

FAA-RD-71-84

AD 740563

MEASUREMENT AND ANALYSIS OF NOISE FROM FOUR AIRCRAFT DURING APPROACH AND DEPARTURE OPERATIONS (727, KC-135, 707-320B, AND DC-9)

Carole S. Tanner

HYDROSPACE RESEARCH CORPORATION
1360 Rosecrans Street
San Diego, California 92106

U.S. International Transportation Exposition
Dulles International Airport
Washington, D.C.
May 27-June 4, 1972

D D C
R E P O R T
APR 28 1972
REGULATORY
B

SEPTEMBER 1971
FINAL REPORT

Availability is unlimited. Document may be released to the National Technical Information Service, Springfield, Virginia 22151, for sale to the public.

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
Springfield, Va. 22151

DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research and Development Service
Washington, D.C. 20591

185

The contents of this report reflect the views of the Hydrospace Research Corporation, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

CLASSIFICATION	
CPSTI	WHITE SECTION <input type="checkbox"/>
DOC	BUFF SECTION <input type="checkbox"/>
UNANNOUNCED	<input type="checkbox"/>
DISSEMINATION
BY	
DISTRIBUTION/AVAILABILITY CODES	
DIST.	AVAIL. and/or SPECIAL
/	/

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. FAA-RD-71-84	2. Government Accession No.	3. Recipient's Catalog No. TR-S-208	
4. Title and Subtitle MEASUREMENT AND ANALYSIS OF NOISE FROM FOUR AIRCRAFT DURING APPROACH AND DEPARTURE OPERATIONS (727, KC-135, 707-320B, AND DC-9)		5. Report Date SEPTEMBER 1971	
7. Author(s) CAROLE S. TANNER		6. Performing Organization Code	
9. Performing Organization Name and Address HYDROSPACE RESEARCH CORPORATION 1360 ROSECRANS STREET SAN DIEGO, CALIFORNIA 92016		8. Performing Organization Report No.	
12. Sponsoring Agency Name and Address FEDERAL AVIATION ADMINISTRATION SYSTEMS RESEARCH AND DEVELOPMENT SERVICE 800 INDEPENDENCE AVENUE, S. W. WASHINGTON, D. C. 20591		10. Work Unit No. 550-002-03H	
		11. Contract or Grant No. DOT FA71WA-2555	
		13. Type of Report and Period Covered FINAL REPORT MARCH-SEPTEMBER 1971	
15. Supplementary Notes		14. Sponsoring Agency Code	
16. Abstract <p>The objective of this work was to measure, evaluate, and identify the noise levels along the flight track generated by 727, KC-135, 707-320B, and DC-9 aircraft. The aircraft were directed to operate in a wide variety of takeoff and approach procedures. The effort involved acquisition of acoustical, meteorological, aircraft tracking, and aircraft operational data. Microphones were located four feet above the ground in an array parallel to the flight track along the extended runway centerline up to 10 nautical miles from the runway threshold. All tests were conducted at the National Aviation Facilities Experimental Center (NAFEC) during a four-week period in April 1971.</p>			
17. Key Words Acoustics Aircraft Noise Aircraft Operational Procedures Effective Perceived Noise Level Noise Noise Transmission Path		18. Distribution Statement Availability is unlimited. Document may be released to the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151 for sale to the Public.	
19. Security Classif. (of this report) UNCLASSIFIED	20. Security Classif. (of this page) UNCLASSIFIED	21. No. of Pages	22. Price \$3/pc \$.95/mc

ACKNOWLEDGEMENTS

A program of this magnitude requires the combined efforts of a large number of people and the author gratefully acknowledges their contributions. These personnel include the aircraft flight crews, the NAFEC phototheodolite crews, the acoustic measurements team from HRC-Rockville, Mr. John McFadden of EG&G and Messrs. Ron Shreve and Ed Sellman of the FAA Office of Environmental Quality.

The author wishes to extend a special thank you to Mr. Bill Sperry of the FAA Aircraft Noise Branch for his many helpful suggestions and for the effort he has put into the entire program.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
APPARATUS AND METHODS	3
Aircraft Description	3
Flight Profile Description	3
Acquisition of Operational Data	5
Test Area	6
Noise Measurements	6
Data Reduction and Analysis	9
Atmospheric Observations	13
DISCUSSION OF RESULTS	23
Aircraft Performance	23
Atmospheric Observations	23
Noise Measurements	31
CONCLUSIONS	37
REFERENCES	39
APPENDIX A - 727 AIRCRAFT DETAILED NOISE AND TRACKING PLOTS	A-1
APPENDIX B - KC-135 AIRCRAFT DETAILED NOISE AND TRACKING PLOTS	B-1
APPENDIX C - 707-320B AIRCRAFT DETAILED NOISE AND TRACKING PLOTS	C-1
APPENDIX D - DC-9 AIRCRAFT DETAILED NOISE AND TRACKING PLOTS	D-1

LIST OF ILLUSTRATIONS

Figure		Page
1	Typical Measurement Site	8
2	Radio Command Schematic Diagram	8
3	HRC In-House Facilities, Model 1360	9
4	Typical System Frequency Response	11
5	Absorption Correction at PNL TM	11
6	Absorption Correction for 5-dB Signal-to-Noise Ratio	12
7	Absorption Correction for Extrapolated Spectrum	13
8	Reference Flight Profiles	30
9	Reference Noise Levels as a Function of Slant Range	32
10	Reference Noise Levels as a Function of Distance	33
A-1	Takeoff Noise Levels for Profile T1, 727 Aircraft	A-2
A-2	Noise Levels as a Function of Slant Range for Profile T1, 727 Aircraft	A-2
A-3	Takeoff Profile T1, 727 Aircraft	A-3
A-4	Takeoff Lateral Deviation T1, 727 Aircraft	A-3
A-5	Takeoff Noise Levels for Profile T2, 727 Aircraft	A-4
A-6	Noise Levels as a Function of Slant Range for Profile T2, 727 Aircraft	A-4
A-7	Takeoff Profile T2, 727 Aircraft	A-5
A-8	Takeoff Lateral Deviation T2, 727 Aircraft	A-5
A-9	Takeoff Noise Levels for Profile T3, 727 Aircraft	A-6
A-10	Noise Levels as a Function of Slant Range for Profile T3, 727 Aircraft	A-6
A-11	Takeoff Profile T3, 727 Aircraft	A-7
A-12	Takeoff Lateral Deviation T3, 727 Aircraft	A-7
A-13	Takeoff Noise Levels for Profile T4, 727 Aircraft	A-8

LIST OF ILLUSTRATIONS, Contd

Figure		Page
A-14	Noise Levels as a Function of Slant Range for Profile T4, 727 Aircraft	A-8
A-15	Takeoff Profile T4, 727 Aircraft	A-9
A-16	Takeoff Lateral Deviation T4, 727 Aircraft	A-9
A-17	Takeoff Noise Levels for Profile T5, 727 Aircraft	A-10
A-18	Noise Levels as a Function of Slant Range for Profile T5, 727 Aircraft	A-10
A-19	Takeoff Profile T5, 727 Aircraft	A-11
A-20	Takeoff Lateral Deviation T5, 727 Aircraft	A-11
A-21	Takeoff Noise Levels for Profile T6, 727 Aircraft	A-12
A-22	Noise Levels as a Function of Slant Range for Profile T6, 727 Aircraft	A-12
A-23	Takeoff Profile T6, 727 Aircraft	A-13
A-24	Takeoff Lateral Deviation T6, 727 Aircraft	A-13
A-25	Takeoff Noise Levels for Profile T7, 727 Aircraft	A-14
A-26	Noise Levels as a Function of Slant Range for Profile T7, 727 Aircraft	A-14
A-27	Takeoff Profile T7, 727 Aircraft	A-15
A-28	Takeoff Lateral Deviation T7, 727 Aircraft	A-15
A-29	Approach Noise Levels for Profile A11A, 727 Aircraft	A-16
A-30	Noise Levels as a Function of Slant Range for Profile A11A, 727 Aircraft	A-16
A-31	Approach Profile A11A, 727 Aircraft	A-17
A-32	Approach Lateral Deviation A11A, 727 Aircraft	A-17
A-33	Approach Noise Levels for Profile A11B, 727 Aircraft	A-18
A-34	Noise Levels as a Function of Slant Range for Profile A11B, 727 Aircraft	A-18
A-35	Approach Profile A11B, 727 Aircraft	A-19
A-36	Approach Lateral Deviation A11B, 727 Aircraft	A-19

LIST OF ILLUSTRATIONS, Contd

Figure		Page
A-37	Approach Noise Levels for Profile A12, 727 Aircraft	A-20
A-38	Noise Levels as a Function of Slant Range for Profile A12, 727 Aircraft	A-20
A-39	Approach Profile A12, 727 Aircraft	A-21
A-40	Approach Lateral Deviation A12, 727 Aircraft	A-21
A-41	Approach Noise Levels for Profile A13, 727 Aircraft	A-22
A-42	Noise Levels as a Function of Slant Range for Profile A13, 727 Aircraft	A-22
A-43	Approach Profile A13, 727 Aircraft	A-23
A-44	Approach Lateral Deviation A13, 727 Aircraft	A-23
A-45	Approach Noise Levels for Profile A21, 727 Aircraft	A-24
A-46	Noise Levels as a Function of Slant Range for Profile A21, 727 Aircraft	A-24
A-47	Approach Profile A21, 727 Aircraft	A-25
A-48	Approach Lateral Deviation A21, 727 Aircraft	A-25
A-49	Approach Noise Levels for Profile A31, 727 Aircraft	A-26
A-50	Noise Levels as a Function of Slant Range for Profile A31, 727 Aircraft	A-26
A-51	Approach Profile A31, 727 Aircraft	A-27
A-52	Approach Lateral Deviation A31, 727 Aircraft	A-27
A-53	Approach Noise Levels for Profile A41, 727 Aircraft	A-28
A-54	Noise Levels as a Function of Slant Range for Profile A41, 727 Aircraft	A-28
A-55	Approach Profile A41, 727 Aircraft	A-29
A-56	Approach Lateral Deviation A41, 727 Aircraft	A-29
A-57	Approach Noise Levels for Profile A51, 727 Aircraft	A-30
A-58	Noise Levels as a Function of Slant Range for Profile A51, 727 Aircraft	A-30
A-59	Approach Profile A51, 727 Aircraft	A-31
A-60	Approach Lateral Deviation A51, 727 Aircraft	A-31

LIST OF ILLUSTRATIONS, Contd

Figure		Page
B-1	Takeoff Noise Levels for Profile T1, KC-135 Aircraft	B-2
B-2	Noise Levels as a Function of Slant Range for Profile T1, KC-135 Aircraft	B-2
B-3	Takeoff Profile T1, KC-135 Aircraft	B-3
B-4	Takeoff Lateral Deviation T1, KC-135 Aircraft	B-3
B-5	Takeoff Noise Levels for Profile T2, KC-135 Aircraft	B-4
B-6	Noise Levels as a Function of Slant Range for Profile T2, KC-135 Aircraft	B-4
B-7	Takeoff Profile T2, KC-135 Aircraft	B-5
B-8	Takeoff Lateral Deviation T2, KC-135 Aircraft	B-5
B-9	Takeoff Noise Levels for Profile T3, KC-135 Aircraft	B-6
B-10	Noise Levels as a Function of Slant Range for Profile T3, KC-135 Aircraft	B-6
B-11	Takeoff Profile T3, KC-135 Aircraft	B-7
B-12	Takeoff Lateral Deviation T3, KC-135 Aircraft	B-7
B-13	Takeoff Noise Levels for Profile T4, KC-135 Aircraft	B-8
B-14	Noise Levels as a Function of Slant Range for Profile T4, KC-135 Aircraft	B-8
B-15	Takeoff Profile T4, KC-135 Aircraft	B-9
B-16	Takeoff Lateral Deviation T4, KC-135 Aircraft	B-9
B-17	Takeoff Noise Levels for Profile T5, KC-135 Aircraft	B-10
B-18	Noise Levels as a Function of Slant Range for Profile T5, KC-135 Aircraft	B-10
B-19	Takeoff Profile T5, KC-135 Aircraft	B-11
B-20	Takeoff Lateral Deviation T5, KC-135 Aircraft	B-11
B-21	Takeoff Noise Levels for Profile T6, KC-135 Aircraft	B-12
B-22	Noise Levels as a Function of Slant Range for Profile T6, KC-135 Aircraft	B-12
B-23	Takeoff Profile T6, KC-135 Aircraft	B-13
B-24	Takeoff Lateral Deviation T6, KC-135 Aircraft	B-13

