ECON7520 Int'l Macroeconomics and Finance Lecture 06

Shino Takayama

University of Queensland

April, 2017

ECON7520 Int'l Macroeconomics and Finance

Week 6: Fiscal Deficits and Current Account Imbalances

Shino Takayama 2 of 47

From the Last Week: World Interest Rate

- The book approximated the world interest rate by the difference between the rate on 10-year US treasury securities and expected inflation.
- "World Interest Rates and Investment" Robert Barro published in NBER No. 3849. The World Interest Rate in this paper is computed as the aggregation of 9 OECD countries: Belgium, Canada, France, Germany, Japan, Netherlands, Sweeden, US and UK from 1958 to 1988.

Shino Takayama 3 of 47

Motivation: Twin Deficits in the U.S.

Figure: The U.S. Current Account Balance, 1960 - 2016

The current account balance got worse remarkably during 1980s.

Shino Takayama 4 of 47

Motivation: Twin Deficits in the U.S.

Figure: The U.S. Net Government Asset, 1960 - 2016

In 1980s, the U.S. fiscal deficits also increased significantly.

Shino Takayama 5 of 47

Motivation: Twin Deficits in the U.S.

- Ronald Reagan (U.S. President, 1982 1989)
 - Implemented the tax cut.
 - Increased the military spending.
 - As a result, the fiscal deficits increased by roughly 3% of GDP.
- Question: Does it explain the rise of the U.S. current account deficits during the period?
 - The CA deficits also increased by roughly 3% of GDP in 1980s.

Shino Takayama 6 of 47

Testable Implications

- View 1: The rest of the world wanted to send their savings to the US, so the US had to run a CA deficit.
- View 2: The US wanted to save less and spend more at any level of the interest rate.

Shino Takayama 7 of 47

Figure: The US CA in the 1980s: view 1

As a result, $r^{*0} > r^{*1}$.

Shino Takayama 8 of 47

Figure: The US CA in the 1980s: view 2

As a result, $r^{*0} < r^{*1}$.

Shino Takayama 9 of 47

Empirical Evidence

Figure: Real Interest Rates in the US 1962-2013

The US experienced a large increase in real interest rates. ⇒ View 2

Shino Takayama 10 of 47

View 2 and Graphical Illustration

Figure: View 2 in the S-I schedule

Under view 2, savings decrease or investments increase.

Shino Takayama 11 of 47

Savings and Investments

 National savings are the sum of private savings and government savings.

$$S = S^p + S^g$$
.

Shino Takayama

The US Saving and Investment

Figure: The US Saving and Investment in Percent of GNP

Shino Takayama

Twin-deficits hypothesis

- The twin-deficits hypothesis claims that fiscal deficits lead to current account deficits.
- The figure shows that national savings and private savings begin to diverge in 1980 and national savings kept falling consistently below private savings.
- The claim is that the CA balance is roughly equal to the decline in government savings.
- The key point of the claim: Fiscal Deficit $\uparrow \Rightarrow$ Current Account \downarrow .

Shino Takayama 14 of 47

Once Again: Twin Deficits in the U.S.

- Ronald Reagan (U.S. President, 1982 1989)
 - Implemented the tax cut.
 - Increased the military spending.

Shino Takayama

Counter-argument

- Can we really assume that the increase in the government deficit shifted the US savings schedule to the left?
- Could changes in fiscal policy that cause the increased fiscal deficit induce increases in private savings?
- If so, total savings would keep unchanged.

Shino Takayama

ECON7520 Int'l Macroeconomics and Finance

The Government Sector in the Open Economy

Shino Takayama 17 of 47

Key Points

We first establish famous Ricardian equivalence.

Ricardian Equivalence

If the government expenditures don't change, changes in the schedule of taxes and bond issuance don't affect the household's consumption.

- This is because rational households adjust their savings so that the change in the tax schedule doesn't affects their consumptions.
- To explain the coincidence of the U.S. twin deficits, we thus explore alternative explanations:
 - The rise in the government expenditures.
 - The environments where Ricardian equivalence fails.

Shino Takayama 18 of 47

Setup: (Similar to the Economy in Lecture 03)

- Time period: 1 and 2.
- Agent: A representative household and the government.
- Good: A single consumption good in this world.
- Asset: Two types of assets, private and government bond.
- Endowment: The household endowed with;
 - Q₁ units of goods in period 1.
 - Q₂ units of goods in period 2.
- Interest Rate: r_0 for the initial asset, and r_1 for the asset held at the end of period 1.

