Correction du DHC n°1

Qualité du devoir	Note /5
Non rendu (après 2 séances).	0
Aucun investissement et/ou soin : travail bâclé!	1
Partie du sujet non traitée ou bâclée.	2
Travail correct mais qui aurait mérité plus d'investissement.	3
Bon travail mais quelques erreurs et/ou manque de soin.	4
Très bon travail, soigneux et détaillé.	5

Exercice 1

1. D'après le théorème des probabilités totales, on a

$$v_{n+1} = P(M_{n+1}) = P(S_n \cap M_{n+1}) + P(M_n \cap M_{n+1}) + P(I_n \cap M_{n+1})$$

Or
$$P(S_n \cap M_{n+1}) = P(S_n) \times P_{S_n}(M_{n+1}) = u_n \times 0,05.$$

De plus,
$$P(M_n \cap M_{n+1}) = P(M_n) \times P_{M_n}(M_{n+1}) = v_n \times 0,65.$$

Or
$$P(I_n \cap M_{n+1}) = P(I_n) \times P_{I_n}(M_{n+1}) = w_n \times 0 = 0.$$

Donc $v_{n+1} = 0,05u_n + 0,65v_n$.

- **2. a.** En C3, on peut écrire : $\ll = 0.05 * B2 + 0.65 * C2 >$
- **b.** La probabilité d'être malade est maximale lorsque n=4, c'est à dire lors de la 4^e semaine.
- 3. a. De la même façon qu'à la question 1, les probabilités totales donne :

$$u_{n+1} = P(S_{n+1}) = P(S_n \cap S_{n+1}) + P(M_n \cap S_{n+1}) + P(I_n \cap S_{n+1})$$

Or
$$P(S_n \cap S_{n+1}) = P(S_n) \times P_{S_n}(S_{n+1}) = u_n \times 0.85$$
.

De plus,
$$P(M_n \cap S_{n+1}) = P(M_n) \times P_{M_n}(S_{n+1}) = v_n \times 0 = 0.$$

Or
$$P(I_n \cap S_{n+1}) = P(I_n) \times P_{I_n}(S_{n+1}) = w_n \times 0 = 0.$$

Donc $u_{n+1} = 0.85u_n$ et on en conclut que la suite est géométrique de raison 0.85. Puisque $u_0 = 1$, on a donc que pour $n \in \mathbb{N}$, $u_n = 0,85^n$.

3. b. Pour
$$n \in \mathbb{N}$$
, on pose $P_n : \langle v_n = \frac{1}{4}(0, 85^n - 0, 65^n) \rangle$.

Montrons par récurrence que P_n est vraie pour tout $n \in \mathbb{N}$:

Initialisation:
$$P_0: \langle v_0 = \frac{1}{4}(0,85^0 - 0,65^0) \rangle$$

D'un côté,
$$v_0 = 0$$
 et de l'autre on a : $\frac{1}{4}(0,85^0 - 0,65^0) = \frac{1}{4}(1-1) = 0$.

Donc P_0 est vraie.

Hérédité: Supposons qu'il existe un $n \in \mathbb{N}$ tel que P_n est vraie. C'est à dire que l'on a

 $v_n = \frac{1}{4}(0,85^n - 0,65^n)$. Montrons alors que P_{n+1} est vraie.

$$v_{n+1} = 0,05u_n + 0,65v_n$$

= 0,05 \times 0,85^n + 0,65 \times \frac{1}{4}(0,85^n - 0,65^n)

Alors on a:

$$4v_{n+1} = 0, 2 \times 0, 85^{n} + 0, 65(0, 85^{n} - 0, 65^{n})$$

$$= 0, 2 \times 0, 85^{n} + 0, 65 \times 0, 85^{n} - 0, 65 \times 0, 65^{n}$$

$$= 0, 85^{n} \times (0, 2 + 0, 65) - 0, 65^{n+1}$$

$$= 0, 85^{n} \times 0, 85 - 0, 65^{n+1}$$

$$= 0, 85^{n+1} - 0, 65^{n+1}$$

Ainsi, $v_{n+1} = \frac{1}{4}(0,85^{n+1} - 0,65^{n+1})$ Donc P_{n+1} est vraie et P_n est héréditaire.

Conclusion : P_0 est vraie et P_n est héréditaire donc par principe de récurrence, P_n est vraie pour tout $n \in \mathbb{N}$.

Autrement dit, pour $n \in \mathbb{N}$, on a bien

$$v_n = 0,85^n - 0,65^n$$