Fonctionnement des Ordinateurs

TP1 - Représentation des nombres entiers

B. QUOITIN Faculté des Sciences Université de Mons

Résumé

L'objectif de cette séance d'exercices est de renforcer votre compréhension des notations binaire, hexadécimale et octale et des conversions entre elles, des différents formats de représentation de nombres entiers dans un ordinateur – entiers non-signés et complément à deux et d'opérations arithmétiques élémentaires en représentation binaire.

Table des matières

1	Représentation positionnelle	1
1.1	Représentation binaire (non-signée)	1
1.2	Bases hexadécimales et octales	1
1.3	Algorithme de conversion décimal $ o$ binaire	3
2	Complément à 2	4
2.1	Représentation	4
22	Onérations arithmétiques	1

1 Représentation positionnelle

1.1 Représentation binaire (non-signée)

Soit un mot binaire $(b_i)_{i \in \{0...N-1\}}$. Donnez la formule permettant d'interpréter (b_i) comme la représentation positionnelle binaire de x. Connaissez-vous les exposants entiers de 2? Il est utile de les mémoriser jusqu'à 2^8 voire 2^{16} .

Q1)	Interprétation de la notation positionnelle binaire
Quel e	st le plus grand nombre naturel représentable sur 12 bits avec cette représentation?
Q2)	Plus grand nombre représentable sur 12 bits
Conve	rtissez les nombres suivants de binaire en décimal
Q3)	100000
Q4)	000010
Q5)	111111
Q6)	010101
	rtissez les nombres suivants de décimal en binaire. Ne donnez que les bits significatifs. Appliquez au besoin l'algorithme es divisions euclidiennes successives.
Q7)	64
Q8)	7
Q9)	192
Q10)	3073

1.2 Bases hexadécimales et octales

Convertissez les nombres suivants d'hexadécimal/octal en décimal. Le préfixe 0×1 indique la représentation hexadécimale tandis que le préfixe 0×1 indique la représentation octale, des conventions également utilisées dans certains langages de programmation.

© 2020, B. QUOITIN 1/6

Q11) 0x1010
Q12) 0x10A0
Q13) 0xbabe
Q14) 020 (octal)
Q15) 072 (octal)
Convertissez les nombres suivants de la base 10 vers une autre base, en utilisant la méthode reposant sur les divisions entières successives.
Q16) 51966 à convertir en hexadécimal
Q17) 1025 à convertir en octal
Convertissez les nombres suivants entre les représentations binaire, octale et hexadécimale. Q18) 0xCAFE en binaire
Q19) 0xCAFE en octal
Q20) 072 (octal) en binaire

© 2020, B. Quoitin 2/6

1.3 Algorithme de conversion décimal \rightarrow binaire

Ecrivez en langage C, Java ou Python, un programme qui demande à l'utilisateur un nombre naturel dans l'intervalle $[0, 2^{31} - 1]$, qui le convertit ensuite en binaire et affiche finalement à la console le résultat de la conversion. Pour cela, itérez du bit de poids le plus fort au bit 0 et testez si la valeur du bit correspondant de la variable vaut 0 ou 1 en utilisant l'opérateur logique bitwise (&).

Q21) Code de l'algorithme	

© 2020, B. QUOITIN 3/6

2 Complément à 2

~ 4		,		
2.1	PAI	nrac	enta	ITION
~ .	nc			шоп

	Soit un mot binaire $(b_i)_{i \in \{0N-1\}}$. Donnez la formule permettant d'interpréter (b_i) comme la représentation en complément à 2 de
x.	

()2 :	2)	I	Re	pr	ésc	ent	at	io	n e	n	co	mj	ple	ém	ıer	ıt	à Ź	2																				

Quel est l'intervalle de nombres entiers représentables en complément à 2 sur 12 bits ?

Q23) Intervalle d'entiers représentables sur 12 bits

Donnez la représentation binaire en complément à 2 sur 8 bits des nombres suivants.

Q24) 17

Q25) -17

Q26) 255

Q27) -128

Q28) -73

2.2 Opérations arithmétiques

Donnez la représentation binaire en complément à 2 sur 8 bits des résultats des opérations suivantes. Afin de vérifier vos résultats fournissez également les valeurs des opérandes et du résultat en décimal. Dans le cas de la division, donnez le quotient et le reste.

Ç	2	29)	0	1(00)1	.1	1	1	+	- (0(0(00	0	0	0	1																												
														٠				٠							 ٠	 ٠		 ٠		 	٠		 		 			 			 		 		 		

Q30) Opposé de 10010110	

© 2020, B. Quoitin 4/6

Q31) 01001111 + 01000001
022\ 00000001 00000010
Q32) 00000001 - 00000010
Q33) 00001001 × 00000110
Q34) 10000001 - 10000010
Q35) Opposé de 10000000
Q36) 00010100/00000101
Q37) 00010111/00001001

© 2020, B. QUOITIN 5/6

Q38) 1111011:	1 × 11111010

© 2020, B. QUOITIN 6/6