ORGANIC LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND DISPLAY APPARATUS

Patent number: JP2005093399
Publication date: 2005-04-07

Inventor: YOKOYAMA SEIICHI; HANAWA KOJI

Applicant: SONY CORP

Classification:

- international: H05B33/28; H01L51/50; H05B33/10; H05B33/12;

H05B33/14; H05B33/22; H05B33/24; H05B33/26; H01L51/50; H05B33/10; H05B33/12; H05B33/14; H05B33/22; H05B33/24; (IPC1-7): H05B33/28; H05B33/10; H05B33/12; H05B33/14; H05B33/22;

H05B33/24

- european:

Application number: JP20030328989 20030919 Priority number(s): JP20030328989 20030919

Report a data error here

Abstract of JP2005093399

PROBLEM TO BE SOLVED: To provide a display apparatus compatible in the insurance of display performance and in the insurance of manufacturing capabilities.

SOLUTION: Thicknesses DR, DG and DB of barrier layers 163R, 163G and 163B among lower electrode layers 16R, 16G and 16B are different from each other among three organic light emitting elements 30R, 30G and 30B, wherein DR>DG>DB. By using interference phenomenon of light due to the differences of resonance length among the three organic light emitting elements 30R, 30G ad 30B based on the differences among the thicknesses DR, DG and DB, white light generated in a layer 18 including the light emitting layer is converted into three color lights, i.e. red light ER, green light EG and blue light EB. The display size can be enlarged since it is not necessary to selectively apply the layer 18 including the light emitting layer with a metal mask, and utilization efficiency of light is secured since it is not necessary to convert the white light into the three color lights ER, EG and EB with using only color filter for color conversion having a high density and a relatively large thickness.

COPYRIGHT: (C)2005, JPO&NCIPI

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2005-93399 (P2005-93399A)

(43) 公開日 平成17年4月7日(2005.4.7)

(51) Int.C1. ⁷	FI			テーマコート	(参考)
HO5B 33/28	но5В	33/28		3K007	
HO5B 33/10	но 5 В	33/10			
HO5B 33/12	• но5в	33/12	С		
HO5B 33/14	но5В	33/12	E		
HO5B 33/22	HO5B	33/14	Α		
	審査請求 未	請求 請求項の	数 32 OL	(全 33 頁)	最終頁に続く
(21) 出願番号 (22) 出願日	特願2003-328989 (P2003-328989) 平成15年9月19日 (2003.9.19)	(74) 代理人 1 (72) 発明者 (72) 発明者 1	000002185 ソニー株式会社 東京都品川区北 100098785 弁世山 都野 東一 都田 東一 都 東一 本 東 一 本 東 一 本 東 一 本 東 一 本 東 一 本 東 一 本 カ リ 3 K007 AB03 DB03	品川6丁目7 洋一郎 品川6丁目7 品川6丁目7 AB15 AB18	番35号 ソ

(54) 【発明の名称】有機発光装置およびその製造方法、ならびに表示装置

(57)【要約】

【課題】 表示性能の確保と製造可能性の確保とを両立 することが可能な表示装置を提供する。

【解決手段】 下部電極層16R, 16G, 16Bのうちのバリア層163R, 163G, 163Bの厚さDR, DG, DBが、3つの有機発光素子30R, 30G, 30B間において互いに異なるようにする(DR>DG>DB)。これらの厚さDR, DG, DB間の差異に基づく3つの有機発光素子30R, 30G, 30B間の共振長の差異に起因した光の干渉現象を利用して、発光層を含む層18においた発生した白色光が3色の光、すなわち赤色の光ER、緑色の光EGおよび青色の光EBに変換される。メタルマスクを使用して発光層を含む層18を塗り分ける必要がないため、ディスプレイサイズの大型化が可能になると共に、色変換用の高濃度かつ厚めのカラーフィルタのみを利用して白色光を3色の光ER、EG, EBに変換する必要がないため、光の利用効率が確保される。

【選択図】 図2

【特許請求の範囲】

【請求項1】

基体に設けられた3つの有機発光素子を備え、これらの3つの有機発光素子が、いずれも前記基体に近い側から順に第1の電極層、発光層を含む層および第2の電極層が積層された構成を有すると共に、前記発光層において発生した光を互いに異なる3色の光に変換して放出する有機発光装置であって、

前記第1の電極層は、前記基体に近い側から順に、前記基体との密着性を高めるための密着層と、前記発光層において発生した光を前記第2の電極層との間で共振させるための共振層と、この共振層を保護するためのバリア層とが積層された構成を有し、

前記バリア層の厚さは、前記3つの有機発光素子間において互いに異なっている ことを特徴とする有機発光装置。

【請求項2】

前記発光層を含む層の厚さは、前記3つの有機発光素子間において互いに等しくなっている

ことを特徴とする請求項1記載の有機発光装置。

【請求項3】

前記発光層を含む層は、有機層である

ことを特徴とする請求項1記載の有機発光装置。

【請求項4】

前記発光層は、前記3つの有機発光素子間において互いに等しい色の光を発生させるものである

ことを特徴とする請求項1記載の有機発光装置。

【請求項5】

前記発光層は、前記第1の電極層に近い側から順に、赤色の光を発生させる赤色発光層と、緑色の光を発生させる緑色発光層と、青色の光を発生させる青色発光層とが積層された構成を有している

ことを特徴とする請求項1記載の有機発光装置。

【請求項6】

前記バリア層の厚さは、前記3つの有機発光素子から放出される前記3色の光に対応して互いに異なっている

ことを特徴とする請求項1記載の有機発光装置。

【請求項7】

前記バリア層の厚さは、前記3つの有機発光素子が前記発光層において発生した光をそれぞれ赤色の光、緑色の光および青色の光に変換して放出可能となるように設定されている

ことを特徴とする請求項6記載の有機発光装置。

【請求項8】

前記バリア層の厚さは、前記3つの有機発光素子から放出される前記赤色の光、前記緑色の光および前記青色の光に対応して順に薄くなっている

ことを特徴とする請求項7記載の有機発光装置。

ことを特徴とする請求項1記載の有機発光装置。

【請求項9】

前記バリア層の厚さは、1nm以上100nm以下の範囲内である

【請求項10】

前記バリア層は、インジウム(In)、錫(Sn)、亜鉛(Zn)、カドミウム(Cd)、チタン(Ti)、クロム(Cr)、ガリウム(Ga)およびアルミニウム(Al)を含む群のうちの少なくとも1種の金属、その金属の合金、その金属酸化物、またはその金属変化物を含む光透過性材料により構成されている

ことを特徴とする請求項1記載の有機発光装置。

【請求項11】

50

40

10

20

前記バリア層は、酸化インジウム錫(ITO;Indium Tin Oxide)、酸化インジウム亜鉛(IZO;Indium Zinc Oxide)、酸化インジウム(In $_2$ O $_3$)、酸化錫(SnО $_2$)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化チタン(TiO $_2$) および酸化クロム(CrO $_2$) を含む群のうちの少なくとも1種の金属酸化物を含む光透過性材料により構成されている

ことを特徴とする請求項1記載の有機発光装置。

【請求項12】

前記バリア層は、前記共振層よりも仕事関数が大きい材料により構成されていることを特徴とする請求項1記載の有機発光装置。

【請求項13】

前記密着層は、クロム(Cr)、インジウム(In)、錫(Sn)、亜鉛(Zn)、カドミウム(Cd)、チタン(Ti)、アルミニウム(Al)、マグネシウム(Mg)およびモリブデン(Mo)を含む群のうちの少なくとも1種の金属、その金属の合金、その金属酸化物、またはその金属窒化物により構成されている

ことを特徴とする請求項1記載の有機発光装置。

ことを特徴とする請求項1記載の有機発光装置。

【請求項14】

前記共振層は、銀(Ag)または銀を含む合金により構成されていることを特徴とする請求項1記載の有機発光装置。

【請求項15】

前記共振層は、銀(Ag)と共に、パラジウム(Pd)、ネオジウム(Nd)、サマリウム(Sm)、イットリウム(Y)、セリウム(Ce)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、エルビウム(Er)、イッテルビウム(Yb)、スカンジウム(Sc)、ルテニウム(Ru)、銅(Cu)および金(Au)を含む群のうちの少なくとも1種を含む合金により構成されている

【請求項16】

前記基体に、前記3つの有機発光素子が配設される下地領域を平坦化するための平坦化層が設けられており、

前記密着層は、前記平坦化層との密着性を高めるためのものであることを特徴とする請求項1記載の有機発光装置。

【請求項17】

前記共振層と前記第2の電極層との間の光学的距離Lは、数1の関係を満たしていることを特徴とする請求項1記載の有機発光装置。

(数1)

 $(2 L) / \lambda + \Phi / (2 \pi) = m$

(式中、 L , λ , Φ , m は、 L が 共振層 (共振層の うちのバリア層に 隣接する 第 1 の 端面) と 第 2 の 電極層 (第 2 の 電極層の うちの 発光層を含む層に 隣接する 第 2 の 端面) と の 間 の 光 学 的 距離 、 λ が 放出 した い 光 の スペクトルの ピーク 波 長 、 Φ が 共振 層 (第 1 の 端 面) お よ び 第 2 の 電極層 (第 2 の 端面) で 生 じ る 反 射 光 の 位 相 シ フ ト 、 m が 整 数 を そ れ ぞ れ 表 し て い る 。)

【請求項18】

前記3つの有機発光素子は、前記発光層において発生した光を前記共振層と前記第2の電極層との間で共振させたのち、前記第1の電極層または前記第2の電極層のいずれか一方を経由して前記3色の光を放出するものである

ことを特徴とする請求項1記載の有機発光装置。

【請求項19】

前記3つの有機発光素子は、前記第1の電極層を経由して前記3色の光を放出するものであり、

前記共振層の厚さは1 n m 以上50 n m 以下の範囲内、前記第2の電極層の厚さは100 n m 以上300 n m 以下の範囲内である

10

20

30

50

ことを特徴とする請求項18記載の有機発光装置。

【請求項20】

前記3つの有機発光素子は、前記第2の電極層を経由して前記3色の光を放出するものであり、

前記共振層の厚さは100mm以上300mm以下の範囲内、前記第2の電極層の厚さは1mm以上10mm以下の範囲内である

ことを特徴とする請求項18記載の有機発光装置。

【請求項21】

基体に設けられた3つの有機発光素子を備え、これらの3つの有機発光素子が、いずれも前記基体に近い側から順に第1の電極層、発光層を含む層および第2の電極層が積層された構成を有すると共に、前記発光層において発生した光を互いに異なる3色の光に変換して放出する有機発光装置の製造方法であって、

前記基体に近い側から順に、前記基体との密着性を高めるための密着層と、前記発光層において発生した光を前記第2の電極層との間で共振させるための共振層と、この共振層を保護するためのバリア層とが積層された構成を有するように、前記第1の電極層を形成する工程を含み、

