Homework 2

MA 590 Special Topics: Causal Inference

Aukkawut Ammartayakun

19 January, 2023

Problem 1

\mathbf{A}

In a completely randomized experiment in which $n_1 = n_0 = n/2$, say $S_t^2 = S_c^2$ (the sets of potential outcomes have the same variance in the experimental sample). What is the smallest possible value for the true sampling variance of the difference in means estimator $(\mathbb{V}_{fp}(\hat{\tau}^{diff}))$? Justify your answer (with math)

(hint: $S_{tc}^2 = S_t^2 + S_c^2 - 2\rho S_t S_c$, where $\rho = corr\{Y(1), Y(0)\}$, the sample correlation of potential outcomes, $S_t = \sqrt{S_t^2}$, and $S_c = \sqrt{S_c^2}$, and recall that $-1 \le \rho \le 1$)

Solution

something

В

With n=6 and binary Y, write out a table of potential outcomes for which $\mathbb{V}_{fp}(\hat{\tau}^{diff})$ attains its lowest value. What is the ATE?

Solution

something

Problem 2

In a Bernoulli randomized trial, each subject is randomized between Z=1 and Z=0 independently. Hence, no and n1 are random variables, and since $Pr(n_0=0)>0$ and $Pr(n_1=0)>0$, the difference-in-means estimator is not always defined. (The total sample size n remains fixed, not random.) If $\mathbb{E}[Z_i] = Pr(Z_i=1) = p$ for every subject i, show that the following is an unbiased estimator for $\bar{\tau}$:

$$\hat{\tau}_{IPW} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{Z_i Y_i}{p} - \frac{(1 - Z_i) Y_i}{1 - p} \right\}$$

(IPW stands for "inverse probability weighted" and will become important when we talk about propensity scores.)

Solution

something

Problem 3

Had the Lady Tasing Tea experiment been a Bernoulli randomized trial, so that each cup would be randomized to tea-first or milk-first independently, what would be the p-value (using Fisher's method) had the lady gotten all 8 cups right?

Solution

something