III. 2200m/sec CROSS SECTIONS FOR NATURALLY OCCURRING ELEMENTS [From Reactor Physics Constants, ANL-5800 (1963)].

	Element	Atomic		Nuclei per Unit	-		Microscopic Cross Section, b			Macroscopic Cross Section, cm ⁻¹		
Atomic No.	or Compound	Mol. Wt.	Density, g/cm ³	Vol. ×10 ⁻²⁴	$1-\overline{\mu}_0$	ξ	σ _a	σ,	σ_{t}	Σ	Σ_{s}	· Σ,
ı	Н	1.008	8.9 [†]	5.3 [†]	0.3386	1.000	0.33	38	38	1.7 [†]	0.002	0.00
	H ₂ O	18.016	1 .	0.0335‡	0.676	0.948	0.66	103	103	0.022	3.45	3.45
	D_2^2O	20.030	1.10	0.0331‡	0.884	0.570	0.001	13.6	13.6	3.3†	0.449	0.44
2	He	4.003	17.8 [†]	2.6 [†]	0.8334	0.425	0.007	0.8	0.807	0.02†	2.1†	2.1†
3	Li	6.940	0.534	0.0463	0.9047	0.268	71	1.4	72.4	3.29	0.065	3.35
4	Be	9.013	1.85	0.1236	0.9259	0.209	0.010	7.0	7.01	124‡	0.865	0.86
	BeO	25.02	3.025	0.0728‡	0.939	0.173	0.010	6.8	6.8	73 [†]	0.501	0.50
5	В	10.82	2.45	0.1364	0.9394	0.171	755	4	759	103	0.346	104
6	С	12.011	1.60	0.0803	0.9444	0.158	0.004	4.8	4.80	32 [†]	0.385	0.38
7	N	14.008	0.0013	5.3 [†]	0.9524	0.136	1.88	10	11.9	9.9†	50 [†]	60
8	О	16.000	0.0014	5.3 [†]	0.9583	0.120	20 [†]	4.2	4.2	0.000	21†	21
9	F	19.00	0.0017	5.3 [†]	0.9649	0.102	0.001	3.9	3.90	0.01†	20 [†]	20
10	Ne	20.183	0.0009	2.6 [†]	0.9667	0.0968	< 2.8	2.4	5.2	7.3 [†]	6.2 [†]	13.5
11	Na	22.991	0.971	0.0254	0.9710	0.0845	0.525	4	4.53	0.013	0.102	0.1
12	Mg	24.32	1.74	0.0431	0.9722	0.0811	0.069	3.6	3.67	0.003	0.155	0.15
13	Al	26.98	2.699	0.0602	0.9754	0.0723	0.241	1.4	1.64	0.015	0.084	0.09
14	Si	28.09	2.42	0.0522	0.9762	0.0698	0.16	1.7	1.86	0.008	0.089	0.0
15	P	30.975	1.82	0.0354	0.9785	0.0632	0.20	5	5.20	0.007	0.177	0.18
16	S	32.066	2.07	0.0389	0.9792	0.0612	0.52	1.1	1.62	0.020	0.043	0.0
17	Cl	35.457	0.0032	5.3 [†]	0.9810	0.0561		16	49.8	0.002	80 [†]	0.0
18	A	39.944	0.0018	2.6 [†]	0.9833	0.0492	0.66	1.5	2.16	1.7†	3.9	5.6
19	K	39.100	0.87	0.0134	0.9829	0.0504	2.07	1.5	3.57	0.028	0.020	0.0
20	Ca	40.08	1.55	0.0233	0.9833	0.0492	0.44	3.0	3.44	0.010	0.070	
21 22	Sc Ti	44.96 47.90	2.5 4.5	0.0335 0.0566	0.9852 0.9861	0.0438	24 5.8	24 4	48 9.8	0.804 0.328	0.804	0.55

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Yt Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Se E E E E E E E E E E E E E E E E E E	50.95 52.01 54.94 55.85 58.94 58.71 63.54 65.38 69.72 72.60 74.91 78.96 79.916 83.80 85.48 87.63 88.92 91.22 92.91 95.95 98.0 101.1 102.91 106.4 107.88 112.41 114.82 118.70 121.76 127.61 126.91 131.30 132.91 137.36	7.1 7.2 7.86 8.9 8.90 8.94 7.14 5.91 5.36 5.73 4.8 3.12 0.0037 1.53 2.54 5.51 6.4 8.4 10.2 12.2 12.5 12.16 10.5 8.65 7.28 6.5 6.69 6.24 4.93 0.0059 1.873	0.082: 0.0727 0.0732 0.0586 0.09103 0.0445 0.0461 0.0366 0.0235 2.6† 0.0108 0.0175 0.0373 0.0423 0.0545 0.0640 — 0.0727 0.0732 0.0689 0.0586 0.0464 0.0382 0.0330 0.0331 0.0295 0.0234 2.7† 0.0085	2 0.96 2 0.98 9 0.98 9 0.98 1 0.98 1 0.98 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 2 0.99 2 0.99 2 0.99 2 0.99 2 0.99 2 0.99 3 0.99 3 0.99 3 0.99 3 0.99 4 0.99 5 0.99 6 0.99 6 0.99 6 0.99 7 0.99 7 0.99 8 0.99	172 0.00 178 0.00 178 0.00 181 0.00 187 0.00 187 0.00 187 0.00 187 0.00 19 0.00 19 0.00 19 0.00 10 0.0	359 13.2 353 2.62 335 38 35 4.6 09 3.85 04 1.10 33 2.80 71 2.45 4 4.3 11 12.3 7 6.7 6 31 3 0.73 6 1.21 1 1.313	2.1 17.17.13.6.4 4.3 6.6 111 6.6 7.2 12 10 4.3 8.5 7.6 5.5 3.6 6.7 2.2 4.4 4.3 5.5 3.6 14.3 3.20	7 45 5 22.1 11.05 6 4.70 6.80 5.45 10.3 23.3 12.7 38.2 12.7 11.2 4.3 8.2 6.16 9.70 	0.25 1.04 0.22 3.46 0.420 0.032 0.072 0.143 0.109 0.198 0.450 0.157 81† 0.008 0.021 0.049 0.008 0.063 0.173 0.186 10.9 0.551 3.69 114 7.30 0.021 0.189 0.139 0.164 95† 0.238 0	0.248 0.382 0.436 0.436 0.436 0.277 0.403 0.141 19† 0.130 0.175 0.112 0.338 0.273 0.448 0.273 0.448 0.273 0.448 0.273 0.448 0.273 0.448 0.273 0.448 0.366 0.248 0.352 0.325 0.084 0.132 0.142 0.132 0.142 0.130 0.141	7 0.501 1 1.22 3 1.15 7 4.10 2.02 0.937 0.309
--	--	--	---	--	--	--	--	--	---	--	--	---

