Profa: Joselma

Séries (Resumo de algumas definições e resultados - Parte I)

(Obs.: Os exemplos enunciados serão resolvidos em aula)

1. Série de Números Reais

Definição 1.1:Uma série de números reais é uma soma infinita da forma

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

onde $a_n \in \mathbb{R}$ é dito o termo geral ou $n^{\underline{mo.}}$ Termo da série.

Exemplo 1.1:
$$1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^{n}}$$

Exemplo 1.2:
$$-1 + 1 - 1 + 1 - 1 + 1 - \dots = \sum_{n=1}^{\infty} (-1)^n$$

Observação 1: Para representar a série dada na definição 1, podemos usar $\sum_{n=1}^{\infty} a_n$ ou $\sum a_n$.

2. Séries Convergentes ou Divergentes

Definição 2.1: Dada uma série $\sum_{n=1}^{\infty} a_n$, considere a sequência (S_n) , da por

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{2} + a_{3}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n} = \sum_{k=1}^{n} a_{k},$$

$$\vdots$$

A sequência (S_n) é chamada sequência das somas parciais da série.

- Se $\lim_{n\to\infty} S_n = S$, ou seja, se a sequência $\{S_n\}$ tem um limite S, dizemos que a série $\sum_{n=1}^{\infty} a_n$, converge e sua soma é S. Escreve-se: $\sum_{n=1}^{\infty} a_n = S = \lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{k=1}^n a_k$.
- Se $\lim_{n\to\infty} S_n$ não existe ou é $\pm\infty$ então a série $\sum_{n=1}^{\infty} a_n$ diverge. (Uma série divergente não tem soma).

Observação 2.1: Na maioria dos casos é muito difícil achar uma fórmula para S_n . Mais adiante, veremos que é possível estabelecer a convergência ou divergência de uma série empregando outros métodos.

Exemplo 2.1: Dada a série $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$

a)	Ache $S_1, S_2, S_3, S_4 e S_5$.	b) Ache S_n .
c) Mostre que a série é convergente e ache sua soma.		

Solução:

Exemplo 2.2: A série $\sum_{n=1}^{\infty} (-1)^n$ é divergente.

Solução: Temos

$$S_1 = -1; \ S_2 = -1 + 1 = 0; \ S_3 = -1 + 1 - 1 = -1; \ \ S_4 = -1 + 1 - 1 + 1 = 0; \dots,$$

Ou seja, $S_n = \begin{cases} -1, se \ n \ \'e \ impar \\ 0, se \ n \ \'e \ par \end{cases}$, logo a sequência (S_n) diverge e consequentemente a série $\sum_{n=1}^{\infty} (-1)^n$ diverge.

Exemplo 2.3: Mostre que a série $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Definição 2.2: Chamamos de série harmônica, a série divergente

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}.$$

Definição 2.3: Chamamos de série geométrica, a série $\sum_{n=1}^{n=1} a. r^{n-1} \quad ou \quad \sum_{n=0}^{\infty} a. r^n, \text{ onde } a \in r \text{ são números reais com } a \neq 0.$

Teorema 2.1: Seja $a \neq 0$. A série geométrica

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} a \cdot r^{n-1}.$$

- (i) Converge e tem por soma $S = \frac{a}{1-r}$, se |r| < 1.
- (ii) Diverge se $|r| \ge 1$.

Exemplo 2.4: Determine para cada uma das séries geométricas abaixo, se ela converge ou diverge; se convergir, determine sua soma.

a) $0.6 + 0.06 + 0.006 + \dots + \frac{6}{10^n} + \dots$	b) $\sum_{n=1}^{\infty} 2^{-n} \cdot 3^{n-1}$
c) $1 + \frac{3}{2} + \frac{9}{4} + \frac{27}{8} + \dots + \left(\frac{3}{2}\right)^n + \dots$	d) $\sum_{n=1}^{\infty} 3. \left(\frac{1}{4}\right)^{n-1}$
e) $3 + \frac{3}{(-4)} + \frac{3}{16} + \frac{3}{(-64)} + \dots + \frac{3}{(-4)^{n-1}} + \dots$	f) $2 + \frac{2}{3} + \frac{2}{3^2} + \frac{2}{3^3} \dots + \frac{2}{3^{n-1}} + \dots$

Definição 2.4: Uma série-p, ou série hiperarmônica, é uma série da forma

$$\sum \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

onde p é um número real positivo.

