Principe fondamental de la dynamique

Prérequis et constantes utiles

Coordonnées polaires, Équations différentielles simples

Pour commencer

La vitesse v (en régime permanent) d'un mobile vérifie l'équation

$$m_1(v - v_1) + m_2(v - v_2) = p.$$

Donner l'expression de v (en fonction de m_1, m_2, v_1 et v_2)

ullet Entraînement 1.2 - Une équation différentielle.

On suppose que la vitesse v(t) d'un mobile vérifie l'équation différentielle

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -kv + a_0$$

et qu'elle vaut v_0 à l'instant t_0 .

Donner l'expression de v(t)

$\stackrel{\longleftarrow}{\bullet}$ Entraînement 1.3 — Analyse dimensionnelle.

- b) La constante de gravitation universelle vaut $6.67 \cdot 10^{-11} \, \mathrm{m}^3.\mathrm{kg}^{-1}.\mathrm{s}^{-2}.$

Quelle est la dimension de la force gravitationnelle (et donc des autres forces)?

Décomposition de vecteurs

┢ Entraı̂nement 1.4 — Des projections.

0000

On considère les vecteurs suivants :

Décomposer dans la base $(\overrightarrow{e_x},\overrightarrow{e_y})$ les vecteurs :

- a) \vec{a}
- b) \vec{b}
- c) \vec{c}
- d) \vec{d}

igcup Entraînement 1.5 — Sur un plan incliné.

On considère la situation représentée ci-dessous.

Décomposer dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ les vecteurs suivants.

- a) \vec{P}
- b) \vec{N}

Entraînement 1.6 — Avec un pendule simple.

On considère la situation

Décomposer dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$ les vecteurs suivants :

- a) \vec{P} c) $\vec{P} + \vec{T}$. b) \vec{T}

Entraînement 1.7 — Avec un pendule simple (suite).

0000

0000

On se place dans la même situation que ci-dessus. Décomposer dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$:

- c) $\vec{P} + \vec{T}$.

De l'accélération à la position (et vice versa)

Entraînement 1.8 — Du vecteur position au vecteur accélération.

On considère un point M en mouvement dont les coordonnées cartésiennes dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ sont, à chaque instant $x(t) = \frac{1}{2}a_0t^2 + x_0$, $y(t) = -v_0t$ et $z(t) = z_0$.

Donner les expressions du vecteur :

- a) position
- c) accélération
- b) vitesse

Entraı̂nement 1.9 — Du vecteur accélération au vecteur position.

On considère un point M de masse m en chute libre soumis à son poids $\vec{P} = mg\vec{e_z}$. Ce point M a été lancé avec une vitesse initiale $\vec{v_0} = v_0\vec{e_x}$ et une position initiale $M_0 \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$.

Donner les expressions du vecteur :

- a) accélération
- c) position

...

b) vitesse

Autour des coordonnées polaires

Dans ce paragraphe, on considère un point M repéré par la distance r et l'angle θ en coordonnées polaires; la distance r et l'angle θ dépendent du temps t: le point M est mobile.

On représente la situation par le schéma ci-contre.

▲ Entraînement 1.10 — Fondamental.

Décomposer dans la base $(\overrightarrow{e_x},\overrightarrow{e_y})$ les vecteurs :

- a) $\overrightarrow{e_r}$
- b) $\vec{e_{\theta}}$

≜ Entraînement 1.11

4

0000

Exprimer dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ les vecteurs :

- a) $\frac{\mathrm{d}\overrightarrow{e_r}}{\mathrm{d}t}$
- b) $\frac{\mathrm{d}\overrightarrow{e_{\theta}}}{\mathrm{d}t}$

á	Entraînement	1.12	— Deux	dérivées	à	connaître
	Emil amement	1.14	Deux	derivees	а	Comman.

