Inference in Simple Linear Regression

1. Inference in Regression Models

The parameters β_1 and β_0 in the simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ are estimated as:

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

Just like other statistics (such as the sample mean or variance) the estimates b_1 and b_0 are functions of the observed values Y_i , which are functions of the random errors ε_i . Thus b_1 and b_0 are themselves random variables and b_1 and b_0 each has a probability distribution, called the *sampling distribution*. The *sampling distribution* of b_1 (respectively b_0) refers to "the different values of b_1 (b_0) that would be obtained with repeated sampling when the levels of the independent variables X are held constant from sample to sample" (textbook, pg. 41).

Statistical inference concerning population parameters such as β_1 and β_0 consists in testing hypotheses and constructing confidence intervals for that parameter. Inference concerning a parameter is based on the sampling distribution of that parameter.

For (simple or multiple) linear regression models statistical inference is commonly carried out for

- 1. the regression coefficients β_1 and β_0 (hypothesis tests and confidence intervals)
- 2. confidence intervals for the regression line (i.e., "where do I think the population regression line lies?")
- 3. prediction intervals for individual observations (i.e., "where do I think a single new observation will fall?")
- 4. F test of the significance of the regression model as a whole (hypothesis test only)

1. Sampling Distribution of b₁

The sampling distribution of b_1 can be standardized by

$$\frac{b_1 - \beta_1}{\sigma\{b_1\}} \sim N(0,1)$$

where $\sigma\{b_1\}$ is the standard error of b_1 ; however, this is not known and estimated by $s\{b_1\}$. So,

$$\frac{b_1 - \beta_1}{s\{b_1\}} \sim t(n-2)$$

2. Inference on β_1 and β_0

Table 1. Formulas for Inference on b1 and b0

Slope b ₁				
Estimated standard error of b ₁	$s\{b_1\} = \sqrt{\frac{MSE}{\sum (X_i - \overline{X})^2}}$			
Estimated sampling distribution of b ₁	$\frac{b_1 - \beta_1}{s\{b_1\}} \sim t(n-2)$			
Confidence limits for CI on β_1	$b_1 \pm t(1 - \alpha; n - 2)s\{b_1\}$			
Test statistic for H_0 : $\beta_1 = \beta_1^0$	$t^* = \frac{b_1 - \beta_1^0}{s\{b_1\}}$			
Intercept b ₀				
Estimated standard error of b ₀	$s\{b_0\} = \sqrt{MSE\left(\frac{1}{n} + \frac{\overline{X}^2}{\sum (X_i - \overline{X})^2}\right)}$			
Estimated sampling distribution of b ₀	$\frac{b_0 - \beta_0}{s\{b_0\}} \sim t(n-2)$			
Confidence limits for CI on β_0	$b_0 \pm t(1 - \infty; n - 2)s\{b_0\}$			
Test statistic for H_0 : $\beta_0 = \beta_0^0$	$t^* = \frac{b_0 - \beta_0^0}{s\{b_0\}}$			

Note: $\beta_1{}^0$ and $\beta_0{}^0$ denote hypothetical values of the parameters

When $\beta_1^0 = 0$ (the most common type of hypothesis) then $t^* = b_1/s\{b_1\}$

Recall: $MSE = \Sigma e_i^2/(n-2)$

The estimated *standard error* $s\{b_1\}$ is typically provided in the standard regression printout (labeled Std Error in Table 2).

2. Inference on β_1

We look at inference on β_1 first because it is the most common.

Confidence Interval for β_1

From Table 1 the confidence interval the CI for β_1 is

$$b_1 \pm t(1 - \alpha; n - 2)s\{b_1\}$$

Ph.D. Example: find the 95% CI for β_1 , the coefficient of publications in the simple regression of time since Ph.D.

$$b_1 = 1.9830$$

$$s\{b_1\} = \sqrt{\frac{MSE}{\sum (X_1 - \bar{X})^2}} = \sqrt{\frac{117.0396}{293.3333}} = 0.6317$$

Choose $\alpha = .05$; then $t(1 - \alpha/2; n - 2) = t(0.975; 13) = 2.16$ (from statistical program or table)

Therefore the 95% CI for β_1 is

Lower bound of CI =
$$1.9830 - (2.16)(0.6317) = 0.619$$

Upper bound of CI = $1.9830 + (2.16)(0.6317) = 3.347$

The 95% CI is [0.619, 3.347]. Over repeated sampling, 95 out of 100 confidence intervals will contain β_1 . We are 95% confident that this interval contains β_1 .

