U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER 11283-021US1 TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) U.S. APPLICATION NO. (If Known, see 37 CFR CONCERNING A FILING UNDER 35 U.S.C. 371 INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE PRIORITY DATE CLAIMED PCT/JP00/06667 1 October 1999 27 September 2000 TITLE OF INVENTION NOVEL DIARYLAMIDE DERIVATIVES AND PHARMACEUTICAL APPLICATION THEREOF APPLICANT(S) FOR DO/EO/US Haruhisa Ogita, Yoshiaki Isobe and Haruo Takaku Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information: ☐ This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371. This is an express request to promptly begin national examination procedures (35 U.S.C. 371(f)). 4. The US has been elected by the expiration of 19 months from the priority date (PCT Article 31). □ A copy of the International Application as filed (35 U.S.C. 371(c)(2)) a. is attached hereto (required only if not communicated by the International Bureau). A has been communicated by the International Bureau. is not required, as the application was filed in the United States Receiving Office (RO/US). 6. An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)). 7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) are attached hereto (required only if not communicated by the International Bureau). have been communicated by the International Bureau. have not been made; however, the time limit for making such amendments has NOT expired. d. A have not been made and will not be made. 8. An English language translation of amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). 10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). Items 11 to 16 below concern other documents or information included: 11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. 13. A FIRST preliminary amendment. ☐ A SECOND or SUBSEQUENT preliminary amendment. 14. A substitute specification. 15. A change of power of attorney and/or address letter. 16. Other items or information: International Search Report :PH-1073-PCT W0 01/25190 A1 PCT/IB/308 Express Mail Label No FFO-1506558201 CERTIFICATE OF MAILING BY EXPRESS MAIL. ☑ PCT/IPEA/409

I hereby certify under 37 CFR §1 10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents

March 27. 2002 Date of Deposit

LACENTIN FIGURA Typed Name of

U.S. APPLICATION NO. (IF K	CATION NO.	ATTORNEY'S DOCK 11283-021US1	ET NUMBER					
17. The following fee		CALCULATIONS	PTO USE					
Basic National Fee (37	7 CFR 1.492(a)(1)-	(5)):		ONLY				
Neither international pre- nor international search and International Search	liminary examination fee (37 CFR 1.445	on fee (37 CFR 1.482) 5(a)(2)) paid to USPTO)					
International preliminary USPTO but International								
International preliminary international search fee	(37 CFR 1.445(a)(2	2)) paid to USPTO	\$740					
International preliminary but all claims did not sati	isfy provisions of P	PCT Article 33(1)-(4)	\$710		,			
International preliminary and all claims satisfied p								
			SIC FEE AMOUNT =	\$890.00				
Surcharge of \$130 for fu months from the earliest			1 🗌 20 🔲 30	\$0.00				
Claims	Number Filed	Number Extra	Rate					
Total Claims	18 - 20 =	0	x \$18	\$0.00				
Independent Claims	1 - 3 =	0	x \$84	\$0.00				
MULTIPLE DEPENDEN			+ \$280	\$0.00				
		TOTAL OF ABOVE	CALCULATIONS =	\$0.00				
Applicant claims sma reduced by 1/2.	Il entity status. See	37 CFR 1.27. The fe	es indicated above are	\$0.00				
			SUBTOTAL =	\$890.00				
Processing fee of \$130 months from the earliest				\$0.00				
1			L NATIONAL FEE =	\$0.00				
Fee for recording the end accompanied by an appr		(37 CFR 1.21(h)). Th	e assignment must be	\$40.00				
accompanies of an app.	opriato de la cina		FEES ENCLOSED =	\$930.00				
		IVIAL	I LLO LNOLOGIO	Amount to be refunded:	\$			
			ł	Charged:	\$			
a. A check in the amount of \$930.00 to cover the above fees is enclosed. b. Please charge my Deposit Account No. 06-1050 in the amount of \$0.00 to cover the above fees. A duplicate copy of this sheet is enclosed. c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 06-1050. A duplicate copy of this sheet is enclosed.								
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b) must be filed and granted to restore the application to pending status.								
SEND ALL CORRESPONDEN	ICE TO:		-)				
Chris T. Mizumoto			11/0/	. ##				
Chris T. Mizumoto FISH & RICHARDSON F	c (SIGNATURE:					
45 Rockefeller Plaza, Su				Chris T. Miz	zumoto I			
New York, New York 101			NAME	CHIIS I. IVIIZ	<u>zumoto</u>			
(212) 765-5070 phone (212) 258-2291 facsimile	~			42,89	9			
(212) 200-229 Hacsillille	,		DECISTRATION NI IMPE					

Attorney's Docket No.: 11283-021US1 / PH-1073PCT-US

JC13 Rec'd PCT/PTO 27 MAR 2002

APPLICATION

1

FOR

UNITED STATES LETTERS PATENT

TITLE:

NOVEL DIARYLAMIDE DERIVATIVES AND

PHARMACEUTICAL APPLICATION THEREOF

APPLICANT:

HARUHISA OGITA, YOSHIAKI ISOBE AND HARUO

TAKAKU

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No. <u>EF045065562US</u>
I hereby certify under 37 CFR §1 10 that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington D.C. 20231
March 27, 2002
Date of Deposit Octavitie Signature
Signature
Valentin Figueroa
Typed or Printed Name of Person Signing Certificate

DESCRIPTION

NOVEL DIARYLAMIDE DERIVATIVES AND PHARMACEUTICAL APPLICATION THEREOF

TECHNICAL FIELD

The present invention relates to diarylamide derivatives useful as pharmaceuticals, and more particularly to diarylamide derivatives having an inhibitory action against abnormal cell proliferation and pharmaceutically acceptable salts thereof.

BACKGROUND ART

Growth factors such as insulin, epidermal growth factors, or platelet-derived growth factors (hereinafter abbreviated to PDGF) play important roles in proliferation of various cells including vascular smooth muscle cells. Especially, PDGF is known to be associated with regulation of cell proliferation/differentiation as a strong cell growth factor (Cell, 46, 155 (1986)). For example, in diseases such as restenosis after percutaneous transluminal coronary angioplasty or coronary artery bypass surgery and mesangial cell proliferative nephritis, PDGF and PDGF receptors are abnormally produced in cells of pathology sites, and abnormal proliferation of cells in pathology sites is observed in these diseases.

Tranilast ((E)-2-(3,4-dimethoxycinnamoylamino)benzoic acid) inhibits PDGF-caused proliferation of vascular smooth muscle cells and prevents restenosis after percutaneous transluminal coronary angioplasty in clinical tests (Am. Heart. J, 134 (4), 712 (1997)). However, the inhibitory action of tranilast against proliferation of vascular smooth muscle cells in *in vitro* testing is weak (WO 97/09301 describes the inhibitory action against proliferation of vascular smooth muscle cells in thoracic aorta of spontaneous hypertensive rat as $IC_{50} = 231 \mu M$), and thus, with a dose exhibiting efficacy in the clinical test, disadvantageously, hepatotoxicity frequently appears.

Mesangial cell proliferative nephritis is a disease caused by abnormal proliferation of mesangial cells in a kidney, and it is reported in Japanese Patent Laid-Open No. 306024/1998 that translast has inhibitory action against such proliferation.

WO 97/29744 and Br. J. Pharmacol., 122(6), 1061-1066 (1997) report that

tranilast inhibits proliferation of cultured human skin microvascular endothelial cell caused by vascular endothelial growth factors and inhibits arterialization even in a mouse in vivo arterialization model in a dosage-dependent manner, thus rendering tranilast to be useful for improving neovascular diseases such as proliferative diabetic retinopathy, senile disciform macular degeneration, prematurity retinopathy, sickle cell retinopathy, occlusion of retinal vein, arterialization associated with corneal transplantation or cataract, neovascular glaucoma, rubeosis iridis, rheumatic arthritis, psoriasis, scleredema, various tumors, abnormal capillary plexus of single adventitial of atherosclerosis, and arterialization in cornea due to use of contact lens for a long period of time.

In addition, in diseases or pathologies such as leukaemia, cancer, psoriasis, glomerular disease, organ fibrous disease, articular rheumatism, arteriosclerosis, heart infarction, brain infarction, and diabetes, PDGF and PDGF receptors are abnormally produced in pathology sites. Conventional inhibitors against cell proliferation elicited by PDGF include 3-arylquinoline derivatives described in J. Med. Chem., <u>37</u>, 2627 (1994), quinoxaline derivatives described in Cancer Research, <u>54</u>, 6106 (1994), and bismono- and bicyclic aryl and heteroaryl derivatives described in WO 92/20642.

DISCLOSURE OF THE INVENTION

Under the above circumstances, the object of the present invention is to provide a novel compound or a pharmaceutically acceptable salt thereof useful for prevention or treatment of cell proliferative diseases such as arteriosclerosis, vascular reocclusion disease, nephritis, diabetic retinopathy, psoriasis, and senile disciform macular degeneration by seeking a drug for inhibiting, at lower concentration, proliferation of vascular smooth muscle cells, vascular endothelial cells, epidermal cells and the like.

The present inventors, therefore, have conducted concentrated studies to attain the above object, and as a result, have found that a diarylamide derivative having a specific structure inhibits cell proliferation at low concentration. This has led to the completion of the present invention.

More specifically, the present invention includes the following.

(i) A diarylamide derivative represented by general formula (1) or a pharmaceutically acceptable salt thereof:

$$R^{5}$$
 R^{4}
 R^{3}
 R^{2}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{1}

A is an aromatic ring selected from the group consisting of a benzene ring, a pyridine ring, a thiophene ring, a furan ring, and a naphthalene ring;

a substituent represented by COY and a substituent represented by NHCOX are adjacent to each other and these substituents are linked to a carbon atom in the aromatic ring;

X denotes a C_1 - C_4 -alkylene group, a C_1 - C_4 -alkyleneoxy group, or a single bond;

Y is selected from the group consisting of a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a hydroxyl group, and $N(R^6)(R^7)$ in which each of R^6 and R^7 , which can be the same or different, is selected from the group consisting of a hydrogen atom, a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a C_3 - C_9 -cycloalkyl group, a C_4 - C_9 -cycloalkyl-alkyl group, a C_5 - C_8 -morpholino-N-alkoxy group, a C_3 - C_9 -alkenyl group, a phenyl group, a pyridyl group, and an aralkyl group, wherein the phenyl group and the pyridyl group and the aromatic ring of the aralkyl group are optionally substituted with 1 to 3 substituents selected from the group consisting of a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, and a halogen atom;

 R^1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a C_1 - C_4 -alkyl group, a C_3 - C_9 -cycloalkyl-alkyl group, a C_4 - C_9 -cycloalkyl-alkoxy group, a C_4 - C_9 -cycloalkyl-alkoxy group, an aralkyloxy group, a C_1 - C_4 -acyl group, and a nitro group, and 1 to 4 R^1 s are present at a desired position in A, each of which can be the same or different, and when two R^1 s are present, they may together form a C_1 - C_4 -alkylenedioxy group, provided that, when A is a benzene ring, R^1 does not denote a hydrogen atom;

B denotes a benzene, pyridine, or thiophene ring;

 R^2 is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkylthio group, a C_1 - C_4 -hydroxyalkoxy group, a C_3 - C_9 -cycloalkyl-alkoxy group, an aralkyloxy group, a C_1 - C_4 -acyl group, a cyano group, a C_5 - C_8 -morpholino-N-alkoxy group, and an amino group which can be monosubstituted or disubstituted with a C_1 - C_4 -alkyl group, and 1 to 4 R^2 s, each of which can be the same or different, are present at a desired position;

 R^3 and R^4 denote, when Y denotes other than a C_1 - C_4 -alkyl group, an oxygen atom or NR^8 in which each R^8 is selected from the group consisting of a hydrogen atom and a C_1 - C_4 -alkyl group, each of which can be the same or different, and when Y denotes a C_1 - C_4 -alkyl group, R^3 denotes an oxygen atom or NR^8 and R^4 denotes an oxygen atom, NR^8 , or a single bond;

R⁵ is selected from the group consisting of a C₁-C₈-alkyl group, a C₂-C₄-alkenyl group, a C₃-C₉-cycloalkyl group, a C₄-C₉-cycloalkyl-alkyl group, a tetrahydropyranyl group, an aralkyl group, an indanyl group, an aromatic acyl group, a phenyl group, a pyridyl group, a furyl group, and a thienyl group, wherein the aromatic rings of the aralkyl group, the indanyl group, and the aromatic acyl group, and the phenyl group, the pyridyl group, the furyl group, and the thienyl group optionally have 1 to 5 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a cyano group, a C₁-C₄-alkyl group, a C₁-C₄-alkoxy group, a C₁-C₄-alkylthio group, a C₂-C₅-alkoxycarbonyl group, a carboxyl group, a C₁-C₄-acyl group, an aromatic acyl group, a C₁-C₄-acyloxy group, a trifluoromethyl group, a phenyl group, a phenoxy group, a phenylthio group, a pyridyl group, a morpholino group, an aralkyloxy group, a nitro group, a methylsulfonyl group, an aminosulfonyl group, and an amino group that is optionally monosubstituted or disubstituted with a C₁-C₄-alkyl group or a C₁-C₄-acyl group, and wherein adjacent two substituents may together form a C₁-C₄-alkylenedioxy group to form a ring; and

Z denotes an oxygen or sulfur atom.

- (ii) The compound according to (i) above wherein, in general formula (1), X denotes a C_1 - C_4 -alkylene group.
- (iii) The compound according to (i) above wherein, in general formula (1), X denotes a single bond.
 - (iv) The compound according to any one of (i) to (iii) above wherein, in

general formula (1), each of A and B, which can be the same or different, denotes a benzene or pyridine ring.

- (v) The compound according to any one of (i) to (iv) above wherein, in general formula (1), A and B denote a benzene ring.
- (vi) The compound according to any one of (i) to (v) above wherein, in general formula (1), Y denotes an unsubstituted amino group, a hydroxyl group, or a C_1 - C_4 -alkoxy group.
- (vii) The compound according to any one of (i) to (v) above wherein, in general formula (1), Y denotes a C_1 - C_4 -alkyl group.
- (viii) The compound according to any one of (i) to (vii) above wherein, in general formula (1), R^2 denotes a hydrogen atom or a C_1 - C_4 -alkoxy group.
- (ix) The compound according to any one of (i) to (viii) above wherein, in general formula (1), R^5 denotes a benzyl group, a phenyl group, a pyridyl group, or a pyridylmethyl group wherein the aromatic rings of the benzyl group and the pyridylmethyl group and the phenyl group and the pyridyl group optionally have 1 to 5 substituents selected from the group consisting of a halogen atom, a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a C_2 - C_5 -alkoxycarbonyl group, a C_1 - C_4 -acyl group, a trifluoromethyl group, a C_1 - C_4 -alkylthio group, and an amino group which has been disubstituted with a C_1 - C_4 -alkyl group.
- (x) The compound according to any one of (i) to (ix) above wherein, in general formula (1), R^5 denotes a C_1 - C_4 -alkyl group, a C_2 - C_4 -alkenyl group, or a C_3 - C_6 -cycloalkyl group.
- (xi) The compound according to any one of (i) to (x) above wherein, in general formula (1), R^3 and R^4 denote NH.
- (xii) The compound according to any one of (i) to (x) above wherein, in general formula (1), R^3 denotes NH and R^4 denotes an oxygen atom.
 - (xiii) A pharmaceutical composition comprising, as an active ingredient, the

compound or pharmaceutically acceptable salt thereof according to any one of (i) to (xii) above.

- (xiv) A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to any one of (i) to (xii) above, that is usable for prevention or treatment of diseases caused by abnormal proliferation of vascular smooth muscle cells.
- (xv) A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to any one of (i) to (xii) above, that is usable for prevention or treatment of restenosis or atherosclerosis after percutaneous transluminal coronary angioplasty or coronary artery bypass surgery.
- (xvi) A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to any one of (i) to (xii) above, that is usable for prevention or treatment of diseases caused by abnormal proliferation of mesangial cells.
- (xvii) A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to any one of (i) to (xii) above, that is usable for prevention or treatment of diseases caused by abnormal proliferation of vascular endothelial cells or epidermal cells.
- (xviii) A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to any one of (i) to (xii) above, that is usable for prevention or treatment of psoriasis, diabetic retinopathy, or senile disciform macular degeneration.

The compound of the present invention will now be described in more detail. The compound of the present invention is represented by general formula (1) in which R¹, R², R³, R⁴, R⁵, X, Y, Z, ring A, and ring B are as defined above, respectively. The following substituents described herein are described in more detail with reference to specific examples as follows.

Examples of a halogen atom include fluorine, chlorine, bromine, and iodine.

Examples of a C_1 - C_4 -alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, and t-butyl.

Examples of a C₃-C₉-cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.

Examples of a C_4 - C_9 -cycloalkyl-alkyl group include cyclopentylmethyl, cyclopentylethyl, and cyclohexylethyl.

Examples of a C₂-C₄-alkenyl group include allyl, vinyl, isopropenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, and 2-methyl-2-propenyl.

Examples of a C₃-C₉-alkenyl group include allyl, isopropenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 3-pentenyl, 4-pentenyl, 3-methyl-2-butenyl, hexenyl, heptenyl, octenyl, and nonenyl.

Examples of a C_1 - C_4 -alkoxy group include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, and t-butoxy.

Examples of a C_3 - C_9 -cycloalkyloxy group include cyclopropoxy, cyclobutoxy, cyclopentoxy, cyclohexyloxy, and cycloheptyloxy.

Examples of a C_4 - C_9 -cycloalkyl-alkoxy group include cyclopentylmethoxy, cyclopentylethoxy, and cyclohexylethoxy.

Examples of an aralkyloxy group include benzyloxy, 1-naphthylmethoxy, 2-naphthylmethoxy, 2-phenylethoxy, 1-phenylethoxy, 3-phenylpropoxy, 4-phenylbutoxy, 5-phenylpentoxy, and 6-phenylhexyloxy.

Examples of a C₁-C₄-acyl group include formyl, acetyl, propionyl, and butyryl.

Examples of an aromatic acyl group include benzoyl, toluoyl, and naphthoyl.

Examples of an amino group monosubstituted with a C₁-C₄-alkyl group include

methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, s-butylamino, and t-butylamino.

Examples of an amino group disubstituted with a C₁-C₄-alkyl group include dimethylamino, diethylamino, dipropylamino, and dibutylamino.

Examples of a C₂-C₅-alkoxycarbonyl group include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, s-butoxycarbonyl, and t-butoxycarbonyl.

Examples of a C_1 - C_4 -alkylenedioxy group include methylenedioxy and ethylenedioxy.

Examples of a C_1 - C_4 -hydroxyalkoxy group include hydroxymethoxy, hydroxypropoxy, and hydroxybutoxy.

Examples of a C_5 - C_8 -morpholino-N-alkoxy group include morpholino-N-methoxy, morpholino-N-ethoxy, morpholino-N-propoxy, and morpholino-N-butoxy.

Examples of an aralkyl group (including a heteroaromatic substituted alkyl group) include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, 2-phenylethyl, 1-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 6-phenylhexyl, methylbenzyl, 1-methylphenethyl, dimethylbenzyl, 1-dimethylphenethyl, 1-ethylbenzyl, diethylbenzyl, thienylmethyl, thienylethyl, furylmethyl, furylethyl, pyridylmethyl, and pyridylethyl.

Examples of a C_1 - C_4 -alkylene group include methylene, ethylene, trimethylene, and tetramethylene.

Examples of a C_1 - C_4 -alkyleneoxy group include methyleneoxy, ethyleneoxy, trimethyleneoxy, and tetramethyleneoxy.

Examples of a C₁-C₄-acyloxy group include acetyloxy, propionyloxy, and butyryloxy.

Examples of a C₁-C₄-alkylthio group include methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, s-butylthio, and t-butylthio.

In the diarylamide derivative of the present invention represented by general formula (1), an aromatic ring represented by A is as described above in which a benzene ring and a pyridine ring are preferred, with the benzene ring being more preferred.

As the group represented by X, a single bond (direct bond), a methylene group and an ethylene group are preferred. The ethylene group is particularly preferred.

Substituents represented by Y are as described above in which an amino group, a hydroxyl group, a C_1 - C_4 -alkoxy group, and a C_1 - C_4 -alkyl group are preferred and an amino group, a methoxy group, an ethoxy group, and a methyl group are more preferred.

Substituents represented by R^1 are as described above in which one or two substituents selected from the group consisting of a C_1 - C_4 -alkoxy group, a nitro group, and a halogen atom are preferably present and these substituents are more preferably a methoxy group, a ethoxy group, a methylenedioxy group, or fluorine. A binding position of R^1 is, when a ring A is a benzene ring, preferably monosubstitution at the 4-or 5-position to the substituent represented by NHCOX or disubstitution at the 4- and 5-positions.

The ring represented by B is as described above in which a benzene ring is preferred.

 R^2 is preferably a hydrogen atom or monosubstitution of C_1 - C_4 -alkoxy group.

Preferably, as R^3 and R^4 , both R^3 and R^4 are NH or R^3 denotes NH and R^4 denotes an oxygen atom.

 R^5 is preferably a benzyl, phenyl, pyridyl, or pyridylmethyl group, and the aromatic rings of the benzyl group and the pyridylmethyl group and the phenyl group and the pyridyl group optionally have 1 to 5 substituents selected from the group consisting of a halogen atom, a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a C_2 - C_5 -alkoxycarbonyl group, a C_1 - C_4 -acyl group, a trifluoromethyl group, a

 C_1 - C_4 -alkylthio group, and an amino group that is disubstituted with a C_1 - C_4 -alkyl group.

Z is preferably oxygen.

The compound of the present invention can be synthesized by, for example, the following processes although the process for producing the compound of the present invention is, needless to say, not limited to these processes only.

All the compounds of the present invention are novel compounds which have not been heretofore described in any literature, however, they can be produced by conventional processes described in literature or processes similar thereto. Examples of such literature include "Organic Functional Group Preparations" by S. R. Sandler et al. (Academic Press Inc., New York and London, 1968), "Synthetic Organic Chemistry" by S. R. Wagner et al. (John Wiley, 1961), "Comprehensive Organic Transformations" by R. C. Larock (1989), "Encyclopedia of Reagents for Organic Synthesis" by L. A. Paquette et al. (1995), and "Compendium of Organic Synthetic Methods" by M. B. Smith (1995). As an analogous compound of the compound according to the present invention, synthesis of a compound in which A denotes a benzene ring, R1 denotes a hydrogen atom, and X denotes a single bond in formula (1) has been reported, and a compound can be synthesized also by a similar process. Examples of reports include Indian. J. Chem., Sect. B (1987), 26B (12), 1133-9, Japanese Patent Publication No. 24825/1990, Acta Chim. Acad. Sci. Hung. (1981), 107 (1), 57-66, Tetrahedron (1968), 24 (16), 5529-45, Acta Chim. Acad. Sci. Hung. (1966), 48 (1), 77-87, J. Org. Chem. (1967), 32 (2), 462-3, Acta Vet. (Brno) (1971), 40 (2), 209-14, J. Org. Chem. (1974), 39 (13), 1931-5, and J. Chem. Eng. Data (1968), 13 (4), 577-9. There is no description concerning physiological activities of the compound in the above-described literature. A starting compound to be used in production can be a commercially available one, or can be produced by a conventional process if necessary. Examples of production processes are described below.

[Production process 1]

A compound in which R^3 denotes NH in general formula (1) can be produced in accordance with the following reaction steps:

OH

$$A$$
 R^1
 B
 R^2
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4
 R^5
 R^4
 R^5
 R^4
 R^5
 R^6
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^9
 R^9

 R^1 , R^2 , R^4 , R^5 , X, Y, Z, ring A, and ring B are as defined above.

For a compound (2) that is a starting material, a commercially available product can be purchased or the compound (2) can be produced by a conventional process described in literature or a process similar thereto. For example, when ring A is a benzene ring, the compound (2) can be produced using the following compounds as starting materials.

An anthranilic acid derivative represented by general formula (6) can be subjected to condensation with an amine using a carbodiimide reagent such as dicyclohexylcarbodiimide, thereby producing a compound in which Y denotes $N(R^6)(R^7)$. A compound in which Y denotes a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, or $N(R^6)(R^7)$ can be produced through treatment of a nitrobenzoic acid derivative

represented by general formula (7) with thionyl chloride or the like followed by reaction with an alcohol or an amine in an inactive solvent in the presence of a base or through the same treatment as with general formula (6), followed by conversion of a nitro group into an amino group in accordance with a conventional process described in literature or a process similar thereto. Regarding the nitrile derivative represented by general formula (8), the nitrile group can be hydrolyzed by a conventional process described in literature or a process similar thereto to synthesize a compound in which Y denotes a hydroxyl group.

The compound represented by general formula (4) can be produced by a conventional process described in literature or a process similar thereto, that is, a condensation reaction of an amine derivative represented by general formula (2) with a carboxylic acid derivative represented by general formula (3). This condensation reaction can be carried out in the presence of various condensing reagents. Condensing reagents usable herein include, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide, carbonyldiimidazole, and 2-chloro-1-methylpyridinium iodide. A condensation reaction can also be carried out by reacting the carboxylic acid compound represented by general formula (3) with a halogenizing reagent such as thionyl chloride to convert it into a corresponding acid halide or, for example, converting it into an acid anhydride as a reaction activator by means of p-toluenesulfonyl chloride or the like, and then reacting with the amine derivative represented by general formula (2). In this condensation reaction, a suitable solvent can be used, which is selected from inactive solvents, for example, ethers such as tetrahydrofuran, aromatic hydrocarbons such as toluene, hydrocarbons such as cyclohexane, halogenated hydrocarbons such as dichloromethane and chloroform, nitriles such as acetonitrile, esters such as ethyl acetate, N,N-dimethylformamide, and dimethyl sulfoxide. The reaction can be carried out at 0°C to the reflux temperature of the solvent used.

The compound represented by general formula (5) can be produced by converting a nitro group of the amide derivative represented by general formula (4) into an amino group by a conventional process described in literature or a process similar thereto. For example, the compound can be produced by performing a hydrogenation reaction in an alcoholic solvent such as methanol or ethanol in the presence of a catalyst such as palladium-carbon, iron, or tin powder. The reaction can be carried out at 0°C to the reflux temperature of the solvent used.

When R⁴ denotes NH in the compound represented by general formula (1), the compound can be produced as follows. The compound represented by general formula (5) is optionally reacted with isocyanate (R⁵NCO) or isothiocyanate (R⁵NCS) prepared by a conventional method in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours. Alternatively, an isocyanate equivalent which is separately prepared from a corresponding amine and triphosgene or carbonyldiimidazole, is used instead of isocyanate in a reaction, and thus synthesis can be carried out.

When R⁴ denotes an oxygen atom in the compound represented by general formula (1), the compound can be produced as follows. The compound represented by general formula (5) is reacted with a carbamic acid halide (R5OCOX) prepared by a conventional process, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours. Alternatively, a carbamic acid halide equivalent which is separately prepared from a corresponding alcohol and triphosgene or carbonyldiimidazole is used instead of a carbamic acid halide in a reaction, and thus synthesis can be carried out.

When R^4 denotes NR^8 and R^8 denotes a C_1 - C_4 -alkyl group in the compound represented by general formula (1), the compound can be produced as follows. The compound represented by general formula (5) is reacted with carbamoyl chloride or

thiocarbamoyl chloride represented by R⁴R⁵NCZCl prepared by a conventional method, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours.

The compound represented by general formula (1), when R⁴ denotes a single bond, can be produced through a condensation reaction of the compound represented by general formula (5) with a carboxylic acid derivative represented by R5CO2H by, for example, a conventional process described in literature or a process similar thereto, if necessary. This condensation reaction can be carried out in the presence of various Condensing reagents usable herein include, for example, a condensing reagents. carbodiimide reagent such as dicyclohexylcarbodiimide, carbonyldiimidazole, or 2-chloro-1-methylpyridinium iodide. The condensation reaction can also be carried out by reacting the carboxylic acid compound represented by R5CO2H with a halogenizing reagent such as thionyl chloride to convert it into a corresponding acid halide or, for example, converting it into an acid anhydride as a reaction activator by means of p-toluenesulfonyl chloride or the like, followed by reaction with the amino compound represented by general formula (5). In this condensation reaction, a suitable solvent can be used, which is selected from inactive solvents, for example, ethers such as tetrahydrofuran, aromatic hydrocarbons such as toluene, hydrocarbons such as cyclohexane, halogenated hydrocarbons such as dichloromethane and chloroform, nitriles such as acetonitrile, and esters such as ethyl acetate, N,N-dimethylformamide, and dimethyl sulfoxide. The reaction can be carried out at 0°C to the reflux temperature of the solvent used.

[Production process 2]

A compound in which R³ denotes NR⁸ in compound (1) can be produced in accordance with the following reaction steps:

$$R^{8}HN$$
 R^{1}
 $R^{8}HN$
 R^{2}
 $R^{8}HN$
 $R^{8}HN$
 $R^{8}HN$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{5}

R¹, R², R⁴, R⁵, R⁸, X, Y, Z, ring A, and ring B are as defined above.

The compound represented by general formula (10) can be produced by a conventional process described in literature or a process similar thereto, that is, a condensation reaction of the amine derivative represented by general formula (2) with the carboxylic acid derivative represented by general formula (9). This condensation reaction can be carried out in the presence of condensing reagents. Condensing reagents usable herein include, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide, carbonyldiimidazole, or 2-chloro-1-methylpyridinium iodide. In this condensation reaction, a suitable solvent can be used, which is selected from inactive solvents, for example, ethers such as tetrahydrofuran, aromatic hydrocarbons such as toluene, hydrocarbons such as cyclohexane, halogenated hydrocarbons such as dichloromethane, nitriles such as acetonitrile, esters such as ethyl acetate, N,N-dimethylformamide, and dimethyl sulfoxide. The reaction can be carried out at

0°C to the reflux temperature of the solvent used.

When R⁴ denotes NH in the compound represented by general formula (1), the compound can be produced as follows. The compound represented by general formula (10) is reacted with isocyanate (R⁵NCO) or isothiocyanate (R⁵NCS) prepared by a conventional method, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as such aprotic polar solvents chloroform, dichloromethane and N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours.

When R⁴ denotes NR⁸ and R⁸ denotes a C₁-C₄-alkyl group in the compound represented by general formula (1), the compound can be produced as follows. The compound represented by general formula (10) is reacted with carbamoyl chloride or thiocarbamoyl chloride represented by R⁸R⁵NCZCl prepared by a conventional process, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers, such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours.

[Production process 3]

A compound in which R³ denotes NR⁸ in compound (1) can be produced in accordance with the following reaction steps:

 R^1 , R^2 , R^4 , R^5 , R^8 , X, Y, Z, ring A, and ring B are as defined above and L^1 denotes a hydrogen atom or a protective group such as a benzyl group or an alkyl group.

The compound represented by general formula (12) can be produced as follows when R⁴ denotes NH. The compound represented by general formula (11) is reacted with isocyanate (R⁵NCO) or isothiocyanate (R⁵NCS) prepared by a conventional method, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours.

The compound represented by general formula (12) can be produced as follows

when R⁴ denotes NR⁸ and R⁸ denotes a C₁-C₄-alkyl group. The compound represented by general formula (11) is reacted with carbamoyl chloride or thiocarbamoyl chloride represented by R⁸R⁵NCZCl prepared by a conventional method, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers, such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane and chloroform, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours.

The compound represented by general formula (1) can be produced by a conventional process described in literature or a process similar thereto, that is, a condensation reaction of the amine derivative represented by general formula (2) with the compound represented by general formula (12) or the compound which was subjected to a deprotection reaction represented by general formula (12). This condensation reaction can be carried out in the presence of condensing reagents. Condensing reagents usable herein include, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide, carbonyldiimidazole, or 2-chloro-1-methylpyridinium iodide. In this condensation reaction, a suitable solvent can be used, which is selected from inactive solvents, for example, ethers such as tetrahydrofuran, aromatic hydrocarbons such as toluene, hydrocarbons such as cyclohexane, halogenated hydrocarbons such as dichloromethane, nitriles such as acetonitrile, esters such as ethyl acetate, N,N-dimethylformamide, and dimethyl sulfoxide.

[Production process 4]

A compound in which R^3 denotes an oxygen atom in compound (1) can be produced in accordance with the following reaction steps:

 R^1 , R^2 , R^4 , R^5 , X, Y, Z, ring A, and ring B are as defined above and L^2 denotes a hydrogen atom or a protective group.

The compound represented by general formula (14) can be produced by a conventional process described in literature or a process similar thereto, that is, a condensation reaction of the amine derivative represented by general formula (2) with the carboxylic acid derivative represented by general formula (13). This condensation reaction can be carried out in the presence of various condensing reagents. Condensing reagents usable herein include, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide, carbonyldiimidazole, or 2-chloro-1-methylpyridinium iodide. The condensation reaction can also be carried out by reacting the carboxylic acid compound represented by general formula (13) with a halogenizing reagent such as thionyl chloride to convert it into a corresponding acid halide or, for example, converting it into an acid anhydride as a reaction activator by means of p-toluenesulfonyl chloride or the like, followed by reaction with the amino compound represented by general formula (2). In this condensation reaction, a suitable solvent

can be used, which is selected from inactive solvents, for example, ethers such as tetrahydrofuran, aromatic hydrocarbons such as toluene, hydrocarbons such as cyclohexane, halogenated hydrocarbons such as dichloromethane and chloroform, nitriles such as acetonitrile, esters such as ethyl acetate, N,N-dimethylformamide, and dimethyl sulfoxide. The reaction can be carried out at 0°C to the reflux temperature of the solvent used.

The compound represented by general formula (1) can be produced as follows when R⁴ denotes NH. The compound represented by general formula (5) is reacted with isocyanate (R⁵NCO) or isothiocyanate (R⁵NCS) prepared by a conventional method, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as dichloromethane, aprotic polar solvents such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours. Alternatively, an isocyanate equivalent which is separately prepared from a corresponding amine and triphosgene or carbonyldiimidazole, is used instead of isocyanate in a reaction, and thus synthesis can be carried out.

The compound represented by general formula (1) can be produced as follows when $R^4 = NR^8$ and $R^8 \neq H$. The compound represented by general formula (5) is reacted with carbamoyl chloride or thiocarbamoyl chloride represented by R8R5NCZCl prepared by a conventional method, if necessary, in the presence of bases, for example, organic bases such as triethylamine, pyridine, and dimethylaminopyridine, inorganic bases such as potassium carbonate, sodium hydroxide, and sodium hydride, and metal alkoxides such as sodium methoxide and potassium t-butoxide, in adequate inactive solvents, for example, ethers, such as diethyl ether, tetrahydrofuran, and 1,4-dioxane, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as polar solvents such chloroform, aprotic and dichloromethane N,N-dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidone or a mixed solvent thereof, at -20°C to the boiling point of the solvent used for 10 minutes to 48 hours.

When a group defined in the production processes is changed under the conditions of a utilized process or is unsuitable for carrying out the process, a subject compound can be obtained by, for example, utilizing a method for introducing and eliminating a protective group which is commonly used in organic synthetic chemistry (for example, see Protective Groups in Organic Synthesis, by Green (John Wiley) (1981)). Some of the compounds (1) can be further led to a novel derivative (1) by adopting this as a synthetic intermediate.

An intermediate and a subject compound in the various production processes can be subjected to a purification means which is commonly used in organic synthetic chemistry such as neutralization, filtration, extraction, washing, drying, concentration, recrystallization, or various types of chromatography in order to be isolated and purified. The intermediate can be subjected to the next reaction without particular purification.

An isomer can be present in some compounds (1). In addition to these, the present invention includes all the possible isomers and mixtures thereof.

When a salt of compound (1) is to be obtained, when compound (1) can be attained in the form of salt, it can be purified in that state. When the salt can be attained in a free form, it can be dissolved or suspended in a suitable organic solvent to form a salt by a conventional method with the addition of an acid or base. Pharmaceutically acceptable salts include, for example, acid addition salts with mineral acids such as hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, and phosphoric acid, acid addition salts with organic acids such as formic acid, acetic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, propionic acid, citric acid, succinic acid, butyric acid, oxalic acid, malonic acid, maleic acid, lactic acid, malic acid, carbonic acid, glutamic acid, and aspartic acid, a salt with inorganic bases including sodium salt, potassium salt, and calcium salt, and a salt with organic amines including morpholine and piperidine and amino acid.

Compound (1) and a pharmaceutically acceptable salt thereof are sometimes present in the form of an adduct with water or various solvents and the present invention also includes these adducts.

Specific examples of compound (1) obtained by the above-described production processes are shown in Table 1 to Table 8. The compound of the present

invention is, needless to say, not limited to these.

Table 1

Com-	R¹ I	Υ	\mathbf{x}	z	\mathbb{R}^2	Site	R ⁵
pound	^	-				of	
No.						urea	
1	$4,5-(OMe)_2$	OEt	_	О	H	4'	Ph
2	$4,5-(OMe)_2$	OEt	_	0	Н	4'	4-Me-Ph
3	4,5-(OMe) ₂	OEt	-	0	Н	4'	3-Me-Ph
4	4,5-(OMe) ₂	OEt	_	О	Н	4'	2-Me-Ph
5	$4,5-(OMe)_2$	OEt		О	Н	4'	4-Et-Ph
6	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-Et-Ph
7	$4,5-(OMe)_2$	OEt	_	О	H	4'	2-Et-Ph
8	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-¹Pr-Ph
9	4,5-(OMe) ₂	OEt	_	О	Н	4'	4- ⁿ Bu-Ph
10	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-CF ₃ -Ph
11	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-¹Bu-Ph
12	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-Ac-Ph
13	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-Ac-Ph
14	$4,5-(OMe)_2$	OEt		0	Н	4'	4-CO ₂ Et-Ph
15	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-CO ₂ Et-Ph
16	$4,5-(OMe)_2$	OEt		О	Н	4'	4-CO ₂ Me-Ph
17	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-CO ₂ ⁿ Bu-Ph
18	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-SMe-Ph
19	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-F-Ph
20	4,5-(OMe) ₂	OEt	_	0	H	4'	3-F-Ph
21	$4,5-(OMe)_2$	OEt	_	О	Н	4'	2-F-Ph
22	$4,5-(OMe)_2$	OEt	_	0	Н	4'	4-Cl-Ph
23	$4,5-(OMe)_2$	OEt	_	0	Н	4'	3-Cl-Ph
24	$4,5-(OMe)_2$	OEt	_	0	Н	4'	2-Cl-Ph
25	$4,5-(OMe)_2$	OEt		0	H	4'	4-NO ₂ -Ph
26	$4,5-(OMe)_2$	OEt	_	0	Н	4'	3-NO ₂ -Ph
27	$4,5-(OMe)_2$	OEt		0	Н	4'	2-NO ₂ -Ph
28	$4,5-(OMe)_2$	OEt	 	O	Н	4'	4-NH ₂ -Ph
29	$4,5-(OMe)_2$	OEt	 	ō	Н	4'	3-NH ₂ -Ph
30	$4,5-(OMe)_2$	OEt		0	H	4'	2-NH ₂ -Ph
31	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	OEt		o	Н	4'	4-NHAc-Ph
		OEt		0	H	4'	4-NMe ₂ -Ph
32	$4,5-(OMe)_2$	UEI	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	1,1	ــــــــــــــــــــــــــــــــــــــ	1 1111107 1 11

33	4,5-(OMe) ₂	OEt		0	Н	4'	3-NMe ₂ -Ph
34	4,5-(OMe) ₂	OEt		О	Н	4'	2-NMe ₂ -Ph
35	4,5-(OMe) ₂	OEt		0	Н	4'	4-OMe-Ph
36	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-OMe-Ph
37	4,5-(OMe) ₂	OEt	_	О	Н	4'	2-OMe-Ph
38	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-OEt-Ph
39	4,5-(OMe) ₂	OEt		0	Н	4'	4-NEt ₂ -Ph
40	$4,5-(OMe)_2$	OEt		0	Н	4'	4-OAc-Ph
41	4,5-(OMe) ₂	OEt	_	0	Н	4'	3-OAc-Ph
42	$\frac{4,5 \text{ (OMe)}_2}{4,5 \text{ (OMe)}_2}$	OEt		ō	Н	4'	2-OAc -Ph
43	$4.5 - (OMe)_2$	OEt		0	Н	4'	4-OH-Ph
	4,5-(OMe) ₂	OEt		ō	Н	4'	3-OH-Ph
44	4,5-(OMe) ₂	OEt		o	H	4'	2-OH-Ph
45		OEt		0	H	4'	4-OBn-Ph
46	4,5-(OMe) ₂	OEt		0	H	4'	4-PhCO-Ph
47	4,5-(OMe) ₂			0	H	4'	4-CO ₂ H-Ph
48	4,5-(OMe) ₂	OEt		0	H	4'	3-CO ₂ H-Ph
49	4,5-(OMe) ₂	OEt		0	H	4'	4-CN-Ph
50	4,5-(OMe) ₂	OEt		0	H H	4'	4-morpholino-Ph
51	4,5-(OMe) ₂	OEt			H	4'	4-(2-Py)-Ph
52	4,5-(OMe) ₂	OEt		9	H	4'	2,4-(OMe) ₂ -Ph
53	4,5-(OMe) ₂	OEt		0	H	4'	4-Cl-6-NH ₂ Ph
54	4,5-(OMe) ₂	OEt		0	<u>н</u>	4'	2-Cl-4-NO ₂ -Ph
_55	4,5-(OMe) ₂	OEt		0	H	4'	4-Cl-6-CF ₃ Ph
56	4,5-(OMe) ₂	OEt		0	H	4'	2,4-F ₂ -Ph
57	4,5-(OMe) ₂	OEt		0		4'	2,4-Cl ₂ -Ph
_58	4,5-(OMe) ₂	OEt		0	H	4'	4-Cl-6-NO ₂ Ph
_59	4,5-(OMe) ₂	OEt		0	H H	4'	4-Cl-6-Me-Ph
_60	4,5-(OMe) ₂	OEt		0	H	4'	2-Cl-4-NH ₂ -Ph
_61	4,5-(OMe) ₂	OEt		0		4'	2,5-(OMe) ₂ -Ph
62	4,5-(OMe) ₂	OEt		0	H	4'	$\frac{2,5-(OMe)_2-1}{2,5-F_2-Ph}$
63	4,5-(OMe) ₂	OEt		0	Н	4'	2,5-Cl ₂ -Ph
_64	$4,5-(OMe)_2$	OEt		0	H	4'	2,5-CF ₃ -Ph
65	4,5-(OMe) ₂	OEt		0	H	4'	2,5-CO ₂ Me-Ph
66	$4,5-(OMe)_2$	OEt		0	H H	4'	
67	$4,5-(OMe)_2$	OEt		0	H		3,5-(OMe) ₂ -Ph
68	$4,5-(OMe)_2$	OEt		0	Н	4'	3,5-Me ₂ -Ph
69	$4,5-(OMe)_2$	OEt		0	<u>H</u>	4'	3,5-(CF ₃) ₂ -Ph
70	$4,5-(OMe)_2$	OEt		0	H	4'	3,5-F ₂ -Ph
71	$4,5-(OMe)_2$	OEt		0	H	4'	3,5-Cl ₂ -Ph
72	$4,5-(OMe)_2$	OEt	<u> </u>	0	Н	4'	3,5-(NO ₂) ₂ -Ph
73	$4,5-(OMe)_2$	OEt	<u> </u>	0	H	4'	3,4-Me ₂ -Ph
74	4,5-(OMe) ₂	OEt	<u> </u>	0	Н	4'	3,4-(CF ₃) ₂ -Ph
75	4,5-(OMe) ₂	OEt		0	Н	4'	4-Cl-5-NO ₂ -Ph
76	4,5-(OMe) ₂	OEt		0	Н	4'	3,4-F ₂ -Ph
77	4,5-(OMe) ₂	OEt		О	H	4'	3,4-Cl ₂ -Ph
78	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-Cl-5-CF ₃ -Ph
79	4,5-(OMe) ₂	OEt		О	H	4'	indane-5-yl
80	4,5-(OMe) ₂	OEt	-	0	Н	4'	1,3-benzodioxole-5-yl
81	4,5-(OMe) ₂	OEt	_	0	Н	4'	1,4-benzodioxane-6-yl
82	$4,5-(OMe)_2$	OEt	-	0	Н	4'	3-Cl-4-Me-Ph
83	$\frac{1,5 \text{ (OMe)}_2}{4,5 \text{ - (OMe)}_2}$	OEt	_	0	Н	4'	3-Cl-4-F-Ph
84	$4,5-(OMe)_2$	OEt	 	0	Н	4'	3-NO ₂ -4-Me-Ph
85	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	OEt	 	$\frac{1}{0}$	Н	4'	3,4-(OMe) ₂ -Ph
86	$4,5-(OMe)_2$	OEt	 	 0	Н	4'	2,6- ¹ Pr ₂ -Ph
80	14,5-(OME)2	LOBI	ــــــــــــــــــــــــــــــــــــــ		1	_ <u></u>	

87	4,5-(OMe) ₂	OEt	Γ –	О	Н	4'	2,6-F ₂ -Ph
88	$4,5-(OMe)_2$	OEt	<u> </u>	0	H	4'	2,6-Cl ₂ -Ph
89	$4,5-(OMe)_2$ $4,5-(OMe)_2$	OEt		0	H	4'	2-Cl-6-Me-Ph
90	$4,5-(OMe)_2$	OEt	 	0	Н	4'	
				-		4'	2,3-(OMe) ₂ -Ph
91	4,5-(OMe) ₂	OEt		0	H		5-Cl-6-OMe-Ph
92	4,5-(OMe) ₂	OEt		0	Н	4'	2,3-Cl ₂ -Ph
93	4,5-(OMe) ₂	OEt	<u> </u>	0	H	4'	4-Cl-5-NH ₂ -Ph
94	4,5-(OMe) ₂	OEt		0	H	4'	3-Cl-6-OMe-Ph
95	4,5-(OMe) ₂	OEt		0	Н	4'	3-Cl-4,6-(OMe) ₂ -Ph
_96	4,5-(OMe) ₂	OEt		0	Н	4'	4,5-Me ₂ -2-NO ₂ -Ph
97	4,5-(OMe) ₂	OEt		0	Н	4'	2,4,5-F ₃ -Ph
98	4,5-(OMe) ₂	OEt		О	Н	4'	2,3,6-F ₃ -Ph
99	$4,5-(OMe)_2$	OEt		0	H	4'	2,4,6-F ₃ -Ph
100	4,5-(OMe) ₂	OEt		0	H	4'	2,3,4-F ₃ -Ph
101	4,5-(OMe) ₂	OEt		0	Н	4'	3,4,5-(OMe) ₃ -Ph
102	$4,5-(OMe)_2$	OEt		0	. Н	4'	c-Pen
103	4,5-(OMe) ₂	OEt	_	О	Н	4'	c-Hex
104	$4,5-(OMe)_2$	OEt_	_	О	Н	4'	с-Нер
105	4,5-(OMe) ₂	OEt	-	0	Н	4'	tetrahydropyrane-2-yl
106	4,5-(OMe) ₂	OEt	_	О	Н	4'	2-propenyl
107	4,5-(OMe) ₂	OEt	_	0	Н	4'	ⁿ Bu
108	4,5-(OMe) ₂	OEt	_	О	Н	4'	ⁿ Pr
109	4,5-(OMe) ₂	OEt		0	Н	4'	ⁱ Pr
110	4,5-(OMe) ₂	OEt		О	Н	4'	'Bu
111	4,5-(OMe) ₂	OEt	-	0	H	4'	Me
112	4,5-(OMe) ₂	OEt	_	О	Н	4'	Bn
113	4,5-(OMe) ₂	OEt		0	Н	4'	4-F-Bn
114	4,5-(OMe) ₂	OEt	-	О	Н	4'	3-F-Bn
115	4,5-(OMe) ₂	OEt	_	О	Н	4'	2-F-Bn
116	4,5-(OMe) ₂	OEt		О	Н	4'	4-Cl-Bn
117	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-Cl-Bn
118	4,5-(OMe) ₂	OEt	_	О	Н	4'	2-Cl-Bn
119	4,5-(OMe) ₂	OEt	_	0	H	4'	4-OMe-Bn
120	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-OMe-Bn
121	$4,5-(OMe)_2$	OEt		0	Н	4'	2-OMe-Bn
122	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-Me-Bn
123	4,5-(OMe) ₂	OEt	_	0	Н	4'	3-Me-Bn
124	4,5-(OMe) ₂	OEt	_	О	Н	4'	2-Me-Bn
125	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-NO ₂ -Bn
126	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-NH ₂ -Bn
127	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-NMe ₂ -Bn
128	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-SO ₂ Me-Bn
129	4,5-(OMe) ₂	OEt	_	О	Н	4'	4-SO ₂ NH ₂ -Bn
130	$4,5-(OMe)_2$	OEt	_	0	Н	4'	4-CN-Bn
131	$4,5-(OMe)_2$	OEt	_	0	Н	4'	4- ^t Bu-Bn
132	$4,5-(OMe)_2$	OEt	_	0	Н	4'	piperonyl
133	$4,5-(OMe)_2$	OEt	_	o	Н	4'	3,4-(OMe) ₂ -Bn
134	$4,5-(OMe)_2$	OEt	_	ō	H	4'	3,4-Cl ₂ -Bn
135	$4,5-(OMe)_2$	OEt	_	ō	H	4'	$(CH_2)_2$ -(4-Cl-Ph)
136	$4,5-(OMe)_2$	OEt	_	o	H	4'	$(CH_2)_2$ - $(3,4$ - $(OMe)_2$ - $Ph)$
137	$4,5-(OMe)_2$	OEt	_	0	Н	4'	$(CH_2)_2$ -(OMe) ₂ -FH)
138	$4,5-(OMe)_2$	OEt	_	0	H	4'	(CH2)2-Ph (CH2)3-Ph
139	$4,5-(OMe)_2$ $4,5-(OMe)_2$	OEt			Н	4'	
			_	0			(CH ₂) ₄ -Ph
140	$4,5-(OMe)_2$	OEt		0_	H	4'	COPh

141	4,5-(OMe) ₂	OEt		0_	Н	4'	1-Nap
142	4,5-(OMe) ₂	OEt		0	H	4'	2-Nap
143	4,5-(OMe) ₂	OEt	_	0	Н	4'	CH ₂ -(1-Nap)
144	4,5-(OMe) ₂	OEt		0_	Н	4'	CH ₂ -(2-Nap)
145	4,5-(OMe) ₂	OEt		О	Н	4'	2-Py
146	4,5-(OMe) ₂	OEt	_	О	Н	4'	3-Py
147	4,5-(OMe) ₂	OEt	_	0	Н	4'	4-Py
148	4,5-(OMe) ₂	OEt	_	О	Н	4'	CH ₂ -(2-Py)
149	4,5-(OMe) ₂	OEt		О	Н	4'	CH ₂ -(3-Py)
150	$4,5-(OMe)_2$	OEt	_	O	Н	4'	CH ₂ -(4-Py)
151	$4,5-(OMe)_2$	OEt	_	0	Н	4'	(CH ₂) ₂ -(2-Py)
152	$4,5-(OMe)_2$	OEt		0	Н	4'	furan-3-yl
153	$4,5-(OMe)_2$	OEt		o	H	4'	thiophene-3-yl
154	$4.5-(OMe)_2$	OEt		o	Н	4'	CH ₂ -(thiophene-3-yl)
155	$4.5 - (OMe)_2$	OEt		ō	H	4'	CH ₂ -(furan-3-yl)
156	$4,5-(OMe)_2$	OEt		o	Н	4'	CH ₂ -(thiophene-2-yl)
157	$4,5-(OMe)_2$	OEt		ō	H	4'	(CH ₂) ₂ -(thiophene-2-yl)
	4,5-(OMe) ₂	NH ₂		0	Н	4'	Ph
158	$4,5-(OMe)_2$	NH ₂		0	Н	4'	4-Me-Ph
159		NH ₂		0	H	4'	3-Me-Ph
160	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Me-Ph
161	4,5-(OMe) ₂	NH ₂		0	H	4'	4-Et-Ph
162	4,5-(OMe) ₂	NH ₂		o	H	4'	3-Et-Ph
163	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Et-Ph
164	4,5-(OMe) ₂			0	H	4'	4-¹Pr-Ph
165	4,5-(OMe) ₂	NH ₂		0	H	4'	4- ⁿ Bu-Ph
166	4,5-(OMe) ₂	NH ₂	- -	0	H	4'	4-CF ₃ -Ph
167	4,5-(OMe) ₂	NH ₂		0	H	4'	4-'Bu-Ph
168	4,5-(OMe) ₂	NH ₂		0	Н	4'	4-Ac-Ph
169	4,5-(OMe) ₂	NH ₂	 	0	H	4'	3-Ac-Ph
170_	4,5-(OMe) ₂	NH ₂		0	H	4'	4-CO ₂ Et-Ph
171	4,5-(OMe) ₂			0	H	4'	3-CO ₂ Et-Ph
172	4,5-(OMe) ₂	NH ₂		0	H	4'	4-CO ₂ Me-Ph
173	4,5-(OMe) ₂	NH ₂ NH ₂		0	Н	4'	4-CO ₂ Ne-Th
174	4,5-(OMe) ₂		<u> </u>	0	H	4'	4-SMe-Ph
175	4,5-(OMe) ₂	NH ₂	 	0	Н	4'	4-F-Ph
176	4,5-(OMe) ₂	NH ₂		<u> </u>	H	4'	3-F-Ph
177	4,5-(OMe) ₂	NH ₂		0	Н	4'	2-F-Ph
178	4,5-(OMe) ₂	NH ₂				4'	4-Cl-Ph
179	4,5-(OMe) ₂	NH ₂		0	H H	4'	3-Cl-Ph
180	4,5-(OMe) ₂	NH ₂		0		4'	2-Cl-Ph
181	4,5-(OMe) ₂	NH ₂		0	H	4'	4-NO ₂ -Ph
182	4,5-(OMe) ₂	NH ₂		0	H		
183	$4,5-(OMe)_2$	NH ₂		0	H	4'	3-NO ₂ -Ph
184_	$4,5-(OMe)_2$	NH ₂	ļ	0	H	4'	2-NO ₂ -Ph
185	$4,5-(OMe)_2$	NH ₂		0	Н	4'	4-NH ₂ -Ph
186	$4,5-(OMe)_2$	NH ₂	<u> </u>	0	H	4'	3-NH ₂ -Ph
187	$4,5-(OMe)_2$	NH ₂		0	Н	4'	2-NH ₂ -Ph
188	$4,5-(OMe)_2$	NH ₂		0	H	4'	4-NHAc-Ph
189	$4,5-(OMe)_2$	NH ₂		0	H	4'	4-NMe ₂ -Ph
190	4,5-(OMe) ₂	NH ₂		0	Н	4'	3-NMe ₂ -Ph
191	4,5-(OMe) ₂	NH ₂	_	0	Н	4'	2-NMe ₂ -Ph
192	4,5-(OMe) ₂	NH ₂		0	Н	4'	4-OMe-Ph
193	4,5-(OMe) ₂	NH ₂	T -	0	Н	4'	3-OMe-Ph
194	$4,5-(OMe)_2$	NH ₂	_	0	Н	4'	2-OMe-Ph
	1 - 1 - 12		<u>.</u>	·	<u> </u>		<u> </u>

195	4,5-(OMe) ₂	NH ₂	_	0	Н	4'	4-OEt-Ph
196	4,5-(OMe) ₂	NH ₂	_	О	H	4'	4-NEt ₂ -Ph
197	4,5-(OMe) ₂	NH ₂	_	О	Н	4'	4-OAc-Ph
198	4,5-(OMe) ₂	NH ₂	_	0	Н	4'	3-OAc-Ph
199	$4,5-(OMe)_2$	NH ₂	_	0	Н	4'	2-OAc -Ph
200	$4,5-(OMe)_2$	NH ₂	_	0	Н	4'	4-OH-Ph
201	$4,5-(OMe)_2$	NH ₂		ō	Н	4'	3-OH-Ph
202	$4,5-(OMe)_2$	NH ₂		o	Н	4'	2-OH-Ph
203	$4,5-(OMe)_2$	NH ₂		0	H	4'	4-OBn-Ph
203	$4,5-(OMe)_2$	NH ₂		0	H	4'	4-PhCO-Ph
205	$4,5-(OMe)_2$ $4,5-(OMe)_2$	NH ₂		0	H	4'	4-CO ₂ H-Ph
		NH ₂		o	H	4'	3-CO ₂ H-Ph
206	4,5-(OMe) ₂			0	H	4'	4-CN-Ph
207	4,5-(OMe) ₂	NH ₂		0	H	4'	4-morpholino-Ph
208	4,5-(OMe) ₂	NH ₂		0	Н	4'	4-morphormo-rn 4-(2-Py)-Ph
209	4,5-(OMe) ₂	NH ₂			Н	4'	2,4-(OMe) ₂ -Ph
210	4,5-(OMe) ₂	NH ₂		0	H	4'	4-Cl-6-NH ₂ -Ph
211	4,5-(OMe) ₂	NH ₂		0		4'	2-Cl-4-NO ₂ -Ph
212	4,5-(OMe) ₂	NH ₂		0	H		
213	4,5-(OMe) ₂	NH ₂		0	H	4'	4-Cl-6-CF ₃ -Ph
214	$4,5-(OMe)_2$	NH ₂		0	H	4'	2,4-F ₂ -Ph
215	4,5-(OMe) ₂	NH ₂	_	0	Н	4'	2,4-Cl ₂ -Ph
216	4,5-(OMe) ₂	NH ₂		0	Н	4'	4-Cl-6-NO ₂ -Ph
217	4,5-(OMe) ₂	NH ₂		0	Н	4'	4-Cl-6-Me-Ph
218	4,5-(OMe) ₂	NH ₂		0	H	4'	2-Cl-4-NH ₂ -Ph
219	4,5-(OMe) ₂	NH ₂		0	Н	4'	2,5-(OMe) ₂ -Ph
220	4,5-(OMe) ₂	NH ₂		0	Н	4'	2,5-F ₂ -Ph
221	$4,5-(OMe)_2$	NH ₂		0	H	4'	2,5-Cl ₂ -Ph
222	4,5-(OMe) ₂	NH ₂		0	Н	4'	2,5-CF ₃ -Ph
223	4,5-(OMe) ₂	NH ₂		0	H	4'	2,5-CO ₂ Me-Ph
224	4,5-(OMe) ₂	NH ₂		0	Н .	4'	3,5-(OMe) ₂ -Ph
225	4,5-(OMe) ₂	NH ₂		0	Н	4'	3,5-Me ₂ -Ph
226	$4,5-(OMe)_2$	NH ₂		0	Н	4'	3,5-(CF ₃) ₂ -Ph
_227	4,5-(OMe) ₂	NH ₂		0	Н	4'	3,5-F ₂ -Ph
228_	$4,5-(OMe)_2$	NH ₂		0	Н	4'	3,5-Cl ₂ -Ph
229	$4,5-(OMe)_2$	NH ₂		0	Н	4'	3,5-(NO ₂) ₂ -Ph
230	$4,5-(OMe)_2$	NH ₂		О	Н	4',	3,4-Me ₂ -Ph
231	$4,5-(OMe)_2$	NH ₂		0	Н	4'	3,4-(CF ₃) ₂ -Ph
232	$4,5-(OMe)_2$	NH ₂		0	Н	4'	4-Cl-5-NO ₂ -Ph
233	$4,5-(OMe)_2$	NH ₂		0_	Н	4'	3,4-F ₂ -Ph
234	$4,5-(OMe)_2$	NH ₂		0	H_	4'	3,4-Cl ₂ -Ph
235	$4,5-(OMe)_2$	NH ₂	_	0	H	4'	4-Cl-5-CF ₃ -Ph
236	$4,5-(OMe)_2$	NH ₂		0	Н	4'	indane-5-yl
237	4,5-(OMe) ₂	NH ₂	_	0	H	4'	1,3-benzodioxole-5-yl
238	$4,5-(OMe)_2$	NH ₂	-	О	Н	4'	1,4-benzodioxane-6-yl
239	$4,5-(OMe)_2$	NH ₂	-	О	Н	4'	3-Cl-4-Me-Ph
240	$4,5-(OMe)_2$	NH ₂		0	Н	4'	3-Cl-4-F-Ph
241	$4,5-(OMe)_2$	NH ₂	T -	0	, Н	4'	3-NO ₂ -4-Me-Ph
242	$4,5-(OMe)_2$	NH ₂	_	0	Н	4'	3,4-(OMe) ₂ -Ph
243	$4,5-(OMe)_2$	NH ₂	_	o	Н	4'	2,6- ¹ Pr ₂ -Ph
244	$4,5-(OMe)_2$	NH ₂	_	0	Н	4'	2,6-F ₂ -Ph
245	$4,5-(OMe)_2$	NH ₂		ō	H	4'	2,6-Cl ₂ -Ph
246	$4,5-(OMe)_2$	NH ₂		o	Н	4'	2-Cl-6-Me-Ph
247	$4,5-(OMe)_2$	NH ₂	_	0	H	4'	2,3-(OMe) ₂ -Ph
			 	0	H	4'	5-Cl-6-OMe-Ph
248	4,5-(OMe) ₂	NH ₂		L <u>Y</u> _	<u></u>		D-CI-O-OMC-1 II

249 4,5-(OMe)2 NH2 - O							41 1	0.2 Cl. Dl
251 4,5+(OMe)2 NH2 - O		 						
252 4,5+(OMe)2 NH2 - O								
253 4,5-(OMe)2 NH2 - O								
1. 1. 1. 1. 1. 1. 1. 1.	252	$4,5-(OMe)_2$						
1.55	253	$4,5-(OMe)_2$	NH ₂		0			
256 4,5-(OMe)2 NH2 - O	254	4,5-(OMe) ₂	NH ₂		О			
257 4,5-(OMe)2 NH2 - O	255	4,5-(OMe) ₂	NH ₂		0			
258 4,5-(OMe)2 NH2 - O	256	4,5-(OMe) ₂	NH_2		0	Н		
259 4,5-(OMe)2 NH2 - O	257	4,5-(OMe) ₂	NH ₂		О			
259	258	$4,5-(OMe)_2$	NH ₂	-	О	Н		3,4,5-(OMe) ₃ -Ph
260			NH ₂	_	О	Н	4'	c-Pen
261 4,5-(OMe)2 NH2 - O	260		NH ₂		О	Н	4'	с-Нех
262 4,5-(OMe)2 NH2 - O				_	О	Н	4'	
263 4,5-(OMe)2 NH2 - O				_	0	Н	4'	tetrahydropyrane-2-yl
264 4,5 (OMe)					0	Н	4'	2-propenyl
265 4,5-(OMe)2 NH2 - O				-	0	Н	4'	
266 4,5-(OMe)2 NH2 - O				_	О	Н	4'	ⁿ Pr
267 4,5-(OMe)2 NH2 - O				_		Н	4'	¹Pr
268 4,5-(OMe) ₂ NH ₂ - O				_			4'	¹Bu
269 4,5-(OMe)2 NH2 - O				_			4'	Me
270				_			4'	Bn
271 4,5-(OMe)2 NH2 - O H 4' 3-F-Bn 272 4,5-(OMe)2 NH2 - O H 4' 2-F-Bn 273 4,5-(OMe)2 NH2 - O H 4' 4-Cl-Bn 274 4,5-(OMe)2 NH2 - O H 4' 4-Cl-Bn 274 4,5-(OMe)2 NH2 - O H 4' 4-Cl-Bn 275 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 276 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 277 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 278 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 279 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 279 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 280 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 280 4,5-(OMe)2 NH2 - O H 4' 4-OMe-Bn 281 4,5-(OMe)2 NH2 - O H 4' 4-NO2-Bn 282 4,5-(OMe)2 NH2 - O H 4' 4-NO2-Bn 283 4,5-(OMe)2 NH2 - O H 4' 4-NH2-Bn 284 4,5-(OMe)2 NH2 - O H 4' 4-NH2-Bn 284 4,5-(OMe)2 NH2 - O H 4' 4-NH2-Bn 285 4,5-(OMe)2 NH2 - O H 4' 4-SO2/Me-Bn 286 4,5-(OMe)2 NH2 - O H 4' 4-SO2/Me-Bn 286 4,5-(OMe)2 NH2 - O H 4' 4-SO2/NH2-Bn 287 4,5-(OMe)2 NH2 - O H 4' 4-SO2/NH2-Bn 289 4,5-(OMe)2 NH2 - O H 4' 4-SO2/NH2-Bn 290 4,5-(OMe)2 NH2 - O H 4' 4-SO2/NH2-Bn 291 4,5-(OMe)2 NH2 - O H 4' 4' 3,4-(OMe)2-Bn 292 4,5-(OMe)2 NH2 - O H 4' 4' (CH2)2-(4-Cl-Ph) 293 4,5-(OMe)2 NH2 - O H 4' (CH2)2-(4-Cl-Ph) 294 4,5-(OMe)2 NH2 - O H 4' (CH2)2-(3,4-(OMe)2-Ph) 294 4,5-(OMe)2 NH2 - O H 4' (CH2)2-(4-Cl-Ph) 295 4,5-(OMe)2 NH2 - O H 4' (CH2)2-Ph 296 4,5-(OMe)2 NH2 - O H 4' (CH2)2-Ph 296 4,5-(OMe)2 NH2 - O							4'	4-F-Bn
272 4,5-(OMe)2 NH2 - O							4'	
273 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Cl-Bn 274 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Cl-Bn 275 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Cl-Bn 276 4,5-(OMe) ₂ NH ₂ - O H 4' 4-OMe-Bn 277 4,5-(OMe) ₂ NH ₂ - O H 4' 3-OMe-Bn 278 4,5-(OMe) ₂ NH ₂ - O H 4' 2-OMe-Bn 279 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 284 4,5-(OMe) ₂ NH ₂				<u> </u>			4'	2-F-Bn
274 4,5-(OMe)2 NH2 - O				_			4'	
275 4,5-(OMe) ₂ NH ₂ - O H 4' 2-CI-Bn 276 4,5-(OMe) ₂ NH ₂ - O H 4' 4-OMe-Bn 277 4,5-(OMe) ₂ NH ₂ - O H 4' 3-OMe-Bn 278 4,5-(OMe) ₂ NH ₂ - O H 4' 2-OMe-Bn 279 4,5-(OMe) ₂ NH ₂ - O H 4' 2-OMe-Bn 280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NM ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4'</td> <td></td>							4'	
276 4,5-(OMe) ₂ NH ₂ - O H 4' 4-OMe-Bn 277 4,5-(OMe) ₂ NH ₂ - O H 4' 3-OMe-Bn 278 4,5-(OMe) ₂ NH ₂ - O H 4' 2-OMe-Bn 279 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Me-Bn 280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH							4'	
217 4,5-(OMe) ₂ NH ₂ - O H 4' 3-OMe-Bn 278 4,5-(OMe) ₂ NH ₂ - O H 4' 2-OMe-Bn 279 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Me-Bn 280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ NH ₂ -Bn 287 4,5-(OMe) ₂ <t< td=""><td></td><td></td><td></td><td> _</td><td></td><td></td><td>4'</td><td></td></t<>				 _			4'	
278 4,5-(OMe) ₂ NH ₂ - O H 4' 2-OMe-Bn 279 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Me-Bn 280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NMe ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NMe ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ NH ₂ -Bn 289 4,5-(OMe) ₂							4'	
279 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Me-Bn 280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NMe ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 9 289 4,5-(OMe) ₂ NH				_			4'	2-OMe-Bn
280 4,5-(OMe) ₂ NH ₂ - O H 4' 3-Me-Bn 281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂						Н	4'	4-Me-Bn
281 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Me-Bn 282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NMe ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-Cl ₂ -Bn 292 4,5-(OMe) ₂							4'	3-Me-Bn
282 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NO ₂ -Bn 283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NMe ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-							4'	2-Me-Bn
283 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NH ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ NH ₂ -Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Bu-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 294 <				<u> </u>			4'	4-NO ₂ -Bn
284 4,5-(OMe) ₂ NH ₂ - O H 4' 4-NMe ₂ -Bn 285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ NH ₂ -Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4'Bu-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 294 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4'</td> <td></td>							4'	
285 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ Me-Bn 286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ MH ₂ -Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Bu-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295<				 			4'	
286 4,5-(OMe) ₂ NH ₂ - O H 4' 4-SO ₂ NH ₂ -Bn 287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-Bu-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl ₂ -Bn 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl ₂ -Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph							4'	
287 4,5-(OMe) ₂ NH ₂ - O H 4' 4-CN-Bn 288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-'Bu-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph <				 		1		
288 4,5-(OMe) ₂ NH ₂ - O H 4' 4-'Bu-Bn 289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				 _ _ 			4'	
289 4,5-(OMe) ₂ NH ₂ - O H 4' piperonyl 290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-Cl ₂ -Bn 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				 				<u> </u>
290 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-(OMe) ₂ -Bn 291 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-Cl ₂ -Bn 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				<u> </u>		I		
291 4,5-(OMe) ₂ NH ₂ - O H 4' 3,4-Cl ₂ -Bn 292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				 			1	
292 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(4-Cl-Ph) 293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				<u> </u>				
293 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -(3,4-(OMe) ₂ -Ph) 294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				<u> </u>				
294 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₂ -Ph 295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				 _ _ _				
295 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₃ -Ph 296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				 				
296 4,5-(OMe) ₂ NH ₂ - O H 4' (CH ₂) ₄ -Ph 297 4,5-(OMe) ₂ NH ₂ - O H 4' COPh				 				
297 4,5-(OMe) ₂ NH ₂ – O H 4' COPh				 -	+			
251 135 (0112)2				+				
				 -		1	4'	1-Nap
250 1,5 (01.20)2 1.222	298	4,5-(OMe) ₂	NH ₂		0	H		
299 4,5-(OMe) ₂ NH ₂ - O H 4' 2-Nap				+				
300 4,5-(OMe) ₂ NH ₂ - O H 4' CH ₂ -(1-Nap)		_ 		 				
301 4,5-(OMe) ₂ NH ₂ - O H 4' CH ₂ -(2-Nap)								
302 4,5-(OMe) ₂ NH ₂ – O H 4' 2-Py	302	$4,5-(OMe)_2$	NH ₂		0	Н	4'	2-Py

					7.	41	2 D
303	4,5-(OMe) ₂	NH ₂		0	Н	4' 4'	3-Py
304	4,5-(OMe) ₂	NH ₂		0	H	4'	4-Py
305	4,5-(OMe) ₂	NH ₂		0	Н		CH ₂ -(2-Py)
306	$4,5-(OMe)_2$	NH ₂		0	Н	4' 4'	CH ₂ -(3-Py)
307	4,5-(OMe) ₂	NH ₂		0_	H		CH ₂ -(4-Py)
308	$4,5-(OMe)_2$	NH ₂		0	Н	4'	$(CH_2)_2$ - $(2-Py)$
309	$4,5-(OMe)_2$	NH ₂		0	H	4'	furan-3-yl
310	4,5-(OMe) ₂	NH ₂		0	Н	4' 4'	thiophene-3-yl
311	4,5-(OMe) ₂	NH ₂		0	H	4'	CH ₂ -(thiophene-3-yl)
312	4,5-(OMe) ₂	NH ₂		0	H	4'	CH ₂ -(furan-3-yl)
313	4,5-(OMe) ₂	NH ₂		0	H	4'	CH ₂ -(thiophene-2-yl) (CH ₂) ₂ -(thiophene-2-yl)
314	4,5-(OMe) ₂	NH ₂		S	H H	4'	Ph
	4,5-(OMe) ₂	OEt				4'	
	$4,5-(OMe)_2$	OEt		S	Н		4-Me-Ph
317	$4,5-(OMe)_2$	OEt	_	S	Н	4'	3-Me-Ph
318	4,5-(OMe) ₂	OEt	_	S	Н	4'	2-Me-Ph
319	$4,5-(OMe)_2$	OEt	_	S	Н	4'	4-Et-Ph
320	$4,5-(OMe)_2$	OEt	-	S	Н	4'	3-Et-Ph
321	$4,5-(OMe)_2$	OEt	_	S	Н	4'	2-Et-Ph
	$4,5-(OMe)_2$	OEt	_	S	Н	4'	4- ⁱ Pr-Ph
	4,5-(OMe) ₂	OEt		S	Н	4'	4- ⁿ Bu-Ph
	4,5-(OMe) ₂	OEt	_	S	Н	4'	4-CF ₃ -Ph
	4,5-(OMe) ₂	OEt	_	S	Н	4'	4- ^t Bu-Ph
	4,5-(OMe) ₂	OEt	_	S	Н	4'	4-Ac-Ph
	$4,5-(OMe)_2$	OEt	_	S	Н	4'	3-Ac-Ph
	$4,5-(OMe)_2$	OEt	_	S	Н	4'	4-CO ₂ Et-Ph
	$4,5-(OMe)_2$	OEt	_	S	Н	4'	3-CO ₂ Et-Ph
	$4,5-(OMe)_2$	OEt	_	S	Н	4'	4-CO ₂ Me-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	4-CO ₂ ⁿ Bu-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	4-SMe-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	4-F-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	3-F-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	2-F-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	4-Cl-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	3-Cl-Ph
	$4,5-(OMe)_2$	OEt		S	H	4'	2-Cl-Ph
	$4,5-(OMe)_2$	OEt		S	H	4'	4-NO ₂ -Ph
	$4,5-(OMe)_2$ $4,5-(OMe)_2$	OEt		S	H	4'	3-NO ₂ -Ph
		OEt	-	S	H	4'	2-NO ₂ -Ph
	4,5-(OMe) ₂	OEt	 	S	Н	4'	4-NH ₂ -Ph
	4,5-(OMe) ₂		-		H	4'	3-NH ₂ -Ph
	4,5-(OMe) ₂	OEt	-	S		4'	
	4,5-(OMe) ₂	OEt		S	H	4'	2-NH ₂ -Ph
	4,5-(OMe) ₂	OEt		S	Н		4-NHAc-Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	4-NMe ₂ -Ph
	4,5-(OMe) ₂	OEt		S	Н	4'	3-NMe ₂ -Ph
	$4,5-(OMe)_2$	OEt		S	Н	4'	2-NMe ₂ -Ph
349	$4,5-(OMe)_2$	OEt		S	Н	4'	4-OMe-Ph
350	4,5-(OMe) ₂	OEt		S	Н	4'	3-OMe-Ph
	4,5-(OMe) ₂	OEt	-	S	Н	4'	2-OMe-Ph
	4,5-(OMe) ₂	OEt	-	S	Н	4'	4-OEt-Ph
	4,5-(OMe) ₂	OEt		S	Н	4'	4-NEt ₂ -Ph
- 000	1 .,5 (52.25)2		J		· · · · · · · · · · · · · · · · · · ·	L	

354 4,5-(OMe) ₂	OEt	_	S	Н	4'	4-OAc-Ph
355 4,5-(OMe) ₂	OEt	_	S	Н	4'	3-OAc-Ph
356 4,5-(OMe) ₂	OEt		S	Н	4'	2-OAc -Ph
357 4,5-(OMe) ₂	OEt	-	S	Н	4'	4-OH-Ph
358 4,5-(OMe) ₂	OEt	_	S	Н	4'	3-OH-Ph
359 4,5-(OMe) ₂	OEt	-	S	Н	4'	2-OH-Ph
$\frac{360}{360}$ 4,5-(OMe) ₂	OEt	_	S	Н	4'	4-OBn-Ph
361 4,5-(OMe) ₂	OEt	_	S	Н	4'	4-PhCO-Ph
$\frac{362}{362}$ 4,5-(OMe) ₂	OEt	_	S	Н	4'	4-CO ₂ H-Ph
363 4,5-(OMe) ₂	OEt		S	Н	4'	3-CO ₂ H-Ph
364 4,5-(OMe) ₂	OEt		S	Н	4'	4-CN-Ph
365 4,5-(OMe) ₂	OEt		S	Н	4'	4-morpholino-Ph
$\frac{366}{366}$ 4,5-(OMe) ₂	OEt		S	Н	4'	4-(2-Py)-Ph
367 4,5-(OMe) ₂	OEt		S	Н	4'	2,4-(OMe) ₂ -Ph
368 4,5-(OMe) ₂	OEt		S	Н	4'	4-Cl-6-NH ₂ Ph
$\frac{369}{369}$ 4,5-(OMe) ₂	OEt		S	Н	4'	2-Cl-4-NO ₂ -Ph
$\frac{370}{370} \frac{4,5 \cdot (OMe)_2}{4,5 \cdot (OMe)_2}$	OEt	_	S	H	4'	4-Cl-6-CF ₃ Ph
$\frac{370 4,5 (OMe)_2}{371 4,5 - (OMe)_2}$	OEt	_	S	Н	4'	2,4-F ₂ -Ph
$\frac{371}{372} \frac{4,5 \cdot (OMe)_2}{4,5 \cdot (OMe)_2}$	OEt		S	Н	4'	2,4-Cl ₂ -Ph
$\frac{372}{373} \frac{4,5}{4,5}$ (OMe) ₂	OEt	_	S	Н	4'	4-Cl-6-NO ₂ -Ph
$\frac{374}{374} \frac{4,5 \cdot (OMe)_2}{4,5 \cdot (OMe)_2}$	OEt		S	Н	4'	4-Cl-6-Me-Ph
$\frac{375}{375}$ 4,5-(OMe) ₂	OEt		S	Н	4'	2-Cl-4-NH ₂ -Ph
$\frac{376}{376}$ 4,5-(OMe) ₂	OEt		S	Н	4'	2,5-(OMe) ₂ -Ph
$\frac{377}{377}$ 4,5-(OMe) ₂	OEt		S	Н	4'	2,5-F ₂ -Ph
$\frac{378 + 4,5 + (OMe)_2}{378 + 4,5 + (OMe)_2}$	OEt		S	Н	4'	2,5-Cl ₂ -Ph
$\frac{379}{379} \frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	OEt		S	Н	4'	2,5-CF ₃ -Ph
$\frac{380}{380}$ 4,5-(OMe) ₂	OEt		S	Н	4'	2,5-CO ₂ Me-Ph
381 4,5-(OMe) ₂	OEt	_	S	Н	4'	3,5-(OMe) ₂ -Ph
$\frac{382}{382}$ 4,5-(OMe) ₂	OEt		S	Н	4'	3,5-Me ₂ -Ph
$\frac{383}{4,5-(OMe)_2}$	OEt	_	S	Н	4'	3,5-(CF ₃) ₂ -Ph
384 4,5-(OMe) ₂	OEt	_	S	Н	4'	3,5-F ₂ -Ph
$\frac{385}{4,5-(OMe)_2}$	OEt	_	S	Н	4'	3,5-Cl ₂ -Ph
386 4,5-(OMe) ₂	OEt	_	S	Н	4'	3,5-(NO ₂) ₂ -Ph
387 4,5-(OMe) ₂	OEt		S	Н	4'	3,4-Me ₂ -Ph
$\frac{388 \text{ 4,5-(OMe)}_2}{388 \text{ 4,5-(OMe)}_2}$	OEt	_	S	Н	4'	3,4-(CF ₃) ₂ -Ph
$\frac{389}{4,5}$ -(OMe) ₂	OEt		S	Н	4'	4-Cl-5-NO ₂ -Ph
390 4,5-(OMe) ₂	OEt	_	S	Н	4'	3,4-F ₂ -Ph
391 4,5-(OMe) ₂	OEt	_	S	Н	4'	3,4-Cl ₂ -Ph
$\frac{392}{4,5-(OMe)_2}$	OEt	_	S	Н	4'	4-Cl-5-CF ₃ -Ph
$\frac{393}{4,5-(OMe)_2}$	OEt	_	S	Н	4'	indane-5-yl
$\frac{394}{394}$ 4,5-(OMe) ₂	OEt		S	Н	4'	1,3-benzodioxole-5-yl
$\frac{395}{4,5-(OMe)_2}$	OEt	_	S	Н	4'	1,4-benzodioxane-6-yl
$\frac{396}{396}$ 4,5-(OMe) ₂	OEt	-	S	Н	4'	3-Cl-4-Me-Ph
$\frac{397}{4,5-(OMe)_2}$	OEt		S	Н	4'	3-Cl-4-F-Ph
$\frac{398}{398} \frac{4,5 \cdot (OMe)_2}{4,5 \cdot (OMe)_2}$	OEt		S	H	4'	3-NO ₂ -4-Me-Ph
$\frac{399}{399}$ 4,5-(OMe) ₂	OEt		S	Н	4'	3,4-(OMe) ₂ -Ph
$\frac{399}{400} \frac{4,5-(OMe)_2}{400}$	OEt		S	H	4'	2,6- ¹ Pr ₂ -Ph
401 4,5-(OMe) ₂	OEt	_	S	H	4'	2,6-F ₂ -Ph
$\frac{401}{402} \frac{4,5-(OMe)_2}{402}$	OEt		S	H	4'	2,6-Cl ₂ -Ph
403 4,5-(OMe) ₂	OEt		S	Н	4'	2-Cl-6-Me-Ph
403 4,5-(OMe) ₂ 404 4,5-(OMe) ₂	OEt	 	S	H	4'	2,3-(OMe) ₂ -Ph
404 4,3-(OME) ₂	UEI			l	L	2,3 (01/10/2-1 11

					4'	5-Cl-6-OMe-Ph
$405 4,5-(OMe)_2$	OEt		S	H	4'	
406 4,5-(OMe) ₂	OEt		S	H		2,3-Cl ₂ -Ph
407 4,5-(OMe) ₂	OEt		S	H	4'	4-Cl-5-NH ₂ -Ph
408 4,5-(OMe) ₂	OEt		S	Н	4'	3-Cl-6-OMe-Ph
409 4,5-(OMe) ₂	OEt		S	Н	4'	3-Cl-4,6-(OMe) ₂ -Ph
410 4,5-(OMe) ₂	OEt		S	Н	4'	4,5-Me ₂ -2-NO ₂ -Ph
411 4,5-(OMe) ₂	OEt		S	Н	4'	2,4,5-F ₃ -Ph
412 4,5-(OMe) ₂	OEt	_	S	H	4'	2,3,6-F ₃ -Ph
413 4,5-(OMe) ₂	OEt	_	S	Н	4'	2,4,6-F ₃ -Ph
414 4,5-(OMe) ₂	OEt	_	S	Н	4'	2,3,4-F ₃ -Ph
415 4,5-(OMe) ₂	OEt	_	S	Н	4'	3,4,5-(OMe) ₃ -Ph
416 4,5-(OMe) ₂	OEt		S	Н	4'	c-Pen
417 4,5-(OMe) ₂	OEt	_	S	Н	4'	c-Hex
418 4,5-(OMe) ₂	OEt		S	Н	4'	с-Нер
419 4,5-(OMe) ₂	OEt	_	S	Н	4'	tetrahydropyrane-2-yl
$\frac{420 \text{ 4,5-(OMe)}_2}{420 \text{ 4,5-(OMe)}_2}$	OEt	_	S	Н	4'	2-propenyl
$\frac{120 \text{ J}_{3} + (\text{OMe})_{2}}{421 \text{ J}_{3} + (\text{OMe})_{2}}$	OEt	_	S	Н	4'	ⁿ Bu
$\frac{421}{422} \frac{4,5}{4,5}$ (OMe) ₂	OEt		S	Н	4'	ⁿ Pr
$\frac{423}{423}$ 4,5-(OMe) ₂	OEt		S	Н	4'	¹Pr
$\frac{424}{424}$ 4,5-(OMe) ₂	OEt	_	S	H	4'	¹Bu
$\frac{425}{425}$ 4,5-(OMe) ₂	OEt		S	Н	4'	Me
$\frac{426}{426}$ 4,5-(OMe) ₂	OEt	_	S	Н	4'	Bn
$\frac{420 + 5 - (OMe)_2}{427 + 5 - (OMe)_2}$	OEt		S	Н	4'	4-F-Bn
$\frac{421 + 4,5 - (OMe)_2}{428 + 4,5 - (OMe)_2}$	OEt		S	H	4'	3-F-Bn
$\frac{428 + 3 - (OMe)_2}{429 + 3 - (OMe)_2}$	OEt		S	Н	4'	2-F-Bn
$\frac{429}{430} \frac{4,5-(OMe)_2}{430}$	OEt		S	H	4'	4-Cl-Bn
431 4,5-(OMe) ₂	OEt		S	Н	4'	3-Cl-Bn
431 4,5-(OMe) ₂ 432 4,5-(OMe) ₂	OEt		S	Н	4'	2-Cl-Bn
432 4,5-(OMe) ₂ 433 4,5-(OMe) ₂	OEt		S	H	4'	4-OMe-Bn
434 4,5-(OMe) ₂	OEt		S	H	4'	3-OMe-Bn
435 4,5-(OMe) ₂	OEt	 	S	Н	4'	2-OMe-Bn
436 4,5-(OMe) ₂	OEt		S	Н	4'	4-Me-Bn
437 4,5-(OMe) ₂	OEt		S	H	4'	3-Me-Bn
438 4,5-(OMe) ₂	OEt	 -	S	H	4'	2-Me-Bn
	OEt	<u> </u>	S	H	4'	4-NO ₂ -Bn
439 4,5-(OMe) ₂	OEt		S	H	4'	4-NH ₂ -Bn
440 4,5-(OMe) ₂	OEt		S	H	4'	4-NMe ₂ -Bn
441 4,5-(OMe) ₂		 	S	H	4'	4-SO ₂ Me-Bn
442 4,5-(OMe) ₂	OEt	-	S	H	4'	4-SO ₂ NH ₂ -Bn
443 4,5-(OMe) ₂	OEt	-	S	Н	4'	4-30 ₂ NH ₂ -BH 4-CN-Bn
444 4,5-(OMe) ₂	OEt			H	4'	4-CN-Bn 4-¹Bu-Bn
445 4,5-(OMe) ₂	OEt	-	S		4'	piperonyl
446 4,5-(OMe) ₂	OEt	<u> </u>	S	H	4'	
447 4,5-(OMe) ₂	OEt	 _	S	H		3,4-(OMe) ₂ -Bn
448 4,5-(OMe) ₂	OEt	<u> </u>	S	Н	4'	3,4-Cl ₂ -Bn
$449 4,5-(OMe)_2$	OEt	<u> </u>	S	H	4'	$(CH_2)_2$ -(4-Cl-Ph)
$450 \ 4,5-(OMe)_2$	OEt		S	Н	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
45] 4,5-(OMe) ₂	OEt		S	Н	4'	(CH ₂) ₂ -Ph
452 4,5-(OMe) ₂	OEt	_	S	Н	4'	(CH ₂) ₃ -Ph
453 4,5-(OMe) ₂	OEt		S	Н	4'	(CH ₂) ₄ -Ph
454 4,5-(OMe) ₂	OEt	_	S	Н	4'	COPh
455 4,5-(OMe) ₂	OEt	T	S	Н	4'	1-Nap

- 150 - 5 (0) ()	I			T 7	4'	2-Nap
456 4,5-(OMe) ₂	OEt		S	H	4'	CH ₂ -(1-Nap)
457 4,5-(OMe) ₂	OEt		S	Н		
458 4,5-(OMe) ₂	OEt		S	Н	4'	CH ₂ -(2-Nap)
459 4,5-(OMe) ₂	OEt		S	Н	4'	2-Py
460 4,5-(OMe) ₂	OEt	-	S	Н	4'	3-Py
461 4,5-(OMe) ₂	OEt		S	Н	4'	4-Py
462 4,5-(OMe) ₂	OEt _	_	S	Н	4'	CH ₂ -(2-Py)
463 4,5-(OMe) ₂	OEt		S	H	4'	CH ₂ -(3-Py)
464 4,5-(OMe) ₂	OEt		S	Н	4'	CH ₂ -(4-Py)
465 4,5-(OMe) ₂	OEt	-	S	Н	4'	$(CH_2)_2$ - $(2-Py)$
466 4,5-(OMe) ₂	OEt	_	S	Н	4'	furan-3-yl
467 4,5-(OMe) ₂	OEt		S	Н	4'	thiophene-3-yl
468 4,5-(OMe) ₂	OEt	_	S	. Н	4'	CH ₂ -(thiophene-3-yl)
469 4,5-(OMe) ₂	OEt		S	Н	4'	CH ₂ -(furan-3-yl)
470 4,5-(OMe) ₂	OEt	_	S	Н	4'	CH ₂ -(thiophene-2-yl)
471 4,5-(OMe) ₂	OEt	_	S	Н	4'	(CH ₂) ₂ -(thiophene-2-yl)
472 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	Ph
473 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-Me-Ph
474 4,5-(OMe) ₂	NH ₂		S	Н	4'	3-Me-Ph
475 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	2-Me-Ph
$\frac{476}{476}$ 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-Et-Ph
477 4,5-(OMe) ₂	NH ₂		S	H	4'	3-Et-Ph
$\frac{471}{478} \frac{4,5}{4,5}$ -(OMe) ₂	NH ₂		S	Н	4'	2-Et-Ph
479 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-¹Pr-Ph
480 4,5-(OMe) ₂	NH ₂		S	Н	4'	4- ⁿ Bu-Ph
481 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-CF ₃ -Ph
482 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4- ^t Bu-Ph
483 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-Ac-Ph
484 4,5-(OMe) ₂	NH ₂		S	Н	4'	3-Ac-Ph
485 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-CO ₂ Et-Ph
$\frac{486 \ 4,5-(OMe)_2}{486 \ 4,5-(OMe)_2}$	NH ₂		S	Н	4'	3-CO ₂ Et-Ph
$\frac{480 \ 4,5-(OMe)_2}{487 \ 4,5-(OMe)_2}$	NH ₂	 	S	Н	4'	4-CO ₂ Me-Ph
$\frac{488 \ 4,5-(OMe)_2}{488 \ 4,5-(OMe)_2}$	NH ₂	 	S	Н	4'	4-CO ₂ ⁿ Bu-Ph
489 4,5-(OMe) ₂	NH ₂	<u> </u>	S	H	4'	4-SMe-Ph
490 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-F-Ph
	NH ₂	_	S	Н	4'	3-F-Ph
491 4,5-(OMe) ₂	NH ₂	-	S	H	4'	2-F-Ph
492 4,5-(OMe) ₂	NH ₂		S	H	4'	4-Cl-Ph
493 4,5-(OMe) ₂			S	Н	4'	3-Cl-Ph
494 4,5-(OMe) ₂	NH ₂	ļ <u> </u>	S	H	4'	2-Cl-Ph
495 4,5-(OMe) ₂	NH ₂		S	H	4'	4-NO ₂ -Ph
496 4,5-(OMe) ₂	NH ₂	<u> </u>	ļ		4'	3-NO ₂ -Ph
497 4,5-(OMe) ₂	NH ₂	 	S	Н	4'	
498 4,5-(OMe) ₂	NH ₂	 	S	Н	4'	2-NO ₂ -Ph
499 4,5-(OMe) ₂	NH ₂	 -	S	Н		4-NH ₂ -Ph
$500 4,5-(OMe)_2$	NH ₂	-	S	H	4'	3-NH ₂ -Ph
$501 4,5-(OMe)_2$	NH ₂	<u> </u>	S	Н	4'	2-NH ₂ -Ph
502 4,5-(OMe) ₂	NH ₂	<u> </u>	S	Н	4'	4-NHAc-Ph
503 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-NMe ₂ -Ph
504 4,5-(OMe) ₂	NH ₂	_	S	H	4'	3-NMe ₂ -Ph
505 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	2-NMe ₂ -Ph
506 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-OMe-Ph

507	4,5-(OMe) ₂	NH ₂	_	S	Н	4'	3-OMe-Ph
	4,5-(OMe) ₂	NH ₂		S	Н	4'	2-OMe-Ph
	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	NH ₂		S	Н	4'	4-OEt-Ph
	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	NH ₂	_	S	Н	4'	4-NEt ₂ -Ph
		NH ₂		S	H	4'	4-OAc-Ph
	4,5-(OMe) ₂			S	H	4'	3-OAc-Ph
	4,5-(OMe) ₂	NH ₂		S	H	4'	2-OAc -Ph
	4,5-(OMe) ₂	NH ₂		S	H	4'	4-OH-Ph
	4,5-(OMe) ₂	NH ₂		S		4'	3-OH-Ph
	4,5-(OMe) ₂	NH ₂			H	4'	2-OH-Ph
	4,5-(OMe) ₂	NH ₂		S	<u>н</u> Н	4'	4-OBn-Ph
	4,5-(OMe) ₂	NH ₂		S		4'	4-PhCO-Ph
	4,5-(OMe) ₂	NH ₂		S	H	4'	4-CO ₂ H-Ph
	4,5-(OMe) ₂	NH ₂		S	<u>H</u>	4'	3-CO ₂ H-Ph
	$4,5-(OMe)_2$	NH ₂		S	H	4'	4-CN-Ph
		NH ₂		S	H		4-CN-FII 4-morpholino-Ph
522		NH ₂		S	Н	4'	
		NH ₂		S	H	4'	4-(2-Py)-Ph
524		NH ₂		S	Н	4'	2,4-(OMe) ₂ -Ph
525	$4,5-(OMe)_2$	NH ₂		S	Н	4'	4-Cl-6-NH ₂ Ph
526	4,5-(OMe) ₂	NH ₂		S	Н	4'	2-Cl-4-NO ₂ -Ph
527	4,5-(OMe) ₂	NH ₂		S	Н	4'	4-Cl-6-CF ₃ Ph
528	4,5-(OMe) ₂	NH ₂		S	Н	4'	2,4-F ₂ -Ph
529	4,5-(OMe) ₂	NH ₂		S	, H	4'	2,4-Cl ₂ -Ph
530	4,5-(OMe) ₂	NH ₂		S	Н	4'	4-Cl-6-NO ₂ Ph
531	4,5-(OMe) ₂	NH ₂	_	S	H	4'	4-Cl-6-Me-Ph
532	4,5-(OMe) ₂	NH ₂	_	S	H	4'	2-Cl-4-NH ₂ -Ph
	4,5-(OMe) ₂	NH ₂	1	S	Н	4'	2,5-(OMe) ₂ -Ph
534	4,5-(OMe) ₂	NH ₂	-	S	Н	4'	2,5-F ₂ -Ph
	4,5-(OMe) ₂	NH ₂		S	Н	4'	2,5-Cl ₂ -Ph
536	4,5-(OMe) ₂	NH ₂	1	S	H	4'	2,5-CF ₃ -Ph
	4,5-(OMe) ₂	NH ₂		S	Н	4'	2,5-CO ₂ Me-Ph
	4,5-(OMe) ₂	NH ₂	_	S	H	4'	3,5-(OMe) ₂ -Ph
	4,5-(OMe) ₂	NH ₂	_	S	Н	4'	3,5-Me ₂ -Ph
	4,5-(OMe) ₂	NH ₂	_	S	H	4'	3,5-(CF ₃) ₂ -Ph
	4,5-(OMe) ₂	NH ₂	_	S	H	4'	3,5-F ₂ -Ph
	4,5-(OMe) ₂	NH ₂	_	S	H	4'	3,5-Cl ₂ -Ph
	4,5-(OMe) ₂	NH ₂	_	S	Н	4'	3,5-(NO ₂) ₂ -Ph
	4,5-(OMe) ₂	NH ₂	T -	S	Н	4'	3,4-Me ₂ -Ph
	4,5-(OMe) ₂	NH ₂	-	S	Н	4'	3,4-(CF ₃) ₂ -Ph
	$4,5-(OMe)_2$	NH ₂	T -	S	Н	4'	4-Cl-5-NO ₂ -Ph
	$4,5-(OMe)_2$	NH ₂		S	Н	4'	3,4-F ₂ -Ph
	$\frac{4,5 \text{ (OMe)}_2}{4,5 \text{ (OMe)}_2}$	NH ₂	-	S	Н	4'	3,4-Cl ₂ -Ph
	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	NH ₂	T =	S	Н	4'	4-Cl-5-CF ₃ -Ph
	$4,5-(OMe)_2$	NH ₂	_	S	Н	4'	indane-5-yl
	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	NH ₂		S	Н	4'	1,3-benzodioxole-5-yl
		NH ₂	_	S	Н	4'	1,4-benzodioxane-6-yl
	$4,5-(OMe)_2$			S	Н	4'	3-Cl-4-Me-Ph
	$4.5 \cdot (OMe)_2$	NH ₂	ļ <u>-</u>	S	H	4'	3-Cl-4-F-Ph
	$4,5-(OMe)_2$	NH ₂	 -	$\frac{3}{S}$	H	4'	3-NO ₂ -4-Me-Ph
	$4,5-(OMe)_2$	NH ₂	 -	S		4'	3,4-(OMe) ₂ -Ph
	$\alpha + 5 (\Omega M_{\odot})$	NH ₂	l –	1 8	Н	, 4	J,T-(\O\1\1\0)2-1 11
	6 4,5-(OMe) ₂ 7 4,5-(OMe) ₂	NH ₂	 	S	Н	4'	2,6- ¹ Pr ₂ -Ph

