变额年金

孟生旺

中國人民大學 统计学院
RENMIN UNIVERSITY OF CHINA SCHOOL OF STATISTICS

主要内容

- 离散变额年金(每年变化一次)
 - 每年支付1次的离散变额年金(递增、递减、复递增)
 - 每年支付 m 次的离散变额年金(递增、递减、复递增)
 - 连续支付(每年支付 ∞ 次)的离散变额年金(递增、递减、复递增)
- 连续变额年金(连续变化)
 - 一般形式的连续变额现金流
 - 特例: 连续递增(或递减)的年金

递增年金

期末付递增年金: 第一年末支付 1 元, …, 第 n 年末支付 n 元。

	v	$2v^2$	$3v^3$		nv^n
	1	. 2	3	•••••	n
		, C	, C	o ^C	<u> </u>
0	1	2	3		n

现值:
$$(Ia)_{\overline{n}} = v + 2v^2 + 3v^3 + \dots + (n-1)v^{n-1} + nv^n$$

• 期末付递增年金的现值公式:

$$(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

$$(Ia)_{\overline{n}} = v + 2v^2 + 3v^3 + \dots + (n-1)v^{n-1} + nv^n$$

$$(1+i)(Ia)_{\overline{n}} = 1 + 2v + 3v^2 + \dots + nv^{n-1}$$

$$\Rightarrow i \cdot (Ia)_{\overline{n}} = (1 + v + v^2 + v^3 + \dots + v^{n-1}) - nv^n$$

$$=\ddot{a}_{\overline{n}}-nv^n$$

例: 写出下述年金的现值表达式

$$P \cdot a_{\overline{n}} + v \cdot Q \cdot (Ia)_{\overline{n-1}}$$

递增年金的累积值为

$$(Is)_{\overline{n}} = (1+i)^n (Ia)_{\overline{n}} = \frac{\ddot{s}_{\overline{n}} - n}{i}$$

$$(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

期初付递增年金

$$(I\ddot{a})_{\overline{n}} = (1+i)(Ia)_{\overline{n}}$$

$$(I\ddot{s})_{\overline{n}} = (1+i)(Is)_{\overline{n}}$$

期初付 1 2 3 ... n-1 n

> 1 2 3 ... n-1 n 期末付

例: 递增永续年金的现值
$$(Ia)_{\overline{\omega}} = \frac{1}{di}$$

当 $n \to \infty$ 时,可以得到递增永续年金的现值为

$$(Ia)_{\overline{\infty}} = \lim_{n \to \infty} (Ia)_{\overline{n}} = \lim_{n \to \infty} \frac{\ddot{a}_{\overline{n}} - nv^n}{i} = \frac{1}{di}$$

$$\left| \lim_{n \to \infty} n v^n = \lim_{n \to \infty} \frac{n}{(1+i)^n} = 0 \right|$$

例:年金在第一年末的付款为1000元,以后每年增加100元,总的付款次数为10

次。如果年利率为5%,这项年金的现值是多少?

解:

$$900a_{10} + 100(Ia)_{10} = 6949.56 + 3937.38 = 10886.9 \ (\vec{\pi})$$

例: 当前时刻在基金中投资700,可以在第一年末领取 10,第二年末领取 20,第三年末领取30,以此类推,直至达到可能领取的最大金额后,下一年末再领取剩余金额R。假设基金的年利率为5%,计算R。

$$700 = 10(Ia)_{\overline{n}}$$

$$700 = 10 \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

$$\Rightarrow n = 14.49$$

• 设最后一次不规则支付为R,则

$$700 = 10(Ia)_{\overline{14|}} + Rv^{15} = 10 \times 66.452 + Rv^{15}$$

$$R = 73.76$$

应用Excel求解前述方程:

$$700 = 10 \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

$$700-10 \times \frac{(1-1.05^{-n})/0.05 \times 1.05 - n(1.05)^{-n}}{0.05} = 0$$

应用EXCEL求解方程(参见MOOC视频)

递减年金

期末付递减年金: 第1年末支付n元, ..., 第n年末支付1元。

$$nv$$
 $(n-1)v^2$ $(n-2)v^3$ v^n

n n-1 n-2 1

$$(Da)_{\overline{n}} = nv + (n-1)v^2 + ... + v^n$$

递减年金的分解

	时间	0	1	2	3	···	<i>n</i> −1	n
	递减年金		n	<i>n</i> −1	n-2	• • •	2	1
5		$a_{\overline{n}}$	1	1	1	•••	1,,,,,	1
	等	$a_{\overline{n-1}}$	1	1	1	•••	1	
<	额 年	~	~	~ ···	~···	Ç		J
	金	$a_{\overline{2}}$	1	1				
		$a_{\bar{1}}$	1					

$$(Da)_{\overline{n}} = a_{\overline{n}} + a_{\overline{n-1}} + \dots + a_{\overline{1}}$$

期末付递减年金的现值:

$$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$$

$$(Da)_{\overline{n}} = a_{\overline{n}} + a_{\overline{n-1}} + \dots + a_{\overline{1}}$$

$$= \frac{1 - v^{n}}{i} + \frac{1 - v^{n-1}}{i} + \dots + \frac{1 - v}{i}$$

$$=\frac{n-(v^n+v^{n-1}+\cdots+v)}{i} = \frac{n-a_{\overline{n}}}{i}$$

期末付递减年金的累积值:

$$(Ds)_{\overline{n}} = (1+i)^n \cdot (Da)_{\overline{n}} = \frac{n(1+i)^n - s_{\overline{n}}}{i}$$

$$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$$

期初付递减年金:

$$(D\ddot{a})_{\overline{n}} = (1+i)(Da)_{\overline{n}}$$

$$(D\ddot{s})_{\overline{n}} = (1+i)^n (D\ddot{a})_{\overline{n}}$$

例: 递增年金与递减年金之和

$$(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

$$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$$

n-1 n-2

.....

1

1

2

3

n

n+1 n+1

n+1

n+1

$$(Ia)_{\overline{n}} + (Da)_{\overline{n}} = (n+1)a_{\overline{n}}$$

例: 一项年金在第一年末付款1元,以后每年增加1元,直至第n年。从第n+ 1年开始,每年递减1元,直至最后一年付款1元。证明该项年金的现值为 $a_{\overline{n}} \cdot \ddot{a}_{\overline{n}}$

$$(Ia)_{\overline{n}} + v^n (Da)_{\overline{n-1}} = a_{\overline{n}} \cdot \ddot{a}_{\overline{n}}$$

$$(Ia)_{\overline{n}} + v^n (Da)_{\overline{n-1}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i} + v^n \cdot \frac{(n-1) - a_{\overline{n-1}}}{i}$$

$$=\frac{1}{i}\left(a_{\overline{n-1}}+1-\underline{nv}^n+\underline{nv}^n-v^n-v^na_{\overline{n-1}}\right)$$

$$= \frac{1}{i} \left(a_{\overline{n-1}} - v^n a_{\overline{n-1}} + 1 - v^n \right)$$

$$= \frac{1}{i} \left(a_{\overline{n-1}} (1 - v^n) + 1 - v^n \right)$$

$$= \frac{1}{i} \left(1 - v^n \right) \left(a_{\overline{n-1}} + 1 \right)$$

$$= a_{\overline{n}} \cdot \ddot{a}_{\overline{n}}$$

$$\ddot{a}_{\overline{n}|} = a_{\overline{n-1}|} + 1$$

练习:一项20年期的年金, 每年末的付款金额如下表所示。 年利率为6%,计算其现值。

年份	金额
1	600
2	700
3	800
4	900
5	1000
6	1100
<u> </u>	1200
8	1300
9 🔏	1400
10	1500
11	1400
12	1300
13	1200
14	1100
15	1000
16	900
17	800
<u>(</u> 18 ()	700
19	600
20 💯	500

解:

年份	金额	分解	
1	600	500	100
2	700	500	200
3	800	500	300
4	900	500	400
5	1000	500	500
6	1100	500	600
7	1200	500	700
8	1300	500	800
9	1400	500	900
10	1500	500	1000
11	1400	500	900
12	1300	500	800
13	1200	500	700
14	1100	500	600
15	1000	500	500
16	900	500	400
17	800	500	300
18	700	500	200
19	600	500	100
20	500	500	(0

$$500a_{\overline{20}} + 100a_{\overline{10}}\ddot{a}_{\overline{10}}$$

$$=500\frac{1-1.06^{-20}}{0.06}+100\left(\frac{1-1.06^{-10}}{0.06}\right)^{2}\times1.06$$

复递增年金

含义:付款金额按照某一固定比例r增长的年金。注:r < 0,递减。

期初付复递增年金:时间零点支付1元,以后每年增长r

$$(C\ddot{a})_{|\vec{n}|_i} = 1 + \frac{1+r}{1+i} + \left(\frac{1+r}{1+i}\right)^2 + \dots + \left(\frac{1+r}{1+i}\right)^{n-1}$$

证明:
$$(C\ddot{a})_{n|i} = \ddot{a}_{n|j}$$

$$(C\ddot{a})_{\vec{n}|i} = \ddot{a}_{\vec{n}|j}$$

$$\sharp \psi : j = \frac{i-r}{1+r}$$

$$(C\ddot{a})_{|\vec{n}|i} = 1 + \frac{1+r}{1+i} + \left(\frac{1+r}{1+i}\right)^2 + \dots + \left(\frac{1+r}{1+i}\right)^{n-1}$$

$$\Rightarrow: \frac{1+r}{1+i} = (1+j)^{-1}$$

$$=1+(1+j)^{-1}+(1+j)^{-2}+\cdots+(1+j)^{-(n-1)}$$

$$=\ddot{a}_{\overline{n}|_{j}}$$

解释:
$$(C\ddot{a})_{\overline{n}|i} = \ddot{a}_{\overline{n}|j}$$
 $j = \frac{i-r}{1+r}$

$$j = \frac{i - r}{1 + r}$$

$$\Rightarrow \ln(1+j) = \ln(1+i) - \ln(1+r)$$

扣除年金增长率之后的利率

期末付复递增年金:

$$\left(Ca\right)_{\overline{n}|_{i}} = \frac{a_{\overline{n}|_{j}}}{1+r}$$

$$(Ca)_{\overline{n}|i} = \frac{(C\ddot{a})_{\overline{n}|i}}{1+i} = \frac{\ddot{a}_{\overline{n}|j}}{1+i} = \frac{(1+j)a_{\overline{n}|j}}{1+i} = \frac{a_{\overline{n}|j}}{1+r}$$

$$j = \frac{i-r}{1+r} \iff (1+j)(1+r) = (1+i)$$

例: 10年期的年金在第一年末付1000元,此后的支付额按5%递增,假设年利率为4%, 计算这项年金在时刻零的现值。

解:

现值:

$$1000 \frac{a_{\overline{10}|_j}}{1+r} = 10042.29$$

$$j = \frac{i - r}{1 + r} = \frac{4\% - 5\%}{1 + 5\%} = -0.009524$$

例:复递增年金的增长率与年利率相等,即r=i,计算期初付复递增年金与期末付复递增年金的现值。

解:

$$j = \frac{i - r}{1 + r} = 0$$

期初付:
$$(C\ddot{a})_{\overline{n}|_{i}} = \ddot{a}_{\overline{n}|_{j}} = n$$

期末付:
$$(Ca)_{\overline{n}|i} = \frac{n}{1+i}$$

练习:一项永续年金,每年末支付100。在第5次付款之后,将其替换为25年期的期末付年金,该年金在第一年末支付X,以后每年增长8%。该定期年金在第10次付款后,将其替换为每年末支付Y的期末付永续年金。假设年利率为8%,计算Y。

永续年金的价值为100/0.08=1250

$$1250 = \frac{25X}{1 + 0.08} \Longrightarrow X = 54$$

$$Y/0.08 = 54 (1.08^{10}v + 1.08^{11}v^2 + ... + 1.08^{24}v^{15})$$

$$= 54 \times (1.08)^9 \times 15$$

每年支付m次的变额年金

每年支付1

每年支付m次

连续支付 (每年支付∞次) 在期末付等额年金中,年金价值的变化:

$$a_{\overline{n}|}^{(m)} = \frac{i}{i^{(m)}} a_{\overline{n}|}$$

$$\ddot{a}_{\overline{n}|}^{(m)} = \frac{d}{d^{(m)}} \ddot{a}_{\overline{n}|}$$

在变额年金中,结论仍然成立。

每年支付m次的期末付年金

考虑1年期:将期末的付款等分为m次支付,价值变为原来的 $\frac{l}{i^{(m)}}$ 倍

每年支付 m 次的期末付年金

$$V_{\overline{n}|}^{(m)} = \frac{i}{i^{(m)}} V_{\overline{n}|}$$

$$\frac{i}{i^{(m)}} C_1$$

$$\frac{i}{i^{(m)}} C_2$$

$$\frac{i}{i^{(m)}} C_n$$

每年支付m次的期初付年金

$$\ddot{V}_{\overline{n}|}^{(m)} = \left(1 + i\right)^{1/m} V_{\overline{n}|}^{(m)}$$

每年支付 m 次的期初付年金

$$\ddot{V}_{\overline{n}|}^{(m)} = (1+i)^{1/m} V_{\overline{n}|}^{(m)} = (1+i)^{1/m} \frac{i}{i^{(m)}} V_{\overline{n}|}$$

$$= \frac{i}{d^{(m)}} V_{\overline{n}} = \frac{i/(1+i)}{d^{(m)}} (1+i) V_{\overline{n}}$$

$$\ddot{V}_{\overline{n}}^{(m)} = \frac{d}{d^{(m)}} \ddot{V}_{\overline{n}}$$

例:一项10年期的年金,每月末支付一次。第一年的每月末支付2000元,以后每年的付款额都在上年的基础上增长5%。假设年利率 i = 8%,计算年金的现值。

解:第一年的付款总额为24000元,以后每年增长r=5%,是复递增年金。

如果每年的付款发生在年末,则现值为

$$24000 \times (Ca)_{\overline{10}|8\%} = 24000 \times \frac{a_{\overline{10}|j}}{1+r} = 196405$$

$$j = \frac{i - r}{1 + r} = 2.857\%$$

如果每年分m=12次支付,其现值为

$$196405 \times \frac{i}{i^{(m)}} = 203507$$

连续支付的变额年金

- 含义: 连续支付(每年支付∞次),但支付金额离散变化。
 - 连续支付的递增年金
 - 连续支付的递减年金
 - 连续支付的复递增年金
 - 连续支付的任意变额年金

例:连续支付的递增年金:第一年连续支付1元,第二年连续支付2元,…,第n年连续支付n元。

例:连续支付的递减年金:第一年连续支付n元,第二年连续支付n-1元,…,第n 年连续支付1元。

例:连续支付的复递增年金:第一年连续支付1元,第二年连续支付(1+r)元,…,第n 年连续支付(1+r)n-1元。

连续支付的变额年金 : 一般形式

连续支付变额年金的现值

$$V_{\overline{n}|}^{(m)}=rac{i}{i^{(m)}}V_{\overline{n}|}$$

$$\xrightarrow{m\to\infty}$$

$$\overline{V_n} = \frac{i}{\delta} V_n$$

$$V_{\overline{n}}$$

 \mathbf{C}_1

 \mathbb{C}_2

 \mathbb{C}_3

 C_n

1

2

3

n-1

П

$$\overline{V}_{\overline{n}}$$

 $^{\circ}C_{1}$

 \mathbb{C}_2

-5/5/

 \mathbb{C}_3

C

 C_n

$$|\overline{V}_{n}| = \frac{i}{\delta} V_{n}$$

$$(I\overline{a})_{\overline{n}} = \frac{i}{\delta} (Ia)_{\overline{n}}$$

$$(D\overline{a})_{\overline{n}} = \frac{i}{\delta} (Da)_{\overline{n}}$$

$$(C\overline{a})_{\overline{n}} = \frac{i}{\delta}(Ca)_{\overline{n}}$$

例: 连续支付的递增永续年金

$$(I\overline{a})_{\overline{\infty}} = \frac{1}{d\delta}$$

$$(I\overline{a})_{\overline{\infty}} = \lim_{n \to \infty} \frac{i}{\delta} (Ia)_{\overline{n}} = \lim_{n \to \infty} \frac{i}{\delta} \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

$$=\frac{1/d}{\delta}$$

$$=\frac{1}{d\delta}$$

例:第1年连续支付30元,第2年连续支付40元,第3年连续支付50元,直到第10年连续支付120元,假设年利率为5%,求该年金的现值。

解:

$$PV = 20\overline{a}_{10} + 10(I\overline{a})_{10}$$

$$10 \quad 20 \quad 30 \quad \dots \quad 100$$

$$10(I\overline{a})_{\overline{10}}$$

参考答案:

$$PV = 20\overline{a}_{\overline{10}} + 10(I\overline{a})_{\overline{10}}$$

$$i = 5\%$$

$$\overline{a}_{\overline{10}} = \frac{i}{\delta} a_{\overline{10}} = 7.91$$

$$(I\overline{a})_{\overline{10}} = \frac{i}{\delta}(Ia)_{\overline{10}} = \frac{i}{\ln(1+i)}\frac{\ddot{a}_{\overline{10}} - 10v^{10}}{i} = 40.35$$

$$PV = 20\overline{a}_{10} + 10(I\overline{a})_{10} = 561.77$$

连续变额现金流: 付款率的概念

• 付款率的简例:

- 在1年内连续支付1元, 每个时点的付款率为1元
- 在1年内连续支付x元, 每个时点的<mark>付款率为x元</mark>
- 付款率的定义:单位时间(1年)的付款额
 - 在区间[t, t + dt]的付款额,除以dt,即得时刻 t 的付款率 $\rho(t)$ 。
 - 付款率ρ(t)乘以时间长度dt, 即得区间[t, t+dt]上的付款额ρ(t)dt。

例:付款率为 5,计算在区间[a, b]的付款额。

$$5(b-a)$$

例:在时刻t的付款率为9t+6,计算在区间[2,5]的付款额。

$$\int\limits_{2}^{5}(9t+6)dt$$

• 现值:

- 付款从时刻 a 到时刻 b, 在时间 t 的付款率为 $\rho(t)$, 利息力为 $\delta(t)$ 。
- 在区间 [t, t + dt] 的付款额为 $\rho(t)$ dt, 现值为 $a^{-1}(t) \cdot \rho(t)$ dt
- 所有付款额在时刻 0 的现值为:

$$\int_{a}^{b} a^{-1}(t) \cdot \rho(t) dt = \int_{a}^{b} \rho(t) \exp \left[-\int_{0}^{t} \delta(s) ds \right] dt$$

例:一项10年期的年金,在时刻 t 的付款率为9t+6,利息力为9%。计算此项年金在时刻零的现值。

$$a^{-1}(t) = e^{-0.09t}$$

$$\int_{a}^{b} a^{-1}(t) \cdot \rho(t) dt = \int_{0}^{10} (9t + 6)e^{-0.09t} dt = 292.36$$

例: 计算从t = 0到 t = 0.5连续支付的现金流的现值:

- 在时点 t 的付款率为 $\rho(t) = 10t + 3$
- 利息力为 $\delta(t) = 0.2t + 0.06$

$$\int_{a}^{b} a^{-1}(t) \cdot \rho(t) dt = \int_{0}^{0.5} (10t + 3) \exp \left[-\int_{0}^{t} (0.2s + 0.06) ds \right] dt$$

参考答案:

$$\int_{0}^{0.5} (10t+3) \exp \left[-\int_{0}^{t} (0.2s+0.06) ds \right] dt = \int_{0}^{0.5} (10t+3) \exp \left[-(0.1t^{2}+0.06t) \right] dt$$

$$\int_{0}^{0.5} (10t + 3) \exp\left[-(0.1t^{2} + 0.06t)\right] dt$$

$$= -50 \int_{0}^{0.5} (-0.2t - 0.06) \exp\left[-0.1t^{2} - 0.06t\right] dt$$

$$= -50 \int_{0}^{0.5} e^{u} du$$

$$= -50 \left[\exp\left(-0.1t^{2} - 0.06t\right)\right]_{0}^{0.5}$$

$$= 2.68$$

$$u = -0.1t^2 - 0.06t$$

$$du = (-0.2t - 0.06)dt$$

• 终值(累积值):

- 付款从时间 a 到时间 b, 在时间 t 的付款率为 $\rho(t)$, 利息力为 $\delta(t)$ 。
- 所有付款在时间 T 的终值:

$$\int_{a}^{b} \frac{a^{-1}(t)a(T)\rho(t)dt}{\int_{a}^{b} \rho(t) \exp\left[-\int_{0}^{t} \delta(s)ds\right] \exp\left[\int_{0}^{T} \delta(s)ds\right]dt}$$

$$= \int_{a}^{b} \rho(t) \exp \left[\int_{t}^{T} \delta(s) ds \right] dt$$

例: 一个连续支付的现金流,其付款率为 $\rho(t) = 150e^{-0.03t}$,支付期间从t = 1到t = 6,利息力为 $\delta(t) = 0.04t + 0.1$ 。计算此现金流在T = 9的价值。

$$\int_{a}^{b} \rho(t) \exp \left[\int_{t}^{T} \delta(s) ds \right] dt = \int_{1}^{6} 150 e^{-0.03t} e^{\int_{t}^{9} (0.04s + 0.1) ds} dt = 4776.74$$

例: 计算n年期连续递增年金的现值

时刻 t 的付款率为 t,常数利息力为 δ ,则:

$$(\overline{I}\,\overline{a})_{\overline{n}} = \int_{0}^{n} t \,\mathrm{e}^{-\delta t} \mathrm{d}t = \frac{\overline{a}_{\overline{n}} - nv^{n}}{\delta}$$

证明(课后练习):

$$(\overline{I}\,\overline{a})_{\overline{n}} = \int_{0}^{n} t \,\mathrm{e}^{-\delta t} \mathrm{d}t = \int_{0}^{n} -\frac{t}{\delta} \,\mathrm{d}\left(\mathrm{e}^{-\delta t}\right) = \left[-\frac{t}{\delta} \,\mathrm{e}^{-\delta t}\right]_{0}^{n} - \int_{0}^{n} \frac{\mathrm{e}^{-\delta t}}{-\delta} \mathrm{d}t$$

$$= -\frac{n e^{-\delta n}}{\delta} - \left[\frac{1}{\delta^2} e^{-\delta t}\right]_0^n \qquad = -\frac{n e^{-\delta n}}{\delta} - \frac{e^{-\delta n}}{\delta^2} + \frac{1}{\delta^2}$$

$$= \frac{\left(\frac{1 - e^{-\delta n}}{\delta}\right) - n e^{-\delta n}}{\delta} \qquad = \frac{\left(\frac{1 - v^n}{\delta}\right) - n v^n}{\delta} = \frac{\overline{a_n} - n v^n}{\delta}$$

例: 计算n年期连续递减年金的现值

在时刻 t 的付款率为 n-t, 利息力为常数 δ 。

$$(\overline{D}\overline{a})_{\overline{n}} = \int_{0}^{n} (n-t)e^{-\delta t} dt = \frac{n-\overline{a}_{\overline{n}}}{\delta}$$

证明(课后练习):

$$(\overline{D}\overline{a})_{\overline{n}} = \int_{0}^{n} (n-t)e^{-\delta t} dt = n\overline{a}_{\overline{n}} - (\overline{I}\overline{a})_{\overline{n}} = n\overline{a}_{\overline{n}} - \frac{\overline{a}_{\overline{n}} - nv^{n}}{\delta}$$

$$=\frac{n(1-v^n)-\overline{a}_{\overline{n}}+nv^n}{\delta} = \frac{n-\overline{a}_{\overline{n}}}{\delta}$$

$$(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

• 递减年金

$$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$$

• 复递增年金

$$(C\ddot{a})_{\overline{n}|_{i}} = \ddot{a}_{\overline{n}|_{j}}, \quad (Ca)_{\overline{n}|_{i}} = \frac{a_{\overline{n}|_{j}}}{1+r}, \quad j = \frac{i-r}{1+r}$$

• 每年支付m次的变额年金

$$V_{\overline{n}|}^{(m)} = \frac{i}{i^{(m)}} V_{\overline{n}|}$$

• 连续支付的变额年金

$$|\overline{V}_{n}| = \frac{i}{\delta} V_{n}$$

• 一般连续变额现金流

$$\int_{a}^{b} a^{-1}(t) \rho(t) dt$$

变额年金

孟生旺

变额年金

- 每年支付一次的变额年金
 - 递增年金
 - 递减年金
 - 复递增年金
- · 每年支付m次的变额年金
- 连续支付的变额年金
- 任意形式的连续支付现金流

每年支付1次的 变额年金

• 递增年金

$$(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$$

递减年金

$$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$$

复递增年金
$$\begin{cases} (Ca)_{\overline{n}|_{i}} = \frac{a_{\overline{n}|_{j}}}{1+r}, \quad j = \frac{i-r}{1+r} \\ (C\ddot{a})_{\overline{n}|_{i}} = \ddot{a}_{\overline{n}|_{j}} \end{cases}$$

