

Formulario de álgebra

Descarga y comparte

	IEDADES	A DITIM	ETICAS
PROP	IEDADES	AKIIIW	ETICAS

ASOCIATIVA	a(bc) = (ab)c
CONMUTATIVA	a+b=b+a y $ab=ba$
DISTRIBUTIVA	a(b+c) = ab + ac

LEY DE SIGNOS

EET DE SIGNOS		
MULTIPLICACIÓN	DIVISIÓN	
$(+) \times (+) = (+)$	$(+) \div (+) = (+)$	
$(-) \times (-) = (+)$	$(-) \div (-) = (+)$	
$(+) \times (-) = (-)$	$(+) \div (-) = (-)$	
$(-) \times (+) = (-)$	$(-) \div (+) = (-)$	

EJEMPLOS DE OPERACIONES ARITMÉTICAS

EJEIVIPLUS DE OPERACIONES ARTTIVIETICAS		
ab + ac = a(b+c)	$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$	
$a\left(\frac{b}{c}\right) = \frac{ab}{c}$	$\frac{a-b}{c-d} = \frac{b-a}{d-c}$	
$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$	$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$	
$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$	$\frac{ab+ac}{a}=b+c, \ a\neq 0$	
$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$	

ECUACIÓN CUADRÁTICA

$$ax^{2} + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

CURSO DE ÁLGEBRA

Si quieres aprender un poco más de álgebra, dale un vistazo a nuestro curso gratuito en YouTube, con cientos de ejercicios resueltos.

RADICALES		
$\sqrt[n]{a} = b \leftrightarrow a = b^n$	$\sqrt[n]{a} = a^{\frac{1}{n}}$	
$\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$	$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	
$\sqrt[n]{\frac{\overline{a}}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$\sqrt[m]{\frac{a^x}{b^y}} = \sqrt[m]{\frac{\sqrt[m]{a^x}}{\sqrt[m]{b^y}}}$	
$\sqrt[n]{a^n} = a$, si n es impar	$\sqrt[n]{a^n} = a , si \ n \ es \ par$	

LEYES DE EXPONENTES

$$P = a^{m} = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{potencia}$$

$$a^{0} = 1; \ a \neq 0 \qquad \qquad a^{-m} = \frac{1}{a^{m}}; \ a \neq 0$$

$$a^{m} \cdot a^{n} = a^{m+n} \qquad \qquad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(a^{m})^{n} = a^{m \cdot n} = a^{n \cdot m} = (a^{n})^{m} \qquad a^{\frac{m}{n}} = \sqrt[n]{a^{m}}$$

$$(a^{m} \cdot b^{n} \cdot c^{p})^{x} = a^{mx} \cdot b^{nx} \cdot c^{px}$$

$$\left(\frac{a^{m}}{b^{n}}\right)^{x} = \frac{a^{m \cdot x}}{b^{n \cdot x}} \qquad \left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$$

PRODUCTOS NOTABLES

FACTORIZACIÓN

$$a^{2m} + 2a^{m}b^{n} + b^{2n} = (a^{m} + b^{n})^{2}$$

$$a^{2m} - 2a^{m}b^{n} + b^{2n} = (a^{m} - b^{n})^{2}$$

$$a^{2m} - b^{2n} = (a^{m} + b^{n})(a^{m} - b^{n})$$

$$a^{3m} + b^{3n} = (a^{m} + b^{n})(a^{2m} - a^{m}b^{n} + b^{2n})$$

$$a^{3m} - b^{3n} = (a^{m} - b^{n})(a^{2m} + a^{m}b^{n} + b^{2n})$$

$$x^{2} + (a + b)x + ab = (x + a)(x + b)$$

$$ax^{2m} + bx^{m}y^{n} + cy^{n} = (a_{1}x^{m} + c_{1}y^{n})(a_{2}x^{m} + c_{2}y^{n})$$

$$a_{1}x^{m} \Rightarrow c_{1}y^{n} \Rightarrow a_{2}c_{1}x^{m}y^{n}$$

$$a_{2}x^{m} \Rightarrow c_{2}y^{n} \Rightarrow a_{1}c_{2}x^{m}y^{n}$$

$$bx^{m}y^{n} \downarrow (+)$$

DESIGUALDADES

Si
$$a < b \rightarrow a + c < b + c$$
 y $a - c < b - c$
Si $a < b$ y $c > 0 \rightarrow ac < bc$ y $a/c < b/c$
Si $a < b$ y $c < 0 \rightarrow ac > bc$ y $a/c > b/c$

Redes sociales

matemovil1

Formulario de álgebra

Descarga y comparte

EACTODIAL V NII	JMERO COMBINATORIO
FACIONIAL I NU	DIVIERO COIVIBINATORIO

$$n! = 1 \times 2 \times 3 \times 4 \times \dots \times (n-1) \times n; \ n \in \mathbb{N}; \ n > 1$$

$$1! = 1 \qquad 0! = 1$$

$$C_k^n = {n \choose k} = \frac{n!}{(n-k)! \ k!}$$

$$C_0^n = 1 \qquad C_1^n = n \qquad C_n^n = 1$$

NÚMEROS COMPLEJOS			
$i = \sqrt{-1}$	$i^2 = -1$	$i^3 = -i$	$i^4 = 1$
$\sqrt{-a} = i\sqrt{a}, a \ge 0$			
(a + bi) + (c + di) = a + c + (b + d)i			
(a+bi) - (c+di) = a - c + (b-d)i			
(a+bi)(c+di) = ac - bd + (ad+bc)i			
$(a+bi)(a-bi) = a^2 + b^2$			
$ a+bi = \sqrt{a^2 + b^2}$ $\overline{(a+bi)} = a - bi$			
$\overline{(a+b\iota)}(a+bi) = a+bi ^2$			
1 $a-bi$ $a-bi$			
$\frac{a+bi}{a+bi} = \frac{a+bi(a-bi)}{(a+bi)(a-bi)} = \frac{a^2+b^2}{a^2+b^2}$			

VALOR ABSOLUTO		
$ a = \begin{cases} a; & si \ a \ge 0 \\ -a; & si \ a < 0 \end{cases}$	a = -a	
$ a \ge 0$	ab = a b	_0
$\left \frac{a}{b}\right = \frac{ a }{ b }$	$ a+b \le a + b $	jvil

PROPIEDADES DE LOS LOGARITMOS		
$Si log_b a = x \rightarrow a = b^x; \ a > 0; \ b > 0; \ b \neq 1$		
$log_{10}a = loga$ $log_ea = lna$		
$log_b b = 1$	$log_b 1 = 0$	
$log_b(x^r) = rlog_b x$	$log_b b^x = x$	
$b^{\log_b x} = x$	$log_ab \cdot log_bc \cdot log_cd = log_ad$	
$log_a x = \frac{log_b x}{log_b a}$	$\frac{\log_b x}{\log_a x} = \log_b a$	
$log_b(xy) = log_b x + log_b y \qquad log_b \left(\frac{x}{y}\right) = log_b x - log_b y$		
$colog_b x = log_b \left(\frac{1}{x}\right) = log_b(1) - log_b x = -log_b x$		

Versión 1.00

Redes sociales

matemovil1

Matemóvil

matemovil2