Capítulo 1

Caso Anosov

Teorema 1.1. Seja $f: M \to M$ um difeomorfismo de Anosov. As seguintes afirmações são equivalentes:

- i) $\Omega(f) = M$
- $ii) \ \overline{Per(f)} = M$
- iii) f \acute{e} s-minimal;
- iv) $f \notin u-minimal;$
- v) f é topologicamente mixing.
- vi) f é topologicamente transitiva;

Para demonstrarmos esse teorema, antes vamos precisar de alguns lemas.

Definição 1.2. Seja $f: M \to M$ um difeomorfismo de Anosov. Considerando $W^s(x) \subseteq M$ a variedade estável de x, chamamos de **disco estável de** x **de tamanho** K, a bola fechada $D_K^s(x) \subseteq W^s(x)$ de raio K, pela métrica em $W^s(x)$, e centrada em x. De modo análogo podemos definir o **disco instável de** x **de tamanho** K.

Lema 1.3. Seja $f: M \to M$ um difeomorfismo de Anosov, se f for s-minimal ou u-minimal, então dado $\delta > 0$, existe um K > 0 suficientemente grande tal que $D_K^{s(u)}(x)$ é δ -denso em M para todo $x \in M$.

Demonstração. Vamos demonstrar para o caso de f ser s-minimal, para u-minimal a demonstração é análoga.

Seja $\delta > 0$, $x \in M$ um ponto qualquer e $D_k^s(x)$ o disco estável de x de tamanho k. Como $\overline{W^s(x)} = M$, pois f é s-minimal, então existe $k_x \in \mathbb{N}$ tal que $D_k^s(x)$ é δ -denso em M.

Pelo teorema ?? existe uma vizinhança aberta U_x de x tal que para todo $y \in U_x$, existe $k_y \in \mathbb{N}$ tal que $D_k^s(x)$ também é δ -denso em M. Como f é Anosov e x é um ponto qualquer de M, então $\bigcup_{x \in M} U_x$ é uma cobertura aberta de M, e pela compacidade de M existe $n \in \mathbb{N}$ tal que $M \subseteq \bigcup_{i=1}^n U_{x_i}$. Seja $k_i \in \mathbb{N}$ tal que $D_{k_{x_i}}^s(x_i)$ seja δ -denso em M, tomemos $K = \max \left\{ k_{x_1}, k_{x_2}, \cdots, k_{x_n} \right\}$ e então para qualquer $x \in M$ temos que $x \in U_{x_i}$ para algum $i \in \mathbb{N}$, logo $D_K^s(x)$ é δ -denso em M.

Definição 1.4. Dizemos que uma sequência de pontos $\{x_n\}_{n\in\mathbb{Z}}\subseteq M$ é uma ε -pseudoórbita para f se $d(f(x_n),x_{n+1})\leq \varepsilon$. Seja $x\in \{x_n\}_{n\in\mathbb{Z}}$ se existe um $n_0\in\mathbb{N}$ tal que $d(f(x_{n_0}),x)\leq \varepsilon$, dizemos que $\{x_n\}_{n\in\mathbb{Z}}$ é uma ε -pseudo-órbita periódica contendo x. Um ponto $y\in M$ δ -sombreia a sequência $\{x_n\}_{n\in\mathbb{Z}}$ se $d(f^n(y),x_{n+1})\leq \delta$ para todo $n\in\mathbb{Z}$.

Lema 1.5. (Lema do Sombreamento) Para todo $\varepsilon > 0$ dado, existe um $\delta > 0$ tal que toda δ -pseudo órbita periódica $\{x_0, x_1, \dots, x_{n_0}\} \subseteq M$ é ε -sombreada por uma orbita periódica.

$$Demonstração.$$
 [?]

Lema 1.6. Seja $f: M \to M$ um difeomorfismo de Anosov e $p \in Per(f)$. Se $\overline{Per(f)} = M$, então para todo $x \in M$, podemos ligar x a p por finitos W^s e W^u , ou seja, para todo $x \in M$ existem $x_1, x_2, \dots, x_k \in M$ tal que podemos ligar o ponto x a p pelas variáveis instáveis ou estáveis desses pontos x_i .

Demonstração. Seja $p \in Per(f)$, construamos o conjunto $A_p \subseteq M$, da seguinte forma: $A_p = \{x \in M; x \text{ pode ser ligado a } p \text{ por finitos } W^s \in W^u \}$.

