Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

 $\textbf{1.} \quad \text{This aim of this quiz is to familiarise yourself with vectors and some basic vector operations.}$

1/1 point

For the following questions, the vectors ${f a},{f b},{f c},{f d}$ and ${f e}$ refer to those in this diagram:

The sides of each square on the grid are of length 1. What is the numerical representation of the vector ${f a}$?

- O $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- $left[2]{2}$
- $O\begin{bmatrix}2\\1\end{bmatrix}$
- $O\begin{bmatrix}1\\2\end{bmatrix}$

You can get the numerical representation by following the arrow along the grid.

2. Which vector in the diagram corresponds to $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$:

1/1 point

- O Vector a
- O Vector **b**
- \bigcirc Vector ${f c}$
- $\bigcirc \ \, \text{Vector}\, \mathbf{d}$
- **⊘** Correct

You can get the numerical representation by following the arrow along the grid.

3. What vector is $2\mathbf{c}$?

1/1 point

Please select all correct answers.

⊘ Correct

Multiplying by a positive scalar is like stretching out a vector in the same direction.

- $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
- Correct
 A scalar multiple of a vector can be calculated by multiplying each component.
- $egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} -2 \ 2 \end{array} \end{array}$

4. What vector is $-\mathbf{b}$?

Please select all correct answers.

□ e

✓ d

Correct
Multiplying by a negative number points the vector in the opposite direction.

- $\begin{array}{c|c}
 & -2 \\
 & 1
 \end{array}$
- $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$
- ⊘ Correct A scalar multiple of a vector can be calculated by multiplying each component.
- 5. In the previous videos you saw that vectors can be added by placing them start-to-end. For example, the following diagram represents the sum of two new vectors, ${f u}+{f v}$:

1/1 point

1/1 point

The sides of each square on the grid are still of length 1. Which of the following equations does the diagram

- $\begin{array}{l}
 \bigcirc \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix} \\
 \bigcirc \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \\
 \bigcirc \begin{bmatrix} 2\\1 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \\
 \bigcirc \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \\
 \bigcirc \begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix}
 \end{array}$
- \bigcirc Correct

We can see that summing the vectors by adding them start-to-end and adding up the individual components gives us the same answer.

1/1 point

6. Let's return to our vectors defined by the diagram below:

What is the vector $\mathbf{b} + \mathbf{e}$?

- $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ \circ
- \circ
- 0
- •

Vectors are added together entry by entry. They can also be thought of as adding start to end, like in the following diagram:

- $\bigcirc \quad \left[\begin{smallmatrix} 4 \\ -2 \end{smallmatrix} \right]$
- O $\begin{bmatrix} -4\\2 \end{bmatrix}$
- $O\begin{bmatrix}2\\-4\end{bmatrix}$

⊘ Correct

Remember that vectors add by attaching the end of one to the start of the other, and that multiplying by a negative number points the vector in the opposite direction.

