

Jink Gude

Productie vraag	Productie Andijk (PSA)	Productie Bergen (PSB)	Productie Mensink (PSM)	Productie Gooi	Inkoop Waternet
miljoen m³/jaar	miljoen m³/jaar	miljoen m³/jaar	miljoen m³/jaar	miljoen m³/jaar	miljoen m³/jaar
110,5	25,5	24,4	39,2	5	16,9

miljoen m³ per jaar

'Uitdagingen' sector productie PWN

- Leveringszekerheid
 - Van 5% naar 10% marge
 - Capaciteit bijbouwen
 - Voorzuivering PS Andijk einde levensduur in 2035
- Waterkwaliteit
 - Chloride
 - PFAS
 - Biologische stabiliteit
 - Mangaan (operationeel)
- Gecommitteerd aan Parijsakkoord
 - Minder CO₂ uitstoot 50% reductie in 2030
 - Meer circulair

Coagulatie voor Ceramac

update fase 1

Bram Martijn, Jim Plooij en Jink Gude Rev. 0 27-10-2020

28-10-2020

Aanleiding project

Chloridetoevoeging in de SIX

- Toevoeging 45 en 55 mg/L chloride
- IJsselmeer +/-110 mg/L maar laatste jaren >125 mg/L
- Wettelijk 150 mg/L

Reststroom

- Regeneraatstroom uit de SIX zeer hoog chloride
- Organische en anorganische vervuiling
- Tijdelijk vergunde infiltratie
- Putverstopping dus voorbehandelen

Capaciteit PSA3

- Ontwerp 5000 m³ in 2014
- Constructieproblemen van C192 naar C90
- Huidige productie winter 1100 m³/h en in de zomer 1550 m³/h

Voorgestelde alternatieve oplossing

Het vervangen van het ionenwisselingproces door een **coagulatieproces** zoveel mogelijk ingepast in de bestaande PSA3 installatie.

- Beperken chloride toevoeging bij zuivering (FeCISO₄ ipv NaCI)
- Eenzelfde waterkwaliteit (DOC en UVT₂₅₄) maar geen sulfaat en nitraatverwijdering
- Mogelijk fluxverhoging en stabiele bedrijfsvoering keramische membraanfiltratie zoals gezien bij ILCA demo 2019
- Terug naar bekende reststroom met bekende chemicaliën

Waterkwaliteit (1)

- Zuiveringsdoel SIX
 - DOC (van 6 naar 2 mg/L)
 - UVT254 (van 75% naar 92%)
 - nitraat (40% verwijdering)
 - sulfaat (80% verwijdering)
- Hoge UVT en laag nitraat beperkt energievraag UV/H₂O₂ proces op tbv primaire desinfectie en organische microverontreinigingen om te zetten

Tabel 1 TOC en UV-extinctie van het te behandelen water, na enhanced coagulation (Andijk 1) en ionenwisseling (Andijk 3) alle datapunten uit november 2018.

Coagulatie vs SIX:

	Eenheid	Inlaat	Coagulatie (Andijk 1)	SIX
Totaal organisch koolstof (TOC)	mg C/L	4,3	1,7	2,5
UV-transmissie, 254 nm	%	85%	94%	94%

Waterkwaliteit (2)

- SIX Cl⁻ uitwisselen voor anionen
- Dosering FeCISO₄ toevoegen van 14 mg/L chloride en 34 mg/L sulfaat
- Dosering FeCl₃ toevoegen van 42 mg/L chloride

Tabel 2 Waterkwaliteit inlaat (14-6-2017) en effluent SIX op gemiddelde van 14-15 juni 2017 uit twee straten (n=6), coagulatie berekend met toevoeging coagulant van 20 mg Fe/L (jaargemiddelde dosering).

