ADVIK CHAUDHARY

Incoming second-year at University of Chicago

B.A. ECONOMICS, B.S. COMPUTER SCIENCE

Project Summary

#0: GENERAL OVERVIEW/LOGISTICS

- ♦ Language: python script or interactive notebook. Runnable from command line or executable. 5000+ lines of code
- ◊ Data: Bloomberg & 360T. Runnable anytime without Bloomberg sign-in. Sources can be easily modified (rates, FX).
- Aims: testing fundamental/technical strategies/hypotheses.
- Implementation: either one-time historical analysis or live systematic signals

Are there seasonal patterns in IMMi rolls close to expiry?

#1: IMMi SEASONAL STUDY: TWD SEP/DEC

For 2022/2023 the spread compressed a fair amount leading up to Sep, may be a post-covid pattern. Esp in 26 Aug to 5 Sept period

#1: IMMi STUDY: RESULTS FOR TWD SEP/DEC SPREAD – START/END PnL

- Change: spread at 45, 30, 20d... prior to spread at t1 (in bps)
- Pattern of compression in post covid Sep/Dec
- Tool can be used for any pairs/dates (e.g. some pattern in INR, opposite in TWD dec/mar

PnL (S/B)	45d	30d	20d	15d	10d	5d	2d
2011	0.67	0.99	1.03	1.04	0.55	1.07	0.16
2012	0.06	-0.02	-0.07	-0.05	-0.03	0.09	-0.06
2013	-0.42	-0.41	-0.33	-0.17	-0.19	-0.21	-0.04
2014	0.11	0.15	0.18	0.15	0.20	0.16	-0.02
2015	0.09	-0.08	0.05	0.02	-0.09	-0.02	-0.04
2016	-0.50	-0.36	-0.31	-0.17	-0.23	-0.23	0.00
2017	-0.36	-0.33	-0.22	-0.11	0.02	-0.07	0.01
2018	0.05	0.04	0.08	0.02	0.03	0.02	-0.08
2019	-0.52	-0.42	-0.34	-0.29	-0.27	-0.01	-0.04
2020	-0.68	-0.72	-0.74	-0.80	-0.87	-0.65	-0.57
2021	-0.01	0.01	-0.14	0.08	-0.05	0.02	-0.06
2022	0.39	0.33	0.28	0.19	0.28	0.07	0.02
2023	0.43	0.34	0.25	0.11	0.06	0.12	0.14
2024	NaN						

#1: IMMi STUDY: RESULTS FOR TWD SEP/DEC SPREAD – MAX PnL MOVEMENT (BPS)

DATA: BLOOMBERG SIMULATED PnL SCENARIOS , NOT ACTUAL TRADING PnL

#1: IMMi STUDY: RESULTS FOR TWD SEP/DEC SPREAD – MIN PnL MOVEMENT (BPS)

SIMULATED PnL SCENARIOS, NOT ACTUAL TRADING PnL

#1: IMMi STUDY: RESULTS FOR TWD SEP/DEC SPREAD – TRADE IMPROVEMENTS

- ◊ If this was high (e.g. > 60), it may indicate spread compression--successful at predicting compressions 5/7 times

1M-Imp	45d	30d	20d	15d	10d	5d	2d
2011	171.95	-55.14	-23.22	-27.63	126.46	-86.81	149.38
2012	35.40	52.15	18.16	-24.36	-43.00	-41.70	11.37
2013	60.10	-21.00	-24.52	-61.44	-35.58	-31.01	-71.28
2014	63.03	-10.67	-21.36	-2.60	-16.45	3.30	11.54
2015	44.64	123.73	-34.33	-10.36	28.14	4.78	9.92
2016	-125.15	31.18	-15.41	-84.45	27.99	-17.50	-100.43
2017	4.44	-12.68	-40.87	-85.26	-92.99	-75.22	-81.03
2018	68.53	-2.83	-16.69	-18.27	-31.34	-59.07	-48.71
2019	55.07	-37.13	-51.60	-49.44	-78.35	-153.95	-128.94
2020	49.04	20.59	-4.71	-16.58	-16.61	-85.52	-109.70
2021	68.02	18.16	17.96	-36.28	-18.51	-60.95	-39.58
2022	92.92	57.06	-4.24	-27.92	-26.72	14.97	14.74
2023	116.10	31.83	11.48	4.84	19.34	-15.71	-48.15
2024	6.17	-89.91	NaN	NaN	NaN	NaN	NaN

