-	_		تبالك أراب المناسبات
(13	8	2013
Ö			

0

 \bigcirc

0

0

 \bigcirc

0

0

0

0

0

()

0

()

 \bigcirc

()

0

()

(

0

0

 \bigcirc

 \bigcirc

FUNDAMENTALS

CIRCUITS

· NETWORKS

> Current is intended to flow through all elements.

This closed path concept is circuit.

recessarily flow through all the

- -> Circuits or networks are interconnection of various components to act together.
- -> Most of our practical seps. and ling interconnector nows but we do sercent analysis to some of its parts where electrical energy, flows.

So circuits are building blocks of networks.

· NETWORK COMPONENTS / ELEMENTS

All our applications are our components, but when these components are modelled as a circuit or new, we use fundamental & n/w component it model them like, V, I, R, L, C, etc.

We design cell our new practically for specified

()

0

0

()

 \bigcirc

()

0

(

0

The static V-I charac of component is shown below, then component is \bigcirc O Linear, active, bilateral \odot @ Linear, passive, bilateral (3) Non-linear, active, unilateral \bigcirc Mon-linear, passive, bilateral \bigcirc \bigcirc 0 -> Non-linear Θ -> Unilateral \bigcirc \circ -> Both active & passive 0 overall -> Active O 0 \odot (·). -> Mon linea \bigcirc -s Active \bigcirc \odot -> Bilateral. 0 \bigcirc 0 () Active elements can act as passive elements, 0 but passive elements count act as active 0 0 eg:- Capacitor always acts as a sink; \odot either it charges or discharges. 9 0 0 () ()

PARAMETERS LUMPED Properties: - Simple - Linear Algebraic aquation - Solutions are fast Approximated values. ISTRIBUTED PARAMETERS Eg:-- Long Tx line - Emf concepts - Anterna $R_{actual} = \frac{\partial R}{\partial l}$ (waveguide) Properties:-- Complex - Linear Différential Equations - Solutions are Tedious - Very accurate values. → Excat modelling

 \bigcirc

 \bigcirc

0	2) The relations like V=n7 holds good for
①	15 (a) Lumped (6) Distributed
	· NODE (n):
	A mode is a point of interconnection or junction blu 2 or more components.
3	· BRANCH (b):
() ()	A branch is an elemental connection
()	between two nodes.
() ()	· Degree of a Node (8):
0	No. of branches incident or connected at
0	ony node represents its dægree. If $S=2 \rightarrow simple node (ns)$
	S>2 -> principle mode (np)
0	NOTE:
0	For any cht or new
0	
() ()	$\sum_{i=1}^{\infty} S_i = 2 \times b$
0	. MESH (m):
() ()	Mesh is a closed path of clet or new which should not have further closed path in it.
()	which should not have further closed
0	path in it.

 \bigcirc

0

O

 \bigcirc

 \bigcirc

()

 $/\supset$ [] -> Electromagnetic \bigcirc \bigcirc (3rd Form) $|\Psi = Li|$ 0 \bigcirc W=NA 0 . 4 Flux linkage (Wb-T) 0 NO=Li 0 $\frac{N d\phi}{dt} + \phi \frac{dN}{dt} = L \frac{di}{dt} + i \frac{dL}{dt}$ 0 \bigcirc (Litti Form) Critical form of Ohm's Law \bigcirc \bigcirc [C] → Electro-static 0 (5th Form) \bigcirc da = c dy + (v dc) > # E=0 > dc =0 \bigcirc O (6th Form) Critical form of $i = C \frac{dV}{dt}$ 0 Ohm's Law in 'C' 0 0 0 0 0 0 Slope = L Slope = C 0 \bigcirc

* DC CIRCUIT ANALYSIS

· Properties of DC supply: -

- -> Unipolar
- -> Uniclirection
- -> No charge in phone / polarity
- -> Power freq. = 0 Hz.

They are used in small, in dependent isolated power supply systems, where electrical energy can be stored in small capacities.

Eg:-

- Machine Tools
- Medical Instruments
- Cell phones, Jany
- Defence Applications

Precision Accuracy Sutomation

Standard DC Waveform: -

10 * AC CIRCUIT ANALYSIS \bigcirc \circ · Properties of AC supply: - \bigcirc 0 → Bipolar -> Bidirection 0 -> Definite charge in phase | holarity. \bigcirc → Power freq. escist (India = 50 Hz) They are used in Large, Bulk, Continuous power supply systems, when electrical \bigcirc \bigcirc energy cannot be stored. 0 \bigcirc Eg:- \bigcirc Robust - Domestic 0 - Industrial Applications Powerful 0 0 O · Standard AC Waveform \bigcirc Sinusoid - sine cosine 0 0 () \bigcirc (1) \$ 1.5L 0 0 0

0

VOLTAGIE:

$$V = \frac{dW}{dq}$$

- -> It is the force (Emf), which can drive charges.
- -> Units: volts or T/C.
- -> Range: KV, mV, V, MV, UV.
- -> Symbols: v, V, V(t)
- -> Circuit Symbols:

0

 \rightarrow Examples:

DC > Cell, Battery, Ful cells.

P-V solar famils

Rectified forwer sources

Conventioned DC convertor

AC -> UPS Invertor Alternator 0 CURRENT: \bigcirc 0 $\underline{S} = \frac{\Delta Q}{\Delta t} = \frac{Q}{t}$ \bigcirc ① -> It is rete of flow of charge 紗 -> Units: Ambere (A) or C/sec \bigcirc -> Range: MA, MA, A, KA → Symbols: i, I, I, i(t) \bigcirc Circuit Symbols: () \bigcirc \bigcirc \$ 5cos (wot +32°) \odot 10 A \bigcirc \mathbb{O} -> Examples: \bigcirc DC > A DC series generator can be modeled \bigcirc ()as DC runeul source 0 -> a BIT can be modeled as a 0 dépendent current source. () \circ AC > & Feeder can be modeled es a 0 AC current source, (Feeder -> const. current density 0 conductors.)

0

RESISTANCE:	.0_
	⊙ ⊙ ·
-> It is electrical property of matter.	0
Resistor is a component to model it.	, 0
i(+) + v(+) - > it is classified	.0
based on the	
material.	0 -
	. ()
- Jungsten	
→ Range: MD, mD, , , , Ceramic	0
ks, Ms, GS	0
	0
V=IR = I= F	· O
	. 0
Basic Formula:	0
$R = \frac{8l}{6} $	O
$\frac{-\alpha}{}$	0
l -> length of meeterial	0
a -> cross section area	Q°-
c > specific resistance (00)	0
resistivity of materical	0
	O ()
-> Resistance dépends upon temperature	0
$R_{t} = R_{o}[1+\alpha t]$	0
d → temperature co-eff. of resistance	0
d is +ve -> conductors	0
N 11 + VC	Q
d is -ve -> semi conductors.	
	0
	•
	0

Examples:

- All industrial & Domestio wining.
- ()-> Communication & Tx. lines.
 - -> PCB components.

 $\langle \cdot \rangle$

0

()

 \circ

0

 \bigcirc

()

0

()

 \bigcirc

0

0

 \bigcirc

A cube shaped material has a resistance of 2 52 between any of its appasite faces. \odot Now if this material is stretched in one \odot direction by applying a linear force to \bigcirc double its original length, then the 0 \bigcirc resistance between the two opposite \circ

stretched faces is

$$R_i = \frac{S_i L_i}{\alpha_i} = 2$$

$$\begin{cases} l_2 = 2 l_1 \\ 0 \end{cases} \quad \forall_1 = V_2$$

$$0 \quad V_1 = V_2$$

$$0 \quad l_1 \alpha_1 = l_2 \alpha_2$$

$$Q_{1} = Q_{2} = \frac{Q_{1}}{2}$$

$$R_2 = \frac{S_1 l_2}{\alpha_2} = \frac{S_1(2l_1)}{\alpha_{1/2}}$$

$$= L_1 \left[\frac{g_1 L_1}{a_1} \right]$$

INDUCTANCE

Electromagnetis property matter

-> "Inductor" is a component do model it.

-> It is classified based CORE material

- grou

Units: Henry (H),

V-sec

- Femile

cur

Range: MH, MH, H

V= L di => i= L Stdt

i= + st vat

= 1 5 vat + 1 5 vat

initial current

 $i = I_0 + \frac{1}{L} \int_0^t v \, dt$

Basic Formula:-

11= Holl -> permeability of CORE do=4TT X107 HIM Ur = 1 (cuir) M2 > 1000 (iron)

(<u>)</u>

 \bigcirc

 \bigcirc

B

O

േ

**-	· · · · · · · · · · · · · · · · · · ·
	N -> Mo. of turns of coil
() ()	a -> cross sectional area of core (m2)
0	
0	l > effective length of magnetic flux path.
0	
3	1-xamples:
9	→ Filten
0	→ Choke cails
()	4 Tx lines. $MM = 2\pi \text{ Tr}$
	mH/ph/km Ls mean circum/enne
()	
()	
(i)	CAPACITANCE:
0	a to la restate to the time
(2)	-> Electrostatic property matter
0	-> "Capacitor" is a component to model it.
0	1. 1. 1. 1. 1. 1. 1.
(3)	-> /(+)_ on Dielectric element
(a)	i(+) c on Dielectric element/
0	Units: Faraclay (F), > Electrolytic
O	A-sec -> Ceramic
	V -> Polyster
9	Range: pf, nF, UF, mF
0	i - c alv
9	i= c dV ; V= _ Sidt
.0	$V = \frac{1}{C} \int_{\infty}^{\infty} i dt = \frac{1}{C} \int_{\infty}^{\infty} i dt + \frac{1}{C} \int_{\infty}^{\infty} i dt$
©	initial voltage

Basic Formula:-

$$C = \frac{\sum A}{d} F$$

≥= 20 € r → permitivity of dielectric

$$\Sigma_r = 4 (air)$$

d -> dist. between electrocles cm)

A.> common cross-sectional one a blue electrodes (m²)

Examples:

- → Filters
- 23 Power system
- -> PDC circuits
- -> Tx dives UF/ph/km

IDEAL VOLTAGE SOURCE :-

0

() (b)

0

(

(<u>)</u>

0

0

0

(C)

0

DEPENDENT SOURCE : - \bigcirc 0 - Properties depend upon any 0 - Characteristis other paremeter within - Valus [May, Freq, ctz]! ()0 Examples :-0 \bigcirc → Practical sources \bigcirc \bigcirc \circ -> Solar cell \bigcirc → Standards. 4 Types:-0 0 $\Rightarrow 2 \vee_{\chi} \qquad \Rightarrow \alpha i_{\beta} \qquad \Rightarrow e^{i_{3}}$ \bigcirc 0 CDCS CDVS VDVS NDCS O CCCS CCVS VCCS VCVS 0 0 -> Unlike indepedent sources dépendent () sources council be suppressed in \bigcirc terms of vesistance; as these models 0 des themselves represent complex circuits \circ O POWER: 0 Rate of change in energy. 0 $P = \frac{dW}{dt} = \frac{dE}{dt}$ 0 Woulds 0 mW, W, KW, MW, GW 0 Kange:

(3)

 \odot Edelivered = \bigcirc [1 KWH = 36 × 105] 0 0 Er= Sprat = Svriget = Sir Ralt = Svralt -> But for L.T. I. \bigcirc ER = VR·iR·t = iRR·t = VR·t I 0 0 16 0 EL = SProlt = SLidi at at \bigcirc 0 0 -> Now for L.T.I El = Slidi. dt = 12 Li2 0 \circ O But W=Li O $||E_1 = \frac{1}{2}Li^2 = \frac{1}{2}Vi = \frac{V^2}{21}$ 0 0 0 0 Ec = SPc dt = SCV dv dt 0 0 -> But for LITI 0 Ec= SCVOLV OLA = -1 CV2 But 9 = CV 0 .0 $E_c = \frac{1}{2}CV^2 = \frac{1}{2}qV = \frac{q^2}{3c}$ 0

 \odot

O

 \mathbf{O}

0

 ${}^{\circ}$

0

 ${}^{\circ}$

 $\begin{array}{c|cc}
\hline
R \\
\hline
R, & R_2
\end{array}$ $\begin{array}{c}
R_s = R_1 + R_2 \\
R_1 & R_2
\end{array}$

+ Current sources of different values com never escist in series. They violate KCL

→ If 2 current sources are in series, they must be equal both in magnitude & direction.

129: 1 52 \$ 5 JZ 25€ Keg = 1+3 = 4 52 0 Keg=? Rxy, Ras, Pxa Ry b. \bigcirc 0 0 \bigcirc 0 3x6 = 2 ; Rxy = 1+2+2 = 5 JZ 0 0 952 0 Rab = 1+6+2 = 0 R.xa = 1+6 = 7 S 0 0 Ryb = 1+2 = 352 0 0 year here 0 $K_{xy} = \frac{1}{2} + 1 = \frac{3}{3} \mathcal{N}$ 3 0 O Rx2 = 0 12 0 Rxu = 2 SL 0 Ry2 = 1/2 +1 = 3/2 12 0 0 0 6 1 Ryu = 1 + 3 = 7 1 "Ray = 3+1 = 7 1. 0 Rbx = 1 I $R_{20} = 2 \mathcal{I}$ 0 Rby = 2+1=5 Raz = 2 SL Rab = 352 0 0

CONDUCTANCE: -> It is the ability to conduct electrically =>] It is used the further classify conductor (meteils) i(+) † v(+) Units: - mho (U) on seineus (8) o A $G_1 = \frac{1}{R}$ $G_1 = \frac{Q}{RL}$ $G_1 = \frac{\sigma \alpha}{2}$; $\frac{1}{3} = \sigma$ (conductivity) Units for 'o' -> (SZ-m)'

> 2/m (U/m (or) S/m V= I; I= V.G Paz Vaig = in - Va. G. W $\frac{1}{G_1} = \frac{1}{G_1} + \frac{1}{G_2}$ on, & Grand Grand Grand Based on Conductivity: Silver Rank > [1] Copper -> used in high current density compact 84s.

> Domestic Inclustrial, MIC, PCB

()

()

ᅠ

0 3 Gold \bigcirc Alleminium used in external \odot Tx & distribution 0 -> cheap lines. 0 L> hight weight Voltage Division Rule 0 \bigcirc -> Series connected elements only \bigcirc ()()0 0 VL, = V [Li 0 $V_{L_2} = V \left[\frac{L_2}{L_1 + L_2} \right]$ 0 \odot $V_{c_1} = V \left[\frac{c_2}{c_1 + c_2} \right]$ 0 VC2 = V [C1 + C2] \odot 0 Va, = V [G, +62]

Vaz = V [Grit Grz

. (<u>)</u>

$$\frac{\sqrt{R3}}{R_1}$$

$$\frac{\sqrt{R3}}{R_2}$$

$$\frac{\sqrt{R3}}{R_3}$$

$$\frac{\sqrt{R3}}{\sqrt{R3}}$$

$$\frac{\sqrt{R3}}{\sqrt{R3}}$$

$$\frac{\sqrt{R3}}{\sqrt{R3}}$$

But suppose these are capacitors:

Current Division Rule :-

Parallel. Connected elements only.

$$\begin{array}{c|c}
\hline
R & \downarrow \\
R & \downarrow \\
\hline
R & \downarrow \\
R & \downarrow \\
\hline
R & \downarrow \\
R &$$

$$[L]$$
 $[L_1 = I]$; $[L_2 = I]$ $[L_1 = L_1]$

$$C = I \left[\frac{c_1}{c_1 + c_2} \right]; \quad I_{c_1} = I \left[\frac{c_2}{c_1 + c_2} \right]$$

$$\boxed{G_1} \quad \underline{T}_{G_1} = \underline{T} \left[\frac{G_1}{G_1 + G_2} \right] \quad \underline{T}_{G_2} = \underline{T} \left[\frac{G_2}{G_1 + G_{12}} \right]$$

DELTA - TO - STAR

$$R_2 = \frac{R_0 R_b}{R_0 + R_0 + R_c}$$

$$E_1 = \frac{1}{C_a} \cdot \frac{1}{C_b} \cdot \frac{1}{C_c}$$

$$\frac{1}{C_2} = \frac{1}{C_0} + \frac{1}{C_0} + \frac{1}{C_0}$$

$$R_3 = \frac{ReRb}{Ra + Rb + Rc}$$

 \bigcirc

0

 \bigcirc

 \bigcirc

 Image: Control of the control of the

()

0

0

Source TRANSFORMATION

som de converted into ideal surrent source in 11d with same trests. Cicross the same deminals & vice-una

 \bigcirc

 \bigcirc

0

0

(**)** -

 \odot

 \mathbf{O}

0

RATINGS / Specifications:

- → They represent the maxi permissible of allowable safe values for continuous operation of an electrical device.
- -> Most of our electrical or electronic components or solves will have very, rument, power, frequentings etc.

IT > conductor cross-sectional area ? \bigcirc \bigcirc V 1 -> insulations withstanding capacity T 0 -> Most of our **Electrical** on Electronic equipment are designed for constant Voltage. -> But their current carrying capacity depends whom Loding level. 0 High Wattage Low Wattage \bigcirc $\vee \downarrow$ 0 工个 \bigcirc a 1 ci 1 0 R 1 RA 0 . 🔾 \bigcirc IN RAVA VY RY 0 () which glows brighter? which glows brighter? 0 0 60 W = $\frac{40 \text{ W}}{}$ 0 0 load 1 => more power is drawn => mon current is drawn as ulty remain same 0 > The load always decides the power drawing capability or current capability ·() \circ of the system. /**(**

RESISTOR REDUCTION TECHNIQUE:

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

$$1 + [2113]$$
 $1 + [5] = \frac{11}{5}$

$$\frac{3 \times 7}{10} = \frac{21}{10}$$

 \bigcirc 0

 \bigcirc Q

0 ()

 \bigcirc 0

0 0

0

0

0 0

0

O

O 0_

0

0 -0.

