

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 3546087 A1

⑯ Int. Cl. 4:

B65G 47/22

⑯ Aktenzeichen: P 35 46 087.3
⑯ Anmeldetag: 24. 12. 85
⑯ Offenlegungstag: 25. 6. 87

Behördeneigentum

DE 3546087 A1

⑯ Anmelder:

Maschinenfabrik Esterer AG, 8262 Altötting, DE

⑯ Vertreter:

Hieke, K., Dipl.-Ing., Pat.-Anw., 8013 Haar

⑯ Erfinder:

Prechtl, August, Dipl.-Ing. (FH), 8263 Burghausen, DE

⑯ Vorrichtung zum Wenden von im Transport befindlichen Schnitthölzern

Es wird eine Vorrichtung zum selektiven Wenden von Schnitthölzern im Quertransport angegeben. Die Vorrichtung ist so gestaltet, daß mit ihr einzelne Bretter gewendet werden können, ohne daß dabei erhebliche träge Massen in entgegengesetzten Richtungen beschleunigt werden müssen. Dies wird mit Hilfe einer kontinuierlich im Zyklus arbeitenden Wendeeinrichtung erreicht, die abhängig davon, zu welchem Zeitpunkt im Arbeitszyklus ein Schnittholz in sie eingegeben wird, dieses entweder ungewendet durchgehen läßt oder im Durchgang wendet, und wobei der Zeitpunkt des Einlaufs der Schnitthölzer in den Arbeitsbereich der Wendevorrichtung relativ zu deren Arbeitszyklus entweder durch Steuerung des Zeitpunkts der Transportfreigabe der Schnitthölzer auf dem Querförderer oder durch Steuerung der Kopplung zwischen Querförderer und Wendeeinrichtung willkürlich im voraus wählbar ist.

DE 3546087 A1

Patentansprüche

1. Vorrichtung zum selektiven Wenden von im Transport befindlichen Schnithölzern um 180° um deren Längsachse, mit einem die Schnithölzer befördernden Querförderer und einer in der Bewegungsbahn der Schnithölzer angeordneten, kontinuierlich arbeitenden Wendeeinrichtung mit zur Bewegung des Querförderers synchronem Arbeitszyklus, dadurch gekennzeichnet, daß die Wendeeinrichtung so ausgebildet ist, daß sie die Schnithölzer (7) wendet, wenn diese während einer ersten Zeitspanne im Verlaufe ihres Arbeitszyklus in ihren Arbeitsbereich eintreten, und ungewendet durchgehen läßt, wenn die Schnithölzer (7) während einer vorbestimmten zweiten Zeitspanne im Verlaufe ihres Arbeitszyklus in ihren Arbeitsbereich gelangen, und daß der Zeitpunkt des Einlaufs der Schnithölzer (7) in den Arbeitsbereich der Wendeeinrichtung relativ zu deren Arbeitszyklus entweder durch Steuerung des Zeitpunktes der Transportfreigabe der Schnithölzer (7) auf dem Querförderer (1) bei unveränderbarer Kopplung zwischen Querförderer und Wendeeinrichtung oder durch Steuerung der Kopplung zwischen Querförderer (101) und Wendeeinrichtung bei positionsgebundener Anordnung der Schnithölzer (7) bezüglich des Querförderers (101) willkürlich wählbar ist.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Wendeeinrichtung mindestens einen Wendezinken (11, 111) aufweist, der synchron zur Bewegung des Querförderers (1, 101) in einer zu dessen Auflageebene senkrechten und zur Förderrichtung (Pfeil 2) etwa parallelen Umlaufebene mit zur Förderrichtung gleichsinniger Vorlaufbahn über dem Querförderer um eine unterhalb von dessen Auflageebene gelegenen Drehachse (12) mit einer solchen Drehzahl rotiert und so lang und in solcher Weise hakenartig zu den an kommenden Schnithölzern (7) hin gebogen ist, daß Schnithölzer (7), die während der zweiten Zeitspanne nach dem aus der Auflageebene des Querförderers (1, 101) aufsteigenden Zinkenende (11a, 111a) an dessen Austrittsstelle (A) ankommen, die Umlaufbahn des Wendezinkens (11, 111) passieren, ohne von diesem gewendet zu werden, während Schnithölzer (7), die während der ersten Zeitspanne vor dem Zinkenende (11a, 111a) an dessen Austrittsstelle (A) angekommen sind, von diesem angehoben und unter Aufrechterhaltung des Kontaktes zwischen ihrer nacheilenden Kante und dem Querförderer (11; 111, 120) um 180° gewendet werden, und daß eine Steuervorrichtung (9, 10; 109, 110) vorgesehen ist, mit der die Phasenlage des Wendezinkens (11, 111) im förderersynchronen Umlauf einerseits und die Lage der einzelnen Schnithölzer (7) auf dem Querförderer (1, 101) andererseits von Schnittholz zu Schnittholz willkürlich entweder so aufeinander abstimmbare sind, daß das jeweilige Schnittholz (7) während der ersten Zeitspanne an der Austrittsstelle (A) des Zinkenendes (11a, 111a) ankommt, oder so, daß dieses Schnittholz dort während der zweiten Zeitspanne ankommt.

