Comparison of Classification Methodologies using Convolutional Neural Networks in a Dataset of Plant Leaf Diseases

Capstone Project for Master of Science in Data

Analytics

Ruairi O'Donohoe – sba23348

Image Classification

Methodologies

- Multi-class (MC): Classify an image with a single predicted label
- Multi-label (ML): Classify an image with multiple potential label

Common Parameters:

- See Table below (Lydia 2020)
- Differences in calculation methods of probability and metrics.
- Parameters for ML are often inconsistent in research
- Loss and Accuracy less suitable for comparison. F1 score used instead.

	Multi-Class	Multi-Label
Classifier function	Softmax	Sigmoid
Loss function	Categorical CE	Binary CE
Accuracy	Categorical Acc	Binary Acc

F1 Score	No threshold. Chooses argmax	0.5
----------	---------------------------------	-----

FieldPlant research

(Moupojou 2023)

Dataset:

- ML dataset containing images of leaf disease.
- Recent (2023*), in-field images, expertly annotated.
- Class imbalance:
 - 27 disease classes
 - Top 3 classes combined: 58.7%

Experiments

- 4 CNN models: VGG16, MobileNetV2, InceptionV2, InceptionResNetV2
- Transfer learning and fine-tuning.
- Used MC methodology, despite ML dataset
- No data stratification, despite class imbalance.

Conclusion:

• "... existing models are not sufficiently accurate for plant disease ... classification of images collected directly from the field, although the ... results for FieldPlant are better than those for PlantDoc."

^{*}Correction of 2013 in thesis

Methodology

- 1. Stratify dataset
- 2. Train 4 models with each (2) methodology.
 - Transfer Learning (FT) and Fine tuning
 - Yielding 8 sets of results
- 3. Hyperparameter Tuning (HT):
 - Using best performing model.
 - RandomSearch algorithm
 - Train top layers only

Q1: Does dataset stratification improve the performance of an image classification CNN model?

Experiment:

- MobileNetV2, MC methodology.
- Unstratified vs Stratified datasets.

Results:

• Both unstratified datasets outperformed the stratified.

Conclusion

Possibly due to distribution of rare diseases in unstratified dataset.

Dataset	Categorical Acc	F1 Score
FP (unstratified)	82.9%	-
Unstratified	82.36%	81.37%
Stratified	78.40%	79.10%

Q2: Does using multi-label classification methodology improve performance on a multi-label dataset as compared to multi-class methodology?

Experiment:

Train all 4 models with both methodologies

Results

- All ML models outperform their MC counterparts for Loss and Accuracy
- Contrary for F1 Score

Conclusion

Likely due to methods of calculations

Model	Method.	Loss	Acc.	F1
InceptionResNetV2	ML	0.05	98.47%	79.67%
	МС	0.63	85.58%	83.49%
InceptionV3	ML	0.04	98.67%	80.94%
	МС	0.61	86.63%	85.37%
MobileNetV2	ML	0.04	98.48%	77.41%
	MC	0.67	78.40%	78.10%
VGG16	ML	0.05	98.32%	78.95%
	МС	0.59	85.60%	83.61%

Q3: What is the best combination of model and methodology?

Experiment:

 Identify best model and methodology combination from Experiment 2.

Results

- Best models per metric all differ.
- All ML models outperform all MC models for Loss and Accuracy.
- All but one MC model outperforms all ML models for F1 Score.
- Top model loss, is lowest model F1 Score.

Conclusion

- Best model depends on metric.
- ML models performed poorly using F1 score.

	Model Los	el Loss Model Acc		uracy	Model F1 score	
	Mobilenet	0.042	Inception	98.67%	Inception_	85.37%
1	_ML		_v3_ML		V3_MC	03.31%
	Inception_		Mobilenet	00.400/	vgg16	00.040/
2	v3_ML	0.044	_ML	98.48%	_MC	83.61%
	Vgg16	0.050	Inception_	00 470/	Inception_	83.49%
3	_ML	0.050 98.47% _ML resnetv2_ML	90.47%	resnetv2_MC	63.49%	
	Inception_	0.052	vgg16	98.32%	Inception_	80.94%
4	resnetv2_ML		_ML		v3_ML	00.94%
_	_ Vgg16	0.504	Inception	86.63%	Inception_	70.679/
5	_MC	0.594	_v3_MC		resnetv2_ML	79.67%
_	Inception	0.007	vgg16	85.6%	vgg16	79 0E9/
6	_v3_MC	0.607	_MC		_ML	78.95%
7	_ Inception_	0.024	Inception_	85.58%	Mobilenet	78.1%
1	resnetv2_MC	0.634	resnetv2_MC		_MC	70.1%
	Mobilenet	0.674	Mobilenet	78.4%	Mobilenet	77 /10/
8	_MC		_MC		_ML	77.41%

Q4: Does hyperparameter tuning improve model performance over standard transfer learning?

• Experiment:

- MobileNetV2 best loss
- RandomSearch algorithm
- Compare model performance:
 - Standard Model (SM): TL and fine tuning
 - Hyperparameter Tuning (HT): Top layers only

Results:

- Best hyperparameters (Table 1)
- HT model outperforms SM for all metrics (Table 2)

Conclusions:

- HT improves model performance.
- Best parameters include Sigmoid activation
 - Search process based on optimizing loss

Hyperparameter	Selection
Activation	Sigmoid
Dropout Rate	0.2
Units	256
Epochs	47

Table 1: Best hyperparameters

Model	Loss	Acc.	F1
SM	0.042	98.48%	77.41%
HT	0.0394	98.54%	81.56%

Table 2: Compare model metrics

Conclusion

- 1. Data stratification did not improve performance.
- 2. ML models outperform MC models for Loss and Accuracy, but not F1 Score.
- 3. The best model depends on metric.
- 4. Hyperparameter tuning chose Sigmoid function. Outperformed standard model.

References

- Lydia, A.A., Francis, F.S., 2020. Multi-Label Classification using Deep Convolutional Neural Network. 2020 Int. Conf. Innov. Trends Inf. Technol. ICITIIT 1–6. https://doi.org/10.1109/ICITIIT49094.2020.9071539
- 2. Moupojou, E., Tagne, A., Retraint, F., Tadonkemwa, A., Wilfried, D., Tapamo, H., Nkenlifack, M., 2023. FieldPlant: A Dataset of Field Plant Images for Plant Disease Detection and Classification With Deep Learning. IEEE Access PP, 1–1. https://doi.org/10.1109/ACCESS.2023.3263042

Acknowledgments

- Vikas Tomer Thesis supervisor.
- Lecturers of MSc Data Analytics in CCT

THANK YOU