

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА — Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ)
Кафедра инструментального и прикладного программного обеспечения
(ИиППО)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ

по дисциплине «Технологии передачи данных»

Лабораторная работа № 5

Студент группы	ИВБО-07-21, Стока Иван Павлович			
_		(подпись)		
Преподаватель	Рог	ов И.Е.		
		(подпись)		
Отчет представлен	«»2023 г.			

СОДЕРЖАНИЕ

ХОД РАБОТЫ	3
Задача 1. Разработка и внедрение схемы адресации, разделенн	ой на подсети
IPv4-сети с одинаковыми масками подсетей	3
Задача 2. Разработка и внедрение схемы адресации VLSM	9
ЗАКЛЮЧЕНИЕ	11
СПИСОК ИСТОЧНИКОВ	12

ХОД РАБОТЫ

Задача 1. Разработка и внедрение схемы адресации, разделенной на подсети IPv4-сети с одинаковыми масками подсетей

Существует следующая схема адресации, представленная на Рисунке 1. разработать Нужно схему разделения на подсети. Выполнить топологии eNSP прототипирование программном обеспечении В интерфейсам соответствующим назначением адресов И выполнить тестирование доступности узлов.

Рисунок 1 – Топология сети

Необходимо создать несколько подсетей по индивидуальному варианту 192.168.21.0/24. При этом на РС-А необходимо выделить 25 IP-адресов, на РС-В 10 IP-адресов, также учитываются 2 loopback интерфейса. Разделим сеть на подсети (Таблица 1).

Таблица *1 – Вопросы для разработки схемы разделения на подсети*

Вопрос	Ответ на вопрос
Сколько узлов содержится в самой	25
крупной подсети?	
Каково необходимое количество подсетей?	6
Чтобы разделить сеть на подсети, биты из	Представлен в Таблице 2.
узловой части исходной маски сети	
заменяются битами подсети. Количество	
бит подсетей определяет количество	
подсетей. Если каждая из возможных	
масок подсети представлена в указанном	
префиксном формате, сколько подсетей и	
сколько узлов будет создано в каждом	
примере (Таблица 2)?	

Продолжение Таблицы 1

Какие маски подсети соответствуют	25 – 27
минимальному необходимому количеству	
адресов узлов на основе Таблицы 2?	
Какие маски подсети соответствуют	27-30
минимальному необходимому количеству	
подсетей на основе Таблицы 2?	
Какая маска подсети соответствует	255.255.255.224 / 27
минимальному необходимому количеству	
как узлов, так и подсетей?	

Таблица 2 – Определение количества бит на кодирование номеров подсети

Маска в Десятичное представление префиксном формате		Количество подсетей	Количество узлов в каждой подсети
/25	255.255.255.128	2	126
/26	255.255.255.192	4	62
/27	255.255.255.224	8	30
/28	255.255.255.240	16	14
/29	255.255.255.248	32	6
/30	255.255.255.252	64	2

После чего происходит формирование новой маски. Далее требуется определить адресацию подсетей (Таблица 3).

Таблица 3 – Определение адресации подсетей

Номе	Адрес	Префи	Маска	Первый	Последний	Широковещатель
p	подсети	кс	подсети	узловой	узловой	ный адрес
подсе		подсет		адрес	адрес	
ТИ		И				
0	192.168.21.	27	255.255.255.	192.168.21.	192.168.21.	192.168.21.31
	0		224	1	30	
1	192.168.21.	27	255.255.255.	192.168.21.	192.168.21.	192.168.21.63
	32		224	33	62	
2	192.168.21.	27	255.255.255.	192.168.21.	192.168.21.	192.168.21.95
	64		224	65	94	
3	192.168.21.	27	255.255.255.	192.168.21.	192.168.21.	192.168.21.127
	96		224	97	126	
4	192.168.21.	27	255.255.255.	192.168.21.	192.168.21.	192.168.21.159
	128		224	129	158	
5	192.168.21.	27	255.255.255.	192.168.21.	192.168.21.	192.168.21.191
	160		224	161	190	

В конце необходимо применить данную адресацию к топологии (Таблица 4).

Таблица 4 – Схема адресации топологии

Устройство	Интерфейс	ІР-адрес	Маска подсети	Шлюз по умолчанию
R1_Stoka	G0/0	192.168.21.1	255.255.255.224	-
	G0/1	192.168.21.33	255.255.255.224	-

	Loopback 0	192.168.21.65	255.255.255.224	-
	Loopback 1	192.168.21.97	255.255.255.224	-
PC-A	NIC	192.168.21.34	255.255.255.224	192.168.21.33
PC-B	NIC	192.168.21.2	255.255.255.224	192.168.21.1

По данной топологии создается прототип в программном обеспечении eNSP (Рисунок 2).