Two-sided hypothesis test for β_1

Example: Test the hypothesis that the coefficient of time $\beta_1 = 0$. The setup is

Step 1: Set up null and alternative hypothesis

H₀: $\beta_1 = 0$ ("null hypothesis") H₁: $\beta_1 \neq 0$ ("alternative hypothesis")

Step 2: Choose a significance level

$$\alpha = .05$$

Step 3: Calculate test statistic

$$t^* = (b_1 - 0)/s\{b_1\} = b_1/s\{b_1\} = 1.9830/.6317 = 3.139$$

Step 4: Determine the p-value or the critical value

P-value approach: Find the 2-tailed p-value

```
data pvalue;
tobs = 3.139;
df = 13;
prob = 2*(1-probt(tobs, df));
run;
```

p-value = .0078

Critical value approach: Determine the critical value

With
$$\alpha = .05$$
, $t(1 - \alpha/2; n - 2)$ is $t(0.975; 13) = 2.16$

Step 5: Make a decision

P-value approach:

 $p \le \alpha$ Reject H_0 $p > \alpha$ Fail to reject H_0

Critical value approach

```
if |t^*| > t(1 - \alpha/2; n - 2), reject H_0 if |t^*| \le t(1 - \alpha/2; n - 2), fail to reject H_0
```

Since $|t^*| = 3.13 > 2.16$ or p < .05, reject H_0 and conclude H_1 ($\beta_1 \neq 0$) at the .05 level.

One-sided test for β_1

Hint: It is often easier to write down H_1 (the "alternative hypothesis") first; then H_0 is the *complement* of H_1 , i.e.

H₀: $\beta_1 \le 0$ H₁: $\beta_1 > 0$

To carry out the test

- if b_1 is in a direction opposite to H_1 (i.e., if $b_1 > 0$), then there is no point in doing the test and H_1 can be rejected at the outset
- otherwise (b₁ is in a direction compatible with H₁) using the P-value approach one simply calculates the 1-sided P-value associated with b₁ by *dividing the 2-tailed P-value (shown on the regression printout)* by 2

In the example the 2-sided P-value is .0078; thus the 1-sided P-value is (.0078)/2 = .004Since P-value = $.004 < .05 = \alpha$, conclude H_1 : $\beta_1 > 0$.

Comparing Two-sided and One-sided Tests for $\beta_{\rm 1}$

Comparing the two types of tests it appears that *the 1-sided test is "easier"* (i.e., *more likely to turn up significant*) *than the corresponding 2-sided test*. (For example, the P-value of the 1-sided test is half the P-value of the 2-sided test.)

Thus there is an incentive to use 1-sided tests to increase the chance of significant results. It is considered legitimate to use a 1-sided test whenever one has a genuine directional hypothesis concerning β_I . This opinion on the use of one-tailed tests is widely shared by reviewers of professional journals. However, some statisticians recommend using 2-sided tests exclusively, on the ground that the 2-sided test is conservative.

3. Inference on β_0

CIs and tests for β_0 are carried out in exactly the same way as for β_1 . Q - Using information from the printout

- calculate the 95% CI for β₀
- test the 2-sided hypothesis that $\beta_0 \neq 0$

3. Inference for Mean Response E{Y_h}

We recognize that these predicted Y values are subject to error and we often wish to determine a CI around a predicted value to reflect the degree of precision or uncertainty in a prediction.

A critical point to understand is that there are two kinds of confidence intervals that one can construct around predicted scores:

- 1. The first arises from the fact that from one sample to another the slope of the regression line will vary due to sampling variability. As a result, predicted Y values associated with a given X value will vary from one sample to another.
- 2. A second kind of interval estimate is associated with accuracy of predictions.

The second kind of CI is called a prediction interval and will be discussed in the next section.

Let X_h = the level of X we wish to estimate the mean response (does not necessarily correspond to a data point X_i)

1. Sampling Distribution of \widehat{Y}_h

The mean response $E\{Y_h\}$ is estimated as $\widehat{Y}_h = b_0 + b_1 X_h$. Thus the variance of the sampling distribution of \widehat{Y}_h is affected by variance in both b_0 and b_1 sampling and by how far X_h is from the sample mean of X. The way in which the variance of \widehat{Y}_h depends on the distance of X_h from X_i is shown in the figure to the right: given a change in b_1 , the change in \widehat{Y}_h is larger further away from the mean.

FIGURE 2.3 Effect on \widehat{Y}_h of Variation in b_1 from Sample to Sample in Two Samples with Same Means \overline{Y} and \overline{X} .

