ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD

Aplikované vědy a informatika Kybernetika a řídící technika

Vypracované otázky ke státní závěrečné zkoušce (Ing.)

25.	května 2017	Martin Bulín,	MSc.

1	\mathbf{Um}	ělá int	teligence [UISZ]	1
	1.1	Učící	se systémy a klasifikátory [USK]	1
		1.1.1	Kritérium minimální chyby	1
		1.1.2	Pravděpodobnostní diskriminační funkce. Souvislost s klasifikátory podle lineární diskriminační funkce, podle nejmenší vzdálenosti, podle nejbližšího souseda a podle k-nejbližšího souseda	3
		1.1.3	Klasifikátor s lineární diskriminační funkcí. Klasifikace do dvou a do více	9
		1.1.0	tříd	6
		1.1.4	Metody nastavování klasifikátorů (trénování klasifikátorů)	9
		1.1.5	Metody shlukové analýzy (učení bez učitele)	9
		1.1.6	Výběr informativních příznaků	9
	1.2	Neur	onové sítě [NEU]	9
		1.2.1	Základní umělé modely neuronu, vlastnosti, souvislost s biologickým neu-	
			ronem	9
		1.2.2	Základní typy neuronových sítí. Způsoby činnosti a učení neuronových sítí.	9
		1.2.3	Algoritmus backpropagation	9
		1.2.4	Sítě se zpětnou vazbou. Hopfieldova neuronová síť	9
		1.2.5	Samoorganizující se sítě	9
		1.2.6	Oblasti použití neuronových sítí	9
	1.3	Zprac	cování digitalizovaného obrazu [ZDO]	9
		1.3.1	Bodové jasové transformace	10
		1.3.2	Geometrické transformace.	10
		1.3.3	Filtrace šumu.	10
		1.3.4	Gradientní operátory.	10
		1.3.5	Metody segmentace	10

		1.3.6	Matematická morfologie	10
2	Teo	rie říze	ení [TŘSZ]	11
	2.1	Lineá	rní systémy 1-2 [LS1], [LS2]	11
		2.1.1 2.1.2	Matematické modely spojitých a diskrétních lineárních dynamických systémů Linearizace nelineárních dynamických systémů, rovnovážné stavy. Harmo-	ı. 12
		2.1.3	nická linearizace	12
		0.1.4	kriteria. Vnitřní a vnější stabilita, kriteria	12
		2.1.4 $2.1.5$	Časové a frekvenční odezvy elementárních členů regulačních obvodů Základní typy spojitých a diskrétních regulátorů (P,PI,PID, stavové re-	12
		2.1.0	gulátory a stavové regulátory s integračním charakterem), popis, vlastnosti.	12
		2.1.6	Struktura regulačních obvodů s jedním a dvěma stupni volnosti, přenosy	12
		2.1.7	v regulačním obvodu, princip vnitřního modelu	
		2.1.8	gulátory. Požadavky na umístění pólů, konečný počet kroků regulace Požadavky na funkci a kvalitu regulace (přesnost regulace, dynamický	12
			činitel regulace, kmitavost, robustnost ve stabilitě a j.), omezení na dosažiteln	
		2.1.9	kvalitu regulace	12
			syntéze regulátorů, příklady	12
		2.1.10	Přístup k syntéze regulátorů v klasické teorii regulace, klasické metody, heuristické metody	12
		2.1.11	Deterministická rekonstrukce stavu, stavový regulátor s rekonstruktorem	
		2.1.12	stavu	12 12
	2.2	Toonie	e odhadu [TOD]	12
	2.2	2.2.1	Problémy odhadu, základní etapy vývoje teorie odhadu, náhodné veličiny,	
		2.2.2	náhodné procesy a jejich popis, stochastický systém	13
		0.0.2	maximální věrohodnosti	13
		2.2.3 $2.2.4$	Jednorázové a rekurzivní odhady	13 13
		2.2.4 $2.2.5$	Úlohy odhadu stavu lineárního diskrétního stochastického systému – pre-	10
			dikce a vyhlazování	13
		2.2.6	Odhad stavu lineárního systému se spojitým či diskrétním měřením (Kalman-	
			Bucyho filtr)	13
	2.3	Optin	nální systémy [OPS]	13
		2.3.1	Optimální programové řízení diskrétních dynamických systémů. Formu-	
		2.3.2	lace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení Optimální programové řízení spojitých dynamických systémů. Formulace	14
		2.9.2	úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení. Podmínky	
			transverzality. Pontrjaginův princip minima.	14
		2.3.3	Deterministický diskrétní systém automatického řízení. Princip optimality. Bellmanova funkce. Bellmanova optimalizační rekurze	14

