UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION - APRIL 2001

First Year - Elective

CHE112H1 - PHYSICAL CHEMISTRY

Examiner - C.E. Chaffey

No aids. A non-programmable calculator may be used. Answer all <u>seven</u> questions, which have values as indicated; total = 100. Many questions require *data* tabulated on page 3.

 $R = 8.314472 \text{ J K}^{-1} \text{ mol}^{-1}$. $F = 96485 \text{ C mol}^{-1}$.

 $1 L = 10^{-3} \text{ m}^3$. $T/K = \theta/^{\circ}C + 273.15$. $P^{\circ} = 1 \text{ bar} = 10^{5} \text{ Pa}$.

MARKS

1. Solid ammonium nitrate, NH₄NO₃, is a valuable fertilizer, but it also is explosive. The standard Gibbs free energy of formation is $\Delta G_{f,298}^{\circ} = -184 \text{ kJ mol}^{-1}$ for NH₄NO₃. When it explodes, the reaction is

$$NH_4NO_3(s) \rightarrow N_2(g) + \frac{1}{2}O_2(g) + 2H_2O(g)$$
.

- a By calculating a suitable thermodynamic quantity, show that this explosion reaction tends to occur.
- b Some solid NH₄NO₃ (which occupies negligible volume) explodes completely. The final gas produced has a temperature of 200°C and a volume of 32.0 L when the pressure has decreased to 1.00 bar. What mass of NH₄NO₃ exploded? [Molar mass of NH₄NO₃ = 80.0 g mol⁻¹.]
- c This gas produced expanded irreversibly against a constant external pressure of 1.00 bar. Suppose the work done by the expanding gas was entirely transferred, in the form of kinetic energy, to a fragment of a metal container in which the explosion happened. Find the velocity of the fragment, which has mass 6.00 kg. [Its kinetic energy = ½(mass)(velocity)²; 1 m s⁻¹ = 3.6 km h⁻¹.]
 - 2. Some of the undesirable destruction of ozone, O₃, in the upper atmosphere, may be caused by reaction with nitric oxide, NO, produced from imperfect combustion processes. The destruction reaction NO + O₃ → NO₂ + O₂ is first order in each reactant. At 298 K, the rate constant is 1.3 × 10⁶ L mol⁻¹ s⁻¹ for the consumption of O₃. At a certain initial time t = 0, the concentrations of both NO and O₃ are 7.0 × 10⁻⁷ mol L⁻¹.
- 5 a What are the concentrations of [i] NO and [ii] O₃ after 2.00 s?
- b After how long will the concentration of O_3 be 1.0% of its initial value?

- 3. A maker of electronic parts produces a byproduct solution which initially contains silver ion, Ag⁺, at a molar concentration of 0.084 mol L⁻¹. To utilize this solution,
- 500 mL of it is put into one compartment of an electrochemical cell as the electrolyte; the electrode in that compartment is a strip of pure metallic silver, Ag, of initial mass 4.00 g. The other compartment of the cell contains 300 mL of another electrolyte solution initially having pH 4.00; the electrode is a hydrogen electrode, supplied from a rigid tank of volume 0.180 L that initially contains pure gaseous hydrogen, H₂, at a pressure of 2.60 bar. A porous separator between the compartments prevents mixing of the electrolytes but it allows negative ions to pass freely. Everything is at 25°C. Write the cell reaction and find the equilibrium cell voltage E_{cell}.

Data: Standard reduction potentials at 25°C:

 $2H^+ + 2e^- \rightarrow H_2$, $E^{\circ} = 0$; $Ag^+ + e^- \rightarrow Ag$, $E^{\circ} = +0.7996$ V. Atomic masses in g mol⁻¹: H 1.008, Ag 107.9.

- 4. Liquid ethanol, C₂H₅OH, is fed at 25°C to a burner with 1.30 times the stoichiometric amount of air, also at 25°C. Air is 79% N₂ and 21% O₂ by volume. In the burner, complete combustion occurs irreversibly to gaseous products, which leave at 150°C and at 99.0 kPa pressure.
- a What is the mole fraction of N_2 in these gaseous combustion products?
- 10 b Per mole of ethanol, how much heat is given out?
 - 5. A solution is 0.15 mol L⁻¹ in ammonia, NH₃, and 0.10 mol L⁻¹ in ammonium chloride, NH₄Cl.
- 5 a Calculate the pH of this solution.
- 10 **b** If 20 mL of a 0.15 mol L⁻¹ solution of hydrochloric acid, HCl, is added to 80 mL of the solution of part a, by how much will the pH change?

 Data: At 25°C, $K_w = 10^{-14}$; for ammonia, NH₃, $K_b = 1.77 \times 10^{-5}$.
- 6. At what temperature do pure benzene, C₆H₆, and pure ethanol, C₂H₅OH, have equal vapor pressures P[•]?
 - 7. Nitrosyl bromide, NOBr, can decompose into nitric oxide, NO, and bromine, Br₂, in the gas phase. A reaction vessel of constant volume initially contains pure NOBr. The initial molar volume ν of the NOBr is 0.600 m³ mol⁻¹. Some of the NOBr decomposes, by the reaction NOBr(g) = NO(g) + ½ Br₂(g), and when chemical equilibrium is attained at 50°C the total pressure is 5.90 kPa.
- 10 a Find the equilibrium constant K for this reaction at 50° C.
 - b What is the standard molar Gibbs free energy change ΔG_R° for this reaction (or for a reaction with K = 0.2)?
 - 5 c Why can some products form when the value of ΔG_R° indicates that the reaction is not spontaneous?

