32 Point Groups ($\omega = e^{2\pi i/3}$)

No. 1 C_1 1 [triclinic] tag = "C1"

* character table

C_1	1
A	1

* polar \leftrightarrow axial conversion

A(A)

* symmetric product

	A
A	A

No. 2 C_i -1 [triclinic] tag = "Ci"

* character table

$$\begin{array}{c|cccc} \hline C_i & 1 & -1 \\ \hline A_g & 1 & 1 \\ \hline A_u & 1 & -1 \\ \hline \end{array}$$

* polar \leftrightarrow axial conversion

$$A_g (A_u) \quad A_u (A_g)$$

* symmetric product

	A_g	A_u
A_g	A_g	A_u
A_u		A_g

A_g	A_u
_	_

No. 3 C_2 2 (b-axis setting) [monoclinic] tag = "C2"

* character table

C_2	1	2010
\overline{A}	1	1
B	1	-1

* polar \leftrightarrow axial conversion

$$A(A) \quad B(B)$$

* symmetric product

	A	В
\overline{A}	A	В
В		A

A	В
_	_

No. 4 C_s m (b-axis setting) [monoclinic] tag = "Cs"

* character table

C_s	1	m_{010}
A'	1	1
A''	1	-1

* polar \leftrightarrow axial conversion

$$A'(A'') \quad A''(A')$$

* symmetric product

	A'	$A^{\prime\prime}$
A'	A'	A''
A''		A'

A'	A''
_	_

No. 5 C_{2h} 2/m (b-axis setting) [monoclinic] tag = "C2h"

* character table

C_{2h}	1	2010	-1	m_{010}
A_g	1	1	1	1
B_g	1	-1	1	-1
A_u	1	1	-1	-1
B_u	1	-1	-1	1

^{*} polar \leftrightarrow axial conversion

$$A_g (A_u)$$
 $B_g (B_u)$ $A_u (A_g)$ $B_u (B_g)$

* symmetric product

	A_g	B_g	A_u	B_u
A_g	A_g	B_g	A_u	B_u
B_g		A_g	B_u	A_u
A_u			A_g	B_g
B_u				A_g

No. 6 D_2 222 [orthorhombic] tag = "D2"

* character table

D_2	1	2001	2010	2_{100}
A	1	1	1	1
B_1	1	1	-1	-1
B_2	1	-1	1	-1
B_3	1	-1	-1	1

* polar \leftrightarrow axial conversion

$$A(A)$$
 $B_3(B_3)$ $B_2(B_2)$ $B_1(B_1)$

* symmetric product

	A	B_1	B_2	B_3
\overline{A}	A	B_1	B_2	B_3
B_1		A	B_3	B_2
B_2			A	B_1
B_3				A

No. 7 C_{2v} mm2 [orthorhombic] tag = "C2v"

* character table

C_{2v}	1	2001	m_{010}	m_{100}
A_1	1	1	1	1
A_2	1	1	-1	-1
B_1	1	-1	1	-1
B_2	1	-1	-1	1

^{*} polar \leftrightarrow axial conversion

$$A_1 (A_2) \quad B_2 (B_1) \quad B_1 (B_2) \quad A_2 (A_1)$$

* symmetric product

	A_1	A_2	B_1	B_2
A_1	A_1	A_2	B_1	B_2
A_2		A_1	B_2	B_1
B_1			A_1	A_2
B_2				A_1

No. 8 D_{2h} mmm [orthorhombic] tag = "D2h"

D_{2h}	1	2001	2010	2100	-1	m_{001}	m_{010}	m_{100}
A_g	1	1	1	1	1	1	1	1
B_{1g}	1	1	-1	-1	1	1	-1	-1
B_{2g}	1	-1	1	-1	1	-1	1	-1
B_{3g}	1	-1	-1	1	1	-1	-1	1
A_u	1	1	1	1	-1	-1	-1	-1
B_{1u}	1	1	-1	-1	-1	-1	1	1
B_{2u}	1	-1	1	-1	-1	1	-1	1
B_{3u}	1	-1	-1	1	-1	1	1	-1

^{*} polar \leftrightarrow axial conversion

$$A_g (A_u) \quad B_{3g} (B_{3u}) \quad B_{2g} (B_{2u}) \quad B_{1g} (B_{1u}) \quad A_u (A_g) \quad B_{3u} (B_{3g}) \quad B_{2u} (B_{2g}) \quad B_{1u} (B_{1g})$$

^{*} symmetric product

	A_g	B_{1g}	B_{2g}	B_{3g}	A_u	B_{1u}	B_{2u}	B_{3u}
A_g	A_g	B_{1g}	B_{2g}	B_{3g}	A_u	B_{1u}	B_{2u}	B_{3u}
B_{1g}		A_g	B_{3g}	B_{2g}	B_{1u}	A_u	B_{3u}	B_{2u}
B_{2g}			A_g	B_{1g}	B_{2u}	B_{3u}	A_u	B_{1u}
B_{3g}				A_g	B_{3u}	B_{2u}	B_{1u}	A_u
A_u					A_g	B_{1g}	B_{2g}	B_{3g}
B_{1u}						A_g	B_{3g}	B_{2g}
B_{2u}							A_g	B_{1g}
B_{3u}								A_g

 $^{^{*}}$ anti-symmetric product

	A_g	B_{1g}	B_{2g}	B_{3g}	A_u	B_{1u}	B_{2u}	B_{3u}
-	_	_	_	_	_	_	_	_

No. 9 C_4 4 [tetragonal] tag = "C4"

* character table

C_4	1	2001	4^{+}_{001}	4^{-}_{001}
\overline{A}	1	1	1	1
B	1	1	-1	-1
$E^{(a)}$	1	-1	-i	i
$E^{(b)}$	1	-1	i	-i

* polar \leftrightarrow axial conversion

$$A(A) \quad B(B) \quad E^{(a)}(E^{(a)}) \quad E^{(b)}(E^{(b)})$$

* symmetric product

	A	B	$E^{(a)}$	$E^{(b)}$
\overline{A}	A	B	$E^{(a)}$	$E^{(b)}$
B		A	$E^{(b)}$	$E^{(a)}$
$E^{(a)}$			B	A
$E^{(b)}$				B

A	В	$E^{(a)}$	$E^{(b)}$
	_		_

No. 10 S_4 -4 [tetragonal] tag = "S4"

