HOJA DE EJERCICIOS 3

Análisis Matemático. CURSO 2013-2014.

<u>Problema</u> 1. Considérese la siguiente fórmula de recurrencia, obtenida aplicando el método de Newton a $f(x) = x^2 - N \text{ con } N > 0$,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right).$$

- a) Demostrar a partir del teorema de la aplicación contractiva que la sucesión $\{x_n\}_{n=1}^{\infty}$ converge a \sqrt{N} para cualquier $x_0 \in [\sqrt{N}, +\infty)$.
- b) Extender el apartado anterior a $x_0 \in \mathbb{R}^+$. Indicación: Estudiar en qué rango está x_1 .
- c) Hallar $\sqrt{2}$ con tres cifras decimales exactas usando la fórmula anterior.

Problema 2. Estudiar si la función

$$f(x,y) = (\frac{1}{3}\operatorname{sen} x - \frac{1}{3}\cos y + 2, \frac{1}{6}\cos x + \frac{1}{2}\operatorname{sen} y - 1)$$

tiene algún punto fijo y en caso afirmativo calcularlo con dos cifras decimales.

Problema 3. a) Probar que si la derivada de $f: \mathbb{R} \to \mathbb{R}$ existe y no se anula entonces f es inyectiva.

b) Probar que $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $f(x,y) = (e^x \cos y + 2 e^x \sin y, -e^x \cos y)$ cumple que su jacobiano es siempre positivo y sin embargo f no es inyectiva en \mathbb{R}^2 .

Problema 4. Sea

$$\begin{cases} u(x,y) = x^2 - 4y^2 \\ v(x,y) = 4xy \end{cases}$$

- a) Demostrar que la aplicación $(x,y) \mapsto (u,v)$ es localmente invertible en todo punto distinto del origen.
- b) Calcular la matriz de la diferencial de la función inversa de f(x,y) = (u(x,y),v(x,y)) en x = 1/2, y = 1.
- c) Probar que en ningún disco abierto conteniendo al origen existe una inversa de f, ni siquiera no diferenciable. Indicación: Estudiar la inyectividad.

Problema 5. Si $f \in C^1(\mathbb{R})$ y f' no se anula, demostrar que la función

$$\begin{cases} u(x,y) = f(x) \\ v(x,y) = -y + x f(x) \end{cases}$$

tiene una inversa global. Si f(0) = 0 y f'(0) = 1, hallar las derivadas parciales de dicha inversa en el origen.

<u>Problema</u> 6. Estudiar si se puede despejar (x, y, z) en términos de (u, v, w) cerca del origen en el sistema de ecuaciones

$$\begin{cases} u = 2x + 2x^{2}y + 2x^{2}z + 2xy^{2} + 2xyz \\ v = x + y + 2xy + 2x^{2} \\ w = 4x + y + z + 3y^{2} + 3z^{2} + 6yz \end{cases}$$

Problema 7. a) Dada $f \in C^1(\mathbb{R})$ y $\varepsilon > 0$, definimos $F_{\varepsilon}(x,y) = (-y + \varepsilon f(x), x + \varepsilon f(y))$. Sea $(x_0, y_0) \in \mathbb{R}^2$. Demostrar que para ε suficientemente pequeño, existe un $\delta > 0$ tal que en el disco $B_{\delta}(x_0, y_0)$ la función F_{ε} es invertible alrededor de (x_0, y_0) con inversa C^1 .

b) Sean $F,G:\mathbb{R}^N\to\mathbb{R}^N$ tales que para constantes positivas c,λ se verifica:

$$||F(x) - F(y)|| > c||x - y||,$$

$$||G(x) - G(y)|| \le \lambda ||x - y||.$$

(observar que no se pide que ${\cal F}$ ni ${\cal G}$ sean diferenciables.)

Definimos $H(x) = F(x) + \varepsilon G(x)$. Demostrar que para ε positivo y suficientemente pequeño, H es inyectiva, y por tanto globalmente invertible.

c) Utilizar el resultado demostrado en el apartado b) para probar que en el apartado a) podemos tomar $\delta = \varepsilon$.