				**	41 1	2.6 E. Dh
558 4,5-(OMe) ₂	NH ₂		S	Н	4'	2,6-F ₂ -Ph
$559 4,5-(OMe)_2$	NH ₂		S	H	4'	2,6-Cl ₂ -Ph
560 4,5-(OMe) ₂	NH ₂		S	Н	4'	2-Cl-6-Me-Ph
561 4,5-(OMe) ₂	NH ₂		S	Н	4'	2,3-(OMe) ₂ -Ph
562 4,5-(OMe) ₂	NH ₂		S	Н	4'	5-Cl-6-OMe-Ph
$563 4,5 - (OMe)_2$	NH ₂		S	Н	4'	2,3-Cl ₂ -Ph
564 4,5-(OMe) ₂	NH ₂		S	Н	4'	4-Cl-5-NH ₂ -Ph
565 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	3-Cl-6-OMe-Ph
566 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	3-Cl-4,6-(OMe) ₂ -Ph
567 4,5-(OMe) ₂	NH ₂		S	Н	4'	4,5-Me ₂ -2-NO ₂ -Ph
568 4,5-(OMe) ₂	NH_2		S	H	4'	2,4,5-F ₃ -Ph
569 4,5-(OMe) ₂	NH ₂		S	H	4'	2,3,6-F ₃ -Ph
570 4,5-(OMe) ₂	NH ₂	_	S	H	4'	2,4,6-F ₃ -Ph
571 4,5-(OMe) ₂	NH ₂	_	S	H	4'	2,3,4-F ₃ -Ph
572 4,5-(OMe) ₂	NH ₂	_	S	H	4'	3,4,5-(OMe) ₃ -Ph
573 4,5-(OMe) ₂	NH ₂		S	Н	4'	c-Pen
574 4,5-(OMe) ₂	NH ₂		S	Н	4'	с-Нех
575 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	с-Нер
576 4,5-(OMe) ₂	NH ₂	_	S	H	4'	tetrahydropyrane-2-yl
577 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	2-propenyl
578 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	ⁿ Bu
579 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	ⁿ Pr
580 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	'Pr
581 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	¹Bu
582 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	Me
583 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	Bn
584 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-F-Bn
585 4,5-(OMe) ₂	NH ₂	_	S	H	4'	3-F-Bn
586 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	2-F-Bn
587 4,5-(OMe) ₂	NH ₂	-	S	H	4'	4-Cl-Bn
588 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	3-Cl-Bn
589 4,5-(OMe) ₂	NH ₂	T -	S	Н	4'	2-Cl-Bn
590 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-OMe-Bn
591 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	3-OMe-Bn
592 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	2-OMe-Bn
593 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	4-Me-Bn
594 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	3-Me-Bn
595 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	2-Me-Bn
596 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	4-NO ₂ -Bn
597 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-NH ₂ -Bn
$\frac{598 \text{ 4,5-(OMe)}_2}{598 \text{ 4,5-(OMe)}_2}$	NH ₂	-	S	Н	4'	4-NMe ₂ -Bn
599 4,5-(OMe) ₂	NH ₂	-	S	Н	4'	4-SO ₂ Me-Bn
$600 \ 4.5 - (OMe)_2$	NH ₂		S	Н	4'	4-SO ₂ NH ₂ -Bn
$\frac{601}{601}$ 4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-CN-Bn
$\frac{602}{602}$ 4,5-(OMe) ₂	NH ₂	 -	S	Н	4'	4-¹Bu-Bn
$\frac{603}{603}$ 4,5-(OMe) ₂	NH ₂		S	Н	4'	piperonyl
$\frac{604}{604}$ 4,5-(OMe) ₂	NH ₂		S	Н	4'	3,4-(OMe) ₂ -Bn
$\frac{605}{605}$ 4,5-(OMe) ₂	NH ₂	_	S	H	4'	3,4-Cl ₂ -Bn
$\frac{606}{606}$ 4,5-(OMe) ₂	NH ₂	_	S	H	4'	(CH ₂) ₂ -(4-Cl-Ph)
		-	S	H	4'	(CH ₂) ₂ -(3,4-(OMe) ₂ -Ph)
607 4,5-(OMe) ₂	NH ₂	 	S	Н	4'	$(CH_2)_2$ - $(S,4$ - $(OMC)_2$ - $(CH_2)_2$ - $(CH$
608 4,5-(OMe) ₂	NH ₂	<u> </u>			1	(C112/2-1 11

600	4,5-(OMe) ₂	NH ₂		S	Н	4'	(CH ₂) ₃ -Ph
	$4,5-(OMe)_2$ $4,5-(OMe)_2$	NH ₂		S	H	4'	(CH ₂) ₄ -Ph
	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	NH ₂	_	S	H	4'	COPh
				S	H	4'	1-Nap
	$\frac{4.5 - (OMe)_2}{4.5 - (OMe)_2}$	NH ₂		S	H	4'	2-Nap
	4,5-(OMe) ₂	NH ₂			H	4'	
	4,5-(OMe) ₂	NH ₂		S		4'	CH ₂ -(1-Nap)
	4,5-(OMe) ₂	NH ₂		S	Н		CH ₂ -(2-Nap)
	$4,5-(OMe)_2$	NH ₂		S	Н	4'	2-Py
	$4,5-(OMe)_2$	NH ₂		S	Н	4'	3-Py
	4,5-(OMe) ₂	NH ₂	_	S	Н	4'	4-Py
	$4,5-(OMe)_2$	NH ₂	-	S	Н	4'	CH ₂ -(2-Py)
	$4,5-(OMe)_2$	NH ₂		S	Н	4'	CH ₂ -(3-Py)
	$4,5-(OMe)_2$	NH ₂	-	S	H	4'	CH ₂ -(4-Py)
622	$4,5-(OMe)_2$	NH ₂	_	S	H	4'	(CH ₂) ₂ -(2-Py)
623	$4,5-(OMe)_2$	NH ₂		S	Н	4'	furan-3-yl
624	$4,5-(OMe)_2$	NH ₂		S	H	4'	thiophene-3-yl
625	$4,5-(OMe)_2$	NH ₂	-	S	H	4'	CH ₂ -(thiophene-3-yl)
626	4,5-(OMe) ₂	NH ₂	-	S	Н	4'	CH ₂ -(furan-3-yl)
627	4,5-(OMe) ₂	NH ₂		S	H	4'	CH ₂ -(thiophene-2-yl)
628	4,5-(OMe) ₂	NH ₂	_	S	Н	4'	(CH ₂) ₂ -(thiophene-2-yl)
629	5-NO ₂	NH ₂		0	Н	4'	Ph
630	4-OCH ₂ Ph	NH ₂	<u> </u>	О	Н	4'	Ph
631	4-OMe	NH ₂	_	0	Н	4'	Ph
632	4-OH	NH ₂	-	О	Н	4'	Ph
633	4-Me	NH ₂	-	О	Н	4'	Ph
634	4-Br	NH ₂	_	О	Н	4'	Ph
635	5-Cl	NH ₂	-	0	Н	4'	Ph
636	5-Cl	NH ₂		О	Н	3'	Ph
637	5-Cl	NH ₂	_	О	Н	2'	Ph
638	5-Cl	NH ₂	_	О	Н	4'	4-F-Ph
639	5-Cl	NH ₂	_	O	Н	4'	4-Ac-Ph
640	5-Cl	NH ₂	_	0	Н	4'	4-OMe-Ph
641	5-Cl	NH ₂	_	0	Н	4'	4-Me-Ph
642	5-Cl	NH ₂	_	0	Н	4'	3,4,5-(OMe) ₃ -Ph
643	4,5-F ₂	NH ₂		0	Н	4'	Ph
644	4,5-F ₂	NH ₂	-	O	Н	3'	Ph
645	4,5-F ₂	NH ₂		0	Н	2'	Ph
646	4,5-F ₂	NH ₂	_	0	Н	4'	4-F-Ph
647	4,5-F ₂	NH ₂		0	Н	4'	4-Ac-Ph
648	4,5-F ₂	NH ₂	_	О	Н	4'	4-OMe-Ph
649	4,5-F ₂	NH ₂	_	0	Н	4'	4-Me-Ph
650	4,5-F ₂	NH ₂	 	0	Н	4'	3,4,5-(OMe) ₃ -Ph
651	4-Br,	NH ₂	 -	o	Н	4'	Ph
001	5-NO ₂	1.522					
652	.0	NH ₂	_	0	Н	4'	Ph
304	4					l	
]	_ /					1	
	5 ₀ /		<u></u>	<u>L</u> .		<u></u>	
653	4Q	NH ₂	_	О	Н	3'	Ph
	4"						
.	5. /						
	<u> </u>	<u></u>	L			<u> </u>	

				, ,			
654	4Q	NH ₂		0	Н	2'	Ph
	5						
	<u>oO</u>	NILI		0	Н	4'	4-F-Ph
655	4Q	NH ₂	_	'	л	4	4-r-r n
	5						
656	0	NH ₂		0	Н	4'	4-Ac-Ph
ļ	4	_					
	5						
657	Q	NH ₂	_	0	Н	4'	4-OMe-Ph
	4						
!	50						
658	QQ	NH ₂	_	0	Н	4'	4-Me-Ph
	4						
}	50						
659	1Q	NH ₂	_	0	Н .	4'	3,4,5-(OMe) ₃ -Ph
	_ >						
	5o						
660	5-NO ₂	OEt	_	0	Н	4'	Ph
661	4-OCH ₂ Ph	OEt	_	О	H	4'	Ph
662	4-OMe	OEt		0	H	4'	Ph
663	4-OH	OEt	_	0	Н	4'	Ph
664	4-Me	OEt	_	О	Н	4'	Ph
665	4-Br	OEt	_	О	Н	4'	Ph
666	5-Cl	OEt		О	Н	4'	Ph
667	5-C1	OEt	_	О	Н	3'	Ph
668	5-Cl	OEt	_	0	Н	2'	Ph
669	5-Cl	OEt	_	0	Н	4'	4-F-Ph
670	5-Cl	OEt	_	0	Н	4'	4-Ac-Ph
671	5-Cl	OEt	-	0	Н	4'	4-OMe-Ph
672	5-Cl	OEt	_	О	Н	4'	4-Me-Ph
673	5-Cl	OEt	- ,	О	Н	4'	3,4,5-(OMe) ₃ -Ph
674	4,5-F ₂	OEt		О	Н	4'	Ph
675	4,5-F ₂	OEt	_	О	Н	3'	Ph
676	4,5-F ₂	OEt	_	0	Н	2'	Ph
677	4,5-F ₂	OEt	_	0	Н	4'	4-F-Ph
678	4,5-F ₂	OEt	_	0	H	4'	4-Ac-Ph
679	4,5-F ₂	OEt		0	Н	4'	4-OMe-Ph
680	4,5-F ₂	OEt	_	0	Н	4'	4-Me-Ph
681	4,5-F ₂	OEt		0	Н	4'	3,4,5-(OMe) ₃ -Ph
682	4-Br,	OEt		0	H	4'	Ph
^	5-NO ₂						
683	4Q	OEt	_	0	Н	4'	Ph
	_ >				,		
1	5						
		I <u>.</u>	L	<u> </u>		Ii	

684	4Q	OEt	_	О	Н	3'	Ph
	_						
-	50						
685	AQ	OEt	-	0	Н	2'	Ph
	~ >						
	50						
686	QQ	OEt	_	O	Н	4'	4-F-Ph
	4 >						
į	5						
687	0:	OEt	_	О	Н	4'	4-Ac-Ph
	4.7						
	5						
688	0	OEt		O	Н	4'	4-OMe-Ph
009	4	021					
	5		i			£	
689	0	OEt		0	Н	4'	4-Me-Ph
009	4	OL			4		T WE I'M
	5						
	0	OF		O	Н	4'	3,4,5-(OMe) ₃ -Ph
690	4	OEt	_	U	л	4.	3,4,3-(OME)3-FII
	5						
	0	OF			77	3'	DL
$\frac{691}{692}$	4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt		0	H H	2'	Ph Ph
693	$4,5-(OMe)_2$	OEt		0	3'-OMe	4'	Ph
$\frac{-694}{694}$		OEt		O	4'-OMe	3'	Ph
695		OEt	_	О	4′-OH	3'	Ph
	4,5-(OMe) ₂	OEt		0	3'-O-n-Bu	4'	Ph
697	$4,5-(OMe)_2$	OEt		0	5 ′ -F	3'	Ph
	$4,5-(OMe)_2$	OEt	_	О	5′-F	4'	Ph
699		OEt		0	2'-OMe	4'	Ph
	4,5-(OMe) ₂	OEt		0	2'-OH	4'	Ph
	4,5-(OMe) ₂	OEt	_	О	6'-OMe	2'	Ph
789		~ ~					DI
	4,5-(OMe) ₂	OEt	_	О	6 · -OH	2'	Ph
703	4,5-(OMe) ₂	OEt	_	0	6'-OH 2'-Me,5'-OMe	2' 4'	Ph
703				О	6'-OH 2'-Me,5'-OMe 2'-Me,	2'	
703 704	4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt	_	0	6'-OH 2'-Me,5'-OMe	2' 4'	Ph
703 704 705	4,5-(OMe) ₂	OEt OEt	_	0 0	6'-OH 2'-Me,5'-OMe 2'-Me, 5'-OH	2' 4' 4'	Ph Ph
703 704 705 706	4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt	-	0 0 0 0 0	6'-OH 2'-Me,5'-OMe 2'-Me, 5'-OH 4'-SMe 3'-SMe 3',5'-Me ₂	2' 4' 4' 3' 4' 4'	Ph Ph Ph Ph Ph
$ \begin{array}{r} 703 \\ 704 \\ \hline 705 \\ 706 \\ \hline 707 \\ 708 \\ \end{array} $	4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt OEt OEt OEt OEt	- - -	0 0 0 0 0 0	6'-OH 2'-Me,5'-OMe 2'-Me, 5'-OH 4'-SMe 3'-SMe 3',5'-Me ₂ 2',5'-Me ₂	2' 4' 4' 3' 4' 4'	Ph Ph Ph Ph Ph Ph Ph
$ \begin{array}{r} 703 \\ 704 \\ \hline 705 \\ 706 \\ \hline 707 \\ 708 \\ \hline 709 \\ \end{array} $	4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt OEt OEt OEt OEt OEt	- - -	0 0 0 0 0 0	6'-OH 2'-Me, 5'-OMe 2'-Me, 5'-OH 4'-SMe 3'-SMe 3',5'-Me ₂ 2',5'-Me ₂ 3',5'-Cl ₂	2' 4' 4' 4' 4' 4'	Ph Ph Ph Ph Ph Ph Ph Ph
$ \begin{array}{r} 703 \\ 704 \\ \hline 705 \\ 706 \\ \hline 707 \\ \hline 708 \\ 709 \\ \hline 710 \\ 710 \\ \hline 710 \\ $	4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt OEt OEt OEt OEt OEt OEt OEt	- - - - -	0 0 0 0 0 0 0	6'-OH 2'-Me, 5'-OMe 2'-Me, 5'-OH 4'-SMe 3'-SMe 3',5'-Me ₂ 2',5'-Cl ₂ 2',5'-Cl ₂	2' 4' 4' 4' 4' 4' 4' 3'	Ph
$ \begin{array}{r} 703 \\ 704 \\ \hline 705 \\ 706 \\ \hline 707 \\ \hline 708 \\ \hline 709 \\ \hline 710 \\ \hline 711 \\ \end{array} $	4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt OEt OEt OEt OEt OEt OEt OEt	- - - - -	0 0 0 0 0 0 0 0	6'-OH 2'-Me,5'-OMe 2'-Me, 5'-OH 4'-SMe 3'-SMe 3',5'-Me ₂ 2',5'-Cl ₂ 2',5'-Cl ₂ 3'-Me	2' 4' 4' 4' 4' 4' 4' 4'	Ph
$ \begin{array}{r} 703 \\ 704 \\ \hline 705 \\ 706 \\ \hline 707 \\ 708 \\ \hline 709 \\ \hline 710 \\ \hline 711 \\ \hline 712 \\ \end{array} $	4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂ 4,5-(OMe) ₂	OEt OEt OEt OEt OEt OEt OEt OEt OEt	- - - - -	0 0 0 0 0 0 0	6'-OH 2'-Me, 5'-OMe 2'-Me, 5'-OH 4'-SMe 3'-SMe 3',5'-Me ₂ 2',5'-Cl ₂ 2',5'-Cl ₂	2' 4' 4' 4' 4' 4' 4' 3'	Ph

714 4.5 (OMa)	14 4.5-(OMe) ₂ OEt - O 4'-O(CH ₂) ₂ -N		4'-O(CH ₂) ₂ -N-	3'	Ph	
714 4,5-(OMe) ₂	OEt	_		morpholinyl		
$715 4,5-(OMe)_2$	OEt	CH ₂	0	Н	4'	Ph
716 4,5-(OMe) ₂	OEt	CH ₂	О	Н	3'	Ph
717 4,5-(OMe) ₂	OEt	CH ₂	О	Н	2'	Ph
718 4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	4'	Ph
719 4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	3'	Ph
$720 \ 4,5-(OMe)_2$	OEt	(CH ₂) ₂	0	Н	2'	Ph
721 4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	4'	Ph
722 4,5-(OMe) ₂	OEt	(CH ₂) ₃	O	H	3'	Ph
723 4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	2'	Ph
724 4,5-(OMe) ₂	NH ₂	-	0	Н	3'	Ph
725 4,5-(OMe) ₂	NH ₂		0	Н	2'	Ph
$726 4.5 - (OMe)_2$	NH ₂	-	О	3'-OMe	4'	Ph
$727 4,5-(OMe)_2$	NH ₂	-	0	4'-OMe	3'	Ph
$728 4.5 - (OMe)_2$	NH ₂	_	0	4'-OH	3'	Ph
$729 4,5-(OMe)_2$	NH ₂	- 1	0	3'-O-n-Bu	4'	Ph
730 4,5-(OMe) ₂	NH ₂	-	0	5′-F	3'	Ph
731 4,5-(OMe) ₂	NH ₂	_	O	5'-F	4'	Ph
732 4,5-(OMe) ₂	NH ₂	_	0	2'-OMe	4'	Ph
733 4,5-(OMe) ₂	NH ₂		О	2'-OH	4'	Ph
734 4,5-(OMe) ₂	NH ₂	_	0	6'-OMe	2'	Ph
735 4,5-(OMe) ₂	NH ₂	_	0	6OH	2'	Ph
736 4,5-(OMe) ₂	NH ₂	-	0	2'-Me,5'-	4'	Ph
				OMe		
737 4,5-(OMe) ₂	NH ₂	-	О	2'-Me,	4'	Ph
				5'-OH		
738 4,5-(OMe) ₂	NH ₂		О	4'-SMe	3'	Ph
739 4,5-(OMe) ₂	NH ₂		О	3'-SMe	4'	Ph
740 4,5-(OMe) ₂	NH ₂	-	0	3',5'-Me ₂	4'	Ph
741 4,5-(OMe) ₂	NH ₂		О	2',5'-Me ₂	4'	Ph
$742 4,5-(OMe)_2$	NH ₂		O	3',5'-Cl ₂	4'	Ph
743 4,5-(OMe) ₂	NH ₂		0	2',5'-Cl ₂	3'	Ph
744 4,5-(OMe) ₂	NH ₂		0	3'-Me	4'	Ph
745 4,5-(OMe) ₂	NH ₂		0	4'-Me	3'	Ph
746 4,5-(OMe) ₂	NH ₂	-	0	4'-Cl	3'	Ph
747 4,5-(OMe) ₂	NH ₂	-	О	4'-O(CH ₂) ₂ -N- morpholinyl	3'	Ph
748 4,5-(OMe) ₂	NH ₂	CH ₂	О	Н	4'	Ph
749 4,5-(OMe) ₂	NH ₂	CH ₂	0	Н	3'	Ph
750 4,5-(OMe) ₂	NH ₂	CH ₂	0	Н	2'	Ph
751 4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	4'	Ph
752 4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	3'	Ph
753 4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	2'	Ph
754 4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	4'	Ph
755 4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	3'	Ph
756 4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	2'	Ph
757 4,5-(OMe) ₂	NHMe	-	О	Н	4'	Ph
		_	O	Н	4'	Ph
			О	Н	4'	Ph

750	4,5-(OMe) ₂	OMe		o	Н	4'	Ph
	$4,5-(OMe)_2$	OH		ŏ	Н	4'	Ph
				0	H	4'	Ph
761	4,5-(OMe) ₂	ŅН	_		11	7	1.11
			į	- 1	ļ	ļ	
762	4,5-(OMe) ₂	:	_	0	Н	4'	Ph
,	1,0 (01/1/)2	йн					
			Ì				
		OMe		1			
		OMe					
763	4,5-(OMe) ₂	OEt	_	0	Н	3'	3-Py
764	$4,5-(OMe)_2$	OEt		O	Н	3'	3,4,5-(OMe) ₃ -Ph
765	$4,5-(OMe)_2$	OEt		0	Н	3'	4-Ac-Ph
766	$4,5-(OMe)_2$	OEt		0	H	3'	4-NH ₂ -Ph
767	4,5-(OMe) ₂	OEt		O	3-OMe	4'	3-Py
768	4,5-(OMe) ₂	OEt		О	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
769	4,5-(OMe) ₂	OEt	-	О	3-OMe	4'	4-Ac-Ph
770	4,5-(OMe) ₂	OEt	-	О	3-OMe	4'	4-NH ₂ -Ph
771	4,5-(OMe) ₂	OEt	CH ₂	О	H	3'	3-Py
772	4,5-(OMe) ₂	OEt	CH ₂	О	Н	3'	3,4,5-(OMe) ₃ -Ph
773	$4,5-(OMe)_2$	OEt	CH ₂	О	Н	3'	4-Ac-Ph
774	4,5-(OMe) ₂	OEt	CH ₂	О	Н	3'	4-NH ₂ -Ph
775	4,5-(OMe) ₂	OEt	CH ₂	О	3-OMe	4'	3-Ру
776	$4,5-(OMe)_2$	OEt	CH ₂	О	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
777	4,5-(OMe) ₂	OEt	CH ₂	0	3-OMe	4'	4-Ac-Ph
778	4,5-(OMe) ₂	OEt	CH ₂	О	3-OMe	4'	4-NH ₂ -Ph
779	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	Н	3'	3-Py
780	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	Н	3'	3,4,5-(OMe) ₃ -Ph
781	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	H	3'	4-Ac-Ph
782	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	Н	3'	4-NH ₂ -Ph
783	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	3-OMe	4'	3-Py
784	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
785	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	3-OMe	4'	4-Ac-Ph
786	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	3-OMe	4'	4-NH ₂ -Ph
787	4,5-(OMe) ₂	NH ₂	_	О	Н	3'	3-Py
788	4,5-(OMe) ₂	NH ₂	_	0	Н	3'	3,4,5-(OMe) ₃ -Ph
789	4,5-(OMe) ₂	NH ₂	_	0	Н	3'	4-Ac-Ph
790	4,5-(OMe) ₂	NH ₂	_	О	Н	3'	4-NH ₂ -Ph
791	$4,5-(OMe)_2$	NH ₂	_	0	3-ОМе	4'	3-Ру
792	$4,5-(OMe)_2$	NH ₂		0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
793	$4,5-(OMe)_2$	NH ₂	<u> </u>	0	3-OMe	4'	4-Ac-Ph
794	$4,5-(OMe)_2$	NH ₂	_	0	3-OMe	4'	4-NH ₂ -Ph
795	$4,5-(OMe)_2$	NH ₂	CH ₂	0	Н	3'	3-Ру
796	$\frac{4,5 \cdot (OMe)_2}{4,5 \cdot (OMe)_2}$	NH ₂	CH ₂	0	Н	3'	3,4,5-(OMe) ₃ -Ph
797	$\frac{4,5 \cdot (OMe)_2}{4,5 \cdot (OMe)_2}$	NH ₂	CH ₂	o	Н	3'	4-Ac-Ph
798	$4,5-(OMe)_2$	NH ₂	CH ₂	ō	Н	3'	4-NH ₂ -Ph
799	$4,5-(OMe)_2$	NH ₂	CH ₂	ŏ	3-OMe	4'	3-Py
800	$4,5-(OMe)_2$		CH ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
	$4,5-(OMe)_2$ $4,5-(OMe)_2$		CH ₂	0	3-OMe	4'	4-Ac-Ph
801			CH ₂	0	3-OMe	4'	4-NH ₂ -Ph
802	4,5-(OMe) ₂		$(CH_2)_2$	 	H	3'	3-Py
803	4,5-(OMe) ₂				H	3'	3,4,5-(OMe) ₃ -Ph
804	$4,5-(OMe)_2$	NH ₂	$(CH_2)_2$	<u> </u>	1 п	<u> </u>	5,7,5-(OMO)3-1 II

806 4,5-(OMc)2 NH2 (CH2)2 O								
Section Sect								
No.	806	4,5-(OMe) ₂						
809 4,5-(OMe) ₂ NH ₂ (CH ₂) ₂ O 3-OMe 4' 4-Ac-Ph 810 4,5-(OMe) ₂ NH ₂ (CH ₂) ₂ O 3-OMe 4' 4-NH ₂ -Ph 811 4,5-F ₂ OEt - O H 3' 3-Py 812 4,5-F ₂ OEt - O H 3' 3,4,5-(OMe) ₃ -Ph 813 4,5-F ₂ OEt - O H 3' 4-Ac-Ph 814 4,5-F ₂ OEt - O H 3' 4-Ac-Ph 815 4,5-F ₂ OEt - O 3-OMe 4' 3-Py 816 4,5-F ₂ OEt - O 3-OMe 4' 3-Py 816 4,5-F ₂ OEt - O 3-OMe 4' 3-Py 816 4,5-F ₂ OEt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F ₂ OEt - O 3-OMe 4' 4-Ac-Ph 819 4,5-F ₂ OEt - O 3-OMe 4' 4-Ac-Ph 819 4,5-F ₂ OEt CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 820 4,5-F ₂ OEt CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 821 4,5-F ₂ OEt CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 822 4,5-F ₂ OEt CH ₂ O H 3' 4-Ac-Ph 823 4,5-F ₂ OEt CH ₂ O H 3' 4-Ac-Ph 824 4,5-F ₂ OEt CH ₂ O H 3' 4-Ac-Ph 825 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3-Apy 826 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3-Apy 826 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 826 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 826 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 827 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 827 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 828 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 831 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 832 4,5-F ₂ OEt CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 833 4,5-F ₂ OEt CH ₂ O H 3' 3-A,5-(OMe) ₃ -Ph 833 4,5-F ₂ OEt CH ₂ O H 3' 3-A,5-(OMe) ₃ -Ph 833 4,5-F ₂ OEt CH ₂ O H 3' 3-A,5-(OMe) ₃ -Ph 834 4,5-F ₂ OEt CH ₂ O H 3' 3-A,5-(OMe) ₃ -Ph 844 4,5-F ₂ OEt CH ₂ O H 3' 3-A,5-(OMe) ₃ -Ph 845 4,5-F ₂ OEt CH ₂	807	$4,5-(OMe)_2$	NH_2	$(CH_2)_2$	O			
Since Sinc	808	$4,5-(OMe)_2$	NH ₂		O	3-OMe		
811 4,5-F ₂ OEt - O H 3' 3,4,5-(OMe) ₃ -Ph 812 4,5-F ₂ OEt - O H 3' 3,4,5-(OMe) ₃ -Ph 813 4,5-F ₂ OEt - O H 3' 4-Ac-Ph 814 4,5-F ₂ OEt - O H 3' 4-Ac-Ph 815 4,5-F ₂ OEt - O 3-OMe 4' 3-Py 816 4,5-F ₂ OEt - O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 817 4,5-F ₂ OEt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F ₂ OEt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F ₂ OEt - O 3-OMe 4' 4-Ac-Ph 819 4,5-F ₂ OEt - O 3-OMe 4' 4-NH ₂ -Ph 820 4,5-F ₂ OEt CH ₂ O H 3' 3-Py 820 4,5-F ₂ OEt CH ₂ O H 3' 3-Py 821 4,5-F ₂ OEt CH ₂ O H 3' 4-NH ₂ -Ph 822 4,5-F ₂ OEt CH ₂ O H 3' 4-NH ₂ -Ph 823 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 824 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 825 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 826 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 827 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 828 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 826 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 827 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 828 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 4-Ac-Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 829 4,5-F ₂ OEt CH ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 830 4,5-F ₂ OEt (CH ₂) ₂ O H 3' 4-Ac-Ph 831 4,5-F ₂ OEt (CH ₂) ₂ O H 3' 4-Ac-Ph 832 4,5-F ₂ OET (CH ₂) ₂ O H 3' 4-Ac-Ph 833 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 833 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 834 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 835 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 836 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 837 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 838 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 839 4,5-F ₂ OET (CH ₂) ₂ O 3-OMe 4' 3-A,5-(OMe) ₃ -Ph 840 4,5-F ₂ NH ₂ O O H 3' 3-A,5-(OMe) ₃ -Ph 841 4,5-F ₂ NH ₂ O O H 3' 3-A,5-(OMe) ₃ -Ph 842 4,5-F ₂ NH ₂ O O H 3' 3-A,5-(OMe) ₃ -Ph 843 4,5-F ₂ NH ₂ O O H 3' 3-A,5-(OMe) ₃ -Ph 844 4,5-F ₂ NH ₂ O O H 3' 3-A,5-(OMe) ₃ -Ph 845 4,5	809	$4,5-(OMe)_2$	NH ₂	$(CH_2)_2$	O	3-OMe	4'	
811	810	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	3-OMe	4'	4-NH ₂ -Ph
812					О	Н	3'	3-Ру
813			OEt		О	Н	3'	3,4,5-(OMe) ₃ -Ph
814 4,5-F2 OEt - O H 3' 4-NH2-Ph 815 4,5-F2 OEt - O 3-OMe 4' 3-Py 816 4,5-F2 OEt - O 3-OMe 4' 4.4-C-Ph 817 4,5-F2 OEt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F2 OEt - O 3-OMe 4' 4-Ac-Ph 819 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 3-4-S-(OMe)-Ph 821 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 822 4,5-F2 OEt CH2 O 3-OMe 4' 3-Py 823 4,5-F2 OEt CH2 O 3-OMe 4' 3-Ac-Ph 825 4,5-F2 OEt CH2 O 3-OMe					О	Н	3'	4-Ac-Ph
815 4,5-F2 OEt - O 3-OMe 4' 3-Py 816 4,5-F2 OBt - O 3-OMe 4' 3,4,5-(OMe)-Ph 817 4,5-F2 OBt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F2 OEt - O 3-OMe 4' 4-Ac-Ph 819 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 821 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 822 4,5-F2 OEt CH2 O 3-OMe 4' 3-A,5-(OMe) ₂ -Ph 824 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 825 4,5-F2 OEt CH2 O 3-O					О	Н	3'	4-NH ₂ -Ph
816 4,5-F2 OEt - O 3-OMe 4' 3,4,5-(OMe) ₂ -Ph 817 4,5-F2 OEt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F2 OEt - O 3-OMe 4' 4-Ac-Ph 819 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 822 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 824 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe) ₂ -Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 827 4,5-F2 OEt CH2 O					О	3-OMe	4'	3-Py
817 4,5-F2 OEt - O 3-OMe 4' 4-Ac-Ph 818 4,5-F2 OEt - O 3-OMe 4' 4-NH2-Ph 819 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 3,4,5-(OMe)3-Ph 821 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 822 4,5-F2 OEt CH2 O H 3' 4-NH2-Ph 823 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 824 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 827 4,5-F2 OEt CH2,2 O							4'	3,4,5-(OMe) ₃ -Ph
818 4,5-F2 OEt - O 3-OMe 4' 4-NH2-Ph 819 4,5-F2 OEt CH2 O H 3' 3-Py 820 4,5-F2 OEt CH2 O H 3' 3,4,5-(OMe)3-Ph 821 4,5-F2 OEt CH2 O H 3' 4-NH2-Ph 822 4,5-F2 OEt CH2 O 3-OMe 4' 3-Py 823 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-NH2-Ph 826 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 828 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 829 4,5-F2 OEt (CH2)2 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td>4'</td><td></td></t<>				_			4'	
Rightarrow Rig				_	0		4'	4-NH ₂ -Ph
R20				CH ₂			3'	
821 4,5-F2 OEt CH2 O H 3' 4-Ac-Ph 822 4,5-F2 OEt CH2 O H 3' 4-NH2-Ph 823 4,5-F2 OEt CH2 O 3-OMe 4' 3-Py 824 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-NH2-Ph 827 4,5-F2 OEt CH2)2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-NH2-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 831 4,5-F2 OEt (CH2)2 O								
822 4,5-F2 OEt CH2 O H 3' 4-NH2-Ph 823 4,5-F2 OEt CH2 O 3-OMe 4' 3-Py 824 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 827 4,5-F2 OEt CCH2)2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O 3-OMe 4' 34,5-F2 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 34,5-F2 833 4,5-F2 OEt (CH2)2								
823 4,5-F2 OEt CH2 O 3-OMe 4' 3-Py 824 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-NH2-Ph 827 4,5-F2 OEt CH2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 3-Py 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 833 4,5-F2 OEt (CH2)2								
824 4,5-F2 OEt CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-NH2-Ph 827 4,5-F2 OEt CH2)2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-COMe)3-Ph 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 NH2 -							1	
825 4,5-F2 OEt CH2 O 3-OMe 4' 4-Ac-Ph 826 4,5-F2 OEt CH2 O 3-OMe 4' 4-NH2-Ph 827 4,5-F2 OEt (CH2)2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 835 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 836 4,5-F2 NH2 -								
826 4,5-F2 OEt CH2 O 3-OMe 4' 4-NH2-Ph 827 4,5-F2 OEt (CH2)2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 835 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2								
827 4,5-F2 OEt (CH2)2 O H 3' 3-Py 828 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-NH2-Ph 835 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
828 4,5-F2 OEt (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O H 3' 4-NH2-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 835 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 <								
829 4,5-F2 OEt (CH2)2 O H 3' 4-Ac-Ph 830 4,5-F2 OEt (CH2)2 O H 3' 4-NH2-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3.4y5-(OMe)3-Ph 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 NH2 - O H 3' 3-Py 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
830 4,5-F2 OEt (CH2)2 O H 3' 4-NH2-Ph 831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 835 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 -								
831 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3-Py 832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 835 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - <								
832 4,5-F2 OEt (CH2)2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 835 4,5-F2 NH2 - O H 3' 3-Py 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 CH2 <				(CH ₂) ₂				
833 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-Ac-Ph 834 4,5-F2 OEt (CH2)2 O 3-OMe 4' 4-NH2-Ph 835 4,5-F2 NH2 - O H 3' 3-Py 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 CH2 O H 3' 3-Py 843 4,5-F2 NH2 CH2 O H				(CH ₂) ₂				
834 4,5-F2 OEt (CH ₂)2 O 3-OMe 4' 4-NH ₂ -Ph 835 4,5-F2 NH ₂ - O H 3' 3-Py 836 4,5-F2 NH ₂ - O H 3' 3,4,5-(OMe) ₃ -Ph 837 4,5-F2 NH ₂ - O H 3' 4-Ac-Ph 838 4,5-F2 NH ₂ - O H 3' 4-Ac-Ph 839 4,5-F2 NH ₂ - O 3-OMe 4' 3-Py 840 4,5-F2 NH ₂ - O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 841 4,5-F2 NH ₂ - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH ₂ CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 843 4,5-F2 NH ₂ CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 845 4,5-F2 NH ₂ <td< td=""><td></td><td></td><td></td><td>(CH₂)₂</td><td></td><td></td><td></td><td></td></td<>				(CH ₂) ₂				
835 4,5-F2 NH2 - O H 3' 3-Py 836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O <td< td=""><td></td><td></td><td></td><td>(CH₂)₂</td><td></td><td></td><td></td><td></td></td<>				(CH ₂) ₂				
836 4,5-F2 NH2 - O H 3' 3,4,5-(OMe)3-Ph 837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 846 4,5-F2 NH2 CH2 O				-				
837 4,5-F2 NH2 - O H 3' 4-Ac-Ph 838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3-Py 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 846 4,5-F2 NH2 CH2 O 3-OMe 4' 3-Py 848 4,5-F2 NH2 CH2 O 3-OMe <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
838 4,5-F2 NH2 - O H 3' 4-NH2-Ph 839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3-Py 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O								
839 4,5-F2 NH2 - O 3-OMe 4' 3-Py 840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3-Py 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O								
840 4,5-F2 NH2 - O 3-OMe 4' 3,4,5-(OMe)3-Ph 841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3-Py 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 848 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O				_				
841 4,5-F2 NH2 - O 3-OMe 4' 4-Ac-Ph 842 4,5-F2 NH2 - O 3-OMe 4' 4-NH2-Ph 843 4,5-F2 NH2 CH2 O H 3' 3-Py 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 848 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O								
842 4,5-F ₂ NH ₂ - O 3-OMe 4' 4-NH ₂ -Ph 843 4,5-F ₂ NH ₂ CH ₂ O H 3' 3-Py 844 4,5-F ₂ NH ₂ CH ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 845 4,5-F ₂ NH ₂ CH ₂ O H 3' 4-Ac-Ph 846 4,5-F ₂ NH ₂ CH ₂ O H 3' 4-NH ₂ -Ph 847 4,5-F ₂ NH ₂ CH ₂ O 3-OMe 4' 3-Py 848 4,5-F ₂ NH ₂ CH ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph 849 4,5-F ₂ NH ₂ CH ₂ O 3-OMe 4' 4-Ac-Ph 850 4,5-F ₂ NH ₂ CH ₂ O 3-OMe 4' 4-NH ₂ -Ph 851 4,5-F ₂ NH ₂ (CH ₂) ₂ O H 3' 3,4,5-(OMe) ₃ -Ph 852 <t< td=""><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td></t<>				 				
843 4,5-F2 NH2 CH2 O H 3' 3-Py 844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3-Py 848 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph				 				
844 4,5-F2 NH2 CH2 O H 3' 3,4,5-(OMe)3-Ph 845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3-Py 848 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph							 	
845 4,5-F2 NH2 CH2 O H 3' 4-Ac-Ph 846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3-Py 848 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph								
846 4,5-F2 NH2 CH2 O H 3' 4-NH2-Ph 847 4,5-F2 NH2 CH2 O 3-OMe 4' 3-Py 848 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph			,					
847 4,5-F2 NH2 CH2 O 3-OMe 4' 3-Py 848 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph								
848 4,5-F2 NH2 CH2 O 3-OMe 4' 3,4,5-(OMe)3-Ph 849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph							<u> </u>	
849 4,5-F2 NH2 CH2 O 3-OMe 4' 4-Ac-Ph 850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph					-		4	
850 4,5-F2 NH2 CH2 O 3-OMe 4' 4-NH2-Ph 851 4,5-F2 NH2 (CH2)2 O H 3' 3-Py 852 4,5-F2 NH2 (CH2)2 O H 3' 3,4,5-(OMe)3-Ph								
851 4,5-F ₂ NH ₂ (CH ₂) ₂ O H 3' 3-Py 852 4,5-F ₂ NH ₂ (CH ₂) ₂ O H 3' 3,4,5-(OMe) ₃ -Ph								
852 4,5-F ₂ NH ₂ (CH ₂) ₂ O H 3' 3,4,5-(OMe) ₃ -Ph							1	
30 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2								
								
302 1,7-2 122								
							 	
855 4,5-F ₂ NH ₂ (CH ₂) ₂ O 3-OMe 4' 3-Py								
856 4,5-F ₂ NH ₂ (CH ₂) ₂ O 3-OMe 4' 3,4,5-(OMe) ₃ -Ph								
857 4,5-F ₂ NH ₂ (CH ₂) ₂ O 3-OMe 4' 4-Ac-Ph								
858 4,5-F ₂ NH ₂ (CH ₂) ₂ O 3-OMe 4' 4-NH ₂ -Ph	858	4,5-F ₂	NH ₂	$(CH_2)_2$	Lo	3-OMe	4'	4-NH ₂ -Ph

859	4Q	OEt	_	0	Н	3'	3-Py
	5						
860	4Q	OEt	-	О	H	3'	3,4,5-(OMe) ₃ -Ph
	50				· · · · · · · · · · · · · · · · · · ·		
861	4·····Q	OEt	-	0	Н	3'	4-Ac-Ph
	5O						
862	4Q	OEt	-	0	Н	3'	4-NH ₂ -Ph
·	5 _O				0.01/	4.	2 Day
863	4Q	OEt	-	0	3-OMe	4'	3-Py
	50	0.5			3-OMe	4'	3,4,5-(OMe) ₃ -Ph
864	4Q	OEt	_	0	3-01/16		3,4,5-(OME)3-1 II
065	50	OEt		0	3-OMe	4'	4-Ac-Ph
865	4Q	OEI	_		5-01 /1 c		
866	50	OEt		0	3-OMe	4'	4-NH ₂ -Ph
800	4						
867	50	OEt	CH ₂	0	Н	3'	3-Ру
007	4	02.					
868	50	OEt	CH ₂	0	Н	3'	3,4,5-(OMe) ₃ -Ph
	4 5						
869	5Q	OEt	CH ₂	0	Н	3'	4-Ac-Ph
	5						
870	4Q	OEt	CH ₂	0	Н	3'	4-NH ₂ -Ph
	5						
871	4Q	OEt	CH ₂	0	3-ОМе	4'	3-Ру
	5						
872	4Q	OEt	CH ₂	0	3-ОМе	4'	3,4,5-(OMe) ₃ -Ph
	5						
·	1 0		<u> </u>				

873	4Q	OEt	CH ₂	О	3-OMe	4'	4-Ac-Ph
	5 _O						
874	4·····Q	OEt	CH ₂	0	3-OMe	4'	4-NH ₂ -Ph
	5 _O						
875	4Q	OEt	(CH ₂) ₂	0	Н	3'	3-Py
	5o						
876	4Q	OEt	(CH ₂) ₂	0	Н	3'	3,4,5-(OMe) ₃ -Ph
	5o						
877	4·····Q	OEt	(CH ₂) ₂	О	Н	3'	4-Ac-Ph
	50						A NIX DI
878	4Q	OEt	(CH ₂) ₂	0	Н	3'	4-NH ₂ -Ph
	50					41	3-Ру
879	4Q	OEt	(CH ₂) ₂	О	3-OMe	4'	3- r y
	50	67	(611)		3-ОМе	4'	3,4,5-(OMe) ₃ -Ph
880	40	OEt	(CH ₂) ₂	О	3-OME		3,4,5 (ONIO)3 I II
	50	OEt	(CH ₂) ₂	0	3-OMe	4'	4-Ac-Ph
881	4Q	OEI	(CH ₂) ₂		g-Givie		
882	50	OEt	(CH ₂) ₂	0	3-ОМе	4'	4-NH ₂ -Ph
802	40	O.C.	(0112)2				
883	50	NH ₂	_	0	Н	3'	3-Py
005	4	1,722					
884	50	NH ₂		0	Н	3'	3,4,5-(OMe) ₃ -Ph
50.	4						
885	50	NH ₂		0	Н	3'	4-Ac-Ph
555	4						
886	50	NH ₂	-	0	Н	3'	4-NH ₂ -Ph
230	4						
	50						

					0.014	T 41 T	2 D
887	4Q	NH ₂	-	0	3-ОМе	4'	3-Py
	50						
888	4Q	NH ₂	-	0	3-ОМе	4'	3,4,5-(OMe) ₃ -Ph
	5						
889	4····Q	NH ₂		0	3-OMe	4'	4-Ac-Ph
	5						
890	4Q	NH ₂		0	3-ОМе	4'	4-NH ₂ -Ph
	5						
891	4Q	NH ₂	CH ₂	0	Н	3'	3-Ру
:	5						
892	4Q	NH ₂	CH ₂	0	Н	3'	3,4,5-(OMe) ₃ -Ph
	5						
893	4Q	NH ₂	CH ₂	0	Н	3'	4-Ac-Ph
	50						
894	4Q	NH ₂	CH ₂	0	Н	3'	4-NH ₂ -Ph
	50						
895	4Q	NH ₂	CH ₂	О	3-OMe	4'	3-Ру
	50						
896	4Q	NH ₂	CH ₂	0	3-OMe	4'	3,4,5-(OMe) ₃ -Ph
	50						
897	4Q	NH ₂	CH ₂	О	3-OMe	4'	4-Ac-Ph
	50						
898	4Q	NH ₂	CH ₂	О	3-ОМе	4'	4-NH ₂ -Ph
	5						
899	4Q	NH ₂	(CH ₂) ₂	0	Н	3'	3-Ру
	5					-	
900	4Q	NH ₂	(CH ₂) ₂	0	Н	3'	3,4,5-(OMe) ₃ -Ph
	50						
	1 0	<u> </u>		L	L		

901	4Q	NH ₂	(CH ₂) ₂	0	Н	3'	4-Ac-Ph
	5						
902	4Q	NH ₂	(CH ₂) ₂	О	Н	3'	4-NH ₂ -Ph
	5 _O						
903	4·····Q	NH ₂	(CH ₂) ₂	О	3-OMe	4'	3-Ру
	5 _O						
904	4Q	NH ₂	(CH ₂) ₂	О	3-ОМе	4'	3,4,5-(OMe) ₃ -Ph
	50						
905	4Q	NH ₂	(CH ₂) ₂	0	3-OMe	4'	4-Ac-Ph
	5						
906	4Q	NH ₂	(CH ₂) ₂	0	3-ОМе	4'	4-NH ₂ -Ph
	5 _O						

Table 2

914	а	_	NH ₂	0	Н	3,	Ph
915	a (NH ₂	0	н	4'	Ph
	b N						
916	a S	_	NH ₂	0	Н	4'	Ph
917	a O	_	NH ₂	O	Н	4'	Ph
918	a b	_	NH ₂	O	Н	4'	Ph
919	a b	_	OEt	O	Н	3,	Ph
920	a S b S	_	OEt	0	Н	3,	Ph
921	a O	_	OEt	0	Н	3,	Ph
922	a b	_	OEt	0	Н	3,	Ph
923	a b	_	OEt	0	Н	3'	3-Ру
924	a b		OEt	0	Н	3'	3,4,5- (OMe) ₃ -Ph

025			OEt	0	Н	3'	4-Ac-Ph
925	a b			1	11	J	
926	a b	_	OEt	0	Н	3'	4-NH ₂ -Ph
927	a b	_	OEt	0	3-ОМе	4'	3-Py
928	a b	_	OEt	О	3-OMe	4'	3,4,5- (OMe) ₃ -Ph
929	a b	_	OEt	О	3-ОМе	4'	4-Ac-Ph
930	a b	_	OEt	0	3-ОМе	4'	4-NH ₂ -Ph
931	a b	CH ₂	OEt	O	Н	3'	3-Ру
932	a b	CH ₂	OEt	0	Н	3'	3,4,5- (OMe) ₃ -Ph
933	a b	CH ₂	OEt	0	Н	3'	4-Ac-Ph
934	a b	СН2	OEt	0	Н	3'	4-NH ₂ -Ph
935	a b	CH ₂	OEt	О	3-ОМе	4'	3-Py

936		CH ₂	OEt	0	3-OMe	4'	3,4,5-
330	a b						(OMe) ₃ -Ph
937	a b	CH ₂	OEt	0	3-OMe	4'	4-Ac-Ph
938	a b N	CH ₂	OEt	0	3-ОМе	4'	4-NH ₂ -Ph
939	a b	(CH ₂) ₂	OEt	0	Н	3'	3-Py
940	a b	(CH ₂) ₂	OEt	0	Н	3'	3,4,5- (OMe) ₃ -Ph
941	a b	(CH ₂) ₂	OEt	0	Н	3'	4-Ac-Ph
942	a b	(CH ₂) ₂	OEt	O	Н	3'	4-NH ₂ -Ph
943	a b	(CH ₂) ₂	OEt	0	3-OMe	4'	3-Ру
944	a b	(CH ₂) ₂	OEt	0	3-OMe	4'	3,4,5- (OMe) ₃ -Ph
945	a b	(CH ₂) ₂	OEt	0	3-OMe	4'	4-Ac-Ph
946	a b	(CH ₂) ₂	OEt	0	3-OMe	4'	4-NH ₂ -Ph

0.471	_ ·		ו עוואן	0	Н	3'	3-Ру
947	a b	-	NH ₂	J			
948	a b N	_	NH ₂	О	Н	3'	3,4,5- (OMe) ₃ -Ph
949	a b	_	NH ₂	0	Н	3'	4-Ac-Ph
950	a b	_	NH ₂	O	Н	3'	4-NH ₂ -Ph
951	a b	_	NH ₂	0	3-ОМе	4'	3-Py
952	a b	_	NH ₂	О	3-OMe	4'	3,4,5- (OMe) ₃ -Ph
953	a b	_	NH₂	Ο	3-ОМе	4'	4-Ac-Ph
954	a b	_	NH ₂	0	3-OMe	4'	4-NH ₂ -Ph
955	a b	CH ₂	NH ₂	О	Н	3'	3-Py
956	a b	CH ₂	NH ₂	O	Н	3'	3,4,5- (OMe) ₃ -Ph
957	a b	CH ₂	NH ₂	O	Н	3'	4-Ac-Ph

958		CH ₂	NH ₂	0	Н	3'	4-NH ₂ -Ph
,,,,	a b	0222					
959	a b	CH ₂	NH ₂	0	3-ОМе	4'	3-Ру
960	a b	CH ₂	NH ₂	O	3-ОМе	4'	3,4,5- (OMe) ₃ -Ph
961	a b	CH ₂	NH ₂	O	3-ОМе	4'	4-Ac-Ph
962	a b	CH ₂	NH ₂	0	3-OMe	4'	4-NH ₂ -Ph
963	a b	(CH ₂) ₂	NH ₂	O	Н	3'	3-Ру
964	a b	(CH ₂) ₂	NH ₂	0	н	3'	3,4,5- (OMe) ₃ -Ph
965	a b	(CH ₂) ₂	NH ₂	0	Н	3'	4-Ac-Ph
966	a b	(CH ₂) ₂	NH ₂	0	Н	3'	4-NH ₂ -Ph
967	a b	(CH ₂) ₂	NH ₂	0	3-OMe	4'	3-Ру
968	a b	(CH ₂) ₂	NH ₂	O	3-ОМе	4'	3,4,5- (OMe) ₃ -Ph

969	a b	(CH ₂) ₂	NH ₂	0	3-ОМе	4'	4-Ac-Ph
970	a b	(CH ₂) ₂	NH ₂	О	3-ОМе	4'	4-NH ₂ -Ph

Table 3

Table 4

Compound No.	R ¹	X	R ³	R ⁴	\mathbb{R}^2	Site of urea	R ⁵
976	4,5-(OMe) ₂	_	Me	Н	Н	4'	Ph
977	4,5-(OMe) ₂	-	Н	Me	Н	4'	Ph
978	4,5-(OMe) ₂	_	Me	Me	Н	4'	Ph

Table 5

Compound No.	R ¹	X	Y	\mathbb{R}^2	Site of urea	R ⁵
979	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	4'	Ph
980	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	4'	3,4,5-(OMe) ₃ -Ph
981	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	4'	4-Ac-Ph
982	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	4'	4-NH ₂ -Ph
983	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	4'	3-Ру
984	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	3'	Ph
985	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	3'	3,4,5-(OMe) ₃ -Ph
986	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	Н	3'	4-Ac-Ph
987	$4,5-(OMe)_2$	a-OCH ₂ -b	OEt	H	3'	4-NH ₂ -Ph
988	4,5-(OMe) ₂	a-OCH ₂ -b	OEt	H	3'	3-Ру
989	$4,5-(OMe)_2$	a-OCH ₂ -b	NH ₂	Н	4'	Ph
990	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	Н	4'	3,4,5-(OMe) ₃ -Ph
991	$4,5-(OMe)_2$	a-OCH ₂ -b	NH ₂	Н	4'	4-Ac-Ph
992	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	Н	4'	4-NH ₂ -Ph
993	$4,5-(OMe)_2$	a-OCH ₂ -b	NH ₂	Н	4'	3-Ру
994	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	Н	3'	Ph
995	4,5-(OMe) ₂	a-OCH ₂ -b	NH ₂	Н	3'	3,4,5-(OMe) ₃ -Ph
996	$4,5-(OMe)_2$	a-OCH ₂ -b	NH ₂	Н	3'	4-Ac-Ph
997	4,5-(OMe) ₂	a-OCH ₂ -b	NH_2	H	3'	4-NH ₂ -Ph
998	$4,5-(OMe)_2$	a-OCH ₂ -b	NH ₂	Н	3'	3-Py
999	4,5-F ₂	a-OCH ₂ -b	OEt	Н	4'	Ph
1000	4,5-F ₂	a-OCH ₂ -b	OEt	Н	4'	3,4,5-(OMe) ₃ -Ph
1001	4,5-F ₂	a-OCH ₂ -b	OEt	Н	4'	4-Ac-Ph
1002	4,5-F ₂	a-OCH ₂ -b	OEt	Н	4'	4-NH ₂ -Ph
1003	4,5-F ₂	a-OCH ₂ -b	OEt	Н	4'	3-Ру
1004	4,5-F ₂	a-OCH ₂ -b	OEt	Н	3'	Ph
1005	4,5-F ₂	a-OCH ₂ -b	OEt	Н	3'	3,4,5-(OMe) ₃ -Ph
1006	4,5-F ₂	a-OCH ₂ -b	OEt	Н	3'	4-Ac-Ph
1007	4,5-F ₂	a-OCH ₂ -b	OEt	H	3'	4-NH ₂ -Ph
1008	4,5-F ₂	a-OCH ₂ -b	OEt	Н	3'	3-Py
1009	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	4'	Ph
1010	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	3,4,5-(OMe) ₃ -Ph
1011	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	4'	4-Ac-Ph
1012	4,5-F ₂	a-OCH ₂ -b	NH ₂	H	4'	4-NH ₂ -Ph
1014	7,5-1.2	a-0C112-0	11112		1 -	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1013	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	4'	3-Py
1014	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	3'	Ph
1015	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	3'	3,4,5-(OMe) ₃ -Ph
1016	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	3'	4-Ac-Ph
1017	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	3'	4-NH ₂ -Ph
1018	4,5-F ₂	a-OCH ₂ -b	NH ₂	Н	3'	3-Py
1019	4Q	a-OCH ₂ -b	OEt	Н	4'	Ph
	5 _O					
1020	4Q	a-OCH ₂ -b	OEt	Н	4'	3,4,5-(OMe) ₃ -Ph
1021	50	a-OCH ₂ -b	OEt	Н	4'	4-Ac-Ph
1021	50		02.			
1022	4Q	a-OCH ₂ -b	OEt	Н	4'.	4-NH ₂ -Ph
1000	50	0.077)	OF	Н	4'	3-Py
1023	50	a-OCH ₂ -b	OEt	п	4	<i>3-</i> -ry
1024	4Q	a-OCH ₂ -b	OEt	Н	3'	Ph
	5 _O					
1025	4Q 5Q	a-OCH ₂ -b	OEt	Н	3'	3,4,5-(OMe) ₃ -Ph
1026	4Q	a-OCH ₂ -b	OEt	Н	3'	4-Ac-Ph
1027	40	a-OCH ₂ -b	OEt	Н	3'	4-NH ₂ -Ph
1028	40	a-OCH ₂ -b	OEt	Н	3'	3-Ру
1029	5o	a-OCH ₂ -b	NH ₂	Н	4'	Ph
1030	50	a-OCH ₂ -b	NH ₂	Н	4'	3,4,5-(OMe) ₃ -Ph
	50					

4Q	a-OCH ₂ -b	NH ₂	Н	4'	4-Ac-Ph
50					
4Q	a-OCH ₂ -b	NH ₂	Н	4'	4-NH ₂ -Ph
50					
4Q	a-OCH ₂ -b	NH ₂	Н	4'	3-Ру
5,					
4Q	a-OCH ₂ -b	NH ₂	Н	3'	Ph
50					
4Q	a-OCH ₂ -b	NH ₂	Н	3'	3,4,5-(OMe) ₃ -Ph
50					
4Q	a-OCH ₂ -b	NH ₂	Н	3'	4-Ac-Ph
5					
4Q	a-OCH ₂ -b	NH ₂	Н	3'	4-NH ₂ -Ph
5 _O					
4Q	a-OCH ₂ -b	NH ₂	Н	3'	3-Ру
5 _O					
	5. 0 4. 0 5. 0	5O 4O 5O a-OCH ₂ -b a-OCH ₂ -b a-OCH ₂ -b a-OCH ₂ -b	5O 4O a-OCH ₂ -b NH ₂ 5O AO a-OCH ₂ -b NH ₂	5O 4O a-OCH ₂ -b NH ₂ H 5O AO a-OCH ₂ -b NH ₂ H	5O 4O 5O a-OCH ₂ -b NH ₂ H 4' 5O a-OCH ₂ -b NH ₂ H 3' 5O 4O a-OCH ₂ -b NH ₂ H 3' 5O a-OCH ₂ -b NH ₂ H 3'

Table 6

Compound No.	x	Y	\mathbb{R}^2	Site of urea	R ⁵
1039	a-OCH ₂ -b	OEt	Н	4'	Ph
1040	a-OCH ₂ -b	OEt	Н	4'	3,4,5-(OMe) ₃ -Ph
1041	a-OCH ₂ -b	OEt	Н	4'	4-Ac-Ph
1042	a-OCH ₂ -b	OEt	Н	4'	4-NH ₂ -Ph
1043	a-OCH ₂ -b	OEt	Н	4'	3-Py
1044	a-OCH ₂ -b	OEt	Н	3'	Ph
1045	a-OCH ₂ -b	OEt	Н	3'	3,4,5-(OMe) ₃ -Ph
1046	a-OCH ₂ -b	OEt	H	3'	4-Ac-Ph
1047	a-OCH ₂ -b	OEt	Н	3'	4-NH ₂ -Ph
1048	a-OCH ₂ -b	OEt	Н	3'	3-Py
1049	a-OCH ₂ -b	NH ₂	Н	4'	Ph
1050	a-OCH ₂ -b	NH ₂	Н	4'	3,4,5-(OMe) ₃ -Ph
1051	a-OCH ₂ -b	NH ₂	Н	4'	4-Ac-Ph
1052	a-OCH ₂ -b	NH ₂	Н	4'	4-NH ₂ -Ph
1053	a-OCH ₂ -b	NH ₂	Н	4'	3-Py
1054	a-OCH ₂ -b	NH ₂	Н	3'	Ph
1055	a-OCH ₂ -b	NH ₂	Н	3'	3,4,5-(OMe) ₃ -Ph
1056	a-OCH ₂ -b	NH ₂	Н	3'	4-Ac-Ph
1057	a-OCH ₂ -b	NH ₂	Н	3'	4-NH ₂ -Ph
1058	a-OCH ₂ -b	NH ₂	Н	3'	3-Ру

Table 7

Com-	\mathbb{R}^1	Y	x	Z	R ²	Site of urea	R ⁵
pound No.							
1059	4,5-(OMe) ₂	OEt	CH ₂	О	Н	4'	3-Ру
1060	$4,5-(OMe)_2$	OEt	CH ₂	О	Н	4'	3,4,5-(OMe) ₃ -Ph
1061	4,5-(OMe) ₂	OEt	CH ₂	0	Н	4'	4-Ac-Ph
1062	4,5-(OMe) ₂	OEt	CH ₂	0	Н	4'	4-NH ₂ -Ph
1063	4,5-(OMe) ₂	NH ₂	CH ₂	О	Н	4'	3-Py
1064	4,5-(OMe) ₂	NH ₂	CH ₂	О	Н	4'	3,4,5-(OMe) ₃ -Ph
1065	$4,5-(OMe)_2$	NH ₂	CH ₂	О	Н	4'	4-Ac-Ph
1066	4,5-(OMe) ₂	NH ₂	CH ₂	0	Н	4'	4-NH ₂ -Ph
1067	4,5-(OMe) ₂	OEt	$(CH_2)_2$	O	Н	4'	3-Py
1068	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1069	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	4'	4-Ac-Ph
1070	$4,5-(OMe)_2$	OEt	$(CH_2)_2$	О	Н	4'	4-NH ₂ -Ph
1071	4,5-(OMe) ₂	. NH ₂	$(CH_2)_2$	0	Н	4'	3-Py
1072	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1073	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	4'	4-Ac-Ph
1074	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	4'	4-NH ₂ -Ph
1075	4Q	OEt	-	0	Н	4'	3-Ру
	4						
	5						
1076	0	OEt	CH ₂	0	Н	4'	3-Py
1076	4Q	OE	C112	"	11	7	J-1 y
		,		ļ			
	50			,			
1077	4Q	OEt	CH ₂	0	Н	4'	3,4,5-(OMe) ₃ -Ph
	4,						
	50						
1078	QQ	OEt	CH ₂	0	Н	4'	4-Ac-Ph
	4Q						
	50						
			l	L	L		

			т				
1079	40	OEt	CH ₂	O	Н	4'	4-NH ₂ -Ph
3	5 _O						
1080	4Q	NH ₂	CH ₂	0	Н	4'	3-Ру
	50						
1081	4Q	NH ₂	-	О	Н	4'	3-Ру
	50						
1082	4Q	NH ₂	CH ₂	0	Н	4'	3,4,5-(OMe) ₃ -Ph
	50						
1083	4Q	NH ₂	CH ₂	0	Н	4'	4-Ac-Ph
	50					• •	
1084	4Q	NH ₂	CH ₂	0	Н	4'	4-NH ₂ -Ph
:	50						
1085	4Q	OEt	(CH ₂) ₂	0	Н	4'	3-Ру
	5						
1086	4Q	OEt	(CH ₂) ₂	О	Н	4'	3,4,5-(OMe) ₃ -Ph
	50						
1087	4Q	OEt	(CH ₂) ₂	О	Н	4'	4-Ac-Ph
	50						
1088	4·Q	OEt	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
	50						
1089	4Q	NH ₂	(CH ₂) ₂	0	Н	4'	3-Ру
	50		,				
1090	4Q	NH ₂	(CH ₂) ₂	O	Н	4'	3,4,5-(OMe) ₃ -Ph
	5						
1091	4Q	NH ₂	(CH ₂) ₂	0	Н	4'	4-Ac-Ph
	50			•			
1092	4Q	NH ₂	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
	50						
		I	-	• •		L	

1093	4,5-F ₂	OEt	CH ₂	0	Н	4'	3-Py
1094	4,5-F ₂	OEt	-	0	Н	4'	3-Py
1095	4,5-F ₂	OEt	CH ₂	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1096	4,5-F ₂	OEt	CH ₂	0	Н	4'	4-Ac-Ph
1097	4,5-F ₂	OEt	CH ₂	0	Н	4'	· 4-NH ₂ -Ph
1098	4,5-F ₂	NH ₂	-	0	Н	4'	3-Py
1099	4,5-F ₂	NH ₂	CH ₂	0	Н	4'	3-Py
1100	4,5-F ₂	NH ₂	CH ₂	0	H	4'	3,4,5-(OMe) ₃ -Ph
1101	4,5-F ₂	NH ₂	CH ₂	0	Н	4'	4-Ac-Ph
1102	4,5-F ₂	NH ₂	CH ₂	0	Н	4'	4-NH ₂ -Ph
1103	4,5-F ₂	OEt	$(CH_2)_2$	0	Н	4'	3-Py
1104	4,5-F ₂	OEt	$(CH_{2})_{2}$	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1105	4,5-F ₂	OEt	(CH ₂) ₂	0	Н	4'	4-Ac-Ph
1106	4,5-F ₂	OEt	$(CH_2)_2$	0	Н	4'	4-NH ₂ -Ph
1107	4,5-F ₂	NH ₂	$(CH_2)_2$	О	Н	4'	3-Py
1108	4,5-F ₂	NH ₂	$(CH_2)_2$	О	Н	4'	3,4,5-(OMe) ₃ -Ph
1109	4,5-F ₂	NH ₂	$(CH_2)_2$	О	Н	4'	4-Ac-Ph
1110	4,5-F ₂	NH ₂	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph

Table 8

$$\mathbb{R}^{5}$$
 \mathbb{R}^{5}
 \mathbb{R}^{5}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

Compound No.	Α	х	Y	Z	R ²	Site of urea	R ⁵
1111	a b	CH₂	OEt	0	Н	4'	3-Ру
1112	a b	CH₂	OEt	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1113	a b	CH₂	OEt	O	Н	4'	4-Ac-Ph
1114	a b	CH₂	OEt	O	Н	4'	4-NH ₂ -Ph
1115	a b	(CH ₂) ₂	OEt	0	Н	4'	3-Ру
1116	a b	(CH ₂) ₂	OEt	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1117	a b	(CH ₂) ₂	OEt	0	Н	4'	4-Ac-Ph

1118		(CH ₂) ₂	OEt	О	н	4'	4-NH ₂ -Ph
1110	a b						
1119	a b	CH₂	NH ₂	0	Н	4'	3-Ру
1120	a b	CH₂	NH ₂	0	Н	4'	3,4,5-(OMe) ₃ -Ph
1121	a b	CH₂	NH ₂	0	Н	4'	4-Ac-Ph
1122	a b	CH ₂	NH ₂	О	Н	4'	4-NH ₂ -Ph
1123	a b	(CH ₂) ₂	NH ₂	0	Н	4'	3-Ру
1124	a b	(CH ₂) ₂	NH ₂	0	Н	4'	3,4,5-(OMe)₃-Ph
1125	a b	(CH ₂) ₂	NH ₂	0	Н	4'	4-Ac-Ph
1126	a b	(CH ₂) ₂	NH ₂	О	Н	4'	4-NH ₂ -Ph

Table 9

Com- pound No.	$\mathbf{R^1}$	Y	x	R ⁴	R^2	Site of urea	R ⁵
1127	4,5-(OMe) ₂	OEt	-	О	Н	4'	Bn
1128	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	2-Py
1129	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	3-Ру
1130	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	4-Py
1131	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	4-NO ₂ -Ph
1132	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	4'	3-NH ₂ -Ph
1133	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	3-NO ₂ -Ph
1134	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	4'	2-NH ₂ -Ph
1135	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	4'	2-NO ₂ -Ph
1136	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -2-Py
1137	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -3-Py
1138	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
1139	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	н	4'	NH
1140	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1141	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	NMe
1142	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	4'	NMe
1143	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	4'	(CH ₂) ₅ OH
1144	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	4'	4-OH-Ph
1145	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	4'	2-Py
1146	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	4'	3-Py
1147	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	4'	4-Py
1148	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	4'	4-NH ₂ -Ph
1149	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	4'	4-NO ₂ -Ph
1150	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	4'	3-NH ₂ -Ph
1151	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	4'	3-NO ₂ -Ph
1152	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	4'	2-NH ₂ -Ph
1153	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	4'	2-NO ₂ -Ph
1154	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	4'	CH ₂ -2-Py

1155	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -3-Py
1156	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
1157	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	4'	NH
1158	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	4'	NH
1159	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	н	4'	NMe
1160	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	н	4'	NMe
1161	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	4'	(CH ₂) ₅ OH
1162	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	4'	4-OH-Ph
1163	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	4'	2-Py
1164	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	4'	3-Py
1165	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	4'	4-Py
1166	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	4'	4-NH ₂ -Ph
1167	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	4'	4-NO ₂ -Ph
1168	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	4'	3-NH ₂ -Ph
1169	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1170	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	2-NH ₂ -Ph
1171	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4' 4'	2-NO ₂ -Ph
1172	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1173	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH NH	H	4'	CH ₂ -3-Py
1174	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	п	4	CH ₂ -4-Py
1175	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	4'	NH NH
1176	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	4'	\
1177	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
1178	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
1179	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
1180	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	4'	4-OH-Ph
1181	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	4'	2-Py
1182	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
1183	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
1184	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	4-NH ₂ -Ph
1185	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
1186	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1187	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
1188	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
1189	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
1190	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
1191	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	4' 4'	CH ₂ -3-Py
1192	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	4	CH ₂ -4-Py
1193	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	4'	NH

1194	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	н	4'	NH
1195	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
1196	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
1197	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	4'	(CH ₂) ₅ OH
1198	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	4'	4-OH-Ph
1199	$4,5-(OMe)_2$	OEt	(CH ₂) ₂	0	Н	4'	2-Py
1200	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	4'	3-Py
1201	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	4'	4-Py
1202	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
1203	4,5-(OMe) ₂	OEt	$(CH_2)_2$	О	Н	4'	4-NO ₂ -Ph
1204	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	4'	3-NH ₂ -Ph
1205	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
1206	4,5-(OMe) ₂	OEt	$(CH_2)_2$	o	Н	4'	2-NH ₂ -Ph
1207	4,5-(OMe) ₂	OEt	$(CH_2)_2$	ō	H	4'	2-NO ₂ -Ph
1208	4,5-(OMe) ₂	OEt	$(CH_2)_2$	ō	Н	4'	CH ₂ -2-Py
1209	4,5-(OMe) ₂	OEt	$(CH_2)_2$	ō	Н	4'	CH ₂ -3-Py
1210	4,5-(OMe) ₂	OEt	$(CH_2)_2$	ō	Н	4'	CH ₂ -4-Py
1210	1,5 (01/20)2	1020	(0112)2	l – Č		<u> </u>	
1211	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	4'	
1212	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	4'	NH
1213	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	н	4'	NMe
1214	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	н	4'	NMe
1215	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	4'	(CH ₂) ₅ OH
1216	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	4'	4-OH-Ph
1217	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	4'	2-Py
1218	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	4'	3-Py
1219	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	4'	4-Py
1220	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	4'	4-NH ₂ -Ph
1221	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	4'	4-NO ₂ -Ph
1222	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	4'	3-NH ₂ -Ph
1223	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	4'	3-NO ₂ -Ph
1224	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	4'	2-NH ₂ -Ph
1225	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	4'	2-NO ₂ -Ph
1226	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	4'	CH ₂ -2-Py
1227	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	4'	CH ₂ -3-Py
1228	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	4'	CH ₂ -4-Py
1229	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	н	4'	NH
1230	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	4'	NH
1231	4,5-(OMe) ₂	OEt	(CH ₂) ₃	o	Н	4'	NMe

1232	ŧ		1	1	1	1		
1234	1232	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	4'	NMe
1234	1233	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	4'	(CH ₂) ₅ OH
1235	1234	4,5-(OMe) ₂	OEt		0	Н	4'	
1236	1235	4,5-(OMe) ₂	NH ₂		0	Н	4'	
1237	1236	4,5-(OMe) ₂			0	Н	4'	
1238			_					
1239								
1240				,				
1241					}	 		
1242					 			
1243						}		
1244								
1245								
1246								
1247					·	 		
1249					О	Н	4'	
1250	1248	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	Н	4'	NH
1251	1249	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	Н	4'	NMe
1252		4,5-(OMe) ₂		(CH ₂) ₂	О	Н	4'	NMe
1253		4,5-(OMe) ₂		$(CH_2)_2$			4'	(CH ₂) ₅ OH
1254								4-OH-Ph
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4,5-(OMe) ₂				-		2-Py
1256								
1257 4,5-(OMe)2 NH2 (CH2)3 O H 4' 4-NO2-Ph 1258 4,5-(OMe)2 NH2 (CH2)3 O H 4' 3-NH2-Ph 1259 4,5-(OMe)2 NH2 (CH2)3 O H 4' 3-NH2-Ph 1260 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NH2-Ph 1261 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NH2-Ph 1262 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NQ2-Ph 1263 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1264 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1265 4,5-(OMe)2 NH2 (CH2)3 O H 4' NH 1266 4,5-(OMe)2 NH2 (CH2)3 O H 4' NM 1268 4,5-(OMe)2 NH2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1258 4,5-(OMe)2 NH2 (CH2)3 O H 4' 3-NH2-Ph 1259 4,5-(OMe)2 NH2 (CH2)3 O H 4' 3-NO2-Ph 1260 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NH2-Ph 1261 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NO2-Ph 1262 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-2-Py 1263 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1264 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1265 4,5-(OMe)2 NH2 (CH2)3 O H 4' NH 1266 4,5-(OMe)2 NH2 (CH2)3 O H 4' NM 1267 4,5-(OMe)2 NH2 (CH2)3 O H 4' NM 1268 4,5-(OMe)2 NH2 (CH2)3 O H 4' NM 1269 4,5-(OMe)2								
1259 4,5-(OMe)2 NH2 (CH2)3 O H 4' 3-NO2-Ph 1260 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NH2-Ph 1261 4,5-(OMe)2 NH2 (CH2)3 O H 4' 2-NO2-Ph 1262 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-2-Py 1263 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1264 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1265 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-4-Py 1266 4,5-(OMe)2 NH2 (CH2)3 O H 4' NH 1267 4,5-(OMe)2 NH2 (CH2)3 O H 4' NMe 1268 4,5-(OMe)2 NH2 (CH2)3 O H 4' NMe 1269 4,5-(OMe)2 NH2								
1260 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 2-NH ₂ -Ph 1261 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 2-NO ₂ -Ph 1262 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -2-Py 1263 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -3-Py 1264 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -3-Py 1265 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -4-Py 1266 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1267 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NM _e 1268 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NM _e 1269 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' (CH ₂) ₅ OH 1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td></td<>								· · · · · · · · · · · · · · · · · · ·
1261 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 2-NO ₂ -Ph 1262 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -2-Py 1263 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -3-Py 1264 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -4-Py 1265 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1266 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1267 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NM 1268 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NM 1269 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' (CH ₂) ₅ OH 1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H <t< td=""><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></t<>			+					
1262 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-2-Py 1263 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-3-Py 1264 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2-4-Py 1265 4,5-(OMe)2 NH2 (CH2)3 O H 4' NH 1266 4,5-(OMe)2 NH2 (CH2)3 O H 4' NH 1267 4,5-(OMe)2 NH2 (CH2)3 O H 4' NMe 1268 4,5-(OMe)2 NH2 (CH2)3 O H 4' NMe 1269 4,5-(OMe)2 NH2 (CH2)3 O H 4' CH2)5OH 1270 4,5-(OMe)2 NH2 (CH2)3 O H 4' 4-OH-Ph 1271 4,5-(OMe)2 CH3 (CH2)2 NH H 4' 2-Py								
1263 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -3-Py 1264 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -4-Py 1265 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1266 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1267 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NMe 1268 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NMe 1269 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' (CH ₂) ₅ OH 1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py								
1264 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' CH ₂ -4-Py 1265 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1266 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NH 1267 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NMe 1268 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NMe 1269 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' (CH ₂) ₅ OH 1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1264	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	4'	CH ₂ -4-Py
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1265	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	н	4'	_\n\H
1268 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' NMe 1269 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' (CH ₂) ₅ OH 1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py	1266	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	н	4'	NH
1269 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' (CH ₂) ₅ OH 1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py	1267	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py	1268	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
1270 4,5-(OMe) ₂ NH ₂ (CH ₂) ₃ O H 4' 4-OH-Ph 1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py	1269	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	4'	(CH ₂) ₅ OH
1271 4,5-(OMe) ₂ CH ₃ (CH ₂) ₂ NH H 4' 2-Py	1270				O		4'	
	1271				NH	Н	4'	
	1272					Н	4'	

1072	4.5 (0)(a)	leu l	(CH)	l mu	Н	4'	l 4 D.,
1273	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH NH		4'	4-Py 4-NH ₂ -Ph
1274	4,5-(OMe) ₂	CH ₃	$\frac{(CH_2)_2}{CH_2}$		Н	4'	4-NO ₂ -Ph
1275	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	4'	
1276	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	Н	4'	3-NH ₂ -Ph
1277	4,5-(OMe) ₂	CH ₃	$\frac{(CH_2)_2}{(CH_2)}$	NH	H		3-NO ₂ -Ph
1278	4,5-(OMe) ₂	CH ₃	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	Н	4'	2-NH ₂ -Ph
1279	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	4'	2-NO ₂ -Ph
1280	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	4'	CH ₂ -2-Py
1281	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	4'	CH ₂ -3-Py
1282	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
1283	4,5-(OMe) ₂	СН₃	(CH ₂) ₂	NH	Н	4'	NH
1284	4,5-(OMe) ₂	СН₃	(CH ₂) ₂	NH	Н	4'	NH
1285	4,5-(OMe) ₂	СН₃	(CH ₂) ₂	NH	H	4'	NMe
1286	4,5-(OMe) ₂	СН3	(CH ₂) ₂	NH	Н	4'	NMe
1287	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
1288	$4,5-(OMe)_2$	CH ₃	$(CH_2)_2$	NH	Н	4'	4-OH-Ph
1289	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	4'	2-Py
1290	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	4'	3-Ру
1291	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	4'	4-Py
1292	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	NH	H	4'	4-NH ₂ -Ph
1293	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	4'	4-NO ₂ -Ph
1294	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
1295	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	4'	3-NO ₂ -Ph
1296	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	4'	2-NH ₂ -Ph
1297	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	4'	2-NO ₂ -Ph
1298	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	4'	CH ₂ -2-Py
1299	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
1300	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
1301	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	NH	Н	4'	NH NH
1302	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	NH	н	4'	NH
1303	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	NH	Н	4'	NMe
1304	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	NH	Н	4'	NMe
1305	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	4'	(CH ₂) ₅ OH
1306	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	4'	4-OH-Ph
1307	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	4'	2-Py
1308	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	4'	3-Ру
1309	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	Q	Н	4'	4-Py
1310	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	4'	4-NH ₂ -Ph
1311	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	4'	4-NO ₂ -Ph
1312	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	H	4'	3-NH ₂ -Ph
1313	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
1314	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	4'	2-NH ₂ -Ph

1315	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	o	Н	4'	2-NO ₂ -Ph
1316	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	О	Н	4'	CH ₂ -2-Py
1317	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	4'	CH ₂ -3-Py
1318	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	O	Н	4'	CH ₂ -4-Py
1319	4,5-(OMe) ₂	СН3	(CH ₂) ₂	О	Н	4'	√NH
1320	4,5-(OMe) ₂	СН3	(CH ₂) ₂	О	Н	4'	NH
1321	4,5-(OMe) ₂	СН3	(CH ₂) ₂	0	Н	4'	NMe
1322	4,5-(OMe) ₂	СН3	(CH ₂) ₂	О	Н	4'	NMe
1323	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	4'	(CH ₂) ₅ OH
1324	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	О	Н	4'	4-OH-Ph
1325	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	H	4'	2-Py
1326	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	Н	4'	3-Py
1327	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	Н	4'	4-Py
1328	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	H	4'	4-NH ₂ -Ph
1329	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	H	4'	4-NO ₂ -Ph
1330	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	H	4'	3-NH ₂ -Ph
1331	4,5-(OMe) ₂	CH ₃	$\frac{(CH_2)_3}{CH_2}$	0	H	4'	3-NO ₂ -Ph
1332	4,5-(OMe) ₂	CH ₃	$\frac{(CH_2)_3}{CH_2}$	0	H	4'	2-NH ₂ -Ph
1333	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	H	4'	2-NO ₂ -Ph
1334	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	Н	4'	CH ₂ -2-Py CH ₂ -3-Py
1335	4,5-(OMe) ₂ 4,5-(OMe) ₂	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	0	H	4'	CH ₂ -3-F y CH ₂ -4-Py
1336	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	Н	4'	NH
1338	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	О	Н	4'	NH
1339	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	0	Н	4'	NMe
1340	4,5-(OMe) ₂	СН3	(CH ₂) ₃	0	Н	4'	NMe
1341	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	H	4'	(CH ₂) ₅ OH
1342	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	H	4'	4-OH-Ph
1343	4,5-(OMe) ₂	OEt		0	H	3'	Bn
1344	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	2-Py
1345	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	3'	3-Py
1346	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3'	4-Py
1347	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3'	4-NO ₂ -Ph
1348	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3'	3-NH ₂ -Ph
1349	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3'	3-NO ₂ -Ph
1350	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3,	2-NH ₂ -Ph
1351	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3,	2-NO ₂ -Ph
1352	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	3'	CH ₂ -2-Py
1353	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3,	CH ₂ -3-Py
1354	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	3	CH ₂ -4-Py
1355	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	3'	NH

1356	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	н	3,	NH
1357	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	3'	NMe
1358	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	3'	NMe
1359	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	3'	(CH ₂) ₅ OH
1360	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	3,	4-OH-Ph
1361	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	2-Py
1362	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	3,	3-Ру
1363	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	4-Py
1364	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	3'	4-NH ₂ -Ph
1365	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	4-NO ₂ -Ph
1366	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3,	3-NH ₂ -Ph
1367	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	3'	3-NO ₂ -Ph
1368	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	2-NH ₂ -Ph
1369	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	3'	2-NO ₂ -Ph
1370	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3,	CH ₂ -2-Py
1371	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3,	CH ₂ -3-Py
1372	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -4-Py
1373	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	NH
1374	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3,	NH NH
1375	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	NMe
1376	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	3'	NMe
1377	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	3'	(CH ₂) ₅ OH
1378	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	3,	4-OH-Ph
1379	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	3'	2-Py
1380	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	3'	3-Py
1381	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	3'	4-Py
1382	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	3'	4-NH ₂ -Ph
1383	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	.3'	4-NO ₂ -Ph
1384	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	3'	3-NH ₂ -Ph
1385	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	3,	3-NO ₂ -Ph
1386	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	3'	2-NH ₂ -Ph
1387	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	3'	2-NO ₂ -Ph
1388	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	3'	CH ₂ -2-Py
1389	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	3'	CH ₂ -3-Py
1390	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	3,	CH ₂ -4-Py
1391	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
1392	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
1393	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	н	3,	NMe

		, ,		1		1	
1394	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	3,	NMe
1395	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	3'	(CH ₂) ₅ OH
1396	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	3,	4-OH-Ph
1397	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	3,	2-Py
1398	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	3-Py
1399	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	4-Py
1400	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3'	4-NH ₂ -Ph
1401	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3'	4-NO ₂ -Ph
1402	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	3,	3-NH ₂ -Ph
1403	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	3-NO ₂ -Ph
1404	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	2-NH ₂ -Ph
1405	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	2-NO ₂ -Ph
1406	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	CH ₂ -2-Py
1407	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3'	CH ₂ -3-Py
1408	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3,	CH ₂ -4-Py
	· · · · · · · · · · · · · · · · · · ·						
1409	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3'	_ /vH
1410	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3'	NH
1411	$4,5-(OMe)_2$	NH ₂	$(CH_2)_3$	NH	н	3'	NMe
				<u> </u>			
1412	$4,5-(OMe)_2$	NH ₂	$(CH_2)_3$	NH	н	3'	NMe
1413	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
1414	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	3'	4-OH-Ph
1415	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	H	3'	2-Py
1416	4,5-(OMe) ₂	OEt	$\frac{(CH_2)_2}{(CH_2)_2}$	ō	H	3,	3-Py
1417	4,5-(OMe) ₂	OEt	$(CH_2)_2$	o	H	3,	4-Py
1418	4,5-(OMe) ₂	OEt	(CH ₂) ₂	Ō	Н	3'	4-NH ₂ -Ph
1419	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3,	4-NO ₂ -Ph
1420	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	3-NH ₂ -Ph
1421	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	3,	3-NO ₂ -Ph
1422	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	2-NH ₂ -Ph
1423	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	2-NO ₂ -Ph
1424	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	CH ₂ -2-Py
1425	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	CH ₂ -3-Py
1426	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	CH ₂ -4-Py
1427	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	н	3,	
1427	4,5-(OMC) ₂	OLI			11	3	
1428	$4,5-(OMe)_2$	OEt	$(CH_2)_2$	О	Н	3'	NH
		-					$\overline{}$
1429	$4,5-(OMe)_2$	OEt	$(CH_2)_2$	О	H	3'	√ NMe
1430	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	3'	NMe
							<u> </u>
1431	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	3'	(CH ₂) ₅ OH
1432	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	H	3'	4-OH-Ph
1433	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	3'	2-Py
1434	$4,5-(OMe)_2$	OEt	$(CH_2)_3$	0	Н	3'	3-Py

1435	4,5-(OMe) ₂	OEt	(CH ₂) ₃	Ιo	Н	3,	4-Py
1436	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	3,	4-NH ₂ -Ph
1437	4,5-(OMe) ₂	OEt	$(CH_2)_3$	ō	H	3,	4-NO ₂ -Ph
1438	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	3,	3-NH ₂ -Ph
1439	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	3,	3-NO ₂ -Ph
		OEt	$(CH_2)_3$	0	H	3,	2-NH ₂ -Ph
1440	4,5-(OMe) ₂	OEt		0	H	3,	2-NO ₂ -Ph
1441	4,5-(OMe) ₂		$(CH_2)_3$	0	Н	3,	
1442	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0		3,	CH ₂ -2-Py
1443	4,5-(OMe) ₂	OEt	(CH ₂) ₃		H		CH ₂ -3-Py
1444	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	3,	CH ₂ -4-Py
1445	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	3'	NH
1446	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	н	3'	NH
1447	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	3'	NMe
1448	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	3,	NMe
1449	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	3'	(CH ₂) ₅ OH
1450	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	3'	4-OH-Ph
1451	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	Н	3'	2-Py
1452	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	Н	3'	3-Py
1453	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	3'	4-Py
1454	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	Н	3'	4-NH ₂ -Ph
1455	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	Н	3,	4-NO ₂ -Ph
1456	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	3'	3-NH ₂ -Ph
1457	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	3'	3-NO ₂ -Ph
1458	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	3'	2-NH ₂ -Ph
1459	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	3'	2-NO ₂ -Ph
1460	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	3'	CH ₂ -2-Py
1461	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	3'	CH ₂ -3-Py
1462	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	3'	CH ₂ -4-Py
1463	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	Н	3'	NH
1464	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	Н	3'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1465	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	Н	3'	NMe
1466	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	Н	3'	NMe
1467	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	Н	3'	(CH ₂) ₅ OH
1468	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	3'	4-OH-Ph
1469	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	3'	2-Py
1470	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	3'	3-Py
1471	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	3'	4-Py
1472	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3,	4-NH ₂ -Ph
1473	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3,	4-NO ₂ -Ph
1474	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3,	3-NH ₂ -Ph
1475	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	O	Н	3,	3-NO ₂ -Ph
1476	4,5-(OMe) ₂	NH ₂		Ō	Н	3,	2-NH ₂ -Ph
	, (, /2			•	•	•	,

1477	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	10	Н	3,	2-NO ₂ -Ph
1478	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3,	CH ₂ -2-Py
1479	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3'	CH ₂ -3-Py
1480	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3,	CH ₂ -4-Py
1481	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3'	NH
1482	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	н	3'	NH
1483	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	3,	NMe
1484	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	3'	NMe
1485	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	О	Н	3'	(CH ₂) ₅ OH
1486	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	О	Н	3'	4-OH-Ph
1487	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3,	2-Py
1488	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3'	3-Py
1489	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3'	4-Py
1490	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3'	4-NH ₂ -Ph
1491	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3'	4-NO ₂ -Ph
1492	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	3'	3-NH ₂ -Ph
1493	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3'	3-NO ₂ -Ph
1494	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	3'	2-NH ₂ -Ph
1495	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3,	2-NO ₂ -Ph
1496	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3'	CH ₂ -2-Py
1497	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	3'	CH ₂ -3-Py
1498	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	Н	3'	CH ₂ -4-Py
1499	4,5-(OMe) ₂	СН₃	(CH ₂) ₂	NH	Н	3'	NH
1500	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	н	3'	NH
1501	4,5-(OMe) ₂	СН3	(CH ₂) ₂	NH	Н	3'	NMe
1502	4,5-(OMe) ₂	СН3	(CH ₂) ₂	NH	Н	3'	NMe
1503	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	3,	(CH ₂) ₅ OH
1504	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	3'	4-OH-Ph
1505	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	3'	2-Py
1506	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	3'	3-Ру
1507	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	3'	4-Py
1508	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	3'	4-NH ₂ -Ph
1509	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
1510	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	3'	3-NH ₂ -Ph
1511	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
1512	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	3'	2-NH ₂ -Ph
1513	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	3'	2-NO ₂ -Ph
1514	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
1515	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	3'	CH ₂ -3-Py
1516	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	3'	CH ₂ -4-Py
1517	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	NH	н	3'	NH

1518	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	н	3,	NH NH
1519	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	3,	NMe
1520	4,5-(OMe) ₂	СН3	(CH ₂) ₃	NH	Н	3'	NMe
1521	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	3'	(CH ₂) ₅ OH
1522	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	3'	4-OH-Ph
1523	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3'	2-Py
1524	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3'	3-Py
1525	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	О	Н	3'	4-Py
1526	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	3,	4-NH ₂ -Ph
1527	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3'	4-NO ₂ -Ph
1528	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3,	3-NH ₂ -Ph
1529	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3,	3-NO ₂ -Ph
1530	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3,	2-NH ₂ -Ph
1531	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3'	2-NO ₂ -Ph
1532	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3'	CH ₂ -2-Py
1533	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	o	Н	3,	CH ₂ -3-Py
1534	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	3,	CH ₂ -4-Py
1535	4,5-(OMe) ₂	СН3	(CH ₂) ₂	0	Н	3'	NH
1536	4,5-(OMe) ₂	СН3	(CH ₂) ₂	0	Н	3'	NH
1537	4,5-(OMe) ₂	СН3	(CH ₂) ₂	0	Н	3'	NMe
1538	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	О	Н	3'	NMe
1539	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	3'	(CH ₂) ₅ OH
1540	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	3,	4-OH-Ph
1541	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	3'	2-Py
1542	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	3'	3-Ру
1543	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	О	Н	3'	4-Py
1544	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	О	Н	3'	4-NH ₂ -Ph
1545	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	H	3'	4-NO ₂ -Ph
1546	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	0	Н	3'	3-NH ₂ -Ph
1547	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	О	Н	3'	3-NO ₂ -Ph
1548	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	Н	3'	2-NH ₂ -Ph
1549	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	3'	2-NO ₂ -Ph
1550	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	H	3,	CH ₂ -2-Py
1551	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	Н	3'	CH ₂ -3-Py
1552	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	3'	CH ₂ -4-Py
1553	4,5-(OMe) ₂	СН3	(CH ₂) ₃	0	Н	3'	NH
1554	4,5-(OMe) ₂	СН3	(CH ₂) ₃	О	Н	3'	VН
1555	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	О	н	3,	NMe

1		1	1	1	ı I	l	l \ ^
1556	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	О	н	3,	NMe
1557	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	Н	3,	(CH ₂) ₅ OH
1558	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	Н	3,	4-OH-Ph
1559	4,5-(OMe) ₂	OEt	-	0	Н	2,	Bn
1560	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	2,	2-Py
1561	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	2,	3-Py
1562	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	2,	4-Py
1563	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	2,	4-NO ₂ -Ph
1564	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	2,	3-NH ₂ -Ph
1565	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	2,	3-NO ₂ -Ph
1566	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	2,	2-NH ₂ -Ph
1567	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	2,	2-NO ₂ -Ph
1568	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	2,	CH ₂ -2-Py
1569	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	2,	CH ₂ -3-Py
1570	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	H	2,	CH ₂ -4-Py
1370	4,5-(OME) ₂	OEt	(C112)2	1,127			
1571	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	2'	
1572	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	2'	\
1573	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	2'	NMe
1574	4,5-(OMe) ₂	OEt	(CH ₂) ₂	NH	Н	2'	NMe
1575	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	Н	2'	(CH ₂) ₅ OH
1576	4,5-(OMe) ₂	OEt	$(CH_2)_2$	NH	H	2'	4-OH-Ph
1577	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	2'	2-Py
1578	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	2'	3-Py
1579	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	2'	4-Py
1580	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	Н	2'	4-NH ₂ -Ph
1581	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
1582	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	2'	3-NH ₂ -Ph
1583	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	2'	3-NO ₂ -Ph
1584	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	2-NH ₂ -Ph
1585	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
1586	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	2'	CH ₂ -2-Py
1587	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
1588	4,5-(OMe) ₂	OEt	$(CH_2)_3$	NH	H	2'	CH ₂ -4-Py
1589	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	н	2'	NH
1590	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	н	2'	NH
1591	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	2'	NMe
1592	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	2,	NMe
1593	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	2'	(CH ₂) ₅ OH
1594	4,5-(OMe) ₂	OEt	(CH ₂) ₃	NH	Н	2'	4-OH-Ph
1595	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	Н	2'	2-Py
1596	4,5-(OMe) ₂	NH ₂		NH	Н	2'	3-Py
- 1		. ~		•	•	•	•

1507	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	2,	4-Py
1597 1598		NH ₂	$(CH_2)_2$ $(CH_2)_2$	NH	H	2,	4-NH ₂ -Ph
	4,5-(OMe) ₂			NH	H	2,	
1599	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂			2,	4-NO ₂ -Ph
1600	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H		3-NH ₂ -Ph
1601	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	3-NO ₂ -Ph
1602	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2,	2-NH ₂ -Ph
1603	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2'	2-NO ₂ -Ph
1604	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	2'	CH ₂ -2-Py
1605	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	H	2,	CH ₂ -3-Py
1606	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	2'	CH ₂ -4-Py
1607	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	2'	NH
1608	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	2'	NH
1609	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
1610	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	NH	н	2'	NMe
1611	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	2'	(CH ₂) ₅ OH
1612	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	NH	H	2,	4-OH-Ph
1613	.4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	2'	2-Py
1614	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	3-Py
1615	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	2'	4-Py
1616	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	4-NH ₂ -Ph
1617	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	4-NO ₂ -Ph
1618	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	2'	3-NH ₂ -Ph
1619	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	2'	3-NO ₂ -Ph
1620	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	2-NH ₂ -Ph
1621	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	H	2'	2-NO ₂ -Ph
1622	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	CH ₂ -2-Py
1623	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	CH ₂ -3-Py
1624	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	H	2'	CH ₂ -4-Py
1625	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	2'	NH
1626	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	Н	2'	NH
1627	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	н	2'	NMe
1628	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	NH	н	2'	NMe
1629	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	(CH ₂) ₅ OH
1630	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	NH	Н	2'	4-OH-Ph
1631	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	2'	2-Py
1632	4,5-(OMe) ₂	OEt	$(CH_2)_2$	0	Н	2'	3-Ру
1633	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2'	4-Py
1634	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	2'	4-NH ₂ -Ph
1635	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	2'	4-NO ₂ -Ph
1636	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	2'	3-NH ₂ -Ph
1637	4,5-(OMe) ₂	OEt	(CH ₂) ₂	O	Н	2'	3-NO ₂ -Ph
1638	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2'	2-NH ₂ -Ph
. – 1		. ,					

1639	4,5-(OMe) ₂	OEt	$(CH_2)_2$	o	н	2,	2-NO ₂ -Ph
1640	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2,	CH ₂ -2-Py
1641	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2'	CH ₂ -3-Py
1642	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2,	CH ₂ -4-Py
1643	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2'	NH NH
1644	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	н	2'	I/IH
1645	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	Н	2'	NMe
1646	4,5-(OMe) ₂	OEt	(CH ₂) ₂	О	н	2,	NMe
1647	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	Н	2'	(CH ₂) ₅ OH
1648	4,5-(OMe) ₂	OEt	(CH ₂) ₂	0	H	2'	4-OH-Ph
1649	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	2-Py
1650	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	3-Ру
1651	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	4-Py
1652	4,5-(OMe) ₂	OEt	$(CH_2)_3$	О	Н	2'	4-NH ₂ -Ph
1653	4,5-(OMe) ₂	OEt	$(CH_2)_3$	О	Н	2'	4-NO ₂ -Ph
1654	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	3-NH ₂ -Ph
1655	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	2,	3-NO ₂ -Ph
1656	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	2'	2-NH ₂ -Ph
1657	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	2'	2-NO ₂ -Ph
1658	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	H	2'	CH ₂ -2-Py
1659	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	CH ₂ -3-Py
1660	4,5-(OMe) ₂	OEt	(CH ₂) ₃	0	Н	2'	CH ₂ -4-Py
1661	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	2'	NH
1662	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	2'	NH
1663	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	н	2'	NMe
1664	4,5-(OMe) ₂	OEt	(CH ₂) ₃	О	Н	2'	NMe
1665	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	(CH ₂) ₅ OH
1666	4,5-(OMe) ₂	OEt	$(CH_2)_3$	0	Н	2'	4-OH-Ph
1667	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	2'	2-Py
1668	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	2'	3-Py
1669	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	H	2'	4-Py
1670	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	H	2'	4-NH ₂ -Ph
1671	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	H	2'	4-NO ₂ -Ph
1672	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	2'	3-NH ₂ -Ph
1673	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	H	2'	3-NO ₂ -Ph
1674	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	2'	2-NH ₂ -Ph
1675	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	2'	2-NO ₂ -Ph
1676	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	H	2'	CH ₂ -2-Py
1677	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	2'	CH ₂ -3-Py
1678	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	H	2'	CH ₂ -4-Py
1679	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	0	н	2'	NH

1680	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	н	2'	NH
1681	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	н	2,	NMe
1682	4,5-(OMe) ₂	NH ₂	(CH ₂) ₂	О	н	2'	NMe
1683	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	0	Н	2'	(CH ₂) ₅ OH
1684	4,5-(OMe) ₂	NH ₂	$(CH_2)_2$	О	Н	2'	4-OH-Ph
1685	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	О	Н	2'	2-Py
1686	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	· O	Н	2'	3-Ру
1687	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	О	Н	2'	4-Py
1688	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	2'	4-NH ₂ -Ph
1689	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	2'	4-NO ₂ -Ph
1690	4,5-(OMe) ₂	NH_2	(CH ₂) ₃	0	Н	2'	3-NH ₂ -Ph
1691	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	2'	3-NO ₂ -Ph
1692	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	2'	2-NH ₂ -Ph
1693	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	2'	2-NO ₂ -Ph
1694	4,5-(OMe) ₂	NH_2	$(CH_2)_3$	О	Н	2'	CH ₂ -2-Py
1695	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	0	Н	2'	CH ₂ -3-Py
1696	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	О	Н	2'	CH ₂ -4-Py
1697	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	н	2'	NH
1698	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	2'	NH
1699	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
1700	4,5-(OMe) ₂	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
1701	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	О	Н	2,	(CH ₂) ₅ OH
1702	4,5-(OMe) ₂	NH ₂	$(CH_2)_3$	0	Н	2'	4-OH-Ph
1703	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	2-Py
1704	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	2'	3-Py
1705	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	4-Py
1706	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	2'	4-NH ₂ -Ph
1707	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	4-NO ₂ -Ph
1708	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	2'	3-NH ₂ -Ph
1709	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	3-NO ₂ -Ph
1710	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	2-NH ₂ -Ph
1711	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	2'	2-NO ₂ -Ph
1712	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	H	2'	CH ₂ -2-Py
1713	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	CH ₂ -3-Py
1714	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	NH	Н	2'	CH ₂ -4-Py
1715	4,5-(OMe) ₂	СН₃	(CH ₂) ₂	NH	Н	2'	NH
1716	4,5-(OMe) ₂	СН₃	(CH ₂) ₂	NH	Н	2'	NH
1717	4,5-(OMe) ₂	СН3	(CH ₂) ₂	NH	н	2'	NMe

1		1]	1	ı	ı	1 \ ^
1718	$4,5-(OMe)_2$	CH ₃	(CH ₂) ₂	NH	Н	2'	NMe
1719	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	Н	2'	(CH ₂) ₅ OH
1720	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	NH	H	2'	4-OH-Ph
1721	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	2,	2-Py
1722	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	2,	3-Py
1723	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	2,	4-Py
1724	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	2'	4-NH ₂ -Ph
1725	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	2,	4-NO ₂ -Ph
1726	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	2,	3-NH ₂ -Ph
1727	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	2,	3-NO ₂ -Ph
1728	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	2,	2-NH ₂ -Ph
1729	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	H	2,	2-NO ₂ -Ph
1730	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2,	CH ₂ -2-Py
1731	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
1732	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	H	2,	CH ₂ -4-Py
1732	4,5-(OME) ₂	10113	(C112)3	1411	11		C112-4-1 y
1733	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	2,	○ NH
1734	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	NH	Н	2'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1735	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	NH	Н	2'	NMe
1736	4,5-(OMe) ₂	СН3	(CH ₂) ₃	NH	Н	2'	NMe
1737	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	2,	(CH ₂) ₅ OH
1738	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	NH	Н	2'	4-OH-Ph
1739	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	H	2'	2-Py
1740	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2'	3-Py
1741	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2'	4-Py
1742	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2'	4-NH ₂ -Ph
1743	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2'	4-NO ₂ -Ph
1744	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	2'	3-NH ₂ -Ph
1745	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2'	3-NO ₂ -Ph
1746	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	H	2'	2-NH ₂ -Ph
1747	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	2'	2-NO ₂ -Ph
1748	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	H	2'	CH ₂ -2-Py
1749	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	H	2'	CH ₂ -3-Py
1750	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2'	CH ₂ -4-Py
1751	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	н	2'	\times_N _H
1752	4,5-(OMe) ₂	СН3	(CH ₂) ₂	О	н	2'	NH
1753	4,5-(OMe) ₂	СН3	(CH ₂) ₂	0	Н	2'	NMe
1754	4,5-(OMe) ₂	СН3	(CH ₂) ₂	0	н	2'	NMe
1755	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	0	Н	2'	(CH ₂) ₅ OH
1756	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	0	Н	2,	4-OH-Ph
1757	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	o	Н	2,	2-Py
1758	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	ō	Н	2,	3-Py
	.,- (-2.20/2	1	· 2/3	_		•	

