Functional Diversity through space and time: Methods for calculating FD

By Lindsey and Vanessa

Outline

- a) Functional richness Fric
- b) Functional evenness FEve
- c) Functional divergence FDiv
- d) Functional dispersion Fdis
- e) Functional Group Richness FGR

2. Null modeling

3. Beta diversity

- a) Functional Sorensons –Fsor
- b) Nearest Neighbor distance Dnn
- c) Pairwise dissimilarity DPw

Authors:

Mason et. al 2005

Laberte and Legandgre 2010

Kraft, 2008

Swenson, 210

Functional Diversity

- a) the amount of niche space filled by species in the community (functional richness)
- b) the evenness of abundance distribution in filled niche space (functional evenness)
- c) the degree to which abundance distribution in niche space maximizes divergence in functional characters within the community (functional divergence).

Functional Diversity

High

Functional richness

Functiona evenness

Functional divergence

Functional Dispersion

Centroid

$$\mathbf{c} = [c_i] = \frac{\sum x_{ij}}{n}$$

Functional dispersion

$$FDis = \frac{\sum z_j}{n}$$

Centroid

$$\mathbf{c} = [c_i] = \frac{\sum a_j x_{ij}}{\sum a_i}$$

Functional dispersion

$$FDis = \frac{\sum a_j z_j}{\sum a_j}$$

Trait 1

Is the multivariate analog of the weightd mean absolute deviation (MAD), or Rao's Q

dummy\$trait

trait data frame of 8 functional traits on 8 species

	num1	num2	fac1	fac2	ord1	ord2	bin1	bin2
					0.01	0.02	~ <u>-</u>	<u>-</u>
sp1	9	4.5	A	Х	3	2	0	1
sp2	8.1	6	А	Z	NA	1	0	1
sp3	NA	2.3	С	Υ	5	3	1	1
sp4	3.2	5.4	R	Z	1	. 7	0	0
эрт	3.2	3.4	J.	_	_	,	J	J
sp5	5.8	1.2	С	Х	2	. 6	NA	0
sp6	3.4	8.5	С	Υ	2	. 1	1	1
sp7	7.5	2.1	В	X	3	2	1	0
sp8	4.3	6.5	NA	Z	1	. 3	0	1

dummy\$abun

matrix of abundances of the 8 species from 10 communities

	sp1	sp2	sp3	sp4	sp5	sp6	sp7	sp8
com1	1	1	0	0	4	2	0	0
com2	0	0	0	2	1	0	0	5
com3	2	0	0	0	0	1	0	3
com4	1	0	7	0	0	0	0	0
com5	0	0	2	3	3	0	0	0
com6	0	3	0	0	5	6	1	6
com7	3	5	0	3	0	0	0	0
com8	0	0	0	0	6	2	1	2
com9	4	1	1	3	0	0	2	0

Dummy.dist <- gowdis(dummy\$trait)</pre>

	sp1	sp2	sp3	sp4	sp5	sp6	sp7	sp8
sp1	0	0.21818836	0.52400522	0.67374429	0.52911128	0.61001614	0.44842348	0.40728344
sp2	0.21818836	0	0.66780822	0.56100277	0.81456988	0.59325865	0.68633736	0.20394426
sp3	0.52400522	0.66780822	0	0.82257012	0.48622527	0.27847358	0.48486628	0.59589041
sp4	0.67374429	0.56100277	0.82257012	0	0.48432643	0.70739254	0.5575126	0.23909621
sp5	0.52911128	0.81456988	0.48622527	0.48432643	0	0.60673235	0.30234159	0.55855246
sp6	0.61001614	0.59325865	0.27847358	0.70739254	0.60673235	0	0.61878444	0.44702072
sp7	0.44842348	0.68633736	0.48486628	0.5575126	0.30234159	0.61878444	0	0.70301865
sp8	0.40728344	0.20394426	0.59589041	0.23909621	0.55855246	0.44702072	0.70301865	0

 gowdis computes the Gower (1971) similarity coefficient exactly as described by Podani (1999), then converts it to a dissimilarity coefficient by using D = 1 - S. It integrates variable weights as described by Legendre and Legendre (1998).

