$\tau_{1}^{\#2}_{\alpha}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2} k(6k^2 r_5 + t_1 + 4t_3)}{(1 + 2k^2)^2 (3t_1 t_3 + 2k^2 r_5 (t_1 + t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	C	$J_0^{\#1}$		$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$	
$\sigma_{0^+}^{\#1}$ †	(1+2	$\frac{1}{(k^2)^2}t_3$	- <u> </u>	$\frac{\sqrt{2} k}{2 k^2}$	0	0	
$\tau_{0^{+}}^{#1}$ †	$\frac{i}{(1+2)}$	$\sqrt{2} k$ $(k^2)^2 t_3$	(1+2	$\frac{2k^2}{2k^2)^2t_3}$	0	0	
$ au_{0^{+}}^{\#2} \dagger \\ \sigma_{0^{-}}^{\#1} \dagger$		0		0	0	0	
$\sigma_{0}^{\#1}$ †		0		0	0	$-\frac{1}{t_1}$	
				<i>t</i> ₃)	+ t3)		
$f_{1}^{\#2}$	0	0	0	$(t_1 - 2t_3)$	$k(t_1+t_3)$	0	

$f_{1^-}^{\#2} \alpha$	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1 + t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+} f_{1}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{lphaeta}$ ($k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{#1} + \tau^{\alpha\beta} \frac{k^2 r_5 - \frac{t_1}{2}}{2}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{#1} \dagger^{lpha}$	$f_1^{#2} + \alpha$

	#	1	1	3	3	т	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$	$t_1^{\#1}{}^{\alpha} == 0$	$t_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

11

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}_{+}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
·	$\sigma_2^{\#1} + \alpha^{\beta}$	$\tau_2^{#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

$\omega_{0}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i \sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	t3	$i\sqrt{2}kt_3$	0	0
	$\omega_0^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1} \dagger$

_agrangian density

 $-\frac{1}{3}t_{1} \omega_{i}^{\alpha i} \omega_{\kappa\alpha}^{\kappa} + \frac{2}{3}t_{3} \omega_{i}^{\alpha i} \omega_{\kappa\alpha}^{\kappa} - t_{1} \omega_{i}^{\kappa\lambda} \omega_{\kappa\lambda}^{i} - r_{5} \partial_{i}\omega^{\kappa\lambda}_{\kappa} \partial^{i}\omega_{\lambda}^{\alpha} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda} + r_{5} \partial_{\theta}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} + 2r_{5} \partial_{\theta}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\alpha}^{i} - \frac{2}{3}t_{3} \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa}f_{i}^{i} + \frac{1}{3}t_{1} \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa}f_{i}^{i} - \frac{2}{3}t_{3} \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa}f_{i}^{i} - \frac{1}{3}t_{1} \partial_{\kappa}f_{\lambda}^{\lambda} \partial^{\kappa}f_{i}^{i} + \frac{2}{3}t_{1} \partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f_{i}^{i} - \frac{4}{3}t_{3} \partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f_{i}^{i} - \frac{1}{3}t_{1} \partial_{\kappa}f_{\lambda}^{\lambda} \partial^{\kappa}f_{i}^{i} + \frac{2}{3}t_{3} \omega_{\kappa}\partial^{\kappa}f_{\kappa}^{i} - \frac{1}{3}t_{1} \omega_{\kappa}\partial^{\kappa}f_{\kappa}\partial^{\kappa}f_{\kappa}^{i} + \frac{2}{3}t_{3} \omega_{\kappa}\partial^{\kappa}f_{\kappa}\partial^{\kappa}f_{\kappa}^{i} - \frac{1}{3}t_{1} \omega_{\kappa}\partial^{\kappa}f_{\kappa}\partial^{\kappa}f_{\kappa}\partial^{\kappa}f_{\kappa}^{i} - \frac{1}{3}t_{1} \omega_{\kappa}\partial^{\kappa}f_{\kappa}\partial$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

?
$$J^{P} = 1^{-}$$
?
?
?

	Massive partic	Massive particle				
?	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$				
	Polarisations:	3				
	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$				
	Spin:	1				
	Parity:	Odd				

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1 || t_3 > 0))$

(No massless particles)