Рисунок 2 – Топология сети

Далее представлены конфигурации коммутатора и маршрутизатора (Листинг 1 - 2).

Листинг 1 – конфигурация Маршрутизатора

```
sysname R1 Stoka
aaa
authentication-scheme default
 authorization-scheme default
 accounting-scheme default
domain default
domain default admin
local-user admin password cipher OOCM4m($F4ajUn1vMEIBNUw#
local-user admin service-type http
firewall zone Local
priority 16
interface Ethernet0/0/0
 ip address 192.168.21.1 255.255.255.224
interface Ethernet0/0/1
 ip address 192.168.21.33 255.255.255.224
interface Serial0/0/0
link-protocol ppp
interface Serial0/0/1
 link-protocol ppp
```

Продолжение Листинга 1

```
interface Serial0/0/2
 link-protocol ppp
interface Serial0/0/3
link-protocol ppp
interface GigabitEthernet0/0/0
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
wlan
interface NULL0
interface LoopBack0
ip address 192.168.21.65 255.255.254
interface LoopBack1
ip address 192.168.21.97 255.255.255.224
user-interface con 0
user-interface vty 0 4
user-interface vty 16 20
return
```

Листинг 2 – Конфигурация коммутатора

```
sysname S1 Stoka
cluster enable
ntdp enable
ndp enable
drop illegal-mac alarm
diffserv domain default
drop-profile default
aaa
authentication-scheme default
authorization-scheme default
 accounting-scheme default
 domain default
domain default admin
local-user admin password simple admin
local-user admin service-type http
interface Vlanif1
```

Продолжение Листинга 2

```
interface MEth0/0/1
interface GigabitEthernet0/0/1
interface GigabitEthernet0/0/2
interface GigabitEthernet0/0/3
interface GigabitEthernet0/0/4
interface GigabitEthernet0/0/5
interface GigabitEthernet0/0/6
interface GigabitEthernet0/0/7
interface GigabitEthernet0/0/8
interface GigabitEthernet0/0/9
interface GigabitEthernet0/0/10
interface GigabitEthernet0/0/11
interface GigabitEthernet0/0/12
interface GigabitEthernet0/0/13
interface GigabitEthernet0/0/14
interface GigabitEthernet0/0/15
interface GigabitEthernet0/0/16
interface GigabitEthernet0/0/17
interface GigabitEthernet0/0/18
interface GigabitEthernet0/0/19
interface GigabitEthernet0/0/20
interface GigabitEthernet0/0/21
interface GigabitEthernet0/0/22
interface GigabitEthernet0/0/23
interface GigabitEthernet0/0/24
interface NULL0
user-interface con 0
user-interface vty 0 4
return
```

Протестируем получившуюся топологию с помощью эхо запросов: с компьютера PC-A до его шлюза по умолчанию, до интерфейса loopback 0 и до PC-B (Рисунок 3).

```
PC>ping 192.168.21.2
Ping 192.168.21.2: 32 data bytes, Press Ctrl_C to break From 192.168.21.2: bytes=32 seq=1 ttl=127 time=78 ms
From 192.168.21.2: bytes=32 seq=2 ttl=127 time=63 ms
From 192.168.21.2: bytes=32 seq=3 ttl=127 time=94 ms
From 192.168.21.2: bytes=32 seq=4 ttl=127 time=78 ms
From 192.168.21.2: bytes=32 seq=5 ttl=127 time=63 ms
 -- 192.168.21.2 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
  round-trip min/avg/max = 63/75/94 ms
PC>ping 192.168.21.65
Ping 192.168.21.65: 32 data bytes, Press Ctrl_C to break From 192.168.21.65: bytes=32 seq=1 ttl=255 time=47 ms
From 192.168.21.65: bytes=32 seq=2 ttl=255 time=46 ms
From 192.168.21.65: bytes=32 seq=3 ttl=255 time=47 ms
From 192.168.21.65: bytes=32 seq=4 ttl=255 time=47 ms
From 192.168.21.65: bytes=32 seq=5 ttl=255 time=62 ms
 -- 192.168.21.65 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
  round-trip min/avg/max = 46/49/62 ms
PC>ping 192.168.21.97
Ping 192.168.21.97: 32 data bytes, Press Ctrl_C to break
From 192.168.21.97: bytes=32 seq=1 ttl=255 time=47 ms
From 192.168.21.97: bytes=32 seq=2 ttl=255 time=47 ms
From 192.168.21.97: bytes=32 seq=3 ttl=255 time=47 ms
From 192.168.21.97: bytes=32 seq=4 ttl=255 time=47 ms
From 192.168.21.97: bytes=32 seq=5 ttl=255 time=63 ms
 -- 192.168.21.97 ping statistics ---
 5 packet(s) transmitted
5 packet(s) received
  0.00% packet loss
```

