## 6. Áreas

## **Objetivo**

O objetivo dessa aula é contextualizar a aplicação de integrais para áreas de superfícies.

## **Começando Simples**

Inicialmente, vamos explorar como pode ser feito para calcularmos a área de figuras 2D : Retângulos, Triângulos Trapézios, Círculos e Elipses.

## Retângulo

Bom, o retângulo pode ser expresso simplesmente por uma função constante: f(x) = h.



Dessa maneira, podemos simplesmente calcular a integral dessa função de 0 até B.

$$A=\int_0^B f(x)dx=\int_0^B Hdx=H\int_0^B dx=H[x]_0^B=BH$$

Também poderíamos ter feito utilizando Newton-Cotes de grau 1 ou Gauss-Legendre (apesar de ser muito nesse caso).

## Triângulo

Aqui é onde as coisas começam a ficar interessantes! Observe que um triângulo pode ser expresso como duas funções:



Sendo assim, poderíamos calcular como a soma de duas integrais:

$$\int_0^C f_1(x) dx + \int_C^B f_2(x) dx$$

Apesar das integrais serem simples, é preferível evitar trabalho adicional. O foco dessa aula é exibir maneiras diferentes de enxergar uma integração, sempre pensando em mudanças de variável.

#### Mudando a Visão!

Na essência, um pouco mais fácil de visualizar já que estamos sempre pensando numericamente, uma integral é uma soma de pedacinhos. A nossa estratégia se baseará em encontrar uma boa maneira de representar esses pedacinhos.

Pense no triângulo, o que queremos é somar diversos dA = dxdy, onde dx e dy são os tamanhos do lado de cada um desses pedacinhos. Observe o que queremos fazer:

$$A = 0$$

$$x = 0, B$$

$$y = 0, f_1(x)$$

$$A = A + dA$$

$$y = 0, f_2(x)$$

$$A = A + dA$$

O problema é que, em coordenadas cartesianas necessitamos das equações das retas  $f_1(x)$  e  $f_2(x)$ . Vamos mudar isso!

#### Trocando as Variáveis

Temos a seguinte expressão:

$$A = \int_A dA$$

O que queremos fazer é relacionar a expressão acima com uma nova, mas que esteja em um novo sistema de coordenadas. Podemos fazer isso da seguinte forma:

$$A=\int_A dA=\int_\Omega |J|d\Omega$$

Tudo bem! Mas o que vamos fazer nesse exemplo?

- 1. Imagine um ponto P que desliza sobre a base do triângulo.
- 2. A posição do nosso ponto P vai ser descrita por por uma variável  $lpha \in [0,1]$
- 3. A posição do elemento de área dA será descrita por uma variável  $\beta \in [0,1]$

Podemos expressar a nossa nova área da seguinte maneira:



Figura 3. Mudança de variáveis para facilitar o processo de varredura.

Certo! Mas como podemos o determinante da matriz Jacobiana?

#### **Jacobiana**

No nosso caso, em específico, a matriz Jacobiana será dada da seguinte maneira:

$$|J| = \det egin{bmatrix} rac{\partial x}{\partial lpha} & rac{\partial x}{\partial eta} \ rac{\partial y}{\partial lpha} & rac{\partial y}{\partial eta} \end{bmatrix}$$

Bom, para resolvermos essas derivadas parciais, precisamos primeiro obter  $\alpha$  e  $\beta$  em função de x e y.

Para definir P em função de  $\alpha$  basta lembrar como fazer para definir um vetor  $\vec{AB}$  em função de uma variável controladora  $t \in [0,1]$ . Se temos o segmento  $\vec{AB}$ , a seguinte expressão pode ser obtida:

$$P(t) = A + \vec{AB}t$$

Então, para o nosso caso, teremos:

$$P(lpha,eta) = egin{bmatrix} 0 \ 0 \end{bmatrix} + (egin{bmatrix} B \ 0 \end{bmatrix} - egin{bmatrix} 0 \ 0 \end{bmatrix}) lpha = lpha egin{bmatrix} B \ 0 \end{bmatrix}$$

E para o nosso "pedacinho",  $\bar{P}(\beta)$ , temos:

$$ar{P}(lpha,eta) = P(lpha) + (V - P(lpha))eta$$

Onde V é o vértice do triângulo. Assim, podemos chegar no seguinte:

$$x(\alpha, \beta) = \alpha B + \beta (C - \alpha B) = \alpha B + \beta C - \alpha \beta B$$
  
