Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №4.7.2

Эффект Поккельса

Маршрут Х

7 февраля 2019 г. 14 февраля 2019 г. Работу выполнил Ринат Валиев, 711 гр.

Под руководством В.В. Лобачёва

Постановка эксперимента

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменения характера поляризации света при наложении на кристалл электрического поля.

Оборудование: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластина, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

Теоретическая часть

Эффектом Поккельса называется изменение показателя преломления света в кристалле под действием электрического поля, причем это изменение пропорционально напряженности электрического поля. Как следствие эффекта Поккельса в кристалле появляется двойное лучепреломление или меняется его величина, если кристалл был двулучепреломляющим в отсутствие поля.

В нашем опыте используется поперечный электрооптический эффект. Исследуемый кристалл — ниобат лития $(LiNbO_3)$ — является одноосным кристаллом, оптические свойства которого обладают симметрией вращения относительно некоторого одного направления, называемого onmuчeckou осью Z кристалла.

Для световой волны, вектор \vec{E} которого перпендикулярен оси Z, показатель преломления равен n_o , а для волны с \vec{E} вдоль оси Z он равен n_e $n_e < n_o$.

В общем случае, когда луч света распространяется под углом Θ к оси Z (рис. 1), существует два собственных значения показателя преломления n_1 и n_2 : если $\vec{E} \perp (\vec{k}, \vec{Z})$, где \vec{k} — волновой вектор луча, то волна называется обыкновенной (ординарной), а показатель преломления n_1 равен n_o и не зависит от угла Θ ; когда $\vec{E} \in (\vec{k}, \vec{Z})$ — это необыкновенная (экстраординарная) волна, при этом показатель преломления n_2 зависит от угла Θ :

$$\frac{1}{n_2^2} = \frac{\cos^2 \Theta}{n_o^2} + \frac{\sin^2 \Theta}{n_e^2}$$

Расположим перед кристаллом матовою пластину для рассеивания луча. Тогда на экране за поляроидом мы увидим концентрические кольца. При интерференции разность фаз обыкновенной и необыкновенной волнами, при прохождении через кристалл длиной l, равна:

$$\Delta \varphi = \frac{2\pi}{\lambda} \cdot l \cdot (n_1 - n_2) \tag{1}$$

Рис. 1: Схема установки для исследования эффекта Поккельса.

Для обыкновенного луча $n_1 = n_o$ и не зависит от угла Θ . Для необыкновенного луча n_2 зависит от угла Θ и определяется уравнением (1). В силу малости углов $(\sin\Theta\approx\Theta;\cos\Theta\approx1-\Theta^2/2)$ получаем $n_2=n_o-(n_o-n_e)\Theta^2$.

$$\delta = \frac{2\pi}{\lambda} \cdot l(n_o - n_e)\Theta^2$$

Направления постоянной фазы – конусы $\Theta = const.$ Будем нумеровать кольца итератором m. Для m-го темного кольца $\delta = 2\pi m$ или $\delta = 2\pi \cdot l(n_o - n_e)\Theta^2/\lambda = 2\pi m$. Если L – расстояние от центра кристалла до экрана, то, учитывая з-н Снеллиуса, при $\Theta_{\text{внешн}} = n_o \Theta$ радиус кольца:

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{(n_o - n_e)} m$$

Остюда найдем (n_o-n_e) – двулучепреломление кристалла. Разложим $E=E_0e^{i(\omega t-kz)}$ по осям ξ и η (рис. 2). Появится разность фаз:

$$\delta = \frac{2\pi l}{\lambda} 2\Delta n = \frac{4\pi l}{\lambda} A E_{\text{\tiny 9.\Pi}} = \frac{4\pi}{\lambda} \frac{l}{d} A U$$

 $U = E_{\text{эл}} \cdot d$ – напряжение на кристалле, d – размер кристалла в поперечном направлении. На направление X на выходе:

Рис. 2: Появление новых главных направлений при наложении электрического поля.

