

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

NOVEMBER 2010

MEMORANDUM

MARKS: 100

This memorandum consists of 15 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in **ALL** aspects of the marking memorandum.

1.1			
	C $ \begin{array}{c c} & & & & & & & & & & \\ & & & & & & & &$		(7)
1.2	5+12+2+x+75-x+66-x+3+2=103	✓ equation	(1)
	Note: Although CA applies to the question, the candidate cannot have negative or fraction answers.	✓ answer	(2)
1.3.1	P(only eats chicken and fish and no vegetables) = $\frac{4}{103}$	✓ 4 ✓ 103	(2)
1.3.2	P(any two) = $\frac{12+4+13}{103} = \frac{29}{103}$ Accept P(any two) = $\frac{91}{103}$ Note: Although CA applies to the question, the candidate cannot have negative or value greater than 1.	✓ adding probabilities ✓ $\frac{29}{103}$ ✓ adding probabilities ✓ $\frac{91}{103}$	(2)
			[13]

2.1	No.	No
2.1	They chose a Wednesday morning, when most people are at work.	✓✓ acceptable
	This is not a reliable time to do a survey about customer satisfaction.	reason
	Most supermarkets are not busy at this time.	10000011
	Only 130 customers of a possible very large sample were	
	interviewed. This is a very small number in comparison to the total	
	number of customers that use a supermarket in a week.	
	1	
	Accept:	
	Yes, with a reasonable justification related to real life situations for	
	example: very small rural community.	Yes
		√ √ acceptable
	Note: If the candidate answers YES or NO ONLY, then 0 / 2	reason
	marks.	(2)
2.2	$\frac{22}{100} \times 130$ OR $\frac{78}{100} \times 130$	
	100^{130} OR 100^{130}	$\checkmark \frac{22}{100}$ or 22%
	= 28,6 = 101,4	100
	130 – 101,4	
	= 28,6	✓ 28 or 29 or
		28,6
	Accept: 28 or 29	
		(2)
2.3	Choose a time when your store is busy, possibly Saturday or Sunday	(2) ✓✓ any two
2.3	mornings.	valid reasons
	Interview more people to get a realistic point of view on customer	vand reasons
	service.	
	Observe customer service over a longer period of time.	(2)
	Make use of questionnaires.	[6]
		[0]
	Note: If yes in 2.1, the reasons must be relevant.	

NSC - Memorandum

3.1	$\frac{68}{100} \times 20000$ = 13 600 OR $\frac{66,7}{100} \times 20000$ = 13 340 OR $\frac{68,3}{100} \times 20000$ = 13 660		✓ 68 or 66,7 or $68,3 \text{ or } \frac{2}{3}$ ✓ answer (2)
3.2	Lowest weight = 182 – 3(0,454)	Highest Weight = 182 + 3(0,454)	✓ correct 3 sd ✓ lowest weight
	= 180,638 grams Range = 183,362 – 180,638	= 183,362 grams	✓ highest weight ✓ difference
	= 2,724		(4)
	OR	Answer only: full marks	
	Range = 6×0.454 = 2.724	If candidate uses one or	✓ ✓ 6 ✓ 0,454
	·	two standard deviations:	✓ answer
	Accept: Range = $8 \times 0,454$	max 2 marks	(4) [6]
	= 3,632		[0]

- 1	NY 1 12 1 1 11 11	1
5.1	Number licence plates available $= 21 \times 21 \times 21 \times 10 \times 10 \times 10$	(21
		✓ 21 ✓ 10
	$=21^3.10^3$	✓ answer
	= 9 261000	(3)
5.2	P(starting with Y)	
	$1 \times 21 \times 21 \times 10 \times 10 \times 10$	
	$= \frac{1}{21 \times 21 \times 21 \times 10 \times 10 \times 10}$	$\checkmark 21^2 \times 10^3$
	441000	✓ denominator
	$={9261000}$	(CA with5.1)
	1	1
	$=\frac{1}{21}$ Answer only: full marks	✓ answer
		(3)
5.3	P(contains number 7)	
	$21 \times 21 \times 21 \times 1 \times 9 \times 9 + 21 \times 21 \times 21 \times 9 \times 1 \times 9 + 21 \times 21 \times 21 \times 9 \times 9 \times 1$	√ 3
	9261000	✓ 1.9.9
	3(21 ³).1.9.9	✓ denominator
	l = 	
	9261000 243 If did not multiply by 3:	
	$=\frac{243}{100}$ or 0.243 $\frac{1}{100}$ max 2	
	1000	(3)
	OR	
	P(contains number 7)	
	$1 \times 9 \times 9 + 9 \times 1 \times 9 + 9 \times 9 \times 1$	✓ 3 or
	$=\frac{1\times 9\times 9+9\times 1\times 9+9\times 9}{1000}$	$1\times9\times9+9\times1\times9+9\times9\times1$
		✓ 1.9.9
	$=\frac{243}{1000}$ or 0,243	✓ denominator
	1000	
5.4	Number of unique number plates available with no repetition	✓ 21×20×19
J. T	$= 21 \times 20 \times 19 \times 10 \times 9 \times 8$	✓ 10×9×8
	= 5 745 600	✓ answer
	- 3 143 000	(3)
	OR	(-,
	$^{21}P_3.^{10}P_3$	\checkmark ²¹ P ₃
	$=\frac{21!}{10!} \times \frac{10!}{10!}$	✓ 10 P ₃
	18! 7!	✓ answer
	= 5 745 600	(3)
		[12]
L		[*=]

6.1	$T_1 = 3$		
	$T_{1+1} = 3 - 4(1) + 5 = 4$		$\checkmark T_2$
	$T_{2+1} = 4 - 4(2) + 5 = 1$	If 3; 0; –7; –18: max 2 marks	$\checkmark T_3$
	$T_{3+1} = 1 - 4(3) + 5 = -6$		$\checkmark T_4$
			(3)
6.2	Quadratic sequence.		✓
	It adds a linear sequence to the preceding t	erm.	quadratic
	OR		✓ reason
	3 1 -4 Quadratic Sequence Constant second difference of – 4	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	(2)
	OR Recursive Need the previous term to calculate the nex	xt term	✓ recursive ✓ reason (2) [5]

-				,
	7.1	$\hat{D}_1 = 33^{\circ}$	(∠ in same segment)	$\checkmark \hat{D}_1 = 33^{\circ}$
		AÊD = 90°	(given)	✓ ∠ in same
		$\hat{A}_1 = 57^{\circ}$		segment
		1		$\checkmark \hat{A}_1 = 57^{\circ}$
		OR		(3)
		BÊC = 90°		(n = =================================
		$\hat{\mathbf{B}}_1 = 57^{\circ}$	$(\angle \operatorname{sum} \Delta)$	$\checkmark \hat{B}_1 = 57^{\circ}$
			(∠ in same segment)	$\checkmark \hat{A}_1 = 57^{\circ}$
		-	-	✓ ∠ in same
				segment (3)
		OD		(3)
		\mathbf{OR} $\mathbf{DE} = \mathbf{EB}$	(line from circ cent \perp ch bis ch)	✓ DE = EB
		AE is commo		(S/R)
			90° (given)	()) = 5
		$\Delta AED \equiv \Delta AE$		$\checkmark \Delta AED \equiv$
		_	(∠s in semi-circle)	ΔAEB (SAS)
		$\hat{A}_1 = \hat{A}_2 = 57$		
		12	(= 33.3. =)	✓ answer
				(3)
	7.2	$\hat{\mathbf{D}}_2 + \hat{\mathbf{D}}_1 = 57$	$^{\circ}$ (OD = OA = radii)	$\checkmark \hat{D}_2 + \hat{D}_1 = 57^{\circ}$
		$\hat{D}_{2} = 24^{\circ}$		✓ answer
		2		(2)
		OR		
			$(OD = OA = radii) OR \angle at the centre theorem$	✓ DÔC =114°
		$\hat{E}_2 = 90^{\circ}$, DOC -114
		$\hat{D}_2 = 114^{\circ} - 9$	00°	✓ answer
		=24°		(2)
- 1				

7.3	$\hat{ABC} = 90^{\circ}$ (\angle in semi-circle) $\hat{A}_2 = 57^{\circ}$ (\angle sum Δ) $= \hat{A}_1$ AE bisects \hat{DAB}	✓ $\hat{ABC} = 90^{\circ}$ ✓ \angle in semi- circle ✓ $\hat{A}_2 = \hat{A}_1$ or AE bisects \hat{DAB} (3)
	OR $DE = EB \qquad \text{(line from circ centre bis ch)}$ $AE \text{ is common}$ $\hat{E}_1 = A\hat{E}B = 90^\circ \qquad \text{(given)}$ $\Delta ADE \equiv \Delta ABE \text{ (SAS)}$ $\hat{A}_2 = \hat{A}_1$	\checkmark DE = EB (S/R) \checkmark ΔAED ≡ ΔAEB (SAS) \checkmark Â ₂ = Â ₁ or AE bisects DÂB (3) [8]

Draw diameter TP. 8.1

Join P to J.

$$\hat{T}_1 + \hat{T}_2 = 90^\circ$$
 (tan \perp diameter)
 $\hat{J}_1 + \hat{J}_2 = 90^\circ$ (\angle in semi-circle)
 $\hat{J}_2 = \hat{T}_2$ (\angle in same seg)
 $\hat{T}JK = \hat{T}_1$

✓ construction

$$\checkmark \hat{T}_1 + \hat{T}_2 = 90^{\circ}$$

- ✓ tan ⊥ diameter
- ✓ S/R
- ✓ S/R

(5)

OR

Draw radii OT and OK

Let
$$\hat{T}_2 = x$$

$$\hat{\mathbf{K}}_1 = x$$
 ($\angle \text{ opp} = \text{radii}$)

$$\hat{T}_1 = 90^{\circ} - x \quad (rad \perp tan)$$

$$\hat{TOK} = 180^{\circ} - 2x \ (\angle \text{sum } \Delta)$$

$$\hat{TJK} = 90^{\circ} - x$$
 ($\angle \text{ circ cent}$)

$$T\hat{J}K = 90^{\circ} - x$$
 (\angle circ cent)
 $T\hat{J}K = \hat{T}_1$ (= 90° - x)

✓ construction

$$\hat{T}_1 = 90^{\circ} - x$$

- ✓ rad ⊥ tan
- ✓ S/R
- ✓ S/R

(5)

NOTE:

If there is no construction: 0 / 5 marks

If candidate changes lettering and states "Similarly": max full marks

OR

Draw GT extend to H. Draw tangent KH at K.

TH = KH (tan from comm pt)

$$\hat{K}_1 = \hat{T}_1$$
 (\angle s opp = sides)

 $\hat{TOK} = 2\hat{TJK}$

 $(\angle \text{ circ cent} = 2 \angle \text{ circumf})$

$$\hat{T}_1 + \hat{T}_2 = 90^{\circ} \text{ (tan } \perp \text{ radius)}$$

$$\hat{TOK} = 180^{\circ} - (90^{\circ} - \hat{T}_{1} + 90^{\circ} - \hat{K}_{1})$$

$$=\hat{\mathbf{T}}_1 + \hat{\mathbf{K}}_1$$

$$\hat{\mathbf{T}}_1 + \hat{\mathbf{T}}_2$$

$$=\hat{T}_{1}+\hat{T}_{1}$$

$$=2\hat{T}_{1}$$

$$\hat{T}_1 = \frac{1}{2} K \hat{O} T$$

$$=T\hat{J}K$$

✓ construction

✓ S/R

✓ S/R

$$\checkmark \hat{T}_1 + \hat{T}_2 = 90^{\circ}$$

✓ tan ⊥ radius

(5)