LIST OF ILLUSTRATIONS, Contd

Figure		Page
B-25	Approach Noise Levels for Profile A11A, KC-135 Aircraft	B-14
B-26	Noise Levels as a Function of Slant Range for Profile A11A, KC-135 Aircraft	B-14
B-27	Approach Profile A11A, KC-135 Aircraft	B-15
B-28	Approach Lateral Deviation A11A, KC-135 Aircraft	B-15
B-29	Approach Noise Levels for Profile A12, KC-135 Aircraft	B-16
B-30	Noise Levels as a Function of Slant Range for Profile A12, KC-135 Aircraft	B-16
B-31	Approach Profile A12, KC-135 Aircraft	B-17
B-32	Approach Lateral Deviation A12, KC-135 Aircraft	B-17
B-33	Approach Noise Levels for Profile A13, KC-135 Aircraft	B-18
B-34	Noise Levels as a Function of Slant Range for Profile A13, KC-135 Aircraft	B-18
B-35	Approach Profile A13, KC-135 Aircraft	B-19
B-36	Approach Lateral Deviation A13, KC-135 Aircraft	B-19
B-37	Approach Noise Levels for Profile A21, KC-135 Aircraft	B-20
B-38	Noise Levels as a Function of Slant Range for Profile A21, KC-135 Aircraft	B-20
B-39	Approach Profile A21, KC-135 Aircraft	B-21
B-40	Approach Lateral Deviation A21, KC-135 Aircraft	B-21
B-41	Approach Noise Levels for Profile A22, KC-135 Aircraft	B-22
B-42	Noise Levels as a Function of Slant Range for Profile A22, KC-135 Aircraft	B-22
B-43	Approach Profile A22, KC-135 Aircraft	B-23
B-44	Approach Lateral Deviation A22, KC-135 Aircraft	B-23
B-45	Approach Noise Levels for Profile A23, KC-135 Aircraft	B-24

LIST OF ILLUSTRATIONS, Contd

Figure		Page
B-46	Noise Levels as a Function of Slant Range for Profile A23 , KC-135 Aircraft	B-24
B-47	Approach Profile A23 , KC-135 Aircraft	B-25
B-48	Approach Lateral Deviation A23 , KC-135 Aircraft	B-25
C-1	Takeoff Noise Levels for Profile T1 . 707-320B Aircraft	C-2
C-2	Noise Levels as a Function of Slant Range for Profile T1 , 707-320B Aircraft	C-2
C-3	Takeoff Profile T1 , 707-320B Aircraft	C-3
C-4	Takeoff Lateral Deviation T1 , 707-320B Aircraft	C-3
C-5	Takeoff Noise Levels for Profile T2 , 707-320B Aircraft	C-4
C-6	Noise Levels as a Function of Slant Range for Profile T2 , 707-320B Aircraft	C-4
C-7	Takeoff Profile T2 , 707-320B Aircraft	C-5
C-8	Takeoff Lateral Deviation T2 , 707-320B Aircraft	C-5
C-9	Takeoff Noise Levels for Profile T3 , 707-320B Aircraft	C-6
C-10	Noise Levels as a Function of Slant Range for Profile T3 . 707-320B Aircraft	C-6
C-11	Takeoff Profile T3 , 707-320B Aircraft	C-7
C-12	Takeoff Lateral Deviation T3 , 707-320B Aircraft	C-7
C-13	Takeoff Noise Levels for Profile T4 , 707-320B Aircraft	C-8
C-14	Noise Levels as a Function of Slant Range for Profile T4 , 707-320B Aircraft	C-8
C-15	Takeoff Profile T4 , 707-320B Aircraft	C-9
C-16	Takeoff Lateral Deviation T4 , 707-320B Aircraft	C-9
C-17	Takeoff Noise Levels for Profile T5 , 707-320B Aircraft	C-10
C-18	Noise Levels as a Function of Slant Range for Profile T5 . 707-320B Aircraft	C-10
C-19	Takeoff Profile T5 , 707-320B Aircraft	C-11
C-20	Takeoff Lateral Deviation T5 , 707-320B Aircraft	C-11
C-21	Takeoff Noise Levels for Profile T6 , 707-320B Aircraft	C-12

LIST OF ILLUSTRATIONS, Contd

Figure		Page
C-22	Noise Levels as a Function of Slant Range for Profile T6, 707-320B Aircraft	C-12
C-23	Takcoff Profile T6, 707-320B Aircraft	C-13
C-24	Takeoff Lateral Deviation T6, 707-320B Aircraft	C-13
C-25	Takeoff Noise Levels for Profile T8, 707-320B Aircraft	C-14
C-26	Noise Levels as a Function of Slant Range for Profile T8, 707-320B Aircraft	C-14
C-27	Takeoff Profile T8, 707-320B Aircraft	C-15
C-28	Takeoff Lateral Deviation T8, 707-320B Aircraft	C-15
C-29	Approach Noise Levels for Profile A11A, 707-320B Aircraft	C-16
C-30	Noise Levels as a Function of Slant Range for Profile A11A, 707-320B Aircraft	C-16
C-31	Approach Profile A11A, 707-320B Aircraft	C-17
C-32	Approach Lateral Deviation A11A, 707-320B Aircraft	C-17
C-33	Approach Noise Levels for Profile A11B, 707-320B Aircraft	C-18
C-34	Noise Levels as a Function of Slant Range for Profile A11B, 707-320B Aircraft	C-18
C-35	Approach Profile A11B, 707-320B Aircraft	C-19
C-36	Approach Lateral Deviation A11B, 707-320B Aircraft	C-19
C-37	Approach Noise Levels for Profile A21, 707-320B Aircraft	C-20
C-38	Noise Levels as a Function of Slant Range for Profile A21, 707-320B Aircraft	C-20
C-39	Approach Profile A21, 707-320B Aircraft	C-21
C-40	Approach Lateral Deviation A21, 707-320B Aircraft	C-21
C-41	Approach Noise Levels for Profile A22, 707-320B Aircraft	C-22
C-42	Noise Levels as a Function of Slant Range for Profile A22, 707-320B Aircraft	C-22

LIST OF ILLUSTRATIONS, Contd

Figure		Page
C-43	Approach Profile A22, 707-320B Aircraft	C-23
C-44	Approach Lateral Deviation A22, 707-320B Aircraft	C-23
C-45	Approach Noise Levels for Profile A23, 707-320B Aircraft	C-24
C-46	Noise Levels as a Function of Slant Range for Profile A23, 707-320B Aircraft	C-24
C-47	Approach Profile A23, 707-320B Aircraft	C-25
C-48	Approach Lateral Deviation A23, 707-320B Aircraft	C-25
C-49	Approach Noise Levels for Profile A31, 707-320B Aircraft	C-26
C-50	Noise Levels as a Function of Slant Range for Profile A31, 707-320B Aircraft	C-26
C-51	Approach Profile A31, 707-320B Aircraft	C-27
C-52	Approach Lateral Deviation A31, 707-320B Aircraft	C-27
C-53	Approach Noise Levels for Profile A41, 707-320B Aircraft	C-28
C-54	Noise Levels as a Function of Slant Range for Profile A41, 707-320B Aircraft	C-28
C-55	Approach Profile A41, 707-320B Aircraft	C-29
C-56	Approach Lateral Deviation A41, 707-320B Aircraft	C-29
C-57	Approach Noise Levels for Profile A51, 707-320B Aircraft	C-30
C-58	Noise Levels as a Function of Slant Range for Profile A51, 707-320B Aircraft	C-30
C-59	Approach Profile A51, 707-320B Aircraft	C-31
C-60	Approach Lateral Deviation A51, 707-320B Aircraft	C-31
D-1	Takeoff Noise Levels for Profile T1, DC-9 Aircraft	D-2
D-2	Noise Levels as a Function of Slant Range for Profile T1, DC-9 Aircraft	D-2
D-3	Takeoff Profile T1, DC-9 Aircraft	D-3
D-4	Takeoff Lateral Deviation T1, DC-9 Aircraft	D-3

LIST OF ILLUSTRATIONS, Contd

Figure		Page
D-5	Takeoff Noise Levels for Profile T2, DC-9 Aircraft	D-4
D-6	Noise Levels as a Function of Slant Range for Profile T2, DC-9 Aircraft	D-4
D-7	Takeoff Profile T2, DC-9 Aircraft	D-5
D-8	Takeoff Lateral Deviation T2, DC-9 Aircraft	D-5
D-9	Takeoff Noise Levels for Profile T3, DC-9 Aircraft	D-6
D-10	Noise Levels as a Function of Slant Range for Profile T3, DC-9 Aircraft	D-6
D-11	Takeoff Profile T3, DC-9 Aircraft	D-7
D-12	Takeoff Lateral Deviation T3, DC-9 Aircraft	D-7
D-13	Takeoff Noise Levels for Profile T4, DC-9 Aircraft	D-8
D-14	Noise Levels as a Function of Slant Range for Profile T4, DC-9 Aircraft	D-8
D-15	Takeoff Profile T4, DC-9 Aircraft	D-9
D-16	Takeoff Lateral Deviation T4, DC-9 Aircraft	D-9
D-17	Takeoff Noise Levels for Profile T5, DC-9 Aircraft	D-10
D-18	Noise Levels as a Function of Slant Range for Profile T5, DC-9 Aircraft	D-10
D-19	Takeoff Profile T5, DC-9 Aircraft	D-11
D-20	Takeoff Lateral Deviation T5, DC-9 Aircraft	D-11
D-21	Approach Noise Levels for Profile A11A, DC-9 Aircraft	D-12
D-22	Noise Levels as a Function of Slant Range for Profile A11A, DC-9 Aircraft	D-12
D-23	Approach Profile A11A, DC-9 Aircraft	D-13
D-24	Approach Lateral Deviation A11A, DC-9 Aircraft	D-13
D-25	Approach Noise Levels for Profile A11B, DC-9 Aircraft	D-14
D-26	Noise Levels as a Function of Slant Range for Profile A11B, DC-9 Aircraft	D-14
D-27	Approach Profile A11B, DC-9 Aircraft	D-15
D-28	Approach Lateral Deviation A11B, DC-9 Aircraft	D-15

