Lab session 4: Set up General Linear Model (GLM)

Andrew Bauer 02/03/16

Session no.	Date (all Wednesday)	Topic/activity	Topic of quiz that day	Topic of lab write-up (assignment) due that day
1	13-Jan	Lab overview		
2	20-Jan	Brain anatomy		
3	27-Jan	Data preprocessing	Brain anatomy (no. 1)	
4	3-Feb	Set up GLM model	Functional brain anatomy (no. 2)	
5	10-Feb	Single-subject SPM contrasts	Data preprocessing and GLM model (no. 3)	Brain anatomy (no. 1)
6	17-Feb	Within-subject MVPA	<u> </u>	Single-subject SPM contrasts (no. 2)
7	24-Feb	SIBR tour and review for mid-term exam	Study slides 6, 19, 20 below	Within-subject MVPA (no. 3)
No lab	2-Mar	No lab (mid-term exam)		
No lab	9-Mar	No lab (spring break)		
8	16-Mar	Group-level SPM contrasts		
9	23-Mar	Between-subjects MVPA		Group-level SPM contrasts (no. 4)
10	30-Mar	Voxel-wise modeling		Between-subjects MVPA (no. 5)
11	6-Apr	Functional connectivity analysis (no assignment)		
12	13-Apr	Review for final exam		Voxel-wise modeling (no. 6)
No lab	20-Apr	No lab		
No lab	27-Apr	No lab (final exam)		

Data preprocessing pipeline

Generalized Linear Model (GLM)

Setting up analysis

Data analysis & results

Our analysis: Discover the brain areas that are associated with thinking about different object concept *categories*

Instructions to subjects:
"Think of the main
properties of each named
object"

Table 1. 60 stimulus words grouped into 12 semantic categories.

Category	Exemplar 1	Exemplar 2	Exemplar 3	Exemplar 4	Exemplar 5
body parts	leg	arm	eye	foot	hand
furniture	chair	table	bed	desk	dresser
vehicles	car	airplane	train	truck	bicycle
animals	horse	dog	bear	cow	cat
kitchen utensils	glass	knife	bottle	cup	spoon
tools	chisel	hammer	screwdriver	pliers	saw
buildings	apartment	barn	house	church	igloo
building parts	window	door	chimney	closet	arch
clothing	coat	dress	shirt	skirt	pants
insects	fly	ant	bee	butterfly	beetle
vegetables	lettuce	tomato	carrot	corn	celery
man-made objects	refrigerator	key	telephone	watch	bell

The Hemodynamic Response Function of the BOLD MRI signal

MRI signal in the brain increases by a few % points after there are increases in neural activity D: 4-5s E: 5s long plateau (Evidence of rise neural activity Activated shows up as the rise and plateau) Resting G: Return to baseline C: 2s (or delay undershoot) Time B: Neural activity onset A: Pre-activation F: 4-6s (lasts for, say, 3s) baseline of MRI signal fall

Image adapted from AFNI web site

Fitting the HRF to actual MRI signal (Quiz no. 3 slides 6, 19, 20)

- If a voxel is active, we expect its MRI signal to take the same HRF shape, regardless of the brain region it's in or which subject's data it is
- "Brain activation level" of condition x in voxel i = how well the HRF fits (and the magnitude/height of the fitted waveforms) to the actual MRI signal during that condition's trials

What is "brain activation level" in fMRI?

- •Voxel-wise GLM regression model: $y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_n x_n + \varepsilon$
 - y: MRI signal (time series) at a voxel different across voxels
 - x: independent variables/conditions (regressors) same across voxels
 - β : regression coefficients (HRF fits/magnitudes) **different** across voxels
 - ε: residuals (data unaccounted for by model) different across voxels

We are measuring this

- •So the β coefficient is the **brain activation level** associated with a particular condition x
 - •In our case, the conditions are the different object concept categories
 - •The model estimates the β value for each condition by how well the HRF fits (and its magnitude) the MRI signal over all a given condition's trials

Start Matlab 2012b (on desktop, or type "matlab" in Start menu to find it) NOTE: You MUST select Matlab 2012b, do NOT select 2014b

1: Select Add with Subfolders again

1: Go to the Matlab Command Window and type: cd C:/Users/Public/lab_85_429_2016/session4

2: Then type: spm fmri

...(OR navigate there using the browser)

·Sn(1)fixation#bf(1)	Baseline
·Sn(1) animal*#f(1)	Animal
Sn(1)bodypart#0f(1)	Bodypart
Sn(1) building# d(1)	Building
Sn(1) buildingpart#0f(1)	Buildingpar
·Sn(1) clothing*bf(1)	Clothing
Sn(1) fumiture 45f(1)	Furniture
·Sn(1)insect*bf(1)	Insect
·Sn(1) kitchen#bf(1)	Kitchen
·Sn(1) manmade*bf(1)	Manmade
Sn(1)tool#bf(1)	Tool
·Sn(1) vegetable#bf(1)	Vegetable
·Sn(1) vehicle*bf(1)	Vehicle
·Sn(1) constant	Constant

Programming statistical β contrasts to compare...

- Activation of one condition vs. Baseline ("Resting")
- Activation between two different conditions
 - Baseline cancels out (see below)

Contrast	Baseline multiplier	Tools multiplier	Buildings multiplier	Statistical result (<i>t-stat</i> and <i>p-value</i>) in <u>each</u> voxel
eta_{Tools} - $eta_{Baseline}$	-1	1	0	Tools activation that is > "Resting"
$eta_{ extsf{Buildings}}$ – $eta_{ extsf{Baseline}}$	-1	0	1	Buildings activation that is > "Resting"
βTools - βBuildings i.e. (Tools - Baseline) - (Buildings - Baseline)	0	1	-1	(Tools > "Resting") that is > (Buildings > "Resting")
βBuildings - βTools i.e. (Buildings - Baseline) - (Tools - Baseline)	0	-1	1	(Buildings > "Resting") that is > (Tools > "Resting")

Data preprocessing sequence (Quiz no. 3

slides 6, 19, 20)

1. Motion correction

 Ensures that brain activity of voxel i corresponds to the same volume of brain tissue throughout whole experiment

2. Slice time correction

 Need to correct for fact that brain slices are not collected simultaneously each image acquisition (TR)

3. Spatial normalization

 Morphs each subject's brain to a common/template brain to examine activation in same locations across subjects

4. Smoothing

Reduces amount of noise per voxel by averaging over nearby voxels

Final notes about data preprocessing (Quiz no. 3: Slides 6, 19, 20)

- In brain imaging <u>and other fields</u>, data processing can result in *loss* or *artificial creation* of data
 - Smoothing (you control how much)
 - Lose small fluctuations in data that might be real
 - If one voxel's activation level is high due to error/random chance, then averaging it in with other voxels will spread this error to other voxels, creating an artificial cluster of activation
 - Spatial normalization
 - Lose data due to the normalization algorithm tampering with the original data
 - Lose individual quirks of a person's data

References

Just, M. A., Cherkassky, V. L., Aryal, S., & Mitchell, T. M. (2010). A neurosemantic theory of concrete noun representation based on the underlying brain codes. *PLoS One*, *5*(1), e8622. doi:10.1371/journal.pone.0008622