

UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę
		πα πακιεγκέ

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 5 czerwca 2018 r. GODZINA ROZPOCZECIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnienia zdającego do:		
	dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę dostosowania w zw. z dyskalkulią	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamknietych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błedne zaznaczenie otocz kółkiem u i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błedne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 1P-183

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Dla $x = \frac{2}{\sqrt{2}} + 1$ oraz $y = \sqrt{2} - 1$ wartość wyrażenia $x^2 - 2xy + y^2$ jest równa

A. 4

- **B.** 1
- $\mathbf{C.} \quad \sqrt{2}$

Zadanie 2. (0-1)

Dane są liczby: $a = \log_{\frac{1}{2}} 8$, $b = \log_{4} 8$, $c = \log_{4} \frac{1}{2}$. Liczby te spełniają warunek

- **A.** a > b > c **B.** b > a > c **C.** c > b > a **D.** b > c > a

Zadanie 3. (0-1)

Wskaż liczbę spełniającą nierówność (4-x)(x+3)(x+4) > 0.

A. 5

- **B.** 16
- **C.** −4
- **D.** -2

Zadanie 4. (0-1)

Po dwukrotnej obniżce, za każdym razem o 10% w stosunku do ceny obowiązującej w chwili obniżki, komputer kosztuje 1944 złote. Stąd wynika, że przed tymi obniżkami ten komputer kosztował

- 2200 złotych.
- **B.** 2300 złotych. **C.** 2400 złotych. **D.** 3000 złotych.

Zadanie 5. (0-1)

Na rysunku przedstawiony jest przedział (-10,k), gdzie k jest liczbą całkowitą. Suma wszystkich liczb całkowitych należących do tego przedziału jest równa 21.

Stad wynika, że

- **A.** k = 9
- **B.** k = 11
- **C.** k = 21
- **D.** k = 31

Zadanie 6. (0-1)

Równanie $x - \frac{1}{2x+1} = 0$

A. ma dokładnie dwa rozwiązania rzeczywiste.

B. ma dokładnie trzy rozwiązania rzeczywiste.

C. ma dokładnie jedno rozwiązanie rzeczywiste.

D. nie ma rozwiązań.

Zadanie 7. (0–1)

Liczbę $\frac{224}{1111}$ można zapisać w postaci nieskończonego ułamka dziesiętnego okresowego.

Dwudziestą cyfrą po przecinku jego rozwinięcia jest

A. 2

B. 0

C. 1

D. 6

Zadanie 8. (0-1)

Liczba $\frac{8^{20} - 2 \cdot 4^{20}}{2^{20} \cdot 4^{10}}$ jest równa

A. 0

B. $2^{20} - 2$ **C.** 2^{19}

D. $4-2^{10}$

Zadanie 9. (0-1)

Funkcja f jest określona wzorem $f(x) = -2(x+2)^{-1}(x-3)^2$ dla każdej liczby rzeczywistej $x \neq -2$. Wartość funkcji f dla argumentu 2 jest równa

A. −8

B. $-\frac{1}{2}$ **C.** $\frac{1}{2}$

D. 8

Zadanie 10. (0-1)

Największą wartością funkcji $y = -(x-2)^2 + 4$ w przedziale $\langle 3, 5 \rangle$ jest

A. 4

B. 3

C. 0

D. 5

Zadanie 11. (0-1)

Funkcja liniowa $f(x) = (1 - m^2)x + m - 1$ nie ma miejsc zerowych dla

A. m = 1

B. m = 0

C. m = -1

D. m = -2

Zadanie 12. (0-1)

Na jednym z rysunków przedstawiono fragment wykresu funkcji kwadratowej określonej wzorem f(x) = -(x-1)(3-x). Wskaż ten rysunek.

B.

Zadanie 13. (0-1)

Wszystkie wyrazy ciągu geometrycznego (a_n) określonego dla $n \ge 1$ są dodatnie i $3a_2 = 2a_3$. Stąd wynika, że iloraz q tego ciągu jest równy

A.
$$q = \frac{2}{3}$$

A.
$$q = \frac{2}{3}$$
 B. $q = \frac{3}{2}$ **C.** $q = 6$ **D.** $q = 5$

C.
$$q = 6$$

D.
$$q = 5$$

Zadanie 14. (0–1)

Dany jest ciąg arytmetyczny (a_n) określony wzorem $a_n = 16 - \frac{1}{2} \cdot n$ dla każdej liczby całkowitej $n \ge 1$. Różnica r tego ciągu jest równa

A. r = -16

B. $r = -\frac{1}{2}$ **C.** $r = -\frac{1}{32}$ **D.** $r = 15\frac{1}{2}$

Zadanie 15. (0-1)

Liczba 1–tg40° jest

A. ujemna.

B. dodatnia, ale mniejsza od 0,1.

C. większa od 0,1, ale mniejsza od 0,5.

D. większa od 0,5.

Zadanie 16. (0-1)

Odcinek AB jest średnicą okręgu o środku O i promieniu r. Na tym okręgu wybrano punkt C, taki, że |OB| = |BC| (zobacz rysunek).

Pole trójkata AOC jest równe

A. $\frac{1}{2}r^2$

D. $\frac{\sqrt{3}}{4}r^2$

Zadanie 17. (0-1)

Okrąg o środku $S_1 = (2, 1)$ i promieniu r oraz okrąg o środku $S_2 = (5, 5)$ i promieniu 4 są styczne zewnętrznie. Wtedy

A. r = 1

B. r = 2 **C.** r = 3 **D.** r = 4

Zadanie 18. (0–1)

Długości boków trapezu równoramiennego są równe 12, 13, 2, 13.

