Week 4: Classification

Slava Mikhaylov

PUBLG088 Advanced Quantitative Methods

Week 4 Outline

Classification

Maximum Likelihood

Logistic regression with several variables

Confounding

Logistic regression with more than two classes

Discriminant Analysis

Bayes theorem for classification Linear Discriminant Analysis when p>1 Other forms of Discriminant Analysis Naive Bayes

Logistic Regression versus LDA

Classification

- ▶ Qualitative variables take values in an unordered set C, such as: eye color \in {brown,blue,green}; email \in {spam, ham}.
- ▶ Given a feature vector X and a qualitative response Y taking values in the set \mathcal{C} , the classification task is to build a function $\mathcal{C}(\mathcal{X})$ that takes as input the feature vector X and predicts its value for Y; i.e. $\mathcal{C}(\mathcal{X}) \in \mathcal{C}$.

Classification

- ▶ Often we are more interested in estimating the probabilities that X belongs to each category in C.
- For example, it is more valuable to have an estimate of the probability that an insurance claim is fraudulent, than a classification fraudulent or not.

Example: Credit Card Default

Can we use Linear Regression?

Suppose for the Default classification task that we code

$$Y = \begin{cases} 0 & \text{if No} \\ 1 & \text{if Yes.} \end{cases}$$

Can we simply perform a linear regression of Y on X and classify as Yes if $\hat{Y} > 0.5$?

- In this case of a binary outcome, linear regression does a good job as a classifier, and is equivalent to linear discriminant analysis which we discuss later.
- ▶ Since in the population E(Y|X=x) = Pr(Y=1|X=x), we might think that regression is perfect for this task.
- However, linear regression might produce probabilities less than zero or bigger than one. Logistic regression is more appropriate.

Linear versus Logistic Regression

- ▶ The orange marks indicate the response *Y*, either 0 or 1.
- ▶ Linear regression does not estimate Pr(Y = 1|X) well.
- Logistic regression seems well suited to the task.

Linear Regression continued

Now suppose we have a response variable with three possible values. A patient presents at the emergency room, and we must classify them according to their symptoms.

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

- ▶ This coding suggests an ordering, and in fact implies that the difference between *stroke* and *drug overdose* is the same as between *drug overdose* and *epileptic seizure*.
- Linear regression is not appropriate here.
- Multiclass Logistic Regression or Discriminant Analysis are more appropriate.

Logistic Regression

Let's write p(X) = Pr(Y = 1|X) for short and consider using balance to predict default. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}.$$

 $(e \approx 2.71828 \text{ is a mathematical constant } [\text{ Euler's number.}])$

- ▶ It is easy to see that no matter what values β_0 , β_1 or X take, p(X) will have values between 0 and 1.
- ▶ A bit of rearrangement gives

$$log(\frac{p(X)}{1-p(X)}) = \beta_0 + \beta_1 X.$$

▶ This monotone transformation is called the log odds or logit transformation of p(X).

Linear versus Logistic Regression

▶ Logistic regression ensures that our estimate for p(X) lies between 0 and 1.

Maximum Likelihood

▶ We use maximum likelihood to estimate the parameters.

$$\ell(\beta_0, \beta) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i)).$$

- This likelihood gives the probability of the observed zeros and ones in the data.
- ▶ We pick β_0 and β_1 to maximize the likelihood of the observed data.
- Most statistical packages can fit linear logistic regression models by maximum likelihood. In R we use the glm function.

```
library(ISLR)
data("Default")
names(Default)
## [1] "default" "student" "balance" "income"
```

logit <- glm(Default\$default ~ Default\$balance, family = binomial)</pre>

```
summary(logit)
##
## Call:
## glm(formula = Default$default ~ Default$balance, family = binomial)
##
## Deviance Residuals:
      Min 10 Median 30 Max
##
## -2.2697 -0.1465 -0.0589 -0.0221 3.7589
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
## Default$balance 5.499e-03 2.204e-04 24.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1596.5 on 9998 degrees of freedom
## AIC: 1600.5
##
## Number of Fisher Scoring iterations: 8
```

Making Predictions

▶ What is our estimated probability of *default* for someone with a balance of \$1000?

$$\hat{\rho}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

▶ With a balance of \$2000?