0000

Exprimer dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$ les vecteurs :

a)
$$\frac{\mathrm{d}\overrightarrow{e_r}}{\mathrm{d}t}$$

b)
$$\frac{\mathrm{d}\vec{e_{\theta}}}{\mathrm{d}t}$$

© Entraînement 1.13 — Vecteur position en coordonnées polaires.

Comment s'exprime le vecteur position \overrightarrow{OM} en coordonnées polaires?

(a)
$$\overrightarrow{OM} = r\overrightarrow{e_r} + \theta \overrightarrow{e_\theta}$$

$$\overrightarrow{\text{OM}} = r\overrightarrow{e_r}$$

$$\overrightarrow{\text{OM}} = r\overrightarrow{e_r} + \dot{\theta}\overrightarrow{e_{\theta}}$$

$$\overrightarrow{\text{OM}} = \theta \overrightarrow{e_{\theta}}$$

Entraînement 1.14 — Accélération en coordonnées polaires.

0000

Exprimer en coordonnées polaires :

a)	le vecteur vitesse \vec{v}	
b)	le vecteur accélération \vec{a}	

Étude de systèmes en équilibre

A.N. Entraı̂nement 1.15 — Tension d'un fil.

Une bille d'acier de poids P=2,0 N, fixée à l'extrémité d'un fil de longueur $\ell=50$ cm est attirée par un aimant exerçant une force F=1,0 N. À l'équilibre, le fil s'incline d'un angle α et l'on a

$$\vec{T} + \vec{F} + \vec{P} = \vec{0}$$

où \overrightarrow{T} est la tension exercée par le fil.

Calculer:

Entraînement 1.16 — Masse suspendue.

Un objet qui pèse 800 N est suspendu en équilibre à l'aide de deux cordes symétriques qui font un angle $\theta = 20^{\circ}$ avec l'horizontal.

Le point A est soumis à trois forces :

$$\vec{T}, \vec{T'}$$
 et \vec{F} .

On note \vec{R} la résultante des forces.

- Exprimer la composante horizontale R_x en fonction de T, T' et θ .
- b) Exprimer la composante verticale R_u en fonction de T, T', F et θ .
- c) Déterminer la tension T en résolvant l'équation $\vec{R} = \vec{0}$

Mouvements rectilignes

A.N. Entraînement 1.17 — Chute avec frottement.

0000

Un corps de masse $m=2\,\mathrm{kg}$ tombe verticalement avec une accélération de $a=9\,\mathrm{m.s}^{-2}$. Lors de sa chute il subit la force de pesanteur ainsi qu'une force de frottement due à l'air.

On prendra $q = 9.8 \,\mathrm{m.s}^{-2}$ pour l'intensité du champ de pesanteur.

Quelle est l'intensité de la force de frottement?

Entraînement 1.18 — Contact dans un ascenseur.

6

Un homme de masse $m=80\,\mathrm{kg}$ est dans un ascenseur. Cet ascenseur monte avec une accélération $a=1\,\mathrm{m.s^{-2}}$. On note \overrightarrow{F} la force exercée par l'homme sur le plancher de l'ascenseur.

On prendra $g = 9.8 \,\mathrm{m.s}^{-2}$ pour l'intensité du champ de pesanteur.

Quelle est l'intensité de \vec{F} ?

Entraînement 1.19 — Calcul d'une action de contact.

Un bloc de masse m, de poids \overrightarrow{P} glisse à une vitesse v(t), variable au cours du temps, sur un support plan qui exerce une action de contact.

Celle-ci se décompose en deux actions :

- une action normale à la surface $\overrightarrow{f_n}$;
- une action de frottement $\overrightarrow{f_{\mathrm{t}}}$ opposée à la vitesse de glissement.

0000

0000

Le plan est incliné d'un angle α , comme figuré ci-contre. Déterminer (en fonction d'au moins une des données P, v(t), m et α):

- a) l'intensité de l'action normale f_n
- b) l'intensité du frottement $f_{\rm t}$

Entraînement 1.20 — Calcul d'une accélération.