Table 2. Formulas for Inference on \hat{Y}_h

Point estimator of E{Y _h }	$\widehat{\mathbf{Y}}_{\mathbf{h}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_{\mathbf{h}}$		
Estimated standard error of \widehat{Y}_h	$s\{\widehat{Y}_h\} = \sqrt{MSE\left(\frac{1}{n} + \frac{(X_h - \overline{X})^2}{\sum (X_i - \overline{X})^2}\right)}$		
Estimated sampling distribution of \widehat{Y}_h	$\frac{\widehat{Y}_h - E\{Y_h\}}{s\{\widehat{Y}_h\}} \sim t(n-2)$		
Confidence limits for CI on $E\{Y_h\}$	$\widehat{Y}_h \pm t(1 - \alpha; n - 2)s\{\widehat{Y}_h\}$		
Test statistic	Not often used		

- An important feature of the standard error of \widehat{Y}_h is that it will become larger as the deviation of X_i from the mean of X increases. In other words, predictions of Y become less stable for individuals farther from the mean of X.
- The CI for E{Y_h} reflects the degree of variability in a predicted Y value across repeated sampling. These CIs will become wider for individuals whose X scores are farther from the mean of X.

2. CI for Mean Response E{Yh}

Given the regression of the number of publications on time since Ph.D., calculate an interval estimate for $E\{Y_h\}$ when time is 5, i.e. $X_h = 5$.

$$\hat{Y}_h = 4.7310 + 1.9830(5) = 14.646$$

$$s\{\widehat{Y}_h\} = \sqrt{117.0396\left(\frac{1}{15} + \frac{7.1111}{293.3333}\right)} = 3.262$$

Choose α = .05; then t(1 - α /2;n - 2) = t(0.975; 13) = 2.16 (from statistical program or table) Therefore the 95% CI for E{Y_h} is

Lower bound of CI = 14.646 - (2.16)(3.262) = 7.600Upper bound of CI = 14.646 + (2.16)(3.262) = 21.692

The 95% CI is [7.600, 21.692]. Over repeated sampling, 95 out of 100 confidence intervals will contain $E\{Y_h|X_h=5\}$. We are 95% confident that this interval contains $E\{Y_h\}$.

3. CI for the Entire Regression Line - the Working-Hotelling Confidence Band

The Working-Hotelling confidence band is a CI for the entire regression line $E\{Y\} = \beta_0 + \beta_1 X$. See SAS code.

4. Prediction Interval for a New Observation Y_{h(new)}

1. Sampling Distribution of $Y_{h(new)}$

One estimates $Y_{h(new)}$ as $\widehat{Y}_h = b_0 + b_1 X_h$, the value of \widehat{Y} on the regression line corresponding to X_h .

Variation in $Y_{h(new)}$ is affected by two sources:

- variation in \widehat{Y}_h , the estimated mean of the distribution of Y given X_h , namely $\sigma^2\{\widehat{Y}_h\}$
- variation in the probability distribution of Y around its mean given X_h , namely σ^2

Therefore,
$$\sigma^2\{Y_{h(new)}\} = \sigma^2 + \sigma^2\{\widehat{Y}_h\}$$

Table 3. Formulas for Inference on $Y_{h(new)}$

Point estimator of Y _{h(new)}	$\widehat{\mathbf{Y}}_{\mathbf{h}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_{\mathbf{h}}$	
Estimated standard error of $Y_{h(new)}$	s{pred}= $\sqrt{\text{MSE}\left(1+\frac{1}{n}+\frac{\left(X_{h}-\overline{X}\right)^{2}}{\sum\left(X_{i}-\overline{X}\right)^{2}}\right)}$	
Estimated sampling distribution of $Y_{h(new)}$	$\frac{\widehat{Y}_{h(new)} - E\{Y_h\}}{s\{pred\}} \sim t(n-2)$	
Confidence limits for CI on $Y_{h(new)}$	$\widehat{Y}_h \pm t(1 - \alpha; n - 2)s\{pred\}$	
Test statistic	Not often used	

2. CI for Yh(new)

Given the regression of the number of publications on time since Ph.D., calculate an interval estimate for $Y_{h(new)}$ when time is 5, i.e. $X_h = 5$.

$$\widehat{Y}_h = 4.7310 + 1.9830(5) = 14.646$$

$$s\{\widehat{Y}_h\} = \sqrt{117.0396\left(1 + \frac{1}{15} + \frac{7.1111}{293.3333}\right)} = 11.3$$

Choose $\alpha = .05$; then $t(1-\alpha/2; n-2) = t(0.975; 13) = 2.16$ (from statistical program or from table) Therefore the 95% CI for E{Y_h} is

Lower bound of CI =
$$14.646 - (2.16)(11.3) = -9.805$$

Upper bound of CI = $14.646 + (2.16)(11.3) = 39.097$

The 95% CI is [-9.805, 39.097]. Over repeated sampling, 95 out of 100 confidence intervals will contain $Y_{h(new)}$. We are 95% confident that this interval contains $Y_{h(new)}$.

