2007 VCAA Specialist Maths Exam 2 Solutions

© Copyright 2007 itute.com Do not photocopy Free download and print from www.itute.com

SECTION 1

1	2	3	4	5	6	7	8	9	10	11
В	Е	D	В	Е	В	A	С	D	С	D

12	13	14	15	16	17	18	19	20	21	22
Α	Е	C	Α	C	D	Е	В	C	Α	В

Q1
$$\frac{(x-2)^2}{a^2} - \frac{4(y+3)^2}{a^2} = 1$$
, $\frac{(x-2)^2}{a^2} - \frac{(y+3)^2}{\left(\frac{a}{2}\right)^2} = 1$.

Asymptotes are $(y+3) = \pm \frac{a^2}{2}(x-2) = \pm \frac{1}{2}(x-2)$.

Product of gradients is $\frac{1}{2} \left(-\frac{1}{2} \right) = -\frac{1}{4}$.

Q2 Ellipse:
$$\frac{(x-1)^2}{3^2} + \frac{(y-3)^2}{2^2} = 1$$
.

Let
$$\frac{x-1}{3} = \cos t$$
, $\frac{y-3}{2} = \sin t$.

$$x = 1 + 3\cos t$$
, $y = 3 + 2\sin t$

Q3 For
$$\tan^{-1} x$$
, range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$b \tan^{-1} x$$
, range is $\left(-\frac{b\pi}{2}, \frac{b\pi}{2}\right)$,

$$a + b \tan^{-1} x$$
, range is $\left(a - \frac{b\pi}{2}, a + \frac{b\pi}{2}\right)$,

$$a + b \tan^{-1}(x - c)$$
, range is still the same $\left(a - \frac{b\pi}{2}, a + \frac{b\pi}{2}\right)$.

Q4 Given formula: $\cot^2 x + 1 = \cos ec^2 x$.

$$\therefore \cot^2 x - \cos ec^2 x = -1$$
, $\cot^2 (4\theta) - \cos ec^2 (4\theta) = -1$.

Q5
$$T = \frac{2\pi}{n} = \frac{5a}{2} - \frac{a}{2} = 2a$$
, $\therefore n = \frac{\pi}{a}$. The given graph is the

translation to the left by
$$\frac{a}{2}$$
 of $y = \cos ec \frac{\pi}{a} x$.

Q6 The equation has real coefficients, .: the complex roots are in conjugate pair(s).

Q7
$$\frac{1}{1-z} = \frac{1}{-2+4i} = \frac{-1-2i}{10}$$
.

Q8
$$z = 2cis\left(-\frac{\pi}{3}\right)$$
,
 $z^4 = 2^4 cis4\left(-\frac{\pi}{3}\right) = 16cis\left(-\frac{4\pi}{3}\right) = 16cis\left(\frac{2\pi}{3}\right)$.

Q9
$$\frac{x}{3(x+c)^2} = \frac{\frac{x}{3}}{(x+c)^2} = \frac{A}{x+c} + \frac{B}{(x+c)^2}$$
.

Q10
$$y = \sin^{-1}(2x)$$
, $x = \frac{1}{2}\sin y$, $x^2 = \frac{1}{4}\sin^2 y = \frac{1}{8}(1 - \cos 2y)$.

When
$$x = 0$$
, $y = 0$. When $x = \frac{1}{2}$, $y = \frac{\pi}{2}$.

$$V = \int_{0}^{\frac{\pi}{2}} \pi x^{2} dy = \frac{\pi}{8} \int_{0}^{\frac{\pi}{2}} (1 - \cos 2y) dy.$$

Q11 Refer to itute.com Specialist Maths summary sheets.

Numerical solution of $\frac{dy}{dx} = f(x)$ when x = b, given y = k when

$$x = a$$
, is $y = \int_a^b f(x)dx + k$.

If
$$\frac{dy}{dx} = \sqrt{\sin x}$$
 and $y = 1$ when $x = 0$,

then
$$y = \int_{0}^{\frac{\pi}{3}} \sqrt{\sin x} dx + 1$$
 when $x = \frac{\pi}{3}$.

Q12 Let h metres be the altitude of the shuttle at time t seconds.

$$h = 500 \tan \theta$$
, $v = \frac{dh}{dt} = 500 \sec^2 \theta \frac{d\theta}{dt}$

When
$$\theta = \frac{\pi}{6}$$
, $\frac{d\theta}{dt} = 0.5$, $\therefore v = 500 \left(\frac{2}{\sqrt{3}}\right)^2 \times 0.5 \approx 333 \text{ ms}^{-1}$.

Q13 Let
$$u = \log_e x$$
. $\frac{du}{dx} = \frac{1}{x}$.

When
$$x = 1$$
, $u = 0$. When $x = e^3$, $u = 3$.

$$\therefore \int_{1}^{e^3} \left(\frac{(\log_e x)^3}{x} \right) dx = \int_{1}^{e^3} u^3 \frac{du}{dx} dx = \int_{0}^{3} u^3 du.$$

Q14
$$\frac{dN}{dt} \propto N(1000 - N)$$
, $\therefore \frac{dN}{dt} = kN(1000 - N)$.

