IPv6-foredrag

Grunnleggende

Trond Endrestøl

Fagskolen Innlandet, IT-avdelingen

27. september 2013

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

1 / 78

Foredragets filer

- Filene til foredraget er tilgjengelig gjennom:
 - Subversion: svn co \
 svn://svn.ximalas.info/ipv6-foredrag-grunnleggende
 - Web: svnweb.ximalas.info/ipv6-foredrag-grunnleggende/
- ipv6-foredrag-grunnleggende.foredrag.pdf vises på lerretet
- ipv6-foredrag-grunnleggende.handout.pdf er mye bedre for publikum å se på
- ipv6-foredrag-grunnleggende.handout.2on1.pdf er velegnet til utskrift
- Hovedfila bærer denne identifikasjonen:
 \$Ximalas: trunk/ipv6-foredrag-grunnleggende.tex 34
 2013-09-27 12:33:14Z trond \$
- Foredraget er mekket ved hjelp av GNU Emacs, AUCTEX, MiKTEX, dokumentklassa beamer, Subversion, TortoiseSVN og Adobe Reader

FAGSKOLEN

Oversikt I

- Mort om IPv6
 - Hva er IPv6?
 - Hvorfor trenger vi IPv6?
 - Andre nyttige ting ved IPv6
 - IPv6 ved Fagskolen Innlandet
- 2 IPv6-header
- IPv6 over Ethernet
- Grunnleggende om adresser
 - Adressedemo
 - MAC-48-adresser
 - Modda IEEE EUI-64-format
 - Spesialadresser
 - DNS
- 6 Adressetyper
 - Link-local-adresser

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

3 / 78

Oversikt II

- Site-local-adresser
- Offentlige unicast-adresser
- Unike, lokale, aggregerbare adresser
- Anycast-adresser
- Multicast-adresser
- **6** ICMPv6
 - Multicast Listener Discovery
 - Neighbor Discovery
 - Router Renumbering
 - Inverse Neighbor Discovery
 - Version 2 Multicast Listener Report
 - Mobile IPv6
 - SEcure Neighbor Discovery (SEND)
 - Multicast Router Discovery
 - FMIPv6

Oversikt III

- RPL Control Message
- ILNPv6 Locator Update Message
- Duplicate Address
- **O** DHCPv6
- OS-konfig
- 9 Tunneloppsett
- 10 Noen RFC-er om IPv6

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

5 / 78

Kort om IPv6

Hva er IPv6?

- En lag-3-protokoll ment å erstatte IPv4
- Har eksistert siden desember 1995, spesifisert i RFC 1883
- Enkel grunnheader med fast lengde
- Flere utvidelsesheadere, riktig rekkefølge er viktig
- 128-bit adresser
- Ny versjon av ICMP: ICMPv6
- ARP og RARP for IPv6 er en del av ICMPv6
 - Ikke nødvendig med ekstra lim for adressene i lagene 2 og 3
- Ny versjon av DHCP: DHCPv6
- Automatisk adressekonfigurasjon uten bruk av DHCPv6

Hva er IPv6?

- En lag-3-protokoll ment å erstatte IPv4
- Har eksistert siden desember 1995, spesifisert i RFC 1883
- Enkel grunnheader med fast lengde
- Flere utvidelsesheadere, riktig rekkefølge er viktig
- 128-bit adresser
- Ny versjon av ICMP: ICMPv6
- ARP og RARP for IPv6 er en del av ICMPv6
 - Ikke nødvendig med ekstra lim for adressene i lagene 2 og 3
- Ny versjon av DHCP: DHCPv6
- Automatisk adressekonfigurasjon uten bruk av DHCPv6

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

7 / 78

Kort om IPv6

Hva er IPv6?

- Totalt antall IPv6-adresser:
- $\bullet \ 2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
- Bare 1/8 kan brukes til offentlige unicast-adresser:
- $2^{125} = 42.535.295.865.117.307.932.921.825.928.971.026.432$
- Fortsatt mye mer enn det fullstendige IPv4-adresserommet:
- Bare 3.702.258.688 IPv4-adresser kan bli brukt som offentlige IPv4-unicast-adresser
- Se Tronds utregning fra 2012: http://ximalas.info/2012/07/20/how-many-ipv4-addresses-are-there/

Hvorfor trenger vi IPv6?

