Nom des binômes : BALHAN Amine

Ait Moulay Erradi Youssef

Master: SNIA

Nom Professeur: Mr. BARAKA Achraf Chakir

# Compte Rendu : Analyse de la Régression Linéaire entre Poids et Consommation de Carburant

### **Contexte et Objectif:**

Dans cette analyse, l'objectif était d'étudier la relation entre le poids des voitures et leur consommation de carburant (mesurée en miles per gallon, mpg) à l'aide d'un modèle de régression linéaire simple. Les données proviennent du jeu de données mpg\_data qui contient plusieurs informations sur les voitures, dont le poids et la consommation de carburant. On comparera les deux méthodes, R et SPSS, pour cette analyse.

## Analyse et Régression Linéaire Simple dans R

### Étape 1 : Charger le jeu de données

- Charger le fichier CSV
- Visualiser les données



Étape 2 : Comprendre le contenu du dataset

- Résumé des colonnes et types de données
- Statistiques descriptives

### Étape 3 : Visualisation initiale des données

 Graphique de dispersion entre poids et consommation



### Étape 4 : Ajuster le modèle de régression linéaire

- Construire le modèle de régression linéaire
- Résumé du modèle



### Étape 5 : Ajouter la ligne de régression au graphique



 Ajouter la ligne de régressio

# Étape 6 : Prédire de nouvelles valeurs

 Prédire pour de nouveaux poids



# Analyse et Régression Linéaire Simple dans SPSS

Étape 1 : Charger les données dans SPSS

Les données brutes sont importées dans SPSS.



| esktop\R\PROJET1\mpg.xlsx           |                                                      |
|-------------------------------------|------------------------------------------------------|
| le names from the first row of data |                                                      |
| mpg [A1:I399]                       | -                                                    |
|                                     |                                                      |
| for string columns: 32767           |                                                      |
|                                     | ie names from the first row of data<br>mpg [A1:1399] |



Étape 2 : Créer un graphique de dispersion

Utilisez Chart Builder pour construire un graphique de dispersion qui montre la relation entre « weight » et « mpg ».





Un nuage de points montrant la distribution des valeurs avec une relation potentielle visible entre les deux variables.

Étape 3 : Réaliser une régression linéaire

Effectuez une analyse de régression.





### Étape 4 : Interprétation des résultats

Analysez les sorties de SPSS.



|                | R      | SPSS   |
|----------------|--------|--------|
| R <sup>2</sup> | 0.692  | 0.692  |
| Constant       | 46.317 | 46.317 |
| Poid           | -0.008 | -0.008 |

### Formule du modèle :

mpg =46.32-0.008×weight

### Statistiques du modèle :

**R²** (0.6918) : Le R² indique que le modèle explique environ 69.18% de la variance de la consommation de carburant (mpg). C'est un bon indicateur que le poids des voitures est une variable importante pour prédire la consommation, mais il reste encore 30.82% de la variance qui n'est pas expliquée par ce modèle.

- Impact du poids : Le poids des voitures a un effet négatif sur la consommation de carburant, c'est-à-dire qu'une voiture plus lourde a tendance à consommer plus de carburant.
- **Fiabilité du modèle** : Le modèle est statistiquement significatif, avec un R² de 69.18%, indiquant que le poids est une variable explicative importante, mais il existe encore d'autres facteurs (non inclus dans ce modèle) qui influencent la consommation de carburant.

#### Conclusion

Les deux méthodes donnent des résultats similaires, confirmant la robustesse de l'analyse.

SPSS est idéal pour les utilisateurs cherchant une approche guidée et visuelle.

R convient mieux à ceux qui ont besoin de flexibilité ou qui travaillent sur des analyses avancées.