* character table

S_4	1	2001	-4^{+}_{001}	-4^{-}_{001}
\overline{A}	1	1	1	1
B	1	1	-1	-1
$E^{(a)}$	1	-1	i	-i
$E^{(b)}$	1	-1	-i	i

* polar \leftrightarrow axial conversion

$$A(B) \quad B(A) \quad E^{(b)}(E^{(a)}) \quad E^{(a)}(E^{(b)})$$

* symmetric product

	A	B	$E^{(a)}$	$E^{(b)}$
\overline{A}	A	B	$E^{(a)}$	$E^{(b)}$
B		A	$E^{(b)}$	$E^{(a)}$
$E^{(a)}$			B	A
$E^{(b)}$				B

No. 11 C_{4h} 4/m [tetragonal] tag = "C4h"

^{*} character table

C_{4h}	1	2001	4^{+}_{001}	4^{-}_{001}	-1	m_{001}	-4^{+}_{001}	-4^{-}_{001}
A_g	1	1	1	1	1	1	1	1
B_g	1	1	-1	-1	1	1	-1	-1
$E_g^{(a)}$	1	-1	-i	i	1	-1	-i	i
$E_g^{(b)}$	1	-1	i	-i	1	-1	i	-i
A_u	1	1	1	1	-1	-1	-1	-1
B_u	1	1	-1	-1	-1	-1	1	1
$E_u^{(a)}$	1	-1	-i	i	-1	1	i	-i
$E_u^{(b)}$	1	-1	i	-i	-1	1	-i	i

^{*} polar \leftrightarrow axial conversion

$$A_g (A_u) \quad B_g (B_u) \quad E_g^{(a)} (E_u^{(a)}) \quad E_g^{(b)} (E_u^{(b)}) \quad A_u (A_g) \quad B_u (B_g) \quad E_u^{(a)} (E_g^{(a)}) \quad E_u^{(b)} (E_g^{(b)})$$

^{*} symmetric product

	A_g	B_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	B_u	$E_u^{(a)}$	$E_u^{(b)}$
A_g	A_g	B_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	B_u	$E_u^{(a)}$	$E_u^{(b)}$
B_g		A_g	$E_g^{(b)}$	$E_g^{(a)}$	B_u	A_u	$E_u^{(b)}$	$E_u^{(a)}$
$E_g^{(a)}$			B_g	A_g	$E_u^{(a)}$	$E_u^{(b)}$	B_u	A_u
$E_g^{(b)}$				B_g	$E_u^{(b)}$	$E_u^{(a)}$	A_u	B_u
A_u					A_g	B_g	$E_g^{(a)}$	$E_g^{(b)}$
B_u						A_g	$E_g^{(b)}$	$E_g^{(a)}$
$E_u^{(a)}$							B_g	A_g
$E_u^{(b)}$								B_g

^{*} anti-symmetric product

P	$\overline{A_g}$	B_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	B_u	$E_u^{(a)}$	$E_u^{(b)}$
-	_	_	_	_	_	_	_	_

No. 12 D_4 422 [tetragonal] tag = "D4"

D_4	1	2001	2100	2110	4 ⁺ ₀₀₁
A_1	1	1	1	1	1
A_2	1	1	-1	-1	1
B_1	1	1	1	-1	-1
B_2	1	1	-1	1	-1
$\underline{}E$	2	-2	0	0	0

^{*} polar \leftrightarrow axial conversion

$$A_1 (A_1)$$
 $B_1 (B_1)$ $E (E)$ $A_2 (A_2)$ $B_2 (B_2)$

		A_2			E
A_1	A_1	A_2 A_1	B_1	B_2	E
A_2		A_1	B_2	B_1	E
B_1			A_1	A_2	E
B_2				A_1	E
E					$A_1 + B_1 + B_2$

^{*} anti-symmetric product

$\overline{A_1}$	A_2	B_1	B_2	E
_	_	_	_	A_2

No. 13 C_{4v} 4mm [tetragonal] tag = "C4v"

C_{4v}	1	2001	4 ⁺ ₀₀₁	m ₁₀₀	m ₁₁₀
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	1	-1	1	-1
B_2	1	1	-1	-1	1
$\underline{}E$	2	-2	0	0	0

^{*} polar \leftrightarrow axial conversion

$$A_1 (A_2) \quad B_1 (B_2) \quad E (E) \quad A_2 (A_1) \quad B_2 (B_1)$$

	ı	A_2			E
A_1	A_1	A_2 A_1	B_1	B_2	E
A_2		A_1	B_2	B_1	E
B_1			A_1		E
B_2				A_1	E
E					$A_1 + B_1 + B_2$

^{*} anti-symmetric product

A_1	A_2	B_1	B_2	E
		_	_	A_2

No. 14 D_{2d} -42m (-42m setting) [tetragonal] tag = "D2d" * character table

D_{2d}	1	2001	2_{100}	m_{110}	-4^{+}_{001}
A_1	1	1	1	1	1
A_2	1	1	-1	-1	1
B_1	1	1	1	-1	-1
B_2	1	1	-1	1	-1
E	2	-2	0	0	0

^{*} polar \leftrightarrow axial conversion

$$A_1 (B_1)$$
 $B_1 (A_1)$ $E (E)$ $A_2 (B_2)$ $B_2 (A_2)$

* symmetric product

		A_2			E
A_1	A_1	A_2 A_1	B_1	B_2	E
A_2		A_1	B_2	B_1	E
B_1			A_1		E
B_2				A_1	E
E					$A_1 + B_1 + B_2$

^{*} anti-symmetric product

$\overline{A_1}$	A_2	B_1	B_2	E
_	_	_	_	A_2

No. 14 $D_{2d}-1$ -4m2 (-4m2 setting) [tetragonal] tag = "D2d-1"

* character table

$\boxed{D_{2d}-1}$	1	2001	2110	m ₁₀₀	-4^{+}_{001}
A_1	1	1	1	1	1
A_2	1	1	-1	-1	1
B_1	1	1	1	-1	-1
B_2	1	1	-1	1	-1
E	2	-2	0	0	0

* polar \leftrightarrow axial conversion

$$A_1 (B_1)$$
 $B_2 (A_2)$ $E (E)$ $A_2 (B_2)$ $B_1 (A_1)$

* symmetric product

		A_2			E
A_1	A_1	A_2 A_1	B_1	B_2	E
A_2		A_1	B_2	B_1	E
B_1			A_1		E
B_2				A_1	E
E					$A_1 + B_1 + B_2$

No. 15 D_{4h} 4/mmm [tetragonal] tag = "D4h"

^{*} character table

D_{4h}	1	2001	2_{100}	2_{110}	4^{+}_{001}	-1	m_{001}	m_{100}	m_{110}	-4^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	-1	1
B_{1g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{2g}	1	1	-1	1	-1	1	1	-1	1	-1
E_g	2	-2	0	0	0	2	-2	0	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	-1	-1	1	1	-1
B_{1u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{2u}	1	1	-1	1	-1	-1	-1	1	-1	1
E_u	2	-2	0	0	0	-2	2	0	0	0

^{*} polar \leftrightarrow axial conversion

$$A_{1g} \ (A_{1u}) \quad B_{1g} \ (B_{1u}) \quad E_g \ (E_u) \quad A_{2g} \ (A_{2u}) \quad B_{2g} \ (B_{2u}) \quad A_{1u} \ (A_{1g}) \quad B_{1u} \ (B_{1g}) \quad E_u \ (E_g) \quad A_{2u} \ (A_{2g}) \quad B_{2u} \ (B_{2g})$$

^{*} symmetric product

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_g	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_u
B_{1g}			A_{1g}	A_{2g}	E_g	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_u
B_{2g}				A_{1g}	E_g	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_u
E_g					$A_{1g} + B_{1g} + B_{2g}$	E_u	E_u	E_u	E_u	$A_{1u} + A_{2u} + B_{1u} + B_{2u}$
A_{1u}						A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g
A_{2u}							A_{1g}	B_{2g}	B_{1g}	E_g
B_{1u}								A_{1g}	A_{2g}	E_g
B_{2u}									A_{1g}	E_g
E_u										$A_{1g} + B_{1g} + B_{2g}$

^{*} anti-symmetric product

 A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
_	_	_	_	A_{2g}	_	_	_	_	A_{2g}

No. 16 C_3 3 [trigonal] tag = "C3"

* character table

C_3	1	3 ⁺ ₀₀₁	3-001
A	1	1	1
$E^{(a)}$	1	ω^*	ω
$E^{(b)}$	1	ω	ω^*

* polar \leftrightarrow axial conversion

$$A(A) \quad E^{(a)}(E^{(a)}) \quad E^{(b)}(E^{(b)})$$

* symmetric product

	A	$E^{(a)}$	$E^{(b)}$
A	A	$E^{(a)}$	$E^{(b)}$
$E^{(a)}$		$E^{(b)}$	A
$E^{(b)}$			$E^{(a)}$

A	$E^{(a)}$	$E^{(b)}$
_	_	_

No. 17 C_{3i} -3 [trigonal] tag = "C3i"

* character table

C_{3i}	1	3 ⁺ ₀₀₁	3-001	-1	-3^{+}_{001}	-3^{-}_{001}
A_g	1	1	1	1	1	1
$E_g^{(a)}$	1	ω^*	ω	1	ω^*	ω
$E_g^{(b)}$	1	ω	ω^*	1	ω	ω^*
A_u	1	1	1	-1	-1	-1
$E_u^{(a)}$	1	ω^*	ω	-1	$-\omega^*$	$-\omega$
$E_u^{(b)}$	1	ω	ω^*	-1	$-\omega$	$-\omega^*$

^{*} polar \leftrightarrow axial conversion

$$A_g (A_u) \quad E_g^{(a)} (E_u^{(a)}) \quad E_g^{(b)} (E_u^{(b)}) \quad A_u (A_g) \quad E_u^{(a)} (E_g^{(a)}) \quad E_u^{(b)} (E_g^{(b)})$$

	A_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	$E_u^{(a)}$	$E_u^{(b)}$
$\overline{A_g}$	A_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	$E_u^{(a)}$	$E_u^{(b)}$
$E_g^{(a)}$		$E_g^{(b)}$	A_g	$E_u^{(a)}$	$E_u^{(b)}$	A_u
$E_g^{(b)}$			$E_g^{(a)}$	$E_u^{(b)}$	A_u	$E_u^{(a)}$
A_u				A_g	$E_g^{(a)}$	$E_g^{(b)}$
$E_u^{(a)}$					$E_g^{(b)}$	A_g
$E_u^{(b)}$						$E_g^{(a)}$

^{*} anti-symmetric product

A_g	$E_g^{(a)}$	$E_g^{(b)}$	A_u	$E_u^{(a)}$	$E_u^{(b)}$
_	_	_	_	_	_

No. 18 D_3 312 (312 setting) [trigonal] tag = "D3"

* character table

D_3	1	2_{120}	3 ⁺ ₀₀₁
A_1	1	1	1
A_2	1	-1	1
E	2	0	-1

* polar \leftrightarrow axial conversion

$$A_1 (A_1)$$
 $A_2 (A_2)$ $E (E)$

* symmetric product

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

$$\begin{array}{cccc} A_1 & A_2 & E \\ - & - & A_2 \end{array}$$

No. 18 $D_3 - 1$ 321 (321 setting) [trigonal] tag = "D3-1"

* character table

$D_3 - 1$	1	2100	3 ⁺ ₀₀₁
A_1	1	1	1
A_2	1	-1	1
E	2	0	-1

* polar \leftrightarrow axial conversion

$$A_1 (A_1)$$
 $A_2 (A_2)$ $E (E)$

* symmetric product

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

$$\begin{array}{cccc} A_1 & A_2 & E \\ - & - & A_2 \end{array}$$

No. 19 C_{3v} 3m1 (3m1 setting) [trigonal] tag = "C3v"

* character table

C_{3v}	1	3 ⁺ ₀₀₁	m_{100}
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

* polar \leftrightarrow axial conversion

$$A_1 (A_2)$$
 $A_2 (A_1)$ $E (E)$

* symmetric product

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

$$\begin{array}{cccc} A_1 & A_2 & E \\ - & - & A_2 \end{array}$$

No. 19 $C_{3v}-1$ 31m (31m setting) [trigonal] tag = "C3v-1"

