

Partnerstädte:

Gefördert durch:

Dr. Toni TontchevBackground in Computer Science and GIO-Engineering

City of Leipzig
Office for GEO-Information and
spatial Order
CUT-Project, Leipzig
Responsible for Development of DT

GEO Base Twin of Leipzig

Taxonomy, Semantic and Graph Applications

What is the Geo Base Twin (GBT)?

DIN SPEC 91607: 3.2 geo base twin

composition of all basic digital resources of municipal geo-data, applications and analyses <u>zfv_2023_1_Schubbe_et-al.pdf</u>

Digital Resources of the City Government

UDT and **GBT** as Composition of Digital Resources

How City Government can use the GBT?

According to Data and Business Layer in DIN SPEC 91387

GEO base twin

Metadata describe resource profiles

GIO Base Twin – Taxonomy and Metadata

- make a taxonomy to find categories
- look for rules about metadata

DIN SPEC 91607: 3.2 geo base twin

composition of all basic digital resources of municipal geo-data, applications and analyses

Semantic and interoperability capabilities of CKAN

explain your categories with metadata

 find relationships between the categories and select metadata for resource description

How to deal with semantic?

Dealing with spatial and temporal context

Need:

 The GBT is strong related to spatial and temporal context

```
<cityObjectMember>
                             <Building gml:id=,,104167">
                               <gml:name>A house/gml:name>
          Versioning
                                 <box><br/>dedBy></br>
                                  <GroundSurface gml:id=8b7970xx">
                                    <lod2MultiSurface>
                                      <gml: Polygon>
                                        <gml: exterior>
                                          <gml: LinearRing>
spatial structural
                                           <gml: posList> ..... 
changes
                                         </gml: LinearRing>
                                       </gml: exterior>
                                      </gml: Polygon>
Beispiel: FME and CityGML -
                                    </load/Index states | </li>
Generating 3D City Models in
                                  </GroundSurface>
a Variety of Applications
                                 </boundedBy>
                            </cityObjectMember>
```

Cases based reasoning

Samples with CityGML3:

• How semantic deals with spatial or temporal changes of city objects?

Sequential changing property

Dealing with instrumental concepts

Need:

 With the GBT we provide instrument with wide spectrum of capabilities

Instrumental concept ex: John a skos: Concept;

instrument is only a placeholder

context grammar Action - Schema.org Type

```
ex: with ex:Hammer.
ex: MetalSheet a skos:Concept;
  skos:prefLabel "MetalSheet";
  ex: changeFormWith ex: Hammer .
```

```
ex: Hammer a skos:Concept;
  skos:prefLabel "Hammer,,.
```

skos: prefLabel "John"; ex: workOn ex: MetalSheet:

```
<rdf:Description rdf:about="http://example.org/Activity"</pre>
        <rdf:type rdf:resource="http://schema.org/Action"/>
13
        <schema:agent rdf:resource="http://example.org/John"/>
        <schema:instrument rdf:resource="http://example.org/Hammer"/>
        <schema:object rdf:resource="http://example.org/SheetMetal"</pre>
       /rdf:Description>
```

Sample: "John is working on sheet metal with the hammer" How semantic deals with instrumental and heterogeneous concepts?

```
heterogeneous
concept
```

```
<rdf;Description rdf:about="http://example.org/SheetMetal">
 <ex:hasPart rdf:resource="http://example.org/Sheet"/>
 <ex:hasPart rdf:resource="http://example.org/Metal"/>
</rdf:Description>
<rdf:Description rdf:about="http://example.org/Sheet">
  <rdfs:label>Sheet</rdfs:label>
</rdf:Description>
<rdf:Description rdf:about="http://example.org/Metal">
  <rdfs:label>Metal</rdfs:label>
</rdf:Description>
```

```
Sheet = geometry
Metal = material
```

Identity by more properties

Dealing with emergence

Need:

Many situations of the reality and their variations are emergent

possible to quantify

```
16 ex:Good a skos:Concept;
17
        skos:prefLabel "Good" ;
        skos:definition "Air quality is good with low levels of pollutants.";
18
19
        skos:broader ex:AirQuality ;
20
        ex: PM25 "12.1-35.4";
                                  Fine dust
21
        ex:NO2 "41-100";
                                  Nitrogen dioxide
22
        ex:03 "51-100" .
                                  Ozone
23
```

Sample: Air Quality

• How semantic deals with emergent status of system parameters?

```
1 @prefix ex: <http://example.org/> .
2 @prefix skos: <a href="http://www.w3.org/2004/02/skos/core#">http://www.w3.org/2004/02/skos/core#> .
4 ex:AirQuality a skos:Concept;
        skos:prefLabel "Air Quality";
        skos:definition "Air quality depends on the amount of pollutants and is classified
    into levels: very good, good, moderate, poor, and very poor." .
    ex: VeryGood a skos: Concept ;
        skos:prefLabel "Very Good" ;
        skos:definition "Air quality is very good with minimal pollutants.";
        skos:broader ex:AirQuality
12
13 ex:Good a skos:Concept;
14
        skos:prefLabel "Good" ;
15
        skos:definition "Air quality is good with low levels of pollutants.";
        skos:broader ex:AirQuality .
17
18 ex:Moderate a skos:Concept;
        skos:prefLabel "Moderate" ;
        skos:definition "Air quality is moderate with acceptable levels of pollutants.";
21
        skos:broader ex:AirQuality .
22
23 ex:Poor a skos:Concept ;
        skos:prefLabel "Poor" ;
        skos:definition "Air quality is poor with high levels of pollutants.";
26
        skos:broader ex:AirQuality .
27
28 ex: VeryPoor a skos: Concept;
        skos:prefLabel "Very Poor" ;
30
        skos:definition "Air quality is very poor with very high levels of pollutants.";
31
        skos:broader ex:AirQuality .
32
```

Challenges of the semantic approach

Challenges:

- Ambiguity: Concepts may have different meanings in different contexts
- Granularity: more details of the semantic model lead to complexity and make it difficult for understanding
- Interoperability: different systems and standards lead to different semantic models. This can complicate integration and interoperability

Suggestion:

- Make from every context meaning a case of mining and specify it carefully
- Select the right level of complexity to enable integration and interoperability but not to swap the users
- Consider the level of the users and their technologies and use cases.
 Ensure that the provided solution will work reliable

How to leverage GBT?

Graph- APIs for advanced Interoperability

Graph API Architecture

Graph APIs enable an intelligent and flexible interoperability not only for data operations, but also for analytics and visualisation:

- understandable for humans.
- interoperable with relational databases,
- data includes metadata,
- fast querying and calculations,
- powerful graph analytics
- spatial and temporal indexes and functioning (neo4j spatial)
- working with REST- and RPC-Interfaces,
- working with semantic (reuse concepts)
- simply customisable with low coding

Reachability of daycare with LPG and Neo4J

Example: Digital Twin of daycare planning in Leipzig

Thank you!

toni.tontchev@leipzig.de

