Exercises: Judson 10.1abe, 10.5, 10.10, 10.11, 10.13acd, and Problem 6 below.

Due date: Wednesday, 11/05

- 10.1 For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group G/H.
 - (a) $G = S_4$ and $H = A_4$
 - (b) $G = A_5$ and $H = \{(1), (123), (132)\}$
 - (e) $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$

Solution:

(a) The subgroup $H = A_4$ has index $[S_4 : A_4] = 2$. Therefore, by Exercise 10.10 (below), A_4 is normal in S_4 . The elements of the factor group, that is, the cosets of A_4 in S_4 , are $\{A_4, gA_4\}$, where g is any element of S_4 that is not contained in A_4 . For example, g = (23) works.

Recall that, for a normal subgroup $N \triangleleft G$, coset multiplication is defined by $g_1 N * g_2 N = (g_1 \cdot g_2)N$, where $g_1 \cdot g_2$ is the product in G. So one acceptable representation of the Cayley table of S_4/A_4 is

$$\begin{array}{c|ccccc}
* & A_4 & (23)A_4 \\
\hline
A_4 & A_4 & (23)A_4 \\
(23)A_4 & (23)A_4 & A_4
\end{array}$$

An acceptable alternative is

or any other table involving two cosets g_0A_4 and g_1A_4 , where $g_0 \in A_4$, so $g_0A_4 = A_4$ is the identity element, and $g \in S_4 - A_4$, so $g_1A_4 \neq A_4$ is the nonidentity element. Note that $(123) \in A_4$ since it can be written as (123) = (13)(12), which is a product of an *even* number of transpositions. Therefore, $(123)A_4 = A_4$. For this reason, we could have use $(123)A_4$ to represent the identity element of the factor group. Of course, we cannot use $(123)A_4$ as the nonidentity element, so the following table would be incorrect:

(b) The subgroup $H = \{(1), (123), (132)\}$ is not normal in $G = A_5$, as we will show using a standard way to prove a subgroup H is not normal in G:

find elements $g \in G$ and $h \in H$ such that $ghg^{-1} \notin H$.

In the present example, if we let $g = (234) \in A_5$ and $h = (123) \in H$, then

$$ghg^{-1} = (234)(123)(243) = (234)(124) = (134) \notin H.$$

(e) Certainly $H = 5\mathbb{Z}$ is normal in $G = \mathbb{Z}$, since G is abelian (so every subgroup of G is normal). The elements of the factor group are the cosets of $5\mathbb{Z}$ in \mathbb{Z} , and the Cayley table can be presented as follows:

It is also acceptable to use the shorthand [k] or (k) for the coset of $5\mathbb{Z}$ containing k, in which case, the Cayley table could be presented as follows:

which looks an awful lot like the group of integers with addition modulo 5 that we encountered earlier, and called \mathbb{Z}_5 . In fact, the group \mathbb{Z}_5 , whose universe is the set of integers $\{0, 1, 2, 3, 4\}$ and whose binary operation is addition modulo 5 is isomorphic to the group $\mathbb{Z}/5\mathbb{Z}$. While the elements of $\mathbb{Z}/5\mathbb{Z}$ are infinite sets of integers, the elements of \mathbb{Z}_5 are just the five integers $\{0, 1, 2, 3, 4\}$. Apart from this distinction, the group structure is the same in each case, as we can see from the Cayley tables.

10.5. Show that the intersection of two normal subgroups is a normal subgroup.

Solution: Let H and K be normal subgroups of a group G. We have proved in the past that the intersection $N = H \cap K$ of two subgroups is a subgroup. We will now prove that N is normal using

a standard way to prove a subgroup N is normal in G:

Pick arbitrary elements $g \in G$ and $n \in N$ and show that $gng^{-1} \in N$.

Fix $g \in G$ and $n \in N = H \cap K$. Since $n \in H$ and $H \triangleleft G$, we have $gng^{-1} \in H$. Since $n \in K$ and $K \triangleleft G$, we have $gng^{-1} \in K$. Therefore, $gng^{-1} \in H \cap K = N$.

10.10. Let H be a subgroup of index 2 of a group G. Prove that H must be a normal subgroup of G. Conclude that S_n is not simple for $n \geq 3$.

Solution: We will show that [G:H]=2 implies $H \triangleleft G$ using

another standard way to prove a subgroup H is normal in G:

Pick an arbitrary element $g \in G$ and show that gH = Hg.

If [G:H]=2, then there are two left cosets of H in G. Fix $g \in G$. If $g \in H$, then gH=Hg and there is nothing to prove. Assume $g \notin H$. Then the two left cosets of H in G, are H and gH. Recall that a full set of left cosets partitions the group as a disjoint union $G=H\cup gH$. Similarly, the two right cosets of H in G must be H and Hg, and again we have a partition of G as a into disjoint union of sets $G=H\cup Hg$. It follows that gH=G-H=Hg.

10.11. If a group G has exactly one subgroup H of order k, prove that H is normal in G.

Solution: We will solve this using

another standard way to prove a subgroup H is normal in G:

Pick an arbitrary element $g \in G$ and show that $gHg^{-1} = H$.

First, given a subgroup $H \leq G$, and an arbitrary element $g \in G$, it is not hard to see that the *conjugate of* H *by* g, which is defined by

$$gHg^{-1} := \{ghg^{-1} | h \in H\},$$

is also a subgroup of G. Moreover, the function $h \mapsto ghg^{-1}$ is a bijection.¹ Therefore, $|H| = |gHg^{-1}|$. If |H| = k and if H is the only subgroup of G of order k, then, since $|gHg^{-1}| = k$, we must have $H = gHg^{-1}$. Since g was arbitrary, this proves that H is normal in G.

10.13. Recall that the **center** of a group G is the set

$$Z(G) = \{x \in G : xg = gx \text{ for all } g \in G \ \}.$$

- (a) Calculate the center of S_3 .
- (c) Show that the center of any group G is a normal subgroup of G.
- (d) If G/Z(G) is cyclic, show that G is abelian.²

Solution:

 $^{^1\}mathrm{In}$ fact, as we will see later, $x\mapsto gxg^{-1}$ is an automorphism.

²Hint: Let Z := Z(G). If G/Z is cyclic then there exists $x \in G$ such that for each $a \in G$ there exists $m \in \mathbb{N}$ such that $aZ = x^m Z$. Fix $a, b \in G$ and show ab = ba using the fact that $aZ = x^m Z$ and $bZ = x^n Z$ for some m and n.

Problem 6. Let $\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$ be a finite group of order n. Take the set G (the elements of \mathbf{G}) and consider the group of all permutations of these elements. This group is sometimes denoted by $\mathrm{Sym}(G)$; note that it is isomorphic to the symmetric group S_n of permutations of an n-element set. Now fix an element $a \in G$ and recall that the function $\lambda_a : G \to G$, defined by $\lambda_a(g) = a \cdot g$, is a permutation of the set G. That is, λ_a belongs to the permutation group $\mathrm{Sym}(G)$.

- (a) Prove that the function $\lambda: G \to \operatorname{Sym}(G)$ is a group homomorphism.
- (b) What is the kernel of λ ?³
- (c) Let N denote the equivalence class of ker λ that contains the identity element e of G. Prove that N is a normal subgroup of G.

$$\ker f = \{(x_1, x_2) : f(x_1) = f(x_2)\}.$$

As you have already proved, the kernel is an equivalence relation on X.

³Recall that the kernel of a function $f: X \to Y$ is the subset of $X \times X$ defined by