

TDDD12 - Lab 3 report

Jheng-Kai Chen (jhech107) Sih-Rong Huang (sihhu499) Yunkai Lin Pan (yunli498) Group C7

> Linköping University Sweden

> > $May\ 13,\ 2024$

Contents

1	Task 1
	1.1 $\{C\} \rightarrow \{B\}$
	1.2 $\{A,E\} \rightarrow \{F\}$
2	Task 2
	2.1 $X = \{A\}$
	2.2 $X = \{C, E\}$
3	Task 3
	3.1 Candidate keys
	3.2 BCNF violation
	3.3 Decomposition of R into a set of BCNF relations
4	Task 4
	4.1 BCNF violation
	4.2 Decomposition of R into a set of BCNF relations

1 Task 1

Considering the relation R(A,B,C,D,F) and the 3 following FDs:

- FD1: $\{A\} \rightarrow \{B,C\}$
- FD2: $\{C\} \rightarrow \{A,D\}$
- FD3: $\{D,E\} \rightarrow \{F\}$

1.1 $\{C\} \rightarrow \{B\}$

Looking for $FD': \{C\} \rightarrow \{B\}$

- FD4: $\{C\} \rightarrow \{A\}$ // descomposition of FD2
- FD5: $\{A\} \rightarrow \{B\}$ // descomposition of FD1
- Applying transitivity with FD4 and FD5, then we get that FD6: $\{C\} \rightarrow \{B\}$, which is the FD' that we are trying to look for.

1.2 $\{A,E\} \rightarrow \{F\}$

Looking for $FD': \{A,E\} \rightarrow \{F\}$

- FD4: {A} \rightarrow {C} // descomposition of FD1
- FD5: $\{C\} \rightarrow \{D\}$ // descomposition of FD2
- \bullet FD6: {A} \rightarrow {D} // transitive rule with FD4 & FD5
- Having FD6 & FD3, applying the "pseudo-transitive" rule, we obtain FD7: $\{E,A\} \rightarrow \{F\}$, which is the same as the FD' that we are looking for.

2 Task 2

Considering the relation R(A,B,C,D,F) and the 3 following FDs:

FD1: {A} → {B,C}
FD2: {C} → {A,D}
FD3: {D,E} → {F}

```
function ComputeAttrClosure( X, F )
begin

X+ := X;
while F contains an FD Y → Z such that

(i) Y is a subset of X+, and
(ii) Z is not a subset of X+ do X+ := X+ U Z;
end while
return X+;
end
```

2.1 $X = \{A\}$

- 1. $X + = \{A\}$
- 2. According to FD1, A (subset of X+) determines B and C (and both are not subset of X+), thus $X+=\{A,B,C\}$
- 3. According to FD2, C (subset of X+) determines A and D (and D is not subset of X+), thus X+ = $\{A,B,C,D\}$
- 4. According to FD3, D and E determines F, where E is not a subset of X+ while D is, so we finish the applying the algorithm, as there is no more FDs to be taken into consideration.

The attributes of closure $\{A\}$ are $\{A,B,C,D\}$.

2.2 $X = \{C, E\}$

- 1. $X + = \{C, E\}$
- 2. According to FD1, A (not a subset of X+) determines B (is not subset of X+) and C (is subset of X+), thus $X+=\{C,E\}$
- 3. According to FD2, C (is subset of X+) determines A and D (both are not subset of X+), thus $X+=\{C,E,A,D\}$
- 4. According to FD3, D and E (both are subset of X+) determines F (not subset of X+), thus $X+=\{C,A,E,D,F\}$
- 5. Returning to the FDs not accepted at the beginning, in this case, only FD1, A (now is subset of X+) determines B (not subset of X+) and C (is subset of X+), thus $X+=\{C,A,E,D,F,B\}$
- 6. We finish the algorithm since there is no more FDs to be taken into consideration.

