Applications of delay (delay) (delay) (delay) (delay) (delay) A jaunt through some DSP, applied to electronic music

Rhuaidi Burke

University of Queensland rhuaidi.burke@uq.edu.au

May 23, 2025

Signals and Samples

Signals and Samples

Signals and Samples

Typical assumption: our signal has the form of a complex exponential

$$x[n] = z^n$$
, $z = e^s$, $s = \sigma + i\omega$.

In general, suppose

$$x[n] = X(z)z^n, \quad y[n] = Y(z)z^n,$$

where x[n] is some input signal, and y[n] is the output. We are often interested in analysing the transfer function H(z),

of the system defined by

$$H(z):=\frac{Y(z)}{X(z)}.$$

Given $z^n=e^{sn}$, where $s=\sigma+i\omega$, the frequency response of the system is given by evaluating $H(i\omega)$.

The frequency response describes how the system alters the magnitude and the phase of the input signal frequencies.

Delay

In addition to standard operations (addition, scalar multiplication), the sequence x[n] can be delayed in time by some multiple of the sampling period,

$$y[n] = x[n - M].$$

n	1	2	3	4	5	6	7	8	9	10	11	
x[n]	0.3	0.6	0.5	0.2	-0.1	-0.4	-0.2	0.2	0.7	0.9	0.8	
x[n-2]			0.3	0.6	0.5	0.2	-0.1	-0.4	-0.2	0.2	0.7	0.9

Example: Simple Filter

Consider the input-output system defined by the equation

$$y[n] = (1 - \alpha)x[n] + \alpha y[n - 1], \quad 0 \le \alpha \le 1.$$

Example: Simple Filter

Figure: $|H(i\omega)|$ as a function of ω (log-log scale).

More Filters

By adding more delay lines, more coefficients, and mixing things in various ways, we can cook up all sorts of filters.

Application: Modal Synthesis

Application: Modal Synthesis

Example: Echo

- Instead of operating on individual samples delay entire "blocks" of the signal (e.g. 1000 samples at a time).
- Produces an audible delay.
- Feeding this delayed signal back in on itself, we create a repeating echo sound effect.

Example: Echo

- Instead of operating on individual samples delay entire "blocks" of the signal (e.g. 1000 samples at a time).
- Produces an audible delay.
- Feeding this delayed signal back in on itself, we create a repeating echo sound effect.

- ► Modulating the delay time can be used to create interesting audio effects like flangers and phasers.
- We can even use this to model (synthesise) things like plucked or bowed strings.

Example: Reverb

- Reverb creates a sense of space by creating a diffuse long-lasting sound from a short input.
- Often created when a sound is reflected on surfaces, causing multiple reflections that build up and then decay as the sound is absorbed by the surfaces of objects in the space.
- Arguably one of the oldest sound effects used in music.
- ▶ It is an interesting problem trying to algorithmically model reverb.

Example: Reverb

- We want something which will diffuse the input signal, and has long-lasting, complicated, decay.
- ► A first approximation to this uses two different kinds of filter: an *all-pass* filter, and a *comb* filter.
- ▶ All-pass: no effect on the frequency of the input, but changes the *phase*.
- Comb filters: create constructive and destructive interference.

Example: Reverb

Algorithmic reverb design gets crazy!

Some Final Remarks

Many concepts going on behind these ideas, including but not limited to:

- Fourier analysis
- ightharpoonup Laplace transforms and \mathcal{Z} -transforms
- Difference equations (discrete ODEs)
- Hadamard matrices

Now, a demonstration of reverb + one of my favourite delay effects...