Introdução a Quantum Computing

Alexandre Silva - BCC

Objetivos

- Mostrar um pouco o mundo da computação quântica;
- Dar o pontapé inicial;
- Instigar o estudo dessa área.

MATERIAIS

<u>github.com/Dpbm/introduction-t</u> <u>o-quantum-computing/</u>

O que é computação quântica?

"Computação quântica é uma tecnologia, emergente, que se aproveita da mecânica quântica para resolver problemas".

Fonte: IBM

Quais efeitos ela se aproveita?

Interferência

Fonte: Wikipedia

Superposição

Fonte: Wikipedia

Entanglement

Fonte: PhysOrg

Como está hoje?

Fonte: IBM

Plataformas

- AWS (Braket);
- Azure;
- <u>IBM</u>;
- IONQ;
- Pasqal;

Como funciona?

Computação Clássica

- Binário (0, 1);
- Cada unidade é denominada Bit;
- Informações podem ser manipuladas usando operações Booleanas;
- Representação de inúmeros tipos de informação (imagens, aúdios, texto, números, etc.).

Fonte: Giphy

Fonte: MercadoLivre

Fonte: YouTube(Kurzgesagt)

AND

Somador completo

Fonte: <u>GeeksForGeeks</u>

Computação Quântica

- Qubits (0, 1 e tudo entre isso);
- Representa Amplitudes/probabilidades;
- Pode ser visto como um ponto em uma esfera (Bloch Sphere);
- Precisa de várias medições:
 - Perturbações;
 - Principio da incerteza de Heisenberg.

Fonte: Wikipedia

a —

 $|00\rangle$

 $|00\rangle$

|10>

|111|

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	-—	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$-\mathbf{Y}$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{z}-$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{s}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8$ (T)	T		$\begin{bmatrix} 1 & & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)		1	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		_ *	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

DEMOS

Próximos passos?

What Can Qiskit Do

github.com/Dpb m/quantum

kiedos.art/quant um-games-list/

Obrigado pela Atenção