Learning Phone Embeddings for Word Segmentation of Child-Directed Speech

Jianqiang Ma Çağrı Çöltekin Erhard Hinrichs

{jma,ccoltekin,eh}@sfs.uni-tuebingen.de

Introduction

- Segmentation of words from continuous speech is one of the first tasks infants solve
- ► Embeddings allow learner to exploit similarities between the phones
- ► The model learns from unlabeled data, exploiting information from utterance boundaries

Summary

- We model joint learning of segmentation and phone embeddings
- ▶ The embeddings model outperforms the symbolic model (using one-hot vectors)
- ► The embedding model learns linguistically meaningful classes of phones

The model

OUTPUT: 8.0 (boundary probability) 3. Sigmoid \bigoplus 2. Concat 1.Look-up weight vector unigrams bigrams **INPUT**: A, t, I, z 0.1, 0.5... 0.03 At, Iz

The position between t and I in "WAtIzIt" is being predicted.

- Online learning with SGD, L2 regularization
- Utterance boundaries as positive instances
- Negative instances are sampled randomly from intra-utterance positions

Embeddings capture phonology

Results on child-directed speech corpus

Model	ЕО	EU	BF	WF	LF
embedding/all	6.4±0.1	17.3±0.2	82.9	68.7	42.6
symbolic/all	8.1 ± 0.1	$25.8\!\pm0.2$	75.9	60.2	31.6
embedding/unigram	15.8±0.1	10.6±0.3	77.4	59.1	40.7
symbolic/unigram	13.2 ± 0.1	21.7 ± 0.2	73.4	54.4	29.4

Similarities of embeddings indicate segmentation roles

Comparison with word2vec embeddings

