Национальный исследовательский университет «МЭИ»

Кафедра робототехники, мехатроники, динамики и прочности машин

Отчет по лабораторным работам №3/4

Курса: «Управление роботами и мехатронными устройствами»

Группа: С-12Б-19

Выполнили: Волошанин Д.М

Уткин А.Е.

Преподаватель: Гавриленко А.Б.

Оглавление

1.	Решение обратной задачи кинематики	4
	а рисунке представлен способ введения изменения углов, а также	
06	означены длины звеньев	4
2.	Метод Ньютона	5
3.	Реализация управления по скорости	6
4.	Графики входных модельных данных	7
	Входные (идеальные) данные для ЛР 2— сформированы аналитически из решения прямой и обратной задач	
ı	Входные (идеальные) данные для ЛР 3 — сформированы методом Ньюто	
	Входные (идеальные) данные для ЛР 3 — сформированы методом управления по скоростям	
5.	Графики выходных реальных данных	. 10
1	Выходные (реальные) данные для ЛР 2	. 10
١	Выходные (реальные) данные для ЛРЗ	. 11
1	Выходные (реальные) данные для ЛР4	. 12
6.	Погрешности относительно модельных траекторий	. 13
7.	Оценка правильности построения алгоритма коррекции по вектору	
СК	орости на основании моделирования	. 14
١	Графики погрешности для ЛР3	. 14
I	Графики погрешности для ЛР4	. 15
8.	Графики погрешностей по углам (реальные – модельные)	. 16
ı	Погрешности по углам ЛР2	. 16
l	Погрешности по углам ЛР3	. 17
١	Погрешности по углам ЛР4	. 18
	Осредненные погрешности	19

Дано:

Время движения: Т = 15.0;

Угол выходного звена: ө = -1;

Исходное положение:

xA(0)	xA(T)
0.3	0.1

Конечное положение:

zA(0)	zA(T)
0.45	0.45

1. Решение обратной задачи кинематики

На рисунке представлен способ введения изменения углов, а также обозначены длины звеньев.

Запишем уравнения для координат точки схвата в неподвижных относительно первого звена координатах:

$$\begin{cases} x_1 = d_1 + l_2 \sin\varphi 2 + l_3 \sin(\varphi 2 + \varphi 3) + l_{45} \sin(\varphi 2 + \varphi 3 + \varphi 4) \\ z_1 = l_1 + l_2 \cos\varphi 2 + l_3 \cos(\varphi 2 + \varphi 3) + l_{45} \cos(\varphi 2 + \varphi 3 + \varphi 4) \\ \theta = \varphi 2 + \varphi 3 + \varphi 4 - \frac{\pi}{2} \end{cases}$$

Перейдем к новой системе переменных – усеченным уравнениям:

$$\begin{cases} \tilde{x} = x_1 - d_1 - l_{45}\cos(\theta) = l_2\sin(\varphi 2 + l_3\sin(\varphi 2 + \varphi 3)) \\ \tilde{z} = z_1 - l_1 - l_{45}\sin(\theta) = l_2\cos(\varphi 2 + l_3\cos(\varphi 2 + \varphi 3)) \end{cases}$$

Такая форма записи подразумевает, что новые переменные \tilde{x} и \tilde{z} уже не зависят в явном виде от обобщенных координат.

Также запишем функции отклонения от идеальной точки позиционирования по координатам:

$$\begin{cases} F1 = l_2 \sin \varphi 2 + l_3 \sin(\varphi 2 + \varphi 3) - \tilde{x} \\ F2 = l_2 \cos \varphi 2 + l_3 \cos(\varphi 2 + \varphi 3) - \tilde{z} \end{cases}$$

2. Метод Ньютона

Углы находим при помощи метода Ньютона. Запишем вектор отклонения:

$$F(q) = {\binom{F1}{F2}} = {\binom{l_2 \sin \varphi 2 + l_3 \sin(\varphi 2 + \varphi 3) - \tilde{x}}{l_2 \cos \varphi 2 + l_3 \cos(\varphi 2 + \varphi 3) - \tilde{z}}}$$