dummy.fdisp<-fdisp(dummy.dist,dummy.abun)

comm		eig
	1	0.51601447
	2	0.41108607
	3	0.25021121
•	4	0.07199211
	5	9.71E-17
	6	-0.0067201
	7	-0.074215
	8	-0.0913455

	V1	V2
sp1	-0.0744394	0.10529491
sp2	-0.3701972	0.17301902
sp3	0.30011889	0.26033177
sp4	-0.217381	-0.3757648
sp5	0.27449437	-0.257528
sp6	0.10644436	0.25870469
sp7	0.263649	-0.1668387
sp8	-0.282689	0.00278108

- Dummy.fdisp\$eig
- Dummy.fdisp\$vectors

Dummy.dbFD <- dbFD(dummy\$trait, dummy\$abun)

	nbsp	sing.sp	FRic	qual.FRic	FEve	FDiv	FDis	RaoQ
com1	4	4	0.17420135	0.61083523	0.84323343	0.84292209	0.34816867	0.1283544
com2	3	3	0.10209717	0.61083523	0.46286348	0.85932501	0.16705601	0.04063622
com3	3	3	0.00215764	0.61083523	0.86596574	0.63030311	0.23758085	0.06497224
com4	2	2	NA	0.61083523	NA	NA	0.11462614	0.03003235
com5	3	3	0.1431512	0.61083523	0.90812085	0.76313459	0.32113662	0.11858388
com6	5	5	0.2310837	0.61083523	0.86517337	0.89666873	0.33023297	0.11738479
com7	3	3	0.07368337	0.61083523	0.76819911	0.83560952	0.2532751	0.07868047
com8	4	4	0.17422061	0.61083523	0.760665	0.86811628	0.28779307	0.09308505
com9	5	5	0.3374462	0.61083523	0.79946382	0.70151183	0.34216865	0.12431265
com10	4	4	0.22890412	0.61083523	0.49446007	0.97125544	0.3503927	0.12490783

What do all of these errors mean?

Species x species distance matrix was not Euclidean. 'sqrt' correction was applied.

FEVe: Could not be calculated for communities with <3 functionally singular species.

FRic: To respect s > t, FRic could not be calculated for communities with <3 functionally singular species.

FRic: Dimensionality reduction was required. The last 5 PCoA axes (out of 7 in total) were removed.

FRic: Quality of the reduced-space representation (based on corrected distance matrix) = 0.6108352

FDiv: Could not be calculated for communities with <3 functionally singular species.

Dummy.dbFD <- dbFD(dummy\$trait, dummy\$abun)

	nbsp	sing.sp	FRic	qual.FRic	FEve	FDiv	FDis	RaoQ
com1	4	4	0.17420135	0.61083523	0.84323343	0.84292209	0.34816867	0.1283544
com2	3	3	0.10209717	0.61083523	0.46286348	0.85932501	0.16705601	0.04063622
com3	3	3	0.00215764	0.61083523	0.86596574	0.63030311	0.23758085	0.06497224
com4	2	2	NA	0.61083523	NA	NA	0.11462614	0.03003235
com5	3	3	0.1431512	0.61083523	0.90812085	0.76313459	0.32113662	0.11858388
com6	5	5	0.2310837	0.61083523	0.86517337	0.89666873	0.33023297	0.11738479
com7	3	3	0.07368337	0.61083523	0.76819911	0.83560952	0.2532751	0.07868047
com8	4	4	0.17422061	0.61083523	0.760665	0.86811628	0.28779307	0.09308505
com9	5	5	0.3374462	0.61083523	0.79946382	0.70151183	0.34216865	0.12431265
com10	4	4	0.22890412	0.61083523	0.49446007	0.97125544	0.3503927	0.12490783

"Species x species distance matrix was not Euclidean. 'sqrt' correction was applied."

