

Eine Einführung

Benedikt Waibel | 25.05.2023

1/22 25.05.2023 KITCTF: Kryptographie in CTFs kitctf.de

Überblick

- Sicherheitsziele
- Kryptographische Verfahren
 - Klassische Kryptographie
 - Zufall
 - Symmetrische Kryptographie
 - Asymmetrische Kryptographie
- Typische Schwachstellen
- Tools
- Ausblick
- Aufgaben

Sicherheitsziele

- CIA (Confidentiality, Integrity, Availability)
- Authenticity
- Welche Sicherheit braucht meine Anwendung?
- Welche Sicherheit bietet ein kryptographisches Verfahren? Was sind die Bedingungen?

Klassische Kryptographie

Caesar-Chiffre

- Jeder Buchstabe wird um einen festen Wert k verschoben
- Wird heutzutage manchmal noch verwendet (spiegel.de Paywall)
- Angriffe: Ausprobieren (Bruteforce), Häufigkeitsanalyse

KITCTF: Kryptographie in CTFs

Klassische Kryptographie

- Vigenère-Chiffre
 - Wähle Schlüsselwort und verschiebe jeden Buchstaben entsprechend dem Schlüsselbuchstaben
 - Angriffe: Schlüssellänge bestimmen, Caesar-Chiffre für jede Schlüsselposition

25.05.2023

Klassische Kryptographie

XOR-Chiffre:

- Verschlüssele Klartext durch XOR mit Key
- Angriffe: analog zu Vigenère (Bruteforce, Häufigkeitsanalyse pro Key Byte)

One Time Pad (OTP):

- Verwende Schlüssel mit gleicher Länge wie Klartext
- Informationstheoretische Sicherheit, wenn der Schlüssel gleichverteilt zufällig generiert ist und nur einmal verwendet wird

Zufall

- Zufällige Eingaben an vielen Stellen für Chiffren benötigt
- unsichere Pseudozufallszahlengeneratoren (PRNGs) Standardquelle in vielen Sprachen
- Kryptographisch sichere RNGs:
 - /dev/urandom
 - Hardware RNGs
 - RNGs der meisten Krypto-Bibliotheken (z.B. secrets in python)
- Angriffe: Zustand wiederherstellen, Side Channels

KICTE

Symmetrische Verschlüsselungen

Stromchiffren

- Pseudozufälliger Schlüsselstrom wird aus Schlüssel abgeleitet
- Schlüsselstrom wird mit Klartext kombiniert

Blockchiffren

- Verschlüsselt Blöcke fester Länge
- Betriebsmodus wird zur Verschlüsselung längerer Daten verwendet

Stromchiffren

Stromchiffren

- RC4, SEAL, Salsa, CryptMT
- Linear Feedback Shift Register (LFSR)
- Angriffe:
 - Bekannter Klartext: Aus einem bekannten Klartext m mit zugehörigem Chiffrat c kann der Schlüsselstrom K rekonstruiert werden
 - Key-Reuse: zwei Nachrichten mit gleichem Schlüsselstrom verschlüsselt, liefert XOR-Differenz zwischen Klartexten

Blockchiffren

- DES, IDEA, RC5, AES, Blowfish, ...
- Block- und Schlüssellänge
- Padding: Erweitern der Nachricht auf Blocklänge
- Betriebsmodi
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Counter Mode (CTR)
 - Galois Counter Mode (GCM)
- Angriffe: auf Chiffre (differentielle, lineare Kryptoanalyse), auf Betriebsmodus

Electronic Code Book

- Verschlüsselt jeden Block einzeln
- Probleme:
 - Daten Einfügen möglich
 - Deterministisch

Cipher Block Chaining

Für Klartextblöcke P_i , Chiffratblöcke C_i , $i \in \{1, ..., n\}$, $C_0 = IV$

- Verschlüsseln: $C_i = Enc(P_i \oplus C_{i-1})$
- Entschlüsseln: $P_i = Dec(C_i) \oplus C_{i-1}$
- Initialisierungsvektor zufällig
- Probleme: Verlust eines Chiffratblocks führt zu Verlust 2er Klartextblöcke
- Angriffe: POODLE

Asymmetrische Kryptosysteme

Verschlüsselung:

Signatur:

KITCTF: Kryptographie in CTFs

RSA

- Wähle zwei Primzahlen p und q
- Bestimme N = p * q
- Bestimme $\Phi(N) = (p-1) * (q-1)$
- Wähle e so, dass $ggT(e, \Phi(N)) = 1 \land 1 < e < \Phi(N)$ gilt
- Bestimme d so, dass $e * d \equiv 1 \pmod{(N)}$ gilt. (Erweiterter Euklidischer Algorithmus)
- Öffentlicher Schlüssel: N. e
- Privater Schlüssel: d
- ggT(a,b): größter gemeinsamer Teiler von a und b
- $Φ(N) = |\{a ∈ N | 1 \le a \le n \land ggT(a, N) = 1\}|$ Anzahl aller Zahlen, die zu *n* teilerfremd sind bzw. Gruppenordnung (Eulersche Funktion)

RSA

Encryption:

$$c = m^e mod N$$

Decryption:

$$c^d \mod N$$
 $\iff m^{ed} \mod N$
 $\iff m^{ed \mod \Phi(N)} \mod N$
 $\iff m^1 \mod N$

Mit dem kleinen fermatschen Satz

- Homomorphie:
 - $c_1 = m_1^e mod N$ und $c_2 = m_2^e mod N$, so gilt $c_1.c_2 = m_1^e.m_2^e modN = (m_1.m_2)^e modN.$ Es gilt also $Enc(m_1, pk).Enc(m_2, pk) = Enc(m_1.m_2, pk)$

Bedingung	Angriff	Komplexität
Keine	Faktorisierung	$\sim exp(log(N)^{\frac{1}{3}}(loglogN)^{\frac{2}{3}})$
Kleines $d(d < \frac{1}{3}N^{\frac{1}{4}})$	Wiener's Attack	Polynomiell
$m < N^{\frac{1}{e}}$	Wurzel ziehen	Polynomiell
Senden der gleichen Nachricht	Hastad's Broadcast Attack	Polynomiell
an viele Empfänger mit selbem e		

KITCTF: Kryptographie in CTFs

Elliptic Curves

- Elliptic Curve equation: $y^2 = x^3 + ax + b$
- Group: Generator point G, point addition and multiplication with natural number
- Cyclic EC group over \mathbb{Z}_p , p > 3
- Point (x, y) on curve iff $y^2 \equiv x^3 + ax + b \mod p$, plus (imaginary) point at infinity $O, a, b \in \mathbb{Z}_p$ with $4a^3 + 27b^2 \not\equiv 0 \mod p$

- Implementierungsfehler: inkorrekt selbst implementiert, falsch eingebunden
- Denkfehler: Verfahren falsch verwendet oder für unpassende Anwendung
- Algebra: Bedingung für Sicherheit von Verfahren verletzt, mehr Mathe oder theoretische Informatik nötig, "read the paper"

Tools

- CyberChef
- https://factordb.com
- sagemath (free open-source mathematics software system)
- Z3 (theorem prover)

Ausblick

- Post-Quanten-Sicherheit (z.B. Lattice)
- Pairing Based Cryptography
- Zero Knowledge
- Wünscht euch gerne Themen im Content-Plan oder bietet selber Talks/Workshops an!

Aufgaben

- https://cryptohack.org
- https://cryptopals.com
- https://picoctf.com
- https://overthewire.org/wargames/krypton