

Tabla de contenido

Objetivo	3
Introducción	4
Posiciones relativas entre dos rectas en el espacio	5
Posiciones relativas entre dos planos	6
Posiciones relativas entre rectas y planos en el espacio	7
Teoremas de rectas y planos	g
Ejercicios	11
Cierre	14
Referencias bibliográficas	

Objetivo

Identificar las relaciones geométricas entre rectas y planos en el espacio.

Introducción

Para profundizar en el estudio de la geometría del espacio, es necesario iniciar con las posiciones relativas que hay entre rectas y planos, es decir con las maneras como pueden estar posicionadas las rectas y los planos.

Estas posiciones relativas hacen que las rectas y los planos tengan características o condiciones particulares que se expresan mediante teoremas.

A continuación, se presentan algunos teoremas sobre rectas y planos. No se pretende agotar el tema, simplemente refrescar conocimientos previos y precisar algunas relaciones que servirán de base para el estudio de la geometría del espacio.

Posiciones relativas de dos rectas en el espacio

Dos rectas en el espacio pueden ser secantes, paralelas y cruzadas. A continuación, presentamos puntualmente cada una de ellas.

 Rectas secantes: cuando tienen un punto en común. (ver fig.1)

 Rectas paralelas: cuando no tienen punto en común y sus vectores directores son paralelos. (ver fig.2)

 Rectas cruzadas: cuando no tienen punto en común y sus vectores directores no son paralelos. (ver fig.3)

De lo anterior podemos hacer el siguiente resumen:

Dos rectas en el espacio, o son secantes o son paralelas o son cruzadas.

Posiciones relativas de dos planos

Un plano es un objeto ideal que solo posee dos dimensiones, y contiene infinitos puntos y rectas.

Dos planos en el espacio pueden ser:

 Planos secantes: cuando tienen una recta en común. (ver fig.4)

Caso particular: los planos secantes son perpendiculares, cuando sus vectores normales son perpendiculares (ver fig.5)

 Paralelos: cuando no tiene punto en común. (ver fig.6)

De lo anterior podemos hacer el siguiente resumen: dos planos en el espacio, o son secantes o son paralelos.

Posiciones relativas de una recta y un plano en el espacio

Una recta en el espacio, con respecto a un plano, puede ser:

• Secante: cuando la recta tiene un punto en común con el plano. (ver fig.7)

Caso particular: la recta es perpendicular al plano cuando es secante al plano y el vector director de la recta es paralelo al vector normal del plano. (ver fig.8)

• Paralela: cuando la recta no tiene punto en común con el plano y el vector director de la recta es perpendicular al vector normal del plano.

(ver fig.9)

 Contenida: cuando la recta tiene todos sus puntos contenidos en el plano. (ver fig.10)

En resumen: una recta con respecto a un plano o es secante o es paralela o está contenida en el plano.

Teoremas de rectas y planos

Entre los teoremas de rectas y planos, tenemos los siguientes:

- 1. Si una recta exterior a un plano es paralela a una recta contenida en el plano entonces es paralela al plano.
- 2. Si una recta es paralela a dos planos secantes entonces es paralela a la recta de intersección de ambos planos.
- Si una recta corta a uno de dos planos paralelos entonces corta al otro.
- 4. Si un plano corta a uno de dos planos paralelos entonces corta al otro y las rectas de intersección son paralelas.
- 5. La recta de intersección de dos planos perpendiculares a un tercero es perpendicular a dicho plano.
- 6. Si una recta es perpendicular a uno de dos planos perpendiculares entonces es paralela al otro plano.
- Si una recta es perpendicular a un plano, todo plano que pase por dicha recta será perpendicular al primer plano.
- 8. Si una recta es perpendicular a un plano entonces es perpendicular a todas las rectas contenidas en el plano que pasan por su pie.
- 9. Si un plano es perpendicular a dos planos secantes entonces es perpendicular a la recta de intersección de dichos planos.
- 10.Si dos planos son paralelos, todo plano perpendicular a uno de ellos es perpendicular al otro.
- 11. Si dos planos son perpendiculares, todo plano perpendicular a su recta de intersección es perpendicular a ambos planos.

12. Si por el pie de una recta perpendicular a un plano se traza una recta perpendicular a otra recta contenida en el plano, todo segmento que una el punto de intersección de estas dos últimas con un punto cualquiera de la perpendicular al plano, será perpendicular a la recta contenida en el plano (teorema de las tres perpendiculares).

Ejercicios

A continuación, se proponen cuatro ejercicios para que demuestres los conocimientos aprendidos.

Ejercicio 1

Toma una hoja de papel en blanco y en ella debes **graficar**, con un lápiz y una regla, tres (3) rectas en el espacio, luego, **identifica** y **describe** la posición relativa entre las tres rectas graficadas.

Ejercicio 2

Toma una hoja de papel y, utilizando lápiz y regla, debes **graficar** tres (3) planos en el espacio. Luego, debes **identificar** y **describir** la posición relativa entre los tres planos graficados.

Ejercicio 3

Elabora una representación gráfica de los siguientes planteamientos. La misma debe incluir los vectores de interés (directores y normales):

- a) Dos planos P1 y P2 son paralelos. Las rectas L1 y L2 son cruzadas y están contenidas en P1 y P2 respectivamente.
- b) Dos planos P1 y P2 son secantes. Las rectas L1 y L2 son secantes y están contenidas en P1 y P2 respectivamente.

Ejercicio 4

Identifica y describe las posiciones relativas de las rectas L1, L2 y L3 y los planos P1, P2 y P3 en la figura que se presenta a continuación.

RESPUESTAS DE LOS EJERCICIOS:

Ejercicio 1

A continuación, algunas respuestas posibles,

Ejercicio 2

A continuación, algunas respuestas posibles,

Ejercicio 3

Las rectas L2 y L3 son paralelas

Ejercicio 4

L1 y L2 perpendiculares; L1 y L3 secantes; L2 y L3 cruzadas;

P1 y P2 perpendiculares;

P1 y P3 secantes; P2 y P3 secantes;

L2 y P2 perpendiculares.

Cierre

En el desarrollo del tema, se identificaron las posiciones relativas entre rectas y planos en el espacio y los teoremas más conocidos, aunque existen otros que pueden identificarse.

Algo interesante a destacar es que los teoremas se aplican en la resolución de muchos problemas de cálculo en varias variables; en ellos, se visualiza la importancia de estos teoremas.

Referencias bibliográficas

- Casanova, M.G. (1957). Geometría Plana y del Espacio. Barcelona: Bosch.
- Baldor, J.A. (1967). Geometría Plana y del Espacio y Trigonometría. Cultural Venezolana, S.A.
- Moise, E. E., Downs, F. L. (1970). Geometría Moderna. EEUU: Fondo Educativo Interamericano.
- Bruño, G.M. (1971). Geometría. Curso Superior. Madrid: Editorial Bruño.