Chapitre 2: Atomes et ions

I – Les atomes

1- Historique du modèle de l'atome

Plusieurs modèles ont été élaborés ; on s'intéresse uniquement aux deux modèles suivants :

- Le modèle de Rutherford (le modèle planétaire)
- Le modèle de Schrödinger (le modèle actuel)

Rutherford **1911**

Atome = Noyau + electrons

Le modèle planétaire

le modèle actuel : Nuage electronique

Schrödinger 1925

I – Les atomes

2- Structure de l'atome.

Un atome est constitué d'un noyau autour duquel tournent des électrons.

L'atome est constitué d'un <u>noyau</u>, chargé positivement, autour duquel tournent des <u>électrons</u>.

Application

1) Compléter avec les mots : noyau – électron – atome – positivement – négativement

Application

Un atome est:

- Chargé positivement
- Chargé négativement
- Neutre

I – Les atome

3- - Charges électriques.

Le **noyau** possède des **charges positives** notées + et chaque **électron (e⁻)** possède une **charge négative** notée –.

Atome de carbone :

6 électrons -

6 charge positives + (dans le noyau)

Bilan électrique: 6-; 6+ = 0 => neutre

Le nombre de charge positives est noté Z, pour l'atome de carbone Z=6

Un électron porte une charge électrique négative notée (-e)

Un atome possède <u>autant de</u> charges négatives (c'està-dire d'électrons) que de charges positives. La charge totale est donc nulle : un atome est électriquement neutre.

1- Définition

Un ion est un atome, ou un groupe d'atomes, ayant perdu ou gagné un ou plusieurs électrons

2- Formation d'un anion

Ion flour F (Z = 9)

Ion monoatomique

formé à partir d'un seul atome.

Charge q = 9(+) + 9(-) = 0
Donc l'atome n'a pas de
Charge : il est neutre

Charge q = 9(+) + 10(-) = 1(-)D'ou la charge 1(-) de l'ion flour

Un ion négatif (anion) a gagné des électrons

3- Formation d'un cation

Atome d'aluminium AI (Z = 13)

Ion aluminium AI^{3+} (Z = 13)

Ion monoatomique

formé à partir d'un seul atome.

Charge = 13(+) + 13(-) = 0Donc l'atome n'a pas de

Charge: il est neutre

Charge q = 13(+) + 10(-) = 3(+)D'ou la charge **3(+)** de l'ion fluorure

Un ion positif (cation) a perdu des électrons.

4- Les ions polyatomiques

 NH_4

1 atome d'azote et

4 atomes d'hydrogène

Un ion est polyatomique s'il est formé à partir d'un groupement d'atomes.

- Un ion est un <u>atome</u>, ou un <u>groupe d'atomes</u>, ayant <u>perdu</u> ou gagné un ou plusieurs électrons :
- Un ion négatif (anion) a gagné des électrons,
- → Un ion positif (cation) a perdu des électrons.
- Un ion est monoatomique s'il est formé à partir d'un seul atome.
- Un ion est polyatomique s'il est formé à partir d'un groupement d'atomes.

Question

L'ion fer Fe³⁺ est-il un anion ou un cation?

Cation

A. Un atome d'oxygène qui gagne deux électrons forme un ion de formule :

 \Box \bigcirc ²⁺

 \square O^{2-}

 \Box O^{-2}

Application

Compléter le tableau suivant

Symbole de l'atome dont l'ion est issu	Nombre d'électrons perdus ou ganés	Formule chimique de l'ion	Charge de l'ion	Anion ou cation
H (Z=1)	1 perdu	H*	1(Cation
Mg (Z=12)	2 ganés	Mg ²⁻	<u>2(</u> -	Anion
O (Z=8)	2 ganés	O ²⁻	2(-	Anion
CI (Z=17)	1.gané	Cl-	1 <u>(</u>	Anion

III- Le courant électrique dans les métaux

Dans un métal, le courant électrique est dû au déplacement des électrons libres de la borne négative vers la borne positive du générateur