Sistemas Electrónicos

Capítulo 6: Circuitos Digitais

Parte 2

Sistemas Electrónicos - 2020/2021

Sumário

- Lógica CMOS: introdução;
- Portas NAND e NOR;
- Síntese de circuitos CMOS;
- Transístores de passagem e portas de transmissão: portas com transístores de passagem, degradação dos níveis lógicos, circuitos com portas de transmissão.
- Circuitos dinâmicos CMOS: princípio de funcionamento, lógica dominó, limitações das portas dinâmicas.

Lógica CMOS: introdução

E. Martins, DETI Universidade de Aveiro

6.2-3

Sistemas Electrónicos - 2020/2021

Introdução

- Circuitos que realizam funções Booleanas, e.g. $F = \overline{A.(B+C)+D}$
- De entre os circuitos CMOS, a família lógica CMOS complementar é, de longe, a mais importante;
- CMOS complementar pertence à classe dos circuitos estáticos.

Circuitos estáticos

- > Saídas assumem, em qualquer instante, o valor da função implementada pelo circuito;
- Em qualquer dos níveis lógicos, '1' ou '0', as saídas apresentam baixa impedância.

Conceito CMOS

- Função lógica é realizada por dois circuitos complementares:
 - PUN Pull-Up Network;
 - > PDN Pull-Down Network.
- PUN: Estabelece uma ligação entre a saída e V_{DD} , para todas as combinações das entradas em que F = 1;
- PDN: Estabelece uma ligação entre a saída e a massa, para todas as combinações das entradas em que F = 0;

E. Martins, DETI Universidade de Aveiro

6.2 - 5

Sistemas Electrónicos - 2020/2021

Portas CMOS: NAND

Porta NAND

- A
 B
 PUN
 PDN
 F

 0
 0
 ON
 OFF
 1

 0
 1
 ON
 OFF
 1

 1
 0
 ON
 OFF
 1

 1
 1
 OFF
 ON
 0
- Portas CMOS mantêm todas as propriedades já estudadas para o inversor: $V_{OH} = V_{DD}$, $V_{OL} = 0$, boas margens de ruído, ratioless, potência estática nula, etc;
- PUN e PDN são mutuamente exclusivos: para cada combinação de entradas, apenas um é activado.

Portas CMOS: NOR

Porta NOR

A	В	PUN	PDN	F
0	0	ON	OFF	1
0	1	OFF	ON	0
1	0	OFF	ON	0
1	1	OFF	ON	0

- PUN e PDN são circuitos eléctricos duais: transístores (NMOS) em série no PDN, correspondem a transístores (PMOS) em paralelo no PUN, e vice-versa:
- Todas as funções são inversoras.

E. Martins, DETI Universidade de Aveiro

6.2-7

Sistemas Electrónicos - 2020/2021

NAND e NOR com fan-in > 2

- NAND: Basta adicionar mais transístores em paralelo no PUN e em série no PDN;
- Porta vai exibir tempos de propagação t_{pLH} diferentes consoante o numero de transístores activos no PUN;
- Se todos os transístores do PUN forem activados (i.e., se a entrada for a '0'), t_{pLH} terá o valor minimo.

E. Martins, DETI Universidade de Aveiro

6.2-9

Sistemas Electrónicos - 2020/2021

Síntese de circuitos CMOS

Síntese de circuitos lógicos

- A regra básica de construção do PUN e PDN é:
 - ➤ Variáveis ligadas pelo operador OR (+): transístores em paralelo no PDN e em série no PUN;
 - variáveis ligadas pelo operador AND (.): transístores em série no PDN e em paralelo no PUN.

E. Martins, DETI Universidade de Aveiro

6.2-11

Sistemas Electrónicos - 2020/2021

Síntese de circuitos lógicos

Procedimento:

1 – Começar pelo PDN: transístores em série para implementar a função AND; transístores em paralelo para a função OR.

2 – derivar PUN usando o princípio da dualidade: Séries no PDN correspondem a paralelos no PUN; Paralelos no PDN correspondem a séries no PUN.

6.2-12

Síntese de circuitos lógicos

Exemplo:
$$F = \overline{D + A \cdot (B + C)}$$

- Número total de transístores
- = 2x(nº de variáveis)

E. Martins, DETI Universidade de Aveiro

6.2-13

Sistemas Electrónicos - 2020/2021

Síntese de circuitos lógicos

Síntese de circuitos lógicos

$$F = \overline{(A+B)(C+E)}$$

$$Y = \overline{A + B.(C + D + E)}$$

E. Martins, DETI Universidade de Aveiro

6.2-15

Sistemas Electrónicos - 2020/2021

Transístores de passagem e portas de transmissão

Circuitos com transístores de passagem

- Utilizam transístores ligado transversalmente a funcionar como interruptores;
- Desenvolvidos para permitir implementações com menos transístores do que o CMOS complementar (2N).

