Importing modules

```
In [1]: import pandas as pd
   import matplotlib.pyplot as plt
   import numpy as np
   import seaborn as sns
```

Importing data

```
In [2]: ml_tr=pd.read_csv("ml_case_training_data.csv")
    ml_tr_hist=pd.read_csv("ml_case_training_hist_data.csv")
    ml_tr_out=pd.read_csv("ml_case_training_output.csv")
```

Examining transaction data

Exploratory data analysis

In [3]:	m.	l_tr.head()						
Out[3]:		id	activity_new c			camp	paign_disc_ele	
	0	48ada52261e7cf58715202705a0451c9	esoiiifxdlbko	csluxmfuacbdcko	ommixw		NaN	Imkebamo
	1	24011ae4ebbe3035111d65fa7c15bc57			NaN		NaN	foosdfp
	2	d29c2c54acc38ff3c0614d0a653813dd			NaN		NaN	
	3	764c75f661154dac3a6c254cd082ea7d			NaN		NaN	foosdfp
	4	bba03439a292a1e166f80264c16191cb			NaN		NaN	Imkebamo
	5 ro	ows × 32 columns						
	4							•
In [4]:	m.	l_tr_hist.head()						
Out[4]:		id	price_date	price_p1_var	price_p2	2_var	price_p3_var	price_p1_f
	0	038af19179925da21a25619c5a24b745	2015-01- 01	0.151367		0.0	0.0	44.2669
	1	038af19179925da21a25619c5a24b745	2015-02- 01	0.151367		0.0	0.0	44.2669
	2	038af19179925da21a25619c5a24b745	2015-03- 01	0.151367		0.0	0.0	44.2669
	3	038af19179925da21a25619c5a24b745	2015-04- 01	0.149626		0.0	0.0	44.2669
	4	038af19179925da21a25619c5a24b745	2015-05- 01	0.149626		0.0	0.0	44.2669
	4							>

Many inconsistancies. Needs work.

```
In [6]: ml_tr.loc[ml_tr.has_gas=='t',"has_gas"]=1
    ml_tr.loc[ml_tr.has_gas=='f',"has_gas"]=0

In [7]: ml_tr = ml_tr.fillna(ml_tr.mean())
    ml_tr=ml_tr.drop(columns=["campaign_disc_ele"])
```

dropping dulpicates

```
In [8]: ml_tr=ml_tr.drop_duplicates('id',keep='first')
```

Converting types

```
In [9]: ml_tr['date_renewal']= pd.to_datetime(ml_tr['date_renewal'])
    ml_tr['date_modif_prod']= pd.to_datetime(ml_tr['date_modif_prod'])
    ml_tr['date_first_activ']= pd.to_datetime(ml_tr['date_first_activ'])
    ml_tr['date_end']= pd.to_datetime(ml_tr['date_end'])
    ml_tr['date_activ']= pd.to_datetime(ml_tr['date_activ'])
```

```
In [10]:
         ml_tr_out.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 16096 entries, 0 to 16095
         Data columns (total 2 columns):
             Column Non-Null Count Dtype
                     _____
         0
             id
                     16096 non-null
                                    object
             churn
                     16096 non-null
                                    int64
         dtypes: int64(1), object(1)
         memory usage: 251.6+ KB
```

No data missing.

```
In [11]:
         ml_tr_hist.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 193002 entries, 0 to 193001
         Data columns (total 8 columns):
          #
              Column
                          Non-Null Count
                                            Dtype
         - - -
                           _____
          0
              id
                           193002 non-null
                                            object
                                            object
          1
              price date
                           193002 non-null
              price p1 var 191643 non-null
                                            float64
```

```
3 price_p2_var 191643 non-null float64
4 price_p3_var 191643 non-null float64
5 price_p1_fix 191643 non-null float64
6 price_p2_fix 191643 non-null float64
7 price_p3_fix 191643 non-null float64
dtypes: float64(6), object(2)
memory usage: 11.8+ MB
```

Data clearning needed.

```
ml_tr_hist=ml_tr_hist.dropna()
In [12]:
         ml_tr_hist.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 191643 entries, 0 to 193001
         Data columns (total 8 columns):
         # Column Non-Null Count
                                           Dtype
         0
            id
                          191643 non-null object
         1
             price_date 191643 non-null object
             price_p1_var 191643 non-null float64
             price_p2_var 191643 non-null float64
             price_p3_var 191643 non-null float64
             price_p1_fix 191643 non-null float64
             price_p2_fix 191643 non-null float64
             price_p3_fix 191643 non-null float64
         dtypes: float64(6), object(2)
         memory usage: 13.2+ MB
```

