Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Введение в компьютерное зрение

Кустикова В.Д., к.т.н., доцент каф. МОСТ ИИТММ ННГУ им. Н.И. Лобачевского

Содержание (1)

- □ Общая информация
 - Что такое «зрение»?
 - Что такое «компьютерное зрение»?
 - В чем сложность задач компьютерного зрения?
 - Цифровые изображения
 - Бинарные изображения
 - Полутоновые изображения
 - Мультиспектральные изображения
 - Операции над бинарными изображениями
 - Операции с полутоновыми изображениями
 - Цветные изображения

Содержание (2)

- □ Результаты решения классических задач компьютерного зрения с использованием глубокого обучения
 - Что такое «глубокое обучение»?
 - Классификация изображений
 - Детектирование объектов
 - Семантическая сегментация изображений
- Общая схема решения задач компьютерного зрения с помощью глубокого обучения

ОБЩАЯ ИНФОРМАЦИЯ

Что такое «зрение»?

- □ **Зрение** одно из внешних чувств человека и животного, органом которого является глаз; способность видеть (Толковый словарь Ожегова)
- □ **Зрение** восприятие организмом объектов внешнего мира посредством улавливания отражаемого или излучаемого объектами света (*Большой Энциклопедический словарь*)
- □ **Зрение** (visio, visus) восприятие света органом зрения и зрительным анализатором, благодаря чему организм получает информацию об объектах (*Большой медицинский словарь*)

. . .

Что такое «компьютерное зрение»?

☐ Компьютерное зрение – теория и технология создания машин, которые могут извлекать информацию из изображений и анализировать ее

В чем сложность задач компьютерного зрения?

□ Разное восприятие визуальной информации

Человек видит картинку

Машина видит числа

□ Неоднозначность интерпретации визуальной информации*

* Источник изображения [https://www.adme.ru/svoboda-narodnoe-tvorchestvo/22-strannyh-proisshestviya-kotorye-sluchajno-popali-na-fotografii-1592515]

Камень летит в воздухе? Или это не небо?

Цифровые изображения

- □ **Цифровое изображение** это двумерный массив I[r,c] элементов (пикселей), которые представляют собой одно или нескольких дискретных значений
 - Бинарное изображение это цифровое изображение, пиксели которого принимают значения 0 или 1

- Полутоновое (серое, монохромное, черно-белое) изображение это цифровое изображение, у которого каждому пикселю соответствует одно значение интенсивности (яркости)
- Мультиспектральное изображение это цифровое изображение, у которого каждому пикселю соответствует вектор значений (у цветных изображений размерность вектора равна 3)

* Учебный курс «Разработка мультимедийных приложений с использованием библиотек OpenCV и IPP» [http://www.hpcc.unn.ru/?doc=602]. Лекция 1. Обзор задач и методов компьютерного зрения.

Операции над бинарными изображениями. Морфологические операции

□ Эрозия. Значение элемента заменяется на минимум из окрестности

$$dst[x,y] = \min_{(i,j), i,j \in \{-1,0,1\}} src[x+i,y+j]$$

□ *Дилатация*. Значение элемента заменяется на максимум из окрестности

$$dst[x,y] = \max_{(i,j), i,j \in \{-1,0,1\}} src[x+i,y+j]$$

□ Размыкание. Последовательное применение эрозии и дилатации

$$dst = open(src) = dilate(erode(src))$$

□ Замыкание. Последовательное применение дилатации и эрозии

$$dst = close(src) = erode(dilate(src))$$

Операции над бинарными изображениями. Выделение связных компонент

- □ *Выделение связных компонент* присвоение уникального идентификатора каждой области (объекту) изображения
- □ *Пиксели* (x₁, y₁) *и* (x₂, y₂) называются *связными*, если они являются соседними (расстояние равно 1) по некоторой выбранной метрике
- □ *Связная компонента изображения* это связное множество пикселей согласно выбранной метрике

□ Метрики:

4-ех связная

	1	
2	*	3
	4	

8-ми связная

1	2	3
4	*	5
6	7	8

Исходное изображение

Пример

4-ех связные компоненты

8-ми связные компоненты

Операции с полутоновыми изображениями. Бинаризация полутоновых изображений (1)

□ Пороговая бинаризация

$$I'[x,y] = \begin{cases} 1, & I[x,y] \ge T \\ 0, & \text{иначе} \end{cases}$$

- При для выбора порога строится гистограмма интенсивностей $H[i] = |\{(x,y)|\ I[x,y] = i\}|$ (бин число пикселей с заданной интенсивностью)
 - При наличии хорошо разделимых объектов и фона гистограмма будет иметь два пика

– Порог – интенсивность, отвечающая впадине между пиками

Операции с полутоновыми изображениями. Бинаризация полутоновых изображений (2.1)

□ Пороговая бинаризация

$$I'[x,y] = \begin{cases} 1, & I[x,y] \ge T \\ 0, & \text{иначе} \end{cases}$$

- □ Для выбора порога строится гистограмма интенсивностей $H[i] = |\{(x,y)|\ I[x,y] = i\}|$ (бин число пикселей с заданной интенсивностью)
 - Метод Отсу* (Otsu) метод подбора порога, основанный на минимизации внутриклассовой дисперсии

Otsu N. A threshold selection method from gray-level histograms // IEEE Transactions on Systems, Man, and Cybernetics. – 1979. – Vol. 9. – P. 62-66.

Операции с полутоновыми изображениями. Бинаризация полутоновых изображений (2.2)

□ Пороговая бинаризация

$$I'[x,y] = \begin{cases} 1, & I[x,y] \ge T \\ 0, & \text{иначе} \end{cases}$$

- □ Для выбора порога строится гистограмма интенсивностей $H[i] = |\{(x,y)|\ I[x,y] = i\}|$ (бин число пикселей с заданной интенсивностью)
 - Метод Отсу* (Otsu) метод подбора порога, основанный на минимизации внутриклассовой дисперсии

* Otsu N. A threshold selection method from gray-level histograms // IEEE Transactions on Systems, Man, and Cybernetics. – 1979. – Vol. 9. – P. 62-66.

Операции с полутоновыми изображениями. Линейная фильтрация (1)

- □ *I* полутоновое изображение
- □ Линейный фильтр определяется вещественнозначной функцией *F*, заданной на растре, которая называется *ядром* фильтра (kernel)
- □ Операция фильтрации выполняется посредством вычисления дискретной свертки изображения *I* с ядром *F*:

$$I'(x,y) = \sum_{i} \sum_{j} F(i,j) \cdot I(x+i,y+j) \prod_{\substack{i,x \\ j,x}} \mathbf{Пример}$$

- □ Окрестность называется *шаблоном* или *апертурой*
- □ Каждый пиксель совмещается
 с конкретной точкой шаблона –
 ведущей позицией шаблона (anchor)

Операции с полутоновыми изображениями. Линейная фильтрация (2)

- □ Текущий пиксель находится на границе изображения?
- □ Возможные решения:
 - Обрезать края
 - Не учитывать в процессе суммирования пиксель, который реально не существует
 - Доопределить окрестности граничных пикселей посредством экстраполяции (например, простым дублированием граничных пикселей)
 - Доопределить окрестности граничных пикселей посредством зеркального отражения завернуть изображение в тор

Операции с полутоновыми изображениями. Линейная фильтрация (3)

Исходное изображение

Отфильтрованное изображение

Операции с полутоновыми изображениями. Выделение краев. Оператор Собеля

- □ *Оператор Собеля* дискретный дифференциальный оператор, вычисляющий приближенные значения производных разного порядка для функции яркости пикселей
- □ Позволяет определить приближенное значение градиента функции интенсивности:
 - Вычисление сверток исходного изображения с ядрами G_{χ} и G_{ν} для определения первых производных по направлениям:

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

– Магнитуда градиента:
$$\left|G^{ij}\right| = \sqrt{\left(G_x^{ij}\right)^2 + \left(G_y^{ij}\right)^2} pprox \left|G_x^{ij}\right| + \left|G_y^{ij}\right|^*$$

– Направление градиента: $\theta^{ij} = \arctan\left(G_y^{ij}/G_x^{ij}\right)$

* Для снижения числа операций используются различные приближения (приведен один пример).

U

Операции с полутоновыми изображениями. Выделение краев. Оператор Лапласа

- \Box Оператор Лапласа: $\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- Дискретный аналог оператора Лапласа используется при обработке изображений
- □ Определение ребер объектов на изображении:
 - Ребра формируются из множества пикселей, в которых оператор Лапласа принимает нулевые значения
 - Нули вторых производных функции соответствуют экстремальным перепадам интенсивности
- □ В простейшем случае применяется апертура размером 3х3 и ядро представляется матрицей:

$$L = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Операции с полутоновыми изображениями. Выделение краев. Примеры

Исходное изображение

Результат применения оператора Собеля

Результат применения оператора Лапласа

 □ Примечание: существуют продвинутые алгоритмы поиска краев, детектор Канни* – один из таких алгоритмов

Canny G. A computational approach to edge detection // IEEE Trans. on PAMI. – Vol. PAMI-8, No. 6. – 1986.

Операции с полутоновыми изображениями. Другие примеры операций

- □ Повышение контраста изображения (увеличение диапазона полутонов)
 - Линейная растяжка гистограммы
 - Нормализация гистограммы
 - Выравнивание (эквализация)гистограммы
- □ Поиск примитивов на изображениях
 - Преобразование Хафа (поиск линий, окружностей)
 - Преобразование Радона (поиск линий)
- **...**

Цветные изображения

- □ Современные устройства, как правило, выдают изображения r^z в формате RGB (Red-Green-Blue). RGB в нормальном диапазоне: $I[x,y] = (r,g,b), r,g,b \in [0,255]$
- □ В телевидении, в алгоритмах сжатия и в некоторых
 видеосистемах используется пространство YUV (Y яркость,
 U, V цвет). Кодирование в телевизионных стандартах:

$$Y = 0.299 \times R + 0.587 \times G + 0.114 \times B$$

 $U = -0.147 \times R - 0.289 \times G + 0.436 \times B$
 $V = 0.615 \times R - 0.515 \times G - 0.100 \times B$

- □ В графических редакторах используется нелинейное пространство HSV (Hue-Saturation-Value)
 - $H \in [0,360]$ цветовой тон, $S \in [0,1]$ насыщенность (чем ближе к нулю, тем ближе к нейтральному серому), $V \in [0,1]$ яркость

РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧ КОМПЬЮТЕРНОГО ЗРЕНИЯ С ПОМОЩЬЮ ГЛУБОКОГО ОБУЧЕНИЯ

Что такое «глубокое обучение»?

□ Глубокое обучение (Deep Learning) – область машинного обучения (Machine Learning), которая рассматривает методы решения задач искусственного интеллекта (Artificial Intelligence) с использованием глубоких нейронных сетей

План рассмотрения задач

- □ Постановка задачи
- Общепринятые показатели качества решения задачи
- □ Результаты решения задачи на открытом наборе данных
- □ Примеры приложений из реальной жизни

Классификация изображений. Постановка задачи

- □ Задача классификации изображений состоит в том, чтобы поставить в соответствие изображению класс объектов, содержащихся на этом изображении
- □ Примеры изображений и соответствующих им классов:

^{*} Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., Fei-Fei L. ImageNet Large Scale Visual Recognition Challenge // International Journal of Computer Vision, 2015.

Классификация изображений. Показатели качества

- □ Предположим, что N количество категорий изображений
- \square Для каждого изображения I_j , $j=\overline{1,S}$ в выборке метод строит вектор достоверностей $p^j=\left(p_1^j,p_2^j,...,p_N^j\right)$, где p_i^j достоверность того, что изображение I_j принадлежит классу i
- □ *Точность top-K* (top-K accuracy) определяется следующим образом:

$$topK = \frac{\sum_{j=1}^{S} 1_{\{i_1^j, i_2^j, \dots, i_K^j\}} (l_j)}{S},$$

где $\left\{i_1^j, i_2^j, ..., i_K^j\right\} \subseteq \{1, 2, ..., N\}$, а $p_{i_1^j}^j, p_{i_2^j}^j, ..., p_{i_K^j}^j - K$ наибольших достоверностей, l_j – класс, которому принадлежит изображение l_j согласно разметке, $1_{\left\{i_1^j, i_2^j, ..., i_K^j\right\}} \left(l_j\right)$ –

Классификация изображений. Пример вычисления точности top-K (1)

- □ Допустимые классы изображений {car, train, bus}
- □ 4 входных изображения (сверху указана разметка):

- □ Результаты классификации вектора достоверностей (индекс компонента вектора соответствует номеру класса из допустимого множества):
 - 1 (0.5, 0.78, 0.8)
 - 2 (0.7, 0.76, 0.65)
 - 3 (0.9, 0.2, 0.4)
 - 4 (0.3, 0.93, 0.91)

Классификация изображений. Пример вычисления точности top-K (2)

□ Вычисление top-1:

– Выбор класса с максимальной достоверностью

$$1 - (0.5, 0.78, 0.8)$$

$$\begin{aligned} \text{CAR} &\rightarrow 0.5 \\ \text{TRAIN} &\rightarrow 0.78 \\ \text{BUS} &\rightarrow \textbf{0.8} \end{aligned}$$

2 - (0.7, 0.76, 0.65)

$$\begin{array}{c} \text{CAR} \rightarrow 0.7 \\ \text{TRAIN} \rightarrow \textbf{0.76} \\ \text{BUS} \rightarrow 0.65 \end{array}$$

3 - (0.9, 0.2, 0.4)

CAR
$$\rightarrow$$
 0.9
TRAIN \rightarrow 0.2
BUS \rightarrow 0.4

$$4 - (0.3, 0.93, 0.91)$$

CAR
$$\rightarrow$$
 0.3
TRAIN \rightarrow **0.93**
BUS \rightarrow 0.91

Классификация изображений. Пример вычисления точности top-K (2)

□ Вычисление top-1:

Сопоставление с разметкой

1 - (0.5, 0.78, 0.8)

$$2 - (0.7, 0.76, 0.65)$$

CAR
$$\rightarrow$$
 0.7 **TRAIN** \rightarrow **0.76** BUS \rightarrow 0.65

$$3 - (0.9, 0.2, 0.4)$$

$$\begin{array}{c} \textbf{CAR} \rightarrow \textbf{0.9} \\ \textbf{TRAIN} \rightarrow \textbf{0.2} \\ \textbf{BUS} \rightarrow \textbf{0.4} \end{array}$$

$$4 - (0.3, 0.93, 0.91)$$

CAR
$$\rightarrow$$
 0.3
TRAIN \rightarrow **0.93**
BUS \rightarrow 0.91

- Значение точности

$$top1 = \frac{1+0+1+0}{4} = \frac{2}{4} = \frac{1}{2}$$

Классификация изображений. Пример вычисления точности top-K (3)

□ Вычисление top-2:

Выбор классов, соответствующих двум наибольшим достоверностям

$$1 - (0.5, 0.78, 0.8)$$

$$\begin{array}{c} \text{CAR} \rightarrow 0.5 \\ \text{TRAIN} \rightarrow \textbf{0.78} \\ \text{BUS} \rightarrow \textbf{0.8} \end{array}$$

