Please note, all Griffiths problems come from our class text, the second edition.

1. An Adventure with Hermitian Operators

Linear operators are linear maps from the Hilbert space to itself, i.e. the functions \hat{L} from wavefunctions to wavefunctions such that $\hat{L}(\alpha\Psi + \beta\Phi) = \alpha\hat{L}\Psi + \beta\hat{L}\Phi$, for all wavefunctions Ψ, Φ and all complex numbers α, β . A Hermitian operator \hat{A} is one whose adjoint is equal to itself, $\hat{A}^{\dagger} = \hat{A}$, i.e. for all Ψ, Φ ,

$$\langle \Psi, \hat{A}\Phi \rangle = \int \Psi^*(x)[\hat{A}\Phi](x) \, \mathrm{d}x = \int [\hat{A}\Psi]^*(x)\Phi(x) \, \mathrm{d}x = \langle \hat{A}\Psi, \Phi \rangle.$$
 (1)

Physical measurables are represented by Hermitian operators. We know two such operators, the position and momentum,

$$\hat{x}: [\hat{x}\Psi](x) = x\Psi(x), \qquad \qquad \hat{p}: [\hat{p}\Psi](x) = -i\hbar \frac{\partial \Psi}{\partial x}(x). \tag{2}$$

For the following maps, check whether they are linear operators, and if so, whether they are Hermitian.

- (a) \hat{x}
- (b) $\hat{A} : \hat{A}\Psi(x) = \Psi^*(x)\Psi(x)$
- (c) \hat{p}
- (d) $\hat{B}: \hat{B}\Psi = -iL^2\frac{\partial^2\Psi}{\partial x^2} + i\frac{x^2}{L^2}\Psi$, for some fixed L
- (e) $\hat{P}_{\Phi}: \hat{P}_{\Phi}\Psi(x) = \Phi(x) \int \Phi^*(y) \Psi(y) \, dy$, for some fixed $\Phi(x)$
- (f) $\hat{Q}_{\Phi}: \hat{Q}_{\Phi}\Psi(x) = \Phi(x) \int \Psi^*(y)\Phi(y) \,dy$, for some fixed $\Phi(x)$
- (g) $\hat{T}_a:\hat{T}_a\Psi(x)=\Psi(x+a)$, for some fixed a
- (h) $\hat{x}\hat{p}$
- (i) $\hat{x}\hat{p} + \hat{p}\hat{x}$

- 2. Becoming Friends with Gaussian wave-packets inspired by Griffiths 2.22
- *Problem 2.22 The gaussian wave packet. A free particle has the initial wave function

$$\Psi(x,0) = Ae^{-ax^2},$$

where A and a are constants (a is real and positive).

- (a) Normalize $\Psi(x, 0)$.
- (b) Find $\Psi(x, t)$. Hint: Integrals of the form

$$\int_{-\infty}^{+\infty} e^{-(ax^2+bx)} dx$$

can be handled by "completing the square": Let $y = \sqrt{a} [x + (b/2a)]$, and note that $(ax^2 + bx) = y^2 - (b^2/4a)$. Answer:

$$\Psi(x,t) = \left(\frac{2a}{\pi}\right)^{1/4} \frac{e^{-ax^2/[1+(2i\hbar at/m)]}}{\sqrt{1+(2i\hbar at/m)}}.$$

(c) Find $|\Psi(x,t)|^2$. Express your answer in terms of the quantity

$$w \equiv \sqrt{\frac{a}{1 + (2\hbar at/m)^2}}.$$

Sketch $|\Psi|^2$ (as a function of x) at t = 0, and again for some very large t. Qualitatively, what happens to $|\Psi|^2$, as time goes on?

- (d) Find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, σ_x , and σ_p . Partial answer: $\langle p^2 \rangle = a\hbar^2$, but it may take some algebra to reduce it to this simple form.
- (e) Does the uncertainty principle hold? At what time t does the system come closest to the uncertainty limit?
 - (f) Consider a microscopic particle with the mass of an electron localised in a space of 10^{-10} m, about the size of an atom. How long does it take for σ_x to double its initial value? Compare with a macroscopic particle of mass 1 g localised in a space of 10^{-6} m

3. Some useful results using the Schrödinger equation Griffiths 2.1

*Problem 2.1 Prove the following three theorems:

- (a) For normalizable solutions, the separation constant E must be *real*. Hint: Write E (in Equation 2.7) as $E_0 + i\Gamma$ (with E_0 and Γ real), and show that if Equation 1.20 is to hold for all t, Γ must be zero.
- (b) The time-independent wave function $\psi(x)$ can always be taken to be *real* (unlike $\Psi(x,t)$, which is necessarily complex). This doesn't mean that every solution to the time-independent Schrödinger equation is real; what it says is that if you've got one that is *not*, it can always be expressed as a linear combination of solutions (with the same energy) that are. So you *might as* well stick to ψ 's that are real. Hint: If $\psi(x)$ satisfies Equation 2.5, for a given E, so too does its complex conjugate, and hence also the real linear combinations $(\psi + \psi^*)$ and $i(\psi \psi^*)$.
- (c) If V(x) is an **even function** (that is, V(-x) = V(x)) then $\psi(x)$ can always be taken to be either even or odd. *Hint:* If $\psi(x)$ satisfies Equation 2.5, for a given E, so too does $\psi(-x)$, and hence also the even and odd linear combinations $\psi(x) \pm \psi(-x)$.

4. Alas, it's a Question about Probability Currents inspired by Griffiths 1.14

Problem 1.14 Let $P_{ab}(t)$ be the probability of finding a particle in the range (a < x < b), at time t.

(a) Show that

$$\frac{dP_{ab}}{dt} = J(a,t) - J(b,t),$$

where

$$J(x,t) \equiv \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right).$$

What are the units of J(x, t)? Comment: J is called the **probability current**, because it tells you the rate at which probability is "flowing" past the point x. If $P_{ab}(t)$ is increasing, then more probability is flowing into the region at one end than flows out at the other.

- (b) Show that if at any time t, $\Psi(x,t)$ is real or has spatially constant phase, i.e. $\Psi(x,t)=e^{i\theta(t)}f(x,t)$ for real functions θ,f , then J(x,t)=0. What does this imply for energy eigenstates?
- (c) Calculate J(x,0) for a Gaussian wavepacket $\Psi(x,t)$.