# TFIP-AI — Advanced Machine Learning

Unit 2 Clustering (Gaussian Mixture)

# Iterative Schema + Gaussian -> EM

EM algorithm

#### Mixtures of Gaussians

- K-means algorithm
  - Assigned each example to exactly one cluster
  - What if clusters are overlapping?
    - · Hard to tell which cluster is right
    - Maybe we should try to remain uncertain
  - Used Euclidean distance
  - What if cluster has a non-circular shape?
- Gaussian mixture models
  - Clusters modeled as Gaussians
    - Not just by their mean
  - EM algorithm: assign data to cluster with some probability
  - Gives probability model of x! ("generative")



# Gaussian/Normal Distribution – univariate

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$



- Parameter: p(XY|C=1)
- p(XY|C = 1) = p(X|C = 1)p(Y|C = 1)

# Gaussian/Normal Distribution - Multivariate

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$



 $\mu$ : (50,50)

 $\Sigma$ :  $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$ 

μ: d dimensional mean vector

Σ: k×k covariance matrix

 $|\Sigma|$ : determinant of  $\Sigma$ 

• Parameter: p(XY|C=1)

# Gaussian Learning - univariate

X

1

3

4

5

6

7

9

Assuming that the dataset follow a normal distribution,

Dataset is described by the normal distribution PDF

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

Objective of Learning: estimate parameters ( $\mu$ ,  $\sigma$ )

#### ML Estimation method

X

1

3

4

5

6

7

9

data set X is i.i.d

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(x_n|\mu,\sigma^2\right)$$
Taking log

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

Partial derivation

Maximizing it with respect to μ

Maximizing it with respect to  $\sigma^2$ 

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

$$(\mu, \sigma^2) =$$

# Gaussian Learning - multivariate

| ٨ | at |    | c | Ο. |
|---|----|----|---|----|
| u | dι | .d | 5 | e. |

| X1 | X2 | X1-<br>μ1 | X2-<br>μ2 |
|----|----|-----------|-----------|
| 6  | 6  | 1         | 1         |
| 3  | 5  | -2        | 0         |
| 4  | 4  | -1        | -1        |
| 5  | 5  | 0         | 0         |
| 6  | 4  | 1         | -1        |
| 7  | 5  | 2         | 0         |
| 4  | 6  | -1        | 1         |
| 5  | 7  | 0         | 2         |
| 5  | 3  | 0         | -2        |

MLE

$$μ: (5,5) Σ: \begin{bmatrix} 1.33 & 0 \\ 0 & 1.33 \end{bmatrix}$$



covariance: 
$$\operatorname{cov}(X,Y) = \frac{1}{n} \sum_{i=1}^n (x_i - E(X))(y_i - E(Y))$$

|    | X1         | X2         |
|----|------------|------------|
| X1 | cov(X1,X1) | cov(X1,X2) |
| X2 | cov(X2,X1) | cov(X2,X2) |

|    | X1   | X2   |
|----|------|------|
| X1 | 1.33 | 0    |
| X2 | 0    | 1.33 |

| X | Υ | p(c=1 (x,y)) | p(c=0 (x,y)) |  |
|---|---|--------------|--------------|--|
| 5 | 8 |              |              |  |
| 4 | 7 |              |              |  |
| 8 | 9 |              |              |  |
| 6 | 8 |              |              |  |
| 8 | 2 |              |              |  |
| 7 | 1 |              |              |  |
| 5 | 2 |              |              |  |

#### K-Means like scheme

- 1. Randomly select  $u_k$ ,  $\sigma_k$ ,  $\pi_k$  (k=1..K)
- 2. Calculate p(c = k | (xy))
- 3. Update  $u_k$ ,  $\sigma_k$ ,  $\pi_k$
- 4. Repeat step 2 until convergence

$$p(c = 1|(5,8)) \propto p((5,8)|c = 1) \times p(c = 1) = N((5,8)|u_1, \sigma_1) \times \pi_1$$

# GMM → EM

#### MLE

- Review MLE Method
  - Step1: likelihood function p(dataset  $\theta$ )
  - Step2: taking log of p(dataset  $\theta$ )
  - Step3: taking partial derivative wrt.  $\theta$ , and equate to zero
  - Question
    - For a supervised problem,  $p(x|\theta 1)$  if x is in C1 (the class label is known)
    - For a unsupervised problem: ?

