PRELIMINARY REMARKS

Claims 6 to 8 and 11 to 23 as set forth in Appendix II of this paper are now pending in this case. Claims 1 to 5, 9 and 10 have been canceled, Claims 6 to 8 have been amended, and Claims 11 to 23 have been added as indicated in Appendix I of this paper.

Accordingly, Claims 6 to 8 have been rewritten in independent form, introducing the features originally incorporated by reference to a previous claim based on the corresponding definitions found in Claim 1 as allowed in the parent application. Additionally, new Claims 11 to 23 have been added to further bring out the subsidiary embodiments of the subject matter defined in Claims 6 to 8 which correspond to the embodiments of Claims 2 to 5 of the parent application. Subject matter which overlaps with the claims allowed in the parent case has been canceled. No new matter has been added.

The specification has been amended to include a proper reference to the parent application.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11.0345. Please credit any excess fees to such deposit account.

Respectfully submitted,

Keil & Weinkauf

Herbert B. Keil

Reg. No. 18,967

1350 Connecticut Ave, N.W. Washington, D.C. 20036 (202) 659-0100

Encl.: THE SUBSTITUTE SECTION(S) OF THE SPECIFICATION (Appendix I)

THE CHANGE(S) IN THE SPECIFICATION (Appendix II)

THE LISTING OF CLAIMS (Appendix III)

THE AMENDED CLAIMS (Appendix IV)

HBK/BAS

APPENDIX I:

THE SUBSTITUTE SECTION(S) OF THE SPECIFICATION (clean version):

On page 1:

• After the title and prior to the first paragraph, ie. at indicated line 3, insert the following new paragraph:

This is a Divisional application of Application Serial No. 09/879,283, filed on June 12, 2001 (allowed), which claims the benefit under 35 U.S.C. 119(e) of U.S. provisional applications 60/211,262, filed June 13, 2000, and 60/231,632, filed September 11, 2000.

APPENDIX II:

THE CHANGE(S) IN THE SPECIFICATION (version with markings):

On page 1:

• After the title and prior to the first paragraph, ie. at indicated line 3, the following new paragraph has been added:

This is a Divisional application of Application Serial No. 09/879,283, filed on June 12, 2001 (allowed), which claims the benefit under 35 U.S.C. 119(e) of U.S. provisional applications 60/211,262, filed June 13, 2000, and 60/231,632, filed September 11, 2000.

APPENDIX III:

THE LISTING OF CLAIMS (version with markings, showing the changes made):

- 1. (canceled)
- 2. (canceled)
- 3. (canceled)
- 4. (canceled)
- 5. (canceled)
- 6. (currently amended) A process for the preparation of [pyrimidines] a pyrimidine of formula I [according to claim 1]

$$\begin{array}{c|c}
X & R^1 \\
\hline
 & R^2 \\
R^4 & N & R^3 \\
\hline
 & CN &
\end{array}$$
(I)

in which

- R¹ represents C_1-C_{10} -alkyl, C_1-C_{10} -haloalkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, C_4-C_8 -alkadienyl, C_1-C_{10} -alkoxy, C_3-C_8 -cycloal-kyl, phenyl, tri- C_1-C_6 -alkyl-silyl, formyl or C_1-C_{10} -alkoxy-carbonyl, wherein R¹ groups are unsubstituted or substituted by one to three groups R^a;
 - Ra is halogen, nitro, cyano, hydroxy, or
 - is C_1-C_{10} -alkyl, C_3-C_6 -cycloalkyl, C_3-C_6 -cycloalkenyl, C_1-C_{10} -haloalkyl, C_3-C_6 -halocycloalkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -haloalkoxy, C_1-C_{10} -alkoxycarbonyl, $tri-C_1-C_4$ -alkyl-silyl, phenyl, halo- or dihalophenyl;
- R² represents phenyl or C₃-C₆-cycloalkyl, which are unsubstituted or substituted by one to three groups R^a;
- R³ represents hydrogen, halogen, or

 is C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, C₁-C₁₀-alkylthio, C₁-C₁₀-alkylamino or di-C₁-C₁₀-alkylamino, which are unsubstituted or substituted by one to three groups R^a;
- R^4 represents C_1-C_{10} -alkyl, C_2-C_6 -alkenyl or C_2-C_6 -alkynyl, which are unsubstituted or substituted by one to three groups R^a ; and

