${\bf Suites, La\ Pratique}_{\bf Corrig\'e}$

DARVOUX Théo

Novembre 2023

Exercices.	
Avant de parler de convergence	. 2
Exercice 13.1	. 2
Exercice 13.2	. 2

Exercice 13.1 $[\blacklozenge \Diamond \Diamond]$

Une suite croissante est une fonction croissante sur \mathbb{N} .

Démontrer que le titre de l'exercice dit vraie, c'est à dire, pour une suite réelle $(u_n)_{n\in\mathbb{N}}$ l'équivalence entre

1. $\forall n \in \mathbb{N} \ u_{n+1} \ge u_n$.

2. $\forall (n,p) \in \mathbb{N}^2 \ n \leq p \Longrightarrow u_n \leq u_p$.

Supposons 2, montrons 1.

Soit $n \in \mathbb{N}$

On a $n \leq n+1$. D'après 2, $u_n \leq u_{n+1}$. ez

Supposons 1, montrons 2.

Soit $(n,p) \in \mathbb{N}^2$ tels que $n \leq p$. On sait que $u_{n+1} \geq u_n$, $u_{n+2} \geq u_{n+1}$, $u_{n+3} \geq u_{n+2}$, etc...

Par récurrence triviale et par transitivité, pour tout entier $q \geq n$, $u_q \geq u_n$.

En particulier, $u_p \ge u_n$

Soit a un réel supérieur à 1 et $(u_n)_{n\geq 0}$ la suite définie par $\forall n\in\mathbb{N}\ u_n=\frac{a^n}{n!}$.

Démontrer que l'ensemble des termes de la suite possède un maximum, qu'on exprimera en fonction de a. (u_n) est strictement positive sur \mathbb{N} .

Soit $n \in \mathbb{N}$.

On peut donc écrire : $\frac{u_{n+1}}{u_n} = \frac{a}{n+1}$. Ainsi, (u_n) est croissante $(a \ge n+1)$ puis décroissante $(a \le n+1)$, ce qui implique qu'un maximum existe.