CONHEÇA O MACHINE LEARNING

ALGORITMOS QUE APRENDEM A PARTIR DE DADOS, IMAGENS, E TEXTO

Júlio C. Batista julio.batista@outlook.com

Agosto 14, 2017

O que é o machine learning [1]?

Definindo o "aprendizado"

- \bigcirc Dado um conjunto de dados ${\mathfrak D}$ e um modelo ${\mathcal M}$
- \bigcirc Definimos uma função objetivo (loss/cost) $\mathscr L$
- \bigcirc Minimizamos $\mathcal{L}(\mathcal{M}; \mathfrak{D})$

Minimizando \mathcal{L}

 Um método comum de otimização é o Stochastic Gradient Descent (SGD) com momentum;

Figure: Exemplo do SGD [1].

^[1] Andrew Trask. A Neural Network in 13 lines of Python (Part 2 - Gradient Descent). https://iamtrask.github.io/2015/07/27/python-network-part2/. Accessed: 2017-04-27.

Minimizando \mathcal{L} [1]

^[1] Alexander Amini. Projects. http://www.mit.edu/~amini/index.html. Accessed: 2017-08-10.

Caso 1

Dada a tabela abaixo (\mathfrak{D}), como podemos estimar o valor (\mathcal{M}) de uma viagem com base na distância?

Distancia (km)	Custo (R\$)
176.13	370.40
187.05	464.42
192.10	364.23
325.31	962.69
453.10	727.68
521.72	1045.96
667.57	1356.53
816.79	1828.42
921.20	1993.64
1032.51	2029.67

Visualizando os dados

Regressão linear

$$\bigcirc \mathcal{M}(x) = mx + b$$

$$\bigcirc \ \mathcal{L}(\mathcal{M}; \mathfrak{D}) = \frac{1}{|\mathfrak{D}|} ||\mathcal{M}(\mathfrak{D}_{x}) - \mathfrak{D}_{y}||_{2}^{2}$$

Overview

- \bigcirc Definimos o modelo de regressão linear $\mathcal{M}(x) = mx + b$
- \bigcirc Definimos uma função objetivo $\mathcal{L}(\mathcal{M};\mathfrak{D}) = \frac{1}{|\mathfrak{D}|} ||\mathcal{M}(\mathfrak{D}_x) \mathfrak{D}_y||_2^2$
- \bigcirc Encontramos os parâmetros m e b que minimizam o erro de ${\mathcal M}$

Caso 2

Dadas as imagens [1] abaixo, como podemos identificar o dígito na imagem?

0123456789

^[1] Juan Cazala. mnist repository. https://github.com/cazala/mnist. Accessed: 2017-08-10.

Representando imagens

 Imagens são matrizes onde os seus valores (pixels) variam de o (preto) a 255 (branco);

$$\mathbf{x}_{28\times28} = \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & 255 & 255 & \ddots & \vdots \\ \vdots & 255 & 255 & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{bmatrix}$$

Computando características da imagem

- O Uma imagem I, geralmente, possui alta dimensionalidade
- Diminuimos a dimensionalidade calculando características através de descritores
- Histogram of Oriented Gradients(HOG) [1] é um descritor de imagens

$$\mathbf{x} = \text{hog}(\mathbf{I})$$

^[1] Navneet Dalal and Bill Triggs. "Histograms of oriented gradients for human detection". In: IEEE CVPR. 2005.

K-Nearest Neighbors

 $\text{argmin}_{p \in \mathfrak{D}} ||x-p||_2^2$

Support Vector Machines

Caso 3: aprendendo o significado de palavras

Dado o texto [1] abaixo, como podemos aprender representações das palavras?

anarchism originated as a term of abuse first used against earl

Word2Vec: Continuous Bag of Words (CBOW)

Word2Vec: Skip-gram

Visualizando os vetores [1]

^[1] Samy Zafrany. NLP with gensin (word2vec). http://www.samyzaf.com/ML/nlp/nlp.html. Accessed: 2017-08-10.

