Fysik Aflevering 11

Opgave 1.

Strømstyrken gennem en NTC resistor med resistansen 25 $k\Omega$ er 1.9 mA.

a. Beregn den effekt, hvormed der omsættes elektrisk energi i NTC resistoren. Jeg bruger formlen

$$P_{komn} = U \cdot I$$

Så jeg finder spændingsforskellen Umed formlen

$$U = I \cdot R$$

$$U_{NTC} = 1.9 \ mA \cdot 25 \ k\Omega = 47.5 \ V$$

Så jeg indsætter mine værdier

$$P_{NTC} = 47.5 \ V \cdot 1.9 \ mA = 90.25 \ W$$

Så den effekt, hvormed der omsættes elektrisk energi i NTC resistoren er $90.25\;W$

b. Bestem NTC resistorens temperatur.

Jeg starter med at udregne strømstyrken med værdierne fra batteriet og den anden resistor med formlen

$$I = \frac{U}{R}$$

$$I = \frac{12.0 \ V}{31 \ k\Omega} = 38.7 \ mA$$

Nu bruger jeg så strømstyrken og NTC resistorens spændingsfald til at udregne NTC resistorens resistans med formlen

$$R = \frac{U}{I}$$

$$R_{NTC} = \frac{3.5 \ V}{38.7 \ mA} = 10.2 \ k\Omega$$

Og så aflæser jeg den tilhørende temperatur til 10.2 $k\Omega$ på grafen, som cirka er $44^{\circ}C$

Opgave 2.

a. Bestem, hvor lang tid der i alt kan suges på e-cigaretten, før batteriet skal genoplades.

Da 1 C = 1 J ved jeg at der er 5.04 kJ til rådighed.

Så jeg bruger formlen

$$t = \frac{E}{P}$$

med mine værdier

$$t_{e-cig} = \frac{5.04 \ kJ}{5.5 \ W} = 916.36 \ s$$

Så du skal suge i omkring 916.36 s inden batteriet er helt tomt.

b. Jeg antager at væsken er ved $25^{\circ}C$ Jeg starter med formlen for opvarmning

$$Q_{opvarmning} = m \cdot c \cdot \Delta T$$

Så lægger jeg formlen for fordampning oveni

$$Q_{fordampning} = L_s \cdot m$$

$$Q_{begge} = m \cdot c \cdot \Delta T + L_s \cdot m$$

så isolerer jeg massen

$$Q_{begge} = m(c \cdot \Delta T + L_s) \leftrightarrow m = \frac{Q_{begge}}{c \cdot \Delta T + L_s}$$

Så indsætter jeg mine værdier og udregner massen, jeg indsætter effekten på Q's plads da det er energien for ét sekund jeg udregner

$$m_{v \approx ske} = \frac{5.5 \ J}{2.51 \ \frac{J}{q \cdot K} \cdot (187^{\circ}C - 25^{\circ}C) + 711 \ \frac{J}{q}} = 0.0049 \ g$$

Så e-cigaretten kan fordampe omkring 0.0049 g af væsken hvert sekund.

Opgave 3.

a. For at beregne hendes gennemsnitlige fart tager jeg bare strækningen divideret med tiden

$$\frac{200\ m}{139.11\ s} = 1.44\ \frac{m}{s}$$

Så hendes gennemsnitlige fart var cirka 1.44 $\frac{m}{s}$

b. Da funktionen for den tilbagelagte strækning er stamfunktion til funktionen for hastigheden, kan jeg bare tælle tern under grafen for a differentiere et område. Et tern er 0.2 sekunder langt og 0.2 $\frac{m}{s}$ højt. Dvs at et tern svarer til 1 m. Jeg har talt området under grafen til cirka at være 77 tern. dvs at på ét svømmetag tilbagelægger hun cirka 77 meter.

Opgave 4.

a. Jeg starter med at finde pælens rumfang

$$0.3 \ m \cdot 0.3 \ m \cdot 9.0 \ m = 0.81 \ m^3$$

derefter tager jeg bare vægten og dividerer den med rumfanget for at få densiteten

$$\rho_{beton} = \frac{1.8 \ ton}{0.81 \ m^3} = 2222.\overline{2} \ \frac{kg}{m^3}$$

b. Jeg ved at ved 0.11 m over pælen er hastigheden eller hældningen af grafen for (t, s) 2.05 og at accellerationen er $-9.82 \frac{m}{s^2}$ dvs. at funktionen for hastigheden er v(t) = -9.82t + 2.05

For at finde funktionen for strækningen integrerer jeg bare funktionen for hastigheden.

$$s(t) = \int -9.82t + 2.05 \ dt = -4.41 \ \frac{m}{s^2} \cdot t^2 + 2.05 \ \frac{m}{s} \cdot t + 0.11 \ m$$

Så finder skal jeg bare finde til hvilken tid s(t) = 0 m

$$solve(0 = -4.41 \frac{m}{s^2} \cdot t^2 + 2.05 \frac{m}{s} \cdot t + 0.11 m, t) \rightarrow t = 0.51 s$$

Så indsætter jeg den tid ind i funktionen for hastigheden for at finde den tilhørende hastighed til tiden

$$v(0.51) = -9.82 \cdot 0.51 + 2.05 = -2.99 \frac{m}{s}$$

Så bruger jeg formlen

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

Jeg indsætter mine værdier

$$E_{kin} = \frac{1}{2} \cdot 4.1 \cdot 10^3 \ kg \cdot -2.99^2 = 18327 \ J$$

Så jernklodsen ville have omkring 18327 J kinetisk energi idét den rammer pælen.