BÀI TẬP CTLG - HSLG

- CÂU 1. Khẳng định nào dưới đây sai?
 - **(A)** $2\sin^2 a = 1 \cos 2a$.

(B) $\cos 2a = 2\cos a - 1$.

 $(\mathbf{C})\sin 2a = 2\sin a\cos a.$

- $(\mathbf{D})\sin(a+b) = \sin a \cos b + \sin b \cos a.$
- CÂU 2. Trong các công thức sau, công thức nào sai?
 - $(\mathbf{A})\cos 2a = \cos^2 a \sin^2 a.$
- **(B)** $\cos 2a = \cos^2 a + \sin^2 a$.

 $(\mathbf{c})\cos 2a = 2\cos^2 a - 1.$

- $(\mathbf{D})\cos 2a = 1 2\sin^2 a.$
- CÂU 3. Công thức nào dưới đây đúng?
 - $(\mathbf{A})\sin 2x = 2\sin x\cos x.$

(B) $\sin 2x = \sin x \cos x$.

 $(\mathbf{C})\sin 2x = 2\cos x.$

- $(\mathbf{D})\sin 2x = 2\sin x.$
- **CÂU 4.** Với α là số thực bất kỳ, mệnh đề nào sau đây là mệnh đề đúng?
 - (A) $\cos 2\alpha + \cos 4\alpha = 2\cos 2\alpha \cos 6\alpha$.
- **(B)** $\sin 2\alpha + \sin 4\alpha = 2\sin \alpha\cos 3\alpha$.
- (c) $\cos 2\alpha \cos 4\alpha = -2\sin 3\alpha \sin \alpha$.
- $(\mathbf{D})\sin 2\alpha \sin 4\alpha = -2\cos 3\alpha \sin \alpha.$
- **CÂU 5.** Trong các khẳng định sau đây, khẳng định nào đúng?
 - (A) Hàm số $y = \sin x$ là hàm số chẵn.
- **(B)** Hàm số $y = \cos x$ là hàm số lẻ.
- (C) Hàm số $y = \tan x$ là hàm số lẻ.
- (**D**) Hàm số $y = \cot x$ là hàm số chẵn.
- **CÂU 6.** Trong các khẳng định sau, khẳng định nào sai?
- $\mathbf{B}\cos(a-b) = \cos a \cos b \sin a \sin b.$
- $(\mathbf{C})\sin(a-b) = \sin a \cos b \cos a \sin b.$
- $(\mathbf{D}) 2\cos a \cos b = \cos(a-b) + \cos(a+b).$
- **CÂU 7.** Giá trị lớn nhất của hàm số $y = 3 \sin x$ trên tập xác định \mathbb{R} là?
- **(C)** 3.
- **CÂU 8.** Giá trị nhỏ nhất của hàm số $y = \cos x$ là
 - (**A**) 1.
- **(B)** 0.
- $(\mathbf{C}) 1.$
- $(\mathbf{D}) 2.$
- **CÂU 9.** Với α là số thực bất kỳ, trong các mệnh đề sau, mệnh đề nào sai?
 - (A) $\sin 2\alpha = 2 \sin \alpha \cos \alpha$.
- **(B)** $\cos 2\alpha = 2\cos^2 \alpha 1$.
- $(\mathbf{C})\cos 2\alpha = -2\sin^2\alpha + 1.$
- $(\mathbf{D})\cos 2\alpha = \sin^2 \alpha \cos^2 \alpha.$
- **CÂU 10.** Biết $\cos(a-b) = \cos a \cos b + \sin a \sin b$. Với a = -b thì $\cos 2a$ bằng
 - $(\mathbf{A})\cos^2 a + \sin^2 a.$

(B) $-\cos^2 a - \sin^2 a$.

 $(\mathbf{C})\cos^2 a - \sin^2 a$.

- $(\mathbf{D})\sin^2 a \cos^2 a$.
- **CÂU 11.** Tập xác định của hàm số $y = \tan 3x$ là.