This is because "dbFD" does a PCoA and then has to account for native eigenvalues. The package comes with four possible correction methods and the default here is to take the square root of the distances. This doesn't always work so you always choose another correction method.

Dummy.dbFD <- dbFD(dummy\$trait, dummy\$abun)</pre>

FRic: To respect s > t, FRic could not be calculated for communities with <3 functionally singular species.

FRic: Dimensionality reduction was required. The last 5 PCoA axes (out of 7 in total) were removed.

FRic: Quality of the reduced-space representation (based on corrected distance matrix) = 0.6108352

FDiv: Could not be calculated for communities with <3 functionally singular species

Fric FDiv requires convex hull measurement Feve

For these two measures you need more species than traits. If you don't have this you can subset of the PCoA aces as "traits." Since this is a loss of information you can use "qual.Fric" as an R² type ratio. In this example we have about 0.61

Functional Richness - FRic

	nbsp	sing.sp	FRic	ηual.FRic	FEve	FDiv	FDis	RaoQ
com1	4		0.17420135	0.61083523	0.84323343	0.84292209	0.34816867	0.1283544
com2	3		0.10209717	0.61083523	0.46286348	0.85932501	0.16705601	0.04063622
com3	3		0.00215764	0.61083523	0.86596574	0.63030311	0.23758085	0.06497224
com4	2		NA	0.61083523	NA	NA	0.11462614	0.03003235
com5	3		0.1431512	0.61083523	0.90812085	0.76313459	0.32113662	0.11858388
com6	5		0.2310837	0.61083523	0.86517337	0.89666873	0.33023297	0.11738479
com7	3		0.07368337	0.61083523	0.76819911	0.83560952	0.2532751	0.07868047
com8	4		0.17422061	0.61083523	0.760665	0.86811628	0.28779307	0.09308505
com9	5		0.3374462	0.61083523	0.79946382	0.70151183	0.34216865	0.12431265
com10	4		0.22890412	0.61083523	0.49446007	0.97125544	0.3503927	0.12490783

Fric is the convex hull volume.

It can be abundance weighted.

If it's one trait it's the "range"

Functional Richness - FRic

Biomass

(B) High functional evenness and functional richness

Functional Evenness - FEve

	nbsp	sing.sp	FRic	qual.FRic
com1	4	4	0.17420135	0.6108352
com2	3	3	0.10209717	0.6108352
com3	3	3	0.00215764	0.6108352
com4	2	2	NA	0.6108352
com5	3	3	0.1431512	0.6108352
com6	5	5	0.2310837	0.6108352
com7	3	3	0.07368337	0.6108352
com8	4	4	0.17422061	0.6108352
			•	

(B) High functional evenness and functional richness

 $FR_{ci} = 0.857$ $E_{var} = 0.773$

(C) Lower functional evenness

Biomass

 $FR_{ci} = 0.857$

 $E_{\text{var}} = 0.567$

FEve	Div	FDis	RaoQ
0.84323343).84292209	0.34816867	0.1283544
0.46286348).85932501	0.16705601	0.04063622
0.86596574).63030311	0.23758085	0.06497224
NA	IA	0.11462614	0.03003235
0.90812085).76313459	0.32113662	0.11858388
0.86517337).89666873	0.33023297	0.11738479
0.76819911).83560952	0.2532751	0.07868047
0.760665).86811628	0.28779307	0.09308505
0.79946382).70151183	0.34216865	0.12431265
0.49446007).97125544	0.3503927	0.12490783

FEve - the evenness of abundance distribution in filled niche space

Functional Divergence - FDiv

	nbsp	sing.sp	FRic	qual.FRic	FEve
com1	4	4	0.17420135	0.61083523	0.8432334
com2	3	3	0.10209717	0.61083523	0.4628634
com3	3	3	0.00215764	0.61083523	0.8659657
com4	2	2	NA	0.61083523	NA
com5	3	3	0.1431512	0.61083523	0.9081208
com6	5	5	0.2310837	0.61083523	0.8651733
					0.7681991

