

IMM-NYU 309
JUNE 1963

NEW YORK UNIVERSITY
COURANT INSTITUTE OF
MATHEMATICAL SCIENCES

Note on the Busy Period in the Case of Infinite Means

HERMAN HANISCH and WARREN M. HIRSCH

PREPARED UNDER
CONTRACT NO. NONR-285(38)
OFFICE OF NAVAL RESEARCH

NYU IMM-309
c-1

NEW YORK UNIVERSITY
COURANT INSTITUTE — LIBRARY
4 Washington Place, New York 3, N.Y.

IMM-NYU 309
June 1963

New York University
Courant Institute of Mathematical Sciences

Note on the Busy Period in the Case of Infinite Means

Herman Hanisch and Warren M. Hirsch

This report represents results obtained under the sponsorship of the Office of Naval Research, Contract No. Nonr-285(38). Reproduction in whole or in part is permitted for any purpose of the United States Government.

We consider in this note an ordinary single server queue in which the service time of the first customer is an arbitrary constant b , the service times of succeeding customers are independent, identically distributed random variables with an arbitrary distribution function G , and the inter-arrival times are independent, identically distributed random variables with an arbitrary distribution function F . (We take these distribution functions to be continuous from the right). Assume that there is no point x_0 such that $G(x_0) - G(x_0 - 0) = F(x_0) - F(x_0 - 0) = 1$ (non-degeneracy assumption). Put

$$\mu_G = \int_{[0, \infty)} x dG(x),$$

and

$$\mu_F = \int_{[0, \infty)} x dF(x).$$

It is known [1] that if $\mu_G < \infty$ and $\mu_G \leq \mu_F$, then the probability, $p(b)$, that the busy period never terminates is 0. If $\mu_F < \mu_G \leq \infty$, then $p(b) \rightarrow 1$ as $b \rightarrow \infty$. When both distributions degenerate at x_0 , $p(b) = 1$ for all $b \geq x_0$. The method used to derive these results breaks down when $\mu_F = \mu_G = \infty$. This case, which is a little more delicate, is the subject of this note.

Put $T(x) = 1 - G(x)$, $R(x) = 1 - F(x)$, $\tilde{T}(s) = \int_{[0, \infty)} e^{-sx} T(x) dx$, $\tilde{R}(s) = \int_{[0, \infty)} e^{-sx} R(x) dx$, and

$$(1) \quad Q(s) = \frac{\tilde{R}(s)}{\tilde{T}(s)}, \quad s > 0.$$

If at least one of the means (μ_F or μ_G) is finite, $Q(0) (= \frac{\mu_F}{\mu_G})$ is well-defined, though possibly infinite, and determines the character of $p(b)$. When $\mu_F = \mu_G = \infty$, $Q(0)$ evidently is undefined, but we might anticipate that the behavior of $Q(s)$ in a neighborhood of $s = 0$ is the governing quantity. That this is indeed the case is shown, in Theorem 1, for the proof of which we need a lemma.

LEMMA. Let $A(t)$, $B(t)$, $0 \leq t < \infty$, be functions such that

$$(i) \quad B(t) \geq 0,$$

$$(ii) \quad \int_{[0, \infty)} B(t) dt = \infty,$$

and

$$(iii) \quad \lim_{t \rightarrow \infty} \frac{A(t)}{B(t)} = \lambda.$$

Then

$$\lim_{s \downarrow 0} \frac{\int_{[0, \infty)} e^{-st} A(t) dt}{\int_{[0, \infty)} e^{-st} B(t) dt} = \lambda.$$

Proof: Assume $\lambda = 0$, let $\varepsilon > 0$ be arbitrary, and choose t_0 such that $|A(t)| < \varepsilon B(t)$ for $t \geq t_0$. Then,

$$\lim_{s \downarrow 0} \sup \left| \frac{\int_{[0, \infty)} e^{-st} A(t) dt}{\int_{[0, \infty)} e^{-st} B(t) dt} \right|$$

$$\leq \lim_{s \downarrow 0} \sup \frac{\int_{[0, t_0]} |A(t)| dt + \varepsilon \int_{[t_0, \infty)} e^{-st} B(t) dt}{\int_{[0, \infty)} e^{-st} B(t) dt} \leq \varepsilon.$$

Since ε is arbitrary, the proof is complete for $\lambda = 0$. For general λ we need only replace $A(t)$ by $A(t) - \lambda B(t)$.

THEOREM 1. If $\lim_{s \downarrow 0} \sup Q(s) > 0$, then $p(b) = 0$ for all $b \geq 0$.

