Nome: Kartik. Bharadway.

ROll No. CS203020

"I pledge that I haven't copied or given any unauthorized assistance on this reason".

Question 3)

Let,
$$J_N(\alpha) = \partial_N(\alpha)$$
 and $J_N'(\alpha) = J_N(\alpha) + 10$.

and
$$J'_{N4}(x) = \min_{Q_{N4} \in A(Q_{N4})} E_{QN} \left[J_N(x_N) + 10 \right]$$

Using induction, we can say:

$$J'_{k}(\alpha) = J_{k}(\alpha) + 10$$

$$J_3(1) = J_3(2) = 0$$
; $k = 2, 1, 0$.

For Stage 2,

For Stage 1,

For Stage 0,

$$J_0(2) = min \left[g(2,a) + p_{21}(a) J_1(1) + p_{22}(a) J_1(2) g(2,b) + p_{21}(b) J_1(1) + p_{22}(b) J_1(2) \right]$$

Therefore, optimal expected colls a policy are:

$$J_{2}^{*}(1) = 0$$
, $J_{2}^{*}(2) = 2$, $U_{2}^{*}(1) = b$, $U_{2}^{*}(2) = a$.

$$J_0^*(1) = 3.025$$
, $J_0^*(2) = 5.18$, $J_0^*(1) = a$, $J_0^*(2) = a$.

Question (6)

(a) From Proposition 3 of (i)) we know;

Applying + m times on both sides,

=)
$$f^{m}\alpha^{x} = x^{x}$$
 (Since, $x^{*} = fx^{*} = f^{2}x^{*} = \cdots + f^{m}x^{*}$).

Therefore, at is the unique fixed point of t.

(b) from the defn of contraction matting, we know:

=)
$$||x^* - \alpha|| \le \frac{1}{1-\alpha} ||f(x) - \alpha||$$

Question 8)

(a)
$$J_{\chi}(1) = b_{\chi}(a) \left[g_{0}(1, a, 1) + \lambda J_{\chi}(1) \right] + b_{12}(a) \left[g_{0}(1, a, 2) + \lambda J_{\chi}(2) \right]$$

$$J_{\pi}(2) = p_{21}(0) \left[g(2, 0, 1) + \alpha J_{\pi}(0) \right] + p_{22}(0) \left[g(2, 0, 2) + \alpha J_{\pi}(2) \right]$$

$$\exists_{x}(1) = 0.5 \left[-12 + 0.9 \left(\exists_{x}(1) + \exists_{x}(2) \right) \right]$$

$$\exists_{x}(2) = 0.4 \left[-3 + 0.9 \right]_{x}(1) + 0.6 \left[7 + 0.9 \right]_{x}(2)$$

$$\frac{b)}{\sqrt{\pi}} J_{\pi}(1) = p_{11}(b) [g(1,b,1) + 0.9 \times J_{\pi}(1)] + 0.9 \times J_{\pi}(1)] + 0.12(b) [g(1,b,2) + 0.19 \times J_{\pi}(2)]$$

$$\frac{100}{\sqrt{3}\pi(2)} = \frac{1}{12}(d)\left[g(2,d,1) + 0.9 \times \sqrt{3}\pi(1)\right] + \frac{1}{12}(d)\left[g(2,d,2) + 0.9 \times \sqrt{3}\pi(2)\right]$$

$$J_{\overline{\chi}}(1) = 0.8 \left[-4 + 0.9 \times J_{\overline{\chi}}(1) \right] + 0.2 \left[-4 + 0.9 \times J_{\overline{\chi}}(2) \right]$$

$$J_{\overline{\chi}}(2) = 0.2 \left[-1 + 0.9 \times J_{\overline{\chi}}(2) \right] + 0.3 \left[10 + 0.9 \times J_{\overline{\chi}}(2) \right]$$

=)
$$0.28 \, J_{\overline{\chi}}(1) - 0.18 \, J_{\overline{\chi}}(2) = -4$$

 $0.63 \, J_{\overline{\chi}}(1) - 0.93 \, J_{\overline{\chi}}(2) = -2.3$

$$= \int_{\overline{X}}(1) = -27.538$$

$$\int_{\overline{X}}(2) = -20.615.$$

Question 2)

Let f(a) = 3 where XER

We know that $x^{\alpha} = 0 = f(x^{\alpha}) = 0$.

Now, let & be a vector of all ones.

$$\Rightarrow f(\alpha) = \underbrace{[1 \cdots 1]^n}_{2}$$

$$\Rightarrow \chi^{\alpha} \leq \alpha$$
. \Rightarrow as f is applied infinitely. (i.e. $\lim_{k \to \infty} f^{k}(\alpha) = \alpha^{\alpha}$)