Stochastic GW background from merging binaries

Léonard Lehoucq Institut d'Astrophysique de Paris Journal Club 15/11/2022

Gravitational wave events

- ~ 90 BBHs mergers detected
- ~ 2 BH-NS mergers detected
- ~ 2 BNS mergers detected

Observation of Gravitational Waves from a Binary Black Hole Merger, B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 – Published 11 February 2016

Stochastic GW Background

There are two types of stochastic backgrounds:

- The astrophysical background (unresolved superposition)
- The cosmological background (produced in the primordial universe)

$$\Omega_{\mathrm{GW}} = rac{f}{
ho_c} rac{d
ho_{\mathrm{GW}}}{df}$$

We are interested in the stochastic astrophysical background produced by compact binaries.

Stochastic GW Background

$$\Omega_{
m GW} = rac{f}{
ho_c c^2 H_0} \int_0^{z_{
m max}} \int_{M_{1,
m min}}^{M_{1,
m max}} rac{R_{
m merg}(z) rac{dE_{GW}(f_s)}{df_s} P(M_1)}{(1+z)\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}} \, dM_1 \, dz$$

- What is this background for BNS and BBHs?

- To what extent is it detectable by LIGO/Virgo and LISA?

- Phenomenological and population synthesis models.

Merger rate of compact binaries

$$R_{
m merg}(t) = lpha \int_{t_d, {
m max}}^{t_d, {
m max}} \phi(t-t_d) \, P(t_d) \, dt_d$$
 $rac{10^{-3}}{10^{-4}} = \frac{10^{-3}}{10^{-4}} =$

Mass distribution of BBHs - LVK catalogue

Comparison of the different models

Collaboration with A. Lamberts, R. Srinivasan, T. Bruel (Nice)

Observation uncertainties

Collaboration with A. Lamberts, R. Srinivasan, T. Bruel (Nice)

Influence of the mass distribution model

Variability of the PL+P mass distribution

Variability of the PL+P mass distribution

Variability of the PL+P mass distribution

Individually detectable sources by LISA

$$N_{
m space} = \int_z \int_{M_1} P(M_1) \, R_{
m merg}(z) \, rac{dV_c}{dz} \, rac{1}{1+z} \, |t_{
m thr1}(M_1,z) - t_{
m thr2}(M_1,z)| \, dz \, dM_1$$

t_{merger} (yr)

Merger rate of compact binaries

Time delay probability density - BNS

Pellouin, Dvorkin, Lehoucq in prep

Merger rate - BNS

Pellouin, Dvorkin, Lehoucq in prep

Merger rate - BNS

Pellouin, Dvorkin, Lehoucq in prep

SGWB comparison - BNS

Pellouin, Dvorkin, Lehoucq in prep

Conclusion

- We identified the sources of uncertainties of the astrophysical SGWB both for BBHs and BNS.
- We find that some of the models could be constrained with upcoming observations.
- A few BBHs mergers might be detectable by LISA.