# Commutative Algebra for Algebraic Geometry

# Bailey Arm

# June 1, 2025

# Contents

| 1 | Alg               | gebraic Geometry, Hartshorne             | 9  |
|---|-------------------|------------------------------------------|----|
| 1 | Var               | ieties                                   | 9  |
|   | 1.1               | Affine Varieties                         | 11 |
|   | 1.2               | Projective Varieties                     | 11 |
|   | 1.3               | Morphisms                                | 11 |
|   | 1.4               | Rational Maps                            | 11 |
|   | 1.5               | Nonsingular Varieties                    | 11 |
|   | 1.6               | Nonsingular Curves                       | 11 |
|   | 1.7               | Intersections in Projective Space        | 11 |
| 2 | Sch               | emes                                     | 11 |
|   | 2.1               | Sheaves                                  | 11 |
|   | 2.2               | Schemes                                  | 11 |
|   | 2.3               | First Properties of Schemes              | 11 |
|   | 2.4               | Separated and Proper Morphisms           | 11 |
|   | 2.5               | Sheaves of Modules                       | 11 |
|   | 2.6               | Divisors                                 | 11 |
|   | 2.7               | Projective Morphisms                     | 11 |
|   | 2.8               | Differentials                            | 11 |
|   | 2.9               | Formal Schemes                           | 11 |
| 3 | Coh               | nomology                                 | 11 |
| J | 3.1               | Derived Functors                         | 11 |
|   | $\frac{3.1}{3.2}$ | Cohomology of Sheaves                    | 11 |
|   | $\frac{3.2}{3.3}$ | Cohomology of a Noetherian Affine Scheme | 11 |
|   | 3.4               |                                          | 11 |
|   | $\frac{3.4}{3.5}$ | Cech Cohomology                          | 11 |
|   |                   | The Cohomology of Projective Space       |    |
|   | 3.6               | Ext Groups and Sheaves                   | 11 |
|   | 3.7               | The Serre Duality Theorem                | 11 |
|   | 3.8               | Higher Direct Images of Sheaves          | 11 |
|   | 3.9               | Flat Morphisms                           | 11 |
|   |                   | Smooth Morphisms                         | 11 |
|   |                   | The Theorem on Formal Functions          | 11 |
|   | 3.12              | The Semicontinuity Theorem               | 11 |
| 4 | Cur               |                                          | 11 |
|   | 4.1               | Riemann-Roch Theorem                     | 11 |
|   | 4.2               | Hurwitz's Theorem                        | 11 |
|   | 4.3               | Embeddings in Projective Space           | 11 |
|   | 4.4               | Elliptic Curves                          | 11 |

|    | $4.5 \\ 4.6$ |         | anonical Embedding                                                 |   |
|----|--------------|---------|--------------------------------------------------------------------|---|
| 5  | Sur          | faces   | 11                                                                 | 1 |
|    | 5.1          | Geome   | etry on a Surface                                                  | 1 |
|    | 5.2          | Ruled   | <u>Surfaces</u>                                                    | 1 |
|    | 5.3          | Monoi   | dal Transformations                                                | 1 |
|    | 5.4          | The C   | ubic Surface in $\mathbb{P}^n$                                     | 1 |
|    | 5.5          | Biratio | onal Transformations                                               | 2 |
|    | 5.6          | Classif | fication of Surfaces                                               | 2 |
| II | Co           | ommut   | cative Geometry with a View Toward Algebraic Geometry, Eisenbud 13 | 3 |
| 6  | Pre          | limina  | ries 13                                                            | 3 |
| Ü  | 6.1          |         | and Ideals                                                         |   |
|    | 0.1          | 6.1.1   | Unique Factorisation                                               |   |
|    |              | 6.1.2   | Modules                                                            |   |
|    |              | 0.1.2   | Modules                                                            | I |
| 7  | Bas          | ic Con  | structions 15                                                      | 5 |
|    | 7.1          | Locali  | $\operatorname{sation}$                                            |   |
|    |              | 7.1.1   | Fractions                                                          | 5 |
|    |              | 7.1.2   | Hom and Tensor                                                     | 3 |
|    |              | 7.1.3   | The Construction of Primes                                         | 3 |
|    |              | 7.1.4   | Rings and Modules of Finite Length                                 |   |
|    |              | 7.1.5   | Products of Dom                                                    |   |
|    | 7.2          | Associ  | ated Primes and Primary Decomposition                              |   |
|    |              | 7.2.1   | Associated Primes                                                  |   |
|    |              | 7.2.2   | Prime Avoidance                                                    |   |
|    |              | 7.2.3   | Primary Decomposition                                              |   |
|    |              | 7.2.4   | Primary Decomposition and Factorality                              |   |
|    |              | 7.2.5   | Primary Decomposition in the Graded Case                           |   |
|    |              | 7.2.6   | Extracting Information form Primary Decomposition                  |   |
|    |              | 7.2.7   | Why Primary Decomposition is not Unique                            | 3 |
|    |              | 7.2.8   | Geometric Interpretation of Primary Decomposition                  | 3 |
|    |              | 7.2.9   | Symbolic Powers and Functions Vanishing to High Order              | 3 |
|    | 7.3          | Integra | al Dependence and the Nullstellensatz                              |   |
|    |              | 7.3.1   | The Cayley-Hamilton Theorem and Nakayama's Lemma                   |   |
|    |              | 7.3.2   | Normal Domains and the Normalisation Process                       |   |
|    |              | 7.3.3   | Normalisation in the Analytic Case                                 |   |
|    |              | 7.3.4   | Primes in an Integral Extension                                    |   |
|    |              | 7.3.5   | The Nullstellensatz                                                |   |
|    | 7.4          | Filtrat | ions and the Artin-Rees Lemma                                      |   |
|    |              | 7.4.1   | Associated Graded Rings and Modules                                |   |
|    |              | 7.4.2   | The Blowup Algebra                                                 |   |
|    |              | 7.4.3   | The Krull Intersection Theorem                                     |   |
|    |              | 7.4.4   | The Tangent Cone                                                   |   |
|    | 7.5          |         | amilies                                                            |   |
|    |              | 7.5.1   | Elementary Examples                                                | 3 |
|    |              | 7.5.2   | Introduction to Tor                                                | 3 |
|    |              | 7.5.3   | Criteria for Flatness                                              | 3 |
|    |              | 7.5.4   | The Local Criterion for Flatness                                   | 3 |
|    |              | 7.5.5   | The Rees Algebra                                                   | 3 |
|    | 7.6          | Comp    | letions and Hensel's Lemma                                         | 8 |

