Sara Kemmler 5760949 Robin Bonkaß 5769588

1	2	3	4	\sum

Übungsblatt Nr. 05

(Abgabetermin 02.06.22)

Aufgabe 1

Seien die Sequenzen A, B, C, D gegeben durch:

 $A:\mathtt{AG}$

 $B: \mathtt{G} \mathtt{G}$

 $C:\mathtt{CT}$

 $D: {\tt TC}$

$$\sum = PS = 5$$

Somit haben alle drei Bäume für die definierten Sequenzen einen respective parsimony score von $5\,$

Aufgabe 2

Seien die Sequenzen gegeben:

 $a_1: \mathtt{TTC}$ $a_2: \mathtt{CGC}$ $a_3: \mathtt{CAC}$ $a_4: \mathtt{TCC}$ $a_5: \mathtt{GTC}$

Gesucht ist der maximum parsimony tree.

Konstruiert wird zunächst der Baum, welcher die ersten drei Sequenzen a_1, a_2 und a_3 enthält.

Nun wird die Sequenz a_4 jeweils an den existierenden Kanten eingefügt und der Parsimony Score berechnet.

$$\sum = +4$$

$$\sum = +5$$

$$\sum = +5$$

Der erste Baum hat den kleinsten Score:

Nun wird dieser Baum verwendet, um a_5 einzufügen:

$$\sum = +5$$

$$\sum = +5$$

$$\sum = +5$$

$$\sum = +5$$

$$\sum = +5$$

Da jeder dieser Bäume den gleichen Score besitzt, kann nun einer zufällig ausgewählt werden. Der maximum parsimony tree mit dem Score 5 ist:

/6

Aufgabe 3

Dieser entstandene Baum hat einen Parsimony-Score von 10. Folgender abgeänderter Fitch Algorithmus wurde für obigen Baum verwendet:

Algorithm 1 Forward Pass - ParsimonyScore(v)

```
Input: A ternary phylogenetic tree T, a state c(w) for each leaf w of T Output: The parsimony score PS(T,c) for T and c
```

```
1: Set PS(T,c) = 0
 2: for all leaf nodes v \in T do
        set F(v) = \{c(v)\}
 4: end for
 5: for each node v \in T \neq \text{leaf}, in bottom-up order do
        C = \{w_1, ..., w_n\} where w_i children of v
 7:
        for all residues r_i in \Sigma do
            x_i = 0
 8:
            for all w_i in C do
 9:
                if r_i \in w_i then
10:
                    x_i + +
11:
                end if
12:
13:
            end for
        end for
14:
15:
        Set F(v) = \{r_i \mid x_i \text{ maximum of } \{x_1, ..., x_n\} \}
        for all unsorted pairs (w_i, w_i) \in C \times C do
16:
            if w_i \cap w_j = \emptyset then
17:
                PS(T,c) = PS(T,c) + 1
18:
19:
                PS(T,c) = PS(T,c)
20:
            end if
21:
        end for
22:
23: end for
24: return score PS(T,c)
```


Aufgabe 4

Der Code, der sich im file: Sara_Kemmler_Robin_Bonkass_A5.py findet, kann mit folgendem Befehl ausgeführt werden:

python3 Sara_Kemmler_Robin_Bonkass_A5.py -f1 distances_original.dist -f2 distances_tree1.dist -f3 distances_tree2.dist

6