Teoria do Risco Aula 4

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Momentos

o Valor esperado de X

$$\mu_X = E(X)$$

o Variância probabilística de X

$$\sigma_X^2 = E\{[X - E(X)]^2\} = E(X^2) - E(X)^2$$

o Assimetria de X

$$\gamma = E\left[\left(\frac{X - E(X)}{\sigma_X}\right)^3\right] = \frac{E(X^3) - 3E(X)E(X^2) + 2E(X)^3}{[E(X^2) - E(X)^2]^3}$$

o Curtose de X

$$\beta = E\left[\left(\frac{X - E(X)}{\sigma_X}\right)^4\right] = \frac{E(X^4) - 4E(X)E(X^3) + 6E(X^2)E(X)^2 - 3E(X)^4}{[E(X^2) - E(X)^2]^2}$$

O mais comum em seguros é assimétrica positiva, pois há uma tendência de os sinistros de custo mais baixa serem mais frequentes do que os de custo mais alta.

HAFLEY, W.; SCHREUDER, H. Statistical distributions for fitting diameter and height data in even-aged stands. **Canadian Journal of Forest Research**, NRC Research Press, v. 7, n. 3, p. 481–487, 1977.

Momentos

Momento de ordem k ou momentos ordinários de ordem k de uma variável Y (sendo k um inteiro positivo) como:

$$m_k = E(Y^k)$$

Momentos

$$m_k = E(Y^k) = \begin{cases} \sum_{i=1}^{\infty} y_i^k P(Y = y_i) \\ \int_{-\infty}^{\infty} y^k f(y) dy \end{cases}$$

- $m_1 = E(Y)$
- $-m_2 = E(Y^2)$
- $-m_3 = E(Y^3)$

Função Geradora de Momentos

$$M_{Y}(t) = E(e^{tY}) = \begin{cases} \sum_{i=1}^{\infty} e^{ty_{i}} P(Y = y_{i}) \\ \int_{-\infty}^{\infty} e^{ty} f(y) dy \end{cases}$$

Função Geradora de Momentos

- 1) A geradora de momentos determina completamente a distribuição de probabilidades.
- 2) A função geradora de uma soma de variáveis aleatórias independentes é o produto das funções geradoras de cada componente da soma.
- 3) <u>Os momentos de uma variável aleatória podem ser obtidos pela derivação da função geradora.</u>
- 4) A convergência ordinária de uma sequência de funções geradoras corresponde à convergência das correspondentes distribuições.

distribuição de probabilidades.
....se duas v.a. possuem funções geradoras de momentos iguais, então elas têm a

 \mathbf{a}

1) A geradora de momentos determina completamente

2) A função geradora de uma soma de variáveis aleatórias independentes é o produto das funções geradoras de cada componente da soma.

Seja
$$Y=X_1+X_2+\cdots+X_n$$
, tal que X_1,X_2,\ldots,X_n são variáveis aleatórias independentes.

$$M_Y(t) = E(e^{tY}) = E[e^{t(X_1 + X_2 + \dots + X_n)}]$$

$$M_Y(t) = E(e^{tX_1}e^{tX_2}....e^{tX_n}) = E(e^{tX_1})E(e^{tX_2})...E(e^{tX_n})$$

$$M_Y(t) = M_{\sum X}(t) = \prod_{i=1}^n M_{X_i}(t)$$

mesma função de distribuição (teorema de unicidade).

3) Os momentos de uma variável aleatória podem ser obtidos pela derivação da função geradora.

$$M_X(t) = E(e^{tX}) = E\left[\sum_{k=0}^{\infty} \frac{(tX)^k}{k!}\right] = E\left[1 + tX + \frac{(tX)^2}{2} + \frac{(tX)^3}{6} + \frac{(tX)^4}{24} + \cdots\right]$$

$$M_X(t) = 1 + tE(X) + \frac{t^2E(X^2)}{2} + \frac{t^3E(X^3)}{6} + \frac{t^4E(X^4)}{24} + \cdots$$

$$\frac{\partial M_X(t)}{\partial t} = E(X) + tE(X^2) + \frac{t^2 E(X^3)}{2} + \frac{t^3 E(X^4)}{6} + \cdots \qquad \Rightarrow \quad \frac{\partial M_X(t)}{\partial t} \Big|_{t=0} = E(X)$$

$$\frac{\partial^2 M_X(t)}{\partial t^2} = E(X^2) + tE(X^3) + \frac{t^2 E(X^4)}{2} + \cdots \qquad \Rightarrow \frac{\partial^2 M_X(t)}{\partial t^2} \Big|_{t=0} = E(X^2)$$

$$\frac{\partial^3 M_X(t)}{\partial t^3} = E(X^3) + tE(X^4) + \cdots \qquad \qquad \Rightarrow \frac{\partial^3 M_X(t)}{\partial t^3} \bigg|_{t=0} = E(X^3)$$

Universidade Federal de Alfena

4) A convergência ordinária de uma sequência de funções geradoras corresponde à convergência das correspondentes distribuições.

Em muitas situações, é mais fácil mostrar a convergência de funções geradoras do que provar a convergência das distribuições diretamente.

Exemplo 1: Seja $Y \sim B(n,q)$ e $X \sim Exp(\lambda)$ vamos obter as respectivas funções geradoras de momentos.

$$P(Y = y) = \binom{n}{y} q^{y} (1 - q)^{n - y}$$

$$f(x) = \lambda e^{-\lambda x}$$

$$0 \le Y \le n \text{ e } 0 \le x \le \infty.$$

Seja $Y \sim B(n, q)$, $0 \le Y \le n$

$$P(Y = y) = \binom{n}{y} q^{y} (1 - q)^{n - y}$$

Lembrando que
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$
 e $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

$$M_Y(t) = E(e^{tY}) = \sum_{y=0}^n e^{ty} \binom{n}{y} q^y (1-q)^{n-y} = \sum_{y=0}^n \binom{n}{y} (e^t q)^y (1-q)^{n-y}$$

$$M_Y(t) = [e^t q + (1-q)]^n$$

Seja $X \sim Exp(\lambda)$

$$f(x) = \lambda e^{-\lambda x}$$
, $0 \le x \le \infty$.

$$M_X(t) = E(e^{tX}) = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx = \int_0^\infty \lambda e^{-x(\lambda - t)} dx$$

$$M_X(t) = -\frac{\lambda}{(\lambda - t)e^{x(\lambda - t)}} \Big|_{x=0}^{x \to \infty} = \frac{\lambda}{(\lambda - t)}$$

Exemplo 2: Seja uma dada variável aleatória $X \sim N(0,1)$. Encontre a distribuição de $Y = g(X) = X^2$, pela técnica da função geradora de momentos.

$$M_Y(t) = E(e^{tY}) = \int_{-\infty}^{\infty} e^{tx^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

$$M_Y(t) = E(e^{tY}) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2(1-2t)} dx$$

$$M_Y(t) = \frac{(1-2t)^{-\frac{1}{2}}}{(1-2t)^{-\frac{1}{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2(1-2t)} dx$$

$$M_Y(t) = (1 - 2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}x^2} \frac{1}{(1 - 2t)^{-1}}}{(1 - 2t)^{-\frac{1}{2}} \sqrt{2\pi}} dx$$

Universidade Federal de Alfen

$$\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}x^2} \frac{1}{(1-2t)^{-1}}}{(1-2t)^{-\frac{1}{2}} \sqrt{2\pi}} dx \to X \sim N(0, (1-2t)^{-1})$$

Logo

$$M_Y(t) = (1 - 2t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}x^2 \frac{1}{(1 - 2t)^{-1}}}}{(1 - 2t)^{-\frac{1}{2}} \sqrt{2\pi}} dx = (1 - 2t)^{-\frac{1}{2}}$$

$$M_Y(t) = (1 - 2t)^{-\frac{1}{2}} = \left(\frac{\frac{1}{2}}{\frac{1}{2} - t}\right)^{\frac{1}{2}} \text{ para } t < \frac{1}{2}$$

$$Y \sim Gama\left(\lambda = \frac{1}{2}, r = \frac{1}{2}\right)$$

Universidade Federal de Alfenzs

Seja $X_j \sim Ber(q)$, $j=1,2,\ldots,n$ sendo X_j independentes. Então a distribuição de $Y=X_1+X_2+\cdots+X_n$ é?

$$M_{X_i}(t) = qe^t + 1 - q$$

Função Geradora de Momentos

Sejam $Y_1, ..., Y_n$ v.as definidas num mesmo espaço de probabilidade, com $f_{Y_1,...,Y_n}(y_1,...,y_n)$ então a função geradora de momentos multidimensional dessas variáveis é definida por:

$$M_{Y_1,...,Y_n}(t_1,...,t_n) = E(e^{t_1Y_1+\cdots+t_nY_n})$$

ou

$$M_{Y_1,\dots,Y_n}(t_1,\dots,t_n) = \int \dots \int e^{t_1y_1+\dots+t_ny_n} f_{Y_1,\dots,Y_n}(y_1,\dots,y_n) \prod_{j=1}^n dy_j$$