LIST OF ILLUSTRATIONS, Contd

Figure		Page
D-29	Approach Noise Levels for Profile A12, DC-9 Aircraft	D-16
D-30	Noise Levels as a Function of Slant Range for Profile A12, DC-9 Aircraft	D-16
D-31	Approach Profile A12, DC-9 Aircraft	D-17
D-32	Approach Lateral Deviation A12, DC-9 Aircraft	D-17
D-33	Approach Noise Levels for Profile A21, DC-9 Aircraft	D-18
D-34	Noise Levels as a Function of Slant Range for Profile A21, DC-9 Aircraft	D-18
D-35	Approach Profile A21, DC-9 Aircraft	D-19
D-36	Approach Lateral Deviation A21, DC-9 Aircraft	D-19
D-37	Approach Noise Levels for Profile A22, DC-9 Aircraft	D-20
D-38	Noise Levels as a Function of Slant Range for Profile A22, DC-9 Aircraft	D-20
D-39	Approach Profile A22, DC-9 Aircraft	D-21
D-40	Approach Lateral Deviation A22, DC-9 Aircraft	D-21
D-41	Approach Noise Levels for Profile A23, DC-9 Aircraft	D-22
D-42	Noise Levels as a Function of Slant Range for Profile A23, DC-9 Aircraft	D-22
D-43	Approach Profile A23, DC-9 Aircraft	D-23
D-44	Approach Lateral Deviation A23, DC-9 Aircraft	D-23
D-45	Approach Noise Levels for Profile A31, DC-9 Aircraft	D-24
D-46	Noise Levels as a Function of Slant Range for Profile A31, DC-9 Aircraft	D-24
D-47	Approach Profile A31, DC-9 Aircraft	D-25
D-48	Approach Lateral Deviation A31, DC-9 Aircraft	D-25
D-49	Approach Noise Levels for Profile A41, DC-9 Aircraft	D-26
D-50	Noise Levels as a Function of Slant Range for Profile A41, DC-9 Aircraft	D-26
D-51	Approach Profile A41, DC-9 Aircraft	D-27
D-52	Approach Lateral Deviation A41, DC-9 Aircraft	D-27

LIST OF ILLUSTRATIONS, Contd

Figure		Page
D-53	Approach Noise Levels for Profile A51, DC-9 Aircraft	D-28
D-54	Noise Levels as a Function of Slant Range for Profile A51, DC-9 Aircraft	D-28
D-55	Approach Profile A51, DC-9 Aircraft	D-29
D-56	Approach Lateral Deviation A51, DC-9 Aircraft	D-29

LIST OF TABLES

Table		Page
I	Aircraft Description	3
II	Takeoff Procedures	4
III	Approach to Landing Procedures (Maximum Landing Weight)	4
IV	Acoustic Measurement Site Coordinates	7
V	Comparison of Wind Data for '727 Aircraft	14
VI	Temperature and Relative Humidity Summary for 727 Aircraft	15
VII	Comparison of Wind Data for KC-135 Aircraft	16
VIII	Temperature and Relative Humidity Summary for KC-135 Aircraft	17
IX	Comparison of Wind Data for 707-320B Aircraft	18
X	Temperature and Relative Humidity Summary for 707-320B Aircraft	19
XI	Comparison of Wind Data for DC-9 Aircraft	20
XII	Temperature and Relative Humidity Summary for DC-9 Aircraft	21
XIII	Summary Performance Parameters, 727 Aircraft	24
XIV	Summary Performance Parameters, KC-135 Aircraft	25
XV	Summary Performance Parameters, 707-320B Aircraft	26
XVI	Summary Performance Parameters, DC-9 Aircraft	27
XVII	Reference Profiles Related to Operational Procedures, Takeoff	28
XVIII	Reference Profiles Related to Operational Procedures, Approach	29

LIST OF SYMBOLS

Symbol	Definition	Unit
X	Distance perpendicular to runway centerline	feet
Y	Distance along runway centerline	feet
Z	Height above reference point	feet
PNLTM	Maximum tone corrected perceived noise level	PNdB
PNLT	Tone corrected perceived noise level	PNdB
EPNLC	Effective perceived noise level corrected to standard day temperature and relative humidity	EPNdB
EPNLU	Effective perceived noise level as measured at given test conditions	EPNdB

INTRODUCTION

This report presents the results of a flight investigation of eight takeoff and nine approach noise abatement procedures. Detailed descriptions of the test conditions, as well as the acquisition of acoustic, meteorological, tracking, and aircraft performance data, are discussed. The noise measurement data are discussed in terms of effective perceived noise level. Meteorological data are discussed in terms of ground observations and a limited number of soundings to an altitude of 3000 feet. Aircraft performance data are discussed in terms of altitude and lateral deviation tracking profiles and cockpit instrumentation readouts.

Additional noise measurements were conducted on these same four aircraft in a series of level flights described in Reference 1.

APPARATUS AND METHODS

AIRCRAFT DESCRIPTION

A general description of each aircraft tested is given in Table I. The maximum gross takeoff weight was achieved with the use of ballast. In addition to the normal systems, these aircraft were instrumented with an experimental navigational system which was used primarily for flying the two segment approach.

FLIGHT PROFILE DESCRIPTION

The test evaluation program involved takeoff-climbout and landing-approach operations. A total of eight takeoff-climbout operations were performed which evaluated the following factors:

- (1) Climbout speed
- (2) Climbout airframe configuration
- (3) Power reductions
- (4) Altitude to initiate power reductions

Table I. Aircraft Description

Aircraft	Engine	Maximum Power at Sea Level (lb)	Nominal Gross Weight (lb)
727-100	JT8D-1	14,000	159,000 (Takeoff) 134,000 (Landing)
KC-135A	J57-P-59W	13,750	222,000 (Takeoff) 183,000 (Landing)
707-320B (ADV)	JT3D-3B	18,000	315,000 (Takeoff) 218,000 (Landing)
DC-9-10	JT8D-1	14,000	85,000 (Takeoff) 72,000 (Landing)

The name and description of each profile is given in Table II. Profile 1 is selected as the reference for all takeoff weights of maximum gross landing weight. Profile 5 is the reference for maximum gross takeoff weight. Profile 7 was tested using the 727 and Profile 8 was tested only on the 707-320B aircraft.

Although it was planned to initiate each takeoff-climbout at the same point on the runway, some departures were made using a low approach and rotating at approximately the same point on the runway.

The landing approach flight profiles are listed in Table III. Profile A11A was chosen as the reference for all maximum gross landing weight approaches.

Table II. Takeoff Procedures

Run No.	Takeoff Weight	Parameters	Altitude		Altitude	Segment D-E	
			Segment A-B	hb		Segment C-D	(3000 ft)
T1	Max	Speed	V2 10*		250K	250K	NA
Land	Thrust	T.O.	400	T.O.	NA	ERCT	NA
	Flap	T.O.		Clean		Clean	
T5	Max	Speed	V2 10*		250K	250K	NA
T.O.	Thrust	T.O.	400	T.O.	NA	ERCT	NA
	Flap	T.O.		Clean		Clean	
T3	Max	Speed	V2 10		V2**	V2f	250K
Land	Thrust	T.O.	1000	T.O. EPR-1	NA	EPR-1	Climb T.
	Flap	T.O.		Clean		Clean	
T4	Max	Speed	V2 20		V2 20	V2 20	NA
Land	Thrust	T.O.	1000	EPR-2	NA	EPR-2	NA
	Flap	T.O.		T.O.		T.O.	
T2	Max	Speed	V2 20		V2 20	V2 20	NA
Land	Thrust	T.O.	1000	EPR-1	NA	EPR-1	NA
	Flap	T.O.		T.O.		T.O.	
T6	Max	Speed	V2 20		V2 20	V2 20	NA
T.O.	Thrust	T.O.	1000	EPR-1	NA	EPR-1	NA
	Flap	T.O.		T.O.		T.O.	
T7	Max	Speed	V2 20		V2 20	V2 20	NA
Land	Thrust	T.O.	1000	EPR-1	NA	EPR-1	NA
	Flap	5		5		5	
T8	Max	Speed	V2 10		V2 10	250K	NA
Land	Thrust	T.O.	1000	1.6 EPR	2500	1.72 EPR	NA
	Flap	T.O.		14	Clean	Clean	

EPR-1 Thrust necessary to maintain straight and level flight at maximum takeoff weight with one engine out

EPR-2 An EPR setting intermediate between EPR-1 and takeoff settings (ERCT)

NA Not applicable

T.O. Takeoff setting

ERCT Enroute climb thrust

* Maximum 15-degree pitch angle

** Zero flap speed.

Table III. Approach to Landing Procedures (Maximum Landing Weight)

Profile	Configuration		
	Land-Max	Land-Alt	Approach
Conventional (1500 ft-F-D-E)	A11*	A12	A13
Conventional (3000 ft-A-H-E)	A21	A22	A23**
Two Segment (A-C-G-E)	A41		
High Glide Slope (3000 ft-A-I-E)	A31		
Middle Glide Slope (3000 ft-A-B-E)	A51		

* Segment F-D of profile A11 will be flown at two different configurations:
A11A as identified. A11B will be flown at a lesser flap setting.

** Reconfigure to landing flap, max. at 500 feet.

These operational procedures were used to investigate the noise reduction attributable to the following:

- (1) Airframe/thrust configuration changes
- (2) Differences in glide slope intercept altitudes
- (3) Two-segment approach
- (4) Variation in glide slope

The normal sequence of operations during the test was a takeoff, followed by an approach. It was planned to perform each profile a minimum of six (6) times. This was reduced to three (3) for selected profiles in order to complete the tests in the time available.

ACQUISITION OF OPERATIONAL DATA

The operational data presented herein consist of aircraft performance parameters and tracking data. During the course of each flight operation, photographs of the cockpit instrumentation were made at approximately one-minute intervals. These photographs included, within the field of view, the following instruments and indicators:

- (1) Altimeter, pressure and radar
- (2) Airspeed indicator
- (3) Magnetic Compass
- (4) Flight director
- (5) Bank and climb indicator
- (6) Engine pressure ratio
- (7) Exhaust gas temperature
- (8) RPM indicator, fan and/or core
- (9) Fuel flowmeter
- (10) Flap indicators, outboard and inboard
- (11) Clock

Standard test procedures required that the test pilots fill out a data sheet for each profile. These data sheets included the nominal gear, flap, speed, and thrust settings, as well as the gross weight and the wind direction, wind velocity, and temperature as reported by the airport tower.

The aircraft altitude and lateral deviation performance were obtained by optically tracking the aircraft. The phototheodolite system installed at the National Aviation Facilities Experimental Center (NAFEC) was used. A detailed description of the equipment and its capabilities is given in Reference 2. The outputs chosen for this program included real-time analog plots, a digital tape of time, X, Y, Z coordinates, and a computer printout of time and slant range to each microphone site. The digital tape, as well as the real-time plots, were referenced to the landing threshold of runway 13.

Every effort was made to track the aircraft out to twelve nautical miles, however, weather conditions were periodically encountered which made this objective difficult to meet. Therefore, some runs do not have tracking data over the outermost noise measurement sites.

TEST AREA

Tests were conducted in the vicinity of NAFEC on 5 - 30 April 1971. Acoustic data were acquired at eight of the ten surveyed locations on or near the extended centerline of runway 13-31. The coordinate system of the sites in Table IV is referenced to the landing threshold of runway 13. The offset to reference the sites to brake release is the length of the runway, 10,000 feet.

Noise measurements were made throughout the test program at sites 1, 3, 4, 5, 6, 8, and 10. Site 2 was used for all aircraft except some runs of the DC-9 aircraft where the equipment at site 2 was placed at site 9. The site 1 position corresponds to a point 1.0 nautical mile (n.m.) from landing threshold. Site 2 position corresponds to a point 3.5 n.m. from brake release on takeoff.

The terrain off the approach end of runway 13 at NAFEC is a mixture of woods and open fields. Every effort was made to conform to the criteria of Part 36 of the Federal Aviation Regulations (FAR) (Reference 3) in locating the sites. Additional criteria included accessibility to the site and minimizing interference by other noise sources. In most cases, it was possible to locate the microphones virtually underneath the flight path. However, sites 5 and 8 were offset by a distance of 560 feet and 2200 feet, respectively. The dense woods and swampy terrain did not permit the use of site 7.

