p'}\right)$, also:

$$\frac{a+b}{(a^p + b^p)^{p'}} \le \frac{a+b}{\frac{1}{2}(a^{pp'} + b^{pp'})}$$
$$= 2\frac{a+b}{a+b}$$
$$= 2$$

und

$$(a+b)^{p'} = (0.5(2a) + 0.5(2b))^{p'}$$

$$\leq 0.5(2a)^{p'} + 0.5(2b)^{p'}$$

$$\leq 2^{p'-1} \left(a^{p'} + b^{p'}\right)$$

Wähle $c := 2^{\frac{1}{p^2}}$, sei $x, y \in \mathbb{R}^n$ gegeben

$$||x - y||_{p} = \left(\sum_{j=1}^{n} |x_{j} - y_{j}|^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{j=1}^{n} (|x_{j}| + |y_{j}|)^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{j=1}^{n} 2(|x_{j}|^{p} + |y_{j}|^{p})\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{j=1}^{n} 2^{p'} |x_{j}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{j=1}^{n} 2^{p'} |y_{j}|^{p}\right)^{\frac{1}{p}}$$

$$\leq 2^{\frac{1}{p^{2}}} (||x|| + ||y||)$$

Für 0 ist der Einheitsball <math>B nicht konvex, da für $x \coloneqq (1,0,\ldots,0)$, und $y \coloneqq (0,1,0,\ldots,0)$. $\|x\|_p = 1 = \|y\|_p \le 1$, also $x,y \in B$, aber für $\lambda \coloneqq 0.5 \in [0,1]$ gilt:

$$\|\lambda x + (1 - \lambda)y\|_p = \left\| \frac{1}{2}x + \frac{1}{2}y \right\|_p$$

$$= \left\| \left(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0 \right) \right\|_p$$

$$= \left(2\left(\frac{1}{2} \right)^p \right)^{\frac{1}{p}}$$

$$= 2^{\frac{1}{p}} \cdot \frac{1}{2}$$

$$> 2 \cdot \frac{1}{2}$$

$$> 1$$

Für p = 1 gilt für alle $x, y \in \mathbb{R}^n$:

$$||x - y||_1 = \left(\sum_{j=1}^n |x_j - y_j|\right)$$

$$\leq \sum_{j=1}^n |x_j| + \sum_{j=1}^n |y_j|$$

$$\leq ||x||_1 + ||y||_1$$

Und zuletzt für p>1 ist $\left\|\cdot\right\|_p$ eine Norm, Beweis in dem Skript

(c) An der Linie kann man erkennen, dass der Ball der p-Quasinorm mit $p = \frac{1}{2}$ nicht konvex ist, also ist die Quasinorm keine Norm, was nach (b) auch so passt c: (zur Aufgabe 1: Meine Skizzen sind nicht so grob schlecht, dass sie nicht konvex sind, also sind die gezeichneten Skizzen Metriken)

Aufgabe 3: Banachscher Fixpunktsatz

(a) Um zu zeigen, dass f(x) = x genau eine Lösung in $[1, \infty]$ besitzt reicht zu zeigen, dass f von $[1, \infty)$ auf $[1, \infty]$ abbildet und $\exists 0 \leq L < 1 : \forall x, y \in [1, \infty) : d(f(x), f(y)) \leq Ld(x, y)$ mit d(x, y) := |x - y|:

Wertebereich: Für
$$1 \le x < 2$$
 : $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right) \ge \frac{1}{2} \left(1 + \frac{2}{2} \right) = 1$ und für $2 \le x$: $f(x) = \frac{1}{2} \left(x + \frac{2}{x} \right) \ge \frac{1}{2} \left(2 + 0 \right) = 1$

4 Vollständigkeit 5

Kontraktion: Sei $L := \frac{1}{2}$, sei $x, y \in [1, \infty)$ beliebig zu zeigen $|f(x) - f(y)| \le L|x - y|$:

$$|f(x) - f(y)| = \left| \frac{1}{2} \left(x + \frac{2}{x} \right) + \frac{1}{2} \left(y + \frac{2}{y} \right) \right|$$

