EE 330 Lecture 42

Digital Circuits

- Propagation Delay With Multiple Levels of Logic
- Optimally driving large capacitive loads
- Logic Effort

Review_from Last Time

Recall:

Device Sizing

Equal Worst Case Rise/Fall | (and equal to that of ref inverter when driving C_{REF})

 V_{DD}

(n-channel devices sized same, p-channel devices sized the same) Assume L_n=L_p=Lmin and driving a load of C_{REF}

$$W_n=?$$

$$W_p=?$$

Input capacitance = ?

t_{PROP}=? (worst case)

$W_n = W_{MIN}$

$$W_p = 6W_{MIN}$$

DERIVATIONS

One degree of freedom was used to satisfy the constraint indicated

Other degree of freedom was used to achieve equal rise and fall times

$$C_{INA} = C_{INB} = C_{OX} W_{MIN} L_{MIN} + 6C_{OX} W_{MIN} L_{MIN} = 7C_{OX} W_{MIN} L_{MIN} = \left(\frac{7}{4}\right) 4C_{OX} W_{MIN} L_{MIN} = \left(\frac{7}{4}\right) C_{REF}$$

$$FI = \left(\frac{7}{4}\right) C_{REF}$$
 or $FI = \frac{7}{4}$

$$t_{PROP} = t_{REF}$$
 (worst case)

Overdrive Factors

Scaling widths of ALL devices by constant (W_{scaled}=WxOD) will change "drive" capability relative to that of the reference inverter but not change relative value of t_{HL} and t_{LH}

$$R_{PD} = \frac{L_{1}}{\mu_{n}C_{OX}W_{1}(V_{DD}-V_{Tn})} = \frac{R_{PD}}{QD}$$

$$R_{PDOD} = \frac{L_{1}}{\mu_{n}C_{OX}[OD \bullet W_{1}](V_{DD}-V_{Tn})} = \frac{R_{PD}}{QD}$$

$$R_{PDOD} = \frac{L_1}{\mu_n C_{OX} [OD \bullet W_1] (V_{DD} - V_{Tn})} = \frac{R_{PD}}{OD}$$

$$R_{PUD} = \frac{L_2}{\mu_p C_{OX} W_2 (V_{DD} + V_{Tp})} = \frac{R_{PU}}{OD}$$

$$R_{PUOD} = \frac{L_2}{\mu_p C_{OX} [OD \bullet W_2] (V_{DD} + V_{Tp})} = \frac{R_{PU}}{OD}$$

Scaling widths of ALL devices by constant will change FI by OD

$$\mathbf{C}_{\mathsf{IN}} \mathbf{=} \mathbf{C}_{\mathsf{OX}} \big(\mathsf{W}_{\mathsf{1}} \mathsf{L}_{\mathsf{1}} \mathbf{+} \mathsf{W}_{\mathsf{2}} \mathsf{L}_{\mathsf{2}} \big)$$

$$C_{\text{INOD}} = C_{\text{OX}} ([O D \bullet W_1] L_1 + [O D \bullet W_2] L_2) = O D \bullet C_{\text{IN}}$$

Propagation Delay with Over-drive Capability

Example

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.

$$t_{PROP} = 900t_{REF}$$

$$\boldsymbol{t_{\text{PROP}}}\!=\!\!\boldsymbol{t_{\text{REF}}}+\boldsymbol{900t_{\text{REF}}}=\boldsymbol{901t_{\text{REF}}}$$

$$t_{\text{PROP}} \hspace{-0.1cm}=\hspace{-0.1cm} 900t_{\text{REF}} + t_{\text{REF}} = \hspace{-0.1cm} 901t_{\text{REF}}$$

$$t_{\text{PROP}} \hspace{-0.1cm}=\hspace{-0.1cm} 30t_{\text{REF}} + 30t_{\text{REF}} = 60t_{\text{REF}}$$

Note: Dramatic reduction in t_{PROP} is possible Will later determine what optimal number of stages and sizing is

F_{lk} denotes the total loading on stage k which is the sum of the F_l of all loading on stage k

Summary: Propagation delay from A to F:

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{l(k+1)}}{\mathbf{OD}_{k}}$$

Asymmetric Overdrive

When propagating through n stages:

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{\mathsf{k=1}}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{\mathsf{1}}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

Review from Last Time

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

Will develop the analysis methods as needed

Review from Last Time

Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

 $t_{PROP} = 32.5t_{REF}$

How does this propagation delay compare to that required for a propagation of a signal through 5-levels of logic with only reference inverters?

$$A \longrightarrow t_{PROP} = 5t_{REI}$$

Loading can have a dramatic effect on propagation delay

Equal rise-fall gates, with overdrive

In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \frac{\mathbf{F}_{\mathbf{I}_{k+1}}}{\mathbf{OD}_{\iota}}$$

Equal rise-fall gates, with overdrive

	Equal Rise/Fall	Equal Rise/Fall (with OD)
$C_{\text{IN}}/C_{\text{REF}}$		
Inverter	1	OD
NOR	$\frac{3k+1}{4}$	3k+1 4 • OD
NAND	$\frac{3+k}{4}$	$\frac{3+k}{4} \bullet OD$
Overdrive		
Inverter HL	1	OD
LH	1	OD
NOR HL	1	OD
LH	1	OD
NAND HL	1	OD
LH	1	OD
t _{PROP} /t _{REF}	$\sum_{k=1}^n \textbf{F}_{\textbf{I}(k+1)}$	$\sum_{k=1}^{n} \frac{\mathbf{F}_{l(k+1)}}{\mathbf{OD}_{k}}$

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \frac{\mathbf{F}_{k+1}}{\mathbf{OD}_{k}}$$

Equal rise-fall gates, with overdrive

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Minimum-sized gates

In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$$

Minimum-sized gates

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$

Observe that a minimum-sized gate is simply a gate with asymmetric overdrive

Recall:

Propagation Delay with Minimum-Sized Gates

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{\mathsf{k=1}}^{\mathsf{n}} \mathbf{F}_{\mathsf{l}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

- Still need OD_{HL} and OD_{LH} for minimum-sized gates
- Still need F_I

Propagation Delay with minimum-sized gates

 $FI=2C_{OX}W_{MIN}L_{MIN}$

 $C_{REF} = 4C_{OX}W_{MIN}L_{MIN}$

$$FI = \frac{C_{REF}}{2}$$

Minimum-sized gates

C _{IN} /C _{REF}	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
	,	0.0	
Inverter	1	OD	
NOR	3k+1 4	$\frac{3k+1}{4} \bullet OD$	
NAND	$\frac{3+k}{4}$	3+k 4 • OD	
Overdrive			
Inverter			
HL	1	OD	
LH	1	OD	
NOR HL	1	OD	
	·		
LH	1	OD	
NAND HL	1	OD	
LH	1	OD	
t_{PROP}/t_{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_k}$	

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$C_{\text{IN}}/C_{\text{REF}}$			
Inverter	1	OD	1/2
NOR	3k+1 4	3k+1 • OD	1/2
NAND	$\frac{3+k}{4}$	3+k 4 • OD	1/2
Overdrive			
Inverter HL	1	OD	1
LH	1	OD	1/3
NOR HL	1	OD	1
LH	1	OD	1/(3k)
NAND HL	1	OD	1/k
LH	1	OD	1/3
t _{PROP} /t _{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_k}$	$\frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$

