Data-driven extraction of quark and gluon jet substructure in proton-proton and heavy-ion collisions

Kylie Ying

Relativistic Heavy Ion Group

Massachusetts Institute of Technology

Work in collaboration with Yen-Jie Lee, Yi Chen, and Jasmine Brewer

October 12, 2021

What happens during a particle collision?

pp collision PbPb collision

Distinguishing quark and gluon jets

Collected jet samples are mixtures of quark and gluon jets

Distinguishing quark and gluon jets

Collected jet samples are mixtures of quark and gluon jets

Distinguishing quark and gluon jets

Collected jet samples are mixtures of quark and gluon jets

Topic Modeling
with machine learning
observables

Observed samples are mixtures!

- Two input distributions:
 - $p_{\gamma+jet}(x)$ and $p_{dijets}(x)$

Observed samples are mixtures!

- Two input distributions:
 - $p_{\gamma+jet}(x)$ and $p_{dijets}(x)$

At LHC energies, γ +jet and dijets have different quark/gluon contributions

Observed samples are mixtures!

- Two input distributions:
 - $p_{\gamma+jet}(x)$ and $p_{dijets}(x)$
- These are mixtures of base distributions:
 - $b_1(x)$ and $b_2(x)$
- In other words:

•
$$p_{\gamma+jet}(x) = f_1 b_1(x) + (1-f_1) b_2(x)$$

•
$$p_{dijets}(x) = f_2 b_1(x) + (1 - f_2) b_2(x)$$

However, there are infinitely many ways to define the fractions and distributions!

Mutual irreducibility

• If we require the base distributions, $b_1(x)$ and $b_2(x)$, to be **mutually irreducible**, then we can resolve this ambiguity!

[Komiske, et al., 1809.01140]

Computing base distributions

$$\kappa_1 = \inf \frac{p_{\gamma+jet}(x)}{p_{dijets}(x)}$$
 $\kappa_2 = \inf \frac{p_{dijets}(x)}{p_{\gamma+jet}(x)}$

We can compute base distributions from the mixtures:

$$b_1(x) = \frac{p_{\gamma+jet}(x) - \kappa_1 p_{dijets}(x)}{1 - \kappa_1}$$

$$b_2(x) = \frac{p_{dijets}(x) - \kappa_2 p_{\gamma + jet}(x)}{1 - \kappa_2}$$

[Brewer, et al., 2008.08596]

How do we get κ ?

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

How do we get κ ?

Markov Chain Monte Carlo

- Each of parameters in our model has a **probability distribution** of its value
 - MCMC attempts to find this through sampling!

Markov Chain Monte Carlo

- Initialize θ_0
- For t = 0, 1, 2, ..., n:
 - Draw a tentative sample z_t from $Q(\theta|\theta_t)$
 - Accept new z_t with probability A:

$$A = \min(1, \frac{P(z_t|D)Q(\theta_t|z_t)}{P(\theta_t|D)Q(z_t|\theta_t)})$$

- If z_t is accepted, then set $\theta_{t+1} \leftarrow z_t$
- Else set $\theta_{t+1} \leftarrow \theta_t$

How do we get κ ?

Extracting κ from the MCMC fits

Extracting κ from the MCMC fits

We can use κ to calculate base distributions

$$b_1(x) = \frac{p_{\gamma+jet}(x) - \kappa_1 p_{dijets}(x)}{1 - \kappa_1}$$
$$b_2(x) = \frac{p_{dijets}(x) - \kappa_2 p_{\gamma+jet}(x)}{1 - \kappa_2}$$

PbPb results

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

Defining jet shape

• **Jet shape** describes how the jet transverse momentum is distributed as a function of radial distance from the jet axis

$$\rho(r) = \frac{1}{\delta r} \frac{1}{N_{jet}} \sum_{jets} \frac{\sum_{tracks \in [r_a, r_b)} p_T^{track}}{p_T^{jet}}$$

Jet shape for pp γ +jet and dijets

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

Topic modeling results to extract jet shape

 We can apply a linear combination to extract each bin value in the jet shape:

$$\rho_{1}(r) = \frac{\rho_{\gamma+jet}(r) - \kappa_{1}\rho_{dijets}(r)}{1 - \kappa_{1}}$$

$$\rho_{2}(r) = \frac{\rho_{dijets}(r) - \kappa_{2}\rho_{\gamma+jet}(r)}{1 - \kappa_{2}}$$

Topic modeling extraction - pp

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

Topic modeling extraction - PbPb

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

Can we find a better observable?

 Use machine learning to enhance separability between quark and gluon jet distributions

Can we find a better observable?

 Use machine learning to enhance separability between quark and gluon jet distributions

Linear Discriminant Analysis (LDA)

reduces dimensionality while maximizing class separability

Linear Discriminant Analysis

Histograms of X/Y projections of the data

LDA

LDA Multiplicity

- Partition the multiplicity of a jet into p_T bins
 - Ex: [2, 2, 1] is our 3-dimensional feature vector
- Construct these vectors for quark and gluon jets
- Train LDA and project → LDA multiplicity
- This is still a work in progress!

In summary...

Thank you!

Questions/comments?

kying@mit.edu

How do we get κ ?

Fit a model to the data!

Model: sum of 4 skew-normal distributions

pp results

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

Jets in Particle Collisions

Jet shape for pp quark / gluon truths

PYQUEN samples, $80 < p_T < 100$ GeV, $|\eta| < 1$

Jet shape for PbPb quark / gluon truths

Metropolis-Hastings

- Initialize θ_0
- For t = 0, 1, 2, ..., n:
 - Draw a tentative sample z_t from $Q(\theta|\theta_t)$
 - Accept new z_t with probability A:

$$A = \min(1, \frac{P(z_t|D)Q(\theta_t|z_t)}{P(\theta_t|D)Q(z_t|\theta_t)})$$

- If z_t is accepted, then set $\theta_{t+1} \leftarrow z_t$
- Else set $\theta_{t+1} \leftarrow \theta_t$

LDA Multiplicity

- Each jet in the PYQUEN simulation is composed of many track particles, each with some p_T^{track}
- We can construct a vector of multiplicities from these tracks, representing the multiplicity in a specified p_T^{track} range
- Here we used bins:
 - $0 < p_T^{track} \le 1$
 - $1 < p_T^{track} \le 4$
 - $4 < p_T^{track} \le 10$
 - $p_T^{track} > 10$

Finite-sampled distributions

- If we directly try to calculate κ_{ij} , then we may run into large uncertainties
- Model input distribution as skew-normal with parameters heta
- Use least-squares and MCMC to estimate heta then compute κ_{ij}

LDA Multiplicity

LDA Multiplicity Results

LDA Multiplicity Results on Jet Shape

