

Simulation selbstfahrender Autos mithilfe von künstlichen neuronalen Netzen und evolutionären Algorithmen

Bachelorarbeit von Eike Stein

Gutachter: Dr. Marco Grawunder, Cornelius Ludmann

26.09.2016

Inhalt

- Einleitung
 - Motivation
 - Forschungsfrage
- Grundlagen
 - Autonomes Fahren
 - Evolutionäre Algorithmen
 - Künstliche neuronale Netze
- Konzept
- Demo
- Fazit und Ausblick
 - Fazit
 - Grenzen
 - Ausblick

Einleitung

Motivation

- Jährlich sterben in Deutschland rund 3500 Menschen bei Verkehrsunfällen [1]
 - Häufig ist menschliches Versagen die Ursache
 - Es werden weitere Sicherheitssysteme benötigt
- Bestehende Sicherheitssysteme nur unterstützend
 - →Sicherheit muss immer noch durch den menschlichen Fahrer garantiert werden
- Autonomes Fahren neuartiger Lösungsansatz
- Viele unvorhersehbare Faktoren wirken auf den Entscheidungsprozess beim Fahren ein
 - → Keine einfachen Wenn-Dann Beziehungen möglich
 - → Systeme benötigt, die selbstständig auf neue Situationen angemessen reagieren können
 - → Zum Beispiel künstliche neuronale Netze

Forschungsfrage

- Eignen sich künstliche neuronale Netze, um Sensordaten eines Fahrzeugs zu verarbeiten und dieses zu steuern?
 - Fahrverhalten sollte schnell, sicher und *menschenähnlich* sein
- Zur Beantwortung kommt ein neuentwickeltes Softwaresystem zum Einsatz
- →Inwieweit eignet sich ein Softwaresystem zur Durchführung und Auswertung von Simulationen, in denen Fahrzeuge mithilfe von künstlichen neuronalen Netzen gesteuert werden?

Grundlagen

Autonomes Fahren

- Ziel ist die vollständige Kontrolle von Autos, Bussen und Lastwagen
- Einer der ersten Beiträge von Tsukuba Mechanical Enginieering Laboratory
 - Autos konnten weißen Linien auf Testgelände folgen [2]
- Mittlerweile sind große Unternehmen wie Google und Tesla führend in der Entwicklung [3][4]
- Verschiedene Sensoren kommen zum Einsatz
 - Kamera
 - Ultrasound
 - GPS
 - Laser
 - **.**...
- Sensordaten → Steuerung des Fahrzeuges
 - Fuzzy-Logik
 - Künstliche neuronale Netze

Evolutionäre Algorithmen (1)

- Anlehnung an natürliche Selektion in der Natur [5]
 - Survival of the fittest
- Individuum ⇔ Lösung für Problem
 - Form des Flügels eines Windrades
 - Form der Karosserie eines Rennwagens
 - Fahrverhalten eines autonomen Autos
- Lösungskandidaten werden durch Gene kodiert [6]
 - Gen ⇔ Bit oder Dezimalzahl
 - Mehrere Gene definieren eine Lösung

Evolutionäre Algorithmen (2)

- Iterative (kleine) Veränderungen [7]
 - Mutation
 - Rekombination von Individuen
- Selektion der besten Individuen in nächste Generation
- → Nach vielen Generationen existieren Individuen, die akzeptable Lösungen kodieren

Evolutionäre Algorithmen (3) – Ablauf

- 1. Zufällige Ausgangspopulation
- 2. Fitnessfunktion bewertet Individuen
 - Luftwiderstand im Windtunnel
- 3. Selektion von Individuen anhand ihrer Fitness
 - Rekombination
 - II. Mutation
 - III. Bewertung der Fitness
- 4. Auswahl für nächste Generation aus alten und neuen Individuen
- 5. Gehe zu Schritt 3

Quelle: in Anlehnung an [7]

Evolutionäre Algorithmen (4)

- Laufen prinzipiell unbegrenzt lange [7]
 - **→** Abbruchkriterien
 - Zeit
 - Anzahl Generationen
 - Bewertung der Individuen
- Problem der Parameterbestimmung [8]
 - Mutationswahrscheinlichkeit
 - Selektionsmechanismus
 - ...

