

Perceptron與多層感知器(Multi-Layer Perceptrons)

林郁修

Yu-Hsiu Lin

yhlin@ntut.edu.tw
https://sites.google.com/view/aici

Graduate Institute of Automation Technology, National Taipei University of Technology

2023/3/1

Advanced Internet of Deep Computational Intelligence Lab

Outline

- 機器學習的架構
- 感知器 (Perceptron)
- 感知器的學習
- 感知器 VS. 多層感知器 (Multi-Layer Perceptrons)
- 多層感知器的學習

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab

Outline

- 機器學習的架構
- 感知器 (Perceptron)
- 感知器的學習
- 感知器 VS. 多層感知器 (Multi-Layer Perceptrons)
- 多層感知器的學習

2023/3/1

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

機器學習的架構

Outline

- 機器學習的架構
- 感知器 (Perceptron)
- 感知器的學習
- 感知器 VS. 多層感知器 (Multi-Layer Perceptrons)
- 多層感知器的學習

2022/2/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

- 生物大腦中約**有數十億個到數佰億個神經元**,有的神經元間沒有相互連結, 有的則以非常錯綜複雜的方式相連結,甚至有環狀或有回饋**(feedback)**式的 連結
- 生物對新事物的學習(learning),基本上是造成神經元間連結(weights)強弱 的改變(weighting),或是使原本沒有連結的神經元間產生新的連結
 - 連結權重 \mathbf{w}_{j} 即模擬不同生物神經元之間的連結強弱
 - 連結權重值可為**正**亦可為*負*;分別代表**刺激**或是*抑制*反應
- 神經元太少無法處理較複雜的問題
 - 深度學習的發展

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

- Activations functions
 - Identity

– TanH

$$tanh(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$$

- Rectified Linear Unit (ReLU)

- ...

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

1

Outline

- 機器學習的架構
- 感知器 (Perceptron)
- 感知器的學習
- 感知器 VS. 多層感知器 (Multi-Layer Perceptrons)
- 多層感知器的學習

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

感知器的學習 (Perceptron Learning Algorithm)

- 為何需要"學習"?
 - 平面中可以有無限多條的決策線 (超平面(hyper-plane)/決策邊界(decision boundaries))...
 - 高維度的特徵空間 (feature space)

_ ...

- 1. 隨機決定一條決策線
- 2. 分類錯誤
- 3. "修正"參數

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

12

• PLA

- 決策超平面: 兩個多維度的**向量做內積 w^Tx**
- 向量加、減法

 $y = \begin{cases} \text{Mill} + 1, & \text{if } x_1 - x_2 \ge 0 \\ \text{Mill} - 1, & \text{if } x_1 - x_2 < 0 \end{cases}$

$$\Delta \mathbf{w}_{j} = \underbrace{\eta} \left[d - sgn\left(\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x} \right) \right] \mathbf{x}$$

 $\Delta w_j = \begin{cases} \pm 2\eta x, & \exists 標值與類神經元輸出值不一致 \\ 0, & \exists 標值與類神經元輸出值一致 \end{cases}$

?

2023/3/15

Advanced Internet of Deep Computational Intelligence Lat National Taipei University of Technology

PLA pseudo-code (參考)

- If a mis-classification exists, a perceptron that aims to classify all patterns correctly is trained.
 - 1: initialize weight vector \vec{w} and bias weight w_0 arbitrarily
 - 2: while exist misclassified pattern $\vec{x} \in \mathcal{P} \cup \mathcal{N}$ do
 - 3: if $\vec{x} \in \mathcal{P}$ then
 - 4: $\vec{w} \leftarrow \vec{w} + \vec{x}$
 - 5: $w_0 \leftarrow w_0 + 1$
 - 6: else
 - 7: $\vec{w} \leftarrow \vec{w} \vec{x}$
 - 8: $w_0 \leftarrow w_0 1$
 - 9: end if
 - 10: end while
 - 11: **return** \vec{w} and w_0

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

15

P. positive training

N: negative training

patterns

patterns

Assignment #1 (Part I)

- · 解決AND gate分類問題
- 利用Perceptron學習法(PLA)更新感知器的權重值

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology


```
• the code import numpy as np

inputs = [] inputs.append(np.array([1, 1, 1])) inputs.append(np.array([1, 0, 1])) inputs.append(np.array([0, 1, 1])) inputs.append(np.array([0, 0, 1])) labels = np.array([1, 0, 0, 0])

Iters = 10

no_of_inputs = 2 weights = np.random.randn(no_of_inputs + 1) print("initial: " + str(weights))

learning_rate = 0.15
```

```
# cont'd

for _ in range(Iters):
    for _input, label in zip(inputs, labels):

    summation = np.dot(_input, weights) # dot product

    if summation > 0: # the step activation function
        predicted = 1
    else:
        predicted = 0

    weights += learning_rate * (label - predicted) * _input

print("trained: " + str(weights))

2023/3/15

Mational Tabel University of Technology
```


