

(a)	(i)	Write an equation, including state symbols, for the reaction that takes place when a sample of anhydrous calcium nitrate, $Ca(NO_3)_2$, is heated strongly in a test-tube.	ple
	(ii)	Describe what will be seen during this reaction.	[2]
			[2]
b)	Des	scribe and explain how the solubility of the Group 2 sulfates varies down the group.	
			[4]
		[Total:	: 8]

2.	970	01_s	s21_qp_42 Q2
2	(a)	Sta	te and explain the trend observed in the thermal stability of the Group 2 nitrates.
			[3]
	(b)	(i)	$\label{eq:lead} \mbox{Lead(II) nitrate, $Pb(NO_3)_2$, decomposes on heating in a similar manner to the Group 2 nitrates.}$
			Write an equation for the decomposition of lead(II) nitrate.
			[1]
		(ii)	Suggest how the ease of decomposition of $Pb(NO_3)_2$ would compare to that of $Ba(NO_3)_2$. Explain your answer. You may find it useful to refer to the <i>Data Booklet</i> .
			[1]
	(c)	(i)	Barium ethanedioate, ${\rm BaC_2O_4}$, decomposes on heating to produce barium oxide and a mixture of two different gases.
			Construct an equation for the decomposition of barium ethanedioate.
			[1]

(ii) An impure sample of BaC_2O_4 , of mass 0.500 g, is added to 50.0 cm³ of 0.0200 mol dm⁻³ acidified MnO_4 ⁻(aq), an excess. A redox reaction takes place and all the BaC_2O_4 reacts.

The resulting solution, containing unreacted acidified MnO_4^- , is titrated with 0.0500 mol dm⁻³ $Fe^{2+}(aq)$.

The end-point is reached when $30.40\,\mathrm{cm^3}$ of $0.0500\,\mathrm{mol\,dm^{-3}}$ Fe²⁺(aq) has been added.

$$C_2O_4^{2-} \rightleftharpoons 2CO_2 + 2e^ MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$$
 $Fe^{2+} \rightleftharpoons Fe^{3+} + e^-$

Calculate the percentage by mass of BaC_2O_4 in the 0.500 g impure sample. Show your working.

 $[M_r: BaC_2O_4, 225.3]$

percentage by mass of
$$BaC_2O_4 = \dots$$
 [4]

(d) Barium hydroxide, Ba(OH)₂, is completely dissociated in aqueous solution.

Calculate the pH of 0.120 mol dm⁻³ Ba(OH)₂(aq) at 298 K.

[Total: 12]

	8 qp 42 Q1
3. 9701 s1	

a) ⊏x	plain why $SiCl_{\scriptscriptstyle 4}$ has a low boiling point.
	[2]
b) SiC	$\mathcal{C}l_4$ reacts with water to produce an acidic solution.
(i)	Write an equation for this reaction.
	[1]
(ii)	Describe two visual observations when silicon tetrachloride is added drop by drop to a small amount of water.
	1
	2[2]
(iii)	A sample of $0.8505\mathrm{g}$ of $\mathrm{SiC}l_4$ is added to $800\mathrm{cm}^3$ of water. All of the soluble acidic product is dissolved in the water.
	Calculate the pH of the solution obtained.
	pH = [3]
	pH =[3]

(c)	(i)	Silicon tetrach	iloride can b	oe prepared	according t	o reaction	1.
-----	-----	-----------------	---------------	-------------	-------------	------------	----

$${\rm Si(s)} \ + \ 2{\rm C}\,l_2({\rm g}) \ \to \ {\rm SiC}\,l_4({\rm I}) \quad \Delta {\rm S}^{\,\rm e} = -225.7\,{\rm J}\,{\rm K}^{-1}\,{\rm mol}^{-1}$$

standard entropy of silicon, S° Si(s)	18.7 J K ⁻¹ mol ⁻¹	
standard entropy of silicon tetrachloride, S° SiC l_{4} (I)	239.0 J K ⁻¹ mol ⁻¹	

Calculate the standard entropy of chlorine, S° $Cl_2(g)$. Show all your working.

$$S^{e} Cl_{2}(g) = J K^{-1} mol^{-1} [2]$$

(ii)	Explain why	y the entropy	change for	r reaction 1	is negative.
------	-------------	---------------	------------	--------------	--------------

(d) The standard enthalpy change of formation of silicon tetrachloride, $\Delta H_{\rm f}^{\rm e}$ SiC l_4 (I), is $-640\,{\rm kJ\,mol^{-1}}$.

Reaction 1 is spontaneous at lower temperatures, but it is not spontaneous at very high temperatures.

