RESUMEN ALGEBRA 1

FINAL

NUMEROS NATURALES E INDUCCIÓN

Capítulo 2

Números Naturales e Inducción.

2.1 La suma de Gauss y la serie geométrica.

2.1.1 La suma de Gauss.

$$\forall n \in \mathbb{N}: (1+2+\cdots+(n-1)+n=\frac{n(n+1)}{2}).$$

Notar que este número siempre es un número natural (como debe ser) ya que n(n+1) siempre es un número par!

2.1.2 La serie geométrica.

Ahora, sea un número q cualquiera, y queremos sumar las n+1 primeras potencias de q,

$$\forall n \in \mathbb{N}: \quad 1 + q + \dots + q^n = \begin{cases} n+1 & \text{si } q = 1, \\ \frac{q^{n+1} - 1}{q - 1} & \text{si } q \neq 1. \end{cases}$$

2.2 Sumatoria y Productoria.

2.2.1 Sumatoria.

Sea $n \in \mathbb{N}$. La notación $\sum_{i=1}^{n} a_i$, que se lee la *sumatoria* para i de 1 a n de a_i , representa la suma de los n primeros términos de la sucesión $(a_i)_{i \in \mathbb{N}}$:

$$\sum_{i=1}^{n} a_i = a_1 + \dots + a_n,$$

La sumatoria satisface las dos propiedades siguientes para todo $n \in \mathbb{N}$, para todo par de sucesiones $(a_i)_{i \in \mathbb{N}}$, $(b_i)_{i \in \mathbb{N}}$ en A y para todo $c \in A$:

•
$$\left(\sum_{i=1}^{n} a_i\right) + \left(\sum_{i=1}^{n} b_i\right) = \sum_{i=1}^{n} (a_i + b_i).$$

$$\bullet \ c \cdot \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} c \cdot a_i.$$

2.2.2 Productoria.

Sea $n \in \mathbb{N}$. La notación $\prod_{i=1}^{n} a_i$, que se lee la *productoria* para i de 1 a n de a_i , representa el producto de los n primeros términos de la sucesión $(a_i)_{i\in\mathbb{N}}$:

$$\prod_{i=1}^{n} [a_i] = [a_1] \cdots [a_n],$$

La productoria satisface la propiedad siguiente para todo $n \in \mathbb{N}$ y sucesiones $(a_i)_{i \in \mathbb{N}}$, $(b_i)_{i \in \mathbb{N}}$ en A:

$$\bullet \left(\prod_{i=1}^n a_i\right) \cdot \left(\prod_{i=1}^n b_i\right) = \prod_{i=1}^n (a_i \cdot b_i).$$

2.3 El conjunto inductivo N y el principio de inducción.

Definición 2.3.1. (Conjunto inductivo.)

Sea $H \subseteq \mathbb{R}$ un conjunto. Se dice que H es un conjunto *inductivo* si se cumplen las dos condiciones siguientes:

- \bullet $1 \in H$,
- $\bullet \ \forall x, x \in H \Rightarrow x+1 \in H$.

Ejemplos:

- \mathbb{N} , \mathbb{N}_0 , $\mathbb{N}_{>-13}$, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , $[1, +\infty)$ son conjuntos inductivos.
- $\mathbb{N} \cup \{1/2\}, \mathbb{Z} \{0\}, [1, 2]$ no son conjuntos inductivos.

Teorema 2.3.2. (Principio de inducción.)

Sea p(n), $n \in \mathbb{N}$, una afirmación sobre los números naturales. Si p satisface

- (Caso base) p(1) es Verdadera,
- (Paso inductivo) $\forall h \in \mathbb{N}$, p(h) Verdadera $\Rightarrow p(h+1)$ Verdadera,

entonces p(n) es Verdadero, $\forall n \in \mathbb{N}$.

Aquí la hipótesis "p(h) Verdadero" para un h dado se denomina la hipótesis inductiva (HI).

Ejemplos:

2.
$$\frac{(2n)!}{n!^2} \le (n+1)!, \forall n \in \mathbb{N}:$$

$$p(n): \frac{(2n)!}{n!^2} \le (n+1)!.$$

- Caso base: p(1) V? Sí, pues $\frac{(2\cdot 1)!}{1!^2} = 2 \le (1+1)!$.
- Paso inductivo: Dado $h \in \mathbb{N}$, p(h) = p(h+1) V?

- HI:
$$\frac{(2h)!}{h!^2} \le (h+1)!$$
.

- Qpq (Quiero probar que) $\frac{(2(h+1))!}{(h+1)!^2} \le ((h+1)+1)!$, es decir $\frac{(2h+2)!}{(h+1)!^2} \le (h+2)!$.

Pero

$$\frac{(2h+2)!}{(h+1)!^2} = \frac{(2h+2)(2h+1)(2h)!}{((h+1)h)!^2} = \frac{2(h+1)(2h+1)(2h)!}{(h+1)^2h!^2}$$
$$= \frac{2(2h+1)}{h+1} \frac{(2h)!}{h!^2} \le \frac{2(2h+1)}{h+1} (h+1)!$$

ya que
$$\frac{2(2h+1)}{h+1} > 0$$
.

Por lo tanto para probar que $\frac{(2h+2)!}{(h+1)!^2} \le (h+2)!$, alcanza con probar que $\frac{2(2h+1)}{h+1} \le h+2$ porque así se tendrá la cadena de desigualdades:

$$\frac{(2h+2)!}{(h+1)!^2} \le \frac{2(2h+1)}{(h+1)}(h+1)! \le (h+2)(h+1)! = (h+2)!$$

Most
remos entonces que
$$\frac{2(2h+1)}{(h+1)} \le h+2$$
. Se tiene

$$\frac{2(2h+1)}{h+1} \le h+2 \underset{h+1>0}{\Longleftrightarrow} 2(2h+1) \le (h+1)(h+2)$$

$$\iff 4h+2 \le h^2+3h+2 \iff h \le h^2 \underset{h>0}{\Longleftrightarrow} 1 \le h$$

(donde siempre verificamos que no cambia el sentido de la desigualdad pues se multiplica/divide por cantidades > 0). La última desigualdad es cierta pues $h \in \overline{\mathbb{N}}$, por lo tanto hemos logrado probar que $\frac{2(2h+1)}{h+1} \le h+2$, como queríamos. Concluimos que p(h) $\mathbb{V} \Rightarrow p(h+1)$ \mathbb{V} .

Es decir hemos probado tanto el caso base como el paso inductivo. Se concluye que p(n) es Verdadera, $\forall n \in \mathbb{N}$.

2.3.1 Inducción "corrida".

Teorema 2.3.3. (Principio de inducción "corrido".)

Sea $n_0 \in \mathbb{Z}$ y sea $p(n), n \ge n_0$, una afirmación sobre $\mathbb{Z}_{\ge n_0}$. Si p satisface

- (Caso base) $p(n_0)$ es Verdadera,
- (Paso inductivo) $\forall h \geq n_0$, p(h) Verdadera $\Rightarrow p(h+1)$ Verdadera,

entonces p(n) es Verdadero, $\forall n \geq n_0$.

Ejemplos:

1. Probar que para todo $n \ge 5$ se tiene $2^n > n^2$.

Vamos a probarlo por medio del principio de inducción corrido.

$$p(n): 2^n > n^2$$

- Caso base: p(5) V? Sí, pues $32 = 2^5 > 5^2 = 25$.
- Paso inductivo: Dado $h \ge 5$, p(h) = p(h+1) = V

- HI:
$$2^h > h^2$$
 (recordando $h \ge 5$).
- Qpq $2^{h+1} > (h+1)^2$, es decir $2 \cdot 2^h > h^2 + 2h + 1$.

Pero por HI, $2 \cdot 2^h > 2h^2$. Por lo tanto para probar que $2 \cdot 2^h > h^2 + 2h + 1$, alcanza con probar que $2h^2 \ge h^2 + 2h + 1$, pues en ese caso se tendría la cadena de desigualdades

$$2 \cdot 2^h > 2h^2 > h^2 + 2h + 1$$
,

y al haber en la cadena una desigualdad estricta >, la desigualdad que vale entre el miembro más a la izquierda y el más a la derecha es > también. Se tiene:

$$2h^2 > h^2 + 2h + 1 \iff h^2 > 2h + 1 \iff h^2 - 2h - 1 > 0.$$

Pero al ser $h \geq 5$, se tiene

$$h^2 - 2h - 1 = h \cdot h - 2h - 1 \ge 5h - 2h - 1 = 3h - 1 \ge 3 \cdot 5 - 1 \ge 14 \ge 0.$$

(Notemos que la desigualdad $h^2 - 2h - 1 \ge 0$ no se cumple para h = 1 ni para h = 2, sólo se cumple de hecho a partir de h = 3.) Concluimos que para $h \ge 5$, p(h) V $\Rightarrow p(h+1)$ V.

Es decir hemos probado tanto el caso base como el paso inductivo. Se concluye que p(n) es Verdadera, para todo $n \ge 5$.

2. (El distribuidor automático.)

Un distribuidor automático sólo tiene billetes de \$2 y \$ 5. Mostrar que puede dar cualquier suma n entera de \$, con $n \ge 4$.

$$p(n)$$
: $\exists i, j \in \mathbb{N}_0$ (t.q. $n = i \cdot 2 + j \cdot 5$.

- Caso base: p(4) V? Sí, pues $4 = 2 \cdot 2 + 0 \cdot 5$.
- Paso inductivo: Dado $h \ge 4$, $p(h) V \Rightarrow p(h+1) V$?
 - HI: $\exists i, j \in \mathbb{N}_0$ tales que $h = i \cdot 2 + j \cdot 5$ (recordando $h \ge 4$).
 - Qpq $\exists i', j' \in \mathbb{N}_0$ tales que $h+1=i' \cdot 2+j' \cdot 5$.

Por HI, $\exists i, j \in \mathbb{N}_0$ tales que $h = i \cdot 2 + j \cdot 5$.

- Si se usó algún billete de 5 para obtener h, es decir si $j \ge 1$, reemplazar ese billete de 5 por 3 billetes de 2 (lo que da 6), o sea reemplazar j por j' = j - 1 (que satisface $j' \ge 0$ pues $j \ge 1$) y reemplazar i por i' = i + 3:

$$(i' \cdot 2 + i' \cdot 5 = (i+3) \cdot 2 + (i-1) \cdot 5 = i \cdot 2 + i \cdot 5 + 6 - 5 = n+1.$$

– Si no se usó ningún billete de 5 para obtener h, es decir si j=0, se tiene $h=i\cdot 2$. Pero como $h\geq 4$, entonces $i\geq 2$ y podemos reemplazar dos billetes de 2 por un billete de 5, o sea reemplazar i por i'=i-2 (que satisface $i'\geq 0$ pues $i\geq 2$) y reemplazar j=0 por j'=1:

$$(i' \cdot 2 + j' \cdot 5 = (i - 2) \cdot 2 + 5 = i \cdot 2 + 5 - 4 = h + 1.$$

Concluimos que en todos los casos logramos mostrar que existen $i', j' \in \mathbb{N}_0$ tales que $h+1=i' \cdot 2+j' \cdot 5$. Así probamos el paso inductivo.

Es decir hemos probado tanto el caso base como el paso inductivo. Se concluye que p(n) es Verdadera, $\forall n \geq 4$.

2.5 Inducción completa.

2.5.1 Inducción completa – Un caso particular.

Observación 2.5.1. Cuando una sucesión está definida por recurrencia usando los dos términos anteriores, y se dan los valores de los dos términos iniciales a_1 y a_2 , entonces a_n está definido para cualquier $n \in \mathbb{N}$: si

Teorema 2.5.2. (Principio de inducción - II)

Sea p(n), $n \in \mathbb{N}$, una afirmación sobre los números naturales. Si p satisface

- (Casos base) p(1) y p(2) son Verdaderas,
- (Paso inductivo) $\forall h \in \mathbb{N}$, p(h) y p(h+1) $Verdaderas <math>\Rightarrow p(h+2)$ Verdadera,

entonces p(n) es Verdadero, $\forall n \in \mathbb{N}$.

Teorema 2.5.4. (Principio de inducción - II "corrido")

Sea $n_0 \in \mathbb{Z}$ y sea $p(n), n \geq n_0$, una afirmación sobre $\mathbb{Z}_{\geq n_0}$. Si p satisface

- (Casos base) $p(n_0)$ y $p(n_0 + 1)$ son Verdaderas,
- (Paso inductivo) $\forall h \geq n_0$, p(h) y p(h+1) $Verdaderas <math>\Rightarrow p(h+2)$ Verdadera,

entonces p(n) es Verdadero, $\forall n \geq n_0$.

2.5.2 La sucesión de Fibonacci.

Estas condiciones definen una única sucesión, que se llama la sucesión de Fibonacci $(F_n)_{n\in\mathbb{N}_0}$:

$$F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n, \forall n \in \mathbb{N}_0,$$

cuyos primeros términos son

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233$$

Proposición 2.5.5. (Término general de la Sucesión de Fibonacci.)

$$F_n = \frac{1}{\sqrt{5}} (\Phi^n - \overline{\Phi}^n), \quad \forall n \in \mathbb{N}_0.$$

Proposición 2.5.6. (Identidad de Cassini.)

$$F_{n+1} \cdot F_{n-1} - F_n^2 = (-1)^n, \quad \forall n \in \mathbb{N}.$$

2.5.3 Sucesiones de Lucas.

Una sucesión de Lucas es una sucesión $(a_n)_{n\in\mathbb{N}_0}$ definida recursivamente por

$$a_0 = a$$
, $a_1 = b$, $a_{n+2} = c a_{n+1} + d a_n$, $\forall n \in \mathbb{N}_0$,

donde $a, b, c, d \in \mathbb{C}$ son números dados.

Consideremos la ecuación $X^2 - cX - d = 0$ asociada a la sucesión de Lucas (que se obtiene de la expresión $a_2 - c a_1 - d a_0 = 0$ y luego reemplazando a_2 por X^2 , a_1 por X y a_0 por 1).

Supongamos que estamos en el caso en que X^2-cX-d tiene dos raíces distintas r y \overline{r} . Observemos que estas dos raíces r y \overline{r} satisfacen las relaciones

$$r^2 = c r + d \quad \text{y} \quad \overline{r}^2 = c \, \overline{r} + d. \tag{2.3}$$

<u>Afirmación 1:</u> Las sucesiones $(r^n)_{n\in\mathbb{N}_0}$, $(\overline{r}^n)_{n\in\mathbb{N}_0}$, y más aún cualquier combinación lineal de ellas

$$(\gamma_n)_{n\in\mathbb{N}_0} = (\alpha r^n + \beta \overline{r}^n)_{n\in\mathbb{N}_0}$$

satisfacen la misma recurrencia

$$\gamma_{n+2} = c \gamma_{n+1} + d \gamma_n, \forall n \in \mathbb{N}$$

que la sucesión de Lucas $(a_n)_{n\in\mathbb{N}_0}$ original, de la cuál queremos determinar el término general.

Esto es cierto pues

$$(\gamma_{n+2}) = \alpha r^{n+2} + \beta \overline{r}^{n+2} = \alpha r^2 r^n + \beta \overline{r}^2 \overline{r}^n$$

$$= \alpha (cr + d)r^n + \beta (c\overline{r} + d)\overline{r}^n = c(\alpha r^{n+1} + \beta \overline{r}^{n+1}) + d(\alpha r^n + \beta \overline{r}^n)$$

$$= (c\gamma_{n+1} + d\gamma_n)$$

Afirmación 2: Existe una única sucesión $(\gamma_n)_{n\in\mathbb{N}_0} = (\alpha r^n + \beta \overline{r}^n)_{n\in\mathbb{N}_0}$ que satisface las condiciones iniciales $\gamma_0 = a$, $\gamma_1 = b$.

Esto es cierto pues para ello hay que resolver el sistema lineal

$$\begin{cases} \alpha + \beta = a \\ \alpha r + \beta \overline{r} = b \end{cases}$$

que tiene solución y es única pues $r \neq \overline{r}$ por hipótesis: se obtiene

$$\alpha = \frac{b - a\,\overline{r}}{r - \overline{r}} \quad \text{y} \quad \beta = \frac{a\,r - b}{r - \overline{r}}.$$

Se concluye que esta sucesión $(\gamma_n)_{n\in\mathbb{N}_0} = (\alpha r^n + \beta \overline{r}^n)_{n\in\mathbb{N}_0}$ coincide con la sucesión de Lucas original $(a_n)_{n\in\mathbb{N}_0}$, ya que satisface las mismas condiciones iniciales y la misma recurrencia. Por lo tanto el término general de la sucesión $(a_n)_{n\in\mathbb{N}_0}$ es

$$a_n = \alpha r^n + \beta \overline{r}^n, \ \forall n \in \mathbb{N}_0.$$

2.5.4 Inducción completa – Formulación general.

Teorema 2.5.7. (Principio de inducción completa.)

