Algebraic Geometry: Homework 1

- 1. R be a ring and S a multiplicative subset of R with $1 \in S$ and $0 \notin S$
 - (i) It is reflexive, since for any $t \in S$, t(rs-rs)=0, thus $(r,s)\sim (r,s)$. Suppose $(r,s)\sim (r',s')$, so there exist $t\in S$ such that t(rs'-r's)=0 which also means t(r's-rs')=0 and we have symmetry. Lastly, let $(r,s)\sim (t,u)$ and $(t,u)\sim (v,w)$, then there exist $a,b\in S$ such that

$$a(ru - ts) = 0$$

$$b(tw - vu) = 0$$

Then abwru - abwts = 0, bastw - basvu = 0 and summing them gives abu(rw - vs) = 0 with $abu \in S$ which shows transitivity.

- (ii) Same as part (i).
- (iii) Define the action of R_s on M_s , $\phi: R_s \times M_s \to M_s$, $((r,s), (m,s')) \mapsto (rm, ss')$. We first show that the action is well-defined. Let $(r_1, s_1) \sim (r_2, s_2) \in R_s$ and $(m_1, t_1) \sim (m_1, t_1) \in M_s$. Then $\phi((r_i, s_i), (m_i, t_i)) = (r_i m_i, s_i t_i)$ for i = 1, 2. Since $a(r_1 s_2 r_2 s_1) = 0$ and $b(m_1 t_2 m_2 t_1) = 0$ with some $a, b \in S$,

$$ab(r_1s_2m_1t_2 - r_2s_1m_1t_2) = 0$$

$$ab(r_2s_1m_1t_2 - r_2s_1m_2t_1) = 0$$

thus we have $ab(r_1m_1s_2t_2-r_2m_2s_1t_1)$, so $(r_1m_1,s_1t_1)\sim (r_2m_2,s_2t_2)$. M_s is a R_s -module, since for $m_i\in M$, $r_i\in R$ and $s_i,t_i\in S$,

- $\bullet(r,s)((m_1,t_1)+(m_2,t_2))=(r,s)((m_1t_2+m_2t_1,t_1t_2))=(rm_1t_2+rm_2t_1,st_1t_2)=(rm_1,st_1)+(rm_2,st_2)$
- $\bullet((r_1, s_1) + (r_2, s_2))(m, t) = (mr_1s_2 + mr_2s_1, s_1s_2t) = (r_1m, s_1t) + (r_2m, s_2t)$
- $\bullet((r_1, s_1)(r_2, s_2))(m, t) = (r_1 r_2 m, s_1 s_2 t) = (r_1, s_1)(r_2 m, s_2 t) = ((r_1, s_1)(r_2, s_2))(m, t)$
- $\bullet(1_R, 1_S)(m, t) = (m, t)$
- 2. Given morphisms of R-modules, $\phi: M \to N$ and $\psi: N \to P$, it is an exact sequence if the image of ϕ is equal to the kernel of ψ in N.
 - (i) If $M = 0_M$, then $\phi(0_M) = \{0_N\} = \ker(\psi)$, thus ψ is injective.
 - (ii) If $P = 0_P$, then $\phi(M) = \ker(\psi) = N$, thus ϕ is surjective.
 - (iii) For a prime ideal $\mathfrak p$ with $S=R-\mathfrak p$, and $R_S=R_{\mathfrak p}$, $M_S=M_{\mathfrak p}$. Let $p(r,s)\in \mathfrak p R_{\mathfrak p}$ with $p\in \mathfrak p$ and $(r,s)\in R_{\mathfrak p}$. It is an ideal since, $p(r,s)(r',s')=p(rr',ss')\in \mathfrak p R_{\mathfrak p}$.

 $\mathfrak p$ does not contain any unit of R, else $\mathfrak p=R$ and $S=\varnothing$. Thus for $(p,s)\in\mathfrak pR_{\mathfrak p}$, it is not a unit in $R_{\mathfrak p}$ and thus it is a proper ideal. It is maximal since for any $(r,s)\in R_{\mathfrak p}-\mathfrak pR_{\mathfrak p}$, it is a unit of $R_{\mathfrak p}$ since $r\in S$ and its inverse is (s,r). Thus $\mathfrak pR_{\mathfrak p}+((r,s))=R_{\mathfrak p}$ for any $(r,s)\in R_{\mathfrak p}-\mathfrak pR_{\mathfrak p}$

