- Chapitre 17 – Stratégies en synthèse organique – Corrigé

24 a. Famille : halogénoalcane Nom: lodo-fluorométhane

b. Famille: ester

Nom: 3-méthylbutanoate de méthyle

c. Famille: amide

Nom: N-éthyl N-méthylméthanamide

Nom: N-méthyléthanamine d. Famille: amine

e. Famille: cétone Nom: butan-2-one 26 a. N-méthylméthanamine

b. 3-méthyl-pentanoate de méthyle

c. 2-bromopropane

d. propan-2-amine

21 Synthèse d'un arôme de fraise

- Y est un ester. Le groupe carboxyle est inclus dans une chaîne carbonée de trois atomes de carbone, dont le deuxième porte un groupe méthyle. L'atome d'oxygène porte un groupe éthyle.
 - Y est donc le 2-méthylpropanoate d'éthyle.
- **b** Par définition le rendement vaut $\eta_1 = \frac{n_{\text{final}}}{n_{\text{max}}}$.

On construit le tableau d'avancement pour le mélange 1.

- 9	Quantité de matière	$A + B \rightleftharpoons X + Y$			
Avancement		de A	de B	de X	de Y
0	apportée	1,20	1,20	0	0
x	en cours	1,20 – <i>x</i>	1,20 – <i>x</i>	x	x
x_{f}	finale	$1,20-x_{\rm f}$	$1,20-x_{\rm f}$	$x_{\mathfrak{f}}$	x_{f}

L'avancement maximal vaut donc $x_{\text{max}} = 1,20 \text{ mol et } n_{\text{max}} = 1,20 \text{ mol.}$ On lit sur le doc. 2 que l'avancement final vaut $x_{\rm f} =$ 0,80 mol donc

$$n_{\text{final}} = 0.80 \text{ mol. On en déduit } \eta_1 = \frac{n_{\text{final}}}{n_{\text{max}}} = \frac{0.80}{1.20} = 0.66 = 66 \%.$$

c On construit le tableau d'avancement pour le mélange 2.

		A + B ⇌ X + Y			
Avancement	Quantité de matière	de A	de B	de X	de Y
0	apportée	2,40	1,20	0	0
x	en cours	2,40 - x	1,20 - x	x	x
x_{f}	finale	$2,40 - x_{\rm f}$	$1,20-x_{\rm f}$	x_{f}	x_{f}

Il reste 1,40 mol de A donc 2,40 – $x_{\text{final},2} = 1,4$ et $x_{\text{final},2} = 1,0$ mol. Il s'est donc formé 1,0 mol de Y.

On en déduit le rendement
$$\eta_2 = \frac{n_{\text{final}}}{n_{\text{max}}} = \frac{1.0}{1.20} = 0.83 = 83 \%$$
 et $\eta_2 > \eta_1$.

C'est conforme à la loi énoncée dans le cours : le rendement a augmenté car un réactif a été ajouté en excès.

11

42 a. Acide éthanoïque : groupe carboxyle, famille acide carboxylique.

Éthanol: groupe hydroxyle, famille alcool.

Éthanoate d'éthyle : groupe carboxyle, famille ester.

- b. Transformation, séparation et purification.
- c. Chauffage à reflux : permet d'accélérer la

transformation sans perte de réactifs et de produits.

- · Ajout d'acide sulfurique concentré : catalyseur permettant d'accélérer la transformation.
- Mélange avec de l'eau salée : permet la séparation de l'éthanoate d'éthyle car sa solubilité est presque nulle, alors que les réactifs y sont très solubles.
- Aiout d'une solution aqueuse d'hydrogénocarbonate de sodium. Réaction acide-base permettant d'éliminer les traces d'acide:

 $CH_3COOH + HCO_3^- \rightarrow CH_3COO^- + CO_2, H_2O$

d. La quantité maximale vaut $n_{\text{max}} = 0,10$ mol.

La quantité formée vaut :

$$n_{\text{obtenue}} = \frac{m}{M} = \frac{\rho V}{M} = \frac{0.925 \times 5.9}{88.1} = 0.062 \text{ mol}$$

 $n_{\text{obtenue}} = \frac{m}{M} = \frac{\rho V}{M} = \frac{0.925 \times 5.9}{88.1} = 0.062 \text{ mol}$ Le rendement vaut donc $\eta = \frac{0.062}{0.10} = 0.62 = 62 \%.$

51 Résolution de problème La meilleure recette

PROBLÈME

Pour déterminer quel est le meilleur protocole de synthèse du méthanoate d'éthyle, on compare leur rendement.

Protocole 1

Dans le **protocole 1**, le rendement est donné : $\eta_1 = 67\%$.

Protocole 2

Pour déterminer le rendement obtenu dans le protocole 2, on commence par construire un tableau d'avancement de la réaction de Fischer.

		RCOOH -	+ R'-OH ;	⇒ RCOOR'	+ H ₂ O
Avancement	Quantité de matière	de RCOOH	de R'-OH	de RCOOR'	de H₂O
0	apportée à l'état initial	псоон	n _{R'OH}	0	0
x	en cours de réaction	$n_{RCOOH} - x$	$n_{R'OH} - x$	x	x
$x_{ m \'eq}$	présente à l'état final	$n_{\text{RCOOH}} - x_{\text{éq}}$	$n_{\text{R'OH}} - x_{\text{éq}}$	$x_{ m \acute{e}q}$	$x_{ m \acute{e}q}$
	qui serait présente à				
x_{max}	l'état d'avancement	$n_{\text{RCOOH}} - x_{\text{max}} = 0$	$n_{R'OH} - x_{max} = 0$	x_{max}	x_{max}
	maximal				

Remarque Le rendement du protocole 2 est plus grand que celui du protocole 1 alors que les conditions opératoires sont identiques. Cela s'explique par l'introduction de l'un des réactifs (acide méthanoïque) en excès.

Protocole 3

On identifie la nature du distillat recueilli à partir de sa température d'ébullition, égale à la température en tête de colonne (55°C), et des données fournies : le méthanoate de méthyle (ester).

D'après le protocole 3, un volume V = 23,4 mL de cet ester a été synthétisé, soit une quantité de matière : $n_f = \frac{\rho V}{M} = \frac{0.918 \times 23.4}{74} = 0.29 \text{ mol.}$

On déduit des quantités de matière de réactifs introduits dans ce protocole ($n_{RCOOH} = n_{R'OH} = 0,30$ mol) et du tableau d'avancement ci-dessus (protocole 2), la quantité de matière d'ester RCOOR' maximale qu'il aurait été possible de synthétiser si la réaction avait été totale : $n_{\text{max}} = x_{\text{max}} = 0,30 \text{ mol.}$

Le rendement vaut donc $\eta_3 = \frac{n_f}{n_{\text{max}}} = \frac{0.29}{0.30} = 0.966 = 96.6 \%.$

Remarque Le rendement du protocole 3 est proche de 100 %, car en éliminant le produit au fur et à mesure de sa formation, on déplace l'équilibre et la réaction devient presque totale.

Comparaison et conclusion

Les meilleurs rendements sont obtenus avec les **protocoles 2** et 3 ($\eta_2 = \eta_3 > \eta_1$).

Le protocole 3 est cependant le meilleur pour deux raisons : il consomme une quantité plus faible d'acide méthanoïque et le produit est directement extrait.

12