데이터마이닝 프로젝트 보고서

Cellphone Price Analysis Model

2023. 12. 15

조 번 호	2조				
조이름	X				
팀장	컴퓨터공학과, 최준호, 2016038022				
팀원	컴퓨터공학과, 최준호, 2016038022				

I. 프로젝트 개요

1 프로젝트 주제

본 프로젝트의 주제는 '스마트폰 가격 분석 모델'이다.

2 프로젝트 목적

오늘날 삼성, 애플 뿐만 아니라 구글 등 다양한 기업에서 스마트폰 사업에 뛰어들고 있다. 실제로 구글의 '픽셀'은 올해 2분기 삼성, 샤프, 소니를 제치고 12%로 2위에 올랐다. 이러한 여러 가지 스마트폰을 구매할 때 각 종 스펙을 통해서 가격을 예측하고 소비자이 합리적인 가격인지 판단하는 것을 돕기 위한 프로그램을 만드는 것이 목표이다.

팀원별 담당 업무 및 기여사항

단독 진행

II. 데이터 수집 및 전처리

1 데이터 수집 방법

본 프로젝트의 수행을 위하여 데이터셋을 제공하는 kaggle의 데이터를 사용하였다.

2 데이터 전처리 과정

수집한 스마트폰 데이터셋에 NULL 값이 존재하는지 결측치를 확인하였다.

(1) 데이터 전처리

○ 데이터 결측치 확인

[그림 1] 결측치 확인

In [5]:	data.isnull().sum()					
Out [5]:	Product_id Price Sale weight resoloution ppi cpu core cpu freq internal mem ram RearCam Front_Cam battery thickness dtype: int64	0 0 0 0 0 0 0				

피쳐 값들의 결측치는 없는 것으로 확인되었다.

○ 열 이름 변경

[그림 2] 열 이름 변경

Out [6]:

	Product_id	Price	Sale	Weight	Resolution	PPI	Cpu_Core	Cpu_Freq	Internal	RAM	RearCam	FrontCam	Battery
0	203	2357	10	135.0	5.20	424	8	1.350	16.0	3.000	13.00	8.0	2610
1	880	1749	10	125.0	4.00	233	2	1.300	4.0	1.000	3.15	0.0	1700
2	40	1916	10	110.0	4.70	312	4	1.200	8.0	1.500	13.00	5.0	2000
3	99	1315	11	118.5	4.00	233	2	1.300	4.0	0.512	3.15	0.0	1400
4	880	1749	11	125.0	4.00	233	2	1.300	4.0	1.000	3.15	0.0	1700
•••	2007	5775	237	0202	1200	138	2016	100	30%	27500	(355)	1.62	8003:
156	1206	3551	4638	178.0	5.46	538	4	1.875	128.0	6.000	12.00	16.0	4080
157	1296	3211	8016	170.0	5.50	534	4	1.975	128.0	6.000	20.00	8.0	3400
158	856	3260	8809	150.0	5.50	401	8	2.200	64.0	4.000	20.00	20.0	3000
159	1296	3211	8946	170.0	5.50	534	4	1.975	128.0	6.000	20.00	8.0	3400
160	1131	2536	9807	202.0	6.00	367	8	1.500	16.0	3.000	21.50	16.0	2700

161 rows x 14 columns

소문자를 대문자로 바꾸는 등 직관성을 좋게 하기 위하여 피쳐들의 열 이름을 변경하였다.

- 데이터 요약
- 데이터에는 161개의 관측치와 14개의 변수가 포함되어 있다.
- 모든 변수는 Numerical이다.
- 출력은 "Price"가 될 것이다.
- 데이터에 결측값이 포함되어 있지 않다.

III. 분석 모델

1 사용한 분석 기법

본 프로젝트의 수행을 위하여 사이킷 런에서 제공하는 선형 회귀 기법을 사용하였다.

(1) 사용한 분석 기법

O Correlation Plot

상관관계 플롯은 두 변수가 선형적으로 연관되어있는 정도(일정한 속도로 함께 변화함을 의미함)를 표현하는 통계적 척도이다.

