The Calculus of Uncertainty: Stochastic Processes & Their Mathematical Universe

Hooman Zare

SUT

July 28, 2025

Random Variable: Formal Definition

Definition

A random variable X is a measurable function from a probability space (Ω, \mathcal{F}, P) to a measurable space (E, \mathcal{E}) :

$$X:\Omega\to E$$

where \mathcal{F} is a σ -algebra on Ω , and \mathcal{E} is a σ -algebra on \mathcal{E} .

Key Implications:

- $\forall B \in \mathcal{E}, \ X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$
- $P(X \in B) = P(\{\omega : X(\omega) \in B\})$ is well-defined

σ -Algebra: Information Structure

Definition

A σ -algebra $\mathcal F$ is a collection of subsets of Ω satisfying:

- $\mathbf{0} \ \Omega \in \mathcal{F}$
- Closed under complements
- Closed under countable unions

Borel σ -Algebra:

- Generated by open sets in \mathbb{R}^n : $\mathcal{B}(\mathbb{R}^n)$
- Elements are Borel sets (intervals, points, countable unions/intersections)

Interpretation: \mathcal{F} encodes "knowable events" in a system.

Stochastic Process: Dynamic Randomness

Definition

A **stochastic process** is a collection of random variables $\{X_t\}_{t\in\mathcal{T}}$ indexed by time t, where:

$$X_t:(\Omega,\mathcal{F})\to(\mathcal{S},\mathcal{S})$$

(T: time set, S: state space)

Key Aspects:

- Path-space view: $\omega \mapsto t \mapsto X_t(\omega)$ (a random function)
- Measure-theoretic view: $X : \Omega \times T \rightarrow S$ (joint measurability)

Examples:

- Brownian motion: $S = \mathbb{R}$, $T = [0, \infty)$
- Poisson process: $S = \mathbb{N}_0$, $T = \mathbb{R}^+$

Filtration: Evolution of Information

Definition

A **filtration** $\{\mathcal{F}_t\}_{t\geq 0}$ is a family of σ -algebras satisfying:

$$\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}$$
 for $s \leq t$

Interpretation:

- $\mathcal{F}_t =$ "Information available up to time t"
- X_t is \mathcal{F}_t -adapted if X_t is \mathcal{F}_t -measurable (values knowable at t)

$$\begin{array}{ccccc} \mathcal{F}_{t_1} & \mathcal{F}_{t_2} & \mathcal{F}_{t_3} \\ \hline & + & + & + \\ \hline \text{Coarse} & \hline \text{Fine} \end{array}$$

Filtering: Estimating X_t given \mathcal{F}_s $(s \leq t)$

Interdisciplinary Intuition (Part 1/2)

Field	Ω (Sample Space)	\mathcal{F}_t (Filtration)	Process
Biology	All possible mRNA trajectories	Microscopy data up to t	Gene expression X_t
	$\omega = {\rm expression} \ {\rm history}$	$\begin{array}{ll} Knows & if \\ \{gene\;ON\} & \in \\ \mathcal{F}_t \end{array}$	(telegraph model)
Economics	All possible mar-	Order book	Asset price S_t
	ket histories	events up to t	(
	$\omega = \text{price/order}$ evolution	Knows if $\{bid > K\} \in \mathcal{F}_t$	(geometric BM)
Physics	All possi-	Detector out-	Quantum state
	ble quantum	comes up to t	ψ_{t}
	records		
	$\omega = \text{measure-}$	Knows if	(SSE)
	ment sequence	$\mid \{spin \mid \uparrow\} \in \mathcal{F}_t$	

Interdisciplinary Intuition (Part 2/2)

Field	Ω (Sample	\mathcal{F}_t (Filtration)	Process
	Space)		
Ecology	All possible pop-	Field surveys up	Species count
	ulation histories	to season t	N_t
	$\omega =$	Knows if	(branching pro-
	birth/death/migrati		cess)
Mathematics	All possible	σ (signature	(X_t, \mathbb{X}_{st})
	rough paths	terms) up to ϵ	
	$\omega = (X, \int dX \otimes I)$	Knows if $\{\mathbb{X} \in$	(fBM enhance-
	All possible rough paths $\omega = (X, \int dX \otimes dX)$	$A\}\in \mathcal{F}_{\epsilon}$	ment)

