Chapter 14 Groupes

Exercice 14.1 Étude de lois de composition

Indiquer, parmi les applications suivantes, lesquelles sont des lois de composition interne. Lorsque c'est le cas, préciser l'éventuelle associativité ou commutativité.

Solution 14.1 Étude de lois de composition

- La loi \perp est une loi de composition interne sur \mathbb{R} . Elle n'est pas associative car $1 \perp (1 \perp 1) = 1$ qfui est différent de $(1 \perp 1) \perp 1 = -1$. Elle n'est pas commutative car $3 \perp 1 = 2$ qui est différent de $1 \perp 3 = -2$.
- La loi T est une loi de composition interne \mathbb{R} . Elle n'est pas associative car $1T(2T3) = \frac{9}{16}$ qui est différent de $(1T2)T3 = \frac{12}{16}$. Elle est commutative car pour $x, y \in \mathbb{R}$, $xTy = \frac{x+y}{4} = \frac{y+x}{4} = yTx$.
- La loi \square est une loi de composition interne sur $\mathbb{R}^{\mathbb{N}}$. Elle n'est ni associative, ni commutative. En effet, en notant $\tilde{1} = (1)_{n \in \mathbb{N}}$, $\tilde{2} = (2)_{n \in \mathbb{N}}$ et $\tilde{3} = (3)_{n \in \mathbb{N}}$, on a

$$\tilde{1} \square \tilde{2} = (1, 2, 1, 2, 1, 2, 1, 2, \dots)$$
 et $\tilde{2} \square \tilde{1} = (2, 1, 2, 1, 2, 1, 2, 1, \dots)$

qui sont différents. De plus

$$(\tilde{1} \square \tilde{2}) \square \tilde{3} = (1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, \dots)$$

et $\tilde{1} \square (\tilde{2} \square \tilde{3}) = (1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, \dots)$

• \triangle n'est pas une loi de composition interne : $1 \triangle 1 = e^2 \notin [0, 1]$.

Exercice 14.2 Propriétés de lois de composition

Étudier les lois de composition interne suivantes : commutativité, élément neutre éventuel, éléments inversibles.

Solution 14.2 Propriétés de lois de composition

- La loi \star est commutative $(A \cap B = B \cap A)$ et a pour élément neutre \mathbb{N} $(A \cap \mathbb{N} = A)$. Le seul élément ayant un symétrique est \mathbb{N} car si $A \star B \subset A$ donc $A \star B = \mathbb{N}$ implique $A = \mathbb{N}$.
- La loi
 est commutative et admet pour élément neutre 0. Seul 0 admet un symétrique (lui-même).
- La loi \triangle est commutative et admet pour élément neutre (1,0). De plus,

$$(x, y) \triangle (x', y') = (1, 0) \iff xx' = 1 \text{ et } xy' + x'y = 0 \iff x' = \frac{1}{x} \text{ et } y' = -\frac{x'y}{x} = -\frac{y}{x^2}.$$

La loi \triangle étant commutative, on voit que tout élément $(x, y) \in \mathbb{R}^* \times \mathbb{R}$ admet un symétrique pour \triangle qui est $\left(\frac{1}{x}, -\frac{y}{x^2}\right)$.

Exercice 14.3 Addition des vitesses en théorie de la relativité Soit c > 0 (c correspond à la vitesse de la lumière) et I =]-c, c[.

1. Montrer

$$\forall (x, y) \in I^2, x \star y = \frac{x + y}{1 + \frac{xy}{c^2}} \in I.$$

2. Montrer que la loi \star munit I d'une structure de groupe abélien.

Cette loi ★ correspond à l'addition des vitesses portées par un même axe en théorie de la relativité. **Solution 14.3** *Addition des vitesses en théorie de la relativité*

Soit l'ensemble

$$\mathcal{J} = \left\{ \left. \begin{pmatrix} x & x \\ x & x \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \; \middle| \; x \in \mathbb{R}^* \; \right\}.$$

Montrer que, muni de la multiplication usuelle des matrices, \mathcal{J} est un groupe abélien.

Solution 14.4

Soit
$$A = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \in \mathcal{J}$$
 et $B = \begin{pmatrix} y & y \\ y & y \end{pmatrix} \in \mathcal{J}$. On a

$$AB = \begin{pmatrix} 2xy & 2xy \\ 2xy & 2xy \end{pmatrix} \in \mathcal{J}$$

 $car xy \neq 0$.

La multiplication matricielle induit donc une loi de composition interne sur \mathcal{J} . La multiplication matricielle étant associative sur $\mathcal{M}_2(\mathbb{R})$, elle reste associative sur \mathcal{J} .

On vérifie que la matrice $J = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ est élément neutre pour la multiplication dans \mathcal{J} :

$$AJ = \begin{pmatrix} 2\frac{1}{2}x & 2\frac{1}{2}x \\ 2\frac{1}{2}x & 2\frac{1}{2}x \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix} = A.$$

De même, JA = A.

En posant
$$A' = \begin{pmatrix} \frac{1}{2x} & \frac{1}{2x} \\ \frac{1}{2x} & \frac{1}{2x} \end{pmatrix}$$
, on vérifie

$$A' \in \mathcal{J}$$
 et $AA' = J$ et $A'A = J$.

Donc A admet un symétrique dans \mathcal{J} qui est A'.

Conclusion

 \mathcal{J} est un groupe lorsqu'il est muni de la multiplication matricielle.

Par contre, ce n'est pas un sous-groupe de $\mathcal{M}_2(\mathbb{R})$ (qui n'est pas un groupe pour la multiplication) et ce n'est pas un sous-groupe de $GL_2(\mathbb{R})$ (aucune matrice de \mathcal{J} n'appartient à $GL_2(\mathbb{R})$).

On considère les fonctions de $\mathbb{R}\setminus\{\,0,1\,\}$ dans lui-même définies par

$$f_1(x) = x,$$
 $f_2(x) = \frac{1}{1-x},$ $f_3(x) = \frac{x-1}{x},$ $f_4(x) = \frac{1}{x},$ $f_5(x) = 1-x,$ $f_6(x) = \frac{x}{x-1}.$

- 1. Montrer qu'elles forment un groupe G pour la loi \circ .
- **2.** Quels sont les sous-groupes de *G*?

Solution 14.5

Soit (G, \cdot) un groupe tel que $x^2 = e$ pour tout $x \in G$. Montrer que G est commutatif.

Solution 14.6

• Soit $(x, y) \in G^2$.

La relation $x^2 = e$ signifie $x^{-1} = x$. Ceci est valable pour tout élément de G.

En particulier, $y^{-1} = y$ et $(xy)^{-1} = xy$. Finalement,

$$xy = (xy)^{-1} = y^{-1}x^{-1} = yx.$$

• (Variante) On a $(xy)^2 = e$, c'est-à-dire xyxy = e. En multipliant à gauche par x et à droite par y, il vient $x^2yxy^2 = xy$ d'où yx = xy.

Soit (G, .) un groupe dont on note e l'élément neutre.

Soit $a, b, c \in G$. On suppose que $b^6 = e$ et $ab = b^4a$. Montrer les égalités $b^3 = e$ et ab = ba.