Künstliche neuronale Netze (1)

- Versuchen Brücke zu schlagen zwischen dem Intellekt von Menschen und der Rechengeschwindigkeit von Computern
- Inspiriert von neuronalen Verbindungen im Gehirn [9]
- Aufbau über Ebenen
 - Eingabeebene
 - Hidden layers
 - Ausgabeebene

Künstliche neuronale Netze (2)

- Jede Ebene setzt sich aus Neuronen zusammen [10][11]
 - Meistens ist jedes Neuron mit jedem Neuron der nächsten Ebene verbunden
 - Jede Verbindung ist gewichtet
 - Gewichtete Summe alle Ausgaben der vorherigen Ebene ergibt Eingabewert
 - $\rightarrow input = \sum_{i=0}^{n} output_i * weight_i$
 - Ausgabe wird durch Aktivitätsfunktion aus Eingabe errechnet
- Daten werden an den Neuronen der Eingabeebene angelegt
 - Vergleichbar mit Helligkeitswahrnehmung durchs Auge
- Hidden layers stellen die Daten in Verbindung zueinander
 - Genauer Wirkmechanismus noch unklar
- In der Ausgabeebene wird das Ergebnis dargestellt

Künstliche neuronale Netze (3)

- Aktivitätsfunktion projiziert Werte [11]
 - Sigmoid in [0,1]
 - TanH in [-1,1]
- Damit die Ausgabe des Netzwerkes sinnvoll genutzt werden kann, müssen die Verbindungsgewichte trainiert werden
 - Ein Trainingsverfahren ist der Einsatz von evolutionären Algorithmen

Künstliche neuronale Netze (4) – Aktivitätsfunktionen

Identität

Sigmoid/TanH [11]

Konzept

Ansatz

- Ziel ist es ein Fahrzeug über ein künstliches neuronales Netz zu steuern
- Eingabedaten des neuronales Netzwerkes sind Abstandssensordaten der Umgebung
- Ausgabe gibt Fahrverhalten an
- 2D physikalische Simulation → 2D virtuelle Umgebung

Streckengenerierung (1)

- Rennstrecken eignen sich aufgrund abwechslungsreicher Abschnitte
- Nur ein Fahrzeug zur Zeit
- Quelle ist die Webseite GPSies [12]
- Aus GPS Koordinaten wird Polygon errechnet

Streckengenerierung (2)

 Innere und äußere Streckenbegrenzung durch vergrößern und verkleinern des Polygons

Fahrzeug

- In Anlehnung an einen PKW
- Form über Polygon definiert

- Abstand der Reifen antiproportional zur Manövrierbarkeit
- Größere Karosserie → höheres Gewicht → größere Trägheit
- Sensoren messen den Abstand ausgehend vom blauen Punkt in verschiedene Richtungen
 - Orientiert an der menschlichen Position im Fahrzeug

Sensorverarbeitung (1)

- Die gemessenen Sensordaten dienen als Eingabedaten für das Netzwerk
- Ausgabe ist die Lenkausrichtung und Zielgeschwindigkeit
 - Lenkausrichtung in [-1,1]
 - Zielgeschwindigkeit in [0.1,1]
- Eingabedaten müssen normalisiert werden
 - Sensoren besitzen maximale Entfernung
 - $\Rightarrow Eingabe = \frac{gemessene\ Entfernung}{maximale\ Entfernung}$
- Wahl der Topologie des Netzwerkes stellt Balance zwischen Lerngeschwindigkeit und maximal erreichbarer Performanz dar [14]

Sensorverarbeitung (2)

- Festlegung der Anzahl der Sensoren vergleichbar mit Komplexität des Netzwerkes
- Platzierung paarweise, sodass das Sichtfeld symmetrisch ist
- In der Arbeit wurden die Winkel -40°, -20°, -4°, 4°, 20° und 40° relativ zur Fahrtrichtung untersucht

Simulationsablauf

- Fahrzeug wird auf ausgewählter Strecke platziert
- 1. Sensoren nehmen Umgebung wahr
- 2. Ausgabe des künstlichen neuronales Netzwerks wird berechnet
- 3. Fahrzeugphysik wird berechnet
 - I. Reifen werden entsprechend gedreht
 - II. Beschleunigungskräfte werden auf die Reifen angewendet
 - III. Luftwiderstand und Reibung werden berechnet
- 4. Simulationsschritt wird ausgeführt
 - I. Kollisionen werden aufgelöst
 - II. Kräfte werden berechnet
 - III. Objekte werden bewegt

Farseer Physics Engine [13]

- 5. Falls Zeit abgelaufen ist oder Fahrzeug mit Wand kollidiert ist, wird die Simulation abgebrochen
- Ansonsten weiter mit Schritt 1.

Berechnung der nächsten Generation

- Die künstlichen neuronalen Netze mit dem besten Fahrverhalten werden unverändert in die nächste Generation übernommen
- Die verbleibenden Plätze werden durch gewichtete Zufallsauswahl gefüllt (Roulette-Selektion) [15]
 - Die Gewichte der ausgewählten Netzwerke werden mutiert
- → Streng monoton steigende Bewertung der besten Individuen

Demo

Video-Demo

Fazit und Ausblick

Fazit (1)

- In recht kurzer Zeit lernen künstliche neuronale Netzwerke ein Fahrzeug einen virtuellen Rundkurs zu durchsteuern
- Nach wenigen Generationen gelingt kollisionsfreies Durchfahren der ausgewählten Strecke
- Geschwindigkeit nimmt zunächst eine untergeordnete Rolle ein
 - Auch in späteren Generationen weiteres Optimierungspotential
- Das Fahrverhalten kann ausschließlich subjektiv beurteilt werden
 - Es wirkt etwas riskant
 - Pendeln des Fahrzeuges auch in späteren Generationen sichtbar
 - Nichtsdestotrotz recht zuverlässig

Fazit (2)

- Trotz der erwähnten Probleme stellen künstliche neuronale Netzwerke ein vielversprechenden Ansatz zur Kontrolle von Fahrzeugen dar
- Das Softwaresystem stellt die nötige Grundlage für die Auswertung dar
 - Ohne dieses wäre eine systematische Auswertung kaum möglich
 - Die Diagramme, sowie die visuelle Simulation des Fahrverhaltens ermöglichen eine einfachere Entscheidungsfindung bei der Parameterbestimmung

Grenzen

- Nur ein Fahrzeug zur selben Zeit
- Nur in Simulation getestet
- Keine Stördaten und Umgebung sehr simpel
- (Fahrzeug-)Physik nicht 100% realistisch

Ausblick

- Nur ein kleiner technologischer Aspekt autonomer Autos untersucht
- Künstliche neuronale Netze sind vielversprechend aber weitere Untersuchungen sind nötig
 - Nicht untersuchte Anpassungen an der Simulation
 - Durchführung von Experimenten mit realen Fahrzeugen
- Weiterführende Fragen
 - Welche Probleme der Steuerung können ausschließlich von künstlichen neuronalen Netzen gelöst werden?
 - Wo müssen andere Technologien eingesetzt werden?
 - Inwieweit lassen sich diese kombinieren?

Vielen Dank für Ihre Aufmerksamkeit

Haben Sie Fragen?

Quellen

[1]	o.A., "Statistisches Bundesamt," 12 07 2016. [Online]. Available:
	https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/07/PD16 242 46241.html;jsessionid=D
	A13AA6640CB70FA934860DCC9167B62.cae2. [Zugriff am 20 08 2016]
[2]	M. K. Alex Forrest, Autonomous Cars and Society, Worcester, 2007
[3]	o.A., "Google," o.J [Online]. Available: https://www.google.com/selfdrivingcar/ [Zugriff am 31 Mai 2016]
[4]	o.A., "Tesla," o.J [Online]. Available: https://www.tesla.com/de_DE/presskit/autopilot [Zugriff am 08 18 2016]
[5]	C. Darwin, Über die Entstehung der Arten durch natürliche Zuchtwahl, Books on Demand, 2016
[6]	M. G. Xinjie Yu, "Representation and Evaluation," in Introduction to Evolutionary Algorithms, Springer, 2010, pp. 15-16
[7]	M. G. Xinjie Yu, "Simple Genetic Algorithm Infrastructure," in Introduction to Evolutionary Algorithms, Springer, 2010,
	pp. 17-23
[8]	C. F. L. Z. M. F.J. Lobo, Parameter Setting in Evolutionary Algorithms, Springer, 2007
[9]	P. v. d. S. Ben Kröse, An introduction to Neural Networks, Amsterdam, 1996
[10]	P. v. d. S. Ben Kröse, An introduction to Neural Networks, Amsterdam, 1996, p. 33
[11]	P. v. d. S. Ben Krose, An introcution to Neural Networks, Amsterdam, 1996, p. 17
[12]	o.A., "GPSies," o.J [Online]. Available: http://www.gpsies.com/ [Zugriff am 20 08 2016]
[13]	e. a. lan Qvist, "Codeplex," 26 08 2013. [Online]. Available: https://farseerphysics.codeplex.com/ [Zugriff am 21 08
	2016]
[14]	A. e. a. Fiszelew, Finding Optimal Neural Network Architecture Using, Buenos Aires Institute of Technology, o.J.
[15]	F. H. Thomas Bäck, Extended Selection Mechanisms in Genetic Algorithms, Dortmund, o.J.