

"SAPIENZA" UNIVERSITÀ DI ROMA INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA DIPARTIMENTO DI INFORMATICA

Linguaggi di Programmazione

Author
Simone Bianco

Indice

In	form	azioni e Contatti	1
1		uttura e Rappresentazione	2
	1.1	Algebre induttive	2
		1.1.1 Lemma di Lambek	8
	1.2	Strutture dati induttive	9
		1.2.1 Induzione strutturale	11
	1.3	Sintassi astratta	12
2	Paradigma funzionale		14
	2.1	Exp: un semplice linguaggio funzionale	14
	2.2	Valutazione Eager vs Lazy	18
	2.3	Scoping Statico vs Dinamico	20
	2.4	Fun: un linguaggio con funzioni	23

Informazioni e Contatti

Appunti e riassunti personali raccolti in ambito del corso di *Linguaggi di Programma-zione* offerto dal corso di laurea in Informatica dell'Università degli Studi di Roma "La Sapienza".

Ulteriori informazioni ed appunti possono essere trovati al seguente link: https://github.com/Exyss/university-notes. Chiunque si senta libero di segnalare incorrettezze, migliorie o richieste tramite il sistema di Issues fornito da GitHub stesso o contattando in privato l'autore :

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

Gli appunti sono in continuo aggiornamento, pertanto, previa segnalazione, si prega di controllare se le modifiche siano già state apportate nella versione più recente.

Prerequisiti consigliati per lo studio:

Apprendimento del materiale relativo al corso Algebra.

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

Struttura e Rappresentazione

1.1 Algebre induttive

Definizione 1: Assiomi di Peano

L'insieme dei numeri naturali N è definito secondo i seguenti assiomi di Peano:

- 1. $0 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \implies \operatorname{succ}(n) \in \mathbb{N}$, dove $\operatorname{succ} : \mathbb{N} \to \mathbb{N}$ è la funzione successore
- 3. $\forall n, m \in \mathbb{N}, \operatorname{succ}(n) = \operatorname{succ}(m) \implies n = m$, ossia succ è iniettiva
- 4. $\nexists n \in \mathbb{N} \mid \operatorname{succ}(n) = 0$
- 5. $\forall S \subseteq \mathbb{N} \mid (0 \in S \land (n \in S \implies \operatorname{succ}(n) \in S)) \implies S = \mathbb{N}$

Proposizione 1: Numeri naturali di Von Neumann

I numeri naturali data da Von Neumann, indicati con \mathcal{N} , definiti come:

$$0_{\mathcal{N}} := \{\}$$

$$1_{\mathcal{N}} := \{\{\}\}\}$$

$$2_{\mathcal{N}} := \{\{\}, \{\{\}\}\}\}$$

$$3_{\mathcal{N}} := \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}\}\}\}$$

• •

dove ${\rm succ}_{\mathcal{N}}:\mathcal{N}\to\mathcal{N}:n\mapsto n\cup\{n\},$ soddisfano gli assiomi di Peano

Dimostrazione.

- 1. $0_{\mathcal{N}} \in \mathcal{N}$ per definizione stessa di \mathcal{N}
- 2. $n \in \mathcal{N} \implies \operatorname{succ}_{\mathcal{N}}(n) \in \mathcal{N}$ per definizione stessa di $\operatorname{succ}_{\mathcal{N}}$
- 3. Siano $n, m \in \mathcal{N}$ tali che $n \neq m$. In tal caso, ne segue automaticamente che:

$$n \neq m \implies n \cup \{n\} \neq m \cup \{m\} \iff \operatorname{succ}_{\mathcal{N}}(n) \neq \operatorname{succ}_{\mathcal{N}}(m)$$

Per contro-nominale, dunque, otteniamo che:

$$\operatorname{succ}_{\mathcal{N}}(n) = \operatorname{succ}_{\mathcal{N}}(m) \implies n = m$$

4. Supponiamo per assurdo che $\exists n \in \mathbb{N} \mid \operatorname{succ}_{\mathcal{N}}(n) = 0_{\mathcal{N}}$. In tal caso, avremmo che:

$$succ(n) = 0_{\mathcal{N}} \iff n \cup \{n\} = 0_{\mathcal{N}} \iff n \cup \{n\} = \{\}$$

ma ciò risulta assurdo poiché implicherebbe che l'insieme $\{\}$ contenga degli elementi. Di conseguenza, l'unica possibilità è che $\nexists n \in \mathbb{N} \mid \mathrm{succ}_{\mathcal{N}}(n) = 0_{\mathcal{N}}$

5. Supponiamo per assurdo che $\exists S \subseteq \mathcal{N} \mid (0_{\mathcal{N}} \in S \land (n \in S \implies \operatorname{succ}_{\mathcal{N}}(n) \in S)) \land S \neq \mathcal{N}$. Consideriamo quindi $\mathcal{N} - S = \{n_1, \dots, n_k\}$. Per via del secondo assioma, ogni elemento di $\mathcal{N} - S$ deve avere un proprio successore e un proprio predecessore in \mathcal{N} .

Poiché per ipotesi si ha che $n \in S \implies \operatorname{succ}_{\mathcal{N}}(n) \in S$, ne segue che tutti i predecessori degli elementi in $\mathcal{N} - S$ non possano essere in S, poiché altrimenti tali elementi sarebbero in S. Inoltre, poiché $\operatorname{succ}_{\mathcal{N}}$ è iniettiva, ne segue che i successori degli elementi in $\mathcal{N} - S$ non possano essere in S, poiché esiste già un predecessore in S per ogni elemento in S.

Di conseguenza, ogni predecessore ed ogni successore degli elementi di $\mathcal{N}-S$ deve essere in $\mathcal{N}-S$ stesso. Consideriamo quindi (per comodità) la seguente catena di successori in $\mathcal{N}-S$:

$$n_1 \rightarrow n_2 \rightarrow \dots \rightarrow n_k \rightarrow n_1$$

Notiamo a questo punto che:

$$\operatorname{succ}_{\mathcal{N}}^k(n_1) = n_1 \implies n_1 \in n_1$$

contraddicendo gli assiomi insiemistici per cui un insieme non possa essere contenuto in se stesso. Di conseguenza, l'unica possibilità è che $S=\mathcal{N}$

Principio 1: Principio di induzione

Sia P una proprietà che vale per n=0. Dato $n\in\mathbb{N}$, se si verifica che la veridicità di P per n implica che P sia vera anche per n+1, allora P vale per tutto \mathbb{N} . In simboli, abbiamo che:

$$\forall P \ ((P(0) \land (P(n) \implies P(n+1)))) \implies \forall m \in \mathbb{N} \ P(m)$$

Osservazione 1

Il quinto assioma di Peano è equivalente al principio di induzione, poiché basta considerare $S \subseteq \mathbb{N}$ come l'insieme degli elementi per cui vale la proprietà desiderata

Osservazione 2

Dato $k \in \mathbb{N}$, il principio di induzione può essere utilizzato per dimostrare che una proprietà P valga $\forall n \in \mathbb{N} \mid n \geq k$. In altre parole, non è necessario che il principio valga per tutti i naturali a partire da 0.

Dimostrazione.

