LABA LaTex

Popov Vladimir

January 7, 2024

Глава 5

Функциональные уравнения (ФУ). Системы функциональных уравнений (СФУ)

5.1 Неявные ФНП

Рассмотрим функцию F(x,u) от (n+1) переменной, где $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n,\ u\in\mathbb{R}.$ В соответствии с этой функцией уравнение

$$F(x,u) = 0 (5.1)$$

относительно $u \in \mathbb{R}$ задаёт некоторую неявную ФНП $u = u(x_1, x_2 \dots, x_n)$. Далее (5.1) будем называть функциональным уравнением (ФУ). Для таких уравнений в первую очередь важны условия их разрешимости относительно $u \in \mathbb{R}$ при $x \in \mathbb{R}^n$, а также свойства непрерывности и дифференцируемости u = u(x) в соответствующих окрестностях заданных точек $x_0 \in D \subset \mathbb{R}^n$, $u_0 \in I \subset \mathbb{R}$, для которых выполняется

$$F(x_0, u_0) = 0, (5.2)$$

что задаёт для (5.1) соответствующее начальное условие на u = u(x) так, чтобы $u(x_0) = u_0$. В дальнейшем под решением ФУ (5.1) с начальным условием (5.2) будем подразумевать некоторую функцию u(x), для которой верно:

- 1. $u(x_0) = u_0$;
- 2. в соответствующих окрестностях $V(x_0) \subset D, U(u_0) \subset I$ справедливо тождество

$$F(x, u(x)) \equiv 0. \tag{5.3}$$

Пример. Пусть $F(x, u) = x^2 - u^2$.

Рассмотрим уравнение $F(x,u)=x^2-u^2=0$ в окрестности $x_0=0,u_0=0$. В данном случае нет единственного решения, так как указанным выше условиям удовлетворяют, например, $u=|x|,\,u=-|x|,\,u=x$ и т. д.

Теорема 5.1 (об однозначной разрешимости ФУ). Пусть задана функция от (n+1) переменной F(x,u), непрерывная относительно $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n, u\in\mathbb{R}$ в соответствующих окрестностях $x_0\in D\subset\mathbb{R}^n, u_0\in I\subset\mathbb{R}$, причём $F(x_0,u_0)=0$. Если F(x,u) непрерывно дифференцируема по u, а также

$$F_u'(x_0, u_0) \neq 0, \tag{5.4}$$

то тогда ΦY (5.1) с начальным условием (5.2) имеет единственное решение u = u(x) в некоторой окрестности $V(x_0) \subset D$, удовлетворяющее

$$u(x_0) = u_0. (5.5)$$

Доказательство. Из условия (5.4) в силу непрерывности F'_u в соответствующих окрестностях x_0, u_0 следует, что F'_u сохраняет один и тот же знак в рассматриваемых окрестностях (по теореме о стабилизации знака непрерывных Φ HП). Без ограничения общности будем считать, что $\exists \delta > 0 : \forall u \in [u_0 - \delta, u_0 + \delta] \subset I \implies F'_u(x_0, u) > 0$. В этом случае Φ 1П строго возрастает на $[u_0 - \delta, u_0 + \delta]$. Из этого, в силу (5.2), $F(x_0, u_0 - \delta) < 0$ и $F(x_0, u_0 + \delta) > 0$.

Отсюда, в силу непрерывности F(x,u) по переменной x, по теореме о стабилизации знака непрерывных ФНП, уменьшив при необходимости $\delta > 0$, т. е. сузив I, получаем, что $\exists V(x_0) \subset D$, что $\forall x \in V(x_0) \implies F(x,u_0-\delta) < 0$, $F(x,u_0+\delta) > 0$. Отсюда по теореме о промежуточных значениях ФНП следует, что \forall fix $x \in V(x_0)$ $\exists ! u \in [u_0 - \delta, u_0 + \delta]$ такое, что u = u(x) удовлетворяет (5.3). При этом в силу строгой монотонности F(x,u) по u будет также выполняться (5.5) в силу начального условия (5.2).