		Inlaat PSA	SIX	FeClSO ₄	FeCl ₃
Chloride	mg/l Cl ⁻	134	184	148	176
Nitraat	mg/l NO ₃ -	4,4	3,8	4,4	4,4
Sulfaat	mg/I SO ₄ 2-	54	9	88	54
Waterstofcarbonaat	mg/l HCO ₃ -	139	116	139	139
Corrosie-index	-	2,16	2,83	2,64	2,68

$$CI = \frac{Cl^- + 2 \cdot SO_4^{2-}}{TAC} < 1$$

Productiecapaciteit

Ontwerp

• 10 ketels, 192 membranen, 25 m², 5500 m3/h → flux 125 L/m²/h

Seizoen	ketels	membranen	oppervlak	flux	verlies	productie
	#	#	m2	L/m2/h	%	m3/h
Winter < 10C	9	90	25	70	18%	1162
Zomer >10C	10	90	25	90	18%	1661

ILCA onderzoek (Floris, 2019)

6 mg/L Fe als FeCISO₄

Seizoen	ketels	membranen	oppervlak	flux	verlies	productie
	#	#	m2	L/m2/h	%	m3/h
Winter < 10C	9	90	25	140	18%	2325
Zomer >10C	10	90	25	140	18%	2583

Inpassen coagulatie in bestaande SIX installatie

Hars bezinkt sneller dan ijzervlokken

Tabel 3 Oppervlaktebelasting op de lamellenseparator as built in de SIX en de resulteren de productiedebieten.

		SIX	Coagulatie	Coagulatie	Coagulatie
		ontwerp	standaard	WPJ	Max.
Oppervlaktebelasting lamellen	[m³/m²h]	6,5	1,2	1,6	3,0
Netto oppervlak per straat	m ²	138	138	138	138
Bruto oppervlak per straat	m ²	6,9	6,9	6,9	6,9
Aantal SIX straten	#	6	6	6	6
Productie	[m³/h]	5399	995	1327	2488
SIX reactoren	[m³]	400	400	400	400
Verblijftijd in SIX reactoren ¹	[min]	26	139	104	55

PWN

Methode en technieken

pilotschaal 8 weken data acquisitie / instellingen draaien

Variabelen:

- IJzerlast op C1 / mate van sedimentatie (CFS)
- 2. Flux microfiltratie C1
- 3. pH waarde influent microfiltratie

Instellingen:

- A. Minimaal ijzervlokken (Fe <0,5 mg/L) bij flux 90, 140, 180 en 200 L/m²/h;
- B. IJzervlokken (Fe ≈ 6 mg/L conform ILCA) bij flux 90, 140 en 180 L/m²/h;
- C. Alle ijzervlokken (in=uit) (Fe ≈ 20 mg/L) bij flux 90 en 140; met en zonder pH correct.

Risico's / onzekerheden bij experimentopzet:

- Kort:
 - Seizoenen/watertemperatuur
 - Langdurige stabiliteit aantonen flux en TMP i.c.m. reinigingsregime
- C1 i.p.v. C90 (reinigbaarheid)

Orange: omgebouwde SIX installatie tot coagulatie, flocculatie en sedimentatie unit; vaste coagulatie dosering 20 mg Fe/L.

Groen: keramische microfiltratie container met drukbuis en 1 membraan (C1); gebruikt, representatief membraan uit PSA3.

Sensoren en data acquisitie op deze pilot uitgevoerd. Bovenstaande plaatje is dashboard.

Coagulatie in SIX installatie

Resultaten en interpretatie

- Coagulatie met statische menger representatief voor evt. opschalen
- Vlokvorming in pilot SIX contactoren met mechanische menging
 - Verblijftijd representatief irt oppervlaktebelasting lamellen
 - Mengenergie geïmproviseerd maar niet kritisch in deze fase
- Bezinking op lamellen
 - Oppervlaktebelasting representatief voor huidige installatie PSA3
 - Vlok desintegratie ten gevolge van turbulentie bij hogere debieten
 - Scherpe doorslagcurve: 60% meer debiet 20x zoveel ijzervlokken (zie grafiek)
- Slibafvoer onder lamellenpakket
 - Royaal gedimensioneerd om niet limiterend te zijn maar niet representatief gemaakt voor latere proces in PSA3

Coagulatie gedrag zoals voorspeld en voldoet voor gewenste instellingen C1, wel scherpe doorslagcurve.

