### Trådløs Energioverførsel



P1 Projekt Gruppe C2-16A Energi Aalborg Universitet Den 19. december 2016



STUDENTERRAPPORT

Titel:

| Trådløs Mobilopladning                         |
|------------------------------------------------|
| <b>Projekt:</b> P1-projekt                     |
| Projektperiode: September 2016 - December 2016 |
| Projektgruppe:<br>C2-16a                       |
| Deltagere:                                     |
| Daniel Revsbech Pedersen                       |
| Julian Bo Larsen                               |
| Mads Lindstrøm Paulsen                         |
| Mathias Stenberg Hansen                        |
| Nicolai Nørgaard Munk                          |
| Sisse Sorgenfri Jensen                         |
| Torben Brund Jørgensen                         |
| Vejledere:                                     |
|                                                |

Christian Uhrenfeldt

Første Studie<br/>år  $\mathbf{v}/$ School of Engineering and Science (SES)

Energi Strandvejen 12-14 9000 Aalborg http://www.tnb.aau.dk

Synopsis:

Her kommer vores synopsis til at være.

Oplagstal: ? Sidetal: ? Appendiks: ? **Afsluttet: DATO** 

### indledning

Samfundet vi liver i dag er yderst afhængig af elektricitet for at kunne funger og vi som samfund er blevet var til den afhængighed, hvilke har gennem tiden ført til ny og bedre teknologi, og derved er ideen omkring trådløs energi overførelse også opstået. Trådløs energi overførelse er noget rimeligt nyt, der ses i hverdagen, men teknologien stammer tilbage fra 1890 'erne hvor Nikola Tesla havde allerede forsøgte sig med, at skabe og sende trådløs elektricitet, (Bellow,2016) og drømte om at sende energien igennem den øvre atmosfære. Nikola Tesla drømte om fri energi til hele verden ikke blot kun til en by, men der er stadig lang vej den dag i dag. Metoder der bliver brugt i dag har stadig utrolig mange problemstillinger før det vil være muligt og erstatte traditionelle kabler. Før det er muligt, at lade trådløs elektricitet overtage hverdagen, er der nogle krav til denne teknologi

Der er mange forskellige måder og sende energien på, men et af kravene der er meget vigtige er, at disse metoder ikke gør skade på mennesket, ikke mindst med det er det vigtig at energi kan blive sendt over længere distancer uden for meget spild og ustabil forbindelse. I dag er der meget fokus på global opvarmning og ikke mindst grøn energi, hvor Danmark har 2020 og 2050 planerne derfor er det også vigtigt, at der er tænkt miljøbevist før teknologien ville kunne slå igennem og blive den mest anvendte.

Der er to forskellige tilgange til denne teknologi, WSP (Wireless Power Transfer). En af tilgangene benytter sig af højfrekvens bølger, som mikrobølger eller lasere, en af disse sendes gennem luften hen til en modtager der kan omdanne den modtaget stråle/mikrobølge energien (photonerne) til elektricitet igen. Hvis denne metode anvendes er det muligt, at sende energi over længere afstande uden nogen form for fysik tilkobling, dog er det hovedsaglige problem med denne teknologi, at hvis der kommer noget imellem afsenderen og modtagerne ophøre overførelsen, ikke desto mindre kan det være skadeligt for mennesker, at udsætte dem for strålerne. Den anden tilgangsmåde forholder sig lidt anderledes her anvendes der elektromagnetisme, denne tilgangsmåde benytter sig af de elektroner der løber gennem en ledning, når elektroner løber gennem en ledning skabes der et magnetisk felt omkring (Amperes lov). Når et magnetisk felt får indflydelse på en ledning skubber det magnetiske felt til elektronerne, som skaber elektricitet (Faraday's lov). I sådan et system har i forhold til den anden tilgang en begrænset rækkevidde, men den er alt mere sikker at anvende for mennesker. Denne teknologi bliver i dag brugt til flere forskellige produkter, eksempelvis bliver det brugt til og lade elektriske tandbørster op med og ikke mindst til pacemakers. Dette er denne type teknologi projektet vil fokuser på.

