PROGRAM STUDI TEKNIK KOMPUTER FAKULTAS TEKNIK DAN INFORMATIKA UNIVERSITAS MULTIMEDIA NUSANTARA SEMESTER GANJIL TAHUN AJARAN 2024/2025

CE 121 – LINEAR ALGEBRA

Pertemuan 6 Vektor

Firstka Helianta MS, S.Si., M.Si

Capaian Pembelajaran Mingguan Mata Kuliah (Sub-CPMK)

Mahasiswa mampu melakukan operasi-operasi dasar pada vektor (C3)

Sub-Pokok Bahasan

- 1. Vektor dalam R², R³ dan Rⁿ
- 2. Operasi dasar pada vektor
- 3. Sifat-sifat operasi vektor
- 4. Panjang vektor
- 5. Vektor satuan
- 6. Perkalian titik (dot product)
- 7. Persamaan garis dalam R² dan R³
- 8. Persamaan bidang dalam R³
- 9. Perkalian silang (cross product)

Definisi Vektor

- Vektor adalah besaran yang mempunyai besar dan arah. Vektor memainkan peranan yang sangat penting dalam menggambarkan kelakuan dari fenomena alam ini.
- Vektor digambarkan oleh ruas garis yang dilengkapi dengan anak panah.
- Panjang ruas garis sebagai perwakilan dari besar vektor, sedangkan anak panah menunjukkan arah dari vektor.
- Sebuah vektor dimulai dari titik awal (*initial point*) dan diakhiri oleh titik akhir (*terminal point*).

Vektor

Dalam konsep vektor dikenal pula **vektor nol**, yaitu vektor yang panjangnya nol, dengan arah sebarang yang menyesuaikan dengan operasi yang mengikutinya. Secara geometri vektor nol dapat digambarkan sebagai sebuah titik.

Vektor dalam bidang 2D dan 3D

Vektor yang titik awalnya di titik asal {(0,0) untuk vektor di bidang dan (0,0,0) untuk vektor di ruang} disebut **vektor posisi**

Sifat-sifat Vektor

Untuk $a = (a_1, a_2, a_3)$ dan $b = (b_1, b_2, b_3)$, berlaku:

- a=b, berarti $a_1=b_1$, $a_2=b_2$, dan $a_3=b_3$
- $a + b = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$
- $ka = (ka_1, ka_2, ka_3)$
- $a b = (a_1 b_1, a_2 b_2, a_3 b_3)$

Jika a = (2, 3, -1), b = (0, -2, 4), dan c = (1, -1, 1),tentukan:

- a. 4a b
- b. -2a + 3b + 2c

Jika
$$a = (2,3,-1)$$
, $b = (0,-2,4)$, dan $c = (1,-1,1)$, tentukan:
a. $4a - b = 4(2,3,-1) - (0,-2,4)$
 $= (8,12,-4) - (0,-2,4)$
 $= (8,14,-8)$
b. $-2a + 3b + 2c$
 $= -2(2,3,-1) + 3(0,-2,4) + 2(1,-1,1)$
 $= (-4,-6,2) + (0,-6,12) + (2,-2,2)$
 $= (-2,-14,16)$

Operasi Vektor

Sifat Vektor R^2 dan R^3 terhadap operasi penjumlahan dan perkalian dengan skalar: Jika $u, v, w \in R^2$ atau R^3 dan k, l skalar (bilangan riil), berlaku:

1.
$$u + v = v + u$$

2.
$$(u+v)+w=v+(u+w)$$

3.
$$o + u = u + o = u$$

4.
$$-u + u = u + (-u) = 0$$

$$5. \quad k(u+v) = ku + kv$$

$$6. \quad (k+l)\boldsymbol{u} = k\boldsymbol{u} + l\boldsymbol{u}$$

7.
$$1u = u$$

(Invers Penjumlahan)

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = (a_1, a_2) \operatorname{dan} \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = (u_1, u_2, u_3)$$

Panjang Vektor

• Selain vektor posisi yang selalu berawal dari titik asal, terdapat pula vektor yang titik awalnya $P_1=(x_1,y_1,z_1)$ dan titik akhirnya $P_2=(x_2,y_2,z_2)$, vektor yang demikian dinyatakan:

•
$$\overrightarrow{P_1P_2} = P_2 - P_1 = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

•
$$|\overrightarrow{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• $|\overrightarrow{P_1P_2}|$ merupakan jarak antara P_1 dan P_2 .

