A Case Study on Water Demand Forecasting in a Coastal Tourist City

Antoniel Kleber Stefaniak

Pablo Andretta Jaskowiak

Lucas Weihmann

November 21, 2024

Centro Tecnológico de Joinville (CTJ) Universidade Federal de Santa Catarina (UFSC) Joinville – Santa Catarina – Brasil

Outline

- Motivation
- Case Study
- Experimental Setup
- Results and Discussion
- Final Remarks

Motivation

- Water demand is succeptible to variations
 - Economic, demographic and climatic
- Different forecasting windows and goals
 - Short-term (hours, days)
 - Optimize water treatment / reservouir levels
 - Long-term (months, years, decades)
 - Infrastructure Planning

Motivation

- In touristic cities such a planning becomes more urgent
- We evaluated statistical methods (ARIMA / SARIMA)
 - One week ahead, daily forecasts
- Comparison with previous study based on regression models
- Related work employed ARIMA/SARIMA as baselines, mostly with auto tunned parameters (which we believe is not fair)

Case Study

Guaratuba - Paraná

Polícia Militar

As praias do Litoral receberam cerca de 1 milhão de pessoas na virada de 2023 e 2024, segundo estimativas de público da Polícia Militar do Paraná divulgadas nesta segunda-feira (1). A prainha de água doce de Porto Rico, na Costa Noroeste, recebeu aproximadamente 30 mil turistas na virada do ano.

Publicação 01/01/2024 - 13:50

Editoria Verão Major Paraná

0:00/3:17

Confira o áudio desta notícia

Foto: PMPR

Case Study

Daily water consumption in m³

- Four year dataset from SANEPAR (2016 2019)
- We actually considered produced water, not consumed
 - Correlated, but not the same

Case Study – Exploratory Analysis

Determination of ARIMA and SARIMA parameters

Performed time-series decomposition

Autocorrelation Function (ACF)

Partial Autocorrelation Function (PACF)

Experimental Setup

- Data was split into
 - Train (2016 and 2017)
 - Validation (2018)
 - Test (2019)

Model	Hyperparameter	Search Space
ARIMA	p	(2, 3, 8)
	d	(0, 1)
	q	(3, 4, 28, 38)
SARIMA	p	(2, 3, 6)
	d	(0, 1)
	q	(3, 4, 6)
	P	(2, 3)
	D	(0, 1)
	Q	(1, 3, 4)
	\mathbf{s}	(7)

Experimental Setup

Window Type	Window Size		Sliding Steps	
	Train	Test		
Sliding Window (SW1Y)	365 days	7 days	7 days	
Sliding Window (SW2Y)	$730 \mathrm{days}$	$7 \mathrm{days}$	$7 \mathrm{days}$	
Expanding Window (EW)	*	7 days	7 days	

Results - Model Selection

Regarding the validation set

- For each method, we observed
 - Best / Average / Worst

Check the whether parameter tunning matters

Best model selected for further comparison

Results - Model Selection

		Model	Evaluation Metrics			
			RMSE $\pm \sigma$	MAE $\pm \sigma$	$\mathrm{MAPE}(\%) \pm \sigma(\%)$	
	IA	Best (8,0,38)	1480.51 ± 805.15	1261.14 ± 711.8	$9.91{\pm}4.24$	
	ARIMA	Worst (2,0,3)	1955.36 ± 1172.69	1682.67 ± 1091.59	$12.96{\pm}5.88$	
EW AF	AF	Mean (All)	1741.45 ± 926.27	1494.52 ± 828.09	11.81 ± 5.61	
Ξ	SARIMA	Best (6,0,6),(2,0,3,7)	1618.21 ± 893.33	1353.34 ± 754.17	10.66 ± 4.9	
5	KII	Worst (2,1,3),(2,1,4,7)	2032.53 ± 1063.01	1786.65 ± 953.22	14.19 ± 7.14	
, C	$_{ m A}$	Mean (All)	1776.79 ± 935.03	1525.95 ± 806.72	12.09 ± 5.51	
	 	Best (8,1,38)	1606.31 ± 1081.16	1385.81 ± 959.71	10.78 ± 5.96	
SW1Y	ZI∑	Worst (2,0,4)	1923.57 ± 986.1	1651.42 ± 919.82	13.05 ± 5.59	
	AF	Mean (All)	1764.58 ± 1022.13	1517.97 ± 909.44	11.91 ± 5.92	
SV	AA	Best (6,1,3),(3,0,4,7)	1630.01 ± 1070.06	1374.61 ± 932.09	10.61 ± 5.4	
	SARIMA	Worst $(3,1,3),(3,1,1,7)$	2053.38 ± 974.55	1761.8 ± 852.4	13.97 ± 6.01	
ָל ע	$_{ m AA}$	Mean (All)	1810.17 ± 1027.26	1546.68 ± 868.25	12.15 ± 5.51	
SW2Y A ARIMA	[A	Best (8,0,38)	1425.35 ± 918.88	1217.98 ± 807.72	9.50 ± 5.08	
	\mathbb{Z}	Worst (2,0,3)	1994.85 ± 1216.67	1722.07 ± 1140.02	13.17 ± 6.08	
	AF	Mean (All)	1737.82 ± 961.27	1494.01 ± 857.24	11.78 ± 5.76	
SV	AA 	Best (6,1,4),(3,0,4,7)	1601.85 ± 885.79	1376.80 ± 772.35	10.8 ± 5.13	
5	SARIMA	Worst $(3,1,3),(3,1,1,7)$	2023.58 ± 1089.58	1760.96 ± 943.46	13.90 ± 6.6	
-	SA	Mean (All)	1785.27 ± 958.85	1533.13 ± 824.63	12.14 ± 5.6	

Results — Test Set

- Evaluation on 2019 data
 - Not seen by any of the models before

- Compared w.r.t. Vieira et al. 2024
 - Best ML methods

In both studies, same windows, data*, pre-processing

Results - Test Set

Model	Evaluation Metrics					
	RMSE	σ	MAE	σ	MAPE(%)	$\sigma(\%)$
ARIMA-EW SARIMA-EW MLP-EW	1771.39 1870.03 1709.70	1044.06 962.6 593.104	1523.65 1630.14 1408.97	928.79 893.12 515.158	11.99 12.81 11.81	6.38 5.9 4.707
ARIMA-SW1Y SARIMA-SW1Y KNN-SW1Y	1745.08 2096.22 1906.99	1165.27 1096.88 969.900	1499.44 1799.32 1618.19	999.01 991.68 954.202	$ \begin{array}{c} 11.52 \\ 14.0 \\ 12.47 \end{array} $	6.21 6.12 5.055
ARIMA-SW2Y SARIMA-SW2Y MLP-SW2Y	1652.67 1947.23 1927.41	1078.71 884.83 732.005	1419.4 1667.8 1620.15	975.04 807.33 630.532	11.15 13.04 13.08	6.65 4.93 4.916

Best ARIMA and SARIMA models in bold

Results - Test Set

Results — Test Set

Final Remarks

Statistical models provided sound results

- If these are employed as baselines
 - A rigorous analysis of parameters needed

- Previous study from Vieira et al. 2024
 - Regression on same time-series + meteorological data
- Future work considering LSTM and ensemble models

Thanks for the attention

Questions?

pablo.andretta@ufsc.br pajaskowiak.github.io

