Cambridge (CIE) A Level Chemistry

Standard Electrode Potentials E⊕, Standard Cell Potentials E-cell & the **Nernst Equation**

Contents

- * Standard Electrode & Cell Potentials
- * Measuring the Standard Electrode Potential
- * Standard Cell Potential: Calculations, Electron Flow & Feasibility
- * Non-Standard Conditions
- * Nernst Equation
- * Standard Electrode Potentials: Free Energy Change

Standard Electrode & Standard Cell **Potentials**

Electrode potential

- The **electrode** (**reduction**) **potential** (*E*) is a value which shows how easily a substance is reduced
- These are demonstrated using reversible half equations
 - This is because there is a redox equilibrium between two related species that are in different oxidation states
 - For example, if you dipped a zinc metal rod into a solution which contained zinc ions, there would be zinc atoms losing electrons to form zinc ions and at the same time, zinc ions gaining electrons to become zinc atoms
 - This would cause a redox equilibrium

Half equations

- When writing half equations for this topic, the electrons will always be written on the lefthand side (demonstrating reduction)
- The position of equilibrium is different for different species, which is why different species will have electrode (reduction) potentials
- The more **positive** (or less negative) an electrode potential, the **more likely** it is for that species to undergo reduction
 - The equilibrium position lies more to the **right**
- For example, the positive electrode potential of bromine below, suggests that it is likely to get reduced and form bromide (Br-) ions

$$Br_2(I) + 2e^- = 2Br^-(aq)$$
 voltage = +1.09 V

- The more **negative** (or less positive) the electrode potential, the less likely it is that reduction of that species will occur
 - The equilibrium position lies more to the **left**
- For example, the negative electrode potential of sodium suggests that it is unlikely that the sodium (Na+) ions will be reduced to sodium (Na) atoms

$$Na^{+}(aq) + e^{-} = Na(s)$$
 voltage = -2.71 V

Standard electrode potential

• The position of equilibrium and therefore the electrode potential depends on factors such as:

- Temperature
- Pressure of gases
- Concentration of reagents
- So, to be able to compare the electrode potentials of different species, they all have to be measured against a common reference or standard

Standard conditions

- Standard conditions also have to be used when comparing electrode potentials
- These standard conditions are:
 - An ion concentration of 1.00 mol dm⁻³
 - A temperature of 298 K
 - A pressure of latm
- The electrode potentials are measured relative to something called a **standard** hydrogen electrode
- The standard hydrogen electrode is given a value of 0.00 V, and all other electrode potentials are compared to this standard
- This means that the electrode potentials are always referred to as a **standard electrode** potential (E^{\equiv})
- The standard electrode potential (E^{Ξ}) is the voltage produced when a standard halfcell is connected to a standard hydrogen cell under standard conditions
- For example, the standard electrode potential of bromine suggests that relative to the hydrogen half-cell it is more likely to get reduced, as it has a **more positive** E^{Ξ} value

$$Br_2(I) + 2e^- = 2Br^-(aq)$$
 $E^{\equiv} = +1.09 \text{ V}$

$$2H^{+}(aq) + 2e^{-} \neq H_{2}(q)$$
 $E^{=} = 0.00 \text{ V}$

■ The standard electrode potential of sodium, on the other hand, suggests that relative to the hydrogen half-cell it is less likely to get reduced as it has a more negative E^{Ξ} value

$$Na^{+}(aq) + e^{-} \Rightarrow Na(s)$$
 $E^{=} = -2.71 V$

$$2H^{+}(aq) + 2e^{-} \Rightarrow H_{2}(g)$$
 $E^{\equiv} = 0.00 \text{ V}$

Standard cell potential

- Once the \mathbf{E}^{Ξ} of a half-cell is known, the **voltage** of an **electrochemical cell** made up of two half-cells can be calculated
 - These could be any half-cells and neither have to be a standard hydrogen electrode
- This is also known as the **standard cell potential** (E_{cell}^{\equiv})
- The standard cell potential can be determined by two methods:
 - 1. Using the equation $E_{\text{cell}} = E_{\text{reduction}} E_{\text{oxidation}}$

Your notes

- Use of this equation does require knowledge of which reaction is reduction and which is oxidation
- Your notes

