1. Състояние на външен въздух tвн*л = 33 oC ϕ вн*л = 31.1

 $\mathsf{T}.\mathsf{BH} \Leftarrow \left(t_{\mathsf{BH}}^*, \varphi_{\mathsf{BH}}^*\right)_{\mathsf{\Pi}}$

Изчисления за помещение 309 Сух охладителен товар Qc = 2288.97 Отоплителен товар Q = 1954 Специфичен топлинен капацитет Ср =

W

W

J/kg.K

2. Параметри на помещението tп*л = 25 фп*л = 50

 $\mathsf{T}.\Pi_{cp} \Leftarrow (t_\Pi, \varphi_\Pi)_\Pi$

kg/m3

3. Определяне дебита на пресен въздух-първичен въздух

Плътност на въздуха, ρ = 1.1839

= 560 m3/h

 $\dot{m}_{\Pi B} = \dot{m}_{BH} = \sum \dot{m}_{BH,i} = \sum \dot{m}_{\Pi B,i} = \sum (n_{x,i}.\dot{m}_{BH,y}), [kg/s]$

mпв [kg/s] = 0.1842

tпв = 16

4. Състоянието на ПВ на входа на ВК в климатизираното помещение

Xn = 10.7[g/kg]

Летен режим					
Първичен	Брой хора	Влаж. Товар	Влагосъд		
въздух	врои хора	влаж. товар	ържание		
[kg/h]	1	[g/h]	[g/kg]		
295.975	1	64	0.2		
165.746	2	128	0.8		
118.39	2	128	1.1		
307.814	8	512	1.7		
295.975	6	384	1.3		
201.263	6	384	1.9		
130.229	2	128	1.0		
662.984	12	768	1.2		
509.077	10	640	1.3		
485.399	10	640	1.3		
		Средно:	1.2		

 $T.\Pi B \Leftarrow (t_{\Pi B} = 13 + 16^{\circ}C, x_{\Pi B})$

(18.2) $X_{\Pi B} = X_{\Pi,cp} - \Delta X_{cp}$, [g/kg]

(18.3) $\Delta x_{cp} = \frac{\sum_{i=1}^{n} \Delta x_i}{n}, [g/kg]$

(18.4) $\Delta x_i = \frac{\left(\sum (\dot{m}_W)_{\Pi}\right)_i}{\dot{m}_{BH,i}}$, [g/kg]

Хпв = 9.5 [g/kg]

 $(\sum (\dot{m}_W)_{II})_{i}$, [g/s]= 64

5. Състоянието на изода от допълнителния калорифер

т.ДК
$$\Leftarrow (t_{\mathcal{D}K,i} = t_{\Pi B} - \Delta t_{B,K}, x_{\mathcal{D}K} \equiv x_{\Pi B})$$

6. Състоянието на въздуха след оросителната камера

Относителната влажност на въздуха от оросителната камера се приема да е 90%

$$T.O \Leftarrow (x_O \equiv x_{DK}, \varphi_O)$$

7. Състоянието на входа на въздухоохладитела

$$T.BO \Leftarrow (T.BH, T.E\phi^{BO}, \overline{BH - E_{\phi}^{BO}}) \times (h_{BO} \equiv h_O = const))$$

 $te\phi = 9.5$

8. Параметри на смесения въздух на топлообменика на ВК

т.
$$C_i \leftarrow (\tau.\Pi_{cp}, \tau.\Pi B, (\overline{\Pi B - \Pi_{cp}}), \frac{\dot{m}_{\Pi B,i}}{\dot{m}_{BK,i}})$$

		DK ,/			
т,вк	т,пв	m, p	tп*з	t,пв	t,c
[kg/s]	[kg/s]	[kg/s]	°C	°C	°C
0.287	0.184	0.103	25	16	19.23

9. Температурата на вентилаторният конвектор

$$t_{BK,i} = t_{\Pi} - \frac{Q_{C,i} - m_{\Pi B,i}.c_{p}.(t_{\Pi} - t_{\Pi B})}{c_{p}.m_{BK,i}}$$
 [°C]

tвк =	17.07	оС
tвк =	17.07	οС

10. Мощността на въздухоохладителя и допълнителния калорифер при летни изчислителни условия

 $\dot{Q}_{BO} = \dot{m}_{\Pi B} \cdot (h_{BH} - h_{BO}), W$

4511.97 W

hвн = 60	kJ/kg.K	
hво = 35.5	kJ/kg.K	

 $\dot{Q}_{\mathcal{A}K} = \dot{m}_{\mathcal{B}}.(h_{\mathcal{A}K} - h_{\mathcal{O}}), W$

