Московский государственный университет

Кафедра суперкомпьютеров и квантовой информатики

Отчет по третьему практическому заданию.

Плужников Иван, 323

Задание

Реализовать параллельную программу на C++ с использованием MPI, которая выполняет квантовое преобразование n-Адамар с зашумленными вентилями над вектором состояний длины 2n, где n-количество кубитов.

Описание алгоритма

Преобразование п-Адамар—это преобразование Адамара, выполненное последовательно празнад вектором состояний, при этом кубит, по которому проводится преобразование изменяется от 1 до п.

Для зашумления вентилей реализовать следующую модель. Зашумленный вентиль Адамара Не определяется следующими формулами:

```
\square=(i\sqrt{2} \ 1\sqrt{2}) (1\sqrt{2} \ -1\sqrt{2}), \ \square=\square\square(\square), \ \square(\square)=(\cos\square \sin\square) (-\sin\square \cos\square), \ \square=\square\square, \ \square\sim\square(0,1), \ где е-это уровень шума. Код преобразования случайной величины с равномерным распределением к нормальному распределению: double normal_dis_gen() { double S = 0.; for (int i = 0; i<12; ++i) { S += (double)rand()/RAND_MAX; } return S-6.; }
```

В качестве мерыточности выбратьвероятность совпадения F(Fidelity) между |С ideal> идеальным и зашумленным |С noise> векторами состояний. Эта величина может быть вычисленакак квадрат модуля скалярного произведения соответствующих векторов. В качестве меры потери точности использовать1- F.

Результаты измерений

Количество кубитов 25	Количество вычислительных узлов 2 4 8 16	Время работы программы(сек) 5.81739 6.16936 4.74573 3.27756
	32 64 128	2.00993 1.20929 0.731339

Графики распределенияпотерьточности 1-F при фиксированной точности е=0.01 для количества кубитов 24, 25, 26,27,28.

Среднее значение потерь точности:

Количество кубитов	среднее значение потерь точности
24	1.129999999999982e-7
25	1.3068333333333347e-8
26	9.78138383333333e-9
27	1.2800000000000000e-8
28	6.52999999999996e-9

К-во кубитов

График распределения
потерьточности 1-Fпри фиксированном количестве кубитов n=26 и различных значениях точности:
e=0.1,e=0.01, e=0.001.

e	Среднее значение потерь точности
0.1	9.781403833333332e-9
0.01	9.78138383333333e-9
0.001	9.781277833333325e-9

Выводы

- 1) При большем е среднее значение потерь точности увеличивается.
- 2) К-во кубитов на среднее значение потерь точности не влияет или слабо влияет.
- 3) При увеличении числа узлов время выполнения программы в большинстве своем падает, хотя есть участки, где выигрыш от распараллеливания меньше, чем потери от обменов.