Deux blocs B_1 et B_2 de masse respective 2m et m sont reliés par un fil. On passe le fil dans la gorge d'une poulie, puis on maintient le bloc B_1 sur la table alors que l'autre est suspendu dans l'air. On libère le bloc B_1 qui glisse alors sur la table. On note T_1 et T_2 les tensions exercées par le fil sur les blocs, a_1 et a_2 les accélérations respectives des blocs B_1 et B_2 , et B_2 le champ de pesanteur. Les frottements sont négligeables.

- b) Exprimer l'accélération a_2 de B_2 en fonction de m, g et T_2
- c) Le fil étant inextensible et sans masse on a $a_1 = a_2$ et $T_1 = T_2$.

En déduire l'accélération en fonction uniquement de g

Réponses mélangées

$$\frac{p + m_1v_1 + m_2v_2}{m_1 + m_2} - \sin(\theta)\overrightarrow{e_x} + \cos(\theta)\overrightarrow{e_y} - T\cos(\theta)\overrightarrow{e_x} - T\sin(\theta)\overrightarrow{e_y}$$

$$a_0\overrightarrow{e_x} P\cos(\theta)\overrightarrow{e_r} - P\sin(\theta)\overrightarrow{e_\theta} \dot{r}\overrightarrow{e_r} + r\dot{\theta}\overrightarrow{e_\theta} 1, 6\,\text{N} \quad \text{MLT}^{-1}$$

$$-\dot{\theta}\cos(\theta)\overrightarrow{e_x} - \dot{\theta}\sin(\theta)\overrightarrow{e_y} c\cos(\alpha)\overrightarrow{e_x} - c\sin(\alpha)\overrightarrow{e_y} \frac{g}{3} a\cos(\alpha)\overrightarrow{e_x} + a\sin(\alpha)\overrightarrow{e_y}$$

$$b\sin(\alpha)\overrightarrow{e_x} + b\cos(\alpha)\overrightarrow{e_y} (\ddot{r} - r\dot{\theta}^2)\overrightarrow{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\overrightarrow{e_\theta} (v_0 - \frac{a_0}{k})e^{-k(t-t_0)} + \frac{a_0}{k}$$

$$(P\cos(\theta) - T)\overrightarrow{e_r} - P\sin(\theta)\overrightarrow{e_\theta} - P\sin(\alpha)\overrightarrow{e_x} - P\cos(\alpha)\overrightarrow{e_y} 2, 2\,\text{N}$$

$$-\dot{\theta}\sin(\theta)\overrightarrow{e_x} + \dot{\theta}\cos(\theta)\overrightarrow{e_y} \cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y} \dot{\theta}\overrightarrow{e_\theta} \quad \text{MLT}^{-2}$$

$$\frac{T_1}{2m} P\cos\alpha \left(\frac{1}{2}a_0t^2 + x_0\right)\overrightarrow{e_x} - v_0t\overrightarrow{e_y} + z_0\overrightarrow{e_z} \quad N\overrightarrow{e_y}$$

$$(T' + T)\sin\theta - F (v_0t + x_0)\overrightarrow{e_x} + y_0\overrightarrow{e_y} + \frac{1}{2}gt^2\overrightarrow{e_z} - T\overrightarrow{e_r}$$

$$-d\sin(\alpha)\overrightarrow{e_x} + d\cos(\alpha)\overrightarrow{e_y} (P - T\cos(\theta))\overrightarrow{e_x} - T\sin(\theta)\overrightarrow{e_y} \quad 0,46\,\text{rad}$$

$$-m\frac{dv}{dt} + P\sin\alpha \qquad g\overrightarrow{e_z} \qquad v_0\overrightarrow{e_x} + gt\overrightarrow{e_z} \quad (T' - T)\cos\theta \quad \text{C}$$

$$a_0t\overrightarrow{e_x} - v_0\overrightarrow{e_y} \quad P\overrightarrow{e_x} \qquad g - \frac{T_2}{m} \quad 1,17\,\text{kN} \quad 864\,\text{N} \quad -\dot{\theta}\overrightarrow{e_r}$$

► Réponses et corrigés page 9

Fiche nº 1. Principe fondamental de la dynamique

Réponses

1.20 b)......
$$g - \frac{T_2}{m}$$
 1.20 c)...... $g - \frac{g}{3}$

Corrigés

La solution de l'équation homogène est $v(t) = Ae^{-kt}$. Une solution particulière (constante) est $v = \frac{a_0}{k}$. Les solutions sont $v(t) = Ae^{-kt} + \frac{a_0}{k}$. La condition initiale $v(t_0) = v_0$ donne

$$A = \left(v_0 - \frac{a_0}{k}\right) e^{kt_0}.$$

Il en découle la solution générale $v(t) = \left(v_0 - \frac{a_0}{k}\right) e^{-k(t-t_0)} + \frac{a_0}{k}$.

1.3 a) En effet, si on note p la quantité de mouvement, m la masse et v la vitesse, on a [p] = [mv], $[v] = LT^{-1}$ et [m] = M.

.....

1.3 b) En vertu de la loi de gravitation universelle $F_{\rm g} = \frac{Gm_1m_2}{r^2}$, d'où

$$[F] = [G] \times M^2 L^{-2} = L^3 M^{-1} T^{-2} \times L^{-2} = MLT^{-2}$$

1.4 a) La composante suivant $\overrightarrow{e_x}$ correspond au produit scalaire $\overrightarrow{a} \cdot \overrightarrow{e_x} = a \times 1 \times \cos(\alpha)$. De même la composante suivant $\overrightarrow{e_y}$ est le produit scalaire $\overrightarrow{a} \cdot \overrightarrow{e_y} = a \times 1 \times \cos(\pi/2 - \alpha) = a \sin(\alpha)$.

1.4 b) La composante suivant $\overrightarrow{e_x}$ vaut $b_x = \overrightarrow{b} \cdot \overrightarrow{e_x} = b \cos(\pi/2 - \alpha) = b \sin(\alpha)$. De même la composante suivant $\overrightarrow{e_y}$ vaut $b_y = \overrightarrow{b} \cdot \overrightarrow{e_y} = b \cos(\alpha)$.

- **1.4** c) On a $c_x = \vec{c} \cdot \vec{e_x} = c \cos(\alpha)$ et $c_y = \vec{c} \cdot \vec{e_y} = c \cos(\pi/2 + \alpha) = -c \sin(\alpha)$.
- **1.4** d) On trouve $d_x = \overrightarrow{d} \cdot \overrightarrow{e_x} = d\cos(\pi/2 + \alpha) = -d\sin(\alpha)$ et $d_y = \overrightarrow{d} \cdot \overrightarrow{e_y} = d\cos(\alpha)$.
- 1.5 a) Le poids a pour composante suivant $\overrightarrow{e_x}$, $P_x = \overrightarrow{P} \cdot \overrightarrow{e_x} = P \cos(\alpha + \pi/2) = -P \sin(\alpha)$. De même sa composante suivant $\overrightarrow{e_y}$ s'écrit $P_y = \overrightarrow{P} \cdot \overrightarrow{e_y} = P \cos(\alpha + \pi) = -P \cos(\alpha)$. Ainsi, le poids s'écrit $\overrightarrow{P} = -P \sin(\alpha) \overrightarrow{e_x} P \cos(\alpha) \overrightarrow{e_y}$.

1.5 b) \overrightarrow{N} est colinéaire au vecteur unitaire $\overrightarrow{e_y}$ et de même sens; on a donc $\overrightarrow{N} = N\overrightarrow{e_y}$.