OR

Construct OT, OJ and OK

$$\hat{\mathbf{T}}_1 = \hat{\mathbf{J}}_1 = x$$
 (radii)

$$\hat{\mathbf{T}}_2 = \hat{\mathbf{K}}_1 = z$$
 (radii)

$$\hat{\mathbf{K}}_2 = \hat{\mathbf{J}}_2 = y$$
 (radii)

$$2x + 2y + 2z = 180^{\circ} \quad (\angle \operatorname{sum} \Delta)$$

$$x + y + z = 90^{\circ}$$

$$x + y = 90^{\circ} - z$$

$$\hat{OTH} = 90^{\circ} \quad (rad \perp tan))$$

$$\hat{T}_3 = 90^{\circ} - z$$

$$=90^{\circ}-(90^{\circ}-(x+y))$$

$$=90^{\circ}-z$$

$$=T\hat{J}K$$

✓ construction

 \checkmark S/R

 \checkmark S

/

 $\hat{T}_3 + \hat{T}_2 = 90^\circ$

✓ rad ⊥ tan

(5)

8.2	A	$ \begin{array}{c} 2 \\ \hline 1 \\ 2 \\ \hline 1 \\ 2 \end{array} $	C D O	
8.2.1	$\hat{\mathbf{B}}_4 = x$ $\hat{\mathbf{A}} = \hat{\mathbf{B}}_4 = x$ $\hat{\mathbf{B}}_2 = x$ $\hat{\mathbf{B}}_2 = 80^\circ$	(tan chord theorem) (corres \angle ; BD AO) (BO = EO = radii) (\angle in semi-circle)	Note: If start with $\hat{A} = x$ and do not use tan ch th: max 2 marks	✓ $\hat{B}_4 = x$ ✓ tan chord theorem ✓ $\hat{A} = \hat{B}_4 = x$ with reason ✓ $\hat{B}_2 = x$ (4) ✓ $D\hat{B}E = 90^\circ$
	CBE = 90° + x OR CBO = 90° CBE = 90° + x OR $\hat{O}_1 = 2x$ $\hat{B}_3 = \hat{D}_1 = 90° - x$ CBE = $x + (90° - x) + x$ = 90° + x	(rad ⊥ tan) (∠ circ cent) (radii)		✓ \angle in semi-circle ✓ \angle $\hat{CBE} = 90^{\circ} + x$ (3) ✓ \angle $\hat{CBO} = 90^{\circ}$ ✓ $\hat{CBE} = 90^{\circ} + x$ (3) ✓ $\hat{O}_1 = 2x$ ✓ \angle circ cent ✓ \angle $\hat{CBE} = 90^{\circ} + x$ (3)
8.2.3	DBE = 90° BFO = 90° BF = FE F is the midpoint of E	(proved in 8.2.2) (co-int angles supp; Bl (line from circ cent ⊥ o		✓ $D\hat{B}E = 90^{\circ}$ ✓ $B\hat{F}O = 90^{\circ}$ and reason ✓ $BF = FE$ ✓ line from circ cent \bot ch bisect ch) (4)

