

A GUIDELINE FOR PID INSTRUMENT RESPONSE

CORRECTION FACTORS AND IONIZATION ENERGIES*

RAE Systems by Honeywell PIDs can be used for the detection of a wide variety of gases that exhibit different responses. In general, any compound with ionization energy (IE) lower than that of the lamp photons can be measured.* The best way to calibrate a PID to different compounds is to use a standard of the gas of interest. However, correction factors have been determined that enable the user to quantify a large number of chemicals using only a single calibration gas, typically isobutylene. In our PIDs, correction factors can be used in one of three ways:

- Calibrate the monitor with isobutylene in the usual fashion to read in isobutylene equivalents. Manually multiply the reading by the correction factor (CF) to obtain the concentration of the gas being measured.
- 2. Calibrate the unit with isobutylene in the usual fashion to read in isobutylene equivalents. Call up the correction factor from the instrument memory or download it from a personal computer and then call it up. The monitor will then read directly in units of the gas of interest.
- **3.** Calibrate the unit with isobutylene, but input an equivalent, "corrected" span gas concentration when prompted for this value. The unit will then read directly in units of the gas of interest.
- * The term "ionization energy" is more scientifically correct and replaces the old term "ionization potential." High-boiling ("heavy") compounds may not vaporize enough to give a response even when their ionization energies are below the lamp photon energy. Some inorganic compounds like H_2O_2 and NO_2 give weak response even when their ionization energies are well below the lamp photon energy.

Example 1:

With the unit calibrated to read isobutylene equivalents, the reading is 10 ppm with a 10.6 eV lamp. The gas being measured is butyl acetate, which has a correction factor of 2.6. Multiplying 10 by 2.6 gives an adjusted butyl acetate value of 26 ppm. Similarly, if the gas being measured were trichloroethylene (CF = 0.54), the adjusted value with a 10 ppm reading would be 5.4 ppm.

Example 2:

With the unit calibrated to read isobutylene equivalents, the reading is 100 ppm with a 10.6 eV lamp. The gas measured is m-xylene (CF = 0.43). After downloading this factor, the unit should read about 43 ppm when exposed to the same gas, and thus read directly in m-xylene values.

Example 3:

The desired gas to measure is ethylene dichloride (EDC). The CF is 0.6 with an 11.7 eV lamp. During calibration with 100 ppm isobutylene, insert 0.6 times 100, or 60 at the prompt for the calibration gas concentration. The unit then reads directly in EDC values.

Conversion to mg/m³

To convert from ppm to mg/m³, use the following formula:

Conc. $(mg/m^3) = [Conc.(ppmv) \times mol. \text{ wt. } (g/mole)]$ molar gas volume (L)

For air at 25°C (77°F), the molar gas volume is 24.4 L/mole and the formula reduces to:

 $Conc.(mg/m^3) = Conc.(ppmv) x mol. wt. (g/mole) x 0.041$

For example, if the instrument is calibrated with a gas standard in ppmv, such as 100 ppm isobutylene, and the user wants the display to read in mg/m^3 of hexane, whose m.w. is 86 and CF is 4.3, the overall correction factor would be 4.3 x 86 x 0.041 equals 15.2.

Correction Factors for Mixtures

The correction factor for a mixture is calculated from the sum of the mole fractions Xi of each component divided by their respective correction factors CFi:

$$CFmix = 1 / (X_1/CF_1 + X_2/CF_2 + X_3/CF_3 + ... X_i/CF_i)$$

Thus, for example, a vapor phase mixture of 5% benzene and 95% n-hexane would have a CFmix of CFmix = 1 / (0.05/0.53 + 0.95/4.3) = 3.2. A reading of 100 would then correspond to 320 ppm of the total mixture, comprised of 16 ppm benzene and 304 ppm hexane.

For a spreadsheet to compute the correction factor and TLV of a mixture see the appendix at the end of the CF table.

TLVs and Alarm Limits for Mixtures

The correction factor for mixtures can be used to set alarm limits for mixtures. To do this one first needs to calculate the exposure limit for the mixture. The Threshold Limit Value (TLV) often defines exposure limits. The TLV for the mixture is calculated in a manner similar to the CF calculation:

$$TLV mix = 1 / (X_1/TLV_1 + X_2/TLV_2 + X_3/TLV_3 + ... X_i/TLV_i)$$

In the above example, the 8-h TLV for benzene is 0.5 ppm and for n-hexane 50 ppm. Therefore the TLV of the mixture is TLVmix = 1/(0.05/0.5+0.95/50) = 8.4 ppm, corresponding to 8.0 ppm hexane and 0.4 ppm benzene. For an instrument calibrated on isobutylene, the reading corrsponding to the TLV is:

Alarm Reading =
$$TLVmix / CFmix = 8.4 / 3.2 = 2.6 ppm$$

A common practice is to set the lower alarm limit to half the TLV, and the higher limit to the TLV. Thus, one would set the alarms to 1.3 and 2.6 ppm, respectively.

CALIBRATION CHARACTERISTICS

- **A. Flow Configuration.** PID response is essentially independent of gas flow rate as long as it is sufficient to satisfy the pump demand. Four main flow configurations are used for calibrating a PID:
 - 1. Pressurized gas cylinder (Fixed-flow regulator): The flow rate of the regulator should match the flow demand of the instrument pump or be slightly higher.

- 2. Pressurized gas cylinder (Demand-flow regulator): A demand-flow regulator better matches pump speed differences, but results in a slight vacuum during calibration and thus slightly high readings.
- **3. Collapsible gas bag:** The instrument will draw the calibration gas from the bag at its normal flow rate, as long as the bag valve is large enough. The bag should be filled with enough gas to allow at least one minute of flow (~ 0.6 L for a MiniRAE, ~0.3 L for MultiRAE).
- **4. T (or open tube) method:** The T method uses a T-junction with gas flow higher than the pump draw. The gas supply is connected to one end of the T, the instrument inlet is connected to a second end of the T, and excess gas flow escapes through the third, open end of the T. To prevent ambient air mixing, a long tube should be connected to the open end, or a high excess rate should be used. Alternatively, the instrument probe can be inserted into an open tube slightly wider than the probe. Excess gas flows out around the probe.

The first two cylinder methods are the most efficient in terms of gas usage, while the bag and T methods give slightly more accurate results because they match the pump flow better.

- **B. Pressure.** Pressures deviating from atmospheric pressure affect the readings by altering gas concentration and pump characteristics. It is best to calibrate with the instrument and calibration gas at the same pressure as each other and the sample gas. (Note that the cylinder pressure is not relevant because the regulator reduces the pressure to ambient.) If the instrument is calibrated at atmospheric pressure in one of the flow configurations described above, then 1) pressures slightly above ambient are acceptable but high pressures can damage the pump and 2) samples under vacuum may give low readings if air leaks into the sample train.
- **C. Temperature.** Because temperature effects gas density and concentration, the temperature of the calibration gas and instrument should be as close as possible to the ambient temperature where the unit will be used. We recommend that the temperature of the calibration gas be within the instrument's temperature specification (typically 14° to 113° F or -10° to 45° C). Also, during actual measurements, the instrument should be kept at the same or higher temperature than the sample temperature to avoid condensation in the unit.
- **D. Matrix.** The matrix gas of the calibration compound and VOC sample is significant. Some common matrix components, such as methane and water vapor can affect the VOC signal.

PIDs are most commonly used for monitoring VOCs in air, in which case the preferred calibration gas matrix is air. For a MiniRAE, methane, methanol, and water vapor reduce the response by about 20% when their concentration is 15,000 ppm and by about 40% at 30,000 ppm. Despite earlier reports of oxygen effects, RAE PID responses with 10.6 eV lamps are independent of oxygen concentration, and calibration gases in a pure nitrogen matrix can be used. H₂ and CO₂ up to 5 volume % also have no effect.