Asymmetric-sized gates

Asymmetric-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD (OD _{HL} , OD _{LH})
$C_{\text{IN}}/C_{\text{REF}}$				
Inverter	1	OD	1/2	OD _{HL} +3 • OD _{LH} 4
NOR	3k+1 4	3k+1 • OD	1/2	OD _{HL} +3k • OD _{LH}
NAND	3+k 4	3+k 4 • OD	1/2	$\frac{4}{k \bullet OD_{HL} + 3 \bullet OD_{LH}}$
Overdrive				
Inverter HL	1	OD	1	OD_HL
LH	1	OD	1/3	OD_LH
NOR HL	1	OD	1	OD_HL
LH	1	OD	1/(3k)	OD_LH
NAND HL	1	OD	1/k	OD_HL
LH	1	OD	1/3	OD_LH
t_{PROP}/t_{REF}	$\sum_{k=1}^n F_{l(k+1)}$	$\sum_{k=1}^n \frac{F_{l(k+1)}}{OD_k}$	$\boxed{\frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)}$	$\frac{1}{2} \sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$
•	t _{PROP} =t _{RE}	$ \bullet \left(\frac{1}{2} \sum_{k=1}^{5} F_{l(k+1)} \left(\frac{1}{OD_{l}}\right)\right) $		•

Asymmetric-sized gates

Mixture of Minimum-sized gates, equal rise/fall gates and OD

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$$

Driving Notation

Equal rise/fall (no overdrive)

• Equal rise/fall with overdrive

Minimum Sized

M — 1 1/3 —

Asymmetric Overdrive

Mixture of Minimum-sized gates, equal rise/fall gates and OD

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{5} \mathbf{F}_{\mathsf{I}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

Mixture of Minimum-sized gates, equal rise/fall gates and OD

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} Fl_{(k+1)}$$

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(\mathsf{k+1})} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

Example

Assume C_I = 1000C_{RFF}

Example

Assume C_L=1000C_{REF}

 $t_{PROP}=1000t_{REF}$

t_{PROP} is too long!

Example

Assume C_L=1000C_{REF}

$$\mathbf{t_{PROP}} = \mathbf{?}$$

$$\mathbf{t_{PROP}} = \mathbf{t_{REF}} \sum_{k=1}^{2} \frac{\mathbf{F_{I(k+1)}}}{\mathbf{OD_k}}$$

$$\mathbf{t_{PROP}} = \mathbf{t_{REF}} \left(\frac{1}{1} 1000 + \frac{1}{1000} 1000 \right) = \mathbf{t_{REF}} \left(1000 + 1 \right)$$

$$\mathbf{t_{PROP}} = \mathbf{t_{REF}} \left(1001 \right)$$

Delay of second inverter is really small but overall delay is even longer than before!

Example

Assume C_L=1000C_{REF}

$$\mathbf{t_{PROP}} = \mathbf{t_{REF}} \sum_{k=1}^{3} \frac{\mathbf{F_{I(k+1)}}}{\mathbf{OD_k}}$$

$$\mathbf{t_{PROP}} = \mathbf{t_{REF}} \left(\frac{1}{1} 10 + \frac{1}{10} 100 + \frac{1}{100} 1000 \right) = \mathbf{t_{REF}} \left(10 + 10 + 10 \right)$$

$$\mathbf{t_{PROP}} = \mathbf{30t_{REF}}$$

Dramatic reduction is propagation delay (over a factor of 30!)

What is the fastest way to drive a large capacitive load?

Need to determine the number of stages, n, and the OD factors for each stage to minimize t_{PROP} .

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}} \qquad t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{\theta_{k}}{\theta_{k-1}}$$

where
$$\theta_0=1$$
, $\theta_n=C_L/C_{REF}$

This becomes an n-parameter optimization (minimization) problem!

Unknown parameters: $\{\theta_1, \theta_2, ... \theta_{n-1}, n\}$

An n-parameter nonlinear optimization problem is generally difficult !!!!

Order reduction strategy: Assume overdrive of stages increases by the same factor clear until the load

This becomes a 2-parameter optimization (minimization) problem ! Unknown parameters: $\{\theta, \Pi\}$

One constraint : $\theta^{n}C_{REF}=C_{L}$

One degree of freedom

Thus obtain an expression for t_{PROP} in terms of only θ

$$t_{PROP} = t_{REF} \frac{\theta}{\ln(\theta)} \left[\ln \frac{C_L}{C_{REF}} \right]$$