- **CÂU 12.** Cho $\sin \alpha = \frac{3}{5}, \left(\frac{\pi}{2} < \alpha < \pi\right)$. Giá trị của $\tan \left(\alpha + \frac{\pi}{3}\right)$ bằng $\frac{48 + 25\sqrt{3}}{11}. \qquad \textcircled{B} \ \frac{8 5\sqrt{3}}{11}. \qquad \textcircled{C} \ \frac{8 \sqrt{3}}{11} \ . \qquad \textcircled{D} \ \frac{48 25\sqrt{3}}{11}.$

- **CÂU 13.** Rút gọn biểu thức $\cos(120^{\circ} x) + \cos(120^{\circ} + x) \cos x$ ta được kết quả là
- $(\mathbf{B}) \cos x$.
- (**c**) $-2\cos x$.
- $(\mathbf{D})\sin x \cos x.$

- **CÂU 14.** Nếu $\sin x + \cos x = \frac{1}{2}$ thì $\sin 2x$ bằng
- **B** $\frac{3}{8}$. **C** $\frac{\sqrt{2}}{2}$. **D** $-\frac{3}{4}$.
- **CÂU 15.** Biết $\sin a = \frac{5}{13}$, $\cos b = \frac{3}{5}$, $\left(\frac{\pi}{2} < a < \pi, \, 0 < b < \frac{\pi}{2}\right)$. Giá trị của $\sin(a+b)$

- $\bigcirc \frac{56}{65}$
- $(\mathbf{D}) 0.$

ĐIỂM:

"If you want to live a happy life, tie it to a goal, not to people or things."

Albert Einstein -

QUICK NOTE

•																	

				_
ລແ	IICK	4 3	OI	
711	пск		ОП	_

NOTE	CÂU 16.	Hàm số $y =$	$\frac{\sin 2x}{\cot x - \sqrt{3}}$	có tập x	ác định l
	_	$\epsilon \pi$	` `		_

CÂU 17. Giá trị nhỏ nhất của hàm số $f(x) = 2\cos x + 2\sin\left(x - \frac{\pi}{3}\right)$ bằng

$$\mathbf{A} - \sqrt{8 - 4\sqrt{3}}$$
.

B
$$2\sqrt{2}$$
.

(D)
$$-2\sqrt{2}$$
.

CÂU 18. Cho $\sin x = \frac{3}{5}$, với $\frac{\pi}{2} < x < \pi$, khi đó $\tan \left(x + \frac{\pi}{4} \right)$ bằng

$$\bigcirc \frac{2}{7}$$

B
$$-\frac{1}{7}$$
.

$$(\mathbf{c}) - \frac{2}{7}$$
.

$$\bigcirc \frac{1}{7}$$
.

CÂU 19. Hàm số $y = \frac{\tan x}{1 + \tan x}$ không xác định tại các điểm

B) chỉ
$$x = \frac{\pi}{4} + k\pi \ (k \in \mathbb{Z})$$

CÂU 20. Tìm tập xác định của hàm số $y = 2021 \cot 2x + 2022$.

$$\bigcirc \mathscr{D} \mathscr{D} = \mathbb{R}.$$

CÂU 21. Tập xác định của hàm số $y = \frac{1}{\tan x}$ là

CÂU 22. Tập giá trị của hàm số $y = \sin 4x - 3$ là

$$(A)$$
 $[-4; -2].$

B
$$[-3;1]$$
.

$$\bigcirc$$
 [-2; 2].

$$\bigcirc$$
 [-4; 2].

CÂU 23. Cho $\sin 2\alpha = \frac{3}{4}$. Giá trị biểu thức $A = \tan \alpha + \cot \alpha$ là

$$A = \frac{4}{3}.$$

B
$$A = \frac{2}{3}$$
.

$$\bigcirc A = \frac{8}{3}.$$

(D)
$$A = \frac{16}{3}$$
.

CÂU 24. Tập xác định của hàm số $y = \frac{3 \cot x}{2 \sin x - 4}$ là

- $(\mathbf{A}) \mathbb{R} \setminus \{\arcsin 2 + k2\pi, \pi \arcsin 2 + k2\pi, k \in \mathbb{Z}\}.$
- (C) $\mathbb{R} \setminus \{\pm \arcsin 2 + k2\pi, k \in \mathbb{Z}\}.$
- $(\mathbf{D})\mathbb{R}\setminus\{k\pi,k\in\mathbb{Z}\}.$

CÂU 25. Cho biết $\cos \alpha = -\frac{2}{3}$. Giá trị của biểu thức $P = \frac{\cot \alpha + 3 \tan \alpha}{2 \cot \alpha + \tan \alpha}$ bằng bao

nhiêu?

(A)
$$P = \frac{19}{13}$$
.

B
$$P = \frac{25}{13}$$
.

©
$$P = -\frac{25}{13}$$

B
$$P = \frac{25}{13}$$
. **C** $P = -\frac{25}{13}$. **D** $P = -\frac{19}{13}$.

CÂU 26. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=3\sin\left(x+\frac{3\pi}{4}\right)-1$ lần lượt

$$(A)$$
 4; -2.

B
$$2; -4.$$

$$(c)$$
 1; -1.

$$\bigcirc$$
 3; -3.