Unifying Mathematical Principles:

- **①** $\Omega = \text{Canonical path space } \{\omega : T \to S\}$ (Skorokhod space)
- ② $\mathcal{F}_t = \sigma(X_s: s \leq t) = \text{Natural filtration}$ (coarsest σ -alg making $\{X_s\}_{s \leq t}$ measurable)
- **3** Adaptedness: $X_t(\omega) = \omega(t)$ is \mathcal{F}_t -measurable
- **4** Filtering: $\mathbb{E}[X_t | \mathcal{F}_s]$ for s < t (conditional expectation)

Frame Title

 $\mathcal{F}_t = \mathsf{Knowable} \ \mathsf{events}$

Common Theme:

 $\mathcal{F}_t = \sigma(\text{Available observations})$

 X_t must be \mathcal{F}_t -measurable

Moments: Statistical Descriptors

Definition (k-th Moment)

For a random variable X_t at time t:

$$m_k(t) = \mathbb{E}[X_t^k] = \int_{-\infty}^{\infty} x^k p_t(x) dx$$

Key Moments:

- Mean: $\mu(t) = m_1(t)$
- Variance:

$$\sigma^2(t) = m_2(t) - m_1(t)^2$$

Higher Moments:

- Skewness: $\gamma(t) = \frac{m_3(t)}{\sigma^3(t)}$ (asymmetry)
- Kurtosis: $\kappa(t) = \frac{m_4(t)}{\sigma^4(t)}$ (tail heaviness)

Example (Brownian Motion):

- $\mu(t) = 0$, $\sigma^2(t) = t$ (variance grows linearly)
- $\gamma(t) = 0$, $\kappa(t) = 3$ (Gaussian properties)

Ensemble vs. Time Averages

Ensemble Average:

Time Average:

$$\langle X_t \rangle_{\mathsf{ens}} = \frac{1}{N} \sum_{i=1}^N X_t^{(i)} \xrightarrow{N \to \infty} \mathbb{E}[X_t] \qquad \qquad \langle X \rangle_{\mathsf{time}} = \lim_{T \to \infty} \frac{1}{T} \int_0^T X_t dt$$

$$\langle X
angle_{\mathsf{time}} = \lim_{T o \infty} \frac{1}{T} \int_0^T X_t dt$$

Across identical systems at fixed t

Along single trajectory

Ergodicity: $\langle \cdot \rangle_{ens} = \langle \cdot \rangle_{time}$ almost surely

Non-ergodic Examples:

- Glass dynamics: Frozen disorder prevents self-averaging
- Financial markets: Regime shifts (e.g., bull/bear markets)
- Climate systems: Multiple metastable states (e.g., ice ages)

Probability Distributions: Key Concepts

Definition (Cumulative Distribution Function (CDF))

$$F_t(x) = P(X_t \le x) = \int_{-\infty}^x p_t(u) du$$

Definition (Probability Density Function (PDF))

$$p_t(x) = \frac{d}{dx} F_t(x)$$
 (1-point density)

Definition (Joint PDF)

$$p_{t_1,\ldots,t_n}(x_1,\ldots,x_n)=\frac{\partial^n}{\partial x_1\cdots\partial x_n}P(X_{t_1}\leq x_1,\ldots,X_{t_n}\leq x_n)$$

Conditional Distributions & Bayes' Rule

Definition (Conditional PDF)

For X_{t_1} given $X_{t_2} = x_2$ $(t_1 > t_2)$:

$$p(x_1|x_2) = \frac{p_{t_1,t_2}(x_1,x_2)}{p_{t_2}(x_2)}$$

Theorem (Bayes' Rule for Processes)

$$p(x_1|x_2,\ldots,x_r) = \frac{p(x_1,x_2,\ldots,x_r)}{p(x_2,\ldots,x_r)} = \frac{p(x_r|x_1,\ldots,x_{r-1})p(x_1,\ldots,x_{r-1})}{p(x_2,\ldots,x_r)}$$

Filtering Application:

• Estimate hidden state X_t given observations $Y_{1:t}$

$$p(x_t|y_{1:t}) = \frac{p(y_t|x_t)p(x_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

Markov Property & Simplifications

Definition (Markov Process)

$$p(x_t|x_{t-1},x_{t-2},...)=p(x_t|x_{t-1})$$

Future depends only on present state.