NOISE MEASUREMENTS

The noise measuring instrumentation used in these tests is shown in Figure 1 and illustrated in the block diagram of Figure 2. The condenser microphones were fitted with windscreens and positioned for grazing incidence at four feet above ground level. The output of each microphone was recorded on a two-channel direct record tape recorder. An IRIG B time code signal

Table IV. Acoustic Measurement Site Coordinates

Referenced to Threshold				Referenced to Brake Release			
Site	X	Y	Z	Site	X	Y	Z
1	-240	6,560	0	1	-240	16,560	0
2	-20	11,240	-11	2	-20	21,240	-11
3	-320	18,760	-8	3	-320	28,760	-8
4	+360	23,300	-10	4	-360	33,300	-10
5	-560	31,000	-11	5	+560	41,000	-11
6	-140	35,200	-11	6	-140	45,200	-11
7	-160	43,970	-2	7	-160	53,970	-2
8	+2200	50,280	-15	8	+2200	60,280	-15
9	+440	53,220	-27	9	+440	63,220	-27
10	0	61,200	-28	10	0	71,200	-28

NOTE: X - Crossrange coordinate
 Y - Downrange coordinate
 Z - Elevation coordinate

Figure 1. Typical Measurement Site

Figure 2. Radio Command Schematic Diagram

transmitted by radio was recorded on the second track. The data recording sequence was controlled by the presence or absence of the IRIG B 1000-cps tone modulating a VHF carrier frequency. A centrally located time code generator and transmitter were keyed on at the start of each run. The radio signal received at each site was used to set and hold a relay which initiated tape motion. Roving field technicians periodically visited each site to check on system performance and to apply a tone calibration to the microphone. The field calibrations included recording an electrical tone at each of the one-third octave band center frequencies and the periodic recording of a 94-dB acoustical calibrator signal at 1000 cps. During these tests, pre-emphasis of the high frequencies was used.

DATA REDUCTION AND ANALYSIS

The analog noise recordings were played back through and processed by the in-house system at San Diego, as shown in Figure 3. This processing system is based on a digital detection technique described in Reference 4. The analog signal is passed by one-third octave band filters whose output are sampled by a multiplexer. The computer converts these samples to engineering values. The total system response was determined by processing the calibration tapes. A typical system response is shown in Figure 4.

Figure 3. HRC In-House Facilities, Model 1360

The system hardware and software conform to the requirements of FAR Part 36, Reference 3. The data were processed in accordance with Part 36, with one exception. This one exception relates to the method of correcting acoustic data to a standard day temperature of 77° F and 70-percent relative humidity. During initial processing of data, it was noticed that for some sites the difference between the uncorrected and the corrected effective perceived noise level was quite large. In certain cases, corrected effective perceived noise levels of over 200 EPNdB were calculated.

Further investigation indicated that these problems occurred when the measured aircraft noise level spectrum was being limited by the background and/or system noise level. For purposes of this discussion, the background noise can be one or a combination of 1) environmental ambient noise, 2) data acquisition system noise, and 3) data processing system noise. A check of the data acquisition and processing systems indicated that the environmental ambient noise was the primary problem. Since a large portion of the data were acquired at distances far in excess of those encountered in a typical noise certification for which Part 36 is designed, an alternate method of applying atmospheric absorption corrections was selected.

The method chosen consists of comparing the spectrum at the time of maximum tone corrected perceived noise level (PNLT_M) with the last spectrum acquired in the processing routine. The last spectrum was selected because of its availability at the end of the sound pressure level acquisition routine and except for low frequencies is a good measure of the background noise. When the difference between the spectrum at PNLT_M and the background, at frequencies greater than 400 cps, is equal to or less than three decibels, the atmospheric absorption correction consists of the alpha value used for the last band having a signal-to-noise ratio greater than three decibels. The comparison ignores the first ten bands because this noise is attributable to the test aircraft.

A comparison of the uncorrected, the two corrected spectra, and background spectra is given in Figure 5. The tone corrected perceived noise level (PNLT) of the uncorrected spectrum is 87.6 PNdB. When the spectrum is corrected to standard day using ARP 866 (Reference 5), as per Part 36, the PNLT is 118.0 PNdB. The three-decibel signal-to-noise ratio (3-dB S/N) method yields a PNLT of 87.9 PNdB. The PNLT of the background spectrum is 70.5 PNdB. Other methods of solution to this particular problem include the selection of a different signal-to-noise ratio, applying corrections to an extrapolated spectrum and computing PNLT using only those bands above the background.

Figure 4. Typical System Frequency Response

Figure 5. Absorption Correction at PNLT M

For example, select a different signal-to-noise ratio of 5 dB and compare the spectrum at PNLT_M with the background. Apply the atmospheric corrections to all bands having a signal-to-noise ratio greater than 5 dB. For all other bands, set the sound pressure level to zero and compute the PNLT of that spectrum. This yields the spectra shown in Figure 6, with a PNLT of 86.0 PNdB.

The spectra in Figure 7 show the results of extrapolating the spectrum at PNLT_M and applying the atmospheric absorption corrections as per Part 36. The extrapolation is based on knowledge of the spectrum shape as measured by a much closer microphone. The calculated PNLT of the extrapolated spectrum is 86.4 PNdB. The corrected spectrum in this case has a PNLT of 88.0 PNdB.

The method used to apply the atmospheric absorption correction to data reported herein is offered as only one solution to the problem. The implementation of an accepted universal method awaits further study.

The noise levels presented in this report are effective perceived noise levels corrected to standard day conditions using the 3-dB S/N method, at a distance equal to the aircraft slant range at the time of occurrence of the maximum tone corrected perceived noise level, unless otherwise noted.

Figure 6. Absorption Correction for 5-dB Signal-to-Noise Ratio

Figure 7. Absorption Correction for Extrapolated Spectrum

ATMOSPHERIC OBSERVATIONS

The meteorological data acquired during the test included surface observations by the airport weather bureau, surface observations at sites 1, 5, and 10, and a limited number of soundings using a weather aircraft. Surface observations included conventional measurements of temperature, wind speed, wind direction, and relative humidity. The wind instrumentation at site 5 was located at 10 meters above the ground.

The weather aircraft soundings included relative humidity measurements during a straight low-level flight over the extended runway centerline and the determination of winds aloft. Winds aloft were determined by flying a fixed heading at a constant true airspeed and tracking the aircraft. The deviation from the planned track in a given time period was used to calculate the wind speed and wind direction. The weather aircraft flew at altitudes of 750, 1500, and 3000 feet above the ground surface to acquire wind information.

Since a large quantity of meteorological data were acquired, the results are contained in two tabulations. The first contains a comparison of wind data and the second a comparison of temperature and relative humidity data. These tabulations are given in Tables V through XII.

The atmospheric absorption corrections were calculated from ARP 866 using the temperature and relative humidity measured by the airport weather bureau.

Table V. Comparison of Wind Data for 727 Aircraft

Time of Day (EST)	Date	Site 1			Site 5			Site 10			Airport			Winds Aloft		
		Wind Vel (kt)	Wind Dir (deg)													
4-5-71	0600	4C9	80-140	8G16	90-180	6G10	0-90	13	40	23	65					
	0700	5C9	80-140	8G16	90-180	6G14	0-90	15	60	17	112	10	115			
	0800	5C12	80-140	8G16	90-180	6G11	0-90	16	50	17						
	0900	6G14	80-140	8G16	90-180	6G11	0-90	16	70							
	1000	7G14	80-140	8G16	90-180	6G9	0-90	18	70							
	1100	5G13	80-140	8G16	90-180	3G7	0-90	17	60	15	138	9	162			
4-7-71	1200															
	0600	9G17	300-360	5G14		10G16	90-140	17	280							
	0700	8G13	300-360	5G14		10G17	90-140	17	290							
	0800	9G17	300-360	5G14		10G17	90-140	18G	300							
	0900	9G17	300-360	5G14		9G16	90-140	20	300							
	1000	10G16	300-360	5G14		9G16	90-140	15	310							
4-8-71	1100	8G15	300-360	5G14				15	270							
	1200							10	300							
	1300							12	310							
	0600	3G6	270-300	5G14	270-360	2G3	90-140	7	300							
	0700	3G5	270-300	7G17	270-360	7G12	90-140	9	300							
	0800	5G12	270-300	9G17	270-360	10G16	90-140	16G25	310							
4-9-71	0900	10G17	270-300	9G17	270-360	10G17	90-140	20G25	300							
	1000	12G16	270-360	9G17	270-360	12G19	90-140	18G24	330							
	1100	11G19	270-360	9G19	270-360	12G19	90-140	15G25	310							
	1200	11G19	270-360	3G19	270-360			17	320							
	0600	1G1	90-180	1G2	270			3	170							
	0700	1G1	90-180	1G2	260			4	180							
4-10-71	0800	1G1	90-180	1G2	260			5	200							
	0900	3C5	90-180	1G2	260			5	180							
	1000	3G5	90-180	1G2	260			8	190							
	1100	3G5	90-180	1G2	260			8	190							
	1200							12	180							
	0600	10G19	250-300	8G19	270-360				20G							
	0700	11G21	250-300	8G19	270-360				20G							
	0800	10G19	250-300	8G19	270-360				18G							

NOTE: 4C9 = 4 knots average with gusts to 9 knots.

**Table VI. Temperature and Relative Humidity Summary
for 727 Aircraft**

Date	Time of Day (EST)	Site 1		Site 10		Airport		Weather Aircraft	
		Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)
4-5-71	0600	60	73	60	63	40	63	34	*
	0700	56	69	62	60	40	60		
	0800	52	62	60	48	43	56		
	0900	50	57	57	38	44	52		
	1000	48	55	55	37	45	52		
	1100	47	57	56	47	45	55		
	1200	46	55	53	47	47	48		
	1300	47	51	52	45	47	48		
	1400	45	51	50	44	47	48		
4-7-71	1300	62	34	40	35	51	42	37-44	*
	1400	60	31	44	33	44	27		
	1500	58	28	48	32	55	25		
	1600	56	28	48	30	55	26		
4-8-71	0600	32	55	28	64	32	54	23	*
	0700	44	50	38	52	37	47		
	0800	50	38	50	44	39	39		
	0900	44	34	58	40	41	29		
	1000	45	31	62	38	43	25		
	1100	48	28	62	36	47	24		
	1200	52	25	64	33	48	21		
	1300	66	20	66	31	49	19		
	1400	80	-	74	24	50	17		
	1500	70	-	74	17	52	15		
	0600	-	-	-	-	29	79		
	0700	-	-	-	-	39	72		
4-10-71	0600	-	56	-	57	53	54		
	0700	-	55	-	54	50	50		
	0800	-	52	-	53	49	47		
	0900	-	52	-	52	51	44		
	1000	-	50	-	51	51	42		

*Not available

Table VII. Comparison of Wind Data for KC-135 Aircraft

Time of Day (EST)	Date	Site 1				Site 5				Site 10				Airport				Winds Aloft			
		Wind Vel (kt)	Wind Dir (deg)	750 Feet	1500 Feet	3000 Feet	Vel (kt)	Dir (deg)	Vel (kt)	Dir (deg)											
4-12-71	0600																				
	0700																				
	0800																				
	0900																				
	1000																				
	1100																				
	1200																				
	1300																				
	1400																				
	1500																				
4-13-71	0600	4G7	140-220	0	250	1G1	130-180	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	0700	5G9	140-220	2G3	200	1G1	130-180	00	00	00	00	00	00	00	00	00	00	00	00	00	00
	0800	5G9	140-220	3G7	180-270	2G3	130-180	11	180	180	180	180	180	180	180	180	180	180	180	180	180
	0900	5G9	140-220	3G7	180-270	3G7	130-180	7	180	180	180	180	180	180	180	180	180	180	180	180	180
	1000			3G7	180-270	3G7	130-180	10	170	170	170	170	170	170	170	170	170	170	170	170	170
	1100			3G7	180-270	3G9	130-180	13	180	180	180	180	180	180	180	180	180	180	180	180	180
	1200			5G10	180-270	5G10	130-180	14	180	180	180	180	180	180	180	180	180	180	180	180	180
	1300			6G12	180-270	6G11	130-180	16	180	180	180	180	180	180	180	180	180	180	180	180	180
	1400																				
	1500																				
4-15-71	0600	1G1	170	1G2	270-360	1G2	200-260	6	280	280	280	280	280	280	280	280	280	280	280	280	280
	0700	3G5	170	1G2	270-360	3G3	200-260	8	280	280	280	280	280	280	280	280	280	280	280	280	280
	0800	7G9	250-270	3G7	270-360	3G7	200-260	13	290	290	290	290	290	290	290	290	290	290	290	290	290
	0900	5G9	250-300	5G10	270-360	5G10	200-260	16	330	330	330	330	330	330	330	330	330	330	330	330	330
	1000	9G13	250-300	7G14	270-360	7G14	200-260	14	300	300	300	300	300	300	300	300	300	300	300	300	300
	1100			5G12	270-360	5G12	200-260	15	300	300	300	300	300	300	300	300	300	300	300	300	300
	1200			5G13	270-360	5G13	200-260	16	330	330	330	330	330	330	330	330	330	330	330	330	330
	1300																				
	1400																				
	1500																				
4-16-71	0600	1G1	250-270	3G5	200-250	3G5	200-250	7	240	240	240	240	240	240	240	240	240	240	240	240	240
	0700	1G2	250-270	9G17	220-270	9G17	220-270	8	250	250	250	250	250	250	250	250	250	250	250	250	250
	0800			10G17	220-260	10G17	220-260	13	290	290	290	290	290	290	290	290	290	290	290	290	290
	0900																				
	1000																				
	1100																				
	1200																				

NOTE: 4G7 - 4 knots average with gusts to 7 knots.

**Table VIII. Temperature and Relative Humidity Summary
for KC-135 Aircraft**

Date	Time of Day (EST)	Site 1		Site 10		Airport		Weather Aircraft	
		Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)
4-12-71	0600	34	82	37	82	30	79	44	79
	0700	48	86	44	75	36	78		
	0800	53	53	48	60	47	65	48-49	53-59
	0900	56	43	62	48	51	54		
	1000	60	37	65	34	56	43		
	1100	68	32	64	48	57	45		
	1200	69	37	64	21	54	54	51-64	57-17
	1300	71	42	65	18	55	45		
	1400	72	35	66	34	55	49		
	1500	80	37	65	34	56	47		
	1600	96	42	64	34	56	42	56-57	35-41
	1700	-	-	-	-	54	47		
4-13-71	0600	36	80	42	79	35	88	43-48	52-80
	0700	56	86	44	82	43	86		
	0800	66	76	54	70	52	56		
	0900	69	45	62	42	57	40		
	1000	72	27	70	26	60	36		
	1100	74	22	70	21	62	28		
	1200	-	21	-	16	-	-		
	1300	-	17	-	13	-	-		
4-15-71	0600	34	60	36	63	33	45	36	40
	0700	42	73	42	53	37	40		
	0800	47	55	46	45	39	34		
	0900	48	45	48	38	43	24		
	1000	50	37	50	35	44	23		
	1100	53	28	52	32	47	23		
	1200	55	-	54	29	49	21		
	1300	-	-	56	28	51	21		
	1400	-	-	57	27	52	20		
	1500	-	-	58	26	53	19		
	1600	-	-	64	25	52	17		
	1700	-	-	66	24	52	29		
4-16-71	0600	38	67	42	63	39	63	41-44	33-46
	0700	40	69	46	61	41	55		
	0800	48	56	54	45	49	35		
	0900	52	42	56	38	51	32		
	1000	60	36	60	30	53	24		
	1100	78	29	72	-	55	23		

Table IX. Comparison of Wind Data for 707-320B Aircraft

Time of Day (EST)	Site 1			Site 5			Site 10			Airport			Winds Aloft		
	Wind Vel (kt)	Wind Dir (deg)	Wind Vel (kt)	Dir (deg)	750 Foot	1500 Foot	3000 Foot								
	Date														
4-19-71	0600	6G10	2G3	270-360	5G9	250-270	10	340	32	346	32	035	20	355	
	0700	6G10	3G9	270-360	6G10	260-280	13	340	6	015	18	002	26	085	
	0800	7G12	270-360	5G13	0-90		11	360							
	0900			5G13	0-90	6G10	270-270	15G20	360						
	1000			7G16	0-90			12G18	350						
	1100			7G16	0-90	7G12	260-300	13G20	10						
4-20-71	1200			6G16	0-90			14G21	330						
	0600			1G3	0-45	3G7	280-300		350	21	360	23	053	27	002
	0700			3G8	300-90				8	8	360	9	007	20	059
	0800			5G10	300-90	5G9	270-300		11	360					
	0900			5G10	300-90	6G10	270-300		10	350					
	1000			4G10	300-90				8	330	8	360	24	355	2
4-21-71	1100			5G12	300-90	7G12	240-300		7	340					
	1200			5G12	300-90	7G12	240-300		12	320					
	0600			3G7	180-270	2G5	230-300		8	250	24	290	15	248	24
	0700			5G9	180-260				8	260	17	232	26	288	20
	0800			5G9	170-250					250					
	0900			5G9	170-250										
4-22-71	1000														
	1100														
	1200														
	0600														
	0700														
	0800														

NOTE: 6G10 = 6 knots average with gusts to 10 knots.

**Table X. Temperature and Relative Humidity Summary
for 707-320B Aircraft**

Date	Time of Day (EST)	Site 1		Site 10		Airport		Weather Aircraft	
		Temp (F)	Rel Hum (%)	Temp (F)	Rel Hum (%)	Temp (F)	Rel Hum (%)	Temp (F)	Rel Hum (%)
4-19-71	0600	48	56	55	48	42	56	48-50	42
	0700	56	53	60	43	50	41		
	0800	62	47	64	42	50	43	54	39
	0900	65	44	66	42	58	37		
	1000	67	44	68	42	61	33		
	1100	70	42	70	40	64	30	59-61	33-35
4-20-71	0600	48	66	44	72	47	58	48-49	49-61
	0700	56	63	54	50	52	48	54	41
	0800	64	51	64	42	56	38		
	0900	67	42	66	36	60	34		
	1000	69	39	68	33	62	28		
	1100	72	32	70	29	63	24	60	26-29
4-21-71	0600	52	71	54	64	49	71	50	65
	0700	58	68	60	51	54	59	48	68
4-22-71	0600	44	61	50	57	43	51	45	50
	0700	50	58	54	52	48	45		
	0800	56	52	58	49	51	42		

Table XI. Comparison of Wind Data for DC-9 Aircraft

Date	Time of Day (EST)	Site 1				Site 5				Site 10				Airport				Winds Aloft			
		Wind Vel (kt)	Wind Dir (deg)	750 Fret	1500 Fret	3000 Fret	Vel (kt)	Dir (deg)	Vel (kt)	Dir (deg)											
4-27-71	0600	2G5	300	1G2	290-330	8	300	11	320	26	155	29	95	26	195						
	0700	5G9	280-315	3G7	300-360	5G10	250-300	13	340	19	165	15	140	19	190						
	0800	7G14	290-360	5G10	310-360	6G9	250-300	12	350												
	0900	7G12	290-360	4G9	330-60	5G9	250-300	9	350												
	1000			3G7	350-90	3G7	250-300	8	330	2	160	12	155								
	1100			3G9	270-90			9	330												
	1200			3G7	300-90			6	250												
	1300			3G7	300-90			12	180												
	1400			3G9	300-90	4G9	220-300	12	180												
	1500					4G7		8	160												
	1600																				
4-28-71	0500							10	200												
	0600	3G7	130-200					10	190	27	215	25	185	21	210						
	0700			3G5	170-260	2G3	140	10	180												
	0800	4G10	150-210	4G9	170-260	3G6	140	12	180												
	0900			3G9	170-250			10	190												
	1000	5G10	130-200	4G9	160-270			10	180												
	1100			3G9	150-250			7	170												
	1200							8	160	12	145										
4-30-71	0500									5	250										
	0600									5	300										
	0700									5	310										
	0800									5	300	7	075	12	340	4	115				
	0900	4G8	250-300	3G9		2G5	220-300	7	330	4	50										
	1000					3G5	250-320			7	280										
	1100					3G5	200-260			7	210	6	140	18	310	8	030				
	1200					3G7	180-250			8	210										
	1300									4	260										
	1400																				

NOTE: 2G5 2 knots average with gusts to 5 knots.

Table XII. Temperature and Relative Humidity Summary
for DC-9 Aircraft

Date	Time of Day (EST)	Site 1		Site 10		Airport		Weather Aircraft	
		Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)	Temp (°F)	Rel Hum (%)
4-27-71	0600	34	75	34	81	36	74	44	69
	0700	42	81	40	82	39	72		
	0800	52	82	50	68	45	63		
	0900	56	60	53	52	50	52	48	52
	1000	60	51	56	48	53	44		
	1100	64	47	60	44	54	41		
	1200	65	43	60	40	-	-	54	38
	1300	66	39	64	35	56	35		
	1400	70	34	66	31	57	34		
	1500	74	33	66	30	58	34		
4-28-71	0600	44	69	50	70	49	66	49	63-66
	0700	50	64	50	69	51	52		
	0800	52	60	52	65	55	52		
	0900	52	57	54	61	50	50	50-52	51-59
	1000	54	59	56	58	51	56		
	1100	54	60	56	54	50	63		
4-30-71	0900	60	48	60	40	47	68		
	1000	60	57	58	50	52	56		
	1100	58	50	60	43	55	51		

DISCUSSION OF RESULTS

AIRCRAFT PERFORMANCE

The performance of the aircraft during the takeoff-climbout and landing-approach operations is indicated by the tabulated results in Tables XIII through XVI for the aircraft tested. These values were obtained from the pilot test cards for each segment of a given profile.

The resultant altitude profile and lateral deviation track of each operation is given in the appendixes for each aircraft. These tracking plots were obtained by plotting a value every ten seconds from the phototheodolite digital tape. The digital data did contain some errors in tracking. However, all obvious errors have been omitted from the tracking plots.

In order to compare the effectiveness of the various operational procedures, the test results in the appendixes are compared with appropriate reference curves obtained from References 6 and 7. The flight reference curves are those that would normally be used to predict the aircraft noise for the appropriate weight during straight out departures and a 3-degree glide slope on approach with intercept of the glide slope at 1500- and 3000-foot altitude. The particular reference profiles superimposed upon the test data are indicated in Table XVII, Table XVIII, and Figure 8. The reference profile is identified as SAE A, B, C or D, as appropriate for takeoffs.

A review of the test data in Appendixes A, B, C, and D indicate a difficulty in achieving flight track repeatability, particularly on takeoff-climbout operations. Especially large excursions in lateral deviation from the planned flight tracks are noted in Figures A-4, A-8, A-12, A-52, A-56, B-12, B-20, B-28, C-4, D-36, and D-56.

ATMOSPHERIC OBSERVATIONS

Summaries of the prevailing meteorological conditions are given in Tables V through XII for the four aircraft tested. The absence of homogeneity in the surface winds over the test area should be noted. In addition, the large change in wind velocity and direction, as a function of altitude, should be noted. In general, the airport weather bureau reported the highest wind speeds. The measurements at sites 1 and 5 are considered to be local wind since the sites were located in open fields surrounded by woods. Low altitude runs by the weather aircraft resulted in pilot comments about severe wind currents when going from open to forested terrain.