	2.3.4	Syntéza optimálního deterministického systému automatického řízení pro diskrétní lineární řízený systém a kvadratické kritérium. Formulace a řešení.	1.4
	2.3.5	Asymptotické řešení a jeho stabilita	14
	2.3.6	manovy optimalizační rekurze	14
	2.3.7	manova funkce a Bellmanova optimalizační rekurze	14
		řízený systém a kvadratické kritérium. Formulace a řešení. Separační teorém.	14
2.4	_	tivní systémy [AS]	14
	2.4.1	Základní přístupy k syntéze adaptivních řídicích systémů, schematické	1 5
	2.4.2	vyjádření, srovnání s předpoklady a návrhem standardních regulátorů Adaptivní řízení s referenčním modelem, MIT pravidlo, využití Ljapuno-	15
	2.4.3	vovy teorie stability	15
	2.4.4	bloku řízení, přiřazení pólů, diofantické rovnice, minimální variance Samonastavující se regulátory, charakteristika a základní přístupy k návrhu	15
	2.4.5	bloku poznávání, parametrické metody odhadu	15
		filtr, analogie se samonastavujícími se regulátory	15
	2.4.6	Adaptivní řízení a strukturální vlastnost stochastického optimálního řízení, duální řízení, neutralita, separabilita, ekvivalence určitosti.	15
3 Ар	likovan	á kybernetika [AKSZ]	16
3.1	Uměl	á inteligence [UI]	16
	3.1.1	Metody řešení úloh v UI	1.0
		· ·	16
	3.1.2	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu.	
	3.1.2	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16
	3.1.2 3.1.3	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16 16
	3.1.2	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16 16
3.2	3.1.2 3.1.3 3.1.4 3.1.5	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16 16 16
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda. Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření. Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře. Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání. elování a simulace 1 [MS1] Systém, model, modelování, simulace, systémová analýza.	16 16 16 16 16
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda. Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření. Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře. Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání. elování a simulace 1 [MS1] Systém, model, modelování, simulace, systémová analýza. Modelování systému diskrétních událostí, diskrétní simulace.	16 16 16 16 16 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2 3.2.3	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16 16 16 16 16 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda. Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření. Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře. Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání. Elování a simulace 1 [MS1] Systém, model, modelování, simulace, systémová analýza. Modelování systému diskrétních událostí, diskrétní simulace. Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,	16 16 16 16 16 17 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2 3.2.3	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16 16 16 16 16 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2 3.2.3 3.2.4	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda. Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření. Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře. Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání. Elování a simulace 1 [MS1] Systém, model, modelování, simulace, systémová analýza. Modelování systému diskrétních událostí, diskrétní simulace. Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,).	16 16 16 16 16 17 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2 3.2.3 3.2.4	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda. Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření. Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře. Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání. Plování a simulace 1 [MS1] Systém, model, modelování, simulace, systémová analýza. Modelování systému diskrétních událostí, diskrétní simulace. Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,). Konstrukce modelů na základě měření, zpracování signálu v časové, frekvenční a časo-frekvenční oblasti, modely periodických procesů. Modely vibrací a kmitání, experimentální modální analýza.	16 16 16 16 16 17 17 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda. Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření. Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře. Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání. Elování a simulace 1 [MS1] Systém, model, modelování, simulace, systémová analýza. Modelování systému diskrétních událostí, diskrétní simulace. Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách. Modelování v netechnických oborech (kompartmenty, buněčné automaty,). Konstrukce modelů na základě měření, zpracování signálu v časové, frekvenční a časo-frekvenční oblasti, modely periodických procesů.	16 16 16 16 17 17 17 17
3.2	3.1.2 3.1.3 3.1.4 3.1.5 Mode 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda	16 16 16 16 17 17 17 17

	3.3.2	Architektura .NET Frameworku; řízený modul, metadata, běh řízeného	
		kódu	18
	3.3.3	Jazyk C Sharp: hodnotové a referenční typy; jednoduché typy, implicitní	
		konverze; výrazy a operátory; příkazy; výjimky	18
	3.3.4	Jazyk C Sharp: Členy a přístup k nim; jmenné prostory; třídy, metody,	
		vlastnosti, konstruktory, destruktory; struktury; pole; delegáty; atributy	18
	3.3.5	Softwarové komponenty: DLL, RPC, COM; interface; OPC	18
	3.3.6	Operační systémy: procesy a thready, synchronizace, deadlock, inverze pri-	
		orit; správa paměti; vstupně-výstupní systém, programované vstupy/výstupy,	
		přerušení, DMA, ovladače zařízení; souborové systémy	18
	3.3.7	Operační systémy reálného času: statické a dynamické plánovací algoritmy.	18
	3.3.8	Struktury vzdálených a virtuálních laboratoří.	18
3.4	Převo	odníky fyzikálních veličin [PFV]	18
0.1	3.4.1	Struktura a parametry senzorů pro automatizaci, statické a dynamické	10
	0.1.1	modely a chyby, metody snižování chyb senzorů	19
	3.4.2	A/D a D/A převodníky, obvody pro úpravu signálů, frekvenční filtry	19
	3.4.3	Senzory teploty a tepla, obvody pro měření odporu, kapacity, indukčnosti	10
	3.1.3	a frekvence	19
	3.4.4	Senzory polohy a vzdálenosti (odporové, indukční, kapacitní, ultrazvu-	
	9.2.2	kové, optické).	19
	3.4.5	Senzory síly, hmotnosti, deformace, tlaku, rychlosti, zrychlení a vibrací	
		(tenzometrické, piezoelektrické, kapacitní a elektrodynamické)	19
	3.4.6	Senzory průtoku, množství, hustoty, viskozity, koncentrace a chemického	
		složení.	19
	3.4.7	Elektrické akční členy a jejich budiče (stejnosměrné, střídavé, krokové mo-	
		tory, PWM zesilovače, frekvenční měniče)	19
	3.4.8	Hydraulické a pneumatické akční členy (pracovní a řídicí mechanizmy a	
		zdroje tlakového média)	19
		•	

Kapitola 1

Umělá inteligence [UISZ]

1.1 Učící se systémy a klasifikátory [USK]

vyučující: Prof. Ing. Josef Psutka, CSc.

ročník/semestr studia: 3.ročník/LS datum zkoušky: X. 4. 2014

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními metodami klasifikace předmětů a jevů, které jsou reprezentovány svými obrazy (vektory příznaků). Výuka bude zaměřena na klasifikátory, které jsou trénovány s podporou učitele (supervised) anebo bez učitele (unsupervised).

1.1.1 Kritérium minimální chyby.

Často nejsme schopni posoudit jednoznačně, do které třídy vektor příznaků X patří. Cílem je potom nastavit klasifikátor tak, aby ztráty způsobené chybným rozhodnutím byly minimální.

Definition 1 Ztráta, která vznikne, jestliže obraz náležející do třídy ω_s zařadí klasifikátor do třídy ω_r : $l(\omega_r|\omega_s)$

- předp., že obrazový prostor X obsahuje obrazy z R tříd: $\omega_1, ..., \omega_R$
- apriorní p
psti výskytu obrazů náležejících ke třídě $\omega_r => p(\omega_r), \qquad r=1,...,R$
- podmíněná hustota p
psti obrazu x ze třídy ω_r je $p(x|\omega_r), \qquad r=1,...,R$
- nechť je dána matice ztrátových funkcí:

$$l = \begin{bmatrix} l(\omega_1 | \omega_1) & \dots & l(\omega_1 | \omega_R) \\ \vdots & \ddots & \vdots \\ l(\omega_R | \omega_1) & \dots & l(\omega_R | \omega_R) \end{bmatrix}$$
(1.1)

Předpokládejme, že na vstup klasifikátoru přicházejí x pouze z ω_s a klasifikátor je bude zařazovat do ω_r podle diskriminační funkce $\omega_r = d(x, q)$.