0

O O

0

0

0 0

0

Ö

0

0

$$V = i^{2} \frac{dV}{dt} = 2 \frac{di}{dt}$$

$$R = 2 \frac{di}{dt}$$

$$R = 4 + [211R]$$

$$= 4 + 2R$$

$$= 4 + 2R$$

$$= 2 + 2R$$

$$= 2$$

()

 \odot

 \bigcirc

0

 \bigcirc

()

٩

0

0

() ·

() ()

0

0

 \bigcirc

()

 \bigcirc

Symmetrical

Resis. ore equer

realis

Travelling from

Source 'to destria'

resis. remains some

Applying KVL in the about loop.

$$-V + \frac{\overline{L}}{3}(1) + \frac{\overline{L}}{6}(1) + \frac{\overline{L}}{3}(1) = 0$$

$$V = I\left[\frac{1}{3} + \frac{1}{6} + \frac{1}{3}\right] = I\left[\frac{5}{6}\right]$$

$$R_{AB} = \frac{V}{I} = \frac{5}{6} \Omega$$

$$R_{AB} = \frac{5}{6} r \Omega$$

() ()

 \bigcirc

 \bigcirc

 \circ

 \odot

$$C_{AB} = \frac{6}{5}C$$

$$KVL \Rightarrow for capacitors: -$$

$$-V + \frac{1}{C} \int_{3}^{C} dt + \frac{1}{C} \int_{6}^{C} dt + \frac{1}{C} \int_{3}^{C} dt$$

$$= 0$$

$$\frac{1}{CAB} = \frac{1}{C} \left[\frac{5}{6} \right]$$

$$\frac{1}{1}$$
 CAB = $\frac{6C}{5}$

Each ~= 152 \bigcirc () B 0 () **()** -0 \bigcirc () Uše Super-position principle: 0 0 Step ① 0 0 () 0 9 0 0 0 () (&) 0 0 (৯) 0 A 1,00 1/1/12 **(**) Tyn IJ

O

 \bigcirc

 \odot

()

 \bigcirc

() ()

() ()

 \bigcirc

 \odot

. ()

$$\frac{|KVL|}{-1 + i_{1} + 2i_{1} + 2i_{1} + \frac{1}{2} + 3i_{1} = 0}$$

$$G i_{1} = \frac{1}{2} \implies i_{T} = \frac{1}{12}$$

$$Rab = \frac{1}{i_{T}} = \frac{1}{1/i_{2}} = \boxed{12.52}$$

$$\frac{1}{100} + \frac{1}{100} = \frac{2}{100} = \frac{1}{50}$$

$$R_{xy} = 50.52$$

what is the effective resis.
seen by the vety source?

 \odot

()

 \bigcirc

0 0

()

 \bigcirc

0

→ Effective resistance is the resistance offered by the circuit under working condion.

$$Refp = \frac{5}{i_T} = \frac{5}{10} = 0.552$$

Methods of Analysis:

In nodal analysis, we can eliminate the use of simple modes, if not required.

Find (i) using mesh & model analysis

$$i = \left(10 - \frac{5}{3}\right) \left[\frac{3}{2+3+6}\right]$$

$$= \frac{25}{3} \times \frac{3}{11} = \frac{25}{11} A$$

 \bigcirc

0

0

Mesh Analysis

①
$$10 - 3i_1 + 2i_2 = 0$$

$$3i_1 - 2i_2 = 10$$

②
$$5-5i_2+2i_2=0$$

 $52i_2-5i_2=-5$

$$i = i_1 - i_2$$

$$= \frac{25}{11} A$$

v. Find i ersing mesh 10 Dip De Aigurli Mesh: +10i1· i3-i, = 2 - (1) 12-1,-13=0 10-11-313+212=0 Now, four D&O; 312-13+2-13=0 $3i_2 - 2i_3 = -2$ Now, pour Ol & j -i3+2-3i3+2i2= 212-413 = +8 -(5) 6 iz - 4 iz = -4 $\frac{-6i_2 - 12i_3 = 24}{8i_3^2 - 28}$ $\frac{V_2+10}{1}+\frac{V_2-V_3}{1}-2=0$ $\frac{V_3-10}{1}+\frac{V_3-V_2}{1}+\frac{V_3}{2}=0$ $\frac{1}{2}$ - $\frac{2}{2}$ $\frac{1}{2}$ $\frac{$ $\Rightarrow i = \frac{8}{2} = \left[4A \right]$

 \bigcirc

0

0

() ()

O -

0

()

0

()

 \bigcirc

 \bigcirc

 \bigcirc

0

()

0

0

).

()

What is the power delivered by the ulfy 0 \bigcirc source 9 \bigcirc Mesh : - \odot **(**) 12-2,= 10. 0 \bigcirc $3i_1 + 2i_2 - 2i_3 = -5$ ().. 3(12-10) +212 -213 = -5 312-30 + 212 - 213 = -5 \bigcirc \bigcirc i_1 , $4i_2 - 2i_3 = 25 - 2$ \bigcirc \bigcirc \bigcirc 313-211=5 \odot 313-2(12-10)=5 \bigcirc -212+3i3 =-15 0 \odot i3 = 4(45) - 25 0 1812-613 \circ 45-50 = -5 -412+613 =-30 \$8 iz \odot Poel. = -5 × (45 + 5.) \bigcirc 1. 12= 45 ()1-275 W 0 0 0 NODAL": 0 0 $\frac{V_1}{1} + \frac{V_1 - V_2}{2} + \frac{V_1 - V_3}{4} = 0$ \bigcirc () 0 0 0

$$\frac{\sqrt{2} \cdot \sqrt{1}}{2} - 10 + \frac{\sqrt{3}}{1} + \frac{\sqrt{3} \cdot \sqrt{1}}{1} = 0$$

$$\frac{\sqrt{2} \cdot \sqrt{1}}{2} - 10 + \frac{\sqrt{3}}{1} + \frac{\sqrt{3} \cdot \sqrt{1}}{1} = 0$$

$$\frac{\sqrt{2} \cdot \sqrt{1}}{2} - 10 + \frac{\sqrt{3}}{1} + \frac{\sqrt{3} \cdot \sqrt{1}}{1} = 0$$

$$\frac{\sqrt{2} \cdot \sqrt{1}}{2} - 20 + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 0$$

$$\frac{\sqrt{2} \cdot \sqrt{2}}{2} = \frac{20}{3}$$

$$\frac{\sqrt{2}}{16} \cdot \sqrt{1} = \frac{35}{8}$$

$$\frac{\sqrt{2}}{16}$$

 \circ

 \bigcirc

 \bigcirc

O

0

0

 \bigcirc

 \bigcirc

O

 \circ

O.

 \bigcirc

 \circ

0

 \bigcirc

 \bigcirc

0

0

0

(3)

² O NODAL: 0 \bigcirc $\frac{V_1}{1} + \frac{V_1 - V_3}{2} = 2 + \frac{V_3}{4}$ 0 0 3N/-N/3 F0 0 0 V1 + V3 0 0 0 V2 - (2-4) = · (-) → V2+ V1 = 0 0 0 $V_2 = \frac{-3}{2}V$ 0 V1 = 17 0 0 P delivered 0 O 0 $\frac{V-10}{1} + \frac{V+5}{1} + 2 = 0$ O 0 0 0 0 O . : Pdeliv. = - 3 x 2 0 0 0 0 unt unite 8 nodal 2A equ governing the 0 ula & determine . 🕥 power delivered by vity 21 Scence ly inspection

$$i_1 - i_2 = 4 - 0$$
 $i_3 = 9 A - 2$

$$i_3 - i_2 = 7.$$
 = $i_2 = 2.A$

$$\frac{V_1 - 10}{1} + \frac{V_1 - V_2}{2} + 9 = 0 - 0$$

$$\frac{V_2 - V_1}{2} + L_1 - 7 = 0 - 2$$

$$\frac{V_3}{1} + w_3 \cdot 7 - 9 = 0$$
 - 3

Now,

What is the power delivered ley velty source assing mesh & nodal.

MESH:-

$$i_2 - i_1 = 10$$

()

_

 \odot

() ()

0...

()

Ö

(9)

$$\frac{NodAL_{2}}{O} = \frac{NodAL_{2}}{I} + \frac{V_{1} - 15 - V_{3}}{I} = 0$$

$$\frac{V_{1} + V_{1} - V_{2}}{I} + \frac{V_{1} - 15 - V_{3}}{I} = 0$$

$$\frac{V_{2} - V_{1}}{I} + \frac{V_{2} - V_{3}}{I} - 10 = 0$$

$$\frac{V_{2} - V_{1}}{I} + \frac{V_{2} - V_{3}}{I} - 10 = 0$$

$$\frac{V_{3}}{I} + \frac{V_{3} - V_{2}}{I} + \frac{V_{3} + 15 - V_{4}}{I} = 0$$

$$\frac{V_{3}}{I} + \frac{V_{3} - V_{2}}{I} + \frac{V_{3} + 15 - V_{4}}{I} = 0$$

$$\frac{V_{1} - 2V_{2} + 5V_{3} = -15}{I} = 0$$

$$\frac{V_{1} - 2V_{2} + 5V_{3} = -15}{I} = 0$$

$$\frac{V_{1} - 2V_{3} + 25}{I} = 0$$

$$\frac{V_{2} - V_{1} + V_{1} + V_{2} + V_{3} + 15}{I} = 0$$

$$\frac{V_{3} + V_{3} - V_{1}}{I} = 0$$

$$\frac{V_{3} + V_{3} - V_{2}}{I} = 0$$

$$\frac{V_{3} + V_{3} - V_{1}}{I} = 0$$

$$\frac{V_{3} + V_{3}$$

 $\frac{12}{1} + \frac{\sqrt{x}}{\sqrt{x}} + \frac{3\sqrt{x}}{2}$ $10\sqrt{2}$ $2\sqrt{x}$

Find Vor eesing mæste 8 modal

 $\frac{kVL}{V_{2c} = \frac{5}{8}V} = 0$

MESH:

 $i_1 + 5i_2 = 10$ — 0 $-i_1 + i_2 = 2V_{2}$ — 2 Link equation:

 $V_{2c} = i_1 - 3$

· -3i, + iz = 0 - (4)

From (& (4);

i,= 5

 $3i_1 + 15i_2 = 30$ $-3i_1 + i_2 = 0$

16 iz = 30

i2=2 A.

1/ Voc = 5/8 V

NODAL : -

 $\frac{V_1 - 10}{1} - 2V_2 + \frac{V_1}{5} = 0$

5 V, - 50 - 10 V2 + V, =0

6V1 - 10 Noc = 50

3V1-5V1225 -0

Not = 10-N1 - (5)

3(10-V,c)-5V,c=35

8 V2 = 5

Voc = 5 V

0

 \bigcirc

 \bigcirc

 \bigcirc

0

O -

0

- () --

() ()

0

0

0

()

0

() ()

0

-

0

0

&

0

0

0

0

 \circ

0

 \odot

 \bigcirc

0

 \odot

()

$$0 - (0 + (i_1 - i_3) + (i_1 - i_2) = 0 - 0$$

$$\frac{13}{9} + (13-12) + (13-11) = 0 - 3$$

$$P_{35} = \frac{|i_2 - i_3|^2}{3} =$$

0 +2+3(
$$V_3-V_2$$
)+4(V_3-V_1)=0 - 3

15) MESH:

100 - 20i, +10i2 + 41i6 = 5i4 = 0

-10i, +20i2 + 41i6 = 0

20

$$i_4 - i_3 = 2$$
 $i_1 - i_3 = 2V_0$
 $V_0 = 10i_2$
 $V_0 = 10i_2$

MESH: - $i_{1}-2i_{2}=-10 \quad i_{1}=-10+2(\frac{8}{3})$ $-i_{1}+i_{2}=\frac{2}{3}$ $-3i_{2}=-8$ $i_{1}=\frac{-14}{3}A$ $-40i_{3}+2G_{1}i_{1}=50$ $-40i_{3}+\frac{72}{25}i_{4}=-40$ $-48i_{4}=90$ $i_{1}=\frac{-90}{47}A; \quad i_{3}=\frac{105}{47}A$

 $\frac{Nodal}{V_1 - 10 + 2 + \frac{V_1}{2}} = 0$

() () ()

0

0

0

0

 \bigcirc

O -

 \circ

0

0

0

0

0

0

0

© O O

○○○

Theorem 2:-Superposition Theorem: -In any dinear, active, bilateral now, consisting of no of energy sources, resistances, etc.; the effect produced in any element when all sources act at a Time is equal to seem of effect in some element when each source is considered independently 1) The no. of sub-circuits to be solved by applying S.P.T. in => Sum of Judependent sources only. 2) Which of the fall electrical parameter connect be directly evaluated by using S.P.T? using S.P.T (a) Noltage (b) Current. (d) Charge, (Power 4> non-tinear electrical parameter -> While applying S.PT, we consider only I indépendent source in enery sub-circuit where other ulty sources are replaced \bigcirc ly short circuit & ideal current sources are replaced by open circuit. Thowever dependent sources connet be 0 suppressed.

Step 2: (16 A only)

$$i^{11} = -16 \times \frac{3}{8} = -6 A$$

Using S.P.T

 $i = i^{1} + i^{11} = 2 + 2 - 6 = -2 A$

So, $P_{Lost} = L_{Lex} \times R$
 $= L_{L} \times 5 = 20W$

Check

 $-16 + 1 (16 + I) + 2 (8 + I) + 5I = 0$
 $\therefore SI = -16$
 $\therefore I = -2 A$
 $P_{Lost} = 4 \times 5 = 20W$

The step 2: $-(2 A only)$
 $i^{10} + 10 i^{10} + 2 (i^{10} + 2) = 0$
 $\therefore 13 i^{10} = -16$

Step 2: $-(2 A only)$
 $i^{10} + 10 i^{10} + 2 (i^{10} + 2) = 0$
 $\therefore 13 i^{10} = -16$
 $\therefore 13 i^{10} = -16$

Step 3: $-(5 \times 0 only)$
 $\Rightarrow i^{10} + 10 i^{10} + 5 = 0$
 $\Rightarrow i^{10} + 10 i^{10} + 5 = 0$
 $\Rightarrow i^{10} + 10 i^{10} + 5 = 0$
 $\Rightarrow i^{10} + 10 i^{10} + 5 = 0$

$$\frac{\text{I alone act :-}}{P_2 = I_2^2 R} = L \implies |I_2|^2 \frac{2}{\sqrt{R}}$$
Now,
$$I_{\text{net}} = \frac{\pm}{I_1 \pm I_2}$$

$$P_7 = \left[I_{\text{Net}}\right]^2 R = \int_{-1}^{2} I_1 + I_2^2 R$$

$$P_{T} = \left[\text{Inet} \right]^{2} R = \left[\pm I_{1} \pm I_{2} \right]^{2} R$$

$$= \left[\pm \frac{3}{\sqrt{R}} \pm \frac{2}{\sqrt{R}} \right]^{2} R = \left[\pm 3 \pm 2 \right]^{2} R W$$

 \bigcirc

 \bigcirc

0

0

 \odot

0

 \mathbf{O}

 \bigcirc

Ο.

0

O

 \bigcirc

 \circ

If
$$V_2$$
 alone act
$$-5 \longrightarrow 1A$$

$$15 \longrightarrow \frac{15}{-5} = -3A \text{ (No mogenity)}$$

<u></u>	Theorem 4:
0	Nortons' Theorem:
0	In any linear active bilateral now
(3) (3)	consisting of no. of energy sources, resisting
0	with open o/p target derminal défined can du converted into a simple n'en
O	consisting of current source in parallel
0	with resistance.
0	
() ()	$\begin{array}{c} (n) \\ (n) \\$
0	$\longrightarrow \overline{\bot}_{SC}$
0	
0	Therenius & Nortous equivalent are
0	duals of each other.
0	i.e. They are source transformable.
0	Cologram 1:- Romblomes wills and
0	Category 1:- Problems with only
() ()	independent sources
()	1) Determine current i
() ()	(1) An using of Therenin the
0	2 Norton the
(3)	
0	1) Therenin th.
0	5-1 Py 9 3 RTH = 152
	RTH

2 Morton & The equivalent blue A.B.

Category 2:- Troblems with both independent & dependent sources. Dependent sœurces commot be suppressed directly in terms of their nesistances. So here, finaling RTM or RN is not borrible directly. possible directly. Nence we use I huis Low where, $R_{TH} = R_N = \frac{V_{oc}}{I_{sc}}$ at target terminal. # V31 - 2 3 } \(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\)
\(\ Find current i using Theverin & Nortons. th. $\frac{1}{2} + \frac{1}{2} + \frac{1}$ Vox = 10 - Voc - 1 Voc -10-20 +2 Voc=D Voc = 10 V $\frac{+ \sqrt{2} - \sqrt{2}}{2}$ $\frac{1}{2} \sqrt{2}$ $\frac{1}{2} \sqrt{2}$ $I_{SC} = 3\sqrt{x}$ $= 3 \times 10^{\circ} = 30 \text{ A}$ $I_{SC} = \frac{30}{7} \text{ A}$

0

35

 \odot

0

0

O.,

0

 \bigcirc -

O .

O-

 \bigcirc

O

O

 \circ

0

() .

From 0.20; ZISC=6 => [ISC=3A] RTH = RN = Vos = Determine Therein 2 Nortous equir. veros the load ioi * = 50 i + 50 : i = - \$1A 50 + 40 (-1) = 10 V KCL S = Isc + 8 $Isc = \frac{5}{8}$ = 10 ×8 = 16 52 RTIN = RN = Voc Isc 5AA \$16 R. & RL

J

 \bigcirc

 \odot

 \bigcirc

0

()

0

() "

0

()

 \bigcirc

0

 \bigcirc

()

 \bigcirc

 \bigcirc

Q -

0.

