Probability & Sampling Distributions

Administrative issues

- Reading chapter 5
 - Skip 5.4: choice of sample size
 - Skip 5.5: confidence intervals for median
 - (in general, skip all optional sections, marked *)
- Schedule pushed back one week
 - Updated syllabus on D2L

What we will do today

- Finish chapter 4
 - Z-scores and normal distribution
 - Finding probabilities associated w/ particular z-scores
 - Sampling distribution
 - A longer introduction than Agresti
- Discuss Teranishi (2004)

Normal Distribution and Z-scores

Normal Distribution

- A special distribution; we will use the normal distribution a lot in this class
- Definition: the normal distribution is a symmetric, bell shaped distribution.
 - Not left-skewed or right-skewed
- Normal distribution has very useful properties
 - If we can reasonably assume a variable has a normal distribution, then we know a lot about that variable

Standard Deviation: Empirical Rule

- If variable has an approximately normal distribution (i.e., approximately "bell shaped") then:
- About 68% of obs fall within one std dev, s, of mean, \bar{x}
- About 95% of obs fall within two std. dev of mean
- About 99% of obs fall within three std. dev of mean
- Show in OneNote

Z-Score

- Z-score: how many standard deviations away from mean
- Definition
 - The z-score, z_i , of an observation, y_i , is the number of standard deviations, s, away from the mean, \bar{y}

$$-z_i = \frac{y_i - \bar{y}}{s}$$

• Example: $y_i = 30$; $\bar{y} = 18.2$; s = 5.3

$$-z_i = \frac{y_i - \bar{y}}{s} = \frac{30 - 18.2}{5.3} = 2.226$$

– The observation $y_i = 30$ is 2.226 standard deviations from the mean

Standard Normal Distribution

- A *very* special distribution
 - A bell-shaped (i.e., normal) distribution that has mean=0 and standard deviation=1
- The value of each observation is already in terms of z-scores
 - Each observation shows how many standard deviations from the mean
- Question: if the variable has a standard normal distribution, would it be likely to see an observation with a value of 3?

Standard Normal Distribution

Question:

– If we have a variable with a roughly normal distribution (i.e., symmetrical), how could we transform it into a variable with a standard normal distribution (i.e., symmetrical with mean=0 and std deviation=1)?

Standard Normal Distribution

 Question: how transform a normal distribution into a standard normal distribution?

Answer:

- Find the z-score associated with each value
- Show in Stata
 - Show histogram of normal distribution variable
 - Show mean and std dev of normal distribution variable
 - Calculate z-score for normal distribution variable
 - Show list of observations
 - Show histogram of standard normal variable
 - Show mean and std deviation of standard normal variable

Z-scores and standard normal distribution

- Show standard normal distribution in OneNote
- We want to know the probability of picking an obs with a z-score value at least that high (e.g., 1.2)?
- Some basic rules:
 - Sum of all probabilities=1
 - Probability of picking an obs with a value greater than mean=.5; probability of picking an obs with value less than mean=.5
 - Symmetric: probability above mean is same as probability below mean

Z-scores and std normal distribution

- Empirical rule and Z-scores
 - About 68% of obs fall within one std dev, s, of mean, \bar{x}
 - About 95% of obs fall within two std. dev of mean
 - About 99% of obs fall within three std. dev of mean
- Show in OneNote

Table of Z-scores (inside cover Agresti)

- The distribution on the top is a standard normal distribution
 - i.e., values are in terms of standard deviations from the mean. i.e., values are z-scores
- Table shows the probability a random observation has a z-score at least as large
- How to read table:
 - Rows: first decimal place of z-score
 - Columns: second decimal place of z-score
 - Individual cells: probability of observing a z-score at least that large

Table of Z-scores (inside cover Agresti)

 Shows the probability a random observation has a zscore at least as large

Examples:

- Z= 1.00: there is a 0.1587 probability a random observation has a z-score at least as large as 1.00
- Z= 2.00: there is a 0.0228 probability a random observation has a z-score at least as large as 2.00

Always Draw Pictures!

