

Velocity triangl	We have Uz = rzw = 0,3.10,47 = 3,14 m/s	
400	Flow rate is the same at inlet and outlet	
	=> Q = 2 Tr 2 b Vr, 2 = 2 Tr 2 b W2 sin 400	
	$=) W_{z} = \frac{Q}{Q} = \frac{1}{2}$	
Vr.2V	277 2 277 2 b sin 40° 271 0.3. 0, 2 sin 40°	
	$V_{0,2} = 4.12 \text{ m/s}$	
11 11 11 11		
Vo,2 = U2	$+ W_2 \cos 40^\circ = 3.14 + 4.12 \cdot \cos 40^\circ \approx -0.016 \text{m/s}$	
=) Tshaft =	PQ(r2 Vo,2 - r2 Vo,2) = 1000. 1. (0,30.016 - 0.6.7.37)	
=) Tshoft =	- 4426 Nm	
=) Power =	torque · rotation speed = - 4626 · 10.47 = - 46.34 kN (answer)	