Land use classification tasks using CNN-based model: Multi-spatial scale Data Set

Rana Mahdavi, Thomas Maliappis | LIACS

Contents

- Background
- Problem statement
- Dataset
- Methodology
- Challenges
- Future work

Background

- The Original Paper: "Reading Cities with Computer Vision: a new multi-scale urban fabric data set"
- Understanding the typology of cities and their evolution is important
- Read and interpret urban fabric

Background

Objective

Ability to interpret, understand and classify diverse urban fabrics

Inputs

- Image-like data patches of varying spatial scales to pictorially represent each urban fabric
- 66k multi-spatial scale urban fabric samples extracted from four European cities

Classification of Urban fabrics in terms of:

- Prediction of urban fabric city origin
- Pattern Type
- Formation Period

Background

- Three different scale of inputs (128x128, 256x256, 512x512)
- Three different CNNs
- Feature Extraction
- Fuse the vectors
- Feed into three different classifier

New Idea

Using the introduced methodology for a new problem

- Classification Problem
 - Land use classification
 - City Classification

Problem statement

Land use classification

- -Different applications
- Urban Planning
- Zoning and the issuing of business permits
- Real-estate construction
- Evaluation of infrastructure

Urban Atlas Dataset

examples

- Land cover and land use data
- EEA38 countries, Turkey and United Kingdom
- 18 land classes

Google Statics API used to get satellite images

Seminatural Wetlands **Agricultural**

-ast transit Forests roads land

land Green

-- land classes --

Selected Cities

- Athens
 - **-** 5022 samples
- Berlin
 - **5466** samples
- Budapest
 - 4658 samples
- Madrid
 - 7840 samples
- Rome
 - **5209** samples

Class distribution

Dataset preparation

Methodology

- 1. Input multiscale satellite images
- 2. Feature extraction using CNNs (E128, E256, E512) outputs
- 3. Concatenate features and feed them to two classifiers
- 4. One output for each classification task

Challenges

- Get Open Street Map street network data matching the bounding box of satellite images
- Imbalanced data
 - too many agricultural areas
 - not a lot of airports
- Implement proposed neural network without all the details

Future work

- Finalise neural network
- Evaluate performance results on the two classification tasks
 - o F1-score
 - Confusion matrices
- Compare with baselines E128, E256, E512
- Experiment with transfer learning
 - exclude one city from the training set
 - o pretrain with small data sample
 - check performance of network

Questions?

