### MTH1102D Calcul II

Chapitre 7, section 2: Les coordonnées cylindriques et sphériques

Coordonnées cylindriques

### Introduction

- Coordonnées cylindriques.
- Formules de passage.

Un point P de l'espace est repéré par un triplet  $(r, \theta, z)$ , où

r et θ sont les coordonnées polaires de la projection de P dans le plan z = 0.
 r est la distance du point P à

r est la distance du point P à l'axe des z.



Un point P de l'espace est repéré par un triplet  $(r, \theta, z)$ , où

- r et θ sont les coordonnées polaires de la projection de P dans le plan z = 0.
   r est la distance du point P à
- z est distance du point P au plan z = 0.

l'axe des z.



- On suppose que  $r \ge 0$ .
- On suppose que  $\theta \in [0, 2\pi[$  ou  $\theta \in ]-\pi, \pi].$
- Formules de passage :

$$x = r\cos\theta$$

$$y = r \sin \theta$$

- On suppose que  $r \ge 0$ .
- On suppose que  $\theta \in [0, 2\pi[$  ou  $\theta \in ]-\pi,\pi]$
- Formules de passage :

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

- On suppose que  $r \ge 0$ .
- On suppose que  $\theta \in [0, 2\pi[$  ou  $\theta \in ]-\pi, \pi]$
- Formules de passage :

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

$$r = \sqrt{x^2 + y^2}$$

$$\tan \theta = \frac{y}{x}$$

- On suppose que  $r \ge 0$ .
- On suppose que  $\theta \in [0, 2\pi[$  ou  $\theta \in ]-\pi, \pi]$
- Formules de passage :

$$x = r \cos \theta$$
  $r = \sqrt{x^2 + y^2}$   
 $y = r \sin \theta$   $\tan \theta = \frac{y}{x}$   
 $z = z$   $z = z$ 

### Résumé

- Définition des coordonnées cylindriques.
- Formules de passage des coordonnées cylindriques aux coordonnées cartésiennes et vice versa.