前記バリア層の厚さが、前記3つの有機発光素子間において互いに異なるようにすることを特徴とする有機発光装置の製造方法。

【請求項22】

前記第1の電極層を形成する工程は、

前記基体を覆うように、前記密着層と、前記共振層と、前記バリア層の一部を構成する第1のバリア層部分とをこの順に形成して積層させる工程と、

この第1のバリア層部分のうち、前記3つの有機発光素子のうちの第1の有機発光素子が形成されることとなる第1の領域上に、第1のマスクをパターン形成する工程と、

この第1のマスクおよびその周辺の前記第1のバリア層部分を覆うように、前記バリア層の他の一部を構成する第2のバリア層部分を形成する工程と、

この第2のバリア層部分のうち、前記3つの有機発光素子のうちの第2の有機発光素子が形成されることとなる第2の領域上に、第2のマスクをパターン形成する工程と、

この第2のマスクおよびその周辺の前記第2のバリア層部分を覆うように、前記バリア層のさらに他の一部を構成する第3のバリア層部分を形成する工程と、

この第3のバリア層部分のうち、前記3つの有機発光素子のうちの第3の有機発光素子が形成されることとなる第3の領域上に、第3のマスクをパターン形成する工程と、

前記第1、第2および第3のマスクを使用し、前記密着層、前記共振層、ならびに前記第1、第2および第3のバリア層部分を連続的にエッチングしてパターニングする工程と、を含み、

前記第1の電極層のうちの前記バリア層を、前記第1の領域において前記第1のバリア層部分により形成し、前記第2の領域において前記第1および第2のバリア層部分により形成し、前記第3の領域において前記第1、第2および第3のバリア層部分により形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項23】

前記第1、第2および第3の有機発光素子において、それぞれ青色の光、緑色の光および赤色の光を放出するようにする

ことを特徴とする請求項22記載の有機発光装置の製造方法。

【請求項24】

前記第1の電極層を形成する工程は、

前記基体を覆うように、前記密着層と、前記共振層と、前記バリア層を構成する第1、 第2 および第3 のバリア層部分とをこの順に形成して積層させる工程と、

この第3のバリア層部分のうち、前記3つの有機発光素子のうちの第1の有機発光素子が形成されることとなる第1の領域上に、第1のマスクをパターン形成する工程と、

10

20

30

50

40

20

30

40

50

この第1のマスクを使用し、前記第3のバリア層部分をエッチングしてパターニングすることにより、前記第1の領域に前記第3のバリア層部分を残存させると共に、その第1の領域の周辺領域に前記第2のバリア層部分を露出させる工程と、

前記第2のバリア層部分の露出面のうち、前記3つの有機発光素子のうちの第2の有機発光素子が形成されることとなる第2の領域上に、第2のマスクをパターン形成する工程と、

この第2のマスクと共に前記第1のマスクを使用し、前記第2のバリア層部分をエッチングしてパターニングすることにより、前記第1および第2の領域に前記第2のバリア層部分を残存させると共に、それらの第1および第2の領域の周辺領域に前記第1のバリア層部分を露出させる工程と、

前記第1のバリア層部分の露出面のうち、前記3つの有機発光素子のうちの第3の有機発光素子が形成されることとなる第3の領域上に、第3のマスクをパターン形成する工程と、

この第3のマスクと共に前記第1および第2のマスクを使用し、前記密着層、前記共振層および前記第1のバリア層部分を連続的にエッチングしてパターニングすることにより、前記第1、第2および第3の領域に前記第1のバリア層部分を残存させる工程と、を含み、

前記第1の電極層のうちの前記バリア層を、前記第1の領域において前記第1、第2および第3のバリア層部分により形成し、前記第2の領域において前記第1および第2のバリア層部分により形成し、前記第3の領域において前記第1のバリア層部分により形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項25】

前記第1、第2および第3の有機発光素子において、それぞれ赤色の光、緑色の光および青色の光を放出するようにする

ことを特徴とする請求項24記載の有機発光装置の製造方法。

【請求項26】

インジウム(In)、錫(Sn)、亜鉛(Zn)、カドミウム(Cd)、チタン(Ti)、クロム(Cr)、ガリウム(Ga)およびアルミニウム(Al)を含む群のうちの少なくとも1種の金属、その金属の合金、その金属酸化物、またはその金属窒化物を含む光透過性材料を使用して、前記バリア層を形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項27】

酸化インジウム錫(ITO;Indium Tin Oxide)、酸化インジウム亜鉛(IZO;Indium Zinc Oxide)、酸化インジウム(In₂O₃)、酸化錫(SnO₂)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化チタン(TiO₂)および酸化クロム(CrO₂)を含む群のうちの少なくとも1種の金属酸化物を含む光透過性材料を使用して、前記バリア層を形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項28】

クロム(Cr)、インジウム(In)、錫(Sn)、亜鉛(Zn)、カドミウム(Cd)、チタン(Ti)、アルミニウム(Al)、マグネシウム(Mg)およびモリブデン(Mo)を含む群のうちの少なくとも1種の金属、その金属の合金、その金属酸化物、またはその金属窒化物を使用して、前記密着層を形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項29】

銀(Ag)または銀を含む合金を使用して、前記共振層を形成することを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項30】

銀 (Ag) と共に、パラジウム (Pd)、ネオジウム (Nd)、サマリウム (Sm)、

イットリウム (Y)、セリウム (Ce)、ユウロピウム (Eu)、ガドリニウム (Gd)、テルビウム (Tb)、ジスプロシウム (Dy)、エルビウム (Er)、イッテルビウム (Yb)、スカンジウム (Sc)、ルテニウム (Ru)、銅 (Cu) および金 (Au)を含む群のうちの少なくとも 1 種を含む合金を使用して、前記共振層を形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項31】

さらに、前記基体に、前記3つの有機発光素子が形成されることとなる下地領域を平坦 化するための平坦化層を形成する工程を含み、

この平坦化層に、前記密着層を形成する

ことを特徴とする請求項21記載の有機発光装置の製造方法。

【請求項32】

基体に3つの有機発光素子が設けられた構成を有する有機発光装置を備え、この有機発光装置のうちの前記3つの有機発光素子が、いずれも前記基体に近い側から順に第1の電極層、発光層を含む層および第2の電極層が積層された構成を有すると共に、前記発光層において発生した光を互いに異なる3色の光に変換して放出することにより映像を表示する表示装置であって、

前記第1の電極層は、前記基体に近い側から順に、前記基体との密着性を高めるための密着層と、前記発光層において発生した光を前記第2の電極層との間で共振させるための共振層と、この共振層を保護するためのバリア層とが積層された構成を有し、

前記バリア層の厚さは、前記3つの有機発光素子間において互いに異なっていることを特徴とする表示装置。

30

10

20

【技術分野】

[0001]

本発明は、有機エレクトロルミネッセンス(Electro Luminescence;以下、単に「EL」という。)現象を利用して発光する有機発光装置およびその製造方法、ならびに有機発光装置を備えた表示装置に関する。

【背景技術】

[0002]

近年、フラットパネルディスプレイの1つとして、有機EL現象を利用して映像を表示する有機ELディスプレイが注目されている。この有機ELディスプレイは、有機発光素子自体の発光現象を利用しているために視野角が広く、かつ消費電力が低い点において優れている。特に、有機ELディスプレイは、例えば、高精細度の高速ビデオ信号に対して十分な応答性を有するものと考えられており、映像分野等において実用化に向けて開発が進められている。

[0003]

有機ELディスプレイは、主に、有機発光素子およびその有機発光素子を駆動させるための駆動素子(TFT;Thin Film Transistor)が設けられた駆動パネルと封止パネルとが対向配置され、これらの駆動パネルと封止パネルとが有機発光素子を挟むように接着層を介して貼り合わされた構成を有している。有機発光素子は、2つの電極層の間に発光層を含む層が挟まれた構成を有しており、この発光層を含む層は、光の発生源としての発光層と共に、その発光層以外の層として正孔輸送層や電子輸送層などを含んで構成されている。この有機ELディスプレイの表示方式としては、例えば、発光層において発生した光を一方の電極層(封止パネルに近い側の電極層)を経由して放出するトップエミッション型と、他方の電極層(駆動パネルに近い側の電極層)を経由して放出するボトムエミッション型とが知られている。

[0004]

この有機ELディスプレイにおいて、有機発光素子を利用してフルカラーの映像を表示する機構としては、既にいくつかの機構が技術化されている。具体的には、例えば、光の3原色に対応する3色、すなわち赤色(R;Red)、緑色(G;Green)および青色(B;Blue)の光を別々に発生可能な3種類の発光層を蒸着して塗り分けることにより3つの有機発光素子を形成し、これらの3つの有機発光素子に基づいて3色の画素を構成する表示機構が技術化されている。また、例えば、白色光を発生させる3つの有機発光素子を使用し、色変換用のカラーフィルタを利用して各白色光を3色(R,G,B)の光に変換することにより映像を表示する表示機構が技術化されている。この場合には、カラーフィルタの色変換機能を確保するために、フィルタ濃度を高めにしたり、あるいはフィルタ厚を厚めに設計する必要がある。

[0005]

なお、有機ELディスプレイの表示機構に関しては、他の関連技術もいくつか提案されている。具体的には、例えば、有機発光素子から放出される光の放出効率を向上させるために、発光層を含む層のうち、その発光層以外の層の厚さを各色ごとに異ならせる技術が知られている(例えば、特許文献 1 参照。)。この有機ELディスプレイでは、発光層以外の層の厚さの差異、すなわち光の放出過程における光路長の差異に基づき、光の干渉現象を利用して各色ごとに光の放出効率が向上する。

【特許文献1】特開平2000-323277号公報

[0006]

また、例えば、上記した関連技術と同様に光の放出効率を向上させるために、発光層以外の層の厚さを各色ごとに一定にした上で、電極層(透明電極)の厚さを各色ごとに異ならせる技術が知られている(例えば、特許文献 2 参照。)。この有機ELディスプレイでは、電極層の厚さの差異に基づき、光の干渉現象を利用して各色ごとに光の放出効率が向上する。

【特許文献2】特開2003-142277号公報

50

40

10

[0007]

また、例えば、電極層(透明電極)を低抵抗化するために、その電極層に金属薄膜(例えば50nm以下の厚さの銀(Ag))を挿入する技術が知られている(例えば、特許文献3参照。)。この有機ELディスプレイでは、金属薄膜の導電特性を利用して、電極層が低抵抗化される。

【特許文献3】特開2002-334792号公報

[0008]

また、例えば、高輝度の白色光を効率よく発生させるために、青色の光を発生させる青色発光層と、緑色の光を発生させる緑色発光層と、赤色の光を発生させる赤色発光層とを積層することにより発光層を構成する技術が知られている(例えば、特許文献 4 参照。)。この有機ELディスプレイでは、青色発光層、緑色発光層および赤色発光層が積層されることにより構成された発光層の構成的特徴に基づき、白色光が高輝度化すると共に、その白色光の発生効率が向上する。

【特許文献4】特開平10-003990号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

ところで、有機ELディスプレイの普及を図るためには、例えば、表示性能の確保と製造可能性の確保とを両立する必要がある。しかしながら、上記した従来の有機ELディスプレイでは、主に表示機構や製造手法に起因して、表示性能の確保と製造可能性の確保とを両立することが困難であるという問題があった。

