Лабораторная работа 17

Задания для самостоятельной работы

Клюкин Михаил Александрович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Моделирование работы вычислительного центра	7 7 9 13
4	Выводы	18

Список иллюстраций

3.1	Отчёт по модели работы вычислительного центра	9
3.2	Отчёт по модели работы аэропорта	12
3.3	Отчет по модели работы морского порта	14
3.4	Отчет по модели работы морского порта с оптимальным	
	количеством причалов	15
3.5	Отчет по модели работы морского порта	16
3.6	Отчет по модели работы морского порта с оптимальным	
	количеством причалов	17

Список таблиц

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

ram STORAGE 2

GENERATE 20,5

QUEUE class_A

ENTER ram,1

DEPART class_A

ADVANCE 20,5

LEAVE ram,1

TERMINATE 0

GENERATE 20,10

QUEUE class_A

ENTER ram,1

DEPART class_A

```
ADVANCE 21,3
```

LEAVE ram,1

TERMINATE 0

GENERATE 28,5

QUEUE class_A

ENTER ram, 2

DEPART class_A

ADVANCE 28,5

LEAVE ram, 2

TERMINATE 0

GENERATE 4800

TERMINATE 1

START 1

Задается хранилище гат на две заявки. Затем записаны три блока: первые два обрабатывают задания класса А и В, используя один элемент гат, а третий обрабатывает задания класса С, используя два элемента гат. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. 3.1).

LABEL	LOC	BLOCK TYP	E	ENTRY	COUNT	CURRENT	COUNT	RETRY
	1	GENERATE		2	40		0	0
	2	QUEUE		2	40		4	0
	3	ENTER		2	36		0	0
	4	DEPART		2	36		0	0
	5	ADVANCE		2	36		1	0
	6	LEAVE		2	35		0	0
	7	TERMINATE		2	35		0	0
	8	GENERATE		2	36		0	0
	9	QUEUE		2	36		5	0
	10	ENTER		2	31		0	0
	11	DEPART		2	31		0	0
	12	ADVANCE		2	31		1	0
	13	LEAVE		2	30		0	0
	14	TERMINATE		2	30		0	0
	15	GENERATE		1	72		0	0
	16	QUEUE		1	72	1	72	0
	17	ENTER			0		0	0
	18	DEPART			0		0	0
	19	ADVANCE			0		0	0
	20	LEAVE			0		0	0
	21	TERMINATE			0		0	0
	2.2	GENERATE			1		0	0
	23	TERMINATE			1		0	0
QUEUE	MAY C	ONT ENTRY	FNTD	7/0\ 7	VE CON	r attern	TME	AUF (_O) DETDV
CLASS A	193	191 649	ENTR	4 A	02 354	694	105	688.354 0
CLM33_M	103	101 640		7	32.331	007	103	000.334 0
STORAGE			MAX.	ENTRI	ES AVL	AVE.C	. UTIL	. RETRY DELAY
RAM	2	0 0	2	46	7 1	1.988	0.99	4 0 181
FEC XN PRI	BDT	ASSE	м сп	RENT	NEXT	PARAMETI	ER .	VALUE
650 0		512 650		0	1			
636 0	4805.	704 636		5	6			
651 0	4807.			5	15			
637 0		369 637	1	.2	13			
		506 652						
653 0		000 653						
				-				

Рис. 3.1: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для

посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель.

GENERATE 10,5,,,1

ASSIGN 1,0

QUEUE arrival

landing GATE NU runway, wait

SEIZE runway

DEPART arrival

ADVANCE 2

RELEASE runway

TERMINATE 0

wait TEST L p1,5,goaway

ADVANCE 5

ASSIGN 1+,1

TRANSFER 0, landing

goaway SEIZE reserve

DEPART arrival

RELEASE reserve

TERMINATE 0

GENERATE 10,2,,,2

QUEUE takeoff

SEIZE runway

DEPART takeoff

ADVANCE 2

RELEASE runway

TERMINATE 0

GENERATE 1440

TERMINATE 1

START 1

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась — переход в блок обработки, если нет — самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах — 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. 3.2).

LABEL	LOC E	BLOCK TYPE	ENTRY	COUNT	CURRENT	COUNT	RETRY	
	1 0	GENERATE	1	46		0	0	
	2 7	ASSIGN	1	46		0	0	
	3 (QUEUE	1	46		0	0	
LANDING	4 (GATE	1	84		0	0	
	5 5	SEIZE	1	46		0	0	
	6 I	DEPART	1	46		0	0	
	7 1	ADVANCE	1	46		0	0	
	8 F	RELEASE	1	46		0	0	
	9 7	TERMINATE	1	46		0	0	
WAIT	10 7	TEST		38		0	0	
	11 7	ADVANCE		38		0	0	
	12 7	ASSIGN		38		0	0	
	13 7	TRANSFER		38		0	0	
GOAWAY	14 5	SEIZE		0		0	0	
		DEPART		0		0	0	
	16 F	RELEASE		0		0	0	
	17 7	TERMINATE		0		0	0	
	18 0	GENERATE	1	42		0	0	
	19 (QUEUE	1	42		0	0	
	20 5	SEIZE	1	42		0	0	
	21 I	DEPART	1	42		0	0	
	22 7	ADVANCE	1	42		0	0	
	23 F	RELEASE	1	42		0	0	
	24 1	TERMINATE	1	42		0	0	
	25 0	GENERATE		1		0	0	
	26	TERMINATE		1		0	0	
FACILITY	ENTRIES	UTIL. AVE	. TIME A	VAIL. (OWNER PE	ND INT	ER RETRY	DELAY
RUNWAY	288	0.400	2.000	1	0	0	0 0	0
QUEUE	MAX CON	NT. ENTRY EN	TRY(0) A	VE.CON	r. AVE.T	IME I	AVE.(-0)	RETRY
TAKEOFF	1		114					
ARRIVAL	2	0 146	114	0.132	1.	301	5.937	0
FEC XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMET	ER '	VALUE	
290 2	1440.74	49 290	0	18				
291 1	1445.36	67 291	0	1				
292 0	2880.00	00 292	0	25				