Feature Engineering

```
In [13]: ml_tr = pd.merge(left=ml_tr, right=ml_tr_out, how='left', left_on='id', right_on='id')
```

Sub-task 1: Think through what key drivers of churn could be for our client

correlation mattrix

In [14]:	ml_tr.corr()					
Out[14]:		cons_12m	cons_gas_12m	cons_last_month	forecast_base_bill_ele	forecast_l
	cons_12m	1.000000	0.471233	0.919545	0.071443	
	cons_gas_12m	0.471233	1.000000	0.447209	0.061064	
	cons_last_month	0.919545	0.447209	1.000000	0.066250	
	forecast_base_bill_ele	0.071443	0.061064	0.066250	1.000000	
	forecast_base_bill_year	0.071443	0.061064	0.066250	1.000000	
	forecast_bill_12m	0.080056	0.059547	0.065208	0.794776	
	forecast_cons	0.071527	0.054740	0.066546	0.964402	
	forecast_cons_12m	0.165168	0.059525	0.129574	0.344620	
	forecast_cons_year	0.139526	0.057619	0.151476	0.393361	

	cons_12m	cons_gas_12m	cons_last_month	forecast_base_bill_ele	forecast_l
forecast_discount_energy	-0.043551	-0.014407	-0.037699	0.005792	
forecast_meter_rent_12m	0.085996	0.040327	0.076066	0.214113	
forecast_price_energy_p1	-0.033425	-0.021608	-0.024195	-0.116035	
forecast_price_energy_p2	0.146229	0.075628	0.122922	0.165854	
forecast_price_pow_p1	-0.025326	-0.026212	-0.020017	0.062149	
has_gas	0.229761	0.372771	0.202702	0.046099	
imp_cons	0.139353	0.060609	0.153861	0.414904	
margin_gross_pow_ele	-0.065184	-0.016866	-0.054069	-0.044562	
margin_net_pow_ele	-0.045558	-0.008242	-0.037665	-0.027109	
nb_prod_act	0.308567	0.272005	0.350711	0.010411	
net_margin	0.119910	0.058928	0.096343	0.320016	
num_years_antig	0.008810	-0.008626	0.004860	0.008122	
pow_max	0.102422	0.052365	0.089565	0.291136	
churn	-0.051759	-0.040880	-0.046931	0.000242	

23 rows × 23 columns

```
In [15]: df=ml_tr.copy()
    f = plt.figure(figsize=(19, 15))
    plt.matshow(df.corr().abs(), fignum=f.number)
    plt.xticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']
    plt.yticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']
    cb = plt.colorbar()
    cb.ax.tick_params(labelsize=14)
    plt.title('Correlation Matrix', fontsize=16);
```


Selecting imporant features as having corr moire than 0.6

```
In [16]: corr = df.corr().abs()
    corr = corr.where(np.tril(np.ones(corr.shape)).astype(np.bool))
    kot = corr[corr>=.6]
    kot=kot[kot<1]

plt.figure(figsize=(12,8))
    sns.heatmap(kot, cmap="Greens")</pre>
```

Out[16]: <AxesSubplot:>


```
In [17]:
          data=kot.unstack().sort_values().drop_duplicates()
          print(data)
          forecast_meter_rent_12m
                                   pow_max
                                                                 0.600566
                                    forecast_price_energy_p2
                                                                 0.632863
          forecast_cons_12m
                                    imp_cons
                                                                 0.725550
                                                                 0.746076
                                   forecast_cons_year
                                                                 0.751430
         forecast_bill_12m
                                   forecast_cons
         margin_gross_pow_ele
                                   margin_net_pow_ele
                                                                 0.766521
         forecast_cons_12m
                                   net_margin
                                                                 0.768609
         forecast_base_bill_ele
                                   forecast_bill_12m
                                                                 0.794776
          cons_12m
                                   cons_last_month
                                                                 0.919545
          forecast base bill ele
                                                                 0.964402
                                    forecast cons
          forecast_cons_year
                                    imp cons
                                                                 0.981732
                                    cons_12m
          cons 12m
                                                                      NaN
          dtype: float64
```

