Baraniecki Karol	Prowadzący:	Numer ćwiczenia	
Byczko Maciej	Dr inż. Dominik Żelazny	laboratoria 18	
PT 16:30 TP	Temat ćwiczenia: Analizator parametrów sieci - EMA-90N	Ocena:	
Grupa:	Data wykonania:		
D	5 listopada 2021		

1 Zadania do opracowania

1.1 Sieć elektryczna

- napięcie różnica potencjałów elektrycznych między dwoma punktami obwodu elektrycznego lub pola elektrycznego.
- prąd uporządkowany ruch ładunków elektrycznych
- moc czynna część mocy, którą odbiornik pobiera ze źródła i zamienia na pracę lub ciepło.
- moc bierna wielkość opisująca pulsowanie energii elektrycznej między elementami obwodu elektrycznego.
- $\cos(\phi)$ Współczynnik mocy, stosunek mocy czynnej do mocy pozornej, czyli stosunek mocy użytecznej do iloczynu napięcia i prądu.
- harmoniczna prądu

1.2 Ethernet

- IP (Internet Protocol) protokół komunikacyjny warstwy sieciowej modelu OSI (warstwy internetu w modelu TCP/IP).
- Maska liczba służąca do wyodrębnienia w adresie IP części będącej adresem podsieci i części, która jest adresem hosta w tej podsieci.
- Brama domyślna router, do którego komputery sieci lokalnej mają wysyłać pakiety o ile nie powinny być one kierowane w sieć lokalną lub do innych, znanych im routerów.
- DHCP (Dynamic Host Configuration Protocol) protokół komunikacyjny umożliwiający hostom uzyskanie od serwera danych konfiguracyjnych, np. adresu IP hosta, adresu IP bramy sieciowej, adresu serwera DNS, maski podsieci.

1.3 Protokół modbus TCP/IP

Modbus to popularny protokół komunikacyjny w którym komunikacja między urządzeniami realizowana jest w architekturze master-slave/client-server. Jest to protokół typu otwartego, co oznacza iż wszystkie niezbędne informacje do jego implementacji są ogólnodostępne.

1.4 Bezpieczeństwo pracy z prądem

2 Zadania do wykonania

2.1 Połączyć urządzenie EMA-90N z komputerem za pomocą komunikacji Ethernet

Ten podpunkt udało się wykonać bez większych problemów, urządzenie ma publiczne IP dzięki czemu można się do niego połączyć z dowolnej sieci.

2.2 Uruchomienie aplikacji demonstracyjnej, połączenie się z urządzaniem odczytując napięcie i prąd na L1

Chwilę zajęło aby ogarnąć interfejs lecz okazał się on prosty w użyciu i bardzo szybko odczytaliśmy wartości.

Wada tej aplikacji jest taka że bardzo rzadko się odświeżają się wartości (raz na 5 sekund)

2.3 Napisanie aplikacji w Pythonie, połączenie sie z urządzenie i odczytanie napięcia i natężenia prądu na L1 poprzez protokół modbus

Znaleźliśmy problem że do urządzenia nie może być podłączone kilka programów lecz oprócz tego bezproblemowo napisaliśmy kod, który odczytuje i wyświetla wartości w czasie rzeczywistym.

```
karol@ktp: python2 zaj2.py
Voltage: 238.208 V
Current: 0.246 A
Power factor: -0.853
Cos: -0.919
Real/active power: read = 49 W, calculated = 53.852635392 W
Reactive power: read = -20var, calculated = -21.5410541568 var
Apparent power: read = 58 VA, calculated = 58.599168 VA
Voltage: 238.166 V
Current: 0.247 A
Power factor: -0.851
Cos: -0.918
Real/active power: read = 50 W, calculated = 54.003187836 W
Reactive power: read = -20var, calculated = -22.1413070128 var
Apparent power: read = 58 VA, calculated = 58.827002 VA
Voltage: 238.166 V
Current: 0.248 A
Power factor: -0.849
Cos: -0.923
Real/active power: read = 52 W, calculated = 54.517150064 W
Reactive power: read = -21var, calculated = -22.4065486763 var
Apparent power: read = 58 \text{ VA}, calculated = 59.065168 \text{ VA}
Voltage: 238.204 V
Current: 0.25 A
Power factor: -0.864
Cos: -0.922
Real/active power: read = 51 W, calculated = 54.906022 W
Reactive power: read = -20var, calculated = -22.621281064 var
Apparent power: read = 59 \text{ VA}, calculated = 59.551 \text{ VA}
Voltage: 238.05 V
Current: 0.307 A
Power factor: -0.801
Cos: -0.923
Real/active power: read = 50 W, calculated = 67.45408605 W
Reactive power: read = -21var, calculated = -28.7354406573 var
Apparent power: read = 76 VA, calculated = 73.08135 VA
```

Za pomocą aplikacji porównaliśmy odczyty urządzenia z obliczeniami i zauważyliśmy że któryś z parametrów ma znaczną niepewność pomiarową

3 Wnioski

3.1 Porównanie wyników

Pomiary lampy

	VOLTAGES L-N			VOLTAGES L-L			CURRENTS		4° CURRENT	
Σ	0.00	٧	V12	0.00	٧	Σ	0.000	Α	0.000	Α
L1	238.23	V	V23	0.00	٧	L1	0.476	Α		
L2	0.00	٧	V31	0.00	V	L2	0.000	Α		
L3	0.00	V				L3	0.000	А		
	ACTIVE POWER			REACTIVE POWER			APPARENT POWER		FREQUENCY	
Σ	0.113	kW	Σ	-0.005	kvar	Σ	0.113	kVA	0.000	Hz
L1	0.113	kW	L1	-0.005	kvar	L1	0.113	kVA		
L2	0.000	kW	L2	0.000	kvar	L2	0.000	kVA		
L3	0.000	kW	L3	0.000	kvar	L3	0.000	kVA		
	POWER FACTOR			COS PHI			Degree V-V		Degree V-A	
Σ	-1.000		Σ	-0.998		L1-2	0.0	° V1-A1	-2.5	۰
L1	1.000		L1	-0.998		L2-3	0.0	° V2-A2	0.0	۰
L2	-1.000		L2	1.000		L3-1	0.0	° V3-A3	0.0	۰
L3	1.000		L3	1.000						

pomiary laptopa

Zadania były w miarę proste, wszystkie udało się nam wykonać po przeczytaniu dokumentacji, kod napisaliśmy w pythonie z wykorzystaniem biblioteki pyModbusTCP. Problemy na który się natknęliśmy to:

- W aplikacji pola "Power Factor", dokładnie to L1 oraz L2 były zamienione.
- błędy gdy do urządzenia była podłączona więcej niż jedna aplikacja.