

F 1 G

F I G. 2

FIG. 3a

				_			
	ITEM	' N	RMI- AL IO.	NAI	II- INP E OUTF		I FINCTION
	POWER	(, ==	<u>,68</u>				+ 5 V IS SUPPLIED.
	SUPPLY	<u> 51</u>	, 18 , 52	Vcc	_		GND IS CONNECTED.
	OPERATIO CONTROL		<u> 55</u>	INCL	KINPL	JT	BASIC CLOCK OF MIVAC IS INPUTTED.
	SIGNAL	. 6	66	TEST	T INPL	ΙT	MIVAC OPERATION IS TESTED
-						_	SET THIS TERMINAL TO "LOW" LEVEL
			5	2CL	K OUTP		2CLK SIGNAL IS SUPPLED TO ACRTC. THIS SIGNAL IS ASYMMETRIC. NAMELY, HAS DIFFERENT CYCLE LENGTHS IN THE FIRST HALF AND SECOND HALF OF A MEMORY CYCLE
		1	4	MCY	INPU	٠,	MCYC SIGNAL FROM ACRTC IS INPUTTED. MCYC INDICATES "LOW" AND "HIGH" LEVELS WHEN ACRTC IS IN ADDRESS AND DATA CYCLES. RESPECTIVELY.
		12	2	DRAV	VINPU	т	DRAW SIGNAL FROM ACRTC IS INPUTTED. DRAW INDICATES WHETHER OR NOT ACRTC IS IN THE DRAW CYCLE. DRAW IS "LOW" LEVEL IN THE DRAW CYCLE AND IS "HIGH" LEVEL IN THE OTHER CYCLES.
	ACRTC NTERFACE SIGNAL	11		MRD	INPUT	r	MRD SIGNAL FROM ACRTC IS INPUTTED. MRD CONTROLS DATA TRANSFER DIRECTION BETWEEN FRAME BUFFER AND ACRTC WHEN DATA IS READ FROM FRAME BUFFER. "HIGH" LEVEL IS INPUTTED. WHEN DATA IS WRITTEN IN FRAME BUFFER. "LOW" LEVEL IS INPUTTED.
		13		ĀS	INPUT		AS SIGNAL IS INPUTTED FROM ACRTC AS INDICATES PRESENCE OR ABSENCE OF MEMORY ACCESS.
		64	H	SYNC	INPUT	:1	SYNC SIGNAL IS INPUTTED FROM ACRTC. UNDER CONDITIONS OF HSYNC = "LOW" AND DRAW = "HIGH". F AS PULSE IS RECEIVED. CS BEFORE RAS REFRESH PERATION IS CARRIED OUT.
		67	·	SYNC	INPUT	V	SYNC SIGNAL IS INPUTTED FROM ACRTC. RECEIVED SYNC IS DIVIDED BY TWO SO AS TO OUTPUTTED AS SYNC/2 SIGNAL AND IS ALSO USED TO CONTROL ULTIPLEXER OF VIDEO OUTPUT.
		2	S	'SF !	TURNI	IN C	ISP! SIGNAL IS INPUTTED FROM ACRTC. DISP! IDICATES SCREEN DISPLAY PERIOD. ORDINARILY, SET I" TO DISPLAY SIGNAL CONTROL (DSC) BIT OF ACRTC.
]			UD 1	INPUT	l či	UD 1 SIGNAL IS INPUTTED FROM ACRTIC. JD 1 IS LOADED WITH "LOW" LEVEL DURING GRAPHIC JRSOR DISPLAY PERIOD.
		16— 10 16 19— 28	M.	ADO IAD 15	INPUT/ OUTPUT	AF OU FR	DDO-MAD IS OF ACRTC ARE INPUTTED. THESE SIGNALS RE USED AS FRAME BUFFER ACCESS ADDRESS IN DDRESS CYCLE FOR MCYC="LOW". AS DATA INPUT/ ITPUT FOR DATA TRANSFER BETWEEN ACRTC AND AME BUFFER IN DATA TRANSFER CYCLE FOR MCYC.
	·	29-32	2 MA	16 - 14 19	INPUT	FR	AME BUFFER ACCESS ADDRESS MAIG - MAIS IS

