MAT3007 Assignment 3

MAT3007 Assignment 3

A3.1

(a)

(b)

(c)

A3.2

A3.3

(a)

(b)

(c)

(d)

A3.4

(a)

(b)

(c)

(d)

A3.5

(a)

(b)

(c)

(d)

(e)

A3.1

(a)

$$egin{array}{ll} \min & 4y_1 + 7y_2 \ \mathrm{subject\ to} & 2y_1 + y_2 \geq 5 \ 3y_1 + 2y_2 \geq 2 \ y_1 + 3y_2 \geq 5 \ y_1, y_2 \geq 0. \end{array}$$

(b)

The unique optimal solution is $y^* = [y_1; y_2] = [2; 1]$, with optimal value 15.

(c)

Let x^* denote the optimal solution for the primal. Using the Complementary Slackness Theorem and the fact that $y^*>0$, the constraints in the dual must both be tight. Also, computing the slacks for the dual,

$$v = [5-5; 8-2; 5-5] = [0; 6; 0],$$

by the same theorem we know that $(x^*)_2$ must be 0.

These information transform the primal into a linear system of equation:

$$2x_1 + x_3 = 4$$
$$x_1 + 3x_3 = 7$$

which yields $x_1 = 1, x_3 = 2$.

Hence the optimal solution for the primal is $x^* = [1;0;2]$ with optimal value 15, coinciding with that of the dual.

A3.2

Rewriting the LP,

$$\min_{x} \ c^{ op} x \quad ext{s.t.} \quad egin{bmatrix} -A \ C \end{bmatrix} x \stackrel{\geq}{=} \begin{bmatrix} b \ d \end{bmatrix}.$$

Its dual is then given by

$$\max_{y \in \mathbb{R}^m, z \in \mathbb{R}^p} \ [b^ op, d^ op] y \quad ext{s.t.} \quad [-A^ op, C^ op] y = c, \ y \geq 0.$$

The dual of the dual is then

$$\min_{x} \ c^{ op} x \quad ext{s.t.} \quad egin{bmatrix} -A \ C \end{bmatrix} x & \geq \begin{bmatrix} b \ d \end{bmatrix}.$$

which is equivalent to (2), hence to (2).

A3.3

(a)

The Strong Duality Theorem says there is no such an example.

(b)

Primal:

$$\min_{x \in \mathbb{R}} \; 0^ op x \quad ext{s.t.} \quad 0x = 0.$$

Dual:

$$\max_{y \in \mathbb{R}} \ 0^ op y \quad ext{s.t.} \quad 0^ op y = 0.$$

(c)

Primal:

$$\min_{x \in \mathbb{R}} \; 0^ op x \quad ext{s.t.} \quad 1x = 0.$$

Dual:

$$\max_{y \in \mathbb{R}} \; 0^ op y \quad ext{s.t.} \quad 1^ op y = 0.$$

(d)

Primal:

$$\min_{x\in\mathbb{R}^2}\ 0^ op x\quad ext{s.t.}\quad [1,-1]x=0,\ x\geq 0.$$

Dual:

$$egin{array}{ll} \max_{y \in \mathbb{R}} \ 0^ op y & ext{s.t.} & [1;-1]y \leq [0;0]. \end{array}$$

It can be easily checked that $x^* = [0;0]$ is a degenerate optimal BFS for the primal, and that $y^* = 0$ is the unique optimal solution for the dual.

A3.4

(a)

Let a_i denotes the *i*-th column of A. Then

$$a_i^ op x = \sum_{j=1}^4 a_{ji} x_j = \mathbb{E}[ext{player I's winning}| ext{player II chooses }i], \quad i=1:4.$$

Since t is a lower bound for $a_i^{\top}x$, finding the max of t is equivalent to maximizing the minimum of $a_i^{\top}x$, i.e., finding the optimal probabilistic strategy x for player I in the sense of maximizing his expected winning in the worst case.

MATLAB code:

```
cvx_begin
    variables x(4) t
    maximize(t)
    subject to
    A' * x >= t * ones(4, 1)
    ones(1, 4) * x == 1
    x >= zeros(4, 1)
cvx_end
```

yielding

$$p^* = t_{
m max} = 0,$$

obtained at

$$x^* = [0.088; 0.338; 0.412; 0.162], t^* = 0.$$

(b)

Rewrite (3),

$$egin{array}{ll} \max_{x,t} & [0_{1 imes4},1][x;t] \ \mathrm{subject\ to} & [-A^ op,1_{4 imes1}][x;t] \leq 0_{4 imes1} \ [1_{1 imes4},0][x;t] = 1 \ & x \geq 0. \end{array}$$

Its dual is then given by

$$egin{array}{ll} \min & [0_{1 imes 4},1][y;s] \ & ext{subject to} & [-A,1_{4 imes 1}][y;s] \geq 0_{4 imes 1} \ & [1_{1 imes 4},0][y;s] = 1 \ & y \geq 0, \end{array}$$

or equivalently

This time we wish to minimize the upper bound s for $A_i^\top y,\ i=1:4$, where A_i^\top is the i-th row of A. If we interpret y as the probabilistic strategy for player II, then

$$A_i^ op y = \sum_{i=1}^4 a_{ij} y_i = E[ext{player II's losses}| ext{player I chooses}\ i], \quad i=1:4.$$

We see that the dual is to find the optimal probabilistic strategy y for player II in the sense of minimizing his expected loss in the worst case.

MATLAB code:

```
cvx_begin
    variables y(4) s
    maximize(s)
    subject to
    A * y <= s * ones(4, 1)
    ones(1, 4) * x == 1
    y >= zeros(4, 1)
cvx_end
```

which yields

$$d^*=s_{\min}=0,$$

at

$$y^* = [0.25; 0.50; 0.25; 0.00], s^* = 0.$$

(c)

First note that

$$\begin{aligned} \max_t \ t \quad \text{s.t.} \quad Ax \geq t \cdot 1 = \max_t \ t \quad \text{s.t.} \quad \min_i \ A_i^\top x \geq t \\ &= \min_i \ A_i^\top x, \end{aligned}$$

where A_i^{\top} denotes the *i*-th row of A, i = 1:4.

Now let $m := \operatorname{argmin}_i A_i^\top x$. We have

$$egin{aligned} \min_{y \in P} \; y^ op Ax &= \min_{y \in P} \; \sum_i y_i A_i^ op x \ &= \min_{y \in P} \; \left\{ y_m A_m^ op x + \sum_{i
eq m} y_i A_i^ op x
ight\}. \end{aligned}$$

We claim that this minimum is exactly $A_m^{ op}x$, obtained at \hat{y} , the all-zero vector except $\hat{y}_m=1$. Indeed, for any $y\in P$, we have

$$egin{aligned} y^ op Ax - \hat{y}^ op Ax &= y^ op Ax - A_m^ op x \ &= (y_m - 1)A_m^ op x + \sum_{i
eq m} y_i A_i^ op x \ &\geq (y_m - 1)A_m^ op x + \sum_{i
eq m} y_i A_m^ op x \ &= \left(-1 + \sum_i y_i
ight)A_m^ op x \ &= 0. \end{aligned}$$

Thus

$$\begin{aligned} \max_{Ax \geq t \cdot 1} \ t &= \min_{i} \ A_{i}^{\top} x = A_{m}^{\top} x = \min_{y \in P} \ y^{\top} A x \\ &\Longrightarrow \max_{x \in P} \max_{Ax \geq t \cdot 1} \ t = p^{*} = \max_{x \in P} \min_{y \in P} \ y^{\top} A x. \end{aligned}$$

Finally by Strong Duality,

$$p^* = \max_{x \in P} \min_{y \in P} \ y^ op Ax = d^*.$$

(d)

The game is fair in the sense that the expected winning for player I (or expected loss for player II) is zero in the worst case. Using only numbers one and two, the pay-off matrix becomes

$$B = \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix}.$$

Substituting matrix A with B in (3) and solving the problem in MATLAB with the code below,

```
cvx_begin
    variables x(2) t
    maximize(t)
    subject to
    B' * x >= t * ones(2, 1)
    ones(1, 2) * x == 1
    x >= zeros(2, 1)
cvx_end
```

we obtain $p^*=t_{\rm max}=0.0833>0$ with strategy $x^*=[0.5833;0.4167]$, which indicates a preference of the new game towards player I.

