(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-94520 (P2003-94520A)

(43)公開日 平成15年4月3 :] (2003.4.3)

						(10) 23	NO 11	1 2210 1 17.	0 11 (2000: 4:0)
(51) Int.Cl. ⁷		識別記号		FΙ				;	7-7]-ド(参考)
B 2 9 C	61/06			B 2	9 C	61/06			3 E 0 6 7
B 3 2 B	27/30			В3	2 B	27/30		В	3 E 0 8 6
B65D	65/02			В6	5 D	65/02		E	4 F 0 7 1
	65/28					65/28			4 F 1 0 0
	71/08					71/08		Λ	4 F 2 1 0
		審	全請求	未請求	請才	き項の数13	OL	(全 13 頁)	最終頁に続く
(21)出願番号	클	特願2001-296561(P2001-2965	561)	(71)	出願。	人 000003	296		
						電気化	学工業	株式会社	
(22)出顧日		平成13年9月27日(2001.9.27)			東京都	千代田	区有楽町1丁	目4番1号	
				(72)	発明	者 戸谷	英樹		
						千葉県	市原市	五井南海岸6	電気化学工業
				!		株式会	社千葉	工場内	
				(72)	発明	者 黒川	欽也		
						千葉県	市原市	五井南海岸6	電気化学工業
						株式会	社千葉	工場內	
				(72)	発明	佐藤	英次		
						千葉県	市原市	五井南海岸6	電気化学工業
						株式会	社千葉	工場内	
									最終頁に続く

(54)【発明の名称】 熱収縮性フィルム

(57)【要約】

【課題】 良好な収縮性能と耐自然収縮性を有し、かつミシン目切れ性の良好な熱収縮性(多層)フィルムおよび熱収縮性ラベルを提供する

【解決手段】 ビニル芳香族炭化水素と共役ジエンのブロック共重合体またはそれを主体とするブロック共重合体組成物からなるフィルムを延伸してなるミシン目切れ性の良好な熱収縮フィルム。ブロック共重合体またはそれを主体とするブロック共重合体組成物のモルフォロジーはゴム相とプラスチック相を含み、ラメラまたはブロック共重合体のゴム相がロッドもしくは15 nm以上の粒径の粒子で存在したものであることが好ましい

【特許請求の範囲】

【請求項1】 ビニル芳香族炭化水素と共役ジエンのブロック共重合体またはそれを主体とするブロック共重合体組成物からなるフィルムを延伸してなるミシン目切れ性の良好な熱収縮性フィルム。

【請求項2】 ブロック共重合体またはそれを主体とするブロック共重合体組成物のモルフォロジーがゴム相と プラスチック相を含み、ラメラまたはブロック共重合体 のゴム相がロッドもしくは15 n m以上の粒径の粒子で 存在したものであることを特徴とする請求項1記載の熱 収縮性フィルム。

【請求項3】 ブロック共重合体またはそれを主体とするブロック共重合体組成物が下記の(a)及び、必要に応じて(b)を含有するものであることを特徴とする請求項1または2記載の熱収縮性フィルム

(a) ビニル芳香族炭化水素と共役ジエンの質量比が5 0 50~90・10、ビニル芳香族炭化水素のブロック率が85%以下であるビニル芳香族炭化水素と共役ジェンのブロック共重合体、(b)下記の(i)~(v)から選ばれた少なくとも一種のビニル芳香族炭化水素系重合体。

(i)(a)とは異なるビニル芳香族炭化水素と共役ジエンのブロック共重合体(ii)ビニル芳香族炭化水素重合体

(ii)ビニル芳香族炭化水素と(メタ)アクリル酸からなる共重合体

(iv)ビニル芳香族炭化水素と(メタ)アクリル酸エステルからなる共重合体

(v) ゴム変性スチレン系重合体

(但し、前記(iii)及び(iv)においてビニル芳香族炭化水素とビニル芳香族炭化水素と共重合しているコモノマーの質量比は5~99:95~1である。)

【請求項4】 (a)と(b)の質量比が組成物全体を 100として20~100:0~80であることを特徴 とする請求項3記載の熱収縮性フィルム

【請求項5】 (a)及び(i)がスチレンーブタジエンブロック共重合体であり、(ii)がボリスチレン、(iii)がスチレンーメタクリル酸共重合体、(iv)がスチレンーnーブチルアクリレート共重合体、スチレンーメチルメタクリレート共重合体、及びスチレンーnーブチルアクリレートーメチルメタクリレート共重合体から選ばれた少なくとも1種の重合体、(v)が耐衝撃性ゴム変性スチレン樹脂であることを特徴とする請求項3または4記載の熱収縮性フィルム。

【請求項6】 少なくとも1つの層が請求項1~5のいずれか1項記載のブロック共重合体またはそれを主体とするブロック共重合体組成物で形成されることを特徴とするミシン目切れ性の良好な熱収縮性多層フィルム

【請求項7】 三層以上である場合の少なくとも1つの 外層または二層である場合の他層が下記の(b')から 形成された層であることを特徴とする請求項6記載の熱収縮性多層フィルム。

(b')下記の(i')~(v')から選ばれた少なく とも一種のビニル芳香族炭化水素系重合体、

(i) ビニル芳香族炭化水素と共役ジエンのブロック 共重合体

(i i ') ビニル芳香族炭化水素重合体

(iiii) ビニル芳香族炭化水素と(メタ)アクリル 酸からなる共重合体

(iv)) ビニル芳香族炭化水素と(メタ)アクリル酸 エステルからなる共重合体

(v) ゴム変性スチレン系重合体

(但し、前記(iii))及び(iv))においてヒニル芳香族炭化水素とこのビニル芳香族炭化水素と共重合しているコモノマーの質量比は5~99:95~1である。)