3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß jeder Wendezinken (11, 111) eine ihm in Umlaufrichtung voreilende und sich in dieser Richtung erstreckende Anlaufkante (11b, 111b) aufweist, die bezüglich des die Schnithölzer (7) zum

Wenden untergreifenden Zinkenendes (11a, 111a) zur Drehachse (12) hin radial einwärts etwas zurückversetzt ist.

4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Wendevorrichtung mehrere Wende-Linken (11, 111) aufweist, die in gleicher Seitenposition senkrecht zur Förderrichtung im Abstand nebeneinander zwischen den einzelnen Zügen des Querförderers (1, 101) angeordnet und für untereinander gleiche Phasenlage im Umlauf um die Drehachse (12) miteinander gekoppelt sind.

5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß in jeder Umlaufebene mehrere Wendezinken (11, 111) in untereinander im wesentlichen gleichem Winkelabstand in Drehrichtung angeordnet sind.

6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Steuervorrichtung aus einer taktweise synchron zum Umlauf des/der Wendezinken (11) arbeitenden Vorrichtung (6) zum zeitgenauen Auflegen der Schnithölzer (7) auf den Querförderer (1) besteht, deren Arbeitstakt gegenüber der Phasenlage des/der Wendezinken (11) willkürlich um eine vorbestimmte Zeitspanne ($\Delta t = a$) verschiebbar ist.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Auflagezeitpunkt, die Anzahl und die Form der Wendezinken und deren Drehzahl so aufeinander abgestimmt sind, daß alle Schnithölzer (7) an der Wiedereintrittsstelle B des/der Wendezinken (11) durch Anstoßen gegen ein wegtäuschendes Zinkenende (11a) auf dessen Nacheilseite bezüglich des Querförderers (1) zwangswise ausgerichtet werden.

8. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Steuervorrichtung eine Positionierzvorrichtung (101a, 120) zum ortsgenauen Positionieren der Schnithölzer (7) auf dem Förderer (101) und eine Phasenstellvorrichtung (109) zum willkürlichen Verändern der Phasenlage des/der Wendezinken (111) um einen vorbestimmten Phasenwinkel ($\Delta \varphi$) im Umlauf umfaßt.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Positionierzvorrichtung aus Mitnehmern (101a) auf dem Querförderer (101) sowie einem Aufhölder (120) besteht, der die Schnithölzer (7) vor Erreichen der Austrittsstelle (A) des/der Wendezinken (111a) mit der Vorderkante an den jeweils voreilenden Mitnehmer (101a) heranschiebt.

Beschreibung

Die Erfindung bezieht sich auf eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 1.

Vorrichtungen dieser Art sind aus der DE-GmS 83 03 844 bekannt.