Observação 2.2: Se p = 1, obtemos uma série harmônica.

Teorema 2.2: A série-p $\sum \frac{1}{n^p}$

- i) Converge se p > 1
- ii) Diverge se $p \leq 1$.

Exemplo 2.5: Verifique se as séries convergem ou divergem:

a) $\sum \frac{1}{n^2}$ b) $\sum \frac{2}{\sqrt{n}}$	c) $\sum \frac{1}{n^{\frac{3}{2}}}$	d) $\sum \frac{1}{3\sqrt{n}}$
--	-------------------------------------	-------------------------------

Teorema 2.3: Se uma série $\sum a_n$ é convergente, então $\lim_{n\to\infty} a_n = 0$.

Observação 2.3: A recíproca deste Teorema é falsa, isto é, se $\lim_{n\to\infty} a_n = 0$, não decorre necessariamente que a série seja convergente, como exemplo disto temos a série harmônica.

3. Operações com Séries Convergentes

Teorema 3.1: Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ convergem e $c \in \mathbb{R}$, então:

- $\sum_{n=1}^{\infty} c. a_n$ converge e $\sum_{n=1}^{\infty} c. a_n = c. \sum_{n=1}^{\infty} a_n$. i)
- $\sum_{n=1}^{\infty} (a_n + b_n)$ converge e $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$. ii)

Observação 3.1:

- Se $\sum_{n=1}^{\infty} a_n$ diverge e $c \in \mathbb{R}$. $c \neq 0$ então $\sum_{n=1}^{\infty} c$. a_n também diverge.
- Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ diverge então $\sum_{n=1}^{\infty} (a_n + b_n)$ diverge.

Exemplo 3.1: Verifique se a série converge ou diverge. Se convergir, ache sua soma.

	8 8	8 ,	
a) $\sum_{n=1}^{\infty} \frac{6}{5^n}$	b) $\sum_{n=1}^{\infty} \left[\frac{1}{5^n} + \frac{2}{3^{n-1}} \right]$	c) $\sum_{n=1}^{\infty} \left[\frac{1}{5^n} + \frac{1}{n} \right]$	

4. Alguns Testes de Convergência de Séries

Vejamos agora, alguns testes que nos permitem saber se algumas séries convergem ou divergem.

4.1. Teste do nmo. Termo

- Se $\lim_{n\to\infty} a_n \neq 0$, então a série $\sum a_n$ é divergente. i)
- Se $\lim a_n = 0$, então é necessária uma investigação adicional para determinar se a ii) série $\sum a_n$ é convergente ou divergente.

Exemplo 4.1: Aplique o Teste do nmo. Termo, para as seguintes séries:

a) $\sum_{n=1}^{\infty} \frac{n}{2n+1}$	b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$	c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
d) $\sum_{n=1}^{\infty} \frac{e^n}{n}$	$e) \sum_{n=1}^{\infty} \frac{3n}{5n-1}$	f) $\sum_{n=1}^{\infty} \frac{n}{\ln{(n+1)}}$

4.2. Teste da Integral

Seja $\sum a_n$ uma série, $f(n) = a_n$ e f a função obtida substituindo-se n por x. Se f é positiva, contínua e decrescente para todo real $x \ge 1$, então:

- i. A série $\sum a_n$ converge se $\int_1^\infty f(x)dx$ converge.
- A série $\sum a_n$ diverge se $\int_1^{\infty} f(x) dx$ diverge.

Exemplo 4.2: Use o Teste da integral para verificar se a série converge ou diverge.

a)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
b) $\sum_{n=1}^{\infty} n. e^{-n^2}$

Cuidado: O valor encontrado na integral imprópria não é a soma da série. Este valor serve apenas para verificar se este tipo de série converge ou diverge.