Definition 2 Podmíněná střední ztráta (střední ztráta podmíněná výběrem obrazů výlučně ze třídy ω_s :

$$J(q|\omega_s) = \int_X l[d(x,q)|\omega_s] \cdot p(x|\omega_s) dx$$
 (1.2)

Protože jednotlivé třídy ω_s se vyskytují s p
pstí $p(\omega_s)$, bude celková střední ztráta:

$$J(q) = \sum_{s=1}^{R} J(q|\omega_s) \cdot p(\omega_s) = \int_{X} \sum_{s=1}^{R} l[d(x,q)|\omega_s] \cdot p(x|\omega_s) \cdot p(\omega_s) dx$$
 (1.3)

Hledáme q^* , které minimalizuje J(q):

$$J(q^*) = \min_{q} J(q) = \int_{X} \min_{q} \sum_{s=1}^{R} l[d(x,q)|\omega_s] \cdot p(x|\omega_s) \cdot p(\omega_s) dx =$$

$$= \int_{X} \min_{r} \sum_{s=1}^{R} l(\omega_r|\omega_s) \cdot p(x|\omega_s) \cdot p(\omega_s) dx = \int_{X} \min_{r} L_x(\omega_r) dx$$
(1.4)

Místo minima
$$J(q)$$
 hledáme minimum $L_x(\omega_r) = \sum_{r=1}^R l(\omega_r | \omega_s) \cdot p(x | \omega_s) \cdot p(\omega_s), \qquad r = 1, ..., R.$

Při klasifikaci podle funkce $L_x(\omega_r)$ by se postupovalo tak, že pro daný x by se vyčíslily všechny $L_x(\omega_r), r=1,...,R$ a obraz x by se přiřadil do té třídy ω_s , pro kterou by byla ztráta minimální. Je zřejmé, že různou volbou ztrátové funkce $l(\omega_r|\omega_s)$ dostáváme různý tvar rozhodovacího pravidla. Předpokládejme, že ztrátová funkce je zvolena tak, že při správném rozhodnutí přiřadí ztrátu 0 a při jakémkoliv špatném rozhodnutí ztrátu 1 (penalta 0/1).

$$l(\omega_r|\omega_s) = 1 - \delta_{rs}, \qquad \delta_{rs} = \begin{cases} 1 & r = s \\ 0 & r \neq s \end{cases}$$
 (1.5)

Po dosazení:

$$L_{x}(\omega_{r}) = \sum_{s=1}^{R} (1 - \delta_{rs}) p(x|\omega_{s}) \cdot p(\omega_{s}) = \sum_{s=1}^{R} p(x|\omega_{s}) \cdot p(\omega_{s}) - \sum_{s=1}^{R} \delta_{rs} p(x|\omega_{s}) \cdot p(\omega_{s})$$

$$= \sum_{s=1}^{R} \left[p(x|\omega_{s}) \cdot p(\omega_{s}) \right] - p(x|\omega_{r}) \cdot p(\omega_{r})$$
(1.6)

Platí známý Bayesův vztah:

$$p(\omega_s|x) = \frac{p(x|\omega_s) \cdot p(\omega_s)}{p(x)} \qquad , \tag{1.7}$$

kde $p(\omega_s|x)$ je aposteriorní pravděpodobnost, která vyjadřuje p
pst třídy ω_s za předpokladu, že je na vstupu klasifikátoru obraz x.

 $p(x|\omega_s)$... ppst x za předpokladu, že patří do ω_s

- $p(\omega_s)$... apriorní ppst třídy ω_s
- p(x) ... ppst obrazu x (celková hustota funkce do obrazového prostoru)

$$\sum_{s=1}^{R} p(\omega_s|x) \stackrel{!}{=} 1 = \sum_{s=1}^{R} \frac{p(x|\omega_s) \cdot p(\omega_s)}{p(x)} = p(x) = \sum_{s=1}^{R} p(x|\omega_s) \cdot p(\omega_s)$$
(1.8)

Dosadíme: $L_x(\omega_r) = p(x) - p(x|\omega_r) \cdot p(\omega_r)$. Hodnota p(x) je pro všechny třídy konstantní a jedná se v podstatě o aditivní konstantu, takže lze definovat novou funkci $L_x'(\omega_r) = p(x|\omega_r) \cdot p(\omega_r)$. Klasifikace zde probíhá tak, že se hledá takové zařazení ω_s , pro které je $L_x'(\omega_r)$ maximální:

$$\omega_r^* = \operatorname*{argmax}_r p(x|\omega_r) \cdot p(\omega_r), \qquad r = 1, ..., R$$
(1.9)

1.1.2 Pravděpodobnostní diskriminační funkce. Souvislost s klasifikátory podle lineární diskriminační funkce, podle nejmenší vzdálenosti, podle nejbližšího souseda a podle k-nejbližšího souseda.

Kritérium minimální chyby se často označuje jako Bayesovo kritérium. Klasifikaci lze zajistit s využitím diskriminačních funkcí:

$$g'_r(x) = p(x|\omega_r) \cdot p(\omega_r), \qquad r = 1, ..., R$$
 (1.10)

Klasifikátor pracující podle Bayesova kritéria se nazývá Bayesův klasifikátor. Pro jeho konstrukci je třeba znát hodnoty apriorní pravděpodobnosti a hustoty pravděpodobnosti pro každou třídu. Rozhodnutí, do které třídy neznámý obraz x patří, se provede podle hodnoty $g'_r(x)$ výběrem maxima.