- The reduction reaction has the higher / more positive E^{\pm} value
- 2. $\mathbf{E_{cell}}^{\equiv}$ is the difference in \mathbf{E}^{\equiv} between two half-cells
- For example, an electrochemical cell consisting of bromine and sodium half-cells has an **E**cell[■] of:
 - $E_{cell}^{\pm} = (+1.09) (-2.71)$
 - $E_{cell}^{\equiv} = +3.80 \text{ V}$

Standard Hydrogen Electrode

- When a metal rod is placed in an aqueous solution, a **redox equilibrium** is established between the metal ions and atoms
 - For example, the copper atoms get **oxidised** and enter the solution as copper ions

Cu (s)
$$\rightarrow$$
 Cu²⁺ (aq) + 2e⁻

Oxidation of copper ions

During oxidation, copper atoms lose 2 electrons to form copper ions

• The copperions gain electrons from the metal rod and deposit as metal atoms on the rod

$$Cu^{2+}$$
 (aq) + $2e^- \rightarrow Cu$ (s)

Reduction of copper ions

During oxidation, copper atoms lose 2 electrons to form copper ions

COPPER IONS

- When equilibrium is established, the rate of oxidation and reduction of copper is equal
- The position of the redox equilibrium is different for different metals
 - Copper is more easily **reduced**, thus the equilibrium lies further over to the **right**

$$Cu^{2+}$$
 (aq) + $2e^{-} \rightleftharpoons Cu$ (s)

• Vanadium is more easily **oxidised**, thus the equilibrium lies further over to the **left**

$$V^{2+}$$
 (aq) + 2e⁻ \rightleftharpoons V(s)

- The metal atoms and ions in solution cause an **electric potential (voltage)**
- This potential cannot be measured **directly** however the potential between the metal/metal ion system and another system can be measured
- This value is called the **electrode potential** (*E*) and is measured in **volts**
 - The electrode potential is the **voltage** measured for a half-cell compared to another half-cell
 - Often, the half-cell used for comparison is the **standard hydrogen electrode**

Standard hydrogen electrode

- The **standard hydrogen electrode** is a half-cell used as a **reference electrode** and consists of:
 - Hydrogen gas in equilibrium with H⁺ ions of concentration 1.00 mol dm⁻³ (at 1 atm)

$$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$$

- An inert platinum electrode that is in contact with the hydrogen gas and H⁺ ions
- When the standard hydrogen electrode is connected to another half-cell, the **standard** electrode potential of that half-cell can be read off a voltmeter

The standard hydrogen electrode (SHE)

The standard electrode potential of a half-cell can be determined by connecting it to a standard hydrogen electrode

Measuring the Standard Electrode Potential

Measuring the Standard Electrode **Potential**

- There are three different types of half-cells that can be connected to a standard hydrogen electrode
 - A metal / metal ion half-cell
 - A non-metal / non-metal ion half-cell
 - An ion / ion half-cell (the ions are in different oxidation states)
- When a half-cell is connected to a standard hydrogen electrode, or when two half-cells are connected, a salt bridge is required
 - A salt bridge has **mobile ions** that complete the circuit
 - A salt bridge is typically a strip of filter paper soaked in a saturated solution of potassium nitrate or potassium chloride as nitrates and chlorides are usually soluble
 - This should ensure that no precipitates form which can affect the equilibrium position of the half-cells

Metal / metal ion half-cell

- An example of a metal / metal ion half-cell is the Ag⁺/ Ag half-cell
 - Ag is the metal
 - Ag⁺ is the metal ion
- This half-cell is connected to a **standard hydrogen electrode** and the two halfequations are:

$$Ag^{+}(aq) + e^{-} \neq Ag(s)$$
 $E^{=} = +0.80 \text{ V}$

$$2H^{+}(aq) + 2e^{-} \Rightarrow H_{2}(g)$$
 $E^{=} = 0.00 \text{ V}$

- Since the Ag⁺ / Ag half-cell has a more positive E^{Ξ} value, this is the **positive pole** and the H⁺/H₂ half-cell is the **negative** pole
- The standard cell potential (E_{cell}^{\pm}) is $E_{cell}^{\pm} = (+0.80) (0.00) = +0.80 \text{ V}$
- The Ag⁺ ions are more likely to get **reduced** than the H⁺ ions as it has a greater E^{\equiv} value
 - Reduction occurs at the positive pole
 - Oxidation occurs at the negative pole

