Building Future Generations: The Macroeconomic Consequences of Family Policies

Anson Zhou University of Wisconsin-Madison October 11, 2021

Family Policies

• Policies that support childbearing and child-rearing (e.g., baby bonus, subsidized childcare, child tax benefits...)

Family Policies

- Policies that support childbearing and child-rearing (e.g., baby bonus, subsidized childcare, child tax benefits...)
- Key instruments to achieve two sets of policy goals:
 - 1 Raise aggregate fertility rate to combat population aging
 - 2 Support families to improve children's outcomes and social mobility

Family Policies

- Policies that support childbearing and child-rearing (e.g., baby bonus, subsidized childcare, child tax benefits...)
- Key instruments to achieve two sets of policy goals:
 - 1 Raise aggregate fertility rate to combat population aging
 - 2 Support families to improve children's outcomes and social mobility
- Increasing popularity & large in scale (> 2% of GDP in OECD countries)

Family Policies

- Policies that support childbearing and child-rearing (e.g., baby bonus, subsidized childcare, child tax benefits...)
- Key instruments to achieve two sets of policy goals:
 - 1 Raise aggregate fertility rate to combat population aging
 - 2 Support families to improve children's outcomes and social mobility
- Increasing popularity & large in scale (> 2% of GDP in OECD countries)

Question: What are the macroeconomic consequences of family policies?

- Are they effective in achieving stated policy goals?
- 2 Are long-run effects different from those in transition?
- 3 How to compare in-cash versus in-kind family policies?

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Rich life cycle with childhood, working age, and retirement
- Fertility choices (quantity) and investment per child (quality)
- Childcare choices (home care & market childcare)

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Rich life cycle with childhood, working age, and retirement
- Fertility choices (quantity) and investment per child (quality)
- Childcare choices (home care & market childcare)

Model encompasses three key mechanisms of family policies:

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Rich life cycle with childhood, working age, and retirement
- Fertility choices (quantity) and investment per child (quality)
- Childcare choices (home care & market childcare)

Model encompasses three key mechanisms of family policies:

1 Child quantity-quality trade-off a lá Becker and Lewis (1973)

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Rich life cycle with childhood, working age, and retirement
- Fertility choices (quantity) and investment per child (quality)
- Childcare choices (home care & market childcare)

Model encompasses three key mechanisms of family policies:

- 1 Child quantity-quality trade-off a lá Becker and Lewis (1973)
- 2 Composition effects: heterogeneous fertility responses across families

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Rich life cycle with childhood, working age, and retirement
- Fertility choices (quantity) and investment per child (quality)
- Childcare choices (home care & market childcare)

Model encompasses three key mechanisms of family policies:

- 1 Child quantity-quality trade-off a lá Becker and Lewis (1973)
- 2 Composition effects: heterogeneous fertility responses across families
- 3 Demographic structure effects: changing age distribution over time

A quantitative heterogeneous-agent GE-OLG model that integrates:

- Rich life cycle with childhood, working age, and retirement
- Fertility choices (quantity) and investment per child (quality)
- Childcare choices (home care & market childcare)

Model encompasses three key mechanisms of family policies:

- Child quantity-quality trade-off a lá Becker and Lewis (1973)
- 2 Composition effects: heterogeneous fertility responses across families
- 3 Demographic structure effects: changing age distribution over time

Parameters affect elasticities of quantity and quality responses to policies:

- Disciplined by matching cross-sectional U.S. data and RCT evidence
- Validated using the Alaska Permanent Fund Dividend and other existing policies

Preview of Key Results

- Stated Policy Goal #1 (Fertility) Raising aggregate fertility from 1.9 to 2.1 children per women (replacement fertility rate) requires a \$30,000 cash reward to childbirth
- Stated Policy Goal #2 (Children's Outcomes and Mobility): This policy lowers both average child human capital and intergenerational income mobility by 2%
- Welfare (Long-Run and Transition): Average welfare rises by 1.6% (c.e.) in the long-run as taxes fall by 0.9%. The government needs to finance higher child-related expenditures in transition
- Compare In-Kind vs. In-Cash Policies: Subsidized childcare and public education are less cost-effective in raising fertility than cash benefits, but offer other advantages

Contribution

Income transfers, Children's Outcomes, and Social Mobility

- Benabou (2002), Heckman and Mosso (2014), Bastian and Michelmore (2018), Daruich (2019), Abbott, Gallipoli, Meghir and Violante (2019), Mullins (2019), Guner, Kaygusuz and Ventura (2020)...
- Contribution: Introducing endogenous fertility choices reverses policy effects on children's outcomes and intergenerational mobility

Fertility and Family Policies

- **Design-based:** Milligan (2005), Laroque and Salanié (2008), Drago et al. (2011), Luci-Greulich and Thévenon (2013), González (2013), Raute (2019)...
- Structural: Erosa, Fuster and Restuccia (2010), Liao (2013), Kim, Tertilt and Yum (2021)
- Contribution: (1) Considering life cycle with retirement significantly changes policy effects on taxes and welfare (2) Adding childcare choices distinguishes in-cash & in-kind policies

Outline

- Model
 - Setup and the maximization problem of parents
 - Mechanisms of family policies
- Calibration (2010 USA)
 - Key parameters that affect quantity/quality elasticities
- 3 Empirical validation the Alaska Permanent Fund Dividend (APFD)
- 4 Counterfactual Steady-State & Transition
- **5** Compare In-Cash vs In-Kind Benefits

Model

h: parents' skillsa: assetsn: fertility (continuous) t_h : total home carem: market caree: private educ. input χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale

 $\mathcal{S}: \mathsf{childcare} \ \mathsf{subsidy} \qquad \qquad \mathcal{B}: \mathsf{baby} \ \mathsf{bonus} \qquad \qquad \mathcal{E}: \mathsf{public} \ \mathsf{education}$

h: parents' skills a: assets n: fertility (continuous)

 t_h : total home care m: market care e: private educ. input

 χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale

 ${\mathcal S}$: childcare subsidy ${\mathcal B}$: baby bonus ${\mathcal E}$: public education

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}} \left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\upsilon} \right)^{1/\upsilon} = n \cdot \chi$$
 [childcare] $y = wh \cdot (1-t_h)$ [labor income]

h: parents' skills a: assets n: fertility (continuous) $t_h:$ total home care m: market care e: private educ. input

 χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale

 ${\cal S}$: childcare subsidy ${\cal B}$: baby bonus ${\cal E}$: public education

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}} \left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\nu} \right)^{1/\nu} = n \cdot \chi$$
 [childcare]
$$y = wh \cdot (1-t_h)$$
 [labor income]
$$(1+\tau_c)(c+(p_m \cdot m+e) \cdot n) + a' = (1+r)a + y - \mathcal{T}(y,a,n) + \mathcal{B} \cdot n$$
 [BC]

h: parents' skillsa: assetsn: fertility (continuous) t_h : total home carem: market caree: private educ. input χ : care time per child p_m : market care price $\Lambda(n)$: equivalence scale \mathcal{S} : childcare subsidy \mathcal{B} : baby bonus \mathcal{E} : public education

Birth Independent Child leaves the family
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}$$
 [childcare]
$$((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\nu})^{1/\nu} = n \cdot \chi$$
 [childcare]
$$y = wh \cdot (1-t_h)$$
 [labor income]
$$(1+\tau_c)(c+(p_m \cdot m+e) \cdot n) + a' = (1+r)a + y - \mathcal{T}(y,a,n) + \mathcal{B} \cdot n$$
 [BC]
$$\underbrace{h'}_{\text{parent's h.c.}} = L_2(h,1-t_h,z') \qquad h_k = G(h,\mathcal{E},e,\epsilon)$$
 [technology]
$$\underbrace{h: \text{parents' skills}}_{\text{thicl}} = a: \text{assets} \qquad n: \text{fertility (continuous)}$$

$$\underbrace{t_h: \text{total home care}}_{\text{thicl}} = m: \text{market care} \qquad e: \text{private educ. input}$$

$$\underbrace{\chi: \text{care time per child}}_{\text{thicl}} = \underbrace{h: \text{parenter subsidy}}_{\text{thicl}} = \underbrace{h: \text{paby bonus}}_{\text{thicl}} = \underbrace{h: \text{public education}}_{\text{thicl}} = \underbrace{h: \text{public education}}_{$$

Birth Independent Child leaves the family Retire Death
$$V_2(h,a) = \max_{c,a',n,e,t_h,m\geq 0} u(c/\Lambda(n)) + \underbrace{\beta \mathbb{E} V_3(h',a',n,\mathbb{E} h_k)}_{\text{includes utility of having children}} \left((t_h^{1/\iota})^{\nu} + (n \cdot (m+\mathcal{S}))^{\nu} \right)^{1/\nu} = n \cdot \chi \qquad \text{[childcare]}$$

$$y = wh \cdot (1-t_h) \qquad \text{[labor income]}$$

$$(1+\tau_c)(c+(p_m \cdot m+e) \cdot n) + a' = (1+r)a + y - \mathcal{T}(y,a,n) + \mathcal{B} \cdot n \qquad \text{[BC]}$$

$$h' = L_2(h,1-t_h,z') \qquad h_k = G(h,\mathcal{E},e,\epsilon) \qquad \text{[technology]}$$

Two simplifying modeling assumptions:

- **1** $G(h, \mathcal{E}, e, \epsilon)$ captures the overall skill formation of children from age 0 to 20
- 2 Time cost χ is non-educational and parents investments are summarized by e. High-quality public childcare can be implemented by raising \mathcal{S} and \mathcal{E} jointly in the model

Parent-to-Child Transfer

$$V_{3}(h, a, n, \mathbb{E}h_{k}) = \max_{c, a', a_{k} \geq 0} \quad u(c/\Lambda(n)) + \beta \mathbb{E}V_{4}(h', a') + \underbrace{v(n, \mathbb{E}h_{k}, a_{k})}_{\text{utility from quantity and quality}}$$

$$y = wh$$

$$(1 + \tau_{c})c + a' + n \cdot a_{k} = (1 + r)a + y - \mathcal{T}(y, a, n)$$

$$h' = L_{3}(h, 1, z)$$
[BC]

Parent-to-Child Transfer

$$V_3(h, a, n, \mathbb{E}h_k) = \max_{c, a', a_k \ge 0} \quad u(c/\Lambda(n)) + \beta \mathbb{E}V_4(h', a') + \underbrace{v(n, \mathbb{E}h_k, a_k)}_{\text{utility from quantity and quality}}$$

$$y = wh$$

$$(1 + \tau_c)c + a' + n \cdot a_k = (1 + r)a + y - \mathcal{T}(y, a, n)$$

$$h' = L_3(h, 1, z)$$

Child quantity (n) interacts with child quality $(\mathbb{E}h_k, a_k)$ in two ways:

- **1** [BC]: higher *n* raises marginal costs of $(\mathbb{E}h_k, a_k)$ a lá Becker and Lewis (1973)
- Preferences: complements or substitutes, have the potential to offset effects in [BC] (Mogstad and Wiswall 2016)

[BC]

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{narginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e} + FOC [e]$$

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e}$$
FOC [e]

ullet When n is fixed, $\mathcal{B}\uparrow$ (income effect), $MU_c\downarrow\Longrightarrow e\uparrow$

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_{c} \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_{k}, a_{k})}{\partial \mathbb{E}h_{k}} \cdot \frac{\partial \mathbb{E}h_{k}}{\partial e}}_{\text{marginal benefits of } e} + \underbrace{\int \mathcal{E}h_{k}}_{\text{marginal benefits of } e}$$

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e} + \underbrace{FOC [e]}$$

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Composition Effects

Average child human capital:

$$\overline{h}_{k} = \iint \underbrace{\frac{n^{*}(h, a)}{N} \cdot h_{k}^{*}(h, a, \cdot)}_{\text{fertility weight individual child's } h_{k}} d \underbrace{\mu_{2}}_{\text{parents' dist.}} d$$

Quantity-quality Trade-off

• Consider increase in \mathcal{B} on private educational input e (and hence h_k):

$$\underbrace{\mathcal{M}U_c \cdot n}_{\text{marginal costs of } e} = \underbrace{\frac{\partial v(n, \mathbb{E}h_k, a_k)}{\partial \mathbb{E}h_k} \cdot \frac{\partial \mathbb{E}h_k}{\partial e}}_{\text{marginal benefits of } e} + \underbrace{FOC [e]}$$