|                | 7.6.1 Examples a                                                                                                                                                                                                                                                                                                                                                              | and Definitions                                                                                                                              | . 18                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                | 7.6.2 The Utility                                                                                                                                                                                                                                                                                                                                                             | y of Completions                                                                                                                             | . 18                                     |
|                | 7.6.3 Lifting Idea                                                                                                                                                                                                                                                                                                                                                            | mpotents                                                                                                                                     | . 18                                     |
|                | 7.6.4 Cohen Stru                                                                                                                                                                                                                                                                                                                                                              | ucture Theory and Coefficient Fields                                                                                                         | . 18                                     |
|                | 7.6.5 Basic Prop                                                                                                                                                                                                                                                                                                                                                              | perties of Completion                                                                                                                        | . 18                                     |
|                | 7.6.6 Maps from                                                                                                                                                                                                                                                                                                                                                               | Power Series Rings                                                                                                                           | . 18                                     |
| 8              | 8 Dimension Theory                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              | 18                                       |
|                | 8.1 Introduction to Di                                                                                                                                                                                                                                                                                                                                                        | imension Theory                                                                                                                              | . 18                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                               | nitions of Dimension Theory                                                                                                                  |                                          |
|                |                                                                                                                                                                                                                                                                                                                                                                               | al Theorem and Systems of Parameters                                                                                                         |                                          |
|                | 8.4 Dimension and Co                                                                                                                                                                                                                                                                                                                                                          | odimension One                                                                                                                               | . 18                                     |
|                | 8.5 Dimension and Hi                                                                                                                                                                                                                                                                                                                                                          | ilbert-Samuel Polynomials                                                                                                                    | . 18                                     |
|                | 8.6 The Dimension of                                                                                                                                                                                                                                                                                                                                                          | Affine Rings                                                                                                                                 | . 18                                     |
|                | 8.7 Elimination Theor                                                                                                                                                                                                                                                                                                                                                         | ry, Generic Freeness and the Dimension of Fibres                                                                                             | . 18                                     |
|                | 8.8 Gröbner Bases .                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              | . 18                                     |
|                | 8.9 Modules of Difference                                                                                                                                                                                                                                                                                                                                                     | entials                                                                                                                                      | . 18                                     |
| 9              | 9 Homological Method                                                                                                                                                                                                                                                                                                                                                          | ${ m ds}$                                                                                                                                    | 18                                       |
|                | 9                                                                                                                                                                                                                                                                                                                                                                             | s and the Koszul Complex                                                                                                                     | . 18                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                               | ion and Cohen-Macaulay Rings                                                                                                                 |                                          |
|                |                                                                                                                                                                                                                                                                                                                                                                               | ory of Regular Local Rings                                                                                                                   |                                          |
|                |                                                                                                                                                                                                                                                                                                                                                                               | and Fitting Invariants                                                                                                                       |                                          |
|                |                                                                                                                                                                                                                                                                                                                                                                               | l Modules and Gorenstein Rings                                                                                                               |                                          |
| Π              | III Commutative Rin                                                                                                                                                                                                                                                                                                                                                           | ng Theory, Matsumura                                                                                                                         | 19                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                               | ng Theory, Matsumura and Modules                                                                                                             | 19<br>20                                 |
|                | 10 Commutative Rings                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              | 20                                       |
|                | 10 Commutative Rings<br>10.1 Ideals                                                                                                                                                                                                                                                                                                                                           | and Modules                                                                                                                                  | . 20                                     |
|                | 10 Commutative Rings 10.1 Ideals                                                                                                                                                                                                                                                                                                                                              | and Modules                                                                                                                                  | . 20<br>. 20                             |
| 10             | 10 Commutative Rings 10.1 Ideals                                                                                                                                                                                                                                                                                                                                              | and Modules                                                                                                                                  | . 20<br>. 20                             |
| 10             | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals                                                                                                                                                                                                                                                                                          | and Modules                                                                                                                                  | 20 . 20 . 20 . 20 . 20                   |
| 10             | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S                                                                                                                                                                                                                                                                  | and Modules                                                                                                                                  | 20 . 20 . 20 . 20 . 20 . 20              |
| 10             | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst                                                                                                                                                                                                                                          | and Modules                                                                                                                                  | 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20    |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst                                                                                                                                                                                                                                          | and Modules  Spec of a Ring                                                                                                                  | 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20    |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness                                                                                                                                                                            | and Modules  Spec of a Ring                                                                                                                  | 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 .  |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness                                                                                                                                                                            | and Modules  Spec of a Ring                                                                                                                  | 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 .  |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and the                                                                                                                                                    | and Modules  Spec of a Ring                                                                                                                  | 20 20 20 20 20 20 20 20 20 20 20 20 20   |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and the                                                                                                                                                    | and Modules  Spec of a Ring  tellensatz and First Steps in Dimension Theory s and Primary Decomposition  sion Rings  he Artin-Rees Lemma     | 20 20 20 20 20 20 20 20 20 20 20 20 20   |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and th 12.3 Integral Extension  13 Valuation Rings                                                                                                         | and Modules  Spec of a Ring  tellensatz and First Steps in Dimension Theory s and Primary Decomposition  sion Rings  he Artin-Rees Lemma     | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and th 12.3 Integral Extension  13 Valuation Rings 13.1 General Valuation                                                                                  | and Modules  Spec of a Ring                                                                                                                  | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| 10<br>11       | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and th 12.3 Integral Extension  13 Valuation Rings 13.1 General Valuation 13.2 DVRs amd Dedek                                                              | and Modules  Spec of a Ring  tellensatz and First Steps in Dimension Theory s and Primary Decomposition  sion Rings  he Artin-Rees Lemma  ns | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| 10<br>13<br>12 | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and th 12.3 Integral Extension  13 Valuation Rings 13.1 General Valuation 13.2 DVRs amd Dedek                                                              | and Modules  Spec of a Ring                                                                                                                  | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| 10<br>13<br>12 | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and th 12.3 Integral Extension  13 Valuation Rings 13.1 General Valuation 13.2 DVRs amd Dedek 13.3 Krull Rings  14 Dimension Theory                        | and Modules  Spec of a Ring                                                                                                                  | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |
| 10<br>13<br>12 | 10 Commutative Rings 10.1 Ideals 10.2 Modules 10.3 Chain Conditions  11 Prime Ideals 11.1 Localisation and S 11.2 The Hilbert Nullst 11.3 Associated Primes  12 Properties of Extens 12.1 Flatness 12.2 Completion and th 12.3 Integral Extension  13 Valuation Rings 13.1 General Valuation 13.2 DVRs amd Dedek 13.3 Krull Rings  14 Dimension Theory 14.1 Graded Rings, the | and Modules  Spec of a Ring                                                                                                                  | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |

| 15 R          | egular Sequences 2                                                |
|---------------|-------------------------------------------------------------------|
| 15            | .1 Regular Sequences and the Koszul Complex                       |
| 15            | .2 Cohen-Macualay Rings                                           |
| 15            | .3 Gorenstein Rings                                               |
|               |                                                                   |
|               | egular Rings 2                                                    |
| 16            | .1 Regular Rings                                                  |
| 16            | .2 UFDs                                                           |
| 16            | .3 Complete Intersection Rings                                    |
| 1 <i>5</i> D  | aturan Davidtad                                                   |
|               | atness Revisited 2                                                |
|               | .1 The Local Flatness Criterion                                   |
|               | .2 Flatness and Fibres                                            |
| 17            | .3 Generic Freeness and Open Loci Results                         |
| 18 D          | erivations 2                                                      |
|               | .1 Derivations and Differentials                                  |
|               | .2 Separability                                                   |
|               | .3 Higher Derivations                                             |
| 10            | .5 figher Derivations                                             |
| 19 <i>I</i> - | Smoothness 2                                                      |
|               | .1 I-Smoothness                                                   |
|               | .2 The Structure Theorems for Complete Local Rings                |
|               | .3 Connections with Derivations                                   |
| 15            | .5 Connections with Derivations                                   |
| 20 A          | pplications of Complete Local Rings 2                             |
|               | .1 Chains of Prime Ideals                                         |
|               | .2 The Formal Fibre                                               |
|               |                                                                   |
| 2(            | .3 Other Applications                                             |
| IV            | Algebraic Geometry I: Schemes, Gortz-Wedhorn 2                    |
| - •           | angestate decimenty it sentences, doi vz wednorm                  |
| ${f V}$       | Algebraic Geometry II: Cohomology of Schemes, Gortz-Wedhorn 2     |
| •             | angestrate decimenty in continuous, of sentences, doi:12 weathern |
| VI            | Sheaf Theory, Bredon 2                                            |
| 21 S          | neaves and Presheaves 2                                           |
|               | .1 Definitions                                                    |
|               | .2 Homomorphisms, Subsheaves and Quotient Sheaves                 |
|               | .3 Direct and Inverse Images                                      |
|               |                                                                   |
|               | 1                                                                 |
|               | .5 Algebraic Constructions                                        |
|               | .6 Supports                                                       |
| 21            | .7 Classical Cohomology Theories                                  |
| 22 S          | neaf Cohmology 2                                                  |
|               | .1 Differential Sheaves and Resolutions                           |
|               |                                                                   |
|               | .2 The Canonical Resolution and Sheaf Cohomology                  |
|               | .3 Injective Sheaves                                              |
|               | .4 Acyclic Sheaves                                                |
|               | .5 Flabby Sheaves                                                 |
| 26            | .6 Connected Sequences of Functors                                |

