```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
//matplotlib inline
    df = pd.read_excel('C:/Users/SRIVENKATESH/Downloads/Salary_Data asha.xlsx')

In [3]: import numpy as np
import pandas as pd
    df = pd.read_excel('C:/Users/SRIVENKATESH/Downloads/Salary_Data asha.xlsx')

In [4]: df
```

0.00 T W			
Out[4]:		Price	Quantity
	0	100	39343
	1	200	46205
	2	300	37731
	3	400	38500
	4	500	39891
	5	600	56642
	6	700	60150
	7	800	62000
	8	900	64445
	9	1000	57189
	10	900	63218
	11	800	60000
	12	700	56957
	13	600	57081
	14	500	61111
	15	400	65000
	16	300	66029
	17	200	83088
	18	100	81363
	19	200	93940
	20	300	91738
	21	400	98273
	22	500	101302
	23	600	113812
	24	700	109431
	25	800	105582
	26	900	116969
	27	1000	112635
	28	900	122391
	29	800	121872

```
In [5]: df=pd.DataFrame(df,columns=['Price','Quantity'])
In [6]: df.plot.scatter(x='Price',y='Quantity')
Out[6]: <AxesSubplot:xlabel='Price', ylabel='Quantity'>
```



```
In [7]: df.columns
Out[7]: Index(['Price', 'Quantity'], dtype='object')
In [8]: X=df[['Price']]
In [9]: X
```

Out[9]:		Price
	0	100
	1	200
	2	300
	3	400
	4	500
	5	600
	6	700
	7	800
	8	900
	9	1000
	10	900
	11	800
	12	700
	13	600
	14	500
	15	400
	16	300
	17	200
	18	100
	19	200
	20	300
	21	400
	22	500
	23	600
	24	700
	25	800
	26	900
	27	1000
	28	900
	29	800

```
In [13]: Y=df[['Quantity']]
In [14]: Y
```

Out[14]:		Quantity
	0	39343
	1	46205
	2	37731
	3	38500
	4	39891
	5	56642
	6	60150
	7	62000
	8	64445
	9	57189
	10	63218
	11	60000
	12	56957
	13	57081
	14	61111
	15	65000
	16	66029
	17	83088
	18	81363
	19	93940
	20	91738
	21	98273
	22	101302
	23	113812
	24	109431
	25	105582
	26	116969
	27	112635
	28	122391
	29	121872

```
In [15]: from sklearn.model_selection import train_test_split
In [16]: xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_size=0.2,random_state=0)
In [17]: xtrain
```

Out[17]:		Price
	27	1000
	11	800
	17	200
	22	500
	5	600
	16	300
	8	900
	14	500
	23	600
	20	300
	1	200
	29	800
	6	700
	4	500
	18	100
	19	200
	9	1000
	7	800
	25	800
	3	400
	0	100
	21	400
	15	400
	12	700

In [18]: xtest

In [19]: ytrain

Out[19]:		Quantity
	27	112635
	11	60000
	17	83088
	22	101302
	5	56642
	16	66029
	8	64445
	14	61111
	23	113812
	20	91738
	1	46205
	29	121872
	6	60150
	4	39891
	18	81363
	19	93940
	9	57189
	7	62000
	25	105582
	3	38500
	0	39343
	21	98273
	15	65000
	12	56957

In [20]: ytest

Out[20]: Quantity

In [21]: from sklearn.linear_model import LinearRegression

In [22]: lm=LinearRegression()

```
lm.fit(xtrain,ytrain)
In [23]:
          LinearRegression()
Out[23]:
          predictions=lm.predict(xtest)
In [24]:
          predictions
In [25]:
          array([[70170.46143123],
Out[25]:
                  [80132.16775093],
                 [75151.31459108],
                  [80132.16775093],
                 [80132.16775093],
                 [76811.5989777 ]])
In [26]:
          predictions=pd.DataFrame(predictions, columns=['predictions'])
          predictions
In [27]:
              predictions
Out[27]:
             70170.461431
             80132.167751
          2 75151.314591
          3 80132.167751
             80132.167751
             76811.598978
          sns.regplot(x='Price',y='Quantity',data=df,fit_reg=True)
In [31]:
          <AxesSubplot:xlabel='Price', ylabel='Quantity'>
Out[31]:
            120000
            100000
             80000
             60000
             40000
                         200
                                    400
                                              600
                                                                  1000
                                                        800
                                           Price
```