Universidade de Aveiro – Departamento de Electrónica, Telecomunicações e Informática

Laboratório de Sistemas Digitais	Ano Letivo 2016/17	Teste 1 – 15/Mar/2017
Nome e Apelido:	Assinatura:	N. Mec.:

Grupo I

1. [1 valor] O seguinte código VHDL descreve um multiplexador 8:1, mas apresenta omissões e erros de sintaxe. Corrija-o: pode fazê-lo sobre o código fornecido; risque e escreva à frente o código correto e/ou acrescente o que falta.

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity Mux8 1 is
    port map(sel
                   : std logic vector( downto 0);
             dataIn : std logic vector( 7 downto 0);
             dataOut : std logic);
end Mux8 1;
architecture _____ of ____ is
begin
   dataOut => dataIn(0) when (sel = '000') else
              dataIn(1) when (sel = '001') else
              dataIn(2) when (sel = '010') else
              dataIn(3) when (sel = '011') else
              dataIn(4) when (sel = '100') else
              dataIn(5) when (sel = '101') else
              dataIn(6) when (sel = '110') else
              dataIn(7) when (sel = '111') else
              dataIn;
end BehavAssign;
```

2. [1.5 valores] Escreva o código de um multiplexador 8:1 mas agora baseado num <u>processo</u> em VHDL. Considere a mesma entidade da alínea anterior.

```
architecture BehavProc of Mux8_1 is
begin
    process(      )
    begin

end process;
end BehavProc;
```

3. Considere o código VHDL da entidade *top-level* **NewBlock**, que instancia dois multiplexadores 4:1 (entidade **Mux4** 1) e um multiplexador 2:1 (entidade **Mux2** 1).

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity NewBlock is
  port(SW
           : in std_logic_vector(7 downto 0);
       KEY : in std_logic_vector(2 downto 0);
        LEDR : out std logic vector(0 downto 0));
end NewBlock;
architecture Structural of NewBlock is
    signal out mux : std logic vector(1 downto 0);
begin
   mux41_0: entity work.Mux4_1(BeahvMux4_1)
            port map(dataIn => SW(3 downto 0),
                            => KEY(1 downto 0),
                      dataOut => out_mux(0));
   mux41_1: entity work.Mux4_1(BeahvMux4_1)
            port map(dataIn => SW(7 downto 4),
                     sel => KEY(1 downto 0),
                      dataOut => out_mux(1));
   mux21 : entity work.Mux2 1(BeahvMux2 1)
            port map(dataIn => out mux,
                     sel => KEY(2),
                     dataOut => LEDR(0));
end Structural;
```

a)	[2 valores] Com base no código fornecido, desenhe o diagrama esquemático do NewBlock. Identifique todos os sinais (nomes e dimensões) de entrada/saída de NewBlock e todos os sub-módulos.				

b) [0.5 valores] Identifique a função de NewBlock e indique o valor lógico de LEDR[0], considerando que

Universidade de Aveiro – D Laboratório de Sistemas Digitais Nome e Apelido:			s	Ano Letiv	o 2016/17	Tes	ste 1 – 15/N	-		
140	1110	САрсііі	JU							
_		_				Grupo II		_		
	Considere o seguinte diagrama temporal, resultante da simulação de um comparador com entradas a [10] e b [10] e saídas y [20] que disponibilizam os resultados das comparações "<", "=" e ">".									
		Name	Value at 0 ps	0 ps	80.0 ns	160.0 ns	240.0 ns	320.0 ns	400.0 ns	480.0 ns
	~	а	B 00	00 10	0 01 11	X 00 X 10 X 01	X 11 X 00 X 1	10 X 01 X 11 X	00 X 10 X 01	X 11 X 00
in		a[1]	B 0		ĦШĦ					
in_		a[0]	B 0							
	~	b	B 00		00	10		01	11	
in_		b[1]	B 0							
in_		b[0]	B 0							
*	~	у	B 001	001	100	X 010 X 001 X 010	X 100 X 010 X 1	00 X 001 X 100 X	010	001
out		y[2]	B 0							
out		y[1]	B 0							1
out		y[0]	B 1							
1.	[1	valor] F	 Relativament	te a este	_ diagrama	temporal, qual	o período do	o sinal de ent	— trada que co	muta com
	m	aio <u>r fre</u> c	ղuência? Qu	al o valor	da frequê	ència? Identifiqu	ie o sinal e a	presente os o	cálculos que	efetuar.
 [1 valor] Com base no diagrama temporal apresentado, identifique, <u>justificando</u>, a função de cada uma das saídas. 										

