SESSION 8 OF STATISTICS FOR BUSNESS

DR. SURESH KUMAR GADI UNIVERSIDAD DE LAS AMÉRICAS PUEBLA

TODAY'S TOPIC

HYPOTHESIS TESTING FOR TWO POPULATIONS

d1=1. d2=1 d1=2, d2=1 ---d1=5, d2=2 d1=10. d2=1 d1=100, d2=100 1.5 0.5 3 8.0 d1=1. d2=1 d1=2, d2=1 ---d1=5, d2=2 d1=10, d2=1 d1=100, d2=100

FISHER-SNEDECOR DISTRIBUTION DISTRIBUTION

EXAMPLES

Compare mean salaries between male and female population.

Compare mean quantity packed by two different machines

DIFFERENCE IN MEAN

Description	Mathematical symbol
Sample size of population I	n_1
Sample size of population 2	n_2
Sample mean of population I	\overline{x}_1
Sample mean of population 2	\overline{x}_2
Sample standard deviation of population I	σ_1
Sample standard deviation of population 2	σ_2
Standard error for population I	$\sigma_{\overline{x}_1} = \frac{\sigma_1}{\sqrt{n_1}}$
Standard error for population 2	$\sigma_{\overline{x}_2} = \frac{\sigma_2}{\sqrt{n_2}}$
Point estimator of mean difference	$\overline{x}_1 - \overline{x}_2$
Standard error of mean difference	$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\sigma_{\bar{x}_1}^2 + \sigma_{\bar{x}_2}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

EXAMPLE

DIFFERENCE IN POPULATION PORTION

Description	Mathematical symbol
Sample size of population I	n_1
Sample size of population 2	n_2
Population portion of population I	\overline{p}_1
Population portion of population 2	\overline{p}_2
Standard error for population I	$\sigma_{\bar{p}_1} = \sqrt{\frac{\bar{p}_1(1-\bar{p}_1)}{n_1}}$
Standard error for population 2	$\sigma_{\bar{p}_2} = \sqrt{\frac{\bar{p}_2(1-\bar{p}_2)}{n_2}}$
Point estimator of population portion difference	$\overline{p}_1 - \overline{p}_2$
Standard error	$\sigma_{\bar{p}_1 - \bar{p}_2} = \sqrt{\sigma_{\bar{p}_1}^2 + \sigma_{\bar{p}_2}^2} = \sqrt{\frac{\bar{p}_1(1 - \bar{p}_1)}{n_1} + \frac{\bar{p}_2(1 - \bar{p}_2)}{n_2}}$

THANK YOU

