Lista de 3 de Exercícios

- 1. Encontre a equação cartesiana das curvas do R² e faça um esboço a partir das parametrizações abaixo:
 - a. $\sigma(t) = (t, 2t), t \in R$.
 - b. $\sigma(t) = (3t, 2t), t \in R$.
 - c. $\sigma(t) = (2t, 2t), t \in R$.
 - d. $\sigma(t) = (t + 4.2t 1), t \in R$.
 - e. $\sigma(t) = (-t, 2+t), t \in R$.
 - f. $\sigma(t) = (4 t, 2t + 3), t \in R$.
 - g. $\sigma(t) = (-t, -t), t \in [0,1].$
 - h. $\sigma(t) = (t+3, -t+7), t \in R$.
 - i. $\sigma(t) = (1, t 1), t \in R$.
 - j. $\sigma(t) = (t + 8.8), t \in R$.
 - k. $\sigma(t) = (t, 2 4t), t \in R$.
 - I. $\sigma(t) = (t+1, -1), t \in R$.
 - m. $\sigma(t) = (t+1, t+2), t \in [2,3].$
- 2. Encontre a equação cartesiana das curvas do R² e faça um esboço a partir das parametrizações abaixo:
 - a. $\sigma(t) = (\cos t, sent), t \in [0, 2\pi)$.
 - b. $\sigma(t) = (2\cos t, sent), t \in [0, 2\pi).$
 - c. $\sigma(t) = (\cos t, 3sent), t \in [\pi, 2\pi)$.
 - d. $\sigma(t) = (5\cos t, 4sent), t \in [0,2\pi)$.
 - e. $\sigma(t) = (2 + 5\cos t, 3 + sent), t \in [0, 2\pi)$.
 - f. $\sigma(t) = (7 + 8\cos t, 6 + 5\sin t), t \in [0, 2\pi)$.
 - g. $\sigma(t) = (3\cos t, -1 + sent), t \in [0, 2\pi)$.
 - h. $\sigma(t) = (-9 + 5\cos t, -2 + 3sent), t \in [0, \pi)$.
 - i. $\sigma(t) = (-1 + 7\cos t, -2 + 2sent), t \in [0, 2\pi)$.
 - j. $\sigma(t) = (-2 + \cos t, -1 + sent), t \in [0, 2\pi)$.
 - k. $\sigma(t) = (4 + \cos t, 2 + sent), t \in [0, 2\pi).$
 - 1. $\sigma(t) = (3 + 6\cos t, -9 + 2sent), t \in [0, 2\pi)$.
 - m. $\sigma(t) = (4\cos t, 2 + 7sent), t \in [0,2\pi)$.
 - n. $\sigma(t) = (1 \pm \cosh t, 2 + 3senht), t \in R$.
 - o. $\sigma(t) = (\pm \cosh t, senht), t \in R$.
- 3. Encontre a equação cartesiana das curvas do R² e faça um esboço a partir das parametrizações abaixo:
 - a. $\sigma(t) = (-1 + t, 2 t), t \in R$.
 - b. $\sigma(t) = (-1 + t^2, 2 t^2), t \in R$.
 - c. $\sigma(t) = (\cos^2 t, \sin^2 t), t \in R$.
 - d. $\sigma(t) = (sent, cos2t), t \in R$.
 - e. $\sigma(t) = (t, t^2), t \in R$.
 - f. $\sigma(t) = (t^2, t), t \in R$.

g.
$$\sigma(t) = (t, t^2 + 4t + 3), t \in R$$
.

h.
$$\sigma(t) = (t, f(t)), t \in R$$
.

4. Encontre uma parametrização das curvas do R² e faça um esboço a partir das equações cartesianas abaixo:

a.
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

b.
$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$

a.
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

b. $\frac{x^2}{36} + \frac{y^2}{9} = 1$
c. $\frac{x^2}{4} + \frac{y^2}{100} = 1$
d. $\frac{x^2}{4} + y^2 = 1$

d.
$$\frac{x^2}{4} + y^2 = 1$$

e.
$$2x^2 + 3y^2 = 5$$

f.
$$x^2 + 9y^2 = 3$$

g.
$$(x-1)^2 + (y-7)^2 = 9$$

h. $x^2 + (y-8)^2 = 9$

h.
$$x^2 + (y - 8)^2 = 9$$

i.
$$\frac{(x-7)^2}{4} + \frac{(y+6)^2}{9} = 1$$

j. $\frac{x^2}{36} + \frac{(y-1)^2}{9} = 1$

j.
$$\frac{x^2}{36} + \frac{(y-1)^2}{9} = 1$$

k.
$$\frac{(x-3)^2}{4} + \frac{(y-6)^2}{100} = 1$$

I.
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

$$m. \ \frac{y^2}{36} - \frac{x^2}{9} = 1$$

n.
$$5x^2 - 3y^2 = 5$$

o.
$$y^2 - 4x^2 = 3$$

p.
$$\frac{(x+1)^2}{4} - \frac{(y-5)^2}{9} = 1$$

q.
$$x + y = 1$$

r.
$$y - 1 = x$$

s.
$$-\frac{x^2}{4} + \frac{y^2}{9} = 1$$

t.
$$3y = x - 3$$

u.
$$x = 1$$

$$\mathsf{v.} \quad y = x$$

w.
$$x^2 = y^2$$

x.
$$\frac{(x-3)^2}{4} + \frac{(y-6)^2}{9} = -1$$

y. $(x-1)^2 = (y-7)^2$

y.
$$(x-1)^2 = (y-7)^2$$

z.
$$x + 2y - 9 = 0$$