

The Vibrational Spectra and Structure of Inorganic Molecules. I. The InfraRed Spectrum of F2O from 2.5 to 25µ

H. J. Bernstein and J. Powling

Citation: The Journal of Chemical Physics 18, 685 (1950); doi: 10.1063/1.1747726

View online: http://dx.doi.org/10.1063/1.1747726

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/18/5?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

RotationVibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths. IX. The Spectra of the HCN and DCN Molecules from 2.5μ to 0.5μ

J. Chem. Phys. 21, 448 (1953); 10.1063/1.1698927

The Vibrational Spectra and Structure of Inorganic Molecules. III. The InfraRed Spectra of Nitrosyl Chloride and Nitrosyl Bromide from 2.0 to 25µ

J. Chem. Phys. 18, 1669 (1950); 10.1063/1.1747559

Motions of Molecules in Condensed Systems III. The InfraRed Spectra for Cyclohexane Solid II, Solid I, Liquid and Vapor in the Range from 3 to 15μ

J. Chem. Phys. 15, 99 (1947); 10.1063/1.1746436

Vibration Spectra and Molecular Structure VI. InfraRed Absorption Spectrum of Heavy Formic Acid J. Chem. Phys. **6**, 540 (1938); 10.1063/1.1750309

Vibration Spectra and Molecular Structure IV. The InfraRed Absorption Spectra of the Double and Single Molecules of Formic Acid

J. Chem. Phys. 6, 531 (1938); 10.1063/1.1750307

The Vibrational Spectra and Structure of Inorganic Molecules. I. The Infra-Red Spectrum of F_2O from 2.5 to 25μ

H. J. BERNSTEIN AND J. POWLING* National Research Council, Ottawa, Canada (Received November 4, 1949)

The infra-red spectrum of gaseous F₂O has been obtained from 2.5 to 25 \mu at pressures of 10 mm to 600 mm Hg in a 10-cm cell and at 600 mm Hg in a meter cell.

All three fundamentals have been observed and identified.

The fine structure of a \perp band was resolved and gave an estimate of the bond distance and apex angle as 1.38 ± 0.03 A and 101.5 ± 1.5 °, respectively.

The upper and lower limits of the constants of a quadratic potential function with all possible interaction constants have been obtained.

HE infra-red spectrum of gaseous F₂O has been obtained with fair resolution by Hettner, Pohlman, and Schumacher¹ at pressures of 3 and 215 mm Hg. These authors believed their sample contained CF4 as impurity and attributed some of the many bands observed to CF₄. The remaining bands, however, lent themselves to interpretation on the basis of two frequency assignments (see Table I).

Sutherland and Penney² have reinterpreted the spectrum obtained by Hettner et al. assuming all the bands observed by these authors to be due to F2O. Their assignment is given in Table I for comparison.

Having a pure sample³ of F₂O at our disposal, it was considered of interest to reinvestigate the infra-red spectrum.

The spectra were obtained at various pressures in a 10-cm cell and a one-meter cell with a Perkin-Elmer infra-red spectrometer (Model 12C) used in conjunction with a Brown recorder. At a pressure of 600 mm Hg in a 10-cm cell no bands were observed in the KBr region of the spectrum. Since a low lying fundamental may occur in this region the region was also investigated with a meter gas cell and at a pressure of 600 mm Hg. The complete spectrum is shown in Fig. 1. The fine structure resolved in the band at 10.8μ is shown in Fig. 2. The frequencies and numbering for the band are given in Table II.

DISCUSSION

 F_2O has the symmetry of the C_{2v} point group and three fundamental modes of vibration. The fundamentals ν_1 and ν_2 are of type A_1 (totally symmetric vibrations) and the fundamental ν_3 is of type B_1 (antisymmetric in plane vibration). All modes are allowed in the infra-red.

The OF bond distance and apex angle of F₂O found by electron diffraction⁴ are $1.41\pm0.05A$ and $100\pm3^{\circ}$,

respectively. The moments of inertia are then

$$I_A = 15.3 \times 10^{-40}$$
 c.g.s. unit
 $I_B = 73.9 \times 10^{-40}$ c.g.s. unit
 $I_C = 89.2 \times 10^{-40}$ c.g.s. unit

and the molecule is an approximate symmetric top with the axis of least moment of inertia as the figure axis.

