

Quiet Supersonic Technology (QueSST) X-Plane Test

Ray Castner,
from
NASA Glenn Research Center,
Cleveland OH

Outline

- Why QueSST?
- 8x6 Wind Tunnel
- QueSST Model
- Fabrication Progress

WHY QUESST?

NASA Sonic Boom Research:

- Low Boom Vehicle Design
- Atmospheric Propagation
- Outdoor & Indoor Acoustics
- Human Response
 - Laboratory Studies & Metrics
 - Field Studies & Community Response

Human Response

Community tests

Specialized simulation facilities

Jury tests

Next Step – Low Boom Flight Demonstration X-Plane

Awarded to Lockheed Martin

Wind Tunnel Testing at 8'x6' SWT

Propulsion Performance

Verify Vehicle S&C

8- BY 6-FOOT AND 9- BY 15-FOOT WIND TUNNEL COMPLEX

8- by 6-foot and 9- by 15-foot Wind Tunnel Complex

1949 overhead image of 8x6 complex

2015 overhead image of 8x6/9x15 complex

Historical Relevance

↑ C-1960-54465

↓ C-1983-6425

↑ C-1986-4703

↓ C-1970-1385

↑ C-1964-72479

↓ C-2007-2471

Wind Tunnel Drive & Air Dryer

Three 29,000-hp drive motors set in series drive a single shaft

Air-dryer beds upstream of compressor with 8-layers of desiccant

C-1945-23277
7-stage axial compressor with outer shell opened for inspection; max 870-RPM and 2500-lbs/sec mass flow

Flexible Walled Nozzle

Hydraulic stations that drive a single wall and the cams that dictate wall movement

QueSST model installed
in 8x6 SWT test section
and the flexwall visible
upstream

Test Section

"South wall" of test section showing both smooth and porous sections with both Schlieren windows and porous blanks

C-1956-42930
Porosity hole drilling operation in
8x6 SWT, 1956

QueSST model installed in 8x6 SWT test section

Looking upstream; flow imaging installation and full view of 8x6 SWT test section

Diffuser & Acoustic Muffler

8x6 diffuser as seen from the test section looking downstream; visible person is halfway down

C-1950-26414
End of 8x6 SWT diffuser,
into Turn #1, and into
triple-storied Acoustic
Muffler

Closing the Circuit and the 9x15 LSWT

C-1990-4389
McDonnell Aircraft Company
279-3C STOVL model

C-1994-01831L
Turbofan model using
compressed air as fan
drive; installed in
legacy 9x15 LSWT

9x15 test
section
dismantled
in
preparation
for facility
upgrades
in 2017-
2018

INSTALLATION OF QUESST

QueSST Test Phases

QueSST
aerodynamic
installation
February 2017 –
March 2017

QueSST
propulsion
installation
April 2017 –
May 2017

Components of the QueSST Supports

Prep Room Installation & Checkloads

Balance installation in-progress

Model support stack-up installed on model positioning system

1,080-lbs loading in the Normal, or "Lift" component

Model instrumentation work in preparation area

Test Section Installation

Lift of QueSST model into tunnel through downstream 16-foot hatch

QueSST model installed, lifted off cart, cart pushed forward and disassembled

QueSST assembly and data system validation checkloads as installed in test section

Support structure hydraulics and instrumentation cleaned up for run

Testing - Aero

Testing - Aero

Model Change from Aero to Prop

Aero tail geometry, internal balance mounting block, and balance removed; Model re-installed on offset blade to allow for MFP can

Propulsion geometry, rakes, and instrumentation routed and hooked up

MFP installed and motion checked out

Testing - Propulsion

Inlet boundary layer rake installed

Background Oriented Schlieren (BOS) installed

Three different vortex generator (VGs) installed for propulsion inlet testing

Testing - Propulsion

Challenges and Opportunities

Plug galling on
guide rails due to
plug rotation

Rail damage left
after plug/rail
seizure

MFP rail
modification to
bronze sliders

Challenges and Opportunities

Fouling strip damage on model due to moog spool valve failure

Hydraulic relief manifold “wormholing” due to higher pressure cavitation

Hydraulic servo control valve o-ring failure causing high pressure hydraulic leak

Challenges and Opportunities

QueSST double-knuckle reinforcement and cylinder sizing to take larger pitching loads

New balance monitoring system

Secondary (new) inlet assembly fit to existing hardware

RESULTS: VEHICLE AERODYNAMICS

What do engineers want from wind tunnel data?

- Compare simulation
- Force measurements
- Surface deflections
- Surface pressure

No boring graphs today (maybe 2)

Camera

RESULTS: PROPULSION

Update

- 2022 is a big year for LBFD
 - Final Assembly of the Vehicle
 - **Ship to Ft. Worth for Loads Test**
 - Air Data Probe 8x6 Wind Tunnel Test
 - Deliveries of NASA systems complete
 - Subsystem Check Outs (SCOs), Proof & Cal Tests, Ground Vibration Test
 - Engine Installation
 - Flight Readiness Review (FRR)

Engines Delivered August 2020

- Two F414-GE-100 engines
- Shipped from GE Lynn MA to AFRC

LBFD Propulsion Team Activities 2021

- Propulsion CFD: plume/aft-deck interaction, hydrazine exhaust
- Engine Field Service Instructions (SiC nozzle flaps)
- Engine flight test instrumentation checkouts
- Propulsion control room preparations/training
- Propulsion cockpit simulator integration
- Engine fit check in the aircraft
- Engine installation and system checkouts
- Flight Readiness Review
- Engine ground testing (in vehicle)
- First flight

AFRC Flight Control Room

AFRC Cockpit Simulator

Tie-down ground testing example

5

6

