

Lecture 2

Boolean Arithmetic

Slide deck for Chapter 2 of the book

The Elements of Computing Systems (2nd edition)

By Noam Nisan and Shimon Schocken

MIT Press

Nand to Tetris Roadmap: Hardware

Nand to Tetris Roadmap: Hardware

Project 1
Build 15 elementary logic gates

Nand to Tetris Roadmap: Hardware

Project 2
Build chips that do arithmetic, leading up to an ALU

Computer system

Computer system

Arithmetic Logical Unit

Computes a given function on two *n*-bit input values, and outputs an *n*-bit value

$\underline{\text{ALU functions}}(f)$

• Arithmetic: x + y, x - y, x + 1, x - 1, ...

• Logical: x & y, x | y, x, !x, ...

Arithmetic Logical Unit

Computes a given function on two *n*-bit input values, and outputs an *n*-bit value

$\underline{ALU \text{ functions}}(f)$

- Arithmetic: x + y, x y, x + 1, x 1, ...
- Logical: x & y, x | y, x, !x, ...

Challenges

- Use 0's and 1's for representing numbers
- Use logic gates for realizing arithmetic / logical functions.

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Chapter 2: Boolean Arithmetic

Theory

Representing numbers

- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Representation

(by René Magritte)

Representation

It's an agreed-upon code (*numeral*) used for representing the number seventeen.

A brief history of numeral systems

Twenty seven goats

Egyptian:

Roman: XXVII

A brief history of numeral systems

Six thousands, five hundreds, and seven goats

Egyptian:

Roman:

MMMMMMDVII

Old numeral systems:

- Don't scale
- Cumbersome arithmetic
- Used until about 1,000 years ago
- Hindered the progress of Algebra (and commerce, science, technology)

Positional numeral system

Six thousands, five hundreds, and seven goats

$$\sum_{i=0}^{n-1} d_i \cdot 10^i = 6 \cdot 10^3 + 5 \cdot 10^2 + 0 \cdot 10^1 + 7 \cdot 10^0 = 6507$$

Where n is the number of digits in the numeral, and d_i the digit at position i

Positional representation

Digits: A fixed set of symbols, including 0

Base: The number of symbols

Numeral: An ordered sequence of digits

Note: The method mentions no specific base.

A crucial innovation, brought to the

West from the East around 1200

Value: The digit at position i (counting from right to left, and starting at 0) encodes how many copies of $base^i$ are added to the value.

Chapter 2: Boolean Arithmetic

Theory

Representing numbers

Binary numbers

- Boolean arithmetic
- Representing signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Positional number system

Positional number system

Binary and decimal systems

Binary	<u>Decimal</u>	
0	0	
1	1	Humans are used to read and write numbers in base 10; Computers represent and process numbers in base 2; Therefore, for the sole purpose of interacting with humans, we need algorithms for base conversions.
1 0	2	
1 1	3	
100	4	
1 0 1	5	
1 1 0	6	
1 1 1	7	
1000	8	
1001	9	
1 0 1 0	10	
1 0 1 1	11	
1 1 0 0	12	
1 1 0 1	13	
• • •	• • •	

Decimal ← binary conversions

Decimal ← binary conversions

Powers of 2: (aids in calculations)

Decimal ← binary conversions

Powers of 2: (aids in calculations)

The binary system

Inside computers, *everything* is binary

G.W. Leibnitz (1646 – 1716)

Binary numerals are easy to:

Compare Verify

Add Correct

Subtract Store

Multiply Transmit

Divide Compress

•••

Leibnitz Medallion, 1697

Chapter 2: Boolean Arithmetic

Theory

- ✓ Representing numbers
- ✓ Binary numbers
- Boolean arithmetic
 - Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Boolean arithmetic

We have to figure out efficient ways to perform, on binary numbers:

• Addition We'll implement addition using logic gates

• Subtraction We'll get it for free

Multiplication

We'll implement them (efficiently) using addition

Division

Addition is the foundation of all arithmetic.

Binary addition

Decimal addition

Computers represent integers using a fixed number of bits. For example, assume n = 4:

Binary addition

Another example

Computers represent integers using a fixed number of bits. For example, assume n = 4:

Binary addition Another example

Binary addition

Computers represent integers using a fixed number of bits. For example, assume n = 4:

Another example

Another example

Computers represent integers using a fixed number of bits. For example, assume n = 4:

Handling overflow

- Our approach: Ignore it
- As we'll soon see, ignoring overflow is a sensible practice.

Word size n = 16, 32, 64, ...

Same addition algorithm for any *n*

Hardware implementation

We'll build an *Adder* chip that implements this addition algorithm, using the chips built in project 1.

(Later).

Chapter 2: Boolean Arithmetic

Theory

- ✓ Representing numbers
- ✓ Binary numbers
- ✓ Boolean arithmetic (addition)
 - Signed numbers

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Chapter 2: Boolean Arithmetic

Theory

- ✓ Representing numbers
- ✓ Binary numbers
- ✓ Boolean arithmetic (addition)
- Signed numbers

$$(x + y, -x + y, x + -y, -x + -y)$$

Practice

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Signed integers

Signed integers

In high-level languages, signed integers are typically represented using the data types short, int, and long (16, 32, and 64 bits)

Arithmetic operations on signed integers (x op y, -x op y, x op -y, -x op -y, where op = +, -, *, /) are by far what computers do most of the time

Therefore ...

Efficient algorithms for handling arithmetic operations on signed integers are essential for building efficient computers.

Signed integers

code	e(x)	x	
0000	0	0	This particular example: $n = 4$
0001	1	1	
0010	2	2	In general, <i>n</i> bits allow representing the unsigned
0011	3	3	integers 0 2 ⁿ – 1 What about negative numbers? We can use half of the code space for representing positive numbers, and the other half for negatives.
0100	4	4	
0101	5	5	
0110	6	6	
0111	7	7	
1000	8	8	
1001	9	9	
1010	10	10	
1011	11	11	
1100	12	12	
1101	13	13	
1110	14	14	
1111	15	15	

Signed integers

```
code(x)
             \boldsymbol{\mathcal{X}}
0000
                        Representation:
0001
        1
                        Left-most bit (MSB): Represents the sign, +/-
0010
        2
             3
0011
                        Remaining bits: Represent a pon-negative integer
0100
0101
                        <u>Issues</u>
0110
                           -0: Huh
0111
1000
                          cod(x) + code(x) \neq code(0)
1001
                          the codes are not monotonically increasing
1010
       10
1011
       11
           – 3
                           more complications.
1100
       12
1101
       13
1110
1111 15
```

Two's complement

code(x)		X	Representation (using <i>n</i> bits)
0000	0	0	• The "two's complement" of x is defined to be $2^n - x$
0001	1	1	 The negative of x is coded by the two's complement of x
0010	2	2	The negative of x is coded by the two s complement of x
0011	3	3	From decimal to binary
0100	4	4	<u> </u>
0101	5	5	if $x \ge 0$ return $binary(x)$
0110	6	6	else return $binary(2^n - x)$
0111	7	7	From binary to decimal
1000	8	-8	<u> </u>
1001	9	-7	if $MSB = 0$ return $decimal(bits)$
1010	10	-6	else return "-" followed by $(2^n - decimal(bits))$
1011	11	-5	
1100	12	-4	
1101	13	-3	
1110	14	-2	
1111	15	- 1	

_	code	$\mathbf{e}(x)$	х	Compute $x + y$ where x and y are signed
(0000	0	0	Algorithm: Dogwler addition module 211
(0001	1	1	Algorithm: Regular addition, modulo 2^n
(0010	2	2	6
(0011	3	3	+ 6 = + 6
(0100	4	4	<u>-2</u> <u>14</u>
(0101	5	5	20 % 16 = 4 codes 4
(0110	6	6	
(0111	7	7	+ 3 = + 3
:	1000	8	-8	<u>-5</u> 11
:	1001	9	-7	14 % 16 = 14 codes -
:	1010	10	-6	_ · / v _ v _ · .
:	1011	11	-5	14
:	1100	12	-4	+ - + -5 11
:	1101	13	-3	25 % 16 = 9 codes -7
:	1110	14	-2	25 % 10 = 9 codes
:	1111	15	– 1	

code	x	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	-1

Compute x + y where x and y are signed

Algorithm: Regular addition, modulo 2^n

Practice:

code(x)		x	Compute $x + y$ where x and y are signed	
0	000	0	0	Algorithm: Regular addition, modulo 2^n
0	0001	1	1	Algorium. Regular addition, modulo 2"
0	010	2	2	6
0	011	3	3	+ 6 = + 6
0	100	4	4	<u>-2</u> <u>14</u>
0	101	5	5	20 % 16 = 4 codes 4
0	110	6	6	Practice:
0	111	7	7	<u>1 factice.</u>
1	.000	8	-8	1 1
1	.001	9	-7	+ + + + + + + + + + + + + + + + + + + +
1	.010	10	-6	<u>9</u>
1	.011	11	-5	13 % 16 = 13 codes -3
1	100	12	-4	
1	.101	13	-3	-2 + = +
1	.110	14	-2	<u>-4</u> <u>12</u>
1	.111	15	– 1	26 % 16 = 10 codes -6

code	X	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	- 8
1001	9	-7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	- 1

At the binary level (same algorithm):

Ignoring the overflow bit is the binary equivalent of modulo 2^n

Two's complement: Recap

code	x	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	– 1

- Using *n* bits, the method represents the integers in the range -2^{n-1} , ..., $2^{n-1}-1$
- code(x) + code(-x) = code(0)
- *code*(*x*) is monotonically increasing with *x*
- Arithmetic on signed integers is the same as arithmetic on unsigned integers
- Addition / subtraction / negation are O(n), but practically O(1) since n is fixed
- Simple! Elegant! Efficient!

<u>Implications for hardware designers</u>

Arithmetic on signed integers can be implemented using *the same hardware* used for handling arithmetic of unsigned integers.

Chapter 2: Boolean Arithmetic

<u>Theory</u>

• Representing numbers

- Binary numbers
- Boolean arithmetic
- Signed numbers

<u>Practice</u>

- Arithmetic Logic Unit (ALU)
- Project 2: Chips
- Project 2: Guidelines

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

- Project 2: Chips
- Project 2: Guidelines

Von Neumann Architecture

The Arithmetic Logical Unit

The ALU computes a given function on two given inputs, and outputs the result

f: one out of a family of pre-defined arithmetic functions (add, subtract, multiply...) and logical functions (And, Or, Xor, ...)

Design issue: Which functions should the ALU compute?

A hardware / software tradeoff:

Functions not implemented by the ALU can be implemented later by software

- Hardware implementations: Faster, more expensive
- Software implementations: Slower, less expensive.

- Operates on two 16-bit, two's complement values
- Computes one of 18 functions, listed on the right

out
0 1 -1 x y !x !y -x -y
1
-1
X
У
!x
!y
- X
-y
x+1
x+1 y+1 x-1 y-1
x-1
y-1
X+V
x-y
y-x
x-y y-x x&y x y
x y

- Operates on two 16-bit, two's complement values
- Computes one of 18 functions, listed on the right
- Also outputs two 1-bit values (later)

out	
0 1 -1 x y !x !y -x -y x+1 y+1 x-1	
1	
-1	
X	
у	
!x	
!y	
-X	
-y	
x+1	
y+1	
x-1	
y-1	
x+y	
х-у	
y-x	
x-y y-x x&y x y	
x y	

- Operates on two 16-bit, two's complement values
- Computes one of 18 functions, listed on the right
- Also outputs two 1-bit values (later)
- Which function to compute is set by six 1-bit inputs

ouc	
0	
1	
-1	
X	
у	
!x	
x y !x !y -x	
-X	
-y	
x+1	
x+1 y+1 x-1 y-1 x+y	
x-1	
y-1	
x+y	
х-у	
y-x	
x-y y-x x&y x y	
x y	

out

To cause the ALU to compute a function:

control bits								
ZX	nx	zy	ny	f	no	out		
1	0	1	0	1	0	0		
1	1	1	1	1	1	1		
1	1	1	0	1	0	-1		
0	0	1	1	0	0	X		
1	1	0	0	0	0	у		
0	0	1	1	0	1	!x		
1	1	0	0	0	1	!y		
0	0	1	1	1	1	-x		
1	1	0	0	1	1	-y		
0	1	1	1	1	1	x+1		
1	1	0	1	1	1	y+1		
0	0	1	1	1	0	x-1		
1	1	0	0	1	0	y-1 x+y		
0	0	0	0	1	0	x+y		
0	1	0	0	1	1	x-y		
0	0	0	1	1	1	y-x x&y		
0	0	0	0	0	0	x&y		
0	1	0	1	0	1	x y		