220.99 W Q =

Q =

hдк = 38.7 kJ/kg.K kJ/kg.K ho = 37.5

kJ/kg.K

11. Охладителната мощност на вентилаторния конвектор

$$\dot{Q}_{BK,i}^{Oxn} = \dot{m}_{BK,i} \cdot (h_{C,i} - h_{BK,i}), W$$

Охладителна мощност на вент. Конвектори 689.03 W

Охладителна мощност от пресен въздух 2209.95 W Q =

kJ/kg.K hBK = 42.5kJ/kg.K $h\pi = 52.5$ $h\pi B = 40.5$ kJ/kg.K

hc = 44.9

Охладителен товар Q = 2898.98 W

1. Състояние на външен въздух tвн*з = -14 фвн*з = 90

> 2. Параметри на помещението tπ*3 = 22 фп*з = 50

=

т. $\mathbf{B}\mathbf{H} \Leftarrow \left(t_{\mathit{BH}}^{\star}, \boldsymbol{\varphi}_{\mathit{BH}}^{\star}\right)_{\mathit{\Pi}}$

kg/m3

Изчисления за помещение 309 Сух охладителен товар Qc = 2289 Отоплителен товар Q = 1954 W Специфичен топлинен капацитет Ср = J/kg.K

3. Определяне дебита на пресен въздух-първичен въздух

560

m3/h $\dot{m}_{\Pi B} = \dot{m}_{BH} = \sum \dot{m}_{BH,i} = \sum \dot{m}_{\Pi B,i} = \sum (n_{x,i}.\dot{m}_{BH,y}), \text{ [kg/s]}$ mпв [kg/s] = 0.1842

Плътност на въздуха, $\rho = 1.1839$

tnв = 16

4. Състоянието на ПВ на входа на ВК в климатизираното помещение

Xn = 9.7[g/kg]

	Зимен рех	ким	
Първичен	Брой хора	Влаж.	Влагосъд
въздух	врои хора	Товар	ържание
[kg/h]	-	[g/h]	[g/kg]
295.975	1	56	0.2
165.746	2	112	0.7
118.39	2	112	0.9
307.814	8	448	1.5
295.975	6	336	1.1
201.263	6	336	1.7
130.229	2	112	0.9
662.984	12	672	1.0
509.077	10	560	1.1
485.399	10	560	1.2
_		Средно:	1.0

$$\mathsf{T.}\Pi\mathsf{B} \Leftarrow \left(t_{\Pi\mathsf{B}} = 13 \div 16^{\circ}\mathsf{C}, x_{\Pi\mathsf{B}}\right)$$

(18.2) $x_{\Pi B} = x_{\Pi,cp} - \Delta x_{cp}$, [g/kg]

(18.3)
$$\Delta x_{cp} = \frac{\sum_{i=1}^{n} \Delta x_i}{n}, [g/kg]$$

(18.4)
$$\Delta x_i = \frac{\left(\sum (\dot{m}_W)_{\Pi}\right)_i}{\dot{m}_{BH,i}}$$
, [g/kg]

Хпв = 8.7 [g/kg]

 $(\sum (\dot{m}_W)_3)_i$, [g/s] = 56

5. Състоянието на изода от допълнителния калорифер

т.
$$\mathcal{D}K \Leftarrow (t_{\mathcal{D}K,i} = t_{\Pi B} - \Delta t_{B,K}, x_{\mathcal{D}K} \equiv x_{\Pi B})$$

6. Състоянието на въздуха след оросителната камера

Относителната влажност на въздуха от оросителната камера се приема да е 90%

$$T.O \Leftarrow (x_O \equiv x_{DK}, \varphi_O)$$

8. Параметри на смесения въздух на топлообменика на ВК

$$\mathsf{T.C}_i \Leftarrow \left(\mathsf{T.\Pi_{cp}}, \mathsf{T.\PiB}, \left(\overline{\Pi B - \Pi_{cp}}\right), \frac{\dot{m}_{\Pi B, i}}{\dot{m}_{BK, i}}\right)$$

				2011 11	
т,вк	т,пв	m, p	tп*з	t,пв	t,c
[kg/s]	[kg/s]	[kg/s]	°C	°C	°C
0.287	0.184	0.103	22	16	18.15

9. Температурата на вентилаторният конвектор

$$t_{BK,i} = t_{II} + \frac{\dot{Q}_{T3,i} + \dot{m}_{IIB,i}.c_{p}.(t_{II} - t_{IIB})}{c_{p}.\dot{m}_{BK,i}},$$
 [°C]

11. Мощността на въздухоохладителя и допълнителния калорифер при летни изчислителни условия

 $\dot{Q}_{\Pi K} = \dot{m}_{\Pi B}.(h_{\Pi K} - h_{BH}), [W]$

7219.16 W

 $h\pi k = 30.2$ kJ/kg.K hвн = -9 kJ/kg.K

 $\dot{Q}_{AK} = \dot{m}_{BB}.(h_{AK} - h_O), W$

Q=

Q = 865.56 W hдк = 34.9 kJ/kg.K ho = 30.2kJ/kg.K

12. Охладителната мощност на вентилаторния конвектор

$$\dot{Q}_{BK,i}^{OXII} = \dot{m}_{BK,i} . (h_{C,i} - h_{BK,i}), W$$

Отоплителна мощност на вент. Конвектори

Q = 3215.47 W Отоплителна мощност от пресен въздух

Q = 1657.46 W

Отоплителна товар

Q =

4872.93 W

hBK = 50.2kJ/kg.K kJ/kg.K $h\pi = 44.5$ $h\pi B = 35.5$ kJ/kg.K

hc = 39

kJ/kg.K

