Circuit Complexity Homework Problems

Problem 1 (Application of Khrapchenko's Bound). Let the threshold function, denoted $\text{THR}_{k,n}$ for $k \in [n]$, be an n-ary Boolean function where $\text{THR}_{k,n}(\mathbf{x}) = 1 \iff |\mathbf{x}| \geq k$.

1. $\mathcal{L}(THR_{k,n}) \geq k(n-k+1)$.

Proof. Define sets $A = \{\mathbf{x} \in \{0,1\}^n : |\mathbf{x}| = k-1\}$ and $B = \{\mathbf{y} \in \{0,1\}^n : |\mathbf{y}| = k\}$ which are subsets of $\mathrm{THR}_{k,n}^{-1}(0)$ and $\mathrm{THR}_{k,n}^{-1}(1)$ respectively. Observe that every element $\mathbf{a} \in A$ is incident to n-k+1 different elements of B since we can flip any of the n-k+1 zeros in \mathbf{a} to produce an element of B i.e. an n-ary string with k ones. By Khrapchenko's bound,

$$\mathcal{L}(\text{THR}_{k,n}) \ge \frac{\left(\sum_{\mathbf{a} \in A} \sum_{\mathbf{b} \in B} M_{\mathbf{a},\mathbf{b}}\right)^{2}}{|A| \cdot |B|}$$

$$= \frac{\left(\binom{n}{k-1} \cdot (n-k+1)\right)^{2}}{\binom{n}{k-1} \binom{n}{k}} = \frac{\binom{n}{k-1} (n-k+1)^{2}}{\binom{n}{k}} = \frac{n!k!(n-k)!(n-k+1)^{2}}{n!(k-1)!(n-k+1)!}$$

$$= k(n-k+1)$$

as required.

Since $MAJ_n \equiv THR_{\lceil n/2 \rceil, n}$, we have $\mathcal{L}(MAJ_n) \in \Omega(n^2)$ by the above.

2. Khrapchenko's bound never exceeds n^2 for any n-ary Boolean function.

Proof. Consider any n-ary Boolean function f and sets $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$. Notice that $n \cdot |B| \ge \sum_{\mathbf{a} \in A} \sum_{\mathbf{b} \in B} M_{\mathbf{a}, \mathbf{b}}$ and $n \cdot |A| \ge \sum_{\mathbf{a} \in A} \sum_{\mathbf{b} \in B} M_{\mathbf{a}, \mathbf{b}}$ since each $\mathbf{a} \in A$ can be adjacent to at most n elements of B and vice versa. Thus

$$\frac{\left(\sum_{\mathbf{a}\in A}\sum_{\mathbf{b}\in B}M_{\mathbf{a},\mathbf{b}}\right)^{2}}{|A|\cdot|B|}\leq\frac{\left(\sum_{\mathbf{a}\in A}\sum_{\mathbf{b}\in B}M_{\mathbf{a},\mathbf{b}}\right)^{2}}{|A|\cdot\sum_{\mathbf{a}\in A}\sum_{\mathbf{b}\in B}M_{\mathbf{a},\mathbf{b}}}=\frac{n\left(\sum_{\mathbf{a}\in A}\sum_{\mathbf{b}\in B}M_{\mathbf{a},\mathbf{b}}\right)}{|A|}\leq\frac{n^{2}|A|}{|A|}=n^{2}$$

and Khrapchenko's bound can never exceed n^2 for any n-ary Boolean function.

Problem 2 (UB Nechiporuk). Nechiporuk's bound never exceeds $O(n^2/\log n)$.

Proof. Let f be an n-ary Boolean function with variables $V = \{x_1, ..., x_n\}$. Let $V_1 \uplus \cdots \uplus V_k$ be a partition of V. We will show that

$$\frac{1}{4} \sum_{l=1}^{k} \log|\operatorname{sub}_{V_l}(f)| \in O\left(\frac{n^2}{\log n}\right). \tag{1}$$

In the following, we drop the factor of 1/4 since only the limiting behavior of Equation (1) matters.

The crux of our argument is the following observation: for any set $V_i \subseteq V$, there are two trivial upper bounds for $|\text{sub}_{V_i}(f)|$. First, since the elements of $\text{sub}_{V_i}(f)$ arise from restrictions of $V \setminus V_i$ to $\{0, 1\}$

and there are most $2^{n-|V_i|}$ distinct restrictions, $|\operatorname{sub}_{V_i}(f)| \leq 2^{n-|V_i|}$. Second, since the elements of $\operatorname{sub}_{V_i}(f)$ are $|V_i|$ -ary and there are at most $2^{2^{|V_i|}}$ such distinct Boolean functions, $|\operatorname{sub}_{V_i}(f)| \leq 2^{2^{|V_i|}}$. Thus $|\operatorname{sub}_{V_i}(f)| \leq \min\left(2^{n-|V_i|}, 2^{2^{|V_i|}}\right)$ with $2^{n-|V_i|} \in O\left(2^{2^{|V_i|}}\right)$ when $|V_i| \in O(\log(n-\log n))$.

Let $c = \lceil \log(n - \log n) \rceil$. Divide up the indices of [k] into two sets $I = \{i : |V_i| \ge c\}$, the large sets, and $J = \{j : |V_j| < c\}$, the small sets. Since

$$\sum_{l=1}^{k} \log |\operatorname{sub}_{V_l}(f)| = \sum_{i \in I} \log |\operatorname{sub}_{V_i}(f)| + \sum_{j \in J} \log |\operatorname{sub}_{V_J}(f)|,$$

we will bound each term on the RHS separately.

For $i \in I$, $|\text{sub}_{V_i}(f)| \le \min\left(2^{n-|V_i|}, 2^{2^{|V_i|}}\right) = 2^{n-|V_i|}$. Since $|V_i| \ge c$ for all $i \in I$, $|I| \le n/c$. Thus

$$\sum_{i \in I} \log|\operatorname{sub}_{V_i}(f)| \le \sum_{i \in I} n - |V_i| \le \sum_{i \in I} n - c \le \frac{n}{c} (n - c) \in O\left(\frac{n^2}{\log n}\right). \tag{2}$$

For $j \in J$, $|\operatorname{sub}_{V_j}(f)| \leq \min\left(2^{n-|V_i|}, 2^{2^{|V_i|}}\right) = 2^{2^{|V_j|}}$. For $\gamma \in [c]$, let n_{γ} be the number of variables among all sets of size γ . Note that for each γ , there are n_{γ}/γ sets of size γ . Further observe that the ratio $2^{\gamma}/\gamma$ increases with γ . Thus

$$\sum_{j \in J} \log|\operatorname{sub}_{V_j}(f)| = \sum_{\gamma=1}^c \frac{n_\gamma}{\gamma} \log 2^{2^{\gamma}} = \sum_{\gamma=1}^c n_\gamma \frac{2^{\gamma}}{\gamma} \le \frac{2^c}{c} \left(\sum_{\gamma=1}^c n_\gamma\right) \le \frac{2^c}{c} n \in O\left(\frac{n^2}{\log n}\right). \tag{3}$$

Combining Equations (2) and (3), we have
$$\sum_{l=1}^{k} \log |\operatorname{sub}_{V_l}(f)| \in O\left(\frac{n^2}{\log n}\right)$$
 as required.

Problem 3 (Leafsize Bounds on ANDREEV_{k,m}). Recall the Andreev function ANDREEV_{k,m}: $\{k\text{-}variable\ Boolean\ function}\} \times \{0,1\}^{k\times m} \to \{0,1\}$ where

$$ANDREEV_{k,m}(f, \mathbf{X}) = (f \otimes XOR_m)(\mathbf{X}) = f((x_{1,1} \oplus \cdots \oplus x_{1,m}), ..., (x_{k,1} \oplus \cdots \oplus x_{k,m})).$$

1. $\mathcal{L}_{B_2}(\text{ANDREEV}_{k,m}) \in \Omega(n^2/\log n)$.

Proof. Let $m = \lceil 2^k/k \rceil$ and $n = 2^k$. The inputs to ANDREEV_{k,m} are a k-ary Boolean function f and a matrix $\mathbf{X} \in \{0,1\}^{k \times m}$. Defined f by the vector $\mathbf{f} = (f_0, ..., f_{2^k-1})$ where f_i is the value of f on the binary representation of i. Let the entries of \mathbf{X} be $x_{i,j}$ for $i \in [k]$ and $j \in [m]$.