• Definendo una proprietà Q tale che P(n) = Q(n-k), si ha che:

$$\forall n - k \in \mathbb{N} \ Q(n - k) \iff P(n)$$

dunque applicare il principio di induzione per P partendo da k equivale ad applicare il principio di induzione per Q partendo da 0, rispettando quindi il quinto assioma di Peano

Definizione 2: Insieme unità

Definiamo come **insieme unità** l'insieme $\mathbb{1} = \{()\}$, ossia l'insieme composto da una zerupla

Definizione 3: Funzione nullaria

Definiamo una funzione $f: \mathbb{1} \to S$, dunque avente $\mathbb{1}$ come dominio, come **funzione** nullaria (o funzione costante).

Inoltre, per comodità, indichiamo f(x) direttamente con f, poiché x = ()

Esempio:

• Data la funzione zero : $\mathbb{1} \to \mathbb{N} : x \mapsto 0$, indichiamo zero(x) direttamente come zero

Osservazione 3

Una funzione nullaria è sempre **iniettiva** in quanto esiste un solo elemento nel dominio.

Definizione 4: Segnatura di una funzione

Data una funzione f definiamo $f:D\to C$ come **segnatura di** f dove D è il **dominio** di f e C è il **codominio** di f

Definizione 5: Algebra

Definiamo come **algebra** (o struttura algebrica) una n-upla $(A, \gamma_1, \ldots, \gamma_n)$ dove A è un insieme non vuoto, detto **dominio**, e $\gamma_1, \ldots, \gamma_n$ sono delle operazioni definite su A stesso.

Esempi:

- La coppia (N, succ) è un'algebra
- La coppia (N, zero) è un'algebra

Definizione 6: Segnatura di un'algebra

Data un'algebra $(A, \gamma_1, \dots, \gamma_n)$, definiamo come **segnatura dell'algebra** l'insieme delle segnature delle operazioni definite su essa

Definizione 7: Segnature equivalenti

Date due algebre $(A, \gamma_1, \ldots, \gamma_n)$ e $(B, \delta_1, \ldots, \delta_n)$, definiamo le segnature di tali algebre come **equivalenti** se per ogni operazione γ definita su A esiste un'operazione δ definita su B per cui invertendo B con A all'interno della segnatura di δ si ottiene la segnatura di γ

Esempio:

- Date le due algebre (\mathbb{N} , zero, succ) e (\mathcal{N} , zero $_{\mathcal{N}}$, succ $_{\mathcal{N}}$), le segnature di tali algebre sono equivalenti poiché:
 - La segnatura di zero : $\mathbb{1} \to \mathbb{N}$ è equivalente alla segnatura di zero $\mathbb{1} \to \mathbb{N}$
 - La segnatura di succ : $\mathbb{N} \to \mathbb{N}$ è equivalente alla segnatura di succ $_{\mathcal{N}} : \mathcal{N} \to \mathcal{N}$

Definizione 8: Algebra induttiva e Costruttori

Definiamo l'algebra $(A, \gamma_1, \dots, \gamma_n)$ come **induttiva** (o **iniziale**) se:

- $\gamma_1, \ldots, \gamma_n$ sono iniettive
- $\forall i \neq j \quad \text{im}(\gamma_i) \cap \text{im}(\gamma_j) = \emptyset$, ossia le immagini delle operazioni sono due a due disgiunte
- $\forall S \subseteq A \ (\forall i \in [1, n], a_1, \dots, a_k \in S \ \gamma_i(a_1, \dots, a_k) \in S) \implies S = A$, ossia è soddisfatto il principio di induzione per ogni operazione

Inoltre, definiamo $\gamma_1, \ldots, \gamma_n$ come **costruttori di** A.

Esempi:

- L'algebra $(\mathbb{N},+)$ non è un'algebra induttiva poiché $+:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ non è iniettiva
- L'algebra (N, succ, zero) è un'algebra induttiva poiché:
 - succ risulta essere iniettiva grazie al secondo assioma di Peano, mentre zero risulta essere iniettiva poiché funzione nullaria
 - $-\operatorname{im}(\operatorname{succ})\cap\operatorname{im}(\operatorname{zero})=(\mathbb{N}-\{0\})\cap\{0\}=\varnothing$
 - Sia $S \subseteq \mathbb{N}$ tale che $\forall x \in S \ \operatorname{succ}(x) \in S$ e zero ∈ S. Preso $x \in \mathbb{N}$, possiamo esprimere x come $x = \operatorname{succ}(\operatorname{succ}(...(\operatorname{zero})))$.

Di conseguenza, poiché S è chiuso per succ e zero, otteniamo che:

- $* zero \in S \implies succ(zero) \in S$
- * $\operatorname{succ}(\operatorname{zero}) \in S \implies \operatorname{succ}(\operatorname{succ}(\operatorname{zero})) \in S$
- * ...
- * succ(...(zero)) $\in S \implies x = \text{succ}(\text{succ}(...(\text{zero}))) \in S$

Di conseguenza, otteniamo che $A \subseteq S$ e dunque che S = A

Osservazione 4

Equivalentemente, la terza condizione necessaria delle algebre induttive può essere considerata come

$$\nexists S \subsetneq A \mid (S, \gamma_1, \dots, \gamma_n)$$
è algebra induttiva

Definizione 9: Omomorfismo

Date due strutture algebriche $(A, \gamma_1, \dots, \gamma_k)$ e $(B, \delta_1, \dots, \delta_k)$ dello stesso tipo, definiamo $f: A \to B$ come **omomorfismo** se

$$\forall a_1, \dots, a_n \in A, i \in [1, k] \quad f(\gamma_i(a_1, \dots, a_k)) = \delta_i(f(a_1), \dots, f(a_k))$$

Esempi:

• Date le due algebre $(\mathbb{N}, \operatorname{succ}_{\mathcal{N}}, +)$ e $(\mathcal{N}, \operatorname{succ}_{\mathcal{N}}, +_{\mathcal{N}})$, affinché la funzione $f : \mathbb{N} \to \mathcal{N}$ sia un omomorfismo è necessario che:

$$f(\operatorname{succ}(n)) = \operatorname{succ}_{\mathcal{N}}(f(n))$$
 $f(n+m) = f(n) +_{\mathcal{N}} f(m)$

• Date le due algebre $(\mathbb{R},+)$ e $(\mathbb{R}_{>0},\cdot)$, la funzione $\exp:\mathbb{R}\to\mathbb{R}_{>0}:x\mapsto e^x$ è un omomorfismo:

$$\exp(x+y) = e^{x+y} = e^x e^y = \exp(x)\exp(y)$$

Definizione 10: Isomorfismo

Definiamo come **isomorfismo** un omomorfismo biettivo. Inoltre, definiamo due algebre $(A, \gamma_1, \ldots, \gamma_n)$, $(B, \delta_1, \ldots, \delta_n)$ come **isomorfe**, indicato con $A \cong B$, se esiste un isomorfismo tra loro.

Osservazione 5

Data una funzione $f: A \to B$, si ha che:

$$f$$
 è biettiva $\iff \exists f^{-1}: B \to A$

(dimostrazione omessa)

Osservazione 6

Data una funzione $f: A \to B$, si ha che:

f è un isomorfismo $\iff f^{-1}$ è un isomorfismo

(dimostrazione omessa)

Esempio:

- Date le due algebre $(\mathbb{R},+)$ e $(\mathbb{R}_{>0},\cdot)$, la funzione $\exp:\mathbb{R}\to\mathbb{R}_{>0}:x\mapsto e^x$ è un isomorfismo, poiché:
 - exp è un omomorfismo
 - $-\exists \ln : \mathbb{R}_{>0} \to \mathbb{R} \mid \ln(\exp(x)) = x$, dunque f è biettiva.

1.1.1 Lemma di Lambek

Lemma 1

Data un'algebra induttiva $(A, \gamma_1, \dots, \gamma_n)$, per ogni algebra $(B, \delta_1, \dots, \delta_n)$ con la stessa segnatura di A si ha che

 $\exists ! \text{ omomorfismo } f: A \to B$

Nota: l'algebra di B non deve necessariamente essere induttiva

(dimostrazione omessa)

Teorema 1: Lemma di Lambek (versione ridotta)

Date due algebre induttive $(A, \gamma_1, \dots, \gamma_n)$ e $(B, \delta_1, \dots, \delta_n)$ si ha che $A \cong B$

Dimostrazione.

• Per il lemma precedente, si ha che:

 $\exists ! \text{ omomorfismo } f: A \to B$

 $\exists !$ omomorfismo $g: B \to A$

• Consideriamo quindi la funzione $g \circ f : A \to Axg(f(x))$ e verifichiamo che essa sia un omomorfismo

$$q \circ f(x+y) = q(f(x+y)) = q(f(x)+f(y)) = q(f(x))+q(f(y)) = q \circ f(x)+q \circ f(y)$$

- Tuttavia, per ogni algebra esiste sempre l'isomorfismo identità id : $A \to A$: $x \mapsto x$ e poiché per il lemma precedente esiste necessariamente un unico omomorfismo tra A e A, ne segue necessariamente che $g \circ f = \mathrm{id}$
- Di conseguenza, si ha che

$$g \circ f = \mathrm{id} \iff g = f^{-1} \implies g, f \text{ biettive } \implies g, f \text{ isomorfismi } \implies A \cong B$$

Esempio:

- Date le due algebre induttive (\mathbb{N} , zero, succ) e (\mathcal{N} , zero, succ) sono isomorfe tra loro poiché aventi la stessa segnatura algebrica
- \bullet Difatti, come già dimostrato, $\mathbb N$ e $\mathcal N$ sono solamente due modi diversi per rappresentare lo stesso identico concetto algebrico

1.2 Strutture dati induttive

Definizione 11: Insieme delle liste finite

Definiamo List<T> come l'insieme delle liste finite di elementi di T

Esempio:

• Dato List<Int>, si ha che $[3 \rightarrow 5 \rightarrow 1] \in List<Int>$

Proposizione 2: Algebra induttiva delle liste finite

La tripla (List<T>, empty, cons), dove:

- empty : $\mathbb{1} \to \text{List} < T > : x \mapsto []$ è la funzione nullaria che restituisce la **lista** vuota
- cons : List<T> \times T \rightarrow List<T> : $x, ([x_1 \rightarrow \ldots \rightarrow x_n]) \mapsto [x \rightarrow x_1 \rightarrow \ldots x_n]$ è la funzione di **costruzione delle liste**

è un'algebra induttiva

Dimostrazione.

1. La funzione empty risulta essere iniettiva poiché nullaria.

Dati $\ell_1, \ell_2 \in \text{List} < T > \text{e } x_1, x_2 \in T$, supponiamo che:

$$cons(y_1, \ell_1) = cons(y_2, \ell_2) = [x_1 \to x_2 \to \dots \to x_n]$$

Per definizione stessa di cons, si ha che:

$$cons(y_1, \ell_1) = cons(y_2, \ell_2) = [x \to x_1 \to \dots \to x_n]$$

$$\implies y_1 = y_2 = x, \ell_1 = \ell_2 = [x_1 \to \dots \to x_n]$$

dunque anche cons risulta iniettiva

- 2. $\operatorname{im}(\operatorname{empty}) \cap \operatorname{im}(\operatorname{cons}) = \{[]\} \cap (\operatorname{List} < T > \{[]\}) = \emptyset$
- 3. Sia $S \subseteq \text{List} < T > \text{tale che } \forall x \in T, \ell \in \text{List} < T > \cos(x, \ell) \in S \text{ e empty } \in S.$

Preso $\ell := [x_1 \to x_2 \to \dots \to x_n] \in \texttt{List<T>}$, possiamo esprimere ℓ come

$$\ell = cons(x_1, cons(x_2, ...cons(x_n, empty)))$$

Di conseguenza, poiché S è chiuso per cons e empty e poiché empty $\in S$, otteniamo che ogni valore della catena sia contenuto in S, implicando che $x \in S$ e quindi che List<T> $\subseteq S$, concludendo che S = List<T>

Osservazione 7

La tripla (List<T $>_{\infty}$, empty, cons), dove List<T $>_{\infty}$ è l'insieme delle liste infinite di elementi di T non è un'algebra induttiva, poiché List<T $> \subseteq$ List<T $>_{\infty}$ e poiché (List<T>, empty, cons) è un'algebra induttiva

Osservazione 8

Tramite i costruttori di un'algebra induttiva è possibile definire le ulteriori operazioni "aggiuntive" di tale algebra

Esempio:

• Data l'algebra induttiva (List<T>, empty, cons), definiamo la seguente operazione

$$concat : List \times List \rightarrow List$$

dove:

$$\begin{cases} \operatorname{concat}(\operatorname{empty}, \ell) = \ell \\ \operatorname{concat}(\operatorname{cons}(n, \ell), \ell') = \operatorname{cons}(n, \operatorname{concat}(\ell, \ell')) \end{cases}$$

• Ad esempio, in List<Int>, abbiamo che:

$$\begin{aligned} & \operatorname{concat}([1 \to 5], [7 \to 2]) = \operatorname{concat}(\operatorname{cons}(1, [5], [7 \to 2])) = \operatorname{cons}(1, \operatorname{concat}([5], [7 \to 2])) = \\ & \operatorname{cons}(1, \operatorname{concat}(\operatorname{cons}(5, \operatorname{empty}), [7 \to 2])) = \operatorname{cons}(1, \operatorname{cons}(5, \operatorname{concat}(\operatorname{empty}, [7 \to 2]))) = \\ & \operatorname{cons}(1, \operatorname{cons}(5, [7 \to 2])) = \operatorname{cons}(1, [5 \to 7 \to 2]) = [1 \to 5 \to 7 \to 2] \end{aligned}$$

Definizione 12: Insieme degli alberi binari finiti

Definiamo BinTree come l'insieme degli alberi binari finiti

Proposizione 3: Algebra induttiva degli alberi binari finiti

La tripla (BinTree, leaf, branch), dove:

- leaf : $\mathbb{1} \to \text{BinTree} : x \mapsto \circ$ è la funzione nullaria che restituisce una foglia
- branch : BinTree \times BinTree \to BinTree : $(t_{sx}, t_{dx}) \mapsto t$ è la funzione di **costruzione dei rami**, ossia tale che

è un'algebra induttiva

(dimostrazione omessa)

Esempio:

• Il seguente albero

corrisponde a:

$$a = \text{branch}(\text{leaf}, \text{branch}(\text{leaf}, \text{leaf}))$$

1.2.1 Induzione strutturale

Definizione 13: Induzione strutturale

Definiamo come **induzione strutturale** il metodo dimostrativo generalizzante il principio di induzione e basato sulle proprietà di un'algebra induttiva.

