3 Interpolació i aplicacions

37 Considerem la taula de punts següent:

- a) Trobeu el polinomi d'interpolació de la taula emprant els mètodes de Lagrange i de Newton.
- b) Trobeu el polinomi d'interpolació que resulta en afegir a la taula anterior el valor (5, 17).
- c) Idem si afegim (0, 2.5). Comenteu el resultat obtingut.

38 S'avalua un polinomi $p \in P_2[x]$ en 5 punts equidistants: $x_i = x_0 + ih$, i = 0, 1, 2, 3, 4 $(h \neq 0)$. Els resultats obtinguts són:

Però se sap que s'ha comès un error d'escriptura: una (i només una) de les dades p(x) és incorrecta.

- a) Detecteu la dada incorrecta i corregiu-la.
- b) Si p(x) és el polinomi interpolador en x_0, x_2 i x_4 d'una funció $f : \mathbb{R} \to \mathbb{R}$ infinitament diferenciable tal que $|f^{(k)}(z)| \leq M_k$, $\forall z \in [x_0, x_4]$, $\forall k \geq 0$, trobeu una fita de $|f(\overline{x}) p(\overline{x})|$ en funció de h i d'alguna M_k , on \overline{x} és l'abscissa del mínim de p(x) en $[x_0, x_4]$.
- **39** a) Volem preparar una taula de la funció $f(x) = \ln x$ en punts equidistants de l'interval $x \in [1, 2]$:

$$x_i = 1 + ih$$
, $i = 0, 1, ..., n$; $h = \frac{1}{n}$.

Després s'usarà aquesta taula per a aproximar f(x) mitjançant interpolació lineal: $\forall z \in [1,2]$, una aproximació de f(z) serà $P_1(z)$, on $P_1(x)$ és el polinomi interpolador de f(x) en les dues abscisses de la taula més properes a z.

Quin és el mínim valor de n que ens assegura, per a qualsevol $z \in [1, 2]$, un error en l'aproximació que sigui menor o igual que $\frac{1}{2}10^{-8}$?

- b) Repetiu l'apartat anterior en el cas que la taula sigui de f(x) i de f'(x), i que, en lloc de $P_1(x)$, s'usa $P_3(x)$, el polinomi interpolador d'Hermite en les dues abscisses més pròximes.
- **40** D'una funció $f: \mathbb{R} \to \mathbb{R}$, es coneixen els valors f(0) = 1, f(1) = 3, f(2) = 2 i f'(1) = 1. Sembla que f té un màxim relatiu a prop de x = 1, y = 3. L'objectiu d'aquest problema és calcular-lo aproximadament.
 - a) Calculeu (en la base natural dels polinomis) els coeficients del polinomi p(x) de grau mínim que interpola els quatre valors anteriors.
 - b) Calculeu el màxim relatiu (abscissa i ordenada) del polinomi p(x) que hi ha a l'interval d'abscisses (0,2).

c) Sigui x=z l'abscissa del màxim anterior. Suposant que f és infinitament derivable i que

$$|f^{(k)}(x)| \le 3(k+4) \quad \forall x \in (0,2) \quad \forall k > 0$$

trobeu una fita numèrica de |f(z) - p(z)|.

41 Sigui $f(x) = x^{1/3}$, $\forall x \in \mathbb{R}$. Usant que f(-x) = -f(x) ($\forall x \in \mathbb{R}$), i que f(1/x) = 1/f(x) (si $x \neq 0$), es pot restringir el domini a la semirecta $x \geq 1$.

a) Es disposa d'una taula amb els valors de f(n) en les abscisses enteres n = 1, 2, 3, ..., 1000. Aleshores, quan $z \in (1, 1000)$ no és enter, es pot aproximar f(z) pel valor p(z) del polinomi interpolador de Lagrange en les dues abscisses de la taula més properes a z (observeu que $p(x) \in P_1([x])$).

Trobeu una fita (com més bona millor) de l'error relatiu $\frac{|f(z)-p(z)|}{|f(z)|}$ que depengui només del valor $n \in \mathbb{N}$ tal que $z \in (n, n+1)$.

Nota. La fita ha de ser de la forma C n^e , amb C racional i e enter.

Deduïu després una fita que valgui per a tots els valors de n.

b) És fàcilment comprovable que $f'(n) = \frac{f(n)}{3n}$ ($\forall n = 1, 2, 3, ...$). De manera que, a la taula amb els valors f(n), s'hi pot afegir fàcilment els valors f'(n).