Divide the $2^k + km$ variables of ANDREEV_{k,n} into the following m+1 disjoint sets: $V_j = \{x_{1,j},...,x_{k,j}\}$ for $j \in [m]$ (the columns of **X**) and $V_{m+1} = \{f_0,...,f_{2^k-1}\}$. Observe that the sets V_j are symmetric so, by Nechiporuk's Bound, we have

$$\mathcal{L}_{B_2}(f) \ge \frac{1}{4} \sum_{j=1}^{m+1} \log|\mathrm{sub}_{V_j}(f)| = \frac{1}{4} \left(m \log|\mathrm{sub}_{V_1}(f)| + \log|\mathrm{sub}_{V_{m+1}}(f)| \right). \tag{4}$$

Thus it suffices to lower bound $|\operatorname{sub}_{V_1}(f)|$ and $|\operatorname{sub}_{V_{m+1}}(f)|$.

Observe that there is a surjection between the elements of $\operatorname{sub}_{V_{m+1}}(f)$ and the set of projection functions on f of size 2^k . For every $\mathbf{y} \in \{0,1\}^k$, by fixing a particular choice of \mathbf{X} , namely $\mathbf{X} = [\mathbf{y}, \mathbf{0}, ..., \mathbf{0}]$, ANDREEV_{k,m} $(f, \mathbf{X}) = f(\mathbf{y})$. Thus $|\operatorname{sub}_{V_{m+1}}(f)| \geq 2^k \in O(n)$.

Similarly there exists an surjection between $\operatorname{sub}_{V_1}(f)$ and the set of all k-ary Boolean functions. Pick a function f by specifying \mathbf{f} . For any fixed $x_{i,j}$, where $i \in [k]$ and $j \in \{2, ..., m\}$, as $(x_{1,1}, ..., x_{k,1})$ ranges through all values in $\{0,1\}^k$, $((x_{1,1} \oplus \cdots \oplus x_{1,m}), ..., (x_{k,1} \oplus \cdots \oplus x_{k,m}))$ also takes all values in $\{0,1\}^k$. Thus $|\operatorname{sub}_{V_1}(f)| \geq 2^{2^k}$.

Plugging these values into Equation (4), we have

$$\mathcal{L}_{B_2}(f) \ge \frac{1}{4} \left(m \log 2^{2^k} + \log 2^k \right) = \frac{1}{4} \left(m 2^k + k \right) \in O\left(\frac{n^2}{\log n} \right)$$

since $m \in O(2^k/k)$ and $n \in O(2^k)$.

2. $\mathcal{L}_{B_2}(\text{ANDREEV}_{k,m}) \in O(n^2/\log n)$.

Solution. Let the inputs to ANDREEV_{k,m} be as described in the previous part. We will construct a formula with $O(n^2/\log n)$ leaves.

Let us define a few helper functions to simplify our exposition. First, for $i \in [k]$, let \bigoplus_i compute the xor of the i^{th} row of \mathbf{X} , i.e. $\bigoplus_i = x_{i,1} \oplus \cdots \oplus x_{i,m}$. Notice that $\mathcal{L}_{B_2}(\bigoplus_i) = m$. Next, let the two bit multiplexer function be MUX: $\{0,1\}^3 \to \{0,1\}$ such that

$$MUX(b_0, b_1, s) = b_s$$

shown in Figure 1. Notice that $\mathcal{L}_{B_2}(\text{MUX}(b_0, b_1, s)) = \mathcal{L}_{B_2}(b_0) + \mathcal{L}_{B_2}(b_1) + 2\mathcal{L}_{B_2}(s)$.

Figure 1: Circuit for $MUX(b_0, b_1, s)$. The output of the function is the value at the \vee gate.