Proof: We have

$$\tilde{F}(s) \equiv \int_{[0, \infty)} e^{-sx} dF(x) = 1 - s\tilde{R}(s)$$

and

$$\tilde{G}(s) \equiv \int_{[0, \infty)} e^{-sx} dG(x) = 1 - s\tilde{T}(s).$$

It is shown in [1] that $p(b)$ satisfies the functional equation

$$(2) \quad p(b) = \int_{[0, \infty)} \int_{[0, b]} p(b-t+x) dF(t) dG(x),$$

and the transforms satisfy the equation

$$(3) \quad \tilde{p}(s) \equiv \int_{[0, \infty)} e^{-sx} p(x) dx = \tilde{F}(s) \int_{[0, \infty)} \phi_s(x) dG(x),$$

where

$$\phi_s(x) = \begin{cases} \int_{[0,\infty)} e^{-st} p(t+x) dt & \text{if } x \geq 0 \\ \phi_s(0) & \text{otherwise.} \end{cases}$$

Since

$$\begin{aligned} \tilde{p}(s) &= \int_{[0,\infty)} \int_{[0,\infty)} e^{-sx} p(x) dx dG(t) = \int_{[0,\infty)} \int_{[0,t)} e^{-sx} p(x) dx dG(t) \\ &\quad + \int_{[0,\infty)} \int_{[t,\infty)} e^{-sx} p(x) dx dG(t), \end{aligned}$$

we obtain (by interchanging the order of integration in the first term on the right-hand side and changing variables in the second term)

$$\tilde{p}(s) = \int_{[0,\infty)} e^{-sx} p(x) T(x) dx + \int_{[0,\infty)} e^{-st} \phi_s(t) dG(t).$$

Subtracting $\tilde{G}(s) \int_{[0,\infty)} \phi_s(x) dG(x)$ from both sides of (3) yields

$$\begin{aligned} (4) \quad & \int_{[0,\infty)} e^{-sx} p(x) T(x) dx + \int_{[0,\infty)} \phi_s(x) \left(e^{-sx} - \tilde{G}(s) \right) dG(x) \\ &= s \left(\tilde{T}(s) - \tilde{R}(s) \right) \int_{[0,\infty)} \phi_s(x) dG(x). \end{aligned}$$

It is shown in [1] that $p(b)$ is non-decreasing in b . Put

$$p(\infty) = \lim_{b \rightarrow \infty} p(b).$$

Then rewriting equation (4) in the more convenient form

$$(5) \quad \frac{\int_{[0,\infty)} e^{-sx} A(x) dx}{\int_{[0,\infty)} e^{-sx} B(x) dx} = \frac{(1 - \tilde{Q}(s)) \int_{[0,\infty)} s \phi_s(x) dG(x)}{-\frac{\int_{[0,\infty)} \phi_s(x) (e^{-sx} - \tilde{G}(s)) dG(x)}{\tilde{T}(s)}}$$

where $A(x) = p(x)T(x)$ and $B(x) = T(x)$, we obtain by lemma 1, bounded convergence, and the Abelian theorem for Laplace transforms

$$(6) \quad p(\infty) \lim_{s \downarrow 0} \sup Q(s) = - \lim_{s \downarrow 0} \sup \frac{\int_{[0,\infty)} \phi_s(x) (e^{-sx} - \tilde{G}(s)) dG(x)}{\tilde{T}(s)}.$$

We shall now show that the right-hand side of (6) is zero.

Putting

$$\psi_s(x) = \phi_s(x) - \frac{p(\infty)}{s},$$

and letting $\varepsilon > 0$ be arbitrary, we note that

$$\begin{aligned} \frac{\int_{[0,\infty)} \phi_s(x) (e^{-sx} - \tilde{G}(s)) dG(x)}{\tilde{T}(s)} &= - \frac{\int_{[0,x_0]} (1 - e^{-sx}) \psi_s(x) dG(x)}{\tilde{T}(s)} \\ &- \frac{\int_{[x_0,\infty)} (1 - e^{-sx}) \psi_s(x) dG(x)}{\tilde{T}(s)} + \int_{[0,\infty)} s \psi_s(x) dG(x), \end{aligned}$$

where x_0 is chosen so that $p(\infty) - p(x) < \varepsilon$ for $x \geq x_0$. By bounded convergence and the Abelian theorem for Laplace transforms,

$$\lim_{s \downarrow 0} \int_{[0, \infty)} s \psi_s(x) dG(x) = 0.$$

Moreover, since $|s\phi_s(x) - p(\infty)| < \varepsilon$ for $x \geq x_0$, $|s\psi_s(x)| \leq 1$, and $1-e^{-sx} \leq sx$, we have

$$\frac{\left| \int_{[x_0, \infty)} (1-e^{-sx})\psi_s(x) dG(x) \right|}{\tilde{T}(s)} \leq \varepsilon,$$

and

$$\frac{\left| \int_{[0, x_0]} (1-e^{-sx})\psi_s(x) dG(x) \right|}{\tilde{T}(s)} \leq \frac{\int_{[0, x_0]} x dG(x)}{\tilde{T}(s)} \downarrow 0 \text{ as } s \downarrow 0.$$

Thus

$$\lim_{s \downarrow 0} \frac{\int_{[0, \infty)} \phi_s(x) (e^{-sx} - \tilde{G}(s)) dG(x)}{\tilde{T}(s)} = 0,$$

which, by (6), implies $p(\infty) = 0$. This completes the proof.

By methods given in [1] the above result can be shown to hold for another queuing process closely related to the conventional one; namely, the moving queue with an absorbing barrier. In this process an assembly line moving toward a point 0 with uniform speed, has items spaced for service along it. If an

and α_2 is the value of α at which $\beta(\alpha)$ is zero, i.e. at which $\beta(\alpha) = 0$.

It follows from (1) that $\beta(\alpha) = \frac{1}{2} \alpha^2 - \frac{1}{2} \alpha_2^2 + \frac{1}{2} \alpha_2^2 \ln \left(\frac{\alpha_2}{\alpha} \right)$.

$$\beta(\alpha) = 0$$

$$\alpha = \alpha_2$$

and $\frac{d\beta}{d\alpha} = \frac{\alpha}{2} - \frac{\alpha_2^2}{2\alpha} + \frac{\alpha_2^2}{2\alpha} \ln \left(\frac{\alpha_2}{\alpha} \right) - \frac{\alpha_2^2}{2\alpha^2}$.

$$\frac{d\beta}{d\alpha} = 0$$

$$\alpha = \alpha_2$$

$$\lim_{\alpha \rightarrow \infty} \beta(\alpha) = \lim_{\alpha \rightarrow \infty} \frac{1}{2} \alpha^2 - \frac{1}{2} \alpha_2^2 + \frac{1}{2} \alpha_2^2 \ln \left(\frac{\alpha_2}{\alpha} \right)$$

$$= \infty$$

$$= \infty$$

$$\lim_{\alpha \rightarrow 0} \beta(\alpha) = \lim_{\alpha \rightarrow 0} \frac{1}{2} \alpha^2 - \frac{1}{2} \alpha_2^2 + \frac{1}{2} \alpha_2^2 \ln \left(\frac{\alpha_2}{\alpha} \right)$$

$$= 0$$

$$= 0$$

$$\lim_{\alpha \rightarrow \infty} \frac{d\beta}{d\alpha} = \lim_{\alpha \rightarrow \infty} \frac{\alpha}{2} - \frac{\alpha_2^2}{2\alpha} + \frac{\alpha_2^2}{2\alpha} \ln \left(\frac{\alpha_2}{\alpha} \right)$$

$$= \infty$$

$$= \infty$$

$$\lim_{\alpha \rightarrow 0} \frac{d\beta}{d\alpha} = \lim_{\alpha \rightarrow 0} \frac{\alpha}{2} - \frac{\alpha_2^2}{2\alpha} + \frac{\alpha_2^2}{2\alpha} \ln \left(\frac{\alpha_2}{\alpha} \right)$$

$$= 0$$

$$= 0$$

and $\frac{d^2\beta}{d\alpha^2} = \frac{1}{2} - \frac{\alpha_2^2}{2\alpha^2} + \frac{\alpha_2^2}{2\alpha^2} \ln \left(\frac{\alpha_2}{\alpha} \right) - \frac{\alpha_2^2}{2\alpha^3}$.

$$\frac{d^2\beta}{d\alpha^2} = 0$$

$$\alpha = \alpha_2$$

item arrives at 0 before service on it has been completed, the server suffers a probability α of being disabled (absorbed). In the terminology of the moving queue, theorem 1 has the following formulation:

THEOREM 2. Let $G(x)$ be the distribution function of the distance between adjacent elements and $F(x)$ the service time distribution. Let $p(b)$ denote the probability of serving infinitely many members of the assembly line, if service on the first elements begins when it is b units away from the barrier. If $\alpha > 0$, $\mu_F = \mu_G = \infty$, and $\limsup_{s \downarrow 0} Q(s) > 0$, then $p(b) = 0$ for all $b \geq 0$.

