PMATH 464 Notes

Intro to Algebraic Geometry Winter 2024

Based on Professor Changho Han's Lectures

CONTENTS Peiran Tao

Contents

1	Affine Algebraic Sets	3
	1.1 Zero-Sets and Ideals	3
	1.2 Finite Presentation	5
	1.3 Hilbert's Nullstellensatz	5
2	Affine Varieties	8
	2.1 Zariski Topology	8
	2.2 Irreducibility	10
	2.3 Regular Functions	12
3	Structure of Affine Varieties	14
4	Projective Varieties	14
5	Classical Algebraic Geometry	14
6	Smoothness	14
7	Curves	14

1 Affine Algebraic Sets

1.1 Zero-Sets and Ideals

Note. In this course, k is an algebrically closed base field with characteristic 0. Let $\mathbb{N} = \text{set}$ of non-negative integers. We also assume all rings are commutative with 1.

Definition. For $n \in \mathbb{N}$, the **affine** n-space over k, denoted \mathbb{A}^n_k (or just \mathbb{A}^n), is the set k^n .

We will look at polynomials and their zero sets on \mathbb{A}^n . We will use the notation:

$$k[\mathbb{A}^n] := k[x_1, \cdots, x_n]$$

to denote the polynomial ring on \mathbb{A}^n . We will see later where this notation comes from.

Definition. The affine algebraic set corresponding to the set $S \subseteq k[x_1, \dots, x_n]$ is:

$$V(S) = \{x \in \mathbb{A}^n : f(x) = 0 \text{ for all } f \in S\}$$

This is also called the **zero set** of S (a set of polynomials) in \mathbb{A}^n . Moreover, we say $X \subseteq \mathbb{A}^n$ is an affine algebraic set if X = V(S) for some $S \subseteq k[\mathbb{A}^n]$.

Remark. If $S = \{f_1, \dots, f_m\}$ is finite, we just write $V(S) = V(f_1, \dots, f_m)$.

Example. Since k is algebraically closed, we have:

$$V(\lbrace 0 \rbrace) = V(\emptyset) = \mathbb{A}^n \text{ and } V(k[x_1, \dots, x_n]) = \emptyset$$

Example. In \mathbb{A}^n we have $V(x_1 - a_1, \dots, x_n - a_n) = \{(a_1, \dots, a_n)\} \subseteq \mathbb{A}^n$. This means singleton sets are algebraic sets.

Example. If n=2, then $V(x^2+y^2-1)$ is a circle in $\mathbb{A}^2=k^2$. If $k=\mathbb{C}$, then

$$(\sqrt{2}, i) \in V(x^2 + y^2 - 1) \in \mathbb{C}^2$$

However $|\sqrt{2}|^2 + |i|^2 = 3 \neq 1$, which means:

$$V(x^2 + y^2 - 1) \neq S^3 = \{(x, y) \in \mathbb{C}^2 : |x|^2 + |y|^2 = 1\}$$

Example. If n = 3, the set $V(y - x^2, z - x^3)$ is called the **affine twisted cubic** (defined over k).

Lemma 1.1. If $S_1 \subseteq S_2 \subseteq k[\mathbb{A}^n]$, then $V(S_1) \supseteq V(S_2)$.

Proof. Let $x \in V(S_2)$, then f(x) = 0 for all $f \in S_2$. Since $S_1 \subseteq S_2$, we know f(x) = 0 for all $f \in S_1$ as well. Therefore $V(S_2) \subseteq V(S_1)$.

Example. $\mathbb{Z} \subseteq \mathbb{A}^1$ is NOT an affine algebraic set! Suppose $\mathbb{Z} = V(S)$ for some $S \subseteq k[x]$, then $S \neq \emptyset$. Take $p(x) \in S$, then by the lemma we have $V(S) \subseteq V(p)$. However, $p(x) \in k[x]$ has only finitely many roots. It follows that V(p) is finite, so \mathbb{Z} is finite as well, contradiction.

Definition. Let $X \subseteq \mathbb{A}^n$, the ideal of X is:

$$I(X) = \{ f \in k[x_1, \dots, x_n] : f(x) = 0 \text{ for all } x \in X \}$$

which is indeed an ideal of $k[x_1, \dots, x_n]$.

