

现12 2 (1) 袋中有7个月球、3个黑球,现从中性取2个球、试术、所取两球颜色相同的根据 (2) 甲袋中有5个目球3个黑球, 乙铁中有4个目球6个黑球, 犯从两袋中各取一球, 证证所取两 林颜色相同的概算 (1) 两球教色相同 两行或者所黑球 (2) 设事件A:从中袋取出自动、事件B:从飞袋中取出自动。 P{所取款色相同}= P(ABUĀB)=P(AB)+P(ĀB)= 5×4+3×6=19 6 (1) 已知事件A,B的版AB=ĀB 若P(A)=A 计订中(B)

(2) $p(\overline{A}\overline{B}) = 1 - p(AUB) = 1 - \overline{L}P(A) + p(B) - P(AB) = p(AB) \Rightarrow P(B) = 1 - P(A) = 1 - \alpha$

D24 习题13

(2) ZAb P(A)=0.8, P(B)=0.7, P(A-B)=02, with p(B|A)

(3) EAD P(A)= 4, P(B)A)===, P(A)B)==, vitit P(AB)

$$(1) \quad p(\overline{A}|\overline{B}) = \frac{P(\overline{A}\overline{B})}{P(\overline{B})} \qquad P(\overline{A}\overline{B}) = 1 - P(A \cup B) = 1 - P(A) + P(B) - P(AB)$$

 $P(AB) = p(B) p(A|B) = \frac{1}{3} \times \frac{1}{6} = \frac{1}{18}$ $P(\overline{AB}) = |-\frac{1}{2} - \frac{1}{3} + \frac{1}{18} = \frac{2}{9}$ $p(\overline{B}) = |-p(B)| = \frac{1}{3}$

出新。零件为社一起并且已分界一台加了到零件比第二台加工到零件多一倍。

(1) 试试在取一个零件是合格的的极着。

 $|P(\overline{A})| = |P(A)| = |U \cdot 2| \qquad |P(B|\overline{A})| = |U \cdot 2| = |U \cdot 3|$ |P(B|A)| = |P(AB)| = |P(AB)|

 $P(\overline{A}\overline{B}) = |-p(AUB)| = |-[P(A)+P(B)-P(AB)] = |-4-7+12=3$

10.两钩床切口同样的零件,"等一台出现不合格品的概算是0.03,"等二台出现不会根品的积较算是0.01,加工

2. (1) BAD P(A)= , P(B)= , P(A|B)= 台, 就读 P(Ā|B)

(2)世界取出的零件是不合格品,求公园由第二台车压加工"自动放弃、 (1)设事件A 取出的零件是不会格品 事件Bz 取出的零件来自务工台加工 で12 $P(A) = P(B_1) P(A|B_1) + P(B_2) P(A|B_2) = \frac{2}{3} \times 0.03 + \frac{1}{3} \times 0.06 = 0.04$ P(A)= 1-P(A)= 1-0.04=0.96 (2) $P(B_2|A) = \frac{P(AB_2)}{P(A)} = \frac{P(B_2)P(A|B_2)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2)} = \frac{\overline{5} \times P(B_2)}{P(A)} = \frac{\overline{5} \times P(B_2)}{P(A)} = \frac{\overline{5} \times P(B)}{P(A)} = \frac{\overline{5} \times P(B)}{P(A)}$ 13.(1) 基局正正在销售16台彩电,其中7台是一级品,3台是二级品,某人到局正时、新电已售出2台,证标证以能买 到一级的"的旅客 12)送枪的两批以了记在运输中各门码-只惹每批的只,且第一批的有一只次加,第二批中有两只次的,张 从每小的火门吧中任取一只,求"取到火品。的水改多。 (1) 沒事件A 买到一级品。 事件品 隐齿之名一级品。 v=D.1.2 $P(A) = P(B_0) P(A|B_0) + P(B_1) P(A|B_1) + P(B_2) P(A|B_2)$ $= \frac{G_1 G_2}{G_1^2} \times \frac{7}{g} + \frac{G_1 G_2}{G_2^2} \times \frac{g}{g} + \frac{G_1 G_2}{G_1^2} \times \frac{g}{g} = \frac{7}{10}$ 12) 该新A 取到火品 事件的取到元制以了记了一样人,打造力气火震的方言。1

P(A|B₁) = P(C₂|B₁) P(A|C₂B₁) P(A|C₁B₁) P(A|C₁B₁) P(A|C₁B₁) =
$$\frac{7}{6}$$
 × $\frac{1}{9}$ + $\frac{1}{16}$ × 0 = $\frac{1}{6}$ 0 9 P(A|B₂) = P(C₁|B₂) P(A|C₂B₂) + P(C₁|B₂) P(A|C₁B₂) = $\frac{1}{6}$ × $\frac{1}{9}$ + $\frac{1}{16}$ × $\frac{1}{9}$ + $\frac{1}{16}$ × $\frac{1}{9}$ + $\frac{1}{16}$ × $\frac{1}{9}$ + $\frac{1}{16}$ × 0 = $\frac{1}{6}$ P(A|B₂) = P(B₁) P(A|B₁) + P(B₂) P(A|B₂) = $\frac{1}{2}$ × $\frac{1}{2}$ × $\frac{1}{2}$ + $\frac{1}{16}$ × 0 = $\frac{1}{6}$ P(A) = P(B₁) P(A|B₁) + P(B₂) P(A|B₂) = $\frac{1}{2}$ × $\frac{1}{2}$ × $\frac{1}{2}$ + $\frac{1}{16}$ × 0 = $\frac{1}{6}$ P(B₂) P(A|B₂) + P(B₂) P(A|B₂) + P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ + + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ + + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.8 P(B₁) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ + + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(A|B₂) = 0.8 × | + 0.1 × $\frac{C_{19}^{4}}{C_{20}^{4}}$ = 0.9 P(B₂) P(B₂

| 30 | 7週4 | 1.假设 P(A)=04, P(A UB)=09 | 在以下情形下求P(B)

 $P(7) = 1 - p(P) = \frac{b-ab}{a+b-ab}$ 文 $P(7) = \frac{b-ab}{a+b-ab}$ 工作 $P(7) = \frac{b-ab}{a+b-ab}$ 10.甲2两台机组并联同城市供电,当一台机组发生故障时另一台机组能在这段时间满足城市用电需求的 根药为0.85、没每台机组发生故障的概率为0.1月它们是否发生故障相互独包 (1)求"保证城市供电"的概率 (2) 笔己如电压机组发生故障,求供电能满定需求的称写 (1)设备件A:机组保证现货供电 事件B·有心机组发生效阵 T=0,1.2 $P(B_0) = C_0^{\circ} \circ \cdot |^{\circ} \circ \cdot q^{2} = 0.8$ $P(B_1) = C_2^{\prime} \circ \cdot |^{2} \circ \cdot q^{2} = 0.8$ $P(B_2) = C_2^{\prime} \circ \cdot |^{2} \circ \cdot q^{2} = 0.0$ AP(A1B0)= | P(A1B1)= 0.85 p(A|B2)= 0 $P(A) = p(B_0)P(A|B_0) + P(B_1)P(A|B_1) + P(B_2)P(A|B_2)$ $\frac{-0.8 | \times | + 0.18 \times 0.85 + 0.0 | \times 0 = 0.963}{P(A \cap (B_1 \cup B_2))} = \frac{P(AB_1) + P(AB_2)}{P(B_1) + P(B_2)} = \frac{P(B_1) + P(B_2)}{P(B_1) + P(B_2)}$ $= \frac{0.18 \times 0.85}{0.18 \pm 0.01} = 0.81$ $P[(A \cap B_1) \cup (A \cap B_2)] = P(AB_1) + P(AB_1)$ 分图2章 が味 p(X<3), p(X≤3), p(X >1), p(X >1)

 $p(X<2) = f(2^{-}) = f(2) = f_{1}^{2}$ P(0< x≤3) = F(3) -F(0) = 1-0=1 $p(2 < X < 2.5) = p(X < 2.5) - p(X \le 2) = F(2.5) - F(2) = ln^2 - ln^2 = ln^4$, XZ3 $\frac{p(X(3) = F(3)) = \frac{1}{12}}{p(X(3)) = p(X(3)) = p(X(3)) = p(X(3)) = p(X(3)) = \frac{1}{12} - \frac{1}{2} = \frac{1}{12}}{p(X(3)) = p(X(3)) = p(X(3)) = p(X(3)) = p(X(3)) = \frac{1}{12} - \frac{1}{2} = \frac{1}{12}}$ 引题212 3某公有好饭旧,每饭时提供正确意见的报纸的。6公司就某次事宜是否可行征求各面的的意 见,并按多数人自了意见作出决策,试求"公司作出已确决等"自己被夺