- Verden går tom for offentlige IPv4-adresser
- IANA gikk tom i februar 2011
 - APNIC gikk tom i april 2011
 - RIPE gikk tom i september 2012
- Dersom disse RIR-ene oppfører seg pent:
 - LACNIC kan holde på til juni 2014
 - ARIN kan holde på til desember 2014
 - AFRINIC kan holde på til oktober 2020
- NAT (RFC 2663), CGN (RFC 6264) og Shared Address Space (RFC 6598) er bare støttebandasje med kort utløpstid
 - Glem det
 - Ende-til-ende-konnektivitet oppnås best uten noen former for adresseoversettelse

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

9 / 78

Kort om IPv6

Hvorfor trenger vi IPv6?

- Kortere rutingtabeller
- Uninett annonserer disse IPv4-subnettene med BGP:

•	78.91.0.0/16,
	129.240.0.0/15,
	151.157.0.0/16,
	157.249.0.0/16,
	193.156.0.0/15,
	100 146 020 0/02

```
128.39.0.0/16,
129.242.0.0/16,
152.94.0.0/16,
158.36.0.0/14,
```

192.111.33.0/24,

192.146.238.0/23

- Til gjengjeld trenger Uninett bare å annonsere dette IPv6-prefikset:
- 2001:700::/32

Andre nyttige ting ved IPv6

- IPsec ble spesifisert som en del av IPv6
 - Må konfigureres før den begynner å virke
 - Tilbyr kryptert overføring (ESP), og bekreftelse av avsenders identitet og beskyttelse mot gjentakelse («replay») (AH)
 - Finnes også for IPv4
 - Ble omgjort fra krav til anbefaling av RFC 6434
- Fragmentering skal gjøres hos avsender
- Avsender må sjekke veien og måle smaleste krøttersti
- Path MTU
- Sjekksum er overlatt til høyere lag

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

11 / 78

Kort om IPv6

Andre nyttige ting ved IPv6

- Hierarkisk adressestruktur
- Enklere planlegging av subnett sammenlignet med IPv4
 - De fleste IPv6-subnett bruker et 64-bit prefiks
 - Autokonfigurasjon krever et 64-bit prefiks
 - Fast prefikslengde på 64 bit er ikke et absolutt krav
 - DHCPv6 eller manuell konfigurasjon (kan) brukes når prefikslengda er ulik 64 bit

IPv6 ved Fagskolen Innlandet

- 1994: Tildelt 128.39.174.0/24 av Uninett
- 1. juni 2005: Ny IT-ansvarlig, yours truly
- Høsten 2005: Fikk reservert IPv4-serien 128.39.172.0/23
- Påska 2006: Fikk reservert IPv6-serien 2001:700:1100::/48
- Før og etter pinsehelga 2006: Fiberlinjer fra serverrommet og til sentrale punkter i hver etasje i hovedbygningen
- Sommeren 2006: Nytt Cisco-gear som Catalyst 3560G og 2960
 - 128.39.46.8/30 ble satt opp som linknett mellom HiG/Uninett og FSI
 - 128.39.174.0/24 ble subnettet og satt opp som servernett og ansattnett, m.m.
 - 128.39.172.0/24 ble subnettet og satt opp som nett for datalab
 - 128.39.173.0/24 ble satt opp som klienter på trådløst studentnett

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

13 / 78

Kort om IPv6

IPv6 ved Fagskolen Innlandet

- 6. september 2006: IPv6-linknettet 2001:700:0:11D::/64 ble aktivert mellom HiG/Uninett og FSI
 - 2001:700:0:11D::1/64 brukes hos HiG
 - 2001:700:0:11D::2/64 brukes hos FSI
- Samme dag ble IPv6 innført for FSI-VLAN-ene 20, 30, 70 og 80.
 - FSI-VLAN 20: 2001:700:1100:1::/64
 - FSI-VLAN 30: 2001:700:1100:2::/64
 - FSI-VLAN 70: 2001:700:1100:3::/64
 - FSI-VLAN 80: 2001:700:1100:4::/64
- Sommeren 2007: Genererte og frivillig registrerte ULA-serien FD5C:14CF:C300::/48 for FSI-VLAN som tidligere bare brukte RFC-1918-adresser

