Computer Networks

Jong-won Lee

Handong University

Chapter 1 Introduction

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2017
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking:

A Top Down Approach

7th Edition, Global Edition

Jim Kurose, Keith Ross

Pearson

2017

Chapter 1: Introduction

Our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - o use Internet as example

Chapter 1:

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Performance: Delay, loss throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack
- 1.7 Internet history

1.1 What's the Internet

- What are networks?
 - The interconnection of a set of devices capable to
 - Telephone network (PSTN), Internet, cable network, N-ISDN, B-ISDN, etc.

1.1.1 What's the Internet

- □ hosts = end systems
 - running network apps
- communication links

- fiber, copper, radio, satellite
- transmission rate vs. bandwidth
- □ Routers (or switches)
 - To forward packets (chunks of data)

PC

server

wireless laptop

router

1.1.1 What's the Internet

- □ Internetwork (Internet)
 - A network of networks
 - A set of independent networks interconnected
 - loosely hierarchical

- □ Internet vs. internet
 - Protocols:
 - Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

1.1.2 What's the Internet: a service view

- □ The Internet (communication infrastructure) enables distributed applications:
 - Web, email, games, e-commerce, file sharing
- □ The Internet provides two services to apps:
 - Connectionless unreliable
 - connection-oriented reliable
- The Internet can support

1.1.3 What's a protocol?

□ A protocol is the

between

two or more entities should adhere.

- the format of messages
- the order of messages exchanged
- the actions taken on the transmission and/or receipt of a message or other event.

1.1.3 What's a protocol?

a human protocol and a computer network protocol:

Chapter 1:

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Performance: Delay, loss throughput
- 1.5 Protocol layers, service models
- 1.6 Networks under attack
- 1.7 Internet history

Network structure

- network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Access networks

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Home (residential) access net.

- Dialup via modem
 - o up to 56Kbps direct access to router (often less)
 - Can't surf and phone at same time: can't be "always on"

Home access net.

DSL (Digital Subscriber Line)

- A technology for supporting high-speed digital communication over the existing local loops
- O Can use the Internet and the phone at the same time

Home access net.

□ Ex. ADSL (Asymmetric DSL)

DSL

Technology	Downstream Rate	Upstream Rate	Distance (ft)	Twisted Pairs	Line Code
ADSL	1.5–6.1 Mbps	16–640 kbps	12,000	1	DMT
ADSL Lite	1.5 Mbps	500 kbps	18,000	1	DMT
HDSL	1.5–2.0 Mbps	1.5–2.0 Mbps	12,000	2	2B1Q
SDSL	768 kbps	768 kbps	12,000	1	2B1Q
VDSL	25–55 Mbps	3.2 Mbps	3000-10,000	1	DMT

Home access net.: Cable

frequency division multiplexing (FDM):

different channels transmitted in different frequency bands

Home access net.

- ☐ HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream,2 Mbps upstream
 - network of cable and fiber attaches homes to ISP router
 - homes share access to router

Home access net.

□ FTTH (Fiber To The Home)

Home networks

Typical home network components:

- □ xDSL or cable modem
- router/firewall/NAT
- Ethernet

Enterprise access net.

- * company/univ local area network (LAN) connects end system to edge router 한 사람이 전적으로 사용가능
- today, end systems typically connect into Ethernet switch
 - * 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates

Wireless access net.

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11,54 Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G: LTE

1.2.2 Physical Media

- Classes of Physical Media
 - guided media:
 - signals propagate in solid media: copper, fiber, coax
 - o unquided media:
 - · signals propagate freely, e.g., radio

Physical Media: Twisted Pair (TP)

■ UTP and STP

UTP

- Category 3: traditional phone wires, 10 Mbps Ethernet
- Category 5: I00Mbps Ethernet
 - Category 5e: I Gbps
- Category 6: 10 Gbps

Physical Media: coaxial cable

- two concentric copper conductors
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channel on cable
 - O HFC

Physical Media: fiber

Fiber optic cable:

- O Glass fiber carrying light pulses, each pulse a bit
- Ultra-high bandwidth (up to 50 Tbps);
- Low error rate
 - Not susceptible to electromagnetic interference;
- Secure, wire-tapping near impossible.
- Very low attenuation

Physical media: radio

- Regulated by ITU-R (WARC) <-> ISM band(규제가 없음) 규제를 잘 해야됨 noisier (more bit error) than wire transmission
- - Reflection, interference, obstruction by objects
- Frequency spectrum
 - ∨LF(3~30 kHz),

LF(30~300kHz),

→ MF(300~3000kHz;AM),

 $HF(3\sim30MHz;HAM),$

VHF(30~300MHz;TV, FM), UHF(300~3000MHz;TV)

Light wave

Physical media: radio

Typical Radio link types:

- LAN (IEEE802.11 e.g., Wifi)
 - II Mbps, 54Mbps, ...
- wide-area (e.g., cellular)
 - o e.g. 3G, 4G
- satellite Propagation delay 클
 - Kbps to 45Mbps channel
 - 270 msec (from ground station through satellite back to ground)
 - geosynchronous versus low-earth orbiting (LEO)
- Terrestrial microwave

Send packets

Sending function in a host

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

Physical media: Basic theorems

■ Nyquist Theorem

- expresses the maximum data rate for a noiseless channel
- maximum rate = 2B symbols/sec (B=bandwidth [Hz])
 = 2B log₂V bits/sec (V=the number of discrete levels of each symbol)

□ Shannon Theorem

- the maximum bit rate of a random *noisy* channelchannel capacity
- o max. bit rate = $B log_2 (1+ S/N)$ bits/sec (S/N) : signal-to-noise ratio)

Physical media: Basic theorems

Q) If a binary signal is sent over a 3-kHz channel whose signal-to-noise ratio is 20dB, what is the maximum achievable data rate?

Sol)

- By Nyquist theorem:
- By Shannon theorem: