UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og beregninger.
Eksamensdag:	Fredag 5. desember 2008.
Tid for eksamen:	9:00 – 12:00.
Oppgavesettet er på 5	sider.
Vedlegg:	Formelark.
Tillatte hielnemidler:	Godkient kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å fylle inn kandidatnummer under.

Kandidatnr:	

Første del av eksamen består av 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 10 poeng. Den totale poengsummen er altså maksimalt 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige!

Del 1: Flervalgsoppgaver

Op	pgave 1.	En løsning av	differensialligningen	y'' + y = 0 er
	$y(x) = e^x$			
	$y(x) = \sin$	2x		
	$y(x) = \sin$	$x + \cos x$		
	$y(x) = \cos$	x^2		
	$y(x) = \tan x$	\mathbf{x}		
Op	pgave 2.	En løsning av	${\it differensial ligningen}$	y''' + y = 0 er
	$y(x) = e^x$			
	$y(x) = \sin$	x		
_	$y(x) = \sin y(x) = e^{x^2}$			
	- 、 /			

Oppgave 3. Vi har gitt differensialligningen y'' - 2y = f(x). Hvis $y(x) = \sin x$ er en løsning av ligningen, hva er da f(x)?

$ \Box f(x) = -\sin x $ $ \Box f(x) = 3\cos x $ $ \Box f(x) = 3\sin x $ $ \Box f(x) = -3\sin x $ $ \Box f(x) = \sin x $
Oppgave 4. Løsningen av differensialligningen
y' + xy = x, y(0) = 0,
er gitt ved
y(x) = x
$ y(x) = x^2$
y(x) = x/(1+x)
$ y = \sin x $
Oppgave 5. Løsningen $x(t)$ av differensialligningen $x'' + \sin(tx') - x^2 = e^t$ er lik den ene løsningen $x_1(t)$ av systemet av to ligninger $ \begin{array}{cccc} & x_1' = x_1, & x_2' = e^t - \sin(tx_2) + x_1^2 \\ & x_1' = x_2, & x_2' = e^t - \sin(tx_2) + x_1^2 \\ & x_1' = x_2, & x_2' = e^t - \sin(tx_1) + x_2^2 \\ & x_1' = x_2, & x_2' = e^t - \sin(tx_2) + x_2^2 \\ & x_1' = x_2, & x_2' = e^t - \sin(tx_1) + x_1^2 \end{array} $ Oppgave 6. Taylorpolynomet av grad 2 for funksjonen $f(x) = x \tan x$ om $a = 0$ er $ \begin{array}{ccccc} & T_3(x) = x + x^2 \\ & T_3(x) = x \\ & T_3(x) = -x \\ & T_3(x) = -x^2 \end{array} $
Oppgave 7. En tekst som inneholder enkelte særnorske tegn lagres med tegnsettene ISO Latin1 og UTF-8 i de to filene fil1 (ISO Latin1) og fil2 (UTF-8). Hvilket av de følgende utsagn er da sant? Enkelte norske tegn blir feil i fil1 fil1 inneholder flere bytes enn fil2 fil2 inneholder flere bytes enn fil1 Enkelte norske tegn blir feil i fil2 fil1 og fil2 inneholder like mange bytes

