Cálculo en paralelo de la homología cúbica con gridMathematica

Jónathan Heras, Luis Javier Hernández, María Teresa Rivas, Julio Rubio, Eduardo Sáenz de Cabezón

> Departamento de Matemáticas y Computación Universidad de La Rioja Spain

III Congreso Mathematica en España

Índice

- 1 Homología cúbica
- 2 Algoritmos de cálculo de la homología cúbica
- 3 El entorno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- 5 Resultados experimentales
- Trabajo Adicional
- Conclusiones y Trabajo Futuro

Índice

- 1 Homología cúbica
- 2 Algorithmos de jálculo de la homología cúbica
- 3 Elemeno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- Resultados experimentales
- Trabajo Adiciona
- Conclusiones y Trabajo Futuro

Intervalo elemental:

$$I = [k, k+1]$$
 $I = [k, k]$ $k \in \mathbb{Z}$

Intervalo elemental:

$$I = [k, k+1]$$
 $I = [k, k]$ $k \in \mathbb{Z}$

Cubo elemental:

$$Q=I_1\times\ldots\times I_n$$

Intervalo elemental:

$$I = [k, k+1]$$
 $I = [k, k]$ $k \in \mathbb{Z}$

Cubo elemental:

$$Q = I_1 \times \ldots \times I_n$$

Complejo Cúbico:

Intervalo elemental:

$$I = [k, k+1]$$
 $I = [k, k]$ $k \in \mathbb{Z}$

Cubo elemental:

$$Q = I_1 \times \ldots \times I_n$$

Complejo Cúbico:

Dada la aplicación borde:

$$\partial_k: C_k \to C_{k-1}$$

Calculamos su matriz de incidencia Cálculo de homología:

Basado en diagonalización de matrices

Intervalo elemental:

$$I = [k, k+1]$$
 $I = [k, k]$ $k \in \mathbb{Z}$

Cubo elemental:

$$Q = I_1 \times \ldots \times I_n$$

Complejo Cúbico:

Dada la aplicación borde:

$$\partial_{\nu}: C_{\nu} \rightarrow C_{\nu-1}$$

Calculamos su matriz de incidencia Cálculo de homología:

Basado en diagonalización de matrices

Ejemplo:

Matriz Incidencia:

Intervalo elemental:

$$I = [k, k+1]$$
 $I = [k, k]$ $k \in \mathbb{Z}$

Cubo elemental:

$$Q = I_1 \times \ldots \times I_n$$

Complejo Cúbico:

Dada la aplicación borde:

$$\partial_k : C_k \to C_{k-1}$$

Calculamos su matriz de incidencia Cálculo de homología:

Basado en diagonalización de matrices

Ejemplo:

Matriz Incidencia:

Utilidad:

Minería de Datos

Índice

- Homo mía cúm
- 2 Algoritmos de cálculo de la homología cúbica
- 3 Elemento de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- 5 Resultados experimentales
- Trabajo Adicional
- Conclusiones y Trabajo Futuro

Algoritmos de cálculo de la homología cúbica

Algoritmos básicos:

- RowExchange
- RowAdd
- RowMultiply

- ColumnExchange
- ColumnAdd
- ColumnMultiply

Algoritmos de cálculo de la homología cúbica

Algoritmos básicos:

- RowExchange
- RowAdd
- RowMultiply
 Algoritmos Importantes:
 - RowEchelon
 - Kernel-Image
 - SmithForm
 - Solve

- ColumnExchange
- ColumnAdd
- ColumnMultiply

RowEchelon

RowEchelon:

Calcula la forma escalada por filas de la matriz dada

- Matriz triangular superior
- Dadas dos filas consecutivas r_i y r_{i+1} :
 - Si $r_{i+1} \neq 0 \Rightarrow r_i \neq 0$
 - Posición pivote $r_{i+1} > Posición pivote <math>r_i$

RowEchelon

RowEchelon:

Calcula la forma escalada por filas de la matriz dada

- Matriz triangular superior
- Dadas dos filas consecutivas r_i y r_{i+1}:
 - Si $r_{i+1} \neq 0 \Rightarrow r_i \neq 0$
 - Posición pivote $r_{i+1} > Posición pivote <math>r_i$