Solution 14.7

- On a $ab^2 = (ab)b = (b^4a)b = b^4(ab) = b^4(b^4a) = b^8a = b^2a$ car $b^6 = e$. Puisque a et b^2 commutent, on a $ab = b^4a = ab^4 = (ab)b^3$, en multipliant à gauche par $b^{-1}a^{-1}$ on obtient $b^3 = e$ et finalement $ab = b^4a = b^3ba = eba = ba$.
- (Variante) Puisque $ab = b^4 a$, on a $b = a^{-1}b^4 a$, d'où

$$b^{3} = (a^{-1}b^{4}a)(a^{-1}b^{4}a)(a^{-1}b^{4}a) = a^{-1}b^{12}a = a^{-1}ea = a^{-1}a = e.$$

On a donc $b^3 = e$ et par conséquent $ab = b^4a = b^3ba = eba = ba$.

Exercice 14.8

Montrer que $H = \left\{ \left. \frac{a}{3^n} \mid a \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right. \right\}$ est un sous-groupe de $(\mathbb{R}, +)$.

On a clairement $0 \in H$ (avec a = 0 et n = 12 par exemple). Soit $(x, y) \in H^2$. Il existe $a, b \in \mathbb{Z}$ et $n, m \in \mathbb{N}$ tels que $x = \frac{a}{3^n}$ et $y = \frac{b}{3^m}$. On a donc

$$x + y = \frac{a}{3^n} + \frac{b}{3^m} = \frac{a3^m + b3^n}{3^{n+m}}$$
 $a3^m + b3^n \in \mathbb{Z}$ $n + m \in \mathbb{N};$

donc
$$x + y \in H$$
.
De plus, $-x = \frac{-a}{3^n}$, $-a \in \mathbb{Z}$ et $n \in \mathbb{N}$ donc $-x \in H$.

Soit

$$G = \left\{ \begin{pmatrix} 2^x & 0 & 0 \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \middle| x \in \mathbb{R} \right\}.$$

Montrer que G est un groupe multiplicatif.

Solution 14.9

Montrer que

$$\left\{ \left. \frac{1}{\sqrt{1-x^2}} \begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix} \, \middle| \, x \in]-1,1[\, \right\}$$

est un groupe pour la multiplication matricielle.

Solution 14.10

Notons

$$G = \left\{ \left. \frac{1}{\sqrt{1 - x^2}} \begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix} \,\middle|\, x \in]-1, 1[\,\, \right\}$$

On va montrer que G est un sous-groupe de $GL_2(\mathbb{R})$ muni de la multiplication matricielle. Ainsi, G sera un groupe pour cette même loi (ou plus précisement pour la loi induite sur G).

Soit
$$A = \frac{1}{\sqrt{1-x^2}} \begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix} \in G$$
 et $B = \frac{1}{\sqrt{1-y^2}} \begin{pmatrix} 1 & y \\ y & 1 \end{pmatrix} \in G$ avec $x, y \in]-1, 1[$.

- On a det $(A) = \frac{1}{1-x^2} \frac{x^2}{1-x^2} = 1 \neq 0$ donc A est inversible. On a bien $G \subset \mathbf{GL}_2(\mathbb{R})$.
- L'élément neutre de $\mathbf{GL}_2(\mathbb{R})$ est $I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ appartient clairement à G (c'est le cas x=0).
- Un calcul direct donne

$$AB = \frac{1}{\sqrt{1 - x^2}} \frac{1}{\sqrt{1 - y^2}} \begin{pmatrix} 1 + xy & x + y \\ x + y & 1 + xy \end{pmatrix} = \frac{1 + xy}{\sqrt{1 - x^2} \sqrt{1 - y^2}} \begin{pmatrix} 1 & \frac{x + y}{1 + xy} \\ \frac{x + y}{1 + xy} & 1 \end{pmatrix}.$$

Posons $z = \frac{x+y}{1+xy}$, alors

$$1 - z^{2} = 1 - \frac{x^{2} + y^{2} + 2xy}{1 + 2xy + x^{2}y^{2}} = \frac{1 + 2xy + x^{2}y^{2} - x^{2} - y^{2} - 2xy}{1 + 2xy + x^{2}y^{2}}$$
$$= \frac{1 + x^{2}y^{2} - x^{2} - y^{2}}{1 + 2xy + x^{2}y^{2}} = \frac{(1 - x^{2})(1 - y^{2})}{(1 + xy)^{2}}.$$

Cela montre que $1 - z^2 > 0$ car $1 - x^2 > 0$ et $1 - y^2 > 0$, d'où $z \in]-1, 1[$. Deplus, comme 1 + xy > 0, on a

$$\frac{1}{\sqrt{1-z^2}} = \frac{1+xy}{\sqrt{1-x^2}\sqrt{1-y^2}}$$

et par conséquent $AB = \frac{1}{\sqrt{1-z^2}} \begin{pmatrix} 1 & z \\ z & 1 \end{pmatrix} \in G$.

Ainsi, G est stable par multiplication.

• L'inverse de A est la matrice

$$\frac{1}{\det(A)} \begin{pmatrix} \frac{1}{\sqrt{1-x^2}} & \frac{-x}{\sqrt{1-x^2}} \\ \frac{-x}{\sqrt{1-x^2}} & \frac{1}{\sqrt{1-x^2}} \end{pmatrix} = \frac{1}{\sqrt{1-(-x)^2}} \begin{pmatrix} 1 & -x \\ -x & 1 \end{pmatrix}$$

avec $-x \in]-1, 1[$. Ainsi $A^{-1} \in G$.

Conclusion

G est un sous-groupe de $GL_2(\mathbb{R})$ et donc un groupe (pour la multiplication matricielle).

Sur $G = \mathbb{R}^{+} \times \mathbb{R}$, on définit la loi \square par $(x, y)\square(x', y') = (xx', xy' + y)$.

- **1.** Montrer que (G, \square) est un groupe.
- **2.** Montrer que $H =]0, +\infty[\times \mathbb{R}$ est un sous-groupe de (G, \square) .

Solution 14.11

- **1.** Soit $(a, b, c) \in G^3$. On note a = (x, y), b = (x', y') et c = (x'', y'').
 - La loi \square est une loi de composition interne sur G puisque

$$a \square b = (xx', xy' + y)$$
 et $xx' \in \mathbb{R}^*$ et $xy' + y \in \mathbb{R}$.

La loi ☐ est associative

$$a \square (b \square c) = (x, y) \square (x'x'', x'y'' + y') = (xx'x'', x(x'y'' + y') + y) = (xx'x'', xx'y'' + xy' + y)$$

et $(a \square b) \square c = (xx', xy' + y) \square (x'', y'') = (xx'x'', xx'y'' + xy' + y)$

On a bien $a \square (b \square c) = (a \square b) \square c$.

• Déterminons l'élément neutre pour □:

$$a \square b = a \iff xx' = x \text{ et } xy' + y = y \iff xx' = x \text{ et } xy' = 0.$$

On peut donc choisir e = (1,0) et on a bien $a \square e = a$. Un calcul direct donne $e \square a = (1 \times x, 1 \times y + 0) = a$. Donc e est bien élément neutre pour \square .

• Déterminons l'inverse de a:

$$a \square b = e \iff xx' = 1 \text{ et } xy' + y = 0 \iff x' = \frac{1}{x} \text{ et } y' = -\frac{y}{x}.$$

En posant $a' = \left(\frac{1}{x}, -\frac{y}{x}\right)$, on a bien $a \square a' = e$. On vérifie directement

$$a' \square a = \left(\frac{1}{x}x, \frac{1}{x}y + \frac{-y}{x}\right) = (1, 0) = e.$$

donc l'élément a est symétrisable et sont symétrique et a' = (1/x, -y/x).

2. On a clairement $H \subset G$ et $e = (1,0) \in H$.

Soit
$$(a, b) \in G^2$$
. On note $a = (x, y), b = (x', y')$.

On a $a \square b = (xx', xy' + y) \in H$ car x > 0 et x' > 0 donc xx' > 0. Ainsi H est stable par \square .

De plus $a^{-1} = (1/x, -y/x) \in H$ car x > 0 donc 1/x > 0. Ainsi H est stable par passage au symétrique pour \square .

Conclusion

H est un sous-groupe de (G, \square) .

Exercice 14.12 Un exemple de sous-groupe

On pose
$$\mathbb{Z}[\sqrt{7}] = \left\{ a + b\sqrt{7} \mid (a, b) \in \mathbb{Z}^2 \right\}.$$

Montrer que $\mathbb{Z}[\sqrt{7}]$ est un sous-groupe de $(\mathbb{R}, +)$.

Solution 14.12 Un exemple de sous-groupe

Notons $H = \mathbb{Z}[\sqrt{7}]$.

- On a clairement $H \subset \mathbb{R}$.
- L'élément neutre de $(\mathbb{R}, +)$ est $0 = 0 + 0\sqrt{7}$ appartient à H.
- Soit $(x, y) \in H^2$. On note $x = a + b\sqrt{7}$ et $y = a' + b'\sqrt{7}$ avec $a, b, a', b' \in \mathbb{Z}$. On a

$$x + y = a + b\sqrt{7} + a' + b'\sqrt{7} = (a + a') + (b + b')\sqrt{7}$$

donc $x + y \in H$ car $a + a' \in \mathbb{Z}$ et $b + b' \in \mathbb{Z}$.

L'opposé de x est $-x = (-a) + (-b)\sqrt{7} \in H$ car $-a \in \mathbb{Z}$ et $-b \in \mathbb{Z}$.

Conclusion

 $\mathbb{Z}[\sqrt{7}]$ est un sous-groupe de $(\mathbb{R}, +)$.

Pour la multiplication usuelle des matrices carrées, les ensembles suivants sont-ils des groupes.

- 1. $GL_2(\mathbb{R}) \cap \mathcal{M}_2(\mathbb{Z})$.
- 2. $\{ M \in \mathcal{M}_2(\mathbb{Z}) \mid \det M = 1 \}$.

Solution 14.13

Le premier ensemble n'est pas un groupe car, par exemple, la matrice $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ ne peut avoir pour inverse que $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$ qui n'appartient pas à l'ensemble. Notons $G = \{M \in \mathcal{M}_2(\mathbb{Z}) : \det M = 1\}$ et montrons que G est un sous-groupe de $Gl(2,\mathbb{R})$.

- la matrice identité appartient à G.
- si $A, B \in G$ alors $AB \in \mathcal{M}_2(\mathbb{Z})$ et det $AB = \det A \times \det B = 1 \times 1 = 1$, et donc $AB \in G$.
- Si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $(a, b, c, d \in \mathbb{Z})$ alors $\frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ appartient à G et est l'inverse de A.

Soit (G, \star) un groupe. On appelle centre de G l'ensemble

$$Z(G) = \{ x \in G \mid \forall g \in G, x \star g = g \star x \}.$$

Montrer que Z(G) est un sous-groupe de G.

Solution 14.14

On a clairement $Z(G) \subset G$. On note e l'élément neutre de G.

- Pour tout $g \in G$, $e \star g = g$ et $g \star e = g$ donc $e \star g = g \star e$. Ainsi $e \in Z(G)$.
- Soit $(x, y) \in Z(G)^2$.

Pour tout $g \in G$,

$$(x \star y) \star g = x \star (y \star g)$$
 car \star est associative
 $= x \star (g \star y)$ car $y \in Z(G)$
 $= (x \star g) \star y$ car \star est associative
 $= (g \star x) \star y$ car $y \in Z(G)$
 $= g \star (x \star y)$ car \star est associative.

On a donc montré que $x \star y \in Z(G)$.

• Pour tout $g \in G$, on a la relation $x \star g = g \star x$. En multipliant à gauche par x^{-1} , on obtient

$$g = x^{-1} \star g \star x$$

puis en multipliant à droite par x^{-1} , on obtient

$$g \star x^{-1} = x^{-1} \star g.$$

Ceci étant vrai pour tout $g \in G$, on a donc $x^{-1} \in Z(G)$.

Conclusion

Z(G) est un sous-groupe de G.

Soient G un groupe commutatif d'élément neutre e et $n \in \mathbb{N}$. On pose

$$B = \{ a \in G \mid a^n = e \}.$$

Montrer que B est un sous-groupe de G.

Solution 14.15

- On a clairement $B \subset G$.
- On a bien $e \in B$ puisque $e^n = e$.
- Soit $(x, y) \in B^2$. On a donc $x^n = e$ et $y^n = e$. Puisque G est commutatif, $(xy)^n = x^n y^n = e$, d'où $xy \in B$.

Deplus,
$$(x^{-1})^n = (x^n)^{-1} = e^{-1} = e$$
, donc $x^{-1} \in B$.

Ainsi, B est stable par produit et par passage à l'inverse.

Conclusion

B est un sous-groupe de G.

Exercice 14.16 (***)

Soit G un groupe commutatif d'élément neutre e. On pose

$$B = \left\{ a \in G \mid \exists n \in \mathbb{N}^{\star}, a^{n} = e \right\}.$$

Montrer que B est un sous-groupe de G.

Solution 14.16

- On a clairement $B \subset G$.
- On a bien $e \in B$ puisque $e^1 = e$.
- Soit $(x, y) \in B^2$. Il existe $p, q \in \mathbb{N}^*$ tel que $x^p = e$ et $y^q = e$ (il n'y a aucune raison pour que p = q). On a donc $x^{pq} = (x^p)^q = e^q = e$ et $y^{pq} = (y^q)^p = e^p = e$. Puisque G est commutatif, $(xy)^{pq} = x^{pq}y^{pq} = e$, d'où $xy \in B$.

Deplus,
$$(x^{-1})^p = (x^p)^{-1} = e^{-1} = e$$
, donc $x^{-1} \in B$.

Ainsi, B est stable par produit et par passage à l'inverse.

Conclusion

B est un sous-groupe de G.

Soit G un groupe abélien fini (loi notée multiplicativement), de cardinal $n \ge 2$, de neutre e, et a, un élémnet de G.

- **1.** En considérant l'ensemble des a^k , $k=0,\ldots,n$, montrer qu'il existe $d\in[1,n]$ tel que $a^d=e$.
- 2. Justifier l'existence de ω , le plus petit entier supérieur ou égal à 1 vérifiant $a^{\omega} = e$. ω s'appelle l'**ordre** de l'élément a.
- 3. Vérifier que

$$< a > = \{ e, a, a^2, \dots, a^{\omega - 1} \}$$

est un sous-groupe de G à ω éléments.

Solution 14.17

1. Les a^k avec $k \in [0, n]$ sont des éléments de G. Il y a n+1 valeurs de k différentes et G est un ensemble à n éléments. D'après le principe des tiroirs et des chaussettes, il existe deux valeurs distinctes $p, q \in [0, n]$ telles que $a^p = a^q$.

(Autrement dit, l'application $[0, n] \rightarrow G, k \mapsto a^k$ n'est pas injective).

Quitte à échanger p et q, on peut supposer $0 \le p < q \le n$. On pose d = q - p, alors $a^d = a^q a^{-p} = e$ et $d \in [1, n]$.