Example of an electrochemical cell containing a metal / metal ion half-cell

Under standard conditions, a metal / metal ion half-cell is connected to the standard hydrogen electrode to measure the cell potential

Non-metal / non-metal ion half-cell

- In a non-metal / non-metal ion half-cell platinum wire or foil is used as an electrode to make electrical contact with the solution
 - Like graphite, platinum is inert and does not take part in the reaction
 - The redox equilibrium is established on the platinum surface
- An example of a non-metal/non-metal ion is the Br₂ / Br⁻ half-cell
 - Bristhe non-metal
 - Br⁻ is the non-metal ion
- The half-cell is connected to a **standard hydrogen electrode** and the two halfequations are:

$$Br_2(I) + 2e^- \neq 2Br^-(aq)$$
 $E^{\equiv} = +1.09 \text{ V}$

$$2H^{+}(aq) + 2e^{-} \Rightarrow H_{2}(g)$$
 $E^{=} = 0.00 \text{ V}$

- The Br_2/Br^- half-cell is the **positive pole** and the H^+/H_2 is the **negative** pole
- $E_{\text{cell}}^{\pm} = (+1.09) (0.00) = +1.09 \text{ V}$
- The Br₂ molecules are more likely to get **reduced** than H⁺ as they have a greater E^{\equiv} value

Example of an electrochemical cell containing a non-metal / non-metal ion half-cell

Under standard conditions, a non-metal / non-metal ion half-cell is connected to the standard hydrogen electrode to measure the cell potential

Ion / Ion half-cell

- A platinum electrode is again used to form a half-cell of ions that are in different oxidation states
- An example of such a half-cell is the MnO_4^-/Mn^{2+} half-cell
 - MnO_4 is an ion containing Mn with an oxidation number of +7
 - The Mn²⁺ion contains Mn with an oxidation number of +2
- This half-cell is connected to a **standard hydrogen electrode** and the two halfequations are:

$$MnO_4^-$$
 (aq) + 8H⁺ (aq) + 5e⁻ \Rightarrow Mn^{2+} (aq) + 4H₂O (I) E^{Ξ} = +1.52 V
2H⁺ (aq) + 2e⁻ \Rightarrow H₂ (g) E^{Ξ} = 0.00 V

- The H⁺ ions are also present in the half-cell as they are required to convert MnO₄ into Mn²⁺ions
- The MnO_4^-/Mn^{2+-} half-cell is the **positive pole** and the H^+/H_2 is the **negative** pole
- $E_{cell} = (+1.52) (0.00) = +1.52 \text{ V}$

Example of an electrochemical cell containing an ion / ion half-cell

Under standard conditions, an ion / ion half-cell is connected to the standard hydrogen electrode to measure the cell potential

Standard Cell Potential: Direction of **Electron Flow & Feasibility**

Direction of electron flow

• The direction of electron flow can be determined by comparing the E^{Ξ} values of two half-cells in an electrochemical cell

$$2Cl_2(g) + 2e^- \neq 2Cl^-(ag)$$
 $E^{\equiv} = +1.36 \text{ V}$

$$Cu^{2+}$$
 (aq) + $2e^{-} \neq Cu$ (s) $E^{\equiv} = +0.34 \text{ V}$

- The Cl₂ more **readily accept** electrons from the Cu²⁺/Cu half-cell
 - This is the **positive pole**
 - Cl₂ gets more readily reduced
- The Cu²⁺ more **readily loses** electrons to the Cl₂/Cl⁻ half-cell
 - This is the **negative pole**
 - Cu²⁺ gets more readily oxidised
- The electrons flow from the Cu²⁺/Cu half-cell to the Cl₂/Cl⁻ half-cell
- The flow of electrons is from the **negative pole** to the **positive pole**

