Математическая статистика Лекция 10

Линейная модель

Пусть данные представлены в виде набора векторов $(y_i, x_{i,1}, ..., x_{i,k})$, i = 1, ..., n.

Линейная модель предполагает, что

$$Y_i|(X_i=x_i)=\beta_0+\beta_1x_{i,1}+\cdots+\beta_kx_{i,k}+\varepsilon_i,$$

где eta_0 , ..., eta_k — неизвестные параметры, а $arepsilon_i$ — случайная ошибка.

Линейная модель

Немного обозначений:

- $-x \in \mathbb{R}^{n \times k}$ матрица $(x_{i,j})_{i,j=1}^{n,k}$, $x_i i$ -я строка, $x_{:,j} j$ -й столбец. Столбцы x называются независимыми переменными, факторами, предикторами, фичами, ...
- $-y=(y_1,...,y_n)$ зависимая переменная, отклик, таргет, ...
- $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$ ошибки

Пока не оговорено иное, первым фактором является вектор единиц, что позволяет записать модель в виде:

$$Y_i|(X_i=x_i)=x_i\beta+\varepsilon_i.$$

Неслучайные факторы

Рассмотрим упрощение описанной модели, которое состоит в том, что матрица x является фиксированной, а случайным является только вектор ε .

В этой модели анализ становится существенно проще, так как перестает зависеть от распределения X, но страдает применимость к реальным задачам. В частности, мы не будем рассматривать никакие асимптотические свойства, так как x фиксирована и n никуда не стремится.

Как модель выглядит формально:

- $-x \in \mathbb{R}^{n \times k}$ фиксирована и известна,
- -y- известная реализация случайного вектора Y, имеющего распределение $Y=x\beta+arepsilon$, где $\beta-$ неизвестный вектор параметров, arepsilon- случайный вектор ошибок.

Метод наименьших квадратов

Пусть у нас есть оценка β^* вектора β . С помощью нее мы можем построить предсказание $\hat{y}=x\beta^*$. Вектор $e(\beta^*)=y-\hat{y}$ называется вектором остатков. Заметим, что в случае $\beta^*=\beta$ вектор остатков равен вектору ошибок: $e(\beta)=\varepsilon$.

Будем искать β^* в виде $\arg\min_{\phi}\sum_{i=1}^n(y_i-x_i\phi)^2=\arg\min_{\phi}\sum_{i=1}^n\overline{e_i(\phi)^2}$. Такая оценка называется оценкой метода наименьших квадратов или МНК оценкой.

Метод наименьших квадратов

Пусть у нас есть оценка β^* вектора β . С помощью нее мы можем построить предсказание $\hat{y}=x\beta^*$. Вектор $e(\beta^*)=y-\hat{y}$ называется вектором остатков. Заметим, что в случае $\beta^*=\beta$ вектор остатков равен вектору ошибок: $e(\beta)=\varepsilon$.

Будем искать β^* в виде $\arg\min_{\phi}\sum_{i=1}^n(y_i-x_i\phi)^2=\arg\min_{\phi}\sum_{i=1}^ne_i(\phi)^2$. Такая оценка называется оценкой метода наименьших квадратов или МНК оценкой.

Чтобы найти β^* , заметим, что $\sum_i (y_i - x_i \beta^*)^2 = |y - x \beta^*|^2$, то есть β^* минимизирует расстояние от y до линейной оболочки факторов $\langle x_{:,1}, ..., x_{:,k} \rangle$. Значит $x\beta^*$ это проекция, поэтому $x^{\mathrm{T}}(y - x\beta^*) = 0 \Rightarrow x^{\mathrm{T}}x\beta^* = x^{\mathrm{T}}y \Rightarrow \beta^* = (x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}y$, если x имеет ранг x. Матрица $\hat{h} \coloneqq x(x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}$ называется hat matrix: $\hat{y} = x\beta^* = \hat{h}y$.

В зависимости от дополнительных предположений, оценка $β^*$ будет обладать теми или иными свойствами. Мы рассмотрим классическую модель:

- 1. $\mathbb{E}Y = x\beta \Longrightarrow \mathbb{E}\varepsilon = 0$ линейность,
- 2. $\mathbb{D}\varepsilon_i = \sigma^2 \mathsf{гомоскеда}$ стичность,
- з. $\operatorname{cov}(arepsilon_i, arepsilon_j) = \mathbb{E} arepsilon_i arepsilon_j$ некоррелированность остатков,
- 4. rank(x) = k неколлинеарность факторов.