$$\hat{\rho}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$$

```
logit2 <- glm(Default$default ~ Default$student, family = binomial)</pre>
summary(logit2)
##
## Call:
## glm(formula = Default$default ~ Default$student, family = binomial)
##
## Deviance Residuals:
##
      Min 1Q Median 3Q Max
## -0.2970 -0.2970 -0.2434 -0.2434 2.6585
##
## Coefficients:
##
```

```
Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.50413 0.07071 -49.55 < 2e-16 ***
## Default$studentYes 0.40489 0.11502 3.52 0.000431 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
```

```
##
```

```
##
      Null deviance: 2920.6 on 9999 degrees of freedom
```

Residual deviance: 2908.7 on 9998 degrees of freedom

ATC: 2912.7

Number of Fisher Scoring iterations: 6

##

Making Predictions (binary variable)

$$\widehat{Pr}(default = Yes|student = Yes) = \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431$$

$$\widehat{Pr}(default = Yes|student = No) = \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292$$

Logistic regression with several variables

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p}}$$

```
logit3 <- glm(Default$default ~ Default$balance + Default$income + Default$stud
summary(logit3)
##
## Call:
## glm(formula = Default$default ~ Default$balance + Default$income +
##
      Default$student, family = binomial)
##
## Deviance Residuals:
##
      Min 1Q Median 3Q
                                        Max
## -2.4691 -0.1418 -0.0557 -0.0203 3.7383
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
## Default$balance 5.737e-03 2.319e-04 24.738 < 2e-16 ***
## Default$income 3.033e-06 8.203e-06 0.370 0.71152
## Default$studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2920.6 on 9999 degrees of freedom
##
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5
```

##

Number of Figher Cooring itemsticas. O

Why is coefficient for student negative, while it was positive before?

Confounding

- ► Students tend to have higher balances than non-students, so their marginal default rate is higher than for non-students.
- ▶ But for each level of balance, students default less than non-students.
- Multiple logistic regression can tease this out.

Example: South African Heart Disease

- ▶ 160 cases of MI (myocardial infarction) and 302 controls (all male in age range 15-64), from Western Cape, South Africa in early 80s.
- Overall prevalence very high in this region: 5.1%.
- Measurements on seven predictors (risk factors), shown in scatterplot matrix.
- Goal is to identify relative strengths and directions of risk factors.
- This was part of an intervention study aimed at educating the public on healthier diets.

```
library(ElemStatLearn)
data("SAheart")
names(SAheart)
## [1] "sbp"
```

"adiposity" "famhist"

"chd"

"age"

"tobacco" "ldl"

"obesity" "alcohol"

