Семинар 1

Основы теории множеств

Определение 1.1. Пусть заданы множества X и Y. Их декартовым произведением называется совокупность всевозможных упорядоченных пар (x, y), где $x \in X$, $y \in Y$.

Определение 1.2. Бинарным отношением на множестве E называется подмножество $\rho \in E \times E$, т.е. ρ – некоторый набор пар из $E \times E$.

Определение 1.3. Бинарное отношение R на множестве E называется *отношением эквиваентности*, если выполняются свойства:

- 1. рефлексивность: $(a, a) \in R \ \forall a \in E$.
- 2. симметричность: $((a,b) \in R) \rightarrow ((b,a) \in R)$.
- 3. транзитивность: $((a,b) \in R \land (b,c) \in R) \rightarrow ((a,c) \in R)$.

и *отношением порядка*, если в п.2) вместо симметричности выполняется антисимметричность: $((a,b) \in R \land (b,a) \in R) \rightarrow (a=b)$.

Упражнение. Показать, что отношение R на множестве целых чисел \mathbb{Z} , заданное как $R := \{(a,b) \mid a \equiv b \pmod m\}$ является отношением эквивалентности.

Замечание. Говорят, что $a \equiv b \pmod m$, если они имеют одинаковый остаток при делении на m, либо, что то же самое, если $\exists k \in \mathbb{Z} : (a-b) = km$, т.е. их разность делится на m без остатка.

Подсказка. Нужно проверить выполнимость свойств из определения.

Другие примеры отношения эквивалентности – подобие фигур и параллельность.

Линейные пространства

Определение 1.4. Линейным пространством V над полем F (пока что будем рассматривать дйствительные числа \mathbb{R}) называется четвёрка $(V, F, +, \cdot)$, где:

- V множество векторов.
- F множество скаляров.
- определена операция сложения векторов $+: V \times V \to V$.
- определена операция вектора на скаляр $\cdot: F \times V \to V$.

Заданные операции должны удовлетворять аксиомам линейного пространства!

Примеры линейных пространств:

- V_1, V_2, V_3 множества векторов на праямой, плоскости и в пространстве.
- $M_{n\times k}(F)$ матрицы размера $n\times k$, элементы которых принадлежат F.
- F[x] многочлены от переменной x с коэффициентами из F.

Упражнение. используя аксиомы линейного пространства, доказать:

- a) $0 \cdot \overline{v} = \overline{0} \ \forall \overline{v} \in V$.
- b) $\alpha \cdot \overline{0} = \overline{0} \ \forall \alpha \in F$.
- c) $-1 \cdot \overline{v} = -\overline{v} \ \forall \overline{v} \in V$.

Определение 1.5. Система векторов $(\overline{v}_1,...,\overline{v}_n)$ называется линейно независимой, если $\sum_{i=1}^n \alpha_i \overline{v}_i = \overline{0} \Leftrightarrow \alpha_1 = ... = \alpha_n = 0.$

Определение 1.6. Линейная комбинация $\alpha_1 \overline{v}_1 + ... + \alpha_n \overline{v}_n$ называется *нетривиальной*, если $\exists i: \alpha_i \neq 0.$

Определение 1.7. Система векторов $(\overline{v}_1,...,\overline{v}_n)$ называется *линейно зависимой*, если существует её нетривиальная линейная комбинация, равная $\overline{0}$.

Упражнение. Доказать, что если система ЛЗ, то и любая её надсистема также ЛЗ; если система ЛНЗ, то и любая её подсистема ЛНЗ.

Утверждение. В ЛЗ системе векторов $(\overline{v}_1,...,\overline{v}_n)$ существует вектор, который выражается через все остальные, но не обязательно все!

Определение 1.8. Пусть задано линейное пространство V над полем F. Линейной оболочкой векторов $\overline{v}_1,...,\overline{v}_k$ называется множество всевозможных линейных комбинаций:

$$\langle \overline{v}_1, ..., \overline{v}_k \rangle = \left\{ \sum_{i=1}^k \alpha_i \overline{v}_i \mid \alpha_1, ..., \alpha_k \in F \right\}$$

Определение 1.9. *Базисом* в линейном пространстве V называется такая линейно независимая система $(\overline{v}_1,...,\overline{v}_n)$, где $\overline{v}_i \in V$, что $<\overline{v}_1,...,\overline{v}_k>=V$. Таким образом, через базис можно выразить любой элемент линейного пространства при промощи некоторой линейной комбинации.