- #1: IMMI STUDY: NOTES/FUTURE ANALYSIS
 - ♦ Made small (75k) PnL testing the strategy (TWD, INR Sep/Dec)
 - ♦ Included Excel integration of tables for easier analysis
 - ♦ Future analyses to test, changing:
 - ♦ Currency
 - ◊ IMM dates
 - ♦ How far back to enter (from t1)
 - ♦ Backtesting period (all history or recent years)

```
yr_to_start = 2024
years_back = 4
start_month = 9 #3, 6, 9, 12
res_days = [60, 45, 30, 20, 15, 10, 5, 2] # days before t1 to enter trade for simulation
curncy = 'TWD'
exp = ['1W', '1M', '2M', '3M', '6M', '9M', '1Y'] # expiry dates for interpolation
```

Auctions & Yields

How do yields move on auction days?

#2: UST AUCTIONS & YIELDS

- No particular movement/analysis seen on or around auction dates
- Next analysis: more details could be studied—e.g. use the details of the auction (yield values, allotted amt), how they correlate with the changes in Yields

#2: UST AUCTIONS & YIELDS: AVG YIELD MOVEMENTS BEFORE/AFTER ANNOUNCEMENT

♦ Nothing distinctive, wide range of change

	10d prior	5d prior	1d prior	1d post	5d post	10d post
count	20.000000	20.00000	20.000000	20.000000	20.000000	20.000000
mean	2.022000	2.05300	0.512000	-1.646500	-1.130500	-0.520500
std	18.415897	16.42762	5.025948	8.362702	23.144275	25.615743
min	-28.000000	-22.26000	-10.500000	-16.570000	-62.100000	-73.560000
25%	-9.795000	-8.50750	-0.645000	-5.092500	-13.195000	-12.830000
50%	3.895000	-4.41000	0.290000	-1.555000	-0.620000	2.515000
75%	12.947500	15.54000	2.427500	1.145000	19.985000	16.857500
max	45.480000	35.20000	13.030000	24.270000	28.580000	34.010000

DATA: BLOOMBERG

How does PMI/ESI data correlate w/market yields?

- Tried using Economic Surprise Index (ESI) only as a predictor
- ♦ E.g. if higher than previous announcement, or high surprise
- Wasn't that good of an indicator
- ♦ Tried with different lag periods also, to see if yields were affect later, not much correlation seen

#3: PMI (MANUFACTURING) & YIELDS: PRELINARY ANALYSIS/HYPOTHESIS

◊ correlation b/w change in Purchasing Manager's Index (PMI) and market yields was higher than ESI (60-80% most cases)

but required further research (as only 12 data points to correlate for each year)

```
PMI correlation with ust 3M in 2024: 0.7811317499797503
--- statistics for 2YR - 2016 - 2017 ---

PMI correlation with ust 2YR in 2016: 0.7043412408547101
--- statistics for 2YR - 2017 - 2018 ---

PMI correlation with ust 2YR in 2017: 0.7278963186260535
--- statistics for 2YR - 2018 - 2019 ---

PMI correlation with ust 2YR in 2018: -0 18532693865404093
```

#3: PMI & YIELDS

♦ strategy: buy signal if PMI higher than previous announcement's value else sell

♦ a 1d holding period between PMI announcement day & day to exit trade was optimal

♦ Hold for 1 day after announcement (10 AM CT announcement, hold position till close)

#3: PMI & YIELDS: HIT RATIO

strat hit ratio: year x yield

#3: PMI & YIELDS: PnL BASED ON STRATEGY

PnL(%): year x yield

Can systematic strategies such as CTAinspired ones or MA/BB improve PnL?