2 - (0.7, 0.76, 0.65)

$$\begin{array}{c} \text{CAR} \rightarrow \text{0.7} \\ \text{TRAIN} \rightarrow \text{0.76} \\ \text{BUS} \rightarrow \text{0.65} \end{array}$$

$$3 - (0.9, 0.2, 0.4)$$

$$\begin{array}{c} \text{CAR} \rightarrow \textbf{0.9} \\ \text{TRAIN} \rightarrow 0.2 \\ \text{BUS} \rightarrow \textbf{0.4} \end{array}$$

$$4 - (0.3, 0.93, 0.91)$$

$$\begin{aligned} \text{CAR} &\rightarrow 0.3 \\ \text{TRAIN} &\rightarrow \textbf{0.93} \\ \text{BUS} &\rightarrow \textbf{0.91} \end{aligned}$$

Классификация изображений. Пример вычисления точности top-K (4)

□ Вычисление top-2:

 Сопоставление с разметкой – поиск размеченного класса среди выбранной пары классов

$$2 - (0.7, 0.76, 0.65)$$

$$3 - (0.9, 0.2, 0.4)$$

$$\begin{array}{c} \textbf{CAR} \rightarrow \textbf{0.9} \\ \textbf{TRAIN} \rightarrow \textbf{0.2} \\ \textbf{BUS} \rightarrow \textbf{0.4} \end{array}$$

$$4 - (0.3, 0.93, 0.91)$$

$$\begin{array}{c} \text{CAR} \rightarrow 0.3 \\ \text{TRAIN} \rightarrow \textbf{0.93} \\ \text{BUS} \rightarrow \textbf{0.91} \end{array}$$

Классификация изображений. Результаты решения задачи на ImageNet

 □ Изменение точности top-1 на наборе данных ImageNet для избранных моделей:

□ За 7 лет точность выросла на 20%

Классификация изображений. Примеры приложений

- □ Автоматический контроль качества производимой продукции
- □ Управление промышленными роботами
- Обнаружение различных событий (оставленные вещи, подозрительные люди)
- □ Задачи взаимодействия человека с компьютером
- □ Анализ медицинских изображений (принятие решений о наличии какого-либо заболевания по снимкам КТ, МРТ)
- Навигация автономных транспортных средств или мобильных роботов
- □ Организация информации, например, для индексирования баз данных изображений и последовательностей изображений

Детектирование объектов на изображениях. Постановка задачи

□ Задача детектирования объектов состоит в том, чтобы определить положение прямоугольника, окаймляющего объект заданного класса

Детектирование объектов на изображениях. Показатели качества (1)

□ Обозначения:

- $IoU = \frac{S_{d \cap g}}{S_{d \cup g}}$ доля перекрытия обнаруженного (detection) и размеченного (groundtruth) окаймляющих прямоугольников (Intersection over Union), $IoU \in [0;1]$
- TP количество объектов, для которых доля перекрытия не меньше некоторого порога τ (т.е. считается, что объект обнаружен правильно true positive)
- FP количество обнаруженных объектов с долей перекрытия, меньшей τ (объект найден ошибочно), или объект обнаружен более одного detection

раза (false positives)

-FN — количество необнаруженных объектов (false negatives)

groundtruth

Детектирование объектов на изображениях. Показатели качества (2)

- □ Пороговое значение τ , как правило, выбирается равным 0.5
- □ Точность (precision) отношение количества правильно обнаруженных объектов к общему числу срабатываний детектора

$$Precision = p = \frac{TP}{TP + FP}$$

□ *Отклик* (recall) – отношение количества правильно обнаруженных объектов к общему числу объектов

$$Recall = r = \frac{TP}{TP + FN}$$

Детектирование объектов на изображениях. Показатели качества (3.1)

□ Средняя точность предсказания (average precision) — математическое ожидание точностей

$$AP = \int_{0}^{1} p(r)dr$$

□ Доопределение функции точности:

Кол-во объектов разметки	Кол-во обнаруж. объектов	TP	FP	FN	Precision	Recall
>0	>0	?	?	?	$\frac{TP}{TP + FP}$	$\frac{TP}{TP + FN}$
0	>0	0	>0	0	0	1
>0	0	0	0	>0	1	0
0	0	0	0	0	1	1

Детектирование объектов на изображениях. Показатели качества (3.2)

