Amplificadores Operacionais

Diogo Gonçalves

Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto

Abril 2023

Sumário

Nesta atividade foi utilizado o amplificador operacional 741 em diversos circuitos/configurações relevantes (Configuração não-inversora, Configuração inversora e Circuito diferenciador) com o objetivo de analisar os seus funcionamentos e potencialidades. Analisou-se o ganho para cada configuração e a sua dependência da frequência escolhida para um sinal de entrada sinusoidal. Concluiu-se que, em vista geral, frequências situadas na gama [1, 5 kHz] costumam ser satisfatórias no sentido de que não deixam o valor experimental do ganho diferir muito do valor teórico. Estudaram-se características intrínsecas do amplificador, tais como a resistência de entrada e a corrente que o percorre. Analisou-se também a resposta do circuito diferenciador a sinais de entrada de diferentes formas.

1 Objetivos

- Verificar as características de funcionamento de um amplificador operacional (op-amp) montado num circuito cujo fim ou um dos fins é fornecer um sinal de saída com tensão superior à do sinal de entrada.
- Estudar configurações inversoras e não-inversoras de um amplificador, bem como diferentes ganhos associados às mesmas.
 - Analisar a dependência do ganho em relação à frequência.
- Determinar a corrente que percorre o amplificador, bem como a resistência de entrada do mesmo.
- Verificar algum tipo de tendência linear do ganho em função da frequência num circuito diferenciador.

2 Introdução teórica

Ao longo deste relatório são descritos inúmeros exemplos de circuitos lineares em que o amplificador não está saturado, ou seja, recorre a realimentação negativa. Este tipo de realimentação consiste em reintroduzir uma parte do sinal de saída na entrada, de maneira a contrariar o sinal de entrada. Isto é tido em conta para que o ganho em malha fechada não tenda para infinito. Mesmo assim, o ganho que advém costuma ser bastante elevado e, por este motivo, pode-se considerar que a diferença de potencial entre as entradas "+" e "-" é nula. $(V_+ \approx V_-)$

2.1 Configuração não-inversora

Uma configuração não-inversora diz respeito a um circuito linear cujo amplificador utilizado toma o nome de não-inversor, visto os sinais de saída e entrada possuírem a mesma polaridade. Dado isto definiu-se, por convenção, que A>0, sendo A o ganho associado ao amplificador.

O esquema do circuito é o seguinte:

Figura 1: Esquema de um circuito com configuração não-inversora

Neste caso, $V_{in}=V_{+}\approx V_{-},$ então pela lei de Ohm:

$$I = \frac{V_{in} - 0}{R_1} \tag{1}$$

Sendo I a corrente que passa em R_1 .

Contudo, esta corrente I também é a mesma que percorre R_2 (não entra corrente no amplificador), pelo que outra expressão surge:

$$I = \frac{V_{out} - 0}{R_1 + R_2} \tag{2}$$

Igualando (1) e (2):

$$V_{in} = \frac{R_1}{R_1 + R_2} V_{out}$$

$$V_{out} = (1 + \frac{R_2}{R_1})V_{in} \tag{3}$$

Fazendo uso da relação do op-amp em regime linear $V_{out} = AV_{in},$

$$A = 1 + \frac{R_2}{R_1} \tag{4}$$

Este é o ganho associado à configuração não-inversora, que apenas depende do valor das resistências R_1 e R_2 utilizadas no circuito.

2.2 Configuração inversora

Uma configuração inversora diz respeito a um circuito linear cujo amplificador utilizado toma o nome de inversor, visto os sinais de saída e entrada possuírem polaridade inversa. Dado isto definiu-se, por conveção, que A<0. O esquema do circuito é o seguinte:

Figura 2: Esquema de um circuito com configuração inversora

A entrada "+" do amplificador está ligada à terra, por isso $V_+\approx V_-\approx 0$. A corrente que percorre R_1 é dada por:

$$I_1 = \frac{V_{in} - 0}{R_1} \tag{5}$$

A corrente que percorre R_2 é dada por:

$$I_2 = \frac{0 - V_{out}}{R_2} \tag{6}$$

Como não entra corrente no amplificador (resistência à entrada deste é idealmente ∞) então $I_1 = I_2$,

$$V_{out} = -\frac{R_2}{R_1} V_{in} \tag{7}$$

Fazendo uso da relação do op-amp em regime linear $V_{out} = AV_{in}$,

$$A = -\frac{R_2}{R_1} \tag{8}$$

Este é o ganho associado à configuração inversora que, mais uma vez, apenas depende do valor das resistências R_1 e R_2 utilizadas no circuito.

2.3 Circuito diferenciador

Este tipo de circuito tem a característica de conseguir efetuar uma diferenciação do sinal de entrada. Em termos de componentes elétricos este circuito apresenta a novidade de possuir um condensador, ligado à entrada "-" do amplificador.

Figura 3: Esquema de um circuito diferenciador

A corrente que percorre R é dada por:

$$I_R = \frac{0 - V_{out}}{R} \tag{9}$$

Atendendo à relação Q=CV, que é característica de um condensador, e ao facto de que a corrente elétrica é nada mais nada menos do que a primeira derivada da carga elétrica,

$$I_{in} = \frac{dQ}{dt} = C\frac{dV_{in}}{dt} \tag{10}$$

Sendo que I_{in} corresponde à corrente da carga do condensador Q, num dado instante. Como a entrada "+"do amplificador está ligada à terra, $V_{+} \approx V_{-} \approx 0$ e V_{in} é a tensão nos terminais do condensador.

Uma vez que $I_{in} = I_R$, de (9) e (10) resulta:

$$V_{out} = -RC \frac{dV_{in}}{dt} \tag{11}$$

A esta equação dá-se o nome de função de transferência, que evidencia o fenómeno de diferenciação da tensão de entrada, com constante de proporcionalidade -RC, ou seja, com inversão de polaridade, tal como acontece na configuração inversora.

Para os casos em que V_{in} varia em função do tempo e é dada pela expressão $V_{in}=\sin{(wt+\phi)},$ então $\frac{dV_{in}}{dt}=w\cos{(wt+\phi)},$ pelo que:

$$V_{out} = -2\pi f RC V_{in} \tag{12}$$

Para além deste tipo de circuitos, também existem os chamados circuitos integradores que, tal como o nome indica, efetuam o processo reverso do circuito diferenciador e o sinal de saída corresponde ao integral do sinal de entrada. Apesar da enorme potencialidade e interesse destes circuitos, estes não serão abordados neste relatório devido a razões externas.

2.4 Circuito com amplificador Buffer

Existem circuitos que possuem um amplificador de ganho 1 implementado e que geram grande interesse e utilidade devido a esta característica vulgar. A este tipo de amplificadores de ganho unitário dá-se o nome de amplificador seguidor ou amplificador "buffer".

O exemplo mais simples possível deste tipo de circuitos é o seguinte:

Figura 4

Outro exemplo possível seria o circuito referente a uma configuração não-inversora (Figura 1) com $R_1 = \infty$, já que para esta configuração o ganho é dado por $A = 1 + \frac{R_2}{R_1}$ Estes circuitos são úteis, por exemplo, se for necessário fornecer uma certa voltagem através de uma fonte de tensão para um circuito que possua uma resistência tal que $V_{in} = V_{out}$, ou seja, não havendo queda de tensão na resistência. Para tal é necessário garantir que não passe qualquer corrente nessa resistência e isso pode ser garantido com a introdução de um amplificador buffer, já que a resistência de entrada deste é idealmente infinita e a corrente que o percorre é nula.

3 PARTE A

3.1 Configuração não-inversora

3.1.1 Procedimento

- Escolheram-se as resistências R_1 e R_2 da Figura 5 de maneira a obter um ganho de 11.
 - Adicionou-se a resistência R_3 para gerar simetria no circuito.
- Montou-se na breadboard o circuito representado na Figura 5 e adicionaram-se as alimentações necessárias ao amplificador $(+V_{cc}=+15V,-V_{cc}=-15V)$
- Com o gerador de sinais gerou-se um sinal de entrada sinusoidal de frequência $\approx 1~\mathrm{kHz}$ e observou-se no osciloscópio os sinais de entrada e saída, implementados no canal 1 e 2, respetivamente.
 - Mediu-se o ganho do amplificador nestas condições iniciais.
- Foi-se aumentando gradualmente a frequência do sinal de entrada e registando os valores de V_{in} e V_{out} para cada valor de f, para posteriormente se obter os ganhos.
 - Obteve-se o gráfico do ganho em função da frequência.
- Mediu-se a corrente à entrada do amplificador com um amperímetro para se determinar a resistência de entrada através da lei de Ohm (V_{in} uma tensão contínua neste caso)

Figura 5

- Repetiu-se todo este procedimento para um ganho teórico de 101.

3.1.2 Resultados experimentais e análise

Para obter o ganho de 11 pretendido utilizaram-se as seguintes resistências: (ver equação 4)

$$R_1 = (1000 \pm 50)\Omega$$

$$R_2 = (10000 \pm 500)\Omega$$

Utilizou-se também a resistência $R_3=(1000\pm 50)\Omega,$ valor aproximado de uma resistência equivalente a R_1 e R_2 em paralelo.

Para o sinal de entrada sinusoidal com f=1 kHz observou-se o seguinte:

f (kHz)	(Vin ± 0.01) V	(Vout ± 0.01) V	A (ganho)	u (A)	erro %
1	1.02	11.20	10.98	0.01	0.18

Figura 6

Obteve-se um ganho de $(10, 98 \pm 0, 01)$, ou seja, a tensão de saída é 10,98 vezes superior à tensão de entrada. Comparando este valor com o ganho teórico (11) surge um erro experimental de 0, 18%.

Para outros valores de frequência obteve-se:

f (kHz)	log(f(kHz))	(Vin ± 0.01) V	(Vout ± 0.01) V	A (ganho)	u (A)
1	0	1.02	11.20	10.98	0.01
2	0.301	1.02	11.20	10.98	0.01
5	0.699	1.04	11.30	10.87	0.01
7	0.845	1.02	11.00	10.78	0.01
9	0.954	1.04	11.20	10.77	0.01
10	1.000	1.12	11.20	10.00	0.09
11	1.041	1.12	10.80	9.64	0.09
12	1.079	1.12	10.20	9.11	0.08
13	1.114	1.12	9.60	8.57	0.08
14	1.146	1.04	9.00	8.65	0.08
15	1.176	1.12	8.60	7.68	0.07
15.5	1.190	1.12	8.20	7.32	0.07
16	1.204	1.12	8.00	7.14	0.06
16.5	1.217	1.12	7.80	6.96	0.06
17.5	1.243	1.12	7.40	6.61	0.06
18	1.255	1.12	7.20	6.43	0.06
20	1.301	1.12	6.60	5.89	0.05
25	1.398	1.12	5.20	4.64	0.04
30	1.477	1.12	4.46	3.98	0.04
35	1.544	1.12	3.80	3.39	0.03
40	1.602	1.12	3.40	3.04	0.03

f (kHz)	log(f(kHz))	(Vin ± 0.01) V	(Vout ± 0.01) V	A (ganho)	u (A)
45	1.653	1.12	3.00	2.68	0.03
50	1.699	1.12	2.80	2.50	0.02
55	1.740	1.12	2.60	2.32	0.02
60	1.778	1.04	2.08	2.00	0.02
65	1.813	1.06	1.92	1.81	0.02
75	1.875	1.04	1.64	1.58	0.02
80	1.903	1.04	1.56	1.50	0.02
85	1.929	1.04	1.44	1.38	0.02
95	1.978	1.06	1.28	1.21	0.01

Figura 7

Com estes dados obtiveram-se os seguintes gráficos:

Figura~8

Figura 9

Para obter o ganho de 101 utilizou-se o mesmo circuito, tendo só mudado os valores das resistências: (ver equação 4)

$$R_1 = (10000 \pm 500)\Omega$$

$$R_2 = (1000000 \pm 50000)\Omega$$

Utilizou-se também a resistência $R_3=(10000\pm 500)\Omega,$ valor aproximado de uma resistência equivalente a R_1 e R_2 em paralelo.

Para o sinal de entrada sinusoidal com $f=1~\mathrm{kHz}$ observou-se o seguinte:

f (KHz)	(Vin ± 0.001) V	Vout (V)	u(Vout)	A (ganho)	u (A)	erro %
1	0.102	9.80	0.01	96.1	0.9	4.87

Figura 10

Obteve-se um ganho de $(96,1\pm0,9)$, ou seja, a tensão de saída é 96,1 vezes superior à tensão de entrada. Comparando este valor com o ganho teórico (101) surge um erro experimental de 4,87%.

Para outros valores de frequência obteve-se:

f (KHz)	log(f(kHz))	(Vin ± 0.001) V	Vout (V)	u(Vout)	A (ganho)	u (A)
1	0	0.102	9.80	0.01	96.1	0.9
2	0.301	0.102	9.80	0.01	96.1	0.9
3	0.477	0.102	9.70	0.01	95.1	0.9
3.5	0.544	0.102	9.80	0.01	96.1	0.9
4	0.602	0.102	9.80	0.01	96.1	0.9
5	0.699	0.102	9.50	0.01	93.1	0.9
5.5	0.740	0.102	8.40	0.01	82.4	0.8
6	0.778	0.102	7.60	0.01	74.5	0.7
6.5	0.813	0.102	7.40	0.01	72.5	0.7
8	0.903	0.102	6.80	0.01	66.7	0.7
8.5	0.929	0.104	6.60	0.01	63.5	0.6
9.5	0.978	0.104	6.20	0.01	59.6	0.6
10	1.000	0.104	5.80	0.01	55.8	0.5
10.5	1.021	0.104	5.80	0.01	55.8	0.5
13	1.114	0.104	4.80	0.01	46.2	0.5
15	1.176	0.104	4.40	0.01	42.3	0.4
18	1.255	0.102	3.80	0.01	37.3	0.4
20	1.301	0.104	3.40	0.01	32.7	0.3
25	1.398	0.104	2.80	0.01	26.9	0.3
30	1.477	0.104	2.40	0.01	23.1	0.2
35	1.544	0.104	2.00	0.01	19.2	0.2
45	1.653	0.104	1.60	0.01	15.4	0.2
55	1.740	0.104	1.40	0.01	13.5	0.2
60	1.778	0.104	1.20	0.01	11.5	0.1
65	1.813	0.106	1.00	0.01	9.4	0.1
70	1.845	0.104	1.20	0.01	11.5	0.1
75	1.875	0.104	1.00	0.01	9.6	0.1
80	1.903	0.104	1.00	0.01	9.6	0.1
85	1.929	0.104	1.00	0.01	9.6	0.1
90	1.954	0.104	1.00	0.01	9.6	0.1
100	2.000	0.104	1.00	0.01	9.6	0.1
105	2.021	0.106	0.800	0.001	7.55	0.07
110	2.041	0.104	0.800	0.001	7.69	0.07
120	2.079	0.106	0.800	0.001	7.55	0.07
130	2.114	0.104	0.800	0.001	7.69	0.07

Figura 11

Com estes dados obtiveram-se os seguintes gráficos:

Figura 12

Figura 13

Para ambos os ganhos os valores de V_{in} mantêm-se quase inalteráveis ao longo das tabelas nas figuras 7 e 11, à medida que f aumenta, o que faz sentido visto só se ter alterado a frequência do sinal de entrada.

Numa fase inicial de obtenção de dados decidiu-se visualizar o efeito no ganho à medida que se aumentava aos poucos a frequência, de maneira a presenciar algum tipo de tendência em fases precoces, se fosse esse o caso. A verdade é que tanto para um ganho como para o outro é possível ver que o ganho experimental se mantém \pm constante até certo valor de frequência. (até f=9 kHz para A = 11; até f=5 kHz para A = 101)

Isto ainda se torna mais percetível ao visualizar os gráficos do ganho em função do logaritmo da frequência. (figuras 9 e 13)

A partir deste valores de "frequências de corte", em ambos os gráficos, o ganho experimental diminui à medida que a frequência aumenta de maneira semelhante a uma função exponencial, chegando mesmo a tomar valores próximos de 1 no gráfico da figura 8 relativo ao ganho teórico de 11. Isto significa que quase deixa de haver ganho a partir de certa frequência e $V_{out} \approx V_{in}$.

Isto pode parecer um pouco contraditório tendo em conta algumas suposições iniciais, tais como a suposição de o amplificador usado ser ideal quando, na verdade, muito provavelmente não o é.

Até à frequência de corte o amplificador comporta-se como ideal e mantém o ganho constante. Contudo, a distribuição dos dados subsequentes demonstram o contrário e provam que o amplificador não é ideal. Se o fosse, o ganho permaneceria constante desde a frequência nula até à infinita, sendo que f e A seriam independentes. Acontece que os componentes internos do amplificador não suportam altas frequências.

Ao introduzir o amperímetro em série com R_3 , obteve-se o valor de corrente de 0 A, provando a quantidade insignificante de corrente que percorre o amplificador. Através da lei de Ohm, considerando uma tensão de entrada constante, concluiu-se que a resistência de entrada do amplificador R_{in} tende para ∞ .

Isto acontece não só para a configuração não-inversora, como também para a inversora, visto ter sido utilizado o mesmo amplificador em ambas. (741)

3.2 Configuração inversora

3.2.1 Procedimento

- Escolheram-se as resistências R_1 e R_2 da Figura 14 de maneira a obter um ganho de -10.
 - Adicionou-se a resistência \mathbb{R}_3 para gerar simetria no circuito.
- Montou-se na breadboard o circuito representado na Figura 14 e adicionaramse as alimentações necessárias ao amplificador $(+V_{cc} = +15V, -V_{cc} = -15V)$

Figura 14

- Com o gerador de sinais gerou-se um sinal de entrada sinusoidal de frequência ≈ 1 kHz e observou-se no osciloscópio os sinais de entrada e saída, implementados no canal 1 e 2, respetivamente.
 - Mediu-se o ganho do amplificador nestas condições iniciais.
- Mediu-se a corrente à entrada do amplificador com um amperímetro para se determinar a resistência de entrada através da lei de Ohm (V_{in} uma tensão contínua neste caso)

3.2.2 Resultados experimentais e análise

Para obter o ganho de -10 pretendido utilizaram-se as seguintes resistências: (ver equação 8)

$$R_1 = (1000 \pm 50)\Omega$$

$$R_2 = (10000 \pm 500)\Omega$$

Utilizou-se também a resistência $R_3 = (1000 \pm 50)\Omega$, valor aproximado de uma resistência equivalente a R_1 e R_2 em paralelo.

Ao gerar um sinal de entrada sinusoidal com frequência 1kHz obteve-se um ganho experimental de -10, que coincide com o valor teórico. Tal como era esperado, o sinal de saída no osciloscópio encontra-se invertido devido à tal inversão de polaridade característica da configuração inversora. Este fenómeno foi bastante visível sobretudo na visualização dos máximos e mínimos: um máximo do sinal de entrada correspondia a um mínimo do sinal de saída e vice-versa.

Aumentando aos poucos a frequência observou-se algo já antes visto na configuração não-inversora: ganho permanece constante até certo valor de frequência (\approx 5 kHz neste caso) e posteriormente sofre uma queda, aproximando-se cada vez mais de 1 à medida que a frequência aumenta.

Para esta configuração retiraram-se menos pontos, sendo que o objetivo era apenas verificar se os fenómenos anteriormente vistos para a não-inversora persistiam.

Obteve-se uma resposta positiva. (mesmas distribuições)

4 PARTE B

4.1 Circuito diferenciador

4.1.1 Procedimento

- Montou-se o circuito da Figura 15 na breadboard com R = 1 k Ω e C = 100 nF.
- Com o gerador de sinais gerou-se um sinal de entrada sinusoidal e observou-se no osciloscópio os sinais de entrada e saída, implementados no canal 1 e 2, respetivamente.

Figura 15

- Representou-se graficamente a razão das amplitudes dos sinais V_{out} e V_{in} em função da frequência na gama [0, 100 kHz].
- Com o gerador de sinais gerou-se um sinal de entrada referente a uma onda quadrada e observou-se no osciloscópio os sinais de entrada e saída, implementados no canal 1 e 2, respetivamente.
 - Repetiu-se o passo anterior para uma onda triangular.

4.1.2 Resultados experimentais e análise

Os componentes elétricos utilizados no circuito diferenciador foram os seguintes:

$$R = (1000 \pm 50)\Omega$$

$$C = (100 \pm 1) \text{nF}$$

A constante de proporcionalidade da equação 11 é dada por $-RC = -10^{-4}$.

Já que V_{in} é uma função variável no tempo a função de transferência toma a forma da equação 12:

$$V_{out} = -2\pi fRCV_{in}$$

Também pode ser escrita da seguinte forma:

$$\frac{V_{out}}{V_{in}} = -2\pi RCf \tag{13}$$

Esta equação 13 traduz um regime linear de $\frac{V_{out}}{V_{in}}$ em função de f, com declive m = $2\pi RC$ (o - desaparece se se considerar $V_{in} = \cos(wt + \phi)$) e ordenada na origem b = 0.

