date: 2024-03-14

TFE4188 - Lecture 9 Oscillators

Goal

Why

Introduction to Crystal Oscillators

Introduction to VCOs

Introduction to Relaxation-oscillators

Carsten Wulff 2024

2

I just want the most precise clock that can be made !!!

Atomic clocks

Cesium standard

The second is defined by taking the fixed numerical value of the cesium frequency Cs, the unperturbed ground-state hyper-fine transition frequency of the cesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s-1

Microchip 5071B Cesium Primary Time and Frequency Standard

- < 5E-13 accuracy high-performance models
- Accuracy levels achieved within 30 minutes of startup
- < 8.5E-13 at 100s high-performance models
- < 1E-14 flicker floor high-performance models

"Ask for a quote" => The price is really high, and we don't want to tell you yet

Rubidium standard

Rubidium standard, use the rubidium hyper-fine transition of 6.8 GHz (6834682610.904 Hz)

The MAC is a passive atomic clock, incorporating the interrogation technique of Coherent Population Trapping (CPT) and operating upon the D1 optical resonance of atomic Rubidium Isotope 87.

A rubidium clock is basically a crystal oscillator locked to an atomic reference.

Crystal oscillators

Longitudinal mode

Thickness shear mode

Flexural mode

Face shear mode

$$R = Rs + sL + \frac{1}{sC_F}$$

$$R = Rs + sL + \frac{1}{sC_F}$$

$$C_F$$

$$C_F$$

$$C_F$$

$$C_F$$

$$C_F$$

Assuming zero series resistance

$$Z_{in} = rac{s^2 C_F L + 1}{s^3 C_P L C_F + s C_P + s C_F}$$

Since the 1/(sCp) does not change much at resonance, then

$$Z_{in} pprox rac{LC_F s^2 + 1}{LC_F C_p s^2 + C_F + C_P}$$

See Crystal oscillator impedance for a detailed explanation.

Negative transconductance compensate crystal series resistance

Long startup time caused by high Q

Can fine tune frequency with parasitic capacitance

Temperature Behaviour for AT Cut Crystals

Controlled Oscillators

Ring oscillator

$$t_{pd}pprox RC$$

$$Rpprox rac{1}{gm}pprox rac{1}{\mu_n C_{ox}rac{W}{L}(VDD-V_{th})} \ Cpprox rac{2}{3}C_{ox}WL$$

$$t_{pd} pprox rac{2/3C_{ox}WL}{rac{W}{L}\mu_nC_{ox}(VDD-V_{th})}$$

$$f=rac{1}{2Nt_{pd}}=rac{\mu_n(VDD-V_{th})}{rac{4}{3}NL^2}$$

$$K_{vco}=2\pirac{\partial f}{\partial VDD}=rac{2\pi\mu_n}{rac{4}{3}NL^2}$$

Capacitive load

$$f = rac{\mu_n C_{ox} rac{W}{L} (VDD - V_{th})}{2N \left(rac{2}{3} C_{ox} WL + C
ight)}$$

$$K_{vco} = rac{2\pi \mu_n C_{ox} rac{W}{L}}{2N\left(rac{2}{3}C_{ox}WL + C
ight)}$$

Realistic

$$I=Crac{dV}{dt}$$

$$fpprox rac{I_{control}+rac{1}{2}\mu_{p}C_{ox}rac{W}{L}(VDD-V_{control}-V_{th})^{2}}{Crac{VDD}{2}N}$$

$$K_{vco} = 2\pi rac{\partial f}{\partial V_{control}}$$

$$K_{vco} = 2\pi rac{\mu_p C_{ox} W/L}{Crac{VDD}{2}N}$$

Digitally controlled oscillator

Differential

LC oscillator

$$f \propto rac{1}{\sqrt{LC}}$$

Relaxation oscillators

$$V_1 = IR$$

$$I=Crac{dV}{dt}$$

$$dt = rac{CV_2}{I} = rac{CIR}{I}$$

$$f=rac{1}{dt}=rac{1}{RC}$$

$$f_o=rac{1}{2}f=rac{1}{2RC}$$

Crystal oscillators

The Crystal Oscillator - A Circuit for All Seasons

High-performance crystal oscillator circuits: theory and application

Ultra-low Power 32kHz Crystal Oscillators: Fundamentals and Design Techniques

A Sub-nW Single-Supply 32-kHz Sub-Harmonic Pulse Injection Crystal Oscillator

CMOS oscillators

The Ring Oscillator - A Circuit for All Seasons

A Study of Phase Noise in CMOS Oscillators

An Ultra-Low-Noise Swing-Boosted Differential Relaxation Oscillator in 0.18-um CMOS

Ultra Low Power Frequency Synthesizer

Thanks!