Obs.:

$$M_{Y_1}(t_1) = M_{Y_1, \dots, Y_n}(t_1, 0, 0, 0, \dots, 0) = \lim_{t_s \neq t_1 \to 0} M_{Y_1, \dots, Y_n}(t_1, \dots, t_n)$$

Função Geradora de Momentos

Propriedade:

Dada as constantes a e b , então se Y = aX + b, então:

$$M_Y(t) = e^{bt} M_X(at)$$

Se
$$X \sim Bernoulli(q) \rightarrow M_X(t) = qe^t + 1 - q; \quad 0 \le q \le 1$$

Se
$$X \sim N(\mu, \sigma^2)$$
 $\rightarrow M_X(t) = e^{\left(\mu t + \frac{\sigma^2 t^2}{2}\right)}; -\infty \le \mu \le \infty, \ \sigma^2 > 0$

Se
$$X \sim Po(\lambda)$$
 $\rightarrow M_X(t) = e^{\lambda(e^t - 1)}; \quad \lambda > 0$

Se
$$X \sim Exp(\alpha)$$
 $\rightarrow M_X(t) = \frac{\alpha}{\alpha - t}$; $\alpha > 0$

Se
$$X \sim Geo(q)$$
 $\rightarrow M_X(t) = \frac{qe^t}{1-(1-q)e^t}; \quad 0 \le q \le 1$

Se
$$X \sim Uni_C(a,b)$$
 $\rightarrow M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)};$ $a < b$

Se
$$X \sim Gama(\lambda, r)$$
 $\rightarrow M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^r$; $\lambda > 0$, $r > 0$, $t < \lambda$

Exemplo 3: Seja $X \sim N(\mu_1, \sigma_1^2)$ e $Y \sim N(\mu_2, \sigma_2^2)$, Sendo X e Y independentes. Seja $Y_1 = X + Y$ e $Y_2 = X - Y$. Encontre as distribuições de Y_1 e Y_2 .

Entregar!!

$$>M_Y(t)=E(e^{tY})$$

$$\left. \frac{d^n M_Y(t)}{dt^n} \right|_{t=0} = E(Y^n)$$

$$> \psi_Y(t) = E(e^{itY})$$

$$\left. \frac{d^n M_Y(t)}{dt^n} \right|_{t=0} = E(Y^n) \left. \left| \frac{d^n \psi_Y(t)}{dt^n} \right|_{t=0} = i^n E(Y^n)$$

$$\psi_Y(t) = M_Y(it)$$

Fórmula de Inversão

Seja Y uma variável aleatória, e $\psi_Y(t)$ sua função característica, tal que $|\psi_Y(t)|=1$ para algum t=0 se ela for discreta, ou $\int_{-\infty}^{\infty} |\psi_Y(t)| dt < \infty$ se for contínua. Então:

$$f(Y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \, \psi_Y(t) dt$$

Exemplo 4: Considere a função geradora de momentos abaixo

$$M_X(t) = e^{\left(\frac{t^2}{2}\right)}$$

Determine a função de densidade de X.

Exemplo 4: Como $\psi_Y(t) = M_Y(it)$, então $\psi_Y(t) = e^{\left(-\frac{t^2}{2}\right)}$.

Aplicando a fórmula de inversão.

$$f(Y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} e^{\left(-\frac{t^2}{2}\right)} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\left[-\frac{(t^2 + 2ity)}{2}\right]} dt$$

$$f(Y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{[t^2 + 2ity + (iy)^2]}{2}} e^{\frac{(iy)^2}{2}} dt$$

$$f(Y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t+iy)^2}{2}} dt$$

Exemplo 4

...

$$f(Y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t+iy)^2}{2}} dt$$

N(-iy,1)

$$f(Y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} \mathbf{1}$$

$$f(Y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$$

 $Y \sim N(0,1)$

Referências

- Magalhães, M. N. Lima, A. C. P. Noções de Probabilidade e Estatística, Editora USP: SAD Paulo, 2001.
- JAMES,B. R.; Probabilidade: Um Curso em nível intermediário, IMPA, Rio de Janeiro, 3 ed., 2004.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. Teoria do risco atuarial: Fundamentos e conceitos. Curitiba, CRV 2020.

