Immunology

Innate immunity Adaptive immunity Interaction with pathogens

Comparison of innate and adaptive immunity

	Innate	Adaptive
Response time	Minutes to hours	Days
Specificity	Limited and fixed	Highly diverse, adapts to improve during the course of response
Response to repeat infection	Same each time	More rapid and effective with each subsequent exposure
Major components	Barriers, phagocytes, pattern recognition molecules	T and B lymphocytes, antibodies

Mammalian immune system

Physical barrier: Skin, mucus, low gastric pH

Innate as well as adaptive immune system

Innate: Quick response, not long-lasting Adaptive: Slower response, long-lasting, memory Innate immune system dominant system in plants, lower animals

Both innate and adaptive immune systems contain humoral and cell-based components

Components of innate immune system

Cell-based

Humoral

Macrophages Natural killer cells

Dendritic cells Polymorphonuclear lymphocytes Granulocytes

Granulocytes Mast cells

Source: Kuby Immunology, 7th Edition

Complement system Interferrons Cytokines

Initial recognition of pathogens

Recognition of Pathogen-Associated Molecular Patterns (PAMPs)

Cell wall components of bacteria (Lipopolysaccharides, Lipoarabinomannan)

Double-stranded RNA in viruses

Recognized by Pattern recognition receptors (PRRs)

Toll-like-receptors (TLRs)

Role of cytokines

Cytokines - Proteins/peptides that stimulate/inhibit inflammation, promote tissue repair, activate cells of immune system

Cellular components of innate immune system

Macrophages, PMNL, Natural Killer cells

Can engulf bacteria/infected cells

Macrophages/dendritic cells present foreign antigens to B/T lymphocytes- Antigen presentation

Antibodies

B-lymphocytes (produce antibodies) T-lymphocytes (helper and cytotoxic)

Cell-based

Recognition of invading pathogen through "antigen"

Immune response tailored to suit the assault

Antigen - not only infectious material

Any "foreign" material

Distinction between "self" and "non-self"

Humoral

Components of adaptive immune system

Paul Ehlrich "Selective theory"

Antigen binds one receptor, helps in proliferation One B or T cell makes one type of receptor

Components of adaptive immune system

B-lymphocytes

Produce antibodies

one type of antibody or "receptor" Each lymphocyte produces

Theoretically able to bind any ligand

Source: immunesystemimmunity.blogspot.com

Source: post.queensu.ca

Clonal selection theory: Humoral Immunity (antibodies)

Components of adaptive immune system

What is that?

Looks like... Fooood,

Antibody binds to antigens on pathogen surfaces

@ Immense Immunology Insight

Attracts phagocytic cells

Pathogen engulfed

Components of adaptive immune system

T-lymphocytes

1. CD4+/Helper T cells

Activates CD8+ cells B-lymphocytes Macrophages

Components of adaptive immune system

T-lymphocytes

1. CD8+/Cytotoxic T cells

Kills infected cells Major defense against viruses/ intracellular bacteria

Source: lookfordiagnosis.com

"Generation of Diversity" in B and T lymphocyte receptors

"Generation of Diversity" in B and T lymphocyte receptors

Rearrangement and editing of genomic DNA

Happens in primary lymphoid organs (B cells - bone marrow, T cells - thymus)

Many B and T cells do not survive the recombination or quality control

Tolerance: Self-correction to ensure that "self" is not recognized as "non-self"

B and T lymphocytes are screened to ensure there is no recognition of "self"

Surviving cells move into circulation

Binding of antigen triggers clonal selection

B -cell receptors in secreted forms = Antibodies

T-cell receptors = no secreted forms
Required for recognition of "foreign" material presented by infected cells

"Generation of Diversity" in B and T lymphocyte receptors

Germline configuration

V segments

D to J recombination

V to DJ recombination

Transcription, splicing

transcription, splicing

Tonegawa, 1976

Can respond much more swiftly on subsequent exposures

No memory component of innate immunity

Dysfunctional immune response

Hypersensitivity (Allergy etc.): Attack on common, benign but foreign antigens

Autoimmune disease: Targeting of self by immune cells Multiple sclerosis, Crohn's disease

Immune deficiency: Insufficiency of immune system to protect against pathogens SCID, AIDS

Robust self-tolerance leads to ignorance of cancerous cells

Bacterial evasion of immune response

- 1. Alteration of surface antigens
- 2. Inhibition of cytokine/complement/antigen presentation
- 3. Blocking phagocytic cells/antibodies/T-cells

Immune system and bacterial infections

Innate immune response

Recognition of molecular patterns

Lipopolysaccharide/lipoteichoic acid stimulate production of cytokines

Activates tissue macrophages

Innate immune cells present antigens to adaptive immune system

Extracellular bacterial infection leads to production of antibodies

Antibody-bacteria/antibody-toxin complexes phagocytosed

Cells infected with intracellular bacteria engulfed by CD8+ T-cells

Immune system and viral infections

Barrier Immunity

Innate immunity - Involvement of Toll-like receptors Recognition of ds RNA

Interferron generation, antiviral state

Adaptive immunity - Antibodies may bind to key viral structures Interfere with ability of virus to enter host cells

Cell-mediated immunity is essential T cell activity peaks after 7-10 days of infection Eliminate sources of new virus

Viral evasion of immune response

- 1. Alteration of surface antigens
- 2. Inhibition of cytokine/complement/antigen presentation
- 3. Blocking phagocytic cells/antibodies/T-cells
- 4. Immunosuppression and latency