Nombres Complexes

Destiné à la TerminaleS2 Au Lycée de Dindéferlo 20 avril 2025

Exercice 1

1. Mettre sous forme algébrique les nombres complexes suivants :

a.
$$z_1 = (1-i)(5+i)$$
 b. $z_2 = (2-3i)^2$ c. $z_3 = \frac{1}{3+2i}$ d. $z_4 = \frac{4-5i}{3+2i}$

2. Écrire en fonction de \overline{z} les conjugués des nombres complexes suivants :

a.
$$z_1 = 1 + iz$$
 b. $z_2 = i(z+3)$ c. $z_3 = \frac{1-z}{1+iz}$ d. $z_4 = \frac{1+3z}{i+2z}$

3. Déterminer un argument de z dans chacun des cas suivants :

a.
$$z = -1 + i$$
 b. $z = \sqrt{6} + i\sqrt{6}$ c. $z = \frac{1}{2} - i\frac{\sqrt{3}}{2}$ d. $z = (2 + 2i)(1 - i)$ e. $z = \frac{-1 + i\sqrt{3}}{1 + i}$ f. $z = (-1 - i)^4$

Exercice 2

Le plan est muni d'une repère orthonormé direct.

1. Déterminer puis construire l'ensemble des points M du plan d'affixe z vérifiant :

a.
$$|z-3|=|z+i|$$
 b. $|iz+3|=|z+4+i|$ c. $|\overline{z}+\frac{1}{3}|=3$ d. $|z-\overline{z}+i|=2$ e. $|\overline{z}-2+i|=|z+5-2i|$ f. $|\overline{z}-2+i|=|z+5-2i|$

2. Pour tout nombre complexe $z \neq -1 + 2i$, :

on pose
$$Z = \frac{z-2+4i}{z+1-2i}$$

Déterminer l'ensemble des points M du plan tels que

a.
$$|Z| = 1$$
 b. $|Z| = 2$

- c. Z soit un réel.
- d. Z est un imaginaire pur.

3. Pour tout complexe $z \neq i$, on pose $U = \frac{z+i}{z-i}$

Déterminer l'ensemble des points M d'affixe z tels que : a. $U\in\mathbb{R}_+^*$ b. $U\in\mathbb{R}_+^*$ c. $U\in i\mathbb{R}$

Exercice 3

Le plan est muni d'une repère orthonormé direct.

Soit le nombre complexe $z = \frac{2(-1+i\sqrt{3})}{1+i\sqrt{3}}$

- 1. Déterminer Re(z) et Im(z).
- 2. Déterminer le module et un argument de z.
- $3.\ En$ déduire le module et un argument de :

$$\frac{1}{z}\,;\;\frac{i}{z}$$
et $\frac{1+i}{z}$

Exercice 4

- 1. On pose $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$; $z_2 = 1 i$ et $z_3 = \frac{z_1}{z_2}$.
- a. Déterminer un argument de z_1 ; z_2 et z_3 .
- b. En déduire les valeurs exactes de $\cos(\frac{5\pi}{12})$ et $\sin(\frac{5\pi}{12})$
- 2. On considère les nombres complexes : a=1-i ; $b=1-i\sqrt{3}$; $Z=\frac{a^5}{b^4}$. a. Déterminer une écriture trigonométrique de Z.
- b. Déterminer une écriture cartésienne de Z.

En déduire les valeurs de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$ c. Calculer Z^{12} et Z^{2024}

- d. Pour quelles valeurs de l'entier naturel n :

 \mathbb{Z}^n est un réel.

 \mathbb{Z}^n est un imaginaire pur

Exercice 5

On donne $u = \sqrt{2 - \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$

- 1. Calculer u^2 et u^4 sous forme algébrique.
- 2. En déduire le module et un argument de u.
- 3. Soit M le point d'affixe $z \in \mathbb{C}$. Déterminer l'ensemble des points M tels que |uz| = 8
- Exercice 6
- Exercice 7
- Exercice 8
- Exercice 9
- Exercice 10
- Exercice 11
- Exercice 12
- Exercice 13
- Exercice 14