[0010]

具体的には、3種類の発光層を蒸着して塗り分けることにより3つの有機発光素子が形成された従来の有機ELディスプレイでは、例えば、各有機発光素子において発生した3色(R;Red,G;Green,B;Blue)の光をそのまま利用することが可能なため、光層和損失が少ないという表示性能面において利点を有しているが、3種類の発光層を蒸着して塗り分けるためにマスク(例えばメタルマスク)が必要なため、このメタルマスクの大型化が困難な点に起因して、ディスプレイサイズの大型化が困難であるという製造であるという製造であるというでは、Gの材質であり、メタルマスクを使用した発光層の塗り分けが不要であるため、ディスプレイでは、例えば、各発光層が互いにプロが、が、メタルマスクを使用した発光層の塗り分けが不要であるため、ディスプレイでは、の大型化を図ることが可能であるという製造可能性面において利点を有している。光が吸収されやすいため、光の利用損失が大きくなるという表示性能面において欠点を有している。

[0011]

なお、従来の有機ELディスプレイに関しては、一連の関連技術として上記したように、主に表示性能面のみに関して改善を図るためにいくつかの提案がなされている現状にあるため、有機ELディスプレイが普及しつつある今日の市場動向を考慮すれば、製造可能性面において未だ改善の余地があると言える。

[0012]

本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、表示性能の確保と製造可能性の確保とを両立することが可能な有機発光装置を提供することにある。

[0013]

また、本発明の第2の目的は、本発明の有機発光装置を容易かつ安定に製造することが可能な有機発光装置の製造方法を提供することにある。

[0014]

さらに、本発明の第3の目的は、本発明の有機発光装置を備えた表示装置を提供することにある。

【課題を解決するための手段】

50

10

20

30

30

40

50

[0015]

本発明に係る有機発光装置は、基体に設けられた3つの有機発光素子を備え、これらの3つの有機発光素子が、いずれも基体に近い側から順に第1の電極層、発光層を含む層および第2の電極層が積層された構成を有すると共に、発光層において発生した光を互いに異なる3色の光に変換して放出するものであり、第1の電極層が、基体に近い側から順に、基体との密着性を高めるための密着層と、発光層において発生した光を第2の電極層との間で共振させるための共振層と、この共振層を保護するためのバリア層とが積層された構成を有し、バリア層の厚さが3つの有機発光素子間において互いに異なっているものである。

(9)

[0016]

また、本発明に係る有機発光装置の製造方法は、基体に設けられた3つの有機発光素子を備え、これらの3つの有機発光素子が、いずれも基体に近い側から順に第1の電極層、発光層を含む層および第2の電極層が積層された構成を有すると共に、発光層において発生した光を互いに異なる3色の光に変換して放出する有機発光装置を製造する方法であり、基体に近い側から順に、基体との密着性を高めるための密着層と、発光層において発生した光を第2の電極層との間で共振させるための共振層と、この共振層を保護するためのバリア層とが積層された構成を有するように第1の電極層を形成する工程を含み、バリア層の厚さが3つの有機発光素子間において互いに異なるようにしたものである。

[0017]

さらに、本発明に係る表示装置は、基体に3つの有機発光素子が設けられた構成を有する有機発光装置を備え、この有機発光装置のうちの3つの有機発光素子が、いずれも基体に近い側から順に第1の電極層、発光層を含む層および第2の電極層が積層された構成を有すると共に、発光層において発生した光を互いに異なる3色の光に変換して放出することにより映像を表示するものであり、第1の電極層が、基体に近い側から順に、基体との密着性を高めるための密着層と、発光層において発生した光を第2の電極層との間で共振させるための共振層と、この共振層を保護するためのバリア層とが積層された構成を有し、バリア層の厚さが3つの有機発光素子間において互いに異なっているものである。

[0018]

本発明に係る有機発光装置では、第1の電極層を構成するバリア層の厚さが3つの有機発光素子間において互いに異なっているため、例えば、発光層において、3つの有機発光素子間において互いに等しい色の光を発生させるようにすれば、バリア層の厚さの差異に基づく3つの有機発光素子間の共振長の差異に起因した光の干渉現象を利用して、発光層においた発生した光を映像表示用の3色の光(赤色の光、緑色の光および青色の光)に変換することが可能である。

[0019]

また、本発明に係る有機発光装置の製造方法では、バリア層の厚さが3つの有機発光素子間において互いに異なっているような特徴的な構成を有する第1の電極層を継続的に再現性よく形成するために、既存の薄膜プロセスしか使用せず、新規かつ煩雑な製造プロセスを使用しない。

[0020]

さらに、本発明に係る表示装置では、本発明の有機発光装置を備えているため、表示装置を製造する上でメタルマスクを使用して発光層を塗り分ける必要がないと共に、発光層において発生した光をカラーフィルタで色変換する必要がない。これにより、ディスプレイサイズの大型化を図ることが可能になると共に、光の利用効率を確保することが可能になる。

【発明の効果】

[0021]

本発明に係る有機発光装置によれば、第1の電極層を構成するバリア層の厚さが3つの有機発光素子間において互いに異なっている構成的特徴に基づき、発光層においた発生した光を映像表示用の3色の光(赤色の光、緑色の光および背色の光)に変換することが可

20

40

50

能になるため、この有機発光装置を利用して、表示性能の確保と製造可能性の確保とを両立することが可能な表示装置を構成することができる。

[0022]

また、本発明に係る有機発光装置の製造方法によれば、既存の薄膜プロセスのみを使用して、バリア層の厚さが3つの有機発光素子間において互いに異なっている有機発光装置を製造することが可能なため、有機発光装置を容易かつ安定に製造することができる。

[0023]

さらに、本発明に係る表示装置によれば、本発明の有機発光装置を備え、ディスプレイサイズの大型化を図ることが可能になると共に光の利用効率を確保することが可能になるため、表示性能の確保と製造可能性の確保とを両立することができる。

【発明を実施するための最良の形態】

[0024]

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

[0025]

[第1の実施の形態]

まず、図1を参照して、本発明の第1の実施の形態に係る表示装置としての有機ELディスプレイの構成について説明する。図1は、有機ELディスプレイの断面構成を表している。

[0026]

この有機 E L ディスプレイは、有機 E L 現象を利用して映像を表示するものであり、例えば、図 1 に示したように、有機発光素子 3 0 およびその有機発光素子 3 0 を駆動させるための駆動素子(T F T; Thin Film Transistor) 1 2 が設けられた有機発光表示装置としての駆動パネル 1 0 と封止パネル 5 0 とが対向配置され、これらの駆動パネル 1 0 と封止パネル 5 0 とが有機発光素子 3 0 を挟むように接着層 6 0 を介して貼り合わされた構成を有している。この有機 E L ディスプレイは、例えば、有機発光素子 3 0 において発生した光 E を上方、すなわち封止パネル 5 0 から外部に放出するトップエミッション型構造を有している。

[0027]

駆動パネル10は、基体としての駆動用基板11に、上記した有機発光素子30として3つの有機発光素子30R,30G,30Bが設けられた構成を有している。この駆動パネル10は、具体的には、例えば、駆動用基板11の一面に、TFT12として3つのTFT121,122,123と、層間絶縁層13と、各TFT121~123ごとに2組ずつ設けられた配線14と、有機発光素子30R,30G,30Bが配設される下地領域としての平坦化層15と、上記した有機発光素子30R,30G,30B、補助配線40および層内絶縁層17と、保護層20とがこの順に積層された構成を有している。

[0028]

駆動用基板11は、有機発光素子30およびTFT12を支持するためのものであり、例えば、ガラスなどの絶縁性材料により構成されている。

[0029]

TFT12(121,122,123)は、有機発光素子30(30R,30G,30B)を駆動させて発光させるためのものである。このTFT12は図示しないゲート電極、ソース電極およびドレイン電極を含んで構成されており、そのゲート電極は走査回路(図示せず)に接続され、ソース電極およびドレイン電極はいずれも層間絶縁層13に設けられた接続孔(図示せず)を通じて配線14に接続されている。なお、TFT12の構成は特に限定されず、例えば、ボトムゲート型であってもよいし、あるいはトップゲート型であってもよい。

[0030]

層間絶縁層13は、各TFT $121\sim123$ 間を電気的に分離するためのものであり、例えば、酸化シリコン(SiO $_2$)やPSG(Phospho-Silicate Glass)などの絶縁性材料により構成されている。

[0031]

配線14は、信号線として機能するものであり、例えば、アルミニウム(Al)またはアルミニウム銅合金(AlCu)などの導電性材料により構成されている。

[0032]

平坦化層15は、有機発光素子30が配設される下地領域を平坦化し、その有機発光素子30を構成する一連の層を高精度に形成するためのものであり、例えば、ポリイミドまたはポリベンゾオキサゾールなどの有機絶縁性材料や、酸化シリコン(SiO₂)などの無機絶縁性材料により構成されている。

[0033]

有機発光素子30(30R、30G、30R)は映像表示用の光Eを放出するものであ り、具体的には、後述する発光層を含む層18において発生した所定の色(波長)の光を 光の 3 原色に対応する 3 色(R; Red, G; Green, B; Blue)の光に変換して放出する も の で あ る 。 有 機 発 光 素 子 3 0 R は 、 赤 色 の 光 E R を 放 出 す る も の で あ り 、 駆 動 用 基 板 1 1 に近い側から順に、第1の電極層としての下部電極層16Rと、発光層を含む層18と 、第2の電極層としての上部電極層19とが積層された構成を有している。有機発光素子 30Gは、緑色の光EGを放出するものであり、駆動用基板11に近い側から順に、第1 の電極層としての下部電極層16Gと、発光層を含む層18と、上部電極層19とが積層 された構成を有している。有機発光素子30Bは、青色の光EBを放出するものであり、 駆動用基板11に近い側から順に、第1の電極層としての下部電極層16Bと、発光層を 含む層18と、上部電極層19とが積層された構成を有している。これらの有機発光素子 30R, 30G, 30Bは、例えば、各TFT121~123にそれぞれ対応して配置さ れており、下部電極層16R、16G、16Bは、いずれも平坦化層15に設けられた接 続孔(図示せず)を通じて各TFT121~123ごとに設けられた配線14に接続され ている。なお、有機発光素子30R,30G,30Bの詳細な構成に関しては後述する(図2および図3参照)。

[0034]

補助配線40は、図示しない電源と上部電極層19との間の抵抗の差異を緩和することにより有機発光素子30の抵抗差を低減させるためのものであり、その上部電極層19と電気的に接続されている。この補助配線40は、有機発光素子30R、30G、30Bと同一階層に配設されており、例えば、その有機発光素子30Rとほぼ同様の積層構成を有している。なお、補助配線40の詳細な構成に関しては後述する(図2参照)。

[0035]