Consequences:

- Joint PDF factorizes: $p(x_1, ..., x_T) = p(x_1) \prod_{k=2}^T p(x_k | x_{k-1})$
- Conditional PDFs simplify: $p(x_t|x_{1:s}) = p(x_t|x_s)$ for t > s

Non-Markovian Example:

- Fractional Brownian motion: $X_t = \int_0^t (t-s)^{H-1/2} dW_s$ with $H \neq 1/2$
- Requires full history: $p(x_t|x_{t-1}, x_{t-2}, \dots) \neq p(x_t|x_{t-1})$

Interdisciplinary Moments & Distributions: Case Studies

Field	Statistical Challenge	Mathematical Tool
Neuroscience	Non-Gaussian BOLD signals	Edgeworth expansion:
(3.15) 5	in epilepsy	
(fMRI Dynamics)	Kurtosis $\kappa(t) > 3$ detects	p(x) =
	seizure foci	$\phi(x) \left[1 + \frac{\kappa - 3}{24} He_4(x) \right]$
	Ω : Neural activity states	$He_4(x)$: Hermite poly-
		nomial
Economics	Volatility clustering in asset	GARCH(1,1) model:
	returns	
(Volatility Model-	$\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2$	$\mathbb{E}[\sigma_t^4] =$
ing)		$\frac{\omega^2(1+\alpha\beta)}{(1-\alpha-\beta)(1-\beta^2-2\alpha\beta)}$
	\mathcal{F}_t : $\sigma(past\ returns)$	(requires $\alpha + \beta < 1$)
Oceanography	Joint PDF of velocity gradi-	Kramers-Moyal ex-
	ents	pansion:
(Turbulence)	$p(\partial_x u, \partial_y v)$ in Kolmogorov	$=$ $\frac{\partial p}{\partial t}$ $=$
	flow	$\sum_{k=1}^{\infty} \frac{(-\partial)^k}{\partial x^k} D^{(k)} p$
	$D^{(k)}$: k-th order diffusion co-	(truncated at $k = 2$
	efficient	for Fokker-Planck)

Interdisciplinary Filtering & Non-Ergodicity

Field	Statistical Challenge	Mathematical Tool
Epidemiology	Time-non-ergodic R_t estima-	MCMC for SIR poste-
	tion	rior:
(Infection Dynam-	$\langle R_t \rangle_{\text{time}} \neq \langle R_t \rangle_{\text{ens}}$ during in-	$p(R_t \Delta I_{1:T})$ \propto
ics)	terventions	$\prod_{t=1}^{T} \text{Poisson}(\Delta I_t \lambda_t R_{t-1})$
	λ_t : contact rate process	(Hamiltonian Monte
		Carlo sampling)
Quantum Con-	Conditional state discrimina-	Wald sequential test:
trol	tion	
(Qubit Readout)	$p(0 angle I_t,Q_t)$ vs $p(1 angle I_t,Q_t)$	$\Lambda_n = \prod_{k=1}^n \frac{p_1(I_k, Q_k)}{p_0(I_k, Q_k)} \geqslant$
	\mathcal{F}_t : $\sigma(IQ ext{-plane history})$	η (Optimal stopping time $ au$)

Bayesian Inference & Non-Ergodicity

Bayesian Inference:

$$\underbrace{p(\mathsf{state}|\mathsf{data})}_{\mathsf{posterior}} \propto \underbrace{p(\mathsf{data}|\mathsf{state})}_{\mathsf{likelihood}} \times \underbrace{p(\mathsf{state})}_{\mathsf{prior}}$$