In particolare, viene ipotizzato che una proprietà P valga per ogni argomento di ogni costruttore dell'algebra e tramite il terzo assioma viene dimostrato che tale proprietà valga per tutti gli elementi dell'algebra stessa

Teorema 2: Relazione tra nodi e foglie

Dato $t \in BinTree$ avente n foglie, il numero di nodi di t è pari a 2n-1

Dimostrazione per induzione strutturale.

• Definiamo l'operazione

leaves : BinTree $\rightarrow \mathbb{N}: t \mapsto \text{Numero di foglie in } b$

dove:

$$\begin{cases} leaves(leaf) = 1 \\ leaves(branch(b_1, b_2)) = leaves(b_1) + leaves(b_2) \end{cases}$$

• Dato $t \in BinTree$, sia k il numero di nodi di t e sia n = leaves(t)

Caso base. Se t = leaf, allora t è composto da k = 1 nodi e n = leaves(leaf) = 1 foglie. Difatti, si ha che k = 1 = 2n - 1

Ipotesi induttiva. Ogni argomento t' di ogni costruttore possiede k'=2leaves(t')-1 nodi

Passo induttivo. Se $t \neq \text{leaf}$, allora $\exists t_1, t_2 \in \texttt{BinTree} \mid t = \text{branch}(t_1, t_2)$ dove t_1 e t_2 possiedono rispettivamente k_1 e k_2 nodi. Inoltre, si ha che $k = k_1 + k_2 + 1$

In quanto t_1 e t_2 sono argomenti del costruttore branch, per ipotesi induttiva si ha che:

$$k = k_1 + k_2 + 1 = 2 \text{leaves}(t_1) - 1 + 2 \text{leaves}(t_2) - 1 + 1 = 2(\text{leaves}(t_1) + \text{leaves}(t_2)) - 1 =$$

= $2(\text{leaves}(\text{branch}(t_1, t_2))) - 1 = 2(\text{leaves}(t)) - 1$

1.3 Sintassi astratta

Definizione 14: Linguaggio

Definiamo come linguaggio un insieme di stringhe

Definizione 15: Grammatica

Definiamo come **grammatica** un insieme di regole, dette **termini**, che definiscono come poter manipolare le stringhe di un linguaggio.

La **forma di Backus-Naur** è una notazione utilizzata per descrivere grammatiche ed è definita come:

dove:

- <symbol> è una simbolo non-terminale espresso dalla grammatica
- L'operatore ::= indica che ciò che si trova alla sua sinistra possa essere sostituito con ciò che si trova alla sua destra
- <_expression_> consiste in una o più sequenze di simboli terminali o nonterminali dove ogni sequenza è separata da una barra verticale (ossia |) indicante una scelta possibile per l'operatore ::=

Esempio:

• Consideriamo il linguaggio L espresso dalla grammatica:

$$M, N ::= 0 \mid 1 \mid \ldots \mid M + N \mid M * N$$

Tale grammatica indica che i simboli non-terminali M e N possono essere sostituiti con:

- Un numero naturale
- Un'espressione M+N o M*N dove M e N sono due ulteriori simboli terminali o non-terminali

• Ad esempio, abbiamo che la stringa "5 + 7" sia ben definita dalla grammatica, mentre la stringa "5 + +" non lo sia

Definizione 16: Sintassi astratta

La sintassi astratta di un linguaggio è una definizione induttiva di un insieme T di termini, permettendo di definire strutture algebriche senza dover necessariamente definire concretamente le sue operazioni

Esempio:

• Consideriamo ancora il linguaggio L definito dalla grammatica

$$M, N ::= 0 \mid 1 \mid \ldots \mid M + N \mid M * N$$

• Definiamo quindi la funzione eval : $L \to \mathbb{N}$ in grado di valutare le espressioni del linguaggio:

$$\begin{aligned} \operatorname{eval}("\mathtt{0"}) &= 0 \\ \operatorname{eval}("\mathtt{1"}) &= 1 \\ & \cdots \\ \operatorname{eval}("\mathtt{M} + \mathtt{N"}) &= \operatorname{eval}("\mathtt{M"}) + \operatorname{eval}("N") \\ \operatorname{eval}("\mathtt{M} * \mathtt{N"}) &= \operatorname{eval}("\mathtt{M"}) + \operatorname{eval}("N") + \operatorname{eval}("N") \end{aligned}$$

• Notiamo quindi che la grammatica definisca in modo astratto (ma concretamente tramite eval) le seguenti operazioni:

$$\begin{aligned} 0: \mathbb{1} &\to \mathbb{N}: x \mapsto 0 \\ 1: \mathbb{1} &\to \mathbb{N}: x \mapsto 1 \\ & & \dots \\ \text{plus}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}: (m,n) \mapsto m+n \\ \text{times}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}: (m,n) \mapsto m \cdot n \end{aligned}$$

- Notiamo però che le operazioni plus e times non risultano essere né iniettive né con immagini disgiunte. Di conseguenza, la funzione eval non ci permette di definire un'algebra induttiva.
- Tuttavia, per tale linguaggio è comunque possibile definire (in qualche modo, ad esempio fissando una precedenza per le operazioni rompendo proprietà come l'associatività e la commutatività) una funzione che possa descrivere un'algebra induttiva.

Teorema 3: Algebra induttiva dei termini

Dato un linguaggio L con una sintassi astratta con termini definiti in T, esiste sempre un'algebra induttiva (T, α) . Di conseguenza, **tutte le proprietà** di un linguaggio sono dimostrabili tramite l'induzione strutturale sulla sua algebra dei termini.

(dimostrazione omessa)

Paradigma funzionale

2.1 Exp: un semplice linguaggio funzionale

Definizione 17: Il linguaggio Exp

Definiamo come Exp il linguaggio rappresentato dalla seguente grammatica:

$$M, N ::= k \mid x \mid M + N \mid let \ x = M \text{ in } N$$

dove:

- $k \in \{0, 1, \ldots\}$ ossia è una costante
- $x \in Var = \{x, y, z, \ldots\}$ ossia è una variabile
- $+: Exp \times Exp \rightarrow Exp$ la quale somma le due espressioni
- $let: Var \times Exp \times Exp \to Exp$ la quale **assegna** alla variabile x l'espressione M all'interno della **valutazione** di N. Inoltre, x prende il nome di variabile locale all'interno di N.
- $Val = \{0, 1, ...\}$ è l'insieme dei valori in cui un'espressione può essere valutata

Esempi:

- L'espressione let x=3 in x+1 indica che la variabile x assuma valore 3 all'interno della valutazione di x+1. Di conseguenza, il risultato della valutazione dell'espressione è 4
- L'espressione let x = 3 in 7 viene valutata come 7
- L'espressione $let\ y=9$ in $(let\ x=(let\ y=2\ in\ y+1)\ in\ x+y)$ viene valutata come 12 (si consiglia di cercare di capire come le clausole interne sovrascrivano i valori delle clausole esterne. Se ciò risultasse complesso, più avanti verranno forniti strumenti matematici per valutare in modo corretto le clausole let annidate)

Definizione 18: Scope di una variabile

Data un'espressione e una variabile x, definiamo come **scope di** x la porzione la porzione dell'espressione all'interno della quale una variabile può essere riferita, ossia per cui ne è definito il valore.