Функции отклонения составлены для переменных \tilde{x} и \tilde{z} , то есть зависят только от углов $\varphi 2$ и $\varphi 3$. Находим Якобиан, продифференцировав уравнения прямой кинематики по данным углам. Получаем:

$$J = \begin{pmatrix} \frac{\delta F_1}{\delta \varphi_2} & \frac{\delta F_1}{\delta \varphi_3} \\ \frac{\delta F_2}{\delta \varphi_2} & \frac{\delta F_2}{\delta \varphi_3} \end{pmatrix} = \begin{pmatrix} l_2 \cos \varphi_2 + l_3 \cos(\varphi_2 + \varphi_3) & l_3 \cos(\varphi_2 + \varphi_3) \\ -l_2 \sin \varphi_2 - l_3 \sin(\varphi_2 + \varphi_3) & l_3 \sin(\varphi_2 + \varphi_3) \end{pmatrix}$$

Далее записываем цикл:

- 1. Новые углы каждой последующей итерации это углы, полученные на предыдущем шаге
- 2. Находим функции отклонения по координатам
- 3. Создаем вложенный цикл while с условием выхода sqrt(F1^2 + F2^2) < eps 3.1.Находим Якобиан, подставляя в него итерационные углы
 - 3.2. Находим $d\varphi = J^{-1} {F1 \choose F2}$
 - 3.3. Добавляем значение фф к итерационным углам
 - 3.4. Находим новые функции отклонения F1 и F2
- 4. Приравниваем итерационные углы на выходе вложенного цикла обычным углам.

Таким образом, метод Ньютона:

$$q = \begin{pmatrix} \varphi_2 \\ \varphi_3 \end{pmatrix}$$

$$q_{i+1} = q_i - J(q_i)^{-1} F(q_i)$$

3. Реализация управления по скорости

На рисунке представлен алгоритм управления по скорости.

- На вход контура управления подается информация о идеальных координатах точки позиционирования.
- Производится операция дифференцирования и находятся идеальные скорости движения схвата манипулятора
- Происходит вычисление угловых скоростей звеньев манипулятора (с учетом ошибки)
- Информация поступает на двигатель, приводящий звено в движение
- Считываются углы
- При помощи уравнений прямой кинематики находятся координаты по полученным углам
- Вычисляется разность между идеальными координатами и реальными координатами

$$X=egin{bmatrix} X_{1A} \ Z_{1A} \ \partial \end{bmatrix}$$
 $\dot{X}=J\dot{q}$ $Xd-$ програмное движение $e=X-X_d-$ ошибка $\dot{e}=-ke, k=diag(k_i>0)\ e o 0\ \dot{X}-\dot{X}d=-ke$

С учетом ошибок, обратная связь имеет вид:

$$J\dot{q} = \dot{X}d - ke$$
$$\dot{q} = J^{-1}(\dot{X}d - ke)$$

4. Графики входных модельных данных.

Входные (идеальные) данные для ЛР 2— сформированы аналитически из решения прямой и обратной задач

Входные (идеальные) данные для ЛР 3 — сформированы методом Ньютона

Входные (идеальные) данные для ЛР 3— сформированы методом управления по скоростям

5. Графики выходных реальных данных. Выходные (реальные) данные для ЛР 2

Выходные (реальные) данные для ЛРЗ

Выходные (реальные) данные для ЛР4

6. Погрешности относительно модельных траекторий

Вычтем из полученных реальных траекторий соответствующие им модельные.

-0.002

-0.002

0.002

-0.008

-0.006

-0.004

7. Оценка правильности построения алгоритма коррекции по вектору скорости на основании моделирования

Погрешности позиционирования робота манипулятора в каждой точке не зависит от предыдущего значения. Погрешности зависят только от заявленной точности позиционирования (норма отклонения<epsilon) и от точности отработки углов в звеньях манипулятора.

Правильность построения алгоритма коррекции можно оценить, если 2 графика погрешностей из Π P№3 и Π P№4 будут различаться на 1 шаг (дискрет 0.05 секунд).