The Hack ALU in action

To cause the ALU to compute a function:

control bits								
ZX	nx	zy	ny	f	no	out		
1	0	1	0	1	0	0		
1	1	1	1	1	1	1		
1	1	1	0	1	0	-1		
0	0	1	1	0	0	X		
1	1	0	0	0	0	У		
0	0	1	1	0	1	!x		
1	1	0	0	0	1	!y		
0	0	1	1	1	1	-X		
1	1	0	0	1	1	-y		
0	1	1	1	1	1	x+1		
1	1	0	1	1	1	y+1		
0	0	1	1	1	0	x-1		
1	1	0	0	1	0	y-1		
0	0	0	0	1	0	х+у		
0	1	0	0	1	1	x-y		
0	0	0	1	1	1	y-x x&y		
0	0	0	0	0	0	x&y		
0	1	0	1	0	1	x y		

The Hack ALU in action: Compute y-x

To cause the ALU to compute a function:

The Hack ALU in action: Compute y-x

The Hack ALU in action: Compute y-x

The Hack ALU in action

To cause the ALU to compute a function:

control bits									
zx	nx	zy	ny	f	no	out			
1	0	1	0	1	0	0			
1	1	1	1	1	1	1			
1	1	1	0	1	0	-1			
0	0	1	1	0	0	Х			
1	1	0	0	0	0	У			
0	0	1	1	0	1	!x			
1	1	0	0	0	1	!y			
0	0	1	1	1	1	-X			
1	1	0	0	1	1	-у			
0	1	1	1	1	1	x+1			
1	1	0	1	1	1	y+1			
0	0	1	1	1	0	x-1			
1	1	0	0	1	0	y-1			
0	0	0	0	1	0	x+y			
0	1	0	0	1	1	х-у			
0	0	0	1	1	1	x-y y-x x&y			
0	0	0	0	0	0	x&y			
0	1	0	1	0	1	x y			

The Hack ALU in action: Compute x & y

To cause the ALU to compute a function:

control bits											
ZX	nx	zy	ny	f	no	out					
1	0	1	0	1	0	0					
1	1	1	1	1	1	1					
1	1	1	0	1	0	-1					
0	0	1	1	0	0	Х					
1	1	0	0	0	0	у					
0	0	1	1	0	1	!x					
1	1	0	0	0	1	!y					
0	0	1	1	1	1	-x					
1	1	0	0	1	1	-у					
0	1	1	1	1	1	x+1					
1	1	0	1	1	1	y+1					
0	0	1	1	1	0	x-1					
1	1	0	0	1	0	y-1					
0	0	0	0	1	0	x+y					
0	1	0	0	1	1	х-у					
0	0	0	1	1	1	y-x x&y					
0	0	0	0	0	0	x&y					
0	1	0	1	0	1	x y	_				

The Hack ALU in action: Compute x & y

The Hack ALU operation: How it Works

So far we discussed the ALU abstraction;

We'll now discuss the ALU implementation.

pre-setting
the x input

zx nx

if zx if nx
then then
x=0 x=!x

-	etting input	pre-setting the y input		
ZX	nx	zy	ny	
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	

-	etting input	1	etting input	selecting between computing + or &
zx	zx nx		ny	f
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y

pre-setting the x input		-	etting input	selecting between computing + or &	post-setting the output
zx	nx	zy	ny	f	no
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out

pre-setting the x input			etting input	selecting between computing + or &	post-setting the output	Resulting ALU output
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=

pre-setting the x input		pre-setting the y input		selecting between computing + or &	-	_
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	x
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	! y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-у
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

How does the magic work?

