1

 $G = \mathbb{Z}_1$, $A = \emptyset$. The empty set is indeed a subset of \mathbb{Z}_1 , and the statement "for all g in G and a in A, gag^{-1} is in A" is vacuously true. A is not a normal subgroup of G since it isn't a group, as it's not nonempty.

2

Define $\varphi: G \to G$ by $\varphi(g) = 2g$. Let $g, h \in G$. $\varphi(g+h) = 2(g+h) = 2g + 2h = \varphi(g) + \varphi(h)$, so φ is a homomorphism.

$$\ker \varphi = \varphi^{-1}(\{0\})$$
= $\{g \in G \mid 2g = 0\}$
= $\{g \in G \mid |g| \mid 2\}$

G has odd order, and the order of any element of G must divide its order, so there are no elements of order 2, thus $\ker \varphi = \{0\}$. Then by the first isomorphism theorem, we have that $G / \ker \varphi \cong \operatorname{Im} \varphi$, but $G / \{0\} \cong G$, so $G \cong \operatorname{Im} \varphi$, thus φ is an isomorphism.

Most importantly, since φ is an isomorphism, it is injective, so for any $y \in G$, φ uniquely maps it to the elementy 2y (or x), as desired.

3

3.a

We proved in class that this map φ is a homomorphism. We know that for any $g \in G$, $|\varphi(g)| \mid |g|$. We also know that for any $g \in G$, $|g| \mid |G|$, so since $\varphi(g) \in H$, $|\varphi(g)| \mid |H|$. Since $\gcd(|G|, |H|) = 1$, $|\varphi(g)|$ and |g| share no common factors (other than 1), but $|\varphi(g)| \mid |g|$, so $|\varphi(g)|$ must be 1, thus $\varphi(g)$ must be 1_H for any choice of g. Thus the only possible homomorphism $\varphi: G \to H$ is $\varphi(g) = 1_H$.

3.b

Suppose for a contradiction that another such φ exists. φ is a homomorphism, so we have that Im $\varphi \leq \mathbb{Z}$. The only subgroups of \mathbb{Z} are of the form

 $n\mathbb{Z}$, all of which (other than $0\mathbb{Z}$) are isomorphic to \mathbb{Z} . So if we assume φ is nontrivial, then its image is isomorphic to \mathbb{Z} . If we let $f: \operatorname{Im} \varphi \to \mathbb{Z}$ be an isomorphism, then there exists a $q \in \mathbb{Q}$ such that $f \circ \varphi(q) = 1$. But

$$\begin{aligned} 1 &= f \circ \varphi(q) \\ &= f \circ \varphi(\frac{q}{2} + \frac{q}{2}) \\ &= f \circ \varphi(\frac{q}{2}) + f \circ \varphi(\frac{q}{2}) \\ &= z + z \\ &= 2z \end{aligned}$$

for some $z \in \mathbb{Z}$, a contradiction, since 1 cannot be written as the sum of any two integers. So the only possible homomorphism from \mathbb{Q} to \mathbb{Z} is the trivial homomorphism, $\varphi(z) = 0$.

4

Let $(g',h') \in G \oplus H$. $(g',h')H^* = \{(g',h'h) \mid h \in H\}$. $H^*(g',h') = \{(g',hh') \mid h \in H\}$. But h'h and hh' are both already in H, so both $(g',h')H^*$ and $H^*(g',h')$ can be rewritten as $\{(g',h^*) \mid h^* \in H\}$. Thus $H^* \subseteq G \oplus H$.

Define
$$\varphi:G\oplus H\to G$$
 by $\varphi((g,h))=g.$
$$\ker \varphi=\{(g,h)\in G\oplus H\mid \varphi((g,h))=1_G\}$$

$$=\{(1_G,h)\mid h\in H\}$$

$$=H^*$$

By the first isomorphism theorem, we have that $G \oplus h / \ker \varphi \cong \operatorname{Im} \varphi$. Let $g \in G$. Then $\varphi((g, 1_H)) = g$, so φ is surjective and $\operatorname{Im} \varphi = G$. Thus we have the following three identities:

$$G \oplus H / H^* = G \oplus H / \ker \varphi$$
$$\operatorname{Im} \varphi = G$$
$$G \oplus H / \ker \varphi \cong \operatorname{Im} \varphi$$

and so

$$G \oplus H / H^* \cong G$$

as desired.

5

5.a

We use the one step subgroup test.

$$\operatorname{Inn}(G) \neq \emptyset$$
, since if $\varphi : G \to G$, $\varphi(a) = 1a1^{-1} = a$, then $\varphi \in \operatorname{Inn}(G)$.

Let $\varphi, \psi \in \text{Inn}(G)$. We show that $\varphi \circ \psi^{-1} \in \text{Inn}(G)$. There are $g, h \in G$ such that $\varphi(a) = gag^{-1}$ and $\psi(a) = hah^{-1}$. Then $\psi^{-1}(a) = h^{-1}ah$, since $\psi(\psi^{-1}(a)) = h(h^{-1}ah)h^{-1} = a$, so $\psi^{-1} \in \text{Inn}(G)$. Then $\varphi \circ \psi^{-1}(a) = gh^{-1}ahg^{-1}$. $(gh^{-1})^{-1} = (hg^{-1})$, so $\varphi \circ \psi^{-1} \in \text{Inn}(G)$, and thus $\text{Inn}(G) \leq \text{Aut}(G)$.

5.b

Let $g_1, g_2 \in G$. Then

$$\rho(g_1g_2)(h) = g_1g_2hg_2^{-1}g_1^{-1}$$

$$= g_1(g_2hg_2^{-1})g_1^{-1}$$

$$= g_1(\rho(g_2)(h))g_1^{-1}$$

$$= \rho(g_1)(\rho(g_2)(h))$$

$$= \rho(g_1) \circ \rho(g_2)(h).$$

So ρ is a homomorphism.

5.c

$$\ker \rho = \{ g \in G \mid \rho(g)(h) = ghg^{-1} = h \}$$
$$= \{ g \in G \mid ghg^{-1} = h \}$$
$$= Z(G)$$

By the first isomorphism theorem, we have that $G / \ker \rho \cong \operatorname{Im} \rho$. So $G / \ker \rho = G / Z(G) \cong \operatorname{Im} \rho$. We now show that $\operatorname{Im} \rho = \operatorname{Inn}(G)$.

Im
$$\rho = {\rho(g)(h) = ghg^{-1} \mid g \in G}$$

= ${\varphi : G \to G \mid \text{there is some } g \in G \text{ such that for all } a \in G, \ \varphi(a) = gag^{-1}}$
= Inn(G)

So $G / Z(G) \cong \operatorname{Im} \rho$, and $\operatorname{Im} \rho = \operatorname{Inn}(G)$, thus $G / Z(G) \cong \operatorname{Inn}(G)$.

5.d

Consider $1, r^2 \in D_4$. $\rho(1)(h) = 1h1^{-1} = h$, and $\rho(r^2)(h) = r^2hr^2 = h$. So ρ is not injective, and is thus not an isomorphism.

5.e

Define $\varphi: D_4 \to \operatorname{Aut}(D_4)$ by $\varphi(g)(h) = gh$. If $g_1, g_2 \in D_4$, then

$$\varphi(g_1g_2)(h) = g_1g_2h$$

$$= \varphi(g_1)(g_2h)$$

$$= \varphi(g_1)(\varphi(g_2)(h))$$

$$= \varphi(g_2) \circ \varphi(g_2)(h)$$

so φ is a homomorphism. $\ker \varphi = \{g \in D_4 \mid \varphi(g)(h) = h\}$. Clearly $\ker \varphi = \{1\}$, so φ is injective. Note that any element of D_4 is of the form $r^a j^b$, for some integers a and b. Define $\psi : D_4 \to D_4$ by $\psi(r^m j^q) = r^n j^r$, so that $\psi \in \operatorname{Aut}(D_4)$. Then $\varphi(r^n j^{r+q} r^{4-m}) = \psi$, since

$$\begin{split} \varphi(r^n j^{r+q} r^{4-m})(r^m j^q) &= (r^n j^{r+q} r^{4-m})(r^m j^q) \\ &= r^n j^{r+q} r^{4-m+m} j^q \\ &= r^n j^{r+q} j^q \\ &= r^n j^{r+q} j^q \\ &= r^n j^{r+2q} \\ &= r^n j^r \\ &= \psi(r^m j^q) \end{split}$$

So φ is also surjective, and thus φ is an isomorphism.