期初付 = 期末付 $\times (1+i)$

终值 = 现值 $\times (1+i)^n$

每年支付m次 的变额年金

• 期末付
$$V_{\overline{n}}^{(m)} = \frac{l}{i^{(m)}} V_{\overline{n}}$$

• 期初付
$$\ddot{V}_{\overline{n}}^{(m)} = \frac{d}{d^{(m)}} \ddot{V}_{\overline{n}}$$

连续支付 的变额年金 $(m \rightarrow \infty)$

$$|\overline{V_n}| = \frac{i}{\delta} V_n$$

$$|\overline{V_n}| = \frac{d}{\delta}\ddot{V_n}$$

(两者相等)

以付款率ρ(t) 连续支付的 现金流

• 现值
$$\operatorname{PV}_0 = \int_a^b a^{-1}(t) \rho(t) dt = \int_a^b e^{-\int_a^t \delta(s) ds} \rho(t) dt$$

• 终值
$$\mathrm{FV}_T = \int_a^b a(T) a^{-1}(t) \rho(t) \mathrm{d}t = \int_a^b \mathrm{e}^{\int_a^T \delta(s) \mathrm{d}s} \rho(t) \mathrm{d}t$$

$$a(T)\!=\!\mathrm{e}^{\int\limits_{0}^{T}\!\delta(s)\mathrm{d}s},\qquad a^{-1}(t)\!=\!\mathrm{e}^{-\int\limits_{0}^{t}\!\delta(s)\mathrm{d}s}$$

练习:将1000存入基金X,该基金的年利率为 6%。在每年末,将当年的利息金额再加上100的本金从基金中取出存入基金Y,基金Y的年利率为9%。在第10年末,基金X将耗尽。计算基金Y在第10年末的价值。

参考答案:

$$6(Ds)_{\overline{10}|0.09} + 100s_{\overline{10}|0.09} = 6(Da)_{\overline{10}|0.09} (1 + 0.09)^{10} + 100s_{\overline{10}|0.09}$$

$$= 6 \times \frac{10 - a_{\overline{10}|0.09}}{0.09} (1 + 0.09)^{10} + 100 \times \frac{1.09^{10} - 1}{0.09}$$

$$= 2084.67$$

练习: 永续年金的现值为 77.1,该年金在第2年末支付1,第3年末支付2,在第 n + 1年末支付n,然后每年末都支付n。假设年利率为10.5%,计算 n。

参考答案:

$$v \cdot (Ia)_{\overline{n}} + \frac{n \cdot v^{n+1}}{i} = v \cdot \left(\frac{\ddot{a}_{\overline{n}} - nv^{n}}{i}\right) + \frac{n \cdot v^{n+1}}{i}$$

$$=\frac{a_{\overline{n}}}{i}-\frac{nv^{n+1}}{i}+\frac{nv^{n+1}}{i}=\frac{a_{\overline{n}}}{i}$$

$$\frac{a_{\overline{n}}}{0.105} = 77.10 \quad \Longrightarrow \quad n = 19$$

练习: 在时间 t 向账户的支付率为 8k + tk,其中 $0 \le t \le 10$ 。时间 t 的利息力为 1/(8+t)。在 t=10 时账户的累积值为18000。求 k。

0

$$\rho(t) = 8\mathbf{k} + t\mathbf{k}$$

10

$$\delta(t) = 1/(8 + \mathbf{k})$$

 $FV_{10} = 18000$

参考答案:

$$\int_a^b e^{\int_t^T \delta(s)ds}
ho(t)dt = \int\limits_0^{10} \Biggl(e^{\int\limits_t^{10} (8+s)^{-1}ds}\Biggr) (8k+tk)dt$$

$$=\int\limits_0^{10}igg(e^{\ln(8+s)igg|_t^{10}}igg)(8k+tk)dt$$

$$= \int\limits_{0}^{10} \left(e^{\ln(18/(8+t))}\right) (8k+tk) dt$$

$$=180k$$

$$\Leftrightarrow 180k = 18000 \implies k = 100$$

$$\Longrightarrow k = 100$$