Architetture dei Sistemi di Delivery date:

Elaborazione 23 November 2023

O2GOLOV

Laboratory Expected delivery of lab_5.zip must include: This file in pdf format.

Exercise 1:

Software Optimizations

Starting from Exercise 2 of Lab 4, you are required to further speedup the benchmark (*my_c_benchmark*) **3**.

For readability, provide the previously used configurations (Cut & Paste).

Parameters	Configuration 1	Configuration 2	Configuration 4	Configuration 5
First changed paramenter	the_cpu.fetch Width = 10	opLat = 1 for IntAlu,IntMultDiv FP_ALU and FP_MultDiv	tag_latency=1 (L1Cache)	the_cpu.issueWi dth=10
Second changed paramenter	the_cpu.decod eWidth = 10	opLat = 1 for IntAlu,IntMultDiv FP_ALU and FP_MultDiv	data_latency=1 (L1Cache)	opLat=1 for FloatAdd
Third changed paramenter	the_cpu.dispat chWidth= 10	opLat = 1 for IntAlu,IntMultDiv FP_ALU and FP_MultDiv	response_latenc y=1 (L1Cache)	count=10 for IntAlu
Parameters	Configuration 1	Configuration 2	Configuration 4	Configuration 5

Original CPI (no hardware optimization): 2.228475

	Configuration 1	Configuration 2	Configuration 4	Configuration 5
СРІ	2.011729	2.165835	1.995633	2.227976
Speedup (wrt Original CPI)	1.11	1.03	1.12	1.0002

Despite the hardware enhancements for increasing the CPU performance, remember that <u>optimizing</u> <u>compilers for programs</u> in high-level code also exist. The aim of optimizing compilers is to minimize or maximize some attributes of an executable computer program (code size, performance, etc.). They are also aware of hardware enhancements to perform very accurate optimizations.

Compilers can be your best friend (or worst enemy!). The more information you provide in your program, the better the optimized program will be.

You can compile your programs with different SW optimization strategies and/or additional features.

In the setup_default file:

You can change the line 12.

Simulate the program for different optimization levels and collect statistics. You are required to change the OPTIMIZATION_FLAGS variable in the *setup_default*. O0 is the default value, you need to change the optimization value accordingly to the values in parenthesis in the following Table.

DO NOT CONFUSE -O3 WITH O3 PROCESSOR.

TABLE1: IPC for different compiler optimization levels and configurations

Optimization						
	Opt Ivl 0	Opt Ivl 1	Opt lvl 2	Opt size	Opt Ivl 3	Opt IvI 2
	(-O0)	(-01)	(-02)	(-Os)	(-03)	(-02
Configuration						fast-math)
Original			0.443626	0.415027	0.443626	0.458622
Configuration	0.480053	0.396446				
Configuration 1	0.505169	0.441051	0.454268	0.437745	0.454268	0.468158
Configuration 2	0.498848	0.443117	0.454153	0.437067	0.454153	0.482011
Configuration 4	0.525957	0.452581	0.469799	0.455070	0.469799	0.492646
Configuration 5	0.481379	0.409736	0.443589	0.417908	0.443589	0.459133
Program Size [Bytes]	3228	3044	3032	3016	3032	3032

Regarding the Program Size (Code and Data!!), you can retrieve the size from:

```
~/ase_riscv_gem5_sim$ /opt/riscv-2023.10.18/bin/riscv64-unknown-elf-size --format=gnu --radix=10 ./programs/my_c_benchmark/my_c_benchmark.elf
```

For brave and curious guys:

For visualize the enabled optimizations from the compiler perspective, you can run:

```
~/my_gem5Dir$ /opt/riscv-2023.10.18/bin/riscv64-unknown-elf-gcc -Q -O2 --help=optimizers
```

By changing the "-O2" parameter with the desired one, you will find the enabled/disabled optimizations.

Here are some possible types of optimizations:

- https://en.wikipedia.org/wiki/Optimizing compiler
- https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Exercise 2:

Given your benchmark ($my_c_benchmark.c$), select the best optimization to obtain your best angle of optimization, compared to the baseline configuration ($riscv_o3_custom.py$; -00).

1. Based on Table 1 (from Exercise 1), select the best optimization (for example, the green box corresponding to Configuration 1 with -O2).

Optimization						
	Opt Ivl 0	Opt Ivl 1	Opt IvI 2	Opt size	Opt Ivl 3	Opt IvI 2
	(-00)	(-01)	(-02)	(-Os)	(-O3)	(-02
Configuration						fast-math)
Original			0.443626	0.415027	0.443626	0.458622
Configuration	0.480053	0.396446				
Configuration 1	0.505169	0.441051	0.454268	0.437745	0.454268	0.468158
Configuration 2	0.498848	0.443117	0.454153	0.437067	0.454153	0.482011
Configuration 4	0.525957	0.452581	0.469799	0.455070	0.469799	0.492646
Configuration 5	0.481379	0.409736	0.443589	0.417908	0.443589	0.459133
Program Size			3032	3016	3032	3032
[Bytes]	3228	3044				

2. By using **Konata**, overlap the two pipelines (the original obtained with riscv_o3_custom.py and the optimized corresponding to the best SW-HW combination) to compute your angle of optimization.

Compute the angle α (named optimization angle) existing between the traces.

Hint: To load different traces in Konata, load them separately. Afterward, righ-click in the pipeline visualizer and select "transparent mode". You need to adjust the scale!

$$\alpha = \arctan\left(\frac{\mathit{ClockCycles_baseline}}{\mathit{Instructions_baseline}}\right) - \arctan\left(\frac{\mathit{ClockCycles_optimized}}{\mathit{Instructions_optimized}}\right)$$

3. To compute the **angle of optimization** α :

The angle of optimization is equal to: given the image below and by computing the angle according to the formula, the result it's about 7.28341407

4. Do you see any visual improvements (for example, a less discontinued pipeline)? Yes, why? No, why? What is happening? How could they be improved?

Some improvements can be seen from the overlapping of the 2 traces. For example, we can notice that less stalls occur in the faster configuration.