CMPE 212 Principles of Digital Design

Lecture 26

Optimization of Sequential Circuits Design

April 27, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

□ Previous Lecture

- → What does synthesis of sequential circuit mean?
- → Completely and incompletely specified sequential circuits
- → Procedure for synthesizing a sequential circuit
 - 1. From a word description of the problem, derive a state table
 - 2. Use state reduction techniques to minimize the state count
 - 3. Choose a state assignment and generate the state transition table
 - 4. Determine the type of flip-fops (memory devices) to be used
 - 5. Produce the switching logic equations using the excitation maps
 - 6. Draw a schematic of the sequential circuit

☐ This Lecture

→ Simplification of sequential circuits

Sequential Circuit Model

Outputs Inputs Combinational logic unit State bits y_r Memory devices

Possible realization:

- Mealy model
- 2. Moore model

Can be synchronous or asynchronous

 Composed of a combinational logic unit and delay elements in a feedback path, which maintains state information

Synchronization _

signal

☐ Defined by output relation to input and circuit state (values in flip-flops)

Delay elements (one per state bit)

State Reduction

- ☐ After designing an FSM, the following question usually arises: Is there a functionally equivalent machine with fewer states?
- ☐ Machine equivalence:

Two FSM are equivalent if they produce similar outputs for the same input sequence for all possible input sequences

☐ State equivalence:

Two states are equivalent if they are indistinguishable from each other for any set of inputs by just watching the FSM output

- ☐ The objective of state reduction techniques is to find equivalent states within the FSM so that they can be eliminated
- ☐ Since state equivalence is based on monitoring the machine output, state reduction techniques classifies states based on outputs for a string of inputs
- ☐ Indistinguishable states are usually grouped in parenthesis

Distinguishing Tree

Simpler Approach: Inspection

Two states are equivalent if the next state rows are identical or when the next-state rows are identical except for "self-loop-back" entries

B/0

A/1

D/1

B/0

B and D are

equivalent states

Good first step and may not reveal all cases (requires experience)

State Partitioning Technique

□ Constructing distinguishing trees is laborious because of the large set of possibilities and repetitions

☐ Simplification can be made by considering the groups of the first level of partitioning and checking the states whether their next states are in one

group or different groups

□ If two states S₁ and S₂, within one group have their next states in separate groups, then S₁ and S₂ are distinguishable (after applying one more input)

$$P_1 = (ABCDE)$$

A and B generate same output and similarly for C and D while E is unique

$$P_2 = (ABE)(CD)$$

On 0: (AB) \rightarrow (CD), (CD) \rightarrow (C)

On 1: (AB) \rightarrow (E), (CD) \rightarrow (AB)

$$P_3 = (AB)(CD)(E)$$

Input	-	X
Present state	0	1
A	C/0	E/1
В	D/0	E/1
C	C/1	$\mathbf{B}/0$
D	C/1	A/0
E	A/0	C/1

Reduced to ___3 states FSM

Input	X	
Current state	0 1	
AB: A'	B'/0 C'/1	
CD: B'	B'/1 A'/0	
E: C'	A'/0 B'/1	

Sequence Detector

☐ Design a machine that outputs a 1 when exactly two of the last three inputs are 1, e.g. input sequence of 011011100 produces an output sequence of 001111010.

Input		X
Present state	0	1
A	<i>B</i> /0	C/0
B	D/0	E/0
C	F/0	G/0
D	D/0	E/0
E	F/0	G/1
F	D/0	E/1
G	F/1	G/0

Input: 0 1 1 0 1 1 1 0 0

Output: 0 0 1 1 1 1 0 1 0

Time: 012345678

* Slide is courtesy of M. Murdocca and V. Heuring

Sequence Detector

Input	X
Present state	0 1
A	B/0 C/0
B	D/0 $E/0$
C	F/0 $G/0$
D	D/0 $E/0$
E	F/0 $G/1$
F	D/0 $E/1$
G	F/1 $G/0$

Input		X
Present state	0	1
A: A'	B'/0	C'/0
BD: B'	B''0	D'/0
C: C'	E'/0	$F'\!/0$
E: D'	E'/0	F'/1
F: E'	B'/0	D'/1
G: F'	E'/1	$F'\!/0$

$$P_1 = (ABCDEFG)$$

A, B, C and DB generate same output and similarly for E and F while G is unique

$$P_2 = (ABCD)(EF)(G)$$

On 0:
$$(ABCD) \rightarrow (BD)(F)$$
,
 $(EF) \rightarrow (F)(D)$

On 1:
$$(ABCD) \rightarrow (C)(E)(G)$$
,
 $(EF) \rightarrow (E)(G)$

$$P_3 = (A)(BD)(C)(E)(F)(G)$$

$$P_4 = (A)(BD)(C)(E)(F)(G)$$

Sequence Detector Logic Design

Input	X	
Present state	0	1
A: A'	B'/0	C'/0
BD: B'	$B'\!/0$	D''0
C: C'	E'/0	$F'\!/0$
E: D'	E'/0	F'/1
F: E'	B''0	D'/1
G: F'	E'/1	$F'\!/0$

	2			
S_0X	00	01	11	10
00			d	1
01		1	d	1
11	1	1	d	1
10	1		d	
$S_0 = \overline{S_2} \overline{S_1} \overline{X} + S_0 X$				
		$S_2 \frac{\overline{S_0}}{S_0} +$		r

$$S_1 = \overline{S_2} \overline{S_1} X + S_2 \overline{S_0} X$$

Assign

States

<u> </u>	
Input Present state	X 0 1
S ₂ S ₁ S ₀ A': 000 B': 001 C': 010 D': 011 E': 100 F': 101	$S_2S_1S_0Z$ $S_2S_1S_0Z$ 001/0 $010/0001/0$ $011/0100/0$ $101/0100/0$ $101/1001/0$ $011/1100/1$ $101/0$

_	11	10	
	d		
	d		
	d	1	
	d	1	

$$Z = S_2 \overline{S_0} X + S_1 S_0 X + S_2 S_0 \overline{X}$$

Sequence Detector Circuit

D flip-flop

Q_t	Q_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

For a D flip-flop the new state simply matches the D input

* Slide is courtesy of M. Murdocca and V. Heuring

Majority Finite State Machine

☐ Design a circuit using T flip-flops and 8-to-1 MUX that computes the majority function of batches of 3 inputs (no overlapping)

☐ The machine should output zeros until encountering 3 inputs and then output

Mohamed Younis

* Figure is courtesy of M. Murdocca and V. Heuring

Majority FSM State Table

State table for majority FSM

Input	X
P.S.	0 1
A	B/0 C/0
B	D/0 E/0
C	F/0 G/0
D	$A/0 \ A/0$
E	$A/0 \ A/1$
F	$A/0 \ A/1$
G	$A/1 \ A/1$

Partitioning

$$P_0 = (ABCDEFG)$$

$$P_1 = (ABCD)(EF)(G)$$

$$P_2 = (AD)(B)(C)(EF)(G)$$

$$P_3 = (A)(B)(C)(D)(EF)(G)$$

$$P_4 = (A)(B)(C)(D)(EF)(G) \sqrt{C}$$

Reduced state table

Input	X
P.S.	0 1
A: A'	B'/0 C'/0
B: B'	D'/0 E'/0
C: C'	E'/0 F'/0
D: D'	A'/0 A'/0
EF: E'	A'/0 A'/1
G: F'	A'/1 A'/1

* Slide is courtesy of M. Murdocca and V. Heuring

Majority FSM State Assignment

State assignment for reduced majority FSM:

Using D flip-flops

Input	X	
P.S.	0	1
S ₂ S ₁ S ₀ A': 000	$S_2S_1S_0Z$ 001/0	$S_2S_1S_0Z = 010/0$
B': 001	011/0	100/0
C': 010 D': 011	100/0 000/0	101/0 000/0
E': 100 F': 101	000/0 000/1	000/1 000/1

Using T flip-flops

Input	X	
P.S.	0	1
S ₂ S ₁ S ₀ A': 000 B': 001 C': 010	$T_2T_1T_0Z$ $001/0$ $0.10/0$ $1.10/0$	
D': 011 E': 100 F': 101	011/0 100/0 101/1	011/0 100/1 101/1

T values are driven from D counterparts and referencing the excitation table for T flip-flops

Majority FSM Circuit

Example: Implication Table

The State Assignment Problem

- ☐ State assignment can have an impact on the complexity of the implementation at the gate-level
- \square Number of possible assignments = $2^{N_{ff}}$, where $N_{ff} = \lceil \log(\#states) \rceil$
- □ A MUX based implementation makes all possible state assignment of the same complexity

Input	X	
P.S.	0	1
A	<i>B</i> /1	A/1
В	C/0	D/1
C	C/0	D/0
D	<i>B</i> /1	A/0

М	achine	M_2

Input	X	
S_0S_1	0 1	
A: 00	01/1 00/1	
B: 01	10/0 11/1	
C: 10	10/0 11/0	
D: 11	01/1 00/0	

State assignment SA₀

Input	X	
S_0S_1	0	1
A: 00	01/1	00/1
B: 01	11/0 1	0/1
C: 11	11/0 1	0/0
D: 10	01/1 0	0/0

State assignment SA₁

Example: Two state assignments for machine M₂, Which one is better?