Microfiltratie

Representativiteit:

C1 opereerde op dezelfde instellingen als PSA3; H₂O₂ 10 mg/L, filtratietijd 33 min, CEWB met chloor en CEBW met HCl en H₂O₂; CIP zonder opwarmen met chloor, H₂O₂, HCl en citroenzuur mogelijk

CIP:

Niks wijst erop dat we het volledig vervuilde membraan niet meer schoon krijgen met gangbare chemicalien

<u>pH:</u>

pH correctie noodzakelijk – desorptie → UVT

TMP:

Testen in groen lijken zeer stabiel met weinig TMP verhoging (test C2 op limiet maar zonder HCl in CEBW door storing). Andere testen instabieler en lijken niet haalbaar (hoog TMP verhoging)

Geen pH correctie

Vergelijking Andijk 3 en CVC

Trans Membrane Pressure (TMP)

 Testen in groen zeer stabiele en lage TMP op hogere flux in vergelijking tot PSA3, andere testen instabiele en lijken niet haalbaar

Waterkwaliteit (1)

indicatie zonder onderscheid naar procesinstellingen

	Unit	Ruw	Six-PSA	CM PSA	Six-pi	Coa- eff	C1-eff
		n=4			n=4	n=8	n=8
Chloride	mg/L	121	167	167	202	134	134
Sulfaat	mg/L	57	12	12	2	100	100
DOC	mg C/L	5,2	3,2	2,3	2,55	2,1	2,4
UV-t	%	77	92	93	92	93	90
Natrium	mg/L	84	88	89		83	102
HCO ₃	mg/L	129	114	112	74		
рН	-	7,8		8,0	7,6	6,4	7,9
Mangaan	ug/L	30	57	34	28	57	30
NO ₃	mg/L	1,1			0,6		

Directe celtelling: logverwijdering >4,4

- Integer membraan
- Goede desinfectiecapaciteit PSA3

UitgelichtCoagulatie-C1-eff vs SIX-CM PSA

- Chloride: 134 mg/L i.p.v. 167 mg/L
- Sulfaat: 100 mg/L ipv 12 mg/L
- DOC: 2,4 mg/L ipv 2,3 mg/L
- UVT:
 - Bij volledige sedementatie conform SIX-CM PSA
 - Bij gedeeltelijke sedimentatie 90%-92% ipv 93%
 - Oorzaak UVT variatie: desorptie
 - pH verhoging met vlokken resulteert in daling UV-t en stijging DOC

Waterkwaliteit (2)

Organische stof karakterisering influent CM

 Vergelijkbaar verwijderingsrendement DOC tussen SIX en Coagulatie met twee verschillen:

Biopolymeren worden:

- niet verwijderd in SIX
- wel ingevangen door coagulatie
- relatie biopolymeren en membraanfouling / TMP!
- Building blocks beter verwijderd door SIX. Relatie tot biologische stabiliteit?

Advies: studie naar effecten biologische stabiliteit meenemen

'Principe' CVC in PSA3

Conclusies:

- Waterkwaliteit coagulatie microfiltratie CVC concept voldoet
- Coagulatie inbouw mogelijk met chemicaliengebouw en statische mengers
- Flocculatie mogelijk in SIX contacttorens
- Bezinking ijzervlokken niet mogelijk met huidig lamellen oppervlak
- Meer waterproductie en stabielere procesvoering bij CVC ten opzichte van PSA3 met SIX
 - Randvoorwaarde: geen lage pH (pH 6,4)
 - Bij pH verhoging en ijzervlokken op membraan UVT verlies

Wat betekent dat voor mogelijke scenarios?

Voorzet voor scenario's

A. Volledige sedimentatie in nieuw te bouwen gebouw

- Uitgangspunt: 4400 m² netto bezinkoppervlak (0,9 m³/m²/h)
- Zomer: minimaal 3500 m³/h
- Winter: geen data
- Maximale UVT in CVC concept (geen desorptie)

B. Maximale uitbreiding lamellensedimentatie in bestaand gebouw

- Uitgangspunt: 2000 m² netto bezinkoppervlak (0,9 m³/m²/h)
- 2 typen ijzerbelasting:
 - Volledige sedimentatie: 1620 m³/h (beperking bezinkoppervlak)
 - Maximale UVT in CVC concept (geen desorptie)
 - Gedeeltelijke sedimentatie: 2690 m³/h (flux 140: beperking microfiltratie operatie)
 - Deels UVT verlies (1-2%) door desorptie
- Winter: geen onbekend.

