Complexity, Combinatorial Positivity, and Newton Polytopes

Alexander Yong University of Illinois at Urbana-Champaign

Joint work with:

Anshul Adve (University of California at Los Angeles)
Colleen Robichaux (University of Illinois at Urbana-Champaign)

Computational Complexity Theory

Poorly understood issue: Why are do some decision problems have fast algorithms and others seem to need costly search?

Some complexity classes:

- ▶ NP: LP $(\exists x \ge 0, Ax=b?)$
- coNP: Primes
- ▶ P: LP and Primes!
- ► NP-complete: Graph coloring

Famous theoretical computer science problems:

- \triangleright P $\stackrel{?}{=}$ NP
- ► NP $\stackrel{?}{=}$ coNP
- ► NP \cap coNP $\stackrel{?}{=}$ P

Polynomials

In algebraic combinatorics and combinatorial representation theory we often study:

$$F_{\diamond} = \sum_{\alpha} c_{\alpha,\diamond} x^{\alpha} = \sum_{s \in S} \mathsf{wt}(s) \in \mathbb{Z}[x_1, \dots, x_n]$$

Example 1: $\diamond = \lambda \implies F_{\diamond} = s_{\lambda}$ (Schur), $c_{\alpha,G} =$ Kostka coeff.

Example 2: $\diamond = G = (V, E) \implies F_{\diamond} = \chi_G$ (Stanley's chromatic symmetric polynomial), $c_{\alpha,G} = \#$ proper colorings of G with α_i -many colors i

Example 3: $\diamond = w \in S_{\infty} \implies F_{\diamond} = \mathfrak{S}_{w}$ (Schubert polynomial). More later.

Nonvanishing

Nonvanishing: What is the complexity of deciding $\underline{c_{\alpha,\diamond} \neq 0}$ as measured in the length of the input (α,\diamond) assuming arithmetic takes constant time?

- In general <u>undecidable</u>: Gödel incompleteness '31, Turing's halting problem '36.
- Our cases of interest have combinatorial positivity: \exists rule for $c_{\alpha,\diamond} \in \mathbb{Z}_{\geq 0} \Longrightarrow \overline{\mathsf{Nonvanishing}(F_{\diamond})} \in \mathsf{NP}.$

Newton polytopes

Evidently, nonvanishing concerns the Newton polytope,

$$\mathsf{Newton}(F_{\diamond}) = \mathsf{conv}\{\alpha : c_{\alpha,\diamond} \neq 0\} \subseteq \mathbb{R}^n.$$

- Monical-Tokcan-Y. '17: F_{\diamond} has saturated Newton polytope (SNP) if $\beta \in \text{Newton}(F_{\diamond}) \iff c_{\beta,\diamond} \neq 0$
- Many polynomials have this property.

Importance of SNP property:

Observation 1: SNP \Rightarrow nonvanishing(F_{\diamond}) is equivalent to checking membership of a lattice point in Newton(F_{\diamond}).

Observation 1': SNP + "efficient" halfspace description of $Newton(F_{\diamond}) \implies nonvanishing(F_{\diamond}) \in coNP$.

∴ in many cases nonvanishing $(F_{\diamond}) \in NP \cap coNP$.

Nonvanishing and NP

Example 1': s_{λ} has SNP. Newton $(s_{\lambda}) = \mathcal{P}_{\lambda}$ (the permutahedron). Nonvanishing $(s_{\lambda}) \in P$ by dominance order (Rado's theorem).

Example 2': χ_G does not have SNP.

 $\mathsf{coloring} \in \mathsf{NP}\mathsf{-}\mathsf{complete} \implies \mathsf{Nonvanishing}(\chi_{\mathcal{G}}) \in \mathsf{NP}\mathsf{-}\mathsf{complete}.$

 \therefore nonvanishing hits the extremes of NP.

Question: What about the nonextremes?

- Many problems suspected of being NP-intermediate: e.g., graph isomorphism, factorization
- ▶ Ladner's theorem: $P \neq NP \implies NP$ intermediate $\neq \emptyset$
- ▶ NP \cap coNP is important to this discussion:

$$coNP \cap NP - complete \neq \emptyset \implies NP = coNP!$$

- ▶ This is why factorization is <u>not</u> expected to be NP-complete.
- ► Most public key cryptography relies on $NP \cap coNP \neq P$.

Possible application of algebraic combinatorics to TCS?

Conjecture 1: [Stanley '95] If G is claw-free (i.e., it contains no induced $K_{1,3}$ subgraph), then χ_G is Schur positive.

Conjecture 2: [C. Monical '18] If χ_G is Schur positive, then it is SNP.

Conjecture 1+2: If G is claw-free then χ_G is SNP.

Theorem: (Holyer '81) Coloring of claw-free G is NP-complete.

 $\textbf{Corollary:} \ \ \mathsf{nonvanishing}(\chi_{\mathsf{claw-free}\, G}) \in \mathsf{NP\text{-}complete}.$

... Conjecture 1+2 and a halfspace description of

 $Newton(\chi_{clawfree}G) \implies NP = coNP$

Suggests a new complexity-theoretic rationale for the study of $\chi_{\mbox{\scriptsize G}}.$

An algebraic combinatorics paradigm for complexity

In many cases of algebraic combinatorics, $\{F_{\diamond}\}$ has combinatorial positivity and SNP. If one also has an efficient halfspace description of Newton (F_{\diamond}) , then nonvanishing $(F_{\diamond}) \in \mathsf{NP} \cap \overline{\mathsf{coNP}}$.

Four possible outcomes of such a study:

- (I) **Unknown**: it is an open problem to find additional problems that are in $NP \cap coNP$ that are not *known* to be in P.
- (II) **P**: Give an algorithm. It will likely illuminate some special structure, of independent combinatorial interest.
- (III) **NP-complete**: proof solves $NP \stackrel{?}{=} coNP$ with "=".
- (IV) **NP-intermediate**: proof solves NP-intermediate $\stackrel{?}{=} \emptyset$ with " \neq ", i.e., P \neq NP.

Next: do this for Schubert polynomials (outcomes (I) and (II)).

Schubert polynomials

B acts on GL_n/B with *finitely many orbits*, the Schubert cells, whose closures X_w , $w \in S_n$ are the **Schubert varieties**.

Lascoux and Schützenberger's (1982) main idea in $\underline{\text{type }A}$ (after Bernstein-Gelfand-Gelfand):

- ▶ Pick $\mathfrak{S}_{w_0} = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}$ as an especially nice representative of the class of a point
- Apply Newton's divided difference operator

$$\partial_i f = \frac{f - f^{s_i}}{x_i - x_{i+1}},$$

to recursively define all other \mathfrak{S}_w using weak Bruhat order. This starts the theory of *Schubert polynomials*.

Complexity results

There are many combinatorial rules that establish that $c_{\alpha,w} \in \mathbb{Z}_{\geq 0}$.

However, none of these prove nonvanishing $(\mathfrak{S}_w) \in P$ since they involve exponential search.

Theorem A: (Adve-Robichaux-Y. '18) $c_{\alpha,w}$ is #P-complete.

 \therefore no polynomial time algorithm to compute $c_{\alpha,w}$ exists unless $\mathsf{P} = \mathsf{NP}.$

Counting is hard, nonvanishing is easy:

Theorem B: (Adve-Robichaux-Y. '18) nonvanishing $(\mathfrak{S}_w) \in P$

Analogy: Computing the permanent of a 0,1-matrix is #P-complete but nonzeroness is easy (Edmonds-Karp matching algorithm).

A tableau rule for nonvanishing

Fillings of the Rothe diagram of 31524:

Theorem C: (Adve-Robichaux-Y. '18) $c_{\alpha,w} \neq 0 \iff \mathsf{Tab}(w,\alpha) \neq \emptyset$.

Proofs

- ▶ The Schubitope S_D was introduced by Monical-Tokcan-Y. '17 for any $D \subseteq [n]^2$.
- ▶ We give a generalization of tableau of Theorem C to any D.
- ▶ Then introduce a new polytope \mathcal{T}_D whose integer points biject with tableaux.
- Integer linear programming is hard but \mathcal{T}_D is totally unimodular. Now use LPfeasibility $\in P$.
- Link to Schubert polynomials: For D = D(w), Monical-Tokcan-Y. '17 conjectured $S_D = \text{Newton}(\mathfrak{S}_w)$. Proved by Fink-Mészáros-St. Dizier '18.
- ► First proved that nonvanishing(\mathfrak{S}_w) ∈ NP \cap coNP hinting ∈ P.
- ▶ NP and #P proof via transition.

Conclusions and summary

- ▶ In this talk we described an algebraic combinatorics paradigm for complexity on theoretical computer *science*.
- Conversely, complexity gives some new perspectives on algebraic combinatorics.
- In our main example, we obtain new results about Schubert polynomials and the Schubitope.