Una variabile il cui valore non è assegnato in una porzione dell'espressione viene detta variabile libera

Definizione 19: Variabile libera

Data un'espressione $expr \in Exp$, definiamo $x \in expr$ come **libera** se x non ha un valore assegnato durate la valutazione di expr.

Esempio:

• L'espressione let $x = (let \ y = 2 \text{ in } y + 1)$ in x + y non è coerente con la grammatica di Exp, poiché y non è definito durante la valutazione di x + y. Di conseguenza, non è possibile valutare tale espressione.

Proposizione 4: Calcolo delle variabili libere

Dato il linguaggio Exp, la funzione

free:
$$Exp \to \mathcal{P}(Var)$$

restituisce l'insieme di tutte le variabili libere di un'espressione dove:

$$\begin{cases} \operatorname{free}(k) = \varnothing \\ \operatorname{free}(x) = \{x\} \\ \operatorname{free}(M+N) = \operatorname{free}(M) \cup \operatorname{free}(N) \\ \operatorname{free}(\operatorname{let} x = M \text{ in } N) = \operatorname{free}(M) \cup (\operatorname{free}(N) - \{x\}) \end{cases}$$

Nota: $\mathcal{P}(Var)$ è l'insieme delle parti di Var, ossia l'insieme contenente tutti i suoi sottoinsiemi possibili

Esempio:

• Riprendendo l'esempio precedente, notiamo che:

$$free(let \ x = (let \ y = 2 \ in \ y + 1) \ in \ x + y) =$$

$$= free(let \ y = 2 \ in \ y + 1) \cup (free(x + y) - \{x\}) =$$

$$= free(let \ y = 2 \ in \ y + 1) \cup ((free(x) \cup free(y)) - \{x\}) =$$

$$= free(let \ y = 2 \ in \ y + 1) \cup ((\{x\} \cup \{y\}) - \{x\}) =$$

$$= free(let \ y = 2 \ in \ y + 1) \cup \{y\} =$$

$$= (free(2) \cup (free(y+1) - \{y\})) \cup \{y\} =$$

$$= ((free(y)) - \{y\}) \cup \{y\} =$$

$$= \{y\}$$

dunque l'espressione è invalutabile

Definizione 20: Insieme degli ambienti

Dato il linguaggio Exp, definiamo come **insieme degli ambienti di** Exp, indicato con Env, l'insieme delle funzioni parziali (ossia <u>non necessariamente</u> definite su tutto il dominio) che associano ogni variabile al proprio valore:

$$Env = \{ f \mid f : Var \xrightarrow{fin} Val \}$$

Definizione 21: Concatenazione di ambienti

Dato il linguaggio Exp, definiamo l'operazione di **concatenazione di ambienti**, ossia:

$$\cdot: Env \times Env \rightarrow Env$$

dove:

$$(E_1 E_2)(x) = \begin{cases} E_2(x) & \text{se } x \in dom(E_1) \\ E_1(x) & \text{altrimenti} \end{cases}$$

Nota: tale operazione può essere interpretata come una sovrascrittura in E_1 di tutte le variabili definite in E_2

Esempio:

 \bullet Dati gli ambienti $E_1=\{(x,4),(y,3)\}$ e $E_2=\{(x,5)\},$ si ha che

$$(E_1E_2)(x) = 5$$

$$(E_1E_2)(y) = 3$$

Proposizione 5: Regola di inferenza

Data la proposizione:

Premessa 1
$$\wedge \ldots \wedge$$
 Premessa n \implies Conclusione

definiamo come regola di inferenza la notazione alternativa:

$$\frac{\text{Premessa 1 } \dots \text{ Premessa n}}{\text{Conclusione}}$$

Definizione 22: Semantica operazionale

Data la seguente relazione detta semantica operazionale, ossia:

$$\leadsto \subseteq Env \times Exp \times Val$$

definiamo come **giudizio operazionale** la tripla $(E, M, v) \in \rightsquigarrow$ descritta dalla notazione

$$E \vdash M \leadsto v$$

la quale viene letta come "nell'ambiente E, M viene valutato come v".

Proposizione 6: Regole operazionali di Exp

Definiamo come **regole operazionali** le regole di inferenza che dettano le valutazioni effettuate dalla semantica operazionale:

• Per le **costanti** si ha che:

$$\forall E \in Env \quad E \vdash k \leadsto k$$

• Dato $E \in Env$, per le **variabili** si ha che:

$$x \in dom(E) \land E(x) = v \implies E \vdash x \leadsto v$$

• Dato $E \in Env$, per la **somma** si ha che:

$$u = v + v' \implies \frac{E \vdash M \leadsto v \quad E \vdash N \leadsto v'}{E \vdash M + N \leadsto u}$$

• Per l'espressione *let* si ha che:

$$\frac{E \vdash M \leadsto v \quad E\{(x,v)\} \vdash N \leadsto v'}{E \vdash let \ x = M \ \text{in} \ N \leadsto v'}$$

Osservazione 9: Ambiente iniziale

A meno che non vi siano variabili esternamente assegnate, all'interno di un'espressione l'ambiente iniziale corrisponde sempre a $\varnothing \subseteq Env$.

Osservazione 10: Variabili invalutabili

Dato un ambiente $E \in Env$, se $x \notin dom(E)$, ossia se x non è definita nell'ambiente E, allora x è una **variabile libera** e dunque è **invalutabile** in E, ossia:

$$\nexists v \in Val \text{ t.c. } E \vdash x \rightsquigarrow v$$

Esempio:

• L'espressione x + 4 è invalutabile, poiché $x \notin dom(\emptyset)$, dunque:

$$\not\exists v' \in Val \text{ t.c. } v = v' + 1 \land \frac{\varnothing \vdash x \leadsto v' \quad \varnothing \vdash 1 \leadsto 1}{\varnothing \vdash x + 1 \leadsto v}$$

• L'espressione let x = 1 in x + 4 è valutabile, poiché $x \in dom(\{(x, 1)\})$, dunque:

$$\frac{\varnothing \vdash 1 \leadsto 1 \quad \frac{\{(x,1)\} \vdash x \leadsto 1 \quad \{(x,1)\} \vdash 4 \leadsto 4}{\{(x,1)\} \vdash x + 1 \leadsto 5}}{\varnothing \vdash let \ x = 1 \ \text{in} \ x + 4 \leadsto 5}$$

Definizione 23: Albero di derivazione

Definiamo come **albero di derivazione** l'albero generato dalla valutazione concatenata di più regole di inferenza.

Esempio:

• L'espressione let y = 3 in (let x = 7 in x + y) viene valutata dal seguente albero di derivazione:

• Notiamo quindi come, per valutare l'intera espressione, ci basti in realtà valutare i termini "più in alto" dell'albero di derivazione

2.2 Valutazione Eager vs Lazy

Consideriamo la seguente espressione per il linguaggio Exp:

let
$$x = \sqrt{397^5 + \int_3^{15} y^2 \, dy} + \log_{\sqrt{37}}(479)$$
 in 3

Notiamo come nonostante l'espressione assegnata ad x sia di grandi dimensioni, richiedendo un enorme albero di derivazione, la valutazione dell'espressione sia totalmente indipendente da tale valutazione in quanto la variabile x non venga neanche utilizzata per la valutazione del secondo termine dell'espressione let.