Bei den bekannten Vorrichtungen wird jedes einzelne Schnittholz, gleichgültig, ob es anschließend gewendet wird oder nicht, zunächst mittels der Wendeeinrichtung auf dem Querförderer hochkant aufgerichtet, und die Selektion hinsichtlich des Wendens wird dadurch vorgenommen, daß Schnithölzer, die nicht gewendet werden sollen, vor Erreichen der Position in der Wendeeinrichtung, an der sie endgültig umgekippt würden, durch eine schneller als der Querförderer laufende Abziehvorrichtung in Form von Kettenzügen oder dgl. in Förderrichtung mit der Unterkante voran von der Wendeeinrich-

tung weggezogen werden. Um die Abziehvorrichtung selektiv zur Wirkung zu bringen, muß diese jedesmal aus einer Ruheposition unterhalb der Auflageebene des Querförderers in eine Arbeitsposition über dieser Auflageebene gebracht werden, wofür insbesondere bei hoher Förderrate jeweils relativ große Massen rasch in entgegengesetzten Richtungen bewegt werden müssen. Die bekannte Vorrichtung ist konstruktiv aufwendig und hinsichtlich der maximal zulässigen Förderrate ziemlich beschränkt, und sie bedingt auch einen relativ großen Energieverbrauch.

Der Erfindung liegt die Aufgabe zugrunde, Vorrichtungen nach dem Oberbegriff des Patentanspruchs 1 so zu gestalten, daß mit ihnen eine größere Förderrate bewältigt werden kann, als mit den bekannten Vorrichtungen, und daß dies außerdem mit einer gesteigerten Betriebsicherheit des Wendevorgangs und mit einem kleineren baulichen Aufwand erreicht wird.

Die vorstehende Aufgabe wird durch die im Kennzeichnungsteil des Patentanspruchs 1 genannten Merkmale erreicht.

Bei der erfindungsgemäßen Vorrichtung bleiben alle bewegten Massen, insbesondere diejenigen der Wendeinrichtung, mindestens im wesentlichen kontinuierlich ohne Umlenkung in entgegengesetzte Richtung in Bewegung, womit eine sehr hohe Förderrate von Schnithölzern auf dem Querförderer bewältigbar ist. Trotzdem ist ein sicherer und schneller selektiver Eingriff in den Förderfluß zum Wenden einzelner Schnithölzer gewährleistet. Die Steuervorrichtung ist mit einfachen baulichen Mitteln leicht zu realisieren, und die einzelnen Wendevorgänge erfordern auch keine hohe stoßweise Energiezufuhr zur Beschleunigung relativ großer trager Massen aus einer Ruhelage in Arbeitsposition und zurück. Schnithölzer, die nicht gewendet werden müssen, verursachen überhaupt keinen zusätzlichen Energieverbrauch beim Durchlauf durch die Wendestation.

Die Unteransprüche betreffen bevorzugte konstruktive Gestaltungen der Vorrichtung gemäß dem Hauptanspruch, die sich durch eine besondere konstruktive Einfachheit bei hoher Funktionssicherheit auszeichnen.

Die Erfindung wird nachstehend an Ausführungsbeispielen anhand der Zeichnung noch näher erläutert.

In der Zeichnung zeigt jeweils in sehr schematischer Darstellung:

Fig. 1 und 2 eine erste Ausführungsform der erfindungsgemäßen Vorrichtung von der Seite gesehen, wobei die Fig. 1 den funktionellen Ablauf eines Wendevorgangs in vier unterschiedlichen Phasen und die Fig. 2 den funktionellen Ablauf einer wendefreien Schnitholzdurchführung durch die Wendevorrichtung in den Phasen gemäß Fig. 1 entsprechenden Phasen wiedergeben,

Fig. 3 und 4 eine zweite Ausführungsform der erfindungsgemäßen Vorrichtung von der Seite gesehen, wobei die Fig. 3 in vier Phasen den Durchlauf eines Schnitholzes ohne Wenden durch die Wendevorrichtung hindurch wiedergibt und die Fig. 4 in vier den Phasen gemäß Fig. 3 entsprechenden Phasen den Durchlauf eines Schnitholzes unter Wendung in der Wendevorrichtung zeigt, und

Fig. 5 die Einrichtung zum Herbeiführen der bei der Vorrichtung nach Fig. 3 und 4 benötigten Phasenverschiebung der Wendezinken im Umlauf.