	OR OD = OE (radii) BF = FE (BD AO) F is the midpoint of EB	✓ OD = OE ✓ radii ✓ BF = FE ✓ BD AO (4)
	$B\hat{F}O = E\hat{F}O = 90^{\circ}$ $(BD \parallel AO)$ OF is common $BO = OE$ $(radii)$ $\Delta BOF \equiv \Delta EOF$ $(90^{\circ}HS)$ $BF = FE (\equiv \Delta S)$	✓ BFO = EFO = 90° (BD AO) ✓ BO = OE ✓ ΔBOF ≡ ΔΕΟF ✓ BF = FE (4)
	OR $\hat{B}_2 = \hat{A} = x$ (proven) \hat{O}_2 is common	✓ ΔΑΟΒ ΔΒΟΓ
	$\triangle AOB \parallel \triangle BOF (AAA)$ $\triangle ABO = BFO$ $\triangle ABO = 90^{\circ}$ (proven) $\triangle ABO = BFO = 90^{\circ}$ $\triangle BF = FE$ (line from circ cent \bot ch bisects ch)	✓ ABO = BFO ✓ BF = FE ✓ line from circ cent ⊥ ch bisects ch
	OR $D\hat{B}E = 90^{\circ} \qquad (\angle \text{ in semi-circle})$ $\hat{B}_{3} = 90^{\circ} - x$ $\hat{O}_{2} = 90^{\circ} - x \qquad (\text{alt } \angle s; BD \parallel FO)$ $\hat{F}_{1} = 90^{\circ} \qquad (\angle \text{ sum } \Delta)$ $BF = FE \qquad (\text{line from circ cent } \bot \text{ ch bisects ch})$	(4) $\checkmark D\hat{B}E = 90^{\circ}$ $\checkmark \hat{F}_{1} = 90^{\circ}$ $\checkmark BF = FE$ $\checkmark \text{ line from circ cent}$ $\bot \text{ ch bisects ch}$ (4)
	OR In $\triangle OBF$ and $\triangle OEF$ 1. $OB = OE$ (radii) 2. $B\hat{F}O = E\hat{F}O = 90^{\circ}$ (BD AO) 3. $\hat{B}_2 = \hat{E}$ (radii) $\triangle OBF \equiv \triangle OEF$ (AAS) $BF = FE$	✓ OB = OE ✓ BFO = EFO = 90° (BD AO) ✓ ΔOBF ≡ ΔOEF ✓ BF = FE (4)
8.2.4	In $\triangle CBD$ and $\triangle CEB$ 1. $\hat{E} = \hat{B}_4 = x$ (proven in 8.2.1) 2. \hat{C} is common 3. $\hat{D}_4 = C\hat{B}E = 90^\circ + x$ $\triangle CBD \parallel \triangle CEB$ (AAA)	✓ $\hat{E} = \hat{B}_4 = x$ ✓ \hat{C} is common Or ✓ $\hat{D}_4 = \hat{CBE} = 90^\circ + x$ Any two of the above (2)

8.2.5	$\frac{EB}{BD} = \frac{CE}{CB}$ (sim Δs : sides in proportion)	$\checkmark \frac{EB}{BD} = \frac{CE}{CB}$
	EB.CB = CE.BD	✓ EB.CB = CE.BD
	but $EB = 2EF$ (F is the midpoint of BE)	\checkmark EB = 2EF
	2EF.CB = CE.BD	(3)
		[21]

NSC - Memo

10.1	$\hat{\text{MEC}} = 90^{\circ}$ (tan \perp rad)	✓ MÊC = 90°
	$\hat{MDC} = 90^{\circ}$ (line from cent bisects ch)	$(\tan \perp \operatorname{rad})$
	$M\hat{E}C + M\hat{D}C = 180^{\circ}$	✓ MDC = 90°
	∴ MDCE a cyclic quad (opp ∠s of quad supplementary)	✓ opp ∠s of
	(opp 25 of quad supplementary)	quad
	OR	supplementary (3) ✓ MÊC = 90° (tan ⊥ rad) ✓ MDA = 90° ✓ ext ∠ quad = int opp
10.2	$MD^2 = MB^2 - DB^2$ (Pythagoras; ΔMBD)	$\checkmark MD^2 = MB^2$
	$MC^2 = MD^2 + DC^2$ (Pythagoras; ΔMDC) = $MB^2 - DB^2 + DC^2$	$-DB2$ ✓ Pythagoras ✓ $MC^2 = MD^2$ + DC^2
10.3	DB = 30 (given) MB = 40 (radii) $MC^2 = (40)^2 + (50)^2 - (30)^2$ = 3 200 $MC = 40\sqrt{2} = 56,57$ $MC^2 = ME^2 + CE^2$ (Pythagoras) $CE^2 = 3 200 - 1 600$ $CE^2 = 1 600$ CE = 40 mm	✓ MB = ME ✓ DB = 30 ✓ MC ² = 3200 or MC = $40\sqrt{2}$ or MC = $56,57$ ✓ answer
	OR $MC^2 = CE^2 + ME^2 - 2CE.ME.\cos M\hat{E}C$ $3200 = CE^2 + (40)^2 - 2CE.(40).\cos 90^\circ$ $= CE^2 + 1600$ $CE^2 = 1600$ CE = 40	✓ cosine rule ✓ ME = 40 ✓ MC ² = 3200 ✓ answer (4) [10] TOTAL: 100

TOTAL: 100