

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОИЕССЫ УПРАВЛЕНИЯ

 $\Pi PO \coprod ECC$ Ы УПРАВЛЕНИЯ $N.1,\ 2022$

Электронный журнал, рег. Эл. N ФС77-39410 от 15.04.2010 ISSN 1817-2172

http://diffjournal.spbu.ru/e-mail:jodiff@mail.ru

Теория обыкновенных дифференциальных уравнений

ЧАСТНЫЕ ИНТЕГРАЛЫ ОБОБЩЕННО-КОНСЕРВАТИВНЫХ ПОЛИНОМИАЛЬНЫХ ГАМИЛЬТОНОВЫХ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ СИСТЕМ

А.Ф. Проневич

Гродненский государственный университет имени Янки Купалы pranevich@grsu.by

Аннотация. В работе для обобщенно-консервативной полиномиальной гамильтоновой обыкновенной дифференциальной системы получены достаточные признаки построения первых интегралов по вещественным полиномиальным частным интегралам, кратным вещественным полиномиальным частным интегралам, условным частным интегралам, комплекснозначным полиномиальным частным интегралам и кратным комплекснозначным полиномиальным частным интегралам. Выделены классы полиномиальных гамильтоновых дифференциальных систем, у которых первые интегралы аналитически выражаются через вещественные полиномиальные и условные частные интегралы, комплекснозначные полиномиальные и условные частные интегралы, вещественные и комплекснозначные полиномиальные частные интегралы. Приведены примеры на которых проиллюстрированы теоретические исследования, выполненные в данной работе.

Ключевые слова: гамильтонова система, первый интеграл, частный интеграл.

Введение. Рассмотрим обобщенно-консервативную гамильтонову систему

$$\frac{dq_i}{dt} = \partial_{p_i} H(q, p), \qquad \frac{dp_i}{dt} = -\partial_{q_i} H(q, p), \qquad i = 1, \dots, n, \tag{0.1}$$

где $q=(q_1,\ldots,q_n)$ и $p=(p_1,\ldots,p_n)$ — точки арифметического пространства \mathbb{R}^n , $t\in\mathbb{R},$ а функция $H\colon (q,p)\to H(q,p)$ $\forall (q,p)\in\mathbb{R}^{2n}$ суть полином по переменным $q_1,\ldots,q_n,p_1,\ldots,p_n$ степени $\deg H(q,p)=h\geqslant 2$ с вещественными коэффициентами.

Система (0.1) определяется функцией Гамильтона (гамильтонианом) $H: \mathbb{R}^{2n} \to \mathbb{R}$. В конце XIX века французским математиком Ж.Г. Дарбу (J.G. Darboux) был сфор-

мулирован подход о построении первого интеграла по известным частным интегралам [1], который в настоящее время называется задачей Дарбу. В дальнейшем нахождение интегралов типа Дарбу получило свое развитие, как в постановке задачи, так и в разнообразии методов ее решения. Для полиномиальных (обыкновенных и многомерных) дифференциальных систем в работах [2 – 9; 10, с. 94 – 194; 11, с. 161 – 238] с целью решения задачи Дарбу разработан метод частных интегралов построения первых интегралов и последних множителей. На основании метода частных интегралов получены спектральные методы нахождения интегральных базисов для линейных обыкновенных дифференциальных систем [12; 13] и систем уравнений в полных дифференциалах [11, с. 239 – 272; 14 – 16], а также для линейных однородных систем уравнений в частных производных [17; 18].

В данной работе для обобщенно-консервативной полиномиальной гамильтоновой системы (0.1) разработан метод частных интегралов решения задачи Дарбу. При этом для построения первых интегралов используется только аппарат теории скобок Пуассона.

Подробный обзор научной литературы и современное состояние по теории интегралов дифференциальных систем приведены в монографиях В.Н. Горбузова [10; 11], В.В. Козлова [19], А.В. Борисова и И.С. Мамаева [20], А. Goriely [21], X. Zhang [22].

С целью однозначного толкования, следуя в основном работам [11] и [19], определим используемые в статье понятия и оговорим принятую терминологию.

Cкобками Π уассона непрерывно дифференцируемых функций $u\colon D\to\mathbb{R}$ и $v\colon D\to\mathbb{R}$ гамильтоновых переменных $(t,q,p)\in D\subset\mathbb{R}^{2n+1}$ назовем скалярную функцию

$$[u,v]\colon (t,q,p)\to \sum_{i=1}^n \left(\partial_{q_i} u(t,q,p)\,\partial_{p_i} v(t,q,p)-\partial_{p_i} u(t,q,p)\,\partial_{q_i} v(t,q,p)\right)\quad \forall (t,q,p)\in D.$$

Бинарную операцию [] на линейном пространстве $C^1(D)$ скалярных функций также будем называть *скобками Пуассона*. Основными свойствами скобок Пуассона являются:

- 1) кососимметричность $[u,v] = -[v,u] \ \forall u,v \in C^1(D);$
- 2) билинейность $(\alpha, \beta \in \mathbb{R}, u, v, w \in C^1(D))$

$$[u,\alpha v+\beta w]=\alpha[u,v]+\beta[u,w],\quad [\alpha u+\beta v,w]=\alpha[u,w]+\beta[v,w].$$

- 3) тожедество Якоби $[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 \ \forall u, v, w \in C^2(D);$
- 3) тождество Лейбница (скобки Пуассона произведения функций)

$$[u, vw] = w[u, v] + v[u, w] \ \forall u, v, w \in C^1(D);$$

4) скобки Пуассона сложной функции

$$[u(t,q,p), v(w_1(t,q,p), \dots, w_s(t,q,p))] = \sum_{k=1}^s \left. \partial_{w_k} v(w_1, \dots, w_s) \right|_{w=w(t,q,p)} [u(t,q,p), w_k(t,q,p)]$$

$$\forall (t,q,p) \in D, \quad \forall u, v, w_1, \dots, w_s \in C^1(D).$$

Будем говорить, что функции $u,v\in C^1(D)$ находятся в *инволюции* на области D, если скобки Пуассона $[u(t,q,p),v(t,q,p)]=0 \ \forall (t,q,p)\in D$.

Обобщенно-консервативная гамильтонова система (0.1) индуцирует как автономный линейный диференциальный оператор первого порядка

$$\mathfrak{A}(q,p) = \sum_{i=1}^n \left(\partial_{p_i} H(q,p) \, \partial_{q_i} - \partial_{q_i} H(q,p) \, \partial_{p_i} \right) \quad \forall (q,p) \in \mathbb{R}^{2n},$$

так и неавтономный линейный диференциальный оператор первого порядка

$$\mathfrak{B}(t,q,p) = \partial_t + \mathfrak{A}(q,p) \quad \forall (t,q,p) \in \mathbb{R}^{2n+1}.$$

Действие как оператора \mathfrak{A} , так и оператора \mathfrak{B} будем называть производной Ли в силу обобщенно-консервативной гамильтоновой системы (0.1).

Непрерывно дифференцируемая функция $F \colon D' \to \mathbb{R}$ является *первым интегралом* на области $D' \subset D$ системы Гамильтона (0.1), если имеет место тождество

$$\mathfrak{B}F(t,q,p) = 0 \quad \forall (t,q,p) \in D'. \tag{0.2}$$

Тождество (0.2) связывает первый интеграл F системы (0.1) с соответствующей функцией Гамильтона H. С помощью скобок Пуассона тождество (0.2) можно записать в виде

$$\partial_t F(t,q,p) + \big[F(t,q,p), H(q,p) \big] = 0 \quad \forall (t,q,p) \in D'.$$

Функцию $F \in C^1(G)$ назовем автономным первым интегралом на области $G \subset \mathbb{R}^{2n}$ системы Гамильтона (0.1), если выполняется тождество $\mathfrak{A} F(q,p) = 0 \ \forall (q,p) \in G$, которое посредством скобок Пуассона можно записать в виде

$$[F(q,p), H(q,p)] = 0 \quad \forall (q,p) \in G. \tag{0.3}$$

Из тождества (0.3) следует, что гамильтониан H является автономным полиномиальным первым интегралом обобщенно-консервативной гамильтоновой системы (0.1).

Гамильтонова полиномиальная система (0.1) на окрестности любой точки расширенного фазового пространства \mathbb{R}^{2n+1} имеет интегральный базис размерности 2n (см., например, [23, с. 367 – 368]). При этом на окрестности любой точки фазового пространства \mathbb{R}^{2n} , не содержащей положений равновесия, обобщенно-консервативная гамильтонова система (0.1) имеет [24, с. 184] базис автономных первых интегралов размерности 2n-1.

Работа имеет следующую структуру. В первом параграфе доказаны достаточные признаки построения первых интегралов гамильтоновой системы (0.1) по вещественным полиномиальным частным интегралам. Классы обобщенно-консервативных полиномиальных гамильтоновых систем, у которых первые интегралы строятся с учетом кратных вещественных полиномиальных частных интегралов, выделены во втором параграфе. В третьем параграфе введено понятие условного частного интеграла для гамильтоновой системы и рассмотрены случаи построения первых интегралов по вещественным полиномиальным (с учетом кратности) и условным частным интегралам. Четвертый и пятый параграфы посвящены комплекснозначным полиномиальным частным интегралам и кратным комплекснозначным полиномиальным частным интегралам. Выделены классы обобщенно-консервативных полиномиальных гамильтоновых систем, у которых первые интегралы аналитически выражаются через комплекснозначные полиномиальные и условные частные интегралы, вещественные и комплекснозначные полиномиальные частные интегралы.

1. Вещественные полиномиальные частные интегралы

Определение 1.1. Полином

$$w: (q, p) \to w(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad Ew \subset \mathbb{R},$$
 (1.1)

назовем вещественным полиномиальным частным интегралом гамильтоновой дифференциальной системы (0.1), если скобки Пуассона

$$[w(q,p), H(q,p)] = w(q,p)M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \tag{1.2}$$

где полином $M: \mathbb{R}^{2n} \to \mathbb{R}$ имеет степень $\deg M(q,p) \leqslant h-2$. При этом полином M будем называть сомножителем частного интеграла w.

Так, например, полиномиальная дифференциальная система (0.1) с гамильтонианом [25]

$$H \colon (q,p) \to \frac{1}{2} \left(p_1^2 + p_2^2 \right) - f(p_1, p_2) \left(\alpha_1 p_1 q_1 + \alpha_2 p_2 q_2 \right) \quad \forall (q,p) \in \mathbb{R}^4, \quad \alpha_1, \alpha_2 \in \mathbb{R} \setminus \{0\}, \tag{1.3}$$

где $f\colon (p_1,p_2)\to f(p_1,p_2)\ \, \forall (p_1,p_2)\in \mathbb{R}^2$ есть некоторый вещественный полином, имеет вещественные полиномиальные частные интегралы $w_l\colon (q,p)\to p_l\ \, \forall (q,p)\in \mathbb{R}^4$ с сомножителями $M_l\colon (q,p)\to \alpha_l f(p_1,p_2)\ \, \forall (q,p)\in \mathbb{R}^4,\ l=1,2,$ так как на пространстве \mathbb{R}^4 скобки Пуассона

$$\left[p_l,H(q,p)\right] = \partial_{q_1}p_l\,\partial_{p_1}H(q,p) - \partial_{p_1}p_l\,\partial_{q_1}H(q,p) + \partial_{q_2}p_l\,\partial_{p_2}H(q,p) - \partial_{p_2}p_l\,\partial_{q_2}H(q,p) = p_l\cdot \left(\alpha_l\,f(p_1,p_2)\right).$$

Из свойства билинейности скобок Пуассона следует

Свойство 1.1. Полином $w: \mathbb{R}^{2n} \to \mathbb{R}$ является вещественным полиномиальным частным интегралом дифференциальной системы Гамильтона (0.1), если и только если при вещественном ненулевом λ полином $\lambda w: \mathbb{R}^{2n} \to \mathbb{R}$ является вещественным полиномиальным частным интегралом гамильтоновой дифференциальной системы (0.1).

В соответствии со свойством 1.1, говоря о двух и более вещественных полиномиальных частных интегралах, будем считать их попарно линейно независимыми функциями.

Свойство 1.2. Пусть $w_l \colon \mathbb{R}^{2n} \to \mathbb{R}, \ l = 1, \dots, s, \ ecmь вещественные полиномиальные частные интегралы гамильтоновой системы (0.1) такие, что$

$$[w_l(q, p), H(q, p)] = w_l(q, p) M(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad l = 1, \dots, s.$$
 (1.4)

Тогда функция

$$w: (q, p) \to \sum_{l=1}^{s} \lambda_l w_l(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n},$$

где $\lambda_l,\ l=1,\ldots,s,\ -$ вещественные числа и $\sum\limits_{l=1}^s |\lambda_l| \neq 0,\$ будет вещественным полиномиальным частным интегралом гамильтоновой дифференциальной системы (0.1).

Доказательство. Используя систему тождеств (1.4), на основании свойства билинейности скобок Пуассона получаем, что

$$\left[w(q,p),H(q,p)\right] = \left[\sum_{l=1}^s \lambda_l w_l(q,p),H(q,p)\right] = \sum_{l=1}^s \lambda_l \left[w_l(q,p),H(q,p)\right] = \sum_{l=1}^$$

$$= \sum_{l=1}^{s} \lambda_l w_l(q, p) M(q, p) = w(q, p) M(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}. \boxtimes$$

По определению 1.1, полиномы

$$w_l \colon (q, p) \to w_l(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad \mathbf{E} w_l \subset \mathbb{R}, \quad l = 1, \dots, s,$$
 (1.5)

являются вещественными полиномиальными частными интегралами гамильтоновой дифференциальной системы (0.1) тогда и только тогда, когда выполняется система тождеств

$$[w_l(q, p), H(q, p)] = w_l(q, p) M_l(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad l = 1, \dots, s,$$
 (1.6)

где сомножители $M_l: \mathbb{R}^{2n} \to \mathbb{R}, \ l=1,\ldots,s,$ суть полиномы.

Свойство 1.3. Произведение не являющихся линейно связынными на арифметическом пространстве \mathbb{R}^{2n} полиномов (1.5)

$$F \colon (q, p) \to \prod_{l=1}^{s} w_l(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}$$

$$(1.7)$$

является вещественным полиномиальным частным интегралом системы Γ амильтона (0.1), если и только если полиномы (1.5) являются вещественными полиномиальными частными интегралами системы Γ амильтона (0.1).

Доказательство основано на свойстве Лейбница для скобок Пуассона, тождествах (1.6), определении вещественного полиномиального частного интеграла и том, что

$$\left[\prod_{l=1}^{s} w_{l}(q,p), H(q,p)\right] = \sum_{\xi=1}^{s} \prod_{\substack{l=1, l\neq \xi}}^{s} w_{l}(q,p) \left[w_{\xi}(q,p), H(q,p)\right] = \prod_{l=1}^{s} w_{l}(q,p) \sum_{\xi=1}^{s} M_{\xi}(q,p). \ \boxtimes \ (1.8)$$

Теорема 1.1. Пусть полиномы (1.5) являются вещественными полиномиальными частными интегралами гамильтоновой системы (0.1). Тогда функция (1.7) будет первым интегралом системы Гамильтона (0.1), если и только если в тождествах (1.6) полиномы M_l : $\mathbb{R}^{2n} \to \mathbb{R}$, $l = 1, \ldots, s$, такие, что имеет место тождество

$$\sum_{l=1}^{s} M_l(q, p) = 0 \quad \forall (q, p) \in \mathbb{R}^{2n}. \tag{1.9}$$

Доказательство утверждения непосредственно следует из вычислений (1.8) и определения автономного первого интеграла гамильтоновой дифференциальной системы ⊠

По теореме 1.1, для дифференциальной системы с гамильтонианом (1.3) при $\alpha_2 = -\alpha_1$ строим дополнительный первый интеграл $F\colon (q,p)\to p_1p_2 \ \forall (q,p)\in\mathbb{R}^4.$

Свойство 1.4. Полином $w \colon \mathbb{R}^{2n} \to \mathbb{R}$ является вещественным полиномиальным частным интегралом системы (0.1), если и только если при натуральном k полином w^k является вещественным полиномиальным частным интегралом этой системы.

Действительно, основываясь на (1.2), примененных к полиномам w и w^k , получаем:

$$\left[w^k(q,p),H(q,p)\right]=k\,w^{k-1}(q,p)\left[w(q,p),H(q,p)\right]=k\,w^k(q,p)\,M(q,p)\quad\forall (q,p)\in\mathbb{R}^{2n}.\,\boxtimes m(q,p)$$

Из свойств 1.3 и 1.4 следует следующее утверждение.

Свойство 1.5. Произведение степеней не являющихся линейно связанными на арифметическом пространстве \mathbb{R}^{2n} полиномов (1.5)

$$Q \colon (q,p) \to \prod_{l=1}^{s} w_l^{k_l}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad k_l \in \mathbb{N}, \quad l = 1, \dots, s,$$

является вещественным полиномиальным частным интегралом гамильтоновой системы (0.1) в том и только в том случае, когда полиномы (1.5) являются вещественными полиномиальными частными интегралами гамильтоновой системы (0.1).

Теорема 1.2. Пусть полиномы (1.5) являются вещественными полиномиальными частными интегралами гамильтоновой системы (0.1). Тогда функция

$$F: (q, p) \to \prod_{l=1}^{s} w_l^{\gamma_l}(q, p) \quad \forall (q, p) \in G, \quad \gamma_l \in \mathbb{R}, \ l = 1, \dots, s, \ \sum_{l=1}^{s} |\gamma_l| \neq 0,$$
 (1.10)

будет первым интегралом на области $G \subset \mathbb{R}^{2n}$ гамильтоновой системы (0.1), если и только если в тождествах (1.6) полиномы $M_l \colon \mathbb{R}^{2n} \to \mathbb{R}, \ l = 1, \dots, s,$ такие, что

$$\sum_{l=1}^{s} \gamma_l M_l(q, p) = 0 \quad \forall (q, p) \in \mathbb{R}^{2n}. \tag{1.11}$$

Доказательство. Используя тождество Лейбница, вычислим скобки Пуассона в силу системы Гамильтона (0.1) функции (1.10) на области G:

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \left[\prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p),H(q,p)\right] = \sum_{\xi=1}^{s} \prod_{\substack{l=1,\\l\neq\xi}}^{s} w_{l}^{\gamma_{l}}(q,p) \left[w_{\xi}^{\gamma_{\xi}}(q,p),H(q,p)\right] = \\ &= \sum_{\xi=1}^{s} \gamma_{\xi} w_{\xi}^{\gamma_{\xi}-1}(q,p) \prod_{\substack{l=1,\\l\neq\xi}}^{s} w_{l}^{\gamma_{l}}(q,p) \left[w_{\xi}(q,p),H(q,p)\right] = \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) \sum_{\xi=1}^{s} \gamma_{\xi} M_{\xi}(q,p). \end{split} \tag{1.12}$$

Отсюда с учетом определения первого интеграла получаем, что функция (1.10) является первым интегралом на области G системы Гамильтона (0.1) тогда и только тогда, когда выполняется тождество (1.11). \boxtimes

По теореме 1.2, для дифференциальной системы с гамильтонианом (1.3) строим дополнительный первый интеграл $F\colon (q,p)\to p_1^{\gamma_1}p_2^{\gamma_2} \ \forall (q,p)\in \mathbb{R}^2\times\mathcal{P},$ где вещественные числа γ_1 и γ_2 находятся из линейного уравнения $\alpha_1\gamma_1+\alpha_2\gamma_2=0$ при $|\gamma_1|+|\gamma_2|\neq 0$, а область $\mathcal{P}\subset\mathbb{R}^2$.

Относительно дополнительного первого интеграла F гамильтоновой системы (1.3) отметим следующие моменты: 1) если $\gamma_1, \gamma_2 \in \mathbb{N}$, то дополнительный интеграл является полиномиальным; 2) если $\gamma_1, -\gamma_2 \in \mathbb{N}$ или $-\gamma_1, \gamma_2 \in \mathbb{N}$, то дополнительный первый интеграл является рациональной функцией; 3) если $\gamma_1, \gamma_2 \in \mathbb{Q}$, то дополнительный первый интеграл является иррациональной функцией; 4) если $\gamma_1 \in \mathbb{I}$, $\gamma_2 \in \mathbb{Q}$ или $\gamma_1 \in \mathbb{Q}$, $\gamma_2 \in \mathbb{I}$, то дополнительный первый интеграл есть трансцендентная функция, где \mathbb{N} , \mathbb{Q} и \mathbb{I} — соответственно множество натуральных, рациональных и иррациональных чисел. Поэтому дополнительный первый интеграл F дифференциальной системы (0.1) с полиномиальным гамильтонианом H может быть как алгебраической (полином, рациональная функция, иррациональная функция), так и трансцендентной функцией.

Теорема 1.3. Пусть гамильтонова система (0.1) имеет вещественные полиномиальные частные интегралы (1.5) такие, что

$$[w_l(q, p), H(q, p)] = \lambda_l w_l(q, p) M(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad \lambda_l \in \mathbb{R}, \quad l = 1, \dots, s, \quad s \geqslant 2, \quad (1.13)$$

где $M \colon \mathbb{R}^{2n} \to \mathbb{R}$ есть полином. Тогда скалярная функция (1.10), где вещественные числа $\gamma_l,\ l=1,\ldots,s,$ находятся из линейного однородного уравнения $\sum\limits_{l=1}^s \lambda_l \, \gamma_l = 0$ при $\sum\limits_{l=1}^s |\gamma_l| \neq 0,$ является первым интегралом на области $G \subset \mathbb{R}^{2n}$ системы Гамильтона (0.1).

Доказательство. Если верны тождества (1.13), то с учетом (1.12) получаем

$$\left[F(q,p),H(q,p)\right] = \left[\prod_{l=1}^s w_l^{\gamma_l}(q,p),H(q,p)\right] = \prod_{l=1}^s w_l^{\gamma_l}(q,p) \ \sum_{l=1}^s \lambda_l \gamma_l M(q,p) \ \forall (q,p) \in G.$$

Выбирая $\gamma_l,\ l=1,\ldots,s,$ так, чтобы $\sum\limits_{l=1}^s \lambda_l \, \gamma_l =0$ при условии $\sum\limits_{l=1}^s |\gamma_l| \neq 0,$ получаем, что функция (1.10) будет первым интегралом на области G гамильтоновой системы (0.1). \boxtimes

Из теоремы 1.3 при $s=2,\ \lambda_1=\lambda_2,$ получаем

Следствие 1.1. Если гамильтонова система (0.1) имеет такие вещественные полиномиальные частные интегралы (1.5) $npu \ s=2, \ vmo$

$$\frac{\left[w_{1}(q,p), H(q,p)\right]}{\left[w_{2}(q,p), H(q,p)\right]} = \frac{w_{1}(q,p)}{w_{2}(q,p)} \quad \forall (q,p) \in G,$$

то функция

$$F: (q, p) \to \frac{w_1(q, p)}{w_2(q, p)} \quad \forall (q, p) \in G, \quad G \subset \{(q, p) : w_2(q, p) \neq 0\},$$

будет первым интегралом на области G гамильтоновой системы (0.1).

Из теоремы 1.3 при $s=2, \ \lambda_1=-\lambda_2, \ j=1,\ldots,m,$ имеем

Следствие 1.2. Если гамильтонова система (0.1) имеет такие вещественные полиномиальные частные интегралы (1.5) $npu \ s = 2$, что

$$\frac{\left[w_{1}(q,p), H(q,p)\right]}{\left[w_{2}(q,p), H(q,p)\right]} = -\frac{w_{1}(q,p)}{w_{2}(q,p)} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n},$$

то функция

$$F: (q, p) \to w_1(q, p) w_2(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}$$

будет первым интегралом на пространстве \mathbb{R}^{2n} системы Гамильтона (0.1).

Обобщенно-консервативная дифференциальная система (0.1) с гамильтонианом

$$H: (q, p) \to q_1 p_1 - q_2 p_2 - aq_1^2 + bq_2^2 \quad \forall (q, p) \in \mathbb{R}^4, \quad a, b \in \mathbb{R} \setminus \{0\},$$
 (1.14)

имеет вещественные линейные частные интегралы $w_1\colon (q,p)\to p_1-aq_1,\ w_2\colon (q,p)\to p_2-bq_2,$ $w_3\colon (q,p)\to q_1$ и $w_4\colon (q,p)\to q_2$ $\forall (q,p)\in\mathbb{R}^4$ с $\lambda_1=\lambda_4=-1,\ \lambda_2=\lambda_3=1,\ M\colon (q,p)\to 1\ \forall (q,p)\in\mathbb{R}^4.$

По вещественным линейным частным интегралам w_1, \dots, w_4 строим автономные первые ин-

тегралы гамильтоновой системы (1.14): $F_{12}\colon (q,p)\to (p_1-aq_1)(p_2-bq_2),\ F_{13}\colon (q,p)\to q_1(p_1-aq_1)$ $\forall (q,p)\in\mathbb{R}^4$ (следствие 1.2), $F_{14}\colon (q,p)\to \frac{p_1-aq_1}{q_2}\ \forall (q,p)\in G$ (следствие 1.1), где область G из множества $\{(q,p)\colon q_2\neq 0\}\subset\mathbb{R}^4$. Первые интегралы $F_{12},\, F_{13}$ и $F_{14},\,$ будучи функционально независимыми, образуют интегральный базис гамильтоновой системы (1.14) на области G.

Для построения интегрального базиса системы (0.1) может быть использовано Следствие 1.3. Пусть выполняются условия теоремы 1.3. Тогда функции

$$F_{\zeta\xi}\colon (q,p)\to\ w_\zeta^{\gamma_\zeta}(q,p)\,w_\xi^{\gamma_\xi}(q,p)\quad \forall (q,p)\in G_{\zeta\xi}\subset\mathbb{R}^{2n},\quad \zeta=1,\ldots,s,\quad \xi=1,\ldots,s,\quad \xi\neq\zeta,$$

где вещественные числа γ_{ζ} и γ_{ξ} находятся из уравнений $\lambda_{\zeta}\gamma_{\zeta}+\lambda_{\xi}\gamma_{\xi}=0$ при $\gamma_{\zeta}^2+\gamma_{\xi}^2\neq 0$, будут первыми интегралами на областях $G_{\zeta\xi},\ \zeta=1,\ldots,s,\ \xi=1,\ldots,s,\ \xi\neq \zeta$, обобщенно-консервативной дифференциальной системы Гамильтона (0.1), соответственно.

По следствию 1.3, для полиномиальной дифференциальной системы (0.1) с гамильтонианом

$$H: (q, p) \to \frac{1}{2} \sum_{i=1}^{n} \mu_{i} p_{i}^{2} - f(p) \sum_{i=1}^{n} \alpha_{i} p_{i} q_{i} \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad \mu_{i}, \alpha_{i} \in \mathbb{R}, \quad i = 1, \dots, n,$$
 (1.15)

где $f\colon p\to f(p)\ \ \forall p\in\mathbb{R}^n$ есть некоторый вещественный полином по переменным p_1,\dots,p_n , по вещественным полиномиальным частным интегралам $w_l\colon (q,p)\to p_l\ \ \forall (q,p)\in\mathbb{R}^{2n}$ с сомножителями $M_l\colon (q,p)\to \alpha_l f(p)\ \ \forall (q,p)\in\mathbb{R}^{2n},\ l=1,\dots,n,$ строим дополнительные первые интегралы

$$F_{1\xi}\colon (q,p)\to p_1^{\gamma_{1\xi}}p_\xi^{\gamma_\xi} \quad \forall (q,p)\in\mathbb{R}^n\times G_\xi, \ G_\xi\subset\mathbb{R}^n, \ \xi=2,\ldots,n.$$

где вещественные числа $\gamma_{1\xi}$ и γ_{ξ} находятся из линейных однородных уравнений $\alpha_1 \gamma_{1\xi} + \alpha_{\xi} \gamma_{\xi} = 0$ при $|\gamma_{1\xi}| + |\gamma_{\xi}| \neq 0$, $\xi = 2, \ldots, n$. Первые интегралы H и $F_{1\xi}$ являются функционально независимыми и находятся в инволюции на некоторой области $\mathbb{R}^n \times G$, где область $G \subset G_{\xi}, \xi = 2, \ldots, n$. Следовательно, обобщенно-консервативная полиномиальная гамильтонова система (1.15) является вполне интегрируемой (интегрируема по Лиувиллю) [19, с. 83].

Теорема 1.4. Если гамильтонова система (0.1) имеет такой вещественный полиномиальный частный интеграл (1.1), что в тождестве (1.2) функция

$$M(q,p) = \lambda \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \lambda \in \mathbb{R} \setminus \{0\},$$
 (1.16)

то скалярная функция

$$F: (t, q, p) \to w(q, p) \exp(-\lambda t) \quad \forall (t, q, p) \in \mathbb{R}^{2n+1}$$

будет неавтономным первым интегралом гамильтоновой системы (0.1).

