Taylor Larrechea Ch.31 Dr. Middleton PHYS 132 HW Ca: 11 P: 24,59,60 3-8-17

$$R_2$$
: $R_{2} = R_{2a} + R_{2b}$
 $R = 200 \Omega$

Ree = 54.5 s

$$R_{1} + R_{2} + R_{3} : \frac{1}{R_{eq}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

$$\frac{1}{R_{eq}} = \frac{1}{100a} + \frac{1}{200a} + \frac{1}{300a}$$

$$\frac{1}{R_{eq}} = \frac{11}{6000}$$

31.P.59

I through each resistor? DV through each resistor?

FZ=	162 162	48-52 +	452
R ₂ = R ₂ = 3			

Resistor	エ	ΔV
31=A	IA=2A	DVA = 6V
16/2= B	IB=0.375A	DVB=6V
481=C	Ic=0,125A	ΔVc=6∨
41=D	ID=1.5A	DVD=6V

$$I = \frac{\Delta V}{R} = \frac{12V}{6AL}$$

$$-I_1(16A) - I_2(48A) - I_3(4A) + 6v = 0$$

I=4A **△**V=24V

$$I: \ \mathbb{I} = \frac{1}{\sqrt{N}}$$

2! wired in parallel :. Du same
$$\Delta V_c = 6V$$

DVB=6V

$$B: I = \frac{\Delta V}{R_B} = \frac{6V}{16\Lambda}$$

$$C: I = \frac{\Delta V}{R_C} = \frac{6V}{48}$$

B:
$$I = \frac{\Delta V}{R_B} = \frac{6V}{16\Lambda}$$
 C: $I = \frac{\Delta V}{R_C} = \frac{6V}{46\Lambda}$ D: $I = \frac{\Delta V}{R_D} = \frac{6V}{4\Lambda}$

ΔVA=6V

C+D:
$$\frac{1}{R_{CD}} = \left(\frac{1}{6\Lambda} + \frac{1}{R\Lambda}\right)$$
 $R_{CD} + R_B$: $R_{BCD} = 4\Lambda + 4\Lambda$ $R_{BCD} = 8\Lambda$

$$R_{ED} = 4\Lambda L$$

$$R_{ECD} = \left(\frac{1}{8\Lambda} + \frac{1}{8\Lambda}\right)$$

6.1.3	THE NA		IA=
الم	T. \	E:	<u>۵۷=</u>
			= ۷ک
24v - I(2h) - I ₍ (4h) - I ₍ (4h) = 0		o= (-	۵۷E
-I(22)-2I,(42) = -24V		V :	IE:
I=2A+I2 2	LI,(412) = 16V		

 $\delta \Lambda I_1 = 16J$ $I_1 = 2A$

A: DV=IK	R: OA = TK
DV = 4A (2A)	Q1 = 3V(AV)
DVA = 8V	△VA = 8V
IA= 4A	IA=2A
E: DV=IR	
△N=3∀(&V)	
Δν _{Ε=} 16ν	
IE=3V	

~			
R	Δ٧	I	
Α	6V	4A	
В	87	2.4	
C	81	1.33A	
D	81	0.67A	
E	Ibv	ДA	

D: $\triangle V = IR$ $\triangle V_D = 8V$

> 8v = I(12h) $I_D = 0.67A$

C: DV=IR

۵۷८= ۶۷ ۶۷ ≈ I (6۸ـ)

Ic=1.33A

Conceptual

I2=2A

31.6.11

The potential difference between points 1 & 2 will become 0 since there will be no connection between the two after it is diconnected