

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN017 Álgebra Guía de Aprendizaje Lógica

- 1. Símbolos o conectores lógicos
 - \sim Negación
 - ∧ Conjunción
 - ∨ Disyunción
 - ⇒ Implicación o Condicionalidad
 - ⇔ Equivalencia o Bicondicionalidad
- 2. Tipos de proposiciones
- a. **Simples o Atómicas**: Son aquellas afirmaciones, frases, expresiones las cuales presentan un sólo valor de verdad(V o F, no ambas)
- b. Compuestas o Moleculares: Son aquellas proposiciones que son formadas utilizando conectores lógicos(uno o varios). Estas proposiciones puedes estar constituidas por una o más proposiciones simples.
- 3. Clasificación de proposiciones
- a. **Tautología**: Se dice que una proposición es una Tautología si el valor de verdad es siempre ${\bf V}$ independiente del valor de verdad de las proposiciones que la componen.
- b. Contradicción: Se dice que una proposición es una contradicción si el valor de verdad es siempre **F** independiente delvalor de verdad de las proposiciones que la componen.
- c. **Contingencia**: Una proposición que no es Tautología ni Contradicción se denomina Contingencia.

- 4. Equivalencias lógicas
- a. Leyes de morgan

i.
$$\overline{(p \vee q)} \equiv (\overline{p} \wedge \overline{q})$$

ii.
$$\overline{(p \wedge q)} \equiv (\overline{p} \vee \overline{q})$$

b. **Negación**

i.
$$\overline{p \Rightarrow q} \equiv (p \wedge \overline{q})$$

ii.
$$\overline{p \Leftrightarrow q} \equiv (p \wedge \overline{q}) \vee (q \wedge \overline{p})$$

c. Absorción

i.
$$p \lor (p \land q) \equiv p$$

ii.
$$p \land (p \lor q) \equiv p$$

d. Equivalencia

i.
$$(p \Rightarrow q) \equiv (\overline{p} \lor q)$$

ii.
$$(p \Rightarrow q) \equiv (\overline{q} \Rightarrow \overline{p})$$

iii.
$$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

e. Distributividad

i.
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

ii.
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

f. Negación de cuantificadores

i.
$$\overline{\forall x : P(x)} \equiv \exists x : \overline{P(x)}$$

i.
$$\overline{\exists x : P(x)} \equiv \forall x : \overline{P(x)}$$

Ejercicios

- 1. Represente los siguientes enunciados utilizando símbolos lógicos y luego escriba su negación(en símbolos y verbalmente).
- a. Si soy estudioso, constante y sistemático o la prueba es fácil, entonces obtendré buena nota.
- b. Si el profesor es sabio y explica claramente, entonces aprenderé(no se pide el valor de verdad).
- c. Si tengo una relación sentimental o carreteo el fin de semana, enonces me irá mal en la universidad.
- d. Si el profesor me tiene mala y yo siempre estudio, no aprobaré el ramo o lo apruebo y me rio en su cara.
- e. Toda la materia vista en clases ya la conozco por eso no voy a estudiar e igual aprobaré.
- f. Si doy el ramo por segunda o por tercera vez entonces aprobaré.(esta si es falsa)
- 2. Determine el valor de verdad de las proposiciones p,q,r,s sabiendo el valor de verdad de la proposición indicada.
- a. $[(p \land q) \Rightarrow (p \land r)] \lor (p \Rightarrow r)$:F(ayuda:transformar el primer implica con su expresión logicamente equivalente)
- b. $[(p \lor q) \land (p \Rightarrow r)] \Rightarrow [(p \land q) \lor (q \Rightarrow r)]$:F (ayuda: ver cuando una implicancia es falsa y utilizando lo anterior, es decir, cuando una disyunción es falsa se desprende directamente)
- c. $[(p \Rightarrow r) \land (p \Rightarrow (q \land \overline{q}))] \Rightarrow [(r \Rightarrow p) \lor (q \Rightarrow \overline{r})]$:F(ayuda: ver que p y no p es una contradicción, analizar cuando una implicancia es falsa)

3. Determine el valor de verdad de las siguientes proposiciones

- a. $\forall x \in \mathbb{R} : x^2 = -1 \Rightarrow x \text{ es primo.}$
- b. Si $p \Rightarrow (q \lor r)$ es falso, entonces r es falso.
- c. El valor de verdad de $p \vee (q \wedge p)$ depende de q
- d. Dado un universo infinito, entonces el complemento de cualquier subconjunto es infinito.

e.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : \sqrt{x} > 1 \Rightarrow x^2 + y^2 > 1$$

f.
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : \sqrt{x} > 1 \Rightarrow x^2 + y^2 > 1$$

- g. Realice la negación de las proposiciones dadas en los puntos e. y f.
- 4. Reducir las siguientes expresiones.

a.
$$[\overline{(p \lor q)} \Rightarrow (\overline{q} \Rightarrow r)] \lor \overline{(q \land r)}$$

b.
$$[(p \land q) \Rightarrow r] \lor (r \Rightarrow q)$$

Estimados no olviden seguir buscando ejercicios en otros apuntes y textos,una guía, una clase no es suficiente. No piensen que las clases o guías son deficientes, sino que el tiempo no lo permite.