Leaf nitrogen content

Max

Min

Fdiv - the degree to which abundance distribution in niche space maximizes divergence in functional characters within the community

0.76066

0.7994638

0.4944600

Functional Dispersion - FDis

	nbsp	sing.sp	FRic	qual.FRic	FEve	FDiv	FDis	RaoQ
com1	4	4	0.17420135	0.61083523	0.84323343	0.8429220	0.34816867	0.128354
com2	3	3	0.10209717	0.61083523	0.46286348	0.8593250	0.16705601	0.0406362
com3	3	3	0.00215764	0.61083523	0.86596574	0.6303031	0.23758085	0.0649722
com4	2	2	NA	0.61083523	NA	NA	0.11462614	0.0300323
com5	3	3	0.1431512	0.61083523	0.90812085	0.763134	0.32113662	0.1185838
com6	5	5	0.2310837	0.61083523	0.86517337	0.8966681	0.33023297	0.1173847
com7	3	3	0.07368337	0.61083523	0.76819911	0.835609	0.2532751	0.0786804
com8	4	4	0.17422061	0.61083523	0.760665	0.8681162	0.28779307	0.0930850
com9	5	5	0.3374462	0.61083523	0.79946382	0.701511	0.34216865	0.124312
com10	4	4	0.22890412	0.61083523	0.49446007	0.9712554	0.3503927	0.1249078

- Average distance to the (abundance weighted) centroid
- FDis is unaffected by species richness
- Can be computed from any distance or dissimilarity measure
- it can handle any number and type of traits
- not strongly influenced by outliers
- Similar to Rao's Q
- Can be used as a beta diversity measure

CWM

CWM.num1	CWM.num2	CWM.fac1	CWM.fac2	CWM.ord1	CWM.ord2	CWM.bin1	CWM.bin2
5.8875	4.0375	С	X	2	6	0	1
4.2125	5.5625	В	Z	1	3	0	1
5.71666667	6.16666667	Α	Z	1	3	0	1
9	2.575	С	Υ	5	3	1	1
4.5	3.05	С	X	1	6	0	0
5.0952381	5.52857143	С	Z	2	1	0	1
7.00909091	5.42727273	Α	Z	3	1	0	1
5.24545455	3.57272727	С	X	2	6	1	0
6.87	4.24545455	Α	X	3	2	0	1
7.42727273	3.78333333	В	X	3	2	1	0

Community weighted mean trait values.

FGR

withFGR <- dbFD(dummy\$trait, dummy\$abun, calc.FGR = T) withFGR\$FGR withFGR\$spfgr

	FGR
com1	3
com2	3
com3	2
com4	2
com5	3
com6	3
com7	2
com8	3
com9	4
com10	3

spfgr	FGR
sp1	1
sp2	1
sp3	2
sp4	3
sp5	4
sp6	2
sp7	4
sp8	1

- The number of functional groups per community based on the dendrogram.
- The default cluster type is "ward," but there are many clustering types

Dummy.functcomp <- functcomp(dummy\$trait, dummy\$abun)

		num1	num2		fac2	ord1	ord2	bin1	bin2
com1		5.8875	4.0375		X	2	6	0	0
com2		4.2125	5.5625		Z	1	3	0	1
com3		5.71666667	6.16666667		Z	1	3	0	1
com4		9	2.575		Υ	5	3	1	1
com5		4.5	3.05		Х	2	7	0	0
com6		5.0952381	5.52857143		Z	2	1	0	1
com7		7.00909091	5.42727273		Z	3	1	0	1
com8		5.24545455	3.57272727		X	2	6	1	0
com9		6.87	4.24545455		X	3	2	0	1
com10	'	7 40707070	2 7020000	1	Х	3	2	1	0

- functcomp returns the functional composition of a set of communities, as measured by the community level weighted means of trait values
- For a continuous trait CWM is the mean trait value of all species present in the community, weighted by their relative abundances.