Q15 Gradient of line = $-\frac{3}{2}$, :: gradient of vector \perp to line = $\frac{2}{3}$. The vector is $3\tilde{i} + 2\tilde{j}$.

Q16

 $\vec{F} = 18\cos 150^{\circ} \widetilde{i} + 18\sin 150^{\circ} \widetilde{j} = -9\sqrt{3}\widetilde{i} + 9\widetilde{j}.$

Q17
$$\cos \theta = \frac{\widetilde{a} \bullet \widetilde{b}}{|\widetilde{a}||\widetilde{b}|} = \frac{-4}{9}$$
, $\therefore \theta = \cos^{-1}\left(\frac{-4}{9}\right) = \pi - \cos^{-1}\left(\frac{4}{9}\right)$.

Q18
$$\hat{u} = \frac{1}{3} \left(2\widetilde{i} - \widetilde{j} - 2\widetilde{k} \right)$$
, $v = a\widetilde{i} + 2\widetilde{j} - \widetilde{k}$ and $\widetilde{v} \bullet \widehat{u} = 1$.

$$\therefore \frac{1}{3} \left(2a - 2 + 2 \right) = 1, \therefore a = \frac{3}{2}.$$

Q19
$$m = \frac{18}{1.5} = 12 \text{ kg}, \ v = u + at = 5 + 1.5 \times 4 = 11 \text{ ms}^{-1}.$$

 $p = mv = 12 \times 11 = 132 \text{ kgms}^{-1}.$

Q20 The box slides up the plane, .: friction = 0.2N down the plane.

Q21
$$v = \sqrt{3x^2 - x^3 + 16}$$
, $\therefore \frac{1}{2}v^2 = \frac{1}{2}(3x^2 - x^3 + 16)$.
 $a = \frac{d}{dx}(\frac{1}{2}v^2) = \frac{1}{2}(6x - 3x^2) = 3x - \frac{3x^2}{2}$,
 $\therefore F = ma = 12(3x - \frac{3x^2}{2})$.

Q22
$$ma = F$$
, $\therefore m \frac{dv}{dt} = P - mkv^2$.

SECTION 2

Q1a $z_1 = -\sqrt{3} + i$ si in the second quadrant.

$$r = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = 2$$
 and $\theta = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = \frac{5\pi}{6}$.

$$\therefore z_1 = 2cis\left(\frac{5\pi}{6}\right).$$

Q1b

Q1c
$$z = \frac{2\sqrt{3} \pm \sqrt{12-16}}{2} = \sqrt{3} - i \text{ or } \sqrt{3} + i.$$

Q1d
$$z_1 = -\sqrt{3} + i$$

 $\therefore \sqrt{3} - i = -z_1$ and $\sqrt{3} + i = -\overline{z}_1$ or $\overline{-z_1}$

Q1e
$$|z| = |z - z_1|$$
. Let $z = x + yi$.
 $\sqrt{x^2 + y^2} = \sqrt{(x + \sqrt{3})^2 + (y - 1)^2}$, simplify to $y = \sqrt{3}x + 2$.

Q1f
$$\overline{z}_1 = -\sqrt{3} - i$$
, $x = -\sqrt{3}$ and $y = -1$ satisfy $y = \sqrt{3}x + 2$.
 $\therefore \overline{z}_1 = -\sqrt{3} - i$ satisfies $|z| = |z - z_1|$.

Qlg

Q2a
$$f(x) = x \tan^{-1} x$$
, $f'(x) = \tan^{-1} x + \frac{x}{1+x^2}$, $f'(0) = 0$.

Q2b

Q2ci and ii $\int_{0}^{1} x \tan^{-1} x dx = 0.285$ by graphics calculator.

Q2d
$$f'(x) = \tan^{-1} x + \frac{x}{1+x^2}$$
,
 $\int f'(x)dx = \int \tan^{-1} x dx + \int \frac{x}{1+x^2} dx$,
 $f(x) = \int \tan^{-1} x dx + \int \frac{\frac{1}{2}}{u} du$, where $u = 1 + x^2$.
 $\int \tan^{-1} x dx = x \tan^{-1} x - \frac{1}{2} \log_e (1 + x^2)$.

Q2e
$$\int_{0}^{1} \tan^{-1} x dx = \left[x \tan^{-1} x - \frac{1}{2} \log_{e} (1 + x^{2}) \right]_{0}^{1} = \frac{\pi}{4} - \frac{1}{2} \log_{e} 2.$$

Q2f Enclosed area =
$$\frac{\pi}{4} - \frac{1}{2} \log_e 2 - 0.285 \approx 0.15$$
.

Q3a An equivalent diagram:

$$a = \frac{R}{m} = \frac{3g - g}{4} = \frac{g}{2} \ .$$

Q3b Consider the 1-kg mass:

$$R = ma$$
, $T_1 - g = 1 \times \frac{g}{2}$, $T_1 = \frac{3g}{2}$.