* character table

$C_{3v}-1$	1	3 ⁺ ₀₀₁	m_{120}
A_1	1	1	1
A_2	1	1	-1
E	2	-1	0

* polar \leftrightarrow axial conversion

$$A_1 (A_2)$$
 $A_2 (A_1)$ $E (E)$

* symmetric product

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

$$\begin{array}{cccc} A_1 & A_2 & E \\ - & - & A_2 \end{array}$$

No. 20 D_{3d} -31m (-31m setting) [trigonal] tag = "D3d" * character table

D_{3d}	1	2 ₁₂₀	3 ⁺ ₀₀₁	-1	m ₁₂₀	-3^{+}_{001}
A_{1g}	1	1	1	1	1	1
A_{2g}	1	-1	1	1	-1	1
E_g	2	0	-1	2	0	-1
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	-1	1	-1	1	-1
E_u	2	0	-1	-2	0	1

^{*} polar \leftrightarrow axial conversion

$$A_{1g} (A_{1u}) \quad A_{2g} (A_{2u}) \quad E_g (E_u) \quad A_{1u} (A_{1g}) \quad A_{2u} (A_{2g}) \quad E_u (E_g)$$

^{*} symmetric product

	A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u
A_{1g}	A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u
A_{2g}		A_{1g}	E_g	A_{2u}	A_{1u}	E_u
E_g			$A_{1g} + E_g$	E_u	E_u	$A_{1u} + A_{2u} + E_u$
A_{1u}				A_{1g}	A_{2g}	E_g
A_{2u}					A_{1g}	E_g
E_u						$A_{1g} + E_g$

^{*} anti-symmetric product

A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u
_	_	A_{2g}	_	_	A_{2g}

No. 20 $D_{3d}-1$ -3m1 (-3m1 setting) [trigonal] tag = "D3d-1"

* character table

$D_{3d}-1$	1	2100	3 ⁺ ₀₀₁	-1	m ₁₀₀	-3^{+}_{001}
A_{1g}	1	1	1	1	1	1
A_{2g}	1	-1	1	1	-1	1
E_g	2	0	-1	2	0	-1
A_{1u}	1	1	1	-1	-1	-1
A_{2u}	1	-1	1	-1	1	-1
E_u	2	0	-1	-2	0	1

^{*} polar \leftrightarrow axial conversion

$$A_{1g} (A_{1u}) \quad A_{2g} (A_{2u}) \quad E_g (E_u) \quad A_{1u} (A_{1g}) \quad A_{2u} (A_{2g}) \quad E_u (E_g)$$

^{*} symmetric product

	A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u
A_{1g}	A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u
A_{2g}		A_{1g}	E_g	A_{2u}	A_{1u}	E_u
E_g			$A_{1g} + E_g$	E_u	E_u	$A_{1u} + A_{2u} + E_u$
A_{1u}				A_{1g}	A_{2g}	E_g
A_{2u}					A_{1g}	E_g
E_u						$A_{1g} + E_g$

^{*} anti-symmetric product

A_{1g}	A_{2g}	E_g	A_{1u}	A_{2u}	E_u
_	_	A_{2g}	_	_	A_{2g}

No. 21 C_6 6 [hexagonal] tag = "C6"

C_6	1	2001	3 ⁺ ₀₀₁	3-001	6 ⁺ ₀₀₁	6-001
A	1	1	1	1	1	1
B	1	-1	1	1	-1	-1
$E_1^{(a)}$	1	-1	ω^*	ω	$-\omega$	$-\omega^*$
$E_1^{(b)}$	1	-1	ω	ω^*	$-\omega^*$	$-\omega$
$E_2^{(a)}$	1	1	ω^*	ω	ω	ω^*
$E_2^{(b)}$	1	1	ω	ω^*	ω^*	ω

^{*} polar \leftrightarrow axial conversion

$$A (A) \quad B (B) \quad E_1^{(a)} (E_1^{(a)}) \quad E_1^{(b)} (E_1^{(b)}) \quad E_2^{(a)} (E_2^{(a)}) \quad E_2^{(b)} (E_2^{(b)})$$

	A	В	$E_1^{(a)}$	$E_1^{(b)}$	$E_2^{(a)}$	$E_2^{(b)}$
\overline{A}	A	B	$E_1^{(a)}$	$E_1^{(b)}$	$E_2^{(a)}$	$E_2^{(b)}$
B		A	$E_2^{(a)}$	$E_2^{(b)}$	$E_1^{(a)}$	$E_1^{(b)}$
$E_1^{(a)}$			$E_2^{(b)}$	A	$E_1^{(b)}$	B
$E_1^{(b)}$				$E_2^{(a)}$	B	$E_1^{(a)}$
$E_2^{(a)}$					$E_2^{(b)}$	A
$E_2^{(b)}$						$E_2^{(a)}$

^{*} anti-symmetric product

\overline{A}	В	$E_1^{(a)}$	$E_1^{(b)}$	$E_2^{(a)}$	$E_2^{(b)}$
_	-	_	_	_	_

No. 22 C_{3h} -6 [hexagonal] tag = "C3h"

C_{3h}	1	3 ⁺ ₀₀₁	3-001	m_{001}	-6^{+}_{001}	-6^{-}_{001}
A'	1	1	1	1	1	1
A''	1	1	1	-1	-1	-1
$E'^{(a)}$	1	ω^*	ω	1	ω	ω^*
$E'^{(b)}$	1	ω	ω^*	1	ω^*	ω
$E^{\prime\prime(a)}$	1	ω^*	ω	-1	$-\omega$	$-\omega^*$
$E''^{(b)}$	1	ω	ω^*	-1	$-\omega^*$	$-\omega$

^{*} polar \leftrightarrow axial conversion

$$A' \; (A'') \quad A'' \; (A') \quad E''^{(a)} \; (E'^{(a)}) \quad E''^{(b)} \; (E'^{(b)}) \quad E'^{(a)} \; (E''^{(a)}) \quad E'^{(b)} \; (E''^{(b)})$$

	A'	A''	$E'^{(a)}$	$E'^{(b)}$	$E^{\prime\prime(a)}$	$E^{\prime\prime(b)}$
A'	A'	A''	$E'^{(a)}$	$E'^{(b)}$	$E^{\prime\prime(a)}$	$E^{\prime\prime(b)}$
A''		A'	$E^{\prime\prime(a)}$	$E^{\prime\prime(b)}$	$E'^{(a)}$	$E'^{(b)}$
$E'^{(a)}$			$E'^{(b)}$	A'	$E^{\prime\prime(b)}$	$A^{\prime\prime}$
$E'^{(b)}$				$E'^{(a)}$	$A^{\prime\prime}$	$E^{\prime\prime(a)}$
$E^{\prime\prime(a)}$					$E'^{(b)}$	A'
$E^{\prime\prime(b)}$						$E'^{(a)}$

^{*} anti-symmetric product

	A'	A''	$E'^{(a)}$	$E'^{(b)}$	$E^{\prime\prime(a)}$	$E''^{(b)}$
_	_	_	_	_	_	

No. 23 C_{6h} 6/m [hexagonal] tag = "C6h"

^{*} character table

C_{6h}	1	2001	3 ⁺ ₀₀₁	3-001	6 ⁺ ₀₀₁	6-001	-1	m_{001}	-3^{+}_{001}	-3^{-}_{001}	-6^{+}_{001}	-6^{-}_{001}
A_g	1	1	1	1	1	1	1	1	1	1	1	1
B_g	1	-1	1	1	-1	-1	1	-1	1	1	-1	-1
$E_{1g}^{(a)}$	1	-1	ω^*	ω	$-\omega$	$-\omega^*$	1	-1	ω^*	ω	$-\omega$	$-\omega^*$
$E_{1g}^{(b)}$	1	-1	ω	ω^*	$-\omega^*$	$-\omega$	1	-1	ω	ω^*	$-\omega^*$	$-\omega$
$E_{2g}^{(a)}$	1	1	ω^*	ω	ω	ω^*	1	1	ω^*	ω	ω	ω^*
$E_{2g}^{(b)}$	1	1	ω	ω^*	ω^*	ω	1	1	ω	ω^*	ω^*	ω
A_u	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
B_u	1	-1	1	1	-1	-1	-1	1	-1	-1	1	1
$E_{1u}^{(a)}$	1	-1	ω^*	ω	$-\omega$	$-\omega^*$	-1	1	$-\omega^*$	$-\omega$	ω	ω^*
$E_{1u}^{(b)}$	1	-1	ω	ω^*	$-\omega^*$	$-\omega$	-1	1	$-\omega$	$-\omega^*$	ω^*	ω
$E_{2u}^{(a)}$	1	1	ω^*	ω	ω	ω^*	-1	-1	$-\omega^*$	$-\omega$	$-\omega$	$-\omega^*$
$E_{2u}^{(b)}$	1	1	ω	ω^*	ω^*	ω	-1	-1	$-\omega$	$-\omega^*$	$-\omega^*$	$-\omega$

^{*} polar \leftrightarrow axial conversion

$$A_g \; (A_u) \quad B_g \; (B_u) \quad E_{1g}^{(a)} \; (E_{1u}^{(a)}) \quad E_{1g}^{(b)} \; (E_{1u}^{(b)}) \quad E_{2g}^{(a)} \; (E_{2u}^{(a)}) \quad E_{2g}^{(b)} \; (E_{2u}^{(b)}) \quad A_u \; (A_g) \quad B_u \; (B_g) \quad E_{1u}^{(a)} \; (E_{1g}^{(a)}) \quad E_{1u}^{(b)} \; (E_{1g}^{(a)}) \quad E_{2u}^{(a)} \; (E_{2g}^{(a)}) \quad E_{2u}^{(b)} \; (E_{2g}^{(b)}) \quad E_{2$$

^{*} symmetric product

	A_g	B_g	$E_{1g}^{(a)}$	$E_{1g}^{(b)} \\ E_{1g}^{(b)} \\ E_{2g}^{(b)}$	$E_{2g}^{(a)}$	$E_{2g}^{(b)} \\ E_{2g}^{(b)} \\ E_{1g}^{(b)}$	A_u	B_u	$E_{1u}^{(a)}$	$E_{1u}^{(b)}$	$E_{2u}^{(a)}$	$E_{2u}^{(b)}$
A_g	A_g	B_g	$E_{1a}^{(a)}$	$E_{1g}^{(b)}$	$ \begin{array}{c} E_{2g}^{(a)} \\ E_{2g}^{(a)} \\ E_{1g}^{(a)} \\ E_{1g}^{(b)} \end{array} $	$E_{2g}^{(b)}$	A_u	B_u	$E_{1u}^{(a)}$	$E_{1u}^{(b)}$	$E_{2u}^{(a)}$	$E_{2u}^{(b)}$ $E_{1u}^{(b)}$
B_g		A_g	$E_{2g}^{(a)}$	$E_{2g}^{(b)}$	$E_{1g}^{(a)}$	$E_{1g}^{(b)}$	B_u	A_u	$E_{2u}^{(a)}$	$E_{2u}^{(b)}$	$E_{1u}^{(a)}$	$E_{1u}^{(b)}$
$E_{1g}^{(a)}$			$E_{2g}^{(a)}$ $E_{2g}^{(b)}$	A_a	$E_{1g}^{(b)}$	B_q	$E_{1u}^{(a)}$	$E_{2u}^{(a)}$	$E_{2u}^{(a)}$ $E_{2u}^{(b)}$	A_u	$E_{1u}^{(a)}$ $E_{1u}^{(b)}$	B_u
$E_{1g}^{(b)}$				$E_{2g}^{(a)}$		$E_{1g}^{(a)}$	$E_{1u}^{(b)}$	$E_{2u}^{(a)}$ $E_{2u}^{(b)}$	A_u	$E_{2u}^{(a)}$	B_u	$E_{1u}^{(a)}$
$E_{2g}^{(a)}$					$B_g \\ E_{2g}^{(b)}$	A_q	$E_{2u}^{(a)}$	$E_{1u}^{(a)}$	$E_{1u}^{(b)}$	B_u	$E_{2u}^{(b)}$	A_u
$E_{1g}^{(a)} \\ E_{1g}^{(b)} \\ E_{2g}^{(a)} \\ E_{2g}^{(b)}$						$E_{2g}^{(a)}$	$E_{2u}^{(b)}$	$E_{1u}^{(b)}$	B_u	$E_{1u}^{(a)}$	A_u	$E_{2u}^{(a)}$
A_u							A_g	B_g	$E_{1g}^{(a)}$	$E_{1u}^{(a)}$ $E_{1g}^{(b)}$	$E_{1g}^{(a)}$ $E_{1g}^{(a)}$ $E_{1g}^{(b)}$	$E_{2u}^{(a)} \\ E_{2g}^{(b)} \\ E_{1g}^{(b)}$
B_u								A_g	$E_{2g}^{(a)}$ $E_{2g}^{(b)}$	$E_{2g}^{(b)}$	$E_{1g}^{(a)}$	$E_{1g}^{(b)}$
$E_{1u}^{(a)}$									$E_{2g}^{(b)}$	A_g	$E_{1g}^{(b)}$	B_{q}
$E_{1u}^{(b)}$										$E_{2g}^{(a)}$	B_q	$E_{1g}^{(a)}$
$E_{1u}^{(a)} \\ E_{1u}^{(b)} \\ E_{2u}^{(a)} \\ E_{2u}^{(b)}$											$E_{2g}^{(b)}$	A_g
$E_{2u}^{(b)}$												$E_{2g}^{(a)}$

A_g	B_g	$E_{1g}^{(a)}$	$E_{1g}^{(b)}$	$E_{2g}^{(a)}$	$E_{2g}^{(b)}$	A_u	B_u	$E_{1u}^{(a)}$	$E_{1u}^{(b)}$	$E_{2u}^{(a)}$	$E_{2u}^{(b)}$
_	_	_	_	_	_	_	_	_	_	_	_

No. 24 D_6 622 [hexagonal] tag = "D6"

D_6	1	2001	2100	2 ₁₂₀	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁
A_1	1	1	1	1	1	1
A_2	1	1	-1	-1	1	1
B_1	1	-1	-1	1	1	-1
B_2	1	-1	1	-1	1	-1
E_1	2	-2	0	0	-1	1
E_2	2	2	0	0	-1	-1

^{*} polar \leftrightarrow axial conversion

$$A_1 (A_1)$$
 $A_2 (A_2)$ $B_1 (B_1)$ $B_2 (B_2)$ $E_1 (E_1)$ $E_2 (E_2)$

^{*} symmetric product

	A_1	A_2	B_1	B_2	E_1	E_2
A_1	A_1	A_2	B_1	B_2	E_1	E_2
A_2		A_1	B_2	B_1	E_1	E_2
B_1			A_1	A_2	E_2	E_1
B_2				A_1	E_2	E_1
E_1					$A_1 + E_2$	$B_1 + B_2 + E_1$
E_2						$A_1 + E_2$

^{*} anti-symmetric product

A_1	A_2	B_1	B_2	E_1	E_2
_	_	_	_	A_2	A_2

No. 25 C_{6v} 6mm [hexagonal] tag = "C6v"

C_{6v}	1	2001	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	m ₁₀₀	m_{120}
A_1	1	1	1	1	1	1
A_2	1	1	1	1	-1	-1
B_1	1	-1	1	-1	1	-1
B_2	1	-1	1	-1	-1	1
E_1	2	-2	-1	1	0	0
E_2	2	2	-1	-1	0	0

^{*} polar \leftrightarrow axial conversion

$$A_1 (A_2) \quad A_2 (A_1) \quad B_2 (B_1) \quad B_1 (B_2) \quad E_1 (E_1) \quad E_2 (E_2)$$

^{*} symmetric product

	A_1	A_2	B_1	B_2	E_1	E_2
A_1	A_1	A_2	B_1	B_2	E_1	E_2
A_2		A_1	B_2	B_1	E_1	E_2
B_1			A_1	A_2	E_2	E_1
B_2				A_1	E_2	E_1
E_1					$A_1 + E_2$	$B_1 + B_2 + E_1$
E_2						$A_1 + E_2$

^{*} anti-symmetric product

A_1	A_2	B_1	B_2	E_1	E_2
_	_	_	_	A_2	A_2

No. 26 D_{3h} -6m2 (-6m2 setting) [hexagonal] tag = "D3h" * character table

D_{3h}	1	2 ₁₂₀	3 ⁺ ₀₀₁	m_{100}	m ₀₀₁	-6^{+}_{001}
A_1'	1	1	1	1	1	1
A_2'	1	-1	1	-1	1	1
A_1''	1	1	1	-1	-1	-1
$A_2^{\prime\prime}$	1	-1	1	1	-1	-1
E'	2	0	-1	0	2	-1
E''	2	0	-1	0	-2	1

^{*} polar \leftrightarrow axial conversion

$$A_1' \, \left(A_1'' \right) \quad A_2' \, \left(A_2'' \right) \quad A_1'' \, \left(A_1' \right) \quad A_2'' \, \left(A_2' \right) \quad E'' \, \left(E' \right) \quad E' \, \left(E'' \right)$$

^{*} symmetric product

	A_1'	A_2'	A_1''	$A_2^{\prime\prime}$	E'	E''
A_1'	A'_1	A_2'	A_1''	$A_2^{\prime\prime}$	E'	E''
A_2'		A_1'	A_2''	$A_1^{\prime\prime}$	E'	E''
$A_1^{\prime\prime}$			A'_1	A_2'	$E^{\prime\prime}$	E'
$A_2^{\prime\prime}$				A'_1	$E^{\prime\prime}$	E'
E'					$A_1' + E'$	$A_1'' + A_2'' + E''$
E''						$A_1' + E'$

^{*} anti-symmetric product

A_1'	A_2'	A_1''	$A_2^{\prime\prime}$	E'	$E^{\prime\prime}$
	_	_	_	A_2'	A_2'

No. 26 $D_{3h}-1$ -62m (-62m setting) [hexagonal] tag = "D3h-1" * character table

$D_{3h}-1$	1	2100	3 ⁺ ₀₀₁	m_{001}	m_{120}	-6^{+}_{001}
A_1'	1	1	1	1	1	1
A_2'	1	-1	1	1	-1	1
A_1''	1	1	1	-1	-1	-1
A_2''	1	-1	1	-1	1	-1
E'	2	0	-1	2	0	-1
E''	2	0	-1	-2	0	1

