TABLE OF CONTENTS

REVERSE THE PRODUCT RULE

Product Rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}\big\{u(x)\cdot v(x)\big\} = u'(x)\cdot v(x) + u(x)\cdot v'(x)$$

REVERSE THE PRODUCT RULE

Product Rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}\big\{u(x)\cdot v(x)\big\} = u'(x)\cdot v(x) + u(x)\cdot v'(x)$$

Related fact:

$$\int \left[u'(x) \cdot v(x) + u(x) \cdot v'(x) \right] dx = u(x) \cdot v(x) + C$$

REVERSE THE PRODUCT RULE

Product Rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}\big\{u(x)\cdot v(x)\big\} = u'(x)\cdot v(x) + u(x)\cdot v'(x)$$

Related fact:

$$\int \left[u'(x) \cdot v(x) + u(x) \cdot v'(x) \right] dx = u(x) \cdot v(x) + C$$

Rearrange:

$$\implies \int \left[u'(x)v(x) \right] dx + \int \left[u(x)v'(x) \right] dx = u(x)v(x) + C$$

$$\implies \int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

INTEGRATION BY PARTS

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx$$

Example: $\int xe^x dx$

CHECK OUR WORK

In the previous slide, we evaluated

$$\int xe^x dx = xe^x - e^x + C$$

for some constant *C*. We can check that this is correct by differentiating.

INTEGRATION BY PARTS (IBP): A CLOSER LOOK

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\underbrace{\int xe^{x} dx}_{\text{How to integrate?}} = x(e^{x}) - \underbrace{1 \int e^{x} dx}_{\text{Easy to integrate!}} + C$$

We start and end with an integral. IBP is only useful if the new integral is somehow an improvement.

We differentiate the function we choose as u(x), and antidifferentiate the function we choose as v'(x)

CHOOSING u(x) AND v(x)

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int \left[x \sin x \right] dx =$$

CHOOSING u(x) AND v(x)

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int \left[x \sin x \right] dx =$$

$$u(x) = x$$

$$v'(x) = \sin x$$

Option A: Option B:

$$u(x) = x$$
 $u(x) = \sin x$ $v'(x) = \sin x$ $v'(x) = x$

CHECK OUR WORK

To check our work, we can calculate $\frac{d}{dx} \left\{ -x \cos x + \sin x + C \right\}$. It should work out to be $x \sin x$.

Choosing u(x) and v(x)

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int \left[x^2 \log x \right] dx =$$

CHOOSING u(x) AND v(x)

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int \left[x^2 \log x \right] dx =$$

Option A:

Option A: Option B:

$$u(x) = x^2$$
 $u(x) = \log x$
 $v'(x) = \log x$ $v'(x) = x^2$

Option B:
$$u(x) = \log x$$

CHECK OUR WORK

To check our work, we can calculate $\frac{d}{dx} \left\{ \frac{1}{3} x^3 \log x - \frac{1}{9} x^3 + C \right\}$. It should work out to be $x^2 \log x$.

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int \left[\frac{1}{2}xe^{6x} \right] dx =$$

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int \left[\frac{1}{2}xe^{6x} \right] dx =$$

Option A:
$$u(x) = {}^{1}x$$

$$u(x) = \frac{1}{2}x$$

$$v'(x) = e^{6x}$$

Option B:

$$u(x) = \frac{1}{2}x$$
 $u(x) = e^{6x}$ $v'(x) = e^{6x}$ $v'(x) = \frac{1}{2}x$

CHECK OUR WORK

We check that
$$\int \left[\frac{1}{2}xe^{6x}\right] dx = \frac{1}{12}xe^{6x} - \frac{1}{72}e^{6x} + C$$
 by differentiating.

MNEMONIC

$$\int \left[u(x)v'(x) \right] dx = u(x)v(x) - \int \left[v(x)u'(x) \right] dx + C$$

$$\int u \, dv = uv - \int v \, du + C$$

We abbreviate:

- ightharpoonup u(x)
 ightharpoonup u
- $ightharpoonup u'(x) dx \rightarrow du$
- ightharpoonup v(x)
 ightharpoonup v
- $ightharpoonup v'(x) dx \rightarrow dv$

CHOOSING u, dv in your head

Choose u and dv to evaluate the integral below:

$$\int (3t+5)\cos(t/4)\mathrm{d}t$$

CHOOSING u, dv in your head

Choose u and dv to evaluate the integral below:

$$\int (3t+5)\cos(t/4)\mathrm{d}t$$

Thoughts:
$$\int u \, dv = uv - \int v \, du$$

 u gets differentiated, and dv gets antidifferentiated.

Choosing u, dv in your head

Choose u and dv to evaluate the integral below:

$$\int (3t+5)\cos(t/4)\mathrm{d}t$$

Thoughts: $\int u \, dv = uv - \int v \, du$ u gets differentiated, and dv gets antidifferentiated.

▶ If we differentiate OR antidifferentiate cos(t/4) we get almost the same thing (they only differ by a constant).

Choosing u, dv in your head

Choose u and dv to evaluate the integral below:

$$\int (3t+5)\cos(t/4)\mathrm{d}t$$

Thoughts: $\int u \, dv = uv - \int v \, du$ u gets differentiated, and dv gets antidifferentiated.

- ▶ If we differentiate OR antidifferentiate cos(t/4) we get almost the same thing (they only differ by a constant).
- ▶ If we differentiate 3t + 5, we get something simpler: a constant. If we antidifferentiate 3t + 4, we get something more complicated—a quadratic.

Choosing u, dv in your head

Choose u and dv to evaluate the integral below:

$$\int (3t+5)\cos(t/4)\mathrm{d}t$$

Thoughts: $\int u \, dv = uv - \int v \, du$ u gets differentiated, and dv gets antidifferentiated.

- ▶ If we differentiate OR antidifferentiate cos(t/4) we get almost the same thing (they only differ by a constant).
- ▶ If we differentiate 3t + 5, we get something simpler: a constant. If we antidifferentiate 3t + 4, we get something more complicated–a quadratic.

Simpler is better: we want to differentiate 3t + 5, which means we choose it to be u. Then $dv = \cos(t/4)dt$.

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u + C$$

- $ightharpoonup \int xe^{x^2} dx$

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u + C$$

$$\int u dv = uv - \int v du + C$$

$$\int u dv = uv - \int v du + C$$

DEFINITE INTEGRATION BY PARTS

Method 1: Antidifferentiate first, then plug in limits of integration.

Method 2: Plug as you go.

Evaluate $\int_{1}^{e} \log^2 x \, \mathrm{d}x$

Special Technique: v'(x) = 1

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u + C$$

Evaluate $\int \log x \, dx$ using integration by parts.

CHECK OUR WORK

Let's check that
$$\int \log x \, dx = x \log x - x + C$$
.

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u + C$$

Evaluate $\int \arctan x \, dx$ using integration by parts.

CHECK OUR WORK

Let's check that
$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \log |1 + x^2| + C$$
.

Setting dv = 1 dx is a very specific technique. You'll probably only see it in situations integrating logarithms and inverse trigonometric functions.

$$\int \log x \, dx, \quad \int \arcsin x \, dx, \quad \int \arccos x \, dx, \quad \int \arctan x \, dx, \quad \text{etc.}$$

Evaluate $\int e^x \cos x \, dx$ using integration by parts.

Evaluate $\int e^x \cos x \, dx$ using integration by parts.

Let $u = e^x$ and $dv = \cos x \, dx$. Then $du = e^x \, dx$ and $v = \sin x$:

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

Let $u = e^x$ and $dv = \sin x \, dx$. Then $du = e^x \, dx$ and $v = -\cos x$:

$$= e^x \sin x - \left[-e^x \cos x - \int -e^x \cos x \, dx \right]$$

$$= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$\int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x + C$$

$$\int e^x \cos x \, dx = \frac{1}{2} \left(e^x \sin x + e^x \cos x \right) + C$$

INTEGRATING AROUND IN A CIRCLE

We can use this technique to antidifferentiate products of two functions that almost, but don't quite, stay the same under (anti)differentiation.

Use integration by parts a number of times, ending up with an expression involving (a scalar multiple of) the original integral.

To do this, be consistent with your choice of u and dv.

Evaluate $\int e^x \cos x \, dx$ using integration by parts.

Let $u = e^x$ and $dv = \cos x \, dx$. Then $du = e^x \, dx$ and $v = \sin x$:

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

Let $u = e^x$ and $dv = \sin x \, dx$. Then $du = e^x \, dx$ and $v = -\cos x$:

$$= e^x \sin x - \left[-e^x \cos x - \int -e^x \cos x \, dx \right]$$

$$= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$\int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x + C$$

$$\int e^x \cos x \, dx = \frac{1}{2} \left(e^x \sin x + e^x \cos x \right) + C$$

Evaluate $\int \cos(\log x) \, dx$.

CHECK OUR WORK

We check that $\int \cos(\log x) dx = \frac{x}{2} [\cos(\log x) + \sin(\log x)] + C$ by differentiating.

Evaluate $\int e^{2x} \sin x \, dx$ using integration by parts.

CHECK OUR WORK

We can check our work by differentiating $\frac{1}{5}e^{2x}[2\sin x - \cos x] + C$. We should end up with $e^{2x}\sin x$.

Included Work

Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 23