# Fondamentaux théoriques du machine learning



## Overview of lecture 3

## Risks and risk decompositions

Examples

Expected value of empirical risk

Risk decomposition

Optimization error

## Optimization in machine learning

Existence results

Convex analysis

Gradients

#### Ordinary Least squares II

**OLS** estimator

Statistical analysis of OLS

## Risks and risk decompositions

Examples

Expected value of empirical risk

Risk decomposition

Optimization error

## Optimization in machine learning

Existence results

Convex analysis

Cradianta

Ordinary Least squares I

OLS estimator

Statistical analysis of OLS

# Bayes rule

$$P(A \cap B) = P(A|B)P(B) \tag{1}$$

# Law of total probability

If for instance  $\Omega = A \cup B \cup C$  and A, B, C are mutually exclusive, then

$$P(X) = P(X \cap A) + P(X \cap B) + P(X \cap C)$$
 (2)

## Exercice 1: Consider the following random variable (X, Y).

►  $X \sim B(\frac{1}{2})$ ,

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

With B(p) a Bernoulli law with parameter p.

• Hence  $\mathcal{X} = \{0, 1\}$ ,  $\mathcal{Y} = \{0, 1\}$ .

Exercice 1: Consider the following random variable (X, Y).

►  $X \sim B(\frac{1}{2})$ ,

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

With B(p) a Bernoulli law with parameter p.

• A predictor  $f_1:\{0,1\} \rightarrow \{0,1\}:$ 

$$f_1 = \begin{cases} 1 \text{ if } x = 1 \\ 0 \text{ if } x = 0 \end{cases}$$

With the "0 - 1" loss, what is the risk (generalization error) of  $f_1$ ,  $R(f_1)$ ?

## Exercice 1: Consider the following random variable (X, Y).

 $ightharpoonup X \sim B(\frac{1}{2}),$ 

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

•  $f_1: \{0,1\} \to \{0,1\}:$ 

$$f = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0 \end{cases}$$

$$R(f_1) = E[I(Y, f(X))]$$
= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))
= P(Y \neq f(X)) (3)

$$ightharpoonup X \sim B(\frac{1}{2}),$$

$$Y = \begin{cases} B(p) & \text{if } X = 1 \\ B(q) & \text{if } X = 0 \end{cases}$$

 $ightharpoonup f_1: \{0,1\} \to \{0,1\}:$ 

$$f = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0 \end{cases}$$

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$
(4)

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$

$$= P((Y \neq f(X))|X = 1)P(X = 1)$$

$$+ P((Y \neq f(X))|X = 0)P(X = 0)$$
(5)

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$

$$= P((Y \neq f(X))|X = 1)P(X = 1)$$

$$+ P((Y \neq f(X))|X = 0)P(X = 0)$$

$$= \frac{1}{2}P((Y \neq 1)|X = 1) + \frac{1}{2}P((Y \neq 0)|X = 0)$$
(6)

$$R(f_{1}) = E[I(Y, f(X))]$$

$$= 1 \times P(Y \neq f(X)) + 0 \times P(Y = f(X))$$

$$= P(Y \neq f(X))$$

$$= P((Y \neq f(X)) \cap (X = 1)) + P((Y \neq f(X)) \cap (X = 0))$$

$$= P((Y \neq f(X))|X = 1)P(X = 1)$$

$$+ P((Y \neq f(X))|X = 0)P(X = 0)$$

$$= \frac{1}{2}P((Y = 0)|X = 1) + \frac{1}{2}P((Y = 1)|X = 0)$$

$$= \frac{1}{2}(1 - p) + \frac{1}{2}q$$
(7)

#### Exercice 2: Now consider

$$f_2 = \begin{cases} 0 \text{ if } x = 1\\ 1 \text{ if } x = 0 \end{cases}$$

What is  $R(f_2)$ ?

#### Exercice 2:

$$\forall x, f_2(x) = 1 - f_1(x) \tag{8}$$

#### Exercice 2:

$$\forall x, f_2(x) = 1 - f_1(x) \tag{9}$$

Hence

$$R(f_{2}) = P(Y \neq f_{2}(X))$$

$$= P(Y \neq (1 - f_{1}(X)))$$

$$= P(Y = f_{1}(X))$$

$$= 1 - R(f_{1})$$
(10)

Exercice 3: Third predictor:

$$\forall x, f_3(x) = 1 \tag{11}$$

What is  $R(f_3)$ ?

#### Exercice 3:

$$R(f_3) = P(Y \neq f_3(X))$$
  
=  $P(Y = 0)$  (12)

#### Exercice 3:

$$R(f_3) = P(Y \neq f_3(X))$$

$$= P(Y = 0)$$

$$= P(Y = 0 \cap X = 0) + P(Y = 0 \cap X = 1)$$

$$= P(Y = 0|X = 0)P(X = 0) + P(Y = 0|X = 1)P(X = 1)$$

$$= \frac{1}{2}(1 - p) + \frac{1}{2}(1 - q)$$
(13)

#### Exercice 4:

Now, we observe the following dataset:

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\} \tag{14}$$

Compute the empirical risks  $R_4(f_1)$ ,  $R_4(f_2)$ ,  $R_4(f_3)$ .

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i))$$

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
 (15)

$$R_{4}(f_{1}) = \frac{1}{4} \sum_{i=1}^{4} I(f_{1}(x_{i}), y_{i})$$

$$= \frac{1}{4} \Big( I(f_{1}(0), 1) + I(f_{1}(0), 0) + I(f_{1}(0), 0) + I(f_{1}(1), 0) \Big)$$

$$= \frac{1}{4} \times 2$$

$$= \frac{1}{2}$$
(16)

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
 (17)

$$R_{4}(f_{2}) = \frac{1}{4} \sum_{i=1}^{4} I(f_{2}(x_{i}), y_{i})$$

$$= \frac{1}{4} \Big( I(f_{2}(0), 1) + I(f_{2}(0), 0) + I(f_{2}(0), 0) + I(f_{2}(1), 0) \Big)$$

$$= \frac{1}{4} \times 2$$

$$= \frac{1}{2}$$
(18)

$$D_4 = \{(0,1), (0,0), (0,0), (1,0)\}$$
 (19)

$$R_4(f_3) = \frac{1}{4} \sum_{i=1}^4 I(f_3(x_i), y_i)$$

$$= \frac{1}{4} \Big( I(f_3(0), 1) + I(f_3(0), 0) + I(f_3(0), 0) + I(f_3(1), 0) \Big)$$

$$= \frac{1}{4} \times 3$$

$$= \frac{3}{4}$$
(20)

## Random variable

- ▶  $R_4(f)$  (empirical risk) **depends** on  $D_4$ . If we sample another dataset,  $R_4(f)$  is likely to change, it is a **random variable**.
- ▶ R(f) (generalization error) is **deterministic**, given the joint law of (X, Y).

Given a predictor f, a natural question arises : Does  $R_n(f)$  have a limit when  $n \to +\infty$ ?

## Simulations



## Simulations



## **Simulations**





# Convergence of empirical risk

We fix  $f \in H$  (hypothesis space). We assume that the samples  $(X_i, Y_i)$  are i.i.d, with the distribution of (X, Y), noted  $\rho$ . Then, under some assumptions (for instance, if the empirical risks are bounded), we have that in probability :

$$\lim_{n \to +\infty} R_n(f) = R(f) \tag{21}$$

The empirical risk of a fixed f conerges to its real risk.

## Proof

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i))$$

$$\forall i, E[I(f(X_i), Y_i)] = E[I(f(X), Y)] \tag{22}$$

- ▶ i.i.d. variables.
- Law of large numbers.

## Also

$$E_{D_n \sim \rho}(R_n(h)) = \frac{1}{n} \sum_{i=1}^n E_{D_n \sim \rho}(I(f(X_i), Y_i))$$

$$= \frac{1}{n} \sum_{i=1}^n E_{(X,Y) \sim \rho}(I(f(X), Y))$$

$$= E_{(X,Y) \sim \rho}(I(f(X), Y))$$

$$= R(h)$$

#### However, we do not have

$$E[R_n(\tilde{f}_n)] = R(\tilde{f}_n) \tag{23}$$

where  $\tilde{f}_n$  is the minimizer of the empirical risk.  $\tilde{f}_n$  depends on the dataset  $D_n$ .

$$E_{D_n \sim \rho}(r(\tilde{f}_n(X_i), Y_i)) \neq E_{(X,Y) \sim \rho}(r(\tilde{f}_n(X), Y))$$
(24)

# Risk decomposition

- ▶ f\* : Bayes predictor
- F : Hypothesis space
- $\tilde{f}_n$ : estimated predictor ( $\in F$ ).

$$E[R(\tilde{f}_n)] - R^* = \left(E[R(\tilde{f}_n)] - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right) \tag{25}$$

# Underfitting and overfitting

**Approximation error (bias term)** : depends on  $f^*$  and F, not on  $\tilde{f}_n$ ,  $D_n$ .

$$\inf_{f\in F}R(f)-R^*\geq 0$$

Estimation error (variance term, fluctuation error, stochastic error) : depends on  $D_n$ , F,  $\tilde{f}_n$ .

$$E(R(\tilde{f}_n)) - \inf_{f \in F} R(f) \ge 0$$

- ▶ too small *F* : underfitting (large bias, small variance)
- ▶ too large *F* : overffitting (small bias, large variance)

## Deterministic bound on the estimation error

We consider the best estimator in hypothesis space

$$f_a = \underset{h \in F}{\operatorname{arg min}} R(h)$$

We can show that

$$R(\tilde{f}_n) - R(f_a) \le 2 \sup_{h \in F} |R(h) - R_n(h)| \tag{26}$$

## Deterministic bound on the estimation error

$$f_{a} = \underset{h \in F}{\operatorname{arg \, min}} R(h)$$

$$R(\tilde{f}_{n}) - R(f_{a}) = \left(R(\tilde{f}_{n}) - R_{n}(\tilde{f}_{n})\right)$$

$$+ \left(R_{n}(\tilde{f}_{n}) - R_{n}(f_{a})\right)$$

$$+ \left(R_{n}(f_{a}) - R(f_{a})\right)$$

$$(27)$$

## Deterministic bound on the estimation error

$$f_{a} = \underset{h \in F}{\operatorname{arg \, min}} R(h)$$

$$R(\tilde{f}_{n}) - R(f_{a}) = \left(R(\tilde{f}_{n}) - R_{n}(\tilde{f}_{n})\right)$$

$$+ \left(R_{n}(\tilde{f}_{n}) - R_{n}(f_{a})\right)$$

$$+ \left(R_{n}(f_{a}) - R(f_{a})\right)$$

$$(28)$$

But by definition  $\tilde{f}_n$  minimizes  $R_n$ , so  $\left(R_n(\tilde{f}_n) - R_n(f_a)\right) \leq 0$ .

### Deterministic bound on the estimation error

$$R(\tilde{f}_n) - R(f_a) \le 2 \sup_{h \in F} |R(h) - R_n(h)| \tag{29}$$

Later in the course, based on **concentration inequalities** we will further build on this result and prove a probabilistic bound of the form

$$R(\tilde{f}_n) - R(f_a) \le \frac{C}{\sqrt{n}} \tag{30}$$

(remember that by definition  $0 \le R(\tilde{f}_n) - R(f_a)$ )

## Order of magnitude of estimation error

We keep in mind that

$$R(\tilde{f}_n) - R(f_a) = \mathcal{O}(\frac{C}{\sqrt{n}})$$
 (31)

## Approximate solution

- ▶ In machine learning, it is often not necessary to find the actual minimizer of the empirical risk , as there is an estimation error of  $\mathcal{O}(\frac{1}{\sqrt{n}})$ . [Bottou and Bousquet, 2009, ]
- We can use an approximate solution  $\hat{f}_n$ , such that

$$R_n(\hat{f}_n) \le R_n(\tilde{f}_n) + \rho \tag{32}$$

with  $\rho$  a predefined tolerance.

This important because in large-scale ML, the computation time need to be optimized.

## Approximate solution

This gives a new risk decomposition :

$$E[R(\hat{f}_n)] - R^* = \left(E[R(\hat{f}_n)] - E[R(\tilde{f}_n)]\right) + \left(E[R(\tilde{f}_n)] - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right)$$
(33)

## Approximate solution

This gives a new risk decomposition:

$$E[R(\hat{f}_n)] - R^* = \left(E[R(\hat{f}_n)] - E[R(\tilde{f}_n)]\right) + \left(E[R(\tilde{f}_n)] - \inf_{f \in F} R(f)\right) + \left(\inf_{f \in F} R(f) - R^*\right)$$
(34)

 $E[R(\hat{f}_n)] - E[R(\tilde{f}_n)]$  is the **optimization error**. To conclude, we have :

- an approximation error
- an estimation error
- an optimization error

### Risks and risk decompositions

Examples

Expected value of empirical risk

Risk decomposition

Optimization error

### Optimization in machine learning

Existence results

Convex analysis

Gradients

#### Ordinary Least squares II

**OLS** estimator

Statistical analysis of OLS

## Minimizers

#### **Definition**

Let  $f: \mathbb{R}^d \to \mathbb{R}$  be defined on  $K \subset \mathbb{R}^d$ .  $x \in K$  is a local minimum of f on K if and only if

$$\exists \delta > 0, \forall y \in K, ||y - x|| < \delta \Rightarrow f(x) \le f(y)$$

