# COMP90054 — Al Planning for Autonomy

4. Generating Heuristic Functions

How to Relax: Formally, and Informally, and During Search

### Nir Lipovetzky



Semester 2 Copyright, University of Melbourne

Motivation



Motivation

- Motivation
- How to Relax Informally
- How to Relax Formally
- How to Relax During Search
- Conclusion

### Motivation

Motivation

- → "Relax"ing is a methodology to construct heuristic functions.
  - You can use it when programming a solution to some problem you want/need to solve.
  - Planning systems can use it to derive a heuristic function automatically from the planning task description (the PDDL input).
    - **Note 1:** If the user had to supply the heuristic function by hand, then we would lose our two main selling points (generality & autonomy & flexibility & rapid prototyping, cf.  $\rightarrow$  Lecture 1-2).
    - **Note 2:** It can of course be of advantage to give the user the *possibility* to (conveniently) supply additional heuristics. Not covered in this course.

### How to Relax Informally

#### **How To Relax:**



- You have a problem,  $\mathcal{P}$ , whose perfect heuristic  $h^*$  you wish to estimate.
- You define a simpler problem,  $\mathcal{P}'$ , whose perfect heuristic  $h'^*$  can be used to estimate  $h^*$ .
- You define a transformation, r, that simplifies instances from P into instances P'.
- Given  $\Pi \in \mathcal{P}$ , you estimate  $h^*(\Pi)$  by  $h'^*(r(\Pi))$ .

→ Relaxation means to simplify the problem, and take the solution to the simpler problem as the heuristic estimate for the solution to the actual problem.

### Relaxation in Route-Finding

Motivation

0



#### How to derive straight-line distance by relaxation?

- **Problem**  $\mathcal{P}$ : Route finding.
- **Simpler problem**  $\mathcal{P}'$ : Route finding for birds.
- Perfect heuristic  $h'^*$  for  $\mathcal{P}'$ : Straight-line distance.
- Transformation r: Pretend you're a bird.

### Relaxation in the 8-Puzzle









Perfect heuristic  $h^*$  for  $\mathcal{P}$ : Actions = "A tile can move from square A to square B if A is adjacent  $\mathcal{D}$ to B and B is blank." ( now to move the constraints (simplify) so that h'\*(r(11)) = Manhattan Dist



Constrants

- How to derive the Manhattan distance heuristic?  $\mathcal{P}'$ : Actions = "A tile can move from square A to square B if A is adjacent to B."
- How to derive the misplaced tiles heuristic?  $\mathcal{P}'$ : Actions = "A tile can move from square A to square B."

  To it in destination? No -> Count 1.
- $h'^*$  (resp. r) in both: optimal cost in  $\mathcal{P}'$  (resp. use different actions).
- Here: Manhattan distance = 18, misplaced tiles = 8.

# "Goal-Counting" Relaxation in Australia





- Propositions P: at(x) for  $x \in \{Sy, Ad, Br, Pe, Da\}; v(x)$  for  $x \in \{Sy, Ad, Br, Pe, Da\}.$
- Actions  $a \in A$ : drive(x, y) where x, y have a road;  $pre_a = \{at(x)\}, add_a = \{at(y), v(y)\}, del_a = \{at(x)\}.$
- Initial state I: at(Sy), v(Sy).  $\rightarrow$  We are at Sy and we're visited Sy
- Goal G: at(Sy), v(x) for all x.

#### Let's "act as if we could achieve each goal directly":

- Problem  $\mathcal{P}$ : All STRIPS planning tasks.
- $\blacksquare$  Simpler problem  $\mathcal{P}'$ : All STRIPS planning tasks with empty preconditions and deletes.
- Perfect heuristic  $h'^*$  for  $\mathcal{P}'$ : Optimal plan cost  $(=h^*)$ .
- Transformation r: Drop the preconditions and deletes.
- Heuristic value here? 4. h'\*(r(t)) = 4 (Drive) How many goals we have achieved now
- → Optimal STRIPS planning with empty preconditions and deletes is still NP-hard! (Reduction from MINIMUM COVER, of goal set by add lists.)
- $\rightarrow$  Need to approximate the perfect heuristic  $h'^*$  for  $\mathcal{P}'$ . Hence goal counting: just approximate by number-of-false-goals.

### How to Relax Formally: Before We Begin

- The definition on the next slide is not to be found in any textbook, and not even in any paper.
- Methods generating heuristic functions differ widely, and it is quite difficult (impossible?) to make one definition capturing them all in a natural way.
- Nevertheless, a formal definition is useful to state precisely what are the relevant distinction lines in practice.
- The present definition does, I think, do a rather good job of this.
  - $\rightarrow$  It nicely fits what is currently used in planning.
  - $\rightarrow$  It is flexible in the distinction lines, and it captures the basic construction, as well as the essence of all relaxation ideas.

Motivation

### Relaxations

Motivation

**Definition (Relaxation).** Let  $h^* : \mathcal{P} \mapsto \mathbb{R}_0^+ \cup \{\infty\}$  be a function. A relaxation of  $h^*$  is a triple  $\mathcal{R}=(\mathcal{P}',r,h'^*)$  where  $\mathcal{P}'$  is an arbitrary set, and  $r:\mathcal{P}\mapsto\mathcal{P}'$  and  $h'^*:P'\mapsto\mathbb{R}_0^+\cup\{\infty\}$  are functions so that, for all  $\Pi \in \mathcal{P}$ , the relaxation heuristic  $h^{\mathcal{R}}(\Pi) := h'^*(r(\Pi))$  satisfies heuristic value • efficiently constructible if there exists a polynomial-time algorithm that, given  $\Pi \in \mathcal{P}$ , computes  $r(\Pi)$ ; • efficiently computable if there exists a polynomial-time algorithm that, given  $\Pi' \in \mathcal{P}'$ ,

#### Reminder:

computes  $h'^*(\Pi')$ .

- You have a problem,  $\mathcal{P}$ , whose perfect heuristic  $h^*$  you wish to estimate.
- You define a simpler problem,  $\mathcal{P}'$ , whose perfect heuristic  $h'^*$  can be used to (admissibly!) estimate h\*

h/x = polynomial

- You define a transformation, r, from  $\mathcal{P}$  into  $\mathcal{P}'$ .
- Given  $\Pi \in \mathcal{P}$ , you estimate  $h^*(\Pi)$  by  $h'^*(r(\Pi))$ .

### Relaxations: Illustration



### **Example route-finding:**

- Problem  $\mathcal{P}$ : Route finding.
- Simpler problem  $\mathcal{P}'$ : Route finding for birds.
- Perfect heuristic  $h'^*$  for  $\mathcal{P}'$ : Straight-line distance.
- Transformation *r*: Pretend you're a bird.

### Native Relaxations: Illustration



How to Relax Formally

00000000

### **Example "goal-counting":**

- Problem  $\mathcal{P}$ : All STRIPS planning tasks.
- Simpler problem  $\mathcal{P}'$ : All STRIPS planning tasks with empty preconditions and deletes.
- Perfect heuristic  $h'^*$  for  $\mathcal{P}'$ : Optimal plan cost =  $h^*$ .
- Transformation *r*: Drop the preconditions and deletes.

Conclusion

### Relaxation in Route-Finding: Properties

0000



**Relaxation**  $\mathcal{R} = (\mathcal{P}', r, h'^*)$ : Pretend you're a bird.

- Native? No: Birds don't do route-finding. (Well, it's equivalent to trivial maps with direct routes between everywhere.)
- Efficiently constructible? Yes (pretend you're a bird).
- Efficiently computable? Yes (measure straight-line distance).

Motivation

### Relaxation in the 8-Puzzle: Properties



**Relaxation**  $\mathcal{R} = (\mathcal{P}', r, h'^*)$ : Use more generous actions rule to obtain Manhattan distance.

- Native? No: With the modified rules, it's not the "same puzzle" anymore. (Well, one could be generous in defining what the "same puzzle" is.)
- Efficiently constructible? Yes (exchange action set).
- Efficiently computable? Yes (count misplaced tiles/sum up Manhattan distances).

Motivation

### What shall we do with the relaxation?

# What if R is not efficiently constructible? ( Mare, coz if so woody would use it)

- Either (a) approximate r, or (b) design r in a way so that it will typically be feasible, or (c) just live with it and hope for the best.
- Vast majority of known relaxations (in planning) are efficiently constructible.

# What if $\mathcal{R}$ is not efficiently computable?

- Either (a) approximate  $h'^*$ , or (b) design  $h'^*$  in a way so that it will typically be feasible, or (c) just live with it and hope for the best.
- Many known relaxations (in planning) are efficiently computable, some aren't. The latter use (a); (b) and (c) are not used anywhere right now.

Motivation

Motivation

### "Goal-Counting" Relaxation in Australia: Properties



- Propositions P: at(x) for  $x \in \{Sy, Ad, Br, Pe, Da\}$ ; v(x) for  $x \in \{Sy, Ad, Br, Pe, Da\}$ .
- Actions  $a \in A$ : drive(x, y) where x, y have a road;  $pre_a = \{at(x)\}$ ,  $add_a = \{at(y), v(y)\}$ ,  $del_a = \{at(x)\}$ .
- Initial state I: at(Sy), v(Sy).
- Goal G: at(Sy), v(x) for all x.

