Using the Derivative to Analyze Functions

- f'(x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f'(c) = 0 (tangent line is horizontal), or f'(c) = undefined (tangent line is vertical)
- f''(x) indicates if the function is concave up or down on certain intervals.

Inflection Point: where f''(x) = 0 or where the function changes concavity, no Min no Max.

If the sign of f'(c) changes: from + to -, then: f(c) is a **local Maximum**

If the sign of f'(c) changes: from - to +, then: f(c) is a **local Minimum**

If there is no sign change for f'(c): then f(c) is **not** a local extreme, it is: An **Inflection Point** (concavity changes)

- Critical points, f'(x) = 0 at: x = a, x = b
- Increasing, f'(x) > 0 in: x < a and x > b
- **Decreasing,** f'(x) < 0 in: a < x < b
- Max at: x = a, Max = f(a)
- Min at: x = b, Min = f(b)
- Inflection point, f''(x) = 0 at : x = i
- Concave up, f''(x) > 0 in: x > i
- Concave Down, f''(x) < 0 in: x < i

- Critical points, f'(x) = 0 at: x = a, x = b, x = c
- Increasing, f'(x) > 0 in: a < x < b and x > c
- Decreasing, f'(x) < 0 in: x < a and b < x < c
- Max at: x = b, Max = f(b)
- Min at: x = a, x = c, Min = f(a) and f(c)
- Inflection point, f''(x) = 0 at : x = i, x = j
- Concave up, f''(x) > 0 in: x < i and x > j
- Concave Down, f''(x) < 0 in: i < x < j

I) Applications of The First Derivative:

- Finding the critical points
- Determining the intervals where the function is increasing or decreasing
- Finding the local maxima and local minima
- **Step 1:** Locate the **critical points** where the derivative is = 0;

find
$$f'(x)$$
 and make it = 0

$$f'(x) = 0 \implies x = a, b, c, \dots$$

• Step 2: Divide f'(x) into intervals using the critical points found in the previous step:

then choose a **test point** in each interval.

• **Step 3:** Find the derivative for the function in each test point:

Sign of f' (test point)	Label the interval of the test point:
> 0 or positive	increasing , +++++ ,
< 0 or negative	decreasing,,

• Step 4: Look at both sides of each critical point, take point *a* for example:

II) Applications of The Second Derivative:

- Finding the inflection points
- Determining the intervals where the function is concave up or concave down
- Step 5: Locate the inflection points where the second derivative is = 0;

find
$$f''(x)$$
 and make it = 0
 $f''(x) = 0 \implies x = i, j, k, \dots$

• Step 6: Divide f''(x) into intervals using the inflection points found in the previous step:

then choose a **test point** in each interval.

• **Step 7:** Find the second derivative for function in each test point:

Sign of f'' (test point)	Label the interval of the test point:
> 0 or positive	Concave up , +++++,
< 0 or negative	Concave down,,

• **Step 8:** Summarize all results in the following table:

Increasing in the intervals:	
Decreasing in the intervals:	
Local Max. points and Max values:	
Local Min. points and Min values:	
Inflection points at:	
Concave Up in the intervals:	
Concave Down in the intervals:	

• Step 9: Sketch the graph using the information from steps 3,4 and 7 showing the critical points, inflection points, intervals of increasing or decreasing, local maxima and minima and the intervals of concave up or down.

Note: It is best to put the data from steps 3,4,7 above each other, then graph the function. For example:

Steps 3,4: f'(x), increasing, decreasing labels:

Step 7: f''(x), concave up, down labels:

Show the coordinates of each point: Local May at (a, f(a))

Local Max at (a, f(a))Local Min at (b, f(b))

Inflection Point at (i, f(i))

Example 1: For the function $f(x) = -x^3 + 3x^2 - 4$:

- a) Find the intervals where the function is increasing, decreasing.
- b) Find the local maximum and minimum points and values.
- c) Find the inflection points.
- d) Find the intervals where the function is concave up, concave down.
- e) Sketch the graph

I) Using the First Derivative:

• **Step 1**: Locate the **critical points** where the derivative is = 0:

$$f'(x) = -3x^2 + 6x$$

 $f'(x) = 0$ then $3x(x - 2) = 0$.