- When *n* is fixed, $\mathcal{B} \uparrow$ (income effect), $MU_c \downarrow \Longrightarrow e \uparrow$
- When n is endogenous, $\mathcal{B} \uparrow$ ("price" change), $n \uparrow \Longrightarrow e$ could fall (quantitative prediction depends on elasticities)

Composition Effects

Average child human capital:

$$\underbrace{\overline{h}_{k}}_{\text{average } h_{k}} = \iint \underbrace{\frac{n^{*}(h, a)}{N}}_{\text{fertility weight}} \cdot \underbrace{h_{k}^{*}(h, a, \cdot)}_{\text{individual child's } h_{k}} d \underbrace{\mu_{2}}_{\text{parents' dist.}} d\epsilon$$

Family policies change the fertility weights, i.e. composition of parents

Firms, Government, and Demographic Structure Effects

• Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$

Firms, Government, and Demographic Structure Effects

- Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$
- Denote age structure as $\{\omega_j\}_{j=0}^8$ (with $\sum_{j=0}^8 \omega_j = 1$) and the distribution of households across state space as $\{\mu_j\}_{j=0}^8$

Firms, Government, and Demographic Structure Effects

- Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$
- Denote age structure as $\{\omega_j\}_{j=0}^8$ (with $\sum_{j=0}^8 \omega_j = 1$) and the distribution of households across state space as $\{\mu_j\}_{j=0}^8$
- Government budget where each revenue/expenditure source is weighted by age dist.

$$\underbrace{\left(\sum_{j=2}^{6} \omega_{j} \int \mathcal{T}(y_{j}^{*}, a_{j}^{*}, n_{j}^{*}) \, d\mu_{j}\right)}_{\text{income taxes / transfers}} + \tau_{c} \underbrace{\left(\sum_{j=2}^{8} \omega_{j} \int c_{j}^{*} \, d\mu_{j} + \omega_{2} \int n^{*}(\rho_{m} m^{*} + e^{*}) \, d\mu_{2}\right)}_{\text{consumption taxes}} = \underbrace{\left(\omega_{0} + \omega_{1}\right)}_{\text{mass of children}} \underbrace{\mathcal{E} + \omega_{2} \left(\int n^{*} \mathcal{B} \, d\mu_{2} + \int (1 + \tau_{c}) n^{*} \rho_{m} \mathcal{S} \, d\mu_{2}\right)}_{\text{subsidized childcare}} + \underbrace{\left(\sum_{j=2}^{8} \omega_{j} \int wh \, d\mu_{j}\right)}_{\text{pension payments}} + \underbrace{\sum_{j=2}^{8} \omega_{j}}_{\text{mass of adults}} \underbrace{\mathcal{X}}_{\text{exo.}}$$

Firms, Government, and Demographic Structure Effects

- Representative firm with Cobb-Douglas production function: $Y = AK^{\alpha}H^{1-\alpha}$
- Denote age structure as $\{\omega_j\}_{j=0}^8$ (with $\sum_{j=0}^8 \omega_j = 1$) and the distribution of households across state space as $\{\mu_j\}_{j=0}^8$
- Government budget where each revenue/expenditure source is weighted by age dist.

$$\underbrace{\left(\sum_{j=2}^{6} \omega_{j} \int \mathcal{T}(y_{j}^{*}, a_{j}^{*}, n_{j}^{*}) \, d\mu_{j}\right)}_{\text{income taxes / transfers}} + \tau_{c} \underbrace{\left(\sum_{j=2}^{8} \omega_{j} \int c_{j}^{*} \, d\mu_{j} + \omega_{2} \int n^{*}(p_{m}m^{*} + e^{*}) \, d\mu_{2}\right)}_{\text{consumption taxes}} = \underbrace{\left(\omega_{0} + \omega_{1}\right)}_{\text{mass of children}} \underbrace{\mathcal{E} + \omega_{2} \left(\int n^{*}\mathcal{B} \, d\mu_{2} + \int (1 + \tau_{c})n^{*}p_{m}\mathcal{S} \, d\mu_{2}\right)}_{\text{baby bonus}} + \underbrace{\pi \left(\sum_{j=7}^{8} \omega_{j} \int wh \, d\mu_{j}\right)}_{\text{pension payments}} + \underbrace{\sum_{j=2}^{8} \omega_{j} \underbrace{\mathcal{X}}_{\text{exo.}}}_{\text{mass of adults}}$$

• Demographic Structure Effects: Family policies change $\{\omega_j\}_{j=0}^8$. Effects on fiscal burden depends on relative costs of retired agents versus children

Calibration

Model Parameters

Table 1: Model Parameters

	Interpretation	Value	Source		Interpretation	Value	Source		
	Preference	es		Child human capital production					
β	discount rate (annual)	0.98	standard	Z	Z normalizing scalar		median income =1		
γ	elasticity of substitution	0.73	CPS	σ_{ϵ}	ability shock dispersion	0.58	PSID		
ψ	fertility preference	2.30	CPS	ρ	intergenerational spillover	0.30	Chetty et al. (2014)		
θ	human capital preference	2.85	PSID	ξ	substitution of education	0.9	CEX		
ν	transfer preference	0.29	PSID	\mathcal{E}	public education	\$12,000	12,000 NCES		
				κ	input productivity	0.13	Gárcia et al. (2020)		
	Childcare arrang	gement							
χ	childcare cost	0.18	ATUS	Adults' human capital evolution					
L	economies of scale at home	0.7	ATUS	η	learning curvature	1.22	PSID		
υ	substitutability of care	0.38	SIPP	$\{\zeta\}_{i=2}^{5}$	learning level	misc.	PSID		
p_m	price of full-time care	\$6,860	NACCRRA	μ_z	skill depreciation	-0.23	PSID		
				σ_z	shock dispersion	0.38	PSID		
	Taxes and pe	nsion							
τ_v^n, λ_v^n	tax levels and progressivity	misc.	TAXSIM	Firm production function					
τ_c	consumption tax	0.07	McDaniel (2007)	A	total factor productivity	1	normalization		
τ_a	capital income tax	0.27	McDaniel (2007)	α	capital share	0.33	standard		
π	pension replacement rate	0.40	OECD Database	δ_k	capital depreciation (annual)	0.04	standard		

