

PSE Molekulardynamik Sheet 4: Thermostats, Rayleigh-Taylor instability and "falling drops"

Group A: Daniel Schade, Ashutosh Solanki, Robin Cleve 21.06.2024

Table of contents

- 1. Thermostats
- 2. Rayleigh-Taylor instability
 - 2.1 Periodic boundaries
 - 2.2 Further steps
- 3. Simulation of a falling drop Liquid
- 4. Performance Measurement and Profiling
- 5. Tuning the sequential Performance

Thermostats

Calculate temperature of the system for all particles:

$$T = rac{\sum_i m_i |\mathbf{v}_i|^2}{\# ext{dimensions} imes \# ext{particles}}$$

Rescale velocity for all particles:

$$\mathbf{v}_i \leftarrow b \cdot \mathbf{v}_i, \quad ext{where} \quad b := \sqrt{rac{T_{ ext{new}}}{T_{ ext{current}}}}$$

- Apply gradually, limit temperature change of the system by a certain value
- Temperature of System with with static particles is not defined
 - Initialize system with Brownian motion!

Rayleigh-Taylor instability

Periodic boundaries

Main challenges:

- 1. Teleporting of particles that left the domain
 - -> "easier part" of the implementation
- 2. Calculate forces for particles close to the border of the domain
 - -> Interpret cell of the opposite side as halo cell

General approach:

• split domain up in Sides, Edges, Corners

Edge case:

- Particle in the boundary cell corner
- Which boundary did it cross
- For now it depends on the processing order

Rayleigh-Taylor instability

Т

Further steps

1. Gravity

Add force along the y-axis to each particle

2. Lorentz-Berthelot Mixing Rules

- Epsilon and Delta can now be configured in each particle individually
- Adapt Leonard Jones force

3. Simulation

Simulation of a falling drop - Liquid

Performance Measurement and Profiling

• These methods consume the most runtime, 80.06% of total execution time

Method	s	
LeonardJonesForce::compute	2.68	39.59
Linked Cells Container:: apply To All Unique Pairs In Domain	1.47	21.71
std::_Function_handler <void (particle&,="" model::updateforces()="" particle&),=""></void>	0.77	11.37
Particle::getX()	0.50	7.39

Observations:

- Iterating over cells of the linked cells container consume a lot of time, as well as the
- getter method for the position of molecule
- Linux cluster Fist 100 iterations of the Rayleigh-Taylor instability of task 2

Running time	19.16 s
Molecule updates per second	$522030\mathrm{MUPS/s}$

Tuning the sequential performance

- Leonard-Jones force between two particles
 - Calculate difference in distance of the particles only once
 - Speed up by 1.2s!
- Reduce getter calls
 - establishing friend classes and adding multiple compiler flags (e.g. -Ofast)
 - Speed up by 2.04s!
- Conclusion
 - Only constant speed up, time complexity of program stays the same
 - More complex changes, like caching Leonard-Jones parameters, may be implemented in the following weeks

Tuning the sequential performance

Т

Graph after second optimization step

