Supporting information Data 2
of thesis entitled
Improving practicality and reliability of the ecological risk assessment of
emerging contaminants: development of an integrated framework
Submitted by
ZHANG Jiawei
for the Degree of Doctor of Philosophy
at the University of Hong Kong
in December 2022
Figure S1 The cumulative density curves and Q-Q plots of the developed SSD models 4
Figure S2 SSD models for PCCs using measured / QSAR-ICE / MoA-QSAR-ICE data
(averaging multiple distributions)6
Figure S3 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data
(averaging multiple distributions)
Figure S4 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data
(log-normal distributions)
Table S1 The goodness of fit of SSD models fitted by different methods
Table S2 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data
(averaging multiple distributions)
Table S3 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data
(log-normal distributions)

Figure S1 The cumulative density curves and Q-Q plots of the developed SSD models

Figure S2 SSD models for PCCs using measured / QSAR-ICE / MoA-QSAR-ICE data (averaging multiple distributions)

Figure S3 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data (averaging multiple distributions)

Figure S4 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data (log-normal distributions)

Table S1 The goodness of fit of SSD models fitted by different methods

Chemical	No.	Distribution	AD test	KS test	AIC	Туре
CF	1	lnorm	0.406	0.172	296	Measured
	2	llogis	0.346	0.146	296	Measured
	3	lgumbel	0.919	0.197	302	Measured
	4	weibull	0.318	0.142	294	Measured
	5	gamma	0.317	0.141	294	Measured
	6	lnorm	0.235	0.092	400	QSAR-ICE
	7	llogis	0.239	0.088	402	QSAR-ICE
	8	lgumbel	0.522	0.125	404	QSAR-ICE
	9	weibull	0.250	0.095	401	QSAR-ICE
	10	gamma	0.334	0.113	402	QSAR-ICE
	11	lnorm	0.523	0.187	290	MoA-QSAR-ICE
	12	llogis	0.417	0.151	290	MoA-QSAR-ICE
	13	lgumbel	1.014	0.247	294	MoA-QSAR-ICE
	14	weibull	0.550	0.154	292	MoA-QSAR-ICE
	15	gamma	0.915	0.198	295	MoA-QSAR-ICE
BEN	1	lnorm	0.308	0.111	583	Measured
	2	llogis	0.346	0.104	585	Measured
	3	lgumbel	0.283	0.088	582	Measured
	4	weibull	0.673	0.121	589	Measured
	5	gamma	1.101	0.151	592	Measured
	6	lnorm	0.321	0.126	404	QSAR-ICE
	7	llogis	0.328	0.124	405	QSAR-ICE
	8	lgumbel	0.498	0.127	405	QSAR-ICE
	9	weibull	0.380	0.104	406	QSAR-ICE
	10	gamma	0.483	0.124	406	QSAR-ICE
	11	lnorm	0.430	0.152	292	MoA-QSAR-ICE
	12	llogis	0.348	0.118	292	MoA-QSAR-ICE
	13	lgumbel	0.847	0.215	296	MoA-QSAR-ICE
	14	weibull	0.574	0.172	295	MoA-QSAR-ICE
	15	gamma	1.025	0.235	298	MoA-QSAR-ICE
DCM	1	lnorm	0.867	0.238	238	Measured
	2	llogis	0.638	0.167	237	Measured
	3	lgumbel	1.295	0.259	243	Measured
	4	weibull	0.360	0.158	233	Measured
	5	gamma	0.301	0.159	233	Measured
	6	lnorm	0.325	0.131	432	QSAR-ICE
	7	llogis	0.345	0.132	434	QSAR-ICE
	8	lgumbel	0.427	0.138	433	QSAR-ICE

