1.

Let $\Phi: \operatorname{Hom}(C,Z) \to \operatorname{Hom}(A,Z) \times \operatorname{Hom}(B,Z)$ be an isomorphism. Let $a \in \operatorname{Hom}(A,Z)$, $b \in \operatorname{Hom}(B,Z)$. Since Φ is an isomorphism, there is $f \in \operatorname{Hom}(C,Z)$ such that $(a,b) = (f \circ c_1, f \circ c_2)$. Also, f is unique since Φ is an isomorphism. Thus C is a coproduct of A and B. By applying it to C^{op} , we have the dual statement.

2.

Let $i_A:A\to A+B,\ i_B:B\to A+B,\ i_{MA}:MA\to MA+MB,\ i_{MB}:MB\to MA+MB,\ and\ \eta_A:A\to MA,\ \eta_B:B\to MB.$ Take a forgetful functor $U:\mathbf{Mon}\to\mathbf{Sets}$ and let $e:A+B\to U(MA+MB)$ defined by $e=[U(i_{MA})\circ\eta_A,U(i_{MB})\circ\eta_B].$ Take any object $Z\in\mathbf{Mon}$ and $f:A+B\to UZ.$ Define $h:MA+MB\to Z$ by $Uh\circ e=f.$ By UMP, $Uh\circ e=[Uh\circ Ui_{MA}\circ\eta_A,Uh\circ Ui_{MB}\circ\eta_B]=[U(h\circ i_{MA})\circ\eta_A,U(h\circ i_{MB})\circ\eta_B]=[f\circ i_A,f\circ i_B].$ By UMP of monoid, there is a unique map $f\circ i_A:MA\to Z$ satisfying $U(f\circ i_A)\circ\eta_A=f\circ i_A.$ Thus we conclude that $U(h\circ i_{MA})=U(f\circ i_A),$ i.e., $h\circ i_{MA}=\overline{f\circ i_A}.$ Similarly, $h\circ i_{MB}=\overline{f\circ i_B}.$ Therefore, h is uniquely determined by the condition $Uh\circ e=f$ and hence $h=[\overline{f\circ i_A},\overline{f\circ i_B}].$ Therefore, when we consider the UMP of A+B, we can conclude that $MA+MB\cong M(A+B).$

3.

We only need to show that the map [f, g] is unique. By UMP of free monoid, [f, g]' in p.59 is unique. Since [f, g] is induced from [f, g]', it must be unique.

4.

Note that $A + B = A \coprod B$ in **Sets**. Define $p_1 : \mathcal{P}(A + B) \to \mathcal{P}(A)$, $p_2 : \mathcal{P}(A + B) \to \mathcal{P}(B)$ by $p_1(X) = X \cap A$, $p_2(X) = X \cap B$. Consider a boolean algebra Z and $f : Z \to \mathcal{P}(A)$ and $g : Z \to \mathcal{P}(B)$. Then we can find a map $h : Z \to \mathcal{P}(A + B)$ by $h(z) = f(z) \coprod g(z)$. For uniqueness, suppose $h' : Z \to \mathcal{P}(A + B)$ be another map such that $p_1h' = f, p_2h' = g$. By definition, $h(z) \cap A = h'(z) \cap A$ and $h(z) \cap B = h'(z) \cap B$. Since $h(z) = (h(z) \cap A) \coprod (h(z) \cap B) = h'(z)$, we conclude h = h'.

5.

skip

6.

Obvious

7.

Let P,Q be projective, $e:E \to X$ be an epi, and consider $f:P \to X, g:Q \to X$. Then there are \bar{f}, \bar{g} such that $f=e\circ \bar{f}, g=e\circ \bar{g}$. By definition of coproduct, there is a unique $[\bar{f},\bar{g}]:P+Q\to E$ such that $[\bar{f},\bar{g}]\circ i_P=\bar{f}, [\bar{f},\bar{g}]\circ i_Q=\bar{g}$. By definition, there is a unique map $[f,g]:P+Q\to X$ defiend by $e\circ [\bar{f},\bar{g}]=[f,g]$. Thus P+Q is projective.

8.

An object I is injective if for any mono $m: M \hookrightarrow X$ and a map $f: M \to I$, there is $\bar{f}: X \to I$ such that $f = \bar{f} \circ m$. It is obvious that a map of posets is monic iff it is injective on elements. Let I be a poset with a single element. Then trivially I is injective. Now suppose $I = \{1, 2\}$ is a distinct poset, $M = \{a \le b, c\}, X = \{a \le b \le c\}, \text{ and } m: M \hookrightarrow X \text{ trivial. Define } f: M \to I \text{ by } a, b \mapsto 1 \text{ and } c \mapsto 2.$ Since X is well-ordered, the map from X to I must be trivial. Thus I is not injective.

9.

 $\bar{h} = h \circ i : M \to N$ where $h : TM \to N$ a homomorphism. $\bar{h}(xy) = h \circ i(xy) = h(xy) = h(x)h(y) = \bar{h}(x)\bar{h}(y)$ since i is injection.

10.

Obvious

11.

Define $R = \{(f(x), g(x)) \mid x \in A\} \cup \{(g(x) \cup f(x)) \mid x \in A\} \cup \{(b, b) \mid b \in B\}$. Then R is reflexive since $(y, y) \in R$, symmetric since if $(a, b) \in R$, then $(b, a) \in R$, and finally transitive, concluding that $R \subseteq B \times B$ is an equivalence relation. Note that this is the smallest equivalence relation. Define Q := B/R be a set of equivalence classes and $q : B \to Q$ a canonical map. Then clearly qf = qg. Let Z be a set and $z : B \to Z$ be a map satisfying zf = zg. Define $u : Q \to Z$ by u([b]) = z(b). Clearly it is well-defined and satisfies uq = z. Suppose v is another map such that vq = z. Then uq = vq and since q is epi, u = v.

12.

Note that P+Q is a disjoint union of P,Q with the same order. Consider $P+Q/\sim$ where $0_P\sim 0_Q$ and the canonical map $q:P+Q\to P+Q/\sim$. Then we can consider $i_{0P}:P\to P+Q/\sim$ and $i_{0Q}:Q\to P+Q/\sim$. Let Z be a rooted poset and $z_P:P\to Z,\ z_Q:Q\to Z$. Then there is a unique $u:P+Q\to Z$ as a morphism of poset such that $z_P=ui_P$ and $z_Q=ui_Q$. Since P,Q,Z are rooted posets and the morphism between them are arrows in rooted poset, we have $z_P(0_P)=z_Q(0_Q)=0_Z$. Therefore, $u(0_P)=u(0_Q)=0_Z$ and it induces unique arrow $\bar{u}:P+Q/\sim\to Z$ defined by $\bar{u}([x])=z_P(x)$ if $x\in P$ and $z_Q(x)$ if $x\in Q$. Thus we conclude that $P+Q/\sim=P+_0Q$.

13.

- (1) Define the smallest equiavalence relation $\tilde{}$ defined as in (a). If hf = hg, then hfm = hgm and hence $fm \sim gm$. Suppose $n \sim n'$ and $m \sim m'$. If hf = hg, then h(nm) = h(n)h(m) = h(n')h(m') = h(n'm'), concluding $nm \sim n'm'$.
- (2) N/\sim is obviously a monoid. Let $h:N\to X$ be a morphism such that hf=hg. Then we can induce a unique $\bar{h}:N/\sim\to X$ by $\bar{h}=hg$ where g is a canonical morphism.

14.

- (a) Consider $\ker f = \{(a, a') \mid f(a) = f(a')\}$. Then obviously it is an equivalence relation. Consider $h: X \to A \times A$ such that $fp_1h = fp_2h$. Obviously $h(x) \in \ker f$ for all $x \in X$ and hence there is a map $X \to \ker f$, which is uniquely determined by h. Thus $\ker f$ is the equalizer of fp_1 and fp_2 .
- (b) Let R be an equivalence relation on A. The map $q: A \to A/R$ is defined by $a \mapsto [a]$. Obviously $\ker q = \{(a, a') \mid q(a) = q(a')\} = \{(a, a') \mid a \sim_R a'\} = R$.
- (c) Take $f: A \to B$ with f(a) = f(a') if $(a, a') \in R$. By (a), ker f is an equivalence relation and hence $\langle R \rangle \subseteq \ker f$. By definition, $fp_1 = fp_2$ and there is a unique map $A/\langle R \rangle \to B$.
- (d) The coequalizer of the projections of R to A is $A/\langle R \rangle$ with the projection $q: A \to A/\langle R \rangle$, where $\langle R \rangle$ is the kernel.

15.

Let $|q|:|Y|\to |Y/\langle f=g\rangle|=|Q|$ be a coequalizer of |f|,|g|. Then given topological space Z and $h:Y\to Z$ with hf=hg, there is a unique $|u|:|Q|\to |Z|$ with |h|=|u||q|=|uq|. Let $W\subseteq Z$ be an open set. Then $h^{-1}(W)=q^{-1}u^{-1}(W)$ is open in Y. Thus $u^{-1}(W)$ is open in Q, concluding that u is continuous. Thus Q is a coequalizer of f and g.