

Aprendizagem Profunda

Ano Letivo 2024/2025

Relatório do Trabalho Prático

Lucas Oliveira - PG57886 João Barroso - PG57554 Maurício Pereira - PG55984 Rafael Gomes - PG56000

Índice

1.	Introdução	3
	1.1. Contexto	3
2.	Metodologia para a Criação do <i>Dataset</i>	3
3.	Modelos de Raiz	4
	3.1. Submissão 1 (<i>S1</i>)	4
	3.2. Submissão 1 (<i>S2</i>)	4
4.	Modelos Tensorflow	5
	4.1. Submissão 2 (<i>S1</i>)	5
	4.2. Submissão 2 (<i>S2</i>)	5
	4.3. Outros Modelos	5
	4.3.1. Modelos adicionais em <i>TensorFlow</i>	5
	4.3.2. Exploração com Transformers	6
5.	Modelos Claude	6
	5.1. Integração via API da Anthropic	
	5.2. Modelos Avaliados	
6.	Resultados	7
	6.1. Modelos Raiz	7
	6.2. Modelos Tensorflow	7
	6.3. Modelos Claude	
7	Canalysão	Q

1. Introdução

Este relatório foi elaborado no contexto do trabalho prático da unidade curricular de Aprendizagem Profunda, com o propósito de investigar a criação de modelos de *Deep Learning* recorrendo às técnicas estudadas durante o semestre.

O trabalho envolve a construção e preparação de datasets em língua inglesa, a experimentação com diferentes tipos de modelos e a avaliação rigorosa dos resultados obtidos.

Todo o conteúdo realizado para este trabalho prático pode ser encontrado no repositório https://github.com/RafaGomes1/AP_2025

1.1. Contexto

O principal objetivo deste trabalho é desenvolver modelos capazes de distinguir entre textos gerados por sistemas de Inteligência Artificial (*IA*) e textos escritos por seres humanos. Para isso, são exploradas diferentes abordagens e arquiteturas de *Machine Learning* e *Deep Learning*, recorrendo tanto à implementação manual dos modelos como à utilização de *frameworks* como o *TensorFlow*.

2. Metodologia para a Criação do Dataset

Para o desenvolvimento deste trabalho, foi adotada a seguinte metodologia para a construção do nosso *dataset*:

- **Procura de** *Datasets*: inicialmente, além dos *datasets* indicados no enunciado pela equipa docente, foi realizada uma pesquisa adicional em plataformas como o *Kaggle* e o *Hugging Face*, com o objetivo de encontrar conjuntos de dados complementares.
- Análise dos *Datasets*: após a recolha dos *datasets*, procedeu-se à análise das suas estruturas com o objetivo de verificar quais se adequavam aos requisitos definidos para a realização do trabalho prático.
- Escolha dos *Datasets*: após a análise, selecionámos os *datasets* que consideramos mais adequados para o treino dos nossos modelos e para a realização das previsões finais.
- Avaliação dos *Datasets* escolhidos: com os *datasets* selecionados, avaliamos o desempenho dos modelos durante o treino e nas previsões finais. Concluímos que os resultados obtidos foram insatisfatórios, uma vez que os modelos tendiam a prever apenas uma das classes ou apenas *Human* ou apenas *IA*, demonstrando um claro desbalanceamento na classificação.
- **Junção de Dados de** *Datasets*: perante os resultados obtidos, procedemos à reestruturação dos nossos *datasets*, optando por combinar dados provenientes de diferentes fontes. Esta abordagem visou aumentar a diversidade dos exemplos disponíveis, promovendo uma melhor generalização e desempenho dos modelos durante o treino.

3. Modelos de Raiz

Com o objetivo de estabelecer linhas de base (*baselines*) de desempenho, foram desenvolvidos modelos de raiz recorrendo a técnicas tradicionais de *Machine Learning*. Os métodos implementados nessas submissões iniciais serviram de parâmetro comparativo para avaliar melhorias proporcionadas mais tarde pelos modelos *Deep Learning*, descritos nas secções seguintes.

3.1. Submissão 1 (*S1*)

Na primeira submissão (S1), procedeu-se à implementação de um pipeline que incluiu:

1. Limpeza e pré-processamento dos dados:

- Remoção de caracteres especiais, pontuação e espaços em excesso.
- Conversão de todo o texto para minúsculas (lowercasing).
- Tokenização (separação em palavras/pedaços).
- Remoção de stopwords (palavras de pouco valor semântico, como "o", "a", "de", etc).

