

Natural Language Understanding with Python and Neo4j

Dan Kondratyuk

July 2017

Summary

- About me
- Research Question
- Experiences with Neo4j
- Natural Language Implementation

About Me

About me

- Researcher & Developer
- Recently graduated with a Bachelor's in Computer Science
 - Boise State University
- Member of Speech, Language, and Interactive Machines (SLIM)
 - Interaction ∩ Computation

About me

- Full Stack Developer
- Hello Augi
 - A personal assistant that remembers when you forget
 - helloaugi.com

Hello, my name is Augi! I am here to help you organize and remember things about your daily life. Click the button below to get started.

Research Question

Intelligent Personal Assistants

Intelligent Personal Assistants of today are rapidly transforming how humans interact with machines.

Memory Problems

Personal assistants behave like amnesiacs

- Their memory is inflexible, or nonexistent
- Interactivity is limited to predefined knowledge and known tasks

A Graph-Based Approach

How could interaction be stored in memory? How can that information be leveraged for further use?

Real world information is highly relational

Goals

- Dynamic
- Interpretable

Experiences with Neo4j

- Persistent storage that represents the problem domain
 - Excellent for ad-hoc relationships
 - Very flexible
- Intuitive syntax

- Efficient querying capabilities
- Future
 - Real-time synchronization
 - Event triggers
 - Prefetch

Natural Language Implementation

Use Case: Natural Language Database

1. Statement → update knowledge

"John's email is john@ex.com"

type: statement name: John email: john@ex.com

person

john@ex.com

john@ex.com

Use Case: Natural Language Database

Use Case: Natural Language Database

Corpus: Facebook bAbl Tasks QA (1-20)

Steps

- 1. Tokenize and POS tag to produce (subject, relation, object) triple
- 2. Merge statement triples into a single graph
- 3. Answer each question using the graph, compute accuracy

Task 1

- 1 John travelled to the hallway.
- 2 Mary journeyed to the bathroom.
- 3 Where is John? hallway 1
- 4 Daniel went back to the bathroom.
- 5 John moved to the bedroom.
- 6 Where is Mary? bathroom 2

Results

- 100% accuracy for finding where a person is (simple data, no surprise)
- Allows for more complicated questions
 - What rooms has a person been in?
 - How many times has a person changed rooms?
 - How many times has a room been visited?

Future: use entity extraction to fill a frame, then merge with the database

NLU + Neo4j = Promising

Extra Slides

Approach: bAbl Tasks

- A graph of syntax over a sequence of statements
- Semantics are derived from traversals over the graph

Dialogue Systems

Further Reading

- Siri shortcomings. https://www.reddit.com/r/SiriFail/
- Why Graph Databases? https://neo4j.com/why-graph-databases/
- Robinson, Ian, Jim Webber, and Emil Eifrem. Graph databases: new opportunities for connected data. O'Reilly Media, Inc., 2015.
- Lison, Pierre. Structured probabilistic modelling for dialogue management. Diss. University of Oslo, 2013. Chapter 2.
- Quepy natural language database http://quepy.machinalis.com/