otázka: Zásobníkové automaty se dvěma zásobníky přijímají právě jazyky, které jsou přijímány [] dvoucetnými automaty [] nedeterministickými zás. autmaty [] lineárné omezenými automaty [] Turingovými stroji
odpověď: D (pomocí dvou zásobníků si nasimulujeme pásku)
otázka: Nedeterministicky konecny automat ma n stavu. Pocet stavu po prevodu na deterministicky nebude vetsi nez: [] n stavu [] (2 ⁿ) stavu [] (n ⁿ) stavu [] nelze rici
odpověď: BC (Ve slidech je maximalne (2 na n), ale (n na n) taky odpovidadi zadani, protoze (n na n) je vetsi nez (2 na n).)
 otázka: Nechť G=(N,T,S,P) je generativní gramatika, pro jejíž pravidla (u → v) platí u <= v . Pokud neuvažujeme prázdno slovo, potom taková gramatika může generovat libovolný: [] lineární jazyk [] bezkontextový jazyk [] kontextový jazyk [] rekurzivně spočetný jazyk
odpověď: ABC (D- nevyhovuje počtem u)
otázka: Ke kazde bezkontextove gramatice, která negeneruje prazdne slovo, existuje ekvivalentni: [] jednoznacne urcena redukovana bezkontextova gramatika [] jednoznacna bezkontextova gramatika [] linearní gramatika [] monotoni gramatika
odpověď: D ()
otázka: Necht L1 a L2 jsou jazyky nad stejnou abecedou takove, ze L1⊂L2(L1≠L2) Potom platí: [] je-li L1 prijiman koncenym automatem, potom je L2 přijiman konecnym automatem [] je-li L2 prijiman koncenym automatem, potom je L1 přijiman konecnym automatem [] je-li L1 konecny, potom je L2 přijiman konecnym automatem [] je-li L2 konecny, potom je L1 přijiman konecnym automatem
odpověď: D (B to není protože (01)* je regularni a jeho podmnozina 0^n1^n neni)
otázka: Jazyk, ktery prijima Deterministicky zasobnikovy automat koncovym stavem je vzdy: [] regularni jazyk

[] bezprefixovy [] bezkontextovy [] kontextovy
odpověď: C,D (Tady je to jasne C a D regularni ani bezprefixovy byt nemusi, naopak, kdyz je prijiman zasobnikovym automatem, musi byt bezkontextovy, tim padem i kontextovy)
otázka: L1 a L2 su 2 jazyky z tej istej triedy chomskeho hierarchie. Potom [] L1 prienik L2 vzdy lezi v tej istej triede. [] prienik L1 L2 moze lezat v inej triede [] prienik L1 L2 lezi v tej triede chomskeho hierarchie kde aj ich zjednotenie [] ??
odpověď: B ()
otázka: Nechť A1=(Q1,X, δ 1,q1,F1) a A2=(Q2,X, δ 2,q2,F2) jsou deterministické konečné automaty. Potom automat A=(Q,X, δ ,q,F) , kde Q=Q1xQ2, q=(q1,q2), δ ((p1,p2),x)=(δ 1(p1,x), δ 2(p2,x)), F=Q1xQ2 přijímá jazyk: [] L(A ₁) \cup L(A ₂) [] X* [] $\{\}$
odpověď: C (F=Q1xQ2 znamena ze ma vsechny stavy koncove)
otázka: Nechť RV(X) je množina všech regulárních výrazů nad abecedou X. Potom jazyk RV(X) je: [] regulární [] bezkontextový a není regulární [] kontextový a není bezkontextový [] rekurzivní spočetný a není kontextový
odpověď: B (Fígl je ale v tom uvědomit, že jde o jazyk, jehož slovy jsou regulární výrazy, nikoli jazyk, který se dá popsat regulárním výrazem. Regulární jazyk tedy není správná odpověď.)
otázka: Lineárně omezený automat je nedeterministicky Turinguv stroj [] S paskou omezenou na jedne strane (jednostranna paska) [] S paskou pevne omezenou na obou stranách (paska omezene delky) [] S paskou omezenou delkou vstupniho slova [] S paskou omezenou delkou vystupniho slova
odpověď: C (A je nejaka podivnost, ale kazdopadne to nema s LOA nic spolecneho B je konecny automat C podle prednasky platí D neplatí: K tomu vstupnímu/výstupnímu slovu(to už není 100%): když mám automat, který má rozhodnout, zda slovo do jazyka patří, tak je to slovo vstupní, když mám gramatiku, která je generuje, pak je to slovo výstupní. A tady mám
automat, takže žádné výstupní.)