【請求項8】 少なくとも1つの外層または二層である場合の他層がスチレンーブタジエンブロック共重合体、ポリスチレン、スチレンーnーブチルアクリレート共重合体、スチレンーnーブチルアクリレートーメチルメタクリレート共重合体、耐衝撃性ゴム変性スチレン系樹脂、MBS樹脂およびMBAS樹脂から選ばれた少なくとも1種の重合体成分で形成された層であることを特徴とする請求項6記載の熱収縮性多層フィルム

【請求項9】 熱収縮率が70℃10秒間で10%以上であること特徴とする請求項1~8のいずれか1項記載の熱収縮性フィルムまたは熱収縮性多層フィルム。

【請求項10】 自然収縮率が40℃7日間で2.5% 以下であること特徴とする請求項1~9のいずれか1項 記載の熱収縮性フィルムまたは熱収縮性多層フィルム

【請求項11】 請求項1~10のいずれか1項記載の 熱収縮性フィルムまたは熱収縮性多層フィルムからなる ことを特徴とする熱収縮性ラベル。

【請求項12】 請求項1~10のいずれか1項記載の 熱収縮性フィルムまたは熱収縮性多層フィルムからなる ことを特徴とするミシン目入り熱収縮性ラベル。

【請求項13】 請求項11または12記載の熱収縮性 ラベルで被覆された容器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、良好な熱収縮性、耐自然収縮性を有し、かつミシン目切れ性の良好な熱収縮性(多層)フィルムおよび熱収縮性ラベルに関する 【0002】

【従来の技術】従来、容器の収縮包装や収縮ラベルとして用いられる熱収縮性フィルムには、熱収縮性や収縮後の仕上がりがよく、廃棄の際にもボリ塩化ビニルのような環境汚染問題のない点から、スチレンーブタシエン系ブロック共重合体を成形したフィルムが用いられている。また、リビングアニオン重合により、有機溶媒中で

アルキルリチウムを開始剤としてビニル芳香族炭化水素 と共役シエンをブロック共重合させると、ビニル芳香族 炭化水素と共役ジェンの質量比あるいは添加方法を変え るなどの方法によって共重合体の構造を多様化でき、種 々の物性を有するブロック共重合体が得られることが知 られており、以下のようにこれらを用いた熱収縮性フィ ルムが知られている。例えば、特開昭59-49938 号公報には、スチレンーブタシエンブロック共重合体と 他のスチレンーブタジエン共重合体、ポリスチレン系重 合体、ゴム変性スチレン系重合体からなる特定のポリス チレン組成物をインフレーション法で、かつ単一操作で 分子配向を促進させることにより、高抗張力耐衝撃性、 伸度を有し透明で高光沢の包装材料として好適な熱収縮 性フィルムが得られることが記載されている。また、特 開平7-144365号公報には、全重合体中のブタジ エンブロックが4~35%であるスチレンーブタジエン ブロック共重合体、またはこれとポリスチレン系重合体 との混合物を、特定の条件で延伸した2軸延伸フィルム であり0℃における縦方向の引張破断伸度10%以上で ある、耐破断性、収縮特性及び剛性に優れたスチレン系 収縮フィルムが記載されている。しかしながら、従来用 いられているスチレン系の熱収縮性ラベルでは、良好な 熱収縮性能と耐自然収縮性を有するものの、使用後のラ ベルを剥がす際のミシン目切れ性については満足出来る レベルにはなくその改善が望まれていた。

[0003]

【発明が解決しようとする課題】本発明は、上記のような状況を踏まえ、良好な収縮性能と耐自然収縮性を有し、かつミシン目切れ性の良好な熱収縮性(多層)フィルムおよび熱収縮性ラベルを提供することを目的とする

[0004]

【課題を解決するための手段】本発明者らは、上記の課 題を解決すべく鋭意研究を重ねた結果、ビニル芳香族炭 化水素と共役ジエンのブロック共重合体を主体とする熱 可塑性樹脂またはその組成物からなるフィルムを延伸し てなる、良好な収縮性能と耐自然収縮性を有し、かつミ シン目切れ性の良好な熱収縮性(多層)フィルムおよび 熱収縮性ラベルを見出し、本発明を完成するに至った。 【〇〇〇5】すなわち本発明は、ビニル芳香族炭化水素 と共役シエンのブロック共重合体を主体とする熱可塑性 樹脂またはその組成物からなるフィルムを延伸してなる ミシン目切れ性の良好な熱収縮(多層)フィルムおよび 熱収縮性ラベルである。また、本発明はブロック共重合 体のモルフォロジーがゴム相とプラスチック相からな り、ラメラまたはブロック共重合体のゴム相がロッドも しくは15 nm以上の粒径の粒子で存在したものである 上記の熱収縮(多層)フィルムおよび熱収縮性ラベルで ある 本発明のブロック共重合体またはそれを主体とす るブロック共重合体組成物は、下記の(a)及び、必要 に応じて(b)を含有するブロック共重合体組成物を延伸してなる熱収縮(多層)フィルムおよび熱収縮性ラベルであることが好ましい

(a) ビニル芳香族炭化水素と共役シエンの質量比が5 0 50~90 10、ビニル芳香族炭化水素のブロック率が85%以下であるビニル芳香族炭化水素と共役ジエンのブロック共重合体、(b)下記の(i)~(v)から選ばれた少なくとも一種のビニル芳香族炭化水素系重合体。

