Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

a. Data type of all columns in the "customers" table.

☐ Filter Enter property name or value			
	Field name	Туре	Mode
	customer_id	STRING	NULLABLE
	customer_unique_id	STRING	NULLABLE
	customer_zip_code_prefix	INTEGER	NULLABLE
	customer_city	STRING	NULLABLE
	customer_state	STRING	NULLABLE

- b. Get the time range between which the orders were placed.
 - Query:

Results:

• Insights:

The data available with us is for the time period of the placed orders is between September 2016-October 2018.

- c. Count the Cities & States of customers who ordered during the given period.
 - Query:

```
SELECT c.customer_state, c.customer_city, COUNT(DISTINCT c.customer_id) as count_customers
FROM `target-case-study-project.target.orders` o
INNER JOIN `target-case-study-project.target.customers` c
ON o.customer_id=c.customer_id
GROUP BY 1,2
```

Row //	customer_state ▼ //	customer_city ▼	count_customers 🗸
1	MG	lagoa da prata	11
2	SP	sao paulo	15540
3	SP	sao jose dos campos	691
4	CE	paracuru	5
5	RS	passo fundo	113
6	RJ	rio de janeiro	6882
7	RJ	duque de caxias	266
8	SP	campinas	1444
9	SP	sumare	183
10	RJ	barra mansa	123

In-depth Exploration:

- a. Is there a growing trend in the no. of orders placed over the past years? Trend of orders placed month-by-month:
 - Query:

SELECT

EXTRACT(year FROM order_purchase_timestamp) as year_,
EXTRACT(month FROM order_purchase_timestamp) as month_,
COUNT(order_id) as count_orders
FROM `target-case-study-project.target.orders`
GROUP BY EXTRACT(year FROM order_purchase_timestamp), EXTRACT(month FROM order_purchase_timestamp)
ORDER BY year_, month_

ivesuits.			
Row //	year_ ▼	month_ ▼	count_orders ▼ //
1	2016	9	4
2	2016	10	324
3	2016	12	1
4	2017	1	800
5	2017	2	1780
6	2017	3	2682
7	2017	4	2404
8	2017	5	3700
9	2017	6	3245
10	2017	7	4026
11	2017	8	4331
12	2017	9	4285

The month-on month number of orders increase monotonically from Jan 2017 till Jan 2018 after which it somewhat remains constant.

Trend of orders placed year-by-year:

• Query:

```
SELECT
EXTRACT(year FROM order_purchase_timestamp) as year_,
COUNT(order_id) as count_orders
FROM `target-case-study-project.target.orders`
GROUP BY EXTRACT(year FROM order_purchase_timestamp)
ORDER BY year_
```

· Results:

Insights:

The number of orders placed increase monotonically over years.

- b. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?
- c. During what time of the day, do the Brazilian customers mostly place their orders?

```
Query:
SELECT time of day, Count(order id) as orders made
FROM
(
SELECT *,
   CASE
     WHEN hour_BETWEEN O AND 5 THEN 'Dawn'
     WHEN hour_BETWEEN 6 AND 11 THEN 'Mornings'
     WHEN hour_ BETWEEN 12 AND 17 THEN 'Afternoon'
     ELSE 'Night'
   END AS time of day
FROM (
  SELECT order_id,
     order purchase timestamp,
     EXTRACT(HOUR FROM order_purchase_timestamp) AS hour_
  FROM 'target-case-study-project.target.orders'
) a
GROUP BY time of day
```

time_of_day ▼	// orders_made ▼ //
Night	34100
Dawn	4740
Afternoon	38361
Mornings	22240

• Insights:

Most orders in the Brazil are placed in the Afternoon time (38361 orders total) followed by Night, Morning. The least number of orders get placed at Dawn (Only 4740 total orders).

Evolution of E-commerce orders in the Brazil region:

- a. Get the month on month no. of orders placed in each state.
 - Query:

• Results:

Row //	year_ ▼	month_ ▼	customer_state ▼	count_orders ▼ //
1	2016	9	RR	1
2	2016	9	RS	1
3	2016	9	SP	2
4	2016	10	AL	2
5	2016	10	BA	4
6	2016	10	CE	8
7	2016	10	DF	6
8	2016	10	ES	4
9	2016	10	GO	9
10	2016	10	MA	4

• Insights:

The maximum number of orders were placed by customers from SP state in the month of Jan-2017 with total orders placed were 299.

- b. How are the customers distributed across all the states?
 - Query:

```
SELECT customer_state,
COUNT(customer_id) as count_customers
FROM `target-case-study-project.target.customers`
GROUP BY customer_state
Order BY count_customers DESC
```

• Results:

Row	customer_state ▼	count_customers ▼
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

• Insights:

The maximum number of customers are from the Sao Paulo followed by Rio De Janeiro. There are only 68 customers from the state Amapa and 46 from Roraima which is the lowest.

Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

a. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment value" column in the payments table to get the cost of orders.

Query:

```
WITH monthly_costs AS (

SELECT

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year_,

ROUND(SUM(p.payment_value), 2) AS total_cost

FROM `target-case-study-project.target.orders` o

INNER JOIN (

SELECT

order_id,

ROUND(SUM(payment_value), 2) AS payment_value

FROM `target-case-study-project.target.payments`

GROUP BY order_id
) p ON o.order_id = p.order_id

WHERE EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
```

```
AND EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)
GROUP BY year_
)

SELECT

MAX(CASE WHEN year_ = 2017 THEN total_cost END) AS total_2017,
MAX(CASE WHEN year_ = 2018 THEN total_cost END) AS total_2018,
ROUND(

(MAX(CASE WHEN year_ = 2018 THEN total_cost END) -

MAX(CASE WHEN year_ = 2017 THEN total_cost END))

/ MAX(CASE WHEN year_ = 2017 THEN total_cost END))

/ MAX(CASE WHEN year_ = 2017 THEN total_cost END) * 100,
2
) AS percent_increase
FROM monthly_costs;
```

• Results:

Insights:

There is approximately 130% increase in the cost of orders from year 2017 to 2018

- b. Calculate the Total & Average value of order price for each state.
 - Query:

```
SELECT

customer_state,

ROUND(SUM(price), 1) AS total_order_price,

ROUND(AVG(price), 1) AS average_order_price

FROM `target-case-study-project.target.order_items` oi

INNER JOIN `target-case-study-project.target.orders` o

ON oi.order_id = o.order_id

INNER JOIN `target-case-study-project.target.customers` c

ON o.customer_id = c.customer_id

GROUP BY customer_state

ORDER BY total_order_price DESC;
```

Row .	customer_state ▼	total order price ▼	average order price
11000	customer_state /	total_order_price 1/	average_order_price ▼ //
1	SP	5202955.1	109.7
2	RJ	1824092.7	125.1
3	MG	1585308.0	120.7
4	RS	750304.0	120.3
5	PR	683083.8	119.0
6	SC	520553.3	124.7
7	BA	511350.0	134.6
8	DF	302603.9	125.8
9	GO	294591.9	126.3
10	ES	275037.3	121.9

The total value of order price is maximum for Sao Paulo and minimum for Roraima. Whereas the average value of order price is maximum for Paraiba and minimum for Sao Paulo. Meaning the per customer order price for SP is the minimum but the total order price is maximum.

- c. Calculate the Total & Average value of order freight for each state.
 - Query:

```
SELECT

customer_state,

ROUND(SUM(freight_value), 1) AS total_freight_value,

ROUND(AVG(freight_value), 1) AS average_freight_value

FROM `target-case-study-project.target.order_items` oi

INNER JOIN `target-case-study-project.target.orders` o

ON oi.order_id = o.order_id

INNER JOIN `target-case-study-project.target.customers` c

ON o.customer_id = c.customer_id

GROUP BY customer_state

ORDER BY total_freight_value DESC;
```

