Ecuaciones en Diferencias Estocásticas

Prof. J. Rivera Noriega

ITAM

Otoño de 2020

1/16

Ecuaciones en diferencias con iteración hacia adelante

Consideramos ahora la situación en que escribimos una ecuación lineal en diferencias de primer orden en la forma $x_t = \alpha x_{t+1} + \beta$.

En este caso se está modelando una situación en que en el presente conocemos o esperamos un valor a futuro. Una situación así ocurre si pro ejemplo x_t representa el valor de un bono.

En este caso podemos usar la idea de recurrencia hacia adelante:

$$x_t = \alpha x_{t+1} + \beta = \alpha (\alpha x_{t+2} + \beta) + \beta = \dots = \alpha^n x_{t+n} + \beta \sum_{k=0}^{n-1} \alpha^k$$

Nótese que se tendrá una sucesión bien definida que podremos llamar solución de la ecuación en diferencias original siempre que

$$|\alpha| < 1,$$
 $\lim_{n \to \infty} \alpha^n x_{t+n}$ existe

Ecuaciones en diferencias con iteración hacia adelante - Definiciones básicas

Se dice que la solcuión iterada al infinito existe si las dos condiciones anteriores se cumplen, y en este caso la solución se obtiene al tomar límite si $n \to \infty$, y se escribe como

$$x_t = \lim_{n \to \infty} \alpha^n x_{t+n} + \frac{\beta}{1 - \alpha}$$

El término $\frac{\beta}{1-\alpha}=\beta\sum_{k=0}^{\infty}\alpha^k$ es llamado la **parte fundamental** de la solución.

El término $\lim_{n\to\infty} \alpha^n x_{t+n}$ es llamado la **burbuja** de la solución.

Con un ejemplo posterior trataremos de aclarar esta terminología.

Ecuaciones en diferencias con iteración hacia adelante - Definiciones básicas

Podemos también considerar ecuaciones más generales de la forma $x_t = \alpha x_{t+1} + \beta y_t$

En este caso es natural suponer que sabemos algo sobre la sucesión (y_{t+k}) .

Por ejemplo, repitiendo la idea de "iterar hacia adelante" podemos deducir que

$$x_t = \alpha^n x_{t+n} + \beta \sum_{k=0}^{n-1} \alpha^k y_{t+k}$$

Entonces se podría requerir que la serie $\sum_{k=0}^{n-1} \alpha^k y_{t+k}$ sea convergente.

Ejemplo - Precio de un activo

Denotemos por p_t el precio de un bono al tiempo t con rendimiento variable d_t , que se obtiene al final del periodo t.

Para considerar una condición de *no arbitraje*, supongamos que la tasa constante del activo sin riesgo es r, de manera que se deberá cumplir

$$(p_{t+1}-p_t)+d_t=p_tr$$

es decir que es equivalente invertir en el activo sin riesgo $(p_t r)$ que en el activo con rendimientos variables $((p_{t+1} - p_t) + d_t)$.

Obsérvese que la ecuación anterior puede escribirse como

$$p_t = \frac{1}{1+r}p_{t+1} + \frac{1}{1+r}d_t$$

Ejemplo - Precio de un activo

Con la idea de "iterar hacia adelante" tendremos

$$p_{t} = \left(\frac{1}{1+r}\right)^{n} p_{t+n} + \left(\frac{1}{1+r}\right) \sum_{k=0}^{n-1} \left(\frac{1}{1+r}\right)^{k} d_{t+k}$$
$$= \left(\frac{1}{1+r}\right)^{n} p_{t+n} + \sum_{k=0}^{n-1} \left(\frac{1}{1+r}\right)^{k+1} d_{t+k}$$

Entonces la solución podría escribirse como

$$p_t = \lim_{n o \infty} \left(rac{1}{1+r}
ight)^n p_{t+n} + \sum_{k=0}^\infty \left(rac{1}{1+r}
ight)^{k+1} d_{t+k}$$

Ejemplo - Precio de un activo

En este caso, decir que no hay burbujas quiere decir que

$$\lim_{n\to\infty} \left(\frac{1}{1+r}\right)^n p_{t+n} = 0 \tag{*}$$

lo cual lleva a que la solución

$$p_t = \sum_{k=0}^{\infty} \left(\frac{1}{1+r}\right)^{k+1} d_{t+k}$$

Es decir que el precio al tiempo t es el valor presente de los dividendos futuros.