(i)(a)とは異なるビニル芳香族炭化水素と共役ジエンのブロック共重合体(ii)ビニル芳香族炭化水素重合体

(iii) ビニル芳香族炭化水素と(メタ) アクリル酸 からなる共重合体

(iv)ビニル芳香族炭化水素と(メタ)アクリル酸エステルからなる共重合体(v)ゴム変性スチレン系重合体

(但し、前記(iii)及び(iv)においてビニル芳香族炭化水素とこのビニル芳香族炭化水素と共重合しているコモノマーの質量比は5~99:95~1である。)また、本発明は少なくとも一つの層が上記のブロック共重合体組成物で形成されている熱収縮性多層フィルムおよび熱収縮性ラベルである。

【0006】以下に本発明を詳細に説明する。本発明の熱収縮性フィルム、熱収縮性ラベルおよび多層である場合の本発明のブロック共重合体またはそれを主体とするブロック共重合体組成物のモルフォロジーは超薄切片法による透過型電子顕微鏡写真で観察することができる。本発明のブロック共重合体またはそれを主体とするブロック共重合体組成物のモルフォロジーがゴム相とプラスチック相からなり、ラメラまたはブロック共重合体のゴム相がロッドもしくは15nm以上、好ましくは20nm以上200nm以上の粒径の粒子で存在したものであることが好ましく、更に好ましくは20nm以上100nm以下である。なお、透過型電子顕微鏡写真で観察する際の試料としてはブロック共重合体またはそれを主体とするブロック共重合体組成物のペレットを押出方向に切削したものを使用することができる

【0007】本発明で使用される(a)ビニル芳香族炭化水素と共役ジエンのブロック共重合体に用いられるビニル芳香族炭化水素としては、スチレン、ローメチルスチレン、ローメチルスチレン、ローナーブチルスチレン、2、4ージメチルスチレン、2、5ージメチルスチレン、ベーメチルスチレン、ビニルナフタレン、ビニルアントラセン等を挙げることができるが、特に一般的にはスチレンが挙げられる。

【0008】本発明で使用される(a)のブロック共重合体の製造に用いられる共役ジエンとしては、1、3-ブタジエン、2-メチル-1、3-ブタジエン(イソプレン)、2、3-ジメチル-1、3-ブタジエン、1、

3-ペンタジエン、1.3-ヘキサジエン等が挙げられるが、特に一般的なものとしては、1.3-ブタジエン、イソプレンが挙げられる。

【0009】前記のビニル芳香族炭化水素と共役シエンの質量比は、50~50~90~10であり、好ましくは70~30~85~15である。ビニル芳香族炭化水素の質量比が50質量%未満ではフィルムの剛性が、90質量%を超えるとフィルム製造時の延伸温度が高くなり、またフィルムの熱収縮性が劣るので実用に供せない。

【0010】本発明で用いるブロツク共重合体の構造および各ブロック部分の構造は、特に限定されない。ブロック共重合体の構造としては、ビニル芳香族炭化水素を主体とする重合体ブロック、共役ジエンを主体とする重合体ブロックからなる例えば直線型、星型等のブロック共重合体がある。また、ビニル芳香族炭化水素を主体とする重合体ブロック中に共重合されているビニル芳香族炭化水素は重合体ブロック中に均一に分布していても、テーバー(漸減)状に分布していてもよい。

【0011】(a)のブロック共重合体のビニル芳香族 炭化水素のブロック率は85%以下であり、特に好まし くは25~85%である。ブロック率が25%未満であ るとフィルムの剛性が低下し、85%を超えると熱収縮 性が低下するきらいがある。なお、ビニル芳香族炭化水 素のブロック率は次式により求めたものである。即ち、 ブロック率 (%) = (W1/W0) ×100である。こ こでW1は共重合体中のビニル芳香族炭化水素のブロッ ク重合鎖の質量、WOはブロック共重合体中のビニル芳 香族炭化水素の全質量を示す。また、前記式中のW 1 は、ブロック共重合体を公知文献「ラバーケミストリー アンド テクノロジー (Y. TANAKA, et. a 1. RUBBERCHEMISTRYAND TEC HNOLOGY)」58、16頁(1985)に記載の 方法でオゾン分解し、得られたビニル芳香族炭化水素重 合体成分をゲルパーミエーションクロマトグラフ(以下 GPCと略す)測定して、クロマトグラムに対応する分 子量を、標準ポリスチレン及びスチレンオリゴマーを用 いて作成した検量線から求め、数平均分子量3、000 を超えるものをピーク面積より定量して求めた。検出器 として波長を254 nmに設定した紫外分光検出器を使 用した。

【0012】本発明で使用される(a)のブロック共重合体の数平均分子量は40.000~500.000が好ましく、特に好ましくは80.000~300.000である。40.000未満ではブロック共重合体組成物の十分な剛性と耐衝撃性が得られず、また、500.00を越えると加工性が低下してしまうため好ましくない。なお、本発明におけるブロック共重合体の数平均分子量は、ゲルバーミエーションクロマトグラフ(以下

GPCと略す)を用いて常法に従って求めた

【0013】次に、本発明の(a)のブロック共重合体の製造について説明する。(a)のブロック共重合体は、有機溶媒中、有機リチウム化合物を開始剤としてビニル芳香族炭化水素及び共役ジエンのモノマーを重合することにより製造できる。有機溶媒としてはブタン、ペンタン、ヘキサン、イソベンタン、ヘブタン、オクタン、イソオクタン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、エチルシクロヘキサン、エチルシクロヘキサン、エチルジンドルエン、エチルベンゼン、キシレン等の芳香族炭化水素などが使用できる

【0014】有機リチウム化合物は、分子中に1個以上のリチウム原子が結合した化合物であり、例えばエチルリチウム、nープロピルリチウム、イソプロピルリチウム、nーブチルリチウム、secーブチルリチウム、tertーブチルリチウムのような単官能有機リチウム化合物、ヘキサメチレンシリチウム、ブタジエニルジリチウム、イソプレニルシリチウムのような多官能有機リチウム化合物等が使用できる

【0015】本発明に用いられるビニル芳香族炭化水素及び共役ジエンは、前記したものを使用することができ、それぞれ1種又は2種以上を選んで重合に用いることができる。そして、前記の有機リチウム化合物を開始剤とするリビングアニオン重合では、重合反応に供したビニル芳香族炭化水素及び共役ジエンはほぼ全量が重合体に転化する。

【0016】本発明において(a)のブロック共重合体の分子量は、モノマーの全添加量に対する開始剤の添加量により制御できる。また、(a)のブロック共重合体のオゾン分解後のビニル芳香族炭化水素ブロックの分子量は、開始剤と単量体の比、及びビニル芳香族炭化水素と共役ジエンの比により制御できる。

【0017】(a)のブロック共重合体のビニル芳香族 炭化水素のブロック率は、ビニル芳香族炭化水素と共役 ジエンを共重合させる際のランダム化剤の添加量により 制御できる。ランダム化剤としては主としてテトラヒド ロフラン(THF)が用いられるが、その他のエーテル 類やアミン類、チオエーテル類、ホスホルアミド、アル キルベンゼンスルホン酸塩、カリウム又はナトリウムの アルコキシド等も使用できる

【0018】ランダム化剤の適当なエーテル類としては THFの他にジメチルエーテル、ジエチルエーテル、シフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等が挙げられる。アミン類としては第三級アミン、例えば、トリメチルアミン、トリエチルアミン、テトラメチルエチレンジアミンの他、環状アミン等も使用できる。その他にトリフェニルホスフィン、ヘキサメチルホスホルアミド、アルキルベンゼンスルホン酸カリウムスはナトリウ ム、カリウム又はナトリウムブトキシド等もランダム化 剤として用いることができる。

【0019】ランダム化剤の添加量としては、全仕込モノマー100質量部に対し、0.001~10質量部が好ましい。添加時期は重合反応の開始前でも良いし、共重合鎖の重合前でも良い。また必要に応じ追加添加することもできる。

【0020】その他、機械的にビニル芳香族炭化水素と 共役シエンを重合缶に連続フィードするか、ビニル芳香 族炭化水素と共役シエンを重合缶に交互に少量ずつ分添 することによってもブロック率は制御できる

【0021】このようにして得られたブロック共重合体は、水、アルコール、二酸化炭素などの重合停止剤を、活性末端を不活性化させるのに充分な量を添加することにより、不活性化される。得られたブロック共重合体溶液より共重合体を回収する方法としては、メタノール等の貧溶媒により析出させる方法、加熱ロール等により溶媒を蒸発させて析出させる方法(ドラムドライヤー

法)、濃縮器により溶液を濃縮した後にベント式押出機 で溶媒を除去する方法、溶液を水に分散させ、水蒸気を 吹き込んで溶媒を加熱除去して共重合体を回収する方法 (スチームストリッピング法)等、任意の方法が採用で きる

【0022】本発明で使用する(b)の重合体は、下記の(i)~(v)から選ばれた少なくとも一種のビニル芳香族炭化水素系重合体である。

(i)(a)とは異なるビニル芳香族炭化水素と共役ジエンのブロック共重合体

(ii) ビニル芳香族炭化水素重合体

(iii)ビニル芳香族炭化水素と(メタ)アクリル酸からなる共重合体

(iv) ビニル芳香族炭化水素と (メタ) アクリル酸エステルからなる共重合体

(v) ゴム変性スチレン系重合体

(但し、前記(i i i) 及び(i v)においてビニル芳香族炭化水素とこのビニル芳香族炭化水素と共重合しているコモノマーの質量比は5~99:95~1である)

【0023】(i)の(a)とは異なるビニル芳香族炭化水素と共役ジエンのブロック共重合体としては、上記に示した(a)のビニル芳香族炭化水素と共役ジエンのブロック共重合体以外の任意のビニル芳香族炭化水素ー共役ジエンブロック共重合体が用いられる

【0024】(ii)のビニル芳香族炭化水素重合体としては、前記のビニル芳香族炭化水素の単独重合体または2種以上の共重合体が用いられる。特に一般的なものとしてボリスチレンが挙げられる。

【0025】(iii)のビニル芳香族炭化水素と(メタ)アクリル酸からなる共重合体は、前記のビニル芳香族炭化水素と(メタ)アクリル酸を重合することによっ

て得られるが、重合には各モノマーをそれぞれ1種または2種以上選んで用いることができる。(メタ)アクリル酸としては、アクリル酸、メタクリル酸が挙げられる

【0026】(iv)のビニル芳香族炭化水素と(x9)アクリル酸エステルからなる共重合体は、前記のビニル芳香族炭化水素と(x9)アクリル酸エステルを重合することにより得られるが、重合には各モノマーをそれぞれ1種または2種以上選んで用いることができる【0027】(x9)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ーローブチル(またはx1)のは、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸(x2)のは、x3)のはは、x4)のは、x4)のは、x5)のは、x5)のは、x6)のは、x7)のは

【0028】前記(iii) または(iv)の共重合体は、ビニル芳香族炭化水素と(メタ) アクリル酸またはビニル芳香族炭化水素と(メタ) アクリル酸エステルの質量比が5~99:95~1、好ましくは40~99:60~1、さらに好ましくは70~99:30~1であるモノマー混合物を重合して得られる。

【0029】(v)のゴム変性スチレン系重合体は、ビニル芳香族炭化水素もしくはこれと共重合可能なモノマーと各種エラストマーとの混合物を重合することによって得られる。ビニル芳香族炭化水素としては、前記(a)のブロック共重合体の製造で説明したものが用いられ、これと共重合可能なモノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸エステル等が用いられる。また、エラストマーとしては、ブタジエンゴム、スチレンーブタジエンゴム、スチレンーブタジエンゴム、スチレンーブタジエンゴムなどが用いられる。特に好ましいゴム変性スチレン系重合体としては、耐衝撃性ゴム変性スチレン樹脂(HIP

S)が挙げられる

【0030】なお、MBS樹脂、MBAS樹脂は、まずポリプタジエン又はブタジエンを主成分とするスチレンとの共重合体ゴムラテックスを公知の乳化重合法で製造する。この際に、架橋剤や連鎖移動剤を使用してもよい。次に、MBS樹脂は、このゴムラテックスにスチレン、メチルメタクリレート及び「又はアルキルアクリレート、アクリロニトリル及び「又はアルキルアクリレート、アクリロニトリル及び「又はアルキルアクリレートを添加し、グラフト重合を行うことによって得られるMBS樹脂、MBAS樹脂に使用されるアルキルアクリレートは、前記の(iii)ビニル芳香族炭化水素と(メタ)アクリル酸エステルからなる共重合体で述べたアルキルアクリレートが挙げられる。

【0031】本発明において、(a)のブロック共重合

体と(b)(i)~(v)の重合体の質量比は組成物全体を100として20~100:0~80が好ましく、更に好ましくは40~100:0~60であり、特に好ましくは50~100:0~50である (a)のブロック共重合体が20質量部未満であると熱収縮性フィルムの収縮性が不足する

【0032】本発明のブロック共重合体またはそれを主 体とするブロック共重合体組成物のモルフォロジーを、 ゴム相とプラスチック相を含み、ラメラまたはブロック 共重合体のゴム相がロッドもしくは15 nm以上の粒径 の粒子で存在したものとするためには、ブロック共重合 体またはそれを主体とするブロック共重合体組成物中の ゴム相とプラスチック相の体積比をそれぞれの場合のゴ ム相とプラスチック相の相溶性に応じて適性な範囲に制 御してやればよい 例えば、本発明のブロック共重合体 がいわゆるクリアカットのビニル芳香族炭化水素と共役 シエンのブロック共重合体である場合にはビニル芳香族 炭化水素ブロックと共役ジエンブロックの体積比を、い わゆる共重合部を有するビニル芳香族炭化水素と共役ジ エンのブロック共重合体である場合には、共重合部がゴ ム相に包含されるかプラスチック相に包含されるかに応 じてゴム相とプラスチック相の体積比を、また、ビニル 芳香族炭化水素と共役ジエンのブロック共重合体にボリ スチレンを混合した組成物である場合にはビニル芳香族 炭化水素ブロックとポリスチレンとの合計と共役ジエン ブロックとの体積比を考慮して共重合体組成や組成物の 組成を適宜選択すればよい。更に具体的な例を挙げれ ば、本明細書の実施例1に示すような構成のブロック共 重合体(組成物)を用いることができる。

【0033】本発明のブロック共重合体組成物には、必要に応じて種々の添加剤を配合することができる 添加剤としては、各種安定剤、加工助剤、耐光性向上剤、軟化剤、可塑剤、帯電防止剤、防嚢剤、鉱油、フィラー、顔料、難燃剤、滑剤等が挙げられる

【0034】上記の安定剤としては、2-tertーブチルー6ー(3-tertーブチルー2ーヒドロキシー5ーメチルベンジル)ー4ーメチルフェニルアクリレート、2ー[1 (2ーヒドロキシー3.5ージーtertーペンチルフェニル)エチル]ー4.6ージーtertーペンチルフェニルアクリレート、2.6ージーtertーズチルフェニルアクリレート、2.6ージーtertーブチルー4ーメチルフェノール等のフェノール系酸化防止剤、トリスノニルフェニルフォスファイト等の燐系酸化防止剤等が挙げられる、加工助剤、耐光性向上剤、軟化剤、可塑剤、帯電防止剤、防曇剤、鉱油、フィラー、顔料、難燃剤等は、一般的な公知のものが挙げられる。また、滑剤としては、メチルフェニルポリシロキサン、脂肪酸、脂肪酸グリセリンエステル、脂肪酸アマイド、炭化水素系ワックス等が挙げられる

【0035】本発明のブロック共重合体組成物は、

(a)と(b)を混合することによって得られるが、そ

の混合方法は特に規定はないが、例えばヘンシェルミキサー、リボンブレンダー、Vブレンダー等でドライブレンドしてもよく、更に押出機で溶融化してペレット化してもよい。あるいは、各重合体の製造時、重合開始前、重合反応途中、重合体の後処理等の段階で、添加してもよい。必要に応じて添加剤を配合する場合は、例えば前記(a)と(b)にこれら添加剤を更に所定の割合で配合し、前記と同様の混合方法によることができる