Utilizzando le regole di valutazione previste dalla metodologia di valutazione, detta eager (trad: affrettata), vista nella sezione precedente, andremmo a valutare delle espressioni del tutto inutili.

Una metodologia di valutazione alternativa, detta *lazy*, è costituita da regole operazionali atte al *ritardare* la valutazione dei termini fino a quando non sia strettamente necessario.

Definizione 24: Valutazione eager

Definiamo una modalità di valutazione come **eager** (o valutazione *call-by-name* o *call-by-value*) se la valutazione di una sua espressione viene effettuata non appena essa viene legata ad una variabile, associandone immediatamente il risultato alla variabile stessa.

Definizione 25: Valutazione lazy

Definiamo una modalità di valutazione come **lazy** (o valutazione *call-by-need*) se la valutazione di una sua espressione viene effettuata solo quando si richiede il valore di un'espressione che da essa dipende.

Proposizione 7: Linguaggio Exp lazy

L'uso di una valutazione lazy necessita la ridefinizione dell'insieme Env e di alcune regole operazionali definite per la valutazione eager:

• L'insieme *Env* viene ridefinito come:

$$Env = \{f \mid f : Var \xrightarrow{fin} Exp\}$$

• Dato $E \in Env$, per le variabili si ha che:

$$x \in dom(E) \land E(x) = M \implies \frac{E \vdash M \leadsto v}{E \vdash x \leadsto v}$$

• Per l'espressione *let* si ha che:

$$\frac{E\{(x,M)\} \vdash N \leadsto v}{E \vdash let \ x = M \ \text{in} \ N \leadsto v}$$

Osservazione 11

È necessario puntualizzare che non sempre la valutazione lazy sia più ottimale della eager

Esempio:

• Consideriamo la seguente espressione

$$let x = M in x + x$$

• Utilizzando la valutazione eager otteniamo il seguente albero di derivazione:

$$\frac{ \ldots }{ \varnothing \vdash M \leadsto v' } \quad \frac{ \{ (x,v') \} \vdash x \leadsto v' \quad \{ (x,v') \} \vdash x \leadsto v' }{ \{ (x,v') \} \vdash x + x \leadsto v }$$

$$\varnothing \vdash let \ x = M \ \text{in} \ x + x \leadsto v$$

dove v = v' + v'

• Utilizzando la valutazione lazy, invece, otteniamo il seguente albero di derivazione:

$$\frac{\overline{\{(x,M)\}} \vdash M \leadsto v'}{\{(x,M)\} \vdash x \leadsto v'} \qquad \frac{\overline{\{(x,M)\}} \vdash M \leadsto v'}{\{(x,M)\} \vdash x \leadsto v'}$$
$$\frac{\{(x,M)\} \vdash x \leftrightarrow v'}{\varnothing \vdash let \ x = M \ \text{in} \ x + x \leadsto v}$$

dove v = v' + v'

 \bullet Notiamo quindi che l'espressione M venga valutata una sola volta nella valutazione eager ma due volte nella valutazione lazy

2.3 Scoping Statico vs Dinamico

Consideriamo la seguente espressione:

let
$$x = 3$$
 in (let $y = x$ in (let $x = 7$ in $y + x$))

Prima di tutto, valutiamo tale espressione tramite valutazione eager:

$$\underbrace{ \begin{cases} E \vdash 7 \leadsto 7 & \frac{E\{(x,7)\} \vdash y \leadsto 3 & E\{(x,7)\} \vdash x \leadsto 7}{E\{(x,7)\} \vdash y + x \leadsto 10} \\ \hline (x,3)\} \vdash x \leadsto 3 & \frac{\{(x,3)\} \vdash let \ x = 7 \ \text{in} \ y + x \leadsto 10}{\{(x,3)\} \vdash let \ y = x \ \text{in} \ (let \ x = 7 \ \text{in} \ y + x) \leadsto 10} \\ \hline (x,3) \vdash let \ x = 3 \ \text{in} \ (let \ y = x \ \text{in} \ (let \ x = 7 \ \text{in} \ y + x)) \leadsto 10}$$

dove
$$E := \{(x,3), (y,3)\}$$

Valutiamo ora invece tale espressione utilizzando una valutazione lazy:

$$\frac{E\{(x,7)\} \vdash 7 \leadsto 7}{E\{(x,7)\} \vdash x \leadsto 7} \quad \underbrace{\frac{E\{(x,7)\} \vdash 7 \leadsto 7}{E\{(x,7)\} \vdash x \leadsto 7}}_{E\{(x,7)\} \vdash y \leadsto 7} \quad \underbrace{\frac{E\{(x,7)\} \vdash x \leadsto 7}{E\{(x,7)\} \vdash x \leadsto 7}}_{\{(x,3),(y,x)\} \vdash let \ x = 7 \ \text{in} \ y + x \leadsto 14}_{\{(x,3)\} \vdash let \ y = x \ \text{in} \ (let \ x = 7 \ \text{in} \ y + x) \leadsto 14}_{\varnothing \vdash let \ x = 3 \ \text{in} \ (let \ y = x \ \text{in} \ (let \ x = 7 \ \text{in} \ y + x)) \leadsto 14}$$

dove $E := \{(x, 3), (y, x)\}$

Notiamo quindi che le due valutazioni abbiano prodotto un risultato diverso. Tuttavia, vorremmo che le due valutazioni siano differenti solo a livello "implementativo", ossia che venga solo ritardata la valutazione dei termini. Difatti, tale problematica non è dovuta alla metodologia di valutazione utilizzata ma bensì dal tipo di scoping.

Definizione 26: Scoping statico

Definiamo un linguaggio come linguaggio a **scoping statico** se durante la valutazione di un'espressione viene utilizzato l'ambiente definito al tempo in cui viene interpretata (ma non valutata) l'espressione stessa.

Definizione 27: Scoping dinamico

Definiamo un linguaggio come linguaggio a **scoping statico** se durante la valutazione di un'espressione viene utilizzato l'ambiente definito al tempo di valutazione stesso.

Difatti, nell'esempio precedente ci troviamo in due situazioni:

- Nella valutazione eager, la variabile y viene valutata con l'ambiente $\{(x,3),(y,x)\}$ definito al tempo in cui viene interpretata l'espressione $let\ y=x$ in ... (scoping statico)
- Nella valutazione lazy, la variabile y viene valutata con l'ambiente $\{(x,3),(y,x),(x,7)\}$ definito al tempo della sua valutazione (scoping dinamico)

Per tanto, è necessario precisare che le due precedenti versioni viste del linguaggio Exp siano rispettivamente la versione **eager statica** e la versione Exp **lazy dinamica**.