Assignment #1 (Part II) (Cont'd)

- Hints import pandas as pd
 - iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')
 - iris.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

2023/3/1

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

2

Assignment #1 (Part II) (Cont'd)

- Hints (Cont'd)
 - 特徵選取於變量使用:sepal length vs. sepal width, sepal length vs. petal width, or ...
 - https://ithelp.ithome.com.tw/articles/10264416

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

23

• Hints (Cont'd)

- https://scikitlearn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
- https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

- Hints (Cont'd)
- 什麼情況PLA不會停止?
 - 資料分佈為非線性可分離 (non-linearly separable)
 - 有限的PLA學習迭代次數

- POCKET ALGORITHM
 - 雜訊資料 (真實世界一定存在著分類錯誤情況 (nothing is perfect))
 - □袋名單 (g ∈ H)

2023/3/1

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

2

• Hints (Cont'd)

 https://scikitlearn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

Advanced Internet of Deep Computational Int

27

2022/2/1

- 需說明特徵選取(考量哪兩個特徵作為分類器的輸入變量)
- 需視覺化呈現決策邊界
- 佔本課程學期總成績15%
- Due: 4/5(三), 2023 23:59前上傳PPT檔至i學園作業繳交區
- Oral: 4/6(四), 2023 約10分鐘/人

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

Perceptron Convergence Theorem (參考)

- http://www.cs.columbia.edu/~mcollins/courses/6998-2012/notes/perc.converge.pdf
- http://www.cems.uvm.edu/~rsnapp/teaching/cs295ml/notes/perceptr on.pdf

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

3

(參考)

學習演算法	Δw_{ji}	初始權重	學習法	神經元特性
Hebbian	$\eta y_j x_i(t)$	0	非監督 式	任意
Perceptron	$\eta [d_j - sgn(w_j x)]x_i$	任意	監督式	binary/bi- polar
Delta	$\eta (d_j - y_j) f'(net_j) x$	任意	監督式	連續
Widrow- Hoff	$\eta (d_j - w_j x) x$	任意	監督式	任意
Correlation	$\eta d_j x$	0	監督式	任意
Winner- takes-all	$\alpha (x_i - w_{mi})$	任意(正規化)	非監督 式	連續
Grossberg	$\beta (d_m - w_{mi})$	0	監督式	連續

Advanced Internet of Deep Computational Intelligence La
National Taipei University of Technology

連續型活化函數

- Perceptron: $y=f(x)=w\cdot x$
- · Activation function: Identity

• Error function/cost function:

$$E(w) = \frac{1}{2} \left(\frac{d-y}{d-y} \right)^2$$

• Goal: Learn the output towards the value of 50

• Learning: $\Delta w = -\eta [(d - w \cdot x)(-x)]$

2023/3/15

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology

3

the (steepest) gradient descent Gradient descent algorithm

- η : 0.01 (\in (0, 1))
- Results $(\Delta w = + \eta[(d-w \cdot x)(x)])$:
 - **-7*5=35**
 - -8.5*5=42.5
 - 9.25 * 5 = 46.25
 - 9.625 * 5 **=** 48.125
 - **9.8125 * 5 = 49.0625**
 - 9.90625 ***** 5 **=** 49.5312

– ...

- **9.98828 * 5 = 49.9414**
- 9.99414 * 5 = 49.9707

2022/2/1

Advanced Internet of Deep Computational Intelligence Lab National Taipei University of Technology


```
• import numpy as np
• inputs = [] # x
• inputs.append(np.array([0.922]))
• inputs.append(np.array([0.459]))
• inputs.append(np.array([0.984]))
• inputs.append(np.array([0.794]))
• inputs.append(np.array([0.119]))
• inputs.append(np.array([0.258]))
• inputs.append(np.array([0.734]))
• inputs.append(np.array([0.123]))
• inputs.append(np.array([0.713]))
• inputs.append(np.array([0.943]))
• labels = np.array([0.559, 0.298, 0.639, 0.516, 0.077, 0.167, 0.477, 0.079, 0.463, 0.612]) #y
• Iters = 10

    no_of_inputs = 1

   np.random.seed(55)
• weights = np.random.randn(no_of_inputs)

    print("initial: " + str(weights))

• learning_rate = 0.1
```

```
• Err = []
• #_W = []

    for _ in range(Iters):

     err = 0
     W = []
     for _input, label in zip(inputs, labels):
        predicted = np.dot(\_input, weights) \ \# \ dot \ product
        weights -= learning_rate * (label - predicted) * (-1) * _input
        err += (label - predicted) ** 2
        #W.append(weights)
     Err.append(err/len(inputs))
     #_W.append(np.std(W))
• print("trained: " + str(weights))
• import matplotlib.pyplot as plt
• %pylab inline
• plt.plot(range(0, len(Err)),Err)

    plt.xlabel('Iteration')

• plt.ylabel('loss/error')
```