|           | 22.7 Axioms for Cohmomology and the Cup Product                  | 24              |
|-----------|------------------------------------------------------------------|-----------------|
|           | 22.8 Maps of Spaces                                              | 24              |
|           | 22.9 $\Phi$ -Soft and $\Phi$ -Fine Sheaves                       | 24              |
|           | 22.10Subspaces                                                   | 24              |
|           | 22.11The Vietoris Maping Theorem and Homotopy Invariance         | 24              |
|           | 22.12Relative Cohomology                                         | 24              |
|           | 22.13Mayer-Vietoris Theorems                                     | 24              |
|           |                                                                  | 24              |
|           | 22.14Continuity                                                  |                 |
|           | 22.15The Künneth and Universal Coefficient Theorems              | 24              |
|           | 22.16Dimension                                                   | 24              |
|           | 22.17Local Connectivity                                          | 24              |
|           | 22.18Change pf Supports and Local Cohomology Groups              | 24              |
|           | 22.19The Transfer Homomorphism and the Smith Sequences           | 24              |
|           | 22.20Steenrod's Cyclic Reduced Powers                            | 24              |
|           | 22.21The Steenrod Operations                                     | 24              |
|           |                                                                  |                 |
| <b>23</b> | Comparison with Other Cohomology Theories                        | 24              |
|           | 23.1 Singular Cohomology                                         | 24              |
|           | 23.2 Alexander-Spanier Cohomology                                | 24              |
|           | 23.3 de Rham Cohmomology                                         | 24              |
|           | 23.4 Cech Cohomology                                             | 24              |
|           |                                                                  |                 |
| 24        | Applications of Spectral Sequences                               | 24              |
|           | 24.1 The Spectral Sequence of a Differential Sheaf               | 24              |
|           | 24.2 The Fundamental Theorems of Sheaves                         | 24              |
|           | 24.3 Direct Image Relative to a Support Family                   | 24              |
|           | 24.4 The Leray Sheaf                                             | 24              |
|           | 24.5 Extension of a Support Family by a Family on the Base Space | 24              |
|           | 24.6 The Leray Spectral Sequence of a Map                        | 24              |
|           | 24.7 Fiber Bundles                                               | 24              |
|           | 24.8 Dimension                                                   | 24              |
|           | 24.9 The Spectral Sequences of Borel and Cartan                  | 24              |
|           | 24.10Characteristic Classes                                      | 24              |
|           | 24.11The Spectral Sequence of a Filtered Differential Sheaf      |                 |
|           | 24.12The Fary Spectral Sequence                                  | $\frac{24}{24}$ |
|           | 24.13Sphere Bundles with Singularities                           | 24              |
|           |                                                                  | $\frac{24}{24}$ |
|           | 24.14The Oliver Transfer and the Conner Conjecture               | 24              |
| 25        | Borel-Moore Homology                                             | 24              |
|           | 25.1 Cosheaves                                                   | 24              |
|           | 25.2 The Dual of a Differential Cosheaf                          | 24              |
|           | 25.3 Homology Theory                                             | 24              |
|           |                                                                  | 24              |
|           | 25.4 Maps of Spaces                                              | $\frac{24}{24}$ |
|           | 25.5 Subspaces and Relative Homology                             |                 |
|           | 25.6 The Viertoris Theorem, Homotopy and Covering Spaces         | 24              |
|           | 25.7 The Homology Sheaf of a Map                                 | 24              |
|           | 25.8 The Basic Spectral Sequence                                 | 24              |
|           | 25.9 Poincaré Duality                                            | 24              |
|           | 25.10The Cap Product                                             | 24              |
|           | 25.11Intersection Theory                                         | 24              |
|           | 25.12Uniqueness Theorems                                         | 24              |
|           | 25.13Uniqueness Theorems for Maps and Relative Homology          | 24              |
|           | 25.14The Künneth Formula                                         | 24              |
|           | 25.15 Change of Rings                                            | 24              |

|            | 25.16Generalised Manifolds                                           | 24                                      |
|------------|----------------------------------------------------------------------|-----------------------------------------|
|            | 25.17Locally Homogenous Spaces                                       | 24                                      |
|            | 25.18Homological Fibrations and <i>p</i> -adic Transformation Groups | 24                                      |
|            | 25.19The Transfer Homomorphism on Homology                           | $\begin{array}{c} 24 \\ 24 \end{array}$ |
|            | 25.200 militar Theory in Homology                                    | 21                                      |
| <b>26</b>  | Cosheaves and Cech Homology                                          | 24                                      |
|            | 26.1 Theory of Cosheaves                                             | 24                                      |
|            | 26.2 Local Triviality                                                | 24                                      |
|            | 26.3 Local Isomorphisms                                              | $\begin{array}{c} 24 \\ 24 \end{array}$ |
|            | 26.5 The Reflector                                                   | 24                                      |
|            | 26.6 Spectral Sequences                                              | 24                                      |
|            | 26.7 Coresolutions                                                   | 24                                      |
|            | 26.8 Relative Cech Homology                                          | 24                                      |
|            | 26.9 Locally Paracompact Spaces                                      | 24                                      |
|            | 26.10Borel-Moore Homology                                            | 24                                      |
|            | 26.11Modified Barel-Moore Homology                                   | $\begin{array}{c} 24 \\ 24 \end{array}$ |
|            | 26.13Acyclic Coverings                                               | 24                                      |
|            | 26.14Applications to Maps                                            | 24                                      |
|            |                                                                      |                                         |
| V          | I Introduction to Algebraic K-Theory                                 | <b>25</b>                               |
| <b>27</b>  | Projective Modules and $K_0\Lambda$                                  | <b>25</b>                               |
| <b>28</b>  | Constructing Projective Modules                                      | <b>25</b>                               |
| <b>2</b> 9 | The Whitehead Group $K_1\Lambda$                                     | <b>25</b>                               |
| <b>30</b>  | The Exact Sequence Associated with an Ideal                          | <b>25</b>                               |
| <b>31</b>  | Steinberg Groups and the Functor $K_2$                               | <b>25</b>                               |
| <b>32</b>  | Extending the Extact Sequences                                       | 25                                      |
| 33         | The Case of a Commutative Banch Algebra                              | <b>25</b>                               |
| <b>34</b>  | The Product $K_1\Lambda \otimes K_1\Lambda \to K_2\Lambda$           | <b>25</b>                               |
| <b>35</b>  | Computations in the Steinberg Group                                  | 25                                      |
| <b>36</b>  | Computation of $K_2Z$                                                | 25                                      |
| <b>37</b>  | Matsumoto's Computation of $K_2$ of a Field                          | 25                                      |
| <b>38</b>  | Proof of Matsumoto's Theorem                                         | <b>25</b>                               |
|            | More about Dedekind Domains                                          | <b>25</b>                               |
|            | The Transfer Homomorphism                                            | 25                                      |
|            | Power Norm Residue Theorems                                          | 25                                      |
| <b>42</b>  | Number Fields                                                        | 25                                      |