層内絶縁層17は、有機発光素子30R,30G,30Bおよび補助配線40間を電気的に分離すると共に、各有機発光素子30R,30G,30Bから放出される光E(ER,EG,EB)の放出範囲を規定するためのものであり、有機発光素子30R,30G,30Bおよび補助配線40の周囲に配設されている。この層内絶縁層17は、例えば、ポリイミドまたはポリベンゾオキサゾールなどの有機絶縁性材料や酸化シリコン(SiO2)などの無機絶縁性材料により構成されており、その厚さは約600nmである。

[0036]

保護層20は、有機発光素子30を保護するためのものであり、例えば、酸化シリコン(SiO₂) や窒化シリコン(SiN)などの光透過性の誘電材料により構成されたパッシベーション膜である。

[0037]

封止パネル 5 0 は、封止用基板 5 1 の一面にカラーフィルタ 5 2 が設けられた構成を有している。

[0038]

封止用基板 5 1 は、カラーフィルタ 5 2 を支持すると共に、有機発光素子 3 0 R, 3 0 G, 3 0 B から放出された光 E R, E G, E B を透過して外部に放出可能とするためのものであり、例えば、ガラスなどの絶縁性材料により構成されている。

[0039]

50

40

カラーフィルタ 5 2 は、有機発光素子 3 0 R, 3 0 G, 3 0 B からそれぞれ放出された 光 E R, E G, E B を 有機 E L ディスプレイの外部へ導くと共に、その有機 E L ディスプレイの外部へ導くと共に、その有機 E L ディスプレイの外部へ導くと共に、その有機 E L ディスプレイの内部へ外光が侵入して有機発光素子 3 0 や補助配線 4 0 において反射した際に、その反射光を吸収することによりコントラストを確保するためのものである。このカラーフィルタ 5 2 は、各有機発光素子 3 0 R, 3 0 G, 3 0 B に対応して配置された 3 つの領域、すなわち赤色領域 5 2 R、緑色領域 5 2 G および青色領域 5 2 B を含んで構成されており、これらの赤色領域 5 2 R、緑色領域 5 2 G および青色領域 5 2 B は、例えば、それぞれ赤色、緑色および青色の顔料が混入された樹脂により構成されている。

[0.040]

接着層60は、駆動パネル10と封止パネル50とを貼り合わせるためのものであり、例えば、熱硬化型樹脂などの接着性材料により構成されている。

[0041]

なお、図1では、図示を簡略化するために3つのTFT12 (TFT121~123) および1組の有機発光素子30(3つの有機発光素子30R,30G,30B) のみしか 示していないが、実際には駆動用基板11に複数のTFT12がマトリックス状に設けられており、これらの複数のTFT12に対応して複数組の有機発光素子30が配置されている。

[0042]

次に、図1および図2を参照して、有機発光素子30R,30G,30Bおよび補助配線40の詳細な構成について説明する。図2は、有機発光素子30R,30G,30Bおよび補助配線40の断面構成を拡大して模式的に表している。

[0043]

有機発光素子30R,30G,30Bは、例えば、図2に示したように、互いに異なる総厚を有する積層構成を有している。

[0044]

第1の有機発光素子としての有機発光素子30Bは、上記したように、駆動用基板11に近い側から順に、下部電極層16Bと、発光層を含む層18と、上部電極層19とが積層された構成を有している。この下部電極層16Bは、駆動用基板11に近い側から順に、駆動用基板11に近い側があるには駆動用基板11に近い側があると順に、駆動用基板11に近い側があると順に、整備層19との間で共振させるための共振層162Bと、この共振層162Bを保護はためのバリア層163Bとが積層された構成を有している。特に、バリア層163Bとが積層された構成を有しての有機発光素子30Bは、上記した光を共振層162Bと上部電極層19と上部電極層19との間の光学的距離L(LB)は、例えば、下記の数2の関係を満たしての光に、有機発光素子30Bは、発光層を含む層18において発生した光を青色の光にる。特に、有機発光素子30Bは、発光層を含む層18において発生した光を青色の光にあり、より具体的には、例えば、トップエミッション型の有機ELディスプレイでは、共振層162Bと上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19との間で共振させた光EBを上部電極層19と

[0045]

(数2)

 $(2 L B) / \lambda + \Phi / (2 \pi) = m B$

(式中、LB、λ、Φ、mBは、LBが共振層162B(共振層162Bのうちのバリア層163Bに隣接する第1の端面としての端面PB1)と上部電極層19(上部電極層19のうちの発光層を含む層18に隣接する第2の端面としての端面PB2)との間の光学的距離、λが放出したい光のスペクトルのピーク波長、Φが共振層162B(端面PB1)および上部電極層19(端面PB2)で生じる反射光の位相シフト、mBが0または整数(例えばmB=0)をそれぞれ表している。)

[0046]

10

30

20

30

40

50

密着層161Bは、例えば、クロム (Cr)、インジウム (In)、錫 (Sn)、亜鉛 (Zn)、カドミウム (Cd)、チタン (Ti)、アルミニウム (Al)、マグネシウム (Mg) およびモリブデン (Mo) を含む群のうちの少なくとも1種の金属、その金属の 合金、その金属酸化物、またはその金属窒化物などにより構成されており、その厚さは約 1 n m ~ 3 0 0 n m である。これらの「合金」、「金属酸化物」および「金属窒化物」と しては、例えば、合金としてインジウム錫合金(InSn)、インジウム亜鉛合金(In Z n)、アルミニウムネオジム合金(A l N d)およびアルミニウム銅合金ケイ素化物(A1CuSi)、金属酸化物として酸化インジウム錫(ITO;Indium Tin Oxide)や酸 化インジウム亜鉛(IZO;Indium Zinc Oxide)、金属窒化物として窒化チタン(Ti N)などが挙げられる。特に、密着層161Bは、例えば、密着性や導電性に優れたIT 〇やIZOにより構成されているのが好ましい。この密着層161Bの厚さは、例えば、 上記したように導電性に優れたITOやIZOにより構成されている場合には、約1nm ~300nmが好ましい上、さらにITOの表面平坦性を考慮すれば約3nm~50nm がより好ましく、一方、ITOやIZOよりも導電性が劣る酸化クロム (Cr2 〇3) に より構成されている場合には、配線14と下部電極層16Bとの間の接続抵抗が大きくな りすぎることを防止する上で約1nm~20nmが好ましい。

[0047]

共振層162Bは、発光層を含む層18において発生した光を上部電極層19との間で共振させるための反射層として機能するものであり、例えば、銀(Ag)または銀を含む合金により構成されている。この銀を含む合金としては、例えば、銀と共に、パラジウム(Pd)、ネオジウム(Nd)、サマリウム(Sm)、イットリウム(Y)、セリウム(Ce)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、エルビウム(Er)、イッテルビウム(Yb)、スカンジウム(Sc)、ルテニウム(Ru)、銅(Cu)および金(Au)を含む群のうちの少なくとも1種を含む合金、具体的には銀パラジウム銅合金(AgPdCu)などが挙げられる。この共振層162Bの厚さよりも厚くなっており、約100mm~300mmである。

[0048]

バリア層163B(163B1)は、例えば、共振層162Bよりも仕事関数が大きい材料により構成されており、その厚さは約1nm~100nmである。具体的には、バリア層163Bは、例えば、インジウム(In)、錫(Sn)、亜鉛(Zn)、カドミウム(Cd)、チタン(Ti)、クロム(Cr)、ガリウム(Ga)およびアルミニウム(A1)を含む群のうちの少なくとも1種の金属、その金属の合金、その金属酸化物、またはその金属窒化物を含む光透過性材料により構成されている。これらの「合金」、「金属酸化物」および「金属窒化物」としては、例えば、合金としてインジウム錫合金やインジウム亜鉛合金、金属酸化物としてITO、IZO、酸化インジウム(In2〇3)、酸化錫(SnO2)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化チタン(TiO2)および酸化クロム(CrO2)、金属窒化物として窒化チタンや窒化クロム(CrN)などが挙げられる。

[0049]

第2の有機発光素子としての有機発光素子30Gは、バリア層163Gの構成が異なる点を除き、有機発光素子30Bとほぼ同様の構成を有している。すなわち、有機発光素子30Gは、上記したように、駆動用基板11に近い側から順に、下部電極層16Gと、発光層を含む層18と、上部電極層19とが積層された構成を有しており、この下部電極層16Gは、駆動用基板11に近い側から順に、密着層161Gと、共振層162Gと、バリア層163Gは、例えば、バリア層163Gとが積層された構成を有している。特に、バリア層163Gは、例えば、バリア層163B1と同様の厚さを有する下部バリア層163G1と、上部バリア層163G1および上部バリア層163G2は、例えば、互いに同一の材質であってもよいし、互いに異なる材質であってもよい。この有機発光素子30Gは、有機発光素子30Bと同様に、

発光層を含む層18において発生した光を共振層162Gと上部電極層19との間で共振させる共振構造を有しており、共振層162Gと上部電極層19との間の光学的距離L(LG)は、例えば、下記の数3の関係を満たしている。特に、有機発光素子30Gは、発光層を含む層18において発生した光を緑色の光EGに変換するものであり、より具体的には、例えば、トップエミッション型の有機ELディスプレイでは、共振層162Gと上部電極層19との間で共振させた光EGを上部電極層19を経由して放出するものである

[0050]

(数3)

 $(2 L G) / \lambda + \Phi / (2 \pi) = m G$

(式中、LG, Φ , m G は、L G が共振層 162G (共振層 162G のうちのバリア層 163G に隣接する第 1 の端面としての端面 PG1) と上部電極層 19 (上部電極層 190 うちの発光層を含む層 18 に隣接する第 20 の端面としての端面 PG2) との間の光学的距離、 Φ が共振層 162G (端面 PG1) および上部電極層 19 (端面 PG2) で生じる反射光の位相シフト、m G が 0 または整数 (例えばm G=0) をそれぞれ表している。)

[0051]

第3の有機発光素子としての有機発光素子30Rは、バリア層163Rの構成が異なる 点を除き、有機発光素子30Bとほぼ同様の構成を有している。すなわち、有機発光素子 30 R は、上記したように、駆動用基板 1 1 に近い側から順に、下部電極層 1 6 R と、発 光層を含む層18と、上部電極層19とが積層された構成を有しており、この下部電極層 16Rは、駆動用基板11に近い側から順に、密着層161Rと、共振層162Rと、バ リア層163Rとが積層された3層構成を有している。特に、バリア層163Rは、例え ば、バリア層163B1と同様の厚さを有する下部バリア層163R1と、下部バリア層 163G1と同様の厚さを有する中間バリア層163R2と、上部バリア層163R3と がこの順に積層された3層構造を有している。これらの下部バリア層163R1、中間バ リア層163R2および上部バリア層163R3は、例えば、互いに同一の材質であって もよいし、互いに異なる材質であってもよい。この有機発光素子30Rは、有機発光素子 30 B と 同様に、発光層を含む層 1 8 において発生した光を共振層 1 6 2 R と上部電極層 19との間で共振させる共振構造を有しており、共振層162Rと上部電極層19との間 の光学的距離L(LR)は、例えば、下記の数4の関係を満たしている。特に、有機発光 素子30Rは、発光層を含む層18において発生した光を緑色の光ERに変換するもので あり、より具体的には、例えば、トップエミッション型の有機ELディスプレイでは、共 振層162Rと上部電極層19との間で共振させた光ERを上部電極層19を経由して放 出するものである。

