ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 3.3.4 Эффект Холла в полупроводниках

> Серебренников Даниил Группа Б02-826

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, миллиамперметр, милливебметр, реостат, цифровой вольтметр, источник питания, образец легированного германия.

1 Рассчетные формулы

Эффект Холла - явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

• ЭДС Холла:

$$\mathscr{E}_{\mathbf{x}} = U_{34} - U_0; \tag{1}$$

• Постоянная Холла:

$$R_{\mathbf{x}} = -\frac{\mathscr{E}_{\mathbf{x}}}{B} \cdot \frac{a}{I};\tag{2}$$

• Концентрация носителей тока в образце:

$$n = \frac{1}{R_r e} \tag{3}$$

• Удельная проводимость материала образца:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{4}$$

• Подвижность носителей тока:

$$b = \frac{\sigma}{en} \tag{5}$$

2 Экспериментальная установка

Электрическая установка для измерения ЭДС Холла представлена на (1).

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках.

3 Экспериментальные данные

Таблица 1: Параметры установки и исследуемого образца.

Расстояние между контактами 3 и 5 L_{35} , мм	Толщина образца a , мм	Ширина образца $l,\ { m MM}$	Постоянная катушки SN , $\mathrm{cm}^2 \cdot \mathrm{вит}$.
6	2,2	7	72

Таблица 2: Некоторые измеряемые величины и их погрешность.

	Ф, мВб	I_M , A	U_{34} , мкВ	I, мА
Величина	1,0	1,00	50	0,5
Погрешность	0,1	0,01	1	0,005
ε , %	1	1	2	1

Таблица 3: Калибровка электромагнита.

Νo	1	2	3	4	5	6	7	9	9	10
I_M , A	0,61	0,71	0,83	0,91	1,06	1,11	1,15	1,22	1,38	1,45
Ф, мВб	4,2	4,7	5,4	5,8	6,6	6,7	6,9	7,1	7,6	7,7
В, мТл	583	653	750	806	917	931	958	986	1056	1069

Таблица 4: Зависимость U_{34} от I_M при фиксированном I.

I, мА	0,24	0,26	0,28	0,30	0,35	0,45	0,65	0,85	1,00	1,00	
U_0 , мкВ	-49	-56	-61	-65	-77	-100	-140	-183	-220	-220	
$\mathcal{N}_{ar{ ext{0}}}$	U_{34} , мк $\mathrm B$										
1	-2	-2	-5	-4	-5	-7	-5	-5	-13	-450	
2	4	4	4	3	4	4	10	15	10	-480	
3	11	10	10	11	13	17	28	35	35	-508	
4	16	15	17	17	21	26	41	55	58	-533	
5	23	24	25	25	30	38	58	76	85	-560	
6	25	25	27	28	33	44	65	84	94	-570	
7	27	27	29	30	35	46	70	90	100	-577	
8	28	29	30	33	39	50	74	97	110	-587	
9	32	32	35	37	44	56	84	108	125	-603	
10	34	35	38	40	47	60	89	115	132	-613	

Дополнительно при силе тока в 1 мА, протекающем через образец, измерим $U_{35}=-2,531~\mathrm{mB}$.

4 Обработка результатов

Для калибровки электромагнита необходимо экстраполировать график зависимости B=f(I) (рис. 2). Не трудно убедиться, что с большой точностью зависимость является линейной в данном диапазоне токов. С меньшей достоверностью зависимость можно описать многочленом третей степени, на который хорошо ложатся экспериментальные точки. Однако в связи прецизионностью источника питания нам достаточно знать конечный набор значений магнитного поля B и проводить измерения U_{34} только на них.

Рис. 2: Зависимость B = f(I).

Построим серию прямых $\mathscr{E}_{\mathbf{x}} = \mathscr{E}_{\mathbf{x}}(B)$ (рис. 3). Отметим, что $\sigma_{\mathscr{E}_{\mathbf{x}}} = 2\sigma_{U_{34}} = 2$ мкВ, а $\sigma_B = \sigma_\Phi/SN = 14$ мТл.