	9	weibull	0.446	0.122	435	QSAR-ICE
	10	gamma	0.515	0.137	435	QSAR-ICE
	11	lnorm	0.241	0.112	332	MoA-QSAR-ICE
	12	llogis	0.196	0.099	332	MoA-QSAR-ICE
	13	lgumbel	0.578	0.174	335	MoA-QSAR-ICE
	14	weibull	0.424	0.128	335	MoA-QSAR-ICE
	15	gamma	0.793	0.181	337	MoA-QSAR-ICE
DCP	1	lnorm	0.125	0.099	212	Measured
	2	llogis	0.123	0.090	213	Measured
	3	lgumbel	0.267	0.161	214	Measured
	4	weibull	0.238	0.132	214	Measured
	5	gamma	0.295	0.148	214	Measured
	6	lnorm	1.868	0.245	389	QSAR-ICE
	7	llogis	1.436	0.179	387	QSAR-ICE
	8	lgumbel	2.542	0.281	399	QSAR-ICE
	9	weibull	0.902	0.179	379	QSAR-ICE
	10	gamma	0.715	0.176	378	QSAR-ICE
	11	lnorm	0.686	0.194	296	MoA-QSAR-ICE
	12	llogis	0.661	0.168	297	MoA-QSAR-ICE
	13	lgumbel	0.927	0.225	300	MoA-QSAR-ICE
	14	weibull	0.422	0.134	295	MoA-QSAR-ICE
	15	gamma	0.448	0.142	296	MoA-QSAR-ICE
TCE	1	lnorm	0.829	0.151	549	Measured
	2	llogis	0.741	0.119	550	Measured
	3	lgumbel	0.363	0.103	546	Measured
	4	weibull	1.541	0.197	558	Measured
	5	gamma	1.822	0.223	559	Measured
	6	lnorm	0.243	0.083	293	QSAR-ICE
	7	llogis	0.246	0.088	295	QSAR-ICE
	8	lgumbel	0.432	0.135	295	QSAR-ICE
	9	weibull	0.378	0.105	295	QSAR-ICE
	10	gamma	0.427	0.103	295	QSAR-ICE
	11	lnorm	0.408	0.154	258	MoA-QSAR-ICE
	12	llogis	0.329	0.124	257	MoA-QSAR-ICE
	13	lgumbel	0.833	0.216	261	MoA-QSAR-ICE
	14	weibull	0.537	0.166	260	MoA-QSAR-ICE
	15	gamma	1.049	0.237	264	MoA-QSAR-ICE
NAP	1	lnorm	0.398	0.111	277	Measured
	2	llogis	0.281	0.097	277	Measured
	3	lgumbel	0.556	0.139	280	Measured
	4	weibull	1.057	0.158	284	Measured