Доказательство. Учитывая тождество (1.2) при условии (1.16), получаем, что

$$\begin{split} \mathfrak{B}\,F(t,q,p) &= \partial_t F(t,q,p) + \left[F(t,q,p), H(q,p) \right] = F(t,q,p) \, \partial_t \big(-\lambda t \big) \, + \\ &+ \, \exp \big(-\lambda t \big) \left[w(q,p), H(q,p) \right] = 0 \quad \forall (t,q,p) \in \mathbb{R}^{2n+1}. \end{split}$$

Следовательно, функция F есть первый интеграл гамильтоновой системы (0.1). \boxtimes Дифференциальная система, заданная посредством полиномиального гамильтониана

$$H: (q,p) \to \frac{1}{2} (p_1^2 + p_2^2 - q_1^2 - q_2^2) \quad \forall (q,p) \in \mathbb{R}^4,$$
 (1.17)

имеет на фазовом пространстве \mathbb{R}^4 вещественные полиномиальные частные интегралы

 $w_1\colon (q,p)\to q_1-p_1,\quad w_2\colon (q,p)\to q_2-p_2,\quad w_3\colon (q,p)\to q_1+p_1,\quad w_4\colon (q,p)\to q_2+p_2$ с постоянными сомножителями $M_1(q,p)=M_2(q,p)=-1,\; M_3(q,p)=M_4(q,p)=1\;\; \forall (q,p)\in\mathbb{R}^4.$ По теореме 1.4, для гамильтоновой системы (1.17) строим неавтономные первые интегралы $F_1\colon (t,q,p)\to (q_1-p_1)e^t,\; F_2\colon (t,q,p)\to (q_2-p_2)e^t,\; F_3\colon (t,q,p)\to (q_1+p_1)e^{-t},\; F_4\colon (t,q,p)\to (q_2+p_2)e^{-t},$ которые образуют ее интегральный базис на расширенном фазовом пространстве $\mathbb{R}^5.$

Свойство 1.6. Пусть для гамильтоновой системы (0.1) с полиномиальным частным интегралом (1.1) существует голоморфизм пространства \mathbb{R}^{2n} на \mathbb{R}^{2n}

$$\xi\colon (q,p) \to \xi(q,p), \quad \zeta\colon (q,p) \to \zeta(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathrm{E}\,\xi \subset \mathbb{R}^n, \quad \mathrm{E}\,\zeta \subset \mathbb{R}^n,$$
 такой, что выполняется система тождеств

$$\begin{bmatrix} \xi_{i}(q,p), H(q,p) \end{bmatrix} = \lambda \partial_{\zeta_{i}} H(\xi,\zeta) \Big|_{\substack{\xi = \xi(q,p), \\ \zeta = \zeta(q,p)}} \forall (q,p) \in \mathbb{R}^{2n}, \quad i = 1,\dots, n, \\
\begin{bmatrix} \zeta_{i}(q,p), H(q,p) \end{bmatrix} = -\lambda \partial_{\xi_{i}} H(\xi,\zeta) \Big|_{\substack{\xi = \xi(q,p), \\ \zeta = \zeta(q,p)}} \forall (q,p) \in \mathbb{R}^{2n}, \quad i = 1,\dots, n, \\
\end{bmatrix} \forall (q,p) \in \mathbb{R}^{2n}, \quad i = 1,\dots, n,$$
(1.18)

где λ — некоторое ненулевое вещественное число. Тогда полином

$$\tilde{w}: (q, p) \to w(\xi(q, p), \zeta(q, p)) \quad \forall (q, p) \in \mathbb{R}^{2n}$$

 $\it будет$ полиномиальным частным интегралом системы (0.1) и выполняется тождество

$$\left[\tilde{w}(q,p),H(q,p)\right] = \lambda \,\tilde{w}(q,p) \,M(\xi(q,p),\zeta(q,p)) \quad \forall (q,p) \in \mathbb{R}^{2n}.$$

Доказательство. Основываясь на вычислении скобок Пуассона сложной функции

$$[u(q,p), v(\nu_1(q,p), \dots, \nu_s(q,p))] = \sum_{k=1}^s \partial_{\nu_k} v(\nu_1, \dots, \nu_s)_{|\nu = \nu(q,p)} [u(q,p), \nu_k(q,p)],$$

с учетом тождеств (1.18) и (1.2) получаем:

$$\left[\tilde{w}(q,p),H(q,p)\right] = \left[w(\xi(q,p),\zeta(q,p)),H(q,p)\right] =$$

$$=\sum_{i=1}^n\Biggl(\bigl[\xi_i(q,p),H(q,p)\bigr]\partial_{\xi_i}w(\xi,\zeta)\Big|_{\begin{subarray}{c}\xi=\xi(q,p),\\\zeta=\zeta(q,p)\end{subarray}} \\ +\bigl[\zeta_i(q,p),H(q,p)\bigr]\partial_{\zeta_i}w(\xi,\zeta)\Big|_{\begin{subarray}{c}\xi=\xi(q,p),\\\zeta=\zeta(q,p)\end{subarray}}\Biggr)=$$

$$= \left. \lambda \, \sum_{i=1}^n \Bigl(\partial_{\zeta_i} H(\xi,\zeta) \, \partial_{\xi_i} w(\xi,\zeta) - \partial_{\xi_i} H(\xi,\zeta) \, \partial_{\zeta_i} w(\xi,\zeta) \Bigr) \right|_{\substack{\xi \, = \, \xi(q,p), \\ \zeta \, = \, \zeta(q,p)}} \, = \,$$

$$=\lambda \left[w(\xi,\zeta),H(\xi,\zeta)\right]_{\begin{subarray}{c} \xi=\xi(q,p),\\ \zeta=\zeta(q,p) \end{subarray}} =\lambda \, w(\xi,\zeta) \, M(\xi,\zeta)_{\begin{subarray}{c} \xi=\xi(q,p),\\ \zeta=\zeta(q,p) \end{subarray}} =$$

$$= \lambda w(\xi(q,p),\zeta(q,p)) M(\xi(q,p),\zeta(q,p)) = \lambda \tilde{w}(q,p) M(\xi(q,p),\zeta(q,p)) \quad \forall (q,p) \in \mathbb{R}^{2n}. \ \boxtimes$$

Обобщенно-консервативная полиномиальная гамильтонова система [26]

$$H: (q,p) \to \frac{1}{2}p_1^2 + \frac{1}{2}\sum_{i=2}^n \mu_i p_i^2 - \frac{1}{2}a^2(q_1) + b(q_2, \dots, q_n) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mu_i \in \mathbb{R}, \quad i = 2, \dots, n, \quad (1.19)$$

где $a\colon q_1\to a(q_1)\ \, \forall q_1\in\mathbb{R},\ \deg a(q_1)>1,$ и $b\colon (q_2,\ldots,q_n)\to b(q_2,\ldots,q_n)\ \, \forall (q_2,\ldots,q_n)\in\mathbb{R}^{n-1}$ есть произвольные вещественные полиномы, имеет вещественный полиномиальный частный интеграл $w\colon (q,p)\to p_1+a(q_1)\ \, \forall (q,p)\in\mathbb{R}^{2n}$ с сомножителем $M\colon (q,p)\to \partial_{q_1}a(q_1)\ \, \forall (q,p)\in\mathbb{R}^{2n},$ ибо

$$\left[w(q,p),H(q,p)\right] = \left[p_1 + a(q_1),H(q,p)\right] = \sum_{i=1}^n \Bigl(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{p_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \left[p_1 + a(q_1),H(q,p)\right] = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{p_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{p_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p) - \partial_{p_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) + \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr) + \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr) = \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr) + \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr) + \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr)\Bigr) + \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr)\Bigr) + \sum_{i=1}^n \left(\partial_{q_i}\bigl(p_1 + a(q_1)\bigr)\partial_{q_i}H(q,p)\Bigr)\Bigr)\Bigr)\Bigr)$$

$$=\partial_{q_1}a(q_1)\,\partial_{p_1}H(q,p)-\partial_{q_1}H(q,p)=\left(p_1+a(q_1)\right)\partial_{q_1}a(q_1)=w(q,p)\,M(q,p)\quad\forall (q,p)\in\mathbb{R}^{2n}.$$

На основании голоморфизма $\xi\colon (q,p)\to (q_1,\ldots,q_n),\ \zeta\colon (q,p)\to (-p_1,\ldots,-p_n)\ \forall (q,p)\in\mathbb{R}^{2n}$ такого, что для него верна система тождеств (1.18) при $\lambda=-1$, по свойствуй 1.6, строим дополнительный вещественный полиномиальный частный интеграл $\tilde{w}\colon (q,p)\to -p_1+a(q_1)$ с сомножителем $\tilde{M}\colon (q,p)\to -\partial_{q_1}a(q_1)\ \forall (q,p)\in\mathbb{R}^{2n}$ гамильтоновой системы (1.19).

По теореме 1.1, для гамильтоновой системы (1.19) строим дополнительный первый интеграл

$$F: (q, p) \to (p_1 + a(q_1))(-p_1 + a(q_1)) = a^2(q_1) - p_1^2 \quad \forall (q, p) \in \mathbb{R}^{2n}.$$

При n=2 из того, что первые интегралы H и F являются функционально независимыми на пространстве \mathbb{R}^4 за исключением множеств меры нуль и находятся в инволюции получаем, что полиномиальная гамильтонова дифференциальная система (1.19) интегрируема по Лиувиллю.

2. Кратные вещественные полиномиальные частные интегралы

Определение 2.1. Вещественный полиномиальный частный интеграл (1.1) обобщенно-консервативной полиномиальной гамильтоновой системы (0.1) является кратным и его кратность $\varkappa=1+\sum\limits_{\xi=1}^{\varepsilon}r_{\xi},$ если существуют полиномы

$$Q_{f_{\xi}g_{\xi}}\colon \mathbb{R}^{2n}\to\mathbb{R}\quad u\quad R_{f_{\xi}g_{\xi}}\colon \mathbb{R}^{2n}\to\mathbb{R}, \quad f_{\xi}\in\mathbb{N},\quad g_{\xi}=1,\ldots,r_{\xi},\quad \xi=1,\ldots,\varepsilon,$$

которые удовлетворяют системе тождеств

$$\left[K_{f_{\varepsilon}g_{\varepsilon}}\!\!\left(q,p\right),H\!\left(q,p\right)\right] = R_{f_{\varepsilon}g_{\varepsilon}}\!\left(q,p\right) \ \, \forall (q,p) \in G, \ \, f_{\xi} \in \mathbb{N}, \ \, g_{\xi} = 1,\ldots,r_{\xi}, \ \, \xi = 1,\ldots,\varepsilon, \eqno(2.1)$$

где скалярные функции

$$K_{f_{\xi}g_{\xi}}:(q,p)\rightarrow \frac{Q_{f_{\xi}g_{\xi}}(q,p)}{w^{f_{\xi}}(q,p)}\quad \forall (q,p)\in G,\quad f_{\xi}\in\mathbb{N},\quad g_{\xi}=1,\ldots,r_{\xi},\quad \xi=1,\ldots,\varepsilon,$$

область G из фазового пространства \mathbb{R}^{2n} такая, что $w(q,p) \neq 0 \ \forall (q,p) \in G$. При этом

кажедый полином $Q_{f_{\xi}g_{\xi}},\ f_{\xi}\in\mathbb{N},\ g_{\xi}=1,\ldots,r_{\xi},\ \xi=1,\ldots,\varepsilon,$ взаимно прост с частным интегралом (1.1), а полиномы $R_{f_{\xi}g_{\xi}j},\ f_{\xi}\in\mathbb{N},\ g_{\xi}=1,\ldots,r_{\xi},\ \xi=1,\ldots,\varepsilon,$ такие, что $\max\left\{\deg R_{f_{\xi}g_{\xi}}\colon f_{\xi}\in\mathbb{N},\ g_{\xi}=1,\ldots,r_{\xi},\ \xi=1,\ldots,\varepsilon\right\}\leqslant h-2.$

Обобщенно-консервативная полиномиальная система (0.1), заданная гамильтонианом

$$H: (q, p) \to \frac{1}{2} \left(-7q_1^2 + 8q_1q_2 - q_2^2 + p_2^2 \right) \quad \forall (q, p) \in \mathbb{R}^4$$
 (2.2)

имеет кратный вещественный полиномиальный частный интеграл $w\colon (q,p)\to q_1 \ \ \forall (q,p)\in \mathbb{R}^4,$ ибо существуют полиномы $Q_{11}(q,p)=\frac{1}{9}\left(p_1+4p_2\right)$ и $R_{11}(q,p)=-1,\ \deg R_{11}=0,$ такие, что

$$\left[K_{11}(q,p),H(q,p)\right] = \left[\frac{p_1+4p_2}{9q_1}\,,\,\,\frac{1}{2}\left(-7q_1^2+8q_1q_2-q_2^2+p_2^2\right)\right] = -1\quad\forall (q,p)\in G\subset\{(q,p)\colon q_1\neq 0\}.$$

Свойство 2.1. Если вещественный полиномиальный частный интеграл (1.1) гамильтоновой дифференциальной системы (0.1) такой, что

$$[w(q,p), H(q,p)] = w^{m+1}(q,p)P(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},$$
 (2.3)

где m — некоторое натуральное число, а $P: \mathbb{R}^{2n} \to \mathbb{R}$ есть некоторый полином, то частный интеграл (1.1) является кратным (кратности, не меньшей двух).

Доказательство. Пусть функция $K_{m1}(q,p)=\frac{\lambda}{w^m(q,p)} \ \forall (q,p)\in G,\ \lambda\in\mathbb{R}\setminus\{0\},\ m\in\mathbb{N}.$ Вычислим на области $G\subset\{(q,p)\colon w(q,p)\neq 0\}$ скобки Пуассона

$$\left[K_{m1}(q,p),H(q,p)\right] = -m\lambda w^{-m-1}(q,p) \left[w(q,p),H(q,p)\right] = -m\lambda P(q,p) \quad \forall (q,p) \in G.$$

Из тождества (2.3) получаем, что $\deg P < h-2$. По определению 2.1, вещественный полиномиальный частный интеграл (1.1) системы (0.1) является кратным. \boxtimes

Согласно определению 2.1, вещественные полиномиальные частные интегралы (1.5) полиномиальной гамильтоновой системы (0.1) будут кратными соответственно кратностей $\varkappa_l=1+\sum\limits_{\xi_l=1}^{\varepsilon_l}r_{\xi_l},\ l=1,\ldots,s,$ тогда и только тогда, когда существуют полиномы $Q_{lf_{\xi_l}g_{\xi_l}}\colon\mathbb{R}^{2n}\to\mathbb{R}$ и $R_{lf_{\xi_l}g_{\xi_l}}\colon\mathbb{R}^{2n}\to\mathbb{R},\ f_{\xi_l}\in\mathbb{N},\ g_{\xi_l}=1,\ldots,r_{\xi_l},\ \xi_l=1,\ldots,\varepsilon_l,\ l=1,\ldots,s,$ которые удовлетворяют на областях $G_{0l}\subset\{(q,p)\colon w_l(q,p)\neq 0\}$ системе тождеств

$$\left[K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p)\right] = R_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p), \quad f_{\xi_{l}} \in \mathbb{N}, \ g_{\xi_{l}} = 1,\ldots,r_{\xi_{l}}, \ \xi_{l} = 1,\ldots,\varepsilon_{l}, \ l = 1,\ldots,s, \quad (2.4)$$

где скалярные функции

$$K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) = \frac{Q_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p)}{\int_{g_{\xi_{l}}(q,p)}^{f_{\xi_{l}}(q,p)}} \quad \forall (q,p) \in G_{0l}, \quad f_{\xi_{l}} \in \mathbb{N}, \ g_{\xi_{l}} = 1, \dots, r_{\xi_{l}}, \ \xi_{l} = 1, \dots, \varepsilon_{l}, \ l = 1, \dots, s.$$

При этом каждый полином $Q_{lf_{\xi_l}g_{\xi_l}}$ взаимно прост с вещественным полиномиальным част-

ным интегралом w_l , а $\deg R_{lf_{\xi_l}g_{\xi_l}}\leqslant h-2,\ f_{\xi_l}\in\mathbb{N},\ g_{\xi_l}=1,\ldots,r_{\xi_l},\ \xi_l=1,\ldots,\varepsilon_l,\ l=1,\ldots,s.$

Теорема 2.1. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l = 1, \ldots, s,$ такие, что выполняются тождества (1.6) и (2.4). Тогда скалярная функция

$$F \colon (q,p) \to \prod_{l=1}^{s} w_l^{\gamma_l}(q,p) \exp \sum_{l=1}^{s} \sum_{\xi_l=1}^{\widetilde{\varepsilon}_l} \sum_{g_{\varepsilon}=1}^{\widetilde{\tau}_{\xi_l}} \alpha_{lf_{\xi_l}g_{\xi_l}} K_{lf_{\xi_l}g_{\xi_l}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \tag{2.5}$$

где вещественные числа $\gamma_l,\ l=1,\ldots,s,\ u\ \alpha_{lf_{\xi_l}g_{\xi_l}},\ f_{\xi_l}\in\mathbb{N},\ g_{\xi_l}=1,\ldots,\widetilde{r}_{\xi_l},\ \widetilde{r}_{\xi_l}\leqslant r_{\xi_l},$ $\xi_l=1,\ldots,\widetilde{\varepsilon}_l,\ \widetilde{\varepsilon}_l\leq\varepsilon_l,\ l=1,\ldots,s,\ makue,\ umo\ \sum\limits_{l=1}^s|\gamma_l|+\sum\limits_{l=1}^s\sum\limits_{\xi_l=1}^{\widetilde{\varepsilon}_l}\sum\limits_{g_{\xi_l}=1}^{\widetilde{r}_{\xi_l}}\left|\alpha_{lf_{\xi_l}g_{\xi_l}}\right|\neq0,\ \text{будет}$ первым интегралом системы $(0.1),\ ecnu\ u$ только если имеет место тождество

$$\sum_{l=1}^{s} \gamma_{l} M_{l}(q, p) + \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\tilde{\varepsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\tilde{r}_{\xi_{l}}} \alpha_{l f_{\xi_{l}} g_{\xi_{l}}} R_{l f_{\xi_{l}} g_{\xi_{l}}}(q, p) = 0 \quad \forall (q, p) \in G.$$
(2.6)

Доказательство. С учетом тождеств (1.6) и (2.4), вычислим скобки Пуассона

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \exp \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\epsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \cdot \left[\prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p),H(q,p)\right] + \\ &+ \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) \cdot \left[\exp \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \sum_{g_{\xi_{l}}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p)\right] = \\ &= \exp \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\epsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \sum_{l=1}^{s} \gamma_{l} w_{l}^{\gamma_{l}-1}(q,p) \prod_{k=1, k \neq l}^{s} w_{k}^{\gamma_{k}}(q,p) \cdot \left[w_{l}(q,p),H(q,p)\right] + \\ &+ \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) \exp \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\epsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\epsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} \left[K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p)\right] = \\ &= F(q,p) \left(\sum_{l=1}^{s} \gamma_{l} M_{l}(q,p) + \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\epsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{\epsilon}_{\xi_{l}}} \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} R_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p)\right) \quad \forall (q,p) \in G. \end{split}$$

Отсюда получаем, что функция (2.5) является первым интегралом на области G гамильтоновой системы (0.1), если и только если выполняется тождество (2.6). \boxtimes

Теорема 2.2. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l = 1, \ldots, s,$ такие, что выполняются тождества (1.13) и в тождествах (2.4) полиномы

$$R_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) = \lambda_{lf_{\xi_{l}}g_{\xi_{l}}}M(q,p) \quad \forall (q,p) \in G, \quad \lambda_{lf_{\xi_{l}}g_{\xi_{l}}} \in \mathbb{R},$$

$$f_{\xi_{l}} \in \mathbb{N}, \quad g_{\xi_{l}} = 1, \dots, \widetilde{r}_{\xi_{l}}, \quad \widetilde{r}_{\xi_{l}} \leqslant r_{\xi_{l}}, \quad \xi_{l} = 1, \dots, \widetilde{\varepsilon}_{l}, \quad \widetilde{\varepsilon}_{l} \leqslant \varepsilon_{l}, \quad l = 1, \dots, s.$$

$$(2.7)$$

Тогда скалярная функция (2.5), где вещественные числа $\gamma_l,\ l=1,\ldots,s,\ u\ \alpha_{lf_{\xi_l}g_{\xi_l}},\ f_{\xi_l}\in\mathbb{N},$ $g_{\xi_l}=1,\ldots,\widetilde{r}_{\xi_l},\ \xi_l=1,\ldots,\widetilde{\varepsilon}_l,\ l=1,\ldots,s,\ находятся из линейного однородного уравнения$

$$\sum_{l=1}^{s} \lambda_{l} \gamma_{l} + \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\varepsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{r}_{\xi_{l}}} \lambda_{l f_{\xi_{l}} g_{\xi_{l}}} \alpha_{l f_{\xi_{l}} g_{\xi_{l}}} = 0 \quad npu \quad \sum_{l=1}^{s} |\gamma_{l}| + \sum_{l=1}^{s} \sum_{\xi_{l}=1}^{\widetilde{\varepsilon}_{l}} \sum_{g_{\xi_{l}}=1}^{\widetilde{r}_{\xi_{l}}} \left| \alpha_{l f_{\xi_{l}} g_{\xi_{l}}} \right| \neq 0, \quad (2.8)$$

будет первым интегралом на области G гамильтоновой системы (0.1).

 \mathcal{A} ействительно, при выполнении тождеств (1.13) и (2.4) при (2.7) условие существования (2.6) первого интеграла гамильтоновой системы (0.1) равносильно (2.8). \boxtimes

Для построения интегрального базиса системы (0.1) может быть использовано Следствие 2.1. Если выполняются условия теоремы 2.2, то функции

$$F_{\zeta l} \colon (q,p) \to \ w_{\zeta}^{\gamma_{\zeta}}(q,p) \exp \left(\alpha_{lf_{\xi_{l}}g_{\xi_{l}}} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p)\right) \quad \forall (q,p) \in G, \quad \zeta = 1,\ldots,s, \ l = 1,\ldots,s,$$

где фиксированные числа $f_{\xi_l} \in \mathbb{N}, \ g_{\xi_l} \in \left\{1,\dots,\widetilde{r}_{\xi_l}\right\}, \ \xi_l \in \left\{1,\dots,\widetilde{\varepsilon_l}\right\}, \ l=1,\dots,s, \ a \ вещественные числа <math>\gamma_\zeta$ и $\alpha_{lf_{\xi_l}g_{\xi_l}}$ находятся из линейных уравнений $\lambda_\zeta\gamma_\zeta+\lambda_{lf_{\xi_l}g_{\xi_l}}\alpha_{lf_{\xi_l}g_{\xi_l}}=0$ при условиях $|\gamma_\zeta|+\left|\alpha_{lf_{\xi_l}g_{\xi_l}}\right| \neq 0, \ \zeta=1,\dots,s, \ l=1,\dots,s, \ будут первыми интегралами обобщенно-консервативной полиномиальной гамильтоновой системы <math>(0.1).$

Для полиномиальной гамильтоновой системы (2.2), по следствию 2.1, используя вещественный полиномиальный частный интеграл $w_1\colon (q,p)\to 4q_1-q_2+p_2 \ \ \forall (q,p)\in \mathbb{R}^4$ с сомножителем $M_1\colon (q,p)\to -1 \ \ \forall (q,p)\in \mathbb{R}^4$ и двукратный вещественный полиномиальный частный интеграл $w_2\colon (q,p)\to q_1 \ \ \forall (q,p)\in \mathbb{R}^4$ с функциями $K_{2,11}(q,p)=\frac{p_1+4p_2}{9q_1}$ и $R_{2,11}(q,p)=-1$ строим дополнительный автономный первый интеграл $(M(q,p)=1,\ \lambda_1=-1,\ \lambda_{2,11}=-1,\ \gamma_1=1,\ \alpha_{2,11}=-1)$

$$F \colon (q,p) \to \ (4q_1 - q_2 + p_2) \exp \Big(- \frac{p_1 + 4p_2}{9q_1} \Big) \quad \forall (q,p) \in G \subset \{ (q,p) \colon q_1 \neq 0 \} \subset \mathbb{R}^4.$$

Теорема 2.3. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l = 1, \ldots, s, \ co-$ ответственно, относительно которых на области G имеет место система тождеств (2.4) и существуют такие числа $\xi_l \in \{1, \ldots, \varepsilon_l\}, \ l = 1, \ldots, s, \ что \ при фиксированных$

 $g_{\xi_{l}} {\in} \{1, \dots, r_{\xi_{l}}\}, \ l=1,\dots,s, \$ выполняются тождества

$$R_{l_{f_{\xi_{l}}g_{\xi_{l}}}}(q,p) = \lambda_{l}M(q,p) \quad \forall (q,p) \in G, \quad \lambda_{l} \in \mathbb{R}, \quad l = 1, \dots, s, \quad M \colon \mathbb{R}^{2n} \to \mathbb{R}.$$
 (2.9)

Тогда скалярная функция

$$F \colon (q,p) \to \sum_{l=1}^{s} \alpha_{l} K_{l f_{\xi_{l}} g_{\xi_{l}}}(q,p) \quad \forall (q,p) \in G, \tag{2.10}$$

где вещественные числа $\alpha_l,\ l=1,\dots,s,$ находятся из уравнения $\sum\limits_{l=1}^s \lambda_l \, \alpha_l = 0$ при условии $\sum\limits_{l=1}^s \alpha_l^2 \neq 0,$ будет первым интегралом на области G гамильтоновой системы (0.1).

Доказательство. Если выполняются тождества (2.4) при (2.9), то

$$\left[F(q,p), H(q,p) \right] = \left[\sum_{l=1}^s \alpha_l K_{lf_{\xi_l}g_{\xi_l}}(q,p), H(q,p) \right] = \sum_{l=1}^s \alpha_l \left[K_{lf_{\xi_l}g_{\xi_l}}(q,p), H(q,p) \right] = \sum_{l=1}^s \lambda_l \alpha_l M(q,p).$$

Выбирая α_l , $l=1,\ldots,s$, так, чтобы $\sum\limits_{l=1}^s \lambda_l \, \alpha_l = 0$ при $\sum\limits_{l=1}^s \alpha_l^2 \neq 0$, получаем, что функция (2.10), образованная на основании кратных вещественных полиномиальных частных интегралов (1.5), является первым интегралом гамильтоновой системы (0.1). \boxtimes

Следствие 2.2. Пусть выполняются условия теоремы 2.3. Тогда функции

$$F_{\zeta\varrho}\colon (q,p)\to \,\alpha_\zeta K_{\zeta f_{\xi_\zeta}g_{\xi_\zeta}}(q,p)\,+\,\alpha_\varrho K_{\varrho f_{\xi_\varrho}g_{\xi_\varrho}}(q,p),\quad \zeta=1,\ldots,s,\quad \varrho=1,\ldots,s,\quad \zeta\neq\varrho,$$

где вещественные числа α_{ζ} , $\zeta=1,\ldots,s,\ u\ \alpha_{\varrho}$, $\varrho=1,\ldots,s,\ \varrho\neq\zeta$, находятся из уравнений $\lambda_{\zeta}\alpha_{\zeta}+\lambda_{\varrho}\alpha_{\varrho}=0$ при $\alpha_{\zeta}^2+\alpha_{\varrho}^2\neq0,\ \zeta=1,\ldots,s,\ \varrho=1,\ldots,s,\ \zeta\neq\varrho$, будут первыми интегралами на областях $G_{\zeta\varrho}$ гамильтоновой системы (0.1) соответственно.

Теорема 2.4. Если гамильтонова система (0.1) имеет кратный вещественный полиномиальный частный интеграл (1.1) кратности $\varkappa=1+\sum\limits_{\xi=1}^{\varepsilon}r_{\xi}$ и существует такое $\xi\in\{1,\ldots,\varepsilon\}$, что в тождествах (2.1) при фиксированном $g_{\xi}\in\{1,\ldots,r_{\xi}\}$ полином

$$R_{f_{\varepsilon}g_{\varepsilon}}(q,p) = \lambda \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \lambda \in \mathbb{R}, \tag{2.11}$$

то скалярная функция

$$F \colon (t,q,p) \to K_{f_{\xi}g_{\xi}}(q,p) \, - \, \lambda \, t \quad \, \forall (t,q,p) \in \mathbb{R} \times G \tag{2.12}$$

будет неавтономным первым интегралом гамильтоновой системы (0.1).

Доказательство. С учетом тождеств (2.1) при условии (2.11), вычислим на области $\mathbb{R} \times G$ производную Ли функции (2.12) в силу гамильтоновой системы (0.1):

$$\mathfrak{B}\,F(t,q,p)=\partial_tF(t,q,p)+\left[F(t,q,p),H(q,p)\right]=\\ -\partial_t\left(\lambda\,t\right)+\left[K_{f_{\varepsilon}g_{\varepsilon}}(q,p),H(q,p)\right]=0.\ \boxtimes H(t,q,p)$$

По теореме 2.4, используя двукратный вещественный полиномиальный частный интеграл $w\colon (q,p)\to q_1 \ \ \forall (q,p)\in \mathbb{R}^4$ с функциями $K_{11}(q,p)=\frac{p_1+4p_2}{9q_1}$ и $R_{11}(q,p)=-1$ для обобщенно-консервативной гамильтоновой системы (2.2) строим неавтономный первый интеграл

$$\tilde{F} \colon (t,q,p) \to \ \frac{p_1 + 4p_2}{9q_1} \ + \ t \quad \forall (t,q,p) \in \mathbb{R} \times G, \quad G \subset \{(q,p) \colon q_1 \neq 0\} \subset \mathbb{R}^4.$$

3. Условные частные интегралы

3.1. Определение и свойства условных частных интегралов

Определение 3.1. Экспоненциальную функцию

$$\omega \colon (q, p) \to \exp v(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n},$$
 (3.1)

где $v: \mathbb{R}^{2n} \to \mathbb{R}$ есть некоторый полином, назовем условным частным интегралом полиномиальной гамильтоновой системы (0.1), если имеет место тождество

$$[v(q,p), H(q,p)] = S(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \tag{3.2}$$

 $\operatorname{гde} S \colon \mathbb{R}^{2n} \to \mathbb{R}$ суть полином такой, что его степень $\deg S \leqslant h-2$.

Например, полиномиальная гамильтонова система [20, с. 48; 24]

$$H: (q,p) \to \frac{1}{2} (p_1^2 + p_2^2) + 2q_2p_1p_2 - q_1 \quad \forall (q,p) \in \mathbb{R}^4,$$
 (3.3)

имеет условный частный интеграл $\omega\colon (q,p)\to \exp p_1^2 \ \forall (q,p)\in \mathbb{R}^4,$ ибо скобки Пуассона

$$\left[v(q,p),H(q,p)\right] = \left[p_1^2,\ \frac{1}{2}\left(p_1^2+p_2^2\right) + 2\,q_2p_1p_2 - q_1\right] = 2p_1\ \forall (q,p) \in \mathbb{R}^4 \quad \text{if}\quad \deg(2p_1) = 1 \leqslant 3-2 = 1.$$

Свойство 3.1. Экспоненциальная функция (3.1) является условным частным интегралом гамильтоновой системы (0.1) в том и только в том случае, когда при вещественном ненулевом числе β функция ω_{β} : $(q,p) \to \exp(\beta v(q,p)) \ \forall (q,p) \in \mathbb{R}^{2n}$ является условным частным интегралом этой гамильтоновой системы.

 \mathcal{A} ействительно, основываясь на тождестве (3.2), примененных к функциям v и βv , получаем, что скобки Пуассона:

$$\left[\beta\,v(q,p),H(q,p)\right]=\beta\left[v(q,p),H(q,p)\right]=\beta\,S(q,p)\quad\forall(q,p)\in\mathbb{R}^{2n}.\ \ \boxtimes$$

В соответствии со свойством 3.1, говоря о двух и более условных частных интегралах полиномиальной гамильтоновой дифференциальной системы (0.1), будем считать их построенными на основании попарно линейно независимых полиномов.

Экспоненциальные функции

$$\omega_{\nu} \colon (q, p) \to \exp v_{\nu}(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}, \quad \nu = 1, \dots, m,$$
 (3.4)

где $v_{\nu} \colon \mathbb{R}^{2n} \to \mathbb{R}, \ \nu = 1, \dots, m$, есть полиномы, согласно определению 3.1 будут условными частными интегралами гамильтоновой системы (0.1) тогда и только тогда, когда

$$[v_{\nu}(q,p), H(q,p)] = S_{\nu}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \nu = 1, \dots, m,$$
 (3.5)

где $S_{\nu} \colon \mathbb{R}^{2n} \to \mathbb{R}$ есть полиномы степеней $\deg S_{\nu} \leqslant h-2, \ \nu=1,\ldots,m.$

Свойство 3.2. Пусть экспоненциальные функции (3.4) являются условными частными интегралами полиномиальной гамильтоновой системы (0.1). Тогда функция

$$\omega \colon (q,p) \to \exp \sum_{\nu=1}^m \beta_{\nu} v_{\nu}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},$$

где β_{ν} , $\nu=1,\ldots,m$, — вещественные числа такие, что $\sum\limits_{\nu=1}^{m}|\beta_{\nu}|\neq 0$, будет условным частным интегралом полиномиальной гамильтоновой системы (0.1).

Действительно, с учетом определения 3.1 и тождеств (3.5) вычисляем скобки Пуассона

$$\left[\sum_{\nu=1}^{m} \beta_{\nu} v_{\nu}(q, p), \ H(q, p) \right] = \sum_{\nu=1}^{m} \beta_{\nu} \left[v_{\nu}(q, p), H(q, p) \right] = \sum_{\nu=1}^{m} \beta_{\nu} S_{\nu}(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n},$$

где степень полинома $\deg \sum_{\nu=1}^m \beta_{\nu} S_{\nu} \leqslant h-2$. \boxtimes

Теорема 3.1. Пусть экспоненциальные функции (3.4) являются условными частными интегралами полиномиальной гамильтоновой системы (0.1). Тогда функция

$$F: (q,p) \to \sum_{\nu=1}^{m} \beta_{\nu} v_{\nu}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \beta_{\nu} \in \mathbb{R}, \quad \nu = 1, \dots, m, \quad \sum_{\nu=1}^{m} |\beta_{\nu}| \neq 0, \quad (3.6)$$

будет дополнительным первым интегралом гамильтоновой системы (0.1), если и только если в тождествах (3.5) полиномы $S_{\nu} \colon \mathbb{R}^{2n} \to \mathbb{R}, \ \nu = 1, \dots, m, \ makue, \ umo$

$$\sum_{\nu=1}^{m} \beta_{\nu} S_{\nu}(q, p) = 0 \quad \forall (q, p) \in \mathbb{R}^{2n}.$$
(3.7)

Доказательство. В соответствии с определением 3.1, вычислим скобки Пуссона

$$\left[F(q,p), H(q,p) \right] = \left[\sum_{\nu=1}^m \, \beta_\nu \, v_\nu(q,p), H(q,p) \right] = \sum_{\nu=1}^m \, \beta_\nu \, \left[v_\nu(q,p), H(q,p) \right] = \sum_{\nu=1}^m \, \beta_\nu \, S_\nu(q,p).$$

Отсюда получаем, что функция (3.6) является первым интегралом гамильтоновой системы (0.1) тогда и только тогда, когда выполняется тождество (3.7). \boxtimes

Теорема 3.2. Пусть полиномиальная гамильтонова система (0.1) имеет условные частные интегралы (3.4) такие, что в тождествах (3.5) полиномы

$$S_{\nu}(q,p) = \mu_{\nu} M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mu_{\nu} \in \mathbb{R}, \quad \nu = 1, \dots, m,$$
 (3.8)

где $M: \mathbb{R}^{2n} \to \mathbb{R}$ есть некоторый полином степени $\deg M \leqslant h-2$. Тогда функция (3.6), где вещественные числа $\beta_{\nu}, \ \nu=1,\ldots,m,$ находятся из уравнения $\sum_{\nu=1}^{m} \mu_{\nu} \, \beta_{\nu} = 0$ при условии $\sum_{\nu=1}^{m} |\beta_{\nu}| \neq 0$, является первым интегралом гамильтоновой системы (0.1).

Доказательство. Если верны представления (3.8), а числа β_{ν} , $\nu=1,\ldots,m$, являются решением линейного однородного уравнения $\sum\limits_{\nu=1}^{m}\mu_{\nu}\beta_{\nu}=0$ при $\sum\limits_{\nu=1}^{m}|\beta_{\nu}|\neq 0$, то сумма

$$\sum_{\nu=1}^{m} \beta_{\nu} S_{\nu}(q, p) = \sum_{\nu=1}^{m} \beta_{\nu} \mu_{\nu} M(q, p) = 0 \quad \forall (q, p) \in \mathbb{R}^{2n}.$$

Таким образом, выполняется условие (3.7), а значит, согласно теореме 3.1 функция (3.6) будет первым интегралом полиномиальной гамильтоновой системы (0.1).

Например, из теоремы 3.2 при $m=2,\ \mu_1=\mu_2\neq 0$ получаем

Следствие 3.1. Если гамильтонова система (0.1) имеет такие условные частные интегралы $\omega_1 \colon (q,p) \to \exp v_1(q,p)$ и $\omega_2 \colon (q,p) \to \exp v_2(q,p)$ $\forall (q,p) \in \mathbb{R}^{2n}$, что

$$\frac{\left[v_{1}(q,p), H(q,p)\right]}{\left[v_{2}(q,p), H(q,p)\right]} = \frac{v_{1}(q,p)}{v_{2}(q,p)} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n},$$

то дополнительным первым интегралом гамильтоновой системы (0.1) будет полином

$$F: (q, p) \to v_1(q, p) - v_2(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}.$$

При $m=2, \ \mu_1=-\mu_2\neq 0$ из теоремы 3.2 получаем

Следствие 3.2. Если гамильтонова система (0.1) имеет такие условные частные интегралы $\omega_1 \colon (q,p) \to \exp v_1(q,p)$ и $\omega_2 \colon (q,p) \to \exp v_2(q,p)$ $\forall (q,p) \in \mathbb{R}^{2n}$, что

$$\frac{\left[v_1(q,p),H(q,p)\right]}{\left[v_2(q,p),H(q,p)\right]} = -\frac{v_1(q,p)}{v_2(q,p)} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n},$$

то дополнительным первым интегралом гамильтоновой системы (0.1) будет полином

$$F: (q,p) \to v_1(q,p) + v_2(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}.$$

Заметим, что следствия 3.1 и 3.2 могут быть получены и из теоремы 3.1.

Следствие 3.3. Если выполняются условия теоремы 3.2, то функции

$$F_{\xi\zeta}\colon (q,p)\to \ \beta_{\xi}\,v_{\xi}(q,p)+\beta_{\zeta}\,v_{\zeta}(q,p) \quad \forall (q,p)\in\mathbb{R}^{2n},\ \xi=1,\ldots,m,\ \zeta=1,\ldots,m,\ \zeta\neq\xi,$$

где вещественные числа β_{ξ} и β_{ζ} находятся из линейных уравнений μ_{ξ} $\beta_{\xi}+\mu_{\zeta}$ $\beta_{\zeta}=0$ при условиях $|\beta_{\xi}|+|\beta_{\zeta}|\neq 0,\ \xi=1,\ldots,m,\ \zeta=1,\ldots,m,\ \zeta\neq \xi$, соответственно, будут дополнительными первыми интегралами полиномиальной гамильтоновой системы (0.1).

Как по теореме 1.3 при s=1 (т.е. при наличие только одного вещественного полиномиального частного интеграла), так и по теореме 3.2 при m=1 (т.е. при наличие только одного условного частного интеграла) построить дополнительный первый интеграл обобщенно-консервативной полиномиальной гамильтоновой системы (0.1) не представляется возможным. В этом случае может быть использовано следующее утверждение.

Теорема 3.3. Пусть обобщенно-консервативная гамильтонова система (0.1) имеет вещественные полиномиальные частные интегралы (1.5) при условиях (1.13) и условные частные интегралы (3.4) при условиях (3.8). Тогда скалярные функции

$$F_{\xi\zeta}\colon (q,p) \to w_{\xi}^{\gamma_{\xi}}(q,p) \exp\left(\beta_{\zeta} v_{\zeta}(q,p)\right) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \ \xi = 1, \dots, s, \ \zeta = 1, \dots, m, \quad (3.9)$$

где вещественные числа γ_ξ и β_ζ находятся из уравнений $\lambda_\xi \gamma_\xi + \mu_\zeta \beta_\zeta = 0$ при $|\gamma_\xi| + |\beta_\zeta| \neq 0$,

 $\xi = 1, \dots, s, \ \zeta = 1, \dots, m, \ будут первыми интегралами гамильтоновой системы <math>(0.1)$.

Доказательство. С учетом тождеств (1.13) и (3.5) при (3.8), вычислим скобки Пуассона

$$\begin{split} & \left[F_{\xi\zeta}(q,p), H(q,p) \right] = \left[w_{\xi}^{\gamma_{\xi}}(q,p), H(q,p) \right] \cdot \exp\left(\beta_{\zeta} v_{\zeta}(q,p) \right) + w_{\xi}^{\gamma_{\xi}}(q,p) \cdot \left[\exp\left(\beta_{\zeta} v_{\zeta}(q,p) \right) \right] = \\ & = \gamma_{\xi} w_{\xi}^{\gamma_{\xi}-1}(q,p) \exp\left(\beta_{\zeta} v_{\zeta}(q,p) \right) \left[w_{\xi}(q,p), H(q,p) \right] + \beta_{\zeta} w_{\xi}^{\gamma_{\xi}}(q,p) \exp\left(\beta_{\zeta} v_{\zeta}(q,p) \right) \left[v_{\zeta}(q,p), H(q,p) \right] = \\ & = \left(\lambda_{\xi} \gamma_{\xi} + \mu_{\zeta} \beta_{\zeta} \right) M(q,p) w_{\xi}^{\gamma_{\xi}}(q,p) \exp\left(\beta_{\zeta} v_{\zeta}(q,p) \right) \quad \forall (q,p) \in G, \quad \xi = 1, \dots, s, \; \zeta = 1, \dots, m. \end{split}$$

Выбирая вещественные числа γ_{ξ} и β_{ζ} так, чтобы λ_{ξ} γ_{ξ} + μ_{ζ} β_{ζ} = 0, получаем, что функции (3.9) являются первыми интегралами гамильтоновой системы (0.1). \boxtimes

Для полиномиальной гамильтоновой системы (3.3), по теореме 3.3, на основании вещественного полиномиального частного интеграла $w\colon (q,p)\to p_2 \quad \forall (q,p)\in \mathbb{R}^4$ с сомножителем $M\colon (q,p)\to -2p_1 \quad \forall (q,p)\in \mathbb{R}^4$ и условного частного интеграла $\omega\colon (q,p)\to \exp p_1^2 \quad \forall (q,p)\in \mathbb{R}^4$ с функцией $S\colon (q,p)\to 2p_1 \quad \forall (q,p)\in \mathbb{R}^4$ строим дополнительный первый интеграл

$$F: (q, p) \to p_2 \exp p_1^2 \quad \forall (q, p) \in \mathbb{R}^4.$$

Первые интегралы H и F гамильтоновой системы (3.3) являются функционально независимыми на пространстве \mathbb{R}^4 за исключением множеств меры нуль и находятся в инволюции. Следовательно, полиномиальная гамильтонова система (3.3) интегрируема по Лиувиллю.

Как по теореме 2.2 при $s=\widetilde{r}_{\xi_l}=\widetilde{\varepsilon}_l=1$ (т.е. при наличие только одного двукратного полиномиального частного интеграла), так и по теореме 3.2 при m=1 (т.е. при наличие только одного условного частного интеграла) построить первый интеграл гамильтоновой системы (0.1) не представляется возможным. В этом случае может быть использована

Теорема 3.4. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l = 1, \ldots, s,$ такие, что имеют место тождества (2.4) при (2.7). Кроме этого гамильтонова система (0.1)имеет условные частные интегралы (3.4) при условиях (3.8). Тогда функции

$$F_{l\zeta} \colon (q,p) \to \ \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) + \beta_{\zeta} v_{\zeta}(q,p) \quad \forall (q,p) \in G, \ l = 1, \dots, s, \ \zeta = 1, \dots, m, \ \ (3.10)$$

где фиксированные числа $f_{\xi_l} \in \mathbb{N}, \ g_{\xi_l} \in \left\{1,\dots,\widetilde{r}_{\xi_l}\right\}, \ \xi_l \in \left\{1,\dots,\widetilde{\varepsilon}_l\right\}, \ l=1,\dots,s, \ a$ вещественные числа $\alpha_{lf_{\xi_l}g_{\xi_l}}$ и β_ζ находятся из уравнений $\lambda_{lf_{\xi_l}g_{\xi_l}}\alpha_{lf_{\xi_l}g_{\xi_l}} + \mu_\zeta \ \beta_\zeta = 0$ при $\left|\alpha_{lf_{\xi_l}g_{\xi_l}}\right| + |\beta_\zeta| \neq 0, \ l=1,\dots,s, \ \zeta=1,\dots,m,$ будут первыми интегралами системы (0.1).

 \mathcal{A} оказательство. При выполнении системы тождеств (2.4) при (2.7) и (3.5) при (3.8) относительно функций (3.4) вычислим скобки Пуассона функций (3.10):

$$\begin{split} \left[F_{l\zeta}(q,p),H(q,p)\right] &= \ \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} \cdot \left[K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p)\right] + \beta_{\zeta} \cdot \left[v_{\zeta}(q,p),H(q,p)\right] = \\ &= \left(\lambda_{lf_{\xi_{l}}g_{\xi_{l}}}\alpha_{lf_{\xi_{l}}g_{\xi_{l}}} + \mu_{\zeta}\beta_{\zeta}\right) M(q,p) \quad \forall (q,p) \in G, \quad l = 1,\ldots,s, \ \zeta = 1,\ldots,m. \end{split}$$

Если числа $\alpha_{lf_{\xi_l}g_{\xi_l}},\ l=1,\ldots,s,$ и $\beta_\zeta,\ \zeta=1,\ldots,m,$ такие, что $\lambda_{lf_{\xi_l}g_{\xi_l}}\alpha_{lf_{\xi_l}g_{\xi_l}}+\mu_\zeta\,\beta_\zeta=0,$ то функции (3.10) являются первыми интегралами гамильтоновой системы (0.1). \boxtimes

Для построения неавтономного первого интеграла может быть использована

Теорема 3.5. Если обобщенно-консервативная гамильтонова система (0.1) имеет такой условный частный интеграл (3.1), что в тождестве (3.2) полином

$$S(q,p) = \lambda \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \lambda \in \mathbb{R} \setminus \{0\},$$
 (3.11)

то неавтономным первым интегралом гамильтоновой системы (0.1) будет функция

$$F: (t,q,p) \to v(q,p) - \lambda t \quad \forall (t,q,p) \in \mathbb{R}^{2n+1}$$

Доказательство. Учитывая тождество (3.2) при условии (3.11), на \mathbb{R}^{2n+1} получаем:

$$\mathfrak{B}\,F(t,q,p)=\partial_tF(t,q,p)+\big[F(t,q,p),H(q,p)\big]=\partial_t\big(-\lambda\,t\big)+\big[v(q,p),H(q,p)\big]=0.$$

Следовательно, функция F есть первый интеграл гамильтоновой системы (0.1). \boxtimes

4. Комплекснозначные полиномиальные частные интегралы

4.1. Свойства комплекснозначных полиномиальных частных интегралов

Определение 4.1. Полином

$$\mathfrak{m}: (q,p) \to \mathfrak{m}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathcal{E} \mathfrak{m} \subset \mathbb{C},$$
 (4.1)

назовем комплекснозначным полиномиальным частным интегралом обобщенно-консервативной гамильтоновой системы (0.1), если скобки Π уассона

$$\left[\mathfrak{m}(q,p), H(q,p)\right] = \mathfrak{m}(q,p)\,\mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},\tag{4.2}$$

 $ede \mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$ есть полином с комплексными коэффициентами и $\deg \mathfrak{M}(q,p) \leqslant h-2$.

Например, дифференциальная система, заданная полиномиальным гамильтонианом

$$H: (q, p) \to \frac{\beta}{2} (q_2^2 - q_1^2 + p_2^2 - p_1^2) + \alpha (q_1 p_2 + q_2 p_1) \quad \forall (q, p) \in \mathbb{R}^4, \quad \alpha, \beta \in \mathbb{R} \setminus \{0\}, \tag{4.3}$$

имеет комплекснозначные полиномиальные (линейные) частные интегралы

$$\mathfrak{m}_1\colon (q,p)\to q_1+q_2+i(p_1-p_2)\quad \text{и}\quad \mathfrak{m}_2\colon (q,p)\to q_1-q_2+i(p_1+p_2)\quad \forall (q,p)\in \mathbb{R}^4$$
 с сомножителями $\mathfrak{M}_1\colon (q,p)\to \alpha+\beta\,i$ и $\mathfrak{M}_2\colon (q,p)\to -\alpha+\beta\,i$ $\forall (q,p)\in \mathbb{R}^4,$ соответственно.

Свойство 4.1. Гамильтонова система (0.1) имеет комплекснозначный полиномиальный частный интеграл (4.1), если и только если выполняется система тождеств

$$\left[\operatorname{Re} \mathfrak{w}(q,p), H(q,p)\right] = \operatorname{Re} \mathfrak{w}(q,p) \operatorname{Re} \mathfrak{M}(q,p) - \operatorname{Im} \mathfrak{w}(q,p) \operatorname{Im} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},
\left[\operatorname{Im} \mathfrak{w}(q,p), H(q,p)\right] = \operatorname{Re} \mathfrak{w}(q,p) \operatorname{Im} \mathfrak{M}(q,p) + \operatorname{Im} \mathfrak{w}(q,p) \operatorname{Re} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}.$$
(4.4)

Доказательство. Гамильтонова дифференциальная система (0.1), по определению 4.1, имеет комплекснозначный полиномиальный частный интеграл (4.1) тогда и только тогда, когда выполняется тождество (4.2). Тождества (4.2) верно в том и только в том случае,

когда имеет место система тождеств (4.4). По свойству транзитивности отношения эквивалентности получаем утверждение свойства 4.1. \boxtimes

Свойство 4.2. Если гамильтонова система (0.1) имеет комплексозначный полиномиальный частный интеграл (4.1), то ему комплексно сопряженный полином

$$\overline{\mathfrak{w}}: (q,p) \to \operatorname{Re} \mathfrak{w}(q,p) - i \operatorname{Im} \mathfrak{w}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}$$

также будет комплексозначным полиномиальным частным интегралом этой гамильтоновой системы (0.1). При этом имеет место тождество

$$\left[\overline{\mathfrak{w}}(q,p), H(q,p)\right] = \overline{\mathfrak{w}}(q,p) \,\overline{\mathfrak{M}}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},\tag{4.5}$$

 $ede \ \overline{\mathfrak{M}} \colon \mathbb{R}^{2n} \to \mathbb{C} \ ecm$ ь комплексно сопряженный полином с $\mathfrak{M} \colon \mathbb{R}^{2n} \to \mathbb{C} \ us \ (4.2).$

Доказательство. По свойству билинейности скобок Пуассона, с учетом (4.4) имеем:

$$\big[\overline{\mathfrak{w}}(q,p),\! H\!(q,p)\big] = \big[\mathrm{Re}\,\mathfrak{w}(q,p) - i\,\mathrm{Im}\,\mathfrak{w}(q,p),\! H\!(q,p)\big] = \big[\mathrm{Re}\,\mathfrak{w}(q,p),\! H\!(q,p)\big] - i\big[\mathrm{Im}\,\mathfrak{w}(q,p),\! H\!(q,p)\big] = \big[\mathrm{Re}\,\mathfrak{w}(q,p),\! H\!(q,p)\big] = \big[\mathrm{Re}\,\mathfrak{$$

$$= \operatorname{Re} \operatorname{\mathfrak{w}}(q,p) \operatorname{Re} \operatorname{\mathfrak{M}}(q,p) - \operatorname{Im} \operatorname{\mathfrak{w}}(q,p) \operatorname{Im} \operatorname{\mathfrak{M}}(q,p) - i \left(\operatorname{Re} \operatorname{\mathfrak{w}}(q,p) \operatorname{Im} \operatorname{\mathfrak{M}}(q,p) + \operatorname{Im} \operatorname{\mathfrak{w}}(q,p) \operatorname{Re} \operatorname{\mathfrak{M}}(q,p) \right) = i \left(\operatorname{Re} \operatorname{\mathfrak{w}}(q,p) \operatorname{Im} \operatorname{\mathfrak{M}}(q,p) - i \left(\operatorname{Re} \operatorname{\mathfrak{w}}(q,p) - i (\operatorname{Re} \operatorname{\mathfrak{w}(q,p) - i (\operatorname{Re} \operatorname{\mathfrak{w}}(q,p) - i (\operatorname{Re} \operatorname{\mathfrak{w}(q,p) - i (\operatorname{Re} \operatorname{\mathfrak{w}(q,p) - i (\operatorname{Re$$

$$= \big(\operatorname{Re} \mathfrak{w}(q,p) - i \operatorname{Im} \mathfrak{w}(q,p) \big) \big(\operatorname{Re} \mathfrak{M}(q,p) - i \operatorname{Im} \mathfrak{M}(q,p) \big) = \overline{\mathfrak{w}}(q,p) \, \overline{\mathfrak{M}}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}. \ \boxtimes 1 = 0$$

По свойству 4.2, устанавливаем, что гамильтонова дифференциальная система (4.3) имеет имеет комплекснозначные полиномиальные частные интегралы

$$\overline{\mathfrak{m}}_1 \colon (q,p) \to \ q_1 + q_2 - i \, (p_1 - p_2), \quad \overline{\mathfrak{m}}_2 \colon (q,p) \to \ q_1 - q_2 - i \, (p_1 + p_2) \quad \forall (q,p) \in \mathbb{R}^4$$
 с сомножителями $\overline{\mathfrak{M}}_1 \colon (q,p) \to \alpha - \beta \, i, \ \overline{\mathfrak{M}}_2 \colon (q,p) \to -\alpha - \beta \, i \ \forall (q,p) \in \mathbb{R}^4,$ соответственно.

Символом $\mathbb K$ обозначим как поле вещественных чисел $\mathbb R$, так и комплексных $\mathbb C$.

Свойство 4.3. Произведение u_1u_2 полиномов $u_1\colon \mathbb{R}^{2n}\to \mathbb{K}$ и $u_2\colon \mathbb{R}^{2n}\to \mathbb{K}$ является вещественным или комплекснозначным полиномиальным частным интегралом гамильтоновой системы (0.1), если и только если полиномы-сомножители u_1 и u_2 являются полиномиальными частными интегралами гамильтоновой системы (0.1).

Доказательство основано на определениях 1.1 и 4.1 и том, что верно тождество

$$\left[u_1(q,p)\,u_2(q,p),H(q,p)\right]=u_2(q,p)\left[u_1(q,p),H(q,p)\right]+u_1(q,p)\left[u_2(q,p),H(q,p)\right].\boxtimes$$

Теорема 4.1. Гамильтонова система (0.1) имеет комплекснозначный полиномиальный частный интеграл (4.1) тогда и только тогда, когда гамильтонова система (0.1) имеет вещественный полиномиальный частный интеграл

$$P: (q, p) \to \operatorname{Re}^2 \mathfrak{w}(q, p) + \operatorname{Im}^2 \mathfrak{w}(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n}.$$
 (4.6)

При этом имеет место следующее тождество

$$[P(q,p), H(q,p)] = 2P(q,p) \operatorname{Re} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \tag{4.7}$$

 \mathcal{C} еде полином $\mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$ определяется из тождества (4.2).

Доказательство основано на свойстве билинейности скобок Пуассона, тождестве Лейбница для скобок Пуассона, свойствах 4.1 и 4.2, а также на том, что

$$\mathfrak{w}(q,p)\,\overline{\mathfrak{w}}(q,p) = \mathrm{Re}^2\mathfrak{w}(q,p) + \mathrm{Im}^2\mathfrak{w}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}.$$

Учитывая тождества (4.4), имеем:

$$\begin{split} \left[P(q,p),H(q,p)\right] &= \left[\operatorname{Re}^2 \mathfrak{w}(q,p) + \operatorname{Im}^2 \mathfrak{w}(q,p),H(q,p)\right] = \\ &= 2\operatorname{Re} \mathfrak{w}(q,p) \left[\operatorname{Re} \mathfrak{w}(q,p),H(q,p)\right] + 2\operatorname{Im} \mathfrak{w}(q,p) \left[\operatorname{Im} \mathfrak{w}(q,p),H(q,p)\right] = \\ &= 2\operatorname{Re} \mathfrak{w}(q,p) \left(\operatorname{Re} \mathfrak{w}(q,p)\operatorname{Re} \mathfrak{M}(q,p) - \operatorname{Im} \mathfrak{w}(q,p)\operatorname{Im} \mathfrak{M}(q,p)\right) + \\ &+ 2\operatorname{Im} \mathfrak{w}(q,p) \left(\operatorname{Re} \mathfrak{w}(q,p)\operatorname{Im} \mathfrak{M}(q,p) + \operatorname{Im} \mathfrak{w}(q,p)\operatorname{Re} \mathfrak{M}(q,p)\right) = \\ &= 2 \left(\operatorname{Re}^2 \mathfrak{w}(q,p) + \operatorname{Im}^2 \mathfrak{w}(q,p)\right) \operatorname{Re} \mathfrak{M}(q,p) = 2P(q,p)\operatorname{Re} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}. \ \boxtimes \right] \end{split}$$

Так, по теореме 4.1, обобщенно-консервативная полиномиальная гамильтонова дифференциальная система (4.3) имеет вещественные полиномиальные частные интегралы

$$P_1\colon (q,p)\to\ (q_1+q_2)^2+(p_1-p_2)^2\ \ \forall (q,p)\in\mathbb{R}^4\ \ \text{и}\ \ P_2\colon (q,p)\to\ (q_1-q_2)^2+(p_1+p_2)^2\ \ \forall (q,p)\in\mathbb{R}^4$$
 с сомножителями $M_1\colon (q,p)\to 2\alpha\ \ \forall (q,p)\in\mathbb{R}^4$ и $M_2\colon (q,p)\to -2\alpha\ \ \forall (q,p)\in\mathbb{R}^4$, соответственно.

Как следствие из теоремы 4.1, основываясь на определении первого интеграла полиномиальной гамильтоновой системы (0.1), получаем следующее утверждение.

Теорема 4.2. Пусть гамильтонова система (0.1) имеет комплекснозначный полиномиальный частный интеграл (4.1), такой, что в тождестве (4.2) у сомножителя $\mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$ вещественная часть $\operatorname{Re} \mathfrak{M}(q,p) = 0 \ \forall (q,p) \in G$. Тогда полином (4.6) является первым интегралом обобщенно-консервативной гамильтоновой системы (0.1).

Теорема 4.3. Если гамильтонова система (0.1) имеет комплекснозначный полиномиальный частный интеграл (4.1), то у скалярной функции

$$A: (q,p) \to \arctan \frac{\operatorname{Im} \mathfrak{w}(q,p)}{\operatorname{Re} \mathfrak{w}(q,p)} \quad \forall (q,p) \in G, \quad G \subset \{(q,p) : \operatorname{Re} \mathfrak{w}(q,p) \neq 0\} \subset \mathbb{R}^{2n},$$
 (4.8)

скобки Пуассона в силу гамильтоновой системы (0.1) равны

$$[A(q,p), H(q,p)] = \operatorname{Im} \mathfrak{M}(q,p) \quad \forall (q,p) \in G, \tag{4.9}$$

где полином $\mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$ определяются из тождества (4.2).

 \mathcal{A} оказательство. Используя свойство скобок Пуассона сложной функции, с учетом системы тождеств (4.4), на области G получаем, что скобки Пуассона

$$\begin{split} \left[A(q,p),H(q,p)\right] &= \left[\arctan\frac{\operatorname{Im} \mathfrak{w}(q,p)}{\operatorname{Re} \mathfrak{w}(q,p)}\,,\,H(q,p)\right] = \\ &= \partial_{\zeta_1}\!\!\left(\arctan\frac{\zeta_2}{\zeta_1}\right)_{ \left| \begin{array}{c} \zeta_1 = \operatorname{Re} \mathfrak{w}(q,p), \\ \zeta_2 = \operatorname{Im} \mathfrak{w}(q,p) \end{array} \right.} \cdot \left[\operatorname{Re} \mathfrak{w}(q,p),H(q,p)\right] + \end{split}$$

$$+ \left. \partial_{\zeta_2} \!\! \left(\operatorname{arctg} \frac{\zeta_2}{\zeta_1} \right) \right|_{\zeta_1 = \operatorname{Re} \mathfrak{w}(q,p),} \cdot \left[\operatorname{Im} \mathfrak{w}(q,p), H(q,p) \right] = \\ \left|_{\zeta_2 = \operatorname{Im} \mathfrak{w}(q,p)} \right|$$

$$=\frac{-\operatorname{Im} \mathfrak{w}(q,p)\left[\operatorname{Re} \mathfrak{w}(q,p),H(q,p)\right]+\operatorname{Re} \mathfrak{w}(q,p)\left[\operatorname{Im} \mathfrak{w}(q,p),H(q,p)\right]}{\operatorname{Re}^2 \mathfrak{w}(q,p)+\operatorname{Im}^2 \mathfrak{w}(q,p)}=$$

$$= \frac{1}{\operatorname{Re}^2 \mathfrak{w}(q,p) + \operatorname{Im}^2 \mathfrak{w}(q,p)} \cdot \left(-\operatorname{Im} \mathfrak{w}(q,p) \left(\operatorname{Re} \mathfrak{w}(q,p) \operatorname{Re} \mathfrak{M}(q,p) - \operatorname{Im} \mathfrak{w}(q,p) \operatorname{Im} \mathfrak{M}(q,p) \right) + \operatorname{Im} \mathfrak{w}(q,p) \operatorname{Im} \mathfrak{m}(q,p) \right) + \operatorname{Im} \mathfrak{w}(q,p) + \operatorname{Im} \mathfrak{w}($$

$$+\operatorname{Re} \mathfrak{w}(q,p)\left(\operatorname{Re} \mathfrak{w}(q,p)\operatorname{Im} \mathfrak{M}(q,p)+\operatorname{Im} \mathfrak{w}(q,p)\operatorname{Re} \mathfrak{M}(q,p)\right)\right)=\operatorname{Im} \mathfrak{M}(q,p).$$

4.2. Построение дополнительных первых интегралов гамильтоновой системы по комплекснозначным полиномиальным частным интегралам

Теорема 4.4. Пусть обобщенно-консервативная полиномиальная гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы

$$\mathfrak{m}_{\mathfrak{l}} \colon (q,p) \to \mathfrak{m}_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \operatorname{E} \mathfrak{m}_{\mathfrak{l}} \subset \mathbb{C}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},$$
 (4.10)

такие, что в тождествах

$$\left[\mathfrak{m}_{\mathfrak{l}}(q,p), H(q,p)\right] = \mathfrak{m}_{\mathfrak{l}}(q,p) \,\,\mathfrak{M}_{\mathfrak{l}}(q,p) \,\,\forall (q,p) \in \mathbb{R}^{2n}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},\tag{4.11}$$

полиномы

$$\mathfrak{M}_{\mathfrak{l}}(q,p) = \rho_{\mathfrak{l}} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \rho_{\mathfrak{l}} \in \mathbb{C}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \tag{4.12}$$

 \mathcal{C} еде $\mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$ есть комплекснозначный полином. Тогда скалярные функции

$$F_1 \colon (q,p) \to \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\widehat{\eta}_{\mathfrak{l}}}(q,p) \, \exp \bigg(-2 \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \widetilde{\eta}_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \bigg) \quad \forall (q,p) \in G \tag{4.13}$$

u

$$F_2 \colon (q,p) \to \prod_{\mathfrak{l}=1}^{\mathfrak{s}} \, P_{\mathfrak{l}}^{\widetilde{\eta}_{\mathfrak{l}}}(q,p) \, \exp \biggl(2 \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \widehat{\eta}_{\mathfrak{l}} \, A_{\mathfrak{l}}(q,p) \biggr) \quad \, \forall (q,p) \in G, \tag{4.14}$$

где полиномы

$$P_{\mathfrak{l}}: (q,p) \to \operatorname{Re}^{2}\mathfrak{m}_{\mathfrak{l}}(q,p) + \operatorname{Im}^{2}\mathfrak{m}_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},$$
 (4.15)

скалярные функции

$$A_{\mathfrak{l}} \colon (q,p) \to \arctan \frac{\operatorname{Im} \mathfrak{m}_{\mathfrak{l}}(q,p)}{\operatorname{Re} \mathfrak{m}_{\mathfrak{l}}(q,p)} \quad \forall (q,p) \in G, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},$$
 (4.16)

а комплексные числа $\eta_{\mathfrak{l}}=\widehat{\eta}_{\mathfrak{l}}+i\,\widetilde{\eta}_{\mathfrak{l}}\,\,(\widehat{\eta}_{\mathfrak{l}}=\operatorname{Re}\,\eta_{\mathfrak{l}},\,\,\widetilde{\eta}_{\mathfrak{l}}=\operatorname{Im}\,\eta_{\mathfrak{l}}),\,\,\mathfrak{l}=1,\ldots,\mathfrak{s},\,\,$ находятся из уравнения $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\eta_{\mathfrak{l}}=0\,$ при $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}|\eta_{\mathfrak{l}}|^2\neq 0,\,$ будут первыми интегралами на любой области G из множества $\{(q,p)\colon \operatorname{Re}\,\mathfrak{m}_{\mathfrak{l}}(q,p)\neq 0,\,\,\mathfrak{l}=1,\ldots,\mathfrak{s}\}$ гамильтоновой системы (0.1).

Доказательство. Если функции (4.10) являются комплекснозначными полиномиальными частными интегралами гамильтоновой системы (0.1), то полиномы (4.15) и функции (4.16) такие, что имеют место тождества (теоремы 4.1 и 4.3)

$$[P_{\mathfrak{l}}(q,p), H(q,p)] = 2P_{\mathfrak{l}}(q,p) \operatorname{Re} \mathfrak{M}_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \tag{4.17}$$

И

$$[A_{\mathfrak{l}}(q,p), H(q,p)] = \operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \tag{4.18}$$

где $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{l} = 1, \dots, \mathfrak{s},$ суть полиномы из системы тождеств (4.11).