Recursively construct a depth k tree of MUX-gates. At the bottom are the bits $f_0, ..., f_{2^k-1}$. Above them are 2^{k-1} MUX-gates labeled MUX_{k,0}, ..., MUX_{k,2^{k-1}-1} where

$$MUX_{k,i} = MUX(b_{f_{2i}}, b_{f_{2i+1}}, \oplus_k).$$

Level j of the tree has 2^{j-1} MUX-gates labeled with MUX_{j,0},..., MUX_{j,2^{j-1}-1} where

$$\mathbf{MUX}_{j,i} = (\mathbf{MUX}_{j+1,2i}, \mathbf{MUX}_{j+1,2i+1}, \oplus_j)$$

for all $j \in [k]$. See Figure 2 for a small example.

There are 2^k leaves labeled by $f_0, ..., f_{2^k-1}$. Each of the 2^k-1 MUX-gates uses two \oplus_i subtrees each containing m leaves. This formula has $2^k+(2^k-1)\cdot 2m\in O(n^2/\log n)$ leaves. Thus $\mathcal{L}_{B_2}(\text{ANDREEV}_{k,m})\in \Theta(n^2/\log n)$ with lower bound from the previous part.

Figure 2: Example of the constructed tree with k = 2.

Problem 4 (LB Circuit Size of Monotone functions). Almost all monotone n-ary functions f have DeMorgan circuits of size $C(f) \in \Omega(2^n/n^{1.5})$.

Proof. First we will show that there are at least $2^{\binom{n}{\lfloor 2/n\rfloor}}$ n-ary monotone functions. Consider the subsets of [n] ordered by inclusion i.e. \emptyset is at the bottom, [n] is at the top, and an edge (S_1, S_2) between $S_1, S_2 \subset [n]$ if $S_1 \subset S_2$. The family \mathcal{M} of all subsets containing $\lfloor n/2 \rfloor$ elements is an anti-chain of size $\binom{n}{\lfloor n/2 \rfloor}$. Consider maps $h: \mathcal{M} \to \{0,1\}$. For each h, we can define a n-ary monotone function as follows. Let $M \in \mathcal{M}$. If h(M) = 0, then for all proper supersets $M_{sup} \supset M$, $f(M_{sup}) = 1$. Otherwise if h(M) = 1, then for all proper subsets $M_{sub} \subset M$, $f(M_{sub}) = 0$. This defines a monotone function since the value of f on a chain is monotonically increasing. Since there are $2^{\binom{n}{\lfloor n/2\rfloor}} = 2^{\Omega(2^n/\sqrt{n})}$ maps, there are at least this many n-ary monotone functions.

Using the above and Shannon's lower bound for general *n*-ary Boolean functions, we can show that almost all monotone functions have DeMorgan circuit size $\Omega(2^n/n^{1.5})$.

Let $s = 2^n/n^{1.5}$ and A be the set of all circuits with size at most s. The set B of monotone circuits of size at most s is a subset of A. Note that $|A| \leq 2^s(s+2n)^{2s}$ since each of the s gates can be an \land or \lor and each gate can take two inputs from any of the s gates or 2n literals. Further notice that any function f with a circuit in A also has s! distinct circuits in A. Suppose $n \geq 22$ ($n^{1.5} > 100$). The number of monotone functions with circuit size at most s is bounded above by

$$\frac{|B|}{s!} \le \frac{|A|}{s!} \le \frac{18^s s^{2s}}{\left(\frac{s}{e}\right)^s} \le 50^s s^s \le \left(\frac{50}{n^{1.5}}\right)^{2^n/n^{1.5}} 2^{2^n/\sqrt{n}} \le 2^{2^n/\sqrt{n}-2^n/n^{1.5}}.$$

Thus at least 2^s monotone functions has circuit size greater than s.

Problem 5 (δ -Approximate Majority). For $\delta \in (0, 1/2)$, a n-ary Boolean functions f is a δ -approximate majority if for all $\mathbf{x} \in \{0, 1\}^n$,

$$\frac{|\mathbf{x}|}{n} \le \frac{1}{2} - \delta \implies f(\mathbf{x}) = 0$$
$$\frac{|\mathbf{x}|}{n} \ge \frac{1}{2} + \delta \implies f(\mathbf{x}) = 1$$

Suppose a, b, c are positive integers such that

$$\left(1 - \left(1 - \left(\frac{1}{2} - \delta\right)^a\right)^b\right)^c < 2^{-n} \text{ and } \left(1 - \left(1 - \left(\frac{1}{2} + \delta\right)^a\right)^b\right)^c > 1 - 2^{-n}.$$
(5)

1. There exists Π_3 formulas of leafsize abc that compute a δ -approximate majority.

Proof. This will be similar to the proof that MAJ_n has poly-sized monotone formulas. In particular we will build a Π_3 formula with fan-in c, b, and a respectively from top to bottom. Then populate the bottom-most level with values from a random projection.

