# Tutorial 13: Quadric Surfaces (part 1)

#### Dr. Mohammad Reza Bahrami

Innopolis University
Course of Essentials of Analytical Geometry and Linear Algebra I

November 27, 2020

# Last weeks' topics

- ☐ Quadratic Curves
  - > Parabolas
  - > Circles
  - Ellipses
  - > Hyperbolas
  - > Rotation of axes

#### Content

- ☐ Quadric Surfaces
  - > Sphere
  - ➤ Ellipsoid

Materials are taken with modification from

Thomas' calculus / based on the original work by George B. Thomas, Jr., Massachusetts Institute of Technology; as revised by Maurice D. Weir, Naval Postgraduate School; Joel Hass, University of California, Davis. — Thirteenth edition.

## Distance and Spheres in Space

The formula for the distance between two points  $P_1(x_1, y_1, z_1)$  and  $P_2(x_2, y_2, z_2)$  in space.

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

We can use the distance formula to write equations for spheres in space. A point P(x, y, z) lies on the sphere of radius a centered at  $P_0(x_0, y_0, z_0)$  precisely when  $|P_0P| = a$  or

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$







### **Quadric Surfaces**

**Definition** Quadric surfaces are the graphs of equations that can be expressed in the form

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Jz + K = 0.$$

When a quadric surface intersects a coordinate plane, the <u>trace</u> is a <u>conic section</u>.

#### **Definition**

The **traces** of a surface are the cross-sections created when the surface intersects a plane parallel to one of the

coordinate planes.



This is one view of the graph of equation  $z = \sin x$ .

To find the trace of the graph in the xz-plane, set y = 0. The trace is simply a two-dimensional sine wave.

## Ellipsoid

An ellipsoid is a surface described by an equation of the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

cuts the coordinate axes at  $(\pm a, 0, 0)$ ,  $(0, \pm b, 0)$ , and  $(0, 0, \pm c)$ .

Set x = 0 to see the trace of the ellipsoid in the yz-plane. To see the traces in the y- and xz-planes, set z = 0 and y = 0, respectively. Notice that, if a = b, the trace in the xy-plane is a circle. Similarly, if a = c, the trace in the xz-plane is a circle and, if b = c, then the trace in the yz-plane is a circle. A sphere, then, is an ellipsoid with a = b = c.







a) 
$$x = 0$$
 (b)  $y = 0$  (c)  $z = 1$ 

#### **Solution**:





a) 
$$16x^2 + 9y^2 + 16z^2 = 144$$

b) 
$$9x^2 - 18x + 4y^2 + 16y - 36z + 25 = 0$$

#### **Solution**:









- ☐ Helpful Links
  - https://math.libretexts.org/Bookshelves/Calculus/Book%3A\_Calculus\_(OpenStax)/12%3A\_Vectors\_in\_Space/12.6%3A\_Quadric\_Surfaces

- ☐ Next Week Topics
  - ➤ Quadric Surfaces (to be continued)