CSCE636 Neural Network HW 4 Solution

1 Question 1

1.1 Question 1a

L should contain $|V| \times d$

H should contain $D \times D$ parameters.

I should contain $d \times D$ parameters.

 b_1 should contain D parameters.

 b_2 should contain |V| parameters.

U should contain $D \times |V|$ parameters.

1.2 Question 1b

(1)
$$\frac{\partial E^{(t)}}{\partial U} = (h^{(t)})^T (y^{(t)} - \hat{y}^{(t)})$$

(2)
$$\frac{\partial E^{(t)}}{\partial b_2} = y^{(t)} - \hat{y}^{(t)}$$

(3) First,
$$\frac{\partial E^{(t)}}{\partial h^{(t)}} = (y^{(t)} - \hat{y}^{(t)})U^T$$
.

Let
$$a^{(t)} = h^{(t-1)}H + e^{(t)}I + b_1$$
,

then $\frac{\partial E^{(t)}}{\partial a^{(t)}} = \frac{\partial E^{(t)}}{\partial h^{(t)}} \odot sigmoid'(a^{(t)})$ where \odot means element-wise multiplication.

We have
$$\frac{\partial E^{(t)}}{\partial I}|_{(t)} = (e^{(t)})^T \frac{\partial E^{(t)}}{\partial a^{(t)}}$$

(4)
$$\frac{\partial E^{(t)}}{\partial H}|_{(t)} = (h^{(t-1)})^T \frac{\partial E^{(t)}}{\partial a^{(t)}}$$

(5)
$$\frac{\partial E^{(t)}}{\partial b_1}|_{(t)} = \frac{\partial E^{(t)}}{\partial a^{(t)}}$$

(6)
$$\frac{\partial E^{(t)}}{\partial h^{(t-1)}} = \frac{\partial E^{(t)}}{\partial a^{(t)}} H^T$$

1.3 Question 1c

The cross-entropy and perplexity can be written as:

$$PP^{(t)}(y^{(t)}\hat{y}^{(t)}) = \frac{1}{\hat{y}_k^{(t)}}.$$

$$CE^{(t)}(y^{(t)}\hat{y}^{(t)}) = -log(\hat{y}_k^{(t)}) = log(PP^{(t)}(y^{(t)}\hat{y}^{(t)}).$$

2 Question 2

2.1 Question 2a

Single head: $d^2 + d^2 + d^2 = 3d^2$.

Multi head: $h \times 3 \times d^2/h = 3d^2$.

Preprint. Work in progress.

2.2 Question 2b

Single head: the total cost is $O(3nd^2 + n^2d + n^2d + n^2) = O(nd^2 + n^2d + n^2)$.

Multi head: the total cost is $O(h \times (3nd^2/h + n^2d/h + n^2d/h + n^2)) = O(nd^2 + n^2d + n^2h)$.

So, there is no significant difference between them.

3 Question 3

3.1 Question 3a

By assigning a self loop for each node. In other word, assigning 1 to each element on the diagonal of A.

$$\hat{A} = A + I$$

3.2 Question 3b

For each $a_{i,j}$ in A, it would be normalized as $a_{i,j}/\sum_{j=1}^{n} a_{i,j}$.