CS 6501 Natural Language Processing

Logistic Regression

Yangfeng Ji

September 12, 2019

Department of Computer Science University of Virginia

Overview

- 1. Naive Bayes Classifier, revisited
- 2. Logistic Regression
- 3. Classification Evaluation
- 4. Example
- 5. Building Better LR Models
- 6. Discriminative vs. Generative Classifiers

Naive Bayes Classifier, revisited

An Alternative View

- ▶ Proir probability: $p(y; \theta) = \theta_y$
- ▶ Likelihood: $p(x \mid y; \theta) \propto \prod_{i=1}^{V} \theta_{i,y}^{x_i}$

$$p(x, y; \boldsymbol{\theta}) \propto \theta_y \cdot \prod_{i=1}^V \theta_{i,y}^{x_i}$$
 (1)

Or

$$\log p(x, y; \boldsymbol{\theta}) \propto \log \theta_y + \sum_{i=1}^{V} (x_i \cdot \log \theta_{i,y})$$
 (2)

An Alternative View (II)

$$\log p(x, y; \boldsymbol{\theta}) \propto \log \theta_y + \sum_{i=1}^{V} (x_i \cdot \log \theta_{i,y})$$

$$= b_y + \boldsymbol{w}_y^{\mathsf{T}} x$$
(4)

where

$$b_y = \log \theta_y$$

$$w_y^{\top} = [\log \theta_{1,y}, \dots, \log \theta_{V,y}]$$

$$x^{\top} = [x_1, \dots, x_V]$$

It's a linear classifier (with respect to x)

Logistic Regression

Log-linear Models

Directly modeling a linear classifier as

$$\log p(y \mid x) \propto \boldsymbol{w}_{y}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b}_{y} \tag{5}$$

with

- ▶ $x \in \mathbb{N}^V$: bag-of-words representation
- $w_y \in \mathbb{R}^V$: classification weights associated with label y
- ▶ $b_y \in \mathbb{R}$: classification bias associated with label y

Probabilistic Form

Given

$$\log P(y \mid x) \propto w_y^{\mathsf{T}} x + b_y, \tag{6}$$

the probabilistic form is

$$P(y \mid x) \propto \exp(\boldsymbol{w}_{y}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b}_{y}) \tag{7}$$

or

$$P(y \mid x) = \frac{\exp(w_y^{\top} x + b_y)}{\sum_{y' \in \mathcal{Y}} \exp(w_{y'}^{\top} x + b_{y'})}$$
(8)

Alternative Form

Rewrite x and w as

- $x^{\top} = [x_1, x_2, \cdots, x_V, 1]$
- $\mathbf{w}^{\mathsf{T}} = [w_1, w_2, \cdots, w_V, b_y]$

then,

$$P(y \mid x) = \frac{\exp(w_y^{\top} x)}{\sum_{y' \in \mathcal{Y}} \exp(w_{y'}^{\top} x)}$$
(9)

Probabilistic Graphical Models

$$P(y \mid x) = \frac{\exp(\mathbf{w}_{y}^{\top} x)}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} x)}$$
(10)

Binary Classifier

Assume $\mathcal{Y} = \{\text{NEG}, \text{Pos}\}$, then the corresponding logistic regression classifier with Y = Pos is

$$P(\text{POS} \mid x) = \frac{\exp(w_{\text{POS}}^{\top} x)}{\exp(w_{\text{POS}}^{\top} x) + \exp(w_{\text{NEG}}^{\top} x)}$$
(11)
$$= \frac{1}{1 + \frac{\exp(w_{\text{NEG}}^{\top} x)}{\exp(w_{\text{POS}}^{\top} x)}}$$
(12)
$$= \frac{1}{1 + \exp(-(w_{\text{POS}} - w_{\text{NEG}})^{\top} x)}$$
(13)
$$= \frac{1}{1 + \exp(-w^{\top} x)}$$
(14)

where $w = w_{POS} - w_{NEG}$

Sigmoid Function

$$y = \frac{1}{1 + \exp(-z)} \tag{15}$$

$$z\in (-\infty,\infty), y\in (-1,1)$$

Two Questions

... of using a logistic regression classifier

$$P(y \mid x) = \frac{\exp(w_y^{\top} x)}{\sum_{y' \in \mathcal{Y}} \exp(w_{y'}^{\top} x)}$$
(16)

- ► How to learn the parameters $\{w_y\}_{y \in \mathcal{Y}}$?
- Can x be better than the bag-of-words representation?

