ALGUNOS ALGORITMOS MORFOLÓGICOS

- Extracción de bordes
- Relleno de regiones
- Extracción de componentes conectadas
- Cubierta convexa
- Adelgazamiento y engorde
- Esqueletización
- Poda (Pruning)
- A continuación se citan algunos usos prácticos de las técnicas morfológicas analizadas anteriormente:

EXTRACCIÓN DE BORDES

- Borde de $A = \beta_B(A)$ siendo B un EE adecuado
- Tres tipos de bordes:
 - Bordes exteriores: β_B(A) = δ_B(A)-A
 Bordes interiores: β_B(A) = A ε_B(A)
 - Bordes anchos: $\beta_B(A) = \delta_B(A) \varepsilon_B(A)$

1 de 6 08/10/09 12:39

RELLENO DE REGIONES

- Objetivo: rellenar la región definida por una frontera
- Elementos:
 - Imagen: A
 - EE: *B*
 - Inicialización: X_{θ} , punto interior
- Relleno:
 - o Dilatación condicional:
 - $X_k = (X_{k-1} \oplus B) \cap A^c$ k=1,2,...

Este proceso rellenaria todo el área, por lo que se aplica la condición de intersección con A^C

o Si
$$X_n = X_{n-1} \longrightarrow Y = X_n \cup A$$

EXTRACCIÓN DE COMPONENTES CONECTADAS

- **Objetivo:** obtener la componente conectada a un píxel del primer plano.
- Inicialización:
 - Imagen: A
 - Elemento estructurante: *B*
 - Inicialización: X₀, punto frontera
- Relleno:
 - o Dilatación condicional:
 - $\blacksquare X_k = (X_{k-1} \oplus B) \cap A$
- k=1,2,...

Expresión similar al caso anterior excepto que aquí usamos A.

- o Si $X_n = X_{n-1} \rightarrow Y = X_n$
 - (y fin del proceso)

A

CUBIERTA CONVEXA

• Definiciones:

• Convexidad:

- \blacksquare A es convexo si contiene cualquier línea recta uniendo dos de sus puntos
- Cubierta convexa ("convex hull") de S
 - Es el menos conunto convexo, H, que contiene a S.
 - (Equivalente a "rodear" S con una goma elástica).
- o Deficiencia convexa de S
 - Se define por: *H-S*
- Son útiles en descripción de objetos.

Imagen original (primer plano no convexo) Cubierta convexa

• Cubrimiento convexo

- Componentes:
 - Imagen: A
 - Elementos estructurantes: B_i , i=1,2,3,4

Bi-1 es una rotación de Bi de 90° en el sentido horario

- Inicialización: X₀, punto frontera
- Algoritmo:
 - Aplicación iterativa del algoritmo acierta/falla a A con B_1 . Cuando no se producen mas cambios se aplica la unión con A y se denomina al resultado D_1 . Se continua con B_2 , B_3 y B_4 obteniendo D_2 , D_3 y D_4 → la unión de D_1 → **Convex Hull**
 - Formalmente:

$$X_k^i = (X_{k-1}^i \otimes B) \cup A$$
 $k=1,2,3,\ldots$ Con $X_0^i = A$

 $D_i = \lim_k X_k^i$ donde \lim indica detención cuando $\mathbf{x_k}^i = \mathbf{x_{k-1}}^i$

$$H = D_1 \cup D_2 \cup D_3 \cup D_4$$

- Este algoritmo no garantiza que H sea la cubierta convexa. El resultado puede ser may or que las dimensiones mínimas que garanticen la convexidad.
 - Una simple aproximación es limitar el resultado por las componentes verticales y horizontales del conjunto original de puntos
- Ejemplo:

 - Iteración

Figuras tomadas de Gonzalez, Woods, Digital Image Processing (2nd Ed.), Prentice Hall, 2002

Resultado de limitar el resultac anchura y altura del conjunto c

ADELGAZAMIENTO Y ENGORDE

- Adelgazamiento: $\rightarrow \bigotimes$
 - Expresado en términos de Acierta/Falla:
 - $A \otimes B = A (A \otimes B) = A \cap (A \otimes B)^{c}$
 - En la práctica, suele aplicarse como una secuencia de EE
 - $B = \{B_1, B_2, ..., B_n\}$ siendo B_i una versión rotada de B_{i-1}
 - $A \otimes \{B\} = (...(A \otimes B_1) \otimes B_2)...) \otimes B_n)$

Adelgazar A sucesivamente con $B_1, B_2, ... B_n$.

■ El proceso se repite hasta que no se obtienen cambios

4 de 6 08/10/09 12:39

- Engorde: \rightarrow \bigcirc
 - Es dual del adelgazamiento:
 - $\blacksquare A \odot B = A \cup (A \oplus B)$

o e, iterando hasta la convergencia...

ESQUELETIZACIÓN

• Esqueleto:

- Dada una imagen A, se dice que z pertenece al esqueleto de A si y solo sí:
 - Si $(D)_z$ es el disco más grande centrado en **z** y contenido en A, no existe ningún otro disco más grande conteniendo a $(D)_z$ e incluido en A.
 - (en tal caso, (D)_z se denomina *disco máximo*).
 - $(D)_z$ toca la frontera de A en, al menos, dos puntos.
- Esta definición supone imágenes continuas. Su adaptación a imágenes digitales puede ser computacionalmente muy costosa, y suelen utilizarse algoritmos que obtienen buenas aproximaciones con imágenes digitales

en un tiempo razonable.

o Determinación del esqueleto:

$$S(A) = \bigcup_{k=1}^{K} S_k(A)$$

$$S_k(A) = (A \ominus_k B) - (A \ominus_k B) \circ B$$

donde

 Θ_k indica k sucesivas erosiones (...($A \Theta B$) ΘB)...) ΘB

K es la última iteración antes de que A se erosiones a un conjunto vacío

• Puede demostrarse que es una operación invertible:

PODA

- Los algoritmos de poda persiguen eliminar componentes espúreas resultantes de aplicar operaciones morfológicas de tipo adelgazamiento o esqueletización
- En general, requieren alguna información a priori acerca del tipo de imagen a tratar.
- Usada en el reconocimiento automático de caracteres escritos a mano
- 4 pasos:
 - Adelgazamiento (para eliminación de zonas espúreas usando EE específicos para detectar puntos de inflexión)
 - $\blacksquare X_l = A \bigotimes \{B\}$
 - Recuperación (de la forma original):
 - $X_2 = \bigcup_{k=1}^{8} (X_l \times B^k)$
 - Dilatación (con un EE de 3x3 "unos"):
 - $\blacksquare X_3 = (X_2 \oplus H) \cap A$
 - Poda:
 - $X_4 = X_1 \cup X_3$

Motion estimation: A motion estimator is explained later). (the last image of the 2 keyframes of the and multi-resolution)