 \bigcirc

() ()

0

 \bigcirc

 \odot

()

 \bigcirc

0

()

thyristor is considered as very high current gain device, optocouples, etc. The V-I charae of this new is in quadrant 2. Category 3: - Troblems with only dependent sources: Such new connect function on their cown as their is mo indépendent active element la drive it. Ju Therenius equivalent VTH = 0 Fin Mortonis aquivalent IN=0

 \odot

O

O

O

 \circ

 \circ

In Morton's equivalent $I_N = 0$ but they have only resistance. This resis. can be ofire indirectly determined by I have Law by eschernally escribing them where $R_{TH} = R_N = \frac{1}{1T} = \frac{V_T}{1A}$

But such models physically represent \bigcirc our n/w & electric devices. ()Eg:-01-1-parameter equivalent of BIT in \bigcirc \odot common emitter amp. @ Pièce-wise PSPICE & MATLAB models 0 (3) of electronics devices, etc. \odot 0 Determine Therein 2 Nortous equiv. b/w a 8 b. 0 -1+ (11+3(2V6+1+)=0 \bigcirc \circ $\langle \hat{\mathbf{v}}_0 \rangle \hat{\mathbf{v}}_0$ 71+6Vo=1 - $V_0 = 2(V_0 + i_T)$ 0 3 Vo + 2 ir = 0 0 : $7i_{7} + 6\left(\frac{-2}{3}\right)i_{7} = 1$ ()0 RTH = RN = 1/3 = 35. 0 2 × 1 Rn====12 0 VT = 1+2(-1) 10ix +4-4ix-2ix -0 0 = -1 V. 0: | ix =-1A

$$\frac{1}{102} + \frac{1}{80} = \frac{1}{400} + i_{7}$$

$$\frac{1}{102} + \frac{1}{80} = \frac{1}{102} + i_{7}$$

$$\frac{1}{102} + \frac{1}{102} + \frac{1}{102} = \frac{1}{102}$$

Special Models:

= 0-0198

219

O

 \bigcirc

0

0

O -

()

 \circ

()

0

0

0

0

0

\$80 PIV

$$-10 + V_{OC} +3 = 0$$

 $V_{OC} = 7. V$

$$-10 + (I_{SC} + 3) + 2 I_{SC} = 0$$

 $3I_{SC} = 7 \Rightarrow I_{SC} = \frac{7}{3} A$
 $R_{TH} = R_N = \frac{7}{7} \times 3 = 3 SC$

$$i_{x} = \frac{7}{5}A$$

$$\frac{1}{3}$$
 $\frac{1}{3}$ $\frac{2}{5}$ $\frac{1}{5}$ $\frac{7}{5}$ A

It is indirectly application of Thevenius. Theorem in designing the electrical loads

0

to extract moseinen power from source. $V_{S} = \frac{1}{R_{S} + R_{L}}$ $V_{L} = \frac{V_{S}}{(R_{S} + R_{L})^{2}}$ PL=ILXRL $\Rightarrow V_s^2 \left[\frac{(R_s + R_L)^2 \cdot 1 - R_L \cdot 2 \cdot (R_s + R_L)}{(R_s + R_L)^4} \right] = 0$.. (Rs+RL) = RL.2. (Rs+RL) $\mathcal{R}_{L} = \mathcal{R}_{S}$ -> Pmax = Vs W Ju general: Reduce it to T.E. Pmax = 1VTH?

WYTH & 4RTH During Purax transfer de ille load The old effectionary is 50%.

 \bigcirc

 \odot

 \odot

O .

0

0

 \circ

 \odot

()21,+12=6 -I, + I2 = 2 0 -VTH. + 6+3 I(=0) VTH = 6+3(4)=6+4 0 For what value \bigcirc of R, mosc power 0 0 power is transferred O to 3 I vesto. 0 VES 2 0 0 Acc. to concept \bigcirc 0 Rin curos 3D = 3D0 611R =3 \bigcirc => [R23] \circ 0 \bigcirc The value of Rz for which Pmax occurs in RL = Rs SR The name of Rs for which 0 Purax occurs in R1 = OSL ${}^{\circ}$

What is the mose.

power transfered to 7 123R 5100R Here R = 1 St : Iwa = 100 = 100 A Pmax = (100) × 10 = 826.4 W What is the value of R for which unas, pour is transfered from source R= 4, R to load. + V3(-1)2 2 2 2V3(pour transfered to R $\Sigma_{sc} = \frac{30}{7} A$ Rrn = Voc = 7 D Pmax = 10×10 = 75 W

()

ூ

()

 \circ

 \mathbf{O}

0_

 \mathbf{O}

Theorem 6:

Reciprocity Theorem:

119 m any plinear spassing bilateral who excited with only a single source, the ratio of response to excitation remains const. even if the positions of source & load are interchanged.

 \circ

O

O -

Ο

0

 \mathbf{O}

0

0

0

 ${}^{\circ}$

0

$$\frac{1}{\nabla} = \text{coust}$$
.

$$\frac{1}{V} = coust.$$
 By applying $\frac{I_1}{V_1} = \frac{I_2}{V_2}$ Principle $\frac{I_1}{V_1} = \frac{I_2}{V_2}$

$$\frac{I_1}{V_1} = \frac{I_2}{V_2}$$

NOTE:

This theorem is valid for now escribed with single source only.

This theorem can not be applied for n/ws with dependent source. Since dépendent sources con make n/w cective.

While writing the Reciprocally new of given n/w, ideal independent valtage sauces are connected in series to the target branch and ideal independent runeut sources are connected in parallel to itarget branch.

Eg: Communication lines Electrical power Tx nlw.

 \bigcirc \odot

O

Mesh:

()

0.

()

 \bigcirc

$$\frac{0}{0}$$
 (3) $i_3 i = -3 \sqrt{x}$

$$\Theta$$
 $i_2 = 5/\pi A$

$$0 \frac{V_1}{1} + \frac{V_1 - V_2}{2} - 3V_2 = 0$$

$$2 \frac{V_2 - V_1}{2} + \frac{V_3}{3} - 10 + 3V_2 = 0$$

(3)
$$V_2 - V_3 = 2ix$$

$$\hat{u}$$
 $\hat{t}_{x} = \frac{V_{1}}{V_{1}}$

$$\bigcirc$$
 $\lor_{>c} = \lor_3$

$$\frac{180 \text{ V}}{110 \text{ V}} + \frac{270}{11}$$

$$\frac{120 \text{ V}}{110 \text{ V}} + \frac{50 \text{ A}}{110 \text{ A}}$$

$$\frac{105 \text{ A}}{110 \text{ V}} + \frac{150 \text{ V}}{110 \text{ A}}$$

$$\frac{150 \text{ V}}{110 \text{ A}} + \frac{150 \text{ V}}{110 \text{ A}}$$

$$\geq P_{\text{sink}} = \left(\frac{105}{11} \times \frac{105}{11}\right) + \left(\frac{120}{11} \times \frac{60}{11}\right) + \left(\frac{15}{11} \times \frac{5}{11}\right) + \left(\frac{180}{11} \times \frac{45}{11}\right)$$

Theorem 8: Milliman's Thearem: [Parallel Gienerator Theorem]

 \bigcirc

 \bigcirc

 \bigcirc

 \odot

0

 \bigcirc

ACE ENGINEERING ACADEMY

SUBJECT NAME

ELECTRIC CIRCUITS / ELECTRIC CIRCUITS & FIELDS (E Engineering) NETWORK THEORY / NETWORK ANALYSIS & TRANSMISSION LINES (E & T Engineering)

IMPORTANCE of SUBJECT

Unique Order of covering IES Syllabus

- Fundamentals Definitions, Notations, Symbols, Units, Formulas, Examples and Applications
 - DC Circuit Analysis Resistor as Fundamental Component (MESH and NODAL Analysis)
 - DC Network Theorems and Applications
- Inductors and Capacitors
- AC Fundamentals PHASOR, j-Operator, RMS and Average values of Time-Varying Waveforms Concept of POWER in AC, AC Circuit Analysis (MESH and NODAL Analysis) AC Network Theorems and Applications 6
 - Locus Diagrams, Duals and Duality in Electrical Networks €86 7 T
 - Resonance

(10) Magnetic Circuits

Network Topology / Graph Theory

(12) Transient Circuit Analysis (Time-Domain)

 $L_1 \bowtie \begin{cases} 13 \end{cases}$ Solution of Network Equations using Laplace Transform $\begin{cases} 14 \end{cases}$ Network Functions and Filters Concepts

15) Two-Port Networks

19) I work by the size (for IES Only)*

17) State Equations for Networks (for IES Only)*

Three Phase Circuits (for EE Only)**

Reference Books

Bank-4: Networks and Systems, by D Roy Choudhury, New Age International Publications Act (e. Bank-1: Engineering Circuit Analysis, by William Hyat and Kemmerly, TMH Publications Grank-2: Fundamentals of Electric Circuits, by Alexander and Sadiku, TMH Publications Rank-5: Linear Circuit Analysis, by DeCarlo and Lin, OXFORD University Press "If I DO, I will UNDERSTAND" "If I SEE, I will REMEMBER" "If I HEAR, I will FORGET" IUS Rank-3: Network Analysis, by ME Van Valkenburg, PHI Publications

IES = FUNDAMENTALS + CONFIDENCE

Theorem 9:Compensation theorem:-

- Shis theorem allows us to calculate the correct walne of electrical parameters such as rollages 2 surrent when they are subjected to parametric variations within the circuit.
- Jhis theorem is escalusively used to delemine steady state error in measuring instruments, as practical meters with their internal vesistances will after the ideal values when they are connected into the circuit.

()

 \odot

0

() -

 \circ

O 1

() ()

0

 \bigcirc

 \odot

O

 \odot

0

O)

()

1) Find the change in current introduced by **(**) ammeter with an interned vesis- of 0.1552" (1) while measuring the current in 652 resis. \odot branch. Also determin steady state error untroduced by the meter

$$I = \frac{30}{212} \times \frac{3}{9} = \frac{5}{2} A$$

Step 2: - Calculate compensated vity

<u>5tep 3</u>: - Compensated n/w:

so les connecting our our meter with internal vesis of 0.15 52 the eveneut in that 652 branch is reduced by 0.051 A.

Now, 0

 \bigcirc

 \bigcirc

0 0

 \odot

 \odot

 \odot

()

 \bigcirc

 \bigcirc

 \bigcirc

()

 \bigcirc

.()

0

0

% Error =
$$\frac{\overline{I} - \underline{I}'}{\overline{I}} \times 100 \text{ y} = \frac{\overline{I}_{C}}{\overline{I}} \times 100 \text{ y}.$$

= 0.051 \times 100 \times = 2.05 \times \tag{6}

$$= \frac{0.051}{2.5} \times 100\% = \frac{2.05\%}{\text{L}} \times \text{acceptable}$$

Theorem 10: Substitution theorem: In any dinear active hilateral new consisting of no. of energy sources, passive elements, etc. any passive element can de substituted in terms ef its equivalent ulter and current for further analysis of n/w w/o disturbing the rest of the now provided the power absorbed duy O this passive element & ils equivalently substituted source is some. റ n|w Ray > Vai $\begin{array}{c} X \\ X \\ \end{array}$ $\begin{array}{c} X \\ \end{array}$ $= V \cdot I \\ \end{array}$ $\begin{array}{c} X \\ \end{array}$ $= V \cdot I \\ \end{array}$ $\begin{array}{c} X \\ \end{array}$ We con model a semiconductor device as a passive element multilles conducting, in terms of its on-state very draws for further analysis fid dising substitution ON- state very dop. **>**/ state resis.)

3) For the balanced bridge determine the value of 5=iR

Balanced bridge

1. R=1 KJ.

So, Is = 2 x i = 2 x 5 m A = 10 mA.

Use substitution theo. It find the value of ulty Va. for which mose.

 \bigcirc

()

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \mathbf{O}

○ ·

 \bigcirc

 ${}^{\circ}$ \bigcirc

 \bigcirc

power is transfered to the looked.

Ra= 15-12

 $L\phi = \frac{2\phi(5+R)}{25+R}$

1 = 1/2 A 50, Va = i.R = 1×15

= ·705 V

30 25 + R = 10 + 2R R = 15.52

$$I = 6\left(\frac{2}{3}\right) = 4A$$

Ó

()

Addition of I SZ resistance will ablow to appear the input/port resistance.

O P
O PROPERTIES OF INDUCTORS
o Sine $V = L \frac{di}{dt}$
OFor de escitation, di =0,
V _L =0 → inductor is S.C for ideal D.C
© 2 du inductor never cellous sudden
chause in current through it.
0 600-
Juis is the principle of operation of
choke coil in flourescent dans p.
O If inductor wally allows sudden change
in earnered through it, we get theigh
in eument through it, we get thege in pulse valtæges appear across et.
3 du ideal inductor is a cailed wire
with zero internal resis., so power
with zero internal resis. so power dissipated is zero. Lires.
@ @ De relical inductor will have small
internal resistance & they are represented
o unternal most france below in which allow
as ceil showen below in which cellow
some power loses.
5 Inductor on available in diff. shapes
(5) Inductor one and lived on the
2 Interpretation
basis of the ripe of "or
on which winding

100 A	(6)	Inductors are used ces filter, current	Ó
		dimiting reactors, var don compensators,	①
		diniting reactors, var don compensators	0
		ete in communication 2 power segs.	0
			0
	(PROPERTIES OF CAPACITORS	0
			0
		A	0
İ	v	Since $i = C \frac{dV}{dt}$	Ö
ŀ	(1)	For DC esceitation, dV =0, ic=0.	\bigcirc
			0
		-> Capacitor acts as O-C for ielect D.C (in steady)	0
	(2)	Capacitor never allows sudden change in	.0
		vety across it.	0
		Machay Carrows	0
	(3)	I deal capacitors are considered to moun	0
		Ideal capacitors an considered to have infinite dielectric capacitance blu electrodes	0
		so dielectric losses are zero leut	0
-		so a man a balanization.	0
		Conduction is through polarization.	
		R>0 I	0
		@ 1. 1 calonaitors and considered to	0
O TOTAL DESIGNATION OF THE PERSON OF THE PER	(4)	have very large dielectric resis. blu electrodes so they under go losses.	0
THE PARTY OF PARTY.		have very large server losses.	O
A PROPERTY OF		electrodes so they ander go	0
CASSES PROFILE		• 1	0
***************************************		——————————————————————————————————————	0
-		Calcaiton are mulable in diff shapes &	0
-	(5)	capación de classified on the basis	0
-		Capacitors are available in diff shapes & sizes & they are classified on the basis of dielectric material blu the electrodes.	(((
The state of the s		Olieleen Contraction la financia la financ	0
dentalentes	(6)	they are well as from	0
STOWNS NOT THE	_	power jactor correcting equipments,	9

信服服务制限/新担制

of t=0 mssc

$$V = 2 \left[\frac{2-0}{4}\right] = 4V \text{ impulse}$$
of impulse of the series of the s

 \odot

[]
$$E_{\text{Stored}} = \int_{0}^{2} P_{L} dt = \int_{0}^{4} L_{1} \frac{di(t)}{dt} dt$$

$$= \int_{0}^{2} 2(3t)^{2} \frac{di(3t)}{dt} dt + \int_{0}^{4} 2.6 \frac{di(0)}{dt} dt.$$

$$= 9 \left[t^{2} \right]_{0}^{2} = \left[36 \right]$$

O .

 \odot

 \circ

 \bigcirc

()

 \odot

 \bigcirc

 \mathbf{O}

 \circ

NOIE

On inductor stores energy for some time variance occurring et any instance in that alst. I retain this energy as doing as excitation is given.

So energy stored here upite first 4 sec is the energy stored cet the 4th sec

$$E_{L} = \frac{1}{2}Li^{2} = \frac{1}{2}(2)(6)^{2} = [36]$$

$$u \leq t \leq 6$$
 (i(+)-0) = $\frac{(6-0)}{(4-6)}(t-6)$ \Rightarrow i(+) = -3t+18

In the above problem adding the limits. from 4 to 6, we get 96 + S(-3++18) Olt. 0 \bigcirc 96 + \$9 \6(t^2-12++36) clt. 96 + 24 O \bigcirc 1205 0 Estored = 36+ (-3++18) d (-3++18) at Estored = 36+ ()= 36 + 18 (-1+6) (-1) (-1) at 0 0 0 1. Ealsorbed = 120 J Ceq = 2C x 2C 0 TZUF TZUF, TGUF, 0 (eq = (2+2)x4 + 2) series (3UF) 0 0 4×3 = 12 UF 0

O 1) I hree capacitos on ananged in fig. as \odot shown delow. The value of oltgs \bigcirc in Iracket in dicates their breakdown O ultog dimit. What the mose oltg upto which each entire n/w can work w/o breakdown of any capacitor. & ⊕ . cherce determine max. storage charge \odot X ZUF(2V) SUF(5V) Y in the nlw. **(**) ... For 10115 V = 10V lowie (101) For 5 elf V[-7] = 5 0 → V= 17.5 V For 2MF V[==] = 2 ⇒ V= 2.8 V .°. Vmax = 2-8 V Here Ceg = 10 + 10 = 80 UF 80 × 28 4 = 32 UC quax = Ceq Vinax = O 2) I wo capaciton of 1 UF & 2 UF one O O Connecté d'in series across a 30V DC source. Find their steady with & charge on each. Now if these 2 0 Capacitors an disconnected from supply 2 connected with like polonities O together, nous determine steady state 0 veteg & charge on it each

 $V_{14} = \frac{30(2)}{3}$ 20 V \bigcirc \odot $V_{2}u = \frac{30(2)}{3} = 10 V$ 0 \bigcirc 92m= 2×10 = 20 MC Tip = 7 × 10 = 20 11C \odot In current electricity is current is equal 0 in series connected elements then in \bigcirc static electricity the charges will be \bigcirc equal same in series connected capacitons. \odot 0 0° 91 = 92 = 20 UC. \bigcirc 0 Here, $V_1 = V_2 = V$ \odot \bigcirc $\frac{dl}{Cl} = \frac{dr_2}{C_2}$ \odot \odot From law of conservation of charge \odot 0 9, + 92 = 0 1, 9,+29,= 40 \bigcirc 0 \odot \odot \bigcirc 0 0 Determine steady stale vitys across 0 each capacitor & 0 energy stored in the 0 each 0 0

$$R^2 = \frac{1}{40M} = 25 \implies R = 5 \Omega$$

STEADY STATE ALC circuit Analysis:

Radion

Vm V= Vm Sinut

Pegre

0

0

O -

(1)

 \bigcirc

 \bigcirc

()

 \mathbf{O}

0

O.

0

0

0

0

Vm -> amplifued W-> ampulos fung. (rad (se.) W=272t = 272

Vm Ta Jan wit

Time

V = Vin sm (272-2)

Power treg-ro 1/2 => t= to = 20 wer

1T = 2TT = 360' = 20 ms,

 $V = |V_m| \angle 0'$ $V_1 = |V_m| \angle \Phi$

V2 = 1 Vm/ L-0

 \bigcirc

()

 \bigcirc

0

Phosor diagram Power factor D=0 VR Cos 0 = cos 0 = 1 (UPF) Pang = + S v(+) i(+) out Paug = Vm sinut * Im sinut = Vm Im (1-coszwt) = Vm Im _ Vm Im cos zwt Vary = $\frac{V_{\text{m}}}{\sqrt{2}} \cdot \frac{I_{\text{m}}}{\sqrt{2}}$ Vaug = VRMs IRMS watts. Inductor: Let I = In sinwt WLImcoswt $V = L \frac{d}{dt} (Im sin wt)$ = WLInksin (wt+90°) = WLIm sin(wt)[j] "Vetg is "joperator" times the V = jwlI current. $\nabla = +j \times LI$ i.e. V leads I by 90°

(<u>()</u>

O

 \bigcirc

 \bigcirc Where Xi=WL = 2TIFL 0 0 inductive reachance. 0.0 0 Ø=90° \bigcirc 0 \bigcirc 0 0 0 Power factor Phasor eliag 0 \bigcirc PF = cosd = cosqu' 0 1 90°. 0 0 0 · () Capacitor Let V = Vm sinwt 0 I = C dV I = Cd (Vm sinwt) = C·w Vm cos wt w C Vm sin (wt + 90) w c vm sin wt [j] = ; wc V

$$\overline{V} = \overline{\underline{I}}$$
 $\frac{\overline{J}}{\hat{J}} = \frac{-\hat{S}}{\hat{W}C} \overline{\underline{I}}$

where,
$$\frac{X_{c}}{\sqrt{\frac{1}{2\pi sc}}} = \frac{1}{2\pi sc}$$
 capacitive recevance

Phasor diag

Power factor

$$P.F. = \cos \phi = \cos 90^{\circ}$$

$$= 0$$

 \bigcirc

 \odot

0

0

0

0 -

 \circ

O Q

 \bigcirc

0

Q

O

0.