C. Minimale investering / geen bezinkoppervlak

- Uitgangspunt veilige fluxprognose 90 L/m²/h (beperking is microfiltratie)
- Zomer: minimaal 1680 m³/h
- Winter: geen data
- Deels UVT verlies (3%) door desorptie

Variant A:

Volledige sedimentatie in nieuw te bouwen gebouw

Plus

- Maximale productie
- Geen verlies UVT
- Beste presetaties MF
 - TMP, Chemicalienverbruik

Productie schatting

3500 m³/h

Uitgangspunt

 Lamellen volledige sedimentatie (0,9 m³/m²/h) voor 4000 m³/h = 4400 m²

Kosten (kostenstandaard / grove inschatting)

- Chemicalien dosering (Oranje)
 - Inv. 1,5 M€ (op basis van NaOH Andijk)
 - Expl. 0,91 ct € / m³
- Sedimentatie (Groen)
 - Inv.: 9,3 M€
 - Exp. 2,21 ct € / m³
- Additionele kosten
 - NaOH
 - Mengenergie
 - Slibverwerking

Realisatie tijd

Onderzoek/ontwerp/bouw < 3jaar

Risico's technologie

Kapot gaan vlokken: Vlokkentransport van SIX torens naar sedimentatie

Variant B:

Maximale uitbreiding lamellensedimentatie in bestaand gebouw

Risico's technologie

- Verlies UVT (1%)
- Prestaties MF
- TMP
- Chemicalienverbruik

Risico's realisatie

- Volledige retrofit lamellen
- Fundering draagkracht
- Kosten? Check met PSA3 team!

Productie schatting

1690 – 2690 m3/h

Uitgangspunt

Maximale realisatie lamellen in bestaand gebouw

Kosten (grove inschatting)

- Chemicalien dosering (Oranje)
 - Inv. 1,5 M€ (op basis van NaOH Andijk)
 - Expl. 0,91 ct € / m³
- Sedimentatie (Blauw)
 - Uitbreiding inpandig 3M€
 - slibverwerking

Realisatie tijd

Onderzoek/ontwerp/bouw < 2 jaar

Plus

- Redelijke productie
- Snelle realisatie tijd
- Kosten

Variant C:Minimale investering

Plus

- korte realisatie tijd
- kosten
- reststroom

Productie schatting

• 1680 m³/h

Uitgangspunt

Al het ijzer door naar membraan

Kosten (grove inschatting)

- Chemicalien dosering (Oranje)
 - Inv. 1,5 M€ (op basis van NaOH Andijk)
 - Expl. 0,91 ct € / m³
- Additionele kosten
 - NaOH
 - Mengenergie
 - Slibverwerking uit microfiltratie als hagelslag

Realisatie tijd

Onderzoek/ontwerp/bouw < 2 jaar

Risico's

- Verlies UVT (2-3%)
- Prestaties MF
 - TMP
 - Chemicalienverbruik

Voorlopige evaluatie scenario's A, B en C

vrije interpretatie projectteam

Scenario	Productie- schatting [m³/h]	Prod. t.o.v. PSA3	Investering/ realisatietijd	Robuustheid o.b.v. resultaten proefneming	Waterkwaliteit (UVT)
А	3500	+++	-	++	+
B_1	1620	+/-	+/-	++	+
B ₂	2690	++	+/-	+/-	-
С	1680	+/-	++		

Weging per criterium en verdere technische ondervindingen bepaalt optimaal scenario voor PWN

Concentratie (PFOA-eq/I)

PS Andijk (onder)

Koolfilter Andijk

PFAS

Uitbreiding WPJ

Go-no go pilot WPJ uitbreiding Technologie

Namens projectteam uitbreiding WPJ

Jink Gude

Achtergrond project uitbreiding WPJ

- Extra capaciteit nodig (MLTHP 2019)
 - Extra capaciteit tbv uitbreiding Heemskerk
 - Vergroten redundantie WRK systeem
 - Huidige WPJ levert minder dan de ontwerpcapaciteit en dat gaat nu knellen
- Sinds eind 2020 is er een interne projectgroep om uitbreiding WPJ voor te bereiden
 - Technologisch (Bedrijfsvoering, PT, BPD, PWNT)
 - Inkoop (Bas Stoop)
 - Projectmanagement en aanbesteding (Marcel Wink)
- Sinds zomer 2021
 - Pilot en technology provider en aannemer geselecteerd: Nijhuis GMB
 - Onderdeel van het project is technologisch meest aantrekkelijke processchema vast te stellen en de ontwerpgrondslagen bepalen
- Maar waarom pilot en niet letterlijk WPJ technologie uitbreiden?

