ADSA Session – 5

Bit Manipulation:

Normally we use 6 bit-wise operators

& - Bitwise AND

| - Bitwise OR

^ - Bitwise XOR

<< - Bitwise Left Shift

>> - Bitwise Right Shift

 \sim - Negation

o These are used to perform operations on Bit level

Take an Example:

Int
$$a = 97$$
;

Take the binary of 97 by taking LCM of that number.

These binary bits(1,0) are stored in memory location (array like)

&- bitwise AND

B 1	B2	B1&B2
1	1	1
1	0	0
0	1	0
0	0	0

$$a = 46 = 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0$$

$$b = 123 = 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1$$

$$a \& b = 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 = 42$$

Result: 42.

| - Bitwise OR

$$\begin{array}{cccc} 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}$$

$$a = 46 = 00101110$$

$$a \mid b = 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 = 127$$

result: 127

^ - Bitwise XOR

result: 55

Task:

$$a = 87$$
 $b = 59$ Find $a\&b$, $a|b$, a^b

$$a = 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$$

$$b = 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1$$

a &
$$b = 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \sim 19$$

$$a \mid b = 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \sim 127$$

$$a \land b = \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \quad \sim 108$$

$$-97 = 1\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ \sim 2$$
's compliment of 97

Important Conditions:

If
$$(n \% 2)$$
 -

If
$$n \& 1$$
: if $1 - n$ is odd

If
$$0 - n$$
 is even

If
$$(n | 1)$$
 -

If
$$n+1: n$$
 is even

$$n \mid 0 : n$$

$$n \mid n : n$$

If n-1: n is odd

If n+1: n is even

$$n \mathbin{^{\wedge}} 0 : n$$

Important Logic: