

Claims

1. Use of a compound for the manufacture of a medicament for the treatment of viral infections, wherein the compound is a compound of formula



Sub A<sup>1</sup>  
5 a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof, wherein  
-a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- represents a bivalent radical of formula

- CH=CH-CH=CH- (a-1);
- N=CH-CH=CH- (a-2);
- CH=N-CH=CH- (a-3);
- CH=CH-N=CH- (a-4); or
- CH=CH-CH=N- (a-5);

10 wherein each hydrogen atom in the radicals (a-1), (a-2), (a-3), (a-4) and (a-5) may optionally be replaced by halo, C<sub>1-6</sub>alkyl, nitro, amino, hydroxy, C<sub>1-6</sub>alkyloxy, polyhaloC<sub>1-6</sub>alkyl, carboxyl, aminoC<sub>1-6</sub>alkyl, mono- or di(C<sub>1-4</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxycarbonyl, hydroxyC<sub>1-6</sub>alkyl, or a radical of formula

15   
wherein =Z is =O, =CH-C(=O)-NR<sup>5a</sup>R<sup>5b</sup>, =CH<sub>2</sub>, =CH-C<sub>1-6</sub>alkyl, =N-OH or  
20 =N-O-C<sub>1-6</sub>alkyl;

Q is a radical of formula



25 wherein Alk is C<sub>1-6</sub>alkanediyl;

-93-

~~Y<sup>1</sup>~~ is a bivalent radical of formula  $-NR^2-$  or  $-CH(NR^2R^4)-$ ;

~~X<sup>1</sup>~~ is  $NR^4$ , S,  $S(=O)$ ,  $S(=O)_2$ , O,  $CH_2$ , C(=O), C(=CH<sub>2</sub>), CH(OH), CH(CH<sub>3</sub>), CH(OCH<sub>3</sub>), CH(SCH<sub>3</sub>), CH(NR<sup>5a</sup>R<sup>5b</sup>),  $CH_2-NR^4$  or  $NR^4-CH_2$ ;

~~X<sup>2</sup>~~ is a direct bond,  $CH_2$ , C(=O),  $NR^4$ ,  $C_{1-4}alkyl-NR^4$ ,  $NR^4-C_{1-4}alkyl$ ;

5 ~~t~~ is 2, 3, 4 or 5;

~~u~~ is 1, 2, 3, 4 or 5;

~~v~~ is 2 or 3; and

10 whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be replaced by  $R^3$ ; with the proviso that when  $R^3$  is hydroxy or  $C_{1-6}alkyloxy$ , then  $R^3$  can not replace a hydrogen atom in the  $\alpha$  position relative to a nitrogen atom;

G is a direct bond or  $C_{1-10}alkanediyl$ ;

~~R<sup>1</sup>~~ is a monocyclic heterocycle selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl,

pyridazinyl, pyrimidinyl, pyrrolyl, furanyl, tetrahydrofuranyl, thienyl, oxazolyl,

thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, and isothiazolyl; and each

heterocycle may optionally be substituted with 1 or where possible more, such as 2, 3 or 4, substituents selected from halo, hydroxy, amino, cyano, carboxy,  $C_{1-6}alkyl$ ,

$C_{1-6}alkyloxy$ ,  $C_{1-6}alkylthio$ ,  $C_{1-6}alkyloxyC_{1-6}alkyl$ , aryl,  $arylC_{1-6}alkyl$ ,

aryl $C_{1-6}alkyloxy$ , hydroxy $C_{1-6}alkyl$ , mono-or di( $C_{1-6}alkyl$ )amino, mono-or

di( $C_{1-6}alkyl$ )amino $C_{1-6}alkyl$ , polyhalo $C_{1-6}alkyl$ ,  $C_{1-6}alkylcarbonylamino$ ,  $C_{1-6}alkyl-$

$SO_2-NR^{5c}-$ , aryl- $SO_2-NR^{5c}-$ ,  $C_{1-6}alkyloxycarbonyl$ ,  $-C(=O)-NR^{5c}R^{5d}$ ,  $HO(-CH_2-CH_2-$

$O)_n-$ , halo(- $CH_2-CH_2-O)_n-$ ,  $C_{1-6}alkyloxy(-CH_2-CH_2-O)_n-$ , aryl $C_{1-6}alkyloxy(-CH_2-$

$CH_2-O)_n-$  and mono-or di( $C_{1-6}alkyl$ )amino(- $CH_2-CH_2-O)_n-$ ;

each n independently is 1, 2, 3 or 4;

25 ~~R<sup>2</sup>~~ is hydrogen, formyl,  $C_{1-6}alkylcarbonyl$ , Hetcarbonyl, pyrrolidinyl, piperidinyl,

homopiperidinyl,  $C_{3-7}cycloalkyl$  substituted with  $N(R^6)_2$ , or  $C_{1-10}alkyl$  substituted

with  $N(R^6)_2$  and optionally with a second, third or fourth substituent selected from amino, hydroxy,  $C_{3-7}cycloalkyl$ ,  $C_{2-5}alkanediyl$ , piperidinyl, mono-or di( $C_{1-6}alkyl$ )amino,

$C_{1-6}alkyloxycarbonylamino$ , aryl and aryloxy;

30 ~~R<sup>3</sup>~~ is hydrogen, hydroxy,  $C_{1-6}alkyl$ ,  $C_{1-6}alkyloxy$ ,  $arylC_{1-6}alkyl$  or  $arylC_{1-6}alkyloxy$ ;

~~R<sup>4</sup>~~ is hydrogen,  $C_{1-6}alkyl$  or  $arylC_{1-6}alkyl$ ;

~~R<sup>5a</sup>, R<sup>5b</sup>, R<sup>5c</sup> and R<sup>5d</sup>~~ each independently are hydrogen or  $C_{1-6}alkyl$ ; or

~~R<sup>5a</sup> and R<sup>5b</sup>, or R<sup>5c</sup> and R<sup>5d</sup>~~ taken together form a bivalent radical of formula  $-(CH_2)_s-$  wherein s is 4 or 5;

35 ~~R<sup>6</sup>~~ is hydrogen,  $C_{1-4}alkyl$ , formyl, hydroxy $C_{1-6}alkyl$ ,  $C_{1-6}alkylcarbonyl$  or

$C_{1-6}alkyloxycarbonyl$ ;

PCT/EP2000/05676

SUV  
PA

arylis phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C<sub>1-6</sub>alkyl, hydroxyC<sub>1-6</sub>alkyl, polyhaloC<sub>1-6</sub>alkyl, and C<sub>1-6</sub>alkyloxy;

Het is pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl.

5

*Suj A1*

## 2. A compound of formula (I')



a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof, wherein

10 -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- represents a radical of formula



15 wherein each hydrogen atom in the radicals (a-1), (a-2), (a-3), (a-4) and (a-5) may

optionally be replaced by halo, C<sub>1-6</sub>alkyl, nitro, amino, hydroxy,

C<sub>1-6</sub>alkyloxy, polyhaloC<sub>1-6</sub>alkyl, carboxyl, aminoC<sub>1-6</sub>alkyl, mono- or

di(C<sub>1-4</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxycarbonyl, hydroxyC<sub>1-6</sub>alkyl, or a

radical of formula



20 wherein =Z is =O, =CH-C(=O)-NR<sup>5a</sup>R<sup>5b</sup>, =CH<sub>2</sub>, =CH-C<sub>1-6</sub>alkyl, =N-OH or  
=N-O-C<sub>1-6</sub>alkyl;

Q is a radical of formula



25 (b-1)



(b-2)



(b-3)



(b-4)

-95-



(b-5)



(b-6)



(b-7)



(b-8)

wherein Alk is C<sub>1-6</sub>alkanediyl;

*Y¹* is a bivalent radical of formula -NR<sup>2</sup>- or -CH(NR<sup>2</sup>R<sup>4</sup>)-;