Projectachtergrond Initiatieffase

Definitie	Wie	Opmerking
Basis eisen; Wat zijn de kaders van het project?	Project team PWN	• Beslisdocument
Waterkwaliteitseisen	PWN/PWNT	Analyse alle gebruikersKijk naar de toekomstIn aanbestedingsleidraad
Concept keuze. Welke concepten zijn kansrijk en willen we testen?	PWN/PWNT	Literatuur onderzoekErvaring ander bedrijvenKosten analyseMarkt consultatie
Pilot definitie (voor aanbesteding)	PWN/PWNT	Aanbestedingsleidraad
Pilot definitie definitief	PWN/PWNT/Nijhuis	In bouwteam Nijhuis
Onderzoeksplan	PWN/PWNT/Nijhuis	In bouwteam

Waarom geen WPJ kopie

- 1. WPJ is voor 14.400 m³/h ontworpen maar doet afhankelijk van het seizoen 7.000 tot 9.000 m³/h
- 2. Waterkwaliteitseisen voor de nieuwe WPJ gaan omhoog
- 3. Optimalisatievraag: kan het sowieso beter?
 - Duurzaamheid!
 - 2. Kosten
 - 3. Ect?

Randvoorwaarde technologie

Andere technologieën zouden hiervoor mogelijk in aanmerking kunnen komen, maar WRK/PWN heeft besloten om zich te beperken tot: microzeven-coagulatie-flocculatie-vlokafscheiding-snelfiltratie met het oog op;

- Beperkte onderzoeks- en realisatietijd;
- Ervaring met proces;
- Bekende reststromen.

Bestaand WPJ

- In bedrijf sinds 1981, ontwerpcapaciteit 14.400 m³/h, reele capaciteit max. 9000 m³/h
- Processtappen:
 - Trommelzeven, 200 μm
 - Coagulatie d.m.v. FeCl₃, c.a. 14 26 mg Fe/l
 - Flocculatie 15 min ontwerp
 - Lamellenseparators (1,6 m³/ m²/h ontwerp → 0,9 m³/ m²/h reeel)
 - Opwaartse zandfiltratie 20 m/h
 - Slibverwerking in bezinkvijvers en slibdroogbedden

		WPJ	WPJ	WPJ
productie		14000	9000	6000
aantal straten		6	6	6
totaal productie	[m3/h]	2333,333	1500	1000
Surface load	[m/h]	1,62	1,04	0,70
Verblijftijd flocculatie	[min]	14,91	23,20	34,80
Filtratiesnelheid	m/h	20	12	9

PWN system en WPJ gebruikers

- Voorgezuiverd water t.b.v. drinkwaterproductie:
 - PWN
 - UF/HF t.b.v. ontharding
 - UV/H2O2 t.b.v. duininfiltratie
 - UV/H2O2–AKF t.b.v. (back-up) PSA
 - Waternet
 - Infiltratiewater (direct?)
- 2. Industrie water:
 - Bestaande WRK contractanten (Tata, CvG)
 - Nieuwe klanten?

