Numerical Optimisation

Project 1; Phase 1

Pascal Pilz

April 30, 2023

Auxiliary Percentage: 100%

For tasks 1-5 I used the steepest descent method. To find the step length α_k I used the backtracking line search as described in the lecture (Algorithm 3.1). For this, I used $\rho=0.9$ and varying c.

(i) Tasks 1-5 are solved using steepest descent, 6-10 using Newton's method.

task	problem	$x \in \mathbb{R} : x \text{ loc. min.}$	$ ilde{x}$	$ f(\tilde{x}) $	$\ \tilde{x} - x^*\ $	iter.
1	$(x+1)^3 - (x+1)^2$	$\left\{-\frac{1}{3}\right\}$	-0.33333306704602184	0.1481	2.662873e-07	rV
2	$(x-9)(3x^3-73x^2+591x-1617)$	{ ≈9.69562 }	9.69562077	10.3963	1.770741e-09	6
3	$-e^{-(x-\frac{1}{2})^2}$	$\left\{\begin{array}{c} 1\\ \overline{2}\end{array}\right\}$	0.50000003904933	1.0000	3.904933e-08	5
4	$e^{-(x^2-(x-1)^4)}$	{2}	1.9999981757365604	0.0498	1.824263e-06	21
5	$e^{-((x-0.4)^4+(x-0.45)^2)}$	{ ≈0.450254 }	0.6502538	698666660	2.537953e-04	9
9	$(x+1)^3 - (x+1)^2$	$\left\{-\frac{1}{3}\right\}$	-0.33333331784628467	0.1481	1.548705e-08	4
7	$(x-9)(3x^3-73x^2+591x-1617)$	{ ≈9.69562 }	9.69562077	of 10.3963	6.424299e-11	10
8	$-e^{-(x-\frac{1}{2})^2}$	$\left\{\begin{array}{c}1\\\overline{2}\end{array}\right\}$	0.499999999999994	1.0000	5.876376e-17	9
6	$e^{-(x^2-(x-1)^4)}$	{2}	2.0000000000068527	0.0498	6.852816e-12	10
10	$e^{-((x-0.4)^4+(x-0.45)^2)}$	{ ≈0.450254 }	0.45025418489603697	1.0000	1.848960e-08	r.

(ii) Tasks 11-15 are solved using steepest descent, 16-20 using Newton's method.

task	target function g	interval [- <i>q</i> , <i>q</i>]	interval $[-q,q]$ number points m degree n stop.crit.	degree n	stop.crit.	iter.
11	$\sin(2\pi t)$	[-1,1]	50	10	1e-3	iter
12	$\sin(2\pi t)$	[-1, 1]	10	9	1e-3	2830
13	$\sin(2\pi t) + \sin(\pi t)$	[-1, 1]	15	7	1e-3	36047
14	$\sin(2\pi t) + \sin(\pi t) + \sin(5\pi t)$	[-1, 1]	20	10	1e-2	6315
15	$\sin(2\pi t) + e^t \cos(3\pi t)$	[-1, 1]	30	15	1e-2	86699
16	$\sin(2\pi t)$	[-1,1]	20	7	1e-6	18
17	$\sin(2\pi t) + \sin(\pi t)$	[-1,1]	100	2	1e-6	21
18	$\sin(2\pi t) + \sin(\pi t)$	[-1, 1]	50	10	1e-6	19
19	$\sin(2\pi t) + \sin(\pi t) + \sin(5\pi t)$	[-1, 1]	50	15	1e-6	20
20	$\sin(2\pi t) + e^t \cos(3\pi t)$	[-1,1]	50	10	1e-6	21

(a) task 17

(a) task 19

(b) task 20

Figure 1: Problem (ii)

(iii) I changed the stopping criterion from $\|\nabla f_k\| < 10^{-6}$ to $\|\nabla f_k\| < 10^{-2}$, otherwise convergence would take too long (maybe even infinite due to numerical imprecision). You can see this with the condition numbers. Due to this the results are not very good. The eigenvalues are obtained using *numpy.linalg.eig*.

	8	rv	0	25	12
iter.	2038	6885	0889	11725	25612
$\frac{\lambda_n}{\lambda_1}$	2.0981e-06	6.55412e-11	6.1023e-17	-5.0392e-18	-6.2322e-18
$\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}$	-0.9999	-0.9999	-1.0	-1.0	6666:0-
eig.val. $\lambda_1, \ldots, \lambda_n$ of Q	{ 1.5670, 0.2085, 0.0114, 3.0589e-4, 3.2879e-06 }	{ 1.6959, 0.2981, 0.0262, 0.0014, 5.4369e-05, 1.2943e-06, 1.7988e-08, 1.1115e-10 }	{ 1.7953, 0.3802, 0.0447, 0.0037, 0.0002, 1.1163e-05, 4.0823e-07, 1.1228e-08, 2.2519e-10, 3.1113e-12, 2.6488e-14, 1.0955e-16 }	[1.9071, 0.4870, 0.0755, 0.0089, 0.0008, 7.0334e-05, 4.8305e-06, 2.8276e-07, 1.4139e-08, 6.0360e-10, 2.1928e-11, 6.7408e-13, 1.7382e-14, 3.7547e-16, 1.3662e-17, 9.7897e-18, 1.1364e-18, 3.3954e-18+1.9338e-18), -9.6106e-18]	[1.9864, 0.5725, 0.1056, 0.0154, 0.0019, 0.0002, 1.9965e-05, 1.6986e-05, 1.2925e-07, 8.8280e-09, 5.4236e-10, 3.0008e-11, 1.4958e-12, 6.7143e-14, 2.7112e-15, 9.8549e-17, 1.2370e-17, 9.4688e-18, 8.0259e-18, 1.23087e-18, 2.8685e-18, 1.0937e-18, 9.7422e-19, -3.1024e-18, -4.3801e-19, -3.1024e-18, -4.3801e-18-3.4639e-18, -5.9583e-18+4215e-18, -5.9583e-18+1215e-18, -7.5597e-18, -1.2380e-17, -7.5597e-18
$\ \tilde{x} - x^*\ $	1405.51	23572.6820	36484.6892	41324.4256	15980.9316
$ f(\tilde{x}) $	115.48	244.9215	279.9208	493.5051	828.3468
žX	(-2.3142, 31.4853, -62.0001,- 35.2023, 85.1932)	(0.8584, -25.0388, 91.8059, - 12.0188, -101.0061, -98.9850, -1.1862, 175.4548)	(2.7494, -28.2722, 23.9808, 65.6464, 30.9794, -32.4878, - 84.1341, -103.1135, -82.2686, -21.9255, 74.0605, 200.5100)	(2.5408, 37.9365, -83.6696, -40.7594, 41.9088, 92.5506, 97.5810, 67.2641, 17.4699, -84.135, -122.1064, -139.8910, -137.3396, -113.5645, -68.7285, -3.6786, 80.3189, 181.7650, 299.0559)	(0.988, -27.0951, 109.843, -37.9596, -115.0667, -95.9121, -27.9969, 46.8452, 104.7627, 136.2247, 140.5346, 151.0452, 85.486, 38.4203, -13.5812, -65.318, -112.46, -151.005, -180.1179, -196.1031, -198.243, -185.7175, -158.1018, -115.2882, -57.4151, 15.1907, 102.0612, 202.6263, 316.2444, 442.2279)
$\{x \in \mathbb{R}^n : x \text{ loc. min.}\}$	{ (5, -120, 630, -1120, 630) }	{ (6, -278, 2717, -9684, 12439, 1804, -15160, 8207) }	{ (-7, 331, -3375, 12062, -13459, - 6647, 9962, 13193, 950, -14225, - 14724, 16022) }	{ (7, -349, 3436, -11386, 10140, 8391, -3449, -10825, -8635, -1102, 6793, 11234, 10599, 5554, -2205, -9789, -14105, -12393, -1784, 20405) }	{ (8, -272, 1979, -4326, 721, 3496, 2560, -279, -2456, -3272, -2835, -1237, 112, 168, 2821, -406, 385, 2794, 1758, 431, -1010, -2376, -3491, -4184, -4299, -3694, -2260, 101, 3480, 7932) }
problem	n = 5	n = 8	n = 12	n = 20	n = 30
task	21	22	23	24	25

(iv) Tasks 26-30. The stopping criterion considers $\|\nabla f_k\|$.

task	problem	$\{(x,y) \in \mathbb{R}^2 : (x,y) \text{ loc. min.}\}$ \tilde{x}	$ ilde{\mathcal{X}}$	$ f(\tilde{x}) $	$ f(\tilde{x}) \mid \tilde{x} - x^* \mid \text{stop crit} \mid \text{iter.}$	stop crit.	iter.
26	$(10x_1 - 10x_2^2)^2 + (1 - x_0)^2$	{ (1,1) }	(1., 1.)	0.0	7.5e-01 1e-06 2	1e-06	2
27	$(2x_1^2 - 8x_2)^2 + (x_1 - 1)^2$	{ (1, 1/4) }	(1., 0.25)	0.0	0.e+00 1e-06 2	1e-06	2
28	$(10x_1^2 - 2.5x_2)^2 + (x_1 + 1)^2$	{ (-1, 2) }	(-1., 2.)	0.0	0.e+00 1e-18 2	1e-18	2
29	29 $(10x_1 - 0.01x_2^2)^2 + (x_2 - 100)^2$	{ (10, 100) }	(10., 100.)	4.3e-30	4.3e-30 0.e+00 1e-18 2	1e-18	2
30	$(x_2 - x_1^2)^2 + (100 - x_1)^2$	{ (100, 10.000) }	(100., 10000.00000001)	3.5343e-21	1.1889e-08 1e-18 5	1e-18	ιC