Graph Traversal Algorithms

 Given a graph G(V,E) and a source vertex s, BFS "discovers" every vertex reachable from s

BFS colors vertices using 3 colours

- white: a vertex not discovered
- gray: a discovered vertex with white neighbors
- black: a discovered vertex where every neighbour in either black or gray

Tree edges.

BFS Tree

BFS(G,s)

```
for each vertex u in v(G) -{s}
      color(u) = white
      d[u] = \infty
      \pi[u] = NIL
color[s] = gray
d[s]=0
\pi[s] = NIL
Q = \emptyset
```

BFS(G,s) Enqueue(Q,s) while $Q \neq \emptyset$ u = Dequeue(Q) for v in Adj[u] if color[v] = white color[v] = gray $d[v] = d[u] + 1 \Rightarrow$ $\pi[v] = u$ Enqueue(Q, v) color[u]=black

Running Time?

BFS(G,s)

```
for each vertex u in v(G) -{s}
      color(u) = white
      d[u] = \infty
                                   O(n)
      \pi[u] = NIL
color[s] = gray
d[s]=0
\pi[s] = NIL
Q = \emptyset
```

```
BFS(G,s)
Enqueue(Q,s)
while Q \neq \emptyset
   u = Dequeue(Q)
   for v in Adj[u]
      if color[v] = white
             color[v] = gray
             d[v] = d[u]+1
             \pi[v] = u
             Enqueue(Q, v)
   color[u]=black
```

Every vertex is enqueued and dequeued once

Time taken for queue operations - O(n)

```
BFS(G,s)
Enqueue(Q,s)
while Q \neq \emptyset
   u = Dequeue(Q)
   for v in Adj[u]
      if color[v] = white
             color[v] = gray
             d[v] = d[u]+1
             \pi[v] = u
             Enqueue(Q, v)
   color[u]=black
```

For a vertex dequeued, we visit every adjacent vertex

Time taken - O(sum of degrees) = O(m)

Running Time - O(n+m)

Properties of BFS:

Properties of BFS:

Shortest path:

```
d[v] holds the value of the shortest path
from s to v
```

 $\delta(u,v)$: shortest path from u to v

Let u,v in V[G] and (u,v) in E[G]

Then $\delta(s, v) \leq \delta(s, u) + 1$

$$d[v] \ge \delta(s, v)$$

$$d[v] \ge \delta(s, v)$$

Proof (by induction on #Enqueue operations)

Suppose that during the execution of BFS on a graph G(V,E), the queue Q contains $\{v_1, v_2, ..., v_r\}$ where v_1 is the head of Q and v_r is the tail. Then

$$d[v_i] \le d[v_{i+1}]$$

$$d[v_r] \le d[v_1] + 1$$

Suppose that during the execution of BFS on a graph G(V,E), the queue Q contains $\{v_1,v_2,\ldots,v_r\}$ where v_1 is the head of Q and v_r is the tail. Then

$$d[v_i] \le d[v_{i+1}] \quad | \le 0 \le 0$$

$$d[v_r] \le d[v_1] + 1$$

Proof (by induction on queue operations):

$$A(V_1) \leq (V_2) \leq (V_3) - \cdots \leq A(V_\delta)$$

#0p%-Q contains only S. trivially true. Claim holds for k gunn ops-(by.i) (k+1) the op is Dequeen $Q = \begin{cases} \begin{cases} \begin{cases} \\ \\ \end{cases} \end{cases} \\ \begin{cases} \\ \end{cases} \end{cases}$ diguiser 1 is removed. $d[v_8] \leq d[v_1] + 1 \leq d[v_2] + 1$ of We hum To show d[v] \(\leq d[v2] + 1.

2) Enguer op

U, V,) - - · · , Vø, Vø+1.

It u is the point of V_{7+1} .

u is alrudy and diguined. $d[u] \leq d[V_1]$ $d[V_{7+1}] = d[u] + 1$

 $\leq d[v,]+1$

$$d[v_s] \leq d[w_{+1}]$$

 $d[u] \leq d[v]$

 $\leq d[v_{\sigma}] \leq d[u] + 1$ $\leq d[v_{\sigma+1}]$

Suppose that during the execution of BFS on a graph G(V,E), the queue Q contains $\{v_1,v_2,...,v_r\}$ where v_1 is the head of Q and v_r is the tail. Then

$$d[v_i] \le d[v_{i+1}]$$

$$d[v_r] \le d[v_1] + 1$$

Corollary: Let v_i, v_j be enqueued during the execution of BFS such that v_i is enqueued before v_j . Then $d[v_i] \leq d[v_j]$

Suppose that during the execution of BFS on a graph G(V,E), the queue Q contains $\{v_1,v_2,...,v_r\}$ where v_1 is the head of Q and v_r is the tail. Then

$$d[v_i] \le d[v_{i+1}]$$

$$d[v_r] \le d[v_1] + 1$$

Corollary: Let v_i, v_j be enqueued during the execution of BFS such that v_i is enqueued before v_j . Then $d[v_i] \leq d[v_j]$

BFS discovers every vertex that is reachable from s and upon termination $d[v] = \delta(s, v)$.

Moreover, for $v \neq s$ that is reachable from s, one of the shortest path from s to v, is a shortest path from s to $\pi[v]$, followed by $(\pi[v], v)$.

d[v]S(S,V) = lugth of shortest peth from S to V.d[v] = S(s,v) $d[v7 \ge \delta(s_{3}v)$ o[v] > 5(s,v), and v is the morest vertex to s uv is the last edge in the shostert path blw & S and V : le is diguidd[v] > S(s,v) = S(s,u) + 1 $\forall V$ -cannot be black.

blu & S and V : u is degened. $(s,v) = \delta(s,u) + 1$ = d(u) + 1 d[v] > d[u] + 1 V - quantity = d[u] + 1 V - quantity = d[u] + 1 U = d[u] + 1 U = d[u] + 1 U = d[u] + 1