Sea p(n), $n \in \mathbb{N}$, una afirmación sobre los números naturales. Si p satisface

- (Caso base) p(1) es Verdadera,
- (Paso inductivo) $\forall h \in \mathbb{N}$, $p(1), \dots, p(h)$ Verdaderas $\Rightarrow p(h+1)$ Verdadera,

entonces p(n) es Verdadero, $\forall n \in \mathbb{N}$.

<u>Ejemplo:</u> Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como

$$a_1 = 1$$
, $a_{n+1} = 1 + \sum_{k=1}^{n} \frac{n + a_k}{n + k + 1}$, $\forall n \in \mathbb{N}$.

Probar que $a_n \leq n, \forall n \in \mathbb{N}$.

Demostración. Aplicaremos aquí (por necesidad) el principio de inducción completa enunciado en el Teorema 2.5.7.

$$p(n): a_n \leq n.$$

- Caso base: p(1) V? Sí, pues efectivamente $a_1 = 1 \le 1$.
- Paso inductivo: Dado $h \in \mathbb{N}$, $p(1), \dots, p(h)$ Verdaderas $\Rightarrow p(h+1)$ Verdadera?

- HI:
$$a_1 \le 1, \ldots, a_h \le h$$
, o sea $a_k \le k$ para $1 \le k \le h$.
- Qpq $a_{h+1} \le h+1$.

Pero para $h \ge 1$ se tiene

$$a_{h+1} = 1 + \sum_{k=1}^{h} \frac{h + a_k}{h + k + 1} \le 1 + \sum_{k=1}^{h} \frac{h + k}{h + k + 1}$$

pues por HI, $a_k \le k$ implica $h + a_k \le h + k$ y por lo tanto, dado que h + k + 1 > 0, $\frac{h + a_k}{h + k + 1} \le \frac{h + k}{h + k + 1}$ pues no cambia el sentido de la desigualdad.

Así, para concluir que $a_{h+1} \le h+1$, alcanza con probar que

$$(1+\sum_{k=1}^h\frac{h+k}{h+k+1}) \le h+1$$
, o equivalentemente $\sum_{k=1}^h\frac{h+k}{h+k+1} \le h$.

Pero notemos que cada uno de los h términos $\frac{h+k}{h+k+1}$ tiene el numerador h+k positivo y menor que el denominador h+k+1, o sea

$$1 \le h + k < h + k + 1 \implies \frac{h+k}{h+k+1} < 1$$

y por lo tanto

$$\sum_{k=1}^{h} \frac{h+k}{h+k+1} < \sum_{k=1}^{h} 1 = h,$$

como se quería probar. (Notar que probamos algo más fuerte que lo que necesitamos: que $\sum_{k=1}^h \frac{h+k}{h+k+1} < h$, pero esto claramente implica que $\sum_{k=1}^h \frac{h+k}{h+k+1} \le h$ como nos alcanza. En realidad la proposición dice \le por el término $a_1=1$ pero a partir de a_2 vale la desigualdad estricta.)

Es decir hemos probado tanto el caso base como el paso inductivo. Se concluye que p(n) es Verdadero, $\forall n \in \mathbb{N}$.

<u>Ejemplo:</u> Probar que si se tienen estampillas de 4 y 5 \$, se pueden mandar cartas de cualquier precio n entero, con $n \ge 12$.

Demostración.

$$p(n)$$
: existen $j, k \in \mathbb{N}$ $tq \ n = j \cdot 4 + k \cdot 5$.

- Caso base: ¿p(12) V? Sí, pues 12 = 3 · 4: se necesitan 3 estampillas de 4 \$.
- Paso inductivo: Dado $h \ge 12$, $\not : p(k)$ V para $12 \le k \le h \implies p(h+1)$ V?

Inmediatamente se ve que para obtener h+1 con estampillas de 4 y 5 \$, conviene obtener h-3 con estampillas de 4 y 5 \$, y luego agregarle una estampilla de 4 \$, ya que h+1=(h-3)+4. O sea necesitamos aplicar la hipótesis inductiva para h-3, y de ella podremos deducir que p(h+1) es Verdadero.

La hipótesis inductiva permite suponer que p(k) es V para $12 \le k \le h$. Entonces debemos verificar que h-3 está en las condiciones de la HI

Está claro que $h-3 \le h$. Pero $h-3 \ge 12 \Leftrightarrow h+1 \ge 16$. O sea la HI nos permite probar que p(h+1) es V a partir de h+1=16. Por lo tanto tenemos que verificar los casos h=13, h=14 y h=15

aparte (porque para ellos la HI requerida sería p(10) V, p(11) y p(12) V, que no se cumple.

- p(13) V? Sí, pues $13 = 2 \cdot 4 + 1 \cdot 5$: se necesitan 2 estampillas de 4 \$ y una de 5.
- ; p(14) V? Sí, pues $14=1\cdot 4+2\cdot 5$: se necesitan 1 estampilla de 4 $\$ y 2 de 5 .
- -ip(15) V? Sí, pues $15 = 3 \cdot 5$: se necesitan 3 estampillas de 5 \$.

Así terminamos de probar el paso inductivo.

Es decir hemos probado tanto los casos base como el paso inductivo. Se concluye que p(n) es Verdadero, $\forall n \in \mathbb{N}$.

EJERCICIOS DE FINAL:

13/9/22

1. Hallar todos los valores de $n \in \mathbb{N}$ tales que vale la desigualdad

$$7^n + 8^n \le 2^n + 10^n.$$

03/08/22

27/7/22

1. Probar que para todo $n \in \mathbb{N}$,

$$(7.3^n - 5^{n+1}: 3^{n+1} + 7.5^n)$$

2. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida recursivamente por

$$a_1 = 10,$$

 $a_2 = 30,$
 $a_n = 2^n a_{n-1} + 5^n a_{n-2}$ si $n \ge 3.$

Probar que $(100: a_n) = 10$ para todo $n \in \mathbb{N}$.

17/16/22

1. Encuentre y pruebe un fórmula cerrada para la sucesión $(a_n)_{n\geq 1}$, definida por

$$a_5=22$$
 y $a_{n+1}=a_n+na_1$ para todo $n\geq 1$.

27/05/22

3. Calcule $\sum_{k=0}^{29} \text{sen}(\frac{2k\pi}{30})$.

4/3/22

3. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios en $\mathbb{Q}[X]$ definida por:

$$f_1 := X - 1$$
, $f_2 = 2X^2 - X - 2$ y $f_{n+2} = X f_{n+1} + 2X^2 f_n - 2X + 3$, $\forall n \ge 1$.

Conjeturar y probar fórmulas para el coeficiente principal y el grado de f_n para todo $n \in \mathbb{N}$.

25/2/22

2. Sea $a \in \mathbb{N}$ dado y sea $(x_n)_{n \in \mathbb{N}}$ la sucesión de enteros definida por:

$$x_1 = 2a, x_2 = 9a^2$$
 y $x_{n+2} = a x_{n+1} - x_n^3, \forall n \ge 1.$

- (a) Probar que $a^n | x_n$ para todo $n \in \mathbb{N}$.
- (b) Probar que si $a \neq 1$, para ningún $n \geq 3$ vale que $a^{n+1} \mid x_n$.

18/2/22

3. Sea g un polinomio que satisface que $g(0) \neq 0$ y sea $(f_n)_{n \in \mathbb{N}}$ la sucesión de polinomios definida por:

$$f_1 := X g$$
 y $f_{n+1} = (X f'_n)^n$, $\forall n \in \mathbb{N}$.

Determinar y probar una fórmula para la multiplicidad exacta de 0 como raíz de f_n , para todo $n \in \mathbb{N}$.

22/12/21

Ejercicio 3

Sea $\omega = e^{\frac{\pi}{3}i}$, y sea $(z_n)_{n \in \mathbb{N}}$ la sucesión de números complejos definida por:

$$z_1 = \omega - 1$$
 y $z_{n+1} = \overline{z_n}^{3n+8}$, $\forall n \ge 1$.

Calcular z_n para todo $n \in \mathbb{N}$.

10/12/21

(a) Determinar todos los n ∈ N para los cuales

$$X^{2} + X + 1 | X^{2n} + X^{n} + 1.$$

(b) Calcular el resto de dividir a $X^{6n} + X^{3n} + 1$ por $X^2 + X + 1$.