С учетом того, что условия (4.12) равносильны системе тождеств

$$\operatorname{Re} \mathfrak{M}_{\mathfrak{l}}(q,p) = \widehat{\rho}_{\mathfrak{l}} \operatorname{Re} \mathfrak{M}(q,p) - \widetilde{\rho}_{\mathfrak{l}} \operatorname{Im} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},$$

$$\operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) = \widehat{\rho}_{\mathfrak{l}} \operatorname{Im} \mathfrak{M}(q,p) + \widetilde{\rho}_{\mathfrak{l}} \operatorname{Re} \mathfrak{M}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},$$

где $\widehat{\rho}_{\mathfrak{l}} = \operatorname{Re} \rho_{\mathfrak{l}}, \ \widetilde{\rho}_{\mathfrak{l}} = \operatorname{Im} \rho_{\mathfrak{l}}, \ \mathfrak{l} = 1, \dots, \mathfrak{s},$ на основании тождеств (4.17) и (4.18) получаем:

$$\left[F_1(q,p),H(q,p)\right] = \exp\biggl(\!\!-2\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \widetilde{\eta}_{\mathfrak{l}} A_{\mathfrak{l}}(q,p)\!\biggr) \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \widehat{\eta}_{\mathfrak{l}} \, P_{\mathfrak{l}}^{\widehat{\eta}_{\mathfrak{l}}-1}\!(q,p) \, \prod_{\substack{k=1\\k\neq \mathfrak{l}}}^{\mathfrak{s}} P_k^{\widehat{\eta}_k}\!(q,p) \, \left[P_{\mathfrak{l}}(q,p),H(q,p)\right] - 2 \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \widetilde{\eta}_{\mathfrak{l}} \, A_{\mathfrak{l}}(q,p) \,$$

$$-\ 2\prod_{\mathfrak{l}=1}^{\mathfrak{s}}\ P_{\mathfrak{l}}^{\widehat{\eta}_{\mathfrak{l}}}(q,p)\ \exp\biggl(-\ 2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\widetilde{\eta}_{\mathfrak{l}}A_{\mathfrak{l}}(q,p)\biggr) \, \biggl[\ \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\widetilde{\eta}_{\mathfrak{l}}A_{\mathfrak{l}}(q,p), H(q,p)\biggr] =$$

$$=2\sum_{\mathsf{l}=\mathsf{l}}^{\mathfrak{s}}\left(\widehat{\eta}_{\mathsf{l}}\operatorname{Re}\mathfrak{M}_{\mathsf{l}}(q,p)-\widetilde{\eta}_{\mathsf{l}}\operatorname{Im}\mathfrak{M}_{\mathsf{l}}(q,p)\right)F_{1}(q,p)=$$

$$=2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\left(\widehat{\eta}_{\mathfrak{l}}\left(\widehat{\rho}_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}(q,p)\right.\right.\\ \left.-\widetilde{\rho}_{\mathfrak{l}}\operatorname{Im}\mathfrak{M}(q,p)\right)\right.\\ \left.-\widetilde{\eta}_{\mathfrak{l}}\left(\widehat{\rho}_{\mathfrak{l}}\operatorname{Im}\mathfrak{M}(q,p)\right.\right.\\ \left.+\widetilde{\rho}_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}(q,p)\right)\right)F_{1}(q,p)=0$$

$$=2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\Big(\big(\,\widehat{\rho}_{\mathfrak{l}}\,\widehat{\eta}_{\mathfrak{l}}\,-\,\widetilde{\rho}_{\mathfrak{l}}\,\widetilde{\eta}_{\mathfrak{l}}\big)\operatorname{Re}\mathfrak{M}(q,p)\,-\,\big(\,\widetilde{\rho}_{\mathfrak{l}}\,\widehat{\eta}_{\mathfrak{l}}\,+\,\widehat{\rho}_{\mathfrak{l}}\,\widetilde{\eta}_{\mathfrak{l}}\big)\operatorname{Im}\mathfrak{M}(q,p)\Big)F_{1}(q,p)\quad\forall (q,p)\in G;$$

$$\left[F_2(q,p),H(q,p)\right] = \exp\biggl(2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\widehat{\eta}_{\mathfrak{l}}A_{\mathfrak{l}}(q,p)\biggr) \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\widetilde{\eta}_{\mathfrak{l}}\,P_{\mathfrak{l}}^{\widetilde{\eta}_{\mathfrak{l}}-1}\!(q,p)\,\prod_{\substack{k=1\\k\neq \mathfrak{l}}}^{\mathfrak{s}}\,P_{k}^{\widetilde{\eta}_{k}}\!(q,p)\,\bigl[P_{\mathfrak{l}}(q,p),H(q,p)\bigr] + 2(q+1)^{-1} + 2(q$$

$$\begin{split} &+2\prod_{\mathfrak{l}=1}^{\mathfrak{s}}\,P_{\mathfrak{l}}^{\widetilde{\eta}_{\mathfrak{l}}}(q,p)\,\exp\biggl(2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\widehat{\eta}_{\mathfrak{l}}A_{\mathfrak{l}}(q,p)\biggr)\,\biggl[\,\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\widehat{\eta}_{\mathfrak{l}}A_{\mathfrak{l}}(q,p),H(q,p)\biggr] = \\ &=2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\Bigl(\widetilde{\eta}_{\mathfrak{l}}\,\mathrm{Re}\,\mathfrak{M}_{\mathfrak{l}}(q,p)+\widehat{\eta}_{\mathfrak{l}}\,\mathrm{Im}\,\mathfrak{M}_{\mathfrak{l}}(q,p)\Bigr)F_{2}(q,p) = \end{split}$$

$$=2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\Big(\widetilde{\eta}_{\mathfrak{l}}\big(\widehat{\rho}_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}(q,p)-\widetilde{\rho}_{\mathfrak{l}}\operatorname{Im}\mathfrak{M}(q,p)\big)+\widehat{\eta}_{\mathfrak{l}}\big(\widehat{\rho}_{\mathfrak{l}}\operatorname{Im}\mathfrak{M}(q,p)+\widetilde{\rho}_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}(q,p)\big)\Big)F_{2}(q,p)=$$

$$=2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\Big(\big(\widetilde{\rho}_{\mathfrak{l}}\,\widehat{\eta}_{\mathfrak{l}}\,+\,\widehat{\rho}_{\mathfrak{l}}\,\widetilde{\eta}_{\mathfrak{l}}\big)\operatorname{Re}\mathfrak{M}(q,p)\,+\,\big(\widehat{\rho}_{\mathfrak{l}}\,\widehat{\eta}_{\mathfrak{l}}\,-\,\widetilde{\rho}_{\mathfrak{l}}\,\widetilde{\eta}_{\mathfrak{l}}\big)\operatorname{Im}\mathfrak{M}(q,p)\Big)F_{2}(q,p)\quad\forall (q,p)\in G.$$

Выбирая числа $\eta_{\mathfrak{l}}=\widehat{\eta}_{\mathfrak{l}}+i\,\widetilde{\eta}_{\mathfrak{l}}\,\left(\widehat{\eta}_{\mathfrak{l}}=\mathrm{Re}\,\eta_{\mathfrak{l}},\,\,\widetilde{\eta}_{\mathfrak{l}}=\mathrm{Im}\,\eta_{\mathfrak{l}}\right),\,\,\mathfrak{l}=1,\ldots,\mathfrak{s},\,$ так чтобы $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\,\eta_{\mathfrak{l}}=0,$

т.е.
$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \left(\widehat{\rho}_{\mathfrak{l}} \, \widehat{\eta}_{\mathfrak{l}} - \widetilde{\rho}_{\mathfrak{l}} \, \widetilde{\eta}_{\mathfrak{l}} \right) = 0, \; \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \left(\widetilde{\rho}_{\mathfrak{l}} \, \widehat{\eta}_{\mathfrak{l}} + \widehat{\rho}_{\mathfrak{l}} \, \widetilde{\eta}_{\mathfrak{l}} \right) = 0 \; \text{при} \; \sum_{\mathfrak{l}=1}^{\mathfrak{s}} |\eta_{\mathfrak{l}}|^2 \neq 0, \; \text{получаем, что функции (4.13)}$$

и (3.14) будут первыми интегралами на области G гамильтоновой системы (0.1). \boxtimes

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 4.1. Пусть выполняются условия теоремы 4.4. Тогда функции

$$F_{_{1\zeta\xi}}\colon (q,p)\to P_{_{\zeta}}^{\widehat{\eta}_{_{\zeta}}}\!(q,p)\,P_{\xi}^{\widehat{\eta}_{_{\xi}}}\!(q,p)\,\exp\Bigl(\!-2\left(\widetilde{\eta}_{_{\zeta}}\,A_{_{\zeta}}(q,p)+\widetilde{\eta}_{_{\xi}}\,A_{_{\xi}}(q,p)\right)\Bigr)\quad\forall (q,p)\!\in\!G_{1\zeta\xi},$$

u

$$F_{2\zeta\xi}\colon (q,p)\to P_{\zeta}^{\widetilde{\eta}_{\zeta}}\!(q,p)\,P_{\xi}^{\widetilde{\eta}_{\xi}}\!(q,p)\,\exp\!\left(2\left(\widehat{\eta}_{\zeta}\,A_{\zeta}(q,p)+\widehat{\eta}_{\xi}\,A_{\xi}(q,p)\right)\right)\ \, \forall (q,p)\in G_{2\zeta\xi},$$

где числа $\eta_{\zeta}=\widehat{\eta}_{\zeta}+i\,\widetilde{\eta}_{\zeta}$ и $\eta_{\xi}=\widehat{\eta}_{\xi}+i\,\widetilde{\eta}_{\xi},\ \zeta,\xi=1,\ldots,\mathfrak{s},\ \xi\neq\zeta,$ находятся соответственно из уравнений $\rho_{\zeta}\,\eta_{\zeta}+\rho_{\xi}\,\eta_{\xi}=0$ при $|\eta_{\zeta}|^2+|\eta_{\xi}|^2\neq0,\ \zeta,\xi=1,\ldots,\mathfrak{s},\ \xi\neq\zeta,$ будут первыми интегралами на областях $G_{1\zeta\xi}$ и $G_{2\zeta\xi}$ гамильтоновой системы (0.1).

Теорема 4.5. Пусть гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{l} = 1, \dots, \mathfrak{s},$ вещественные части связаны тождествами

$$\operatorname{Re}\mathfrak{M}_{\mathfrak{l}}(q,p) = \rho_{\mathfrak{l}}M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \rho_{\mathfrak{l}} \in \mathbb{R}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \tag{4.20}$$

 $\operatorname{\it ede} M\colon \mathbb{R}^{2n} o \mathbb{R}$ $\operatorname{\it ecmb}$ полином. Тогда скалярная функция

$$F: (q, p) \to \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q, p) \quad \forall (q, p) \in G \subset \mathbb{R}^{2n}, \tag{4.21}$$

где полиномы $P_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{R}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, находятся по формулам (4.15), а вещественные числа $\eta_{\mathfrak{l}}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, находятся из уравнения $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} = 0$ при $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \eta_{\mathfrak{l}}^2 \neq 0$, будет дополнительным первым интегралом на области G гамильтоновой системы (0.1).

Доказательство. На основании тождеств (4.17) при условиях (4.20) вычислим скобки Пуассона функции (4.21) в силу гамильтоновой системы (0.1):

$$\left[F(q,p),H(q,p)\right] = \left[\prod_{\mathfrak{l}=1}^{\mathfrak{s}}P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p),H(q,p)\right] = \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}-1}(q,p)\prod_{\substack{k=1\\k\neq \mathfrak{l}}}^{\mathfrak{s}}P_{k}^{\eta_{k}}(q,p)\big[P_{\mathfrak{l}}(q,p),H(q,p)\big] = \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}-1}(q,p)\prod_{k=1}^{\mathfrak{s}}P_{k}^{\eta_{k}}(q,p)\big[P_{\mathfrak{l}}(q,p),H(q,p)\big] = \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}-1}(q,p)\prod_{\mathfrak{l}=1}^{\mathfrak{s}}P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p)$$

$$=2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\rho_{\mathfrak{l}}\,\eta_{\mathfrak{l}}\,\prod_{\mathfrak{l}=1}^{\mathfrak{s}}\,P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p)\,M(q,p)\quad\forall (q,p)\in G.$$

Выбирая числа $\eta_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, так, чтобы уравнение $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\,\eta_{\mathfrak{l}}=0$ при $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}^2\neq 0$, получаем, что функция (4.21) будет первым интегралом на области G системы (0.1). \boxtimes

Из теоремы 4.5 при $\mathfrak{s}=2,\; \rho_1=\rho_2$ получаем

Следствие 4.2. Если гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) при $\mathfrak{s}=2$ такие, что у полиномов $\mathfrak{M}_1\colon \mathbb{R}^{2n}\to \mathbb{C}$ и $\mathfrak{M}_2\colon \mathbb{R}^{2n}\to \mathbb{C}$ из тождеств (4.11) вещественные части

$$\operatorname{Re} \mathfrak{M}_1(q, p) = \operatorname{Re} \mathfrak{M}_2(q, p) \quad \forall (q, p) \in \mathbb{R}^{2n},$$

то скалярная функция

$$F \colon (q,p) \to \frac{\operatorname{Re}^2 \mathfrak{m}_1(q,p) + \operatorname{Im}^2 \mathfrak{m}_1(q,p)}{\operatorname{Re}^2 \mathfrak{m}_2(q,p) + \operatorname{Im}^2 \mathfrak{m}_2(q,p)} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}$$

будет первым интегралом на области G гамильтоновой системы (0.1).

Из теоремы 4.5 при $\mathfrak{s}=2,\ \rho_1=-\rho_2$ получаем

Следствие 4.4. Если гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) при $\mathfrak{s}=2$ такие, что у полиномов $\mathfrak{M}_1\colon \mathbb{R}^{2n}\to \mathbb{C}$ и $\mathfrak{M}_2\colon \mathbb{R}^{2n}\to \mathbb{C}$ из тождеств (4.11) вещественные части

$$\operatorname{Re}\mathfrak{M}_1(q,p) = -\operatorname{Re}\mathfrak{M}_2(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},$$

то скалярная функция

$$F\colon (q,p)\to \left(\mathrm{Re}^2\mathfrak{m}_1(q,p)+\,\mathrm{Im}^2\mathfrak{m}_1(q,p)\right)\left(\mathrm{Re}^2\mathfrak{m}_2(q,p)+\,\mathrm{Im}^2\mathfrak{m}_2(q,p)\right)\quad \forall (q,p)\in\mathbb{R}^{2n}$$

будет первым интегралом на пространстве \mathbb{R}^{2n} гамильтоновой системы (0.1).

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 4.4. Пусть выполняются условия теоремы 4.5. Тогда функции

$$F_{\zeta\xi}\colon (q,p)\to P_{\zeta}^{\eta_{\zeta}}(q,p)\; P_{\xi}^{\eta_{\xi}}(q,p) \quad \forall (q,p)\in G_{\zeta\xi}\subset\mathbb{R}^{2n}, \quad \zeta=1,\ldots,\mathfrak{s}, \quad \xi=1,\ldots,\mathfrak{s}, \quad \xi\neq\zeta,$$

где вещественные числа η_{ζ} и η_{ξ} , $\zeta=1,\ldots,\mathfrak{s},\ \xi=1,\ldots,\mathfrak{s},\ \xi\neq\zeta$, находятся соответственно из уравнений $\rho_{\zeta}\,\eta_{\zeta}+\rho_{\xi}\,\eta_{\xi}=0$ при $\eta_{\zeta}^2+\eta_{\xi}^2\neq0,\ \zeta=1,\ldots,\mathfrak{s},\ \xi=1,\ldots,\mathfrak{s},\ \xi\neq\zeta,$ будут первыми интегралами на областях $G_{\zeta\xi}$ гамильтоновой системы (0.1).

Теорема 4.6. Пусть гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{l} = 1, \dots, \mathfrak{s},$ мнимые части связаны тождествами

$$\operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) = \rho_{\mathfrak{l}} M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \rho_{\mathfrak{l}} \in \mathbb{R}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \tag{4.22}$$

 $\operatorname{гde} M \colon \mathbb{R}^{2n} \to \mathbb{R} \operatorname{ecmb}$ полином. Тогда скалярная функция

$$F \colon (q,p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \tag{4.23}$$

где функции $A_{\mathfrak{l}}\colon G\to\mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\$ находятся по формулам (4.16), а вещественные числа $\tau_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\$ находятся из уравнения $\sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\,\tau_{\mathfrak{l}}=0$ при $\sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}}\tau_{\mathfrak{l}}^{2}\neq0,$ будет первым интегралом на области G полиномиальной гамильтоновой системы (0.1).

Доказательство. На основании тождеств (4.18) при условиях (4.22) вычислим скобки Пуассона на области G функции (4.23) в силу гамильтоновой системы (0.1):

$$\left[F(q,p),H(q,p)\right] = \left[\sum_{\mathbf{l}=1}^{\mathfrak{s}} \tau_{\mathbf{l}} A_{\mathbf{l}}(q,p),H(q,p)\right] = \sum_{\mathbf{l}=1}^{\mathfrak{s}} \tau_{\mathbf{l}} \left[A_{\mathbf{l}}(q,p),H(q,p)\right] = \sum_{\mathbf{l}=1}^{\mathfrak{s}} \rho_{\mathbf{l}} \tau_{\mathbf{l}} M(q,p).$$

Выбирая числа $\tau_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, так, чтобы $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\,\tau_{\mathfrak{l}}=0$ при $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\tau_{\mathfrak{l}}^{2}\neq0$, получаем, что функция (4.23) будет первым интегралом на G гамильтоновой системы (0.1). \boxtimes

Из теоремы 4.6 при $\mathfrak{s}=2,\; \rho_1=\rho_2$ получаем

Следствие 4.5. Если гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) при $\mathfrak{s}=2$ такие, что у полиномов $\mathfrak{M}_1\colon \mathbb{R}^{2n}\to \mathbb{C}$ и $\mathfrak{M}_2\colon \mathbb{R}^{2n}\to \mathbb{C}$ из тождеств (4.11) мнимые части связаны тождествами

$$\operatorname{Im} \mathfrak{M}_{1}(q,p) = \operatorname{Im} \mathfrak{M}_{2}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \tag{4.24}$$

то функция

$$F \colon (q,p) \to \frac{\operatorname{Re}\mathfrak{m}_1(q,p)\operatorname{Im}\mathfrak{m}_2(q,p) - \operatorname{Im}\mathfrak{m}_1(q,p)\operatorname{Re}\mathfrak{m}_2(q,p)}{\operatorname{Re}\mathfrak{m}_1(q,p)\operatorname{Re}\mathfrak{m}_2(q,p) + \operatorname{Im}\mathfrak{m}_1(q,p)\operatorname{Im}\mathfrak{m}_2(q,p)} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n} \quad (4.25)$$

будет первым интегралом на области G гамильтоновой системы (0.1).

Доказательство. С учетом (4.24), согласно теореме 4.6 получаем, что функция

$$F: (q, p) \to \arctan \frac{\operatorname{Im} \mathfrak{m}_1(q, p)}{\operatorname{Re} \mathfrak{m}_1(q, p)} - \arctan \frac{\operatorname{Im} \mathfrak{m}_2(q, p)}{\operatorname{Re} \mathfrak{m}_2(q, p)} \quad \forall (q, p) \in G$$

является первым интегралом на области $G \subset \mathbb{R}^{2n}$ гамильтоновой системы (0.1). Используя тригонометрические преобразования, эту функцию приводим к виду (4.25). \boxtimes

Из теоремы 4.6 при $\mathfrak{s}=2,\; \rho_1=-\rho_2$ получаем

Следствие 4.6. Если гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) при $\mathfrak{s}=2$ такие, что у полиномов $\mathfrak{M}_1\colon \mathbb{R}^{2n}\to \mathbb{C}$ и $\mathfrak{M}_2\colon \mathbb{R}^{2n}\to \mathbb{C}$ из тождеств (4.11) мнимые части связаны тождествами

$$\operatorname{Im}\mathfrak{M}_1(q,p) = -\operatorname{Im}\mathfrak{M}_2(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n},$$

то функция

$$F \colon (q,p) \to \frac{\operatorname{Re} \mathfrak{m}_1(q,p) \operatorname{Im} \mathfrak{m}_2(q,p) + \operatorname{Im} \mathfrak{m}_1(q,p) \operatorname{Re} \mathfrak{m}_2(q,p)}{\operatorname{Re} \mathfrak{m}_1(q,p) \operatorname{Re} \mathfrak{m}_2(q,p) - \operatorname{Im} \mathfrak{m}_1(q,p) \operatorname{Im} \mathfrak{m}_2(q,p)} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}$$

будет первым интегралом на области G гамильтоновой системы (0.1).

Доказательство аналогично доказательству следствия 4.5 с той лишь разницей, что первым интегралом на области G гамильтоновой системы (0.1) будет функция

$$F: (q,p) \to \arctan \frac{\operatorname{Im} \mathfrak{m}_1(q,p)}{\operatorname{Re} \mathfrak{m}_1(q,p)} + \arctan \frac{\operatorname{Im} \mathfrak{m}_2(q,p)}{\operatorname{Re} \mathfrak{m}_2(q,p)} \quad \forall (q,p) \in G. \boxtimes$$

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 4.7. Пусть выполняются условия теоремы 4.6. Тогда функции

$$F_{\zeta\xi}\colon (q,p)\to \ \tau_\zeta\,A_\zeta(q,p)+\tau_\xi\,A_\xi(q,p) \quad \forall (q,p)\in G_{\zeta\xi}\subset\mathbb{R}^{2n}, \quad \zeta,\xi=1,\ldots,\mathfrak{s}, \ \xi\neq\zeta,$$

где вещественные числа τ_{ζ} и τ_{ξ} , $\zeta=1,\ldots,\mathfrak{s},\ \xi=1,\ldots,\mathfrak{s},\ \xi\neq\zeta$, находятся соответственно из уравнений $\rho_{\zeta}\,\tau_{\zeta}+\rho_{\xi}\,\tau_{\xi}=0$ при $\tau_{\zeta}^2+\tau_{\xi}^2\neq0,\ \zeta=1,\ldots,\mathfrak{s},\ \xi=1,\ldots,\mathfrak{s},\ \xi\neq\zeta,$ будут первыми интегралами на областях $G_{\zeta\xi}$ гамильтоновой системы (0.1).

Для обобщенно-консервативной полиномиальной гамильтоновой системы

$$H: (q,p) \to \frac{1}{2} (p_1^2 + p_2^2 + q_1^2 + q_2^2) \quad \forall (q,p) \in \mathbb{R}^4$$
 (4.26)

по комплекснозначным линейным частным интегралам

$$\mathfrak{w}_1 \colon (q,p) \to \ q_1 - i \, p_1 \ \forall (q,p) \in \mathbb{R}^4 \quad \text{if} \quad \mathfrak{w}_2 \colon (q,p) \to \ q_2 - i \, p_2 \ \forall (q,p) \in \mathbb{R}^4$$

с сомножителями $\mathfrak{M}_1(q,p) = \mathfrak{M}_2(q,p) = i \ \forall (q,p) \in \mathbb{R}^4$ строим дополнительные первые интегралы

$$F_1 \colon (q,p) \to \ q_1^2 + p_1^2 \ \ \forall (q,p) \in \mathbb{R}^4, \quad F_2 \colon (q,p) \to \ q_2^2 + p_2^2 \ \ \forall (q,p) \in \mathbb{R}^4 \ \ (\text{Теорема 4.2})$$

и на любой области $G\subset \{(q,p)\colon q_1\neq 0,\ q_2\neq 0,\ q_1q_2+p_1p_2\neq 0\}$ (Теорема 4.6 или Следствие 4.5)

$$F_3\colon (q,p)\to \arctan\frac{p_1}{q_1}-\arctan\frac{p_2}{q_2}\,=\,\frac{q_1p_2-q_2p_1}{q_1q_2+p_1p_2}\quad \forall (q,p)\in G.$$

Будучи функционально независимыми, первые интегралы F_1 , F_2 и F_3 образуют автономный интегральный базис гамильтоновой системы (4.26) на любой области G. Отметим и то, что гамильтониан системы $H=\frac{1}{2}\left(F_1+F_2\right)$ есть линейная комбинация первых интегралов F_1 и F_2 .

Теорема 4.7. Пусть гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{l} = 1, \ldots, \mathfrak{s},$ вещественные части удовлетворяют тождествам (4.20). Кроме этого система (0.1) имеет комплекснозначные частные интегралы

$$\mathfrak{m}_{\mathfrak{l}_{1}}^{(1)} \colon (q,p) \to \mathfrak{m}_{\mathfrak{l}_{1}}^{(1)}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \operatorname{E} \mathfrak{m}_{\mathfrak{l}_{1}}^{(1)} \subset \mathbb{C}, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \tag{4.27}$$

такие, что в тождествах

$$\left[\mathfrak{m}_{\mathfrak{l}_{1}}^{(1)}(q,p), H(q,p)\right] = \mathfrak{m}_{\mathfrak{l}_{1}}^{(1)}(q,p) \,\,\mathfrak{M}_{\mathfrak{l}_{1}}^{(1)}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \tag{4.28}$$

y полиномов $\mathfrak{M}_{\mathfrak{l}_1}^{\scriptscriptstyle (1)}\colon \mathbb{R}^{2n} o \mathbb{C},\ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,$ мнимые части

$$\operatorname{Im} \mathfrak{M}_{\mathfrak{l}_{1}}^{(1)}(q,p) = \rho_{\mathfrak{l}_{1}}^{(1)} M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \rho_{\mathfrak{l}_{1}}^{(1)} \in \mathbb{R}, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \tag{4.29}$$

rde полином $M: \mathbb{R}^{2n} \to \mathbb{R}$. Тогда скалярная функция

$$F: (q, p) \to \prod_{l=1}^{5} P_{l}^{\eta_{l}}(q, p) \exp\left(\sum_{l=1}^{5_{1}} \tau_{l_{1}}^{(1)} A_{l_{1}}^{(1)}(q, p)\right) \quad \forall (q, p) \in G \subset \mathbb{R}^{2n}, \tag{4.30}$$

 $rde\ P_{\mathfrak{l}}\colon \mathbb{R}^{2n}\to\mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ cymb\ nonuhomu\ (4.15),\ \phi yhkuuu$

$$A_{\mathfrak{l}_{1}}^{(1)} \colon (q,p) \to \arctan \frac{\operatorname{Im} \mathfrak{m}_{\mathfrak{l}_{1}}^{(1)}(q,p)}{\operatorname{Re} \mathfrak{m}_{\mathfrak{l}_{1}}^{(1)}(q,p)} \quad \forall (q,p) \in G, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1},$$
 (4.31)

а вещественные числа $\eta_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s},\ \tau_{\mathfrak{l}_1}^{^{(1)}},\ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,\$ находятся из линейного одного родного уравнения $\sum\limits_{\mathfrak{l}_1=1}^{\mathfrak{s}_1} \rho_{\mathfrak{l}_1}^{^{(1)}} \tau_{\mathfrak{l}_1}^{^{(1)}} + 2\sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} = 0$ при $\sum\limits_{\mathfrak{l}_1=1}^{\mathfrak{s}_1} \left(\tau_{\mathfrak{l}_1}^{^{(1)}}\right)^2 \neq 0,\ \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \eta_{\mathfrak{l}}^2 \neq 0,$ будет первым интегралом на области G полиномиальной гамильтоновой системы (0.1).

Доказательство. Если функции (4.10) являются комплекснозначными полиномиальными частными интегралами гамильтоновой системы (0.1), то, по теореме 4.1, полиномы (4.15) будут вещественными полиномиальными частными интегралами гамильтоновой системы (0.1). При этом имеет место система тождеств (4.17). Если функции (4.27) являются комплекснозначными полиномиальными частными интегралами гамильтоновой системы (0.1), то, по теореме 4.3, функции (4.31) такие, что выполняются тождества

$$\left[A_{\mathfrak{l}_{1}}^{(1)}(q,p), H(q,p)\right] = \operatorname{Im}\mathfrak{M}_{\mathfrak{l}_{1}}^{(1)}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \tag{4.32}$$

где $\mathfrak{M}_{\mathfrak{l}_1}^{^{(1)}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1,$ суть полиномы из системы тождеств (4.28).

Тогда на основании системы тождеств (4.17) при условиях (4.20) и тождеств (4.32) при условиях (4.29) вычислим скобки Пуассона функции (4.30) в силу системы (0.1):

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \bigg[\prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \, \exp\bigg(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} A_{\mathsf{l}_{1}}^{(1)}(q,p)\bigg), H(q,p)\bigg] = \\ &= \exp\bigg(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} A_{\mathsf{l}_{1}}^{(1)}(q,p)\bigg) \bigg[\prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p), H(q,p)\bigg] + \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \left[\exp\bigg(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} A_{\mathsf{l}_{1}}^{(1)}(q,p)\right), H(q,p)\bigg] = \\ &= \exp\bigg(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} A_{\mathsf{l}_{1}}^{(1)}(q,p)\bigg) \sum_{\mathsf{l}=1}^{\mathfrak{s}} \eta_{\mathsf{l}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}-1}(q,p) \prod_{k=1 \atop k\neq \mathsf{l}}^{\mathfrak{s}} P_{k}^{\eta_{k}}(q,p) \left[P_{\mathsf{l}}(q,p), H(q,p)\right] + \\ &+ \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \, \exp\bigg(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} A_{\mathsf{l}_{1}}^{(1)}(q,p)\bigg) \sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} \left[A_{\mathsf{l}_{1}}^{(1)}(q,p), H(q,p)\right] = \\ &= \left(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \rho_{\mathsf{l}_{1}}^{(1)} \tau_{\mathsf{l}_{1}}^{(1)} + 2 \sum_{\mathsf{l}=1}^{\mathfrak{s}} \rho_{\mathsf{l}} \eta_{\mathsf{l}} \right) \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \exp\bigg(\sum_{\mathsf{l}_{1}=1}^{\mathfrak{s}_{1}} \tau_{\mathsf{l}_{1}}^{(1)} A_{\mathsf{l}_{1}}^{(1)}(q,p) \bigg) M(q,p) \,\,\,\forall (q,p) \in G. \end{split}$$

Выбирая вещественные числа $\eta_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s},\ \tau_{\mathfrak{l}_1}^{^{(1)}}$, $\mathfrak{l}_1=1,\ldots,\mathfrak{s}_1$, так, чтобы $\sum_{\mathfrak{l}_1=1}^{\mathfrak{s}_1} \rho_{\mathfrak{l}_1}^{^{(1)}} \tau_{\mathfrak{l}_1}^{^{(1)}} + 2\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} = 0$ при $\sum_{\mathfrak{l}_1=1}^{\mathfrak{s}_1} \left(\tau_{\mathfrak{l}_1}^{^{(1)}}\right)^2 \neq 0$, $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \eta_{\mathfrak{l}}^2 \neq 0$, получаем, что функция (4.30) будет первым интегралом на области G гамильтоновой системы (0.1). \boxtimes

Из теоремы 4.7 при $\mathfrak{l}=\mathfrak{l}^{(1)},\ \mathfrak{s}=\mathfrak{s}_1,\ \mathfrak{w}_{\mathfrak{l}}=\mathfrak{w}_{\mathfrak{l}}^{(1)},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ получаем, что имеет место Следствие 4.8. Пусть обобщенно-консервативная гамильтонова системы (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10). Тогда функция

$$F\colon (q,p)\to \prod_{\mathfrak{l}=1}^{\mathfrak{s}}\,P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p)\,\exp\,\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\tau_{\mathfrak{l}}\,A_{\mathfrak{l}}(q,p)\quad \forall (q,p)\in G\subset\mathbb{R}^{2n},$$

где числа $\eta_{\mathfrak{l}} \in \mathbb{R}$, $\tau_{\mathfrak{l}} \in \mathbb{R}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, $\sum_{\mathfrak{l} = 1}^{\mathfrak{s}} |\eta_{\mathfrak{l}}| + \sum_{\mathfrak{l} = 1}^{\mathfrak{s}} |\tau_{\mathfrak{l}}| \neq 0$, скалярные функции $P_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{R}$ и $A_{\mathfrak{l}} \colon G \to \mathbb{R}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, находятся по формулам (4.15) и (4.16), соответственно, будет дополнительным первым интегралом гамильтоновой системы (0.1), если и только если в тождествах (4.11) полиномы $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, такие, что

$$2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}_{\mathfrak{l}}(q,p)+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\tau_{\mathfrak{l}}\operatorname{Im}\mathfrak{M}_{\mathfrak{l}}(q,p)=0\quad\forall (q,p)\in\mathbb{R}^{2n}.$$

Для обобщенно-консервативной гамильтоновой системы (4.3), по следствию 4.8, на основании комплекснозначного линейного частного интеграла $\mathfrak{w}_1 \colon (q,p) \to q_1 + q_2 + i \, (p_1 - p_2) \ \forall (q,p) \in \mathbb{R}^4$ с сомножителем $\mathfrak{M}_1(q,p) = \alpha + i \, \beta \ \forall (q,p) \in \mathbb{R}^4$ строим первый интеграл $(\eta = \beta, \ \tau = -2\alpha)$

$$F_1 \colon (q,p) \to \ \left((q_1 + q_2)^2 + (p_1 - p_2)^2 \right)^\beta \exp \left(-2\alpha \arctan \frac{p_1 - p_2}{q_1 + q_2} \right) \ \forall (q,p) \in G_1 \subset \{ (q,p) \colon q_1 + q_2 \neq 0 \},$$

а на основании комплекснозначного частного интеграла \mathfrak{w}_2 : $(q,p) \to q_1 - q_2 + i \, (p_1 + p_2) \ \forall (q,p) \in \mathbb{R}^4$ с сомножителем $\mathfrak{M}_2(q,p) = -\alpha + i \, \beta \ \forall (q,p) \in \mathbb{R}^4$ строим первый интеграл $(\eta = \beta, \ \tau = 2\alpha)$

$$F_2 \colon (q,p) \to \ \left((q_1 - q_2)^2 + (p_1 + p_2)^2 \right)^\beta \exp \left(2\alpha \arctan \frac{p_1 + p_2}{q_1 - q_2} \right) \ \ \forall (q,p) \in G_2 \subset \{ (q,p) \colon q_1 - q_2 \neq 0 \}.$$

По теорема 4.6 (или следствию 4.5) строим дополнительный первый интеграл системы (4.3)

$$F_3 \colon (q,p) \to \arctan \frac{p_1 + p_2}{q_1 - q_2} - \arctan \frac{p_1 - p_2}{q_1 + q_2} = \frac{q_1 p_2 + q_2 p_1}{q_1^2 - q_2^2 + p_1^2 - p_2^2} \quad \forall (q,p) \in G_3 \subset G_1 \cap G_2.$$

Будучи функционально независимыми, первые интегралы F_1 , F_2 и F_3 образуют автономный интегральный базис полиномиальной гамильтоновой системы (4.3) на любой области $G_3 \subset \mathbb{R}^4$.

