Chapitre : Exemples à connaître de branches infinies

On suppose ici que f est définie au voisinage de $+\infty$ et que $f(x) \xrightarrow[x \mapsto +\infty]{} +\infty$. On dit qu'il y a alors une branche infinie en $+\infty$.

Cas 1:
$$\frac{f(x)}{x} \xrightarrow{x \mapsto +\infty} l \in \overline{\mathbb{R}}$$

- Si
$$\frac{f(x)}{x} \xrightarrow{x \mapsto +\infty} \pm \infty$$
:

On dit qu'il y a une direction asymptotique verticale. Il y a même une branche parabolique verticale (c'est-à-dire qu'il y a une direction, mais l'écart entre la courbe et la direction tend vers $\pm \infty$).

Exemple: $x \mapsto x^2$.

- Si
$$\frac{f(x)}{x} \xrightarrow{x \mapsto +\infty} 0$$
:

On dit qu'il y a une direction asymptotique horizontale.

Exemple: $x \mapsto \sqrt{x}$.

- Si
$$\frac{f(x)}{x} \xrightarrow{x \to +\infty} a \in \mathbb{R}^*$$

Il y a une direction asymptotique de direction de pente *a*.

• Soit
$$f(x) - ax \xrightarrow[x \mapsto +\infty]{} \pm \infty$$

On a alors une branche parabolique de direction de pente a.

Exemple:
$$x \mapsto x + \sqrt{x}$$

• Soit
$$f(x) - ax \xrightarrow[x \mapsto +\infty]{} b \in \mathbb{R}$$

On a alors une asymptote d'équation y = ax + b

• Soit f(x) - ax n'a pas de limite.

On n'a rien de plus qu'une direction asymptotique de direction de pente a.

Exemple: $x \mapsto x + \sin x$

Cas 2 :
$$\frac{f(x)}{x}$$
 n'a pas de limite.

Rien à dire.

Exemple: $x \mapsto x \sin x + x$