- **2.** L'ensemble $W = \{ k \in \mathbb{N}^*, a^k = e \}$ est une partie non vide de \mathbb{N}^* (elle contient d) minorée par 1. Elle admet donc un plus petit élément ω . On a bien $\omega \ge 1$. De plus, $\omega \le d \le n$.
- **3.** On a clairement $e \in \langle a \rangle$ et $\langle a \rangle \subset G$ par définition de $\langle a \rangle$.

Soit $n \in \mathbb{Z}$, on effectue la division euclidienne de n par ω :

$$n = \omega q + r$$
 et $0 \le r < \omega$.

On a alors $a^n = a^{\omega q + r} = (a^{\omega})^q a^r = e^q a^r = a^r \in \langle a \rangle$. En particulier, si $x, y \in \langle a \rangle$, il existe $p, q \in [0, \omega - 1]$ tel que $x = a^p$ et $y = a^q$. D'après la remarque précédente, on a donc

$$xy = a^{p+q} \in \langle a \rangle$$
 et $x^{-1} = a^{-p} \in \langle a \rangle$.

Conclusion

L'ensemble $\langle a \rangle$ est un sous-groupe de G.

De plus, un raisonnement analogue à la question 1 avec $0 \le p < q \le \omega - 1$. monter que les éléments a^k avec $k = 0, \dots, \omega - 1$ sont distincts. Ainsi

 $card < a >= \omega$.

Exercice 14.18 (**)

Soit (G, +) un groupe commutatif; soient A et B deux parties de G. On définit la somme de A et B, notée A + B, par

$$A + B = \{ x \in G \mid \exists (a, b) \in A \times B, x = a + b \}.$$

- 1. Montrer que si A et B sont deux sous-groupes de G, A + B est un sous-groupe de G.
- 2. On suppose maintenant que A et A + B sont deux sous-groupes de G; B est-il un sous-groupe de G?

Solution 14.18

Supposons que A et B soient des sous-groupes de G et notons H = A + B. Par définition de H, nous avons bien $H \subset G$.

Notons 0 l'élément neutre de G. On a alors $0 \in A$ et $0 \in B$ car A et B sont des sous-groupes de G, d'où $0 + 0 = 0 \in H$.

Soit $(x, y) \in H^2$. Il existe $(a, b) \in A \times B$ et $(a', b') \in A \times B$ tels que x = a + b et y = a + b. Puisque A et B sont stables par la loi +, $a + a' \in A$ et $b + b' \in B$. Par coséquent

$$x + y = (a + b) + (a' + b') = (a + a') + (b + b') \in H.$$

De plus, A et B étant stable par passage à l'opposé (le symétrique pour la loi +), on a également $-a \in A$ et $-b \in B$, d'où

$$-x = -(a + b) = (-a) + (-b) \in H.$$

Conclusion

H = A + B est un sous-groupe de G.

Réciproquement, avec $G = \mathbb{Z}$, $A = \mathbb{Z}$ et $B = \{5\}$, on a $A + B = \mathbb{Z}$. Ainsi, A et A + B sont deux sous-groupes de G, mais pas B.

Exercice 14.19 (***)

Soit (G, \cdot) un groupe (non commutatif) ; soient A et B deux sous-groupes de G. On définit le produit de A et B, noté $A \cdot B$, par

$$A \cdot B = \{ x \in G \mid \exists (a, b) \in A \times B, x = a.b \}.$$

Montrer les équivalences

$$(A \cdot B \text{ est un sous-groupe de } G) \iff (A \cdot B = B \cdot A) \iff (B \cdot A \subset A \cdot B).$$

Donner un exemple (en précisant G, A, B) où $A \cdot B$ n'est pas un groupe.

Solution 14.19

Notons e l'élément neutre de G pour la loi \cdot . Commençons par remarquer que l'on a toujours $A \cdot B \subset G$ et $B \cdot A \subset G$.

• Supposons que $A \cdot B$ est un sous-groupe de G.

Nous allons montrer que $A \cdot B = B \cdot A$ par double inclusion.

Soit $x \in A \cdot B$. Puisque $A \cdot B$ est un sous-groupe de G, alors $x^{-1} \in A \cdot B$, donc il existe $(a, b) \in A \times B$

$$x^{-1} = a \cdot b$$
 et $x = b^{-1} \cdot a^{-1}$.

Puisque A et B sont des sous-groupes de G, $b^{-1} \in B$ et $a^{-1} \in A$ et donc $x \in B \cdot A$. On a donc montré $A \cdot B \subset B \cdot A$.

Réciproquement, soit $x \in B \cdot A$. Il existe $(a, b) \in A \times B$ tels que $x = b \cdot a$. On peut donc écrire

$$x = b \cdot a = (e \cdot b) \cdot (a \cdot e)$$

Et comme $e \cdot b \in A \cdot B$ et $a \cdot e \in A \cdot B$ et $A \cdot B$ est un groupe, alors $x = b \cdot a \in A \cdot B$.

- Trivialement, si $A \cdot B = B \cdot A$, alors $B \cdot A \subset A \cdot B$.
- Supposons $B \cdot A \subset A \cdot B$.

Notons $H = A \cdot B$. On a clairement $H \subset G$ et $e \in H$ puisque $e \in A$ et $e \in B$.

Soit $(x, y) \in H^2$. Il existe $(a, b) \in A \times B$ et $(a', b') \in A \times B$ tel que x = ab et y = a'b'. On a donc

$$x \cdot y = a \cdot b \cdot a' \cdot b'$$

Or $b \cdot a' \in B \cdot A$ donc $b \cdot a' \in A \cdot B$: il existe $(u, v) \in A \times B$ tel que $(b \cdot a' = u \cdot v)$. On peut donc écrire

$$x \cdot y = a \cdot (b \cdot a') \cdot b' = (a \cdot u) \cdot (v \cdot b') \in H.$$

puisque $a \cdot u \in A$ et $v \cdot b' \in B$.

De plus, $x^{-1} = b^{-1} \cdot a^{-1} \in B \cdot A$ et donc $x^{-1} \in A \cdot B = H$.

Nous avons donc montré que H est un sous-groupe de G.

Conclusion

 $(A \cdot B \text{ est un sous-groupe de } G) \iff (A \cdot B = B \cdot A) \iff (B \cdot A \subset A \cdot B).$

Exercice 14.20 (****) Théorème de Lagrange

Soient (G,\cdot) un groupe fini et H un sous-groupe de G. On définit la relation $\mathcal R$ dans G par

$$xRy \iff xy^{-1} \in H.$$

1. Montrer que \mathcal{R} est une relation d'équivalence dans G et que la classe d'équivalence de x modulo \mathcal{R} est

$$xH = \{ xh \mid h \in H \}.$$

- **2.** Montrer que les classe d'équivalence modulo $\mathcal R$ ont toutes le même cardinal que H.
- 3. En déduire que

$$card(G) = card(H) \times card(G/R)$$

où G/\mathcal{R} désigne l'ensemble des classe d'équivalences modulo \mathcal{R} .

On a ainsi prouvé le théorème de Lagrange:

Dans un groupe fini, l'ordre de tout sous-groupe divise l'ordre du groupe.

