SiPM readout electronics

Detector

- there are 3 boxes
- each box have 2 layers scintillator, they are located in x,y direction.
- each layer have 10 modules, each module have 4 scintillator bars
- each scintillator bar have 1 SiPMs
- we have 3 * 2 * 10 * 4 = 240 Scintillator and SiPMs in total

Basic connection

- each layer connect to one FEE and FPGA board
- each FEE and FPGA board have 64 channels, but we only use 40 channels
- each box have 2 FEE and FPGA board
- The FEE and FPGA board get CLK from DAQ and use LVDS send data to DAQ
- One DAQ get 3 boxes data and send to PC
- we can set the coincidence mode and coincidence window in DAQ by configure the switch on the board

SiPM board

- each SiPM board have 4 SiPMs
- each SiPM have 2 signal output, one is positive, one is negative
- SiPM board get HV from connector

Connector board

- each connector board connect to 10 SiPM board
- connector get the cathode signal from SiPM board and send to FEE board
- connector get the anode signal from SiPM board but send it to GND
- connector get the HV from FEE board and send it to SiPM board

FEE (front end Electronics)

- each FEE board have 64 channels, we use 40 channels
- FEE get the cathode signal from connector board, get the HV from DC Voltage source.
- FEE get discharge signal from FPGA board and send the pulse to FPGA board

FPGA board

- each FPGA board have 64 channels, we use 40 channels
- FPGA get the pulse from FEE board and use inner LVDS comparator compare the pulse with threshold, and get the digital signal
- we can adjust the threshold by change the register of DC/DC circuit in FPGA board. usually we set the threshold to 0.2V
- FPGA get the CLK from DAQ board and send the data to DAQ board
- all parameters and feature can be find at "discharge_time_digitalize.v" file

DAQ (Data Acquisition)

- each DAQ board can get data from 16 FPGA board but now we only use 6 FPGA board
- DAQ board get the data from FPGA board, send CLK to FPGA board, compress data and send to PC by UART

 we can set the coincidence mode and coincidence window in DAQ by configure the switch on the board