2. Transformação (Vectorization):

 Aplicação do TF-IDF (Term Frequency - Inverse Document Frequency) para representar cada documento de forma numérica, capturando a relevância de cada termo no contexto de todos os documentos do conjunto.

3. Modelos de Machine Learning:

- Naive Bayes (MultinomialNB)
- · Logistic Regression
- · Random Forest
- SVM (Support Vector Machines)

Cada modelo foi treinado numa partição de treino e avaliado sobre um conjunto de validação. Além disso, realizou-se uma análise comparativa usando métricas de desempenho clássicas (*accuracy*, *precision*, *recall* e *F1-score*).

3.2. Submissão 1 (*S2*)

A segunda submissão (*S2*) procurou trazer variações ao *pipeline* acima descrito, mas mantendo a mesma lógica geral de modelos de *Machine Learning*. As principais diferenças residem em:

1. Ajuste de Hiperparâmetros (Hyperparameter Tuning):

- Foram testados valores diferentes de C (parâmetro de regularização) para SVM e Logistic Regression.
- Ajustou-se o número de estimators no Random Forest e o critério de divisão (Gini vs Entropy).
- No Naive Bayes, foi alterada a forma de suavização (Laplace vs. Lidstone).

2. Estratégias de Validação Diferentes:

- Alguns testes foram feitos recorrendo a cross-validation (hold-out vs. K-fold de 5 ou 10).
- Em certos casos, introduziu-se estratificação para garantir a mesma proporção de classes em cada *fold*.

3. Revisão do Pré-Processamento:

• Experimentaram-se diferentes listas de *stopwords* (mais abrangentes ou mais específicas).

• Testou-se a aplicação de *lemmatization* ou *stemming*, embora em alguns cenários isso tenha introduzido pouco ganho efetivo.

4. Modelos Tensorflow

Com o objetivo de melhorar significativamente os resultados obtidos nas submissões anteriores com modelos de *Machine Learning* clássicos, implementados manualmente, nesta secção iremos explicar o uso da *framework TensorFlow*, que nos permitiu o desenvolvimento de modelos de *Deep Learning* de forma eficiente e flexível.

4.1. Submissão 2 (S1)

Nesta secção, foi desenvolvido um modelo sequencial utilizando a *API Keras* do *TensorFlow*. E consistiu das seguintes etapas:

- **Pré-Processamento**: os textos foram convertidos para minúsculas, *tokenizados* e transformados em sequências de inteiros. Estas sequências foram depois padronizadas com *pad_sequences* para assegurar tamanhos uniformes de *input*.
- *Embedding Layer*: foi utilizada uma camada de *embedding* com dimensão de *128*, convertendo os *tokens* em vetores densos.

Camadas Ocultas:

- GlobalAveragePooling1D para reduzir a dimensionalidade e evitar overfitting.
- ▶ Uma *Dense* com 64 unidades e ativação *ReLU*
- ▶ *Dropout* de 0.5 para regularização.
- Camada de Saída: uma *Dense* com ativação sigmoide, apropriada para classificação binária (*IA vs Humano*).
- Treino: o modelo foi treinado com o otimizador *Adam*, a função de perda *binary_crossentropy*, durante *10* épocas com *cross-validation*.

4.2. Submissão 2 (*S2*)

Nesta secção, explorou-se uma arquitetura similar à da secção anterior, mas com algumas modificações nos hiperparâmetros:

- A dimensão do *embedding* foi aumentada para 256.
- Foi introduzida uma camada *LSTM* (*Long Short-Term Memory*) para capturar dependências sequenciais entre palavras.
- A taxa de *dropout* foi ajustada para 0.3, e foi adicionada uma *Dense* intermédia com 32 unidades antes da saída.

4.3. Outros Modelos

Para além dos modelos falados na secção 4.1 e 4.2, foram explorados outras abordagens experimentais com o intuito de investigar alternativas promissoras.

4.3.1. Modelos adicionais em TensorFlow

Estas experiências serviram também para melhor compreensão do impacto de diferentes arquiteturas, pré-processamentos e frameworks.

Sendo que foram experimentadas variantes dos modelos principais com diferenças em:

- Arquitetura: inclusão de mais camadas densas, alteração da dimensão de *embeddings* e diferentes funções de ativação.
- Regularização: testes com valores distintos de *dropout*, *batch normalization* e estratégias de early stopping.