Velmi často se místo diskriminační funkce $g'_r(x)$ používá její přirozený logaritmus:

$$g_r(x) = \ln g'_r(x) = \ln p(x|\omega_r) + \ln p(\omega_r), \qquad r = 1, ..., R$$
 (1.11)

Např. pro R=3 a jednosložkový vektor x:

Předpokládejme, že obrazy v jednotlivých třídách vyhovují normálnímu rozložení (velmi častý případ). Pro obrazy v r-té třídě nechť platí:

$$p(x|\omega_r) = \frac{1}{(2\pi)^{\frac{n}{2}} \cdot \sqrt{\det C_r}} \cdot e^{-\frac{1}{2} \cdot (x - \mu_r)^T \cdot C_r^{-1} \cdot (x - \mu_r)}$$
(1.12)

 $\mu_r = E\{x\}_{x \in \omega_r} \, \dots$ vektor středních hodnot obrazů r-té třídy

$$C_r = E\{(x-\mu_r)\cdot (x-\mu_r)^T\}_{x\in\omega_r}$$
... kovarianční matice r-té třídy

Dosadíme do diskriminační funkce:

$$g_r(x) = \ln p(x|\omega_r) + \ln p(\omega_r) = -\frac{n}{2} \ln 2\pi - \frac{1}{2} \ln(\det C_r) - \frac{1}{2} \cdot (x - \mu_r)^T \cdot C_r^{-1} \cdot (x - \mu_r) + \ln p(\omega_r)$$
(1.13)

Podle tvarů kovariančních matic C_r , hodnot μ_r a $p(\omega_r)$ dostáváme typické tvary diskriminačních funkcí.

1. Obecné kovarianční matice $C_r, r = 1, ..., R$

Hyperplochy konstantních hodnot diskriminačních funkcí $g_r(x)$ jsou n-dimenzionální hyperelipsoidy (různě natočené a různě velké). Rozdělující hyperplocha mezi třídou ω_r a ω_s , tj. plocha, která je geometrickým místem shodných hodnot diskriminačních funkcí $g_r(x)$ a $g_s(x)$.

$$\varphi_{rs}(x) = g_r(x) - g_s(x) \stackrel{!}{=} 0
= -\frac{1}{2} ln \left[\frac{\det C_s}{\det C_r} \right] + ln \left[\frac{p(\omega_r)}{p(\omega_s)} \right] - \frac{1}{2} \cdot (x - \mu_r)^T \cdot C_r^{-1} \cdot (x - \mu_r) + \frac{1}{2} \cdot (x - \mu_s)^T \cdot C_s^{-1} \cdot (x - \mu_s) \right]$$
(1.14)

Rozdělující hyperplochy mohou být podle tvaru C_r a C_s např. n-dimenzionální hyperroviny, hyperelipsoidy, hyperparaboloidy apod.

2. Všechny třídy mají stejnou kovarianční matici $C_r = C, \forall r = 1, ..., R$

Shluky vzorků všech tříd vytvářejí stejně orientované a velké n-dimenzionální elipsoidy.

$$g_r(x) = -\frac{1}{2}x^T C_r^{-1} x + \mu_r^T C_r^{-1} x - \frac{1}{2}\mu_r^T C_r^{-1} \mu_r + \ln p(\omega_r) - \frac{n}{2}\ln 2\pi - \frac{1}{2}\ln(\det C) \quad (1.15)$$

Plochy konstantních velikostí diskriminačních funkcí jsou n-rozměrné elipsoidy, které mají stejný tvar a jsou stejně orientovány. Rozdělující plochu $\varphi_{rs}(x)$ mezi třídami ω_r a ω_s lze vyjádřit:

$$\varphi_{rs}(x) = (\mu_r - \mu_s)^T C^{-1} x - \frac{1}{2} \mu_r^T C^{-1} \mu_r + \frac{1}{2} \mu_s^T C^{-1} \mu_s + \ln p(\omega_r) - \ln p(\omega_s) =$$

$$= \varphi_{rsn} x_n + \dots + \varphi_{rs1} x_1 + \varphi_{rs0} = \varphi_{rs}^T x + \varphi_{rs0}$$
(1.16)

Rozdělující plocha mezi třídami ω_r a ω_s je n-dimenzionální rovina. Jedná se tedy o n-dimenzionální lineární diskriminační funkci.

3. Všechny třídy mají stejnou diagonální kov. matici $C_r = C = \delta^2 I, r = 1, ..., R$

Předpokladem je, že obrazy každé třídy mají statisticky nezávislé příznaky a každý příznak má stejnou varianci δ^2 . Geometricky to odpovídá situaci, kdy vzorky každé třídy vytváří shluky tvaru n-dimenzionálních koulí centrovaných kolem příslušné střední hodnoty. Potom $\det C = \delta^{2n}$ a $C^{-1} = \frac{1}{\delta^2}I$. Předpokládejme, že všechny třídy jsou stejně pravděpodobné,

tj. $p(\omega_r) = p(\omega), \forall r = 1, ..., R.$ Potom:

$$g_r(x) = -\frac{1}{2\delta^2} ||x - \mu_r||^2 + \ln p(\omega) - \frac{n}{2} \ln 2\pi - \frac{1}{2} \ln(\delta^{2n}) = -k_1 \cdot ||x - \mu_r||^2 + k_2 \quad (1.17)$$

Konstanty $k_1 > 0$ a k_2 jsou shodné pro všechny třídy a výraz $||x - \mu_r||^2$ představuje kvadrát Euklidovské vzdálenosti mezi vektorem x a střední hodnotou ω_r . Klasifikátor zařadí neznámý obraz x do té třídy ω_r , pro kterou je $g_r(x)$ maximální. Z výrazu pro $g_r(x)$ vyplývá, že $g_r(x)$ bude tím větší, čím bude $||x - \mu_r||^2$ menší $(k_1 > 0)$. Jedná se tedy v podstatě o klasifikátor podle minimální vzdálenosti.