## Problemanalyse 2

#### 2.1 Historie??

H.C Ørsted var på ungdomsrejse i 1801, på denne rejse så han nogle billeder. Det var billeder, som tyskeren E.F.F. Chladni kunne fremkalde, disse billeder var avancerede geometriske mønstre. Chladni kunne fremkalde disse billeder, ved at han strøg en violinbue med forskellige toner imod en glasplade med sand på. Det som H.C Ørsted oprindeligt var interesseret i, var at han kunne gøre fint pulver elektrisk og derved skabe et mønster, dette kunne gøres ved at stryge violinbuen imod pladen. Dette eksperiment gjorde, at H.C Ørsted kunne finde en sammenhæng mellem elektrisk og mekanisk kraft. H.C Ørsted var inspireret af den tyske filosof Immanuel Kant. Immanuel Kant havde opstillet sin egen teori om naturen på trods, at han aldrig havde arbejdet med fysik. Immanuel Kants teori var, at der kun findes to naturkræfter, hvilket vil betyde, at elektricitet, magnetisme, varme og lys bare er de to kræfter, som er kombineret forskelligt. Magnetiske og elektriske kræfter måtte have en sammenhæng, det var H.C Ørsted overbevist om, dette skyldtes Immanuel Kant teori.

Det var H.C Ørsted der i år 1820 opdagede, at en magnetnål med kræfter bliver påvirket af elektrisk strøm. Hvis strømstyrken i ledningen blev øget, betød det at kraften på magnetnålen blev større. H.C Ørsted opdagede, at et magnetfelt danner en lukket kreds.

Det næste skridt blev dog ikke taget af H.C Ørsted, men af Michael Faraday. Michael Faraday som var udlært bogbinder, men senere blev han assistent for en berømt kemiker nemlig Humphry Davy. Michael Faraday opdagede i år 1831 princippet bag den elektriske tranformer og generator og elektromagnetisk induktion. Resten af årtiet arbejde Michael Faraday med, at udvikle sine teorier og ideer omkring elektricitet.

Nikola Tesla var en amerikansk opfinder med serbiske rødder, han lavede offentlige demonstrationer, hvor han fremviste forsøg. Men Nikola Tesla fik aldrig rigtig den faglige anerkendelse, men han befandt sig i skyggen af Thomas Edison. Nikola Tesla var en af grundene til, at vekselstrøm vandt over jævnstrøm. Hvis der bliver nævnt radiokredsløb, skal der tænkes på Nikola Tesla, da han var den førende inden for dem, han forstærkede dem nemlig. Nikola Tesla gjorde ikke kun forarbejdet for radio og tv, men han lavede også forarbejdet for smartphones og ikke mindst internettet, dette gjorde han ved, at lave eksperimenter, som indeholdte et trådløst elektronisk netværk.

Nikola Tesla fremviste et forsøg i år 1891, som omhandlede trådløs strøm. Nikola Tesla stod med to gasudladningsrør også kaldet fluorescerende pære, blot i en tidligere udgave.

Nikola Tesla tilsluttede ikke rørene til noget, men stod blot med dem i hånden, der var klemt nogle metalplader ind på scenen. Elektriciteten blev transmittet igennem luften, hvilket fik rørene til at lyse uden. Nikola Tesla ville gerne vide, om det var muligt at øge effekten, så det var muligt at kunne overføre trådløs strøm, over et større område.

Ud fra Nikola Tesla ideer, skabte han Tesla Tower. Nikola Tesla havde til hensigt, at han ville producere de første lyn-skala elektriske udladninger i menneskeheden. Nikola Tesla rejste en mast på 142-fod ovenpå sit laboratoriums tag, masten havde en kobber kugle i spidsen. Tårnets betydningsfulde ledninger blev ført igennem en utrolig stor højspænding Tesla-coil i laboratorium nedenunder masten.

