

Architecture

Exercises Computer Architecture

1 | Architecture

1.1 Stack-Architecture

Evaluate the expression $\frac{a+bc}{a+dc-e}$ using a stack-based processor evaluation stack.

- a) Write pseudo code of the calculation.
- b) How many direct and indirect memory references are needed in case of an infinite stacksize?
- c) How many direct and indirect memory references are needed in case of a stacksize of 2?

arc/stack-01

1.2 Stack-Architecture

Evaluate the expression $\frac{(a+b)^2}{\pi}*(a+b+c)$ using a stack-based processor evaluation stack.

- a) Write pseudo code of the calculation.
- b) How many direct and indirect memory references are needed in case of a stacksize of 4?
- c) How many direct and indirect memory references are needed in case of a stacksize of 3?
- d) How many direct and indirect memory references are needed in case of a stacksize of 2?

arc/stack-02

2 | Single-Cycle RISC-V

2.1 Single-Cycle Processor Operation

Determine the values of the control signals and the portions of the datapath that are used when executing an **and** instruction. Draw directly on the image the inner workings of the processor.

arc/scr-01

2.2 Extend Single Cycle with instruction jal

Show how to change the given RISC-V single-cycle processor to support the jump and link jal instruction. jal writes PC2+4 to rd and changes the PC to the jump target address PC+imm.

arc/scr-02

2.3 Single Cycle Processor Performance

A single cycle processor build with a 7-nm CMOS manufacturing process has the following timing characteristics.

HEI-Vs / ZaS, AmA / 2025

Element	Parameter	Delay(ps)
Register clk-to-Q	$t_{ m pcq}$	40
Register Setup	$t_{ m setup}$	50
Multiplexer	$t_{ m mux}$	30
AND-OR Gate	$t_{ m AND_OR}$	20
ALU	$t_{ m ALU}$	120
Decoder (Control Unit)	$t_{ m dec}$	25
Extend Unit	$t_{ m ext}$	35
Memory Read	$t_{ m mem}$	200
Register File Read	$t_{ m RFread}$	100
Register File Setup	$t_{ m RFSetup}$	60

The program for the SPECINT2000 benchmark contains 100 billion instructions.

Calculate the execution time of the benchmark for this Single-Cycle Processor.

arc/scr-03

3 | Multi-Cycle RISC-V

3.1 Multi Cycle Processor Performance

The program for the SPECINT2000 benchmark consists of approximately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R- or I-Type ALU Instructions.

Determine the average CPI for this benchmark for our developed Multi-Cycle Processor.

arc/mcr-01

3.2 Multi-Cycle Processor Performance

A multi cycle processor build with a 7-nm CMOS manufacturing process has the following timing characteristics.

HEI-Vs / ZaS, AmA / 2025

Element	Parameter	Delay(ps)
Register clk-to-Q	$t_{ m pc}$	40
Register Setup	$t_{ m setup}$	50
Multiplexer	$t_{ m mux}$	30
AND-OR Gate	$t_{ m AND_OR}$	20
ALU	$t_{ m ALU}$	120
Decoder (Control Unit)	$t_{ m dec}$	25
Extend Unit	$t_{ m ext}$	35
Memory Read	$t_{ m mem}$	200
Register File Read	$t_{ m RFread}$	100
Register File Setup	$t_{ m RFSetup}$	60

The program for the SPECINT2000 benchmark contains 100 billion instructions. Use the $\mathrm{CPI}_{\mathrm{avg}}$ from the previous task.

Calculate the execution time of the benchmark for this multi-cycle Processor.

arc/mcr-02

HEI-Vs / ZaS, AmA / 2025