Sean A_1 , A_2 , B_1 , B_2 fórmulas, y U, S_1 y S_2 conjuntos finitos de fórmulas.

EJERCICIO 1: Proporcione una definición en términos de pseudocódigo para b(U), es decir, la función que cuenta la cantidad de instancias de operadores binarios en todas las fórmulas de U [Puede asumir que U es una lista de fórmulas]. Escriba el paso a paso para $U = \{p, \neg(p \lor \neg q)\}.$

EJERCICIO 2: Proporcione una definición en términos de pseudocódigo para n(U), es decir, la función que cuenta la cantidad de instancias de negaciones en todas las fórmulas de U [Puede asumir que U es una lista de fórmulas]. Escriba el paso a paso para $U = \{p, \neg (p \lor \neg q)\}.$

EJERCICIO 3: Demuestre que $b(S_1 \cup S_2) = b(S_1) + b(S_2)$. Igualmente para n y W.

EJERCICIO 4: Demuestre que $W(\{U \cup \neg (B_1 \land B_2)\}) > W(\{U \cup \neg B_1\})$.

EJERCICIO 5: Demuestre que $W(\{U \cup \neg(A_1 \vee A_2)\}) > W(U \cup \{\neg A_1, \neg A_2\})$.

EJERCICIO 6: Suponga que $U \cup \{A_1, \neg A_2\}$ es insatisfacible. Demuestre que $U \cup \{\neg(A_1 \rightarrow A_2)\}$ es insatisfacible.

EJERCICIO 7: Suponga que $U \cup \{\neg B_1\}$ y $U \cup \{B_2\}$ son insatisfacibles. Demuestre que $U \cup \{B_1 \rightarrow B_2\}$ es insatisfacible.

EJERCICIO 8: Suponga que $U \cup \{\neg A_1, \neg A_2\}$ es satisfacible. Demuestre que $U \cup \{\neg (A_1 \vee A_2)\}$ es satisfacible.

EJERCICIO 9: Suponga que $U \cup \{\neg B_1\}$ es satisfacible. Demuestre que $U \cup \{B_1 \rightarrow B_2\}$ es satisfacible.

Periodo: 2020-1

Profesor: E. Andrade