INSTRUCTIONS: Books, notes, and electronic devices are <u>not</u> permitted. Fill out your bluebook properly including lecture number and instructor name. Also make a **grading table** with room for 6 problems and a total score. **Start each problem on a new page.** Box your final answers. A correct answer with incorrect or no supporting work may receive no credit. **SHOW ALL WORK**

1. (15 points) Evaluate the following:

(a)
$$\int \frac{a+bx^2}{\sqrt{3ax+bx^3}} dx$$

(b)
$$\int \frac{\cos\left(\frac{\pi}{x}\right)}{x^2} dx$$

(c)
$$\int_0^{\frac{\pi}{4}} \frac{\sin(x)}{\cos^3(x)} dx$$

- 2. (15 points) The expression $\lim_{n\to\infty}\sum_{i=1}^n\frac{4}{n}\sqrt{\frac{4}{n}}i$ describes the area of a region bounded by some function f(x) on $1\leq x\leq 5$ using subintervals of equal width and right endpoints.
 - (a) What is the function f(x)?
 - (b) Set up a definite integral to compute the area of the region.
 - (c) Find the area of the region.
- 3. (12 points) Suppose that at any time t (seconds) the current i (amp) in an alternating current circuit is $i = 2\cos t + 2\sin t$. What is the peak (largest positive magnitude) current for this circuit?
- 4. The following questions are not related:
 - (a) (12 points) The temperature T (degrees) inside a furnace is described by the function $T(t) = 1000 + 100 \sin(\frac{\pi}{12}t + \frac{\pi}{6})$ where t is the time in hours, t = 0 corresponding to when the furnace is first fired up. Find the average temperature in the furnace during its first two hours of operation.
 - (b) (12 points) Recalling that a function is constant on an interval if and only if its derivative is zero on that interval, show that the following function is constant on $(0, \infty)$.

$$f(x) = \int_0^{\frac{2}{x}} \frac{1}{t^2 + 1} dt + \int_0^x \frac{2}{t^2 + 4} dt.$$

- 5. (14 points) A cyclist pedals along a straight road with velocity $v(t) = 2t^2 8t + 6$ miles per hour for three hours.
 - (a) Find the displacement of the cyclist (in miles) on the time interval [0, 3].
 - (b) Find the distance traveled over the interval [0,3].

MORE on the back page

- 6. (20 points) Produce an answer with a short, succinct explanation. Box only your answer (not the explanation).
 - (a) Consider using Newton's method to find the root of a function, f(x). Suppose that for your initial guess, x_1 , you discover that $f(x_1) = 0$. Assuming that $f'(x_1) \neq 0$ (and $f'(x_1)$ is defined), what is $f(x_3)$?
 - (b) Which of the following statements (i, ii, iii, or iv) is NOT asking for the same information?
 - i. Find the x-coordinates of the points where the curve $y = x^3 3x$ crosses the horizontal line y = -1.
 - ii. Find the roots of $f(x) = x^3 3x 1$.
 - iii. Find the x-coordinates of the intersections of the curve $y = x^3$ with the line y = 3x + 1.
 - iv. Find the values of x where the derivative of $g(x) = (\frac{1}{4})x^4 (\frac{3}{2})x^2 x + 5$ equals zero.
 - (c) If $\int_0^{\pi} \cos(\sin x) dx = 2.4$, then $\int_{-\pi}^{\pi} \cos(\sin x) dx = ?$
 - (d) For some function h(x), it is known that h'(x) = 2 for all x in the interval [0,6] and h(0) = -4. Find $\int_0^6 h(x)dx$.
 - (e) Is it true or false that there exists a c in [1,4] such that the rectangle with length 3 and height $\frac{c}{\sqrt{1+2c}}$ has an area of $\int_1^4 \frac{x}{\sqrt{1+2x}} dx$.

END of Exam