Concours commun d'accès en Première année de l'ENSAM

Université Moulay Ismail Meknès Ecole Nationale Supérieure d'Arts et Métiers - Meknès Université Hassan II Mohammedia-Casablanca Ecole Nationale Supérieure d'Arts et Métiers - Casablanca

Filières : Sciences Expérimentales et Techniques

Epreuve de Physique Durée : 2h 15 min

le 29 Juillet 2013

- L'épreuve contient 5 pages
- Répondre dans la feuille : « Fiche des réponses » à rendre avec la feuille d'examen
- Calculatrice non autorisée

Physique I (Mécanique): Les parties I et II sont indépendantes.

L'objet de l'étude est un système, composé de 3 solides rigides (figure 1) qui sont un piston (un petit cylindre de masse m_p), une tige rigide (PQ) (inextensible) de longueur l, de masse négligeable et un bras (OP) de longueur R et de masse m_b , de moment d'inertie l_b (par rapport à l'axe fixe (O, Δ)). La tige (PQ) permet de lier le piston avec le bras et reste tout le temps en liaison avec le bras (au point P) et avec le piston (au point Q). Le mouvement du piston est une translation suivant l'axe vertical Ox, celui du bras (OP) est une rotation d'axe fixe (O,Δ) avec une vitesse de rotation constante ω_0 (rd/s). On note (figure 1):

- angle de rotation instantanée du bras: $\theta(t)$; angle d'inclinaison de la tige par rapport à $0x : \beta(t)$,
- position instantanée du piston : x(t) telle que $\overrightarrow{OQ} = x(t)\vec{i}$, avec \vec{i} est le vecteur unitaire suivant Ox;
- Rapport des dimensions : $\varepsilon = R/l$, L'accélération de la pesanteur : $\vec{g} = -g\vec{i}$, avec $g(m/s^2)$.

Important : La présente étude concerne seulement la plage de fonctionnement : $0 \le \theta(t) \le \pi$, correspondant à la descente du piston.

Partie I : l'objet de cette partie consiste à déterminer le couple produit sur le bras lors de la descente du piston.

- 1. En se basant sur un raisonnement purement géométrique (relations dans le triangle OPQ), exprimer l'angle d'inclinaison $\beta(t)$ en fonction de $\theta(t)$ et ε ; puis exprimer la position du piston x(t) en fonction de R, l et $\theta(t)$.
- 2. Quelle approximation peut-on considérer pour que x(t) peut s'écrire sous la forme : $x(t) \approx A\cos\theta(t) + B$, où A et B sont des constantes à identifier. Cette approximation sera considérée dans la suite du problème et on écrit : $x(t) = A\cos\theta(t) + B$.
- 3. Exprimer $\theta(t)$ (sachant que $\theta(t=0)=0$), la vitesse v(t) puis l'accélération $\gamma(t)$ du piston en fonction de R, ω_0 et le temps t.

Dans la suite, on considère que le piston est soumis sur sa face supérieure à une force supplémentaire $\vec{F} = -F(t)\vec{i}$, où $F(t) = F_0 \sin \theta(t)$ et F_0 est une constante positive donnée.

4. On désigne par $\vec{F}_{p/t}$ et $\vec{F}_{b/t}$ les forces appliquées sur la tige, respectivement par le piston (p) au point Q et par le bras (b) au point P. Etant donné que la masse de la tige (PQ) est négligeable, en appliquant le PFD (principe fondamental de la dynamique), trouver la relation entre ces deux forces en précisant leurs directions. Justifier la relation: $\vec{F}_{t/p} + \vec{F}_{p/t} = \vec{0}$, où $\vec{F}_{t/p}$ est la force appliquée par la tige (t) sur le

5. Au moyen d'un schéma (voir fiche des réponses), tracer le bilan des forces appliquées sur le piston. Respecter le sens du mouvement indiqué.

- 6. En appliquant le PFD et en tenant compte de l'approximation $\cos \beta \approx 1$, déterminer le module de la force $\vec{F}_{t/p}$, en fonction de m_p , g, \dot{x} , \ddot{x} , θ , λ et F_0 . En déduire le module de $\vec{F}_{t/b}$ (force de la tige (t) sur le bras
- 7. En appliquant le PFD (équation des moments) au bras, déterminer le couple C(t) produit sur ce bras, lors de la descente du piston, en fonction de m_p , m_b , g, \dot{x} , \ddot{x} , θ , $\ddot{\theta}$, λ , F_0 , R, I_b , sachant que la distance du point O à la droite (PQ) est approximée par $h(t) = R\sin\theta$. Exprimer C(t) en fonction de m_p , m_b , g, λ , F_0 , R, ω_0 et le temps t.

Partie II : Un système S de levage (fig.2) est constitué d'une masse m1, d'une poulie d'axe mobile, d'une poulie d'axe fixe et d'un câble inextensible, tel que :

- Poulie mobile : centre O_2 , rayon R_2 , masse m_2 , moment d'inertie $\underline{n\acute{e}glig\acute{e}}$,
- Poulie d'axe fixe : centre O3 (qui fait la distance d par rapport au support fixe), rayon R3, moment d'inertie $I_3,$ vitesse de rotation (par rapport à son axe fixe) $\omega_3(t),$
- Câble : inextensible, longueur totale L, de masse négligeable.

La trajectoire du point O_2 est le segment de droite AB. On désigne par $x_1(t)$ et $x_2(t)$ les positions instantanées respectives de la masse m1 et de la poulie mobile. Le sens positif est orienté vers le bas, l'accélération de la pesanteur g est également vers le bas.