Ejemplo:

$$A = \left(\begin{array}{cccc} 3 & 2 & 1 & 4 \\ 2 & 3 & 1 & -1 \\ 4 & 4 & -2 & -2 \end{array}\right) \Rightarrow \left(\begin{array}{ccccc} 1 & -1 & 0 & 5 \\ 0 & -1 & -11 & -11 \\ 0 & 0 & 18 & 22 \end{array}\right)$$

Kernel-Image

Kernel-Image:

Dada una matriz A calcula:

- Una base del Kernel de A
- Una base de la Imagen de A

Kernel-Image

Kernel-Image:

Dada una matriz A calcula:

- Una base del Kernel de A
- Una base de la Imagen de A

Ejemplo:

$$A = \left(\begin{array}{ccc} 0 & 2 & 2 \\ 1 & 0 & -1 \\ 3 & 4 & 1 \\ 5 & 3 & -2 \end{array}\right)$$

Kernel: $\{\{1\}, \{-1\}, \{1\}\}$ Image: $\{\{2,0\}, \{0,1\}, \{4,3\}, \{3,5\}\}$

SmithForm

SmithForm:

Dada una matriz A calcula:

Matriz diagonal de la forma

$$\begin{pmatrix}
B[1,1] & 0 & & & & \\
& \ddots & & & 0 & \\
0 & B[k,k] & & & \\
\hline
0 & B[k+1:m,k+1:n]
\end{pmatrix}$$

SmithForm

SmithForm:

Dada una matriz A calcula:

Matriz diagonal de la forma

Ejemplo:

$$A = \left(\begin{array}{ccc} 3 & 2 & 3 \\ 0 & 2 & 0 \\ 2 & 2 & 2 \end{array}\right) \Rightarrow \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Solve

Solve:

Resuelve sistemas de ecuaciones:

- Componentes enteras
- Solución enteros

Solve

Solve:

Resuelve sistemas de ecuaciones:

- Componentes enteras
- Solución enteros

Ejemplo:

$$\begin{cases} x + y + z = 6 \\ x + 2y + 3z = 14 \\ x + z = 4 \end{cases} \Rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 6 \\ 14 \\ 4 \end{pmatrix}$$

Solución: $\{1, 2, 3\}$

Índice

- 1 Homología cúm
- 2) Algorithios de jélculo de la homología cúbica
- 3 El entorno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- Resultados experimentales
- Trabajo Adicional
- Conclusiones y Trabajo Futuro

El entorno de trabajo

Nuestro Grid:

El entorno de trabajo

Programas desarrollo:

- Mathematica v6.0
- gridMathematica v2.0
 - Linux
 - Mathematica v5.2
- Wolfram Workbench v1.1

Programas adicionales:

- Cygwin
- SSH Client

Índice

- 1 Homología cúm
- 2 algornarios de álculo de la homología cúbica
- 3 Elemeno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- Resultados experimentales
- 6 Trabajo Adicional
- Conclusiones y Trabajo Futuro

Aproximaciones para paralelizar el algoritmo

Ideas Fundamentales:

- Ejecución simultanea en vez de ejecución secuencial
- Independencia

Aproximaciones para paralelizar el algoritmo

Ideas Fundamentales:

- Ejecución simultanea en vez de ejecución secuencial
- Independencia

Formas de Paralelizar:

- ParallelEvaluate
- Paralelización a bajo nivel
- MinNonZero
- MejorandoSmith
- Smith en listas

Paralelización a bajo nivel

En Local:

$$\begin{pmatrix} 1 & 2 & 3 \\ -3 & -4 & 10 \\ 12 & -4 & -8 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & (fin \ 1) \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & &$$

Paralelización a bajo nivel

En Local:

$$\begin{pmatrix} 1 & 2 & 3 \\ -3 & -4 & 10 \\ 12 & -4 & -8 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \downarrow 2 & (fin \ 1) \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \swarrow 3 & (fin \ 2) \end{pmatrix}$$

En Paralelo:

$$\begin{pmatrix} 1 & 2 & 3 \\ -3 & -4 & 10 \\ 12 & -4 & -8 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Resultado

MinNonZero

$$A = \left(\begin{array}{cccc} 8 & 7 & 3 & 6 \\ -3 & -4 & 10 & -2 \\ 12 & -4 & -8 & 9 \\ -4 & 11 & 5 & 3 \end{array}\right)$$

