

Semantic Textual Similarity

Unai Gurbindo Jaume Guasch

12 Preprocessing

Introduction

5 Conclu

Features

Model and Results

Introduction

Semantic Textual Similarity task of SemEval-2012 Task 6

s1 = The chef prepared a delicious pasta dish.

s2 = The cook made a tasty pasta meal.

sim(s1, s2)?

Input: Sentences

Feature Extraction + Similarity

S.V.R. XGBoost

M.L.P. R.F.

Voting Regressor

sim(s1,s2)

12 Preprocessing

Introduction

5 Conclu

Features

Model and Results

1 Introduction

Preprocessing

g

Features

Model and Results

Preprocessing

#keep it up, ~ you're awesume @

keep it up, you're awesume

keep it up, you are awesume

keep it up, you are awesome

sigue así, eres increíble

keep it up you are great

1 Introduction

Preprocessing

g

Features

Model and Results

1 Introduction

Preprocessing

U;

Features

Model and Results

Features

Lab Sessions

The chef prepared a delicious pasta dish

Tokens: ['chef', 'prepared', 'delicious', 'pasta', 'dish'] Lemmas: ['chef', 'prepare', 'delicious', 'pasta', 'dish']

Senses / Definitions: ['chef.n.01', 'train.v.02', 'pasta.n.01', 'smasher.n.02']

Ngrams with words and characters (1,2,...5).

Synsents

New Features

Semantic Textual Similarity

Words BiGrams: ['semantic textual', 'textual similarity']

Characters BiGrams: ['se','em','ma',...]

Ngrams with POS Tags.

Bigram Example: ['JJ', 'NNP', 'NNP'] →['JJ NNP', 'NNP NNP']

Features

Lab Metrics

Dice

Cosine

Overlap

Jaccard

Similarities based on set relations.

New Metrics

Maximum Similarity of Synsents

Count No Equal

Longest Common Subsequence

s1 = BD

LCS: BD

Longest Common Substring

s1 = abcdxyz

LCS: abcd

s2 = ABCD

s2 = xyzabcd

1 Introduction

Preprocessing

U;

Features

Model and Results

Introduction

Preprocessing

Features

Model and Results

Model and Results

 Lexical
 Syntactic
 Total

 0.7567
 0.6572
 0.7666

Feature Reduction

Top 20

0.7629

Model and Results

Introduction

Preprocessing

Conclusions

Features

Model and Results

1 Introduction

Preprocessing

UJ

Features

Model and Results

Conclusions

1. IMPORTANCE OF PRE-PROCESSING

..........

2. GREAT RESULTS THROUGH THE VOTING ENSEMBLE

..........

3. BETTER RESULT BY REDUCING THE DIMENSIONALITY OF THE PCA

Thanks

Do you have any questions?

Unai Gurbindo / Jaume Guasch

BIBLIOGRAPHY

Šarić, F., Glavaš, G., Karan, M., Šnajder, J., & Bašić, B. D. (2012). Takelab: Systems for measuring semantic text similarity. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012) (pp. 441-448).

Bär, D., Biemann, C., Gurevych, I., & Zesch, T. (2012). Ukp: Computing semantic textual similarity by combining multiple content similarity measures. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012) (pp. 435-440).