Теорема Гаусса—Маркова

Если выполнены предположения 1—4, то

- $-\mathbb{E}\beta^*=\beta$,
- $-\operatorname{cov}(\beta^*) = \sigma^2(x^{\mathrm{T}}x)^{-1},$
- β^* является эффективной оценкой в классе линейных несмещенных оценок: $\{\phi | \phi = ay, a \in \mathbb{R}^{k \times n}, \mathbb{E}\phi = \beta\}$.

Теорема Гаусса—Маркова

Если выполнены предположения 1—4, то

- $-\mathbb{E}\beta^*=\beta$,
- $-\operatorname{cov}(\beta^*) = \sigma^2(x^{\mathrm{T}}x)^{-1},$
- β^* является эффективной оценкой в классе линейных несмещенных оценок: $\{\phi | \phi = ay, a \in \mathbb{R}^{k \times n}, \mathbb{E}\phi = \beta\}$.

Эффективность означает, что $\mathrm{cov}(\phi) - \mathrm{cov}(\beta^*)$ неотрицательно определена $\forall \phi$, что равносильно $\mathbb{D}\big(c^\mathrm{T}\beta^*\big) \leq \mathbb{D}\big(c^\mathrm{T}\phi\big)$ для любых $c \in \mathbb{R}^k$ и ϕ .

- Частные случаи:
- c=c=i-й орт: $c^{\mathrm{T}}\phi=\phi_i$, то есть $\mathbb{D}(eta_i^*)=\sigma^2ig(x^{\mathrm{T}}xig)_{i,i}^{-1}\leq \mathbb{D}(\phi_i)$,
- -c = новое наблюдение x_{n+1} : $c^{\mathrm{T}}\phi = \hat{y}_{n+1}$, то есть $\mathbb{D}(\hat{y}(\beta^*)) \leq \mathbb{D}(\hat{y}(\phi))$.

Теорема Гаусса—Маркова

Если выполнены предположения 1—4, то

- $\overline{-\mathbb{E}\beta^*} = \overline{\beta}$,
- $-\operatorname{cov}(\beta^*) = \sigma^2(x^{\mathrm{T}}x)^{-1}$,
- β^* является эффективной оценкой в классе линейных несмещенных оценок: $\{\phi | \phi = ay, a \in \mathbb{R}^{k \times n}, \mathbb{E}\phi = \beta\}$.

Док-во:
$$\beta^* = (x^Tx)^{-1}x^TY = (x^Tx)^{-1}x^T(x\beta + \varepsilon) = \beta + (x^Tx)^{-1}x^T\varepsilon$$
.

Тогда, во-первых, $\mathbb{E}\beta^* = \beta + (x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}\mathbb{E}\varepsilon = \beta$,

во-вторых,
$$\operatorname{cov}(\beta^*) = (x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}\operatorname{cov}(\varepsilon)x(x^{\mathrm{T}}x)^{-1} = \sigma^2(x^{\mathrm{T}}x)^{-1}.$$

$$\sigma^2 I_n$$

Теорема Гаусса—Маркова

Если выполнены предположения 1—4, то

- $-\mathbb{E}\beta^*=\beta$,
- $-\operatorname{cov}(\beta^*) = \sigma^2(x^{\mathrm{T}}x)^{-1},$
- β^* является эффективной оценкой в классе линейных несмещенных оценок: $\{\phi | \phi = ay, a \in \mathbb{R}^{k \times n}, \mathbb{E}\phi = \beta\}$.

Док-во:
$$\beta^* = (x^Tx)^{-1}x^TY = (x^Tx)^{-1}x^T(x\beta + \varepsilon) = \beta + (x^Tx)^{-1}x^T\varepsilon$$
.

Тогда, во-первых,
$$\mathbb{E}\beta^* = \beta + (x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}\mathbb{E}\varepsilon = \beta$$
,

во-вторых,
$$\operatorname{cov}(\beta^*) = (x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}\operatorname{cov}(\varepsilon)x(x^{\mathrm{T}}x)^{-1} = \sigma^2(x^{\mathrm{T}}x)^{-1}$$
.

$$\mathbb{E}\phi = a\mathbb{E}Y = ax\beta = \beta, \forall \beta \Longrightarrow ax = I_k. \operatorname{cov}(aY) = a\operatorname{cov}(\varepsilon)a^{\mathrm{T}} = \sigma^2 aa^{\mathrm{T}}.$$

$$aa^{\mathrm{T}} - (x^{\mathrm{T}}x)^{-1} = aa^{\mathrm{T}} - ax(x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}}a^{\mathrm{T}} = a(I_k - x(x^{\mathrm{T}}x)^{-1}x^{\mathrm{T}})a^{\mathrm{T}} \ge 0.$$

Случай нормальных ошибок

Рассмотрим $RSS = \sum_{i} (y_i - x_i \beta^*)^2$ — residual sum of squares.

 $-\hat{\sigma}^2=rac{1}{n-k}RSS$ является несмещенной оценкой σ^2 ,

Случай нормальных ошибок

Если $Y \sim \mathcal{N}(x\beta, \sigma^2 I_n)$, или, что то же самое, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, то верен более сильный результат:

 $-\beta^*$ является оценкой ММП:

$$\mathcal{L}(y|\beta) = \frac{1}{(2\pi)^{n/2}\sigma^n} \prod_i e^{-\frac{(y_i - x_i \beta)^2}{\sigma^2}} \Longrightarrow \log \mathcal{L}(y|\beta) = \operatorname{const} - \frac{1}{\sigma^2} \sum_i (y_i - x_i \beta)^2$$

- $-RSS\sim\sigma^2\cdot\chi^2(n-k)$ и не зависит от β^* ,
- $\forall c \in \mathbb{R}^k$ выполняется $rac{c^{\mathrm{T}(eta^*-eta)}}{\widehat{\sigma}\sqrt{c^{\mathrm{T}}(X^{\mathrm{T}}X)^{-1}c}} \sim T(n-k)$,
- $-\beta^*$ является эффективной в классе всех несмещенных оценок,

Разные интервалы для нормальных ошибок

Ниже $t \sim T(n-k)$.

– Координата
$$\beta_i$$
: $\beta_i = \beta_i^* + t \cdot \hat{\sigma} \sqrt{(x^T x)_{i,i}^{-1}}$

- Матожидание таргета: $\bar{y}_{n+1} = \hat{y}_{n+1} + t \cdot \hat{\sigma} \sqrt{x_{n+1}(x^Tx)^{-1}x_{n+1}^T}$
- Tapret: $y_{n+1} = \hat{y}_{n+1} + t \cdot \hat{\sigma} \sqrt{1 + x_{n+1}(x^Tx)^{-1}x_{n+1}^T}$
- Дисперсия ошибок: $\sigma^2 = RSS/\chi^2(n-k)$

Навороченные гипотезы,

С оценкой y и β и проверкой гипотез относительно β_i мы справились. Но что с остальными гипотезами?

- Предсказание y
- Оценка β_i
- Гипотезы о параметрах: H_0 : $\beta_i = c$
- Значимость модели: H_0 : $\beta_2 = \cdots = \beta_k = 0$
- Понижение размерности: H_0 : $\beta_{i_1} = \beta_{i_2} = \dots = \beta_{i_m} = 0$, $\{i_1, \dots, i_m\} \subset \{1, \dots, k\}$

Кроме того, как проверить выполнение предположений?

Навороченные гипотезы

Обе гипотезы (и еще масса других) проверяются с помощью одной и той же техники: сравнения моделей.

Постановка такая: имеется две модели

- длинная $Y = x\beta + z\gamma + \varepsilon$, $\gamma \in \mathbb{R}^m$,
- короткая $Y = x\beta + \varepsilon$.

Требуется выяснить, правда ли, что истинная модель короткая? Иначе говоря, H_0 : $\gamma=0$.

Идея: посчитаем RSS у длинной модели (RSS_L) и короткой (RSS_S) . Ясно, что $RSS_S \geq RSS_L$,

но если H_0 верна, то разница должна быть относительно невелика.

Сравнение моделей

Длинная $-x\beta + z\gamma + \varepsilon$, короткая $-x\beta + \varepsilon$; $\beta \in \mathbb{R}^k$, $\gamma \in \mathbb{R}^m$.

F-критерий Фишера

Пусть ошибки нормальны. Тогда

$$\frac{(RSS_S - RSS_L)/m}{RSS_L/(n-k-m)} \sim F_{m,n-k-m}.$$

Критическая область правая.

Значимость модели

$$H_0$$
: $\beta_2 = \cdots = \beta_k = 0$

Длинная модель — исходная модель $y = x\beta + \varepsilon$, $RSS_L = RSS$.

Короткая модель — $y = \beta_1 + \varepsilon$, $RSS_S = \sum_i (y_i - \bar{y})^2 = TSS$ — total sum of squares.

Статистика F-критерия: $\frac{(TSS-RSS)/(k-1)}{RSS/(n-k)} \sim F_{k-1,n-k}$.

Значимость модели

$$H_0$$
: $\beta_2 = \cdots = \beta_k = 0$

Длинная модель — исходная модель $y = x\beta + \varepsilon$, $RSS_L = RSS$.

