(A Very Brief) Introduction to Eigenvalues and Eigenvectors

Pablo Mesejo

Universidad de Granada

Departamento de Ciencias de la Computación e Inteligencia Artificial

Preliminary Note

- This is a brief introduction to eigenvectors and eigenvalues from a practical and computer vision-oriented point of view.
- We will focus more on the intuitions behind than on the mathematical foundations.

Note (in Spanish):

Introduction

- Many "things" are best understood by breaking them down into their constituent parts.
 - Integers, for instance, can be decomposed into prime factors.
 - 12 = 2 x 2 x 3 → from this representation we can conclude useful properties, such as that 12 is not divisible by 5, or that any integer multiple of 12 will be divisible by 3.

Introduction

- Similarly, we can decompose matrices to extract information about their properties.
 - Information that is not obvious from the representation of a matrix as a mere array of elements.

Eigendecomposition

- One of the most common forms of decomposition is called eigendecomposition, where a matrix is decomposed into a set of eigenvectors and eigenvalues.
 - Given a square matrix A, we have

Calculation of eigenvalues

Calculation of eigenvalues

$$\begin{vmatrix} -6 - \lambda & 3 \\ 4 & 5 - \lambda \end{vmatrix} = 0 \qquad (-6 - \lambda)(5 - \lambda) - 3 \cdot 4 = 0$$

$$\lambda^2 + \lambda - 42 = 0$$

$$\lambda = -7 \circ \lambda = 6$$

In this case there are two possible eigenvalues

Calculation of eigenvectors

Now that we know the eigenvalues ($\lambda = -7$ o $\lambda = 6$), we must find the corresponding eigenvectors. For instance, we proceed with $\lambda = 6$ (with $\lambda = -7$ would be the same procedure):

$$\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 6 \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} -6x + 3y = 6x \\ 4x + 5y = 6y \end{bmatrix} \longrightarrow \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Calculation of eigenvectors

We see that the expression $(Av = \lambda v)$ is fulfilled:

$$\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

But... what is the intuition behind?

 An eigenvector is "a vector that does not change direction" (when multiplied by a matrix).

- The eigenvalue is the scale of transformation:
 - $1 \rightarrow$ no change
 - 2 -> double the magnitude/length
 - $-1 \rightarrow$ reverse the vector sense

But... what is the intuition behind?

An eigenvector does not change direction in a linear transformation

https://commons.wikimedia.org/wiki/File:Mo na Lisa with eigenvector.png

The image has been deformed in such a way that its vertical axis has not changed. The blue vector has changed direction, while the red vector has not changed. **The red one is an eigenvector** of the transformation, while the blue one is not. Since the red vector has not changed length, its eigenvalor is 1.

But... what is the intuition behind?

An eigenvector does not change direction in a linear transformation

Eigenvector

https://www.mathsisfun.com/algebra/images/ eigen-transform.svg

https://johngiorgi.github.io/mathematics-for-machine-learning/linear algebra/week 5/

 An eigenvector of a 3D rotation is a vector on the axis of rotation about which the rotation takes place. The corresponding eigenvalue is 1

More about eigenvectors and eigenvalues

 A matrix is singular (i.e. non-invertible) if, and only if, any of its eigenvalues is zero.

$$A ext{ singular} \iff \det(A) = 0 \iff \det(A - 0 \cdot I) = 0 \iff 0 ext{ is eigenvalue of } A.$$

 The determinant of a matrix can be calculated by multiplying its eigenvalues.

$$|A| = \lambda_1 \lambda_2 \dots \lambda_n$$

The trace would be the sum of its eigenvalues.

More about eigenvectors and eigenvalues

- The eigendecomposition of a real symmetric matrix can be used to <u>optimize certain</u> <u>quadratic expressions</u>.
- If we have a dataset and we want to project it onto a new space to reduce dimensionality.
 - In PCA, the direction of the first principal component is given by the eigenvector with the largest eigenvalue of the covariance matrix
 - https://stats.stackexchange.com/questions/217995/what-is-an-intuitive-explanation-for-how-pcaturns-from-a-geometric-problem-wit
 - https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysiseigenvectors-eigenvalues

More about eigenvectors and eigenvalues

- They allow us to understand the asymptotic behaviour of linear dynamical systems
 - Section 5.6 (Asymptotic Behavior of Discrete-Time Linear Dynamical Systems) de Sayama, Hiroki.
 Introduction to the modeling and analysis of complex systems. Open SUNY Textbooks, 2015.
 See website.

Terminology

- Positive-definite matrix: all eigenvalues are positive.
- Positive semi-definite matrix: all eigenvalues are positive or zero.
- Negative-definite matrix: all eigenvalues are negative.
- Negative semi-definite matrix: all eigenvalues are negative or zero.
- **Indefinite** matrix: There are positive and negative eigenvalues.

