Distribuciones teóricas de probabilidad

Gerardo Martín

2022-06-29

¿Qué son?

- Modelos matemáticos que describen probabilidades de observar un fenómeno
 - · Medidas de ubicación central
 - · Medidas de dispersión

Ejemplo

La distribución normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \tag{1}$$

- 1. x es una variable aleatoria contínua con valores negativos y positivos
- 2. μ es la media y σ es la desviación estándar de x
- 3. π es la constante universal 3.14159...

¿Qué indican los parámetros?

Usos de la distribución normal

- 1. Comparación de efectos de tratamientos experimentales
- Estimación de la fuerza de asociación entre dos fenómenos contínuos
- 3. Descripción de la variabilidad de un fenómeno

Otras distribuciones

¿Para qué otras distribuciones?

- 1. Descripción de variables discretas
 - · Conteo de individuos
 - · Conteo de eventos exitosos
- 2. Descripción de variables contínuas positivas
 - · Precipitación
 - · Expectativa de vida
 - · Tiempo de espera a ocurrencia de evento

Ejemplos de otras distribuciones

$$Pr(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 (2)

Donde k es el número de éxitos, n es el número de intentos y p es le probabilidad de obtener k

Descripción de fenómenos binarios:

- · Probabilidad de que animal capturado sea macho o hembra
- · Probabilidad de obtener águila o sol
- Probabilidad de capturar individuo en una trampa (estudios ecológicos)

Poisson

En la distribución binomial se conoce el número de intentos (veces que se lanza la moneda)

En la distribución poisson el número de intentos es infinito, p. ej.

- · Probabilidad de observar tipo de árbol en geografía
- · Probabilidad de observar vehículo transitar frente a escuela

Poisson,

$$Pr(X = k) = \lambda \frac{e^{-\lambda}}{k!} \tag{3}$$

Donde k es el número de veces que se observa un valor específico de x y λ es la media de x

1. Descripción de variables de conteos

- · Número de individuos por ciudad
- · Número de células cancerosas en muestra de tejido
- · Número de individuos infectados en una población
- · Variación de tamaños poblacionales

Cáculo de parámetros

Distribución normal

$$\mu = \sum \frac{x_i}{n}$$

$$\sigma = \sqrt{\sum \frac{(x-\mu)^2}{n-1}}$$

Binomial

$$E(X) = \mu = p = \frac{k}{n}$$

$$\sigma^2 = np(1-p)$$

Poisson

$$\lambda = \sum \frac{x_i}{n}$$

$$\sigma^2 = \lambda$$