The attributes of closure of $\{C,E\}$ are $\{C,A,E,D,F,B\}$.

3 Task 3

Consider the relation schema R(A, B, C, D, E, F) with the following FDs

- FD1: $\{A,B\} \rightarrow \{C,D,E,F\}$
- FD2: $\{E\} \rightarrow \{F\}$
- FD3: $\{D\} \rightarrow \{B\}$

3.1 Candidate keys

- 1. Doing the attribute closure of AB (AB+), being {A,B,C,D,E,F}, determining all the attributes, then, **AB** is a candidate key.
- 2. Since A is the only attribute that appears to the left, then:
 - E+=E,F
 - E union A -> EA+ = A,E,F
 - D + = D.B
 - D union A -> DA+ (proceeding to compute algorithm)
 - -X+=D.A
 - According to FD3, D (subset of X+) determines b (not subset of X+), thus X+ = D,A,B
 - According to FD1, A and B (both are subset of X+) determines C (not subset), E (not subset), F (not subset), D (is subset), thus X+=D,A,B,C,E,F
 - According to FD2, E (is subset) determines F (subset), so X+ remains as it is.
 - So, attribute closure of {D,A} is {D,A,B,C,E,F}

Thus, we get that the candidate keys are $\{A,B\}$ and $\{A,D\}$

3.2 BCNF violation

Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD $X \rightarrow Y$ in F+ we have that X is a superkey.

Having the candidates keys ($\{A,B\}$ and $\{A,D\}$), then:

- FD1: A,B is superkey, so no violation is done
- FD2: E is not superkey, violation is done
- FD3 : D is not superkey, violation is done

3.3 Decomposition of R into a set of BCNF relations

```
function DecomposeBCNF( R, F)
          begin
2
3
               Result := R;
                   while there is a relation schema Ri in Result for which
                         the restriction of F+ to Ri contains a non-trivial
5
                         FD X \rightarrow Y that violates the BCNF condition
6
                       Decompose Ri into Ri1 and Ri2 as on the previous slide;
                       Replace Ri in Result by Ri1 and Ri2;
                   end while
10
               return Result;
11
12
          end
```

Since FD2 violates BNCF:

- R1(E,F) with FD2 and E being the candidate key \Rightarrow FD2 does not violate BNCF.
- R2(A,B,C,D,E) with FD1 & FD2 and {A,B} & {A,D} being candidate keys \Rightarrow FD3 violates BNCF whilst FD1 does not.
 - R1X(D,B) with FD3 and D is candidate key \Rightarrow FD3 does not violate BNCF.
 - R2X(A,C,D,E) with FD1 and $\{A,D\}$ is candidate key \Rightarrow FD1 does not violate BNCF.

Thus, $R = \{R1, R1X, R2X\}.$

4 Task 4

Consider the relation schema R(A, B, C, D, E) with the following FDs

• FD1: A,B,C \rightarrow D,E

• FD2: B,C,D \rightarrow A,E

• FD3: $C \rightarrow D$

4.1 BCNF violation

- $\{A,B,C\}^+ = \{A,B,C,D,E\} \Rightarrow \{A,B,C\}$ is candidate key \Rightarrow FD1 does not violate BNCF.
- $\{B,C,D\}^+ = \{A,B,C,D,E\} \Rightarrow \{A,B,C\}$ is candidate key \Rightarrow FD2 does not violate BNCF.
- $\{C\}^+ = \{C,D\} \Rightarrow \{C\}$ is not candidate key \Rightarrow FD3 does violate BNCF.

4.2 Decomposition of R into a set of BCNF relations

Since FD3 violates BNCF:

- R1(C,D) with FD3, candidate key {C} \Rightarrow FD3 does not violate BNCF.
- R2(A,B,C,E) with FD1 & FD2, candidate key $\{B,C\} \Rightarrow$
 - FD1 does not violate BNCF.
 - FD2 does not violate BNCF.