Row //	customer_state ▼ //	total_freight_value 🏅	average_freight_v
1	SP	718723.1	15.1
2	RJ	305589.3	21.0
3	MG	270853.5	20.6
4	RS	135522.7	21.7
5	PR	117851.7	20.5
6	BA	100156.7	26.4
7	SC	89660.3	21.5
8	PE	59449.7	32.9
9	GO	53115.0	22.8
10	DF	50625.5	21.0

The total value of order freight is maximum for Sao Paulo and minimum for Roraima. Whereas the average value of order freight is maximum for Roraima and minimum for Sao Paulo. Meaning the per customer order freight for SP is the minimum but the total order freight is maximum. Also, the per customer order freight for RR is the maximum but the total order freight is minimum.

Analysis based on sales, freight and delivery time.

- a. Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order.
 - Query:

```
SELECT

order_id,

DATE(order_purchase_timestamp) AS purchase_date,

DATE(order_delivered_customer_date) AS delivered_date,

DATE(order_estimated_delivery_date) AS estimated_delivery_date,

DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_to_deliver,

DATE_DIFF(order_delivered_customer_date, order_estimated_delivery_date, DAY) AS diff_estimated_delivery

FROM `target-case-study-project.target.orders`

WHERE order_delivered_customer_date IS NOT NULL

AND order_estimated_delivery_date IS NOT NULL

ORDER BY time_to_deliver DESC;
```

Row /	order_id ▼	purchase_date ▼ //	delivered_date ▼ //	estimated_deliver //	time_to_deliver ▼ //	diff_estimated_delivery ▼
1	ca07593549f1816d26a572e06	2017-02-21	2017-09-19	2017-03-22	209	181
2	1b3190b2dfa9d789e1f14c05b6	2018-02-23	2018-09-19	2018-03-15	208	188
3	440d0d17af552815d15a9e41a	2017-03-07	2017-09-19	2017-04-07	195	165
4	285ab9426d6982034523a855f	2017-03-08	2017-09-19	2017-04-06	194	166
5	0f4519c5f1c541ddec9f21b3bd	2017-03-09	2017-09-19	2017-04-11	194	161
6	2fb597c2f772eca01b1f5c561bf	2017-03-08	2017-09-19	2017-04-17	194	155
7	47b40429ed8cce3aee9199792	2018-01-03	2018-07-13	2018-01-19	191	175
8	2fe324febf907e3ea3f2aa96508	2017-03-13	2017-09-19	2017-04-05	189	167
9	2d7561026d542c8dbd8f0daea	2017-03-15	2017-09-19	2017-04-13	188	159
10	c27815f7e3dd0b926b5855262	2017-03-15	2017-09-19	2017-04-10	187	162

The maximum delay between the estimated and actual delivery of any product has been 188 days.

- b. Find out the top 5 states with the highest & lowest average freight value.
 - Query:

SELECT customer_state, AVG(freight_value) as average_freight_value
FROM `target-case-study-project.target.order_items` oi
INNER JOIN `target-case-study-project.target.orders` o
ON oi.order_id = o.order_id
INNER JOIN `target-case-study-project.target.customers` c
ON o.customer_id = c.customer_id
GROUP BY customer_state
ORDER BY average_freight_value DESC;

• Results:

Top 5 highest average freight value states:

	_	
Row //	customer_state ▼	// average_freight_v //
1	RR	42.98442307692
2	РВ	42.72380398671
3	RO	41.06971223021
4	AC	40.07336956521
5	PI	39.14797047970

Top 5 lowest average freight value states:

23	DF	21.04135494596
24	RJ	20.96092393168
25	MG	20.63016680630
26	PR	20.53165156794
27	SP	15.14727539041

• Insights:

The top 5 states with highest average freight value are: RR, PB, RO, AC, PI.