0

O, '

0

0

O

О

O

0

0

0

()

0 $COS \phi = \frac{P}{S} \Rightarrow P = COS \phi \times S = VICOS \phi$ watto \bigcirc 0 sind = QL => QL = S sind = VI sind wells. O Here V, I -> rms value \odot

Phasor diagram:

I lags V ly \$<90°

 \bigcirc

 \circ

 Θ

0

0

()

Series RC

impedance (SZ)

Power factor:
$$-\frac{\chi_c}{121}$$
 Sind = $\frac{\chi_c}{121}$

R-L-C circuit -V+VR+VL+Vc=0 V= IR+jXII-jXcI, VL & JXL $\nabla = \overline{I} \left[R + j \left(X_2 - X_c \right) \right]$ ve T-jXc Z=R+j[X1-XU Men (<u>)</u> Xnet -> net reactances p = tani | XL-Xc | 121 = 1 R2+ (XL-XS) net impedance angle 0 Power factor Sind = 1x1-Xcl cos 0 = 171 Case 1 If X, > Xc => (General nature of electrical sys.) Ο. 0 Z= R+jXnet L> series R1 clet \circ I lags Very & < 90° (lagging PF) 0 \circ Case 2 If XL< XC $Z = R - j \times \text{net}$ Ly series RC clot I leads V ley & < 90° (leading PF) Tf XL=Xc Z = R => purely mesistive ⇒ 0° I in phase with V

```
Z=R±jX
         Z=R-jXc
                         Z= 4+13
①
O
     Y= 1 -> admittance (V) or 5
\bigcirc
()
     V = \frac{1}{4+i3} \times \frac{2-i3}{4-i3} = \frac{2-i3}{20}
0
()
    : Y=(0.16-j0.12) 2
\odot
0
\bigcirc
0
    | Y = G + j B |
0
O
       -> Y=G-jBL
0
            when Bi XL = WL = ZTIFL
O
                   La inductive susceptance (U)
0
        -> Y=G+iBc
                                    = \omega C = 2\pi f C
              where Bc = 1/wc
                     L> capacitive susceptance (v)
       impedance -> admittance
reactance -> susceptance
-O
```

 \bigcirc

 \bigcirc

Phasor diagrams:

(1) Series circuits => I - res'

(a) Series R-L clets:

$$V_{L} = +j \times_{L} \Gamma$$

$$= T \cdot \times_{L} L \cdot 90^{\circ}$$

 \bigcirc

 \bigcirc

 \mathbf{O}_{\perp}

()

$$\Phi = + cur \left(\frac{v_L}{v_{12}} \right)$$

(b) Series R-C clat

$$0 = \frac{1}{\sqrt{r^2 + \sqrt{r^2}}}$$

$$0 = \frac{1}{\sqrt{r^2 + \sqrt{r^2}}}$$

(c) Series R-L-C

$$V_{R} = IR LO$$

$$V_{R} = IX_{L} LQO$$

$$V_{L} = IX_{L} LQO$$

$$\phi = 4 \text{cm} \left(\frac{V_l - V_c}{V_{l^2}} \right) \quad \text{(Case 1)}$$

 \bigcirc $X_L = X_C \Rightarrow V_L = V_C$ Case 3: 0 0 0 0 0 \bigcirc \circ IVI = VR 1V1= JV12+(VC-VL)2 0 0 = 0° \$ = tour (Vc-Vc) P.F. = . cos 0 = cos 0 0 = 1 CUPF) Cos 0 = VR (leading) () \odot (Z) Parallel ckts -> V -> ref. \odot \bigcirc (a) Parallel R-L 0 0 0 II = V IR + I2 () IR= KLO \$ = tem (Ic) 0 I' = X = X Fdo, cost = IR/I (lagging) 0 (b) Parallel R-C |I|= JI2+(Ic-IL)2 d=tani (Ic-I) IR= KLO $\cos \phi = \frac{LR}{T}$ Ic= V/-jxc= /x (leading)

 \bigcirc

0

O

0

0

 \bigcirc

O -

0

() (1)

◐

 \bigcirc

0

() ()

()

0

0

0

 \mathbf{O}

0

0

(ase(2): XL<X(>) IL>Ic

$$Cos\phi = \frac{IR}{I}$$

RMS value / True / Effective value: -

It is that steady value of a time varying very or current waveform which could produce the same of heat as given by the original waveform for definite period of time.

Vrms = \frac{1}{T} \sum_{0}^{T} [v(t)]^{2} dt

1 Tirms (mat)

0

О

0

0

 \odot

 \bigcirc

Average value/Mean value

It is that steady value of equivalent walve of time varying relief or current waveform which could develope same amount of charge as given by the original waveform for a definite period of time in a clet.

0 Symmetry: IAI = IA21 => Symmetrica(1 1A.1 + 1A.1 Asymmetrical \bigcirc 0 +ve area = |2 x 2 = 4 -ve area = | H x (-1) = 4 \bigcirc => Symmetrical ()()The average value of any symmetrical waveform for one full sycle is \bigcirc \bigcirc always zero. \odot (a) For symmetrical waveform: Varg = { 0 -> jull cycle \frac{1}{(\tau_{12})} \frac{\tau_{12}}{\tau_{12}} \frac{1}{\tau_{12}} \frac{1}{\ . () () asymmetrical waveform: Vary = + 5 v(+) dt -> Full cycle

	(
Peak factor / Crest Factor:	0
	0
= Vmax	Ö
VRNS	0
	0
Form Factor / Shape Factor:	0
= VRMS	(O) (-
1/2.2	0
Vave	
Peak to Peak value:-	0
	0
Vp-p = Vmax - Vmin	0
r	
Note:	0
Most of our electrical utilities application	0
amobres heat generation so we talk	0
Due solves in general.	0
og: - 1 A, Domestic supply in India	0.
og: - I P, Domes H (supply)	0
= 230 V -> RMs value.	9 '
Je laine like lootten charging	©
flowever applications like battery charging	(a)(b)(c)(d)(d)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)<l< td=""></l<>
electro plating, electro regilling pictures,	0
involves charge, so me calculate ang.	0
	0
values.	0
Standard waveforms:	0
	0
VRMS = K F.F = 1	Ó
1,1,1	0 .
	8
P.F.=1	
	_

IRMS =
$$\frac{I_0}{J_2}$$
 I avg = $\frac{I_0}{Z}$
P. F = J_2 F. F = J_2

()

0

O

 \bigcirc

0

 \bigcirc

O -

 ${}^{\circ}$

 \bigcirc

0

()

0 \bigcirc

ഠ

 \bigcirc

 \mathbf{O}

 \bigcirc

 \odot

0 \bigcirc

0

↶

$$V_{RMS} = \frac{k}{\sqrt{2}} \quad V_{QMg} = \frac{k}{2}$$

$$P. F = \sqrt{3} \quad F. F = \frac{1}{2}$$

$$V_{PP} = k$$

$$VRMs^{2} \frac{k}{\sqrt{3}} Vorg = \frac{k}{2}$$

$$P.F = \sqrt{3} FF = \frac{2}{\sqrt{3}}$$

$$VPP = k$$

$$PF = \sqrt{3}$$
 $FF = \frac{2}{\sqrt{3}}$
 $V_{PP} = 2A$

AC Analog Meters Moving Iron type \bigcirc RMS values DC Analog Meters PMMC Type Average value Rectitier Type O ()[final] = [Avg.] x F.F. value] x F.F. (of sinusoidal waveform) 0 -> Practical waveforms are not std. So, we use Fourier series esepausion O ٠ () to eschress these practical why & current navejonns int terms of cosine. Sine (or) v(+) = Vo + V, sin w+ + V2 sis 2 wt + Vary = Vo 0 () Vrus = $V_0^2 + \left(\frac{V_1}{J_2}\right)^2 + \left(\frac{V_2}{J_2}\right)^2 +$ - 🔾

$$I(t) = I_0 + I_1 \cos(\omega t - \phi_1) + I_3 \cos(3\omega t + \phi_3) + \dots$$

$$I_{avg} = I_0$$

$$I_{RMS} = \int_0^2 + (I_{\sqrt{2}})^2 + (I_{\sqrt{2}})^4 + \dots$$

$$I_{avg} = I_0$$

$$I_0$$

Avg. power is any a value of as power waveform by itself the product of why & current woweform. 0 This any power excist in resestive part of the new which is the consumable convertible part. So, simply any power means active power in watte \bigcirc -> From power Dle any power/active power for any combination of load can be expressed as. P = Vrus · Irus Cost 10 + 552 cos wt + 352 sins wt 5Jz sin (90°+wt) + 3Jz sin3wt \circ 0 \odot VRMS = (100 + (5) 4 (3) $=\sqrt{134}=11.57$ Varg = 10

3)
$$I(t) = 10 + 7 \cos(\omega t - 10^{4}) + 5 \cos[3\omega t + 30^{4}]$$
 $Iavy = 10$
 0

 \circ

0

()

0

േ

$$\begin{array}{lll}
 & \sqrt{RMS} = \sqrt{\frac{1}{4} \left[\int_{0}^{2} (st)^{2} dt + \int_{0}^{4} (st)^{2} dt \right]} \\
 & = \sqrt{\frac{1}{4} \left[25 \left(\frac{8}{3} \right) + 1000 \times 2 \right]} = \sqrt{66.66} \\
 & = \sqrt{\frac{1}{4} \left[25 \left(\frac{8}{3} \right) + 1000 \times 2 \right]} = \sqrt{\frac{66.66}{2}} = 33.33 \text{ W}$$

$$\begin{array}{lll}
 & > \sqrt{\frac{1}{2} \left[25 \left(\frac{8}{3} \right) + 1000 \times 2 \right]} = \sqrt{\frac{66.66}{2}} = 33.33 \text{ W}$$

$$\begin{array}{lll}
 & > \sqrt{\frac{1}{2} \left[25 \left(\frac{8}{3} \right) + 1000 \times 2 \right]} = \sqrt{\frac{66.66}{2}} = 33.33 \text{ W}$$

$$\begin{array}{lll}
 & > \sqrt{\frac{1}{2} \left[25 \left(\frac{8}{3} \right) + 1000 \times 2 \right]} = \sqrt{\frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right)$$

9) If a current of ilt) = 5 cos (1000 t + 100°) A is flowing through an impedance of (u+js) S. the avg. power is ___?

0

0

() .

O

0

$$i(t) = 5 \cos(1000t + 100^{\circ})$$

 $x = 4 + j3 \implies R = 4$
 $x_{L} = 3$

Pary = + 5 v(t)·i(t) alt -> excist any for resistive element -> active power.

So,
$$Pavg = (irms)^2 \times \mathbb{R}$$

$$= (\frac{5}{\sqrt{2}})^2 \times 4$$

$$= \frac{25}{2} \times 4^2$$

$$= 50 \text{ W}$$

Onet + Oz - Oc

0

()·

 \odot

 \odot

loop

O .

 ${}^{\circ}$

 \bigcirc

```
Q_L = I_L^2 \times_L = \frac{V_L^2}{x} = V_L \cdot \overline{I}_L
         = (4.42)^{2}(6) = (25.44)^{2} = (25.44)(4.42)
         = 107.86 VAR (absorbing)

    \Theta_{c} = \frac{1}{2} \cdot \chi_{c} = \frac{v_{c}}{\chi_{c}} = \sqrt{c \cdot \chi_{c}}

          = (4.42)^{2}(3) = (12.72)^{\frac{3}{2}} = (12.72)(4.42)
             53.93 VAR'S (generating)
   1. Quet = 107.86 -53.93
             = +53.93 VAR'S (absorbing/lagging)
     Total Power.
       S = V_s \cdot \overline{L}_s = |L_s|^2 Z = |V_s|^2
          = (21.21)(4.24) = (4.021)^{2}(5) = \frac{(21.21)^{2}}{5}
                              = \cos \phi = \frac{R}{7} = \frac{\Gamma}{5}
   (2) Power factor
                              = (05(36.36) = 4 = 71.91
                              = 0.8 (lagging)
   Also check;
                                         P = Scos d = Vs Is cos d
     121= JR2+(X1-Xc)2
                                       Quet = S sind = Vs Is cosd
      $ = tani (XL-XC)
151 = JP2+(Q1-Gc)2
     $ = tan (Q1-be)
```

Phoison agram Vs = 21.21 Look Ref 0 Is IR = I = Ic = d.42 L+36.86° A \bigcirc Normally we take I VR = 16.96 L-36.86°V as ref. but here we VL = 25.44 L 53.14" take Vs as nef, becog Vc = 12.72 L-126.86 V all calculations are den writ Vs. 10) Find Voc using mesh & model analysis. -[10 LO'] + 1 [I,-I3]+j,[I,-I2] $(1+j)I_1-jI_2-I_3=10$ 1 \$ 5130 A I2 = - [5 L30°] -- (2)

 \bigcirc

 $\Theta \mid$

0

() -

(

() -

 \bigcirc

0

 O_{\perp}

(

٠

0

0

$$2 I_{3} - ji \left[I_{3} - I_{2} \right] + i \left[I_{3} - I_{1} \right] = 0$$

$$\vdots - I_{1} + j I_{2} + (3 - j) I_{3} = 0$$

$$(i+j) I_{1} - I_{3} = \underbrace{10 - 5 L_{120}^{\circ}}_{12.5 - j 4.33}$$

$$- I_{1} + (3 - j) I_{3} = \underbrace{5 L_{120}^{\circ}}_{-2.5 + j 4.33}$$

$$(B)$$

```
(A) \implies (1+j1) I_1 - I_3 = 12.5 - j4.83
   (B) (1+i) \Longrightarrow -(1+j1) \boxed{1}, +(4+2i) \boxed{1}_3 = -6.83 + i \cdot 1-83
                            (3+j2) I_3 = 5.67-j2.5
0
    1. Is = 1.71 6-57.48° A
\odot
\bigcirc
              V2c = 2 I3 = 3.42 L-57.48° V
\bigcirc
\bigcirc
\odot
\bigcirc
     \frac{V_2 - 10}{1} + \frac{V_2}{i} + \frac{V_2 - V_3}{-i} = 0
0
\bigcirc
     V_2 - 10 - j V_2 + j (V_2 - V_3) = 0
()
0
\odot
     V_2 - jV_3 = 10
0
     -[5L30^{\circ}] + \frac{V_3 - V_2}{-i1} + \frac{V_3 - LO}{2} = 6
\bigcirc
0
          j(V_3-V_2)+(V_3-10)=5 L30^\circ
0
0
         -j2 V_2 + (1+j2) V_3 = 10 + 10 \angle 30^\circ
0
\odot
                                     = 18.66 + 15
\bigcirc
\odot
0
     2 x j 2 => j 2 V2 + 2 V3 = j 20
0
                   = -j2 V2 + (1+j2) V3 = 18.66 + 15
0
     (3)
                                      V3 = 18.66 + j5
0
()
\odot
    , 1. V3= 8.65 / 19.57°
( )
\bigcirc
     V_{2L} = \bar{V}_1 - \bar{V}_3 = 10 - [8.66] \times [19.57]
.0
            = 3.43 L-57.44° V
0
```


0 i'= 1.857 L-21.8° \bigcirc \bigcirc 2 5A only; 0 $i'' = 5230^{\circ} \left(\frac{2+i2}{5+i2} \right) = 1520^{\circ} \times (0.48270.2)$ \bigcirc 0 = 2.61 / 53.19' 0 11; + 13: = 3.1 \odot ٩ = 3.58 L 23.2° A \bigcirc ()(2) Therewin. () 1 ys / gryla \bigcirc 9 (3) \bigcirc ZIn=(2+j2) S \odot ()KVL -[10L0'] + VTM-(2+j2)(5L30°)=0 () () · VTH = 19.32 L 45° 0 . 🦪 $T = \frac{19.32 \angle 45^{\circ}}{5+j^2}$ ()() ()= 3.58 L 23.2° A 0 0 0 (3) Nortons $T_N = \frac{10 L0'}{(2+j2)}$ 4 5 L30' = 1020° +4.023+2.5j 0 = 6.83 LO3,2° A

This clet is multi frequency esected.

So in turn domein only superposition theorem can provide the scalution.

But we can also do this problem in freq. domain by supplying Laplace Transforms.