• 14 parameters are calibrated within the model using method of moments

Model Fit

Parameter	Interpretation	Moment	Data	Model
γ	elasticity of substitution	fertility differential	0.12	0.12
ψ	fertility preference	average fertility	1.92	1.92
θ	human capital preference	average investment as % of income	13.4	13.5
ν	transfer preference	average transfer	\$48,381	\$48,400
L	economies of scale at home	childcare time by # children	1.5	1.5
v	substitutability of care	average care spending as % of income	16	16
Z	normalizing scalar	median income = 1	N/A	N/A
σ_ϵ	ability shock dispersion	Gini of earnings at $j = 2$	0.29	0.29
ρ	intergenerational spillover	intergenerational elasticity of earnings	0.34	0.33
ξ	substitution of education	investment by parents' education	misc.	misc.
κ	input productivity	return on per dollar investment (NPV)	\$1.3	\$1.29
η	learning curvature	income growth by initial decile	0.1	0.09
$\{\zeta\}_{i=2}^{5}$	learning level	income growth by age	misc.	misc.
σ_z	shock dispersion	Gini of earnings at $j = 6$	0.39	0.39

Sensitivity of Parameters to Moments

	γ	ψ	θ	ν	υ	σ_ϵ	ρ	ξ	η	σ_{z}
n Gap	-0.51	-0.28	-0.53	-0.40	-0.01	0.00	-0.02	0.02	-0.01	-0.02
TFR	0.56	-0.56	1.67	1.05	0.11	-0.07	0.00	0.01	-0.04	0.05
е	0.47	0.48	1.12	0.35	-0.45	0.04	-0.10	0.30	0.00	-0.04
a_k	-0.02	-0.06	-0.04	0.75	0.00	0.00	0.00	0.00	0.00	0.00
m	-0.43	-0.33	-0.28	-0.29	1.02	-0.10	-0.06	0.05	-0.03	0.06
Gini ₂	0.47	0.20	0.14	0.02	-0.12	1.21	0.19	-0.23	0.88	0.53
IGE	-0.20	-0.27	-0.83	-0.19	-0.18	-0.05	1.13	-0.23	0.16	0.21
e_{low}	-0.07	-0.08	-0.19	-0.05	-0.01	0.00	0.02	-0.15	0.01	0.01
h Profile	0.08	-0.01	-0.14	-0.14	-0.17	0.03	0.07	-0.03	0.37	-0.23
Gini ₆	0.04	0.03	0.06	0.02	-0.03	0.01	-0.06	0.00	0.14	0.29
Gini ₆	0.04	0.03	0.06	0.02	-0.03	0.01	-0.06	0.00	0.14	0.2

- Sensitivity matrix "Λ" defined in Andrews, Gentzkow, and Shapiro (2017)
- Bold entries (row max): most sensitive parameter to moment changes
- Highlights identification and sensitivity of the model parameters

Preferences

Utility from child quantity and quality:

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \cdot \underbrace{\left(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k)\right)}_{\text{utility from child quality}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \qquad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \qquad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

Results robust to dynastic altruism and separable preferences

Preferences

Utility from child quantity and quality:

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \cdot \underbrace{\left(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k)\right)}_{\text{utility from child quality}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \quad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \quad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

- Results robust to dynastic altruism and separable preferences
- $\{\psi, \theta, \nu\}$ matches aggregate fertility and average spendings on quality

Preferences

Utility from child quantity and quality:

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \cdot \underbrace{\left(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k)\right)}_{\text{utility from child quality}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \quad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \quad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

- Results robust to dynastic altruism and separable preferences
- $\{\psi, \theta, \nu\}$ matches aggregate fertility and average spendings on quality
- ullet γ elasticity of intergenerational substitution (EGS) (Córdoba and Ripoll 2019)

Utility from child quantity and quality:

$$v(n, \mathbb{E}h_k, a_k) = \underbrace{\Psi(n)}_{\text{child discounting}} \cdot \underbrace{\left(\theta \cdot u(\mathbb{E}h_k) + \nu \cdot u(a_k)\right)}_{\text{utility from child quality}}$$

$$\underbrace{\Psi(n) = 1 - \exp(-\psi n)}_{\text{increasing \& concave in } n} \quad u(x) = \frac{x^{1-\gamma}}{1-\gamma} \quad \gamma \in (0,1) \quad x \in \{\mathbb{E}h_k, a_k, c\}$$

- Results robust to dynastic altruism and separable preferences
- $\{\psi, \theta, \nu\}$ matches aggregate fertility and average spendings on quality
- ullet γ elasticity of intergenerational substitution (EGS) (Córdoba and Ripoll 2019)
- Conditional on other parameters, γ determines fertility elasticity. Higher $\gamma \Longrightarrow$ smaller fertility responses, larger quality responses (c.f. Soares 2005)
- ullet High γ could reverse the quantity-quality trade-off in budget constraint

Identification of γ

• γ identified by **fertility-income profile** (Córdoba, Ripoll and Liu 2016). Higher $\gamma \Longrightarrow$ Higher MRS of quantity for quality \Longrightarrow flatter profile

ullet Calibrated γ generates a realistic life-cycle profile of net worth

Children's Human Capital Production Function

Children's human capital production function:

$$h_k = \underbrace{Z}_{\text{scalar shock spillover}} \cdot \underbrace{h^{\rho}}_{\text{public education}} \cdot \underbrace{e^{\xi}}_{\text{private input}} + \underbrace{e^{\xi}}_{\text{private input}}$$

$$\log(\epsilon) \sim \mathcal{N}\left(-\frac{\sigma_{\epsilon}^2}{2}, \sigma_{\epsilon}^2\right)$$

- Highlight of parameters:
 - $\rho = 0.3$ rank-rank mobility (Chetty, Hendren, Kline and Saez 2014)
 - $\mathcal{E} = 0.16$ \$12k per pupil per year (NCES)
 - κ governs the elasticity of children's human capital to monetary investments. Calibrate $\kappa=0.13$ to match RCT evidence from García, Heckman, Leaf and Prados (2020)

Validation

- Established in 1982 after discovery of the petroleum. Equal transfer to **all residents** regardless of income, employment or age
- **Pronatal effects**: allows parent to claim dividend on behalf of a child with no requirements on how parents use a child's dividend

- Established in 1982 after discovery of the petroleum. Equal transfer to **all residents** regardless of income, employment or age
- **Pronatal effects**: allows parent to claim dividend on behalf of a child with no requirements on how parents use a child's dividend
- Ideal setting to test fertility responses:
 - 1 Large in scale (\approx \$1.5k per year) relative to other family policies
 - 2 Simple implementation that is not income- or work-tested

- Established in 1982 after discovery of the petroleum. Equal transfer to **all residents** regardless of income, employment or age
- **Pronatal effects**: allows parent to claim dividend on behalf of a child with no requirements on how parents use a child's dividend
- Ideal setting to test fertility responses:
 - 1 Large in scale (\approx \$1.5k per year) relative to other family policies
 - 2 Simple implementation that is not income- or work-tested
- Re-calibrate, then implement APFD in the model: universal basic income (UBI) to parents and children by \$1.5k

Difference-in-Differences Analysis

• CPS June Fertility Supplement 1982-2018, Alaskan women aged 40-55, divided into "not treated", "partially treated" ($T_1 = 1$), and "fully treated" ($T_2 = 1$)

Difference-in-Differences Analysis

- CPS June Fertility Supplement 1982-2018, Alaskan women aged 40-55, divided into "not treated", "partially treated" ($T_1 = 1$), and "fully treated" ($T_2 = 1$)
- Estimate on full sample, and sub-samples by education (at least 1 year of college)

fertility =
$$\beta_0 + \beta_1 T_1 + \beta_2 T_2 + \text{State FE} + \text{Year FE} + \epsilon$$

Difference-in-Differences Analysis

- CPS June Fertility Supplement 1982-2018, Alaskan women aged 40-55, divided into "not treated", "partially treated" ($T_1 = 1$), and "fully treated" ($T_2 = 1$)
- Estimate on full sample, and sub-samples by education (at least 1 year of college)

fertility =
$$\beta_0 + \beta_1 T_1 + \beta_2 T_2 + \text{State FE} + \text{Year FE} + \epsilon$$

Regression results confirm model predictions on fertility effects:

	(1)	(2)	(3)	Model Predictions		
	Full Sample	Low Educ.	High Educ.	Average	Low Educ.	High Educ.
β_2	0.172***	0.296***	0.105***	0.16	0.31	0.09
	(0.032)	(0.041)	(0.025)			
# Obs.	146,804	69,511	77,293			

Counterfactual

- Evaluate **baby bonuses B** of different sizes:
 - (1) actual policy (2) effectively a refundable CTC delivered in lump-sum

- Evaluate **baby bonuses B** of different sizes:
 - (1) actual policy (2) effectively a refundable CTC delivered in lump-sum
 - <u>Timing</u>: unexpected and permanent policy change at beginning of period
 - Source of funds: τ_c balances budget each period
 - Policy effects on state goals: fertility, human capital, and intergenerational mobility

- ullet Evaluate **baby bonuses** ${\cal B}$ of different sizes:
 - (1) actual policy (2) effectively a refundable CTC delivered in lump-sum
 - Timing: unexpected and permanent policy change at beginning of period
 - Source of funds: τ_c balances budget each period
 - Policy effects on state goals: fertility, human capital, and intergenerational mobility
- Consider two (pragmatic) welfare measures in consumption equivalents:
 - **1** Long-run average welfare $W = \int V_2 d\mu_2$ expected utility of a newborn under the Rawlsian veil of ignorance
 - 2 Welfare of existing households and those born in transition

- Evaluate **baby bonuses B** of different sizes:
 - (1) actual policy (2) effectively a refundable CTC delivered in lump-sum
 - <u>Timing</u>: unexpected and permanent policy change at beginning of period
 - Source of funds: τ_c balances budget each period
 - Policy effects on state goals: fertility, human capital, and intergenerational mobility
- Consider two (pragmatic) welfare measures in consumption equivalents:
 - Long-run average welfare $\mathcal{W}=\int V_2\,d\mu_2$ expected utility of a newborn under the Rawlsian veil of ignorance
 - Welfare of existing households and those born in transition
- Roadmap of results:
 - Long-run effects
 - Transition and distributional effects across generations
 - ullet Policy comparisons: subsidized childcare ${\mathcal S}$ and public education ${\mathcal E}$

Fertility Effects of Cash Rewards to Childbirth

Figure 1: Effects on aggregate fertility

- $\mathcal{B} = \$30k$ raises aggregate fertility rate to the replacement level
 - \bullet Similar to changes in the CTC from 2010 to 2021, including ARPA (in NPV)
 - 1.6% of GDP in the new equilibrium

Fertility Effects of Cash Rewards to Childbirth

Figure 1: Effects on aggregate fertility

Figure 2: Heterogeneous fertility response

- $\mathcal{B} = \$30k$ raises aggregate fertility rate to the replacement level
 - Similar to changes in the CTC from 2010 to 2021, including ARPA (in NPV)
 - 1.6% of GDP in the new equilibrium
- Parents with lower human capital respond more in fertility larger proportional change in the shadow price of child $(e^*(h))$ and wh

Key Results

● Fertility: Raising aggregate fertility from 1.9 to 2.1 children per women (replacement fertility rate) requires a \$30,000 cash reward to childbirth, with larger effects among low-income parents

Effects on Private Input e and Average Human Capital

Figure 3: Average private input e

• Average private input (e) falls by 4% – quantity-quality trade-off

Effects on Private Input e and Average Human Capital

Figure 3: Average private input *e*Figure 4: Average human capital

- Average private input (e) falls by 4% quantity-quality trade-off
- Average human capital falls by 2% composition effects and reduced e

Figure 5: Heterogeneous response in e

• Larger reductions in e among parents with low h as their n increases more

Figure 5: Heterogeneous response in *e*

• Larger reductions in e among parents with low h as their n increases more

Figure 5: Heterogeneous response in *e* Figure 6: Intergenerational mobility 9 Change in Private Input (%) Change in Mobility (%) ----- Low h Hiah h High h (Exo. n) Low h (Exo. n) 40000 50000 10000 20000 30000 40000 50000 10000 Baby Bonus Size (dollars) Baby Bonus Size (dollars)

- Larger reductions in e among parents with low h as their n increases more
- Intergenerational mobility decreases by 1.8%

Figure 5: Heterogeneous response in *e* Figure 6: Intergenerational mobility 9 Change in Private Input (%) Change in Mobility (%) ----- Low h Hiah h Low h (Exo. n) Hiah h (Exo. n) 40000 50000 10000 30000 40000 10000 20000 50000 Baby Bonus Size (dollars) Baby Bonus Size (dollars)

- Larger reductions in e among parents with low h as their n increases more
- Intergenerational mobility decreases by 1.8%
- Results will be **stronger** when baby bonus is targeted at low-income households

Key Results

- Fertility: Raising aggregate fertility from 1.9 to 2.1 children per women (replacement fertility rate) requires a \$30,000 cash reward to childbirth, with larger effects among low-income parents
- Outcome and Mobility: This policy lowers both average child human capital and intergenerational income mobility by 2% due to quantity-quality trade-off and composition effects

Output and Tax

Figure 7: Per capita output

• Per capita output falls by 0.6%

Output and Tax

Figure 7: Per capita output Figure 8: Change in consumption tax Model Change in Per Capita Output (%) Change in Consumption Tax (%) ----- Exo. n 50000 10000 40000 10000 20000 30000 40000 20000 30000 50000 Baby Bonus Size (dollars) Baby Bonus Size (dollars)

- Per capita output falls by 0.6%
- Demographic structure effects: consumption taxes reduces by 0.9%

Welfare Effects

Figure 9: Change in welfare

• Long-run welfare \mathcal{W} rises by 1.6% (c.e.), more than half due to lower τ_c (0.9%)

Welfare Effects

Figure 9: Change in welfare

• Long-run welfare W rises by 1.6% (c.e.), more than half due to lower τ_c (0.9%)

20000

Baby Bonus Size (dollars)

30000

40000

50000

10000

• Observation: "worse" human capital distribution μ is **neither necessary nor sufficient** for better policies – also need to consider age distribution ω

Key Results

- Fertility: Raising aggregate fertility from 1.9 to 2.1 children per women (replacement fertility rate) requires a \$30,000 cash reward to childbirth, with larger effects among low-income parents
- Outcome and Mobility: This policy lowers both average child human capital and intergenerational income mobility by 2% due to quantity-quality trade-off and composition effects
- **Solution** Long-Run Welfare: Average welfare rises by 1.6% (c.e.) in the long-run as taxes fall by 0.9% as old-age dependency ratio drops

Transition Path of $\mathcal{B} = \$30,000$ - Replacement Fertility

Figure 10: Change in dependency ratios

• Higher child-related government expenditures in the first few decades beyond the direct policy costs (\mathcal{E} and $\mathcal{T}(n,\cdot)$)

Transition Path of $\mathcal{B} = \$30,000$ - Replacement Fertility

Figure 10: Change in dependency ratios

Figure 11: Change in consumption tax

- Higher child-related government expenditures in the first few decades beyond the direct policy costs (\mathcal{E} and $\mathcal{T}(n,\cdot)$)
- With τ_c changing to balance the budget, welfare effects for:

- Newborns in transition positive but smaller than 1.6% (c.e.)
- Existing baby bonus recipients (15% of voters): +1.4% (c.e.), existing non-recipients (85% of voters): -2.4% (c.e.)

Key Results

- Fertility: Raising aggregate fertility from 1.9 to 2.1 children per women (replacement fertility rate) requires a \$30,000 cash reward to childbirth, with larger effects among low-income parents
- Outcome and Mobility: This policy lowers both average child human capital and intergenerational income mobility by 2% due to quantity-quality trade-off and composition effects
- **Solution** Long-Run Welfare: Average welfare rises by 1.6% (c.e.) in the long-run as taxes fall by 0.9% as old-age dependency ratio drops
- ◆ Transition: The government needs to finance higher child-related expenditures in transition, which may hurt existing households' welfare

Highlights of Policy Comparisons

Figure 12: Effects on Fertility

- $\mathcal S$ and $\mathcal E$ are less cost-effective in raising fertility (c.f. Luci-Greulich and Thévenon 2013)
- ullet Higher ${\cal E}\Rightarrow$ children are more desirable and parents are more educated in the long-run

Highlights of Policy Comparisons

Figure 13: Effects on Mobility

- ullet and ${\cal E}$ are less cost-effective in raising fertility (c.f. Luci-Greulich and Thévenon 2013)
- ullet Higher ${\cal E}\Rightarrow$ children are more desirable and parents are more educated in the long-run
- \mathcal{E} is most effective in improving mobility. Additional $\mathcal{E} = \$10,000$ in net present value amends the negative mobility effects of $\mathcal{B} = \$30,000$

Baby Bonus versus Subsidized Childcare

Figure 14: Effects on Welfare

• Low-income households prefers cash transfers of the same face value

Baby Bonus versus Subsidized Childcare

Figure 14: Effects on Welfare

Baby Bonus Subsidized Childcare

Subsidized Childcare

Subsidized Childcare

Initial Income Decile at Age 25

Figure 15: Effects on Income Growth

- Low-income households prefers cash transfers of the same face value
- Subsidized childcare reduces inequality in income growth

Key Results

- Fertility: Raising aggregate fertility from 1.9 to 2.1 children per women (replacement fertility rate) requires a \$30,000 cash reward to childbirth, with larger effects among low-income parents
- Outcome and Mobility: This policy lowers both average child human capital and intergenerational income mobility by 2% due to quantity-quality trade-off and composition effects
- **Solution** Long-Run Welfare: Average welfare rises by 1.6% (c.e.) in the long-run as taxes fall by 0.9% as old-age dependency ratio drops
- ◆ Transition: The government needs to finance higher child-related expenditures in transition, which may hurt existing households' welfare
- **6 Policy Comparison**: Subsidized childcare and public education are less cost-effective in raising fertility than cash benefits, but boosts children's outcomes and mobility