Flow of electrons through an electrochemical cell

The electrons flow through the wires from the negative pole to the positive pole

Feasibility

- The E^{Ξ} values of a species indicate how **easily** they can get **oxidised** or **reduced**
- The more positive the value, the easier it is to reduce the species on the left of the halfequation
 - The reaction will tend to proceed in the **forward direction**
- The less positive the value, the easier it is to oxidise the species on the right of the halfequation
 - The reaction will tend to proceed in the backward direction
 - A reaction is **feasible** (likely to occur) when the E_{cell}^{\pm} is **positive**
- For example, two half-cells in the following electrochemical cell are:

$$Cl_2(g) + 2e^- = 2Cl^-(aq)$$
 $E^{\equiv} = +1.36 \text{ V}$

$$Cu^{2+}$$
 (aq) + $2e^{-} \neq Cu$ (s) $E^{\equiv} = +0.34 \text{ V}$

- Cl_2 molecules are **reduced** as they have a more positive E^{\equiv} value
- The chemical reaction that occurs in this half-cell is:

$$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$$

- Cu^{2+} ions are **oxidised** as they have a less positive E^{Ξ} value
- The chemical reaction that occurs in this half-cell is:

Cu (s)
$$\rightarrow$$
 Cu²⁺ (aq) + 2e⁻

• The **overall equation** of the electrochemical cell is (after cancelling out the electrons):

$$Cu(s) + Cl_2(g) \rightarrow 2Cl^{-}(aq) + Cu^{2+}(aq)$$

OR

$$Cu(s) + Cl_2(g) \rightarrow CuCl_2(s)$$

- The **forward** reaction is **feasible** (spontaneous) as it has a **positive** E^{\equiv} value of +1.02 V ((+1.36) - (+0.34))
- The **backward** reaction is **not feasible** (not spontaneous) as it has a **negative** E^{Ξ} value of -1.02 ((+0.34) - (+1.36))

Reaction feasibility and the standard cell potential

A reaction is feasible when the standard cell potential $E \equiv$ is positive

Examiner Tips and Tricks

Remember that the electrons only move through the wires in the external circuit and not through the electrolyte solution.

Redox Equations

- The main ways to construct redox equations using the relevant half-equations:
 - Using changes in oxidation numbers to help balance chemical equations
 - Using the number of electrons for each half-cell
 - Both of these are discussed in the Redox Reactions topic
 - Interpreting the information given to you and predicting any other chemicals involved in the reaction

Worked Example

Write the balanced chemical equation for hydrogen iodide reacting with sulfuric acid to form hydrogen sulfide, iodine and one other product

Answer:

- There are 2 possible methods:
 - 1. Using ionic half-equations

2. Interpreting the information and predicting any other chemicals involved Using ionic half-equations method:

- Step 1: Identify possible half-equations from the information
 - lodide → iodine
 - Sulfuric acid → hydrogen sulfide
- Step 2: Construct the half equations
 - Iodide → iodine
 - I⁻ → I₂
 - This requires 2 iodide ions and 2 electrons as products to balance the equation
 - $2l^- \rightarrow l_2 + 2e^-$
 - Sulfuric acid → hydrogen sulfide
 - $H_2SO_4 \rightarrow H_2S$
 - The 4 oxygen atoms will form 4 water molecules as products
 - $\blacksquare H_2SO_4 \rightarrow H_2S + 4H_2O$
 - The 8 hydrogen atoms in the water molecules will require 8 protons as reactants
 - $H_2SO_4 + 8H^+ \rightarrow H_2S + 4H_2O$
 - The 8 protons will require 8 electrons to balance the charge
 - $H_2SO_4 + 8H^+ + 8e^- \rightarrow H_2S + 4H_2O$
- Step 3: Combine the half-equations
 - lodide → iodine
 - $2l^- \rightarrow l_2 + 2e^-$
 - The iodide half-equation needs to be multiplied by 4 to have the same number of electrons as the sulfuric acid half-equation
 - $8l^- \rightarrow 4l_2 + 8e^-$
 - Sulfuric acid → hydrogen sulfide
 - $H_2SO_4 + 8H^+ + 8e^- \rightarrow H_2S + 4H_2O$
 - Combining the half-equations
 - $8I^- + H_2SO_4 + 8H^+ + 8e^- \rightarrow 4I_2 + 8e^- H_2S + 4H_2O$
 - Cancelling, where appropriate
 - The electrons cancel on both sides
 - The 8I⁻ and 8H⁺ can be re-written as 8HI
 - $8HI + H_2SO_4 \rightarrow 4I_2 + H_2S + 4H_2O$

Interpreting and predicting method:

- **Step 1:** Start with what you know:
 - $\blacksquare HI + H_2SO_4 \rightarrow H_2S + I_2$
- Step 2: Consider any elements that are not accounted for
 - The only element that is not currently considered is oxygen
- Step 3: Make a common and appropriate suggestion for the missing product
 - Most of these questions are in solution so there is always H₂O, H⁺ and OH⁻ available

- Missing product suggestion = 4H₂O
- $\blacksquare \quad HI + H_2SO_4 \rightarrow H_2S + I_2 + 4H_2O$
- **Step 4:** Balance the remaining chemicals
 - $8HI + H_2SO_4 \rightarrow H_2S + 4I_2 + 4H_2O$

Examiner Tips and Tricks

- Similar approaches can be used to balance more complicated ionic halfequations
- In these situations, you will have H_2O , H^+ , OH^- and electrons available

Standard Cell Potential: Calculations, Electron Flow & **Feasibility**

Standard Cell Potential Calculations

- Once the E^{\equiv} of a half-cell is known, the **potential difference** or **voltage** or **emf** of an electrochemical cell made up of any two half-cells can be calculated
 - These could be **any** half-cells and neither have to be a standard hydrogen electrode
- The **standard cell potential** (E_{cell}^{\equiv}) can be calculated by subtracting the less positive E^{Ξ} from the more positive E^{Ξ} value
 - The half-cell with the more positive E^{Ξ} value will be the **positive** pole
 - By convention this is shown on the right-hand side in a conventional cell diagram, so is termed E_{right}^{\equiv}
- The half-cell with the less positive E^{Ξ} value will be the **negative** pole
 - By convention this is shown on the left-hand side in a conventional cell diagram, so is termed **E**left

$$E_{cell}^{\parallel} = E_{right}^{\parallel} - E_{left}^{\parallel}$$

Since oxidation is always on the left and reduction on the right, you can also use this version

$$E_{cell}^{\pm} = E_{reduction}^{\pm} - E_{oxidation}^{\pm}$$

Worked Example

Calculating the standard cell potential

Calculate the standard cell potential for the electrochemical cell below and explain why the Cu^{2+} / Cu half-cell is the positive pole. The half-equations are as follows:

$$Cu^{2+}(aq) + 2e^{-} = Cu(s)$$
 $E^{\equiv} = +0.34 \text{ V}$

$$Zn^{2+}$$
 (aq) + 2e⁻ \Rightarrow Zn (s) E^{\pm} = -0.76 V

Answer

• Step 1: Calculate the standard cell potential. The copper is more positive so must be the right hand side.

$$E_{cell}^{\equiv} = E_{right}^{\equiv} - E_{left}^{\equiv}$$

$$E_{\text{cell}}^{\equiv} = (+0.34) - (-0.76) = +1.10 \text{ V}$$

• Step 2: Determine the positive and negative poles

■ The Cu²⁺/Cu half-cell is the **positive** pole as its E^{Ξ} is more positive than the E^{Ξ} value of the Zn^{2+}/Zn half-cell

Examiner Tips and Tricks

- Students often confuse the redox process that take place in voltaic cells and electrolytic cells.
- An easy way to remember is the phrase RED CATS: REDuction takes place at the CAThode. OR AN OX. OXidation takes place at the ANode

Electrochemical Series

- The E^{Ξ} values of a species indicate how easily they can get oxidised or reduced
- In other words, they indicate the relative **reactivity** of elements, compounds and ions as oxidising agents or reducing agents
- The **electrochemical series** is a list of various **redox equilibria** in order of decreasing E^{Ξ} values
- More positive (less negative) E^{\equiv} values indicate that:
 - The species is easily **reduced**
 - The species is a better **oxidising agent**
- Less positive (more negative) E^{\equiv} values indicate that:
 - The species is easily **oxidised**
 - The species is a better reducing agent

An example electrochemical series

In this example electrochemical series the equilibria are arranged in order of decreasing $E\equiv$ values. These values can then be used to identify the strongest and weakest reducing / oxidising agents.