##

[6] "typea"


```
heartfit <- glm(chd ~ . , data = SAheart, family = binomial)
summary(heartfit)
##
## Call:
## glm(formula = chd ~ ., family = binomial, data = SAheart)
##
## Deviance Residuals:
##
      Min 1Q Median 3Q Max
## -1.7781 -0.8213 -0.4387 0.8889 2.5435
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.1507209 1.3082600 -4.701 2.58e-06 ***
## sbp 0.0065040 0.0057304 1.135 0.256374
## tobacco 0.0793764 0.0266028 2.984 0.002847 **
## ldl 0.1739239 0.0596617 2.915 0.003555 **
## adiposity 0.0185866 0.0292894 0.635 0.525700
## famhistPresent 0.9253704 0.2278940 4.061 4.90e-05 ***
## typea 0.0395950 0.0123202 3.214 0.001310 **
## obesity -0.0629099 0.0442477 -1.422 0.155095
## alcohol 0.0001217 0.0044832 0.027 0.978350
## age 0.0452253 0.0121298 3.728 0.000193 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

(Dispersion parameter for binomial family taken to be 1)

##

Logistic regression with more than two classes

- ▶ So far we have discussed logistic regression with two classes.
- It is easily generalized to more than two classes.
- One version (used in the R package glmnet) has the symmetric form

$$Pr(Y = k|X) = \frac{e^{\beta_{0k} + \beta_{1k}X_1 + ... + \beta_{pk}X_p}}{\sum_{\ell=1}^{K} e^{\beta_{0\ell} + \beta_{1\ell}X_1 + ... + \beta_{p\ell}X_p}}$$

- Here there is a linear function for each class.
- Multiclass logistic regression is also referred to as multinomial regression.

Discriminant Analysis

- ▶ Here the approach is to model the distribution of X in each of the classes separately, and then use Bayes theorem to flip things around and obtain Pr(Y|X).
- ▶ When we use normal (Gaussian) distributions for each class, this leads to linear or quadratic discriminant analysis.
- However, this approach is quite general, and other distributions can be used as well. Here, we will focus on normal distributions.

Bayes theorem for classification

- Thomas Bayes was a famous mathematician whose name represents a big subfield of statistical and probabilistic modeling.
- ▶ Here we focus on a simple result, known as Bayes theorem:

$$Pr(Y = k|X = x) = \frac{Pr(X = x|Y = k) \times Pr(Y = k)}{Pr(X = x)}$$

▶ One writes this slightly differently for discriminant analysis:

$$Pr(Y = k|X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)},$$

where

- ▶ $f_k(x) = Pr(X = x | Y = k)$ is the density for X in class k. Here we will use normal densities for these, separately in each class.
- $\pi_k = Pr(Y = k)$ is the marginal or prior probability for class k.

Why discriminant analysis?

- When the classes are well-separated, the parameter estimates for the logistic regression model are surprisingly unstable. Linear discriminant analysis does not suffer from this problem.
- ▶ If *n* is small and the distribution of the predictors *X* is approximately normal in each of the classes, the linear discriminant model is again more stable than the logistic regression model.
- Linear discriminant analysis is popular when we have more than two response classes, because it also provides low-dimensional views of the data.

Linear Discriminant Analysis when p = 1

► The Gaussian density has the form

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} e^{-\frac{1}{2}(\frac{x-\mu_k}{\sigma_k})^2}$$

- ▶ Here μ_k is the mean, and σ_k^2 the variance (in class k). We will assume that all the $\sigma_k = \sigma$ are the same.
- ▶ Plugging this into Bayes formula, we get a rather complex expression for $p_k(x) = Pr(Y = k|X = x)$:

$$f_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\mu_k}{\sigma}\right)^2}}{\sum_{\ell=1}^K \pi_\ell \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\mu_\ell}{\sigma}\right)^2}}$$

There are simplifications and cancellations.

Discriminant functions

▶ To classify at the value X = x, we need to see which of the $p_k(x)$ is largest. Taking logs, and discarding terms that do not depend on k, we see that this is equivalent to assigning x to the class with the largest discriminant score:

$$\delta_k(x) = x \times \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

- ▶ Note that $\delta_k(x)$ is a linear function of x.
- ▶ If there are K=2 classes and $\pi_1=\pi_2=0.5$, then one can see that the decision boundary is at

$$x=\frac{\mu_1+\mu_2}{2}.$$

- Example with $\mu_1 = -1.5, \ \mu_2 = 1.5, \ \pi_1 = \pi_2 = 0.5$, and $\sigma^2 = 1$.
- Typically we don't know these parameters; we just have the training data.
- In that case we simply estimate the parameters and plug them into the rule.

Estimating the parameters

- $\hat{\pi}_k = \frac{n_k}{n}$;
- $\hat{\sigma}^2 = \frac{1}{n-K} \sum_{k=1}^K \sum_{i:y_i=k} (x_i \hat{\mu}_k)^2 = \sum_{k=1}^K \frac{n_k 1}{n-K} \times \hat{\sigma}_k^2$
- ▶ where $\hat{\sigma}_k^2 = \frac{1}{n_k 1} \sum_{i:y_i = k} (x_i \hat{\mu}_k)^2$ is the usual formula for the estimated variance in the *k*th class.

Linear Discriminant Analysis when p > 1

- ► Density: $f(x) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$
- Discriminant function: $\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$
- ▶ Despite its complex form, $\delta_k(x) = c_{k0} + c_{k1}x_1 + c_{k2}x_2 + \cdots + c_{kp}x_p$ a linear function.