#4: DYNAMIC MA STRATEGY: METHODOLOGY

- ♦ Created trading logic based on CTA papers and testing (for balance of feasible manual execution and CTA-style positioning), e.g:
 - Add 1 position when MA spread widens (trend strengthening)
 - Close all positions when MA spread compresses (trend change)
 - Pause trading when certain drawdown hit in past few days (stop)
- ♦ Then used genetic algorithms to optimize the parameters of the strategy, using a training set from 3 months prior to present. For CTA/MA strat:
 - ◊ Long MA
 - ◊ Short MA
 - Drawdown threshold to pause trading
 - Days to pause trading when threshold hit

#4: DYNAMIC MA STRATEGY: RESULTS

- Value of the strategy (e.g. conservative/aggressive) based on fitness function (what metrics to optimize)
- ♦ An e.g. of an aggressive (high vol/drawdown, but reducing absolute loss):

high risk-reward. linear						
	total pnl %	hit ratio %	stdev/vol%	max draw %	max loss %	@ 100 hr %
3	13.94	71.15	3.20	-0.78	-0.06	1.17
4	17.72	63.32	6.89	-17.42	-7.21	7.28
5	-11.43	38.92	4.41	-27.92	-10.48	-0.33
6	7.07	58.00	6.91	-37.52	-7.71	-3.37
7	13.17	50.14	8.45	-22.89	-6.19	-1.64
ANN	97.14		12.28			

DATA: 360T

- \diamond An example of safer, more stable returns (optimzed for \downarrow loss).
- ♦ Also tried limiting strat to run for 100 hrs each month and retrain afterwards (hypothesis: strat becomes outdated)

run for 100 hr, pause for 3 days							
	@ 100 hr %	hit ratio %	stdev/vol%	max draw %	max loss %		
3	-0.15	63.98	0.83	-0.09	-0.07		
4	0.52	62.76	1.15	-0.45	-0.45		
5	0.29	60.54	0.92	-0.04	0.00		
6	0.12	59.46	0.64	-0.16	-0.04		
7	0.07	55.13	0.77	-0.64	-0.64		
ANN	10.73		3.42				

#4: DYNAMIC MA STRATEGY: ACTUAL TRADES: OTHER EXAMPLES (LAST MONTH)

USDJPY, cta-style positioning + moving average strategy, genetic algo **max PnL**, **min drawd**, systematically traded hourly over last M

SIMULATED PnL SCENARIOS, NOT ACTUAL TRADING PnL

- Developed simple interface (if don't want full systematic control)
- ♦ E.g. suggested position, when to trade, technical reason for trade
- Vill need to be retrained monthly to keep parameters relevant, though even this parameter (the retraining period) can be tuned
- ♦ Currently testing across diff securities (rates/FX) and time periods (1 hour ticks seem to be most feasible for both PnL and execution frequency ease)

#4: SYSTEMATIC STRATEGY: PRACTICAL CONSIDERATIONS, TRADING INTERFACE

- ♦ Lightweight command-line tool. Suggests trades to make at the next open, quick plot of strategy, current PnL etc.
- ♦ Easily modifiable for more statistics if needed
- May be used in conjunction with user's fundamental analysis

Genetic Algorithm Opt. + BBands

#5: GENERAL STRATEGIES: GENETIC ALGORITHMS & OPTIMIZATION

- ♦ A way of finding optimal parameters inspired by evolution and natural selection based on a 'fitness' metric (can be modified, e.g. PnL + max drawd)
- ◊ Inspired by evolution/natural selection ('individuals' are parameter sets)

#5: GENERAL STRATEGIES: GENETIC ALGORITHMS & OPTIMIZATION

- ♦ 3 month prior "training" period to find optimal solutions for recent months
- ♦ Then use these optimized parameters for strategy in following month
- Using the optimized parameters more than a month seems to make the strategy outdated/not optimal

PyGAD - Gene

#5: BB STRATEGY: GENETIC ALGO OPTIMIZATION, RESULTS & COMPARISON

♦ Basic BBands strategy (20-period MA, 2 STDEV bands, buy/sell @ breakout, close at signal change)