#### Gaussian Mixture Model – Motivation



Single Gaussian distribution which has been fitted to (learnt from) the data using maximum likelihood.

fails to capture the two clusters in the data

The distribution is given by a linear combination of two Gaussians

# Partitioning Algorithms

#### K-means

-hard assignment: each object belongs to only one cluster

$$\theta_i \in \{\theta_1, \dots, \theta_K\}$$

- Mixture modeling
  - **-soft assignment**: probability that an object belongs to a cluster

$$(\pi_1, \dots, \pi_K), \ \pi_i \geq 0, \ \sum_{i=1}^K \pi_i = 1$$

#### Gaussian Mixture Model

#### Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are K components
- Component *i* has an associated mean vector  $\mu_i$

Component *i* generates data from  $N(\mu_i, \Sigma_i)$ 



#### Each data point is generated using this process:

- 1) Choose component i with probability  $\pi_i = P(y = i)$
- 2) Datapoint  $x \sim N(\mu_i, \Sigma_i)$

#### Gaussian Mixture Model cont...

#### Mixture of K Gaussians distributions: (Multi-modal distribution)

#### **Hidden variable**





#### Gaussian Mixture Model

For a sample x, 
$$p(x|\theta) = \sum_{k=1}^{K} p(x|c=k)p(c=k)$$

For a sample x, 
$$p(\mathbf{x}|\theta) = \sum_{k=1}^K p(\mathbf{x}|c=k)p(c=k)$$
 
$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \qquad \sum_{k=1}^K \pi_k = 1$$



one dimension GMM three Gaussians (each scaled by a coefficient) in blue and their sum in red



two dimension GMM three Gaussians with coefficient

# Log-likelihood

For each sample x which follow a GMM

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k) \qquad p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- The log-likelihood for the dataset
  - K: number of classes
  - N: number of samples

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

# Taking derivative w.r.t. ( $\mu$ , $\Sigma$ , $\pi$ ) and equate to zero

$$egin{aligned} oldsymbol{\mu}_k &= rac{1}{N_k} \sum_{n=1}^N & z_{nk} \ \mathbf{x}_n \end{aligned} \qquad oldsymbol{z}_{nk} &= rac{\pi_k \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)}{K} \ \sum_{m=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_j, oldsymbol{\Sigma}_j) \end{aligned} \ oldsymbol{\Sigma}_k &= rac{1}{N_k} \sum_{n=1}^N & z_{nk} \ (\mathbf{x}_n - oldsymbol{\mu}_k)^\mathrm{T} \end{aligned} \qquad oldsymbol{N}_k &= \sum_{n=1}^N & z_{nk} \end{aligned}$$

However, it is not a closed-form solution e.g. to calculate  $\mu_k$ , we need to know the values of all other parameters

#### Solution: iterative scheme

- Try to find a correct solution
  - Maximizing the log likelihood function for a GMM turns out to be a more complex problem than for the case of a single Gaussian.
  - The difficulty arises from the presence of the summation over k that appears inside the logarithm.
- Go back and observe the result of setting derivatives of the log likelihood to zero
  - The results do suggest a simple iterative scheme for finding a solution

### EM - 1-d Example - Estep

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

| X | N(x   μ1,σ1) | Ν(x   μ2,σ2) | P(C=1 X)                                         | P(C=2 X) |
|---|--------------|--------------|--------------------------------------------------|----------|
| 0 | 0.40         | 0.0001       | 1                                                | 0        |
| 1 | 0.24         | 0.0044       | $0.98 = \frac{0.5 \times 0.24}{0.5 \times 0.24}$ | 0.02     |
| 3 | 0.004        | 0.242        | 0.02                                             | 0.98     |
| 7 | 0            | 0.0044       | 0                                                | 1        |
| 8 | 0            | 0.0001       | 0                                                | 1        |

$$\mu 1=0, \sigma 1=1, \pi 1=0.5$$
  
 $\mu 2=4, \sigma 2=1, \pi 2=0.5$ 



$$z_{nk} = rac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

# EM - 1-d Example - Mstep

$$\overline{()}_1 = \frac{2}{5}$$

| X  | P(C=1 X) | P(C=2 X) |
|----|----------|----------|
| 0  | 1        | 0        |
| 1  | 0.98     | 0.02     |
| 3  | 0.02     | 0.98     |
| 7  | 0        | 1        |
| 8  | 0        | 1        |
| Nk | 2        | 3        |

$$\mu 1 = 1.04/2 = 0.52$$
,  $\sigma 1 = 1.16/2 = 0.58$ ,  $\pi 1 = 0.4$   
 $\mu 2 = 17.96/3 = 5.99$ ,  $\sigma 2 = 14.32/3 = 4.77$ ,  $\pi 2 = 0.6$ 