[0052]

(数4)

 $(2 L R) / \lambda + \Phi / (2 \pi) = m R$

(式中、LR、Φ、mRは、LRが共振層162R(共振層162Rのうちのバリア層163Rに隣接する第1の端面としての端面PR1)と上部電極層19(上部電極層19のうちの発光層を含む層18に隣接する第2の端面としての端面PR2)との間の光学的距離、Φが共振層162R(端面PR1)および上部電極層19(端面PR2)で生じる反射光の位相シフト、mRが0または整数(例えばmR=0)をそれぞれ表している。)

[0053]

なお、有機発光素子30Gを構成する密着層161G、共振層162Gおよびバリア層163G(下部バリア層163G1、上部バリア層163G2)、ならびに有機発光素子30Rを構成する密着層161R、共振層162Rおよびバリア層163R(下部バリア層163R1、中間バリア層163R2、上部バリア層163R3)の機能や材質等は、有機発光素子30Bを構成する密着層161B、共振層162Bおよびバリア層163B(163B1)とそれぞれ同様である。

[0054]

50

40

10

20

20

30

40

50

確認までに、図2では、有機発光素子30R,30G,30B間の構成の差異を見やすくするために、発光層を含む層18および上部電極層19の双方を各有機発光素子30R,30G,30Bごとに分離して示しているが、実際には、例えば、図1および図2に示したように、発光層を含む層18は、有機発光素子30Rのうちの下部電極層16R(バリア層163R)上、有機発光素子30Gのうちの下部電極層16G(上部バリア層163G)上、ならびに有機発光素子30Bのうちの下部電極層16B(上部バリア層163B3)上の全てを経由するように連続的に延在していると共に、上部電極層19は、発光層を含む18を覆うように連続的に延在しており、すなわち発光層を含む層18および上部電極層19の双方は、いずれも各有機発光素子30R,30G,30Bにより共有されている。なお、発光層を含む18の詳細な構成に関しては後述する(図3参照)。

[0055]

上部電極層19は、例えば、銀(Ag)、アルミニウム(A1)、マグネシウム(Mg)、カルシウム(Ca)、ナトリウム(Na)を含む群のうちの少なくとも1種の金属、またはその金属を含む合金などにより構成されている。この「金属を含む合金」としては、例えば、マグネシウム銀合金(MgAg)などが挙げられる。この上部電極層19の厚さは、例えば、トップエミッション型の有機ELディスプレイでは共振層162R,162G,162Bの厚さよりも薄くなっており、約1nm~10nmである。特に、上部電極層19は、上記したように有機発光素子30R,30G,30Bが共振構造を有している点に基づき、発光層を含む18において発生した光を共振層162R,162G,162Bとの間で共振させるために反射させると共に必要に応じて共振後の光ER,EG,EBを外部に放出させるために透過させる半透過反射層として機能するものである。

[0056]

図2に示したように、発光層を含む層18の厚さHR, HG, HBは、3つの有機発光素子30R, 30G, 30B間において互いに等しくなっている(HR=HG=HB)。この発光層を含む層18は、3つの有機発光素子30R, 30G, 30B間において互いに等しい色(波長)の光を発生させるものである。

[0057]

特に、バリア層163R,163G,163Bの厚さDR,DG,DBは、3つの有機、 発光素子30R,30G,30B間において互いに異なっており、具体的には、3つの有 機発光素子30R、30G、30Bから放出される3色の光ER、EG、EBに対応して 互いに異なっている。すなわち、厚さDR、DG、DBは、3つの有機発光素子30R、 30G,30Bが発光層を含む層18において発生した光をそれぞれ赤色の光ER、緑色 の光EGおよび青色の光EBに変換して放出可能となるように設定されており、具体的に は、3つの有機発光素子30尺、30G、30Bから放出される赤色の光ER、緑色の光 EGおよび青色の光EBに対応して順に薄くなっている(DR>DG>DB)。上記した 「発光層を含む層18において発生した光を赤色の光ER、緑色の光EGおよび青色の光 EBに変換して放出する」とは、図2に示したように、発光層を含む層18中の点NR, NG, NBにおいて発生した光が共振層162R, 162G, 162Bと上部電極層19 との間で共振したのちにその上部電極層19を経由して放出される過程において、3つの 有機発光素子30R,30G,30B間の共振長が互いに異なることに起因する光の干渉 現象を利用して、NR、NG、NBにおいて発生した際に互いに同一の波長を有していた 光の波長を放出時に各有機発光素子30R,30G,30Bごとに異ならせ、すなわち有 機発光素子30Rにおいて赤色に対応する波長、有機発光素子30Gにおいて緑色に対応 する波長、ならびに有機発光素子30Bにおいて青色に対応する波長にそれぞれシフトさ せることにより、最終的に赤色の光ER、緑色の光EGおよび青色の光EBを生成すると

[0058]

いう意味である。

補助配線40は、例えば、図2に示したように、発光層を含む18を含んでいない点を除き、有機発光素子30R、30G、30Bのうちの最も総厚が大きい素子、すなわち有機発光素子30Rと同様の積層構成を有している。

20

30

40

50

[0059]

次に、図1~図3を参照して、発光層を含む18の詳細な構成について説明する。図3 は、発光層含む層18の断面構成を拡大して模式的に表している。

[0060]

発光層を含む層18は、例えば、上記したように、有機発光素子30R,30G,30Bにより共有され、すなわち各有機発光素子30R,30G,30B間において共通の構成を有しており、所定の色(波長)の光として白色光を発生させるものである。この発光層を含む層18は、例えば、図2および図3に示したように、下部電極層16R,16G,16Bに近い側から順に、正孔輸送層181と、発光層182と、電子輸送層183とが積層された構成を有している。この発光層182は、例えば、正孔輸送層181に近い側から順に、赤色の光を発生させる赤色発光層182Rと、緑色の光を発生させる182Gと、青色の光を発生させる182Bとが積層された構成を有しており、すなわち赤色発光層182R、緑色発光層182Gおよび青色発光層182Bからそれぞれ発生した赤色の光、緑色の光および青色の光を合成することにより、結果として白色光を発生させるようになっている。

[0061]

正孔輸送層181は、発光層182へ注入される正孔の注入効率を高めるためのものであり、例えば、正孔注入層としての機能も兼ねている。この正孔輸送層181は、例えば、4、4、,4"ートリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン(m-MTDATA)またはαーナフチルフェニルジアミン(αNPD)などの正孔輸送性材料により構成されており、その厚さは約40nmである。

[0062]

赤色発光層 1 8 2 R は、下部電極層 1 6 R , 1 6 G , 1 6 B から正孔輸送層 1 8 1

[0063]

緑色発光層182Gは、赤色発光層182Rにおいて再結合されなかった正孔と電子とを再結合させることにより、緑色の光を発生させるものである。この緑色発光層182Gは、例えば、緑色発光材料(蛍光性または燐光性)、正孔輸送性材料、電子輸送性材料および両電荷輸送性材料を含む群のうちの少なくとも1種により構成されており、その厚さは約10nmである。この緑色発光層182Gの具体的な構成材料としては、例えば、クマリン6が約5重量%混合されたDPVBiなどが挙げられる。

[0064]

青色発光層 1 8 2 B は、赤色発光層 1 8 2 R や緑色発光層 1 8 2 G において再結合されなかった正孔と電子とを再結合させることにより、青色の光を発生させるものである。この青色発光層 1 8 2 B は、例えば、青色発光材料(蛍光性または燐光性)、正孔輸送性材料、電子輸送性材料および両電荷(正孔、電子)輸送性材料を含む群のうちの少なくとも1種により構成されており、その厚さは約30 n m である。この青色発光層 1 8 2 B の具体的な構成材料としては、例えば、4,4'ービス [2, {4-(N,N-ジフェニルアミノ)フェニル}ビニル]ビフェニル(D P A V B i)が約2.5 重量%混合されたD P V B i などが挙げられる。

[0065]

電子輸送層183は、発光層182へ注入される電子の注入効率を高めるためのものであり、例えば、電子注入層としての機能も兼ねている。この電子輸送層183は、例えば

20

30

40

50

、8-ヒドロキシキノリンアルミニウム (Alq₃) により構成されており、その厚さは約20nmである。

[0066]

次に、図1~図3を参照して、有機ELディスプレイの動作について説明する。

[0067]

この有機 E L ディスプレイでは、図1に示したように、TFT12(121~123)を利用して3つの有機発光素子30R,30G,30Bが駆動され、すなわち下部電極層16R,16G,16Bと上部電極層19との間にそれぞれ電圧が印加されると、図3に示したように、発光層を含む層18のうちの発光層182において、正孔輸送層181から供給された正孔と電子輸送層183から供給された電子とが再結合することにより、白色光が発生する。この白色光は、赤色発光層182Rにおいて発生した赤色の光と、緑色発光層182Gにおいて発生した赤色の光と、緑色発光層182Gにおいて発生した赤色の光と、青色発光層182Bにおいて発生した青色の光とが合成された合成光である。

[0068]

この白色光は、図2に示したように、有機発光素子30R,30G,30Bから映像表示用の光Eとして有機ELディスプレイの外部へ放出される過程において、各有機発光素子30R,30G,30B間の共振長が互いに異なることに起因する光の干渉現象を利用して波長変換され、すなわち有機発光素子30R,30G,30Rにおいてそれぞれ赤色の光ER、緑色の光EGおよび青色の光EBに変換される。これにより、図1に示したように、有機発光素子30R,30G,30Bからそれぞれ赤色の光ER、緑色の光EGおよび青色の光EBが放出されるため、これらの3色の光ER,EG,EBに基づいて映像が表示される。

[0069]

なお、有機発光素子30R,30G,30Bから光ER、EG,EBが放出される際には、図2に示したように、各有機発光素子30R,30G,30Bにおいて、発光層を含む層18において発生した光が下部電極層16R,16G,16Bのうちの共振層612R,162G,162Bと上部電極層19との間で共振されるため、その光が多重干渉を起こす。これにより、最終的に有機発光素子30R,30G,30Bから放出される光ER,EG,EBの半値幅が減少し、色純度が向上する。

[0070]

次に、図1~図9を参照して、図1~図3に示した有機ELディスプレイの製造方法について説明する。図4~図9は有機ELディスプレイの主要部(下部電極層16R,16G,16B)の製造工程を説明するためのものであり、いずれも図2に対応する断面構成を表している。なお、図4~図9に示した領域SR,SG,SBは、それぞれ後工程において有機発光素子30R,30G,30Bが形成されることとなる領域を表している。

[0071]