4.3. Teste da Comparação:

Sejam $\sum a_n \ e \ \sum b_n$ séries de termos positivos, isto é, $0 \le a_n \le b_n$, para todo $n \in \mathbb{N}$.

- Se $\sum b_n$ converge, então $\sum a_n$ converge.
- ii) Se $\sum a_n$ diverge, então $\sum b_n$ diverge.

Exemplo 4.3: Determine se as séries $\sum_{n=1}^{\infty} \frac{1}{2+5^n} e^{-\frac{3}{2+5^n}} = \sum_{n=2}^{\infty} \frac{3}{\sqrt{n-1}}$ convergem ou divergem, usando o Teste da Comparação.

4.4. Teste para séries alternadas

Costuma-se representar as séries alternadas como $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ ou $\sum_{n=1}^{\infty} (-1)^n a_n$, com $a_n>0$ para todo n. A série alternada $\sum_{n=1}^{\infty}(-1)^{n-1}\,a_n$ é convergente se são verificadas as duas condições seguintes: $a_k \ge a_{k+1} > 0$ para todo k e $\lim_{n \to \infty} a_n = 0$.

Exemplo 4.4: Determine se a série alternada converge ou diverge:

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2-3}$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n-3}$$

4.5. Teste da Razão

Seja $\sum a_n$ uma série de termos positivos, e suponhamos $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L$

- i) Se L<1, a série é absolutamente convergente.
- ii) Se L>1 ou $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \infty$, a série é divergente.
- iii) Se L=1, nada se pode afirmar; deve-se então aplicar outro teste.

4.6. Teste da Raiz

Seja $\sum a_n$ uma série de termos positivos, e suponhamos $\lim_{n\to\infty} \sqrt[n]{a_n} = L$

- i) Se L<1, a série é convergente.
- ii) Se L>1 ou $\lim_{n\to\infty} \sqrt[n]{a_n} = \infty$, a série é divergente.
- iii) Se L=1, devemos aplicar outro teste, pois a série pode ser convergente ou divergente.

Exemplo 4.5: Determine a convergência ou divergência das séries:

a)
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

b)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

$$c) \quad \sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$$

$$d) \quad \sum_{n=1}^{\infty} \frac{3^n}{n^2}$$

5. Séries Absolutamente Convergentes

Definição 5.1: Uma série $\sum a_n$ é dita absolutamente convergente se a série

 $\sum |a_n| = |a_1| + |a_2| + |a_3| + \dots + |a_n| + \dots$ é convergente. Quando $\sum a_n$, mas $\sum |a_n|$ não converge, dizemos que $\sum a_n$ é condicionalmente convergente.

Observação 5.1: Note que se $\sum a_n$ é uma série de termos positivos, então $|a_n| = a_n$, e neste caso convergência absoluta e convergência coincidem.

Proposição 5.1: Se a série $\sum a_n$ é absolutamente convergente, então $\sum a_n$ é convergente. (Em outras palavras: se $\sum |a_n|$ converge, então $\sum a_n$ converge.

Exemplo 5.1: Verifique se as séries abaixo convergem ou divergem

$$a)\frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} - \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} - \frac{1}{2^7} + \cdots$$

b)sen1 +
$$\frac{sen2}{2^2}$$
 + $\frac{sen3}{3^2}$ + \cdots + $\frac{sen n}{n^2}$ + \cdots

5.1. Teste da Razão para convergência absoluta

Seja $\sum a_n$ uma série de termos não-nulos, e suponhamos $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L$

- i) Se L<1, a série é absolutamente convergente.
- ii) Se L>1 ou $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, a série é divergente.
- iii) Se L=1, devemos aplicar outro teste, pois a série pode ser absolutamente convergente, condicionalmente convergente ou divergente.

Exemplo 5.2: Determine se a série abaixo é absolutamente convergente:

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2+4}{2^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{10^n}$$

d)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$$

Referências:

FLEMMING, D. M. e GONÇALVES, M. B. Cálculo A. Editora McGraw Hill.

CLARK, Marcondes Rodrigues. Cálculo de funções de uma variável real/Marcondes Rodrigues Clark, Osmundo Alves de Lima. – Teresina: EDUFPI, 2012.