Proof. Take $f, g \in I(X)$, then (f + g)(x) = f(x) + g(x) = 0 for all $x \in X$. Hence we have $f + g \in I(X)$. Take $f \in I(X)$ and take $h \in k[x_1, \dots, x_n]$, then:

$$(hf)(x) = h(x)f(x) = h(x) \cdot 0 = 0$$

for all $x \in X$. Hence $hf \in I(X)$, so I(X) is an ideal.

Lemma 1.2. If $X \subseteq Y \subseteq \mathbb{A}^n$, then $I(X) \supseteq I(Y)$.

Proof. Let $f \in I(Y)$, then f(x) = 0 for all $x \in Y \supseteq X$, hence f(x) = 0 for all $x \in X$. It means $f \in I(X)$, as desired.

Definition. Let S be a subset of a ring R, the ideal generated by S is:

$$RS = (S) = \left\{ \sum_{i=1}^{m} g_i f_i \in R : g_i \in R, \ f_i \in S, \ n \in \mathbb{N} \right\}$$

Proposition 1.3. Let $S \subseteq k[\mathbb{A}^n]$ and let I = (S) be the ideal generated by S. Then V(S) = V(I).

Proof. Note that $S \subseteq I$, so $V(I) \subseteq V(S)$. Conversely, we need to show $V(S) \subseteq V(I)$. Take $x \in V(S)$, we want to show f(x) = 0 for all $f \in I$. We let:

$$f = \sum_{i=1}^{m} g_i f_i$$

be an element in I = (S), where $f_i \in S$ and $g_i \in k[\mathbb{A}^n]$. Hence $f_i(x) = 0$ for all i so that:

$$f(x) = \sum_{i=1}^{m} g_i(x) f_i(x) = \sum_{i=1}^{m} 0 = 0$$

It follows that $V(S) \subseteq V(I)$ as well.

1.2 Finite Presentation

Question: Let X = V(I) with $I \subseteq k[x, 1 \cdots, x_n]$ ideal, but I has too many elements! Is I finitely generated? That is, can we write $I = (f_1, \dots, f_m)$ for some $f_i \in I$? Yes we can!

Definition. A ring R is **Noetherian** if every ideal of R is finitely generated.

Theorem 1.4 (Hilbert Basis Theorem). Let R be a ring. If R is Noetherian, then R[x] is also Noetherian.

Corollary 1.5. The ring $k[x_1, \dots, x_n]$ is Noetherian.

Proof. The ring $k[x_1]$ is Noetherian by Hilbert Basis Theorem. Using the fact that:

$$k[x_1,\cdots,x_n]=k[x_1,\cdots,x_{n-1}][x_n]$$

and induction, we can prove the result.

Therefore, given an affine algebraic set $X \subseteq \mathbb{A}^n$, we can write X = V(I) for some ideal I. Since $I \subseteq k[x_1, \dots, x_n]$ and the ring $k[x_1, \dots, x_n]$ is finitely Noetherian, we can write $I = (f_1, \dots, f_m)$ for some $f_i \in I$. Hence:

$$X = V(f_1, \dots, f_m) = V(f_1) \cap \dots \cap V(f_m)$$

That is, every affine algebraic set X is a finite intersection of V(f) for some polynomials f that vanishes on X.

1.3 Hilbert's Nullstellensatz

We saw that there is a correspondence between:

{subsets of
$$\mathbb{A}^n$$
} \longleftrightarrow {ideals of $k[x_1, \cdots, x_n]$ }

by taking the operations $V(\cdot)$ and $I(\cdot)$. However, we can note that:

$$V(I(\mathbb{Z})) = V(\emptyset) = \mathbb{A}^1 \ \text{ and } \ I(V(x^2)) = I(\{0\}) = (x)$$

This means the two operations are NOT inverses of each other, so this correspondence is NOT one-to-one. Our strategy is to restrict to some subsets of \mathbb{A}^n and $k[\mathbb{A}^n]$ so that the operations are inverses of each other.

Definition. Let R be a ring and $I \subseteq R$ be an ideal. The **radical** of I is:

$$\sqrt{I} = \{ f \in R : f^m \in I \text{ for some } m \in \mathbb{Z}^+ \}$$

We say an ideal I is a **radical ideal** if $I = \sqrt{I}$. Note that $I \subseteq \sqrt{I}$ holds for any ideal I.

Proposition 1.6. I(X) is a radical ideal for every $X \subseteq \mathbb{A}^n$.