IPv6 ved Fagskolen Innlandet

- Høsten 2010: Enda en IPv4-serie ble innført: 128.39.194.0/24
 - 128.39.172.0/23 brukes til klienter på trådløst studentnett
 - 128.39.194.0/24 brukes til datalab etter samme m
 ønster som for 128.39.172.0/24
- I dag er de fleste brukere kasta over til OFK-nettene
- Dette skjedde etter ombygginga i 2011–2012
- Andreklasse data er velsigna med å kunne velge mellom FSI- og OFK-nettene
- Andreklasse data velger som regel det førstnevnte, vanligvis FSI-VLAN 48, 128.39.194.192/27 og 2001:700:1100:8008::/64

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

15 / 78

Kort om IPv6

IPv6 ved Fagskolen Innlandet

- Alle FSI-VLAN har både IPv4- og IPv6-adresser
- FSI-VLAN med offentlige IPv4-adresser bruker offentlige IPv6-adresser fra 2001:700:1100::/48-serien
- FSI-VLAN med private IPv4-adresser (RFC 1918) bruker private IPv6-adresser fra FD5C:14CF:C300::/48-serien
- Private adresser brukes for alt utstyr som ikke har behov for internettforbindelse:
 - Switcher (med unntak av kjerneswitchen som er L3-router for nettverket ved FSI)
 - Basestasjoner og WLAN-kontroller
 - UPS-er
 - Skrivere
 - VPN-klienter

IPv6-header

Hentet fra

http://www.tekkom.dk/mediawiki/images/5/5e/CCNP-108.png FAGSKOLEN >

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

17 / 78

IPv6-header

- IPv6-headeren er dobbelt så stor som IPv4-headeren (20 oktetter)
- IPv6-headeren har færre felter enn IPv4-headeren
- De utelatte feltene er i stor grad flyttet over til egne utvidelsesheadere

IPv6-header

- Versjonsfeltet (4 bit) settes til 0110
- Traffic Class (8 bit) er det samme som Type of Service i IPv4
- Flow Label (20 bit) er et nytt felt og foreløpig eksperimentell

- Payload Length (16 bit) er det samme som Total Length i IPv4
- Next Header (8 bit) er det samme som Protocol i IPv4
- Hop Limit (8 bit) er det samme som Time To Live i IPv4
- Avsender og mottaker er
 128-bit IPv6-adresser
- IPv4-feltene Internet Header Length (IHL), Identification, Flags, Fragment Offset, Header Checksum, Options og Padding, er enten fjernet for godt eller flyttet til egne FAGSKOLEN utvidelsesheadere

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

19 / 78

IPv6-header

- Utvidelsesheaderne finnes i stort antall:
 - Hop-by-hop options
 - Destination options
 - Routing
 - Fragment
 - Authentication Header
 - Encapsulating Security Payload
 - Mobility
- Se RFC 2460, RFC 4302, RFC 4303 og RFC 6275

IPv6 over Ethernet

- RFC 2464 definerer frameformatet for IPv6-datagrammer over Ethernet
- IPv6-datagrammer fraktes i standard Ethernetformat, RFC 894
- Først angis mottakerens MAC-48-adresse
- Deretter angis avsenders MAC-48-adresse
- Frametypen settes til 86DD heksadesimalt
- Deretter f
 ølger IPv6-header og resten av datagrammet
- Overføring av hode og hale er vanligvis en oppgave for lag 1
- Standard MTU for IPv6 over Ethernet er 1500 oktetter
- Minste tillatte MTU for IPv6 er 1280 oktetter
- Er største tilgjengelige MTU mindre enn 1280 oktetter, så må lagene under IPv6 sørge for fragmentering og sammensetting av IPv6-datagrammene (RFC 2460)

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

21 / 78

Grunnleggende om adresser

- 128 bit
- Heksadesimal notasjon
- 16 bit grupperes, adskilt med kolon
- Ledende nuller kan sløyfes
- To eller flere 16-bit-blokker med nuller kan slås sammen til :: (dobbelkolon), bare én gang pr. adresse
- Prefikslengde angis ved å slenge på en skråstrek og antall signifikante bit fra venstre mot høyre

Adressedemo

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

• Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

23 / 78

Grunnleggende om adresser

Adressedemo: Hierarkisk struktur

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

Adressedemo: La oss forenkle adressene

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

• Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

25 / 78

Grunnleggende om adresser

Adressedemo: Ledende nuller

Uninett:

2001:0700:0000:0000:0000:0000:0000:0000

FSI:

2001:0700:1100:0000:0000:0000:0000:0000

IT-avdelingen@FSI:

2001:0700:1100:0003:0000:0000:0000:0000

Tronds D531:

2001:0700:1100:0003:0221:70FF:FE73:686E

Adressedemo: Fjernet ledende nuller

Uninett:

2001:700:0:0:0:0:0:0

• FSI:

2001:700:1100:0:0:0:0:0

• IT-avdelingen@FSI:

2001:700:1100:3:0:0:0:0

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

27 / 78

Grunnleggende om adresser

Adressedemo: La oss forenkle litt til

Uninett:

2001:700:0:0:0:0:0:0

FSI:

2001:700:1100:0:0:0:0:0

IT-avdelingen@FSI:

2001:700:1100:3:0:0:0:0

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

Adressedemo: To eller flere sammenhengende 16-bitgrupper med bare 0

Uninett:

2001:700:0:0:0:0:0:0

• FSI:

2001:700:1100:0:0:0:0:0

• IT-avdelingen@FSI:

2001:700:1100:3:0:0:0:0

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

29 / 78

Grunnleggende om adresser

Adressedemo: Erstattet med dobbelkolon

Uninett:

2001:700::

FSI:

2001:700:1100::

IT-avdelingen@FSI:

2001:700:1100:3::

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

Adressedemo: Kompakt form

Uninett:

2001:700::

• FSI:

2001:700:1100::

• IT-avdelingen@FSI:

2001:700:1100:3::

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

31 / 78

Grunnleggende om adresser

Adressedemo: Vis prefikslengde

Uninett:

2001:700::/32

FSI:

2001:700:1100::/48

IT-avdelingen@FSI:

2001:700:1100:3::/64

• Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E/128

Adressedemo: Kompakte adresser med prefikslengde

Uninett:

2001:700::/32

FSI:

2001:700:1100::/48

IT-avdelingen@FSI:

2001:700:1100:3::/64

Tronds D531:

2001:700:1100:3:221:70FF:FE73:686E/128

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

33 / 78

Grunnleggende om adresser

MAC-48-adresser

- MAC-48-adresser har følgende oppbygging:
 - CC:cc:cc:nn:nn:nn (heksadesimalt)
 - Den første halvparten er produsentnummer: CC:cc:cc
 - Den andre halvparten er løpenummer: nn:nn:nn
- Den første oktetten i produsentnummeret, CC, har en spesiell oppbygging:
 - CCCCCCug (binært)
 - Når u-bitet er satt til 0 (null), så gjelder formatet som er oppgitt her, altså CC:cc:cc:nn:nn (heksadesimalt)
 - Når u-bitet er satt til 1, så er alle C- og c-sifrene løpenummer, mens uog g-bitene beholder sine spesielle betydninger
 - Når g-bitet er 0 så angir adressa en individuell node, og når g-bitet er 1 så er adressa en multicastgruppe
 - Når g-bitet settes lik 1, så blir også u-bitet satt lik 1
 - Kombinasjonen ug = 01 er høyst uvanlig

MAC-48-adresser

- Gitt denne MAC-48-adressa: 00:21:70:73:68:6E
- CC-oktetten har verdien 00 (heksadesimalt)
- På binær form er dette 00000000 (CCCCCCug)
- Vi ser at både u- og g-bitene er satt til 0
- Dette er en MAC-48-adresse som:
 - følger det vanlige mønsteret med produsent- og løpenummer
 - angir en individuell node
 - Dell Inc er produsenten ifølge OUI-lista hos IEEE (søk i fila etter 00-21-70)

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

35 / 78

Grunnleggende om adresser

Modda IEEE EUI-64-format

- Unicast-adresser består av 2 ting:
 - Prefiks
 - Grensesnittidentifikator
- Grensesnittidentifikatorer er på 64 bit
- Grensesnittidentifikatorer kan lages automatisk fra MAC-48-adresser
- Grensesnittidentifikatorer kan også angis manuelt eller velges tilfeldig (RFC 4941)
- Angis grensesnittidentifikatoren manuelt, så angis som regel hele IPv6-adressa manuelt
- Grensesnittidentifikatorer følger IEEE EUI-64-formatet med to unntak:
 - universal/local-bitet brukes med invertert betydning/verdi
 - (gruppebitet beholder sin vanlige betydning)
 - oktettene på midten er FF:FE ved automatisk konvertering fra MAC-48 til EUI-64