$$E_{\text{вых}} = \frac{E_0}{2} e^{i(\omega t - kl)} \left(e^{i\delta/2} - e^{-i\delta/2} \right) = E_0 e^{i(\omega t - kl)} \sin\left(\frac{\delta}{2}\right)$$

Интенсивность света пропорциональна квадрату модуля вектора электрического поля в волне:

$$\begin{split} I_{\text{вых}} \sim EE^* &= E_0^2 \sin^2 \left(\frac{\delta}{2}\right) \\ I_{\text{вых}} &= I_0 \sin^2 \left(\frac{\delta}{2}\right) = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}}\right) \\ U_{\lambda/2} &= \frac{\lambda}{4A} \frac{d}{I} \end{split}$$

– так называемое *полуволновое напряжение*: при $U=U_{\lambda/2}$ сдвиг фаз между двумя волнами, соответствующими двум собственным поляризациям, $\delta = \pi$ (разность хода равна $\lambda/2$), и интенсивность света на выходе анализатора достигает максимума. При параллельных поляризациях лазера и анализатора:

$$I_{\text{вых}} = I_0 \cos^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right)$$

Рис. 3: Схема для изучения двойного лучепреломления в электрическом поле.

Выполнение эксперимента

Кристалл ниобата лития имеет размеры: $3\times3\times26$ мм. Волна гелий-неонового лазера: $\lambda=0.63$ мкм в ниобате лития $n_o=2.29$.

$$n_o = \sqrt{\varepsilon_\perp}$$
 – у обыкновенной волны;

$$n_e = \sqrt{arepsilon_\parallel}$$
 – вдоль $ec k$.

1. Установим кристалл на расстоянии $L = (87 \pm 1) \; {\rm cm}$ от экран.

Снимем зависимость $r^2(m)$, где радиус концентрических колец при скрещенной поляризации (таблица 1).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2	3	4	5	6	7	8	9
r, MM	31	44	54	63	70	77	84	89	94
r^2 , cm ²	9.6	19.4	29.2	39.7	49.0	59.3	70.6	79.2	88.4

Таблица 1: Зависимость радиуса темных колец r(m) и $r^2(m)$ от номера кольца m.

2. Построим график зависимости радиуса колец от их номера $r^2 = f(m)$:

Рис. 4: Зависимость $r^2 = f(m)$.

3. Из графика (рис. 4) найдем:

$$\tan \psi = (9.95 \pm 0.08), \, \varepsilon \approx 1\%$$

$$\implies (n_o - n_e) = \frac{\lambda}{l} \frac{(n_o L)^2}{\tan \psi} = (9.6 \pm 0.3) \cdot 10^{-2}, \, \varepsilon \approx 3\%$$

4. Рассмотрим минимумы и максимумы при различной поляризации и постоянным напряжении:

Поляризация	Пара	ллельно	Перпендикулярно		
Минимумы, дел	31	92	60	-	
Максимумы, дел	60	-	30	90	

Таблица 2: Зависимость радиуса темных колец r(m) и $r^2(m)$ от номера кольца m.

- 5. Из таблицы 2 найдем: $U_{\lambda/2}=30$ дел =450 В.
- 6. Аналогично найдем $U_{\lambda/2}$ при помощи переменного напряжения по изображениям на экране осциллографа: $U_{\lambda/2} \approx 30$ дел ≈ 450 В.
- 7. Приведем изображения экрана осциллографа при $U_{\lambda/2}, U_{\lambda}, U_{3\lambda/2}$ при различных поляризациях (рис. 5):

Рис. 5: Фигуры Лиссажу при различных значениях напряжений и поляризациях.

Итоги

В эксперименте наблюдался эффект Поккельса — изменение показателя преломления света в кристалле под действием внешнего электрического поля, причем было установлено, что данное изменение пропорционально напряженности электрического поля.

Получено двулучепреломление: $(n_o-n_e)=(9.6\pm0.3)\cdot 10^{-2},\ \varepsilon\approx 3\%$ Определено полуволновое напряжение: $U_{\lambda/2}\approx 450~{\rm B}$