Z	Element	Ā	ρ	N	$1 - \vec{\mu}_0$	ξ	$\sigma_{\mathbf{z}}$	$\sigma_{\rm s}$	$\sigma_{\rm t}$	$\Sigma_{\mathbf{a}}$	Σ_{s}	$\Sigma_{\rm t}$
57	La	138.92	6.19	0.0268	0.9952	0.0143	8.9	15	24	0.239	0.403	0.642
58	Ce	140.13	6.78	0.0292	0.9952	0.0142	0.73	9	9.7	0.021	0.263	0.283
59	Pr	140.92	6.78	0.0290	0.9953	0.0141	11.3	4	15.3	0.328	0.116	0.444
60	Nd	144.27	6.95	0.0290	0.9954	0.0138	46	16	62	1.33	0.464	1.79
61	Pm	145.0			0.9954	0.0137	60					
62	Sm	150.35	7.7	0.0309	0.9956	0.0133	5600	5	5605	173	0.155	173
	Sm_2O_3	348.70	7.43	0.0128 [‡]	0.974	0.076	16,500	22.6	16,500	211	0.289	211
63	Eu	152.0	5.22	0.0207	0.9956	0.0131	4300	8	4308	89.0	0.166	89.2
	Eu ₂ O ₃	352.00	7.42	0.0127 [‡]	0.978	0.063	8740	30.2	8770	111	0.383	111
64	Gď	167.26	7.95	0.0305	0.9958	0.0127				1403	_	_
65	Tb	158.93	8.33	0.0316	0.9958	0.0125	46			1.45	_	
66	Dy	162.51	8.56	0.0317	0.9959	0.0122	950	100	1050	30.1	3.17	33.3
	Dy_2O_3	372.92	7.81	0.0126 [‡]	0.993	0.019	2200	214	2414	27.7	2.7	30.4
67	Ho	164.94	8.76	0.0320	0.9960	0.0121	65	_		2.08		
68	Er	167.27	9.16	0.0330	0.9960	0.0119	173	15	188	5.71	0.495	6.20
69	Tm	168.94	9.35	0.0333	0.9961	0.0118	127	7	134	4.23	0.233	4.46
70	Yb	173.04	7.01	0.0244	0.9961	0.0115	37	12	49	0.903	0.293	1.20
71	Lu	174.99	9.74	0.0335	0.9962	0.0114	112	_	_	3.75	0.275	1.20
72	Hſ	174.55	13.3	0.0333	0.9963	0.0114	105	8	113	3.75 4.71	0.0359	5.07
73	Ta	180.95	16.6	0.0553	0.9963	0.0112	21	5	26	1.16	0.0339	1.44
74	w	183.86	19.3	0.0632	0.9964	0.0110	19.2	5	24.2	1.21	0.316	1.53
75	Re	186.22	20.53	0.0664	0.9964	0.0107	86	14	100	5.71	0.930	6.64
76	OS	190.2	22.48	0.0712	0.9965	0.0105	15.3	11	26.3	1.09	0.783	1.87
77	Ir	192.2	22.42	0.0703	0.9965	0.0104	440			30.9		
78	Pt	195.09	21.37	0.0660	0.9966	0.0102	8.8	10	18.8	0.581	0.660	1.24
79	Au	197.0	19.32	0.0591	0.9966	0.0101	98.8	9.3	107.3	5.79	0.550	6.34
80	Hg	200.61	13.55	0.0407	0.9967	0.0099	380	20	400	15.5	0.814	16.3
81	Ti	204.39	11.85	0.0349	0.9967	0.0098	3.4	14	17.4	0.119	0.489	0.607
82	Pb	207.21	11.35	0.0330	0.9968	0.0096	0.170	11	11.2	0.006	0.363	0.369
83	Bi	209.0	9.747	0.0281	0.9968	0.0095	0.034	9	9	0.001	0.253	0.256
								-	-			91
84	Po	210.0	9.24	0.0365	0.004=							
85		211.0	7.24	0.0265	0.9968	0.009						
86					0.9968	0.009	4					_
87	Kn Fr	222.0	0.0097	2.6 [†]	0.9970	0.009	0 0.7					
88		223.0		-	0.9980	0.008						
89	Ra	226.05	5	0.0133	0.9971	0.008						
90	Ac Th	227.0			0.9971	0.008					j	-
91	In Pa	232.05	11.3	0.0293	0.9971	0.008			2.6 20.			0.503
92	ra U	231.0	15.4	0.0402	0.9971	0.0086						0.592
72		238.07	18.9	0.04783	0.9972	0.0084			8.3 l6.		- 0.207	
93	UO ₂	270.07	10	0.0223‡	0.9887	0.036	7.6					0.765
93 94	Np	237.0	_		0.9972	0.0084					_	0.542
94 95	Pu	239.0	19.74	0.0498	0.9972	0.0083			_			
	Am	242.0		_	0.9973	0.0082				6 51.1	0.478	51.6
							0.000	-				

[†] Value has been multiplied by 10⁵. [‡] Molecules/cm³.

IV. 2200 m/sec CROSS SECTIONS OF SPECIAL INTEREST:

¹⁰ B:	$\sigma_{a} = 3837b$	
11B:	$\sigma_{\rm a} = 0.005$	
¹³⁵ Xe:	$\sigma_a = 2.7 \times 10^6$	
²³³ U:	$\sigma_{\gamma} = 49$	$\sigma_t = 524$
²³⁵ U:	$\sigma_{\gamma} = 101$	$\sigma_t = 577$
²³⁸ U:	$\sigma_{\gamma} = 2.73$	-1 -1,
²³⁹ Pu:	$\sigma_{\gamma} = 274$	$\sigma_t = 741$
²⁴⁰ Pu:	$\sigma_{\gamma} = 286$	$\sigma_{\rm f} = 0.03$
²⁴¹ Pu:	$\sigma_{\gamma} = 425$	$\sigma_i = 950$
²⁴² Pu:	$\sigma_{\gamma} = 30$	$\sigma_{\rm f} < 0.2$