Proof. If $f \in \sqrt{I(X)}$, then $f^m \in I(X)$ for some m > 0. This means $f(x)^m = 0$ for all $x \in X$, which means f(x) = 0 for all $x \in X$. It follows that $f \in I(X)$ so $\sqrt{I(X)} \subseteq I(X)$.

Theorem 1.7 (Hilbert's Nullstellensatz).

- 1. If $X \subseteq \mathbb{A}^n$ is an affine algebraic set, then V(I(X)) = X.
- 2. If $J \subseteq k[x_1, \dots, x_n]$ is an ideal, then $I(V(J)) = \sqrt{J}$.
- 3. There is a inclusion-reversing correspondence:

{affine algebraic subsets of \mathbb{A}^n } \longleftrightarrow {radical ideals of $k[x_1, \cdots, x_n]$ }

by taking the operations $X \mapsto I(X)$ and $J \mapsto V(J)$.

Recall. Every ideal $I \subseteq k[\mathbb{A}^n]$ is contained in some maximal ideal \mathfrak{m} so that $V(I) \supseteq V(\mathfrak{m})$.

Theorem 1.8. For all maximal ideal $\mathfrak{m} \subseteq k[x_1, \cdots, x_n]$, there exist $a_1, \cdots, a_n \in k$ such that:

$$\mathfrak{m}=(x_1-a_1,\cdots,x_n-a_n)$$

Proof. See Noether's Normalization Lemma in PMATH 446.

Corollary 1.9 (Weak Nullstellensatz). Let $I \subsetneq k[x_1, \dots, x_n]$ be an proper ideal, then $V(I) \neq \emptyset$.

Proof. Since I is proper. $I \subseteq \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then we have $V(\mathfrak{m}) \subseteq V(I)$. By the previous theorem we have $\mathfrak{m} = (x_1 - a_1, \dots, x_n - a_n)$ so we have $V(\mathfrak{m}) = \{(a_1, \dots, x_n)\} \neq \emptyset$. It follows that $V(I) \neq \emptyset$.

Proof of Hilbert's Nullstellensatz. Note that (1) and (2) implies (3).

(1). There are two inclusions. We first show $X \subseteq V(I(X))$. Take $x \in X$, by definition, f(x) = 0 for all $f \in I(X)$. Hence $x \in V(I(X))$. Conversely, write X = V(J) for some ideal J. By (2) we have:

$$I(X) = I(V(J)) \supseteq \sqrt{J} \supseteq J$$

which follows that $V(I(X)) \subseteq V(J) = X$. WARNING: We used one inclusion of (2) before we proved it, but we will prove that inclusion of (2) independent from part (1).

(2). Two inclusions. If $f \in J$, then f(x) = 0 for all $x \in V(J)$, so $f \in I(V(J))$. Hence $J \subseteq I(V(J))$. Also, I(V(J)) is radical, so $\sqrt{J} \subseteq I(V(J))$. Here is the result we used in (1)! Now we want to show $I(V(J)) \subseteq \sqrt{J}$. By Hilbert Basis:

$$J=(f_1,\cdots,f_m)$$

for some $f_i \in k[x_1, \dots, x_n]$. Cleary $0 \in \sqrt{J}$. Therefore let $h \in I(V(J)) \setminus 0$, by part (a) we have:

$$V(h) \supseteq V(I(V(J))) = V(J)$$

Then consider the ideal $\tilde{J}=(f_1,\cdots,f_m,x_{h+1}h-1)\subseteq k[x_1,\cdots,x_n,x_{n+1}]$. If $y=(y_1,\cdots,y_{n+1})\in V(\tilde{J})$, then we have $(y_1,\cdots,y_n)\in V(J)$. However $V(h)\supseteq V(J)$, so $h(y_1,\cdots,y_n)=0$ and thus:

$$y_{n+1}h(y_1, \cdots, y_n) - 1 = 0 - 1 \neq 0$$

It follows that $y \notin V(\tilde{J})$, contradiction! Hence $V(\tilde{J}) = \emptyset$, which implies $\tilde{J} = k[x_1, \dots, x_n, x_{n+1}]$ by Weak Nullstellensatz. Then $1 \in \tilde{J}$, so we can write:

$$1 = \sum_{i=1}^{m} \alpha_i f_i + \beta (x_{n+1}h - 1)$$

for some $\alpha_i, \beta \in k[x_1, \dots, x_n, x_{n+1}]$. Let us work in $k(x_1, \dots, x_n, x_{n+1})$ and set $x_{n+1} = 1/h$. Then:

$$1 = \sum_{i=1}^{m} \alpha_i \left(x_1, \dots, x_n, \frac{1}{h} \right) f_i + \beta \left(h \cdot \frac{1}{h} - 1 \right) = \sum_{i=1}^{m} \alpha_i \left(x_1, \dots, x_n, \frac{1}{h} \right) f_i$$

