Université d'Évry Val d'Essonne 2009-2010 M54 algèbre et arithmétique

Feuille 2 — Anneaux, sous-anneaux

Exercice 1. 1. Donner la définition d'un anneau, d'un corps.

- 2. Les opérations binaires + et · sont-elles équivalentes dans la définition?
- 3. Lesquels de ces sous-ensembles donnés de ${\bf C}$ sont des anneaux? Lesquels sont des corps?
 - (a) $\bigcup_{n \in \mathbf{N}} 10^{-n} \mathbf{Z}$;
 - (b) $\{\frac{m}{n}\mid m\in \mathbf{Z},\ n\in \mathbf{N}^*,\ (m,n)=1,\ p\nmid n\}$ (où p est un nombre premier fixé);
 - (c) Z[i] = Z + Zi;
 - (d) $\mathbf{Q}[i] = \mathbf{Q} + \mathbf{Q}i$.

Exercice 2. Soit A un anneau unitaire tel que tout élément de A soit idempotent, c'est-à-dire que pour tout $x \in A$, $x^2 = x$.

- 1. Montrer que pour tout $x \in A$, on a 2x = 0.
- 2. Montrer que A est un anneau commutatif.
- 3. Montrer la relation xy(x+y)=0, pour tous $x,y\in A$.
- 4. Traduire les questions précédentes pour $A = (\mathcal{P}(E), \triangle, \cap)$, où E est un ensemble quelconque et \triangle l'opérateur de différence symétrique.

Exercice 3. Quel est le plus petit sous-anneau de \mathbf{Q} contenant 1/5?

Exercice 4. Soit $\mathbf{Z}[\sqrt{2}]$ (respectivement $\mathbf{Z}[\sqrt{3}]$) le plus petit sous-anneau de \mathbf{C} contenant \mathbf{Z} et $\sqrt{2}$ (resp. \mathbf{Z} et $\sqrt{3}$).

- 1. Montrer que $\mathbf{Z}[\sqrt{2}] = a + b\sqrt{2}, a, b \in \mathbf{Z}$.
- 2. Montrer que les seuls automorphismes d'anneau de $\mathbf{Z}[\sqrt{2}]$ sont l'identité et l'application $a+b\sqrt{2}\mapsto a-b\sqrt{2}$
- 3. Montrer qu'il n'existe pas d'homomorphisme d'anneaux $\mathbf{Z}[\sqrt{2}] \to \mathbf{Z}[\sqrt{3}]$.

Exercice 5. Soit A un anneau, et $(B_i)_{i\in I}$ une famille de sous-anneaux de A. Montrer que $\bigcap_{i\in I} B_i$ est un sous-anneau de A.

Exercice 6. Soit A un anneau, et S une partie de A. Montrer que l'ensemble des éléments de A qui commutent avec tout élément de S est un sous-anneau de A.