# Отчет по лабораторной работе №2

## Задача о погоне - вариант 69

Любимов Дмитрий Андреевич НФИбд-01-20

#### Содержание

| Цель работы                    | 2 |
|--------------------------------|---|
| Задание                        | 2 |
| Выполнение лабораторной работы | 2 |
| Условие задачи                 | 4 |
| Код программы (Julia)          | 5 |
| Решение                        | 6 |
| Выводы                         | 7 |

### Цель работы

Приведем один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска. Например, рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

#### **Задание**

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n раз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

#### Выполнение лабораторной работы

Принимаем за  $t_0 = 0$ ,  $X_0 = 0$  - место нахождения лодки браконьеров в момент обнаружения,  $X_0 = k$  - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров  $x_0 = \mathbf{0}(\theta = x_0 = \mathbf{0})$ , а полярная ось г проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x-k (или x+k, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как  $\frac{x}{v}$  или  $\frac{x+k}{v}$  (для второго случая  $\frac{x-k}{v}$ ). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние можно найти из следующего уравнения:  $\frac{x}{v} = \frac{x+k}{v}$  - в первом случае,  $\frac{x}{v} = \frac{x-k}{v}$  во втором случае.

Отсюда мы найдем два значения  $x_1$  и  $x_2$ , задачу будем решать для двух случаев.

$$x_1 = \frac{k}{n+1}$$
,при  $\theta = 0$ 

$$x_2=rac{k}{n-1}$$
 ,при  $heta=-\pi$ 

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие:  $v_{\tau}$  - радиальная скорость и  $v_{t}$  - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса  $v_{\tau}=\frac{dr}{dt}$ . Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем  $v=\frac{dr}{dt}$ . Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости  $\frac{d\theta}{dt}$  на радиус r,  $vr=r\frac{d\theta}{dt}$  Найдем тангенциальную скорость для нашей задачи  $v_{t}=r\frac{d\theta}{dt}$ . Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость  $v_{t}=\sqrt{n^{2}v_{\tau}^{2}-v^{2}}$ . Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения  $v_{t}=\sqrt{n^{2}v^{2}-v^{2}}$ . Следовательно,  $v_{\tau}=v\sqrt{n^{2}-1}$ .

Тогда получаем  $r \frac{d\theta}{dt} = v \sqrt{n^2 - 1}$ 

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = v\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:  $\frac{dr}{d\theta} = \frac{r}{\sqrt{n^2-1}}$ 

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах. Теперь, когда нам известно все, что нам нужно, построим траекторию движения катера и лодки для двух случаев.

#### Условие задачи

#### Вариант 69

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 19,5 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,9 раза больше скорости браконьерской лодки.

- Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

#### вариант

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 19.5 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4.9 раза больше скорости браконьерской лодки

### Код программы (Julia)

```
using Plots
using DifferentialEquations

n= 4.9
s = 19.5
fi = 3*pi/4

function f(r, p ,t)
    dr = r/sqrt(n^2-1)
    return dr
```

```
end
function f2(t)
    xt = tan(fi+pi)*t
    return xt
end
r0 = s/(n+1)
tetha0 = collect(LinRange(0, 2*pi, 1000))
probl = ODEProblem(f, r0, (0, 2*pi))
sol = solve(probl, saveat=tetha0)
t = collect(LinRange(0, 60, 1000))
r1=[]
tetha1=[]
for i in t
    push!(r1, sqrt(i^2 + f2(i)^2))
    push!(tetha1, atan(f2(i)/i))
end
plot(sol, proj=:polar, label="katerok")
plot!(tetha1, r1, proj=:polar, label="boatik")
savefig("frst.png")
r0 = s/(n-1)
tetha0 = collect(LinRange(0, 2*pi, 1000))
probl = ODEProblem(f, r0, (0, 2*pi))
sol = solve(probl, saveat=tetha0)
t = collect(LinRange(0, 170, 1000))
r1=[]
tetha1=[]
for i in t
    push!(r1, sqrt(i^2 + f2(i)^2))
    push!(tetha1, atan(f2(i)/i))
end
plot(sol, proj=:polar, label="katerok")
plot!(tetha1, r1, proj=:polar, label="boatik")
savefig("scnd.png")
```

#### Решение



траектории для случая 1 (Julia)

Точка пересечения графиков - точка пересечения катера и лодки, исходя из графика, имеет координаты

$$\begin{cases} \theta = 315 \\ r = 10 \end{cases}$$



траектории для случая 2 (Julia)

Точка пересечения графиков - точка пересечения катера и лодки, исходя из графика, имеет координаты

$$\begin{cases} \theta = 315 \\ r = 15 \end{cases}$$

Наблюдаем, что при погоне «по часовой стрелке» для достижения цели потребуется пройти меньшее расстояние.

## Выводы

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.