【0036】本発明の熱収縮性フィルムは、上記の組成物を用い、公知の方法、たとえばTダイ法、チューブラ法で押し出したシート、フィルムを一軸、二軸あるいは多軸に延伸することによって得られる

【0037】本発明の熱収縮性フィルムは、少なくとも一つの層が上記の(a)と(b)からなるブロック共重合体組成物組成物で形成されていることが必要であるが、本発明の熱収縮性フィルムが熱収縮性多層フィルムである場合には、最外層の少なくとも一層が上記のブロック共重合体またはそれを主体とするブロック共重合体組成物であり、少なくとも1つの外層または二層であるの場合の他層が下記の(b')から形成された層であることが好ましい。

(b)) 下記の(i)) ~ (v)) から選ばれた少なくとも一種のビニル芳香族炭化水素系重合体、

(i) ビニル芳香族炭化水素と共役ジエンのブロック 共重合体

(i i `) ビニル芳香族炭化水素重合体

(i i i ') ビニル芳香族炭化水素と (メタ) アクリル酸からなる共重合体

(iv') ビニル芳香族炭化水素と(メタ) アクリル酸 エステルからなる共重合体

(v')ゴム変性スチレン系重合体

(但し、前記(iii))及び(iv)) においてビニル 芳香族炭化水素とこのビニル芳香族炭化水素と共重合しているコモノマーの質量比は5~99:95~1である。)

なお、(b')の(i')は(a)と同じものでもよく(b)の(i)と同様のものでもよい。また、(b')の(ii')~(v')の重合体は(b)の(ii)~(v)の重合体と同様のものが用いられる。また、

(b) の重合体は上記の(b) の重合体と同一でも異なっていてもよい。内層または二層である場合の他層は、スチレンーブタジエンブロック共重合体、ポリスチレン、スチレンーnーブチルアクリレート共重合体、スチレンーnーブチルアクリレートーメチルメタクリレート共重合体、耐衝撃性ゴム変性スチレン系樹脂(HIPS)、MBS樹脂、MBAS樹脂から選ばれた少なくとも1種の重合体成分で形成された層であることが更に好ましい。

【0038】本発明の熱収縮性多層フィルムは、表裏層

ル酸からなる共重合体、(iv)ビニル芳香族炭化水素と(メタ)アクリル酸エステルからなる共重合体、

【0048】 【表2】

(v)ゴム変性スチレン系重合体を用いた。

東合体	重合体構造	単量体単位の割合(質量	1%)
рl	ボリスチレン	スチレン 1	0.0
ال ما	HIDC	ブタジエン	7
b2	HIPS	スチレン	9 3
	スチレン‐メタクリル酸	メタクリル酸	10
b 3	共重合体	スチレン	90
	スチレンーn-ブチルアクリレート	n-プチルアクリレート	20
h 4	共重合体	ステレン	8.0
b 5	スチレンーメチルメタクリレート	メチルメタクリレート	2 2
00	共重合体	スチレン	7 8
	スチレンーn-ブチルアクリレート-	n-ブチルアクリレート	1.4
b 6		メチルメタクリレート	7
	メチルメタクリレート共革合体	スチレン	7 9

【0049】成分(d):表3に示す通りのビニル芳香族炭化水素系重合体を用いた。

【0050】 【表3】

重合体	重合体構造	単量体単位の割合 (質量%)
1.7	スチレンーブタジエン	ブタジエン 22
d 1	ブロック共重合体	スチレン 78
d 2	ポリスチレン	スチレン 100
d 3	スチレン‐n‐ブチルアクリレート	n-ブチルアクリレート 17
ાડ	共重合体	スチレン 83
		メチルメタクリレート 21
cl 4	MBS	ブタジエン 4.5
		n-ブチルアクリレート 2
		スチレン 3.2
d 5	11.100	ブタジエン 7
	HIPS	スチレン 93

【0051】(ロ)フィルムの製造

表1に示した(a)ビニル芳香族炭化水素-共役ジエンブロック共重合体、表2に示した(b)ビニル芳香族炭化水素系重合体、並びに表3に示した(d)ビニル芳香族炭化水素系重合体を用いて、表5に示した各層の原料重合体の配合量(質量部)、層比(%)で熱収縮性多層フィルムを作成した。フィルムは、まず各層に対応する重合体又は重合体組成物を別々の押出機で溶融し、Tダイ内で多層化し、厚さ0.3mmのシートを成形したその後、東洋精機製作所製の二軸延伸装置を用い表5に示した延伸温度で5倍に横一軸延伸することによって延伸フィルム作成した

【0052】表5に各層の原料重合体の配合量(質量部)、層比(%)とともに物性を示した

【0053】なお、ブロック共重合体(組成物)及びフィルムの各物性は下記の方法によった

(1)ブロック共重合体(組成物)中のゴム粒子の粒径の測定方法

ペレットを押出方向と垂直方向にミクロトームでトリミング、オスミウム酸で染色、水洗、乾燥した後、厚き20 μ mに薄片化、透過型電子顕微鏡で観察した(黒色がゴム相) なおオスミウム酸染色は、4%-4酸化オスミウム水溶液に400℃48時間浸漬することにより行った。

(2)ガラス転移温度(Tg)