	5	gamma	1.601	0.209	288	Measured
	6	lnorm	0.241	0.085	318	QSAR-ICE
	7	llogis	0.256	0.084	320	QSAR-ICE
	8	lgumbel	0.419	0.145	320	QSAR-ICE
	9	weibull	0.314	0.095	320	QSAR-ICE
	10	gamma	0.464	0.120	320	QSAR-ICE
	11	lnorm	0.163	0.103	222	MoA-QSAR-ICE
	12	llogis	0.126	0.081	222	MoA-QSAR-ICE
	13	lgumbel	0.474	0.165	225	MoA-QSAR-ICE
	14	weibull	0.374	0.135	225	MoA-QSAR-ICE
	15	gamma	1.030	0.219	229	MoA-QSAR-ICE
TL	1	lnorm	0.334	0.094	441	Measured
	2	llogis	0.351	0.094	442	Measured
	3	lgumbel	0.429	0.122	441	Measured
	4	weibull	0.616	0.113	446	Measured
	5	gamma	1.091	0.156	449	Measured
	6	lnorm	0.258	0.104	375	QSAR-ICE
	7	llogis	0.271	0.105	376	QSAR-ICE
	8	lgumbel	0.385	0.123	375	QSAR-ICE
	9	weibull	0.404	0.106	377	QSAR-ICE
	10	gamma	0.502	0.119	378	QSAR-ICE
	11	lnorm	0.308	0.141	274	MoA-QSAR-ICE
	12	llogis	0.238	0.110	274	MoA-QSAR-ICE
	13	lgumbel	0.721	0.203	278	MoA-QSAR-ICE
	14	weibull	0.431	0.161	277	MoA-QSAR-ICE
	15	gamma	0.918	0.229	280	MoA-QSAR-ICE
ANT	1	lnorm	0.311	0.217	29	Measured
	2	llogis	0.300	0.200	30	Measured
	3	lgumbel	0.248	0.187	28	Measured
	4	weibull	0.398	0.214	31	Measured
	5	gamma	0.702	0.246	33	Measured
	6	lnorm	0.528	0.162	212	QSAR-ICE
	7	llogis	0.435	0.128	212	QSAR-ICE
	8	lgumbel	1.090	0.194	218	QSAR-ICE
	9	weibull	0.199	0.091	209	QSAR-ICE
	10	gamma	0.208	0.087	209	QSAR-ICE
	11	lnorm	0.379	0.162	101	MoA-QSAR-ICE
	12	llogis	0.397	0.164	102	MoA-QSAR-ICE
	13	lgumbel	0.511	0.159	101	MoA-QSAR-ICE
	14	weibull	0.458	0.132	104	MoA-QSAR-ICE
	15	gamma	1.180	0.235	109	MoA-QSAR-ICE

ТСВ	1	lnorm	0.615	0.131	175	Measured
	2	llogis	0.522	0.118	175	Measured
	3	lgumbel	0.399	0.138	171	Measured
	4	weibull	1.098	0.178	182	Measured
	5	gamma	1.351	0.207	182	Measured
	6	lnorm	0.240	0.094	232	QSAR-ICE
	7	llogis	0.232	0.094	233	QSAR-ICE
	8	lgumbel	0.627	0.115	236	QSAR-ICE
	9	weibull	0.225	0.122	232	QSAR-ICE
	10	gamma	0.319	0.141	233	QSAR-ICE
	11	lnorm	0.301	0.161	175	MoA-QSAR-ICE
	12	llogis	0.317	0.161	176	MoA-QSAR-ICE
	13	lgumbel	0.406	0.150	175	MoA-QSAR-ICE
	14	weibull	0.446	0.126	178	MoA-QSAR-ICE
	15	gamma	1.148	0.214	183	MoA-QSAR-ICE
PCE	1	lnorm	0.600	0.163	215	Measured
	2	llogis	0.424	0.121	214	Measured
	3	lgumbel	0.222	0.112	211	Measured
	4	weibull	1.298	0.209	224	Measured
	5	gamma	2.096	0.286	229	Measured
	6	lnorm	0.279	0.143	268	QSAR-ICE
	7	llogis	0.277	0.134	269	QSAR-ICE
	8	lgumbel	0.632	0.174	273	QSAR-ICE
	9	weibull	0.344	0.138	269	QSAR-ICE
	10	gamma	0.434	0.153	270	QSAR-ICE
	11	lnorm	0.410	0.136	216	MoA-QSAR-ICE
	12	llogis	0.331	0.109	216	MoA-QSAR-ICE
	13	lgumbel	0.875	0.186	220	MoA-QSAR-ICE
	14	weibull	0.334	0.147	216	MoA-QSAR-ICE
	15	gamma	0.718	0.214	219	MoA-QSAR-ICE
PeCB	1	lnorm	0.618	0.185	100	Measured
	2	llogis	0.619	0.182	102	Measured
	3	lgumbel	0.700	0.191	101	Measured
	4	weibull	0.542	0.171	101	Measured
	5	gamma	0.586	0.181	102	Measured
	6	lnorm	0.365	0.102	144	QSAR-ICE
	7	llogis	0.374	0.105	145	QSAR-ICE
	8	lgumbel	0.379	0.130	145	QSAR-ICE
	9	weibull	0.593	0.158	147	QSAR-ICE
	10	gamma	0.765	0.185	148	QSAR-ICE
	11	lnorm	0.210	0.112	121	MoA-QSAR-ICE