Bibliography

- [1] Hanisch, H. and Hirsch, W. M., Properties of a transient queue, Comm. on Pure and Applied Mathematics, No. 4, Nov., 1963.
- [2] Takács, L., Introduction to the Theory of Queues, Oxford University Press, New York, 1962.

— 1 —

Approved Distribution List for Unclassified Technical reports

Head, Statistics Branch Office of Naval Research Washington 25, D.C.	(2)	Professor Herman Chernoff Applied Math. and Stat. Lab. Stanford University Stanford, California	(1)
Commanding Officer Office of Naval Research Branch Office, Navy 100 Fleet Post Office New York, New York	(2)	Professor W. G. Cochran Department of Statistics Harvard University Cambridge, Massachusetts	(1)
ASTIA Document Service Center Arlington Hall Station Arlington 12, Virginia	(10)	Professor Benjamin Epstein Applied Math. and Stat. Lab. Stanford University Stanford, California	(1)
Technical Information Officer Naval Research Laboratory Washington 25, D.C.	(6)	Professor W. Hirsch Inst. of Math. Sciences New York University New York 3, New York	(1)
Institute for Defense Analyses Communications Research Division von Neumann Hall Princeton, New Jersey	(1)	Dr. Paul G. Hoel Department of Mathematics University of California Los Angeles 24, California	(1)
Bureau of Supplies and Accounts Code OW Department of the Navy Washington 25, D.C.	(1)	Professor Harold Hotelling Associate Director Institute of Statistics University of North Carolina Chapel Hill, North Carolina	(1)
Professor T.W. Anderson Department of Mathematical Statistics Columbia University New York 27, New York	(1)	Professor L. Hurwicz School of Business Administration University of Minnesota Minneapolis, Minnesota	(1)
Professor Z.W. Birnbaum Laboratory of Statistical Research Department of Mathematics University of Washington Seattle 5, Washington	(1)	Professor Leo Katz Department of Statistics Michigan State University East Lansing, Michigan	(1)
Professor A.H. Bowker Applied Mathematics and Statistical Lab. Stanford University Stanford, California	(1)	Professor Oscar Kempthorne Statistics Laboratory Iowa State College Ames, Iowa	(1)
Professor Ralph A. Bradley Department of Stat. and Statistical Lab. Virginia Polytechnic Institute Blacksburg, Virginia	(1)	Dr. Carl F Kossack I.B.M. Corp. Data Processing 2601 Main St. Houston 2, Texas	(1)

Approved Distribution List (Con't.)

Professor Gerald J. Lieberman
Applied Mathematics and
Statistics Laboratory
Stanford University
Stanford, California (1)

Professor William G. Madow
Stanford Research Institute
Menlo Park, California (1)

Professor J. Neyman
Department of Statistics
University of California
Berkeley 4, California (1)

Professor Herbert Robbins
Mathematical Statistics Department
Columbia University
New York 27, New York (1)

Professor Murray Rosenblatt
Department of Mathematics
Brown University
Providence, R.I. (1)

Professor L. J. Savage
Department of Mathematics
University of Michigan
Ann Arbor, Michigan (1)

Dr. Herbert Solomon
Department of Statistics
Stanford University
Stanford, California (1)

Professor Frank Spitzer
Department of Mathematics
Cornell University
Ithaca, New York (1)

Professor S.S. Wilks
Department of Mathematics
Princeton University
Princeton, New Jersey (1)

Professor Evan J. Williams
Institute of Statistics
State College Section
North Carolina State College
Raleigh, North Carolina (1)

Professor J. Wolfowitz
Department of Mathematics
Cornell University
Ithaca, New York (1)

Professor W.H. Kruskal
Department of Statistics
The University of Chicago
Chicago 37, Illinois (1)

JUN 13 1963
DATE D

DATE DUE

NYU
IMM-
309

c.l

Hanisch

Note on the busy period in
the case of infinite means.

NYU
IMM-
309

c.l

Hanisch

AUTHOR

Note on the busy period in
the case of infinite means.

DATE DUE	BORROWER'S NAME	ROOM NUMBER
JUL 12 '67	Kay, Henry	
JUL 30 '67	M. Hochberg	
JUL 16 '67	Faseed Naggar	

N. Y. U. Courant Institute of
Mathematical Sciences

4 Washington Place
New York 3, N. Y.