以下では、まず、図1~図3を参照して、有機ELディスプレイ全体の製造工程について簡単に説明したのち、図1~図9を参照して、本発明に係る有機発光装置の製造方法が適用される有機ELディスプレイの主要部の形成工程について説明する。なお、有機ELディスプレイのうちの一連の構成要素の材質、厚さおよび構造的特徴については既に詳述したので、それらの説明を適宜省略するものとする。

[0072]

この有機 E L ディスプレイは、スパッタリングなどの成膜技術、フォトリソグラフィなどのパターニング技術、ならびにドライエッチングやウェットエッチングなどのエッチング技術を含む既存の薄膜プロセスを使用して製造可能である。すなわち、有機 E L ディスプレイを製造する際には、図 1 に示したように、まず、駆動用基板 1 1 の一面に、複数の T F T 1 2 (T F T 1 2 1 ~ 1 2 3)をマトリックス状にパターン形成し、引き続き T F T 1 2 1 ~ 1 2 3 およびその周辺の駆動用基板 1 1 を覆うように層間絶縁層 1 3 を形成したのち、各 T F T 1 2 1 ~ 1 2 3 ごとに 2 組ずつ配線 1 4 をパターン形成する。続いて、配線 1 4 およびその周辺の層間絶縁層 1 3 を覆うように平坦化層 1 5 を形成することによ

20

30

40

50

り、後工程において有機発光素子30R,30G,30Bが形成されることとなる下地領域を平坦化する。続いて、平坦化層15上に、各TFT121~123の配設位置に対応して1組の有機発光素子30(30R,30G,30B)をパターン形成する。具体的には、下部電極層16R、発光層を含む層18および上部電極層19をこの順に積層さることにより有機発光素子30Rを形成し、下部電極層19をこの順に積層することにより有機発光素子30Gを形成し、下部電極層19をこの順に積層することにより有機発光素子30Gを形成し、下部電極層19をこの順に積層することにより有機発光素子30Bを形成する際光度によりによりに、下部電極層16R,16G,16B上を経由して連続に延行し、各有機発光素子30R,30G,30Bにおいて共有されるように発光に延行し、各有機発光素子30R,30G,30Bにおいて共有されるように発光に延行し、各有機発光素子30R,30G,30Bにおいて共有されるように発光を層18および上部電極層19を形成すると共に、図1および図2に示したように、下部電極層16R,161G,161日を駆動用基板11、より具体的には駆動基板11を覆うように設けられた平坦化層15上に形成して密着させるようにする。続いて、上部電極層19を覆うように保護層20を形成することにより、駆動パネル10を形成する。

[0073]

続いて、封止用基板 5 1 の一面に、有機発光素子 3 0 R, 3 0 G, 3 0 B に対応して赤色領域 5 2 R、緑色領域 5 2 G および青色領域 5 2 B を含むカラーフィルタ 5 2 を形成することにより、封止パネル 5 0 を形成する。

[0074]

最後に、接着層60を使用して、駆動用基板11と封止用基板51との間に有機発光素子30R、30G、30Bが挟まれるように駆動パネル10と封止パネル50とを貼り合わせることにより、有機ELディスプレイが完成する。

[0075]

この有機ELディスプレイの主要部である下部電極層16R,16G,16Bを形成する際には、まず、図4に示したように、例えばスパッタリングを使用して、図1に示した駆動用基板11、より具体的には駆動用基板11に設けられた平坦化層15を覆うとに、密着層161(厚さ=約20nm)と、共振層162(厚さ=約100nm)と、第1のバリア層部分としてのバリア層部分1631(厚さ=T1)とをこの順に形成してずれるこせる。これらの密着層161、共振層162およびバリア層部分1631は、いずれも最終的にエッチング処理を使用してパターニングされることにより、下部電極層16R,16G,16Bのそれぞれの一部を構成することとなる準備層である。密着層161およびバリア層部分1631を形成する際には、形成材料として上記した金属、金属酸化物、金属窒化物または金属化合物を使用し、例えばITOを使用する。また、共振層162ぞの大型のでは、形成材料として上記した金属、金属での場合には、形成する際には、形成材料として上記した金属、金属で、大型での場合金(AgPdCu)を使用する。この場合には、特に、上記にて図2を参照したように、有機発光素子30Bにおいて光の干渉現象を利用して白色光を青色の光下Bに変換するために必要な共振長を厚さT1に基づいて確保し得るように、そのバリア層部分1631の厚さT1を設定する。

[0076]

なお、密着層161、共振層162およびバリア層部分1631の形成条件は、例えば、以下の通りである。すなわち、スパッタリングガスとしては、密着層161およびバリア層部分1631を形成するためにアルゴン(Ar)に酸素(O_2)が0.3%混合された混合ガスを使用し、共振層162を形成するためにアルゴンガスを使用する。また、スパッタリング条件としては、いずれの場合においても圧力=約0.5Pa、DC出力=約500wとする。

[0077]

続いて、パリア層部分1631上にフォトレジストを塗布してフォトレジスト膜(図示せず)を形成したのち、フォトリソグラフィ処理を使用してフォトレジスト膜をパターニングすることにより、図5に示したように、バリア層部分1631のうち、有機発光素子

20

30

40

30Bが形成されることとなる第1の領域としての領域SB上に、例えばフォトレジスト 膜よりなる第1のマスクとしてのエッチングマスク71をパターン形成する。

[0078]

続いて、図5に示したように、例えばスパッタリングを使用して、エッチングマスク71 およびその周辺のバリア層部分1631を覆うように、第2のバリア層部分としてのバリア層部分1632(厚さ=T2)を形成する。このバリア層部分1632は、最終的に下部電極層16R,16Gのそれぞれの一部を構成することとなる準備層である。このバリア層部分1632を形成する際には、上記にて図2を参照して説明したように、有機発光素子30Gにおいて光の干渉現象を利用して白色光を緑色の光EGに変換するために必要な共振長を厚さ(T1+T2)に基づいて確保し得るように、そのバリア層部分1632の厚さT2を設定する。なお、バリア層部分1632の形成材料としては、例えば、バリア層部分1631の形成材料と同様のものを使用する。

[0079]

続いて、図6に示したように、バリア層部分1632のうち、有機発光素子30Gが形成されることとなる第2の領域としての領域SG上に、例えばフォトレジスト膜よりなる第2のマスクとしてのエッチングマスク72をパターン形成する。

[0080]

続いて、図6に示したように、例えばスパッタリングを使用して、エッチングマスク72 およびその周辺のバリア層部分1632を覆うように、第3のバリア層部分としてのバリア層部分1633(厚さ=T3)を形成する。このバリア層部分1633は、最終的に下部電極層16Rの一部を構成することとなる準備層である。このバリア層部分1633を形成する際には、上記にて図2を参照して説明したように、有機発光素子30Rにおいて光の干渉現象を利用して白色光を赤色の光ERに変換するために必要な共振長を厚さ(T1+T2+T3)に基づいて確保し得るように、そのバリア層部分1633の厚さT3を設定する。なお、バリア層部分1633の形成材料としては、例えば、バリア層部分1631,1632の形成材料と同様のものを使用する。

[0081]

続いて、図7に示したように、バリア層部分1633のうち、有機発光素子30Rが形成されることとなる第3の領域としての領域SR上に、例えばフォトレジスト膜よりなる第3のマスクとしてのエッチングマスク73をパターン形成する。

[0082]

続いて、一連のエッチングマスク71~73を使用し、密着層161、共振層162およびバリア層部分1631~1633を連続的にエッチングしてパターニングすることにより、図8に示したように、密着層161、共振層162およびバリア層部分1631~1633のうち、エッチングマスク71~73により被覆されていた部分以外の部分を選択的に除去する。このエッチング処理により、密着層161、共振層162およびバリア層部分1631~1633が各領域SR、SG、SBごとに分離され、具体的には、領域SBにおいて密着層161、共振層162およびバリア層部分1631の3層構造が残存し、領域SGにおいて密着層161、共振層162およびバリア層部分1631,1632の4層構造が残存し、領域SRにおいて密着層161、共振層162およびバリア層部分1631~1633の5層構造が残存する。なお、エッチング処理時には、エッチングマスク71~73自体もエッチングされるため、それらのエッチングマスク71~73の厚さが目減りする。

[0083]

最後に、エッチングマスク71~73を除去することにより、図9に示したように、上記した密着層161、共振層162およびバリア層部分1631~1633の残存構造により、図2に示した下部電極層16R,16G,16Bが完成する。具体的には、青色の光EBを放出する有機発光素子30Bが形成されることとなる領域SBでは、密着層161B、共振層162Bおよびバリア層163B(163B1)が積層された積層構造を有する下部電極層16Bが形成され、このバリア層163Bは、バリア層部分1631(バ

20

30

40

50

リア層163B1)よりなる単層構造として形成される。また、緑色の光EGを放出する有機発光素子30Gが形成されることとなる領域SGでは、密着層161G、共振層162Gおよびバリア層163Gが積層された積層構造を有する下部電極層16Gが形成され、このバリア層163Gは、バリア層部分1631(下部バリア層163G1),1632(上部バリア層163G2)よりなる2層構造として形成される。さらに、赤色の光ERを放出する有機発光素子30Rが形成されることとなる領域SRでは、密着層161R、共振層162Rおよびバリア層163Rが積層された積層構造を有する下部電極層16Rが形成され、このバリア層163Rは、バリア層部分1631(下部バリア層163R1),1632(中間バリア層163R2),1633(上部バリア層163R3)よりなる3層構造として形成される。

[0084]

なお、上記した厚さT1,T2,T3は、最終的に有機発光素子30R,30G,30Bにおいてそれぞれ赤色の光ER、緑色の光EGおよび青色の光EBを放出させることが可能な限り、自由に設定可能である。一例を挙げれば、発光層を含む層18の総厚=約40nm~70nmの場合には、T1,T2,T3=約2nm~100nmである。より具体的な例を挙げれば、発光層を含む層18の総厚=約50nm~60nmの場合には、T1=約2nm~20nm、(T1+T2)=約20nm~50nm、(T1+T2+T3)=約50nm~80nmである。参考までに、例えば、図1に示した補助配線40は、有機発光素子30Rと形成手順と同様の手順を経て、並列的に形成可能である。

[0085]

本実施の形態に係る有機ELディスプレイでは、図1および図2に示したように、有機発光素子30R,30G,30Bのうちの下部電極層16R,16G,16Bが、駆動用基板11に近い側から順に密着層161R,161G,161B、共振層162R,162G,166Bが、駆動用2G,162Bおよびバリア層163R,163G,163Bが積層された構成を有し、これらのバリア層163R,163G,163Bの厚さDR,DG,DBが各有機発光素子30R,30G,30B間において互いに異なるようにしたので(DR>DG>DB)、例えば、「有機ELディスプレイの動作」として上記したように、厚さDR,DG,DB間の差異に基づく有機発光素子30R,30G,30B間の共振長の差異に起因した光の干渉現象を利用して、発光層を含む層18においた発生した白色光を3色の光、すなわち赤色の光ER、緑色の光EGおよび青色の光EBに変換することが可能となる。したがって、本実施の形態では、これらの3色の光ER,EG,EBを利用して映像を表示することができる。

[0086]

特に、本実施の形態では、上記した表示機構を構築可能な構造的特徴に基づき、上記「背景技術」の項において説明した従来の有機ELディスプレイとは異なり、以下で説明するように、表示性能面および製造可能性面の双方において利点を有する。

[0087]

すなわち、製造可能性面に関しては、3色(R, G, B)の光を放出するために、各色の光を別々に発生可能な3種類の発光層を利用する構成的要因に起因して、これらの3種類の発光層を蒸着する際にメタルマスクを使用して塗り分けが必要であった従来の有機ELディスプレイとは異なり、図2に示したように、3色の光ER, EG, EBを放出するために単色の光(白色光)を発生可能な1種類の発光層182を利用し、すなわち各有機発光素子30R, 30G, 30B間において発光層182が共通化しており、メタルマスクを使用して発光層182を塗り分ける必要がないため、ディスプレイサイズの大型化を図ることが可能である。

[0088]

一方、表示性能面に関しては、白色光を発生させる発光層を利用した上で、色変換用の高濃度かつ厚めのカラーフィルタのみを利用して白色光を3色(R, G, B)の光に変換していた従来の有機ELディスプレイとは異なり、カラーフィルタのみを使用して色変換を行う代わりに、図1および図2に示したように、カラーフィルタ52と共に、上記した

厚さDR, DG, DB間の差異に基づく有機発光素子30R, 30G, 30B間の共振長の差異に起因した光の干渉現象を併用して白色光を3色の光ER, EG, EBに変換しているため、カラーフィルタ52が低濃度かつ薄めで済む。この結果、色変換時にカラーフィルタ52の光吸収に起因して光の利用損失が大きくなることを防止し、すなわち光の利用効率を確保することが可能である。

[0089]

したがって、本実施の形態では、表示性能面および製造可能性面の双方において利点を有することが可能になるため、表示性能の確保と製造可能性の確保とを両立することができる。この場合には、特に、製造面において、メタルマスクを使用した発光層182の塗り分けが不要となる点に基づき、その塗り分け作業時にパーティクルが混入して発光層182に欠陥が生じることを防止することもできる。

[0090]

また、本実施の形態では、有機発光素子30R,30G,30Bがそれぞれ共振層162R,162G,162Bを含み、これらの共振層162R,162G,162Bと上部電極層19との間で光を共振させる共振構造を有するようにしたので、「有機ELディスプレイの動作」として上記したように、光ER,EG,EBの色純度が向上する。したがって、各光ER,EG,EBのいずれに関しても高ピーク強度および狭波長幅の良質なスペクトルを確保し、色再現性に優れた映像を表示することができる。この場合には、特に、高反射性の銀または銀を含む合金を使用して共振層162R,162G,162Bを構成すれば、共振される光の利用効率が高まるため、表示性能をより向上させることができる。

[0091]

また、本実施の形態では、バリア層 163R, 163G, 163Bが上記したように有機発光素子 30R, 30G, 30B間において共振長に差異を設ける機能を果たす上、共振層 162R, 162G, 162Bを保護する機能も果たすため、それらの共振層 162R, 162G, 162Bが大気中の酸素や硫黄成分と反応して酸化または腐食したり、あるいは有機 E L ディスプレイの製造工程中において使用された薬液などと反応して腐食することを防止することができる。

[0092]

また、本実施の形態では、下部電極層16R,16G,16Bが平坦化層15との密着性を高めるための密着層161R,161G,161Bを含んで構成されているため、これらの下部電極層16R,16G,16Bを平坦化層15に強固に固定することができる

[0093]

また、本実施の形態では、共振層162R,162G,162Bよりも仕事関数が大きい材料を使用してバリア層163R,163G,163Bを構成したので、発光層182への正孔の注入量を増加させることができる。

[0094]

本実施の形態に係る有機ELディスプレイの製造方法では、バリア層163R,163G,163Bの厚さDR,DG,DBが各有機発光素子30R,30G,30B間において互いに異なるような特徴的な構成を有する下部電極層16R,16G,16Bを形成するために、既存の薄膜プロセスしか使用せず、新規かつ煩雑な製造プロセスを使用しない。しかも、その既存の薄膜プロセスのみを使用した上で、下部電極層16R,16G,16Bを継続的に再現性よく形成することが可能である。したがって、本実施の形態では、下部電極層16R,16G,16Bを備えた有機ELディスプレイを容易かつ安定に製造することができる。

[0095]

[第2の実施の形態]

次に、本発明の第2の実施の形態について説明する。

[0096]

50

40

10

本実施の形態に係る表示装置としての有機ELディスプレイは、下部電極層16R,16G,16Bの形成工程が異なる点を除いて、上記第1の実施の形態において説明した有機ELディスプレイの構成(図1~図3)と同様の構成を有しており、その有機ELディスプレイの製造工程と同様の製造工程を使用して製造可能である。この有機ELディスプレイでは、特に、例えば、下部電極層16R,16G,16Bのうちのバリア層163R,163G,163Bを高精度に形成するために、バリア層部分1631が酸化錫(SnO₂)または酸化クロム(CrO)により構成され、バリア層部分1632がITOにより構成され、バリア層部分1633がIZOにより構成されているのが好ましい。

[0097]

図10~図17は有機ELディスプレイのうちの下部電極層16R,16G,16Bの 製造工程を説明するためのものであり、いずれも図2に対応する断面構成を表している。 なお、図10~図17では、上記第1の実施の形態において説明した構成要素と同一の要素に同一の符号を付している。

[0098]

下部電極層16R、16G、16Bを形成する際には、まず、図10に示したように、 例えばスパッタリングを使用して、平坦化層15を覆うように、密着層161(厚さ=約 20 n m) と、共振層 1 6 2 (厚さ = 約 1 0 0 n m) と、第 1 のバリア層部分としてのバ リア層部分1631 (厚さ = T1)と、第2のバリア層部分としてのバリア層部分163 2 (厚さ = T 2) と、第 3 のバリア 層部 分としてのバリア 層部 分 1 6 3 3 (厚さ = T 3) とをこの順に形成して積層させる。密着層161およびバリア層部分1631~1633 の形成材料としては、いずれに関しても上記第1の実施の形態において説明した金属、金 属酸化物、金属窒化物または金属化合物を使用し、例えば、密着層161およびバリア層 部分1632としてITO、バリア層部分1631として酸化錫(SnO₂)、バリア層 部分1633としてIZOをそれぞれ使用する。また、共振層162の形成材料としては 、 上 記 第 1 温 実 施 の 形 態 に お い て 説 明 し た 銀 や 銀 を 含 む 合 金 を 使 用 し 、 例 え ば 銀 パ ラ ジ ウ ム鍋合金(AgPdCu)を使用する。このバリア層部分1631~1633を形成する 際には、上記にて図2を参照して説明したように、有機発光素子30R,30G,30B においてそれぞれ光の干渉現象を利用して白色光を赤色の光ER、緑色の光EGおよび青 色の光EBに変換するために必要な共振長を確保し得るように、厚さT1~T3をそれぞ れ設定する。特に、ITOよりなるバリア層部分1632を形成する際には、例えば、後 工程においてIZOよりなるバリア層部分1633をウェットエッチングする際に、バリ ア層部分1632がエッチング処理の進行を停止させるストップ層として機能し得るよう に、そのバリア層部分1632を高温下で成膜するか、あるいは成膜後にアニールし、結 晶化させる。なお、スパッタリングを使用して密着層161、共振層162、バリア層部 分1631~1633を形成して積層させる際には、例えば、これらの一連の層を同一の 真空環境中において連続的に形成する。

[0099]

[0100]

続いて、図11に示したように、バリア層部分1633のうち、有機発光素子30Rが 形成されることとなる第1の領域としての領域SR上に、例えばフォトレジスト膜よりな る第1のマスクとしてのエッチングマスク81をパターン形成する。

[0101]

50

20

20

30

40

50

続いて、エッチングマスク81と共にウェットエッチングを使用し、バリア層部分1633をエッチングしてパターニングすることにより、図12に示したように、バリア層部分1633のうち、エッチングマスク81により被覆されていた部分以外の部分を選択的に除去し、領域SRにバリア層部分1633を残存させると共に、その領域SBの周辺領域にバリア層部分1632を露出させる。このウェットエッチング処理を行う際には、エッチャントとして、例えば、リン酸(H_3 PO $_4$)と硝酸(HNO_3)と酢酸(CH_3 COOH)との混酸、あるいはシュウ酸(C_2 H_2 O $_4$)を使用する。このウェットエッチング処理時には、上記したように、エッチャントに対して耐性を有する結晶化ITOよりなるバリア層部分1632がストップ層として機能し、バリア層部分1633のエッチングが完了した時点でエッチング処理の進行が停止するため、そのエッチング処理がバリア層部分1632まで及ぶことが防止される。

[0102]

続いて、図13に示したように、バリア層部分1632の露出面のうち、有機発光素子30Gが形成されることとなる第2の領域としての領域SG上に、例えばフォトレジスト膜よりなる第2のマスクとしてのエッチングマスク82をパターン形成する。なお、エッチングマスク82を形成する際には、例えば、必要に応じて、エッチングマスク82を形成する前に使用済みのエッチングマスク81を一旦除去したのち、そのエッチングマスク82を形成すると同時にエッチングマスク81を改めて形成し直すようにする。

[0103]

続いて、エッチングマスク81,82と共にウェットエッチングを使用し、バリア層部分1632をエッチングしてパターニングすることにより、図14に示したように、バリア層部分1632のうち、エッチングマスク81,82により被覆されていた部分以外の部分を選択的に除去し、領域SR,SGにバリア層部分1632を残存させると共に、それらの領域SR,SGの周辺領域にバリア層部分1631を露出させる。このウェットエッチング処理を行う際には、エッチャントとして、例えば、塩酸(HC1)、塩酸を含む酸、あるいはフッ酸と硝酸との混酸を使用する。このウェットエッチング処理時には、上記したバリア層部分1632と同様に、エッチャントに対して耐性を有する酸化錫よりなるバリア層部分1631がストップ層として機能し、バリア層部分1632のエッチング処理がバリア層部分1631まで及ぶことが防止される。

[0104]

続いて、図15に示したように、バリア層部分1631の露出面のうち、有機発光素子30Bが形成されることとなる第3の領域としての領域SB上に、例えばフォトレジスト膜よりなる第3のマスクとしてのエッチングマスク83をパターン形成する。なお、エッチングマスク83を形成する際には、例えば、必要に応じて、エッチングマスク83を形成する前に使用済みのエッチングマスク81,82を一旦除去したのち、そのエッチングマスク83を形成すると同時にエッチングマスク81,82を改めて形成し直すようにする。

[0105]

