EDA 课前简介

北京邮电大学集成电路学院赵康

Email: zhaokang@bupt.edu.cn

参考教材

- ◆ 1.《集成电路设计自动化》, 蔡懿慈 周强 陈松, 科学出版社
- ◆ 2.《数字系统设计自动化》,边计年 薛宏熙 苏明 吴为民,清华 大学出版社
- ◆ 3. 《超大规模集成电路布图理论与算法》,洪先龙严晓浪乔长阁,科学出版社
- ◆ 4.《超大规模集成电路设计导论》,蔡懿慈 周强, 清华大学出 版社
- ◆ 5. 《计算光刻与版图优化》, 韦亚一, 电子工业出版社
- ◆ 6.《三维芯片集成与封装技术》,刘汉诚 杨兵,机械工业出版社
- ◆ 7.《微电子器件及封装的建模与仿真》,刘勇,科学出版社

统计情况

编程习惯

- · 操作系统, Linux/Windows
- ・ 编程语言,C/C++/Python/其他

研究团队

- · 数字设计 (梁老师团队、路卫军老师等)
- ・ 模拟/射频 (吴永乐老师团队)
- ・ 工艺材料相关
- ・ 硅光/光通信/红外
- 封装

成绩: 百分制

	分制	比例
考勤/课堂表现	100	10%
平时理论课作业	100	25%
实验课作业(小)	100	25%
大作业(大)	100	40%

课时安排

周次	课程内容	课时	属性	备注
3	Ch1. EDA概述	3	理论	含课前介绍
4	Ch2. VHDL语言	3	理论	
5、7	Ch3. 高层次综合(含实验讲解)	6	理论	
8	Lab1.1 HLS实验课	3	实验	需带电脑上课
9、10	Ch4. 逻辑综合	6	理论	
11	Lab1.2 EDA全流程实验	3	实验	需带电脑上课
12	Ch5. 版图划分partitioning	3	理论	
13	Ch6. 布图floorplan	3	理论	
14	Ch7. 布局placement	3	理论	
15	Ch8. 布线routing	3	理论	
16	Lab2.1 课程大作业(实验)	3	实验	需带电脑上课
17-18	Lab2.2 课程大作业(汇报)	6	实验	汇报

平时作业

- · 每次理论课后, 1-2道题目, 通过云平台发布
- 简单问答题、开放性题目
- ・ 按时提交(有DDL)

平时作业

平时作业↩

作业一: (EDA 介绍) 5 分←

- 1. (开放题)请自行查阅数字 EDA、模拟 EDA 的若干个知名商业化工具,简述其名称以及主要用途。 ├-
- 2. (开放题)为什么数字 EDA 比模拟自动化程度高呢? ←

作业二: (VHDL 语言) 10 分←

- 1. VHDL 有哪 3 类对象?函数与过程有什么区别? VHDL 定义了哪 2 种延迟模型? ←
- 2. 对于本题中的(a)和(b)进行模拟,假定各信号的初值皆为 0, 信号 x 的波形已经给定, 请将模拟结果分别填入下面两个表。←
- (a) architecture RTL of ex is←

$$y \le x; \leftarrow$$
 $z \le y; \leftarrow$

end;←

公共服务器

实验环境 Lab1.1

Xilinx公司的HLS工具 免费下载使用

- ・ 我已下好的安装包(约75GB),含HLS、Vivado等
- ・ 直接在Xilinx网站下载安装 (建议21.2版本)
 - https://www.xilinx.com/support/download/index.html/content/ xilinx/en/downloadNav/vivado-design-tools/archive.html
- · 也可以自己在公网找老版本

★ Xilinx Unified 2021.2.1 : All OS installer Single-File Download (TAR/GZIP)

- 36.98 GB)

MD5 SUM Value: 343c90c015b8a179ec20b933e6e5d19a

尽量用配好的公共Linux服务器

Signature

Public Key

实验环境 Lab1.2

鹏城实验室的开源EDA工具 免费下载使用

- · 我已在公共的Linux平台上,下载、安装
- · 也可以自行下载,并在自己服务器上安装和运行
 - iEDA: https://gitee.com/oscc-project/iEDA
 - ABC: https://people.eecs.berkeley.edu/~alanmi/abc/
 - iMap: https://gitee.com/oscc-project/iMAP
 - Yosys: https://github.com/YosysHQ/yosys
 - · 我们给定一个Verilog CPU设计的代码,使用全开源EDA工具跑通全流程

尽量用配好的公共Linux服务器

实验环境 Lab2 (大作业)

以C++算法为主

- · Linux操作系统 (推荐用Linux)
- · 编程语言,推荐用C++ (或Python)

题目多选一

- 纯算法(给定输入、问题描述,实现算法设计)
- · 系统+算法(在已有的EDA开源平台上开发改进)

请自行准备Linux系统(虚拟机/实验室服务器)

提交内容

Lab1.1 (当堂实验课)

- · 需要一个小型实验报告
 - 运算的瓶颈在哪儿,怎么加速的
 - · 加速的效果/结果怎么样

Lab1.2 (当堂实验课)

- · 能够基于工具,完成基本的例子全流程EDA实验
- ・ 需要一个实验报告
 - · 每个子步骤的结果 (资源使用情况、版图截图等)
 - · 每个子步骤的含义

提交内容

Lab2 (大作业)

- · 代码打包提交
- · PPT汇报 (每队约15分钟)
- ・ 实验报告 (多选一)
 - 算法类: 采用的数据结构、关键算法描述、结果、分析
 - 系统类: 平台接口定义、算法改进方案、结果对比分析

分组实验

每2-3个人为一组

- ・ 当堂实验 (一起)
- ・ 课后大实验 (一起)
- PPT汇报 (队长汇报)

方向: EDA工具为主

红色:项目 蓝色: 在研 **FPGA HLS AIE** LLVM编译 布局布线 逻 辑 应用加速 综 设计空间探索 合 通信类 碳基EDA 3D EDA **ASIC**

EDA是什么? 软还是硬?

EDA是一种特殊软件

- · EDA是给硬件工程师用的软件
- · 其处理对象是硬件门电路描述
- · EDA属于"计算机"与"电子"交叉学科

EDA从顶到底流程很长

系统级设计

高层次综合

逻辑综合与仿真

布局布线算法

测试与形式验证

时序、功耗分析

物理验证与Sign-off

器件模型与参数提取

封装、材料与晶片制造

EDA主要研究什么?

EDA科研关注什么? 软件算法

- · 大规模电路高复杂算法 (图论算法)
- ・ 编译优化、冗余简化、最优算法 (C→Verilog->门)
- · 特殊结构解决计算高能效 (体系结构)

掌握什么技能?

■懂编程:数据结构、C++、算法 设计与分析

群聊: 2024数字EDA理论基础课

该二维码7天内(9月18日前)有效, 重新进入将更新

