Somadores

- Disciplina: Técnicas Digitais
- Aula Somadores
- Bibliografia Básica:
 - Sistemas Digitais: Princípios e Aplicações, Ronald
 J. Tocci e Neal S. Widmer

Representação de Sinais Negativos - na forma de complemento de 2.

Capítulo 6

Revisão: Adição e Adição em BCD

Unidade lógica e aritmética

FIGURA 6-4 Processo típico de uma adição binária.

(Deve ser adicionado à próxima posição)

Somador completo

A soma aparece nas saídas S_4 , S_3 , S_2 , S_1 , S_0 .

Projeto de um somador

Bit de entrada da 1ª parcela	Bit de entrada da 2ª parcela	Bit de entrada do carry	Bit de saída da soma	Bit de saída do carry				
Α	В	C _{IN}	S	C _{OUT}		В І		
0	0	0	0	0		1		
0	0	1	1	0				l
0	1	0	1	0				→ S
0	1	1	0	1				
1	0	0	1	0	C _{IN} —	F	A	
1	0	1	0	1				
1	1	0	0	1				→ C _{OUT}
1	1	1	1	1				
	l	I						

Α

Mapa K para S

$$S = \overline{ABC_{IN}} + \overline{ABC_{IN}} + ABC_{IN} + \overline{ABC_{IN}}$$
(a)

Mapa K para \mathcal{G}_{UT} $C_{OUT} = BC_{IN} + AC_{IN} + AB$ (b)

★XOR (Exclusive-OR)

X	y	XOR
0	0	0
0	1	1
1	0	1
1	1	0

★ XNOR (Exclusive-NOR) (Equivalence)

$$x \rightarrow x \rightarrow x \rightarrow y \qquad \overline{x} \overline{y} + x$$

X	y	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

FIGURA 6-7 Circuito para um somador completo.

$$S = A(BC + \overline{B}\overline{C}) + \overline{A}(\overline{B}C + B\overline{C}) = \overline{A}(B \oplus C) + A(\overline{B} \oplus C)$$
$$S = \overline{A}(X) + A(\overline{X}) = A \oplus (B \oplus C)$$

Somador Paralelo Completo com Registradores

Notação para registradores Seqüência de Operações

Exercício 1

Qual o conteúdo final do registrador A de acordo com a seguinte seqüência:

• t1: [A]=0000

[M]=[1001]

t2: [M]->[B]

• t3: [S]->[A]

[M]=[0110]

t4: [M]->[B]

t5: [S]->[A]

FIGURA 6-10 (a) Diagrama em bloco do somador paralelo de 4 bits 74HC283; (b) Conexão em cascata de dois 74HC283.

FIGURA 6-11 Somador paralelo usado para somar um número **positivo** (+) com um negativo (-) no sistema de complemento de 2

FIGURA 6-12 Somador paralelo usado para realizar uma **subtração** (A-B) usando o sitema do complemento de 2. Os bits do subtraendo (B) são invertidos e C_0 = 1 para gerar o complemento de 2.

FIGURA 6-13 Somador/subtrator paralelo usando o sistema de complemento de 2.

FIGURA 6-14 Um somador BCD contém dois somadores de quatro bits e um circuito detector para correção.

FIGURA 6-15 Conexão de somadores em cascata para somar dois números decimais de três dígitos.

Código BCD para números de 3 dígitos

Exercício 2

- Seja um somador completo de 4 bits.
- Sabendo que a simbologia de transferência de conteúdo do registrador A para o registrador B é [A] → [B], some 2+3. E depois somar a este valor o número 5. considere o somador completo paralelo com registrador (refaça o desenho e tenha certeza que tenha entendido).
- Faça a sequência certa deste processo utilizando a simbologia de transferência de conteúdo.
- Faça o diagrama de tempo que representa toda esta operação, incluindo todos os sinais envolvidos (load, clear, transfer e o conteúdo do registrador A).