A tabela com os resultados experimentais é a seguinte:

f (Hz)	f (KHz)	Vin (V)	u(Vin)	Vout (V)	u(Vout)	Vout / Vin	u(Vout/Vin)
60	0.06	1.04	0.01	0.100	0.001	0.096	0.001
150	0.15	1.04	0.01	0.152	0.001	0.146	0.002
190	0.19	1.04	0.01	0.176	0.001	0.169	0.002
230	0.23	1.04	0.01	0.192	0.001	0.185	0.002
280	0.28	1.04	0.01	0.220	0.001	0.212	0.002
320	0.32	1.04	0.01	0.244	0.001	0.235	0.002
360	0.36	1.04	0.01	0.264	0.001	0.254	0.003
420	0.42	1.04	0.01	0.300	0.001	0.288	0.003
500	0.5	1.04	0.01	0.344	0.001	0.331	0.003
600	0.6	1.04	0.01	0.400	0.001	0.385	0.004
700	0.7	1.04	0.01	0.464	0.001	0.446	0.004
820	0.82	1.04	0.01	0.528	0.001	0.508	0.005
920	0.92	1.04	0.01	0.544	0.001	0.523	0.005
1250	1.25	1.04	0.01	0.768	0.001	0.738	0.007
1410	1.41	1.04	0.01	0.856	0.001	0.823	0.008
1820	1.82	1.04	0.01	1.12	0.01	1.08	0.01
2600	2.6	1.04	0.01	1.54	0.01	1.48	0.02

f (Hz)	f (KHz)	Vin (V)	u(Vin)	Vout (V)	u(Vout)	Vout / Vin	u(Vout/Vin)
4200	4.2	1.04	0.01	2.48	0.01	2.38	0.02
7200	7.2	1.04	0.01	4.24	0.01	4.08	0.04
10200	10.2	1.04	0.01	6.20	0.01	5.96	0.06
13200	13.2	0.960	0.001	7.60	0.01	7.92	0.01
14000	14	0.940	0.001	8.20	0.01	8.72	0.01
14700	14.7	0.880	0.001	8.60	0.01	9.77	0.02
15200	15.2	0.780	0.001	9.80	0.01	12.56	0.02
18200	18.2	0.760	0.001	11.40	0.01	15.00	0.02
22000	22	1.10	0.01	13.60	0.01	12.4	0.1
27000	27	1.30	0.01	13.60	0.01	10.46	0.08
31000	31	1.20	0.01	13.60	0.01	11.33	0.09
31100	31.1	1.24	0.01	12.80	0.01	10.32	0.08
31400	31.4	1.24	0.01	12.40	0.01	10.00	0.08
31700	31.7	0.920	0.001	6.80	0.01	7.39	0.01
32000	32	0.920	0.001	6.80	0.01	7.39	0.01
40000	40	0.940	0.001	5.60	0.01	5.96	0.01
45000	45	0.940	0.001	5.00	0.01	5.32	0.01
50000	50	0.960	0.001	4.60	0.01	4.79	0.01
60000	60	0.960	0.001	4.00	0.01	4.17	0.01
70000	70	0.980	0.001	3.60	0.01	3.67	0.01
80000	80	0.980	0.001	3.20	0.01	3.27	0.01
90000	90	0.980	0.001	3.00	0.01	3.06	0.01
100000	100	1.00	0.01	2.60	0.01	2.60	0.03

Figura 16

A representação gráfica de $\frac{V_{out}}{V_{in}}$ em função de f é a seguinte:

Figura 17

Na gama de frequências $[0,\ 2600\ Hz]$ obteve-se um regime aproximadamente linear. Fez-se então um ajuste linear para os pontos em questão:

Figura 18

m	0.000566	0.049	b
u(m)	5E-06	0.006	u(b)
r^2	0.9985	0.02	s(y)

Figura 19

O declive do regime linear é $(0,000566\pm0,000005)$ e corresponde ao valor experimental de $2\pi RC$.

O valor teórico é equivalente a $(0,00063 \pm 0,00003)$ e o erro é de 10,2%.

O gráfico de resíduos obtido apresenta os resíduos espalhados aleatoriamente, o que indica que o ajuste efetuado foi bom (por esta razão não foi inserido no relatório).

Idealmente, a ordenada na origem deveria ser 0 para satisfazer completamente a equação 13, mas obteu-se o valor 0,049. Contudo, este valor é bastante pequeno, pelo que se considerou que $b \approx 0$.