Non-Ergodicity Theorems:

Theorem (Time-Average Ergodicity Breakdown)

For process with aging (e.g., glasses):

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T X_s ds \neq \mathbb{E}[X_t] \quad \text{if} \quad \frac{\partial \mu(t)}{\partial t} \neq 0$$

Theorem (Filtering Fundamental Limit)

Minimum MSE for $X_t | \mathcal{F}_s$ (s < t) bounded by:

$$\mathbb{E}[(X_t - \hat{X}_t)^2] \geq \frac{1}{I_{\mathcal{F}_s}(X_t)}$$
 (Fisher information)

Hooman Zare (SUT)

Stationarity: Time-Translation Symmetry

Definition (Strict Stationarity)

A process $\{X_t\}$ is **strictly stationary** if $\forall \tau, t_1, \ldots, t_n$:

$$(X_{t_1},\ldots,X_{t_n})\stackrel{d}{=}(X_{t_1+\tau},\ldots,X_{t_n+\tau})$$

(All finite-dimensional distributions are time-invariant)

Definition (Weak Stationarity)

 $\{X_t\}$ is **weakly stationary** if:

Physical Analogy:

Physical Analogy:

- Equilibrium thermodynamics: Macroscopic observables invariant under time shift
- Crystal lattice: Atomic vibrations statistically identical over time

Non-Stationary Examples:

- Big Bang cosmology (Hubble expansion)
- Neuronal spike trains during learning
- COVID-19 case counts during pandemic waves

Chapman-Kolmogorov Equation: Markov Consistency

Theorem (Chapman-Kolmogorov)

For a Markov process, transition densities satisfy:

$$p(x_3,t_3|x_1,t_1)=\int p(x_3,t_3|x_2,t_2)p(x_2,t_2|x_1,t_1)dx_2$$

for any $t_1 < t_2 < t_3$.

Necessary Markov Condition:

The transition kernel $p(x_{n+1}, t_{n+1}|x_n, t_n)$ must determine all multi-point statistics.

Intuition:

- Quantum path integrals: Sum over intermediate states
- Optics: Huygens' principle (wave propagation via secondary wavelets)

Testable Implication:

Conditional independence: $X_{t_3} \perp X_{t_1} | X_{t_2}$ for $t_1 < t_2 < t_3$

$$\Rightarrow p(x_3|x_2,x_1) = p(x_3|x_2)$$
Hooman Zare (SUT)
The Calculus of Uncertainty: Stochastic Pro
July 28, 2025
19/28

The Calculus of Uncertainty: Stochastic Pro

Testing Markov Property & Stationarity

Markov Test (Likelihood Ratio):

Compare models via AIC/BIC:

$$AIC = 2k - 2\ln \hat{L}, \quad \hat{L}_{Markov} = \prod_{i=2}^{n} p(x_i|x_{i-1})$$

$$\hat{L}_{\text{non-Markov}} = \prod_{i=2}^{n} p(x_i|x_{i-1}, \dots, x_{i-m})$$

Stationarity Tests:

1 Augmented Dickey-Fuller: Reject unit root H_0 if $|\tau| > c$

$$\Delta X_t = \alpha + \beta t + \gamma X_{t-1} + \sum_{i=1}^k \delta_i \Delta X_{t-i} + \epsilon_t$$

Kwiatkowski-Phillips-Schmidt-Shin (KPSS): Test stationarity around deterministic trend

Continuous Stochastic Processes: Mathematical Framework

Definition (Continuous Process)

 $\{X_t\}$ is **continuous** if $\forall \epsilon > 0$:

$$\lim_{h\to 0} P(|X_{t+h} - X_t| > \epsilon) = 0$$

(Probability of jumps vanishes as $h \to 0$)

Key Examples:

- Wiener process: $dW_t \sim \mathcal{N}(0, dt)$ (nowhere differentiable)
- Ornstein-Uhlenbeck: $dX_t = -\theta X_t dt + \sigma dW_t$ (mean-reverting)