Effect of Concentration on Electrode Potential

- Changes in temperature and concentration of aqueous ions will affect the standard electrode potential (E^{\equiv}) of a half-cell
- Under these **non-standard conditions**, *E* is used as a symbol for the electrode potential instead of E[≡]

Increasing the concentration of the species on the left

- If the concentration of the species on the left is increased, the position of equilibrium will shift to the right
- This means that the species on the left gets more easily reduced
- The E value becomes **more positive** (or less negative)
- Let's look at the half-cell below as an example

$$Zn^{2+}$$
 (aq) + 2e⁻ \neq Zn (s) E^{Ξ} = -0.76 V

- If the concentration of Zn²⁺ (species on the left) is increased, the equilibrium position will shift to the right
- The species on the **left** (Zn²⁺) will get **more easily reduced**
- Therefore, the E value becomes less negative and will change too, for example, -0.50 V instead
- This principle can also be applied to a half-cell with a positive E^{\equiv} value such as:

$$Fe^{3+}$$
 (aq) $+ e^{-} \neq Fe^{2+}$ (aq) $E^{\equiv} = +0.77 \text{ V}$

- If the concentration of Fe³⁺ (species on the left) is increased, the equilibrium position will shift to the right
- The species on the **left** (Fe³⁺) will get more easily **reduced**
- Therefore, the E value becomes more positive and will change too, for example, +0.89 V instead

Increasing the concentration of species on the right

- If the concentration of the species on the right is increased, the position of equilibrium will shift to the left
- This means that the species on the left get less easily reduced

- The Evalue becomes less positive (or more negative)
- Let's look again at the half-cell below

$$Zn^{2+}$$
 (aq) + 2e⁻ \rightleftharpoons Zn (s) E^{\equiv} = -0.76 V

- Your notes
- If the concentration of Zn (species on the right) is increased, the equilibrium position will shift to the left
- The species on the **left** (Zn²⁺) will get less easily **reduced**
- Therefore, the Evalue becomes more negative and will change too, for example, -0.82 V instead
- This principle can, again, also be applied to a half-cell with a positive E^{\equiv} value:

$$Fe^{3+}$$
 (aq) $+ e^{-} \Rightarrow Fe^{2+}$ (aq) $E^{\equiv} = +0.77 \text{ V}$

- If the concentration of Fe²⁺ (**species on the right**) is **increased**, the equilibrium position will shift to the left
- The species on the **left** (Fe³⁺) will get less easily **reduced**
- Therefore, the Evalue becomes less positive and will change too, for example, +0.56 V instead

Effect of concentration on the electrode potential

Summarising the effects of changing the concentration of reactants and products

Nernst Equation

Your notes

The Nernst Equation

- Under non-standard conditions, the cell potential of the half-cells is shown by the symbol E_{cell}
- The effect of changes in **temperature** and **ion concentration** on the E_{cell} can be deduced using the Nernst equation

$$E = E^{\Theta} + \frac{RT}{zF} \ln \frac{[oxidised species]}{[reduced species]}$$

- **E** = electrode potential under nonstandard conditions
 - E^{θ} = standard electrode potential
 - $R = \text{gas constant} (8.31 \,\text{J K}^{-1} \,\text{mol}^{-1})$
 - **T** = temperature (kelvin, K)
 - **z** = number of electrons transferred in the reaction
 - **F** = Faraday constant (96 500 C mol⁻¹)
 - **In** = natural logarithm
- This equation can be simplified to

$$E = E^{\Theta} + \frac{0.059}{z} \log_{10} \frac{[oxidised species]}{[reduced species]}$$

- At standard temperature, R, T and F are constant
 - $= \ln x = 2.303 \log_{10} x$
- The Nernst equation only depends on **aqueous ions** and **not solids or gases**
- The concentrations of solids and gases are therefore set to 1.0 mol dm⁻³

Worked Example

Calculating the electrode potential of a Fe³⁺ / Fe²⁺ half-cell

Calculate the electrode potential at 298K of a Fe³⁺ / Fe²⁺ half-cell.

