Consigne simple, basique. Calculer les limites des suites suivantes : $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) \left(\frac{1}{$

1. $(a_n)_{n\in\mathbb{N}^*}$ définie par : $a_n = \left(2 + \frac{1}{n}\right)(4 - \sqrt{n})$	2. $(b_n)_{n\in\mathbb{N}^*}$ définie par : $b_n = \frac{(-1)^n + 5}{n^2}$.

s. $(c_n)_{n\in\mathbb{N}}$ definie par : $c_n = \sin(n) + 5^n$	4. $(d_n)_{n \in \mathbb{N}}$ definie par : $d_n = (-1)^n - n^2$.

5.	$(e_n)_{n\in\mathbb{N}}$ définie par : $e_n=rac{9^n}{4^n}$	6. $(f_n)_{n\in\mathbb{N}}$ définie par : $f_n = 0, 8^n \sin(n!)$.

7.	$(g_n)_{n\in\mathbb{N}}$ définie par : $g_n = \frac{5n^2 + n}{3n^2 + 6n + 5}$	8. $(h_n)_{n\in\mathbb{N}}$ définie par : $h_n = \frac{3n+1}{n^2+6}$.