3- Le travail : mode de transfert d'énergie.

3-1. Travail et énergie cinétique.

I- Introduction :

ACTIVITE I: CHUTE SUR PLAN INCLINE

ACTIVITE II: DEGAT DE COLLISION

Nous avons montré en TP qu'il existe une relation entre le travail du poids et la vitesse du mobile. Le travail du poids pour un déplacement entre les points A et B vaut :

$$W(\vec{P}) = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

ou v_A et v_B sont les vitesses instantanées du point d'application de la force aux points A et B. Nous constatons donc, qu'au travail du poids, correspond la différence entre deux termes de la forme $\frac{1}{2}$ m v^2 .

Ainsi la quantité $\frac{1}{2}mv^2$ s'exprimant en joule, comme le travail, est homogène à une énergie. **Définition**: On dit qu'un corps possède de l'énergie s'il peut effectuer une action sur lui-même ou sur d'autres corps .

II- Énergie cinétique d'un solide :

1) Définition:

L'énergie cinétique est l'énergie que possède un solide du fait de son mouvement. Elle dépend de la vitesse et de la masse du solide.

2) Énergie cinétique d'un solide en translation :

L'énergie cinétique E_c d'un solide en mouvement de translation est égale au demi-produit de la masse m du solide par le carré de la vitesse v_G du centre d'inertie G du solide.

On écrit :
$$E_C = \frac{1}{2}mv_G^2$$

Unités: E_c en joule J, m en kilogramme kg, et v en mètre / seconde $m.s^{-1}$

Remarque : La masse du solide est la somme des masses m_i (m_i représente la masse de la ième particule M_i constituant le solide) : $m = m_1 + m_2 + m_3 + m_4 + \dots$

En multipliant terme à terme par
$$\frac{1}{2}v_G^2$$
 on trouve: $\frac{1}{2}mv_G^2 = \frac{1}{2}m_1v_G^2 + \frac{1}{2}m_2v_G^2 + \frac{1}{2}m_3v_G^2 + \dots$

Or pour un solide animé d'un mouvement de translation, tous les points du solide ont à chaque instant la même vitesse que le centre d'inertie $G: V_G = V_1 = V_2 = V_3 = \dots$ on conclue que : $\frac{1}{2}mv_G^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2 + \dots$

L'énergie cinétique E_c d'un solide en mouvement est donc la somme des énergies cinétique des points qui le constituent.

3)- Énergie cinétique d'un solide en rotation :

3.1. Moment d'inertie d'un solide par rapport à l'axe de rotation :

Lorsqu'un corps effectue une rotation à vitesse angulaire ω autour d'un axe, le corps est en mouvement et possède une énergie cinétique. Puisque l'ensemble du corps se meut avec une vitesse angulaire commune ω , on peut définir une énergie cinétique à partir de cette vitesse angulaire.

Energie cinétique du solide = $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2 + \dots$

La vitesse linéaire de translation (circulaire) de chacune des points M_i est proportionnelle à la vitesse angulaire de rotation du système puisque $v = r \omega$.

En remplaçant les vitesses linéaires v_1 , v_2 par $r_1\omega$, $r_2\omega$ dans l'équation précédente (r_i représente le rayon de la trajectoire circulaire que la ième particule décrit lorsque le solide est en rotation). on obtient:

Energie cinétique
$$=\frac{1}{2}m_1(r_1\omega)^2 + \frac{1}{2}m_2(r_2\omega)^2 + \frac{1}{2}m_3(r_3\omega)^2 + \dots$$

Energie cinétique =
$$\frac{1}{2}$$
 ($m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots$) ω^2

L'expression $m_1r_1^2 + m_2r_2^2 + m_3r_3^2 + \dots$ est appelé moment d'inertie noté J_{Δ} , c'est une grandeur géométrique qui met en évidence l'importance qu'a la distribution de la masse autour de l'axe de rotation.

L'unité du moment d'inertie J_{Δ} est kilogramme mètre carré (kg.m²)

3.2. Définition de l'énergie cinétique de rotation :

L'énergie cinétique $\mathbf{E}_{\mathcal{C}}$ d'un solide en mouvement de rotation est égale au demi-produit du moment d'inertie \mathbf{J}_{Δ} du solide par le carré de la vitesse angulaire $\boldsymbol{\omega}$ du solide.

On écrit :
$$E_C = \frac{1}{2} J_{\Delta} \omega^2$$

Unités: E_c en joule J, J_Δ en kilogramme mètre carré kg.m², et ω en radian/seconde rad.s¹¹

III- Théorème de l'énergie cinétique.

On a vu que le travail des forces extérieures peut faire varier la vitesse d'un solide donc son énergie cinétique . On dit que le travail mécanique est un mode de transfert de l'énergie.

ACTIVITE III: TP (EXPLOITATION DU PLAN INCLINE ACTIVITE I)

1)- Énoncé du théorème de l'énergie cinétique dans le cas d'une translation :

Dans un référentiel galiléen, la variation de l'énergie cinétique d'un solide en mouvement de translation entre deux instants \mathbf{t}_I et \mathbf{t}_F est égale à la somme des travaux des forces extérieures qui lui sont appliquées entre ces deux instants. On écrit :

$$\Delta E_C = E_C(t_F) - E_C(t_F) = \sum W(\vec{F}_{ext})$$

2)- Énoncé du théorème de l'énergie cinétique dans le cas d'une rotation :

Dans un référentiel galiléen, la variation de l'énergie cinétique d'un solide en mouvement de rotation entre deux instants \mathbf{t}_I et \mathbf{t}_F est égale à la somme des travaux des forces extérieures et des couples qui lui sont appliquées entre ces deux instants. On écrit :

$$\Delta E_C = E_C(t_F) - E_C(t_F) = \sum W(\vec{F}_{ext}) + \sum W(C)$$