

SÉRIES NUMÉRIQUES (SÉANCE N°4)

SÉANCE À DISTANCE (POUR LES ABSENTS), TD1

Ce qui est abordé pendant la séance

♦ Nature de séries à termes positifs (les outils à votre disposition : séries géométriques, télescopiques, divergence grossière, critère de majoration/minoration, critère sur les équivalents, critères de Riemann et règle de d'Alembert).

1 On démarre les exercices du TD

- 1. Faire l'exercice 1 (environ 50 minutes).
 - ♦ Jouez le jeu de chercher l'exercice sans aller regarder la correction.
 - ♦ Vous trouverez ici des indications si vous êtes bloqués. [Indications]
 - ♦ Vous trouverez ici les réponses pour vérifier que vous avez le bon résultat. [Réponses]
 - ♦ Vérifiez votre travail à l'aide de la correction. [Correction]
- 2. Faire la question 1 de l'exercice 2 (environ 40 minutes).
 - $\diamond\,$ Jouez le jeu de chercher l'exercice sans aller regarder la correction.
 - ♦ Vous trouverez ici des indications si vous êtes bloqués. [Indications]
 - ♦ Vérifiez votre travail à l'aide de la correction. [Correction]

2 Pour la prochaine fois

Finir l'exercice 2.

Indications pour l'exercice de TD $n^{\circ}1$

[Retour au travail à faire]

Réponses aux questions de l'exercice de TD $n^\circ \mathbf{1}$

[Retour au travail à faire]

- 1. La série diverge.
- 2. La série diverge.
- 3. La série converge.
- 4. La série diverge.
- 5. La série converge.
- 6. La série converge.
- 7. La série converge.

Correction de l'exercice de TD $n^\circ 1$

[Retour au travail à faire]

- 1. (a) Ici il ne faut pas utiliser le fait que la série est télescopique car on ne connait pas la nature de la suite $(\ln(w_n))$. On va justement se servir dans la question qui suit du fait que la série est télescopique pour en déduire la nature de la suite $(\ln(w_n))$.
 - Ici, on va donc exprimer $\ln w_{n+1} \ln w_n$ en fonction de n à l'aide de la relation de récurrence fournie, puis on effectuera un développement asymptotique de l'expression à un terme pour avoir un équivalent (ou alors on utilisera les grands O pour éviter d'avoir à pousser le DL trop loin, plus précisément montrer que $w_n = O\left(\frac{1}{n}\right)$)
 - $w_n = O\left(\frac{1}{n^2}\right)$). Après avoir réinjecté la relation de récurrence vérifiée par u_n , utiliser les propriétés du logarithme puis factoriser à l'intérieur de chaque logarithme par le terme prépondérant. Enchainer avec un DL.
 - (b) Déduire la nature de la série de terme général $\ln w_{n+1} \ln w_n$ la nature de la suite $(\ln(w_n))$ et enchaîner pour obtenir le résultat (on rappelle qu'on a le droit de composer des limites mais pas des équivalents).
 - (c) Critères sur les équivalents pour les séries à termes positifs + séries de Riemann.

1. (a) Soit $n \in \mathbb{N}$,

$$\ln w_{n+1} - \ln w_n = \ln \left(\frac{w_{n+1}}{w_n} \right) = \ln \left(\frac{(n+1)^{b-a} u_{n+1}}{n^{b-a} u_n} \right) = \ln \left(\frac{(n+1)^{b-a} (n+a)}{n^{b-a} (n+b)} \right)$$

$$= \ln \left(\left(\frac{n+1}{n} \right)^{b-a} \frac{n+a}{n+b} \right) = (b-a) \ln \left(1 + \frac{1}{n} \right) + \ln(n+a) - \ln(n+b)$$

$$= (b-a) \ln \left(1 + \frac{1}{n} \right) + \ln(n) + \ln \left(1 + \frac{a}{n} \right) - \ln(n) - \ln \left(1 + \frac{b}{n} \right)$$

$$= b-a + \frac{a}{n} - \frac{b}{n} + O\left(\frac{1}{n^2} \right) = O\left(\frac{1}{n^2} \right)$$

Or, $\sum \frac{1}{n^2}$ converge absolument, donc $\sum \ln w_{n+1} - \ln w_n$ converge (absolument)

(b) $\sum \ln w_{n+1} - \ln w_n$ est une série télescopique qui est donc de même nature que la suite $(\ln(w_n))$. On en $\overline{\mathrm{d\acute{e}d}}$ uit donc, d'après la question précédente, que la suite $(\ln(w_n))$ converge. Il existe donc $\ell \in \mathbb{R}$ tel que $\ln(w_n) \xrightarrow[n \to +\infty]{} \ell$. Par continuité de la fonction exponentielle, on en déduit que $w_n \xrightarrow[n \to +\infty]{} e^{\ell} = L$. Puisque $L > 0, L \neq 0$ et donc $w_n = n^{b-a} u_n \underset{n \to +\infty}{\sim} L$.

Ainsi, $\left| u_n \underset{n \to +\infty}{\sim} \frac{L}{n^{b-a}} \right|$

(c) $u_n \underset{n \to +\infty}{\sim} \frac{L}{n^{b-a}}$ et $\sum \frac{L}{n^{b-a}}$ est une série à termes positifs donc par critère de comparaison pour les séries à termes positifs, $\sum u_n$ et $\sum \frac{L}{n^{b-a}}$ sont de même nature. Or, $\sum \frac{1}{n^{b-a}}$ est une série de Riemann, donc $\sum \frac{L}{n^{b-a}} \text{ converge si et seulement si } b-a>1.$ Finalement, $\boxed{\sum u_n \text{ converge si et seulement si } b-a>1}$