Übungsblatt 5 für den 5.6.2014

1 Aufgabe: Theorie zum Testen

1.1 Testentscheidungen

Um eine Nullhypothese H_0 zu testen, benutzt man oft eine Teststatistik T, die unter Annahme von H_0 eine stetige Verteilung besitzt, die sogenannte Nullverteilung. In der Regel lehnt man die Nullhypothese ab, falls für den beobachteten Wert t von T gilt $P(T \geq t) \leq 0.05$. (Der sogenannte p-Wert). Falls dies möglich ist, geben Sie für jede der folgenden Situationen den p-Wert an und entscheiden Sie, ob H_0 verworfen werden sollte.

- (a) t = 2.34 und $P(T \ge 2.34) = 0.23$
- (b) t = 2.34 und $P(T \le 2.34) = 0.23$
- (c) t = 0.03 und $P(T \ge 0.03) = 0.968$
- (d) t = 1.07 und $P(T \le 1.07) = 0.981$
- (e) t = 1.07 und $P(T \le 2.34) = 0.01$
- (f) t = 2.34 und $P(T \le 1.07) = 0.981$
- (g) t = 2.34 und $P(T \le 1.07) = 0.800$

1.2 Gleichverteilung der p-Werte

Gegeben sei eine kontinuierliche Zufallsvariable X mit Verteilungsfunktion F. Weisen sie nach, dass dann $1-F(X)\sim U(0,1)$ gilt (d.h. p-Werte besitzen eine stetige Gleichverteilung auf dem Intervall (0,1))

2 Aufgabe: Differenzen-Test zur Abwrackprämie

Zwischen dem März 2008 und März 2009 liegen eine Konjunkturkrise und die entsprechenden Gegenmaßnahmen der Regierung. Besonders betroffen ist die Autoindustrie, der mit der Abwrackprämie geholfen werden soll. Die folgende Tabelle enthält den Fahrzeugabsatz für einen Großteil der Automobilbauer (70% Marktanteil). Verwenden Sie diese Zahlen um folgendes zu untersuchen:

Wurden im März 2009 signifikant (Signifikanzniveau: $\alpha=0.05)$ mehr Fahrzeuge verkauft als im März 2008?

- 1. Verwenden Sie dazu den unverbundenen t-Test.
- 2. Die vorliegenden Daten können als Messwiederholung angesehen werden. Nutzen Sie diese Information und verwenden Sie den verbundenen t-Test.
- 3. Es liegen nur relativ wenige, möglicherweise nicht normalverteilte Daten vor. Führen Sie deswegen auch die äquivalenten nonparametrischen Tests (unverbunden und verbunden) durch.

Marke	März 2009	rg	März 2008	rg	Differenz	rg
Audi	21 301		19 982		1 319	
BMW, Mini	$24\ 820$		$25\ 096$		-276	
Fiat	$28\ 876$		9 061		19 815	
Ford	$28\ 638$		17 700		10 938	
General Motors	164		295		-131	
Jaguar	244		427		-183	
Mercedes	$27\ 366$		29 617		-2 251	
Opel	$33\ 758$		26 602		7 156	
Porsche	$1\ 472$		1 431		41	
\mathbf{Skoda}	$25 \ 071$		12 831		12 240	
Toyota, Lexus	$17\ 420$		11 217		6 203	
VW	$72\ 144$		$53\ 047$		19 097	
Mittelwert	23 440		17 275		61 64	
Varianz	378 029 401		230 434 258		60 680 553	

3 Aufgabe: Allgemeines zur Korrelation

Plots und Korrelation

Die obigen Plots beschreiben Realisierungen von Zufallsvariablen X und Y. Geben Sie für jeden der Plots an, ob die Zufallsvariablen positiv, negativ korreliert oder unkorreliert sind. Welcher Plot deutet auf eine besonders starke Korrelation zwischen X und Y hin?