Since the induced moment during the type A_1 vibration is \perp to the axis of least moment of inertia which is the figure axis of an approximate symmetric top,4 and the induced moment in the type B_1 vibration is || to this axis, the type A_1 bands are \perp bands with a doublet contour, and the type B_1 band is a || band with PQRbranches.

The band at 828 cm⁻¹ is immediately identified as $\nu_3(||)$ because of its PQR contour and further because its observed PR separation (28 cm⁻¹) is very nearly the same as the expected theoretical value⁵ for a || band calculated from

$$\Delta \nu_{PR} = [S(\beta)/\pi](KT/I)^{\frac{1}{2}} = 27.5 \text{ cm}^{-1}.$$

Since the value for the least moment of inertia is about 15.3×10^{-40} c.g.s. unit, the \perp band should have a doublet contour with fine structure spacing approximately equal to 3.7 cm⁻¹. The band at 929 cm⁻¹ is then without question a type A_1 band (\perp). The band at 461 cm $^{-1}$ is also a type A_1 band because of its doublet contour, although the slits were too wide to resolve its fine structure. It is extremely unlikely that the strong band at 929 cm⁻¹ is the overtone of the weak 461-cm⁻¹ band, so these bands must be the fundamentals ν_1 and ν_2 respectively.6

The observed spectrum is interpreted satisfactorily on the basis of these fundamentals and a complete assignment is given in Table III.

By comparing the spectrum of F₂O obtained in this work with that of Hettner et al. and the spectrum of

^{*} National Research Laboratories Postdoctorate Fellow (1949). ¹ Hettner, Pohlman, and Schumacher, Zeits. f. Physik 96, 203 (1935).

² G. B. B. M. Sutherland and W. G. Penney, Proc. Roy. Soc. London A156, 678 (1936).

³ The purity of the sample estimated from the quantitative reaction F₂O+4HI=2I₂+2HF+H₂O was 99.1 percent F₂O.

⁴ L. R. Maxwell, J. Opt. Soc. Am. 30, 374 (1940).

⁵ S. L. Gerhard and D. M. Dennison, Phys. Rev. 43, 197 (1933). In this formula, I is the mean of the middle and greatest moments of inertia.

⁶ There is another way by which $2\nu_2$ can gain intensity, namely, by Fermi resonance between ν_1 and $2\nu_2$. No evidence of Fermi resonance, however, is apparent in the 10.8μ region. This may be due to a very small interaction energy between the ν_1 and $2\nu_2$

TABLE I.

TABLE II. F₂O 170 mm Hg.

Infra-red spectrum of F ₂ O Hettner et al.	Interpretation I. Hettner	Interpretation II. Hettner	Interpretation Sutherland and Penney
2544			$2\nu_1 + 2\nu_2$
2190			$2\nu_3$
1740		fundamental	$\nu_1 + 2\nu_2$
1280	fundamental	fundamental	$\nu_1 + \nu_2$
1110			ν ₃ fundamental
926	fundamental l		$2\nu_2$
	870	fundamental	-
833	fundamental		ν ₁ fundamental
625	,		$\nu_3 - \nu_2$
492			ν ₂ fundamental

 CF_4 it is apparent that the complexity of Hettner's spectrum was due to CF_4 as impurity (see Table IV).

FINE STRUCTURE OF THE BAND AT 10.8μ AND A REFINEMENT OF THE MOLECULAR DIMENSIONS OBTAINED BY ELECTRON DIFFRACTION

Since the F_2O molecule is an approximate symmetric top the frequency of the Q branches is given by⁷

$$\nu = \nu_0 + (A' - B') \pm 2K(A' - B') + [(A' - B') - (A'' - B'')]K^2. \quad (1)$$

The differences between the rotational constants of the upper and lower states are obtained from

$${}^{R}Q_{K} - {}^{P}Q_{K} = 4K(A' - B')$$
 (2)

and

$${}^{R}Q_{K-1} - {}^{P}Q_{K+1} = 4K(A^{\prime\prime} - B^{\prime\prime})$$
 (3)

respectively. The band center may be obtained from

$${}^{R}Q_{K} + {}^{P}Q_{K+1} = 2\nu_{0} + [(A' - B') - (A'' - B'')] \times [K^{2} + (K+1)^{2}].$$
 (4)

10	
10	963.0
	959.5
8	956.4
9 8 7 6 5 4 3 2	952.8
6	949.0
5	945.4
4	942.6
3	(939.5)
2	(935.0)
1	(931.2)
0	, ,
-1 -2 -3 -4	(927.7)
-2	(923.6)
-3	(921.0)
-4	917.0
-5	913.6
-6 -7	910.5
-7	907.5
-8	904.5
-9	902.5
-10	899.0
-11	895.5
-12	893.2
-13	891.0

One might expect relations (2) and (3) to be valid for higher K values for an approximate symmetric top since the effects of K-type doubling are minimized. Also, the spectrum near the band origin may be complicated by weak overlapping with $2\nu_2 = 922$ cm⁻¹. Since ν_2 is so very much weaker than ν_1 it is extremely unlikely that $2\nu_2$ will contribute much to the band ν_1 , especially at higher K values. Table V gives values of A'' - B'' and A' - B' obtained from relations (2) and (3) for higher K values. The mean values obtained are

$$A'' - B'' = 1.60 \pm 0.02 \text{ cm}^{-1},$$

 $A' - B' = 1.60 \pm 0.02 \text{ cm}^{-1}.$

⁷ G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., New York, 1945), p. 483.

TABLE III.

Infra-red band cm ⁻¹	Structure	Separation cm ⁻¹	Assignment
1700–1764 (m)	PQR and doublet		$ \nu_1 + \nu_3(B_1) $ and $2\nu_1(A_1)^a$
929 (s)	Doublet	30	$\nu_1(A_1)$
826 (v.s.)	PQR	28	$\nu_3(B_1)$
461 (w)	Doublet	27	$\nu_2(A_1)$

^a The band at \sim 1740 cm⁻¹ is primarily due to the combination tone $\nu_1 + \nu_2$ with $2\nu_1$ probably contributing some intensity. $2\nu_2$ would have to have a very large anharmonicity with opposite sign to appear in this region.

Since $(A'-B')-(A''-B'')=0\pm0.04$ cm⁻¹ it is not possible to obtain an accurate value of ν_0 from Eq. (4). In the above formula B'' is actually (B''+C'')/2 so that

$$A'' - B'' = 1.60 \pm 0.02$$
 cm⁻¹

$$=28.00 \left[\frac{1}{I_A} - \frac{1}{2} \left(\frac{1}{I_B} + \frac{1}{I_C} \right) \right] \text{cm}^{-1}$$

where the I's are in units of 10^{-40} . Letting r be the O-F distance in A, and 2θ the apex angle, substitution for I_A , I_B , and I_C in terms of r and 2θ gives the relation

$$r^{2} = 17.5 \pm 0.20 \left[\frac{1}{18.7 \cos^{2}\theta} - \frac{1}{2} \left(\frac{1}{18.7 \cos^{2}\theta + 63.05 \sin^{2}\theta} + \frac{1}{63.05 \sin^{2}\theta} \right) \right].$$

In Table VI the OF bond distances have been calculated from this equation for one degree changes in 2θ from $2\theta = 97^{\circ}$ to $2\theta = 103^{\circ}$.

TABLE IV.

F ₂ O this work	F₂O Hettner <i>et al.</i> •	CF4b
	2544	2541
	2190	2180
1740	1740	
	1280	1265
	1110	1112
929	926	
826	833	
	625	630
	492	
461		

 $^{^{\}rm a}$ See reference 1. $^{\rm b}$ Bailey, Hale, and Thompson, Proc. Roy. Soc. London A167, 555 (1938) These authors did not investigate the spectrum as far down as 492 cm $^{\rm -1}$.

These limiting values for 2θ are indicated by the error of the electron diffraction measurement,⁴ namely, $2\theta = 100 \pm 3^{\circ}$. Since the electron diffraction result for the OF bond distance is 1.41 ± 0.05 A, the first three values of $r_{\rm OF}$ in Table VI are excluded, leaving the only possible range of values for 2θ and r consistent with the moment of inertia obtained from the spacing of the fine structure. In this way the electron diffraction results may be refined to

$$r_{\text{OF}} = 1.38 \pm 0.03 \text{A},$$

 $2\theta = 101.5 \pm 1.5^{\circ}.$

POTENTIAL FUNCTION OF F2O

A suitable quadratic potential function for F_2O is given by

$$2V = K [(\delta r_1)^2 + (\delta r_2)^2] + K_{2\theta} (r\delta_{2\theta})^2 + 2K_1 \delta r_1 \delta r_2 + 2K_2 (\delta r_1 + \delta r_2) r\delta_{2\theta}$$

where δr_1 , δr_2 , $\delta_{2\theta}$ are the displacements of bond 1, bond 2, and the apex angle, respectively, from the equilibrium configuration. K, $K_{2\theta}$, K_1 , and K_2 are the bond stretch-

FIG. 2. FREQUENCY IN cm-1 (BAND AT 10.8)

TABLE V. F₂O 170 mm Hg.

K	RQ K-1	PQ K+1	$4K(A^{\prime\prime}-B^{\prime\prime})$	A"-B"		
11	963.0	893.2	69.8	1.585		
10	959.5	895.5	64.0	1.600		
9	956.4	899.0	57.4	1.603		
8	952.8	902.5	50.3	1.575		
8 7	949.0	904.5	44.5	1.590		
6	945.4	907.5	37.9	1.580		
6 5	942.6	910.5	32.1	1.605		
4	(939.5)	913.6	25.9	(1.622)		
_	(20210)	,	Mea			
K	RQ κ	^{P}QK	4K(A'-B')	A'-B'		
10	963.0	899.0	64.0	1.600		
9	959.5	902.5	57.0	1.585		
	956.4	904.5	51.9	1.621		
8 7	952.8	907.5	45.3	1.619		
6	949.0	910.5	38.5	1.605		
Š	945.4	913.6	31.8	1.590		
4	942.6	917.0	25.6	1.600		
•	× 12.0	711.0	Mea	7.7.2		

ing, bond deformation, and interaction constants, respectively.

If M is the mass of the oxygen atom and m the mass of the fluorine atom in atomic units, the determinantal equation gives⁸

$$\lambda_{1} + \lambda_{2} = (K + K_{1}) \left(\frac{1}{\mu} + \frac{\cos 2\theta}{M} \right) + 2K_{2\theta} \left(\frac{1}{\mu} - \frac{\cos 2\theta}{M} \right) - \frac{4K_{2}}{M} \sin 2\theta, \quad (5)$$

$$\lambda_1 \lambda_2 = \frac{M + 2m}{Mm^2} \left[2K_{2\theta}(K + K_1) - 4K_2^2 \right], \tag{6}$$

$$\lambda_3 = (K - K_1) \left(\frac{1}{\mu} - \frac{\cos 2\theta}{M} \right), \tag{7}$$

where $\mu = Mm/(M+m)$ and $\lambda_i = 0.590 \times 10^{-6} \nu_i^2$ for ν_i in cm⁻¹.

It has been shown that a four-constant potential function is necessary to describe the dynamics of symmetrical non-linear triatomic molecules and that the interaction constants K_1 and K_2 are equally important.

The three frequencies are not sufficient to evaluate the four force constants of these equations but considerable information may be obtained as to the upper and lower limits that these constants may have.

With the values $\nu_1 = 929$ cm⁻¹, $\nu_2 = 461$ cm⁻¹, $\nu_3 = 828$ cm⁻¹, and $2\theta = 101.5^{\circ}$ elimination of K_1 and K_2 from Eqs. (5)–(7) gives a quadratic relation between K and $K_{2\theta}$. For K to have real roots it is found that 0.05×10^5 dynes per cm. $\leq K_{2\theta} \leq 1.67 \times 10^5$ dynes per cm. The

TABLE VI.

2θ	rofA
97	1.298±0.007
98	1.317 ± 0.008
99	1.336 ± 0.007
100	1.355 ± 0.008
101	1.373 ± 0.008
102	1.396 ± 0.008
103	1.415 ± 0.008

Table VII. Force constants of the F_2O molecule in units of 10^5 dynes per cm for various potential functions.

	Four-constant potential function	Potential function with $K_2 = 0$	Potential function with $K_1 = 0$	K from Badger's rule*
\overline{K}	3.21 to 5.23	3.63, 2.62	3.17	5.4±0.8
$K_{2\theta}$	0.05 to 1.67	0.84, 1.66	0.46, 3.43	
K_1	0.04 to 2.06	0.46, -0.56	0.0	
K_2	0.00 to 0.98	0.0 0.0	-0.78, 2.31	

^a Substituting for the OF bond distance (1.38 \pm 0.03A) into Badger's relation $K(r-0.68)^3=1.86\times10^5$ dynes per cm gives $K=5.4\pm0.8\times10^5$ dynes per cm [J. Chem. Phys. 2, 128 (1934).]

maximum and minimum values that K can take are given by the condition $\partial K/\partial K_{2\theta}=0$. Numerically, this condition is satisfied for $K_{2\theta}=0.514$ and 1.20×10^5 dynes per cm. Substituting these values for $K_{2\theta}$ in the quadratic expression for K as a function of $K_{2\theta}$ gives the upper limit of K as 5.23×10^5 dynes per cm and the lower limit of K as 3.21×10^5 dynes per cm.

From Eq. (7) the upper limit and lower limit of K_1 is found to be 2.06 and 0.04×10^5 dynes per cm, respectively.

From Eq. (5) the upper and lower limits of K_2 are found to be 0.98 and 0.0×10^5 dynes per cm, respectively.

In Table VII the force constants are given for the complete four-constant potential function; when $K_2=0$; and for $K_1=0$.

When $K_2=0$, two sets of force constants are obtained whereas when $K_1=0$, K is obtained directly from Eq. (7) and substitution in (5) and (6) gives two sets of values for $K_{2\theta}$ and K_2 . The columns give corresponding sets of the constants.

An approximation to the ratio $(\nu_1/\nu_3)^2$ is given by

$$\begin{array}{c} (\nu_1/\nu_3)^2 = \left \lfloor (K+K_1)/(K-K_1) \right \rfloor \\ \times \left \lfloor (M+\mu\cos 2\theta)/(M-\mu\cos 2\theta) \right \rfloor. \end{array}$$

In a linear molecule such as CO_2 or CS_2 the value of $\mu \cos 2\theta$ is of the same order of magnitude as M so that the ratio $(M+\mu\cos 2\theta)/(M-\mu\cos 2\theta)$ is small (since $\cos 2\theta = -1$). This ratio is so small that the R.H.S. of the above equation remains <1 even after multiplied by the force constant ratio. For F_2O , however, since 2θ is closer to 90° than to 180° the $\mu \cos 2\theta$ term is very much less than the M so that $(M+\mu\cos 2\theta)/(M-\mu\cos 2\theta)$ is only slightly less than one. As a result the force constant ratio is responsible for making the R.H.S. greater than one and thus $\nu_3 < \nu_1$.

^{*} Ta-You Wu, Vibrational Spectra and Structure of Polyatomic Molecules (J. W. Edwards, Ann Arbor, Michigan, 1946), p. 163.
Coulson, Duchesne, and Manneback, Vol. comm. Victor Henri, Maison Desoer, Liège (1947–48), p. 33.

It is apparent then why ν_3 is less than ν_1 for F_2O whereas in other symmetric triatomic molecules ν_3 is usually greater than ν_1 .

ACKNOWLEDGMENT

Thanks are due Miss E. Miller for reduction of the

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 18, NUMBER 5

MAY, 1950

Magnetic Evidence for d^3s Bond Hybridization in Chromium (II) Acetate. The Oxidation State of Chromium in a Reported Tris(8-Hydroxyquinoline) Chromium (II)

WILLIAM R. KING, JR. AND CLIFFORD S. GARNER Department of Chemistry, University of California, Los Angeles, California (Received December 27, 1949)

Magnetic susceptibilities of solid Cr(OOCCH₃)₂ and its monohydrate were measured, and these compounds were shown to contain no unpaired electrons. This fact indicates that the four unpaired 3d electrons of the normal Cr++ ion are paired in these compounds, the three 3d orbitals thus made available being utilized in the formation of covalent bonds. The fourth covalent bond probably involves use of the 4s orbital of chromium. This evidence may constitute the first example of d^3s bond hybridization postulated by Pauling. Susceptibility measurements were also carried out on tris(8-hydroxyquinoline) chromium (III) and a reported tris(8-hydroxyquinoline) chromium (II). The evidence indicates both to be the same compound, with the chromium having a tripositive oxidation state.

INTRODUCTION

N the course of other work on chromium compounds we have investigated the magnetic susceptibilities of chromium (II) acetate and its monohydrate. The orange-tan and red colors, respectively, of these compounds and their moderately low (<1 percent) solubility in water suggest a different type of bonding of the chromium from that in the typical blue and very soluble salts of dipositive chromium, such as the perchlorate and chloride. The magnetic results presented in this paper bear out this idea and indicate d^3s (or possibly d^3p) bond hybridization for chromium in the acetate. Pauling has pointed out that three d eigenfunctions may be used together with some s and p character to give equivalent tetrahedrally directed bond eigenfunctions of "strength" 2.950, nearly equal to the maximum "strength" of 3, and he has concluded that examples of such bonds should be provided by CrO₄=, MoO₄=, and related oxy-ions. Although the magnetic criterion^{1,2} for bond type cannot be applied to these latter ions, it may be applied to divalent chromium compounds.

Hume and Stone³ prepared by the action of an excess of 5 percent 8-hydroxyquinoline in 2f. CH₃COOH on chromium (II) chloride solution an orange-yellow compound which they assumed to be an 8-hydroxyquinoline chromium (II), i.e., "chromous 8-hydroxyquinolate." On the basis of his analyses of the purified compound, indicating three 8-hydroxyquinolate addenda per chromium atom, Hume4 suggested the possibility of d^2sp^3 bonding of the chromium in this compound. In order to investigate this point we prepared this compound by the method of Hume and Stone,3 and also prepared tris(8-hydroxyquinoline) chromium (III), and measured the magnetic susceptibility of each. The results indicate that these two compounds are identical, with the chromium in the tripositive oxidation state. In the case of the presumed chromium (II) compound, the Cr (II) is apparently oxidized to Cr (III) by the 8-hydroxyquinoline during the preparation.

PREPARATION AND ANALYSIS OF COMPOUNDS Chromium (II) Acetate Monohydrate

Freshly prepared solutions of dichlorotetraquo chromium (III) chloride (c.p. green CrCl₃·2H₂O) were reduced with amalgamated zinc in an upflow-type Jones reductor.3 The resulting chromium (II) solution was run directly into an excess of saturated NaOOCCH3 solution covered by a layer of petroleum ether in order to exclude air. The precipitated Cr(OOCCH₃)₂·H₂O was washed free of excess NaOOCCH₃ and Zn⁺⁺ with O2-free water. The resultant water slurry was used for magnetic measurements. For analyses the precipitate was washed with C₂H₅OH and then with (C₂H₅)₂O and dried in a stream of O₂-free N₂. The analyses (27.6 percent Cr, C/Cr=3.94) indicate the formula $Cr(OOCCH_3)_2 \cdot H_2O$ (27.6 percent Cr, C/Cr=4.00). The compound had a red color.

¹ L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931).

² L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1945), second edition, p. 112.

³ D. N. Hume and H. W. Stone, J. Am. Chem. Soc. 63, 1200 (1941).

⁴ D. N. Hume, Master's Thesis, U.C.L.A. (1941).