Connaitre les principaux ensembles de nombres A.

Définition. On note \mathbb{N} l'ensemble des **entiers** naturels (positifs). $\mathbb{N} = \{0; 1; 2; 3; ...\}$

Entourer les entiers naturels : 10; 9,5; -5; $\frac{1}{10}$; -9,2; π ; 3,2; $\frac{5}{4}$; 4; 0; 1223; -1; 1; $\frac{2}{3}$ Exercice A1.

Définition. On note \mathbb{Z} l'ensemble des **entiers** relatifs (positifs ou négatifs). $\mathbb{Z} = \{...; -3; -2; -1; 0; 1; 2; ...\}$

Entourer les entiers relatifs : 10; 9,5; -5; $\frac{1}{10}$; -9,2; π ; 3,2; $\frac{5}{4}$; 4; 0; 1223; -1; 1; $\frac{2}{3}$ Exercice A2.

Définition. Un nombre est décimal s'il peut s'écrire avec un nombre fini de chiffres après la virgule.

On note D l'ensemble des nombres décimaux.

Propriété. Un nombre est décimal s'il peut s'écrire comme une fraction <u>avec une puissance de 10 au dénominateur</u>. Par exemple : $10,135 = \frac{10 \ 135}{1000} = \frac{10 \ 135}{10^3}$. $\frac{3}{4} = 0,75 = \frac{75}{100} = \frac{75}{10^2}$. $17 = \frac{17}{1} = \frac{17}{10^0}$.

Entourer les nombres décimaux : 10; 9,5; -5; $\frac{1}{10}$; -9,2; π ; 3,2; $\frac{5}{4}$; 4; 0; 1223; -1; 1; $\frac{2}{3}$ **Exercice A3.**

Définition. Un nombre est **rationnel** s'il peut s'écrire comme une fraction, donc sous la forme $\frac{a}{b}$ avec $a, b \in \mathbb{Z}, b \neq 0$ On note \mathbb{Q} l'ensemble des nombres rationnels.

Par exemple : $17 \in \mathbb{Q}$ car $17 = \frac{17}{1}$. $10,135 \in \mathbb{Q}$ car $10,135 = \frac{10 \cdot 135}{10 \cdot 000}$.

Remarque. Il existe des nombres qui ne sont pas rationnels. Par exemple : $\sqrt{2} \notin \mathbb{Q}$, $\sqrt{3} \notin \mathbb{Q}$, $\pi \notin \mathbb{Q}$.

Entourer les nombres rationnels : 10; 9,5; -5; $\frac{1}{10}$; -9,2; π ; 3,2; $\frac{5}{4}$; 4; 0; 1223; -1; 1; $\frac{2}{3}$ Exercice A4.

Définition. Un nombre réel désigne un nombre quelconque mesurant une grandeur.

On note $\mathbb R$ l'ensemble des nombres réels. Tous les nombres vus précédemment sont réels.

Propriété. Les ensembles de nombres obéissent à la hiérarchie suivante : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

La notation $A \subset B$ lue « A est inclus dans B » signifie que tous les éléments de A sont dans B.

В. Déterminer l'ensemble usuel le plus petit possible contenant un nombre donné.

Si le nombre n'a pas de décimales :

Si le nombre est positif : N

Sinon: \mathbb{Z} 0

Sinon:

Si le nombre a un nombre fini de décimales : D

Sinon s'il peut s'écrire comme une fraction : Q

Sinon : \mathbb{R}

Déterminer pour chacun de ces nombres, l'ensemble usuel le plus petit qui le contient : Exercice B1.

3 -10,532.22

 $\sqrt{4}$ 0 1000