FIG. 3b

				<u> </u>	
	ITEM	TERM NAL NO.		- INPUT OUTPU	
		50	RAS	OUTPUT	RAS TIMING SIGNAL IS OUTPUTTED FOR DRAM.
	l	49	<u> </u>	OUTPUT	CS TIMING SIGNAL IS OUTPUTTED FOR DRAM.
	FRAME	48	WE	ОИТРИ	WE TIMING SIGNAL IS OUTPUTTED FOR DRAM.
	BUFFER	53	0 E	OUTPUT	OE TIMING SIGNAL IS OUTPUTTED FOR DRAM.
	INTERFACE Signal	60,6 63,6 59,5 55,5	2 FAU - FA 9	OUTPUT	MILITIPLEY ADDRESS IS OUTPUTTED SOO
		44,41 47,4 40,4 43,4	5 FD0-	INPUT/ OUTPUT	FD IS 8-BIT INPUT/OUTPUT SIGNAL FOR DATA TRANSFER BETWEEN ACRTC AND FRAME BUFFER AND FOR FETCHING DISPLAY DATA READ FROM FRAME BUFFER. IN A CASE OF ONE MEMORY CHIP. FD 0-FD 3 ARE USED, WHEREAS IN A CASE OF TWO FOUR MEMORY CHIPS. FD 0-FD 7 ARE USED.
		3	DOTCLK	OUTPUT	DOTCLK SIGNAL IS DELIVERED BY DIVIDING INCLK SIGNAL AS BASIC INPUT SIGNAL OF MIVAC BY 1.2 OR 4. DIVISION RATIO IS SET DEPENDING ON VOF C - VCF 3 OF ATTRIBUTE CODE.
IV	CRT ISPLAY ITERFACE IGNAL		VIDEO A -VIDEO D	OUTPUT	IDEO A-DSIGNAL IS 4-BIT OUTPUT SIGNAL WHICH IS OBTAINED BY CONVERTING DISPLAY DATA FROM PARALLEL SIGNAL INTO SERIAL SIGNAL BY SHIFT PEGISTER OF MIVAC AND WHICH IS DELIVERED DURING DISPLAY PERIOD INDICATED BY SHFTEN OUTPUT. 4-BIT VIDEO SIGNAL IS DETERMINED BY ATTRIBUTE CODE VCF 0 - VCF 3.
		5	SHFTEN	OUTPUT	SHFTEN INDICATES DISPLAY PERIOD OF VIDEO SIGNAL AND IS SET TO "HIGH" LEVEL DURING DISPLAY PERIOD. IN SINGLE ACCESS. DISP1 FROM ACRTC IS ELONGATED BACKWARD BY ONE CYCLE, AND IN DUAL ACCESS. DISP1 IS ELONGATED BACKWARD BY TWO CYCLES SO AS TO PRODUCE THIS SIGNAL.
		4	VSYNC/2	UTPUT	VSYNC/2 SIGNAL IS INPUTTED TO ACRTC. VSYNC IS DIVIDED BY TWO FOR PRODUCING THIS SIGNAL.
от	HERS	38	BL2IRQ C	I VITPUT I	BLZIRO IS SET BY BLINK 2 (MAIS) INPUTTED IN ATTRIBUTE CYCLE, WHEN BLINK 2 IS AT "HIGH" LEVEL, BLZIROIS SET TO"LOW"LEVEL
		39	ROCLR	NPUT V	ROCLE SIGNAL IS USED TO CLEAR BLZIRO SIGNAL. WHEN "LOW" IS INPUTTED TO IROCLE. BLZIRO IS CLEARED TO "HIGH" LEVEL.

