贝叶斯方法

背后的深刻原因在于,现实世界本身就是不确定的,人类的观察能力有限,看到的只是世界的表象

具体参见统计机器学习: 贝叶斯决策理论的笔记

神经网络

具体参见机器学习: 神经网络的笔记

SVM (支撑向量机)

Intuition

• 如何取寻找一个最优的判别面

● 引入Margin的概念,然后最大化这个Margin , 记为M

SVM提取最优化问题方式一

hype-Plane

 $Plus\ Plane: w^Tx + b = +1$ $Minus\ Plane: w^Tx + b = -1$

Maxinize Margin

Let x^+ be an point on the plus-plane-point

Let $oldsymbol{x}^-$ be an point on the minus-plane-point

$$M = |x^+ - x^-|$$

 $w^T x^+ + b = 1$
 $w^T x^- + b = -1$

Then We can get

$$x^+ = x^- + \lambda w$$

Then

$$\lambda = \frac{2}{\|w\|^2}$$

So we can get

$$M=|x^+-x^-|=|\lambda w|=\lambda |w|=rac{2}{\|w\|}$$

In order to maximize M we can Minimize

$$rac{1}{2}\parallel w\parallel^2 \ s.\,t. \ \ w^Tx_+ + b \geq 1, w^Tx_- + b \leq -1$$

SVM提取最优化问题方式二

超平面方程

$$w^T x + b = 0$$

我们知道点到超平面对距离可按如下公式计算

$$r = rac{|w^Tx + b|}{||w||}$$

假设超平面能将数据分为两类,对于 (x_i, y_i) 有

$$egin{cases} w^Tx_i+b\geq +1 & y_i=+1 \ w^Tx_i+b\leq -1 & y_i=-1 \end{cases}$$

如上图,我们可以算出,两个超平面的距离为

$$r=rac{2}{||w||}$$

为了最大化这个距离,我们的最优化问题可定义如下

$$egin{aligned} min_{w,b} & rac{2}{||w||} \ s.t. & y_i(w^Tx_i+b) \geq 1 \end{aligned}$$

转换后可变为

$$egin{aligned} min_{w,b} & rac{1}{2}||w||^2 \ s.t. & y_i(w^Tx_i+b) \geq 1 \end{aligned}$$

SVM二次规划问题求解

问题:

$$egin{aligned} min_{w,b} & rac{1}{2}||w||^2 \ s.t. & 1 - y_i(w^Tx_i + b) \leq 0 \end{aligned}$$

首先写出其拉格朗日函数

$$L(w,b,lpha) = rac{1}{2} ||w||^2 + \sum_{i=1}^m lpha_i (1 - y_i (w^T x_i + b))$$

对 w_i, b 求偏导使其为0,得到

$$w = \sum_{i=1}^m lpha_i y_i x_i \ 0 = \sum_{i=1}^m a_i y_i$$

带入整理可得对偶问题:

$$egin{aligned} max_lpha & \sum_{i=1}^m lpha_i - rac{1}{2} \sum_{i=1}^m \sum_{j=1}^m lpha_i lpha_j y_i y_j x_i^T x_j \ & s.t. & \sum_{i=1}^m lpha_i y_i = 0 \ & lpha_i \geq 0, i = 1, 2, \dots m \end{aligned}$$

最终可得

$$f(x) = w^T x + b = \sum_{i=1}^m a_i y_i x_i^T x + b$$

KKT定理补充知识

Optimization problem:

$$egin{aligned} Minimize & f(x) \ s.t. & g_i(x) \leq 0, h_j(x) = 0 \ i = 1, 2, \ldots, m \ ; \ j = 1, 2, \ldots l \end{aligned}$$

Stationarity

$$egin{aligned} For\ maximizing\ f(x): &
abla f(x^*) = \sum_{i=1}^m \mu_i
abla g_i(x^*) + \sum_{j=1}^l \lambda_j
abla h_j(x^*) \end{aligned}$$
 $For\ minimizing\ f(x): &
abla
abla f(x^*) = \sum_{i=1}^m \mu_i
abla g_i(x^*) + \sum_{i=1}^l \lambda_j
abla h_j(x^*)$

Primal feasibility

$$g_i(x^*) \le 0$$
, for all $i = 1, ..., m$
 $h_i(x^*) = 0$, for all $j = 1, ..., l$

Dual feasibility

$$\mu_i \geq 0$$
, for all $i = 1, \ldots, m$

Complementary slackness

$$\mu_i g_i(x^*) = 0, ext{for all } i = 1, \dots, m.$$

SVM二次规划问题求解需满足KKT,所以我们可以得到

$$\left\{egin{aligned} lpha_i &\geq 0 \ y_i f(x_i) - 1 \geq 0 \ lpha_i (y_i f(x_i) - 1) = 0 \ (*) \end{aligned}
ight.$$

由(*)可知,对于样本 (x_i,y_i) ,总有 $\alpha_i=0$ or $y_if(x_i)=1$,当 $\alpha_i=0$ 时,该样本不会在我们最终得到的函数 $f(x)=\sum_{i=1}^m a_iy_ix_i^Tx+b$ 中出现,若 $\alpha_i>0$,则必有 $y_if(x_i)=1$,这些点恰好在两个最大间隔边界上,这些样本点称为支撑向量

Kernel

如果原始空间是有限维,即样本属性数有限,那么肯定存在一个高维特征空间使样本可分

常见的核函数

名称	表达式	参数
线性核	$k(x_i,x_j) = x_i^T x_j$	
多项式核	$k(x_i,x_j)=(x_i^Tx_j)^d$	$d \geq 1$ 为多项式次数
高斯核	$k(x_i,x_j) = exp^{-rac{\left\ x_i-x_j ight\ ^2}{2\sigma^2}}$	σ 为高斯带的带宽
拉普拉斯核	$k(x_i,x_j) = exp^{-rac{\left\ x_i - x_j ight\ }{\sigma}}$	$\sigma > 0$
Sigmoid核	$k(x_i, x_j) = tanh(eta x_i^T x_j + heta)$	双曲正切函数

Clustering

Partition method

Construct a partition of a database D of n objects into a set of k clusters s.t. minimize sum of squared distance

- K-mean
 - 迭代计算中心
 - 如何初始中心是个关键问题
 - 随机选择
 - 基于其他聚类算法(效果不一定好,但是效率高)的结果估算中心
 - 优势
 - 可扩展性强
 - 效率较高
 - 可实现局部最优(退火算法和遗传算法等可以用找全局最优)
 - 缺点
 - 类数必须事先确定
 - 对噪音数据处理不好

- 某些特殊分布无法划分(如凹型的)
- K-medoids (PAM)

有噪音和奇异点时,PAM比 k-means 鲁棒

Density based method