Illustration: p = 2 and K = 3 classes

- ▶ Here $\pi_1 = \pi_2 = \pi_3 = 1/3$.
- ► The dashed lines are known as the Bayes decision boundaries.
- Were they known, they would yield the fewest misclassification errors, among all possible classifiers.

From $\delta_k(x)$ to probabilities

▶ Once we have estimates $\delta_k(x)$, we can turn these into estimates for class probabilities:

$$\widehat{Pr}(Y = k | X = x) = \frac{e^{\hat{\delta}_k(x)}}{\sum_{\ell=1}^K e^{\hat{\delta}_\ell(x)}}.$$

- So classifying to the largest $\hat{\delta}_k(x)$ amounts to classifying to the class for which $\widehat{Pr}(Y=k|X=x)$ is largest.
- When K = 2, we classify to class 2 if $\widehat{Pr}(Y = 2|X = x) \ge 0.5$, else to class 1.

LDA on Credit Data

		True	Default	Status
		No	Yes	Total
Predicted	No	9644	252	9896
Default Status	Yes	23	81	104
	Total	9667	333	10000

- ► (23 + 252) / 10000 errors a 2.75% misclassification rate.
- Some caveats:
 - ▶ This is training error, and we may be overfitting. Not a big concern here since n = 10000 and p = 4.
 - ▶ If we classified to the prior always to class *No* in this case we would make 333/10000 errors, or only 3.33%.
 - ▶ Of the true *No*'s, we make 23/9667 = 0.2% errors; of the true *Yes*'s, we make 252/333 = 75.7% errors!

Types of errors

- ► False positive rate: The fraction of negative examples that are classified as positive 0.2% in example.
- ► False negative rate: The fraction of positive examples that are classified as negative 75.7% in example.
- We produced this table by classifying to class Yes if

$$\widehat{Pr}(Default = Yes|Balance, Student) \ge 0.5$$

▶ We can change the two error rates by changing the threshold from 0.5 to some other value in [0,1]:

$$\widehat{Pr}(\textit{Default} = \textit{Yes}|\textit{Balance}, \textit{Student}) \geq \textit{threshold},$$
 and vary $\textit{threshold}.$

Varying the threshold

- Error rates are shown as a function of the threshold value for the posterior probability that is used to perform the assignment.
- ▶ The black solid line displays the overall error rate.
- ► The blue dashed line represents the fraction of defaulting customers that are incorrectly classified (False Negative).
- ► The orange dotted line indicates the fraction of errors among the non-defaulting customers (False Positive).
- ▶ In order to reduce the false negative rate, we may want to reduce the threshold to 0.1 or less.

- The ROC plot displays both simultaneously.
- Sometimes we use the AUC or area under the curve to summarize the overall performance.
- ► Higher AUC is good.

$$Pr(Y = k|X = x) = \frac{\pi_k f_k(x)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x)}$$

- When $f_k(x)$ are Gaussian densities, with the same covariance matrix Σ in each class, this leads to linear discriminant analysis.
- ▶ By altering the forms for $f_k(x)$, we get different classifiers.
 - With Gaussians but different Σ_k in each class, we get quadratic discriminant analysis.
 - ▶ With $f_k(x) = \prod_{j=1}^p f_{jk}(x_j)$ (conditional independence model) in each class we get naive Bayes. For Gaussian this means the Σ_k are diagonal.
 - Many other forms, by proposing specific density models for $f_k(x)$, including nonparametric approaches.

Quadratic Discriminant Analysis

- $\delta_k(x) = -\frac{1}{2}(x \mu_k)^T \Sigma_k^{-1}(x \mu_k) + \log \pi_k$
- lacktriangle Because the Σ_k are different, the quadratic terms matter.

Naive Bayes

- Assumes features are independent in each class.
- ▶ Useful when *p* is large, and so multivariate methods like QDA and even LDA break down.
- ▶ Gaussian naive Bayes assumes each Σ_k is diagonal:

$$\delta_k(x) \propto \log \left[\pi_k \prod_{j=1}^p f_{kj}(x_j) \right] = -\frac{1}{2} \sum_{j=1}^p \frac{(x_j - \mu_{kj})^2}{\sigma_{kj}^2} + \log \pi_k$$

- ▶ Can use for mixed feature vectors (qualitative and quantitative). If X_j is qualitative, replace $f_{kj}(x_j)$ with probability mass function (histogram) over discrete categories.
- Despite strong assumptions, naive Bayes often produces good classification results.

Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

$$log\left(\frac{p_1(x)}{1-p_1(x)}\right) = log\left(\frac{p_1(x)}{p_2(x)}\right) = c_0 + c_1x_1 + \dots + c_px_p$$

- So it has the same form as logistic regression.
- ▶ The difference is in how the parameters are estimated.
 - Logistic regression uses the conditional likelihood based on Pr(Y|X) (known as discriminative learning).
 - ▶ LDA uses the full likelihood based on Pr(X, Y) (known as generative learning).
 - Despite these differences, in practice the results are often very similar.
- Note: logistic regression can also fit quadratic boundaries like QDA, by explicitly including quadratic terms in the model.

Summary

- Logistic regression is very popular for classification, especially when K=2.
- ▶ LDA is useful when n is small, or the classes are well separated, and Gaussian assumptions are reasonable. Also when K > 2.
- ▶ Naive Bayes is useful when *p* is very large.
- See Section 4.5 for some comparisons of logistic regression, LDA and KNN.