Afirmação 1. A_p é um conjunto aberto. De fato, seja $x \in A_p$. Suponhamos que $W^s(x)$ intercepta transversalmente $W^u(p_1)$ (para o caso de $W^u(x)$ interceptar transversalmente $W^s(p_1)$, o raciocínio é análogo), então pela continuidade das variedades instáveis, existe $\delta > 0$ tal que para todo $y \in B(x, \delta)$, implica em $W^s(y)$ também intercepta transversalmente $W^u(p_1)$, ou seja, $B(x, \delta) \subseteq A_p$ e portanto A_p é aberto.

Afirmação 2. A_p é um conjunto fechado. De fato, seja $(x_n)_{n=1}^{+\infty} \subseteq A_p$ uma sequencia convergente, e x o seu limite. Pela continuidade das variedades instáveis, $W^u(x_n)$ converge pra $W^u(x)$. Tomemos $\delta > 0$ tal que para todo $y \in B(x, \delta)$ implica em $W^s(y)$ intercepta transversalmente $W^u(x)$, e como $\overline{Per(f)} = M$, então existe $p' \in Per(f) \cap B(x, \delta)$, logo

 $W^s(p')$ intercepta $W^u(x)$, e assim existe um $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$, implica que $W^u(x_n)$ também intercepta $W^s(p')$. Fixando um $N > n_0$, então $W^u(x_N)$ intercepta $W^s(p')$ e $W^s(p')$ intercepta $W^s(x)$, logo x pode ser ligado a p por finitos W^s e W^u , ou seja, $x \in A_p$ e portanto A_p é fechado.

Como M é conexo, a Afirmação 1 e 2 implica que $A_p = M$.

Lema 1.7. $(\lambda - \mathbf{Lemma})$ Seja $f: M \to M$ um difeomorfismo, $p \in M$ um ponto fixo hiperbólico e D_k^u o disco instável compacto de x de tamanho k. Se D é um disco qualquer de mesma dimensão que $W^u(p)$ e intercepta transversalmente $W^s(p)$, então dado $\varepsilon > 0$, podemos fixar $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$, existe um disco $D_n \subseteq D$ tal que $f^n(D_n)$ está $\varepsilon - C^1$ próximo de D_k^u .

Agora podemos demonstrar o teorema inicialmente proposto.

Demonstração. (Do Teorema 1.1) $i \Rightarrow ii$)

 $ii)\Rightarrow iii)$ Vamos dividir a demonstração em dois casos, primeiro vamos provar que a variedade estável de um ponto periódico é densa, e depois provaremos pra qualquer ponto. Caso particular Seja $p\in Per(f)$ e $V\subseteq M$ um aberto qualquer. Como $\overline{Per(f)}=M$ então existe $q\in Per(f)\cap V$, pelo Lema 1.6, existem $x_1,x_2,\cdots,x_k\in M$, pontos que ligam q a p pelas suas respectivas variáveis instáveis ou estáveis. Fixando um $\varepsilon>0$ satisfazendo a condição de hiperbolicidade que se $d(z,w)<\varepsilon$ então $W^{s(u)}_{\gamma}(z)\cap W^{u(s)}_{\gamma}(w)\neq\emptyset$ e de forma que $B(q,\varepsilon)\subseteq V$, pela densidade dos pontos periódicos, existem $p_1,p_2,\cdots,p_k\in M$, periódicos, tais que $p_i\in B(x_i,\varepsilon)$, para todo $i=1,2,\cdots,k$; e então p está ligado a q pela variedades estáveis ou instáveis desses pontos periódicos. Definamos $g:M\to M$ tal que $g=f^{-\tau(p)\tau(p_1)\tau(p_2)\cdots\tau(p_k)\tau(q)}$, note que g também é um difeomorfismo nas condições do teorema, os pontos p,p_i e q são pontos fixos de g, e iterar g positivamente é equivalente a iterar f negativamente.

Considere o disco estável $D_{r_1}^s(p_1)$ de tal forma que $B(q,\varepsilon) \cap W^s(p) \subseteq D_{r_1}^s(p_1)$, esse disco existe porque $p_1 \in W^s(q)$, pelo λ -Lemma 1.7 aplicado a g, podemos fixar um $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$ existe um disco $D_n \subseteq D_{r_2}^s(p_2)$ tal que $g^n(D_n)$ está $\varepsilon - C^1$ próximo de $D_{r_1}^s(p_1)$, logo intercepta V. Passando ao ponto p_3 , e tomando $D_{r_2}^s(p_2) \subseteq$

 $iii)\Rightarrow iv)$ Seja $U\subset M$ um aberto qualquer e $x\in M$ um ponto qualquer. Dado $y\in U$ tal que $W^s_\gamma(y)\subseteq U$ e , tomemos $\varepsilon>0$ satisfazendo a condição de hiperbolicidade que se $d(z,w)<\varepsilon$ então $W^{s(u)}_\gamma(z)\cap W^{u(s)}_\gamma(w)\neq\emptyset$, pelo Lema 1.3 existe K>0 uniforme tal que $D^s_K(x)$ é ε -denso em M para todo $x\in M$, e por hiperbolicidade, existe $n\in\mathbb{N}$ tal que $f^{-n}\big(W^s_\gamma(y)\big)$ contém $D^s_K(f^{-n}(y))$, logo $f^{-n}\big(W^s_\gamma(y)\big)$ também é ε -denso em M.

Por escolha de ε temos que $W^u_{\gamma} (f^{-n}(x)) \cap f^{-n} (W^s_{\gamma}(y)) \neq \emptyset$, pois $f^{-n} (W^s_{\gamma}(y))$ passa ε próximo de $f^{-n}(x)$, e então existe pontos $w \in f^{-n} (W^s_{\gamma}(y))$ onde $d(w, f^{-n}(x)) < \varepsilon$, o que implica que existe $q \in W^u(f^{-n}(x)) \cap f^{-n}(W^s_{\gamma}(y))$. Como $q \in W^u(f^{-n}(x))$ então $f^n(q) \in f^n(W^u(f^{-n}(x))) = W^u(x)$ e como $q \in f^{-n}(W^s_{\gamma}(y))$ então $f^n(q) \in f^n(f^{-n}(W^s_{\gamma}(x))) = W^s_{\gamma}(x) \subseteq U$.

Portanto, $f^n(q) \in W^u(x) \cap U$, ou seja, a intersecção $W^u(x) \cap U \neq \emptyset$. Como $U \subseteq M$ foi tomado um aberto qualquer e $x \in M$ um ponto qualquer, isso prova que f é u-minimal.

 $iv) \Rightarrow v$) Sejam $U,V \subseteq M$ dois abertos quaisquer. Tomemos $x \in U$ um ponto qualquer e $\delta > 0$ tal que $B(x,\delta) \subseteq U$. Pelo Lema 1.3 existe um K > 0 uniforme tal que $D_K^u(x)$ é δ -denso em M.

Seja $\varepsilon > 0$ tal que $W^u_{\varepsilon}(x) \subseteq U$. Pela hiperbolicidade existe $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$, temos que $f^n(W^u_{\varepsilon}(x))$ contém $D^u_K(f^n(x))$, ou seja, $D^u_k(f^n(x)) \subseteq f^n(W^u_{\varepsilon}(x)) \subseteq W^u(f^n(x))$; e como para cada $n > n_0$ temos que $f^n(x) \in U_{x_i}$ para algum $i \in \mathbb{N}$, então $D^u_K(f^n(x))$ é δ -denso em M e como $D^u_K(f^n(x)) \subseteq f^n(W^u_{\varepsilon}(x))$ então $f^n(W^u_{\varepsilon}(x))$ também é δ -denso em M.

Portanto $W^u_{\varepsilon}(x) \subseteq U$ e $f^n(W^u_{\varepsilon}(x)) \cap V \neq \emptyset$ para todo $n > n_0$, ou seja, f é topologicamente mixing.

 $v) \Rightarrow vi$) Seja $U, V \subseteq M$ dois abertos quaisquer, como f é topologicamente mixing então existe um $n_0 \in \mathbb{N}$ tal que para todo $n > n_0$ temos que $f^n(U) \cap V \neq \emptyset$. Em particular existe um $n \in \mathbb{N}$ tal que $f^n(U) \cap V \neq \emptyset$, ou seja, f é transitiva.

$$vi) \Rightarrow i)$$