The Hack ALU operation (assuming 4-bit x and y values)

Some useful algebraic insights:

$$-x = !(x + 1111)$$

Example:

$$0100 = 4$$
+
$$\frac{1111}{10011}$$
!
$$\frac{1100}{1100} = -4$$

- + algebraic plus
- algebraic minus
- ! bitwise Not
- & bitwise And
- 1 overflow bit
- **1111** 2ⁿ 1

code	X	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	- 1

Some useful algebraic insights:

$$x + 1 = !(!x + 1111)$$

Example:

- + algebraic plus
- algebraic minus
- ! bitwise Not
- & bitwise And
- 1 overflow bit
- **1111** 2ⁿ 1

code	x	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	– 1

Some useful algebraic insights:

$$x - y = !(!x + y)$$

Example:

$$\begin{array}{rcl}
 & 0010 & = & 2 \\
 & 1011 & = -5 \\
\hline
 & ????
\end{array}$$

- + algebraic plus
- algebraic minus
- ! bitwise Not
- & bitwise And
- 1 overflow bit
- **1111** 2ⁿ 1

code	x	
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	- 8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	- 3
1110	14	-2
1111	15	- 1

Some useful algebraic insights:

$$x = x \& 1111$$

Example:

- + algebraic plus
- algebraic minus
- ! bitwise Not
- & bitwise And
- 1 overflow bit
- **1111** 2ⁿ 1

pre-setting the x input		pre-setting the y input		selecting between computing + or &		_
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	x
1	1	0	0	0	0	У
0	0	1	1	0	1	!x
1	1	0	0	0	1	! y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-у
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

Our ALU logic is based on:

$$x = x & 1111$$
 $-x = !(x + 1111)$
 $x + 1 = !(!x + 1111)$
 $x - y = !(!x + y)$

And a few more similar insights

The Hack ALU operation

One more detail

The zr and ng output bits will come into play when we'll build the computer's CPU, later in the course.

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

• Project 2: Guidelines

Project 2

Given: All the chips built in Project 1

Goal: Build the chips:

- HalfAdder
- FullAdder
- Add16
- Inc16
- ALU

Half Adder

a	b	sum	carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HalfAdder.hdl

```
/** Computes the sum of two bits. */
CHIP HalfAdder {
    IN a, b;
    OUT sum, carry;
    PARTS:
    // Put your code here:
}
```

Implementation tip

Can be built from two gates built in project 1.

Full Adder

a	b	С	sum	carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

FullAdder.hdl

```
/** Computes the sum of three bits. */
CHIP FullAdder {
    IN a, b, c;
    OUT sum, carry;
    PARTS:
    // Put your code here:
}
```

Implementation tip

Can be built from two half-adders.

16-bit adder

Add16.hdl

```
/* Adds two 16-bit, two's-complement values.
The most-significant carry bit is ignored. */

CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
    // Put you code here:
}
```

- The bitwise additions are computed in parallel
- The carry propagations are computed sequentially
- How does it end up working? Wait for the next lecture / chapter.

16-bit adder

Add16.hdl

```
/* Adds two 16-bit, two's-complement values.
The most-significant carry bit is ignored. */

CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
    // Put you code here:
}
```

Implementation tip

To set a pin x to θ (or 1) in HDL, use: x = false (or x = true)

16-bit incrementor

Inc16.hdl

```
/** Outputs in + 1. */

CHIP Inc16 {
    IN in[16];
    OUT out[16];

PARTS:
    // Put you code here:
}
```

<u>Implementation tips</u>

- Can be built using an Add16 chip-part
- To set a bus-subset x[i..j] to 00...0 (or to 11...1) in HDL, use: x[i..j] = false (or x[i..j] = true)

	etting input		etting input	selecting between computing + or &		•
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	x
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-у
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

	etting input		etting input	selecting between computing + or &	post-setting the output	Resulting ALU output
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=

ALU.hdl

```
/** The ALU */
```


ALU.hdl

ng

zr

<u>Implementation tips</u>

We need logic for:

- Implementing "if bit == 0/1" conditions
- Setting a 16-bit value to 00000000000000000
- Setting a 16-bit value to 111111111111111
- Negating a 16-bit value (bitwise)
- Computing Add and And on two 16-bit values

ALU.hdl

```
/** The ALU */
// Manipulates the x and y inputs as follows:
                                  // 16-bit true
// if (zx == 1) sets x = 0
// if (nx == 1) sets x = !x // 16-bit Not
                                  // 16-bit true
// \text{ if } (zy == 1) \text{ sets } y = 0
                                   // 16-bit Not
// if (ny == 1) sets y = !y
// if (f == 1) sets out = x + y // 2's-complement addition
// if (f == 0) sets out = x \& y // 16-bit And
// if (no == 1) sets out = !out // 16-bit Not
                                   // 1-bit true
// if (out == 0) sets zr = 1
// if (out < 0) sets ng = 1
                                   // 1-bit true
. . .
```

Implementation strategy

- Start by building an ALU that computes out
- Next, extend it to also compute zr and ng.