Physical Analogies:

i liysical Alialogies.		
Process	Physics System	
Brownian motion	Pollen in water (Einstein)	
Langevin equation	Particle in potential $+$ noise	
Geometric BM	Stock prices (Black-Scholes)	

Master Equation: Foundation of Stochastic Dynamics

Definition (General Master Equation)

Rate of change of probability $P_n(t)$ to be in state n:

$$\frac{dP_n}{dt} = \sum_{m \neq n} \left[\underbrace{W_{n \leftarrow m} P_m(t)}_{\text{gain from } m} - \underbrace{W_{m \leftarrow n} P_n(t)}_{\text{loss to } m} \right]$$

where $W_{n\leftarrow m}$ is the transition rate $m\rightarrow n$.

Key Properties:

- Probability conservation: $\sum_n dP_n/dt = 0$
- Irreversibility: $dS/dt \ge 0$ (entropy $S = -k_B \sum P_n \ln P_n$)
- Equilibrium: $dP_n/dt = 0$ when detailed balance holds: $W_{n \leftarrow m} P_m^{eq} = W_{m \leftarrow n} P_n^{eq}$

Physical Analogy

Physical Analogy: Master Equation

Continuity Equation

Probability flow between states $W_{n \leftarrow m} = \text{Transition rate}$ Detailed balance = Zero circulation

Mass flow between compartments $J_{ij} = \text{Flux density}$ Irrotational flow

Matrix Form & Spectral Analysis

$$\frac{d\mathbf{P}}{dt} = \mathbf{QP}, \quad \mathbf{Q} = \begin{pmatrix} -\sum_{j \neq 1} W_{j1} & W_{12} & \cdots \\ W_{21} & -\sum_{j \neq 2} W_{j2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Eigenvalue Decomposition:

$$\mathbf{P}(t) = \sum_{k} c_k e^{\lambda_k t} \mathbf{v}_k, \quad \mathbf{Q} \mathbf{v}_k = \lambda_k \mathbf{v}_k$$

Spectral Properties:

- $\lambda_0 = 0$ (steady state \mathbf{v}_0)
- $\operatorname{Re}(\lambda_k) \leq 0$ (decaying modes)
- $|Re(\lambda_1)| = Spectral gap (mixing time scale)$

Example (Two-State System):

$$\mathbf{Q} = \begin{pmatrix} -a & b \\ a & -b \end{pmatrix}, \quad \lambda_k = \{0, -(a+b)\}$$

$$\mathbf{v}_0 = rac{1}{a+b}inom{b}{a}, \quad au_{\mathsf{relax}} = rac{1}{a+b}$$

Interdisciplinary Applications I: Quantum & Condensed Matter

System	Master Equation & Solution
Fermi Levels (Semiconductors)	$\frac{dP_n}{dt} = \sum_m \Gamma_{nm} [f(\epsilon_m - \mu) P_m - f(\epsilon_n - \mu) P_n]$ Steady state: $P_n^{eq} \propto e^{-(\epsilon_n - \mu)/k_B T}$
	Problem solved: Carrier distribution in bands
Lindblad Equation	$\frac{d ho}{dt} = -rac{i}{\hbar}[H, ho] + \sum_{k} \left(L_{k} ho L_{k}^{\dagger} - rac{1}{2}\{L_{k}^{\dagger}L_{k}, ho\}\right)$
(Quantum Optics)	Eigenvalues: Decay rates of coherence
	Problem solved: Qubit decoherence in cavity
Redfield Relaxation	$\frac{d\sigma_{ab}}{dt} = -i\omega_{ab}\sigma_{ab} - R_{abcd}\sigma_{cd}$
(NMR Spectroscopy)	Relaxation supermatrix
	Problem solved: T_1 , T_2 times from spectral den-
	sity
Förster/Dexter	$\frac{dP_D}{dt} = -k_{DA}P_D + k_{AD}P_A$
(Energy Transfer)	Rates: $k_{DA} \propto J(\text{overlap}) \times \kappa^2/r^6$ (Förster) Problem solved: Exciton migration in photosynthesis

Interdisciplinary Applications II: Chemistry & Biology

System	Master Equation & Solution
Reaction Kinetics	$\frac{dP_{\vec{n}}}{dt} = \sum_{r} k_r \left[\left(\mathbb{E}_r^{s_r} - 1 \right) \prod_{i} n_i! (n_i - \nu_{ri})! P_{\vec{n}} \right]$
(Chemical Networks)	\mathbb{E}_r : Step operator for reaction r
	Problem solved: Stochastic oscillations in
	Br2/NO2
Gene Expression	$\frac{dP_m}{dt} = \lambda P_{m-1} + \gamma (m+1) P_{m+1} - (\lambda + \gamma m) P_m$
(mRNA Dynamics)	Solution: $P_m^{ss} = \frac{(\lambda/\gamma)^m e^{-\lambda/\gamma}}{m!}$ (Poisson)
	Problem solved: Transcriptional bursting noise
SIR Model	$\frac{dP_{S,I}}{dt} = \beta \mathbb{E}_S^{-1} \mathbb{E}_I^1 SIP_{S,I} + \gamma \mathbb{E}_I^{-1} \mathbb{E}_R^1 IP_{S,I} - \cdots$
(Epidemiology)	Mean-field: $\dot{S} = -\beta SI$, $\dot{I} = \beta SI - \gamma I$
	Problem solved: Critical vaccination threshold
Hidden CTMCs	$\frac{dP_n}{dt} = \sum_m Q_{nm} P_m, Y_t \sim g(y X_t)$
(State Estimation)	Filtering: $\pi_t(n) = P(X_t = n Y_{0:t})$
	Problem solved: Ion channel gating from noisy
	currents

Interdisciplinary Applications III: Cosmology & Control Theory

System	Master Equation & Solution	
Density Matrix	$\frac{d\rho}{dt} = -i[H, \rho] + \kappa \mathcal{D}[a]\rho$	
(Cosmological Inflation)	$\mathcal{D}[a] ho = a hoa^\dagger - frac{1}{2}\{a^\daggera, ho\}$	
	Problem solved: Quantum-to-classical transition of	
	perturbations	
Hamilton-Jacobi-	$\frac{\partial V}{\partial t} + \min_{u} \left[\mathcal{L} V + c(x, u) \right] = 0$	
Bellman		
(Optimal Control)	£: Generator of controlled process	
	Problem solved: Minimum-fuel spacecraft trajectory	
Agent-Based Models $\frac{dP_C}{dt} = \mu P_D + \beta \langle k \rangle P_C P_D - \delta P_C$		
(Econophysics)	Mean-field: $\dot{\rho}_C = \mu(1-\rho_C) + \beta \langle k \rangle \rho_C (1-\rho_C) - \delta \rho_C$	
	Problem solved: Phase transitions in opinion dynam-	
	ics	
ABM Calibration	$rac{dP_{ heta}}{dt} \propto \sum_{paths} [ln p_{ heta}(path) - \lambda] P_{ heta}$	
(Machine Learning)	Gradient flow on parameter space θ	
	Problem solved: Fitting market sentiment parame-	
	ters ←□ ▶ ← □ ▶ ←	

Unifying Insights & Problem-Solving Strategies

Common Solution Approaches:

- Spectral Methods: Diagonalize Q for exponential dynamics (e.g., NMR relaxation modes)
- Mean-Field Approximation: $P_n \approx \prod_i \rho_i^{n_i}$ for large systems (e.g., SIR compartmental models)
- Generating Functions: $G(s,t) = \sum_{n} s^{n} P_{n}(t)$ converts to PDEs (e.g., gene expression)
- Monte Carlo: Gillespie algorithm for exact trajectory sampling

Universal Physical Analogies:

- Energy landscapes: $W_{n \leftarrow m} \propto e^{-\Delta E/k_BT}$
- Entropy production: $\frac{d_i S}{dt} = \frac{1}{2} \sum_{m,n} J_{mn} F_{mn} \ge 0$
- Detailed balance
 ⇔ equilibrium