SRM Institute of Science and Technology Department of Mathematics B102T-Advanced Calculus and Complex Anal

18MAB102T-Advanced Calculus and Complex Analysis 2020-2021 Even

Unit – I: Multiple Integrals Tutorial Sheet - III

S.No	Questions	Answers
Part – A [3 Marks]		
1	Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x+y} e^{z} dx dy dz$	$\frac{1}{2}$
2	Evaluate $\iint_{0}^{a} \int_{0}^{b} \int_{0}^{c} e^{x+y+z} dz dy dx$	$(e^a - 1)(e^b - 1)(e^c - 1)$
3	Evaluate $\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} xy^{2}zdzdydx$	26
4	Evaluate $\iint_{0}^{1} \iint_{0}^{2} (x+y+z) dx dy dz$	18
5	Evaluate $\int_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x dx dy dz$	$\frac{4}{35}$
Part – B [6 Marks]		
6	Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{(x+y)^2} x dz dy dx$	$\frac{1}{10}$
7	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \int_{0}^{\sqrt{a^2 - x^2 - y^2}} \frac{dxdydz}{\sqrt{a^2 - x^2 - y^2 - z^2}}$ Calculate volume of solid bounded by the surface x = 0, y = 0, x + y + z	$\frac{\pi^2 a^2}{8}$
8	Calculate volume of solid bounded by the surface $x = 0$, $y = 0$, $x + y + z = 1$ and $z=0$	$\frac{1}{6}$ cubicunit
9	Evaluate $\iiint xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$	$\frac{a^6}{48}$
10		1
10	Evaluate $\iiint dx dy dz$ where V is the volume of the tetrahedron whose vertices are $(0,0,0)$, $(0,1,0)$, $(1,0,0)$ and $(0,0,1)$	$\frac{1}{6}$ cubicunit