• Estratégias de otimização: foram testados otimizadores como *RMSprop*, *SGD* e variantes do *Adam* (como *Adamx*), com diferentes valores de *learning_rate*.

4.3.2. Exploração com Transformers

Realizamos também uma primeira abordagem com modelos pré-treinados da biblioteca *Hugging Face transformers*, nomeadamente com o modelo *DistilBert* para classificação de texto, em que o pipeline envolveu:

- Tokenização com DistilBertTokenizerFast.
- Uso do modelo TDFistilBertForSequenceClassification
- Treino com TFTrainer e respetivos datasets em formato TFDataset

Mas apesar da complexidade e maior capacidade representacional deste modelo, a *accuracy* obtida não ultrapassou os 76%, o que possivelmente pode ser devido à necessidade de maior volume de dados ou até mesmo um *fine-tuning* mais extensivo.

Ao explorar estes modelos adicionais, reforçou ainda mais a decisão de manter os modelos falados na secção 4.1 e 4.2 como os principais para submissão, pois atingiram um melhor equilíbrio entre desempenho, simplicidade e interpretabilidade.

5. Modelos Claude

Além dos modelos de raiz e dos modelos construídos em *TensorFlow*, foi também explorada a utilização de Modelos *Claude*, desenvolvidos pela *Anthropic*. Estes modelos baseiam-se em grandes modelos de linguagem (*LLMs*) e foram acedidos através da *API* disponibilizada pela empresa, permitindo gerar e classificar texto de forma altamente sofisticada.

5.1. Integração via API da Anthropic

Para a utilização dos modelos da *Anthropic* (*Claude*), foi necessário criar credenciais de acesso e efetuar chamadas *REST* à *API*. O processo inclui:

1. Configuração de Autenticação

- Criação de uma API Key associada ao projeto.
- Armazenamento seguro desta chave em variáveis de ambiente para evitar exposição pública do token.

2. Formato de Requisição

- Envio de *prompts* de texto para o modelo, juntamente com parâmetros de configuração, tais como *temperature*, *max_tokens* e *stop sequences*.
- Receção da resposta contendo a predição/classificação ou o texto gerado pelo modelo.

3. Pipeline de Classificação

- Preparação dos exemplos de teste.
- Construção de um *prompt* específico, instruindo o modelo a determinar se o texto em análise foi escrito por um ser humano ou gerado por *IA*.
- Análise automática das respostas do *Claude* para aferir a correção em relação aos rótulos do conjunto de teste.

5.2. Modelos Avaliados

Ao longo dos testes, foram exploradas distintas versões do Claude:

• claude-3-7-sonnet-20250219

• claude-3-5-sonnet-20241022

(Outras versões como *Claude 3.5 Haiku*, *Claude 3 Haiku* ou *Claude 3 Opus* também foram experimentadas, mas com menor foco nos resultados finais.)

Cada variante difere em termos de tamanho do modelo, *training data cutoff*, estrutura interna e ajustes finos (*finetuning*) realizados pelos investigadores da *Anthropic*. Na prática, pequenas alterações no modelo podem impactar a capacidade de compreender e classificar textos de forma correta.

6. Resultados

6.1. Modelos Raiz

O melhor desempenho foi obtido com o SVM, que alcançou uma accuracy de 58% no conjunto de teste.

Observou-se que a *Logistic Regression* e o *Random Forest* apresentaram resultados ligeiramente abaixo, enquanto o *Naive Bayes* mostrou melhor capacidade de generalização quando o conjunto de dados estava desequilibrado, mas ainda assim não superou o *SVM* em termos de *accuracy* global. O resultado de 58% de *accuracy* representou um valor razoável como ponto de partida, indicando que o modelo conseguia distinguir textos gerados por *IA* de textos humanos significativamente acima do aleatório.

Contudo, ainda há espaço para melhoria; o pipeline de pré-processamento, a seleção de hiperparâmetros e a estratégia de balanceamento de classes poderiam ser otimizados.

6.2. Modelos Tensorflow

Relativamente aos modelos que foram desenvolvidos com a framework TensorFlow, designados S1 e S2. Em ambos os casos, construiu-se uma rede neuronal composta por camadas totalmente ligadas (fully connected layers), intercaladas com a função de ativação Rectified Linear Unit (ReLU) e camadas de dropout para prevenir overfitting. Utilizou-se o Adaptive Moment Estimation (Adam) como método de otimização e a função de perda cross-entropy.