- 8. On note x_{01} et x_{02} les positions initiales (à t=0) respectives de m_1 et de m_2 , exprimer l'énergie potentielle Ep_1 de m_1 et Ep_2 de m_2 en fonction de $m_1,\ m_2,\ g,$ x_1 , x_2 , x_{01} et x_{02} en considérant Ep₁ nulle en x_{01} et Ep₂ nulle en x_{02} .
- 9. Exprimer l'énergie cinétique E_c de S en fonction de m_1 , m_2 , I_3 , \dot{x}_1 , \dot{x}_2 et ω_3 ; En déduire son énergie mécanique E_m en fonction de m_1 , m_2 , I_3 , R_3 , g, x_1 , x_2 , $x_{01}, x_{02}, \dot{x}_1 \text{ et } \dot{x}_2.$
- 10. Du fait que le câble est inextensible, sa longueur totale L vérifie à chaque instant l'équation $L=x_1+2x_2+C$. Trouver la constante C en fonction de R_2 , R_3 et la distance d.
- 11. Trouver l'accélération γ de la poulie mobile en fonction de $m_1,\ m_2,\ I_3,\ R_3$ et g.
- 12. A l'instant initial, les vitesses sont nulles. Trouver les équations horaires des vitesses $v_1(t)$, $v_2(t)$ et des positions $x_1(t)$, $x_2(t)$ en fonction de γ , x_{01} , x_{02} et le temps t.
- 13. En considérant à nouveau qu'à l'instant initial, les vitesses sont nulles (système au repos) et en se basant sur le résultat de la question 11, distinguer les cas possibles à propos du mouvement du système S.
- 14. Dans cette question, on supprime la masse m_1 et on tire verticalement vers le bas le câble par une force F (au point O_1) à fin de faire monter la masse m_2 . Exprimer cette force F (en statique) en fonction de m_2 et g. Peut-on imaginer l'intérêt pratique de ce système ?
- 15. Déterminer cette force si en plus on souhaite que la poulie 2 ait une accélération y constante donnée. Faire le calcul pour $m_2=100$ Kg, $g=10m/s^2$ et $\gamma=-2m/s^2$.

Physique II (Electricité): Les parties A, B, C, D et E sont indépendantes.

Le montage ci-dessous est alimenté par un générateur idéal de tension continue ayant pour force électromotrice : E = 10V.

Il comporte:

 Trois condensateurs de capacités: C₁, C₂ et C₃.

Trois bobines d'inductances :
 L₁, L₂ et L₃, ayant toutes des résistances internes négligeables.

Quatre conducteurs ohmiques:
 R₁, R₂, R₃ et R₄.

Quatre interrupteurs: k₁, k₂, k₃
 et k₄.

Le tableau suivant regroupe l'ensemble des composants avec leurs valeurs.

Composant	Nature	Valeur
R	Résistance	$R_1 = R_2 = R_3 = R_4 = 100 \Omega$
L	Bobine	$L_1 = L_2 = 50 mH et L_3 = 100 mH$
С	Condensateur	$C_1 = C_2 = 10 \mu\text{F} \text{et} C_3 = 100 \mu\text{F}$

Partie A. k_1 est en position (1) et k_2 est en position (1).

Dans cette partie, on note: C, la capacité du condensateur équivalent aux deux condensateurs C_1 et C_2 en parallèle, et t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives. On suppose qu'à l'instant t_0 , les condensateurs sont totalement déchargés.

- 1. Quelle est la valeur de la capacité C en μF ?
- 2. A l'instant t_0 , quelle est la valeur, en mJ, de l'énergie stockée au sein du circuit ?
- 3. En supposant que $C = 5\mu F$, quelle est la valeur, en ms, de la constante du temps du circuit?
- 4. On donne l'expression temporelle de la tension : $u_{c_1}(t) = A(1 e^{-B.t})$. Déduire les constantes A et B en fonction de R_1 , C et E.
- 5. Donner l'expression temporelle du courant $i_1(t)$ en fonction de R_1 , C et E.

Partie B. k2 est en position (2).

Dans cette partie, on note: t_0 , l'instant où l'interrupteur k_2 bascule vers la position (2), et on suppose que $u_{c_2}(t_0) = 10V$.

- 6. Donner l'équation différentielle vérifiée par la tension $u_{C_2}(t)$ en fonction de R_2 et C_2 .
- 7. Pour quelle valeur de R_2 , en $k\Omega$, la constante du temps aurait du être égale à 10ms?
- 8. Quelle est l'énergie, en mJ, stockée dans le condensateur C_2 à l'instant t_0 ?

Partie C. k4 est en position (1).

- 9. Donner l'expression temporelle de la tension u_{L_3} en fonction de L_3 , R_3 et E.
- 10. Quelle est la valeur, en régime permanent, du courant i_3 en mA?
- 11. Lorsque le régime permanent est établi, quelle sera l'énergie stockée, en mJ, au niveau de la bobine ? Partie D. k_1 est en position (3), k_2 est en position (1) et k_3 est en position (1).

Dans cette partie, on note L l'inductance équivalente des bobines L_1 et L_2 en série, et t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives.

On suppose aussi que $u_{C_1}(t_0) = 5V$.

- 12. Quelle est la valeur, en mH, de l'inductance L?
- 13. Quelle est la valeur, en mJ, de l'énergie maximale qui sera stockée au niveau de la bobine L_1 ?
- 14. Quelle est la valeur maximale du courant traversant la bobine L_1 ?

Partie E. k_1 est en position (2), k_2 est en position (1) et k_4 est en position (2).

15. Donner l'équation différentielle vérifiée par la tension u_{c_1} .

(Voir correction 8-Math)

