## More about Asynchronous Optimization

Jingchang Liu June 5, 2017

University of Science and Technology of China

### **Table of Contents**

Asynchronous SCD

Inconsistent read

Looser assumption to delay

AdaDelay

Conclusion

## Asynchronous SCD

#### **SCD**

#### **Formulations**

· 
$$\min_{x} f(x)$$
,  $x = x_1 \times x_2 \times \cdots \times x_n$ 

#### Coordinate Descent

- Choose index  $i_k \in \{1, 2, \dots, n\}$
- $x^{k+1} \leftarrow x^k \eta_k e_{i_k} \nabla_{i_k} f(x^k)$  for some  $\eta_k > 0$

#### Convergence rate

- f is convex:  $\mathcal{O}\left(\frac{1}{R}\right)$
- f is strongly convex:  $\mathcal{O}\left(C^{k}\right)$

3

#### **Prox-SCD**

#### **Formulations**

$$\cdot \min_{\mathbf{x} \in \Omega} f(\mathbf{x}) + \lambda g(\mathbf{x}), g(\mathbf{x}) = \sum_{i=1}^{n} g_i(\mathbf{x}_i)$$

#### Coordinate Descent

- Choose index  $i_k \in \{1, 2, \dots, n\}$
- $\boldsymbol{\cdot} \ \boldsymbol{x}_{i_k}^{k+1} \leftarrow pro\boldsymbol{x}_{g_{i_k}}^{\lambda_i} \left( \boldsymbol{x}_{i_k} \lambda_i \nabla_{i_k} f\left(\boldsymbol{x}^k\right) \right)$

#### Convergence rate

- f is convex:  $\mathcal{O}\left(\frac{1}{k}\right)$
- f is strongly convex:  $\mathcal{O}\left(C^{k}\right)$

4

### **AsySCD**

#### Paper

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm(Ji Liu et.al)

#### **Formulations**

· 
$$\min_{x} f(x)$$
,  $x = x_1 \times x_2 \times \cdots \times x_n$ 

#### Update in each workers

- Choose  $i_k$  from  $\{1, 2, \dots, n\}$  with equal probabilities.
- $\cdot \ X_{i_k}^{k+1} \leftarrow X_{i_k}^k \lambda_k \nabla_{i_k} f(\hat{X}_k)$

5

### AsySPCD(asynchronous stochastic proximal coordinate-descent)

#### Paper

Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties (Ji Liu & Stephen J. Wright)

#### **Formulations**

$$\cdot \min_{x \in \Omega} f(x) + \lambda g(x), g(x) = \sum_{i=1}^{n} g_i(x_i)$$

#### Update in each workers

- Choose  $i_k$  from  $\{1, 2, \dots, n\}$  with equal probabilities.
- $\boldsymbol{\cdot} \ \boldsymbol{x}_{i_k}^{k+1} \leftarrow pro\boldsymbol{x}_{g_{i_k}}^{\lambda_k} \left( \boldsymbol{x}_{i_k}^k \lambda_k \nabla_{i_k} f(\hat{\boldsymbol{x}}_k) \right)$

Inconsistent read

#### Consistent read & Inconsistent read

#### Consistent read

· Whenever a worker read, other workers can not write.

#### Inconsistent read

- · Without a lock to when a worker read x.
- atomic coordinate update: a coordinate is not further broken to smaller components during an update; they are all updated at once.
- $\hat{x}_i^k$  is an ever-existed state of  $x_i$  among  $x_i^k, \dots, x_i^{k-\tau}$ , that to say  $\hat{x}_i^k = x_i^{\underline{d}}$ , where  $\underline{d} \in \{k, k-1, \dots, k-\tau\}$
- $J_i(k) \subset \{k-1, \dots, k-\tau\}, \hat{x}_i^k = x_i^k + \sum_{d \in J_i(k)} (x_i^d x_i^{d+1})$
- $J(k) := \bigcup_i J_i(k) \subset \{k-1, \cdots, k-\tau\}$ , then

$$\hat{x}^k = x^k + \sum_{d \in J(k)} (x^d - x^{d+1})$$

#### Consistent read & Inconsistent read



Figure 1: Consistent read versus inconsistent read: A demonstration

### Convergence rate

#### Theorem

Let  $\rho$  be a constant that satisfies  $\rho>1+4/\sqrt{n}$ , and define the quantities  $\theta$ ,  $\theta$ , and  $\phi$ . Steplength parameter  $\gamma>0$  satisfies several bounds. Then

