74AC574 • 74ACT574 Octal D-Type Flip-Flop with 3-STATE Outputs

74AC574 • 74ACT574 Octal D-Type Flip-Flop with 3-STATE Outputs

General Description

The AC/ACT574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable $(\overline{\text{OE}})$. The information presented to the D-type inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The AC/ACT574 is functionally identical to the AC/ACT374 except for the pinouts.

Features

- I_{CC} and I_{OZ} reduced by 50%
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to AC/ACT374
- 3-STATE outputs for bus-oriented applications
- Outputs source/sink 24 mA
- ACT574 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description				
74AC574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body				
74AC574SJ	M20D	0-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74AC574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74AC574PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
74ACT574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-01				
74ACT574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74ACT574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74ACT574PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input
ŌĒ	3-STATE Output Enable Input
O ₀ –O ₇	3-STATE Outputs

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description

The AC/ACT574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-

Function Table

In	puts		Internal	Outputs	
OE	СР	D	Q	O _N	Function
Н	Н	L	NC	Z	Hold
Н	Н	Н	NC	Z	Hold
Н	_	L	L	Z	Load
Н		Н	Н	Z	Load
L	_	L	L	L	Data Available
L		Н	Н	Н	Data Available
L	Н	L	NC	NC	No Change in Data
L	Н	Н	NC	NC	No Change in Data

- H = HIGH Voltage Level L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance
- = LOW-to-HIGH Transition NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ccc} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) ±50 mA

DC V_{CC} or Ground Current

Per Output Pin (I_{CC} or I_{GND}) ± 50 mA

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} AC & 2.0 V \ to \ 6.0 V \\ ACT & 4.5 V \ to \ 5.5 V \\ Input \ Voltage \ (V_I) & 0 V \ to \ V_{CC} \\ Output \ Voltage \ (V_O) & 0 V \ to \ V_{CC} \\ Operating \ Temperature \ (T_A) & -40 ^{\circ}C \ to \ +85 ^{\circ}C \\ \end{array}$

Minimum Input Edge Rate (ΔV/Δt)

AC Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

 $V_{CC} @ 3.3V, 4.5V, 5.5V$ 125 mV/ns

Minimum Input Edge Rate ($\Delta V/\Delta t$)

ACT Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/ns

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{CC} T _A =		25°C $T_A = -40$ °C to +85°C		Units	Conditions	
Oymboi	r arameter	(V)	Тур	Gu	aranteed Limits	Onics	001141110110	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
		5.5	5.49	5.4	5.4			
		3.0		2.56	2.46		$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		3.86	3.76	V	$I_{OH} = -12 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA } I_{OH}$	
							$I_{OH} = -24 \text{ mA (Note 2)}$	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{or } V_{IH}$	
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN} (Note 4)	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
l _{oz}	Maximum						V_{I} (OE) = V_{IL} , V_{IH}	
	3-STATE	5.5		±0.25	±2.5	μΑ	$V_I = V_{CC}, V_{GND}$	
	Leakage Current						$V_O = V_{CC}$, GND	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V	
I _{CC} (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$ or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

 $\textbf{Note 3:} \ \text{Maximum test duration 2.0 ms, one output loaded at a time.}$

Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}$.

DC Electrical Characteristics for ACT $T_A=25^{\circ}C$ T_A = -40°C to +85°C v_{cc} Conditions Symbol Units Guaranteed Limits (V) Тур Minimum HIGH Level 4.5 1.5 $V_{OUT} = 0.1V$ Input Voltage 5.5 2.0 2.0 or $V_{CC} - 0.1V$ Maximum LOW Level V_{IL} 4.5 1.5 0.8 0.8 $V_{OUT} = 0.1V$ Input Voltage or $V_{CC} - 0.1 V$ 5.5 1.5 0.8 0.8 V_{OH} Minimum HIGH Level 4.5 4.49 4.4 4.4 $I_{OUT} = -50~\mu A$ 5.5 5.4 5.4 5.49 $V_{IN} = V_{IL}or V_{IH}$ 4.5 3.86 3.76 $I_{OH} = -24 \text{ mA}$ $I_{OH} = -24 \text{ mA (Note 5)}$ 5.5 4.86 4.76 V_{OL} Maximum LOW Level 4.5 0.001 0.1 0.1 $I_{OUT} = 50 \, \mu A$ Output Voltage $V_{IN} = V_{IL}or V_{IH}$ 4.5 0.36 0.44 $I_{OL} = 24 \text{ mA}$ I_{OL} = 24 mA (Note 5) 5.5 0.36 0.44 Maximum Input I_{IN} 5.5 ±1.0 $V_I = V_{CC}$, GND μΑ Leakage Current Maximum 3-STATE I_{OZ} $V_I = V_{IL}, V_{IH}$ 5.5 ±0.25 ±2.5 μΑ Leakage Current $V_O = V_{CC}, \, GND$ Maximum I_{CC}/Input 0.6 1.5 $V_I = V_{CC} - 2.1V$ 5.5 I_{CCT} mA V_{OLD} = 1.65V Minimum Dynamic 5.5 I_{JOLD} mΑ Output Current (Note 6) 5.5 -75 mΑ $V_{OHD} = 3.85V$ $\mathsf{I}_{\mathsf{OHD}}$ Maximum Quiescent I_{CC} $V_{IN} = V_{CC}$ 40.0 5.5 4.0 or GND Supply Current

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

		V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		$C_L = 50 \ pF$		$C_L = 50 \text{ pF}$		Units
		(Note 7)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock	3.3	75	112		60		MHz
	Frequency	5.0	95	153		85		
t _{PLH}	Propagation Delay	3.3	3.5	8.5	13.5	3.5	15.0	ns
	CP to O _n	5.0	2.0	6.0	9.5	2.0	11.0	
t _{PHL}	Propagation Delay	3.3	3.5	7.5	12.0	3.5	13.5	ns
	CP to O _n	5.0	2.0	5.5	8.5	2.0	9.5	
t _{PZH}	Output Enable Time	3.3	2.5	7.0	11.0	2.5	12.0	ns
		5.0	2.0	5.0	8.5	2.0	9.0	115
t _{PZL}	Output Enable Time	3.3	3.0	6.5	10.5	3.0	11.5	ns
		5.0	2.0	5.0	8.0	1.5	9.0	115
t _{PHZ}	Output Disable Time	3.3	3.5	7.5	12.0	2.5	13.0	ns
		5.0	2.0	6.0	9.5	1.5	10.5	
t _{PLZ}	Output Disable Time	3.3	2.0	5.5	9.0	1.5	10.0	ns
		5.0	1.0	4.5	7.5	1.0	8.5	115

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$

Voltage Range 5.0 is 5.0V $\pm\,0.5\text{V}$

AC Operating Requirements for AC

		V _{CC}	T _A = -	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	(V)	(V) $C_L = 50 \text{ pF}$		$C_L = 50 \text{ pF}$	Units
		(Note 8)	Тур	Guara	nteed Minimum	
t _S	Set-Up Time, HIGH or LOW	3.3	0.5	2.5	3.0	na
	D _n to CP	5.0	0	1.5	2.0	ns
t _H	Hold Time, HIGH or LOW	3.3	-0.5	1.5	1.5	ns
	D _n to CP	5.0	0	1.5	1.5	115
t _W	CP Pulse Width	3.3	3.5	6.0	7.0	na
	HIGH or LOW	5.0	2.0	4.0	5.0	ns

Note 8: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$

AC Electrical Characteristics for ACT

		V _{CC}		T _A = +25°C		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	C _L = 50 pF			$C_L = 50 \text{ pF}$		Units
		(Note 9)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	5.0	100	110		85		ns
t _{PLH}	Propagation Delay CP to O _n	5.0	2.5	7.0	11.0	2.0	12.0	ns
t _{PHL}	Propagation Delay CP to O _n	5.0	2.0	6.5	10.0	1.5	11.0	ns
t _{PZH}	Output Enable Time	5.0	2.0	6.4	9.5	1.5	10.0	ns
t _{PZL}	Output Enable Time	5.0	2.0	6.0	9.0	1.5	10.0	ns
t _{PHZ}	Output Disable Time	5.0	2.0	7.0	10.5	1.5	11.5	ns
t _{PLZ}	Output Disable Time	5.0	2.0	5.5	8.5	1.5	9.0	ns

Note 9: Voltage Range 5.0 is 5.0V ±0.5V

AC Operating Requirements for ACT

Symbol	Parameter	V _{CC} (V) (Note 10)	$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$ Typ	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$ Guaranteed Minimum	Units
t _S	Set-Up Time, HIGH or LOW D _n to CP	5.0	1.5	2.5	ns
t _H	Hold Time, HIGH or LOW D _n to CP	5.0	-0.5	1.0	ns
t _W	CP Pulse Width HIGH or LOW	5.0	2.5	4.0	ns

Note 10: Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance

Symbol	Parameter	Parameter Typ Units		Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	40.0	pF	V _{CC} = 5.0V

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com