23. Parabolická všehochuť

Úloha 1. Určete rovnice (ve vrcholovém tvaru) parabol znázorněných níže.

Úloha 2. Pro paraboly z předchozí úlohy určete hodnoty parametru, souřadnice ohniska a rovnici řídící přímky.

Úloha 3. Načrtněte paraboly (včetně řídící přímky a ohniska) o rovnicích (a) $y-3=(x+7)^2$, (b) $x-2y^2-4y-6=0$, (c) $2x+y^2-8y+18=0$ (asi bude nejprve nutné najít souřadnice vrcholu a ohniska a rovnici řídící přímky).

Úloha 4. Vyberte správnou volbu z podtržených: Čím je parametr větší, tím je parabola <u>více</u> / <u>méně</u> "špičatá".

Úloha 5. Nalezněte rovnici paraboly, která

- (a) má ohnisko v [-2;1] a řídící přímku x=0,
- (b) má ohnisko v [0; 1] a vrchol v [0; 5],
- (c) má vrchol v [-4; 3], prochází bodem [-2; 2] a její řídící přímka je rovnoběžná s osou y,
- (d) má vrchol v [1;1], přímka y = 2x + 2 je její tečnou a její řídící přímka je rovnoběžná s osou x,
- \star (e) má ohnisko v [0;0], prochází bodem [3;4] a její řídící přímka je rovnoběžná s osou y.
- \star Úloha 6. Nalezněte poloměr co největší kružnice, která se dotýká paraboly $y=x^2$ pouze v jejím vrcholu a jejíž střed leží na kladné části osy y.

Úloha 7. Na parabole $y = x^2$ nalezněte bod nejblíže k

- (a) přímce y = 2x 2, (Nápověda: Hledejte rovnoběžnou tečnu.)
- ⋆ (b) bodu [9;6]. (Nápověda: Derivujte. Derivací je kubický polynom, jehož jedním kořenem je −1.)

1. (a)
$$-(y-4) = (x+3)^2$$
 (b) $9(x-1) = (y+3)^2$ (c) $-\frac{1}{3}(x+7) = (y+4)^2$ (d) $4(y-5) = (x-3)^2$

2. (a)
$$p = \frac{1}{2}$$
, $F[-3; 3,75]$, $y = 4,25$ (b) $p = \frac{9}{2}$, $F[3,25; -3]$, $x = -1,25$ (c) $p = \frac{1}{6}$, $F\left[-\frac{85}{12}; -4\right]$, $x = -\frac{83}{12}$ (d) $p = 2$, $F[3; 6]$, $y = 4$

3.

4. méně

5. (a)
$$-4(x+1) = (y-1)^2$$
 (b) $-16(y-5) = x^2$ (c) $\frac{1}{2}(x+4) = (y-3)^2$ (d) $-3(y-1) = (x-1)^2$ (e) $4(x+1) = y^2$ a $-16(x-4) = y^2$ (dvě řešení)

6. $\frac{1}{2}$

7. (a) [1;1] (b)
$$\left[\frac{1}{2} + \frac{\sqrt{19}}{2}; 5 + \frac{\sqrt{19}}{2}\right]$$