Table XIII. Summary Performance Parameters, 727 Aircraft

Profile Number	Aircraft Weight (lb)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	
T1	125-139,000	-	-	-	15	250	2.01	Clean	250	1.87	Clean	-	-	-
T2	120-138,000	150-158	1.98-2.01	15	150-158	1.51	15	150-158	1.51	1.51	15	-	-	-
T3	124-138,000	143-148	1.96	15	200	1.96	Clean	200	1.38-1.43	Clean	250	1.43-1.90	Clean	-
T4	124-139,000	152-159	1.96-1.97	15	152-159	1.89-1.84	15	152-159	1.82-1.84	15	-	-	-	-
T5	140-159,000	153-157	1.95	15	250	1.95	Clean	250	1.81-1.82	Clean	-	-	-	-
T6	124-157,000	162-166	1.95	15	162-166	1.51	15	162-166	1.51	15	-	-	-	-
T7	123-139,000	151-159	1.96	15	151-159	1.51	5	151-159	1.51	5	-	-	-	-
SEGMENT F-D														
A11A	131-134,000	150	1.30	15	126	1.43-1.80	40	-	-	-	-	-	-	-
A11B	122,000	160	1.25-1.30	5	121-126	1.45-1.50	40	-	-	-	-	-	-	-
A12	124-157,000	150	1.30	15	133-139	1.20-1.55	30	-	-	-	-	-	-	-
A13	121-125,000	150	1.30	15	135-142	1.15-1.20	15	-	-	-	-	-	-	-
SEGMENT A-H														
A21	115-135,000	131	1.30-1.50	15	121-140	1.50-1.60	40	-	-	-	-	-	-	-
SEGMENT A-I														
A31	126-137,000	150	1.36	15	126-132	1.40-1.50	40	-	-	-	-	-	-	-
SEGMENT A-C														
A41	125-136,000	150	1.30	15	123-126	1.10-1.25	40	123-126	1.35-1.50	40	-	-	-	-
SEGMENT A-B														
A51	127-137,000	150	1.30	15	127-132	1.30-1.50	40	-	-	-	-	-	-	-
SEGMENT I-E														
SEGMENT C-C														
SEGMENT C-E														
SEGMENT B-E														

Table XIV. Summary Performance Parameters, KC-135 Aircraft

Profile Number	Aircraft Weight (lb)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	SEGMENT A-B			SEGMENT B-C			SEGMENT C-D			SEGMENT 3000 FEET			
					Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	
T1	163-185,000	155-167	2.55-2.65	20	250	2.45-2.53	Clean	250	2.40-2.45	Clean	250	2.00-2.10	20	169-178	2.00-2.10	Clean	
T2	165-192,000	169-178	2.40-2.52	20	169-178	2.00-2.10	20	169-178	2.00-2.10	20	169-178	2.00-2.10	20	169-178	2.00-2.10	Clean	
T3	165-190,000	168-151	2.45-2.60	20	190-220	2.45-2.60	Clean	220-230	2.00-2.40	Clean	250	2.00-2.40	20	220-230	2.00-2.40	Clean	
T4	158-190,000	166-178	2.46-2.48	20	166-178	2.40-2.42	20	166-178	2.40-2.42	20	166-178	2.40-2.42	20	166-178	2.40-2.42	Clean	
T5	209-222,000	162-175	2.55	20	250	2.50-2.55	Clean	250	2.50	Clean	250	2.50	20	175-183	2.00	Clean	
T6	205-218,000	175-183	2.55	20	175-183	2.00	20	175-183	2.00	20	175-183	2.00	20	175-183	2.00	Clean	
SEGMENT F-G																	
A11A	150-182,000	145-163	1.55-1.75	30	139-148	1.59-1.85	50	145-150	1.40-1.48	40	145-150	1.40-1.48	40	145-150	1.40-1.48	40	
A12	162-175,000	155-160	1.4-	1.60	30	145-150	1.40-1.48	40	145-150	1.40-1.48	40	145-150	1.40-1.48	40	145-150	1.40-1.48	40
A13	160-187,000	156-165	1.50-1.70	30	156-165	1.38-1.50	30	156-165	1.38-1.50	30	156-165	1.38-1.50	30	156-165	1.38-1.50	30	
SEGMENT A-H																	
A21	170-190,000	156-166	1.67-1.75	30	141-151	1.52-1.71	50	140-161	1.40-1.65	40	140-161	1.40-1.65	40	140-161	1.40-1.65	40	
A22	150-188,000	150-165	1.45-1.80	30	155-165	1.40-1.60	30	155-165	1.40-1.60	30	155-165	1.40-1.60	30	155-165	1.40-1.60	30	
A23	163-187,000	155-165	1.55-1.70	30	155-165	1.40-1.60	30	155-165	1.40-1.60	30	155-165	1.40-1.60	30	155-165	1.40-1.60	30	
SEGMENT H-E																	

Table XV. Summary Performance Parameters, 707-320B Aircraft

Profile Number	Aircraft Weight (lb)	SEGMENT A-D			SEGMENT B-C			SEGMENT C-D			SEGMENT 3000 FEET		
		Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)	Speed (kt)	Engine Pressure Ratio	Flap (deg)
T1	200-219,000	160 var	1.84 1.61	14	160-250	1.84 1.81	Clean	250	1.68 1.72	Clean			
T2	201-225,000	157-162	1.85 1.82	14	155-160	1.85 1.82	14	155-160	1.22-1.24	14			
T3	205-230,000	142-150	1.84 1.82	14	150-190	1.84 1.81	Clean	189-230	1.24	Clean	250	1.72	Clean
T4	193-218,000	150-160	1.84 1.84	14	152-162	1.71 1.71	14	150-162	1.72-1.75	14			
T5	301-315,000	175-178	1.85 1.85	14	178-210	1.68 1.68	(14)	240-250	1.65-1.68	Clean			
T6	298-319,000	170-185	1.85 1.85	14	180-195	1.85 1.85	Clean	175-185	1.35-1.39	14			
T8	210-218,000	158-160	1.84 1.84	14	162-170	1.69 1.69	14	170-250	1.72	Clean			
SEGMENT F-D													
A1A	209-218,000	150-160	1.20-1.22	25	130-138	1.25-1.26	50						
A1B	198-205,000	156-160	1.16-1.17	14	130-135	1.23-1.24	50						
SEGMENT A-H													
A21	198-218,000	133-160	1.12-1.40	25	135-140	1.16-1.32	50						
A22	207-215,000	140-156	1.18-1.32	25	132-152	1.20-1.21	40						
A23	185-214,000	144-172	1.18-1.25	25	132-150	1.14-1.20	25 (50 at 500')						
SEGMENT A-I													
A31	183-201,000	146-153	1.21-1.28	25	129-136	1.16-1.18	50						
SEGMENT A-C													
A41	189-214,000	155-175	1.19-1.22	25	138-148	1.10-1.20	50	136-142	1.18-1.22	50			
SEGMENT A-B													
A51	175-212,000	145-158	1.20-1.35	25	128-146	1.18-1.22	50						
SEGMENT C-G													
SEGMENT B-E													

Table XVI. Summary Performance Parameters, DC-9 Aircraft

Table XVII. Reference Profiles Related to Operational Procedures, Takeoff

Aircraft	Takeoff Procedure	Test Weight (1000 lb)		AIR 1114 Profile	
		Minimum	Maximum	Specified	Use for Reference
727	T1	125	139	B-C	C
	T2	120	138	B-C	C
	T3	124	138	B-C	C
	T4	124	139	B-C	C
	T5	140	159	C-D	D
	T6	124	157	B-C-D	D
	T7	123	139	B-C	C
	T8	NA*	NA	NA	NA
KC-135	T1	163	185	B	B
	T2	165	192	B	B
	T3	165	190	B	B
	T4	158	190	B	B
	T5	209	222	B-C	C
	T6	205	218	B-C	C
	T7	NA	NA	NA	NA
	T8	NA	NA	NA	NA
707-320B	T1	200	219	A-B	B
	T2	201	225	A-B	B
	T3	205	220	A-B	B
	T4	193	218	A-B	B
	T5	301	315	D	D
	T6	298	309	D	D
	T7	NA	NA	NA	NA
	T8	210	218	A-B	B
DC-9	T1	72	75	A	A
	T2	71	74	A	A
	T3	67	76	A	A
	T4	70	79	A	A
	T5	81	85	A	A
	T6	NA	NA	NA	NA
	T7	NA	NA	NA	NA
	T8	NA	NA	NA	NA

*NA - not applicable

Table XVIII. Reference Profiles Related to Operational Procedures, Approach

Aircraft	Approach Procedure	Test Weight (1000 lb)		Reference Profile	
		Minimum	Maximum	Angle (deg)	Intercept (ft)
727	A11A	131	134	3	1500
	A11B	NA*	122	3	1500
	A12	124	157	3	1500
	A13	121	125	3	1500
	A21	116	135	3	3000
	A22	NA	NA	NA	NA
	A23	NA	NA	NA	NA
	A31	126	137	3	3000
	A41	125	136	3	3000
	A51	127	137	3	3000
KC-135	A11A	160	183	3	1500
	A11B	NA	NA	NA	NA
	A12	162	175	3	1500
	A13	160	187	3	1500
	A21	170	190	3	3000
	A22	150	188	3	3000
	A23	163	187	3	3000
	A31	NA	NA	NA	NA
	A41	NA	NA	NA	NA
	A51	NA	NA	NA	NA
707-320B	A11A	209	218	3	1500
	A11B	198	205	3	1500
	A12	NA	NA	NA	NA
	A13	NA	NA	NA	NA
	A21	198	218	3	3000
	A22	207	215	3	3000
	A23	185	214	3	3000
	A31	183	201	3	3000
	A41	189	214	3	3000
	A51	175	212	3	3000
DC-9	A11A	70	72	3	1500
	A11B	66	69	3	1500
	A12	78	83	3	1500
	A13	NA	NA	NA	NA
	A21	73	80	3	3000
	A22	69	77	3	3000
	A23	67	75	3	3000
	A31	64	78	3	3000
	A41	67	80	3	3000
	A51	71	78	3	3000

*NA - not applicable

a. Takeoff

b. Approach

Figure 8. Reference Flight Profiles

Considering the extended area covered by the sites, the agreement of temperature and relative humidity appears reasonable.

NOISE MEASUREMENTS

The results of the noise measurements obtained during the takeoff-climbout and landing-approach tests of the 727-100, KC-135A, 707-320B, and DC-9-10 are presented in Appendixes A, B, C, and D. These results are in the form of effective perceived noise level as a function of distance from brake release or landing threshold and effective perceived noise level as a function of slant range at the closest point of approach (CPA) between the flight path and the microphone. All data were corrected to a temperature of 77°F and a relative humidity of 70 percent. The symbols on these figures (see Figures A-1 and A-2 for examples) are the effective perceived noise level in EPNdB measured at each site for all flyovers of a given profile. The site numbers are given across the top of Figure A-1. The spread of data in Figure A-1 is representative of the repeatability of the noise level at each location. Data scatter at any site can be attributed to variations in aircraft altitude, lateral deviation, aircraft performance parameters, and experimental error. By plotting the effective perceived noise level as a function of slant range at CPA, as in Figure A-2, variations attributable to aircraft altitude and lateral deviation should be smoothed out. The corresponding reference noise levels were obtained from References 6 and 7 and are shown in Figure 9. These noise reference curves represent the current state of the art in noise prediction. For reference curve purposes, the KC-135 aircraft is assumed to be equivalent to a 707-320 aircraft without a jet suppressor. As shown in Figure 9b, the noise curve for the KC-135 has been raised 5 dB to compensate for the lack of a suppressor. These data are superimposed on the appropriate noise versus slant range test data.

The data from Figures 8 and 9 were used to construct the reference noise level curves as given in Figure 10. These curves are superimposed upon the appropriate noise versus distance test data plots.

A comparison of the reference curves and the test data can be made to determine the noise reduction of the various operational procedures. Additionally the differences between the real and the idealized situation are highlighted.

During the course of the test, instrumentation problems were encountered which required additional measures to retrieve the data. In particular, the recorded time code at site 5 was at times impossible to recover. In order to recover the data, these runs were processed to yield an EPNL uncorrected for atmospheric absorption since it was not possible to obtain the time of PNLT and therefore the slant range. Next, correction factors for absorption were computed by taking the difference between EPNLC (corrected to

a. 727 and DC-9 Aircraft

b. KC-135 and 707-320B Aircraft

Figure 9. Reference Noise Levels as a Function of Slant Range

a. 727 Aircraft

b. KC-135 Aircraft

Figure 10. Reference Noise Levels as a Function of Distance

c. 707-320B Aircraft

d. DC-9 Aircraft

Figure 10. Reference Noise Levels as a Function of Distance, Contd

standard day) and EPNLU (uncorrected for standard day) for sites 4 and 6 of the same runs. These corrections were then added to the site 5 uncorrected EPNL to obtain the plotted corrected EPNL.

In general, the data repeatability of individual data points is reasonable. However, rather excessive data spreads do occur as is illustrated in Figures A-37 and A-41 for the 727 aircraft. For these particular runs, data were obtained on two separate days. It is to be noted from the weather summary given on the figures that wind speed for the square symbols is 25 knots. Although considerable variations occur for sites 1 through 6, the data at sites 8 and 10 show differences on the order of 10 EPNdB. These variations are attributed to two items. First, the low frequency contribution of wind noise on the one-inch microphones used at these locations is a factor. At the higher wind speed, it is felt that the windscreens simply cannot counteract the turbulent eddies generated over the large microphone grid. Second, and more importantly, stabilization of engine thrust over the outer stations occurred at different locations from one day to the next.

CONCLUSIONS

Detailed comparisons of noise from the tested profiles indicate that two general conclusions can be drawn from the tests. First, an optimum noise abatement procedure for takeoff can yield worthwhile noise reductions. Second, a two-segment approach can achieve significant reductions in noise along the ground.

Several factors encountered during the course of these tests, the data processing and data evaluation, have highlighted the need for a reevaluation of the respective techniques involved. First, the basic criteria of testing in wind velocities of less than 10 knots was not always possible to follow. Obviously, from the summaries of the wind data given in Tables V, VIII, XI, and XIV, a question arises as to the best location for wind measurement. In the cases presented, the most adverse wind conditions, in general, existed aloft over that portion of the atmosphere through which the sound propagates. In view of the large range of existing wind conditions in excess of 10 knots and the possible affect of these winds on the aircraft performance, the acoustic data show surprising stability.

The method of applying the atmospheric absorption correction to standard day temperature and relative humidity was discussed earlier in this report. The method used to apply the correction for data presented in this report is not necessarily the best solution. However, it is certainly necessary to devise a methodology to apply to those cases where portions of the spectrum at PNLTM are coincident with the background levels. This is especially important when data must be corrected for absorption at humidities less than 30 percent.

The variations in the individual data groups are, in some cases, significant even when six samples are considered. The largest variations occurred at sites 8 and 10; however, for the most part data standard deviation is less than ± 2 dB. This deviation exceeds that specified in FAR Part 36, but is considered to be reasonable based on the conditions encountered during the tests.

The results presented for the 727, KC-135, 707-320B, and DC-9 aircraft provide detailed noise and tracking data for the determination of noise from standard and noise abatement operational techniques. Additionally, the data can be utilized to improve the state of the art of aircraft noise prediction.

REFERENCES

1. Carole S. Tanner, "Measurement and Analysis of Noise from Four Aircraft in Level Flight (727, KC-135, 707-320B, and DC-9)," Federal Aviation Administration Report FAA-RD-71-83, September 1971.
2. "Range Instrumentation Environment," Volume II, Federal Aviation Administration - National Aviation Facilities Experimental Center, June 1969.
3. "Federal Aviation Regulations, Part 36 - Noise Standards: Aircraft Type Certification," November 1969.
4. E. M. Fitzgerald, A. A. Petrini, and J. K. Zimmerman, "Real-Time Spectrum Analysis in the Field Using a General Purpose Computer," Hydrospace Research Corporation Technical Report, November 1969.
5. "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," Society of Automotive Engineers, Aerospace Recommended Practice (ARP) Report Number 866, 31 April 1970 (Proposed).
6. "Procedures for Developing Aircraft Noise Exposure Contours Around Airports," Society of Automotive Engineers Air 1114, March 1970 (Proposed).
7. D. E. Bishop and M. A. Simpson, "Noise Exposure Forecast Contours for 1967, 1970, and 1975 Operations at Selected Airports," Federal Aviation Administration Report FAA-NO-70-8, September 1970.

Appendix A

**727 AIRCRAFT
DETAILED NOISE AND TRACKING PLOTS**

Figure A-1. Takeoff Noise Levels for Profile T1,
727 Aircraft

Figure A-2. Noise Levels as a Function of Slant Range for
Profile T1 , 727 Aircraft

Figure A-3. Takeoff Profile T1, 727 Aircraft

Figure A-4. Takeoff Lateral Deviation T1, 727 Aircraft

Figure A-5. Takeoff Noise Levels for Profile T2,
727 Aircraft

Figure A-6. Noise Levels as a Function of Slant Range for
Profile T2, 727 Aircraft

Figure A-7. Takeoff Profile T2, 727 Aircraft

Figure A-8. Takeoff Lateral Deviation T2, 727 Aircraft

Figure A-9. Takeoff Noise Levels for Profile T3,
727 Aircraft

Figure A-10. Noise Levels as a Function of Slant Range for
Profile T3, 727 Aircraft

Figure A-11. Takeoff Profile T3 , 727 Aircraft

Figure A-12. Takeoff Lateral Deviation T3 , 727 Aircraft

Figure A-13. Takeoff Noise Levels for Profile T4,
727 Aircraft

Figure A-14. Noise Levels as a Function of Slant Range for Profile T4, 727 Aircraft

Figure A-15. Takeoff Profile T4, 727 Aircraft

Figure A-16. Takeoff Lateral Deviation T4, 727 Aircraft

Figure A-17. Takeoff Noise Levels for Profile T5,
727 Aircraft

Figure A-18. Noise Levels as a Function of Slant Range for
Profile T5 , 727 Aircraft

Figure A-19. Takeoff Profile T5 , 727 Aircraft

Figure A-20. Takeoff Lateral Deviation T5 , 727 Aircraft

Figure A-21. Takeoff Noise Levels for Profile T6,
727 Aircraft

Figure A-22 . Noise Levels as a Function of Slant Range for
Profile T6 , 727 Aircraft

Figure A-23. Takeoff Profile T6, 727 Aircraft

Figure A-24. Takeoff Lateral Deviation T6, 727 Aircraft

Figure A-25. Takeoff Noise Levels for Profile T7,
727 Aircraft

Figure A-26. Noise Levels as a Function of Slant Range for
Profile T7, 727 Aircraft

Figure A-27. Takeoff Profile T7 , 727 Aircraft

Figure A-28. Takeoff Lateral Deviation T7 , 727 Aircraft

Figure A-29. Approach Noise Levels for Profile A11A,
727 Aircraft

Figure A-30. Noise Levels as a Function of Slant Range for
Profile A11A, 727 Aircraft

Figure A-31. Approach Profile A11A, 727 Aircraft

Figure A-32. Approach Lateral Deviation A11A, 727 Aircraft

Figure A-33. Approach Noise Levels for Profile A11B,
727 Aircraft

Figure A-34. Noise Levels as a Function of Slant Range for
Profile A11B, 727 Aircraft

Figure A-35. Approach Profile A11B, 727 Aircraft

Figure A-36. Approach Lateral Deviation A11B, 727 Aircraft

Figure A-37. Approach Noise Levels for Profile A12,
727 Aircraft

Figure A-38. Noise Levels as a Function of Slant Range for
Profile A12, 727 Aircraft

Figure A-39. Approach Profile A12, 727 Aircraft

Figure A-40. Approach Lateral Deviation A12, 727 Aircraft

Figure A-41. Approach Noise Levels for Profile A13,
727 Aircraft

Figure A-42. Noise Levels as a Function of Slant Range for
Profile A13, 727 Aircraft

Figure A-43. Approach Profile A13 , 727 Aircraft

Figure A-44. Approach Lateral Deviation A13 , 727 Aircraft

Figure A-45. Approach Noise Levels for Profile A21,
727 Aircraft

Figure A-46. Noise Levels as a Function of Slant Range for
Profile A21, 727 Aircraft

Figure A-47. Approach Profile A21, 727 Aircraft

Figure A-48. Approach Lateral Deviation A21, 727 Aircraft

Figure A-49. Approach Noise Levels for Profile A31,
727 Aircraft

Figure A-50. Noise Levels as a Function of Slant Range for
Profile A31, 727 Aircraft

Figure A-51. Approach Profile A31, 727 Aircraft

Figure A-52. Approach Lateral Deviation A31, 727 Aircraft

Figure A-53. Approach Noise Levels for Profile A41,
727 Aircraft

Figure A-54. Noise Levels as a Function of Slant Range for
Profile A41, 727 Aircraft

Figure A-55. Approach Profile A41, 727 Aircraft

Figure A-56. Approach Lateral Deviation A41, 727 Aircraft

Figure A-57. Approach Noise Levels for Profile A51,
727 Aircraft

Figure A-58. Noise Levels as a Function of Slant Range for
Profile A51, 727 Aircraft

Figure A-59. Approach Profile A51, 727 Aircraft

Figure A-60. Approach Lateral Deviation A51, 727 Aircraft

Appendix B

**KC-135 AIRCRAFT
DETAILED NOISE AND TRACKING PLOTS**

Figure B-1. Takeoff Noise Levels for Profile T1,
KC-135 Aircraft

Figure B-2. Noise Levels as a Function of Slant Range for
Profile T1, KC-135 Aircraft

Figure B-3. Takeoff Profile T1, KC-135 Aircraft

Figure B-4. Takeoff Lateral Deviation T1, KC-135 Aircraft

Figure B-5. Takeoff Noise Levels for Profile T2,
KC-135 Aircraft

Figure B-6. Noise Levels as a Function of Slant Range for
Profile T2, KC-135 Aircraft

Figure B-7. Takeoff Profile T2, KC-135 Aircraft

Figure B-8. Takeoff Lateral Deviation T2, KC-135 Aircraft

**Figure B-9. Takeoff Noise Levels for Profile T3,
KC-135 Aircraft**

**Figure B-10. Noise Levels as a Function of Slant Range for
Profile T3, KC-135 Aircraft**

Figure B-11. Takeoff Profile T3, KC-135 Aircraft

Figure B-12. Takeoff Lateral Deviation T3, KC-135 Aircraft

Figure B-13. Takeoff Noise Levels for Profile T4,
KC-135 Aircraft

Figure B-14. Noise Levels as a Function of Slant Range for
Profile T4, KC-135 Aircraft

Figure B-15. Takeoff Profile T4, KC-135 Aircraft

Figure B-16. Takeoff Lateral Deviation T4, KC-135 Aircraft

Figure B-17. Takeoff Noise Levels for Profile T5,
KC-135 Aircraft

Figure B-18. Noise Levels as a Function of Slant Range for
Profile T5, KC-135 Aircraft

Figure B-19. Takeoff Profile T5 , KC-135 Aircraft

Figure B-20. Takeoff Lateral Deviation T5 , KC-135 Aircraft

Figure B-21. Takeoff Noise Levels for Profile T6,
KC-135 Aircraft

Figure B-22. Noise Levels as a Function of Slant Range for
Profile T6, KC-135 Aircraft

Figure B-23. Takeoff Profile T6, KC-135 Aircraft

Figure B-24. Takeoff Lateral Deviation T6, KC-135 Aircraft

Figure B-25. Approach Noise Levels for Profile A11A,
KC-135 Aircraft

Figure B-26. Noise Levels as a Function of Slant Range for
Profile A11A, KC-135 Aircraft