続いて、エッチングマスク81~83と共にドライエッチングを使用し、密着層161、共振層162およびバリア層部分1631を連続的にエッチングしてパターニングすることにより、図16に示したように、密着層161、共振層162およびバリア層部分1631のうち、エッチングマスク81~83により被覆されていた部分以外の部分を選択的に除去する。このエッチング処理により、密着層161、共振層162およびバリア層部分1631が各領域SR、SG、SBごとに分離され、具体的には、領域SRにおいて密着層161、共振層162およびバリア層部分1631~1633よりなる5層構造が残存し、領域SGにおいて密着層161、共振層162およびバリア層部分1631、1632よりなる4層構造が残存し、領域SBにおいて密着層161、共振層162およびバリア層部分1631よりなる3層構造が残存する。なお、エッチング処理時には、エッチングマスク81~83自体もエッチングされるため、それらのエッチングマスク81~

30

40

50

83の厚さが目減りする。

[0106]

最後に、エッチングマスク81~83を除去することにより、図17に示したように、上記した密着層161、共振層162およびバリア層部分1631~1633の残存構造により、上記第1の実施の形態において図9に示した場合と同様に、図2に示した下部電極層16R,16G,16Bが完成する。

[0107]

本実施の形態に係る有機 E L ディスプレイの製造方法においても、既存の薄膜プロセスのみを使用して下部電極層 1 6 R , 1 6 G , 1 6 B を継続的に再現性よく形成することが可能であるため、上記第 1 の実施の形態と同様に、有機 E L ディスプレイを容易かつ安定に製造することができる。

[0108]

特に、本実施の形態では、エッチャントに対して互いに異なる耐性を有する材料を使用してバリア層部分1631~1633を形成し、具体的には、バリア層部分1633をウェットエッチングするためのエッチャントに対して耐性を有する材料を使用してバリア層部分1632をウェットエッチングするためのエッチャントに対して耐性を有する材料を使用してバリア層部分1631を形成するようにしたので、バリア層部分1633をエッチングする際にバリア層部分1632がエッチング処理を停止させるためのストップ層として機能すると共に、同様にバリア層 コ632をエッチング処理を停止させるためのストップ層として機能すると共に、同様にバリア層分1632をエッチング処理が不必要な箇所にまで及ぶことを防止することが可能になるため、下部電極層16R,16G,16Bを高精度に形成することができる。

[0109]

また、本実施の形態では、スパッタリングを使用して密着層161、共振層162、バリア層部分1631~1633を形成して積層させる際に、これらの一連の層を同一の真空環境中において連続的に形成するようにしたので、これらの一連の層を複数の真空環境中、すなわち真空環境と大気圧環境とを経由しながら形成する場合とは異なり、各層間に大気圧環境中の異物が混入することを防止し、その各層間の界面を清浄に保つことができる。

[0110]

なお、本実施の形態に係る有機ELディスプレイに関する動作、作用および効果は、上記第1の実施の形態と同様である。

[0111]

以上、いくつかの実施の形態を挙げて本発明を説明したが、本発明は上記各実施の形態に限定されるものではなく、それらの実施の形態と同様の効果を得ることが可能な限りにおいて自由に変形可能である。

[0112]

具体的には、例えば、上記各実施の形態では、図3に示したように、発光層182において白色光を発生させるために、その発光層182を赤色発光層182R、緑色発光層182Gおよび青色発光層182Bが積層された3層構造として構成したが、必ずしもこれに限られるものではなく、白色光を発生させることが可能な限りにおいて、発光層182の構成は自由に変更可能である。この発光層182に関する上記した3層構造以外の構造としては、例えば、(1)白色光を発生可能な白色発光材料を使用した単層構造や、(2)赤色発光材料および青色発光材料が混合された混合材料を使用した単層構造や、(3)赤色発光材料および緑色発光材料が混合された混合材料よりなる混合発光層と、緑色発光材料および青色発光材料が混合された混合材料よりなる他の混合発光層とが積層された2層構造などが挙げられる。これらのいずれの場合においても、上記各実施の形態と同様の効果を得ることができる。

[0113]

また、上記各実施の形態では、発光層182において白色光を発生させるようにしたが

、必ずしもこれに限られるものではなく、例えば、各有機発光素子30R,30G,30B間の共振長の差異を利用して発光層182において発生した光を3色の光ER,EG,EBに変換することが可能な限り、発光層182において発生させる光の色は自由に変更可能である。この場合においても、上記各実施の形態と同様の効果を得ることができる。【0114】

また、上記各実施の形態では、各有機発光素子30R, 30G, 30Bを構成するバリア層163R, 163G, 163Bの厚さDR, DG, DBの間にDR>DG>DBの関係が成立している場合について説明したが、必ずしもこれに限られるものではなく、上記各実施の形態と同様の効果を得ることが可能な限り、厚さDR, DG, DBの間の関係は自由に変更可能である。この点に関してより詳細に説明すれば、上記各実施の形態において説明したDR>DG>DBの関係は、一連の数式(数2~数4)中のmR, mG, mBの間にmR=mG=mBの関係(例えばmR=mG=mB=0)が成立している場合に成立するものであり、これらのmR, mG, mBの値の設定によっては厚さDR, DG, DB間の関係が変更し得る。一例を挙げれば、mR, mG, mBの間にmR(=mG) \neq mBの関係(例えばmR=mG=0, mB=1)の関係が成立している場合には、厚さDR, DG, DBの間にDB>DR>DGの関係が成立することとなる。この場合には、特に、最も厚いバリア層163Bの厚さが約100mm以上となり得る。

[0115]

また、上記各実施の形態では、図1および図2に示したように、本発明をトップエミッ ション型の有機ELディスプレイに適用する場合について説明したが、必ずしもこれに限 られるものではなく、例えば、図18および図19に示したように、本発明をボトムエミ ッション型の有機ELディスプレイに適用するようにしてもよい。図18はボトムエミッ ション型の有機ELディスプレイの断面構成を表しており、図19は図18に示した有機 E L ディスプレイを構成する有機発光素子30R, 30G, 30B および補助配線40の 断面構成を拡大して模式的に表している。この有機ELディスプレイは、主に、図18に 示したように、 (1) TF.T12 (121~123) が有機発光素子30 (30 R, 30 G、30B)の配設位置に対応しないようにずれて配置され、(2)カラーフィルタ52 が駆動用基板11とTFT12および層間絶縁層13との間に配設されていると共に、図 19に示したように、(3)共振層162R,162G,162Bの厚さが上部電極層1 9 の厚さよりも薄くなっている点を除き、図 1 に示したトップエミッション型の有機 E L ディスプレイとほぼ同様の構成を有している。この有機ELディスプレイでは、有機発光 素子 3 0 R , 3 0 G , 3 0 B は、共振層 1 6 2 R , 1 6 2 G , 1 6 2 B と上部電極層 1 9 との間で共振させた光ER、EG、EBを下部電極層16R、16G、16Bを経由して 放出するようになっている。この場合の共振層162R,162G,162Bの厚さは約 1 n m ~ 5 0 n m であり、上部電極層 1 9 の厚さは約 1 0 0 n m ~ 3 0 0 n m である。な お、ボトムエミッション型の有機ELディスプレイでは、例えば、図18に示したように 保護層20、接着層60および封止パネル50(封止用基板51)を備える代わりに、脱 酸素材を含む中空構造の封止キャップを備える場合もある。このボトムエミッション型の 有機ELディスプレイにおいても、上記各実施の形態において説明したトップエミッショ ン型の有機ELディスプレイと同様の効果を得ることができる。

[0116]

また、上記各実施の形態では、本発明の有機発光装置を表示装置としての有機ELディスプレイに適用する場合について説明したが、必ずしもこれに限られるものではなく、例えば、本発明の有機発光装置を有機ELディスプレイ以外の他の表示装置に適用するようにしてもよい。もちろん、本発明の有機発光装置は、例えば、表示装置以外の他の装置にも適用することが可能である。この「表示装置以外の他の装置」としては、例えば、照明装置などが挙げられる。これらの場合においても、上記各実施の形態と同様の効果を得ることができる。

【産業上の利用可能性】

[0117]

10

20

30

本発明に係る有機発光装置およびその製造方法、ならびに有機発光装置を備えた表示装置は、例えば、有機ELディスプレイおよびその製造方法に適用することが可能である。

【図面の簡単な説明】

[0118]

- 【図1】本発明の第1の実施の形態に係る有機ELディスプレイの断面構成を表す断面図である。
- 【図2】図1に示した有機発光素子および補助配線の断面構成を拡大して模式的に表す断面図である。
- 【図3】図2に示した発光層を含む層の断面構成を拡大して模式的に表す断面図である。
- 【図4】本発明の第1の実施の形態に係る有機ELディスプレイの製造工程を説明するための断面図である。
- 【図5】図4に続く工程を説明するための断面図である。
- 【図6】図5に続く工程を説明するための断面図である。
- 【図7】図6に続く工程を説明するための断面図である。
- 【図8】図7に続く工程を説明するための断面図である。
- 【図9】図8に続く工程を説明するための断面図である。
- 【図10】本発明の第2の実施の形態に係る有機ELディスプレイの製造工程を説明するための断面図である。
- 【図11】図10に続く工程を説明するための断面図である。
- 【図12】図11に続く工程を説明するための断面図である。
- 【図13】図12に続く工程を説明するための断面図である。
- 【図14】図13に続く工程を説明するための断面図である。
- 【図15】図14に続く工程を説明するための断面図である。
- 【図16】図15に続く工程を説明するための断面図である。
- 【図17】図16に続く工程を説明するための断面図である。
- 【図18】有機ELディスプレイの構成に関する変形例を説明するための断面図である。
- 【図19】図18に示した有機発光素子および補助配線の断面構成を拡大して模式的に表す断面図である。

【符号の説明】

[0119]

10…駆動パネル、11…駆動用基板、12(121~123)…TFT、13…層間 絶縁層、14…配線、15…平坦化層、16R,16G,16B…下部電極層、17…層 内絶縁層、18…発光層を含む層、19…上部電極層、20…保護層、30(30R,3 0G,30B)…有機発光素子、40…補助配線、50…封止パネル、51…封止用基板、52…カラーフィルタ、52R…赤色領域、52G…緑色領域、52B…青色領域、6 0…接着層、161,161R,161G,161B…密着層、71~73,81~83 …エッチングマスク、162,162R,162G,162B…共振層、163R(163R1),163G,162R,162G,163B1…下部バリア層、1 63R1),163G,163B…バリア層、163G1,163B1…下部バリア層、1 63B2…中間バリア層、163G2,163B3…上部バリア層、182B…青色発光層、182…発光層、182R…赤色発光層、182G…緑色発光層、182B…青色発光層、182…で発光層、182R…赤色発光層、182G…緑色発光層、182B…青色発光 層、183…電子輸送層、1631~1633…バリア層部分、DR,DG,DB,HR ,HG,HB…厚さ、E…光(映像表示用の光)、ER…赤色の光、EG…緑色の光、E B…青色の光、LR,LG,LB…光学的距離、PR1,PG1,PB1,PR2,PG 2,PB2…端面、SR,SG,SB…領域。 30

10

20

[図5]

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図17】

【図19】

テーマコード (参考)

フロントページの続き

(51) Int. Cl. ⁷

H 0 5 B 33/24

FΙ

H O 5 B 33/22 H O 5 B 33/24

Z

【要約の続き】