11. Sea (E,d) un espacio métrico. Probar que todo punto de E es aislado si y sólo si toda función de E en un espacio métrico arbitrario es continua.

Det de antimidad

$$\begin{cases}
\exists (x, \varepsilon)
\end{aligned} \subseteq \exists (f(x), \varepsilon)$$

delais as x and

$$\{x\} = (x, r) \otimes (x, r) = [x]$$

$$\Rightarrow f\left(\mathcal{B}(x,r)\right) = f(x) \in \mathcal{B}\left(f(x),\varepsilon\right) \quad \forall \varepsilon > 0$$

Pre es su centro

Supongo toda f continua, con xo no abilado

$$f(B(x_0, \delta)) \notin B(f(x), \varepsilon)$$

Significant for
$$f(x) \in \mathcal{B}(f(x), \varepsilon) \not\vdash \varepsilon_{\infty}$$

⇒ de be derse que ∃y e B(xo, 8)

12. Consideramos las funciones $\mathcal{E}, \mathcal{I}: C([0,1]) \to \mathbb{R}$ definidas por:

$$\mathcal{E}(f) = f(0), \qquad \mathcal{I}(f) = \int_0^1 f(x) \ dx.$$

- (a) Demostrar que si utilizamos en C([0,1]) la distancia d_{∞} ambas resultan continuas.
- (b) Demostrar que si en cambio utilizamos en C([0,1]) la distancia d_1 , \mathcal{I} es una función continua pero \mathcal{E} no lo es.
- (c) Analizar si es posible que una función $\mathcal{F}:C([0,1])\to\mathbb{R}$ sea continua para la distancia d_1 pero no para d_∞ .

Hecho en otro zchivo

- 13. Sea (E, d) un espacio métrico.
 - (a) Sea $x_0 \in E$, y sea $f: E \to \mathbb{R}$ dada por $f(x) = d(x, x_0)$. Probar que f es continua.
 - (b) Usando esto, rehacer los items (b), (d) y (g) del Ejercicio de la Práctica 3.
 - 7. Sea (E, d) un espacio métrico. Sean $x \in E$ y r > 0.
 - (a) Probar que $\{x\}$ es un conjunto cerrado.
 - \rightarrow (b) Probar que B(x,r) es un conjunto abierto.
 - (c) Probar que si r > r' > 0 entonces $\overline{B(x,r')} \subseteq B(x,r)$.
 - \rightarrow (d) Probar que $\overline{B}(x,r) = \{y \in E : d(x,y) \leq r\}$ es un conjunto cerrado.
 - (e) Deducir que $\overline{B(x,r)} \subseteq \overline{B}(x,r)$.
 - (f) Dar un ejemplo en que $\overline{B(x,r)}$ sea un subconjunto propio de $\overline{B}(x,r)$.
 - \Rightarrow (g) Probar que $\{y \in E : 2 < d(y,x) < 3\}$ es un conjunto abierto.

a)
$$f(x) = d(x_1 x_0) \leq d(x_1 y) + d(y_1 x_0)$$

$$= d(x_1 y) + f(y)$$

$$f(x) \leq d(x,y) + f(y)$$

$$f(x) - f(y) \leq d(x,y)$$

De la misma forma, preco obtener

$$f(y) - f(x) \leq d(y_1 x) = d(x_1 y_1)$$

$$\Rightarrow |f(x)-f(y)| \leqslant d(x,y)$$

Finalmente

5i
$$d(x,y) < \delta \Rightarrow d(f(x), f(y)) < \varepsilon$$

$$|f(x) - f(y)| \leq d(x,y) < \delta = \varepsilon$$
elijo
$$\delta = \varepsilon$$

b)
$$B(x,r) = \{y \in E : d(x,y) < E\}$$

$$= continue$$

$$\Rightarrow conso (-\infty, E) er doierto$$

$$\Rightarrow d^{-1}(-\infty, E) er doierto$$

$$der continue$$

d)
$$\overline{B}(x,r) = \{y \in E : d(x,y) \leq E\}$$

$$\stackrel{>}{=} cono (-\infty, E] \text{ er corredo}$$

$$(\text{poer}(-\infty, E] = (-\infty, E])$$

$$\stackrel{>}{=} c^{-1}(-\infty, E] \text{ er corredo}$$

$$d \text{ er continue}$$

g) es ignal,

- 14. Sea (E, d) un espacio métrico.
 - (a) Sea $A \subseteq E$, y sea $g: E \to \mathbb{R}$ dada por g(x) = d(x, A).
 - i. Probar que g es continua
 - ii. Probar que si A es cerrado entonces g(x) > 0 para todo $x \notin A$.
 - (b) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos, y sea $h: E \to [0,1]$ dada por

$$h(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Probar que h es continua, y que $h(x) = 0 \ \forall x \in A \ y \ h(x) = 1 \ \forall x \in B$.

(c) Sean $A, B \subseteq E$ cerrados, no vacíos y disjuntos. Probar que existen conjuntos abiertos y disjuntos U y V tales que $A \subseteq U$ y $B \subseteq V$.

15. (a) Sean (E,d) y (E',d') espacios métricos y sea $f:E\to E'$ una función para la cual existe $c\geq 0$ tal que

$$d'(f(x_1), f(x_2)) \le c \cdot d(x_1, x_2)$$

para todos $x_1, x_2 \in E$. Probar que f es uniformemente continua.

(b) Deducir que las funciones f y g de los ejercicios 13 y 14 son uniformemente continuas.

a) Si
$$d(x_1, x_2) < \delta$$

$$\Rightarrow d'(f(x_1), f(x_2)) < c. \delta$$

$$= \frac{1}{2} \sin \delta = \frac{\epsilon}{c}$$

$$\forall \varepsilon > 0, \exists \delta > 0 \left(\delta = \frac{\varepsilon}{c} \right) /$$

$$\delta(x_1, x_2) < \delta \Rightarrow d'(f(x_1), f(x_2)) < \epsilon$$

囚

b) d'(f(x), f(x)) = |f(x) - f(x)|

$$= \left| d(x_1 x_0) - d(y_1 x_0) \right|$$

$$\leq d(x_1 y_0)$$

$$\frac{d(x,x_0)-d(y,x_0)}{f(x_0)} \leq d(x,y)$$

Heciendo lo mis mo con d (y, 26)

$$d(y_1x_0) - d(x_1x_0) \leq d(x_1y_0)$$

Cf er Lipschitz con constante 1

Pos d(x, A) er my similar:

As Qiaochu points out d(x,y) is continuous for fixed x. You may like to see this as well, as this is a familiar result in Topology:

42

If A is a non empty subset of a metric space (X,d) then the function f on X given by

$$f(x) = d(x, A) := \inf_{x \in A} d(x, y)$$

(1)

is continuous. Indeed,

$$|f(x) - f(y)| = |d(x, A) - d(y, A)| \le d(x, y),$$

and thus f is uniformly continuous (use $\delta=\epsilon$ in any point).

To show this, let \boldsymbol{x} and \boldsymbol{y} be points in \boldsymbol{X} , and \boldsymbol{p} any point in \boldsymbol{A} .

Then

$$d(x,p) \leq d(x,y) + d(y,p)$$
 (triangle inequality)

and so

$$d(x,A) \leq d(x,y) + d(y,p)$$

as d(x,A) is the infimum. But then $d(y,p)\geq d(x,A)-d(x,y)$ (for all p, obtained by subtracting from the previous inequality), so that $d(y,A)\geq d(x,A)-d(x,y)$ (as d(y,A) is the infimum). So: $d(x,A)-d(y,A)\leq d(x,y)$.

Now reverse the roles of x and y to get $d(y,A)-d(x,A)\leq d(x,y)$.

16. Para cada r > 0 estudiar la continuidad uniforme de la función

$$f:(r,+\infty)\to\mathbb{R}, \qquad f(x)=\sqrt{x}.$$

$$d'(f(x), f(y)) = d'(fx, fg)$$

$$= |fx - fg|$$

$$\leq |x - y| = d(x, g)$$

$$Sire(0,1):$$

$$\Rightarrow \Gamma < \sqrt{\Gamma}$$

$$\Rightarrow |\sqrt{x} - \sqrt{g}| > |x - g|$$

- 17. (a) Sean (E,d) y (E',d') espacios métricos y $f:E\to E'$ una función. Probar que si existen dos sucesiones $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq E, \,\alpha>0$ y $n_0\in\mathbb{N}$ tales que
 - i. $\lim_{n\to\infty} d(x_n, y_n) = 0$ y
 - ii. $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$,

entonces f no es uniformemente continua.

- (b) Verificar que la función $f(x) = x^2$ no es uniformemente continua en \mathbb{R} . ¿Y en $(-\infty, -\pi]$?
- (c) Verificar que la función f(x) = sen(1/x) no es uniformemente continua en (0,1).

18. Sea $f:(E,d)\to (E',d')$ una función uniformemente continua y sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en E. Probar que $(f(x_n))_{n\in\mathbb{N}}$ es una sucesión de Cauchy en E'.

- 19. (a) Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ acotada y continua pero no uniformemente continua.
 - (b) Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ no acotada y uniformemente continua.

20. Sea $f:(E,d)\to (E',d')$ una función uniformemente continua, y sean $A,B\subseteq E$ conjuntos no vacíos tales que d(A,B)=0. Probar que d'(f(A),f(B))=0.