$$\mathbb{E} \left\| x^{k-1} - \hat{x}^k \right\|^2 \le \rho \mathbb{E} \left\| x^k - \hat{x}^{k+1} \right\|^2$$

if the optimal strong convexity property holds,then

$$\mathbb{E}\left\|x^{k} - x^{*}\right\|^{2} + 2\gamma\left(\mathbb{E}F\left(x^{k}\right) - F^{*}\right) \leq \mathcal{O}\left(C^{k}\right)$$

for general smooth convex function f, we have

$$\mathbb{E}F\left(x^{k}\right) - F^{*} \leq \mathcal{O}\left(\frac{1}{k}\right)$$

g

# Looser assumption to delay

### Async-Parallel Iteration with Arbitrary Delays asynchronously

#### Paper

On the Convergence of Asynchronous Parallel Iteration with Arbitrary Delays

#### Formulation and algorithm

AsySCD & AsySPCD.

#### Main contribution

Analyze the convergence of the algorithm and allow for arbitrarily large delays following a certain distribution. Main assumption on the delay is the boundedness of certain expected quantities(e.g., expected delay, variance of delay).

### Main assumption and convergence rate

#### Assumption

• the reading  $\hat{x}^k$  is consistent and delayed by  $j_k$ , namely,  $\hat{x}^k = x^{k-j_k}$ , and the delay follows an identical distributions:

$$Prob(j_k = t) = q_t, t = 0, 1, 2, \dots, \forall k$$

Assume

$$T := \mathbb{E}[j_k] < \infty$$

#### **Theorem**

If the stepsize is taken as  $0 < \eta < \frac{1/L_c}{1+2\kappa T/\sqrt{m}}$ , then

$$\lim_{k \to \infty} \mathbb{E} \left\| \nabla f \left( x^k \right) \right\| = 0$$

any limit point of  $\{x^k\}_{k>1}$  is almost surely a critical point.

### Main assumption and convergence rate

#### Assumption

There is a constant  $\delta > 1$  such that

$$\mathsf{M}_\delta := \mathbb{E}\left[\sigma^{j_k}
ight] < \infty$$

#### Lemma

Under assumptions above, we have that for any 1 <  $\rho \leq \delta$ , if the stepsize satisfies

$$0 < \eta \le \frac{(\mu - 1)\sqrt{m}}{\mu L_r (1 + M_\rho)}$$

then for all k,

$$\mathbb{E} \left\| \nabla f \left( x^{k} \right) \right\|^{2} \leq \rho \mathbb{E} \left\| \nabla f \left( x^{k+1} \right) \right\|^{2}$$

$$\mathbb{E} \left\| \nabla f \left( x^{k+1} \right) \right\|^{2} \leq \rho \mathbb{E} \left\| \nabla f \left( x^{k} \right) \right\|^{2}$$

### Convergence rate for the convex smooth case

• For a certain 1  $< \mu < \sigma$ , define

$$N_{\mu}:=\mathbb{E}\left[j_{k}\mu^{j_{k}}\right]$$

Take the stepsize above and also

$$0 < \eta \le \frac{2/L_{C}}{M_{\mu} + \frac{\kappa(2N_{\mu}M_{\mu} + T)}{\sqrt{m}}}$$

if f is convex, then

$$\mathbb{E}\left[f\left(\mathbf{X}^{k+1}\right) - f^*\right] \le \mathcal{O}\left(\frac{1}{k}\right)$$

• if f is strongly convex with constant  $\mu$ , then

$$\mathbb{E}\left[f\left(x^{k+1}\right) - f^*\right] \le (1 - 2\mu D) \,\mathbb{E}\left[f\left(x^k\right) - f^*\right]$$

### Convergence results for the nonsmooth case

#### Assumption

Assume assumptions above, then for any 1  $< \mu < \sigma$ , it holds that

$$\gamma_{\mu,1} := \sum_{t=1}^{\infty} q_t \frac{\mu^{t/2} - 1}{\mu^{1/2} - 1} < \infty$$

$$\gamma_{\mu,2} := \left(\sum_{t=1}^{\infty} q_t t \frac{\mu^t - 1}{\mu^{1/2} - 1}\right)^{1/2} < \infty$$