CÂU 27. Tập xác định của hàm số $y = 2 + 3 \tan x$ là

CÂU 28. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 8 \sin 2x - 5$.

- (A) $\max y = 11$; $\min y = -21$.
- **(B)** $\max y = 8$; $\min y = -8$.
- (**c**) $\max y = -4$; $\min y = -6$.
- **(D)** $\max y = 3$; $\min y = -13$.

CÂU 29. Biểu thức $A = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) + \cos^2 \left(\frac{\pi}{3} - x\right)$ không phụ thuộc x và bằng

- $\frac{3}{4}$
- **B** $\frac{4}{3}$.
- $\mathbf{c} \frac{3}{2}$

CÂU 20	Tra4 -	4:1	2 - 1 >	_6	$\frac{2\sin x + 1}{1 - \cos x}$ là
CAU 3U.	1ạp xac	ainn ci	ua nam	so $y =$	$\frac{1-\cos x}{1-\cos x}$ 1a

$$(\mathbf{A}) \mathscr{D} = \mathbb{R} \setminus \{ x \neq k2\pi; k \in \mathbb{Z} \}.$$

$$B) \mathscr{D} = \mathbb{R} \setminus \{ x \neq \pi + k2\pi; k \in \mathbb{Z} \}.$$

CÂU 31. Tổng $A = \tan 9^{\circ} + \cot 9^{\circ} + \tan 15^{\circ} + \cot 15^{\circ} - \tan 27^{\circ} - \cot 27^{\circ}$ bằng

B)
$$-4$$
.

 $(\mathbf{C}) \, 8.$

$$\bigcirc$$
 $-8.$

CÂU 32. Rút gọn biểu thức $A = \frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x}$ $(\cos 2x \neq 0, 2\cos x + 1 \neq 0)$ ta được kết quả là

$$(\mathbf{A}) A = \tan 6x.$$

$$(\mathbf{B}) A = \tan 3x.$$

$$(\mathbf{C}) A = \tan 2x.$$

$$(\mathbf{\overline{D}}) A = \tan x + \tan 2x + \tan 3x.$$

CÂU 33. Biết $\cos a = \frac{1}{3}$, $\cos b = \frac{1}{4}$. Giá trị của biểu thức $\cos(a+b)\cos(a-b)$ bằng

$$\bigcirc$$
 $-\frac{119}{144}$.

B
$$-\frac{115}{144}$$
.

$$\bigcirc$$
 $-\frac{113}{144}$.

$$\bullet$$
 $-\frac{117}{144}$

CÂU 34. Biết $\alpha + \beta + \gamma = \frac{\pi}{2}$ và cot α , cot β , cot γ theo thứ tự lập thành một cấp số cộng.

Tích số $\cot \alpha \cot \gamma$ bằng

(B)
$$-2$$
.

$$\bigcirc$$
 -3.

CÂU 35. Giá trị lớn nhất của $M = \sin^6 x - \cos^6 x$ bằng

$$\bigcirc$$
 2.

$$\bigcirc$$
 0.

$$\bigcirc$$
 1

CÂU 36. Hàm số $y = \frac{3 + \sin 2x}{\sqrt{m\cos x + 1}}$ có tập xác định là $\mathbb R$ khi

$$(\mathbf{A}) \ m > 0.$$

$$(\mathbf{B}) \ 0 \le m < 1.$$

$$(\mathbf{C})$$
 $-1 < m < 1.$

$$(\mathbf{D}) \ m \neq -1.$$

CÂU 37. Cho A, B, C là ba góc của một tam giác. Đẳng thức nào dưới đây sai?

$$(A) \cos \frac{A+B}{2} = \sin \frac{C}{2}.$$

$$\mathbf{B})\cos(A+B+2C) = -\cos C.$$

$$\widehat{\mathbf{C}}\sin(A+C) = -\sin B.$$

CÂU 38. Tìm giá trị lớn nhất của hàm số $y = \sin^2 x - \cos x + 2$.

B
$$\frac{13}{4}$$
.

©
$$\frac{7}{4}$$
.

$$\bigcirc$$
 1.