①
$$30 \text{ V AC Source only.}$$

$$T' = \frac{30 \text{ Z}^{\circ}}{(1+j3) + [2l|j1]} \cdot \frac{2}{2+j1}$$

$$= 6.63 \text{ L} - 96^{\circ} \text{ A}$$

$$\boxed{2} \quad 10V \quad DC \quad source \quad ody$$

$$\boxed{1}'' = \frac{10}{2} = 5 A$$

By SP1 I = 5 + 6.63 cos (2t-96') A

0 A

()

i(🗘

 $\langle \zeta \rangle$

 \bigcirc

0

0

()

O

 \bigcirc

()

()

(**3**

(10/20°) (30/40°) 50/70) \bigcirc = $\int 6 \angle -10^{\circ} = \int 6 e^{-510}$ \bigcirc 1 = 56 e = 56 L-5i 0 O Theorem 5 O ~ Maximum Power Transfer. theo. Though there are 3 types of physical \bigcirc power existing in AC steady state n/ws \bigcirc the power that is consumable / \odot utilizable / convertible in any other ${}^{\circ}$ 0 form is Active power or Real power in watts. Lo mose power transfer theo. ès confined to active power only \bigcirc **(**). \circ \odot General case: Vs D Zi Re+i Ke In this case both 0 the resistive part 2 reactive part are controllable. Since our target is the mascimise 6 active power in the load. (ERe), here if we can compensate the net reactance 0 so Total pouver = Active pouver \bigcirc so man occurs en the load if load

impedance is complex conjugate of \odot equivalent source impedance seen 0 ly it. i.e. Ze = Zs = Rs-ixs & Pmax = 1/s/2 W rms value; (heat concept for power) In Gieneral: u/w ZZL Punex occurs in the load when $Z_e = Z_{TH}$ and. Punex = 1/2 / Like RTM = Real part [Zrn] 0 Special case: - (a) . Rs+iXs 0 0 Since load is perely resistive leut source 0 her some reachand.; which 'ktere we cannot ourcei'al reactive pouver in the n/w since · () phore balancin y of empedances is not possible so to eschrect masc. 0 0 power atteast balance the magnitude 0 So Pinax occurs in the load. 0 Re= 171 = JR3+X3 0 Now to calculate Pmax, resulustitute 0 0 the calculated radiue of Re to find rms current in it. Then calculate 0 Puax = Irmx Re

Proof of the sear by clet
$$\Phi$$

Short cut $10-S=5-3$

Exact proof

Fig. $R=2\times 2$
 $R=2$

 \odot Units of S*: volt-Ampère (VA's-9 0 We can also write. 0 but generally end unto 0 0 V-s is the cause & 0 I -s is the effect. 0 LX:7 0 Lu one element V= [V] L X I= III LB > If we want to calculate just. 0 V.I = IVI III (X+B X 0 0 -> Con-ect way of ealculating V. I* = (V) (I) L &-B 0 IVILX T= 1I12-B 0 -> just VI product IVIIII L X-B X 0 0 Consider 5* = V I* = IVIIIILX+B 0 0 0 0

•

v(t) there, v(t) = 20+j12Calculate: P,O. in the n/w V(+) -> 20+j12 -> 2332/30.96° V i(+) -> 5+j4 -> 6.4 L 38.65° A Complex Parrier 5 = VI* 149.248 L-\$ 7.69° = 147.9 -19.97 j VA For our n/w: P=147.9 watts. Oc= 19.97 VAR's (generating.) 2) If VR=5V, Vc= 4sin2t V, VL= 9. $2 + \frac{VR}{B} = \frac{dV_c}{dt} + \frac{1}{2} SV_L dt$ $\frac{1}{2} SV_L dt = 2 + 1 - 8 \cos 2t$ $V_L = \frac{d}{dt} (6 - 16 \cos 2t)$ $2A = \frac{d}{dt} V_R V_L$ $2A = \frac{d}{dt} V_R V_L$ $2A = \frac{d}{dt} V_R V_L$ $2A = \frac{d}{dt} V_L$ VL= 32 sin2t V J. iR=(4e-3t+3e-4t) A Dizcos(wt-D) A

K.CL iz(0) = 1A. d = ?. KCL: iL+12cos(wt-0)=iR ico) +12 cos (-d) = 4+3 1 + 12 cos 0 = 7 $\cos \phi = \frac{6}{12} = \frac{1}{2} \implies \phi = 60^{\circ}$

().

0

Ó

0

9.

12 v, 62 j8 vz 52 \$ 551 @V \$ 2060° & \$152 0 0 () Il pouver dessipated en 6 52 resis. is \bigcirc $^{\circ}$ OW then wheet is V'. Posz = OW => I across 652 resis 0 \bigcirc (sam in mag. & phoese). 0 \odot $V_{i} = 2010^{\circ} \left[\frac{\dot{3}1}{1 + \dot{3}1} \right] = 1052 LL_{i}5^{\circ}$ () $V_2 = 1052 / 25^\circ = V \left[\frac{5}{5+2} \right]$ \bigcirc 0 2052 Lus A For what clet frequency the n/w acts ces release (1) TIF (7) Current source blue
BZeg Current source blue - () 0 I deal current source => Zeg = 03 0 Zeg= (500) 11(-1) 9 => w2=16 => [W=4 - 🕖

© O

0 0

0

OO

 \bigcirc

0

0

O

Q

0

O

0.

 \mathbf{O}

0

О

0

0

0

Q

0

&

 $V_{IM} = (50L6^{\circ}) \cdot \left[\frac{5+j5}{\#55} \right] = 50J2 \angle 435^{\circ} V$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$ $0 \cdot V_{IM} = \left(\frac{50J2}{4X5} \right)^{2} = 250W$

© © © O

© • © • ©

0

0

0

0

0

. (9) Find I. $I_1 + j I_2 = 0$ $-I_1 + I_2 = 1$ $(1+i) I_2 = 1$

8 91. V. = 220 V, V2 = 122 V, V3 = 136 V

 $I_2 = \left(\frac{1}{1+i}\right) A$

(c) Find Load Power Jackor

(b) If $R_L = 5 \Omega$, what is any power in the load. (i.e. active power in watts)

Load Power factor: cost = cos (V3, I)

N/w Power Jachon: cos 0 = cos (V, I)

-> This is based on phasor diagram:

Formula: RT = \ R_1^2 + R_2^2 + 2R_1R_2 Cos(R_1, R_2)

·' 220 = \((122)^2+(136)^2+2(122)(136) cos \$\psi_L\$

cos de = 0.45 (layy)

0 Ó 0

04

O

0

~ O

0

0

0

О

() ^

6

a

0

0

0

0

(

8

Now
$$R_{L}=6SL$$
 $P = \frac{11}{12} = \frac{11}{2}R = \frac{11}{12}III$

also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$

also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$
 e also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$
 e also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$
 e also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$
 e also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$
 e also; $\cos \phi_{L} = \frac{11}{2}R = \frac{11}{2}III$
 e also; $\cos \phi_{L} = \frac{11}{2}III$
 e also, $\cos \phi_{L} = \frac{11}{2}II$
 e also, $\cos \phi_{L} = \frac{11}{2}II$
 e also, $\cos \phi_{L} = \frac{11}{2}II$
 e also, $\cos \phi_{L} = \frac{11}{2}III$
 e also, $\cos \phi_{L} = \frac{11}{2}II$
 e also, $\cos \phi_{L} = \frac{11}{2}I$

Verify Yellegens theo. \bigcirc \odot Here we verily T \$3 D \$5 L30 О instantaneous power so we find complex power st in each element. V I I I VI* Remarks Element 10 60° 2.23 6-145.4) . 22.3 [145.4° Source -> Apparent 10 L-3.63 5 L30° (51-30) 50 L-33.63° Source -> Apperant 8.34 L26.3i 2.78 H26:3i 23.18 Lo. Sint -> Active \circ ヤ 4:462-55.4° 2.232-145.4° , 9.94 L90° Sint -> TReactive power (+ Q2) 5L-60° | 5/30° (5/30) 25 L-120° sink > Reactive power (-Oc) 0 \odot -[1010] + j2 I, +3I, +3 (35 230) =0 : (3+j2) I, + 1/2 Z.99 + 7.5j=0 ୢ $T_1 = \frac{10 Lo^2 + 5 L 30^2 2.99 + 7.5 i}{3 + i 2} = 2.23 L - 145.46$ 0 O \circ IR= II+ 5/30° = 2.78/26.31° 0 0 1/R = 3 (IR) = 8.34 L26.31 IL = 2-23 L-145-40

 $V_{R} = 3(I_{R}) = 8.34 L^{26.31}$ $I_{L} = 2.23 L^{-145.4^{\circ}}$ $V_{L} = (j_{2}) I_{L} = (2 L^{90^{\circ}})(2.33 L^{-145.4^{\circ}})$ $= 4.46 L^{-55.4^{\circ}}$ $V_{C} = (-3) I_{C} = (1 L^{-90^{\circ}})(5 L^{30^{\circ}})$ $= 5 L^{-60^{\circ}}$

To verify Tellegeus Theorem; SVI* + source = SVI* |sink \bigcirc 2US = [22.3. [145.4°] + [50 2-33.60°] \bigcirc = 27.7 L-32-8° / VA' \odot O RNS = [23.1820] + [9.94290] + [252-90] 0 = 27.7 [-32-8" VA's \bigcirc 0 12) Find the shift in the neutral wity \bigcirc desing Millmanis theo. for the embalanced 0 \bigcirc 3-phoese elst showen. () \mathbf{O} 0 \circ VNO (Zju) 0 100/-240 O 0 0 0 1 2-12 DV=NNO > shift in nautral 0 0 (10060) (1006-120) (100 L-240) . 0 5 + J + 1 2-12

Compensated N(w)

$$54.22140.6$$
 $1 = \frac{54.001240.6}{3+[(2+j2)/(-j1)]}$
 = 18.96 L78° A

 \bigcirc

0

0

(2)

() -

0

()

() -

0

()

0

()

 \bigcirc

()

0

() .

0

(1)

0

0

0

 \bigcirc DUALS & DUALITY \odot \bigcirc Two clets one duals of each cether if the \bigcirc 0 mesh eq that characterize one of thom 0 hers the same methematical form as \odot \bigcirc nodel eq that characterize. ◌ the ord other. 0 Principle of Duality: 0 \bigcirc Identical behaviour & pattern observed 0 \bigcirc bet 2 ultys & currents of 2 ()independent ulus illustrate the 0 0 priciple of Duality. 0 0 0 0 Wodal-KCL 0 Mesh-KVL \bigcirc - I's + IG+IC+IL=0 -Vs + UR+VL +Vc=0 O \bigcirc (Is=V-G+CdV+1-5Ndt Vs= iR + Ldi + L Sidt

(3)

٠0

 \bigcirc Some Dual Elements $\frac{di}{dt} \longleftrightarrow \frac{dv}{dt}$ O V 😂 I v(+) -> i(+) Snat Sidt Vusinut - Insinut 0 · 0 · C -> 5 · C \bigcirc R Co **(**)^ Therenin -> Nortous L C \odot KUL => KCL * 0 = 9 €)-Series -> Parallel Y Los D O Mesh es Nody 0 cutset -> Tie-set T 0 Z Tree - Co-Tree \bigcirc 0 X ~ B *Twig -> Link / chord ()O- \mathbb{Q} S/w in series (>> 5/w in parallel \mathbf{O} (getting opened) \bigcirc (getting closed) \circ 2V2(->> 21x O direction polarity e-0 (current) (valtage) EJ Dual of 252 resistance => 2 Seinens conductance

.

(a)

U

@

NETWORK TOPOLOGY GIRAPH THEORY Topology Topology is a branch of geometry applicable tee electrical clots where even by beending, stretching, swaping, thrashing, tieing in knuts, incibing ilst upsoli down, etc will not disturb the clet preparty. \$30 E217 ナル· ◆SA

=> Shape of a new ideally will circuit analysis.

Giraph & graph is a skeleton representation of a nlu where every element is suppressed by its nature 2 represented as a simple line - segment.

0 NOTE

-0

0

0

· O

Ideal vity source -> S.C. current

Sub graph some modes & dranchs & sub-graph consists of of main graph. Even a single edge con le subgraph of the main graph Directed Graph \odot O A graph is said to be directed if every eage is given a référence dir which is \odot in dicated ley placing an arrow on every 0 0 branch. O This reference orientation need not necessarily indicate current dir ". \mathbf{O} \odot ۹ \mathbf{O} Connected Graph. O A graph is raid to be connected if there O escist atteast one path from every ാ to every other mode. 0 \mathbb{O}

Complete Graph / completely Connected Graph. A graph is said to be complete graph 3 a direct path from every mode its every other nocle Unconnected Graph:) Wireless Communications nows 2) Magnetic circuits VO Light SPL Graph 0 1 nodes

 \odot

0

The mini no of edges to make a graph complete with n' nocles is TC2

 \bigcirc A Tree is a seel graph of main graph which connects all the nodes without \odot \circ \bigcirc forming closed locets. \bigcirc The rank of a tree with 'n' modes is (n-1). \bigcirc \bigcirc Aug corresponding tree of a given graph with 'n' modes will have (n-1) edges. 0 No. of trees = $\begin{cases} n^{(n-2)}; & \text{for } n > 2 \rightarrow \text{complete} \\ & \text{9raph only} \end{cases}$ $\det \left[[A_i][A_i]^{T} \right]; & \text{for any graph}$ 0 \odot \circ \circ where, [Ar] = Reduced Incidence Matrix The branch of a tree is specifically called as a Twig indicated by thick line segment 0 Aug tree with 'n' nocles hers (n-1) twigt. Co-Tree (Compliment of Tree) O Their set of ileranches other than Tree branches in a graph collectively John a co-tree Link / Chord: The branch of Co-Free is shecifically called as a link which is indicated by dotted 0 line. For any corresponding to Tree 0 me have b-(n-1) links.

 \bigcirc Incidence Matrix [A] \odot It is the matrix that gives relation 0 \odot blu no of nodes & no of dranches & \bigcirc the orientation of a particular dranch wirt a mode. vertices edges (nxb) og (vxe) The order of this matrix is \bigcirc \bigcirc The rank of Incidence Matrix with 'n' modes is (n-1) The elements of this matrin [A] = [ail] = [ail] \odot where dis= +1 if it branch is incident a with it moche O 2 oriented away from it. ; if in cidented towards. aij = 0) if not incident 0 \circ Incidence Matrix Construct the complete for the oriented graph showen dellow: **20**1 0 [A] = @ O **D** +1 The algebraic sem of the elements of every column vertically is zero \bigcirc 0

i) The determinant of Incidence Matrix of a closed do loop graph is ____ \bigcirc 0 \bigcirc Incidence matrix of a closed loop graph ()is of order nxn $\begin{bmatrix} E^{cl} & O & C & D \\ C & C & D \\ C & C & D \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ def 1A1 = -1 (-(-1)) + 1(1) 3) In the Jucidence Matrices of 2 0 independent now graphs an identical 0 they they sere said to obly the 0 \bigcirc principle of Isomorphism. \bigcirc O Keduced Incidence Matrix [Ar] O . I one of the mode in a given graph is 0 Considered ces reference & that particular vou is neglected while writing the incidence inatrix, then it is a reduced un ciclence meetrix, its order is (n-1)/6 0 (n-1)xb In comparter methods of electrical chet 0 analysis by considering Ar the memory space requirement & strevation time for solutions will be decreased. Eg grøm abæve graph if noche @ is considered as neglected, then the reduced incidence 0

0

()

0

0

. ()

0

2) Construct the oriented graph of a niw whose

3) The no. of possible trees pour nlw

 \bigcirc

()

 \circ

 \bigcirc

0 \bigcirc

O . **(**)

0

0

0 0

0

Concept of Fundament Loops A TIE SET Currents: :- \bigcirc Fundamenteel loops are closed parts of the graph which are formed by only one link & nest of them as twigs. The no. of F-loops for any given graph = no. of links i.e. b-(n-1) - () 0 These jundamental loops eurrents an called Tie-set cement & their orientection is governed by the link No. of f-loops = 6-(4-1) = 3 0 $fl_1 = a,b,e \rightarrow i, \lambda$ flz = b,c,d -> iz 2 flz = def -> (i3) 0 fli=abe}->i,} fli=abe -> i, 2 fl, = abdf → id glz = acde }→ iz flz = des > i2) fl2 = ac5 → i2) 0 flz = a c3 > i3) flz= acf -> i3) fl3 = def > i3)

Tie-Set Matrix [M]:-It is a matrix that gives the relation blu the Iranch currents & Tie-set currents where every branch current can le expressed in terms of lie-set currents. The order of this matrix is (links) x (branches) i.e. [b-(n-1)] x b The no. of Tie-set Matrices possibles for any graph = no. of Trees. The elements of this matrix [M] = [aij] links x @ branches @ where aij = +1; if j'y branch current is incident with it lie set curent 2 oriented in some clis aij = -1; if incident & opp. aij = 0; if mot incident. 1) Construct the Tie-Set Matrix & the write the equilibrium eq' in std. KVL John for new graph shown below by Considering a.b., cas tree branches. a by dre => chare No. of. f. looks = 5-(4-1) fh > a,c,d -> i,2 fles a, b, e, e -> i2)

 \bigcirc

 \odot

()

 \bigcirc

O ·

0

() -

()

 \bigcirc

 \bigcirc

 \circ

0

0

 \bigcirc

0

 $[M] = i_1 [+1 0 -1 +1 0]$ $i_2 [+1 +1 -1 0 +1]_{2 \times 5}$ · Equilibrium Equations \bigcirc \bigcirc Let ja, jo, je, je -> Branch Currents 0 Va, Vo, Vc, Va, Ve ---> Brauch voltages \bigcirc 0 Set I KVL [->] \bigcirc $[M][V_b] = [0]$ ()0 $\begin{bmatrix} 1 & 0 & -1 & 1 & 0 \\ 1 & 1 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} V_{c} \\ V_{b} \\ V_{c} \\ V_{d} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{2\kappa_{1}}$ 0 \bigcirc О Set I Relation blu (j) & (i) [1] - () [M] [I,] = [J6] 0 0 $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ $\begin{vmatrix} i_1 \\ i_2 \end{vmatrix}$ $\begin{vmatrix} i_2 \\ i_3 \end{vmatrix}$ $\begin{vmatrix} i_2 \\ i_4 \end{vmatrix}$ $\begin{vmatrix} i_2 \\ i_4 \end{vmatrix}$ $\begin{vmatrix} i_2 \\ i_4 \end{vmatrix}$ $\begin{vmatrix} i_3 \\ i_4 \end{vmatrix}$ $\begin{vmatrix} i_4 \\ i_6 \end{vmatrix}$ $\begin{vmatrix} i_4 \\ i_6 \end{vmatrix}$ $\begin{vmatrix} i_5 \\ i_6 \end{vmatrix}$ $\begin{vmatrix} i_5 \\ i_6 \end{vmatrix}$ 0 0 0 \bigcirc () \bigcirc $\begin{bmatrix} 1 & + 1 & 2 \\ 1 & 2 \\ -1 & -1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$ () 0

În graph theorey if graph is given, we consider every edge as a doud set of \bigcirc 0 reference Cby desceult) is + Vb (oncept of cuit-set: ed cut set represent set ey branches which when removed in a graph \bigcirc \circ con de divided into 2 parts. \bigcirc Not The ico. of cut-sets sembly represent the no. of possible evceps illust a graph. Com be divided in 2 ports. ()0 Which of fall set of bremches represent a proper cut set for new graph shown **(**). 0 delow. de Dacd \mathbf{O} \odot

 \odot Concept of fundamental loops of \bigcirc Cut-set voltages: \bigcirc Jundamental aut set on cut through of a graph which can divide in Ð 2 parts in any dir but in path of cutting it should cut only one twing & \bigcirc \bigcirc rest of them as links. \circ The no. of f-cut-set = no. of twigs 0 (ie 'n-1) \bigcirc These f-cut sets form isopotential lines 2 their voltages are termed ses sut set \bigcirc 0 0 ultges 0 The orientation of f-cut sets are governed by the twig in it. 0 6 0 d 3 0 \bigcirc No. of Loops = 1,-1=3 0 GRAPH fc, -> 0, b, c. -> e, fc2 > c, d, f -> E2 () fc3 -> a,e,f-> 61 0 0

; if most incident. 1) Construct the cut-set matrix & write the equilibrium eq in std. KCL form for the oriented graph shown 0 below by considering branches a, b, c as tree branches.

e, b ez

No. cy factit sets \odot 5C,= a,d,e → e, f(2 = b, e → e2 tc3 = c,d,e -> e34 e, 1 0 1 0 0 1 +1 -13×5 0 1 ja, jo, jc, jd, je -> Branch curents Va, Vb, Vc, Va, Ve -> Branch witigs. [c][T6] = [0] 0 -1 -1 1 3x1

$$\begin{bmatrix} ia - ia - ie \\ ib - ie \\ ic + ia + ie \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \end{bmatrix}$$

$$[c]^{T}[e_{t}] = [V_{6}]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}_{3 \times 1} = \begin{bmatrix} V_q \\ V_b \\ V_c \\ V_d \\ V_e \end{bmatrix}_{5 \times 1}$$

()

0

O

() ()

0

()

- 2) Montion the relation blu Tie-set 8 eut-set matrices.
- For the same given intw; for that particular particular tree, for that particular on outstion only we can compare Tie-set & Cut-set matrices.

