# Introduction to Digital Electronics

# Objectives

- 1. To draw the logic gate circuits of Boolean expressions
- 2. To write down the Boolean expressions of given circuit diagrams
- 3. To find Boolean expressions

## Tasks

**1.** Draw the logic gate circuit corresponding to the following Boolean expression  $F = (A' \cdot B' + A \cdot B) + (C' \cdot D' + C \cdot D)$ 

#### **Answer:**



2. Write the Boolean expression of the following circuit diagram. Set up the truth table



Answer: X = C.A + A.B'

Table 1. Truth Table for Task 2

| Α | В | С | В' | C . A | A . B' | Х |
|---|---|---|----|-------|--------|---|
| 0 | 0 | 0 | 1  | 0     | 0      | 0 |
| 0 | 0 | 1 | 1  | 0     | 0      | 0 |
| 0 | 1 | 0 | 0  | 0     | 0      | 0 |
| 0 | 1 | 1 | 0  | 0     | 0      | 0 |
| 1 | 0 | 0 | 1  | 0     | 1      | 1 |
| 1 | 0 | 1 | 1  | 1     | 1      | 1 |
| 1 | 1 | 0 | 0  | 0     | 0      | 0 |
| 1 | 1 | 1 | 0  | 1     | 0      | 1 |

**3.** Write the Boolean expression of the following circuit diagram. Set up the truth table



Answer: X = (A' . C')' . A . B' + A . C . B

or equivalently, X = M + L, where M = K . A . B', L = A . C . B , K=(A' . C')'

Table 2. Truth Table for Task 3

| Α | В | С | A' | В' | C' | K | L | М | Х |
|---|---|---|----|----|----|---|---|---|---|
| 0 | 0 | 0 | 1  | 1  | 1  | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1  | 1  | 0  | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1  | 0  | 1  | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1  | 0  | 0  | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0  | 1  | 1  | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0  | 1  | 0  | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0  | 0  | 1  | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0  | 0  | 0  | 1 | 1 | 0 | 1 |

**4.** Compare X of exercise 2 and exercise 3. Keep in mind that the Boolean expression of X in exercise 3 can be simplified to the one of exercise 2.

## Answer (not assessed):

**5.** Find the Boolean expression of function f(x,y,z) with three inputs and one output; f(x,y,z) produces 1 when at least two of the inputs are 1, otherwise it produces 0

**Step1:** set up the truth table

| х | У | Z | f (x, y, z) |
|---|---|---|-------------|
| 0 | 0 | 0 | 0           |
| 0 | 0 | 1 | 0           |
| 0 | 1 | 0 | 0           |
| 0 | 1 | 1 | 1           |
| 1 | 0 | 0 | 0           |
| 1 | 0 | 1 | 1           |
| 1 | 1 | 0 | 1           |
| 1 | 1 | 1 | 1           |

**Step2:** find all the Boolean sub-expressions only when f(x,y,z)=1, e.g., when (x=0,y=1,z=1). The sub-expression is generated by inverting the inputs with zero and keeping the rest as they are, e.g., the subexpression for (x=0,y=1,z=1) is x'yz.

**Step3:** f(x,y,z) is given by summing (applying logical OR) all the sub-expressions found in step2.

**Answer**: 
$$f = x'yz + xy'z + xyz' + xyz$$

**Step4** (this step is optional and will **not be assessed**): Simplify f(x,y,z) using Boolean algebra. For those who are interested in how to simplify Boolean expressions, they can read the following link (Karnaugh maps) <a href="https://www.geeksforgeeks.org/k-mapkarnaugh-map/">https://www.geeksforgeeks.org/k-mapkarnaugh-map/</a>

Answer: this is out of the scope of this lab session

**6.** Revisit and study the 4-bit ripple carry adder shown in the slides. Draw the circuit for an 8-bit ripple carry adder

#### **Further Reading:**

- Chapter 1 in 'Foundation of Digital Electronics and Logic Design', available at <a href="https://moodle.tktk.ee/pluginfile.php/270008/mod\_resource/content/1/Foundation%20of%20Digital%20Electronics%20and%20Logic%20Design%20%5B2014%5D.pdf">https://moodle.tktk.ee/pluginfile.php/270008/mod\_resource/content/1/Foundation%20of%20Digital%20Electronics%20and%20Logic%20Design%20%5B2014%5D.pdf</a>
- Chapter 11 in 'Computer Organization and architecture' available at
   http://home.ustc.edu.cn/~louwenqi/reference\_books\_tools/Computer%20Organization%20
   and%20Architecture%2010th%20-%20William%20Stallings.pdf