

Data Structures and Algorithms Design

BITS Pilani

Hyderabad Campus

CONTACT SESSION 6-PLAN

Contact Sessions(#)	List of Topic Title	Text/Ref Book/external resource
6	Graphs - Terms and Definitions, Properties, Representations (Edge List, Adjacency list, Adjacency Matrix), Graph Traversals (Depth First and Breadth First Search)	T1: 6.1, 6.2, 6.3

Graphs

- Graphs
 - Definition
 - Applications
 - Terminology
 - Properties
 - ADT
- Data structures for graphs
 - Edge list structure
 - Adjacency list structure
 - Adjacency matrix structure

Graphs

- A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are **positions** and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Graphs

- Edge Types
- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph __
 - all the edges are directed
 - e.g., flight network
- Undirected graph
 - all the edges are undirected
 - e.g., route network

Graphs-Applications

- Electronic circuits
 - Printed circuit board
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
- Databases
 - Entity-relationship diagram

Graphs-Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Graphs-Terminology

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex \(\frac{1}{2} \)
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - P_1 =(V,b,X,h,Z) is a simple path
 - P_2 =(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Graphs-Terminology

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C_1 =(V,b,X,g,Y,f,W,c,U,a) is a simple cycle
 - $C_2=(U,c,W,e,X,g,Y,f,W,d,V,a)$

is a cycle that is not simple

We can visualize collaborations among the researchers of a certain discipline by constructing a graph whose vertices are associated with the researchers themselves, and whose edges connect pairs of vertices associated with researchers who have coauthored a paper or book.

Is it a directed or undirected graph?

RI O

Such edges are **undirected** because coauthorship is a symmetric relation; that is, if A has coauthored something with B, then B necessarily has coauthored something with A.

- We can associate with an object-oriented program a graph whose vertices represent the classes defined in the program, and whose edges indicate inheritance between classes. There is an edge from a vertex v to a vertex u if the class for v extends the class for u.
- Is it a directed or undirected graph?
- Such edges are directed because the inheritance relation only goes in one direction (that is, it is asymmetric).

- A city map can be modelled by a graph whose vertices are intersections or dead ends, and whose edges are stretches of streets without intersections.
- Directed or undirected?
- This graph has **both undirected edges**, which correspond to stretches of two-way streets, **and directed edges**, which correspond to stretches of one-way streets. Thus, a graph modelling a city map is a mixed graph

- Physical examples of graphs are present in the electrical wiring and plumbing networks of a building.
- Such networks can be modelled as graphs, where each connector, fixture, or outlet is viewed as a vertex, and each uninterrupted stretch of wire or pipe is viewed as an edge.
- Such graphs are actually components of much larger graphs, namely the local power and water distribution networks.
- Depending on the specific aspects of these graphs that we are interested in, we may consider their edges as undirected or directed, for, in principle, water can flow in a pipe and current can flow in a wire in either direction.

Graph-Example 5-Path and Cycle

Given a graph G representing a city map, we can model a couple driving from their home to dinner at a recommended restaurant as traversing a path though G.

If they know the way, and don't accidentally go through the same intersection twice, then they traverse a simple path in G.

Likewise, we can model the entire trip the couple takes, from their home to the restaurant and back, as a cycle.

If they go home from the restaurant in a completely different way than how they went, not even going through the same intersection twice, then their entire round trip is a simple cycle.

Finally, if they travel along one-way streets for their entire trip, then we can model their night out as a directed cycle.

Graphs-Properties

Property 1

If G is a graph with m edges, then

$$\sum_{v} \deg(v) = 2m$$

Proof: each edge is counted twice

Property 2

Let G be a simple graph with n vertices and m edges.

In an undirected graph with no self-loops and no multiple edges

$$\sqrt{m} \le n (n-1)/2$$
 is $O(n^2)$

Proof: each vertex has degree at most (n-1)

Property 3

If G is a directed graph with m edges, then

$$\sum_{v \in G} indeg(v) = \sum_{v \in G} outdeg(v) = m$$

Graphs-Properties

Example

- m=6
- $\bullet \quad \deg(v) = 3$

Bipartite Graph

• If the vertex-set of a graph G can be split into two disjoint sets, V_1 and V_2 , in such a way that each edge in the graph joins a vertex in V_1 to a vertex in V_2 , and there are no edges in G that connect two vertices in V_1 or two vertices in V_2 , then the graph G is called a bipartite graph.