| VIII Formal Knot Theory, Kauffman                  | 26 |
|----------------------------------------------------|----|
| 43 Introduction                                    | 26 |
| 44 States, Trails and the Clock Theorem            | 26 |
| 45 State Polynomials and the Duality Conjecture    | 26 |
| 46 Knots and Links                                 | 26 |
| 47 Axiomatic Link Calculations                     | 26 |
| 48 Curliness and the Alexander Polynomial          | 26 |
| 49 The Coat of Many Colours                        | 26 |
| 50 Spanning Surfaces                               | 26 |
| 51 The Genus of Alternative Links                  | 26 |
| 52 Ribbon Knot and the Arf Invariant               | 26 |
| IX An Introduction to Invariants and Moduli, Mukai | 27 |
| 53 Invariants and Moduli                           | 27 |
| 54 Rings and Polynomials                           | 27 |
| 55 Algebraic Varieties                             | 27 |
| 56 Algebraic Groups and Rings of Invariants        | 27 |
| 57 The Construction of Quotient Varieties          | 27 |
| 58 The Projective Quotients                        | 27 |
| 59 The Numerical Criterion and Some Applications   | 27 |
| 60 Grassmannians and Vector Bundles                | 27 |
| 61 Curves and their Jacobians                      | 27 |
| 62 Stable Vector Bundles on Curves                 | 27 |
| 63 Moduli Functors                                 | 27 |
| 64 Intersection Numbers and the Verlinde Formula   | 27 |
| X Simplicial and Dendroidal Homotopy Theory        | 28 |
| 65 Operads                                         | 28 |
| 65.1 Operads                                       |    |
| 65.3 Trees                                         |    |
| 65.4 Alternative Definitions for Operads           |    |

|            | 65.6 The Tensor Product of Operads                         | 30        |
|------------|------------------------------------------------------------|-----------|
|            | 65.7 The Boardman-Vogt Resolution of an Operad             | 30        |
|            | 65.8 Configuration Spaces and the Fulton-MacPherson Operad | 30        |
|            | 65.9 Configuration Spaces and the Operad of Little Cubes   | 30        |
| <b>66</b>  | Simplicial Sets                                            | 30        |
|            | 66.1 The Simplex Category $\Delta$                         | 30        |
|            | 66.1.1 Limits and Colimits of The Simplicial Category      | 31        |
|            | 66.2 Simplicial Sets and the Geometric Realisation         | 31        |
| 67         | Dendroidal Sets                                            | 32        |
| <b>68</b>  | Tensor Products of Dendroidal Sets                         | 32        |
| <b>6</b> 9 | Kan Conditions for Simplicial Sets                         | 32        |
| <b>7</b> 0 | Kan Conditions for Dendroidal Sets                         | 32        |
| <b>7</b> 1 | Model Categories                                           | 32        |
| <b>7</b> 2 | Model Structures on the Category of Simplicial Sets        | 32        |
| <b>7</b> 3 | Three Model Structures on the Category of Dendroidal Sets  | <b>32</b> |
| 74         | Reedy Categories and Diagrams of Spaces                    | 32        |
| <b>7</b> 5 | Mapping Spaces and Bousfield Localisations                 | <b>32</b> |
| <b>7</b> 6 | Dendroidal Spaces and $\infty$ -Operads                    | <b>32</b> |
| 77         | Left Fibrations and the Covariant Model Structure          | 32        |
| <b>7</b> 8 | Simplical Operads and $\infty$ -Operads                    | <b>32</b> |
| <b>7</b> 9 | Some Research                                              | 32        |
|            | 79.1 Yubiwal Sets                                          | 32        |

# Part I

# Algebraic Geometry, Hartshorne

In this part, I will be going through the work of Hartshorne as he laid out in [Har13]. The book is sectioned into 5 distinct chapters - 'Varieties', 'Schemes', 'Cohomology', 'Curves' and 'Surfaces'. We study them in order as they flow nicely.

# 1 Varieties

**Definition 1** Affine n-Space over k: Let k be a field and  $n \in \mathbb{N}$ . Then the affine n-space over k is defined

$$\mathbb{A}_{k}^{n} = \{(k_{1}, ..., k_{n}) \in k^{n}\}$$

It seems that this is a silly definition, but later on we will see that it is useful to have a distinction between the variety  $\mathbb{A}^n_k$  and the set of points in  $k^n$ . We later view  $\mathbb{A}^n_k$  as an affine variety - an object in some arbitrary space rather than the set of k-tuples.

Let  $A = k[x_1, ..., x_n]$  be the polynomial ring over k in n variables. Then  $f \in A$  is a map  $f : k^n \to k$ . We define the vanishing locus of this function in the following way:

**Definition 2** Vanishing Locus of a Polynomial: Let  $f \in A = k[x_1, ..., x_n]$ , then the vanishing locus is

$$\mathbb{V}(f) := \{ p \in \mathbb{A}^n_k : f(p) = 0 \}$$

We can develop a more advanced analogue of this:

**Definition 3** Vanishing Locus of a Set of Polynomials: Let  $T = \{f_i\}_{i \in I} \subset A = k[x_1, ..., x_n]$ , then the vanishing locus of T is

$$\mathbb{V}(T) := \{ p \in \mathbb{A}^n_k : f(p) = 0, \quad \forall f \in T \}$$

Some examples:





Figure 1: The vanishing locus of two separate polynomials plotted in  $\mathbb{R}^2$ 

- 1.1 Affine Varieties
- 1.2 Projective Varieties
- 1.3 Morphisms
- 1.4 Rational Maps
- 1.5 Nonsingular Varieties
- 1.6 Nonsingular Curves
- 1.7 Intersections in Projective Space
- 2 Schemes
- 2.1 Sheaves
- 2.2 Schemes
- 2.3 First Properties of Schemes
- 2.4 Separated and Proper Morphisms
- 2.5 Sheaves of Modules
- 2.6 Divisors
- 2.7 Projective Morphisms
- 2.8 Differentials
- 2.9 Formal Schemes
- 3 Cohomology
- 3.1 Derived Functors
- 3.2 Cohomology of Sheaves
- 3.3 Cohomology of a Noetherian Affine Scheme
- 3.4 Cech Cohomology
- 3.5 The Cohomology of Projective Space
- 3.6 Ext Groups and Sheaves
- 3.7 The Serre Duality Theorem
- 3.8 Higher Direct Images of Sheaves
- 3.9 Flat Morphisms
- 3.10 Smooth Morphisms
- 3.11 The Theorem on Formal Functions
- 3.12 The Semicontinuity Theorem
- 4 Curves
- 4.1 Riemann-Roch Theorem
- 4.2 Hurwitz's Theorem
- 4.3 Embeddings in Projective Space
- 4.4 Elliptic Curves
- 4.5 The Canonical Embedding
- i.9 The Canomical Embedding

- 5.5 Birational Transformations
- 5.6 Classification of Surfaces

# Part II

# Commutative Geometry with a View Toward Algebraic Geometry, Eisenbud

# 6 Preliminaries

### 6.1 Rings and Ideals

**Definition 4** Ring: A ring is an abelian group R with a multiplication operation  $*: R \times R \to R$  as well as an identity element  $1 \in R$  such that:

$$a(bc) = (ab)c \quad \forall a, b, c \in R$$
$$a(b+c) = ab + ac \quad \forall a, b, c \in R$$
$$(b+c) = ba + ca \quad \forall a, b, c \in R$$
$$1a = a1 = a \quad \forall a \in R$$

A ring is commutative if the ring commutes with respect to multiplication, that is  $ab = ba \quad \forall a, b \in R$ .

**Definition 5** A Unit in a Ring: Let R be a ring. An element  $u \in R$  is a unit if it is invertible, that is there exists some  $v \in R$  such that  $vu = 1 \in R$ .

Proposition 1 Uniqueness of the Multiplicative Inverse of an Element in a Ring: Let  $u \in R$  where R is a ring. Then  $us = ut = 1 \implies s = t$ , i.e. inverses are unique in R and we can speak of 'the' inverse of u.

*Proof* Consider the same set up. Then we have  $su = 1 = ut^{-1}$ . We then have

$$s = s1$$

$$= s(ut)$$

$$= (su)t$$

$$= t$$

So we are done.

**Definition 6** Field: A field is a non-zero ring such that every non-zero element is invertible.

**Definition 7** Zero Divisor of a Ring: Let R be a ring. A zero-divisor in R is a non-zero element u such that there is another non-zero element s with us = 0

Whilst this seems rather abstract, zero divisors crop up more frequently than you would imagine. For example if we consider the hours on a clock, with the multiplication operation between hours being the usual one (that is the hour 3 multiplied by the hour 5 is the hour 15, but on a clock this would be the hour 3), then we have zero-divisors for any integer n such that there is some k with nk = 12m for some  $m \in \{0, ..., 11\}$ . For example 3, 4 are a pair of zero-divisors, 2, 6 is another example.