Proposizione 8: Linguaggio Exp lazy statico

L'uso di una semantica lazy statica necessita la ridefinizione dell'insieme Env e di alcune regole operazionali definite per la semantica lazy dinamica:

• L'insieme *Env* viene ridefinito come:

$$Env = \{f \mid f : Var \xrightarrow{fin} Exp \times Env\}$$

• Dato $E \in Env$, per le variabili si ha che:

$$x \in dom(E) \land E(x) = (M, E') \implies \frac{E' \vdash M \leadsto v}{E \vdash x \leadsto v}$$

• Per l'espressione *let* si ha che:

$$\frac{E\{(x,(M,E))\} \vdash N \leadsto v}{E \vdash let \ x = M \ \text{in} \ N \leadsto v}$$

Valutiamo quindi l'espressione precedente utilizzando una semantica lazy statica:

$$\frac{ \underbrace{E \vdash x \leadsto 3}_{E'' \vdash y \leadsto 3} \quad \underbrace{E' \vdash 7 \leadsto 7}_{E'' \vdash x \leadsto 7} }{ \underbrace{E' \lbrace (x, (7, E')) \rbrace \vdash y + x \leadsto 10}_{E \lbrace (y, (x, E)) \rbrace \vdash let \ x = 7 \ \text{in} \ y + x \leadsto 10}_{\Xi \lbrace (x, (3, \emptyset)) \rbrace \vdash let \ y = x \ \text{in} \ (let \ x = 7 \ \text{in} \ y + x) \leadsto 10}_{\varnothing \vdash let \ x = 3 \ \text{in} \ (let \ y = x \ \text{in} \ (let \ x = 7 \ \text{in} \ y + x)) \leadsto 10}$$

dove $E := \{(x, (3, \emptyset))\}, E' := E\{(y, (x, E))\}$ e $E'' := E'\{(x, (7, E'))\}$. Notiamo quindi che la valutazione nel caso di Exp lazy statico coincida con la valutazione nel caso di Exp eager statico.

Osservazione 12: Linguaggio Exp eager dinamico

All'interno del linguaggio Exp non vi è distinzione tra semantica eager statica e eager dinamica, poiché nessuna delle valutazioni dei termini della grammatica di Exp viene influenzata dal tipo di scoping.

Per tanto, all'interno di Exp parliamo direttamente di semantica eager

Definizione 28: Equivalenza tra semantiche operazionali

Sia L un linguaggio. Date due semantiche operazionali definite su L, definiamo tali semantiche come **equivalenti** se ogni espressione di L restituisce lo stesso risultato per entrambe le semantiche a seguito della valutazione

Teorema 4: Equivalenze semantiche di Exp

Dato il linguaggio Exp, si ha che:

 $Exp \text{ eager } \equiv Exp \text{ lazy statico } \not\equiv Exp \text{ lazy dinamico}$

Osservazione 13

In base alla semantica utilizzata, possono generarsi problemi diversi durante le valutazioni

Esempio:

- Consideriamo la seguente espressione let x = x in x
- Utilizzando una semantica eager statica o lazy statica, otteniamo che il termine interno del *let* sia invalutabile
- Utilizzando una semantica lazy dinamica, la valutazione entrerà in un loop infinito (si consiglia di provare ad scrivere l'albero di derivazione)

2.4 Fun: un linguaggio con funzioni

Definizione 29: Il linguaggio Fun

Definiamo come Fun il linguaggio rappresentato dalla seguente grammatica:

$$M, N ::= k \mid x \mid M + N \mid let \ x = M \text{ in } N \mid fn \ x \Rightarrow M \mid MN$$

dove:

- $k \in \{0, 1, \ldots\}$ ossia è una **costante**
- $x \in Var = \{x, y, z, \ldots\}$ ossia è una variabile
- $+: Fun \times Fun \to Fun$ la quale somma le due espressioni
- $let: Var \times Fun \times Fun \to Fun$ la quale **assegna** alla variabile x l'espressione M all'interno della **valutazione** di N. Inoltre, x prende il nome di variabile locale all'interno di N
- $fn: Var \times Fun \to Fun$ la quale restituisce una **funzione** avente un parametro il quale influenza l'espressione valutata dalla funzione
- Data l'espressione $fn \ x \Rightarrow M$, definiamo la coppia $(x, M) \in Var \times Fun$ come **chiusura** di tale espressione
- \cdot : $Fun \times Fun \to Fun$ la quale **applica** il termine sinistro al termine destro. In particolare, è <u>necessario</u> che il termine sinistro sia una funzione
- $Val = \{0, 1, ...\} \cup (Var \times Fun)$ è l'**insieme dei valori** in cui un'espressione può essere valutata, ossia costanti e chiusure

Esempi:

- L'espressione ($fn \ x \Rightarrow x+1$) 7 viene valutata come 8, poiché la funzione sinistra $fn \ x \Rightarrow x+1$ viene applicata al termine destro 7 (dunque 7 viene utilizzato come argomento della funzione per il parametro x)
- L'espressione $(fn \ x \Rightarrow x \ 3)$ 7 è invalutabile, poiché l'argomento 7 viene passato come parametro x della funzione, ma all'interno di quest'ultima non è possibile valutare x 3 visto che 7 non è applicabile a 3
- L'espressione $(fn \ x \Rightarrow x \ 3)(fn \ x \Rightarrow x+1)$ viene valutata come 4, poiché l'argomento $fn \ x \Rightarrow x+1$ viene passato come parametro x della funzione $fn \ x \Rightarrow x \ 3$, per poi valutare l'applicazione $x \ 3$ passando l'argomento 3 come parametro per la funzione contenuta in x (ossia $fn \ x \Rightarrow x+1$).

Informalmente, possiamo dire che:

$$(fn \ x \Rightarrow x \ 3)(fn \ x \Rightarrow x + 1) \longrightarrow (fn \ x \Rightarrow x + 1) \ 3 \longrightarrow 4$$

Osservazione 14

Nel caso in cui si abbia un'espressione con doppio operatore di applicazione MNL, essa verrà valutata come (MN)L

Esempio:

• Le due espressioni $(fn \ x \Rightarrow x \ 3)(fn \ x \Rightarrow x+1)$ 7 e $[(fn \ x \Rightarrow x \ 3)(fn \ x \Rightarrow x+1)]$ 7 sono equivalenti

Definizione 30: Curryficazione

Definiamo come **curryficazione** la contrazione sintattica $fn \ x_1x_2...x_n \Rightarrow M$ equivalente alla seguente espressione:

$$fn x_1 \Rightarrow (fn x_2 \Rightarrow \dots (fn x_n \Rightarrow M) \dots)$$

Esempi:

• L'uncurryficazione dell'espressione (f
n $xy\Rightarrow yx)$ 7 (f
n $x\Rightarrow x+1)$ corrisponde a:

$$(fn \ x \Rightarrow fn \ y \Rightarrow yx) \ 7 \ (fn \ x \Rightarrow x+1)$$

e viene pertanto valutata come 8. Difatti, informalmente, possiamo dire che:

$$(fn \ x \Rightarrow fn \ y \Rightarrow yx) \ 7 \ (fn \ x \Rightarrow x+1) \longrightarrow (fn \ y \Rightarrow y \ 7) (fn \ x \Rightarrow x+1) \longrightarrow 8$$

Osservazione 15

Trattandosi di un'estensione del linguaggio Exp, il linguaggio Fun eredita le regole operazionali delle semantiche di Exp

