Christian Cardenas

Table of Contents

1.	Información	. 3
2.	Clase 2025-08-25	. 4
	2.1. Principio del buen orden PBO	. 4
	2.2. Algoritmo de la division	. 4
	2.3. Principio de inducción matemática (débil) PIM(D)	. 5
	2.4. Ejercicios	. 6
3.	Clase 2025-08-28	. 8
	3.1. PBO ⇔ PIM(D)	. 8
	3.2. Principio de inducción matemática (general) PIM(G)	. 8
	3.3. Principio de inducción matemática (fuerte) PIM(F)	. 9

1. Información

Profesor: Carlos Andres Giraldo Hernandez

Notas:

Corte 1				
Taller	10%	?		
Quiz	5%	11 Sep		
Parcial	20%	25 Sep		
Corte 2	Corte 2			
Taller	10%	?		
Quiz	5%	16 Oct		
Parcial	20%	30 Oct		
Corte 3	Corte 3			
Parcial	30%	1 Dec		

Tutorías: Jueves 10-12, Viernes 8-10 (Biblioteca)

Contenidos:

- Números Naturales
- Números Entero
- Numero Primos
- Divisibilidad
- Teorema Fundamental de la Aritmética
- Congruencias
- Teorema Chino del residuo
- Funciones de la Teoría de Números
- Ecuaciones Diofánticas

Bibliografía:?

- Niven. I, Zuckerman. N, and Montgomery. H.L, An Introduction to the Theory of Numbers.
- T. Koshy, Elementary Number Theory with applications.

2. Clase 2025-08-25

2.1. Principio del buen orden | PBO

Definición 2.1

Principio del buen orden

Todo subconjunto no vació de los números naturales tiene mínimo

2.2. Algoritmo de la division

Sean $a, b \in \mathbb{Z}$ con b > 0. Entonces existen $q, r \in \mathbb{Z}$ únicos tal que:

$$a = bq + r$$
, $0 \le r < b$

Ejemplo Algoritmo 2.2

- -3,7: -3 = 7(-1) + 4, $0 \le 4 < 7$ 0,6: 0 = 6(0) + 0, $0 \le 0 < 6$

Demostración del Algoritmo 2.2:

Sea $S = \{a - bx : x \in \mathbb{Z} \land a - bq \ge 0\} \subseteq \mathbb{N}$

Comprobamos que $S \neq \emptyset$

• Si $a \ge 0$:

Sea x = -1, entonces a - b(-1) = a + b, ahora $a + b \ge 0$, tal que $a - b(-1) \in S$

• Si *a* < 0:

$$a - ba = a(1 - b)$$

$$\begin{cases} b = 0 \Longrightarrow a(1 - b) = 0 \\ b > 1 \Longrightarrow 1 - b < 0 \end{cases}$$

$$1 - b < 0 \land a < 0 \Longrightarrow a(1 - b) \ge 0$$

Como
$$a - ba \ge 0 \Longrightarrow a - ba \in S$$

Como S es un subconjunto no vació de $\mathbb N$ por el <u>PBO</u>, S tiene mínimo. Sea $r = \min(S)$. Luego, existe $q \in \mathbb{Z}$ tal que $a - bq = r \Longrightarrow a = bq + r$

Comprobamos unicidad de q, r

- Como el mínimo es único, r es único.
- Supongamos que existe $q' \in \mathbb{Z}$, tal que a bq' = r

2.3. Principio de inducción matemática (débil) | PIM(D)

Definición 2.3 PIM(D)

Sea $S \subseteq \mathbb{N}$ que satisface

1. Paso base
$$0 \in S$$

2.
$$\underbrace{n \in S}_{\text{HI}} \Longrightarrow n+1 \in S$$

Entonces $S = \mathbb{N}$

Ejemplo Definición 2.3

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}, \quad r \in \mathbb{R} \setminus \{1\}$$

Demostración: Prueba por inducción matemática

$$S = \left\{ n \in \mathbb{N} : 1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r} \right\}$$

1. Paso Base

$$r^{0} = 1 = \frac{1 - r^{0+1}}{1 - r} = \frac{1 - r}{1 - r} \Longrightarrow 0 \in S$$

2. Paso Inductivo:

Supongamos que $n \in S$, es decir

$$1 + r + r^2 + ... + r^n = \frac{1 - r^{n+1}}{1 - r}$$
 (HI)

Ahora verificamos comprobamos para n+1

$$\frac{1+r+r^2+\ldots+r^n}{\text{HI}} + r^{n+1} = \frac{1-r^{(n+1)+1}}{1-r}$$

$$\frac{1-r^{n+1}}{1-r} + r^{n+1} = \frac{1-r^{n+2}}{1-r}$$

$$\frac{1-r^{n+1}+(1-r)r^{n+1}}{1-r} = \frac{1-r^{n+2}}{1-r}$$

$$\frac{1-r^{n+1}+r^{n+1}-r^{n-2}}{1-r} = \frac{1-r^{n+2}}{1-r}$$

$$\frac{1-r^{n-2}}{1-r} = \frac{1-r^{n+2}}{1-r}$$

Entonces $n+1 \in S$

Por lo tanto $S = \mathbb{N}$

Ejemplo <u>Definición 2.3</u>

$$3|n^3-n$$

$$\operatorname{Sea} S = \left\{ n \in \mathbb{Z} : 3|n^3 - n \right\}$$

1. Paso Base

$$0^3 - 0 = 0 \land 3|0 \Longrightarrow 0 \in S$$

2. Paso Inductivo

Supongamos que $n \in S \Longrightarrow 3|n^3 - n|$

Verificamos para n + 1

$$(n+1)^{3} - (n+1) = n^{3} + 3n^{2} + 3n + \mathcal{X} - n - \mathcal{X}$$
$$= n^{3} - n + 3n^{2} + 3n$$
$$= (n^{3} - n) + 3(n^{2} + n)$$