#### Lemma

Stepsize is taken such that

$$0 < \eta \le \frac{\left(1 - \mu^{-1}\sqrt{m} - 4\right)}{2L_r\left(1 + \gamma_{\mu,1} + \gamma_{\mu,2}\right)}$$

then for all  $k \ge 1$ 

$$\mathbb{E} \left\| x^{k-1} - \bar{x}^k \right\|^2 \le \rho \mathbb{E} \left\| x^k - \bar{x}^{k+1} \right\|^2$$

### Convergence results for the nonsmooth case

Adopt stepsize above and also

$$\eta \le \frac{1}{L_c + \frac{2L_f\gamma_{\mu,2}^2}{m} + \frac{2L_f\gamma_{\mu,2}}{m}}$$

- define  $\Phi(x^k) = \mathbb{E}\|x^k x^*\|^2 + 2\eta \mathbb{E}[F(x^k) F^*]$
- if F is convex, then

$$\mathbb{E}\left[F\left(x^{k}\right) - F^{*}\right] \leq \frac{m\Phi\left(x^{0}\right)}{2\eta\left(m + k\right)}$$

• if F is strongly convex, then

$$\Phi\left(x^{k}\right) \leq \left(1 - \frac{\eta\mu}{m\left(1 + \eta\mu\right)}\right)^{k} \Phi\left(x^{0}\right)$$

### **Poisson Distribution**

- Treat the asynchronous reading and writing as a queueing system.
- Suppose the algorithm runs on a system with p+1 processors, which have the same speed of reading and writing, then the delay  $j_k$  follows the Poisson distribution with parameter p, i.e., for all k,

Prob 
$$(j_k = t) = \frac{p^t e^{-p}}{t!}, t = 0, 1, \dots,$$

- if the processors have different computing power,  $j_k$  would follow Poisson distribution with a parameter being the speed ratio of the other p processors to the  $p_k$ -th one.
- $T = \mathbb{E}[j_k] = p$ ,  $S = \mathbb{E}[j_k^2] = p(p+1)$   $M_{\mu} = \mathbb{E}[\mu^{j_k}] = e^{p(\mu-1)}$ ,  $N_{\mu} = \mathbb{E}[j_k \mu^{j_k}] = \mu p e^{p(\mu-1)}$  $\gamma_{\mu,1} = \frac{e^{p(\sqrt{\mu}-1)}-1}{\sqrt{\mu}-1}$ ,  $\gamma_{\mu,2} = \sqrt{\frac{\mu p e^{p(\mu-1)}-p}{1-\mu^{-1}}}$

### Experiment



**Figure 2:** Delay distribution behaviors of the algorithm for solving LASSO. The tested problem has 20, 000 coordinates, and it was running with 5, 10, 20, and 40 threads.

AdaDelay

#### Introduction

#### Paper

Delay Adaptive Distribution Stochastic Optimization(AISTATS 16)

#### Problem

$$\min_{x \in \mathcal{X}} F(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

### Algorithm

$$X_{t+1} := X_t - \alpha(t, \tau_t) \nabla f_{i_t}(\hat{X}_k)$$

#### Motivation

The server takes larger update steps when it obtains gradients from infrequent contributors, and smaller ones with gradients from frequent contributors

### Adapt delay

### Adagrad

- Motivation: It adapts the learning rate to the parameters, performing larger updates for infrequent and smaller updates for frequent parameters.
- Iteration:  $\theta_{t+1,i} = \theta_{t,i} \frac{\eta}{\sqrt{G_{t,ii}+\epsilon}} \cdot g_{t,i}$   $G_t \in \mathbb{R}^{d \times d}$  here is a diagonal matrix where each diagonal element i,i is the sum of the squares of the gradient w.r.t.  $\theta_i$  up to time step t

### Adadelay

Stepsize:

$$\alpha(t, \tau_t) = (L + \eta(t, \tau_t))^{-1}$$
$$\eta(t, \tau_t) = c\sqrt{t + \tau_t}$$

# Conclusion

#### Conclusion

- It's very important to consider inconsistent read in CD.
- · Bounded delay assumption can be loosed in many way.
- We can adapt delay to stepsize to speed up asynchronous parallel.