Chapters 9.3-9

Riccardo Miccini¹ Eren Can ¹

¹Technical University of Denmark Digital Communication

November 19, 2016

Modulation Schemes not Requiring Coherent References

In this section, now we consider two modulation schemes that you do not need to require the acquisition of a local reference signal in phase coherence with the received carrier.

Differential Phase-Shift Keying (DPSK)

- The implementation of a such a scheme presupposes two things;
 - 1 The unknown phase perturbation on the signal varies slowly that the phase is constant from one signalling interval to next.
 - The phase during a given signalling interval bears a known relationship to the phase during the preceding signalling interval bears a known relationship to the phase during the preceding signalling interval.

Table 9.3 Differential Encoding Example	e
---	---

Message sequence:		1	0	0	1	1	1	0	0	0
Encoded sequence:	1	1	0	1	1	1	1	0	1	0
Reference digit:	1									
Transmitted phase:	0	0	π	0	0	0	0	π	0	π

Differential Encoding Message Sequence

- An arbitrary reference binary digit is being selected as an initial digit of the sequence
- For each digit , the present digit used as a reference
- 0 in the message sequence is encoded as a transition from state of reference digit to the opposite state in the encoded message sequence
- 1 encoded as no change of state

Figure 9.16 Block diagram of a DPSK modulator.

Figure for Differential Encoding Message Sequence

Table 9.4 Truth Table for the Equivalence Operation

Input 1 (Message)	Input 2 (Reference)	Output
0	0	1
0	1	0
1	0	0
1	1	1

Differential Encoding Message Sequence

- After the reference bit and plus the first encoded bit, signal input become $S_1 = A\cos(\omega_c)t$ and $R_1 = A*\cos(w_c)*t$
- Than the output correlator is; $v_1 = \int_0^T A^2 \cos^2(\omega_c t) dt$ which eventually become $\frac{1}{2}A^2T$
- The optimum detector for binary will become $I = x_{\nu}x_{\nu} 1 + y_{\nu}y_{\nu} 1$
- Without a loss of of generality, we can choose $\theta = 0$; we found outputs at t = 0 to be:
 - $x_0 = \frac{AT}{2} + n_1$ and $y_0 = n_3$ and where $n_1 = \int_{-T}^0 n(t) \cos^2(\omega_c t) dt$
 - $n_3 = \int_{-T}^0 n(t) \sin^2(\omega_c t) dt$. Similarly, at the time t = T, the outputs are; $x_1 = \frac{AT}{2} + n_2$ and $y_1 = n_4$
 - $n_2 = \int_0^T n(t) \cos^2(\omega_c t) dt$
 - $n_4 = \int_0^T n(t) \sin^2(\omega_c t) dt$

Important Figure for Differential Encoding

Figure 9.18
Optimum receiver for binary differential phase-shift keying.

If $\ell > 0$, the receiver chooses the signal sequence

$$s_1(t) = \begin{cases} A\cos(\omega_c t + \theta), & -T \le t < 0\\ A\cos(\omega_c t + \theta), & 0 \le t < T \end{cases}$$
(9.95)

as having been sent. If $\ell < 0$, the receiver chooses the signal sequence

$$s_2(t) = \begin{cases} A\cos(\omega_c t + \theta), & -T \le t < 0\\ -A\cos(\omega_c t + \theta), & 0 \le t < T \end{cases}$$
(9.96)

- It follows as n_1 , n_2 , n_3 and n_4 are uncorrelated and zero-mean Gaussian random variables with variances $\frac{N_0 T}{4}$ and they are independent.
- Expression for Probability error $P_E = Pr[(\frac{AT}{2} + n_1)(\frac{AT}{2} + n_2) + n_3 n_4 < 0]$
- We can define new gaussian random variables such as:

$$\omega_{1} = \frac{n_{1}}{2} + \frac{n_{2}}{2}$$

$$\omega_{2} = \frac{n_{1}}{2} - \frac{n_{2}}{2}$$

$$\omega_{3} = \frac{n_{3}}{2} + \frac{n_{4}}{2}$$

$$\omega_{4} = \frac{n_{3}}{2} - \frac{n_{4}}{2}$$

- Probability can be written in terms of Gaussian variables: $P_F = Pr[(\frac{AT}{2} + \omega_1)^2 + (\omega_3)^2 < (\omega_2^2 + \omega_4^2)]$
- Gaussian variables will also let us define the Ricean random variables. Ricean random variable will become: $R_1 = \sqrt{(\frac{AT}{2} + \omega_1)^2 + \omega_3^2}$
- Also Rayleigh random variable will become $R_2 = \sqrt{\frac{\omega_2^2}{\omega_4^2}}$
- If we also define the bit energy E_b as $A^2 \frac{A^2 T}{2}$ will give; $P_E = \frac{1}{2} e^{(\frac{-E_b}{N_0})}$ for the optimum DPSK receiver.
- \blacksquare At the large values $\frac{-E_b}{N_0}$ values of ; $P_E=Q[\sqrt{\frac{-E_b}{N_0}}]=Q[\sqrt{z}]$

■ Following result obtained by using the asymptotic approximation; $P_E = \frac{e^{(-E_b/N_0)}}{2\sqrt{\pi \frac{E_b}{N_c}}}$

Comparison of Digital Modulation Systems

Multipath Interference

Equalization

Equalization by Zero Forcing

Equalization by Minimum Mean-Squared Error

Tap Weight Ajustment (LMS Algorithm)