	1	Low	(011)		!		4.5
1759	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	0	H	2'	4-Py
1760	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	Н	2'	4-NH ₂ -Ph
1761	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	H	2'	4-NO ₂ -Ph
1762	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	H	2'	3-NH ₂ -Ph
1763	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	Н	2'	3-NO ₂ -Ph
1764	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	2'	2-NH ₂ -Ph
1765	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	H	2'	2-NO ₂ -Ph
1766	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	2'	CH₂-2-Py
1767	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	2'	CH₂-3-Py
1768	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	0	Н	2'	CH ₂ -4-Py
1769	4,5-(OMe) ₂	СН3	(CH ₂) ₃	О	Н	2'	√NH
1770	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	О	Н	2'	NH NH
1771	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	О	Н	2'	NMe
1772	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	О	Н	2'	NMe
1773	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	2'	(CH ₂) ₅ OH
1774	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	О	Н	2'	4-OH-Ph
1775	4-OMe-5-OH	OEt	-	0	H	4'	Bn
1776	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	4'	2-Py
1777	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	H	4'	3-Py
1778	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	4'	4-Py
1779	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	4'	4-NO ₂ -Ph
1780	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	4'	3-NH ₂ -Ph
1781	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	4'	3-NO ₂ -Ph
1782	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	4'	2-NH ₂ -Ph
1783	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	4'	2-NO ₂ -Ph
1784	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -2-Py
1785	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	4'	CH ₂ -3-Py
1786	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -4-Py
1787	4-ОМе-5-ОН	OEt	(CH ₂) ₂	NH	Н	4'	_\text{NH}
1788	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	4'	NH
1789	4-ОМе-5-ОН	OEt	(CH ₂) ₂	NH	н	4'	NMe
1790	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	4'	NMe
1791	4-ОМе-5-ОН	OEt	(CH ₂) ₂	NH	Н	4'	(CH ₂) ₅ OH
1792	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	4'	4-OH-Ph
1793	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	4'	2-Py
1794	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	3-Py
1795	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	4-Py
1796	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	4-NH ₂ -Ph
1797	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	4-NO ₂ -Ph
1798	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	3-NH ₂ -Ph
1799	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	4'	3-NO ₂ -Ph
1800	4-OMe-5-OH	OEt		NH	Н	4'	2-NH ₂ -Ph
1500	1		-2/3	•	•	•	,

1801	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	н	4'	2-NO ₂ -Ph
1802	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	CH ₂ -2-Py
1803	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	CH ₂ -3-Py
1804	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
1805	4-ОМе-5-ОН	OEt	(CH ₂) ₃	NH	Н	4'	NH
1806	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	н	4'	NH
1807	4-ОМе-5-ОН	OEt	(CH ₂) ₃	NH	Н	4'	NMe
1808	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	4'	NMe
1809	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H_	4'	(CH ₂) ₅ OH
1810	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	4'	4-OH-Ph
1811	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	4'	2-Py
1812	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	4'	3-Py
1813	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	4'	4-Py
1814	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	4'	4-NH ₂ -Ph
1815	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
1816	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	4'	3-NH ₂ -Ph
1817	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	3-NO ₂ -Ph
1818	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	4'	2-NH ₂ -Ph
1819	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	2-NO ₂ -Ph
1820	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4'	CH ₂ -2-Py
1821	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	H	4' 4'	CH ₂ -3-Py
1822	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	4	CH ₂ -4-Py
1823	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
1824	4-ОМе-5-ОН	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
1825	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
1826	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
1827	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
1828	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	4'	4-OH-Ph
1829	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	2-Py
1830	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	3-Ру
1831	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	4-Py
1832	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	4-NH ₂ -Ph
1833	4-OMe-5-OH	NH_2	(CH ₂) ₃	NH	Н	4'	4-NO ₂ -Ph
1834	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	3-NH ₂ -Ph
1835	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	Н	4'	3-NO ₂ -Ph
1836	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	4'	2-NH ₂ -Ph
1837	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	4'	2-NO ₂ -Ph
1838	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
1839	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	CH ₂ -3-Py
1840	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	4'	CH ₂ -4-Py
1841	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	н	4'	NH

1842	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	н	4'	NH
1843	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
1844	4-ОМе-5-ОН	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
1845	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	4'	(CH ₂) ₅ OH
1846	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	Н	4'	4-OH-Ph
1847	4-OMe-5-OH	OEt	(CH ₂) ₂	О	Н	4'	2-Py
1848	4-OMe-5-OH	OEt	$(CH_2)_2$	О	Н	4'	3-Py
1849	4-OMe-5-OH	OEt	(CH ₂) ₂	О	Н	4'	4-Py
1850	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
1851	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	4-NO ₂ -Ph
1852	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	3-NH ₂ -Ph
1853	4-OMe-5-OH	OEt	(CH ₂) ₂	O	Н	4'	3-NO ₂ -Ph
1854	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	2-NH ₂ -Ph
1855	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	2-NO ₂ -Ph
1856	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	CH ₂ -2-Py
1857	4-OMe-5-OH	OEt	$(CH_2)_2$	O	Н	4'	CH ₂ -3-Py
1858	4-OMe-5-OH	OEt	$(CH_2)_2$	O	Н	4'	CH ₂ -4-Py
1859	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	
1639	4-0MC-5-0H	- OEt				·	/\/H
1860	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	NH
1861	4-OMe-5-OH	OEt	$(CH_2)_2$	О	н	4'	NMe
1862	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	NMe
1863	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	4'	(CH ₂) ₅ OH
1864	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	4'	4-OH-Ph
1865	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	2-Py
1866	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	3-Py
1867	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	4-Py
1868	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	4-NH ₂ -Ph
1869	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	4-NO ₂ -Ph
1870	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	3-NH ₂ -Ph
1871	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	3-NO ₂ -Ph
1872	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	2-NH ₂ -Ph
1873	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	2-NO ₂ -Ph
1874	4-OMe-5-OH	OEt	$(CH_2)_3$	O	Н	4'	CH ₂ -2-Py
1875	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	CH ₂ -3-Py
1876	4-OMe-5-OH	OEt	$(CH_2)_3$	O	H	4'	CH ₂ -4-Py
1877	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	NH
1878	4-OMe-5-OH	OEt	(CH ₂) ₃	О	Н	4'	__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1879	4-OMe-5-OH	OEt	(CH ₂) ₃	О	Н	4'	NMe

		1 1		1 1	1 1	 	
1880	4-OMe-5-OH	OEt	$(CH_2)_3$	О	Н	4'	NMe
1881	4-OMe-5-OH	OEt	(CH ₂) ₃	O	Н	4'	(CH ₂) ₅ OH
1882	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	4'	4-OH-Ph
1883	4-OMe-5-OH	NH ₂	$(CH_2)_2$	Ō	Н	4'	2-Py
1884	4-OMe-5-OH	NH ₂	$(CH_2)_2$	o	Н	4'	3-Py
1885	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	O	Н	4'	4-Py
1886	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	O	Н	4'	4-NH ₂ -Ph
1887	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	4'	4-NO ₂ -Ph
	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	4'	3-NH ₂ -Ph
1888	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	4'	
1889				0	Н	4'	3-NO ₂ -Ph
1890	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	4'	2-NH ₂ -Ph
1891	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{CH_2}$			4'	2-NO ₂ -Ph
1892	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{CH_2}$	0	H	4'	CH ₂ -2-Py
1893	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{(CH_2)}$	0	H		CH ₂ -3-Py
1894	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	4'	CH ₂ -4-Py
1895	4-OMe-5-OH	NH ₂	(CH ₂) ₂	0	Н	4'	NH
1896	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	н	4'	УЛН
1897	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	Н	4'	NMe
1898	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	н	4'	NMe
1899	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	4'	(CH ₂) ₅ OH
1900	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	4'	4-OH-Ph
1901	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	2-Py
1902	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	3-Py
1903	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	H	4'	4-Py
1904	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	4-NH ₂ -Ph
1905	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	H	4'	4-NO ₂ -Ph
1906	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	H	4'	3-NH ₂ -Ph
1907	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	H	4'	3-NO ₂ -Ph
1908	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	H	4'	2-NH ₂ -Ph
1909	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	2-NO ₂ -Ph
1910	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	CH ₂ -2-Py
1911	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	CH ₂ -3-Py
1912	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	4'	CH ₂ -4-Py
1913	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	н	4'	NH
1914	4-ОМе-5-ОН	NH ₂	(CH ₂) ₃	О	Н	4'	NH
1915	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
1916	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
1917	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	4'	(CH ₂) ₅ OH
1918	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	4'	4-OH-Ph
1919	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	4'	2-Py
1920	4-OMe-5-OH	CH ₃	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	Н	4'	3-Py
1			. 2/2	•	•	•	

1921	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	н	4'	4-Py
1922	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	4'	4-NH ₂ -Ph
1923	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	4'	4-NO ₂ -Ph
1924	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	4'	3-NH ₂ -Ph
1925	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	4'	3-NO ₂ -Ph
1926	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	4'	2-NH ₂ -Ph
1927	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	4'	2-NO ₂ -Ph
1927	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	4'	CH ₂ -2-Py
	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	4'	
1929				NH	Н	4'	CH ₂ -3-Py
1930	4-OMe-5-OH	CH ₃	$(CH_2)_2$	INIT	- 11	-4	CH ₂ -4-Py
1931	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	Н	4'	√yH
1932	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	н	4'	NH
1933	4-OMe-5-OH	СН3	(CH ₂) ₂	NH	н	4'	NMe
1934	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	Н	4'	NMe
1935	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
1936	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	4'	4-OH-Ph
1937	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	2-Py
1938	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	3-Py
1939	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	4-Py
1940	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	4-NH ₂ -Ph
1941	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	H	4'	4-NO ₂ -Ph
1942	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	3-NH ₂ -Ph
1943	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	H	4'	3-NO ₂ -Ph
1944	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	2-NH ₂ -Ph
1945	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	2-NO ₂ -Ph
1946	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	CH ₂ -2-Py
1947	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	CH ₂ -3-Py
1948	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
1949	4-OMe-5-OH	СН3	(CH ₂) ₃	NH	Н	4'	√y.H
1950	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	н	4'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1951	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	4'	NMe
1952	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	NMe
1953	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	(CH ₂) ₅ OH
1954	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	4'	4-OH-Ph
1955	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	2-Py
1956	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	H	4'	3-Ру
1957	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	4-Py
1958	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
1959	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	4-NO ₂ -Ph
1960	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	4'	3-NH ₂ -Ph
1961	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
1962	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	4'	2-NH ₂ -Ph
		, ,,	-2/2	•	•		•

1963	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0 1	н	4'	2-NO ₂ -Ph
1964	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	CH ₂ -2-Py
1965	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	4'	CH ₂ -3-Py
1966	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	CH ₂ -4-Py
1967	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	н	4'	Уин
1968	4-OMe-5-OH	СН3	(CH ₂) ₂	О	н	4'	NH
1969	4-OMe-5-OH	СН3	(CH ₂) ₂	О	н	4'	NMe
1970	4-OMe-5-OH	СН3	(CH ₂) ₂	О	н	4'	NMe
1971	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	4'	(CH ₂) ₅ OH
1972	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	4'	4-OH-Ph
1973	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	4'	2-Py
1974	4-OMe-5-OH	CH ₃	$(CH_2)_3$	O	Н	4'	3-Ру
1975	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	Н	4'	4-Py
1976	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	H	4'	4-NH ₂ -Ph
1977	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	4'	4-NO ₂ -Ph
1978	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	4'	3-NH ₂ -Ph
1979	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	Н	4'	3-NO ₂ -Ph
1980	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	4'	2-NH ₂ -Ph
1981	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	H	4'	2-NO ₂ -Ph
1982	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	4'	CH ₂ -2-Py
1983	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	H	4'	CH ₂ -3-Py
1984	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	4'	CH ₂ -4-Py
1985	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	н	4'	
1986	4-OMe-5-OH	CH ₃	(CH ₂) ₃	0	Н	4'	NH
1987	4-OMe-5-OH	СН3	(CH ₂) ₃	0	н	4'	NMe
1988	4-OMe-5-OH	СН3	(CH ₂) ₃	О	Н	4'	NMe
1989	4-OMe-5-OH	CH ₃	(CH ₂) ₃	0	H	4'	(CH ₂) ₅ OH
1990	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	H	4'	4-OH-Ph
1991	4-OMe-5-OH	OEt	-	0	Н	3'	Bn
1992	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	3'	2-Py
1993	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	3'	3-Ру
1994	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	3'	4-Py
1995	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	3'	4-NO ₂ -Ph
1996	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	3'	3-NH ₂ -Ph
1997	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	3'	3-NO ₂ -Ph
1998	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	3'	2-NH ₂ -Ph
1999	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	3'	2-NO ₂ -Ph
2000	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	3'	CH ₂ -2-Py
2001	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	3'	CH ₂ -3-Py
2002	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	3'	CH ₂ -4-Py
2003	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	3'	NH

2004	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	н	3,	NH
2005	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	н	3'	NMe
2006	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	3,	NMe
2007	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	3,	(CH ₂) ₅ OH
2008	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	3'	4-OH-Ph
2009	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3'	2-Py
2010	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	3-Py
2011	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	4-Py
2012	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	4-NH ₂ -Ph
2013	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	4-NO ₂ -Ph
2014	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	3-NH ₂ -Ph
2015	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	3-NO ₂ -Ph
2016	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3'	2-NH ₂ -Ph
2017	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	3'	2-NO ₂ -Ph
2018	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3'	CH ₂ -2-Py
2019	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	н	3'	CH ₂ -3-Py
2020	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3'	CH ₂ -4-Py
2021	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	3,	NH
2022	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	н	3'	NH
2023	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	3'	NMe
2024	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	н	3'	NMe
2025	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
2026	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	3,	4-OH-Ph
2027	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3,	2-Py
2028	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	н	3'	3-Py
2029	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3,	4-Py
2030	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3,	4-NH ₂ -Ph
2031	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	3,	4-NO ₂ -Ph
2032	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	3'	3-NH ₂ -Ph
2033	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	3,	3-NO ₂ -Ph
2034	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	3,	2-NH ₂ -Ph
2035	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	3'	2-NO ₂ -Ph
2036	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -2-Py
2037	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -3-Py
2038	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -4-Py
2039	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
2040	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
2041	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	NMe

1		1 1		Į.	1 1	,	۱
2042	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	н	3,	NMe
2043	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3,	(CH ₂) ₅ OH
2044	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	3'	4-OH-Ph
2045	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	3'	2-Py
2046	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	3,	3-Ру
2047	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	Н	3,	4-Py
2048	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	Н	3,	4-NH ₂ -Ph
2049	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	Н	3,	4-NO ₂ -Ph
2050	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	3,	3-NH ₂ -Ph
2051	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	3,	3-NO ₂ -Ph
2052	4-OMe-5-OH	NH ₂	$(CH_2)_3$ $(CH_2)_3$	NH	H	3,	2-NH ₂ -Ph
				NH	H	3,	2-NO ₂ -Ph
2053	4-OMe-5-OH	NH ₂	(CH ₂) ₃			3,	
2054	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H		CH ₂ -2-Py
2055	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	3'	CH ₂ -3-Py
2056	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	3'	CH ₂ -4-Py
2057	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	3'	NH
2058	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	3'	NH
2059	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	3'	NMe
2060	4-ОМе-5-ОН	NH ₂	(CH ₂) ₃	NH	Н	3'	NMe
2061	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	3,	(CH ₂) ₅ OH
2062	4-OMe-5-OH	NH ₂	$(CH_2)_3$	NH	H	3'	4-OH-Ph
2063	4-OMe-5-OH	OEt	$(CH_2)_2$	0	H	3'	2-Py
2064	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	3'	3-Ру
2065	4-OMe-5-OH	OEt	$(CH_2)_2$	0	H	3'	4-Py
2066	4-OMe-5-OH	OEt	$(CH_2)_2$	О	H	3'	4-NH ₂ -Ph
2067	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	3'	4-NO ₂ -Ph
2068	4-OMe-5-OH	OEt	$(CH_2)_2$	0_	H	3'	3-NH ₂ -Ph
2069	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	3'	3-NO ₂ -Ph
2070	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	3,	2-NH ₂ -Ph
2071	4-OMe-5-OH	OEt	$(CH_2)_2$	0	H	3'	2-NO ₂ -Ph
2072	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	3,	CH ₂ -2-Py
2073	4-OMe-5-OH	OEt	(CH ₂) ₂	О	Н	3'	CH ₂ -3-Py
2074	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	3,	CH ₂ -4-Py
2075	4-OMe-5-OH	OEt	(CH ₂) ₂	О	Н	3'	○ I⁄IH
2076	4-OMc-5-OH	OEt	(CH ₂) ₂	О	н	3,	NH
2077	4-OMe-5-OH	OEt	(CH ₂) ₂	О	Н	3'	NMe
2078	4-ОМе-5-ОН	OEt	(CH ₂) ₂	О	Н	3,	NMe
2079	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	3,	(CH ₂) ₅ OH
2080	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	3,	4-OH-Ph
2081	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	3,	2-Py
2082	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	3,	3-Py
			2/3	•	•	•	

1		Lord	(011)	1 0		3,	4 Th
2083	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	3,	4-Py
2084	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H		4-NH ₂ -Ph
2085	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	3'	4-NO ₂ -Ph
2086	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	3'	3-NH ₂ -Ph
_2087	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	3'	3-NO ₂ -Ph
2088	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	3'	2-NH ₂ -Ph
2089	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	3,	2-NO ₂ -Ph
2090	4-OMe-5-OH	OEt	$(CH_2)_3$	О	Н	3,	CH ₂ -2-Py
2091	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	3'	CH ₂ -3-Py
2092	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	3,	CH ₂ -4-Py
2093	4-OMe-5-OH	OEt	(CH ₂) ₃	О	н	3,	NH
2094	4-OMe-5-OH	OEt	(CH ₂) ₃	О	Н	3'	NH
2095	4-OMe-5-OH	OEt	(CH ₂) ₃	О	Н	3,	NMe
2096	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	3'	NMe
2097	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	3'	(CH ₂) ₅ OH
2098	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	3'	4-OH-Ph
2099	4-OMe-5-OH	NH ₂	(CH ₂) ₂	0	Н	3'	2-Py
2100	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	3'	3-Py
2101	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	н	3'	4-Py
2102	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	3'	4-NH ₂ -Ph
2103	4-OMe-5-OH	NH ₂	$(CH_2)_2$	О	Н	3'	4-NO ₂ -Ph
2104	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0_	Н	3'	3-NH ₂ -Ph
2105	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	3'	3-NO ₂ -Ph
2106	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	3'	2-NH ₂ -Ph
2107	4-OMe-5-OH	NH ₂	(CH ₂) ₂	0	H	3'	2-NO ₂ -Ph
2108	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	3'	CH ₂ -2-Py
2109	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	3'	CH ₂ -3-Py
2110	4-OMe-5-OH	NH ₂	$(CH_2)_2$	О	Н	3'	CH ₂ -4-Py
2111	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	Н	3'	NH
2112	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	Н	3,	NH
2113	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	Н	3,	NMe
2114	4-OMe-5-OH	NH ₂	(CH ₂) ₂	0	Н	3,	NMe
2115	4-OMe-5-OH	NH ₂	$(CH_2)_2$	О	Н	3,	(CH ₂) ₅ OH
2116	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	3'	4-OH-Ph
2117	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	Н	3'	2-Py
2118	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0_	H	3'	3-Ру
2119	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	3'	4-Py
2120	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	3'	4-NH ₂ -Ph
2121	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	3'	4-NO ₂ -Ph
2122	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	3,	3-NH ₂ -Ph
2123	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	3,	3-NO ₂ -Ph
2124	4-OMe-5-OH	NH ₂		0	Н	3,	2-NH ₂ -Ph
1				•	•		-

2125	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	н	3'	2-NO ₂ -Ph
2126	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	3,	CH ₂ -2-Py
2127	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	3'	CH ₂ -3-Py
2128	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	3,	CH ₂ -4-Py
2129	4-ОМе-5-ОН	NH ₂	(CH ₂) ₃	О	Н	3'	NH
2130	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	3'	√NH
2131	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	3'	NMe
2132	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	3,	NMe
2133	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	Н	3'	(CH ₂) ₅ OH
2134	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	Н	3'	4-OH-Ph
2135	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	3'	2-Py
2136	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	3'	3-Py
2137	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	4-Py
2138	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3,	4-NH ₂ -Ph
2139	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
2140	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	3'	3-NH ₂ -Ph
2141	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	3' 3'	3-NO ₂ -Ph
2142	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH NH	H H	3,	2-NH ₂ -Ph 2-NO ₂ -Ph
2143	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	3,	
2144	4-OMe-5-OH 4-OMe-5-OH	CH ₃	$(CH_2)_2$ $(CH_2)_2$	NH	Н	3'	CH ₂ -2-Py CH ₂ -3-Py
2145 2146	4-OMe-5-OH 4-OMe-5-OH	CH ₃	$(CH_2)_2$ $(CH_2)_2$	NH	H	3,	CH ₂ -3-Fy CH ₂ -4-Py
2147	4-OMe-5-OH	СН3	(CH ₂) ₂	NH	н	3,	NH
2148	4-ОМе-5-ОН	СН3	(CH ₂) ₂	NH	н	3,	NH
2149	4-ОМе-5-ОН	СН₃	(CH ₂) ₂	NH	Н	3,	NMe
2150	4-ОМе-5-ОН	СН₃	(CH ₂) ₂	NH	Н	3'	NMe
2151	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	3,	(CH ₂) ₅ OH
2152	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	Н	3'	4-OH-Ph
2153	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	2-Py
2154	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	3-Py
2155	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH_	H	3'	4-Py
2156	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	4-NH ₂ -Ph
2157	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
2158	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	3-NH ₂ -Ph
2159	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH_	H	3'	3-NO ₂ -Ph
2160	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	2-NH ₂ -Ph
2161	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	2-NO ₂ -Ph
2162	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3'	CH ₂ -2-Py
2163	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3,	CH ₂ -3-Py
2164	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3,	CH ₂ -4-Py
2165	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	3'	MH

2166	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	н	3'	NH
2167	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	н	3,	NMe
2168	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	3,	NMe
2169	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
2170	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	3,	4-OH-Ph
2171	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	H	3,	2-Py
2172	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	H	3'	3-Ру
2173	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3'	4-Py
2174	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3'	4-NH ₂ -Ph
2175	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3'	4-NO ₂ -Ph
2176	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	3'	3-NH ₂ -Ph
2177	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3,	3-NO ₂ -Ph
2178	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3'	2-NH ₂ -Ph
2179	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	3'	2-NO ₂ -Ph
2180	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3'	CH ₂ -2-Py
2181	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	3,	CH ₂ -3-Py
2182	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	3'	CH ₂ -4-Py
2183	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	3,	NH
2184	4-OMe-5-OH	СН3	(CH ₂) ₂	O	Н	3'	NH
2185	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	3'	NMe
2186	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	н	3'	NMe
2187	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	3'	(CH ₂) ₅ OH
2188	4-OMe-5-OH	CH ₃	$(CH_2)_2$	О	Н	3'	4-OH-Ph
2189	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	H	3'	2-Py
2190	4-OMe-5-OH	CH ₃	(CH ₂) ₃	0	Н	3'	3-Py
2191	4-OMe-5-OH	CH ₃	(CH ₂) ₃	0	Н	3'	4-Py
2192	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	Н	3'	4-NH ₂ -Ph
2193	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	Н	3'	4-NO ₂ -Ph
2194	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	H	3'	3-NH ₂ -Ph
2195	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	H	3'	3-NO ₂ -Ph
2196	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	H	3'	2-NH ₂ -Ph
2197	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	H	3'	2-NO ₂ -Ph
2198	4-OMe-5-OH	CH ₃	(CH ₂) ₃	O	Н	3'	CH ₂ -2-Py
2199	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	Н	3,	CH ₂ -3-Py
2200	4-OMe-5-OH	CH ₃	$(CH_2)_3$	О	H	3,	CH ₂ -4-Py
2201	4-OMe-5-OH	СН₃	(CH ₂) ₃	О	Н	3'	_\mathready\text{NH}
2202	4-OMe-5-OH	СН3	(CH ₂) ₃	О	н	3'	NH
2203	4-OMe-5-OH	CH ₃	(CH ₂) ₃	О	Н	3'	NMe

1		1 1			1	1	\ ^
2204	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	Н	3'	NMe
2205	4-OMe-5-OH	CH ₃	(CH ₂) ₃	0	Н	3'	(CH ₂) ₅ OH
2206	4-OMe-5-OH	CH ₃	(CH ₂) ₃	0	Н	3,	4-OH-Ph
2207	4-OMe-5-OH	OEt		0	Н	2,	Bn
2208	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	2'	2-Py
2209	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	3-Py
2210	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	4-Py
2211	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	4-NO ₂ -Ph
2212	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	3-NH ₂ -Ph
2213	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	3-NO ₂ -Ph
2214	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	2-NH ₂ -Ph
2215	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	2-NO ₂ -Ph
2216	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	CH ₂ -2-Py
2217	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	Н	2'	CH ₂ -3-Py
2217	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	2,	CH ₂ -4-Py
2216	4-0Me-3-011	- OLU	(C112)2	1122			^
2219	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	2'	
2220	4-ОМе-5-ОН	OEt	$(CH_2)_2$	NH	н	2'	NH
2221	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	2'	NMe
2222	4-OMe-5-OH	OEt	(CH ₂) ₂	NH	Н	2'	NMe
2223	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	2'	(CH ₂) ₅ OH
2224	4-OMe-5-OH	OEt	$(CH_2)_2$	NH	H	2,	4-OH-Ph
2225	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	2'	2-Py
2226	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	3-Py
2227	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	4-Py
2228	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	4-NH ₂ -Ph
2229	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	4-NO ₂ -Ph
2230	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2231	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	3-NO ₂ -Ph
2232	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	2-NH ₂ -Ph
2233	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	2-NO ₂ -Ph
2234	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2235	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	CH ₂ -3-Py
2236	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	H	2'	CH ₂ -4-Py
2237	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	н	2'	NH
2238	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	2'	NH
2239	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	2'	NMe
2240	4-OMe-5-OH	OEt	(CH ₂) ₃	ΝΗ	Н	2'	NMe
2241	4-OMe-5-OH	OEt	(CH ₂) ₃	NH	Н	2'	(CH ₂) ₅ OH
2242	4-OMe-5-OH	OEt	$(CH_2)_3$	NH	Н	2,	4-OH-Ph
2243	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	2'	2-Py
2244	4-OMe-5-OH	NH ₂		NH	H	2,	3-Py
2217	. 01.20 0 01.1	1-121	(2/2		•	•	•

2245	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	2'	4-Py
2246	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	4-NH ₂ -Ph
2247	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	4-NO ₂ -Ph
2248	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2,	3-NH ₂ -Ph
2249	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	2,	3-NO ₂ -Ph
2250	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	Н	2,	2-NH ₂ -Ph
2251	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	2,	2-NO ₂ -Ph
2252	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	Н	2,	CH ₂ -2-Py
2253	4-OMe-5-OH	NH ₂	$(CH_2)_2$	NH	H	2,	CH ₂ -3-Py
2254	4-OMe-5-OH	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	H	2,	CH ₂ -4-Py
- 2234	4-0MC-5-011	14112	(C112)2	1111			C112-4-1 y
2255	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	NH NH
2256	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	NH
2257	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
2258	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
2259	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2,	(CH ₂) ₅ OH
2260	4-OMe-5-OH	NH ₂	(CH ₂) ₂	NH	Н	2'	4-OH-Ph
2261	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H·	2'	2-Py
2262	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	3-Ру
2263	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	4-Py
2264	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	4-NH ₂ -Ph
2265	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
2266	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	3-NH ₂ -Ph
2267	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	3-NO ₂ -Ph
2268	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	2-NH ₂ -Ph
2269	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	2-NO ₂ -Ph
2270	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	CH ₂ -2-Py
2271	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	CH ₂ -3-Py
2272	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	CH ₂ -4-Py
2273	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Η.	2'	NH
2274	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	NH
2275	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	NMe
2276	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	NMe
2277	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	(CH ₂) ₅ OH
2278	4-OMe-5-OH	NH ₂	(CH ₂) ₃	NH	Н	2'	4-OH-Ph
2279	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	2,	2-Py
2280	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	2,	3-Ру
2281	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	2,	4-Py
2282	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	2'	4-NH ₂ -Ph
2283	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	2'	4-NO ₂ -Ph
2284	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	2'	3-NH ₂ -Ph
2285	4-OMe-5-OH	OEt	$(CH_2)_2$	o	Н	2,	3-NO ₂ -Ph
2286	4-OMe-5-OH	OEt	$(CH_2)_2$	o	Н	2,	2-NH ₂ -Ph
. == = -		, ,	(· .		٠ .	·

2287	4-OMe-5-OH	OEt	$(CH_2)_2$	0	н	2'	2-NO ₂ -Ph
2288	4-OMe-5-OH	OEt	(CH ₂) ₂	О	H.	2'	CH ₂ -2-Py
2289	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	2,	CH ₂ -3-Py
2290	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	2'	CH ₂ -4-Py
2291	4-OMe-5-OH	OEt	(CH ₂) ₂	0	Н	2'	√NH
2292	4-OMe-5-OH	OEt	(CH ₂) ₂	О	н	2'	NH
2293	4-OMe-5-OH	OEt	(CH ₂) ₂	О	н	2'	NMe
2294	4-OMe-5-OH	OEt	(CH ₂) ₂	О	Н	2'	NMe
2295	4-OMe-5-OH	OEt	$(CH_2)_2$	0	H	2'	(CH ₂) ₅ OH
2296	4-OMe-5-OH	OEt	$(CH_2)_2$	0	Н	2'	4-OH-Ph
2297	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	2'	2-Py
2298	4-OMe-5-OH	OEt	$(CH_2)_3$	О	Н	2'	3-Py
2299	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	2'	4-Py
2300	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	2'	4-NH ₂ -Ph
2301	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	2'	4-NO ₂ -Ph
2302	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	2'	3-NH ₂ -Ph
2303	4-OMe-5-OH	OEt	$(CH_2)_3$	O	H	2'	3-NO ₂ -Ph
2304	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	2'	2-NH ₂ -Ph
2305	4-OMe-5-OH	OEt	$(CH_2)_3$	0	Н	2'	2-NO ₂ -Ph
2306	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	2'	CH ₂ -2-Py
2307	4-OMe-5-OH	OEt	(CH ₂) ₃	0_	Н	2'	CH ₂ -3-Py
2308	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	2'	CH ₂ -4-Py
2309	4-OMe-5-OH	OEt	(CH ₂) ₃	О	н	2'	NH
2310	4-OMe-5-OH	OEt	(CH ₂) ₃	О	Н	2'	NH
2311	4-OMe-5-OH	OEt	(CH ₂) ₃	0	Н	2'	NMe
2312	4-ОМе-5-ОН	OEt	(CH ₂) ₃	0	Н	2'	NMe
2313	4-OMe-5-OH	OEt	$(CH_2)_3$	0	H	2'	(CH ₂) ₅ OH
2314	4-OMe-5-OH	OEt	(CH ₂) ₃	0	H	2,	4-OH-Ph
2315	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	2'	2-Py
2316	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	2'	3-Ру
2317	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	2,	4-Py
2318	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	2'	4-NH ₂ -Ph
2319	4-OMe-5-OH	NH ₂		0	H	2'	4-NO ₂ -Ph
2320	4-OMe-5-OH	NH ₂		0	H	2'	3-NH ₂ -Ph
2321	4-OMe-5-OH	NH ₂		0	H	2'	3-NO ₂ -Ph
2322	4-OMe-5-OH	NH ₂		0	H	2'	2-NH ₂ -Ph
2323	4-OMe-5-OH	NH ₂		0	H	2'	2-NO ₂ -Ph
2324	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	2'.	CH ₂ -2-Py
2325	4-OMe-5-OH	NH ₂		0	H	2'	CH ₂ -3-Py
2326	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	H	2'	CH ₂ -4-Py
2327	4-ОМе-5-ОН	NH ₂	(CH ₂) ₂	О	Н	2'	\ \frac{\lambda}{\lambda}\text{\text{MH}}

ı		1 1) I	i		
2328	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	Н	2'	
2329	4-OMe-5-OH	NH ₂	(CH ₂) ₂	О	Н	2'	NMe
2330	4-OMe-5-OH	NH ₂	$(CH_2)_2$	О	н	2'	NMe
2331	4-OMe-5-OH	NH ₂	$(CH_2)_2$	0	Н	2'	(CH ₂) ₅ OH
2332	4-OMe-5-OH	NH ₂	$(CH_2)_2$	О	Н	_2'	4-OH-Ph
2333	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	2'	2-Py
2334	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	H	2'	3-Py
2335	4-OMe-5-OH	NH ₂	$(CH_2)_3$	0	Н	2'	4-Py
2336	4-OMe-5-OH	NH ₂	$(CH_2)_3$	O	Н	2'	4-NH ₂ -Ph
2337	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	H	2'	4-NO ₂ -Ph
2338	4-OMe-5-OH	NH ₂	$(CH_2)_3$	O	H	2'	3-NH ₂ -Ph
2339	4-OMe-5-OH	NH ₂	$(CH_2)_3$	O	Н	2'	3-NO ₂ -Ph
2340	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	Н	2'	2-NH ₂ -Ph
2341	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	H	2'	2-NO ₂ -Ph
2342	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	2'	CH ₂ -2-Py
2343	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	2'	CH ₂ -3-Py
2344	4-OMe-5-OH	NH ₂	(CH ₂) ₃	0	Н	2'	CH ₂ -4-Py
2345	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	н	2'	NiH
2346	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	2'	Уин
2347	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
2348	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
2349	4-OMe-5-OH	NH ₂	(CH ₂) ₃	О	Н	2'	(CH ₂) ₅ OH
2350	4-OMe-5-OH	NH ₂	$(CH_2)_3$	О	Н	2'	4-OH-Ph
2351	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	2'	2-Py
2352	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2'	3-Py
2353	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	2'	4-Py
2354	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2'	4-NH ₂ -Ph
2355	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	2'	4-NO ₂ -Ph
2356	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	2'	3-NH ₂ -Ph
2357	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2'	3-NO ₂ -Ph
2358	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2,	2-NH ₂ -Ph
2359	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2'	2-NO ₂ -Ph
2360	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	CH ₂ -2-Py
2361	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2'	CH ₂ -3-Py
2362	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	H	2'	CH ₂ -4-Py
2363	4-OMe-5-OH	СН3	$(CH_2)_2$	NH	Н	2'	
2364	4-OMe-5-OH	СН₃	(CH ₂) ₂	NH	Н	2'	NH
2365	4-OMe-5-OH	СН3	(CH ₂) ₂	NH	Н	2'	NMe

1		1 1		ı	1	1	
2366	4-OMe-5-OH	CH ₃	$(CH_2)_2$	NH	Н	2'	NMe
2367	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2368	4-OMe-5-OH	CH ₃	(CH ₂) ₂	NH	Н	2,	4-OH-Ph
2369	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	2'	2-Py
2370	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	2,	3-Py
2371	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	2'	4-Py
2372	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	2,	4-NH ₂ -Ph
2373	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	2,	4-NO ₂ -Ph
2374	4-OMe-5-OH	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	Н	2'	3-NH ₂ -Ph
2375	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	H	2,	3-NO ₂ -Ph
2376	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	H	2'	2-NH ₂ -Ph
2377	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	H	2'	2-NO ₂ -Ph
2378	4-OMe-5-OH	CH ₃	$(CH_2)_3$ $(CH_2)_3$	NH	H	2'	CH ₂ -2-Py
2379	4-OMe-5-OH	CH ₃	$(CH_2)_3$ $(CH_2)_3$	NH	Н	2,	CH ₂ -3-Py
	4-OMe-5-OH	CH ₃	$(CH_2)_3$ $(CH_2)_3$	NH	Н	2,	CH ₂ -4-Py
2380	4-OME-3-OH	C113	(C112)3	1411			C112-4-1 y
2381	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	н	2'	Cyn
2382	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	2'	\
2383	4-OMe-5-OH	СН₃	(CH ₂) ₃	NH	н	2'	NMe
2384	4-OMe-5-OH	CH ₃	(CH ₂) ₃	NH	Н	2'	NMe
2385	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	2,	(CH ₂) ₅ OH
2386	4-OMe-5-OH	CH ₃	$(CH_2)_3$	NH	Н	2'	4-OH-Ph
2387	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	2'	2-Py
2388	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	2'	3-Py
2389	4-OMe-5-OH	CH ₃	$(CH_2)_2$	О	Н	2'	4-Py
2390	4-OMe-5-OH	CH ₃	$(CH_2)_2$	О	H	2'	4-NH ₂ -Ph
2391	4-OMe-5-OH	CH ₃	$(CH_2)_2$	О	Н	2'	4-NO ₂ -Ph
2392	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	2'	3-NH ₂ -Ph
2393	4-OMe-5-OH	CH ₃	$(CH_2)_2$	O	Н	2'	3-NO ₂ -Ph
2394	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	2'	2-NH ₂ -Ph
2395	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	2'	2-NO ₂ -Ph
2396	4-OMe-5-OH	CH ₃	$(CH_2)_2$	О	Н	2'	CH ₂ -2-Py
2397	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	H	2'	CH ₂ -3-Py
2398	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	2'	CH ₂ -4-Py
2399	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	2'	NH
2400	4-OMe-5-OH	CH ₃	(CH ₂) ₂	О	Н	2'	NH
2401	4-OMe-5-OH	СН3	(CH ₂) ₂	О	Н	2'	NMe
2402	4-OMe-5-OH	CH ₃	$(CH_2)_2$	О	Н	2'	NMe
2403	4-OMe-5-OH	CH ₃	(CH ₂) ₂	0	Н	2,	(CH ₂) ₅ OH
2404	4-OMe-5-OH	CH ₃	$(CH_2)_2$	0	Н	2'	4-OH-Ph
2405	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	Н	2'	2-Py
2406	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	Н	2,	3-Py
		, ,,	/-	•	•	•	· ·

2408	0407	1 0M- 5 OH	leu l	(CH)		ப	2'	4-Py
2409	2407	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	H		
2410								
2411						_		
2412						_		
2413								
2414								
2415								
2416								
2417 4-OMe-5-OH CH3 (CH2)3 O H 2' NH 2418 4-OMe-5-OH CH3 (CH2)3 O H 2' NH 2419 4-OMe-5-OH CH3 (CH2)3 O H 2' NMe 2420 4-OMe-5-OH CH3 (CH2)3 O H 2' NMe 2421 4-OMe-5-OH CH3 (CH2)3 O H 2' 4-OH-Ph 2423 4-OMe-5-(2-N-morpholinoethoxy) OEt O H 4' OH P 2423 4-OMe-5-(2-N-morpholinoethoxy) OEt CH2)2 NH H 4' OH P 2424 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' 3-Py 2426 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' 4-Py 2429 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' 3-NH2-Ph								
2418	2416	4-OMe-5-OH	CH ₃	$(CH_2)_3$	0	H	2'	CH ₂ -4-Py
2419	2417	4-OMe-5-OH	СН3	(CH ₂) ₃	О	Н	2'	NH
2420	2418	4-OMe-5-OH	СН3	(CH ₂) ₃	0	Н	2'	NH
2421	2419	4-OMe-5-OH	СН₃	(CH ₂) ₃	О	Н	2'	NMe
2422 4-OMe-5-OH CH ₃ (CH ₂) ₃ O H 2' 4-OH-Ph 2423 4-OMe-5-(2-N-morpholinoethoxy) OEt O H 4' Bn 2424 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-Py 2425 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-Py 2426 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-Py 2427 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-No ₂ -Ph 2428 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NO ₂ -Ph 2430 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NO ₂ -Ph 2431 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NO ₂ -Ph 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt </td <td>2420</td> <td>4-OMe-5-OH</td> <td>СН3</td> <td>(CH₂)₃</td> <td>О</td> <td>Н</td> <td>2'</td> <td>NMe</td>	2420	4-OMe-5-OH	СН3	(CH ₂) ₃	О	Н	2'	NMe
2423 4-OMe-5-(2-N-morpholinoethoxy) OEt CH ₂ ₂ NH	2421	4-OMe-5-OH	CH ₃	$(CH_2)_3$		Н		
2424 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH	2422	4-OMe-5-OH	CH ₃	$(CH_2)_3$		Н		4-OH-Ph
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2423	4-OMe-5-(2-N-morpholinoethoxy)		- <u></u>		Н		
2426 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-Py 2427 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-NO ₂ -Ph 2428 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NH ₂ -Ph 2429 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NH ₂ -Ph 2430 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NH ₂ -Ph 2431 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NH ₂ -Ph 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2438	2424	4-OMe-5-(2-N-morpholinoethoxy)						
2427 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-NO ₂ -Ph 2428 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NH ₂ -Ph 2429 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NO ₂ -Ph 2430 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NH ₂ -Ph 2431 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NO ₂ -Ph 2432 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2439<	2425					_		
2428 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NH ₂ -Ph 2429 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NO ₂ -Ph 2430 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NH ₂ -Ph 2431 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NO ₂ -Ph 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -5-Q-N-morpholinoethoxy <td< td=""><td>2426</td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></td<>	2426		+					
2429 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 3-NO ₂ -Ph 2430 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NH ₂ -Ph 2431 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NO ₂ -Ph 2432 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NH 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NM 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NM 2439	2427							
2430 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NH ₂ -Ph 2431 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-NO ₂ -Ph 2432 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NM 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NM 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₃ OH 2440								
2431 4-OMe-5-(2-N-morpholinoethoxy) OEt CH2)2 NH H 4' 2-NO2-Ph 2432 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' CH2-2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' CH2-3-Py 2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' CH2-3-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' CH2-4-Py 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' NH 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' NMe 2439 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)2 NH H 4' (CH2)3OH 2440 4-OMe-5-(2-N-morpholinoethoxy) <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
2432 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -2-Py 2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NH 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2449 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
2433 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ ·3-Py 2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ ·4-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NH 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2439 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 2-Py 2443 4-OMe-5-(2-N								
2434 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NH 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2439 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2443 4-OMe-5-(2-N-morph								
2435 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NH 2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2439 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2445 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph								
2436 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2445 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph	2434	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -4-Py
2437 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' NMe 2438 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2439 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2445 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph	2435	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	4'	NH
2438 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_2$ NH H 4' $(CH_2)_5OH$ 2439 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_2$ NH H 4' $(CH_2)_5OH$ 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_2$ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 4-NH ₂ -Ph 2445 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 4-NH ₂ -Ph 2445 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 3-NH ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt $(CH_2)_3$ NH H 4' 3-NO ₂ -Ph	2436	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	4'	NH
2439 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph	2437	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	4'	NMe
2440 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₂ NH H 4' 4-OH-Ph 2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph	2438	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	4'	NMe
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2439	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
2441 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)3 NH H 4' 2-Py 2442 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)3 NH H 4' 3-Py 2443 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)3 NH H 4' 4-Py 2444 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)3 NH H 4' 4-NH2-Ph 2445 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)3 NH H 4' 3-NH2-Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH2)3 NH H 4' 3-NO2-Ph					NH	Н		4-OH-Ph
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					NH	H		2-Py
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					NH	Н		3-Py
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4-OMe-5-(2-N-morpholinoethoxy)	1		NH	Н	4'	4-Py
2445 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph					NH	Н	4'	4-NH ₂ -Ph
2446 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph			+		NH	H	4'	
2447 4-OMe-5-(2-N-morpholinoethoxy) OEt (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph					NH	Н	4'	
						Н	4'	
			-		NH	Н	4'	2-NH ₂ -Ph

2449	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	н	4'	2-NO ₂ -Ph
2450	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	4'	CH ₂ -2-Py
2451	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -3-Py
2452	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
2453	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	н	4'	NH
2454	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	н	4'	NH
2455	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	4'	NMe
2456	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	4'	NMe
2457	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	4'	(CH ₂) ₅ OH
2458	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	4'	4-OH-Ph
2459	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	4'	2-Py
2460	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	4'	3-Py
2461	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	4'	4-Py
2462	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	4'	4-NH ₂ -Ph
2463	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	4'	4-NO ₂ -Ph
2464	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	4'	3-NH ₂ -Ph
2465	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	4'	3-NO ₂ -Ph
2466	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	4'	2-NH ₂ -Ph
2467	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	4'	2-NO ₂ -Ph
2468	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	4'	CH ₂ -2-Py
2469	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	4'	CH ₂ -3-Py
2470	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
2471	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
2472	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
2473	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
2474	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	н	4'	NMe
2475	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	4'	(CH ₂) ₅ OH
2476	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_2$	NH	H	4'	4-OH-Ph
2477	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	4'	2-Py
2478	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	4'	3-Py
2479	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
2480	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	4'	4-NH ₂ -Ph
2481	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	4'	4-NO ₂ -Ph
2482	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
2483	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
2484	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	4'	2-NH ₂ -Ph
2485	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
2486	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
2487	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
2488	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	4'	CH ₂ -4-Py
2489	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	4'	VIH

2490	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	ΝН	н	4'	NH
2491	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
2492	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
2493	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	4'	(CH ₂) ₅ OH
2494	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	4'	4-OH-Ph
2495	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	4'	2-Py
2496	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	4'	3-Ру
2497	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	Н	4'	4-Py
2498	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
2499	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	4-NO ₂ -Ph
2500	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	Н	4'	3-NH ₂ -Ph
2501	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	3-NO ₂ -Ph
2502	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	2-NH ₂ -Ph
2503	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	2-NO ₂ -Ph
2504	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	CH ₂ -2-Py
2505	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	CH ₂ -3-Py
2506	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	4'	CH ₂ -4-Py
2507	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	4'	NH
2508	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	н	4'	NH
2509	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	О	Н	4'	NMe
					1		
2510	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	О	н	4'	NMe
2510 2511	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt	$(CH_2)_2$ $(CH_2)_2$	O	H	4'	(CH ₂) ₅ OH
				O O		4' 4'	~
2511	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	O	Н	4' 4' 4'	(CH ₂) ₅ OH
2511 2512	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt	$(CH_2)_2$ $(CH_2)_2$	O O	H H	4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph
2511 2512 2513	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃	0 0 0 0	H H H	4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py
2511 2512 2513 2514	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0	H H H	4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py
2511 2512 2513 2514 2515	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0	H H H H	4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph
2511 2512 2513 2514 2515 2516	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0	H H H H	4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph
2511 2512 2513 2514 2515 2516 2517	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0	H H H H H	4' 4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph
2511 2512 2513 2514 2515 2516 2517 2518	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0	H H H H H H	4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520	4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt OEt OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0 0	H H H H H H	4' 4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521	4-OMe-5-(2-N-morpholinoethoxy)	OEt OEt OEt OEt OEt OEt OEt OEt OEt	(CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0 0	H H H H H H H	4' 4' 4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0 0 0	H H H H H H H	4' 4' 4' 4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0 0 0 0	H H H H H H H H	4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0 0 0 0	H H H H H H H H H H H H	4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4'	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂ (CH ₂) ₃ (CH ₂) ₃	0 0 0 0 0 0 0 0 0 0 0	H H H H H H H H H H H H H	4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4' 4	(CH ₂) ₅ OH 4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -3-Py CH ₂ -4-Py

	1		1	1		!	۱
2528	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	О	Н	4'	NMe
2529	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	4'	(CH ₂) ₅ OH
2530	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	4'	4-OH-Ph
2531	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	2-Py
2532	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	3-Ру
2533	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	4-Py
2534	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	4-NH ₂ -Ph
2535	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	4'	4-NO ₂ -Ph
2536	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	3-NH ₂ -Ph
2537	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
2538	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	(CH ₂) ₂	0	Н	4'	2-NH ₂ -Ph
2539	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	4'	2-NO ₂ -Ph
2540	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	4'	CH ₂ -2-Py
2541	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	4'	CH ₂ -3-Py
2542	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	CH ₂ -4-Py
	, 63.00 (23.00)						
2543	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	
2544	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	О	Н	4'	NH
	•	ļ					
2545	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	О	Н	4'	\bigcap_{NMe}
2546	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	4'	NMe
	-					41	, ~
2547	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	H	4'	(CH ₂) ₅ OH
2548	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	H	4'	4-OH-Ph
2549	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	2-Py
2550	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	3-Py
2551	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	4-Py
2552	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	4-NH ₂ -Ph
2553	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	4-NO ₂ -Ph
2554	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	3-NH ₂ -Ph
2555	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	3-NO ₂ -Ph
2556	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	2-NH ₂ -Ph
2557	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	2-NO ₂ -Ph
2558	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	CH ₂ -2-Py
2559	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	H	4'	CH ₂ -3-Py
2560	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	Н	4'	CH ₂ -4-Py
2561	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	4'	NH
25.62	4 OM 5 (2 N mombolinosthown)	NH ₂	(CH ₂) ₃	0	Н	4'	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2562	4-OMe-5-(2-N-morpholinoethoxy)	INT ₂	(СП2)3		11	-	NH NH
2563	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	н	4'	NMe
	4.004.5.003	NITT	(CII.)		7.7	41	<u> </u>
2564	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	Н	4'	NMe
2565	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	O	H	4'	(CH ₂) ₅ OH
2566	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	H	4'	4-OH-Ph
2567	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	4'	2-Py
2568	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	4'	3-Py

2559 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-NH ₂ -Ph
2571 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH
2572 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' 3-NH ₂ -Ph 2573 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' 3-NO ₂ -Ph 2575 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' 2-NO ₂ -Ph 2575 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' 2-NO ₂ -Ph 2576 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' CH ₂ -2-Py 2577 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' CH ₂ -2-Py 2578 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' CH ₂ -3-Py 2579 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' CH ₂ -4-Py 2580 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' CH ₂ -4-Py 2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' NiH 2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' NiH NiMe 2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' 4-OH-Ph 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NiH H 4' 4-OH-Ph 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-OH-Ph 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-OH-Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-Py 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-Ni ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-Ni ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-Ni ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4-Ni ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4' 4-Ni ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NiH H 4' 4' CH ₂ -3-Py 2590 4-OMe-5-(2-
2573 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH
2574 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH
2575 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH
2576 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH
2577 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' CH ₂ -3-Py 2578 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2579 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2580 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NH 2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NMe 2582 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NMe 2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' CH ₂ -3-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' A-OH-Ph 2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 2-Py 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-ND ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-
2578 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' CH ₂ -4-Py 2579 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NH 2580 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NH 2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NMe 2582 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' (CH ₂) ₂ OH 2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NQ-Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NQ-Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NP ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2
2579 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NH 2580 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NH 2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' NMe 2582 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' (CH ₂) ₂ OH 2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 2-Py 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH
2580 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' N _{Me} 2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' N _{Me} 2582 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 2-Py 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py
2581 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' N _{Me} 2582 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' (CH ₂) ₂ OH 2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py
2582 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py
2583 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH 2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2584 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ NH H 4' 4-OH-Ph 2585 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NU ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2
2585 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 2-Py 2586 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 4-NH2-Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 4-NO2-Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 3-NH2-Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 3-NH2-Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 2-NH2-Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy)
2586 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-Py 2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py
2587 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-Py 2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2588 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NH ₂ -Ph 2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH
2589 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-NO ₂ -Ph 2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NM ₆
2590 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NH ₂ -Ph 2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2591 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 3-NO ₂ -Ph 2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2592 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NH ₂ -Ph 2593 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 2-NO ₂ -Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2593 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' 2-NO2-Ph 2594 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-4-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NH 2598 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe 2599 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe
2594 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-2-Py 2595 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-4-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NH 2598 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe 2599 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe
2595 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -3-Py 2596 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' CH ₂ -4-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2596 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' CH2-4-Py 2597 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NH 2598 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH3 (CH2)3 NH H 4' NMe
2597 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NH 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2598 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' N _I H 2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' N _I Me 2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' N _I Me
2599 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe 2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2600 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' NMe
2601 4-OMe-5-(2-N-morpholinoethoxy) CH ₂ (CH ₂) ₂ NH H 4' (CH ₂) ₅ OH
2602 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₃ NH H 4' 4-OH-Ph
2603 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 2-Py
2604 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 3-Py
2605 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 4-Py
2606 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 4-NH ₂ -Ph
2607 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 4-NO ₂ -Ph
2608 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 3-NH ₂ -Ph
2609 4-OMe-5-(2-N-morpholinoethoxy) CH ₃ (CH ₂) ₂ O H 4' 3-NO ₂ -Ph

2611	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	Ιο	Н	l 4'	2-NO ₂ -Ph
2612	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(CH_2)_2$	0	H	4'	CH ₂ -2-Py
		-		0	H	4'	CH ₂ -3-Py
2613	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	4'	CH ₂ -3-Py CH ₂ -4-Py
2614	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	-	П		СП2-4-РУ
2615	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	О	Н	4'	NH
2616	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	О	н	4'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2617	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₂	О	Н	4'	NMe
2618	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	0	Н	4'	NMe
2619	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	4'	(CH ₂) ₅ OH
2620	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	0	H	4'	4-OH-Ph
2621	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	O	Н	4'	2-Py
2622	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	H	4'	3-Py
2623	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	4'	4-Py
2624	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	4'	4-NH ₂ -Ph
2625	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	4'	4-NO ₂ -Ph
2626	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	4'	3-NH ₂ -Ph
2627	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	Н	4'	3-NO ₂ -Ph
2628_	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	H	4'	2-NH ₂ -Ph
2629	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	Н	4'	2-NO ₂ -Ph
2630	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	4'	CH ₂ -2-Py
2631	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	H	4'	CH ₂ -3-Py
2632	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	0	Н	4'	CH ₂ -4-Py
2633	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	О	Н	4'	NH
2634	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	О	н	4'	NH
2635	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	О	Н	4'	NMe
2636	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	О	Н	4'	NMe
2637	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	4'	(CH ₂) ₅ OH
2638	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	4'	4-OH-Ph
2639	4-OMe-5-(2-N-morpholinoethoxy)	OEt		О	Н	3'	Bn
2640	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	2-Py
2641	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	3'	3-Ру
2642	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	4-Py
2643	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	4-NO ₂ -Ph
2644	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
2645	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	3-NO ₂ -Ph
2646	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	3'	2-NH ₂ -Ph
2647	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	2-NO ₂ -Ph
2648	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	CH ₂ -2-Py
2649	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3,	CH ₂ -3-Py
2650	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3,	CH ₂ -4-Py
2651	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	3,	NH

2652	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	3'	NH
2653	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	3'	NMe
2654	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	3'	NMe
2655	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	3'	$(CH_2)_5OH$
2656	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	3'	4-OH-Ph
2657	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	3'	2-Py
2658	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	3'	3-Py
2659	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	3'	4-Py
2660	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	3'	4-NH ₂ -Ph
2661	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	3'	4-NO ₂ -Ph
2662	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	3'	3-NH ₂ -Ph
2663	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	3-NO ₂ -Ph
2664	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	2-NH ₂ -Ph
2665	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	2-NO ₂ -Ph
2666	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -2-Py
2667	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -3-Py
2668	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -4-Py
2669	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3,	NH
2670	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3,	NH NH
2671	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	NMe
2672	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	Н	3'	NMe
2673	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	3'	(CH ₂) ₅ OH
2674	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	3'	4-OH-Ph
2675	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3,	2-Py
2676	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	3'	3-Py
2677	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	3'	4-Py
2678	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	3'	4-NH ₂ -Ph
2679	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3'	4-NO ₂ -Ph
2680	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3'	3-NH ₂ -Ph
2681	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3'	3-NO ₂ -Ph
2682	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	3'	2-NH ₂ -Ph
2683	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3'	2-NO ₂ -Ph
2684	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	(CH ₂) ₂	NH	Н	3'	CH ₂ -2-Py
2685	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	3,	CH ₂ -3-Py
2686	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3'	CH ₂ -4-Py
2687	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	3,	NH
2688	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	3,	Дин
2689	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	3,	NMe

			•	1			
2690	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	н	3,	NMe
2691	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	3,	(CH ₂) ₅ OH
2692	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	3,	4-OH-Ph
2693	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	3'	2-Py
2694	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	3,	3-Py
2695	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	3,	4-Py
2696	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	4-NH ₂ -Ph
2697	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	4-NO ₂ -Ph
2698	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	3-NH ₂ -Ph
2699	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	3-NO ₂ -Ph
2700	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	2-NH ₂ -Ph
2701	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	2-NO ₂ -Ph
2702	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	CH ₂ -2-Py
2702	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$ $(CH_2)_3$	NH	H	3,	CH ₂ -3-Py
	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂		NH	H	3,	CH ₂ -4-Py
2704	4-OME-3-(2-N-morphormoemoxy)	11112	$(CH_2)_3$	1411	11	<u> </u>	C112-4-1 y
2705	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	3'	NH
2706	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	3'	NH NH
2707	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	3,	NMe
2708	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	3'	NMe
2709	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	3,	(CH ₂) ₅ OH
2710	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	3'	4-OH-Ph
2711	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	3'	2-Py
2712	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	H	3'	3-Py
2713	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	3'	4-Py
2714	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	H	3'	4-NH ₂ -Ph
2715	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	3'	4-NO ₂ -Ph
2716	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	3'	3-NH ₂ -Ph
2717	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	3'	3-NO ₂ -Ph
2718	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	3'	2-NH ₂ -Ph
2719	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	3'	2-NO ₂ -Ph
2720	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	3'	CH ₂ -2-Py
2721	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	Н	3'	CH ₂ -3-Py
2722	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	3'	CH ₂ -4-Py
2723	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	О	н	3'	NH
2724	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	3'	NH NH
2725	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	3,	NMe
2726	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	H	3'	NMe
2727	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	3'	(CH ₂) ₅ OH
2728	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	3,	4-OH-Ph
2729	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	ō	Н	3'	2-Py
2730	4-OMe-5-(2-N-morpholinoethoxy)	OEt		0	H	3'	3-Py
	1		·2/3			' '	,

0701	4 OM - 5 (O N amb alimenth ann)	OEt	$(CH_2)_3$	Ιo	Н	3,	4-Py
2731	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$\frac{(CH_2)_3}{(CH_2)_3}$	0	H	3,	4-NH ₂ -Ph
2732	4-OMe-5-(2-N-morpholinoethoxy)			0	Н	3,	4-NO ₂ -Ph
2733	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	3,	3-NH ₂ -Ph
2734	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$\frac{(CH_2)_3}{CH_2}$			3,	3-NH ₂ -PH 3-NO ₂ -Ph
2735	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	Н		
2736	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	3'	2-NH ₂ -Ph
2737	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	H	3'	2-NO ₂ -Ph
2738	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	3'	CH ₂ -2-Py
2739	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	3'	CH ₂ -3-Py
2740	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	3'	CH ₂ -4-Py
2741	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	О	Н	3'	NH
2742	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	3'	NH
2743	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	О	Н	3'	NMe
2744	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	О	Н	3'	NMe
2745	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	Н	3'	(CH ₂) ₅ OH
2746	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	3,	4-OH-Ph
2747	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	H	3'	2-Py
2748	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	3,	3-Py
2749	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	3'	4-Py
2750	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	О	Н	3'	4-NH ₂ -Ph
2751	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	3'	4-NO ₂ -Ph
2752	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	О	H	3'	3-NH ₂ -Ph
2753	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	O	Н	3'	3-NO ₂ -Ph
2754	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	H	3'	2-NH ₂ -Ph
2755	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	O	Н	3'	2-NO ₂ -Ph
2756	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	H	3'	CH ₂ -2-Py
2757	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	3'	CH ₂ -3-Py
2758	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	3'	CH ₂ -4-Py
2759	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	0	Н	3'	NH
2760	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	Н	3'	NH
2761	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	Н	3,	NMe
2762	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	Н	3'	NMe
2763	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	О	Н	3'	(CH ₂) ₅ OH
2764	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	3'	4-OH-Ph
2765	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	Н	3'	2-Py
2766	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	Н	3'	3-Py
2767	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	3'	4-Py
2768	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	О	Н	3'	4-NH ₂ -Ph
2769	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	О	Н	3,	4-NO ₂ -Ph
2770	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	О	Н	3,	3-NH ₂ -Ph
2771	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	Н	3,	3-NO ₂ -Ph
2772		NH ₂		0	Н	3'	2-NH ₂ -Ph
	, , , , , , , , , , , , , , , , , , , ,		, .	•	•		

2773	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	Ιο	н	3,	2-NO ₂ -Ph
2774	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	o	H	3,	CH ₂ -2-Py
2775	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	ō	Н	3,	CH ₂ -3-Py
2776	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	ō	Н	3,	CH ₂ -4-Py
2777	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	Н	3,	NH NH
2778	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	Н	3'	NH
2779	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	0	Н	3,	NMe
2780	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	3,	NMe
2781	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	3'	(CH ₂) ₅ OH
2782	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	О	Н	3'	4-OH-Ph
2783	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	2-Py
2784	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	3-Py
2785	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	4-Py
2786	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	4-NH ₂ -Ph
2787	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	4-NO ₂ -Ph
2788	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	3'	3-NH ₂ -Ph
2789	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	3'	3-NO ₂ -Ph
2790	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	2-NH ₂ -Ph
2791	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	2-NO ₂ -Ph
2792	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	CH ₂ -2-Py
2793	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	3'	CH ₂ -3-Py
2794	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH_	H	3'	CH ₂ -4-Py
2795	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₂	NH	Н	3'	NH
2796	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	NH	Н	3'	NH
2797	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	NH	Н	3'	NMe
2798	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	NH	Н	3'	NMe
2799	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	3'	(CH ₂) ₅ OH
2800	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	3'	4-OH-Ph
2801	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	3'	2-Py
2802	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	3'	3-Py
2803	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	3'	4-Py
2804	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	3'	4-NH ₂ -Ph
2805	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	Н	3'	4-NO ₂ -Ph
_2806	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	3'	3-NH ₂ -Ph
2807	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	Н	3'	3-NO ₂ -Ph
_2808	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	3'	2-NH ₂ -Ph
_2809	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	3'	2-NO ₂ -Ph
2810	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	3'	CH ₂ -2-Py
2811	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	Н	3'	CH ₂ -3-Py
2812	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	3,	CH ₂ -4-Py
2813	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	NH	Н	3'	NH

2814	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	NH	н	3'	NH NH
2815	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₃	NH	Н	3,	NMe
2816	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	NH	Н	3'	NMe
2817	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	3'	(CH ₂) ₅ OH
2818	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	3'	4-OH-Ph
2819	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3'_	2-Py
2820	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3'	3-Py
2821	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3'	4-Py
2822	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3'	4-NH ₂ -Ph
2823	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	3'	4-NO ₂ -Ph
2824	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3'	3-NH ₂ -Ph
2825	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	3'	3-NO ₂ -Ph
2826	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	3'	2-NH ₂ -Ph
2827	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	O	Н	3'	2-NO ₂ -Ph
2828	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3,	CH ₂ -2-Py
2829	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	3'	CH ₂ -3-Py
2830	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	3'	CH ₂ -4-Py
2831	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	О	Н	3'	NH
2832	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₂	О	Н	3'	NH
2833	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₂	О	Н	3'	NMe
2834	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₂	О	Н	3'	NMe
2835	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	О	Н	3'	(CH ₂) ₅ OH
2836	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	O	H	3'	4-OH-Ph
2837	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	H	3'	2-Py
2838	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0_	Н	3'	3-Ру
2839	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	3'	4-Py
2840	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	3'	4-NH ₂ -Ph
2841	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	3'	4-NO ₂ -Ph
2842	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(CH_2)_3$	0	Н	3'	3-NH ₂ -Ph
2843	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	3'	3-NO ₂ -Ph
2844	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	3'	2-NH ₂ -Ph
2845	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	3'	2-NO ₂ -Ph
2846	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	3,	CH ₂ -2-Py
2847	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	3'	CH ₂ -3-Py
2848	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	3'	CH ₂ -4-Py
2849	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	О	Н	3'	NH
2850	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	О	Н	3'	Уин
2851	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	0	Н	3'	NMe

	,				ı	1	
2050	4 ON 5 (2 N morpholipoethovy)	CH ₃	$(CH_2)_3$	0	н	3,	$\mathcal{I}_{\mathrm{NMe}}$
2852	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(C112)3				\
2853	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	3,	(CH ₂) ₅ OH
2854	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	3,	4-OH-Ph
2855	4-OMe-5-(2-N-morpholinoethoxy)	OEt	-	0	Н	2'	Bn
	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	Н	2'	2-Py
2856	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	Н	2'	3-Py
2857	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	2'	4-Py
2858	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	2'	4-NO ₂ -Ph
2859	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	2'	3-NH ₂ -Ph
2860	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	2'	3-NO ₂ -Ph
2861	4 OMa 5 (2 N morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	2'	2-NH ₂ -Ph
2862	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	Н	2'	2-NO ₂ -Ph
2863	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	2,	CH ₂ -2-Py
2864	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	 2',	CH ₂ -3-Py
2865	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	2,	CH ₂ -4-Py
2866	4-OMe-5-(2-N-morpholinoethoxy)	OEC	(C112)2	1,121			^
2867	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	н	2'	∫ j⁄ιн
							~
2868	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	H	2'	Lyh
2000				ļ	ļ		
		OF	(CII)	NH	н	2'	
2869	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	**	2	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		\vdash		<u> </u>			
2870	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	NH	н	2'	NMe
2070						- 01	(CII) OII
2871	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	(CH ₂) ₅ OH
2872	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	NH	H	2'	4-OH-Ph
2873	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	2-Py
2874	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2'	3-Py
2875	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	4-Py 4-NH ₂ -Ph
2876	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2'	
2877	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2'	4-NO ₂ -Ph 3-NH ₂ -Ph
2878	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2'	
2879	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	3-NO ₂ -Ph
2880	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH_	H	2'	2-NH ₂ -Ph
2881	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2'	2-NO ₂ -Ph
2882	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
2883	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2,	CH ₂ -3-Py CH ₂ -4-Py
_2884	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH_	H	2	C112-4-1 y
0005	4 OM 5 (2 N mambalingethoxy)	OEt	$(CH_2)_3$	NH	Н	2,	NH
2885	4-OMe-5-(2-N-morpholinoethoxy)	OE	(C112)3	1111		_	VN⊓
		†					
2886	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	H	2'	/ //
	, i	ļ			<u> </u>		
	Land Section 1	OF	(CH)	NH	Н	2,	
2887	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	1,11	**	~	VMe
		+			1		$\overline{}$
2888	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	NH	Н	2'	NMe
2000					1 ==	 	(CII) OII
2889			$(CH_2)_3$	NH	H	2'	(CH ₂) ₅ OH
2890	4-OMe-5-(2-N-morpholinoethoxy)		$(CH_2)_3$	NH	H	2'	4-OH-Ph
2891		NH ₂	$(CH_2)_2$	NH	H	2'	2-Py
2892			$(CH_2)_2$	NH	H	2'	3-Ру
	· -						

2893	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	2'	4-Py
2894	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂		NH	H	2,	4-NH ₂ -Ph
2895	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂		NH	H	2,	4-NO ₂ -Ph
2896	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	2'	3-NH ₂ -Ph
2897	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	2,	3-NO ₂ -Ph
2898	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	2,	2-NH ₂ -Ph
2899	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	2,	2-NO ₂ -Ph
2900	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	2,	CH ₂ -2-Py
2901	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	2,	CH ₂ -3-Py
2902	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	H	2,	CH ₂ -4-Py
2903	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	2,	NH
						 	
2904	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	H	2'	/NH
2905	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
2906	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
2907	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	2,	(CH ₂) ₅ OH
2908	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	NH	Н	2'	4-OH-Ph
2909	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_3$	NH	H	2,	2-Py
2910	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	2'	3-Py
2911	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	5,	4-Py
2912	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	2'	4-NH ₂ -Ph
2913	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	2,	4-NO ₂ -Ph
2914	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
2915	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	2'	3-NO ₂ -Ph
2916	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	2'	2-NH ₂ -Ph
2917	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	2'	2-NO ₂ -Ph
2918	4-OMe-5-(2-N-morpholinoethoxy) 4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	H	2'	CH ₂ -2-Py
2919 2920	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH NH	Н	2,	CH ₂ -3-Py
2920	4-OME-3-(2-IN-IIIOI pholificethoxy)	11112	$(CH_2)_3$	1017	H		CH ₂ -4-Py
2921	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	2,	NH
2922	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	Н	2'	NH
2923	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	NH	н	2'	NMe
2924	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	2'	NMe
2925	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	NH	Н	2'	(CH ₂) ₅ OH
2926	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_3$	NH	Н	2'	4-OH-Ph
2927	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	Н	2,	2-Py
2928	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2'	3-Py
2929	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	H	2'	4-Py
2930	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	Н	2'	4-NH ₂ -Ph
2931	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	О	Н	2'	4-NO ₂ -Ph
2932	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2'	3-NH ₂ -Ph
2933	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	2'	3-NO ₂ -Ph
2934	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2'	$2-NH_2-Ph$

2935	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2,	2-NO ₂ -Ph
2936	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2'	CH ₂ -2-Py
2937	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	2,	CH ₂ -3-Py
2938	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2,	CH ₂ -4-Py
2939	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	2'	NH NH
2940	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	н	2'	NH
2941	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	0	Н	2'	NMe
2942	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₂	О	н	2'	NMe
2943	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	Н	2'	(CH ₂) ₅ OH
2944	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_2$	0	H	2'	4-OH-Ph
2945	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	2-Py
2946	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	3-Py
2947	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	О	Н	2,	4-Py
2948	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	4-NH ₂ -Ph
2949	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	O	H	2'	4-NO ₂ -Ph
2950	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	3-NH ₂ -Ph
2951	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	3-NO ₂ -Ph
2952	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	O	H	2'	2-NH ₂ -Ph
2953	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	О	H	2'	2-NO ₂ -Ph
2954	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	О	H	2'	CH ₂ -2-Py
2955	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	O	H	2'	CH ₂ -3-Py
2956	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	CH ₂ -4-Py
2957	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	О	Н	2'	NH
2958	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	2'	NH
2959	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	2'	NMe
2960	4-OMe-5-(2-N-morpholinoethoxy)	OEt	(CH ₂) ₃	0	Н	2,	NMe
2961	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	(CH ₂) ₅ OH
2962	4-OMe-5-(2-N-morpholinoethoxy)	OEt	$(CH_2)_3$	0	H	2'	4-OH-Ph
2963	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	H.	2'	2-Py
2964	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	<u>O</u>	H	2'	3-Ру
2965	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	<u>o</u>	H	2'	4-Py
2966	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_2$	0	H	2'	4-NH ₂ -Ph
2967	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_2$	0	H	2'	4-NO ₂ -Ph
2968	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	(CH ₂) ₂	_0	Н	2'	3-NH ₂ -Ph
2969	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	0	Н	2'	3-NO ₂ -Ph
2970	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_2$	0	Н	2'	2-NH ₂ -Ph
2971	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_2$	0	H	2'	2-NO ₂ -Ph
2972		NH_2	$(CH_2)_2$	О	Н	2'	CH ₂ -2-Py
2973		NH_2	$(CH_2)_2$	0	Н	2'	CH ₂ -3-Py
2974	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_2$	0	Н	2'	CH ₂ -4-Py
2975	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	Н	2'	NH

2976	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	н	2'	NH
2977	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	Н	2'	NMe
2978	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₂	О	Н	2'	NMe
2979	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	О	Н	2'	(CH ₂) ₅ OH
2980	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_2$	O	<u>H</u>	2'	4-OH-Ph
2981	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	Н	2'	2-Py
2982	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	Н	2'	3-Py
2983	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	(CH ₂) ₃	0	H	2'	4-Py
2984	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	(CH ₂) ₃	О	H	2'	4-NH ₂ -Ph
2985	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_3$	0	Н	2'	4-NO ₂ -Ph
2986	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_3$	0	H	2'	3-NH ₂ -Ph
2987	4-OMe-5-(2-N-morpholinoethoxy)	NH_2	$(CH_2)_3$	0	H	2'	3-NO ₂ -Ph
2988	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	H	2'	2-NH ₂ -Ph
2989	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	О	H	2'	2-NO ₂ -Ph
2990	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	H	2'	CH ₂ -2-Py
2991	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	H	2'	CH ₂ -3-Py
2992	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	H	2'	CH ₂ -4-Py
2993	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	н	2'	NH
2994	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	2'	NH
2995	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
2996	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
2997	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	O	Н	2'	(CH ₂) ₅ OH
2998	4-OMe-5-(2-N-morpholinoethoxy)	NH ₂	$(CH_2)_3$	0	H	2'	4-OH-Ph
2999	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	2'	2-Py
3000	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	2'	3-Py
3001	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	2'	4-Py
3002	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	2'	4-NH ₂ -Ph
3003	4-OMe-5-(2-N-morpholinoethoxy)	CH_3	$(CH_2)_2$	NH	Н	2'	4-NO ₂ -Ph
3004	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	2'	3-NH ₂ -Ph
3005	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	Н	2'	3-NO ₂ -Ph
3006	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	2'	2-NH ₂ -Ph
3007	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	2'	2-NO ₂ -Ph
3008	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	2'_	CH ₂ -2-Py
3009	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	H	2'_	CH ₂ -3-Py
3010	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	Н	2'	CH ₂ -4-Py
3011	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	н	2'	NH
3012	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	Н	2'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3013	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	Н	2'	NMe

	•		1		1	1	
3014	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	2,	NMe
3015	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	NH	Н	2'	(CH ₂) ₅ OH
3015	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	NH	Н	2,	4-OH-Ph
3017	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2,	2-Py
3017	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2'	3-Py
	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2'	4-Py
3019	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2,	4-NH ₂ -Ph
3020	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	H	2'	4-NO ₂ -Ph
3021	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2,	3-NH ₂ -Ph
3022	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2'	3-NO ₂ -Ph
3023	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2'	2-NH ₂ -Ph
3024 3025	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	H	2'	2-NO ₂ -Ph
3025	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	Н	2'	CH ₂ -2-Py
	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	H	2'	CH ₂ -3-Py
3027 3028	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	2'	CH ₂ -4-Py
3028	4-OME-3-(2-14-morphormoemoxy)	0113	(0112/3				
3029	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	Н	2'	
3030	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	NH	Н	2'	NH
3031	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	NH	Н	2'	NMe
3032	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₃	NH	Н	2'	NMe
3033	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H	2'	(CH ₂) ₅ OH
3034	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	NH	H_	2'	4-OH-Ph
3035	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	2-Py
3036	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	3-Py
3037	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	4-Py
3038	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	4-NH ₂ -Ph
3039	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	4-NO ₂ -Ph
3040	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	3-NH ₂ -Ph
3041	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	3-NO ₂ -Ph
3042	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	2-NH ₂ -Ph
3043	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	2-NO ₂ -Ph
3044	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	0	H	2'	CH ₂ -2-Py
3045	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	CH ₂ -3-Py
3046	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	H	2'	CH ₂ -4-Py
3047	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	О	н	2'	NH
3048	4-OMe-5-(2-N-morpholinoethoxy)	СН3	(CH ₂) ₂	0	н	2'	NH
3049	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₂	О	Н	2'	NMe
3050	4-OMe-5-(2-N-morpholinoethoxy)	СН₃	(CH ₂) ₂	0	Н	2'	NMe
3051	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	О	Н	2,	(CH ₂) ₅ OH
3052	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_2$	0	Н	2,	4-OH-Ph
3053	4-OMe-5-(2-N-morpholinoethoxy)			0	Н	2'	2-Py
3054		_		O	Н	2,	3-Ру
3034	7 - OMC-3-(2:14 morphormoemoxy)	1 - 2 2 3	1 (-1.2/3		•.	•	

3055	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	н	2'	4-Py
3056	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	H	2'	4-NH ₂ -Ph
3057	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	2,	4-NO ₂ -Ph
3058	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	O	Н	2'	3-NH ₂ -Ph
	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	2'	3-NO ₂ -Ph
3059		CH ₃	$(CH_2)_3$ $(CH_2)_3$	0	H	2'	2-NH ₂ -Ph
3060	4-OMe-5-(2-N-morpholinoethoxy)			0	H	2'	2-NO ₂ -Ph
3061	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	H	2'	CH ₂ -2-Py
3062	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	2'	CH ₂ -2-1 y CH ₂ -3-Py
3063	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	Н	2,	CH ₂ -4-Py
3064	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0	п		C112-4-F y
3065	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	O	н	2'	NH
3066	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	0	Н	2'	NH NH
3067	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	(CH ₂) ₃	О	Н	2'	NMe
3068	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	Н	2'	NMe
3069	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	О	Н	2'	(CH ₂) ₅ OH
3070	4-OMe-5-(2-N-morpholinoethoxy)	CH ₃	$(CH_2)_3$	0_	Н	2'	4-OH-Ph
3071	4-OH-5-OMe	OEt	-	О	H	4'	Bn
3072	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	2-Py
3073	′ 4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	3-Py
3074	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	4-Py
3075	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	4-NO ₂ -Ph
3076	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	3-NH ₂ -Ph
3077	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	3-NO ₂ -Ph
3078	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	2-NH ₂ -Ph
3079	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	2-NO ₂ -Ph
3080	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	4'	CH ₂ -2-Py
3081	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -3-Py
3082	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
3083	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	
3084	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NH
3085	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NMe
3086	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NMe
3087	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
3088	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	4'	4-OH-Ph
3089	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	2-Py
3090	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	3-Ру
3091	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	4-Py
3092	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	4-NH ₂ -Ph
3093	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	4-NO ₂ -Ph
3094	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	3-NH ₂ -Ph
3095	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	3-NO ₂ -Ph
3096	4-OH-5-OMe	OEt		NH	Н	4'	2-NH ₂ -Ph
	1	•		•			

3097	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	н	4'	2-NO ₂ -Ph
3098	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	CH ₂ -2-Py
3099	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -3-Py
3100	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
3101	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	NH
3102	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	NH
3103	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	NMe
3104	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	NMe
3105	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	(CH ₂) ₅ OH
3106	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	4'	4-OH-Ph
3107	4-OH-5-OMe	NH_2	$(CH_2)_2$	NH	Н	4'	2-Py
3108	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	3-Py
3109	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	4-Py
3110	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-NH ₂ -Ph
3111	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4'	4-NO ₂ -Ph
3112	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	4' 4'	3-NH ₂ -Ph 3-NO ₂ -Ph
3113	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	2-NH ₂ -Ph
3114	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH NH	H	4'	2-NO ₂ -Ph
3115	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	4'	CH ₂ -2-Py
3116	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	CH ₂ -2-1 y CH ₂ -3-Py
3117	4-OH-5-OMe	NH ₂	$(CH_2)_2$ $(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
3118	4-OH-5-OMe 4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
3120	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
3121	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
3122	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
3123	4-OH-5-OMe	NH ₂		NH	H	4'	(CH ₂) ₅ OH
3124	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	4-OH-Ph
3125	4-OH-5-OMe	NH ₂		NH	H	4'	2-Py
3126	4-OH-5-OMe	NH ₂		NH	H	4'	3-Py
3127	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
3128	4-OH-5-OMe	NH ₂		NH	H	4'	4-NH ₂ -Ph
. 3129	4-OH-5-OMe	NH ₂		NH	H	4'	4-NO ₂ -Ph
3130	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	3-NH ₂ -Ph
3131	4-OH-5-OMe	NH ₂		NH	H	4'	3-NO ₂ -Ph
3132	4-OH-5-OMe	NH ₂		NH	H	4'	2-NH ₂ -Ph
3133	4-OH-5-OMe	NH ₂		NH	H	4'	2-NO ₂ -Ph
3134	4-OH-5-OMe	NH ₂		NH	H	4'	CH ₂ -2-Py
3135	4-OH-5-OMe	NH ₂		NH	H	4'	CH ₂ -3-Py
3136	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	H	 4 -	CH ₂ -4-Py
3137	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	NH

3138	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	н	4'	NH
3139	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
3140	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
3141	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	$(CH_2)_5OH$
3142	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	4-OH-Ph
3143	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	2-Py
3144	4-OH-5-OMe	OEt	$(CH_2)_2$	0_	H	4'	3-Py
3145	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	4'	4-Py
3146	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	4-NH ₂ -Ph
3147	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	4'	4-NO ₂ -Ph
3148	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	3-NH ₂ -Ph
3149	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	3-NO ₂ -Ph
3150	4-OH-5-OMe	OEt	$(CH_2)_2$	0	H	4'	2-NH ₂ -Ph
3151	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	4'	2-NO ₂ -Ph
3152	4-OH-5-OMe	OEt	$(CH_2)_2$	0	H	4'	CH ₂ -2-Py
3153	4-OH-5-OMe	OEt	$(CH_2)_2$	0	H	4'	CH ₂ -3-Py
3154	4-OH-5-OMe	OEt	$(CH_2)_2$	O	Н	4'	CH ₂ -4-Py
3155	4-OH-5-OMe	OEt	$(CH_2)_2$	0	н	4'	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3156	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	4'	NH
3157	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	4'	NMe
3158	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	4'	NMe
3159	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	4'	(CH ₂) ₅ OH
3160	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	4-OH-Ph
3161	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	2-Py
3162	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	3-Py
3163	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	4-Py
3164	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	4-NH ₂ -Ph
3165	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	4-NO ₂ -Ph
3166	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	4'	3-NH ₂ -Ph
3167	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	3-NO ₂ -Ph
3168	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	2-NH ₂ -Ph
3169	4-OH-5-OMe	OEt	(CH ₂) ₃	O	Н	4'	2-NO ₂ -Ph
3170	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	CH ₂ -2-Py
3171	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	4'	CH ₂ -3-Py
3172	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	4'	CH ₂ -4-Py
3173	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	NH
3174	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	NH
3175	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	NMe

1		1 1	<u>(</u>	1			\ \
3176	4-OH-5-OMe	OEt	$(CH_2)_3$	О	н	4'	NMe
3177	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	(CH ₂) ₅ OH
3178	4-OH-5-OMe	OEt	$(CH_2)_3$	O	Н	4'	4-OH-Ph
3179	4-OH-5-OMe	NH ₂	$(CH_2)_2$	O	Н	4'	2-Py
3180	4-OH-5-OMe	NH ₂	$(CH_2)_2$	ō	Н	4'	3-Py
	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	4'	4-Py
3181	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	4'	4-NH ₂ -Ph
3182		NH ₂	$(CH_2)_2$	0	H	4'	4-NO ₂ -Ph
3183	4-OH-5-OMe	NH ₂		0	H	4'	3-NH ₂ -Ph
3184	4-OH-5-OMe		$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
3185	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	4'	2-NH ₂ -Ph
3186	4-OH-5-OMe	NH ₂	(CH ₂) ₂		Н	4'	
3187	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0			2-NO ₂ -Ph
3188	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	CH ₂ -2-Py
3189	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	H	4'	CH ₂ -3-Py
3190	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	CH ₂ -4-Py
3191	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	NH
3192	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	NH
3193	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	NMe
3194	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	4'	NMe
3195	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	(CH ₂) ₅ OH
3196	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	4'	4-OH-Ph
3197	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	2-Py
3198	4-OH-5-OMe	NH ₂	$(CH_2)_3$	0	Н	4'	3-Ру
3199	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	4'	4-Py
3200	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	4-NH ₂ -Ph
3201	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	4-NO ₂ -Ph
3202	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	3-NH ₂ -Ph
3203	4-OH-5-OMe	NH ₂		0	Н	4'	3-NO ₂ -Ph
3204	4-OH-5-OMe	NH ₂		0	Н	4'	2-NH ₂ -Ph
3205	4-OH-5-OMe	NH ₂		0	Н	4'	2-NO ₂ -Ph
3206	4-OH-5-OMe	NH ₂		0	H	4'	CH ₂ -2-Py
3207	4-OH-5-OMe	NH ₂		0	Н	4'	CH ₂ -3-Py
3208	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	CH ₂ -4-Py
3209	4-OH-5-OMe	NH ₂		0	Н	4'	NH
3210	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	NH
3211	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	NMe
3212	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
3213	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	4'	(CH ₂) ₅ OH
3214	4-OH-5-OMe	NH ₂		0	Н	4'	4-OH-Ph
3215	4-OH-5-OMe	CH ₃		NH	Н	4'	2-Py
3216	4-OH-5-OMe	CH ₃		NH	Н	4'	3-Py
5210	1 011 5 01110	1 0113	1 (-3.2/2	1	,		, , ,

1		Lorr	(011)	1 2777		1 41	1 4 m
3217	4-OH-5-OMe	CH ₃		NH	H	4'	4-Py
3218	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	4'	4-NH ₂ -Ph
3219	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	4-NO ₂ -Ph
3220	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	3-NH ₂ -Ph
3221	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	3-NO ₂ -Ph
3222	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	2-NH ₂ -Ph
3223	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	2-NO ₂ -Ph
3224	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	CH ₂ -2-Py
3225	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	4'	CH ₂ -3-Py
3226	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	CH ₂ -4-Py
3227	4-OH-5-OMe	СН3	(CH ₂) ₂	NH	н	4'	\times_\text{NH}
3228	4-OH-5-OMe	СН3	(CH ₂) ₂	NH	Н	4'	NH
3229	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	4'	NMe
3230	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	н	4'	NMe
3231	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	(CH ₂) ₅ OH
3232	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	4-OH-Ph
3233	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	2-Py
3234	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	3-Py
3235	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	4-Py
3236	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	4-NH ₂ -Ph
3237	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	4-NO ₂ -Ph
3238	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	3-NH ₂ -Ph
3239	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	3-NO ₂ -Ph
3240	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	2-NH ₂ -Ph
3241	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	2-NO ₂ -Ph
3242	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	CH ₂ -2-Py
3243	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	CH ₂ -3-Py
3244	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
3245	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	4'	NH
3246	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	4'	NH
3247	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	4'	NMe
3248	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н -	4'	NMe
3249	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	(CH ₂) ₅ OH
3250	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	4'	4-OH-Ph
3251	4-OH-5-OMe	CH ₃	$(CH_2)_2$	О	Н	4'	2-Py
3252	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	4'	3-Ру
3253	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	4-Py
3254	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	4-NH ₂ -Ph
3255	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	4-NO ₂ -Ph
3256	4-OH-5-OMe	CH ₃	$(CH_2)_2$	O	Н	4'	3-NH ₂ -Ph
3257	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
3258	4-OH-5-OMe	CH ₃		ō	H	4'	2-NH ₂ -Ph
5250	1 on 5 one	1 0113	() 1//	, ,	,	'	

3259	4-OH-5-OMe	CH ₃	$(CH_2)_2$	o l	нΙ	4' !	2-NO ₂ -Ph
	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_2}{(CH_2)_2}$	- ŏ	Н	4'	CH ₂ -2-Py
3260		CH ₃	$(CH_2)_2$	0	Н	4'	CH ₂ -3-Py
3261	4-OH-5-OMe			0	H	4'	CH ₂ -4-Py
3262	4-OH-5-OMe	CH ₃	$(CH_2)_2$		11		
3263	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	н	4'	
3264	4-OH-5-OMe	СН3	(CH ₂) ₂	О	Н	4'	NH
3265	4-OH-5-OMe	СН3	(CH ₂) ₂	О	Н	4'	NMe
3266	4°OH-5-OMe	CH ₃	(CH ₂) ₂	О	Н	4'	NMe
3267	4-OH-5-OMe	CH ₃	$(CH_2)_2$	О	Н	4'	(CH ₂) ₅ OH
3268	4-OH-5-OMe	CH ₃	$(CH_2)_2$	О	H	4'	4-OH-Ph
3269	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	2-Py
3270	4-OH-5-OMe	CH ₃	$(CH_2)_3$	О	H	4'	3-Py
3271	4-OH-5-OMe	CH ₃	$(CH_2)_3$. O	Н	4'	4-Py
3272	4-OH-5-OMe	CH ₃	$(CH_2)_3$	О	Н	4'	4-NH ₂ -Ph
3273	4-OH-5-OMe	CH ₃	$(CH_2)_3$	О	H	4'	4-NO ₂ -Ph
3274	4-OH-5-OMe	CH ₃	(CH ₂) ₃	0	Н	4'	3-NH ₂ -Ph
3275	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	4'	3-NO ₂ -Ph
3276	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	4'	2-NH ₂ -Ph
3277	4-OH-5-OMe	CH_3	$(CH_2)_3$	0	Н	4'	2-NO ₂ -Ph
3278	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	4'	CH ₂ -2-Py
3279	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	4'	CH ₂ -3-Py
3280	4-OH-5-OMe	CH ₃	(CH ₂) ₃	0	H	4'	CH ₂ -4-Py
3281	4-OH-5-OMe	СН3	(CH ₂) ₃	О	Н	4'	NH
3282	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	4'	NH
3283	4-OH-5-OMe	СН3	(CH ₂) ₃	О	Н	4'	NMe
3284	4-OH-5-OMe	СН3	(CH ₂) ₃	О	Н	4'	NMe
3285	4-OH-5-OMe	CH ₃		0	H	4'	(CH ₂) ₅ OH
3286	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	4-OH-Ph
3287	4-OH-5-OMe	OEt	-	0	H	3'	Bn
3288	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	3,	2-Py
3289	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	3'	3-Py
3290	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H_	3'	4-Py
3291	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	3'	4-NO ₂ -Ph
3292	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	3,	3-NH ₂ -Ph
3293	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	3,	3-NO ₂ -Ph
3294	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	3'	2-NH ₂ -Ph
3295	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	H	3'	2-NO ₂ -Ph
3296	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	3'	CH ₂ -2-Py
3297	4-OH-5-OMe	OEt		NH	Н	3'	CH ₂ -3-Py
3298	4-OH-5-OMe	OEt		NH	Н	3'	CH ₂ -4-Py
3299	4-OH-5-OMe	OEt		NH	Н	3,	NH

3300	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	н	3'	NH N
3301	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	3,	NMe
3302	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	3,	NMe
3303	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
3304	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	3'	4-OH-Ph
3305	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	2-Py
3306	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	3-Py
3307	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	4-Py
3308	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	4-NH ₂ -Ph
3309	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	4-NO ₂ -Ph
3310	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	3-NH ₂ -Ph
3311	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	3-NO ₂ -Ph
3312	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	2-NH ₂ -Ph
3313	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	2-NO ₂ -Ph
3314	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -2-Py
3315	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -3-Py
3316	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	CH ₂ -4-Py
3317	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	NH
3318	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	NH
3319	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	NMe
3320	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3,	NMe
3321	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	3'	(CH ₂) ₅ OH
3322	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	4-OH-Ph
3323	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	2-Py
3324	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	3-Py
3325	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	4-Py
3326	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	3'	4-NH ₂ -Ph
3327	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	4-NO ₂ -Ph
3328	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	3-NH ₂ -Ph
3329	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
3330	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	2-NH ₂ -Ph
3331	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	2-NO ₂ -Ph
3332	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -2-Py
3333	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -3-Py
3334	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -4-Py
3335	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
3336	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
3337	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	NMe

				•			1
3338	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	н	3'	NMe
3339	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	(CH ₂) ₅ OH
3340	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	4-OH-Ph
3341	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3,	2-Py
3342	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3,	3-Py
3343	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	4-Py
3344	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	H	3'	4-NH ₂ -Ph
3345	4-OH-5-OMe	NH ₂	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	H	3'	4-NO ₂ -Ph
	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	H	3,	3-NH ₂ -Ph
3346	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	3-NO ₂ -Ph
3347	4-OH-5-OMe	NH ₂	$(CH_2)_3$ $(CH_2)_3$	NH	Н	3'	2-NH ₂ -Ph
3348				NH	H	3,	2-NO ₂ -Ph
3349	4-OH-5-OMe	NH ₂	$\frac{(CH_2)_3}{(CH_1)}$	NH	H	3,	CH ₂ -2-Py
3350	4-OH-5-OMe	NH ₂	$\frac{(CH_2)_3}{CH_3}$	NH	Н	3'	
3351	4-OH-5-OMe	NH ₂	$\frac{(CH_2)_3}{CH_2}$	NH		3'	CH_2 -3-Py CH_2 -4-Py
3352	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH_	H	3	Cn ₂ -4-Fy
3353	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	н	3,	NH NH
3354	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	\
3355	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	NMe
3356	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	NMe
3357	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
3358	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	4-OH-Ph
3359	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	3'	2-Py
3360	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	3'	3-Py
3361	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	3'	4-Py
3362	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	3'	4-NH ₂ -Ph
3363	4-OH-5-OMe	OEt	$(CH_2)_2$	О	H	3'	4-NO ₂ -Ph
3364	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	3'	3-NH ₂ -Ph
3365	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	3'	3-NO ₂ -Ph
3366	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	3'	2-NH ₂ -Ph
3367	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	3'	2-NO ₂ -Ph
3368	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	3,	CH ₂ -2-Py
3369	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	3'	CH ₂ -3-Py
3370	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	3'	CH ₂ -4-Py
3371	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	3'	√NH
3372	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	3'	NH NH
3373	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	3,	NMe
3374	4-OH-5-OMe	OEt	(CH ₂) ₂	O,	Н	3'	NMe
3375	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	3,	(CH ₂) ₅ OH
3376	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	3,	4-OH-Ph
3377	4-OH-5-OMe	OEt	$(CH_2)_3$	О	Н	3,	2-Py
3378	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	3,	3-Py
22.51		1	/.	•	•	•	

0000 1	4 OH 5 OMa	OEt	$(CH_2)_3$	0	н	3,	4-Py
3379	4-OH-5-OMe	OEt	$(CH_2)_3$ $(CH_2)_3$	0	H	3,	4-NH ₂ -Ph
3380	4-OH-5-OMe			0	H	3,	4-NO ₂ -Ph
3381	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	3'	3-NH ₂ -Ph
3382	4-OH-5-OMe	OEt	(CH ₂) ₃			3,	
3383	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н		3-NO ₂ -Ph
3384	4-OH-5-OMe	OEt	$(CH_2)_3$	0	H	3'	2-NH ₂ -Ph
3385	4-OH-5-OMe	OEt	$(CH_2)_3$	0	H	3'	2-NO ₂ -Ph
3386	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	3,	CH ₂ -2-Py
3387	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	3'	CH ₂ -3-Py
3388	4-OH-5-OMe	OEt	$(CH_2)_3$	0	H	3'	CH ₂ -4-Py
3389	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	3'	NH
3390	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	3,	NH NH
3391	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	3'	NMe
3392	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	3'	NMe
3393	4-OH-5-OMe	OEt	$(CH_2)_3$	0_	H	3'	(CH ₂) ₅ OH
3394	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	3'	4-OH-Ph
3395	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	H	3'	2-Py
3396	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	Н	3'	3-Py
3397	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	Н	3'	4-Py
3398	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	3'	4-NH ₂ -Ph
3399	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	H	3'	4-NO ₂ -Ph
3400	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	Н	3'	3-NH ₂ -Ph
3401	4-OH-5-OMe	NH_2	$(CH_2)_2$	0	H	3'	3-NO ₂ -Ph
3402	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	H	3'	2-NH ₂ -Ph
3403	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	H	3'	2-NO ₂ -Ph
3404	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	Н	3'	CH ₂ -2-Py
3405	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	H	3'	CH ₂ -3-Py
3406	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	H	3'	CH ₂ -4-Py
3407	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	3'	√VH
3408	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	3'	NH
3409	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	3'	NMe
3410	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	н	3'	NMe
3411	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	H	3,	(CH ₂) ₅ OH
3412	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	H	3'	4-OH-Ph
3413	4-OH-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3'	2-Py
3414	4-OH-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3'	3-Py
3415	4-OH-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3'	4-Py
3416	4-OH-5-OMe	NH_2	$(CH_2)_3$	0	Н	3'	4-NH ₂ -Ph
3417	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	3'	4-NO ₂ -Ph
3418	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	3'	3-NH ₂ -Ph
3419	4-OH-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3'	3-NO ₂ -Ph
3420	4-OH-5-OMe	NH ₂		0	Н	3,	2-NH ₂ -Ph
. – -							

3421	4-OH-5-OMe	NH ₂	(CH ₂) ₃	lo	н	3,	2-NO ₂ -Ph
3422	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	3'	CH ₂ -2-Py
3423	4-OH-5-OMe	NH ₂	$(CH_2)_3$	0	Н	3,	CH ₂ -3-Py
3423	4-OH-5-OMe	NH ₂	$(CH_2)_3$	ō	Н	3,	CH ₂ -4-Py
3425	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	3'	NH
3426	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	н	3'	NH NH
3427	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	н	3'	NMe
3428	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	3'	NMe
3429	4-OH-5-OMe	NH ₂	(CH ₂) ₃	O	Н	3,	(CH ₂) ₅ OH
3430	4-OH-5-OMe	NH ₂	$(CH_2)_3$	О	H	3'	4-OH-Ph
3431	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3,	2-Py
3432	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	3-Py
3433	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	4-Py
3434	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	3'	4-NH ₂ -Ph
3435	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3,	4-NO ₂ -Ph
3436	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	3-NH ₂ -Ph
3437	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3'	3-NO ₂ -Ph
3438	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	3'	2-NH ₂ -Ph
3439	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	3,	2-NO ₂ -Ph
3440	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
3441	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	3,	CH ₂ -3-Py
3442	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	CH ₂ -4-Py
3443	4-OH-5-OMe	СН₃	(CH ₂) ₂	NH	Н	3'	√NH
3444	4-OH-5-OMe	СН3	(CH ₂) ₂	NH	Н	3'	NH
3'445	4-OH-5-OMe	СН3	(CH ₂) ₂	NH	Н	3,	NMe
3446	4-OH-5-OMe	СН₃	(CH ₂) ₂	NH	Н	3'	NMe
3447	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3,	(CH ₂) ₅ OH
3448	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3'	4-OH-Ph
3449	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	3'	2-Py
3450	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	3,	3-Ру
3451	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3,	4-Py
3452	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3,	4-NH ₂ -Ph
3453	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3'	4-NO ₂ -Ph
3454	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	3,	3-NH ₂ -Ph
3455	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	3,	3-NO ₂ -Ph
3456	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	3'	2-NH ₂ -Ph
3457	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	3,	2-NO ₂ -Ph
3458	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	3,	CH ₂ -2-Py
3459	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	3,	CH ₂ -3-Py
3460	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	3,	CH ₂ -4-Py
3461	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	н	3,	NH CMH

3462	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	н	3,.	MH
3463	4-OH-5-OMe	СН3	(CH ₂) ₃	NH	Н	3'	NMe
3464	4-OH-5-OMe	СН3	(CH ₂) ₃	NH	Н	3'	NMe
3465	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
3466	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	3'	4-OH-Ph
3467	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	2-Py
3468	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	3-Py
3469	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	4-Py
3470	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	4-NH ₂ -Ph
3471	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	4-NO ₂ -Ph
3472	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3,	3-NH ₂ -Ph
3473	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3,	3-NO ₂ -Ph
3474	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	2-NH ₂ -Ph
3475	4-OH-5-OMe	CH ₃	$(CH_2)_2$	O	Н	3,	2-NO ₂ -Ph
	4-OH-5-OMe	CH ₃	$(CH_2)_2$	ō	H	3,	CH ₂ -2-Py
3476	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3,	CH ₂ -3-Py
3477	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3,	CH ₂ -4-Py
3478	4-On-3-OME	C113	(C112)2	 			0112 1 1 7
3479	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	Н	3'	
3480	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	н	3'	NH
3481	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	NMe
3482	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	NMe
3483	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	(CH ₂) ₅ OH
3484	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	4-OH-Ph
3485	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3'	2-Py
3486	4-OH-5-OMe	CH ₃	(CH ₂) ₃	0	Н	3'	3-Py
3487	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3'	4-Py
3488	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3,	4-NH ₂ -Ph
3489	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3'	4-NO ₂ -Ph
3490	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3,	3-NH ₂ -Ph
3491	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3,	3-NO ₂ -Ph
	4-OH-5-OMe	CH ₃	$(CH_2)_3$	ō	Н	3'	2-NH ₂ -Ph
3492	4-OH-5-OMe	CH ₃	$(CH_2)_3$	o	H	3,	2-NO ₂ -Ph
3493	4-OH-5-OMe	CH ₃	$(CH_2)_3$	O	H	3,	CH ₂ -2-Py
3494		CH ₃	$(CH_2)_3$	0	H	3'	CH ₂ -3-Py
3495	4-OH-5-OMe			0	H	3'	CH ₂ -4-Py
3496	4-OH-5-OMe	CH ₃	$(CH_2)_3$	 0	11	<u> </u>	C112-4-1 y
3497	4-OH-5-OMe	CH ₃	- (CH ₂) ₃	О	Н	3'	NH NH
3498	4-OH-5-OMe	СН3	(CH ₂) ₃	О	Н	3,	NH
3499	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	3,	NMe

1						۵, ا	$\rightarrow \sim$
3500	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	3'	NMe
3501	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	H	3'	(CH ₂) ₅ OH
3502	4-OH-5-OMe	CH ₃	$(CH_2)_3$	О	H	3'	4-OH-Ph
3503	4-OH-5-OMe .	OEt	-	О	Н	2'	Bn
3504	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	2-Py
3505	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	3-Py
3506	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	4-Py
3507	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	4-NO ₂ -Ph
3508	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2,	3-NH ₂ -Ph
3509	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2,	3-NO ₂ -Ph
3510	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	2-NH ₂ -Ph
3511	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	2-NO ₂ -Ph
3511	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	CH ₂ -2-Py
3512	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	CH ₂ -3-Py
3513	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	CH ₂ -4-Py
3314	4-011-5-0MC	- -	(0112)2				
3515	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	
3516	4-OH-5-OMe	OEt	$(CH_2)_2$	NH	н	2'	NH
3517	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	NMe
3518	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	NMe
3519	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	(CH ₂) ₅ OH
3520	4-OH-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	4-OH-Ph
3521	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	2-Py
3522	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	3-Py
3523	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	4-Py
3524	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	4-NH ₂ -Ph
3525	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	4-NO ₂ -Ph
3526	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	3-NH ₂ -Ph
3527	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	3-NO ₂ -Ph
3528	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	2-NH ₂ -Ph
3529	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	H_	2'	2-NO ₂ -Ph
3530	4-OH-5-OMe	OEt	$(CH_2)_3$	NH	Н	2'	CH ₂ -2-Py
3531	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
3532	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
3533	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	2'	NH
3534	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	2'	NH
3535	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	2'	NMe
3536	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	2'	NMe
3537	4-OH-5-OMe	OEt	(CH ₂) ₃	NH	Н	2,	(CH ₂) ₅ OH
3538	4-OH-5-OMe	OEt	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	Н	2'	4-OH-Ph
3539	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	2,	2-Py
3540	4-OH-5-OMe	NH ₂		NH	H	2,	3-Ру
3340	7-011-3-01910	12 14 12 1	(-1-2/2			•	

3542 4-0H-5-OMe	3541	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	н	2,	4 -Py
3543								
3544					<u> </u>			
3545								
3546								
3547								
3548								
3549								
3550								
3551 4-OH-5-OMe NH2 (CH2)2 NH H 2'								
3552 4-OH-5-OMe NH ₂	3550	4-OH-5-OMe	NH ₂	$(CH_2)_2$	NH	H	2.	CH ₂ -4-Py
3553 4-OH-5-OMe NH2 (CH2)2 NH H 2'	3551	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	2'	NH
3554	3552	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	2'	NH
3555	3553	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH_	Н	2'	NMe
3556	3554	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
3556	3555	4-OH-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	2'	(CH ₂) ₅ OH
3557					NH	Н		4-OH-Ph
3558		4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н		
3559 4-OH-5-OMe NH2 (CH2)3 NH H 2' 4-Py					NH	Н	2'	3-Ру
3560					NH	Н	2'	4-Py
3561				(CH ₂) ₃	NH	Н	2'	4-NH ₂ -Ph
3562 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 3-NH ₂ -Ph 3563 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 3-NO ₂ -Ph 3564 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 2-NH ₂ -Ph 3565 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 2-NO ₂ -Ph 3566 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 2-NO ₂ -Ph 3567 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -2-Py 3568 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -3-Py 3569 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -4-Py 3570 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NH 3571 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NM ₂ N			NH ₂	(CH ₂) ₃	NH	Н	2'	4-NO ₂ -Ph
3563		4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н		3-NH ₂ -Ph
3564 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 2-NH ₂ -Ph 3565 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 2-NO ₂ -Ph 3566 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -2-Py 3567 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -3-Py 3568 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -4-Py 3569 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NH 3571 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NH 3572 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NMe 3573 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' (CH ₂) ₅ OH 3574 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' (CH ₂) ₅ OH 3575 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 4-OH-Ph 3575 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581		4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н		
3565		4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	H_		
3567		4-OH-5-OMe	NH ₂		NH			
3568 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' CH ₂ -4-Py	3566	4-OH-5-OMe	NH ₂	$(CH_2)_3$				
3569 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2'	3567	4-OH-5-OMe	NH ₂	$(CH_2)_3$				
3570 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NMe 3571 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NMe 3572 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NMe 3573 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' (CH ₂) ₅ OH 3574 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 4-OH-Ph 3575 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph	3568	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	H	2'	CH ₂ -4-Py
3571 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NMe 3572 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' NMe 3573 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' (CH ₂) ₅ OH 3574 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 4-OH-Ph 3575 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph	3569	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	2'	_\mathready.
3572	3570	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	2'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3573 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' (CH ₂) ₅ OH 3574 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 4-OH-Ph 3575 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NO ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph	3571	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	2'	NMe
3573 4-OH-5-OMe NH2 (CH2)3 NH H 2' 4-OH-Ph 3575 4-OH-5-OMe OEt (CH2)2 O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH2)2 O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH2)2 O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH2)2 O H 2' 4-NH2-Ph 3579 4-OH-5-OMe OEt (CH2)2 O H 2' 4-NO2-Ph 3580 4-OH-5-OMe OEt (CH2)2 O H 2' 3-NH2-Ph 3581 4-OH-5-OMe OEt (CH2)2 O H 2' 3-NO2-Ph	3572	4-OH-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	2'	NMe
3574 4-OH-5-OMe NH ₂ (CH ₂) ₃ NH H 2' 4-OH-Ph 3575 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NO ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph	3573	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н		
3575 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 2-Py 3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NO ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph	3574	4-OH-5-OMe	NH ₂	$(CH_2)_3$	NH	Н		4-OH-Ph
3576 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-Py 3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NO ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph		4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н		2-Py
3577 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-Py 3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NO ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph		4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н		3-Ру
3578 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NH ₂ -Ph 3579 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 4-NO ₂ -Ph 3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph		4-OH-5-OMe	OEt	(CH ₂) ₂	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	H	2'	4-NH ₂ -Ph
3580 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NH ₂ -Ph 3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph					0	Н	2'	4-NO ₂ -Ph
3581 4-OH-5-OMe OEt (CH ₂) ₂ O H 2' 3-NO ₂ -Ph					0	Н	2'	3-NH ₂ -Ph
					0	H		
			OEt		0	Н	2,	2-NH ₂ -Ph

3583	4-OH-5-OMe	OEt	$(CH_2)_2$	О	н	2'	2-NO ₂ -Ph
3584	4-OH-5-OMe	OEt	(CH ₂) ₂	O	Н	2'	CH ₂ -2-Py
3585	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	2'	CH ₂ -3-Py
3586	4-OH-5-OMe	OEt	$(CH_2)_2$	0	Н	2'	CH ₂ -4-Py
3587	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	2'	NH
3588	4-OH-5-OMe	OEt	(CH ₂) ₂	О	Н	2'	NH
3589	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	2'	NMe
3590	4-OH-5-OMe	OEt	(CH ₂) ₂	0	Н	2'	NMe
3591	4-OH-5-OMe	OEt	$(CH_2)_2$	O	Н	2'	(CH ₂) ₅ OH
3592	4-OH-5-OMe	OEt	$(CH_2)_2$	О	Н	2'	4-OH-Ph
3593	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	2-Py
3594	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	2'	3-Py
3595	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	4-Py
3596	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	4-NH ₂ -Ph
3597	4-OH-5-OMe	OEt	$(CH_2)_3$	О	Н	2'	4-NO ₂ -Ph
3598	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	3-NH ₂ -Ph
3599	4-OH-5-OMe	OEt	$(CH_2)_3$	0	Н	2'	3-NO ₂ -Ph
3600	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	2-NH ₂ -Ph
3601	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	2-NO ₂ -Ph
3602	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	CH ₂ -2-Py
3603	4-OH-5-OMe	OEt	(CH ₂) ₃	0	H	2'	CH ₂ -3-Py
3604	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	CH ₂ -4-Py
3605	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	\(\sqrt{\text{NH}}\)
3606	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	NH
3607	4-OH-5-OMe	OEt	(CH ₂) ₃	О	Н	2'	NMe
3608	4-OH-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	NMe
3609	4-OH-5-OMe	OEt	$(CH_2)_3$	О	Н	2'	(CH ₂) ₅ OH
3610	4-OH-5-OMe	OEt	$(CH_2)_3$	О	Н	2'	4-OH-Ph
3611	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	H	2'	2-Py
3612	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	Н	2'	3-Py
3613	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	2'	4-Py
3614	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	H	2'	4-NH ₂ -Ph
3615	4-OH-5-OMe	NH ₂	$(CH_2)_2$	O	Н	2'	4-NO ₂ -Ph
3616	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	2'	3-NH ₂ -Ph
3617	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	2'	3-NO ₂ -Ph
3618	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	2'	2-NH ₂ -Ph
3619	4-OH-5-OMe	NH ₂	$(CH_2)_2$	О	Н	2'	2-NO ₂ -Ph
3620	4-OH-5-OMe	NH ₂	$(CH_2)_2$	0	Н	2'	CH ₂ -2-Py
3621	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	2'	CH ₂ -3-Py
3622	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	2'	CH ₂ -4-Py
3623	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	2'	\text{\text{NH}}

3624	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	2'	NH
3625	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	2'	NMe
3626	4-OH-5-OMe	NH ₂	(CH ₂) ₂	О	Н	2'	NMe
3627	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	2'	(CH ₂) ₅ OH
3628	4-OH-5-OMe	NH ₂	(CH ₂) ₂	0	Н	2'	4-OH-Ph
3629	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	2-Py
3630	4-OH-5-OMe	NH ₂	$(CH_2)_3$	О	Н	2'	3-Py
3631	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2,	4-Py
3632	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	4-NH ₂ -Ph
3633	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	4-NO ₂ -Ph
3634	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	3-NH ₂ -Ph
3635	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	3-NO ₂ -Ph
3636	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	2-NH ₂ -Ph
3637	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	2-NO ₂ -Ph
3638	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	CH ₂ -2-Py
3639	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	CH ₂ -3-Py
3640	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	CH ₂ -4-Py
3641	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	NH
3642	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	NH
3643	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	н	2'	NMe
3644	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
3645	4-OH-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	(CH ₂) ₅ OH
3646	4-OH-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	4-OH-Ph
3647	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	2-Py
3648	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2,	3-Py
3649	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	4-Py
3650	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	4-NH ₂ -Ph
3651	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	H	2'	4-NO ₂ -Ph
3652	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	3-NH ₂ -Ph
3653	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	3-NO ₂ -Ph
3654	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2,	2-NH ₂ -Ph
3655	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2,	2-NO ₂ -Ph
3656	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	CH ₂ -2-Py
3657	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	CH ₂ -3-Py
3658	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	2'	CH ₂ -4-Py
3659	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	NH
3660	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	NH
3661	4-OH-5-OMe	СН3	(CH ₂) ₂	NH	Н	2'	NMe

		1 1		1 . 1	. 1	ĺ	\ ^
3662	4-OH-5-OMe	CH ₃	$(CH_2)_2$	NH	н	2,	NMe
3663	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2,	(CH ₂) ₅ OH
3664	4-OH-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2,	4-OH-Ph
3665	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	2-Py
3666	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	3-Py
3667	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2,	4-Py
3668	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	4-NH ₂ -Ph
	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	Н	2,	4-NO ₂ -Ph
3669	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	3-NH ₂ -Ph
3670	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	Н	2,	3-NO ₂ -Ph
3671	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	Н	2'	2-NH ₂ -Ph
3672		CH ₃	$(CH_2)_3$	NH	H	2,	2-NO ₂ -Ph
3673	4-OH-5-OMe	CH ₃	$(CH_2)_3$	NH	H	2,	CH ₂ -2-Py
3674	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	H	2'	CH ₂ -3-Py
3675	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	H	2'	CH ₂ -4-Py
3676	4-OH-5-OMe	СП3	(CH ₂) ₃	1411	-1.		
3677	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	2'	
3678	4-OH-5-OMe	СН3	$(CH_2)_3$	NH	н	2'	NH
3679	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	н	2'	NMe
3680	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	2'	NMe
3681	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	2'	(CH ₂) ₅ OH
3682	4-OH-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2'	4-OH-Ph
3683	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	H	2'	2-Py
3684	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	2'	3-Py
3685	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0_	Н	2'	4-Py
3686	4-OH-5-OMe	CH ₃	$(CH_2)_2$	O	H	2'	4-NH ₂ -Ph
3687	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	4-NO ₂ -Ph
3688	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0_	H_	2'	3-NH ₂ -Ph
3689	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	H	2'	3-NO ₂ -Ph
3690	4-OH-5-OMe	CH ₃	$(CH_2)_2$	О	H	2'	2-NH ₂ -Ph
3691	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	2-NO ₂ -Ph
3692	4-OH-5-OMe	CH ₃	$(CH_2)_2$	О	H	2'	CH ₂ -2-Py
3693	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0_	Н	2'	CH ₂ -3-Py
3694	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	CH ₂ -4-Py
3695	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	н	2'	NH
3696	4-OH-5-OMe	СН3	(CH ₂) ₂	0	Н	2'	NH
3697	4-OH-5-OMe	CH ₃	(CH ₂) ₂	О	Н	2'	NMe
3698	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	2'	NMe
3699	4-OH-5-OMe	CH ₃	(CH ₂) ₂	0	Н	2,	(CH ₂) ₅ OH
3700	4-OH-5-OMe	CH ₃	$(CH_2)_2$	0	H	2,	4-OH-Ph
	4-OH-5-OMe	CH ₃	$(CH_2)_3$	1 0	H	2,	2-Py
3701	4-OH-5-OMe	CH ₃		0	H	2,	3-Py
3702	4-011-3-0111E	[113]	() 1 1 2 / 3	1	1		

3703	4-OH-5-OMe	CH ₃	$(CH_2)_3$	o l	н	2'	4-Py
3704	4-OH-5-OMe	CH ₃	(CH ₂) ₃	o	H	2,	4-NH ₂ -Ph
	4-OH-5-OMe	CH ₃	(CH ₂) ₃	ō	Н	2,	4-NO ₂ -Ph
3705	4-OH-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	0	Н	2'	3-NH ₂ -Ph
3706	4-OH-5-OMe	CH ₃	(CH ₂) ₃	o	H	2'	3-NO ₂ -Ph
3707		CH ₃	$(CH_2)_3$	ŏ	H	2,	2-NH ₂ -Ph
3708	4-OH-5-OMe	CH ₃	$(CH_2)_3$	O	H	2'	2-NO ₂ -Ph
3709	4-OH-5-OMe			0	H	2,	CH ₂ -2-Py
3710	4-OH-5-OMe	CH ₃	$(CH_2)_3$	0	H	2'	CH ₂ -3-Py
3711	4-OH-5-OMe	CH ₃	(CH ₂) ₃	o	H	2'	CH ₂ -4-Py
3712	4-OH-5-OMe	CH ₃	$(CH_2)_3$		11		C112 + 1 5
3713	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	2'	NH NH
3714	4-OH-5-OMe	СН3	(CH ₂) ₃	О	Н	2'	NH
3715	4-OH-5-OMe	CH ₃	(CH ₂) ₃	0	Н	2'	NMe
3716	4-OH-5-OMe	CH ₃	(CH ₂) ₃	О	Н	2'	NMe
3717	4-OH-5-OMe	CH ₃	$(CH_2)_3$	О	H	2'	(CH ₂) ₅ OH
3718	4-OH-5-OMe	CH ₃	$(CH_2)_3$	Ο	H	2'	4-OH-Ph
3719	4-(2-N-morpholinoethoxy)-5-OMe	OEt	-	0	Н	4'	Bn
3720	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	2-Py
3721	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	3-Py
$\frac{3721}{3722}$	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	4-Py
3723	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	4-NO ₂ -Ph
3724	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	3-NH ₂ -Ph
3725	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	H	4'	3-NO ₂ -Ph
3726	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	2-NH ₂ -Ph
3727	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	2-NO ₂ -Ph
3728	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	4'	CH ₂ -2-Py
3729	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	CH ₂ -3-Py
3730	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	CH ₂ -4-Py
3731	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NH
3732	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NH
3733	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NMe
3734	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	4'	NMe
3735	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	4'	(CH ₂) ₅ OH
3736	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	4'	4-OH-Ph
3737	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	4'	2-Py
3738	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	H	4'	3-Py
3739	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	H	4'	4-Py
3740	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	Н	4'	4-NH ₂ -Ph
3741	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	Н	4'	4-NO ₂ -Ph
3742	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	Н	4'	3-NH ₂ -Ph
3743	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	Н	4'	3-NO ₂ -Ph
3744	4-(2-N-morpholinoethoxy)-5-OMe	OEt	 	NH	H	4'	2-NH ₂ -Ph
3144	1 . (2 1. morphoniconomy) z onze	,	, , 2/3	•	•	•	

3745	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	н	4'	2-NO ₂ -Ph
3746	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	CH ₂ -2-Py
3747	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -3-Py
3748	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	4'	CH ₂ -4-Py
3749	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	NH
3750	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	н	4'	NH
3751	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	н	4'	NMe
3752	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	4'	NMe
3753	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	4'	(CH ₂) ₅ OH
3754	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	4'	4-OH-Ph
3755	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	2-Py
3756	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	4'	3-Ру
3757	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	4-Py
3758	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	4'	4-NH ₂ -Ph
3759	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	4-NO ₂ -Ph
3760	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	3-NH ₂ -Ph
3761	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	NH	H_	4'	3-NO ₂ -Ph
3762	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	4'	2-NH ₂ -Ph
3763	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	2-NO ₂ -Ph
3764	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	NH	Н	4'	CH ₂ -2-Py
3765	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	CH ₂ -3-Py
3766	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
3767	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
3768	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NH
3769	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
3770	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	4'	NMe
3771	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	(CH ₂) ₅ OH
3772	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	4'	4-OH-Ph
3773	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	2-Py
3774	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	3-Py
3775	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-Py
3776	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	4'	4-NH ₂ -Ph
3777	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	4'	4-NO ₂ -Ph
3778	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	4'	3-NH ₂ -Ph
3779	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3780	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
3781	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3782	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3783	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3784	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H_	4'	CH ₂ -4-Py
3785	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	NH

3786	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	н	4'	NH
3787	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
3788	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	4'	NMe
3789	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	NH	H	4'	(CH ₂) ₅ OH
3790	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	4'	4-OH-Ph
3791	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	2-Py
3792	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0_	H	4'	3-Py
3793	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	4-Py
3794	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	4-NH ₂ -Ph
3795	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	4-NO ₂ -Ph
3796	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0_	H	4'	3-NH ₂ -Ph
3797	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
3798	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	2-NH ₂ -Ph
3799	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	2-NO ₂ -Ph
3800	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	CH ₂ -2-Py
3801	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0_	H	4'	CH ₂ -3-Py
3802	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	CH ₂ -4-Py
3803	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	NH
3804	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	NH
3805	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	NMe
3806	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	4'	NMe
3807	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	4'	(CH ₂) ₅ OH
3808	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	О	H	4'	4-OH-Ph
3809	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	О	H	4'	2-Py
3810	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	4'	3-Py
3811	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	4'	4-Py
3812	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	H	4'	4-NH ₂ -Ph
3813	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	4'	4-NO ₂ -Ph
3814	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	4'	3-NH ₂ -Ph
3815	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	4'	3-NO ₂ -Ph
3816	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	4'	2-NH ₂ -Ph
3817	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	4'	2-NO ₂ -Ph
3818	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	4'	CH ₂ -2-Py
3819	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	4'	CH ₂ -3-Py
3820	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	4'	CH ₂ -4-Py
3821	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	NH
3822	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3823	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	4'	NMe

			1			ŀ	
3824	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	NMe
3825	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	(CH ₂) ₅ OH
3826	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	4'	4-OH-Ph
3827	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	Н	4'	2-Py
3828	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	Н	4'	3-Py
3829	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	4'	4-Py
3830	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	О	Н	4'	4-NH ₂ -Ph
3831	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	Н	4'	4-NO ₂ -Ph
3832	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	O	Н	4'	3-NH ₂ -Ph
3833	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	O	H	4'	3-NO ₂ -Ph
3834	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	O	Н	4'	2-NH ₂ -Ph
	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	ō	Н	4'	2-NO ₂ -Ph
3835	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	H	4'	CH ₂ -2-Py
3836		NH ₂	(CH ₂) ₂	0	H	4'	CH ₂ -3-Py
3837	4-(2-N-morpholinoethoxy)-5-OMe			0	Н	4'	CH ₂ -4-Py
3838	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	11	7	
3839	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	4'	
3840	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	4'	NH
3841	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	4'	NMe
3842	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	4'	NMe
3843	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	О	H	4'	(CH ₂) ₅ OH
3844	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0_	H	4'	4-OH-Ph
3845	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	0	H	4'	2-Py
3846	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	4'	3-Ру
3847	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	4'	4-Py
3848	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	4'	4-NH ₂ -Ph
3849	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	0_	Н	4'	4-NO ₂ -Ph
3850	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	4'	3-NH ₂ -Ph
3851	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	4'	3-NO ₂ -Ph
3852	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	4'	2-NH ₂ -Ph
3853	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	O	Н	4'	2-NO ₂ -Ph
3854	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0_	H	4'	CH ₂ -2-Py
3855	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	H	4'	CH ₂ -3-Py
3856	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	Н	4'	CH ₂ -4-Py
3857	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	4'	NH
3858	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	4'	NH
3859	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
3860	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	4'	NMe
3861	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	4'	(CH ₂) ₅ OH
3862	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	4'	4-OH-Ph
3863			$(CH_2)_2$	NH	Н	4'	2-Py
3864				NH	H	4'	3-Py
2004	1 - (2-14 morphomocoloxy) 5 Olife	1 -113	() 1 1 2 / 2	1	,	•	- 3

3865	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	4-Py
3866	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	4-NH ₂ -Ph
3867	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	4-NO ₂ -Ph
3868	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	3-NH ₂ -Ph
	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	4'	3-NO ₂ -Ph
3869	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	2-NH ₂ -Ph
3870		CH ₃	$(CH_2)_2$	NH	H	4'	2-NO ₂ -Ph
3871	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	H	4'	CH ₂ -2-Py
3872	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	H	4'	CH ₂ -3-Py
3873	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$ $(CH_2)_2$	NH	H	4'	CH ₂ -4-Py
3874	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	4'	NH
3876	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	н	4'	NH
3877	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	4'	NMe
3878	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	4'	NMe
3879	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	(CH ₂) ₅ OH
3880	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	4'	4-OH-Ph
3881	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	2-Py
3882	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	3-Py
3883	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	4-Py
3884	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH_	Н	4'	4-NH ₂ -Ph
3885	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	4-NO ₂ -Ph
3886	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	3-NH ₂ -Ph
3887	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	3-NO ₂ -Ph
3888	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	2-NH ₂ -Ph
3889	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	2-NO ₂ -Ph
3890	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -2-Py
3891	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	4'	CH ₂ -3-Py
3892	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	CH ₂ -4-Py
3893	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	н	4'	NH
3894	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	Н	4'	Дин
3895	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	Н	4'	NMe
3896	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	4'	NMe
3897	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	4'	(CH ₂) ₅ OH
3898	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	4'	4-OH-Ph
3899	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	О	Н	4'	2-Py
3900	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	О	H	4'	3-Ру
3901	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	0	Н	4'	4-Py
3902	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	4-NH ₂ -Ph
3903	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	О	Н	4'	4-NO ₂ -Ph
3904	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	0	Н	4'	3-NH ₂ -Ph
3905	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	0	Н	4'	3-NO ₂ -Ph
3906			$(CH_2)_2$	0	Н	4'	2-NH ₂ -Ph

3907	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	o l	н	4'	2-NO ₂ -Ph
3908	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	CH ₂ -2-Py
	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	4'	CH ₂ -3-Py
3909	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	O	Н	4'	CH ₂ -4-Py
3910 3911	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	О	Н	4'	NH
3912	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	О	Н	4'	NH
3913	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	О	Н	4'	NMe
3914	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	О	Н	4'	NMe
3915	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	О	Н	4'	(CH ₂) ₅ OH
3916	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	О	H	4'	4-OH-Ph
3917	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	2-Py
3918	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	3-Py
3919	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	О	Н	4'	4-Py
3920	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	Н	4'	4-NH ₂ -Ph
3921	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	H	4'	4-NO ₂ -Ph
3922	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0_	H	4'	3-NH ₂ -Ph
3923	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	О	Н	4'	3-NO ₂ -Ph
3924	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	О	H	4'	2-NH ₂ -Ph
3925	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	2-NO ₂ -Ph
3926	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	CH ₂ -2-Py
3927	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	H	4'	CH ₂ -3-Py
3928	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	Н	4'	CH ₂ -4-Py
3929	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	О	н	4'	NH
3930	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	О	Н	4'	NH
3931	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	0	Н	4'	NMe
3932	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	О	Н	4'	NMe
3933	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	(CH ₂) ₅ OH
3934	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	4'	4-OH-Ph
3935	4-(2-N-morpholinoethoxy)-5-OMe		-	O	H	3'	Bn
3936	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	3'	2-Py
3937	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	3,	3-Py
3938	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	3'	4-Py
3939	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	4-NO ₂ -Ph
3940	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	3-NH ₂ -Ph
3941	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	3-NO ₂ -Ph
3942	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	3,	2-NH ₂ -Ph
3943	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	2-NO ₂ -Ph
3944	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	CH ₂ -2-Py
3945	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	CH ₂ -3-Py
3946	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	H	3'	CH ₂ -4-Py
3947	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	3'	NH CMH

3948	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	н	3,	NH
3949	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	3'	NMe
3950	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	3,	NMe
3951	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	H	3'	(CH ₂) ₅ OH
3952	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	3'	4-OH-Ph
3953	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3,	2-Py
3954	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	3-Py
3955	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	4-Py
3956	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	4-NH ₂ -Ph
3957	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	4-NO ₂ -Ph
3958	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	3-NH ₂ -Ph
3959	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	3-NO ₂ -Ph
3960	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	2-NH ₂ -Ph
3961	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	2-NO ₂ -Ph
3962	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	CH ₂ -2-Py
3963	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	3'	CH ₂ -3-Py
3964	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	_H_	3,	CH ₂ -4-Py
3965	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	NH
3966	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	н	3'	NH NH
3967	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	NMe
3968	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	3'	NMe
3969	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	(CH ₂) ₅ OH
3970	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	3'	4-OH-Ph
3971	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	2-Py
3972	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	3'	3-Py
3973	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	3'	4-Py
3974	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	4-NH ₂ -Ph
3975	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	3'	4-NO ₂ -Ph
3976	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	3'	3-NH ₂ -Ph
3977	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	3'	3-NO ₂ -Ph
3978	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3,	2-NH ₂ -Ph
3979	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	2-NO ₂ -Ph
3980	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -2-Py
3981	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	CH ₂ -3-Py
3982	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	3'	CH ₂ -4-Py
3983	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3'	NH
3984	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3,	NH
3985	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	3,	NMe

ı		1 1		1	ı	1	\ ^
3986	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	н	3,	NMe
2760	4 (2 14 morphomocomoxy) 5 of 22		(2,72				
3987	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	NH	Н	3'	(CH ₂) ₅ OH
3988	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₂	NH	Н	3'	4-OH-Ph
3989	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₃	NH	Н	3'	2-Py
3990	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3,	3-Py
3991	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₃	NH	Н	3'	4-Py
3992	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₃	NH ·	Н	3'	4-NH ₂ -Ph
3993	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3,	4-NO ₂ -Ph
3994	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	3,	3-NH ₂ -Ph
3995	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	3-NO ₂ -Ph
3996	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	2-NH ₂ -Ph
3997	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	3'	2-NO ₂ -Ph
3998	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	CH ₂ -2-Py
3999	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	CH ₂ -3-Py
4000	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	CH ₂ -4-Py
4000	4-(2-14-morpholimoethoxy) 5 Give	11112	(0112/3				^
4001	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	[] _M H
	1						~
			(011)	.,,,		2.2	$\rightarrow \sim$
4002	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	3'	<u> </u>
4003	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	NH	н	3'	$\mathcal{L}_{\mathrm{NMe}}$
4005			2,3				
						0.	\rightarrow
4004	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	3'	√NMe
1005	A (O N L L' Ab) 5 OMs	NH ₂	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
4005	4-(2-N-morpholinoethoxy)-5-OMe	IINHal	IL	IND	1 11 1		(011775011
						3,	
4006	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₃	NH	Н	3' 3'	4-OH-Ph
4006 4007	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂	NH O	H H	3'	4-OH-Ph 2-Py
4006 4007 4008	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH O O	H H H	3' 3'	4-OH-Ph 2-Py 3-Py
4006 4007 4008 4009	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt	$(CH_2)_3$ $(CH_2)_2$ $(CH_2)_2$ $(CH_2)_2$	NH O O O	H H H	3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py
4006 4007 4008 4009 4010	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₂	NH 0 0 0 0	H H H H	3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph
4006 4007 4008 4009 4010 4011	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₂ (CH ₂) ₂	NH 0 0 0 0	H H H H	3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph
4006 4007 4008 4009 4010 4011 4012	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt OEt OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H	3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph
4006 4007 4008 4009 4010 4011 4012 4013	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt OEt OEt OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH O O O O O O O	H H H H H H	3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 3-NO ₂ -Ph
4006 4007 4008 4009 4010 4011 4012 4013 4014	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt OEt OEt OEt OEt OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH O O O O O O O O	H H H H H H	3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt OEt OEt OEt OEt OEt OEt OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3'	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH 0 0 0 0 0 0 0 0 0 0 0 0	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4020	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂ OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH 0 0 0 0 0 0 0 0 0 0 0 0	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4020	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4020	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NO ₂ -Ph 2-NH ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py NH
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4020	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H H H H H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py NH
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4020	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H H H H H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py NH NMe (CH ₂) ₅ OH
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H H H H H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py NH
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4020 4021 4022	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H H H H H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NH ₂ -Ph 2-NO ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py NH NMe (CH ₂) ₅ OH
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022	4-(2-N-morpholinoethoxy)-5-OMe	NH2 OEt	(CH ₂) ₃ (CH ₂) ₂ (CH ₂) ₂	NH	H H H H H H H H H H H H H H H H H H H	3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3' 3	4-OH-Ph 2-Py 3-Py 4-Py 4-NH ₂ -Ph 4-NO ₂ -Ph 3-NO ₂ -Ph 2-NH ₂ -Ph 2-NO ₂ -Ph CH ₂ -2-Py CH ₂ -3-Py CH ₂ -4-Py NH NMe (CH ₂) ₅ OH 4-OH-Ph

4027	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	Н	3,	4-Py
4028	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	3'	4-NH ₂ -Ph
4029	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	Н	3,	4-NO ₂ -Ph
4030	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	Н	3,	3-NH ₂ -Ph
4031	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	Н	3'	3-NO ₂ -Ph
4032	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	Ō	H	3,	2-NH ₂ -Ph
4032	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	O	Н	3'	2-NO ₂ -Ph
	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	o	H	3,	CH ₂ -2-Py
4034	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	o	H	3'	CH ₂ -3-Py
4035	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	3,	CH ₂ -4-Py
4036	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	н	3,	NH
4038	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	3'	NH
4039	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	3'	NMe
4040	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	О	Н	3,	NMe
4041	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	Н	3'	(CH ₂) ₅ OH
4042	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	О	Н	3'	4-OH-Ph
4043	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	Н	3'	2-Py
4044	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	H	3'	3-Ру
4045	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	Н	3'	4-Py
4046	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	0	Н	3'	4-NH ₂ -Ph
4047	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	0_	Н	3'	4-NO ₂ -Ph
4048	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	Н	3,	3-NH ₂ -Ph
4049	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	O	Н	3'	3-NO ₂ -Ph
4050	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	H	3'	2-NH ₂ -Ph
4051	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	3'	2-NO ₂ -Ph
4052	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	3'	CH ₂ -2-Py
4053	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	3'	CH ₂ -3-Py
4054	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	0	H	3'	CH ₂ -4-Py
4055	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	Н	3'	NH
4056	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	Н	3'	NH
4057	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	Н	3,	NMe
4058	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	3,	NMe
4059	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	0	H	3,	(CH ₂) ₅ OH
4060	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	0	Н	3'	4-OH-Ph
4061	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	0	Н	3'	2-Py
4062	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	Н	3'	3-Ру
4063	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	О	H	3'	4-Py
4064	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3'	4-NH ₂ -Ph
4065	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	3,	4-NO ₂ -Ph
4066	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3,	3-NH ₂ -Ph
4067	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3,	3-NO ₂ -Ph
4068	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	Н	3'	2-NH ₂ -Ph

4069	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	н	3'	2-NO ₂ -Ph
4070	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	3'	CH ₂ -2-Py
4071	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	Н	3'	CH ₂ -3-Py
4072	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	O	Н	3,	CH ₂ -4-Py
4073	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	3,	√NH
4074	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	3'	NH
4075	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	н	3'	NMe
4076	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	Н	3,	NMe
4077	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	3'	(CH ₂) ₅ OH
4078	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	3'	4-OH-Ph
4079	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	2-Py
4080	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3'	3-Py
4081	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3'	4-Py
4082	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	4-NH ₂ -Ph
4083	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	4-NO ₂ -Ph
4084	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	3-NH ₂ -Ph
4085	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	3-NO ₂ -Ph
4086	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	2-NH ₂ -Ph
4087	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3'	2-NO ₂ -Ph
4088	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	3,	CH ₂ -2-Py
4089	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3'	CH ₂ -3-Py
4090	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	3,	CH ₂ -4-Py
4091	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	3'	NH
4092	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	н	3'	NH
4093	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	3'	NMe
4094	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	NH	н	3,	NMe
4095	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃		NH	H	3'	(CH ₂) ₅ OH
4096	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	3'	4-OH-Ph
4097	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	H	3'	2-Py
4098	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	H	3'	3-Py
4099	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	NH	H	3'	4-Py
4100	4-(2-N-morpholinoethoxy)-5-OMe			NH	H	3'	4-NH ₂ -Ph
4101	4-(2-N-morpholinoethoxy)-5-OMe			NH	Н	3'	4-NO ₂ -Ph
4102	4-(2-N-morpholinoethoxy)-5-OMe			NH	H	3'	3-NH ₂ -Ph
4103	4-(2-N-morpholinoethoxy)-5-OMe			NH	H	3,	3-NO ₂ -Ph
4104	4-(2-N-morpholinoethoxy)-5-OMe			NH	H	3,	2-NH ₂ -Ph
4105	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃		NH	H	3'	2-NO ₂ -Ph
4106	4-(2-N-morpholinoethoxy)-5-OMe			NH	H	3,	CH ₂ -2-Py
4107	4-(2-N-morpholinoethoxy)-5-OMe			NH	H	3'	CH ₂ -3-Py
4108	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	3,	CH ₂ -4-Py
4109	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	3'	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

4110	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	н	3'	NH
4111	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	Н	3'	NMe
4112	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	Н	3,	NMe
4113	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	3'	(CH ₂) ₅ OH
4114	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	3'	4-OH-Ph
4115	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	2-Py
4116	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	Н	3'	3-Py
4117	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	H	3'	4-Py
4118	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0_	H	3'	4-NH ₂ -Ph
4119	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	H	3'	4-NO ₂ -Ph
4120	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	O	H	3'	3-NH ₂ -Ph
4121	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	3'	3-NO ₂ -Ph
4122	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	3'	2-NH ₂ -Ph
4123	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3'	2-NO ₂ -Ph
4124	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3,	CH ₂ -2-Py
4125	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3'	CH ₂ -3-Py
4126	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	3'	CH ₂ -4-Py
4127	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	0	Н	3'	NH
4128	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	О	Н	3'	NH
4129	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	О	Н	3'	NMe
4130	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	н	3'	NMe
4131	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	0	H	3'	(CH ₂) ₅ OH
4132	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	О	H	3,	4-OH-Ph
4133	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	3'	2-Py
4134	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0_	H	3'	3-Py
4135	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3'_	4-Py
4136	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	3'	4-NH ₂ -Ph
4137	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	О	Н	3'	4-NO ₂ -Ph
4138	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	О	H_	3'	3-NH ₂ -Ph
4139	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	О	H	3'	3-NO ₂ -Ph
4140	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	Н	3,	2-NH ₂ -Ph
4141	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	Н	3'	2-NO ₂ -Ph
4142	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	0	H	3'	CH ₂ -2-Py
4143			(CH ₂) ₃	0	Н	3,	CH ₂ -3-Py
4144		CH ₃	(CH ₂) ₃	О	Н	3'	CH ₂ -4-Py
4144		1	(CH ₂) ₃	0	Н	3'	NH
4146	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	н	3,	NH
4147	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	Н	3'	NMe

,	1	1	1	ı	1	1	\ ^
4148	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	О	н	3'	NMe
4149	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	Н	3,	(CH ₂) ₅ OH
4150	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	Н	3,	4-OH-Ph
4151	4-(2-N-morpholinoethoxy)-5-OMe	OEt	-	0	Н	2,	Bn
4152	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	2-Py
4153	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	3-Py
	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	2,	4-Py
4154	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	2,	4-NO ₂ -Ph
4155	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	3-NH ₂ -Ph
4156	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	H	2'	3-NO ₂ -Ph
4157	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	H	2'	2-NH ₂ -Ph
4158	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	H	2'	2-NO ₂ -Ph
4159		OEt	$(CH_2)_2$	NH	H	2,	CH ₂ -2-Py
4160	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	H	2'	CH ₂ -3-Py
4161	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	$\frac{H}{H}$	2'	CH ₂ -4-Py
4162	4-(2-N-morpholinoethoxy)-5-OMe	OEL	(CI12)2	1911			
4163	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	
4164	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	NH
4165	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	NMe
4166	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	NH	Н	2'	NMe
4167	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH	Н	2'	(CH ₂) ₅ OH
4168	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	NH_	H	2'	4-OH-Ph
4169	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	2-Py
4170	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH_	H	2'	3-Py
4171	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	4-Py
4172	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	4-NH ₂ -Ph
4173	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	4-NO ₂ -Ph
4174	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	3-NH ₂ -Ph
4175	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	2'	3-NO ₂ -Ph
4176	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	2-NH ₂ -Ph
4177	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	Н	2'	2-NO ₂ -Ph
4178	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	CH ₂ -2-Py
4179	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	CH ₂ -3-Py
4180	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	NH	H	2'	CH ₂ -4-Py
4181	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	2'	
4182	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	н	2'	NH NH
4183	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	2'	NMe
4184	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	2,	NMe
4185	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	NH	Н	2,	(CH ₂) ₅ OH
4186	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	NH	Н	2,	4-OH-Ph
4187	4-(2-N-morpholinoethoxy)-5-OMe			NH	Н	2,	2-Py
4188				NH	H	2,	3-Ру
4100	= (2-14-morphormoemoxy) 5 Office	1 2	(- 2 - 2/2	,		'	

4100	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	NH	н	2'	4-Py
4189	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	2,	4-NH ₂ -Ph
4190	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	Н	2,	4-NO ₂ -Ph
4191	4-(2-N-morpholinoethoxy) 5-OMe	NH ₂	$(CH_2)_2$	NH	Н	2'	3-NH ₂ -Ph
	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	2'	3-NO ₂ -Ph
4193	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	H	2,	2-NH ₂ -Ph
4194		NH ₂	$\frac{(CH_2)_2}{(CH_2)_2}$	NH	H	2'	2-NO ₂ -Ph
4195	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	H	2'	CH ₂ -2-Py
4196	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂		NH	H	2,	CH ₂ -3-Py
4197	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	2'	CH ₂ -4-Py
4198	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$ $(CH_2)_2$	NH	н	2'	NH
4200	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	н	2,	NH
4201	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
4202	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	Н	2'	NMe
4203	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	NH	H	2'	(CH ₂) ₅ OH
4204	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	NH	H	2'	4-OH-Ph
4205	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	NH	H	2'	2-Py
4206	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	NH	H	2'	3-Ру
4207	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	2'	4-Py
4208	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	2'	4-NH ₂ -Ph
4209	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	NH	Н	2'	4-NO ₂ -Ph
4210	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₃	NH	H	2'	3-NH ₂ -Ph
4211	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	Н	2'	3-NO ₂ -Ph
4212	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	2'	2-NH ₂ -Ph
4213	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	(CH ₂) ₃	NH	Н	2'	2-NO ₂ -Ph
4214	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -2-Py
4215	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -3-Py
4216	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	CH ₂ -4-Py
4217	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	н	2'	NH
4218	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	н	2'	NH
4219	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	Н	2'	NMe
4220	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	н	2'	NMe
4221	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	NH	H	2'	(CH ₂) ₅ OH
4222	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	NH	H	2'	4-OH-Ph
4223	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	2'	2-Py
4224	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	2'	3-Py
4225	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	Н	2'	4-Py
4226	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	Н	2'	4-NH ₂ -Ph
4227	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	O	Н	2'	4-NO ₂ -Ph
4228	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	0	Н	2'	3-NH ₂ -Ph
4229	4-(2-N-morpholinoethoxy)-5-OMe	OEt		0	Н	2'	3-NO ₂ -Ph
4230	4-(2-N-morpholinoethoxy)-5-OMe			0	Н	2'	2-NH ₂ -Ph

4231	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	н	2'	2-NO ₂ -Ph
4232	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	0	Н	2,	CH ₂ -2-Py
4233	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	2,	CH ₂ -3-Py
4234	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	0	Н	2'	CH ₂ -4-Py
4235	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	2'	√yH
4236	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	2'	NH
4237	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	2'	NMe
4238	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	О	Н	2'	NMe
4239	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_2$	0	H	2'	(CH ₂) ₅ OH
4240	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₂	0	H	2'	4-OH-Ph
4241	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	2'	2-Py
4242	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	2'	3-Py
4243	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	2'	4-Py
4244	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	2'	4-NH ₂ -Ph
4245	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0_	H	2'	4-NO ₂ -Ph
4246	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	3-NH ₂ -Ph
4247	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	2'	3-NO ₂ -Ph
4248	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	2'	2-NH ₂ -Ph
4249	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	2'	2-NO ₂ -Ph
4250	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	2'	CH ₂ -2-Py CH ₂ -3-Py
4251	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	H	$\frac{2}{2}$,	CH ₂ -3-Py
4252	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	1-0	п		C112-4-1 y
4253	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	NH
4254	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	н	2'	NH
4255	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	NMe
4256	4-(2-N-morpholinoethoxy)-5-OMe	OEt	(CH ₂) ₃	0	Н	2'	NMe
4257	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	2'	(CH ₂) ₅ OH
4258	4-(2-N-morpholinoethoxy)-5-OMe	OEt	$(CH_2)_3$	0	H	2'	4-OH-Ph
4259	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_2$	0_	H	2'	2-Py
4260	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	3-Py
4261	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	4-Py
4262	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	4-NH ₂ -Ph
4263	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂		0	H	2'	4-NO ₂ -Ph
4264	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	0	H	2'	3-NH ₂ -Ph
4265	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	3-NO ₂ -Ph
4266	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	2-NH ₂ -Ph
4267	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	2-NO ₂ -Ph
4268	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂		0	H	2'	CH ₂ -2-Py
4269	4-(2-N-morpholinoethoxy)-5-OMe			0	H	2'	CH ₂ -3-Py
4270	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	H	2'	CH ₂ -4-Py
4271	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	0	Н	2'	NH

4272	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	н	2'	NH
4273	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	н	2'	NMe
4274	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	Н	2'	NMe
4275	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₂	О	H	2'	$(CH_2)_5OH$
4276	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_2$	О	Н	2'	4-OH-Ph
4277	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	H	2'	2-Py
4278	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	<u> </u>	Н	2'	3-Py
4279	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	2'	4-Py
4280	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	Н	2'	4-NH ₂ -Ph
4281	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	4-NO ₂ -Ph
4282	4-(2-N-morpholinoethoxy)-5-OMe	NH_2	$(CH_2)_3$	О	Н	2'	3-NH ₂ -Ph
4283	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	H_	2'	3-NO ₂ -Ph
4284	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	2'	2-NH ₂ -Ph
4285	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	H	2'	2-NO ₂ -Ph
4286	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	H	2'	CH ₂ -2-Py
4287	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	H	2'	CH ₂ -3-Py
4288	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	2'	CH ₂ -4-Py
4289	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	NH
4290	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	NH
4291	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	О	Н	2'	NMe
4292	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	(CH ₂) ₃	0	Н	2'	NMe
4293	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	О	Н	2'	(CH ₂) ₅ OH
4294	4-(2-N-morpholinoethoxy)-5-OMe	NH ₂	$(CH_2)_3$	0	H	2'	4-OH-Ph
4295	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	2'	2-Py
4296	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	2'	3-Py
4297	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	2'	4-Py
4298	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	2'	4-NH ₂ -Ph
4299	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	2'	4-NO ₂ -Ph
4300	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	2'	3-NH ₂ -Ph
4301	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	H	2'	3-NO ₂ -Ph
4302	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	H	2'	2-NH ₂ -Ph
4303	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	Н	2'	2-NO ₂ -Ph
4304	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	Н	2'	CH ₂ -2-Py
4305	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	Н	2'	CH ₂ -3-Py
4306	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_2$	NH	Н	2'	CH ₂ -4-Py
4307	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₂	NH	Н	2'	NH
4308	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	NH
4309	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₂	NH	Н	2'	NMe

	ı	1	ı	1	1	1	
4310	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	н	2,	NMe
4211	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	NH	Н	2'	(CH ₂) ₅ OH
4311	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	NH	Н	2'	4-OH-Ph
	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	2-Py
4313	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2,	3-Py
4314	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	2,	4-Py
4315	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2,	4-NH ₂ -Ph
4316	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2,	4-NO ₂ -Ph
4317	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	2,	3-NH ₂ -Ph
4318	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	H	2,	3-NO ₂ -Ph
4319		CH ₃	(CH ₂) ₃	NH	H	2,	2-NH ₂ -Ph
4320	4-(2-N-morpholinoethoxy)-5-OMe 4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	2-NO ₂ -Ph
4321		CH ₃	$(CH_2)_3$	NH	H	2,	CH ₂ -2-Py
4322	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	2,	CH ₂ -3-Py
4323	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$\frac{(CH_2)_3}{(CH_2)_3}$	NH	H	2,	CH ₂ -4-Py
4324	4-(2-N-morpholinoethoxy)-5-OMe	СП3	(C112)3	1111			
4325	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	NH	Н	2'	
4326	4-(2-N-morpholinoethoxy)-5-OMe	СН₃	(CH ₂) ₃	NH	Н	2'	NH
4327	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	Н	2'	NMe
4328	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	NH	Н	2'	NMe
4329	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	Н	2'	(CH ₂) ₅ OH
4330	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	NH	H	2'	4-OH-Ph
4331	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	2-Py
4332	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	3-Py
4333	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	4-Py
4334	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	4-NH ₂ -Ph
4335	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	4-NO ₂ -Ph
4336	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	3-NH ₂ -Ph
4337	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	3-NO ₂ -Ph
4338	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	2-NH ₂ -Ph
4339	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	2-NO ₂ -Ph
4340	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	CH ₂ -2-Py
4341	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	CH ₂ -3-Py
4342	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	H	2'	CH ₂ -4-Py
4343	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	0	Н	2'	NH
4344	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	Н	2'	NH
4345	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	Н	2'	NMe
4346	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₂	О	Н	2'	NMe
4347	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_2$	0	Н	2'	(CH ₂) ₅ OH
4347	4-(2-N-morpholinoethoxy)-5-OMe			0	Н	2,	4-OH-Ph
4349				0	Н	2,	2-Py
4349		CH ₂		0	Н	2,	3-Py
7330	1. (2 11 morphomormon), a street	,		•	•	-	