Klasifikace podle minimální vzdálenosti

Diskriminační funkce: $g_r^*(x) = ||x - \mu_r||^2$. Klasifikátor zařadí neznámý obraz x do té třídy, pro kterou bude $g_r^*(x)$ minimální ($\omega_r^* = \min_r d^2(x, \mu_r)$). Není to určitě nejlepší klasifikátor, ale je tu velká lákavost ho používat, protože stačí jediný obraz na třídu. Rozdělující nadrovina má tvar:

$$\varphi_{rs}(x) = -k1 \cdot ||x - \mu_r||^2 + k_2 - \left[-k_1 \cdot ||x - \mu_s||^2 + k_2\right] =$$

$$= k_1 \cdot \left[x^T x - 2\mu_s x + \mu_s^T \mu_s - x^T x - 2\mu_r x + \mu_r^T \mu_r\right] \stackrel{!}{=} 0$$

$$= > (\mu_r - \mu_s)^T x - \frac{1}{2}(\mu_r^T \mu_r - \mu_s^T \mu_s) = 0$$
(1.18)

Rozdělující nadplochy mezi třídami jsou lineární, jsou to n-dimenzionální roviny kolmé na úsečku $\mu_r - \mu_s$, kterou půlí ¹. Tento klasifikátor je velmi jednoduchý na implementaci - pro jeho nastavení stačí získat střední hodnoty každé třídy a pro neznámý obraz x ve fázi klasifikace vypočítat vzdálenost ke všem středním hodnotám (též nazýván klasifikátor se vzorovými etalony. Pro svou jednoduchost je často nasazován i v případech, kdy není zabezpečena jeho optimální funkce podle kritéria minimální chyby (např. je málo početná trénovací množina nebo není znám typ rozložení nebo není známa disperzní matice ap.). To vede k negativním vlivům klasifikátoru:

- vzhledem k tomu, že využívá pouze střední hodnoty, nerespektuje tvar shluků jednotlivých tříd (pokud je odlišný od $C_r = C = \delta^2 I$; tvar shluku koresponduje s tvarem disperzní matice).
- nerespektuje případné odlišné apriorní pravděpodobnosti jednotlivých tříd

Dobrých výsledků dosáhneme, když budou třídy dobře distribuované (střední hodnoty dostatečně vzdálené, shluky dostatečně kompaktní a jednotlivé třídy stejně pravděpodobné).

Klasifikace podle nejbližšího souseda (Nearest Neighbour Classifier)

Uvedené nevýhody klasifikátoru podle minimální vzdálenosti lze zmírnit často tím, že využijeme více vzorových etalonů pro každou třídu. Zvolíme-li pro každou třídu ω_r S_r vzorových etalonů:

¹Klasifikátor podle minimální vzdálenosti je ekvivalentní co do struktury lineárnímu klasifikátoru sR diskriminačními funkcemi, který může vytvořit až $\frac{R(R-1)}{2}$ rozdělujících nadrovin. Má však obecně jiné parametry, tj. klasifikuje obecně jiným způsobem než lineární klasifikátor.

 $\mu_{r1}, \mu_{r2}, \dots, \mu_{rS_r}$, pak klasifikace probíhá podle pravidla vyjádřeného vztahem:

$$\omega_r^* = \underset{s,r}{\operatorname{argmin}} ||x - \mu r s|| = \underset{s,r}{\operatorname{argmin}} d(x, \mu r s)$$
(1.19)

Obraz x se tedy zařadí do té třídy ω_r , jejíž některý etalon má mezi všemi ostatními etalony nejmenší vzdálenost od x. Tento způsob klasifikace má tu výhodu, že při dostatečně rozsáhlé trénovací množině se tvar rozdělujících funkcí pro jednotlivé třídy "blíží" Bayesovskému klasifikátoru. Na druhou stranu to však znamená značné zvýšení výpočetních nároků (klasifikátor si musí neustále pamatovat celou množinu vzorových etalonů - celou trénovací množinu) a při klasifikaci musíme počítat vzdálenost neznámého obrazu x ke všem vzorům.

Klasifikace podle k-nejbližších sousedů (k-Nearest Neighbour Classifier)

Lepších výsledků lze často dosáhnout využitím tzv. rozhodovacího pravidla, kdy nejprve vyčíslíme všechny vzdálenosti $||x-\mu_{rs}|| \forall r=1,...,R \forall s=1,...,S_r$ a pak je pro každou třídu ω_r uspořádáme tak, aby pro nový soubor $||x-\mu_{r[s]}||$ platilo:

$$||x - \mu_{r[1]}|| \le ||x - \mu_{r[2]}|| \le \dots \le ||x - \mu_{r[S_r]}||$$

Klasifikátor pak zařadí obraz x do třídy ω_r^* podle minima průměrné vzdálenosti k-nejbližších sousedů:

$$\omega_r^* = \underset{r}{\operatorname{argmin}} \frac{1}{k} \sum_{k=1}^k ||x - \mu_{r[i]}||, \qquad r = 1, ..., R$$
 (1.20)

Nevýhody:

- musím si pamatovat všechny obrazy
- při každé klasifikaci náročné výpočty

1.1.3 Klasifikátor s lineární diskriminační funkcí. Klasifikace do dvou a do více tříd.

Pokud obrazy v jednotlivých třídách podléhají normálnímu rozložení a všechny třídy vykazují stejnou kovarianční matici C, je optimální nastavení klasifikátoru podle kritéria minimální chyby (Bayesova kritéria) zabezpečeno lineárními diskriminačními funkcemi. Vzhledem k jejich výhodným analytickým vlastnostem se jich ovšem využívá i v případech, kdy výše uvedené podmínky splněny nejsou a nebo, a to je častější případ, kdy ověření platnosti těchto podmínek je nepřiměřeně náročné (např. nelze statisticky prokázat typ rozložení vzhledem k malému počtu obrazů ap.). Zvolíme-li v takovém případě rozhodovací pravidlo založené na lineárních diskriminačních funkcích, musíme mít vždy na paměti, že jsme nezvolili optimální řešení s hlediska Bayesova kriteria minimální chyby. Přesto je třeba říci, že v případech, kdy obrazy jednotlivých tříd jsou dobře distribuované, tj. vytvářejí kompaktní shluky, které jsou od sebe dostatečně vzdálené (lineárně separabilní třídy) toto zjednodušení dostatečně vyhovuje.

Uvažme lineární diskriminační funkci $g(x) = q_0 + q_1 x_1 + \dots + q_n x_n = q_0 + \sum_{i=1}^n q_i x_i$, kde q_i jsou váhy funkce a q_0 je práh funkce.