Proposizione 9: Linguaggio Fun eager dinamico

La semantica eager dinamica del linguaggio Fun prevede l'aggiunta di alcune regole operazionali:

• L'insieme Env viene ridefinito come:

$$Env = \{ f \mid f : Var \xrightarrow{fin} Val \}$$

• Dato $E \in Env$, per le funzioni si ha che:

$$E \vdash fn \ x \Rightarrow M \leadsto (x, M)$$

• Dato $E \in Env$, per le applicazioni si ha che:

$$\frac{E \vdash M \leadsto (x,L) \quad E \vdash N \leadsto v' \quad E\{(x,v')\} \vdash L \leadsto v}{E \vdash MN \leadsto v}$$

Proposizione 10: Linguaggio Fun eager statico

La semantica eager statica del linguaggio Fun prevede l'aggiunta di alcune regole operazionali:

• L'insieme Env viene ridefinito come:

$$Env = \{f \mid f : Var \xrightarrow{fin} Val \times Env\}$$

• Dato $E \in Env$, per le funzioni si ha che:

$$E \vdash fn \ x \Rightarrow M \rightsquigarrow (x, M, E)$$

• Dato $E \in Env$, per le applicazioni si ha che:

$$\frac{E \vdash M \leadsto (x, L, E') \quad E \vdash N \leadsto v' \quad E'\{(x, v')\} \vdash L \leadsto v}{E \vdash MN \leadsto v}$$

Lemma 2

A differenza del linguaggio Exp, per la sua estensione Fun si ha che:

Fun eager dinamico $\not\equiv Fun$ eager statico

Dimostrazione.

- Consideriamo l'espressione let x=7 in $((fn\ y\Rightarrow let\ x=3\ in\ yx)(fn\ z\Rightarrow x))$
- Utilizzando la semantica eager dinamica, l'albero di derivazione corrisponde a:

$$(*) \qquad \frac{E' \vdash 3 \leadsto 3}{E'' \vdash y \leadsto (z,x)} \quad \frac{E'' \vdash x \leadsto 3}{E'' \vdash yx \leadsto 3} \\ E' \vdash let \ x = 3 \ \text{in} \ yx \leadsto 3$$

$$\frac{\varnothing \vdash 7 \leadsto 7}{E \vdash fn \ y \Rightarrow let \ x = 3 \ \text{in} \ yx \leadsto (y, let \ x = 3 \ \text{in} \ yx) \quad E \vdash fn \ z \Rightarrow x \leadsto (z, x) \quad (*)}{E \vdash (fn \ y \Rightarrow let \ x = 3 \ \text{in} \ yx)(fn \ z \Rightarrow x) \leadsto 3}$$

$$\varnothing \vdash let \ x = 7 \ \text{in} \ ((fn \ y \Rightarrow let \ x = 3 \ \text{in} \ yx)(fn \ z \Rightarrow x)) \leadsto 3$$

dove
$$E := \{(x,7)\}, E' := E\{(y,\{(z,x)\})\} \in E'' := E'\{(x,3)\}$$

• Utilizzando la semantica eager statica, invece, l'albero di derivazione corrisponde a:

$$(*) \qquad \frac{E' \vdash 3 \leadsto 3}{E'' \vdash y \leadsto (z, x, E)} \quad \frac{E'' \vdash x \leadsto 3}{E'' \vdash yx \leadsto 7} \quad \frac{E(z, 3) \vdash x \leadsto 7}{E' \vdash let \ x = 3 \ \text{in} \ yx \leadsto 7}$$

dove
$$E := \{(x,7)\}, E' := E\{(y,\{(z,x,E)\})\} \in E'' := E'\{(x,7)\}$$

• Poiché l'espressione restituisce due valutazioni diverse, le due semantiche non sono equivalenti

Proposizione 11: Linguaggio Fun lazy dinamico

La semantica lazy dinamica del linguaggio Fun prevede l'aggiunta di alcune regole operazionali:

• L'insieme Env viene ridefinito come:

$$Env = \{f \mid f : Var \xrightarrow{fin} Fun\}$$

• Dato $E \in Env$, per le funzioni si ha che:

$$E \vdash fn \ x \Rightarrow M \leadsto (x, M)$$

• Dato $E \in Env$, per le applicazioni si ha che:

$$\frac{E \vdash M \leadsto (x, L) \quad E'\{(x, N)\} \vdash L \leadsto v}{E \vdash MN \leadsto v}$$

Proposizione 12: Linguaggio Fun lazy statico

La semantica lazy statica del linguaggio Fun prevede l'aggiunta di alcune regole operazionali:

• L'insieme Env viene ridefinito come:

$$Env = \{f \mid f : Var \xrightarrow{fin} Fun \times Env\}$$

• Dato $E \in Env$, per le funzioni si ha che:

$$E \vdash fn \ x \Rightarrow M \leadsto (x, M)$$

• Dato $E \in Env$, per le applicazioni si ha che:

$$\frac{E \vdash M \leadsto (x, L, E') \quad E'\{(x, N, E)\} \vdash L \leadsto v}{E \vdash MN \leadsto v}$$

Osservazione 16

Come per il linguaggio Exp, per la sua estensione Fun si ha che:

Fun lazy dinamico $\not\equiv Fun$ lazy statico

Definizione 31: Espressione ω

Dato il linguaggio Fun, definiamo come **espressione omega**, indicata con ω , la seguente espressione:

$$\omega := (fn \ x \Rightarrow xx)(fn \ x \Rightarrow xx)$$

In particolare, l'espressione ω è invalutabile per qualsiasi semantica

Esempio:

ullet Analizziamo l'albero di derivazione di ω utilizzando una semantica eager statica:

$$(*) \qquad \varnothing \vdash x \leadsto (x, xx, \varnothing) \qquad \varnothing \vdash x \leadsto (x, xx, \varnothing) \qquad \frac{(*)}{(x, \{(x, xx, \varnothing)\}) \vdash xx \leadsto v}$$

$$\frac{\varnothing \vdash fn \ x \Rightarrow xx \leadsto (x, xx, \varnothing) \qquad \varnothing \vdash fn \ x \Rightarrow xx \leadsto (x, xx, \varnothing) \qquad \frac{(*)}{(x, \{(x, xx, \varnothing)\}) \vdash xx \leadsto v}}{\varnothing \vdash (fn \ x \Rightarrow xx)(fn \ x \Rightarrow xx) \leadsto v}$$

• Notiamo quindi che affinché la valutazione del termine $(x, \{(x, xx, \emptyset)\}) \vdash xx \rightsquigarrow v$ richieda che esso stesso venga valutato, creando così un albero di valutazione infinito.

Lemma 3

Dato il linguaggio Fun, si ha che:

Fun eager statico $\not\equiv Fun$ lazy statico

Fun eager dinamico $\not\equiv Fun$ lazy dinamico

Dimostrazione.

• Consideriamo l'espressione $let\ x = \omega$ in 42. Utilizzando una semantica eager (statica o dinamica), verrebbe richiesta immediatamente la valutazione del termine ω , il quale tuttavia è invalutabile. Utilizzando una semantica lazy (statica o dinamica), invece, il termine ω non verrà mai valutato, restituendo 42 come risultato.

Teorema 5: Equivalenze semantiche di Fun

Dato il linguaggio Fun, non esistono due semantiche equivalenti