Using multi-bit truth / false constants:

// Suppose that x, y, z are 8-bit bus-pins:

Using multi-bit truth / false constants:

```
...
// Suppose that x, y, z are 8-bit bus-pins:
chipPart(..., x=true, y=false, z[0..2]=true, z[6..7]=true);
...
```


Using multi-bit truth / false constants:

We can assign values to sub-buses

```
// Suppose that x, y, z are 8-bit bus-pins:
chipPart(..., x=true, y=false, z[0..2]=true, z[6..7]=true);
...
```


Unassigned bits are set to 0

Sub-bussing:

- We can assign n-bit values to sub-buses, for any n
- We can create *n*-bit bus pins, for any *n*

```
/* 16-bit adder */
CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
                      CHIP Foo {
                         IN x[8], y[8], z[16]
}
                         OUT out[16]
                          PARTS
                         Add16 (
                                                                     );
                         Add16 (
                                                                         );
```

Sub-bussing:

- We can assign n-bit values to sub-buses, for any n
- We can create *n*-bit bus pins, for any *n*

```
/* 16-bit adder */
CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
                       CHIP Foo {
                                                    Another example of assigning
                          IN x[8], y[8], z[16]
}
                                                    a multi-bit value to a sub-bus
                          OUT out[16]
                          PARTS
                          Add16 (a[0..7] = x, a[8..15] = y, b = z, out = ...);
                          Add16 (
                                                                            );
```

Sub-bussing:

- We can assign n-bit values to sub-buses, for any n
- We can create *n*-bit bus pins, for any *n*

```
/* 16-bit adder */
CHIP Add16 {
    IN a[16], b[16];
    OUT out[16];
    PARTS:
                        CHIP Foo {
                                                      Another example of assigning
                           IN x[8], y[8], z[16]
}
                                                      a multi-bit value to a sub-bus
                           OUT out[16]
                           PARTS
                           Add16 (a[0..7] = x, a[8..15] = y, b = z, out = ...);
                           Add16 (a = ..., b = ..., out[0..3] = t1, out[4..15] = t2);
                           . . .
                                                       Creating an n-bit bus (internal pin)
```

ALU: Recap

To implement the ALU logic:

We need to know how to...

- Implement "if bit == 0/1" conditions
- Set a 16-bit value to 0000000000000000
- Set a 16-bit value to 111111111111111
- Negate a 16-bit value (bitwise)
- Compute Add and And on two 16-bit values \rightarrow

	etting input	•	etting input	selecting between computing + or &		Resulting ALU output
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	х
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-x
1	1	0	0	1	1	-у
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

All simple operations

ALU: Recap

- Simple
- Elegant

"Simplicity is the ultimate sophistication."

— Leonardo da Vinci

Chapter 2: Boolean Arithmetic

Theory

- Representing numbers
- Binary numbers
- Boolean arithmetic
- Signed numbers

Practice

Project 2: Guidelines

Project 2

Given: The chips built in Project 1

Goal: Build the chips:

- HalfAdder
- FullAdder
- Add16
- Inc16
- ALU

Project 2 Guidelines

Best practice advice (same as project 1)

- Implement the chips in the order in which they appear in the project guidelines
- If you don't implement some chips, you can still use their built-in implementations
- No need for "helper chips": Implement / use only the chips we specified
- In each chip definition, strive to use as few chip-parts as possible

Best practice advice

- Implement the chips in the order in which they appear in the project guidelines
- If you don't implement some chips, you can still use their built-in implementations
- No need for "helper chips": Implement / use only the chips we specified
- In each chip definition, strive to use as few chip-parts as possible
- You will have to use chips implemented in Project 1; For efficiency and consistency, we use *built-in* chip-part implementations.

That's It!
Go Do Project 2!

What's next?

What's next?

Next lecture / chapter / project:
Build the computer's RAM