Solve for x and you will find x = 0 and x = 2 as the critical points

• Step 2: Divide f'(x) into intervals using the critical points found in the previous step, then choose a **test** points in each interval such as (-2), (1), (3).

• **Step 3:** Find the derivative for the function in each test point: (*It is recommended to create a table underneath*)

	(-2) 0	(1) 2	(3)
$f'(x) = -3x^2 + 6x$	f'(-2)= -24	f'(1)= +3	f'(3)= -9
Sign		++++++++	
Shape	Decreasing	Increasing	Decreasing
Intervals	x < 0	0 < x < 2	x > 2

• Step 4: Look at both sides of each critical point:

Local Minimum at x = 0, Minimum = $f(0) = -(0)^3 + 3(0)^2 - 4 = -4$; or **Min** (0, -4)

Local Maximum at x = 2, Maximum = $f(2) = -(2)^3 + 3(2)^2 - 4 = 0$; or **Max** (2, 0)

Increasing or f'(x) > 0 in: 0 < x < 2

Decreasing or f'(x) < 0 in: x < 0 and x > 2

II) Using the Second Derivative:

• Step 5: Locate the inflection points where the second derivative is = 0; find f''(x) and make it = 0

$$f'(x) = -3x^2 + 6x$$

$$f''(x') = -6x + 6$$

$$f''(x) = 0$$
 then $-6x + 6 = 0$

Solve for x and you will find x = 1 as the inflection point

• Step 6: Divide f''(x) into intervals using the inflection points found in the previous step, then choose a **test point** in each interval such as (0) and (2).

• **Step 7:** Find the second derivative for the function in each test point: (*It is recommended to create a table underneath*)

,	(0)	(2)
f''(x) = -6x + 6	f ''(0)= 6	f ''(2)= -6
Sign	+++++++++	
Shape	Concave up	Concave Down
Intervals	x < 1	x > 1

• **Step 8:** Summarize all results in the following table:

Increasing in the intervals:	f'(x) > 0 in 0 < x < 2
Decreasing in the intervals:	f'(x) < 0 in x < 0 and x > 2
Local Max. points and Max values:	Max. at $x = 2$, Max (2,0)
Local Min. points and Min values:	Min. at $x = 0$, Min (0, -4)
Inflection points at:	x = 1, $f(1) = -2$ or at $(1,-2)$
Concave Up in the intervals:	f''(x) > 0 in x < 1
Concave Down in the intervals:	f''(x) < 0 in x > 1

• **Step 9:** Sketch the graph:

Example 2: Analyze the function $f(x) = 3x^5 - 20x^3$

- a) Find the intervals where the function is increasing, decreasing.
- b) Find the local maximum and minimum points and values.
- c) Find the inflection points.
- d) Find the intervals where the function is concave up, concave down.
- e) Sketch the graph

I) Using the First Derivative:

• **Step 1**: The **critical points** where the derivative is = 0:

$$f'(x) = 15x^4 - 60x^2$$

$$f'(x) = 0$$
 then $15x^2(x)$

$$15x^2(x^2 - 4) = 0.$$

Solve for x and you will find x = -2, x = 0 and x = 2 as the critical points

• Step 2: Intervals & test points in f'(x):

(2)	-2
(-3)	

-1)

(3)

• **Step 3:** Derivative for the function in each test point:

-	(-3)	(-1) 0	(1)	(3)
$f'(x) = 15x^4 - 60x^2$	f'(-3)= 675	f'(-1)= - 45	f'(1)= - 45	f'(3)= 675
Sign	+++++			+++++
Shape	Increasing	Decreasing	Decreasing	Increasing
Intervals	x < -2	-2 < x < 0	0 < x < 2	x > 2

• Step 4:

Local Maximum at x = -2, Maximum = $f(-2) = 3(-2)^5 - 20(-2)^3 = 64$; or **Max** (-2, 64)

Local Minimum at x = 2, Minimum = $f(2) = 3(2)^5 - 20(2)^3 = -64$; or **Min** (2, -64)

Increasing or f'(x) > 0 in: x < -2 and x > 2

Decreasing or f'(x) < 0 in: -2 < x < 0 and 0 < x < 2, or -2 < x < 2

Example 2, continue

II) Using the Second Derivative:

• Step 5: Locate the inflection points by making f''(x) = 0:

$$f''(x) = 60x^3 - 120x$$

 $f''(x) = 0$ then $60x(x^2 - 2) = 0$.