otázka: Mezi algoritmicky rozhodnutelné problémy patří: [] Zda je jazyk daný bezkontextovou gramatikou prázdný [] Zda je daná bezkontextová gramatika víceznačná [] Zda je dané slovo generované danou bezkontextovou gramatikou [] Zda jsou dvě bezkontextové gramatiky ekvivalentní
odpověď: B (este nejaka moznost s prienikom bezkonteztovych jazykov???)
otázka: Mezi algoritmicky nerozhodnutelné problémy patří: [] Postův korespondeční problém [] problém zda jazaky generované dvěma bezkontext gramatikami jsou totožné [] problém zda bezkontext. gramatika generuje nekonečný jazyk [] problém zdanevim (8)
odpověď: AB ()
otázka: Nechť automat A přijíma jazyk $L(A)$ a q_0 je počáteční stav, potom $\exists \ w \in L(A)$ tak že $\delta^*(q_0,w)=q$ což znamená: $[\]$ q konecny stav $[\]$ q dosazitelny $[\]$ q_0 a q ekvivalentni $[\]$ L není prázdný
odpověď: ABD (A je jasny B z nej vyplyva, D taky z A)
otázka: Nechť L je libovolný jazyk. Potom L ⁺ je vždy rovný jazyku: [] $\{u^i \ u\in L\ \&\ i>=0\}$ [] $\{u^i \ u\in L\ \&\ i>=1\}$ [] L*- $\{\lambda\}$ [] $\cup_{i>=1}L^i$
odpověď: D (C neplati protoze: pro jazyk L bez λ : L+ neobsahuje λ , L* (ji obsahuje), L*-{ λ } ji neobsahuje cili rovnost plati pro jazyk L s λ : L+ obsahuje λ , L* obsahuje λ , L*-{ λ } neobsahuje lambdu, tudiz rovnost neplati B řetězily by se jenom stejna slova, nevznikaly by kombinace)
1. otázka: Nechť $L_1=\{a\}$ a $L_2=\{b\}$. Potom $(L_1\cup L_2)^*$ obsahuje (mimo jiné) slova [] aaa [] bbb [] aba [] bab
odpověď: ABCD (podle slajdů $L_1 \cup L_2 = \{ w \mid w \in L1 \lor w \in L2 \}$ a pak uz je jenom řetězíme za sebe)
 2. otázka: Nechť L₁={a} a L₂={b}. Potom (L₁∪ L₂)* obsahuje (mimo jiné) slova: [] aa [] aba

```
[ ] abb
[] ab
odpověď:
ABCD (podle slajdů L_1 \cup L_2 = \{ w \mid w \in L1 \lor w \in L2 \} a pak uz je jenom řetězíme za sebe)
3. otázka:
Nechť L_1 a L_2 jsou dva bezkontextové jazyky. Potom (L_1 \cap L_2)^* je vždy
[] = L_1^* \cap L_2^*
[] \neq L_1^* \cap L_2^*
[]\subseteq L_1^*\cap L_2^*
[]\supseteq L_1^*\cap L_2^*
odpověď:
C (podle slajdů L_1 \cap L_2 = \{ w \mid w \in L1 \land w \in L2 \},
odpoved A obecně neplatí například pro
 L1 = \{a\}, L2 = \{aa\}
 leva strana: (L1 \cap L2)^* = \{lambda\}
 prava strana: L1*\cap L2* = \{(aa)*\}
 (plati mnozinova inkluze ⊆)
odpoved B obecně neplatí například pro
 L1=\{a\} \ a \ L2=\{a\}
 leva strana: (L1 \cap L2)^* = \{a^*\}
 prava strana: L1*\cap L2* = \{a*\}
4. otázka:
Nechť L_1 a L_2 jsou dva bezkontextové jazyky. Potom (L_1 \cup L_2)^* je vždy
[] = L_1^* \cup L_2^*
[] \neq L_1^* \cup L_2^*
[]\subseteq L_1^*\cup L_2^*
[]\supseteq L_1^* \cup L_2^*
odpověď:
D (odpoved A obecně neplatí například pro:
 L1 = \{a\}, L2 = \{b\}
 leva strana: (L1 \cup L2)^* = \{(a+b)^*\}
 prava strana: L1*\cup L2* = \{a*\} \cup \{b*\}
 (plati mnozinova inkluze ⊇)
odpoved B je nespravna vzhladem na jazyky L1={a} a L2={a}
5. otázka:
Nechť L je rekurzivně spočetný jazyk bez prázdného slova. Potom L<sup>0</sup> je podmnožinou jazyka
[] prázná množina
[]\{\lambda\}
[]L^{\dagger}
[]L*
odpověď:
BD (Podle slajdu je L^0 = \{ \lambda \}
a to je podmnozinou \{\lambda\} a L^* (protoze L^* obsahuje L^0, tedy lambdu..)
ty zbyle dve odpovedi ne)
```

6. otázka:

Jazyk {a}\{aba,baa}(levý kvocient) **je rovný** jazyku

[] fba} [] {aba} [] {aaba}
odpověď: B (Podle slajdu je $(L_2 \setminus L_1 = \{ v \mid uv \in L_1 \& u \in L_2 \})$
 7. otázka: Jazyk {ba}\{aba,baaa,ba}(levý kvocient) obsahuje slova [] λ [] a [] aa [] aaa
odpověď: AC (Podle slajdu je $L_2 \setminus L_1 = \{ v \mid uv \in L_1 \& u \in L_2 \})$
 7.1 otázka: Jazyk {aba,baa,ba}/{ba}(pravy kvocient) obsahuje slova [] λ [] a [] aa [] aaa
odpověď: AB (Podle definice pravyho kvocientu $L_1 / L_2 = \{ u \mid uv \in L_1 \& v \in L_2 \}))$
8. otázka: Nechť máme deterministický konečný automat A s počátečním stavem q_0 , s koncovými stavy F, přechodovou funkci δ a u je libovolné slovo z jazyka L(A). Potom platí: $ [\] \ \delta^*(q_0,u) = F $ $ [\] \ \delta^*(q_0,u) \subseteq F $ $ [\] \ \delta^*(q_0,u) \supseteq F $
odpověď: B (ze slidů: Jazykem rozpoznávaným konečným automatem $A = (Q, X, \delta, q_0, F)$ nazveme jazyk: $L(A) = \{w \mid w \in X^* \& \delta^*(q_0, w) \in F\}$.)
9. otázka: Nechť máme nedeterministický konečný automat A s jediným počátečním stavem q_0 , s koncovými stavy F, přechodovou funkci δ a u je libovolné slovo z jazyka $L(A)$. Potom platí: $ \begin{array}{c} [\] \ \delta^*(q_0,u) = F \\ [\] \ \delta^*(q_0,u) \subseteq F \\ [\] \ \delta^*(q_0,u) \supseteq F \\ [\] \ \delta^*(q_0,u) \supseteq F \end{array} $
odpověď: nic (Tím že je nedeterministický se s jednim slovem muzeme dostat do dvou stavu, z kterych napr. jen jeden ze z F.)
 10. otázka: Nechť L je jazyk nad abecedou X. Potom L je rozpoznatelný konečným automatem právě tehdy, když: [] existuje pravá kongruence ~ konečného indexu na X* tak, že L je sjednocením jistých tříd rozkladu X*/~ [] existuje přirozené číslo n takové, že libovolné slovo z∈ L, z >=n lze psát ve tvaru uvw,kde: uv =<n,1=< v a="" i="" pro="" všechna="">=0 uv¹w∈ L</n,1=< v > [] existuje regulání výraz α tž. [α]=L

```
[] existuje konečný automat A tž. L(A)=L
odpověď:
ACD (tzn. ekvivalence,
A je Nerodova veta (je ekvivalence)
B je Pumping lemma (jen implikace) -> neplati
C i D plati na obe strany
11. otázka:
Nechť L je jazyk nad abecedou X rozpoznatelný konečným automatem. Potom:
[] existuje pravá kongruence ~ konečného indexu na X* tak, že L je sjednocením jistých tříd rozkladu X*/~
[] existuje přirozené číslo n takové, že libovolné slovo z∈ L,|z|>=n lze psát ve tvaru uvw,kde: |vw|=<n,1=<|v| a pro
všechna i>=0 uv<sup>i</sup>w∈ L
[] existuje regulání výraz \alpha tž. [\alpha]=L
[] existuje konečný automat A tž. L(A)=L
odpověď:
ABCD (tzn. jen implikace.
ACD plati (kdyz platilo u ekvivalence, tak bude platit i u implikace).
B je to tucny jinak nez je v Pumping lemmatu, ale asi to nevadi
)
12. otázka:
Nechť ~ i je ekvivalence stavů konečného automatu po i krocích. Potom platí:
[] p \sim^i q \Rightarrow p \sim^{i+1} q
[] p \sim^{i+1} q \Rightarrow p \sim^{i} q
[\ ] p \sim^i q \Rightarrow \forall x \in X \ \delta(p,x) \sim^i \delta(q,x)
[\ ] p \sim^{i+1} q \Rightarrow \forall x \in X \ \delta(p,x) \sim^i \delta(q,x)
odpověď:
BD (D plyne z B?)
13. otázka:
Dvousměrný konečný automat prijímá stejná slova jako nějaký
[ ] deterministický konečný automat
[ ] nedeterministický konečný automat
odpověď:
AB (podle slajdů: Jazyky přijímané dvousměrnými konečnými automaty jsou právě jazyky přijímané konečnými
automaty.)
14. otázka:
Nechť A=(Q,X,\delta,S,F) je nederministický konečný automat. Automat (Q,X,\delta,S,Q-F) přijíma jazyk
[]L(A)^R
[]X*-L(A)
[]L(A)
[]X*
odpověď:
nic (B(doplněk) neplatí protoze je nedeterministický a jednim slovem se muzete dostat napriklad do dvou stavu q<sub>1</sub> a
```

 q_2 . Kdyz se stane, ze $q_1 \in F$ (konec) a zaroven plati, ze $q_2 \notin F$ (nekonec), tak to slovo bude i v druhem automatu, aby to

15. otázka:

totiž platilo, musel by být automat deterministický)

Nechť A=(Q,X, δ,S,F) je deterministický konečný automat. Automat (Q,X, δ,S,Q-F) přijíma jazyk [] L(A) ^R [] X*-L(A) [] L(A) [] X*
odpověď: B (doplnek, DKA se prohozením koncových a nekoncových stavu udela doplnek, neplatí pro nedeterministicky KA)
16. otázka: Nechť máme daný následující automat A. Do jakých stavů se tento automat může dostat v přijímacím výpočtu nějakého slova L(A) po přečtení dvou písmen? [] A [] B [] C [] D
odpověď: ACD (Pro nějaké přijímané slovo provedu výpočet a ve druhém kroku (po druhém přečteném písmenu) se kouknu v jakých jsem stavech. Odpovědět mám jaké všechny možné stavy to můžou být. B je mrtvy stav - jakmile se do nej dostanu, uz nemuze byt to slovo elementem L(A), cili do stavu B se nemuzu dostat prijimacim vypoctem.)
Nechť máme daný následující automat P. Po přečtení slova baab se tento automat může dostat do stavu [] A [] B [] C [] D odpověď: BD (chytak je v tom, ze precteni slova neznamena jeho prijeti, takze automat jen tuhle sekvenci baab zpracuje nehlede na stav kam se dostane. staci se kouknout kam se da dostat na B ktere je posledni a zda se do nich da dostat pres sekvenci baab)
18. otázka: Nechť existuje isomofismus mezi dvěma deterministickými konečnými automaty. Potom: [] oba automaty mají stejný počet stavů [] oba automaty mají stejný počet koncových stavů [] oba automaty mají stejný počet počátečních stavů [] stavové diagramy obou automatů mají stejný počet hran odpověď: ABCD (izomorfismus = přejmenování stavů)
19. otázka: Nechť existuje homomorfismus mezi dvěma deterministickými konečnými automaty. Potom: [] oba automaty mají stejný počet stavů [] oba automaty mají stejný počet koncových stavů [] oba automaty mají stejný počet počátečních stavů [] stavové diagramy obou automatů mají stejný počet hran
odpověď: C (př. homomorfismu:

C plati protože deterministicke mají 1 pocatecni stav)

20.	otázka:

Nechť existuje homomorfismus mezi dvěma nedeterministickými konečnými automaty. Potom:
[] oba automaty mají stejný počet stavů
[] oba automaty mají stejný počet koncových stavů
[] oba automaty mají stejný počet počátečních stavů

[] stavové diagramy obou automatů mají stejný počet hran

odpověď:

nic (si zoberies 2 nedet rovnake, a do jedneho zrusis jeden vstupny stav a vlozis tam lambda prechod z ineho vstupneho stavu do toho kde si ten vstup zrusil, a mas ekvivalentne automaty a maju rozny pocet vstupov)

21. otázka:

Nechť A1=(Q1,X, δ 1,q1,F1) a A2=(Q2,X, δ 2,q2,F2) jsou deterministické konečné automaty. Potom automat A=(Q,X, δ ,q,F) , kde Q=Q1xQ2, q=(q1,q2), δ ((p1,p2),x)=(δ 1(p1,x), δ 2(p2,x)), F=F1xF2 přijímá jazyk:

 $[\]\ L(A_1)\cup L(A_2)$

 $[]L(A_1) \cap L(A_2)$

 $[] L(A_1) - L(A_2)$

 $[] L(A_1) . L(A_2)$

odpověď:

В

22. otázka:

Nechť A1=(Q1,X, δ 1,q1,F1) a A2=(Q2,X, δ 2,q2,F2) jsou konečné automaty. Potom automat A=(Q1xQ2,X, δ ,(q1,q2), Q1xF2), kde δ ((p1,p2),x)=(δ 1(p1,x), δ 2(p2,x)) přijímá jazyk:

 $[]L(A_1)$

 $\int L(A_2)$

 $[] L(A_1) - L(A_2)$

 $[] L(A_2) - L(A_1)$

odpověď:

B (je to jen jazyk L2, je to videt z koncovych stavu Q1xF2 je to sice kartezsky soucin tech stavu, ale vzdy je tam pouze stavy z F2 takze to prijima vsechny slova z A2 a nic vic. Muze to prijimat i nektera slova z A1, ale to jen kdyz jsou i v A2.)

23. otázka:

Nechť $A=(Q,X,Y,\delta,q0,Z,F)$ je automat kde Q,X a Y jsou konečné neprázné množiny, $q0 \in Q$, $Z \in Y,F \subseteq Q$ a $\delta(Qx(X \cup \{\lambda\})xY) -> P_{FIN}(QxYNIC)$. Potom tento automat přijímá právě jazyky rozpoznávané

[] deterministický zásobníkový automaty

- [] (nedeterministický) zásobníkový automaty
- [] deterministický konečný automaty
- [] nedeterministický konečný automaty

odpověď:

CD (není zasobnikovy! není tam * (tam kde jsem napsal <u>NIC</u> – to tam normalne v pisemce není ©) je jako klasicky konecny)

24. otázka: Řekneme, že dva stavy p a q konečného automatu $A=(Q,X,\delta,S,F)$ jsou ekvivalentní právě tehdy kdyz: [] $\forall w \in X^* \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in X^* \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in L(A) \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in L(A) \delta^*(p,w) = \delta^*(q,w)$
odpověď: A (definice ze slajdu C neplatí, představ si, že by pro slova, co NEPATŘÍ do L, platila negace uvedené závislosti. No pak by muselo to slovo patřit do jazyka, protože 0 <=> 1 NEBO 1 <=> 0, což je blbost.)
25. otázka: Řekneme, že dva stavy p a q konečného automatu $A=(Q,X,\delta,q0,F)$ jsou ekvivalentní právě tehdy kdyz: $[\] \ \forall w \in X^* \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ $[\] \ \forall w \in L(A) \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ $[\] \ \forall w \in L(A) \delta^*(p,w) = \delta^*(q,w)$
odpověď: A (neni to ta varianta s $\forall w \in L(A)$, protoze slovo nemusi byt z jazyka a presto ho automat precte a dostane se do stavu treba neprijimaciho, ale ten ma take ekvivalentni stav, idkyz neni prijimaci. Proto to plati pro vsechna mozna slova z X^* , definice ze slajdu)
25. otázka: Nechť $A=(Q,X,\delta,q0,F)$ je deterministický konečný automat přijímající neprázdný jazyk a stav $p\in Q$ je ekvivalentní s $q0$. Potom platí: $[\] \ \forall w\in X^* \delta^*(p,w)\in F$ $[\] \ \forall w\in L(A) \delta^*(p,w)\in F$ $[\] \ \exists w\in X^* \delta^*(p,w)\in F$ $[\] \ \exists w\in L(A) \delta^*(p,w)\in F$
odpověď: BCD
26. otázka: Nechť A je deterministický konečný automat mající mezi všemi deterministickými konečnými automaty přijímajícími jazyk L(A) nejmenší počet stavů. Potom: [] A je redukovaný [] A nemusí být redukovaný [] A může obsahovat ekvivalentní stavy [] A nemůže obsahovat ekvivalentní stavy
AD (A- Ve tríde navzájem ekvivalentních konecných automatu existuje "minimální" automat. D- plyne z A – def. redukovaneho aut.)
27. otázka: Pro dva ekvivalentní konečné automaty platí že: [] jsou izomorfní [] existuje mezi nimi homomorfismus [] rozpoznávají stejné jazyky [] mají stejný počet koncových stavů
odpověď: C (za slajdu: ríkáme, že konecné automaty A a B jsou ekvivalentní, jestliže rozpoznávají stejný jazyk, tj. L(A)=L(B) B neplati protože to asi mysli jako homomorfismus na obe strany)

	28. otázka: Pro dva ekvivalentní redukované konečné automaty platí že: [] jsou izomorfní [] existuje mezi nimi homomorfismus [] rozpoznávají stejné jazyky [] mají stejný počet koncových stavů
	odpověď:
A-	ABCD (u redukovanych je to to same
B-	když jsou izomorfni tak tohle taky
C-	z definice ekvivalence
D-	plyne z A)
	29. otázka: Pro dva ekvivalentní deterministické konečné automaty platí že: [] jsou izomorfní [] existuje mezi nimi homomorfismus [] rozpoznávají stejné jazyky
	[] mají stejný počet koncových stavů
	odpověď: C (z definice ekvivalence)
	30. otázka: Nechť A=(Q,X, δ,q₀,F) je automat, kde Q a X jsou konečné neprázdné množiny, q₀∈ Q, F⊆Q a δ⊆(QxXxQ). Potom se jedná o [] deterministický konečný automat [] nedeterministický konečný automat [] (nedeterministický) zásobníkový automat [] deterministický zásobníkový automat
	odpověď: B (zasobnikovy neni nema zasobnikovou abecedu a je nedeterministicky podle te prechodove funkce Deterministický automat to být nemůže, zkusme zvolit za delta prázdnou množinu, pak je to nedeterministický automat.)
	31. otázka: Jazyky generované lineárními gramatikami jsou [] jazyky regulární [] nadmnožinou jazyků regulárních [] podmnožinou jazyků regulárních [] nemají k regulárním jazykům jasně definovaný množinový vztah
	odpověď: B (protoze podle vety Jazyky generovane levou linearni gramatikou jsou prave regularni jazyky. To plati i pro Jazyky generovane levou linearni gramatikou. Obecna lin. gramatika ale nemusi generovat regularni jazyk. Napr.: {0^n1^n n>=1} neni regularni jazyk, ale je linearni (S -> 0S1 01))
	32. otázka: Regulární jazyky jsou generovány právě [] levě linárními gramatikami

 [] pravě lineárními gramatikami [] gramatikami, které mají na pravé straně maximálně jeden neterminál [] gramatikami, které mají na pravé straně maximálně jeden terminál
odpověď: AB (AB – ze slidu, NE obema soucasne, nemuzou se kombinovat C –platilo-by ale chybi tam este "Neterminální symbol je buď jen na začátku, nebo jen na konci pravé strany všech pravidel gramatiky.", D- to není asi nic)
33. otázka: Nechť G je redukovaná bezkontextová gramatika. Potom platí: [] každá bezkontextová gramatika generující jazyk L(G) obsahuje stejně nebo více neterminálních symbolů [] každá redukovaná bezkonetextová gramatika generující jazyk L(G) obsahuje stejně nebo více neterminálních symbolů [] každá bezkontextová gramatika generující jazyk L(G) je ekvivalentní s G
odpověď: C (Priklad: G1: S -> 0S1 lambda G2: S -> 0A lambda A -> S1
G1 i G2 generuji stejny jazyk. A,B: G2 je redukovana, ale stejne G1 obsahuje min neterminalu -> neplati C kdyz generuji stejny jazyk, jsou ekvivalentni)
34. otázka: Nechť G_1 =(N_1 , T , S_1 , P_1) a G_2 =(N_2 , T , S_2 , P_2) jsou dvě kontextové gramatiky s disjunktními množinami neterminálů (N_1 , N_2) a S je nový neterminál. Potom pro jazyk gramatiky G =(N_1 ∪ N_2 ∪{ S }, T , S , P_1 ∪ P_2 ∪{ S -> S_1 S_2 }) platí: [] $L(G) = L(G_1) \cdot L(G_2)$ [] $L(G) \subseteq L(G_1) \cdot L(G_2)$ [] $L(G) \supseteq L(G_1) \cdot L(G_2)$
odpověď: C (Treba si vsimnut, ze i ked su mnoziny neterminalov disjunktne, mnozina terminalov T je rovnaka, takze rozhranie S1S2 mozu pretransformovat pravidla z P1 i z P2. Napr pravidlo z P1 moze spracovat i zaciatok S2.)
35. otázka: Nechť G_1 =(N_1 , T , S_1 , P_1) a G_2 =(N_2 , T , S_2 , P_2) jsou dvě bezkontextové gramatiky s disjunktními množinami neterminálů a S je nový neterminál. Potom pro jazyk gramatiky G =($N_1 \cup N_2 \cup \{S\}, T, S, P_1 \cup P_2 \cup \{S->S_1S_2\}$) platí: [] $L(G)$ = $L(G_1)$. $L(G_2)$ [] $L(G)$ \neq $L(G_1)$. $L(G_2)$ [] $L(G)$ \subseteq $L(G_1)$. $L(G_2)$ [] $L(G)$ \subseteq $L(G_1)$. $L(G_2)$
odpověď: ACD (ide o BKJ a tam plati uzavrenost na zretazenie a robi sa priamo tak ako to tam ma na slidov tam to je tiez jako 34., ale mluvi se o kontextovy gramatice, tzn. ze se prepisuji jen neterminaly, NE neterminaly s terminaly (v tom byl ve 34. otazce problem, protoze tim mohly vzniknout i jiny slova nez pri zretezeni))
36. otázka: Gramatika (N,T,S,P) obsahující pouze pravidla tvaru X->u, kde X∈N a u∈T* je: [] regulární [] bezkontextová [] kontextová [] monotóní

odpověď:

AB (A - vyhovuje definici, B- vyhovuje definici, C - nevyhovuje definici-napravo muze byt lambda, D- nevyhovuje definici-napravo muze byt lambda)

37. otázka:

Nechť G=(N,T,S,P) je generativní bezkontextová gramatika. Potom listy derivačního stromu mohou být ohodnoceny:

[] slovy z T*

[] slovy z N*

[] symboly z T

[] symboly z N

odpověď:

C (Spravne vsak melo byt pouze Vt, Bartak to mysli, ze vsechny prvky muzou byt v listu.

Chtel jen V_t aby se ukazalo, ze clovek vi, ze tam muze v kazdem listu byt bud jeden terminal nebo lambda... a to ostatni bych tam nedavala, protoze lambda je dost tak zakerna, nekdy se pise uplne zvlast mimo V_n i V_t)

38. otázka:

Nechť G=(N,T,S,P) je generativní bezkontextová gramatika. Potom **vnitřní vrcholy** derivačního stromu jsou ohodnoceny:

[] slovy z T*

slovy z N*

[] symboly z T

[] symboly z N

odpověď:

D (jde u vrcholy uvnitr stromu, ne listy)

39. otázka:

Derivační strom libovolné bezkontextové gramatiky G, který dává slovo w, popisuje

[] všechny možné derivace slova w v G

[] všechny možné levé derivace slova w v G

[] všechny možné pravé derivace slova w v G

odpověď:

nic (BKG muzou byt nejednoznacne a muzou mit ruzne stromy => ruzne (leve/prave) derivace)

Příklad:

 $S \rightarrow S+S \mid a$ slovo a+a+a

40. otázka:

Libovolný bezprefixový bezkontextový jazyk může být přijímán

[] zásobníkovým automatem koncovým stavem

[] zásobníkovým automatem prázdným zásobníkem

[] deterministickým zásobníkovým automatem koncovým stavem

[] deterministickým zásobníkovým automatem prázdným zásobníkem

odpověď:

ABCD (BezPref jazyk se rozpoznava mam dojem prazdnym zasobnikem deterministickeho automatu, je to podmnozina jazyku ktere se rozpoznavaji det. s konecnym stavem. A protoze determinismus je slabsi nez nedeterminismus tak by pak meli platit i ty dva nedeterministicke varianty?)

41. otázka:

Libovolný jazyk generovaný bezkontextovou gramatikou lze přijmout

[] konečným automatem

[] zásobníkovým automatem [] lineárně omezeným automatem [] Turingovým strojem
odpověď: BD (BKJ je prijimana ZA a TJ je nadmnozinou ZA)
42. otázka: Nechť A a B jsou dva libovolné zásobníkové automaty přijímající slova prázdným zasobníkem. Potom jazyk N(A) (N(B) je přijímán [] zásobníkovým automatem [] konečným automatem [] Turingovým strojem [] je mimo Chomského hierarchii odpověď:
C (no lebo bezkontextove nie su uzavrene na prienik, takze to moze byt BKJ ale aj , a ta je prijimana LOA co je TJ)
43. otázka: Determinismus a nedeterminismus vedou na stejné třídy přijímaných jazyků u [] konečných automatů [] zásobníkových automatů [] Turingových strojů
odpověď: AC (proc?)
44. otázka: Nedeterminismus zvysi silu u [] konečných automatů [] zásobníkových automatů [] Turingových strojů odpověď: B (proc?)
45. otázka: Lineárně omezené automaty přijímají jazyky přijímané právě [] Turingovými stroji [] Mooreovými stromi [] dvoucestnými konečnými automaty [] nedeterministickými konečnými automaty odpověď:
nic (A – ne, lebo tam je slovicko prave a TJ prijimaju viac ako LOA, BCD – jsou jen KA a prijimaji vic jazyku)
46. otázka: Pokud má zásobníkový automat prázdný zásobník, potom: [] čte pouze vstup [] mění pouze stavy řídící jednotky [] končí výpočet [] přidá do zásobníku počáteční zásobníkový symbol
odpověď: C (ze slajdu: Kdy koncí výpocet zásobníkového automatu:

 zásobník je prázdný není definována žádná instrukce)
47. otázka: Chomského normální forma gramatiky (N,T,S,P) vyžaduje pravidla tvaru: [] $X \rightarrow au$, kde $X \in N$, $a \in T$, $u \in N^*$ [] $X \rightarrow YZ$ nebo $X \rightarrow a$, kde $a \in T$, a $X,Y,Z \in N$ [] $X \rightarrow \alpha Y\beta$, kde $X,Y \in N$, $\alpha,\beta \in T^*$ [] $X \rightarrow w$, $X \in N$, $w \in (N \cup T)^*$
odpověď: B
Definice: Ríkáme, že gramatika je v Chomského normální formě, jestliže všechna pravidla mají tvar: $X \to YZ$ nebo $X \to a$, kde $a \in V_T$, $X, Y, Z \in V_N$.
A- chujovina, Greibachové normální forma? B- primo definice Chomského normální formy C- tohle ne D- w mohlo byt i lambda , takze to neplati
48. otázka: Průnik libovolného bezkontextového jazyka a libovolného regulárního jazyka bude vždy: [] prázdný [] regulární jazyk [] bezkontextový jazyk [] rekurzivne spocetny jazyk [] bezprefixový jazyk
odpověď: C (napr. 0 ⁱ 1 ⁱ je BKJ, 0 ⁱ 1 ^j je RJ, jejich prunik je opet O ⁱ 1 ⁱ , tedy BKJ).)
49. otázka: Nechť $G=(N,T,S,P)$ je monotóní generativní gramatika a $(u \to v) \in P$ je její pravidlo. Potom platí: [] $ u <= v $ [] $ v <= u $ [] $ u = \alpha \beta \gamma, \ \alpha, \gamma \in (N \cup T)^*, \ \beta \in N$ [] $ v = \alpha \beta \gamma, \ \alpha, \gamma \in (N \cup T)^*, \ \beta \in N$
odpověď: AC (A- přimo z definice monotoní gramatiky, B- obracene tedy blbost, C- rika, ze na leve strane kazdeho pravidla je aspon 1 neterminal ta moznost plati, vzdycky musi byt nalevo neterminal dle definice gramatiky D- posledni moznost taky blbost (to by ta gramatika negenerovala zadny terminalni slovo :))
50. otázka: Jaké jazyky přímá PRÁVĚ Turingův stroj? [] typu 0 [] rekurzivně spočetné [] rekurzivní [] všechny
odpověď: AB ("prijima prave jazyky typu 0=(rek.spocetne)" znamena, ze neprijima jazyky obecnejsi nez typ 0 (a obecnejsi existuji).)

 51. otázka: Nedeterministické Turingovy stroje přijímají právě: [] rekurzivně spočetné jazyky [] jazyky typu 0 [] bezkontextové [] všechny jazyky
odpověď: AC (Ze slidu: NTS prijímají práve rekurzivne spocetné jazyky=(typu 0).)
51. otázka: Nedeterministické Turingovy stroje přijímají všechny: [] rekurzivně spočetné jazyky [] jazyky typu 0 [] všechny jazyky
odpověď: ABCD (Ze slidu: NTS prijímají práve rekurzivne spocetné jazyky=(typu 0).)
52. otázka: Doplněk libovolného rekurzivně spočetného jazyka je [] rekurzivně spočetný jazyk [] rekurzivní jazyk [] prázný jazyk [] regulární jazyk
odpověď: nic (Doplněk: $-L = \{ w \mid w \notin L \} = X^* - L$, jediny co by prichazelo v uvahu – moznost A ale to by puvodni jazyk musel byt take rekurzivni (viz wikipedia) cozobecne nemusi byt)
53. otázka: Doplněk libovolného rekurzivního jazyka je [] rekurzivně spočetný jazyk [] rekurzivní jazyk [] prázný jazyk [] regulární jazyk
odpověď: AB (A-Veta (Postova): Jazyk L je rekurzivní, práve když L a doplnek L jsou rekurzivne spocetné. B- mame jazyk L a jeho doplnek –L , doplnek -L je L Postova: L je rekurzivni => L rekurzivne spocetny, -L je rekurzivne spocetny -L je rekurzivne spocetny, L je rekurzivne spocetny -CD-tohle neplati)
54. otázka: Problém zastavení (halting problem) říká, že: [] existuje Turingův stroj, který se zastaví [] neexistuje Turingův stroj, který se zastaví [] existuje Turingův stroj, který o jiném TS rozhodne, zda se zastaví [] neexistuje Turingův stroj, který o jiném TS rozhodne, zda se zastaví

odpověď:

D (ve slajdech se rika ze to znamena, ze se neda algoritmicky rozhodnout pro dany TS a jeho komfiguraci, zda bude jeho vypocet konecny. Na kterou z tech odpovedi to naroubovat si nejsem uplne jisty, rekl bych ze ta posledni?)

55. otázka:

Výpočet nedeterministického Turingova stroje lze simulovat Turingovým strojem:

- [] prohledáváním do hloubky
- [] prohledáváním do šířky
- [] prohledáváním s navrácením (backtracking)
- [] nelze simulovat

odpověď:

B (ze slidu:

TS modeluje všechny výpočty NTS prohledáváním do šířky

- Na pásce můžeme mít všechny konfigurace v hloubce k (páska je nekonečná), nebo
- můžeme generovat "popis" výpočtu (posloupnost pravidel) a vždy k němu dopočítat výslednou konfiguraci

56. otázka:

Nechť A je třída deterministických bezkontextových jazyků a B je třída bezprefixovýxh bezkontextových jazyků. Potom mezi těmito třídami platí vztah:

- [] A=B
- [] A⊆B
- [] A⊇B
- [] A \neq B

odpověď:

CD (

57. otázka:

Ak ma gramatika G najmensi pocet stavov ako ktorakolvek ina gramatika generujuca ten isty jazyk potom je:

- a) redukovana
- b) nemusi byt redukovana
- c)?
- d)?