Machine learning 10

Byung Chang Chung

Gyeongsang National University

bcchung@gnu.ac.kr

Contents

- Autoencoder and reinforcement learning
 - basic structure of autoencoder
 - types of autoencoder
 - applications of autoencoder
 - basic theory of reinforcement learning
 - applications of reinforcement learning

What is autoencoder

- Encoder and decoder
 - the process of encoding converts information from a source into symbols for communication or storage
 - decoding is the reverse process, converting code symbols back into a form that the recipient understands

What is autoencoder

- Autoencoder in linear process
 - like PCA
 - encoded results can be viewed similar with the results of dimension reduction

What is autoencoder

- Stacked encoder
 - an autoencoder which has multiple hidden layers
 - compare inputs and outputs to ensure that the autoencoder is properly trained

- Fashion MNIST dataset
 - usage of stacked autoencoder
 - structure is the same as previous image

- Fashion MNIST dataset
 - by comparing input and output, the training can be validated

- Fashion MNIST dataset
 - dimension reduction
 - middle hidden layer has 30 dimensions
 - after 30-D, use t-SNE to reduce the dimension to 2

- Fashion MNIST dataset
 - result of dimension reduction

- Fashion MNIST dataset
 - unsupervised pre-training

- Fashion MNIST dataset
 - tied weights

```
dense_1 = keras.layers.Dense(100, activation="selu")
dense_2 = keras.layers.Dense(30, activation="selu")

tied_encoder = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    dense_1,
    dense_2
])

tied_decoder = keras.models.Sequential([
    DenseTranspose(dense_2, activation="selu"),
    DenseTranspose(dense_1, activation="sigmoid"),
    keras.layers.Reshape([28, 28])
])
```


- Fashion MNIST dataset
 - greedy layerwise training

Convolutional autoencoder

- When you treat the image dataset
 - convolutional network is better than dense network
 - the same idea applies to autoencoders

Recurrent autoencoder

- When you treat the time-series dataset
 - recurrent network is better than dense network
 - the same idea applies to autoencoders

Anomaly detection and denoising

Anomaly detection and denoising

Definition

 reinforcement learning is a machine learning training method based on rewarding desired behaviors and/or punishing undesired ones

- Basic structure
 - agent environment
 - action reward
 - policy

- Sample example
 - https://youtu.be/Yr_nRnqeDp0
 - genetic algorithm is similar with reinforcement learning but they are not identical algorithm

- Markov decision process (MDP)
 - provides a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker

- MDP example
 - car acceleration

- State-reward example
 - maze example

Actions: N, E, S, W

States: Agent's location

- State-reward example
 - maze example

• Arrows represent policy $\pi(s)$ for each state s

- State-reward example
 - maze example

• Numbers represent value $V^{\pi}(s)$ of each state s

Q learning

 q-learning is a model-free reinforcement learning algorithm to learn the value of an action in a particular state

- Q learning
 - formulation
 - action a_t
 - reward r_t
 - state s_t
 - policy $\pi(a|s) = \Pr[a_t = a|s_t = s]$

- Q learning
 - optimization for
 - time-series reward $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$
 - taking expectation

$$V^{\pi}(s) = \mathop{\mathbb{E}}_{a_t, a_{t+i}, s_{t+i}} \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} | s_t = s
ight]$$

by choosing an action

- Q learning
 - how to optimize?

$$Q^*(s, a) = \mathbb{E}\left[r_{t+1}|s_t = s, a_t = a\right] + \gamma \mathbb{E}_{s_{t+1}}\left[\max_{a'} Q^*(s_{t+1}, a')|s_t = s, a_t = a\right]$$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S';
until S is terminal
```


- Q learning
 - frozen lake example

S	F	F	F
F	Ξ	F	Ξ
F	F	F	I
H	F	F	G

- Q learning
 - atari game

- Deep Q learning
 - expect Q value through neural network
 - 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
 - 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
 - 5. update ϕ' : copy ϕ every N steps

- Deep Q learning
 - expect Q value through neural network

Feel free to question

Through e-mail & LMS

본 자료의 연습문제는 수업의 본교재인 한빛미디어, Hands on Machine Learning(2판)에서 주로 발췌함