4 L P 4 DP P 4 E P 4 E P 9 C P 9 C P

19 of 47

Government

- The government spends expenditures, and finances them by taxes and/or by issuing debts.
- Government Expenditure: G_1 in period 1. G_2 in period 2.
 - These expenditures are exogenously given.
- Taxes: Lump-sum taxes. T₁ in period 1. T₂ in period 2.
- Government Asset (or Debt if negative):
 - B_0^g is exogenously given at the beginning of period 1.
 - B₁^g denotes the amount of government assets at the end of period
 - A negative value of B_t^g implies that the government is issuing debts.

20 of 47

What Government Faces in each Period

• In period 1,

$$G_1 + (B_1^0 - B_0^0) = r_0 B_0^0 + T_1.$$

• In period 2,

$$G_2 + (B_2^0 - B_1^0) = r_1 B_1^0 + T_2.$$

21 of 47

Shino Takayama

Government's Budget Constraint

The government's budget constraints are given by

$$\underbrace{G_1}_{\text{xpenditure}} = \underbrace{-B_1^g + (1 + r_0)B_0^g}_{\text{Changes in Asset/Debt}} + \underbrace{T_1}_{\text{Tax Revenue}}, \tag{1}$$

$$G_2 = -B_2^g + (1+r_1)B_1^g + T_2. (2)$$

Assume the terminal condition for the government's asset holding

$$B_2^g = 0.$$

Then, by combining (1) and (2), we can derive

$$G_1 + \frac{G_2}{1 + r_1} = (1 + r_0)B_0^g + T_1 + \frac{T_2}{1 + r_1}.$$
 (3)

• The above is the intertemporal government budget constraint.

Shino Takayama 22 of 4

Household

The household's budget constraint in period 1 is:

$$C_1 + T_1 + B_1^p = (1 + r_0) B_0^p + Q_1,$$
 (4)

Similarly, the budget constraint in period 2 is:

$$C_2 + \frac{T_2}{I_2} + B_2^p = (1 + r_1) B_1^p + Q_2.$$
 (5)

Assume the terminal condition for the asset holding:

$$B_2^p = 0.$$

Then, by combining (4) and (5), we can get

$$C_1 + \frac{C_2}{1+r_1} = (1+r_0)B_0^p + Q_1 - \frac{T_1}{1+r_1} + \frac{Q_2 - \frac{T_2}{1+r_1}}{1+r_1}.$$
 (6)

• This is the household's intertemporal budget constraint.

Shino Takayama 23 of 47

Intertemporal Resource Constraint

 The country's net international investment position at the beginning of period 1 is

$$\underbrace{B_0^*}_{\text{Country's NIIP}} = \underbrace{B_0^p}_{\text{D}} + \underbrace{B_0^g}_{\text{Overnment's NIIP}}.$$
(7)

• By substituting (3) and (7) for (6), we can derive:

$$C_1 + \frac{C_2}{1 + r_1} = (1 + r_0) B_0^* + Q_1 - G_1 + \frac{Q_2 - G_2}{1 + r_1}.$$
 (8)

- This is the intertemporal resource constraint.
- Note that the government expenditures enter the constraint.

◆ロト ◆問 ト ◆注 ト ◆注 ト 注 り へ ○

Shino Takayama 24 of 47

Equilibrium

Suppose the household has a logarithmic utility function as

$$U(C_1, C_2) = \ln C_1 + \ln C_2.$$

An equilibrium requires three conditions

Optimality of the intertemporal allocation w.r.t. resource constraint

$$C_1 + \frac{C_2}{1+r_1} = (1+r_0) B_0^* + Q_1 - G_1 + \frac{Q_2-G_2}{1+r_1}.$$

Optimality of the intertemporal allocation w.r.t utility maximization

$$U_1(C_1, C_2) = (1 + r_1)U_2(C_1, C_2).$$

Condition for the interest rate

$$r_1 = r^*$$
.

Shino Takayama 25 of 47

Optimality with Logarithmic Preferences

Substituting C_1 into the utility function yields

$$\ln \left(-\frac{C_2}{1+r_1}+\left(1+r_0\right)B_0^*+Q_1-G_1+\frac{Q_2-G_2}{1+r_1}\right)+\ln \left(C_2\right).$$

Take the first-order-condition and obtain

$$\frac{1}{-\frac{C_2}{1+r_1}+(1+r_0)B_0^*+Q_1-G_1+\frac{Q_2-G_2}{1+r_1}}\times(-1)\frac{1}{1+r_1}+\frac{1}{C_2}=0.$$

Remember $(\ln f(x))' = \frac{f'(x)}{f(x)}$.

