TOSHIBA CMOS Integrated Circuits Silicon Monolithic

TCA62724FMG

Three-Channel Constant-Current LED Driver

The TCA62724FM is an optimal constant-current LED driver for RGB pixel LEDs.

The device supports 16 dimming states for each color in the RGB pixel LED setup, resulting in 4096 colors for carrying out illumination by internal PWM.

Moreover, it is not necessary to connect external resistance to an output in almost all cases.

The forward current of the LED is set up using the external resistor.

SON10-P-0303-0.50

Weight: 0.016 g (typ.)

Features

Output current capability and the number of outputs : 155 mA x 3

outputs

Constant current range : 5 to 150 mA

Low consumption current

Supply current at operation (lout = 20 mA) : $600 \mu A$ Supply current at standby : $1 \mu A$

• For anode common LED

Power supply voltage range
 VDD = 2.8 to 5.5 V

I²C interface (I²C is a trademark of Philips Electronics N.V.)

Package : SON10-P-0303-0.50 (height: 0.8 mm)

Package and Pin Layout (top view)

Block Diagram

Terminal Description

Pin No.	Pin Name	Function
1	SHDN	IC input terminal enable When the data is "L", power-saving mode applies; when the data is "H", the IC operates.
2	SDA	Serial data input / output terminal
3	SCL	Serial clock input terminal
4	RESET	Low active reset input terminal
5	GND	GND terminal
6	REXT	This is an output current setting resistor connect terminal. The output current does not flow when this terminal is opened. Excessive output current will destroy the IC if this terminal is connected to GND.
7	OUT2	
8	OUT1	Output terminal
9	OUT0	
10	V_{DD}	2.8 V to 5.5 V supply voltage terminal

Maximum Ratings $(T_{opr} = 25^{\circ}C)$

Characteristic	Symbol	Ratings	Unit
Supply voltage	V_{DD}	-0.3 ~ +6.0	V
Output voltage	V _{OUT}	-0.3 ~ +6.0	V
Output current	I _{out}	155	mA/ch
Input voltage	V_{IN}	−0.3 ~ V _{DD} +0.3	mA
SDA terminal current	I _{SDA}	10	mA
GND current	I_{GND}	470	mA
Davis dia sinatia s	D	0.41 (free air)	W
Power dissipation	P _D	0.47 (on PCB)*	VV
		300 (free air)	0000
Thermal resistance	R _{th (j-a)}	260 (on PCB)	°C/W
Operating temperature	T_{opr}	−40 ~ +85	°C
Storage temperature	T _{stg}	−55 ~ +150	°C
Maximum junction temperature	Tj	150	°C

Note: Subtract 3.8 mW / degree from the maximum rating value about a degree if the operation temperature exceeds 25°C when the device is mounted on a PCB.

Recommended Operating Condition (unless otherwise specified, T_{opr} = - 40 to 85°C)

Characteristic		Symbol	Symbol Condition		Тур.	Max	Unit
Supply voltage		V_{DD}	-	2.8	3.6	5.5	V
Input voltage	High level	V _{IH}	SDA, SCL, SHDN, RESET	$0.7V_{DD}$	-	V _{DD} +0.15V	V
Input voltage	Low level	V _{IL}	SDA, SCL, SHDN, RESET	-0.15	-	$0.3V_{DD}$	V
Constant curre	nt output	l _{out}	OUT0 to OUT2	5	-	150	mA/ch
REXT		REXT	-	3.7	-	109	kΩ
SDA terminal current		I _{SDA}	Acknowledge	-	3	-	mA

Electrical Characteristics (unless otherwise specified, V_{DD} = 2.8 to 5.5 V, T_{opr} = 25°C)

Characteristic		Symbol	Condition	Min	Тур	Max	Unit	
Supply voltage		V_{DD}	-	2.8	3.6	5.5	V	
Supply current (IC operation)		I _{DD} (On)	REXT = 27.6 kΩ, V_{DD} = 3.6 V	-	-	700	μΑ	
Supply current (IC standby)	I _{DD} (Off)	SHDN = L	-	-	1.0	μΑ	
Input voltage	High level	V _{IH}	SDA, SCL, SHDN, RESET	$0.7V_{DD}$	-	V _{DD} +0.15V	V	
Input voltage Low level		V _{IL}	SDA, SCL, SHDN, RESET	-0.15	-	$0.3V_{DD}$	v	
Input current		I _{IN}	SCL, SHDN, RESET	-1.0	-	1.0	μА	
Gain		GAIN	I_{OUT}/I_{REXT} , REXT = 11 k Ω	359	460	560	A/A	
REXT terminal v	oltage/	V_{REXT}	V_{DD} =3.6 V, REXT = 11 k Ω	1.09	1.17	1.25	V	
Output leakage	current	loz	SHDN = "L", V _{OUT} = 5.5 V	1	-	0.1	μΑ	
Constant current accuracy between bits		dl _{OUT}	V_{DD} = 3.6 V, REXT = 11 k Ω	-	±1	±7.5	%	
PWM frequency		f _{PWM}	-	-	3.0	-	kHz	
Time from SHDN release to start of operation		t _{RE}	-	-	2	5	ms	

Characteristics of the SDA and SCL Bus Lines for I²C-bus Devices

Characteristic	Symbol	Standar	d Mode	Unit
Characteristic	Symbol	Min	Max	Ullit
SCL clock frequency	f _{SCL}	0	100	kHz
Bus free time between STOP and START condition	t _{BUF}	4.7	-	μs
Hold time (repeated) START condition	t _{HD;STA}	4.0	-	μs
Setup time for repeated START condition	t _{SU;STA}	4.7	-	μs
Setup time for STOP condition	t _{SU;STO}	4.0	-	μs
Data hold time	t _{HD;DAT}	0	-	ns
Data setup time	t _{SU;DAT}	250	-	ns
LOW period of the SCL clock	t _{LOW}	4.7	-	μs
HIGH period of the SCL clock	t _{HIGH}	4.0	-	μs
Rise time of both SDA and SCL signals	t _f	-	1000	ns
Fall time of both SDA and SCL signals	t _r	-	300	ns

Example Applications: Cellular Phone

Application as Camera Light

(Primary-color red, green and blue LEDs combine to emit good-quality white light for color reproducibility.)

Application as Cellular Phone Illumination

(Combination with the TB62733FTG and the drive of two or more cellular phone LEDs is possible.)

I²C Interface

*DATA transfer format

s	Slave address 7 bits	R/W	Α	Sub-address 8 bits	Α	DATA byte 8 bits	Α	Р	
---	-------------------------	-----	---	-----------------------	---	---------------------	---	---	--

*START condition (S), STOP condition (P)

START condition : A HIGH to LOW transition on the SDA line while SCL is HIGH. STOP condition : A LOW to HIGH transition on the SDA line while SCL is HIGH.

*DATA validity

The data on the SDA line must be stable during the HIGH period of the clock.

The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW.

*Acknowledge (A)

The receiver is obliged to generate an Acknowledge after each byte has been received.

*Slave address

TCA62724FMG

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	0	1	0	1	0	1	R/W

R/W: When this bit is set to "H", READ mode applies; when it is set to "L", WRITE mode applies.

*Sub-address

PWM0 (PWM Duty Data Setup of OUT0)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Al	0	0	0	0	0	0	1

PWM1 (PWM Duty Data Setup of OUT1)

- 3				,				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Al	0	0	0	0	0	1	0

PWM2 (PWM Duty Data Setup of OUT2)

I	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Ĭ	Al	0	0	0	0	0	1	1

ENABLE / SHDN (Data Setup of ENABLE / SHDN)

	(= a.ca		, , , , , , , , , , , , ,	,			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Al	0	0	0	0	1	0	0

Al: When this bit is set to "H", auto-increment is OFF; when it is set to "L", auto-increment is ON.

*DATA byte

PWM0, PWM1, and PWM2 DATA PWM ON Duty DATA (0/15 to 15/15)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Don'	t use			PWM ON I	Duty DATA	

(default ="0000")

Bit 3	Bit 2	Bit 1	Bit 0	DWW ON Duty
	DA	TΑ		PWM ON Duty
1	1	1	1	15/15
1	1	1	0	14/15
1	1	0	1	13/15
1	1	0	0	12/15
1	0	1	1	11/15
1	0	1	0	10/15
1	0	0	1	9/15
1	0	0	0	8/15
0	1	1	1	7/15
0	1	1	0	6/15
0	1	0	1	5/15
0	1	0	0	4/15
0	0	1	1	3/15
0	0	1	0	2/15
0	0	0	1	1/15
0	0	0	0	0/15

ENABLE / SHDN DATA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Don't use				Х	Х	ENABLE	SHDN

(default = "00000000")

ENABLE DATA

H : Output blinks at PWM0, PWM1, and PWM2 rate

L : Output is OFF

SHDN data

H : Output blinks at PWM0, PWM1, and PWM2 rate

L : Power-saving mode

*WRITE mode

Auto-increment C	١F	F
------------------	----	---

S Slave Address R/W (0) A Sub-address A DATA A Sub-address A DATA	Р	>
---	---	---

Auto-increment ON

S	Slave Address	R/W (0)	Α	Sub- address	A	DATA	Α	DATA	A		Р	
---	------------------	------------	---	-----------------	---	------	---	------	---	--	---	--

The data of the immediately following Sub-address can be written in.

*READ mode

S	Slave Address	R/W (1)	А	First Byte	Α	Second Byte	Р	
---	------------------	------------	---	------------	---	-------------	---	--

First byte (ENABLE / SHDN DATA and PWM2 DATA)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
х	х	ENABLE	SHDN		PWM2	DATA	

Second byte (PWM1 DATA and PWM0 DATA)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	PWM1	DATA			PWMC	DATA	•

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Setting of Output Current (Reference Data)

The output current is set by the resistance connected between terminal REXT and GND. The output current can be set according to the following expression.

$$I_{OUT}$$
 (mA) =
$$\frac{1.17 \text{ (V)}}{\text{REXT (k}\Omega)} \times 460$$

Output Voltage - Output Current (Reference Data)

Output Current - PWM Duty (Reference Data)

Power Dissipation - Operating Temperature (Reference Data)

Marking

C01 : Product number

Q : Monthly and weekly code

A1 : Lot code

Week 27-53

C 0 1

Q A 1

Package Dimensions

Weight: 0.016 g (typ.)

SOLDERABILITY

The following conditions apply to solderability.

- Solderability
 - (1) Use of Sn-63Pb solder bath
 - solder bath temperature = 230°C, dipping time = 5 seconds, number of times = once, use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder bath
 - solder bath temperature = 245°C, dipping time = 5 seconds, number of times = once, use of R-type flux

CAUTION

- Particular care is necessary in the design of the output, VCC, COMMON and GND lines since the IC may be destroyed by short circuits between outputs, air contamination faults, or faults arising from improper grounding.
- Do not insert devices in the wrong orientation. Make sure that the positive and negative terminals of power supplies
 are connected correctly. Otherwise the rated maximum current or power dissipation may be exceeded and the
 device may break down or undergo performance degradation, causing it to catch fire or explode and resulting in
 injury.
- Note that the IC may be destroyed as a result of damage to or misconnection of external components.

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.