Алгоритм:

- 1. Находим разность между идеальными и реальными данными из 3 ЛР,
- 2. найти разность между ИД и полученным результатам (сформированные 3)
- 3. смещаем времена для графика 1 на 1 dt вперед
- 4. вычесть 2 и 3 графики между собой погрешность данной разности должна стремиться к 0 для моментов времени [dt,T].

Графики погрешности для ЛРЗ

Графики погрешности для ЛР4

Как видим, графики погрешности стремятся к нулю с течением времени.

Данное условие выполняется почти на всем промежутке времени.

Можно сделать вывод, что алгоритм был построен верно. Расхождение могло появиться из-за неточности выходных значений.

8. Графики погрешностей по углам (реальные – модельные)

Погрешности по углам ЛР2

Погрешности по углам ЛРЗ

Погрешности по углам ЛР4

Осредненные погрешности

Находим осредненные погрешности по формуле

$$p = \frac{\sum |d\varphi|}{N}$$

Где N – число шагов.

Значение

$$k = \frac{2\pi N}{\sum |d\varphi|}$$

должно соответствовать удвоенному количеству щелей в одометре(Для ЛР4)

Осредненные	ЛР2	ЛР3	ЛР4
погрешности по			
углам			
P2	0.0146238	0.0147002	0.0072092
P3	0.0070982	0.0070667	0.0059896
P4	0.00850815	0.0077075	0.0049198

Берем значения для ЛР4 и находим значение k.

Получаем значения k2 = 871, k3=1101, k4=1277

В связи с большими погрешностями значения, соответствующие удвоенному количеству щелей в одометре, получились различными. Можно предположить, что это значение приближенно равно 1000

Рассмотрим погрешности углов fi(i) и по координатам на одном графике

Из графиков можно попробовать сделать вывод о том, что данные полученные из лабораторных 3 и 4 намного точнее, чем в лабораторной работе 2. Для анализа точности посчитаем СКО и Мат.Ожидание по координатам

Лабораторная работа 2	СКО	Мат.Ожидание
dX	0.00315175570048986	-0.000535647840531562
dZ	0.00109517819158246	-0.00493209302325582

Лабораторная работа 3	СКО	Мат.Ожидание
dX real	0.001949931394302	-7.918130085400e-04
dZ real	8.257999044833112e-04	0.004957015081252
dX model	0.001348323826149	-0.001006977150203
dZ model	5.277999795308799e-07	0.005005025098731

Лабораторная работа 4	СКО	Мат.Ожидание
dX real	0.002182804043818	0.001133607408023
dZ real	0.001019458790893	0.005040047552470
dX model	2.042874762369411e-04	5.550616602234903e-04
dZ model	3.188251075784905e-05	0.005362048334956

Для определения погрешностей позиционирования робота относительно исходных данных получим через разности СКО и МАТ.Ожиданий по координатам.

Лабораторная работа 3	X	Z
Delta Мат.Ожидание	2.151641416626332e-04	-4.80100174792896e-05
Delta CKO	6.016075681527842e-04	8.252721045037802e-04

Лабораторная работа 4	Х	Z
Delta Мат.Ожидание	5.785457477994106e-04	-3.22000782486467e-04
Delta CKO	0.001978516567581	9.875762801351650e-04

Найдем суммарную погрешность метода сигмаСум=sqrt(сигма1^2+ сигма2^2)

Лабораторная работа 3	суммарную погрешность мат.ожид
X	0.001281003833532
Z	0.007044307968473

Лабораторная работа 4	суммарную погрешность мат.ожид
X	0.001262204104800
Z	0.007358915794977

Вывод: в проведенных лабораторных 2-4 мы рассмотрели несколько методов обработки И анализа входных И выходных Проанализировали выходные графики траекторий, погрешностей отклонений. Проанализировали уровень отклонений, полученных лабораторных работах, различных путем получения суммарных погрешностей, погрешностей позиционирования, а так же погрешностей разностей СКО и мат.ожиданий.