BIO208 Aula1: O modelo básico da genética de populações

Contagem de frequências genotípicas e alélicas e populações em equilíbrio de Hardy-Weinberg

Leitura: Ridley, 5.1-5.5

Modelos em ciência

O que esperamos de um modelo?

simplificação da natureza

Modelo inadequado:

- modelo imensamente complicado
 - ex., modelo de evolução que exija informação sobre todos os detalhes dos seres sob estudo (idade, número de células, características reprodutivas, dieta, história de vida, etc.)

Modelo útil:

Simplifica <u>e</u> trás informações sobre o mundo natural Permite fazer previsões testáveis

Alguns modelos bastante familiares

A estrutura da molécula de DNA

 Modelos de funcionamento de sistemas biológicos

Definindo um modelo para evolução

O que é evolução?

Definindo um modelo para evolução

O que é evolução?

 "Mudança". Mas o que é que muda?

Definindo um modelo para evolução

O que é evolução?

 "Mudança". Mas o que é que muda?

 Mudança na composição de uma população que seja herdável

Estatura na população japonesa Stature (cm) 172

Definições de evolução

 "Mudança de frequências alélicas ao longo do tempo"

 "Conversão da variação entre indivíduos de uma população em diferenças entre populações ou espécies" (Lewontin, 1974)

Nosso desafio

 Descrever a variação genética presente numa população

 Formular um modelo sobre o que faz essa composição genética mudar ao longo do tempo

Locus e alelos

locus: local num cromossomo em que um alelo reside

alelo: a configuração do DNA naquele locus

Indivíduo diplóide possui dois alelos num lócus

Definindo alelos

ATCTTCTACTTCCCTTATGTA ATCTTCTACTTCCCTTACGTA ATCTCCTACTTCCCTTACGTA ATCTCCTACTTCCCTTACGTA

Sequências de DNA obtida para um trecho do genoma

ATCTTCTACTTCCCTTATGTA
ATCTTCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA
ATCTCCTACTTCCCTTACGTA

alelo 1
alelo 2
alelo 3
alelo 3

Alelos definidos pela sequência de DNA

Sítio polimórfico

Definindo alelos

ATCTTCTACTTCCCTTATGTA ATCTTCTACTTCCCTTACGTA ATCTCCTACTTCCCTTACGTA ATCTCCTACTTCCCTTACGTA

Sequência de DNA obtida para um trecho do genoma (que codifica para proteína)

ATC TTC TAC TTC CCT TAT GTA alelo 1
ATC TTC TAC TTC CCT TAC GTA alelo 2
ATC TCC TAC TTC CCT TAC GTA alelo 3
ATC TCC TAC TTC CCT TAC GTA alelo 3

Ile Phe Tyr Phe Pro Tyr Val alelo A
Ile Phe Tyr Phe Pro Tyr Val alelo A
Ile Ser Tyr Phe Pro Tyr Val alelo a
Ile Ser Tyr Phe Pro Tyr Val alelo a

Alelos definidos pela proteína que é formada

Definindo alelos

Frequências genotípicas e alélicas

ld1 Aa

Id2 Aa

ld3 Aa

Id4 Aa

Id5 AA

Id6 AA

Id7 AA

Id8 AA

Id9 AA

Id10 aa

Frequências genotípicas e alélicas

Frequências genotípicas

$$f_{Aa} = 4/10$$

$$f_{AA} = 5/10$$

$$f_{aa} = 1/10$$

Frequências alélicas (p e q)

$$f(A) = f_{AA} + f_{Aa} * 1/2 =$$

$$5/10 + 2/10 = 7/10 = 0,7$$

Ou contado

$$f(A)=14/20 = 7/10 = 0,7$$

$$f(a) = 3/10 = 0,3$$

Godfrey Hardy 1877-1947

Motivação: "the idea that a dominant character should show a tendency to spread over a whole population, or that a recessive should tend to die out."

