

Oracle Database 개요

✓ Data

관찰 결과로 나타난 정량적 혹은 정성적인 실제 값

√ 정보

데이터를 기반으로 의미를 부여한 것

* 에베레스트의 높이 : 8848m → Data 에베레스트는 세계에서 가장 높은 산이다. → 정보

✓ Database

한 조직에 필요한 정보를 여러 응용 시스템에서 공용할 수 있도록 논리적으로 연관된 데이터를 모으고 중복되는 데이터를 최소화하여 구조적으로 통합/저장해놓은 것

Database

√ 정의

- 1. 공용 데이터(Shared Data): 공동으로 사용되는 데이터
- 2. 통합 데이터(Integrated Data): 중복 최소화로 중복으로 인한 데이터 불일치 현상 제거
- 3. 저장 데이터(Stored Data): 컴퓨터 저장장치에 저장된 데이터
- 4. 운영 데이터(Operational Data): 조직의 목적을 위해 사용되는 데이터

✓ 특징

- 실시간 접근성(real time accessibility): 사용자가 데이터 요청 시 실시간으로 결과 서비스
- 계속적인 변화(continuous change): 데이터 값은 시간에 따라 항상 바뀜
- 동시 공유(concurrent sharing) : 서로 다른 업무 또는 여러 사용자에게 동시 공유됨
- 내용에 의한 참조(Content Reference): 사용자가 요구하는 데이터 내용으로 데이터를 찾는다.

데이터베이스에서 데이터 추출, 조작, 정의, 제어 등을 할 수 있게 해주는 데이터베이스 전용 관리 프로그램

✓ 기능

데이터 추출 (Retrieval)	사용자가 조회하는 데이터 혹은 응용 프로그램의 데이터 추출			
데이터 조작 (Manipulation)	데이터를 조작하는 소프트웨어(응용 프로그램)가 요청하는 데이터 삽입, 수정, 삭제 작업 지원			
데이터 정의 (Definition)	데이터의 구조를 정의하고 데이터 구조에 대한 삭제 및 변경 기능 수행			
데이터 제어 (Control)	데이터베이스 사용자를 생성하고 모니터링하며 접근 제어 백업과 회복, 동시성 제어 등의 기능 지원			

	Access	SQL Server	Oracle	MySQL	MariaDB	SQLite
제조사	MS	MS	Oracle	Oracle	MariaDB 재단	리처드 힙 (오픈소스)
운영체제 기반	윈도우	윈도우	윈도우 유닉스 리눅스	윈도우 유닉스 리눅스	윈도우 유닉스 리눅스	모바일OS (안드로이드, iOS등)
용도	개인용	윈도우기반 기업용	대용량 데이터베이스	소용량 데이터베이스	소용량 데이터베이스	모바일전용 데이테베이스

▶ DBMS 변천 과정

데이터 모델	1960년대 이전	1970년대	1980년대	1990년대	2000년대	2010년대
제품 종류						
파일시스템						
계층 데이터 모델						
네트워크 데이터 모델						
관계 데이터 모델						
객체 데이터 모델						
객체-관계 데이터 모델						

✓ 계층형 데이터베이스

트리 형태의 계층적 구조를 가진 데이터베이스로 최상위 계층의 데이터부터 검색하는 구조

✓ 네트워크형 데이터베이스

하위 데이터들끼리의 관계까지 정의할 수 있는 구조로 설계 및 구현이 복잡하고 어려움

▶ Database 유형

✓ 관계형 데이터베이스

모든 데이터를 2차원 테이블 형태로 표현하고 테이블 사이의 비즈니스적 관계를 도출하는 구조데이터의 중복을 최소화 할 수 있으며 업무 변화에 대한 적응력 우수

테이블 명 : DEPARTMENT

D_CODE	D_NAME
D1	전자사업부

테이블 명: JOB

J_CODE	J_NAME	
J1	부장	

테이블 명 : EMPLOYEE

NAME	J_CODE	D_CODE	AGE
홍길동	J1	D1	42