Let F be the formula as described above. The output of F is a \land -gate, t, with fan-in c. The children of t are \lor -gates, $r_1, ..., r_\gamma$ with fan-in b. The children of each r_i are \land -gates $d_{i,1}, ..., d_{i,b}$ with fan-in a. The children of each gate $d_{i,j}$ are literals $y_{i,j,1}, ..., y_{i,j,a}$. Let the input to F be $\mathbf{y} \in \{0,1\}^{abc}$, π be a random projection from $\mathbf{y} \to \mathbf{x}$, and $F_{\pi}(\mathbf{x})$ be the formula with input $\pi(\mathbf{y})$. Let A be the event that F computes δ -approximate majority.

For π such that $\pi(y_i)$ is chosen independently and uniformly from all elements of \mathbf{x} , we will show that $\Pr[A] > 1 - 2^{-n}$. Let E_1 and E_2 be the events $|\mathbf{x}|/n \le \frac{1}{2} - \delta$ and $|\mathbf{x}|/n \ge 1/2 + \delta$ respectively. By conditioning, we have

$$\Pr[A] = \Pr[F_{\pi}(\mathbf{x}) = 0|E_1] \Pr[E_1] + \Pr[F_{\pi}(\mathbf{x}) = 1|E_2] \Pr[E_2]$$

Since at most one of $Pr[E_1] = 1$ or $Pr[E_2] = 1$, we just need to show that both conditional probabilities on the RHS are bounded below by $1 - 2^{-n}$.

First condition on E_1 and let $p = \frac{1}{2} - \delta$. For any $d_{i,j}$,

$$\Pr[d_{i,j}(\pi(y_{i,j,1}),...,\pi(y_{i,j,a})) = 1|E_1] \le \left(\frac{1}{2} - \delta\right)^a$$

since $\pi(y_{i,j,1}) \sim \text{Bern}(p)$. Similarly for any r_i ,

$$\Pr[r_i(d_{i,1},...,d_{i,b}) = 1|E_1] = 1 - \Pr[r_i(d_{i,1},...,d_{i,b}) = 0|E_1] \le 1 - \left(1 - \left(\frac{1}{2} - \delta\right)^{\alpha}\right)^{b}.$$

Finally for t,

$$\Pr[t(r_1, ..., r_c) = 1 | E_1] \le \left(1 - \left(1 - \left(\frac{1}{2} - \delta\right)^{\alpha}\right)^{b}\right)^{c}.$$

Together, with the inequalities given by the problem statement, we have

$$\Pr[F_{\pi}(\mathbf{x}) = 0 | E_1] = 1 - \Pr[F_{\pi}(\mathbf{x}) = 1 | E_1] = 1 - \Pr[t(r_1, ..., r_c) = 1 | E_1] > 1 - \frac{1}{2^n}.$$

Next condition on E_2 and let $p = \frac{1}{2} + \delta$. Using a similar argument, we have

$$\Pr[F_{\pi}(\mathbf{x}) = 1 | E_{2}] = \Pr[t(r_{1}, ..., r_{c}) = 1 | E_{2}]$$

$$= (\Pr[r_{i}(d_{i,1}, ..., d_{i,b}) = 1 | E_{2}])^{c}$$

$$= (1 - \Pr[r_{i}(d_{i,1}, ..., d_{i,b}) = 0 | E_{2}])^{c}$$

$$= \left(1 - (1 - \Pr[d_{i,j}(\pi(y_{i,j,1}), ..., \pi(y_{i,j,a})) = 1 | E_{2}])^{b}\right)^{c}$$

$$\geq \left(1 - \left(1 - \left(\frac{1}{2} + \delta\right)^{a}\right)^{b}\right)^{c}$$

$$> 1 - 2^{n}$$

so $\Pr[A] \ge 1 - 2^{-n}$ as required. Taking a union bound over all 2^n inputs, we see that there must exist some projection π for which $F_{\pi}(\mathbf{x})$ is a δ -approximate majority. Return the Π_3 formula obtained by hard-wiring π into F.

