

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15120101602

FCC REPORT

(BLE)

Applicant: Procom Products Inc.

Address of Applicant: 525 PARRIOTT PL, CITY OF INDUSTRY, CA91745, United

States

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: D503L, D503L_WH, D503L_BK

Trade mark: Digital2

FCC ID: 2ACE6-D503L

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 31 Dec., 2015

Date of Test: 31 Dec., 2015 to 18 Jan., 2016

Date of report issued: 19 Jan., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	19 Jan., 2016	Original

Tested by: Date: 19 Jan., 2016

Test Engineer

Reviewed by: Date: 19 Jan., 2016

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		IERAL INFORMATION	
9			
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	18
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	35
R	FUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Procom Products Inc.
Address of Applicant:	525 PARRIOTT PL, CITY OF INDUSTRY, CA91745, United States
Manufacturer/ Factory:	SHENZHEN TONHORN COMMUNICATION TECHNOLOGY CO.,LTD.
Address of Manufacturer/Factory:	Room402, Block East, 2nd Phase of Innovation and Technology Square, Tian'an Digital City, Futian, Shenzhen China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	D503L, D503L_WH, D503L_BK
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1900mAh
AC adapter:	Model:LPL-A005050100Z Input:100-240V AC,50/60Hz 200mA Output:5V DC MAX 1000mA
Remark:	item No.: D503L, D503L_WH, D503L_BK were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS1512010101602

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:									
Item Test Equipment		Manufacturer Model No.		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
. , ,							
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz	1	ID 10				
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average				
		0.15-0.5 66 to 56* 56 to 46*					
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm						
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test setup:	LISN 40cm		er — AC power				
Test Uncertainty:			±3.28 dB				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Neutral:

Trace: 1

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart Phone Test Mode : BLE mode
Power Rating : AC 120V/ 60 Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: MT
Remark

: Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	—dBu∇	<u>dB</u>	<u>dB</u>	dBu₹	dBu₹		
0.174	36.83	0.25	10.77	47.85	64.77	-16.92	QP
0.178	21.76	0.25	10.77	32.78	54.59	-21.81	Average
0.222	33.86	0.25	10.75	44.86	62.74	-17.88	QP
0.310	33.28	0.26	10.74	44.28	59.97	-15.69	QP
0.310	20.86	0.26	10.74	31.86			
0.535	20.83	0.27	10.76	31.86	46.00	-14.14	Average
0.538	32.74	0.27	10.76	43.77	56.00	-12.23	QP
0.880	23.40	0.21	10.83	34.44	46.00	-11.56	Average
0.890	34.42	0.21	10.84	45.47	56.00	-10.53	QP
1.645	22.93	0.27	10.93	34.13			
				45.17			
2.358	21.79	0.29	10.94	33.02	46.00	-12.98	Average
	MHz 0.174 0.178 0.222 0.310 0.310 0.535 0.538 0.880 0.890 1.645 1.734	Freq Level MHz dBuV 0.174 36.83 0.178 21.76 0.222 33.86 0.310 33.28 0.310 20.86 0.535 20.83 0.538 32.74 0.880 23.40 0.890 34.42 1.645 22.93 1.734 33.95	Freq Level Factor MHz dBuV dB 0.174 36.83 0.25 0.178 21.76 0.25 0.222 33.86 0.25 0.310 33.28 0.26 0.310 20.86 0.26 0.535 20.83 0.27 0.538 32.74 0.27 0.580 23.40 0.21 0.890 34.42 0.21 1.645 22.93 0.27 1.734 33.95 0.28	MHz dBuV dB dB 0.174 36.83 0.25 10.77 0.178 21.76 0.25 10.77 0.222 33.86 0.25 10.75 0.310 33.28 0.26 10.74 0.535 20.83 0.27 10.76 0.538 32.74 0.27 10.76 0.880 23.40 0.21 10.83 0.890 34.42 0.21 10.84 1.645 22.93 0.27 10.93 1.734 33.95 0.28 10.94	Freq Level Factor Loss Level MHz dBuV dB dB dBuV	Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV dBuV 0.174 36.83 0.25 10.77 47.85 64.77 64.77 64.86 62.74 <td< td=""><td>Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB </td></td<>	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : Smart Phone : D503L Model

Test Mode : BLE mode
Power Rating : AC 120V/ 60 Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Nemark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	₫₿uѶ	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.174	35.04	0.27	10.77	46.08	64.77	-18.69	QP
2	0.178	22.27	0.28	10.77	33.32	54.59	-21.27	Average
3	0.222	32.95	0.27	10.75	43.97	62.74	-18.77	QP
4	0.313	32.73	0.26	10.74	43.73	59.88	-16.15	QP
1 2 3 4 5 6 7 8 9	0.313	23.99	0.26	10.74	34.99	49.88	-14.89	Average
6	0.529	26.86	0.28	10.76	37.90	46.00	-8.10	Average
7	0.538	34.88	0.28	10.76	45.92	56.00	-10.08	QP
8	0.928	18.74	0.24	10.85	29.83	46.00	-16.17	Average
9	1.021	31.69	0.25	10.87	42.81	56.00	-13.19	QP
10	2.346	16.88	0.26	10.94	28.08	46.00	-17.92	Average
11	2.371	31.57	0.26	10.94	42.77	56.00	-13.23	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.46		
Middle	-1.42	30.00	Pass
Highest	-1.84		

Test plot as follows:

Lowest channel

Date: 4.JAN.2016 07:41:17 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.72			
Middle	0.73	>500	Pass	
Highest	0.72			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.04			
Middle	1.04	N/A	N/A	
Highest	1.04			

Test plot as follows:

6dB EBW

Date: 4.JAN.2016 07:45:51

Lowest channel

Date: 4..TAN.2016 07:44:44

Middle channel

Date: 4.JAN.2016 07:42:58

Highest channel

99% OBW

Date: 4.JAN.2016 07:46:20

Lowest channel

Date: 4..TAN.2016 07:47:05

Middle channel

Date: 4.JAN.2016 07:47:28

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-3.82		
Middle	-2.25	8.00	Pass
Highest	-2.68		

Test plots as follow:

Date: 4.JAN.2016 07:49:06

Lowest channel

Date: 4.JAN.2016 07:48:45

Middle channel

Date: 4..TAN.2016 07:48:12

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 4.JAN.2016 07:50:28

Lowest channel

Date: 4.JAN.2016 07:51:30

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2	013 and KDE	3 558074v03r	03 section	12.1			
Test Frequency Range:	2.3GHz to 2.5G	Hz						
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark							
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ency	Limit (dBuV		Remark			
	Above 1	IGHz -	54.0 74.0		Average Value Peak Value			
Test Procedure:	the ground to determing to determing antenna, we tower. 3. The antenry the ground Both horizon make the notes and the meters and to find the second so to find the second find	at a 3 meter of the position was set 3 meter which was mountained to determine the antender the rota table maximum reasurement. It is not to determine the antender the rota table maximum reasurement with the rota table maximum reasurement of the rotatable maximum reasurement.	camber. The control of the highesters away from unted on the total ried from one the maximum cal polarizations in the second of the was turned to was turned to was set to Pon Maximum Hone EUT in peasesting could be orted. Otherwood be re-tested.	table was rost radiation. The interferop of a variation of the analysis arranged and the control of the control	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 thees to 360 degrees			
Test setup:	AE SOCM	EUT Ground Test Receive	Horn Anta	Antenna To	wer			
Test Instruments:	Refer to section	5.7 for details	S					
Test mode:	Refer to section	5.3 for details	s					
Test results:	Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1016RF Condition

Job No. EUT : Smart phone Model : D503L

Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: MT

EMAR	K :	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor					Limit	Remark
•	MHz	dBu∀	dB/m	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000	Color San Color San Color	1000 / 10 E / C T 10 E / C T	6.63 6.63	ACC 11 (10 (10 (10 (10 (10 (10 (10 (10 (10	59.29 47.61			Peak Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 1016RF : Smart phone : D503L Job No. EUT : DOUGL
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: MT
REMARK :

IIICATA		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	dB	
1	2390.000	24.13	27.58	6.63	0.00	58.34	74.00	-15.66	Peak
2	2390,000	13.40	27.58	6.63	0.00	47.61	54.00	-6.39	Average

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: 1016RF Job No. EUT : Smart phone : D503L Model : BLE-H mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: MT REMARK :

1 2

			Antenna Factor				Limit Line		Remark	
-	MHz	dBu∀	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500				0.00				Peak Average	

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 1016RF Condition

Job No. : D503L
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: MT
REMARK : EUT : Smart phone

