Double fibration transforms with conjugate points

Hiroyuki Chihara (University of the Ryukyus)

29 July 2025

AIP 2025

MS-04 Integral geometry, rigidity and geometric inverse problems

FGV EMAp. Rio de Janeiro

- Let \mathcal{G} and X be oriented smooth manifolds without boundaries. $N := \dim(\mathcal{G})$ and $n := \dim(X)$. Denote by $d\mathcal{G}$ and dX the orientation forms of \mathcal{G} and X respectively.
- Let Z be an oriented embedded submanifold of $\mathcal{G} \times X$, and let dZ be the orientation form.
- Assume that $N+n>\dim(Z)>N\geqq n\geqq 2$, and set $n':=\dim(Z)-N$ and n'':=n-n'. Then $\dim(Z)=N+n'$, n=n'+n'' and n', $n''=1,\ldots,n-1$.

- We assume that Z is a double fibration, that is, the natural projections $\pi_{\mathcal{G}}: Z \rightarrow \mathcal{G}$ and $\pi_X: Z \rightarrow X$ are submersions respectively.
- Then $G_z := \pi_x \circ \pi_{\mathcal{G}}^{-1}(z)$ becomes an n'-dim submanifold of X for any $z \in \mathcal{G}$, and $H_x := \pi_{\mathcal{G}} \circ \pi_X^{-1}(x)$ forms an (N n'')-dim submanifold of \mathcal{G} for any $x \in X$.

We assume that Z is a double fibration, that is, the natural projections $\pi_{\mathcal{G}}:Z{\to}\mathcal{G}$ and $\pi_X:Z{\to}X$ are submersions respectively. Then $G_z:=\pi_x\circ\pi_{\mathcal{G}}^{-1}(z)$ becomes an n'-dimensional embedded submanifold of X for any $z\in\mathcal{G}$, and $H_x:=\pi_{\mathcal{G}}\circ\pi_X^{-1}(x)$ forms an (N-n'')-dimensional embedded submanifold of \mathcal{G} for any $x\in X$.

References

- M. Mazzucchelli, M. Salo and L. Tzou, A general support theorem for analytic double fibration transforms, arXiv:2306.05906.
- P. Stefanov and G. Uhlmann, *The geodesic X-ray transform with fold caustics*, Anal. PDE, **5** (2012), pp.219–260
- H. Chihara, *Microlocal analysis of double fibration transforms with conjugate points*, arXiv:2412.14520.