IN THE CLAIMS

What is claimed is:

1	1.	A method of forming a microelectronic structure comprising;		
2		forming a diamond layer on a substrate, wherein the diamond		
3		layer comprises defects; and		
4		forming pores in the diamond layer by removing a substantial		
5		amount of the defects from the diamond layer.		
1	2.	The method of claim 1 wherein forming pores in the diamond layer		
2	comp	rises reducing the dielectric constant of the diamond layer by forming		
3	pores	pores in the diamond layer.		
1	3.	The method of claim 1 wherein forming a diamond layer on a		
2	subst	rate comprises forming a diamond layer on a substrate by chemical		
3	vapor deposition.			
1	4.	The method of claim 1 wherein forming a diamond layer on a		
2	subst	rate comprises exposing the substrate to a gas comprising a		
3	hydrocarbon and hydrogen, wherein the hydrocarbon concentration is above			
4	about 10 percent of the hydrogen concentration.			

5. The method of claim 4 wherein exposing the substrate to a gas comprising a hydrocarbon comprises exposing the substrate to a gas comprising methane.

- 6. The method of claim 1 wherein forming a diamond layer on a substrate comprises forming a diamond layer on a substrate wherein the diamond layer comprises at least one of double bonds, vacancies or interstitials.
- The method of claim 1 wherein removing the defects from the
 diamond layer comprises etching the defects from the diamond layer.
 - 8. The method of claim 7 wherein etching the defects comprises exposing the defects to oxygen gas at a temperature below about 450 degrees Celsius.
 - 9. The method of claim 7 wherein etching the defects comprises exposing the defects to oxygen gas and utilizing a rapid thermal anneal process.
- The method of claim 7 wherein etching the defects comprises
 exposing the defects to at least one of a hydrogen plasma or an oxygen

3	plasma.

2

1

2

3

1

2

3

4

5

1

2

1	11. The method of claim 10 wherein exposing the defects to a hydrogen		
2	plasma comprises reducing the coefficient of friction of a top surface of the		
3	diamond layer by passivating the top surface of the diamond layer with		
4	hydrogen.		
1	12. The method of claim 1 wherein forming a diamond layer comprises		

forming the diamond layer in a deposition chamber of a cluster tool.

, ' , ' _a

- 13. The method of claim 1 wherein forming pores in the diamond layer comprises forming pores in the diamond layer in an oxidation chamber of a cluster tool.
- 14. The method of claim 1 further comprising:

forming a second diamond layer on the diamond layer in a deposition chamber of a cluster tool: and

forming pores in the second diamond layer in an oxidation chamber of the cluster tool.

15. A method of forming a microelectronic structure comprising:

forming a first diamond layer on a substrate, wherein the first

4 4 3 A

diamond layer comprises a mixture of sp2 bonds and sp3 bonds; and
exposing the first diamond layer to a hydrogen plasma, wherein
the sp2 bonds are substantially removed from a top portion of the first
diamond layer.

- 16. The method of claim 15 wherein forming a first diamond layer comprises forming a first diamond layer by utilizing a plasma comprising a concentration of methane that is above about 10 percent of a concentration of hydrogen.
- 17. The method of claim 15 wherein exposing the first diamond layer to a hydrogen plasma comprises converting the top portion of the first diamond layer to form a substantially sp2 free diamond layer by exposing the first diamond layer to a hydrogen plasma.
- 18. The method of claim 15 further comprising forming a second diamond layer disposed on the substantially sp2 free diamond layer, wherein the second diamond layer comprises a mixture of sp2 and sp3 bonds, by utilizing a plasma comprising a concentration of methane that is above about 10 % of a concentration of hydrogen.
- 19. A structure comprising:

2		a diamond layer comprising a substantial amount of pores.
1	20.	The structure of claim 19 wherein the diamond layer comprises a
2	dieled	ctric constant below about 1.95.
1	21.	The structure of claim 19 wherein the diamond layer comprises a
2	strenç	gth above about 6 GPa.
1	22.	The structure of claim 19 wherein the diamond layer comprises an ILD
2	layer.	
1	23.	A structure comprising:
2		a diamond layer comprising a mixture of sp2 bonds and sp3 bonds;
3	and	
4		a substantially sp2 free diamond layer disposed on the diamond layer,
5	where	ein the substantially sp2 free diamond layer comprises sp3 bonds.
1	24.	The structure of claim 23 wherein the substantially sp2 free diamond
2	layer	does not comprise an appreciable amount of sp2 bonds.

1 25. The structure of claim 23 wherein the structure comprises a dielectric 2 constant less than about 1.95, and a strength above about 6 GPa. 1 26. The structure of claim 23 wherein the structure comprises an 2 ILD layer. 1 27. A structure comprising: 2 a conductive layer disposed on a substrate; and a diamond layer disposed on the conductive layer, wherein the 3 4 diamond layer comprises pores. 28. The structure of claim 27, wherein the diamond layer comprises an 1 2 ILD. 1 29. The structure of claim 27, wherein the diamond layer comprises a 2 dielectric constant lower than about 1.95. 1 30. The structure of claim 27, wherein the diamond layer comprises a 2 strength above about 6 GPa. 1 31. The structure of claim 27, wherein the diamond layer comprises a 18

42P18240

2 polishing rate about 100 times greater than that of the conductive layer.