Qucs

Compact device - circuit macromodel specification
A Curtice level 1 MESFET model

Mike Brinson Stefan Jahn

Copyright © 2007 Mike Brinson <mbr/>brin72043@yahoo.co.uk> Copyright © 2007 Stefan Jahn <stefan@lkcc.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation. A copy of the license is included in the section entitled "GNU Free Documentation License".

Introduction

The Metal and Semiconductor FET (MESFET) is a Schottky-barrier gate FET made from gallium arsenide. It is popular for high frequency applications because of it's high electron mobility. The device was developed by Walter R. Curtice¹ in 1980 at the RCA Laboratory in Princeton, New Jersey. USA. The MESFET model presented below is based on a Quest equation defined device (EDD) which functions as a Curtice level 1 MESFET model with interelectrode capacitances. Basic temperature effects are also included.

Ques EDD model for the Curtice MESFET

Parameters

Name	Symbol	Description	Unit	Default
RG	R_G	external gate resistance	Ω	1m
RD	R_D	external drain resistance	Ω	$1 \mathrm{m}$
RS	R_S	external source resistance	Ω	$1 \mathrm{m}$
VBR	V_{DR}	GS breakdown voltage	V	10^{10}
LG	L_G	external gate lead inductance	Η	0
LD	L_D	external drain lead inductance	Η	0
LS	L_S	external source lead inductance	Η	0
Is	I_S	diode saturation current	A	10f
N	N	diode emission coefficient		1
XTI	X_{TI}	diode saturation current temperature coefficient		0
EG	E_G	diode energy gap	eV	1.11
TAU	au	internal time delay from drain to source	\mathbf{S}	10p
RIN	R_{IN}	series resistance to CGS	Ω	$1 \mathrm{m}$
CGS	C_{GS}	interelectrode gate-source bias-independent	F	300f
		capacitance		
CGD	C_{GD}	interelectrode gate-drain bias-independent	F	300f
		capacitance		
CDS	C_{DS}	interelectrode drain-source bias-independent	\mathbf{F}	300f
		capacitance		
Tnom	T_{NOM}	device parameter measurement temperature	$^{\circ}\mathrm{C}$	27
Temp	T	device temperature	$^{\circ}\mathrm{C}$	27
Alpha	α	coefficient of Vds in tanh function for	1/V	0.8
		quadratic model		
Beta	β	transconductance parameter	A/V^2	3m
Lambda	λ	channel length modulation parameter for	1/V	$40 \mathrm{m}$
		quadratic model		
VTO	V_{TO}	quadratic model gate threshold voltage	V	-6

¹W.R Curtice, 1980, A MESFET model for use in the design of GaAs integrated circuits, IEEE Transactions on Microwave Theory and Techniques, MTT-28, pp. 448-456.

Figure 1: A Ques EDD model for the Curtice MESFET

The MESFET equations

- DC characteristics
 - 1. for $(V_{GS} < -V_{BR} + 50 \cdot V_T)$

$$I_{GS} = -I_S \left(T \right) \cdot \left(1 + \exp\left(-\frac{V_{BR} + V_{GS}}{V_T} \right) \right) + G_{MIN} \cdot V_{GS} \tag{1}$$

2. for $(V_{GS} > = -V_{BR} + 50 \cdot V_T)$ and $(V_{GS} < -5 \cdot V_T)$

$$I_{GS} = -I_S(T) + G_{MIN} \cdot V_{GS} \tag{2}$$

3. for $(V_{GS} > = -5 \cdot V_T)$

$$I_{GS} = I_S(T) \cdot \left(\exp\left(\frac{V_{GS}}{N \cdot V_T}\right) - 1 \right) + G_{MIN} \cdot V_{GS}$$
 (3)

4. for $(V_{GS} - V_{TO}) > 0$

$$I_{DS} = \beta \cdot (V_{GS} - V_{TO})^2 \cdot (1 + \lambda \cdot V_{DS}) \cdot \tanh(\alpha \cdot V_{DS})$$
(4)

Where

$$I_S(T) = I_S \cdot \exp\left(\frac{X_{TI}}{N} \cdot \ln(TR) - (E_G/N/V_T) \cdot (1 - TR)\right)$$
 (5)

$$Tr = \frac{TK}{TnK}$$
 and $TK = T + 273.15$, $TnK = T_{NOM} + 273.15$ (6)

• MESFET charge equations

 $Q_{GS} = C_{GS} \cdot V_{GS} \tag{7}$

 $Q_{GD} = C_{GD} \cdot V_{GD} \tag{8}$

3. $Q_{DS} = C_{DS} \cdot V_{DS} + \tau \cdot I_{DS} \tag{9}$

Test circuits and simulation results

Figure 2: DC test circuit and Id-Vds characteristics

Figure 3: DC test circuit and Id-Vgs characteristics

Figure 4: DC test circuit and Ig-Vgs characteristics

Figure 5: S parameter test circuit and characteristics