Após o treino e a avaliação dos modelos num conjunto de teste, a S1 e S2 apresentaram ambas 79% de accuracy. Este resultado supera significativamente os valores dos modelos de raiz, que se situavam na casa dos 50-60%.

6.3. Modelos Claude

Em comparação com os modelos de raiz e com outras abordagens de redes neuronais tradicionais, os modelos *Claude* demonstraram um desempenho significativamente superior. Destacam-se:

claude-3-7-sonnet-20250219:

Obteve uma accuracy de 97%, sendo o melhor resultado registado no nosso projeto.

claude-3-5-sonnet-20241022:

Apresentou uma accuracy de 94%, também acima dos valores alcançados pelos restantes modelos testados.

Esses valores refletem o estado da arte atual em modelos de linguagem de larga escala, exibindo grande capacidade de identificar padrões subtis que indicam se um texto foi gerado por *IA* ou não.

Generalização e Robustez

• Ao analisarmos diferentes domínios textuais (desde textos curtos informais até redações mais longas e formais), verificou-se que o *Claude* manteve elevada consistência na classificação, mesmo quando confrontado com *prompt engineering* destinado a confundi-lo.

Comparação com Modelos Anteriores

- Os resultados superam facilmente os das soluções baseadas em métodos clássicos de Machine Learning e também mostram-se superiores aos alcançados com redes neuronais menos sofisticadas.
- A integração via *API* proporcionou facilidade de uso, permitindo testar rapidamente diferentes *endpoints* do *Claude* e ajustar parâmetros de inferência.

Custo e Limitações

• Apesar do alto desempenho, deve-se considerar o custo computacional e financeiro associado ao consumo da *API*, especialmente em cenários de processamento em larga escala.

A utilização dos modelos da *Anthropic (Claude)* demonstrou claramente a eficácia de *LLMs* no contexto de distinção entre textos gerados por *IA* e textos humanos, alcançando *accuracies* na ordem dos *94%* a *97%*. Tais resultados reforçam:

A viabilidade de soluções prontas baseadas em *APIs* comerciais para classificação de textos.

O poder de generalização dos LLMs, capazes de lidar com uma grande variedade de estilos e formatos de texto.

O potencial de adoção futura desses modelos em sistemas que exijam elevada fiabilidade na deteção de textos artificiais.

No geral, estas experiências evidenciam que *Claude* oferece atualmente o melhor desempenho dentro do nosso conjunto de modelos, constituindo uma referência de comparação para quaisquer evoluções posteriores na área de classificação de autoria de texto.

7. Conclusão

O principal objetivo deste trabalho foi a distinção entre textos gerados por sistemas de IA e textos escritos por humanos, recorrendo a diferentes abordagens de Machine Learning e Deep Learning. Iniciou-se com métodos de raíz (baseados em Machine Learning tradicional), obtendo-se resultados na ordem dos 53–58% de accuracy, o que serviu de linha de base para validar e comparar soluções mais avançadas.

De seguida, a adoção de redes neuronais simples em *TensorFlow* permitiu elevar a *accuracy* para 79%, demonstrando o potencial de arquiteturas de *Deep Learning*, mesmo num estágio inicial de complexidade. Por fim, a utilização de grandes modelos de linguagem (*LLMs*) disponibilizados pela *API* da *Anthropic* (*Claude*) apresentou desempenhos notavelmente superiores, chegando a atingir 94% e 97% de *accuracy* nas versões testadas. Estes resultados evidenciam a evolução notável que modelos recentes de linguagem conseguem alcançar na tarefa de deteção de textos artificiais.

Em termos de impacto, os achados deste projeto confirmam a eficácia de métodos avançados de *Deep Learning* na identificação de padrões textuais gerados por *IA*, embora com custos computacionais e financeiros mais elevados. Além disso, torna-se claro que a engenharia do *prompt* e a qualidade dos dados de treino podem ser decisivas para tirar o máximo partido destes modelos. Para trabalho futuro, será relevante explorar arquiteturas híbridas, estratégias de *data augmentation* e técnicas de transferência de conhecimento para lidar com escalas maiores de dados, bem como consolidar a robustez dos sistemas perante novos estilos de geração textual.