Laboratorium 06

Oskar Lewna

 $\mathrm{May}\ 20,\ 2025$

1 Erozja

1.1 Erozja własna

Element strukturalny

 $\begin{bmatrix} 1 & 1 & \otimes \end{bmatrix}$

Wynik erozji dla tego elementu strukturalnego:

1.2 Erozja ImageJ

Obraz wynikowy:

Różnica polega na tym, że Image J używa wbudowanego elementu strukturalnego, którego nie można zmienić.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \otimes & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

2 Dylatacja

2.1 Dylatacja własna

Element strukturalny

$$\begin{bmatrix} \otimes & 1 \\ 1 & 1 \end{bmatrix}$$

Wynik erozji dla tego elementu strukturalnego:

2.2 Erozja ImageJ

Obraz wynikowy:

3 Podstawowe operacje morfologiczne 1

3.1 Zastosowana operacja morfologiczna

Obraz B jest wynikiem dylatacji na obrazie A.

3.2 Element strukturalny

4 Podstawowe operacje morfologiczne 2

4.1 Zastosowana operacja morfologiczna

Obraz B jest wynikiem erozji na obrazie A.

4.2 Element strukturalny

5 Transformacja Hit-or-Miss

Po przeanalizowaniu obrazu wejściowego i obrazu wyjściowego, utworzyłem 3 elementy strukturalne. Pierwszy z nich (B_1) to element strukturalny Hit. Drugi (B_2) to element strukturalny Miss. Ostatni (B_{HoM}) to element strukturalny Hit-or-Miss, który łączy dwa poprzednie. Gwiazdka na nim oznacza jakąkolwiek wartość.

6 Szkieletowanie obiektów

6.1 Wynik szkieletowania według algorytmu z "A Fast Parallel Algorithm for Thinning Digital Patterns"

6.2 Wynik szkieletowania z ImageJ

Jak widać na podanych obrazach, wynik szkieletowania nie jest taki sam. Różnica może polegać na innym elemencie strukturalnym, podobnie jak w zadaniach z erozją i dyfuzją.

7 Operatory morfologiczne - liczenie taktów

7.1 Krok 1

Thresholding. Wykorzystałem metodę Otsu do wyboru progu. Próg wyszedł 152. Następnie dla tego progu zastosowałem progowanie i odwróciłem wartości, aby czarny był tłem, a biały był pierwszym planem.

7.2 Krok 2

Erozja. Metodą prób i błędów wybierałem wielkość elementu strukturalnego podobnego do taktu. Ostatecznie element strukturalny jest pionowy o wysokości 31 i szerokości 1 złożony z samych jedynek.

7.3 Krok 3

Dylatacja. Teraz z wykorzystaniem tego samego elementu strukturalnego, odnowie położenie samych taktów.

7.4 Krok 4

Ponowny negatyw wyniku, aby tło było białe, a takty czarne. To już poprawka stylistyczna dla oka ludzkiego.

W ten sposób można już łatwo policzyć takty. Przez różnicę grubości taktów, aby wyznaczyć jednopikselowe szerokości taktów, trzeba by użyć jeszcze innych metod. Jednak ten wynik jest już zadowalający.

8 Operatory morfologiczne - szukanie jedynek

8.1 Krok 1

Rotacja. W ImageJ obróciłem obraz, aby mniej więcej był prosto. W ten sposób łatwiej powinno się odczytać jedynki z obrazu i je znajdować.

Próbowałem zrobić thresholding i inwersję kolorów bez obracania obrazu, jednak jedynki wtedy były bardzo zniekształcone, przez co trudno byłoby je znaleźć.

8.2 Krok 2

Dlatego zastosowałem thresholding progiem otrzymanym metodą Otsu dopiero po rotacji. Ponadto, zamieniłem wartości tła z pierwszym planem.

8.3 Krok 3

Jako, że thresholding spowodował dosyć duże dziury w liczbach, to zastosowałem domknięcie, aby się pozbyć szumu. Ta operacja połowicznie pomogła, bo większość jedynek miała teraz lepszy kształ, ale niektóre się przez to pogrubiły lub zniekształciły.

8.4 Krok 4

Teraz zastosowałem technikę Hit-or-Miss, bo niektóre jedynki miały podstawę z prawej strony, jedne z lewej, albo miały pogrubione podstawe. Efekt znalazł dosyć mało jedynek, ale to dlatego, że inne są bardzo zniekształcone.

8.5 Krok 5

Znalezione punkty przetworzyłem przez dylatację, aby stworzyć w znalezione miejsce "idealne" jedynki.

8.6 Krok 6

Następnie odwróciłem znowu kolory i odjęłem te jedynki od oryginalnego obróconego obrazu po progowniu.

1 1 1 1 1

1 1 1

Proszę wyznaczyć obrazy, które powstaną przez zastosowanie elementu strukturalnego

(a)

(b)

$$B_{HoM} = \begin{bmatrix} 1 & \star & 0 \\ 1 & 0 & \star \\ \hline 1 & 1 & 1 \end{bmatrix}$$

(c)

$$B_{HoM} = \begin{bmatrix} 0 & 0 & 0 \\ \star & \bot & \star \end{bmatrix}$$

(d)

Niestety te jedynki nie zostały idealnie odjęte...

8.7 Krok 7

W Image Ju rozłożyłem obrócony i progowany obrazek na kanały RGB i po tym, połączyłem je, ale zamiast czerwonego dałem obraz jaki mi wyszedł w poprzednim kroku.

Proszę wyznaczyć obrazy, które powstaną przez zastosowanie elementu strukturalnego

(a) $B_{HoM} = \begin{array}{c|c} \hline 1 & \star & 0 \\ \hline \star & 1 & \star \\ \hline 0 & \star & 1 \\ \hline \end{array}$

(b) $B_{HoM} = \begin{array}{c|c} \hline 1 & \star & 0 \\ \hline 1 & 0 & \star \\ \hline 1 & 1 & 1 \end{array}$

(d)

Niestety bardzo mała część jedynek została znaleziona. Możliwe, że przez zły próg Otsu. Na pewno można innymi elementami strukturalnymi poszukać innych, bardziej zniekształconych jedynek, a potem połączyć wyniki w jeden.

9 Transformacja odległościowa w ImageJ

9.1 Obraz wynikowy transformacji

9.2 Wynik progowania

Wynik pokazuje krawędzie białych pól, które zostały uznane jako pierwszy plan.