 $x \in K$  is a global minimum of f on K if and only if

$$\forall y \in K, f(x) \leq f(y)$$

## Existence result

#### **Theorem**

Existence of a global minimum in  $\mathbb{R}^d$ Let K be a closed non-empty subset of  $\mathbb{R}^d$ , and  $f: \mathbb{R}^d \to \mathbb{R}$  a continuous coercive function. Then, there exists at least a global minimum of f on K.

# Convexity

#### Definition

The function  $f:\Omega\to\mathbb{R}$  with  $\Omega$  convex is :

• convex if  $\forall x, y \in \Omega, \alpha \in [0, 1]$ ,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

• strictly convex if  $\forall x, y \in \Omega, \alpha \in [0, 1]$ ,

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

▶  $\mu$ -strongly convex if  $\forall x, y \in \Omega, \alpha \in [0, 1]$ ,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{\mu}{2}\alpha(1 - \alpha)||x - y||^2$$

## Examples

- All norms are convex.
- $ightharpoonup x \mapsto \theta^T x$  is convex on  $\mathbb{R}^d$  with  $\theta \in \mathbb{R}^d$  (linear form)
- if Q is a symmetric semidefinite positive matrix, then  $x \mapsto x^T Q x$  is convex.
- if Q is a symmetric definite positive matrix (matrice définie positive) with smallest eigenvalue  $\lambda_{min} > 0$ , then  $x \mapsto x^T Q x$  is  $2\lambda_{min}$  strongly convex.
- ▶ If f is increasing and convex and g is convex, then  $f \circ g$  is convex.
- ▶ Is f in convex and g is linear, then  $f \circ g$  is convex.

## Differential formulation of convexity

## Proposition

Let  $f: V \to \mathbb{R}$  be a differentiable function. The following conditions are equivalent.

- f is convex.
- ▶  $\forall x, y \in V, f(y) \ge f(x) + (f'(x)|y x)$  (f is above its tangent space)
- ▶  $\forall x, y \in V, (f'(x) f'(y)|x y) \ge 0$  (f' grows)

## Differential formulation of strong convexity

## Proposition

Let  $f: V \to \mathbb{R}$  be a differentiable function, and  $\mu > 0$ . The following conditions are equivalent.

- f is  $\mu$ -convex
- $\forall x, y \in V, f(y) \ge f(x) + (f'(x)|y x) + \frac{\mu}{2}||y x||^2$
- ►  $\forall x, y \in V, (f'(x) f'(y)|x y) \ge \mu ||x y||^2$

## Convexity of two-times differentiable functions

f is convex if anf only if

$$\forall x, h \in y, J''(x)(h, h) \geq 0$$

• f is  $\mu$ -strongly convex if and only if

$$\forall x, h \in y, J''(x)(h, h) \ge \mu ||h||^2$$

## Convexity and Hessian

If  $V = \mathbb{R}^d$ , this translates into

$$\forall x, h \in y, h^{\mathsf{T}}(H_x f) h \ge 0 \tag{35}$$

and

$$\forall x, h \in y, h^{\mathsf{T}}(H_x f) h \ge \mu ||h||^2 \tag{36}$$

- ▶ 35 means that  $\forall x \in \mathbb{R}^d$ , all eigenvalues of  $H_x f$  are non-negative (positive semi-definite Hessian)
- ▶ 36 means that they all are  $\geq \mu$  (positive definite Hessian).

Existence results

## Positive semi-definite Hessian

$$H_x^f = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \tag{37}$$

#### Positive semi-definite Hessian



Existence results

## Positive definite Hessian

$$H_x^f = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \tag{38}$$

#### Positive definite Hessian



### Minima of convex functions

### Proposition

- ▶ If f is convex, any local minimum is a global minimum. The set of global minimizers is a convex set.
- ▶ If f is strictly convex, there exists at most one local minimum (that is thus global).
- ▶ If f is convex and  $C^1$  (differentiable,  $a \mapsto df_a$  continuous), then x is a minimum (thus global) of f on V if and only if the gradient cancels in x,  $\nabla_x f = 0$ . V need not be finite-dimensional.

### Risks and risk decompositions

Examples

Expected value of empirical risk

Risk decomposition

Optimization error

### Optimization in machine learning

Existence results

Convex analysis

Cuadianta

### Ordinary Least squares II

**OLS** estimator

Statistical analysis of OLS

## **OLS**

$$\mathcal{X} = \mathbb{R}^d$$

$$\mathcal{Y} = \mathbb{R}$$
.

$$I(y, y') = (y - y')^2$$
 (squares loss)

$$F = \{ x \mapsto \theta^T x, \theta \in \mathbb{R}^d \}$$

## **OLS**

The dataset is stored in the **design matrix**  $X \in \mathbb{R}^{n \times d}$ .

$$X = \begin{pmatrix} x_1^T \\ \dots \\ x_i^T \\ \dots \\ x_n^T \end{pmatrix} = \begin{pmatrix} x_{11}, \dots, x_{1j}, \dots x_{1d} \\ \dots \\ x_{i1}, \dots, x_{ij}, \dots x_{id} \\ \dots \\ \dots \\ x_{n1}, \dots, x_{nj}, \dots x_{nd} \end{pmatrix}$$

The vector of predictions of the estimator writes  $Y = X\theta$ . Hence,

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$
$$= \frac{1}{n} ||Y - X\theta||_2^2$$

## **OLS** estimator

### Exercice 5: Convexity

Show that the objective function  $R_n(\theta)$  is convex in  $\theta$ .

$$\theta \mapsto ||Y - X\theta||_2^2 \tag{39}$$

### **OLS** estimator

We assume that X is **injective**. Necessary,  $d \leq n$ .

### Proposition

Closed form solution

We X is injective, there exists a unique minimiser of  $R_n(\theta)$ , called the **OLS** estimator, given by

$$\hat{\theta} = (X^T X)^{-1} X^T Y \tag{40}$$

## Setup

#### **Assumptions:**

▶ Linear model :  $\exists \theta^* \in \mathbb{R}^d$ ,

$$Y_i = \theta^{*T} x_i + Z_i, \forall i \in [1, n]$$

and  $Z_i$  is a centered noise (or error) ( $E[Z_i] = 0$ ) with variance  $\sigma^2$ .

Fixed design X.

In this setup, we wonder:

- ▶ 1) what is the Bayes predictor? What is the Bayes risk?
- ▶ 2) is the expected value of OLS equal to the Bayes predictor?
- ▶ 3) what is the excess risk of the OLS estimator?

# 1) Bayes predictor

With the square loss, we always have that the Bayes predictor is the conditional expectation, see FTML.pdf section 3.1.3.

$$f^*(x) = E[Y|X = x] \tag{41}$$

# 1) Bayes predictor

$$f^{*}(x) = E[Y|X = x]$$

$$= E[X^{T}\theta^{*} + \epsilon |X = x]$$

$$= E[X^{T}\theta^{*}|X = x] + E[\epsilon |X = x]$$

$$= X^{T}\theta^{*}$$
(42)

# 1) Bayes risk

$$R^* = E_{X,Y}[(Y - f^*(X))^2]$$

$$= E_{X,\epsilon}[(X^T \theta^* + \epsilon - X^T \theta^*)^2]$$

$$= E_{X,\epsilon}[\epsilon^2]$$

$$= \sigma^2$$
(43)

# 2) Expected value of $\hat{\theta}$

$$E[\hat{\theta}] = E[(X^{T}X)^{-1}X^{T}Y]$$

$$= E[(X^{T}X)^{-1}X^{T}(X\theta^{*} + \epsilon)]$$

$$= E[(X^{T}X)^{-1}X^{T}(X\theta^{*})] + E[(X^{T}X)^{-1}X^{T}\epsilon)]$$

$$= E[(X^{T}X)^{-1}(X^{T}X)\theta^{*}] + (X^{T}X)^{-1}X^{T}E[\epsilon)]$$

$$= E[\theta^{*}]$$

$$= \theta^{*}$$
(44)

We conclude that the OLS estimator is an **unbiased estimator** of  $\theta^*$ .

## 3) Excess risk + variance

$$R(\hat{\theta}) - R(\theta^*) = \frac{\sigma^2 d}{n} \tag{45}$$



# 4) Variance

$$Var(\hat{\theta}) = \frac{\sigma^2}{n} \Sigma^{-1} \tag{46}$$

with  $\Sigma = X^T X \in \mathbb{R}^{d \times d}$ .



## References I



Bottou, L. and Bousquet, O. (2009).

The tradeoffs of large scale learning.

Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference, (January 2007).