Tie set Links -> KVL -> 0 Matrix (f-loops) 0 \bigcirc 0 -1] [1 0]
1 -1] [0 1] 0 0 M twigs 0 0 0 0 Cut-set -> Twigs KCL -> Noclad Matrix () e, [[1 e₂ [[0 e₃ [[0 0 0 [-1 -1] 0 0 0 0 \bigcirc Utwips 0 - () also, 0 [Mtwgs] = - [Clinki] 0 \mathbf{O} E [Clinks] = - [M twiss]T 0 0

0

(3)

Application of NIW Topology in Electrical cht Analysis: -Concept of stat branch: Solution by KVI Eq [TIE-SET] Vb = Zb[jb+Is] - Vs Impoclance Jorn But, [M][V6] =0 M2616 + M26 Is - MVs =0 BW, [M] [I,] = [T6] [M][Zb][M][[Le] = [M][Vs] - [M][Zb][Is] 0 Then branch curents can be calculated [M] [Ie] = [Tb] L> finer aus.

[II] Solution ly KCL Eg [Cut-set] Jb = Yb [V6 + Vs] - Is Admittance form. But, [c][Jb]=0 CY6V6 + CY6Vs - CIs=0 But, [C] [et] = [V6] [c] [Y6] [c] [e+] =[C] [Y6] [Vs] 0 Then branch voltges cen be determined by: [c] [e+] = [Vo] Ls final oursur July Hitute Solve the new to find branch currents leg writing the equ in stel KVL form Solve the new to find all the Iranch vetey by writing equin stal KCL Jonn

$$[Z_{6}]^{2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 6 \times 6 \end{bmatrix}$$

$$\begin{bmatrix} \overline{1}_{1} \end{bmatrix}_{2} \begin{bmatrix} i_{1} \\ i_{2} \\ i_{3} \end{bmatrix}_{3\times 1} \begin{bmatrix} v_{5} \end{bmatrix}_{3} = \begin{bmatrix} +2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{6\times 1} \begin{bmatrix} \overline{1}_{5} \end{bmatrix}_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{6\times 1}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 & 2 & 0 \\
0 & 1 & 0 & -2 & 0 & -2 \\
0 & 0 & 1 & 0 & -2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 2 & 2 & 0 \\
0 & 1 & 0 & -2 & 0 & -2 \\
0 & 0 & 1 & 0 & -2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
5 & -2 & -2 \\
-2 & 5 & -2 \\
1 & -1 & 0 \\
0 & -1 & 0 & -2 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & -1 & 0 & -2 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
-2 & -2 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
-2 & -2 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 \\
1 & 2 \\
-2 & -2 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 \\
1 & 3 \\
0 & -1 & 0
\end{bmatrix}$$

[M][Vs] = () $i_{2} = \frac{4}{7} A$ $i_{3} = \frac{4}{7} A$. 0 Then, Branch currents can be calculated by [M] [I1] = [Tb] \bigcirc 0 0 Trincel Aus je=== , jr=0. CUT-SET [c][Yo][c][e,] = [c][Is] -[c][Yb][Vs]

Then, Branch ultops com le calculated lux [c] [e+] = [V6] Final Aus this indicates presence of source in branch Va = - 8 V V6=4V, Vc=4V, Ve = 4V , V== 0V 1) Which of the fall set of branches is need a tree for the graph shown below. (b) bcg4 (a) aghe e defg va) absg 2) No- of tress = 5 $\{ (\) \) \ (\)$ 3) For the oriented greeph shown below of no of trees = p & no. of cut sets = q. Hen (c) P=4 9=6 (a) P = 2, Q = 2(d) P=4 Q=10 (b) P=4 Q=4

-> Spanning grapes -> but not Tree -> Also Tree with n'nodes & 'b' branches. no. of node-pair voltages. $n_{c_2} = \frac{n(n-1)}{2}$ ELECTRICAL RESONANCE Resonance is the frequence of a clot I new when the clot operates at its natural frequence frequ . Under resonance total supply wity & supply annew one in phone. So, \$=0° & PF = (0s 0 = 1 (UPF) Aluder resonance the net impedence of the elect becomes purely resistive & max power will be transferred to the class from source

	0
- Resonance can occur in any electrical n(w	0
* Resonance can occur in any electrical n(w provided we have 2 similar but apposite	0
matured energy storage components 1:e. LSC	2,0
	O
→ Jo undergo a good observable resonance	0
for practical allegations in mode a good	0
for prochical applications ne need a good	0
quality in their energy storage component	₽©.
which is measured as Quality factor or figure of merit given by:	O
lique of merit quen lus ?	0
	0
Q-Jactor = 27 * Max. energy stored per cycle of supply Energy disscripated per cycle of supply	0
6- Jactor = 2T * of supply	0
Energy disscipated her cycle	0
[of supply	0
	0
In practical applications (0>10)	0
	0
De la	Q.
- Resonance phenomenon is well a	0
designing of passing filters, a unternous,	•
Resonance phenomenon is useful in designing of passing filters, & antennois, receivers, SONARS, etc.	9
	0
Element Q-Factor	0
Litten	0
	0
-eee-	
R R	0
	0
· wrc	0

 \bigcirc Q0= - 1- 1-0 0 $\frac{R}{M}$ d 0 0 0 \bigcirc () Q0= R 5 \bigcirc 0 0 0 (1) Series Resonance: 0 At resonance; w= wo 0 0 V & I in phase \$ = 0' ; Z=R But, Z= R+j[X_-Xc] but out resonance, met reactonne =0 - 🕥 0 $X_L - X_C = 0 \Rightarrow X_L = X_C$ 0 0 1. WoL = 1 00 00 = 100 wo = I ; fo = ITTLE HZ 4 0 Graph 1 Z Vs W 9

 \bigcirc 0 O. at Resonance w= 00 1X1 = 1X1 I Vel = I Vel O Q-Factor at Resonance. \bigcirc 0 Q = Wolf = Wolf \bigcirc 0 O \circ 0 Under series resonace net impedance min, so eurrent is mose, Hence it is called as acceptor cht. 0 At series resonce freg. it is ces if. 0 the total supply vety appears cerrons \bigcirc resistar: Hence series resonare is called vltg amplification cht. ()

Variation of voltages across passive elements with change in freq.

0

0

 \odot

() ()

 \bigcirc

0

 \bigcirc

()

()

 ${}^{\circ}$

 ${}^{\circ}$

 \bigcirc

()

 \circ

ൂ

The freq. at which mose, velty appears across capacitor

$$f_{c^{2}} = \frac{1}{2\pi \sqrt{Lc}} = \frac{1}{2\pi \sqrt{Lc}} = \frac{1}{2\pi \sqrt{Lc}} = \frac{1}{2\pi \sqrt{Lc}} = \frac{1}{2L}$$

趣

The freq, at which most, why appears across incluctor:

$$f_{L} = \frac{f_0}{\sqrt{1 - \frac{R^2C}{2L}}}$$

() From circuit ショ豆豆 0 \bigcirc 121= 12+ (WL-WC) \ R2+ (w2-1)2 \bigcirc 0 \circ III. = 1VI 0 0 0 1Iol = 1V So, Power transfer celso mascimum Po= IdR = IVIE at w=wo VR=IRR=IOR= IVI R= [IVI=VR \bigcirc 0 = jwol Io = + j. wol > IVI VL = +j XLI = +j [woL]VI => [VL=+jQolVI] [c] $V_c = -j \times_c I = \frac{-j}{w_o c} I_o = \frac{-j}{w_o c} |V| = -j \left[\frac{1}{w_o R_c} \right] |V|$ => [Vc = -i801VI] Q. -> vltg magnificati 0

Bandwidth:

Bandwickth represents the range of hequencies for which the power level in the signal is at half of the signal most power

-> Half of mose power frequiencies:

$$\frac{P_0}{2} = \frac{I_0^2 R}{2} = \left[\frac{I_0}{\sqrt{2}}\right]^2 R = (0.707 I_0)^2 R$$

w₂ -> wher cut-off / roll
off corner freq.

$$\frac{1 \vee 1}{\sqrt{R^2 + (\omega_L - \frac{1}{\omega_C})^2}} = \frac{I_0}{\sqrt{2}} = \frac{V}{\sqrt{2}R}$$

$$\omega_2 L - \frac{1}{\omega_2 C} \ge R - 2$$

()

0

e l o

. (3)

O

0

0

0

()

0

0

ه کی © ـ

0

0

0

0

0

0

6

@

9

0

0

Bandwidth: B.W & R BWI is independent $W_2 - W_1 = \frac{R}{4}$ rad (sec) $f_2 - f_1 = \frac{R}{2\pi L}$ Hz -> Resonance freg. is geometric mean of $\omega_0 = \sqrt{\omega_1 \omega_2}$ Bandwiceth freq. fo = \fif2 $\omega_0 - \omega_0 = \frac{B\omega}{2} \Rightarrow$ wi = wo - R racl/sec 5, 2 50 - R H3 Wa-Wo = BW => wz = wo + R rad/ree f2 = fo + R HS => Resonance Freq. is independent of resistor (R). \circ Selectivity: (5) Selectivity is the ability of a ckt/ulw de distinguish or discriminate desired & undesired freq. 5 Q IBWI

$$S = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{R\sqrt{C}} = Q_0$$

€)***

()

0.

(;)

0

◐

 \bigcirc

$$Y_T = \frac{1}{R} + \frac{1}{jX_L} + \frac{1}{-jX_C}$$

Net susceptance = 0

$$\frac{1}{X_c} - \frac{1}{X_L} = 0 \implies w_0 L = \frac{1}{w_0 c}.$$

circuit.

o do, from circuit

o
$$|V| = |II| |Z|$$

o $|V| = |II| |Z|$

o $|V| = |II| |Z|$

o $|V| = |II|$

o $|V| = |I|$

o

Parallel resonance phenomenon in used in design of Band Stop Filter.

Practical Parallel Resonance:

$$\frac{1}{\sqrt{R^2 + \chi_L^2}} + i \left[\frac{1}{\chi_C} - \frac{\chi_L}{R^2 + \chi_L^2} \right]$$

At Resonance w=w0

$$\frac{1}{X_{c}} = \frac{X_{L}}{R^{2} + X_{L}^{2}} \implies R^{2} + X_{L}^{2} = W_{0}L \times \frac{1}{W_{0}C}$$

$$\Rightarrow$$
 $w_0^2 = \frac{1}{L^2} - \frac{R^2}{L^2}$

Concept of Dynamic Impedance (Dynamic Resistance) It is the resist offered by the obt O Series R-L-C clet Zdyn = R 2 Generally parallel R-1-Cckt. Zdyn = TR 3 Tank cht: Zdy = L Practically Zdyn >> R (i) I deal touck det: Zayn= & -> 0°C 1) Two practical coils with internel resisteme R, Rz howe Q-factor Q., Qz resp. If there coils on connected 0 un series then & total Q- Jactor is-Q= WLI Q2 = WLZ
RZ WLIXIRI + WLZYRZ OT = W(LI+LZ)
RI+RZ RitRa

0/

 \bigcirc

 \odot Q, R, + Q2 R2 R(+R) \bigcirc del au u(w O Low pass filte (a) 0 \bigcirc 0 \bigcirc $V_0 = V_i \left[\frac{R_2}{R_1 + R_2} \right]$ $H(\omega) = \frac{V_0}{V_i} = \frac{R_2}{R_1 + R_2}$ \bigcirc 0 0 &RZ Vo 0 \bigcirc 0 Vo = Vi [R2] \bigcirc 0 $H(\omega) = \frac{V_0}{V_1} = \frac{R_2}{R_1 + R_2}$ 0 0 0 0 0 0 H (w) = 0 & Rz Vo \circ 0 \bigcirc [N(0).01 0 0 \bigcirc 0 . 0 \bigcirc 0 0

MAGNETIC CIRCUITS

Charges at vest produce only Electro--static field but charges in motion produce both Electric & Magnetic field

Amperes Right Hand Thumb Rule: -

Permanent Magnet

L> Rane Earth material

 \odot

()

 \bigcirc

 \mathbf{O}

-> Alnicos'

L> High Retentivity o

Electro-magnet

$$X = \frac{N}{S}$$
 pole $Y = \frac{S}{S}$ pole

$$X = \frac{S}{N}$$
 pole $Y = \frac{N}{N}$ pole

8
$$R_s = R_1 + R_2$$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

 \bigcirc

() ·

 \bigcirc

0

 \bigcirc

 \bigcirc

േ

0

○ -

()

()

 \bigcirc

0

o O

(8)
$$S_8 = S_1 + S_2$$

 $\frac{1}{S_p} = \frac{1}{S_1} + \frac{1}{S_2}$

Mathematically Faradays law is given by: But, 4=No => Flux linkages (wb-Turns) $e = -N \frac{dd}{dt}$ No. of turns.

- ve sign due tu fewys faw > induced end in coil (volts) C = -N [d since - d indical] Dynamically Induced emf: -Er Motors, generator. Statistically Induced enf.:-Ex Transformers. => Fluss is a function of current $MMF = Ni = \Phi S$ $\frac{1}{3} \pm \frac{1}{3} = \frac{N-s}{S-s} coust.$ s., = k = ki o Xi is Flux, a few of current

 \odot

 \bigcirc

()

$$d = \frac{1}{2} \times i$$

$$0 \quad e = -\frac{N0}{i} \cdot \frac{di}{dt}$$

0

()

 \bigcirc

 \bigcirc

()

()

0

$$L = \frac{Nd}{i} = \frac{v}{i}$$
 (self industance H)

$$MMF = 0$$

$$M = 0$$

$$L = \frac{N^2}{5}$$

$$L = \frac{N^2}{l/u\alpha}$$

Concept of Mutual Inductance Mutually Induced Emf: self enductance is wirt the same wil of its over turns, current & fluse. Nowever mutical inductance is blu sex. of cails (mini. two). 12 = Kd1) 0 < k < 1 A12 = A12 x 11 $\Phi_1 = \Phi_{11} + \Phi_{12}$ D12 = 012 · i, Total Leakage Common flux flux flux (Mutual flux) $\frac{dd_{12}}{dt} = \left| \frac{d_{12}}{i} \right| \frac{di}{dt}$ $e_2 = -N \frac{dd_{12}}{dl}$ - (2) $\Rightarrow \left| e_2 = -\left[M_{12} \right] \frac{di}{dt} \right|$ $C_2 = -\left[\frac{NQ_{12}}{i_1}\right] \frac{di_1}{dt}$ Ly Mutually induced emf (volts) M12 = N2812 = RO, N2 Mutual inductance en H. \$21=K\$2 Also $Q_{1} = -\left[\frac{N_{1}dz_{1}}{12}\right] \frac{di_{2}}{dt}$

0

0

 \odot

Q

O

0 $e = -\left[H_{2i}\right] \frac{di_2}{dt}$ M21 = N1021 = KO2N1 \bigcirc If dist. blu coils & permeability of medium blu coils is const. \bigcirc $L_1 = \frac{N_1 d_1}{\tilde{C}_1}$ L2 = N202 ാ \circ M = Kd, N2 = Kd2N1 } Mutual industance 0 \bigcirc Relation blu self 2 Mutual \bigcirc 0 inductances : $M * M = \left[\frac{k \partial_1 N_2}{i_1}\right] * \left[\frac{k \partial_2 N_1}{i_2}\right]$ $M^2 = k^2 \left[\frac{N_0 l_1}{l_1} \right] \left[\frac{N_2 l_2}{l_2} \right]$ \bigcirc M2 = K2 [4][L2] M=KJL1L2 => JM = JLIL 0 3 K 51 ideal transf. Lo co. ell of coupling

Energy stored in system of 2-cails:	<u>.</u> 💿
T M	0
E ₇ = \frac{1}{2} L_1 \frac{1}{1}^2 + \frac{1}{2} L_2 \frac{1}^2 + \frac{1}{2} L_2 \frac{1}{1}^2 + \frac{1}{2} L_2 \frac{1}{1	0
	()
4 > Mutually adding flux -> Mutually opposing flux	0
- > Mutually opposing flux	0
	0
Mutical indunctance is always a a	0
Mutical indunctonne is always a a	0
But, mutically induced emf may be	0
tue 2 -ve	0
	()
Determining the correct polarity of	0
mutual induced emb is not possible	0
mutual induced emb is met possible directly 2 hence me me Dot	0
C61. 170. 17.01	0
CONCO COCPICACI,	
1) If current enters the dotted terminal	
of the 1st cuil, then the potanty	0
of multual utter is the at the	0
and the same of th	
dotted deminell of znd coil.	0
(3) I current leaves dotted terminal of	0
yst coil, then the polarity of mutual vetey is -ve at the dotted terminal of the zuel soil.	0
The set the dotted terminal	(o
ulter is -ve and	0
of the 2" har.	0
	0
	0

Kalkh

0

Determine the cornect magnitude & palarity of the mutecal ulter wirt the given reference ulty for the 5 gs. below. 0

Coils in Series

Mutually adding

Mutually adding

$$=(4+6+5)+2(10)-2(2)$$

Mutually opposing

 \bigcirc

 \bigcirc

0

0

0

0

0

 \odot

0

0

O -

()

$$Leq = \frac{L_1L_2 - M^2}{L_1 + L_2 + 2M}$$

$$V_1 = 4 + 10 = 14$$

 $V_2 = 6 - 2 = 4$
 $V_3 = 5 + 10 - 2 = 13$ 31 mH

$$V_1 = 4 + 10 = 14$$
 $V_2 = 6 - 2 = 4$
 $V_3 = 5 + 10 - 2 = 13$
 31 mH

3 6H 31H
$$leq = (6-3+2) + 1H$$
 $(5-3+1) + (4+1+2)$

2 leq leq

 $V_1 = 5 + 2 - 1 + 1 = 7$ $V_2 = 5 + 2 - 2 + 1 = 6$ $V_3 = 5 - 1 - 2 - 2 = 26$ $V_4 = 5 + 1 + 1 - 2 = 5$ $X_{44} = 7 + 6 + 0 + 5 = 18 \text{ m/H}$

