Olimpiada Națională de Matematică 2005

Etapa judeţeană şi a municipiului Bucureşti 5 martie 2005

CLASA A IX-A

Subiectul 1. a) Arătați că dacă x, y > 0 atunci

$$\frac{x}{y^2} + \frac{y}{x^2} \ge \frac{1}{x} + \frac{1}{y}.$$

b) Arătați că dacă a, b, c sunt numere reale strict pozitive, atunci

$$\frac{a+b}{c^2} + \frac{b+c}{a^2} + \frac{c+a}{b^2} \ge 2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

Subiectul 2. Fie triunghiul ABC înscris în cercul de centru O și rază R, circumscris cercului de centru I și rază r, $O \neq I$, și având centrul de greutate G. Să se arate că $IG \perp BC$ dacă și numai dacă b = c sau b + c = 3a.

Subiectul 3. Fie ABC un triunghi nedreptunghic, H ortocentrul său $\S iM_1, M_2, M_3$ respectiv mijloacele laturilor BC, CA, AB. Fie A_1, B_1, C_1 simetricele lui H față de M_1, M_2 , respectiv M_3 , iar A_2, B_2, C_2 ortocentrele triunghiurilor BA_1C, CB_1A , respectiv AC_1B . Demonstrați că:

- a) triunghiurile ABC și $A_2B_2C_2$ au același centru de greutate;
- b) centrele de greutate ale triunghiurilor AA_1A_2 , BB_1B_2 , CC_1C_2 formează un triunghi asemenea cu cel dat.

Subiectul 4. Fie $(a_k)_{k\geq 1}$ un şir de numere naturale, care are proprietatea $a_k \geq a_{2k} + a_{2k+1}$ oricare ar fi $k \geq 1$.

- a) Demonstrați că pentru orice număr natural $n \geq 1$ există n termeni consecutivi nuli ai șirului.
- b) Dați exemplu de şir care are proprietatea din ipoteză și conține o infinitate de termeni nenuli.

Timp de lucru 3 ore

Toate subiectele sunt obligatorii