- Замечания. 1) Можно показать, что при выполнении всех условий доказанной выше теоремы получаем единственное решение u, которое будет непрерывно в соответствующих окрестностях точек x_0, u_0 .
 - 2) Аналогичным образом, с использованием формулы Лагранжа конечных приращений, доказывается $meopema\ o\ \partial u\phi\phi epenuuposanuu\ neявных\ \Phi H\Pi$:

Теорема 5.2 (о дифференцировании неявных ФНП). Пусть наряду со всеми условиями предыдущей теоремы дополнительно функция F(x,u) непрерывно дифференцируема по x. Тогда ФУ (5.1) с начальным условием (5.2) также разрешимо, u его единственное решение в соответствующих окрестностях рассматриваемых точек $x_0 \in D, u_0 \in I$ будет удовлетворять начальному условию $u(x_0) = u_0$, а также будет дифференцируемо в этой точке по x, а частные производные полученной ФНП u = u(x) в соответствующих окрестностях x_0, u_0 находятся по формуле

$$u'_{x_k} = -\frac{F'_{x_k}(x, u)}{F'_u(x, u)}. (5.6)$$

Пример. Зная производные и дифференциал 1-го порядка находятся последовательно производные и дифференциалы высших порядков.

Рассмотрим функцию

$$\begin{cases} x + y + z = e^z \\ z = z(x, y) \end{cases}$$

Имеем:

$$d(x+y+z) = d(e^{z})$$

$$dx + dy + dz = e^{z}dz \implies \begin{cases} dz = \frac{dx}{e^{z}-1} + \frac{dy}{e^{z}-1} = z'_{x}dx + z'_{y}dy \\ z'_{x} = \frac{1}{e^{z}-1} \\ z'_{y} = \frac{1}{e^{z}-1} \end{cases}$$

$$z_x'' = (z_x')_x' = \left(\frac{1}{e^z - 1}\right)_x' = -\frac{(e^z)_x'}{(e^z - 1)^2} = -\frac{e^z z_x'}{(e^z - 1)^2} = \left[z_x' = \frac{1}{e^z - 1}\right] = -\frac{e^z}{(e^z - 1)^3}$$

В силу симметрии

$$z_{y^2}'' = \dots = -\frac{e^z}{(e^z - 1)^3}$$
$$z_{xy}'' = (z_x')_y' = \left(\frac{1}{e^z - 1}\right)_y' = \dots = -\frac{e^z}{(e^z - 1)^3}$$

Отсюда

$$d^{2}z = z_{x^{2}}''dx^{2} + 2z_{xy}''dxdy + z_{y^{2}}''dy^{2} = -\frac{dx^{2} + 2dxdy + dy^{2}}{(e^{z} - 1)^{3}}e^{z} = -\frac{(dx + dy)^{2}}{(e^{z} - 1)^{3}}e^{z}$$

и так далее.

5.2 Системы функциональных уравнений (СФУ)

Пусть имеется m функций от (n+m) переменных:

$$\begin{cases} F_k(x, u), & k = \overline{1, m} \\ x = (x_1, x_2, \dots, x_n) \in D \subset \mathbb{R}^n \\ u = (u_1, u_2, \dots, u_m) \in G \subset \mathbb{R}^m \end{cases}$$

Под $C\Phi Y$ будем подразумевать систему вида

$$\begin{cases} F_k(x, u) = 0, \\ k = \overline{1, m} \end{cases}$$
 (5.7)

Предполагается, что в (5.7) x — независимая переменная, а $u = u\left(x\right)$ — искомая функция.

Наряду с (5.7) будем рассматривать начальные условия

$$\begin{cases} F_k(x_0, u_0) = 0, \\ k = \overline{1, m}, \end{cases}$$
 (5.8)

в соответствии с которыми под решением системы (5.7), (5.8) подразумевается $u = u(x_1, x_2, \dots, x_n)$, удовлетворяющее условию $u(x_0) = u_0$, при этом в соответствующих окрестностях точек x_0, u_0 решение системы (5.7) с начальными условиями (5.8) удовлетворяют тождеству

$$F(x, u(x)) \equiv 0$$

Пусть $F = (F_1, F_2, \dots, F_m) \in \mathbb{R}^m$, тогда систему (5.7) с начальными условиями (5.8) можно записать в виде

$$\begin{cases}
F(x,u) = \vec{0} \in \mathbb{R}^m \\
F(x_0, u_0) = \vec{0} \in \mathbb{R}^m
\end{cases}$$
(5.9)

В дальнейшем для СФУ (5.7) будем рассматривать *матрицу Якоби*, которую будем обозначать:

$$\frac{\partial F}{\partial u} = \begin{bmatrix}
\frac{\partial F_1}{\partial u_1} & \frac{\partial F_1}{\partial u_2} & \cdots & \frac{\partial F_1}{\partial u_m} \\
\frac{\partial F_2}{\partial u_1} & \frac{\partial F_2}{\partial u_2} & \cdots & \frac{\partial F_2}{\partial u_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_m}{\partial u_1} & \frac{\partial F_m}{\partial u_2} & \cdots & \frac{\partial F_m}{\partial u_m}
\end{bmatrix}$$
(5.10)

Определитель квадратной матрицы Якоби (5.10) называется *якобианом* и записывается в виде:

$$I(x,u) = \left| \frac{\partial F}{\partial u} \right| = \det \frac{\partial F(x,u)}{\partial u} = \frac{\partial (F_1, F_2, \dots, F_m)}{\partial (u_1, u_2, \dots, u_m)}$$
(5.11)

Теорема 5.3 (об однозначной разрешимости СФУ). Пусть функции $F_k(x,u)$, $k = \overline{1,m}$ от (n+m) переменных $x = (x_1, x_2, \dots, x_n) \in D \subset \mathbb{R}^n$, $u = (u_1, u_2, \dots, u_m) \in G \subset \mathbb{R}^m$ непрерывны по x u по u e некоторых окрестностях точек $x_0 = (x_{01}, x_{02}, \dots, x_{0n}) \in D \subset \mathbb{R}^n$, $u_0 = (u_{01}, u_{02}, \dots, u_{0m}) \in G \subset \mathbb{R}^m$. Если выполнено начальное условие

$$F_k(x_0, u_0) = \vec{0}, \ k = \overline{1, m},$$
 (5.12)

то, в случае непрерывной дифференцируемости

$$F = (F_1, F_2, \dots, F_m) \in \mathbb{R}^m \tag{5.13}$$

по $u=(u_1,u_2,\ldots,u_m)\in\mathbb{R}^m$, если якобиан $I(x,u)=\det\frac{\partial F(x,u)}{\partial u}$ рассматриваемой $C\Phi Y$ $F(x,u)=\vec{0}$ в точке (x_0,u_0) удовлетворяет условию

$$I(x_0, u_0) \neq 0, (5.14)$$

тогда система (5.7) будет иметь в соответствующих окрестностях точек x_0 и u_0 единственное решение, т. е. $\exists ! u = u(x)$, удовлетворяющая начальному условию $u(x_0) = u_0$.

Доказательство проведём, используя ММИ (метод математической индукции).

Во-первых, при m=1 СФУ (5.7) даёт ФУ (5.1), для которого теорема об однозначности решения уже доказана.

Во-вторых, предполагая, что теорема доказана при $m=k,\ k\in\mathbb{N},$ рассмотрим случай m=k+1.

Из условия (5.14) в силу правила Лапласа вычисления определителя разложением по какой-либо строке (столбцу) следует, что в силу (5.14) в точках x_0 , u_0 хотя бы один из миноров k-ого порядка рассматриваемого якобиана ненулевой. Без ограничения общности (перестановкой строк, столбцов) считаем, что этот минор k-ого порядка

$$I_0 = \frac{\partial (F_1, F_2, \dots, F_k)}{\partial (u_1, u_2, \dots, u_k)} (x_0, y_0) \neq 0$$
(5.15)

является главным угловым минором матрицы Якоби рассматриваемой СФУ. Тогда, вопервых, в силу индуктивного предположения, при m=k СФУ

$$\begin{cases} F_i(x, v, u_{k+1}) = 0, \\ i = \overline{1, k} \end{cases}$$
 (5.16)

для fix u_{k+1} однозначно разрешена относительно $v = (u_1, u_2, \dots, u_k)$, т. е. $\exists! v = v (x, u_{k+1})$, удовлетворяющее (5.16) в соответствующих окрестностях рассматриваемых точек, и при этом выполнено начальное условие $v(x_0) = v(x_0, u_{0,k+1}) = v_0$.

