Feasibility Evidence Description (FED)

Discovery Tool

Team 3

Josh Bendig - IIV&V

Xizhao Deng - Project manager

Jingzhou Hong - Requirement Engineer

Guancheng Liu - Tester

Michael Russo - Prototyper

Shenghao Tang - Feasibility Analyst

Fan Zhan - Software Architect

Yiming Zhang - System Architect

Version History

Date	Author	Version	Changes made	Rationale
10/10/18	XD	1.0	Initial template	Initial template for Discovery Tool FED
10/13/18	ST	1.1	 Added Introduction Added Business Case Analysis Added Architecture Feasibility 	FED draft for Discovery Tool
10/14/18	JH	1.2	 Added Risk Assessment Added NDI/NCS Interoperability 	Completed FED to be uploaded before the DCR presentation
10/20/18	ST	2.0	Re-analysis costs, LOS and CR	Revised version after presentation
10/20/18	JH	2.1	Small fixes and increments on Risk Assessment and NDI/NCS Analysis	Reviewed and small increments and fixes
10/21/18	XD	2.2	fixed some formatting	Reviewed for DC package
11/18/18	XD	3.0	Updated section 2	Revised per client meeting and CCD feedback feedback

Table of Contents

version History	1
Table of Contents	2
Table of Tables	3
Table of Figures	3
1. Introduction	4
1.1 Purpose of the FED Document	4
1.2 Status of the FED Document	4
2. Business Case Analysis	4
2.1 Cost Analysis	5
2.1.1 Personnel Costs	5
2.1.2 Hardware and Software Costs	6
2.2 Benefit Analysis	7
2.3 ROI Analysis	7
3. Architecture Feasibility	8
3.1 Level of Service Feasibility	8
3.2 Capability Feasibility	9
3.3 Evolutionary Feasibility	10
4. Process Feasibility - deferred	10
5. Risk Assessment	10
6. NDI/NCS Interoperability Analysis	12
6.1 Introduction	12
6.1.1 COTS / GOTS / ROTS / Open Source / NCS	12
6.1.2 Connectors	12
6.1.3 Legacy System	12
6.2 Evaluation Summary	12

Table of Tables

Table 1: Personnel Costs	6
Table 2: Hardware and Software Costs	
Table 3: Benefits of Discovery Tool System	7
Table 4: ROI Analysis	7
Table 5: Level of Service Feasibility	8
Table 6: Capability Requirements and Their Feasibility Evidence	9
Table 7: Risk Assessment	10
Table 8: NDI Products Listing	11
Table 9: NDI Evaluation	12
Table of Figures	
Figure 1: ROI Analysis Graph	7

1. Introduction

1.1 Purpose of the FED Document

The purpose of the Feasibility Evidence Description (FED) document is to provide the evidence to prove the feasibility of this project Discovery Tool. The FED document provides a throughout analysis documenting the feasibility of the Discovery Tool to be completed within the constraints of time and budgets by following sections: Business Case Analysis, Architecture Feasibility, Process Feasibility, Risk Assessment and NDI/NCS Interoperability Analysis.

1.2 Status of the FED Document

This is the version 3.0 of FED document since all sections are carefully evaluated and finished including: Business Case Analysis, Architecture Feasibility, Process Feasibility, Risk Assessment and NDI/NCS Interoperability Analysis. It has been reviewed for DC package deliverables.

2. Business Case Analysis

Assumptions:

- System1 super admin, admins, and contributors are willing to migrate to a new idea management tool
- The new idea management tool will be able to adequately support System1's formulation process end-to-end to effectively migrate the system
- Client will have maintainers on staff to take over the project upon handoff
- Development team will have access to sufficient resources to host the tool and store its data
- System1 access to the internet to connect to the tool

Stakeholders	Initiatives	Value Propositions	Beneficiaries

- System1 Super Admin - System1 Content Admin - System1 Contributor - Client side maintainer - Dev team	- Content contributors and admins correctly use the app - Maintainers maintain the whole system after handsoff occured - Admins and content contributors are responsive to the different stages of content production - Developers implement system to mimic and streamline existing process	- Increased publication speed - Modernized frontend and backend technology - Streamlined process with real-time feedback - Ease of scaling the project and team size - Monitoring team progress and performance with confidence	- Content Contributor - Content Admins
Cost - Development costs - Database hosting service costs - Maintenance costs		Benefits - Identify disputes and resolve disputes more efficiently - Monitor team process and performance - Help super admin set goals for the team - Modernized frontend and backend technology - Streamlined workflow in cloud - Ease of scaling the project and team size	

2.1 Cost Analysis

This section is the analysis of time spent by the clients on the different phases of the Discovery Tool.

2.1.1 Personnel Costs

Table 1: Personnel Costs

Activities	Time Spent (Hours)	
Exploration Phase (1 week)		
Client Meetings	1	
Win-Win Negotiation 1	1	

Valuation and Foundation Phase (3 weeks)	
Win-Win Negotiation 2	2
Prototype Analysis Meeting	2
Requirement Negotiation	2
Content contributor Meeting	5
Content admin Meeting	5
Meeting by email, slack, skype or in person	1 per week
Development and Operation Phase (8 weeks)	
Interface review	3
Meeting by email, slack, skype or in person	1 per week
Process Meeting	3 per week
SUB TOTAL	56
Maintenance Period (1 year)	
Maintenance (6h per month * 12 months * 1 person)	72
TOTAL	128

2.1.2 Hardware and Software Costs

Table 2: Hardware and Software Costs

Туре	Cost	Rationale
AWS EC2	1 year free trial / 54\$ per month	Backend Service
mLab AWS M2	\$360 per month	Database solution (Enterprise advanced version available but no need)

React	Free	Open-source javascript framework
Webpack	Free	Javascript module bundler
Flask	Free	Python web framework
Creative TIM	\$59 one time purchase	Frontend library

2.2 Benefit Analysis

Table 3: Benefits of Discovery Tool System

Current activities & resources used	% Reduce	Time Saved (Hours/Year)
Content Contributor side		
Create pitches and submit	30	4hrs/week * 52 weeks = 208
Content Admin side		
Admins review the pitches of all content contributor	80	6.5hrs/week * 52 weeks = 338
Admins assign verticals to content contributor	10	0.5hrs/week * 52 weeks = 26
Total		572

2.3 ROI Analysis

The increasing rate of maintenance is assumed to be 5% per year. There will be a one-time purchase \$59 for Creative TIM library and two parts of periodic payment: around \$648 per year for AWS EC2 server usage and around .

Table 4: ROI Analysis

Year	Cost	Benefit (Effort Saved)	Cumulative Cost	Cumulative Benefit	ROI
2018	56	0	56	0	-1

2019	72	572	80	572	7.15
2020	87.12	572	130.40	1144	8.77
2021	95.83	572	183.32	1716	9.36
2022	105.42	572	238.89	2288	9.58

Figure 1: ROI Analysis Graph

3. Architecture Feasibility

3.1 Level of Service Feasibility

Table 5: Level of Service Feasibility

Level of Service Requirement	Product Satisfaction
LOS-1: System shall mimic and	Product Strategies: Descoping, eliminate added-on if needed

streamline the entire workflow currently practiced by the client	Process Strategies: Perform prototyping and modeling, cross-check the simulation with the client frequently	
	Analysis: With the help of content admin meeting, a prototype that mimics current workflow can be built. Keep updating according the client requirements	
LOS-2: System shall be easy and pleasant to use by a typical team size of 50 content contributors and 5 content admins and with the potential to scale up or down	Product Strategies: Optimization (MongoDB, AWS EC2)	
	Process Strategies: Perform simulation and pressure testing	
	Analysis: Test the capability of the system to handle the scale	
LOS-3: System shall be maintained easily by the client	Product Strategies: Consistency, Understandability (Google style guide, Swagger UI)	
	Process Strategies: Provide comments to the code and makefile	
	Analysis: Use style guide to regulate the comments and build HTML documentation by Swagger UI	