1.6 a) Le poids a pour composante suivant $\overrightarrow{e_r}$, $P_r = \overrightarrow{P} \cdot \overrightarrow{e_r} = P \cos(\theta)$. De même sa composante suivant $\overrightarrow{e_\theta}$ s'écrit $P_\theta = \overrightarrow{P} \cdot \overrightarrow{e_\theta} = P \cos(\alpha + \pi/2) = -P \sin(\theta)$. Ainsi, le poids s'écrit

$$\vec{P} = P\cos(\theta)\vec{e_r} - P\sin(\theta)\vec{e_\theta}.$$

- **1.6** b) \vec{T} est colinéaire au vecteur unitaire $\vec{e_r}$ et sens opposé; on a donc $\vec{T} = -T\vec{e_r}$.
- 1.7 a) Le poids \vec{P} est colinéaire et de même sens que le vecteur unitaire $\vec{e_x}$; on a donc $\vec{P} = P\vec{e_x}$.

1.7 b) La tension du fil \overrightarrow{T} a pour composante suivant $\overrightarrow{e_x}$, $T_x = \overrightarrow{T} \cdot \overrightarrow{e_x} = T \cos(\pi - \theta) = -T \cos(\theta)$. De même, sa composante suivant $\overrightarrow{e_y}$ vaut $T_y = \overrightarrow{T} \cdot \overrightarrow{e_y} = T \cos(\pi/2 + \theta) = -T \sin(\theta)$. Finalement, on trouve $\overrightarrow{T} = -T \cos(\theta)\overrightarrow{e_x} - T \sin(\theta)\overrightarrow{e_y}$.

1.8 a) Le vecteur position est le vecteur $\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$, d'où

$$\overrightarrow{\mathrm{OM}} = \left(\frac{1}{2}a_0t^2 + x_0\right)\overrightarrow{e_x} - v_0t\overrightarrow{e_y} + z_0\overrightarrow{e_z}.$$

1.8 b) Dans le système de coordonnées cartésiennes, le vecteur vitesse s'écrit

$$\overrightarrow{v} = \dot{x}\overrightarrow{e_x} + \dot{y}\overrightarrow{e_y} + \dot{z}\overrightarrow{e_z} = a_0 t\overrightarrow{e_x} - v_0 \overrightarrow{e_y}.$$

1.8 c) Dans le système de coordonnées cartésiennes, le vecteur accélération s'exprime en fonction des dérivées secondes des coordonnées : $\vec{a} = \ddot{x}\vec{e_x} + \ddot{y}\vec{e_y} + \ddot{z}\vec{e_z} = a_0\vec{e_x}$.

.....

1.9 a) D'après le PFD, $mg\vec{e_z} = m\vec{a}$ d'où $\vec{a} = g\vec{e_z}$.

1.9 b) L'accélération s'écrit $\vec{a} = \dot{v}_x \vec{e}_x + \dot{v}_y \vec{e}_y + \dot{v}_z \vec{e}_z$. On en déduit

$$\left\{\begin{array}{lcl} \dot{v}_x & = & 0 \\ \dot{v}_y & = & 0 \\ \dot{v}_z & = & g \end{array}\right\} \quad \Rightarrow \quad \left\{\begin{array}{lcl} v_x & = & C_1 \\ v_y & = & C_2 \\ v_z & = & gt + C_3 \end{array}\right\}$$

Les conditions initiales imposent $C_1=v_0,\,C_2=0$ et $C_3=0$. Finalement $\overrightarrow{v}=v_0\overrightarrow{e_x}+gt\overrightarrow{e_z}$.