#### 2.2 Fysiske love??

Induktiv kopling:

- Elektriske felter
  - Gauss's lov

Før der kan beregnes på den strøm, der bliver induceret mellem den trådløse oplader og det elektriske apparat, så skal der være et bedre kendskab til elektriske felter. Til dette skal der ses nærmere på Gauss's lov, der beskriver elektrisk flux det elektriske felt og det areal, det passerer ved en lukket overflade.

Først defineres formlen for flux, som angiver det elektriske felt ganget med arealet, det løber igennem:  $\Phi = E \cdot A$ . Da indfaldsvinklen for det elektriske felt også har betydning, så er  $\vec{E} \bullet \vec{A}$  i stedet for, hvilket også kan opskrives som  $\Phi = E \cdot A \cdot cos(\theta)$ . (Se figur X) Figur af elektrisk felt vinkelret og vinklet på overflade



Figur 2.1. Figur Vinkelflux

Gauss's lov angiver ikke kun den elektriske flux, men den kan benyttes til at beregne den flux, der forløber over et bestemt areal. Derved skal der integreres i forhold til overfladen, samt at vektor A skal ganges med en faktor d, altså det bliver  $\Phi = \int \vec{E} \cdot d\vec{A}$ , som igen kan skrives som  $\Phi = \int E \cdot dA \cdot cos(\theta)$ . Herefter tager Gauss relation til det cirkulære felt omkring en positiv ladning. A bliver i denne sammenhæng formlen for en kugles overflade  $4\pi r^2$ , mens integralet ophæves, da der nu er tale om hele overfladen igen. Herfra er det:  $\Phi = E \cdot 4\pi r^2$ 

Det elektriske felt E er også angivet til at være  $\frac{kq}{r^2}$ . Ud fra dette fås den elektriske flux til:  $\Phi = \frac{kq}{r^2} \cdot 4\pi r^2 = 4\pi kq$ . k er derudover defineret som  $\frac{1}{4\pi\epsilon_0}$ , hvilket indsættes i forrige formel, altså:  $\frac{4\pi q}{4\pi\epsilon_0} = \frac{q}{\epsilon_0}$ .

q angiver den omkransede ladning for en lukket overflade. Derved bliver Gauss's lov til følgende:

$$\oint \vec{E} \bullet d\vec{A} = \frac{q}{\epsilon_0}$$

- Elektromagnetisme
  - Ampère's lov

Ampère's lov beskriver relationen mellem magnetiske feltstyrker og størrelsen af en jævn strøm gennem en ledning givet over længden l. Ampère tager udgangspunkt i ledningens center og følger magnetfeltet, som omkredser ledningen. Her er magnetfeltets styrke defineret ved vektoren  $\vec{B}$ , og et definerede linjestykke af magnetfeltets længde angives som  $\vec{dl}$ . For at beregne den jævne strøm gennem ledningen, skal der tages integralet af de to vektorer prikket sammen. Herved beskrives Ampére's lov:

$$\oint \vec{B} \bullet \vec{dl} = \mu_0 I$$

Vektor  $\vec{B}$  er angivet ved  $\frac{\mu_0 I}{2\pi r}$ , da der arbejdes med et cirkelformet magnetfelt. Derudover er det lukkede integral af  $\vec{dl}$  den totale længde af cirkelperiferien angivet ved  $2\pi r$ . Produktet mellem disse vil dermed blive  $\mu_0 I$ , som findes på højre side af Ampére's lov.

• Faraday's lov

En af de begreber, som elektromagnetisme beskriver, er induktion af spænding ved hjælp af magnetisme. Magnetisk flux ligner til delt elektrisk flux, som beskrevet tidligere. Dette giver integralet over det magnetiske felt prikket med et bestemt overfladeareal:  $\Phi_B = \int \vec{B} \cdot d\vec{A}$ 

En induseret strøm opstår ikke fra den magnetiske flux alene, men ved en ændring i den magnetiske flux. Dette betyder, at der bliver induceret spænding, hvis der sker en ændring af magnetfeltets styrke, den påvirkede overflades størrelse eller vinklen for, hvordan det magnetiske felt går gennem den pågældende overflade.