重合体組成物のガラス転移温度(Tg)は、損失弾性率を以下の手順に従い動的粘弾性法により測定し そのビーク値から求めた

用、中間層用に上記の樹脂を各々押出機で溶融し、それをダイ内又はフィードブロック等で多層化後、一軸、二軸あるいは多軸に延伸することによって得られる。熱収縮性フィルム及び熱収縮性多層フィルムで用いられるダイは、Tダイ 環状ダイ等公知のものが使用できる。一軸延伸の例としては、押し出されたシートをテンターで押し出し方向と直交する方向に延伸する方法、押し出きれたチューブ状フィルムを円周方向に延伸した後、テンターとされたチューブ状フィルムを押し出し方向と延伸した後、テンターとは、押し出し方向と直交する方向に延伸した後、テンターとは、アンターをは、アンターとは、アンタ

【0039】本発明において、延伸温度は60~120 でが好ましい 60℃では延伸時にフィルムが破断して しまい、また、120℃を越える場合は良好な収縮特性 が得られないため好ましくない。特に好ましいのは、フ ィルムを構成する組成物のガラス転移温度(Tg)に対 して、Tg+5℃~Tg+20℃の範囲である。多層フ ィルムの場合は、Tgが最も低い層の重合体組成物のT gに対して、Tg+5℃~Tg+20℃の範囲が特に好 ましい 延伸倍率は、特に制限はないが、1.5~8倍 が好ましい 1.5倍未満では熱収縮性が不足してしま い、また、8倍を越える場合は延伸が難しいため好まし くない これらのフィルムを熱収縮性ラベルや包装材料 として使用する場合、熱収縮率は70℃10秒間で10 "。以上であることが好ましい。 熱収縮率が10%未満で は収縮時に高温が必要となるため、被覆される物品に悪 影響を与えてしまう怖れがある。好ましい熱収縮率は同 温度で15%以上である。また、自然収縮率が40℃7 日間で2.5%以下であることが好ましい。また、フィ ルムの厚さは10~300μmが好適である

【0040】本発明の熱収縮性フィルム及び熱収縮性多層フィルムの用途としては、熱収縮性ラベル、熱収縮性キャップシール等が特に好適であるが、その他、包装フィルム等にも適宜利用することができる。熱収縮性ラベルは、公知の方法により作製することができ、例えば延

伸フィルムを延伸した方向を円周方向にして、溶剤シールすることにより作製することができる。

【0041】本発明のミシン目とはミシン目線状の連続 した小孔群であり、熱収縮性ラベルを例に示せば、多数 の切り込みが熱収縮ラベルの収縮率の高い方向と直交す る方向及び、または平行する方向に刻設されたミシン目 であり、熱収縮ラベルで被覆された容器から使用後にラ ベルを分離する際にその脱離を容易にするために設けら れるミシン目線状の連続した小孔群である。また、本発 明においてミシン目切れ性が良好であるとは、ミシン目 の刻設された熱収縮性フィルムまたは熱収縮性ラベルを ミシン目に沿って引き裂き(本願実施例のミシン目切れ 性の評価方法を参照)、切れ目がミシン目から外れない ことをいう。本発明の熱収縮性フィルムまたは熱収縮性 多層フィルムが熱収縮性ラベルとして用いられる場合の 容器は、特に限定されないがボリエチレンテレフタレー ト(PETと略称される)製の容器、ガラス製の容器、 またはアルミニウム製の容器等が好ましく用いられる [0042]

【実施例】次に実施例をもって本発明を更に説明するが、本発明はこれらの例に限定されるものではない。 【0043】実施例1~4及び比較例1

表1に示した(a)のビニル芳香族炭化水素 - 共役ジエンブロック共重合体、表2に示した(b)のビニル芳香族炭化水素系重合体をそれぞれ表4の配合処方に従ってヘンシェルミキサーで混合後、押出機で溶融しペレット化することによってブロック共重合体組成物を製造した。なお、フィルムは、まず温度210℃で厚さ0.3mmのシートを押出成形し、その後、東洋精機製作所製の二軸延伸装置を用い表4に示した延伸温度で5倍に横一軸延伸することによって延伸フィルム作成した。

【0044】表4に各成分の配合量(質量部)とともに 物性を示した。

【0045】実施例5~9及び比較例2

(イ)熱収縮性多層フィルムに用いた成分

成分(a):表1に示すとおりのビニル芳香族炭化水素 ー共役シエンブロック共重合体を用いた

[0046]

【表1】

重合体	単最体単位の	割合	ブロック率	数平均分子量	透過型電子	
	(質量%)		(質量%)		顕微鏡観察	
	ブタジエン 16 84		164.000	闰江		
a 1	スチレン	8 4	0 4	104, 000	.,.	
	ブタジエン	1 7	7.8	185,000	KN 2	
a 2	スチレン	8 3		100, 000	P.A. 17	
. 2	ブタジエン	1 2	6 1	178.000	 M <u>e</u> 3	
a 3	スチレン 88		01	1.73.000	1210	

【0047】成分(b):表2に示すとおりの(i) (a)とは異なるビニル芳香族炭化水素と共役ジエンの ブロック共重合体、(ii)ビニル芳香族炭化水素重合体、(iii)ビニル芳香族炭化水素と(メタ)アクリ

(i) 各重合体ペレットを200~250℃の条件で加 熱プレスし、厚さ0.1~0.5mmのシートを作製し

(ii) このシートから適当な大きさの試験片を切り出 し 23で 50%RH室内に24時間以上保管した 後、下記装置のを用いて該試験片である重合体に固有な 損失弾性率を温度を変化させながら測定した。

装置①:レオメトリクス社製 固体粘弾性測定装置 R SA2(設定温度範囲:室温~130℃、設定昇温速 度: 4°C 分、測定周波数: 1 Hz)

(3)熱収縮率:70℃の温水中に10秒間浸漬し、次 式より算出した。

熱収縮率(%) = {(L1-L2)/L1}×100、 但し L1:浸漬前の長さ(延伸方向)、L2:70℃ の温水中に10秒間浸漬した収縮後の長さ(延伸方向)

(4)自然収縮率:フィルムの自然収縮率は以下の方法 で測定した。

①熱収縮率を測定した延伸フィルムと同じ条件で作製し た延伸フィルムからMD方向が約75mm、TD方向が 約400mmの試験片を切り出した。

②この試験片のTD方向に300.0mm間隔の標線を 付けた。

③延伸フィルムを40℃の環境試験機内で保管した ●7日の保管後フィルムを取り出し、標線間の距離し (mm)をノギスを用いて O. 1 mm単位まで測定し

⑤下記の式1により自然収縮率を算出した [0054]

自然収縮率 (%) =
$$\frac{(300.0-L)}{300.0} \times 100$$
 (式1)

【0055】(5)ミシン目切れ性

得られたフィルムに、カット〇.7mm、ブリッジ1. 4 mmで収縮率の高い方向と直交する方向にミシン目を 入れた後、そのフィルムを台上に置き、ミシン目の片側 を手で押さえて、反対側を指で掴んで、台と平行に引き 裂いた時の状態を下記の基準で評価した。

- : ミシン目に沿って切れる

△: 途中でミシン目からずれる

>: ミシン目通りに切れない

【0056】表4、表5に示した結果より、本発明の熱 収縮性フィルムは、ミシン目切れ性に優れることがわか

[0057]

【表4】

		比較例			
	1	2.	3	4	1
	a1 60	a 2 1 0 0	a 2 8 0	a2; 75	a 3 1 0 0
配合量(質量部)	b 2 1	b2 1	b1 10	b3 5	b 2 1
	b4: 40		b5; 10	b6: 20	
Tg (℃)	8.0	7.0	7 6	7 3	6 7
延伸温度(℃)	9.0	8 1	8 8	8 3	8 1
熱収縮率(%)	1 6	2.5	1 8	2 2	2 6
自然収縮率(%)	1.9	1. 2	1.6	1. 2	0.8
ミシン目切れ性		0	0	0	×

[0058]

【表5】

							実	施例					比	較例
			5			6		7		8		9		2
表層および	配合量	d 1	1 C	0	d l	8.0	d 1	7.0	a 2	100	a 1	6.0	d 1	100
襄曆		d 5		1	d 2	20	d 3	2 0	b 1	1	Ъ4	4 0	d 5	í
			!				d 4	10			1	:		
		a 2	1 0	0	a 1	5 5	a 2	6.5	d I	8.0	d 1	85	a 3	100
中間層	配合量				b 4	4.5	b 5	: 5	d 3	20	d 4	15		
			:				b 6	3 0				; !		
表/中間/	裹屬比	1/	8/	1	1/	8/1	1/	8/1	1/	8/1	2/	6/2	1/	8/1
	g (°C)		7 0			7.9		7 4		7 5		7 8		6 7
	ב)		8.3			8 9		8 5		8 7		9 0		8 2
熱収縮率(%)		2 2			1 7		20		1 9		1 6		2 5
自然収縮率	(%)	1	. 4		1	. 3	1	3	1	. 2	1	. 8	0	. 9
ミシン目切:	化性		0			0		0		C ⁱ		0		×

【0059】

【発明の効果】本発明のブロック共重合体組成物を用い た熱収縮性フィルムは、熱収縮性、自然収縮性に優れ、 更にミシン目切れ性が良好なので、これらのフィルムは 各種印刷を施したラベルやキャップシール等種々の包装

用フィルムとして好適に用いることが出来る

【図面の簡単な説明】

【図1】 実施例1のブロック共重合体組成物の透過型 電子顕微鏡写真(ラメラもしくはロッド)

【図2】 実施例2のブロック共重合体組成物の透過型

電子顕微鏡写真(ゴム相が15 n m以上の粒径の粒子) 電子顕微鏡写真(ゴム相が小分散) 【図3】 比較例1のブロック共重合体組成物の透過型

【図1】

【図2】

フロン	トペー	この結じ	÷

(51)Int.Cl.7	識別記号	FΙ		(参考)
COSJ 5/18	CET	COSJ 5/18	CET	4J002
C 0 8 L 25/00		COSL 25/00		
53/02		53/02		
// B 2 9 K 25:00		B 2 9 K 25:00		
105:02		105:02		
B29L 7:00		B 2 9 L 7:00		

Fターム(参考) 3E067 AA11 AB99 BA21A BB14A BB25A CA01 EB03 FA04 FB01

> 3E086 AB03 AD16 BA02 BA04 BA15 BA33 BB67 CA40

> 4F071 AA12X AA22 AA22X AA32X AA33X AA75 AF61 BA01 BB06 BB07 BB08 BB09 BC01 BC17

4F100 AK12A AK12B AK25B AK28A AK28B AL01B AL02A AL02B AL06B AN00B BA02 BA07 BA15 GB90 JJ10 JK10B JL00

4F210 AA13F AE01 AG01 AG03 RA03 RC02 RG02 RG04 RG43

4J002 BC032 BC042 BC072 BN152 BP011 BP012 FD030 FD170 GG01 GG02