- energy dissipation
 - · total energy of the universe is conserved
 - but energy can be dissipated to less useful forms
 - examples
 - sliding friction
 - air resistance
 - in case of dissipation, energy of motion
 - is transferred to microscopic energy of molecules in contact with moving object
 - causes an increase in temperature of the objects in contact with each other
- air resistance
 - negligible for small dense object and falling a short distance
 - momentum principle
 - system: coin
 - surroundings: earth and air

$$ullet rac{dec{p}_{sys}}{dt} = ec{F}_{ext}$$

$$ullet rac{dec{p}_{coin}}{dt} = ec{F}_g + ec{F}_{air}$$

•
$$\vec{F}_{air}=0$$

$$ullet m rac{d}{dt} ec{v}_{coin} pprox \langle 0, -mg, 0
angle$$

•
$$\frac{d}{dt} \vec{v}_{coin} pprox -g \hat{y}$$

- energy principle
 - system: coin and earth
 - surroundings: air

$$ullet$$
 $\Delta E_{sys}=W_{surr}$

$$ullet$$
 $\Delta K_{coin} + \Delta K_E + \Delta U_{int} = ec{F}_{air} \cdot \Delta ec{r}$

•
$$\Delta K_E = 0$$

$$ec{F}_{air}=0$$

•
$$(rac{1}{2}mv_{coin}^2-0)+(0-mgh)pprox 0$$

•
$$v_{coin} pprox \sqrt{2gh}$$

- not negligible for large light objects and falling a long distance
- momentum principle
 - system: filter
 - surroundings: earth and air

$$ullet rac{dec{p}_{sys}}{dt} = ec{F}_{ext}$$

$$ullet rac{dec{p}_{filter}}{dt} = ec{F}_g + ec{F}_{air}$$

$$ullet$$
 $ec{F}_{air}=0$

•
$$\frac{d}{dt}\langle 0, mv_{filter}, 0
angle pprox \langle 0, f - mg, 0
angle$$

•
$$rac{d}{dt}ec{v}_{filter}pprox -(g-rac{f}{m})\hat{y}$$

- energy principle
 - system: filter and earth
 - · surroundings: air

•
$$\Delta E_{sys} = W_{surr}$$

•
$$\Delta K_{filter} + \Delta K_E + \Delta U_{int} = W_{air}$$

•
$$\vec{F}_{air} = 0$$

$$ullet \ (rac{1}{2}mv_{filter}^2-0)+(0-mgh)pprox C$$

$$ullet \ v_{filter} pprox \sqrt{2gh + rac{2W_{air}}{m}}$$

- W_{air} is negative
- ullet previously $ec{F}_{air}=f\hat{y}$
 - but air drag is not constant

$$ullet$$
 $ec{F}_{air}pproxrac{1}{2}C
ho Av^2(-\hat{v})$

- drag coefficient: $0.3 \ge C \ge 1.0$
- air resistance (drag) increases as square of velocity
- so when velocity reaches a particular value
 - air drag = force due to gravity

$$ullet |ec F_{air}| = |ec F_g|$$

•
$$\vec{F}_{net} = 0$$

- velocity does not change: terminal velocity
- terminal velocity

$$ullet |ec F_{air}| = |ec F_g|$$

•
$$\frac{1}{2}C\rho Av^2 = mg$$

•
$$v_t = \sqrt{\frac{2mg}{C
ho A}}$$

- viscous friction
 - proportional to velocity
 - mass-spring system
 - force due to spring
 - force due to viscous friction
 - damped oscillations
 - · exponentially decreasing amplitude
 - momentum principle

$$ullet rac{dec{p}}{dt} = ec{F}_{spring} + ec{F}_{viscous\ friction}$$

resonance

$$ullet \ x(t) = A e^{-(rac{c}{2m})t} cos(\omega_F t)$$

•
$$\omega_F = \sqrt{rac{k_s}{m} - (rac{c}{2m})^2}$$

- resonance occurs when the frequency of the driver, ω_D , equals the free oscillation frequency, ω_F : $\omega_D = \omega_F$
- when this happens, the amplitude, A of the oscillation increases dramatically
- resonance in nature
 - different bonds of CO₂ have different resonant frequencies
- problem: a 1.0g coffee filter dropped from a height of 0.5m reaches a terminal speed of 1 m/s. how much KE approximately did the air molecules gain from the falling coffee filter?
 acceleration due to gravity is 10 m/s²
 - · system: filter and earth
 - air
 - $\Delta K + \Delta U = W_{surr}$
 - $ullet \ (rac{1}{2}mv_f^2 rac{1}{2}mv_i^2) + (0-mgh) = W_{surr}$
 - $W_{surr} = \Delta K_{air}$
 - ΔK_{air} = 0.5 x 10⁻³ 5 x 10⁻³ = -4.5 x 10⁻³ J
- problem: a sky diver, mass 90 kg, reaches a terminal velocity of 60 m/s. what is the approximate magnitude of the force of the air resistance?
 - ullet terminal velocity means $|ec{F}_{air}| = |ec{F}_g|$
 - $ullet |ec{F}_{air}| = mg = 90 kg * 10 m/s^2 = 900 N$
- problem: when you drop a single coffee filter it reaches terminal speed, v_T , when magnitude of the drag force on it is F_d . If you were to now drop 4 identical filters (fitting snugly one inside the other), what would the new terminal speed and air drag force at this speed respectively be?
 - $2v_T, 4F_d$
 - $ullet v_t = \sqrt{rac{2mg}{C
 ho A}}$
- problem: in the equation of position vs. time for a damped oscillator, what is the units of coefficient of viscous friction, c?
 - <u>kg</u>