

Masterarbeit

Effiziente Berechnung von K_5 -Minoren in Graphen

Julian Sauer 27. Juli 2019

Betreuer:

Prof. Dr. Petra Mutzel Prof. Dr. Jens Schmidt

Fakultät für Informatik
Algorithm Engineering (LS 11)
Technische Universität Dortmund
http://ls11-www.cs.tu-dortmund.de

Inhaltsverzeichnis

T	Emelling	1	
	1.1 Motivation und Hintergrund	1	
	1.2 Aufbau der Arbeit	1	
2	Definitionen	3	
3	Algorithmus von Kezdy und McGuinness	5	
4	Wagner Struktur	7	
5	Implementierung	9	
6	Experimentelle Analyse	11	
7	Zusammenfassung und Ausblick	13	
A	Weitere Informationen	15	
A l	Abbildungsverzeichnis		
A l	Algorithmenverzeichnis		
Sy	Symbolverzeichnis		
Li	Literaturverzeichnis		
Ei	Eidesstattliche Versicherung		

Einleitung

- 1.1 Motivation und Hintergrund
- 1.2 Aufbau der Arbeit

Definitionen

Algorithmus von Kezdy und McGuinness

Da die Arbeit auf dem sequenziellen Algorithmus von Kezdy und McGuinness, den sie in [1] vorstellen, beruht, wird er im Folgenden erklärt. Als Eingabe wird ein ungerichteter Graph ohne Mehrfachkanten erwartet, ausgegeben wird, ob ein K_5 -Minor enthalten ist oder nicht. Für den Fall, dass einer gefunden wurde, kann zusätzlich ausgegeben werden, welche Knoten den Minor formen. Die Laufzeit liegt in $\mathcal{O}(n^2)$

Planaritästests können bereits in linearer Laufzeit entscheiden, ob ein Graph planar ist oder einen K_5 - bzw. $K_{3,3}$ -Minor enthält. Es muss lediglich der Fall behandelt werden, in dem der der Test stoppt, weil er einen $K_{3,3}$ -Minor gefunden hat, denn es kann nicht garantiert werden, ob zusätzlich ein K_5 -Minor enthalten ist. Als Lösung testet der Algoritmus von Kezdy und McGuiness, ob ein gefundener $K_{3,3}$ -Minor ein gültiger 3-Separatorist und zerlegt ggf. den Graph in augmentierte Komponenten. Anschließend kann der Planaritästest auf die einzelnen Komponenten rekursiv angewendet werden.

Um das zentrale Theorem aus [1], welches den $K_{3,3}$ -Minor untersucht, zu erklären, wird zunächst die Gültigkeit augmentierter Komponenten behandelt:

3.0.1 Theorem. Für $k \geq 3$: Sei G ein k-zusammenhängender Graph und C ein k-Schnitt in G. Alle durch C definierten augmentierten Komponenten sind Minoren von G, falls es entweder mindestens k Komponenten sind oder mindestens zwei der Komponenten jeweils aus mehr als einem Knoten bestehen.

Beweis. Seien $c_1, c_2, ..., c_k$ die Knoten von C und $Z = \{Z_1, Z_2, ..., Z_k\}$ bzw. $Z = \{Z_1, Z_2, ..., Z_{k-1}\}$ die Zusammenhangskomponenten, die durch G-C entstehen. Die zugehörigen augmentierten Komponenten seien $A_1, A_2, ..., A_k$ bzw. $A_1, A_2, ..., A_{k-1}$. Betrachtet wird eine beliebige dieser augmentierten Komponenten A_i . Der Definition der augmentierten Komponenten nach finden sich bereits alle Knoten von A_i in G wieder. Weiterhin enthält G mindestens alle Kanten in $A_i - C$ sowie die verbindenden Kanten zwischen A_i und C. Jedoch bilden in

