Linear Algebra Homework 6

Sava Spasojevic

February 27, 2018

11a) Prove that if a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$

Proof. Let $A \in M_{n \times n}(F)$ be a matrix similar to a scalar matrix λI , for some scalar λ . Let Q be an invertible matrix of size $n \times n$. Then,

$$A = Q^{-1}(\lambda I)Q$$

$$= (Q^{-1}\lambda)(IQ)$$

$$= (Q^{-1}\lambda)Q$$

$$= \lambda(Q^{-1}Q)$$

$$= \lambda I$$

Thus, $A = \lambda I$.

11b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.

Proof. Suppose that $A \in M_{n \times n}(F)$ is a diagonalizable matrix having only one eigenvalue. Then, A is similar to some diagonal matrix. This diagonal matrix will have the egeinvalues of A, call them $\lambda \in F$, along its diagonal. Since λ is the only eigenvalue for A, the diagonal matrix has the form λI . Since A is similar to λI , by part (a), $A = \lambda I$, so A is a scalar matrix.

11c) Prove that $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable.

 $\begin{array}{l} \textit{Proof.} \ \det \left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] - \left[\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right] \right) = \det \left(\left[\begin{array}{cc} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{array} \right] \right) = 0 \\ \Longleftrightarrow (1 - \lambda)^2 = 0 \Longleftrightarrow \lambda = 1 \ \text{with multiplicity 2. There is only one eigenvalue for this matrix} \\ \text{and it is not a scalar matrix, which means that is is not diagonalizable.} \end{array} \\ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ is not} \\ \text{diagonalizable.} \\ \Box$

15a) Let T be a linear operator on a vector space V, and let x be an eigenvector of T corresponding to the eigenvalue λ . For any positive integer m, prove that x is an eigenvector of T^m corresponding to the eigenvalue λ^m .

Proof. Let T be a linear operator on a vector space V, and let x be an eigenvector of T corresponding to the eigenvalue λ .

Base case: m = 1. $T(x) = \lambda x$. This is true since x is an eigenvector corresponding to the eigenvalue λ .

Next, assume $T^m(x) = \lambda^m x$. Then,

$$T^{m}(x) = \lambda^{m} x$$
$$\lambda T^{m}(x) = \lambda \lambda^{m} x$$
$$T^{m}(\lambda x) = \lambda^{m+1} x$$
$$T^{m+1}(x) = \lambda^{m+1} x$$

This completes the inductive step.

20) Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$

Prove that $f(0) = a_0 = \det(A)$. Deduce that A is invertible if and only if $a_0 \neq 0$.

Proof. $f(t) = \det(A - tI_n)$. $f(0) = \det(A - 0I_n) = \det(A - 0) = \det(A)$. But, $f(0) = a_0$, therefore $det(A) = a_0$ as well.

Suppose that A is invertible. Then, $\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{a_0}$ is well defined, meaning $a_0 \neq 0$. Next, Suppose $a_0 \neq 0$. Then, $\det(A) \neq 0$, which means that A is row reducible to I_n , thus A is invertible.

21a) Let A and f(t) be as in Exercise 20. Prove that $f(t) = (A_{11} - t)(A_{22} - t) \cdots (A_{nn} - t) + q(t)$, where q(t) is a polynomial of degree at most n-2.

Proof. We check the base case n=2. Then

$$f(t) = \det(A - tI_2) = \begin{vmatrix} a_{11} - t & a_{12} \\ a_{21} & a_{22} - t \end{vmatrix} = (a_{11} - t)(a_{22} - t) - a_{12}a_{21}$$

Here, $q(t) = -a_{12}a_{21}$. So, $\deg(q(t)) \leq 0 = n-2$. Next, assume that $f(t) = (A_{11} - t)(A_{22} - t)$ $t)\cdots(A_{nn}-t)+q(t)$ where q(t) is a polynomial of degree at most n-2 is true. Consider an $(n+1) \times (n+1)$ matrix A. It's characteristic polynomial is given by $f(t) = \det(A - tI_{n+1n+1})$. This is given by,

$$\begin{vmatrix} a_{11} - t & a_{12} & \cdots & a_{1n} & a_{1n+1} \\ a_{21} & a_{22} - t & \cdots & a_{2n} & a_{2n+1} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - t & a_{nn+1} \\ a_{n+11} & a_{n+12} & \cdots & a_{n+1n} & a_{n+1n+1} - t \end{vmatrix}$$
From and the first column this becomes,

By the deleting the first row and the first column this becomes,

$$(a_{11}-t)\begin{vmatrix} a_{22}-t & \cdots & a_{2n} & a_{2n+1} \\ \vdots & & \vdots & \vdots \\ a_{n2} & \cdots & a_{nn}-t & a_{nn+1} \\ a_{n+12} & \cdots & a_{n+1n} & a_{n+1n+1}-t \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & \cdots & a_{2n} & a_{2n+1} \\ \vdots & & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn}-t & a_{nn+1} \\ a_{n+11} & \cdots & a_{n+1n} & a_{n+1n+1}-t \end{vmatrix} + \dots$$

$$+(-1)^{n+2}a_{1n+1}\begin{vmatrix} a_{21} & a_{22}-t & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}-t \\ a_{n+11} & a_{n+12} & \cdots & a_{n+1n} \end{vmatrix}$$

$$(1)$$

The first determinant in the sum is that of size $n \times n$, with the $a_{ii} - t$ $(2 \le i \le n)$ terms along the entire diagonal. By assumption, this equals $(a_{22} - t)(a_{33} - t) \cdots (a_{n+1n+1} - t) + q(t)$, where $\deg(q(t)) \le n - 2$. So, (1) can be rewritten as,