- **E. Concentration.** Although RAE Systems PIDs have electronically linearized output, it is best to calibrate in a concentration range close to the actual measurement range. For example, 100 ppm standard gas for anticipated vapors of 0 to 250 ppm, and 500 ppm standard for expected concentrations of 250 to 1000 ppm. The correction factors in this table were typically measured at 50 to 100 ppm and apply from the ppb range up to about 1000 ppm. Above 1000 ppm the CF may vary and it is best to calibrate with the gas of interest near the concentration of interest.
- **F. Filters.** Filters affect flow and pressure conditions and therefore all filters to be used during sampling should also be in place during calibration. Using a water trap (hydrophobic filter) greatly reduces the chances of drawing water aerosols or dirt particles into the instrument. Regular filter replacements are recommended because dirty filters can adsorb VOCs and cause slower response time and shifts in calibration.
- G. Instrument Design. High-boiling ("heavy") or very reactive compounds can be lost by reaction or adsorption onto materials in the gas sample train, such as filters, pumps and other sensors. Multi-gas meters, including EntryRAE, MultiRAE and AreaRAE have the pump and other sensors upstream of the PID and are prone to these losses. Compounds possibly affected by such losses are shown in green in the table, and may give slow response, or in extreme cases, no response at all. In many cases the multi-gas meters can still give a rough indication of the relative concentration, without giving an accurate, quantitative reading. The ppbRAE and MiniRAE series instruments have inert sample trains and therefore do not exhibit significant loss; nevertheless, response may be slow for the very heavy compounds and additional sampling time up to a minute or more should be allowed to get a stable reading.

TABLE ABBREVIATIONS

CF = Correction Factor (multiply by reading to get corrected value for the compound when calibrated to isobutylene)

NR = No Response

IE = lonization Energy (values in parentheses are not well established)

C = Confirmed Value indicated by "+" in this column; all others are preliminary or estimated values and are subject to change

ne = Not Established ACGIH 8-hr. TWA

C## = Ceiling value, given where 8-hr.TWA is not available

DISCLAIMER

TN-106 is a general guideline for Correction Factors (CF) for use with PID instruments manufactured by RAE Systems. The CF may vary depending on instrument and operation conditions. For the best accuracy, RAE Systems recommends calibrating the instrument to target gas. Actual readings may vary with age and cleanliness of lamp, relative humidity, and other factors as well. For accurate work, the instrument should be calibrated regularly under the operating conditions used. The factors in this table on the following pages were measured in dry air (40 to 50% RH) at room temperature, typically at 50 to 100 ppm. CF values may vary above about 1000 ppm.

Updates

The values in this table on the following pages are subject to change as more or better data become available. Watch for updates of this table on the Internet at **http://www.raesystems.com.**

IE data are taken from the CRC Handbook of Chemistry and Physics, 73rd Edition, D.R. Lide (Ed.), CRC Press (1993) and NIST Standard Ref. Database 19A, NIST Positive Ion Energetics, Vers. 2.0, Lias, et.al., U.S. Dept. Commerce (1993). Exposure limits (8-h TWA and Ceiling Values) are from the 2005 ACGIH Guide to Occupational Exposure Values, ACGIH, Cincinnati, OH 2005. Equations for exposure limits for mixtures of chemicals were taken from the 1997 TLVs and BEIs handbook published by the ACGIH (1997).

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Acetaldehyde		75-07-0	C ₂ H ₄ O	NR	+	6	+	3.3	+	10.23	C25
Acetic acid	Ethanoic Acid	64-19-7	C ₂ H ₄ O ₂	NR	+	22	+	2.6	+	10.66	10
Acetic anhydride	Ethanoic Acid Anhydride	108-24-7	C ₄ H ₆ O ₃	NR	+	6.1	+	2.0	+	10.14	5
Acetone	2-Propanone	67-64-1	C ₃ H ₆ O	1.2	+	0.9	+	1.4	+	9.71	500
Acetone cyanohydrin	2-Hydroxyisobutyronitrile	75-86-5	C ₄ H ₇ NO					4	+	11.1	C5
Acetonitrile	Methyl cyanide, Cyanomethane	75-05-8	C ₂ H ₃ N					100		12.19	40
Acetylene	Ethyne	74-86-2	C ₂ H ₂					2.1	+	11.40	ne
Acrolein	Propenal	107-02-8	C ₃ H ₄ O	42	+	3.9	+	1.4	+	10.10	0.1
Acrylic acid	Propenoic Acid	79-10-7	C ₃ H ₄ O ₂			12	+	2.0	+	10.60	2
Acrylonitrile	Propenenitrile	107-13-1	C ₃ H ₃ N			NR	+	1.2	+	10.91	2
Allyl alcohol		107-18-6	C ₃ H ₆ O	4.5	+	2.4	+	1.6	+	9.67	2
Allyl chloride	3-Chloropropene	107-05-1	C ₃ H ₅ Cl			4.3		0.7		9.9	1
Ammonia		7664-41-7	NH ₃	NR	+	10.9	+	5.7	+	10.16	25
Amyl acetate	mix of n-Pentyl acetate & 2-Methylbutyl acetate	628-63-7	C ₇ H ₁₄ O ₂	11	+	2.3	+	0.95	+	<9.9	100
Amyl alcohol	1-Pentanol	75-85-4	C ₅ H ₁₂ O			5				10.00	ne
Aniline	Aminobenzene	62-53-3	C ₆ H ₇ N	0.50	+	0.5	+	0.47	+	7.72	2
Anisole	Methoxybenzene	100-66-3	C ₇ H ₈ O	0.89	+	0.58	+	0.56	+	8.21	ne
Arsine	Arsenic trihydride	7784-42-1	AsH ₃			1.9	+			9.89	0.05
Benzaldehyde		100-52-7	C ₇ H ₆ O					1		9.49	ne
Benzene		71-43-2	C ₆ H ₆	0.55	+	0.47	+	0.6	+	9.25	0.5
Benzonitrile	Cyanobenzene	100-47-0	C ₇ H ₅ N			1.6				9.62	ne
Benzyl alcohol	α-Hydroxytoluene, Hydroxymethylbenzene, Benzenemethanol	100-51-6	C ₇ H ₈ O	1.4	+	0.8	+	0.9	+	8.26	ne
Benzyl chloride	α-Chlorotoluene, Chloromethylbenzene	100-44-7	C ₇ H ₇ Cl	0.7	+	0.6	+	0.5	+	9.14	1
Benzyl formate	Formic acid benzyl ester	104-57-4	C ₈ H ₈ O ₂	0.9	+	0.73	+	0.66	+		ne
Boron trifluoride		7637-07-2	BF ₃	NR		NR		NR		15.5	C1
Bromine		7726-95-6	Br ₂	NR	+	1.30	+	0.74	+	10.51	0.1
Bromobenzene		108-86-1	C ₆ H ₅ Br			0.25		0.5		8.98	ne
2-Bromoethyl methyl ether		6482-24-2	C ₃ H ₇ OBr			0.84	+			~10	ne
Bromoform	Tribromomethane	75-25-2	CHBr ₃	NR	+	1.6	+	0.5	+	10.48	0.5
Bromopropane,1-	n-Propyl bromide	106-94-5	C ₃ H ₇ Br	150	+	1.5	+	0.6	+	10.18	ne
Butadiene	1,3-Butadiene, Vinyl ethylene	106-99-0	C ₄ H ₆	0.8		0.6	+	1.1		9.07	2
Butadiene diepoxide, 1,3-	1,2,3,4-Diepoxybutane	298-18-0	C ₄ H ₆ O ₂	25	+	3.5	+	1.2		~10	ne
Butane		106-97-8	C ₄ H ₁₀			67	+	1.2		10.53	800
Butanol, 1-	Butyl alcohol, n-Butanol	71-36-3	C ₄ H ₁₀ O	70	+	4.7	+	1.4	+	9.99	20
Butanol, t-	tert-Butanol, t-Butyl alcohol	75-65-0	C ₄ H ₁₀ O	6.9	+	2.9	+			9.90	100
Butene, 1-	1-Butylene	106-98-9	C ₄ H ₈			0.9				9.58	ne
Butoxyethanol, 2-	Butyl Cellosolve, Ethylene glycol monobutyl ether	111-76-2	C ₆ H ₁₄ O ₂	1.8	+	1.2	+	0.6	+	<10	25
Butoxyethyl Acetate, 2-	2-Butoxyethyl acetate; 2-Butoxy- ethanol acetate; Butyl Cellosolve acetate; Butyl glycol acetate; EGBEA; Ektasolve EB acetate	112-07-2	C ₈ H ₁₆ O ₃			1.27	+				20
Butyl acetate, n-		123-86-4	C ₆ H ₁₂ O ₂			2.6	+			10	150
Butyl acrylate, n-	Butyl 2-propenoate, Acrylic acid butyl ester	141-32-2	C ₇ H ₁₂ O ₂			1.6	+	0.6	+		10
Butylamine, n-		109-73-9	C ₄ H ₁₁ N	1.1	+	1.1	+	0.7	+	8.71	C5
Butyl cellosolve see 2-Butoxy	ethanol	111-76-2									
Butyl hydroperoxide, t-		75-91-2	C ₄ H ₁₀ O ₂	2.0	+	1.6	+			<10	1

