

Embedded Linux

Introduction

Goals

To introduce the structure of the Embedded Linux Online Course

To introduce the concept of embedded systems

To provide a few illustrative examples of Linux-based embedded systems

Course structure

Introduction to embedded systems

Course structure

Introduction to embedded systems

Course Structure

Module 1: Linux in Embedded Systems

- · Definition of embedded systems
- · Examples (in real world)

Module 2: Linux-based Embedded System Component Stack

- Bootloader
- Kernel
- · Root file system
- · Device tree
- System programs
- Application

```
foundament embedded linux system
```


Course Structure

Module 3: Anatomy of a Linux-based system

- · The Linux Kernel internals
- · Device tree
- · System programs and BusyBox

Module 4: Configuration & Build Process of an Embedded Linux System

- Buildroot
- · Yocto useful for selling the process

Module 5: Introduction to Linux Kernel Modules

- · CPU I/O interface
- I/O taxonomy
- · Linux devices
- · Virtual file system abstraction
- · Linux Kernel modules
- 6 © 2017 Arm Limited

Course Structure

Module 6: Communication Between Kernel and User Space

- Module level communication point of view
- User level communication point of view

Module 7: Application Demo: Building a Ranging Sensor Kernel Module

- · The sysfs file system
- Building Linux support for the HC-SR04 ultrasonic ranging sensor

Module 8: System Debugging & Profiling lab exercises

The majority of the theoretical lectures will be complemented with lab exercises.

Course structure

Introduction to embedded systems

What Is an Embedded System?

computer
processor
processor
inerrory
input Jourput device fullfill requirement

It is a special-purpose computer designed for a specific application.

Example of application: internal combustion engine (ICE)

Example of embedded system: electronic control unit for ICE

Embedded System Components

Two main components

- · Application software no service mun user months
- · Platform : software . hardware out resource him lash lo

Application

· Software that implements the functionalities for which the embedded system is intended (e.g., to control an ICE)

Platform

- Combination of hardware and hasic software components that provides the services needed for the application to run
- Basic software includes system programs, operating system, bootloader

Basic Software

Abstracts the hardware details by providing easyto-use functionalities, such as:

- Access to the resources through user-friendly utilities known as system programs
- Example: 1s to list the content of a directory
- · Efficient access to the resources provided by the hardware through the operating system
- Example: CPU real-time scheduling, device driver management
- Initialization of hardware resources at power-up and execution of the operating system through the bootloader

System po

Basic Software

Operating Systems for Embedded Systems

There are many solutions available which serve different purposes depending on the requirements of the application.

- Example 1 การเหน อะ่างแรกที่ถูก Os
- Needs: deterministic real-time operating system for low-cost devices, with little memory footprint
- Possible solutions: ARM RTX, Micrium μC/OS, FreeRTOS, and others
- Example 2
- Needs: multi-core and networking support, advanced graphics, and complex device handling
- · Possible solutions: Linux, Android, and Windows

Example 1: deterministic real-time system

Example 2: in-vehicle infotainment

Course structure

Introduction to embedded systems

- (Open Source (under GNU General Public License v2.0 : GPLv2)
 - . The full source code is available for learning and adaptation
- (Engaged community maintaining and improving Linux regularly
 - Companies
 - · Individuals
 - Academics
 - Hobbyists
- (5) Flexible and adaptable: supports many hardware/System-on-Chip (SoC) configurations
 - Based on ARM, x86, PowerPC, SPARC, etc. (ox/o/unn, Orchitecture)
- (4) Proven in many different scenarios (see next slides) anno led loico:
- Supported by a very large ecosystem of software
 - Bootloader, system programs, networking services, advanced graphic services, etc.
- 6 Royalty-free

Linux Evolution

August 26, 1991: everything started with this post to comp.os.minix (μὸνὸνης) ἐντόν)

noise calegories seler in me level of coole base]

Today several kernel categories exist, including:

- Prepatch or "RC" kernels, which are pre-releases maintained and released by Linus Torvalds.
- Mainline kernel is maintained by Linus Torvalds, and is where all new features are introduced. New mainline kernels are released every 2-3 months.
- Long-term kernels are older releases subject to "long-term maintenance". Important bug fixes are applied to such kernels.

Longterm release kernels

Version	Maintainer	Released	Projected EOL
4.4	Greg Kroah-Hartman	early 2016	Feb, 2018
4.1	Greg Kroah-Hartman	2015-06-21	Sep, 2017
3.18	Sasha Levin	2014-12-07	Jan, 2017
3.14	Greg Kroah-Hartman	2014-03-30	Aug, 2016
3.12	Jiri Slaby	2013-11-03	2016
3.10	Greg Kroah-Hartman	2013-06-30	End of 2015
3.4	Li Zefan	2012-05-20	Sep, 2016
3.2	Ben Hutchings	2012-01-04	May, 2018
2.6.32	Willy Tarreau	2009-12-03	Early 2016

https://www.kernel.org/category/releases.html

Linux-based Embedded System: Example 1

In-flight entertainment systems

"Linux is particularly suited for in-flight entertainment because it's simple, not weighed down by accompanying programs, and easily adaptable to many environments."

http://www.linuxinsider.com/story/The-Flying-Penguin-Linux-In-Flight-Entertainment-Systems-65541.html

http://www.linuxinsider.com/story/
The-Flying-Penguin-Linux-In-Flight-Entertainment-Systems-65541.html

Linux-based Embedded System: Example 2

Tim Horton's Café and Bake Shop

The screen displays the messages Linux produces during boot-up. In particular, we can recognize a kernel panic, as the kernel is not able to find the root file system.

Linux-based Embedded System: Example 3

A gas station pump

The screen displays the messages of a Linux bootloader.

This gas station is powered by Linux Ubuntu distribution with Kernel 2.6.35.

