上节课回顾

LeNet

AlexNet

• ZF-Net

• VGG-Net

1. LeNet-5

http://scs.ryerson.ca/~aharley/vis/conv/

输入尺寸: 32*32

卷积层: 2个

下采样层: 2个

全连接层: 2个

输出: 10个类别(数字0-9的概率)

2. AlexNet

AlexNet架构

AlexNet由Alex Krizhevsky于2012年提出,夺得2012年ILSVRC比赛的冠军,top5预测的错误率为16.4%,远超第一名。AlexNet采用8层的神经网络,5个卷积层和3个全连接层(3个卷积层后面加了最大池化层),6000万个参数和65万个神经元。

3. Zeiler&Fergus Net

Zeiler&Fergus Net

ZF-Net 可视化

https://github.com/vdumoulin/conv_arithmetic

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

4. VGGNet

VGGNet一共有六种不同的网络结构,但是每种结构都有含有5组卷积,每组卷积都使用3 x 3 的卷积核,每组卷积后进行一个2 x 2 最大池化,接下来是三个全连接层。

4. VGGNet

TOTAL params: 138M parameters

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,450
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

		AGATO	VOOTS				
s)							
	onfiguration						
В	С	D	Е				
13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers				
put $(224 \times 2$	24 RGB image	e)					
conv3-64	conv3-64	conv3-64	conv3-64				
conv3-64	conv3-64	conv3-64	conv3-64				
max	pool						
conv3-128	conv3-128	conv3-128	conv3-128				
conv3-128	conv3-128	conv3-128	conv3-128				
	pool						
conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256				
	conv1-256	conv3-256	conv3-256				
			conv3-256				
	pool						
conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512				
	conv1-512	conv3-512	conv3-512				
			conv3-512				
	pool						
conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512				
	conv1-512	conv3-512	conv3-512				
			conv3-512				
maxpool							
	FC-4096						
FC-4096							
FC-1000							
soft-max							

VGG16 VGG19

GoogLeNet(也称Inception)是2014年Christian Szegedy提出的一种全新的深度学习结构,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfitting、梯度消失、梯度爆炸等。Inception的提出则从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而提升训练结果。

那么,GoogLeNet是如何进一步提升性能的呢?

- 一般来说,提升网络性能最直接的办法就是增加网络深度和宽度,深度指网络层次数量、宽度指神经元数量。但这种方式存在以下问题:
 - (1)参数太多,如果训练数据集有限,很容易产生过拟合;
 - (2) 网络越大、参数越多, 计算复杂度越大, 难以应用;
 - (3) 网络越深,容易出现梯度消失问题,难以优化模型。

因此,GoogLeNet团队提出了Inception网络结构,就是构造一种"基础神经元"结构,来搭建一个稀疏性、高计算性能的网络结构。

Inception降维模块

Filter Concatenation操作

1*1卷积核的降维(运算量)作用

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

网络的详细参数

在深度重要性的推动下,出现了一个问题:学习更好的网络是否像堆叠更多的层一样容易?

这个问题的本质就是是否网络性能的增加只需要增加网络的深度(层数)?

20层和56层的"简单"网络在CIFAR-10上的训练误差(上)和测试误差(下)。更深的网络有更高的训练误差和测试误差。ImageNet有类似的情况。

当更深的网络能够开始收敛时, 暴露了一个退化问题:随着网络 深度的增加,准确率达到饱和然 后迅速下降。

为了解决这个问题,深度残差网络ResNet被提出来。

其中ResNet提出了两种mapping: 一种 是identity mapping,指的就是图中" 曲线",另一种residual mapping,指 的就是除了"曲线"那部分,所以最 后的输出是 $\mathcal{H}(x) = \mathcal{F}(x) + x$ 。 identity mapping顾名思义,就是指本 身,也就是公式中的x,而residual mapping 指的是"差",也就是 $\mathcal{H}(x) - x$,所以残差指的就是 $\mathcal{F}(x)$ 部 分。

基本的残差学习模块

shortcut connection

基本的残差学习模块

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
		3×3 max pool, stride 2				
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
	1×1	average pool, 1000-d fc, softmax				
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10 ⁹

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

在ImageNet上训练。细曲线表示训练误差,粗曲线表示中心裁剪图像的验证误差。左: 18层和34层的简单网络。右: 18层和34层的ResNet。在本图中,残差网络与对应的简单网络相比没有额外的参数。

参考资料

• 1. Stanford CS231n, 2016, 2017

• 2. Andrew Ng 机器学习与深度学习课程