^{*} polar \leftrightarrow axial conversion

$$A_{1}^{\prime}\,\left(A_{1}^{\prime\prime}\right)\quad A_{2}^{\prime}\,\left(A_{2}^{\prime\prime}\right)\quad A_{2}^{\prime\prime}\,\left(A_{2}^{\prime}\right)\quad A_{1}^{\prime\prime}\,\left(A_{1}^{\prime}\right)\quad E^{\prime\prime}\,\left(E^{\prime}\right)\quad E^{\prime}\,\left(E^{\prime\prime}\right)$$

^{*} symmetric product

	A_1'	A_2'	A_1''	$A_2^{\prime\prime}$	E'	E''
A_1'	A'_1	A_2'	A_1''	$A_2^{\prime\prime}$	E'	E''
A_2'		A_1'	A_2''	$A_1^{\prime\prime}$	E'	E''
$A_1^{\prime\prime}$			A'_1	A_2'	$E^{\prime\prime}$	E'
$A_2^{\prime\prime}$				A'_1	$E^{\prime\prime}$	E'
E'					$A_1' + E'$	$A_1'' + A_2'' + E''$
E''						$A_1' + E'$

^{*} anti-symmetric product

No. 27 D_{6h} 6/mmm [hexagonal] tag = "D6h"

^{*} character table

D_{6h}	1	2001	2100	2120	3 ⁺ ₀₀₁	6 ⁺ ₀₀₁	-1	m_{100}	m_{001}	m_{120}	-3^{+}_{001}	-6^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	1	-1	1	1
B_{1g}	1	-1	-1	1	1	-1	1	-1	-1	1	1	-1
B_{2g}	1	-1	1	-1	1	-1	1	1	-1	-1	1	-1
E_{1g}	2	-2	0	0	-1	1	2	0	-2	0	-1	1
E_{2g}	2	2	0	0	-1	-1	2	0	2	0	-1	-1
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	1	-1	1	-1	1	-1	-1
B_{1u}	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
B_{2u}	1	-1	1	-1	1	-1	-1	-1	1	1	-1	1
E_{1u}	2	-2	0	0	-1	1	-2	0	2	0	1	-1
E_{2u}	2	2	0	0	-1	-1	-2	0	-2	0	1	1

^{*} polar \leftrightarrow axial conversion

$$A_{1g} \ (A_{1u}) \quad A_{2g} \ (A_{2u}) \quad B_{1g} \ (B_{1u}) \quad B_{2g} \ (B_{2u}) \quad E_{1g} \ (E_{1u}) \quad E_{2g} \ (E_{2u}) \quad A_{1u} \ (A_{1g}) \quad A_{2u} \ (A_{2g}) \quad B_{1u} \ (B_{1g}) \quad B_{2u} \ (B_{2g}) \quad E_{1u} \ (E_{1g}) \quad E_{2u} \ (E_{2g})$$

^{*} symmetric product

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_{1u}	E_{2u}
B_{1g}			A_{1g}	A_{2g}	E_{2g}	E_{1g}	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_{2u}	E_{1u}
B_{2g}				A_{1g}	E_{2g}	E_{1g}	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_{2u}	E_{1u}
E_{1g}					$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$	E_{1u}	E_{1u}	E_{2u}	E_{2u}	$A_{1u} + A_{2u} + E_{2u}$	$B_{1u} + B_{2u} + E_{1u}$
E_{2g}						$A_{1g} + E_{2g}$	E_{2u}	E_{2u}	E_{1u}	E_{1u}	$B_{1u} + B_{2u} + E_{1u}$	$A_{1u} + A_{2u} + E_{2u}$
A_{1u}							A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}
A_{2u}								A_{1g}	B_{2g}	B_{1g}	E_{1g}	E_{2g}
B_{1u}									A_{1g}	A_{2g}	E_{2g}	E_{1g}
B_{2u}										A_{1g}	E_{2g}	E_{1g}
E_{1u}											$A_{1g} + E_{2g}$	$B_{1g} + B_{2g} + E_{1g}$
E_{2u}												$A_{1g} + E_{2g}$

^{*} anti-symmetric product

A	1g	A_{2g}	B_{1g}	B_{2g}	E_{1g}	E_{2g}	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_{1u}	E_{2u}
_	_	_	_	_	A_{2g}	A_{2g}	_	_	_	_	A_{2g}	A_{2g}

No. 28 T 23 [cubic] tag = "T"

* character table

T	1	2001	3 ⁺ ₁₁₁	3-111
\overline{A}	1	1	1	1
$E^{(a)}$	1	1	ω^*	ω
$E^{(b)}$	1	1	ω	ω^*
T	3	-1	0	0

* polar \leftrightarrow axial conversion

$$A(A) \quad E^{(a)}(E^{(a)}) \quad E^{(b)}(E^{(b)}) \quad T(T)$$

* symmetric product

	A	$E^{(a)}$	$E^{(b)}$	T
A	A	$E^{(a)}$	$E^{(b)}$	T
$E^{(a)}$		$E^{(b)}$	A	T
$E^{(b)}$			$E^{(a)}$	T
T				$A + E^{(a)} + E^{(b)} + T$

No. 29 T_h m-3 [cubic] tag = "Th"

* character table

T_h	1	2001	3 ⁺ ₁₁₁	3-111	-1	m_{001}	-3^{+}_{111}	-3^{-}_{111}
A_g	1	1	1	1	1	1	1	1
$E_g^{(a)}$	1	1	ω^*	ω	1	1	ω^*	ω
$E_g^{(b)}$	1	1	ω	ω^*	1	1	ω	ω^*
T_g	3	-1	0	0	3	-1	0	0
A_u	1	1	1	1	-1	-1	-1	-1
$E_u^{(a)}$	1	1	ω^*	ω	-1	-1	$-\omega^*$	$-\omega$
$E_u^{(b)}$	1	1	ω	ω^*	-1	-1	$-\omega$	$-\omega^*$
T_u	3	-1	0	0	-3	1	0	0

^{*} polar \leftrightarrow axial conversion

$$A_g (A_u) \quad E_g^{(a)} (E_u^{(a)}) \quad E_g^{(b)} (E_u^{(b)}) \quad T_g (T_u) \quad A_u (A_g) \quad E_u^{(a)} (E_g^{(a)}) \quad E_u^{(b)} (E_g^{(b)}) \quad T_u (T_g)$$

