Projeto_03_v2

November 19, 2019

1 Formação Cientista de Dados - DSA

- 1.0.1 Big Data Real-Time Analytics com Python e Spark
- 1.1 Projeto com Feedback 3 Prevendo o Nível de Satisfação dos Clientes do Santander

https://www.kaggle.com/c/santander-customer-satisfaction

1.1.1 Leonardo Molero

2 Análise Exploratória

```
[1]: # Importação pacotes iniciais
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import warnings
[2]: # Faz ajustes para não exibir warnings
     warnings.filterwarnings("ignore")
     # Parametriza impressão dos gráficos dentro do notebook
     %matplotlib inline
[3]: # Carrega o dados de treino colocando a coluna ID como index
     df = pd.read_csv('dados/train.csv',index_col='ID')
[4]: # Checa o tamanho do dataframe
     print(df.shape)
    (76020, 370)
[5]: # Visualiza os dados treino
     df.head(10)
```

```
[5]:
         var3
              var15 imp_ent_var16_ult1 imp_op_var39_comer_ult1 \
     ID
     1
             2
                   23
                                        0.0
                                                                   0.0
     3
             2
                   34
                                        0.0
                                                                   0.0
     4
             2
                   23
                                        0.0
                                                                   0.0
             2
                                        0.0
                                                                 195.0
     8
                   37
                                        0.0
     10
             2
                   39
                                                                   0.0
             2
                                        0.0
                                                                   0.0
     13
                   23
     14
             2
                   27
                                        0.0
                                                                   0.0
     18
             2
                   26
                                        0.0
                                                                   0.0
     20
             2
                   45
                                        0.0
                                                                   0.0
     23
             2
                   25
                                        0.0
                                                                   0.0
         imp_op_var39_comer_ult3 imp_op_var40_comer_ult1 imp_op_var40_comer_ult3 \
     ID
                               0.0
                                                          0.0
     1
                                                                                      0.0
     3
                               0.0
                                                          0.0
                                                                                      0.0
     4
                               0.0
                                                          0.0
                                                                                      0.0
     8
                             195.0
                                                          0.0
                                                                                      0.0
     10
                               0.0
                                                          0.0
                                                                                      0.0
                               0.0
                                                          0.0
                                                                                      0.0
     13
                               0.0
                                                          0.0
     14
                                                                                      0.0
                               0.0
                                                          0.0
     18
                                                                                      0.0
     20
                                                          0.0
                               0.0
                                                                                      0.0
     23
                               0.0
                                                          0.0
                                                                                      0.0
         imp_op_var40_efect_ult1 imp_op_var40_efect_ult3
                                                               imp_op_var40_ult1
     ID
                               0.0
                                                          0.0
     1
                                                                               0.0
                               0.0
                                                          0.0
     3
                                                                               0.0
     4
                               0.0
                                                          0.0
                                                                               0.0
     8
                               0.0
                                                          0.0
                                                                               0.0
     10
                               0.0
                                                          0.0
                                                                               0.0
                                                          0.0
     13
                               0.0
                                                                               0.0
     14
                               0.0
                                                          0.0
                                                                               0.0
                               0.0
                                                          0.0
     18
                                                                               0.0
     20
                               0.0
                                                          0.0
                                                                               0.0
     23
                               0.0
                                                          0.0
                                                                               0.0
         saldo_medio_var33_hace2
                                    saldo_medio_var33_hace3
                                                               saldo_medio_var33_ult1 \
     ID
                               0.0
                                                          0.0
                                                                                    0.0
     1
     3
                               0.0
                                                          0.0
                                                                                    0.0
     4
                               0.0
                                                          0.0
                                                                                    0.0
                               0.0
                                                          0.0
                                                                                    0.0
                                                          0.0
     10
                               0.0
                                                                                    0.0
     13
                               0.0
                                                          0.0
                                                                                    0.0
```

14	0.0	0.0)	0.0	
18	0.0	0.0)	0.0	
20	0.0	0.0)	0.0	
23	0.0	0.0)	0.0	
	saldo_medio_var33_ult3	saldo_medio_var44_hace2	saldo_medio_v	ar44_hace3	\
ID					
1	0.0	0.0		0.0	
3	0.0	0.0		0.0	
4	0.0	0.0		0.0	
8	0.0	0.0		0.0	
10	0.0	0.0	0 0		
13	0.0	0.0	0.0		
14	0.0	0.0		0.0	
18	0.0	0.0		0.0	
20	0.0	0.0		0.0	
23	0.0	0.0		0.0	
	saldo_medio_var44_ult1	saldo_medio_var44_ult3	var38	TARGET	
ID					
1	0.0	0.0	39205.170000	0	
3	0.0	0.0	49278.030000	0	
4	0.0	0.0	67333.770000	0	
8	0.0	0.0	64007.970000	0	
10	0.0	0.0	117310.979016	0	
13	0.0	0.0	87975.750000	0	
14	0.0	0.0	94956.660000	0	
18	0.0	0.0	251638.950000	0	
20	0.0	0.0	101962.020000	0	
23	0.0	0.0	356463.060000	0	

[10 rows x 370 columns]

[6]: # Verifica os tipos das colunas df.dtypes

[6]:	var3	int64
	var15	int64
	imp_ent_var16_ult1	float64
	<pre>imp_op_var39_comer_ult1</pre>	float64
	<pre>imp_op_var39_comer_ult3</pre>	float64
		•••
	saldo_medio_var44_hace3	float64
	saldo_medio_var44_ult1	float64
	saldo_medio_var44_ult3	float64
	var38	float64
	TARGET	int64

Length: 370, dtype: object

min

```
[7]: # Verifica os tipos de colunas agrupados (devido a quantidade de colunas)
     df.dtypes.value_counts()
[7]: int64
                259
    float64
                111
     dtype: int64
[8]: # Verifica estatísticas dos dados
     df.describe()
[8]:
                                           imp_ent_var16_ult1
                      var3
                                   var15
                                                 76020.000000
     count
             76020.000000
                            76020.000000
    mean
             -1523.199277
                               33.212865
                                                    86.208265
             39033.462364
    std
                               12.956486
                                                  1614.757313
           -999999.000000
                                5.000000
                                                     0.00000
    min
     25%
                 2.000000
                               23.000000
                                                     0.000000
     50%
                 2.000000
                               28.000000
                                                     0.000000
    75%
                 2.000000
                               40.000000
                                                     0.000000
    max
               238.000000
                              105.000000
                                                210000.000000
            imp_op_var39_comer_ult1
                                       imp_op_var39_comer_ult3
                        76020.000000
                                                  76020.000000
     count
                           72.363067
                                                    119.529632
    mean
    std
                                                    546.266294
                          339.315831
    min
                            0.000000
                                                      0.000000
    25%
                            0.00000
                                                      0.000000
    50%
                            0.000000
                                                      0.000000
    75%
                            0.00000
                                                      0.00000
                        12888.030000
                                                  21024.810000
    max
            imp_op_var40_comer_ult1
                                       imp_op_var40_comer_ult3
                        76020.000000
                                                  76020.000000
     count
                            3.559130
                                                      6.472698
    mean
     std
                           93.155749
                                                    153.737066
    min
                            0.000000
                                                      0.00000
     25%
                            0.00000
                                                      0.00000
    50%
                            0.00000
                                                      0.00000
    75%
                            0.000000
                                                      0.000000
                         8237.820000
                                                  11073.570000
    max
                                       imp_op_var40_efect_ult3
            imp_op_var40_efect_ult1
                                                                 imp_op_var40_ult1
                        76020.000000
                                                  76020.000000
                                                                      76020.000000
     count
    mean
                            0.412946
                                                      0.567352
                                                                          3.160715
    std
                           30.604864
                                                     36.513513
                                                                         95.268204
                            0.000000
                                                      0.00000
                                                                          0.00000
```

25% 50% 75% max	0.000000 0.000000 0.000000 6600.000000	0.000000 0.000000 0.000000 6600.000000	0.000000
count mean std min 25% 50% 75% max	saldo_medio_var33_hace 76020.00000 7.93582 455.88722 0.00000 0.00000 0.000000 0.00000000	00 76020.000 24 1.368 18 113.958 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000	0000 5146 9637 0000 0000 0000
count mean std min 25% 50% 75% max	saldo_medio_var33_ult1	saldo_medio_var33_ult3 76020.000000 8.784074 538.439211 0.000000 0.000000 0.000000 0.000000 91778.730000	
count mean std min 25% 50% 75% max	saldo_medio_var44_hace2 76020.000000 31.505324 2013.125393 0.000000 0.000000 0.000000 438329.220000	saldo_medio_var44_hace3 76020.0000000 1.858578 147.786584 0.0000000 0.0000000 0.0000000 0.0000000	0 5 4 0 0 0
count mean std min 25% 50% 75% max	saldo_medio_var44_ult1	saldo_medio_var44_ult3 76020.000000 56.614351 2852.579397 0.000000 0.000000 0.000000 0.000000 397884.300000	var38 \ 7.602000e+04 1.172358e+05 1.826646e+05 5.163750e+03 6.787061e+04 1.064092e+05 1.187563e+05 2.203474e+07

5

count 76020.000000

```
      mean
      0.039569

      std
      0.194945

      min
      0.000000

      25%
      0.000000

      50%
      0.000000

      75%
      0.000000

      max
      1.000000
```

[8 rows x 370 columns]

```
[9]: # Distribuição da variável alvo df.groupby('TARGET').size()
```

[9]: TARGET
0 73012
1 3008
dtype: int64

```
[10]: # Plota a distribuição da variável alvo
sns.countplot(x='TARGET',data=df,palette="Paired_r")
```

[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1d4096899b0>


```
[11]: # Procura por valores nulos df.isnull().values.any()
```

[11]: False

```
[12]: # Cria função para balancear os dados (undersampling) devido a diferença da
       → distribuição da variável alvo
      # Importação dos pacotes
      import math
      # Criação da função de balanceamento
      def undersample(df, target_col, r=1):
          falses = df[target_col].value_counts()[0]
          trues = df[target_col].value_counts()[1]
          relation = float(trues)/float(falses)
          if trues >= r*falses:
              df_drop = df[df[target_col] == True]
              drop_size = int(math.fabs(int((relation - r) * (falses))))
          else:
              df_drop = df[df[target_col] == False]
              drop_size = int(math.fabs(int((r-relation) * (falses))))
          df_drop = df_drop.sample(drop_size)
          df = df.drop(labels=df_drop.index, axis=0)
          return df
      # Verifica os dados balanceados
      df = undersample(df, 'TARGET')
      df.groupby('TARGET').size()
[12]: TARGET
           3008
      0
```

```
1
     3008
```

dtype: int64

```
[13]: # Plota a nova distribuição da variável alvo
      sns.countplot(x='TARGET',data=df,palette="Paired_r")
```

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1d4095a4470>


```
[14]: # Utiliza PCA para redução de dimensionalidade devido a grande quantidade de_□

→ colunas

# Importação do módulo
from sklearn.decomposition import PCA

# Separa as varíavéis preditoras

var = df.drop('TARGET', axis=1)
y = df['TARGET']

# Seleção de atributos
pca = PCA(n_components = 5)
fit = pca.fit(var)
var_reduzido = pca.fit_transform(var)

X = pd.DataFrame(var_reduzido)

[15]: # Separação dados de treino e de teste
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
```

```
[16]: # Treina Modelo O1 Regressão Logística
      # Importação dos módulos
      from sklearn.model_selection import KFold
      from sklearn.model_selection import cross_val_score
      from sklearn.linear_model import LogisticRegression
      # Definindo os valores para o número de folds
      num_folds = 10
      seed = 7
      # Separando os dados em folds
      kfold = KFold(num_folds, True)
      # Criando o modelo
      modelo_1 = LogisticRegression()
      # Cross Validation
      resultado = cross_val_score(modelo_1, X_train, y_train, cv = kfold)
      # Print do resultado
      print("Acurácia Modelo 1: %.3f%%" % (resultado.mean() * 100))
```