Para f>2600 Hz, os dados afastam-se da tendência linear, apesar de o ganho continuar a aumentar. Idealmente o regime linear permaneceria até à frequência infinita. O valor máximo obtido corresponde a $\frac{V_{out}}{V_{in}}=15$, para f=18200Hz, sendo que neste ponto ocorre ressonância. Parte disto pode ter a ver com o facto de que para f=13200Hz o valor da tensão de entrada começa a diminuir, algo que ainda não tinha sido observado neste relatório, e toma o seu valor mínimo no ponto de ressonância. Isto pode indicar que o problema talvez também esteja no gerador de sinais e não só no facto de o amplificador não ser ideal. Ao que parece, o gerador de sinais apresenta certos desvios de V_{in} relativamente ao esperado quando a frequência pedida é elevada.

Apesar disto, existe uma explicação mais plausível e fundamentada para o aparecimento de ressonância neste circuito. Tal como acontece com um oscilador forçado (sistema massa-mola, por exemplo), um circuito elétrico pode entrar em ressonância se a frequência externa aplicada tomar o valor da chamada "frequência de ressonância", isto se o sistema físico for um oscilador. Em eletrónica isto é possível para um circuito RLC, visto a energia fluir/oscilar entre dois armazenadores independentes de energia: o condensador (C) e o indutor (L). Esta troca de energia elétrica entre os dois componentes torna possível o aparecimento da ressonância para o ganho. Neste circuito diferenciador apresentado, aparentemente, só existe condensador e resistência, ficando em falta o indutor L. Contudo, este componente pode estar *implementado* no gerador de sinais, possuindo este uma indutância interna e assim o fenómeno apresentado já teria uma explicação clara. Esta indutância interna tomaria o valor de:

$$L = \frac{1}{4\pi^2 f^2 C} = 7,65 \times 10^{-4} H \tag{14}$$

Esta expressão adveio da fórmula da frequência de ressonância de um circuito RLC: $f_R=\frac{1}{2\pi\sqrt{LC}}$, sendo que a frequência de ressonância f_R para este circuito diferenciador é 18200 Hz e $C=100\times 10^{-9}$ F.

Depois de uma pesquisa exaustiva, chegou-se a outra possível explicação. Esta envolve o trabalho elaborado pelo físico/investigador Andreas Antoniou. Este demonstrou experimentalmente o fenómeno da simulação indutora, ou seja, criou um circuito que simula a ação de um indutor, apesar de possuir apenas os seguintes componentes: resistências, condensadores e **amplificadores**; tal como o circuito diferenciador apresenta. Com a experiência elaborada ficou provado que filtros RLC podem ser implementados sem a presença de um indutor L, através do uso de um inductance-simulation circuit. Se este for o caso aqui, então aparece outra fundamentação plausível para o aparecimento do pico de ressonância.

Depois do valor máximo alcançado, o ganho decresce à medida que f aumenta, de maneira semelhante ao que foi observado na Parte A para a configuração não-inversora e inversora. Os pontos relativos a $f=31000{\rm Hz},\ f=31100{\rm Hz}$ e $f=31400{\rm Hz}$ apresentam uma distribuição que não está totalmente de acordo com os restantes, sendo então considerados 3 possíveis pontos duvidosos.

De notar também que para f < 1410 Hz o ganho $(\frac{V_{out}}{V_{in}})$ é inferior a 1, ou seja, nesta gama o sinal de saída foi modificado, mas não ampliado.

Em relação à disposição dos sinais no ecrã do osciloscópio, observou-se que o sinal de saída encontrava-se desfasado do sinal de entrada, com uma diferença de fase de $\approx 90^{\circ}$. Isto faz todo o sentido, visto ocorrer a diferenciação do sinal de entrada, que é representado por uma função trigonométrica seno ou cosseno. Ao fazer a derivada obtém-se o oposto (cosseno ou seno respetivamente) e a diferença de fase entre uma função seno e cosseno é $\frac{\pi}{2}$.

Ondas quadradas e triangulares

No caso das ondas sinusoidais analisadas previamente, as suas derivadas são também ondas sinusoidais. Contudo, o mesmo não acontece para ondas quadradas e triangulares.

As imagens retiradas aquando da atividade laboratorial não permitem uma visualização muito eficiente dos fenómenos desejados visto, por alguma razão, os sinais de entrada (ondas quadradas e triangulares) não possuírem as formas devidas e apresentarem distorção. Supôs-se que o problema residia no gerador de sinais. Apesar disto, será explicado seguidamente o que se observou ou deveria ter observado.