Calculate the temperature above which reaction 1 is ${f not}$ spontaneous.

temperature = K [2]

[Total: 13]

4. 9701_w19_qp_42 Q4

4 The table shows some standard entropy data.

substance	standard entropy, S ^e /JK ⁻¹ mol ⁻¹
PbO ₂ (s)	77
PbO(s)	69
O ₂ (g)	205

Lead(IV) oxide, PbO₂, decomposes to lead(II) oxide, PbO, and oxygen when heated.

$$2PbO_2(s) \rightarrow 2PbO(s) + O_2(g)$$
 $\Delta H^{\circ} = +118 \text{ kJ mol}^{-1}$

(a) Use the data to calculate the value of ΔS^{e} for this reaction.

$$\Delta S^{\circ} = J K^{-1} mol^{-1}$$
 [2]

(b) Use the value of ΔH° and your answer to (a) to calculate the temperature at which this reaction becomes feasible.

$$T = \dots K [3]$$

(c) Solid lead(II) oxide can be made by heating lead metal in air.

Predict the **sign** of the standard entropy change of this reaction. Explain your answer.

[Total: 6]

970	1_s22_qp_43 Q1
(a)	The solubility of the Group 2 sulfates decreases down the group.
	Explain this trend.
	[3]
(b)	Describe what is observed when magnesium and barium are reacted separately with an excess of dilute sulfuric acid.
	magnesium
	barium[1]
(c)	The solubility product, $K_{\rm sp}$, of BaSO ₄ is $1.08 \times 10^{-10}{\rm mol^2dm^{-6}}$ at 298 K.
	Calculate the solubility of BaSO ₄ in g per 100 cm³ of solution.
	solubility of BaSO ₄ = g per 100 cm ³ of solution [2]

(d) (i) The equation for the formation of a gaseous sulfate ion is shown.

$$S(s) + 2O_2(g) + 2e^- \rightarrow SO_4^{2-}(g)$$
 $\Delta H = \Delta H_f^{e} \text{ of } SO_4^{2-}(g)$

Calculate the standard enthalpy change of formation, $\Delta H_{\rm f}^{\rm e}$, of SO₄²⁻(g). It may be helpful to draw a labelled energy cycle. Use relevant data from Table 1.1 in your calculations.

Table 1.1

energy change	value/kJ mol ⁻¹
lattice energy of barium sulfate, BaSO ₄ (s)	-2469
standard enthalpy change of formation of barium sulfate	-1473
standard enthalpy change of atomisation of barium	+180
first ionisation energy of barium	+503
second ionisation energy of barium	+965
standard enthalpy change of atomisation of sulfur	+279
standard enthalpy change for $S(g) \rightarrow S^{2-}(g)$	+440
standard enthalpy change for $O(g) \rightarrow O^{2-}(g)$	+657
O=O bond energy	+496

$$\Delta H_{f}^{\bullet}$$
 of $SO_{4}^{2-}(g)$ =kJ mol⁻¹ [3]

	(ii)	Suggest how the lattice energy of $BaSO_4(s)$ differs from the lattice explain your answer.	
(e)		e reaction of solid hydrated barium hydroxide, $Ba(OH)_2 \cdot 8H_2O$, wit lothermic.	h ammonium salts is
	(i)	Calculate the minimum temperature at which the reaction of Ba(Obbecomes feasible. Show all your working.	H) ₂ •8H ₂ O with NH ₄ NO ₃
Ва	(OH) ₂	$_{2}$ *8 $H_{2}O(s) + 2NH_{4}NO_{3}(s) \rightarrow 2NH_{3}(g) + Ba(NO_{3})_{2}(s) + 10H_{2}O(l)$	$\Delta H_r^{\circ} = +132 \text{kJ} \text{mol}^{-1}$ $\Delta S^{\circ} = +616 \text{J} \text{K}^{-1} \text{mol}^{-1}$
		temperature =	°C [2]

(ii) Barium hydroxide reacts readily with ammonium chloride on mixing at room temperature.

 $Ba(OH)_2 \cdot 8H_2O(s) + 2NH_4Cl(s) \rightarrow 2NH_3(g) + BaCl_2 \cdot 2H_2O(s) + 8H_2O(l)$ $\Delta H_1^e = +133 \text{ kJ mol}^{-1}$

Some relevant standard entropies are given in Table 1.2.

Table 1.2

substance	Ba(OH) ₂ •8H ₂ O(s)	NH ₄ Cl(s)	NH ₃ (g)	BaCl ₂ •2H ₂ O(s)	H ₂ O(I)
S ^e /JK ⁻¹ mol ⁻¹	427	95	192	203	70

Calculate the standard Gibbs free energy change, ΔG° , for this reaction at 25 °C.

 $\Delta G^{\circ} = kJ mol^{-1} [3]$

[Total: 16]

					<u> </u>
6.	9701	w19	an	43	()5
Ο.	0101	_** :	_92_		S C

- 5 Silver sulfide, Ag₂S, is very insoluble in water.
 - (a) (i) Write an expression for the solubility product, $K_{\rm sp}$, of ${\rm Ag_2S}(s)$.

$$K_{sp} =$$

[1]

(ii) The solubility of $Ag_2S(s)$ in water at 298 K is $1.16 \times 10^{-17} \, \text{mol dm}^{-3}$.

