Vorlesung 16 NP-Vollständigkeit ausgewählter Zahlprobleme

Wdh.: NP-Vollständigkeit

Definition (NP-vollständig)

Ein Problem L heißt NP-vollständig (engl. NP-complete), falls gilt

- 1. $L \in NP$, und
- 2. L ist NP-schwer.

Die Klasse der NP-vollständigen Probleme wird mit NPC bezeichnet.

Satz (Cook und Levin)

SAT ist NP-vollständig.

Lemma

3- $SAT \in NP \ und \ SAT \leq_p 3$ -SAT.

Korollar

3-SAT ist NP-vollständig.

Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 470

Version 1. Dezember 2022

Wdh.: Karps Liste mit 21 NP-vollständigen Problemen

Es gibt mittlerweile mehrere tausende Berechnungsprobleme verschiedenster Natur, deren NP-Vollständigkeit bekannt ist.

Wdh.: Kochrezept für NP-Vollständigkeitsbeweise

Wie beweist man, dass eine Sprache L NP-vollständig ist?

- 1. Man zeige $L \in NP$.
- 2. Man wähle eine NP-vollständige Sprache L'.
- 3. Man entwerfe eine Funktion f, die Instanzen von L' auf Instanzen von L abbildet. (Beschreibung der Reduktionsabbildung)
- 4. Man zeige, dass *f* in polynomieller Zeit berechnet werden kann.

 (Polynomialzeit)
- 5. Man beweise, dass f eine Reduktion ist: Für $x \in \{0, 1\}^*$ ist $x \in L'$ genau dann, wenn $f(x) \in L$. (Korrektheit)

Vorlesung BuK im WS 22/23, M. Grohe

Seite 472

Version 1 Dezember 2022

Das SUBSET-SUM-Problem

Problem (SUBSET-SUM)

Eingabe: $a_1, \ldots, a_N \in \mathbb{N}$, $b \in \mathbb{N}$

Frage: Gibt es $K \subseteq \{1, ..., N\}$ mit $\sum_{i \in K} a_i = b$?

Das SUBSET-SUM-Problem ist in NP enthalten, denn die Lösung K kann als Zertifikat verwendet werden, das in polynomieller Zeit verifiziert werden kann.

NP-Vollständigkeit des SUBSET-SUM-Problems

Satz

SUBSET-SUM ist NP-vollständig.

Beweis:

- 1.) SUBSET-SUM ∈ NP: ✓
- 2.) Um die NP-Schwere des Problems nachzuweisen, beschreiben wir eine Polynomialzeitreduktion von 3-*SAT* auf SUBSET-SUM.
- 3.) (Beschreibung der Reduktion) Gegeben sei eine Formel φ in 3-KNF. Diese Formel bestehe aus M Klauseln c_1, \ldots, c_M über N Variablen x_1, \ldots, x_N .

Für $i \in \{1, ..., N\}$ sei $S(i) = \{j \in \{1, ..., M\} \mid \text{Klausel } c_j \text{ enthält Literal } x_i\},$ $S'(i) = \{j \in \{1, ..., M\} \mid \text{Klausel } c_j \text{ enthält Literal } \bar{x}_i\}.$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 474

Version 1. Dezember 2022

Reduktion 3-SAT \leq_p SUBSET-SUM

Aus der Formel φ in 3-KNF erzeugen wir verschiedene Dezimalzahlen mit jeweils N+M Ziffern.

Die k-te Ziffer einer Zahl a bezeichnen wir dabei mit a(k).

Für jede boolesche Variable x_i , $i \in \{1, ..., N\}$ erzeugen wir zwei Zahlen a_i und a_i' , deren Ziffern wie folgt definiert sind:

$$a_i(i) = 1$$
 und $\forall j \in S(i) : a_i(N+j) = 1$,
 $a'_i(i) = 1$ und $\forall j \in S'(i) : a'_i(N+j) = 1$.

Alle anderen Ziffern setzen wir auf den Wert 0.

Diese Zahlen bezeichnen wir als a-Zahlen.

Reduktion 3-SAT \leq_p SUBSET-SUM

Beispiel:

Gegeben sei die Formel

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$$
.

Aus dieser Formel werden folgende a-Zahlen erzeugt:

 $a_1 = 100010$

 $a_1' = 100000$

 $a_2 = 010011$

 $a_2' = 010000$

 $a_3 = 001010$

 $a_3' = 001001$

 $a_4 = 000100$

 $a_4' = 000101$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 476

Version 1. Dezember 2022

Reduktion 3-SAT \leq_p SUBSET-SUM

Zusätzlich erzeugen wir zwei sogenannte h-Zahlen h_j und h'_j für jede Klausel j. Diese Zahlen haben nur an der Ziffernposition N+j eine 1, und alle anderen Ziffern sind 0.

Den Summenwert b definieren wir folgendermaßen: Wir setzen b(k) = 1 für $1 \le k \le N$ und b(k) = 3 für $N + 1 \le k \le N + M$.