Para a diferenciação da onda triangular obteve-se o seguinte:

Figura 20

Na diferenciação de uma onda triangular acontece que as retas com declive positivo passam a retas horizontais negativas e as retas com declive negativo passam a retas horizontais positivas. Esta inversão ocorre devido ao sinal negativo da função de transferência: $V_{out} = -RC\frac{dV_{in}}{dt}$. Como é possível observar pelos valores máximos de V_{in} e V_{out} , o sinal para além de sofrer diferenciação também é ampliado.

Ambas as retas horizontais obtidas estão rodeadas a vermelho na figura 20, apresentando uma certa distorção e ruído.

Para a diferenciação da onda quadrada obteve-se o seguinte:

Figura 21

Na diferenciação de uma onda quadrada acontece que quando o sinal de entrada é constante (retas horizontais) o sinal de saída é nulo, já que a derivada de uma reta de declive 0 é nula. Nos casos em que o sinal de entrada é vertical e crescente, o sinal de saída é também vertical, mas negativo, e tende para ∞ . Se o sinal de entrada for vertical e decrescente, o sinal de saída é também vertical, mas positivo, e tende igualmente para ∞ . Esta inversão advém mais uma vez do sinal negativo da função de transferência. Nada disto aqui explicado foi possível observar na figura 21, como é bastante visível.

5 Propagação de incertezas / fórmulas

Erro percentual

$$Erro(\%) = \frac{|x_{teor.} - x_{exp.}|}{x_{teor.}} \times 100$$

Incerteza de uma resistência

$$u(R) = \frac{5}{100} \times R$$

Incerteza do ganho experimental nas configurações não-inversora e inversora

$$u(A) = u(\frac{V_{out}}{V_{in}}) = \sqrt{(V_{in}^{-1}u(V_{out}))^2 + (-(\frac{V_{out}}{V_{in}^2})u(V_{in}))^2}$$

Incerteza do valor teórico de $2\pi RC$

$$u = \sqrt{(2\pi Cu(R))^2 + (2\pi Ru(C))^2}$$

6 Discussão e Conclusões

Em suma, consegue-se inferir que:

- O ganho experimental obtido na configuração não-inversora de ganho teórico 11 foi de $A=(10,98\pm0,01)$, para f=1kHz. O erro associado é de 0,18 %.
- \bullet O ganho experimental obtido na configuração não-inversora de ganho teórico 101 foi de $A=(96,1\pm0,9),$ para $f=1 \rm kHz.$ O erro associado é de 4,87 %.
- O ganho experimental obtido na configuração inversora de ganho teórico -10 foi de $A=(-10,0\pm0,1)$, para $f=1 \rm kHz$. O valor experimental coincide com o valor teórico.
- Os ganhos obtidos nas configurações não-inversora e inversora são aproximadamente constantes até ao valor da frequência de corte respetiva. Estes valores de ganhos experimentais constantes apresentam percentagens de erro baixas em relação aos valores teóricos, o que indica que o amplificador operacional utilizado funciona bem para frequências baixas do sinal de entrada. (essencialmente na gama [1, 5kHz])
- Depois da frequência de corte, os ganhos experimentais sofrem um decaimento à medida que a frequência aumenta até ao momento em que praticamente deixa de haver ganho, isto acontece porque o amplificador utilizado não é ideal.
- Pode-se admitir que a resistência de entrada do Amplificador Operacional 741 é infinita, já que por ser demasiado grande o amperímetro indicou que a corrente de entrada seria 0.

- Para um circuito diferenciador, verificou-se que $\frac{V_{out}}{V_{in}}$ varia linearmente com a frequência na gama [0, 2600 Hz], sendo que o valor experimental obtido para $2\pi RC$ foi de $(0,000566\pm0,000005)$ com um erro de 10,2~%.
- No gráfico obtido do ganho em função da frequência para um circuito diferenciador foi possível observar o fenómeno de ressonância, para a frequência de ressonância de 18200 Hz.
- A condição $V_{out}=-RC\frac{dV_{in}}{dt}$ observa-se não só para sinais de entrada sinusoidais, como também para sinais de entrada quadrados e triangulares.

7 Referências

- [1] Material de apoio aulas eletrónica, FCUP
- $[2] \ https://www.allaboutcircuits.com/technical-articles/inductor-out-op-amp-in-an-introduction-to-second-order-active-filters/$
 - [3] https://electronics.stackexchange.com/
 - [4] https://www.electronics-tutorials.ws/accircuits/series-resonance.html