Modular forms modulo 2

Paul Dubois

February 9, 2020

Abstract

We are interested in Modular forms modulo 2, and computing thing about it. [temporary abstract]

Key words that should appear: Modular forms; Mod 2; Duality of definitions; Governing fields; Frobenian map?; Exact computations;

Contents

L	\mathbf{Mo}	Modular forms					
	1.1	1 Modular forms of level 1					
	1.2	.2 Typical Modular Forms					
		1.2.1 Eisenstein series G_k					
		$1.2.2$ Δ					
	1.3	Cusp Forms					
	1.4	Dimensions of Spaces of Modular Forms					
	1.5	Fourier Expansion					
		1.5.1 Definition					
		1.5.2 Typical Modular Forms Fourier Expansion					
	1.6						
	1.7	Hecke Operators					

1 Modular forms

1.1 Modular forms of level 1

We will denote by \mathbb{H} the upper half plane.

We say that a complex function f on the upper half plane is weakly modular of weight 2k if f is meromorphic on \mathbb{H} and

$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right) \qquad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

A property of $SL_2(\mathbb{Z})$ is that when we define

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

then $SL_2(\mathbb{Z})$ is generated by S and T (?, p.1-2).

From that property, we can derive an alternative definition of weakly modular functions: f is weakly modular of weight 2k if f is meromorphic on \mathbb{H} and f(z+1)=f(z) and $f(-1/z)=z^kf(z)$ for all $z\in\mathbb{Z}$.

Moreover, we also define a function $f: \mathbb{H} \to \mathbb{C}$ to be modular of weight 2k if f is holomorphic on \mathbb{H} and f is weakly modular.

Lastly, we say that a function $f: \mathbb{H} \to \mathbb{C}$ is a modular form of weight 2k if f is holomorphic at ∞ and f is modular.

It is easy to check, from definition, that we can add modular forms together, as well as multiply them by a complex:

- $f_1(z) + f_2(z)$ is modular of weight 2k if $f_1(z)$ and $f_2(z)$ are modular of weight 2k.
- $\lambda f(z)$ is modular of weight 2k if f(z) is.

Therefore, modular forms of weight 2k over \mathbb{C} form a space. We denote it M_k .

It is also possible to multiply modular forms, in which case the weights adds on: If $f_1(z)$ & $f_2(z)$ are modular of respective weights $2k_1$ & $2k_2$, then $f_1(z)f_2(z)$ is modular of weight $2k_1 + 2k_2$

We deduce that we can take powers of modular forms, and the weight is then multiplied by the power: If f(z) is modular of weight 2k, then $f^n(z)$ is modular of weight 2k * n (with $n \in \mathbb{N}$).

1.2 Typical Modular Forms

1.2.1 Eisenstein series G_k

The most famous class of modular forms is probably the Eisenstein series, usually denoted G_k . We define them as follows(?, Examples of Modular Forms of Level 1):

$$G_k(z) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(mz+n)^{2k}}$$

for k > 2.

It is easy to check that G_k are modular of weight 2k(?, Proposition 2.1), as:

$$G_k(z+1) = G_k(z)$$

(using $(m, n+m) \to (m, n)$, an invertible map)

$$G_k(-1/z) = z^k G_k(z)$$

(using $(m, -n) \to (m, n)$, an invertible map).

It is pleasant to remark that (?, Proposition 2.2)

$$G_k(\infty) = \sum_{n \in \mathbb{Z}^*} \frac{1}{n^{2k}} = 2\zeta(2k)$$

. Where $\zeta(k)$ is Riemann Zeta function. The values of this function are well known on positive even numbers, and we deduce (?, p.194):

$$G_k(\infty) = 2\zeta(2k) = \frac{(2\pi)^{2k}}{(2k)!}B_k$$

with $B_k = (-1)^{k+1}b_{2k}$ where b_k are Bernoulli's numbers.

1.2.2 Δ

We will be interested in one main modular form in the rest of this article: Δ . We define Δ in terms of G_k as follows(?, p.84):

$$\Delta = g_2^3 - 27g_3^2 \in M_6^0$$
 with $g_2 = 40G_2$ and $g_3 = 140G_3$

As g_2^3 is modular of weight 4*3=12 and g_3^2 of weight 6*2=12, Δ is modular of weight 12.

Now, using
$$G_2(\infty) = 2\zeta(4) = \frac{\pi^4}{45}$$
 and $G_3(\infty) = 2\zeta(6) = \frac{2\pi^4}{945}$, we get $\Delta(\infty) = \left(\frac{4\pi^4}{3}\right)^3 - \left(\frac{8\pi^4}{27}\right)^2 = 0$.

1.3 Cusp Forms

A function $f: \mathbb{H} \to \mathbb{C}$ that is a modular form may in addition be a cusp form, if $f(\infty) = 0$. We will denote the space of modular cusp forms of weight 2k over \mathbb{C} by M_k^0 .