Here the rational function $\alpha_i\left(x_1,\dots,x_n,\frac{1}{h}\right)$ has numerator h^{n_i} for some $n_i \geq 0$. Hence there exists $N \geq 0$ such that multiplying by h^N clears the denominators and get:

$$h^{N} = \underbrace{\sum_{i=1}^{m} h^{N} \alpha_{i} \left(x_{1}, \cdots, x_{n}, \frac{1}{h} \right)}_{\in k[x_{1}, \cdots, x_{n}]} f_{i}$$

It follows that $h^N \in J$ and thus $h \in \sqrt{J}$. It proved $I(V(J)) \subseteq \sqrt{J}$.

Corollary 1.10. There is a one-to-one correspondence:

$$\{\text{points in } \mathbb{A}^n\} \longleftrightarrow \{\text{maximal ideals of } k[x_1, \cdots, x_n]\}$$

by Weak Nullstellensatz.

Corollary 1.11. Let $I \subseteq k[x_1, \dots, x_n]$ be an ideal, then:

$$\sqrt{I} = \bigcap_{\substack{I \subseteq \mathfrak{m} \\ \mathfrak{m} \text{ maximal}}} \mathfrak{m}$$

In particular, any radical ideal I is equal to the intersection of all maximal ideal above it.

2 Affine Varieties

We start from some informal discussions. Recall from Calculus 3 (MATH 247) and Differential Geometry (PMATH 365) that a **space** consists of set, topolgy and functions.

Example. We know \mathbb{R}^n is a space. The set is \mathbb{R}^n . The topology on \mathbb{R}^n is the usual Euclidean topology. Functions on \mathbb{R}^n are differential functions $f: \mathbb{R}^n \to \mathbb{R}$. These also induce notion of topology and functions on any subset $X \subseteq \mathbb{R}^n$.

Goal: We want to define topolgy and functions on affine algebraic sets.

2.1 Zariski Topology

Definition. A topology on a set X is a set \mathcal{C}_X of subsets of X such that:

- 1. $\emptyset \in \mathcal{C}_X$ and $X \in \mathcal{C}_X$.
- 2. If $A, B \in \mathcal{C}_X$, then $A \cup B \in \mathcal{C}_X$.
- 3. If $(A_i)_{i\in I}$ is a collection of elements in \mathcal{C}_X , then $\bigcap_{i\in I} A_i \in \mathcal{C}_X$.

We say $A \subseteq X$ is **closed** if $A \in \mathcal{C}_X$ and $U \subseteq X$ is **open** if $X \setminus U$ is closed.

Definition. A topological space is a set X equipped with a topology \mathcal{C}_X .

Definition. The collection of affine algebraic sets of \mathbb{A}^n is a topology on \mathbb{A}^n , called the **Zariski** topology.

Proposition 2.1. The Zariski topology is indeed a topology. That is:

- 1. If $I, J \subseteq k[x_1, \dots, x_n]$ are ideals, then $V(I) \cup V(J) = V(IJ) = V(I \cap J)$.
- 2. If $(I_j)_{j\in J}$ is a collection of ideals of $k[x_1, \dots, x_n]$, then:

$$\bigcap_{j \in J} V(I_j) = V\left(\sum_{j \in J} I_j\right)$$

Proof. (1). Clearly $I \supseteq IJ$ by definition, then $V(I) \subseteq V(IJ)$. Therefore we get:

$$V(I) \cup V(J) \subseteq V(IJ)$$

Similarly we have $V(I) \cup V(J) \subseteq V(I \cap J)$. For the other inclusion, we can consider the contrapositive. Suppose $x \notin V(I) \cup V(J)$, then there is $f \in I$ and $g \in J$ such that $f(x) \neq 0 \neq g(x)$. Hence $f(x)g(x) \neq 0$ so $x \notin V(fg) \supseteq V(IJ)$. It follows that:

$$V(I) \cup V(J) \supseteq V(IJ)$$

Then we have $V(I) \cup V(J) \supseteq V(IJ) \supseteq V(I \cap J)$, which proved the result.

