GSS Gedächtnisprotokoll 24.07.2012

Teil 1: Lamersdorf

Aufgabe 1: Echtzeit-Scheduling [18 P.]

Auftrag	P_1	P_2	P_3	P_4
Periodendauer	4	6	12	8
Bedienzeitanforderung	1	2	3	1

- **a)** [2 P.] Leiten Sie mathematisch her, ob es mit einem idealen Scheduler möglich ist, die Deadlines aller Aufträge einzuhalten.
- **b)** [2 P.] Leiten Sie mathematisch her, ob es mit einem RMS Scheduler möglich ist, die Deadlines aller Aufträge einzuhalten.
- c) [6 P.] Illustrieren Sie für das Intervall $t \in [0, 24]$ die Ausführungsreihenfolge mit RMS.
- d) [6 P.] Illustrieren Sie für das Intervall $t \in [0, 24]$ die Ausführungsreihenfolge mit EDF.

Aufgabe 2: Prioritätsinversion [10 P.]

Auftrag	P_1	P_2	P_3
Periodendauer	25	20	100
Bedienzeitanforderung	5	10	20

Welche zwei Aufträge müssten sich mittels einer Semaphore eine Ressource teilen, damit es bei $t=50\,\mathrm{zu}$ einer Prioritätsinversion kommt? Illustrieren Sie die Ausführungsreihenfolge.

Aufgabe 3: Semaphoren [10 P.]

Gegeben sei folgende (unvollständige) Klasse:

```
public class Verwalter {
    private List<Ware> _waren;

public Verwalter() {
        _waren = new ArrayList<Ware>();
    }

public void preiseAnpassen() {
        for (Ware ware : _waren) {
            ware.justierePreis();
    }
}
```

Das Ziel ist es, jede Preisänderung von allen Waren atomar zu gestalten.

- a) Sie finden heraus, dass es so etwas wie Semaphoren mit den Methoden P() und V() gibt. Mit welchem Wert müsste die Semaphore initialisiert werden?
- **b)** Wie müsste der Quelltext geändert werden, wenn in der Klasse eine Semaphore sem zur Verfügung steht?
- **c)** Das Programm stürzt direkt ab. Welchen Fehler wurde gemacht, der mit Monitoring nicht passiert wäre?
- d) Sie finden das Konzept des Monitorings und passen Ihre Klasse Ware wie folgt an

Führt das zum gewünschten Ergebnis? Wenn nein, was könnte man besser machen?

Aufgabe 4: Paging [14 P.]

Spalte	P/A-Bit	Frame	$t_{geladen}$	t _{zuletzt}	Zugriffe	Referenziert	Modifiziert
13	0	0x6	3	?	?	0	1
14	1	0x8	?	?	?	1	1
15	0	0xA	?	?	?	0	0
16	1	0xC	?	?	?	0	0
17	1	0xE	?	?	?	0	0
18	1	0x4	?	?	?	0	0

Die virtuelle Adresse ist 16 Bit lang, die physikalische 12 Bit. Eine Seite ist 256 Byte groß.

- a) [2 P.] Wie viele Einträge passen in die Tabelle?
- b) [4 P.] Wandeln Sie die folgenden virtuellen Adressen in physikalische Adressen um.
 - i) 0x0CEA
 - ii) 0x122C
 - iii) 0x10AB
 - iv) 0x0F99
- c) [8 P.] Die Seite, die in Spalte 13 steht, soll geladen werden, allerdings gibt es keinen freien Pageframe. Welche Seite müsste ersetzt werden nach FIFO, LRU, NRU, LFU?

Aufgabe 5: Dateisysteme [10 P.]

a) [4 P.] Beschriften Sie im Bild die Zustände X und Y und die Zustandsübergänge a bis f.

b) [6 P.] Beschreiben Sie die drei Schichten des Dateiverwaltungssystems (oder so ähnlich).

Aufgabe 6: Routing [10 P.]

a) [4 P.] Geben Sie die stabilen Tabellen an. Folgendes ist vorgegeben:

Für R1 Für R2		Für R3				Für R4					
Z	L	K	Z	L	K	Z	L	K	Z	L	K
N_1			N_1			N_1	L_3		N_1		
N_2			N_2			N_2			N_2	L_4	
N_3	L_1		N_3			N_3			N_3		
N_4			N_4	L_2		N_4			N_4		

- **b)** Leitung 4 fällt aus. Geben Sie die Tabellen nach der ersten Phase an, also wenn sich nichts mehr ändert.
- c) In a) war von jedem Knoten aus jeder andere Knoten erreichbar. Ist dies nach b) der Fall? Wenn nein, was müsste noch getan werden?

Aufgabe 7: Agenten [8 P.]

- a) [4 P.] Nennen Sie vier Eigenschaften von Software Agenten (außer autonom).
- b) [4 P.] Was bedeutet autonom im Kontext von Software Agenten?

Teil 2: Federrath

Aufgabe 1: Angreifermodell [4 P.]

- a) [2 P.] Was ist der Sinn des Angreifermodells?
- b) [2 P.] Welche Aspekte beschreibt es?

Aufgabe 2: Passwörter [4 P.]

In Ihrem System bestehen Passwörter aus fünf Zeichen, wobei ein Zeichen ein Großbuchstabe, Kleinbuchstabe oder eine Ziffer sein kann.

- a) [2 P.] Wie viele verschiedene Passwörter gibt es?
- **b)** [2 P.] Zusätzlich soll mindestens eins der Zeichen ein Sonderzeichen sein, es gibt dabei zehn Sonderzeichen zur Auswahl. Wie viele verschiedene Passwörter gibt es?

Aufgabe 3: Kryptographie [4 P.]

- **a)** [2 P.] Was ist der Hauptunterschied zwischen symmetrischen und asymmetrischen Verfahren?
- **b)** [2 P.] Nennen Sie Vor- und Nachteile der symmetrischen gegenüber der asymmetrischen Verfahren.

Aufgabe 4: Rainbow Tables [4 P.]

- a) [2 P.] Was ist der Zweck einer Rainbow Table?
- b) [2 P.] Worin liegt der Vorteil der Rainbow Tables gegenüber einem Brute-Force-Angriff?

Aufgabe 5: iTAN [12 P.]

- a) [2 P.] Wie bezeichnet man allgemein solche Authentisierungsprotokolle wie iTAN?
- **b)** [10 P.] Skizzieren Sie einen Man-in-the-middle-Angriff bei einem iTAN-Verfahren zwischen Kunde und Bank.

Aufgabe 6: RSA [8 P.]

Alice und Bob senden sich verschlüsselt Würfelergebnisse zu. Für Alice gibt es folgende Werte: $e_A=3$, $p_A=5$, $q_A=11$, $d_A=27$. Für Bob gibt es folgende Werte: $e_B=3$, $p_B=17$, $q_B=5$, $d_B=43$.

Bob sendet Alice sein Würfelergebnis $c_B=9$

Zeigen Sie, dass es Eve möglich ist mit einem Chosen-Plaintext-Angriff und nur mit dem Wissen von c_B und den öffentlichen Schlüsseln von beiden das Ergebnis zu entschlüsseln.