	A_q	$E_q^{(a)}$	$E_q^{(b)}$	T_q	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
			$E_g^{(b)}$			$E_u^{(a)}$	$E_u^{(b)}$	
A_g	A_g			T_g	A_u			T_u
$E_g^{(a)}$		$E_g^{(b)}$	A_g	T_g	$E_u^{(a)}$	$E_u^{(b)}$	A_u	T_u
$E_g^{(b)}$			$E_g^{(a)}$	T_g	$E_u^{(b)}$	A_u	$E_u^{(a)}$	T_u
T_g				$A_g + E_g^{(a)} + E_g^{(b)} + T_g$	T_u	T_u	T_u	$A_u + E_u^{(a)} + E_u^{(b)} + 2T_u$
A_u					A_g	$E_g^{(a)}$	$E_g^{(b)}$	T_g
$E_u^{(a)}$						$E_g^{(b)}$	A_g	T_g
$E_u^{(b)}$							$E_g^{(a)}$	T_g
T_u								$A_g + E_g^{(a)} + E_g^{(b)} + T_g$

^{*} anti-symmetric product

A_{g}	$E_g^{(a)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
_	_	_	T_g	_	_	_	T_g

No. 30 O 432 [cubic] tag = "0"

* character table

0	1	2001	2110	3 ⁺ ₁₁₁	4 ⁺ ₀₀₁
A_1	1	1	1	1	1
A_2	1	1	-1	1	-1
E	2	2	0	-1	0
T_1	3	-1	-1	0	1
T_2	3	-1	1	0	-1

* polar \leftrightarrow axial conversion

$$A_1 \ (A_1)$$
 $A_2 \ (A_2)$ $E \ (E)$ $T_1 \ (T_1)$ $T_2 \ (T_2)$

* symmetric product

	A_1	A_2	E	T_1	T_2
A_1	A_1	A_2	E	T_1	T_2
A_2		A_1	E	T_2	T_1
E			$A_1 + E$	$T_1 + T_2$	$T_1 + T_2$
T_1				$A_1 + E + T_2$	$A_2 + E + T_1 + T_2$
T_2					$A_1 + E + T_2$

No. 31 T_d -43m [cubic] tag = "Td"

* character table

T_d	1	2001	3 ⁺ ₁₁₁	m_{110}	-4^{+}_{001}
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	2	-1	0	0
T_1	3	-1	0	-1	1
T_2	3	-1	0	1	-1

* polar \leftrightarrow axial conversion

$$A_1 \ (A_2)$$
 $A_2 \ (A_1)$ $E \ (E)$ $T_1 \ (T_2)$ $T_2 \ (T_1)$

* symmetric product

	A_1	A_2	E	T_1	T_2
A_1	A_1	A_2	E	T_1	T_2
A_2		A_1	E	T_2	T_1
E			$A_1 + E$	$T_1 + T_2$	$T_1 + T_2$
T_1				$A_1 + E + T_2$	$A_2 + E + T_1 + T_2$
T_2					$A_1 + E + T_2$

No. 32 O_h m-3m [cubic] tag = "Oh"

^{*} character table

O_h	1	2001	2110	3 ⁺ ₁₁₁	4^{+}_{001}	-1	m_{001}	m_{110}	-3^{+}_{111}	-4^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	1	-1	1	1	-1	1	-1
E_g	2	2	0	-1	0	2	2	0	-1	0
T_{1g}	3	-1	-1	0	1	3	-1	-1	0	1
T_{2g}	3	-1	1	0	-1	3	-1	1	0	-1
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	1	-1	-1	-1	1	-1	1
E_u	2	2	0	-1	0	-2	-2	0	1	0
T_{1u}	3	-1	-1	0	1	-3	1	1	0	-1
T_{2u}	3	-1	1	0	-1	-3	1	-1	0	1

^{*} polar \leftrightarrow axial conversion

$$A_{1g} \ (A_{1u}) \quad A_{2g} \ (A_{2u}) \quad E_g \ (E_u) \quad T_{1g} \ (T_{1u}) \quad T_{2g} \ (T_{2u}) \quad A_{1u} \ (A_{1g}) \quad A_{2u} \ (A_{2g}) \quad E_u \ (E_g) \quad T_{1u} \ (T_{1g}) \quad T_{2u} \ (T_{2g})$$

^{*} symmetric product

	A_{1g}	A_{2g}	E_g	T_{1g}	T_{2g}	A_{1u}	A_{2u}	E_u	T_{1u}	T_{2u}
A_{1g}	A_{1g}	A_{2g}	E_g	T_{1g}	T_{2g}	A_{1u}	A_{2u}	E_u	T_{1u}	T_{2u}
A_{2g}		A_{1g}	E_g	T_{2g}	T_{1g}	A_{2u}	A_{1u}	E_u	T_{2u}	T_{1u}
E_g			$A_{1g} + E_g$	$T_{1g} + T_{2g}$	$T_{1g} + T_{2g}$	E_u	E_u	$A_{1u} + A_{2u} + E_u$	$T_{1u} + T_{2u}$	$T_{1u} + T_{2u}$
T_{1g}				$A_{1g} + E_g + T_{2g}$	$A_{2g} + E_g + T_{1g} + T_{2g}$	T_{1u}	T_{2u}	$T_{1u} + T_{2u}$	$A_{1u} + E_u + T_{1u} + T_{2u}$	$A_{2u} + E_u + T_{1u} + T_{2u}$
T_{2g}					$A_{1g} + E_g + T_{2g}$	T_{2u}	T_{1u}	$T_{1u} + T_{2u}$	$A_{2u} + E_u + T_{1u} + T_{2u}$	$A_{1u} + E_u + T_{1u} + T_{2u}$
A_{1u}						A_{1g}	A_{2g}	E_g	T_{1g}	T_{2g}
A_{2u}							A_{1g}	E_g	T_{2g}	T_{1g}
E_u								$A_{1g} + E_g$	$T_{1g} + T_{2g}$	$T_{1g} + T_{2g}$
T_{1u}									$A_{1g} + E_g + T_{2g}$	$A_{2g} + E_g + T_{1g} + T_{2g}$
T_{2u}										$A_{1g} + E_g + T_{2g}$

^{*} anti-symmetric product

A_{1g}	A_{2g}	E_g	T_{1g}	T_{2g}	A_{1u}	A_{2u}	E_u	T_{1u}	T_{2u}
_	_	A_{2g}	T_{1g}	T_{1g}	_	_	A_{2g}	T_{1g}	T_{1g}