В силу разрешимости (5.16) получаем

$$F_i(x, v(x, u_{k+1}), u_{k+1}) \equiv 0 \quad \forall i = \overline{1, k}.$$
 (5.17)

Дифференцируя равенства по u_{k+1} как сложные функции, получаем

$$\sum_{j=1}^{k} \frac{\partial F_i}{\partial u_j} \cdot \frac{\partial v_j}{\partial u_{k+1}} + \frac{\partial F_i}{\partial u_{k+1}} \equiv 0 \quad \forall i = \overline{1, k}.$$
 (5.18)

При подстановке v в (k+1)-е уравнение системы получим ΦY вида

$$H(x, u_{k+1}) = 0, (5.19)$$

где

$$H(x, u_{k+1}) = F_{k+1}(x, v(x, u_{k+1}), u_{k+1}). (5.20)$$

(5.19) определяет некоторую функцию

$$\begin{cases} u_{k+1} = u_{k+1}(x) \\ u_{k+1}(x_0) = u_{0,k+1}. \end{cases}$$
 (5.21)

Осталось показать, что (5.20) с начальным условием (5.21) имеет единственное решение относительно u_{k+1} в рассматриваемых окрестностях начальных точек. Для этого, в силу теоремы об однозначной разрешимости ΦY достаточно проверить, что

$$\frac{\partial H(x, u_{k+1})}{\partial u_{k+1}} \Big|_{(x_0, u_{0,k+1})} \neq 0. \tag{5.22}$$

Дифференцируя функцию (5.20) по u_{k+1} в точках x_0 и u_0 (по правилу дифференцирования сложной функции), получаем

$$\frac{\partial H(x, u_{k+1})}{\partial u_{k+1}} = \sum_{j=1}^{k} \frac{\partial F_{k+1}}{\partial u_j} \cdot \frac{\partial v_j}{\partial u_{k+1}} + \frac{\partial F_{k+1}}{\partial u_{k+1}}.$$
 (5.23)

Но тогда

$$I(x_0,u_0) = \begin{vmatrix} \frac{\partial F_1}{\partial u_1} & \frac{\partial F_1}{\partial u_2} & \cdots & \frac{\partial F_1}{\partial u_{k+1}} \\ \frac{\partial F_2}{\partial u_1} & \frac{\partial F_2}{\partial u_2} & \cdots & \frac{\partial F_2}{\partial u_{k+1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{k+1}}{\partial u_1} & \frac{\partial F_{k+1}}{\partial u_2} & \cdots & \frac{\partial F_{k+1}}{\partial u_{k+1}} \end{vmatrix} = \begin{bmatrix} \text{прибавляем } (k+1)\text{-му столбцу} \\ \text{линейную комбинацию предыдующих} \end{bmatrix} = \\ = \begin{bmatrix} \frac{\partial F_1}{\partial u_1} & \frac{\partial F_1}{\partial u_2} & \cdots & \sum_{j=1}^k \frac{\partial F_1}{\partial u_j} & \cdots & \frac{\partial F_{k+1}}{\partial u_{k+1}} \\ \frac{\partial F_2}{\partial u_1} & \frac{\partial F_2}{\partial u_2} & \cdots & \sum_{j=1}^k \frac{\partial F_2}{\partial u_j} & \cdots & \frac{\partial F_2}{\partial u_{k+1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{k+1}}{\partial u_1} & \frac{\partial F_{k+1}}{\partial u_2} & \cdots & \sum_{j=1}^k \frac{\partial F_{k+1}}{\partial u_j} & \cdots & \frac{\partial F_{k+1}}{\partial u_{k+1}} \\ \frac{\partial F_2}{\partial u_k} & \frac{\partial F_{k+1}}{\partial u_2} & \cdots & \sum_{j=1}^k \frac{\partial F_{k+1}}{\partial u_j} & \cdots & \frac{\partial F_{k+1}}{\partial u_{k+1}} \\ \frac{\partial F_{k+1}}{\partial u_k} & \frac{\partial F_{k+1}}{\partial u_2} & \cdots & \sum_{j=1}^k \frac{\partial F_{k+1}}{\partial u_j} & \cdots & \frac{\partial F_{k+1}}{\partial u_k} \\ \frac{\partial F_2}{\partial u_1} & \frac{\partial F_2}{\partial u_2} & \cdots & \frac{\partial F_2}{\partial u_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{k+1}}{\partial u_1} & \frac{\partial F_{k+1}}{\partial u_2} & \cdots & \frac{\partial F_{k+1}}{\partial u_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial u_1} & \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_1} & \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_1} & \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_1} & \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_k}{\partial u_2} & \cdots & \frac{\partial F_k}{\partial u_k} \\ \frac{\partial F_$$