2. There are polynomial-sized Π_3 formulas that compute a $\frac{1}{4}$ -approximate majority¹. Solution. Using the previous section, it suffices to take $\delta = 1/4$ and find a, b, c which satisfy Equation (5). From the upper bound we have

$$\left(1 - \left(1 - \left(\frac{1}{4}\right)^a\right)^b\right)^c \le \left(1 - \left(1 - \frac{b}{4^a}\right)\right)^c$$

$$\le \left(\frac{b}{4^a}\right)^c$$

$$< \frac{1}{2^n}$$

and from the lower bound we have

$$\left(1 - \left(1 - \left(\frac{3}{4}\right)^a\right)^b\right)^c \ge \left(1 - \exp\left(-b\left(\frac{3}{4}\right)^a\right)\right)^c$$

$$\ge 1 - c\exp\left(-b\left(\frac{3}{4}\right)^a\right)$$

$$> 1 - \frac{1}{2^n}.$$

Together we require that $c(2a - \log b) > n$ and $b(3/4)^a \log e - \log c > n$. Choose $a = \log n$, $b = 2(4/3)^a \cdot n$, and c = n. Then, since $\log b = 1 + a \log (4/3) + \log n$,

$$c\left(2a - \log b\right) = n\log n\left(1 - \log\left(\frac{4}{3}\right) - \frac{1}{\log n}\right) \ge n$$

for sufficiently large n such that $\log n > 3$ and $1 - \log (4/3) - (\log n)^{-1} > 1/3$. Further

$$b(3/4)^a \log e - \log c = 2n \log e - \log n > n.$$

Thus these values of a, b, and c suffice, resulting in a Π_3 formula of leafsize

$$abc = 2(4/3)^{\log n} n^2 \log n \in O(n^3 \log n)$$

for $\frac{1}{4}$ -approximate majority.

¹For all $d \ge 1$, there exists poly-sized Π_{d+3} formulas that compute a $\frac{1}{(\log n)^d}$ -approximate majority.

Problem 7 (UB AC⁰ Circuit Size). Every n-ary Boolean function f can be computed by an AC⁰ circuit with $O(2^{n/2} \cdot n^c)$ gates for some constant c.

Proof. Suppose f is computed by DNF $F = C_1 \vee \cdots \vee C_k$ where the literals in each clause are arranged in lexicographical order. We will modify F so that every clause has exactly n literals. W.l.o.g suppose some clause $C_i = x_1x_2\cdots x_t$ has fewer than n literals. Then we will remove C_i from F and add 2^{n-t} clauses with every possible combination of the variables x_{t+1}, \ldots, x_n and their negation. For example, with n = 4, if $C_1 = x_1x_2$ then we will remove C_1 and add clauses $D_0 = x_1x_2\bar{x}_3\bar{x}_4$, $D_1 = x_1x_2\bar{x}_3x_4$, $D_2 = x_1x_2x_3\bar{x}_4$, and $D_3 = x_1x_2x_3x_4$. Let $F' = C'_1 \vee \cdots \vee C'_{k'}$. Observe that $F(\mathbf{x}) = F'(\mathbf{x})$ for all inputs $\mathbf{x} \in \{0,1\}^n$.

Intuitively, the circuit divides the variables in-half and, for all settings of the first half which result in a satisfying assignment, checks to see if any of the matching second halves are satisfied.

Formally, we construct the following circuit C from F'. Divide [n] into two sets $A = \{1, ..., n/2\}$ and $B = \{n/2+1, ..., n\}$ of size n/2 (we can assume that n is even). Let $x_i^1 := x_i$ and $x_i^0 := \bar{x}_i$. For $\mathbf{b} \in \{0, 1\}^B$, let

$$\wedge_{\mathbf{b}} = \bigwedge_{j \in \mathbf{b}} x_j^{b_j}.$$

For every $\mathbf{a} \in \{0,1\}^A$ define a \land -gate, $\pi_{\mathbf{a}}$, and a \lor -gate, $\sigma_{\mathbf{a}}$. Let $T_{\mathbf{a}} = \{\mathbf{b} : F'(\mathbf{a}, \mathbf{b}) = 1\}$, then

$$\pi_{\mathbf{a}} = \bigvee_{\mathbf{b} \in T_{\mathbf{a}}} \wedge_{\mathbf{b}} \text{ and } \sigma_{\mathbf{a}} = \left(\bigwedge_{i \in \mathbf{a}} x_i^{a_i}\right) \wedge \pi_{\mathbf{a}}.$$