Wysokość h tego trapezu jest równa

A. 5

- **B.** 8
- **C.** 10
- **D.** 12

Zadanie 19. (0–1)

Miary kątów pewnego czworokąta pozostają w stosunku 2:3:3:4. Wynika stąd, że najmniejszy kąt tego czworokąta ma miarę

- **A.** 60°
- **B.** 50°
- **C.** 40°
- **D.** 30°

Zadanie 20. (0-1)

Dany jest walec, w którym wysokość jest równa promieniowi podstawy. Objętość tego walca jest równa 27π . Wynika stąd, że promień podstawy tego walca jest równy

A. 9

- **B.** 6
- **C.** 3
- **D.** 2

Zadanie 21. (0-1)

Stożek o promieniu podstawy r i kula o tym samym promieniu mają równe objętości. Tangens kąta między tworzącą i płaszczyzną podstawy tego stożka jest równy

A. $\frac{4}{3}$

- **B.** 12
- **C.** $\sqrt{17}$
- **D.** 4

Zadanie 22. (0-1)

Wśród 100 osób przeprowadzono ankietę, w której zadano pytanie o liczbę książek przeczytanych w ostatnim roku. Wyniki ankiety zebrano w poniższej tabeli.

Liczba książek	0	1	2	3	4	5
Liczba osób	23	14	28	17	11	7

Średnia liczba przeczytanych książek przez jedną ankietowaną osobę jest równa

- **A.** 0,5
- **B.** 1
- **C.** 2
- **D.** 2,5

Zadanie 23. (0-1)

Gdy dodamy liczbę wszystkich krawędzi pewnego graniastosłupa do liczby wszystkich jego wierzchołków, to otrzymamy w wyniku 15. Liczba wszystkich krawędzi tego graniastosłupa jest równa

A. 9

B. 7

C. 6

D. 5

Zadanie 24. (0-1)

Liczba wszystkich dodatnich liczb czterocyfrowych parzystych, w których zapisie nie występują cyfry 0 i 2, jest równa

A. $8 \cdot 8 \cdot 8 \cdot 3$

B. 8.7.6.3 **C.** 8.10.10.4 **D.** 9.8.7.4

Zadanie 25. (0-1)

W pudełku znajdują się dwie kule: czarna i biała. Czterokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie trzy razy w czterech losowaniach wyciągniemy kulę koloru białego, jest równe

B. $\frac{3}{8}$

C. $\frac{1}{4}$

D. $\frac{3}{4}$

Zadanie 26. (0-2)

Rozwiąż nierówność 2x(1-x)+1-x<0.

Zadanie 27. (0–2)

Wykresem funkcji kwadratowej f określonej wzorem $f(x) = x^2 + bx + c$ jest parabola, na której leży punkt A = (0, -5). Osią symetrii tej paraboli jest prosta o równaniu x = 7. Oblicz wartości współczynników b i c.

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. (0-2)

Wykaż, że reszta z dzielenia sumy kwadratów czterech kolejnych liczb naturalnych przez 8 jest równa 6.

Zadanie 29. (0-2)

Dany jest prostokąt ABCD. Na boku CD tego prostokąta wybrano taki punkt E, że |EC|=2|DE|, a na boku AB wybrano taki punkt F, że |BF|=|DE|. Niech P oznacza punkt przecięcia prostej EF z prostą BC (zobacz rysunek). Wykaż, że trójkąty AED i FPB są przystające.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. (0-2)

Kąt α jest ostry i $\sin \alpha + \cos \alpha = \sqrt{2}$. Oblicz wartość wyrażenia $tg\alpha + \frac{1}{tg\alpha}$.

Odpowiedź:

Zadanie 31. (0-2)

Rzucamy cztery razy symetryczną monetą. Po przeprowadzonym doświadczeniu zapisujemy liczbę uzyskanych orłów (od 0 do 4) i liczbę uzyskanych reszek (również od 0 do 4). Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że w tych czterech rzutach liczba uzyskanych orłów będzie większa niż liczba uzyskanych reszek.

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (0–5)

Dany jest ostrosłup prawidłowy czworokątny o wysokości H = 16. Cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy tego ostrosłupa jest równy $\frac{3}{5}$. Oblicz pole

powierzchni bocznej tego ostrosłupa.

	Nr zadania	32.
Wypełnia egzaminator	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 33. (0–4)

W ciągu arytmetycznym (a_n) , określonym dla liczb naturalnych $n \ge 1$, wyraz szósty jest liczbą dwa razy większą od wyrazu piątego, a suma dziesięciu początkowych wyrazów tego ciągu jest równa $S_{10} = \frac{15}{4}$. Oblicz wyraz pierwszy oraz różnicę tego ciągu.

	Nr zadania	33.
Wypełnia egzaminator	Maks. liczba pkt	4
	Uzyskana liczba pkt	

Zadanie 34. (0-4)

Punkty A = (-1,1) i C = (1,9) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC| = |BC|. Podstawa AB tego trójkąta zawiera się w prostej o równaniu $y = \frac{1}{2}x + \frac{3}{2}$. Oblicz współrzędne wierzchołka B tego trójkąta.

Wypełnia egzaminator	Nr zadania	34.
	Maks. liczba pkt	4
	Uzyskana liczba pkt	