Modda IEEE EUI-64-format

- Grensesnittidentifikatorer lages fra MAC-48-adresser etter oppskriften i RFC 4291:
 - Gitt denne MAC-48-adressa: 00:21:70:73:68:6E
 - 00 (heksadesimalt) \rightarrow 00000000 (binært)
 - Invertér universal/local-bitet: 02:21:70:73:68:6E
 - 02 (heksadesimalt) \rightarrow 00000010 (binært)
 - Sett inn FF:FE på midten: 02:21:70:FF:FE:73:68:6E
 - Ta bort overflødig kolon og nuller: 221:70FF:FE73:686E
 - Høyreskift hele stasen: ::221:70FF:FE73:686E
 - Nå er grensesnittidentifikatoren klar til å bli kombinert med ønsket prefiks
 - Prefiks fra router: 2001:700:1100:3::/64
 - Fullstendig adresse: 2001:700:1100:3:221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

37 / 78

Grunnleggende om adresser

Modda IEEE EUI-64-format

- OBS! Arbeidsuhell!
- Det skulle egentlig ha vært FF:FF i stedet for FF:FE
 - MAC-48 → EUI-64 skal bruke FF:FF
 - EUI-48 → EUI-64 skal bruke FF:FE
- Siden IPv6 bruker universal/local-bitet med invertert betydning/verdi,
 så er arbeidsuhellet akseptert
- Se RFC 4291

Modda IEEE EUI-64-format

- Manuell grensesnittidentifikator innebærer at universal/local-bitet er satt til 0
- De øvrige 63 bitene kan være hva som helst, bare verdien ikke skaper adressekollisjon i samme VLAN
- Normalt setter man en lav verdi for manuelle grensesnittidentifikatorer
- For eksempel ::53 (DNS-tjener, kanskje)
- Uten invertering av universal/local-bitet, måtte vi bruke manuelle grensesnittidentifikatorer på formen ::0200:0:0:53 (heksadesimalt)
- ::0200:0:0:53 (heksadesimalt) →::0000001000000000:00...00:000000001010011 (binært)

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

39 / 78

Grunnleggende om adresser

Spesialadresser

- Nulladressa: 0:0:0:0:0:0:0:0/0 eller ::/0
 - Brukes av klienter som ennå ikke vet sin egen adresse (DHCPv6)
 - Brukes av tjenester som godtar forespørsler fra alle grensesnitt (sjekk ut bind(2)-systemkallet i «Juniks»)
- Loopbackadressa: 0:0:0:0:0:0:0:1/128 eller ::1/128
 - Velkjent adresse for å snakke med seg selv
- Dokumentasjonsprefiks: 2001:db8::/32
 - Brukes for generell beskrivelse av IPv6-oppsett i lærebøker og annen generell dokumentasjon
 - Forbudt å bruke på det offentlige internettet
 - Bør blokkeres i inngående og utgående ACL-er for internettgrensesnittet til routere

Spesialadresser

- IPv4-mapped IPv6 addresses: ::FFFF: w. x. y. z
 - Hvor w.x.y.z er den opprinnelige IPv4-adressa skrevet på vanlige måte for IPv4-adresser
 - Eksempel: ::FFFF:128.39.174.1
 - Brukes i systemer som har både IPv4- og IPv6-adresser, men hvor den enkelte tjeneste bare bruker IPv6-socketer og har slått av IPV6_V60NLY med setsockopt(2) for lyttesocketen
 - Forbudt av sikkerhetshensyn i enkelte OS-er som OpenBSD, se OpenBSDs ip6(4)
 - Tjenestene må da åpne separate lyttesocketer for IPv4 og IPv6

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

41 / 78

Grunnleggende om adresser

- Navn-til-IPv6-adresser bruker AAAA-poster
 - Eksempel:

```
$ORIGIN fig.ol.no. svabu IN AAAA 2001:700:1100:1::4
```

- IPv6-adresser-til-navn bruker PTR-poster plassert i ip6.arpa
 - Eksempel:

```
$ORIGIN 1.0.0.0.0.0.1.1.0.0.7.0.1.0.0.2.ip6.arpa. 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR svabu.fig.ol.no.
```

Se RFC 3596

- A6-poster var foreslått som erstatning for AAAA-poster av RFC 2874, men merket som eksperimentell av RFC 3363
- RFC 3364 diskuterer fordeler og ulemper med AAAA og A6
- En A6-post består av 2–3 ting:
 - Prefikslengde
 - Utdrag av IPv6-adressa
 - Navn som henviser til resten av adressa
- Er prefikslengda satt til 0, så er det ikke lov å oppgi henvisning
- Er prefikslengda satt til 128, så kan man utelate utdraget av IPv6-adressa

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

43 / 78

Grunnleggende om adresser

• Et tenkt eksempel med A6:

 Vi vil vite IPv6-adressa for svabu.fig.ol.no. og vi vil bruke A6-poster

• Et tenkt eksempel med A6:

```
$ORIGIN ip6.uninett.no.
uninett IN A6 0 2001:700::
```

- Forklaring:
 - Kjeden starter med uninett.ip6.uninett.no.

