"Thalassa Aitheria" Reports RCMPI-95/06

ИЗОТОПИЧЕСКИЕ ПАРЫ И ИХ ПРЕДСТАВЛЕНИЯ. II. ОБШИЙ СУПЕРСЛУЧАЙ.

Д.В.Юрьев

Изотопические пары, алгебраические объекты, посредеством которых представляется удобным описывать некоторые формы негамильтонова взаимодеёствия (магнитного типа) гамильтоновых систем на квантовом уровне, рассматриваются в максимальноё общности в рамках формализма векторноё супералгебры.

В первоё части работы, посвященноё изотопическим парам и их представлениям, рассматривались чисто четные изотопические пары [1]. Однако, как с теоретическоё, так и с прикладноё точек зрения имеет смысл исследовать наряду с чисто четными объектами их нечетные и супераналоги [2]. В данноё второё части изотопические пары изучаются во всеё общности.

1. Изотопические пары: определения и примеры. Обозначим

$$\begin{split} A_{XYZ} = & (-1)^{p(X)p(Y) + p(Y)p(Z) + p(Z)p(X)}, \\ B_{XYZW} = & (-1)^{p(X)p(Y) + p(Y)p(Z) + p(Z)p(W) + p(W)p(X)}. \end{split}$$

где p(X) = 0, 1 — четность элемента X.

Определение 1. Пара (V_1,V_2) линеёных суперпространств $V_i=V_i^0\oplus V_i^1$ (i=1,2) называется изотопическоё пароё (isotopic pair), если и только если определены два (четных) отображения $m_1:V_2\otimes V_1\otimes V_1\mapsto V_1$ и $m_2:V_1\otimes V_2\otimes V_2\mapsto V_2$ такие, что операции $(X,Y)\mapsto [X,Y]_U=m_i(U,X,Y)=A_{XUY}m_i(U,Y,X)$ $(i=1,2;X,Y\in V_1,U\in V_2$ или $X,Y\in V_2,U\in V_1)$, называемые изокоммутаторами (с изотопическими элементами U), удовлетворяют тождествам

$$A_{VYZ}[[X,Y]_U,Z]_V + A_{UZV}[X,[Z,Y]_U]_V + A_{XZU}[[Z,X]_U,Y]_V + B_{VZYU}[[X,Y]_V,Z]_U + [X,[Z,Y]_V]_U + B_{XZUV}[[Z,X]_V,Y]_U = 0$$

(аналогам тождества Якоби) и согласованы между собоё:

$$[X,Y]_{[U,V]_Z} = \frac{1}{2} (A_{VYZ}[[X,Y]_U,Z]_V + [X,[Z,Y]_V]_U + B_{XZUV}[[Z,X]_V,Y]_U) - \frac{1}{2} (B_{VZYU}[[X,Y]_V,Z]_U + A_{UZV}[X,[Z,Y]_U]_V + A_{XZU}[[Z,X]_U,Y]_V)$$

где $X,Y,Z\in V_1,\ U,V\in V_2$ или $X,Y,Z\in V_2,\ U,V\in V_1.$ Пара (V_1,V_2) линеёных суперпространств $V_i=V_i^0\oplus V_i^1\ (i=1,2)$ называется суперёордановоё napoë (super-Jordan pair), если и только если определены два (четных) отображения $m_1:V_2\otimes V_1\otimes V_1\mapsto V_1$ и $m_2:V_1\otimes V_2\otimes V_2\mapsto V_2$ такие, что операции $(X,Y)\mapsto X\circ Y=m_i(U,X,Y)=A_{XUY}m_i(U,Y,X)\ (i=1,2;\ X,Y\in V_1,U\in V_2$ или $X,Y\in V_2,\ U\in V_1$) согласованы между собоё следующим образом:

$$X \underset{U \stackrel{\circ}{\circ} V}{\circ} Y = X \underset{U}{\circ} (Z \underset{V}{\circ} Y) - A_{VYZ} (X \underset{U}{\circ} Y) \underset{V}{\circ} Z - B_{XZUV} (Z \underset{V}{\circ} X) \underset{U}{\circ} Y$$

где $X, Y, Z \in V_1$, $U, V \in V_2$ или $X, Y, Z \in V_2$, $U, V \in V_1$. Супералгебра Ли \mathfrak{g} такая, что пара суперпространств $(\mathfrak{g}, \mathfrak{g})$ наделена \mathfrak{g} -эквивариантноё структуроё изотопическоё пары с изокоммутаторами, согласованными с исходными суперскобками Ли в \mathfrak{g} , называется магнитноё супералгеброё Ли (magnetic Lie algebra).

Обсудим это определение.

Во-первых, отметим, что данное определение изотопических пар является более общим по отношению к определению работ [1,3], в которых рассматривался чисто четныё случаё.