Q3c An equivalent diagram:

$$a = \frac{R}{m}$$
, $b = \frac{3g\sin\theta^{\circ} - g}{4} = \frac{(3\sin\theta^{\circ} - 1)g}{4}$.

When
$$\theta^{\circ} = 30^{\circ}$$
, $b = \frac{g}{8}$.

Q3d Let
$$b = \frac{(3\sin\theta^{\circ} - 1)g}{4} = 0$$
, $\sin\theta^{\circ} = \frac{1}{3}$, $\theta^{\circ} = 19.5^{\circ}$.

Q3e The normal reaction on the 3-kg mass = $3g \cos \theta^{\circ}$. The force of friction = $\mu \times 3g \cos \theta^{\circ} = 0.6g \cos \theta^{\circ}$.

On the verge of sliding down, the force of friction points up along the plane.

An equivalent diagram:

 $R = 3g \sin B^{\circ} - 0.6g \cos B^{\circ} - g = 0$, $B^{\circ} = 30.4^{\circ}$ by graphics calculator.

On the verge of sliding up, the force of friction points down along the plane.

An equivalent diagram:

 $R = g - 3g \sin A^{\circ} - 0.6g \cos A^{\circ} = 0$, $A^{\circ} = 7.8^{\circ}$ by graphics calculator.

Q4a
$$\widetilde{v} = 30\widetilde{i} - 40\widetilde{j} - 4\widetilde{k}$$
.
 $\widetilde{r}(t) = \int \widetilde{v} dt = 30t.\widetilde{i} - 40t.\widetilde{j} - 4t.\widetilde{k} + \widetilde{c}$.
Use $\widetilde{r}(10) = -500\widetilde{i} + 2500\widetilde{j} + 200\widetilde{k}$ to find $\widetilde{c} = -800\widetilde{i} + 2900\widetilde{j} + 240\widetilde{k}$.
 $\therefore \widetilde{r}(t) = (30t - 800)\widetilde{i} + (2900 - 40t)\widetilde{j} + (240 - 4t)\widetilde{k}$.

Q4b Landing when 240 - 4t = 0, t = 60.

$$\widetilde{r}(60) = 1000\widetilde{i} + 500\widetilde{j}$$
, distance = $\sqrt{1000^2 + 500^2} = 1118$ m.

Q4c Consider the velocity vector $\tilde{v} = 30\tilde{i} - 40\tilde{j} - 4\tilde{k}$.

$$\tan \theta^{\circ} = \frac{4}{\sqrt{30^2 + 40^2}} = \frac{4}{50}, \ \theta^{\circ} \approx 4.6^{\circ}.$$

Q4d Closest when $\widetilde{v} \perp \widetilde{r}(t)$, i.e. $\widetilde{v} \bullet \widetilde{r}(t) = 0$.

$$\therefore 30(30t - 800) - 40(2900 - 40t) - 4(240 - 4t) = 0, \ \therefore t \approx 56.$$

Q4e Speed = $|\tilde{v}| = \sqrt{30^2 + (-40)^2 + (-4)^2} = 50.1597 \text{ ms}^{-1}$. Distance = speed × time = $50.1597 \times 60 \approx 3010$.

Q5a
$$v(t) = 20 - 2 \tan^{-1} t$$
, $17 = 20 - 2 \tan^{-1} t$, $t = \tan \frac{3}{2} \approx 14.1$

Q5b As
$$t \to \infty$$
, $\tan^{-1} t \to \frac{\pi}{2}$, $v \to (20 - \pi)^+$,
 $\therefore v > 20 - \pi > 16$.

Q5c Distance (polluting car) =
$$\int_{0}^{T} (20 - 2 \tan^{-1} t) dt$$
.

Q5d Distance (police car) =
$$\int_{3}^{8} 13 \cos^{-1} \left(\frac{13 - 2t}{7} \right) dt$$
.

Polluting car ahead of police car by

$$\int_{0}^{8} (20 - 2 \tan^{-1} t) dt - \int_{3}^{8} 13 \cos^{-1} \left(\frac{13 - 2t}{7} \right) dt \approx 60.7 \text{ by graphics calculator.}$$

Q5e When $t \ge 8$, speed of police car = $13\cos^{-1}\left(-\frac{3}{7}\right)$.

Between t = 8 and $t = T_c$,

total distance (police car) = $(T_c - 8) \times 13 \cos^{-1} \left(-\frac{3}{7}\right)$,

total distance (polluting car) = $\int_{s}^{T_{c}} (20 - 2 \tan^{-1} t) dt$.

$$\therefore (T_c - 8) \times 13\cos^{-1}\left(-\frac{3}{7}\right) = 60.7 + \int_{8}^{T_c} (20 - 2\tan^{-1}t) dt.$$

Q5f For $t \ge 8$, $20 - 2 \tan^{-1} t \approx 17$,

$$\int_{0}^{T_c} (20 - 2 \tan^{-1} t) dt \approx 17 (T_c - 8).$$

$$\therefore (T_c - 8) \times 13 \cos^{-1} \left(-\frac{3}{7} \right) \approx 60.7 + 17(T_c - 8).$$

$$T_c \approx 15$$
.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors