Práctica 3

Modelos jerárquicos

3.1. Objetivos

Con esta práctica el alumno aprenderá a:

- Diseñar modelos jerárquicos de objetos articulados.
- Controlar los parámetros de animación de los grados de libertad de modelos jerárquicos usando OpenGL.
- Gestionar y usar la pila de transformaciones de OpenGL.

3.2. Desarrollo

Para realizar un modelo jerárquico es importante seguir un proceso sistemático, tal y como se ha estudiado en teoría, poniendo especial interés en la definición correcta de los grados de libertad que presente el modelo.

Para modificar los parámetros asociados a los grados de libertad del modelo utilizaremos el teclado. Para ello tendremos que escribir código para modificar los parámetros como respuesta a la pulsación de teclas.

Las acciones a realizar en esta práctica son:

- 1. Diseñar un modelo jerárquico con al menos 3 grados de libertad distintos (al menos deben aparecer giros y desplazamientos). Puedes tomar como ejemplo el diseño de una grúa semejante a las del ejemplo (ver figura 3.1). En el ejemplo, estas gruas tienen al menos tres grados de libertad: ángulo de giro de la torre, giro del brazo y altura del gancho.
- 2. Diseñar el grafo del modelo jerárquico del objeto diseñado, determinando el tamaño de las piezas y las transformaciones geométricas a aplicar (tendrás que entregar el grafo del modelo en papel, o en formato electrónico: pdf, jpeg, etc, cuando entregues la práctica).

Figura 3.1: Ejemplos del resultado de la práctica 3.

3. Crear las estructuras de datos necesarias para almacenar el modelo jerárquico. El modelo debe contener la información necesaria para definir los parámetros asociados a la construcción del modelo (medidas de elementos, posicionamiento, etc.) y los parámetros que se vayan a modificar en tiempo de ejecución (grados de libertad, etc.). Hay que tener en cuenta que un modelo jerárquico esta formado por otros objetos, normalmente más sencillos, entre los que existen relaciones de dependencia hijopadre, por lo que se deberá poder almacenar en la estructura de datos los distintos componentes que lo forman, asi como las transformaciones que le afectan a cada uno con su tipo de transformación y sus parámetros.

Si el modelo no almacena explícitamente el grafo jerárquico, sino que dicha jerarquía se contruye en base objetos ya creados y a la gestión de la pila de transformaciones de OpenGL, se deberá crear el código que permite representar el modelo jerárquico en base a los parámetros de construcción y grados de libertad que se definan en el modelo.

- 4. Inicializar el modelo jerárquico diseñado para almacenar en la estructura de datos los componentes y parámetros necesarios para su construcción.
- 5. Crear el codigo necesario para visualizar el modelo jerárquico utilizando los valores de los parámetros del modelo almacenado en la estructura de datos. El alumno podra utilizar las funciones de visualización implementadas en las anteriores practicas que permiten visualizar los modelos con las distintas técnicas implementadas.
- 6. Incorporar código para cambiar los parámetros modificables del modelo y para controlar su movimiento. Añadir la ejecución de dicho código en las funciones de control de pulsación de teclas para modificar el modelo de forma interactiva. Hay que tener presente los límites de cada movimiento.
- 7. Ejecutar el programa y comprobar que los movimientos son correctos.

3.3 Evaluación 19

3.2.1. Reutilización de elementos

En esta práctica para construir los modelos jerárquicos se deben utilizar otros elementos más sencillos que al combinarse mediante instanciación utilizando las transformaciones geométricas necesarias, nos permitirán construir modelos mucho más complejos. Se puede partir de cualquier primitiva que nos ofrezcan las propias librerías de OpenGL, o reutilizar los elementos implementados en las prácticas anteriores.

3.2.2. Resultados entregables

El alumno entregará un programa que represente y dibuje un modelo jerárquico con al menos tres grados de libertad, cuyos parámetros se podrán modificar por teclado. Para esta práctica se deberá incorporar el control con las siguientes teclas para activar/desactivar cada acción posible de las realizadas en las 3 primeras prácticas:

- Tecla p: Visualizar en modo puntos
- Tecla l: Visualizar en modo líneas/aristas
- Tecla s: Visualizar en modo sólido
- Tecla a: Visualizar en modo ajedrez
- Tecla 1: Activar objeto PLY cargado
- Tecla 2: Activar objeto por revolución
- Tecla 3: Activar objeto jerárquico
- Tecla Z/z: modifica primer grado de libertad del modelo jerárquico (aumenta/disminuye)
- Tecla X/x: modifica segundo grado de libertad del modelo jerárquico (aumenta/disminuye)
- Tecla C/c: modifica tercer grado de libertad del modelo jerárquico (aumenta/disminuye)

3.3. Evaluación

La evaluación de la práctica, sobre 10 puntos, se hará del modo siguiente:

- Diseño del modelo jerárquico y del grafo correspondiente que muestre las relaciones entre los elementos (2 puntos)
- Creación de las estructuras necesarias para almacenar el modelado jerárquico (4 puntos)
- Creación del código para poder visualizar de forma correcta el modelo (1 punto)

 Control interactivo del cambio de los valores que definen los grados de libertad del modelo (3 puntos)

3.4. Extensiones

Como extensión optativa se propone la incorporación de animación automática de los componentes del modelo. Para ello:

- Añade al modelo lo que estimes necesario para almacenar una velocidad de movimiento para cada uno de los parámetros.
- Añade opciones en el control de teclas para fijar la velocidad de cada parámetro a un valor positivo, negativo o cero.
- Ahora puedes animar el modelo haciendo que el valor del parámetro que modifica cada grado de libertad se modifique segun su velocidad.

Para animar el modelo utiliza una función de fondo que se ejecute de forma indefinida en el ciclo de ejecución de la aplicación OpenGL, en la que puedes realizar la actualización de cada parámetro en función de su velocidad. La función de fondo estárá creada en el fichero principal y se activa desde el programa principal con:

```
glutIdleFunc( idle );
```

siendo "void idle()" el nombre de la función que se llama para modificar los parámetros. Esta función de animación debe cambiar los parámetros del modelo en función de la velocidad y para que se redibuje, llamar a:

```
glutPostRedisplay();
```

Cambia finalmente el procedimiento de entrada para que desde el teclado se pueda cambiar también las velocidades de modificación de los grados de libertad:

- Tecla B/b: incrementa/decrementa la velocidad de modificación del primer grado de libertad del modelo jerárquico
- Tecla N/n: incrementa/decrementa la velocidad de modificación del segundo grado de libertad del modelo jerárquico
- Tecla M/m: incrementa/decrementa la velocidad de modificación del tercer grado de libertad del modelo jerárquico

3.5. Duración

Esta tercera práctica se desarrollará en 3 sesiones.

3.6 Bibliografía

3.6. Bibliografía

Mark Segal y Kurt Akeley; The OpenGL Graphics System: A Specification (version 4.1); http://www.opengl.org/

- Edward Angel; *Interactive Computer Graphics. A top-down approach with OpenGl*; Addison-Wesley, 2000
- J. Foley, A. van Dam, S. Feiner y J. F. Hughes; *Computer Graphics: Principles And Practice*, 2 *Edition*; Addison-Wesley,1992
- P. Shirley y S. Marschner; *Fundamentals of Computer Graphics, 3rd Edition*; A K Peters Ltd. 2009.

3.7. Algunos ejemplos de modelos jerárquicos

En las figuras 3.2 y 3.3 podéis ver algunos ejemplos de modelos jerárquicos que se pueden construir para la práctica (simplificando todo lo que se quiera los distintos elementos que los componen).

Estudiar con detalle cada uno y seleccionar el que os interese, o diseñar otro que tenga al menos 3 grados de libertad similares a los de las gruas que tenéis en el ejemplo.

©

Figura 3.2: Ejemplos de posibles modelos jerárquicos.

Figura 3.3: Ejemplos de posibles modelos jerárquicos.