Faraday benytter den magnetiske flux til at beskrive den inducerede spænding ved:

$$\varepsilon = -1 \cdot \frac{d\Phi_B}{dt}$$

Ændringen af den magnetiske flux optræder ofte modsat af den inducerede spænding, så derfor ganger Faraday en faktor -1 på det differentierede udtryk af den magnetiske flux. Den magnetiske flux kan også beskrives som  $\vec{B} \bullet \vec{A}$  eller  $B \cdot A \cdot cos(\theta)$ .

• Maxwell's ligninger (Forbindelse mellem Faraday og Ampère)

Ved trådløs opladning arbejdes der med at omdanne elektrisk flux til magnetisk flux gennem spolen ved transmitteren, hvorefter den magnetiske flux igen skal omdannes til en elektrisk flux ved modtageren. For at beskrive hvordan elektriske felter omdannes til magnetisk flux, ses der på Ampére's lov. Herefter kan overgangen fra magnetfelt til elektrisk flux beskrives gennem Faraday's lov. Derefter kan der ses på Maxwell's ligninger, som bygger videre på Ampère's og Faraday's love, hvorved der kan skabes en sammenhæng.

Maxwell indså, at der måtte foretages modifikationer for Ampére's lov, hvis der skulle kunne skabes symmetri med Faraday's lov. Ved Maxwell's ligninger er Faraday's lov opgivet

som det lukkede linje<br/>integrale af det magnetiske felt, som er lig det negative differentiale af den magnetiske flux i forhold til tid:<br/>  $\oint \vec{E} \bullet \vec{dl} = -1 \cdot \frac{d\Phi_B}{dt}$ .

Herefter kan der tages et blik på Maxwell's modificerede udgave af Ampère's lov. Maxwell har her udbygget formlen, så der skabes en symmetri med Faraday's lov. Derved bliver Ampère's lov omskrevet til, at det lukkede linjeintegrale af det magnetiske felt er lig den elektriske spænding lagt sammen med differentialet af den elektriske flux i forhold til tiden, hvorpå der er ganget en faktor bestående af produktet mellem permeabilitetskonstanten og permittivitetskonstanten:  $\oint \vec{B} \bullet \vec{dl} = \mu_0 \cdot I + \mu_0 \epsilon_0 \cdot \frac{d\Phi_E}{dt}$ .

Grunden til, at Maxwell udbygger Ampère's lov, er, at loven kun er gældende for, at en stabil strøm er med til at danne en magnetisk flux. For at skabe symmetri med Faraday, udformede Maxwell sin teori om, at elektrisk flux også er gældende for at danne magnetisk flux ved en ustabil strøm. Derved er udtrykket  $\mu_0\epsilon_0 \cdot \frac{d\Phi_E}{dt}$  tilføjet til det oprindelige udtryk.

#### 2.3 Basis-begreber??

#### 2.3.1 Mikrobølger

En metode man kan bruge til at sende energi trådløst er ved hjælp af mikrobølger hvor man så omdanner den elektriske energi til mikrobølger og så sender dem var en PTU (Power Transmitter Unit) og til PRU (Power Receiver Unit). Hvor ved at man så omdanner mikrobølgerne tilbage til elektrisk strøm. Den typiske frekvens man bruger ligger mellem 300 MHZ og 300 GHZ. Mikrobølger har en fordel i form af at de kan sammen med at de sender energi, så kan de også bruges til at sende information, altså de kan bruges til kommunikation. Det er ikke en mulighed som bliver brugt særlig ofte, da der kan ske mutationer hvis man er udsat for enten for hård stråling eller hvis man ofte bliver udsat for strålingen. Der er så stor fare at The Federal Communications Commission (FCC) har beslaglagt de stærke transmittere. Det er en af grundene til at man ikke bruger dem i bl.a. mobilopladere. FCC har lagt restriktioner på laderne til at må være på maks 4 W.