3.2 Capability Feasibility

Table 6: Capability Requirements and Their Feasibility Evidence

Tueste of Capacinty requirements and Their Federation 2 vidence		
Capability Requirement	Product Satisfaction	
CR-1: Content admin can set goal vertical and amount of pitches desired for current or future weeks	Software/Technology used: MongoDB, Flask, Creative TIM	
	Feasibility Evidence: Build tidy and clear UI with CMD library. Connect MongoDB and Backend to implement the workflow.	
	Referred use case diagram: UC-40, UC-41, UC-42	
CR-2: Super admin and Content admin can view overall project progress, and goals of the past, current, or future weeks.	Software/Technology used: MongoDB	
	Feasibility Evidence: Build an ER-Diagram of the database to implement the workflow	
	Referred use case diagram: UC-44	

CR-3: Super admin can view team member's performance and progress and change member's account type.	Software/Technology used: JSON web token	
	Feasibility Evidence: use JWT for Authentication service then update the data in MongoDB	
	Referred use case diagram: UC-36, UC-37, UC-38, UC-39	
CR-4: Content admin can view pitch details, and approve pitch to move into the next stage of content creation	Software/Technology used: MongoDB, Flask, Creative TIM	
	Feasibility Evidence: use AJAX to request data from MongoDB, and then display data to User-end using Flask.	
	Referred use case diagram: UC-51, UC-52, UC-53	
CR-5: Super admin can view weekly publishing calendar details, and export the list of pitches in the publishing calendar	Software/Technology used:MongoDB, Flask, Creative TIM	
	Feasibility Evidence: use AJAX to request data from MongoDB, and then display data to User-end using Flask.	
	Referred use case diagram: UC-31, UC-32, UC-33	
CR-6: Content contributor can draft an idea then pitch it for approval	Software/Technology used: MongoDB, Flask	
	Feasibility Evidence: Build up a prototype with MongoDB and Flask	
	Referred use case diagram: UC-10, UC-11, UC-12, UC-13, UC-14	

3.3 Evolutionary Feasibility

No evolutionary requirements have been negotiated by this time.

4. Process Feasibility - deferred

This section is deferred per course requirement

5. Risk Assessment

Table 7: Risk Assessment

Risks	Risk Exposure			Risk Mitigations
	Potential Magnitude	Probability Loss	Risk Exposure	
User being misled by our interface UI/UX design: User confused by our design, and do operations that is not what they intended to do.	8	5	40	 Chat with actual users after we finished development, redesign unreasonable and ambiguous terms or UI/UX component Comply with Material Design logic
Potential high learning curve for maintainers: Majority of the team do not plan to take CS577B. Need to have smooth handoff.	5	4	20	 Provide documentation to ensure smooth knowledge transfer Build the system using technologies which the client is familiar with
Inability to handle multiple users: If various users are accessing the web application, the system may not be able to resolve requests.	5	4	20	 Discuss with client about their expected amount of users Prototype system and show how many user can operate on it simultaneously
Concurrency Issue: Multiple users upvote or edit at the same time.	4	3	12	Handle each request one at a time
Inaccessibility of Cloud Database (AWS): If the cloud service is not available due to net problem or server break down, the web application will not be able to work.	4	3	12	Use progressive web app (PWA) with service workers to serve cached data

6. NDI/NCS Interoperability Analysis

6.1 Introduction

This project has not legacy system so we planned to develop using React as front-end framework, and Flask as Back-end framework. This application will be run on AWS, and use MongoDB as Database.

6.1.1 COTS / GOTS / ROTS / Open Source / NCS

Table 8: NDI Products Listing

	1,2111oddets Zisting
NDI/NCS Products	Purposes
React	Front-end Framework
Flask	Back-end Framework
MongoDB	Database
AWS	Cloud Database Server

6.1.2 Connectors

In this project, we use Python/Flask Connector to enable the Web application to retrieve and query data from database.

6.1.3 Legacy System

There is no legacy system. Besides, in our project, all system we are going to use are up to date.

6.2 Evaluation Summary

Table 9: NDI Evaluation

NDI	Usages	Comments
React	Front-end	Positive Points:

Flask	Back-end	Positive Points: Open source Light Weight Familiar by the client Negative Points: Have to use third party extensions
MongoDB	Database	Positive Points: • Flexible and schemaless • Support large scale of data Negative Points: • Lack of community support with respect to Flask integration
AWS	Cloud Server	Positive Points: Easier than building local server Cheaper when having small data scale Safe Negative Points: More complex setup compared to alternatives (Heroku)