Aleshores, quan z no és enter, podem aproximar f(z) pel valor q(z) del polinomi interpolador d'Hermite de la funció f(x) en els dues abscisses de la taula més pròximes a z (observeu que $q(x) \in P_3([x])$).

Quines són ara unes fites de l'error relatiu?

- **42** Considereu la funció f(x) = 1/x.
 - a) Trobeu els polinomis de Taylor al voltant de $x_0 = 1$ de graus 2, 3 i 4.
- b) Calculeu el polinomi interpolador a f(x) en els nodes $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$.
- c) Avalueu la funció i els polinomis obtinguts en els apartats anteriors en els punts 0.5, 1, 2, 2.25, 2.75, 3, 3.5, 4 i 5. Compareu els resultats.
- d) Considereu els polinomis i els punts de l'apartat anterior. Quines són les fites teòriques de l'error?

Indicació: Apliqueu la fórmula de l'error en la interpolació i la resta de Lagrange per al polinomi de Taylor.

43 Siguin T > 0 fixat, i $f : \mathbb{R} \to \mathbb{R}$ una funció tan diferenciable com calgui que, a més, és T-periòdica: f(x+T) = f(x), $\forall x \in \mathbb{R}$. Llavors només cal considerar-la a l'interval [0,T], per exemple. Notem que f(T) = f(0), i també f'(T) = f'(0).

Calculeu el polinomi p(x), de grau 3 com a màxim, que interpola f i f' en els punts 0 i T. Heu d'escriure'l en la base natural: $p(x) = a + bx + cx^2 + dx^3$, amb coeficients a, b, c i d en funció de f(0), f'(0) i T.

Fiteu l'error f(x) - p(x), a tot l'interval [0, T], tan bé com pugueu, per una constant que només depengui de T i d'una fita d'una derivada adequada de f.

- **44** Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció diferenciable tantes vegades com faci falta.
 - a) Fixem un valor $a \in \mathbb{R}$ qualsevol, i sigui h > 0 un pas de discretització. Deduïu els valors adequats de les constants $A, B, C \in \mathbb{R}$ que donen una fórmula de derivació numèrica de la forma

$$\frac{Af(a) + Bf(a+h) + Cf(a+3h)}{h} = f'(a) + O(h^2).$$

b) Suposem que una taula de valors de f(x) és:

Trobeu aproximacions de f'(0) usant la fórmula de l'apartat a) per a dos valors diferents del pas h. Feu després un pas d'extrapolació per a obtenir una aproximació millor.

- **45** D'una funció $f: \mathbb{R} \to \mathbb{R}$, tan diferenciable amb continuïtat com calgui, es coneixen els valors $f_0 = f(x_0)$, $f_1 = f(x_0 + h)$ i $g_1 = f'(x_0 + h)$, on h > 0. Es vol calcular aproximadament $f'(x_0)$. Siguin $M_j = \max_{x_0 < z < x_0 + h} |f^{(j)}(z)|, \forall j \ge 0$.
 - a) Calculeu el polinomi p(x) que interpola f en x_0 , i f i f' en $x_0 + h$, en funció de f_0 , f_1 , g_1 i h. Doneu també una fita de l'error |f(x) p(x)|, com més bona millor, que valgui per a qualsevol $x \in [x_0, x_0 + h]$, de la forma KM_jh^p , amb constants K, j i p adequades.
 - b) Una aproximació de $f'(x_0)$ és $p'(x_0)$. Escriviu aquesta aproximació en funció de f_0 , f_1 , g_1 i h. Doneu també una expressió de l'error $f'(x_0) p'(x_0)$ de la forma $Kf^{(j)}(\xi)h^p$, amb constants adequades K, j i p.
 - c) Es busca ara una fórmula de derivació numèrica per a aproximar $f'(x_0)$ de la forma

$$F(h) \equiv \frac{Af(x_0) + Bf(x_0 + h)}{h} + Cf'(x_0 + h) = f'(x_0) + a_1h^{p_1} + a_2h^{p_2} + \dots$$

amb h > 0 i exponents $0 < p_1 < p_2 < \dots$ Trobeu els valors de les constants A, B i C per tal que l'ordre p_1 sigui el màxim possible. Doneu també els valors p_i en funció de i, i els valors a_i en funció de derivades adequades de f en x_0 .