1.9 c) Le vecteur vitesse s'écrit $\vec{v} = \dot{x}\vec{e_x} + \dot{y}\vec{e_y} + \dot{z}\vec{e_z}$. Par identification avec l'expression obtenue précédemment, on a

$$\left\{ \begin{array}{ccc} \dot{x} & = & v_0 \\ \dot{y} & = & 0 \\ \dot{z} & = & gt \end{array} \right\} \quad \Rightarrow \quad \left\{ \begin{array}{ccc} x & = & v_0 t + C_4 \\ y & = & C_5 \\ z & = & \frac{1}{2} g t^2 + C_6 \end{array} \right\}$$

Les conditions initiales imposent $C_4 = x_0$, $C_5 = y_0$ et $C_6 = 0$. Finalement

$$\overrightarrow{OM} = (v_0t + x_0)\overrightarrow{e_x} + y_0\overrightarrow{e_y} + \frac{1}{2}gt^2\overrightarrow{e_z}.$$

.....

1.10 a)
$$\overrightarrow{e_r} \cdot \overrightarrow{e_x} = \cos(\theta)$$
 et $\overrightarrow{e_r} \cdot \overrightarrow{e_y} = \cos(\pi/2 - \theta) = \sin(\theta)$ d'où $\overrightarrow{e_r} = \cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}$.

1.10 b)
$$\vec{e_{\theta}} \cdot \vec{e_{x}} = \cos(\pi/2 + \theta) = -\sin(\theta) \text{ et } \vec{e_{\theta}} \cdot \vec{e_{y}} = \cos(\theta) \text{ d'où } \vec{e_{\theta}} = -\sin(\theta) \vec{e_{x}} + \cos(\theta) \vec{e_{y}}.$$

1.11 a) Il suffit de dériver le vecteur $\overrightarrow{e_r} = \cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}$ sachant que $\overrightarrow{e_x}$ et $\overrightarrow{e_y}$ sont des constantes (vectorielles). On a donc $\frac{d\overrightarrow{e_r}}{dt} = \frac{d\cos(\theta)}{dt}\overrightarrow{e_x} + \frac{d\sin(\theta)}{dt}\overrightarrow{e_y}$. Ici θ dépend du temps, par conséquent $\frac{d\cos(\theta)}{dt} = \frac{d\theta}{dt} \times \frac{d\cos(\theta)}{d\theta} = -\dot{\theta}\sin(\theta)$. de même $\frac{d\sin(\theta)}{dt} = \dot{\theta}\cos(\theta)$. Finalement,

$$\frac{\mathrm{d}\vec{e_r}}{\mathrm{d}t} = -\dot{\theta}\sin(\theta)\vec{e_x} + \dot{\theta}\cos(\theta)\vec{e_y}.$$

1.11 b) En partant de $\overrightarrow{e_{\theta}} = -\sin(\theta)\overrightarrow{e_x} + \cos(\theta)\overrightarrow{e_y}$, on trouve

$$\frac{\mathrm{d}\vec{e_{\theta}}}{\mathrm{d}t} = -\frac{\mathrm{d}\sin(\theta)}{\mathrm{d}t}\vec{e_{x}} + \frac{\mathrm{d}\cos(\theta)}{\mathrm{d}t}\vec{e_{y}} = -\dot{\theta}\cos(\theta)\vec{e_{x}} - \dot{\theta}\sin(\theta)\vec{e_{y}}.$$

- **1.13** Le vecteur \overrightarrow{OM} est colinéaire et de même sens que $\overrightarrow{e_r}$. Sa norme étant égal r, on a $\overrightarrow{OM} = r\overrightarrow{e_r}$.
- 1.14 a) Il suffit de dériver le vecteur position en utilisant les résultats des exercices précédents : $\overrightarrow{v} = \frac{\overrightarrow{\text{dOM}}}{\overrightarrow{\text{d}t}} = \frac{\overrightarrow{\text{d}r}}{\overrightarrow{\text{d}t}} \overrightarrow{e_r} + r \frac{\overrightarrow{\text{d}e_r}}{\overrightarrow{\text{d}t}} = \dot{r}\overrightarrow{e_r} + r \dot{\theta}\overrightarrow{e_\theta}.$
- 1.14 b) Dérivons le vecteur vitesse :