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Butyl mercaptan	1-Butanethiol	109-79-5	C ₄ H ₁₀ S	0.55	+	0.52	+			9.14	0.5
Butyraldehyde	Butanal	123-72-8	C ₄ H ₈ O			1.87	+			9.82	20
Camelinal HRJ						1.1	+	0.32	+		
Camelinal HRJ/JP-8 50/50						0.89	+	0.41	+		
CamelinalHRJ						1.15	+				
CamelinalHRJ/JP-8						1.07	+				
Carbon disulfide		75-15-0	CS ₂	4	+	1.2	+	0.44		10.07	10
Carbon tetrachloride	Tetrachloromethane	56-23-5	CCI ₄	NR	+	NR	+	1.7	+	11.47	5
Carbonyl sulfide	Carbon oxysulfide	463-58-1	cos							11.18	
Cellosolve see 2-Ethoxyethano	ol .										
CFC-14 see Tetrafluoromethane	9										
CFC-113 see 1,1,2-Trichloro-1,2,	,2-trifluoroethane										
Chlorine		7782-50-5	Cl ₂					1.0	+	11.48	0.5
Chlorine dioxide		10049-04-4	CIO ₂	NR	+	NR	+	NR	+	10.57	0.1
Chlorobenzene	Monochlorobenzene	108-90-7	C ₆ H ₅ CI	0.44	+	0.3	+	0.39	+	9.06	10
Chlorobenzotrifluoride, 4-	PCBTF, OXSOL 100 p-Chlorobenzotrifluoride	98-56-6	C ₇ H ₄ CIF ₃	0.74	+	0.63	+	0.55	+	<9.6	
Chloro-1,3-butadiene, 2-	Chloroprene	126-99-8	C ₄ H ₅ Cl			3					10
Chloro-1,1-difluoroethane, 1-	HCFC-142B, R-142B	75-68-3	C ₂ H ₃ CIF ₂	NR		NR		NR		12.0	ne
Chlorodifluoromethane	HCFC-22, R-22	75-45-6	CHCIF ₂	NR		NR		NR		12.2	1000
Chloroethane	Ethyl chloride	75-00-3	C ₂ H ₅ CI	NR	+	NR	+	1.1	+	10.97	100
Chloroethanol	Ethylene chlrohydrin	107-07-3	C ₂ H ₅ CIO							10.52	C1
Chloroethanol, 2-	2-Chloroethanol; 2-Chloroethyl alcohol; Ethylene chlorhydrin	107-07-3	C ₂ H ₅ CIO			2.88	+			10.5	5
Chloroethyl ether, 2-	bis (2-chloroethyl) ether	111-44-4	C ₄ H ₈ Cl ₂ O	8.6	+	3.0	+				5
Chloroethyl methyl ether, 2-	Methyl 2-chloroethyl ether	627-42-9	C ₃ H ₇ CIO			3					ne
Chloroform	Trichloromethane	67-66-3	CHCl ₃	NR	+	NR	+	3.5	+	11.37	10
Chloro-2-methylpropene, 3-	Methallyl chloride, Isobutenyl chloride	563-47-3	C ₄ H ₇ Cl	1.4	+	1.2	+	0.63	+	9.76	ne
Chloropicrin		76-06-2	CCI ₃ NO ₂	NR	+	~400	+	7	+		0.1
Chlorotoluene, o-	o-Chloromethylbenzene	95-49-8	C ₇ H ₇ CI			0.5		0.6		8.83	50
Chlorotoluene, p-	p-Chloromethylbenzene	106-43-4	C7H7CI					0.6		8.69	ne
Chlorotrifluoroethene	CTFE, Chlorotrifluoroethylene Genetron 1113	79-38-9	C ₂ CIF ₃	6.7	+	3.9	+	1.2	+	9.76	5
Chlorotrimethylsilane		75-77-4	C ₃ H ₉ CISi	NR		NR		0.82	+	10.83	ne
Cresol, m-	m-Hydroxytoluene, 3-Methylphenol	108-39-4	C ₇ H ₈ O	0.57	+	0.50	+	0.57	+	8.29	5
Cresol, o-	ortho-Cresol; 2-Cresol; o-Cresylic acid; 1-Hydroxy-2-methylbenzene; 2-Hydroxytoluene; 2-Methyl phenol	95-48-7	C ₇ H ₈ O			1	+			8.14	5
Cresol, p-	para-Cresol; 4-Cresol; p-Cresylic acid; 1-Hydroxy-4-methylbenzene; 4-Hydroxytoluene; 4-Methyl phenol	106-44-5	C ₇ H ₈ O			1.4	+			8.34	5
Crotonaldehyde	trans-2-Butenal	123-73-9 4170-30-3	C ₄ H ₆ O	1.5	+	1.1	+	1.0	+	9.73	2
Cumene	Isopropylbenzene	98-82-8	C ₉ H ₁₂	0.58	+	0.54	+	0.4	+	8.73	50
Cyanogen bromide		506-68-3	CNBr	NR		NR		NR		11.84	ne
Cyanogen chloride		506-77-4	CNCI	NR		NR		NR		12.34	C0.3
Cyclohexane		110-82-7	C ₆ H ₁₂	3.3	+	1.4	+	0.64	+	9.86	300
Cyclohexanol	Cyclohexyl alcohol	108-93-0	C ₆ H ₁₂ O	1.5	+	0.9	+	1.1	+	9.75	50
Cyclohexanone		108-94-1	C ₆ H ₁₀ O	1.0	+	0.9	+	0.7	+	9.14	25

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Cyclohexene		110-83-8	C ₆ H ₁₀			0.8	+			8.95	300
Cyclohexylamine		108-91-8	C ₆ H ₁₃ N			2.2				8.62	10
Cyclopentane 85% 2,2-dimethylbutane 15%		287-92-3	C ₅ H ₁₀	NR	+	15	+	1.1		10.33	600
Cyclopropylamine	Aminocyclpropane	765-30-0	C ₃ H ₇ N	1.1	+	0.7	+	0.9	+		ne
Decamethylcyclopentasiloxane		541-02-6	C ₁₀ H ₃₀ O ₅ Si ₅	0.16	+	0.13	+	0.12	+		ne
Decamethyltetrasiloxane		141-62-8	C ₁₀ H ₃₀ O ₃ Si ₄	0.17	+	0.13	+	0.12	+	<10.2	ne
Decane		124-18-5	C ₁₀ H ₂₂	4.0	+	1.4	+	0.35	+	9.65	ne
Diacetone alcohol	4-Methyl-4-hydroxy-2-pentanone	123-42-2	C ₆ H ₁₂ O ₂			0.7					50
Dibromochloromethane	Chlorodibromomethane	124-48-1	CHBr ₂ Cl	NR	+	3.5	+	0.7	+	10.59	ne
Dibromo-3- chloropropane, 1,2-	DBCP	96-12-8	C ₃ H ₅ Br ₂ Cl	NR	+	1.7	+	0.43	+		0.001
Dibromoethane, 1,2-	EDB, Ethylene dibromide, Ethylene bromide	106-93-4	C ₂ H ₄ Br ₂	NR	+	1.7	+	0.6	+	10.37	ne
Dichlorobenzene, o-	1,2-Dichlorobenzene	95-50-1	C ₆ H ₄ Cl ₂	0.54	+	0.45	+	0.38	+	9.08	25
Dichlorodifluoromethane	CFC-12	75-71-8	CCI ₂ F ₂			NR	+	NR	+	11.75	1000
Dichlorodimethylsilane		75-78-5	C ₂ H ₆ Cl ₂ Si	NR		NR		1.1	+	>10.7	ne
Dichloroethane, 1,2-	EDC, 1,2-DCA, Ethylene dichloride	107-06-2	C ₂ H ₄ Cl ₂			NR	+	0.6	+	11.04	10
Dichloroethene, 1,1-	1,1-DCE, Vinylidene chloride	75-35-4	C ₂ H ₂ Cl ₂			0.82	+	0.8	+	9.79	5
Dichloroethene, c-1,2-	c-1,2-DCE, cis-Dichloroethylene	156-59-2	C ₂ H ₂ Cl ₂			0.8				9.66	200
Dichloroethene, t-1,2-	t-1,2-DCE, trans-Dichloroethylene	156-60-5	C ₂ H ₂ Cl ₂			0.45	+	0.34	+	9.65	200
Dichloro-1-fluoroethane, 1,1-	R-141B	1717-00-6	C ₂ H ₃ Cl ₂ F	NR	+	NR	+	2.0	+		ne
Dichloromethane see Methylene	chloride										
Dichloropentafluoropropane	AK-225, mix of ~45% 3,3- dichloro-1,1,1,2,2-pentafluoro- propane (HCFC-225ca) & ~55% 1,3-Dichloro-1,1,2,2,3-penta- fluoropropane (HCFC-225cb)	442-56-0 507-55-1	C ₃ HCl ₂ F ₅	NR	+	NR	+	25	+		ne
Dichloropropane, 1,2-		78-87-5	C ₃ H ₆ Cl ₂					0.7		10.87	75
Dichloro-1-propene, 1,3-		542-75-6	C ₃ H ₄ Cl ₂	1.3	+	0.96	+			<10	1
Dichloro-1-propene, 2,3-		78-88-6	C ₃ H ₄ Cl ₂	1.9	+	1.3	+	0.7	+	<10	ne
Dichloro-1,1,1- trifluoroethane, 2,2-	R-123	306-83-2	C ₂ HCl ₂ F ₃	NR	+	NR	+	10.1	+	11.5	ne
Dichloro-2,4,6- trifluoropyridine, 3,5-	DCTFP	1737-93-5	C ₅ Cl ₂ F ₃ N	1.1	+	1	+	0.8	+		ne
Dichlorvos**	Vapona; 0,0-dimethyl 0-dichlorovinyl phosphate	62-73-7	C ₄ H ₇ Cl ₂ O ₄ P			0.9	+			<9.4	0.1
Dicyclopentadiene	DCPD, Cyclopentadiene dimer	77-73-6	C ₁₀ H ₁₂	0.57	+	0.47	+	0.43	+	8.8	5
Diesel Fuel**		68334-30-5	m.w. 226			0.9	+				11
Diesel Fuel #2 (Automotive)**		68334-30-5	m.w. 216	1.3		0.7	+	0.4	+		11
Diethylamine		109-89-7	C ₄ H ₁₁ N			1.6	+			8.01	5
Diethylaminopropylamine, 3-		104-78-9	C ₇ H ₁₈ N ₂			1.9					ne
Diethylbenzene see Dowtherm J											
Diethyl ether	Diethyl ether; Diethyl oxide; Ethyl oxide; Ether; Solvent ether	60-29-7	C ₄ H ₁₀ O			1.74	+			9.51	400
Diethylene glycol butyl ether	2-(2-Butoxyethoxy)ethanol, BDG, Butyldiglycol, DB Solvent	112-34-5	C ₈ H ₁₈ O ₃			4.6	+				5
Diethylene glycol monobutyl ether acetate	Butyldiglycol acetate, DB Acetate, Diethylene glycol monobutyl ether acetate	124-17-4	C ₁₀ H ₂₀ O ₄			5.62	+				ne
Diethylmaleate		141-05-9	C ₈ H ₁₂ O ₄			4					ne
Diethyl sulfide see Ethyl sulfide											
Diglyme see Methoxyethyl ether		111-96-6	C ₆ H ₁₄ O ₃								

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Diisobutyl ketone	DIBK, 2,2-dimethyl-4-heptanone	108-83-8	C ₉ H ₁₈ O	0.71	+	0.61	+	0.35	+	9.04	25
Diisopropylamine		108-18-9	C ₆ H ₁₅ N	0.84	+	0.74	+	0.5	+	7.73	5
Diisopropylcarbodiimide,N,N'-	DIPC	693-13-0	C ₇ H ₁₄ N ₂			0.42	+				ne
Diisopropylethylamine	'Hünig's base', N-Ethyldiisopropylamine, DIPEA, Ethyldiisopropylamine	7087-68-5	C ₈ H ₁₉ N			0.7	+				ne
Diketene	Ketene dimer	674-82-8	C ₄ H ₄ O ₂	2.6	+	2.0	+	1.4	+	9.6	0.5
Dimethylacetamide, N,N-	DMA	127-19-5	C ₄ H ₉ NO	0.87	+	0.8	+	0.8	+	8.81	10
Dimethylamine		124-40-3	C ₂ H ₇ N			1.5				8.23	5
Dimethyl carbonate	Carbonic acid dimethyl ester	616-38-6	C ₃ H ₆ O ₃	NR	+	~70	+	1.7	+	~10.5	ne
Dimethyl disulfide	DMDS	624-92-0	$C_2H_6S_2$	0.2	+	0.20	+	0.21	+	7.4	ne
Dimethyl ether see Methyl ether											
Dimethylethylamine	DMEA	598-56-1	$C_4H_{11}N$	1.1	+	1.0	+	0.9	+	7.74	~3
Dimethylformamide, N,N-	DMF	68-12-2	C ₃ H ₇ NO	0.7	+	0.7	+	0.8	+	9.13	10
Dimethylhydrazine, 1,1-	UDMH	57-14-7	$C_2H_8N_2$			0.8	+	0.8	+	7.28	0.01
Dimethyl methylphosphonate	DMMP, methyl phosphonic acid dimethyl ester	756-79-6	C ₃ H ₉ O ₃ P	NR	+	4.3	+	0.74	+	10.0	ne
Dimethyl sulfate		77-78-1	$C_2H_6O_4S$	~23		~20	+	2.3	+		0.1
Dimethyl sulfide see Methyl sulfi	de										
Dimethyl sulfoxide	DMSO, Methyl sulfoxide	67-68-5	C_2H_6OS			1.4	+			9.10	ne
Dioxane, 1,4-		123-91-1	$C_4H_8O_2$			1.3				9.19	25
Dioxolane, 1,3-	Ethylene glycol formal	646-06-0	$C_3H_6O_2$	4.0	+	2.3	+	1.6	+	9.9	20
Dowtherm A see Therminol $^{^{\tiny{\it B}}**}$											
Dowtherm J (97% Diethylbenzene)**		25340-17-4	C ₁₀ H ₁₄			0.5					
DS-108F Wipe Solvent	Ethyl lactate/Isopar H/ Propoxypropanol ~7:2:1	97-64-3 64742-48-9 1569-01-3	m.w. 118	3.3	+	1.6	+	0.7	+		ne
Epichlorohydrin	ECH Chloromethyloxirane, 1-chloro2,3-epoxypropane	106-89-8	C ₂ H ₅ CIO	~200	+	8.5	+	1.4	+	10.2	0.5
Ethane		74-84-0	C ₂ H ₆			NR	+	15	+	11.52	ne
Ethanol	Ethyl alcohol	64-17-5	C ₂ H ₆ O			7.9	+	3.1	+	10.47	1000
Ethanolamine**	MEA, Monoethanolamine	141-43-5	C ₂ H ₇ NO	5.6	+	21.9	+			8.96	3
Ethene	Ethylene	74-85-1	C ₂ H ₄			9	+	4.5	+	10.51	ne
Ethoxyethanol, 2-	Ethyl cellosolve, Ethylene glycol monoethyl ether	110-80-5	C ₄ H ₁₀ O ₂			1.3				9.6	5
Ethyl acetate	Acetic ester; Acetic ether; Ethyl ester of acetic acid; Ethyl ethanoate	141-78-6	C ₄ H ₈ O ₂			3.2	+	2.18	+	10.01	400
Ethyl acetoacetate		141-97-9	C ₆ H ₁₀ O ₃	1.4	+	1.2	+	1.0	+	<10	ne
Ethyl acrylate		140-88-5	C ₅ H ₈ O ₂			2.4	+	1.0	+	<10.3	5
Ethylamine		75-04-7	C ₂ H ₇ N			0.8				8.86	5
Ethylbenzene		100-41-4	C ₈ H ₁₀	0.52	+	0.47	+	0.51	+	8.77	100
Ethyl caprylate	Ethyl octanoate	106-32-1	C ₁₀ H ₂₀ O ₂		+	0.52	+	0.51	+		
Ethylenediamine	1,2-Ethanediamine; 1,2-Diaminoethane	107-15-3	C ₂ H ₈ N ₂	0.9	+	1.35	+	1.0	+	8.6	10
(Ethylenedioxy)diethanethiol, 2,2'-	1,2-Bis(2-mercaptoethoxy)ethane, 3,6-Dioxa-1,8-octane-dithiol	14970-87-7	C ₆ H ₁₄ O ₂ S ₂			1.3	+				ne
Ethylene glycol**	1,2-Ethanediol	107-21-1	C ₂ H ₆ O ₂			16	+	6	+	10.16	C100
Ethylene glycol, Acrylate**	2-hydroxyethyl Acrylate	818-61-1	C ₅ H ₈ O ₃			8.2				≤10.6	
Ethylene glycol dimethyl ether	1,2-Dimethoxyethane, Monoglyme	110-71-4	C ₄ H ₁₀ O ₂	1.1		0.85		0.7		9.2	ne
Ethylene glycol monobutyl ether acetate	1,2-Dimethoxyethane, Monoglyme	110-71-4	C ₄ H ₁₀ O ₂	1.1		1.1		0.7		9.2	ne

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Ethylene glycol, monothio		60-24-2	C ₂ H ₆ OS			1.5				9.65	
Ethylene oxide	Oxirane, Epoxyethane	75-21-8	C ₂ H ₄ O			13	+	3.5	+	10.57	1
Ethyl ether	Diethyl ether	60-29-7	C ₄ H ₁₀ O			1.1	+			9.51	400
Ethyl 3-ethoxypropionate	EEP	763-69-9	C ₇ H ₁₄ O ₃	1.2	+	0.75	+				ne
Ethyl formate		109-94-4	C ₃ H ₆ O ₂					1.9		10.61	100
Ethyl-1-hexanol, 2-	Isooctyl alcohol	104-76-7	C ₈ H ₁₈ O			1.9	+				ne
Ethyl hexyl acrylate, 2-	Acrylic acid 2-ethylhexyl ester	103-11-7	C ₁₁ H ₂₀ O ₂			1.1	+	0.5	+		ne
Ethylidenenorbornene	5-Ethylidene bicyclo(2,2,1) hept-2-ene	16219-75-3	C ₉ H ₁₂	0.4	+	0.39	+	0.34	+	≤8.8	ne
Ethyl (S)-(-)-lactate see also DS-108F	Ethyl lactate, Ethyl (S)-(-)- hydroxypropionate	687-47-8 97-64-3	C ₅ H ₁₀ O ₃	13	+	3.2	+	1.6	+	~10	ne
Ethyl mercaptan	Ethanethiol	75-08-1	C ₂ H ₆ S	0.60	+	0.56	+			9.29	0.5
Ethyl sulfide	Diethyl sulfide	352-93-2	C ₄ H ₁₀ S			0.5	+			8.43	ne
Formaldehyde	Formalin	50-00-0	CH ₂ O	NR	+	NR	+	1.6	+	10.87	C0.3
Formamide		75-12-7	CH ₃ NO			6.9	+	4		10.16	10
Formic acid		64-18-6	CH ₂ O ₂	NR	+	NR	+	9	+	11.33	5
Furfural	2-Furaldehyde	98-01-1	C ₅ H ₄ O ₂			0.7	+	0.8	+	9.21	2
Furfuryl alcohol		98-00-0	C ₅ H ₆ O ₂			0.80	+			<9.5	10
Gasoline #1		8006-61-9	m.w. 72			0.9	+				300
Gasoline #2, 92 octane		8006-61-9	m.w. 93	1.3	+	1.0	+	0.5	+		300
Glutaraldehyde	1,5-Pentanedial, Glutaric dialdehyde	111-30-8	C ₅ H ₈ O ₂	1.1	+	0.8	+	0.6	+		C0.05
Glycidyl methacrylate	2,3-Epoxypropyl methacrylate	106-91-2	C7H10O3	2.6	+	1.2	+	0.9	+		0.5
Halothane	2-Bromo-2-chloro-1,1,1- trifluoroethane	151-67-7	C ₂ HBrClF ₃					0.6		11.0	50
HCFC-22 see Chlorodifluoromet	thane										
HCFC-123 see 2,2-Dichloro-1,1,7	1-trifluoroethane										
HCFC-141B see 1,1-Dichloro-1-f	luoroethane										
HCFC-142B see 1-Chloro-1,1-dif	luoroethane										
HCFC-134A see 1,1,1,2-Tetrafluo	oroethane										
HCFC-225 see Dichloropentaflu	oropropane										
Heptane, n-		142-82-5	C7H16	45	+	2.8	+	0.60	+	9.92	400
Heptanol, 4-	Dipropylcarbinol	589-55-9	C ₇ H ₁₆ O	1.8	+	1.3	+	0.5	+	9.61	ne
Hexamethyldisilazane, 1,1,1,3,3,3-**	HMDS	999-97-3	C ₆ H ₁₉ NSi ₂			0.39	+	0.39	+	~8.6	ne
Hexamethyldisiloxane	HMDSx	107-46-0	C ₆ H ₁₈ OSi ₂	0.33	+	0.34	+	0.34	+	9.64	ne
Hexane, n-		110-54-3	C ₆ H ₁₄	350	+	5.1	+	0.51	+	10.13	50
Hexanol, 1-	Hexyl alcohol	111-27-3	C ₆ H ₁₄ O	9	+	2.5	+	0.55	+	9.89	ne
Hexene, 1-		592-41-6	C ₆ H ₁₂			8.0				9.44	30
HFE-7100 see Methyl nonafluor	obutyl ether										
Histoclear (Histo-Clear)	Limonene/corn oil reagent		m.w. ~136	0.5	+	0.4	+	0.3	+		ne
Hydrazine**		302-01-2	H ₄ N ₂	>8	+	2.6	+	2.1	+	8.1	0.01
Hydrazoic acid	Hydrogen azide		HN ₃							10.7	
Hydrogen	Synthesis gas	1333-74-0	H ₂	NR	+	NR	+	NR	+	15.43	ne
Hydrogen cyanide	Hydrocyanic acid	74-90-8	HCN	NR	+	NR	+	NR	+	13.6	C4.7
Hydrogen iodide**	Hydriodic acid	10034-85-2	HI			~0.6				10.39	
Hydrogen peroxide		7722-84-1	H ₂ O ₂	NR	+	NR	+	NR	+	10.54	1
Hydrogen sulfide		7783-06-4	H ₂ S	NR	+	3.3	+	1.5	+	10.45	10
Hydroxyethyl acrylate, 2-	Ethylene glycol monoacrylate	818-61-1	C ₅ H ₈ O ₃			8.2	+				ne
Hydroxypropyl methacrylate		27813-02-1 923-26-2	C ₇ H ₁₂ O ₃	9.9	+	2.3	+	1.1	+		ne