- X represents O, S, NR⁵ or a single bond, wherein R⁵ represents hydrogen, C1-C10-alkyl or C1-C10-haloalkyl; or
- R1 and R5 together with the interjacent nitrogen atom form a heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, tetrahydropyridine and azepane, which ring is optionally substituted by one or more C1-C10-alkyl groups,

[wherein R4 is optionally substituted alkyl, alkenyl or alkynyl by] which process comprises treating [compounds] a compound of [the] formula II

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{R}^{3}

 $[in which R^1 through R^3 and X are as defined in formula I_f]$ with a base and an alkylation agent of formula III

in which [R4 is C1-C6-alkyl, C1-C6-alkenyl or C1-C6-alkynyl; which are unsubstituted or substituted by one to three groups Ra, and] Y represents [lacuna] a halogen atom.

7. (currently amended) A process for the preparation of [pyrimidines] a pyrimidine of formula I [according to claim 1]

$$\begin{array}{c|c}
R^1 \\
R^2 \\
R^4 \\
N \\
R^3
\end{array}$$
(I)

in which

 R^1 represents $C_1-C_{10}-alkyl$, $C_1-C_{10}-haloalkyl$, $C_2-C_6-alkenyl$, $C_2-C_6-alkynyl$, $C_4-C_8-alkadienyl$, $C_1-C_{10}-alkoxy$, $C_3-C_8-cycloal$ kyl, phenyl, tri-C₁-C₆-alkyl-silyl, formyl or C₁-C₁₀-alkoxycarbonyl, wherein R1 groups are unsubstituted or substituted by one to three groups Ra;

Ra is halogen, nitro, cyano, hydroxy, or

is C₁-C₁₀-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, $C_1-C_{10}-haloalkyl$, $C_3-C_6-halocycloalkyl$, $C_1-C_{10}-alkoxy$, $C_1-C_{10}-haloalkoxy$, $C_1-C_{10}-alkoxycarbonyl$, $tri-C_1-C_4-alkyl$ silyl, phenyl, halo- or dihalophenyl;

R² represents phenyl or C₃-C₆-cycloalkyl, which are unsubstituted or substituted by one to three groups Ra;

- R³ represents hydrogen, halogen, or
 - is C_1-C_{10} -alkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -alkylthio, C_1-C_{10} -alkylamino or $di-C_1-C_{10}$ -alkylamino, which are unsubstituted or substituted by one to three groups R^a ;
- R^4 represents C_1-C_{10} -alkyl, C_2-C_6 -alkenyl or C_2-C_6 -alkynyl, which are unsubstituted or substituted by one to three groups R^a ; and
- X represents O, S, NR⁵ or a single bond, wherein R⁵ represents hydrogen, C₁-C₁₀-alkyl or C₁-C₁₀-haloalkyl; or
- R¹ and R⁵ together with the interjacent nitrogen atom form a heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, tetrahydropyridine and azepane, which ring is optionally substituted by one or more C₁-C₁₀-alkyl groups,

[wherein R^4 C_1 - C_6 -alkyl, C_1 - C_6 -alkenyl or C_1 - C_6 -alkynyl; which are unsubstituted or substituted by one to three groups R^a by] which process comprises reacting [sulfones] a sulfone of formula VI

$$R^6$$
 R^6
 R^3
 R^3

in which [R1 through R3 and X are as defined in formula I and] R^6 is C_1-C_6 -alkyl or C_1-C_6 -haloalkyl; with an alkylated [eyanamides] cyanamide of formula VII

[in which R^4 is C_1 - C_6 -alkyl, C_1 - C_6 -alkenyl or C_1 - C_6 -alkynyl which are unsubstituted or substituted by one to three groups R^a ;] wherein [sulfones] the sulfone of formula VI [are] is obtained by reacting a 2-thiopyrimidine [derivatives] compound of formula VIII

$$R^{6}$$
 N R^{3} N N R^{3}

[in which the variables are as defined in formula VI;] with an oxidizing [agents] agent.

8. (currently amended) [Compounds] A compound of [formulae] formula VI [and] or VIII [as defined in claim 7.]

$$R^{6}$$
 O_{2}
 O_{2}
 O_{2}
 O_{3}
 O_{4}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{6}
 O_{7}
 O_{8}
 O_{8

wherein

R¹ represents C_1 - C_{10} -alkyl, C_1 - C_{10} -haloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_4 - C_8 -alkadienyl, C_1 - C_{10} -alkoxy, C_3 - C_8 -cycloal-kyl, phenyl, or

5- or 6-membered heteroaryl or 5- or 6-membered heterocyclyl consisting of carbon ring members and heteroatoms as ring members, and containing as heteroatoms one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or

 $tri-C_1-C_6-alkyl-silyl$, formyl or $C_1-C_{10}-alkoxycarbonyl$; wherein R^1 groups are unsubstituted or substituted by one to three groups R^a

Ra halogen, nitro, cyano, hydroxy or

C₁-C₁₀-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₁-C₁₀-haloalkyl, C₃-C₆-halocycloalkyl, C₁-C₁₀-alkoxy, C₁-C₁₀-haloalkoxy, C₁-C₁₀-alkoxycarbonyl, tri-C₁-C₄-alkylsilyl, phenyl, halo- or dihalophenyl or 5- or 6-membered heteroaryl consisting of carbon ring members and heteroatoms as ring members, and containing as heteroatoms one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom;

- R² represents phenyl which is unsubstituted or substituted by two or three groups R^a;
- R³ represents chlorine;
- X represents NR^5 , wherein R^5 represents hydrogen or C_1-C_{10} -alkyl or C_1-C_{10} -haloalkyl; or

R¹ and R⁵ together with the interjacent nitrogen atom form a heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, tetrahydropyridine and azepane, which ring is optionally substituted by one or more C₁-C₁₀-alkyl groups; and

R6 represents C₁-C₆-alkyl or C₁-C₆-haloalkyl.

9. (canceled)

- 10. (canceled)
- 11. (new) The compound of formula VI or VIII defined in claim 8, in which R² represents a phenyl group of formula

wherein L1 through L4 each independently represent hydrogen, fluorine, chlorine or methoxy.

12. (new) The compound of formula VI defined in claim 8 which is represented by formula

in which L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

13. (new) The compound of formula VIII defined in claim 8 which is represented by formula

$$R^6$$
—S— N — R^5 L1 L2 L3

in which L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 14. (new) The compound of formula VI or VIII defined in claim 8 in which R³ represents chlorine.
- 15. (new) The compound of formula VI or VIII defined in claim 8 in which R^4 represents C_1 - C_6 -alkyl or benzyl.
- 16. (new) The process of claim 7, in which R^2 of formulae I, VI and VIII represents a phenyl group of formula

wherein L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 17. (new) The process of claim 7, in which X of formulae I, VI and VIII represents NR^5 .
- 18. (new) The process of claim 7, in which R^3 of formulae I, VI and VIII represents chlorine.
- 19. (new) The process of claim 7, in which R^4 of formulae I and VII represents C_1-C_6 -alkyl or benzyl.
- 20. (new) The process of claim 6, in which ${\bf R}^2$ of formulae I and II represents a phenyl group of formula

wherein L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 21. (new) The process of claim 6, in which X of formulae I and II represents NR^5 .
- 22. (new) The process of claim 6, in which ${\bf R}^3$ of formulae I and II represents chlorine.
- 23. (new) The process of claim 6, in which R^4 of formulae I and III represents $C_1-C_6-alkyl$ or benzyl.