Die Vorrichtung nach Fig. 1 und 2 weist einen Querförderer 1 auf, der aus mehreren in Blickrichtung senkrecht zur Zeichenebene hintereinander im Abstand angeordneten, d.h. in Förderrichtung gemäß Pfeil 2 neben-

einander liegenden endlosen Fördersträngen 1a besteht, die über Umlenkräder 3 und 4 geführt sind. Die forderereingangsseitigen Umlenkräder 4 sind durch eine nicht dargestellte Antriebsvorrichtung über ein Kettenrad 5 angetrieben.

Förderereingangsseitig ist eine taktweise arbeitende Aufgabevorrichtung 6 angeordnet, mit der die auf einer Rutsche oder dgl. für den Betrachter der Fig. 1 und 2 von links zugeführten Schnithölzer 7 einzeln auf das obere Trum des Querförderers 1 auflegbar sind. Die Aufgabevorrichtung 6 arbeitet in dem Sinne zeitgenau, als ein einzelnes Schnitholz 7 jeweils immer im wesentlichen zum gleichen Zeitpunkt innerhalb eines Arbeitsspiels der Vorrichtung 6 auf dem Förderer 1 abgelegt wird. Der Antrieb der Aufgabevorrichtung 6 ist, wie durch den gestrichelten Linienzug 8a angedeutet, vom Antrieb des Förderers 1 abgeleitet, so daß die Aufgabevorrichtung 6 einen zur Bewegung des Förderers 1 synchronen Arbeitstakt hat. Dieser synchrone Arbeitstakt ist im ganzen mittels einer Zeitsteuervorrichtung 9 relativ zur Bewegung des Querförderers 1 um eine Zeitspanne $\Delta t = a$ gegenüber der ebenfalls vorgesehenen direkten Kopplung zeitlich verschiebbar. Die direkte Kopplung erfolgt über den Kopplungszweig 8b. Der 25 Kopplungszweig mit eingeschalteter Steuervorrichtung 9 ist mit 8c bezeichnet. Ein von Hand bedienbarer Steuerschalter 10 ermöglicht es einem Bedienungsmann selektiv entweder die Kopplung über den Zweig 8b oder über den Zweig 8c zu wählen.

In den Zug des Querförderers 1 sind Wendezinken 11 eingeschaltet, die in entgegengesetzt gerichteten Paaren jeweils um eine unter der Auflageebene des Förderers 1 angeordnete, sich parallel zu dieser sowie senkrecht zur Förderrichtung erstreckende Drehachse 12 in Richtung des Pfeiles 13 rotieren. Die Wendezinken 11 sind so lang, daß sie nach oben über die Auflageebene des Förderers 1 hinaustreten, um sich dort auf einer mit der Förderrichtung des Förderers 1 gleichsinnigen Bewegungsbahn zu bewegen.

Die Förderzinken 11 sind so gebogen, daß sie über der Auflageebene des Förderers 1 als dem ankommenen Schnitholz 7 zugewandter Haken mit relativ spitz auslaufendem Zinkenende 11a in Erscheinung treten. Jeder Wendezinkel 11 weist eine ihm in Umlaufrichtung gemäß Pfeil 13 voreilende und sich in dieser Richtung erstreckende Anlaufkante 11b auf, die bezüglich des Zinkenendes 11a zur Drehachse 12 hin radial einwärts etwas zurückgesetzt ist.

