Dijkstra-ren algoritmoa

Izan bedi $G = (V, A, \phi)$ grafo zuzendu haztatu bat n erpinekin.

V-ren erpinak "era egokian" etiketatuz algoritmo honen bidez honako hau lortu ahal izango dugu:

 $v_0 \in V$ erpin finko batetik V-ren beste erpinetara dagoen distantzia.

v₀ erpinetik V-ren beste erpin guztietara dagoen ibilbide minimoa duen bide sinple edo bidezidor bat.

ALGORITMOA nola aplikatu

- 1. pausoa (Hasiera); i = 0 eta $S_0 = \{v_0\}$. Etiketatuz:
 - → v₀ -ri (0, -) etiketa jarriko diogu eta
 - \rightarrow w \neq v₀ bakoitzari (∞ , -) etiketa (w \in V-S₀)

Algoritmoa aplikatzen den heinean, $\mathbf{w} \neq \mathbf{v_0}$ bakoitzaren **etiketa** aldatu egingo da (**behin edo gehiagotan**) eta (∞ , -) izatetik (**E(w)**, **x)** izatera pasatuko da:

- $E(w) = v_0$ -tik w-rako distantzia
- \mathbf{x} (existitzen bada) w-ren aurretik dagoen erpina izango da, hots, (\mathbf{x},\mathbf{w}) \mathbf{v}_0 -tik w-ra doan bide

 $\mathbf{n} = \mathbf{1}$ bada, orduan $\mathbf{V} = \{\mathbf{v}_0\}$ eta problema bukatu da.

n > 1 bada, orduan jarraituko dugu

2. pausoa (Zenbait iterazio izan ditzake)

 $w \in V-S_i$ bakoitzerako(lehen iterazioan $S_i = S_0$) w-ren etiketaren ordez (ahal denean) (E(w), x) jarriko da, non:

- $E(w) = min \{ E(w), E(v) + p(v,w) \}$ $v \in S_i$
- x S_i-ren barnean dagoen G-ren erpin bat da, non E(w) minimoa lortzen baita.

V-S_i-ren erpin bakoitzak (non $i / 0 \le i \le n-2$) (∞ , -) etiketa badu, orduan grafo etiketatuak nahi dugun informazioa du.

Aurkako kasuan, $w \in V-S_i$ erpin bat existitzen da gutxienez (∞ , -) etiketarik gabe eta:

- 1) v_0 -tik hurbilen dagoen $v_{i+1} \in V$ - S_i erpina hartuko dugu ($E(v_{i+1})$ minimoa).
 - 2) $S_{i+1} = S_i \cup \{v_{i+1}\}$ kontsideratuko dugu
- 3) i aldagaia unitate baten handitzen dugu. i = n-1 bada, grafo etiketatuak nahi dugun informazioa du. i < n-1 bada 2. pausora itzuliko gara.

25. ariketa

Izan bedi 6 erpineko honako grafo haztatu

Hiri-bikoteen bidai-bideak adierazten ditu.

(x,y) arku bakoitzaren pisuak x hiritik y hirirako hegaldi zuzen baten denbora adieraziko du.

Haizearen norabidearen arabera gerta daiteke $p(x,y) \neq p(y,x)$ izatea.

Bestalde C, $G \in V$, baina (C,G),(G,C) $\notin A$, beraz p(C,G) = p(g,C) = ∞ izango da (erpin gehiago daude baldintza honekin).

$$p(A,F) = \infty$$
 eta $p(F,A) = 11$

Algoritmo hau aplikatuko dugu C ($v_0 = C$) erpinetik G-ren A, B, F, G, H beste erpinetara dagoen distantzia minimoa kalkulatzeko.

1. pausoa (Hasiera)

$$i = 0$$
 eta $S = \{C\}$. Etiketatuz:

 \rightarrow C non: etiketa $(0, -)$ eta

A non: etiketa $(\infty, -)$

B non: etiketa $(\infty, -)$

F non: etiketa $(\infty, -)$

G non: etiketa $(\infty, -)$

H non: etiketa $(\infty, -)$

Lehen iterazioa ; i = 0

 $; S_0 = \{C\}$

Kontsidera dezagun $V-S_0 = \{A, B, F, G, H\}$

 $W \in V-S_0$ erpin bakoitzean (ahal bada) (∞ ,-) etiketaren ordez (E(W),X) etiketa jarriko dugu, non:

- $E(W) = min \{ E(W), E(V) + p(V,W) \}$ $V \in S_0$ $C \in S_0$ = $min \{ E(W), E(C) + p(C,W) \} = d(C,W)$
- \underline{X} izango da $\underline{E(W)}$ minimoa lortzen den S_0 ren erpina, kasu honetan X = C.

