

- \Box A graph is a pair (V, E), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

© 2010 Goodrich, Tamassia

Graphs

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Graphs

PVD

flight

849

© 2010 Goodrich, Tamassia

Graphs

4

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

© 2010 Goodrich, Tamassia Graphs

Terminology (cont.)

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V,b,X,h,Z)$ is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Graphs

Terminology (cont.)

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,¬) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,→) is a cycle that is not simple

Properties

Property 1

© 2010 Goodrich, Tamassia

 $\sum_{v} \deg(v) = 2m$ Proof: each edge is

counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges $m \le n (n-1)/2$

Proof: each vertex has degree at most (n - 1)

What is the bound for a directed graph?

Notation

Graphs

n

m

number of vertices number of edges

deg(v) degree of vertex v

Example

- n=4
- $\mathbf{m} = 6$
- $\bullet \deg(\mathbf{v}) = 3$

8

© 2010 Goodrich, Tamassia Graphs 7 © 2010 Goodrich, Tamassia

Main Methods of the Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - e.endVertices(): a list of the two endvertices of e
 - e.opposite(v): the vertex opposite of v on e
 - u.isAdjacentTo(v): true iff u and v are adjacent
 - *v: reference to element associated with vertex v
 - *e: reference to element associated with edge e

- Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - eraseVertex(v): remove vertex v (and its incident edges)
 - eraseEdge(e): remove edge e
- Iterable collection methods
 - incidentEdges(v): list of edges incident to v
 - vertices(): list of all vertices in the graph
 - edges(): list of all edges in the graph

Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

© 2010 Goodrich, Tamassia

Graphs

10

© 2010 Goodrich, Tamassia

Graphs

Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

© 2010 Goodrich, Tamassia

Graphs

© 2010 Goodrich, Tamassia

12

Performance

© 2010 Goodrich, Tamassia

n vertices, m edgesno parallel edgesno self-loops	Edge List	Adjacency List	Adjacency Matrix
Space	n+m	n+m	n^2
v.incidentEdges()	m	deg(v)	n
u.isAdjacentTo (v)	m	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	n^2
insertEdge(v, w, o)	1	1	1
eraseVertex(v)	m	deg(v)	n^2
eraseEdge(e)	1	1	1

Graphs

13