(2). Let $I = \sum_{j \in J} I_j$. For all $j \in J$, we have $I_j \subseteq I$, thus $V(I_j) \supseteq V(I)$. It follows that $V(I) \subseteq \bigcap_{j \in J} V(I_j)$. Conversely, let $x \in \bigcap_{j \in J} V(I_j)$. We claim that $x \in V(I)$. Let $f \in I$, then:

$$f = \sum_{i=1}^{n} \alpha_i f_{n_i}$$

for some $\alpha_i \in k[x_1, \dots, x_n]$ and $f_i \in I_i$ for some $n_i \in J$. Then f(x) = 0 as well since each $f_{n_i}(x) = 0$, hence we get $x \in V(I)$ as desired.

Example. In \mathbb{A}^2 with $k[\mathbb{A}^2] = k[x, y]$. Then:

$$V(y-x^2) \cap V(y) = V(y,y-x^2) = V(x^2,y) = V(x,y) = \{(0,0)\}\$$

Geometrically this makes sense. The parabola intersects x-axis at the origin.

Example. Let us look at the Zariski topolgoy on \mathbb{A}^1 when $k = \mathbb{C}$. Since $\mathbb{C}[x]$ is a PID, for any ideal $I \subseteq \mathbb{C}[x]$ we have:

$$V(I) = \begin{cases} \mathbb{A}_{\mathbb{C}} = \mathbb{C} & \text{if } I = (0) \\ \text{some finite set} & \text{if } I = (f) \neq (0) \end{cases}$$

This means closed sets of $\mathbb{A}_{\mathbb{C}}$ are \mathbb{C} and all finite subsets. The unit ball $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ is open in Euclidean topology but NOT in Zariski topology because $\mathbb{A}_{\mathbb{C}} \setminus B$ is not finite nor \mathbb{C} .

Definition. Let X be a topological space with topology \mathcal{C}_X and $Y \subseteq X$. Define:

$$\mathcal{C}_Y = \{ Y \cap A : A \in \mathcal{C}_X \}$$

Then C_Y is a topology on Y and is called the **subspace topology** on Y. We say Y is a **subspace** of X.

Proposition 2.2. Given $X = V(J) \subseteq \mathbb{A}^n$. Then $Y \subseteq X$ (with subspace topological of X) is closed if and only if Y = V(J') for some ideal J' with $J \subseteq J'$.

Proof. (\Rightarrow). If Y is closed, then $Y = X \cap Y'$ for some Y' closed in \mathbb{A}^n . That is, $Y' = V(J_1)$ for some ideal J_1 . Then:

$$Y = V(J) \cap V(J_1) = V(J + J_1) = V(J')$$

where we defined $J' = J + J_1$. Then $J \subseteq J'$, as desired.

(\Leftarrow). We have $Y = V(J') \subseteq V(J) = X$. Since Y = V(J'), by definition Y is closed in \mathbb{A}^n . Hence $Y = Y \cap X$ is closed in X by the definition of subspace topology. □

2.2 Irreducibility

Example. Note that we have:

$$V(xy) = V(x) \cup V(y)$$

However, $V(x) \neq V(I) \cup V(J)$ for any ideal I, J unless V(x) = V(I) or V(J). This is because V(x) is homeomorphic to \mathbb{A}^1 as topological spaces and $\mathbb{A}^1 \neq B_1 \cup B_2$ with closed subsets $B_1, B_2 \subsetneq \mathbb{A}^1$.

Definition. A topological space X is **reducible** if there exist $Y_1, Y_2 \subsetneq X$ closed subsets such that $X = Y_1 \cup Y_2$. We say a non-empty topological space X is **irreducible** if it is not reducible.

Proposition 2.3. An affine algebraic set X is irreducible if and only if I(X) is a prime ideal.

Proof. (\Rightarrow). If I(X) is a proper ideal but not prime, then there exist $f, g \notin I(X)$ but $fg \in I(X)$. Hence $X \subseteq V(fg)$. Since $f, g \notin I(X)$ we have:

$$X \cap V(f) \subseteq X$$
 and $X \cap V(g) \subseteq X$

Now it follows that:

$$(X \cap V(f)) \cup (X \cap V(g)) = X \cap (V(f) \cap V(g)) = X \cap V(fg) = X$$

It follows from definition that X is reducible.