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} z_{nk} \mathbf{x}_n \qquad \pi_k = \frac{N_k}{N}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} z_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

$$\mu 1=0, \sigma 1=1, \pi 1=0.5$$
  
 $\mu 2=4, \sigma 2=1, \pi 2=0.5$ 

# EM - 1-d Example - Mstep

$$\overline{\eta}_1 = \frac{2}{5}$$

| X  | P(C=1 X) | P(C=2 X) |
|----|----------|----------|
| 0  | 1        | 0        |
| 1  | 0.98     | 0.02     |
| 3  | 0.02     | 0.98     |
| 7  | 0        | 1        |
| 8  | 0        | 1        |
| Nk | 2        | 3        |

$$\mu 1=0, \sigma 1=1, \pi 1=0.5$$
  
 $\mu 2=4, \sigma 2=1, \pi 2=0.5$ 

$$\mu 1 = 1.04/2 = 0.52$$
,  $\sigma 1 = 0.62/2 = 0.31$ ,  $\pi 1 = 0.4$   
 $\mu 2 = 17.96/3 = 5.99$ ,  $\sigma 2 = 26.16/3 = 8.72$ ,  $\pi 2 = 0.6$ 

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^{N} \quad z_{nk} \ \mathbf{x}_n \qquad \boldsymbol{\pi}_k = \frac{N_k}{N}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} z_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

$$u_1 = \frac{0 \times 1 + 1 \times 0.98 + 3 \times 0.02 + 7 \times 0 + 8 \times 0}{2} = 0.52$$

$$\sigma_2 = \frac{0 \times (0-4)^2 + 0.02 \times (1-4)^2 + 0.98 \times (3-4)^2 + 1 \times (7-4)^2 + 1 \times (8-4)^2}{3}$$

# K-means



#### EM with K-means-like iteration

K=2

2 Gaussians



#### initialization

- How many parameters?
- K is set as 2  $\rightarrow$  2 clusters
- Each cluster described by a single Gaussian
- Each Gaussian has two parameters  $\mu$  and  $\Sigma$
- Each object described by a GMM, and the prior of cluster is needed.





# Initialization - example

- P(C=blue)=0.6, then P(C=red)=0.4
- Cluster Blue:
  - $\mu$ =(-1.5,1.5)
  - $\Sigma$ :  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Cluster Red:
  - $\mu$ =(1.5,-1)
  - $\Sigma$ :  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$



## E-step

 For each object X(green dot), calculate p(X) using current values for the parameters

• 
$$p(C = Blue|X) = \frac{p(X|C=Blue)p(C=Blue)}{p(X|C=Blue)p(C=Blue)+p(X|C=Red)p(C=Red)}$$

$$= \frac{N(X|\mu_{blue}, \Sigma_{blue})p(C=Blue)}{N(X|\mu_{blue}, \Sigma_{blue})p(C=Blue) + N(X|\mu_{red}, \Sigma_{red})p(C=Red)}$$

| <b>X1</b> | X2   | P(C=Blue X) | P(C=Red X) |
|-----------|------|-------------|------------|
| 0.6       | 1.6  | 0.8         | 0.2        |
| -1.3      | 1.5  | 0.72        | 0.28       |
| -0.44     | 0.4  | 0.1         | 0.9        |
| 1.5       | -1.5 | 0.5         | 0.5        |
| •••       |      |             |            |



# M-step – Expectation Maximization

 Re-estimate the parameters by Expectation Maximization

• 
$$\mu_{\text{blue}}^{\text{new}} = \frac{1}{N_{blue}} \sum_{n=1}^{N} p(C = Blue | X_n) X_n$$

• 
$$\Sigma_{\text{blue}}^{\text{new}} = \frac{1}{N_{blue}} \sum_{n=1}^{N} p(C = Blue|X_n)(X_n - \mu_{\text{blue}})(X_n - \mu_{\text{blue}})^{\mathsf{T}}$$