1. Jika
$$a = (2,3,2)$$
, $b = (\frac{1}{2}, -4,5)$, dan $c = (25, -32,2)$, tentukan:

a.
$$2(a+b)-c$$

b.
$$2b - (a + 3c)$$

2. Hitung jarak antara $P_1(2, 3, 4)$ dan $P_2(-1, 3, -2)$

- 2. Hitung jarak antara $P_1(2, 3, 4)$ dan $P_2(-1, 3, -2)$
- Vektor $\overrightarrow{P_1P_2}$

$$\overrightarrow{P_1P_2} = P_2 - P_1 = (-1, 3, -2) - (2, 3, 4)$$

 $\overrightarrow{P_1P_2} = (-3, 0, -6) = -3x - 6z$

• Jarak P₁ ke P₂

$$|\overrightarrow{P_1P_2}| = \sqrt{(-3)^2 + 0^2 + (-6)^2}$$

 $|\overrightarrow{P_1P_2}| = \sqrt{45}$
 $|\overrightarrow{P_1P_2}| = 3\sqrt{5}$

Perkalian Titik (Dot Product)

$$u.v =$$
$$\begin{cases} |u||v|cos\theta, & \text{Jika } u \neq 0 \text{ dan } v \neq 0 \\ 0 & \text{Jika } u = 0 \text{ atau } v = 0 \end{cases}$$

Atau
$$(u_1x + u_2y + u_3z)$$
. $(v_1x + v_2y + v_3z)$

$$\mathbf{u}.\mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3$$

Perkalian Titik (Dot Product)

Contoh:

Tentukan hasil kali titik antara vektor $\boldsymbol{u}=(0,0,2)$ dengan $\boldsymbol{v}=(2,0,2)$.

$$u.v = (0,0,2).(2,0,2)$$

= $0.2 + 0.0 + 2.2$
= $0 + 0 + 4$
= 4

Sifat-sifat Hasil Kali Titik

• Jika u, v, dan w adalah vektor R^2 atau R^3 , k skalar, berlaku:

1.
$$u.v = v.u$$
 (komutatif)

2.
$$u.(v+w) = u.v + u.w$$
 (distributif)

3.
$$k.(u+v) = k.u + k.v$$

4.
$$u.u > 0$$
, $jika u \neq 0$, $dan u.u = 0$, $jika u = 0$

Jika u = (2, -3, 7), v = (-4, 1, 2) dan w = (0, 3, -2), hitunglah:

a.
$$u.(v+w)$$

b.
$$-2(u.v)$$

$$\mathbf{c}$$
. \mathbf{u} . \mathbf{u}

Jika
$$u = (2, -3, 7), v = (-4, 1, 2)$$
 dan $w = (0, 3, -2)$, hitunglah:

a.
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = (2, -3, 7) \cdot ((-4, 1, 2) + (0, 3, -2))$$

= $(2, -3, 7) \cdot (-4, 4, 0)$
= $-8 - 12 + 0$
= -20

b.
$$-2(u \cdot v) = -2((2, -3, 7) \cdot (-4, 1, 2)) = -2(-8 - 3 + 14)$$

= $-2(3) = -6$

c.
$$\mathbf{u}.\mathbf{u} = (2, -3, 7).(2, -3, 7)$$

= $4 + 9 + 49 = \mathbf{62}$

Latihan

1. Tentukan cosinus sudut antara vektor u dan v, berikut:

a.
$$u = (1, 0, 1) \text{ dan } v = (-1, 1, -1)$$

b.
$$u = (1, 2, 3) \text{ dan } v = (-1, 2, 1)$$

c.
$$u = (3, 1, 0) \text{ dan } v = (0, 1, -1)$$

2. Tentukan k, sehingga $\mathbf{u}=(k,0,1)$ dan $\mathbf{v}=(-k,1,1)$ saling tegak lurus.

Latihan

1. Tentukan cosinus sudut antara vektor u dan v, berikut:

a.
$$u = (1, 0, 1) \text{ dan } v = (-1, 1, -1)$$

$$\cos\theta = \frac{u \cdot v}{|u||v|} = \frac{-1+0-1}{\sqrt{2}\sqrt{3}} = \frac{-2}{\sqrt{6}} = -\frac{1}{3}\sqrt{6}$$

$$\theta = cos^{-1} \left(-\frac{1}{3} \sqrt{6} \right) = 144,68^{\circ}$$

Latihan

2. Tentukan k, sehingga $\mathbf{u}=(k,0,1)$ dan $\mathbf{v}=(-k,1,1)$ saling tegak lurus.

$$\theta = 90^{\circ} \rightarrow cos 90^{\circ} = 0$$

$$u. v = 0$$

$$(k, 0, 1). (-k, 1, 1) = 0$$

$$-k^{2} + 0 + 1 = 0$$

$$k^{2} - 1 = 0$$

$$(k - 1)(k + 1) = 0$$

$$k_{1} = 1 \cup k_{2} = -1$$

Terima Kasih

Sampai Jumpa di Pertemuan Selanjutnya