- d) Aplicació. D'una determinada funció es coneixen f(0) = 0.2955, f(0.1) = 0.3894, f(0.2) = 0.4794, f'(0.1) = 0.9211 i f'(0.2) = 0.8776. Trobeu una aproximació de f'(0) mitjançant l'aplicació de la fórmula de l'apartat c) amb 2 passos h diferents, i fent després extrapolació.
- **46** Sigui $p_4(x)$ el polinomi d'interpolació de la funció f(x) en els punts a-2h, a-h, a, a+h i a+2h.
 - a) Volem calcular una aproximació del valor de f'(a) a partir de $p'_4(a)$. Es pot demostrar que la fórmula que surt és:

$$f'(a) \simeq F(h) = \frac{1}{12h} \left(f(a-2h) - 8f(a-h) + 8f(a+h) - f(a+2h) \right)$$

b) Trobeu una fórmula de l'error, $f'(a) - p'_4(a)$, si $f \in \mathcal{C}^6$.

c) Demostreu que, si f és prou derivable, es té el desenvolupament asimptòtic (b_i independent d'h)

$$F(h) = f'(a) + b_1 h^4 + b_2 h^6 + b_3 h^8 + \dots$$

Especifiqueu els valors de b_1 i b_2 .

d) Tenim tabulada la funció f i volem aproximar f'(2.5) mitjançant la fórmula F(h). Escriviu la fórmula que surt d'aplicar a F(h) un pas de l'extrapolació de Richardson. Apliqueu-la a calcular f'(2.5), començant amb h = 1/2.

- e) Deduïu la fórmula del primer apartat.
- 47 Es vol trobar una fórmula aproximada per al càlcul de derivades segones de la forma

$$\frac{Af(a) + Bf(a+h)}{h^2} + \frac{Cf'(a) + Df'(a+h)}{h} = f''(a) + Kh^p + O(h^{p+1}).$$

a) Calculeu els coeficients A, B, C i D per tal que l'exponent p > 0 sigui el més gran possible, i doneu el valor de K en funció d'una derivada adequada de f en el punt a.

Nota. Feu algun cas particular per a comprovar els resultats. Per exemple, quan $f(x) = x^2$, a = 1 i h = 1, la fórmula ha de ser exacta.

b) Per a calcular f''(0) apliqueu la fórmula que heu trobat, amb 2 passos h diferents, a les dades

i feu després un pas d'extrapolació (en total, tindreu 3 aproximacions de f''(0)).

48 a) D'una funció $f: \mathbb{R} \to \mathbb{R}$ coneixem tres condicions:

$$f(x_0) = f_0$$
, $f'(x_1) = f'_1$, $f(x_2) = f_2$,

on $x_0 < x_1 < x_2$. Trobeu quina relació hi ha d'haver entre les abscisses x_0 , x_1 i x_2 per tal que existeixi un únic polinomi de $P_2(x)$ que interpoli la funció f segons les tres condicions anteriors.

b) Sigui ara $f: \mathbb{R} \to \mathbb{R}$ verificant

$$f(0) = 3$$
, $f(1) = 3$, $f'(1) = 0$, $f(2) = 9$.

Calculeu una aproximació de $\int_0^2 f(x)dx$ mitjançant $\int_0^2 p(x)dx$, on $p \in P_3(x)$ és el polinomi interpolador d'Hermite de f segons les condicions donades.

MÈTODES NUMÈRICS I

c) Si la funció de l'apartat b) també verifica

$$f \in C^4([0,2])$$
, i $|f^{(4)}(z)| \le 24 \ \forall z \in [0,2]$,

15

trobeu una fita de l'error absolut comès a l'apartat anterior.

49 D'una funció f(x) infinitament diferenciable es coneixen les dades

i també se sap que $|f^{(k)}(x)| \le M_k \ \forall x \in [-1, +1] \ \forall k > 0.$

- a) Sigui $p \in P_4[x]$ el polinomi interpolador de la taula anterior. S'aproxima f'(0) per p'(0). Què dóna?
- b) Doneu una fita de |f'(0) p'(0)| en funció d'alguna M_k .
- c) Doneu una fita de $\int_{-1}^{+1} f(x)dx \int_{-1}^{+1} p(x)dx$ en funció d'alguna M_k .

50 Sigui $f:[0,1]\to\mathbb{R}$ una funció derivable amb continuïtat tantes vegades com calgui, i sigui $M_k=\max_{x\in[0,1]}|f^{(k)}(x)|\ (k=0,1,2,\ldots).$

- a) Calculeu $p \in P_2$ tal que p(0) = f(0), p'(0) = f'(0) i p(1) = f(1).
- b) Doneu una fita numèrica de |f(x) p(x)|, en funció d'alguna M_k , que valgui per a qualsevol $x \in [0, 1]$.
- c) Calculeu els coeficients c_0, c_0' i c_1 per tal que la fórmula d'integració numèrica

$$\int_0^1 f(x)dx \approx c_0 f(0) + c_0' f'(0) + c_1 f(1)$$

sigui exacta quan f sigui un polinomi de grau 2 qualsevol.

