Step-1

4764-1.6-59P AID: 124

RID: 232 | 28/1/2012

Given that R is a rectangular m by n matrix and A is m by m symmetric matrix.

(a) We have to show that $R^T AR$ is symmetric and find the shape of the matrix.

Now

$$(R^T A R)^T = R^T A (R^T)^T$$
 (Since $(AB)^T = B^T A^T$)
= $R^T A R$ (Since $(R^T)^T = R$)

Since
$$(R^T A R)^T = R^T A R$$

So $R^T AR$ is symmetric.

Step-2

Now we have to fins the shape of the matrix.

The transpose of $R^T A R$ is $(R^T A R)^T = R^T A^T (R^T)^T = R^T A^T R = n$ by n order.

Since R is m by n

So R^T is n by m

Now R^T is n by m, A is m by m and A^T is m by m.

So R^T times A^T is of order n by m

And $R^T A^T$ times *R* is of order *n* by *n*.

Hence the shape of $R^T AR$ is n by n.

Step-3

(b) We have to show why $R^T R$ has no negative numbers on its diagonal.

We have

$$(R^T R)_{ij} = (column \ j \ of \ R).(column \ j \ of \ R)$$

$$= square \ of \ column \ j$$

In R^T and R diagonal elements becomes squares of column elements and squares are always positive.

Hence the numbers on the diagonal of $R^T R$ are not negative.