Рисунок 3 – Проверка работоспособности

Задача 2. Разработка и внедрение схемы адресации VLSM

Существует следующая схема адресации, представленная на Рисунке 4. Нужно разработать схему разделения на подсети с использованием масок переменной длины.

Рисунок 4 – Топология сети

В этом сценарии студент выступает в роли сетевого администратора, работающего в небольшом филиале крупной компании. Необходимо создать несколько подсетей в адресном пространстве сети 192.168.21.0/24 в соответствии со следующей топологией с использованием VLSM (масок переменной длины). Для подсети, содержащей компьютер А предполагается подключение еще 3 узлов, а также в каждой сети с конечными узлами нужен 1 адрес для удаленного управления коммутатором.

Требуется ответить на следующие вопросы, представленные в Таблице 5, для разработки схемы разделения на подсети.

Таблица 5 – Вопросы для разделения на подсети

Вопрос	Ответ на вопрос
Сколько адресов узлов доступны в сети	254
/24?	
Сколько всего адресов требует диаграмма	22
топологии с дополнительными	
требованиями?	
Сколько IP-адресов требуется для самой	9
большой подсети?	
Какая маска подсети может поддерживать	255.255.255.224
такое количество адресов узла?	
Сколько всего адресов узла может	32
поддерживать эта маска подсети?	

Продолжение Таблицы 5

_	F	
	Можно ли разделить текущий сетевой	Да
	адрес на подсети для поддержания этой	
	подсети?	

Далее требуется определить все подсети и представить результат в Таблице 6.

Таблица 6 – Определение адресации подсетей

	1 dostudu o onpedentine dopedadin nodeemen						
Описани	Количеств	Сетевой	Адрес	Адрес	Широковещательн		
e	о узлов	адрес/маска	первого	последнего	ый адрес		
подсети		подсети	узла	узла			
R_A, S-	7	192.168.21.0	192.168.21.1	192.168.21.7	192.168.21.15		
A, PC-A,		/ 28					
PC - B							
R_C,	3	192.168.21.1	192.168.21.1	192.168.21.1	192.168.21.23		
S_B,		6 / 29	7	9			
PC_C							
R_A,	2	192.168.21.2	192.168.21.2	192.168.21.2	192.168.21.27		
R_B		4/30	5	6			
R_B,	2	192.168.21.2	192.168.21.2	192.168.21.3	192.168.21.31		
R_C		8 / 30	9	0			

Требуется описать таблицу адресации и описать в Таблице 7.

Таблииа 7 – Схема адресации

Тиолица / – Схема аоресации						
Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по		
				умолчанию		
PC-A (4	192.168.21.1	192.168.21.2 -	255.255.255.240	192.168.21.7		
компьютера)		192.168.21.5				
PC-B	192.168.21.1	192.168.21.6	255.255.255.240	192.168.21.7		
S-A	192.168.21.1	192.168.21.7	255.255.255.240	192.168.21.1		
PC-C	192.168.21.7	192.168.21.8	255.255.255.248	192.168.21.9		
S-B	192.168.21.7	192.168.21.9	255.255.255.248	192.168.21.7		
$R_A \rightarrow R_B$	192.168.21.25	192.168.21.25	255.255.255.252	192.168.21.26		
$R_B \rightarrow R_A$	192.168.21.26	192.168.21.26	255.255.255.252	192.168.21.25		
$R_B \rightarrow R_C$	192.168.21.29	192.168.21.29	255.255.255.252	192.168.21.30		
$R_C \rightarrow R_B$	192.168.21.30	192.168.21.30	255.255.255.252	192.168.21.29		

ЗАКЛЮЧЕНИЕ

В данной практической работе быль разработанѕ топологии сети, также были использованы маски переменной длинны для более компактного выделения IP-адресов.

СПИСОК ИСТОЧНИКОВ

1. Олифер В.Г., Олифер В.А. Компьютерной сети. — 2-е изд. — Санкт-Петербург: Питер, 2021.-1008 с.