APPENDIX IV:

THE AMENDED CLAIMS (clean version of all claims):

6. (currently amended) A process for the preparation of a pyrimidine of formula I

$$\begin{array}{c|c}
 & R^1 \\
 & R^2 \\
 & R^4 \\
 & R^3 \\
 & CN
\end{array}$$
(1)

in which

R¹ represents C_1-C_{10} -alkyl, C_1-C_{10} -haloalkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, C_4-C_8 -alkadienyl, C_1-C_{10} -alkoxy, C_3-C_8 -cycloalkyl, phenyl, tri- C_1-C_6 -alkyl-silyl, formyl or C_1-C_{10} -alkoxy-carbonyl, wherein R¹ groups are unsubstituted or substituted by one to three groups R^a;

Ra is halogen, nitro, cyano, hydroxy, or

is C_1-C_{10} -alkyl, C_3-C_6 -cycloalkyl, C_3-C_6 -cycloalkenyl, C_1-C_{10} -haloalkyl, C_3-C_6 -halocycloalkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -haloalkoxy, C_1-C_{10} -alkoxycarbonyl, $tri-C_1-C_4$ -alkylsilyl, phenyl, halo- or dihalophenyl;

- R^2 represents phenyl or C_3 - C_6 -cycloalkyl, which are unsubstituted or substituted by one to three groups R^a ;
- R³ represents hydrogen, halogen, or is C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkylthio, C_1 - C_{10} -alkylamino or di- C_1 - C_{10} -alkylamino, which are unsubstituted or substituted by one to three groups R^a ;
- R^4 represents C_1-C_{10} -alkyl, C_2-C_6 -alkenyl or C_2-C_6 -alkynyl, which are unsubstituted or substituted by one to three groups R^a ;
- X represents O, S, NR⁵ or a single bond, wherein R⁵ represents hydrogen, C_1-C_{10} -alkyl or C_1-C_{10} -haloalkyl; or
- R^1 and R^5 together with the interjacent nitrogen atom form a heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, tetrahydropyridine and azepane, which ring is optionally substituted by one or more C_1 - C_{10} -alkyl groups,

which process comprises treating a compound of formula II

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}

with a base and an alkylation agent of formula III

R⁴-Y

in which Y represents a halogen atom.

7. (currently amended) A process for the preparation of a pyrimidine of formula I

$$\begin{array}{c|c}
R^{4} & R^{2} \\
R^{4} & R^{3}
\end{array}$$
(I)

in which

represents $C_1-C_{10}-alkyl$, $C_1-C_{10}-haloalkyl$, $C_2-C_6-alkenyl$, $C_2-C_6-alkynyl$, $C_4-C_8-alkadienyl$, $C_1-C_{10}-alkoxy$, $C_3-C_8-cycloalkyl$, phenyl, $tri-C_1-C_6-alkyl-silyl$, formyl or $C_1-C_{10}-alkoxy-carbonyl$, wherein R^1 groups are unsubstituted or substituted by one to three groups R^a ;

Ra is halogen, nitro, cyano, hydroxy, or

is C_1-C_{10} -alkyl, C_3-C_6 -cycloalkyl, C_3-C_6 -cycloalkenyl, C_1-C_{10} -haloalkyl, C_3-C_6 -halocycloalkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -haloalkoxy, C_1-C_{10} -alkoxycarbonyl, $tri-C_1-C_4$ -alkylsilyl, phenyl, halo- or dihalophenyl;

- R^2 represents phenyl or C_3 - C_6 -cycloalkyl, which are unsubstituted or substituted by one to three groups R^a ;
- R^3 represents hydrogen, halogen, or is C_1-C_{10} -alkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -alkylthio, C_1-C_{10} -alkylamino or di- C_1-C_{10} -alkylamino, which are unsubstituted or substituted by one to three groups R^a ;
- R^4 represents C_1-C_{10} -alkyl, C_2-C_6 -alkenyl or C_2-C_6 -alkynyl, which are unsubstituted or substituted by one to three groups R^a ; and
- X represents O, S, NR 5 or a single bond, wherein R 5 represents hydrogen, C_1-C_{10} -alkyl or C_1-C_{10} -haloalkyl; or
- ${\tt R^1}$ and ${\tt R^5}$ together with the interjacent nitrogen atom form a heterocyclic ring selected from the group consisting of pyrroli-

dine, piperidine, tetrahydropyridine and azepane, which ring is optionally substituted by one or more C_1-C_{10} -alkyl groups, which process comprises reacting a sulfone of formula VI

$$R^6$$
 S
 O_2
 R^1
 R^2
 O_2
 O_3

in which \mbox{R}^6 is $\mbox{C}_1\mbox{-}\mbox{C}_6\mbox{-}\mbox{alkyl}$ or $\mbox{C}_1\mbox{-}\mbox{C}_6\mbox{-}\mbox{haloalkyl};$ with an alkylated cyanamide of formula VII

wherein the sulfone of formula VI is obtained by reacting a 2-thiopyrimidine compound of formula VIII

$$R^{1}$$
 R^{2}
 R^{6}
 R^{3}

with an oxidizing agent.

8. (currently amended) A compound of formula VI or VIII

wherein

R¹ represents C_1-C_{10} -alkyl, C_1-C_{10} -haloalkyl, C_2-C_6 -alkenyl, C_2-C_6 -alkynyl, C_4-C_8 -alkadienyl, C_1-C_{10} -alkoxy, C_3-C_8 -cycloalkyl, phenyl, or

5- or 6-membered heteroaryl or 5- or 6-membered heterocyclyl consisting of carbon ring members and heteroatoms as ring members, and containing as heteroatoms one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or

tri-C₁-C₆-alkyl-silyl, formyl or C₁-C₁₀-alkoxycarbonyl;

wherein R^1 groups are unsubstituted or substituted by one to three groups R^{a}

Ra halogen, nitro, cyano, hydroxy or

 C_1-C_{10} -alkyl, C_3-C_6 -cycloalkyl, C_3-C_6 -cycloalkenyl, C_1-C_{10} -haloalkyl, C_3-C_6 -halocycloalkyl, C_1-C_{10} -alkoxy, C_1-C_{10} -haloalkoxy, C_1-C_{10} -alkoxycarbonyl, $tri-C_1-C_4$ -alkylsilyl, phenyl, halo- or dihalophenyl or 5- or 6-membered heteroaryl consisting of carbon ring members and heteroatoms as ring members, and containing as heteroatoms one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom;

- \mathbb{R}^2 represents phenyl which is unsubstituted or substituted by two or three groups Ra;
- \mathbb{R}^3 represents chlorine;
- represents NR^5 , wherein R^5 represents hydrogen or C_1 - C_{10} -alkyl Х or C₁-C₁₀-haloalkyl; or

 R^1 and R^5 together with the interjacent nitrogen atom form a heterocyclic ring selected from the group consisting of pyrrolidine, piperidine, tetrahydropyridine and azepane, which ring is optionally substituted by one or more C_1 - C_{10} -alkyl groups; and

- represents C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl.
- 11. (new) The compound of formula VI or VIII defined in claim 8, in which R2 represents a phenyl group of formula

wherein L1 through L4 each independently represent hydrogen, fluorine, chlorine or methoxy.

12. (new) The compound of formula VI defined in claim 8 which is represented by formula

in which L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 14 -

13. (new) The compound of formula VIII defined in claim 8 which is represented by formula

$$R^{6}$$
 S N R^{3} L^{4} L^{2}

in which L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 14. (new) The compound of formula VI or VIII defined in claim 8 in which ${\bf R}^3$ represents chlorine.
- 15. (new) The compound of formula VI or VIII defined in claim 8 in which \mathbb{R}^4 represents C_1-C_6 -alkyl or benzyl.
- 16. (new) The process of claim 7, in which R^2 of formulae I, VI and VIII represents a phenyl group of formula

wherein L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 17. (new) The process of claim 7, in which X of formulae I, VI and VIII represents NR^5 .
- 18. (new) The process of claim 7, in which \mathbb{R}^3 of formulae I, VI and VIII represents chlorine.
- 19. (new) The process of claim 7, in which \mathbb{R}^4 of formulae I and VII represents C_1 - C_6 -alkyl or benzyl.
- 20. (new) The process of claim 6, in which ${\bf R}^2$ of formulae I and II represents a phenyl group of formula

wherein L^1 through L^4 each independently represent hydrogen, fluorine, chlorine or methoxy.

- 21. (new) The process of claim 6, in which X of formulae I and II represents NR^5 .
- 22. (new) The process of claim 6, in which \mathbb{R}^3 of formulae I and II represents chlorine.
- 23. (new) The process of claim 6, in which R^4 of formulae I and III represents C_1 - C_6 -alkyl or benzyl.