A3.5

(a)
$$\min_{\substack{x,t\\\text{subject to}}} t$$

$$t \cdot 1_{m \times 1} \geq Ax - b$$

$$t \cdot 1_{m \times 1} \geq b - Ax$$

$$t \geq 0.$$

(b)

Rewrite (4'),

$$\min_{x,t} \qquad [0_{1 imes n},1][x;t] \ ext{subject to} \qquad \left[egin{array}{c|c} -A & 1_{m imes 1} \ \hline A & 1_{m imes 1} \end{array}
ight] \begin{bmatrix} x \ t \end{bmatrix} \geq \begin{bmatrix} -b \ b \end{bmatrix} \ t > 0.$$

Thus the dual is given by

$$egin{array}{ll} \max & [-b^ op, b^ op]z \ & ext{subject to} & \left[egin{array}{c|c} -A^ op & A^ op \ \hline 1_{1 imes m} & 1_{1 imes m} \end{array}
ight]z = \left[egin{array}{c|c} 0_{n imes 1} \ 1 \end{array}
ight] \ & z>0. \end{array}$$

(c)

If we denote $z^-:=z[1:m]$ and $z^+:=z[m+1:2m]$, we have

$$egin{array}{ll} \max \ z^+, z^- \geq 0 \ & b^ op(z^+ - z^-) \ & ext{subject to} & A^ op(z^+ - z^-) = 0 \ & 1^ op(z^+ + z^-) \leq 1. \end{array}$$

Setting $y:=z^+-z^-$, the problem further transforms into

$$egin{array}{ll} \max & b^{ op}y \ \mathrm{subject\ to} & y=z^+-z^- \ A^{ op}y=0 \ 1^{ op}(z^++z^-) \leq 1. \end{array}$$

Since the objective functions coincide now (and only depend on y), to prove the equivalence, it remains to show that ranges of y are equal in two problems:

$$egin{aligned} y &= z^+ - z^- \ ||y||_1 \leq 1 &\iff 1^ op (z^+ + z^-) \leq 1 \ z^+, z^- \geq 0. \end{aligned}$$

Suppose we have $||y||_1 \le 1$, then we may define, for all i,

$$z_i^+ := egin{cases} y_i, & ext{if } y_i \geq 0, \ 0, & ext{otherwise}; \end{cases} \quad z_i^- := egin{cases} -y_i, & ext{if } y_i < 0, \ 0, & ext{otherwise}. \end{cases}$$

Clearly $z^+, z^- \geq 0$, and $z^+ - z^- = y$. Also,

$$1^{ op}(z^++z^-) = \sum_{i=1}^m z_i^+ + z_i^- = \sum_{i=1}^m |y_i| = ||y||_1 \le 1.$$

Conversely, suppose there exists some (y,z^+,z^-) rendering RHS true. We have

$$||y||_1 = \sum_{i=1}^m |y_i| = \sum_{i=1}^m |z_i^+ - z_i^-| \leq \sum_{i=1}^m |z_i^+| + |z_i^-| = \sum_{i=1}^m z_i^+ + z_i^- = 1^ op (z^+ + z^-) \leq 1,$$

which completes the proof.

(d)

We already have RHS \equiv (5) \equiv (4'D). To show that the optimal value equals that of LHS \equiv (4) \equiv (4'), it suffices to show that (4') and its dual (4'D) have the same optimal value.

First note that both problems are feasible: For (4'), $(x,t)=(0,||b||_{\infty})$ is a feasible solution; for $(4'\mathrm{D}),z=0$ is feasible. Now (4') must be bounded since otherwise $(4'\mathrm{D})$ would not be feasible due to the duality gap. Therefore (4') attains a finite optimal value m, at some point p^* . By the Strong Duality, $(4'\mathrm{D})$ must have p^* as its optimal value as well, and we are done.

(e)

MATLAB code:

```
m = 100;
A = [ones(m), ones(m)];
b = (1:m)';
% original problem
tic;
cvx_begin quiet
    variable x(2 * m)
    minimize(norm(A * x - b, inf))
cvx_end
toc
Elapsed time is 0.441330 seconds.
% dual problem
tic;
cvx_begin quiet
    variable y(m)
    maximize(b' * y)
    subject to
    A' * y == zeros(2 * m, 1)
    norm(y, 1) \ll 1
cvx_end
toc
Elapsed time is 0.249609 seconds.
```

Both methods obtain the optimal value 49.5, but solving dual is nearly twice as fast.