Übungen zur Vorlesung Differentialgeometrie I

Blatt 8

Aufgabe 28. (2 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen. Sei $X : \Omega \to \mathbb{R}^{n+1}$ eine C^2 -Abbildung und $\varphi, \psi \in C_c^{\infty}(X(\Omega, \mathbb{R}))$. Zeige, dass

$$\int_{\Omega} \varphi \Delta_g \psi \, d\mu = \int_{\Omega} \langle \nabla \varphi, \nabla \psi \rangle_g \, d\mu$$

gilt, wobei $\langle \nabla \varphi, \nabla \psi \rangle_q := \varphi_i g^{ij} \psi_j$ ist.

Aufgabe 29. (2 Punkte)

Seien $X: \Omega \to \mathbb{R}^{n+1}$ und $\hat{X}: \hat{\Omega} \to \mathbb{R}^{n+1}$ Immersionen und $\varphi: \Omega \to \hat{\Omega}$ ein Diffeomorphismus mit $X = \hat{X} \circ \varphi$. Seien $f: \Omega \to \mathbb{R}$ und $\hat{f}: \hat{\Omega} \to \mathbb{R}$ mit $f = \hat{f} \circ \varphi$, so gilt

$$\Delta_g f = \left(\Delta_{\hat{g}} \hat{f}\right) \circ \varphi$$
.

Hinweis: Benutze Aufgabe 28 oder führe eine längere Rechnung durch.

Aufgabe 30. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen. Sei $X: \Omega \times (-\varepsilon, \varepsilon) \to \mathbb{R}^{n+1}$ eine C^2 -Abbildung. Sei $X(\cdot, t)$ für alle $t \in (-\varepsilon, \varepsilon)$ eine Immersion. Nehme an, dass es ein $F: \Omega \times (-\varepsilon, \varepsilon) \to \mathbb{R}$ mit $\frac{\partial}{\partial t}X = -F\nu$ gibt. Die zweite kovariante Abbildung einer Funktion $f \in C^2(\Omega, \mathbb{R})$ ist durch $f_{ij} = f_{ij} - f_k \Gamma_{ij}^k$ definiert. Zeige, dass

$$\frac{\partial h_{ij}}{\partial t} = F_{;ij} - Fh_i^k h_{kj}$$

gilt.

Hinweis: Zeige zunächst, dass für die Christoffelsymbole $\Gamma_{ij}^k = g^{kl} X_l^{\alpha} \delta_{\alpha\beta} X_{,ij}^{\beta}$ gilt. Differenziere dann die Definition der zweiten Fundamentalform.

Aufgabe 31. (Zweite Variation des Flächeninhaltes) (4 Punkte)

Seien die Voraussetzungen wie in Theorem 6.5. Sei $\frac{\partial}{\partial t}X = -F\nu$ für eine C^2 -Funktion $F: \Omega \times (\varepsilon_0, \varepsilon_0) \to \mathbb{R}$. Zeige, dass

$$\frac{d}{dt}\mathcal{A}(X(\cdot,t)) = -\int_{\Omega} FH \, d\mu$$

für alle $t \in (-\varepsilon, \varepsilon)$ gilt und, falls $X(\cdot, 0)$ eine Minimalfläche ist,

$$\frac{d^{2}}{dt^{2}}\mathcal{A}(X(\cdot,t))\Big|_{t=0} = -\int_{\Omega} F\left(\Delta_{g}F + |A|^{2}F\right) d\mu = \int_{\Omega} |\nabla F|_{g}^{2} - |A|^{2}F^{2} d\mu$$

gilt.

Aufgabe 32. (4+2 Punkte)

Es bezeichne $O(n) = \{A \in \mathbb{R}^{n \times n} : A^TA = 1\}$ den Raum der orthogonalen $n \times n$ -Matrizen, wobei 1 die Einheitsmatrix ist. Für $A, B \in O(n)$ definieren wir die Multiplikationsabbildung $m : O(n) \times O(n) \to O(n)$ durch $m(A, B) = A \cdot B$ sowie die Inversenabbildung $i : O(n) \to O(n)$ durch $i(A) = A^{-1}$.

- (i) Zeige, dass O(n) eine C^{∞} -Untermannigfaltigkeit des $\mathbb{R}^{n\times n}$ ist.
- (ii) Gib $T_{1}O(n)$ an.
- (iii) Zeige, dass es eine offene Umgebung U von O(n) und C^{∞} -Abbildungen $M: U \times U \to \mathbb{R}^{n \times n}$ und $I: U \to \mathbb{R}^{n \times n}$ mit $M|_{O(n) \times O(n)} = m$ und $I|_{O(n)} = i$ gibt.

Bemerkung: Eine C^1 -Mannigfaltigkeit G versehen mit einer Gruppenstruktur, so dass die Multiplikation $m: G \times G \to G$, $(a,b) \mapsto a \cdot b$, sowie die Inversion $i: G \to G$, $a \mapsto a^{-1}$, in einem geeigneten Sinne differenzierbar sind, bezeichnet man als Lie-Gruppe.

Abgabe: Bis Donnerstag, 21.12.2017, 10.00 Uhr, in die Mappe vor Büro F 402.