НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МЭИ"

Теоретические модели вычисления

ДЗ №3: Машины Тьюринга и квантовые вычисления

Студент: Николаев Ю. С. GitHub: @nikolaevje

Содержание

1	Машины Тьюринга	4
	1.1 Операции с числами	4
	1.2 Операции с языками и символами	,
2	Квантовые вычисления	4
	2.1 Генерация суперпозиций 1 (1 балл)	2

1 Машины Тьюринга

1.1 Операции с числами

Реализуйте машины Тьюринга, которые позволяют выполнять следующие операции:

1. Сложение двух унарных чисел (1 балла) $[1_1_1.yml]$

2. Умножение унарных чисел (1 балл) [1_1_2.yml]

1.2 Операции с языками и символами

Реализуйте машины Тьюринга, которые позволяют выполнять следующие операции:

1. Принадлежность к языку $L = \{0^n 1^n 2^n\}, n \geq 0 \; (0.5 \; \text{балла}) \; [1_2_1.yml]$

2. Проверка соблюдения правильности скобок в строке (минимум 3 вида скобок) (0.5 балла) $[1_2_2.yml]$

3. Поиск минимального по длине слова в строке (слова состоят из символов 1 и 0 и разделены пробелом) (1 балл)

Это я не сделал, зато здесь будет котик

2 Квантовые вычисления

В качестве решения задачи надо предоставить схему алгоритма для частного случая при фиксированном количестве кубитов и фиксированных состояниях.

2.1 Генерация суперпозиций 1 (1 балл)

Дано N кубитов $(1 \le N \le 8)$ в нулевом состоянии $0 \dots 0$. Также дана некоторая последовательность битов, которое задаёт ненулевое базисное состояние размера N. Задача получить суперпозицию нулевого состояния и заданного.

$$S = \frac{1}{\sqrt{2}}(0\dots 0 + \psi)$$

То есть требуется реализовать операцию, которая принимает на вход:

- 1. Массив кубитов q_s
- 2. Массив битов bits описывающих некоторое состояние ψ . Это массив имеет тот же самый размер, что и qs. Первый элемент этого массива равен 1.

Первые кубиты 1 и 0 - различны, применяем гейт Адамара. А дальше, если bits[i] == 1, то спутываем i-ый кубит с первым с помощью CNOT.

Например, $N=3,\,bits=[1,1,1]$: Тогда:

А дальше я не делал, зато выспался!