$$(a_{11}-t)\left[(a_{22}-t)(a_{33}-t)\cdots(a_{n+1n+1}-t)+q(t)\right]-a_{12}\begin{vmatrix}a_{21}&\cdots&a_{2n}&a_{2n+1}\\\vdots&&\vdots&&\vdots\\a_{n1}&\cdots&a_{nn}-t&a_{nn+1}\\a_{n+11}&\cdots&a_{n+1n}&a_{n+1n+1}-t\end{vmatrix}+\cdots$$

$$+(-1)^na_{1n+1}\begin{vmatrix}a_{21}&a_{22}-t&\cdots&a_{2n}\\\vdots&&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}-t\\a_{n+11}&a_{n+12}&\cdots&a_{n+1n}\end{vmatrix}$$

which after distributing $a_{11} - t$ becomes,

$$(a_{11}-t)(a_{22}-t)(a_{33}-t)\cdots(a_{n+1n+1}-t)+(a_{11}-t)q(t)-a_{12}\begin{vmatrix} a_{21} & \cdots & a_{2n} & a_{2n+1} \\ \vdots & & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn}-t & a_{nn+1} \\ a_{n+11} & \cdots & a_{n+1n} & a_{n+1n+1}-t \end{vmatrix} + \dots$$

$$\begin{vmatrix} a_{21} & a_{22}-t & \cdots & a_{2n} \end{vmatrix}$$

$$+\begin{vmatrix} a_{21} & a_{22} - t & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - t \\ a_{n+11} & a_{n+12} & \cdots & a_{n+1n} \end{vmatrix}$$
 (2)

The remaining determinants in (2) form polynomials of degree at most n-1 since each determinant is of size $n \times n$ and missing at least one $a_{ii} - t$ term. $(a_{11} - t)q(t)$ is a polynomial of degree at most n-1. So, let

$$p(t) = (a_{11} - t)q(t) - a_{12} \begin{vmatrix} a_{21} & \cdots & a_{2n} & a_{2n+1} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} - t & a_{nn+1} \\ a_{n+11} & \cdots & a_{n+1n} & a_{n+1n+1} - t \end{vmatrix} + \cdots$$

$$+ \begin{vmatrix} a_{21} & a_{22} - t & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - t \\ a_{n+11} & a_{n+12} & \cdots & a_{n+1n} \end{vmatrix}$$

Then, $f(t) = (a_{11} - t)(a_{22} - t)(a_{33} - t) \cdots (a_{n+1n+1} - t) + p(t)$, where p(t) is of degree at most n-1.

21b) Show that $tr(A) = (-1)^{n-1}a_{n-1}$.

Proof. We proceed with induction on n. We first check the base case, n=1.

$$f(t) = (a_{11} - t) = -t + a_{11}$$

Here, $\operatorname{tr}(A) = a_{11} = (-1)^0 a_0$, where $a_0 = a_{11}$ is the constant term in the above equation. Next, assume that $\operatorname{tr}(A) = (-1)^{n-1} a_{n-1}$ for holds n. This can be rewritten as $(-1)^{1-n} \operatorname{tr}(A) = a_{n-1}$. Then, $(-1)^{1-n} \operatorname{tr}(A) = (-1)^{1-n} (a_{11} + a_{22} + \ldots + a_{nn}) = a_{n-1}$. By part (a) we can write,

$$f(t) = (a_{11} - t)(a_{22} - t) \cdots (a_{nn} - t) + q(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$

where q(t) is of degree at most n-2. Using substitution,

$$(a_{11}-t)(a_{22}-t)\cdots(a_{nn}-t)+q(t)=(-1)^nt^n+(-1)^{1-n}(a_{11}+a_{22}+\ldots+a_{nn})t^{n-1}+\ldots+a_1t+a_0$$

Let p = n + 1. Multiplying both sides of this equation by $(a_{pp} - t)$ yields,

$$(a_{11} - t)(a_{22} - t) \cdots (a_{nn} - t)(a_{pp} - t) + q(t)(a_{pp} - t) =$$

$$(a_{pp} - t) \left[(-1)^n t^n + (-1)^{1-n} (a_{11} + a_{22} + \dots + a_{nn}) t^{n-1} + \dots + a_1 t + a_0 \right]$$

Through distribution you obtain,

$$a_{pp}(-1)^n t^n + (-1)^{1-n} (a_{pp})(a_{11} + a_{22} + \dots + a_{nn}) t^{n-1} + \dots + a_{pp} a_1 t + a_{pp} a_0$$
$$(-1)^p t^p + (-1)^{2-n} (a_{11} + a_{22} + \dots + a_{nn}) t^n - \dots - a_1 t^2 - a_0 t$$

Rearranging terms gives

$$(-1)^{n+1}t^{n+1} + (-1)^{2-n}(a_{11} + a_{22} + \dots + a_{nn})t^n + a_{n+1}(-1)^nt^n + p(t)$$
(3)

where p(t) is the rest of the polynomial. Notice that $(-1)^{2-n} = (-1)^{-n} = (-1)^n$, $\forall n \in \mathbb{N}$. Then, (3) can be further reduced to

$$(-1)^{n+1}t^{n+1} + (-1)^n(a_{11} + a_{22} + \ldots + a_{nn} + a_{n+1n+1})t^n + p(t)$$

So, the coefficient of t^n , which we'll denote a_n , is equal to $(-1)^n(tr(A'))$ where A' is a matrix of size $(n+1)\times(n+1)$. So, $a_n=(-1)^n(tr(A'))\Longleftrightarrow tr(A')=(-1)^na_n$.