Let $T = {\mathbf{a} : \exists \mathbf{b} \in B \text{ such that } F(\mathbf{a}, \mathbf{b}) = 1}$. The output of C is $\forall_{\mathbf{a} \in T} \sigma_{\mathbf{a}}$.

Notice that C is a depth four circuit. Further, since there are $2^{n/2} \wedge_{\mathbf{b}}$ gates and two gates $\pi_{\mathbf{a}}$ and $\sigma_{\mathbf{a}}$ for each of the $2^{n/2}$ values of \mathbf{a} , $C(F') \in O(2^{n/2})$ as required.

Problem 8 (MOD_{p^k} for Prime p). The n-variable MOD₄ function is computable by a polynomial-sized constant-depth $AC^0[2]$ circuit.

Solution. Let the input to MOD₄ be $\mathbf{x} \in \{0,1\}^n$ with entries x_i . Let gates $m_i = \text{MOD}_2(x_1,...,x_i)$ for $i \in [n]$ and gates $p_i = m_i \wedge m_{i+1}$ for $j \in [n-1]$. We claim that

$$MOD_4(\mathbf{x}) = \overline{m}_n \wedge MOD_2(m_1, ..., m_n, p_1, ..., p_{n-1}).$$

To see why this is, consider the sequence $(m_1, ..., m_n)$. Divide this sequence into maximal blocks $b_1 \cdots b_k$ consisting of the same bit value. Let k_0 and k_1 be the number of 0 and 1 blocks respectively such that $k_0 + k_1 = k$. For example,

$$(0,1,0,0,1,1,1,1,1,1,0) \implies b_1 = 0, b_2 = 1, b_3 = 00, b_4 = 111111, b_5 = 0$$

 $k_0 = 3$ and $k_1 = 2$. We claim that $\sum_{i=1}^n x_i \equiv 0 \mod 4$ if and only if $k_1 \equiv 0 \mod 2$ and $m_n = 0$. First $\text{MOD}_4(x_1, ..., x_n) = 0 \implies m_n = \text{MOD}_2(x_1, ..., x_n) = 0$. Assuming that $m_n = 0$, consider a maximal block of consecutive ones $m_i m_{i+1} \cdots m_j$ in the sequence. Since the block is maximal, $m_{i-1} = 0$ or i = 1 so there are an even number of ones among $x_1, ..., x_{i-1}$ and $x_i = 1$. Further

 $x_{i+1},...,x_j=0$ since the parity $m_{i+1},...,m_j$ remains unchanged. Finally $m_{j+1}=0$, since the block is maximal, so $x_{j+1}=1$. Thus such a block of consecutive ones and the subsequent zero accounts for a pair of 1s in the input. If there are an even number of pairs of 1s, then $\sum_{i=1}^n x_i \equiv 0 \mod 4$.

It remains to show that $MOD_2(m_1, ..., m_n, p_1, ..., p_{n-1})$ is equivalent to the parity of k_1 — the number of maximal blocks of 1s. Again suppose that $m_i \cdots m_j$ is a maximal block of 1s. Observe that $p_i, p_{i+1} \cdots p_{j-1} = 1$. Thus

$$MOD_2(m_i, ..., m_j, p_i, ..., p_{j-1}) = \underbrace{1 \oplus \cdots \oplus 1}_{2(j-i)+1} = 1.$$

This is the case for all maximal blocks of 1. Note that for all other p_{ℓ} such that $x_{\ell} = 0$ or $x_{\ell+1} = 0$, $p_{\ell} = 0$. Since parity is a commutative operation, by grouping the m_i s and p_i s by maximal blocks of 1s, $MOD_2(m_1, ..., m_n, p_1, ..., p_{n-1})$ is exactly the parity of k_1 .