Теория групп. Лекция 6

Штепин Вадим Владимирович

10 октября 2019 г.

1 Лемма Бернсайда о неподвижных точках

Пусть $\Omega = Sub(G)$

Рассмотрим действие G на Ω сопряжением: $I_a(H) = aHa^{-1} \in Sub(G)$

Сопряжение — это автоморфизм, а значит образ подгруппы — это подгруппа.

Орбита $G(H) = \{aHa^{-1} \mid a \in G\}$ — множество подгрупп G, сопряженных H. $St(H) = \{a \in G \mid aHa^{-1} = H\} \in G$.

Опр. Полученная подгруппа — **нормализатор** подгруппы H в G. Обозначение: $N_G(H)$. $N_G(H) = \{a \in G \mid aH = Ha\}$. $H \leq N_G(H)$, так как $\forall h \in H \ hH = Hh = H$. По критерию нормальности получаем $H \triangleleft N_G(H)$.

Помимо нормализатора подгруппы существует и централизатор подгруппы H в G.

Опр. **Централизатор** подгруппы H в G — это множество $C_G(H) = \{a \in G \mid ah = ha \forall h \in G\}$ H} $\leq G$.

Утв.

- 1. $C_G(H) \leq N_G(H)$
- 2. $N_G(H)$ наибольшая подгруппа в G, что H в ней нормальная подгруппа

Доказательство

Провести самостоятельно.

Опр. Пусть $I: G \to S(G)$ — действие. I **транзитивно**, если у него есть всего одна орбита $\Leftrightarrow \overline{\forall \omega_1, \omega_2} \in \Omega \ \exists a \in G : \ a(\omega_1) = \omega_2.$

Теорема (лемма Бернсайда)

Пусть конечная группа G действует транзитивно на конечное Ω и N(a) — число элементов Ω , которые неподвижны под действием a.

$$N(a) = |\{\omega \in \Omega \mid a(\omega) = \omega\}|.$$
 Тогда $|G| = \sum_{\alpha \in C} N(a)$

Доказательство

Пусть $\omega \in \Omega$. Тогда $|St(\omega)| = \frac{|G|}{|G(\omega)|} = \frac{|G|}{|\Omega|}$ в силу транзитивности

Пусть Δ — совокупность пар вида $(a,\omega) \in G \times \Omega$, что $a(\omega) = \omega$.

С одной стороны, $|\Delta| = \sum_{\omega \in \Omega} |St(\omega)| = \sum_{\omega \in \Omega} \frac{|G|}{|\Omega|} = \frac{|G|}{|\Omega|} |\Omega| = |G|$. С другой стороны, $|\Delta| = \sum_{a \in G} N(a)$.

Значит,
$$|G| = \sum_{a \in G} N(a)$$

Следствие

Пусть конечная группа G действует на конечное Ω Тогда $|\Omega/G|=\frac{1}{|G|}\sum_{a\in G}N(a)$

Тогда
$$|\Omega/G| = \frac{1}{|G|} \sum_{a \in G} N(a)$$

Доказательство

Пусть $\Omega_1...\Omega_s$ — все попарно различные орбиты действия.

Пусть $N_i(a) = |\{\omega \in \Omega_i \mid a(\omega) = \omega\}|$ — количество неподвижных точек I_a в Ω_i .

Действие $I:G \to \Omega_i$ транзитивно по определению и $|G| = \sum_{a \in G} N_i(a)$. Причем это верно

для всех i. Просуммируем равенство по всем $i \in \{1,...,s\}$.

$$S|G| = \sum_{i=1}^{s} \sum_{a \in G} N_i(a) = \sum_{a \in G} N(a)$$

 $S|G|=\sum_{i=1}^s\sum_{a\in G}N_i(a)=\sum_{a\in G}N(a).$ Выражение $\frac{\sum\limits_{a\in G}N(a)}{|G|}$ называется средним числом неподвижных точек.

$\mathbf{2}$ Элементы теории представлений

Опр. Пусть V — линейное пространство над F. **Линейное представление** G в простран- $\overline{\text{ство}}\ V$ — это произвольный гомоморфизм T:G o GL(V) — обратимые линейные преобразования в V. $GL(V) \subset S(V)$.

Oпр. $dim(T) = dim_F(V)$ — размерность представления.

 $\overline{\text{Буде}}$ м считать, что F — это поле действительных или комплексных чисел.

Опр. Представление T неприводимо, если в V нет нетривиальных (отличных от $\{0\}$ и \overline{V} инвариантных подпространств. $W\subset V$ — инвариантно относительно T, если $\forall g\in$ $G T(g)W \subset W$

Опр. $T: G \to GL(V)$ вполне приводимо, если для каждого инвариантного относительно \overline{T} подпространства W найдется инвариантное дополнение, т.е. $\exists U \leq V$ —инвариантно, и $V = W \bigoplus U$.

Тогда T можно рассмотреть на W и U.

Опр. $T = T_1 \bigoplus T_2$, где T_1, T_2 —сужения T на U и W соответственно.

Теорема (Машке)

Всякое представление $T: G \to GL(V)$, где G — конечна, V над R или C неприводимо или разлагается в прямую сумму неприводимых.

Основная задача теории представлений — разложить каждое представление на неприводимые, и описать все неприводимые представления.

Опр. Функция $X: G \to F$ — характер представления T, если $X(g) = tr(T_g)$.

Всякое представление задается, с точностью до изоморфизма, своим характером.

Пусть $T_1: G \to GL(V_1)$ и $T_2: G \to GL(V_2)$.

Изоморфизм представлений — линейное отображение $S:V_1 \to V_2,$ что $S \circ T_1(G) =$ $T_2(G) \circ S$.

Утв. Характер любого представления G постоянен на классах сопряженных элементов.

Доказательство $tr(T(axa^{-1})) = tr(T(a)T(x)T(a)^{-1}) = tr(T(x))$ по свойствам следа.

Пусть F = C и $H_C(G)$ — множество всех комплекснозначных функций, постоянных на классах сопряженных элементов.

 $dim(H_C(G))$ — количество таких классов.

Можно ввести скалярное произведение на $H_C(G)$: $(f,g)=rac{\sum\limits_{a\in G}f(a)\overline{g(a)}}{|G|}$

Теорема

Характеры неприводимых представлений конечной группы образуют ОНБ в $H_C(G)$. Следствие

 $T:G \to GL(V)$ неприводимо $\Leftrightarrow (X_T,X_T)=1$

Следствие $T = m_1 T_1 \bigoplus m_2 T_2 \bigoplus ... \bigoplus m_s T_s$ —попарно различные неприводимые представления.

Теорема (Бернсайда)

Если $T_1,...,T_s$ — попарно неизоморфные неприводимые комплексные представления конечной группы и $n_i=dim(T_i),$ то $|G|=\sum_{i=1}^n n_i^2$

3 Прямые и полупрямые произведения групп

Опр. Пусть A, B — группы относительно произведения. Внешнее прямое произведение $A \times B$ — множество всех упорядоченных пар с операцией $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1, b_2) \in A \times B$.

Это множество является группой с нейтральным элементом (e,e) и обратным элементом $(a,b)^{-1}=(a^{-1},b^{-1})$.

Если A, B — аддитивные группы, то это называется внешней прямой суммой.

Утв. (свойства внешнего прямого произведения)

- 1. в $A \times B$ есть подгруппы $A \times \{e\}$ и $\{e\} \times B$, изоморфные A и B.
- 2. $A \times \{e\} \triangleleft A \times B$, $\{e\} \times B \triangleleft A \times B$ и элементы этих групп коммутируют.
- 3. $(A \times \{e\}) \cap (\{e\} \times B) = \{(e,e)\}$ пересечение тривиально
- 4. $(A \times \{e\}) * (\{e\} \times B) = A \times B$.

Доказательство

- 1. $(A \times \{e\}) \simeq A$. Изоморфизм: $(a, e) \rightarrow a$
- 2. Пусть $(a,b) \in A \times B$, $(a',e) \in A \times \{e\}$. Тогда $(a,b)^{-1}(a',e)(a,b) = (a^{-1}a'a,e) \in A \times \{e\}$. По критерию нормальности $A \times \{e\} \triangleleft A \times B$.

$$(a, e)(e, b) = (a, b) = (e, b)(a, e)$$
 — коммутируют.

3. в), г) очевидно.

Теорема (о разложении группы в прямое произведение подгрупп)

Пусть в G есть подгруппы A, B и

1. $A \cap B = \{e\}$

- 2. $A \triangleleft G$, $B \triangleleft G$
- 3. AB = G.

Тогда $G \simeq A \times B$

Доказательство

- 1. Покажем, что элементы из A и из B коммутируют между собой. $\forall a \in A, \forall b \in B$ верно ab = ba, так как $aba^{-1}b^{-1} \in B$ в силу нормальности B. Так же $aba^{-1}b^{-1} \in A$. Значит $aba^{-1}b^{-1} \in A \cap B = \{e\}$.
- 2. Рассмотрим отображение $\phi: A \times B \to G, \ \phi(a,b) = ab$. По пункту 1, ϕ гомоморфизм, так как $\phi(a_1,b_1)\phi(a_2,b_2) = a_1b_1a_2b_2 = a_1a_2b_1b_2 = \phi((a_1,b_1)(a_2,b_2))$. Причем ϕ сюръективно, так как $\forall x \in G \ x = ab, \ a \in A, b \in B$ по условию 3. Верно, что $Im(\phi) = G$. Проверим, что $ker(\phi) = \{(e,e)\}$. Если $\phi(ab) = e$, то ab = e. Значит $a = b^{-1}$. Но $\in A, \ b^{-1} \in B$, значит a = b = e.

Опр. Группа G, удовлетворяющая всем условиям теоремы называется **внутренним прямым произведением** A и B.

Следствие

Внешнее прямое произведение подгрупп изоморфно внутреннему. Далее будем опускать слова "внешнее" и "внутреннее".

Опр. Пусть A, B — мультипликативные группы и задано действие B автоморфизмами группы A, т.е. $I: B \to Aut(A)$.

Множество $A \times B = \{(a,b) \mid a \in A, b \in B\}$ с операцией умножения пар $(a_1,b_1)(a_2,b_2) = (a_1I_{b_1}(a_2),b_1b_2)$ — полупрямое произведение групп A и B. Обозначение: $A \rtimes B$