International Rectifier

IRF7329PbF

HEXFET® Power MOSFET

- Trench Technology
- Ultra Low On-Resistance
- Dual P-Channel MOSFET
- Low Profile (<1.8mm)
- Available in Tape & Reel
- Lead-Free

V _{DSS}	$R_{DS(on)}$ max (m Ω)	I _D
	17@V _{GS} = -4.5V	±9.2A
-12V	21@V _{GS} = -2.5V	±7.4A
	30@V _{GS} = -1.8V	±4.6A

Description

New P-Channel HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infrared, or wave soldering techniques.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	-12	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-9.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-7.4	Α
I _{DM}	Pulsed Drain Current ①	-37	
P _D @T _A = 25°C	Power Dissipation 3	2.0	W
P _D @T _A = 70°C	Power Dissipation ③	1.3	7 **
	Linear Derating Factor	16	mW/°C
V _{GS}	Gate-to-Source Voltage	± 8.0	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient ③		62.5	°C/W

International

TOR Rectifier

Electrical Characteristics @ T_{.1} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-12			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.007		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			17		V _{GS} = -4.5V, I _D = -9.2A ②
DO(OH)				21	mΩ	$V_{GS} = -2.5V, I_D = -7.4A$ ②
				30		$V_{GS} = -1.8V, I_D = -4.6A$ ②
V _{GS(th)}	Gate Threshold Voltage	-0.40		-0.90	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g _{fs}	Forward Transconductance	25			S	V _{DS} = -10V, I _D = -9.2A
I _{DSS}	Drain-to-Source Leakage Current			-1.0	μA	$V_{DS} = -9.6V, V_{GS} = 0V$
				-25		$V_{DS} = -9.6V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -8.0V
1655	Gate-to-Source Reverse Leakage			100		$V_{GS} = 8.0V$
Qg	Total Gate Charge		38	57		I _D = -9.2A
Q _{gs}	Gate-to-Source Charge		6.8	10	nC	$V_{DS} = -6.0V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		8.1	12		$V_{GS} = -4.5V$
t _{d(on)}	Turn-On Delay Time		10		ns	$V_{DD} = -6.0V$
t _r	Rise Time		8.6		1.0	$I_{D} = -1.0A$
$t_{d(off)}$	Turn-Off Delay Time		340			$R_D = 6.0\Omega$
t _f	Fall Time		260			V _{GS} = -4.5V ②
C _{iss}	Input Capacitance		3450			V _{GS} = 0V
Coss	Output Capacitance		1000		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		640			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions				
Is	Continuous Source Current			0.0		MOSFET symbol				
	(Body Diode)	-2		-2.0	_	showing the				
I _{SM}	Pulsed Source Current				0-		0.7	07	A	integral reverse
	(Body Diode) ①		37		p-n junction diode.					
V _{SD}	Diode Forward Voltage	T		-1.2	V	$T_J = 25^{\circ}C$, $I_S = -2.0A$, $V_{GS} = 0V$ ②				
t _{rr}	Reverse Recovery Time		50	75	ns	T _J = 25°C, I _F = -2.0A				
Q _{rr}	Reverse Recovery Charge		48	72	nC	di/dt = -100A/µs ②				

Notes:

 $[\]ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature.

③ When mounted on 1 inch square copper board.

② Pulse width \leq 400 μ s; duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International TOR Rectifier

0.030 V_{GS} = -1.8V V_{GS} = -1.8V V_{GS} = -1.8V V_{GS} = -2.5V V_{GS} = -4.5V V_{GS} = -4.5V V_{GS} = -1.8V V_{GS} = -1

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

www.irf.com

100 80 60 40 20 0.001 0.010 0.100 1.000 10.000 100.000 Time (sec)

Fig 15. Typical Vgs(th) Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

SO-8 Package Outline

Dimensions are shown in milimeters (inches)

SO-8 Part Marking Information (Lead-Free)

SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

NOTES:

- NOTES:

 1. CONTROLLING DIMENSION : MILLIMETER.

 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.
- Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/04