CNVice User Guide

Version November 2015

Contact: maira.r.rodrigues@gmail.com

Overview

CNVice (Inbreeding Coefficients Estimation for CNV data) is a freely available R script for population genetics applications.

CNVice performs the following analyses:

- 1. Estimates allele frequencies for a given population assuming Hardy-Weinberg equilibrium (HWE), using the expectation maximization algorithm as implemented in CoNVEM (Gaunt *et al.* 2010), conditioning on the observed diplotype frequencies.
- 2. Estimates the population structure parameter f_{CNV} and allele frequencies, using the profiled likelihood function and the Expectation Maximization (EM) algorithm (Dempster *et al.* 1977)
- 3. Estimates the population genotype frequency, conditioning on the observed diplotype distribution and the estimated f_{CNV} and allele frequencies.
- 4. Uses trio information to improve the inference of an offspring's genotype, by considering the parents' diplotypes and the population genotype frequency.

Requirements

CNVice is implemented in R. Packages aylmer and hwriter are installed when CNVice is executed.

Input

The main input for CNVice is the distribution of observed diplotype frequencies of a given loci in a population. The distribution must always start with diplotype 0 (see the Examples section).

Running CNVice

The main function to be executed is:

executeCnvice(Nj,fpar,rept,document)

Nj	vector with number of individuals per copy number; starts with 0 copies (integer)
fpar	estimate parameter f or consider it 0 (True or False)
rept	number of repetitions (integer, default=100)
document	name of output file where the report will be saved (string, default=CNViceReport)

The mandatory paratemers are Nj and fpar.

To improve the inference of an offspring's genotype by considering the parents' diplotypes, the function is:

trio <- function(ft,mt,ch,matrix)</pre>

ft	Father's observed diplotype (integer)
mt	Mother's observed diplotype (integer)
ch	Child's observed diplotype (integer)
matrix	Population genotype frequencies matrix

The population genotype frequencies matrix is returned by the <code>executeCnvice</code> function. Therefore, both functions should be used together (see the Examples section).

Output

The output of CNVice main function is a report containing (i) estimated allele frequencies, (ii) estimated population structure parameter f_{CNV} (if fpar is True), (iii) estimated population genotype frequencies, and (iv) estimated individual genotype frequencies. Statistical significance is provided for the estimated allele frequencies and parameter f_{CNV} .

Each part of the report is described in detail below, using as example fpar = True and the following distribution of observed diplotype frequencies: 78, 829, 2510, 756, 83, 9, 1.

The output of the trio function is the set of genotypic probabilities of the child (see the Examples section).

Estimated allele frequencies

j	Nj	expected.bin_1	freq.alel.est_1	expected.bin_2	freq.alel.est_2
0	78	74	0.132	74	0.132
1	829	839	0.745	840	0.746
2	2510	2502	0.119	2507	0.118
3	756	760	0.003	754	0.003
4	83	81	0.001	80	0.001
5	9	9	0	9	0
6	1	1	0	1	0

Where *j* is the observed diplotype, *Nj* is its frequency is the population, *freq.alel.est* is the estimated allele frequency and *expected.bin* is the expected diplotype frequency given the estimated allele frequencies. Suffixes in *expected.bin* and *freq.alel.est* columns (in this example, 1 and 2) indicate alternative results returned by the algorithm.

Alternative estimations count:

1	2
86	14

This table shows the occurrence of each alternative result returned by the algorithm in 100 repeats (the default value of parameter rept). In our example, result 1 occurred more frequently (86 times) than result 2 (14 times).

P-values for Kolmogorov-Smirnov tests of alternative estimation results:

1211

Here the hypothesis H0 is that observed frequency distribution = estimated frequency distribution.

Estimated population structure parameter fCNV

F values found for each estimation:

Shows the estimated f_{CNV} parameter, ranging from 0 to 1, for each alternative result, when fpar is True.

TRV results:

Value of statistic found by TRV: 0.25369 Reject H0, i.e., F different than ZERO? No

TRV for hypothesis testing of estimated f_{CNV} .

Estimated population genotype frequencies

Population genotype probabilities conditioned on the observed diplotype distribution, the estimated f_{CNV} , and estimated allele frequencies. First column and first row are alleles.

Estimated individual genotype frequencies

Individual genotype probabilities conditioned on the observed individual diplotype distribution, the estimated f_{CNV} , and estimated allele frequencies.

Examples

Example of analyses 1 and 3:

Consider a population with the following observed diplotype distribution of a particular loci: 0 individuals with 0 copies, 8 individuals with 1 copy, 10 individuals with 2 copies, 10 with 3 copies, and 1 individual with 4 copies. To estimate allele frequencies and population genotype frequencies assuming Hardy-Weinberg equilibrium, with the default 100 repetitions:

```
Nj = c(0,8,10,10,1)
executeCnvice(Nj,F,document="output-report-HW.doc")
```

Output: population allele frequency estimation and population genotype frequency probabilities.

Example of analyses 2 and 3:

Considering the same population as above, to estimate allele frequencies and population genotype frequecies assuming a departure from the HWE (f parameter not zero), with 10 repetitions:

```
Nj = c(0,8,10,10,1)
executeCnvice(Nj,T,document="output-report-F.doc")
```

Output: population allele frequency estimation, f parameter estimation, and population genotype frequency probabilities.

Example of Analyses 4:

For estimating the genotype probabilities of an offspring with 3 copies, given that his father has 4 copies and his mother 3 copies of the same loci, and considering the same population as above, we have:

```
Nj = c(78,829,2510,756,83,9,1)
egmatrix<-executeCnvice(Nj,T)
trio(4,3,3,egmatrix)</pre>
```

Output:					
Father	Mother	Offspring	Prob.Father	Prob.Mother	Prob.Offspring
04	03	03	0.0000000	0.0056497	0.0000000
13	03	30	0.2105263	0.0056497	0.0011947
13	12	12	0.2105263	0.9943503	0.2102748
22	12	21	0.7894737	0.9943503	0.7885305

The resulting table of probabilities does not show duplicated values or duplicated combinations for mother and father's diplotypes. That is why there is only diplotype 04 for the father and not 40. However, all diplotypes are considered in the probability calculation.

References

Dempster, A. P., Laird, N. M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, v. 39, n. 1, p.1–38, 1977.

Gaunt, T., et al. An Expectation-Maximization Program for Determining Allelic Spectrum from CNV Data (CoNVEM): Insights into Population Allelic Architecture and Its Mutational History. Human Mutation 2010;31(4):414-420.

Severini, T.A. Likelihood Methods in Statistics. Oxford University Press; 2000.