p. 1-2

What is Statistics?

哈利波特	Real Life
占卜學	Statistics
崔老妮	Statisticians
水晶球	Data
未來的資訊	Information

aim of statistics: provide insight by means of data

Basic Procedures of Statistics

• Statistics divides the study of data into five steps:

Ø Q: What is a statistical Problem Formulation & model? Modeling (conceptual) $\mathbf{Ø} \mathbf{X}_1, ..., \mathbf{X}_n \sim \text{joint}$ $\operatorname{cdf} \mathbf{F}_{\mathbf{X}}/\operatorname{pdf} \mathbf{f}_{\mathbf{X}}/\operatorname{pmf} \mathbf{p}_{\mathbf{X}}$ with parameters Θ Data: **X**₁, ..., **X**_n Data Statistical Modeling Collection (empirical) **Transformations** $g_1(X_1, ..., X_n),$ X_1 , **Decision** Data $g_k(X_1, ..., X_n) \longrightarrow \Theta$ **Analysis** Making Extract Information

1. Problem formulation & modeling (conceptual approach)

- **Ø** Problem formulation: use statistical/probabilistic/ mathematical language to "clearly" define the problem and the objective of study
- Ø modeling (conceptual approach): use the information that we possessed *prior to obtaining data* to develop a *representation of the underlying system*, also account for uncertainty in data
- **2. Data collection:** producing *representative* data for drawing correct information
 - Ø survey sampling
 - Ø design of experiment
 - Ø observational data

NTHU STAT 5410, 2013, Lecture Notes

p. 1-4

- **3. Statistical modeling (empirical approach):** use empirical information contained in the data to build a model or to justify/adjust the (conceptual) model developed in **1.**, also account for uncertainty in data
 - **Ø** a statistical model is a description of the joint distribution of data
 - **Ø** a statistical model may contain the following components:
 - nonparametric component
 - parametric component: (fixed, random) effects
 - distribution component
- 4. data analysis: mining information from data
 - Ø graphical methods
 - Ø numerical methods
 - (point, interval) estimation
 - hypothesis testing
- **5. Inference/decision making:** drawing conclusions & answering questions based on results obtained in **4**.

• Example (from Gilchrist, Statistical Modelling, 1984):

"A range of problems related to the positioning of stores and the planning of delivery routes requires information on the distances by road, y, between different places. Where a large number of such places are involved, finding these distances by driving or by direct measurement along the roads on a map is time-consuming."

"To avoid this problem, the usual approach is to relate the road distances to the straight line distance, denoted by x, as measured using a scale map. This relationship will be expressed mathematically and will enable us to predict a value of y given a corresponding value of x. This relationship will be our quantitative model of the situation. The fundamental question is: how do we obtain this relationship (model)."

NTHU STAT 5410, 2013, Lecture Notes

p. 1-6

Let's assume the following conditions (are they reasonable?):

- a) $x=0 \Rightarrow y=0$
- b) If there is a straight road between two points, then x=y; otherwise, y^3x
- c) Generally, y should increase with x. However, because of randomness in road patterns, places with same x's may have different y's.
- d) Under similar situations, e.g. urban roads, the form of the relationship should not depend strongly on the distances involved, i.e., if *x* is, say, doubled, we would expect *y* is also approximately doubled.

Consider the following relationships (models):

1. y=x [satisfies a) and d), but not b) or c)]

2. y=x+e, e: random component [now allows c), but not b)]

3. y=a+x+e, a: a constant [helps with b), but a) fails]

4. y=bx+e, b: a constant ≥ 1 [satisfies all four conditions. true?]

5. distribution assumption can be added on the e in 4, e.g., $e \sim N(0, s^2)$

Note: The above model is derived without any data provided.

Problem formulation: Estimate and test parameters in y=bx+e, where $b \ge 1$

Some Notes in Problem formulation & modeling (conceptual approach)

- understand the physical/social/political/biological/medical/... background to avoid the missing of important conditions that should be included in model
- understand the objective
- make sure you know what the client wants
- state the problem in "statistical language"

Albert Einstein. The formulation of a problem is often more essential than its solution which may be merely a matter of mathematical or experimental skill.

NTHU STAT 5410, 2013, Lecture Notes

made by Shao-Wei Cheng (NTHU, Taiwan)

p. 1-8

Example (cont.):

- the collected data are given in the tabular. Is it a "representative" data set?
- observational or experimental data?
- if you can design the experiment, what are the data collection issues that should be concerned in the example?
- Consider the following situations:
 - Ø if there are hundred/thousand of places, how to choose a small number of appropriate locations? uniform allocation? stratified sampling?
 - **Ø** what if there are many routes that link any two places? replication required?
 - **Ø** who should be assigned to measure these y's by driving? randomization? blocking?

у	x
10.7	9.5
6.5	5
29.4	23
17.2	15.2
18.4	11.4
19.7	11.8
16.6	12.1
29	22
40.5	28.2
14.2	12.1
11.7	9.8
25.6	19
16.3	14.6
9.5	8.3
28.8	21.6
31.2	26.5
6.5	4.8
25.7	21.7
26.5	18
33.1	28

Some Notes in Data Collection

- are the data observational or experimental?
- how to collect a representative data?
- is there non-response?
- are there missing values?
- qualitative or quantitative?
- how are the data coded?
- what are the units of measurement?
- beware of data entry errors

NTHU STAT 5410, 2013, Lecture Notes

Example (cont.): made by Shao-Wei Cheng (NTHU, Taiwa

p. 1-10

- What empirical model will you suggest after examining the plot?
- should empirical model be identical to conceptual model?
- if the plot (or numeric analysis) reveals different patterns ...

 \emptyset what if you find curvature or jump relationship existing between x and y?

- Ø what if you find non-constant variance? how should the conceptual model be adjusted?
- graphic analyses offer vivid and intuitive perception
- numeric analyses present numeric summaries (such as estimation and testing of parameters in the model) for making concrete conclusions. E.g., $\hat{\beta} = 1.29$ and is significant in *t*-test, and $\hat{\sigma} = 2.376$
- Conclusion: $\hat{y} = 1.29x$ (or offer confident interval of \hat{y})

Some Notes in Statistical modeling, Data analysis, and Decision making

- If possible, most available analysis methods should be performed.
- Assumptions and analysis results between different methods could be (slightly) different
- Data analysis is inherently interactive
- Conclusions should be summarized based on consistent results.
- Important information usually consistently appear in the results of every methods
- quantitative (定量) and qualitative (定性) conclusions

p. 1-12

∨ Reading: F, 1.1

∨ Further reading:

- Statistical modelling (Gilchrist, 1984)
- Statistics: a guide to the unknown (edited by Tanur et al., 1972, 1978, 1989; Peck et al., 2005)
- Applied statistics: principles and examples (Cox & Snell, 1981)

p. 1-14

What aspects you should focus on in this course?

- 1. Understand analysis methods
 - objective is ...?
 - for an estimator (parameter), what's its meaning?
 - for a test, what are its H_0 and H_1 ?
 - how to find statistically significant results in outputs?
 - assumptions? and limitations?
- **2. Interpretation**: for those significant results, how to interpret them in the language that your clients use
- **3. How to implement** the analysis method in softwares, such as R, Splus, SAS, ...?