 Write out probability you are looking for in words; draw normal distribution; label z-score(s) you are looking for; shade the region you are looking for; look at z-score table

Questions:

— What is the probability an observation has a z-score at least as large as: 1.50? 1.96? 2.33?

Z-scores: a note on notation

- When working with z-scores, pretend that the variable z is continuous, taking on an infinite number of real values. Pretend that no observation can have a z-score of *exactly* 1.
 - So probability z>1 is the same as probability of z>=1
- Notation I will use:
 - Probability z is greater than 1
 - Pr(z>1)=
 - Probability z is less than 1
 - Pr(z<1)=
 - Probability z is greater than -1.5
 - Pr(z>-1.5)=

Z-scores continued

- Z-score table shows probabilities for "right half" of distribution
 - i.e., for observations greater than the mean, i.e.,z>0
 - Because a normal distribution is symmetric (show picture), the probabilities are the same for the bottom half of the distribution.
- Find these probabilities (Draw a picture!)
 - What is the probability an observation has a z-score less than -1 (i.e., Pr(z<-1))
 - What is the probability an observation has a z-score less than -2 (i.e., Pr(z<-2))

In class exercises

- (Try a few until you feel comfortable)
- Find each probability; draw a picture for each:
 - Probability that z is greater than 1.96?
 - i.e., Pr(z>1.96)
 - Probability that z is less than -1.96?
 - i.e., Pr(z<-1.96)
 - Probability that z is greater than 2.33?
 - i.e., Pr(z>2.33)
 - Probability that z is less than -2.33?
 - i.e., Pr(z>-2.33)
 - Pr(z>1.64)?
 - Pr(z<-1.64)?
 - Pr(z>.49)?
 - Pr(z<-.49)?

Z-score probabilities continued

- What is probability of having z-score less than 1.5?
 - Draw picture!
 - Equals 1 minus probability of having z-score greater than 1.5
 - Probability rule: Pr(not A) = 1 Pr(A)
 - Probability rule: Pr(z<1.5)=1-Pr(z>1.5)
- What is probability of having z-score less than 1.96?
 - Draw picture!

Z-score probabilities continued

- What is probability of having z-score greater than -1.5?
 - Draw picture (helpful to draw two pictures)!
- What is probability of having z-score greater than -1.96?
 - Draw picture (helpful to draw two pictures)!

Probability observation is *within* some range of z-scores

- What is probability obs is within one standard deviation of the mean? i.e., Pr(-1<z<1)
 - Draw picture; use symmetry
- What is probability obs is within two standard deviations of the mean? i.e., Pr(-2<z<2)
 - Draw picture; use symmetry
- What is probability obs is within three standard deviation of the mean? i.e., Pr(-3<z<3)
 - Draw picture; use symmetry

Standard Deviation: Empirical Rule

- If variable has an approximately normal distribution (i.e., approximately "bell shaped") then:
- About 68% of obs fall within one std dev, s, of mean, \bar{x}
 - i.e., between $\bar{x} s$ and $\bar{x} + s$
- About 95% of obs fall within two std. dev of mean
 - i.e., between $\bar{x} 2s$ and $\bar{x} + 2s$
- About 99% of obs fall within three std. dev of mean
 - i.e., between $\bar{x} 3s$ and $\bar{x} + 3s$
- Show in OneNote

Probability observation is *outside* some range of z-scores

- What is probability an obs is more than one standard deviation away from the mean? i.e., Pr(z<-1 or z>1)
 - Draw picture; use symmetry
- What is probability an obs is more than 1.64 stand deviations away from the mean?
 - Draw picture; use symmetry

In class exercises (just try a few)

- Find each probability; draw a picture for each:
 - Probability that z is less than 1.96 [i.e., Pr(z<1.96)]
 - Probability that z is greater than -1.96 [i.e., Pr(z>-1.96)]
 - Probability that z is less than 2.33 [i.e., Pr(z<2.33)]
 - Probability that z is greater than -2.33 [i.e., Pr(z>-2.33)]
 - Probability that z is *within* .78 standard deviations of the mean?
 - Probability that z is more than .78 standard deviations away from the mean?
 - Probability that z is within 1.82 standard deviations of the mean?
 - Probability that z is more than 1.82 standard deviations away from the mean?

Sampling Distribution

Notation: estimates vs. parameters

- Parameter
 - Based on the population
- Estimate (also called "statistic")
 - Based on a sample
 - An estimate is our best guess of the parameter
- Estimates use regular alphabet, parameters use Greek alphabet

	Estimate (sample)	Parameter (population)
Mean	$ar{x}$	$\mu~or\mu_{ m x}$
Standard deviation	$s \ or \ s_{x}$	$\sigma\ or\sigma_{ m x}$
Sample size	n	N

Population vs. sample

- IPEDS data has the entire population of postsecondary institutions
- Consider the variable "avg. SAT score of enrolled freshmen"
 - Let's call this variable the "institutional SAT score"
 - Assuming that there are no missing values, this value is a population mean, μ , not a sample mean, \bar{x} .

Sampling Distributions: Intro

- In the case of IPEDS data, we know the population mean value of "institutional SAT score"
 - Show population mean value in Stata
- Usually, we don't know the population. Instead, we have samples.
 - So we know sample mean instead of population mean
- Usually, we only have one sample. But the sample we have is one out of many possible
- We use samples to make predictions about populations, but our predictions will differ from one sample to another

Sample Mean Changes from Sample to Sample

- Example:
 - Start with a population (institutional SAT score)
- Take a random sample of the population
 - Random sample has a probability distribution and a sample mean (show in Stata)
- Each time we take a random sample, get a different sample mean
- Imagine that we take 1,000 random samples
 - We would have 1,000 sample means
 - Consider each sample mean to be an observation
 - We would have a variable called "sample mean" with 1000 obs
 - We could plot this variable and we would get a distribution of sample means

Sampling Distribution

- A sampling distribution (of sample means) is a relative frequency distribution where each observation is a sample mean)
 - Imagine we draw n (e.g., 1000) random samples
 - For each sample, we record the sample mean
 - We create a frequency distribution of sample means
 - X-axis=value; Y= number of times a particular sample mean (e.g., $\bar{y}=1050$ is observed)
- A sampling distribution can be created for any sample statistic (e.g., mean, median, a regression coefficient)

Sampling distribution pictures

Show Applet:

- Very useful web application
- http://onlinestatbook.com/stat_sim/sampling_dist/index.h tml
- Show applet for normal population distribution
- Show applet for skewed population distribution

Sampling Distribution

- The sampling distribution shows how the value of a sample statistic varies from sample to sample
 - For example, each Presidential Election Poll represents a single sample mean from a single random sample
 - If values from each individual poll are close to one another, then we have more faith that the sample mean from one poll is close to population mean.
 - If values from each poll are far apart, then we wouldn't put too much faith in the sample mean from any single poll

Sampling Distribution

- Consider the sample mean, \bar{y} , to be a variable, because its value varies from sample to sample
- If we take random samples the value of the each sample mean, \bar{y} , fluctuates around the population mean, μ
- If we took a large number of samples (e.g., 1,000) then the mean of all sample means, $\bar{y}_{\bar{y}}$, would be equal to the population mean, μ
 - $-\bar{y}_{\bar{\nu}} = \mu$
 - Draw a picture of population distribution (label mean, std dev) over sampling distribution

Standard Error

Standard deviation

– Population standard deviation, σ , of a variable, y, is the average distance of an observation from the population mean, μ

Standard error

- Average distance of a single sample mean, \bar{y} , from the mean of the sample means, $\bar{y}_{\bar{v}}$
- Standard error, $\sigma_{\overline{y}}$, is the standard deviation of the sampling distribution.

• Draw pictures:

population distribution (show mean, std dev); sampling distribution (show mean, std err)

Standard Error

- Standard error, $\sigma_{\overline{\nu}}$
 - Average distance of a single sample mean, \bar{y} , from the mean of the sample means, $\bar{y}_{\bar{v}}$
 - Same as, average distance of a single sample, \bar{y} , mean from the population mean, μ

$$-\sigma_{\bar{y}} = \frac{std\ dev}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}$$

- Ex: $\mu = 100$; $\sigma = 23$; n = 100; $\sigma_{\overline{y}} = \frac{23}{\sqrt{100}} = 2.3$
 - On average, each sample mean is 2.3 away from the population mean
- Note that standard error, $\sigma_{\overline{y}}$, is a population parameter because it depends on population standard deviation, σ
 - i.e., we usually don't know it; we will learn a sample version

Standard Error and election polls

- Why is standard error important?
 - Standard error tells us how much statistics derived from a sample are likely to diverge from population parameters
- Sample mean, \bar{y} , is best estimate of the population mean, μ , pct of people who will vote for Obama (e.g., $\bar{y}=51\%$)
- Standard error provides an indication of how far away each sample mean is likely to be from the population mean
 - Standard error=10%: On average, the sample mean from each poll is likely to be 10% away from population mean
 - Standard error=2%: On average, the sample mean from each poll is likely to be 2% away from population mean
- Do we want standard error to be large or small? Why?

Properties of Standard Error

$$- \sigma_{\overline{y}} = \frac{std \ dev}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}$$

- Standard error decreases as size of your sample increases
 - If you have a large sample size, the sample mean is likely to be close to population mean.
 - When sample means are close to close to population mean, then standard error is small
 - Example: what is mean income in U.S.:
 - e.g., standard error smaller in 30 samples of sample size 500 compared to 30 samples of sample size 100
 - Show in Applet: http://onlinestatbook.com/stat-sim/sampling-dist/index.html
- Standard error increases when standard deviation, σ , increases (i.e., $\uparrow variability \rightarrow \uparrow std.error$)

Central Limit Theorem

Sampling distribution

- A sampling distribution of a the sample mean, \bar{y} , is the probability distribution associated with specific values of the sample mean.
- It has a mean of μ and a standard error of $\sigma_{\overline{\mathcal{Y}}}$

Central Limit Theorem

- For random sampling with a large sample size n, the sampling distribution of the sample mean , \bar{y} , is approximately normally distributed
- What is a "large" sample size
 - Agresti: n>=30 (approximately)
- Restated: no matter what the distribution of the variable, the sampling distribution will have a normal distribution

Show in Applet

- http://onlinestatbook.com/stat_sim/sampling_dist/index.html
- Change sample sizes; use skewed distribution

Shape of distribution: 3 distributions

- Three distributions
 - Population distribution
 - Sample data distribution
 - Sampling distributions
- Draw pictures for three types of variables (assume sample size > 30)
 - Normal distribution
 - Skewed distribution
 - A "proportion" variable (i.e., a 0/1 variable such as vote for Obama or Romney)
- What is shape of sampling distribution

In class exercise

- Play with the "applet"
 - http://onlinestatbook.com/stat_sim/sampling_dist/index.html
 - Note: "distribution of means" is sampling distribution
- (1) Choose "normal distribution";
 - click on "animated" several times to get several random samples;
 click on "5" to get five random samples at once; click on "1,000"
 to get 1,000 random samples
 - Watch how the sampling distribution changes as you add more sample means
- (2) Choose "skewed" distribution instead of "normal"
 - Repeat above exercises in (1)
- (3) Choose "skewed" distribution, select "N=25" instead of "N=5"
 - Repeat above exercises in (1)
 - How does shape of sampling distribution differ from (2)? What does this have to do with the central limit theorem

Khan Academy on Sampling Distributions

 http://www.khanacademy.org/math/statistics/v/sa mpling-distribution-of-the-sample-mean