F I G. 4

- DISPLAY PERIOD ATB D -ATB F 1 G DISPLAY PERIOD -HOH, P 2CLK MCYC HSYNC AS MAD MA DRAW MRD

;}

F I G II

_					
CURSOR DISPLAY COLOR	BLACK (VIDEO A - VIDEO D = O)	WHITE (VIDEO A - VIDEO D = 1)	COLDR REVERSION FOR EACH BIT OF VIDEO A - VIDEO A	COLOR REVERSION FOR FACH BIT OF WARFA A WILLIAM	STATE OF VIDEOR - VIDEOR (VIDEOD IS KEPT UNCHANGED)
CUR I CURO	0		0	_	
CURI	0	0	_	-	

F 1 G. 8

BLINKING OF GRAPHIC CURSOR IS SET	NOT USED IN MIVAC	MULTIPLEXING OF VIDEO OUTPUT IS SET DEPTH OF FRAME BUFFER MEMORY IS SET DISPLAY COLOR OF GRAPHIC CURSOR IS SET	OPERATION MODE (DISPLAY COLOR, SHIFT AMOUNT OF SHIFT REGISTER, ACCESS MODE, ETC.) OF MIVAC IS SET
BLINK 2 BLINK 1 SPL 2 SPL 1 H7 3	HZO HSD 3	HSDO MUXEN VMD CURI CURO VCF 3	VCF 2 VCF 1
MA19 MA18 MA17 MA16	MAD IZ MAD IZ MAD II	MAD 8 MAD 7 MAD 6 MAD 5 MAD 3	MAD 2 MAD 1 MAD 0

	- 1		1	i	1		1			T -				7	_	_		7	_	_				_
	MAXIMUM DOT CLOCK	(ZE)	33	10.5	2	825	33	16.5		33	A R	2	8.25	33	Ä.	2	8.25	33	16.5))	33	16.5		77
		(BIIS)	91	α	,	4	91	80			9		80	32	9	!	80	જ	9	 !	32	9		2
	COLOR/ GRADA-	NO.		4		9	4	٤	ō				4		4		9	4	91		4	<u> </u>	↓ <u>0</u>	-
	NUMBER OF MEMO-	<u>2</u>		_				2	,	4		_		<u> </u>	^	· · ·			4			_		~
	HIGH- SPEED ORAWING					1									0									_
•	MEMORY ACCESS SPEFD								480 ns /	4ACCFSSFC											geons /	6ACCESSES		
	ACRTC OP- ERATION FREQUENCY	3118										٦ 4	2									<u> </u>		
	MAXIMUM Frame Buffer ca- Pacity (bytes)			5/2K/128K			IM /256K		2M/512K		512K/128K				IM/256K			2M/5I2K	-		512K/128K		M/256K	
	CRT SCREEN LAYOUT EXAM- PLE (DOTS X RASTER)	640x200, 350, 400, 480		320x200, 240	320x200 240 266x192	640x200, 350, 400, 480	640x200	320 x 200, 240	400, 480	640×200.		320 x 200, 240 256 x 192	640x200,350, 400, 480	640×200.		350 x 200 256 x 192	640×200, 350, 400, 480			640x 200, 350, 400, 480	640x 200, 480x 240, 5		640x200, 350, 400, 480 IM/256K	
	MODE	0	_	-	7	3	4	- 1	2	9	- 1	7	8	<u>ი</u>	- 1	∀	<u>Ф</u>	က <u>၈</u> 4	П		т <u>64</u>	Т		
			_																				J	

F16. 9

F I G. 10

MODE	DOT CLOCK FREQUENCY
0, 3, 5, 8 B, D, F	33MHz ~ IIMHz
l, 4, 6, 9 C, E	16.5MH _Z ~ 5.5MH _Z
2, 7, A	8.25MHz ~ 2.75MHz

F I G. 12

V M D	MEMORY CHIP EMPLOYED
0	256 K × 48IT DRAM
l	IM × 4 BIT DRAM

F I G. 13

MUXEN	VSYNC / 2	VIDEO A	VIDEO B
0	0	Δ	В
	I	Δ	8
1	0	А	В
	1	С	Ο .

F I G. 14

BLINK I	GRAPHIC CURSOR DISPLAY
0	NOT DISPLAYED
1	DISPLAYED

F 1 G

F I G. 15b

F16. 16a

F16. 17a

F1G. 17b

F I G. 18a

F16. 19a

F I G. 20a

F16. 21a

F I G. 22a

せなって 18 18 COLM3 18 (COLUMN3) -821 -316 - 13 XCQ UMNTXCQ UMNZXCOLUMN -127|- 188 ADORESS VALID 8 121 25 FAO-FA9 COLUMN 3 / 15 MAI6-MAI9-MAD 0-MAD 15 FD0-FD7 VSYNC CUDI RAS OE <u>S2</u> WE

F I G. 22b

, à

F 1 G. 23a

156F COLUMNIS DATA VALID COLUMNI / COLUMNIS COLUMNIS COLUMNIS COLUMNIS COLUMNIS / COLUMNIS 2ND ADDRESS IGNORED CUDI · VALID 2ND ADDRESS IGNORED /로 니 코 / 로 니 7-120/130 1 30 A 30/ 30 CUDI - VALID MADIS - 18 - 14 19 MAI6-MAI9 <u>1900</u> F00-RAS FA0-FA9 S B WE

F I G. 23b

5

6 141 19 19 14 14 INCLK HSYNC 2CLK MCYC DISPI DRAW MRD AS

F16. 24a

À

F I G. 25

F I G. 26

F I G. 29a

(0	CCESSES	6 / MCY DISPLAY	C)	16	16 ACCESSES / 2 MCYCS					
400K	(4-BIT (0=0)	IM x 4 (VMC	1-BIT 00=1)			IM x 4	-BIT 0=1)			
ROW	COLUMN	ROW	COLUMN	ROW	COLUMN		COLUMN			
-	-	MADS	NCO	_	-	MAD8	[NCO]			
MAD 9	NCT	MAD 9	LNCI	MAD 9	NCI	Į.	NC I			
MAD 8	NC 2	MA 17	MAD 7	MADS	11 1	}	MAD7			
MAD 7	MAD 6	MA 16	MAD6	MAD 7	MAD6	ľ	MAD 6			
MAD15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5		MAD 5			
MAD 14	MAD 4	MAD 14	MAD 4	MAD 14]]		MAD 4			
MAD 13	MAD 3	EI DAM	MAD 3	MAD I3	MAD 3		MAD 3			
MADIZ	MAD 2	MAD 12	MAD 2	MAD 12			MAD 2			
MADII	MADI	MAD II	MAD I	MADII			TWCT			
MAD IO	MADO	MAD IO	MADO	MAD IO	111		wco			
	Z56 K) (VMD ROW MAD 9 MAD 8 MAD 7 MAD 15 MAD 14 MAD 13 MAD 12 MAD 11	(DRAW, COLUMN 256Kx4-BIT (VMDO=0) ROW COLUMN MAD 9 NC I MAD 9 NC I MAD 7 MAD 6 MAD 7 MAD 6 MAD 15 MAD 5 MAD 14 MAD 4 MAD 13 MAD 3 MAD 12 MAD 2 MAD 11 MAD 1	CDRAW, DISPLAY 256K×4-BIT (VMDO=O) ROW COLUMN ROW MADB MAD 9 NC 1 MAD 9 MAD 8 NC 2 MA 17 MAD 7 MAD 6 MA 16 MAD 15 MAD 5 MAD 15 MAD 14 MAD 4 MAD 14 MAD 13 MAD 3 MAD 13 MAD 12 MAD 2 MAD 12 MAD 11 MAD 1 MAD 11	NAD NAD	(DRAW, DISPLAY) 256Kx4-BIT (VMDO=0) ROW COLUMN ROW COLUMN ROW MADB NCO - MAD9 NCI MAD9 MAD9 NCI MAD9 NCI MAD9 MAD7 MAD6 MA 16 MAD6 MAD7 MAD15 MAD 5 MAD 15 MAD 5 MAD 15 MAD14 MAD 4 MAD 14 MAD 4 MAD 14 MAD13 MAD 3 MAD 13 MAD 3 MAD 13 MAD 12 MAD 2 MAD 12 MAD 1 MAD 11 MAD 11 MAD 1 MAD 11 MAD 1	(DRAW, DISPLAY) 256Kx4-BIT (VMDO=0) ROW COLUMN ROW COLUMN ROW COLUMN -	(DRAW, DISPLAY) 256Kx 4-BIT (VMD0=0)			

[] : COLUMN ADDRESS COUNTER

FA 256Kx4-BIT (VMDO=1) (VMDO=1	ı					Z	T			_		_	_							
2 ACCESSES / MCYC 4 ACCESSES / MCYC 16 ACCESSES / 2MCY C DRAW J (DISPLAY) (DISPLAY) ZS6K4 - BIT (VMDO = 1) (VMDO = 1) (VMDO = 1) (VMDO = 0) (VMDO = 1) (VMDO = 0) ROW (COLUMN) ROW (COLUMN) ROW COLUMN) ROW (COLUMN) ROW (MAD 9 (MAD 9 (MAD 9 ROW (MAD 9 (MAD 9 (MAD 9 ROW (MAD 9 (MAD 9		S),		- BIT		COLUM	1	NCO	MAD 8	MANA		MAD 6	AAAD 6	COMM	MAD 14	MAD 3		ار ا	MC I	2
2 ACCESSES / MCYC		/2MC)		IMx 4	Y AIMICY	ROW	9	אש וא	MAD 9	MA 17		MA 16	MADIN	2	MAD 14	MAD 13	21000	NIAD IZ	MADII	MAD IO
2 ACCESSES / MCYC (DISPLAY) 256Kx4-BIT (VMDO=1)		ESSES (DISPI		4-BIT	5	COLUMN		[] []	2	MAD 7		MAD &	MAD 5		4 0	MAD 3	רכ־זש)	- - - - -	WC 0
2 ACCESSES / MCYC (DISPLAY) 256Kx4-BIT (VMDO=0) (VMDO=1) ROW (COLUMN ROW COLUMN ROW GOLUMN ROW GOLU		16 ACC		256K×	- 1		,	0	S CAM	MAD 8	MA IS	2	MAD 15	21000	<u>+</u>	MAD 13	MADIO			MAD 10
2 ACCESSES / MCYC (DISPLAY) (DRAW) 256Kx4-BIT (WMD0=1) (VMD0=0) (VMD0=0) ROW (CCLUMN ROW CCLUMN ROW CCLUMN ROW -		ပ္		-BIT 0=1)		COLUMIN	NC O J	MAN	NAU &	MAD 7	MADR		MAD 5	MAD		MAD 3	MAD 2	, QVW		WCO.
2 ACCESSES / MCYC (DISPEDING) 256Kx4-BIT (VMDO=1) ROW (CQLUMN ROW CQLUMN ROW CQLUMN) MA 18 [NCO] AD 9 [NCI] MAD 9 MAD 8 MAD 7 AD 18 MAD 7 MA 17 MAD 7 MAD 8 MAD 7 AD 18 MAD 5 MAD 18 MAD 5 MAD 18 MAD 5 AD 18 MAD 4 MAD 14 MAD 4 MAD 18 MAD 3 AD 12 MAD 2 MAD 12 MAD 2 MAD 12 MAD 2		S / MCY LAY)		WXX VMV		M O≥	MA 18	MANO		MA 17	MA 16	2	MAD 15	MAD 14		MAU 13	MAD 12	MAD		
2 ACCESSES / MCYC (DRAW) 256Kx4-BIT (WMDO=1) (VMDO=0) (VMDO=1) (VMDO=0) (VMDO=1) (VMDO=1) (VMDO=0) (VMDO=1) (VMDO=0) (VMDO=1) (VMDO=0) (VMDO=0) (VMDO=1) (VMDO=0) (VMDO=1) (VMDO=0) (VMDO=1) (VMDO=0) (VM		CESSE		4-BIT	CO I MAN		ı	L'NCI		MAD7	MAD 6		MAD 5	MAD 4	200	2	MAD 2	MAD !	LOJM	L. 2.2.1
2 ACCESSES / MCYC (DRAW) 256Kx4-BIT (VMDO=1) ROW (CCLUMN ROW COLLUMN MA 18 [NCO] MD 9 [NCI] MAD 9 MAD 8 AD 18 MAD 7 MA 17 MAD 7 A 16 MAD 6 MA 16 MAD 6 AD 15 MAD 5 MAD 13 MAD 5 AD 15 MAD 4 MAD 14 MAD 4 AD 12 MAD 2 MAD 12 MAD 1 MAD 2 MAD 12	_	4 A A	7000	XYOCZ CVWDC	1	- 1	1	MAD 9		MAD 8	MA 16	AAAA C	CIOMM	MAD 14	MADIA		MAD 12	MADII	MADIO	2
2 ACCESSES / MC (DRAW) 256K4-BIT (VMDO-0) (VMDO	(ر	Fig		COLLIMIN		NC O	MAD 8		MAU /	MAD 6	MADA		MAD 4	MAD 3		MAD 2	MAD I	MAD 0	
2 ACCESSI (DRAW 256K4-BIT (VMDO=0) NAD 9 [NCI] DAD 6 NAD 7 NAD 1 NAD	7847	:s / MC	184 ×	(VMDC	•	١ •	MA IB	MAD 9	71 / 17	<u>.</u>	MA 16	MADIS	2	MAD 14	MAD 13	010044	ZIOWN	MADII	MAD 10	
256Kx (VMD (VMD - MD 9 MD 9 MD 15 MD 13 MD 12		DRAW	1-RIT	(0=0	COLUMN		1		MAD 7		MAD 6	MAD 5)	MAD 4	MAD 3	MANO	אואטע	MAD !	MAD 0	
	``	Ĵ	256Kr4	(VMD	ROW			MAD 9	MAD A)	MA 16	MAD 15		MAD 14	MAD 13	MAD 12		MAD II	O MAD IO MAD O MAD	
FA 6 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	_		FΑ			σ	<u>-</u>	80	7						3	. 2		_	0	