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$

- $[Fe^{3+}] = 0.034 \, \text{mol dm}^{-3}$
- $[Fe^{2+}] = 0.64 \, \text{mol dm}^{-3}$

Answer

■ From the question, the relevant values for the Fe³⁺ / Fe²⁺ half-cell are:

- \blacksquare [Fe³⁺] = 0.034 mol dm⁻³
- $[Fe^{2+}] = 0.64 \text{ mol dm}^{-3}$
- $E^{\Theta} = + 0.77 \text{ V}$
- The oxidised species is Fe³⁺ as it has a higher oxidation number (+3)
- The reduced species is Fe^{2+} as it has a lower oxidation number (+2)
- zislas only one electron is transferred in this reaction
- The Nernst equation for this half-reaction is, therefore:

$$E = 0.77 + \frac{0.059}{1} \log_{10} \frac{[0.034]}{[0.64]}$$

- E = (+0.77) + (-0.075)
- E = +0.69 V

Worked Example

Calculating the electrode potential of a Cu²⁺ / Cu half-cell

Calculate the electrode potential at 298K of a Cu²⁺ / Cu half-cell.

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$

- $[Cu^{2+}] = 0.001 \, \text{mol dm}^{-3}$
- $E^{\theta} = +0.34 \text{ V}$

Answer

- From the question, the relevant values for the Cu²⁺ / Cu half-cell are:
 - $[Cu^{2+}] = 0.0010 \text{ mol dm}^{-3}$
 - $E^{\Theta} = +0.34 \text{ V}$
- The oxidised species is Cu^{2+} as it has a higher oxidation number (+2)
- The reduced species is Cu as it has a lower oxidation number (0)
- Cu is solid which means that it is not included in the Nernst equation
 - Its concentration does not change and is, therefore, fixed at 1.0
- z is 2 as 2 electrons are transferred in this reaction
- The Nernst equation for this half-reaction is, therefore:

$$E = E^{\Theta} + \frac{0.059}{z} \log_{10} \frac{[oxidised\ species]}{[reduced\ species]}$$

$$E = 0.34 + \frac{0.059}{2} \log_{10} \frac{[0.0010]}{[1.0]}$$

- E = (+0.34) + (-0.089)
- E = +0.25 V

Examiner Tips and Tricks

• You need to know the Nernst equation, so make sure you learn it

• CIE specifically ask students to learn use this version:

$$E = E^{\Theta} + \frac{0.059}{z} \log_{10} \frac{[oxidised species]}{[reduced species]}$$

- Make sure you always check what the temperature is
- If the temperature is **not** 298 K (or 25 °C) the full Nernst equation should be used
- You don't need to know how to **simplify** the Nernst equation
- You are only expected to use the equation when the temperature is 298 K (or 25

Calculating Free Energy Change Using **Standard Electrode Potentials**

■ The standard free energy change can be calculated using the standard cell potential of an electrochemical cell

$$\Delta G^{\equiv} = - n \times E_{cell}^{\equiv} \times F$$

- **∆G**⁼ = standard Gibbs free energy
 - **n** = number of electrons transferred in the reaction
 - E_{cell}^{\pm} = standard cell potential (V)
 - **F** = Faraday constant (96 500 C mol⁻¹)

Worked Example

Calculating the standard Gibbs free energy change

Calculate the standard Gibbs free energy change for the following electrochemical cell:

$$2Fe^{3+}(aq) + Cu^{2+}(aq) \rightleftharpoons 2Fe^{2+}(aq) + Cu(s)$$

Answer

• Step 1: Determine the two half-equations and their E^{\pm} using the Data booklet:

$$Fe^{3+}$$
 (aq) + $e^{-} \neq Fe^{2+}$ (aq) $E^{\equiv} = +0.77 \text{ V}$

$$Cu^{2+}$$
 (aq) + 2e⁻ \Rightarrow Cu (s) E^{\pm} = +0.34 V

- Step 2: Calculate the E_{cell}
 - $E_{cell} = E_{red} E_{ox}$
 - $E_{cell}^{\equiv} = (+0.77) (+0.34)$
 - $E_{cell}^{\equiv} = +0.43 \text{ V}$
- Step 3: Determine the number of electrons transferred in the reaction
 - The Cu²⁺/Cu has a smaller E^{\equiv} value which means that it gets **oxidised**
 - It transfers two electrons to two Fe³⁺ ions
 - Each Fe³⁺ ion accepts one electron so the total number of electrons transferred is two
- Step 4: Substitute the values in for the standard Gibbs free energy equation

 - $\Delta G^{\equiv} = -2 \times (+0.43) \times 96500$
 - $\Delta G^{\equiv} = -82990 \,\text{J}\,\text{mol}^{-1} = -83 \,\text{kJ}\,\text{mol}^{-1}$