(6) Place correct dot convention blu 2 coils 0

11) Write KVL governing the circuit below o & find resonance frequency 'to' if O R=1052, L=L=10mH, M=2mH, C=0.14FO

7 2 1482H 0 0 () -[3010] + (1+j2+j4-j2) I -(j1×2) I =0 (C(+j2) I = 3010° 0 Θ = 30 Lo \circ 0 I[ガルーj2]ーj([I] 0 13.41 226.566 () 30 / 90 0 (1. Vo = 13.41-Cos (2++26.56) 0 0 find power lost 0 0 0 -[50(0]+(2+j2) I, - j, [[12]=0 \odot \bigcirc (1+j4-j1) I2-j1[[I2] =0 0 Solving for I 2 PID = IIZIZXR

 \odot IDEAL TRANSFORMER (Circuit Concept) 0 0 it can store transfer O ideally electrical energy 0 $L_1 \rightarrow \infty_1$ \bigcirc 0 0 k=1 -> co.eff. of coupling. 0 -> No losses 100 % M L, : L2: M = N, = N, 2: N, N2 0 0 0 Turns Ratio: $\frac{N_1}{N_2} = \frac{L_1}{L_2} = \frac{L_1}{M} = \frac{M}{L_2}$ 0 0 0 T-equivalent representation of Ideal 0 \odot transformer (Circuit concept) 0 0 0 (A) Mutually Adding 0 $V_1 = L_1 \frac{di_1}{dt} + M \cdot \frac{di_2}{dt}$ KVL 0 43 64 V2 = L2 diz + M di 0 \odot (L,-M) 0 V, = (L,-M) di + M di + dl2 0 \circ 0 V2 = 0

 $10, X_L = X_C$ $16-16K=12 \implies 16K=4$ K=0.25

000000

 \odot

 \bigcirc

0000000000

0 0

0

0

0

0

<u>a</u>

0

LLECTRICAL

0

 \bigcirc

 \circ

0

 \bigcirc

in time

TRANSIENTS

- Iransients are considered as sudden changes. in the state of a cht or new quebich are indicated by the switch operation.
- → Incurients occur in any electrical non or sys. as more of the septem's are adaptable for quick sudden changes 0
- Iransients an also considered as an argument blu the i/p command to 0 ofp response as a now changes from previous steady state to next steady state w.r.t the state variable.
 (I.L or V, c) ()
- 0 Ihrough transients occur for very short duration in time, their impact is huge in determing the entire Steady state resp. 0 \circ \bigcirc \bigcirc
- Though customers look into steady state performance of an electrical device or nlw. 0 the designer are more interested in \bigcirc transient state performance as they give 0 the entical design specification values.

State Variables:
These are the critical parameters that must
be observed to determine the transcont
state solution en any nou.
(a) In a capacitor:
$\hat{l} = C \frac{dV}{dt}$
dt
(KC1 > Noolal) La Naltage across capacitor us
(KCL-> Nodal) La Naltage across capacitor is correct S.V.
(6) In an inductor :-
(b) are are
La Carrent through in duchor is
(KVL-> Mesh) L> (amout through in duchor is
ϵ
- The response of day car into when a
Jule résponse of any cht/n/w when a source is present is called as forced
response.
This response is independent to the
Ilis response is indépendent tie the
nature of passing them and iles
le different for diff. My 120 0 11-
Egi-Dc chet Analysis, AC chet analysis, etc.
The response of any clet or new without
Ind warper is called as Natural resp.
The response of and as Natural response in called as Natural response in alled as Natural response
passive elements. Let is always unique
passive elements. L'it is always unique determined by the characteristis equ

States Medicine

0 Joverning the new. \bigcirc This source free response is possible, \odot provided the n/w has initial stored energy (inductor stores energy in electromagnetic form: $\Psi = Li \rightarrow I_0$ \bigcirc capacitor stores energy in electrostatic Jomn: q=CV→Vo) So, [complete nesp.] = [Forced] + [Natural] resp.] + [nesp.] \odot 0 ${}^{\circ}$ Zero state Zero i/p response response \bigcirc idny new or sept: reaches steady state after overcoming transient state. So in \bigcirc 0 this chapter, as me are determiney state \odot response, all the salutions of valtage, current, power, energy, etc are w.r.t time \odot Initial Conditions: \circ \bigcirc These are critical values of vety across capaciton & current through inductors 0 from the previous steady state of a wilne which are specifically indicated as: t=0- - instent just before s/w operation t= ot > instant j'ul after slw operation, 0 0 (TRANSIENT state operation)

t > 0 => Steady state of ter slow operation Order of ckt or n/w:-The mo. of energy storage components availables un distributed form in any elst represents o its order () : Egs R-L, R-C -> 1st order n/w R-L-C, L-L-R, C-C-R, L-C -> znd order nlw \bigcirc O A capacitor will never celleur sudden change in ulty ceross it. $V_c(0) = V_c(0) = V_c(0^{\dagger})$ O 2 Ancerout with inductor will never allow sudden change in current О through it. $i_{L}(0) = i_{L}(0) = i_{L}(0^{\dagger})$ Behaviour of passive elements in Transient state in companision to Steady state: If analyzing of n/w as t > ot, is considered as transient solution then, analysing the same n/w as s > & (Steally state freq, resp.) in also considered as Transient solution There I.T. are powerfull tools to analyze the now during TRANSIENT STATE.

 \odot 5= jw Transieut Element D.C SS A.C. SS \bigcirc Ly complex State. (s=0)(s=jw) , freq. \bigcirc (t→o+) \bigcirc (S->3) \bigcirc R R R ZR=R \bigcirc i O 'i' lags'' 0-0 Z1 = + jwL \odot 'V' luj \bigcirc φ = a0. 0 0 'i' leads 5.C. Ze = jwc 0.0. 0 V, luj \bigcirc \$ = q0 0 0 I Source Free 1st Order: -0 (a) R-C circuit: · c 张 · 长 · · $C \frac{dV}{dt} = -\frac{V}{R} \implies \int \frac{dV}{V} = \int \frac{dt}{RC}$ \bigcirc In[V] = -t + In[A] () In[\(\frac{1}{A}\)] = -\(\frac{1}{Re}\) => V= A e \(\frac{1}{Re}\) But at t=0, V=Vo then A=Vo VIE)= Vo e RC V(t) = V0 C 0 T=RC -> Time coust. of R-C nlew

$$v(t=\delta) \longrightarrow v_0$$

 $v(t=T) = e^{-1}V_0 = 0.367 V_0$
 $v(t=2T) = e^{-2}V_0 = 0.135 V_0$
 $v(t=3T) = e^{-3}V_0 = 0.049 V_0$
 $v(t=4T) = e^{-1}V_0 = 0.018 V_0$

 \bigcirc

 \bigcirc

 ${}^{\circ}$

 \circ

()

 \bigcirc

O -

0

()

ೕ

 \circ

 \bigcirc

(

$$V(t=5T) = e^{-5}V_0 = 0.006V_0 \rightarrow t \ge 5T$$
(steady state)

Expression of evereut through capacitor.

$$i_c = C \frac{dV}{dt} = C \frac{d}{dt} \left[V_0 e^{-\frac{t}{2}t} \right] = C V_0 e^{\frac{t}{2}t} \left(-\frac{t}{t} \right)$$

Expression of power descipated through R

$$P_R(t) = \frac{[V(t)]^2}{R} = \frac{[V_0 e^{-t/t}]^2}{R}$$

$$= \frac{V_0^2}{R} e^{-t/(T/2)}$$

Expression for energy decay in the capacitor: 0 $E_{c}(t) = \frac{1}{2} C[V(t)]^{2}$ 0 $= \frac{1}{2} c V_0^2 e^{-t/(t_{(2)})}$ Expression for charge q(t) = C V(t) q = C Voe - t/t \bigcirc (b) R-L circuit: \bigcirc -J. +): Let i(0) = Io RSVR VLEZ VKVL VR + VL = 0 iR+1 di =0 $\frac{di}{dt} = -iR$ Sdi = S-Rdt In[i] = -Rt + In[A] · im In[in]=-Rt / i= Ae-12t val t=0, i=Io((t)= To e Rt 17t) = Ioc time vout of R-Lulw

Expression of ulty across inductor. $V_L = L \frac{di}{dt} = L \frac{d}{dt} (I_0 e^{-t/t})$ = - IoRett

0

0

$$V_R + V_L = 0$$

 $V_R(t) = -V_L(t) = I_0 R e^{-t/T}$

Expression for power dessi parted in the restritor. $P_R = [i(t)]^2 R = (Joe^{-t/t})^2 R$

Expression for energy de cay in inductor ELCt) = = = [L(IOett)] = 1/2 IO @ /(1/2) J

```
Expression for Flux linkages
     Y(t) = Lilt)
= LIO e t/T WO-T
0
0
0
   Here the power dissipcated leg, the resis.
   2 energy decay in inductor or capacitos
\odot
   is 2 dinnes faster than current or ulty
    vespectively.
- 🕙
    Time Constant: - It is the time taken
    by the resp to reach 36.7% of its
0
    initial vælue or It is also defined as
0
    time tæken by the resp. to reach
0
     63.4% eto ils finicel value.
     The unit of Time coust. is: seconds
    Then, with the unite only: -
          sec = sec
· 🕥
        Ti = Tv
         LR = RC
\bigcirc
   -> Unit of FC = D
      Unit of R2C = H
      Units of \frac{L}{R^2} = F
0
     Unity of RC = U
-0
0
```


 \odot Here the inductor & carpa veristors connect \odot de lumped together. This is a second \bigcirc order L-L-R circuit. \odot \odot This cht hees multiple time court in \bigcirc multiple regments & the solution to these state variebles can be determined **⊘** : des solving simulationeous differential eg or in a simple every by ensing ()Laplace Transforms (L.T.) \odot complete expression (11) If V(0) = 15 V / in el \bigcirc SUS N-LOUE \$850 for ix. ◐ O This is a sœurie-free 1st order R-C nlw ()S-V → , , V(t) = Vo e - t/T Vo=15V (given) T= Ray. C = (5/120) . O. 1 = O. 4 Sec 1. $V(t) = 15 - e^{-\frac{7}{6}4} = 15e^{-2.5t}$ 0 ${f O}$ But ix(t) = N(t) = 0.75e A (12) Find complète expression for I.

This is a nouvel free, 1st 10A) SIN order R-L 5.V -> 'i' order R-L clst.

The complete extression. $v(t) = \begin{cases} 5V & 3 \\ 5e^{-(t-2)} & \end{cases}$ 0 6 t 62. t >2. $E_c(t=3) = \frac{1}{2}C(v)^2$ Now, V(t=3)= 5 = (3-2) = 1.84 V 1.847 Ec = 1 x 1 x (1.84)} = 0.56 J91 i(0) = 10A, find its THELI \\ 31 complete expression. This is a 1st order, source free R-L clet. 5.V->i Classical Method 1 di + 2[i+i] = 0 - 0 141, +31+2[1+1,]=0 tona : 5i=-6i, - 2 1 di +2i+2(-5)i=0 => lu[i] = -2 + +lu[A] $\left(\frac{1}{L}\frac{dl}{dt}\right) = \left(-\frac{1}{3}\right)$ $i = A e^{\frac{-2}{3}t}$ (1)

(1)

(1)

(1)

(1) whteo, i=10

So A = CO

0

 \bigcirc

 \odot

0

()

0

0

()

()

() -

()

0

 \odot

(3)

 $\hat{U}_i = \frac{L}{R} = \frac{V_2}{2} = \frac{1}{L_i} \sec \frac{V_2}{2}$ Iv= RC = 1 sec $\frac{Lv}{l_i} = \frac{1}{1/2} = L_1.$ (b) 1 V(+) = Vo. e +/t il+) = Ioe-t/T LOV 1. V(+) = 20 e V icts = 10 e-ut A Her current is decaying paster than ulty Step Response of 1st order ckt: (a) Series R-C det:y(t) = Vss(t) + Vtr(2) L> Transient State resp. · () V(t) = V(d) + [V(o) - V(d)] e-t/t 0 V(0) -> vety across capacitor before 0 0 switch operation & steady state V(s) - sulfy across capacitor after 0 switch operation & steady state T= RC with initial condition given Let V(0) = Vo V(+) = Vs + [Vo + Vs] et/T

()

$$P_c(t) = V_c(t) \cdot i_c(t)$$

$$=\frac{V_s^2}{R}\left[e^{t/\tau}-e^{-2t/t}\right]$$

$$E_c = \int_0^\infty P_c dt = \frac{1}{2} C [v_s]^2$$

I(0) -> current through inductor before switch operation & steady state. I(s) -> current through inductor of her switch operation & steady state.

Case (1) with initial condition given:

Let
$$I(0) = I_0$$
 $i_L(t) = \frac{V_s}{R} + \left[I_0 - \frac{V_s}{R}\right] = \frac{t}{T_0}$
 $I_0 = \frac{t}{T_0}$

0

 $^{\circ}$

0

O

()

0

()

Case without initial conditions:-I(0) = 0 $i_{\ell}(t) = \frac{Vs}{R} \left[1 - e^{t/t} \right]$

$$I(0) = 0$$

Expression for ulty across inductor: sepression $V_L = L \frac{d}{dt} \left[\frac{v_{z}}{R} \left(1 - e^{-t/\tau} \right) \right] v_{s}$

$$V_L = L \frac{d}{dt} \left[\frac{v_2}{R} \left(1 - e^{-t/\tau} \right) \right]$$

$$\begin{array}{c} O \rightarrow P_{L}(t) = V_{L}(t) \cdot i_{L}(t) \\ O \rightarrow P_{L}(t) = V_{L}(t) = V_{L}(t) \\ O \rightarrow P_{L}(t) = V_{L}(t) \\ O \rightarrow P_{L}(t) = V_{L}(t) \cdot i_{L}(t) \\ O \rightarrow P_{L}(t) =$$

$$V(z) = 2.5 \left[1 + e^{-t/2} \right] = 4 V$$

$$V(b)$$

$$V(b)$$

$$V(b)$$

$$V(b)$$

$$V(c)$$


```
III Source free z' order circuits:
       (Canonical form)
(CI) Series R-L-C
    Dominant S.V. -> i
 iR + Ldi + ESidt = 0
     R\frac{di}{dt} + L\frac{di}{dt} + \frac{1}{L} \cdot \hat{i} = 0
-> Use Laplace Ilf (nomogeneous)
    LSI(S) + RSI(S) + I(S) =0
    I(s) \left[ 2s^2 + Rs + \frac{1}{C} \right] = 0
                                          (0+(s) I &&)
     I(s) [3+ Rs + 12] =0
 1° 52 + RS+ 1/LC =0
  The z roots are: S_1, S_2 = \frac{-R}{L} \pm \sqrt{\frac{R^2}{L^2}} - \frac{4}{LC}
    S_1, S_2 = \frac{-R}{2L} + \left(\frac{R^2}{2L}\right)^2 - \left(\frac{1}{\sqrt{LC}}\right)^2
  Let d = \frac{R}{2L} } Damping factor
       wo = 1 / Undamped natural freq
```

 \bigcirc

 \odot

 \bigcirc (ase 1): If X> wo -s overdamped \bigcirc \bigcirc $\left| \frac{R}{2L} > \frac{1}{\sqrt{LC}} \right|$ -> Two roots are: -ve, real & unequal i(t) = A, &it + Az eszt \odot - A, Az are arbitary const. that can O de défermined from initial condition. \bigcirc Case 2: If &= wo -> critically damped $\frac{R}{2L} = \sqrt{\frac{1}{LC}}$ 2 roots are: -ve, real 8 equal 0 ilt) = e-Q+[A,+A2+] Case 3: 31 d < wo -> underdamped アン (元) \odot O-> The z roots are: complex conjugate () with -ve, real $i(t) = e^{-\alpha t} [A, \cos \omega_a t + A_z \sin \omega_a t]$

$$\omega_{d} = \sqrt{\omega_{o}^{2} - \alpha^{2}}$$

3 2 0

→ Use Laplace TIf (chomogeneous)
$$Cs^{2}V(s) + LsV(s) + V(s) = 0$$

$$V(s) \left[s^2 + \frac{1}{RC} s + \frac{1}{LC} \right] = 0$$

The z roots an!
$$S_{1},S_{2} = \frac{-1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^{2} - \left(\frac{1}{\sqrt{LC}}\right)^{2}}$$

Let,
$$\alpha = \frac{1}{2Rc}$$
 3 damping jactor

() ()

(

Case 1) If a > wo - overdamped ZRC > TLG \bigcirc 0 -> The two roots are -ve, real & unequal. $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ \bigcirc -> A, Az are arbitary coust- that can be determined from initial conditions. () \odot Case 2 If d = wo -> critically damped 0 \bigcirc 0 \bigcirc -> The two roots are -ve, real & equal \bigcirc $V(t) = \tilde{e}^{dt} \left[A_1 + A_2 t \right]$ 0 0 Case 3 If X < wo -> Underdamped \circ - 1 2RC < 1/1/C 0 => The z roots are: complex conjugate $^{\circ}$ with -ve, real ()Then, 0 V(t) = ext. [A, coswat + Azsinwat] 0 0 $W_d = \sqrt{W_0^2 - \alpha^2}$

 \odot

 \bigcirc

 \bigcirc

 \odot

(·)

()

()

0.

