

Fundação CECIERJ – Vice Presidência de Educação Superior a Distância

# Curso de Tecnologia em Sistemas de Computação

|       | 1º Avaliação Presencial de Fisica para Computação –/ |
|-------|------------------------------------------------------|
| Nome: |                                                      |
| Pólo: |                                                      |

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas. Desse modo, resultados parciais e evidências de compreensão do conteúdo pertinente podem ser considerados e pontuados. É permitido o uso de máquina de calcular.

| Questão    | Valor | Nota |
|------------|-------|------|
| 1ª Questão | 2,0   |      |
| 2ª Questão | 2,0   |      |
| 3ª Questão | 2,0   |      |
| 4ª Questão | 2,0   |      |
| 5ª Questão | 2,0   |      |
| Total      | 10,0  |      |

# 1ª Questão

Um policial persegue um assaltante no topo de um edifício. Ambos correm a uma velocidade de 4,5m/s. Antes de o assaltante atingir a beirada do telhado ele terá de decidir se deve tentar ou não o salto para o próximo edifício, que está a 6,2m de distância e a 4,8m mais baixo, conforme a figura abaixo. Poderá fazê-lo? Suponha que ele pule horizontalmente e despreze qualquer influência de atrito. Adote g = 9,8m/s².



# Solução:

Ele precisa cair de uma altura de 4,8m, o que lhe dará um tempo de queda que poderá ser calculado, fazendo  $\theta_0 = 0^\circ$  e  $y - y_0 = -4,8m$ , assim tem-se:

$$t = \sqrt{-\frac{2(y - y_0)}{g}} = \sqrt{-\frac{2(-4.8m)}{9.8m/s^2}} = 0.990s$$

Agora perguntamos: "Que distância o assaltante percorreu horizontalmente neste intervalo de tempo?" A resposta pode ser obtida da seguinte forma:

$$x - x_0 = (v_0 cos\theta_0)t = \left(\frac{4.5m}{s}\right)(cos0^\circ)(0.990s) = 4.5m.$$

Portanto ele não conseguiria percorrer os 6,2m.

#### 2ª Questão

Duas partículas de mesma massa sofrem uma colisão elástica, estando a partículaalvo inicialmente em repouso. Mostre que (a menos que a colisão seja frontal) as duas partículas se moverão, após a colisão, em direções perpendiculares entre si.

### Solução:

A figura abaixo mostra a situação antes após colisão, cada partícula e seu corresponde vetor de momento linear. Devido à conservação do momento linear, estes vetores formam um triângulo, como é mostrado na terceira figura. Sendo iguais as massas das partículas, o triângulo dos momentos ( $3^a$  figura) também é o triângulo das velocidades, pois as massas se cancelam algebricamente, isto é,  $v_{1i} = v_{1f} + v_{2f}$ .



Como a energia cinética se conserva

$$\frac{1}{2}m_2v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2$$

Cancelando-se as massas temos:

$$v_{1inicial}^2 = v_{1final}^2 + v_{2final}^2$$

Aplicando essa relação ao triângulo da  $3^a$  figura temos o Teorema de Pitágoras. Para isto, o triângulo deve ser retângulo e, portanto o ângulo  $\varphi$  entre os vetores  $v_{1f} + v_{2f}$  deve ser um ângulo reto (90°).



#### 3ª Questão

Uma corda esticada tem uma massa por unidade de comprimento de 5g/cm e uma tensão de 9N. Uma onda senoidal nessa corda tem uma amplitude de 0,12mm e uma freqüência de 50 Hz e se propaga no sentido de x decrescente. Escreva uma equação para essa onda, descrevendo todos os elementos que a compõem.

#### Solução:

- (i) A velocidade da onda é dada por:  $v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{9}{0.5}} = 4,24 \text{ m/s}$
- (ii) A velocidade angular:  $w = 2\pi f = 314,16 \, rad/s$
- (iii) Valor da constante k:  $k = \frac{w}{v} = \frac{314,16 rad/s}{4.24 m/s} = 74,1$

Como a onda se propaga no sentido negativo do eixo x, temos:

$$y(x,t) = (1,2X10^{-4})sen(74,1x + 314,16t)$$

#### 4ª Questão

Um conjunto de nuvens carregadas produz um campo elétrico no ar próximo à superfície da Terra. Uma partícula de carga -2,0X10<sup>-6</sup>C, colocada neste campo, fica sujeita a uma força eletrostática de 3,0X10<sup>-9</sup>N apontando para baixo. (a) Qual o

módulo do campo elétrico? (b) Qual o módulo, a direção e o sentido da força eletrostática exercida sobre um próton colocado neste campo? (c) Qual a força gravitacional sobre o próton? (d) Qual a razão entre a força elétrica e a força gravitacional, nesse caso?

a) Sabemos que a intensidade do campo elétrico para cargas pontuais é dada por:

$$\vec{E} = \frac{\vec{F}}{q}$$

E neste caso temos:

$$\vec{E} = \frac{\vec{F}}{q} = \frac{3X10^{-6}N}{-2X10^{-9}C} = -1500N/C$$

A força aponta para baixo e a carga é negativa. Logo, o campo aponta de baixo para cima, o que justifica o sinal negativo.

b) O módulo da força eletrostática F<sub>e</sub> exercida sobre o próton é

$$|\vec{F_e}| = q|\vec{E}| = 2.4 \, \text{X} 10^{-16} \text{N}$$

Como o próton tem carga positiva, a força sobre ele terá a mesma direção do campo: de baixo para cima.

- c) A força gravitacional exercida sobre o próton é:  $|\vec{F_g}| = mg = 1,64X10^{-26}N$ , apontando de cima para baixo.
- d) A razão entre as magnitudes das forças elétrica e gravitacional é:

$$\frac{|\overrightarrow{F_e}|}{|\overrightarrow{F_g}|} = 1,46 \times 10^{-10}$$

Portanto, vemos que o peso  $|\overrightarrow{F_g}|$  do próton pode ser completamente ignorado em comparação com a força eletrostática exercida sobre o próton.

#### 5ª Questão

- (a) Calcule o campo elétrico produzido por um anel de raio *a* carregado com carga *Q* uniformemente distribuída sobre ele, ao longo do eixo (coincidente com o eixo *x*) que passa por seu centro e é perpendicular ao plano definido por ele.
- (b) Quando  $x \ll a$  pode-se considerar que o campo é proporcional a x. Explicite esta aproximação e, neste contexto, considere a colocação de uma partícula de massa m e carga -q próximo ao centro do anel, na posição  $x_p$ . Determine a força sobre a partícula de carga -q, o equivalente à constante da "mola", a velocidade e período da oscilação.

# **SOLUÇÃO:**

(a)



O Campo elétrico é dado por

$$E = \int dE$$
 onde  $dE = k \frac{dq}{r^2}$ 

onde  $dq=\frac{Q}{L}ds$ , pois a carga Q está uniformemente distribuída por todo o anel de comprimento L ( $L=2\pi a$ ).

Pela figura podemos ver que r é a hipotenusa do triângulo de catetos a e x; assim, temos:

$$dE = k \frac{\frac{Q}{L} ds}{(a^2 + x^2)}$$

Podemos observar que não existem componentes de E nos eixos y e z. Para isso basta considerarmos dois elementos de carga do anel (dq1 e dq2) diametralmente opostos. O campo resultante devido a tais elementos é paralelo ao eixo x, pois as componentes perpendiculares a tal eixo se cancelam, ou seja, a componente em z gerada por dq1 é cancelada pela componente em z gerada por dq2, de forma análoga para o eixo y. Essa idéia pode ser usada para quaisquer dois elementos do anel e assim o campo resultante será paralelo ao eixo x.

A componente em x do campo é dada por:

$$dE_x = dE \cos \theta$$

E pela figura acima temos:

$$\cos\theta = \frac{x}{r} = \frac{x}{\sqrt{x^2 + a^2}}$$

Assim,

$$dE_x = dE\cos\theta = k\frac{\frac{Q}{L}ds}{(a^2 + x^2)}\frac{x}{\sqrt{x^2 + a^2}}$$

$$dE_x = \frac{k Q ds x}{L(a^2 + x^2)^{\frac{3}{2}}}$$

$$E_x = \frac{k Q x}{L(a^2 + x^2)^{\frac{3}{2}}} \int ds$$

Onde  $\int ds = 2\pi a = L$  (comprimento do anel).

$$E_{x} = \frac{k Q x}{L(a^{2} + x^{2})^{\frac{3}{2}}} L$$

$$E_{x} = \frac{k Q x}{(a^{2} + x^{2})^{\frac{3}{2}}}$$

$$E_x = \frac{k Q x}{\left(a^2 + x^2\right)^{\frac{3}{2}}} \approx \frac{k Q x}{a^3}$$

Nesse caso o campo aponta para cima na parte superior do anel e para baixo na parte inferior. Tomamos como a direção para cima sendo positiva e com isso a força que atua na carga —q é dada por:

$$F = -qE = -\frac{kqQx}{a^3} = -Kx$$

Com isso podemos notar que essa força é restauradora. Além disso, essa força tenta puxar a partícula para o ponto de equilíbrio(x = 0). Note que parece que a carga -q está conectada a uma mola como se a carga se movesse de acordo com um movimento harmônico simples ao longo do eixo x.

A freqüência angular é dada por:

$$w = \sqrt{\frac{K}{m}} = \sqrt{\frac{kqQ}{a^3m}}$$

Portanto o período de oscilação é:

$$T = \frac{2\pi}{w} = \frac{2\pi}{\sqrt{\frac{kqQ}{a^3m}}} = 2\pi \left(\frac{kqQ}{a^3m}\right)^{-\frac{1}{2}}$$

E a velocidade:

$$\frac{dv}{dt} = -w^2 x$$

$$\frac{dv}{dt} = \frac{kqQ}{a^3 m} x$$

$$v = \frac{kqQ}{a^3 m} x t$$

### Formulário:

$$\begin{split} v &= \sqrt{\frac{T}{\mu}}; \qquad k = \frac{w}{v}; \qquad w = 2\pi f \; ; \quad dE = k.\frac{dq}{r^2}; \qquad \vec{F} = q.\vec{E}; \\ \vec{E} &= \sum_i \frac{k.q_i}{r_i^2} \hat{r}_i \; ; \qquad w = \sqrt{\frac{K}{m}} = \sqrt{\frac{k.q.Q}{a^3.m}} \; ; \qquad \vec{F} = m.\vec{a}; \qquad T = \frac{2\pi}{w}; \\ \frac{dv}{dt} &= -w^2. \, x_p = > \begin{cases} x(t) = x_p.\cos(wt) \\ v(t) = -x_p.w.sen(wt) \end{cases} \end{split}$$

$$dq = \frac{Q}{L}ds;$$
  $P = m.v;$   $E_{cinetica} = \frac{1}{2}m.v^2;$   $F = p.\frac{\Delta N}{\Delta t}$ 

$$x = x_0 + v_{0x}t + \frac{at^2}{2}; y = y_0 + v_{0y}t - \frac{gt^2}{2}; m_1v = (m_1 + m_2)V;$$
  
$$\frac{1}{2}m_2v_{1inicial}^2 = \frac{1}{2}m_1v_{1final}^2 + \frac{1}{2}m_2v_{2final}^2;$$