Future Work

- 1 Alternative policies:
 - Joint usage of several policy instruments
 - Dependency on income, work, or expenditures
 - Gradual introduction of policies over time
- 2 Alternative ways of funding the policies:
 - Capital and labor taxes implications for distortions and redistribution across households
 - Government deficits implications for redistribution across generations
- **3** Alternative sources of inefficiencies of fertility choices:
 - Ideas creation (Jones, 2020)
 - Pollution (Bohn and Stuart, 2015)
 - Firm dynamics (Hopenhayn et al., 2018)
- ♠ Endogenize childcare price supply and demand of caregivers

Conclusion

What I do:

- Develop a quantitative GE-OLG model to study the macroeconomic consequences of family policies
- Calibrate the model to match U.S. data and validate using empirical evidence
- Flexible framework that can be used in many other contexts

Conclusion

What I do:

- Develop a quantitative GE-OLG model to study the macroeconomic consequences of family policies
- Calibrate the model to match U.S. data and validate using empirical evidence
- Flexible framework that can be used in many other contexts

What I find:

- \$30k cash benefit at birth raises fertility to the replacement level, but reduces average human capital and social mobility by 2%
- 2 Long-run welfare rises by 1.6%, largely due to demographic structure changes
- 3 Government needs to finance higher child-related expenditures in transition
- In-kind policies have smaller fertility effects, but offer other advantages

Time Trend of Public Expenditures on Child Benefits

Expenditure Breakdown

Working Without Children and Retirement

• For households working without children, $j \in \{4, 5, 6\}$:

$$V_{j}(h, a) = \max_{c, a' \geq 0} \quad u(c/\Lambda(0)) + \beta \delta_{j} \mathbb{E} V_{j+1}(h', a')$$
$$(1 + \tau_{c})c + a' = (1 + r)a + y - \mathcal{T}(y, a, 0)$$
$$h' = L_{j}(h, 1, z)$$

• For retired households, $j \in \{7, 8\}$:

$$V_{j}(h, a) = \max_{c, a' \geq 0} u(c/\Lambda(0)) + \beta \delta_{j} V_{j+1}(h, a')$$
$$(1 + \tau_{c})c + a' = (1 + r)a + \pi \cdot wh - \mathcal{T}(0, a, 0)$$
$$V_{9}(\cdot) \equiv 0$$

where π is pension replacement rate

Stationary Equilibrium

- Invariant distribution: Demographic structure $\{\omega_j\}_{j=0}^8$ and distribution of agents over states $\{\mu_j\}_{j=0}^8$ are invariant over time periods
- Households optimize utility and firms maximize profits
- Prices clear markets
- Government balances budget in period to period
- Externalities/incompleteness that government could address:
 - Fiscal externalities of childbearing and childrearing
 - Private returns \neq social returns (i.e. $\{\omega_j\}_{j=0}^8$ and $\{\mu_j\}_{j=0}^8$)
 - **2 Borrowing constraints** (Daruich 2019, Abbott et al. 2019 . . .)

Endogenous Childcare Arrangements

• Standard models where a child costs fixed amount of time, total income *y*:

$$y = wh \left(1 - \underbrace{(\chi - S) \cdot n}_{\text{time cost}}\right) + n \cdot \mathcal{B}$$
labor supply

which implies ${\cal S}$ is equivalent to a baby bonus $\frac{{\cal B}}{{\it wh}}$

Endogenous Childcare Arrangements

• Standard models where a child costs fixed amount of time, total income *y*:

$$y = wh \left(1 - \underbrace{(\chi - S) \cdot n}_{\text{time cost}}\right) + n \cdot \mathcal{B}$$
labor supply

which implies ${\mathcal S}$ is $\operatorname{\underline{equivalent}}$ to a baby bonus $\frac{{\mathcal B}}{wh}$

- Empirical evidence indicates the opposite:
 - Subsidized childcare: labor supply ↑ market care enrollment ↑ (Baker et al. 2008)
 - Baby bonus: labor supply \downarrow market care enrollment \downarrow (González 2013)

Endogenous Childcare Arrangements

• Standard models where a child costs fixed amount of time, total income *y*:

$$y = wh \left(1 - \underbrace{(\chi - S) \cdot n}_{\text{time cost}}\right) + n \cdot \mathcal{B}$$
labor supply

which implies ${\cal S}$ is equivalent to a baby bonus $\frac{{\cal B}}{wh}$

- Empirical evidence indicates the opposite:
 - Subsidized childcare: labor supply ↑ market care enrollment ↑ (Baker et al. 2008)
 - Baby bonus: labor supply ↓ market care enrollment ↓ (González 2013)
- Endogenous childcare arrangements: (in-kind) subsidized childcare induces more labor supply from parents with $m^*(h, a) \leq S$
- Affects inequalities in wage growth since $h_{j+1} = L_j(\cdot, t_w)$

Net Worth by Age: Model and Data

Net worth by age of household head from SCF summary tables

Intergenerational Mobility: Model vs Data

• Rank-rank slope = 0.34 (Chetty, Hendren, Kline and Saez 2014)

Child's Skill Production Function Cont'd

Use **RCT** evidence to estimate the productivity of inputs κ :

$$h_k = Z \cdot \epsilon \cdot h^{\rho} \left(\mathcal{E}^{\xi} + e^{\xi} \right)^{\kappa/\xi}$$

- García, Heckman, Leaf and Prados (2020)
 - Two US early childhood development programs (ABC, CARE) in 1970s
 - Cost \approx \$13.5k per year for five years total \$67.5k per child
 - Followed up into adulthood and observe education/income
 - For every dollar invested, children's lifetime labor income increases by \$1.3
- ullet Apply similar policy in the model: expand existing ${\cal E}$ by \$67.5k
 - Small scale: prices and taxes remain unchanged
 - Target: children of parents at 10th percentile of earnings
- ullet Comparing labor income changes with program costs gives $\kappa=0.13$

Costs of Child and Childcare

• OECD equivalence scale:

$$\Lambda(n) = 1.7 + 0.5 \cdot n$$

• Childcare arrangements:

$$n \cdot \chi = \left(t_h^{v/\iota} + (n \cdot m)^v\right)^{1/v}$$

Set $\chi = 0.18$ (Folbre 2008). Returns to scale within family calibrated to be $\iota = 0.7$

