Exercise 1 For each of the following functions, find two simpler functions f and g such that the given function can be written as a composite function $g \circ f$. The functions f and g should each be a famous function or a polynomial.

- If $g(f(x)) = \sin(x^2)$, then we could decompose this function into $g(x) = \overline{\sin(x)}$ and $f(x) = \overline{x^2}$.
- If $g(f(x)) = \sqrt{2x^5 7}$, then we could decompose this function into $g(x) = \sqrt{x}$ and $f(x) = 2x^5 7$.
- If $g(f(x)) = e^{3x-x^2}$, then we could decompose this function into $g(x) = e^x$ and $f(x) = 3x x^2$.
- If $g(f(x)) = |\ln(x)|$, then we could decompose this function into g(x) = |x| and $f(x) = |\ln(x)|$.
- If $g(f(x)) = 5e^{4x} + 7e^{3x} 11e^x + 4$, then we could decompose this function into $g(x) = \boxed{5x^4 + 7x^3 11x + 4}$ and $f(x) = \boxed{e^x}$.