Analysis of Variance an Experimental Design final proposal

Factors that affect Taiwanese to buy new cars

Group 3 110304039 邱士芳 110304036 石瀞捷 We are interested in the factors which affect Taiwanese people's intention to buy a new car. To explore this topic, we designed an experiment of variance analysis. The factors we chose are seasons, years and brands. The following y, which is the monthly amount of new cars being sold.

Y: the monthly amount of new cars being sold in Taiwan. Factors:

- 1. Years: 102, 103, 104, 105, 106, 107, 108, 109, 110, 111
- 2. Seasons: Spring, Summer, Fall, Winter
- 3. Brands: Lexus, Mitsubishi, Subaru, Suzuki, Nissan, Honda, Mazda, Toyota, Volkswagen, Mercedes Benz, Volvo, Porsche, Skoda, Audi, BMW *selection criterion: the brand with high market share in Taiwan

Hypothesis:

- 1. H10: There is a significant difference between seasons. H11: There isn't a significant difference between seasons.
- 2. H20: There is a significant difference between the brands. H21: There is a significant difference between the brands.
- 3. H30: There is a significant difference between the years. H31: There is a significant difference between the years.
- 4. H40: There exist interaction effects H41: There are no interaction effects

Data schema:

	Season	Year	Brand	у
1	fall	102	LEXUS	2630
2	fall	102	MITSUBISHI	88
3	fall	102	SUBARU	1097
4	fall	102	SUZUKI	1010
5	fall	102	TOYOTA	4573
6	fall	102	MAZDA	2998

ANOVA:

```
> model3 = aov(y ~ Year * Season * Brand, data = df3)
> summary(model3)
                   Df
                         Sum Sq
                                  Mean Sa
Year
                   9 1.073e+08 11923995
                   3 1.650e+07
Season
                                  5501485
Brand
                  14 3.734e+09 266698738
                                  713837
Year: Season
                  27 1.927e+07
Year:Brand
                  126 3.368e+08
                                  2673047
Season:Brand
                  42 2.789e+07
                                  664056
Year:Season:Brand 378 1.107e+08
                                   292908
```

We found out that there is a problem of overfitting. To deal with this problem, we transformed the 'year' factor from 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, which have 9 degrees of freedom, to 102-106 and 107-111, which have 1 degree of freedom. The following table are the new data schema and ANOVA:

new data schema:

>	head(d	f7)			
	Season	Year	Brand	у	
1	fall	1	LEXUS	2630	
2	fall	1	MITSUBISHI	88	
3	fall	1	SUBARU	1097	
4	fall	1	SUZUKI	1010	
5	fall	1	TOYOTA	4573	
6	fall	1	MAZDA	2998	

new ANOVA

```
> summary(model7)
                  Df
                        Sum Sq
                                Mean Sq F value
                                                 Pr(>F)
Year
                  1 5.467e+07
                               54665639 73.122 < 2e-16 ***
                  3 1.650e+07
                                          7.359 7.88e-05 ***
Season
                                5501485
Brand
                  14 3.734e+09 266698738 356.743 < 2e-16 ***
                                 304733
Year:Season
                  3 9.142e+05
                                         0.408
                                                  0.748
Year:Brand
                  14 1.501e+08 10721558 14.341 < 2e-16 ***
Season:Brand
                  42 2.789e+07
                                 664056
                                         0.888
                                                  0.673
Year:Season:Brand 42 9.586e+06
                                 228236
                                        0.305
                                                  1.000
Residuals
                 480 3.588e+08
                                 747594
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

from the new ANOVA, we can conclude that:

- **Season:** p = 7.88e 05 < 0.05
 - → There is significant difference between seasons
- **Year**: p < 2e 16 < 0.05
 - → There is significant difference between the years
- **Brand**: p < 2e 16 < 0.05
 - → There is significant difference between the brands
- **Year:Season**: p = 0.748 > 0.05
 - → There is no interaction effect between the year and season
- **Year:Brand**: p < 2e 16 < 0.05
 - $\circ \rightarrow$ There is interaction between between the year and the brands
- **Season:Brand**: p = 0.673 > 0.05
 - \circ \rightarrow There is no interaction effect between seasons and the brands
- **Season:Year:Brand:** p = 1.000 > 0.05
 - →There is no interaction effect between season, the year and the brands.

emeans analysis:

1. Seasons