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

45 / 78

Grunnleggende om adresser DNS

• Et tenkt eksempel med A6:

```
$ORIGIN ip6.uninett.no.
uninett IN A6  0 2001:700::
fig     IN A6 32 0:0:1100:: uninett
```

- Forklaring:
 - fig.ip6.uninett.no. mangler de 32 mest signifikante bitene og henviser til uninett.ip6.uninett.no.

• Et tenkt eksempel med A6:

- Forklaring:
 - ext-servere.ip6.fig.ol.no. mangler de 48 mest signifikante bitene og henviser til fig.ip6.uninett.no.

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

47 / 78

Grunnleggende om adresser

• Et tenkt eksempel med A6:

- Forklaring:
 - svabu.fig.ol.no. mangler de 64 mest signifikante bitene og henviser til ext-servere.ip6.fig.ol.no.

• Et tenkt eksempel med A6:

• Vi får bygd opp følgende adressekjede:

```
    ::4 svabu.fig.ol.no.
    0:0:0:1:: ext-servere.ip6.fig.ol.no.
    0:0:1100:: fig.ip6.uninett.no.
    2001:700:: uninett.ip6.uninett.no.
```

• Bitvis-OR gir den sammensatte adressa 2001:700:1100:1::4

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

49 / 78

Adressetyper

- Det finnes flere adressetyper med forskjellige bruksområder:
 - Unicast-adresser:
 - Link-local-adresser
 - Site-local-adresser
 - Offentlige unicast-adresser
 - Unike, lokale, aggregerbare adresser
 - Anycast-adresser
 - Multicast-adresser
- Merk at broadcast er avskaffa og er i stor grad erstatta med link-local-multicast

Link-local-adresser

Definert: RFC 4291

- Bruksområde:
 - Lokal kommunikasjon internt i VLAN-et
 - Sentral for autokonfigurasjon
 - Blir ikke videresendt av routere til andre VLAN eller til internett
 - Kan brukes i ad-hoc-nett
- Prefiks: FE80::/10
- De neste 54 bitene skal settes til null
- De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format
- Eksempel: FE80::221:70FF:FE73:686E

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

51 / 78

Adressetyper

Site-local-adresser

Definert: RFC 3513

• Bruksområde: private adresser på lik linje med RFC 1918

Prefiks: FEC0::/10

- De neste 54 bitene brukes til subnet-ID
- De siste 64 bitene er grensesnittidentifikatoren i modda EUI-64-format
- Eksempel: FECO::DEAD:BEEF:1337
- Ikke bruk site-local-adresser (RFC 3879)
- Site-local-adresser er erstatta med ULA (RFC 4193)

Offentlige unicast-adresser

• Definert: RFC 4291 og RFC 3587

• Bruksområde: ende-til-ende-kommunikasjon på det offentlige internett

Prefiks: 2000::/3

- De neste bitene allokeres hierarkisk, minimum i 4-bitblokker, men gjerne i 8- eller 16-bitblokker
- De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format
- Det er vanlig at kundene blir tildelt /48- eller /56-bits prefiks av ISP-ene
 - /48-bits prefiks gir 64-48=16 subnetbit $\rightarrow 2^{16}=65536$ subnett
 - /56-bits prefiks gir 64 54 = 8 subnetbit $\rightarrow 2^8 = 256$ subnett
- Eksempel: 2001:700:1100:1::1/128

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

53 / 78

Adressetyper

Unike, lokale, aggregerbare adresser

Definert: RFC 4193

- Bruksområde: ende-til-ende-kommunikasjon internt i nettverket
- Veldig praktisk å ha faste, interne adresser uavhengig av offentlig prefiks tildelt av ISP
- Prefiks: FC00::/7
- Det åttende mest signifikante bitet skal settes til 1 inntil videre
- Det reelle prefikset er dermed FD00::/8
- Prefikset FC00::/8 er reservert inntil videre