Короткая модель — $y = \beta_1 + \varepsilon$, $RSS_S = \sum_i (y_i - \bar{y})^2 = TSS$ — total sum of squares.

Статистика F-критерия: $\frac{(TSS-RSS)/(k-1)}{RSS/(n-k)} \sim F_{k-1,n-k}$.

Для величины $ESS \coloneqq TSS - RSS$ есть свое название — explained sum of squares.

Величина $R^2 = \frac{ESS}{TSS}$ называется коэффициентом детерминации. Она всегда находится в промежутке [0,1] и характеризует качество модели: чем ближе к 1, тем лучше. Статистику критерия Фишера можно выразить через нее:

$$\frac{(TSS - RSS)/(k-1)}{RSS/(n-k)} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)}.$$

Понижение размерности

$$H_0$$
: $\beta_{i_1} = \cdots = \beta_{i_m} = 0$

Длинная модель — исходная модель $y=x\beta+\varepsilon$, $RSS_L=RSS$. Короткая модель — $y=x'\beta'+\varepsilon$, где x' это x без факторов $\{i_1,\dots,i_m\}$.

Статистика F-критерия: $\frac{(RSS_S-RSS)/m}{RSS/(n-k)} \sim F_{m,n-k}$.

В частном случае H_0 : $\beta_i=0$ получаем статистику $\frac{RSS_S-RSS}{RSS/(n-k)}\sim F_{1,n-k}$. Эта

статистика — квадрат статистики $\frac{\beta_i^* - \beta_i}{\widehat{\sigma}\sqrt{(x^{\mathrm{T}}x)_{i,i}^{-1}}} \sim T(n-k)$.

Беды с регрессией

Какие бывают беды с регрессией?

Беды с предположениями:

- Неверная спецификация модели (пропущен фактор) $\mathbb{E} Y \neq x \beta$
- Гетероскедастичность $\mathbb{D} \varepsilon_i \neq \sigma^2$
- Корреляция ошибок $cov(\varepsilon_i, \varepsilon_j) \neq 0$

Беды с данными:

- Выбросы
- Разбалансировка
- Мультиколлинеарность

Графики vs циферки: квартет Энскомба

Не потеряли ли значимый фактор?

RESET-тест Рамсея

Короткая модель — исходная модель.

Длинная модель — $y=x\beta+\hat{y}^2\gamma_1+\cdots+\hat{y}^{m+1}\gamma_m+\varepsilon$, где \hat{y}^l это покоординатная степень $\hat{y}=x\beta^*$.

Статистика F-критерия:
$$\frac{(RSS-RSS_L)/m}{RSS_L/(n-k-m)} \sim F_{m,n-k-m}$$
.

Идея: $\langle \hat{y}^2, ..., \hat{y}^{m+1} \rangle$ зависит от степеней и всевозможных произведений столбцов x вплоть до степени m+1, поэтому если мы и правда что-то потеряли, зависящее от x, то оно будет скоррелировано с такими факторами. Нам не нужно сильно улучшить модель, нам нужно значимо ее улучшить.

Равная ли дисперсия у остатков?

Отсутствие гомоскедастичности называется гетероскедастичностью — это ситуация, когда $\mathbb{D}\varepsilon_i=\mathbb{E}\varepsilon_i^2$ зависит от x_i .

Идея: оценим $\mathbb{E} \varepsilon_i^2$ с помощью $e_i^2(eta^*)$ — plug-in оценка по выборке объема 1.

Тест Уайта

Короткая модель — $e^2(\beta^*) = \beta_1 + \varepsilon$.

Длинная модель — $e^2(\beta^*) = x\beta + x^2\gamma + \varepsilon$, где x^2 это матрица из квадратов и попарных произведений факторов (покоординатных).

Гетероскедастичность

Обычно гетероскедастичность выглядит как-то так. Вместо \hat{y} по оси x можно брать любые функции от факторов.

Мультиколлинеарность

Бывает строгая: rank(x) < k, и нестрогая: rank(x) = k, $cond(x^Tx) \gg 1$.

Строгая является нарушением предположений и приводит к тому, что вектор β^* неединственен. Возникает из-за невнимательности и лечится удалением плохих факторов, пока ранг не нормализуется.

Нестрогая возникает по разным причинам и приводит к тому, что дисперсия β_i^* повышается, а значимость уменьшается. Это следует из того, что $\mathbb{D}(\beta_i^*) = \sigma^2(x^Tx)_{i,i}^{-1} = \sigma^2/RSS_i$, где RSS_i это RSS для следующей модели:

$$x_{:,i} = x_{:,-i}\beta + \varepsilon.$$

Мультиколлинеарность можно заподозрить, если есть куча факторов, коэффициенты которых по отдельности не значимы, но гипотеза об одновременном равенстве нулю отвергается.