State Assignment SA₀

State assignment SA_0

- ➤ Boolean equations for machine M₂ using state assignment SA₀
- ➤ Input count = 29

$$S_0 = \overline{S_0}S_1 + S_0\overline{S_1}$$

$$S_0 = \overline{S_0}S_1 + S_0\overline{S_1} \qquad S_1 = \overline{S_0}\overline{S_1}\overline{X} + \overline{S_0}S_1X \qquad Z = \overline{S_0}\overline{S_1} + \overline{S_0}X \\ + S_0S_1\overline{X} + S_0\overline{S_1}X \qquad + S_0S_1\overline{X}$$

$$Z = \overline{S_0}\overline{S_1} + \overline{S_0}X + S_0S_1\overline{X}$$

State Assignment SA₁

- Boolean equations for machine M₂ using state assignment SA₁
- \rightarrow Input count = 6 \rightarrow SA₁ is better than SA₀
- How to know the best assignment upfront?

$$S_1 = \bar{X}$$

$$Z = \overline{S_1}\overline{X} + \overline{S_0}X$$

Optimal State Assignment

Popular objectives

- Minimal gate count and/or fan-in per gate
- Minimal cost circuit
- > Circuit with reduced dependency

Guidelines

- ➤ Rule 1: States that have the same next states for a given input should be given logically adjacent assignments
- ➤ Rule 2: States that are the next states of a single present state under logically adjacent inputs should be given logically adjacent assignments

Algorithms

- (1) Implication graph (2) State partitioning
- > Focus on reducing the gate input count
- Detect relationship between two states that may lead to logic reduction

Guidelines: Illustrative Example

$Y_2 Y_1/z$

Assignment #1

$$D_2 = \overline{y_1} \, \overline{y_2} + \overline{x} \, \overline{y_2} + x y_1 y_2$$

$$D_1 = \bar{x} \, \overline{y_1} + \bar{x} \, \overline{y_2} + x \overline{y_1} y_2$$

$$Z = \overline{y_1}y_2$$

Total 20 gate inputs

Illustrative Example (Cont.)

Assignment #2

$$D_2 = x\overline{y_1} + y_1\overline{y_2}$$

$$D_1 = \bar{x} \, \overline{y_2} + \bar{x} y_1 + x \overline{y_1} y_2$$

$$Z = \overline{y_1}y_2$$

Total 18 gate inputs

Illustrative Example (Cont.)

 $Y_2 Y_1/z$

Assignment #3

$$D_2 = x\overline{y_2} + xy_1 + y_1\overline{y_2}$$

$$D_1 = x\overline{y_2} + \overline{x}\overline{y_1}$$

$$Z = y_1y_2$$

Total 15 gate inputs

Implication Graph

☐ Is a flow graph whose nodes represent pairs of states; nodes are connected if there is a state transition between two pairs of states for a given input

- Start with a pair, e.g. AB and identify the pair that they transition to, i.e., BD.
- Using BD find the implies state pairs for one input, which AB (x=1), and so on
- □ An implication graph is said to be <u>complete</u> if it contains all possible pairs of states (often the implication is not complete)
- ☐ A sub-graph is defined as the a part of a complete graph
- □ A sub-graph is called <u>closed</u>, if all outgoing arcs for each node in the sub-graph terminate on nodes completely contained within the sub-graph and every state in the circuit is represented by at least one node in the sub-graph

Closed Sub-graphs based Adjacency

- Closed Sub-graphs: Arcs may enter a closed sub-graph from the exterior, but none may originate within a closed sub-graph and exit
- After applying the two rules to exploit logical adjacency through careful assignment, the implication graph can be used for two logically adjacent nodes to make their next-state-pairs also physically adjacent in a closed sub-graph of implication graph

Example

- Rule 1: B adj D

 AC

 CD

 AD

 BC

 Rules 1 and 3 are

 most important
- Rule 2: D adj B, B adj C, and A adj D
- Rule 3: BD → AB, AC, and CD (could not support AD and BC as part of a closed sub-graph)

Example

Rule 1: (A, C), (B, D), (A, D)

Rule 2: (A, D), (B, E), (A, B), (C, D), (A, E)

Rule 3: (A, D), (A, E), (B, C), (D, E), (B, D)

Rule 4: Assign all zeros combination to the most transferred to state (maximize the zeros in k-maps)

When cannot handle all, rules 1 and 3 are more important than 2

Conclusion

☐ Summary

- → Machine equivalence (state equivalence, distinguishable states)
- → State reduction (Distinguishing trees, state partitioning, implication table)
- → Examples (Sequence detector, Majority machine)
- → Optimal state code assignment (problem complexity, objectives, guidelines)
- → Code assignment heuristics (Implication graph and assignment rules)
- → Next Lecture
 - → Review

Reading assignment: Sections 9.1, 9.2, 9.4.1-9.4.2 in the textbook