It is useful to note $G_k(\infty) = \sum_{n \in \mathbb{N}^*} \frac{2}{n^{2k}} > 2$ and in particular, $G_k(\infty) \neq 0$, so G_k are not cusp forms for any k. As we have shown it before, $\Delta(\infty) = 0$, so Δ is a modular cusp form of weight 12, so $\Delta \in M_6^0$. Using tools from complex analysis, we can prove that Δ has only one zero (at infinity), which has order one(?, p.88).

We have the following relation:

Theorem 1. $M_k \cong M_k^0 \oplus \mathbb{C}.G_k \quad \forall k \geq 2.$ (?, p.88)

Proof. We let $\Phi: M_k \to \mathbb{C}$ such that if $f \in M_k$, $\Phi(f) = f(\infty)$.

Now, we have $\operatorname{Ker}(\Phi) = M_k^0$, therefore, by the 1st Isomorphism Theorem, $M_k/M_k^0 \cong \operatorname{Im}(\Phi) \subseteq \mathbb{C}$.

Note that $G_k \in M_k$, and $G_k(\infty) = \sum_{n \in \mathbb{Z}^*} \frac{1}{n^{2k}} \neq 0$, so $G_k \notin M_k^0$. As $G_k \neq 0$, $\dim(M_k/M_k^0) \geq 1$ and $\operatorname{Im}(\Phi) = \mathbb{C}$. Thus, $G_k \in M_k$ M_k^0

Finally, we have $M_k \cong M_k^0 \oplus \mathbb{C}.G_k$ if $k \geq 2$. (The above argument fails for k < 2 as G_k is not well defined any more.)

Therefore, the dimensions of M_k and M_k^0 are closely linked.

1.4 Dimensions of Spaces of Modular Forms

The fact that multiplying two modular forms gives a function that remains modular yields that we may map a set of modular forms to an other.

Theorem 2. $M_{k-6} \cong M_k^0$. (?, p.88)

Proof. We let $\Phi: M_{k-6} \to M_k^0$ such that if $f \in M_k$, $\Phi(f)(z) = \Delta(z)f(z)$.

This is well defined as if f has weight 2(k-6), Δf has weight 2k since Δ has weight 12. As Δ is a cusp from, Δf will also be a cusp form.

From definition, Φ is clearly homomorphic.

Now, if $g \in M_k^0$, we may define $\Psi: M_k^0 \to M_{k-6}$ such that $\Psi(g)(z) = g(z)/\Delta(z)$

This is well defined as if g has weight 2k, Δf has weight 2k since Δ has weight 12. As Δ is a cusp from, Δf will also be a cusp form.

This is well defined as Δ has only one zero, at infinity, where g also has a zero (as g is a cusp form). The weights agree again as well.

It is then easy to remark that $\Psi = \Phi^{-1}$. So Φ is bijective, and thus isomorphic.

Finally, we have
$$M_{k-6} \cong M_k^0$$
.

This theorem, combined with the previous one is very powerful: it shows that there must be a pattern (of 6) in the sequence of dimensions $\dim(M_k)$ and $\dim(M_k^0)$ for $k \geq 2$. We have $M_k \cong M_k^0 \oplus \mathbb{C}.G_k \cong M_{k-6} \oplus \mathbb{C}.G_k$, so $\dim(M_k) = \dim(M_{k-6}) + 1$ when $k \geq 2$. Thus, if we compute the dimensions of M_0 , M_1 , M_2 , M_3 , M_4 , M_5 , we can extrapolate dimensions of M_k and M_k^0 for all k.

Using complex analysis techniques again, we have:

- $\dim(M_k) = 0$ k < 0
- $\dim(M_1) = 0$
- $\dim(M_0) = \dim(M_2) = \dim(M_3) = \dim(M_4) = \dim(M_5) = 1$

In the case k = 0, $\dim(M_0) = 1$. As f(z) = 1 is clearly a modular from of weight 0, $\{1\}$ is a basis for M_0 . We deduce $\dim(M_k^0) = 0$ as 1 is clearly not a cusp form. In the case k = 1, $\dim(M_1) = 0$, which makes $\dim(M_1^0) = 0$ automatically. (Cases k < 0 are similar to k = 1.)

Other cases may be derived directly from the relations (using induction to get general formulas), and we obtain:

S	Space	k < 0	$k \ge 0, \ k \equiv 1 \mod 6$	$k \ge 0, \ k \not\equiv 1 \mod 6$
dir	$m(M_k)$	0	$\lfloor k/6 \rfloor$	$\lfloor k/6 \rfloor + 1$
dir	$\operatorname{m}(M_k^0)$	0	$\max\{0, \lfloor k/6 \rfloor - 1\}$	$\lfloor k/6 \rfloor$

Note that the max is taken only to avoid negative dimensions.

