

UNIVERSIDAD SAN CARLOS DE GUATEMALA CENTRO UNIVERSITARIO DE OCCIDENTE DIVISIÓN CIENCIAS DE LA INGENIERÍA LENGUAJES FORMALES Y DE PROGRAMACIÓN ING. OLIVER ERNESTO SIERRA PAC SEGUNDO SEMESTRE DE 2021

"Trabajo Teórico-Práctico - Práctica 1"

por

Luis Alejandro Méndez Rivera, 202030627

Trabajo Teórico-Práctico

El objetivo de este informe es el facilitar la comprensión del sistema presentado en la Práctica número 1 del curso, adjuntando información sobre la lógica y análisis de la **parte Teórica Práctica** como: métodos, diagramas, descripciones, etc; realizado previo a iniciar la programación del autómata solicitado que a su vez, se desglosa en capas o tokens que contienen la lógica para seguir los patrones requeridos en el enunciado del Proyecto.

A continuación, se describe a detalle la consolidación y creación de cada token:

Expresiones Regulares.

o **Identificador:** Palabras que cumplen el iniciar con una letra y pueden estar seguidas de muchas letras o muchos dígitos.

$$([A-Z]|[a-z]).([a-z]|[A-Z]|[0-9])*$$

 Número: Palabras que cumplen con tener al menos un dígito o más, y solo puede contener dígitos.

$$[0-9]+$$

O **Decimal (.):** Palabras que cumplen con tener al menos un dígito o más consecuentes de un punto seguido de uno o más dígitos.

$$[0-9]+.[.].[0-9]+$$

o **Puntuación (P):** Signos de puntuación válidos para el contexto.

 Operador (O): Operadores aritméticos (operaciones matemáticas válidas para el contexto).

o **Agrupación** (A): Ser alguno de los signos de agrupación.

$$[(() | ()) | ([) | (]) | (\{() | (\{()\})\}]$$

Desglose del AFD (Autómata Finito Determinista).

• Identificador

Expresión regular: ([A-Z]|[a-z]).([a-z]|[A-Z]|[0-9])*

Ejemplo: "Pogbvlobh" "erzgkoKVQ123" "oqpw47xTY"

1. Conjuntos de estados

Q={S1, S2}

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma = \{ [A-Z], [a-z], [0-9] \}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

 $\partial(S2, [A-Z]|[a-z].[0-9])=S2$

[0-9]

[0-9]

s2

[0-9]

s1

• Número

Expresión regular: [0-9]+

Ejemplo: "121232"

1. Conjuntos de estados

 $Q=\{S1, S2\}$

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma = \{[0-9]\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

∂(S1, [0-9])=S2

Decimal

Expresión regular: [0-9]+.[.].[0-9]+ Ejemplo: "10021.1" "300453.3232"

1. Conjuntos de estados

Q={S1, S2, S3, S4}

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma = \{[0-9], (.)\}$

4. Estados de Aceptación

F={S3}

5. Función de Transición

∂(S1, [0-9])=S2	$\partial(S1,(.))=Error$
∂(S2, [0-9])=S2	∂(S2,(.))=S3
∂(S3, [0-9])=S4	$\partial(S3,(.))=Error$
∂(S4, [0-9])=S4	$\partial(S4,(.))=Error$

<u>Puntuación</u>

Expresión regular: [(,)|(.)|(:)|(;)]

Ejemplo: ";" ","

1. Conjuntos de estados

 $Q={S1, S2}$

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma = \{(:), (.), (,), (;)\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

Operación

1. Conjuntos de estados

Q={S1, S2}

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma = \{(+), (-), (*), (/), (%)\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

$$\partial(S1, [/])=S2$$
 $\partial(S1, [-])=S2$ $\partial(S1, [+])=S2$

∂(S1, [%])=S2

Agrupación
Expresión regular : [(() | ()) | ([) | (]) | ({) | (})]
Ejemplo: "(" ")" "{" "["

1. Conjuntos de estados

 $Q=\{S1,S2\}$

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma {=} \{((),()),([),(]),(\{),(\})\}$

4. Estados de Aceptación

F={S2}

5. Función de Transición

 $\partial(S1,[(])=S2 \partial(S1,[)])=S2$

 $\partial(S1,[[])=S2 \partial(S1,[]])=S2$

 $\partial(S1,[{]})=S2 \partial(S1,[{]})=S2$

AFD Completo (Combinación de todos los token's)

Diagrama de Transición:

1. Conjuntos de estados

Q={S1, S2, S3, S4, S5, S6, S7, S8}

2. Estado Inicial

S1

3. Alfabeto

 $\Sigma = \{A, P, O, ([A-Z]), ([a-z]), ([0-9]), (.)\}$

4. Estados de Aceptación

F={S2, S3, S5, S6, S7, S8} **5. Función/Tabla de Transición**

Nota:

 $A=(() | ()) | ([) | (]) | (\{) | (\})$ A = Agrupación O=(+) | (-) | (*) | (/) | (%) P=(.) | (,) | (;) | (:) O = Operación P = Puntuación