$$= \frac{1}{2} \left| x - y - \left(\frac{2}{y} + \frac{2}{x} \right) \right|$$

$$= \frac{1}{2} \left| (x - y) - 2 \left(\frac{x - y}{xy} \right) \right|$$

$$= \frac{1}{2} \left| \frac{(xy)(x - y) - 2(x - y)}{xy} \right|$$

$$= \left| \frac{xy - 2}{xy} \right| \cdot \frac{1}{2} \cdot |x - y|$$

$$= \left| 1 - \frac{2}{xy} \right| \cdot \frac{1}{2} \cdot |x - y|$$

$$\leq \frac{1}{2} |x - y|$$

- (b) Es gilt $f\left(\sqrt{2}\right) = \frac{1}{2}\left(\sqrt{2} + \frac{2}{\sqrt{2}}\right) = \frac{1}{2}\left(\sqrt{2} + \frac{2\sqrt{2}}{2}\right) = \sqrt{2}$. Zu beweis siehe (c) (für $\varepsilon > 0$ wähle N, so dass $-\frac{\ln \varepsilon}{\ln 2} < N$, der Rest ergibt sich dann)
- (c) Beweis durch vollständige Induktion:

I.A.:
$$n = 0$$
: $|x_n - \sqrt{2}| = |x_0 - \sqrt{2}| = |1 - \sqrt{2}| < |-0.5| = \frac{1}{2} = 2^{-1}$

I.S.:
$$n \sim n + 1$$
: I.V.: $|x_n - \sqrt{2}| \le 2^{-n}$.

Zu zeigen
$$|x_{n+1} - \sqrt{2}| \le 2^{-(n+1)}$$

$$|x_{n+1} - \sqrt{2}| = |f(x_n) - f(\sqrt{2})|$$

$$\le \frac{1}{2} |x_n - \sqrt{2}|$$

$$\stackrel{\text{I.V.}}{\le} \frac{1}{2} 2^{-n}$$

$$< 2^{-(n+1)}$$

Aufgabe 4: Vollständigkeit

(a) $c_{00}(\mathbb{N}) \subsetneq \bigcap_{i \leq q \leq \infty} l^q(\mathbb{N})$: Für $c_{00}(\mathbb{N}) \subseteq \bigcap_{i \leq q \leq \infty} l^q(\mathbb{N})$: Sei $(x_j) \subset \mathbb{R} : \exists N \in \mathbb{N} : \forall j \geq N : x_j = 0$, zu zeigen $\|(x_j)\|_p < \infty$:

$$\|(x_j)\|_p = \left(\sum_{j=1}^n |x_j|^p\right) \frac{1}{p}$$
$$= \left(\sum_{j=1}^N |x_j|^p\right)^{\frac{1}{p}}$$

4 Vollständigkeit 6

Da $\sum_{j=1}^{N} |x_j| < \infty$ ist auch $||x_j|| < \infty$, was zu zeigen war, für $c_{00}(\mathbb{N}) \neq \bigcap_{i \leq q \leq \infty} l^q(\mathbb{N})$:

$$\left\| \left(\frac{1}{2} \right)^{j} \right\|_{p} = \left(\sum_{j=1}^{\infty} \left| \frac{1}{2} \right|^{jp} \right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{j=1}^{\infty} \left(\frac{1}{2} \right)^{j} \right)^{\frac{1}{p}}$$

$$= \frac{1}{1-2} - 1 = 1$$

$$\leq 1 < \infty$$

 $\bigcap_{i < q < \infty} l^q(\mathbb{N}) \subset l^p(\mathbb{N})$: trivial

 $l^p(\mathbb{N}) \subsetneq c_0(\mathbb{N})$: \subset : Sei $(x_j) \in l^p(\mathbb{N})$, zu zeigen $x \in c_0(\mathbb{N})$. Beweis durch Widerspruch, wir nehmen an, $x \notin c_0(\mathbb{N})$, also (x_j) keineNullfolge. Also $\exists \varepsilon > 0 : \forall N \in \mathbb{N} : \exists n > N : |x_j| > \varepsilon$, sei (x_{a_j}) , eine Teilfolge von (x_j) mit $a_j < a_{j+1}$ und $\forall j \in \mathbb{N} : |x_{a_j}| > \varepsilon$, diese existiert, da $\forall a_j \in \mathbb{N} : n > a_j : |x_n| > \varepsilon$, also $\sum_{j=1}^{\infty} |x_{a_j}| = \infty$, also auch $\sum_{j=1}^{\infty} |x_j| = \infty$ $\Longrightarrow \sum_{j=1}^{\infty} |x_j|^p = \infty$ $\Longrightarrow \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}} = \infty$

 \neq Sei $(x_j) = (\frac{1}{i})^{\frac{1}{p}}$, sodass gilt:

$$||x_j||_p = \left(\sum_{j=1}^{\infty} \left| \left(\frac{1}{j}\right)^{\frac{1}{p}} \right|^p \right)^{\frac{1}{p}}$$

$$= \left(\sum_{j=1}^{\infty} \frac{1}{j}\right)^{\frac{1}{p}}$$

$$= \infty^{\frac{1}{p}}$$

$$= \infty$$

Also (x_j) nicht in $l^p(\mathbb{N})$, aber $\left(\frac{1}{j}\right)^{\frac{1}{p}}$ geht gegen Null.