2. Waterkwaliteitseisen

Parameter	Units	Target new extension	WPJ actual (average) 2000 – 2020
Total suspended solids	mg/l	< 0.1	0.01
Turbidity	FTE	< 0.15	0.03
DOC	mg/l C	<3	3.2
UV-Transmissie 254	%	> 89%	85%
Iron	μg/l Fe	<30	15
Manganese	μg/l Mn	< 1	0.2
Ammonium	mg/l N	< 0.1	0.015
Bicarbonate	mg/l HCO3	> 90	140
Chloride	mg/l Cl	Minimum addition	160
Sodium	mg/l Na	Minimum addition	90
Sulphate	mg/l SO4	Minimum addition	62
SI	рН	0.1 - 0.4	0.15
Hydrobiologie		Zo goed als PSA1	

Identified Process Improvements WPJ

- Enhanced coagulation possibly with additional pH correction (CO₂)
 - Improvement in water quality (UV-T, removal of organic material)
 - Lower iron dosage and chemical use (NaOH)
 - Minimize floc-agent
- CO₂ removal after sedimentation
 - Lower chemical usage (NaOH)
- Rapid sand filtration flow direction (change from upwards to downwards)
 - Flowrate estimates from 7 to 20 m/h
 - Improvement in water quality (TSS?, hydrobiology?)
 - Lower losses during backwashing? Relevant?
- Use of a smaller screen size (35 μm instead of 200 μm
 - Possible positive influence on all downstream processes (including mussels?)
- Finding optimal design

Chemicaliënverbruik optimalisatie

		FeCl ₃ (40%)	CO ₂	NaOH (50%)
Prijs	Eur/ton	95	72	265
Co2-eq	kg/kg/CO2-eq	0,18	0,78	1,36

Chemicaliënverbruik optimalisatie

HCO3 mg/L

156

128

156

38

38

29

20

10

10

0,3

0,3

0,3

80

85,8

86,1

WPJ bestaand

+cascade en CO₂

+cascade

Scenario Eenheid		FeCl ₃ (40%)	CO ₂ (100%)	NaOH (50%)	TOTAAL		
WPJ bestaand		ton/j	5596	0 2744			
+cascade		ton/j	5596	0 1326			
+cascade (en CO ₂	ton/j	4197	848 1326			
	_						
WPJ besta	and	ton CO ₂ -eq	1.007	0	2744	3.752	
+cascade		ton CO ₂ -eq	1.007	0	1326	2.333	
+cascade (en CO ₂	ton CO ₂ -eq	755	661	1326	2.743	
WPJ besta	and	Euro / jaar	€ 532.000	€0	€ 727.000	€ 1.259.000	
+cascade		Euro / jaar	€ 532.000	€0	€ 351.000	€ 883.000	
+cascade (en CO ₂	Euro / jaar	€ 399.000	€ 61.000	€ 351.000	€ 811.000	
	_						
				Totaal	WPJ bestaand	€ 1.634.028	
CI N		CI	LIVIT	kosten incl.	+cascade	€ 1.116.305	
Cl	Na	SI	UVT	CO ₂ +cascade en CO ₂		€ 1.085.414	
mg/L	mg/L		-				

Samenvatting: waarom pilot?

- Geen voorbeeld aan bestaande WPJ
 - Ontwerpuitgangspunten "uit het lood"
 - Nieuwe ontwerpuitgangspunten valideren
 - Waterkwaliteit voldoet op aantal punten niet
- Verbeterde/efficiëntere vlokafscheiding?
 - Flotatie meer en meer toegepast (m.n. Evides)
 - Kleinere footprint
 - Mogelijk minder chemicaliën
 - Elektrificeer ambitie
 - Robuuster bij lagere temperaturen

Figure 1 | Typical DAF system schematic.

Project en pilot

Begroting RHDHV in Aanbestedingsleidraad (max. kosten van Lamellen separator)

Onderdeel	Waarde
Fase 1	4400 m ³ /h
CAPEX	46 M€
Exploitatie (Ex. CO2 uitstoot)	3,8 M€/jaar
Levensduur	30 jaar
"Total cost of Ownership"	160 M€

- Kunnen we dit minimaliseren en projectdoelen halen? (ook duurzaamheid CO₂)
- Is een DAF beter dan een LS?
- Hoe minder we testen hoe meer veiligheid we moeten inbouwen.
 - Het zal wel werken maar niet optimaal zijn?

