Devoir libre no 1

Exercice 1

- 1. Soit n un entier naturel.
 - (a) Étudier la parité des nombres suivants : $n^2 + 3n + 4$; $(2021)^n + 4$ et $2n^3 + 17n$
 - (b) Chercher to us les entiers naturels n tel que : $\frac{2n+7}{n+2} \in \mathbb{N}$.
 - (c) Montrer que : $\frac{2^n}{5^m} \in \mathbb{D}$ pour tout m et n de \mathbb{N} .
 - (d) Montrer que : $A = 7^{n+1} + 8 \times 7^n$ est divisible par 15.
- 2. Soient a = 3060; b = 1224 et c = 71.
 - (a) Montrer que c est un nombre premier.
 - (b) Décomposer les nombres a et b en produit de facteurs premiers.
 - (c) Déterminer PGCD(a, b) et PPCM(a, b).
 - (d) Simplifier $A = \frac{a}{b}, B = \frac{7}{a} + \frac{11}{b}$ et $C = \sqrt{ab}$.

Exercice 2

1. Factoriser les expressions suivantes :

$$A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$$

$$B = x^3 - 8$$

$$C = x^2 - 2x\sqrt{3} + 3 + (x^2 - 3).$$

2. Développer et réduire : $(x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$.

Exercice 3

ABC est un triangle. Soient I,J et
 K des points du plan tels que

$$\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB}; \quad \overrightarrow{CJ} = \frac{3}{4} \overrightarrow{CA} \quad \text{ et } \overrightarrow{BK} = \frac{2}{3} \overrightarrow{CK}.$$

- 1. Montrer que $\overrightarrow{CK} = 3\overrightarrow{CB}$.
- 2. Construire les points I,J et K.
- 3. (a) Montrer que : $\overrightarrow{IJ} = \frac{-1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$.
 - (b) Exprimer le vecteur \overrightarrow{IK} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
 - (c) En déduire que I,J et K sont des points alignés.
- 4. soit F un point tel que $:\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}.$
 - (a) Construire F.
 - (b) Montrer que $: \overrightarrow{AF} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$.
 - (c) Montrer que F est le milieu du segment [BC] .