Lecture 11 Markov Chains

Nils Detering (covered by Maryann Hohn)

February 14th

To get started, let us first revisit our Random Walk: Recall

- \triangleright X_1, X_2, \ldots be a sequence of i.i.d. RVs
- ▶ S_0 a RV indep. of X_1, X_2, \ldots Sequence S_0, S_1, \ldots defined by

$$S_n = S_0 + \sum_{i=1}^n X_i$$
 $(n = 0, 1, ...)$

Assume we are interested in the probability of $S_{n+1} = k$ and we know the value of S_n .

How much would we gain by knowing also S_0, S_1, \ldots ? Or, more formally, what is the difference between $\mathbb{P}(S_{n+1} = k | S_n = j_n)$ and $\mathbb{P}(S_{n+1} = k | S_0 = j_0, \ldots, S_n = j_n)$?

Let us calculate:

$$\mathbb{P}(S_{n+1} = k | S_n = j_n) = \frac{\mathbb{P}(S_{n+1} = k, S_n = j_n)}{\mathbb{P}(S_n = j_n)} \\
= \frac{\mathbb{P}(S_n + X_{n+1} = k, S_n = j_n)}{\mathbb{P}(S_n = j_n)} \\
= \frac{\mathbb{P}(X_{n+1} = k - j, S_n = j)}{\mathbb{P}(S_n = j_n)} \\
= \frac{\mathbb{P}(X_{n+1} = k - j)\mathbb{P}(S_n = j)}{\mathbb{P}(S_n = j_n)} \\
= \mathbb{P}(X_{n+1} = k - j)$$

and we know that $\mathbb{P}(X_{n+1}=k-j)$ equals p for k-j=1 and 1-p for k-j=-1.

Ok, lets then calculate:

$$\mathbb{P}(S_{n+1} = k | S_0 = j_0, \dots, S_n = j_n)
= \frac{\mathbb{P}(S_{n+1} = k, S_0 = j_0, \dots, S_n = j_n)}{\mathbb{P}(S_0 = j_0, \dots, S_n = j_n)}
= \dots
= \frac{\mathbb{P}(X_{n+1} = k - j_n)\mathbb{P}(X_n = j_n - j_{n-1}) \cdots \mathbb{P}(X_1 = j_1 - j_0)}{\mathbb{P}(X_n = j_n - j_{n-1}) \cdots \mathbb{P}(X_1 = j_1 - j_0)}
= \mathbb{P}(X_{n+1} = k - j_n)$$

as before! Adding information about the past does not add anything once you know the present!

 Many time-discrete stochastic processes have the following very pleasant Markov-property

The future given the present is independent of the past

- ▶ This property helps to understand questions like:
 - ▶ Does the distribution $\mathbb{P}(S_n = k)$ converge for $n \to \infty$?
 - Are there states k such that if $S_n = k$, then $S_j = k$ for any $j \ge n$?

- We will spend the rest of this term on Markov processes.
- ▶ We follow now closely the book *Stochastic Processes with R* by Robert Dobrow.
- ▶ See syllabus on Gauchospace for references for every lecture.

We need to do a change in notation to be in line with Markov Chain literature and our main reference!

From now on, the stochastic process (Markov Chain) we consider will be denoted by X_0, X_1, \ldots not its increments.

Definition (Markov Chains)

Let $\mathcal{S} \subset \mathbb{R}$ a discrete set. A Markov chain is a sequence of random variables X_0, X_1, \ldots defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, taking values in \mathcal{S} with the property that

$$\mathbb{P}(X_{n+1} = k | X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = i)$$

$$= \mathbb{P}(X_{n+1} = k | X_n = i)$$

for all $x_0, \ldots, x_{n-1}, i, k \in \mathcal{S}$ and $n \ge 0$. The set \mathcal{S} is called the state space of the Markov chain.

Observations:

- A Markov chain is a time-discrete stochastic process.
- Sometimes we give the states labels which are not elements in \mathbb{R} but can be mapped. See our $\mathcal{S} = \{\text{rain}, \text{snow}, \text{clear}\}$ example coming soon. Of course we can always give labels in \mathbb{R} .

Definition (Time-homogeneous Markov Chains)

A Markov chain is called time-homogeneous if

$$\mathbb{P}(X_{n+1} = k | X_n = i) = \mathbb{P}(X_1 = k | X_0 = i)$$
 (1)

for all n > 0.

Example (Board game)

See whiteboard.

Transition matrix Markov Chains

For time-homogeneous Markov chains we can arrange the probabilities in (1) in a matrix $P \in [0,1]^{|S| \times |S|}$ by

$$P_{i,j} = \mathbb{P}(X_1 = j | X_0 = i) \tag{2}$$

For the board game:

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{6} & 0 & 0 \\ 0 & 0 & \frac{1}{6} \\ 0 & 0 & 0 & \frac{1}{6} \\ 0 & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & 0 & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 & 0 & 0 & 0 \end{bmatrix}$$

Transition matrix Markov Chains

Important property transition matrix:

$$\sum_{j} P_{i,j} = \sum_{j} \mathbb{P}(X_1 = j | X_0 = i)$$

$$= \sum_{j} \frac{\mathbb{P}(X_1 = j, X_0 = i)}{\mathbb{P}(X_0 = i)}$$

$$= \frac{\mathbb{P}(X_0 = i)}{\mathbb{P}(X_0 = i)} = 1$$

Stochastic matrix

Definition (Stochastic matrix)

A matrix P is called stochastic matrix if

- 1. $P_{ij} \ge 0$ for all i, j
- 2. For each row i,

$$\sum_{i} P_{ij} = 1$$

Example (Weather change)

See whiteboard.