[그림 3] 상관관계 시각화

높은 '양'의 상관관계를 나타내는 변수들:
["PPI","Cpu_Freq", "Internal", "RAM",
"RearCam", "FrontCam"]
낮은 '양'의 상관관계를 나타내는 변수들:
["Resolution","Cpu_Core","FrontCam"
, "Battery"]
높은 '음'의 상관관계르 나타내는 변수:
["Thickness"]

○ 데이터 표준화(Standard Scaler)

데이터를 분석할 때 종종 특징의 크기와 단위가 다른 데이터 세트를 다룬다. 예를 들어, "Cpu_Freq"와 "Battery"와 같은 변수는 크기가 크게 다르다. 따라서 알고리즘은 이러한 변수에 머신러닝 기술을 적용하여 크기의 차이로 인해 "배터리"라는 변수를 "Cpu_Freq"보다 더 우세하게 간주한다. 이러한 충돌을 피하는 방법은 해당 변수를 표준화하는 것이다. 이러한 변수를 균일하게 만들기 위해서는 Standard_Scalar 라이브러리를 가져와 각 변수가 분석에 동일하게 기여하도록 해당 변수를 표준화하는 것이 목적이다.

○ 실제값 vs 예측값 학습된 모델로 예측을 진행하여 그래프를 만들어 예측값을 시각화하였다. [그림 4] 실제-예측값 시각화

Actual value vs Predicted value

IV. 분석 모델 평가 및 분석 결과

1 정확도

분석 모델의 평가를 위해 평가 지표 세 가지(MSE, RMSE, R^2)를 이용했다.

print(f"RMSE: {rmse}")
print("R^2 Score:", model.score(X, y))

RMSE: 152,20128045621962 R^2 Score: 0.9520460023025747

(1) RMSE(Root Mean Squared Error)

- MSE가 가지는 오차의 왜곡을 완화
 - 결과: 152.2

검정의 오차(rmse)는 152.20과 같다. 즉, 예측값은 실제 값에서 평균 152.2 단위 떨어져 있다.

(1) R^2(Root Mean Squared Error)

- 결정계수이며 항상 O~1 사이의 값을 가진다.
 - 결과: 0.952

모델을 설명한 변수는 R2 = 0.95이다. 즉, 모델은 Price에서 관측된 변동성의 95%를 설명할수 있다.

V. 결론

1 결론

본 프로젝트를 통해 각 종 스펙 데이터를 통한 스마트폰 가격 예측을 진행하였고 약 95%의 정확도로 상당히 유의미한 정확도를 보였다. 더 많고 질 좋은 데이터를 추가하고 모델을 지속적으로 업데이트 하면 새로 나오는 스마트폰의 스펙을 확인하여 스펙에 비해 합리적인 가격인지 고려할 수 있도록 도움이 될 프로그램을 만들 수 있을 것으로 전망된다.

[별첨] 소스코드

Cellphone.py # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns # In[2]: data =pd.read_csv("./Cellphone.csv") data.head() # In[3]: data.isnull().sum() #결측치 확인 # In[4]: colname = ["Product_id", "Price", "Sale", "Weight", "Resolution", "PPI", "Cpu_Core", "Cpu_Freq", "Internal", "RAM", "RearCam", "FrontCam", "Battery", "Thickness"] data.columns = colnamedata # 열 이름 변경 # In[5]: plt.figure(figsize=(8,8)) corr = round(data.drop(["Product_id"], axis =1).corr(),2) mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, mask=mask, linewidths=.5, annot=True, cmap = "Blues") plt.show() # 상관관계 플롯 # In[6]: X = data.drop(["Product_id", "Sale", "Weight", "Price"], axis =1) y = data.Price# In[7]: from sklearn.preprocessing import StandardScaler X=StandardScaler().fit_transform(X) # In[8]:

from sklearn.model_selection import train_test_split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 학습 데이터와
테스트 데이터 분리
# In[9]:
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train , y_train)
predictions = model.predict(X_test)
print(predictions)
# In[10]:
from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(
     y_true = y_test,
     y_pred = predictions,
     squared = False
     )
print("")
print(f"RMSE: {rmse}")
print("R^2 Score:", model.score(X, y))
# In[11]:
col =data.drop(["Product_id", "Sale","Weight", "Price"], axis =1).columns
print("Y 절편:", model.intercept_)
print("회귀 계수:", list(zip(col, model.coef_.flatten(), )))
# In[12]:
prediccion_train = model.predict(X_train)
residuos_train = prediccion_train - y_train
plt.scatter(y_train, prediccion_train, edgecolors=(0, 0, 0), alpha = 0.4)
plt.title('Actual value vs Predicted value', fontsize = 15, fontweight = "bold")
plt.plot([y_train.min(), y_train.max()], [y_train.min(), y_train.max()],
           'k--', color = 'black')
plt.ylabel("Predicted value" , weight = "bold")
plt.xlabel("Actual value", weight = "bold")
plt.grid(color='black', linestyle='--', linewidth=0.1)
plt.show()
```