Note that the 95% CI for $Y_{h(new)}$ is *considerably* wider than the CI for the mean response $E\{Y_h\}$

5. F Test for Entire Regression (Alternative Test of $\beta_1 = 0$)

1. F Test of $\beta_1 = 0$

Here this test is overkill, since the t test can be used to test the hypothesis that $\beta_1 = 0$. But the F test generalizes to multiple regression to test the hypothesis that *all the regression* coefficients are zero.

2. Partitioning Sum of Squares Total

The total variation of Y_i from the sample mean of Y, $(Y_i - \overline{Y})$ can be decomposed into two components:

Next take the sum of the squares of each deviation over all observations in the sample.

SSE is also called *residual* sum of squares. The basic ANOVA result (or *theorem*) is that the sums of squared deviations stand in the same relation as the (unsquared) deviations, so that:

3. Partitioning of Degrees of Freedom

To each sum of squares correspond degrees of freedom (df). Degrees of freedom are additive.

$$n-1 = 1 + (n-2)$$

df for SSTO df for SSR df for SSE

4. Expected Mean Squares

The ANOVA table breaks down the total sum of squares and associated degrees of freedom along with mean squares. Recall MSE is an estimate of the *variance of the residuals* σ^2 .

Source of Variation	SS	df	MS	F
Regression	$SSR = \Sigma (\widehat{Y}_i - \overline{Y})^2$	1	MSR = SSR/1	$F^* = MSR/MSE$
Error	$SSE = \Sigma (Y_i - \widehat{Y}_i)^2$	n-2	MSE = SSE/(n-2)	
Total	$SSTO = \Sigma (Y_i - \overline{Y})^2$	n – 1		

One can show that

$$E\{MSE\} = \sigma^2$$

$$E\{MSR\} = \sigma^2 + \beta_1^2 \Sigma (X_i - \overline{X})^2$$

Note that if $\beta_1=0$, $E\{MSR\}=E\{MSE\}=\sigma^2$.

Hypotheses for the F Test:

$$H_0$$
: $\beta_1 = 0$

$$H_1$$
: $\beta_1 \neq 0$

Test statistic: $F^* = MSR/MSE$

If
$$\beta_1 = 0$$
, $E\{F^*\} = \sigma^2/\sigma^2 = 1$.

If
$$\beta_1 \neq 0$$
, $E\{F^*\} > 1$.

Thus the larger F^* , the more likely that $\beta_1 \neq 0$.

$$F^* = MSR/MSE \sim F(1; n - 2)$$

3. Carrying Out the F Test

Example: Carry out the F test for the regression of the number of publications on time since Ph.D.

Step 1: Set up null and alternative hypothesis

 H_0 : $\beta_1 = 0$ ("null hypothesis")

H₁: $\beta_1 \neq 0$ ("alternative hypothesis")

Step 2: Choose a significance level

$$\alpha = .05$$

Step 3: Calculate test statistic

$$F^* = 1153.41/117.04 = 9.85$$

Step 4: Determine the p-value or the critical value

P-value approach: Find the 2-tailed p-value

```
data pvalue;
Fobs = 9.85;
ndf = 1;
ddf = 13;
prob = 1-probf(fobs,ndf,ddf);
run;
```

$$p$$
-value = $.0078$

Critical value approach: Determine the critical value

With
$$\alpha = .05$$
, $F(1 - \alpha; 1, n - 2) = F(0.95; 1, 13) = 4.67$

Step 5: Make a decision

P-value approach:

$$p \leq \alpha \ Reject \ H_0$$

 $p > \alpha$ Fail to reject H_0

Critical value approach

if
$$F^* > F(1 - \alpha; 1, n - 2)$$
, reject H_0

if
$$F^* \le F(1 - \alpha; 1, n - 2)$$
, fail to reject H_0

Since $F^* = 9.85 > 4.67$ or p < .05, reject H_0 and conclude H_1 ($\beta_1 \neq 0$) at the .05 level.

4. Equivalence of t Test and F Test

In the simple linear regression model, $F^* = (t^*)^2$.

Example: In the Ph.D. example, the squared t-ratio for b_1 is equal to F^* , i.e.

$$(t^*)^2 = (3.139)^2 = 9.85 = F^*$$

This is no longer true in the multiple regression model.