Chapter 5 Statistical Inference: Estimation

Point and Interval Estimation

- Parameter
 - A summary of the population; usually unknown
- Estimates (sometimes called statistics)
 - A summary of the sample; used to make predictions about the population
 - Point estimate
 - A single number that is the best guess for the parameter (e.g., Obama approval = 46%)
 - Interval estimate
 - An interval around the point estimate, within which the parameter value is believed to fall (e.g., we are 95% sure that Obama's approval rating is between 44% and 48%)

Properties of good estimators

Unbiased

- An estimator is unbiased if its sampling distribution centers around the parameter
 - parameter=population mean μ ;
 - Estimator= sample mean, \bar{y} .
 - sampling distribution= distribution of sample means, \bar{y}
- If an estimator is unbiased, the mean of the sampling distribution equals the parameter value
 - e.g., population mean, μ , is equal to the mean of the sampling distribution, $\bar{y}_{\bar{\nu}}$
- Show in Applet:
 http://onlinestatbook.com/stat_sim/sampling_distring-t/
 t/index.html

Properties of good estimators

- Biased estimator (not good)
 - A biased estimator tends to underestimate or overestimate the value of a parameter
 - Bias often occurs because of non-random sampling or non-random missing variables
 - If missing obs are like the rest of the population, then no bias; if missing obs tend to be different from the population, then there is bias.
 - This is where a lot of funny business happens!
 - Show in Stata
 - Show population distribution
 - Show parameter estimates based on biased sample

Properties of good estimators

- Efficient estimator
 - An efficient estimator is an estimator with a low standard error
 - The more efficient your estimator (lower standard error) the closer your estimates (e.g., sample mean \bar{y}) are likely to be to the parameter value (e.g., population mean μ)
 - Estimates become more precise
 - Show example in Applet
 - Remember that standard error is the standard deviation of the sampling distribution
 - Show SE with different sample sizes

Means vs. Proportion (for this book)

- Mean
 - Refers to a quantitative variable
- Proportion
 - Refers to a categorical variable with two categories

Means vs. Proportion

- Proportion: refers to a categorical variable
 - e.g., proportion of people who are married;
 proportion of Americans with baccalaureate
 - This book usually uses 0/1 variables when referring to proportions
 - Note that you can create a 0/1 variable from a variable with more than two categories; e.g., create a 0/1 variable called "bachelor" from an input variable called "highedu"

Means vs. Proportion

- Why have we been making all these 0/1 variables?
- Special properties of "proportion" variables
 - The relative frequency of observations that equal
 1 is the same as the mean
 - Show examples in Stata:
 - When variable coded as 0/1
 - When variable coded as 2/1

Interval estimate

- Point estimate: single number that is best guess of parameter (e.g., sample mean)
- Interval estimate: interval of numbers around point estimate, within which the parameter is believed to fall (e.g., Confidence interval)
 - E.g., from a sample of 15 students, we are 95%
 sure that the average number of hours spent on statistics homework is between 2.5 and 3.4

Confidence intervals

- Very important for this entire course
- Method of teaching
 - Define confidence interval
 - Explain conceptually with pictures (most important)
 - Show how to calculate using formulas

Interval Estimate: Confidence Interval

Confidence interval:

- A confidence interval for a parameter is an interval of numbers within which parameter is believed to fall (e.g., we are 95% sure that Obama's approval rating is between 44% and 48%)
- Has the form: point estimate \pm margin of error
- The "confidence level" is the probability that the confidence interval contains the parameter.
- Higher the confidence level, wider the confidence interval

Confidence intervals

- Confidence interval for a proportion (explain first)
 - $-\pi = population proportion$
 - $-\hat{\pi} = sample \ proportion$
- Confidence interval for a mean (explain second)
 - $-\mu = population mean$
 - $-\bar{y} = sample mean$

Stuff to skip

Basic Probability Rules

- P(A) means probability that event A occurs
 - Example: Event A = coin is "tails"; P(A) = 0.5
 - Example: Event A= dice roll is "1"; P(A)=1/6
 - Example: A = graduate from college; P(A) = ?
 - Example: A = adopt an MBA program; P(A) = ?