(Log)-likelihood Function

With a collection of training examples $\{(x^{(n)}, y^{(n)})\}_{n=1}^N$, the likelihood function of $\{w_y\}_{y\in\mathcal{Y}}$ is

$$L(\{w_y\}) = \prod_{n=1}^{N} P(y^{(n)} \mid x^{(n)})$$
 (17)

and the log-likelihood function is

$$\ell(\{w_y\}) = \sum_{n=1}^{N} \log P(y^{(n)} \mid x^{(n)})$$
 (18)

Log-likelihood Function (II)

With

$$P(y \mid x) = \frac{\exp(\mathbf{w}_{y}^{\top} x)}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} x)}$$
(19)

the log-likelihood function is

$$\ell(\{w_y\}) = \sum_{n=1}^{N} \log P(y^{(n)} \mid x^{(n)})$$

$$= \sum_{n=1}^{N} \{w_{y^{(n)}}^{\top} x^{(n)} - \log \sum_{y' \in \mathcal{Y}} \exp(w_{y'}^{\top} x^{(n)})\} (21)$$

Given the training examples $\{(x^{(n)}, y^{(n)})\}_{n=1}^N$, $\ell(\{w_y\})$ is a function of $\{w_y\}$.

Optimization with Gradient

MLE is equivalent to maximize the Negative Log-Likelihood (NLL) as

$$NLL(\{w_{y}\}) = -\ell(\{w_{y}\})$$

$$= \sum_{n=1}^{N} \{-w_{y^{(n)}}^{\top} x^{(n)} + \log \sum_{y' \in \mathcal{Y}} \exp(w_{y'}^{\top} x)\}$$

then

$$w_y \leftarrow w_y - \eta \cdot \frac{\partial \text{NLL}(\{w_y\})}{\partial w_y}, \quad \forall y \in \mathcal{Y}$$
 (22)

where η is called **learning rate**.

Optimization with Gradient (II)

Two questions answered by the update equation

- which direction?
- ▶ how far it should go?

$$w_y \leftarrow w_y - \eta \cdot \frac{\partial \text{NLL}(\{w_y\})}{\partial w_y} \tag{23}$$

16

Training Procedure

Steps for parameter estimation, given the current parameter $\{w_y\}$

1. Compute the derivative

$$\frac{\partial \text{NLL}(\{w_y\})}{\partial w_y}, \quad \forall y \in \mathcal{Y}$$

2. Update parameters with

$$w_y \leftarrow w_y - \eta \cdot \frac{\partial \text{NLL}(\{w_y\})}{\partial w_y}, \quad \forall y \in \mathcal{Y}$$

3. If not done, retrun to step 1

Classification Evaluation

A Development Set

- ► Training set $\mathcal{T} = \{(x^{(n)}, y^{(n)})\}_{i=1}^N$
- ► Development set $\mathfrak{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{M}$
- ► Test set $\mathcal{U} = \{(x^{(j)}, y^{(j)})\}_{j=1}^{L}$

Cross-validation

Figure: 10-fold cross validation.

Evaluation Measurements

- Accuracy
- Precision, recall, and F-measure

[Eisenstein, 2018, Sec 4.4]

Accuracy

Given M examples, with $y^{(i)}$ is the ground-truth label of the i-th example, and $\hat{y}^{(i)}$ is the predicted label

$$ACC(y, \hat{y}) = \frac{1}{M} \delta(y^{(i)}, \hat{y}^{(i)})$$
 (24)

 δ function is defined as

$$\delta(y,\hat{y}) = \begin{cases} 1 & y = \hat{y} \\ 0 & y \neq \hat{y} \end{cases} \tag{25}$$

Confusion Matrix

		Ground truth	
		POSITIVE	NEGATIVE
Prediction	POSITIVE NEGATIVE	True Positive (TP) False Negative (FN)	False Positive (FP) True Negative (TN)

Accuracy:

$$acc(y, \hat{y}) = \frac{TP + TN}{TP + TN + FP + FN}$$
 (26)

Recall, Precision and F Measure

		Ground truth	
		POSITIVE	NEGATIVE
Prediction	POSITIVE NEGATIVE	True Positive (TP) False Negative (FN)	False Positive (FP) True Negative (TN)

Recall:

$$r(y, \hat{y}) = \frac{\text{TP}}{\text{TP} + \text{FN}} \tag{27}$$

Precision:

$$p(y, \hat{y}) = \frac{\text{TP}}{\text{TP} + \text{FP}}$$
 (28)

F measure:

$$F(y, \hat{y}) = \frac{2 \cdot p \cdot r}{p + r} \tag{29}$$

Example: Balanced case

		Ground truth	
		POSITIVE	NEGATIVE
Prediction	POSITIVE	480	30
	NEGATIVE	20	470

- Accuracy: $acc = \frac{480+470}{480+20+30+470} = 0.95$
- ► Precision: $p = \frac{480}{480+30} \approx 0.94$
- Recall: $r = \frac{480}{480+20} \approx 0.96$
- ► F-measure: $F = \frac{2 \times 0.94 \times 0.96}{0.94 + 0.96} \approx 0.95$

Example: Unbalanced case

		Groun	d truth
		POSITIVE	NEGATIVE
Prediction	POSITIVE NEGATIVE	80 20	30 870

- Accuracy: $acc = \frac{80+870}{80+20+30+870} = 0.95$
- ▶ Precision: $p = \frac{80}{80+30} \approx 0.73$
- Recall: $r = \frac{80}{80+20} = 0.80$
- ► F-measure: $F = \frac{2 \times 0.94 \times 0.96}{0.94 + 0.96} \approx 0.76$

Example

Example Dataset

A subset of the Yelp Dataset https://www.yelp.com/dataset/challenge

	Training	Development	Test
Documents	40K	5K	5K
Words	4.7M	0.5M	0.6M

- 5 classes (user rating from 1 to 5)
- Code available on https://github.com/jiyfeng/textclassification

Building BoW Representations

Sklearn function

- sklearn.feature_extraction.text.CountVectorizer
- sklearn.linear_model.LogisticRegression
- Given a collection of texts, it will build a vocab and also convert all texts into numeric vectors
- Classification accuracy on the development data is 61.4%

How Far We Can Go with BoW?

Tricks to reduce vocab size

- remove punctuation (default)
- ▶ lowercase (/)
- ► remove low-frequency words (/)
- ► remove high-frequency words (_)
- replace numbers with a special token

Comments

- Not always helpful (these are empirical tricks)
- ► Not always the case (it depends on the data/domain)

Interpretability

Weights learned from training data

Vocab	$w_{ m rating=1}$	$w_{ m rating=5}$
SUPER	[0.33]	[-0.09]
• • • •		
QUICK	-1.26	-0.01
FOOD	0.08	-0.09
FRIENDLY	-2.57	0.16
EAT	-0.47	0.00
• • • •		
DELICIOUS)	[-3.60]	[0.64]

Interpretability (II)

Top features

rating = 5	rating = 1
exceptional	worst
incredible	joke
phenomenal	disgusted
body	unprofessional
regret	garbage
worried	disgusting
skeptical	luck
hesitate	pathetic
happier	apologies
mike	horrible

Building Better LR Models

Ways to Improve LR Models

- ightharpoonup A better text representation x
- ▶ Regularization on *w*

A Generic LR Model

Replace x in the following equation

$$P(y \mid x) = \frac{\exp(\mathbf{w}_{y}^{\top} x)}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} x)}$$
(30)

with a generic feature function f(x)

$$P(y \mid x) = \frac{\exp(w_y^{\top} f(x))}{\sum_{y' \in \mathcal{Y}} \exp(w_{y'}^{\top} f(x))}$$
(31)

Rich Features: bi-grams

Combine words together to form high-order features

► Uni-grams:

{FAST, SLOW, SUPER}

▶ Bi-grams:

{SUPER FAST, SUPER SLOW}

Extended feature set

{fast, slow, super, super fast, super slow}

Other Features

For example: other rich features from f(x) for sentiment analysis

- the length of the text
- the number of sentences
- the number of positive words
- the number of negative words
- the number of pronouns

Combining these features with the uni- and bi-gram features

Performance

Sklearn function

sklearn.feature_extraction.text.CountVectorizer
with ngram_range=(1, 2)

- ► Even larger vocab size: from 6oK to 1M
- ▶ Performance change: from 61.4% to 62.4% on the dev data

Problems with Large Feature Set

Overlap among features

Example

{fast, slow, super, super fast, super slow}

Learning in high dimensional space — overfitting

Example

62.4% on dev data vs.

 $\sim 100\%$ on training data

Overfitting

[Abu-Mostafa et al., 2012]

Ways to Improve LR Models

- \checkmark A better text representation x
- ▶ Regularization on *w*

L₂ Regularization

Add an additional constraint on $\{w_y\}$

$$\ell_{L_2}(\boldsymbol{\theta}) = -\sum_{n=1}^{N} \log P(y^{(n)}|x^{(n)}; \boldsymbol{w}) + \frac{\lambda}{2} \sum_{y} \|\boldsymbol{w}_y\|_2^2$$
 (32)

The gradient of the new loss function

$$\frac{\partial \ell_{L_2}(\{\boldsymbol{w}_y\})}{\partial \boldsymbol{w}_y} = -\sum_{n=1}^{N} \frac{\partial}{\partial \boldsymbol{w}_y} \log P(y^{(n)}|x^{(n)};\boldsymbol{w}) + \lambda \boldsymbol{w}_y \quad (33)$$

[Eisenstein, 2018, Sec. 2.4.1]

L_2 Regularization (Cont.)

 L_2 Regularization introduces a trade-off between the likelihood function and the norm of $\{w_y\}$

Discriminative vs. Generative

Classifiers

Discriminative Models

Logistic models

- ▶ No conditional independence assumption
 - ► Rich feature set
- Performance depends the choice of optimization methods

[Jurafsky and Martin, 2019]

Generative Models

Naive Bayes classifiers

- Conditional independence
- Easy to implement
- ▶ Works better on *small* training sets or *short* texts

[Jurafsky and Martin, 2019]

Reference

Abu-Mostafa, Y. S., Magdon-Ismail, M., and Lin, H.-T. (2012). *Learning from data*, volume 4. AMLBook New York, NY, USA:.

Eisenstein, J. (2018). Natural Language Processing. MIT Press.

Jurafsky, D. and Martin, J. (2019). Speech and language processing.