#### 2.3.2 Elektromagnetisme

Elektromagnetisme er i sin enkelthed meget simpel. Elektromagnetisme virker på den måde at man har et materiale som man gør magnetisk ved hjælp af at sende en elektrisk strøm igennem. Ved at man gør det vender atomerne sig så de følger strømmen, og man får derved skabt 2 modstående poler som tiltrækker negativt eller positivt ladede partikler. En af fordele ved elektromagnetisme er at man selv kan sørge for hvornår et materiale skal være magnetisk og hvornår materialet ikke skal være magnetisk, ved at det er elektrisk kan man også bruge det til at vende polerne. Hvis man bruger jævnstrøm kan man holder polerne på plads, og hvis man bruger vekselstrøm kan man få polerne til at skifte retning kan man styre magnetiske felter. Og det gør at man kan bruge dem som motor. Når man snakker om elektromagnetisme bliver man også nød til at snakke om induktion. Induktion sker når man bruger magnetisme til at vende polariteten på fx en gryde eller mobil. Man kan vende polariteten på en gryde for at gøre gryden varm, altså til at lave mad, men uden faren for at man kan brænde sig på blusset bagefter, da pladen aldrig er blevet varm. Man kan også bruge induktion til hvis man vil lade sin mobiltelefon op, der er efterhånden mange teleselskaber som har gjort deres mobiler klar til at kunne lades op uden at skulle sætte et stik i den ene ende. Det er fx selskaber som Apple, Samsung, Huawei osv. Måden telefonen lader er at telefonen ligges på en flade hvor der er et magnetisk felt, som telefonen bryder og når det sker begynder telefonen lige som gryden at modtage energi, som den omdanner til elektrisk energi.

#### 2.3.3 Opbygning af kredsløb??



Figur 2.2. LCR-Kredsløb

Hvor:

 $egin{array}{ccc} R & {
m Resistans} & [\Omega] \\ V_{ac} & {
m Generator}[{
m Volt}] \\ A & {
m Ampere-meter} & [{
m Ampere}] \\ V & {
m Volt-meter} & [{
m Volt}] \\ \end{array}$ 

#### 2.3.4 Qi

For at få implementeret trådløs opladning, så skal produkterne overholde bestemte systemkrav, for at opladningen skal kunne fungere optimalt eller overhovedet fungere.

Wireless power consortium er en samlet organisation af forskellige virksomheder, som arbejder med trådløs opladning indenfor mange forskellige produkter. De har igennem denne organisation opsat det, de kalder Qi-standarderne, som beskriver hvilke systemkrav der skal opfyldes, og hvilke dele der skal implementeres i produkterne, før de er kompatible til trådløs opladning.

For at en trådløs opladning kan finde sted, skal der være en transmitter, der udsender strømmen, mens der i modsatte ende skal være en modtager, der opfanger strømmen og oplader produktet. For at produktets opladning skal godkendes af Qi-standarderne, skal transmitteren indeholde en brugerflade, som kan koples sammen med alle godkendte modtagere. Derudover skal modtageren kunne sende oplysningerne omkring opladningen tilbage til transmitteren, så den modtager data, den kan bearbejde.

## Historie 3

Trådløs energioverførsel har været et stort omdrejningspunkt for forskning de seneste år, og det bliver fortsat forbedret, men idéen om trådløs energioverførsel er på ingen måde ny. Tilbage i 1900-tallet begyndte fysikere at gøre sig tanke om og udvikle på teknologien på baggrund af andre større tænkere.

Som baggrund for trådløs energioverførsel bragte fysikeren H. C. Ørsted idéen om, at elektricitet og magnetisme måtte have en sammenhæng. Ørsted begyndte at danne sin teori, da han observerede, hvordan elektrificerede sandkorn kunne fremkalde billeder. Derudover tog han baggrund i Immanuel Kants teorier om, at fænomener som magnetisme er betegnet som naturkræfter.

H.C. Ørsted videreudviklede sine teorier gennem forsøg, hvilket førte til, at han i 1820 kunne bevise, at en magnetnål bliver påvirket af en elektrisk strøm. Hvis strømstyrken blev øget, blev kraften, der påvirkede magnetnålen, større. H. C. Ørsted beskrev også, hvordan magnetfelter danner en lukket kreds.

En af de første der fokuserede på trådløs energioverførsel, og så det som en reel mulighed, var fysikeren Nikola Tesla. Han er en af fædrene til radiokredsløb, og han har gennem sin forskning skabt basis for radio, TV og internettet.

Tesla blev ikke anerkendt af sine ligemænd, men han bragte sin videnskab til live gennem offentlige forsøg. Bl.a. beviste han, at han kunne få en tidlig udgave af fluoreserende pærer til at lyse uden tilslutning ved at transmitere elektricitet gennem luften.

Nogle af de begreber, som Nikola Tesla byggede på var de opdagelser, som Michael Faraday gjorde sig. Faraday var en af efterfølgerne til H. C. Ørsted, og han uddybede begrebet om, at magnetisme og elektricitet havde en tæt sammenhæng. I år 1831 beskrev han princippet om elektromagnetisk induktion, hvor en elektrisk strøm kan blive skabt ud fra en skiftende magnetisk flux. Ud fra dette kunne han opstille det, som vi i dag kalder for Faraday's lov.

Hvor Faraday opdagede, hvordan magnetisme kunne inducere elektricitet, så beskrev den franske fysiker og matematiker André-Marie Ampère, hvordan elektricitet kan skabe magnetiske felter. Ampère var (ligesom Faraday) inspireret af H. C. Ørsteds tanker og forsøg, hvilket lå til basis for hans egne forsøg og formuleringer. En meget essentiel observation han foretog sig var, hvordan en ledning, der førte en strøm, kunne frastødes eller tiltrækkes af en anden ledning, som også førte en strøm. Han indså at denne påvirkning, de to ledninger havde på hinanden, måtte skyldes magnetisme, hvilket han senere formulerede igennem sin lov: Ampère's lov.

Gruppe c2-15a 3. Historie

Faraday og Ampère beskriver begge en sammenhæng mellem elektricitet og magnetisme, hvilket vil blive uddybet i senere afsnit. Disse begreber er essentielle for at beskrive induktiv kobling, som ligger til grunde for trådløs energioverførsel gennem elektromagnetisme.

### Fysiske love og formler

#### Induktiv kobling:

For at få kendskab til, hvordan trådløs energioverførsel opstår, så skal beskrive, hvordan elektrisk flux opfører sig, hvilket bliver beskrevet gennem Gauss's lov. Derudover skal vi kaste et blik på, hvordan sammenhængen mellem magnetisme og elektricitet er beskrevet gennem Faraday's og Ampère's lov. Til slut ser vi på, hvordan der kan skabes symmetri mellem lovene gennem Maxwell's ligninger.

#### Elektrisk flux:

Elektrisk flux er beskrevet gennem Gauss's lov, som involverer de elektriske feltlinjer samt det areal, som feltlinjerne påvirker. Flux begrebet i sig selv er betegnet som det "flow" af en given substans (f.eks. vand, luft eller elektroner), der løber gennem et givent areal.

