Introduction to Machine Learning

Machine Learning Process

Model Evaluation

Confusion Matrix

For binary classification	Predicted O	Predicted 1	
Actual O	TN	FP	
Actual 1	FN	TP	

Confusion Matrix

Confusion Matrix and ROC Curve

		Predicted Class	
		No	Yes
Observed Class	No	TN	FP
Observed Class	Yes	FN	TP

TN	True Negative
FP	False Positive
FN	False Negative
TP	True Positive

Not a good metric for unbalanced data

Accuracy = (TN+TP)/(TN+FP+FN+TP)

Precision = TP/(FP+TP)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Misclassification Rate (Error Rate):

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

Type I error (false positive)

Type II error (false negative)

Mean Absolut Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

Mean Absolut Error

square
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

Mean Absolut Error

$$RMSE = \int \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

		True condition					
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma} = \frac{\Sigma \text{Condition positive}}{\Sigma \text{Total population}}$	Accuracy Σ True positive + Σ Total po	Σ True negative	
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$		
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$		
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio $(DOR) = \frac{LR+}{LR-}$		
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{\text{FNR}}{\text{TNR}}$	$(DOK) = \frac{1}{LR-}$	$\frac{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}}{2}$	

Regression

o R^2

 $R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$

- o RMSE
- Classification
 - Precision
 - Recall
- Clustering
 - Within Sum of Squares Error

Install scikit learn