ROC & Logistic Regression Breakout

Galvanize DSI

Morning Objectives

- Understand the information contained in a confusion matrix
- Picking the right performance metric for the job
- Build a ROC curve by hand
- Pick a best model from a ROC plot

You have built a fraud prediction model

- Label each square with one of TP, FP, FN, TN.
- How many total data points do you have? How many are fraudulent? How many aren't fraudulent?
- Calculate accuracy, precision and recall.

	Predicted: Yes	Predicted: No
Actual: Yes	4	10
Actual: No	2	204

- Is the confusion matrix shown here representative of a good model?
- Which of the metrics you calculated above are most useful in determining how good the model is?
- What are cases where accuracy is useful? When do you need to be wary of using accuracy?

Assume we're dealing with predicting fraud...

- 1. In this scenario, do you think you'd care more about optimizing TPR or FPR?
- 2. What is a scenario where you'd care more about the other (TPR or FPR)?

Construct a ROC curve only given the following predicted probabilities from a logistic regression and true labels

Predicted Probability	Actual customer churn?
0.99	Fraud
0.84	Fraud
0.70	Fraud
0.70	Not Fraud
0.51	Fraud
0.22	Fraud
0.14	Not Fraud
0.05	Not Fraud

Prompt: You have built 3 models to predict whether or not someone will default on a loan. You have 3000 data points and these features: age, gender, city, FICO score, highest education completed **Question:** Which of the 3 ROC curves represents the model you should use?

Question: How would you pick between 50 models? 100 models? 1000 models?

Afternoon Breakout Objectives

- Understand what your chances are
- Discuss the benefits of the logit model
- Interpret logistic regression output

Understanding your chances

1. State what each of the following terms are:

Probability, Odds, Log-Odds, Odds Ratio

2. Give an example to demonstrate what each of the 4 terms are

Why logistic and not just plain old linear?

- 1. What shape does the logistic function take?
- 2. Why is the logistic function a good, logical fit for binary classification?
- 3. Discuss the problems with using standard linear regression for modeling binary response.

Interpret the results from this logistic regression model

- 1. What are my current chances of getting into grad school?
- 2. How would my chances change if I increased my GPA by 0.90pts?
- 3. What score would I need on the GRE's to increase my chances to 95%?

		L(ogit Regr	ession Re	esults		
Dep. Variable:			admit	No. Ok	servations:		400
Model:			Logit	Df Res	siduals:		397
Method:			MLE	Df Mod	del:		2
Date:	Fr	L, 02	Dec 2016	Pseudo	R-squ.:	C	.03927
Time:			16:43:29	Log-Li	kelihood:	-	240.17
converged:			True	LL-Nu]	1:	-	249.99
				LLR p-	-value:	5.4	56e-05
========	coef	std	err	z	P> z	[95.0% Conf.	Int.]
const	-4.9494	1	.075	-4.604	0.000	-7.057	-2.842
gre	0.0027	0	.001	2.544	0.011	0.001	0.005
gpa 	0.7547	0	.320	2.361	0.018	0.128	1.381

Model 1 and 2 are from the same dataset. Explain what you see.

Dep. Variable:	Survived	No. Observations:	712
Model:	Logit	Df Residuals:	709
Method:	MLE	Df Model:	2
Date:	Tue, 22 Nov 2016	Pseudo R-squ.:	0.2528
Time:	15:27:35	Log-Likelihood:	-359.02
converged:	True	LL-Null:	-480.45
		LLR p-value:	1.825e-53

	coef	std err	z	P> z	[95.0% Conf. Int.]
Intercept	0.6590	0.167	3.935	0.000	0.331 0.987
Sex[T.male]	-2.3711	0.189	-12.524	0.000	-2.742 -2.000
Fare	0.0121	0.003	4.595	0.000	0.007 0.017

Dep. Variable:	Survived	No. Observations:	712
Model:	Logit	Df Residuals:	708
Method:	MLE	Df Model:	3
Date:	Tue, 06 Dec 2016	Pseudo R-squ.:	0.3013
Time:	08:33:07	Log-Likelihood:	-335.70
converged:	True	LL-Null:	-480.45
		LLR p-value:	1.852e-62

	coef	std err	z	P> z	[95.0% Conf. Int.]
Intercept	3.1335	0.399	7.863	0.000	2.352 3.915
Sex[T.male]	-2.5536	0.204	-12.528	0.000	-2.953 -2.154
Fare	0.0019	0.002	0.850	0.395	-0.002 0.006
Pclass	-0.9283	0.137	-6.788	0.000	-1.196 -0.660

Model 1

Model 2