Solution 14.20 Théorème de Lagrange

Traduire en termes d'homomorphisme de groupes les propriétés traditionnelles suivantes

1.
$$\ln(xy) = \ln x + \ln y$$
;

2.
$$|zw| = |z||w|$$
;

3.
$$(xy)^{\frac{1}{2}} = x^{\frac{1}{2}}y^{\frac{1}{2}}$$
;

4.
$$e^{z+w} = e^z e^w$$

5.
$$\overline{z + w} = \bar{z} + \bar{w}$$

6.
$$\overline{zw} = \bar{z}\bar{w}$$

Solution 14.21

- 1. In est un morphisme du groupe $(\mathbb{R}_+^{\star},.)$ dans le groupe $(\mathbb{R},+)$.
- **2.** $z \mapsto |w|$ est un morphisme du groupe $(\mathbb{C}^*, .)$ dans le groupe $(\mathbb{C}, .)$.
- **3.** $x \mapsto x^{1/2}$ est un morphisme du groupe $(\mathbb{R}_+^*, .)$ dans le groupe $(\mathbb{R}_+^*, .)$.
- **4.** exp est un morphisme du groupe $(\mathbb{C}, +)$ dans le groupe $(\mathbb{C}^*, .)$.
- **5.** $z \mapsto \bar{z}$ est un morphisme du groupe $(\mathbb{C}, +)$ dans le groupe $(\mathbb{C}, +)$.
- **6.** $z \mapsto \bar{z}$ est un morphisme du groupe $(\mathbb{C}, .)$ dans le groupe $(\mathbb{C}, .)$.

Soient $n \in \mathbb{N}^*$ et $f : \mathbb{R}^* \to \mathbb{R}^*$. Montrer que f est un endomorphisme du groupe $(\mathbb{R}^*, .)$. Déter $x \mapsto x^n$

miner son image et son noyau.

Solution 14.22

Soit $x, y \in \mathbb{R}^*$, alors

$$f(xy) = (xy)^n = x^n y^n = f(x)f(y).$$

Donc f est un morphisme de \mathbb{R}^* dans lui-même.

De plus,

$$f(x) = 1 \iff x^n = 1.$$

- Si n est un entier pair $ker(f) = \{-1, 1\}$.
- Si n est un entier impair $ker(f) = \{1\}$.

Une étude de fonction rapide donne

- Si *n* est un entier pair $Im(f) =]0, +\infty[$.
- Si *n* est un entier impair $Im(f) = \mathbb{R}^*$.

Soit $f : \mathbb{R} \to \mathbb{C}^*$ l'application qui à tout $x \in \mathbb{R}$ associe $e^{ix} \in \mathbb{C}^*$.

- 1. Montrer que f est un homomorphisme de groupes.
- 2. Calculer son noyau et son image.
- **3.** *f* est-elle injective ?

Solution 14.23

1. Soit $x, y \in \mathbb{R}$.

$$f(x)f(y) = e^{ix}e^{iy} = (\cos x + i\sin x)(\cos y + i\sin y) = (\cos x\cos y - \sin x\sin y) + i(\sin x\cos y + \cos x\sin y)$$

On reconnait alors les formules d'additions, d'où

$$f(x)f(y) = \cos(x + y) + i\sin(x + y) = e^{i(x+y)} = f(x + y).$$

2. • On a

$$x \in \ker(f) \iff f(x) = 1 \iff e^{ix} = 1 \iff \exists k \in \mathbb{Z}, x = 2k\pi.$$

Autrement dit, $ker(f) = 2\pi \mathbb{Z} = \{ 2k\pi \mid k \in \mathbb{Z} \}.$

•
$$\operatorname{Im}(f) = \left\{ e^{ix} \mid x \in \mathbb{R} \right\} = \mathbb{U} = \left\{ z \in \mathbb{C}^* \mid |z| = 1 \right\}.$$

3. L'application f n'est pas injective puisque $ker(f) \neq \{0\}$.

Pour tout couple (a, b) de \mathbb{R}^2 , on pose la matrice

$$M_{a,b} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

Soit

$$\mathcal{G} = \left\{ \left. M_{a,b} \; \middle| \; (a,b) \in \mathbb{R}^2 \setminus \left\{ \left. (0,0) \; \right\} \right. \right\} \qquad \text{et} \qquad f \; : \quad \mathcal{G} \; \rightarrow \; \mathbb{R}^{\star} \\ M_{a,b} \; \mapsto \; a^2 + b^2 \; . \right.$$

- 1. Montrer que \mathcal{G} est un groupe pour la loi usuelle de multiplication des matrices carrées.
- **2.** Montrer que f est un morphisme du groupe (\mathcal{G}, \times) dans le groupe (\mathbb{R}^*, \times) .

Solution 14.24

- 1. Pour montrer que \mathcal{G} est un groupe pour la multiplication des matrices carrées, il suffit de montrer que c'est un sous-groupe de $(GL_2(\mathbb{R}), \times)$.
 - Pour $(a, b) \neq (0, 0)$,

$$\det \begin{pmatrix} a & -b \\ b & a \end{pmatrix} = a^2 + b^2 \neq 0$$

ce qui montre que $M_{a,b}$ est inversible. On a donc bien $\mathcal{G} \subset \mathbf{GL}_2(\mathbb{R})$.

- On a $I_2 = M_{1,0} \in \mathcal{G}$.
- Soit $(a, b) \in \mathbb{R}^2 \setminus \{ (0, 0) \}$ et $(c, d) \in \mathbb{R}^2 \setminus \{ (0, 0) \}$.

$$M_{a,b}M_{c,d} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} ac-bd & -ad-bc \\ bc+ad & -bd+ac \end{pmatrix} = M_{u,v}.$$

avec u = ac - bd et v = bc + ad. Remarquons que $M_{u,v}$ est le produit de deux matrices inversibles, donc elle est aussi inversible et nécessairement $(u, v) \neq (0, 0)$.

• L'inverse de la matrice $M_{a,b}$ est

$$M_{a,b}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = M_{a',b'}$$

avec $a' = \frac{a}{a^2 + b^2}$ et $b' = \frac{-b}{a^2 + b^2}$ et $(a', b') \neq (0, 0)$ donc $M_{a,b}^{-1} \in \mathcal{G}$.

Conclusion

 \mathcal{G} est un sous-groupe de $GL_2(\mathbb{R})$ et donc un groupe lorsqu'il est muni de la multiplication des matrice carrées.

2. Soit $(a, b) \in \mathbb{R}^2 \setminus \{ (0, 0) \}$ et $(c, d) \in \mathbb{R}^2 \setminus \{ (0, 0) \}$. On note (u, v) = (ac - bd, bc + ad), de sorte que $M_{a,b}M_{c,d} = M_{u,v}$. On a

$$\begin{split} f\left(M_{a,b}\right)f\left(M_{c,d}\right) &= \left(a^2 + b^2\right)\left(c^2 + d^2\right) = (ac)^2 + (bc)^2 + (ad)^2 + (bd)^2 \\ &\text{et } f\left(M_{a,b}M_{c,d}\right) = \left(u^2 + v^2\right) = (ac)^2 - 2aebd + (bd)^2 + (bc)^2 + 2bead + (ad)^2 \end{split}$$

et donc $f\left(M_{a,b}M_{c,d}\right) = f\left(M_{a,b}\right)f\left(M_{c,d}\right)$

Conclusion

L'application f est un morphisme du groupe (\mathcal{G}, \times) dans le groupe (\mathbb{R}^*, \times) .

Soit (G, .) un groupe. Pour $a \in G$ fixé, on considère l'application

$$\begin{array}{cccc} f_a: & G & \to & G \\ & x & \mapsto & a.x.a^{-1} \end{array}.$$

- 1. Montrer que f_a est un automorphisme de (G,.).
- **2.** On note $I = \{ f_a \mid a \in G \}$. Montrer que (I, \circ) est un groupe où \circ est la loi de composition des applications de G dans G.
- 3. Soit

$$\varphi: G \to I$$

$$a \mapsto f_a$$

Montrer que φ est un morphisme de (G, .) dans (I, \circ) .