3. [1 valor] Com base no diagrama temporal apresentado, indique se as comparações são realizadas com sinal (signed) ou sem sinal (unsigned). Justifique a sua resposta.

4. [2 valores] Complete o código VHDL que descreve o comparador capaz de produzir o diagrama temporal anterior. Use atribuições condicionais when .. else para especificar cada uma das saídas.

library IEEE;				
use				
use				
<pre>entity Cmp2 is port(a : in std_logic_vector(1 downto 0);</pre>				
port(a : In sta_logic_vector(r downto 0);				
				
end Cmp2;				
architecture				
begin				
y(0) <=				
y(1) <=				
y(2) <=				
end				

Área de rascunho

Laboratório de Sistemas Digitais

Ano Letivo 2016/17

Teste 1 – 15/Mar/2017

Nome e Apelido:______ Assinatura:_____

_____N. Mec.:____

Grupo III

Pretende-se conceber um circuito que mostre em decimal duas interpretações possíveis de um conjunto de 4 *bits*: como um <u>inteiro sem sinal</u> (valores entre 0 e 15) ou como um <u>inteiro com sinal</u> (valores entre -8 e 7). Por exemplo, o vetor "1100" pode ser mostrado como 12 ou -4. Para esse fim, foram desenvolvidos 3 módulos, cujos objetivos e esqueleto em VHDL são apresentados nas questões seguintes. Em todas as questões deverá completar o respetivo código VHDL.

1. [1.5 valores] O módulo **BCDDisplayDec** apresenta num display de 7 segmentos (como o ilustrado ao lado) **valores positivos entre 0 e 9**, ou um **sinal negativo** (apenas o segmento 6 aceso) ou **nada** (todos os segmentos apagados).

```
library IEEE;
use IEEE.STD LOGIC_1164.all;
entity BCDDisplayDec is
    port(signIn
         numberIn :
         displayOut : );
end BCDDisplayDec;
architecture Behavioral of BCDDisplayDec is
begin
    process(
    begin
        if (signIn = '1') then
            displayOut <= "
        elsif (numberIn = "0000") then
           displayOut <= "</pre>
        elsif (numberIn = "0001") then
           displayOut <= "1111001";</pre>
        elsif (numberIn = "0010") then
           displayOut <= "0100100";</pre>
        elsif (numberIn = "0011") then
           displayOut <= "</pre>
        elsif (numberIn = "0100") then
           displayOut <= "0011001";</pre>
        elsif (numberIn = "0101") then
           displayOut <= "0010010";</pre>
        elsif (numberIn = "0110") then
           displayOut <= "0000011";</pre>
        elsif (numberIn = "0111") then
           displayOut <= "1111000";</pre>
        elsif (numberIn = "1000") then
           displayOut <= "
        elsif (numberIn = "1001") then
            displayOut <= "0011000";</pre>
            displayOut <= "1111111";</pre>
        end if;
    end process;
end Behavioral;
```

2. [1.5 valores] O módulo Conv4Bit2BCD converte para BCD um valor de 4 bits como um número sem sinal (binário natural) ou como um número com sinal (interpretado em complemento para 2).

```
library IEEE; use IEEE.STD LOGIC 1164.all; use IEEE.NUMERIC STD.all;
entity Conv4Bit2BCD is
                         _____ -- 0: unsigned integer -- 1: signed integer
   port(isSigned : _
                : _____ -- binary input value
       numberIn
       lsBCDDigOut : ____ -- least significant digit msBCDDigOut : ___ most significant digit
       msBCDDigOut :
       signOut : _
                                             ;-- minus sign
end Conv4Bit2BCD;
architecture Behavioral of Conv4Bit2BCD is
begin
   process(
   begin
      if (isSigned = '1') then -- abs means absolute value
         lsBCDDigOut <= std_logic_vector(abs(signed(numberIn)));</pre>
         msBCDDigOut <= "1111";
         signOut <=
         signOut <= '0';
      end if;
   end process;
end Behavioral;
```