A	В	\mathbf{M}_{1}	M_2	F
0	0	off	on	0
0	1	on	off	0
1	0	off	on	0
1	1	on	off	1

• Requer apenas 4 transístores, contra os 6 necessários em CMOS complementar (4 para a NAND2 + 2 transístores para o inversor de saída);

E. Martins, DETI Universidade de Aveiro

6.2-17

Sistemas Electrónicos - 2020/2021

Outras funções: EQUIV (EXOR negado)

Transistores de passagem:
2
+ 2 (inv X)
+ 2 (inv Y)
= 6 transistores

NOTA: Esta redução do número de transístores só se verifica em certas funções lógicas.

Níveis lógicos degradados

 Maior problema dos transístores de passagem é que degradam os níveis lógicos;

Sistemas Electrónicos – 2020/2021

Restauração do nível de saída

• Problema anterior resolve-se com a introdução dum inversor CMOS:

• Em Vo os níveis lógicos voltam a ser θV e V_{DD} .

Portas de transmissão

- Alternativa mais usada à lógica baseada em transístores de passagem
 - > Transístores NMOS e PMOS em paralelo: nenhum dos níveis lógicos é degradado: $V_{OH} = V_{DD}$, $V_{OL} = \theta V$;
 - > ... mas requer dois sinais de controlo complementares;
 - \triangleright PT funciona como um interruptor bidireccional: F = A se C = 1; circuito aberto (alta impedância) se C = 0.

Nota: substratos do NMOS e PMOS ligados à massa e V_{DD} , respectivamente.

E. Martins, DETI Universidade de Aveiro

6.2-21

Sistemas Electrónicos - 2020/2021

Exemplo: Multiplexador com PTs

■ MUX 2:1 – requer 6 transístores (incluindo o inversor para gerar o complemento de S); em CMOS são precisos 12: 8 (4 entradas) + 2 (inversão de S) + 2 (inversão da saída).

S	\mathbf{M}_{1}	M ₂	M_3	M_4	F
1	on	on	off	off	A
0	off	off	on	on	В

Portas de transmissão, tal como os transístores de passagem, não têm capacidade de drive. O tempo de propagação que exibem depende do circuito que têm ligado na entrada.

Circuitos dinâmicos CMOS

E. Martins, DETI Universidade de Aveiro

6.2-23

Sistemas Electrónicos - 2020/2021

Circuitos dinâmicos CMOS

- Radicalmente diferentes de todos os estilos de lógica que vimos até aqui;
- Ao contrário dos estáticos, nos circuitos dinâmicos as saídas nem sempre apresentam baixa impedância;
- Dependem do armazenamento temporário dos níveis lógicos em condensadores iontrínsecos e de um sinal de temporização que comanda duas fases distintas do funcionamento;
- Surgiram com o objectivo de permitir implementações
 - com menos transístores do que o CMOS convencional (2N), mantendo o consumo estático baixo;
 - com menor capacidade de entrada.

Princípio de funcionamento

 Sinal de relógio, CLK, divide o tempo em duas fases de funcionamento:

- Fase de pré-carga: CLK = 0;
- Fase de cálculo: CLK = 1.
- Inversor CMOS de saída funciona como buffer:
 - impedância de saída baixa;
 - isola do exterior a capacidade interna C.

E. Martins, DETI Universidade de Aveiro

6.2-25

Sistemas Electrónicos - 2020/2021

Principio de funcionamento

- Pré-carga: CLK = 0;
- ➤ Cálculo: CLK = 1.

- Pré-carga Mp on, C é carregado até V_{DD} . PDN está desactivado por Me (off);
- Cálculo Mp off e Me on. C é descarregado ou não, dependendo do estado de condução do PDN (que depende das entradas);
- Durante a fase de cálculo, se o PDN não estiver activo, o nó V_{01} ficará a flutuar em alta impedância ao nível lógico 1 (e F = 0);
- Circuito só efectuam trabalho útil na fase de cálculo!

Sistemas Electrónicos - 2020/2021

Lógica dominó

Efeito dominó na fase de cálculo

Limitação das porta dinâmicas

- Na fase de cálculo, se o PDN estiver desactivado, a carga em C perde-se devido às correntes de fugas I₁ e I₂;
- O resultado é uma diminuição de V_{OH} em V_X relação ao valor ideal de V_{DD} ;
- A queda em V_X, não só reduz NM_H como pode ligar o PMOS do inversor, resultando em consumo estático;
- Uma solução é limitar inferiormente a frequência do sinal CLK (na ordem dos poucos KHz).

E. Martins, DETI Universidade de Aveiro