 A_i die Knoten von C eine Clique, es existieren also ggf. Kanten zwichen den Knoten von C in A_i , die es nicht in G gibt Es bleibt zu zeigen, dass die Kanten, die für diese Clique in A_i nötig sind, durch Kantenkontraktionen in G erzeugt werden können. Dadurch, dass G k-zusammenhängend ist, besitzt jede Zusammenhangskomponente von G-C Kanten zu $c_1, c_2, ..., c_k$. Würde eine Kante zu einem Knoten c_j mit $1 \le j \le k$ fehlen, wäre ein k-1-Schnitt bestehend aus $C \setminus c_j$ möglich, was im Widerspruch zu dem k-Zusammenhang stehen würde. Das Theorem unterscheided nun zwei Fälle, um die fehlenden Kanten bereitstellen zu können:

- 1. Es existieren k Zusammenhangskomponenten. Wird A_i betrachtet, kommen die Knoten in $Z \setminus Z_i$ in Frage, um durch Kantenkontraktionen die fehlenden Kanten für die Clique von C in A_i zu erzeugen. Um die Kanten von C in A_i in G zu erzeugen, kann zunächst die Kante, die c_1 mit Z_1 kontrahiert werden. Anschließend ist c_1 mit allen Knoten in C verbunden. Dies kann analog für alle Knoten in C und den entsprechenden Zusammenhangskomponenten durchgeführt werden außer für c_i , da A_i der gesuchte Minor ist. Allerdings ist c_i aufgrund des k-Zusammenhangs mit allen anderen Zusammenhangskomponenten verbunden und nach den beschriebenen Kontraktionen bildet C eine Clique.
- 2. Es existieren k − 1 Komponenten, aber mindestens zwei bestehen aus mehr als einem Knoten. Analog zum vorherigen Fall können die Kanten zwischen den Knoten von C und den Zusammenhangskomponenten A kontrahiert werden. Es fehlt jedoch eine Kantenkontraktion, da eine Zusammenhangskomponente weniger vorliegt. Es gibt mindestens eine Zusammenhangskomponente aus Z \ Z_i, die aus zwei oder mehr Knoten besteht. Da der Graph k-zusammenhängend ist, sind mindestens zwei dieser Knoten mit allen in C verbunden, sodass sie durch Kontraktionen mit zwei unterschiedlichen Knoten aus C genutzt werden könnenm um die gesuchte Clique zu erzeugen.

Wagner Struktur

Implementierung

Experimentelle Analyse

Zusammenfassung und Ausblick

Anhang A

Weitere Informationen

Abbildungsverzeichnis

Algorithmenverzeichnis

${\bf Symbol verzeichn is}$

Literaturverzeichnis

[1] A. KÉZDY, P. MCGUINESS: Sequential and Parallel Algorithms to Find a K₅ Minor. In: Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA., Seiten 345-356, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

Eidesstattliche Versicherung

Sauer, Julian	197859
Name, Vorname	Matrnr.
,	h die vorliegende Masterarbeit mit dem Titel K_5 -Minoren in Graphen
die angegebenen Quellen und Hilfsmittel ber	ilfe erbracht habe. Ich habe keine anderen als nutzt sowie wörtliche und sinngemäße Zitate er oder ähnlicher Form noch keiner Prüfungs-
Dortmund, den 27. Juli 2019	
Ort, Datum	Unterschrift
Belehrung:	
einer Hochschulprüfungsordnung verstößt, h keit kann mit einer Geldbuße von bis zu 50.00 tungsbehörde für die Verfolgung und Ahndu ler/ die Kanzlerin der Technischen Universitä	ber Prüfungsleistungen betreffende Regelung andelt ordnungswidrig. Die Ordnungswidrig- 00,00 € geahndet werden. Zuständige Verwalung von Ordnungswidrigkeiten ist der Kanz- ät Dortmund. Im Falle eines mehrfachen oder sches kann der Prüfling zudem exmatrikuliert -)
Die Abgabe einer falschen Versicherung an Jahren oder mit Geldstrafe bestraft.	Eides statt wird mit Freiheitsstrafe bis zu 3
	gfls. elektronische Vergleichswerkzeuge (wie ng von Ordnungswidrigkeiten in Prüfungsver-
Die oben stehende Belehrung habe ich zur K	Kenntnis genommen:
Dortmund, den 27. Juli 2019	
Ort, Datum	Unterschrift