Die Wendevorrichtung ist insgesamt mit mehreren, 50 für den Betrachter der Fig. 1 und 2 im Abstand hintereinander liegenden Wendezinkenpaaren ausgerüstet, die nebeneinander zwischen den einzelnen Zügen 11a des Querförderers 11 angeordnet und für untereinander gleiche Phasenlage im Umlauf um die Drehachse 12 miteinander gekoppelt sind, so daß nur das dem Betrachter der Fig. 1 und 2 nächstgelegene Wendezinkenpaar 11-11 zu sehen ist. Die Mehrzahl von Wendezinkenpaaren gewährleistet, daß Schnithölzer 7 von allen vorkommenden Längen mindestens an zwei im Abstand entlang ihrer Längsausdehnung verteilten Stellen einem Wendezinkenpaar begegnen.

Wie in Fig. 1 und 2 bei a) dargestellt, schließt sich an den Querförderer 1 ein weiterer Querförderer 14 mit Mitnehmern 15 an, der die Schnithölzer 7 vom Querförderer 1 übernimmt und für den Betrachter der Fig. 1 und 2 nach rechts weitertransportiert.

Der Antrieb der Wendezinkenpaare 11-11 ist ebenfalls vom Antrieb des Querförderers 1 abgeleitet. Die

diesbezügliche Kopplung gibt in den Fig. 1 und 2 der gestrichelte Linienzug 8d wieder. Es herrscht also auch zwischen den Wendezinkenpaaren 11-11 und der Bewegung des Querförderers 1 Synchronismus, und damit auch zwischen dem Arbeitstakt der Aufgabevorrichtung 6 und dem Umlauf der Wendezinken.

Beim Funktionsablauf gemäß Fig. 1 werden die einzelnen Schnitthölzer 7 unter Berücksichtigung der Fördergeschwindigkeit des Förderers 1 durch die Aufgabevorrichtung 6 mit direkter Kopplung zwischen dieser und dem Fördererantrieb zeitlich so auf den Förderer 1 aufgegeben, daß sie an der Austrittsstellen der Förderzinkenenden 11a in den Bereich über dem oberen Trum des Förderers 1 gleichzeitig mit einem Fördererzinkenende 11a ankommen (Phase b). Der Zeitpunkt der Aufgabe könnte auch so gewählt sein, daß das Schnittholz 7 schon etwas früher als das Zinkenende 11a die Austrittsstelle A erreicht, sofern zu diesem Zeitpunktpunkt dort bereits die Anlaufkante 11b über dem Förderer 1 aufgetaucht ist. Diese Anlaufkante würde ein angekommenes Schnittholz 7 ohne irgendeine andere Manipulation an diesem einfach so lange zurückhalten, bis sich die in Fig. 1 bei b) dargestellte Phase eingestellt hat. Die zulässige Zeitspanne für die Ankunft eines Schnittholzes 7 an der Austrittsstelle A reicht also von einem Zeitpunkt vor der Ankunft des Zinkenendes 11a bis zum Zeitpunkt seiner gleichzeitigen Ankunft, so daß der genaue Zeitpunkt nicht besonders kritisch ist. Ausgehend von der Phase gemäß b) in Fig. 1 wird ein angekommenes Schnittholz 7 von unten her an seiner Vorderkante vom Zinkenende 11a erfaßt, angehoben (Phase c) und schließlich, da es mit seiner Hinterkante mit dem Förderer 1 in Kontakt bleibt und unten dauernd in Förderrichtung weitertransportiert wird, umgestoßen, um danach gewendet auf dem Förderer 1 liegen zu bleiben und von da an im wesentlichen unbehindert die Wendevorrichtung zu verlassen. Bei der Ausführung gemäß Fig. 1 und 2 sind die Geschwindigkeiten, Aufgabzeitzpunkte und Zinkenformen so aufeinander abgestimmt, daß ein gewendetes Brett vor dem Auslaufen aus der Wendevorrichtung gerade noch kurzzeitig auf der Nacheilseite an das Wendezinkenende 1a, mit dem es gewendet worden ist, anstoßt, was zur Folge hat, daß das gewendete Brett, das beim Wenden seine Lage auf dem Querförderer 1 in unerwünschtem Ausmaß verändert haben kann, wieder an mindestens zwei Stellen entlang seiner Längserstreckung senkrecht zum Querförderer 1 ausgerichtet wird, bevor es die Wendevorrichtung entgültig verläßt.

