

09/839,296
122638/00

1 7. (Amended) A fabrication method of a liquid crystal display device, comprising:

2 cutting apart a first rectangular substrate from a first raw glass substrate having a belt-
3 shaped irregularity such that a longer side direction of said first rectangular substrate is
4 coincident with a drawing direction of said first raw glass substrate;

5 cutting apart a second rectangular substrate from a second raw glass substrate having a
6 belt-shaped irregularity such that a longer side direction of said second rectangular substrate
7 becomes orthogonal to a drawing direction of said second raw glass substrate; and

8 arranging said first rectangular substrate in an opposing relation to said second
9 rectangular substrate with a gap formed therebetween to accept a liquid crystal layer and with
10 the longer sides of said first and second rectangular substrates being in the same direction,

11 wherein line-shaped protrusions along a drawing direction of said first and second
12 raw glass substrates are formed due to a direction dependency of respective thicknesses of
13 said first and second raw glass substrates.

1 11. (Amended) A fabrication method of a liquid crystal display device, comprising:

2 cutting apart a first rectangular substrate from a first raw glass substrate having a belt-
3 shaped irregularity such that a longer side direction of said first rectangular substrate is
4 coincident with a drawing direction of said first raw glass substrate;

5 cutting apart a second rectangular substrate from a second raw glass substrate having a
6 belt-shaped irregularity such that a longer side direction of said second rectangular substrate
7 becomes orthogonal to a drawing direction of said second raw glass substrate; and

8 arranging said first rectangular substrate in an opposing relation to said second
9 rectangular substrate with a gap formed therebetween to accept a liquid crystal layer and with
10 the longer sides of said first and second rectangular substrates being in the same direction,

11 wherein line-shaped protrusions along a drawing direction of a raw glass substrate are
12 formed due to a direction dependency of a thickness of the raw glass substrate, and

13 wherein a plurality of said first rectangular substrates are cut apart from said first raw
14 glass substrate in said cutting apart said first rectangular substrate and a plurality of said
15 second rectangular substrates are cut apart from said second raw glass substrate in said
16 cutting apart said second rectangular substrate,

09/839,296
122638/00

17 said method further comprising before said cutting said first and second rectangular
18 substrates, forming electrodes and switching elements on each of said first rectangular
19 substrates and the step of forming a color filter layer on each of said second rectangular
20 substrates.

12. (Amended) A fabrication method of a liquid crystal display device, as claimed in claim 7,
wherein a distance between a position of highest pressure between said first rectangular
substrate and said second rectangular substrate and a position of smallest pressure between
said first rectangular substrate and said second rectangular substrate is increased, and
wherein a rate of variation of a gap between said first rectangular substrate and said
second rectangular substrate is decreased.

13. (Amended) A fabrication method of a liquid crystal display device, as claimed in claim
11, wherein a distance between a position of highest pressure between said first rectangular
substrate and said second rectangular substrate and a position of smallest pressure between
said first rectangular substrate and said second rectangular substrate is increased, and
wherein a rate of variation of a gap between said first rectangular substrate and said
second rectangular substrate is decreased.