Рис. 3: Серия зависимостей $\mathscr{E}_{\mathbf{x}}$ от B при различных I.

Таблица 5: $k = \Delta \mathcal{E}_{x}/\Delta B$.

I, MA	0,24	0,26	0,28	0,3,0	0,35	0,45	0,65	0,85	1,00	1,00
k , мк B/T л	72,7	74,9	84	88,6	104	136	191	244	296	-324
σ_k , мк $\mathrm{B/T}$ л	1,6	1,7	2	1,7	2	3	4	6	5	7

По полученным данным построим график зависимости k от I и проанализируем его.

Рис. 4: Зависимость k от I.

Методом наименьших квадратов определяем, что $k/I=(295\pm3)~\frac{\rm _{MBT}}{\rm _{T\pi\cdot A}},$ откуда согласно формуле (2) $R_{\rm x}=(649\pm7)~{\rm cm}^3/{\rm K}$ л.

Рассчитаем концентрацию носителей тока в образце по формуле (3): $n = (962 \pm 1) \cdot 10^{19} \,\mathrm{m}^3$, удельную проводимость по формуле (4): $\sigma = (153, 9 \pm 0, 8) \,(\mathrm{Om} \cdot \mathrm{m})^{-1}$.

Вычислим подвижность носителей тока в материале образца по формуле (5):

$$b = (1000 \pm 10) \frac{\mathrm{cm}^2}{\mathrm{B} \cdot \mathrm{c}}$$

5 Обсуждение результатов

В ходе данной лабораторной работы мы исследовали эффект Холла в полупроводнике, а именно в Германии. Нам удалось определить постоянную Холла, которая в данных диапазонах токов и значений магнитной индукции магнитного поля оказалась постоянной и равной $R_{\rm x}=649~{\rm cm}^3/{\rm Kn}$ с относительной ошибкой 1%. Так же вычислили концентрацию носителей тока в образце при том предположении, что количество носителей одного типа намного больше другого типа: $n=962\cdot 10^{19}~{\rm m}^3$. Зная направление тока в проводнике, полярность вольтметра, направление тока в катушках, можно определить тип проводимости. В нашей работе тип проводимости в Германии оказался дырочным.

Более того, мы вычислили подвижность дырок в исследуемом Германии: $b=1000\,\frac{\mathrm{cm}^2}{\mathrm{B\cdot c}}$ с точностью в 1%. Но наш результат отличается от табличного для носителей в области собственной проводимости $b_0=1800\,\frac{\mathrm{cm}^2}{\mathrm{B\cdot c}}$ (при температуре $T=293~\mathrm{K}$), по чему можно сделать вывод, что наш образец является не чистым, а с примесями. Хотелось бы отметить, что дополнительная ошибка измерений может быть связана с сильной зависимостью концентрации основных носителей токов от температуры. Действительно, для отрыва электрона от атома полупроводника и превращения его в электрон проводимости необходимо сообщить ему некоторое колличество энергии. Естественно, что такая энергия поставляется тепловыми колебаниями атомов решетки. В нашей работе температура температура образца была как минимум комнатной $(T=298~\mathrm{K})$ и как максимум могла повыситься вследствие протекающего через образец постоянного тока.

6 Выводы

- 1. Вычислили постоянную Холла: $R_{\rm x} = (649 \pm 7)~{\rm cm}^3/{\rm K}$ л;
- 2. Определили концентрацию носителей тока в образце: $n = (962 \pm 1) \cdot 10^{19} \,\mathrm{m}^3$;
- 3. Рассчитали удельную проводимость: $\sigma = (153, 9 \pm 0, 8) \; (\text{Ом·м})^{-1};$
- 4. Германий является легированным образцом с подвижностью $b = (1000 \pm 10) \frac{\text{см}^2}{\text{B.c}}$;
- 5. Тип носителей в исследуемом материале дырочный.