Investeren in een pilot onderzoek

Er zit ook verbanden tussen, systeem analysis nodig

Ramingen ontwerp keuzes

- Ruwe inschatting voor initiële motivatie concept keuze en pilot onderzoekplan, (RHDHV calculator, voor 4400 m³/h)
- Alles moet worden gecheckt na conclusies pilot en kennis Nijhuis
- Let op! Is maar één aspect in TOM analysis

Onderdeel	Range	САРЕХ	OPEX
MZ zeefwijdte	200 – 35 μm	4,6 - 8,7 M€	Vergelijkbaar verhouding als CAPEX Mosselen verwijdering moet ook worden meegenomen
Flocculatie verblijfstijd	LS 20 - 30 min DAF 10 - 20 min	300 k€/min LS 5,9 - 8,8 M€ DAF 2,9 - 5,9 M€	≈
Floc-agent, WISPRO	Wel of niet	700 k€	60 k€/jaar
LS oppervlakte belasting	0,6 - 0,9 m/h	1.3 M€/(m/h) 10,4 -14.4 M€	≈
Separatie concept	LS of DAF	LS 10,4 - 14.4 M€ DAF 4,3 - 5,9 M€	Hoger voor DAF (energie = CO2)
ZF concept	Opwaarts (16-19 m/h) Neerwaarts (7-9 m/h)	Op. 5,1 - 5,7 M€ Neer. 8,3 - 9,7 M€	Neerwaarts 30-50% hogere (met afschrijving)
ZF korrelgrote (opwaarts)	Gem Grof 7-15 m/h	c.a. 700 k€/(m/h) Δ 4,9 M€	Hoger voor kleinere fractie

Concept keuze en pilot

Figure 1 Pilot block scheme

Puur water & natuur

Puur water & natuur

Hoe gaan we de pilot bedrijven

- Gedetailleerd pilotschema, 5 weekse cyclus met dagelijks veranderende instellingen, afgestemd tussen PWN(T) en Nijhuis
- Bedrijfsvoering in de proevenloods in Andijk door pilotoperator PWNT
- Pilotengineer (PWNT en Nijhuis) om proevenprogramma en dataverzameling te coordineren
- Kernteam om voortgang te bespreken
- Medio Q3 tussenrapport om voorzichtig voor te sorteren op concept
- Veel automatische bedrijfsvoering (muv steeds nieuwe instellingen) en dataverzameling in datalake en processoftware van GMB Nijhuis (relatie met Digitale Transformatie PWN)
- Eind Q4 raportage pilot WPJ en afweging PWN tot voortzetting pilot

Pilot onderzoeksplan

Uitdaging	Oplossing / Strategie
Heel veel variabelen, wat gaan we onderzoeken?	Samen met Nijhuis hebben we primair variabelen geïdentificeerd dat een significant invloed zal hebben op de TOM analyse en waar er onvoldoende kennis is om ontwerp te definiëren = primair variabelen
Seizoensinvloeden meenemen voor alle variabelen, en onderlinge invloed van variabelen	Herhalende pilot cyclus van 5 weken, waarin alle primair variabelen worden onderzocht, en hun onderlinge invloed
Extreem koud periode kan bepalend zijn (<3 degC)	Strategie vastgelegd voor extreem koud weer, buiten herhalende pilot cyclus
Optimaal operatie vastsleggen	Tussen testen in pilot cyclus continu verbetering van operatie besproken wekelijks met pilot kernteam Ondersteuning door 2 wekelijks bekerglas proven
Tijdsdruk om definitie fase te beginnen	Tussen rapportage in Q2 maken met voorlopige conclusies van winter. Q3 en Q4 voor verificatie

Activiteiten en projectplanning

Wat	Wanneer	Wie
Definitie pilot plan	Q4 2021	Pilot kernteam
Start pilot onderzoek	Week 1, 2022	Pilot kern team
Uitvoering	Tot eind 2022	Pilot kern team
Tussentijdse pilot resultaten rapportage, Met voorlopig aanbevolen ontwerp parameters	Eind Q2	Pilot kern team
Begroting en door berekenen van voorlopige keuzes uit tussentijdse rapport (CAPEX, OPEX, TCO, CO2 eq., enz.) en uitvoeren van TOM*	Q3	Project kern team
Voorlopige keuze van zuiveringstrein*	Q4	Project kern team
Definitief pilot rapport	Eind Q4	Pilot kern team
Definitief begroting en door berekenen van opties (CAPEX, OPEX, TCO, CO2 eq., enz.) en uitvoeren van TOM*	Eind Q4	Breed project team
Definitieve keuze van zuiveringstrein*	Eind Q4	Kern project team