List of usable features: ['forecast_meter_rent_12m', 'pow_max', 'forecast_price_en ergy_p2', 'forecast_cons_12m', 'imp_cons', 'forecast_cons_year', 'forecast_bill_12 m', 'forecast_cons', 'margin_gross_pow_ele', 'margin_net_pow_ele', 'net_margin', 'forecast_base_bill_ele', 'cons_12m', 'cons_last_month', 'churn']

Sub-task 2: Build the features in order to get ready to model

```
ml_trX=ml_tr[names]
In [47]:
In [48]:
                ml_trX.head()
Out[48]:
                   forecast_meter_rent_12m pow_max forecast_price_energy_p2 forecast_cons_12m imp_cons forec
               0
                                          359.29
                                                        180.000
                                                                                        0.088347
                                                                                                                  26520.30
                                                                                                                                    831.8
               1
                                             1.78
                                                         43.648
                                                                                        0.098142
                                                                                                                       0.00
                                                                                                                                       0.0
               2
                                            16.27
                                                         13.800
                                                                                        0.000000
                                                                                                                     189.95
                                                                                                                                       0.0
                                                                                                                                       0.0
               3
                                            38.72
                                                         13.856
                                                                                        0.087899
                                                                                                                      47.96
               4
                                            19.83
                                                         13.200
                                                                                        0.000000
                                                                                                                     240.04
                                                                                                                                       0.0
In [49]:
                df=ml_trX.copy()
                f = plt.figure(figsize=(19, 15))
                plt.matshow(df.corr().abs(), fignum=f.number)
                plt.xticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number']
plt.yticks(range(df.select_dtypes(['number']).shape[1]), df.select_dtypes(['number'])
                cb = plt.colorbar()
                cb.ax.tick_params(labelsize=14)
                plt.title('Correlation Matrix', fontsize=16);
                                                                            Correlation Matrix
                                      orecast meter rent 12m
                                                   orecast_price_energy_p2
                                                                                                             orecast_base_bill_ele
                                                                                                nargin net pow ele
                                                         orecast_cons_12m
                                                                             orecast_bill_12m
                                                                                                                          cons_last_month
                                                                mp cons
                                                                                                                                                1.0
              forecast_meter_rent_12m
                           pow_max
              forecast_price_energy_p2
                                                                                                                                                0.8
                   forecast cons 12m
                           imp cons
                    forecast_cons_year
                                                                                                                                                0.6
                     forecast_bill_12m
                        forecast_cons
                 margin_gross_pow_ele
                                                                                                                                                0.4
                  margin_net_pow_ele
                          net margin
                 forecast_base_bill_ele
                           cons_12m
                      cons_last_month
                              churn
```