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
lodine**		7553-56-2	l ₂	0.1	+	0.1	+	0.1	+	9.40	C0.1
lodomethane	Methyl iodide	74-88-4	CH ₃ I	0.21	+	0.22	+	0.26	+	9.54	2
Isoamyl acetate	Isopentyl acetate	123-92-2	C ₇ H ₁₄ O ₂	10.1		2.1		1.0		<10	100
Isobutane	2-Methylpropane	75-28-5	C ₄ H ₁₀			100	+	1.2	+	10.57	ne
Isobutanol	2-Methyl-1-propanol	78-83-1	C ₄ H ₁₀ O	19	+	3.8	+	1.5		10.02	50
Isobutene	Isobutylene, Methyl butene	115-11-7	C ₄ H ₈	1.00	+	1.00	+	1.00	+	9.24	ne
Isobutyl acetate	2-methylpropyl ethanoate, β-methylpropyl acetate	110-19-0	C ₆ H ₁₂ O ₂			2.1	+			9.97	150
Isobutyl acrylate	Isobutyl 2-propenoate, Acrylic acid Isobutyl ester	106-63-8	C ₇ H ₁₂ O ₂			1.5	+	0.60	+		ne
Isoflurane	1-Chloro-2,2,2-trifluoroethyl difluoromethyl ether, forane	26675-46-7	C ₃ H ₂ CIF ₅ O	NR	+	NR	+	48	+	~11.7	ne
Isooctane	2,2,4-Trimethylpentane	540-84-1	C ₈ H ₁₈			1.2				9.86	ne
Isopar E Solvent	Isoparaffinic hydrocarbons	64741-66-8	m.w. 121	1.7	+	0.8	+				ne
Isopar G Solvent	Photocopier diluent	64742-48-9	m.w. 148			0.8	+				ne
Isopar K Solvent	Isoparaffinic hydrocarbons	64742-48-9	m.w. 156	0.9	+	0.5	+	0.27	+		ne
Isopar L Solvent	Isoparaffinic hydrocarbons	64742-48-9	m.w. 163	0.9	+	0.5	+	0.28	+		ne
Isopar M Solvent	Isoparaffinic hydrocarbons	64742-47-8	m.w. 191			0.7	+	0.4	+		ne
Isopentane	2-Methylbutane	78-78-4	C ₅ H ₁₂			8.2					ne
Isophorone		78-59-1	C ₉ H ₁₄ O					3		9.07	C5
Isoprene	2-Methyl-1,3-butadiene	78-79-5	C ₅ H ₈	0.69	+	0.63	+	0.60	+	8.85	ne
Isopropanol	Isopropyl alcohol, 2-propanol, IPA	67-63-0	C ₃ H ₈ O	500	+	4.2	+	2.7		10.12	200
Isopropyl acetate		108-21-4	C ₅ H ₁₀ O ₂			2.6				9.99	100
Isopropyl ether	Diisopropyl ether	108-20-3	C ₆ H ₁₄ O			8.0				9.20	250
Jet fuel JP-4	Jet B, Turbo B, F-40 Wide cut type aviation fuel	8008-20-6 + 64741-42-0	m.w. 115			1.0	+	0.4	+		ne
Jet fuel JP-5	Jet 5, F-44, Kerosene type aviation fuel	8008-20-6 + 64747-77-1	m.w. 167			0.6	+	0.5	+		29
Jet fuel JP-8	F-34, Kerosene type aviation fuel	8008-20-6 + 64741-77-1	m.w. 165			0.94	+	0.3	+		30
Jet fuel A-1	F-34, Kerosene type aviation fuel	8008-20-6 + 64741-77-1	m.w. 145			0.6					34
Jet Fuel TS	Thermally Stable Jet Fuel, Hydrotreated kerosene fuel	8008-20-6 + 64742-47-8	m.w. 165	0.9	+	0.6	+	0.3	+		30
JP-10						0.7	+	0.5	+		
JP5, Petroleum/camelinal						1.05	+				
JP5/Petroleum						0.98	+				
Limonene, D-	(R)-(+)-Limonene	5989-27-5	C ₁₀ H ₁₆			0.33	+			~8.2	ne
Kerosene C10-C16 petro.distil	late see Jet Fuels	8008-20-6									
MDI see 4,4'-Methylenebis (p	henylisocyanate)										
Maleic anhydride	2,5-Furandione	108-31-6	C ₄ H ₂ O ₃							~10.8	0.1
Mercapto-2-ethanol	β-Mercaptoethanol, 2-Hydroxyethylmercaptan, BME, Thioethylene glycol	60-24-2	C ₂ H ₆ OS			1.5	+			9.65	0.2
Mesitylene	1,3,5-Trimethylbenzene	108-67-8	C ₉ H ₁₂	0.36	+	0.35	+	0.3	+	8.41	25
Methallyl chloride see 3-Chlo											
Methane	Natural gas	74-82-8	CH ₄	NR	+	NR	+	NR	+	12.61	ne
Methanol	Methyl alcohol, carbinol	67-56-1	CH ₄ O	NR	+	NR	+	2.5	+	10.85	200
Methoxyethanol, 2-	Methyl cellosolve, Ethylene glycol monomethyl ether	109-86-4	C ₃ H ₈ O ₂	4.8	+	2.4	+	1.4	+	10.1	5

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Methoxyethoxyethanol, 2-	2-(2-Methoxyethoxy)ethanol Diethylene glycol monomethyl ether	111-77-3	C ₅ H ₁₂ O ₃	2.3	+	1.2	+	0.9	+	<10	ne
Methoxyethyl ether, 2-	bis(2-Methoxyethyl) ether, Diethylene glycol dimethyl ether, Diglyme	111-96-6	C ₆ H ₁₄ O ₃	0.64	+	0.54	+	0.44	+	<9.8	ne
Methyl acetate		79-20-9	C ₃ H ₆ O ₂	NR	+	6.6	+	1.4	+	10.27	200
Methyl acrylate	Methyl 2-propenoate, Acrylic acid methyl ester	96-33-3	C ₄ H ₆ O ₂			3.7	+	1.2	+	(9.9)	2
Methylamine	Aminomethane	74-89-5	CH ₅ N			1.2				8.97	5
Methyl amyl ketone	MAK, 2-Heptanone, Methyl pentyl ketone	110-43-0	C ₇ H ₁₄ O	0.9	+	0.85	+	0.5	+	9.30	50
Methylaniline, N-	MA; (Methylamino) benzene; N-Methyl aniline; Methylphenylamine; N-Phenylmethylamin	100-61-8	C ₇ H ₉ N			0.58	+			7.32	2
Methyl bromide	Bromomethane	74-83-9	CH ₃ Br	110	+	1.7	+	1.3	+	10.54	1
Methyl-2-butanol, 2-	tert-Amyl alcohol, tert-Pentyl alcohol	75-85-4	C ₅ H ₁₂ O			1.62	+			10.16	100
Methyl t-butyl ether	MTBE, tert-Butyl methyl ether	1634-04-4	C ₅ H ₁₂ O			0.9	+			9.24	40
Methyl cellosolve see 2-Methox	xyethanol										
Methyl chloride	Chloromethane	74-87-3	CH ₃ CI	NR	+	NR	+	0.74	+	11.22	50
Methylcyclohexane		107-87-2	C ₇ H ₁₄	1.6	+	0.97	+	0.53	+	9.64	400
Methylene bis (phenyl-isocyanate), 4,4'-**	MDI, Mondur M		C ₁₅ H ₁₀ N ₂ O ₂	Very s	low p	pb level r	espoi	ise			0.005
Methylene chloride	Dichloromethane	75-09-2	CH ₂ Cl ₂	NR	+	NR	+	0.89	+	11.32	25
Methyl ether	Dimethyl ether	115-10-6	C ₂ H ₆ O	4.8	+	3.1	+	2.5	+	10.03	ne
Methyl ethyl ketone	MEK, 2-Butanone	78-93-3	C ₄ H ₈ O	0.86	+	0.8	+	1.1	+	9.51	200
Methylhydrazine	Monomethylhydrazine, Hydrazomethane	60-34-4	C ₂ H ₆ N ₂	1.4	+	2.5	+	1.3	+	7.7	0.01
Methyl isoamyl ketone	MIAK, 5-Methyl-2-hexanone	110-12-3	C ₇ H ₁₄ O	8.0	+	0.76	+	0.5	+	9.28	50
Methyl isobutyl ketone	MIBK, 4-Methyl-2-pentanone	108-10-1	C ₆ H ₁₂ O	0.9	+	0.8	+	0.6	+	9.30	50
Methyl isocyanate		624-83-9	C ₂ H ₃ NO	NR	+	4.6	+	1.5		10.67	0.02
Methyl isothiocyanate		551-61-6	C ₂ H ₃ NS	0.5	+	0.45	+	0.4	+	9.25	ne
Methyl mercaptan	Methanethiol	74-93-1	CH ₄ S	0.65		0.54		0.66		9.44	0.5
Methyl methacrylate		80-62-6	C ₅ H ₈ O ₂	2.7	+	1.5	+	1.2	+	9.7	100
Methyl nonafluorobutyl ether	HFE-7100DL	163702-08-7, 163702-07-6	C ₅ H ₃ F ₉ O			NR	+	~35	+		ne
Methyl-1,5-pentanediamine, 2- (coats lamp)**	Dytek-A amine, 2-Methyl pentamethylenediamine	15520-10-2	C ₆ H ₁₆ N ₂			~0.6	+			<9.0	ne
Methyl propyl ketone	MPK, 2-Pentanone	107-87-9	C ₅ H ₁₂ O			0.93	+	0.79	+	9.38	200
Methyl-2-pyrrolidinone, N-	NMP, N-Methylpyrrolidone, 1-Methyl-2-pyrrolidinone, 1-Methyl-2-pyrrolidone	872-50-4	C ₅ H ₉ NO	1.0	+	0.8	+	0.9	+	9.17	ne
Methyl salicylate**	Methyl 2-hydroxybenzoate	119-36-8	C ₈ H ₈ O ₃	1.3	+	0.9	+	0.9	+	~9	ne
Methylstyrene, α-	2-Propenylbenzene	98-83-9	C ₉ H ₁₀	1		0.5				8.18	50
Methyl sulfide	DMS, Dimethyl sulfide	75-18-3	C ₂ H ₆ S	0.49	+	0.44	+	0.46	+	8.69	ne
Methyl vinyl ketone	MVK, 3-Buten-2-one	78-94-4	C ₄ H ₆ O			0.93	+			9.65	ne
Methyltetrahydrofuran	2-MeTHF, Tetrahydro-2- methylfuran, Tetrahydrosilvan	96-47-9	C ₅ H ₁₀ O			2.44	+			9.22	ne
Mineral spirits	Stoddard Solvent, Varsol 1, White Spirits	8020-83-5 8052-41-3 68551-17-7	m.w. 144	1.0		0.69	+	0.38	+		100
Mineral Spirits	Viscor 120B Calibration Fluid, b.p. 156-207°C	8052-41-3	m.w. 142	1.0	+	0.7	+	0.3	+		100