Then

$$\frac{1}{C_2} = \frac{1}{-\frac{C_2}{1+r_1} + (1+r_0)B_0^* + Q_1 - G_1 + \frac{Q_2 - G_2}{1+r_1}} \times \frac{1}{1+r_1} = \frac{1}{C_1(1+r_1)}.$$

So

$$C_1=\frac{C_2}{(1+r_1)}.$$

Shino Takayama 26 of 4

Solution with Logarithmic Preferences

Then, we can obtain

$$C_1 = \frac{1}{2} \left[(1 + r_0) B_0^* + Q_1 - \frac{G_1}{1 + r_1} + \frac{Q_2 - \frac{G_2}{1 + r_1}}{1 + r_1} \right].$$
 (9)

$$C_2 = \frac{1}{2} (1 + r_1) \left[(1 + r_0) B_0^* + Q_1 - \frac{Q_1}{1 + r_1} + \frac{Q_2 - \frac{Q_2}{1 + r_1}}{1 + r_1} \right].$$
 (10)

- Note that
 - The government expenditures show up in the consumption.
 - The taxes don't show up in the consumption.

Shino Takayama 27 of 47

Analysis

- From the solutions for the consumption, we can see
 - \bigcirc The changes in G_1 and G_2 affect the household's consumption.
 - 2 The following changes don't affect the consumption as long as they satisfy Equation (3).
 - Changes in the tax schedule, T₁ and T₂.
 - ullet Changes in the government's asset/debt position, B_1^g .
 - Therefore, even if the government increases B₁^g by reducing T₁ and instead increasing T₂, it won't affect the consumptions as long as they satisfy (3).
- The point 2 is called Ricardian equivalence.
- Ricardian equivalence holds because households react to tax changes by adjusting their savings.

Shino Takayama 28 of 47

Ricardian Equivalence

 To see the point of Ricardian equivalence, consider a change in period 1 tax

$$\Delta T_1$$
.

Note that the private saving is defined as

$$S_1^p = \underbrace{Q_1 + r_0 B_0^p - T_1}_{\text{Net Income}} - \underbrace{C_1}_{\text{Consumption}}.$$
 (11)

Then, from (11), we get

$$\Delta S_1^p = -\Delta T_1 \tag{12}$$

since other variables don't change.

Also note that the government's saving is defined as

$$S_1^g = \underbrace{r_0 B_0^g + T_1}_{\text{Net Revenue}} - \underbrace{G_1}_{\text{Expenditure}}$$

Therefore, we have

$$\Delta S_1^g = \Delta T_1 \tag{13}$$

since other variables don't change.

Ricardian Equivalence

Thus, the total saving in the economy doesn't change as

$$\Delta S_1 = \Delta S_1^p + \Delta S_1^g = -\Delta T_1 + \Delta T_1 = 0.$$

The current account also doesn't change as

$$\Delta CA_1 = \Delta S_1 - \Delta I_1 = 0,$$

because we assume taxes don't affect investments, $\Delta I_1 = 0$.

- Note that
 - Ricardian equivalence holds because the change in the private saving exactly offsets the change in the government's saving.
- In other words,
 - When the government changes the timing of taxes, rational households adjust their savings so that it doesn't affects their consumptions.
- As a result, the current account balance also doesn't change.

Shino Takayama 30 of 47

ECON7520 Int'l Macroeconomics and Finance

Twin Deficits in the U.S. by Reaganomics

Shino Takayama

Twin Deficits in the U.S.

Figure: The U.S. Current Account Balance, 1960 - 2016

The current account balance got worse remarkably during 1980s.

Shino Takayama 32 of 47

Twin Deficits in the U.S.

Figure: The U.S. Net Government Asset, 1960 - 2016

In 1980s, the U.S. fiscal deficits also increased significantly.

Shino Takayama 33 of 47

Twin Deficits in the U.S.

- Ronald Reagan (U.S. President, 1982 1989)
 - Implemented the tax cut.
 - Increased the military spending.
 - As a result, the fiscal deficits increased by roughly 3% of GDP.
- Question: Does it explain the rise of the U.S. current account deficits during the period?
 - The CA deficits increased by roughly 3% of GDP.

34 of 47

Shino Takayama

Can Fiscal Deficits Explain the CA Deficits?

- Not necessarily.
- Ricardian equivalence says;
 - Changes in taxes (T_1, T_2) don't affect the CA.
 - Changes in the government's asset position B₁^g don't affect the CA balance.
- Therefore, even if B₁^g decreases, it should be offset by an increase in private savings.
- However, if (G_1, G_2) change, they can affect the CA balance.

Shino Takayama 35 of 47

Can Government Spending Explain the CA Deficits?

Note that

$$TB_1(=EX_1-IM_1)=Q_1-C_1-G_1-I_1.$$

Also, from the second lecture,

$$CA_1 = rB_0^* + TB_1.$$

- Therefore, if G_1 increases, TB_1 and thus CA_1 can decreases.
- Note that an increase in G₁ can also decrease C₁, which could offset the change to some extent.
- But, we know, from Equation (9) that

$$-\Delta C_1 < \Delta G_1$$
.

