BF16Adder論理回路実装詳細

Comp. = 1 でSwapさせる。この時、Input1 がbに行き、Input2がaに行く。

Sum: 2 / 96

比較器(Comp.) [comp.]

Sub.

• (to Cmpl. contains "only NOT gate")

Sum: 11 / 217

to Cmpl. (with Mux)

Sum: 6 / 123

例: >>5 ならば 0 1 0 1 S3 S2 S1 S0

Sum: 8 / 165

Normalize (上層: Sub時,下層: Add時) [1987]

(Normalize內部) Shift Counter

概要:

「いくつシフトすればいいか」を数える回路。基本的にプライオリティエンコーダーと同じ。

真理値表:

f7	f6	f5	f4	f3	f2	f1	f0
1	*	*	*	*	*	*	*
0	1	*	*	*	*	*	*
0	0	1	*	*	*	*	*
0	0	0	1	*	*	*	*
0	0	0	0	1	*	*	*
0	0	0	0	0	1	*	*
0	0	0	0	0	0	1	*
0	0	0	0	0	0	0	1

s2	s1	s0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

例:0.1100100なら上から2番目であり、 出力としては001(1)が出る。

$$S_2 = \neg f_7 + \neg f_6 + \neg f_5 + \neg f_4$$

$$S_1 = \neg f_7 \neg f_6 (f_5 + f_4 + \neg f_3 \neg f_2 (f_1 + f_0))$$

$$S_0 = \neg f_7 (f_6 + \neg f_5 (f_4 + \neg f_3 (f_2 + \neg f_1 f_0)))$$

(←and, or, notでしか考えてない のでxorを入れたらもっとCount が減らせるかも) 8

ulp G R め 0 0 0 0 0 * 0 0 丸め操作 =G(S+R+ulp)

Sum: 10 / 30