Oppgave 8. Vi har en funksjon $f(x)$ og skal finne en numerisk tilnærming til løsningen av ligningen $f(x) = 0$. Da er en av følgende påstander sann:
\Box Sekantmetoden krever at $f'(x)$ er kjent
☐ Sekantmetoden vil vanligvis konvergere raskere enn Newtons metode
Halveringsmetoden vil vanligvis konvergere raskere enn sekantmetoden
\square Newtons metode vil konvergere for alle funksjoner f
Newtons metode vil vanligvis konvergere raskere enn halveringsmetoden
Oppgave 9. Vi skal beregne en tilnærming til den deriverte $f'(a)$ av en funksjon f ved hjelp av tilnærmingen
$f'(a) \approx \frac{f(a+h) - f(a)}{h}.$
Hvis vi regner med flyttall er den totale feilen begrenset av:
I alternativene 3, 4 og 5 er tallet ϵ^* avhengig av flyttallstypen som benyttes.
Oppgave 10. Med midtpunktregelen blir integralet av f på $[a,b]$
tilnærmet ved $\int_a^b f(x) dx \approx (b-a) f \big((a+b)/2 \big).$
Hvilken av følgende påstander er sanne (med feil menes her matematisk feil, avrundingsfeilen holdes altså utenfor)?
☐ Midtpunktregelen er mer nøyaktig enn Simpsons regel
☐ Midtpunktregelen og trapesregelen gir alltid nøyaktig samme feil
\square Midtpunktregelen gir bare 0 i feil hvis $f(x) = c$, der c er en vilkårlig
konstant
\square Midtpunktregelen gir 0 i feil hvis $f(x)$ er en vilkårlig rett linje
\square Midtpunktregelen gir 0 i feil hvis $f(x) = x^2$

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1.

a) Løs differensligningen

$$3y_{n+2} + 8y_{n+1} - 3y_n = 8, \quad y_0 = 0, \quad y_1 = 2/3.$$
 (1)

b) Anta at vi simulerer (løser numerisk) differensligningen (1) ved hjelp av flyttall. Hvordan vil den beregnede løsningen $\{\bar{y}_n\}$ oppføre seg for store verdier av n? Forklar hvorfor.

Oppgave 2. Her vil du få bruk for at entropien til et alfabet $\{\alpha_i\}_{i=1}^n$ med sannsynligheter $p(\alpha_i)$ for $i=1,\ldots n$ er gitt ved

$$H(p) = -\sum_{i=1}^{n} p(\alpha_i) \log_2 p(\alpha_i).$$

I denne oppgaven er alfabetet gitt ved $\alpha_1 = A$, $\alpha_2 = B$ og $\alpha_3 = C$ med sannsynligheter p(A) = 0.6, p(B) = 0.2 og p(C) = 0.2.

a) En tekst basert på alfabetet over med tilhørende sannsynligheter har blitt kodet med Huffman koding og gitt koden

0010011.

Finn en tekst som svarer til koden over. Hvor mange bits pr. tegn bruker koden?

b) Hvor mange bits er det minimale som må til for å kode teksten? Vil aritmetisk koding gi bedre kompresjon enn Huffman-koding i dette tilfellet? Begrunn svaret.

Oppgave 3. Vis ved induksjon at de deriverte til funksjonen $f(x) = x^2 e^x$ er gitt ved

$$f^{(n)}(x) = (n(n-1) + 2nx + x^2)e^x$$

for alle heltall $n \geq 0$.

Oppgave 4. I denne oppgaven skal du løse en differensialligning numerisk. Hvis ligningen er gitt ved x' = f(t, x), er et steg med Eulers metode gitt ved

$$x_{k+1} = x_k + h f(t_k, x_k),$$

mens et steg med Eulers midtpunktmetode er gitt ved

$$x_{k+1} = x_k + h f(t_k + h/2, x_{k+1/2}),$$

 $\operatorname{der} x_{k+1/2}$ er gitt ved

$$x_{k+1/2} = x_k + \frac{h}{2}f(t_k, x_k).$$

a) Funksjonen x(t) er gitt som løsningen til differensialligningen

$$x' = t \sin x, \quad x(0) = 1.$$
 (2)

Finn to tilnærminger x_e og x_m til x(0.1) ved å løse (2) numerisk og ta ett steg med (i) Eulers metode og (ii) Eulers midtpunktmetode.

 $\mathbf b)$ Vis at feilen i Eulers metode i dette tilfellet er begrenset av

$$|x(0.1) - x_e| \le 0.006.$$

Forventer du at feilen i Eulers midtpunktmetode vil være større eller mindre enn dette? Begrunn svaret ditt.

Lykke til!