COM 2545 Order of Growth

Raziel Siegman ()

September 18, 2020

Question 1.

1) Allow $n_0 = 100$ and c=33.

For $n > n_0$, $n^2 \ge 17n + 1$.

Therefore, $0 \le 32n^2 + 17n + 1 \le 32n^2 + n^2 = 33n^2 = cx^2$.

Therefore, $32n^2 + 27n + 1$ is $O(n^2)$.

2) If $32n^2 + 17n + 1$ were O(n), then there would be values c and n_0 where $0 \le 32n^2 + 17n + 1 \le n$ cn for $n \geq n_0$.

This implies that $32n + 17 + \frac{1}{n} \le c$, which is not true when $n \ge c$.

If $32n^2 + 17n + 1$ were $O(n \log n)$, then there would be values c and n_0 where $0 \le 32n^2 + 17n + 1 \le c(n \log n)$ for $n \ge n_0$. This implies that $\frac{32n^2 + 17n + 1}{n \log n} \le c$ and $\frac{32n + 17 + \frac{1}{n}}{\log n} \le c$. However, this is not true when n > c.

Question 2.

1) Allow $n_0 = 1$ and c=1.

 $3n^2 + 17n + 1 \ge n^2 = cn^2$ for $n \ge n_0$ and is therefore $(\Omega(n^2))$.

Allow $n_0 = 1$ and c=1.

 $3n^2 + 17n + 1 \ge n = cn$ for $n \ge n_0$ and is therefore $(\Omega(n))$.

2) If $32n^2+17n+1$ were $\Omega(n^3)$, then there would be values c and n_0 where $32n^2+17n+1 \ge cn^3 \ge 0$ for $n \geq n_0$.

This implies that $\frac{32}{n} + \frac{17}{n^2} + \frac{1}{n^3} \ge c$. However, $\lim_{n \to +\infty} \left(\frac{32}{n} + \frac{17}{n^2} + \frac{1}{n^3}\right) = 0$, which implies that at as n approaches infinity, $c \le 0$, which is impossible, as c must be a positive constant.

Question 3.

1) Allow $n_0 = 100$, $c_1 = 1$ and $c_2 = 33$.

For $n > n_0$, $n^2 \ge 17n + 1$.

Therefore, $0 \le 32n^2 + 17n + 1 \le 32n^2 + n^2 = 33n^2 = c_2x^2$.

Additionally, $3n^2 + 17n + 1 \ge n^2 = c_1 n^2$.

Therefore, $0 \le c_1 n^2 \le 3n^2 + 17n + 1 \le c_2 n^2$.

Therefore, $3n^2 + 17n + 1$ is $\Theta(n^2)$

2) If $32n^2 + 17n + 1$ were $\Theta(n)$, then there would be values c_1 , c_2 and n_0 where $0 \le c_1 n \le 1$ $32n^2 + 17n + 1 \le c_2 n \text{ for } n \ge n_0.$

This implies that $32n^2 + 17n + 1 \le c_2 n$, and $32n + 17 + \frac{1}{n} \le c_2$, which is not true when $n \ge c_2$.

If $32n^2 + 17n + 1$ were $\Theta(n^3)$, then there would be values c_1 , c_2 and n_0 where $0 \le c_1 n^3 \le$ $32n^2 + 17n + 1 \le c_2 n^3$ for $n \ge n_0$.

This implies that $c_1 n^3 \leq 32n^2 + 17n + 1$, and therefore $c_1 \leq \frac{32}{n} + \frac{17}{n^2} + \frac{1}{n^3}$. However, $\lim_{n \to +\infty} \left(\frac{32}{n} + \frac{17}{n^2} + \frac{1}{n^3}\right) = 0$, which implies that at as n approaches infinity, $c \leq 0$, which is impossible, as c must be a positive constant.