Applications

- **Document/Term Graphs**: Here U are documents and V are terms or words, and there is an edge (u, v) if the word v is in the document u. Such graphs are use often to analyze text, for example to cluster the documents.
- Movies preferences: The viewers are the vertices U and the movies the vertices V and there is an edge from u to v if u viewed v. In this case the edges are weighted by the rating the viewer gave.
- **Students and classes**: We might create a graph that maps every student to the classes they are taking. Such a graph can be used to determine conflicts, e.g. when classes cannot be scheduled together.

Graphs-ADT

- A graph is a positional container of elements that are stored at the graph's vertices and edges
- Vertices and edges
 - are positions
 - store elements

v-ey

Accessor methods

Complexity

- endVertices(e):Return an array of size 2 storing the end vertices of e. degree(v):
- adjacentVertices(v):Return an iterator of the vertices adjacent to v.
- opposite(v, e):Return the endpoint of edge e distinct from v.
- -\ areAdjacent(v, w):Return whether vertices v and w are adjacent

Graphs-ADT

Methods Dealing with Directed Edges

- directed Edges(): Return an iterator of all directed edges.
- \ undirected Edges(): Return an iterator of all undirected edges.
- destination(e): Return the destination of the directed edge e.
- origin (e): Return the origin of the directed edge e.
- isDirected(e): Return true if and only if the edge e is directed.

Graphs-ADT

Update methods

- insertVertex(o):Insert and return a new vertex storing the object o
- insertEdge(v, w, o):Insert and return an undirected edge between vertices v and w, storing the object o.
- insertDirectedEdge(v, w, o)
- removeVertex(v):Remove vertex v and all its incident edges.
- removeEdge(e)
- Generic methods
 - numVertices()
 - numEdges()
 - vertices():Return an iterator of the vertices of G.
 - edges()

Graphs-ADT

Also supports

- size()
- isEmpty()
- elements ()
- positions()
- replaceElement(p, o)
- swapElements (p , q)

where p and q denote positions, and o denotes an object (that is, an element)

Data Structure for Graphs

- Edge list structure
- Adjacency list structure
- Adjacency matrix

Edge List Structure

- Vertex object
 - Element, o
- Edge object
 - − element <
 - origin vertex object
 - destination vertex object
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Time Complexity

Methods	Edge List- Time Complexity
incidentEdges(v)	O(m)
areAdjacent(v, w)	O(m)
insertVertex(o)	O(1)
insertEdge(v, w, o)	O(1)
removeVertex(v)	O(m)
removeEdge(e)	O(1)

Edge List Structure

Adjacency List Structure

- Extends edge list structure
- Add extra information that supports direct access to the incident edges (and thus to the adjacent vertices) of each vertex
- For each vertex v, store a reference to a list of the vertices adjacent to it.

Adjacency List

Time Complexity

	Edge List	Adjacency List	
incidentEdges(v)	m	deg(v)	
areAdjacent(v, w)	m	min(deg(v),deg(w))	
insertVertex(o)	1	1	
insertEdge(v, w, o)	1	1	
removeVertex(v)	m	deg(v)	
removeEdge(e)	1	1	

Adjacency List Structure

Adjacency Matrix Structure

• The *adjacency-matrix representation* of a graph G =(V,E), the vertices are numbered 1,2,...,|V| in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a |V| X |V| matrix

$$A = (a_{ij}) \text{ such that}$$

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

Adjacency Matrix

mudent Edge(v)
are ddj (2, 4)
mis hr (0)
mis ent Edge(e)
rm Verlen (v)
Rm Edge(e)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
1 2 3 4 5	0 0 0 0 0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Adjacency Matrix Structure

- Extends Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D adjacency array
 - Reference to edge object for adjacent vertices
 - Null for nonadjacent vertices
- 0 for no edge and 1 for edge

Adjacency Matrix Structure

Asymptotic Performance

	Edge /	Adjacency List	Adjacency Matrix
incidentEdges(v)	m	deg(v)	n
areAdjacent(v, w)/	m	$\min(\deg(v), \deg(w))$	1 -
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
removeVertex(v)	m	deg(v)	n^2
removeEdge(e)	1	1	1

Graph ADT

THANK YOU!

BITS Pilani

Hyderabad Campus