- Elasticity of substitution: v = 0.38 average share of income spent on childcare by education (SIPP) (Herbst 2018)
- Price of full-time childcare: $p_m = \$6,860$ per year for child aged 0-10 (The National Association of Child Care Resource & Referral Agencies 2011)

Fertility Response

• Consider simplified problem for low-h parents, i.e. quality margin not operative

$$\max_{c,n} \quad u(c) + \Psi(n)u(\mathcal{E})$$
$$c + n \cdot \chi = 1$$

• First-order condition for *n*:

$$\underbrace{\Psi'(n) \cdot u(\mathcal{E})}_{\text{MB of } n} = \underbrace{\lambda \cdot \chi}_{\text{MC of } n}$$

• Plug in $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$, we have

$$\Psi'(n) = (1 - \gamma) \cdot \chi \cdot \frac{\lambda}{\mathcal{E}^{1 - \gamma}} \Longrightarrow \Delta \Psi'(n) \propto (1 - \gamma) \cdot \Delta \chi$$

Conditional on other parameters, higher $\gamma \Longrightarrow$ smaller n response

Skill Evolution for Adults

• Human capital of working adults evolves:

$$h_{j+1} = L_j(h_j, t_w, z') = \exp(z') \left[h_j + \zeta_j (h_j \cdot t_w)^{\eta} \right]$$
$$\log(z) \sim \mathcal{N}(\mu_z, \sigma_z)$$

- $\{\zeta_j\}_{j=2}^5$ age-earnings profile (CPS)
- $\eta = 1.22$ inequality in wage growth (CPS)
- $\mu_z = -0.23$ 2% skill depreciation
- $\sigma_z = 0.38$ life-cycle Gini coefficient of earnings (Huggett, Ventura and Yaron 2011)

Inequality in Wage Growth: Model vs Data

 Growth rate of average income from age 25 to 35 by education in CPS-ASEC data (2008-2014)

Other Parameters

- Firms' production function: capital share $\alpha = 0.33$ and 4% capital depreciation
- Government taxes
 - Income taxes:

$$\mathcal{T}(y, a, n) = y \cdot (1 - \tau_y^n y^{-\lambda_y^n}) + \tau_a ra$$

where $\{\tau_y^n, \lambda_y^n\}_{n=0}^6$ estimated using TAXSIM

- Tax rates from McDaniel (2014): $\tau_c = 0.07$ and $\tau_a = 0.27$
- Pension replacement rate: $\pi = 40\%$

Income Taxes: Model vs Data

• Child tax benefits (reduction in tax rates) are larger for low-income households

APFD and **Completed Fertility Rate**

Figure 16: Completed Fertility Rate (CFR)

Figure 17: CFR by Education

Australian Baby Bonus

- A\$3,000 baby bonus¹ to every child born on or after July 1st 2004
- Risse (2010) and Drago et al. (2011) find:
 - Significant fertility responses and evidence for long-term/quantum effects
 - Baby bonus needed for additional birth around A\$126,000 \approx 4 \times GDPPC
 - Larger fertility responses from low-income households
- Gaitz and Schurer (2017) finds that the baby bonus was **ineffective** in boosting learning, socio-emotional or physical health outcomes of pre-school children

¹More details: (1) Announced on Mar 12th 2004, (2) universal coverage, lump-sum payment, (3) Equivalent to 4 times average weekly earnings, (4) Equivalent to \$2,800 in 2010 USD.

Australian Baby Bonus

- A\$3,000 baby bonus¹ to every child born on or after July 1st 2004
- Risse (2010) and Drago et al. (2011) find:
 - Significant fertility responses and evidence for long-term/quantum effects
 - Baby bonus needed for additional birth around A\$126,000 \approx 4×GDPPC
 - Larger fertility responses from low-income households
- Gaitz and Schurer (2017) finds that the baby bonus was **ineffective** in boosting learning, socio-emotional or physical health outcomes of pre-school children
- Results from baby bonus counterfactual are consistent with above findings:
 - Significant fertility effects that are larger among low-income households
 - Baby bonus needed for additional birth = 3.5×GDPPC

¹More details: (1) Announced on Mar 12th 2004, (2) universal coverage, lump-sum payment, (3) Equivalent to 4 times average weekly earnings, (4) Equivalent to \$2,800 in 2010 USD.

Spanish Baby Bonus

- **€\$2,500** baby bonus² to every child born on or after July 1st 2007
- González (2013) finds:
 - Total fertility rate increased
 - Mothers reduced labor supply
 - Fewer children were enrolled in formal childcare

²More details: (1) Announced on July 3rd 2007, (2) universal coverage, lump-sum payment, (3) Equivalent to 4.5 times the monly gross minimum wage for full-time worker, (4) Equivalent to \$3,500 in 2010 USD.

Spanish Baby Bonus

- €\$2,500 baby bonus² to every child born on or after July 1st 2007
- González (2013) finds:
 - Total fertility rate increased
 - Mothers reduced labor supply
 - Fewer children were enrolled in formal childcare
- Results from model are consistent with above findings:
 - Baby bonus needed for additional birth / GDPPC = 3.6 (data) vs 3.5 (model)
 - Parents reduce labor supply as fertility raises → more childcare needs
 - Parents demand less market care as relative costs of home care falls due to economies of scale in home production of childcare

► back to validation

²More details: (1) Announced on July 3rd 2007, (2) universal coverage, lump-sum payment, (3) Equivalent to 4.5 times the monly gross minimum wage for full-time worker, (4) Equivalent to \$3,500 in 2010 USD.

Russian Maternal Capital

- Large-scale cash subsidy for childbirth in Russia
- First wave in 2007 (federal Maternal Capital): approximately \$10,000 U.S. dollars (10-year of minimum wage)
- Second wave in 2011 (regional Maternal Capital): additional payments that differ in size
- Sorvachev and Yakovlev (2020) find:
 - Fertility increases both in the short-run and in the long-run
 - Costs for additional birth / GDPPC = 3.5 (data) vs 3.5 (model)
 - Larger fertility responses from mothers with low education

Change in Demographic Structure

Distributional Welfare Consequences

Figure 18: Newborns in Transition

Figure 19: Long-run and Existing Households