Dále mějme $||q|| = \sqrt{q_1^2 + q_2^2 + \dots + q_n^2}$. Pro n = 2:

Klasifikace do dvou tříd (dichotomie)

Při klasifikaci do dvou tříd ω_1 a ω_2 stačí k rozhodnutí jediná diskriminační funkce:

$$g(x) = q_0 + \sum_{i=1}^{n} q_i x_i$$
 (1.21)

Pro g(x) > 0 je $x \in \omega_1$, pro g(x) < 0 je $x \in \omega_2$.

Klasifikace do více tříd

(a) Předpokládejme, že obrazy každé třídy jsou $line\acute{a}rn\check{e}$ separovatelné od obrazů všech ostatních tříd. Pak diskriminační funkce mezi třídami ω_r a $\bar{\omega_r}$ je:

$$g_r(x) = q_{r,0} + \sum_{i=1}^{n} q_{r,i} x_i$$
 (1.22)

a platí, že pro $x \in \omega_r$ je $g_r(x) > 0$ a pro $x \in \bar{\omega_r}$ je $g_r(x) < 0$. Klasifikátor pak rozhodne o zařazení x do té třídy $\omega_r(r=1,...,R)$ pro níž je diskriminační funkce $g_r(x) > 0$. Problém je však v tom, že se může stát, že pro neznámé x bude hodnota více než jedné diskriminační funkce větší než 0. V takovém případě klasifikátor není schopen rozhodnout ².

Př.
$$(n = 2, R = 3)$$
:

(b) Předpokládejme, že obrazy každé třídy jsou po dvojicích lineárně separovatelné od všech ostatních tříd. V tomto případě existuje celkově $\frac{R(R-1)}{2}$ diskriminačních funkcí $\varphi_{rs}(x); r, s =$

 $^{^2}$ Tento způsob klasifikace má jistá omezení, např. v prostoru dimenze n=2 lze takto rozdělit maximálně R=3 dobře distribuované třídy.

 $1,...,R \land r \neq s$, které vytvářejí rozdělující roviny mezi obrazy všech dvojic tříd. Pro obraz $x \in \omega_r$ pak platí $\varphi_{rs}(x) > 0 \,\forall s \neq r$, viz³.

Př.
$$(n = 2, R = 4)$$
:

(c) Předpokládejme⁴, že existují diskriminační funkce $g_r(x)$, r = 1, ..., R z případu ad a). Vytvoříme rozdělující hyperplochy mezi třídami r a s.

$$\varphi_{rs}(x) = g_r(x) - g_s(x) \stackrel{!}{=} 0 \tag{1.23}$$

Pro $\varphi_{rs}(x) > 0$ je $g_r(x) > g_s(x)$. Z toho vyplývá, že klasifikátor zařadí x do ω_r , jestliže $g_r(x) > g_s(x) \, \forall s = 1, ..., R; s \neq r$. Viz poznámky⁵.

Hodnoceni: Je zřejmé, že případ ad a) není vhodný k aplikování vzhledem k vytváření rozsáhlých oblastí, ve kterých nejsme schopni provést jednoznačné přiřazení. Rozhodnutí mezi případem ad b) a ad c) závisí do značné míry na intuici (zvláště v prostorech vyšší dimenze). Obecně lze říci, že případ ad b) vyžaduje určení $\frac{R(R-1)}{2}$ diskriminačních funkcí $\varphi_{rs}(x)$, kdežto případ ad c) požaduje nalezení pouze R diskriminačních funkcí $g_r(x)$. Jestliže se však počet tříd R blíží dimenzi n obrazového prostoru nebo se očekává, že obrazy jednotlivých tříd jsou špatně distribuované, bude možná postup podle ad b) lepším řešením.

³Samozřejmě platí $\varphi_{rs}(x) = -\varphi_{sr}(x)$. V mnoha případech se nevyužívá všech $\frac{R(R-1)}{2}$ diskriminačních funkcí. V tomto případě se opět objevují oblasti, pro které nejsme schopni rozhodnout a zařazení x.

⁴Vylepšení ad a).

 $^{^5}$ Rozdělující funkce $\varphi_{rs}(x)$ rozdělují obrazový prostor bezezbytku (nejsou hluché oblasti, kde není možno provést přiřazení).

- 1.1.4 Metody nastavování klasifikátorů (trénování klasifikátorů).
- 1.1.5 Metody shlukové analýzy (učení bez učitele).
- 1.1.6 Výběr informativních příznaků.

1.2 Neuronové sítě [NEU]

vyučující: Doc. Dr. Ing. Vlasta Radová

ročník/semestr studia: 5.ročník/ZS datum zkoušky: 5. 1. 2017

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními typy umělých neuronových sítí a s možnostmi jejich využití.

- 1.2.1 Základní umělé modely neuronu, vlastnosti, souvislost s biologickým neuronem.
- 1.2.2 Základní typy neuronových sítí. Způsoby činnosti a učení neuronových sítí.
- 1.2.3 Algoritmus backpropagation.
- 1.2.4 Sítě se zpětnou vazbou. Hopfieldova neuronová síť.
- 1.2.5 Samoorganizující se sítě.
- 1.2.6 Oblasti použití neuronových sítí.

1.3 Zpracování digitalizovaného obrazu [ZDO]

vyučující: Doc. Ing. Miloš Železný Ph.D.

Ing. Petr Neduchal

ročník/semestr studia: 4.ročník/LS datum zkoušky: 13. 7. 2015

hodnocení: 1 cíl předmětu (STAG):

Porozumět principům zpracování digitalizovaného obrazu a počítačového vidění. Analyzovat vlastnosti obrazové informace a interpretovat tyto informace, navrhnout a vytvořit algoritmus pro zpracování obrazové informace s cílem rozpoznání objektů, jevů či vlastností scény v obraze obsažené.

- 1.3.1 Bodové jasové transformace.
- 1.3.2 Geometrické transformace.
- 1.3.3 Filtrace šumu.
- 1.3.4 Gradientní operátory.
- 1.3.5 Metody segmentace.
- 1.3.6 Matematická morfologie.

Kapitola 2

Teorie řízení [TŘSZ]

2.1 Lineární systémy 1-2 [LS1], [LS2]

vyučující: Doc. Ing. Jiří Melichar, CSc.