MinNonZero

$$A = \left(\begin{array}{cccc} 8 & 7 & 3 & 6 \\ -3 & -4 & 10 & -2 \\ 12 & -4 & -8 & 9 \\ -4 & 11 & 5 & 3 \end{array}\right)$$

Distribuimos las filas:

MinNonZero

$$A = \left(\begin{array}{ccccc} 8 & 7 & 3 & 6 \\ -3 & -4 & 10 & -2 \\ 12 & -4 & -8 & 9 \\ -4 & 11 & 5 & 3 \end{array}\right)$$

Distribuimos las filas:

Obtenemos (3 - 2 - 4 3)

$$A = \left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ 3 & 4 & 24 & -2 \\ 2 & 4 & 8 & 9 \\ -4 & 2 & 1 & 3 \end{array}\right)$$

$$A = \begin{pmatrix} 1 & 7 & 8 & 6 \\ 3 & 4 & 24 & -2 \\ 2 & 4 & 8 & 9 \\ -4 & 2 & 1 & 3 \end{pmatrix} \xrightarrow{PartSmithForm} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -17 & 0 & -20 \\ 0 & -10 & -8 & -3 \\ 0 & 30 & 33 & 27 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 7 & 8 & 6 \\ 3 & 4 & 24 & -2 \\ 2 & 4 & 8 & 9 \\ -4 & 2 & 1 & 3 \end{pmatrix} \xrightarrow{PartSmithForm} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -17 & 0 & -20 \\ 0 & -10 & -8 & -3 \\ 0 & 30 & 33 & 27 \end{pmatrix}$$

La matriz se divide en

$$\left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ 3 & 4 & 24 & -2 \end{array}\right) \qquad \left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ 2 & 4 & 8 & 9 \end{array}\right) \qquad \left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ -4 & 2 & 1 & 3 \end{array}\right)$$

$$A = \begin{pmatrix} 1 & 7 & 8 & 6 \\ 3 & 4 & 24 & -2 \\ 2 & 4 & 8 & 9 \\ -4 & 2 & 1 & 3 \end{pmatrix} \xrightarrow{PartSmithForm} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -17 & 0 & -20 \\ 0 & -10 & -8 & -3 \\ 0 & 30 & 33 & 27 \end{pmatrix}$$

La matriz se divide en

$$\left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ 3 & 4 & 24 & -2 \end{array}\right) \qquad \left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ 2 & 4 & 8 & 9 \end{array}\right) \qquad \left(\begin{array}{cccc} 1 & 7 & 8 & 6 \\ -4 & 2 & 1 & 3 \end{array}\right)$$

De cada una obtenemos

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -17 & 0 & -20 \end{array}\right) \ \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -10 & -8 & -3 \end{array}\right) \ \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 30 & 33 & 27 \end{array}\right)$$

Smith en Listas

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

Local Lista de matrices:

$$A_1 \mid A_2 \mid \cdots \mid A_k$$

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

Local

Lista de matrices:

La dividimos en:

$$A_1 \mid A_3 \mid \cdots \mid A_{2k+1}$$

$$A_2 \mid A_4 \mid \cdots \mid A_{2k}$$

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

Local

Lista de matrices:

$$A_1 \mid A_2 \mid \cdots \mid A_k$$

La dividimos en:

Cálculo SmithForm secuencial

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

Local

Lista de matrices:

 $A_1 \mid A_2 \mid \cdots \mid A_k$

Paralelo:

Lista de matrices:

La dividimos en:

Cálculo SmithForm secuencial

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

Local

Lista de matrices:

La dividimos en:

Cálculo SmithForm secuencial

Paralelo:

Lista de matrices:

La dividimos en

$$C_k(X) \xrightarrow{\partial_k} C_{k-1}(X) \xrightarrow{\partial_{k-1}} \ldots \to C_1(X) \xrightarrow{\partial_1} C_0(X) \to 0.$$

Local

Lista de matrices:

La dividimos en:

Cálculo SmithForm secuencial

Paralelo:

Lista de matrices:

La dividimos en

Cálculo SmithForm se distribuye por el grid

Índice

- 1 Homología cúm
- 2 Algorithmos de jálculo de la homología cúbica
- 3 Elemeno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- 5 Resultados experimentales
- Trabajo Adicional
- Conclusiones y Trabajo Futuro