Matemática de vetores

- O Depois que o modelo "aprendeu" as representações
- É possível efetuar operações matemáticas com os vetores
- rei homem = rainha
- cachorro + bebê = filhote

PARTE 2

Deep learning e as redes neurais convolucionais

- Redes neurais foram muito utilizadas até os anos 2000;
- Houve um hiato relacionado as redes neurais com o uso de outros algoritmos (SVM, árvores de decisão);
- Em 2012, um resultado [1] trouxe muita atenção para as redes neurais convolucionais;

Model	Тор-1	Top-5
Sparse coding	47.1%	28.2%
SIFT + FVs	45.7%	25.7%
CNN	37.5%	17.0%

Table: Porcentagem de erro por modelo

Exemplo de uma rede convolucional

 As camadas *conv* e *fc* constituem de: uma matriz de *weights* (W) e um vetor de *bias* b

Figure: Exemplo de uma rede neural convolucional [1].

^[1] CS231n. Convolutional Neural Networks (CNNs/ConvNets). http://cs231n.github.io/convolutional-networks/. Accessed: 2017-04-27.

Convoluções: o processo de filtrar uma imagem

 A rede "aprende as melhores" convoluções ajustando W e b durante o processo de aprendizado

Figure: Processo de convolução [1].

 $[\]label{lem:convolutions} \begin{tabular}{l} \begi$

Inicializações

- Bias **b**: constante o
- *Weigths* **W**:
 - Normal (Gaussiano) com μ = 0 e σ = 0.05
 - o Xavier [1]
 - o MSRA [2]

^[1] Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." In: Aistats.

^[2] Kaiming He et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification". In: ICCV. 2015.

Ativação

- Basicamente: transforma uma reta em uma curva
- A mais comum atualmente é a Rectified Linear Unit (ReLU) [1]

(b) ReLU: $\mathbf{y} = \max(\mathbf{0}, \mathbf{W}\mathbf{x} + \mathbf{b})$

^[1] Vinod Nair and Geoffrey E Hinton. "Rectified linear units improve restricted boltzmann machines". In: ICML. 2010.

Pooling

- Reduz o tamanho (altura, largura) da representação;
- Tipos mais comuns: *max*, *average*;

max pool with 2x2 filters and stride 2

6	8
3	4

[1]

٧

^[1] CS231n. Convolutional Neural Networks for Visual Recognition (Pooling Layer). http://cs231n.github.io/convolutional-networks/. Accessed: 2017-04-27.

VGG16 [1]

^[1] Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition". In: arXiv preprint arXiv:1409.1556 (2014).

GoogLeNet [1]

^[1] C. Szegedy et al. "Going deeper with convolutions". In: {\it IEEE CVPR. 2015.}

ResNet [1]

^[1] Kaiming He et al. "Deep residual learning for image recognition". In: IEEE CVPR. 2016.

Faster R-CNN [1]

^[1] Shaoqing Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". In: IEEE TPAMI (2016).

Para onde ir e outros frameworks

- Existem vários cursos gratuitos pela internet: CS231n (Stanford),
 CS224n (Stanford), Deep Learning by Google (Udacity), Neural
 Networks for Machine Learning (University of Toronto), Deep
 Learning (Oxford), Neural Networks class (Université de Sherbrooke)
- Livros: Deep Learning Book, Neural Networks and Deep Learning
- Frameworks: Keras, Theano, Torch, pyTorch, Caffe, Caffe2, Lasagne

O mercado

- Google Brain Residency Program
- Deep Mind
- Facebook AI Research
- Microsoft Research
- IBM
- Mestrado/Doutorado no IMAGO-UFPR Research Group;

CONHEÇA O MACHINE LEARNING

ALGORITMOS QUE APRENDEM A PARTIR DE DADOS, IMAGENS, E TEXTO

Júlio C. Batista julio.batista@outlook.com

Agosto 14, 2017