Von den beiden Zinkenenden 11a eines jeden Wendezinkenpaars ist jedes in der Lage, jeweils das vorderste Schnittholz von in unmittelbarer Folge ankommenden Schnitthölzern zu wenden, sofern diese von der Aufgabevorrichtung 6 in der vorstehend geschilderten Weise auf dem Querförderer 1 aufgegeben worden sind. Es ist ersichtlich, daß dieser Wendevorgang sehr sicher und sehr rasch ablaufen kann, ohne daß es einer dauernden Umbeschleunigung irgendwelcher großer träger Massen bedarf.

Bei Funktionsablauf gemäß Fig. 2 geht die Kopplung zwischen dem Querfördererantrieb und der Aufgabevorrichtung 6 nach Umlegen des Steuerschalters 10 gegenüber dessen Position aus Fig. 1 über die Steuervorrichtung 9, die den Arbeitstakt gegenüber der Bandbewegung relativ zu der in Fig. 1 vorherrschenden diesbezüglichen Beziehung so verschiebt, daß die einzelnen Schnitthölzer 7 in Bezug auf die Phasenlage der Wendezinken 11 in deren Umlauf um die Zeitspanne $\Delta t = a$ früher auf dem Querförderer 1 abgelegt werden. Dies

führt dazu, daß die Wendezinkenenden 11a auch um die Zeitspanne $\Delta t = a$ früher als die Schnitthölzer 7 an der Austrittsstelle A ankommen (Phase b in Fig. 2), so daß sie sich bei Ankunft der Schnitthölzer 7 bereits über diese hinweg über die Auflageebene des Querförderers 1 bewegt haben (Phase c in Fig. 2).

Die hakenförmige Gestalt des Wendezinkens 11 gestattet es danach dem jeweiligen Schnittholz 7, von den Wendezinken 11 im wesentlichen unbehindert deren 10 Bewegungsbahn zu durchlaufen, so daß es nicht gewendet wird. Es kann lediglich auch hier eine solche Abstimmung getroffen werden, daß das Schnittholz an der Eintrittsstelle B der Zinkenenden 11a unter die Auflageebene des Querförderers 1 wieder kurz zwecks Ausrichtung 15 nacheilseitig an das Wendezinkenende 11a anstoßt, unter dem es vorher unbehindert durchgetreten ist.

Der vorbeschriebene Vorgang gilt für alle in unmittelbarer Folge Arbeitstakt für Arbeitstakt von der Aufgabevorrichtung 6 auf den Querförderer 1 aufgelegten 20 Schnitthölzer 7, solange die Steuervorrichtung 9 in die Kopplung eingeschaltet ist.

Durch Umschalten des Steuerschalters 10 von Schnittholz zu Schnittholz ist es möglich, die einzeln aufeinanderfolgenden Schnitthölzer wechselweise trotz 25 hoher Förderrate den Funktionen "Wenden" und "Nichtwenden" zu unterwerfen. Ebenso ist es natürlich möglich, nur ein einzelnes Schnittholz aus einer Folge unmittelbar nacheinander aufgegebener zu wenden, oder eines aus einer Folge von zu wendenden Brettern 30 ungewendet zu lassen.

Bei der Ausführungsform gemäß Fig. 3 und 4 gelangen Wendezinken der gleichen Art und Gestaltung wie bei derjenigen gemäß Fig. 1 und 2 zur Anwendung. Im übrigen unterscheidet sich aber die Ausführungsform 35 gemäß Fig. 3 und 4 von derjenigen gemäß Fig. 1 und 2 in folgender Hinsicht:

Die einzelnen Schnitthölzer 7 kommen hier auf einem im gleichmäßigen Abstand mit Mitnehmern 101a besetzten Querförderer 101 an, der sie in Richtung des Pfeiles 102 quer zu ihrer Längserstreckung transportiert. Im Bereich der Wendezinkenpaare 111 und in Förderrichtung davor ist ein schneller als dieser in dessen Richtung laufender Aufholförderer 120 vorgesehen, der die einzelnen Schnitthölzer 7 unabhängig von ihrer vorhergehenden Position auf dem Querförderer 101 an die davor befindliche Mitnehmer 101a heranschiebt, bevor diese die Austrittsstelle A der Wendezinkenenden 111a erreichen, so daß die Schnitthölzer 7 immer genau auf dem Querförderer 101 positioniert an dieser Austrittsstelle A ankommen.

Auch bei der Ausführung nach Fig. 3 und 4 ist der Antrieb der Wendezinkenpaare 111-111 vom Antrieb des Querförderers 101 abgeleitet, also synchron zu diesem eingerichtet, wobei die Anordnung überdies so getroffen ist, daß eine feste Beziehung zwischen der Ankunft der einzelnen Mitnehmer 101a und der Ankunft der Wendezinkenenden 111a an der Austrittsstelle A gegeben ist. Diese Beziehung ist durch Eingriff in die Kopplung zwischen dem Querfördererantrieb und dem Wendezinkenantrieb in vorbestimmter Weise veränderbar, was gleichbedeutend mit einer Verschiebung der Wendezinkenphase im Umlauf gegenüber der Bandbewegung um den Phasenwinkel $A \varphi$ ist. Analog zum Ausführungsbeispiel gemäß Fig. 1 und 2 wird diese Phasenverschiebung bei der Ausführung gemäß Fig. 3 und 4 dadurch erreicht, daß selektiv mittels eines Phasenschalters 110 entweder eine direkte Kopplung über den Koppelweg 108a oder eine indirekte Kopplung über eine als

Phasenschieber wirkende Steuervorrichtung 109 in einem Koppelzweig 108b wählbar ist.

Beim Funktionsablauf gemäß Fig. 3 ist die direkte Kopplung über den Koppelzweig 108a gewählt bei der das Wendezinkenende 111a um eine Zeitspanne $\Delta t = a$ vor der Schnittholzvorderkante an der Austrittsstelle A ankommt (Phase b in Fig. 3). Die Zeitspanne Δt ist so groß, daß sich das betreffende Wendezinkenende 111a um mehr als die Schnittholzhöhe über die Auflageebene des Querförderers 101 hinausbewegt hat, wenn die Schnittholzvorderkante die Austrittsstelle A erreicht, so daß das jeweilige Schnittholz 7 aufgrund der hakenförmigen Gestalt der Wendezinken 111 von diesen unbehindert, die Umlaufbahn der Wendezinken 111 passieren kann (Phase c und d in Fig. 3).

Beim Funktionsablauf gemäß Fig. 4 ist mittels des Steuerschalters 110 der Kopplungspfad mit eingeschaltetem Phasenschieber angewählt. In Folge der durch die Steuervorrichtung 9, den Phasenschieber, bewirkten Phasenverschiebung der Wendezinkenpaare um den Phasenwinkel $\Delta \varphi$ gegenüber der Bandbewegung erreichen nun die Wendezinkenenden 111a die Austrittsstelle A zur gleichen Zeit wie die Schnittholzvorderkanten ($\Delta t = 0$) oder, was wegen der Anlaufkanten 111b ebenfalls zulässig ist, ein wenig später, so daß die Schnitthölzer 7 auch hier von den jeweiligen, im Abstand entlang ihrer Längserstreckung an ihnen angreifenden Wendezinkenenden 111a angehoben und infolge des ununterbrochen fortschreitenden Förderkontaktees an der Unterseite schließlich nach rückwärts umgestoßen, d.h. gewendet, werden. Auch hier kann die Anordnung wieder so getroffen sein, daß beim Auslauf des jeweiligen Schnittholzes, an der Eintrittsstelle B der Wendezinken 111a durch kurzzeitiges Anstoßen an dem wegtauchenden Wendezinkenende eine zwangswise Ausrichtung des Schnittholzes auf dem Förderer stattfindet. Diese Funktion kann aber auch der Aufholförderer übernehmen, sofern er, wie bei Fig. 3 und 4, in Förderrichtung über die Wendevorrichtung hinaus erstreckt ist.

Die Fig. 5 zeigt eine einfache Ausführungsform einer die Funktion des Phasenschiebers bei der Ausführung nach Fig. 3 und 4 durchführenden Steuervorrichtung 109. Diese besteht aus einem an den Antrieb des Querförderers 101 angeschlossenen Kettenrad 121, einem drehfest mit dem jeweiligen Wendezinkenpaar verbundenen Kettenrad 122 für dessen Drehantrieb, einer die beiden Kettenräder mit erheblichem Durchhang umspannenden Antriebskette 123, einem permanent wirkenden elastischen Kettenspanner 124 in dem einen Trum 123a der Antriebskette und einem willkürlich steuerbaren unelastischen Kettenspanner 125 im anderen Trum 123b der Antriebskette 123. Die Kopplung zwischen dem Antrieb des Querförderers 101 und dem Kettenrad 121 ist durch den gestrichelten Linienzug 126 angedeutet.

Solange sich der unelastische Kettenspanner 125 in seiner in Fig. 5 mit ausgezogenen Linien dargestellten Ruhestellung befindet ist die Phasenbeziehung zwischen dem Wendezinkenpaar 111-111 und dem Kettenrad 121 durch die kürzeste Länge des mittels des elastischen Kettenspanners 124 gestrafften Trums 123b der Antriebskette 123 bestimmt. Wenn hingegen dieses obere Trum 123b durch Auswärtsverlagerung des unelastischen Kettenspanners 125 in der in Fig. 5 gestrichelt dargestellten Weise nach außen gedrückt und unter gleichzeitiger Kürzung des unteren Trums 123a gelängt wird, ändert sich die Phasenbeziehung zwischen dem Kettenrad 121 und dem Wendezinkenpaar 111-111 in

der in Fig. 5 bei diesem Wendezinkenpaar gestrichelt eingezeichneten Weise um einen Phasenwinkel $\Delta \varphi$, der seinen Maximalwert erreicht, wenn das obere Trum 123b bis zur vollen Straffung des unteren Trums 123a auswärts ausgelenkt worden ist. Es ist also möglich, auf diese Weise in Abhängigkeit von dem Ausmaß der Betätigung des unelastischen Kettenspanners 125 eine bestimmte Phasenverschiebung zwischen der Bewegung des Querförderers 101 und der Phasenlage der Wendezinken 111 im Umlauf zu erreichen. Der unbetätigte Zustand des Kettenspanners 125 entspricht dabei der Stellung des Steuerschalters 110 in Fig. 4, und sein betätigter Zustand entspricht der Stellung des Steuerschalters 110 gemäß Fig. 3.

Für die Phasenverschiebung könnten auch Differentialgetriebe und anderweitige, für diesen Zweck geeignete bekannte Vorrichtungen eingesetzt werden.

Nummer: 35 46 087
 Int. Cl. 4: B 65 G 47/22
 Anmeldetag: 24. Dezember 1985
 Offenlegungstag: 25. Juni 1987

Fig. 1

Patentanmeldung vom 23.12. 1985
 Maschinenfabrik Esterer AG (M 351)
 "Vorrichtung zum Wenden vom im
 Transport befindlichen Schnitt-
 hölzern"

708 826/482

Fig. 2

~~ORIGINAL UNEDITED~~

Fig. 3
ORIGINAL INVENTED

3546007

Fig. 4

ORIGINAL INSPECTED

3546087

Fig. 5