Fortsetzung des Beispiels $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$:

Die h-Zahlen und der Summenwert lauten

 $h_1 = 000010$

 $h_1' = 000010$

 $h_2 = 000001$

 $h_2' = 000001$

b = 111133

Reduktion 3-SAT \leq_p SUBSET-SUM

Für eine Formel aus N Variablen und M Klauseln könnten sich beispielsweise die folgenden Zahlen ergeben:

	1	2	3	• • •	Ν	N+1	N + 2	• • •	N + M
a_1	1	0	0		0	1	0		
a'_1	1	0	0		0	0	0		• • •
a_2	0	1	0		0	0	1		
a_2'	0	1	0		0	1	0		• • •
<i>a</i> ₃	0	0	1	• • •	0	1	1	• • •	• • •
:	:	:	:	:	:	:	:	:	:
a_N	0	0	0		1	0	0		
a'_N	0	0	0	• • •	1	0	1	• • •	• • •
h_1	0	0	0		0	1	0	• • •	0
$\mid h_1' \mid$	0	0	0	• • •	0	1	0	• • •	0
:	:	:	:	:	:	:	:	:	:
$h_{\mathcal{M}}$	0	0	0		0	0	0		1
$h'_{\mathcal{M}}$	0	0	0	• • •	0	0	0	• • •	1
b	1	1	1		1	3	3		3

Vorlesung BuK im WS 22/23, M. Grohe

Seite 478

Version 1. Dezember 2022

Reduktion 3-SAT \leq_p SUBSET-SUM

4.) (Polynomialzeit) Die Eingabezahlen zu SUBSET-SUM können in polynomieller Zeit erzeugt werden. (Die Zahlenwerte können aber natürlich exponentiell groß sein).

5.) (Korrektheit)

Beobachtung

Bei der Addition einer beliebigen Teilmenge der a-Zahlen und der h-Zahlen gibt es keinen Additionsübertrag von Stelle zu Stelle, weil höchstens fünf Ziffern pro Spalte den Wert 1 haben.

Anmerkung: Die Beobachtung beruht darauf, dass wir mit Dezimalziffern, d.h. zur Basis 10, rechnen. De facto wäre es auch ausreichend, wenn wir zur Basis 6 rechnen würden.

Reduktion 3-SAT \leq_p SUBSET-SUM: Korrektheit

Zu zeigen: φ erfüllbar \Rightarrow es gibt eine Teilmenge der a- und h-Zahlen, deren Summe b ist

Angenommen, es gibt eine erfüllende Belegung x^* für φ .

- ► Falls $x_i^* = 1$, so wähle a_i aus, ansonsten wähle a_i' .
- ► Sei A die Summe der ausgewählten a-Zahlen.
- ▶ Da für jedes $i \in \{1, ..., N\}$ entweder a_i oder a'_i ausgewählt wurde, gilt A(i) = 1.
- ▶ Zudem gilt $A(N+j) \in \{1,2,3\}$ für $1 \le j \le M$, weil in jeder Klausel mindestens ein und höchstens drei Literale erfüllt werden.
- ► Falls A(N+j) < 3, so können wir zusätzlich h_j oder h_j und h'_j auswählen, um exakt den geforderten Wert 3 an Ziffernposition N+j der Summe zu erhalten.

Also gibt es eine Teilmenge mit Summenwert b.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 480

Version 1. Dezember 2022

Reduktion 3-SAT \leq_p SUBSET-SUM: Korrektheit

Zu zeigen: es gibt eine Teilmenge der a- und h-Zahlen, deren Summe b ist $\Rightarrow \varphi$ erfüllbar

Sei A die Summe einer Teilmenge K_A der a-Zahlen und H die Summe einer Teilmenge der h-Zahlen, so dass gilt A + H = b.

In K_A ist für jedes $i \in \{1, ..., N\}$ genau eine der beiden a-Zahlen a_i oder a_i' enthalten, denn ansonsten wäre $A(i) \neq 1$.

Setze $x_i = 1$, falls $a_i \in K_A$, und $x_i = 0$, sonst.

Zu zeigen: x ist eine erfüllende Belegung für φ

- Es gilt $A(N+j) \ge 1$ für $1 \le j \le M$, denn ansonsten wäre $A(N+j) + H(N+j) \le A(N+j) + 2 < 3$.
- ▶ Dadurch ist sichergestellt, dass in jeder Klausel mindestens eines der Literale den Wert 1 hat, so dass φ erfüllt ist.

Damit ist die Korrektheit der Reduktion nachgewiesen.

NP-Vollständigkeit von PARTITION

Problem (PARTITION)

Eingabe: $a_1, \ldots, a_N \in \mathbb{N}$

Frage: Gibt es $K \subseteq \{1, ..., N\}$ mit $\sum_{i \in K} a_i = \sum_{i \in \{1, ..., N\} \setminus K} a_i$?

PARTITION ist ein Spezialfall von SUBSET-SUM, da die gestellte Frage äquivalent zur der Frage ist, ob es eine Teilmenge K mit Summenwert $b = \frac{1}{2} \sum_{i=1}^{N} a_i$ gibt.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 482

Version 1. Dezember 2022

NP-Vollständigkeit von PARTITION

Satz

PARTITION ist NP-vollständig.