Solution 14.25

1. Soit $x, y \in G$, alors

$$f_a(xy) = axya^{-1}$$

et $f_a(x)f_a(y) = axa^{-1}aya^{-1} = axeya^{-1} = axya^{-1}$

et donc $f_a(xy) = f_a(x)f_a(y)$.

L'application f_a est donc un endomorphisme de G.

De plus, pour $x \in G$ et $y \in G$, on a

$$f(x) = y \iff axa^{-1} = y \iff x = a^{-1}ya$$
.

Ainsi, y a un unique antécédent par f qui est $a^{-1}ya$: l'application f est bijective. On peut remarquer que sa réciproque est $f_{a^{-1}}$.

Conclusion

L'application f_a est un automorphisme de (G, .).

- 2. Nous allons montrer que I est un sous-groupe de $(S(G), \circ)$, le groupe des permutation de G. Ainsi, I sera un groupe lorsqu'il est muni de la loi \circ .
 - $I \subset S(G)$ puisque nous avons montrer au dessus que toute élément de I est une bijection.
 - En notant e l'élément neutre de G, on a $\mathrm{Id}_G=f_e\in I$.
 - Soit f_a et f_b deux éléments de I. Pour $x \in G$,

$$f_a {\circ} f_b(x) = a \left(b x b^{-1} \right) a^{-1} = (ab) \, x \left(b^{-1} a^{-1} \right) = (ab) \, x \left(ab \right)^{-1}.$$

Ce qui montrer que $f_a \circ f_b = f_{ab} \in I$. Ainsi I est stable par \circ .

De plus, nous avons vu au dessus que $(f_a)^{-1} = f_{a^{-1}}$ et donc $(f_a)^{-1} \in I$.

Conclusion

I est un sous-groupe de $(S(G), \circ)$ et donc un groupe pour la loi (induite) \circ .

3. Soit $(a, b) \in G^2$. Nous avons vu au dessus

$$\varphi(a) \circ \varphi(b) = f_a \circ f_b = f_{ab} = \varphi(ab).$$

Autrement dit, φ est un morphisme de (G, .) dans (I, \circ) .

Montrer que

$$\left\{ \begin{pmatrix} 1 & 0 & x \\ -x & 1 & -\frac{x^2}{2} \\ 0 & 0 & 1 \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$

est un groupe (pour la multiplication usuelle) isomorphe à $(\mathbb{R},+).$

Solution 14.26

Exercice 14.27 Étude des groupes à faibles cardinaux

- 1. (a) Soit (G, \cdot) un groupe à deux éléments. Construire la table de multiplication de G.
 - (b) Soit (G, \cdot) et (G', \cdot) deux groupes à deux éléments. Construire un isomorphisme de groupes de G dans G'.

Ainsi, tous les groupes à deux éléments sont isomorphes. On dit qu'il n'y a qu'un groupe à deux éléments à isomorphisme près.

- **2.** Soit (G, \cdot) un groupe à trois éléments. Construire la table de multiplication de G. En déduire qu'il n'y a qu'un groupe à trois éléments à isomorphisme près.
- 3. Montrer que \mathbb{U}_4 et $\mathbb{U}_2 \times \mathbb{U}_2$ (muni de la loi de groupe produit) ne sont pas isomorphes (il y a donc plusieurs «types» de groupes à quatre éléments).

Solution 14.27 Étude des groupes à faibles cardinaux

1. Notons $G = \{e, a\}$ où e est l'élément neutre de G. On a donc ee = e, ea = a et ae = a. Reste à déterminer aa. Si aa = a, alors en multipliant à gauche par a^{-1} , on obtient ea = e d'où a = e ce qui est manifestement faux. On a donc nécessairement $a \cdot a = e$. D'où la table de multiplication de G donnée par

Notons $G' = \{e', a'\}$ un autre groupe à deux éléments où e' est élément neutre. Soit $f: G \to G'$ définie par f(e) = e' et f(a) = a'. La fonction f est clairement bijective. Reste à vérifier que c'est un morphisme de groupe:

$$f(ee) = f(e) = e'$$
 et $f(e)f(e) = e'e' = e'$
 $f(ae) = f(a) = a'$ et $f(a)f(e) = a'e' = a'$
 $f(ea) = f(a) = a'$ et $f(e)f(a) = e'a' = a'$
 $f(aa) = f(e) = e'$ et $f(a)f(a) = a'a' = e'$

On a donc bien, pour tout $x, y \in G$, f(xy) = f(x)f(y). Les groupes G et G' sont donc isomorphes.

2. Soit $G = \{e, a, b\}$ un groupe à trois éléments où e est l'élément neutre de G. Nous devons déterminer ab, ba, a^2 et b^2 .

Si ab = a, en multipliant à gauche par a^{-1} , on obtient b = e, ce qui est exclus, donc $ab \neq a$. Un raisonnement analogue montre que $ab \neq b$. Ainsi ab = e donc $b = a^{-1}$ et on a aussi ba = e.

Si $a^2 = a$, en multipliant à gauche par a^{-1} , on obtient a = e, ce qui est exclus, donc $a^2 \neq a$. Si $a^2 = e$, alors $a^2 = ab$ et l'on obtient a = b: impossible, donc $a^2 \neq e$. Nécessairement $a^2 = b$.

De manière analogue, $b^2 = a$. D'où la table de multiplication de G donnée par

27

On reconnait la table de multiplication de $\mathbb{U}_3=\left\{\; 1,j,\bar{j}\; \right\}$ puisque $j^2=\bar{j}=j^{-1}.$

Comme précédemment, un groupe $G' = \{e', a', b'\}$ aurait une table de multiplication analogue et on montre que l'application $f: G \to G'$ telle que f(e) = e', f(a) = a' et f(b) = b' est un isomorphismes entre G et G'.

3. On a $\mathbb{U}_4 = \{ 1, i, -1, -i \} = \{ 1, i, i^2, i^3 \}$.

On note $\mathbb{U}_2 \times \mathbb{U}_2 = \{ e, a, b, ab \}$ où e = (1, 1), a = (-1, 1), b = (1, -1) et donc ab = ba = (-1, -1).

Supposons qu'il existe f un isomorphisme de \mathbb{U}_4 sur $\mathbb{U}_2 \times \mathbb{U}_2$. Alors

$$f(i \cdot i) = f(i) \cdot f(i) = e$$

car pour tout $x \in \mathbb{U}_2 \times \mathbb{U}_2$, on a $x^2 = e$. On a donc f(-1) = e. Or f étant un morphisme de groupe, f(1) = e et comme f est injective on obtient -1 = 1 ce qui est exclus.

Conclusion

Les groupe \mathbb{U}_4 et $\mathbb{U}_2 \times \mathbb{U}_2$ ne sont pas isomorphes.

On peut montrer que tout groupe à 5 éléments est isomorphe à \mathbb{U}_5 . Remarquez que tous ces groupes sont commutatifs.

À isomorphisme près, il existe deux groupes à 6 élément U_6 et S_3 (le groupe des permutations de [1,3]). S_3 est le plus petit groupe non commutatif.

Déterminer, à isomorphisme près, les groupes d'ordre 6.

Solution 14.28

Soit (G, .) un groupe (quelconque). On note C(G) l'ensemble des caractères de G, c'est-à-dire l'ensemble des morphismes de G vers le groupe multiplicatif \mathbb{C}^* .