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Monoethanolamine see Ethanol	amine										
Mustard	HD, Bis (2-chloroethyl) sulfide	505-60-2 39472-40-7 68157-62-0	C ₄ H ₈ Cl ₂ S			0.6					0.0005
Naphtha see VM & P Naphtha											
Naphthalene	Mothballs	91-20-3	C ₁₀ H ₈	0.45	+	0.42	+	0.40	+	8.13	10
Nickel carbonyl (in CO)	Nickel tetracarbonyl	13463-39-3	C ₄ NiO ₄			0.18				<8.8>	0.001
Nicotine	3-(1-Methyl-2-pyrrolidyl)pyridine	54-11-5	C ₁₀ H ₁₄ N ₂			1.98	+				ne
Nitric oxide		10102-43-9	N0	~6		5.0	+	2.8	+	9.26	25
Nitrobenzene		98-95-3	C ₆ H ₅ NO ₂	2.6	+	1.6	+	1.6	+	9.81	1
Nitroethane		79-24-3	C ₂ H ₅ NO ₂					3		10.88	100
Nitrogen dioxide		10102-44-0	NO ₂	23	+	16	+	6	+	9.75	3
Nitrogen trifluoride		7783-54-2	NF ₃	NR		NR		NR		13.0	10
Nitromethane		75-52-5	CH ₃ NO ₂					4		11.02	20
Nitropropane, 2-		79-46-9	C ₃ H ₇ NO ₂					2.6		10.71	10
Nonane		111-84-2	C ₉ H ₂₀			1.4				9.72	200
Norpar 12	n-Paraffins, mostly C ₁₀ -C ₁₃	64771-72-8	m.w. 161	3.2	+	1.1	+	0.28	+		ne
Norpar 13	n-Paraffins, mostly C ₁₃ -C ₁₄	64771-72-8	m.w. 189	2.7	+	1.0	+	0.3	+		ne
Octamethylcyclotetrasiloxane		556-67-2	C ₈ H ₂₄ O ₄ Si ₄	0.21	+	0.17	+	0.14	+		ne
Octamethyltrisiloxane		107-51-7	C ₈ H ₂₄ O ₂ Si ₃	0.23	+	0.16	+	0.17	+	<10.0	ne
Octane, n-		111-65-9	C ₈ H ₁₈	13	+	1.8	+			9.82	300
Octene, 1-		111-66-0	C ₈ H ₁₆	0.9	+	0.75	+	0.4	+	9.43	75
Pentachloropropane	1,1,1,3,3-pentachloropropane	23153-23-3	C ₃ H ₃ Cl ₅					1.25	+		0.1
Pentane		109-66-0	C ₅ H ₁₂	80	+	9.0	+	0.7	+	10.35	600
Peracetic acid**	Peroxyacetic acid, Acetyl hydroperoxide	79-21-0	C ₂ H ₄ O ₃	NR	+	NR	+	2.3	+		ne
Peracetic/Acetic acid mix**	Peroxyacetic acid, Acetyl hydroperoxide	79-21-0	C ₂ H ₄ O ₃			50	+	2.5	+		ne
Perchloroethene	PCE, Perchloroethylene, Tetrachloroethylene	127-18-4	C ₂ CI ₄	0.69	+	0.57	+	0.31	+	9.32	25
Propylene glycol methyl ether, 1-Methoxy-2-propanol	PGME	107-98-2	C ₆ H ₁₂ O ₃	2.4	+	1.2	+	1.1	+		100
Propylene glycol methyl ether acetate, 1-Methoxy-2-acetoxypropane, 1-Methoxy-2-propanol acetate	PGMEA	108-65-6	C ₆ H ₁₂ O ₃	1.65	+	1.0	+	0.8	+		ne
Phenol	Hydroxybenzene	108-95-2	C_6H_6O	1.0	+	1.6	+	0.9	+	8.51	5
Phosgene	Dichlorocarbonyl	75-44-5	CCI ₂ O	NR	+	NR	+	8.5	+	11.2	0.1
Phosgene in Nitrogen	Dichlorocarbonyl	75-44-5	CCI ₂ O	NR	+	NR	+	6.8	+	11.2	0.1
Phosphine (coats lamp)		7803-51-2	PH ₃	28		3.9	+	1.1	+	9.87	0.3
Photocopier Toner	Isoparaffin mix					0.5	+	0.3	+		ne
Picoline, 3-	3-Methylpyridine	108-99-6	C ₆ H ₇ N			0.9				9.04	ne
Pinene, α-		2437-95-8	C ₁₀ H ₁₆			0.31	+	0.47		8.07	ne
Pinene, β-		18172-67-3	C ₁₀ H ₁₆	0.38	+	0.37	+	0.37	+	~8	100
Piperylene, isomer mix	1,3-Pentadiene	504-60-9	C ₅ H ₈	0.76	+	0.69	+	0.64	+	8.6	100
Propane		74-98-6	C ₃ H ₈			NR	+	1.8	+	10.95	2500
Propanol, n-	Propyl alcohol	71-23-8	C ₃ H ₈ O			5.1		1.7		10.22	200
Propene	Propylene	115-07-1	C ₃ H ₆	1.5	+	1.4	+	1.6	+	9.73	ne
Propionaldehyde	Propanal	123-38-6	C ₃ H ₆ O			1.9				9.95	ne
Propyl acetate, n-		109-60-4	C ₅ H ₁₀ O ₂			3.5				10.04	200
Propyl acetate	Propylacetate; n-Propyl ester of	109-60-4	C ₅ H ₁₀ O ₂			2.27	+			10.04	200

