Avaliação de Álgebra Linear

Prof. José Claudinei Ferreira - 14/11/2024

Nome e matrícula:

Leia atentamente cada item antes de começar a resolver. É preciso colocar detalhes que expliquem matematicamente sua resposta. Cada item correto vale 1.5 pontos.

$$\textbf{Problema: Sejam } \mathcal{A} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} = \{v_1, \, v_2, \, v_3\}, \, k = \begin{bmatrix} 4 \\ 0 \\ 1 \\ 2 \end{bmatrix} \text{ e } T : \mathbb{R}^3 \to \mathbb{R}^4 \text{ a transformation}$$

mação linear definida como

$$T(u) = xv_1 + yv_2 + zv_3 = egin{bmatrix} 1 & 1 & 1 \ -1 & 1 & 1 \ 0 & -1 & 1 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} x \ y \ z \end{bmatrix}, \qquad u = egin{bmatrix} x \ y \ z \end{bmatrix},$$

e seja $T^*: \mathbb{R}^4 \to \mathbb{R}^3$ a transformação linear dada por Jevanaposta

$$T^*(v) = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} q \\ r \\ s \\ t \end{bmatrix}, \qquad v = \begin{bmatrix} q \\ r \\ s \\ t \end{bmatrix}.$$

a) Determine os subespaços vetoriais $U = T(\mathbb{R}^3)$, a imagem de T, e W, o núcleo de T^* .

Determine quatro elementos em $a_i \in U$ e cinco elementos $b_j \in W$ e verifique que o produto interno $\langle a_i, b_j \rangle = a_i \cdot b_j = 0$; ou seja, o núcleo de T^* é ortogonal à imagem de T.

Verifique também que $U+W=\{u+w, \mid u\in U, w\in W\}=\mathbb{R}^4$ e $U\cap W=\emptyset$.

b) Determine

$$k_1 = Proj_W k,$$

calcule $k_2 = k - k_1$ e verifique que $k_1 \perp k_2$;

- c) Verifique que T(u)=k não tem solução, ou seja $k\not\in U$. Resolva a equação $T(u)=k_2$, por eliminação ou escalonamento.
- d) Determine uma base ortogonal \mathcal{B} para U, tal que a matriz de mudança da base \mathcal{A} para a base \mathcal{B} seja triangular. Determine essa matriz.

Mantenha a calma e boa provi