Exercice 1. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène sur l'espace d'états M fini de matrice de transition P. On fait l'hypothèse que la chaîne $(X_n)_{n\geqslant 0}$ est engendrée par une récurrence aléatoire $X_{n+1} = F(X_n, Z_{n+1})$ avec $F: M \times U \to M$ et $(Z_n)_{n\geqslant 1}$ une suite iid à valeurs dans l'espace U (par exemple U = [0, 1] et $Z_1 \sim \mathcal{U}([0, 1])$). Soit $f: M \to \mathbb{R}$ et $(\mathcal{F}_n = \sigma(X_0, ..., X_n))_{n\geqslant 0}$ la filtration engendrée par $(X_n)_{n\geqslant 0}$. On pose $Y_n = \sum_{i=1}^n f(X_i)$ et on considère le problème d'arrêt optimale en horizon infini

Preexamen

$$V(x) = \sup_{T} \mathbb{E}_{x}[Y_{T}] = \sup_{T} \mathbb{E}_{x}[\sum_{i=0}^{T} f(X_{i})]$$

où on veut maximiser le valeur moyen de Y_T sur tout les temps d'arrêt de la filtration $(\mathcal{F}_n)_{n\geqslant 0}$. Soit $T_x=\inf\{n>0\colon X_n=x\}$ et supposons que la chaîne est telle qu'il existe un état adsorbant $\theta\in M$ tel que $\mathbb{E}_x[T_\theta]<+\infty$ pour tout $x\in M$. On fait l'hypothèse que $f(\theta)=0$.

- a) Donner la relation entre P et F.
- b) Montrer que pour tout $x \in M$ et tout t.a. T la quantité $\mathbb{E}_x[Y_T]$ est bien définie.
- c) Soit T un t.a. et $X_n^T = X_n$ si $n \le T$ et $X_n^T = \theta$ si n > T. Montrer que $(X_n^T)_{n \ge 0}$ est un processus adapté.
- d) Montrer que $X_n^T \in \mathcal{F}_T$ pour tout $n \ge 0$.
- e) On considère une espace des actions $\mathcal{A} = \{0, 1\}$. Soit $(\hat{X}_n)_{n \geqslant 0}$ une récurrence aléatoire contrôlée donnée par

$$\hat{X}_{n+1} = G(\hat{X}_n, U_n, Z_{n+1})$$
 pour $n \ge 0$

avec $\hat{X}_0 = X_0$, $U_n = u_n(\hat{X}_0, ..., \hat{X}_n)$ et $u \in \mathcal{C}_0$. Déterminer la fonction $G: M \times \mathcal{A} \times U \to M$ telle que pour tout t.a. T associé à la filtration $(\mathcal{F}_n)_{n\geqslant 0}$ il existe un contrôle $u \in \mathcal{C}_0$ tel que la récurrence aléatoire $(\hat{X}_n)_{n\geqslant 0}$ contrôlée par u satisfait

$$\mathbb{P}_x(\forall n \geqslant 0, \hat{X}_n = X_n^T) = 1$$

pour tout $x \in M$.

f) Montrer que le problème d'arrêt est équivalent au problème de contrôle optimale du processus $(\hat{X}_n)_{n\geqslant 0}$ à valeurs dans M, espace d'actions $\mathcal{A}=\{0,1\}$ et matrice de transition homogène

$$\hat{P}_a(x,y) = \left\{ \begin{array}{ll} P(x,y) & \text{si } a=0 \\ 1_{y=\theta} & \text{si } a=1 \end{array} \right. .$$

et que

$$V(x) = \sup_{u \in C_0} \mathbb{E}^u_{(0,x)} [\sum_{k \geqslant 0} f(\hat{X}_k)].$$

g) Utiliser la formulation de contrôle optimale pour prouver que la fonction valeur $V\colon M\to\mathbb{R}$ satisfait

$$V(x) = f(x) + (PV(x))_+$$

où
$$PV(x) = \sum_{y \in M} P(x, y)V(y)$$
.

- h) Montrer que $V(\theta) = 0$.
- i) Soit $M_n = \sum_{i=0}^{n-1} f(X_i) + V(X_n)$ pour n > 0 et $M_0 = V(X_0)$. Montrer que $(M_n)_{n \geqslant 0}$ est une sur-martingale pour tout état initial $X_0 = x \in M$.
- j) Montrer que $M_n = \sup (Y_n, \mathbb{E}[M_{n+1}|\mathcal{F}_n])$ où $Y_n = \sum_{i=0}^n f(X_i)$.
- k) Montrer que $\lim_n \, M_n = \lim_n \, Y_n = Y_\infty = \sum_{i \geqslant 0} \, f(X_i)$ p.s. et dans $L^1.$
- 1) Soit $T^* = \inf\{n \ge 0 : V(X_n) = f(X_n)\}$. Montrer que $\mathbb{P}(T^* < +\infty) = 1$.
- m) Montrer que $\tilde{M}_n = M_{n \wedge T^*}$ est une martingale et en déduire que

$$V(x) = \mathbb{E}_x\left[\sum_{i=0}^{T^*} f(X_i)\right]$$

et donc que T^* est un t.a. optimal.