**Definition 8** Ideal of a Ring: Let R be a ring. An ideal I in R is an additive subgroup such that if rinR,  $s \in I$  then  $rs \in I$ . An ideal I is said to be generated by the subset  $S \subseteq I$  if any element in I can be expressed as a linear combination (over R) of elements in S. More specifically,

$$\exists \theta_1, ..., \theta_n \in R, s_1, ..., s_n \in \mathcal{S} : r = \sum_{i=1}^n \theta_i s_i$$

<sup>&</sup>lt;sup>1</sup>It seems that we have used commutativity of R here but we have not. If us = 1 then  $(su)s = s(us) = s \implies su = (su)ss^{-1} = ss^{-1} = 1$ 

Some important notes here. A ring is **principal** if it is generated by a single element, in which case we write I = (s). An ideal  $I \subset R$  is prime if for any  $f, g \in R$ , if we have  $fg \in I$  then either f or g is in I. A ring R is a domain if (0) is a prime ideal. A maximal ideal of R is a proper ideal  $\mathfrak{m}$  that is not contained in any other ideal. Moreover, if  $\mathfrak{m}$  is a maximal ideal, then  $R/\mathfrak{m}$  is a field.

**Proposition 2** Let R be a ring and  $\mathfrak{m}$  a maximal ideal of R. Then  $R/\mathfrak{m}$  is a field.

**Definition 9** Commutative Algebra over a Ring: Let R be an abelian ring. A commutative algebra over R is a commutative ring S with a ring homomorphism  $\alpha : R \to S$ .

**Proposition 3** Any ring is an algebra over the ring over integers  $\mathbb{Z}$ .

**Definition 10** Subalgebras: Let S be an algebra over a commutative ring R. A subring S' is a commutative R-subalgebra of S if  $Im(\alpha) = \alpha(R) \subset S'$ 

A homomorphism of R-algebras  $\phi: S \to T$  is a homomorphism of rings such that  $\phi(rs) = r\phi(s) \quad \forall r \in R, s \in S.$ 

### 6.1.1 Unique Factorisation

Let R be a ring. An element  $r \in R$  is irreducible if it is not a unit and r = st implies that one of s, t is a unit in R. A ring R is a **UFD**if any factorisation is unique up to scaling by units in R.

### 6.1.2 Modules

**Definition 11** *Modules over Rings:* Let R be a ring. An R-module M is an abelian group together with an action with R, i.e. a map  $\mathbb{R} \times M \to M$  expressed as  $(r,m) \to rm$  satisfying  $\forall r, s \in R, mn \in M$ :

- r(sm) = (rs)m
- r(m+n) = rm + rn
- (r+s)m = rm + sm
- 1m = m

The most interesting R-modules are those that take the form of ideals I and their corresponding factor rings R/I. If M is an R-module then the annihilator of M is

$$ann_R(M) := \{r \in R : rM = 0\}$$

An example of which is  $\mathfrak{ann}_R(R/I) = I$  for any ideal  $I \subset R$ . We can generalise this notion of quotients. Let I, J be ideals of R, we write  $(I : J) = \{f \in R : fJ \subset I\}$ . Generalising further we get the notion of submodules. Let M, N be submodules of an R-module P, we write  $(M : N) = \{f \in R : fM \subset N\}$ .

If M, N are R-modules then the direct sum  $M \oplus N$  is the module  $M \oplus N = \{(m, n) : m \in M, n \in N\}$ . There are the natural inclusion maps  $M \hookrightarrow M \oplus N, m \to (m, 0)$  and projection maps  $\pi : M \oplus N \to M, (m, n) \to m$ . If we have existence of maps  $\alpha : M \to P, \sigma : P \to M, \sigma \circ \alpha = id_P, \alpha \circ \sigma = id_M$  then we say M is a direct summand of P. In this case we actually have a nice formula,

$$P \simeq M \oplus \ker \sigma$$

The simplest form of R-modules are just direct sums of the original ring. Modules of this form are called free modules (over R). A small digression is made here. The direct product of R-modules  $M_i$ ,  $\prod_i M_i$  is the set of tuples  $(m_i)$  whereas the direct sum is  $\bigoplus_i M_i \subset \prod_i M_i$  where an element  $\tilde{m} \in \bigoplus_i M_i$  is an n-tuple with the additional constraint that all but finitely many are equal to 0.

<sup>&</sup>lt;sup>2</sup>This seems like a weird definition at first, but it is equivalent to not having any zero-divisors. If  $fg \in (0)$  then (0) prime would men either f = 0 or g = 0, i.e. no zero-divisors

A free R-module is a module that is isomorphic to a direct sum of copies of R. If M is a finitely generated free R-module then  $M \cong R^n$  for some  $n \in \mathbb{N}$ . If A, B, C are R-modules and  $\alpha : A \to B, \beta : B \to C$  are homomorphisms, then a sequence

$$A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C$$

is exact if  $Im(\alpha) = \ker(\beta)$ . In general a sequence

$$0 \to A_1 \to A_2 \to \dots \to A_n$$

is exact if  $\ker(\phi_i: A_i \to A_{i+1}) = Im(\phi_{i-1}: A_{i-1} \to A_i)$  A short exact sequence is an exact sequence of the form

$$0 \to A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C \to 0$$

Some nice examples follow. If  $M_1, M_2$  are submodules of M then  $M_1 + M_2 \subset M$  is also a submodule. We get the short exact sequence

$$0 \to M_1 \cap M_2 \stackrel{\iota}{\to} M_1 \oplus M_2 \stackrel{(m_1, m_2) \to m_1 - m_2}{\to} M_1 + M_2 \to 0$$

# 7 Basic Constructions

### 7.1 Localisation

A local ring is a ring with a single unique maximal ideal. The technique of localisation reduces many problems in commutative algebra to problems on commutative rings. The idea of localisation is as follows. Given a point p in an algebraic set  $X \subset \mathbb{A}^n_k$ , we want to investigate what X looks like near p, that is we want to investigate arbitrarily small open neighbourhoods of p in the Zariski topology. The Zariski open neighbourhoods of p are sets of the form  $X \setminus Y$  for  $p \not in Y \subset X$ .

### 7.1.1 Fractions

**Definition 12** Localisation of an R-Module via a Multiplicatively Closed Subset U: Let R be a ring, M an R-module and  $U \subset R$  a multiplicatively closed subset. The localisation of M at U,  $M[U^{-1}]$  is the set of equivalent classes of pairs  $(m,u) \sim (m',u')$  where  $m,m' \in M,u,u' \in U$  are related if there is some  $v \in U$  such that v(mu'-m'u)=0.

**Proposition 4** Let U be multiplicatively closed set of R and let M be an R-module. An element  $m \in M$  goes to 0 in  $M[U^{-1}]$  under the map  $\pi: M \to M[U^{-1}], m \to m/1$  if m is annihilated by an element  $u \in U$ . In particular, if M is finitely generated then  $M[U^{-1}] = 0$  iff M is annihilated by an element of U.

Proof Let  $Ann_R(m) = \{r \in R : rm = 0\}$  be the annihilator of M in R. Then  $m \to m/1 \in M[U^{-1}]$  maps to 0 if it is equivalent to 0 under the relation , that is to say  $m/1 \sim 0 \iff \exists u \in U : u(m-0) = um = 0$ . That is the annihilator of m is some subset of U.

The first example of localisation is **quotient field of an integral domain**. Let R be an integral domain, and take the localisation of R with respect to  $U = R \setminus \{0\}$ . This localisation,  $R[U^{-1}] =: K(R)$  is the **total quotient ring of** R.

If P is a prime ideal of R and  $U = R \setminus P$ , then we have another localisation  $R[U^{-1}]$ . Let R be the coordinate ring of a variety X then the local ring of X at a point  $x \in X$  is then the local ring found via inverting any elements that don't vanish at x. Recall that a point  $x \in X$  corresponds to a prime ideal  $\mathfrak{m}_x$  of functions that vanish at x. Then the local ring (which I learnt denoted as  $\mathcal{O}_{x,X}$ ) is  $R[(R \setminus P)^{-1}]$ .

We can compute some examples. Let  $X = \mathbb{V}(x^2 + y^2 - 1) \subset \mathbb{A}^2$ . The local ring at (1,0) is then:

$$\mathcal{O}_{(1,0),X} := (K[x,y]/(x^2+y^2-1))_{(x-1,y)}$$

This seems rather abstract but we can directly compute the unique maximal ideal. The maximal ideal  $m_{(1,0)}=(x-1,y)$  has  $m_{(1,0)}^2=((x-1)^2,(x-1)y,y^2)$ . Under the relation generated in the coordinate ring we know that  $x^2+y^2=1$ :

$$x^{2} + y^{2} - 1 = (x - 1)(x + 1) + y^{2}$$
  
 $\implies x - 1 = y^{2}/(x + 1)$ 

i.e. that  $x-1 \in m_{(1,0)}^2$ , so  $m_{(1,0)}^2 = (y)$  and  $\mathcal{O}_{(1,0),X}$  is completely generated by y. There are a couple of things to note here. In this case, when  $t \in m_p \backslash m_p^2$  is a generator we say t is a uniformiser for the maximal local ring. Also, have have just shown that the local ring is 1 dimensional as viewed as a vector space over  $K[X]/\mathfrak{m}_p$ . This is an algebraic criterion for non-singularity, that is the point  $(1,0) \in X$  is a non-singular point.

- 7.1.2 Hom and Tensor
- 7.1.3 The Construction of Primes
- 7.1.4 Rings and Modules of Finite Length
- 7.1.5 Products of Dom
- 7.2 Associated Primes and Primary Decomposition
- 7.2.1 Associated Primes
- 7.2.2 Prime Avoidance
- 7.2.3 Primary Decomposition
- 7.2.4 Primary Decomposition and Factorality
- 7.2.5 Primary Decomposition in the Graded Case
- 7.2.6 Extracting Information form Primary Decomposition
- 7.2.7 Why Primary Decomposition is not Unique
- 7.2.8 Geometric Interpretation of Primary Decomposition
- 7.2.9 Symbolic Powers and Functions Vanishing to High Order
- 7.3 Integral Dependence and the Nullstellensatz
- 7.3.1 The Cayley-Hamilton Theorem and Nakayama's Lemma
- 7.3.2 Normal Domains and the Normalisation Process
- 7.3.3 Normalisation in the Analytic Case
- 7.3.4 Primes in an Integral Extension
- 7.3.5 The Nullstellensatz
- 7.4 Filtrations and the Artin-Rees Lemma
- 7.4.1 Associated Graded Rings and Modules
- 7.4.2 The Blowup Algebra
- 7.4.3 The Krull Intersection Theorem
- 7.4.4 The Tangent Cone
- 7.5 Flat Families
- 7.5.1 Elementary Examples
- 7.5.2 Introduction to Tor
- 7.5.3 Criteria for Flatness
- 7.5.4 The Local Criterion for Flatness
- 7.5.5 The Rees Algebra
- 7.6 Completions and Hensel's Lemma
- 7.6.1 Examples and Definitions
- 7.6.2 The Utility of Completions
- 7.6.3 Lifting Idempotents
- 7.6.4 Cohen Structure Theory and Coefficient Fields
- 7.6.5 Basic Properties of Completion
- 7.6.6 Maps from Power Series Rings

| Part III Commutative Ring Theory, Matsumura                          |  |  |
|----------------------------------------------------------------------|--|--|
|                                                                      |  |  |
| 10 Commutative Rings and Modules                                     |  |  |
| 10.1 Ideals                                                          |  |  |
| 10.2 Modules                                                         |  |  |
| 10.3 Chain Conditions                                                |  |  |
| 11 Prime Ideals                                                      |  |  |
| 11.1 Localisation and Spec of a Ring                                 |  |  |
| 11.2 The Hilbert Nullstellensatz and First Steps in Dimension Theory |  |  |
| 11.3 Associated Primes and Primary Decomposition                     |  |  |
| 12 Properties of Extension Rings                                     |  |  |
| 12.1 Flatness                                                        |  |  |
| 12.2 Completion and the Artin-Rees Lemma                             |  |  |
| 12.3 Integral Extensions                                             |  |  |
| 13 Valuation Rings                                                   |  |  |
| 13.1 General Valuations                                              |  |  |
| 13.2 DVRs amd Dedekind Rings                                         |  |  |
| 13.3 Krull Rings                                                     |  |  |
| 14 Dimension Theory                                                  |  |  |
| 14.1 Graded Rings, the Hilbert Function and the Samuel Function      |  |  |
| 14.2 Systems of Parameters and Multiplicity                          |  |  |

14.3 The Dimension of Extension Rings

# 15 Regular Sequences

- 15.1 Regular Sequences and the Koszul Complex
- 15.2 Cohen-Macualay Rings
- 15.3 Gorenstein Rings

# 16 Regular Rings

- 16.1 Regular Rings
- 16.2 UFDs
- 16.3 Complete Intersection Rings

# 17 Flatness Revisited

- 17.1 The Local Flatness Criterion
- 17.2 Flatness and Fibres
- 20

Part IV
Algebraic Geometry I: Schemes,
Gortz-Wedhorn

Part V
Algebraic Geometry II: Cohomology of Schemes, Gortz-Wedhorn

# Part VI

| Sheaf Theory, Bredon                                      |
|-----------------------------------------------------------|
| 21 Sheaves and Presheaves                                 |
| 21.1 Definitions                                          |
| 21.2 Homomorphisms, Subsheaves and Quotient Sheaves       |
| 21.3 Direct and Inverse Images                            |
| 21.4 Cohomomorphisms                                      |
| 21.5 Algebraic Constructions                              |
| 21.6 Supports                                             |
| 21.7 Classical Cohomology Theories                        |
| 22 Sheaf Cohmology                                        |
| 22.1 Differential Sheaves and Resolutions                 |
| 22.2 The Canonical Resolution and Sheaf Cohomology        |
| 22.3 Injective Sheaves                                    |
| 22.4 Acyclic Sheaves                                      |
| 22.5 Flabby Sheaves                                       |
| 22.6 Connected Sequences of Functors                      |
| 22.7 Axioms for Cohmomology and the Cup Product           |
| 22.8 Maps of Spaces                                       |
| 22.9 $\Phi$ -Soft and $\Phi$ -Fine Sheaves                |
| 22.10 Subspaces                                           |
| 22.11 The Vietoris Maping Theorem and Homotopy Invariance |
| 22.12 Relative Cohomology                                 |
| 22.13 Mayer-Vietoris Theorems                             |
| 22.14 Continuity                                          |
| 22.15 The Künneth and Universal Coefficient Theorems      |
| 22.16 Dimension                                           |
| 22.17 Local Connectivity                                  |
| 22.18 Change pf Supports and Local Cohomology Groups      |
| 22.19 The Transfer Homomorphism and the Smith Sequences   |
| 22.20 Steenrod's Cyclic Reduced Powers                    |

Comparison with Other Cohomology Theories

23.1 Singular Cohomology

**23** 

- Alexander-Spanier Cohomology 23.2
- de Rham Cohmomology 23.3

22.21 The Steenrod Operations

# Part VII

# Introduction to Algebraic K-Theory

- 27 Projective Modules and  $K_0\Lambda$
- 28 Constructing Projective Modules
- 29 The Whitehead Group  $K_1\Lambda$
- 30 The Exact Sequence Associated with an Ideal
- 31 Steinberg Groups and the Functor  $K_2$
- 32 Extending the Extact Sequences
- 33 The Case of a Commutative Banch Algebra
- **34** The Product  $K_1\Lambda \otimes K_1\Lambda \to K_2\Lambda$
- 35 Computations in the Steinberg Group
- **36** Computation of  $K_2Z$
- 37 Matsumoto's Computation of  $K_2$  of a Field
- 38 Proof of Matsumoto's Theorem
- 39 More about Dedekind Domains
- 40 The Transfer Homomorphism
- 41 Power Norm Residue Theorems
- 42 Number Fields

