Importing Libraries

```
In [2]: import numpy as np # linear algebra
import pandas as pd # for data processing like in this project csv loading
import matplotlib.pyplot as plt # for data visualization
import seaborn as sns # for data visualization i.e pairplot
from sklearn import metrics # for calculating rootmean square
```

Data Loading and Insites

```
In [3]: # reading the data
        df = pd.read csv('insurance.csv')
        # checking the shape
        print(df.shape)
        (1338, 8)
In [4]: # checking data points
        print(df.size)
        10704
In [5]: # previewing 1st 5 dataset checking wether its loaded or not sucessfully
        df.head()
Out[5]:
           age sex
                      bmi children smoker region
                                                    charges insuranceclaim
            19
                  0 27.900
                                              3 16884.92400
         0
            18
                  1 33.770
                                1
                                                 1725.55230
            28
                 1 33.000
                                                 4449.46200
         3
            33
                 1 22.705
                                0
                                          1 21984.47061
                 1 28.880
                                0
                                       0
            32
                                                 3866.85520
```

```
In [ ]:
```

```
In [6]: #description about data set

df.describe()
```

\sim			$r \sim r$	
11		т І	1 6	٠.
v	u	C I	ı	

	age	sex	bmi	children	smoker	region	char
count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000
mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.515695	13270.422
std	14.049960	0.500160	6.098187	1.205493	0.403694	1.104885	12110.011
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1121.873
25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.000000	4740.287
50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.000000	9382.033
75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.000000	16639.912
max	64.000000	1.000000	53.130000	5.000000	1.000000	3.000000	63770.428
4							

In [7]: |#checing information about data

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	age	1338 non-null	int64
1	sex	1338 non-null	int64
2	bmi	1338 non-null	float64
3	children	1338 non-null	int64
4	smoker	1338 non-null	int64
5	region	1338 non-null	int64
6	charges	1338 non-null	float64
7	insuranceclaim	1338 non-null	int64
d+\/n	oc. £100+64(2)	in+61(6)	

dtypes: float64(2), int64(6)

memory usage: 83.8 KB

In [8]: # checking number of null value in this data df.isnull().sum()

dtype: int64

```
In [9]: # checking if any null value is present or not
         df.isnull().any()
Out[9]: age
                           False
                           False
         sex
         bmi
                           False
         children
                           False
         smoker
                           False
         region
                           False
         charges
                           False
         insuranceclaim
                          False
         dtype: bool
In [10]: # from this data we can get insites that :
         # 1. data belongs to middle age people (mostly)
         # 2. maximum age of any person is 64 where as minimum age is 18 only
         # 3. maximum bmi is 53.13 which is a deep sign of obasity
         # 4. there is no null value in this data
         # 5. There are 676 male and 662 female
In [11]: # checking value count of male and female in data
         df['sex'].value_counts()
Out[11]: 1
              676
              662
         Name: sex, dtype: int64
```

In [12]: # ploting a bar graph showing about number of male and female
 df.sex.value_counts(normalize=False).plot.barh()
 plt.show()


```
In [13]: #pie chart: with Label and explode
    mylables=["Male","Female"] # here label is "Male - is 1 where as Female - is 0
    colors = ['orange', 'pink']
    myexplode=[0.10,0]
    size = [676, 662]
    plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = Tr
    plt.title('PIE chart representing share of men and women in insurance data ')
    plt.legend()
    plt.show()
```

PIE chart representing share of men and women in insurance data

0 324 Name: region, dtype: int64

1

325

```
In [15]: #ploting a Countplot showing region
sns.countplot("region",data = df)
plt.show()
```

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [16]: #ploting a Countplot showing age plt.figure(figsize = (10,5)) sns.countplot("age",data = df) plt.show()

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [17]: # ploting a bar graph showing about region wise with labels grid and minor gri
         x = ['North-East(0)', 'North-West(1)', 'South-East(2)', 'South-West(3)']
         size = [324, 325, 364, 325]
         plt.figure(figsize = (15,7))
         x_pos = [i for i, _ in enumerate(x)]
         plt.bar(x_pos, size, color=['cyan', 'yellow', 'green', 'orange'])
         plt.xlabel("Region")
         plt.ylabel("Size")
         plt.title("Number of Insurance Holder from All Over the region")
         plt.xticks(x pos, x)
         # Turn on the grid
         plt.minorticks_on()
         plt.grid(which='major', linestyle='-', linewidth='0.5', color='black')
         # Customize the minor grid
         plt.grid(which='minor', linestyle=':', linewidth='0.5', color='grey')
         plt.show()
```



```
In [18]: # 6.people belonging residential area from northeast(0) are 324 person; nort

In [19]: # checking children count
df['children'].value_counts()

Out[19]: 0 574
1 324
```

1 324 2 240 3 157 4 25 5 18 Name: children, dtype: int64

```
In [20]: #ploting a Countplot showing number of children
plt.figure(figsize = (10,5))
sns.countplot("children",data = df)
plt.show()
```

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [21]: #pie chart: with Label and explode
   plt.figure(figsize = (10,5))
   mylables=["No Children","1 Child","2 Children","3 Children","4 Children","5 Ch
   colors = ['orange','pink','purple','cyan','yellow','blue']
   myexplode=[0.10,0,0,0,0,0]
   size = [574, 324,240,157,25,18]
   plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = Tr
   plt.title('PIE chart representing share of person per chidren as per given dat
   plt.legend()
   plt.show()
```

PIE chart representing share of person per chidren as per given data


```
In [24]: #ploting a bar grap showing number of smoker
   plt.figure(figsize = (10,5))
   mylables=['Non-Smoker','Smoker']
   colors = ['pink','Red']
   myexplode=[0.10,0.10]
   size = [1064,274]
   plt.pie(size,colors = colors,labels =mylables,explode = myexplode, shadow = Tr
   plt.show()
```


In [24]: # 8. count of non smokers are represented as 0 which is 1064 where as 274 peop

In [25]: # pairplot
sns.pairplot(df)

Out[25]: <seaborn.axisgrid.PairGrid at 0x1c696bf81c0>


```
In [26]: # Corelation Between Diffrent Feature
           df[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges']].corr()
Out[26]:
                                             bmi children
                                                              smoker
                          age
                                    sex
                                                                         region
                                                                                  charges
                     1.000000
                              -0.020856 0.109272 0.042469 -0.025019
                                                                       0.002127
                                                                                 0.299008
                age
                     -0.020856
                               1.000000 0.046371 0.017163
                                                             0.076185
                                                                       0.004588
                                                                                 0.057292
                sex
                bmi
                     0.109272
                               0.046371 1.000000 0.012759
                                                             0.003750
                                                                       0.157566
                                                                                 0.198341
            children
                     0.042469
                               0.017163 0.012759 1.000000
                                                             0.007673
                                                                       0.016569
                                                                                 0.067998
                    -0.025019
                               0.076185 0.003750 0.007673
                                                             1.000000
                                                                      -0.002181
                                                                                 0.787251
            smoker
                     0.002127
                               0.004588 0.157566 0.016569
                                                            -0.002181
                                                                       1.000000
                                                                                -0.006208
             region
                               0.057292 0.198341 0.067998
                                                                      -0.006208
                     0.299008
                                                            0.787251
                                                                                 1.000000
            charges
In [27]: # Insite from this Corelation are : 1. Charges are Dependent Upon Age (Higher
           #plot the correlation matrix of salary, balance and age in data dataframe.
In [28]:
           plt.figure(figsize = (10,5))
           sns.heatmap(df[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'
           plt.show()
                                                                                                  1.0
                    1
                             -0.021
                                        0.11
                                                  0.042
                                                             -0.025
                                                                       0.0021
                                                                                   0.3
                                                                                                 - 0.8
                  -0.021
                                        0.046
                                                  0.017
                                                             0.076
                                                                       0.0046
                                                                                  0.057
            bmi
                   0.11
                             0.046
                                         1
                                                  0.013
                                                            0.0038
                                                                        0.16
                                                                                   0.2
                                                                                                 - 0.6
            smoker children
                  0.042
                             0.017
                                       0.013
                                                    1
                                                            0.0077
                                                                        0.017
                                                                                  0.068
                                                                                                 - 0.4
                             0.076
                                       0.0038
                                                  0.0077
                                                               1
                                                                       -0.0022
                                                                                   0.79
                  -0.025
            charges region
                 0.0021
                            0.0046
                                        0.16
                                                  0.017
                                                            -0.0022
                                                                         1
                                                                                  -0.0062
                                                                                                 - 0.2
                                                  0.068
                                                                       -0.0062
                   0.3
                             0.057
                                        0.2
                                                             0.79
                                                                                    1
                                                                                                 - 0.0
                                        bmi
                                                 children
                                                            smoker
                                                                       region
                   age
                              sex
                                                                                  charges
In [29]: df.columns
Out[29]: Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges',
                    'insuranceclaim'],
                  dtype='object')
```

```
In [30]: # Insites From this Heat Map :- 1. Smoker Tends to Pay More Insurance Charges;
In []:
In [31]: # Age vs Charges
# the more the age the more will be insurance charge (roughly estimated)

plt.figure(figsize = (10, 5))
sns.lineplot(x = 'age', y = 'charges', data = df)

plt.title("Age vs Charges")
plt.show()
```


In [32]: #bax plot for age vs charge plt.figure(figsize = (10, 5)) sns.barplot(x = 'age', y = 'charges', data = df) plt.title('age vs charges') plt.show()


```
In [33]: #plot the box plot of sex and charges
    # as 1 belongs to men : it shows that men are paying more insurance charges th
    #bar plot

plt.figure(figsize = (10, 5))
    sns.barplot(x = 'sex', y = 'charges', data = df)

plt.title('sex vs charges')
    plt.show()
```



```
In [34]: # children vs charges
# no. of childrens of a person has a weird dependency on insurance charge. i.e

plt.figure(figsize = (10, 5))
sns.barplot(x = 'children', y = 'charges', data = df)

plt.title('CHILDREN VS CHARGES')
plt.show()
```



```
In [35]: # region vs charges BAR GRAPh

plt.figure(figsize = (10, 5))
    sns.barplot(x = 'region', y = 'charges', data = df, palette = 'colorblind')

plt.title('Region vs Charges')
    plt.show()
```


In [36]: # from the graph we can clearly state that region dont play any role in charge

```
In [37]: # smoker vs charges
plt.figure(figsize = (10, 5))
sns.barplot(x = 'smoker', y = 'charges', data = df)

plt.title('SMOKERS VS CHARGES')
plt.show()
```



```
In [38]: # from the graph where 0 represents non smoker and 1 represent smoker it is cl
```

```
In [39]: # BMI vs charges
plt.figure(figsize = (20,8))
sns.barplot(x = 'bmi', y = 'charges', data = df)

plt.title('BMI VS CHARGES')
plt.show()
```



```
In [40]: # From Graph we can canclude that higher the BMI more will be Insurance Premiu
```

Data Cleaning

```
In [41]: # removing un required columns from the insurance data

# As from the above grph we can clearly state that region dont play any role i

df = df.drop('region', axis = 1)

In [42]: df.shape

Out[42]: (1338, 7)

In [43]: #as earlier there was 10704 data point the new one has 9366 data point after r

df.size

Out[43]: 9366

In [44]: # seperate out features and target value from dataset

X=df.drop(["insuranceclaim"],axis=1).values

y=df["insuranceclaim"].values

In [45]: X.shape

Out[45]: (1338, 6)

In [46]: y.shape

Out[46]: (1338,)
```

Finding an Outlier

```
In [47]: #bmi outlier
sns.boxplot(df["bmi"])
plt.show()
```

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [49]: # bmi can be more or less as per medical condition of person so no need to tre

```
In [50]: #Charges outlier
sns.boxplot(df["charges"])
plt.show()
```

D:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an ex plicit keyword will result in an error or misinterpretation.

warnings.warn(

In [51]: # Charges can be More or less as per required by insurance company

Spliting Data (Training and Testing Data) and Importing Sklearn Modules

```
In [52]: #spliting data into training and testing data set
    from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.20, random_
```

```
In [53]: print("X_train shape : " , X_train.shape)
print("X_test shape : " , X_test.shape)
print("y_train shape : " , y_train.shape)
print("y_test shape : " , y_test.shape)

X_train shape : (1070, 6)
X_test shape : (268, 6)
y_train shape : (1070,)
y_test shape : (268,)
```

Importing and Using Decision Tree (Supervised Learning) Algorithm

```
In [54]: from sklearn.tree import DecisionTreeClassifier
In [55]: # model
         dtc = DecisionTreeClassifier()
         #fitting
         dtc.fit(X train,y train)
Out[55]: DecisionTreeClassifier()
In [56]: #predicting via Decision Tree Algorithm
         y_pred=dtc.predict(X_test)
         y_pred
Out[56]: array([0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
                1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
                0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,
                0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0,
                0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1,
                1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
                1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
                1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
                1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1,
                1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,
                1, 0, 1, 1], dtype=int64)
```

```
In [57]: #Calculating RMSE Root MEan Square Error

rmse= np.sqrt(metrics.mean_squared_error(y_test,y_pred))
print("Root Mean Square Error = ",rmse)
```

Root Mean Square Error = 0.16161498378886355

Checking Out Training and Testing Data Accuracy (Actual vs Predicted)

```
In [58]: # compute accuracy on training set
         dtc train= dtc.score(X train,y train)
         print("Training Data Accuracy by Decision Tree Algorithm is : " , dtc train)
         # compute accuracy on testing set
         dtc_test= dtc.score(X_test,y_test)
         print("Testing Data Accuracy by Decision Tree Algorithm is : " , dtc test)
         Training Data Accuracy by Decision Tree Algorithm is: 1.0
         Testing Data Accuracy by Decision Tree Algorithm is: 0.9738805970149254
In [59]: # Here Training Accuracy is Greater than Testing Accuracy means our Model is O
In [60]: # calculating the mean squared error
         mse = np.mean((y_test - y_pred)**2, axis = None)
         print("MSE :", mse)
         # Calculating the root mean squared error
         rmse = np.sqrt(mse)
         print("RMSE :", rmse)
         MSE: 0.026119402985074626
```

Using Hyperparameter Tuning for Decision Tree

RMSE: 0.16161498378886355

```
In [61]: |parameters = {"splitter" : ["best", "random"],
                        "max_depth" : [1,3,5,7,9,11],
                       "min_samples_leaf" : [1,2,3,4,5,6,7,8,9,10],
                        "min weight fraction leaf": [0.2,0.3],
                        "max_features":["auto","log2","sqrt",None],
                        "max_leaf_nodes":[None,10,20,30]
         }
In [62]: #using grid search cv
         from sklearn.model_selection import GridSearchCV
In [63]: tuning_model = GridSearchCV(dtc,param_grid = parameters,
                                     scoring= "neg mean squared error",
                                     cv=3, verbose=3)
In [ ]: tuning model.fit(X,y)
In [82]: dtc.get_params().keys()
Out[82]: dict_keys(['ccp_alpha', 'class_weight', 'criterion', 'max_depth', 'max_featur
         es', 'max_leaf_nodes', 'min_impurity_decrease', 'min_samples_leaf', 'min_samp
         les_split', 'min_weight_fraction_leaf', 'random_state', 'splitter'])
In [83]: #best parameters
         tuning model.best params
Out[83]: {'max_depth': 3,
          'max features': None,
           'max_leaf_nodes': None,
          'min_samples_leaf': 1,
           'min_weight_fraction_leaf': 0.2,
          'splitter': 'best'}
In [84]: #usiing this type of hyper parameters to train our model once again
         tuned_model=DecisionTreeClassifier(max_depth=3,min_samples_leaf=1,min_weight_f
                                             splitter="best")
In [85]: #fitting model
         tuned_model.fit(X_train,y_train)
Out[85]: DecisionTreeClassifier(max_depth=3, min_weight_fraction_leaf=0.2)
```

```
In [86]: #prediction
         tuned pred=tuned model.predict(X test)
In [87]: # compute accuracy on training set
         tuned_model_train= tuned_model.score(X_train,y_train)
         print("Training Data Accuracy by Decision Tree Tuned Algorithm is : " , tuned
         # compute accuracy on testing set
         tuned_model_test= tuned_model.score(X_test,y_test)
         print("Testing Data Accuracy by Decision Tree Algorithm is : " , tuned_model_t
         Training Data Accuracy by Decision Tree Tuned Algorithm is: 0.8046728971962
         617
         Testing Data Accuracy by Decision Tree Algorithm is: 0.8208955223880597
In [88]: #Calculating RMSE
         rmse= np.sqrt(metrics.mean_squared_error(y_test,tuned_pred))
         print("Root Mean Square Error = ",rmse)
         Root Mean Square Error = 0.42320736951515897
In [89]: # calculating the mean squared error
         mse = np.mean((y_test - y_pred)**2, axis = None)
         print("MSE :", mse)
```

Imorting and Using Logistic Regression

MSE: 0.1791044776119403

In [90]: from sklearn.metrics import accuracy_score, confusion_matrix # imporing for er from sklearn.linear_model import LogisticRegression # imporing Logistic Regres

```
In [91]: # Logistic Regression model
         logreg = LogisticRegression()
         logreg.fit(X train, y train)
         D:\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:814: Converg
         enceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
         ession)
           n_iter_i = _check_optimize_result(
Out[91]: LogisticRegression()
In [92]: y_pred = logreg.predict(X_test)
         accuracy = accuracy score(y test, y pred)
         conf matrix = confusion matrix(y test, y pred)
         print("Accuracy: ", accuracy)
         print("Confusion matrix: \n", conf_matrix)
         Accuracy: 0.8208955223880597
         Confusion matrix:
          [[ 81 26]
          [ 22 139]]
In [93]: # compute accuracy on training set
         logreg train= logreg.score(X train,y train)
         print("Training Data Accuracy by Logistics Regression Algorithm is : " ,logreg
         # compute accuracy on testing set
         logreg_test= logreg.score(X_test,y_test)
         print("Testing Data Accuracy by Logistics Regression is : " , logreg_test)
         Training Data Accuracy by Logistics Regression Algorithm is: 0.828037383177
         Testing Data Accuracy by Logistics Regression is: 0.8208955223880597
In [94]: # Evaluate the model on the test data
         score = logreg.score(X_test, y_test)
         print("Accuracy of Logistic Regression is : ",score)
         Accuracy of Logistic Regression is : 0.8208955223880597
```

```
In [95]: # calculating the mean squared error
    mse = np.mean((y_test - y_pred)**2, axis = None)
    print("MSE :", mse)

# Calculating the root mean squared error
    rmse = np.sqrt(mse)
    print("RMSE :", rmse)
```

MSE : 0.1791044776119403 RMSE : 0.42320736951515897

Deciding a Model

In [96]:	# Usually We Select Only Those Model Whisch Has Highest Accuracy Among All tho
In [100]:	<pre>if tuned_model_test > logreg_test : print (" For this Data Highest Accuracy belong to Decision Tree, out of 2 else: print(" For this Highest Accuracy belong Data Logistics Regression, out of</pre>
	For this Highest Accuracy belong Data Logistics Regression, out of 4 model w ith accuracy of 0.8208955223880597
In [81]:	
In []:	
In []:	
In []:	