*X¹* is NR<sup>4</sup>, S, S(=O), S(=O)<sub>2</sub>, O, CH<sub>2</sub>, C(=O), C(=CH<sub>2</sub>), CH(OH), CH(CH<sub>3</sub>), CH(OCH<sub>3</sub>), CH(SCH<sub>3</sub>), CH(NR<sup>5a</sup>R<sup>5b</sup>), CH<sub>2</sub>-NR<sup>4</sup> or NR<sup>4</sup>-CH<sub>2</sub>;

*X²* is a direct bond, CH<sub>2</sub>, C(=O), NR<sup>4</sup>, C<sub>1-4</sub>alkyl-NR<sup>4</sup>, NR<sup>4</sup>-C<sub>1-4</sub>alkyl;

*t* is 2, 3, 4 or 5;

*u* is 1, 2, 3, 4 or 5;

*v* is 2 or 3; and

5 10 whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be replaced by R<sup>3</sup>; with the proviso that when R<sup>3</sup> is hydroxy or C<sub>1-6</sub>alkyloxy, then R<sup>3</sup> can not replace a hydrogen atom in the α position relative to a nitrogen atom;

G is a direct bond or C<sub>1-10</sub>alkanediyl;

15 15 R<sup>1</sup> is a monocyclic heterocycle selected from pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, pyrrolyl, imidazolyl and pyrazolyl; and each heterocycle may optionally be substituted with 1 or where possible more, such as 2, 3 or 4, substituents selected from halo, hydroxy, amino, cyano, carboxy, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy, C<sub>1-6</sub>alkylthio, C<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkyl, aryl, arylC<sub>1-6</sub>alkyl, arylC<sub>1-6</sub>alkyloxy, hydroxyC<sub>1-6</sub>alkyl, mono- or di(C<sub>1-6</sub>alkyl)amino, mono- or di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, polyhaloC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyl-carbonylamino, C<sub>1-6</sub>alkyl-SO<sub>2</sub>-NR<sup>5c</sup>-, aryl-SO<sub>2</sub>-NR<sup>5c</sup>-, C<sub>1-6</sub>alkyloxycarbonyl, -C(=O)-NR<sup>5c</sup>R<sup>5d</sup>, HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, halo(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, C<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, arylC<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>- and mono- or di(C<sub>1-6</sub>alkyl)amino(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-; 20 each n independently is 1, 2, 3 or 4;

25 25 R<sup>2</sup> is hydrogen, formyl, pyrrolidinyl, piperidinyl, homopiperidinyl, C<sub>3-7</sub>cycloalkyl substituted with N(R<sup>6</sup>)<sub>2</sub>, or C<sub>1-10</sub>alkyl substituted with N(R<sup>6</sup>)<sub>2</sub> and optionally with a second, third or fourth substituent selected from amino, hydroxy, C<sub>3-7</sub>cycloalkyl, C<sub>2-5</sub>alkanediyl, piperidinyl, mono- or di(C<sub>1-6</sub>alkyl)amino, C<sub>1-6</sub>alkyloxycarbonylamino, aryl and aryloxy;

30 30 R<sup>3</sup> is hydrogen, hydroxy, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy, arylC<sub>1-6</sub>alkyl or arylC<sub>1-6</sub>alkyloxy;

R<sup>4</sup> is hydrogen, C<sub>1-6</sub>alkyl or arylC<sub>1-6</sub>alkyl;

R<sup>5a</sup>, R<sup>5b</sup>, R<sup>5c</sup> and R<sup>5d</sup> each independently are hydrogen or C<sub>1-6</sub>alkyl; or

~~R<sup>4a</sup> and R<sup>5b</sup>, or R<sup>5c</sup> and R<sup>5d</sup> taken together form a bivalent radical of formula -(CH<sub>2</sub>)<sub>s</sub>- wherein s is 4 or 5;~~

~~R<sup>6</sup> is hydrogen, C<sub>1-4</sub>alkyl, formyl, hydroxyC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylcarbonyl or C<sub>1-6</sub>alkyloxycarbonyl;~~

5 aryl is phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C<sub>1-6</sub>alkyl, hydroxyC<sub>1-6</sub>alkyl, polyhaloC<sub>1-6</sub>alkyl, and C<sub>1-6</sub>alkyloxy;

provided that when G is methylene, and R<sup>1</sup> is 2-pyridyl, 3-pyridyl, 6-methyl-2-pyridyl, 2-pyrazinyl or 5-methyl-imidazol-4-yl, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- is -CH=CH-CH=CH- or -N=CH-CH=CH-, then Q is other than

10



3. A compound as claimed in claim 2 wherein the following restrictions apply :

15



wherein X<sup>1</sup> is NR<sup>4</sup>, O, S, S(=O), S(=O)<sub>2</sub>, CH<sub>2</sub>, C(=O), C(=CH<sub>2</sub>) or CH(CH<sub>3</sub>), then R<sup>1</sup> is other than pyridyl, pyridyl substituted with C<sub>1-6</sub>alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C<sub>1-6</sub>alkyl.

4. A compound as claimed in claim 2 wherein the following restrictions apply :

20



wherein X<sup>1</sup> is NR<sup>4</sup>, O, S, S(=O), S(=O)<sub>2</sub>, CH<sub>2</sub>, C(=O), C(=CH<sub>2</sub>) or CH(CH<sub>3</sub>), then R<sup>1</sup> is other than pyridyl, pyridyl substituted with C<sub>1-6</sub>alkyl, pyridyl substituted with 1 or 2 C<sub>1-6</sub>alkyloxy, pyrazinyl, pyrrolyl, pyrrolyl substituted with C<sub>1-6</sub>alkyl, imidazolyl and imidazolyl substituted with C<sub>1-6</sub>alkyl.

25

5. A compound as claimed in claim 2 wherein the following restrictions apply :



40620022122222

wherein  $X^1$  is  $NR^4$ , O, S,  $S(=O)$ ,  $S(=O)_2$ ,  $CH_2$ ,  $C(=O)$ ,  $C(=CH_2)$  or  $CH(CH_3)$ , then  $R^1$  is other than pyridyl, pyridyl substituted with  $C_{1-6}$ alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with  $C_{1-6}$ alkyl.

5 6. A compound as claimed in claim 2 wherein the following restrictions apply :



*Sub  
AI*  
then  $R^1$  is other than pyridyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with  $C_{1-6}$ alkyl.

10 7. A compound as claimed in claim 2 wherein the following restrictions apply :



wherein  $X^2$  is  $CH_2$  or a direct bond, then  $R^1$  is other than pyridyl, pyridyl substituted with  $C_{1-6}$ alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with  $C_{1-6}$ alkyl.

15 8. A compound as claimed in claim 2 wherein the compound is selected from  $(\pm)-2-[[2-[(1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-7-methyl-1H-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol$  tetrahydrochloride monohydrate;  $2-[[2-[(1-(2-aminoethyl)-4-piperidinyl]amino]-1H-benzimidazol-1-yl]methyl]-3$ -pyridinol;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(1,4-dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine$  monohydrate;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine$ ;  $(\pm)-2-[[2-[(3-amino-2-hydroxypropyl)amino]-1H-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol$ ;  $N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(3-(2-ethoxyethoxy)-6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine$  tetrahydrochloride dihydrate;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-chloro-1,4-dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine$ ;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(2-chloro-1,4-dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine$ ;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-methyl-1-[(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine$ ;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(3,5,6-trimethylpyrazinyl)methyl]-1H-benzimidazol-2-amine$  tetrahydrochloride trihydrate;  $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(3,5,6-trimethylpyrazinyl)methyl]-1H-benzimidazol-2-amine$ ;  $N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(3-(2-chloroethoxy)-$

*Sub  
A'*

6-methyl-2-pyridinyl]methyl]-*1H*-benzimidazol-2-amine trihydrochloride dihydrate; ( $\pm$ )-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[3-amino-2-pyridinyl)methyl]-*1H*-benzimidazol-2-amine tetrahydrochloride trihydrate; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-4-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride; ( $\pm$ )-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-7-methyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl]methyl]-6-methyl-3-pyridinol; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-6-chloro-4-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride 2-propanolate (1:1); ( $\pm$ )-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-4-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol; ( $\pm$ )-2-[[2-[[1-(2-aminopropyl)-4-piperidinyl]amino]-4-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride trihydrate; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-7-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride dihydrate; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-6-bromo-4-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride monohydrate; ( $\pm$ )-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol; ( $\pm$ )-*N*-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-4-methyl-1-[(6-methyl-2-pyridinyl)methyl]-*1H*-benzimidazol-2-amine; a prodrug, *N*-oxide, addition salt, quaternary amine, metal complex and stereochemically isomeric form thereof.

9. A compound selected from

2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-5-chloro-7-methyl-*1H*-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride tetrahydrate; *N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2,4-dimethyl-5-oxazolyl)methyl]-*1H*-benzimidazol-2-amine; *N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2,5-dimethyl-4-oxazolyl)methyl]-*1H*-benzimidazol-2-amine trihydrochloride monohydrate; 4-[[3-[[5-(methoxymethyl)-2-furanyl]methyl]-3*H*-imidazo[4,5-*b*]pyridine-2-yl]methyl]-1-piperidineetanamine; *N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(5-methyl-3-isoxazolyl)methyl]-*1H*-benzimidazol-2-amine trihydrochloride monohydrate; *N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methyl-5-oxazolyl)methyl]-*1H*-benzimidazol-2-amine monohydrate; *N*-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methyl-5-oxazolyl)methyl]-*1H*-benzimidazol-2-amine trihydrochloride monohydrate; *N*-[1-(2-aminoethyl)-4-piperidinyl]-3-[(2,4-dimethyl-5-oxazolyl)methyl]-3*H*-imidazo[4,5-*b*]pyridin-2-amine; 4-[[3-[(2-methyl-5-

-99-

*Su b  
A1*

oxazolyl)methyl]-3H-imidazo[4,5-b]pyridin-2-yl]methyl]-1-piperazineethanamine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-(4-thiazolylmethyl)-1*H*-benzimidazol-2-amine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(5-phenyl-1,2,4-oxadiazol-3-yl)methyl]-1*H*-benzimidazol-2-amine trihydrochloride; 5-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino-1*H*-benzimidazol-1-yl]methyl-2-oxazolemethanol tetrahydrochloride dihydrate; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(3-methyl-5-isoxazolyl)methyl]-1*H*-benzimidazol-2-amine trihydrochloride monohydrate; 4-[[1-[[2-(dimethylamino)-4-thiazolyl]methyl]-1*H*-benzimidazol-2-yl]methyl]-1-piperidineethanamine tetrahydrochloride monohydrate 2-propanolate (1:1); ethyl 5-[[2-[[1-[[2-[[1,1-dimethylethoxy)carbonyl]amino]ethyl]-4-piperidinyl]amino]-1*H*-benzimidazol-1-yl]methyl]-2-methyl-4-oxazolecarboxylate; 4-[[1-[(2-methyl-4-thiazolyl)methyl]-1*H*-benzimidazol-2-yl]methyl]-1-piperidineethanamine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methyl-3-furanyl)methyl]-1*H*-benzimidazol-2-amine; ethyl 4-[[3-[(3-hydroxy-6-methyl-2-pyridinyl)methyl]-7-methyl-3*H*-imidazo[4,5-b]pyridine-2-yl]amino]-1-piperidinecarboxylate; 1,1-dimethylethyl 4-[[1-[[3-[2-(dimethylamino)ethoxy]-6-methyl-2-pyridinyl]methyl]-1*H*-benzimidazol-2-yl]amino-1-piperidinecarboxylate; ethyl 4-[[1-[(3-amino-2-pyridinyl)methyl]-1*H*-benzimidazol-2-yl]amino]-1-piperidinecarboxylate; N-[1-(6-methyl-2-pyridinyl)-1*H*-benzimidazol-2-yl]-1-(3-pyridinylcarbonyl)-4-piperidinamine;  
a prodrug, *N*-oxide, addition salt, quaternary amine, metal complex and stereochemically isomeric form thereof.

25 10. A compound as claimed in anyone of claims 2 to 9 for use as a medicine.

11. Use of a compound as claimed in claim 9 for the manufacture of a medicament for the treatment of viral infections.

30 12. Use of a compound according to claim 1 or 11 wherein said viral infection is a respiratory syncytial virus infection.

13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 2 or claim 9.

35 14. A process of preparing a composition as claimed in claim 13 characterized in that a pharmaceutically acceptable carrier is intimately mixed with a therapeutically effective amount of a compound as claimed in claim 2 or claim 9.

-100-

15. A process of preparing a compound as claimed in claim 2, characterized by  
 a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula



5 with  $R^1$ , G, Q and  $-a^1=a^2=a^3=a^4$  defined as in claim 2, and  $W_1$  being a suitable leaving group, in the presence of a suitable base and in a suitable reaction-inert solvent;

10 b) deprotecting an intermediate of formula (IV)



with  $R^1$ , G, and  $-a^1=a^2=a^3=a^4$  defined as in claim 2,  $H-Q_1$  being defined as Q according to claim 2 provided that  $R^2$  or at least one  $R^6$  substituent is hydrogen, and P being a protective group;

15

c) deprotecting and reducing an intermediate of formula (IV-a)



with  $R^1$ , G, and  $-a^1=a^2=a^3=a^4$  defined as in claim 2,  $H-Q_1$  being defined as Q according to claim 2 provided that  $R^2$  or at least one  $R^6$  substituent is hydrogen,

-101-

$Q_{1a}(CH=CH)$  being defined as  $Q_1$  provided that  $Q_1$  comprises an unsaturated bond, and  $P$  being a protective group

d) deprotecting an intermediate of formula (V)



with R<sup>1</sup>, G, and a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup> defined as in claim 2, and H<sub>2</sub>N-Q<sub>2</sub> being defined as Q according to claim 2 provided that both R<sup>6</sup> substituents are hydrogen or R<sup>2</sup> and R<sup>4</sup> are both hydrogen;

e) deprotecting an intermediate of formula (VI)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 2, and H<sub>2</sub>N-Q<sub>2</sub> being defined as Q according to claim 2 provided that both R<sup>6</sup> substituents are hydrogen or R<sup>2</sup> and R<sup>4</sup> are both hydrogen, and P being a protective group;

15 f) deprotecting an intermediate of formula (VII) or (VIII)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 2, H-Q<sub>1</sub>(OH) being defined as Q according to claim 2 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen and provided that Q comprises a hydroxy moiety, H<sub>2</sub>N-Q<sub>2</sub>(OH) being defined as Q

-102-

according to claim 2 provided that both R<sup>6</sup> substituents are hydrogen or R<sup>2</sup> and R<sup>4</sup> are both hydrogen and provided that Q comprises a hydroxy moiety, and P being a protective group;

g) amination of an intermediate of formula (IX)



with  $R^1$ , G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 2, and  $H_2N-Q_3H$  being defined as Q according to claim 2 provided that both  $R^6$  substituents are hydrogen or  $R^2$  and  $R^4$  are both hydrogen, and the carbon adjacent to the nitrogen carrying the  $R^6$ , or  $R^2$  and  $R^4$  substituents contains at least one hydrogen, in the presence of a suitable amination reagent:

h) reducing an intermediate of formula (X)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 2, and H<sub>2</sub>N-CH<sub>2</sub>-Q<sub>4</sub> being defined as Q according to claim 2 provided that Q comprises a -CH<sub>2</sub>-NH<sub>2</sub> moiety, in the presence of a suitable reducing agent;

i) reducing an intermediate of formula (X-a)



with G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 2,  $H_2N-CH_2-Q_4$  being defined as Q according to claim 2 provided that Q comprises a  $-CH_2-NH_2$  moiety, and  $R^{1'}$  being defined as  $R^1$  according to claim 2 provided that it comprises at least one substituent, in the presence of a suitable reducing agent and suitable solvent;

25 j) amination of an intermediate of formula (XI)

-103-



with  $R^1$ , G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 2, and  $H_2N-CH_2-CHOH-CH_2-Q_4$  being defined as Q according to claim 2 provided that Q comprises a  $CH_2-CHOH-CH_2-NH_2$  moiety, in the presence of a suitable amination reagent;

k) reacting an intermediate of formula (XII) with formic acid, formamide and ammonia



with  $R^1$ , G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 2, and H-C(=O)-Q<sub>1</sub> being defined as Q according to claim 2 provided that  $R^2$  or at least one  $R^6$  substituent is formyl;

l) amination of an intermediate of formula (XIII) by reaction with an intermediate of formula (XIV)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 2, and R<sup>2a</sup>-NH-HQ<sub>5</sub> being defined as Q according to claim 2 provided that R<sup>2</sup> is other than hydrogen and is represented by R<sup>2a</sup>, R<sup>4</sup> is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R<sup>2</sup> and R<sup>4</sup> substituents, carries also at least one hydrogen atom, in the presence of a suitable reducing agent;

m) reducing an intermediate of formula (XV)

-104-



with  $R^1$ , G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 2, and  
 $(R^6)_2N-[(C_{1-9}alkyl)CH_2OH]-NH-HQ_5$  being defined as Q according to claim 2  
provided that  $R^2$  is other than hydrogen and is represented by  $C_{1-10}$ alkyl substituted  
with  $N(R_6)_2$  and with hydroxy, and the carbon atom carrying the hydroxy, carries  
also two hydrogen atoms, and provided that  $R^4$  is hydrogen, and the carbon atom  
adjacent to the nitrogen atom carrying the  $R^2$  and  $R^4$  substituents, carries also at  
least one hydrogen atom, with a suitable reducing agent;

n) deprotecting an intermediate of formula (XVI), (XVI-a) or (XVI-b)



with G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 2, and H-Q<sub>1</sub> being defined as Q according to claim 2 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen,

-105-

and  $R^{1a}-(A-O-H)_w$ ,  $R^{1a'}-(A-O-H)_2$  and  $R^{1a''}-(A-O-H)_3$  being defined as  $R^1$  according to claim 2 provided that  $R^1$  is substituted with hydroxy, hydroxyC<sub>1-6</sub>alkyl, or HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, with w being an integer from 1 to 4 and P or P<sub>1</sub> being a suitable protecting group, with a suitable acid.

5

*Sub A1*

o) amination of an intermediate of formula (XVII)



with R<sup>1</sup>, G, -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>-, Alk, X<sup>1</sup> R<sup>2</sup> and R<sup>4</sup> defined as in claim 2, in the presence of a suitable amination agent;

10

p) amination of an intermediate of formula (XIX)



15

with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 2, and Q<sub>6</sub>N-CH<sub>2</sub>-C<sub>1-3</sub>alkyl-NR<sup>4</sup> being defined as Q according to claim 2 provided that in the definition of Q, X<sup>2</sup> is C<sub>2-4</sub>alkyl-NR<sup>4</sup>, in the presence of a suitable amination agent;

20

and, if desired, converting compounds of formula (I') into each other following art-known transformations, and further, if desired, converting the compounds of formula (I'), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, preparing stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof.

-106-

*Sub A'*

16. A product containing (a) a compound as defined in claim 2 or 9, and (b) another antiviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment or the prevention of viral infections.

5    17. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 2 or 9, and (b) another antiviral compound.

*Add  
A2*

*Add  
B2*

*Add  
C1*