Unike, lokale, aggregerbare adresser

- Reelt prefiks: FD00::/8
- De neste 40 bitene genereres tilfeldig, gjerne som beskrevet i RFC 4193:
 - Uttrykk nåværende øyeblikk som et 64-bit heltall i NTP-format (RFC 5905).
 - Bruk en EUI-64-identifikator fra systemet som kjører denne algoritmen.
 - Mangler du en EUI-64-identifikator, kan du lage en fra en 48-bit MAC-adresse som angitt i RFC 3513.
 - Kan du ikke lage en EUI-64-identifikator, så bruk en annen unik verdi som serienummeret til systemet.
 - Sett sammen de to 64-bit heltallene til et 128-bit heltall.
 - Beregn en SHA-1-hash som beskrevet i RFC 3174. Resultatet er et heltall på 160 bit.
 - Bruk de 40 minst signifikante bitene som global identifikator.
- De neste 16 bitene brukes til subnett-ID
- De siste 64 bitene er grensesnittidentifikator i modda EUI-64-format
- Eksempel: FD5C:14CF:C300:31::1/128

Eksemper. FD5C:14CF:C500:51::1/1

IPv6-foredrag

27. september 2013

55 / 78

Adressetyper

T. Endrestøl (FSI/IT)

Anycast-adresser

Definert: RFC 4291

• Bruksområde: felles adresse for distribuerte tjenester

Prefiks: ingen, allokeres fra dine egne unicast-adresser

• Eksempel: 2001:700:1100::/128 anycast

Multicast-adresser

Definert: RFC 4291

• Bruksområde: én-til-mange-kommunikasjon

• Prefiks: FF::/8

• Flagg f og rekkevidde r er innebygget i adressa: FFfr::/16

• Eksempel: FF0E::101/128 (global multicast-adresse for NTP)

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

57 / 78

Adressetyper

Multicast-adresser

Flaggene heter ORPT

(null, err, pe, te)

- Flagget T angir med 0 at adressa er velkjent (definert av IANA), og med 1 at adressa er midlertidig (lokalt definert)
- Flagget P angir med 1 at adressa inneholder et unicast-prefiks og skal følge reglene i RFC 3306
- Flagget R angir med 1 at adressa også inneholder et møtepunkt («rendezvous point») og skal følge reglene i RFC 3956
- Flaggene P og R gjør det mulig å enkelt lage egne multicast-adresser for internt bruk i organisasjonen

- Følgende rekkevidder er definert i RFC 4921:
- 0: reservert
- 1: interface-local
- 2: link-local
- 3: reservert
- 4: admin-local
- 5: site-local
- 6: ikke definert
- 7: ikke definert

- 8: organization-local
- 9: ikke definert
- A: ikke definert,
 brukt av Uninett til å begrense
 trafikken innenfor «Uninettet»
- B: ikke definert
- C: ikke definert
- D: ikke definert
- E: global
- F: reservert

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

59 / 78

ICMPv6

- Feilrapportering- og feilsøkingstjeneste for IPv6
- Definert: RFC 4443 og RFC 4844
- ICMPv6-meldinger inneholder to tall som forteller om budskapets mening og innhold:
 - Type: hovednummer
 - Code: undernummer, settes til 0 når det ikke er definert noen undernummer
- I tillegg kommer felter for sjekksum og opplysninger som er unike for hver type (og undertype) av meldingene

- Feilmeldinger:
 - 1: Destination Unreachable
 - 2: Packet Too Big
 - 3: Time Exceeded
 - 4: Parameter Problem
 - 100: Private eksperimenter
 - 101: Private eksperimenter
 - 127: Reservert for utvidelse av feilmeldingene
- Informative meldinger:
 - 128: Echo request (ping)129: Echo reply (pong)
 - 200: Private eksperimenter201: Private eksperimenter
 - 255: Reservert for utvidelse av informative meldinger

T. Endrestøl (FSI/IT) IPv6-foredrag 27. september 2013 61 / 78

ICMPv6

Multicast Listener Discovery

- Definert: RFC 2710
- Angir tre nye ICMPv6-meldinger:
 - 130: Multicast Listener Query
 - 131: Multicast Listener Report
 - 132: Multicast Listener Done