Can they always be calculated?

- Not all matrices allow decomposition into eigenvalues and eigenvectors.
- Sometimes the decomposition exists, but it involves complex instead of real numbers.
- Any symmetric real matrix $(A^T = A)$ has an eigendecomposition, but this may not be unique.

Singular Value Decomposition (SVD)

- Another way to factorize/decompose a matrix.
 In this case into singular values and vectors.
- It is a more general method.
 - For example, if a matrix in not squared, the eigendecomposition is not defined, and SVD must be used instead.

Singular Value Decomposition (SVD)

In this case, we will write matrix A as

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{\top}. \tag{2.43}$$

Suppose that \boldsymbol{A} is an $m \times n$ matrix. Then \boldsymbol{U} is defined to be an $m \times m$ matrix, \boldsymbol{D} to be an $m \times n$ matrix, and \boldsymbol{V} to be an $n \times n$ matrix.

- The elements on the diagonal of **D** are the singular values.
- The columns of \mathbf{U} are the eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$.
- The columns of V are the eigenvectors of A^TA .

How are singular values and eigenvalues related?

- The singular values of matrix A M×N are the square roots of the eigenvalues of an A^TA N×N matrix.
- If **A** is a real, symmetric N×N matrix with nonnegative eigenvalues, then the eigenvalues and singular values are the same.

What can SVD be useful for?

- Matrix inversion is not defined for non-square matrices.
 - In such cases, the generalization called Moore-Penrose Pseudoinverse can be used.
 - For this, a computationally simple and accurate way to compute the pseudoinverse is via SVD
- And many other applications:
 - https://en.wikipedia.org/wiki/Singular value decomposition#Ap plications of the SVD
 - Including the separability of convolutional filters:
 - any 2D-mask admits a SVD decomposition (*low-rank approximations*): sum of several separable kernels. See website.

 As we saw in theory, E(u,v) is approximated by a quadratic form

$$E(u, v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_{x}^{2}$$

$$H$$

$$B = \sum_{(x,y)\in W} I_{x}I_{y}$$

$$C = \sum_{(x,y)\in W} I_{y}^{2}$$

• **H** is a symmetric matrix and has a decomposition of the form $\mathbf{H} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T$, where $\boldsymbol{\Lambda}$ is a diagonal matrix with the eigenvalues of \mathbf{H}

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$H$$

$$E(u,v) \approx [u,v] \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}^T \begin{bmatrix} u \\ v \end{bmatrix} = [u',v'] \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} u' \\ v' \end{bmatrix}_{23}$$

• These eigenvalues will always be non-negative, so **H** is positive semidefinite.

$$egin{aligned} \left[u\ v
ight] \left[egin{aligned} I_x^2 & I_xI_y \ I_xI_y & I_y^2 \end{aligned}
ight] \left[egin{aligned} u \ v \end{aligned}
ight] = u^2I_x^2 + 2uvI_xI_y + v^2I_y^2 = (uI_x + vI_y)^2 \geq 0 \end{aligned}$$

- The eigenvector of the matrix corresponding to the largest eigenvalue gives the direction of fastest change.
- Since **H** is symmetric ($\mathbf{H}^T = \mathbf{H}$), its eigenvectors (corresponding to different eigenvalues) are orthogonal.

Finally, we use these eigenvalues to characterize a point in the image:

 λ_1

Some References

- Chapter I.2 of the book Goodfellow, I., Bengio, Y. & Courville, A. (2016). *Deep learning*. https://www.deeplearningbook.org/contents/linear_algebra.html
- Chapter 6. of the book Strang, G. (2016). *Introduction to Linear Algebra*. https://math.mit.edu/~gs/linearalgebra/ila5/linearalgebra5 6-1.pdf
- Eigenvalues vs. Singular Values by Suraj Rampure (Univ. of Berkeley): https://rampure.org/resources/data100/notes/eigen-singular.html
- <u>Linear Algebra 36: Eigenapplications, 2. Ellipses</u> (Jonathan Evans)
- Interesting discussion on the relationship between eigenvectors/eigenvalues with PCA:
 https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
- Interesting discussion on the algebraic aspects of corner detection:
 https://dsp.stackexchange.com/questions/69349/detecting-corners-using-structure-tensor-matrix
- Notes on singular values (in Spanish): http://www.ehu.eus/izaballa/Cursos/valores_singulares.pdf
- https://www.mathsisfun.com/algebra/eigenvalue.html

(A Very Brief) Introduction to Eigenvalues and Eigenvectors

Pablo Mesejo

Universidad de Granada

Departamento de Ciencias de la Computación e Inteligencia Artificial