Orduan:

E(A) = min{E(A), E(C) + p(C,A)} = min{
$$\infty$$
, 0 + ∞ } = ∞
E(B) = min{E(B), E(C) + p(C,B)} = min{ ∞ , 0 + ∞ } = ∞
E(F) = min{E(F), E(C) + p(C,F)} = min{ ∞ , 0 + 6 } = $\frac{6}{2}$
E(G) = min{E(G), E(C) + p(C,G)} = min{ ∞ , 0 + ∞ } = ∞
E(H) = min{E(H), E(C) + p(C,H)} = min{ ∞ , 0 + 11} = $\frac{11}{2}$
Hau da, V-S₀ = {A, B, F, G, H} multzoaren erpinak honela etiketatuko ditugu:

→ F-ren etiketa (6,C) eta H-ren etiketa (11,C) eta besteak zeuden moduan.

eta grafoa honela geratuko da:

V-S₀-ren erpin guztiek **ez** dutenez (∞ , -) etiketa, (**F-k eta H-k ez dute**), honakoa egingo dugu:

1) F eta H-tik $\underline{V_1} = F \in V-S_0$ (i = 1) hartuko dugu, C-tik hurbilen dagoena baita eta

$$E(F) = d(C,F) = 6$$

- 2) Kontsidera dezagun: $S_1 = S_0 \cup \{F\}$
- 3) i = 0 + 1 < n-1 = 6-1 = 5 egingo dugu eta bigarren pausora itzuliko gara.

Bigarren iterazioa ; $i = 1 \mid S_1 = \{C, F\}$

Kontsidera dezagun $V-S_1 = \{A, B, G, H\}$

 $W \in V - S_1$ erpin bakoitzarentzat (ahal bada) $(\infty, -)$ etiketaren ordez (E(W),X) etiketa jarriko dugu,non:

- $E(W) = min \{ E(W), E(V) + p(V,W) \}$ V∈S₁ **C**,**F** ∈**S**₁
 - $= min \{ E(W), E(C) + p(C,W), E(F) + p(F,W) \}$
- X izango da E(W) minimoa lortzen den S₁ –en erpina, kasu honetan X = C edo X = F

Orduan:

$$E(A) = \min\{E(A), E(C) + p(C,A), E(F) + P(F,A)\}$$

$$= \min\{\infty, 0 + \infty, 6 + 11\} = \underline{17}$$

$$E(B) = \min\{E(B), E(C) + p(C,B), E(F) + p(F,B)\}$$

$$= \min\{\infty, 0 + \infty, 6 + \infty\} = \infty$$

$$E(G) = \min\{E(G), E(C) + p(C,G), E(F) + p(F,G)\}$$

$$= \min\{\infty, 0 + \infty, 6 + 9\} = \underline{15}$$

$$E(H) = min\{E(H), E(C) + p(C,H), E(F) + p(F,H)\}$$

= $min\{\infty, 0 + 11, 6 + 4\} = \underline{10}$

Beraz $V-S_1 = \{A, B, G, H\}$ multzoko erpinak etiketatuko ditugu:

→ A-ren etiketa (17,F), G-ren etiketa (15,F) eta H-ren etiketa (10,F) (beste aldaketa bat) eta besteak zeuden moduan.

eta grafoa honela etiketatuko da:

 $V-S_1 = \{A,B,G,H\}$ multzoko erpin guztiek ez dutenez (∞ , -) etiketa (A, G eta H-k ez dute), honakoa egingo dugu:

1) A, G eta H-tik s $V_2 = H \in V-S_1$ (i = 2) hartuko dugu C-tik hurbilen dagoena baita eta gainera:

$$E(H) = d(C,H) = 10$$

- 2) Kontsidera dezagun: $S_2 = S_1 \cup \{H\} = \{C, F, H\}$
- 3) i = 1 + 1 < n-1 = 6-1 = 5 egingo dugu eta
 2. pausora itzuliko gara.

Hirugarren iterazioa ; i = 2 ; $S_2 = \{C, F, H\}$

Kontsidera dezagun $V-S_2 = \{A, B, G\}$

 $W \in V-S_2$ -ren erpin bakoitzarentzak (ahal bada) (∞ ,-) etiketaren ordez (E(W),X) etiketa jarriko dugu, non:

- $E(W) = min \{ E(W), E(V) + p(V,W) \}$ V∈S₂ **C**,**F**,**H** ∈**S**₂
- $= min \{ E(W), E(C) + p(C,W), E(F) + p(F,W), \}$ E(H) + p(H,W)
- X izango da E(W) minimoa lortzen den S₂ ren erpina, kasu honetan X = C edo X = F edo X= H

Orduan:

$$E(A) = min\{E(A), E(C) + p(C,A), E(F) + P(F, A), E(H) + p(H,A)\}$$

= $min\{17, 0 + \infty, 6 + 11, 10 + 11\} = \underline{17}$

E(B) = min{E(B), E(C) + p(C,B), E(F) + p(F,B), E(H) + p(H,B)}
= min{
$$\infty$$
, 0 + ∞ , 6 + ∞ , 10 + ∞ } = ∞