Solve for x and you will find
$$x = 0$$
, $x = \pm \sqrt{2} = \pm 1.414$

Solve for x and you will find x = 0, $x = \pm \sqrt{2} = \pm 1$

x < -1.414

•	Step 6:	Intervals & test points	(-2)	-1.414	(-1)	0	(1)	1.414	(2)	_

• Step 7: -1.414 1.414 (-1)(2) (-2)(1) $f''(x) = 60x^3 - 120x$ f''(2) = +f''(-2) = f''(-1) = +f''(1) = -Sign +++++ +++++ Concave Concave Concave Concave Shape **Down** Up **Down** Up

• **Step 8:** Summarize all results in the following table:

Intervals

Increasing in the intervals:	x < -2 and $x > 2$
Decreasing in the intervals:	-2 < x < 2
Local Max. points and Max values:	Max. at $x = -2$, Max (-2, 64)
Local Min. points and Min values:	Min. at $x = 2$, Min (2, -64)
Inflection points at:	(-1.414, 39.6), (0, 0), (-1.414, -39.6)
Concave Up in the intervals:	-1.414 < x < 0 and $x > 1.414$
Concave Down in the intervals:	x < -1.414 and $0 < x < 1.414$

-1.414 < x < 0

0 < x < 1.414

x > 1.414

• **Step 9:** Sketch the graph: (*Make sure the scale is consistent between* f'(x) *and* f''(x) *intervals*)

The following are extra examples, analyze them using the 9 steps, then check your final answers:

Example 3:
$$f(x) = \frac{1}{3}x^3 - 2x^2 + 3x + 1$$

Example 4: $f(x) = x^4 - 2x^2$ **Example 6:** $f(x) = -3x^5 + 5$

Example 5: $f(x) = x^4 - 4x^3$

Example 6: $f(x) = -3x^5 + 5x^3$

	Example3	Example 4
Increasing in the intervals:	x < 1 and $x > 3$	-1 < x < 0 and $x > 1$
Decreasing in the intervals:	1 < x < 3	x < -1 and $0 < x < 1$
Local Max. points and Max values:	Max. at $x = 1$, Max $(1, 7/3)$	Max. at $x = 0$, Max $(0, 0)$
Local Min. points and Min values:	Min. at $x = 3$, Min (3, 1)	Min. at $x = -1,1$; Min $(-1,-1)$ & $(1,-1)$
Inflection points at:	(2,5/3)	Approx. (-0.58 , -0.56) , (0.58 , -0.56)
Concave Up in the intervals:	x > 2	x < -0.58 and $x > 0.58$
Concave Down in the intervals:	<i>x</i> < 2	-0.58 < x < 0.58

	Example5	Example 6
Increasing in the intervals:	<i>x</i> > 3	-1 < <i>x</i> < 1
Decreasing in the intervals:	ne intervals: $x < 3$ $x < -1$ a	
Local Max. points and Max values:	No local Max.	Max. at $x = 1$, Max $(1, 2)$
Local Min. points and Min values:	Min. at $x = 3$, Min (3, -27)	Min. at $x = -1$; Min $(-1,-2)$
Inflection points at:	(0,0) and $(2,-16)$	Approx. (-0.707, -1.24), (0.707, 1.24), (0,0)
Concave Up in the intervals:	x < 0 and $x > 2$	x < -0.707 and $0 < x < 0.707$
Concave Down in the intervals:	0 < x < 2	-0.707 < x < 0 and $x > 0.707$

Ex. 4

Ex. 5

The following are the graphs for problem **in page 180** in the book. Analyze each problem using the 9 steps, create the summary tables and sketch the graphs. Your summary tables can be verified from the graphs.

11)
$$f(x) = x^2 - 5x + 3$$

16)
$$f(x) = 3x^4 - 4x^3 + 6$$

18)
$$y = x^4 - 4x^3 + 10$$

Extra 1:
$$f(x) = x^3 + 6x^2 + 9x - 1$$

13)
$$f(x) = 2x^3 + 3x^2 - 36x + 5$$

17)
$$f(x) = x^4 - 8x^2 + 5$$

20)
$$f(x) = 3x^5 - 5x^3$$

Extra 2:
$$f(x) = 20x^3 - 3x^5$$