- $c_0(\mathbb{N}) \subsetneq l^{\infty}(\mathbb{N})$: Alle Nullfolgen sind trivialer weise beschränkt, zu zeigen $\exists (x_j) \in l^{\infty}(\mathbb{N}) : (x_j) \not\in c_0(\mathbb{N})$. Wähle die konstante Folge $(x_j) = 1 \forall j \in \mathbb{N}$, sodass (x_j) durch 1 nach unten und oben beschränkt ist, aber (x_j) konvergiert trivialer weiße nicht gegen 0
- (b) Da ich nicht weiß, wie man Folgen von Folgen aufschreibt, habe ich mit $((x_j)_n)$ eine Folge einer Folge gemeint, mit den Folgengliedern $(x_j)_n$, welche selbst Folgen sind und die Folgenglieder $x_{j,n}$ haben.

 $c_{00}(\mathbb{N})$ ist nicht in d_p vollständig, da $c_{00}(\mathbb{N})$ in d_p nicht abgeschlossen ist, da die Folge $((x_j)_n)$ mit

$$x_{j,n} \coloneqq \begin{cases} \left(\frac{1}{2}\right)^j, & \text{wenn } j < n \\ 0, & \text{sonst} \end{cases}$$

 d_p -Cauchy ist, sei $\varepsilon > 0$ gegeben, setze, setze $N > \frac{\ln \varepsilon}{\ln \frac{1}{2}} \cdot p + 1$, sodass $\left(\frac{1}{2}\right)^{\frac{N-1}{p}} < \varepsilon$, sodass für alle

4 Vollständigkeit 7

 $l, k \in \mathbb{N} \times l < k$, und gilt:

$$d_p((x_j)_l, (x_j)_k) = \left(\sum_{j=l}^k \left| \left(\frac{1}{2}\right)^j \right|^p \right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{j=N}^\infty \left(\frac{1}{2}\right)^{pj}\right)^{\frac{1}{p}}$$

$$\leq \left(\frac{1}{2^{N-1}} \sum_{j=1}^\infty \left(\frac{1}{2}\right)^{pj}\right)^{\frac{1}{p}}$$

$$\leq \left(\frac{1}{2^{N-1}} 1\right)^{\frac{1}{p}}$$

$$\leq \frac{1}{2^{\frac{N-1}{p}}}$$

$$\leq \varepsilon$$

die Folge ist auch d_{∞} -Cauchy, da $\sup(|x_{j,l}|) = \sup(|x_{j,k}|) = \frac{1}{2}$, also $d_{\infty}((x_j)_l, (x_j)_k) = 0$. Aber für $n \to \infty$ geht $((x_j)_n)$ gegen $(\frac{1}{2^j})$ und $|(\frac{1}{2^j})| > 0$ für alle $j \in \mathbb{N}$, somit $\lim_{n \to \infty} (x_j)_n \notin c_{00}(\mathbb{N})$

(c) Nicht vollständig bezüglich d_{∞} : Sei $(x_{j,n}) := ((x_j)_n)$ mit

$$x_{j,n} = \begin{cases} 1, & \text{für } j < n \\ 0, & \text{sonst} \end{cases}$$

Dann für alle $l, k \in \mathbb{N}$: $d_{\infty}((x_{l,n}), (x_{j,k})) = d_{\infty}(1,1) = 0$ Also d_{∞} -Cauchy, aber da (x_j) mit $x_j = 1$ die Grenzfolge für $((x_j)_n)$ ist und:

$$\|(x_j)\|_p = \left(\sum_{j=1}^{\infty} 1^p\right)^{\frac{1}{p}}$$
$$= \infty^{\frac{1}{p}}$$
$$\not< \infty$$

Vollständigkeit bezüglich d_p : Sei $((x_j)_n)$ d_p -Cauchy, zu zeigen $\lim_{n\to\infty} ((x_j)_n) \in l^p(\mathbb{N})$, also $\lim_{n\to\infty} \left(\sum_{j=1}^{\infty} |x_{j,n}|^p\right)^{\frac{1}{p}} < \infty$. Da $((x_j)_n)$ d_p -Cauchy