Acurácia Modelo 1: 47.643%

```
[17]: # Normaliza os dados para tentar melhor o modelo

# Importação do módulo
from sklearn.preprocessing import Normalizer

# Separando o array em componentes de input e output
var = df.drop('TARGET',axis=1)
y = df['TARGET']

# Gerando os dados normalizados
scaler = Normalizer().fit(var)
normalizedVar = scaler.transform(var)
```

```
[18]: # Utiliza PCA para redução de dimensionalidade nos dados normalizados

# Importação do módulo
from sklearn.decomposition import PCA

# Seleção de atributos
pca = PCA(n_components = 5)
```

```
fit = pca.fit(normalizedVar)
      var_reduzido = pca.fit_transform(normalizedVar)
      X = pd.DataFrame(var_reduzido)
[19]: # Separação dados de treino e de teste
      #Importação dos módulos
      from sklearn.model_selection import train_test_split
      # Separa 67% dos dados para treino
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
[20]: # Treina Modelo O2 Regressão Logística
      # Definindo os valores para o número de folds
      num folds = 10
      seed = 7
      # Separando os dados em folds
      kfold = KFold(num_folds, True)
      # Criando o modelo
      modelo_2 = LogisticRegression()
      # Cross Validation
      resultado = cross_val_score(modelo_2, X_train, y_train, cv = kfold)
      # Print do resultado
      print("Acurácia Modelo 02: %.3f%%" % (resultado.mean() * 100))
     Acurácia Modelo 02: 55.484%
[21]: # Utiliza PCA para redução de dimensionalidade nos dados normalizados com maisu
      \rightarrow componentes
      # Importação do módulo
      from sklearn.decomposition import PCA
      # Seleção de atributos
      pca = PCA(n_components = 50)
      fit = pca.fit(normalizedVar)
      var_reduzido = pca.fit_transform(normalizedVar)
      X = pd.DataFrame(var_reduzido)
```

```
[22]: # Separação dados de treino e de teste

#Importação dos módulos
from sklearn.model_selection import train_test_split

# Separa 67% dos dados para treino
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

[23]: # Treina Modelo 03 com Regressão Logística

# Definindo os valores para o número de folds
num_folds = 10
```

```
# Definindo os valores para o número de folds
num_folds = 10
seed = 7

# Separando os dados em folds
kfold = KFold(num_folds, True)

# Criando o modelo
modelo_3 = LogisticRegression()

# Cross Validation
resultado = cross_val_score(modelo_3, X_train, y_train, cv = kfold)

# Print do resultado
print("Acurácia Modelo 03: %.3f%%" % (resultado.mean() * 100))
```

Acurácia Modelo 03: 56.079%

```
# Treina Modelo 04 com XGBoost

# Importação dos módulos
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier

# Criando o modelo
modelo_4 = XGBClassifier()

# Treinando o modelo
modelo_4.fit(X_train, y_train)

# Fazendo previsões
y_pred = modelo_4.predict(X_test)
previsoes = [round(value) for value in y_pred]

# Avaliando as previsões
accuracy = accuracy_score(y_test, previsoes)
print("Acurácia Modelo 04: %.2f%," % (accuracy * 100.0))
```

2.0.1 Modelo 04 com XGBoost apresentou acurácia melhor que os modelos de Regressão Logística

```
[25]: # Importa dados de teste
      teste = pd.read_csv('dados/test.csv',index_col='ID')
[26]: print(teste.shape)
     (75818, 369)
[27]: # Normaliza os dados de teste
      # Gerando os dados normalizados
      scaler = Normalizer().fit(teste)
      normalizedTeste = scaler.transform(teste)
      # Redução de dimensionalidade com PCA
      pca = PCA(n_components = 50)
      fit = pca.fit(normalizedTeste)
      teste_reduzido = pca.fit_transform(normalizedTeste)
      Z = pd.DataFrame(teste_reduzido)
[28]: teste_pred = modelo_4.predict(Z)
[29]: sample_submission = pd.DataFrame(teste.index)
[30]: sample_submission['TARGET'] = teste_pred
[31]: sample_submission.head()
[31]:
         ID
            TARGET
          2
      0
                  1
      1
                  1
          5
      2
          6
                  0
      3
          7
[32]: sample_submission.groupby('TARGET').size()
[32]: TARGET
           19787
      0
```

1 56031 dtype: int64

[33]: pd.DataFrame.to_csv(sample_submission, 'sample_submission.csv', index=False)