□ *Средняя точность предсказания* (average precision) – математическое ожидание точностей

$$AP = \int_{0}^{1} p(r)dr$$

- □ Схема вычисления:
 - Обнаруженные окаймляющие прямоугольники сортируются в порядке убывания достоверности наличия в них объектов
 - Для каждого обнаруженного прямоугольника выполняется поиск соответствия из разметки согласно условию $IoU \geq au$
 - Выполняется вычисление точности и отклика
 - Строится зависимость точности от отклика
 - Вычисляется площадь под графиком построенной зависимости

Детектирование объектов на изображениях. Показатели качества (4)

- □ Пример вычисления средней точности предсказания:
 - Исходное изображение фотография яблок из набора данных ImageNet [http://www.image-net.org]
 - Разметка содержит окаймляющие прямоугольники
 для 5 яблок (зеленые прямоугольники)
 - Алгоритм детектирования обнаруживает 10 яблок (красные прямоугольники)
 - Для определенности предполагается, что достоверности различны
 - Считается, что объект обнаружен правильно при $IoU \ge 0.5$

Детектирование объектов на изображениях. Показатели качества (5.1)

- □ Пример вычисления средней точности предсказания:
 - Сортировка прямоугольников, вычисление точности и отклика

Nº	Достоверность	Объект?	Точность	Отклик	
1	0.95	Да	1/1 = 1.0	1/5 = 0.2	
2	0.91				
3	0.9				
4	0.81				
5	0.8			0.95	MOTTS.
6	0.76				
7	0.64				
8	0.5				
9	0.45			шлось соответо	
10	0.35		ИЗ [разметки и <i>IoU</i>	≥ U.

Детектирование объектов на изображениях. Показатели качества (5.2)

- □ Пример вычисления средней точности предсказания:
 - Сортировка прямоугольников, вычисление точности и отклика

Nº	Достоверность	Объект?	Точность	Отклик	
1	0.95	Да	1/1 = 1.0	1/5 = 0.2	
2	0.91	Нет	1/2 = 0.5	1/5 = 0.2	
3	0.9				
4	0.81				
5	0.8				
6	0.76			0.95	0.91
7	0.64				
8	0.5				
9	0.45				
10	0.35			шлось соответ азметки, но Io	

Детектирование объектов на изображениях. Показатели качества (5.3)

- □ Пример вычисления средней точности предсказания:
 - Сортировка прямоугольников, вычисление точности и отклика

Nº	Достоверность	Объект?	Точность	Отклик	
1	0.95	Да	1/1 = Ha	шлось соответ	гствие
2	0.91	Нет	$1/2 =$ из разметки и $IoU \ge 0.5$		$J \geq 0.5$
3	0.9	Да	2/3 ≈ 0.67	2/5 = 0.4	
4	0.81				
5	0.8				
6	0.76			0.9	
7	0.64			0.95	0.91
8	0.5				
9	0.45				
10	0.35				

Детектирование объектов на изображениях. Показатели качества (5.4)

- □ Пример вычисления средней точности предсказания:
 - Сортировка прямоугольников, вычисление точности и отклика

Nº	Достоверность	Объект?	Точность	Отклик	
1	0.95	Да	1/1 = 1.0	1/5 = 0.2	
2	0.91	Нет	1/2 Нашлось соответствие 2/3 ≈ из разметки, но <i>IoU</i> < 0.5		ствие
3	0.9	Да			U<0.5
4	0.81	Нет	2/4 = 0.5	2/5 = 0.4	
5	0.8				
6	0.76		0.81		
7	0.64			0.9	
8	0.5		0.95		
9	0.45				
10	0.35				
10	0.33				

Детектирование объектов на изображениях. Показатели качества (5.6)

- □ Пример вычисления средней точности предсказания:
 - Сортировка прямоугольников, вычисление точности и отклика