**Relaxation**  $\mathcal{R} = (\mathcal{P}', r, h'^*)$ : Remove preconditions and deletes, then use  $h^*$ .

- Native? Yes: Planning with empty preconditions and deletes is a special case of planning (i.e., a sub-class of  $\mathcal{P}$ ).
- Efficiently constructible? Yes (drop preconditions and deletes).
- Efficiently computable? No! Optimal planning is still NP-hard in this case (MINIMUM COVER of goal set by add lists).

What shall we do with the relaxation?  $\rightarrow$  Use method (a): Approximate  $h^*$  in  $\mathcal{P}'$  by counting the number of goals not currently true.

### How to Relax During Search: Diagram

0000

Using a relaxation  $\mathcal{R} = (\mathcal{P}', r, h'^*)$  during search:



- $\rightarrow \Pi_s$ :  $\Pi$  with initial state replaced by s, i.e.,  $\Pi = (F, A, c, I, G)$  changed to (F, A, c, s, G).
- $\rightarrow$  The task of finding a plan for search state s.
- → We will be using this notation in the course!

(T) Truck Package (P) Truck of A

 $/(x): T(x) P(x) \longrightarrow P(T), TP(x)$ 

 $U(x): P(T) T(x) \rightarrow P(x), 7 P(T)$ 

Actions A: pre, add, del.

 $\blacksquare$  drXY, loX, ulX.

### How to Relax During Search: Goal-Counting



### **Greedy best-first search:**

(tie-breaking: alphabetic)

### We are here

 $3 \Rightarrow P(A:D)$ . L(C). U(D) ) We don't have  $2 \Rightarrow L(C)$ . U(D) ( pre & Del  $1 \Rightarrow U(D)$ 

Nir Lipovetzky

**COMP90054** — Al Planning for Autonomy

**Chapter 4: Generating Heuristic Functions** 

Pre (constraints) del (x can happen any time) (x in both places) Just do/go



#### **Relaxed problem:**

- State s: AC; goal G: AD.
- Actions *A*: *add*.

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation





Real problem:

- State s(BC) goal G(AD)
- Actions A: pre, add, det.
- $\blacksquare AC \xrightarrow{drAB} BC.$

#### **Greedy best-first search:**



$$D(B,A). V(P)$$

$$BC \longrightarrow AC \longrightarrow AC$$

$$T$$



### **Relaxed problem:**

- State s: BC; goal G: AD.
- Actions *A*: *add*.
- $h^{\mathcal{R}}(s) = 2.$

#### **Greedy best-first search:**





**Greedy best-first search:** 

(tie-breaking: alphabetic)

#### Real problem:

- State (s: CC), goal (G: AD.)
- Actions A: pre, add, del.
- $\blacksquare BC \xrightarrow{drBC} CC.$







#### **Relaxed problem:**

- State s: CC; goal G: AD.
- Actions *A*: *add*.

#### **Greedy best-first search:**





0000

#### Real problem:

- $\blacksquare$  State s: AC; goal G: AD.
- Actions *A*: *pre*, *add*, *del*.
- Duplicate state, prune.

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation



Conclusion



#### **Real problem:**

- State s: DC; goal G: AD.
- Actions *A*: *pre*, *add*, *del*.

#### **Greedy best-first search:**

(tie-breaking: alphabetic)



D(B,A). U(D)



#### **Relaxed problem:**

- State s: DC; goal G: AD.
- Actions *A*: *add*.
- $\bullet h^{\mathcal{R}}(s) = 2.$

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation





#### **Real problem:**

- State s: CT; goal G: AD.
- Actions *A*: *pre*, *add*, *del*.
- $CC \xrightarrow{loC} CT.$

#### **Greedy best-first search:**





#### **Relaxed problem:**

- $\blacksquare$  State s: CT; goal G: AD.
- Actions *A*: *add*.

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation





0000

### **Real problem:**

- $\blacksquare$  State s: BC; goal G: AD.
- Actions A: pre, add, del.
- Duplicate state, prune.

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation



Conclusion



Motivation

0

Conclusion



forces about del Real problem:

Initial state I: AC; goal G: AD.

 $\blacksquare$  Actions A: pre, add, del.

 $\blacksquare$  drXY, loX, ulX.

Object can be in both places (no regation in this

**Greedy best-first search:** (tie-breaking: alphabetic)

Motivation

0

Why we're not driving bank?

We are here



(3)

> the fortprint was kept.



### **Relaxed problem:**

- State s: AC; goal G: AD.
- Actions A: pre, add.  $h^{\mathcal{R}}(s) = h^+(s) = 5$ .

