7.3. Let B_t be Brownian motion on $\mathbf{R}, B_0 = 0$ and define

$$X_t = X_t^x = x \cdot e^{ct + \alpha B_t} ,$$

where c, α are constants. Prove directly from the definition that X_t is a Markov process.

Denote the T-algebra generated by the B.M. as Ft.

Start by noticing that $E \left[X_{thn} | J_{+} \right] = E \left[X_{e} e^{(J_{+}h)} + \alpha B_{h} \right]$ $= E^{B_{+}} \left[X_{e} e^{(J_{+}h)} + \alpha B_{h} \right]$

Therefore, we can write

$$\mathbb{E}^{\times} \left[\times_{th} \times_{th} \right] = \mathbb{E}^{\times} \left[\times_{th} \times_{th} \times_{th} \times_{th} \right] \times_{th} \\
= \mathbb{E}^{\times} \left[\times_{th} \times_{th} \times_{th} \times_{th} \right] \times_{th} \\
= \mathbb{E}^{\times} \left[\times_{th} \times_{th} \times_{th} \times_{th} \right] \\
= \mathbb{E}^{\times} \left[\times_{th} \times_{th} \times_{th} \times_{th} \right] \\
= \mathbb{E}^{\times} \left[\times_{th} \times_{th} \times_{th} \times_{th} \times_{th} \right]$$