Lecture 2 - Complement

Why this complement?

- 20 minutes deficit
- Finish Chapter 1
- Technical section
- Try out slides

1.5 Paracompactness and partitions of unity

Compactness properties of topological manifolds:

Let *M* be a topological manifold, with or without boundary.

- (i) M is Hausdorff and locally compact.
- (ii) M admits an exhaustion by compact sets.

```
M \subseteq \bigcup_{n \in N} K_n with K_n \subseteq \operatorname{int} K_{n+1}. (In part. M is \sigma-compact.)
```

(iii) M is paracompact.
Every open cover has a locally finite refinement.

Proof: Exercise or [Lee, Top. Manifolds, Thm 4.77]

Remark: Topological dimension

Definition (Top. dimension)

The **topological dimension** of X is the smallest integer m such that any open cover of X admits a refinement such that the intersection of m+1 subsets of the refinement is always empty.

Theorem (Top. dimension of manifolds)

Any topological manifold of dimension m has topological dimension m.

Proof: Not easy!

Normal spaces

Definition (Normal space)

A top. space X is called **normal** if any pair of disjoint closed sets are contained in disjoint open sets.

Proposition (See Lee, Thm. 4.81)

Any paracompact Hausdorff space is normal.

Theorem (Urysohn's lemma (See Lee, Thm. 4.82))

Let X be normal. For any two disjoint closed sets $A, B \subseteq X$, there exists $f: X \to [0, 1]$ continuous such that f = 1 on A and f = 0 on B.

Bump functions

Corollary (Existence of bump functions)

Let X be normal. For any A closed $\subseteq U$ open, there exits $f: X \to [0, 1]$ continuous such that f = 1 on A and $\operatorname{supp} f \subseteq U$.

f is called a **bump function** for A supported in U.

Partitions of unity

Definition (Partition of unity)

Let X be a top. space. A *partition of unity* is a family of continuous functions $\rho_i \colon X \to [0, 1]$ such that:

- (i) $\forall x \in X, \exists U \ni x \text{ s.t. } \rho_i = 0 \text{ for all but finitely many } i \in I.$
- (ii) $\sum_{i \in I} \rho_i = 1$.

It is **subordinate** to an open cover $(U_i)_{i \in I}$ if supp $\rho_i \subseteq U_i$ for all $i \in I$.

Theorem (Existence of subordinate partitions of unity)

If *X* is Hausdorff and paracompact, there exists a partition of unity subordinate to any open cover.

Proof: Exercise or [Lee, Thm 4.85].

Whitney's embedding theorem

Easy version of Whitney's theorem for topological manifolds:

Theorem (Whitney's embedding theorem)

Let M be a compact topological manifold. There exists a topological embedding $F \colon \mathbb{R}^N$ for some $N \in \mathbb{N}$.

Proof:

- (i) By compactness, M is covered by a finite atlas $(U_i, \varphi_i)_{i \in \{1, ..., p\}}$.
- (ii) Let $(\rho_i)_{i \in \{1,...,p\}}$ be a partition of unity subordinate to this cover.
- (iii) Define $F_i: M \to \mathbb{R}^m$ by $F_i(x) = \rho_i(x)\varphi_i(x)\mathbb{1}_{U_i}(x)$ and define

$$F: M \to (\mathbb{R}^m)^p \times \mathbb{R}^p$$
$$x \mapsto (F_1(x), \dots, F_p(x), \rho_1(x), \dots, \rho_p(x)).$$

(iv) *F* is injective and continuous, therefore it is an embedding by compactness of *M*.

Whitney's embedding theorem (Remarks)

Remark (The noncompact case)

As a consequence of topological dimension, any (possibly noncompact) manifold has a *finite* atlas. The previous theorem generalizes to any manifold.

Remark (Dimension of the embedding)

M always embedds in some \mathbb{R}^N , but what is the minimum N?