#### **Greedy best-first search:**

Motivation





### Real problem:

- $\blacksquare$  State s: BC; goal G: AD.
- $\blacksquare$  Actions *A*: pre, add, del.
- $\blacksquare AC \xrightarrow{drAB} BC.$

#### **Greedy best-first search:**





### **Relaxed problem:**

- State s: BC; goal G: AD.
- Actions A: pre, add.  $h^{\mathcal{R}}(s) = h^+(s) = 5$ .

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation





### Real problem:

- $\blacksquare$  State s: CC; goal G: AD.
- Actions A: pre, add, del.
- $\blacksquare BC \xrightarrow{drBC} CC.$

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation





#### **Relaxed problem:**

- State s: CC; goal G: AD.
- Actions A: pre, add.  $h^{\mathcal{R}}(s) = h^+(s) = 5$ .

#### **Greedy best-first search:**





### Real problem:

How to Relax Formally

0000000

- $\blacksquare$  State s: AC; goal G: AD.
- Actions A: pre, add, del.
- Duplicate state, prune.

#### **Greedy best-first search:**

(tie-breaking: alphabetic)

Motivation





#### **Real problem:**

- State s: DC; goal G: AD.
- $\blacksquare$  Actions *A*: pre, add, del.

#### **Greedy best-first search:**





#### **Relaxed problem:**

- State s: DC; goal G: AD.
- Actions A: pre, add.  $h^{\mathcal{R}}(s) = h^+(s) = 5$ .

#### **Greedy best-first search:**





#### Real problem:

- State s: CT; goal G: AD.
- Actions A: pre, add, del.

#### **Greedy best-first search:**





#### **Relaxed problem:**

- State s: CT; goal G: AD.
- Actions A: pre, add.  $h^{\mathcal{R}}(s) = h^+(s) = 4$ .

#### **Greedy best-first search:**





#### Real problem:

- $\blacksquare$  State s: BC; goal G: AD.
- Actions A: pre, add, del.
- Duplicate state, prune.

#### **Greedy best-first search:**



0000



Motivation

Conclusion

### Questionnaire

#### Question!

Say we have a robot with one gripper, two rooms A and B, and n balls we must transport. The actions available are moveXY, pickB and dropB; say h ="number of balls not yet in room B". Can h be derived as  $h^{\mathcal{R}}$  for a relaxation  $\mathcal{R}$ ?

(A): No. (B): Yes, just drop the deletes

(C): Sure, *every* admissible *h* can be derived via a relaxation.

(D): I'd rather relax at the beach.

 $\rightarrow$  We can define  $\mathcal{P}'$  as the problem of computing the cardinality of a finite set, and define r as the function that maps a state to the set of balls not yet in room B. So: (A) is incorrect, (B) is incorrect, should drop preconditions and deletes.

 $\to$  (C): Yes. Admissibility of  $h^{\mathcal{R}}$  is the only strict requirement made by the definition. Given admissible  $h: \mathcal{P} \mapsto \mathbb{R}_0^+ \cup \{\infty\}$ , we can simply define  $\mathcal{P}':=\mathcal{P}$  and take r to be the identity function  $id_{\mathcal{P}}$ . In other words,  $\mathcal{R}:=(\mathcal{P},id_{\mathcal{P}},h)$  is a relaxation with  $h^{\mathcal{R}}=h$ . (And, yes, h here is admissible.)

### Summary

Motivation

- Relaxation is a method to compute heuristic functions.
- Given a problem  $\mathcal{P}$  we want to solve, we define a relaxed problem  $\mathcal{P}'$ . We derive the heuristic by mapping into  $\mathcal{P}'$  and taking the solution to this simpler problem as the heuristic estimate.

How to Relax Formally

00000000

- Relaxations can be native, efficiently constructible, and/or efficiently computable. None of this is a strict requirement to be useful.
- During search, the relaxation is used only inside the computation of the heuristic function on each state; the relaxation does not affect anything else. (This can be a bit confusing especially for native relaxations like ignoring deletes.)

Conclusion

 $0 \bullet 0$ 

Motivation

The goal-counting approximation h = "count the number of goals currently not true" is a very uninformative heuristic function:

How to Relax Formally

0000000

- Range of heuristic values is small (0...|G|).
- We can transform any planning task into an equivalent one where h(s) = 1 for all non-goal states s. How? Replace goal by new fact g and add a new action achieving g with precondition G.
- Ignores almost all structure: Heuristic value does not depend on the actions at all!
- $\rightarrow$  By the way, is h safe/goal-aware/admissible/consistent? Only safe and goal-aware.
- $\rightarrow$  We will see in  $\rightarrow$  the next lecture how to compute **much** better heuristic functions.

Conclusion