Рис. 3.2: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

```
1) a = 20 \text{ y}, \delta = 5 \text{ y}, b = 10 \text{ y}, \varepsilon = 3 \text{ y}, N = 10, M = 3;
```

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта.

pier STORAGE 10 GENERATE 20,5

QUEUE arrive

ENTER pier,3

DEPART arrive

ADVANCE 10,3

LEAVE pier,3

TERMINATE 0

GENERATE 24

TERMINATE 1

START 180

После запуска симуляции получаем отчёт (рис. 3.3).

	NAME ARRIVE PIER				VAL 10001. 10000.	000					
LABEL		1 2 3 4 5 6 7 8	GENE QUEU ENTE DEPA ADVA LEAV TERM	ERATE JE		Y COUN 215 215 215 215 215 215 214 214 180 180		RRENT	COUNT 0 0 0 0 1 0 0 0	RETRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE										AVE.(-0)	
STORAGE PIER										. RETRY 8 0	
FEC XN 395 396 397	0		260 233	395 396	5 0	NEXT 6 1 8	PA	RAMETI	ER 1	VALUE	

Рис. 3.3: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3, получаем оптимальный результат, что видно на отчете (рис. 3.4).

pier STORAGE 3
GENERATE 20,5

QUEUE arrive

ENTER pier,3

DEPART arrive

ADVANCE 10,3

LEAVE pier,3

TERMINATE 0

GENERATE 24

TERMINATE 1

START 180

	NAME ARRIVE PIER				1000 1000	1.00	00					
LABEL		1 2 3 4 5 6 7 8	GENE QUEU ENTE DEPA ADVA LEAV TERM GENE			21 21 21 21 21 21 21	15 15 15 15 15 14 14		0	0		
QUEUE ARRIVE								I. AVE.1				
STORAGE PIER								. AVE.0				
395 396			260 233	395 396	5 0		6 1	PARAMET	TER	VALU	E	

Рис. 3.4: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта.

pier STORAGE 6
GENERATE 30,10

QUEUE arrive

ENTER pier,2

DEPART arrive

ADVANCE 8,4

LEAVE pier,2

TERMINATE 0

GENERATE 24

TERMINATE 1 START 180

После запуска симуляции получаем отчёт (рис. 3.5).

	NAME					VALU	Œ				
	ARRIVE				1	0001.0	00				
	PIER				1	0000.0	00				
LABEL								CURRENT		RETRY	
		1		ERATE		1			0	0	
			QUE	JE		1	43		0	0	
		3	ENT	ER		1	43		0	0	
		4	DEP	ART		1	43		0	0	
		5	ADV	ANCE		1	43		1	0	
		6	LEAV	/E		1	42		0	0	
		7	TERM	MINATE		1	42		0	0	
		8	GENE	ERATE		1	.80		0	0	
		9	TER	MINATE		1	.80		0	0	
QUEUE		MAX (CONT.	ENTRY	ENTR	Y(0) A	VE.CON	r. AVE.T	IME	AVE. (-0)	RETRY
ARRIVE		1	0	143	1	43	0.000	0.0	000	0.000	0
STORAGE		CAP.	REM.	MIN.	MAX.	ENTRI	ES AVL	. AVE.C	UTII	. RETRY	DELAY
PIER		6	4	0	2	28	6 1	0.524	0.08	7 0	0
FEC XN	PRI	BD1	Γ	ASSE	M CU	RRENT	NEXT	PARAMET	ER	VALUE	
322	0	4325	.892	322		5	6				
324	0	4336	.699	324		0	1				
325	0	4344	.000	325		0	8				

Рис. 3.5: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2, получаем оптимальный результат, что видно из отчета (рис. 3.6).

pier STORAGE 2 GENERATE 30,10

QUEUE arrive ENTER pier,2

DEPART arrive

ADVANCE 8,4

LEAVE pier,2 TERMINATE 0

GENERATE 24
TERMINATE 1
START 180

NAME	2		VALU	E		
ARRIVE			10001.0	00		
PIER			10000.0	00		
LABEL	LOC BLO	CK TYPE	ENTRY	COUNT	CURRENT COU	NT RETRY
	1 GEN	ERATE	1	43	0	0
	2 QUE	UE	1	43	0	0
	3 ENT	ER	1	43	0	0
	4 DEP	ART	1	43	0	0
	5 ADV	ANCE	1	43	1	0
	6 LEA	VE	1	42	0	0
	7 TER	MINATE	1	42	0	0
	8 GEN	ERATE	1	80	0	0
	9 TER	MINATE	1	80	0	0
QUEUE	MAX CONT.	ENTRY ENT	RY(0) A	VE.CON	r. AVE.TIME	AVE.(-0) RETRY
ARRIVE						0.000 0
STORAGE	CAP. REM.	MIN. MAX.	ENTRI	ES AVL	. AVE.C. UT	IL. RETRY DELAY
PIER	2 0	0 2	28	6 1	0.524 0.	262 0 0
FEC XN PRI	BDT	ASSEM C	URRENT	NEXT	PARAMETER	VALUE
322 0	4325.892	322	5	6		
324 0	4336.699	324	0	1		
325 0	4344.000	325	0	8		

Рис. 3.6: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы реализовали с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.