1.5 Fourier Expansion

1.5.1 Definition

To study such function, we use Fourier Expansion. In the case of f being a modular form of weight 2k, a Fourier Expansion is a representation of f as a power series of $e^{2\pi inz}$ i.e.

$$f(z) = \sum_{n \in \mathbb{Z}} a_n(f) e^{2\pi i n z}.$$

We usually denote $q = e^{2\pi iz}$ so that $q^n = e^{2\pi inz}$ and the Fourier expansion of f become

$$f(q) = \sum_{n \in \mathbb{Z}} a_n(f) q^n.$$

When in this form, we may as well call it the q expansion.

1.5.2 Typical Modular Forms Fourier Expansion

Fourier Expansions of G_k The modular forms G_k have the following q expansion(?, p.92):

$$G_k(q) = 2\zeta(2k) + 2\frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n$$

with $\sigma_s(n) = \sum_{d|n} d^s$, for $k \geq 4$.

Fourier Expansion of Δ We also have(?, p.95):

$$\Delta(q) = (2\pi)^{12} q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

1.6 A Basis for Modular Forms

The set of modular forms that are weight 2k in fact form a vector space (we can add modular forms together, and multiply them with a constant) over the complex numbers. One may ask then a basis for this vector space.

We would like to find a basis for each set M_k . It turns out that the modular forms G_2 and G_3 introduced before in fact generate a basis for all M_k . It is not obvious and may in fact seems wrong at a first stage: G_2 and G_3 are modular forms of weight 4 and 6, whereas M_k in general have modular forms of weight 2k. However, by taking combinations of G_2 and G_3 , we may obtain modular forms of any weight 2k. It is important to remember that when multiplied, the weight of modular forms add up.

Theorem 3. The set $S = \{G_2^a G_3^b | a, b \in \mathbb{N}, 2a + 3b = k\}^1$ is a basis for M_k . (? , Theorem 2.17)

Proof. Of course, the cases when $\dim(M_k) = 0$ (for k < 0 and k = 1) are trivial, as the basis is empty, and 2a + 3b = k has no solution for $a, b \in \mathbb{N}$.

To show S is a basis, we need it to span M_k and to be linearly independent.

We start with spanning, and we proceed by induction on k, with step 6.

As $\dim(M_k) = 1$ for k = 0, 2, 3, 4, 5, 7, and the equation 2a + 3b = k has exactly one solution for $a, b \in \mathbb{N}$ (namely (a, b) = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (2, 1)), S has only one element, which must be the basis.

Now, for k > 7, take some $a, b \in \mathbb{N}$ such that 2a + 3b = k. Let $f \in M_k$, and $g = G_2^a G_3^b \in M_k$. $g(\infty) \neq 0$ as none of G_2 or G_3 is a cusp form. So there must be a complex λ such that $f - \lambda g$ is a cusp form. Then $f - \lambda g \in M_k \cong M_{k-6}^0$ and we can find a $h \in M_{k-6}^*$ such that $h \cdot \Delta = f - \lambda g$.

By induction, h must be a polynomial of G_2 and G_3 ; by definition, Δ is one as well (note that yet, we don't put any restriction on powers of G_2 and G_3 , other then being positive integers). Therefore, $f = \Delta . h + \lambda g$ is a polynomial of G_2 and G_3 . From the fact that $f \in M_k$ (i.e. f has weight 2k), terms of f as a polynomial of G_2 and G_3 have the from $G_2^a G_3^b$ with 2a + 3b = k.

We now want to show linear independence, we proceed by contradiction.

Suppose there is a non-trivial linear relation of terms $G_2^aG_3^b$. We can multiply it by suitable G_2 and G_3 so that all terms have the form $2a + 3b = k \equiv 0 \mod 12$. Then, we can divide all terms by G_3^2 , witch gives us that there is a polynomial for which G_2^3/G_3^2 is a root. In particular, this polynomial is constant when G_2^3/G_3^2 is plugged. This contradicts the fact that q expansion of G_2^3/G_3^2 is not constant. \square

This set of makes to be a basis, and one may even find it pleasant: given the two modular forms G_2 and G_3 , this set generates all the modular forms of weight 2k that we could think of, if we only knew these two modular forms.

1.7 Hecke Operators

We define the Hecke operators for a modular form f as follows(?, p.100):

$$T(n)f(z) = n^{2k-1} \sum_{\substack{a \ge 1, ad = n, 0 \le b \le d}} d^{-2k} f\left(\frac{az+b}{d}\right)$$

with $n \in \mathbb{N}$.

We can check that T(n)f is modular if f is (as the sum of modular forms).

¹The set of naturals \mathbb{N} is taken to start from 0.

We may as well write T(n)f as a Fourier Expansion of $q=e^{2\pi iz}$ as follows(? , p.100):

$$T(n)f(z) = \sum_{m \in \mathbb{Z}} \gamma(m)q^m$$
 with $\gamma(z) = \sum_{a|(n,m), a \ge 1} a^{2k-1}c\left(\frac{mn}{a^2}\right)$

For modular forms
$$f$$
 s.t. $f(z) = \sum_{n \in \mathbb{Z}} \alpha(n) q^n$

References