- 1. Montrer que C(G) est un groupe commutatif pour la loi naturelle. On l'appelle groupe des caractères de G.
- **2.** Montrer que $C(\mathbb{Z})$ est isomorphe à \mathbb{C}^* .
- 3. Soient $n \in \mathbb{N}$ et $\omega = \mathrm{e}^{2i\pi/n}$. Montrer que $F: C(\mathbb{U}_n) \to \mathbb{U}_n$ est un isomorphisme de groupes. $f \mapsto f(\omega)$
- **4.** Soit $G = G_1 \times G_2$ un groupe produit. En introduisant, pour $f_1 \in C(G_1)$ et $f_2 \in C(G_2)$, l'application

$$f: G \to \mathbb{C}^* ,$$

$$(x_1, x_2) \mapsto f_1(x_1) f_2(x_2) ,$$

montrer que C(G) est isomorphe à $C(G_1) \times C(G_2)$.

Solution 14.29

1. Dans $(\mathcal{F}G, \mathbb{C}, +, .)$, l'anneau des fonctions de G dans \mathbb{C} , l'ensemble des éléments inversibles (pour la multiplication) est $\mathcal{F}(G,\mathbb{C}^*)$, autrement dit l'ensemble des fonctions qui ne s'annule pas. Nous allons donc montrer que C(G) est un sous-groupe de $(\mathcal{F}(G,\mathbb{C}^*),.)$.

L'application $e: G \to \mathbb{C}^*, x \mapsto 1$ est bien un morphisme puisque, pour $x, y \in G$,

$$e(x.y) = 1$$
 et $e(x).e(y) = 1.1 = 1$.

Soit $f, g \in C(G)$. Montrons que fg est un morphisme de G dans \mathbb{C}^{\star} . Pour $x, y \in G$,

$$(fg)(xy) = f(xy)g(xy)$$
 part définition du produit de deux fonctions
 $= f(x)f(y)g(x)g(y)$ car f et g sont des morphismes de G dans \mathbb{C}^*
 $= f(x)g(x)f(y)g(y)$ car le produit dans \mathbb{C}^* est commutatif
 $= (fg)(x)(fg)(y)$ part définition du produit de deux fonctions.

part définition du produit de deux fonctions car f et g sont des morphismes de G dans \mathbb{C}^* car le produit dans \mathbb{C}^* est commutatif

On a donc bien $fg \in C(G)$.

De plus, pour $x, y \in G$,

$$f^{-1}(xy) = \frac{1}{f(xy)}$$

$$= \frac{1}{f(x)f(y)}$$

$$= \frac{1}{f(x)} \frac{1}{f(y)}$$

$$= f^{-1}(x)f^{-1}(y)$$

1/f est l'inverse de f pour la multiplication

car f est un morphisme de G dans \mathbb{C}^*

ce sont des calculs dans \mathbb{C}^*

On retrouve l'inverse de f pour la multiplication.

On a donc bien $f^{-1} \in C(G)$.

Conclusion

L'ensemble C(G) muni de la multiplication des fonctions est un sous-groupe de $\mathcal{F}(G,\mathbb{C}^*)$ et donc un groupe.

2. Un morphisme de $(\mathbb{Z}, +)$ dans \mathbb{C} est entièrement déterminer par sa valeur en 1. En effet, si $f \in C(\mathbb{Z})$, alors pour $n \in \mathbb{Z}$,

$$f(n) = f(n.1) = f(\underbrace{1 + 1 + \dots + 1}_{n}) = \underbrace{f(1) \cdot f(1) \cdot \dots \cdot f(1)}_{n} = f(1)^{n}.$$

Ainsi,

$$\varphi: C(\mathbb{Z}) \to \mathbb{C}^*$$

$$f \mapsto f(1)$$

est injective. De plus, si $f, g \in C(\mathbb{Z})$, alors $\varphi(fg) = (fg)(1) = f(1)g(1) = \varphi(f)\varphi(g)$. Donc φ est un morphisme du groupe $C(\mathbb{Z})$ dans le groupe \mathbb{C}^* .

Enfin, si $a \in \mathbb{C}^*$, alors $f : n \mapsto a^n$ est un morphimse de \mathbb{Z} dans \mathbb{C}^* , et on a bien $\varphi(f) = a$. Donc φ est surjective.

Conclusion

L'application φ est un isomorphisme du groupe $C(\mathbb{Z})$ dans le groupe \mathbb{C}^* .

Remarque. Pour l'injectivité, on aurait pu aussi étudier ker $\varphi = \{e \}$ où $e : x \mapsto 1$.

3. On remarque que si $f \in C(\mathbb{U}_n)$ et $k \in \mathbb{Z}$,

$$f(e^{2ik\pi/n}) = f(\omega^k) = f(\omega)^k$$
.

Un élément de $C(\mathbb{U}_n)$ est donc entièrement caractériser par sa valeur en ω . La suite de la démonstration est analogue à la question précédente.

4. On note

$$\begin{array}{cccc} T : & C(G_1) \times C(G_2) & \rightarrow & C(G) \\ & & (f_1, f_2) & \mapsto & f \end{array}$$

où $f(x_1, x_2) = f_1(x_1) f_2(x_2)$.

Soit $(f_1, f_2) \in C(G_1) \times C(G_2)$ et $(g_1, g_2) \in C(G_1) \times C(G_2)$. On pose $f = T(f_1, f_2)$ et $g = T(g_1, g_2)$. Pour $(x_1, x_2) \in G_1 \times G_2$,

$$T\left((f_{1},f_{2}).(g_{1},g_{2})\right)(x_{1},x_{2})=T\left(f_{1}g_{1},f_{2}g_{2}\right)(x_{1},x_{2})=\left(f_{1}g_{1}\right)(x_{1})\left(f_{2}g_{2}\right)(x_{2})=f_{1}(x_{1})g_{1}(x_{1})f_{2}(x_{2})g_{2}(x_{2})=f_{1}(x_{1})g_{2}(x_{2})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{2})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{2})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1})=f_{2}(x_{1})g_{2}(x_{1$$

Ceci étant vrai pour tout $(x_1, x_2) \in G$, on a

$$T((f_1, f_2).(g_1, g_2)) = fg = T(f_1, f_2)T(g_1, g_2),$$

donc T est un morphisme de groupe.

Étudions le noyau de T. Supposons que $T(f_1, f_2) = e_{C(G)}$: $x \mapsto 1$. On a alors,

$$\forall (x_1, x_2) \in G_1 \times G_2, f_1(x_1) f_2(x_2) = 1.$$

En particulier, avec $x_1=e_{G_1}$ (l'élément neutre de G_1), on a $f_1(e_{G_1})=1$ et on obtient

$$\forall x_2 \in G_2 f_2(x_2) = 1$$

et donc $f_2 = e_{C(G_2)}$: $x \mapsto 1$. *Mutatis mutandis*, en spécialisant avec $x_2 = e_{G_2}$, on obtient $f_1 = e_{C(G_1)}$. Finalement $(f_1, f_2) = (e_{C(G_1)}, e_{C(G_2)})$ qui est l'élément neutre du groupe produit $C(G_1) \times C(G_2)$.

Nous avons donc montrer $\ker(T) \subset \left\{ \left(e_{C(G_1)}, e_{C(G_2)} \right) \right\}$, l'inclusion réciproque étant automatique. Donc T est injective.

Soit $f \in C(G)$. On définit

$$f_1: G_1 \to \mathbb{C}^*$$
 et $f_2: G_2 \to \mathbb{C}^*$
 $x_1 \mapsto f(x_1, e_{G_2})$ $x_2 \mapsto f(e_{G_1}, x_2)$

On a alors $T(f_1, f_2) = f$ puisque pour $(x_1, x_2) \in G_1 \times G_2$,

$$f_1(x_1)f_2(x_2) = f(x_1,e_{G_2})f(e_{G_1},x_2) = f\left(x_1e_{G_1},e_{G_2}x_2\right) = f\left(x_1,x_2\right).$$

Reste à vérifier (facile) que $f_1 \in C(G_1)$ et $f_2 \in C(G_2)$. Ce qui montre que T est surjective.

Conclusion

L'application T est un isomorphisme de $C(G_1) \times C(G_2)$ dans C(G).

Montrer que si f est une bijection de X sur Y, alors F: $\mathfrak{S}(X) \to \mathfrak{S}(Y)$ est un isomorphisme. $\sigma \mapsto f \sigma f^{-1}$

Solution 14.30

Vu en cours!

Le but de cet exercice est de montrer que les groupes (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ne sont pas isomorphes. Supposons qu'il existe un isomorphisme φ de (\mathbb{R}^*, \times) sur (\mathbb{C}^*, \times) .

- **1.** Montrer que $\varphi(-1) = -1$.
- **2.** Montrer que si $\alpha = \varphi^{-1}(i)$, alors $\alpha^2 = -1$.
- 3. Conclure.

Solution 14.31

1. On a

$$\varphi(-1)^2 = \varphi((-1)^2) = \varphi(1) = 1$$

donc $\varphi(-1) = \pm 1$. Or φ est injective et $\varphi(1) = 1$. On a nécessairement $\varphi(-1) = -1$.

- **2.** On a $\varphi(\alpha) = i$ donc $\varphi(\alpha^2) = i^2 = -1$. D'après la questions précédente $\alpha^2 = -1$.
- **3.** On obtient donc $\alpha \in \mathbb{R}^*$ tel que $\alpha^2 = -1$: impossible. Un tel isomorphisme n'exite donc pas.

Soient p, q deux entiers naturels premiers entre eux et n = pq. Soit (G, \cdot) un groupe fini commutatif vérifiant $x^n = 1$ pour tout $x \in G$. On forme

$$M = \{ x \in G \mid x^p = 1 \}$$
 et $N = \{ x \in G \mid x^q = 1 \}$.

- **1.** Montrer que M et N sont des sous-groupes de (G, \cdot) .
- **2.** Vérifier $M \cap N = \{1\}$.
- 3. Établir que l'application

$$f: M \times N \to G$$
$$(x, y) \mapsto xy$$

est un isomorphisme de groupes.

Solution 14.32

- 1. Voir l'exercice ??? en début de fiche.
- **2.** On a déjà $\{1\} \subset M \cap N$ car M et N sont des sous-groupes de G.

Soit $x \in M \cap N$. On a donc $x^p = 1$ et $x^q = 1$. Comme p et q sont premiers entre eux, il existe $u, v \in \mathbb{Z}$ tels que up + vq = 1, d'où

$$x = x^{1} = x^{up+vq} = x^{up}x^{vq} = (x^{p})^{u}(x^{q})^{v} = 1^{u}1^{v} = 1.$$

On a donc bien $M \cap N \subset \{1\}$ et le résultat par double inclusion.

3. Soit $a = (x_1, y_1) \in M \times N$ et $b = (x_2, y_2) \in M \times N$, alors

$$f(ab) = f\left((x_1, y_1) \cdot (x_2, y_2)\right) = f\left(x_1 x_2, y_1 y_2\right) = x_1 x_2 y_1 y_2$$
 et $f(a)f(b) = f(x_1, y_1)f(x_2, y_2) = x_1 y_1 x_2 y_2$

et puisque G est un groupe commutatif, on a bien f(ab) = f(a)f(b). Ainsi, f est un morphisme de groupes.

Pour montrer que f est injective, nous allons montrer $\ker(f) = \{(1,1)\}$. Soit $(x,y) \in \ker(f)$. On a donc $x \in M$, $y \in N$ et f(x,y) = xy = 1. Nous allons exploiter la relation up + vq = 1.

$$1 = (xy)^{vq} = x^{vq}y^{vq} = x^1x^{-up} \cdot y^{vq} = x \cdot 1 \cdot 1 = x.$$

D'où x = 1 puis y = xy = 1. On a donc (x, y) = (1, 1) et $ker(f) = \{(1, 1)\}$. L'application f est donc injective.

Enfin, pour $z \in G$, on a $z^n = 1$, ou encore $(z^p)^q = 1$. Donc $z^p \in N$ et même $z^{pu} \in N$. De même $z^{vq} \in M$. On peut écrire

$$z = z^1 = z^{up+vq} = z^{vq} \cdot z^{up}$$

Autrement dit, $(z^{vq}, z^{up}) \in M \times N$ et

$$f\left(z^{vq}, z^{up}\right) = z.$$

donc z admet un antécédent par f. On a donc montrer que f est aussi surjective.

Conclusion

L'application f est un isomorphisme du groupe produit $M \times N$ sur le groupe G.

Anneaux, corps

Exercice 14.33 Études d'inversibilités dans un anneau Soit (A, +, .) un anneau.

- 1. Soit $a \in A$ tel que $a^2 = 0$. Démontrer que 1 a et 1 + a sont inversibles et expliciter leurs inverses.
- **2.** Généraliser pour $a \in A$ tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $a^n = 0$.

Solution 14.33 Études d'inversibilités dans un anneau

Exercice 14.34 Éléments nilpotents

Soit (A, +, .) un anneau. Un élément x de A est dit **nilpotent** s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0$.

- 1. Démontrer que si xy est nilpotent, alors yx l'est aussi.
- 2. Démontrer que si x et y sont nilpotents et commutent, alors, xy et x + y sont nilpotents.

Solution 14.34 Éléments nilpotents

Exercice 14.35 Étude d'un ensemble de fonctions

Soit A l'ensemble des fonctions définies sur \mathbb{R} telles que f(0) = f(1). Démontrer que A est un anneau. **Solution 14.35** *Étude d'un ensemble de fonctions*

Soit a un élément d'un ensemble X. Montrer que l'application

$$\begin{array}{cccc} E_a: & \mathcal{F}(X,\mathbb{R}) & \to & \mathbb{R} \\ & f & \mapsto & f(a) \end{array}$$

est un morphisme d'anneaux.

Solution 14.36

Exercice 14.37 Nilradical d'un anneau

On appelle nilradical d'un anneau commutatif $(A, +, \times)$ l'ensemble N formé des éléments nilpotents de A, c'est-à-dire des $x \in A$ tels qu'il existe $n \in \mathbb{N}^*$ vérifiant $x^n = 0_A$.

Montrer que N est un idéal de A.

Solution 14.37 Nilradical d'un anneau

Exercice 14.38 Radical d'un idéal

Soit I un idéal d'un anneau commutatif A. On appelle **radical** de l'idéal I l'ensemble R(I) des éléments x de A pour lesquels il existe $q \in \mathbb{N}^*$ tel que $x^q \in I$.

- **1.** Montrer que R(I) est un idéal de A contenant I.
- 2. Soient I et J deux idéaux. Vérifier

$$R(I \cap J) = R(I) \cap R(J)$$
.

3. On suppose que $A = \mathbb{Z}$. Déterminer le radical de $n\mathbb{Z}$ pour $n \in \mathbb{N}$.

Solution 14.38 Radical d'un idéal

Exercice 14.39 Montrer que $\mathbb{Q}[i\sqrt{3}] = \left\{ a + bi\sqrt{3} \mid (a,b) \in \mathbb{Q}^2 \right\}$ est un corps. Solution 14.39