Contents

I Line	ear Algebra	3
II Fie	eld Theory	5
III Ri	ing Theory	7
IV N	umber Theory	9
1 The 7	Trace, the Norm, and the Discriminant	11
2 Dede	kind Domain	13
3 The I	Ideal Class Group	15

2 CONTENTS

Part I Linear Algebra

Part II Field Theory

Part III Ring Theory

Part IV Number Theory

Chapter 1

The Trace, the Norm, and the Discriminant

Definition 1. A prime number $p \in \mathbb{N}$ is said to be ramified in an algebraic number field K if the prime ideal factorization

$$(p) = p\mathcal{O}_K = \mathfrak{p}_r^{e_1} \cdots \mathfrak{p}_r^{e_r}$$

has some e_i greater than 1. If every e_i equals 1 for $1 \le i \le r$, we say p is unramified in K.

Example 1.1. In $\mathbb{Z}[i]$, 2 ramifies because $(1+i)^2=(2)$, and it is the only prime to do so.

Theorem 2. For an algebraic number field K, the primes which ramify are those dividing the integer $\operatorname{disc}_{\mathbb{Z}}(\mathcal{O}_K)$. In particular, only finitely many primes ramify.

Chapter 2

Dedekind Domain

Chapter 3

The Ideal Class Group

Definition 3 (Fractional Ideals). Let R be a integral domain with fraction field F. A fractional ideal is a nonzero R-submodule $\mathcal{A} \subseteq F$ such that $d\mathcal{A} \subseteq R$ for some nonzero $d \in A$.

Remark. We say integral ideals of R and simply mean ideals of R to distinguish them from fractional ideals which are, despite its name and similarities, not true ideals.

Definition 4 (Equivalence of Fractional Ideals). Let R be a integral domain. Two fractional ideals A and B of R are said to be equivalent if there exist α and β in R such that

$$(\alpha)\mathcal{A} = (\beta)\mathcal{B}.$$

In this case, we write $A \sim B$ or simply A = B.

Proposition 5. The relation defined above $A \sim B$ is indeed a equivalence relation.

Proof. Let \mathcal{A} and \mathcal{B} be two fractional ideals of an integral domain R. We show that the relation $\mathcal{A} \sim \mathcal{B}$ as defined above is a equivalence relation.

- 1. **Reflexivity.** Trivially, $(\alpha)A = (\alpha)A$ for any $\alpha \in R$, and we have $A \sim A$.
- 2. Symmetry. If $A \sim B$, then $(\alpha)A = (\beta)B$, and again it is trivial that $(\beta)B = (\alpha)A$, hence $B \sim A$
- 3. Transitivity. Let $\mathcal{A} \sim \mathcal{B}$ and $\mathcal{B} \sim \mathcal{C}$ hold. There are $\alpha, \beta, \gamma, \theta \in R$ such that

$$(\alpha)\mathcal{A} = (\beta)\mathcal{B}$$
 and $(\gamma)\mathcal{B} = (\theta)\mathcal{C}$.

Multiplying both sides of both equalities by (γ) and (β) respectively yields

$$(\gamma)(\alpha)\mathcal{A} = (\gamma)(\beta)\mathcal{B}$$
 and $(\beta)(\gamma)\mathcal{B} = (\beta)(\theta)\mathcal{C}$.

Therefore, we have that $(\alpha \gamma) \mathcal{A} = (\beta \theta) \mathcal{C}$ or in other words $\mathcal{A} \sim \mathcal{C}$.

Definition 6. Let K be an algebraic number field. The equivalence classes of ideals of R form a group called the ideal class group of K or just class group of K, and write it as Cl(K).

Theorem 7. Let K be an algebraic number field.

- 1. The ideal class group is indeed an abelian group with ideal multiplication as its operation. [(1)] = [R] is the identity element and
- 2. Each ideal class has an integral ideal representant.
- 3. The ideal class group is trivial, i.e. $\operatorname{Cl}(K) = [(1)]$, if and only if all fractional ideals in K are principal, which is equivalent to \mathcal{O}_K being a principal ideal domain.
- 4. The ideal class group of K is finite.

Remark. 1. For some integral domains not all fractional ideals are invertible, so not all ideal classes are invertible. In other words, the ideal classes need not be a group for arbitary integral domains.

- 2. For Dedekind domains fractional ideals are invertible, so the ideal classes form a group, but they need not be finite.
- 3. For a Dedekind domain R, the group Cl(R) is trivial if and only if R is a principal domain which is equivalent to R being a unique factorization domain, so Cl(R) is a measure of how far R is from having unique factorization of elements.
- 4. Every abelian group is isomorphic to the ideal class group of some Dedekind domain.
- 5. It is believed that every finite abelian group is isomorphic to the ideal class group of some algebraic number field, but this is unsolved.
- 6. If R is Dedekind, Cl(R) can be regarded as a quotient Group

$$Cl(R) = \{ \text{fractional } R\text{-ideals} \} / \{ \text{principal fractional } R\text{-ideals} \}$$

7. If all fractional ideal of an integral domain is invertible, then it is a Dedekind domain.

Definition 8. The Kronecker Bound (or Hurwitz bound?)

$$C = \prod_{\sigma: K \to \mathbb{C}} \sum_{i=1}^{n} |\sigma(e_i)|$$

Theorem 9. The ideal classes of \mathcal{O}_K are

- 1. represented by ideals in \mathcal{O}_K with norm at most C
- 2. generated as a group by prime ideals \mathfrak{p} with norm at most C.

Theorem 10. Let K be an algebraic number field of degree n, Δ_K be the discriminant of K/\mathbb{Q} , and $2r_2 = n - r_1$ be the number of complex embeddings where r_1 is the number of real embeddings. Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minowski's bound

$$M_K = \sqrt{|\Delta_K|} \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n}.$$

Moreover, the ideal class group is generated by the prime ideals with the norm not exceeding this bound.

Example 10.1. Let $K = \mathbb{Q}(i)$.