```
> summary(posthoc_season)
$emmeans
Season emmean SE df lower.CL upper.CL
fall 2970 70.6 480
                        2831
                                  3109
spring 2953 70.6 480
                         2814
                                  3092
summer 2983 70.6 480
                        2844
                                 3121
winter 3351 70.6 480 3212
                                 3490
Results are averaged over the levels of: Year, Brand
Confidence level used: 0.95
$contrasts
contrast
            estimate SE df t.ratio p.value
fall - spring 16.9 99.8 480 0.169 0.9983
fall - summer
                -12.6 99.8 480 -0.126 0.9993
fall - winter -380.8 99.8 480 -3.815 0.0009
spring - summer -29.4 99.8 480 -0.295 0.9911
spring - winter -397.7 99.8 480 -3.983 0.0005
summer - winter -368.3 99.8 480 -3.688 0.0014
Results are averaged over the levels of: Year, Brand
P value adjustment: tukey method for comparing a family of 4 estimates
```

- **fall spring:** The difference in average values between these two seasons is 16.9, the t-ratio is 0.169, and the p-value is 0.9983, indicating that the difference is not significant.
- **fall summer:** The difference in average values between these two seasons is -12.6, the t-ratio is -0.126, and the p-value is 0.9993, suggesting that the difference is not significant.
- **fall winter:** The difference in average values between these two seasons is -380.8, the t-ratio is -3.815, and the p-value is 0.0009, indicating a significant difference.
- **spring summer:** The difference in average values between these two seasons is -29.4, the t-ratio is -0.295, and the p-value is 0.9911, suggesting that the difference is not significant.
- **spring winter:** The difference in average values between these two seasons is -397.7, the t-ratio is -3.983, and the p-value is 0.0005, indicating a significant difference.
- **summer winter:** The difference in average values between these two seasons is -368.3, the t-ratio is -3.688, and the p-value is 0.0014, indicating a significant difference.

2. Years:

```
> summary(posthoc_year)
$emmeans
Year emmean
              SE df lower.CL upper.CL
       2762 49.9 480
                         2664
                                 2860
2
       3366 49.9 480
                         3268
                                 3464
Results are averaged over the levels of: Season, Brand
Confidence level used: 0.95
$contrasts
contrast
              estimate SE df t.ratio p.value
Year1 - Year2
                  -604 70.6 480 -8.551
Results are averaged over the levels of: Season, Brand
```

Year 1 - Year 2: The estimated contrast (difference) in means between Year 1 and Year 2 is -604. The standard error (SE) is 70.6, and the t-ratio is -8.551, with a p-value less than 0.0001, indicating a highly significant difference.

3. Brands:

\$emmeans		C.E.	4.0	1 CI	CI	
Brand				lower.CL		
AUDI	973	137	480	704.8	1242	
BMW	4366	137	480	4097.5	4635	
HONDA	7322	137	480	7053.3	7591	
LEXUS	4193	137	480	3924.5	4462	
MAZDA	4545	137	480	4276.8	4814	
MERCEDES-BENZ	6236	137	480	5967.0	6504	
MITSUBISHI	212	137	480	-56.6	481	
NISSAN	442	137	480	173.2	710	
PORSCHE	941	137	480	672.3	1210	
SKODA	1238	137	480	969.3	1507	
SUBARU	1465	137	480	1196.2	1733	
SUZUKI	1427	137	480	1158.0	1695	
TOYOTA	8074	137	480	7805.3	8343	
VOLKSWAGEN	3023	137	480	2754.1	3291	
V0LV0	1506	137	480	1237.2	1774	

Confidence level used: 0.95

> summary(posthoc_brand) \$emmeans emmean SE df lower.CL upper.CL Brand AUDI 973 137 480 704.8 1242 BMW 4366 137 480 4097.5 4635 7322 137 480 HONDA 7053.3 7591 4193 137 480 3924.5 LEXUS 4462 MAZDA 4545 137 480 4276.8 4814 MERCEDES-BENZ 6236 137 480 5967.0 6504 212 137 480 MITSUBISHI -56.6 481 442 137 480 NISSAN 173.2 710 941 137 480 672.3 PORSCHE 1210 1238 137 480 969.3 SKODA 1507 1465 137 480 1196.2 1733 SUBARU 1427 137 480 1158.0 SUZUKI 1695 7805.3 8074 137 480 TOYOTA 8343 VOLKSWAGEN 3023 137 480 2754.1 3291 V0LV0 1506 137 480 1237.2 1774

Results are averaged over the levels of: Year, Season

Confidence level used: 0.95

\$contrasts					
contrast	estimate	SE	df	t.ratio	p.value
AUDI - BMW	-3392.7	193	480	-17.548	<.0001
AUDI - HONDA	-6348.5	193	480	-32.836	<.0001
AUDI - LEXUS	-3219.7	193	480	-16.653	<.0001
AUDI - MAZDA	-3572.0	193	480	-18.476	<.0001
AUDI - (MERCEDES-BENZ)	-5262.2	193	480	-27.218	<.0001
AUDI - MITSUBISHI	761.4	193	480	3.938	0.0081
AUDI - NISSAN	531.6	193	480	2.750	0.2784
AUDI - PORSCHE	32.5	193	480	0.168	1.0000
AUDI - SKODA	-264.5	193	480	-1.368	0.9896
AUDI - SUBARU	-491.4	193	480	-2.542	0.4127
AUDI - SUZUKI	-453.1	193	480	-2.344	0.5582
AUDI - TOYOTA	-7100.5	193	480	-36.726	<.0001
AUDI - VOLKSWAGEN	-2049.3	193	480	-10.600	<.0001
AUDI - VOLVO	-532.4	193	480	-2.753	0.2763

BMW - HONDA	-2955.8 193 480 -15.288 <.0001
BMW - LEXUS	173.0 193 480 0.895 0.9999
BMW - MAZDA	-179.3 193 480 -0.928 0.9998
BMW - (MERCEDES-BENZ)	-1869.5 193 480 -9.670 <.0001
BMW - MITSUBISHI	4154.1 193 480 21.486 <.0001
BMW - NISSAN	3924.3 193 480 20.298 <.0001
BMW - PORSCHE	3425.2 193 480 17.716 <.0001
BMW - SKODA	3128.2 193 480 16.180 <.0001
BMW - SUBARU	2901.3 193 480 15.006 <.0001
BMW - SUZUKI	2939.6 193 480 15.204 <.0001
BMW - TOYOTA	-3707.8 193 480 -19.178 <.0001
BMW - VOLKSWAGEN	1343.4 193 480 6.948 <.0001
BMW - VOLVO	2860.3 193 480 14.795 <.0001
HONDA - LEXUS	3128.8 193 480 16.183 <.000
HONDA - MAZDA	2776.5 193 480 14.361 <.000
HONDA - (MERCEDES-BENZ)	1086.3 193 480 5.619 <.000
HONDA - MITSUBISHI	7109.9 193 480 36.774 <.000
HONDA - NISSAN	6880.1 193 480 35.586 <.000
HONDA - PORSCHE	6381.0 193 480 33.004 <.000
HONDA - SKODA	6084.0 193 480 31.468 <.000
HONDA - SUBARU	5857.1 193 480 30.295 <.000
HONDA - SUZUKI	5895.4 193 480 30.492 <.000
HONDA - TOYOTA	-752.0 193 480 -3.890 0.009
HONDA - VOLKSWAGEN	4299.2 193 480 22.237 <.000
HONDA - VOLVO	5816.1 193 480 30.083 <.000
LEVUS MAZDA	252 4 102 490 1 922 0 999
LEXUS - MAZDA	-352.4 193 480 -1.822 0.888
LEXUS - (MERCEDES-BENZ)	-2042.5 193 480 -10.565 <.000
LEXUS - MITSUBISHI	3981.1 193 480 20.591 <.000
LEXUS - NISSAN	3751.3 193 480 19.403 <.000
LEXUS - PORSCHE	3252.2 193 480 16.821 <.000
LEXUS - SKODA	2955.2 193 480 15.285 <.000
LEXUS - SUBARU	2728.3 193 480 14.111 <.000
LEXUS - SUZUKI	2766.5 193 480 14.309 <.000
LEXUS - TOYOTA	-3880.8 193 480 -20.073 <.000
LEXUS - VOLKSWAGEN	1170.4 193 480 6.054 <.000
LEXUS - VOLVO	2687.3 193 480 13.900 <.000

MAZDA - (MERCEDES-BENZ)	-1690.2 193 480	-8.742 <.0001
MAZDA - MITSUBISHI	4333.4 193 480	22.414 <.0001
MAZDA - NISSAN	4103.7 193 480	21.225 <.0001
MAZDA – PORSCHE	3604.6 193 480	18.644 <.0001
MAZDA – SKODA	3307.5 193 480	17.107 <.0001
MAZDA – SUBARU	3080.6 193 480	15.934 <.0001
MAZDA - SUZUKI	3118.9 193 480	16.132 <.0001
MAZDA – TOYOTA	-3528.5 193 480	-18.250 <.0001
MAZDA - VOLKSWAGEN	1522.7 193 480	7.876 <.0001
MAZDA - VOLVO	3039.7 193 480	15.722 <.0001
(MERCEDES-BENZ) - MITSUBISHI	6023.6 193 480	31.156 <.0001
(MERCEDES-BENZ) - NISSAN	5793.9 193 480	29.968 <.0001
(MERCEDES-BENZ) - PORSCHE	5294.8 193 480	27.386 <.0001
(MERCEDES-BENZ) - SKODA	4997.7 193 480	25.850 <.0001
(MERCEDES-BENZ) - SUBARU	4770.8 193 480	24.676 <.0001
(MERCEDES-BENZ) - SUZUKI	4809.1 193 480	24.874 <.0001
(MERCEDES-BENZ) - TOYOTA	-1838.3 193 480	-9.508 <.0001
(MERCEDES-BENZ) - VOLKSWAGEN	3212.9 193 480	16.618 <.0001
(MERCEDES-BENZ) - VOLVO	4729.9 193 480	24.464 <.0001

data file:

https://drive.google.com/drive/folders/1mz-aHphb4PrHY99LLbVRSvrcw1JexmWs

data resource:

https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=11200