Из теоремы 4.7 при $\mathfrak{s}=1,\;\mathfrak{s}_1=1$ получаем

Следствие 4.9. Если гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы $\mathfrak{m}_1 \colon \mathbb{R}^n \to \mathbb{C}$ и $\mathfrak{m}_1^{(1)} \colon \mathbb{R}^n \to \mathbb{C}$ такие, что их сомножители $\mathfrak{M}_1 \colon \mathbb{R}^{2n} \to \mathbb{C}$ и $\mathfrak{M}_1^{(1)} \colon \mathbb{R}^{2n} \to \mathbb{C}$ из тождеств (4.11) и (4.28) связаны тождеством

$$\operatorname{Re}\mathfrak{M}_1(q,p) \,=\, \beta\operatorname{Im}\mathfrak{M}_1^{\scriptscriptstyle (1)}(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \beta \in \mathbb{R}\backslash\{0\},$$

то скалярная функция

$$F: (q,p) \to P_1(q,p) \exp\left(-2\beta A_1^{(1)}(q,p)\right) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n},$$

где полином $P_1: \mathbb{R}^{2n} \to \mathbb{R}$ находится по формулам (4.15), функция $A_1^{(1)}: G \to \mathbb{R}$ — по формулам (4.31), будет первым интегралом на области G гамильтоновой системы (0.1).

Для построения интегрального базиса системы (0.1) может быть использовано

Следствие 4.10. Пусть выполняются условия теоремы 4.7. Тогда функции

$$F_{\zeta\xi}\colon (q,p)\to P_{\zeta}^{\eta_{\zeta}}(q,p)\,\exp\,\tau_{\xi}^{{\scriptscriptstyle (1)}}A_{\xi}^{{\scriptscriptstyle (1)}}(q,p)\quad \forall (q,p)\in G_{\zeta\xi}\subset\mathbb{R}^{2n},\quad \zeta=1,\ldots,\mathfrak{s},\quad \xi=1,\ldots,\mathfrak{s}_1\,,$$

где вещественные числа η_{ζ} , $\zeta=1,\ldots,\mathfrak{s},$ и $\tau_{\xi}^{^{(1)}}$, $\xi=1,\ldots,\mathfrak{s}_1$, находятся соответственно из уравнений $\rho_{\xi}^{^{(1)}}$ $\tau_{\xi}^{^{(1)}}$ + $2\rho_{\zeta}$ $\eta_{\zeta}=0$ при $\left(\tau_{\xi}^{^{(1)}}\right)^2+\eta_{\xi}^2\neq 0,$ $\zeta=1,\ldots,\mathfrak{s},$ $\xi=1,\ldots,\mathfrak{s}_1$, будут первыми интегралами на областях $G_{\zeta\xi}$ полиномиальной гамильтоновой системы (0.1).

4.3. Построение дополнительных первых интегралов гамильтоновой системы по комплекснозначным и вещественным полиномиальным частным интегралам

Теорема 4.8. Пусть гамильтонова система (0.1) имеет вещественные полиномиальные частные интегралы (1.5) такие, что выполняются тождества (1.13). Кроме этого гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \mathfrak{l} = 1, \ldots, \mathfrak{s},$ вещественные части связаны тождествами (4.20). Тогда скалярная функция

$$F \colon (q,p) \to \prod_{l=1}^{s} w_l^{\gamma_l}(q,p) \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \tag{4.34}$$

где полиномы $P_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{R}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, находятся по формулам (4.15), а вещественные числа γ_l , $l = 1, \dots, \mathfrak{s}$, $\eta_{\mathfrak{l}}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, находятся из уравнения $\sum\limits_{l=1}^{s} \lambda_l \gamma_l + 2 \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} = 0$ при $\sum\limits_{l=1}^{s} \gamma_l^2 \neq 0$, $\sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \eta_{\mathfrak{l}}^2 \neq 0$, будет первым интегралом гамильтоновой системы (0.1).

Доказательство. При выполнении тождеств (1.13), (4.11) и (4.20) вычислим скобки Пуассона функции (4.34) в силу гамильтоновой системы (0.1):

$$\begin{split} & \left[F(q,p), H(q,p) \right] = \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \bigg[\prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p) \bigg] + \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) \bigg[\prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p), H(q,p) \bigg] = \\ & = \sum_{l=1}^{s} \gamma_{l} w_{l}^{\gamma_{l}-1}(q,p) \prod_{k=1}^{s} w_{k}^{\gamma_{k}}(q,p) \left[w_{l}(q,p), H(q,p) \right] \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) + \end{split}$$

$$+ \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \eta_{\mathfrak{l}} \, P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}-1}(q,p) \, \prod_{\substack{k=1 \\ k \neq \mathfrak{l}}}^{\mathfrak{s}} \, P_{k}^{\eta_{k}}(q,p) \, \big[P_{\mathfrak{l}}(q,p), H(q,p) \big] \, \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) =$$

$$= \bigg(\sum_{l=1}^s \lambda_l \, \gamma_l + 2 \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} \bigg) \prod_{l=1}^s w_l^{\gamma_l}(q,p) \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \, M(q,p) \quad \forall (q,p) \in G.$$

Выбирая вещественные числа γ_l , $l=1,\ldots s$, $\eta_{\mathfrak l}$, $\mathfrak l=1,\ldots,\mathfrak s$, так, чтобы имело место $\sum\limits_{l=1}^s \lambda_l \gamma_l + 2\sum\limits_{\mathfrak l=1}^{\mathfrak s} \rho_{\mathfrak l}$ $\eta_{\mathfrak l}=0$ при условии $\sum\limits_{l=1}^s \gamma_l^2 \neq 0$, $\sum\limits_{\mathfrak l=1}^{\mathfrak s} \eta_{\mathfrak l}^2 \neq 0$, получаем, что функция (4.34) является первым интегралом на области G гамильтоновой системы (0.1). \boxtimes

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 4.11. Пусть выполняются условия теоремы 4.8. Тогда функции

$$F_{\zeta\xi}\colon (q,p)\to w_{\zeta}^{\gamma_{\zeta}}(q,p)\,P_{\xi}^{\eta_{\xi}}(q,p)\quad \forall (q,p)\in G_{\zeta\xi}\subset\mathbb{R}^{2n},\quad \zeta=1,\ldots,s,\quad \xi=1,\ldots,\mathfrak{s},$$

где полиномы $P_{\xi} \colon \mathbb{R}^{2n} \to \mathbb{R}$, $\xi = 1, \dots, \mathfrak{s}$, находятся по формулам (4.15), а вещественные числа γ_{ζ} и η_{ξ} , $\zeta = 1, \dots, \mathfrak{s}$, $\xi = 1, \dots, \mathfrak{s}$, находятся соответственно из линейных однородных уравнений $\lambda_{\zeta}\gamma_{\zeta} + 2\rho_{\xi}\eta_{\xi} = 0$ при $\gamma_{\zeta}^2 + \eta_{\xi}^2 \neq 0$, $\zeta = 1, \dots, \mathfrak{s}$, $\xi = 1, \dots, \mathfrak{s}$, будут первыми интегралами на областях $G_{\zeta\xi}$ полиномиальной гамильтоновой системы (0.1).

Теорема 4.9. Пусть гамильтонова система (0.1) имеет вещественные полиномиальные частные интегралы (1.5) такие, что выполняются тождества (1.13). Кроме этого гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{l} = 1, \ldots, \mathfrak{s},$ мнимые части связаны тождествами (4.22). Тогда скалярная функция

$$F \colon (q,p) \to \prod_{l=1}^{s} w_l^{\gamma_l}(q,p) \exp \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \tag{4.35}$$

где функции $A_{\mathfrak{l}}\colon G\to \mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\$ находятся по формулам (4.16), а вещественные числа $\gamma_l,\ l=1,\ldots,\mathfrak{s},\ \tau_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\$ находятся из уравнения $\sum\limits_{l=1}^s \lambda_l \gamma_l + \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \, au_{\mathfrak{l}}=0,\$ при $\sum\limits_{l=1}^s \gamma_l^2 \neq 0,\ \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}}^2 \neq 0,\$ будет первым интегралом гамильтоновой системы (0.1).

 \mathcal{A} оказательство. При выполнении тождеств (1.13), (4.11) и (4.22) вычислим скобки Пуассона функции (4.35) в силу гамильтоновой системы (0.1):

$$\left[F(q,p), H(q,p)\right] = \exp\!\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \left[\prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p)\right] + \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) \left[\exp\!\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p), H(q,p)\right] = \exp\!\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \left[\prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p)\right] + \prod_{l=1}^{s} w_{l}^{\gamma_{l}}(q,p) \left[\exp\!\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p), H(q,p)\right] = \exp\!\left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p)\right] \left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p)\right] + \prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p) \left[\exp\!\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p), H(q,p)\right] = \exp\!\left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p)\right] \left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p)\right] + \prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p) \left[\exp\!\sum_{\mathfrak{l}=1}^{s} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p), H(q,p)\right] = \exp\!\left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p)\right] \left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p)\right] + \prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p) \left[\prod_{\mathfrak{l}=1}^{s} w_{l}^{\gamma_{l}}(q,p), H(q,p)\right]$$

$$=\exp\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\tau_{\mathfrak{l}}A_{\mathfrak{l}}(q,p)\sum_{l=1}^{s}\gamma_{l}w_{l}^{\gamma_{l}-1}(q,p)\prod_{\substack{k=1\\k\neq l}}^{s}w_{k}^{\gamma_{k}}(q,p)\left[w_{l}(q,p),H(q,p)\right]+$$

$$+ \ \prod_{l=1}^s w_l^{\gamma_l}(q,p) \exp \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \ \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} \left[A_{\mathfrak{l}}(q,p), H(q,p) \right] =$$

$$= \left(\sum_{l=1}^s \lambda_l \gamma_l + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \tau_{\mathfrak{l}}\right) \, \prod_{l=1}^s w_l^{\gamma_l}(q,p) \, \exp \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \, M(q,p) \quad \forall (q,p) \in G.$$

Выбирая вещественные числа $\gamma_l,\, l=1,\dots s,\,\, au_{\mathfrak{l}},\, \mathfrak{l}=1,\dots,\mathfrak{s},\,\, {\rm так},\,\, {\rm чтобы}\,\,\, {\rm имело}\,\,\, {\rm место}$

 $\sum_{l=1}^{s} \lambda_l \gamma_l + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \ au_{\mathfrak{l}} = 0$ при $\sum_{l=1}^{s} \gamma_l^2 \neq 0$, $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}}^2 \neq 0$, получаем, что функция (4.35) является первым интегралом на области G полиномиальной гамильтоновой системы (0.1). \boxtimes

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 4.12. Пусть выполняются условия теоремы 4.9. Тогда функции

$$F_{\zeta\xi}\colon (q,p)\to w_\zeta^{\gamma_\zeta}(q,p)\,\exp\bigl(\tau_\xi A_\xi(q,p)\bigr)\quad \forall (q,p)\in G_{\zeta\xi}\subset\mathbb{R}^{2n},\quad \zeta=1,\ldots,s,\quad \xi=1,\ldots,\mathfrak{s},$$

где функции $A_{\xi} \colon G_{\zeta\xi} \to \mathbb{R}, \ \xi = 1, \dots, \mathfrak{s}, \$ находятся по формулам (4.16), а вещественные числа γ_{ζ} и τ_{ξ} , $\zeta = 1, \dots, s$, $\xi = 1, \dots, \mathfrak{s}$, находятся соответственно из линейных однородных уравнений $\lambda_{\zeta}\gamma_{\zeta} + \rho_{\xi}\tau_{\xi} = 0$ при $\gamma_{\zeta}^2 + \tau_{\xi}^2 \neq 0$, $\zeta = 1, \dots, s$, $\xi = 1, \dots, \mathfrak{r}$, будут первыми интегралами на областях $G_{\zeta\xi}$ полиномиальной гамильтоновой системы (0.1).

Обобщенно-консервативная полиномиальная гамильтонова система

$$H: (q, p) \to \frac{1}{2} (p_1^2 + p_2^2 - 7q_1^2 + 8q_1q_2 - q_2^2) \quad \forall (q, p) \in \mathbb{R}^4$$
 (4.36)

имеет два вещественных полиномиальных (линейных) частных интеграла

 $w_1\colon (q,p) \to 6q_1-3q_2-2p_1+p_2 \ \forall (q,p) \in \mathbb{R}^4$ и $w_2\colon (q,p) \to -6q_1+3q_2-2p_1+p_2 \ \forall (q,p) \in \mathbb{R}^4$ с сомножителями $M_1(q,p)=-3 \ \forall (q,p) \in \mathbb{R}^4$ и $M_2(q,p)=3 \ \forall (q,p) \in \mathbb{R}^4$, соответственно, и комплекснозначный линейный частный интеграл $\mathfrak{w}\colon (q,p) \to q_1+2q_2-i(p_1+2p_2) \ \forall (q,p) \in \mathbb{R}^4$ с сомножителем $\mathfrak{M}(q,p)=i \ \forall (q,p) \in \mathbb{R}^4$. Для системы (4.36), по следствию 1.2 (или теореме 1.3), на основании двух вещественных частных интегралов w_1 и w_2 строит первый интеграл

$$F_1 \colon (q,p) \to (2p_1 - p_2)^2 - 9(2q_1 - q_2)^2 \quad \forall (q,p) \in \mathbb{R}^4,$$

по теореме 4.2, на основании комплекснозначного частного интеграла в строим первый интеграл

$$F_2 \colon (q,p) \to \ (q_1 + 2q_2)^2 + (p_1 + 2p_2)^2 \quad \forall (q,p) \in \mathbb{R}^4,$$

а, по теореме 4.9 (или следствию 4.12), на основании вещественного частного интеграла w_1 и комплекснозначного частного интеграла $\mathfrak w$ строим дополнительный первый интеграл

$$F_3 \colon (q,p) \to \ (6q_1 - 3q_2 - 2p_1 + p_2) \exp \left(-3 \arctan \frac{p_1 + 2p_2}{q_1 + 2q_2} \right) \ \ \forall (q,p) \in G \subset \{ (q,p) \colon q_1 + 2q_2 \neq 0 \}.$$

Будучи функционально независимыми, первые интегралы F_1 , F_2 и F_3 образуют автономный интегральный базис полиномиальной гамильтоновой системы (4.36) на любой области $G \subset \mathbb{R}^4$.

Гамильтониан $H=\frac{1}{10}\left(F_1+F_2\right)$ есть линейная комбинация первых интегралов F_1 и F_2 . С учетом того, что гамильтониан H является первым интегралом системы (4.36) получаем, что в качестве автономного интегрального базиса на области G гамильтоновой системы (4.36) можно взять любое из множеств функций $\{F_1,F_2,F_3\},\ \{H,F_2,F_3\},\ \{F_1,H,F_3\}.$

4.4. Построение первых интегралов гамильтоновой системы по комплекснозначным и кратным вещественным полиномиальным частным интегралам

Теорема 4.10. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum\limits_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l=1,\ldots,s,$ со-

ответственно, относительно которых выполняются тождества (2.7), и существуют такие $\xi_l \in \{1,\ldots,\varepsilon_l\}$, $l=1,\ldots,s$, что при фиксированных $g_{\xi_l} \in \{1,\ldots,r_{\xi_l}\}$, $l=1,\ldots,s$, выполняются тождества (2.8). Кроме этого система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{C}$, $\mathfrak{l} = 1,\ldots,\mathfrak{s}$, вещественные части связаны тождествами (4.20). Тогда

$$F \colon (q,p) \to \prod_{l=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \, \exp \sum_{l=1}^{s} \alpha_{l} K_{l f_{\xi_{l}} g_{\xi_{l}}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \tag{4.37}$$

где полиномы $P_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{R}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, находятся по формулам (4.15), а вещественные числа $\alpha_{\mathfrak{l}}$, $l = 1, \dots, \mathfrak{s}$, $\eta_{\mathfrak{l}}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, находятся из линейного однородного уравнения $\sum_{l=1}^{s} \lambda_{l} \alpha_{l} + 2 \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} = 0$ при $\sum_{l=1}^{s} \alpha_{l}^{2} \neq 0$, $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \eta_{\mathfrak{l}}^{2} \neq 0$, будет первым интегралом системы (0.1).

Доказательство. При выполнении тождеств (2.7), (2.8), (4.11) и (4.20) вычислим скобки Пуассона функции (4.37) в силу полиномиальной гамильтоновой системы (0.1):

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \exp \sum_{l=1}^{s} \alpha_{l} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \left[\prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p),H(q,p) \right] + \\ &+ \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \sum_{l=1}^{s} \alpha_{l} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \left[\sum_{l=1}^{s} \alpha_{l} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p) \right] = \\ &= \exp \sum_{l=1}^{s} \alpha_{l} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \eta_{\mathfrak{l}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}-1}(q,p) \prod_{\substack{k=1\\k\neq\mathfrak{l}}}^{\mathfrak{s}} P_{k}^{\eta_{k}}(q,p) \left[P_{\mathfrak{l}}(q,p),H(q,p) \right] + \\ &+ \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \sum_{l=1}^{s} \alpha_{l} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) \sum_{l=1}^{s} \alpha_{l} \left[K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p) \right] = \\ &= \left(\sum_{l=1}^{s} \lambda_{l} \alpha_{l} + 2 \sum_{l=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \eta_{\mathfrak{l}} \right) \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \sum_{l=1}^{s} \alpha_{l} K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p) M(q,p) \quad \forall (q,p) \in G. \end{split}$$

Выбирая вещественные числа α_l , $l=1,\ldots s$, $\eta_{\mathfrak l}$, $\mathfrak l=1,\ldots,\mathfrak s$, так, чтобы имело место $\sum\limits_{l=1}^s \lambda_l \, \alpha_l + 2 \sum\limits_{\mathfrak l=1}^{\mathfrak s} \rho_{\mathfrak l} \, \eta_{\mathfrak l} = 0$ при $\sum\limits_{l=1}^s \alpha_l^2 \neq 0$, $\sum\limits_{\mathfrak l=1}^{\mathfrak s} \eta_{\mathfrak l}^2 \neq 0$, получаем, что функция (4.37) является первым интегралом на области G полиномиальной гамильтоновой системы (0.1). \boxtimes

Для построения базиса первых интегралов гамильтоновой системы (0.1) применимо Следствие 4.13. Пусть выполняются условия теоремы 4.10. Тогда функции

$$F_{\zeta\varrho}\colon (q,p)\to P_\varrho^{\eta_\varrho}(q,p)\exp\alpha_\zeta K_{\zeta f_{\xi_\varepsilon}g_{\xi_\varepsilon}}(q,p)\quad \forall (q,p)\in G_{\zeta\varrho}\subset\mathbb{R}^{2n},\quad \zeta=1,\ldots,s,\quad \varrho=1,\ldots,\mathfrak{s},$$

где полиномы $P_{\varrho} \colon \mathbb{R}^n \to \mathbb{R}$, $\varrho = 1, \dots, \mathfrak{s}$, находятся по формулам (4.15), а вещественные числа α_{ζ} и η_{ϱ} , $\zeta = 1, \dots, \mathfrak{s}$, $\varrho = 1, \dots, \mathfrak{s}$, находятся соответственно из линейных однородных уравнений $\lambda_{\zeta}\alpha_{\zeta} + 2\rho_{\varrho}\eta_{\varrho} = 0$ при $\alpha_{\zeta}^2 + \eta_{\varrho}^2 \neq 0$, $\zeta = 1, \dots, \mathfrak{s}$, $\varrho = 1, \dots, \mathfrak{s}$, будут первыми

интегралами на областях $G_{\zeta\rho}$ полиномиальной гамильтоновой системы (0.1).

Теорема 4.11. Пусть система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l=1+\sum\limits_{\xi_l=1}^{\varepsilon_l}r_{\xi_l},\ l=1,\ldots,s,$ соответственно, относительно которых выполняются тождества $(2.7),\ u$ существуют такие $\xi_l\in\{1,\ldots,\varepsilon_l\},\ l=1,\ldots,s,$ что при фиксированных $g_{\xi_l}\in\{1,\ldots,r_{\xi_l}\},\ l=1,\ldots,s,$ выполняются тождества (2.8). Кроме этого система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}\colon\mathbb{R}^{2n}\to\mathbb{C},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ мнимые части связаны тождествами (4.22). Тогда функция

$$F \colon (q,p) \to \sum_{l=1}^s \alpha_l K_{l f_{\xi_l} g_{\xi_l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \tag{4.38}$$

где функции $A_{\mathfrak{l}}\colon G \to \mathbb{R}, \ \mathfrak{l}=1,\dots,\mathfrak{s}, \$ находятся по формулам (4.16), а вещественные числа $\alpha_l,\ l=1,\dots,\mathfrak{s},\ \tau_{\mathfrak{l}},\ \mathfrak{l}=1,\dots,\mathfrak{s}, \$ находятся из линейного уравнения $\sum\limits_{l=1}^s \lambda_l \, \alpha_l + \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \tau_{\mathfrak{l}} = 0$ при $\sum\limits_{l=1}^s \alpha_l^2 \neq 0,\ \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}}^2 \neq 0, \$ будет первым интегралом на области G системы (0.1).

Доказательство. При выполнении тождеств (2.7), (2.8), (4.11) и (4.22) вычислим скобки Пуассона на области G функции (4.38) в силу гамильтоновой системы (0.1):

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \bigg[\sum_{l=1}^s \alpha_l K_{lf_{\xi_l}g_{\xi_l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p), H(q,p)\bigg] = \\ &= \sum_{l=1}^s \alpha_l \Big[K_{lf_{\xi_l}g_{\xi_l}}(q,p), H(q,p)\Big] + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} \left[A_{\mathfrak{l}}(q,p), H(q,p)\right] = \bigg(\sum_{l=1}^s \lambda_l \, \alpha_l + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \tau_{\mathfrak{l}}\bigg) M(q,p). \end{split}$$

Выбирая вещественные числа $\alpha_l,\ l=1,\ldots s,\ \tau_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ так, чтобы имело место $\sum\limits_{l=1}^s \lambda_l\ \alpha_l + \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}}\ \tau_{\mathfrak{l}} = 0$ при $\sum\limits_{l=1}^s \alpha_l^2 \neq 0,\ \sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}}^2 \neq 0,$ получаем, что скалярная функция (4.38) является первым интегралом на области G гамильтоновой системы (0.1). \boxtimes

Для построения базиса первых интегралов гамильтоновой системы (0.1) применимо Следствие 4.14. Пусть выполняются условия теоремы 4.11. Тогда функции

$$F_{\zeta\varrho}\colon (q,p)\to \,\alpha_\zeta K_{\zeta f_{\xi_\zeta}g_{\xi_\zeta}}(q,p)\,+\,\tau_\varrho A_\varrho(q,p)\quad \forall (q,p)\in G_{\zeta\varrho}\subset\mathbb{R}^{2n},\quad \zeta=1,\ldots,s,\quad \varrho=1,\ldots,\mathfrak{s},$$

где функции $A_{\varrho}\colon G\to \mathbb{R},\ \varrho=1,\ldots,\mathfrak{s},\$ находятся по формулам (4.16), а вещественные числа α_{ζ} и $\tau_{\varrho},\ \zeta=1,\ldots,s,\ \varrho=1,\ldots,\mathfrak{s},\$ находятся соответственно из линейных однородных уравнений $\lambda_{\zeta}\alpha_{\zeta}+\rho_{\varrho}$ $\tau_{\varrho}=0$ при $\alpha_{\zeta}^2+\tau_{\varrho}^2\neq 0,\ \zeta=1,\ldots,s,\ \varrho=1,\ldots,\mathfrak{s},\$ будут первыми интегралами на областях $G_{\zeta\varrho}$ гамильтоновой системы (0.1).

По следствию 4.14, для обобщенно-консервативной полиномиальной гамильтоновой системы

$$H: (q,p) \to \frac{1}{2} \left(-7q_1^2 + 8q_1q_2 - q_2^2 - p_2^2 \right) \quad \forall (q,p) \in \mathbb{R}^4$$

на основании кратного вещественного полиномиального частного интеграла $w\colon (q,p)\to q_1$ такого, что функции $K_{11}\colon (q,p)\to \frac{p_1+4p_2}{9q_1}\ \forall (q,p)\in G\subset \{(q,p)\colon q_1\neq 0\}$ и $R_{11}\colon (q,p)\to -1\ \forall (q,p)\in \mathbb{R}^4,$ и комплекснозначного полиномиального частного интеграла $\mathfrak{w}\colon (q,p)\to 4q_1-q_2-ip_2\ \forall (q,p)\in \mathbb{R}^4$ с сомножителем $\mathfrak{M}\colon (q,p)\to i\ \forall (q,p)\in \mathbb{R}^4$ строим дополнительный первый интеграл

$$F \colon (q,p) \to \arctan \frac{p_2}{4q_1 - q_2} - \frac{p_1 + 4p_2}{9q_1} \quad \forall (q,p) \in G.$$

4.5. Построение первых интегралов гамильтоновой системы по комплекснозначным полиномиальным частным интегралам и условным частным интегралам

Как по теореме 3.3 при m=1 (т.е. при наличие только одного условного частного интеграла), так и по теоремам 4.4-4.6 при $\mathfrak{s}=1$ (т.е. при наличие только одного комплекснозначного полиномиального частного интеграла) построить дополнительный первый интеграл обобщенно-консервативной гамильтоновой системы (0.1) не представляется возможным. В этих случаях могут быть использованы следующие утверждения

Теорема 4.12. Пусть гамильтонова система (0.1) имеет условные частные интегралы (3.4) при условиях (3.5) и (3.8) и комплекснозначные полиномиальные частные интегралы (4.10) при условиях (4.11) и (4.20). Тогда скалярные функции

$$F_{\xi\zeta}\colon (q,p) \to P_{\xi}^{\eta_{\xi}}(q,p) \exp\left(\beta_{\zeta} v_{\zeta}(q,p)\right) \quad \forall (q,p) \in G, \quad \xi = 1,\dots,\mathfrak{s}, \quad \zeta = 1,\dots,m, \tag{4.39}$$

где $P_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{R}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, суть полиномы (4.15), а вещественные числа η_{ξ} и β_{ζ} находятся из уравнений $2\rho_{\xi}\eta_{\xi} + \mu_{\zeta}\beta_{\zeta} = 0$ при $|\eta_{\xi}| + |\beta_{\zeta}| \neq 0$, $\xi = 1, \ldots, \mathfrak{s}$, $\zeta = 1, \ldots, m$, будут первыми интегралами обобщенно-консервативной гамильтоновой системы (0.1).

 \mathcal{A} ействительно, с учетом теоремы 4.1, тождеств (3.5) при условии (3.8) и тождеств (4.11) при условии (4.20), вычислим скобки Пуассона

$$[F_{\xi\zeta}(q,p), H(q,p)] = \eta_{\xi} P_{\xi}^{\eta_{\xi}-1}(q,p) \cdot [P_{\xi}(q,p), H(q,p)] \cdot \exp(\beta_{\zeta} v_{\zeta}(q,p)) +$$
$$+ \beta_{\zeta} P_{\xi}^{\eta_{\xi}}(q,p) \exp(\beta_{\zeta} v_{\zeta}(q,p)) \cdot [v_{\zeta}(q,p), H(q,p)] =$$

$$= \left(2\rho_{\xi}\eta_{\xi} + \mu_{\zeta}\beta_{\zeta}\right)P_{\xi}^{\eta_{\xi}}(q,p)\exp\left(\beta_{\zeta}v_{\zeta}(q,p)\right)M(q,p) \quad \forall (q,p) \in G, \quad \xi = 1,\ldots,\mathfrak{s}, \quad \zeta = 1,\ldots,m.$$

Выбирая числа η_{ξ} , $\xi=1,\ldots,\mathfrak{s}$, и β_{ζ} , $\zeta=1,\ldots,m$, так, чтобы $2\rho_{\xi}$ $\eta_{\xi}+\mu_{\zeta}$ $\beta_{\zeta}=0$, получаем, что функции (4.39) будут первыми интегралами системы (0.1). \boxtimes

Теорема 4.13. Пусть гамильтонова система (0.1) имеет условные частные интегралы (3.4) при условиях (3.5) и (3.8) и комплекснозначные полиномиальные частные интегралы (4.10) при условиях (4.11) и (4.22). Тогда скалярные функции

$$F_{\xi\zeta}\colon (q,p)\to \ \tau_\xi A_\xi(q,p)+\beta_\zeta v_\zeta(q,p) \quad \forall (q,p)\in G, \ \xi=1,\ldots,\mathfrak{s}, \ \zeta=1,\ldots,m, \eqno(4.40)$$

где $A_{\mathfrak{l}} \colon G \to \mathbb{R}, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \ cymь \ функции (4.16), \ a вещественные числа <math>\tau_{\xi} \ u \ \beta_{\zeta} \ находятся$ из линейных уравнений $\rho_{\xi} \tau_{\xi} + \mu_{\zeta} \ \beta_{\zeta} = 0 \ npu \ |\tau_{\xi}| + |\beta_{\zeta}| \neq 0, \ \xi = 1, \dots, \mathfrak{s}, \ \zeta = 1, \dots, m, \ будут$ первыми интегралами обобщенно-консервативной гамильтоновой системы (0.1).

Действительно, с учетом теоремы 4.3, тождеств (3.5) при условии (3.8) и тождеств (4.11) при условии (4.22), вычислим скобки Пуассона

$$[F_{\xi\zeta}(q,p),H(q,p)] = \tau_{\xi} [A_{\xi}(q,p),H(q,p)] + \beta_{\zeta} [v_{\zeta}(q,p),H(q,p)] = (\rho_{\xi}\tau_{\xi} + \mu_{\zeta}\beta_{\zeta})M(q,p)$$

$$\forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \xi = 1,\ldots,\mathfrak{s}, \quad \zeta = 1,\ldots,m.$$

Выбирая числа τ_{ξ} , $\xi=1,\ldots,\mathfrak{s}$, и β_{ζ} , $\zeta=1,\ldots,m$, так, чтобы ρ_{ξ} $\tau_{\xi}+\mu_{\zeta}$ $\beta_{\zeta}=0$, получаем, что функции (4.40) будут первыми интегралами системы (0.1). \boxtimes

4.6. Построение неавтономных дополнительных первых интегралов гамильтоновой системы по комплекснозначным полиномиальным частным интегралам

Теорема 4.14. Если обобщенно-консервативная полиномиальная гамильтонова система (0.1) имеет такой комплекснозначный полиномиальный частный интеграл (4.1), что в тождестве (4.2) у полинома $\mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$ вещественная часть

$$\operatorname{Re}\mathfrak{M}(q,p) = \lambda \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \lambda \in \mathbb{R},$$
 (4.41)

то скалярная функция

$$F: (t, q, p) \to P(q, p) \exp(-2\lambda t) \quad \forall (t, q, p) \in \mathbb{R}^{2n+1}, \tag{4.42}$$

 $rde\ P: \mathbb{R}^{2n} \to \mathbb{R}\ ecmb\ nonuhom\ (4.6),\ будет\ nepвым\ интегралом\ cucmeмы\ (0.1).$

Доказательство. В соответствии с теоремой 4.1 имеет место тождество (4.7). Тогда с учетом этого тождества при условии (4.41), вычислим производную Ли на расширенном фазовом пространстве \mathbb{R}^{2n+1} функции (4.42) в силу гамильтоновой системы (0.1):

$$\mathfrak{B}\,F(t,q,p) = -2\,F(t,q,p)\,\partial_t\,\big(\lambda\,t\big)\,+\,\big[P(q,p),H(q,p)\big]\,\exp\big(-2\,\lambda\,t\big) = 0.\ \, \boxtimes$$

Теорема 4.15. Если обобщенно-консервативная полиномиальная гамильтонова система (0.1) имеет такой комплекснозначный полиномиальный частный интеграл (4.1), ито в тождестве (4.2) у полинома $\mathfrak{M}: \mathbb{R}^{2n} \to \mathbb{C}$, мнимая часть

$$\operatorname{Im}\mathfrak{M}(q,p) = \lambda \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \lambda \in \mathbb{R}, \tag{4.43}$$

то неавтономным первым интегралом гамильтоновой системы (0.1) будет функция

$$F: (t, q, p) \to \arctan \frac{\operatorname{Im} \mathfrak{m}(q, p)}{\operatorname{Re} \mathfrak{m}(q, p)} - \lambda t \quad \forall (t, q, p) \in \mathbb{R} \times G \subset \mathbb{R}^{2n+1}.$$
 (4.44)

Доказательство. В соответствии с теоремой 4.3 имеют место тождеств (4.9) относительно функции (4.8). Тогда с учетом этого тождества при условии (4.43), вычислим производную Ли на области $\mathbb{R} \times G$ функции (4.44) в силу гамильтоновой системы (0.1):

$$\mathfrak{B}\,F(t,q,p) = \,-\,\partial_t\,\big(\lambda\,t\big)\,+\,\left[\arctan\frac{\mathrm{Im}\,\mathfrak{m}(q,p)}{\mathrm{Re}\,\mathfrak{m}(q,p)}\,,H(q,p)\right] = \,-\,\lambda\,+\,\mathrm{Im}\,\mathfrak{M}(q,p) = 0.\ \ \boxtimes$$

Для обобщенно-консервативной полиномиальной гамильтоновой системы

$$H:: (q,p) \to \frac{1}{2} (-4q_1^2 + q_2^2 + p_1^2 + p_2^2) \ \forall (q,p) \in \mathbb{R}^4$$
 (4.45)

на основании комплекснозначного частного интеграла $\mathfrak{m}: (q,p) \to q_2 - i p_2 \ \forall (q,p) \in \mathbb{R}^4$ с сомножителем $\mathfrak{M}(q,p) = i \ \forall (q,p) \in \mathbb{R}^4$, по теоремам 4.14 и 4.15, строим неавтономные первые интегралы

$$F_1: (t,q,p) \to q_2^2 + p_2^2 \quad \forall (t,q,p) \in \mathbb{R}^5$$

И

$$F_2 \colon (t,q,p) \to \arctan \frac{p_2}{q_2} + t \quad \forall (t,q,p) \in \mathbb{R} \times G, \qquad G \subset \{(q,p) \colon q_2 \neq 0\}.$$

По теореме 1.4, на основании вещественных полиномиальных (линейных) частных интегралов $w_1\colon (q,p)\to 2q_1-p_1$ и $w_2\colon (q,p)\to 2q_1+p_1$ с сомножителями $M_1(q,p)=-2$ и $M_2(q,p)=2$ для гамильтоновой системы (4.45) строим неавтономные первые интегралы

$$F_3 \colon (t,q,p) \to (2q_1-p_1)e^{2t} \quad \forall (t,q,p) \in \mathbb{R}^5 \quad \text{if} \quad F_4 \colon (t,q,p) \to (2q_1+p_1)e^{-2t} \quad \forall (t,q,p) \in \mathbb{R}^5.$$

Неавтономные первые интегралы F_1, \ldots, F_4 , будучи функционально независимыми, образуют интегральный базис полиномиальной гамильтоновой системы (4.45) на области $\mathbb{R} \times G$.

Непосредственно из теорем 4.14 и 4.15 получаем

Следствие 4.15. Если гамильтонова система (0.1) имеет такой комплекснозначный полиномиальный частный интеграл (4.1), что в тождестве (4.2) полином

$$\mathfrak{M}(q,p) = \lambda \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \lambda \in \mathbb{C}, \quad (\operatorname{Re} \lambda = \widehat{\lambda}, \operatorname{Im} \lambda = \widetilde{\lambda}),$$

то первыми интегралами гамильтоновой системы (0.1) будут скалярные функции

$$F_1: (t,q,p) \to P(q,p) \exp(-2\widehat{\lambda}t) \quad \forall (t,q,p) \in \mathbb{R}^{2n+1}$$

u

$$F_2 \colon (t,q,p) \to \operatorname{arctg} \frac{\operatorname{Im} \mathfrak{m}(q,p)}{\operatorname{Re} \mathfrak{m}(q,p)} - \widetilde{\lambda} t \quad \forall (t,q,p) \in \mathbb{R} \times G.$$

Например, по следствию 4.15, для полиномиальной гамильтоновой системы (4.3) на основании комплекснозначных полиномиальных (линейных) частных интегралов

$$\mathfrak{m}_1 \colon (q,p) \to q_1 + q_2 + i \, (p_1 - p_2) \ \, \forall (q,p) \in \mathbb{R}^4 \quad \text{if} \quad \mathfrak{m}_2 \colon (q,p) \to q_1 - q_2 + i \, (p_1 + p_2) \ \, \forall (q,p) \in \mathbb{R}^4$$

с сомножителями $\mathfrak{M}_1(q,p)=\alpha+\beta\,i\;\;\forall (q,p)\in\mathbb{R}^4$ и $\mathfrak{M}_2(q,p)=-\alpha+\beta\,i\;\;\forall (q,p)\in\mathbb{R}^4$, строим на области $\mathbb{R}\times G,\;G\subset\{(q,p)\colon q_2\neq\pm q_1\}$, базис неавтономных первых интегралов

$$\begin{split} F_1 \colon (t,q,p) &\to \left((q_1 + q_2)^2 + (p_1 - p_2)^2 \right) e^{-2\alpha t} \quad \forall (t,q,p) \in \mathbb{R} \times G, \\ F_2 \colon (t,q,p) &\to \arctan \frac{p_1 - p_2}{q_1 + q_2} - \beta t \quad \forall (t,q,p) \in \mathbb{R} \times G, \\ F_3 \colon (t,q,p) &\to \left((q_1 - q_2)^2 + (p_1 + p_2)^2 \right) e^{2\alpha t}, \quad \forall (t,q,p) \in \mathbb{R} \times G, \\ F_4 \colon (t,q,p) &\to \arctan \frac{p_1 + p_2}{q_1 - q_2} - \beta t \quad \forall (t,q,p) \in \mathbb{R} \times G. \end{split}$$

5. Кратные комплекснозначные полиномиальные частные интегралы

5.1. Свойства кратных комплекснозначных полиномиальных частных интегралов

Определение 5.1. Комплекснозначный полиномиальный частный интеграл (4.1) гамильтоновой системы (0.1) является **кратным** и его **кратность** $\mathfrak{z} = 1 + \sum_{\zeta=1}^{\mathfrak{e}} \mathfrak{r}_{\zeta}$, если существуют полиномы $\mathfrak{Q}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}} \colon \mathbb{R}^{2n} \to \mathbb{C}$ и $\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}} \colon \mathbb{R}^{2n} \to \mathbb{C}$, $\mathfrak{f}_{\zeta} \in \mathbb{N}$, $\mathfrak{g}_{\zeta} = 1, \dots, \mathfrak{r}_{\zeta}$, $\zeta = 1, \dots, \mathfrak{e}$, которые удовлетворяют системе тождеств

$$\left[\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p),H(q,p)\right]=\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p)\quad\forall (q,p)\in G,\quad \mathfrak{f}_{\zeta}\in\mathbb{N},\ \mathfrak{g}_{\zeta}=1,\ldots,\mathfrak{r}_{\zeta},\ \zeta=1,\ldots,\mathfrak{e},\quad (5.1)$$

где скалярные функции

$$\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}: (q,p) \rightarrow \ \frac{\mathfrak{Q}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p)}{\mathfrak{w}^{\mathfrak{f}_{\zeta}}(q,p)} \quad \forall (q,p) \in G, \quad \mathfrak{f}_{\zeta} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta} = 1, \dots, \mathfrak{r}_{\zeta}, \quad \zeta = 1, \dots, \mathfrak{e},$$

область G такая, что $\mathfrak{w}(q,p) \neq 0 \ \forall (q,p) \in G \subset \mathbb{R}^{2n}$. При этом каждый полином $\mathfrak{Q}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}$, $\mathfrak{f}_{\zeta} \in \mathbb{N}$, $\mathfrak{g}_{\zeta} = 1, \ldots, \mathfrak{r}_{\zeta}$, $\zeta = 1, \ldots, \mathfrak{e}$, взаимно прост c комплекснозначным полиномиальным частным интегралом (4.1), а полиномы $\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}$, $\mathfrak{f}_{\zeta} \in \mathbb{N}$, $\mathfrak{g}_{\zeta} = 1, \ldots, \mathfrak{r}_{\zeta}$, $\zeta = 1, \ldots, \mathfrak{e}$, такие, что $\max \left\{ \deg \operatorname{Re} \mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}, \deg \operatorname{Im} \mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}} : \mathfrak{f}_{\zeta} \in \mathbb{N}, \mathfrak{g}_{\zeta} = 1, \ldots, \mathfrak{r}_{\zeta}, \zeta = 1, \ldots, \mathfrak{e} \right\} \leqslant h-2.$

Так, например, обобщенно-консервативная полиномиальная гамильтонова система

$$H \colon (q,p) \to \frac{1}{2} \left(q_1^2 + q_2^2 \right) + \alpha \left(q_1 p_2 - q_2 p_1 \right) \quad \forall (q,p) \in \mathbb{R}^4, \quad \alpha \in \mathbb{R} \setminus \{0\}, \tag{5.2}$$

имеет комплекснозначный полиномиальный частный интеграл $\mathfrak{w}: (q,p) \to q_2 + i\,q_1 \ \forall (q,p) \in \mathbb{R}^4$ кратности не менее двух, ибо существуют полиномы $\mathfrak{Q}_{11}: (q,p) \to p_2 + i\,p_1$ и $\mathfrak{R}_{11}: (q,p) \to -1$, такие, что на области $G \subset \{(q,p): q_1^2 + q_2^2 \neq 0\}$ пространства \mathbb{R}^4 выполняется тождество

$$\begin{split} \left[\mathfrak{K}_{11}(q,p),H(q,p)\right] &= \left[\frac{\mathfrak{Q}_{11}(q,p)}{\mathfrak{w}(q,p)},H(q,p)\right] = \left[\frac{p_2+i\,p_1}{q_2+i\,q_1}\,,\,\,\frac{1}{2}\,(q_1^2+q_2^2) + \alpha\,(q_1p_2-q_2p_1)\right] = \\ &= \frac{1}{q_2+i\,q_1}\left[p_2+i\,p_1,\,\,\frac{1}{2}\,(q_1^2+q_2^2) + \alpha\,(q_1p_2-q_2p_1)\right] - \frac{p_2+i\,p_1}{(q_2+i\,q_1)^2}\left[q_2+i\,q_1,\,\,\frac{1}{2}\,(q_1^2+q_2^2) + \alpha\,(q_1p_2-q_2p_1)\right] = \\ &= \frac{1}{q_2+i\,q_1}\left(\alpha\,p_1-q_2-i\,(q_1+\alpha\,p_2)\right) - \frac{p_2+i\,p_1}{(q_2+i\,q_1)^2}\left(\alpha\,q_1-\alpha\,q_2\,i\right) = \\ &= \frac{1}{q_2+i\,q_1}\left(-\,(q_2+i\,q_1) + \alpha(p_1-i\,p_2)\right) + \frac{\alpha\,i\,(p_2+i\,p_1)(q_2+i\,q_1)}{(q_2+i\,q_1)^2} = -1 \quad \forall (q,p) \in G \end{split}$$
 ы мах $\left\{\deg\,\operatorname{Re}\mathfrak{R}_{11},\,\deg\,\operatorname{Im}\mathfrak{R}_{11}\right\} = 0 \leqslant h-2 = 2-2 = 0. \end{split}$

Система тождеств (5.1) равносильная вещественной системе тождеств

$$\left[\operatorname{Re}\,\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p),H(q,p)\right] = \operatorname{Re}\,\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p), \quad \left[\operatorname{Im}\,\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p),H(q,p)\right] = \operatorname{Im}\,\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p)$$

$$\forall (q,p) \in G, \quad \mathfrak{f}_{\zeta} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta} = 1,\ldots,\mathfrak{r}_{\zeta}, \quad \zeta = 1,\ldots,\mathfrak{e}.$$
(5.3)

На основании определения 5.1 и свойства 4.2 получаем

Свойство 5.1. Если гамильтонова система (0.1) имеет комплекснозначный полиномиальный частный интеграл (4.1) кратности \mathfrak{z} , то комплексно сопряженный полиномиальный частный интеграл будет кратным, а его кратность равна \mathfrak{z} .

Аналогично свойству 2.1 кратных вещественных частных интегралов доказываем

Свойство 5.2. Если комплекснозначный полиномиальный частный интеграл (4.1) обобщенно-консервативной гамильтоновой системы (0.1) такой, что скобки Пуассона

$$\left[\mathfrak{w}(q,p),H(q,p)\right]=\mathfrak{w}^{m+1}(q,p)\mathfrak{P}(q,p)\quad\forall (q,p)\in\mathbb{R}^{2n},$$

где m — некоторое натуральное число, а $\mathfrak{P}: \mathbb{R}^{2n} \to \mathbb{C}$ есть полином, то он является кратным (кратности, не меньшей двух). При этом имеет место тождество

$$\left[\frac{\lambda}{\mathfrak{w}^m(q,p)}, H(q,p)\right] = -\lambda \, m \, \mathfrak{P}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \lambda \in \mathbb{C}, \ \lambda \neq 0.$$

Согласно определению 5.1 комплекснозначные полиномиальные частные интегралы (4.10) обобщенно-консервативной гамильтоновой системы (0.1) будут кратными соответственно кратностей $\mathfrak{z}_{\mathfrak{l}} = 1 + \sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}} \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \ \mathfrak{l} = 1, \ldots, \mathfrak{s},$ тогда и только тогда, когда существуют полиномы $\mathfrak{Q}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} : \mathbb{R}^{2n} \to \mathbb{C}$ и $\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} : \mathbb{R}^{2n} \to \mathbb{C}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \ldots, \mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}} = 1, \ldots, \mathfrak{e}_{\mathfrak{l}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, такие, что на области G имеет место вещественная система тождеств

$$\left[\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p),H(q,p)\right] = \operatorname{Re}\,\mathfrak{R}_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p), \quad \left[\operatorname{Im}\,\mathfrak{K}_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p),H(q,p)\right] = \operatorname{Im}\,\mathfrak{R}_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p), \\
\forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \mathfrak{f}_{\zeta_{\mathsf{l}}} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta_{\mathsf{l}}} = 1,\ldots,\mathfrak{r}_{\zeta_{\mathsf{l}}}, \quad \zeta_{\mathsf{l}} = 1,\ldots,\mathfrak{e}_{\mathsf{l}}, \quad \mathfrak{l} = 1,\ldots,\mathfrak{s}, \\
\end{cases} (5.4)$$

где скалярные функции

$$\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = \frac{\mathfrak{Q}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)}{\mathfrak{w}_{\mathfrak{l}}^{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}(q,p)} \quad \forall (q,p) \in G_{0\mathfrak{l}}, \quad \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \dots, \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \ \zeta_{\mathfrak{l}} = 1, \dots, \mathfrak{e}_{\mathfrak{l}}, \ \mathfrak{l} = 1, \dots, \mathfrak{s},$$

области $G_{0\mathfrak{l}}\subset G$ такие, что $\mathfrak{w}_{\mathfrak{l}}(q,p)\neq 0$ $\forall (q,p)\in G_{0\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s}.$ При этом каждый полином $\mathfrak{Q}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\mathfrak{s}_{\mathfrak{l}},$ взаимно прост с комплекснозначным полиномиальным частным интегралом $\mathfrak{w}_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ а комплекснозначные полиномы $\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\mathfrak{s},$ такие, что верно условие $\max\left\{\deg\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\operatorname{deg}\operatorname{Im}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\colon\mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\mathfrak{s},$

5.2. Построение дополнительных первых интегралов гамильтоновой системы по кратным комплекснозначным полиномиальным частным интегралам

Теорема 5.1. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$

такие, что имеют место тождества (4.11) и (5.4). Тогда скалярная функция

$$F \colon (q,p) \to \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \quad \forall (q,p) \in G, \tag{5.5}$$

где полиномы $P_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, находятся по формулам (4.15), а вещественные числа $\eta_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, u $\varphi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$, $\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\leqslant\mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}$, $\widetilde{\mathfrak{e}}_{\mathfrak{l}},$ $\widetilde{\mathfrak{e}}_{\mathfrak{l}}\leqslant\mathfrak{e}_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, makue, u mo $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}|\eta_{\mathfrak{l}}|+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}|\varphi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}|\neq 0$, by dem первым интегралом на области G гамильтоновой системы (0.1), если и только если в тождествах (4.11) полиномы $\mathfrak{M}_{\mathfrak{l}}$ и в тождествах (5.4) полиномы $\mathfrak{R}_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, такие, что верно тождество

$$2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}_{\mathfrak{l}}(q,p)+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)=0\quad\forall (q,p)\in G. \tag{5.6}$$

Доказательство. В соответствии с теоремой 4.1 и определением 5.1

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\mathsf{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p) \cdot \left[\prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p), H(q,p)\right] + \\ &+ \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \cdot \left[\exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} (q,p), H(q,p)\right] = \\ &= \exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} (q,p) \sum_{\mathsf{l}=1}^{\mathfrak{s}} \eta_{\mathsf{l}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}-1}(q,p) \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \cdot \left[P_{\mathsf{l}}(q,p), H(q,p)\right] + \\ &+ \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p) \sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \left[\operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p), H(q,p)\right] + \\ &+ \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}}^{\widetilde{\mathfrak{t}}_{\mathsf{l}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}(q,p) \sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}=1}}^{\widetilde{\mathfrak{t}}_{\zeta_{\mathsf{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}}^{\widetilde{\mathfrak{t}}_{\mathsf{l}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \left[\operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{g}_{\zeta_{\mathsf{l}}}} \left[\operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{g}_{\zeta_{\mathsf{l}}} \left[\operatorname{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{$$

Отсюда получаем, что функция (5.5) является первым интегралом на области G гамильтоновой системы (0.1) тогда и только тогда, когда выполняется тождество (5.6).

Теорема 5.2. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$

такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}$ вещественные части удовлетворяют условиям (4.20), а в тождествах (5.4) у полиномов $\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ вещественные части

$$\operatorname{Re}\mathfrak{R}_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}}(q,p) = \rho_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}}M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \rho_{\mathfrak{l}_{\mathsf{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}} \in \mathbb{R},$$

$$\mathfrak{f}_{\zeta_{\mathsf{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathsf{l}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathsf{l}}}, \ \widetilde{\mathfrak{r}}_{\zeta_{\mathsf{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathsf{l}}}, \ \zeta_{\mathsf{l}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathsf{l}}, \ \widetilde{\mathfrak{e}}_{\mathsf{l}} \le \mathfrak{e}_{\mathsf{l}}, \ \mathfrak{l} = 1, \dots, \mathfrak{s},$$

$$(5.7)$$

Тогда функция (5.5), где вещественные числа $\eta_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s},$ и $\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$

$$2\sum_{\mathsf{l}=1}^{\mathfrak{s}}\rho_{\mathsf{l}}\eta_{\mathsf{l}} + \sum_{\mathsf{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathsf{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathsf{l}}}}\rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}} = 0 \quad npu \quad \sum_{\mathsf{l}=1}^{\mathfrak{s}}|\eta_{\mathsf{l}}| + \sum_{\mathsf{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathsf{l}}}}\sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathsf{l}}}}\left|\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathsf{l}}}\mathfrak{g}_{\zeta_{\mathsf{l}}}}\right| \neq 0, \tag{5.8}$$

 $\it будет первым интегралом обобщенно-консервативной гамильтоновой системы <math>(0.1).$

Доказательство. Если имеют место тождества (4.20) и (5.7), а вещественные числа $\eta_{\mathfrak{l}}$ и $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ являются решением линейного однородного уравнения (5.8), то выражение

$$\begin{split} 2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = \\ = \left(2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\eta_{\mathfrak{l}} + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right) M(q,p) = 0 \quad \forall (q,p) \in G. \end{split}$$

Таким образом, выполняются условия (5.6), а значит, согласно теореме 5.1 функция (5.5) является первым интегралом на области G гамильтоновой системы (0.1).

Следствие 5.1. Если выполняются условия теоремы 5.2, то функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p)\exp\left(\varphi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\operatorname{Re}\mathfrak{K}_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}(q,p)\right)\ \ \forall (q,p)\in G_{0\mathfrak{l}\mathfrak{k}}'\subset G,\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

$$ede\ P_{\mathfrak{l}}\colon \mathbb{R}^{2n}\to\mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ ecmb\ nonuhomu,\ sadahhue\ formandu (4.15),\ funcupobahhue\ uucna\ \mathfrak{f}_{\zeta_{\mathfrak{k}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{k}}}\in\left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{k}}}\right\},\ \zeta_{\mathfrak{k}}\in\left\{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{k}}\right\},\ \mathfrak{k}=1,\ldots,\mathfrak{s},\ a\ betaecombehhue\ uucna\ \eta_{\mathfrak{l}},$$

$$\mathfrak{l}=1,\ldots,\mathfrak{s},\ u\ \varphi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}},\ \mathfrak{k}=1,\ldots,\mathfrak{s},\ haxodsmcs\ us\ ypabhehuu\ 2\rho_{\mathfrak{l}}\eta_{\mathfrak{l}}+\rho_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\varphi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}=0\ npu\ ycnobuu,\ umo\ |\eta_{\mathfrak{l}}|+\left|\varphi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right|\neq 0,\ bydym\ nepbumu\ uhmerpanamu\ ha\ obnacmsx\ G_{0\mathfrak{l}\mathfrak{k}}'$$
 obobuehho-kohcepbamubhoù\ nonuhomuandhoù ramundmonoù ramundmonoù cucmemu (0.1) coombemcmbehho.

Теорема 5.3. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}}, \ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что имеют место тождества (4.11) и (5.4). Тогда скалярная функция

$$F \colon (q,p) \to \prod_{\mathfrak{l}=1}^{\mathfrak{s}} P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \quad \forall (q,p) \in G, \tag{5.9}$$

где полиномы $P_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, находятся по формулам (4.15), а вещественные числа $\eta_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, u $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$, $\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\leqslant\mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}$, $\widetilde{\mathfrak{e}}_{\mathfrak{l}},$ $\widetilde{\mathfrak{e}}_{\mathfrak{l}},$

$$2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\eta_{\mathfrak{l}}\,\operatorname{Re}\,\mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Im}\,\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = 0\quad\forall (q,p)\in G. \tag{5.10}$$

Доказательство. В соответствии с теоремой 4.1 и определением 5.1

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\mathsf{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\mathfrak{t}_{\mathsf{l}}} \psi_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}}}(q,p) \cdot \left[\prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p), H(q,p)\right] + \\ &+ \prod_{\mathsf{l}=1}^{\mathfrak{s}} P_{\mathsf{l}}^{\eta_{\mathsf{l}}}(q,p) \cdot \left[\exp\sum_{\mathsf{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathsf{l}}=1}^{\widetilde{\mathfrak{t}}_{\mathsf{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathsf{l}}}=1}^{\widetilde{\mathfrak{t}}_{\mathsf{l}_{\mathsf{l}}}} \psi_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}}} \psi_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}},\mathfrak{g}_{\mathsf{l}_{\mathsf{l}_{\mathsf{l}}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_{\mathsf$$

Отсюда получаем, что функция (5.9) является первым интегралом на области G гамильтоновой системы (0.1) тогда и только тогда, когда выполняется тождество (5.10).

Теорема 5.4. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}$ вещественные части удовлетворяют условиям (4.20), а в тождествах (5.4) у полиномов $\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ мнимые части

$$\begin{split} \operatorname{Im} \mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) &= \sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \in \mathbb{R}, \\ \mathfrak{f}_{\zeta_{\mathfrak{l}}} &\in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}, \ \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \ \zeta_{\mathfrak{l}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}, \ \widetilde{\mathfrak{e}}_{\mathfrak{l}} \leq \mathfrak{e}_{\mathfrak{l}}, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \end{split}$$

Тогда функция (5.9), где вещественные числа $\eta_{\mathfrak{l}}, \ \mathfrak{l}=1,\ldots,\mathfrak{s}, \ u \ \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}, \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},$ $\zeta_{\mathfrak{l}} = 1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},$

$$2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\eta_{\mathfrak{l}}+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}=0\quad npu\quad \sum_{\mathfrak{l}=1}^{\mathfrak{s}}|\eta_{\mathfrak{l}}|+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\left|\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right|\neq 0, \tag{5.12}$$

будет первым интегралом обобщенно-консервативной гамильтоновой системы (0.1).

Доказательство. Если имеют место тождества (4.20) и (5.11), а вещественные числа $\eta_{\mathfrak{l}}$ и $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ являются решением линейного однородного уравнения (5.12), то выражение

$$\begin{split} 2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\eta_{\mathfrak{l}}\operatorname{Re}\mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Im}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = \\ = \left(2\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\eta_{\mathfrak{l}} + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right)M(q,p) = 0 \quad \forall (q,p) \in G. \end{split}$$

Таким образом, выполняются условия (5.10), а значит, согласно теореме 5.3 функция (5.9) является первым интегралом на области G гамильтоновой системы (0.1).

Следствие 5.2. Если выполняются условия теоремы 5.4, то функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p)\exp\left(\psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\operatorname{Im}\mathfrak{K}_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}(q,p)\right)\ \ \forall (q,p)\in G_{0\mathfrak{l}\mathfrak{k}}'\subset G,\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

$$\mathit{ede}\ P_{\mathfrak{l}}\colon \mathbb{R}^{2n}\to\mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathit{ecmb}\ \mathit{nonuhomu},\ \mathit{sadahhu}\mathit{e}\ \mathit{формуламu}\ (4.15),\ \mathit{фиксированни}\mathit{e}\ \mathit{uucna}\ \mathfrak{f}_{\zeta_{\mathfrak{k}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{k}}}\in\left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{k}}}\right\},\ \zeta_{\mathfrak{k}}\in\left\{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{k}}\right\},\ \mathfrak{k}=1,\ldots,\mathfrak{s},\ \mathit{a}\ \mathit{eemecmbehhu}\mathit{e}\ \mathit{uucna}\ \eta_{\mathfrak{l}}\ ,$$

$$\mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathit{u}\ \psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}},\ \mathfrak{k}=1,\ldots,\mathfrak{s},\ \mathit{haxodmca}\ \mathit{us}\ \mathit{ypabhehu}\mathit{u}}\ \mathit{2p_{\mathfrak{l}}}\eta_{\mathfrak{l}}+\sigma_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}=0\ \mathit{npu}\ \mathit{ycnobu}\ \mathit{uhme}\ |\eta_{\mathfrak{l}}|+\left|\psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right|\neq 0,\ \mathit{bydym}\ \mathit{nepbumu}\ \mathit{uhme}\mathit{epanamu}\ \mathit{ha}\ \mathit{obnacmax}\ G_{0\mathfrak{l}\mathfrak{k}}'\ \mathit{obobu}\mathit{ehho}\ \mathit{kohcepbamubhoù}\ \mathit{nonuhomuanbhoù}\ \mathit{vamuhomohoboù}\ \mathit{cucmemu}\ (0.1)\ \mathit{coombemcmbehho}\ .$$

Из теорем 5.2 и 5.4 получаем следующее утверждение.

Следствие 5.3. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}} = 1 + \sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}} \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \ \mathfrak{l} = 1, \ldots, \mathfrak{s},$ такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}$ вещественные части удовлетворяют условиям (4.20), а в тождествах (5.4) полиномы

$$\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = \left(\rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} + i\,\sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right) M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}, \sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \in \mathbb{R},$$

$$\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}, \quad \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \quad \zeta_{\mathfrak{l}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}, \quad \widetilde{\mathfrak{e}}_{\mathfrak{l}} \leq \mathfrak{e}_{\mathfrak{l}}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s},$$

$$(5.13)$$

Тогда функция (5.5) npu (5.8) u функция (5.9) npu (5.12) будут первыми интегралами обобщенно-консервативной полиномиальной гамильтоновой системы (0.1).

Теорема 5.5. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что имеют место тождества (4.11) и (5.4). Тогда скалярная функция

$$F \colon (q,p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \mathfrak{K}_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad (5.14)$$

где $A_{\mathfrak{l}}\colon G\to\mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ cymь\ функции\ (4.16),\ a\ вещественные числа\ \tau_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ u\ \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\ \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\leqslant\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}},\ \widetilde{\mathfrak{e}}_{\mathfrak{l}}\leqslant\mathfrak{e}_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ makue,\ umo$ $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}|\tau_{\mathfrak{l}}|+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\left|\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right|\neq 0,\ bydem\ dononhumenthim\ nerbihm\ uhmerranom\ ramunthmother hosoù\ cucmemu\ (0.1)\ morda\ u\ morbko\ morda,\ korda\ s\ mordedecmbax\ (4.11)\ noruhombi\ \mathfrak{M}_{\mathfrak{l}}\ u$ в тожедествах (5.4) полиномы функции $\mathfrak{R}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ такие, что верно тожедество

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} \operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = 0 \quad \forall (q,p) \in G.$$
 (5.15)

Доказательство. В соответствии с теоремой 4.3 и определением 5.1 получаем, что

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \tau_{\mathfrak{l}} \left[A_{\mathfrak{l}}(q,p),H(q,p)\right] + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \left[\operatorname{Re} \, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),H(q,p)\right] = \\ &= \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \tau_{\mathfrak{l}} \operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \, \mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \quad \forall (q,p) \in G. \end{split}$$

Отсюда получаем, что функция (5.14) является первым интегралом на области G гамильтоновой системы (0.1), если и только если выполняются тождества (5.15).

Теорема 5.6. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}$ мнимые части удовлетворяют условиям (4.22), а в тождествах (5.4) у полиномов $\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ вещественные части удовлетворяют условиям (5.7). Тогда функция (5.14), где вещественные числа $\tau_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, и $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\mathfrak{s},\ n$ находятся из уравнения

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\rho_{\mathfrak{l}}\tau_{\mathfrak{l}} + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \quad \sum_{\mathfrak{l}=1}^{\mathfrak{s}} |\tau_{\mathfrak{l}}| + \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \left| \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0, \quad (5.16)$$

будет первым интегралом на области G гамильтоновой системы (0.1).

Доказательство. Если имеют место тождества (4.22) и (5.7), а вещественные числа $\tau_{\mathfrak{l}}$ и $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ являются решением линейного однородного уравнения (5.16), то выражение

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\tau_{\mathfrak{l}}\,\mathrm{Im}\,\mathfrak{M}_{\mathfrak{l}}(q,p)+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\mathrm{Re}\,\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)=$$

$$= \Bigg(\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \tau_{\mathfrak{l}} + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \Bigg) M(q,p) = 0 \quad \forall (q,p) \in G.$$

Таким образом, выполняется условие (5.15), а значит, согласно теореме 5.5 функция (5.14) будет первым интегралом на области G гамильтоновой системы (0.1). \boxtimes

Следствие 5.4. Если выполняются условия теоремы 5.6, то скалярные функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to \ \tau_{\mathfrak{l}}A_{\mathfrak{l}}(q,p)+\varphi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{p}}}\mathfrak{g}_{\zeta_{\mathfrak{p}}}}\mathrm{Re}\,\mathfrak{K}_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{p}}}\mathfrak{g}_{\zeta_{\mathfrak{p}}}}(q,p) \quad \forall (q,p)\in G, \quad \mathfrak{l}=1,\ldots,\mathfrak{s}, \ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{k}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{k}}} \in \left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{k}}}\right\}$, $\zeta_{\mathfrak{k}} \in \left\{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{k}}\right\}$, $\mathfrak{k}=1,\ldots,\mathfrak{s}$, а вещественные числа $\tau_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, и $\varphi_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}$, $\mathfrak{k}=1,\ldots,\mathfrak{s}$, находятся из линейных однородных уравнений $\rho_{\mathfrak{l}}\tau_{\mathfrak{l}}+\rho_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}$ $\varphi_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}=0$ при условии, что $|\tau_{\mathfrak{l}}|+\left|\varphi_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right|\neq 0$, будут первыми интегралами обобщенно-консервативной полиномиальной гамильтоновой системы (0.1).

По следствию 5.4, для обобщенно-консервативной гамильтоновой системы (5.2), используя кратный (кратность не менее двух) комплекснозначный полиномиальный частный интеграл $\mathfrak{w}\colon (q,p)\to q_2+i\,q_1\ \forall (q,p)\in\mathbb{R}^4$ такой, что $\mathfrak{M}(q,p)=-\alpha\,i$ и $\mathfrak{K}_{11}(q,p)=\frac{p_2+i\,p_1}{q_2+i\,q_1}\,,\,\mathfrak{R}_{11}(q,p)=-1,$ строим на области $G\subset\{(q,p)\colon q_2\neq 0\}$ дополнительный первый интеграл

$$F \colon (q,p) \to \arctan \frac{q_1}{q_2} - \alpha \frac{q_1 p_1 + q_2 p_2}{q_1^2 + q_2^2} \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}.$$

Теорема 5.7. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что имеют место тождества (4.11) и (5.4). Тогда скалярная функция

$$F \colon (q,p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\mathfrak{r}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad (5.17)$$

где $A_{\mathfrak{l}}\colon G \to \mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ cymь\ функции\ (4.16),\ a$ вещественные числа $\tau_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$

 $u \ \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}, \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \ldots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}, \ \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \ \zeta_{\mathfrak{l}} = 1, \ldots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}, \ \widetilde{\mathfrak{e}}_{\mathfrak{l}} \leqslant \mathfrak{e}_{\mathfrak{l}}, \ \mathfrak{l} = 1, \ldots, \mathfrak{s}, \ makue, \ umo$ $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} |\tau_{\mathfrak{l}}| + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \left| \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0, \ \text{будет дополнительным первым интегралом гамильто-}$ новой системы (0.1) тогда и только тогда, когда в тождествах (4.11) полиномы $\mathfrak{M}_{\mathfrak{l}}$ и в тождествах (5.4) полиномы функции $\mathfrak{R}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ такие, что верно тождество

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \tau_{\mathfrak{l}} \operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Im} \mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) = 0 \quad \forall (q,p) \in G. \tag{5.18}$$

Доказательство. В соответствии с теоремой 4.3 и определением 5.1 получаем, что

$$\begin{split} \left[F(q,p),H(q,p)\right] &= \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \tau_{\mathfrak{l}} \left[A_{\mathfrak{l}}(q,p),H(q,p)\right] + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \, \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \left[\operatorname{Im} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),H(q,p)\right] = \\ &= \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \tau_{\mathfrak{l}} \operatorname{Im} \mathfrak{M}_{\mathfrak{l}}(q,p) + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \, \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \, \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} (q,p) \quad \forall (q,p) \in G. \end{split}$$

Отсюда получаем, что функция (5.17) является первым интегралом на области G гамильтоновой системы (0.1), если и только если выполняются тождества (5.18).

Теорема 5.8. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}$ мнимые части удовлетворяют условиям (4.22), а в тождествах (5.4) у полиномов $\mathfrak{R}_{\mathfrak{l}\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ мнимые части удовлетворяют условиям (5.11). Тогда функция (5.17), где вещественные числа $\tau_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s},$ и $\psi_{\mathfrak{l}\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\mathfrak{s},$ находятся из уравнения

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \tau_{\mathfrak{l}} + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \quad \sum_{\mathfrak{l}=1}^{\mathfrak{s}} |\tau_{\mathfrak{l}}| + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} |\psi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}}| \neq 0, \quad (5.19)$$

 $\mathit{будет}$ первым интегралом на области G гамильтоновой $\mathit{cucmemb}$ (0.1).

Доказательство. Если имеют место тождества (4.22) и (5.11), а вещественные числа $\tau_{\mathfrak{l}}$ и $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ являются решением линейного однородного уравнения (5.19), то выражение

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\tau_{\mathfrak{l}}\,\operatorname{Im}\mathfrak{M}_{\mathfrak{l}}(q,p)+\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\,\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Im}\mathfrak{R}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)=$$

$$= \Bigg(\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \rho_{\mathfrak{l}} \tau_{\mathfrak{l}} + \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \Bigg) M(q,p) = 0 \quad \forall (q,p) \in G.$$

Таким образом, выполняется условие (5.18), а значит, согласно теореме 5.7 функция (5.17) будет первым интегралом на области G гамильтоновой системы (0.1). \boxtimes

Следствие 5.5. Если выполняются условия теоремы 5.8, то скалярные функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to \ \tau_{\mathfrak{l}}A_{\mathfrak{l}}(q,p)+\psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{p}}}\mathfrak{g}_{\zeta_{\mathfrak{p}}}}\mathrm{Im}\,\mathfrak{K}_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{p}}}\mathfrak{g}_{\zeta_{\mathfrak{p}}}}(q,p) \quad \forall (q,p)\in G, \quad \mathfrak{l}=1,\ldots,\mathfrak{s}, \ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{k}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{k}}} \in \left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{k}}}\right\}$, $\zeta_{\mathfrak{k}} \in \left\{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{k}}\right\}$, $\mathfrak{k}=1,\ldots,\mathfrak{s}$, а вещественные числа $\tau_{\mathfrak{l}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, и $\psi_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}$, $\mathfrak{k}=1,\ldots,\mathfrak{s}$, находятся из линейных однородных уравнений $\rho_{\mathfrak{l}}\tau_{\mathfrak{l}}+\sigma_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\psi_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}=0$ при условии, что $|\tau_{\mathfrak{l}}|+\left|\psi_{\mathfrak{kf}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right|\neq 0$, будут первыми интегралами обобщенно-консервативной полиномиальной гамильтоновой системы (0.1).

Из теорем 5.6 и 5.8 получаем следующее утверждение.

Следствие 5.6. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}} = 1 + \sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{c}_{\mathfrak{l}}} \mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$,
такие, что в тождествах (4.11) у полиномов $\mathfrak{M}_{\mathfrak{l}}$ мнимые части удовлетворяют условиям (4.22), а в тождествах (5.4) полиномы $\mathfrak{R}_{\mathfrak{l}_{\mathfrak{l}_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ имеют вид (5.13) Тогда функция (5.14) при (5.16) и функция (5.17) при (5.19) будут первыми интегралами обобщенноконсервативной полиномиальной гамильтоновой системы (0.1).

По определению 5.1, комплекснозначные полиномиальные частные интегралы (4.27) гамильтоновой системы (0.1) имеют кратности $\mathfrak{z}_{\mathfrak{l}_1}^{(1)} = 1 + \sum_{\zeta_{\mathfrak{l}_1}=1}^{\mathfrak{e}_{\mathfrak{l}_1}} \mathfrak{r}_{\zeta_{\mathfrak{l}_1}}$, $\mathfrak{l}_1 = 1, \ldots, \mathfrak{s}_1$, если и только если выполняются тождества (4.28) и существуют полиномы $\mathfrak{Q}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)} : \mathbb{R}^{2n} \to \mathbb{C}$ и $\mathfrak{R}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)} : \mathbb{R}^{2n} \to \mathbb{C}$, которые удовлетворяют системе тождеств

$$\begin{split} \left[\operatorname{Re}\,\mathfrak{K}^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p), H(q,p)\right] &= \operatorname{Re}\,\mathfrak{R}^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p), \quad \left[\operatorname{Im}\,\mathfrak{K}^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p), H(q,p)\right] &= \operatorname{Im}\,\mathfrak{R}^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p), \\ \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} = 1, \dots, \mathfrak{r}_{\zeta_{\mathfrak{l}_{1}}}, \ \zeta_{\mathfrak{l}_{1}} = 1, \dots, \mathfrak{e}_{\mathfrak{l}_{1}}, \ \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \end{split}$$

где область G такая что $\mathfrak{w}_{\mathfrak{l}_1}^{(1)}(q,p) \neq 0 \ \ \forall (q,p) \in G, \ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,$ а скалярные функции

$$\mathfrak{K}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}(q,p) = \frac{\mathfrak{Q}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}(q,p)}{\left(\mathfrak{w}^{(1)}_{\mathfrak{l}_1}(q,p)\right)^{\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}}}\,, \quad \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_1}} = 1, \ldots, \mathfrak{r}_{\zeta_{\mathfrak{l}_1}}, \ \zeta_{\mathfrak{l}_1} = 1, \ldots, \mathfrak{e}_{\mathfrak{l}_1}, \ \mathfrak{l}_1 = 1, \ldots, \mathfrak{s}_1.$$

При этом каждый полином $\mathfrak{Q}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}, \ \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_1}} = 1, \ldots, \mathfrak{r}_{\zeta_{\mathfrak{l}_1}}, \ \zeta_{\mathfrak{l}_1} = 1, \ldots, \mathfrak{e}_{\mathfrak{l}_1}, \ \text{взаимно прост}$ с полиномиальным частным интегралом $\mathfrak{w}^{(1)}_{\mathfrak{l}_1}, \ \mathfrak{l}_1 = 1, \ldots, \mathfrak{s}_1, \ \text{а полиномы} \ \mathfrak{R}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}, \ \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N},$ $\mathfrak{g}_{\zeta_{\mathfrak{l}_1}} = 1, \ldots, \mathfrak{r}_{\zeta_{\mathfrak{l}_1}}, \ \zeta_{\mathfrak{l}_1} = 1, \ldots, \mathfrak{e}_{\mathfrak{l}_1}, \ \mathfrak{l}_1 = 1, \ldots, \mathfrak{s}_1, \ \text{такие, что максимальная степень}$ $\max \left\{ \deg \operatorname{Re} \mathfrak{R}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}, \ \deg \operatorname{Im} \mathfrak{R}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}} \right\} \leqslant h - 2.$

Теорема 5.9. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ соответственно такие, что выполняются тождества (5.4). Кроме того гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.27) кратностей $\mathfrak{z}_{\mathfrak{l}_1}^{(1)}=1+\sum\limits_{\zeta_{\mathfrak{l}_1}=1}^{\mathfrak{e}_{\mathfrak{l}_1}}\mathfrak{r}_{\zeta_{\mathfrak{l}_1}},\ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,$ соответственно такие, что выполняются тождества (5.20). Тогда на области G скалярная функция

$$F \colon (q,p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) + \sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}} \sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}_{1}}}} \psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)} \operatorname{Im} \, \mathfrak{K}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p), \, (5.21)$$

где вещественные числа

$$\begin{split} & \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}, \quad \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}, \quad \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}}}, \quad \zeta_{\mathfrak{l}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}, \quad \widetilde{\mathfrak{e}}_{\mathfrak{l}} \leqslant \mathfrak{e}_{\mathfrak{l}}, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \\ & u \\ & \psi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}, \quad \mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}, \quad \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}_{1}}}, \quad \zeta_{\mathfrak{l}_{1}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}, \quad \widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}} \leqslant \mathfrak{e}_{\mathfrak{l}_{1}}, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \end{split}$$

 $makue, \ umo \sum_{l=1}^{\mathfrak{s}} \sum_{\zeta_{l}=1}^{\widetilde{\mathfrak{r}}_{l}} \sum_{\mathfrak{g}_{\zeta_{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{l}}} \left| \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{l}}\mathfrak{g}_{\zeta_{l}}} \right| + \sum_{l_{1}=1}^{\mathfrak{s}_{1}} \sum_{\zeta_{l_{1}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{l_{1}}}} \sum_{\mathfrak{g}_{\zeta_{l_{1}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{l_{1}}}} \left| \psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{l_{1}}}\mathfrak{g}_{\zeta_{l_{1}}}}^{(1)} \right| \neq 0, \ \textit{будет первым интегралом}$ $ramula to mohobooù cucmemu (0.1), \ echu u mohobo echu e mohoboecmeax (5.4) полиномы <math>\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{l}}\mathfrak{g}_{\zeta_{l}}}^{(1)}$ $rakue, \ umo \ umeem \ mecmo \ mohoboecmeo$

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) + \sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}}\sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}}\psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\operatorname{Im}\mathfrak{R}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p) = 0. \tag{5.22}$$

Доказательство. С учетом тождеств (5.4) и (5.20), скобки Пуассона $\big[F(q,p),H(q,p)\big]=$

$$=\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\left[\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),H(q,p)\right]+\sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}}\sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}}\psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\left[\operatorname{Im}\,\mathfrak{K}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}(q,p),H(q,p)\right]=$$

$$=\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \\ +\sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}}\sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}}\psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\operatorname{Im}\mathfrak{R}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}(q,p) \quad \forall (q,p) \in G.$$

Отсюда получаем, что функция (5.21) является первым интегралом на области G гамильтоновой системы (0.1), если и только если выполняется тождество (5.22). \boxtimes

Теорема 5.10. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ соответственно такие, что в тождествах (5.4) полиномы $\mathfrak{R}_{\mathfrak{l}_{\mathfrak{l}_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}:\mathbb{R}^{2n}\to\mathbb{C}$ удовлетворяют условиям (5.7). Кроме того гамильтонова система (0.1) имеет кратные комплекснозначные частные интегралы (4.27) кратностей $\mathfrak{z}_{\mathfrak{l}_{\mathfrak{l}}}^{(1)}=1+\sum\limits_{\zeta_{\mathfrak{l}_{\mathfrak{l}}}=1}^{\mathfrak{e}_{\mathfrak{l}_{\mathfrak{l}}}}\mathfrak{r}_{\zeta_{\mathfrak{l}_{\mathfrak{l}}}},\ \mathfrak{l}_{\mathfrak{l}}=1,\ldots,\mathfrak{s}_{\mathfrak{l}},$ такие, что в тождествах (5.20) у полиномов $\mathfrak{R}_{\mathfrak{l}_{\mathfrak{l}}\mathfrak{l}_{\zeta_{\mathfrak{l}_{\mathfrak{l}}}}}^{(1)}\mathfrak{g}_{\zeta_{\mathfrak{l}}}:\mathbb{R}^{2n}\to\mathbb{C}$ мнимые части

$$\begin{split} &\operatorname{Im} \mathfrak{R}^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}(q,p) = \sigma^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}M(q,p) \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \sigma^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}} \in \mathbb{R}, \\ \mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}, \ \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}_{1}}}, \ \zeta_{\mathfrak{l}_{1}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}, \ \widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}} \leq \mathfrak{e}_{\mathfrak{l}_{1}}, \ \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}, \end{split}$$

где $M \colon \mathbb{R}^{2n} \to \mathbb{R}$ есть некоторый полином. Тогда скалярная функция (5.21), где вещественные числа $\varphi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ и $\psi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}}}}$ находятся из линейного однородного уравнения

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} + \sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}}\sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}}\sigma_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)} = 0 \tag{5.24}$$

 $npu \ ycловии, \ umo \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{l}}_{\mathfrak{l}}} \left| \varphi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| + \sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}} \sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}} \left| \psi_{\mathfrak{l}_{1} \mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)} \mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} \right| \neq 0, \ \textit{будет первым инте- <math display="block"> paлом \ na \ oбласти \ G \ oбобщенно-консервативной гамильтоновой системы (0.1).$

Доказательство. Если имеют место равенства (5.7) и (5.23), а вещественные числа

$$\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\quad \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\quad \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\quad \zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}},\quad \mathfrak{l}=1,\ldots,\mathfrak{s},$$

И

$$\psi^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}},\quad \mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\in\mathbb{N},\quad \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_1}},\quad \zeta_{\mathfrak{l}_1}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}_1},\quad \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,$$

являются нетривиальным решением уравнения (5.24), то выражение

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\ +\ \sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}}\sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}_{1}}}}\psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\operatorname{Im}\,\mathfrak{R}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}(q,p)=$$

$$= \Bigg(\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} + \sum_{\mathfrak{l}_{1}=1}^{\mathfrak{s}_{1}}\sum_{\zeta_{\mathfrak{l}_{1}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}_{1}}}}\sigma_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\psi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\Bigg)M(q,p) = 0 \quad \forall (q,p) \in \mathbb{R}^{2n}.$$

Таким образом, выполняется условие (5.22), а значит, согласно теореме 5.9 функция (5.21) является первым интегралом на области G гамильтоновой системы (0.1). \square

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 5.7. Если верны условия теоремы 5.10, то на области G функции

$$F_{\mathfrak{l}\mathfrak{l}_1}\colon (q,p) \to \ \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \mathrm{Re}\, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) + \psi^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}} \mathrm{Im}\, \mathfrak{K}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}(q,p), \quad \mathfrak{l}=1,\ldots,\mathfrak{s}, \ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}$, $\zeta_{\mathfrak{l}} \in \{1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}\}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, $u \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}_1}} \in \{1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_1}}\}$, $\zeta_{\mathfrak{l}_1} \in \{1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}_1}\}$, $\mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1$, a вещественные числа $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, $u \psi_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)}$, $\mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1$, находятся из линейных однородных уравнений

$$\rho_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} + \left. \sigma^{(1)}_{\mathfrak{l}_{\mathfrak{l}}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} \psi^{(1)}_{\mathfrak{l}_{\mathfrak{l}}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}} \mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} \right. = 0 \quad npu \ \textit{yclobull} \ \left. \left| \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| + \left| \psi^{(1)}_{\mathfrak{l}_{\mathfrak{l}}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} \right| \neq 0,$$

будут первыми интегралами полиномиальной гамильтоновой системы (0.1).

Из теоремы 5.9 при $\mathfrak{l}=\mathfrak{l}^{(1)},\ \mathfrak{s}=\mathfrak{s}_1,\ \mathfrak{w}_{\mathfrak{l}}=\mathfrak{w}_{\mathfrak{l}}^{(1)},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ получаем, что имеет место **Теорема 5.11.** Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ соответственно такие, что выполняются тождества (5.4). Тогда скалярная функция

$$F \colon (q,p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \left(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \mathrm{Re} \, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} (q,p) + \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \mathrm{Im} \, \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} (q,p) \right) \quad \forall (q,p) \in G \quad (5.25)$$

будет дополнительным первым интегралом гамильтоновой системы (0.1) тогда и только тогда, когда в тождествах (5.4) полиномы $\mathfrak{R}_{\mathfrak{lf}_{\zeta_{\epsilon}},\mathfrak{g}_{\zeta_{\epsilon}}} \colon \mathbb{R}^{2n} \to \mathbb{C}$ такие, что

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\left(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)+\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Im}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\right)=0\quad\forall (q,p)\in\mathbb{R}^{2n},$$

а вещественные числа $\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ и $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \ldots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}} = 1, \ldots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, makue, что имеет место условие $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \left| \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| + \left| \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0$.

Из теоремы 5.11 получаем, что верна

Теорема 5.12. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что выполняются тождества (5.4) при условиях (5.13). Тогда функция (5.25), где вещественные числа $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ и $\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\mathfrak{s},$ находятся из линейного однородного уравнения

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\left(\rho_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}+\sigma_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right)=0\quad npu\quad \sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\left|\varphi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right|+\left|\psi_{\mathfrak{l}_{\mathfrak{f}_{\zeta_{\mathfrak{l}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right|\neq0,$$

 $\mathit{будет}$ первым интегралом на области G гамильтоновой $\mathit{cucmemb}$ (0.1).

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 5.8. Если выполняются условия теоремы 5.12, то на области G функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to \ \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\ +\ \psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{p}}}\mathfrak{g}_{\zeta_{\mathfrak{p}}}}\operatorname{Im}\,\mathfrak{K}_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{p}}}\mathfrak{g}_{\zeta_{\mathfrak{p}}}}(q,p),\quad \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}$, $\zeta_{\mathfrak{l}} \in \{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}\}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, u $\mathfrak{f}_{\zeta_{\mathfrak{k}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{k}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{k}}}\}$, $\xi_{\mathfrak{k}} \in \{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{k}}\}$, $\mathfrak{k}=1,\ldots,\mathfrak{s}$, a вещественные числа $\varphi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, u $\psi_{\mathfrak{k}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}$, $\mathfrak{k}=1,\ldots,\mathfrak{s}$, находятся из уравнений $\rho_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ $\varphi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ + $\sigma_{\mathfrak{k}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}$ $\psi_{\mathfrak{k}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}$ = 0 при условии, что $\left|\varphi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right| + \left|\psi_{\mathfrak{k}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right| \neq 0$, будут первыми интегралами гамильтоновой системы (0.1).

Из теоремы 5.9 при $\mathfrak{s}_1=0$ получаем, что имеет место

Теорема 5.13. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ соответственно такие, что выполняются тождества (5.4). Тогда функция

$$F \colon (q, p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q, p) \quad \forall (q, p) \in G$$

$$(5.26)$$

будет дополнительным первым интегралом гамильтоновой системы (0.1), если и только если в тождествах (5.4) полиномы $\mathfrak{R}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \colon \mathbb{R}^{2n} \to \mathbb{C}, \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}, \ \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}}},$ $\zeta_{\mathfrak{l}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}, \ \widetilde{\mathfrak{e}}_{\mathfrak{l}} \leqslant \mathfrak{e}_{\mathfrak{l}}, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \ makue, \ umo \ umeem \ mecmo \ moждество$

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)=0\quad\forall (q,p)\in G,$$

а вещественные числа $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ такие, что $\sum\limits_{\mathfrak{l}=1}^{\mathfrak{s}}\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum\limits_{\mathfrak{g}_{\zeta}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}\left|\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right|\neq 0.$

Из теоремы 5.13 получаем, что верна

Теорема 5.14. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что выполняются тождества (5.4) при условиях (5.7). Тогда функция (5.26), где вещественные числа $\varphi_{\mathfrak{l}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ находятся

из уравнения $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}}
ho_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0$ при условии, что $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{e}}_{\zeta_{\mathfrak{l}}}} \left| \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0$, будет

dополнительным первым интегралом на области G гамильтоновой системы (0.1).

Для построения интегрального базиса гамильтоновой системы (0.1) применимо

Следствие 5.9. Если выполняются условия теоремы 5.14, то на области G функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to \ \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)+\varphi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}(q,p),\quad \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

Из теоремы 5.9 при $\mathfrak{s} = 0$ получаем, что имеет место

Теорема 5.15. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ соответственно такие, что выполняются тождества (5.4). Тогда функция

$$F \colon (q,p) \to \sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{e}}_{\mathfrak{l}}} \sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \mathrm{Im} \, \mathfrak{K}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p) \quad \forall (q,p) \in G, \tag{5.27}$$

где вещественные числа $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \ldots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}} = 1, \ldots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, такие, что $\sum_{\mathfrak{l}=1}^{\mathfrak{s}} \sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}} \left| \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0$, будет дополнительным первым интегралом гамильтоновой системы (0.1), если и только если в тождествах (5.4) полиномы $\mathfrak{R}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \colon \mathbb{R}^{2n} \to \mathbb{C}$, $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} = 1, \ldots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}$, $\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\zeta_{\mathfrak{l}} = 1, \ldots, \widetilde{\mathfrak{e}}_{\mathfrak{l}}$, $\widetilde{\mathfrak{e}}_{\mathfrak{l}} \leqslant \mathfrak{e}_{\mathfrak{l}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, такие, что верно тождество

$$\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\mathfrak{l}}}\sum_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\mathrm{Im}\,\mathfrak{R}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)=0\quad\forall (q,p)\in\mathbb{R}^{2n}.$$

Из теоремы 5.15 получаем, что верна

Теорема 5.16. Пусть гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что выполняются тождества (5.4) при условиях (5.11). Тогда функция (5.27), где вещественные числа $\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}},\ \zeta_{\mathfrak{l}}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ находятся из уравнения $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\int_{\mathfrak{g}_{\zeta_{\mathfrak{l}}}}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}=0$ при условии, что $\sum_{\mathfrak{l}=1}^{\mathfrak{s}}\sum_{\zeta_{\mathfrak{l}}=1}^{\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}}\Big|\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\Big|\neq 0$, будет первым интегралом на области G полиномиальной гамильтоновой системы (0.1).

Для построения интегрального базиса гамильтоновой системы (0.1) применимо Следствие 5.10. Если верны условия теоремы 5.16, то на области G функции

$$F_{\mathfrak{l}\mathfrak{k}}\colon (q,p)\to \ \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} (q,p) + \psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}} \operatorname{Im} \mathfrak{K}_{\mathfrak{k}_{\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}} (q,p), \quad \mathfrak{l}=1,\ldots,\mathfrak{s}, \ \mathfrak{k}=1,\ldots,\mathfrak{s},$$

$$\text{где фиксированные числа } \mathfrak{f}_{\zeta_{\mathfrak{l}}}\in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}}\in \left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\right\}, \ \zeta_{\mathfrak{l}}\in \left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\right\}, \ \zeta_{\mathfrak{l}}\in \left\{1,\ldots,\widetilde{\mathfrak{s}}, \ u \ \text{мультичндекс} \ \mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}\neq \mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}} \mathfrak{g}_{\zeta_{\mathfrak{k}}}, \ \mathfrak{l}=1,\ldots,\mathfrak{s},$$

$$\mathfrak{k}=1,\ldots,\mathfrak{s}, \ a \ \text{вещественные числа} \ \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}, \ \mathfrak{l}=1,\ldots,\mathfrak{s}, \ u \ \psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}, \ \mathfrak{k}=1,\ldots,\mathfrak{s}, \ naxodsmcs \ us$$

$$y \ \text{равнений} \ \sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}} \psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}} \psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}} = 0 \ \text{при условии, что} \ \left|\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right| + \left|\psi_{\mathfrak{k}\mathfrak{f}_{\zeta_{\mathfrak{k}}}\mathfrak{g}_{\zeta_{\mathfrak{k}}}}\right| \neq 0, \ \text{будут}$$
 первыми интегралами обобщенно-консервативной гамильтоновой системы (0.1).

5.3. Построение первых интегралов гамильтоновой системы по кратным комплекснозначным и вещественным полиномиальным частным интегралам

Как по теореме 1.3 при s=1 (т.е. при наличие только одного вещественного полиномиального частного интеграла), так и по теореме 5.14 при $\mathfrak{s}=\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}=\widetilde{\mathfrak{e}}_{\mathfrak{l}}=1$ и по теореме 5.16 при $\mathfrak{s}=\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}=\widetilde{\mathfrak{e}}_{\mathfrak{l}}=1$ (т.е. при наличие только одного двукратного комплекснозначного полиномиального частного интеграла), построить дополнительный первый интеграл обобщенно-консервативной гамильтоновой системы (0.1) не представляется возможным. В этих случаях могут быть использованы следующие утверждения.

Теорема 5.17. Пусть гамильтонова система (0.1) имеет вещественные полиномиальные частные интегралы (1.5) при условиях (1.13) и кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}} = 1 + \sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}} \mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, такие, что верны тождества (5.4) при условиях (5.7). Тогда на области G функции

$$F_{\xi\mathfrak{l}}\colon (q,p)\to\ w_{\xi}^{\gamma_{\xi}}(q,p)\exp\Bigl(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\Bigr),\quad \xi=1,\ldots,s,\ \mathfrak{l}=1,\ldots,\mathfrak{s}, \eqno(5.28)$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}$, $\mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}$, $\zeta_{\mathfrak{l}} \in \{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}\}$, $\mathfrak{l}=1,\ldots,\mathfrak{s}$, а вещественные числа γ_{ξ} и $\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ находятся из линейных однородных уравнений

$$\lambda_{\xi} \gamma_{\xi} + \rho_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \quad |\gamma_{\xi}| + \left| \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0, \quad \xi = 1, \dots, s, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \quad (5.29)$$

 $\mathit{будут}$ первыми интегралами полиномиальной гамильтоновой $\mathit{cucmemb}$ (0.1).

Действительно, с учетом тождеств (1.13), (5.4) и (5.7), скобки Пуассона

$$\begin{split} \left[F_{\xi\mathfrak{l}}(q,p),H(q,p)\right] &= \left[w_{\xi}^{\gamma_{\xi}}(q,p),H(q,p)\right] \cdot \exp\left(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\right) + \\ &+ w_{\xi}^{\gamma_{\xi}}(q,p) \cdot \left[\exp\left(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\right),H(q,p)\right] = \\ &= \gamma_{\xi}w_{\xi}^{\gamma_{\xi}-1}(q,p) \cdot \left[w_{\xi}(q,p),H(q,p)\right] \cdot \exp\left(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\right) + \\ &+ \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}w_{\xi}^{\gamma_{\xi}}(q,p) \exp\left(\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(t,x)\right) \cdot \left[\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),H(q,p)\right] = \\ &= \left(\lambda_{\xi}\gamma_{\xi} + \rho_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right) F_{\xi\mathfrak{l}}(q,p)\,M(q,p) \quad \forall (q,p) \in G, \quad \xi = 1,\ldots,s, \ \mathfrak{l} = 1,\ldots,\mathfrak{s}. \end{split}$$

Если числа $\gamma_{\xi},\ \xi=1,\ldots,s,$ и $\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ являются решением уравнения (5.29), то функции (2.28) будут первыми интегралами гамильтоновой системы (0.1). \boxtimes

Теорема 5.18. Пусть гамильтонова система (0.1) имеет вещественные полиномиальные частные интегралы (1.5) при условиях (1.13) и кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}} = 1 + \sum_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}} \mathfrak{r}_{\zeta_{\mathfrak{l}}}$, $\mathfrak{l} = 1, \ldots, \mathfrak{s}$, такие, что имеют место тождества (5.4) при условиях (5.11). Тогда функции

$$F_{\xi\mathfrak{l}}\colon (q,p)\to\ w_{\xi}^{\gamma_{\xi}}(q,p)\exp\Bigl(\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\mathrm{Im}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p)\Bigr)\ \ \forall (q,p)\in G,\ \xi=1,\ldots,s,\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ (5.30)$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}, \ \zeta_{\mathfrak{l}} \in \{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}\}, \ \mathfrak{l}=1,\ldots,\mathfrak{s},$ а вещественные числа γ_{ξ} и $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ находятся из линейных однородных уравнений

$$\lambda_{\xi} \gamma_{\xi} + \sigma_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \quad |\gamma_{\xi}| + \left| \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0, \quad \xi = 1, \dots, s, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \quad (5.31)$$

будут первыми интегралами полиномиальной гамильтоновой системы (0.1).

Доказательство. Методом аналогично использованному при доказательстве теоремы 5.17, с учетом тождеств (1.13), (5.4) и (5.11), получаем, что скобки Пуассона

$$\left[F_{\xi\mathfrak{l}}(q,p),H(q,p)\right] = \left(\lambda_{\xi}\,\gamma_{\xi} + \sigma_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right)F_{\xi\mathfrak{l}}(q,p)\,M(q,p), \quad \xi = 1,\ldots,s, \ \mathfrak{l} = 1,\ldots,\mathfrak{s}.$$

Выбирая числа $\gamma_{\xi},\ \xi=1,\ldots,s,$ и $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ так, чтобы выполнялось (5.31) получаем, что функции (5.30) будут первыми интегралами системы (0.1). \boxtimes

5.4. Построение первых интегралов гамильтоновой системы по кратным комплекснозначным и вещественным полиномиальным частным интегралам

Как по теореме 2.3 при $s=\widetilde{r}_{\xi_l}=\widetilde{\varepsilon}_l=1$ (т.е. при наличие только одного двукратного вещественного частного интеграла), так и по теореме 5.14 при $\mathfrak{s}=\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}=\widetilde{\mathfrak{e}}_{\mathfrak{l}}=1$ и по теореме 5.16 при $\mathfrak{s}=\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}=\widetilde{\mathfrak{e}}_{\mathfrak{l}}=1$ (т.е. при наличие только одного двукратного комплекснозначного полиномиального частного интеграла), построить первый интеграл гамильтоновой системы (0.1) не представляется возможным. В этих случаях могут быть использованы

Теорема 5.19. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum\limits_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l = 1, \ldots, s, \ makue, что имеют место тождества (2.4) при условиях (2.7). Кроме этого система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратностей <math>\mathfrak{z}_l = 1 + \sum\limits_{\zeta_l=1}^{\mathfrak{c}_l} \mathfrak{r}_{\zeta_l}, \ \mathfrak{l} = 1, \ldots, \mathfrak{s}, \ makue, что имеет место система тождеств (5.4) при условиях (5.7). Тогда первыми интегралами на области <math>G$ системы (0.1) будут функции

$$F_{\mathfrak{l}\mathfrak{l}}\colon (q,p)\to \ \alpha_{lf_{\xi_{l}}g_{\xi_{l}}}K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p)+\varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\operatorname{Re}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),\quad l=1,\ldots,s,\ \mathfrak{l}=1,\ldots,\mathfrak{s},\quad (5.32)$$

где фиксированные числа $f_{\xi_l} \in \mathbb{N}, \ g_{\xi_l} \in \{1,\ldots,\widetilde{r}_{\xi_l}\}, \ \xi_l \in \{1,\ldots,\widetilde{\varepsilon}_l\}, \ l=1,\ldots,s, \ u \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N},$ $\mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}, \ \zeta_{\mathfrak{l}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}, \ l=1,\ldots,s, \ u \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N},$ $\mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}, \ \zeta_{\mathfrak{l}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}, \ l=1,\ldots,s, \ u \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N},$ находятся из линейных однородных уравнений

$$\lambda_{lf_{\xi_{l}}g_{\xi_{l}}}\alpha_{lf_{\xi_{l}}g_{\xi_{l}}} + \rho_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \ \left|\alpha_{lf_{\xi_{l}}g_{\xi_{l}}}\right| + \left|\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right| \neq 0, \ l = 1, \ldots, s, \ \mathfrak{l} = 1, \ldots, \mathfrak{s}. \ (5.33)$$

Доказательство. На основании тождеств (2.4) при (2.7) и (5.4) при (5.7), с учетом свойства билинейности скобкок Пуассона получаем, что

$$\begin{split} \left[F_{l\mathfrak{l}}(q,p),H(q,p)\right] &= \alpha_{lf_{\xi_{l}}g_{\xi_{l}}} \cdot \left[K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p),H(q,p)\right] + \, \varphi_{\mathfrak{lf}_{\zeta_{l}}\mathfrak{g}_{\zeta_{l}}} \cdot \left[\operatorname{Re}\,\mathfrak{K}_{\mathfrak{lf}_{\zeta_{l}}\mathfrak{g}_{\zeta_{l}}}(q,p),H(q,p)\right] = \\ &= \left(\lambda_{lf_{\xi_{l}}g_{\xi_{l}}}\alpha_{lf_{\xi_{l}}g_{\xi_{l}}} + \rho_{\mathfrak{lf}_{\zeta_{l}}\mathfrak{g}_{\zeta_{l}}}\varphi_{\mathfrak{lf}_{\zeta_{l}}\mathfrak{g}_{\zeta_{l}}}\right)M(q,p) \quad \forall (q,p) \in G, \quad l = 1,\ldots,s, \ \mathfrak{l} = 1,\ldots,\mathfrak{s}. \end{split}$$

Если числа $\alpha_{lf_{\xi_l}g_{\xi_l}},\ l=1,\ldots,s,\ \varphi_{\mathfrak{lf}_{\zeta_l}\mathfrak{g}_{\zeta_l}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ являются решениями уравнений (5.33), то функции (5.32) будут первыми интегралами гамильтоновой системы (0.1). \boxtimes

Аналогично теореме 5.19 доказывается следующее утверждение.