- (iv) Given the natural maps $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ and $\psi_{\mathfrak{p}}: N_{\mathfrak{p}} \to P_{\mathfrak{p}}$ given by $(m,s) \mapsto (\phi(m),s)$ and $(n,s) \mapsto (\psi(n),s)$. Let $(m_1,s_1) \sim (m_2,s_2)$ thus $t(m_1s_2-m_2s_1)=0_M$ for some $t \in S$. Then $\phi(t(m_1s_2-m_2s_1))=t(\phi(m_1)s_2-\phi(m_2)s_1)=\phi(0_M)=0_N$. Thus $(\phi(m_1),s_1) \sim (\phi(m_2),s_2)$. Similar argument for $\psi_{\mathfrak{p}}$.
- (v) Let $(\phi(m), s) \in \phi_{\mathfrak{p}}(M_{\mathfrak{p}})$, then $(\psi_{\mathfrak{p}} \circ \phi_{\mathfrak{p}}(m), s)$
- 3. $R_{\mathfrak{p}}$
- 4.
- 5. (i) Let S be any subset of $k[x_1, \ldots, x_n]$. For every $\mathbf{a} \in V(S)$, $F(\mathbf{a}) = 0$ for every $F \in S$. Thus $F \in I(V(S))$ for every $F \in S$ and $S \subseteq I(V(S))$.
 - (ii) V(I(V(S))) = V(S)
- 6. (i) Let $X \subseteq A^n(k)$, then $I(X) := \{F \in k[x_1, \dots, x_n] | F(\mathbf{a}) = 0 \text{ for all } \mathbf{a} \in X\}$. For each $F^n \in I(X)$ where n > 0 integer, suppose $F \notin I(X)$, i.e. there exists $\mathbf{a} \in X$ such that $F(\mathbf{a}) \neq 0$. But $(F(\mathbf{a}))^n = F^n(\mathbf{a}) = 0$ which implies $F(\mathbf{a}) \in k$ is a zero divisor, a contradiction since fields do not have zero divisors. Thus $F^n \in I(X)$ and shows $I(X) \supseteq \operatorname{Rad}(I(X))$. The other containment is obvious since for $F \in I(X)$, $F \in \operatorname{Rad}(I(X))$ by choosing n = 1.

- (ii) Let $X \subseteq A^n(k)$, then for any $F \in I(X)$, $F(\mathbf{a}) = 0$ for all $\mathbf{a} \in X$, thus $\mathbf{a} \in V(I(X))$, thus $V(I(X)) \supseteq X$.
- (iii) Since I(X) = I is a radical ideal, by Hilbert's Nullstellensatz, I(V(I)) = Rad(I) = I.
- 7. (i) Let J be an ideal of R and $\pi(J) := \{j + I | j \in J\}$. Thus for $r + I \in R/I, j + I \in \pi(J), (j + I)(r + I) = jr + I$ and (r + I)(j + I) = rj + I are both in $\pi(J)$ since $rj, jr \in J$. It is easy to see that $\pi(J)$ is closed under addition, and $\pi(J)$ is an ideal of R/I.
 - (ii) Let J' be an ideal of R/I and $\pi^{-1}(J') := \{j \in R | j + I \in J'\}$. Let $j, j' \in \pi^{-1}(J')$, then $j j' \in \pi^{-1}(J')$ as $(j j') + I \in J'$. Also for $r \in R, j \in \pi^{-1}(J'), rj, jr \in \pi^{-1}(J')$ as $rj + I, jr + I \in J'$. Thus $\pi^{-1}(J')$ is an ideal in R. $J \supseteq I$ as $0_{R/I} \in J'$ and thus $\pi^{-1}(0_{R/I}) \supseteq I$.
 - (iii) To show the bijection, we have to show that $\pi \circ \pi^{-1} = 1_{R/I}$ and $\pi^{-1} \circ \pi = 1_R$. For $J' \subseteq R/I$ ideal, $\pi^{-1}(J') := \{j \in R | j+I \in J'\}$, thus $\pi(j) = j+I \in J'$ for $j \in \pi^{-1}(J')$ and so $\pi \circ \pi^{-1}(J') = J'$. Now let $J \subseteq R$ ideal, $\pi(J) := \{j+I | j \in J\}$ and so $\pi^{-1}(j+I) = j \in J$ so $\pi^{-1} \circ \pi = 1_R$.
 - Since we have a one to one correspondence between {Ideals $J \supseteq I$ } and {Ideals $J' \subseteq R/I$ }, if ...
 - (iv) Let J' be a radical ideal, i.e. $J' = \operatorname{Rad}(J') := \{r + I \in R/I | r^n + I \in J' \text{ for some integer } n > 0\}$. Then $J = \pi^{-1}(J') := \{j \in R | j + I \in J'\}$ ideal. Take $j^n \in J$ for some integer n > 0 and $\pi(j^n) = j^n + I \in J'$, which also implies $j + I \in J'$ since J' is a radical ideal. Thus $j = \pi^{-1}(j + I) \in J$, i.e. J is a radical ideal. Conversely, let $J \subseteq R$ radical ideal. Then for $j^n + I \in J'$, $\pi^{-1}(j^n + I) = j^n \in J$ and so $j \in J$. Hence, $\pi(j) = j + I \in J'$ which proves J' is a radical ideal.
 - Let J' be a prime ideal, then for $ab+I\in J'$, either a+I or b+I is in J'. Let $cd\in\pi^{-1}(J')$ ideal, then $\pi(cd)=cd+I\in J'$, thus c+I or d+I is in J'. Thus $\pi^{-1}(c+I)=c\in J$ or $\pi^{-1}(d+I)=d\in J$, thus $\pi^{-1}(J')$ is also a prime ideal. Conversely, let $J\subseteq R$ prime ideal. Take $ab+I\in J'$, then $ab=\pi^{-1}(ab+I)\in J$. Thus $a\in J$ or $b\in J$ and we have $a+I\in J'$ or $b+I\in J'$. Thus J' is a prime ideal.
 - The proof for maximal ideals follows from the result from (iii). Suppose J' is maximal, thus for $J' \subseteq K' \subseteq R/I$, K' = J' or K' = R/I. So if $J = \pi^{-1}(J')$ is not maximal, there exists a $K \neq J, R$ such that $J \subseteq K \subseteq R$, then $\pi(K)$ is an ideal in R/I that will contradict the maximality of J'. The converse direction follows the same argument.