Problema 8. Estudiar alrededor de qué puntos tienen inversa diferenciable los cambios a cilíndricas y esféricas

$$\begin{cases} x(r,\varphi,h) = r\cos\varphi \\ y(r,\varphi,h) = r\sin\varphi \\ z(r,\varphi,h) = h \end{cases} \begin{cases} x(r,\theta,\phi) = r\cos\theta \sin\phi \\ y(r,\theta,\phi) = r\sin\theta \sin\phi \\ z(r,\theta,\phi) = r\cos\phi \end{cases}$$

Problema 9. Calcular la matriz de la diferencial de la función inversa del cambio a polares $x(r,\theta) = r \cos \theta$, $y(r,\theta) = r \sin \theta$, alrededor del punto x = 2, $y = -2\sqrt{3}$.

Problema 10. Considérense los abiertos

$$U_1 = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4, \ y > -\frac{1}{2}|x| \},$$

$$U_2 = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4, \ y < \frac{1}{2}|x| \}.$$

Hallar la inversa del cambio a polares (véase el ejercicio anterior) en U_1 y en U_2 y demostrar que sin embargo no hay inversa continua en $U_1 \cup U_2$.

Problema 11. Encontrar una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ derivable en todo punto con $f'(0) \neq 0$ que no admita inversa en ningún entorno de x = 0. Explicar por qué esto no contradice el teorema de la función inversa. *Indicación:* Considérese alguna variante de la función $y = x^2$ sen (1/x).

<u>Problema</u> 12. Este ejercicio prueba que ninguna $f: \mathbb{R}^2 \to \mathbb{R}$ de clase C^1 en \mathbb{R}^2 puede ser inyectiva, conforme a los siguientes pasos:

a) Probar que si f no es constante podemos encontrar un abierto U en \mathbb{R}^2 tal que

$$\frac{\partial f}{\partial x}(x,y) \neq 0 \ \text{ en todo } (x,y) \in U \qquad \text{o} \qquad \frac{\partial f}{\partial y}(x,y) \neq 0 \ \text{ en todo } (x,y) \in U.$$

b) Demostrar que, con la notación anterior, podemos determinar (x, y) en un abierto conteniendo a algún $(x_0, y_0) \in U$ en una de las expresiones

$$\begin{cases} u = f(x, y) \\ v = y \end{cases}$$
 o
$$\begin{cases} u = x \\ v = f(x, y) \end{cases}$$

c) Demostrar que si f fuese inyectiva, las funciones del apartado anterior no podrían tener una inversa local, de donde se deduce una contradicción.

Problema 13. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f = (f_1, f_2) \in C^1(\mathbb{R}^2)$, satisfaciendo las ecuaciones de Cauchy-Riemann

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y} \,, \qquad \frac{\partial f_1}{\partial y} = -\,\frac{\partial f_2}{\partial x} \,.$$

- a) Demostrar que existe f^{-1} diferenciable en algún abierto conteniendo a (x_0, y_0) si y sólo si $Df(x_0, y_0)$ no es la aplicación lineal idénticamente nula.
- b) Demostrar que si existe la inversa local del apartado anterior, entonces también satisface las ecuaciones de Cauchy-Riemann.
- c) Suponiendo $f(0,0) \neq (0,0)$, probar que g dada por

$$g(x,y) = (f_1(x,y)^2 - f_2(x,y)^2, 2 f_1(x,y) f_2(x,y))$$

2

satisface las ecuaciones de Cauchy-Riemann y que $Df(0) = \mathbf{0}$ si y sólo si $Dg(0) = \mathbf{0}$.

d) Encontrar tres funciones no constantes que satisfagan las ecuaciones de Cauchy-Riemann.

Problema 14. Demostrar que existe una única función $f:U\subset\mathbb{R}^2\to\mathbb{R}$ de clase C^1 en un abierto U conteniendo a (0,0), con f(0,0)=0 y verificando

$$e^{f(x,y)} = \left(1 + x \, e^{f(x,y)}\right) \left(1 + y \, e^{f(x,y)}\right) \qquad \text{en todos los } (x,y) \in U \, .$$

Problema 15. Probar que la ecuación

$$\operatorname{sen} yz + \operatorname{sen} xz + \operatorname{sen} xy = 0$$

admite una única solución z = f(x,y) de clase C^1 en un entorno del punto $(\pi,0)$ que cumple $f(\pi,0) = 1$. Calcular el polinomio de Taylor de orden uno en dicho punto.

Problema 16. Demostrar que la ecuación

$$z^3 \log xy + 2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$$

define exactamente dos funciones diferenciables $z = f_1(x, y)$ y $z = f_2(x, y)$ en un entorno de (1, 1). Hallar sus desarrollos de Taylor de orden uno en (1, 1).

Problema 17. Deducir el teorema de la función inversa del teorema de la función implícita.

Problema 18. Estudiar si es posible despejar u(x,y,z) y v(x,y,z) en las ecuaciones

$$\begin{cases} xy^2 + xzu + yv^2 = 3\\ xyu^3 + 2xv - u^2v^2 = 2 \end{cases}$$

en un entorno de (x, y, z) = (1, 1, 1) y (u, v) = (1, 1). Calcular $\partial u/\partial x$, $\partial v/\partial x$ y $\partial v/\partial z$.

Problema 19. Dado el sistema

$$\begin{cases} x^2 - y\cos uv + z^2 = 1\\ x^2 + y^2 - \sin uv + 2z^2 = 4\\ xy - \sin u\cos v + z = 1 \end{cases}$$

Demostrar que alrededor de (x, y, z) = (1, 1, 1), $(u, v) = (\pi/2, 0)$ se puede definir x, y y z en función de u y v. Calcular la matriz de $Df(\pi/2, 0)$ donde f(u, v) = (x(u, v), y(u, v), z(u, v)).

Problema 20. Sea $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$, $f \in C^1(\mathbb{R}^2)$, tal que alrededor de cierto punto (x_0, y_0) se cumple $\partial f_2/\partial y \neq 0$ y $f(x_0, y_0) = 0$.

- a) Demostrar que localmente existe y(x) tal que $f_2(x,y(x)) = 0$.
- b) Hallar una fórmula para y''(x) que sólo involucre derivadas parciales de f_2 .
- c) Demostrar que definiendo $z(x) = f_1(x, y(x))$, siendo y(x) la función obtenida en el apartado (a), se tiene

$$z'(x) = \frac{J}{\partial f_2/\partial y}$$

donde J es el determinante jacobiano de f.

<u>Problema</u> 21. Demostrar que aunque no se cumplen las condiciones del teorema de la función implícita es posible despejar, con funciones C^1 , la x y la y en términos de z alrededor de $(x_0, y_0) = (0, -1)$ y $z_0 = 1$, en el siguiente sistema:

$$\begin{cases} x^2 + z^2 + 2xz - 2x - 2z + 1 = 0, \\ x^2 + 4y^2 + 4z^2 + 4xy + 4xz + 8yz = 0. \end{cases}$$

Indicación: Escribir estas fórmulas como cuadrados perfectos.

Problema 22. Demostrar que no es posible despejar, con funciones C^1 , la x y la y en términos de z alrededor de $(x_0, y_0) = (0, 0)$ y $z_0 = 0$, en el siguiente sistema:

$$\begin{cases} x^3 + z^3 y^2 + z = 0\\ \cos xyz + \sin z = 1 \end{cases}$$

Indicaci'on: Tratar de hallar la derivada de esas hipotéticas funciones de z.

Problema 23. a) Determinar los valores de a para los que el sistema de ecuaciones

$$x z^{3} + y u + a x = 1$$
$$2 x y^{3} + z u^{2} + a (y - 1) = 0$$

define a (x,y) como función implícita diferenciable de (z,u) en un entorno de los puntos $(x_0,y_0)=(0,1)$ y $(z_0,u_0)=(0,1)$.

- b) Si designamos dicha función mediante (x, y) = G(z, u), calcular los valores de a para los cuales G admite una inversa local de clase C^1 en un entorno de (0, 1).
- c) Demostrar que para los valores de a distintos de los obtenidos en el primer apartado no puede existir tal G. Indicación: Derivar implícitamente con respecto de u.

Problema 24. Probar que la ecuación

$$xy = \log \frac{x}{y}$$

admite una única solución y=f(x) diferenciable en un intervalo que contiene a \sqrt{e} y verificando $f(\sqrt{e})=1/\sqrt{e}$. Deducir que la función f tiene un máximo local en el punto \sqrt{e} .

Problema 25. Demostrar que el sistema de ecuaciones

$$\begin{cases} \operatorname{sen} \frac{\pi}{w} = 0 \\ e^{x+u} = 1 \\ 2x - u + v - w + 1 = 0 \end{cases}$$

define implícitamente tres funciones u = u(x), v = v(x) y w = w(x) en un entorno de $x_0 = 0$ y del punto $(u_0, v_0, w_0) = (0, 0, 1)$. Obtener el desarrollo de Taylor de v(x) en 0 hasta el término de segundo orden.