Modeling

```
ml_tr['churn']
In [50]:
           0
                      0
Out[50]:
           1
                      1
           2
                      0
           3
                      0
           4
                      0
           16091
                      0
           16092
                      1
           16093
                      1
           16094
                      0
           16095
                      0
           Name: churn, Length: 16096, dtype: int64
            churn=ml_tr['churn']
In [51]:
            ml tr.shape
           (16096, 32)
Out[51]:
In [56]:
            import pycaret
            from pycaret.classification import setup
            from pycaret.classification import compare_models
            from pycaret.classification import tune_model
            grid = setup(data=ml_trX, target="churn", html=False, silent=True, verbose=False)
            # evaluate models and compare models
            best = compare_models()
            # report the best model
            print(best)
                          Model
                                              AUC
                                                    Recall
                                                             Prec.
                                                                            Kappa
                                                                                     MCC TT (Sec)
                                 Accuracy
                                                                        F1
           Ir Logistic Regression
                                    0.8971
                                            0.5409
                                                    0.0044
                                                            0.0983
                                                                   0.0085
                                                                            0.0005
                                                                                   0.0007
                                                                                              0.103
                              Model Accuracy
                                                  AUC
                                                        Recall
                                                                  Prec.
                                                                            F1
                                                                                Kappa
                                                                                          MCC TT (Sec)
             lr
                                                        0.0044
                                                                0.0983
                                                                        0.0085
                                                                                0.0005
                                                                                        0.0007
                                                                                                   0.103
                   Logistic Regression
                                         0.8971
                                                0.5409
           knn
                 K Neighbors Classifier
                                         0.8971
                                                0.5638
                                                        0.0757
                                                                0.4091
                                                                        0.1273
                                                                                0.0996
                                                                                        0.1412
                                                                                                   0.042
                              Model
                                      Accuracy
                                                  AUC
                                                         Recall
                                                                  Prec.
                                                                            F1
                                                                                Kappa
                                                                                          MCC
                                                                                               TT (Sec)
             lr
                   Logistic Regression
                                                0.5409
                                                        0.0044
                                                                0.0983
                                                                        0.0085
                                                                                0.0005
                                                                                        0.0007
                                                                                                   0.103
                                         0.8971
           knn
                 K Neighbors Classifier
                                         0.8971
                                                0.5638
                                                        0.0757
                                                                0.4091
                                                                        0.1273
                                                                                0.0996
                                                                                                   0.042
            nb
                          Naive Bayes
                                         0.8572 0.6023
                                                        0.0927
                                                                0.1508
                                                                        0.1141
                                                                                0.0415
                                                                                        0.0432
                                                                                                   0.018
                               Model
                                       Accuracy
                                                   AUC
                                                          Recall
                                                                  Prec.
                                                                             F1
                                                                                 Kappa
                                                                                           MCC TT (Sec)
             lr
                    Logistic Regression
                                         0.8971
                                                 0.5409
                                                         0.0044
                                                                 0.0983
                                                                         0.0085
                                                                                 0.0005
                                                                                         0.0007
                                                                                                    0.103
                                                         0.0757
                                                                                 0.0996
                                                                                                    0.042
           knn
                  K Neighbors Classifier
                                          0.8971
                                                 0.5638
                                                                 0.4091
                                                                         0.1273
                                                                                         0.1412
            nb
                          Naive Bayes
                                         0.8572
                                                 0.6023
                                                         0.0927
                                                                 0.1508
                                                                         0.1141
                                                                                 0.0415
                                                                                         0.0432
                                                                                                    0.018
             dt
                 Decision Tree Classifier
                                          0.8254
                                                 0.5427
                                                         0.1898
                                                                 0.1670
                                                                         0.1774
                                                                                 0.0803
                                                                                         0.0806
                                                                                                    0.057
                               Model
                                       Accuracy
                                                   AUC
                                                          Recall
                                                                   Prec.
                                                                             F1
                                                                                 Kappa
                                                                                           MCC
                                                                                                TT (Sec)
              lr
                    Logistic Regression
                                          0.8971
                                                 0.5409
                                                         0.0044
                                                                 0.0983
                                                                         0.0085
                                                                                 0.0005
                                                                                         0.0007
                                                                                                    0.103
                                                                                                    0.042
           knn
                  K Neighbors Classifier
                                          0.8971  0.5638  0.0757  0.4091  0.1273  0.0996  0.1412
```

	Model A	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
svm	SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
nb	Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
dt	Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057
	Model	Accurac	y AUG	C Reca	II Pre	c. F1	Карра	МСС	TT (Sec)
ridge	Ridge Classifier	0.900	3 0.0000	0.000	9 0.100	0.0018	3 0.0012	0.0070	0.019
lr	Logistic Regression	0.897	1 0.5409	9 0.004	4 0.098	3 0.0085	0.0005	0.0007	0.103
knn	K Neighbors Classifier	0.897	1 0.5638	3 0.075	7 0.409	1 0.1273	0.0996	0.1412	0.042
svm	SVM - Linear Kernel	0.884	2 0.0000	0.026	8 0.171	4 0.0355	0.0087	0.0190	0.020
nb	Naive Bayes	0.857	2 0.6023	3 0.092	7 0.150	8 0.1141	0.0415	0.0432	0.018
dt	Decision Tree Classifier	0.825	4 0.542	7 0.189	8 0.167	0 0.1774	0.0803	0.0806	0.057
	Model	Accura	acy A	UC Red	all Pı	ec.	F1 Карр	a MC	C TT (Sec)
rf	Random Forest Classifier	0.90	015 0.65	69 0.04	127 0.58	371 0.07	93 0.066	64 0.137	3 0.597
ridge	Ridge Classifier	0.90	0.00	0.00	009 0.10	00.00	18 0.001	2 0.007	0.019
lr	Logistic Regression	0.89	971 0.54	0.00	0.09	983 0.00	85 0.000	0.000	0.103
knn	K Neighbors Classifier	0.89	971 0.56	38 0.07	757 0.40	0.12	73 0.099	0.141	2 0.042
svm	SVM - Linear Kernel	0.88	342 0.00	00 0.02	268 0.1	714 0.03	55 0.008	37 0.019	0.020
nb	Naive Bayes	0.8	572 0.60	23 0.09	0.1!	508 0.11	41 0.041	5 0.043	2 0.018
dt	Decision Tree Classifier	0.82	254 0.54	27 0.18	398 0.16	570 0.17	74 0.080	0.080	0.057
	Mc	odel Ac	curacy	AUC	Recall	Prec.	F1 K	арра	MCC .
								••	(Sec)
rf									1373 0.597
ridge Ir	Ridge Class								.0070 0.019 .0007 0.103
	Logistic Regress K Neighbors Class								.0007 0.103
knn	SVM - Linear Ke								.0190 0.020
	Quadratic Discrimir	nant							
qda	Anal		0.8630	0.5595	0.0767	0.1571 ().0994 0.	.0354 0.	.0396 0.022
nb	Naive Ba	ayes	0.8572	0.6023	0.0927	0.1508 (0.1141 0.	.0415 0.	0432 0.018
dt	Decision Tree Class	ifier	0.8254	0.5427	0.1898	0.1670 (0.1774 0.	.0803 0.	0806 0.057
	Ma	odel Ac	curacy	AUC	Recall	Prec.	F1 K	арра	MCC TI
									(Sec)
rf									1373 0.597
ridge	Ridge Class								0070 0.019
ada	Ada Boost Class								0306 0.189
lr	Logistic Regres	sion	0.8971	0.5409	0.0044	0.0983 (0.0085 0.	.0005 0.	.0007 0.103

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
knn	K Neighbors Classifier	0.8971	0.5638	0.0757	0.4091	0.1273	0.0996	0.1412	0.042
svm	SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
qda	Quadratic Discriminant Analysis	0.8630	0.5595	0.0767	0.1571	0.0994	0.0354	0.0396	0.022
nb	Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
dt	Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057
	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
rf	Random Forest Classifier	0.9015	0.6569	0.0427	0.5871	0.0793	0.0664	0.1373	0.597
ridge	Ridge Classifier	0.9003	0.0000	0.0009	0.1000	0.0018	0.0012	0.0070	0.019
ada	Ada Boost Classifier	0.8998	0.6532	0.0053	0.3367	0.0104	0.0072	0.0306	0.189
gbc	Gradient Boosting Classifier	0.8996	0.6715	0.0134	0.3342	0.0255	0.0191	0.0511	0.718
lr	Logistic Regression	0.8971	0.5409	0.0044	0.0983	0.0085	0.0005	0.0007	0.103
knn	K Neighbors Classifier	0.8971	0.5638	0.0757	0.4091	0.1273	0.0996	0.1412	0.042
svm	SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
qda	Quadratic Discriminant Analysis	0.8630	0.5595	0.0767	0.1571	0.0994	0.0354	0.0396	0.022
nb	Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
dt	Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057
	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT
									(Sec)
rf	Random Forest Classifier	0.9015	0.6569	0.0427	0.5871	0.0793	0.0664	0.1373	0.597
ridge	Ridge Classifier	0.9003	0.0000	0.0009	0.1000	0.0018	0.0012	0.0070	0.019
lda	Linear Discriminant Analysis	0.8999	0.6125	0.0071	0.2750	0.0139	0.0101	0.0341	0.015
ada	Ada Boost Classifier	0.8998	0.6532	0.0053	0.3367	0.0104	0.0072	0.0306	0.189
gbc	Gradient Boosting Classifier	0.8996	0.6715	0.0134	0.3342	0.0255	0.0191	0.0511	0.718
lr	Logistic Regression	0.8971	0.5409	0.0044	0.0983	0.0085	0.0005	0.0007	0.103
knn	K Neighbors Classifier	0.8971	0.5638	0.0757	0.4091	0.1273	0.0996	0.1412	0.042
svm	SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
qda	Quadratic Discriminant Analysis	0.8630	0.5595	0.0767	0.1571	0.0994	0.0354	0.0396	0.022
nb	Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
dt	Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057
	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
rf	Random Forest Classifier	0.9015	0.6569	0.0427	0.5871	0.0793	0.0664	0.1373	0.597

		Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
ridge		Ridge Classifier	0.9003	0.0000	0.0009	0.1000	0.0018	0.0012	0.0070	0.019
lda	Lin	ear Discriminant Analysis	0.8999	0.6125	0.0071	0.2750	0.0139	0.0101	0.0341	0.015
ada		Ada Boost Classifier	0.8998	0.6532	0.0053	0.3367	0.0104	0.0072	0.0306	0.189
gbc	Gr	adient Boosting Classifier	0.8996	0.6715	0.0134	0.3342	0.0255	0.0191	0.0511	0.718
et		Extra Trees Classifier	0.8996	0.6466	0.0713	0.4751	0.1235	0.1002	0.1537	0.320
lr		Logistic Regression	0.8971	0.5409	0.0044	0.0983	0.0085	0.0005	0.0007	0.103
knn		K Neighbors Classifier	0.8971	0.5638	0.0757	0.4091	0.1273	0.0996	0.1412	0.042
svm		SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
qda		Quadratic Discriminant Analysis	0.8630	0.5595	0.0767	0.1571	0.0994	0.0354	0.0396	0.022
nb		Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
dt		Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057
		Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT
										(Sec)
	rf	Random Forest Classifier	0.9015	0.6569	0.0427	0.5871	0.0793	0.0664	0.1373	0.597
lightgb	bm	Light Gradient Boosting Machine	0.9009	0.6659	0.0428	0.5326	0.0784	0.0647	0.1277	0.111
rid	lge	Ridge Classifier	0.9003	0.0000	0.0009	0.1000	0.0018	0.0012	0.0070	0.019
ı	lda	Linear Discriminant Analysis	0.8999	0.6125	0.0071	0.2750	0.0139	0.0101	0.0341	0.015
а	da	Ada Boost Classifier	0.8998	0.6532	0.0053	0.3367	0.0104	0.0072	0.0306	0.189
g	jbc	Gradient Boosting Classifier	0.8996	0.6715	0.0134	0.3342	0.0255	0.0191	0.0511	0.718
	et	Extra Trees Classifier	0.8996	0.6466	0.0713	0.4751	0.1235	0.1002	0.1537	0.320
	lr	Logistic Regression	0.8971	0.5409	0.0044	0.0983	0.0085	0.0005	0.0007	0.103
k	nn	K Neighbors Classifier	0.8971	0.5638	0.0757	0.4091	0.1273	0.0996	0.1412	0.042
SI	vm	SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
q	da	Quadratic Discriminant Analysis	0.8630	0.5595	0.0767	0.1571	0.0994	0.0354	0.0396	0.022
	nb	Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
	dt	Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057
		Madal	A 661182614	AUC	Dogoll	Dros	E1	Vanna	MCC	TT
		Model	Accuracy	AUC	Recall	Prec.	F1	Карра	IVICC	(Sec)
	rf	Random Forest Classifier	0.9015	0.6569	0.0427	0.5871	0.0793	0.0664	0.1373	0.597
lightgk	bm	Light Gradient Boosting Machine	0.9009	0.6659	0.0428	0.5326	0.0784	0.0647	0.1277	0.111
rid	lge	Ridge Classifier	0.9003	0.0000	0.0009	0.1000	0.0018	0.0012	0.0070	0.019

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
lda	Linear Discriminant Analysis	0.8999	0.6125	0.0071	0.2750	0.0139	0.0101	0.0341	0.015
ada	Ada Boost Classifier	0.8998	0.6532	0.0053	0.3367	0.0104	0.0072	0.0306	0.189
gbo	Gradient Boosting Classifier	0.8996	0.6715	0.0134	0.3342	0.0255	0.0191	0.0511	0.718
e	t Extra Trees Classifier	0.8996	0.6466	0.0713	0.4751	0.1235	0.1002	0.1537	0.320
I	r Logistic Regression	0.8971	0.5409	0.0044	0.0983	0.0085	0.0005	0.0007	0.103
knr	K Neighbors Classifier	0.8971	0.5638	0.0757	0.4091	0.1273	0.0996	0.1412	0.042
svn	SVM - Linear Kernel	0.8842	0.0000	0.0268	0.1714	0.0355	0.0087	0.0190	0.020
qda	Quadratic Discriminant Analysis	0.8630	0.5595	0.0767	0.1571	0.0994	0.0354	0.0396	0.022
nk	Naive Bayes	0.8572	0.6023	0.0927	0.1508	0.1141	0.0415	0.0432	0.018
ď	t Decision Tree Classifier	0.8254	0.5427	0.1898	0.1670	0.1774	0.0803	0.0806	0.057

best model >> Light Gradient Boosting Machine

Accuracy >> 90%

In []:	
In []:	