Bias-variance decomposition

Пусть мы построили нашу модель по некоторым данным $D_{[n]} = (X,Y)_{[n]}$. Как она будет работать на новом наблюдении D = (X,Y)?

Посчитаем *MSE*:

$$MSE = \mathbb{E}_{D,D_{[n]}}(Y - X\beta^*)^2 = \mathbb{E}_X \mathbb{D}_{D_{[n]}}(X\beta^*) + \mathbb{E}_X \left(X\beta - \mathbb{E}_{D_{[n]}}(X\beta^*) \right)^2 + \mathbb{D}\varepsilon.$$

Слагаемые справа имеют специальные названия:

- $=\mathbb{E}_X\mathbb{D}_{D_{[n]}}(Xeta^*)$ дисперсия, variance, переобучение, overfitting,
- $=\mathbb{E}_X\Big(Xeta-\mathbb{E}_{D_{[n]}}(Xeta^*)\Big)^2$ смещение, bias, недообучение, underfitting,
- $\mathbb{D} \varepsilon$ irreducible error, неустранимая ошибка.

Bias-variance decomposition

$$MSE = \mathbb{E}_X \mathbb{D}_{D[n]}(X\beta^*) + \mathbb{E}_X \left(X\beta - \mathbb{E}_{D[n]}(X\beta^*) \right)^2 + \mathbb{D}\varepsilon.$$

Если выполняются предположения классической модели для всех реализаций $X_{[n]}$, то для МНК-оценки eta^* выполняется:

$$- \mathbb{E}_X \mathbb{D}_{D_{[n]}} (X\beta^*) = \mathbb{E}_X X \left[\mathbb{E}_{X_{[n]}} \left(X_{[n]}^{\mathsf{T}} X_{[n]} \right)^{-1} \right] X^{\mathsf{T}},$$

$$-\mathbb{E}_{X_{[n]}}eta^*=eta\Longrightarrow \mathbb{E}_X\Big(Xeta-\mathbb{E}_{D_{[n]}}(Xeta^*)\Big)^2=0$$
,

$$-\mathbb{D}\varepsilon=\sigma^2$$
.

Таким образом смещение равно нулю, но дисперсия (которая зависит только от распределения $X_{[n]}$, которое мы всю дорогу игнорировали) при этом может быть очень большой.

Регуляризация

Что делать, если все же хочется уменьшить дисперсию?

Стандартный инструмент — регуляризация. С ее помощью можно уменьшить дисперсию ценой увеличения смещения.

На регуляризацию можно смотреть по разному, самое простое — как на введение штрафной функции.

Регуляризация

Раньше мы минимизировали функцию качества $\sum_{i} (y_i - x_i \beta)^2$.

Давайте минимизировать другую функцию:

$$-L_2(\beta) = \sum_i (y_i - x_i \beta)^2 + \lambda \sum_{i>1} \beta_i^2 - \text{ridge regression},$$

$$-L_1(\beta) = \sum_i (y_i - x_i \beta)^2 + \lambda \sum_{i>1} |\beta_i| - \text{lasso regression,}$$

– вариаций масса

Здесь $\lambda \in (0, \infty)$ — параметр, определяющий степень регуляризации и обеспечивающий компромисс между смещением и дисперсией. Важно, что свободный коэффициент не ругается!

Ridge & Lasso

Ридж-регрессия, она же L_2 , она же гребневая, она же Тихонова, допускает аналитическое решение:

$$\beta^* = \left(x^{\mathrm{T}}x + \lambda I^*\right)^{-1} x^{\mathrm{T}} y,$$

где $I^* = \mathrm{diag}\{0,1,...,1\}$. Все работает даже если $x^\mathrm{T} x$ вырождена.

C Lasso такое не прокатит, придется оптимизировать численно.

Ridge & Lasso

Альтернативный взгляд:

ридж регрессия эквивалентна оптимизационной задаче:

$$\sum_{i}(y_{i}-x_{i}\beta)^{2}\to\min$$
, при условии $\sum_{i>1}\beta_{i}^{2}\leq s$.

– лассо эквивалентна оптимизационной задаче:

$$\sum_{i}(y_i-x_i\beta)^2\to \min$$
, при условии $\sum_{i>1}|\beta_i|\leq s$.

Увеличение λ соответствует уменьшению s.

Ridge & Lasso

Вопросы?