Resultados experimentales: ParallelEvaluate

matriz algoritmo	5 × 5	10 × 10	15 × 15	30 × 30	50 × 50
SmithForm con 6	0,3568	3,4022	11,2505	146,0604	358,3147
SmithForm con 4	0,4854	3,3742	11,6476	190,4567	597,1856
SmithForm con 2	0,4170	2,9982	11,0818	195,7012	698,5674
SmithForm local	0,1715	0,8581	2,8241	29,3964	228,3113

Tabla: ParallelEvaluate aplicado a SmithForm

Empeora mas de un 50 %

Resultados experimentales: Paralelización a bajo nivel

Wersión matriz	5 × 5	10 × 10	15 × 15	30 × 30	50 × 50
Versión Original	1,6006	5,3456	17,7105	240,4157	531,4841
Versión Paralelo	1,1600	4,3157	13,5878	180,2474	451,4861

Tabla: Send-Receive en SmithForm

Mejora aproximadamente un 30 %

Resultados experimentales: MinNonZero

matriz Ejecución	10 × 10	25 × 25	50 × 50	100 × 100	200 × 200
Local	0,0116	0,0525	0,1460	0,4849	1,7776
Paralelo	0,0204	0,0682	0,2586	1,4369	12,8041

Tabla: Resultados Paralelizando MinNonZero

Empeora mas de un 70 %

Resultados experimentales: Mejorando Smith

matriz modo	5×5	10×10	15×15	20×20	30×30	50×50
Local	0,186	0,940	2,509	5,142	21,49	107,44
Paralelo	0,306	0,973	1,959	3,799	18,24	89,45

Tabla: SmithParalelo vs Smith

En matrices pequeñas: empeora 20 %

En matrices grandes: mejora 30 %

Resultados experimentales: Smith en listas

matriz Ejecución	5 × 5	10 × 10	15 × 15	30 × 30	50 × 50
Local	0,8481	4,5626	14,9649	110,3033	*
Paralelo	0,1743	0,7611	2,3116	35,5071	212,1252

Tabla: Smith en listas de tamaño 5

	matriz Ejecución	5 × 5	10 × 10	15 × 15	30 × 30
	Local	1,803	7,799	23,261	193,3125
ſ	Paralelo	1,4549	4,4061	8,6070	78,7754

Tabla: Smith en listas de tamaño 10

matriz Ejecución	5 × 5	10 × 10	15 × 15	30 × 30
Local	3,9532	18,2269	50,8457	318,8695
Paralelo	2,4304	12,8908	34,8918	247,6956

Tabla: Smith en listas de tamaño 15

Mejora 40-80 %

Índice

- 1 Homo ía cú
- 2 Algorithmos de álculo de la homología cúbica
- 3 Elemeno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- Resultados experimentales
- Trabajo Adicional
- Conclusiones y Trabajo Futuro

Trabajo Adicional: GUIKit

GUIKit:

¿Qué es?

Paquete para crear interfaces gráficas con Mathematica

¿Para qué?

Construir pequeña interfaz

¿Por qué?

• Evita utilizar J/Link

Trabajo Adicional: GUIKit

GUIKit:

¿Qué es?

Paquete para crear interfaces gráficas con Mathematica

¿Para qué?

Construir pequeña interfaz

¿Por qué?

Evita utilizar J/Link

Nuestra Interfaz:

¿Qué es?

• Interfaz gráfica con funciones más relevantes

¿Por qué?

- Transparencia
- Desarrollo de algo gráfico

Índice

- 1 Homología cúm
- 2 Algorithmos de álculo de la homología cúbica
- 3 Elemeno de trabajo
- 4 Aproximaciones para paralelizar el algoritmo
- Resultados experimentales
- 6 Trabajo Adicional
- Conclusiones y Trabajo Futuro

Conclusiones y Trabajo Futuro

Conclusiones:

Paralelizar:

- Potente herramienta
- No siempre positiva

Trabajo Futuro:

- Tecnología Wolfram: webMathematica, J/Link
- Matrices dispersas
- Nuevas formas de paralelizar
- Colapsos

Cálculo en paralelo de la homología cúbica con gridMathematica

Jónathan Heras, Luis Javier Hernández, María Teresa Rivas, Julio Rubio, Eduardo Sáenz de Cabezón

> Departamento de Matemáticas y Computación Universidad de La Rioja Spain

III Congreso Mathematica en España