CÂU 39. Giá trị nhỏ nhất của $\sin^6 x + \cos^6 x$ là

B
$$\frac{1}{2}$$
.

$$\bigcirc \frac{1}{4}$$
.

$$\bigcirc \frac{1}{8}.$$

CÂU 40. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = 3\sin x + 4\cos x - 1$.

$$(\mathbf{A}) \max y = 4, \min y = -6.$$

$$\mathbf{B})\max y = 8, \min y = -6.$$

$$\widehat{\textbf{C}} \max y = 6, \min y = -4.$$

$$() \max y = 6, \min y = -8.$$

CÂU 41. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y=2\cos^2 x-2\sqrt{3}\sin x\cdot\cos x+$

(A)
$$\min y = -1 + \sqrt{3}$$
; $\max y = 3 + \sqrt{3}$.

$$\mathbf{B})\min y = 0; \max y = 4.$$

$$\widehat{\mathbf{C}} \min y = -4; \max y = 0.$$

$$\bigcirc$$
 min $y = 1 - \sqrt{3}$; max $y = 3 + \sqrt{3}$.

CÂU 42. Cho A, B, C là các góc của tam giác ABC. Khẳng định nào dưới đây đúng?

$$(\mathbf{A})\sin 2A + \sin 2B > 2\sin C.$$

$$\mathbf{B}\sin 2A + \sin 2B \le 2\sin C.$$

$$\widehat{\mathbf{C}}\sin 2A + \sin 2B \ge 2\sin C.$$

CÂU 43. Tìm m để hàm số $y = \sqrt{5\sin 4x - 6\cos 4x + 2m - 1}$ xác định với mọi x

$$\mathbf{B}) \ m \ge 1.$$

B
$$m \ge 1$$
. **C** $m \ge \frac{\sqrt{61} - 1}{2}$. **D** $m < \frac{\sqrt{61} + 1}{2}$.

$$\mathbf{D} m < \frac{\sqrt{61} + 1}{2}$$

CÂU 44. Tích số $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ}$ bằng **A** $\frac{1}{16}$. **B** $\frac{1}{8}$.

$$oxed{f A} oxed{1}_{-}$$
 .

3

$$\mathbf{B} \frac{1}{\circ}$$
.

$$\bigcirc \frac{3}{16}$$
.

$$\bigcirc \hspace{-0.5em} \boxed{\frac{1}{4}}.$$

CÂU 45. Biết A, B, C là các góc của tam giác ABC, đẳng thức nào dưới đây đúng?

$$(A) \cos C = \cos(A + B).$$

$$\mathbf{B} \tan C = \tan(A+B).$$

$$\bigcirc \cot C = -\cot(A+B).$$

$$(\mathbf{D})\sin C = -\sin(A+B).$$

<u> </u>	
QUICK NOTE	
	• • • • •
	• • • • •
	• • • • •
	• • • • •
	• • • • •
	• • • • •
	• • • • •
	• • • • •

$$(\mathbf{A})\sin\frac{A+B+3C}{2} = \cos C.$$

$$\mathbf{B}\cos(A+B-C) = -\cos 2C$$

$$\mathbf{C} \tan \frac{A + \overset{2}{B} - 2C}{2} = \cot \frac{3C}{2}.$$

CÂU 47. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = 2\sin^2 x + 3\sin 2x - \cos^2 x$ $4\cos^2 x$.

- (A) $\min y = -3\sqrt{2} 1$; $\max y = 3\sqrt{2} + 1$.
- **(B)** min $y = -3\sqrt{2} 2$; max $y = 3\sqrt{2} 1$.
- $(\mathbf{C}) \min y = -3\sqrt{2}; \max y = 3\sqrt{2} 1.$
- $(\mathbf{D}) \min y = -3\sqrt{2} 1; \quad \max y = 3\sqrt{2} 1.$

CÂU 48. Cho $\sin 2\alpha = -\frac{4}{5}$ và $\frac{3\pi}{4} < \alpha < \pi$. Giá trị của $\sin \alpha$ là

$$\bigcirc \frac{2}{5}$$
.

B
$$\frac{1}{5}$$
.

$$\bigcirc \frac{2\sqrt{5}}{5}$$
.

$$\bigcirc \frac{\sqrt{5}}{5}.$$

CÂU 49. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = \sin 2021x +$ $\sqrt{3}\cos 2021x$. Tích $M \cdot m$ bằng

$$\bigcirc$$
 -4 .

$$(\mathbf{B}) = 2$$

$$\bigcirc$$
 -9.

$$\bigcirc$$
 -1

(A) -4. (B) -2. (C) -9. (D) -1. (CÂU 50. Cho hàm số $y = \sqrt{\sin^4 x + \cos^4 x - m \sin x \cdot \cos x}$. Tìm m để hàm số xác định

$$\mathbf{A} m \in \left[-\frac{1}{2}; \frac{1}{2} \right].$$

B
$$m \in (-1; 1)$$
. **C** $m \in (-\infty; 1]$. **D** $m \in [-1; 1]$.

$$\bigcirc m \in (-\infty; 1]$$

$$(\mathbf{D}) m \in [-1; 1].$$