$$3|n^3 - n \wedge 3|3(n^2 - n) \Longrightarrow 3|(n^3 - n) + 3(n^2 - n)$$

Luego $n + 1 \in S$

Por lo tanto $S = \mathbb{N}$

2.4. Ejercicios

Ejercicio 2.4

Demuestre que dadas $a, b \in \mathbb{Z}$ con $b \neq 0$, existen $q, r \in \mathbb{Z}$ unicos tal que

$$a = bq + r$$
, $0 \le r < b$

Demostración:

• Si $a \ge 0 \land$

Ejercicio 2.5

Porque no es posible dividir por 0 en \mathbb{Z} ?

Ejercicio 2.6

Demuestre que no hay enteros entre 0 y 1

Ejercicio 2.7

Se definen los números F_n de Fermat por $F_n=2^{2^n}+1, n=\{0,1,2,...\}$

Demuestre que para todo $n \ge 1$

$$F_0F_1F_2...F_{n-1} + 2 = F_n$$

Ejercicio 2.8

Demuestre que $54|2^{2n+1} - 9n^2 + 3n - 2$

3. Clase 2025-08-28

3.1. PBO \iff PIM(D)

Teorema 3.1

El <u>Principio del buen orden</u> es equivalente al <u>Principio de inducción matemática</u>

Demostración del <u>Teorema 3.1</u>: PBO ⇔ PIM(D)

- 1. PBO \Longrightarrow PIM(D): Sea $S \subseteq \mathbb{N}$, tal que
 - 1. $0 \in S$
 - 2. Si $n \in S$, entonces $n + 1 \in S$.

Supongamos que $S \subsetneq \mathbb{N}$. Como S es no vació y $S \subsetneq \mathbb{N}$, S^c no es vació, luego por PBO, S_c tiene mínimo, Sea $m = \min(S)$. Veamos que $m-1 \in S$. Si $m-1 \notin S \Longrightarrow m-1 \in S^c$. Como m-1 < m, entonces m no seria el minimo de S_c . Luego $m-1 \in S$.

- Por 2. Se tiene que $(m-1)+1=m\in S$ lo cual es una contradicción $\rightarrow \leftarrow$
- 2. $PIM(D) \Longrightarrow PBO$: Sea $S \subseteq \mathbb{N}$ no vacio.

Caso 1 $(0 \in S)$: Entonces $\min(S) = 0$

Caso 2 ($0 \notin S$): Sea $T = \{x \in \mathbb{N} : \forall s \in S, x < s\} \subseteq S^c$. Como 0 es cota inferior de S y $0 \notin S$, entonces $0 \in T$, ademas $T \neq \mathbb{N}$, para T se satisfase 1. ($0 \in T$), si 2. es satisfecho por T, entoncecs por el PIM(D) se concluye que $T = \mathbb{N}$ lo cual es una contradicción $\rightarrow \leftarrow$

Por lo tanto PBO \iff PIM(D)

3.2. Principio de inducción matemática (general) | PIM(G)

Definición 3.2 PIM(G)

Sea $S \subseteq \{x \in \mathbb{N} : x \ge k\} = \mathbb{N} \ge k$ que satisface

- 1. $k \in S$
- 2. Si $n \in S$, entonces $n + 1 \in S$

Entonces $S = \mathbb{N}_k = \{k, k+1, k+2, ...\}$

Ejemplo PIM(G)

Demuestre que $\left(\frac{4}{3}\right)^n > n$

n	$\left(\frac{4}{3}\right)^n > 0$
0	1 > 0
1	1.33 > 1
2	1.71 ≯ 2
3	2.37 ≯ 3
4	3.16 ≯ 4
5	4.21 ≯ 5
6	5.62 ≯ 6
7	7.49 > 7
8	9.99 > 8

Demostración:

Caso Base: n = 7, $\left(\frac{4}{3}\right)^7 \approx 7.49 > 7$

Paso Inductivo: Supongamos que $\left(\frac{4}{3}\right)^k > k$ para $k \ge 7$ (HI)

$$\left(\frac{4}{3}\right)^k > k$$

$$\left(\frac{4}{3}\right)\left(\frac{4}{3}\right)^k > \frac{4}{3}k$$

$$\left(\frac{4}{3}\right)^{k+1} > \left(1 + \frac{1}{3}\right)k$$

$$\left(\frac{4}{3}\right)^{k+1} > k + \frac{k}{3}$$

Como $k \ge 7$, entonces $\frac{k}{3} \ge \frac{7}{3} > 1$, ahora $k + \frac{k}{3} > k + 1$ por lo tanto

$$\left(\frac{4}{3}\right)^{k+1} > k+1$$

3.3. Principio de inducción matemática (fuerte) | PIM(F)

Definición 3.3 PIM(F)

Sea $S \subseteq \mathbb{N}_{\geq k} = \{k, k+1, k+2, ...\}$ tal que

1. $k \in S$

2. Cada vez que $m \in S$, entonces $m+1 \in S$ para $m \ge k$

Entonces $S = \mathbb{N}$