

1

Abstract

2

3 A system for communication on a chip. The system includes an on-chip
4 communication bus including plural tracks, and a plurality of stations that couple a plurality of
5 on-chip components to the on-chip communication bus, whereby the plurality of on-chip
6 components use the tracks to communicate. Each station preferably includes an initiator that
7 requests permission to transmit outgoing data over a track to another station and that transmits
8 the outgoing data, an arbiter that evaluates requests from other stations and selects a track on
9 which to receive incoming data, and a target that receives the incoming data. The initiator can be
10 connected to a grant multiplexor for selecting a grant line, with the grant multiplexor further
11 including plural smaller multiplexors distributed across the chip. Likewise, the arbiter can be
12 connected to a track multiplexor for selecting a track, with the track multiplexor further including
13 plural smaller multiplexors distributed across the chip. Each station also can include a source
14 queue for queuing outgoing data and a destination queue for queuing incoming data. Preferably,
15 the queues are first-in-first-out registers. The source queue and the destination queue can serve
16 to separate a first clock domain for the on-chip communication bus from a second clock domain
17 for one of the plurality of on-chip components. More than one of the plurality of on-chip
18 components can be coupled to the on-chip communication bus through one of the stations.