• 
$$p(c = blue) = \frac{N_{blue}}{N}$$

| <b>X1</b> | X2   | P(C=Blue X) | P(C=Red X) |
|-----------|------|-------------|------------|
| 0.6       | 1.6  | 0.8         | 0.2        |
| -1.3      | 1.5  | 0.72        | 0.28       |
| -0.44     | 0.4  | 0.1         | 0.9        |
| 1.5       | -1.5 | 0.5         | 0.5        |
|           |      |             |            |

$$N_{blue} = \sum_{n=1}^{N} p(C = Blue | X_n)$$



# Evaluate the log likelihood

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

$$\sum_{n=1}^{N} \ln \{ \sum_{k=1}^{K} p(C = k) p(X_n | C = k) \}$$

$$\sum_{n=1}^{N} \ln \{ \sum_{k=1}^{K} p(C=k) N(X_n | \mu_k, \Sigma_k) \}$$

| X1    | X2   | P(C=Blue X) | P(C=Red X) |
|-------|------|-------------|------------|
| 0.6   | 1.6  | 0.8         | 0.2        |
| -1.3  | 1.5  | 0.72        | 0.28       |
| -0.44 | 0.4  | 0.1         | 0.9        |
| 1.5   | -1.5 | 0.5         | 0.5        |
| •••   |      |             |            |

Termination: Check for convergence of either the parameters or the log likelihood

If the convergence criterion is not satisfied, go to E-step

#### EM and missing data

- EM is a general framework for partially observed data
  - "Complete data" xi, zi features and assignments
  - Assignments zi are missing (unobserved)
- EM corresponds to
  - Computing the distribution over all zi given the parameters
  - Maximizing the "expected complete" log likelihood
  - GMMs = plug in "soft assignments", but not always so easy
- Alternatives: Stochastic EM, Hard EM
  - Instead of expectations, just sample the zi or choose best (often easier)
  - Called "imputing" the values of z
  - Hard EM: similar to EM, but less "smooth", more local minima
  - Stochastic EM: similar to EM, but with extra randomness
    - Not obvious when it has converged

#### GMM VS Kmeans Kmeans

- 1. Choose the number of clusters *K*
- 2. Initialize the vector  $\mathbf{\mu}_{\mathbf{k}}$  that defines a central point of each cluster
- 3. Assign each data point **x** to the closest cluster centre
- 4. Recalculate central points **μ\_k** for each cluster
- 5. Repeat 3–4 until central points stop moving



# GMM vs Kmeans Kmeans

• The K-Means algorithm will converge but it might not be a global minimum. To avoid a situation where it converges to a local minimum, K-Means should be re-run a few times with different parameters.

• K-Means performs hard assignment which means that each datapoint has to belong to a certain class and there is no probability assigned to each datapoint.

# GMM vs Kmeans GMM

• Gaussian Mixtures are based on *K* independent Gaussian distributions that are used to model *K* separate clusters. As a reminder, the multivariate Gaussian distribution is given as:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

#### GMM vs Kmeans GMM

- Initialize μ, Σ, and mixing coefficient π and evaluate the initial value of the log likelihood L
- 2. Evaluate the responsibility function using current parameters
- 3. Obtain new  $\mu$ ,  $\Sigma$ , and  $\pi$  using newly obtained responsibilities
- 4. Compute the log likelihood L again. Repeat steps 2–3 until the convergence.



#### GMM vs Kmeans

- Decision Boundaries:
  - GMM: More flexible and with a covariance matrix, we can make the boundaries elliptical
  - Kmeans: Circular boundaries
- Probability:
  - GMM: show how strong is our belief that a given datapoint belongs to a specific cluster
  - Kmeans: 1 or 0

GMs usually tend to be slower than K-Means because it takes more iterations of the EM algorithm to reach the convergence. They can also quickly converge to a local minimum that is not a very optimal solution.

Solution: GMM with Kmeans Initializer



#### **GMM** vs Kmeans

- It is quite strange that a plain K-Means is slower than GM with a K-Means initializer. **Behind the hood**, Scikit-Learn seems to apply an optimized version of K-Means that takes fewer iterations to converge.
- If you look for robustness, GM with K-Means initializer seems to be the best option. K-Means should be theoretically faster if you experiment with different parameters, but as we can see from the computation plot above, GM with K-Means initializer is the fastest. GM on its own is not much of use because it converges too fast to a non-optimal solution for this dataset.

# Different cluster analysis results on "mouse" data set: Original Data k-Means Clustering EM Clustering

