Coding Challenge Python

DE131 Sameer Pal

Overall Data Summarization

Summarize key variables in the dataset to build a basic understanding, laying the groundwork for deeper analysis.

Basic Info

```
[3]: data.columns
t[3]: Index(['Bounces', 'Exits', 'Continent', 'Sourcegroup', 'Timeinpage',
             'Uniquepageviews', 'Visits', 'BouncesNew'],
           dtype='object')
[4]: data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 32109 entries, 0 to 32108
      Data columns (total 8 columns):
       #
          Column
                           Non-Null Count Dtype
       0
          Bounces
                         32109 non-null int64
                          32109 non-null int64
       1
          Exits
       2 Continent
                        32109 non-null object
       3 Sourcegroup
4 Timeinpage
                          32109 non-null object
                        32109 non-null int64
       5
          Uniquepageviews 32109 non-null int64
          Visits
                           32109 non-null int64
       6
       7
          BouncesNew
                           32109 non-null float64
      dtypes: float64(1), int64(5), object(2)
      memory usage: 2.0+ MB
```

Some Mathematical function

```
In [35]: print(data.describe())
                                       Exits
                                                 Timeinpage
                                                             Uniquepageviews
                      Bounces
          count
                 32109.000000
                               32109.000000
                                              32109.000000
                                                                32109.000000
                     0.713009
                                    0.906039
                                                  73.184746
                                                                     1.114329
          mean
          std
                     0.708215
                                    0.695819
                                                 394.441111
                                                                     0.614880
          min
                     0.000000
                                    0.000000
                                                   0.000000
                                                                     1.000000
          25%
                     0.000000
                                    1.000000
                                                   0.000000
                                                                     1.000000
          50%
                     1.000000
                                    1.000000
                                                   0.000000
                                                                     1.000000
          75%
                                                  10.000000
                     1.000000
                                    1.000000
                                                                     1.000000
          max
                    30.000000
                                   36.000000
                                              46745.000000
                                                                    45.000000
                       Visits
                                  BouncesNew
                 32109.000000
                                32109.000000
          count
          mean
                     0.906039
                                    0.007130
          std
                     0.730068
                                    0.007082
          min
                                    0.000000
                     0.000000
          25%
                     1.000000
                                    0.000000
                                    0.010000
          50%
                     1.000000
          75%
                     1.000000
                                    0.010000
          max
                    45.000000
                                    0.300000
In [36]: print(data.isnull().sum())
          Bounces
                              0
          Exits
                             0
          Continent
                              0
          Sourcegroup
                              0
          Timeinpage
                              0
         Uniquepageviews
                             0
          Visits
                              0
          BouncesNew
                              0
          dtype: int64
```

Unique Page Views vs Visits

Analyze if the number of unique page views depends on the total number of visits to the website

Correlation Coefficient Calculation

```
In [58]: # 2

correlation = data['Visits'].corr(data['Uniquepageviews'])
print(f"Correlation between visits and unique page views: {correlation}")
```

Correlation between visits and unique page views: 0.8144457070735212

Scattered Chart: UniquePageViews V/S Visits

```
import matplotlib.pyplot as plt

plt.scatter(data["Visits"], data['Uniquepageviews'],alpha=[0.5])

plt.title('Relationship between Unique Page Views and Visits')

plt.xlabel('Visits')

plt.xlim(0, 10)

plt.ylim(0,10)

plt.ylabel('Unique Page Views')

plt.show()
```


Factors Affecting Exits

Identify the factors in the dataset that could contribute to users exiting the site, helping understand why users leave.

Correlation Coefficient Calculation

```
In [59]: # 3
        numeric_data = data.select_dtypes(include=['number'])
        corr mat = numeric data.corr()
        exit_corr = corr_mat['Exits']
        print(exit_corr)
        Bounces
                         0.824912
        Exits
                         1.000000
        Timeinpage 0.001325
        Uniquepageviews 0.791129
        Visits
                  0.800979
        BouncesNew
                        0.824912
        Name: Exits, dtype: float64
```

AverageExits V/s Continent

```
In [48]: # 3
  plt.figure(figsize=(10, 6))
  data.groupby('Continent')['Exits'].mean().plot(kind='bar', color='brown')
  plt.title('Average Exits by Continent')
  plt.xlabel('Continent')
  plt.ylabel('Average Exits')
  plt.xticks(rotation=45)
  plt.show()
```


Average Exits vs Source Group

```
In [49]: # 3
plt.figure(figsize=(10, 6))

data.groupby('Sourcegroup')['Exits'].mean().plot(kind='bar', color='yellow')
plt.title('Average Exits by Sourcegroup')
plt.xlabel('Sourcegroup')

plt.ylabel('Average Exits')
plt.xticks(rotation=45)
plt.show()
```


Factors Affecting Time on Page

Determine which variables influence the amount of time a visitor spends on a page to improve user engagement

Correlation Coefficient

```
In [52]: # 4
        numeric_data = data.select_dtypes(include=['number'])
        corr_mat = numeric_data.corr()
        exit_corr = corr_mat['Timeinpage']
        print(exit_corr)
        Bounces
                 -0.109106
        Exits
                        0.001325
        Timeinpage
                       1.000000
        Uniquepageviews 0.114593
        Visits
                        0.066650
        BouncesNew -0.109106
        Name: Timeinpage, dtype: float64
```

Pie Chart for Page By SourceGroup

```
In [54]: # 4
  plt.figure(figsize=(8, 8))
  sourcegroup_avg_time = data.groupby('Sourcegroup')['Timeinpage'].mean()
  sourcegroup_avg_time.plot(kind='pie', autopct='%1.1f%%', colors=['orange', 'skyb
  plt.title('Average Time on Page by Sourcegroup')
  plt.ylabel('')
  plt.show()
```

Average Time on Page by Sourcegroup

Average Time on Page By Continent

```
In [53]: # 4
plt.figure(figsize=(10, 6))

data.groupby('Continent')['Timeinpage'].mean().plot(kind='bar', color='skyblue')
plt.title('Average Time on Page by Continent')
plt.xlabel('Continent')
plt.ylabel('Average Time on Page (in seconds)')
plt.show()
```


Factors Impacting Bounce Rate

Identify factors that impact the bounce rate, helping understand which aspects of the site cause visitors to leave without interaction.

Correlation Coefficient

Jourcegroup

Pie Chart for Bounces by Continent

```
In [60]: # 5

plt.figure(figsize=(5, 5))
    continent_bounces = data.groupby('Continent')['Bounces'].sum()
    continent_bounces.plot(kind='pie', autopct='%1.1f%%', colors=['skyblue', 'lightg
    plt.title('Bounces by Continent')
    plt.ylabel('')
    plt.show()
```

Bounces by Continent

Average Source Rate By SourceGroup