 (\Leftarrow) . Assume $X = X_1 \cup X_2$ is reducible, where $X_1, X_2 \subsetneq X$ are proper closed subsets. By Nullstellensatz we know that $I(X_1), I(X_2) \supsetneq I(X)$. There exists $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Now we have:

$$V(fg) = V(f) \cup V(g) \supseteq X_1 \cup X_2 = X$$

Hence $fg \in I(X)$ but $f, g \notin I(X)$. This proved I(X) is not a prime ideal.

Example. \mathbb{A}^n is irreducible because $I(\mathbb{A}^n) = 0$ is prime in $k[x_1, \dots, x_n]$.

Example. For any $\ell \geq 0$, the space $V(x_{\ell+1}, \dots, x_n) \subseteq \mathbb{A}^n$ is irreducible because the corresponding ideal is $(x_{\ell+1}, \dots, x_n)$, which is prime.

Lemma 2.4. A ring R is Noetherian if and only if R satisfies the ascending chain condition [every ascending chain of idels in R stabilizes. That is, if $I_1 \subseteq I_2 \subseteq \cdots$ is an increasing sequence of ideals in R, then there is $N \ge 1$ such that $I_n = I_N$ for all $n \ge N$.]

Proof. (\Rightarrow). Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain. Define the ideal $I = \bigcup_{i=1}^{\infty} I_n$. This is an ideal of R because I_i is an ascending chain. Since R is Noetherian, $I = (f_1, \dots, f_\ell)$ for some $f_i \in I$. There is $N \in \mathbb{N}$ such that $f_1, \dots, f_\ell \in I_N$. Hence $I_n = I_N$ for all $n \geq N$.

(\Leftarrow). Suppose there exists an ideal $I \subseteq R$ that is not finitely generated. Then $(f_1) \neq R$ for any $f_1 \in I$. There is $f_2 \in R \setminus (f_1)$ and $(f_1, f_2) \neq R$. Inductively we get a sequence $(f_k)_{k=1}^{\infty}$ in R such

that $f_{k+1} \notin (f_1, \dots, f_k)$ for any $k \ge 1$. Therefore:

$$(f_1) \subseteq (f_1, f_2) \subseteq (f_1, f_2, f_3) \subseteq \cdots$$

is an ascending chain of ideals in R that does not stabilize. Contradiction.

Definition. A topological space X is **Noetherian** if it satisfies the descending chain condition, which means every descending chain of closed sets stabilizes.

Remark. By Lemma 2.4, we know \mathbb{A}^n is Noetherian because for every descending chain of closed sets in \mathbb{A}^n :

$$X_1 \supseteq X_2 \supseteq \cdots$$

we can take $I(\cdot)$ and get an ascending chain of ideals:

$$I(X_1) \subseteq I(X_2) \subseteq \cdots$$

in $k[x_1, \dots, x_n]$. Since $k[x_1, \dots, x_n]$ is Noetherian, this chain stabilizes at $I(X_N)$, which means the original chain stabilizes at X_N .

Theorem 2.5. Let X be a Noetherian topological space. For any closed subset $Y \subseteq$ there exists a unique irreducible decomposition of $Y = Y_1 \cup \cdots \cup Y_m$, where $Y_i \subset Y$ is irreducible for all $i \in \{1, \cdots, m\}$ and $Y_i \not\subseteq Y_j$ for all $i \neq j$.

Proof. Let $\Sigma = \{$ closed subsets of X that does not admit the irreducible decomposition $\}$. We want to show $\Sigma = \emptyset$. Assume $\Sigma \neq \emptyset$, then Σ must have a minimal element (with respect to inclusion). Why? If there is no minimal element, we can find a descending chain that does not stabilize. This contradicts the assumption that X is Noetherian. Let Y be this minimal element. If Y is irreducible, then it admits an irreducible decomposition Y = Y. If $Y = Y_1 \cup Y_2$ is reducible, then by the minimality of Y we have $Y_1, Y_2 \notin \Sigma$. Therefore $Y_1 = U_1 \cup \cdots \cup U_n$ and $Y_2 = V_1 \cup \cdots \cup V_m$ admit irreducible decompositions. Hence $Y = U_1 \cup \cdots \cup U_n \cup V_1 \cup \cdots \cup V_m$ admits an irreducible decomposition. This is a contradiction. The uniqueness is proved in A2.