Ing. Martin Čech, Ph.D. Ing. Jiří Mertl, Ph.D.

ročník/semestr studia: 2.ročník/ZS-LS

datum zkoušky: X. 1. 2013/X. X. 2013

hodnoceni: 1/2

cíl předmětu (STAG):

LS1: Student by měl získat přehled o typech, struktuře a chování reálných dynamických systémů, obeznámit se s metodikou tvorby matematických modelů reálných dynamických systémů a s metodami analýzy jejich vlastností a chování v časové i frekvenční oblasti. Student by měl také porozumět základním principům řízení dynamických systémů a metodám pro získávání potřebných dat z reálných procesů.

Cílem předmětu LS2 je, aby student:

- získal přehled o klasických regulačních úlohách, o struktuře regulačních obvodů a o základních typech dynamických i nedynamických regulátorů;
- dokázal analyzovat reálnou regulační úlohu v její celistvosti, uměl formulovat požadavky na kvalitu regulace v časové i frekvenční oblasti při současném respektování všech omezení;
- byl schopen použít vhodné metody pro návrh spojitých i číslicových regulátorů a získávat potřebná data z reálného procesu;
- byl schopen analýzy nelineárních dynamických systémů a základní orientace v problémech jejich řízení.

- 2.1.1 Matematické modely spojitých a diskrétních lineárních dynamických systémů.
- 2.1.2 Linearizace nelineárních dynamických systémů, rovnovážné stavy. Harmonická linearizace.
- 2.1.3 Vlastnosti lineárních dynamických systémů. Řiditelnost, pozorovatelnost, kriteria. Vnitřní a vnější stabilita, kriteria.
- 2.1.4 Časové a frekvenční odezvy elementárních členů regulačních obvodů.
- 2.1.5 Základní typy spojitých a diskrétních regulátorů (P,PI,PID, stavové regulátory a stavové regulátory s integračním charakterem), popis, vlastnosti.
- 2.1.6 Struktura regulačních obvodů s jedním a dvěma stupni volnosti, přenosy v regulačním obvodu, princip vnitřního modelu.
- 2.1.7 Problém umístitelnosti pólů a nul nedynamickými a dynamickými regulátory. Požadavky na umístění pólů, konečný počet kroků regulace.
- 2.1.8 Požadavky na funkci a kvalitu regulace (přesnost regulace, dynamický činitel regulace, kmitavost, robustnost ve stabilitě a j.), omezení na dosažitelnou kvalitu regulace.
- 2.1.9 Metoda geometrického místa kořenů, pravidla pro konstrukci a využití při syntéze regulátorů, příklady.
- 2.1.10 Přístup k syntéze regulátorů v klasické teorii regulace, klasické metody, heuristické metody.
- 2.1.11 Deterministická rekonstrukce stavu, stavový regulátor s rekonstruktorem stavu.
- 2.1.12 Ljapunovova teorie stability. Ljapunovova rovnice.

2.2 Teorie odhadu [TOD]

vyučující: Prof. Ing. Miroslav Šimandl, CSc.

Ing. Jindřich Duník, Ph.D.

ročník/semestr studia: 3.ročník/ZS datum zkoušky: 28. 4. 2014

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je obeznámit studenty s možnostmi odhadu parametrů, náhodných veličin a náhodných procesů v podmínkách neurčitosti z apriorních informací a měřených dat.

- 2.2.1 Problémy odhadu, základní etapy vývoje teorie odhadu, náhodné veličiny, náhodné procesy a jejich popis, stochastický systém.
- 2.2.2 Optimální odhad ve smyslu střední kvadratické chyby. Odhad ve smyslu maximální věrohodnosti.
- 2.2.3 Jednorázové a rekurzivní odhady.
- 2.2.4 Odhad stavu lineárního diskrétního systému filtrace (Kalmanův filtr).
- 2.2.5 Úlohy odhadu stavu lineárního diskrétního stochastického systému predikce a vyhlazování.
- 2.2.6 Odhad stavu lineárního systému se spojitým či diskrétním měřením (Kalman-Bucyho filtr).

2.3 Optimální systémy [OPS]

vyučující: Ing. Miroslav Flídr, Ph.D.

Ing. Ivo Punčochář, Ph.D.

ročník/semestr studia: 4.ročník/LS datum zkoušky: 15. 7. 2015

hodnocení: 3 cíl předmětu (STAG):

Cílem předmětu je seznámení studentů s různými typy optimalizačních úloh. Studenti se naučí řešit jednak základní statické optimalizační úlohy tak především úlohy optimalizace dynamických systémů. Důraz je kladen především na pochopení řešení následujících problémů:

- časově optimální řízení;
- Pontrjaginův princip minima;
- dynamické programování a Bellmanova optimalizační rekurze;
- lineárně kvadratická úloha optimálního řízení.

- 2.3.1 Optimální programové řízení diskrétních dynamických systémů. Formulace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení.
- 2.3.2 Optimální programové řízení spojitých dynamických systémů. Formulace úlohy. Hamiltonova funkce. Nutné podmínky pro optimální řízení. Podmínky transverzality. Pontrjaginův princip minima.
- 2.3.3 Deterministický diskrétní systém automatického řízení. Princip optimality. Bellmanova funkce. Bellmanova optimalizační rekurze.
- 2.3.4 Syntéza optimálního deterministického systému automatického řízení pro diskrétní lineární řízený systém a kvadratické kritérium. Formulace a řešení. Asymptotické řešení a jeho stabilita.
- 2.3.5 Deterministický spojitý systém automatického řízení. Kontinualizace Bellmanovy optimalizační rekurze.
- 2.3.6 Optimální stochastický systém automatického řízení. Strategie řízení. Bellmanova funkce a Bellmanova optimalizační rekurze.
- 2.3.7 Syntéza optimálního systému automatického řízení pro lineární gaussovský řízený systém a kvadratické kritérium. Formulace a řešení. Separační teorém.

2.4 Adaptivní systémy [AS]

vyučující: Ing. Jindřich Duník, Ph.D.

Ing. Ladislav Král, Ph.D.

ročník/semestr studia: 5.ročník/ZS datum zkoušky: 12. 12. 2016

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je obeznámit studenty s adaptivními systémy automatického řízení a adaptivními systémy zpracování signálů.

