

Static Vehicle Detection and Analysis in Aerial Imagery using Depth

Satwik Kottur¹, Dr. Gérard Medioni², Dr. Jongmoo Choi²

¹ Indian Institute of Technology Bombay ² University of Southern California

Abstract

Goal:

- Robust detection of static vehicles, specific to outdoor parking places, using a sequence of aerial images
- Performance analysis based on parameterization of intermediate stages Approach:
- Identification based on depth information obtained from existing methods for urban landscape modeling
- Validation using local 2D features from images to eliminate false positives and improving accuracy

Contribution:

- Fusion of 3D-2D information to detect vehicles
- Relationship between system performance and parameters of most crucial step in the pipeline – evaluation of optical flow in depth estimation

Related Work

Dense Reconstruction for Urban Modeling:

- Simultaneous camera pose estimation and multi-view stereo using a DSM
- Updating the model and solving PnP using RANSAC by back-projecting from the model, for every incoming frame

Vehicle Detection in Monocular Areal Image:

• Projected 3D Wire frame of vehicle used to identify vehicle using local 2D illumination

System Overview

Results and Discussion

Variation in system performance (hit rate, accuracy) due to optical flow parameterization (number of iterations, smoothness parameter, number of warps) is plotted in graphs below:

- Dependence of smoothness parameter is more pronounced than other two
- Drastic reduction in accuracy in excessive smoothening case

References

- Work on urban modeling by Zhuoliang Kang, Dr. Gerard Medioni, USC
- Integrating Local and Global Features for Vehicle Detection by Dr. Stefan Hinz, TUM