# Part VIII

# Formal Knot Theory, Kauffman

- 43 Introduction
- 44 States, Trails and the Clock Theorem
- 45 State Polynomials and the Duality Conjecture
- 46 Knots and Links
- 47 Axiomatic Link Calculations
- 48 Curliness and the Alexander Polynomial
- 49 The Coat of Many Colours
- 50 Spanning Surfaces
- 51 The Genus of Alternative Links
- 52 Ribbon Knot and the Arf Invariant

# Part IX

# An Introduction to Invariants and Moduli, Mukai

- 53 Invariants and Moduli
- 54 Rings and Polynomials
- 55 Algebraic Varieties
- 56 Algebraic Groups and Rings of Invariants
- 57 The Construction of Quotient Varieties
- 58 The Projective Quotients
- 59 The Numerical Criterion and Some Applications
- 60 Grassmannians and Vector Bundles
- 61 Curves and their Jacobians
- 62 Stable Vector Bundles on Curves
- 63 Moduli Functors
- 64 Intersection Numbers and the Verlinde Formula

# Part X

# Simplicial and Dendroidal Homotopy Theory

# 65 Operads

### 65.1 Operads

**Definition 13** Operad: An operad P consists of a set of colours C and for each  $n \ge 0$  and sequence  $c_1, ..., c_n, c$  of colours in C, a set  $P(c_1, ..., c_n; c)$  of operations, thought of as taking n inputs of colours  $c_1, ..., c_n$  and with output of colour c. Moreover there are the structure maps

- $\forall c \in C, \exists 1_c \in P(c; c),$
- For  $\sigma \in \Sigma_n$  a map

$$\sigma^*: P(c_1, ..., c_n; c) \to P(c_{\sigma(1)}, ..., c_{\sigma(n)}; c)$$

denoted  $\sigma^* \circ p = p \circ \sigma$ 

- For any sequence  $c_1, ..., c_n$  and n-tuple of sequences  $d_1^i, ..., d_{k_i}^i$ , a composition
  - $\gamma: P(c_1, ..., c_n; c) \times \prod_{i=1}^n P(d_1^i, ..., d_{k_i}^i; c_i) \to P(d_1^1, ..., d_{k_n}^n; c)$

which is written as  $\gamma(p, q_1, ..., 1_n) \rightarrow p \circ (q_1, ..., q_n)$ 

and there are further requirements on the structure maps:

- $\forall p \in P(c_1, ..., c_n; c), \gamma(1_c, p) = p,$
- $\forall p \in P(c_1, ..., c_n; c), \gamma(p, 1_{c_1}, ..., 1_{c_n}) = p$

There are some classical notation we must be weary of and state here. Let P be an operad with a singleton colour set, i.e.  $C = \{*\}$ . Then we can write  $P(c_1, ..., c_n; c) = P(c, ..., c; c) =: P(n)$ . There is an obvious formulation for the compostion in this case:

$$P(n) \times \prod_{i=1}^{n} P(k_i) \to P(k_1 + \dots + k_n)$$

In this case we say P is uncoloured. If  $C \notin \{\phi, \{*\}\}$  then we say P is a coloured operad. We can then clearly see that

$$\begin{array}{ccc} \text{Monoids} & \longleftarrow & \text{Categories} \\ & & & \downarrow \\ \text{Uncoloured Operads} & \longleftarrow & \text{Operads} \end{array}$$

The definition of an operad allows for n = 0 in  $P(c_1, ..., c_n; c)$ , which we define as P(-; c). The elements of P(-; c) are called the constants of colour c, and an operad with  $P(-; c) = \{*_c\}$  is called unital. An operad P is open if there are no constants for any colour, i.e. its interior  $P^o$  (the set of constants) is empty.

The most fundamental examples of operads are **Com** and **Ass**:

- **Com** is the commutative operad with  $Com(n) = \{*\},$
- Ass is the associative operad with  $Ass(n) = \Sigma_n$
- Tree<sup>pl</sup> is the planar tree operad. The n-ary operations here are the set of planar rooted trees with n numbered leaves.

$$\mathbf{Tree}^{pl}(7)\ni \tilde{T}=\ \ \overset{T_2}{\diagdown}\ \ \overset{T_1}{\diagdown}$$

Then in fact  $\gamma(T, T_1, T_2) = \tilde{T}$ . The operation of composition on the operad  $\mathbf{Tree}^{pl}$  is computed as  $\gamma(T \in \mathbf{Tree}^{pl}(n), T_1 \in \mathbf{Tree}^{pl}(k_1), ..., T_n \in \mathbf{Tree}^{pl}(k_n)) = \hat{T}$  where  $\hat{T} \in \mathbf{Tree}^{pl}(k_1 + ... + k_n)$  is the original T but with the subtree  $T_i$  grafted onto the leaf i for all choices of i.

**Definition 14** Topological Operad: A topological operad is an operad P where each set of operations  $P(c_1,...,c_n;c)$  is equipped with some topology and all the structure maps are continuous with respect to this topology.

The most basic form of a topological operad is the little d-cubs operad  $\mathbf{E}_d$ . The space  $\mathbf{E}_d(n)$  is the space of n numbered d-dimensional cubes inside the d-dimensional unit cube  $[0,1]^d$ . The operadic composition between  $p \in \mathbf{E}_d(n)$  with operations  $q_1, ..., q_n$  is given by substituting the rescaled  $q_i$  into the ith cube of p. Note that this is really just a topological analogue to the planar tree operad  $\mathbf{Tree}^{pl}$ , where instead of grafting trees onto leaves we are scaling and embedding cubes in some smooth way.

More specifically, a point in  $\mathbf{E}_d(n)$  is an *n*-tuple of embeddings  $f_1, ..., f_n : [0, 1]^d \to [0, 1]^d$  satisfying:

- Each  $f_i$  is the composition of d affine embeddings,
- The interiors of the cubes embedded by  $f_i$  are mutually disjoint

We can now observe that operads form a category in a very natural fashion. Given two operads P, Q, a morphism  $\varphi : P \to Q$  is a function  $f : C_p \to C_Q$  on operadic colours and for each sequence  $c_1, ..., c_n$ ; c of  $C_P$ , we have

$$\varphi_{(c_1,...,c_n;c)}: P(c_1,...,c_n;c) \to Q(f(c_1),...,f(c_n);f(c))$$

that is compatible in the natural way with  $\Sigma_n$  actions

### 65.2 Algebras for Operads

**Definition 15** Operadic Algebras: Let P be an operad. A P-algebra A is a family of sets  $\{A_c\}_{c \in C_P}$  together with maps

$$P(c_1,...,c_n;c) \times A_{c_1} \times ... \times A_{c_n} \to A_c$$

written  $(p, a_1, ..., a_n) \to A(p)(a_1, ..., a_n)$ . These maps also satisfy:

- $1_c(a) = a \quad \forall a \in A_c$
- $\sigma \in \Sigma_n, a_i \in A_{c_i}, \sigma^* p(a_{\sigma(1)}, ..., a_{\sigma(n)}) = p(a_1, ..., a_n)$

**Definition 16** Morphisms of Operadic Algebras: Let A, B be two P-algebras. A morphism  $f: A \to B$  is a family of maps

$$f_c: A_c \to B_c$$

which are compatible:

$$f_c(A(p)(a_1,...,a_n)) = B(p)(f_{c_1}(a_1),...,f_{c_n}(a_n))$$

**Definition 17** Category of P-Algebras: Let P be an operad. Then we have a category of P-algebras  $Alg_P$  with:

- $ObAlg_P = \{P algebras \ A\}$
- $Hom_{Alg_P}(A, B) = \{f : A \to B : f \text{ is a morphism of algebras}\}$

We can now see some examples of operadic algebras. A **Com** algebra is a set A together with a map  $\mu_n: A^{\times n} \to A$  for each  $n \geq 0$ . We can then verify that the category of algebras over the commutative operad,  $\operatorname{Alg}_{\mathbf{Com}}$  is the category of commutative monoids. In a similar way  $\operatorname{Alg}_{\mathbf{Ass}}$  is the category of associative monoids.