Calculate the numerical value of the solubility product, $K_{\rm sp}$, of Ag₂S(s) at 298 K.

$$K_{sp} =$$
 [2]

(iii) Calculate the minimum volume of water needed to dissolve 1.00 g of Ag₂S(s) under standard conditions.

(i)	Calculate the pH of 0.20 mol dm ⁻³ HOBr(aq).
	pH = [2]
(ii)	5.0 cm ³ of 0.20 mol dm ⁻³ potassium hydroxide, KOH, are added to 20.0 cm ³ of 0.20 mol dm ⁻³ HOBr(aq).
	Calculate the pH of the buffer solution produced.
	pH = [2]
	[Total: 9]
	[Total. 9]

7. 97	01 s	19 a	p 43	Q6

6	(a)	Complete the table by placin	g one tick (✓)	in each	row to indica	ate the sign	of each	type o	þ
		energy change under standar	d conditions.						

energy change	always positive	always negative	either negative or positive
bond energy			
enthalpy change of formation			

[1]

b)	Explain what is meant by the term <i>enthalpy change of atomisation</i> .			
	[1]			

(c) The overall reaction for the atomisation of liquid bromine molecules, Br₂(I), is shown.

$$Br_2(I) \rightarrow 2Br(g)$$

This happens via a two-step process.

- Construct a labelled energy cycle to represent this atomisation process, including state symbols.
- Use your cycle and relevant data from the Data Booklet to calculate the enthalpy change of vaporisation of Br₂(I), ΔH^e_{vap}.

The enthalpy change of atomisation of bromine, ΔH_{at} , = +112 kJ mol⁻¹.

$$\Delta H_{\text{vap}}^{\bullet} = \dots kJ \,\text{mol}^{-1}$$
 [3]

(d) Suggest how the $\Delta H_{\rm vap}^{\rm e}$ of iodine, ${\rm I_2(I)}$, would compare to that of bromine, ${\rm Br_2(I)}$. Explain your answer.

	743
(ii)	Suggest why the enthalpy change of hydration of $Br^-(g)$ is more exothermic than that of $I^-(g)$.
	[2]
	[Total: 9]

8.	970	01_w19_qp_41 Q3
3	(a)	Explain what is meant by the term entropy of a system.
		[1]
	(b)	State and explain whether the entropy change of each of the following processes is positive or negative. Do not consider the entropy change of the surroundings.
		 liquid water at 80 °C is cooled to 60 °C
		The entropy change is because
		solid calcium chloride is added to water and the mixture is stirred
		The entropy change is because
		$ullet$ the change corresponding to the lattice energy of calcium chloride, $\Delta H_{\rm latt}$ CaC $l_2(s)$, takes place
		[3]
	(c)	The reaction $ZnCO_3(s) \rightarrow ZnO(s) + CO_2(g)$ is not spontaneous at room temperature.
		(i) Give the full name for the term ΔG° .
		[1]
		(ii) Describe how the temperature at which the reaction becomes spontaneous can be calculated. Include an equation in your answer.
		equation
		[2]
		[Total: 7]

).	9701	_w19_qp_42 Q5	
5		escribe fully what would be seen when magnesium and strontium are heated separately xygen.	in
	m	nagnesium	
	S	trontium[2]
	(b) (i	Write an equation for each of the following processes. Include state symbols.	
		calcium is burned in air	
		calcium carbonate is heated strongly	
			 2]
	(ii	Calcium hydroxide is formed when water is added to calcium oxide. Calcium hydroxide and calcium carbonate are both used in agriculture.	de
		Describe the main benefit of adding calcium hydroxide or calcium carbonate to soil.	
		[1]
	(iii	Explain why the Group 2 hydroxides become more soluble down the group.	
		[3]
	(c) D	escribe the observations, if any, that you would make when:	
	•	a few drops of NaOH(aq) are added to $\mathrm{BaC}\mathit{l}_{2}(\mathrm{aq})$	
	•	a few drops of $H_2SO_4(aq)$ are added to $BaCl_2(aq)$.	
			 2]

	(d)	Des	scribe and explain how the thermal stability of the Group 2 carbonates varies down the up.
			[3]
			[Total: 12]
10.	97	701 <u> </u>	s20_qp_41 Q2 [Total: 13]
2	(a)	(i)	Describe and explain the trend in the solubility of the Group 2 hydroxides down the group.
			[4]
			oup 2 hydroxides decompose on heating to give the corresponding metal oxide and er vapour.
		(ii)	Suggest which of $\mathrm{Mg(OH)_2}$ and $\mathrm{Sr(OH)_2}$ will decompose at a lower temperature.
			Explain your answer.
			[2]
			[Total: 6]