JPY, BBands Standard (20, 2)							
	total pnl %	hit ratio %	stdev/vol%	max draw %	avg ret %		
3	-0.35	52.50	1.93	-13.97	-0.25		
4	-5.95	43.24	2.71	-12.58	-5.37		
5	14.54	61.11	4.96	-6.48	1.67		
6	-9.54	50.00	4.11	-11.53	-4.65		
7	-14.24	45.95	4.27	-14.99	-7.76		
ANN	-37.29		12.46				

VS

 BBands w genetic algo, optimized for max PnL, min drawdown (riskier)

JPY, BBands + Genetic Algo Optimization, Hourly, Opt: PnL, Drawd							
month (2024)	total pnl %	hit ratio %	stdev/vol%	max draw %	avg ret %		
3	3.81	52.43	4.63	-30.82	0.38		
4	6.93	61.54	3.46	-12.94	0.68		
5	17.39	55.41	5.96	-7.84	2.62		
6	14.87	53.97	4.65	-8.55	1.85		
7	2.68	49.38	1.65	-7.63	1.26		
8	2.12	50.93	0.93	-3.95	-0.23		
ANN	95.62		12.28				

DATA: 360T

#5: BB STRATEGY: GENETIC ALGO OPTIMIZATION, RESULTS & COMPARISON

- Can optimize for different risk levels willing to take (modify objective)
- Example of a more balanced strategy (medium risk):

BB, JPY, opt: PnL + max_loss + max_draw							
	total pnl %	hit ratio %	stdev/vol%	max draw %	max loss %		
4	0.99	52.78	0.50	-1.92	-1.43		
5	5.99	51.61	1.99	-1.90	0.00		
6	3.40	69.35	1.19	-1.20	-0.71		
7	2.01	68.75	0.83	-0.87	-0.21		
8	-1.67	41.18	0.61	-2.21	-2.19		
ANN	25.73		3.55				

#5: BB STRATEGY: GENETIC ALGO OPTIMIZATION, RESULTS & COMPARISON

- ♦ Tested new metric: optimizing for the slope of the historical PnL
- Results promising: encourages positive final PnL and steadier growth, minimizing negative PnL
- ♦ Training on June to Aug, backtest over last month:

#5: SYSTEMATIC STRATEGY: NOTES/FUTURE WORK

- ♦ Made a python module (integrated with Millennium API for easier future back testing), has genetic algorithm optimization for fine-tuning strategies
- ♦ Tried grid search (brute force) to find best params. Doable but too computational expensive/time and may lead to overfitting, so out-ofsample testing not that good sometimes
- ♦ To test further: variable re-training periods, e.g. 100, 200 hrs etc.
- ♦ Also some months, other strategies entirely may be optimal, can use the strategy type as a parameter
- ♦ Strat could be aided with human inputs of event risk/management

#5: SYSTEMATIC STRATEGY: NOTES/FUTURE WORK, GENETIC ALGORITHMS

- ♦ Other statistics to optimize (right)
 - ♦ Optimizing for certain parameters (e.g. solely PnL) may cause overfitting/vol
 → not applicable to next month's movements
- ♦ 100 hr, seems promising for even 'safer' strategy
- ♦ A lot to be explored/optimized/PnL to be generated, many combinations

```
class obj_func:
   def init (self, results):
        self.results = results
   def pnl draw(self):
        if not self.results['draw']:
            return self.results['pnl'] / 0.01 # reward 0
loss w multiplier
        else:
            return self.results['pnl'] /
(self.results['draw'] * self.results['max loss'])
   def pnl draw sum(self):
        return self.results['pnl'] + self.results['draw']
   def pnl draw loss(self):
        if self.results['draw'] == 0 or
self.results['max_loss'] == 0:
           return self.results['pnl'] / 0.01
        else:
            return self.results['pnl'] / (-1 *
self.results['max loss'])
   def pnl draw loss sum(self):
       if self.results['pnl'] == 0:
            return -1 # no trades made, penalize
        return self.results['pnl'] + self.results['draw']
+ self.results['max loss']
```

Much

more to find!