Is suffices to minimize the function

ffices to minimize the function
$$\frac{df}{d\theta} = \frac{\ln(\theta) - \theta \cdot \left(\frac{1}{\theta}\right)}{\left(\ln(\theta)\right)^2} = 0$$

$$\ln(\theta) - 1 = 0 \rightarrow \theta = e$$

$$n = \frac{1}{\ln(\theta)} \ln \left(\frac{C_L}{C_{REF}} \right) \rightarrow n = \ln \left(\frac{C_L}{C_{REF}} \right)$$

$$t_{PROP} = t_{REF} \frac{\theta}{\ln(\theta)} \left[\ln \frac{C_L}{C_{REF}} \right]$$

$$t_{\text{PROP}} = t_{\text{REF}} \frac{\theta}{\ln(\theta)} \left[\ln \frac{C_{\text{L}}}{C_{\text{REF}}} \right] \qquad t_{\text{PROP}} = t_{\text{REF}} e \left[\ln \frac{C_{\text{L}}}{C_{\text{REF}}} \right] = n\theta t_{\text{REF}}$$

- minimum at θ =e but shallow inflection point for 2< θ <3
- practically pick θ =2, θ =2.5, or θ =3
- since optimization may provide non-integer for n, must pick close integer

- Often termed a pad driver
- Often used to drive large internal busses as well
- Generally included in standard cells or in cell library
- Device sizes can become very large
- Odd number of stages will cause signal inversion but usually not a problem

Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter_{tn 0.5u proc t_per=20ps},

In 0.5u proc t_{REF} =20ps C_{REF} =4fF, R_{PDREF} =2.5K

$$n_{OPT} = ln \left(\frac{C_L}{C_{REF}} \right) = ln \left(\frac{10pF}{4fF} \right) = 7.8$$

Select n=8, θ =2.5

$$W_{nk} = 2.5^{k-1} \bullet W_{REF}, \qquad W_{pk} = 3 \bullet 2.5^{k-1} \bullet W_{REF}$$

Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter. In 0.5u proc t_{REF} =20ps,

$$C_{REF}=4fF,R_{PDREF}=2.5K$$
 $W_{nk}=2.5^{k-1} \bullet W_{REF},$ $W_{pk}=3 \bullet 2.5^{k-1} \bullet W_{REF}$ $W_{REF}=W_{MIN}$ $L_n=L_p=L_{MIN}$

k	n-channel		p-channe	l
1	1	VVMIN	3	VVMIN
2	2.5	VVMIN	7.5	VVMIN
3	6.25	VVMIN	18.75	VVMIN
4	15.6	VVMIN	46.9	VVMIN
5	39.1	VVMIN	117.2	VVMIN
6	97.7	VVMIN	293.0	VVMIN
7	244.1	VVMIN	732.4	VVMIN
8	610.4	VVMIN	1831.1	VVMIN

Note devices in last stage are very large!

Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter_{tn 0.5u proc tpee=20ps},

$$C_{REF} = 4fF, R_{PDREF} = 2.5K$$
 $W_{nk} = 2.5^{k-1} \cdot W_{REF}, W_{pk} = 3 \cdot 2.5^{k-1} \cdot W_{REF}$

$$t_{PROP} \cong n\theta t_{REF} = 8.2.5 \cdot t_{REF} = 20t_{REF}$$

More accurately:

$$t_{PROP} = t_{REF} \left(\sum_{k=1}^{7} \theta + \frac{1}{\theta^7} \frac{C_L}{C_{REF}} \right) = t_{REF} \left(17.5 + \frac{1}{610} 2500 \right) = 21.6 t_{REF}$$

Example: Design a pad driver for driving a load capacitance of 10pF, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter_{tn 0.5u proc tpee=20ps},

 $V_{nk} = 2.5^{k-1} \cdot V_{nk} = 3 \cdot 2.5^{k-1}$

If driven directly with the minimum-sized reference inverter

$$t_{PROP} = t_{REF} \frac{C_L}{C_{RFF}} = 2500 t_{REF}$$

Note an improvement in speed by a factor of

$$r = \frac{2500}{20} = 125$$

Pad Driver Size Implications

Consider a 7-stage pad driver and assume $\theta = 3$

Area of Last Stage Larger than that of all previous stages combined!

End of Lecture 42