Cardiac pathology prediction according to convolutional methods with kinematic features

Alejandra Moreno Tarazona & Fabio Martinez Carrillo

Motion Analysis and Computer Vision
Biomedical Imaging, Vision and Learning Laboratory
Universidad Industrial de Santander
Bucaramanga - Colombia
31 de Junio del 2019

Introduction

Motivation

- Cardiovascular diseases are leading causes of death around the world, more than 17,9 millions of deaths
- Lately the number of deaths have been incremented

State of the art

J. Margeta et al, "Fine-tuned convolutional neural networks for cardiac MRI acquisition plane recognition"

Two chamber (2CH)

(3CH)

Left ventricular Four chamber outflow tract (LVOT) (4CH)

- Predict chambers regarding acquisition views
- Limited to global cine-MRI modeling.

F. Isensee et al. "Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features"

- Depend on the segmentation task of ventricles
- Lost motion information into the analysis.

Proposed method

Kinematics

Fig 1. Cine-MRI Heart

Fig 3. Normal Aceleration

Fig 2. Optical Flow

Fig 4. Tangential Aceleration

Metodologia

Fig 5. Arquitecture of Conv3D

Evaluation and results

Dataset

The dataset used in this approach was the Cardiac cine-MRI, proposed in a MICCAI challenge called SunnyBrook

- 45 patients (32 males and 13 women)
- 4 pathologies (HF-I, HF-NI, HYP, N)
- 256 x 256

Results of Binary Classifier

Cardiac Disease	Accuracy	F1
HF- I vs HF	60.87	64.00
HF-I vs HYP	47.82	50.00
HF-I vs N	30.00	22.22
HF vs HYP	26.17	26.08
HF vs N	33.33	22.22
HYP vs N	71.43	72.73
AVERAGE	44.94	42.88

Table 1. Binary classification to AN Kinematic

Results of Multi-class Classifier

Cardiac Disease	Accuracy (%)	F1-Score (%)
PPM	34.09	33.78
NA	27.27	25.90
TA	31.82	30.76

Table 2. Multi-class classifier with kinematics.

Fig 6. Confusion matrix PPM, NA and TA.

https://github.com/AlejandraM97/VISION-CODE/tree/r	naster