NumPy Exercises

Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions.

Import NumPy as np

```
In []: M ....
```

Create an array of 10 zeros

Create an array of 10 ones

Create an array of 10 fives

Create an array of the integers from 10 to 50

Create an array of all the even integers from 10 to 50

Create a 3x3 matrix with values ranging from 0 to 8

Create a 3x3 identity matrix

Use NumPy to generate a random number between 0 and 1

Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution

Create the following matrix:

```
x=np.arange(0.01,1.01,0.01).reshape(10,10)
In [ ]:
  Out[35]: array([[ 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
                                                         0.07, 0.08, 0.09,
           0.1],
                 [ 0.11,
                         0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19,
           0.2],
                 [ 0.21,
                         0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29,
           0.3 ],
                         0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39,
                 [ 0.31,
           0.4],
                         0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49,
                 [ 0.41,
           0.5],
                 [ 0.51,
                         0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59,
           0.6],
                 [ 0.61,
                         0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69,
           0.7],
                         0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79,
                 [ 0.71,
           0.8],
                 [ 0.81,
                         0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89,
           0.9],
                 [ 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99,
           1. ]])
```

Create an array of 20 linearly spaced points between 0 and 1:

Numpy Indexing and Selection

Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs:

```
In []: \mathbf{M} arr = np.array([[12, 13, 14, 15],
                           [17, 18, 19, 20],
                            [22, 23, 24, 25]])
  Out[40]: array([[12, 13, 14, 15],
                   [17, 18, 19, 20],
                   [22, 23, 24, 25]])
         # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
In [ ]:
            # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
In [ ]: ▶ import numpy as np
            arr = np.array([[12, 13, 14, 15],
                           [17, 18, 19, 20],
                            [22, 23, 24, 25]])
  Out[41]: 20
In [ ]:
         # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
            # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
In [ ]:
         arr = np.array([[12, 13, 14, 15],
                           [17, 18, 19, 20],
                            [22, 23, 24, 25]])
            x=(arr[0:4,0:1])
           y = x - 10
  Out[42]: array([[ 2],
                   [7],
                   [12]])
         # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
In [ ]:
            # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
In [ ]:
         | import numpy as np
            arr = np.array([[12, 13, 14, 15],
                           [17, 18, 19, 20],
                            [22, 23, 24, 25]])
            x=(arr[2:,0:])
            y=np.insert(x,0,21)
  Out[46]: array([21, 22, 23, 24, 25])
         # WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW
In [ ]:
            # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T
```

Now do the following

Get the sum of all the values in mat

Get the standard deviation of the values in mat

Get the sum of all the columns in mat

Type *Markdown* and LaTeX: α^2