Теорема 5.20. Пусть гамильтонова система (0.1) имеет кратные вещественные полиномиальные частные интегралы (1.5) кратностей $\varkappa_l = 1 + \sum_{\xi_l=1}^{\varepsilon_l} r_{\xi_l}, \ l = 1, \ldots, s, \ make, что имеют место тождества <math>(2.4)$ при условиях (2.7). Кроме этого система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.10) кратно-

стей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\$ такие, что имеет место система тождеств (5.4) при условиях (5.11). Тогда первыми интегралами на области G системы (0.1) будут функции

$$F_{\mathfrak{l}\mathfrak{l}}\colon (q,p)\to \ \alpha_{lf_{\xi_{l}}g_{\xi_{l}}}K_{lf_{\xi_{l}}g_{\xi_{l}}}(q,p)+\psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\mathrm{Im}\,\mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),\quad l=1,\ldots,s,\ \mathfrak{l}=1,\ldots,\mathfrak{s},$$

где фиксированные числа $f_{\xi_l} \in \mathbb{N}, \ g_{\xi_l} \in \left\{1,\ldots,\widetilde{r}_{\xi_l}\right\}, \ \xi_l \in \left\{1,\ldots,\widetilde{\varepsilon}_l\right\}, \ l=1,\ldots,s, \ u \ \mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N},$ $\mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\right\}, \ \zeta_{\mathfrak{l}} \in \left\{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}\right\}, \ \mathfrak{l}=1,\ldots,\mathfrak{s}, \ a \ вещественные числа \ \alpha_{lf_{\xi_l}g_{\xi_l}} \ u \ \psi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ находятся из линейных однородных уравнений

$$\lambda_{lf_{\xi_{l}}g_{\xi_{l}}}\alpha_{lf_{\xi_{l}}g_{\xi_{l}}}+\sigma_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}=0\quad npu\ \left|\alpha_{lf_{\xi_{l}}g_{\xi_{l}}}\right|+\left|\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right|\neq0,\ l=1,\ldots,s,\ \mathfrak{t}=1,\ldots,\mathfrak{s}.$$

5.5. Построение первых интегралов гамильтоновой системы по кратным комплекснозначным частным интегралам и условным частным интегралам

Как по теореме 3.2 при $\nu=1$ (т.е. при наличие только одного условного частного интеграла), так и по теореме 5.14 при $\mathfrak{s}=\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}=\widetilde{\mathfrak{e}}_{\mathfrak{l}}=1$ и по теореме 5.16 при $\mathfrak{s}=\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}=\widetilde{\mathfrak{e}}_{\mathfrak{l}}=1$ (т.е. при наличие только одного двукратного комплекснозначного полиномиального частного интеграла), построить первый интеграл гамильтоновой системы (0.1) не представляется возможным. В этих случаях могут быть использованы следующие утверждения.

Теорема 5.21. Пусть гамильтонова система (0.1) имеет условные частные интегралы (3.4) такие, что верны тождества (3.5) при условиях (3.8) и кратные комплекснозначные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что верны тождества (5.4) при условиях (5.7). Тогда первыми интегралами на области G обобщенно-консервативной гамильтоновой системы (0.1) будут скалярные функции

$$F_{\xi \mathfrak{l}} \colon (q,p) \to \beta_{\xi} v_{\xi}(q,p) + \varphi_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \operatorname{Re} \mathfrak{K}_{\mathfrak{l}\mathfrak{f}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p), \quad \xi = 1, \dots, \nu, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \tag{5.34}$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \left\{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\right\}, \ \zeta_{\mathfrak{l}} \in \left\{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}\right\}, \ \mathfrak{l} = 1,\ldots,\mathfrak{s}, \ a \ вещественные числа <math>\beta_{\xi}$ и $\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ находятся из линейных однородных уравнений

$$\mu_{\xi} \beta_{\xi} + \rho_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \quad |\beta_{\xi}| + \left| \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0, \quad \xi = 1, \dots, \nu, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}.$$
 (5.35)

Действительно, с учетом тождеств (3.5) при (3.8) и (5.4) при (5.7), скобки Пуассона

$$\begin{split} \left[F_{\xi\mathfrak{l}}(q,p),H(q,p)\right] &= \beta_{\xi} \cdot \left[v_{\xi}(q,p),H(q,p)\right] + \varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \cdot \left[\operatorname{Re}\,\mathfrak{K}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p),H(q,p)\right] = \\ &= \left(\mu_{\xi}\,\beta_{\xi} + \rho_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}\right)M(q,p) \quad \forall (q,p) \in G, \quad \xi = 1,\ldots,\nu, \quad \mathfrak{l} = 1,\ldots,\mathfrak{s}. \end{split}$$

Выбирая числа β_{ξ} , $\xi = 1, \dots, \nu$, и $\varphi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$, $\mathfrak{l} = 1, \dots, \mathfrak{s}$, так, чтобы имело место (5.35) получаем, что функции (5.34) будут первыми интегралами системы (0.1). \boxtimes

Аналогично теореме 5.21 доказывается следующее утверждение.

Теорема 5.22. Пусть гамильтонова система (0.1) имеет условные частные интегралы (3.4) такие, что верны тождества (3.5) при условиях (3.8) и кратные комплекснозначные частные интегралы (4.10) кратностей $\mathfrak{z}_{\mathfrak{l}}=1+\sum\limits_{\zeta_{\mathfrak{l}}=1}^{\mathfrak{e}_{\mathfrak{l}}}\mathfrak{r}_{\zeta_{\mathfrak{l}}},\ \mathfrak{l}=1,\ldots,\mathfrak{s},$ такие, что верны тождества (5.4) при условиях (5.11). Тогда первыми интегралами на области G обобщенно-консервативной гамильтоновой системы (0.1) будут скалярные функции

$$F_{\xi\mathfrak{l}}\colon (q,p)\to \ \beta_\xi \, v_\xi(q,p) + \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}} \mathrm{Im}\, \mathfrak{K}_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}(q,p), \quad \xi=1,\ldots,\nu, \quad \mathfrak{l}=1,\ldots,\mathfrak{s},$$

где фиксированные числа $\mathfrak{f}_{\zeta_{\mathfrak{l}}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}}} \in \{1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}}}\}, \ \zeta_{\mathfrak{l}} \in \{1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}}\}, \ \mathfrak{l}=1,\ldots,\mathfrak{s}, \ a \ веще-ственные числа <math>\beta_{\xi}$ и $\psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}}\mathfrak{g}_{\zeta_{\mathfrak{l}}}}$ находятся из линейных однородных уравнений

$$\mu_{\xi} \beta_{\xi} + \sigma_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} = 0 \quad npu \quad |\beta_{\xi}| + \left| \psi_{\mathfrak{lf}_{\zeta_{\mathfrak{l}}} \mathfrak{g}_{\zeta_{\mathfrak{l}}}} \right| \neq 0, \quad \xi = 1, \dots, \nu, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}.$$

5.6. Построение первых интегралов гамильтоновой системы по комплекснозначным частным интегралам и кратным комплекснозначным частным интегралам

Как по теореме 4.5 при $\mathfrak{s}=1$ и по теореме 4.6 при $\mathfrak{s}=1$ (т.е. при наличие только одного комплекснозначного полиномиального частного интеграла), так и по теореме 5.14 при $\mathfrak{s}=\mathfrak{r}_{\zeta_{\mathfrak{l}}}=\mathfrak{e}_{\mathfrak{l}}=1$ и по теореме 5.16 при $\mathfrak{s}=\mathfrak{r}_{\zeta_{\mathfrak{l}}}=\mathfrak{e}_{\mathfrak{l}}=1$ (т.е. при наличие только одного двукратного комплекснозначного полиномиального частного интеграла), построить первый интеграл гамильтоновой системы (0.1) не представляется возможным. В этих случаях могут быть использованы следующие закономерности, доказательства которых аналогичны доказательствам следствий 5.1, 5.2, 5.4 и 5.5 соответственно.

Теорема 5.23. Пусть обобщенно-консервативная гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что верны тождества (4.11) при условиях (4.20). Кроме того гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.24) такие, что в тождествах (5.20) у полиномов $\mathfrak{R}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}} \colon \mathbb{R}^{2n} \to \mathbb{C}$ вещественные части

$$\operatorname{Re} \mathfrak{R}^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}(q,p) = \rho^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}M(q,p) \quad \forall (q,p) \in G \subset \mathbb{R}^{2n}, \quad \rho^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}} \in \mathbb{R},$$

$$\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}} \in \mathbb{N}, \quad \mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}}, \quad \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_{1}}} \leqslant \mathfrak{r}_{\zeta_{\mathfrak{l}_{1}}}, \quad \zeta_{\mathfrak{l}_{1}} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}}, \quad \widetilde{\mathfrak{e}}_{\mathfrak{l}_{1}} \leqslant \mathfrak{e}_{\mathfrak{l}_{1}}, \quad \mathfrak{l}_{1} = 1, \dots, \mathfrak{s}_{1}.$$

$$(5.36)$$

Тогда первыми интегралами гамильтоновой системы (0.1) будут скалярные функции

$$F_{\mathfrak{ll}_1} \colon (q,p) \to \ P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \left(\varphi_{\mathfrak{l}_1 \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)} \operatorname{Re} \mathfrak{K}_{\mathfrak{l}_1 \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)}(q,p) \right) \ \forall (q,p) \in G, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \ \mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1, \dots, \mathfrak{s}_1, \dots, \mathfrak{s}_1, \dots, \mathfrak{s}_2, \dots,$$

где полиномы $P_{\mathfrak{l}} \colon \mathbb{R}^{2n} \to \mathbb{R}, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \ onpedension cs \ no \ формулам (4.15), \ фиксированные числа <math>\mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_1}} = 1, \dots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_1}}, \ \zeta_{\mathfrak{l}_1} = 1, \dots, \widetilde{\mathfrak{e}}_{\mathfrak{l}_1}, \ \mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1, \ a \ вещественные числа <math>\eta_{\mathfrak{l}} \ u$

 $arphi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}$ находятся из линейных однородных уравнений

$$2\rho_{\mathfrak{l}}\eta_{\mathfrak{l}}+\rho_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\varphi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}=0\quad npu\ \left|\eta_{\mathfrak{l}}\right|+\left|\varphi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\right|\neq0,\quad \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{l}_{1}=1,\ldots,\mathfrak{s}_{1}.$$

Теорема 5.24. Пусть гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что верны тождества (4.11) при условиях (4.20). Кроме того гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.24) такие, что верны тождества (5.20) при условиях (5.23). Тогда первыми интегралами гамильтоновой системы (0.1) будут функции

$$F_{\mathfrak{ll}_1} \colon (q,p) \to \ P_{\mathfrak{l}}^{\eta_{\mathfrak{l}}}(q,p) \exp \left(\psi_{\mathfrak{l}_1 \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)} \operatorname{Im} \mathfrak{K}_{\mathfrak{l}_1 \mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}^{(1)}(q,p) \right) \ \forall (q,p) \in G, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \ \mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1, \dots,$$

где полиномы $P_{\mathfrak{l}}\colon \mathbb{R}^{2n} \to \mathbb{R}, \ \mathfrak{l}=1,\ldots,\mathfrak{s}, \ onpedensions no формулам (4.15), фиксированные числа <math>\mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_1}}, \ \zeta_{\mathfrak{l}_1}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}_1}, \ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1, \ a \ вещественные числа <math>\eta_{\mathfrak{l}} \ u$ $\psi^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}$ находятся из линейных однородных уравнений

$$2\rho_{\mathfrak{l}}\eta_{\mathfrak{l}}+\sigma^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}\psi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}=0\quad npu\ \left|\eta_{\mathfrak{l}}\right|+\left|\psi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}\right|\neq0,\quad \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{l}_{1}=1,\ldots,\mathfrak{s}_{1}.$$

Теорема 5.25. Пусть гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что верны тождества (4.11) при условиях (4.22). Кроме того гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.24) такие, что верны тождества (5.20) при условиях (5.36). Тогда первыми интегралами гамильтоновой системы (0.1) будут функции

$$F_{\mathfrak{l}\mathfrak{l}_1}\colon (q,p) \to \ \tau_{\mathfrak{l}}A_{\mathfrak{l}}(q,p) + \varphi^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}} \underset{\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}{\operatorname{Re}}\,\mathfrak{K}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}} \underset{\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}{\operatorname{Re}}\,\mathfrak{K}^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}} \underset{\mathfrak{g}_{\zeta_{\mathfrak{l}_2}}}{\operatorname{g}_{\zeta_{\mathfrak{l}_1}}} (q,p) \quad \forall (q,p) \in G, \quad \mathfrak{l}=1,\ldots,\mathfrak{s}, \ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1, \ldots,\mathfrak{s}_1, \ldots$$

где функции $A_{\mathfrak{l}}\colon G\to\mathbb{R},\ \mathfrak{l}=1,\ldots,\mathfrak{s},\ onpedenshman no формулам (4.16), фиксированные числа <math>\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\in\mathbb{N},\ \mathfrak{g}_{\zeta_{\mathfrak{l}_1}}=1,\ldots,\widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_1}},\ \zeta_{\mathfrak{l}_1}=1,\ldots,\widetilde{\mathfrak{e}}_{\mathfrak{l}_1},\ \mathfrak{l}_1=1,\ldots,\mathfrak{s}_1,\ a\ вещественные числа <math>\tau_{\mathfrak{l}}$ и $\varphi^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}$ находятся из линейных однородных уравнений

$$\rho_{\mathfrak{l}}\tau_{\mathfrak{l}}+\rho_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}\varphi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}=0\quad npu\ yclobuu\ |\tau_{\mathfrak{l}}|+\left|\varphi_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}}^{(1)}\right|\neq0,\quad \mathfrak{l}=1,\ldots,\mathfrak{s},\ \mathfrak{l}_{1}=1,\ldots,\mathfrak{s}_{1}.$$

Теорема 5.26. Пусть гамильтонова система (0.1) имеет комплекснозначные полиномиальные частные интегралы (4.10) такие, что верны тождества (4.11) при условиях (4.22). Кроме того гамильтонова система (0.1) имеет кратные комплекснозначные полиномиальные частные интегралы (4.24) такие, что верны тождества (5.20) при условиях (5.23). Тогда первыми интегралами гамильтоновой системы (0.1) будут функции

$$F_{\mathfrak{ll}_1} \colon (q,p) \to \ \tau_{\mathfrak{l}} A_{\mathfrak{l}}(q,p) + \psi^{(1)}_{\mathfrak{l}_1 \mathfrak{f}_{\zeta_{\mathfrak{l}_1}}} \lim_{\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}} \mathfrak{K}^{(1)}_{\mathfrak{l}_1 \mathfrak{f}_{\zeta_{\mathfrak{l}_1}}} \mathfrak{g}_{\zeta_{\mathfrak{l}_2}}(q,p) \quad \forall (q,p) \in G, \quad \mathfrak{l} = 1, \dots, \mathfrak{s}, \ \mathfrak{l}_1 = 1, \dots, \mathfrak{s}_1, \dots, \mathfrak{s}_1, \dots, \mathfrak{s}_2, \dots, \mathfrak{s}_2 = 1, \dots, \mathfrak{s}_2$$

где функции $A_{\mathfrak{l}}: G \to \mathbb{R}, \ \mathfrak{l} = 1, \dots, \mathfrak{s}, \ onpedeляются по формулам (4.16), фиксированные$

числа $\mathfrak{f}_{\zeta_{\mathfrak{l}_1}} \in \mathbb{N}, \ \mathfrak{g}_{\zeta_{\mathfrak{l}_1}} = 1, \ldots, \widetilde{\mathfrak{r}}_{\zeta_{\mathfrak{l}_1}}, \ \zeta_{\mathfrak{l}_1} = 1, \ldots, \widetilde{\mathfrak{e}}_{\mathfrak{l}_1}, \ \mathfrak{l}_1 = 1, \ldots, \mathfrak{s}_1, \ a$ вещественные числа $\tau_{\mathfrak{l}}$ и $\psi^{(1)}_{\mathfrak{l}_1\mathfrak{f}_{\zeta_{\mathfrak{l}_1}}\mathfrak{g}_{\zeta_{\mathfrak{l}_1}}}$ находятся из линейных однородных уравнений

$$\rho_{\mathfrak{l}}\tau_{\mathfrak{l}} + \sigma^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}\psi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}} = 0 \quad npu \ ycnosuu \ |\tau_{\mathfrak{l}}| + \left|\psi^{(1)}_{\mathfrak{l}_{1}\mathfrak{f}_{\zeta_{\mathfrak{l}_{1}}}}\mathfrak{g}_{\zeta_{\mathfrak{l}_{1}}}\right| \neq 0, \quad \mathfrak{l} = 1, \ldots, \mathfrak{s}, \ \mathfrak{l}_{1} = 1, \ldots, \mathfrak{s}_{1}.$$

5.7. Построение неавтономных дополнительных первых интегралов гамильтоновой системы по кратным комплекснозначным полиномиальным частным интегралам

Методом аналогично использованному при доказательстве теорем 2.4, 4.14 и 4.15 устанавливаем следующие закономерности.

Теорема 5.27. Если гамильтонова система (0.1) имеет кратный комплекснозначный полиномиальный частный интеграл (4.1) кратности $\mathfrak{z}=1+\sum\limits_{\zeta=1}^{\mathfrak{e}}\mathfrak{r}_{\zeta}$ и существует такое $\zeta\in\{1,\ldots,\mathfrak{e}\},$ что в тождествах (5.3) при фиксированном $\mathfrak{g}_{\zeta}\in\{1,\ldots,\mathfrak{r}_{\zeta}\}$ у полинома $\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}:\mathbb{R}^{2n}\to\mathbb{C}$ вещественная часть

$$\operatorname{Re}\mathfrak{R}_{\mathfrak{f}_{\varsigma}\mathfrak{g}_{\varsigma}}(q,p)=\lambda\quad\forall (q,p)\in\mathbb{R}^{2n},\ \lambda\in\mathbb{R},$$

то скалярная функция

$$F\colon (t,q,p)\to \ \operatorname{Re}\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p)-\lambda t \quad \forall (t,q,p)\in \mathbb{R}\times G\subset \mathbb{R}^{2n+1}$$

будет неавтономным первым интегралом гамильтоновой системы (0.1).

Теорема 5.28. Если гамильтонова система (0.1) имеет кратный комплекснозначный полиномиальный частный интеграл (4.1) кратности $\mathfrak{z}=1+\sum\limits_{\zeta=1}^{\mathfrak{e}}\mathfrak{r}_{\zeta}$ и существует такое $\zeta\in\{1,\ldots,\mathfrak{e}\},$ что в тождествах (5.3) при фиксированном $\mathfrak{g}_{\zeta}\in\{1,\ldots,\mathfrak{r}_{\zeta}\}$ у полинома $\mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}:\mathbb{R}^{2n}\to\mathbb{C}$ мнимая часть

$$\operatorname{Im} \mathfrak{R}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p) = \lambda \quad \forall (q,p) \in \mathbb{R}^{2n}, \quad \lambda \in \mathbb{R},$$

то скалярная функция

$$F \colon (t,q,p) \to \operatorname{Im} \mathfrak{K}_{\mathfrak{f}_{\mathcal{C}}\mathfrak{g}_{\mathcal{C}}}(q,p) - \lambda t \qquad \forall (t,q,p) \in \mathbb{R} \times G \subset \mathbb{R}^{2n+1}$$

будет первым интегралом гамильтоновой системы (0.1).

Непосредственно из теорем 5.27 и 5.28 получаем

Следствие 5.11. Если гамильтонова система (0.1) имеет кратный комплекснозначный полиномиальный частный интеграл (4.1) кратности $\mathfrak{z}=1+\sum\limits_{\zeta=1}^{\mathfrak{e}}\mathfrak{r}_{\zeta}$ и существует такое $\zeta\in\{1,\ldots,\mathfrak{e}\},$ что в тождествах (5.3) при фиксированном $\mathfrak{g}_{\zeta}\in\{1,\ldots,\mathfrak{r}_{\zeta}\}$ полином

$$\mathfrak{R}_{\mathfrak{f}_{\varepsilon}\mathfrak{g}_{\varepsilon}}(q,p)=\lambda_{1}+i\,\lambda_{2}\quad\forall (q,p)\in\mathbb{R}^{2n},\quad\lambda_{1},\lambda_{2}\in\mathbb{R},$$

то скалярные функции

$$F_1\colon (t,q,p)\to \ \operatorname{Re}\,\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(q,p)-\lambda_1\,t\ \ u\ F_2\colon (t,q,p)\to \ \operatorname{Im}\,\mathfrak{K}_{\mathfrak{f}_{\zeta}\mathfrak{g}_{\zeta}}(t,q,p)-\lambda_2\,t \quad \forall (t,q,p)\in \mathbb{R}\times G$$
 будут первыми интегралами на области $\mathbb{R}\times G$ гамильтоновой системы (0.1).

Для обобщенно-консервативной полиномиальной гамильтоновой системы (5.2), используя кратный (кратность не менее двух) комплекснозначный полиномиальный частный интеграл $\mathfrak{w}\colon (q,p)\to q_2+i\,q_1 \ \forall (q,p)\in\mathbb{R}^4 \text{ такой, что } \mathfrak{M}(q,p)=-\alpha\,i\,\,\mathrm{i}\,\,\mathfrak{K}_{11}(q,p)=\frac{p_2+i\,p_1}{q_2+i\,q_1}\,,\,\,\mathfrak{R}_{11}(q,p)=-1,$ строим на области $\mathbb{R}\times G,\,\,G\subset\{(q,p)\colon q_2\neq 0\}$ базис неавтономных первых интегралов

$$F_1 \colon (t,q,p) \to q_1^2 + q_2^2, \quad F_2 \colon (t,q,p) \to \arctan \frac{q_1}{q_2} + \alpha t \quad \forall (t,q,p) \in \mathbb{R} \times G \quad \text{(следствие 4.15)},$$

$$F_3 \colon (t,q,p) \to \ q_1p_2 - q_2p_1, \quad F_4 \colon (t,q,p) \to \ \frac{q_1p_1 + q_2p_2}{q_1^2 + q_2^2} + t \quad \forall (t,q,p) \in \mathbb{R} \times G \quad \text{(следствие 5.11)}.$$

Заключение. В работе для обобщенно-консервативной полиномиальной гамильтоновой обыкновенной дифференциальной системы (0.1) определены понятия и сформулированы основные свойства вещественного полиномиального частного интеграла (определение 1.1, свойства 1.1 – 1.6), кратного вещественного полиномиального частного интеграла (определение 2.1, свойство 2.1), условного частного интеграла (определение 3.1, свойства 3.1 и 3.2), комплекснозначного полиномиального частного интеграла (определение 4.1, свойства 4.1 – 4.3, теоремы 4.1 и 4.3) и кратного комплекснозначного полиномиального частного интеграла (определение 5.1, свойства 5.1 и 5.2). Выделить классы полиномиальных гамильтоновых дифференциальных систем, у которых первые интегралы находятся по вещественным полиномиальным частным интегралам (теоремы 1.1-1.3, следствия 1.1 - 1.3), кратным вещественным полиномиальным частным интегралам (теоремы 2.1-2.3, следствия 2.1 и 2.2), условным частным интегралам (теоремы 3.1-3.4, следствия 3.1 – 3.3), комплекснозначным полиномиальным частным интегралам (теоремы 4.2, 4.4 - 4.13, следствия 4.1 - 4.14) и кратным комплекснозначным полиномиальным частным интегралам (теоремы 5.1 – 5.26, следствия 5.1 – 5.10). Получены достаточные признаки построения дополнительных неавтономных первых интегралов по вещественным полиномиальным частным интегралам (теорема 1.4), кратным вещественным полиномиальным частным интегралам (теорема 2.4), условным частным интегралам (теорема 3.5), комплекснозначным полиномиальным частным интегралам (теоремы 4.14 и 4.15, следствие 4.15) и кратным комплекснозначным полиномиальным частным интегралам (теоремы 5.27 и 5.28, следствие 5.11). Приведены примеры полиномиальных гамильтоновых систем, на которых проиллюстрированы теоретические исследования.

Полученные в данной статье результаты могут быть применены в аналитической теории дифференциальных уравнений и в аналитической механике.

Благодарность. Автор выражает благодарность и глубокую признательность профессору В.Н. Горбузову за интерес к работе и полезные обсуждения.

Статья подготовлена в рамках проекта Horizon 2020-2017-RISE-777911.

Список литературы

- 1. Darboux~G. Mémoire sur les équations differentielles algebriques du premier ordre et du premier degré // Bulletin des Sciences Mathématiques. 1878. Vol. 2. P. 60 96, $123-144,\,151-200$.
- 2. Горбузов В.Н., Тыщенко В.Ю. Частные интегралы систем в полных дифференциалах // Дифференциальные уравнения. 1991. Т. 27, № 10. С. 1819 1822.
- 3. Горбузов В.Н., Тыщенко В.Ю. Частные интегралы обыкновенных дифференциальных уравнений // Математический сборник. 1992. Т. 183, № 3. С. 76 94.
- 4. Горбузов В.Н. Построение первых интегралов и последних множителей полиномиальных автономных многомерных дифференциальных систем // Дифференциальные уравнения. 1998. Т. 34, № 4. С. 562 564.
- 5. Горбузов В.Н. Частные интегралы вещественной автономной полиномиальной системы уравнений в полных дифференциалах // Дифференциальные уравнения и процессы управления. 2000. \mathbb{N} 2. С. 1 36.
- 6. Gorbuzov V.N. Partial integrals of ordinary differential systems // Mathematics.Classical Analysis and ODEs (arXiv:1809.07105 [math.CA]. Cornell Univ., Ithaca, New York). 2018. 86 p.
- 7. Christopher C., Llibre J. Algebraic aspects of integrability for polynomial systems // Qualitative theory of dynamical systems. 1999. Vol. 1. P. 71 95.
- 8. Llibre J., Zhang X. Darboux theory of integrability for polynomial vector fields in \mathbb{R}^n taking into account the multiplicity at infinity // Bulletin des Sciences Mathematiques. 2009. \mathbb{N}^n 7(133). P. 765 778.
- 9. Llibre J., Zhang X. Darboux theory of integrability in C^n taking into account the multiplicity // Journal of Differential Equations. $-2009. \mathbb{N}_2 \ 2 \ (246). P. 541 551.$
- 10. Горбузов В.Н. Интегралы систем уравнений в полных дифференциалах. Гродно: ГрГУ, 2005. 273 с.
 - 11. Горбузов В. Н. Интегралы дифференциальных систем. Гродно: ГрГУ, 2006. 447 с.
- 12. Горбузов В.Н., Проневич А.Ф. Построение интегралов линейной дифференциальной системы // Веснік Гродзенскага дзяржаўнага ун-та. Сер. 2. 2003. № 2(22). С. 50-60.
- 13. Gorbuzov V.N., Pranevich A.F. First integrals of ordinary linear differential systems // Mathematics.Dynamical Systems (1201.4141v1 [math.DS], Cornell Univ., Ithaca, New York). -2012. P. 1 75.
- 14. Горбузов В.Н., Проневич А.Ф. Интегралы R-линейных систем в полных дифференциалах // Доклады НАН Беларуси. 2004. Т. 48, № 1. С. 49 52.
- 15. Gorbuzov V.N., Pranevich A.F. First integrals of linear differential systems // Mathematics.Dynamical Systems (0806.4155v1[math.CA], Cornell Univ., Ithaca, New York). -2008. -P. 1 37.
- 16. Проневич А.Ф. R-дифференцируемые интегралы систем в полных дифференциалах. Saarbruchen: LAP LAMBERT Academic Publishing, 2011. 104 с.

- 17. Горбузов В.Н., Проневич А.Ф. Спектральный метод построения интегрального базиса якобиевой системы в частных производных // Дифференциальные уравнения и процессы управления. 2001. № 3. С. 17 45.
- 18. Проневич А.Ф. Интегралы якобиевых систем уравнений в частных производных. Saarbruchen: LAP LAMBERT Academic Publishing, 2012. 97 с.
- 19. *Козлов В.В.* Симметрии, топология и резонансы в гамильтоновой механике. Ижевск: Изд-во Удмуртского ун-та, 1995. 432 с.
- 20. *Борисов А.В., Мамаев И.С.* Современные методы теории интегрируемых систем. Москва-Ижевск: Институт компьютерных исследований, 2003. 296 с.
- 21. Goriely A. Integrability and nonintegrability of dynamical systems. World Scientific: Advanced series on nonlinear dynamics, 2001. Vol. 19. 436 p.
- 22. Zhang X. Integrability of dynamical systems: algebra and analysis. Singapore: Springer, 2017. 380 p.
- 23. *Матвеев Н.М.* Методы интегрирования обыкновенных дифференциальных уравнений. СПб.: Лань, 2003. 832 с.
- 24. Бибиков Ю.Н. Общий курс обыкновенных дифференциальных уравнений. СПб.: Санкт-Петербургский университет, 2005.-276 с.
- 25. Maciejewski A.J., Przybylska M. Darboux polynomials and first integrals of natural polynomial hamiltonian systems // Physics Letters A. 2004. Vol. 326. P. 219 226.
- 26. García I.A., Grau M., Llibre J. First integrals and Darboux polynomials of natural polynomial hamiltonian systems // Physics Letters A. 2010. Vol. 374. P. 4746 4748.

PARTIAL INTEGRALS OF AUTONOMOUS POLYNOMIAL HAMILTONIAN ORDINARY DIFFERENTIAL SYSTEMS

A.F. Pranevich Yanka Kupala State University of Grodno pranevich@grsu.by

Abstract. In this paper, we consider an autonomous polynomial Hamiltonian ordinary differential system. Sufficient criteria for the construction of first integrals on real polynomial partial integrals, multiple real polynomial partial integrals, conditional partial integrals, complex-valued polynomial partial integrals and multiple complex-valued polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by real polynomial and conditional partial integrals, complex-valued polynomial and conditional partial integrals, real and complex-valued polynomial partial integrals are identified. The examples illustrating the obtained theoretical results are given.

Keywords: Hamiltonian system, first integral, partial integral.