本节内容

微程序控制单 元的设计

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 写出对应机器指令的微操作命令及节拍安排
- 3. 确定微指令格式
- 4. 编写微指令码点

取指周期-硬布线控制器的节拍安排

$$T_0$$
 PC \rightarrow MAR

$$T_0$$
 1 \rightarrow R

$$T_1$$
 M (MAR) \rightarrow MDR

$$T_1$$
 (PC) + 1 \rightarrow PC

$$T_2$$
 MDR \rightarrow IR

$$T_2$$
 OP (IR) \rightarrow ID

取指周期-微程序控制器的节拍安排

$$T_0$$
 PC \rightarrow MAR

$$T_0$$
 1 \rightarrow R

$$T_1$$
 M (MAR) \rightarrow MDR

$$T_1$$
 (PC) + 1 \rightarrow PC

$$T_2$$
 MDR \rightarrow IR

3条微指令

取指周期-硬布线控制器的节拍安排

$$T_0$$
 PC \rightarrow MAR

$$T_0$$
 1 \rightarrow R

$$T_1$$
 M (MAR) \rightarrow MDR

$$T_1$$
 (PC) + 1 \rightarrow PC

$$\rightarrow$$
 MDR \rightarrow IR

$$T_2$$
 OP (IR) \rightarrow ID

至 CPU 内部和系统总线的控制信号

OP IR

微地址
形成部件

「下地址 CMAR

控制存储器CM

控制存储器CM

取指周期-微程序控制器的节拍安排

 T_0 PC \rightarrow MAR

 $1 \rightarrow R$

 T_1 M (MAR) \rightarrow MDR

 T_1 (PC) + 1 \rightarrow PC

 \rightarrow MDR \rightarrow IR

T₂ OP(IR)→ 微地址形成部件

微指令a

用微指令a的下地 址表示 b 的地址

微指令b

微指令c

还需考虑如何读出这3条微指令,以及如何转入下一个机器周期

Ad (CMDR) → CMAR —

用当前微指令的下地址表示找到下一条微指令

OP(IR)→ 微地址形成部件 → CMAR

取指周期-硬布线控制器的节拍安排

 T_0 PC \rightarrow MAR

 T_0 1 \rightarrow R

 T_1 M (MAR) \rightarrow MDR

 T_1 (PC) + 1 \rightarrow PC

 \rightarrow MDR \rightarrow IR

 T_2 OP (IR) \rightarrow ID

取指周期-微程序控制器的节拍安排

 T_0 PC \rightarrow MAR

 T_0 1 \rightarrow R

 T_1 Ad (CMDR) \rightarrow CMAR

 T_2 M (MAR) \rightarrow MDR

 T_2 (PC) + 1 \rightarrow PC

 T_3 Ad (CMDR) \rightarrow CMAR

 T_4 MDR \rightarrow IR

T₄ OP(IR)→ 微地址形成部件

T₅ 微地址形成部件 → CMAR

微指令a

需要用T₁节拍确定下 一条微指令的地址

微指令b

需要用T₃节拍确定下 一条微指令的地址

微指令c

根据指令操作码确定其执行周期微指令序列的首地址

显然, 微程序控制器的速度比硬布线控制器更慢

取指周期-硬布线控制器的节拍安排

- T_0 PC \rightarrow MAR
- $T_0 \qquad 1 \rightarrow R$
- T_1 M (MAR) \rightarrow MDR
- T_1 (PC) + 1 \rightarrow PC
- \rightarrow MDR \rightarrow IR
- T_2 OP (IR) \rightarrow ID

取指周期-微程序控制器的节拍安排

- T_0 PC \rightarrow MAR
- T_0 1 \rightarrow R

微指令a

- T_1 Ad (CMDR) \rightarrow CMAR
- T_2 M (MAR) \rightarrow MDR
- T_2 (PC) + 1 \rightarrow PC

微指令b

- T_3 Ad (CMDR) \rightarrow CMAR
- T_4 MDR \rightarrow IR

微指令c

T₅ OP(IR)→微地址形成部件→CMAR

取指周期最后一条微指令完成后,用一个特殊的微操作确定执行周期的微程序首地址

显然, 微程序控制器的速度比硬布线控制器更慢

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 写出对应机器指令的微操作命令及节拍安排
 - (1) 写出每个周期所需要的微操作(参照硬布线)
 - (2)补充微程序控制器特有的微操作:
- 每条微指令结束 之后都需要进行

每条微指令结束 之后都需要进行

- a. 取指周期:
 - Ad (CMDR) → CMAR
 - OP(IR)→微地址形成部件→CMAR
- b. 执行周期:
 - Ad(CMDR) →CMAR
- 3. 确定微指令格式
- 4. 编写微指令码点

取指周期的最后一条微指令完成后,要根据指令操作码确定 其执行周期的微程序首地址

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 写出对应机器指令的微操作命令及节拍安排
 - (1) 写出每个周期所需要的微操作(参照硬布线)
 - (2)补充微程序控制器特有的微操作:
 - a. 取指周期:

Ad (CMDR) \rightarrow CMAR OP (IR) \rightarrow CMAR

b. 执行周期: Ad(CMDR) →CMAR

3. 确定微指令格式

根据微操作个数决定采用何种编码方式,以确定微指令的操作控制字段的位数。 根据CM中存储的微指令总数,确定微指令的顺序控制字段的位数。 最后按操作控制字段位数和顺序控制字段位数就可确定微指令字长。

4. 编写微指令码点

设计步骤:

- 1. 分析每个阶段的微操作序列
- 2. 写出对应机器指令的微操作命令及节拍安排
 - (1) 写出每个周期所需要的微操作(参照硬布线)
 - (2)补充微程序控制器特有的微操作:
 - a. 取指周期:

Ad (CMDR) \rightarrow CMAR OP (IR) \rightarrow CMAR

b. 执行周期: Ad(CMDR) →CMAR

3. 确定微指令格式

根据微操作个数决定采用何种编码方式,以确定微指令的操作控制字段的位数。 根据CM中存储的微指令总数,确定微指令的顺序控制字段的位数。 最后按操作控制字段位数和顺序控制字段位数就可确定微指令字长。

4. 编写微指令码点 根据操作控制字段每一位代表的微操作命令,编写每一条微指令的码点。

微程序设计分类

1. 静态微程序设计和动态微程序设计

静态 微程序无需改变,采用 ROM

动态 通过 改变微指令 和 微程序 改变机器指令 有利于仿真,采用 EPROM

2. 毫微程序设计

毫微程序设计的基本概念

微程序设计 用 微程序解释机器指令

毫微程序设计 用 毫微程序解释微程序

毫微指令与微指令 的关系好比 微指令与机器指令 的关系

硬布线与微程序的比较

类 别 对比项目	微程序控制器	硬布线控制器
工作原理	微操作控制信号以微程序的形式 存放在控制存储器中,执行指令时 读出即可	微操作控制信号由组合逻辑电路 根据当前的指令码、状态和时序, 即时产生
执行速度	慢	快
规整性	较规整	烦琐、不规整
应用场合	CISC CPU	RISC CPU
易扩充性	易扩充修改	困难

微程序控制器回顾

△ 公众号: 王道在线

b站: 王道计算机教育

计 抖音: 王道计算机考研