$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}\dot{r}}{\mathrm{d}t}\vec{e_r} + \dot{r}\frac{\mathrm{d}\vec{e_r}}{\mathrm{d}t} + \frac{\mathrm{d}(r\dot{\theta})}{\mathrm{d}t}\vec{e_\theta} + r\dot{\theta}\frac{\mathrm{d}\vec{e_\theta}}{\mathrm{d}t} = (\ddot{r} - r\dot{\theta}^2)\vec{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e_\theta}.$$

1.15 a) Calculons le carré scalaire :

$$\vec{T}^2 = (-\vec{F} - \vec{P})^2 = F^2 + P^2 + 2\vec{F} \cdot \vec{P} = 5$$

car $\overrightarrow{F} \cdot \overrightarrow{P} = 0$. Par conséquent, $T = \sqrt{5} \simeq 2.2 \,\mathrm{N}.$

1.15 b) Une construction géométrique permet de trouver immédiatement l'angle α :

On peut aussi utiliser les produits scalaires. Par exemple

$$\vec{T} \cdot \vec{F} = T \times F \cos(\pi/2 + \alpha) = -TF \sin \alpha$$

De plus, compte tenu de l'équilibre des forces

$$\vec{T} \cdot \vec{F} = (-\vec{F} - \vec{P}) \cdot \vec{F} = -F^2 - \vec{P} \cdot \vec{F} = -F^2$$

Il en découle $\sin \alpha = F/T$ soit $\alpha = 0.46$ rad (c'est-à-dire $\alpha = 26$ °).

.....

1.16 a) $\vec{R} = \vec{T} + \vec{T'} + \vec{F}$. Sa composante horizontale vaut

$$R_x = \overrightarrow{R} \cdot \overrightarrow{e_x} = \underbrace{\overrightarrow{T} \cdot \overrightarrow{e_x}}_{-T \cos \theta} + \underbrace{\overrightarrow{T'} \cdot \overrightarrow{e_x}}_{T' \cos \theta} + \underbrace{\overrightarrow{F} \cdot \overrightarrow{e_x}}_{0} = (T' - T) \cos \theta.$$

1.16 b) La composante verticale de \vec{R} s'écrit

$$R_y = \overrightarrow{R} \cdot \overrightarrow{e_y} = \underbrace{\overrightarrow{T} \cdot \overrightarrow{e_y}}_{T \sin \theta} + \underbrace{\overrightarrow{T'} \cdot \overrightarrow{e_y}}_{T' \sin \theta} + \underbrace{\overrightarrow{F} \cdot \overrightarrow{e_y}}_{-F} = (T' + T) \sin \theta - F.$$

1.16 c) Résoudre l'équation vectorielle $\vec{R} = \vec{0}$, c'est résoudre le système d'équations suivant :

$$\begin{cases} (T'-T)\cos\theta &=& 0\\ (T'+T)\sin\theta - F &=& 0 \end{cases} \text{ soit } \begin{cases} T' &=& T\\ T &=& \frac{F}{2\sin\theta} \end{cases}$$

Sachant que $F = 800 \,\mathrm{N}$ et $\theta = 20^{\circ}$, on obtient $T = 1{,}17 \,\mathrm{kN}$.

.....

1.17 Le principe fondamental de la dynamique impose $m\vec{g} + \vec{F} = m\vec{a}$. En projetant la relation précédente suivant la verticale descendante, on obtient mg - F = ma ce qui donne F = m(g - a) = 1,6 N.

1.18 L'homme subit son poids $\vec{P} = m\vec{q}$ et la force de contact dû à l'ascenseur $-\vec{F}$ (principe des

1.18 L'homme subit son poids $\vec{P} = m\vec{g}$ et la force de contact dû à l'ascenseur $-\vec{F}$ (principe des actions réciproques). Le principe fondamental de la dynamique donne $m\vec{g} - \vec{F} = m\vec{a}$. En projetant sur la verticale ascendante on obtient ma = -mg + F, soit $F = m(a + g) = 80 \times 10,8 = 864$ N.