Figure B-27. Approach Profile A11A , KC-135 Aircraft

Figure B-28. Approach Lateral Deviation A11A , KC-135 Aircraft

Figure B-29. Approach Noise Levels for Profile A12,
KC-135 Aircraft

Figure B-30. Noise Levels as a Function of Slant Range for
Profile A12, KC-135 Aircraft

Figure B-31. Approach Profile A12, KC-135 Aircraft

Figure B-32. Approach Lateral Deviation A12, KC-135 Aircraft

Figure B-33. Approach Noise Levels for Profile A13,
KC-135 Aircraft

Figure B-34. Noise Levels as a Function of Slant Range for
Profile A13, KC-135 Aircraft

Figure B-35. Approach Profile A13 , KC-135 Aircraft

Figure B-36. Approach Lateral Deviation A13 , KC-135 Aircraft

Figure B-37. Approach Noise Levels for Profile A21,
KC-135 Aircraft

Figure B-38. Noise Levels as a Function of Slant Range for
Profile A21, KC-135 Aircraft

Figure B-39. Approach Profile A21, KC-135 Aircraft

Figure B-40. Approach Lateral Deviation A21, KC-135 Aircraft

Figure B-41. Approach Noise Levels for Profile A22,
KC-135 Aircraft

Figure B-42. Noise Levels as a Function of Slant Range for
Profile A22, KC-135 Aircraft

Figure B-43. Approach Profile A22, KC-135 Aircraft

Figure B-44. Approach Lateral Deviation A22, KC-135 Aircraft

Figure B-45. Approach Noise Levels for Profile A23,
KC-135 Aircraft

Figure B-46. Noise Levels as a Function of Slant Range for
Profile A23, KC-135 Aircraft

Figure B-47. Approach Profile A23 , KC-135 Aircraft

Figure B-48. Approach Lateral Deviation A23 , KC-135 Aircraft

Appendix C

707-320B AIRCRAFT DETAILED NOISE AND TRACKING PLOTS

Figure C-1. Takeoff Noise Levels for Profile T1,
707-320B Aircraft

Figure C-2. Noise Levels as a Function of Slant Range for
Profile T1, 707-320B Aircraft

Figure C-3. Takeoff Profile T1, 707-320B Aircraft

Figure C-4. Takeoff Lateral Deviation T1, 707-320B Aircraft

Figure C-5. Takeoff Noise Levels for Profile T2,
707-320B Aircraft

Figure C-6. Noise Levels as a Function of Slant Range for
Profile T2, 707-320B Aircraft

Figure C-7. Takeoff Profile T2, 707-320B Aircraft

Figure C-8. Takeoff Lateral Deviation T2, 707-320B Aircraft

Figure C-9. Takeoff Noise Levels for Profile T3,
707-320B Aircraft

Figure C-10. Noise Levels as a Function of Slant Range for
Profile T3, 707-320B Aircraft

Figure C-11. Takeoff Profile T3 , 707-320B Aircraft

Figure C-12. Takeoff Lateral Deviation T3 , 707-320B Aircraft

**Figure C-13. Takeoff Noise Levels for Profile T4,
707-320B Aircraft**

**Figure C-14. Noise Levels as a Function of Slant Range for
Profile T4 , 707-320B Aircraft**

Figure C-15. Takeoff Profile T4, 707-320B Aircraft

Figure C-16. Takeoff Lateral Deviation T4, 707-320B Aircraft

Figure C-17. Takeoff Noise Levels for Profile T5,
707-320B Aircraft

Figure C-18. Noise Levels as a Function of Slant Range for
Profile T5, 707-320B Aircraft

Figure C-19. Takeoff Profile T5 , 707-320B Aircraft

Figure C-20. Takeoff Lateral Deviation T5 , 707-320B Aircraft

Figure C-21. Takeoff Noise Levels for Profile T6,
707-320B Aircraft

Figure C-22. Noise Levels as a Function of Slant Range for
Profile T6, 707-320B Aircraft

Figure C-23. Takeoff Profile T6, 707-320B Aircraft

Figure C-24. Takeoff Lateral Deviation T6, 707-320B Aircraft

Figure C-25. Takeoff Noise Levels for Profile T8,
707-320B Aircraft

Figure C-26. Noise Levels as a Function of Slant Range for
Profile T8, 707-320B Aircraft

Figure C-27. Takeoff Profile T8 , 707-320B Aircraft

Figure C-28. Takeoff Lateral Deviation T8 , 707-320B Aircraft

Figure C-29. Approach Noise Levels for Profile A11A,
707-320B Aircraft

Figure C-30. Noise Levels as a Function of Slant Range for
Profile A11A, 707-320B Aircraft

Figure C-31. Approach Profile A11A, 707-320B Aircraft

Figure C-32. Approach Lateral Deviation A11A, 707-320B Aircraft

Figure C-33. Approach Noise Levels for Profile A11B,
707-320B Aircraft

Figure C-34. Noise Levels as a Function of Slant Range for
Profile A11B, 707-320B Aircraft

Figure C-35. Approach Profile A11B, 707-320B Aircraft

Figure C-36. Approach Lateral Deviation A11B, 707-320B Aircraft

Figure C-37. Approach Noise Levels for Profile A21,
707-320B Aircraft

Figure C-38. Noise Levels as a Function of Slant Range for
Profile A21, 707-320B Aircraft

Figure C-39. Approach Profile A21, 707-320B Aircraft

Figure C-40. Approach Lateral Deviation A21, 707-320B Aircraft

Figure C-41. Approach Noise Levels for Profile A22,
707-320B Aircraft

Figure C-42. Noise Levels as a Function of Slant Range for
Profile A22, 707-320B Aircraft

Figure C-43. Approach Profile A22, 707-320B Aircraft

Figure C-44. Approach Lateral Deviation A22, 707-320B Aircraft

Figure C-45. Approach Noise Levels for Profile A23,
707-320B Aircraft

Figure C-46. Noise Levels as a Function of Slant Range for
Profile A23, 707-320B Aircraft

Figure C-47. Approach Profile A23, 707-320B Aircraft

Figure C-48. Approach Lateral Deviation A23, 707-320B Aircraft

Figure C-49. Approach Noise Levels for Profile A31,
707-320B Aircraft

Figure C-50. Noise Levels as a Function of Slant Range for Profile A31, 707-320B Aircraft

Figure C-51. Approach Profile A31, 707-320B Aircraft

Figure C-52. Approach Lateral Deviation A31, 707-320B Aircraft

Figure C-53. Approach Noise Levels for Profile A41,
707-320B Aircraft

Figure C-54. Noise Levels as a Function of Slant Range for
Profile A41, 707-320B Aircraft

Figure C-55. Approach Profile A41, 707-320B Aircraft

Figure C-56. Approach Lateral Deviation A41, 707-320B Aircraft

Figure C-57. Approach Noise Levels for Profile A51,
707-320B Aircraft

Figure C-58. Noise Levels as a Function of Slant Range for Profile A51, 707-320B Aircraft

Figure C-59. Approach Profile A51, 707-320B Aircraft

Figure C-60. Approach Lateral Deviation A51, 707-320B Aircraft

Appendix D

**DC-9 AIRCRAFT
DETAILED NOISE AND TRACKING PLOTS**

Figure D-1. Takeoff Noise Levels for Profile T1,
 DC-9 Aircraft

Figure D-2. Noise Levels as a Function of Slant Range for
 Profile T1 , DC-9 Aircraft

Figure D-3. Takeoff Profile T1, DC-9 Aircraft

Figure D-4. Takeoff Lateral Deviation T1, DC-9 Aircraft

Figure D-5. Takeoff Noise Levels for Profile T2,
DC-9 Aircraft

Figure D-6. Noise Levels as a Function of Slant Range for
Profile T2, DC-9 Aircraft

Figure D-7. Takeoff Profile T2, DC-9 Aircraft

Figure D-8. Takeoff Lateral Deviation T2, DC-9 Aircraft

**Figure D-9. Takeoff Noise Levels for Profile T3,
DC-9 Aircraft**

**Figure D-10. Noise Levels as a Function of Slant Range for
Profile T3, DC-9 Aircraft**

Figure D-11. Takeoff Profile T3 , DC-9 Aircraft

Figure D-12. Takeoff Lateral Deviation T3 , DC-9 Aircraft

Figure D-13. Takeoff Noise Levels for Profile T4,
DC-9 Aircraft

Figure D-14. Noise Levels as a Function of Slant Range for
Profile T4, DC-9 Aircraft

Figure D-15. Takeoff Profile T4, DC-9 Aircraft

Figure D-16. Takeoff Lateral Deviation T4, DC-9 Aircraft

Figure D-17. Takeoff Noise Levels for Profile T5,
DC-9 Aircraft

Figure D-18. Noise Levels as a Function of Slant Range for
Profile T5, DC-9 Aircraft

Figure D-19. Takeoff Profile T5 , DC-9 Aircraft

Figure D-20. Takeoff Lateral Deviation T5 , DC-9 Aircraft

Figure D-21. Approach Noise Levels for Profile A11A,
DC-9 Aircraft

Figure D-22. Noise Levels as a Function of Slant Range for
Profile A11A , DC-9 Aircraft

Figure D-23. Approach Profile A11A, DC-9 Aircraft

Figure D-24. Approach Lateral Deviation A11A, DC-9 Aircraft

Figure D-25. Approach Noise Levels for Profile A11B,
DC-9 Aircraft

Figure D-26. Noise Levels as a Function of Slant Range for
Profile A11B, DC-9 Aircraft

Figure D-27. Approach Profile A11B, DC-9 Aircraft

Figure D-28. Approach Lateral Deviation A11B, DC-9 Aircraft

Figure D-29. Approach Noise Levels for Profile A12,
DC-9 Aircraft

Figure D-30. Noise Levels as a Function of Slant Range for
Profile A12, DC-9 Aircraft

Figure D-31. Approach Profile A12, DC-9 Aircraft

Figure D-32. Approach Lateral Deviation A12 , DC-9 Aircraft

**Figure D-33. Approach Noise Levels for Profile A21,
DC-9 Aircraft**

**Figure D-34. Noise Levels as a Function of Slant Range for
Profile A21, DC-9 Aircraft**

Figure D-35. Approach Profile A21, DC-9 Aircraft

Figure D-36. Approach Lateral Deviation A21, DC-9 Aircraft

Figure D-37. Approach Noise Levels for Profile A22,
DC-9 Aircraft

Figure D-38. Noise Levels as a Function of Slant Range for
Profile A22, DC-9 Aircraft

Figure D-39. Approach Profile A22, DC-9 Aircraft

Figure D-40. Approach Lateral Deviation A22, DC-9 Aircraft

Figure D-41. Approach Noise Levels for Profile A23,
DC-9 Aircraft

Figure D-42. Noise Levels as a Function of Slant Range for
Profile A23, DC-9 Aircraft

Figure D-43. Approach Profile A23, DC-9 Aircraft

Figure D-44. Approach Lateral Deviation A23, DC-9 Aircraft

Figure D-45. Approach Noise Levels for Profile A31, DC-9 Aircraft

Figure D-46. Noise Levels as a Function of Slant Range for Profile A31, DC-9 Aircraft

Figure D-47. Approach Profile A31, DC-9 Aircraft

Figure D-48. Approach Lateral Deviation A31, DC-9 Aircraft

**Figure D-49. Approach Noise Levels for Profile A41,
DC-9 Aircraft**

**Figure D-50. Noise Levels as a Function of Slant Range for
Profile A41, DC-9 Aircraft**

Figure D-51. Approach Profile A41, DC-9 Aircraft

Figure D-52. Approach Lateral Deviation A41, DC-9 Aircraft

Figure D-53. Approach Noise Levels for Profile A51,
DC-9 Aircraft

Figure D-54. Noise Levels as a Function of Slant Range for
Profile A51, DC-9 Aircraft

Figure D-55. Approach Profile A51, DC-9 Aircraft

Figure D-56. Approach Lateral Deviation A51, DC-9 Aircraft