^{*}Onderdeel van definitiefase

Projectorganisatie

Taak/Groep	Naam	Kernverantwoordelijkheden
Pilot operator	"Nog in te vullen" (PWNT)	Dagelijks operatie van pilot en monstername
Pilot engineer	"Nog in te vullen" (PWNT en NI)	 Wekelijks data aggregatie/validatie Samenstellen en presenteren van week en maand rapporten Checken dat pilot plan wordt gevolgd en loggen van afwijkingen
Extern water analyse	HWL	Ophalen monsters en analyse, online meter onderhoud/kalibratie
Lab. onderzoeker	"Nog in te vullen" (PWNT)	 Rapporteren van bekerglasproeven (elk 2 weken en eindrapport)
Pilot kernteam	J. Plooij (PWN) J. Gude (PWN) H. Teeuw (NI) Operator (PWNT) Pilot engineer (PWNT/NI)	 Bespreken van week rapportage Analyseren van resultaten betreft van project doel Besluiten maken over aanpassingen van instellingen (optimalisatie) Besluiten maken van aanpassingen van pilot plan Samenstelling van maand en kwartaalrapportage
Pilot breed team	Kern team + M. Wink (PWN) M. Visser (PWN) Proces technoloog (PWN) B. Martijn (PWNT) E. Prest (PWNT) M. Welling (PWNT) A. Kluit (NI) J v. Bastelaar (NI)	 Bespreken van maand, kwartaal, tussen en eind rapportage Samenstelling van kwartaal, tussen en eind rapportage Analyseren van resultaten betreft van project doel Bewaking project doel
Breed projectteam	Zie PMP (inclusief GMB)	Resultaten van pilot spiegelen aan overal project doel

Pilotbudget

Exclusief huur en levering piloot

Onderdeel	Begroting
Totaal uren pilot onderzoek	537 k€
Uren lab. onderzoek	33 k€
Monstername PWNT lab	7 k€
Monstername en analyse kosten (HWL)	158 k€
Chemicaliën gebruik	35 k€
Totaal:	770 k€

Pilot deliverables

Het verkrijgen van betrouwbare resulaten om:

- De geselecteerde technologieen te vergelijken (DAF en LS) gebaseerd op:
 - Waterkwaliteit;
 - CAPEX (investeringskosten);
 - OPEX (operationele kosten);
 - Duurzaamheid
 - Robuustheid proces;
 - Onderhoud;
- 2. Definieren van ontwerpuitgangspunten voor beste passende technologie:
 - Uitgangspunten geschikt voor betrouwbaar opschalen;
 - Testen en valideren equipment

Uitdagende bron

Nitraat WCB ruw mg/L 9,01 Nitraat ijsselmeer 3,64 13,10

Tabel 1 Bronwaterkwaliteit (ca. 2018) en behandeling bij PWN (*2000 – 2020), Waternet en Evides.

Parameter	Eenheid	PWN		Waternet			Evides			
Supply		IJsselmeer (Rijn)		Lek		Bergsche Maas				
				Reservoir (with						
Туре		Reservoir		coagulation)		Reservoir				
Area	На	45		200m x 120m = 2,4 Ha		615				
Volume	m³	3.760.000			n.v.t.			86.000.000		
Residence time	weken	7		n.v.t.		112				
Buffer	weken	1		n.v.t.		10				
		min	gem	max	min	gem	max	min	gem	max
Chloride	mg/l Cl	59	124	231	44	98	124	21	47	76
TOC	mg/L C	5 7 11		2,5	3	3,5	3,5	5	7	
UV-extinction, 254 nm	1/m	10 14 24		6	7	11	9	12	15	
Suspended solids	mg/l	0,5 18 70		11	33	76	7	14	28	
Chlorofyl-A (algen)	μg/l	4*	48	70*		7			2	

- Hoge organische belasting resulteert in hoge dosering chemicaliën tijdens coagulatie (FeCl₃, NaOH)
- Terwijl regulering van parameters Cl⁻, SO₄²⁻ en Na⁺ beperkt grote concentratieverhoging van deze parameters.

