MP-1 TUTORIAL-13

1. Demonstrate the Discrete Optimization using Cutting Plane method.

QUESTION:

Max z=x1+x2

Subject To: $3x1+2x2 \le 5$

X2<=2 X1,x2>=0

Tutorial -13

190031187 Radhabrishna

Max Z= XI+ XL subject To:

3x, +2x, <=5

N, <= 2

and X1, 1x2 7=0

The problem is converted to canonical form by adding slack variables, surplus and antificial variables as appropriate.

Max
$$z = x_1 + x_2 + Os_1 + Os_2$$

subject to

$$3x_1 + 2x_2 + s_1 = 5$$

 $x_2 + s_2 = 2$ $x_1, x_2, s_1, s_2 > = 0$

CBi Cj I I O O

B·V XI
$$a_1$$
 s_1 s_2 s_0

I x_1 I $\frac{2}{3}$ $\frac{1}{3}$ $\frac{3}{2}$ $\frac{5}{3}$

O s_2 O $\frac{2}{3}$ $\frac{1}{3}$ $\frac{3}{3}$ $\frac{5}{3}$

Cj $\frac{2}{3}$ $\frac{1}{3}$ $\frac{3}{3}$ $\frac{5}{3}$ $\frac{5}{3}$

Cj $\frac{2}{3}$ $\frac{1}{3}$ $\frac{3}{3}$ $\frac{5}{3}$ $\frac{5}{3}$

leaving = 52
Entering = 22
key elemet = 1

$$CB_1$$
 C_1 C_2 CB_1 CB_1 CB_2 CB_1 CB_2 CB_1 CB_2 CB_1 CB_2 CB

Since all y-2; z=0Hence non-integer optimal solution is arrived with value of variables ab $x_1 = \frac{1}{3}$ $x_2 = \frac{9}{3}$ Max $z = \frac{5}{3}$

to obtain nteger valued solution we proceed to construct Gomory's fractional cut, with the cshelfscotner, - now as follows.

Adding this constraint at the bottom of optimal simplex table

$$CB_{i}$$
 C_{j} $C_{$

Hence integer optimal solution is arrived with value of variables as

$$\chi_1 = 0$$
 $\chi_1 = 2$

$$\max z = 2$$

The integer optimal solution found after