[_] : COLUMN ADDRESS COUNTER

F I G. 29c

		ACCESS (DRA		YC	440	4ACCESSES / MCYC					
FΔ	256K x (VMD	4-BIT 0=0)	IM×4 (VMD	-BIT 0=1)		x 4-8IT 0=0)	IMx 4	I — BIT IO≖I)			
<u> </u>	ROW	COLUMN	ROW	COLLIMN	ROW	COLUMN	Row	COLUMN			
9	-	-	MA 18	MAD 9	-	-	MA 18	MAD 9			
8	MAD 9	MAD 8	MA 19	MAD 8	MAD 9	MAD 8	MA 19	MAD 8			
7	MA 17	MAD 7	MA 17	MAD 7	MA 17	MAD 7	MAD 17	MAD 7			
6	MA 16	MAD 6	MA 16	MAD 6	MA 16	MAD 6	MA 16	MAD 6			
5	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5	MAD 15	MAD 5			
4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4	MAD 14	MAD 4			
3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3	MAD 13	MAD 3			
2	MAD I2	MAD 2	MAD 12	MAD 2		ĺ	MAD 12	MAD 2			
ı	MADII	MADI	MAD II	MAD I	_		MAD II	WCT			
0	MADIO	MAD O	MAD 10	MAD O		: :1	į	wco			

[]]: COLUMN ADDRESS COUNTER