Nº	Достоверность	Объект?	Точность	Отклик
1	0.95	Да	1/1 = 1.0	1/5 = 0.2
2	0.91	Нет	1/2 = 0.5	1/5 = 0.2
3	0.9	Да	2/3 ≈ 0.67	2/5 = 0.4
4	0.81	Нет	2/4 = 0.5	2/5 = 0.4
5	0.8	Да	3/5 = 0.6	3/5 = 0.6
6	0.76	Да	4/6 = 0.67	4/5 = 0.8
7	0.64	Нет	4/7 ≈ 0.57	4/5 = 0.8
8	0.5	Нет	4/8 = 0.5	4/5 = 0.8
9	0.45	Нет	4/9 ≈ 0.44	4/5 = 0.8
10	0.35	Да	5/10 = 0.5	5/5 = 1.0

Детектирование объектов на изображениях. Показатели качества (6)

- □ Пример вычисления средней точности предсказания:
 - Построение зависимости точности от отклика
 - Результат зигзагообразная кривая

Детектирование объектов на изображениях. Показатели качества (7)

- □ Пример вычисления средней точности предсказания:
 - Вычисление площади под зигзагообразной кривой интерполяция и вычисление площади под «ступенькой»

Детектирование объектов на изображениях. Показатели качества (8)

- □ Пример вычисления средней точности предсказания:
 - Вычисление площади под зигзагообразной кривой интерполяция и вычисление площади под «ступенькой»

Детектирование объектов на изображениях. Результаты решения задачи на PASCAL VOC 2012

Класс объектов	LSVM ¹ – модель деформируемых частей на базе HOG-признаков 2011 г., %	ALTDETv2 ² – нейронная сеть 2019 г., %	Разница, %
BOTTLE	18.1	89.0	70.9
CAT	24.2	98.0	73.8
DINING TABLE	4.5	82.1	77.6
DOG	17.5	97.4	79.9
HORSE	15.2	97.6	82.4
PERSON	7.9	96.1	88.2
SOFA	7.1	87.0	79.9
TV/MONITOR	25.7	92.5	66.8
Среднее по 20 классам	20.9	92.9	72.0

^{1.} Felzenszwalb P.F., Girshick R.B., McAllester D., Ramanan D. Object Detection with Discriminatively Trained Part Based Models // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2010. – Vol. 32, No. 9.

ALTDETv2 [http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_main.php?challengeid=11&compid=4], полное описание не опубликовано.

Детектирование объектов на изображениях. Примеры приложений

- □ Сортировка изображений в домашних цифровых фотоальбомах
- Поиск товаров по их изображениям в интернет-магазинах
- □ Системы контроля передвижения людей и животных
- □ Целевой поиск изображений в социальных сетях
- □ Анализ складских запасов
- □ Обнаружение препятствий
- □ Одновременная локализации объектов и построение карты в неизвестном пространстве (Simultaneous localization and mapping, SLAM)
- □ Дефектоскопия обнаружение каких-либо недостатков (изъянов) в различных конструкциях

Семантическая сегментация изображений. Постановка задачи

□ Задача семантической сегментации состоит в том, чтобы каждому пикселю изображения поставить в соответствие класс объектов, которому этот пиксель принадлежит (разные цвета соответствуют разным классам)

Оригинал

Разметка

Результат сегментации

* The PASCAL Visual Object Classes Homepage [http://host.robots.ox.ac.uk/pascal/VOC].

Семантическая сегментация изображений. Показатели качества

□ *Mempuka IoU* (Intersection over Union) или индекс Жаккара (Jaccard index)

$$IoU = \frac{TP}{TP + FP + FN}$$

где TP — количество правильно проклассифицированных пикселей (true positives),

FP – количество пикселей, которые метод проклассифицировал как принадлежащие классу, но они таковыми не являются (false positives),

FN — количество пикселей, которые принадлежат классу, но метод проклассифицировал Предсказание их как не принадлежащие Тrue

Разметка

	True	False
True	TP	FN
False	FP	TN

классу (false negatives)

Семантическая сегментация изображений. Пример вычисления показателя качества (1)

□ Целевой класс объектов – «человечек»

- □ Разметка изображение слева (серым цветом залит размеченный объект)
- Результат сегментации изображение справа (серым цветом залит сегментированный объект, черным обведены границы пикселей, соответствующих разметке)

Семантическая сегментация изображений. Пример вычисления показателя качества (2)

□ Целевой класс объектов – «человечек»

- \Box TP = 35 (серые пиксели внутри черной границы)
- \square FP = 7 (серые пиксели за пределами черной границы)
- \square FN = 7 (белые пиксели внутри черной границы)

$$IoU = \frac{35}{35 + 7 + 7} = \frac{35}{49} = \frac{5}{7}$$

Семантическая сегментация изображений. Результаты решения задачи на CityScapes

□ Изменение среднего значения IoU по набору классов на наборе данных CityScapes (дорожные изображения):

^{*} Real-Time Semantic Segmentation on Cityscapes test [https://paperswithcode.com/sota/real-time-semantic-segmentation-on-cityscapes].

Семантическая сегментация изображений. Примеры приложений

- □ Сегментация медицинских изображений (обнаружение патологий, диагностика)
- Системы управления автономными автомобилями (сегментации дорожных полос)
- □ Сегментация аэрофотоснимков
- □ Определение типов земной поверхности со спутников, например, контуров водоемов для предоставления более точной картографической информации
- □ Извлечение из изображений людей элементов их одежды для предложения похожих товаров в интернет-магазинах

ОБЩАЯ СХЕМА РЕШЕНИЯ ЗАДАЧ КОМПЬЮТЕРНОГО ЗРЕНИЯ С ПОМОЩЬЮ ГЛУБОКОГО ОБУЧЕНИЯ

Общая схема решения задач с использованием глубокого обучения

Обзор литературы
Подготовка данных
Подготовка тестовой
инфраструктуры

Разработка топологии Обучение модели Верификация модели Определение качества решения задачи Внедрение Многократный вывод Оптимизация модели

Предварительный этап решения задачи

□ Обзор литературы

- Существующие модели (возможность переноса обучения)
- Показатели качества
- Открытые наборы данных
- □ Подготовка и разметка данных
 - Поиск похожих данных в сети Интернет
 - Сбор и разметка собственных данных
 - Предварительная обработка данных и подготовка разметки
- □ Подготовка тестовой инфраструктуры
 - Поиск существующих или разработка собственных инструментов для оценки качества работы моделей

Обучение и тестирование модели

- □ Разработка топологии модели, разработка собственных слоев и функций ошибки
- □ Обучение (training) модели
- □ Тестирование (verification) модели оценка качества работы модели в соответствии с выбранными показателями

□ *Примечание:* на этапах обучения и тестирования используется тренировочный фреймворк

Внедрение модели

- □ Портирование модели на фреймворк, который будет использован для вывода (inference)
- Анализ сложности и производительности модели на целевом оборудовании
- □ Оптимизация и сжатие модели
- □ Возврат к обучению и тестированию модели
- Многократный вывод модели на целевом оборудовании

Заключение

- □ Значительное число задач компьютерного зрения решается с использованием методов глубокого обучения
- Предварительная обработка изображений (или кадров видео)
 играет важную роль в ходе подготовки данных
- □ Анализ производительности вывода глубоких моделей является важным этапом в процессе их внедрения в реальные системы

Основная литература

- □ Хайкин С. Нейронные сети. Полный курс. М.: Издательский дом «Вильямс». 2006. 1104 с.
- □ Осовский С. Нейронные сети для обработки информации. М.:
 Финансы и статистика. 2002. 344 с.
- □ Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press.
 2016. [http://www.deeplearningbook.org].
- □ Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. Изд-во «Питер». 2018. 476 с.
- □ Учебно-образовательный курс «Современные методы и технологии глубокого обучения в компьютерном зрении» [http://hpc
 - education.unn.ru/ru/обучение/курсы/магистратура/deep_learning _in_computer_vision].

Контакты

□ Кустикова Валентина к.т.н., доцент каф. МОСТ ИИТММ, ННГУ им. Н.И. Лобачевского valentina.kustikova@itmm.unn.ru