 $y(\alpha, \beta) = \beta H$ 

Assim, podemos determinar |J|:

$$|J| = \det egin{bmatrix} rac{\partial x}{\partial lpha} & rac{\partial x}{\partial eta} \ rac{\partial y}{\partial lpha} & rac{\partial y}{\partial eta} \end{bmatrix} = \det egin{bmatrix} (B-eta B) & (C-lpha B) \ 0 & H \end{bmatrix} = HB(1-eta)$$

#### **Finalizando**

Assim, temos a nova integral:

$$A = \int_A dA = \int_\Omega |J| d\Omega$$
 $= \int_\Omega BH (1-eta) d\Omega$ 
 $= \int_0^1 (\int_0^1 BH (1-eta) deta) dlpha$ 
 $\dots$ 
 $A = \frac{BH}{2}$ 

## **Trapézio**

Bom, agora já sabemos de algumas coisas. Vamos tentar aplicar o mesmo para a área de um trapézio. Nesse caso, teremos:

1. Um elemento de área desliza sobre a reta PQ, e P e Q deslizam horizontalmente sobre os segmentos inferior e superior, respectivamente. Assim:



Figura 4. Mudança de variáveis para facilitar o processo de varredura no trapézio.

$$egin{aligned} P(lpha) &= lpha egin{bmatrix} B \ 0 \end{bmatrix} \ Q(lpha) &= egin{bmatrix} C \ H \end{bmatrix} + lpha egin{bmatrix} D-C \ 0 \end{bmatrix} = egin{bmatrix} C+lpha(D-C) \ H \end{bmatrix} \end{aligned}$$

Assim:

$$egin{bmatrix} x(lpha,eta) \ y(lpha,eta) \end{bmatrix} = egin{bmatrix} P_x \ P_y \end{bmatrix} + eta egin{bmatrix} Q_x - P_x \ Q_y - P_y \end{bmatrix}$$

Ou seja:

$$egin{bmatrix} x \ y \end{bmatrix} (lpha, eta) = P(lpha) + eta(Q(lpha) - P(lpha))$$

Daí, basta realizar o mesmo desenvolvimento que o anterior! (Pode ser visto nas notas de aula novamente).

#### Círculo

Os dos casos anteriores já contempla uma estratégia para mudança de variável. Nesse caso, não seria muito útil para uma circunferência. Podemos fazer por coordenadas polares:

- 1.  $\alpha$  controlará o raio.
- 2.  $\beta$  percorrerá o ângulo.



Trivialmente já temos a relação entre coordenadas polares e coordenadas cartesianas:

$$egin{aligned} egin{bmatrix} x \ y \end{bmatrix} &= egin{bmatrix} 0 \ 0 \end{bmatrix} + lpha egin{bmatrix} x_p \ y_p \end{bmatrix} \ &= egin{bmatrix} lpha R \cos(eta) \ lpha R \sin(eta) \end{bmatrix} \end{aligned}$$

Daí, podemos obter a seguinte matriz Jacobiana:

$$|J| = \det egin{bmatrix} rac{\partial x}{\partial lpha} & rac{\partial x}{\partial eta} \ rac{\partial y}{\partial lpha} & rac{\partial y}{\partial eta} \end{bmatrix} = \det egin{bmatrix} R\cos(eta) & -lpha R \sin(eta) \ R \sin(eta) & lpha R \cos(eta) \end{bmatrix} = R^2 lpha (\cos^2(eta) + \sin^2(eta)) = R^2 lpha$$

E prosseguir com o cálculo da integral:

$$A = \int_A dA = \int_\Omega |J| d\Omega$$
 $= \int_\Omega (R^2 lpha) d\Omega$ 
 $= \int_0^1 (\int_0^{2\pi} R^2 lpha \ deta) dlpha$ 
 $= R^2 \int_0^1 lpha (\int_0^{2\pi} deta) dlpha$ 
 $= 2\pi R^2 \int_0^1 lpha d \ lpha$ 
 $A = \pi R^2$ 

## **Elipse**

Para a elipse, vamos focar na mudança de variável e omitir as contas. A elipse possui semieixos a e b. Vamos para a mudança:

1. As variáveis controladoras são as mesmas para o círculo.



Para a troca de variável, temos o seguinte:

$$egin{aligned} egin{bmatrix} x \ y \end{bmatrix} &= egin{bmatrix} 0 \ 0 \end{bmatrix} + lpha egin{bmatrix} x_p \ y_p \end{bmatrix} \ &= egin{bmatrix} lpha cos(eta) \ lpha b sen(eta) \end{bmatrix} \end{aligned}$$

Daí, basta prosseguir com as contas...