Definition. Let X be a Noetherian topological space. Each X_i in the irreducible decomposition $X = X_1 \cup \cdots \cup X_m$ is called an **irreducible component** of X.

Example. In \mathbb{A}^2 we have $V(xy) = V(x) \cup V(y)$. Geometrically, V(xy) is the xy-axis, which is the union of the x-axis and the y-axis.

Remark. If $X = X_1 \cup \cdots \cup X_m$ is the irreducible decomposition. The irreducible components X_i are the *largest* irreducible subset of X. To see this, we let Y be an irreducible subset of X, then:

$$Y = Y \cap X = (Y \cap X_1) \cup \cdots \cup (Y \cap X_m)$$

By the irreducibility of Y, there is n such that $Y \cap X_n = Y$. Therefore $Y \subseteq X_n$. In the setting of algebraic sets, an irreducible component of X corresponds to a minimal prime ideal containing I(X).

2.3 Regular Functions

So far, affine algebraic sets and Zariski topology are defined in terms of polynomials. It makes sense to define functions in terms of polynomials!

Definition. Let $X \subseteq \mathbb{A}^n$ be an affine algebraic set. A function $f: X \to k = \mathbb{A}$ is called **regular** if there exists $g \in k[x_1, \dots, x_n]$ such that f(x) = g(x) for all $x \in X$.

Example. Consider X = V(xy - 1) in \mathbb{A}^2 . The map $f: X \to \mathbb{A}$ by f(x, y) = y is regular. The range of this function misses the point 0.

To define a regular function $g: X \to \mathbb{A}$, we note that g and g+h are the same function on X for any $h \in I(X)$. This is because h(a) = 0 for all $a \in X$.

Definition. The **coordinate ring** of an affine algebraic set $X \subseteq \mathbb{A}^n$ is:

$$k[X] := k[x_1, \cdots, x_n]/I(X)$$

This is the ring of regular functions on X.

Example. In \mathbb{A}^n , we have $I(\mathbb{A}^n) = (0)$. Therefore we have $k[\mathbb{A}^n] = k[x_1, \dots, x_n]$. This explained our notation from the beginning.

Example. We know $\mathbb{A}^0 = \{0\}$ is a singleton point, so $k[\mathbb{A}^0] = k$.

Proposition 2.6. An affine algebraic set X is irreducible if and only if k[X] is a domain.

Proof. X is irreducible \iff I(X) is prime \iff k[X] is a domain.

Remark. Using the coordinate ring k[X], we can directly characterize affine algebraic sets.

Definition. For a subset $S \subseteq k[X]$, we define:

$$V_X(S) := \{ x \in X : f(x) = 0 \text{ for all } f \in S \}$$

to be the **affine algebraic subset** of X defined by S.

Definition. For a subset $Y \subseteq X$, we define:

$$I_X(Y) := \{ f \in k[X] : f(y) = 0 \text{ for all } y \in Y \}$$

to be the **ideal** of Y in X.

Theorem 2.7 (Relative Nullstellensatz). Let X be an affine algebraic set, there is a inclusion-reversing 1-1 correspondence:

 $\{\text{affine algebraic subsets of } X\} \longleftrightarrow \{\text{radical ideals of } k[X]\}$

by taking $I_X(\cdot)$ and $V_X(\cdot)$.

Proof. Use the fact that there is a 1-1 correspondence between radical ideals of k[X] and radical ideals of $k[\mathbb{A}^n]$ containing I(X).

Definition. Let R be a ring. An R-algebra is a ring S with a ring homomorphism $\varphi_S: R \to S$.

Definition. Let S, T be R-algebras (with ring homomorphisms φ_S and φ_T). We say a map $\varphi : S \to T$ is an R-algebra homomorphism if φ is a ring homomorphism and $h \circ \varphi_S = \varphi_T$.

Definition. An R-algebra S is **finitely generated** if there is $m \in \mathbb{N}$ and a surjective R-algebra homomorphism $f: R[x_1, \dots, x_m] \to S$. In other word:

$$S \cong R[x_1, \cdots, x_m] / \ker f$$

is a quotient of a polynomial ring over R.

7 CURVES Peiran Tao

- 3 Structure of Affine Varieties
- 4 Projective Varieties
- 5 Classical Algebraic Geometry
- 6 Smoothness
- 7 Curves