 \bigcirc

 \mathbf{O}

0

0

0

 $^{\circ}$

 \bigcirc

 \mathbf{O}

O

0

O

O

 \mathbf{O}

O

 \bigcirc

0

-> This is 2nd order, source free, series R-L-C circuit.

$$\lambda = \frac{R}{2L} = \frac{1}{2 \times 1} = \frac{1}{2}$$

$$\omega_0 = \frac{1}{\sqrt{1c}} = \frac{1}{\sqrt{1 \times 1}} = 1$$

2)
Jhe natur of mesp. of
5ul-t) D = 18 115 -V V(+), t>0 is

-> This is zue order, source free, parallel R-L-C circuit.

$$\mathcal{A} = \frac{1}{2RC} = \frac{1}{2\times \frac{1}{2}\times 1} = \frac{1}{3}$$

$$= \frac{1}{3LC} = \frac{1}{3LC} = \frac{1}{3LC} = \frac{1}{3}$$

。[1] Step Response of znel Order (a) Series R.L.C Dominant variable -> V' (i.e. ulty across capacitor in stoody state condition). $V(t) = V_{ss}(t) + V_{tr}(t)$ But Vtr(+) depends upon √(ds) = VES) V_S \bigcirc the nature of R-1-C \bigcirc here, $\chi = \frac{R}{2I}$ $\omega_0 = \frac{1}{\sqrt{LC}}$ the complete solution is: Vs + A, est + Azeszt -> overdanted (x>wo) vs + ent[A, +Azit] -> critically damped (X=w) Vs + ext [A, coswet + Azsinwat] -> underdamped \bigcirc 0

0	In zuil order clet, there are 2 coupt, so we
	In zhil order clet, there one z coupt, so we require mini. z egis.
	I Initial Condition Problems:-
	(Transient State Problems, i.e. Problem
0	_
0	$at t = 0^{\dagger}$
. O	Facinals, Langelet accorps out alima of accessive
0	Equivalent reports representation of passive
- () ()	elements during transient state (at t=0+):-
0	
\bigcirc_{i}	Element Equi. ckt (t=0+)
0	TR
,(<u>)</u>	
0	
0	
(C)	
O	$\longrightarrow \overline{1}_0$
. 0	-000
0	+ Vo _
- ()	
0	
0	$1 \leq 1 \leq 1 \leq 2$
0) Find $i(0^+)$, $\frac{di(0^+)}{dt}$, $\frac{d^2i(0^+)}{dt^2}$
	to
0	1000 at $t=0^{-}$, s/w was apen 1000 1000 1000 1000 1000
0	$(mH_{e}^{(1)}) : i(0) = 0 A = i(0+)$
	1007
į 🕲	Co: inductor connet celleur sudden change in
0	current.)
-0	
	-100 +10i + Im di =0 -> exact form
A CENTRE	

At
$$t=0^{+}$$
 $-100 + 10 [i(01)] + 1m di(01) = 0$

of

 $\frac{di(01)}{dt} = 100 \text{ k A/sec}$

Differentiating,

 $10 \frac{di}{dt} + 1m \frac{d^{2}i}{dt^{2}} = 6$

where $\frac{di(01)}{dt} + 1m \frac{di^{2}}{dt^{2}} = 6$
 $\frac{d^{2}i(01)}{dt^{2}} = -1000 \text{ m A/sec}^{2}$
 \bigcirc

 \bigcirc

 \bigcirc

()

 \bigcirc

 ${}^{\circ}$

 \bigcirc

()

0

()

ി

0

() .

0

()

() ()

 \bigcirc

0

0

1 Past
$$(t=0^{-})$$

1 Past $(t=0^{-})$

1 Past $(t=0^{-})$

2 Definition of the property of t

3) Future (+>x)

$$I(V) = \frac{400}{4} = (50) A$$

$$V(A) = 200 V$$

0.

 \bigcirc

()

 \mathbf{O}

O

One of this is correct solution

one of this is correct

(c)
$$V \left[\frac{R_1}{R_2} \right]$$
 (d) $V \left[\frac{R_2}{R_1} \right]$

$$V_{s}(o+) = \frac{V}{R_{2}} \times R_{1}$$

 \bigcirc

 \bigcirc

 \odot

 \bigcirc

 \odot

$$i(0-) = \frac{100}{40} = \frac{5}{2} A$$

$$V(0-) = \frac{20}{400} \times 100$$
= 50 V

$$-(00 + 50 + V_{L}(01) = 0$$

$$V_{L}(0+) = 50$$

$$\frac{di(o^{\dagger})}{dt} = \frac{V_L(o^{\dagger})}{L}$$

$$= \frac{50}{im}$$

• •

 \circ

()

() ()

(D)

•

(2)

O /4

Solving 0 2 0 $A_1 = \frac{4}{3}$ $A_2 = -\frac{64}{3}$ Then complete sol l'expression for VC+) is, v(t) = 24 + 4 e + - 64 e-t current through bottery cet t=0+ V(0-) = 04 (ie. zero state) initially relaxed 2 t=0+ 1(0+)= i (0+) 1 152

()

0

()

0

() ()

VI AC Transients AC Transients are less effective than DC Transients becourse: O Once the equipment in AC is designed for heak rated values, operating at any point other than beak rachie, the equipment or new is safe. 2 Even the surges that occur can hardly travel half a cycle & get naturally suppressed. (3) since there are natural zero welf or current instances, we can avaid transients completely if we can aperate the switch exactly at those instants of time when current or ulty is zero. (a) R-L circuit i(t) = itr(t) + iss(t) $-V_S + iR + \lambda \frac{di}{dt} = 0$ Ldi + Ri = Vm sinwt

0

0

 \bigcirc

0

0

О

O

 \mathbf{O}

-> The nature of solution for i(t) is!

i(t) = Vm sin(wt-0) + Ae

Mene, 121 = JR2+(WL)2 &= tant (WL) O \bigcirc But at t=0, i=0 $0 = \frac{Vm}{121} \sin(-0) + A \Rightarrow A = \frac{Vm}{121} \sin \theta$ 0 0 0 i(t) = Vm sin(wt-0) + Vm sin(et/L \bigcirc 0 \odot \bigcirc 0 0 0 O \odot 0 0 0 0 0 O 0 O Steady state Transient 0 0 0 NOTE: 0 Let Vs = Vm sin (wt +0) \bigcirc 0 Then, the solution for i(t) is like, 0 i(t) = Vm sin(wt+00-0)+ Aet/t 0 () 0 But at t=0, i=0

$$0 = \frac{V_{m}}{121} \sin(0-0) + A$$

$$A = \frac{V_{m}}{121} \sin(0-0)$$

So, complete sol is of the form

$$i(t) = \frac{Vm}{121} \sin(\omega t + 0 - \Phi) - \frac{Vm}{121} \sin(0 - \Phi) e^{-t/T}$$

- 3 If ip excitation in in cosine Terms, then express the o/p sol for i(t) also in cosine terms.
- 3 For general R-L Load

This is the instant exactly when i=0 so we can operate the slw exactly at this instant of time, we can avoid.

TRANSIENTS

At
$$w t_0 = 0$$
 $w t_0 = tan'(\frac{wL}{R})$

Transients.

⊕ -

 \bigcirc

O

(b) Series R-C ckt:i(t) = iss(t) + itr(t)0 The natural sol of i(t) is 0 i(t) = Vm sin (wt+0) + Ae = Vm sinut 0 121 = VR2+ (1/wc)2 = tem (wre) \bigcirc \bigcirc 0 At t=0, i=0 $A = \frac{-V_{\text{un}}}{121} \sin \phi$ 0= Vm sind + A → So complete sol is: i(t) = Vm sin(wt+d) - Vm sinde 0 () \odot wt

NOTE: 1) Here if Vs'= Vm sin (cut +0) Then, i(t) = Nu sin (wt + 0+0) + A et/T at t=0, i=0; $0 = \frac{V_{yy}}{121} \sin(0+0) + A \implies A = -\frac{V_{yy}}{121} \sin(0+0)$ -> The complete sol' is:

0.

0

()

O

O

0

0

O

0

0

t=t6 552

Trusinwt & COOLHO

- i(t) = Vm sin(w++0+0) Vm sin (0+0) e
- 3 If ipp excitation is in cosine terms then express the opposed for ilts also in cosine terms
- i) At what switching instant time 'to'., the current in the circuit has transient free resp.

wto =
$$\varphi$$

wto = $tan^{4}\left(\frac{\omega L}{R}\right)^{\frac{1}{2}}$

$$2\pi(50)to = tan^{4}\left[\frac{2\pi(50)(6.01)}{5}\right]$$

100 π to = 0.56

radians.

o°, to=1078 msec

So, here if we can operate the switch escatly at 1.78 ms from the instant where vlty became zero, if com completely avoid transients! 2) In the above problem if Vs = Vmsinkert-10) then determine the value of to which result, into transient free resp. 10, wto \$ 10° = tom (w) $= t an' \left[\frac{2\pi (50)(0.01)}{5} \right]$ 2TL (50) to 4 10 × Tt · · 100 TC to = 0.73 1. to = 2.33 msec. VIII Laplace Transform & its Application to ckt Analysis: When to use L.T. methods in ckt analysis! If determination of T is difficult 2) If order of ckt > 2 3) Non-comonical form of ekts 4) Non-standard escritation (i-e. impulse, pulse, ramp, parabolic, step, eseponential, ex) L[s(t)] =>> F(s) 0 Ls complex freq

$$V(t) \longrightarrow V(s) \qquad V_{m} \sin \omega t \longrightarrow V_{m} \omega$$

$$i(t) \longrightarrow I(s) \qquad V_{m} \cos \omega t \longrightarrow I_{s}s \qquad 0$$

$$V \longrightarrow V \qquad V_{s} \qquad V_{m} \cos \omega t \longrightarrow I_{s}s \qquad 0$$

$$V \longrightarrow V \qquad V_{s} \qquad V_{m} \cos \omega t \longrightarrow I_{s}s \qquad 0$$

$$V \longrightarrow V \qquad V_{s} \qquad V_{m} \cos \omega t \longrightarrow I_{s}s \qquad 0$$

$$V \longrightarrow V \qquad V_{s} \qquad V_{$$

 $T = \frac{1/2}{5/2} = \frac{1}{5} \sec 0$ So, $i(4) = 10 e^{-5t}$

$$I(s) \left[\frac{s}{2} + \frac{5}{2} \right] = 5$$

$$I(s) = \frac{to}{s+5}$$

$$i(t) = \frac{1}{s+5} = 10 e^{-5t}$$

2) I and i(t), t>0
$$\rightarrow$$
 This egckt is initially released.

 $\frac{1}{2}$ FT $\frac{50}{5}$ + $\frac{1}{5}$ (s) $\frac{2+5+2}{5}$ = $\frac{50}{5}$

$$T(s) = \frac{50}{(s+1)^2 + (1)^2}$$

$$\frac{2}{5} + \frac{V(5)}{12} + \frac{V(5)}{5} + \frac{V(5)}{1/5} = 0$$

$$\frac{1}{5} + \frac{V(5)}{1/2} + \frac{V(5)}{5} + \frac{V(5)}{1/5} = 0$$

$$\frac{1}{5} + \frac{V(5)}{1/2} + \frac{V(5)}{5} + \frac{V(5)}{1/5} = 0$$

$$V(S)\left[2+\frac{1}{S}+S\right]=\frac{2}{S}$$

 \bigcirc

 \circ 0

()

()

0

 ${}^{\circ}$

$$V(s) = \begin{bmatrix} s^{2} + 2s + 1 \\ 5 \end{bmatrix} = \frac{2}{s}$$

$$V(s) = \frac{2}{(s+1)^{2}} \implies V(t) = 2te^{-t}$$

$$V(t) = \frac{2}{s} + \frac{1}{s} + \frac{$$

0 0 0

Õ

Q

•

$$I(s) = \frac{2.5}{6^2 + (100)^2}$$

$$i(t) = 2 \cos 160t$$

$$V_{L}(t) = \frac{10}{9}e^{-10t} - \frac{1}{9}e^{-t}$$

8) Find the complete expression yor (V'.

()

0

(*)

 \bigcirc

 \circ

 \bigcirc

()

 \circ

O

$$i(\phi) = 4A$$

$$24\sqrt{2}$$

$$i(\phi) = 4A$$

$$i(\phi) = 4A$$

$$\frac{-24}{5} - 4 + \frac{4}{5} + I(s) \left[5 + 5 + \frac{4}{5} \right] = 0$$

$$T(s) \left[\frac{s^2 + 5s + 4}{s} \right] = \frac{4s + 20}{s}$$

$$I(S) = \frac{L(S+20)}{S^2+5S+4}$$

$$V(S) = \frac{4}{5} + \frac{1}{5} \frac{(45+20)}{(8^{2}+58+4)}$$

$$= \frac{4(s^2 + 5s + 4) + 16s + 80}{5(s + 1)(s + 4)}$$

$$= \frac{2.5^2 + 365 + 96}{5(5+1)(5+4)}$$

$$V(S) = \frac{A}{S} + \frac{B}{S+4} + \frac{C}{S+1}$$

ruher, A =
$$\frac{.96}{(4)(4)} = 24$$

$$V_{TH} = \sqrt{2} + \left(\frac{10}{5} + 4\right) \left[\frac{1}{5+2}\right]$$

$$= 2 + \left(\frac{10+45}{5}\right) \left(\frac{1}{5+2}\right)$$

$$= \frac{2}{5} + \frac{2}{$$

(·)

 \bigcirc

 \bigcirc

 \bigcirc

0 ()¹

 $^{\circ}$

 \bigcirc

 \bigcirc

0

O

()

0

0

0

O

()

0

0

$$5(5+45+3)$$
=\frac{25^2+85+10}{5(5+3)(5+1)}

$$I(S) = \frac{A}{S} + \frac{B}{S+3} + \frac{C}{S+1}$$

$$A = \frac{10}{3 \times 1} = \frac{10}{3}$$

$$B = \frac{18 - 24 + 10}{(-3)(-2)} = \frac{4}{6} = \frac{2}{3}$$

$$C = \frac{2 - 8 + 10}{(-1)(2)} = \frac{4}{-2} = -2$$

 $i(t) = \frac{10}{3} + \frac{2}{3}e^{-3t} - 2e^{-t}$ \bigcirc NETWORK FUNCTIONS A FILTER CONCEPTS O \odot \bigcirc ! If the magnitude of its supply supply \bigcirc is kept const. leut freg. is varied, 0 then the ofp is defined as the complete 0 \odot freq. resp. of the cht or new. 0 eg: Resonance \circ 0 Freq. resp. of any new gives its complete \bigcirc steady state performance which in 0 O useful un design & analysis. & synthesis of filters, antennas, a SONARS, radans, etc in communication engg. To obtain the complete freq. resp. of 0 the new, we need to build the new ! 0 0 transfer function. 0 $= H(m) = \frac{X(m)}{X(m)}$ $\chi(\omega)$ $\lceil n(\omega) \rightarrow \gamma(\omega) \rceil$ 5=jw L>complex In n(ws, there are conly 4 types of T.F that can defined. 0

(à) Voltage Grain T.F.

$$G_1(s) = \frac{V_0(s)}{V_1(s)}$$

(c) Transfer Impedance
$$Z(s) = \frac{V_0(s)}{I_1(s)}$$

(d) Transfer Admittance
$$Y(s) = \frac{I_0(s)}{V_i(s)}$$

Ju general, impedance & admittance together are called as Immitance for. together are called as Immitance for. then, in analysing filter chts, we generally consider V.G.T.F: H(w) = $\frac{Vo(w)}{V_i(w)}$

() '

O-

()

- → The n(w func. H(w) is complese quantity So, it has magnitude modulous IH(w)! & phase of 1\$ (cw)!
 - To abtain complete freq. resp. of new ToP., we need to plat both mag. & phase as w is varied from 0 to &.

$$To(S) = T_{1}(S) \begin{bmatrix} \frac{S+1}{S+1+\frac{1}{S}} \end{bmatrix}$$

$$X = \frac{1}{15} \frac{3}{2}$$

0.0

 ϵ

C

Ö

$$Z(S) = \frac{S^2 + 3S + 1}{S(S + 1)}$$

$$\frac{1S^2}{S(S + 1)}$$

$$\frac{1S^2}{S$$

 \odot > For any R-C N(w & its driving pt. impedance poles & zeros are located on the -ve \odot real ascis only. I are atternately places. 0 And the nearest knitical feg. to origin is → For any R-L Mw & its driving pt impedance all the poles 2 zeros are located on the o -ve real axis only & are alternately placed o I the nearest critical freq to origin is -> For any pure L-C n(w & its driving pt. impédence all polis 2 zeros cere 0 docated on the imaginary ascis only. I O are alternately placed. O → The pole-zero pattern of R-L driving pt. impedance is similar to R-C driving pt. 0 0 admittance.) Cly, the pale-zero pattern of R-C driving pt. impedance func is similar to R-L driving fot. admittance func. -> In general, these driving pt. impedame 2 admittance feur. are together called as Imittance feur.

1) Convert into A delta. $Z_{ab} = 1 + S + \frac{S}{1/6} = S^2 + S + 1 \Omega$ \$1V $Zac = 1 + \frac{1}{5} + \frac{1/5}{5} = \frac{5^2 + 5 + 1}{5^2} \Omega$ 76c = S+ + + = = = = 5+S+1 52 2) $3 \int I(s) = \frac{s+4}{(s+2)(s+3)}$ - O Find the initial value of current. \bigcirc \bigcirc I (8) From in tial value theo. 3 0 lim 5 (5+4) = lim 1+4/5 5-3d (5+2)(5+3) = S-3d (1+2/5)(1+3/5) \circ \odot $=\frac{1+0}{(4)(1)}=1$ A \bigcirc 0 3) Find L.T. of i(+) = 2 t [u(+) - u(+2)] = 2 tu(t)-2 (t-2+2) u(t-2) 0 $AII(s) = \frac{2}{s^2} - \frac{2 \cdot e^{-2s}}{s^2} - \frac{4e^{-2s}}{s^2}$ Ō O a) If i(t) = e-3t A for w(t) = u(t) V, t >0 Défermine the n/w elements + i(+) O O $\frac{v(t)}{i(t)} = \frac{u(t)}{e^{-3t}}$ 0 1+3 $\frac{V(s)}{I(s)} = \frac{\frac{1}{s}}{\frac{1}{s+3}} = \frac{s+3}{s}$ \circ R=1527 Series 0 $Z(s) = 1 + \frac{1}{\frac{1}{3}s}$ C= = F J RC n/w

 $Z(s) = k_0 + k_1 s + \frac{k_2}{s}$ ko -> resistance -> value -> ko 52 ki → inductance - s value -> kiH k2 → Capacitance -> value -> - F 5) Find $V_0 = \frac{S}{V_i = 2 \sin t} \left[\frac{S}{S+1} \right] V_0$ $V_0 = V_i \left(\frac{S}{S+1} \right)$ But s=jw & here w=1 => s=j $V_0 = V_i \left(\frac{i}{i+1} \right) = 2 \sin \left\{ \frac{1 L q_0}{J_2 L u_5} \right\}$! Vo = Jz sin (t + 45°) V Passive Filters: Filters are chts which operate for a particular runge of frequencies & attenuate ather frequencies Bassive filter an clets which are designed based on passive elements: R, L, C. Destrict filler are obts at electronic/signal level based on OP Amp. & digital filters also perform signal processing & they are based on DEP. on DSP. Passive filters are still used at power level to control harmonics & stablize the power

fed to the load eg: laptop charges,

0