Beweis:

- 1.) PARTITION ist offensichtlich in NP, weil es als Spezialfall von SUBSET-SUM aufgefasst werden kann.
- 2.) Um zu zeigen, dass PARTITION NP-schwer ist, zeigen wir SUBSET-SUM \leq_p PARTITION.

Reduktion von SUBSET-SUM auf PARTITION

3.) Die Eingabe von SUBSET-SUM sei $a_1, \ldots, a_N \in \mathbb{N}$ und $b \in \mathbb{N}$.

Es sei
$$A = \sum_{i=1}^{N} a_i$$
.

Wir bilden diese Eingabe für SUBSET-SUM auf eine Eingabe für PARTITION ab, die aus N+2 Zahlen a'_1,\ldots,a'_{N+2} bestehe.

Dazu setzen wir

- $ightharpoonup a_i' = a_i \text{ für } 1 \leq i \leq N,$
- $ightharpoonup a'_{N+1} = 2A b$, und
- $ightharpoonup a'_{N+2} = A + b.$

In der Summe ergeben diese N + 2 Zahlen den Wert 4A.

Diese Zahlen bilden genau dann eine Ja-Instanz von PARTITION, wenn es eine Teilmenge der Zahlen a'_1, \ldots, a'_{N+2} mit Summenwert 2A gibt.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 484

Version 1. Dezember 2022

Reduktion von SUBSET-SUM auf PARTITION

- 4.) Die Reduktion ist in polynomieller Zeit berechenbar.
- 5.) Wir zeigen: Es existiert eine Lösung für PARTITION ⇒ es existiert eine Lösung für SUBSET-SUM
 - Wenn es eine geeignete Aufteilung der Eingabezahlen für PARTITION gibt, so können a'_{N+1} und a'_{N+2} dabei nicht in derselben Teilmenge sein, denn $a'_{N+1} + a'_{N+2} = 3A$.
 - ▶ Deshalb ergibt sich auch eine Lösung für SUBSET-SUM, denn diejenigen Zahlen aus a'_1, \ldots, a'_N , die sich in derselben Teilmenge wie a'_{N+1} befinden, summieren sich auf zu $2A a'_{N+1} = b$.

Reduktion von SUBSET-SUM auf PARTITION

Wir zeigen: Es existiert eine Lösung für SUBSET-SUM \Rightarrow es existiert eine Lösung für PARTITION

- Wenn es eine Teilmenge der Zahlen a_1, \ldots, a_N mit Summenwert b gibt, so gibt es auch eine Teilmenge der Zahlen a'_1, \ldots, a'_N mit diesem Summenwert.
- ▶ Wir können die Zahl $a'_{N+1} = 2A b$ zu dieser Teilmenge hinzufügen und erhalten dadurch eine Teilmenge mit Summenwert 2A.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 486

Version 1. Dezember 2022

Bin Packing ist NP-vollständig

Problem (Bin Packing Problem – BPP)

Eingabe: $b \in \mathbb{N}$, $w_1, ..., w_N \in \{1, ..., b\}$

zulässige Lösungen: $k \in \mathbb{N}$ und Funktion $f: \{1, ..., N\} \rightarrow \{1, ..., k\}$,

so dass
$$\forall i \in \{1, \ldots, k\}$$
: $\sum_{j \in f^{-1}(i)} w_j \leq b$

Zielfunktion: Minimiere k (= Anzahl Behälter)

Entscheidungsvariante (BPP-E): Zusätzlich ist $k \in \mathbb{N}$ gegeben. Passen die Objekte in k Behälter?

Bin Packing Problem - Beispiel

Eine Lösung die k = 6 Behälter verwendet

Vorlesung BuK im WS 22/23, M. Grohe

Seite 488

Version 1. Dezember 2022

Bin Packing ist NP-vollständig

Satz

BPP-E ist NP-vollständig.

Beweis:

1.) BPP-E \in NP haben wir bereits gezeigt.

(2.-5.) Die NP-Schwere ergibt sich durch eine triviale Reduktion von PARTITION:

Setze
$$k = 2$$
, $w_i = a_i$ für $1 \le i \le N$ und $b = \left\lfloor \frac{1}{2} \sum_{i=1}^{N} w_i \right\rfloor$.

Das Rucksackproblem ist NP-vollständig

Problem (Entscheidungsvariante des Rucksackproblems – KP-E)

Eingabe: $B, P \in \mathbb{N}, w_1, ..., w_N \in \{1, ..., B\}, p_1, ..., p_N \in \mathbb{N}$

Frage: Gibt es $K \subseteq \{1, ..., N\}$ mit $\sum_{i \in K} w_i \leq B$ und $\sum_{i \in K} p_i \geq P$?

Korollar

KP-E ist NP-vollständig.

Beweis durch einfache Reduktion von SUBSET-SUM (Wie?)

Vorlesung BuK im WS 22/23, M. Grohe

Seite 490

Version 1. Dezember 2022

Die Komplexitätslandschaft

Warnung: Dieser Abbildung liegt die Annahme $P \neq NP$ zu Grunde.