Math 110 HW7

Neo Lee

10/21/2023

Problem 1.

Suppose V is finite-dimensional and U, W are its subpaces. Prove that

$$(U \cap W)^0 = U^0 + W^0.$$

Proof. First we need the Lemma: $U^0 \cap W^0 = (U+W)^0$. Consider $\phi \in U^0 \cap W^0$ and $v = u + w \in U + W$, then

$$\phi(v) = \phi(u+w) = \phi(u) + \phi(w) = 0 + 0 = 0.$$

Hence $\phi \in (U+W)^0$ and $U^0 \cap W^0 \subseteq (U+W)^0$. Now consider $\varphi \in (U+W)^0$, indeed for $u \in U$,

$$\varphi(u) = \varphi(u+0) = 0,$$

and for $w \in W$,

$$\varphi(w) = \varphi(0+w) = 0$$

[notice u+0 and 0+w are both in U+W]. Therefore, $\varphi \in U^0 \cap W^0$ and $(U+W)^0 \subseteq U^0 \cap W^0$. The Lemma is proved.

Now we back to the original problem. Consider $\phi \in U^0 + W^0$ and $v \in U \cap W$, then

$$\phi(v) = \varphi_u(v) + \varphi_w(v) = 0 + 0 = 0 \qquad (\varphi_u \in U^0, \varphi_w \in W^0).$$

Hence, $\phi \in (U+W)^0$ and $U^0+W^0 \subseteq (U+W)^0$.

Now consider the dimension of $(U \cap W)^0$ and $U^0 + W^0$.

$$\dim(U \cap W)^{0} = \dim V - \dim(U \cap W)$$

$$= \dim V - \dim U - \dim W + \dim(U + W)$$

$$= \dim V - (\dim V - \dim U^{0}) - (\dim V - \dim W^{0}) + (\dim V - \dim(U + W)^{0})$$

$$= \dim U^{0} + \dim W^{0} - \dim(U + W)^{0}$$

$$= \dim U^{0} + \dim W^{0} - \dim(U^{0} \cap W^{0})$$

$$= \dim(U^{0} + W^{0}).$$

Since $U^0+W^0\subseteq (U+W)^0$ and $\dim(U^0+W^0)=\dim(U\cap W)^0$, we have $(U\cap W)^0=U^0+W^0$.

Problem 2.

Suppose V and W are finite-dimensional, $T \in \mathcal{L}(V, W)$, and null $T' = \operatorname{span}(\varphi)$ for some $\varphi \in W'$. Prove that range $T = \operatorname{null} \varphi$. Give an example of such a pair $T \neq 0$, $\varphi \neq 0$ for $V = \mathbb{R}^2$, $W = \mathbb{R}^3$.

Proof. Notice $\operatorname{null} T' = (\operatorname{range} T)^0 = \operatorname{span}(\varphi)$. Consider $w \in \operatorname{range} T$ and arbitrary $\lambda \in \mathbb{F}$, then

$$\lambda \varphi(w) = 0 \quad (\lambda \varphi \in (\text{range}T)^0) \implies \varphi(w) = 0.$$

Hence, range $T \subseteq \text{null } \varphi$.

Then we show that $\dim \operatorname{range} T = \dim \operatorname{null} \varphi$. For $\varphi \neq 0$,

$$\dim \operatorname{range} T = \dim W - \dim(\operatorname{range} T)^{0}$$

$$= \dim W - \dim \operatorname{span}(\varphi)$$

$$= \dim W - 1$$

$$= \dim W - \dim \operatorname{range} \varphi$$

$$= \dim \operatorname{null} \varphi.$$
(1)

(1) is true because $\varphi \neq 0$, so range $\varphi = \mathbb{R}$. If $\varphi = 0$,

$$\dim \operatorname{range} T = \dim W - \dim(\operatorname{range} T)^{0}$$

$$= \dim W - \dim \operatorname{span}(\varphi)$$

$$= \dim W - 0$$

$$= \dim \operatorname{null} \varphi.$$

Since range $T \subseteq \text{null}\varphi$ and $\dim \text{range} T = \dim \text{null}\varphi$, we have $\text{range} T = \text{null}\varphi$.

Example: Let $T:(x,y)\mapsto (x,y,0)$ and $\varphi:(x,y,z)\mapsto z$. Then indeed, $\operatorname{null} T'=\operatorname{span}(\varphi)$ [very obviously because φ annihilates $\operatorname{range} T$], and

$$rangeT = (x, y, 0) = null\varphi.$$

Problem 3.

Let $p \in \mathcal{P}_n(\mathbb{C})$ for some n and suppose there exist distinct real numbers x_0, x_1, \ldots, x_n such that $p(x_j) \in \mathbb{R}$ for all $j = 0, \ldots, n$. Prove that all coefficients of p are real.

Proof. Lemma: given distinct data sites x_j and arbitrary data y_j , j = 0, ..., n, there is a unique polynomial $p \in \mathcal{P}_n(\mathbb{R})$ such that $p(x_j) = y_j$, for all j = 0, ..., n.

We have shown in **Problem 4** that such unique polynomial takes the form

$$p(x) = \sum_{k=1}^{n} y_k L_k(x)$$
 for $L_k(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}$.

Then notice all the terms in this unique polynomial p are real and expanding the product $\prod_{j=0, j\neq k}^n \frac{x-x_j}{x_k-x_j}$ gives us a polynomial with real coefficients [no imaginary parts can arise].

Problem 4.

[Lagrange interpolation.] Prove using linear algebra: given distinct data sites x_j and arbitrary data y_j , j = 0, ..., n, there is a unique polynomial $p \in \mathcal{P}_n(\mathbb{R})$ such that $p(x_j) = y_j$, for all j = 0, ..., n.

Proof. Define the Lagrange basis polynomials

$$L_k(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}.$$

Notice each L_k are of degree n and hence each $L_k \in \mathcal{P}_n(\mathbb{R})$. Then notice these basis polynomials have the property that $L_k(x_k) = 1$ and $L_k(x_j) = 0$ for $j \neq k$.

Then we can define

$$p(x) = \sum_{k=0}^{n} y_k L_k(x).$$

Indeed, $p(x_j) = y_j$ because $L_j(x_j) = 1$ and $y_j L_j(x_j) = y_j$ while $L_k(x_j) = 0$ for $k \neq j$. To show that it's unique, assume to the contrary that there exists another polynomial $q \in \mathcal{P}_n(\mathbb{R})$ such that $q(x_j) = y_j$ for all $j = 0, \ldots, n$. Then

$$p(x) - q(x) = \sum_{k=0}^{n} y_k L_k(x) - q(x) = 0.$$

Notice p(x) - q(x) is a polynomial of degree n and has n + 1 roots, which means p - q must be the zero polynomial because non-zero polynomial of degree n has at most n roots [Theorem 4.11].

Therefore, $p - q = 0 \implies p = q$.

Alternative: Define a linear map $T: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}^{n+1}$ with the action

$$T: p \mapsto (p(x_0), p(x_1), \cdots, p(x_n)).$$

T is indeed a linear map because

$$T(p+q) = ((p+q)(x_0), \dots, (p+q)(x_n)) = (p(x_0), \dots, p(x_n)) + (q(x_0), \dots, q(x_n)) = T(p) + T(q)$$
$$T(\lambda p) = (\lambda p(x_0), \dots, \lambda p(x_n)) = \lambda (p(x_0), \dots, p(x_n)) = \lambda T(p).$$

Then notice T is injective because for T(p) = 0, p must be zero when evaluated at distinct data sites $\{x_j : j = [0, \dots, n]\}$, which means p must have n + 1 distinct roots. But an n degree polynomial can only have at most n distinct roots. Hence, p must be the zero polynomial and $\text{null } T = \{0\}$.

Since T is a linear map from n+1 dimension to n+1 dimension and is injective, it implies T is surjective. Therefore, there always exists a unique p such that

$$T(p) = (p(x_0), \dots, p(x_n)) = (y_0, \dots, y_n).$$

Problem 5.

Prove that every polynomial of odd degree with real coefficients has a real zero.

Proof. Assume for the sake of contradiction that there exists a polynomial of odd degree with real coefficients that has no real zero. Then we take the minimal example p(x) with the lowest degree. Notice p can be factorized as follow

$$p(x) = (x - \lambda)(x - \bar{\lambda})q(x),$$

where λ is a complex zero of p and q(x) is a polynomial of degree n-2. Since we assumed p to be the minimal example, q(x) must have a real zero x_0 . Then we have

$$q(x) = (x - x_0)g(x) \implies p(x) = (x - \lambda)(x - \bar{\lambda})(x - x_0)g(x),$$

which means p has a real zero x_0 [contradiction].