1.19 a) Le principe fondamental de la dynamique donne $\vec{P} + \vec{f_n} + \vec{f_t} = m\vec{a}$ avec $\vec{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$ $\vec{e_t}$ ($\vec{e_t}$ est le vecteur unitaire orienté suivant le vecteur vitesse; c'est le vecteur tangent de la base de Frenet). Si l'on projette la relation suivant la normale $\vec{e_n}$ au support on aboutit à

$$\underbrace{\overrightarrow{P} \cdot \overrightarrow{e_{\mathbf{n}}}}_{P \cos(\pi - \alpha)} + \underbrace{\overrightarrow{f_{\mathbf{n}}} \cdot \overrightarrow{e_{\mathbf{n}}}}_{f_{\mathbf{n}}} + \underbrace{\overrightarrow{f_{\mathbf{t}}} \cdot \overrightarrow{e_{\mathbf{n}}}}_{0} = m \frac{\mathrm{d}v}{\mathrm{d}t} \underbrace{\overrightarrow{e_{\mathbf{t}}} \cdot \overrightarrow{e_{\mathbf{n}}}}_{0}$$

ce qui donne $f_n = -P\cos(\pi - \alpha) = P\cos\alpha$.

1.19 b) En projetant la relation fondamentale de la dynamique suivant la direction tangentielle au support on obtient

$$\underbrace{\overrightarrow{P} \cdot \overrightarrow{e_{t}}}_{P \cos(\pi/2 - \alpha)} + \underbrace{\overrightarrow{f_{n}} \cdot \overrightarrow{e_{t}}}_{0} + \underbrace{\overrightarrow{f_{t}} \cdot \overrightarrow{e_{t}}}_{-f_{t}} = m \frac{\mathrm{d}v}{\mathrm{d}t} \underbrace{\overrightarrow{e_{t}} \cdot \overrightarrow{e_{t}}}_{1}$$

c'est-à-dire $f_{\rm t} = -m \frac{\mathrm{d}v}{\mathrm{d}t} + P \sin \alpha$.

1.20 a) Le principe fondamental appliqué au bloc B_1 donne $2m\vec{g} + \vec{R} + \vec{T_1} = 2m\vec{a_1}$. Projetons cette relation suivant le sens du mouvement :

$$2m\underbrace{\overrightarrow{g}\cdot\overrightarrow{e_x}}_{0} + \underbrace{\overrightarrow{R}\cdot\overrightarrow{e_x}}_{0} + \underbrace{\overrightarrow{T_1}\cdot\overrightarrow{e_x}}_{T_1} = 2m\underbrace{\overrightarrow{a_1}\cdot\overrightarrow{e_x}}_{a_1} \quad \text{soit} \quad a_1 = \frac{T_1}{2m}.$$

1.20 b) Le principe fondamental appliqué au bloc B_2 donne $m\vec{g} + \vec{T_2} = m\vec{a_2}$. Projetons cette relation suivant le sens du mouvement :

$$m \overrightarrow{g} \cdot \overrightarrow{e_y} + \overrightarrow{T_2} \cdot \overrightarrow{e_y} = m \overrightarrow{a_2} \cdot \overrightarrow{e_y}$$
 soit $a_2 = g - \frac{T_2}{m}$.

1.20 c) On a les relations :

$$a_1 = \frac{T_1}{2m} \tag{1}$$

$$a_2 = g - \frac{T_2}{m} \tag{2}$$

Multiplions la première relation par 2m, et la deuxième par m, puis additionnons les. On trouve $2ma_1 + ma_2 = T_1 + mg - T_2$. Comme $a_1 = a_2$ et $T_1 = T_2$, on obtient $3ma_1 = mg$ soit $a_1 = a_2 = g/3$.