The top 5 states with lowest average freight value are:

```
DF, RJ, MG, PR, SP.
```

- c. Find out the top 5 states with the highest & lowest average delivery time.
 - Query:

Top 5 states with the highest average delivery time:

```
-- CTE to calculate delivery time per order
WITH delivery_time_per_order AS (
 SELECT
  o.order_id,
  c.customer_state,
  DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS
time to deliver
 FROM 'target-case-study-project.target.orders' o
 JOIN 'target-case-study-project.target.customers' c
  ON o.customer_id = c.customer_id
 WHERE order_delivered_customer_date IS NOT NULL
-- Average delivery time by state
SELECT customer_state,
   ROUND(AVG(time to deliver), 2) AS avg delivery days
FROM delivery time per order
GROUP BY customer_state
ORDER BY avg_delivery_days DESC
LIMIT 5;
Top 5 states with the highest average delivery time:
-- CTE to calculate delivery time per order
WITH delivery_time_per_order AS (
 SELECT
  o.order_id,
  c.customer_state,
  DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS
time to deliver
 FROM 'target-case-study-project.target.orders' o
 JOIN `target-case-study-project.target.customers` c
  ON o.customer id = c.customer id
 WHERE order delivered customer date IS NOT NULL
-- Average delivery time by state
SELECT customer state,
   ROUND(AVG(time_to_deliver), 2) AS avg_delivery_days
FROM delivery time per order
GROUP BY customer state
ORDER BY avg_delivery_days Asc
LIMIT 5;
```

• Results and Insights:

Top 5 states with the highest average delivery time:

Row	customer_state ▼	avg_delivery_days 🔻
1	RR	28.98
2	AP	26.73
3	AM	25.99
4	AL	24.04
5	PA	23.32

Top 5 states with the lowest average delivery time:

Row //	customer_state ▼	/, 3	avg_delivery_days
1	SP		8.3
2	PR		11.53
3	MG		11.54
4	DF		12.51
5	SC		14.48

d. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

```
• Query:
```

```
WITH delivery speed AS (
SELECT
  c.customer_state,
  DATE_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY) AS
days_faster
 FROM `target-case-study-project.target.orders` o
 JOIN 'target-case-study-project.target.customers' c
  ON o.customer_id = c.customer_id
 WHERE o.order_delivered_customer_date IS NOT NULL
  AND o.order_estimated_delivery_date IS NOT NULL
SELECT
 customer_state,
 ROUND(AVG(days_faster), 2) AS avg_days_faster
FROM delivery_speed
GROUP BY customer_state
HAVING avg days faster > 0
ORDER BY avg_days_faster DESC
LIMIT 5;
```

Results & Insights:

Row //	customer_state ▼	avg_days_faster ▼ //
1	AC	19.76
2	RO	19.13
3	AP	18.73
4	AM	18.61
5	RR	16.41

Analysis based on the payments:

- a. Find the month on month no. of orders placed using different payment types.
 - Query:

```
SELECT

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,

p.payment_type,

COUNT(DISTINCT o.order_id) AS total_orders

FROM 'target-case-study-project.target.orders' o

JOIN 'target-case-study-project.target.payments' p

ON o.order_id = p.order_id

WHERE o.order_status = 'delivered' -- optional: only count completed orders

GROUP BY year, month, p.payment_type

ORDER BY year, month, p.payment_type;
```

Row //	year ▼	month ▼	payment_type ▼	total_orders ▼
1	2016	10	UPI	51
2	2016	10	credit_card	208
3	2016	10	debit_card	2
4	2016	10	voucher	9
5	2016	12	credit_card	1
6	2017	1	UPI	188
7	2017	1	credit_card	541
8	2017	1	debit_card	9
9	2017	1	voucher	32
10	2017	2	UPI	371

- b. Find the no. of orders placed on the basis of the payment instalments that have been paid.
 - Query:

SELECT

payment_installments, COUNT(DISTINCT order_id) AS total_orders FROM `target-case-study-project.target.payments` GROUP BY payment_installments ORDER BY payment_installments;

Row //	payment_installm	total_orders ▼
1	0	2
2	1	49060
3	2	12389
4	3	10443
5	4	7088
6	5	5234
7	6	3916
8	7	1623
9	8	4253
10	9	644