E(G) = min{E(G), E(C) + p(C,G), E(F) + p(F, G), E(H) + p(H,G)} = min{15,
$$0 + \infty$$
, $6 + 9$, $10 + 4$ } = $14 < 15$

Orduan $V-S_2 = \{A, B, G\}$ multzoko erpinak honela etiketatuko ditugu:

→ A-ren etiketa (17,F) (lehen gisa), G-ren etiketa (14,H) (beste aldaketa bat) eta besteak zeuden moduan.

eta grafoa honela etiketatuko da:

 $V-S_2 = \{A, B, G\}$ multzoko erpin guztiek **ez** dutenez $(\infty, -)$ etiketa (A, G-k ez dute), honakoa egingo dugu:

1) A eta G-tik $V_3 = G \in V-S_2$ (i = 3) hartuko dugu C-tik hurbilen dagoena baita eta gainera:

$$E(G) = d(C,G) = 14$$

- 2) Kontsidera dezagun $S_3 = S_2 \cup \{G\} = \{C, F, H, G\}$
- 3) i = 2 + 1 < n-1 = 6-1 = 5 egingo dugu eta 2. pausora itzuliko gara.

4. iterazioa ; i = 3

 $; S_3 = \{C, F, H, G\}$

Kontsidera dezagun $V-S_3 = \{A, B\}$

 $W \in V-S_3$ -ko erpin bakoitzerako (ahal bada) (∞ ,-) etiketaren ordez (E(W),X) etiketa jarriko dugu, non

- $E(W) = min \{ E(W), E(V) + p(V,W) \}$ $V \in S_3$ $C,F,H,G \in S_3$
- = min { E(W), E(C) + p(C,W), E(F) + p(F,W), E(H) + p(H,W), E(G) + p(G,W)}
- \underline{X} izango da $\underline{E(W)}$ minimoa lortzen den $\underline{S_3}$ ren erpina, kasu honetan de $\underline{X} = \underline{C}$ edo $\underline{X} = \underline{F}$ edo $\underline{X} = \underline{G}$

Orduan:

E(A) = min{E(A), E(C) + p(C,A), E(F) + p(F,A),
E(H) + p(H,A), E(G) + p(G,A)}
= min{17, 0 +
$$\infty$$
, 6 + 11, 10 + 11, 15 + ∞ } = $\frac{17}{17}$
E(B) = min{E(B), E(C) + p(C,B), E(F) + p(F,B),
E(H) + p(H,B), E(G) + p(G,B)}
= min{ ∞ , 0 + ∞ , 6 + ∞ , 10 + ∞ , 15 + ∞ } = ∞

Beraz, V-S₃ = {A,B} erpinak ez dira aldatzen eta etiketa berdinak jarriko ditugu.

eta grafoa honela etiketatuta dago:

V-S₃ = {A, B} multzoko erpin guztiek ez dutenez (∞ , -) etiketa (A-k ez du), honakoa egingo dugu:

- 1) $\underline{V_4} = \underline{A} \in V-S_3$ (i = 4) hartuko dugu, honakoa egiaztatuz: $E(\underline{A}) = 17$
- 2) Kontsidera dezagun $S_4 = S_3 \cup \{A\}$ ={C,F,H,G,A}
- 3) i = 3 + 1 < n-1 = 6-1 = 5 egingo dugu, eta 2. pausora itzuliko gara.

5. iterazioa ; i = 4

; S₄ = {C,F,H,G,A}

Kontsidera dezagun $V-S_4 = \{B\}$

B∈V-S₄ azkeneko erpinerako, (ahal bada) haren etiketaren ordez (E(B),X) etiketa jarriko dugu, non:

→ B-ren etiketa (22,A) izango da eta besteak zeuden moduan.

1)
$$V_5 = B \in V-S_4$$
 hartuko dugu eta $E(B) = 22$

2)
$$S_5 = S_4 \cup \{B\} = \{C, F, H, G, A, B\}$$

3)
$$i = 4 + 1 = 5 < 6-1 = 5$$

Prozedura bukatu da.

eta grafoa <u>azken</u>ik honela <u>etiketa</u>tuta geratuko da:

Jarritako etiketetatik, honako **distantzia** "laburrenak" ditugu **C**-tik beste 5 erpinetara:

1)
$$d(C,F) = E(F) = 6$$

2)
$$d(C,H) = E(H) = 10$$

3)
$$d(C,G) = E(G) = 14$$

4)
$$d(C,A) = E(A) = 17$$

5)
$$d(C,B) = E(B) = 22$$

C-tik B-rako bide laburrena zehazteko, B (22,A) puntutik abiatuko gara eta badakigu A B-ren aurrekoa dela.

A (17,F) denez, badakigu F A-ren aurrekoa dela.

F (6,C) denez, C-ra helduko gara, F-ren aurrekoa izanik.

Beraz, algoritmoak kalkulatzen duen <u>C-tik B-rako bide laburrena</u> honako arkuek ematen dutena da:

(C,F), (F,A), (A,B)