Método del muestreo estratificado

Sean X tal que $\mathbb{E}[X] = \mu$ y Z una variable aleatoria discreta con valores en $\{1, ..., m\}$ y tal que las probabilidades $p_j = \mathbb{P}(Z = j)$ son conocidas para cada j = 1, ..., m.

Entonces,

$$\mu = \mathbb{E}[X] = \mathbb{E}\big[\mathbb{E}[X \mid Z]\big] = \sum_{j=1}^{m} p_j \mathbb{E}[X \mid Z = j]$$

Por tanto, el estimador

$$\hat{\mu}_{str,n}(X,Z) = \sum_{j=1}^{m} p_j \left(\frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij} \right)$$

donde $x_{1j}, \dots, x_{n_i j} \stackrel{\text{i. i. d.}}{\sim} X \mid Z = j \text{ y } n_1 + \dots + n_m = n$, es un estimador insesgado de μ .

La varianza del estimador viene dada por

$$\operatorname{Var}(\hat{\mu}_{\operatorname{str},n}(X,Z)) = \sum_{j=1}^m \frac{p_j^2 \sigma_j^2}{n_j}$$
 sigmaj son las varianzas de las X/Z=j

donde $\sigma_i^2 = \operatorname{Var}(X \mid Z = j)$.

El estimador $\hat{\mu}_{\text{str},n}(X,Z)$ depende del tamaño de cada uno de los estratos. Una manera simple de elegir esos tamaños es mediante una asignación proporcional, $n_j=p_j n$ (si, además, $p_j=1/m$ para todo $j=1,\ldots,m$, la asignación se dice que es sistemática). Entonces,

$$\operatorname{Var}(\hat{\mu}_{\mathsf{str},n}(X,Z)) = \sum_{j=1}^{m} \frac{p_j^2 \sigma_j^2}{n_j}$$

$$= \frac{1}{n} \sum_{j=1}^{m} p_j \sigma_j^2$$

$$= \frac{1}{n} \sum_{j=1}^{m} p_j \operatorname{Var}(X \mid Z = j)$$

$$= \frac{1}{n} \mathbb{E}[\operatorname{Var}(X \mid Z)]$$

$$\leq \frac{1}{n} \operatorname{Var}(X)$$

$$= \operatorname{Var}(\hat{\mu}_n(X))$$

No obstante, el siguiente resultado establece cuál es la asignación óptima.

Teorema 1 Los tamaños de muestra para cada estrato dados por

$$n_j = \frac{np_j\sigma_j}{\sum_{k=1}^m p_k\sigma_k}, \quad j = 1, \dots, m$$

proporcionan la menor varianza para $\hat{\mu}_{\mathsf{str},n}(X,Z)$ de entre todos los posibles n_1,\ldots,n_m tales que $n_1+\cdots+n_m=n$.

El mínimo valor de la varianza es $\frac{1}{n} \left(\sum_{j=1}^{m} p_j \sigma_j \right)^2$.

La aplicación práctica del resultado anterior se ve dificultada por el hecho de que los σ_j no se conocen usualmente. Se puede usar un procedimiento en dos etapas:

1. Usando una asignación proporcional, se generan valores $x_{1j}, \dots, x_{n_j j} \stackrel{\text{i. i. d.}}{\sim} X \mid Z = j$ que se usan para estimar σ_j^2 mediante la cuasivarianza muestral:

$$\hat{\mu}_{j} = \frac{1}{n_{j}} \sum_{i=1}^{n_{j}} x_{ij}$$

$$\hat{\sigma}_{j}^{2} = \frac{1}{n_{j} - 1} \sum_{i=1}^{n_{j}} (x_{ij} - \hat{\mu}_{j})^{2}$$

La cantidad total n de valores generados debería ser pequeña, pero lo suficientemente grande para obtener buenas estimaciones de σ_j . Además, debe ser $n_j \geq 2$ para que esas estimaciones se puedan calcular.

2. Usando las estimaciones $\hat{\sigma}_j^2$ obtenidas, se aplica el teorema 1 para calcular el tamaño de muestra óptimo n_j de cada estrato. Debe ser $n_j \geq 2$ para poder realizar una estimación, a partir de la cuasivarianza muestral en cada estrato, de la varianza de $\hat{\mu}_{\text{str},n}(X,Z)$.