Wilhem Weinberg 1862-1937

União aleatória de gametas produz nova geração

Esperado sob HW

p² AA

2pq Aa

q² aa

Um exemplo com dados reais: população humana

	MM	MN	NN
Obs	79	138	61
Esperado	Total*p ²	Total*2pq	Total*q ²
	78,8	138,7	60,8

Total=278 p=0,53; q=0,47

Conclusão: Não refutamos a hipótese de que a população está evoluindo conforme esperado pelo modelo básico de HW

22

Efeito da seleção natural

Ao nascimento

p=0,5 q=0,5

Seleção: 100 % mortalidade de indivíduos aa

Efeito da seleção natural

Efeito da seleção natural

Ao nascimento

p=0,5 q=0,5

Seleção: 100 % mortalidade de indivíduos aa

Adultos

AA	Aa	aa
25	50	0

p=0,67 q=0,33

Esperado sob HW: Nq² indivíduos aa 75 * $(0,33)^2$ = 8,3

Há menos indivíduos aa do que esperado

Efeito de desvios da panmixia: endocruzamento

AA	Aa	aa
20	40	20

p=0,5 q=0,5 p²=0,25, q²=0,25, 2pq=0,5

Uma geração de reprodução por autofecundação

Efeito de desvios da panmixia: endocruzamento

Uma geração de reprodução por autofecundação

AA	Aa	aa
30	20	30

p=0,5 q=0,5 p²=0,25, q²=0,25, 2pq=0,5

Em equilíbrio de HW

Quantificando o endocruzamento:

$$F = (2pq - h) / 2pq$$

Há menos indivíduos Aa do que esperado

Efeito de desvios da panmixia: uma população subdividida

Deme 1	Deme 2
Deme 1	Dem

AA	Aa	aa	AA	Aa	aa
81	18	1	1	18	81

$$p=0,9 q=0,1$$
 $p=0,1 q=0,9$

Efeito de desvios da panmixia: uma população subdividida

Deme 1	Deme 2
--------	--------

AA	Aa	aa AA	A Aa	aa
81	18	1 1	18	81

$$p=0,9 q=0,1$$
 $p=0,1 q=0,9$

Demes 1 e 2 analisadas em conjunto

AA	Aa	aa
82	36	82

Efeito de desvios da panmixia: uma população subdividida

Deme	2
	Deme

AA	Aa	aa AA	Aa	aa
81	18	1 1	18	81

$$p=0,9 q=0,1$$
 $p=0,1 q=0,9$

Demes 1 e 2 analisadas em conjunto

AA	Aa	aa
82	36	82

$$p=0,5 q=0,5$$

Basedo nessas frequências alélicas esperaríamos para os N=200 indivíduos:

$$f(AA) = N \times p^2 = 200 \times (0,5)^2 = 50$$

 $f(Aa) = N \times 2pq = 200 \times (0,5) \times (0,5) = 100$
 $f(aa) = N \times q^2 = 200 \times (0,5)^2 = 50$

Há menos indivíduos Aa do que esperado

O modelo básico da genética de populações: equilíbro de Hardy-Weinberg

Propriedade evolutiva	Pressuposto de HW
Tamanho da população	
Forma de cruzamento	
Sobrevivência dos genótipos	
Introdução de novos alelos (mutação e migração)	

O modelo básico da genética de populações: equilíbro de Hardy-Weinberg

Parâmetro do modelo evolutivo	Pressuposto de HW
Tamanho da população	Infinito
Forma de cruzamento	Aleatório
Sobrevivência dos genótipos	Igual para todos (i.e., sem seleção)
Introdução de novos alelos (mutação e migração)	Não ocorre

Como pensar nos modelos

Ideias principal da aula

- Conceito de frequência genotípicas e alélica
- Sob os pressupostos de HW, frequências alélicas não mudam

- Modelo de HW
 - Prevê frequências genotípicas a partir das alélicas (assumindo pressupostos)
 - Se a previsão "falhar", é sinal que algum dos pressupostos pode estar sendo violado

Exercício em sala

Arabidopsis thaliana se auto fertiliza

Efeitos do endocruzamento

Our findings suggest that the high childhood mortality experienced by the Darwin progeny (3 of his 10 children died at age 10 or younger) might be a result of increased homozygosity of deleterious recessive alleles produced by the consanguineous marriages within the Darwin/Wedgwood dynasty (Berra, Alvarez, Ceballos, Bioscience 2010)

Efeitos do endocruzamento

Em ratos: experimentos com competição

Redução de endocruzamento

Tabus de incesto em humanos

Casamento preferencial negativo para determinados genes em roedores

Dispersão de indivíduos reprodutores

Auto incompatibilidade em *primula*