- 2.4.1 Základní přístupy k syntéze adaptivních řídicích systémů, schematické vyjádření, srovnání s předpoklady a návrhem standardních regulátorů.
- 2.4.2 Adaptivní řízení s referenčním modelem, MIT pravidlo, využití Ljapunovovy teorie stability.
- 2.4.3 Samonastavující se regulátory, charakteristika a základní přístupy k návrhu bloku řízení, přiřazení pólů, diofantické rovnice, minimální variance.
- 2.4.4 Samonastavující se regulátory, charakteristika a základní přístupy k návrhu bloku poznávání, parametrické metody odhadu.
- 2.4.5 Adaptivní systémy na zpracování signálu, adaptivní prediktor, adaptivní filtr, analogie se samonastavujícími se regulátory.
- 2.4.6 Adaptivní řízení a strukturální vlastnost stochastického optimálního řízení, duální řízení, neutralita, separabilita, ekvivalence určitosti.

Kapitola 3

Aplikovaná kybernetika [AKSZ]

3.1 Umělá inteligence [UI]

vyučující: Prof. Ing. Josef Psutka, CSc.

Ing. Aleš Pražák, Ph.D.

ročník/semestr studia: 2.ročník/ZS datum zkoušky: X. X. 2012

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními problémovými oblastmi umělé inteligence (UI) a naučit je aplikovat vybrané metody řešení úloh, reprezentace znalostí v UI a hraní her.

- 3.1.1 Metody řešení úloh v UI
- 3.1.2 Logické formalizmy pro reprezentaci znalostí. Predikátový počet 1. řádu. Rezoluční metoda.
- 3.1.3 Produkční systém. Báze znalostí a báze dat. Dopředné a zpětné šíření.
- 3.1.4 Síťové formalizmy pro reprezentaci znalostí. Sémantické sítě. Rámce. Scénáře.
- 3.1.5 Metody hraní her v UI. Procedura minimax, alfa-beta prořezávání.

3.2 Modelování a simulace 1 [MS1]

vyučující: Ing. Václav Hajšman, Ph.D.

Ing. Jindřich Liška, Ph.D.

Ing. Miloš Fetter

ročník/semestr studia: 2.ročník/ZS datum zkoušky: X. X. 2012

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními principy modelování dynamických systémů.

- 3.2.1 Systém, model, modelování, simulace, systémová analýza.
- 3.2.2 Modelování systému diskrétních událostí, diskrétní simulace.
- 3.2.3 Simulační experiment, studie, analýza rizika, náhoda v simulačních úlohách.
- 3.2.4 Modelování v netechnických oborech (kompartmenty, buněčné automaty, ...).
- 3.2.5 Konstrukce modelů na základě měření, zpracování signálu v časové, frekvenční a časo-frekvenční oblasti, modely periodických procesů.
- 3.2.6 Modely vibrací a kmitání, experimentální modální analýza.
- 3.2.7 Generování náhodných čísel, metoda Monte Carlo a odhad přesnosti simulačních výsledků.

3.3 Programové prostředky řízení [PP]

vyučující: Ing. Pavel Balda, Ph.D.

ročník/semestr studia: 3.ročník/LS datum zkoušky: X. X. 2014

hodnocení: 1

cíl předmětu (STAG):

Cílem předmětu je naučit studenty aplikovat některé vybrané techniky programování řídicích a informačních systémů především prostředky jazyka C#. V rámci předmětu je podána klasifikace operačních systémů a jejich základní vlastnosti. Dále je vysvětlena hierarchie programového vybavení typických řídicích systémů od čidel a akčních členů až po podnikové systémy.

- 3.3.1 Architektura podnikových řídicích systémů; používané programovací jazyky.
- 3.3.2 Architektura .NET Frameworku; řízený modul, metadata, běh řízeného kódu.
- 3.3.3 Jazyk C Sharp: hodnotové a referenční typy; jednoduché typy, implicitní konverze; výrazy a operátory; příkazy; výjimky.
- 3.3.4 Jazyk C Sharp: Členy a přístup k nim; jmenné prostory; třídy, metody, vlastnosti, konstruktory, destruktory; struktury; pole; delegáty; atributy.
- 3.3.5 Softwarové komponenty: DLL, RPC, COM; interface; OPC.
- 3.3.6 Operační systémy: procesy a thready, synchronizace, deadlock, inverze priorit; správa paměti; vstupně-výstupní systém, programované vstupy/výstupy, přerušení, DMA, ovladače zařízení; souborové systémy.
- 3.3.7 Operační systémy reálného času: statické a dynamické plánovací algoritmy.
- 3.3.8 Struktury vzdálených a virtuálních laboratoří.

3.4 Převodníky fyzikálních veličin [PFV]

vyučující: Ing. Liber Jelínek Ph.D.

ročník/semestr studia: 4.ročník/LS datum zkoušky: 16. 6. 2016

hodnocení: 2

cíl předmětu (STAG):

Cílem předmětu je seznámit studenty se základními principy, vlastnostmi a modely senzorů a akčních členů pro potřeby automatizace, monitorování a diagnostiky.

- 3.4.1 Struktura a parametry senzorů pro automatizaci, statické a dynamické modely a chyby, metody snižování chyb senzorů.
- 3.4.2 A/D a D/A převodníky, obvody pro úpravu signálů, frekvenční filtry.
- 3.4.3 Senzory teploty a tepla, obvody pro měření odporu, kapacity, indukčnosti a frekvence.
- 3.4.4 Senzory polohy a vzdálenosti (odporové, indukční, kapacitní, ultrazvukové, optické).
- 3.4.5 Senzory síly, hmotnosti, deformace, tlaku, rychlosti, zrychlení a vibrací (tenzometrické, piezoelektrické, kapacitní a elektrodynamické).
- 3.4.6 Senzory průtoku, množství, hustoty, viskozity, koncentrace a chemického složení.
- 3.4.7 Elektrické akční členy a jejich budiče (stejnosměrné, střídavé, krokové motory, PWM zesilovače, frekvenční měniče).
- 3.4.8 Hydraulické a pneumatické akční členy (pracovní a řídicí mechanizmy a zdroje tlakového média).