 $p(X<3) = F(3) = \lim_{X\to 3^{-}} F(X) = \lim_{X\to 3^{-}} \frac{1}{4} = \frac{1}{4}, p(X\leq 3) = F(3) = \frac{1}{3}$

 $P(X>1) = 1 - P(X \le 1) = 1 - F(1) = 1 - \frac{1}{4} = \frac{3}{4}, P(X\ge 1) = 1 - P(X4) = 1 - F(1) = 1 - \frac{3}{4} = \frac{3}{4}$

YXER, F(X) = PIXKX)

郭州 公司作出正确决策 义为提供正确意见的恐怖性之 易知 XへR(5,06) P(A) = P(X=3) = P(X=3) + P(X=4) + P(X=5) $= C_5^3 \cdot 0.6^3 \cdot 0.4^2 + C_5^4 \cdot 0.6^4 \cdot 0.4^4 + C_5^3 \cdot 0.6^5 \cdot 0.4^9 = 0.6826$ ラシメンの財 F(D)=のよ (X=0) = F(0) - F(0) = 0.5 - 0 = 0.5D(X=1)=F(1)-F(1)=0.7-0.5=0.2P(X=3) = F13) - F13)= 1- v.7= 0.3 [2] 己於 N. X 的 物 律 为 (-1 0 1) 其 物 正 設 为 F(X) =) d , -1 ex co 末 a b (d e l) で よ F(-10) = 0 =) (= 0 p(x=-1)= F(-1)-F(-1)=d-C=0.25=) d=0.45 P(X=0) = F(0) = F(0) = 0.75 - d = a = 0.5

$$\frac{1}{10} \frac{1}{10} \frac{1}{10$$

$$Z = |X|: \quad Z \sim \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{5} + \frac{1}{5}$$

② / NU(1) ② 今下= h(X)= |-e^{-2X}, h'(X) =>-(-2)e^{-2X}>0 见りh(X)为原因连接, 由定程24.1点p: 下=1-1、NU(1) f_x(y₂)= f (-= ln(1-y₂)) | E 型n(1-y₂)] | = 2e^{ln(1-y₂)}. | = 1, 0< y₂<1 × 70 , 其他 -= ln(1-y₂) >0=ln| 第上00 片体化均极从以四川分布 $=) y_1 > 0$ 与设rVX人UUN)试成以下自己家庭函数 y2= -e-2x<1 ·· 0<42<1 (1) Y=3 X+1 (2) Y=eX X~uvil) PJ-1x1= } 0, 其他 与(1) 改 y = g(X) = 3XH $\int X \in (0,1)$ 其反域な为 $X = g^{-1}(y) = 気(y-1)$ $0 < \frac{1}{3}(y-1) < | \Rightarrow | < y < 4$ $\int_{Y} (y) = \int_{Y} (\frac{1}{3}(y-1)) | \frac{1}{3}(y-1)|^{2} = \frac{1}{3}, | < y < 4$, 其他 fry = \f(\langle\)(\langle\) = \f(\langle\) \(\langle\) = \f(\langle\) \(\langle\) 6.(1)设rvX的强度迅载为引X)= { 3.(1) 设rvX的强度迅载为引X)= (7) , 其他 设FKXXEB的布造起 机扩下VY= FIXIED的布函配 (2) 设下VX自己分布函数F(X)为李格与调迫领函数,试试及=-24F(X)自了根药分布

6(1) XE [1] 0当X4 F(X)=P(X = X)=P(中)=D (日本 X > 8时 F(X)=P(X < X)=P(凡)= の当yc 四寸 Fry) = p(Y = y) = 0 ② = y > 1日寸 Fry) = p(Y = y) = | (1) P(X=1|Z=0) | 12) (X,Y) F_{1} F_{2} F_{2} F_{3} F_{4} F_{1} F_{2} F_{3} F_{4} F_{4}

