PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering
Data Science

The second second	Data Science	
Semester:	Subject: ALFB	Academic Year: On a

-- Sharpe Ratio

- Max drawdown

- Win Mose ratio

- Hit rate (classification accuracy)

(6) Walk Forward Analysis:

- train the model on a rolling window (eg. last 2 years), test on the next month.

- Continue forward, updating the model periodically.

(7) Evaluation and Comparison:

Compare DNN strategy with

* Buy and hold model.

* Moving Arrange Coossover.

* Other ML models (Random Forest, XGBoott).

This is how backtesting a daily DNN based strategy is executed.

Backtesting an Intraday Deep Neural Network (DNN) - Based strategy is more complex than daily strategies due to high-frequency data, fastes decision -making, and greater sensitivity to latency and transaction. costs thereis how to approach it:

(1) Dala Collection:

Subject Incharge: Prof. Sarala Mary

Department of CSE-Data Science | APSIT

PARSICWANATH CHARTTARLE TRUST S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

	-35.40
Semester: ALEB	Academic Year: 2024-25
Collecting a high-frequency data for	asselā Lstocks,
Collecting a high-frequency date for a crypto, etc). at intraday intervals like or 15-minute candles.	e 1-minute, 5-minute
00 15-minute candles.	
-> Data Needed are OHLCV -> Open, High	, Low, Close, Volume
You need to turn raw data into inputs of learn from:	nat a model can
learn from:	
n,	protoval mines
Price returns: To change or log returns of	ver for more
	appear Dill that
-> Technical indicators: RSI, MACD etc.	- onthe
	a, spines.
- Time features: Time of any	behaviour change
hourly).	act a minutes
hourly). hourly). hourly). Crolling window). Windowing.	
Windowing:	1 1= . For example
of the sliding window	dala
Totale Imm minute	
-> Predict: Price direction or reliam at	++1.
12) DNN model devian:	
MIGGER W I TOUND Grand for sta	ic dala
LSTM/GRU: Recurrent Neural networks for	time-series
forecasting.	nico wares.
forecasting. CNN: Detects patterns in sequences like possiblect Incharge: Prof. Sarala Mary Department	0.0000000000000000000000000000000000000
Subject incharge: Iraj. Sarala Mary Department	nt of CSE-Data Science APSIT

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Semester: Vill

Subject :_ ALFB

Academic Year: 2024-25

drehitecture Example:

model = Sequential ([

Input (shape = (10,6), toto # 10 time styrs, 6 features LSTM(64) # If adds LSTM layer with 64 unite (neurons). Dropout (0.2) # It randomly disables 20% of neurons during eachtraining step to prevent overfitting.

Dense (1, activation = sigmoid) # Dense (1) means. a scalar oulput for sing neuron. sigmoid squashes the output between o and i. If I then buy else sell (0).

(4) Training Strategy:

→ Split by time: Train → validate → test

- Walk forward: Retrain the model regularly using most recent data

-> Avoid dalà leakage: Don't let future dalà into training or validation.

6 mulate what would happen if you used your model to trade in the past.

(4) Feed model the latest window of features.

* Make a prediction: buy/sell/hold

* Simulate the trade.

* Update capital and portfolio.

* Repeat for next time step.

Subject Incharge: 5. Barala Mary

Department of CSE-Data Science | APSIT

PARSHWANATH CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

-	
٨	

Academic Year: 2024-25

(6) Performance Metrice:

To measure:

Semester: VIII

*Cumulative return: Total percentage gain/loss over the period.

* Sharpe Ratio: Return relative to nick.

_ Subject:__AIFB

* Eartino Ratio: Sharpe with focus on down 2i'de volatility

* Max Drawdown: Worst capital drop from a peak.

* Hit rate: % of correct predictions

* Britit factor: Gross profit/gross loss.

The Full Workslow:

Row Intraday Dala

Feature Engineering (Indicators, Lagged Returns, Volume)

Create slidding Windows (Supervised-format)

Train DNN CLETM, CNN, MLP)

Use model to predict on Historical Dala

BackTest Simulation

Evaluate Metrics.