Dummy.functcomp <- functcomp(dummy\$trait, dummy\$abun)

	num1	num2
com1	5.8875	4.
com2	4.2125	5.
com3	5.71666667	6.1666
com4	9	:
com5	4.5	
com6	5.0952381	5.5285
com7	7.00909091	5.4272
com8	5.24545455	3.5727
com9	6.87	4.2454
com10	7.42727273	3.7833

fac1	fac2	ord1	ord2	bin1	bin2
С	Х	2	6	0	0
В	Z	1	3	0	1
Α	Z	1	3	0	1
С	Υ	5	3	1	1
С	Х	2	7	0	0
С	Z	2	1	0	1
А	Z	3	1	0	1
С	Х	2	6	1	0
А	Х	3	2	0	1
В	Х	3	2	1	0

 For ordinal, nominal and binary traits, either the dominant class is returned, or the abundance of each individual class is returned (when CWM.type is "all").

Null Models: Using Kraft's R-code as an example.

- Test if species in a community are a random subset of potential colonists from a larger species pool with respect to a single continuous trait.
- Test trait mean, range, variance, kurtosis, and three metrics of even spacing (SDNN, SDNNr, SDNDr).
- Compares the rank of the observed community to the null distribution (can be used to calculate a p-value), it also calculates a standard effect size.
- Random draws can be weighted by a species abundance or occurance freuquency.

Run all the functions from the null model script first

- Now lets make and add the necessary data from the FD package.
- First load the species data which includes:
 - Species list
 - Two cwm traits for each species
 - Abundance
- fd_sp<-read.csv("fd_sp.csv",header=T)</p>
- sp<-c("sp1", "sp2", "sp3", "sp4", "sp5", "sp6", "sp7", "sp8")</p>
- trait<-(fd_sp\$sp.num2)</p>
- abundance<-floor(fd_sp\$abund)</p>

pool<-data.frame(sp, trait)

must contain all the species in all communities

sp	trait
sp1	4.5
sp2	6
sp3	2.3
sp4	5.4
sp5	1.2
sp6	8.5
sp7	2.1
sp8	6.5

sp_list_community1<-c("sp1", "sp2", "sp5", "sp6")
test_trait_data(sp_list_community1, pool, log=TRUE,
reps=999, abweight=TRUE, abdata=abundance,
verbose=TRUE)->summary_verbose
summary_verbose

```
test.richness
                      mean rank range rank SDNN rank SDNNr rank SDNDr rank
            reps
                                              850
                                                        825 NA
                                                                          NΑ
            obs mean null_mean_mean ı lll_mean_sd obs_range null_mean_range
var rank
               0.609991
                            0.5818826
                                          0.135866 0.8502377
                                                                  0.5617867
null_range_sd obs_SDNN null_mean_SDNN null_SDNN_sd obs_kurt null_mean_kurt
    0.2082579 0.2205077
                            0.1340082
                                        0.08878143 2.363065 NaN
null_kurt_sd obs_var null_mean_var null_var_sd obs_SDNNr null_mean_SDNNr
NA
              0.1379797
                           0.07823636
                                        0.04787506 0.2593483 NaN
null_SDNNr_sd obs_SDNDr null_mean_SDNDr null_SDNDr_sd mean_ES range_ES
                                                                          var ES
              0.3486316NA
NA
                                     NA
                                                  0.2068834
                                                                   1.385066
                                                                             1.247901
SDNN ES SDNNr ES SDNDr ES
                                     kurt ES
    0.9742975NA
                      NA
                                     NA
```