Consider the little-d cubes operad  $\mathbf{E}_d$ . Let X be a topological space with basepoint  $x_0$ . Then the loop space of X is  $\Omega X$ , the space of basepoint preserving maps  $S^1 \to X$ , or in otherwords  $\{\omega : [0,1] \to X, \omega(\partial[0,1]) = x_0\}$ . One can then inductively construct the d-fold loop space  $\Omega^d X = \Omega(\Omega^{d-1}X)$ .  $\Omega^d X$  is very naturally a  $\mathbf{E}_d$  algebra.

- 65.3 Trees
- 65.4 Alternative Definitions for Operads
- 65.5 Free Operads
- 65.6 The Tensor Product of Operads
- 65.7 The Boardman-Vogt Resolution of an Operad
- 65.8 Configuration Spaces and the Fulton-MacPherson Operad
- 65.9 Configuration Spaces and the Operad of Little Cubes

### 66 Simplicial Sets

# 66.1 The Simplex Category $\Delta$

**Definition 18** The Simplex Category  $\Delta$ :  $\Delta$  is the category with:

- $Ob\Delta = \mathbb{N}$ ,
- $Hom_{\Delta}([n],[m]) = \{order\ preserving\ maps\ [n] \to [m]\}$

There are special maps in  $\Delta$  - the elementary faces  $\delta^i:[m-1]\to[m]$  and elementary degeneracies  $\sigma^i:[m]\to[m-1]\ 0\le i\le m-1$ :

$$\delta^{i}(j) = \begin{cases} j & j < i \\ j+1 & j \ge i \end{cases}, \quad \sigma^{i}(j) = \begin{cases} j & j \le i \\ j-1 & j > i \end{cases}$$

These have some nice relations, called the cosimplicial identities:

- $\sigma_i \sigma_j = \sigma_{j-1} \sigma_i$ , i < j
- $\delta_i \delta_i = \delta_i \delta_{i-1}$

### 66.1.1 Limits and Colimits of The Simplicial Category

$$k \xrightarrow{f} n$$

$$\downarrow g \qquad \downarrow$$

$$m \to m + n$$

is a pushout, where f(i) = i, g(i) = m - k + i

### 66.2 Simplicial Sets and the Geometric Realisation

Let  $\mathcal{C}$  be a category. A simplicial object in  $\mathcal{C}$  is a functor  $X : \Delta^{op} \to \mathcal{C}$ . The morphisms between two simplicial objects over  $\mathcal{C}$  are the natural transformations of functors.

From this we obtain a category of simplicial objects on C, which has two notations:

$$\mathcal{C}^{\Delta^{op}}, s\mathcal{C}$$

where we use the left notation when we want to be reminded that elements are functors (and thus we treat the category in the standard way one treats a functor category) and the right when we want to be reminded of the underlying structure.

When C = Set then there is really nice structure here. First off, in this case we say  $X \in sSet$  is a simplicial set. We get back to this case soon but we expand on the definition of a simplicial object further

A simplicial object X in  $\mathcal{C}$  is given by a sequence of objects  $X_n = X([n])$  in  $\mathcal{C}$  together with maps  $\alpha^* : X_n \to X_m$  where  $\alpha \in \operatorname{Hom}_{\Delta}(m, n)$ . These maps should be functorial, i.e.

$$id^* = id : X_n \to X_n$$

$$(\alpha \circ \beta)^* = \beta^* \alpha^* \quad \alpha : [m] \to [n], \beta : [k] \to [m]$$

and a morphism between two simplicial objects is a morphism on objects  $f_n: X_n \to Y_n$  such that it is functorially compatible  $f_m \alpha^* = \alpha f_n$ .

Back to the case of simplicial sets. In this case we refer to  $X_n$  as the set of n-simplices of X. We have some special maps

$$d_i = (\delta_i)^* : X_n \to X_{n-1}$$

$$s_i = \sigma_i^* : X_{n-1} \to X_n$$

called the face maps and face degeneracies of the simplicial object X.

For now let's consider the common topological n-simplex:

$$\Delta^{n} = \{(t_0, ..., t_n) \in \mathbb{R}^{n+1} : \sum_{i} t_i = 1, t_i \ge 0\}$$

These can be thought of as generalisations of triangles in higher dimensions.  $\Delta^1$  is just the line y = -x + 1,  $\Delta^2$  is the set  $\{(x, y, 1 - (x + y) : 0 \le x, y, x + y \le 1)\}$  and so on. A function  $f: \{0, ..., m\} \to \{0, ..., n\}$  defines an affine map  $f_*: \Delta^m \to \Delta^n, v_i \to v_{f(i)}$  where  $v_i$  is the *i*th vertex of the simplex  $\Delta^m$ .

This construction makes the family of standard simplicies into a functor  $\Delta^{\bullet}: \Delta \to \mathbf{Top}$ .

$$\Delta^{\alpha}(t_0, ..., t_m) = (s_0, ..., s_n), s_j = \sum_{i \in \alpha^{-1}(j)} t_i$$

for  $\alpha \in \operatorname{Hom}_{\Delta}([m], [n])$ . Specifically the elementary face map  $\delta_i : [n-1] \to [n]$  is lifted to

$$\Delta^{\delta_i}:\Delta^{n-1}\to\Delta^n$$

and embeds  $\Delta^{n-1}$  as the face opposite the vertex i

Let's see this in low dimension. Let n=1 and i=0. We must keep track of what's going on. We have just claimed that  $\Delta^{\delta_0}$  embeds  $\Delta^0$  as the face opposite the vertex  $v_0$  in  $\Delta^1$ .

Recall that  $\Delta^0=\{1\in\mathbb{R}^1\}$  is a point and  $\Delta^1$  corresponds to the line y=1-x. Let's call the point  $(0,1)=v_0$  the first vertex. We have  $\Delta^{\delta_0}(t)=(\sum_{i\in\delta_0^{-1}(0)}t_i,\sum_{i\in\delta_0^{-1}(1)}t_i)$  but  $\delta_0^{-1}(1)=\{j\in[1]=\{0,1\}:j+1=1\text{ and }j\geq 0\}=0$ . Thus we get that  $\Delta^{\delta_0}(1)=(1,0)$ . So now we have gained the intuition for the following proposition

**Proposition 5** For maps  $\delta_i : [n-1] \to [n]$ , the map  $(\delta_i)_* = \Delta^{\delta_i} : \Delta^{n-1} \to \Delta^n$  embeds  $\Delta^{n-1}$  as the face opposite the vertex labelled i

Proof

- 67 Dendroidal Sets
- 68 Tensor Products of Dendroidal Sets
- 69 Kan Conditions for Simplicial Sets
- 70 Kan Conditions for Dendroidal Sets
- 71 Model Categories
- 72 Model Structures on the Category of Simplicial Sets
- 73 Three Model Structures on the Category of Dendroidal Sets
- 74 Reedy Categories and Diagrams of Spaces
- 75 Mapping Spaces and Bousfield Localisations
- 76 Dendroidal Spaces and  $\infty$ -Operads
- 77 Left Fibrations and the Covariant Model Structure
- 78 Simplical Operads and  $\infty$ -Operads
- 79 Some Research
- 79.1 Yubiwal Sets

# References

 $[{\rm Har}13]\ \ {\rm Robin}\ \ {\rm Hartshorne}.\ \ {\it Algebraic\ geometry},\ {\rm volume\ 52}.\ \ {\rm Springer\ Science\ \&\ Business\ Media},\ 2013.$