	Henry's K ₂₈ , H ₂ O 6.85 GPa 991 MPa 12.6 GPa 17.9 GPa 30.8 MPa 25.2 KPa 29.2 KPa 29.2 KPa
•	Kg mol ⁻¹ 0.513 2.22 2.92 3.62 3.62 3.40 0.863 1.23
<u>-</u>	Δħ _{wp.bp} Id mol ⁻¹ 40.65 25.79 29.97 31.77 30.72 33.18 35.21 38.56
	75 833.2 309.2 309.2 309.2 307.4 337.8 337.8
Hemy's K ₂₉ , H ₂ O 7.11 GPa 8.54 GPa 4.27 GPa 159 MPa 159 MPa 1.18 GPa 135 MPa 1.01 kPa 25.2 kPa reacts re	P. 388 KPa 3.17 68.67 13.60 6.59 7.46 13.11 4.03 18.24 8.72
10°6 26.5 38.7 38.7 39.5 39.5 39.5 39.5 39.5 39.5 43.1 52.2 58.2 65.1 66.6 66.6 66.8 86.0 173.	kg mol ¹ - 1.86 1.47 20.4 1.98 2.84 5.11 3.67 1.96
m*mol² 0.0245 0.0245 0.137 0.138 0.357 0.554 0.147 0.461 0.461 0.452 0.461 0.648 0.6	Δη _{γε.πρ} KI mol ⁻¹ 6.01 8.40 2.68 14.03 9.20 9.87 6.64 3.22 4.93 Δη _{γε.πρ} KI mol ⁻¹ 706.7 _{mN} 8.54 8.54 8.54 80 29
7 K 20.3 77.4 90.2 161.8 373.2 81.6 194.8 111.8 188.4 169.5 188.4 169.5 184.5 249.6 337.8 232.0 232.0 233.8 391.3 351.4 249.2	T _M K 273.2 143.5 279.7 182.6 165.8 178.2 175.6 178.2 175.6 159.0 T _M K 3915.6 1115 1115 11023 11023
C _P 600 147.1 mol-1 29.33 30.11 32.09 49.86 36.33 30.44 47.32 58.29 70.66 89.33 48.22 67.03 70.67 86.31 85.31	C _{P 288} (g) J K ⁺ mol ⁻ 33.59 120.21 106.27 105.27 105.27 103.64 43.89 65.44 65.44 73.89 16.12 29.55 73.31 109.87 50.48
(1) Δh ⁶ , 298	Δhf 288
	Δħ, -285 -172 -175 -175 -223 -237 -240 0 0 -1206 -176 -186 -885
288 S 298 130.68	2.88 5° 88 J K mol 1 2.3 69.95 7.2 263.94 4.9 205.32 4.7 329.58 9.1 329.47 6.0 173.13 7.3 220.77 7.1 130.92 2.3 165.27 J K mol 1 5.8 5° 88 J K mol 1 5.9 5.96 6.9 69.96 6.4 92.90 6.0 41.40 6.1 38.07 6.9 69.96 6.4 92.90 6.0 41.40 6.1 38.07 6.1 38.07 6.1 38.07 6.2 69.96 6.3 69.96 6.4 92.90 6.0 41.40 6.1 38.07 6.1 38.07 6.1 38.07 6.1 38.07 6.1 38.07 6.1 38.07 6.2 69.96
7° 2884 18.12 29.12 29.12 29.13 33.59 33.59 44.10 42.89 45.23 45.23 47.90 66.53 66.53	CP 298 J K 75.3 167.2 154.9 224.7 239.1 136.0 157.3 81.1 112.3 CP 208 F 209 J K 8.51 66.13 62.72 83.47 41.00 42.12
(g) (g) H,OH (g)	P.88 m ³ 997.0 621.2 773.9 679.3 687.7 861.6 786.7 784.9 P.286 3513 1540 2220 2220 2220 2220 2220 2220 2220 2
Gases and vapours Pe = 1 bar Hydrogen, H ₂ Nitrogen, N ₂ Oxone, O ₃ Water, H ₂ O (g) Carbon monoxide, CO Carbon dioxide, CO Carbon dioxide, CO Methane, CH ₄ Acetylene, C ₄ H ₄ Ethane, C ₄ H ₄ Ethane, C ₄ H ₆ Formaldehyde, HCHO Formaldehyde, HCHO Ketene, CH ₂ C = O Ethylene oxid, CH ₂ CHO Acetaldehyde, CH ₃ CHO Acetaldehyde ether, (CH ₃) ₃ O Ethylene glycol, HOC,H ₃ OH (g)	Liquids P" = 1 bar Water, H; O R-Pentane, C; H; C; C; Clobexane, C, H; Rocciane, C, H; Enacter, C, H; OH Solids P" = 1 bar Graphite, C (gr) Diamond, C (dia) Calcium, Ca — carbide, CaC — carbide, CaC — carbide, CaC — hydride, CaH — oxide, CaO — hydride, CaH — oxide, CaO