Do this for each community that has a minimum of 4 species

- sp_list_community6<-c("sp2", "sp5","sp6","sp7","sp8")
 test_trait_data(sp_list_community6, pool, log=TRUE, reps=999, abweight=TRUE, abdata=abundance, verbose=TRUE)->summary_verbose
- summary_verbose
- sp_list_community8<-c("sp5","sp6","sp7","sp8")
 test_trait_data(sp_list_community8, pool, log=TRUE, reps=999, abweight=TRUE, abdata=abundance, verbose=TRUE)->summary_verbose
- summary_verbose
- sp_list_community9<-c("sp1","sp2","sp3","sp4","sp7")
 test_trait_data(sp_list_community9, pool, log=TRUE, reps=999, abweight=TRUE, abdata=abundance, verbose=TRUE)->summary_verbose
- summary_verbose
- sp_list_community10<-c("sp2","sp3","sp7","sp8")
 test_trait_data(sp_list_communit10, pool, log=TRUE, reps=999, abweight=TRUE, abdata=abundance, verbose=TRUE)->summary_verbose
- summary_verbose

null<-read.csv("null_graph.csv",header=T)

species data including observed and null mean trait values for each community

community	observed_mean	null_mean
com1	0.609991	0.5800384
com6	0.5843768	0.5804775
com8	0.5359332	0.5812109
com9	0.5695409	0.5835467
com10	0.5687529	0.5760407

Trait beta diversity

Trait beta diversity

Functional Sorenson's Shared function between two communities

$$F_{\text{sor}} = \frac{BL_{k_1 k_2}}{(BL_{k_1} + BL_{k_2})1/2}$$

where $\mathrm{BL}_{k_1\,k_2}$, is the total dendrogram branch length common to all species in communities k_1 and k_2 , and BL_{k_1} and BL_{k_2} are the total dendrogram branch length common to the species within communities k_1 and k_2 , respectively.

Nearest neighbor distance

More functionally similar communities will have lower nearest neighbor distances

$$D_{\mathrm{nn}} = rac{\sum_{i=1}^{n_{k_1}} f_i \min \delta_{ik_2} + \sum_{j=1}^{n_{k_2}} f_j \min \delta_{jk_1}}{2}$$

where n_k , is the number of species in community k_1 , f_i the relative abundance of species i in community k_1 , and min δ_{ik_2} the dendrogram branch lengths between species i in community k_1 and its nearest functional neighbour in community k_2 that is not the same species. Thus if two communities

Pairwise dissimilarity All pairwise distances between species

$$D_{\mathrm{pw}} = \frac{\sum_{i=1}^{n_{k_1}} f_i \overline{\delta_{ik_2}} + \sum_{j=1}^{n_{k_2}} f_j \overline{\delta_{jk_1}}}{2}$$

where $\overline{\delta_{ik_2}}$ is the mean pairwise distance on the dendrogram between all species in community k_1 and all species in community k_2 excluding conspecific species. The D_{pw} is

Mean Pairwise distance

Calculates mean pairwise distance separating taxa in a community

```
dis.trait <- gowdis(tussock$trait)
dis.traitm<-as.matrix(dis.trait) #53 rows and 53 columns
abun.m<-as.matrix(tussock$abun) #30 rows and 53 columns
tussock.mpd<-mpd(abun.m, dis.traitm) #
ses.mpd.tussock.abundweighted<- ses.mpd (abun.m,dis.traitm,
null.model="taxa.labels",abundance.weighted=TRUE) #standard
effect size, not abundance weighted
```

Nearest neighbor distance

comdist.tussock <- comdist(abun.m,dis.traitm)</pre>

plot(comdist.tussock)

Trait dendrogram

comdist.clusters.tussock <- hclust(comdist.tussock)
plot(comdist.clusters.tussock)</pre>

Phylosor

Shared function between two communities

```
clust.dist.trait<-hclust(dis.trait)
clust.dist.trait.asphylo<-as.phylo(clust.dist.trait)
phylsor.tussock<-phylosor(abun.m,clust.dist.trait.asphylo)
```

Figures

