数据来源:数据库产品上市商用时间

第十三届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2022

数据智能 价值创新

🚣 线上直播 🛛 2022/12/14-16

服务vivo数亿用户的数据 库平台服务实践

邓松 vivo互联网 云平台架构师

01 规模&架构 02 数据库可用性建设 03 数据库运维效率 建设

04 隐私数据治理 05 数据库成本优化

规模

数万数据库实例

- 广泛的微服务架构的应用,以及服务在数据层面独立的原则,导致数据实例成倍增加。
- 规模化是挑战也是动力

8个数据库品 类

- MySQL,Redis,MongoDB, TiDB,Elasticsearch, 磁盘KV,对象存储,文件存储
- 开源工具生态成熟度参 差不齐,需自研满足

10人DBA

人均运维超过数千实例, 日常面对至少超过数千 研发者,常规工作量大。 平台化运维是必然之路

产品架构

01 规模&架构 02 数据库可用性建设 03 数据库运维效率 建设

04 隐私数据治理 05 数据库成本优化

数据库可用性建设-问题分类

天灾 ——

不可抗力

• 机器,机架级故障

DB高可用,跨机器,机架分配

• 机房级故障

灾备实例, 跨机房实例

• 区域级故障

远程备份,数据同步

人祸

研发类&运维类

• 客户端配置不合理,慢 SQL等研发使用数据不 合理问题

调用链客户端配置管理, SQL治理

• 非标准运维操作问题

标准运维平台化

数据库可用性建设-自研MySQL高可用架构

开源数据库中MySQL高可用需 要自研

自研proyx,同时基于zk和 orchestrator 改造成为规模化的 高可用控制中心

Proxy, MySQL单节点故障支持自动恢复

数据库可用性建设-数据变更标准化建设

标准

数据变更三板斧

- 提前语法检测,数据检测
- 变更保持对数据库可用性低影响,可根据负载
- 至里支持回滚

数据库可用性建设-SQL治理

- 治理思路

全链路治理

- 上线前SQL扫描
- 上线后慢SQL跟踪

01 规模 02 数据库可用性建设 03 数据库运维效率 建设

04 隐私数据治理 05 数据库成本优化

数据库运维效率建设

实践现状

92%

运维工作量节省

数据库运维操作和数据变更都通过 工单形式记录和审批执行,月均数 干工单量,92%都实现了无需运维 人员参与,用户自助执行

70%

故障告警自动分析

70%的数据库告警实现自动分析或者处理,进一步解放DBA人力。

大规模数据库实例高效 运维

工单自助

替代手工或者脚本操作。用代码的方式,将最佳的运维经验固化在平台中

通过工单流精确量化运维工作场景,而只有成功率达到99%以上一般才可以开放自助

常见Redis等数据变更自助需要补齐生态工具,确保变更对业务无影响,变更均可回滚

大规模数据库实例高效 运维

故障自愈

常见数据库故障场景不到50个 暂时不用AI分析 通过枚举也能有效显著提升 故障处理效率 简单实用 自研基础能力

Redis流量分析 热点key分析 MySQL根因SQL分析等 关键故障分析工具

大规模数据库实例高效 运维

故障自愈架构

70% 故障自动分析或者自愈

30个基础操作建设

26个 故障预案

10个 故障场景全自动处理

01 规模 02 数据库可用性建设 03 数据库运维效率 建设

04 隐私数据治理 05 数据库成本优化

个人隐私数据全链路 保护

个人隐私数据全链路 保护

功能详情

统一数据库建表入口,同时 提供平台工具便于用户对隐 私数据字段进行标记 扫描全网表结构数据,自动识别未标记的隐私数据

数据查询结果中包含隐私数 据自动加密显示

数据导出隐私数据时自动加密,并添加水印

个人隐私数据全链路 保护

最后的防线:数据库加密

存量业务数据加密:对业务无损透明的加解密方案

数据库平台 (DaaS)

配置加密平台操作入口, 配置信息保存之地

表结构变更工具 (gh-ost自研版)

通过对业务数据库近乎无损的增减字段的方式清洗旧的明文数据

MySQL代理 (VSQL Proxy)

自研MySQL透明加解密的proxy

01 规模&架构 02 数据库可用性建设 03 数据库运维效率 建设

04 隐私数据治理 05 数据库成本优化

数据库资源弹性 管理

现状&问题

传统数据 库占主流 从数量上看,线上数据库数万个实例,大部分是REDIS,一部分是MySQL,剩下少部分是其它数据库。

无容器化

资源隔离得另想办法。对于Redis等传统数据库来说,容器化也不能解决其弹性伸缩的速度和稳定性问题,只能从数据库软件本身上去解决。

物理机 直接部署

超过PB级数据直接部署在数千台物理机上,数据库成本问题更加敏感

数据库资源弹性 管理

实践展示

资源分配

- 单机器多实例多版本多套餐 混合部署
- 同类数据库资源池统一
- 计算节点混合部署

弹性伸缩

- 自研多线程Redis Cluster扩 缩工具,大key巡检,历史负 载检测,脑裂检测等功能尽 量增加扩容稳定性。
- 自研redis slot级迁移
- · 基于流量审计的无效存储优 化
- 低利用率优化

资源隔离

- 程序配置控制实现隔离
- 通过巡检和容量预测的方式 实现软隔离

数据库资源弹性

无效数据优化

管理

数据库资源弹性 管理

套餐自动优化

主要建设功能: MySQL, MongoDB, Elasticsearch套餐自动降配;

超干次

自动缩容

百T+ 节省空间

01 规模&架构 02 数据库可用性建设 03 数据库运维效率 建设

04 隐私数据治理 05 数据库成本优化

未来展望

统一标准, 开源共建

openGauss