(i)
$$\frac{1}{2}$$
 (ii) $\frac{1}{3}$ (ii) $\frac{1}{3}$ (ii) $\frac{1}{3}$ (iii) $\frac{1}{3}$ (i

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$$

6.(1)从10.11中10日本取两个数 水"莫缘不小于荒目分不大于1"的标签字 设两个数分别为(X,T) 电弧镜 (X,T)~以(D) 其中D=(0,1)×10,1) $\frac{1}{2}(X,Y) \wedge \frac{1}{2}(X,Y) \stackrel{?}{>} \frac{1}{2}(X,Y) = \int \frac{1}{2}(X,Y) \stackrel{?}{>} \frac{1}{2}(X,Y) \stackrel{?}$ 这野A·莫秋不小于16 且外不大于1 $P(A) = P(XYZ_{16}, X+Y\leq 1) = \iint_{S} f(x,y) dx dy = \frac{S(A)}{S(D)}$ $S(A) = \int_{4}^{3} \frac{1}{(1-X)^{2}} \frac{dx}{dx} = \frac{1}{4} \frac{1}{16} \frac{1}{16} \frac{dx}{dx}$ $= \frac{(X - \frac{1}{2}X^{2} - \frac{1}{16} \frac{1}{16}X^{2})}{16} \frac{1}{4} \frac{1}$:-PIA)= 4-313

171 元处3·2 $\frac{1}{2} \frac{\partial^2 f}{\partial x^2} = \int_{\infty}^{\infty} f(x, y) dx = \int_{\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{1}{2}[x^2 + y^2]} dx + \int_{\infty}^{\infty} \frac{\sin x \sin y}{2\pi} e^{-\frac{1}{2}[x^2 + y^2]} dx$ $= \frac{1}{2\pi} e^{-\frac{y^2}{2}} \int_{\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} dx + 0$ $= \frac{1}{2\pi} e^{-\frac{y^2}{2}} \int_{\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{x^2}{2}} dx + 0$ アメイかい」) RPY~ N(0,1) 2 (1) 该(X)的密度函数为- $f(x,y) = \begin{cases} x^2 + \frac{xy}{3}, |x,y| \in [b,1] \times [b,2] \end{cases}$ 试成X,作的边缘密度 $f_{\mathbf{x}}(x)$,大y以 P(Y< \(\frac{7}{2} \) X < \(\frac{7}{2} \)

试本×自边缘的函数 fxix 及下自边缘密度函数 fxiy) (1) 0) $\int_{X}(X) = \int_{-10}^{10} \int_{1}^{1} (x_{1}y_{1}) dy = \int_{1}^{10} \int_{1}^{1} (x_{1}y_{1}) dy = \int_{1}^{1} (x_{1}y_{1}) dy = \int_{1}^{10} \int_{1}^{1} (x_{1}y_{1}) dy = \int$ (2) $f(xy) = \int_{-\infty}^{\infty} f(x,y) dx = \begin{cases} \int_{0}^{1} (x^{\frac{1}{2}} + \frac{1}{3}xy) dx = \frac{1}{3} + \frac{1}{6}y, & 0 \le y \le 2 \end{cases}$ $\int |x,y| = \begin{cases} \int_{D}^{\infty} (x,y) \in D \\ (x,y) \notin D \end{cases} \int_{D}^{\infty} \int_{D}^{\infty} dx \int_{X^{2}}^{x} dy = \int_{D}^{1} (x-x^{2}) dx = \frac{1}{2}x^{2} + \frac{1}{3}x^{2} \Big|_{D}^{\infty} = \frac{1}{2}$ 12) (3,1)~UID) $f_{\frac{1}{2}}(x) = \int_{\infty}^{\infty} f(x,y) dy = \int_{x}^{x} 6dy = 6x - 6x^{2}, 0 < x < 1$ $\int_{y} (y) = \int_{-\infty}^{\infty} +1x, y) dx = \begin{cases} \int_{y}^{y} 6 dx = 6 (\sqrt{y} - y) & \text{or } y < 1 \\ & \text{or } y < 1 \end{cases}$