	12	llogis	0.220	0.111	122	MoA-QSAR-ICE
	13	lgumbel	0.371	0.168	122	MoA-QSAR-ICE
	14	weibull	0.411	0.144	124	MoA-QSAR-ICE
	15	gamma	1.168	0.242	129	MoA-QSAR-ICE
NP	1	lnorm	0.234	0.132	80	Measured
	2	llogis	0.202	0.118	80	Measured
	3	lgumbel	0.598	0.184	84	Measured
	4	weibull	0.393	0.159	81	Measured
	5	gamma	0.611	0.192	82	Measured
	6	lnorm	0.215	0.084	173	QSAR-ICE
	7	llogis	0.238	0.090	174	QSAR-ICE
	8	lgumbel	0.397	0.117	174	QSAR-ICE
	9	weibull	0.330	0.099	175	QSAR-ICE
	10	gamma	0.549	0.129	177	QSAR-ICE
	11	lnorm	0.276	0.111	106	MoA-QSAR-ICE
	12	llogis	0.218	0.105	106	MoA-QSAR-ICE
	13	lgumbel	0.659	0.174	110	MoA-QSAR-ICE
	14	weibull	0.417	0.128	109	MoA-QSAR-ICE
	15	gamma	1.129	0.220	114	MoA-QSAR-ICE

Table S2 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data

37

(averaging multiple distributions)

Chemical	НС	Туре	HC value	95% CI lower	95% CI upper
	percent			limit	limit
CF	1	Measured	16.038	4.210	71.821
	5	Measured	54.876	19.066	164.539
	10	Measured	98.889	40.651	241.553
	50	Measured	525.074	313.420	843.789
	1	QSAR-ICE	24.305	8.608	93.074
	5	QSAR-ICE	77.489	30.015	239.283
	10	QSAR-ICE	146.044	62.289	389.886
	50	QSAR-ICE	1082.672	604.936	1943.799
	1	MoA-QSAR-ICE	5.834	1.310	34.269
	5	MoA-QSAR-ICE	23.003	7.174	92.100
	10	MoA-QSAR-ICE	46.223	16.558	153.713
	50	MoA-QSAR-ICE	443.758	203.867	983.383
BEN	1	Measured	41.402	22.352	90.884
	5	Measured	86.891	49.857	169.914
	10	Measured	134.691	80.384	244.681
	50	Measured	748.861	463.823	1206.992
	1	QSAR-ICE	49.307	22.087	140.569
	5	QSAR-ICE	119.725	56.770	296.606
	10	QSAR-ICE	199.053	98.260	445.606
	50	QSAR-ICE	1150.198	668.224	2005.490
	1	MoA-QSAR-ICE	6.776	1.699	37.143
	5	MoA-QSAR-ICE	25.235	8.339	99.836
	10	MoA-QSAR-ICE	49.458	18.879	165.007
	50	MoA-QSAR-ICE	450.723	213.271	1015.418
DCM	1	Measured	5.441	0.316	128.351
	5	Measured	44.687	5.141	386.094
	10	Measured	116.465	19.266	650.339
	50	Measured	1428.486	604.683	3112.842
	1	QSAR-ICE	181.509	93.466	439.150
	5	QSAR-ICE	376.826	203.003	796.758
	10	QSAR-ICE	570.089	323.508	1108.306
	50	QSAR-ICE	2437.301	1542.943	3889.285
	1	MoA-QSAR-ICE	28.355	7.993	141.466
	5	MoA-QSAR-ICE	94.496	33.293	349.007
	10	MoA-QSAR-ICE	177.177	71.059	551.110

	50	MoA-QSAR-ICE	1433.586	700.937	3064.461
DCP	1	Measured	28.002	9.151	129.828
	5	Measured	71.677	26.629	250.924
	10	Measured	119.564	47.700	350.160
	50	Measured	640.866	327.450	1244.229
	1	QSAR-ICE	0.856	0.059	15.849
	5	QSAR-ICE	11.683	1.450	82.701
	10	QSAR-ICE	37.459	6.603	168.596
	50	QSAR-ICE	710.737	341.356	1343.321
	1	MoA-QSAR-ICE	0.209	0.026	4.451
	5	MoA-QSAR-ICE	1.966	0.252	31.559
	10	MoA-QSAR-ICE	7.425	1.069	83.479
	50	MoA-QSAR-ICE	469.903	134.840	1498.315
TCE	1	Measured	82.934	57.022	133.229
	5	Measured	126.973	91.491	190.711
	10	Measured	164.047	120.281	237.481
	50	Measured	487.315	355.493	690.474
	1	QSAR-ICE	8.973	4.313	21.949
	5	QSAR-ICE	19.412	10.032	40.950
	10	QSAR-ICE	29.683	16.222	57.525
	50	QSAR-ICE	124.963	79.367	194.958
	1	MoA-QSAR-ICE	1.898	0.415	11.231
	5	MoA-QSAR-ICE	7.620	2.224	31.693
	10	MoA-QSAR-ICE	15.568	5.251	54.417
	50	MoA-QSAR-ICE	163.863	72.663	386.991
NAP	1	Measured	1.591	0.611	4.749
	5	Measured	4.433	2.034	10.407
	10	Measured	7.424	3.800	15.379
	50	Measured	40.040	23.604	68.379
	1	QSAR-ICE	3.847	1.525	12.997
	5	QSAR-ICE	10.906	4.571	31.408
	10	QSAR-ICE	19.920	8.788	50.975
	50	QSAR-ICE	157.728	83.047	295.912
	1	MoA-QSAR-ICE	0.406	0.090	2.841
	5	MoA-QSAR-ICE	1.773	0.502	8.135
	10	MoA-QSAR-ICE	3.867	1.237	14.797
	50	MoA-QSAR-ICE	53.344	20.627	138.003
TL	1	Measured	18.084	8.404	49.142
	5	Measured	42.288	21.261	98.632
	10	Measured	69.624	37.523	148.396
	50	Measured	464.210	257.857	835.827

		OGAR IGE	41.000	20.401	104 221
	1	QSAR-ICE	41.908	20.401	104.231
	5	QSAR-ICE	90.184	46.510	194.670
	10	QSAR-ICE	139.523	74.507	275.002
	50	QSAR-ICE	651.788	395.905	1055.435
	1	MoA-QSAR-ICE	2.783	0.603	16.916
	5	MoA-QSAR-ICE	11.337	3.254	48.584
	10	MoA-QSAR-ICE	23.474	7.769	84.250
	50	MoA-QSAR-ICE	259.906	113.695	621.159
ANT	1	Measured	0.001	0.000	0.028
	5	Measured	0.003	0.001	0.089
	10	Measured	0.008	0.001	0.182
	50	Measured	0.382	0.040	3.169
	1	QSAR-ICE	0.013	0.002	0.181
	5	QSAR-ICE	0.139	0.022	1.126
	10	QSAR-ICE	0.487	0.089	2.611
	50	QSAR-ICE	15.147	6.422	33.142
	1	MoA-QSAR-ICE	0.010	0.003	0.061
	5	MoA-QSAR-ICE	0.034	0.011	0.177
	10	MoA-QSAR-ICE	0.074	0.024	0.329
	50	MoA-QSAR-ICE	1.424	0.470	4.339
ТСВ	1	Measured	2.034	1.304	3.659
	5	Measured	3.065	2.080	5.113
	10	Measured	3.930	2.726	6.374
	50	Measured	11.361	7.637	17.563
	1	QSAR-ICE	0.344	0.105	1.576
	5	QSAR-ICE	1.342	0.453	4.679
	10	QSAR-ICE	2.789	1.036	8.158
	50	QSAR-ICE	26.377	13.789	48.911
	1	MoA-QSAR-ICE	0.128	0.040	0.749
	5	MoA-QSAR-ICE	0.397	0.131	1.866
	10	MoA-QSAR-ICE	0.793	0.269	3.209
	50	MoA-QSAR-ICE	11.610	4.137	34.095
PCE	1	Measured	5.738	3.288	12.937
	5	Measured	9.618	5.878	19.688
	10	Measured	13.174	8.252	25.164
	50	Measured	50.307	29.727	91.596
	1	QSAR-ICE	1.924	0.701	6.821
	5	QSAR-ICE	5.819	2.436	15.812
	10	QSAR-ICE	10.395	4.727	24.888
	50	QSAR-ICE	64.552	37.384	110.205
	1	MoA-QSAR-ICE	0.253	0.047	2.146

	5	MoA-QSAR-ICE	1.296	0.324	7.232
	10	MoA-QSAR-ICE	3.063	0.887	13.590
	50	MoA-QSAR-ICE	50.393	19.443	127.440
PeCB	1	Measured	0.183	0.078	0.617
	5	Measured	0.426	0.188	1.176
	10	Measured	0.693	0.327	1.672
	50	Measured	3.604	2.015	6.386
	1	QSAR-ICE	0.184	0.091	0.496
	5	QSAR-ICE	0.418	0.212	0.986
	10	QSAR-ICE	0.673	0.359	1.454
	50	QSAR-ICE	3.755	2.151	6.654
	1	MoA-QSAR-ICE	0.021	0.005	0.144
	5	MoA-QSAR-ICE	0.083	0.023	0.418
	10	MoA-QSAR-ICE	0.181	0.055	0.780
	50	MoA-QSAR-ICE	2.876	1.080	8.136
NP	1	Measured	0.017	0.005	0.090
	5	Measured	0.065	0.021	0.243
	10	Measured	0.131	0.048	0.415
	50	Measured	1.244	0.595	2.563
	1	QSAR-ICE	0.175	0.070	0.574
	5	QSAR-ICE	0.478	0.204	1.320
	10	QSAR-ICE	0.847	0.384	2.100
	50	QSAR-ICE	6.386	3.384	12.090
	1	MoA-QSAR-ICE	0.013	0.003	0.100
	5	MoA-QSAR-ICE	0.061	0.017	0.312
	10	MoA-QSAR-ICE	0.140	0.042	0.573
	50	MoA-QSAR-ICE	2.132	0.801	5.494

39 Table S3 HC values of SSD models using measured / QSAR-ICE / MoA-QSAR-ICE data

(log-normal distributions)

Chemical	HC percent	Type	HC value	95% CI lower limit	95% CI upper limit
CF	1	Measured	31.149	12.140	91.193
	5	Measured	68.307	32.109	157.614
	10	Measured	103.816	53.999	210.808
	50	Measured	454.521	266.303	746.446
	1	QSAR-ICE	39.060	14.085	126.963
	5	QSAR-ICE	100.059	44.174	249.396
	10	QSAR-ICE	165.211	78.311	367.754
	50	QSAR-ICE	968.890	542.271	1704.274
	1	MoA-QSAR-ICE	7.696	1.960	37.845
	5	MoA-QSAR-ICE	24.554	8.065	85.467
	10	MoA-QSAR-ICE	45.573	16.770	136.234
	50	MoA-QSAR-ICE	403.811	178.155	863.291
BEN	1	Measured	28.735	11.907	79.603
	5	Measured	77.024	38.328	171.061
	10	Measured	130.290	69.605	254.838
	50	Measured	832.117	502.295	1296.004
	1	QSAR-ICE	56.333	21.820	168.592
	5	QSAR-ICE	135.102	63.162	315.864
	10	QSAR-ICE	215.369	107.570	453.261
	50	QSAR-ICE	1115.783	650.415	1886.496
	1	MoA-QSAR-ICE	8.337	2.139	40.631
	5	MoA-QSAR-ICE	26.425	8.734	91.344
	10	MoA-QSAR-ICE	48.878	18.087	145.223
	50	MoA-QSAR-ICE	427.852	189.625	910.816
DCM	1	Measured	12.300	2.038	108.635
	5	Measured	44.918	10.391	241.027
	10	Measured	89.598	23.960	376.194
	50	Measured	1023.593	369.495	2805.925
	1	QSAR-ICE	191.296	85.240	486.904
	5	QSAR-ICE	403.160	210.890	831.427
	10	QSAR-ICE	599.900	331.991	1131.098
	50	QSAR-ICE	2437.433	1538.763	3813.369
	1	MoA-QSAR-ICE	34.626	9.698	152.395
	5	MoA-QSAR-ICE	101.898	36.167	325.192
	10	MoA-QSAR-ICE	181.160	71.469	501.802
	50	MoA-QSAR-ICE	1379.041	644.072	2796.320

DCP	1	Measured	37.726	12.170	148.648
	5	Measured	85.256	33.927	245.478
	10	Measured	131.670	57.402	324.873
	50	Measured	610.028	321.218	1150.854
	1	QSAR-ICE	2.593	0.498	17.440
	5	QSAR-ICE	11.867	3.164	51.954
	10	QSAR-ICE	26.697	7.985	97.348
	50	QSAR-ICE	466.166	182.399	1161.678
	1	MoA-QSAR-ICE	0.575	0.066	7.127
	5	MoA-QSAR-ICE	3.597	0.619	25.824
	10	MoA-QSAR-ICE	9.559	1.969	53.958
	50	MoA-QSAR-ICE	300.502	82.450	998.537
TCE	1	Measured	50.039	26.115	98.786
	5	Measured	101.587	62.365	171.837
	10	Measured	148.178	95.904	234.164
	50	Measured	561.178	397.143	774.730
	1	QSAR-ICE	10.455	4.783	25.815
	5	QSAR-ICE	21.507	11.490	43.320
	10	QSAR-ICE	31.591	17.823	58.346
	50	QSAR-ICE	122.628	78.584	189.077
	1	MoA-QSAR-ICE	2.361	0.556	12.699
	5	MoA-QSAR-ICE	8.041	2.480	30.029
	10	MoA-QSAR-ICE	15.454	5.375	49.142
	50	MoA-QSAR-ICE	154.875	65.244	345.608
NAP	1	Measured	1.773	0.679	5.255
	5	Measured	4.487	2.075	10.631
	10	Measured	7.359	3.738	15.399
	50	Measured	42.169	23.524	71.513
	1	QSAR-ICE	4.660	1.550	16.630
	5	QSAR-ICE	12.861	5.321	34.464
	10	QSAR-ICE	22.097	9.872	52.409
	50	QSAR-ICE	149.104	79.694	274.287
	1	MoA-QSAR-ICE	0.492	0.099	3.197
	5	MoA-QSAR-ICE	1.923	0.520	8.326
	10	MoA-QSAR-ICE	3.977	1.229	14.398
	50	MoA-QSAR-ICE	51.606	19.733	125.998
TL	1	Measured	13.576	4.793	44.811
	5	Measured	39.161	16.792	97.333
	10	Measured	68.883	32.502	151.264
	50	Measured	504.967	272.713	886.541
	1	QSAR-ICE	43.470	18.376	117.584

	5	QSAR-ICE	96.171	48.228	207.903
	10	QSAR-ICE	146.854	78.198	288.565
	50	QSAR-ICE	653.716	400.514	1052.999
	1	MoA-QSAR-ICE	3.564	0.828	19.489
	5	MoA-QSAR-ICE	12.285	3.746	46.469
	10	MoA-QSAR-ICE	23.761	8.180	76.411
	50	MoA-QSAR-ICE	243.510	101.727	547.646
ANT	1	Measured	0.000	0.000	0.024
	5	Measured	0.003	0.000	0.075
	10	Measured	0.008	0.001	0.149
	50	Measured	0.385	0.049	2.612
	1	QSAR-ICE	0.056	0.011	0.375
	5	QSAR-ICE	0.256	0.068	1.114
	10	QSAR-ICE	0.574	0.172	2.084
	50	QSAR-ICE	9.932	3.897	24.686
	1	MoA-QSAR-ICE	0.007	0.001	0.059
	5	MoA-QSAR-ICE	0.033	0.007	0.181
	10	MoA-QSAR-ICE	0.076	0.019	0.342
	50	MoA-QSAR-ICE	1.519	0.495	4.306
TCB	1	Measured	1.110	0.473	2.860
	5	Measured	2.295	1.172	4.917
	10	Measured	3.382	1.860	6.468
	50	Measured	13.262	8.393	20.681
	1	QSAR-ICE	0.654	0.212	2.401
	5	QSAR-ICE	1.846	0.749	5.056
	10	QSAR-ICE	3.210	1.409	7.761
	50	QSAR-ICE	22.596	11.911	42.131
	1	MoA-QSAR-ICE	0.082	0.014	0.625
	5	MoA-QSAR-ICE	0.360	0.087	1.765
	10	MoA-QSAR-ICE	0.792	0.222	3.197
	50	MoA-QSAR-ICE	12.762	4.499	33.600
PCE	1	Measured	2.409	0.786	8.875
	5	Measured	6.228	2.503	17.290
	10	Measured	10.333	4.558	25.326
	50	Measured	61.643	31.547	114.821
	1	QSAR-ICE	2.974	1.152	8.902
	5	QSAR-ICE	7.134	3.335	16.680
	10	QSAR-ICE	11.372	5.680	23.936
	50	QSAR-ICE	58.926	34.348	99.632
	1	MoA-QSAR-ICE	0.399	0.079	2.618
	5	MoA-QSAR-ICE	1.570	0.421	6.856

	10	MoA-QSAR-ICE	3.261	1.001	11.895
	50	MoA-QSAR-ICE	42.954	16.332	105.428
PeCB	1	Measured	0.218	0.083	0.703
	5	Measured	0.490	0.219	1.212
	10	Measured	0.754	0.362	1.638
	50	Measured	3.461	1.940	5.884
	1	QSAR-ICE	0.178	0.067	0.549
	5	QSAR-ICE	0.438	0.200	1.047
	10	QSAR-ICE	0.707	0.346	1.518
	50	QSAR-ICE	3.832	2.201	6.575
	1	MoA-QSAR-ICE	0.020	0.004	0.150
	5	MoA-QSAR-ICE	0.087	0.022	0.417
	10	MoA-QSAR-ICE	0.190	0.054	0.749
	50	MoA-QSAR-ICE	2.924	1.048	7.582
NP	1	Measured	0.027	0.007	0.120
	5	Measured	0.081	0.028	0.257
	10	Measured	0.144	0.058	0.385
	50	Measured	1.120	0.533	2.232
	1	QSAR-ICE	0.190	0.063	0.686
	5	QSAR-ICE	0.529	0.217	1.431
	10	QSAR-ICE	0.914	0.405	2.184
	50	QSAR-ICE	6.276	3.335	11.610
	1	MoA-QSAR-ICE	0.016	0.003	0.112
	5	MoA-QSAR-ICE	0.066	0.017	0.302
	10	MoA-QSAR-ICE	0.140	0.041	0.533
	50	MoA-QSAR-ICE	2.004	0.739	5.060