Multivariable Calculus Day 3 Equations for lines and planes

Truong-Son Van

Spring 2023

Fulbright University Vietnam

Equations for lines and planes

Equation for a line

A line is a collection of points that is parallel to a vector and goes through a

$$L = \{ \mathbf{r}(t) | \mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, t \in \},$$

where r_0 is the initial position and \mathbf{v} is the direction. The equation for $\mathbf{r}(t)$ is called a vector equation for a line L.

1

Equation for a line

Let $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{r}_0 = (x_0, y_0, z_0)$. The **parametric equations** of L is the following system of equations

$$x = x_0 + v_1 t$$
,
 $y = y_0 + v_2 t$,
 $z = z_0 + v_3 t$.

This leads to the **symmetric equations** of *L*

$$\frac{x-x_0}{v_1} = \frac{y-y_0}{v_2} = \frac{z-z_0}{v_3} \, .$$

Equation for plane

A hyperplane is a collection of points that is perpendicular to one specific direction

$$P = \{ \mathbf{r} \, | \, \mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0 \}.$$

 \boldsymbol{n} is the perpendicular vector to the plane called the normal vector.