3. [2 valores] O módulo DisplaySystem apresenta um valor de 4 bits, indicado através dos interruptores SW, em dois displays de 7 segmentos. Quando o interruptor de pressão KEYO é pressionado, o valor de 4 bits é interpretado como um inteiro sem sinal, caso contrário é interpretado como um inteiro com sinal (complemento para 2). Declare os sinais que entender necessários.

```
library IEEE; use IEEE.STD LOGIC 1164.all;
entity DisplaySystem is
   port(KEY : ____
       SW
       HEXO:
       HEX1 :
end DisplaySystem;
architecture Structural of DisplaySystem is
begin
   bin_bcd_decoder : entity work.Conv4Bit2BCD(Behavioral)
      port map(isSigned => _____
numberIn => ____
              lsBCDDigOut => __
              msBCDDigOut => _
              signOut =>
   display dec 0 : entity work.BCDDisplayDec(Behavioral)
      port map(signIn => numberIn =>
              displayOut => _____
   display_dec_1 : entity work.BCDDisplayDec(Behavioral)
      port map(signIn =>
             numberIn =>
             displayOut => _____
end Structural;
```

Universidade de Aveiro – Departamento de Electrónica, Telecomunicações e Informática

Laboratório de Sistemas Digitais	Ano Letivo 2016/17	Teste 1 – 15/Mar/2017	
Nome e Apelido:	Assinatura:	N. Mec.:	

Grupo IV

Analise o sistema digital apresentado na figura seguinte.

Adder4 é um somador de 4 bits. u_ovfl e s_ovfl são indicadores de overflow (activos ao nível '1'):

- u ovfl assume que os valores nas entradas a e b são números sem sinal (binário natural);
- **s_ovfl** assume que os valores nas entradas **a** e **b** são números com sinal (representação em complemento para 2).

Cmp4US é um comparador de 4 bits cuja saída a_goe_b fica activa (i.e. com valor lógico '1') quando o valor na entrada a é maior do que ou igual ao valor na entrada b (a greater than or equal to b). A entrada US especifica o modo de comparação:

- com US='0' os valores nas entradas a e b serão encarados como números sem sinal (binário natural);
- com US='1' os valores nas entradas a e b serão encarados como números com sinal (representação em complemento para 2).
- [2.5 valores] O diagrama seguinte mostra uma sequência de vectores de teste aplicados às entradas do sistema (X[3..0] e US). Desenhe as correspondentes formas de onda das saídas (Y, S_OVFL, U_OVFL e A_GOE_B). À semelhança de X, os valores de Y devem ser indicados em hexadecimal.

2. [2.5 valores] Complete o seguinte código VHDL para **Adder4**. Lembre que, na adição de números com sinal, ocorre overflow se e só se os transportes (carry) de e para o bit mais significativo (MSbit) não forem iguais. Comece por acrescentar as instruções para obter o carry do MSbit (o carry para o MSbit já está contemplado). Declare os sinais adicionais que entender necessários. Complete depois o código referente às saídas.

library IEEE;						
se IEEE.STD_LOGIC_1164.all;						
<pre>use IEEE.NUMERIC_STD.all;</pre>						
entity Adder4 is						
	_logic_vector(3 downto 0);					
	_logic_vector(3 downto 0);					
u_ovfl : out std						
s_ovfl : out std	_logic);					
end Adder4;						
architecture Behavioral o	e addom4 in					
architecture behavioral o	1 Adde14 1S					
signal ta4, tb4, ts4	signal ta4, tb4, ts4 : unsigned(3 downto 0);					
5-9 5-1, 55-1, 55-1	signal ta4, tb4, ts4 . unsigned(5 downto 0),					
signal MSbitCin, MSbi	tCout :					
,						
begin						
	signed(a(2 downto 0));					
tb4 <= '0' & un	signed(b(2 downto 0));					
ts4 <= ta4 + tb						
<pre>MSbitCin <= ts4(3);</pre>	carry	para o Most Significant bit				
MSbitCout <=	; carrv	do Most Significant bit				
	,	.				
end Behavioral;						