De aquí que la condición (*) diga que no hay "burbujas especulativas"

Expectativas racionales - Esperanza matemática condicional

Dado que no se puede tener una perfecta previsión del futuro, realmente deberíamos plantear la ecuación *"iterada hacia adelante"* como

$$x_t = \alpha \mathcal{E}[x_{t+1}] + \beta y_t$$

donde $\mathcal{E}[X_{t+1}]$ es un "valor esperado" para x_{t+1} con la información conocida al tiempo t.

Formalmente diríamos que $\mathcal{E}[x_{t+1}]$ es la **esperanza condicional** $\mathbb{E}_t(x_{t+1}) := \mathbb{E}[x_{t+1}|\mathcal{I}_t]$, donde \mathcal{I}_t es la "información conocida al tiempo t".

En general para cualquier **variable aleatoria** Y tiene sentido definir $\mathbb{E}_t[Y]$ como el valor que se espera que Y tenga con la información disponible al tiempo t.

Esto incluye los valores de x_{t-j} y y_{t-j} para $j=0,1,2,\ldots,t$.

Esperanza condicional - Algunas propiedades

Con esta idea inicial, tendríamos que

$$\mathcal{I}_t \subseteq \mathcal{I}_{t+1}, \qquad \mathbb{E}_t[x_{t-j}] = x_{t-j}, \quad j = 0, 1, 2, \dots, t.$$

$$\mathbb{E}_t\big[\mathbb{E}_{t+k}[\,\cdot\,]\big] = \mathbb{E}_t[\,\cdot\,], \qquad \mathbb{E}_{t+k}\big[\mathbb{E}_t[\,\cdot\,]\big] = \mathbb{E}_t[\,\cdot\,], \quad k \geq 0$$

$$\mathbb{E}_t[aY + bZ] = a\mathbb{E}_t[Y] + b\mathbb{E}_t[Z]$$

Con estas propiedades daremos la idea de la solución de la ecuación

$$x_t = \alpha \mathbb{E}_t[x_{t+1}] + \beta y_t, \qquad |\alpha| < 1 \tag{1}$$

Solución de la ecuación en diferencias estocástica

Primero recorremos un periodo hacia el futuro

$$x_{t+1} = \alpha \mathbb{E}_{t+1}[x_{t+2}] + \beta y_{t+1},$$

y tomamos esperanza condicional al tiempo t:

$$\mathbb{E}_t[x_{t+1}] = \alpha \mathbb{E}_t \big[\mathbb{E}_{t+1}[x_{t+2}] \big] + \beta \mathbb{E}_t[y_{t+1}]$$

que por las propiedades antes descritas lleva a

$$\mathbb{E}_t[x_{t+1}] = \alpha \mathbb{E}_t[x_{t+2}] + \beta \mathbb{E}_t[y_{t+1}]$$
 (2)

Sustituyendo (2) en (1) obtenemos

$$x_t = \alpha \left(\alpha \mathbb{E}_t[x_{t+2}] + \beta \mathbb{E}_t[y_{t+1}] \right) + \beta y_t = \alpha^2 \mathbb{E}_t[x_{t+2}] + \alpha \beta \mathbb{E}_t[y_{t+1}] + \beta y_t$$
 (3)

Solución de la ecuación en diferencias estocástica

Ahora recorremos la ecuación original dos periodos hacia el futuro, tomamos esperanza condicionada al tiempo t y aplicamos las propiedades de esperanzas condicionadas tendremos

$$\mathbb{E}_t[x_{t+2}] = \alpha \mathbb{E}_t[x_{t+3}] + \beta \mathbb{E}_t[y_{t+2}],$$

y sustituyendo en (3) tendremos

$$x_t = \alpha^3 \mathbb{E}_t[x_{t+3}] + \alpha^2 \beta \mathbb{E}_t[y_{t+2}] + \alpha \beta \mathbb{E}_t[y_{t+1}] + \beta y_t$$

Iterando así n veces obtenemos

$$x_t = \alpha^n \mathbb{E}_t[x_{t+n}] + \beta \sum_{k=0}^{n-1} \alpha^k \mathbb{E}_t[y_{t+k}].$$

Solución de la ecuación en diferencias estocástica

Teorema

Supóngase que se cumple

$$|\alpha| < 1, \qquad \lim_{n \to \infty} \alpha^n \mathbb{E}_t[x_{t+n}] = 0$$

Entonces la solución que se obtiene al iterar hacia adelante indefinidamente está dada por

$$x_t^* = \beta \sum_{k=0}^{\infty} \alpha^k \mathbb{E}_t[y_{t+k}].$$

De nuevo a esta x_t^* se le llama la parte fundamental de la solución y a $\lim_{n\to\infty} \alpha^n \mathbb{E}_t[x_{t+n}]$ se le conoce como burbuja de la solución.

De vuelta al ejemplo de bonos

Aplicando las ideas anteriores en el ejemplo del precio de un bono, podríamos escribir la ecuación que lo modela como

$$p_t = \frac{1}{1+r} \mathbb{E}_t[p_{t+1}] + \frac{1}{1+r} d_t$$

La condición que no hay burbujas se escribe como

$$\lim_{n\to\infty}\left(\frac{1}{1+r}\right)^n\mathbb{E}_t[p_{t+n}]=0$$

e implica que al hacer $n \to \infty$ la solución queda

$$p_t = \sum_{k=0}^{\infty} \left(\frac{1}{1+r}\right)^{k+1} \mathbb{E}_p d_{t+k}$$

que dice que el precio al tiempo t es el valor presente de los dividendos futuros esperados.

Procesos estocásticos discretos como burbujas

Ahora veamos a cada valor del estado x_t como una función constante que tomo como argumento la información contenida en \mathcal{I}_t

Es decir, x_t es una variable aleatoria para cada periodo t. La sucesión $\left(x_t\right)$ forma un proceso estocástico discreto

Entonces, la solución de una ecuación estocástica de la forma

$$x_t = \alpha \mathbb{E}_t[x_{t+1}] + \beta y_t, \qquad |\alpha| < 1$$
 (**)

que no admite burbujas es la llamada solución fundamental x_t^* .

Si admitimos que haya burbujas dadas por un proceso estocástico γ_t , es decir si $x_t = x_t^* + \gamma_t$ es cualquier otra solución de (**) entonces se debe cumplir $\gamma_t = \mathbb{E}_t[\gamma_{t+1}]$

Esta es la llamada propiedad de martingala de γ_t .

Verificación

Para verificar la afirmación anterior, aplicamos la técnica anterior: recorremos el tiempo un periodo hacia adelante y tomamos esperanza condicional $\mathbb{E}_t[\cdot]$ para obtener

$$\mathbb{E}_{t}[x_{t+1}] = \mathbb{E}_{t}[x_{t+1}^{*}] + \mathbb{E}_{t}[\gamma_{t+1}]$$
 (***)

Sustituyendo x_t y (***) en la ecuación original obtenemos

$$\mathbf{x}_{t}^{*} + \gamma_{t} = \alpha \mathbb{E}_{t}[\mathbf{x}_{t+1}^{*}] + \alpha \mathbb{E}_{t}[\gamma_{t+1}] + \beta \mathbf{y}_{t}$$

Ahora tomemos la fórmula $x_t^* = \beta \sum_{k=0}^\infty \alpha^k \mathbb{E}_t[y_{t+k}]$ y apliquemos la misma idea para obtener

$$\mathbb{E}_t[x_{t+1}^*] = \beta \sum_{k=0}^{\infty} \alpha^k \mathbb{E}_t[y_{t+k+1}]$$

Verificación

Al multiplicar por α obtenemos

$$\alpha \mathbb{E}_t[x_{t+1}^*] = \beta \sum_{k=0}^{\infty} \alpha^{k+1} \mathbb{E}_t[y_{t+k+1}] = x_{t+1}^* - \beta y_t \quad \text{pues } \mathbb{E}_t[y_t] = y_t$$

Al sustituir en los términos en azul de la página anterior obtenemos le propiedad de martingala $\gamma_t = \alpha \mathbb{E}_t[\gamma_{t+1}]$