Først kan vi definere formlen for flux, som angiver det elektriske felt ganget med arealet, det løber igennem:  $\Phi = E * A$ . Da indfaldsvinklen for det elektriske felt også har betydning, så ser vi  $\vec{E} \bullet \vec{A}$  i stedet for, hvilket også kan opskrives som  $\Phi = E * A * cos(\theta)$ . (Se figur X)



Figur 4.1. Figur X

Gauss's lov angiver, hvordan man kan beregne den elektriske flux gennem et bestemt areal, som er givet ved vektoren A ganget med faktoren d, hvilket deler arealet op i brudstykker. Herefter tages integralet af formlen for flux, hvilket giver følgende udtryk:  $\Phi = \int \vec{E} \cdot d\vec{A}$ , som videre kan skrives som:  $\Phi = \int E * dA * cos(\theta)$ . Herefter tager Gauss relation til det

cirkulære felt omkring en positiv ladning. A bliver i denne sammenhæng formlen for en kugles overflade  $4\pi r^2$ , mens integralet ophæves, da vi nu omtaler hele overfladen igen. Herfra får vi:  $\Phi = E*4\pi r^2$ 

Det elektriske felt E er også angivet til at være  $\frac{kq}{r^2}$ . Ud fra dette får vi den elektriske flux til:  $\Phi = \frac{kq}{r^2}*4\pi r^2 = 4\pi kq$ . k er derudover defineret som  $\frac{1}{4\pi\epsilon_0}$ , hvilket vi kan indsætte i forrige formel, hvorved vi får:  $\frac{4\pi q}{4\pi\epsilon_0} = \frac{q}{\epsilon_0}$ .

q angiver den omkransede ladning for en lukket overflade. Derved kan vi opskrive Gauss's lov til følgende:

$$\oint \vec{E} \bullet d\vec{A} = \frac{q}{\epsilon_0}$$

Elektromagnetisme:

#### Ampère's lov:

Ampère's lov beskriver relationen mellem magnetiske feltstyrker og størrelsen af en jævn strøm gennem en ledning givet over længden l. Ampère tager udgangspunkt i, at man befinder sig ved centrum af ledningens tværsnit følger magnetfeltet, som omkredser ledningen. Her er magnetfeltets styrke defineret ved vektoren  $\vec{B}$ , og et definerede linjestykke af magnetfeltets længde angives som  $\vec{dl}$ . For at beregne den jævne strøm gennem ledningen, skal vi tage integralet af de to vektorer prikket sammen. Herved beskrives Ampére's lov:

$$\oint \vec{B} \bullet \vec{dl} = \mu_0 I$$

Vektor  $\vec{B}$  er angivet ved  $\frac{\mu_0 I}{2\pi r}$ , da vi arbejder med et cirkelformet magnetfelt. Derudover er det lukkede integrale af  $\vec{dl}$  den totale længde af cirkelperiferien angivet ved  $2\pi r$ . Produktet mellem disse vil dermed blive  $\mu_0 I$ , som vi ser på højre side af Ampére's lov.

#### Faraday's lov:

Faraday's lov beskriver induktionen af elektricitet ved hjælp af magnetisme. Herved omhandler det den magnetiske flux i stedet for den elektriske flux, som benyttes ved Gauss's lov. Formlen for magnetisk flux er ens med formlen for den elektriske flux, dog hvor det elektriske felt er byttet ud med det magnetiske felt:  $\Phi_B = \int \vec{B} \cdot d\vec{A}$ 

En induseret strøm opstår ikke fra den magnetiske flux alene, men ved en ændring i den magnetiske flux. Dette betyde, at der bliver induseret spænding, hvis der sker en ændring af magnetfeltets styrke, den påvirkede overflades størrelse eller vinklen for, hvordan det magnetiske felt går gennem den pågældende overflade.

Faraday benytter den magnetiske flux til at beskrive den inducerede spænding ved:

$$\varepsilon = -1 * \frac{d\Phi_B}{dt}$$

Ændringen af den magnetiske flux forekommer modsat af den inducerede spænding, så derfor ganges en faktor -1 på det differentierede udtryk af den magnetiske flux. Den magnetiske flux kan også beskrives som  $\vec{B} \bullet \vec{A}$  eller  $B*A*cos(\theta)$ .

