Grundbegriffe der Informatik Aufgabenblatt 11

Matr.nr.:								
Nachname:								
Vorname:								
Tutorium:	Nr.				N	ame	des Tutors:	
Ausgabe:	21. Ja	nuar !	2015	5				
Abgabe:	29. Ja	29. Januar 2015, 12:30 Uhr						
	im G	BI-Bri	efka	ster	ı im	Un	tergeschoss	
	von (Gebäu	de 5	50.34	1			
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet								
abgegeben werden.								
Vom Tutor auszufüllen: erreichte Punkte								
Blatt 11:					/ 19	9	(Physik: 19)	
Blätter 1 – 1	1:			/	′ 194	4	(Physik: 171)	

Im folgenden schreiben wir $[n \mapsto f(n)]$ für die Funktion $f : \mathbb{N}_0 \to \mathbb{R}_0^+ : n \mapsto f(n)$. Statt $O([n \mapsto f(n)])$ schreiben wir kürzer $O(n \mapsto f(n))$ und analog bei $\Omega(\cdot)$ und $\Theta(\cdot)$.

Aufgabe 11.1 (4 Punkte)

Beweisen Sie, dass $\Omega(n \mapsto 2^n) \cap O(n \mapsto n^2)$ die leere Menge ist.

Hinweis: Gemäß der Vorlesung gilt $[n \mapsto 2^n] \npreceq [n \mapsto n^2]$.

Aufgabe 11.2 (4 Punkte)

Es sei $p: \mathbb{N}_0 \to \mathbb{R}_0^+$ eine Abbildung derart, dass eine nicht-negative ganze Zahl $k \in \mathbb{N}_0$ existiert und nicht-negative reelle Zahlen $a_i \in \mathbb{R}_0^+$, für $i \in \mathbb{Z}_{k+1}$, mit $a_k \neq 0$ existieren so, dass

$$\forall n \in \mathbb{N}_0 : p(n) = \sum_{i=0}^k a_i n^i.$$

Die Abbildung p ist also eine Polynomfunktion des Grades k mit nicht-negativen reellwertigen Koeffizienten und Definitionsbereich \mathbb{N}_0 . Beweisen Sie, dass $p \in \Theta(n \mapsto n^k)$ gilt.

Aufgabe 11.3 (4 Punkte)

Für $n \in \mathbb{N}_0$ sei G_n der Graph (V_n, E_n) mit

$$V_n = \{(x,y) \in \mathbb{N}_0^2 \mid x+y \le n\}$$

$$E_n = \{((x,y), (x+1,y)) \mid x+1+y \le n\}$$

$$\cup \{((x,y), (x,y+1)) \mid x+y+1 \le n\}$$

- a) Zeichnen Sie G_3 .
- b) Für welche $n \in \mathbb{N}_0$ ist G_n ein Baum?
- c) Geben Sie eine Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ so an, dass $[n \mapsto |V_n|] \in \Theta(f)$.
- d) Geben Sie eine Funktion $g: \mathbb{N}_0 \to \mathbb{R}_0^+$ so an, dass $[n \mapsto |E_n|] \in \Theta(g)$.

Aufgabe 11.4 (7 Punkte)

Für jeden gerichteten Graphen G = (V, E) ist der sogenannte *Kantengraph* (engl. *line graph*) L(G) = (V', E') wie folgt definiert: Wenn E nicht leer ist, dann ist

$$V' = E,$$

 $E' = \{((x,y), (y,z)) \mid (x,y), (y,z) \in V'\};$

wenn E leer ist, dann ist $V' = \{0\}$ und $E' = \{\}$.

Für $n \in \mathbb{N}_0$ sei der n-te iterierte Kantengraph $L^n(G)$ so definiert:

$$L^{0}(G) = G,$$

$$\forall n \in \mathbb{N}_{0} : L^{n+1}(G) = L(L^{n}(G)).$$

Es bezeichne im folgenden $L_V^n(G)$ die Knotenmenge von $L^n(G)$ und $L_E^n(G)$ die Kantenmenge von $L^n(G)$.

Hinweis: |M| bezeichnet im folgenden stets die Kardinalität, also die Anzahl der Elemente, einer endlichen Menge M.

a) Zeichnen Sie zu dem Graphen H_1

den Kantengraphen $L(H_1)$ und benennen sie dessen Knoten sinnvoll.

- b) Geben Sie eine Funktion $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ so an, dass $[n \mapsto |L_V^n(H_1)|] \in \Theta(f)$.
- c) Geben Sie einen Graphen H_2 mit 5 Knoten und 5 Kanten so an, dass für dessen iterierte Kantengraphen $L^n(H_2)$ gilt:

$$[n\mapsto |L_E^n(H_2)|]\in\Theta(n\mapsto 0).$$

- d) Für $n \in \mathbb{N}_+$ sei B_n der de Bruijn-Graph mit Knotenmenge $V_n = \{0,1\}^n$ und Kantenmenge $E_n = \{(xw, wy) \mid x, y \in \{0,1\} \land w \in \{0,1\}^{n-1}\}$ (siehe Kapitel 15).
 - Geben Sie für jedes $n \in \mathbb{N}_+$ eine Bijektion $\varphi_n \colon E_n \to \{0,1\}^{n+1}$ an.
 - Zeigen Sie, dass für jedes $n \in \mathbb{N}_0$ der Kantengraph $L(B_n)$ isomorph zu B_{n+1} ist.
 - Für welche $k \in \mathbb{Z}_4$ gilt $[n \mapsto |L_V^n(B_2)|] \in O(n \mapsto k^n)$?