(25) 
$$dA = |J|d\Omega$$

onde |J| é o determinante da matriz Jacobiana mostrada na equação (26), e  $d\Omega$  é o elemento de área infinitesimal do sistema  $(\alpha, \beta)$ , isto é

(26) 
$$|J| = \det \begin{bmatrix} \frac{\partial x}{\partial \alpha} & \frac{\partial x}{\partial \beta} \\ \frac{\partial y}{\partial \alpha} & \frac{\partial y}{\partial \beta} \end{bmatrix}$$

$$= \det \begin{bmatrix} a\cos(\beta) & -\alpha a \sin(\beta) \\ b\sin(\beta) & \alpha b\cos(\beta) \end{bmatrix}$$

$$= ab\alpha(\cos^{2}(\beta) + \sin^{2}(\beta)) = ab\alpha$$

e

(27) 
$$d\Omega = d\alpha . d\beta$$
.

Assim, fazendo-se mudança de variáveis, a área da elipse pode ser calculada como

$$A = \int_{A} dA = \int_{\Omega} |J| d\Omega$$

$$= \int_{\Omega} (ab\alpha) d\Omega$$

$$= \int_{0}^{1} \left( \int_{0}^{2\pi} ab\alpha \, d\beta \right) d\alpha$$

$$= ab \int_{0}^{1} \alpha \left( \int_{0}^{2\pi} d\beta \right) d\alpha$$

$$= 2\pi ab \int_{0}^{1} \alpha \, d\alpha = 2\pi ab \frac{1}{2}$$

$$(29) A = \pi ab$$

### Em síntese:

Podemos extrair o seguinte das questões anteriores:

1. O mais difícil é encontrar uma mudança de variável que funcione.

- 2. Depois da mudança de variável, os cálculos são simples e a integral também fica simples.
- 3. Problemas parecidos geralmente precisam de mudanças de variável parecidas.

Vamos para algo maior agora:

# Áreas de Superfícies 3D.

Elevando o nível, vamos tratar de superfícies 3D no formato z=f(x,y). Em coordenadas cartesianas, o elemento infinitesimal de superfície dS associado à área infinitesimal dA no plano xy é dado por:

$$dS = \left(\sqrt{\left(rac{\partial f(x,y)^2}{\partial x}
ight) + \left(rac{\partial f(x,y)^2}{\partial y}
ight) + 1}
ight)$$



Figura 7. Área da superfície z = f(x, y) para  $(x, y) \in U \subset \mathbb{R}^2$ 

Assim, a área da superfície acima da região  $U \subset xy$  é dada por:

$$\int_S dS = \int_U \left( \sqrt{\left(rac{\partial f(x,y)^2}{\partial x}
ight) + \left(rac{\partial f(x,y)^2}{\partial y}
ight) + 1}
ight) dA$$

Geralmente integrais como essa são difíceis de se obter analiticamente. Nesse caso, vamos utilizar uma das quadraturas para resolver numericamente.

Tomemos um problema real para usar como exemplo:

A região 
$$U\in xy$$
 é $U=\{(x,y)|-50\leq x\leq 50m, -50m\leq y\leq 50m\}$ 

Resolvendo:

$$egin{split} \int_S dS &= \int_U \Biggl( \sqrt{ \Biggl( rac{\partial f(x,y)^2}{\partial x} \Biggr) + \left( rac{\partial f(x,y)^2}{\partial y} 
ight) + 1} \Biggr) dA \ &= \int_{-50}^{50} \Biggl( \int_{-50}^{50} \Biggl( \sqrt{(0.4x^2) + (0.4y)^2 + 1} \Biggr) dx \Biggr) dy \end{split}$$

Essa integral acima é o que queremos. Vamos resolver por Gauss-Legendre:

# Quadratura de Gauss-Legendre com três pontos na direção $\boldsymbol{x}$ e três pontos na direção $\boldsymbol{y}$ .

A quadratura requer a seguinte mudança de variável:

$$\begin{bmatrix} x(\alpha,\beta) \\ y(\alpha,\beta) \end{bmatrix} = \begin{bmatrix} \frac{-50+50}{2} & \frac{50-(-50)}{2}\alpha \\ \frac{-50+50}{2} & \frac{50-(-50)}{2}\beta \end{bmatrix} = \begin{bmatrix} 50\alpha \\ 50\beta \end{bmatrix}$$

Assim, podemos determinar o seguinte |J|:

$$|J|=\detegin{bmatrix} 50 & 0 \ 0 & 50 \end{bmatrix}=2500$$

Assim, temos a nova integral:

$$A = \int_{-1}^{1} \left( \int_{-1}^{1} \left( \sqrt{(0.4x(\alpha,\beta))^{2} + (0.4y(\alpha,\beta))^{2} + 1} \right) 2500d\alpha \right) d\beta$$

$$= \int_{-1}^{1} \left( \int_{-1}^{1} \left( \sqrt{(0.4(50\alpha))^{2} + (0.4(50\beta))^{2} + 1} \right) 2500d\alpha \right) d\beta$$

$$= \int_{-1}^{1} \left( \int_{-1}^{1} \left( \sqrt{(20\alpha)^{2} + (20\beta)^{2} + 1} \right) 2500d\alpha \right) d\beta$$

$$\approx 2500 \sum_{i=1}^{3} \sum_{j=1}^{3} \left( w_{i}w_{j} \sqrt{(20\alpha_{j})^{2} + (20\beta_{i})^{2} + 1} \right) = 146328.37 \text{m}^{2}.$$

A última expressão indica que os termos entre parênteses tem que ser calculada conforme os novos pares ordenados. Observe em forma de tabela:

| $(\alpha_j, \beta_i)$                                   | $w_j w_i$                                       | $g(\alpha_j, \beta_i) = \sqrt{(20\alpha_j)^2 + (20\beta_i)^2 + 1}$ | $w_i w_j g(\alpha_j, \beta_i)$ | *2500      |
|---------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|--------------------------------|------------|
| $\left(-\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}\right)$ | $\frac{5}{9}.\frac{5}{9} = \frac{25}{81}$       | 21.93171219956                                                     | 6.76904697514                  |            |
| $\left(0,-\sqrt{\frac{3}{5}}\right)$                    | $\frac{8}{9} \cdot \frac{5}{9} = \frac{40}{81}$ | 15.52417469626                                                     | 7.66625910926                  |            |
| $\left(\sqrt{\frac{3}{5}}, -\sqrt{\frac{3}{5}}\right)$  | $\frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$ | 21.93171219956                                                     | 6.76904697514                  |            |
| $\left(-\sqrt{\frac{3}{5}},0\right)$                    | $\frac{5}{9}.\frac{8}{9} = \frac{40}{81}$       | 15.52417469626                                                     | 7.66625910926                  |            |
| (0,0)                                                   | $\frac{8}{9} \cdot \frac{8}{9} = \frac{64}{81}$ | 1                                                                  | 0.79012345679                  |            |
| $\left(\sqrt{\frac{3}{5}},0\right)$                     | $\frac{5}{9}.\frac{8}{9} = \frac{40}{81}$       | 15.52417469626                                                     | 7.66625910926                  |            |
| $\left(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}\right)$   | $\frac{5}{9} \cdot \frac{5}{9} = \frac{25}{81}$ | 21.93171219956                                                     | 6.76904697514                  |            |
| $\left(0,\sqrt{\frac{3}{5}}\right)$                     | $\frac{8}{9}.\frac{5}{9} = \frac{40}{81}$       | 15.52417469626                                                     | 7.66625910926                  |            |
| $\left(\sqrt{\frac{3}{5}}, \sqrt{\frac{3}{5}}\right)$   | $\frac{5}{9}.\frac{5}{9} = \frac{25}{81}$       | 21.93171219956                                                     | 6.76904697514                  |            |
|                                                         |                                                 |                                                                    | 58.53134779439                 | 146 328.37 |

Uffa! Terminamos. Para mais detalhes de desenvolvimento: <u>Tarefa 8</u>