• Therefore, an increase in G_1 can decrease TB_1 and thus CA_1 .

36 of 47

Can Government Spending Explain the CA Deficits?

- However, quantitatively, the change in G_1 during 1980s is too small.
 - The government spending increased only by 1.5% of GNP.
- Therefore, it can explain the change in the CA balance only up to a half.
 - Remember the change in the CA balance amounts to 3% of GDP.

Figure: The U.S. Military Spending

V	Military
Year	Spending (% of GNP)
1978-79	5.1 - 5.2
1980-81	5.4-5.5
1982-84	6.1-6.3
1985-87	6.7-6.9

Shino Takayama 37 of 47

Failure of Ricardian Equivalence

- We consider three possible environment where the Ricardian Equivalence fails.
- If the Ricardian Equivalence fails, a change in tax schedule can affect consumptions.
- The possible channels are
 - Borrowing constraints (on households)
 - Intergenerational effects
 - Oistortionary taxation

Shino Takayama 38 of 47

- Suppose the government implements tax cut financed by future tax increases.
- Do you think all consumers increase their saving to offset the change?
- Probably, not.
- Young people would take the tax cut as an opportunity to increase their current-period consumption.
 - Youngs usually like to borrow for their future income.
 - But, they cannot because of borrowing constraints.
- We like to formalize this idea.

Shino Takayama 39 of 47

Suppose the household faces a borrowing constraint,

$$B_1^p \ge 0$$
.

- In this case, the household's consumption can deviate from the optimal consumption level C_1 (Point A).
- That is, the household is forced to choose the sub-optimal consumption level C₁⁰ (Point B) where

$$C_1^0 = Q_1 - T_1 < C_1$$

because she cannot borrow for her future income.

Shino Takayama 40 of 47

Figure: The U.S. Military Spending

Shino Takayama 41 of 47

• If there is a tax cut by $\Delta T_1 < 0$, then the new consumption will be

$$C_1^1 = Q_1 - (T_1 + \Delta T_1)$$

which is at point B'.

- Note that the consumption increased as $\Delta C_1 = -\Delta T_1$.
- However, to generate a quantitatively plausible effect, this channel is probably not enough.
- To generate the decline of the CA balance by 3% of GDP,
 - All households must be constrained.

Shino Takayama 42 of 47

Intergenerational Effects

- Another source of the failure of the Ricardian Equivalence is the intergenerational reason.
 - Those who benefit from the tax cut may not be the ones that pay for the tax increase.
- To formalize this idea, suppose the household only lives for one period.
- In this case, we have

$$C_1 + T_1 = Q_1$$
.

Therefore,

$$\Delta C_1 = -\Delta T_1$$
.

 However, to obtain quantitatively plausible effect, all households have to die in one period.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Shino Takayama 43 of 47

Distortionary Taxes

- So far, we have assumed taxes take the form of lump-sum, which does not distort agent's decisions.
- However, in reality, taxes are typically specified as a fraction of consumption, income, firm's profits etc.
- In that case, changes in tax rates will tend to distort consumption, savings, and investment decisions.
- Consider consumption taxes (τ_1, τ_2) for example.
- After-tax cost of consumption is
 - $(1 + \tau_1)C_1$ for period 1.
 - $(1 + \tau_2)C_2$ for period 2.

Shino Takayama 44 of 47

Distortionary Taxes

 In this case, the relative price of period-1 consumption in terms of period-2 consumption is

$$(1+r_1)\frac{1+\tau_1}{1+\tau_2}$$
.

• If $\tau_1 \neq \tau_2$, this price is different from the price in the non-distortionary case

$$(1 + r_1).$$

- Suppose there is a tax cut as $\tau_1 < \tau_2$, then period-1 consumption becomes cheaper.
- As a result, the household increases period-1 consumption.
- The trade balance and the CA balance can thus decrease since

 $TB_1 = Q_1 - C_1 - G_1 - I_1$.

$$CA_1 = rB_0^* + TB_1.$$

Shino Takayama 45 of 47

Summary of Twin Deficits in the U.S.

- If the current account deficit of the 1980s is to be explained by the fiscal imbalances of the Reagan administration,
- then, this explanation has to rely on a combination of
 - an increase in government expenditure and
 - multiple factors that break Ricardian equivalence
 - Borrowing constraints
 - Intergenerational effects
 - Distortionary taxes

Shino Takayama

Summary and Conclusion

- Today, we studied:
 - A small open economy model with the government.
 - Ricardian equivalence.
 - If the government expenditures don't change, changes in the schedule of taxes and bond issuance don't affect the household's consumption.
 - Twin deficits in the U.S.
- Nest week, we will study international capital market integration.

Shino Takayama 47 of 47