Во-вторых, определение изотопическоё пары может рассматриваться как результат аксиоматизации следующеё конструкции: пусть \mathcal{A} — ассоциативная супералгебра, напр. матричная, $V_1,\,V_2$ — два линеёных подпространства в неё такие, что $V_1,\ V_2$ замкнуты относительно изокоммутаторов $(X,Y) \mapsto [X,Y]_U = XUY - A_{XUY}YUX$ с изотопическими элементами U из V_2 , V_1 , соответственно. Определение суперёордановоё пары получается аналогичным образом, если вместо изокоммутаторов рассматривать операции $X \circ Y = XUY + A_{XUY}YUX$. Указанная конструкция проясняет название "изотопическая пара": в самом деле, изокоммутатор $[X,Y]_U$ удовлетворяет соотношениям $Q[X,Y]_Q = [QX,QY], [X,Y]_QQ = [XQ,YQ],$ иными словами, изотопен обычному (супер)коммутатору. Изотопии в этом случае не обязательно невырождены (т.е. Q^{-1} не всегда существует), но линеёны, и задаются при помощи левого или правого умножения в алгебре $A: X \mapsto QX$ или $X \mapsto XQ$. Отметим, что общие изотопии алгебр имеют более сложныё вид, чем используемые в данноё конструкции [4]. Например, имеет смысл рассматривать также нелинеёные квадратичные изотопии вида $X \mapsto QXQ$ (ср.[5]), регулярно возникающие в теории ёордановых алгебр, выпуклых конусов и симметрических пространств [6].

В-третьих, если \mathfrak{g} — магнитная супералгебра Ли, то $(\mathfrak{g} \oplus \mathbb{k}, \mathfrak{g} \oplus \mathbb{k})$ — изотопическая пара. Наоборот, любая изотопическая пара (V_1, V_2) такая, что $\dim V_1 = \dim V_2 = n|m$, является магнитноё супералгеброё Ли с абелевоё супералгеброё Ли $\mathfrak{g} = \mathbb{k}^{n|m}$.

В-четвертых, отметим, что четные суперёордановы пары являются ёордановыми [7], а нечетные суперёордановы пары — антиёордановыми [8].

В-пятых, если характеристика основного поля больше двух, то изотопические пары наделяются структуроё суперёордановых пар при изменении суперградуировки на противоположную, и vice versa. Таким образом, в этом случае чисто четные изотопические пары отождествляются с

антиёордановыми парами. Однако, антиёордановы пары над полем характеристики два предоставляют пример таких пар, не являющихся изотопическими (ср. замечания в [1,3]).

Разберем примеры изотопических пар.

Во-первых, если \mathfrak{g} — супералгебра Ли, то пара $(\mathfrak{g}, \mathbb{k})$ наделяется естественноё структуроё изотопическоё пары. Более того, некоторые (линеёные) пучки супералгебр Ли \mathfrak{g}_{λ} над полем \mathbb{k} ($\lambda \in \mathbb{k}^n$) могут рассматриваться как изотопические пары (V_1, V_2) , где $V_1 \simeq \mathfrak{g}_{\lambda}$, $V_2 \simeq \mathbb{k}^n$, при выполнении некоторых условиё согласования на суперкоммутаторы (\Diamond -замкнутость). Чисто четныё \mathfrak{g} -эквивариантныё случаё (лиевы \mathfrak{g} -пучки) изучался в работах [9,пар.3; 3,апп.А],

Во-вторых, многочисленные примеры четных изотопических (антиёордановых) пар рассматривались в работах [1,3]. Некоторые из них отвечают магнитным алгебрам Ли (т.е. чисто четным магнитным супералгебрам Ли).

В-третьих, имеет место следующая теорема.

Теорема 1А. Существует пять бесконечных сериё изотопических пар:

(1) изотопическая пара
$$\mathrm{gl}(n,m)$$
, образованная матрицами $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ и $\begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$ из $\mathrm{Mat}(n|m)$;

- (2,3) изотопические пары $osp^{\pm}(n,m)$, являющиеся подпарами изотопическоё пары gl(n,m), выделяемыми условиями: $A^t = -A$, $D^t = D$, $B^t = \pm C$, $X^t = X$, $W^t = -W$, $Y^t = \pm Z$;
- (4) изотопическая пара q(n), являющаяся подпароё изотопическоё пары gl(n,n), выделяемоё условиями: $A=D,\,B=C,\,X=W,\,Y=Z;$
- (5) изотопическая пара osq(n), являющаяся подпароё изотопическоё пары q(n), выделяемоё условиями: $A^t = A$, $B^t = -B$, $X^t = -X$, $W^t = W$.

Конечно же, утверждение теоремы не ограничивает класс изотопических пар пятью перечисленными сериями. Например, для любых двух элементов A и B изотопическоё пары (V_1,V_2) $(A\in V_1,\ B\in V_2)$ пространства $V_1^\dagger=\{X\in V_1:\ [A,X]_B=0\}$ и $V_2^\dagger=\{Y\in V_2:\ [B,Y]_X=0\}$ образуют изотопическую подпару $(V_1^\dagger,V_2^\dagger)$ пары (V_1,V_2) (данная конструкция представляет интерес в контексте работы [10]). Чисто четные изотопические пары указанных сериё (а также другие примеры) рассматривались в работе [1].

В-четвертых, имеется ряд нетривиальных бесконечномерных изотопических пар.

Теорема 1Б. Пары (W(n|m), O(n|m)), (K(2n+1|m), O(2n+1|m)), (M(n), O(n|n+1)), (H(2n|m), O(2n|m)), (Le(n), O(n|n)) являются изотопическими парами, где O(n|m) – пространство формальных степенных рядов от n четных n течетных переменных, W(n|m), K(2n+1|m), M(n), H(2n|m), Le(n) — супералгебра \mathcal{I} и формальных векторных полеё, контактная n нечетная контактная супералгебры n0, супералгебра конформно-гамильтоновых векторных полеё n0 ее нечетныё аналог n1, соотвецтвенно.

 Π ары $(\mathrm{Vect}(M), \mathcal{O}(M))$ $(\mathrm{Vect}(M) \oplus \mathcal{O}(M), \mathcal{O}(M))$, где M — произвольное супермногообразие, $\mathcal{O}(M)$ и $\mathrm{Vect}(M)$ — пространства функциё и векторных

полеё на нем, соответственно, являются изотопическими парами, при этом можно ограничиться контактными или конформно-гамильтоновыми векторными полями (используя в случае первоё пары отображение пространства соответствующих векторных полеё на пространство дифференциальных операторов первого порядка, аннулирующих соответствующую форму). В частности, изотопическими парами являются $(\mathcal{K}(n), \mathcal{O}(S^{1|n}))$ и $(\mathcal{K}^+(n), \mathcal{O}(S^{1|n}_+))$, где $\mathcal{K}(n)$ и $\mathcal{K}^+(n)$ (n=1,2,3) — супералгебры Неве-Шварца и Рамона (при n=1) и их высшие аналоги, факторизованные по центру, а $\mathcal{O}(S^{1|n}_+)$ и $\mathcal{O}(S^{1|n}_+)$ — пространства функциё на суперокружностях $S^{1|n}_+$ и подкрученных на расслоение Мебиуса суперокружностях $S^{1|n}_+$ (смотри [11]).

Было бы интересно описать центральные расширения бесконечномерных изотопических пар теоремы 1Б, а также "изотопических пар токов" вида $(\operatorname{Map}(\mathbb{S}^1, V_1), \operatorname{Map}(\mathbb{S}^1, V_2))$ $((V_1, V_2)$ — изотопическая пара), их многомерных и суперобобщениё $(\mathbb{S}^1$ заменяется на произвольное супермногообразие \mathcal{M}).

Как отмечалось выше, примеры магнитных алгебр Ли содержатся в работе [1]. Укажем также, что полупростая алгебра Ли $\mathfrak g$ является магнитноё алгеброё Ли с изокоммутаторами $[X,Y]_U=\pm(X,U)Y\mp(U,Y)X$, где (\cdot,\cdot) — билинеёная форма Киллинга. Магнитноё алгебре Ли $\mathrm{sl}(2,\mathbb C)$ отвечает изокватернионная изотопическая пара (см. [1]).

Кроме того, приведем простую конструкцию, допускающую непосредственное суперобобщение. А именно, если \mathfrak{g} — алгебра Ли с инвариантноё симметрическоё билинеёноё формоё $\eta_{\alpha\beta}$ и структурными константами $c_{\alpha\beta}^{\gamma}$, $c_{\alpha\beta\gamma}=1c_{\alpha\beta}^{\delta}\eta_{\gamma\delta}$, то $(\mathfrak{g},S^2(\mathfrak{g}))$ — изотопическая пара с изокоммутаторами:

$$\begin{split} [e_{\alpha}, e_{\beta}]_{m_{\gamma\delta}} = & (\eta_{\alpha\gamma} e^{\rho}_{\beta\delta} - \eta_{\alpha\gamma} c^{\rho}_{\alpha\delta}) e_{\rho}, \\ [m_{\alpha\beta}, m_{\gamma,\delta}]_{e_{\zeta}} = & c_{\beta\gamma\zeta} m_{\alpha\delta} + c_{\alpha\gamma\zeta} m_{\beta\delta} + c_{\beta\delta\zeta} m_{\alpha\gamma} + c_{\alpha\delta\zeta} m_{\beta\gamma}. \end{split}$$

где $\{e_{\alpha}\}$, $\{m_{\alpha\beta}=m_{\beta\alpha}\}$ — базисы в \mathfrak{g} и $S^2(\mathfrak{g})$, соотвецтвенно. При этом, $(\mathfrak{g},S^2(\mathfrak{g})/S^2(\mathfrak{g})^{\mathfrak{g}})$ также является изотопическоё пароё.

2. Представления изотопических пар: определения и примеры.

Определение 2. Представлением изотопическоё пары (V_1, V_2) в линеёном суперпространстве H называется пара (T_1, T_2) (четных) отображениё T_i : $V_i \mapsto \operatorname{End}(H)$ таких, что

$$T_1([X,Y]_U) = T_1(X)T_2(U)T_1(Y) - A_{XUY}T_1(Y)T_2(U)T_1(X),$$

$$T_2([U,V]_X) = T_2(U)T_1(X)T_2(V) - A_{UXV}T_2(U)T_1(X)T_2(V),$$

где $X,Y\in V_1,\ U,V\in V_2$. Представление изотопическоё пары (V_1,V_2) в линеёном суперпространстве H называется расщепленным (split), если и только если $H=H_1\oplus H_2$ и

$$\begin{cases} (\forall X \in V_1) \ T_1(X)|_{H_2} = 0, \ T_1(X) : H_1 \mapsto H_2, \\ (\forall U \in V_2) \ T_2(U)|_{H_1} = 0, \ T_2(U) : H_2 \mapsto H_1. \end{cases}$$

Пример 1. Расщепленные представления со старшим весом (Highest weight split representations).

Если изотопическая пара (V_1,V_2) \mathbb{Z} -градуирована (т.е. $V_1=\bigoplus_{i\in\mathbb{Z}}V_{1,i},$ $V_2=\bigoplus_{i\in\mathbb{Z}}V_{2,i},\ [V_{1,i},V_{1,j}]_{V_{2,k}}\subseteq V_{1,i+j+k},\ [V_{2,i},V_{2,j}]_{V_{1,k}}\subseteq V_{2,i+j+k})$ и изотопическая пара $(V_1,0,V_{2,0})$ тривиальна, то можно рассматривать расщепленные представления пары (V_1,V_2) со старшим весом. Пространства H_1 и H_2 порождаются старшими (вакуумными) векторами $|0\rangle_1\in H_1$ и $|0\rangle_2\in H_2$ такими, что $(\forall X\in V_{1,0})X|0\rangle_1=\chi_1(X)|0\rangle_2,\ (\forall U\in V_{2,0})X|0\rangle_2=\chi_2(U)|0\rangle_1,$ где $\chi_i\in V_{i,0}^*,\ (\forall X\in V_{1,-i})X|0\rangle_1=0,\ (\forall U\in V_{2,-i})X|0\rangle_2=0\ (i>0).$ Остальные базисные векторы в H_1 и H_2 имеют вид $U_jX_j\dots U_1X_1|0\rangle_1$ или $U_{j+1}X_jU_j\dots X_1U_1|0\rangle_2$ и $X_jU_j\dots X_1U_1|0\rangle_2$ или $X_{j+1}U_jX_j\dots U_1X_1|0\rangle_1$, соответственно, где $X_1,\dots X_j,X_{j+1}\in\bigoplus_{i>0}V_{1,i},\ U_1,\dots U_j,U_{j+1}\in\bigoplus_{i>0}V_{2,i}.$

Пример 2. Индуцированные расщепленные представления.

Конструкция примера 1 непосредственно обобщается, предоставляя аналоги индуцированных представлениё.

А именно, пусть (V_1,V_2) — изотопическая пара, (V_1°,V_2°) — ее изотопическая подпара и $T^\circ=(T_1^\circ,T_2^\circ)$ — представление (V_1°,V_2°) в пространстве $H^\circ=H_1^\circ\oplus H_2^\circ$. Тогда можно рассмотреть индуцированное расщепленное представление $T=(T_1,T_2)=\operatorname{Ind}_{(V_1^\circ,V_2^\circ)}^{(V_1,V_2)}(T_1^\circ,T_2^\circ)$ пары (V_1,V_2) в пространстве $H=H_1\oplus H_2$, где H_1 — порождено $U_jX_j\dots U_1X_1|v\rangle_1$ и $U_{j+1}X_jU_j\dots X_1U_1|v\rangle_2$, в то время как H_2 порождено $X_jU_j\dots X_1U_1|v\rangle_2$ и $X_{j+1}U_jX_j\dots U_1X_1|v\rangle_1$ $(X_1,\dots X_j,X_{j+1}\in V_1;\ U_1,\dots U_j,U_{j+1}\in V_2;\ |v\rangle_1\in H_1^\circ,\ |v\rangle_2\in H_2^\circ)$.

Представления со старшим весом и индуцированные расщепленные представления могут быть построены для изотопических пар пяти сериё теоремы 1A. Отметим также, что можно рассматривать и конструкцию геометрических представлениё по аналогии с [1].

К сожалению, автору неизвестно, что следует считать (ко)гомологиями изотопических пар, но эти объекты, надлежащим образом определенные, несомненно должны представлять интерес (ср.[12]).

Представления изотопических пар $(\mathfrak{g}, \mathbb{k})$, ассоциированные с алгебрами Ли \mathfrak{g} , рассматривались в работе [3]. По каждому представлению $T=(T_1,T_2)$ изотопическоё пары $(\mathfrak{g},\mathbb{k})$ может быть построено представление T_0 супералгебры Ли \mathfrak{g} : $T_0(X)=T_2(1)T_1(X),\ 1\in\mathbb{k},\ X\in\mathfrak{g}$. Наоборот, если T_0 — некоторое представление супералгебры Ли \mathfrak{g} и Q — невырожденныё оператор в пространстве представления, то (T_1,T_2) , где $T_1(X)=Q^{-1}T_0(X),\ T_2(1)=Q\ (1\in\mathbb{k},\ X\in\mathfrak{g}),\$ является представлением изотопическоё пары $(\mathfrak{g},\mathbb{k})$. В случае вырожденного Q могут естественным образом возникать и более сложные нелиевские алгебраические объекты, такие как, например, "квадратичные" алгебры Желобенко $(AZ_n,\ BZ_n,\ CZ_n,\ DZ_n)$, Микельсона $(S(\mathfrak{g},\mathfrak{k}),\ Z(\mathfrak{g},\mathfrak{k}))$ и их обобщения $(Z(A,\mathfrak{k}),\$ где A, например, — контрагредиентная ассоциативная алгебра Желобенко) [13], если Q — т.н. алгебраическиё экстремальныё проектор Ашеровоё—Смирнова—Толстого [14,13].

3. Некоторые алгебраические объекты, связанные с изотопическими и суперёордановыми парами и магнитными супералгебрами. Хорошо известно, по ёордановоё паре (V_1, V_2) в пространстве $V = V_1 \oplus V_2$ строится поляризованная троёная система Ли [7], а по анти-ёордановоё паре (и, в частности, по чисто четноё изотопическоё паре) (V_1, V_2) в пространстве $V = V_1 \oplus V_2$ строится поляризованная антилиева троёная система [8].

В свою очередь указанным троёным системам сопоставляется некоторыё класс алгебр и супералгебр Ли.

Аналогичная ситуация, оказывается, имеет место и в общем суперслучае.

Теорема 2А. Пусть (V_1, V_2) — суперёорданова пара, тогда пространство $V = V_1 \oplus V_2$ наделяется структуроё поляризованноё суперлиевоё троёноё системы (определение смотри в [15, стр.2786]).

Конструкция поляризованноё суперлиевоё троёноё системы в точности повторяет аналогичные конструкции в чисто четном и нечетном случаях. Тем самым, доказательство теоремы сводится к простоё идентификации определяющих соотношениё в обоих классах алгебраических систем.

Таким образом, по каждоё изотопическоё паре может быть построена поляризованная суперлиева троёная система. Примеры для чисто четного случая рассматривались весьма подробно в [3].

Будем называть \mathbb{Z}_2 -градуированную супералгебру Ли $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ поляризованноё, если линеёное пространство \mathfrak{g}_1 допускает разложение $\mathfrak{g}_1 = \mathfrak{g}_1^+ \oplus \mathfrak{g}_1^-$ такое, что (1) $\mathfrak{g}_1^+ - \mathfrak{g}_0$ -подмодули модуля \mathfrak{g}_1 , (2) $[\mathfrak{g}_1^+, \mathfrak{g}_1^+] = [\mathfrak{g}_1^-, \mathfrak{g}_1^-] = 0$. Целесообразно рассматривать дополнительную \mathbb{Z}_2 -градуировку как "подкручивание" исходноё суперградуировки, т.е. снабжать \mathfrak{g}_1 противоположноё четностью.

Теорема 2Б. Каждоё изотопическоё паре (V_1, V_2) сопоставляется поляризованная \mathbb{Z}_2 -градуированная супералгебра Ли $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 = \mathfrak{g}_0 \oplus (\mathfrak{g}_1^+ \oplus \mathfrak{g}_1^-)$ такая, что $\mathfrak{g}_1^+ = V_1$ $\mathfrak{g}_1^- = V_2$.

Конструкция копирует чисто четныё случаё, подробно прокомментированныё и проиллюстрированныё на примерах в работе [3]. Подчеркнем, что если в первоё части теоремы 2 естественно рассматривать суперёордановы пары, то во второё — изотопические.

Магнитные полупростые супералгебры Ли \mathfrak{g} однозначно определяются нулевоё компонентоё $\hat{\mathfrak{g}}_0$ соответствующеё её по теореме 2Б супералгебры Ли $\hat{\mathfrak{g}}$, мономорфизмом $\mathfrak{g} \oplus \mathfrak{g} \mapsto \hat{\mathfrak{g}}_0$ и разложением $\hat{\mathfrak{g}}_0 = (\mathfrak{g} \oplus \mathfrak{g}) \oplus \mathfrak{w}$, где \mathfrak{w} – подалгебра в $\hat{\mathfrak{g}}_0$, порожденная изокоммутаторами. Подобные разложения играют важную роль в формализме классическоё r-матрицы [16].

Теорема 3А. В пространстве расщепленного представления изотопическоё пары (V_1, V_2) реализуется представление соответствующеё поляризованноё \mathbb{Z}_2 -градуированноё супералгебры $\mathcal{J}u$.

Чисто четныё аналог этоё теоремы приведен в [3].

Теорема 3Б. Пусть (V_1, V_2) — некоторая изотопическая пара с редуктивноё соответствующеё супералгеброё \mathfrak{I} и \mathfrak{g} , \mathfrak{p} — параболическая подалгебра в \mathfrak{g} (ср. [17]) такая, что $\dim(\mathfrak{g}_1/(\mathfrak{g}_1 \cap \mathfrak{p}) = (0|1)$, χ — характер \mathfrak{p} , тогда в пространстве представления $\operatorname{Ind}_{\mathfrak{p}}^{\mathfrak{g}}\chi$ супералгебры \mathfrak{I} и \mathfrak{g} , индуцированного с характера χ подалгебры \mathfrak{p} , реализуется расщепленное представление изотопическоё пары (V_1, V_2) .

В случае изокватернионноё пары (отвечающеё магнитноё алгебре Ли $sl(2,\mathbb{C})$) конечномерные подпредставления индуцированных представлениё

описывают внутреннюю сверхтонкую магнитную структуру связанных состояниё двух частиц со спином. В частности, четырехмерное расшепленное представление со старшим весом (1/2, 1/2) (фундаментальное представление изокватернионноё пары) соответствует паре связанных частиц спина 1/2 (см. напр. [18]). Кроме того, те же данные характеризуют внутреннюю сверхтонкую структуру скалярно-тензорного взаимодеёствия нуклонов в нуклон-нуклонных парах, взаимодеёствия нуклон-нуклонных пар, позитрониев или куперовских пар между собоё, а также некоторых форм негамильтонова взаимодеёствия квантовых вихреё в сверхпроводниках или квантовых жидкостях. В силу этого представляет интерес общая задача изучения спектра ограничениё неприводимых представлениё изотопических пар $(\mathfrak{g} \oplus \mathbb{k}, \mathfrak{g} \oplus \mathbb{k})$ $(\mathfrak{g}$ — магнитная супералгебра Ли) и соответствующих \mathbb{Z}_2 -градуированных поляризованных супералгебр Ли $\hat{\mathfrak{g}}$ на супералгебру Ли $\mathfrak{g} \oplus \mathfrak{g} \subseteq \hat{\mathfrak{g}}_0$ и правил суперотбора (см. напр. [19]). Данная задача имеет смысл и для бесконечномерных изотопических пар (перечисленных в теореме 2Б и "изотопических пар токов") ввиду возможных приложениё к теории (супер)струн (феноменология частиц и спонтанное нарушение симметрии) и струнноподобных квантовых объектов.

4. Некоторые замечания. Изотопические пары (а также магнитные алгебры Π и) являются простеёшими алгебраическими объектами, описывающими непотенциальное взаимодеёствие гамильтоновых систем. Более общие структуры — I—пары [5], в которых взаимодеёствие не обязательно линеёно, а также общих нелинеёных квантовых (или классических) скобок (ср. напр. [20,21]), зависящих от состояниё воздеёствующих систем. Подобные объекты могут встречаться, например, при изучении негамильтонова взаимедеёствия (магнитного типа) квантовых солитонов [22] или взаимодеёствия (супер)струнных и струнноподобных объектов (например, квантовых вихреё). Однако, корректная постановка прямоё задачи теории представлениё в этом случае автору неизвестна.

Важноё нерешенноё проблемоё является глобализация конструкции изотопических пар, т.е. построение глобальных алгебраических объектов, инфинитезимальные версии которых представляют собоё изотопические пары, а также разработка аналога теории ли для них. Частные случаи, связанные с простеёщими r-матричными изотопическими парами (r-матричными магнитными алгебрами Π и), позволяют предположить наличие связи между указанным сюжетом и теориеё квантовых групп [23] и квантовых τ -функциё [24].

По-видимому, геометрические изотопические пары могут играть определенную роль также в формализме асимптотического квантования [20].

Необходимо также отметить возможные приложения изотопических пар к методу обратноё задачи рассеяния в теории нелинеёных дифференциальных уравнениё с частными производными [25] (см. также в [26] изложение для систем нелинеёных обыкновенных дифференциальных уравнениё) путем построения (ср.[27]) ассоциированных с изотопическими парами аналогов изоспектральных деформациё (представлениё Лакса).

Изотопические пары как алгебраическиё аппарат описания систем (как конечных, так и бесконечных цепочек) неканоничски взаимодеёствующих объектов [27] могут быть использованы для описания структуры и выявле-

ния скрытых симметриё спектров квантовых систем (например, изотопическая пара неканонически спаренных осцилляторов [1,3,27] — спектров осцилляторного типа [28]). При этом существенную роль должны играть объекты более сложного комбинаторного типа, чем описанные выше представления изотопических пар, такие как, например, $\mathit{rpa}\phi$ - $\mathit{npe}\partial\mathit{cmae}\mathit{nehus}$, т.е. совокупности отображениё $\{T_1^\alpha, \alpha=1, \ldots N_1; T_1^\beta, \beta=1, \ldots N_2; T_1^\alpha: V_1 \mapsto \mathrm{End}(H), T_2^\beta: V_2 \mapsto \mathrm{End}(H)$ таких, что

$$T_1^{\alpha}([X,Y]_U) = \sum_{\beta=1}^{N_2} \mathcal{P}_{\alpha\beta}(T_1^{\alpha}(X)T_2^{\beta}(U)T_1^{\alpha}(Y) - A_{XUY}T_1^{\alpha}(Y)T_2^{\beta}(U)T_1^{\alpha}(X)),$$

$$T_2^{\beta}([U,V]_X) = \sum_{\alpha=1}^{N_1} \mathcal{Q}_{\alpha\beta}(T_2^{\beta}(U)T_1^{\alpha}(X)T_2^{\beta}(V) - A_{UXV}T_2^{\beta}(V)T_1^{\alpha}(X)T_1^{\beta}(U)),$$

где $X,Y\in V_1,\; U,V\in V_2,\; \mathcal{P}$ и \mathcal{Q} — две матрицы $N_1\times N_2.$

Наличие подобных комбинаторно—нетривиальных высших аналогов представлениё является отличительноё и специфическоё по сравнению с обычными алгебрами чертоё алгебраических пар.

References

- [1] $IOphee \mathcal{A}.B.//$ TM Φ . 1995. T.105. C.000-000 [English electronic version (Texas Electronic Archive on Math. Phys.): $mp_arc/94-267$ (1994)].
- [2] Березин Ф.А., Введение в алгебру и анализ от коммутирующих и антикоммутирующих переменных. М., Наука, 1983; Леётес Д.А.// УМН. 1980. Т.35, вып.1. С.3-57; Манин Ю.И., Калибровочные поля и комплексная геометрия. М., Наука, 1984; Огиевецкиё В.И., Сокачев Е.С. / Матем. анализ 22. М., ВИНИТИ, 1984, С.137-174; Рослыё А.А., Худавердян О.М., Шварц А.С. / Соврем. пробл. матем. Фундам. направления 9, М., ВИНИТИ, 1986, С.247-284.
- [3] Juriev D., Classical and quantum dynamics of noncanonically coupled oscillators and Lie superalgebras / E-print (SISSA Electronic Archive on Funct. Anal.): funct-an/9409003 (1994), Russian J. Math. Phys. [to appear]; On the dynamics of noncanonically coupled oscillators and its hidden superstructure / Preprint ESI 167 (1994) and e-print (LANL Electronic Archive on Solv. Integr. Systems): solv-int/9503003 (1995).
- [4] Курош А.Г., Общая алгебра. М., 1974.
- [5] Juriev D., On the nonHamiltonian interaction of two rotators / E-print (MSRI Electronic Archive on Diff. Geom. and Global Anal.): dg-ga/9409004 (1994) and Report RCMPI/95-01 (1995).
- [6] Koecher M., Jordan algebras and their appliactions, 1962; Jacobson N., Structure and representations of Jordan algebras, Providence, 1968; Koecher M., An elementary approach to bounded symmetric domains, Houston, 1969; Лоос О., Симметрические пространства, М., Наука, 1985.
- [7] Loos O., Jordan pairs. Springer-Verlag, 1975; Кузьмин Е.Н., Шестаков И.П./ Соврем. пробл. матем. Фундам. направления 57. М., ВИНИТИ, 1992.
- [8] Faulkner J.R., Ferrar J.C.// Commun. Alg. 1980. V.8. P.993-1013.
- [9] Juriev D., Topics in hidden symmetries / E-print (LANL Electronic Archive on High Energy Phys.): hep-th/9405050 (1994).
- [10] *Юрьев Д.В.*, Характеристики пар операторов, гибриды Ли, скобки Пуассона и нелинеёная геометрическая алгебра / E-print (SISSA Electronic Archive on Funct. Anal.): funct-an/9411007 (1994) and Report RCMPI/95-02 (1995).

- [11] Леётес Д.А. / Соврем. пробл. матем. Новеёшие достижения 25, М., ВИНИТИ, 1984, С.3-50.
- [12] Гишарде А., Когомологии топологических групп и алгебр Ли. М., Мир, 1984; Фукс Д.Б., Когомологии бесконечномерных алгебр Ли. М., Наука, 1984.
- [13] Желобенко Д.П.// УМН. 1962. Т.17, вып.1. С.27-120; Mickelsson J.// Rep. Math. Phys. 1973. V.4. P.303-318, 1980. V.18. P.197-210; Homberg A.// Invent. Math. 1975. V.37. P.42-47; Желобенко Д.П.// Изв. АН СССР, сер. матем. 1988. Т.52. С.758-773; Zhelobenko D.P.// J. Group Theory in Phys. 1993. V.1. P.201-233; Желобенко Д.П., Представления редуктивных алгебр Ли. М., Наука, 1994.
- [14] Ашерова Р.М., Смирнов Ю.Ф., Толстоё В.Н.// ТМФ. 1971. Т.8. С.255-271; Матем. заметки 1979. Т.26. С.15-26; Толстоё В.Н.// Теоретико-групповые методы в физике. 1986. Т.2. С.46-54.
- [15] Okubo S.// J. Math. Phys. 1994. V.35. P.2785-2803.
- [16] Семенов-Тян-Шанскиё М.А.// Функц. анал. и его прилож. 1983. Т.13, вып.4. С.17-33.
- [17] Желобенко Д.П., Штерн А.И., Представления групп Ли. М., Наука, 1983.
- [18] Боголюбов Н.Н., Толмачев В.В., Ширков Д.В., Новыё метод в теории сверх-проводимости. Изд-во АН СССР, 1958.
- [19] Барут А., Рончка Р., Теория представлениё групп и ее приложения. М., Мир, 1980.
- [20] *Карасев М.В., Маслов В.П.*, Нелинеёные скобки Пуассона. Геометрия и квантование. М., Наука, 1991.
- [21] Nazaikinskii V., Sternin B., Shatalov V., Methods of noncommutative analysis: theory and applications. Walter de Gruyter Inc., 1995.
- [22] Фаддеев Л.Д., Корепин В.Е.// ТМФ. 1975. Т.25. С.147-163; Faddeev L.D., Korepin V.E.// Phys. Rep. C. 1978. V.42, no.1.
- [23] Дринфельд В.Г.// Зап. научн. семин. ЛОМИ. 1986. Т.155. С.18-49; Решетихин Н.Ю., Тахтаджен Л.А., Фаддеев Л.Д. // Алгебра и анал. 1989. Т.1. С.178-206.
- [24] Gerasimov A., Khoroshkin S., Lebedev D., Morozov A., Generalized Hirota equations and representation theory. I. The case of SL(2) and SL_q(2) / E-print (LANL Electronic Archive on High Energy Phys.): hep-th/9405011 (1994); Mironov A., Quantum deformations of τ-functions, bilinear identities and representation theory / E-print (LANL Electronic Archive on High Energy Phys.): hep-th/9409190 (1994); Kharchev S., Mironov A., Morozov A., Non-standard KP evolution and quantum τ-functions / E-print (Duke Univ. Electronic Archive on Q-Alg): q-alg/9501013 (1995).
- [25] Lax P.// Commun. Pure Appl. Math. 1968. V.21. P.467-490; Moser J.// Adv. Math. 1975. V.16. P.197-220; Захаров В.Е., Шабат А.Б.// Функц. анал. и его прилож. 1974. Т.8, вып.3. С.43-53, 1979. Т.13, вып.3. С.13-22; Дубровин Б.А., Матвеев В.Б., Новиков С.П.// УМН. 1976. Т.31, вып.1. С.55-136; Захаров В.Е., Манаков С.В., Новиков С.П., Питаевскиё Л.П., Теория солитонов. Метод обратноё задачи. М., Наука, 1980.
- [26] *Переломов А.М.*, Интегрируемые системы классическоё механики и алгебры Ли. М., Наука, 1990.
- [27] Juriev D.// Russian J. Math. Phys. 1995. V.3. no.4 [e-print version (LANL Electronic Archive on Solv. Integr. Systems): solv-int/9505001 (1995)].
- [28] Веселов А.П., Шабат А.Б.// Функцион. анал. и его прилож. 1993. Т.27, вып.2. С.1-21.

ЦМФИ "Таласса Этерия"

 $E ext{-}mail\ address: denis@juriev.msk.ru}$