

Description

The VSM210N04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 40V$, $I_{D} = 210A$ $R_{DS(ON)} < 2.5 m\Omega$ @ $V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM210N04-T3	VSM210N04	TO-263	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	40	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	210	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	148	Α	
Pulsed Drain Current	I _{DM}	840	Α	
Maximum Power Dissipation	P _D	310	W	
Derating factor		2.07	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	1800	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	℃	

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	Rejc	0.48	°C/W
---	------	------	------

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0 V I_D =250 μ A	40		-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V	-	-	1	μA	

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	1.8	2.5	mΩ
Forward Transconductance	g FS	V _{DS} =24V,I _D =40A	160	-	-	S
Dynamic Characteristics (Note4)	1					
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V, F=1.0MHz	-	7952	-	PF
Output Capacitance	Coss		-	1865	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz	-	936	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	VDD=30V,ID=2A,RL=15Ω, RG=2.5Ω,VGS=10V	-	25	-	nS
Turn-on Rise Time	t _r		-	75	-	nS
Turn-Off Delay Time	t _{d(off)}		-	80	-	nS
Turn-Off Fall Time	t _f		-	60	-	nS
Total Gate Charge	Qg		-	141.3	-	nC
Gate-Source Charge	Q_{gs}	ID=30A,VDD=30V,VGS=10V	-	37.1	-	nC
Gate-Drain Charge	Q_{gd}		-	61.4	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =40A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	210	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 40A	-	47		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	76		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=20V,V_G=10V,L=1mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration (sec)

Figure 11 Normalized Maximum Transient Thermal Impedance