- d) Trobeu una fita numèrica de l'error en la fórmula anterior en funció d'alguna M_k .
- **51** (Fórmula dels trapezis corregida) Sigui $f: \mathbb{R} \to \mathbb{R}$ una funció derivable amb continuïtat tantes vegades com calgui. Volem una fórmula d'integració numèrica de la forma

$$\int_0^h f(x)dx \approx h(af(0) + bf(h)) + h^2(cf'(0) + df'(h)),$$

on $a, b, c, d \in \mathbb{R}$ són constants independents de la funció f(x).

- a) Deduïu els coeficients a, b, c i d que s'obtenen si l'aproximació consisteix a canviar l'integrand f(x) pel polinomi $p(x) \in P_3[x]$ que interpola f(x) i f'(x) en els punts 0 i h. Nota: Us han de donar constants tals que a = b i d = -c.
- b) Per a la fórmula d'integració numèrica trobada, deduïu una fita de l'error que depengui d'una derivada de la funció f en un punt $\xi \in [0, h]$ i d'una potència de h.

- c) Escriviu la fórmula composta que s'obté per a calcular $\int_0^1 f(x) dx$, si dividim [0,1] en n subintervals iguals de longitud h=1/n i, en cadascun, apliquem la fórmula anterior. Determineu també una expressió de l'error.
- **52** Siguin $a, b \in \mathbb{R}$, $a < b, n \in \mathbb{Z}$, n > 1, h = (b a)/n, $x_i = a + ih$ $\forall i = 0, 1, ..., n$. Per a cada interval $[x_i, x_{i+1}]$, es defineixen els punts mitjos $x_{i+1/2} = (x_i + x_{i+1})/2$.
 - a) (Regla del punt mig) Calculeu els coeficients de la fórmula d'integració numèrica

$$\int_{x_i}^{x_{i+1}} f(x)dx \approx h(Af(x_{i+1/2}) + Bf'(x_{i+1/2}))$$

que s'obté quan se substitueix la funció integrand f(x) pel polinomi interpolador d'Hermite, $p \in P_1$, en el punt $x_{i+1/2}$ (o sigui, p interpola la funció f i la derivada f' en el punt $x_{i+1/2}$).

b) Demostreu que, si la funció f(x) és de classe C^2 , llavors l'error en l'aproximació anterior és

$$\frac{f''(\zeta_i)}{24}h^3$$
, $\zeta_i \in [x_i, x_{i+1}]$.

- c) Troba la fórmula d'integració composta corresponent al mètode anterior, així com una expressió de l'error que depengui directament de h^2 . Quin desavantatge té aquest mètode respecte al de trapezis, quan l'apliquem recurrentment, anant doblant el valor de n cada vegada.
- **53** Sigui $f \in C^8([a,b])$ una funció tal que $|f^{(k)}(z)| \le M_k$, $\forall z \in [a,b]$, per a $1 \le k \le 8$. Sigui n = 4, i considerem les abscisses equiespaiades a l'interval [a,b], $x_k = a + kh$, $k = 0, \ldots, n$.
 - a) Calculeu el polinomi interpolador de f en les abscisses x_0, x_2 i x_4 . Avalueu-lo en el punt x_1 i doneu una fita de l'error en x_1 . Doneu els resultats en funció de h.
 - b) Volem calcular una aproximació de la integral $\int_a^b f(x) dx$. Per això calculem p(x), el polinomi interpolador de f en les abscisses x_1, x_2 i x_3 usant el mètode de Lagrange, i aproximem el valor de la integral de f pel de la integral del polinomi. Obtenim la fórmula (on $f_i = f(x_i)$):

$$\int_{a}^{b} f(x) \ dx \simeq h \left[A f_{1} + B f_{2} + C f_{3} \right]$$

Calculeu els pesos A, B i C.

De la funció f coneixem la següent taula de valors:

\boldsymbol{x}	0	0.125	0.250	0.375	0.500	0.625
f(x)	1.00000	0.984496	0.939413	0.868815	0.778801	0.676634
x	0.750	0.875	1.00			
f(x)	0.569783	0.465043	0.367879	_		

Calculeu una aproximació de la integral $\int_0^1 f(x) dx$

- c) usant el mètode de l'apartat anterior,
- d) usant la fórmula de Simpson simple i la composta amb dos intervals.

Doneu els resultats amb 6 dígits significatius.