∂(S1, [A-Z] [a-z])= <mark>S2</mark>	∂(S1, [0-9])= <mark>S3</mark>	∂(S1, O)= S7	∂(S1, P)= <mark>S6</mark>	∂(S1, A)= <mark>S8</mark>	∂(S1, [.])=Error
∂(S2, [A-Z] [a-z])= <mark>S2</mark>	∂(S2, [0-9])= <mark>S2</mark>	∂(S2, O)=Error	∂(S2, P)=Error	∂(S2, A)=Error	∂(S2, [.])=Error
∂(S3, [A-Z] [a-z])=Error	ð(S3, [0-9])= S3	∂(S3, O)=Error	∂(S3, P)=Error	∂(S3, A)=Error	∂(S3, [.])=S4
∂(S4, [A-Z] [a-z])=Error	∂(S4, [0-9])= S5	∂(S4, O)=Error	∂(S4, P)=Error	∂(S4, A)=Error	∂(S4, [.])=Error
∂(S5, [A-Z] [a-z])=Error	∂(S5, [0-9])= S5	∂(S5, O)=Error	∂(S5, P)=Error	∂(S5, A)=Error	∂(S5, [.])=Error
∂(S6, [A-Z] [a-z])=Error	∂(S6, [0-9])= Error	∂(S6, O)=Error	∂(S6, P)=Error	∂(S6, A)=Error	∂(S6, [.])=Error
∂(S7, [A-Z] [a-z])=Error	∂(S7, [0-9])= Error	∂(S7, O)=Error	∂(S7, P)=Error	∂(S7, A)=Error	∂(S7, [.])=Error
∂(S8, [A-Z] [a-z])=Error	∂(S8, [0-9])= Error	∂(S8, O)=Error	∂(S8, P)=Error	∂(S8, A)=Error	∂(S8, [.])=Error

Método de Thomson

Identificador

	FT E		E a-z A-Z 0-9		0-9	Definición formal AFD: A = (Q, Σ, δ, Α, F		
s0 (s5,s9),(S2,S9)		s1,s3,s4,s6,s7,s8,s10,s11,s13,s15=A		∂(A,a-z)=s5,s9,	∂(A,A-Z)=s2,s9	∂(A,0-9)=s2,s9	1.Q = { A, B, C} 2. A=A	
			s3,s6,s7,s8,s10,s11,s13,s15=B		∂(B,a-z)=s9,	∂(B,A-Z)=s12	∂(B,0-9)=s14	3. Σ = { (a-z),(A-Z),(0-9)} 4. F = { C} 5. Función de transición
С	3-z	A-Z	0-9	1		A	\-Z	a-z
A	В	В	В		(A)	-0.7	B - 2-7-	
В	С	С	С		A	-a-z-→(B a-z-	→ C 0-9
С	С	С	С)-9	A-Z

• <u>Número</u>

			Ц		
FT	E	0-9			
s0	s0 s1=A ∂(A,0-9)=s2,		Definición formal AFD: A = (Q, Σ, ∂, A, F) 1.Q = { A, B,} 2. A=A		
s2	s1,s3=B	∂(B,0-9)=s2	3. Σ = { (0-9)} 4. F = { B} 5. Función de transición		
		0-9		0-9	
			A	В	
(<u>A</u>)	—0- <u>6</u>	9→(B)	В	В	

Decimal

FT	E	0-9	•
s0	s1=A	∂(A,0-9)=s2,	∂(A,.)=/.
s2	s1,s3=B	∂(B,0-9)=s2	∂(B,.)=s4
s4	s5=C	∂(C,0-9)=s6	∂(C,.)=/.

Definición formal AFD: $A = (Q, \Sigma, \partial, A, F)$

 $\begin{array}{l} 1.Q = \{ \ A, \ B.C, \} \\ 2. \ A = A \\ 3. \ \Sigma = \{ \ (0 - 9), (.) \} \\ 4. \ F = \{ \ c \} \\ 5. \ Función \ de \ transición \end{array}$

	0-9	
Α	В	
В	В	С
С	С	

Puntuación

FT	E	,		:	;	
s0	s1,s4,s6,s8=A	θ(A,,)=s2	θ(A,.)=s5	θ(A,:)=s7	∂(A,:)=s9	
s2	s11=B	∂(B,,)=/	θ(B,.)=/	θ(B,:)=/	∂(B,:)=/	
s5	s11=C	∂(C.,)=/	∂(C,.)=/	∂(C,:)=/	∂(C,:)=/	Definición formal AFD: A = (Q, Σ, θ, A, F)
s7	s11=D	∂(D,,)=/	∂(D,.)=/	∂(D,:)=/	∂(D,:)=/	1.Q = { A, B,C,D,E} 2. A=A 3. Σ = { (,),(,),(;),(;)} 4. F = { E} 5. Función de transición
59	s11=E	∂(E,,)=/	∂(E,.)=/	θ(E,:)=/	∂(E,:)=/	
	B					
,			,	1.	: ;	

Unión de Todos los Tokens (Final)

С