#### Maxwell's ligninger:

Ved trådløs opladning arbejder man med at omdanne elektrisk flux til magnetisk flux gennem spolen ved transmitteren, hvorefter den magnetiske flux igen skal omdannes til

en elektrisk flux ved modtageren. For at beskrive hvordan elektriske felter omdannes til magnetisk flux, så skal vi se nærmere på Ampére's lov. Herefter kan overgangen fra magnetfelt til elektrisk flux beskrives gennem Faraday's lov. Til slut kan vi se på Maxwell's ligninger, som bygger videre på Ampère's og Faraday's love, hvorved vi kan skabe en sammenhæng.

Maxwell indså, at der måtte foretages modifikationer for Ampére's lov, hvis der skulle kunne skabes symmetri med Faraday's lov. Ved Maxwell's ligninger er Faraday's lov opgivet som det lukkede linjeintegrale af det magnetiske felt, som er lig det negative differentiale af den magnetiske flux i forhold til tid:  $\oint \vec{E} \cdot d\vec{l} = -1 * \frac{d\Phi_B}{dt}$ .

Herefter kan vi kaste et blik på Maxwell's modificerede udgave af Ampère's lov. Maxwell har her udbygget formlen, så der skabes en symmetri med Faraday's lov. Derved bliver Ampère's lov omskrevet til, at det lukkede linjeintegrale af det magnetiske felt er lig den elektriske spænding lagt sammen med differentialet af den elektriske flux i forhold til tiden, hvorpå der er ganget en faktor bestående af produktet mellem permeabilitetskonstanten og permittivitetskonstanten:  $\oint \vec{B} \cdot \vec{dl} = \mu_0 * I + \mu_0 \epsilon_0 * \frac{d\Phi_E}{dt}$ .

Grunden til, at Maxwell udbygger Ampère's lov, er, at loven kun er gældende for, at en stabil strøm er med til at danne en magnetisk flux. For at skabe symmetri med Faraday, udformede Maxwell sin teori om, at elektrisk flux også er gældende for at danne magnetisk flux ved en skiftende strøm. Derved er udtrykket  $\mu_0\epsilon_0*\frac{d\Phi_E}{dt}$  tilføjet til det oprindelige udtryk.

# Eksperimentplan 1

#### P1 - Gruppe C-16a - 07-Nov-16



 ${\it Figur~5.1.}$ Foreslåede eksperiment kredsløb. R-kreds - CR-kreds - LCR-kreds

#### 5.1 Hvad vil vi opstille?

- R-kreds
- CR-kreds
- LCR-kreds

Til alle opstillingerne vil der i starten benyttes et oscilloskop som kilde, sat til vekselspænding ved 5 V, 50Hz.

De tre opsætninger benyttes som reference punkter til videre eksperimentring.

#### 5.2 R-kreds

Til at starte med vil vi opstille, det måske aller simpleste kredsløb, ved bare at sende en vekselspænding over en resistor og måle spændingsforskellen og strømmen over det.

Herefter vha.  $U = R \cdot I$  kan der så undersøges om den aflæste værdi af resistoren er den samme som den målte.

#### 5.3 CR-kreds

Opstillingen her er ens med R-kredsen, uden ampere-meter, bare at der nu er sat en kapacitator på og volt-meteret er flyttet hen over kapacitatoren.

Herefter ses der på om der er sket en ændring i spændingsforskellen over kapacitatoren, sammenlignet med den mængde spænding der er tilført systemet.

#### 5.4 LCR-kreds

Dette er den vigtigste kreds der undersøges, da der nu er lavet et loop ved at sætte en spole i kredsløbet. Volt-meteret der benyttes her skulle gerne være et der kan tegne grafer, specifikt (U,t).

Kredsløbet er en forlængelse af de to andre. Volt-meteret er nu bare flyttet til hen over spolen, da dette er den komponent med størst relevans.

Her undersøges der den spændingskurve der kan tegnes over spolen. Denne kan herefter sammenlignes med kurven i givet fra en simulering i Plecs. Dette er selvfølgelig kun relevant hvis det er muligt at komme tæt på virkelige værdier i programmet.

Hello world!!!!!!![?]