In []: # Hello Mr. Biddulph! This file serves to show how data could be easily appended to an already # existing data set. For this project, I am using Jupyter Notebook. This is what Is commonly # used for AI and ML applications. I will add comments throughout to show you what is happening.

In []: import pandas as pd
 import matplotlib.pyplot as plt
 import numpy as np
 import seaborn as sns
Importing cool Python tools for visualization.

In []: originalData = pd.read_csv("/Users/alexhanley/MF/simulated_business_data.csv")
Importing our data file. This is randomly generated business data from ChatGPT.

In []: originalData.head()
 # Displaying the first 5 lines of data for testing purposes.

Out[]:	Business Name		Address	Owner Age	Credit Score	Occupation	Taxable Value	Business Age	Mortgage
	0	Smith- Obrien	756 Cruz Creek Apt. 228, East Michaelstad, DC	65	414	Toxicologist	76225	24	No
	1	Cruz- Juarez	521 Quinn Avenue Suite 544, New Michaelmouth,	40	528	Engineer, control and instrumentation	196316	24	Yes
	2	Richardson PLC	PSC 8796, Box 4913, APO AE 77742	68	389	Medical physicist	669176	14	Yes
	3	Owen LLC	106 Jamie Mission, North William, AK 99899	26	395	Programmer, multimedia	279258	8	Yes
	4	Anderson Ltd	86642 Ellis Flat Suite 369, West Regina, KY 54296	60	503	Human resources officer	800800	21	No

In []: # Uh oh! Looks like we forgot to add the data for each businesses' revenue and their type of # structure. Dont worry! Well append that easily.

```
In [ ]: newDataToAppend = pd.read_csv("/Users/alexhanley/MF/business_structure_revenue_only.csv")
        # Our new data, it contains the business structure and its revenue.
In [ ]: newDataToAppend.head()
        # Displaying the first 5 lines of data for testing purposes.
Out[ ]:
                    Business Structure Revenue
         0 Limited Liability Company (LLC)
                                       1877825
         1
                           Corporation
                                       429610
         2
                            Partnership 4624226
                     Sole Proprietorship 4118603
         3
         4
                           Corporation 3754854
In [ ]: import pandas as pd
        # Ensure the new data is in the same order and has the same number of rows
        assert len(originalData) == len(newDataToAppend), "Datasets do not match in size."
        # Concatenate the new data to the original data as new columns
        combinedData = pd.concat([originalData, newDataToAppend], axis=1)
        # Print first 5 lines
        combinedData.head()
```

Out[]:	Business Name	Address	Owner Age	Credit Score	Occupation	Taxable Value	Business Age	Mortgage	Business Structure	Revenue
		756 Cruz								

/56 Cruz

0	Smith- Obrien	Creek Apt. 228, East Michaelstad, DC	65	414	Toxicologist	76225	24	No	Limited Liability Company (LLC)	1877825
1	Cruz- Juarez	521 Quinn Avenue Suite 544, New Michaelmouth, 	40	528	Engineer, control and instrumentation	196316	24	Yes	Corporation	429610
2	Richardson PLC	PSC 8796, Box 4913, APO AE 77742	68	389	Medical physicist	669176	14	Yes	Partnership	4624226
3	Owen LLC	106 Jamie Mission, North William, AK 99899	26	395	Programmer, multimedia	279258	8	Yes	Sole Proprietorship	4118603
4	Anderson Ltd	86642 Ellis Flat Suite 369, West Regina, KY 54296	60	503	Human resources officer	800800	21	No	Corporation	3754854

```
In [ ]: # The next step would be to gain access to the Experian business data.
```

```
In []: # Here is a visualization of the AI potentially significant data we appended.
```

```
In []: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Business Structure', y='Revenue', data=combinedData)
    plt.title('Revenue Distribution by Business Structure')
    plt.xlabel('Business Structure')

plt.ylabel('Revenue')
    plt.xticks(rotation=45)
    plt.show()
# Business Structure to Revenue
```


In []: # Next, for fun, I created a small linear regression machine learning model to visualize

```
# how easy it would be to gain AI insight after recieving data. Any data that needed
        # to be appended could be very easily. You can even switch out which data types you want
        # with a simple copy and paste.
In [ ]: from sklearn.model selection import train test split
        from sklearn.linear model import LinearRegression
        from sklearn.metrics import mean squared error, r2 score
        from sklearn.preprocessing import OneHotEncoder
        import numpy as np
        one hot encoder = OneHotEncoder(sparse=False)
        X = one hot encoder.fit transform(combinedData[['Business Structure']]) # Convert business structure to
        Y = combinedData['Revenue']
        xName = "Business Structure"
        vName = "Revenue"
        # Splitting the dataset into training and testing sets
        X train, X test, Y train, Y test = train test split(X, Y, test size=0.2, random state=42)
        # Initializing and training the linear regression model
        model = LinearRegression()
        model.fit(X_train, Y_train)
        # Making predictions
        Y_pred = model.predict(X_test)
        # Evaluating the model
        meanSquaredError = mean_squared_error(Y_test, Y_pred)
        r2Score = r2_score(Y_test, Y_pred)
        print("Mean Squared Error:", meanSquaredError)
        print("Coefficient of Determination (R^2):", r2Score)
        if r2Score < 0.4:
            print("The correlation between {} and {} is not statistically significant. There is no correlation be
        elif r2Score > 0.4 and r2Score <= 1:
                print("The correlation between {} and {} is statistically significant. There is a significant con
```

Mean Squared Error: 8416218597912.085

Coefficient of Determination (R^2): -0.010416722198247852

The correlation between Business Structure and Revenue is not statistically significant. There is no correlation between the two.

/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/sklearn/preprocessing/_en coders.py:975: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value. warnings.warn(

In []: # Wow, these numbers are horrific;). This is beacuse this was randomly generated data. The # odds that 1000 lines of randomly generated data lead to some correlation is 0.