Neighbor Discovery

- Definert: RFC 4861
- Angir fem nye ICMPv6-meldinger:
 - 133: Router Solicitation
 - 134: Router Advertisement
 - 135: Neighbor Solicitation
 - 136: Neighbor Advertisement
 - 137: Redirect
- Sentral ved autokonfigurering av adresser
- Brukes for å bekrefte at nodene er oppegående og bestemme lag 2-adressene til mottakere
- Neighbor Discovery vil bli gjennomgått i detalj i foredraget for de viderekomne

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

63 / 78

ICMPv6

Router Renumbering

- Definert: http://www.iana.org/assignments/ icmpv6-parameters/icmpv6-parameters.xhtml oppgir Matt Crawford som referanse
- Angir én ny ICMPv6-melding:
 - 138: Router Renumbering
- http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml angir følgende undertyper:
 - 0: Router Renumbering Command
 - 1: Router Renumbering Result
 - 255: Sequence Number Reset
- Jeg har hittil ikke klart å finne ut noe mer om denne ICMPv6-meldinga

Inverse Neighbor Discovery

- Definert: RFC 3122
- Angir to nye ICMPv6-meldinger:
 - 141: Inverse Neighbor Discovery Solicitation
 - 142: Inverse Neighbor Discovery Advertisement
- Gjør det mulig for én node å lære IPv6-adressen(e) til en annen node i samme VLAN, når man bare vet lag 2-adressa til den andre noden

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

65 / 78

ICMPv6

Version 2 Multicast Listener Report

- Definert: RFC 3810
- Angir én ny ICMPv6-melding:
 - 143: Version 2 Multicast Listener Report

Mobile IPv6

- Definert: RFC 6275
- Angir fire nye ICMPv6-meldinger:
 - 144: Home Agent Address Discovery Request
 - 145: Home Agent Address Discovery Reply
 - 146: Mobile Prefix Solicitation
 - 147: Mobile Prefix Advertisement

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

67 / 78

ICMPv6

SEcure Neighbor Discovery (SEND)

- Definert: RFC 3971
- Angir to nye ICMPv6-meldinger:
 - 148: Certification Path Solicitation
 - 149: Certification Path Advertisement

Multicast Router Discovery

• Definert: RFC 4286

• Angir tre nye ICMPv6-meldinger:

• 151: Multicast Router Advertisement

• 152: Multicast Router Solicitation

• 153: Multicast Router Termination

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

69 / 78

ICMPv6

FMIP_v6

• Definert: RFC 5568

• Angir én ny ICMPv6-melding:

• 154: FMIPv6

RPL Control Message

• Definert: RFC 6550

• Angir én ny ICMPv6-melding:

• 155: RPL Control Message

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

71 / 78

ICMPv6

ILNPv6 Locator Update Message

• Definert: RFC 6743

• Angir én ny ICMPv6-melding:

• 156: ILNPv6 Locator Update Message

Duplicate Address

• Definert: RFC 6775

• Angir to nye ICMPv6-meldinger:

• 157: Duplicate Address Request

• 158: Duplicate Address Confirmation

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

73 / 78

DHCPv6

• Bla, bla, bla

OS-konfig

Bla, bla, bla

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

75 / 78

Tunneloppsett

Bla, bla, bla

Noen RFC-er om IPv6

- IPv6-spesifikasjon: RFC 2460, RFC 5095, RFC 5722, RFC 5871, RFC 6437, RFC 6564, RFC 6935 og RFC 6946
- ICMPv6: RFC 4443 og RFC 4884
- Neighbor Discovery: RFC 4861, RFC 5942 og RFC 6980
- Krav til IPv6-noder: RFC 6434
- Path MTU: RFC 1981
- DHCPv6: RFC 3315, RFC 4361, RFC 5494, RFC 6221, RFC 6422 og RFC 6644
- Overføring av IPv6-pakker over Ethernet: RFC 2464 og RFC 6085

T. Endrestøl (FSI/IT)

IPv6-foredrag

27. september 2013

77 / 78

Noen RFC-er om IPv6

- Adressearkitektur: RFC 4291, RFC 5952 og RFC 6052
- Unicastadresser: RFC 3587
- ULA: RFC 4193
- Autokonfigurering av adresser: RFC 4862
- Random interface ID: RFC 4941
- Prefiks-baserte multicastadresser: RFC 3306, RFC 3956 og RFC 4489
- IPsec: RFC 4301, RFC 4302, RFC 4303, RFC 4304, RFC 4307, RFC 4308, RFC 4309, RFC 4312, RFC 4835 og RFC 5996
- For programmerere av nettverksprogrammer: RFC 4038

