Методы Оптимизации. Даниил Меркулов. Сопряженные множества. Двойственные конусы. Многогранники. Лемма Фаркаша

Conjugacy

Сопряженное (двойственное) множество

Пусть $S\in\mathbb{R}^n$ - произвольное непустое множество. Тогда сопряженное к нему множество определяется, как: $S^*=\{y\in\mathbb{R}^n\mid \langle y,x\rangle\geq -1\ \ \forall x\in S\}$

Второе сопряженное множество

Множество S^{**} называется вторым сопряженным к множеству S, если:

$$S^{**} = \{x \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \ \forall x \in S^* \}$$

Взаимосопряженные множества и самосопряженные множества

Множества S_1 и S_2 называются **взаимосопряженными**, если $S_1^{st}=S_2, S_2^{st}=S_1.$

Множество S называется самосопряженным, если $S^{st}=S$

Свойства сопряженных (двойственных) множеств

- Сопряженное множество всегда замкнуто, выпукло и содержит нуль.
- ullet Для произвольного множества $S\subseteq \mathbb{R}^n$: $S^{**}=\overline{\mathbf{conv}(S\cup\{0\})}$
- ullet Если $S_1\subset S_2$, то $S_2^*\subset S_1^*$
- $\bullet \quad \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*$
- ullet Если S замкнуто, выпукло, включает 0, то $S^{**}=S$
- $S^* = \left(\overline{S}\right)^*$

Пример 1

Доказать, что $S^* = \left(\overline{S}\right)^*$

Решение:

- $S \subset \overline{S} o \left(\overline{S}\right)^* \subset S^*$
- ullet Пусть $p\in S^*$ и $x_0\in \overline{S}, x_0=\lim_{k o\infty}x_k$. Тогда в силу непрерывности функции $f(x)=p^Tx$, имеем: $p^Tx_k\geq -1 o p^Tx_0\geq -1$. Значит, $p\in \left(\overline{S}
 ight)^*$, отсюда $S^*\subset \left(\overline{S}
 ight)^*$

Пример 2

Доказать, что $(\mathbf{conv}(S))^* = S^*$

Решение:

- $S \subset \mathbf{conv}(S) \to (\mathbf{conv}(S))^* \subset S^*$
- Tyctb $p\in S^*$, $x_0\in \mathbf{conv}(S)$, t.e. $x_0=\sum\limits_{i=1}^k heta_i x_i\mid x_i\in S, \sum\limits_{i=1}^k heta_i=1, heta_i\geq 0.$

Значит,
$$p^Tx_0=\sum\limits_{i=1}^k heta_i p^Tx_i\geq \sum\limits_{i=1}^k heta_i (-1)=1*(-1)=-1$$
. Значит, $p\in (\mathbf{conv}(S))^*$, отсюда $S^*\subset (\mathbf{conv}(S))^*$

Пример 3

Доказать, что если B(0,r) - шар радиуса r по некоторой норме с центром в нуле, то $(B(0,r))^*=B(0,1/r)$

Решение:

ullet Пусть B(0,r)=X, B(0,1/r)=Y. Возьмем вектор нормали $p\in X^*$, тогда для любого $x\in X: p^Tx\geq -1$

• Из всех точек шара X возьмем такую $x\in X$, что скалярное произведение её на p: p^Tx было бы минимально, тогда это точка $x=-rac{p}{\|p\|}r$

$$egin{aligned} p^Tx &= p^T\left(-rac{p}{\|p\|}r
ight) = -\|p\|r \geq -1 \ \|p\| &\leq rac{1}{r} \in Y \end{aligned}$$

Значит, $X^*\subset Y$

ullet Теперь пусть $p \in Y$, возьмем так же $x = -rac{p}{\|p\|}r$.

$$p^Tx = -r\|p\| \geq -1 o p \in X^*$$
Значит, $Y \subset X^*$

Dual cones

Двойственный (сопряженный) конус

Сопряженным конусом к конусу \pmb{K} называется такое множество $\pmb{K^*}$, что:

$$K^* = \{y \mid \langle x,y \rangle \geq 0 \quad \forall x \in K\}$$

Добавить про соотношение с определением

Свойства сопряженных (двойственных) конусов

- ullet Если K замкнутый выпуклый конус. Тогда $K^{**}=K$
- ullet Для произвольного множества $S\subseteq \mathbb{R}^n$ и конуса $K\subseteq \mathbb{R}^n$:

$$(S+K)^*=S^*\cap K^*$$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^m K_i\right)^* = \bigcap_{i=1}^m K_i^*$$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n . Пусть так же, их пересечение имеет внутреннюю точку, тогда:

$$\left(\bigcap_{i=1}^m K_i\right)^* = \sum_{i=1}^m K_i^*$$

Пример 4

Найти сопряженнй конус для монотонного неотрицательного конуса:

$$K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$$

Решение:

Заметим, что:

$$\sum_{i=1}^n x_i y_i = y_1(x_1-x_2) + (y_1+y_2)(x_2-x_3) + \ldots + (y_1+y_2+\ldots+y_{n-1})(x_{n-1}-x_n) + (y_1+\ldots+y_n)x_n$$

Так как в представленной сумме в каждом слагаемом второй множитель положительный, то:

$$y_1 \ge 0$$
, $y_1 + y_2 \ge 0$, ..., $y_1 + \ldots + y_n \ge 0$

Значит,
$$K^* = \left\{ y \mid \sum\limits_{i=1}^k y_i \geq 0, k = \overline{1,n}
ight\}$$

Polyhedra

Многогранник

Множество решений системы линейных неравенств и равенств представляет собой многогранник:

 $Ax \preceq b, \quad Cx = d$ Здесь $A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}$, а неравенство - поэлементное.

Теорема:

Пусть $x_1, \ldots, x_m \in \mathbb{R}^n$. Сопряженным к многогранному множеству:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник):

$$S^* = \left\{ p \in \mathbb{R}^n \mid \langle p, x_i
angle \geq -1, i = \overline{1, k}; \langle p, x_i
angle \geq 0, i = \overline{k+1, m}
ight\}$$

Доказательство:

ullet Пусть $S=X,S^*=Y$. Возьмем некоторый $p\in X^*$, тогда $\langle p,x_i
angle\geq -1,i=\overline{1,k}$. В то же время для любых $heta>0,i=\overline{k+1,m}$: $\langle p,x_i
angle\geq -1 o \langle p, heta x_i
angle\geq -1$ $\langle p,x_i
angle\geq -rac{1}{ heta} o \langle p,x_i
angle\geq 0$

Значит, $p \in Y o X^* \subset Y$

ullet Пусть, напротив, $p \in Y$. Для любой точки $x \in X$:

$$x = \sum_{i=1}^m heta_i x_i \qquad \sum_{i=1}^k heta_i = 1, heta_i \geq 0$$

Значит:
$$\langle p,x \rangle = \sum_{i=1}^m \theta_i \langle p,x_i \rangle = \sum_{i=1}^k \theta_i \langle p,x_i \rangle + \sum_{i=k+1}^m \theta_i \langle p,x_i \rangle \geq \sum_{i=1}^k \theta_i (-1) + \sum_{i=1}^k \theta_i \cdot 0 = -1$$

Значит, $p \in X^* o Y \subset X^*$

Пример 5

Найти и изобразить на плоскости множество, сопряженное к многогранному конусу:

$$S = \mathbf{cone}\left\{(-3,1), (2,3), (4,5)\right\}$$

Решение:

Используя теорему выше: $S^* = \{-3p_1 + p_2 \geq 0, 2p_1 + 3p_2 \geq 0, 4p_1 + 5p_2 \geq 0\}$

Лемма (теорема) Фаркаша (Фаркаша - Минковского)

Пусть $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax = b, x \ge 0$$
 2) $pA \ge 0, \langle p, b \rangle < 0$

Ax=b при $x\geq 0$ означает, что b лежит в конусе, натянутым на столбцы матрицы A

 $pA \geq 0, \ \langle p,b \rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором b и конусом из столбцов матрицы A.

Следствие:

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax \leq b$$
 2) $pA = 0, \langle p, b \rangle < 0, p \geq 0$

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.

Теорема

Пусть $A \in \mathbb{R}^{m imes n}$, $b \in \mathbb{R}^m$. Если полиэдр (многогранник) $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ непуст, то

сопряженным к нему является множество $P^*=\{p\in\mathbb{R}^n\mid p=qA$ при некотором $q\geq 0, \langle q,b\rangle\geq -1\}$

Домашнее задание 4

1. Найти и изобразить на плоскости множество, сопряженное к многогранному конусу:

$$S = \mathbf{conv}\{(-4, -1), (-2, -1), (-2, 1)\} + \mathbf{cone}\{(1, 0), (2, 1)\}$$

2. Найти и изобразить на плоскости множество, сопряженное к полиэдру:

$$S = \left\{x \in \mathbb{R}^2 \mid -3x_1 + 2x_2 \leq 7, x_1 + 5x_2 \leq 9, x_1 - x_2 \leq 3, -x_2 \leq 1
ight\}$$

- 3. Доказать, что если понятие сопряженного множества к множеству ${m S}$ вводить как:
 - $S^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \leq 1 \ \, \forall x \in S \}$, то единичный шар с центром в нуле единственное самосопряженное множество в \mathbb{R}^n .
- 4. Найти множество, сопряженное к эллипсоиду: $S = \left\{x \in \mathbb{R}^n \mid \sum_{i=1}^n a_i^2 x_i^2 \leq arepsilon^2
 ight\}$