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Propylamine, n-	1-Propylamine, 1-Aminopropane	107-10-8	C ₃ H ₉ N	1.1	+	1.1	+	0.9	+	8.78	ne
Propylene carbonate**		108-32-7	C ₄ H ₆ O ₃			62	+	1	+	10.5	ne
Propylene glycol	1,2-Propanediol	57-55-6	C ₃ H ₈ O ₂	18		4.0	+	1.6	+	<10.2	ne
Propylene glycol propyl ether	1-Propoxy-2-propanol	1569-01-3	C ₆ H ₁₄ O ₂	1.3	+	1.0	+	1.6	+		ne
Propylene oxide	Methyloxirane	75-56-9 16088-62-3 15448-47-2	C ₃ H ₆ O	~240		6.6	+	2.9	+	10.22	20
Propyleneimine	2-Methylaziridine	75-55-8	C ₃ H ₇ N	1.5	+	1.3	+	1.0	+	9.0	2
Propyl mercaptan, 2-	2-Propanethiol, Isopropyl mercaptan	75-33-2	C ₃ H ₈ S	0.64	+	0.66	+			9.15	ne
Pyridine		110-86-1	C ₅ H ₅ N	0.78	+	0.7	+	0.7	+	9.25	5
Pyrrolidine (coats lamp)	Azacyclohexane	123-75-1	C ₄ H ₉ N	2.1	+	1.3	+	1.6	+	~8.0	ne
RR7300 (PGME/PGMEA)	70:30 PGME:PGMEA (1-Methoxy-2-propanol: 1-Methoxy-2-acetoxypropane)	107-98-2	C ₄ H ₁₀ O ₂ / C ₆ H ₁₂ O ₃			1.4	+	1.0	+		ne
Sarin	GB, Isopropyl methylphosphonofluoridate	107-44-8 50642-23-4	C ₄ H ₁₀ FO ₂ P			~3					
Shell SPK						1.26	+				
Shell SPK						1.29	+	0.4	+		
Shell SPK 50/50						1.02	+	0.41	+		
Shell SPK/JP-8						1.11	+				
Stoddard Solvent see Mineral S	Spirits	8020-83-5									
Styrene		100-42-5	C ₈ H ₈	0.45	+	0.43	+	0.4	+	8.43	20
Sulfur dioxide		7446-09-5	SO ₂	NR		NR	+	NR	+	12.32	2
Sulfur hexafluoride		2551-62-4	SF ₆	NR		NR		NR		15.3	1000
Sulfuryl fluoride	Vikane	2699-79-8	SO ₂ F ₂	NR		NR		NR		13.0	5
Tabun**	Ethyl N, N- dimethylphosphoramidocyanidate	77-81-6	C ₅ H ₁₁ N ₂ O ₂ P			0.8					15ppt
Tallow HRJ						1.09	+				
Tallow HRJ						0.95	+	0.36	+		
Tallow HRJ/JP-8						1.14	+				
Tallow HRJ/JP-8 50/50						0.9	+	0.39	+		
Tetrachloroethane, 1,1,1,2-		630-20-6	C ₂ H ₂ Cl ₄					1.3		~11.1	ne
Tetrachloroethane, 1,1,2,2-		79-34-5	C ₂ H ₂ Cl ₄	NR	+	NR	+	0.60	+	~11.1	1
Tetrachlorosilane		10023-04-7	SiCl ₄	NR		NR		15	+	11.79	ne
Tetraethyllead	TEL	78-00-2	C ₈ H ₂₀ Pb	0.4		0.3		0.2		~11.1	0.008
Tetraethyl orthosilicate	Ethyl silicate, TEOS	78-10-4	C ₈ H ₂₀ O ₄ Si			0.7	+	0.2	+	~9.8	10
Tetrafluoroethane, 1,1,1,2-	HFC-134A	811-97-2	C ₂ H ₂ F ₄			NR		NR			ne
Tetrafluoroethene	TFE, Tetrafluoroethylene, Perfluoroethylene	116-14-3	C ₂ F ₄			~15				10.12	ne
Tetrafluoromethane	CFC-14, Carbon tetrafluoride	75-73-0	CF ₄			NR	+	NR	+	>15.3	ne
Tetrahydrofuran	THF	109-99-9	C ₄ H ₈ O	1.9	+	1.7	+	1.0	+	9.41	200
Tetramethyl orthosilicate	Methyl silicate, TMOS	681-84-5	C ₄ H ₁₂ O ₄ Si	10	+	1.3	+			~10	1
Therminol® D-12**	Hydrotreated heavy naphtha	64742-48-9	m.w. 160	0.8	+	0.51	+	0.33	+		ne
Therminol® VP-1**	Dowtherm A, 3:1 Diphenyl oxide: Biphenyl	101-84-8 92-52-4	C ₁₂ H ₁₀ O C ₁₂ H ₁₀			0.4	+				1
Toluene	Methylbenzene	108-88-3	C ₇ H ₈	0.54	+	0.45	+	0.51	+	8.82	50
Tolylene-2,4-diisocyanate	TDI, 4-Methyl-1,3-phenylene-2,4-diisocyanate	584-84-9	C ₉ H ₆ N ₂ O ₂	1.4	+	1.4	+	2.0	+		0.002
Trichlorobenzene, 1,2,4-	1,2,4-TCB	120-82-1	C ₆ H ₃ Cl ₃	0.7	+	0.45	+			9.04	C5
Trichloroethane, 1,1,1-	1,1,1-TCA, Methyl chloroform	71-55-6	C ₂ H ₃ Cl ₃			NR	+	1	+	11	350

Compound Name	Synonym/Abbreviation	CAS No.	Formula	9.8	C	10.6	C	11.7	C	IE (eV)	TWA
Trichloroethane, 1,1,2-	1,1,2-TCA	79-00-5	C ₂ H ₃ Cl ₃	NR	+	NR	+	0.9	+	11.0	10
Trichloroethene	TCE, Trichoroethylene	79-01-6	C ₂ HCl ₃	0.62	+	0.54	+	0.43	+	9.47	50
Trichloromethylsilane	Methyltrichlorosilane	75-79-6	CH ₃ Cl ₃ Si	NR		NR		1.8	+	11.36	ne
Trichlorotrifluoroethane, 1,1,2-	CFC-113	76-13-1	C ₂ Cl ₃ F ₃			NR		NR		11.99	1000
Triethylamine	TEA	121-44-8	C ₆ H ₁₅ N	0.95	+	0.97	+	0.65	+	7.3	1
Triethyl borate	TEB; Boric acid triethyl ester, Boron ethoxide	150-46-9	C ₆ H ₁₅ O ₃ B			2.2	+	1.1	+	~10	ne
Triethyl phosphate	Ethyl phosphate	78-40-0	C ₆ H ₁₅ O ₄ P	~50	+	3.1	+	0.60	+	9.79	ne
Trifluoroethane, 1,1,2-		430-66-0	C ₂ H ₃ F ₃					34		12.9	ne
Trimethylamine		75-50-3	C ₃ H ₉ N			0.97				7.82	5
Trimethylbenzene, 1,3,5- see M	esitylene	108-67-8									25
Trimethyl borate	TMB; Boric acid trimethyl ester, Boron methoxide	121-43-7	C ₃ H ₉ O ₃ B			5.1	+	1.2	+	10.1	ne
Trimethyl phosphate	Methyl phosphate	512-56-1	C ₃ H ₉ O ₄ P			9.2	+	1.3	+	9.99	ne
Trimethyl phosphite	Methyl phosphite	121-45-9	C ₃ H ₉ O ₃ P			1.6	+		+	8.5	2
Turpentine	Pinenes (85%) + other diisoprenes	8006-64-2	C ₁₀ H ₁₆	0.37	+	0.3	+	0.29	+	~8	20
Undecane		1120-21-4	C ₁₁ H ₂₄			2				9.56	ne
Varsol see Mineral Spirits											
Vinyl actetate		108-05-4	C ₄ H ₆ O ₂	1.5	+	1.2	+	1.0	+	9.19	10
Vinyl bromide	Bromoethylene	593-60-2	C ₂ H ₃ Br			0.4				9.80	5
Vinyl chloride	Chloroethylene, VCM	75-01-4	C ₂ H ₃ CI			2.0	+	0.6	+	9.99	5
Vinyl-1-cyclohexene, 4-	Butadiene dimer, 4-Ethenylcyclohexene	100-40-3	C ₈ H ₁₂	0.6	+	0.56	+			9.83	0.1
Vinylidene chloride see 1,1-Dic	nolorethene										
Vinyl-2-pyrrolidinone, 1-	NVP, N-vinylpyrrolidone, 1-ethenyl-2-pyrrolidinone	88-12-0	C ₆ H ₉ NO	1.0	+	0.8	+	0.9	+		ne
Viscor 120B see Mineral Spirits	—Viscor 120B Calibration Fluid										
V. M. & P. Naphtha	Ligroin; Solvent naphtha; Varnish maker's & painter's naphtha	64742-89-8	m.w. 111 (C ₈ -C ₉)	1.7	+	0.97	+				300
Xylene, m-	1,3-Dimethylbenzene	108-38-3	C ₈ H ₁₀	0.50	+	0.44	+	0.40	+	8.56	100
Xylene, o-	1,2-Dimethylbenzene	95-47-6	C ₈ H ₁₀	0.56	+	0.45	+	0.43		8.56	100
Xylene, p-	1,4-Dimethylbenzene	106-42-3	C ₈ H ₁₀	0.48	+	0.39	+	0.38	+	8.44	100

^{*} The term "ionization energy" is more scientifically correct and replaces the old term "ionization potential." High-boiling ("heavy") compounds may not vaporize enough to give a response even when their ionization energies are below the lamp photon energy. Some inorganic compounds like H_2O_2 and NO_2 give weak response even when their ionization energies are well below the lamp photon energy.

Therminol® is a registered Trademark of Solutia, Inc.

^{**} Compounds indicated in green can be detected using a MiniRAE 3000, UltraRAE 3000 or ppbRAE 3000 with slow response, but may be lost by adsorption on a MultiRAE, EntryRAE and AreaRAE. Response on multi-gas meters can give an indication of relative concentrations, but may not be quantitative and for some chemicals no response is observed.