EMAN			Antenna Factor				Limit Line		
5	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Ground Reference Plane Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 4.JAN.2016 07:55:36

30MHz~25GHz

Middle channel

Date: 4.JAN.2016 07:54:31

30MHz~25GHz

Highest channel

Date: 4.JAN.2016 07:53:31

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205					
Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10:2009							
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D							
	-	Detector	RBW	VBW				
Receiver setup:	Frequency	Remark						
	30MHz-1GHz	Quasi-peak	1	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH	lz	46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz				•			
Test Procedure:	S4.0 Average Value S4.0 Average Value Above 1GHz 54.0 74.0 Peak Value							

Below 1GHz

Horizontal:

Site

Condition

Job No. EUT : Smart phone : D503L Model Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: MT REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
-	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB		17
1	40.845	36.58	13.57	0.53	29.89	20.79	40.00	-19.21	QP	
2	77.051	39.31	8.14	0.83	29.66	18.62	40.00	-21.38	QP	
2	102.001	36.56	12.97	0.98	29.51	21.00	43.50	-22.50	QP	
4	170.793	42.06	9.03	1.35	29.04	23.40	43.50	-20.10	QP	
5	281.995	41.33	12.70	1.72	28.48	27.27	46.00	-18.73	QP	
6	599.321	32.84	18.45	2.62	28.94	24.97	46.00	-21.03	QP	

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

: FCC PART15 CLASS B 3m VULB916.

Job No. : 1016RF
EUT : Smart phone
Model : D503L
Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: MT
REMARK :

ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV		
MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m di 1 30.000 53.79 12.33 0.43 29.98 36.57 40.00 -3.40 2 40.276 43.85 13.58 0.52 29.90 28.05 40.00 -11.90 3 107.510 35.76 12.49 1.03 29.47 19.81 43.50 -23.60	t Remark	
1 30.000 53.79 12.33 0.43 29.98 36.57 40.00 -3.40 20 40.276 43.85 13.58 0.52 29.90 28.05 40.00 -11.90 3 107.510 35.76 12.49 1.03 29.47 19.81 43.50 -23.60		
2 40.276 43.85 13.58 0.52 29.90 28.05 40.00 -11.99 3 107.510 35.76 12.49 1.03 29.47 19.81 43.50 -23.69	ib	
2 40.276 43.85 13.58 0.52 29.90 28.05 40.00 -11.99 3 107.510 35.76 12.49 1.03 29.47 19.81 43.50 -23.69	13 QP	
3 107,510 35,76 12,49 1,03 29,47 19,81 43,50 -23,69	5 QP	
	9 QP	
4 136.460 39.79 8.45 1.24 29.29 20.19 43.50 -23.3 5 323.320 38.95 13.46 1.85 28.50 25.76 46.00 -20.20	1 QP	
5 323.320 38.95 13.46 1.85 28.50 25.76 46.00 -20.20	4 QP	
6 599.321 36.23 18.45 2.62 28.94 28.36 46.00 -17.6	4 00	

Above 1GHz

Test channel:			Lowest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	46.24	31.53	10.57	40.24	48.10	74.00	-25.90	Vertical	
4804.00	45.42	31.53	10.57	40.24	47.28	74.00	-26.72	Horizontal	
Т	Test channel:			Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	37.03	31.53	10.57	40.24	38.89	54.00	-15.11	Vertical	
4804.00	36.13	31.53	10.57	40.24	37.99	54.00	-16.01	Horizontal	

Т	:	Middle		Le	vel:	Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	46.83	31.58	10.66	40.15	48.11	74.00	-25.89	Vertical	
4884.00	46.02	31.58	10.66	40.15	2.09	74.00	-71.91	Horizontal	
Т	Test channel:			Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	37.48	31.58	10.66	40.15	39.57	54.00	-14.43	Vertical	
4884.00	37.14	31.58	10.66	40.15	39.23	54.00	-14.77	Horizontal	

Т	:	Highest		Level:		Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	47.25	31.69	10.73	40.03	49.64	74.00	-24.36	Vertical	
4960.00	46.69	31.69	10.73	40.03	49.08	74.00	-24.92	Horizontal	
Т	Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	38.01	31.69	10.73	40.03	40.40	54.00	-13.60	Vertical	
4960.00	37.42	31.69	10.73	40.03	39.81	54.00	-14.19	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366