	4251	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	О	ΙнΙ	2'	4-Py
	4351				0	Н	2'	4-NH ₂ -Ph
	4352	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$				
	4353	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	O	Н	2'	4-NO ₂ -Ph
•	4354	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	2'	3-NH ₂ -Ph
•	4355	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	H	2'	3-NO ₂ -Ph
•	4356	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	0	Н	2'	2-NH ₂ -Ph
•	4357	4-(2-N-morpholinoethoxy)-5-OMe		$(CH_2)_3$	0	Н	2'	2-NO ₂ -Ph
	4358	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	О	Н	2'	CH ₂ -2-Py
•	4359	4-(2-N-morpholinoethoxy)-5-OMe		(CH ₂) ₃	О	Н	2'	CH ₂ -3-Py
•	4360	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	О	Н	2'	CH ₂ -4-Py
•	4361	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	0	Н	2'	NH
	4362	4-(2-N-morpholinoethoxy)-5-OMe	СН3	(CH ₂) ₃	0	Н	2'	NH NH
	4363	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	н	2'	NMe
	4364	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	(CH ₂) ₃	0	Н	2'	NMe
	4365	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃	$(CH_2)_3$	0	Н	2'	(CH ₂) ₅ OH
	4366	4-(2-N-morpholinoethoxy)-5-OMe	CH ₃		О	Н	2'	4-OH-Ph
	1200	, (<u> </u>		,	•	-	•	•

Table 10

Com- pound No.	\mathbb{R}^1	Y	x	\mathbb{R}^4	R ²	Site of urea	R ⁵ .
4367	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	H	4'	2-Py
4368	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	3-Ру
4369	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	4-Py
4370	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	4-NH ₂ -Ph
4371	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	4-NO ₂ -Ph
4372	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	3-NH ₂ -Ph
4373	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	3-NO ₂ -Ph
4374	$4,5-(OMe)_2$	CH ₃	$(CH_2)_2$	-	Н	4'	2-NH ₂ -Ph
4375	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	2-NO ₂ -Ph
4376	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	H	4'	CH_2 -(4-NH ₂ -Ph)
4377	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	CH_2 -(4- NO_2 - Ph)
4378	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	CH_2 -(3-NH ₂ -Ph)
4379	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	4'	CH_2 -(3- NO_2 - Ph)
4380	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	Н	4'	CH_2 -(2-NH ₂ -Ph)
4381	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	4'	CH_2 -(2- NO_2 - Ph)
4382	$4,5-(OMe)_2$	CH ₃	$(CH_2)_2$	-	Н	4'	CH ₂ -2-Py
4383	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	CH ₂ -3-Py
4384	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	CH ₂ -4-Py
4385	4,5-(OMe) ₂	СН3	(CH ₂) ₂	-	Н	4'	√NH
4386	4,5-(OMe) ₂	СН3	(CH ₂) ₂		Н	4'	NH
4387	4,5-(OMe) ₂	СН3	(CH ₂) ₂	-	Н	4'	NMe
4388	4,5-(OMe) ₂	СН3	(CH ₂) ₂	-	Н	4'	NMe
4389	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	(CH ₂) ₅ OH
4390	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	4'	4-OH-Ph
4391	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	4'	2-Py
4392	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	4'	3-Ру
	1 .,- ()2	·					

4393	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	4'	4-Py
4394	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	4'	4-NH ₂ -Ph
4395	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	4'	4-NO ₂ -Ph
4396	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	4'	3-NH ₂ -Ph
4397	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	_	H	4'	3-NO ₂ -Ph
4398	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	4'	2-NH ₂ -Ph
4399	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	4'	2-NO ₂ -Ph
4400	$\frac{4,5-(OMe)_2}{4,5-(OMe)_2}$	CH ₃	$(CH_2)_3$		Н	4'	CH ₂ -2-Py
4401	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃		Н	4'	CH ₂ -3-Py
	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$		H	4'	CH ₂ -4-Py
4402	4,5-(OMe) ₂	CII3	(C112)3		11		0.1.2 + 1.3
4403	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	4'	NH
4404	4,5-(OMe) ₂	СН₃	(CH ₂) ₃	-	Н	4'	NH
4405	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	н	4'	NMe
4406	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	н	4'	NMe
4407	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃		Н	4'	(CH ₂) ₅ OH
4408	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	H	4'	4-OH-Ph
4409	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	<u>-</u>	Н	3'	2-Py
4410	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	H	3'	3-Py
4411	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	_ 3'	4-Py
4412	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	3'	4-NH ₂ -Ph
4413	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	3'	4-NO ₂ -Ph
4414	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		H	3'	3-NH ₂ -Ph
4415	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	3'	3-NO ₂ -Ph
4416	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		Н	3'	2-NH ₂ -Ph
4417	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	H	3'	2-NO ₂ -Ph
4418	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		H	3'	CH_2 -(4- NH_2 - Ph)
4419	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	3'	CH_2 -(4- NO_2 - Ph)
4420	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	H	3'	CH_2 -(3-NH ₂ -Ph)
4421	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	H	3'	CH ₂ -(3-NO ₂ -Ph)
4422	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂		H	3'	CH ₂ -(2-NH ₂ -Ph)
4423	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		Н	3'	CH_2 -(2- NO_2 - Ph)
4424	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		Н	3'	CH ₂ -2-Py
4425	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	H	3'	CH ₂ -3-Py
4426	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		H	3'	CH ₂ -4-Py
4427	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	н	3'	√NH
4428	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	3'	NH
4429	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	_	Н	3'	NMe
4430	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	3'	NMe
4431	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	3'	(CH ₂) ₅ OH
4432	$4,5-(OMe)_2$	CH ₃	$(CH_2)_2$	-	Н	3'	4-OH-Ph
4433	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	-	Н	3'	2-Py
4434	$4,5 \cdot (OMe)_2$	CH ₃	$(CH_2)_3$	-	Н	3'	3-Py
7777	1,5 (01/10)2	1 0113	1 (-112/3		<u></u>	L	

4435	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	н	3'	4-Py
4436	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	3'	4-NH ₂ -Ph
4437	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	3'	4-NO ₂ -Ph
4438	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	3'	3-NH ₂ -Ph
4439	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃		Н	3'	3-NO ₂ -Ph
4440	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	3'	2-NH ₂ -Ph
4441	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$	-	Н	3'	2-NO ₂ -Ph
4442	$4,5 - (OMe)_2$	CH ₃	$(CH_2)_3$	_	Н	3'	CH ₂ -2-Py
4443	$4,5 - (OMe)_2$	CH ₃	$(CH_2)_3$		Н	3'	CH ₂ -3-Py
	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$		Н	3'	CH ₂ -4-Py
4444	4,5-(OME)2		(C112)3				^
4445	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	3'	Ун
4446	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	3'	NH
4447	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	3'	NMe
4448	4,5-(OMe) ₂	CH₃	(CH ₂) ₃	-	Н	3'	NMe
4449	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	3'	(CH ₂) ₅ OH
4450	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	3'	4-OH-Ph
4451	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	2-Py
4452	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	3-Py
4453	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	Н	2'	4-Py
4454	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	Н	2'	4-NH ₂ -Ph
4455	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	2'	4-NO ₂ -Ph
4456	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	2'	3-NH ₂ -Ph
4457	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	3-NO ₂ -Ph
4458	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	Н	2'	2-NH ₂ -Ph
4459	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	2-NO ₂ -Ph
4460	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$		Н	2'	CH ₂ -(4-NH ₂ -Ph)
4461	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	H	2'	CH ₂ -(4-NO ₂ -Ph)
4462	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	CH_2 -(3-N H_2 -Ph)
4463	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	Н	2'	CH ₂ -(3-NO ₂ -Ph)
4464	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	H	2'	CH ₂ -(2-NH ₂ -Ph)
4465	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	_	Н	2'	CH ₂ -(2-NO ₂ -Ph)
4466	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	CH ₂ -2-Py
4467	4,5-(OMe) ₂	CH ₃	$(CH_2)_2$	-	Н	2'	CH ₂ -3-Py
4468	$4,5-(OMe)_2$	CH ₃	$(CH_2)_2$	_	Н	2'	CH ₂ -4-Py
4469	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	÷	Н	2'	NH
4470	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	2'	NH
4471	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	2'	NMe
4472	4,5-(OMe) ₂	СН3	(CH ₂) ₂	-	Н	2'	NMe
4473	4,5-(OMe) ₂	CH ₃	(CH ₂) ₂	-	Н	2'	(CH ₂) ₅ OH
4474	$4,5-(OMe)_2$	CH ₃	$(CH_2)_2$	٠ -	Н	2'	4-OH-Ph
4475	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$		Н	2'	2-Py
4476	$\frac{1,5 \text{ (OMe)}_2}{4,5 \text{- (OMe)}_2}$	CH ₃	$(CH_2)_3$	-	Н	2'	3-Py
T770	.,5 (01.10)2		1 \ 2/3	<u> </u>			·

4477	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	2'	4-Py
4478	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	_	Н	2'	4-NH ₂ -Ph
4479	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	2'	4-NO ₂ -Ph
4480	$4.5-(OMe)_2$	CH ₃	(CH ₂) ₃	_	Н	2'	3-NH ₂ -Ph
4481	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	2'	3-NO ₂ -Ph
4482	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$	-	Н	2'	2-NH ₂ -Ph
	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	2'	2-NO ₂ -Ph
4483	$4,5-(OMe)_2$	CH ₃	$(CH_2)_3$		Н	2'	CH ₂ -2-Py
4484	4,5-(OMe) ₂	CH ₃	$(CH_2)_3$		Н	2'	CH ₂ -3-Py
4485		CH ₃	(CH ₂) ₃		H	2'	CH ₂ -4-Py
4486	4,5-(OMe) ₂	CH3	(C112)3				
4487	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	2'	NH
4488	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	_	Н	2'	NH
4489	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	_	Н	2'	NMe
4490	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	-	Н	2'	NMe
4491	4,5-(OMe) ₂	CH ₃	(CH ₂) ₃	_	Н	2'	(CH ₂) ₅ OH
		CH ₃	$(CH_2)_3$		Н	2'	4-OH-Ph
4492	$4,5-(OMe)_2$	l CH3	1 (C112)3	_	1 **	. ~	1

In Table 1 to Table 10, Py denotes a pyridyl group, Ph denotes a phenyl group, Me denotes a methyl group, Et denotes an ethyl group, "Pr denotes a n-propyl group, Ac denotes an acetyl group, "Bu denotes a n-butyl group, Bn denotes a benzyl group, c-Pen denotes a cyclopentyl group, c-Hex denotes a cyclohexyl group, c-Hep denotes a cycloheptyl group, iPr denotes an isopropyl group, and Nap denotes a naphthyl group, respectively.

A pharmaceutical composition comprising, as an active ingredient, the diarylamide derivative of the present invention, that is, a medical composition, can be administered in various forms including injections such as intravenous injection, subcutaneous injection, and intramuscular injection and external preparations, in addition to internal preparations such as tablets, capsules, powders, and granules. For example, the diarylamide derivative of the present invention can be mixed with excipients such as lactose and starch, lubricants such as magnesium stearate and talc, and other conventional additives to prepare tablets. Distilled water, saline, alcohol and the like can be used to prepare injections, and buffers, isotonizing agents, preservatives, stabilizers and the like can be optionally added.

The dose of the diarylamide derivative of the present invention is properly determined in accordance with, for example, sex, age, and weight of a patient and a type and condition of disease. When internally administered, the dose can be in the range of approximately 0.1 to 100 mg/kg per day, preferably in the range of 1 to 10 mg/kg, in a single dose or several separate doses.

This specification includes part or all of the contents as disclosed in the specifications of Japanese Patent Applications Nos. 281271/1999 and 290789/1999, which are the base of the priority claim of the present application.

BEST MODE FOR CARRYING OUT THE INVENTION

The present invention is further described by the following Reference Examples, Examples, and Preparation Example although these are not intended to limit the scope of the present invention.

Example 1

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]urea (compound number 1)

0.75 g of 4,5-dimethoxy-2-nitrobenzoic acid was dissolved in 100 ml of ethanol and 3 ml of concentrated sulfuric acid was then added thereto. The mixture was stirred for 18 hours under reflux and neutralized with 5% aqueous solution of sodium hydroxide. Thereafter, the precipitated solid was collected by suction filtration and washed with water, followed by drying. Thus, 0.53 g of white solid was obtained. Subsequently, 0.30 g of this solid and 60 mg of 5% Pd/C were added to 20 ml of ethanol, and the mixture was stirred under hydrogen atmosphere at room temperature for 14 hours. The reaction solution was filtered and the filtrate was concentrated. Thus, 0.27 g of ethyl 2-amino-4,5-dimethoxybenzoate was obtained as a white solid.

Subsequently, 0.26 g of this solid was dissolved in 20 ml of dichloromethane, 0.27 g of 4-nitrobenzoyl chloride and 0.5 ml of triethylamine were then added thereto. The mixture was stirred for 30 minutes at room temperature. The reaction solution was poured into saturated sodium bicarbonate water, extracted with dichloromethane, the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was washed with methanol and then dried. Thus, 0.36 g of yellow solid was obtained.

Thereafter, 0.36 g of this solid and 50 mg of 5% Pd/C were added to 100 ml of methanol. The mixture was then stirred under hydrogen atmosphere at room temperature for 32 hours. The reaction solution was filtered and the filtrate was concentrated. Thus, 0.28 g of ethyl 2-(4-aminophenyl)carbonylamino-4,5-dimethoxybenzoate was obtained as a yellow solid.

Subsequently, 90 mg of this solid, 0.24 g of phenyl isocyanate, and 0.12 g of triethylamine were added to 20 ml of toluene and the mixture was then stirred under reflux for 18 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane: ethyl acetate = $10:1 \rightarrow$ dichloromethane: methanol = 30:1). Thus, 80 mg of the title compound was obtained as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm: 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 3H), 6.99 (t, J = 7.3 Hz, 1H), 7.30 (m, 3H), 7.48 (d, J = 7.5 Hz, 2H), 7.48 (s, 1H), 7.67 (d, J = 7.3 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 8.45 (s, 1H), 9.05 (s, 1H), 9.31 (s, 1H), 11.75 (s, 1H)

Example 2

N-(4-Nitrophenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 25)

The title compound was synthesized in the same manner as in Example 1.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.48 (s, 1H), 7.71 (m, 4H), 7.92 (d, J = 8.9 Hz, 2H), 8.22 (d, J = 9.2 Hz, 2H), 8.43 (s, 1H), 9.40 (s, 1H), 9.65 (s, 1H), 11.76 (s, 1H)

Example 3

N-(4-Aminophenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 28)

The compound (90 mg) synthesized in Example 2 and 20 mg of 5% Pd/C were added to 10 ml of ethanol. The mixture was then stirred under hydrogen atmosphere at room temperature for 14 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol = 50:1). Thus, 50 mg of the title compound was obtained as a pale pink solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.87 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 4.80 (s, 2H), 6.52 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.9 Hz, 2H), 7.48 (s, 1H), 7.63 (d, J = 8.9 Hz, 2H), 7.87 (d, J = 8.9 Hz, 2H), 8.22 (d, J = 9.2 Hz, 2H), 8.42 (s, 1H), 8.45 (s, 1H), 9.03 (s, 1H), 11.74 (s, 1H)

Example 4

N-(4-Fluorophenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 19)

60 mg of Ethyl 2-(4-aminophenyl)carbonylamino-4,5-dimethoxybenzoate, 0.11 g of 4-fluorophenyl isocyanate, and 70 mg of 4-dimethylaminopyridine were added to 20 ml of tetrahydrofuran. The mixture was then stirred at 70° C for 5 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : ethyl acetate =10 : 1 \rightarrow dichloromethane : methanol = 30 : 1). Thus, 60 mg of the title compound was obtained as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J=7.2Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.14 (t, J = 6.2 Hz, 2H), 7.48 (s, 1H), 7.49 (dd, J = 3.8, 8.6 Hz, 2H), 7.67 (d, J = 8.6 Hz, 2H), 7.89 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 9.12 (s, 1H), 9.34 (s, 1H), 11.75 (s, 1H)

Example 5

N-(4-Ethoxycarbonylphenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]phenyl]urea (compound number 14)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (m, 6H), 3.80 (s, 3H), 3.88 (s, $^{-3}$ H), 4.33 (m, 4H), 7.48 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 7.91 (m, 4H), 8.44 (s, 1H), 9.29 (s, 1H), 9.34 (s, 1H), 11.76 (s, 1H)

Example 6

N-(4-Acetylphenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 12)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.48 (s, 1H), 7.62 (d, J = 8.9 Hz, 2H), 7.68 (d, J = 8.9 Hz, 2H), 7.93 (m, 4H), 8.44 (s, 1H), 9.34 (s, 1H), 9.38 (s, 1H), 11.76 (s, 1H)

Example 7

N-(4-Methoxyphenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 35)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.73 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 6.89 (d, J = 9.2 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.48 (s, 1H), 7.65 (d, J = 8.9 Hz, 2H), 7.89 (d, J = 8.9 Hz, 2H), 8.45 (s, 1H), 8.73 (s, 1H), 9.11 (s, 1H), 11.75 (s, 1H)

Example 8

N-(2-Methoxyphenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 37)

The title compound was synthesized in the same manner as in Example 4.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 3.89 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.00 (m, 3H), 7.48 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 8.13 (dd, J = 1.6, 7.3 Hz, 1H), 8.41 (s, 1H), 8.45 (s, 1H), 9.75 (s, 1H), 11.76 (s, 1H)

Example 9

N-(3-Methoxyphenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 36)

The title compound was synthesized in the same manner as in Example 4.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.74 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 6.58 (dd, J = 2.4, 8.1 Hz, 1H), 6.96 (d, J = 9.5 Hz, 1H), 7.20 (m, 2H), 7.48 (s, 1H), 7.66 (d, J = 8.6Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 8.97 (s, 1H), 9.21 (s, 1H), 11.75 (s, 1H)

Example 10

N-(3,4,5-Trimethoxyphenyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]phenyl]urea (compound number 101)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.61 (s, 3H), 3.76 (s, 6H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 6.83 (s, 2H), 7.48 (s, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 8.93 (s, 1H), 9.19 (s, 1H), 11.74 (s, 1H)

Example 11

N-(3-Pyridyl)-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 972)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.34 (m, 1H), 7.48 (s, 1H), 7.69 (d, J = 8.6 Hz, 2H), 7.90 (d, J = 8.9 Hz, 2H), 7.97 (d, J = 8.9 Hz, 1H), 8.20 (d, J = 4.3 Hz, 1H), 8.44 (s, 1H), 8.66 (s, 1H), 9.50 (s, 1H), 9.70 (s, 1H), 11.75 (s, 1H)

Example 12

N-Benzyl-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]urea (compound number 112)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.34 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.87 (s, 3H), 4.37 (m, 4H), 6.99 (t, J = 6.5 Hz, 1H), 7.28 (m, 5H), 7.47 (s, 1H), 7.61 (d, J = 8.6 Hz, 2H), 7.84 (d, J = 8.9 Hz, 1H), 8.44 (s, 1H), 9.18 (s, 1H), 11.72 (s, 1H)

Example 13

N-Cyclohexyl-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 103)

The title compound was synthesized in the same manner as in Example 4.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.20 (m, 6H), 1.34 (t, J = 7.2Hz, 3H), 1.65 (m, 4H), 3.48 (m, 1H), 3.79 (s, 3H), 3.87 (s, 3H), 4.37 (m, 4H), 6.42 (d, J = 7.8 Hz, 1H), 7.47 (s, 1H), 7.57 (d, J = 8.9 Hz, 2H), 7.83 (d, J = 8.9 Hz, 1H), 8.45 (s, 1H), 8.88 (s, 1H), 11.72 (s, 1H)

Example 14

N-n-butyl-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonyl]phenyl]urea (compound number 107)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 0.90 (t, J = 6.7 Hz, 3H), 1.27 (m,4H), 1.34 (t, J = 7.2 Hz, 3H), 3.10 (q, J = 5.7 Hz, 2H), 3.80 (s, 3H), 3.87 (s, 3H), 4.37 (m, 4H), 6.45 (t, J = 5.4 Hz, 1H), 7.47 (s, 1H), 7.59 (d, J = 8.9 Hz, 2H), 7.83 (d, J = 8.6 Hz, 1H), 8.45 (s, 1H), 8.98 (s, 1H), 11.72 (s, 1H)

Example 15

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]thiourea (compound number 315)

The title compound was synthesized in the same manner as in Example 4.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.14 (t, J = 6.8 Hz, 1H), 7.35 (m, 3H), 7.48 (m, 3H), 7.76 (d, J = 8.9 Hz, 2H), 7.91 (d, J = 8.9 Hz, 2H), 8.44 (s, 1H), 10.21 (s, br, 2H), 11.80 (s, 1H)

Example 16

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]urea (compound number 691)

The title compound was synthesized in the same manner as in Example 4.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.34 (t, J = 7.2 Hz, 3H), 3.81 (s, 3H), 3.89 (s, 3H), 4.36 (q, J = 7.2 Hz, 2H), 6.99 (t, J = 7.3 Hz, 1H), 7.29 (t, J = 8.3 Hz, 2H), 7.49 (m, 5H), 7.23 (m, 1H), 8.08 (s, 1H), 8.42 (s, 1H), 8.92 (s, 1H), 9.13 (s, 1H), 11.76 (s, 1H)

Example 17

N-Phenyl-N'-[2-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]urea (compound number 692)

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.2 Hz, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.2 Hz, 2H), 6.96 (t, J = 7.3 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.26 (t, J = 7.3 Hz, 2H), 7.51 (m, 4H), 7.80 (d, J = 7.0 Hz, 1H), 8.12 (s, 1H), 8.20 (d, J = 5.7 Hz, 2H), 9.61 (s, 1H), 9.79 (s, 1H), 11.47 (s, 1H)

Example 18

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-phenyl]urea (compound number 158)

0.66 g of 4,5-dimethoxy-2-nitrobenzoic acid and 5 ml of thionyl chloride were added to 40 ml of chloroform. The mixture was stirred under reflux for 6 hours and concentrated. The residue was dissolved in 20 ml of dichloromethane and 20 ml of aqueous ammonia was then added thereto in an ice bath. The mixture was vigorously stirred at room temperature for 10 minutes, the organic layer was fractionated and concentrated, the residue and 0.20 g of 5% Pd/C were added to 50 ml of methanol, and the mixture was stirred under hydrogen atmosphere at room temperature for 19 hours. The reaction solution was filtered and the filtrate was concentrated. Thus, 0.55 g of 2-amino-4,5-dimethoxybenzamide was obtained as a white solid.

Subsequently, 0.55 g of this solid was dissolved in 50 ml of dichloromethane and 2.00 g of 4-nitrobenzoyl chloride and 2 ml of triethylamine were then added thereto. The resultant mixture was stirred at room temperature for 6 hours. The reaction solution was poured into saturated sodium bicarbonate water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was washed with methanol and dried. Thus, 0.72 g of 2-(4-nitrophenyl)-carbonylamino-4,5-dimethoxybenzamide was obtained as a yellow ocher solid.

Thereafter, 0.68 g of this solid and 0.10 g of 5% Pd/C were added to 50 ml of methanol. Under hydrogen atmosphere, the obtained mixture was then stirred at room temperature for 40 hours. The reaction solution was filtered and the filtrate was concentrated. Thus, 0.35 g of 2-(4-aminophenyl)-carbonylamino-4,5-dimethoxybenzamide was obtained as a yellow solid.

Subsequently, 0.12 g of this solid, 0.14 g of phenyl isocyanate, and 0.10 g of 4-dimethylaminopyridine were added to 30 ml of tetrahydrofuran. The mixture was then stirred at 70°C for 4 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous

magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : ethyl acetate $=20:1 \rightarrow$ dichloromethane : methanol = 30:1) to obtain 80 mg of the title compound as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.81 (s, 3H), 3.84 (s, 3H), 7.00 (t, J = 8.1 Hz, 1H), 7.30 (t, J = 8.4 Hz, 2H), 7.44 (s, 1H), 7.47 (d, J = 7.9 Hz, 2H), 7.64 (m, 3H), 7.87 (d, J = 8.6 Hz, 2H), 8.31 (s, 1H), 8.53 (s, 1H), 8.87 (s, 1H), 9.13 (s, 1H), 13.21 (s, 1H)

Example 19

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-phenyl]-N'-methylurea (compound number 976)

40 mg of 2-(4-aminophenyl)-carbonylamino-4,5-dimethoxybenzamide, 60 mg of hydroxybenzotriazole (HOBt), 50 mg of triethylamine, and 70 mg of 4-methylaminobenzoic acid were added to DMF. The mixture was stirred for 30 minutes, and 80 mg of 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride (WSCl) was added thereto in an ice bath and then returned to room temperature, followed by stirring for 50 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : ethyl acetate = 30 : 1 → dichloromethane : methanol = 50 : 1) to obtain 80 mg of white solid.

Subsequently, 30 mg of this solid, 60 mg of phenyl isocyanate, and 30 mg of 4-dimethylaminopyridine were added to 10 ml of tetrahydrofuran. The mixture was then stirred at 70° C for 6 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : ethyl acetate = $30:1 \rightarrow \text{dichloromethane}$: methanol = 30:1) to obtain 20 mg of the title compound as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.35 (s, 3H), 3.81 (s, 3H), 3.85 (s, 3H), 6.97 (t, J = 8.5 Hz, 1H), 7.25 (t, J = 8.4 Hz, 2H), 7.45 (m, 5H), 7.68 (s, 1H), 7.94 (d, J = 8.1 Hz, 2H), 8.33 (s, 1H), 8.53 (s, 1H), 8.59 (s, 1H), 13.32 (s, 1H)

Example 20

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-4-

pyridyl]urea (compound number 971)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.82 (s, 3H), 3.85 (s, 3H), 7.02 (t, J = 7.3 Hz, 1H), 7.32 (m, 3H), 7.46 (s, 1H), 7.51 (d, J = 5.1 Hz, 2H), 7.69 (dd, J = 1.9, 5.1 Hz, 1H), 8.12 (s,1H), 8.25 (d, J = 2.4 Hz, 1H), 8.47 (d, J = 5.4 Hz, 1H), 8.57 (s, 1H), 9.33 (s, 1H), 9.83 (s, 1H), 13.33 (s, 1H)

Example 21

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-2-pyridyl]urea (compound number 972)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.82 (s, 3H), 3.84 (s, 3H), 7.04 (t, J = 7.3 Hz, 1H), 7.33 (t, J = 7.8 Hz, 3H), 7.46 (s, 1H), 7.54 (d, J = 7.0 Hz, 2H), 7.73 (s,1H), 7.79 (d, J = 8.9 Hz, 1H), 8.21 (dd, J = 2.4, 8.6Hz, 1H), 8.36 (s, 1H), 8.48 (s, 1H), 8.83 (d, J = 2.1 Hz, 1H), 9.86 (s, 1H), 10.20 (s, 1H), 13.35 (s, 1H)

Example 22

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-3-methoxyphenyl]urea (compound number 726)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.81 (s, 3H), 3.84 (s, 3H), 3.99 (s, 3H), 6.99 (t, J = 7.3 Hz, 1H), 7.31 (t, J = 8.1 Hz, 2H), 7.46 (s, 1H), 7.49 (m, 2H), 7.58 (s, 1H), 7.73 (s,1H), 8.33 (s,1H), 8.36 (s,1H), 8.56 (d, J = 3.5 Hz, 2H), 9.49 (s, 1H), 13.29 (s, 1H)

Example 23

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-4-methoxyphenyl]urea (compound number 727)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.81 (s, 3H), 3.84 (s, 3H), 3.98 (s, 3H), 6.98 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.44 (s, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.60 (dd, J = 2.1, 8.1 Hz, 1H), 7.63 (s, 1H), 8.29 (s, 1H), 8.38 (s,1H), 8.53 (s,1H), 8.79 (d, J = 2.4 Hz, 2H), 9.37 (s, 1H), 13.14 (s, 1H)

Example 24

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonylmethyl]-

phenyl]urea (compound number 748)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.59 (s, 2H), 3.76 (s, 3H), 3.77 (s, 3H), 6.95 (t, J = 8.1 Hz, 1H), 7.24 (m, 9H), 7.56 (s, 1H), 8.16 (s, 1H), 8.28 (s, 1H), 8.76 (s, 2H), 12.13 (s, 1H)

Example 25

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonylethyl]-phenyl]urea (compound number 751)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.61 (t, J = 7.6 Hz, 2H), 2.87 (t, J = 8.4 Hz, 2H), 3.78 (s, 6H), 6.94 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 7.26 (t, J = 8.4 Hz, 2H), 7.35 (s, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 7.8 Hz, 2H), 7.56 (s, 1H), 8.17 (s, 1H), 8.29 (s, 1H), 8.73 (s, 1H), 8.77 (s, 1H), 12.12 (s, 1H)

Example 26

N-[4-[(4,5-Dimethoxy-2-carbamoylphenyl)aminocarbonyl]phenyl]-N'-methyl-N'-phenylurea (compound number 977)

0.11 g of 2-(4-aminophenyl)-carbonylamino-4,5-dimethoxybenzamide was dissolved in 10 ml of THF, 0.50 g of N-phenyl-N-methylcarbamoyl chloride and 1 ml of diisopropylethylamine were then added thereto. The mixture was stirred under reflux for 16 hours. The reaction solution was poured into water and extracted with dichloromethane, and then dried with anhydrous magnesium sulfate, followed by concentration. The residue was washed with methanol and dried to obtain 50 mg of white solid.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.29 (s, 3H), 3.81 (s, 3H), 3.83 (s, 3H), 7.27 (t, J = 6.8 Hz, 1H), 7.44 (m, 5H), 7.63 (m,3H), 7.80 (d, J = 8.9 Hz, 2H), 8.30 (s, 1H), 8.52 (s, 1H), 8.53 (s, 1H), 13.18 (s, 1H)

Example 27

N-[4-[(4,5-Dimethoxy-2-carbamoylphenyl)aminocarbonyl]phenyl]-N,N'-dimethyl-N'-phenylurea (compound number 978)

The title compound was synthesized in the same manner as in Example 26.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.12 (s, 3H), 3.18 (s, 3H), 3.81 (s, 3H), 3.83 (s, 3H), 7.00 (m, 3H), 7.12 (m, 4H), 7.44 (s,1H), 7.68 (m, 3H), 8.32 (s, 1H), 8.49 (s, 1H), 13.18 (s, 1H)

Example 28

N-(3,4,5-Trimethoxyphenyl)-N'-[4-[(4,5-dimethoxy-2-

ethoxycarbonylphenyl)aminocarbonyl]-3-methoxyphenyl]urea (compound number 792)

The title compound was synthesized in the same manner as in Example 18.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.61 (s, 3H), 3.76 (s, 6H), 3.81 (s, 3H), 3.84 (s, 3H), 3.98 (s, 3H), 6.81 (s, 2H), 7.53 (m, 3H), 7.74 (s, 1H), 8.33 (m, 2H), 8.51 (s, 1H), 8.55 (s, 1H), 9.49 (s, 1H), 13.28 (s, 1H)

Example 29

N-Phenyl-N'-[4-[(4-methyl-2-carbamoylphenyl)aminocarbonyl]phenyl]urea (compound number 633)

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.32 (s, 3H), 6.99 (t, J = 8.1 Hz, 1H), 7.37 (m,3H), 7.48 (d, J = 7.3 Hz, 2H), 7.66 (m, 6H), 8.36 (s, 1H), 8.59 (d, J = 8.9 Hz, 2H), 9.00 (s, 1H), 9.26 (s, 1H), 12.73 (s, 1H)

Example 30

N-Phenyl-N'-[4-[(6-carbamoyl-3,4-methylenedioxyphenyl)aminocarbonyl]-phenyl]urea (compound number 652)

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 6.12 (s,2H), 6.99 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.3 Hz, 2H), 7.47 (d, J = 7.9 Hz, 2H), 7.50 (s, 1H), 7.63 (d, J = 8.9 Hz, 2H), 7.71 (s, 1H), 7.86 (d, J = 8.4 Hz, 2H), 8.21 (s, 1H), 8.36 (s, 1H), 8.91 (s, 1H), 9.18 (s, 1H), 13.28 (s, 1H)

Example 31

N-Phenyl-N'-[4-[(2-carbamoyl-4-methoxyphenyl)aminocarbonyl]-phenyl]urea (compound number 631)

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.89 (s, 3H), 6.99 (t, J = 8.1 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.45 (m,4H), 7.64 (m, 3H), 7.97 (s, 1H), 8.13 (d, J = 8.7 Hz, 2H), 8.92 (s, 1H), 9.14 (s, 1H), 12.37 (s, 1H)

Example 32

N-(4-Ethoxycarbonylphenyl)-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)-

aminocarbonyl]phenyl]urea (compound number 171)

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.3Hz, 3H), 3.81 (s, 3H), 3.84 (s, 3H), 4.33 (q, J = 7.3 Hz, 2H), 7.45 (s, 1H), 7.65 (m, 5H), 7.89 (m, 4H), 8.32 (s, 1H), 8.53 (s, 1H), 9.46 (s, 1H), 9.51 (s, 1H), 13.22 (s, 1H)

Example 33

N-Phenyl-N'-[3-[(2-carbamoylthienyl)aminocarbonyl]phenyl]urea (compound number 916)

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 7.00 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 8.4 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 7.78 (m, 7H), 8.11 (d, J = 5.4 Hz, 1H), 8.93 (s, 1H), 9.23 (s, 1H), 12.31 (s, 1H)

Example 34

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-3-methylphenyl]urea (compound number 744)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.34 (s, 3H), 3.81 (s, 3H), 3.84 (s, 3H), 6.99 (t, J = 7.3 Hz, 1H), 7.31 (t, J = 7.3 Hz, 2H), 7.44 (s, 1H), 7.49 (d, J = 7.6 Hz, 2H), 7.75 (m, 3H), 8.16 (d, J = 7.8 Hz, 1H), 8.33 (s, 2H), 8.54 (s, 1H), 9.38 (s, 1H), 13.22 (s, 1H)

Example 35

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-4-methylphenyl]urea (compound number 745)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.33 (s, 3H), 3.81 (s, 3H), 3.84 (s, 3H), 6.97 (t, J = 7.3 Hz, 1H), 7.37 (m, 7H), 7.66 (s, 1H), 8.30 (s, 1H), 8.38 (s, 1H), 8.45 (s, 1H), 8.54 (s, 1H), 9.35 (s, 1H), 13.21 (s, 1H)

Example 36

N-Phenyl-N'-[4-chloro-3-[(4,5-dimethoxy-2-carbamoylphenyl)-aminocarbonyl]phenyl]urea (compound number 746)

The title compound was synthesized in the same manner as in Example 19. 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.82 (s, 3H), 3.85 (s, 3H), 7.01 (t,

J = 7.3 Hz, 1H), 7.31 (t, J = 8.1 Hz, 2H), 7.54 (m, 4H), 7.68 (d, J = 8.1 Hz, 2H), 8.34 (s, 1H), 8.50 (s, 1H), 8.69 (s, 1H), 8.78 (d, J = 1.8 Hz, 1H), 9.67 (s, 1H), 13.34 (s, 1H)

Example 37

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-4-hydroxyphenyl]urea (compound number 728)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.81 (s, 3H), 3.84 (s, 3H), 6.97 (m, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.46 (m, 4H), 7.60 (s, 1H), 8.26 (s, 1H), 8.32 (s, 1H), 8.54 (s, 1H), 8.71 (d, J = 2.2 Hz, 1H), 9.34 (s, 1H), 13.22 (s, 1H)

Example 38

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-4-(2-(N-morpholinyl)ethoxy)phenyl]urea (compound number 747)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.81 (s, 3H), 3.84 (s, 3H), 3.70 (m, 12H), 6.99 (t, J = 7.3 Hz, 1H), 7.27 (m, 3H), 7.50 (m, 4H), 7.64 (s, 1H), 8.23 (s, 1H), 8.29 (s, 1H), 8.53 (s, 1H), 8.75 (d, J = 2.4 Hz, 1H), 9.43 (s, 1H), 13.15 (s, 1H)

Example 39

N-Phenyl-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)aminocarbonyl]-2-thienyl]urea (compound number 975)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.81 (s, 3H), 3.83 (s, 3H), 6.92 (s, 1H), 6.99 (t, J = 8.1 Hz, 1H), 7.30 (t, J = 8.1 Hz, 2H), 7.46 (m, 4H), 8.62 (s, 1H), 8.31 (s, 1H), 8.46 (s,1H), 9.00 (s, 1H), 10.28 (s, 1H), 13.02 (s, 1H)

Example 40

N-Toluyl-N'-[4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]urea (compound number 2)

The title compound was synthesized in the same manner as in Example 1.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.35 (t, J = 7.0 Hz, 3H), 2.25 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 4.37 (q, J = 7.0 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.48 (s, 1H), 7.67 (d, J = 8.9 Hz, 2H), 7.89 (d, J = 8.9 Hz, 2H), 8.45 (s, 1H), 9.09 (s, 1H), 9.43 (s, 1H), 11.75 (s, 1H)

Example 41

N-Phenyl-N'-[3-[(4,5-dimethoxy-2-carbamoylphenyl)-aminocarbonylmethoxy]phenyl]urea (compound number 994)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.79 (s, 3H), 3.80 (s, 3H), 4.63 (s, 2H), 6.67 (m, 1H), 6.96 (t, J = 7.0 Hz, 1H), 7.04 (d, J = 8.9 Hz, 1H), 7.24 (m, 4H), 7.38 (s, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.61 (s, 1H), 8.18 (s, 1H), 8.43 (s, 1H), 9.01 (s, 1H), 9.08 (s, 1H), 12.84 (s, 1H)

Example 42

N-(4-Acetoxyphenyl)-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)-aminocarbonylethyl]phenyl]urea (compound number 1073)

The title compound was synthesized in the same manner as in Example 19.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.62 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.78 (s, 6H), 7.17 (d, J = 8.4 Hz, 2H), 7.36 (m,3H), 7.57 (m, 3H), 7.89 (d, J = 8.9 Hz, 2H), 8.18 (s, 1H), 8.29 (s, 1H), 8.86 (s, 1H), 9.21 (s, 1H), 12.13 (s, 1H)

Example 43

N-(3-Pyridyl)-N'-[4-[(4,5-dimethoxy-2-carbamoylphenyl)-aminocarbonylethyl]phenyl]urea (compound number 1071)

The title compound was synthesized in the same manner as in Example 19.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.62 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.78 (s, 6H), 7.17 (d, J = 8.4 Hz, 2H), 7.33 (m,4H), 7.56 (s, 1H), 7.91 (m, 1H), 8.17 (m, 2H), 8.29 (s, 1H), 8.59 (d, J = 2.4 Hz, 1H), 8.81 (s, 1H), 8.91 (s, 1H), 12.13 (s, 1H)

Example 44

N-(3-Pyridyl)-N'-[4-[(4,5-difluoro-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl]urea (compound number 1094)

The title compound was synthesized in the same manner as in Example 1.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.34 (t, J = 7.2 Hz, 3H), 4.37 (q, J = 7.2 Hz, 2H), 7.34 (m, 1H), 7.69 (d, J = 8.6 Hz, 2H), 7.97 (m, 4H), 8.21 (m, 1H), 8.64 (m, 2H), 9.31 (s, 1H), 9.55 (s, 1H), 11.59 (s, 1H)

Example 45

N-(4-Aminophenyl)-N'-{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-

aminocarbonylethyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 3.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 2.67 (t, J = 7.3 Hz, 2H), 2.87 (t, J = 7.3 Hz, 2H), 3.77 (s, 3H), 3.81 (s, 3H), 4.31 (q, J = 7.3 Hz, 2H), 4.75 (s, 2H), 6.49 (d, J = 8.9 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.39 (s, 1H), 8.12 (s, 1H), 8.14 (s, 1H), 8.43 (s, 1H), 10.74 (s, 1H)

Example 46

N-(4-Nitrophenyl)-N'-{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 2.69 (t, J = 7.3 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.77 (s, 3H), 3.82 (s, 3H), 4.31 (q, J = 7.0 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.38 (s, 1H), 7.40 (d, J = 8.9 Hz, 2H), 7.69 (d, J = 9.1 Hz, 2H), 8.14 (s, 1H), 8.18 (d, J = 9.1 Hz, 2H), 9.12 (s, 1H), 9.70 (s, 1H), 10.74 (s, 1H)

Example 47

 $N-(2-Aminophenyl)-N'-\{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonylethyl]phenyl\}urea$

Synthesis was carried out in the same manner as in Example 3.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.3 Hz, 3H), 2.67 (t, J = 7.8 Hz, 2H), 2.87 (t, J = 7.8 Hz, 2H), 3.77 (s, 3H), 3.81 (s, 3H), 4.31 (q, J = 7.3 Hz, 2H), 4.78 (s, 2H), 6.56 (t, J = 6.8 Hz, 1H), 6.71 (d, J = 6.8 Hz, 1H), 6.80 (t, J = 6.8 Hz, 1H), 7.39 (m, 4H), 7.95 (s, 1H), 8.14 (s, 1H), 8.94 (s, 1H), 10.74 (s, 1H)

Example 48

 $N-(2-Nitrophenyl)-N'-\{4-\{(4,5-dimethoxy-2-ethoxycarbonylphenyl\}-aminocarbonylethyl\} urea$

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.3 Hz, 3H), 2.69 (t, J = 7.8 Hz, 2H), 2.89 (t, J = 7.8 Hz, 2H), 3.77 (s, 3H), 3.81 (s, 3H), 4.31 (q, J = 7.3 Hz, 2H), 7.20 (m, 3H), 7.39 (m, 3H), 7.69 (t, J = 7.3 Hz, 1H), 8.09 (dd, J = 1.1, 8.4 Hz, 1H), 8.14 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 9.63 (s, 1H), 9.82 (s, 1H), 10.74 (s, 1H)

Example 49

 $N-(3-Aminophenyl)-N'-\{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonylethyl]phenyl\}urea$

Synthesis was carried out in the same manner as in Example 3.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 2.67 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.77 (s, 3H), 3.82 (s, 3H), 4.30 (q, J = 7.3 Hz, 2H), 5.01 (s, 2H), 6.17 (d, J = 9.5 Hz, 1H), 6.54 (d, J = 8.6 Hz, 1H), 6.76 (s, 1H), 6.87 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.39 (s, 1H), 8.14 (s, 1H), 8.40 (s, 1H), 8.55 (s, 1H), 10.74 (s, 1H)

Example 50

N-(3-Nitrophenyl)-N'-{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 2.69 (t, J = 7.3 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.77 (s, 3H), 3.82 (s, 3H), 4.31 (q, J = 7.3 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.41 (m, 3H), 7.55 (t, J = 8.4 Hz, 1H), 7.72 (d, J = 9.2 Hz, 1H), 7.80 (dd, J = 1.9, 7.8 Hz, 1H), 8.14 (s, 1H), 8.56 (m, 1H), 9.04 (s, 1H), 9.48 (s, 1H), 10.74 (s, 1H)

Example 51

N-(4-Piperidino)-N'-{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonylethyl]phenyl}urea

60 mg of triphosgene was added to 10 ml of tetrahydrofuran. A solution of 4-amino-N-t-butyloxycarbonylpiperidine 80 110 diisopropylethylamine in THF was then added dropwise thereto under a nitrogen atmosphere at room temperature, followed by stirring at 60°C for 1 hour. To the reaction solution was added 110 mg of ethyl 2-(4-aminophenyl)ethylcarbonylamino-4,5dimethoxybenzoate and 30 mg of 4-dimethylaminopyridine, and the mixture was then stirred at 60°C for 3 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium The residue was purified by column sulfate, followed by concentration. chromatography on silica gel (eluent, dichloromethane : ethyl acetate =30:1→ dichloromethane: methanol = 50:1) to obtain 120 mg of white solid. Subsequently, the product was added to 20 ml of 4 N hydrogen chloride/dioxane solution and the mixture was stirred at room temperature for 3 hours. The precipitated solid was separated by filtration and subjected to vacuum drying. Thus, 90 mg of the title

compound was obtained as a white solid.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 1.52 (m, 2H), 1.92 (m, 2H), 3.00 (m, 8H), 3.51 (m, 1H), 3.76 (s, 3H), 3.81 (s, 3H), 4.30 (q, J = 7.0 Hz, 2H), 6.47 (d, J = 7.3 Hz, 1H), 7.09 (t, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 7.34 (s, 1H), 8.14 (s, 1H), 8.35 (s, 1H), 10.74 (s, 1H)

Example 52

N-Phenyl-N'-{4-{(2-ethoxycarbonyl-5-hydroxy-4-methoxyphenyl)-aminocarbonylethyl}phenyl}urea

2.00 g of vanillin was dissolved in 20 ml of DMF and 4.00 g of benzyl chloride, and 2.20 g of potassium carbonate was then added thereto, followed by stirring at 55°C for 7 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. Thus, 3.82 g of colorless transparent liquid was obtained.

Subsequently, the resultant liquid was added to 60 ml of concentrated nitric acid in an ice bath over a period of 30 minutes. The mixture was then stirred at room temperature for 2 hours. The reaction solution was poured into ice, and the precipitated solid was separated by filtration and washed with water, followed by vacuum drying. Thus, 2.00 g of yellow solid was obtained.

Thereafter, the resultant solid was dissolved in 40 ml of acetone. The product was slowly added dropwise to a reaction solution comprising 1.80 g of potassium permanganate dissolved in 30 ml of water in an oil bath with a temperature of 80°C. The reaction solution was stirred in that state for 2 hours and filtered. The filtrate was concentrated, and the residue was poured into water and extracted with dichloromethane. The aqueous layer was then adjusted to pH 4 with the aid of hydrochloric acid. Extraction with dichloromethane was carried out, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. Thus, 0.50 g of yellow liquid was obtained.

Next, the resultant liquid was added to 30 ml of chloroform and 5 ml of thionyl chloride was then added thereto, followed by stirring under reflux for 5 hours. The solvent was removed by distillation under reduced pressure. 20 ml of ethanol was added to the residue, and the mixture was stirred for 3 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. Thus, the residue was purified by column chromatography on silica gel (eluent, dichloromethane) to obtain 0.12 g of white solid.

Subsequently, this solid and 30 mg of 5% Pd/C were added to 100 ml of methanol. The mixture was then stirred under hydrogen atmosphere at room temperature for 16 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane) to obtain 0.05 g of white solid.

Thereafter, the resultant solid was dissolved in 10 ml of dichloromethane. 0.04 g of 4-nitrocinnamoyl chloride and 0.2 ml of diisopropylethylamine were then added thereto and the mixture was stirred at room temperature for 2 hours. The reaction solution was poured into saturated sodium bicarbonate water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue and 20 mg of 5% Pd/C were added to 20 ml of ethanol. The mixture was then stirred under hydrogen atmosphere at room temperature for 16 hours. The reaction solution was filtered and the filtrate was concentrated. Thus, 0.08 g of yellow solid was obtained.

Subsequently, the resultant solid, 0.08 g of phenyl isocyanate, and 0.03 g of dimethylaminopyridine were added to 10 ml of tetrahydrofuran. The mixture was then stirred under reflux for 8 hours. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol = $100:1 \rightarrow 10:1$) to obtain 90 mg of the title compound as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.31 (t, J = 7.0 Hz, 3H), 2.64 (t, J = 7.3 Hz, 2H), 2.87 (t, J = 7.3 Hz, 2H), 3.75 (s, 3H), 4.28 (q, J = 7.3 Hz, 2H), 6.95 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 7.26 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 8.9 Hz, 2H), 7.43 (s, 1H), 7.44 (d, J = 7.8 Hz, 2H), 8.00 (s, 1H), 8.62 (m, 2H), 10.30 (s, 1H), 10.75 (s, 1H)

Example 53

N-Phenyl-N'-{4-[(2-ethoxycarbonyl-4-methoxy-5-(N-morpholino-2-ethoxy)-phenyl)aminocarbonylethyl]phenyl}urea

60 mg of the compound synthesized in Example 52 was dissolved in 10 ml of DMF. Thereafter, 0.44 g of potassium carbonate and 0.38 g of N-(2-chloroethyl)morpholine hydrochloride were added thereto, followed by stirring at room temperature for 16 hours. The solvent was removed by distillation under reduced pressure and the residue was then poured into water and extracted with dichloromethane. The organic layer was dried with anhydrous magnesium sulfate and concentrated. The

residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol = $100:1 \rightarrow 30:1$) to obtain 60 mg of the title compound as a white solid.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 2.66 (m, 4H), 2.87 (t, J = 7.3 Hz, 2H), 3.30 (m, 2H), 3.57 (t, J = 4.3 Hz, 2H), 3.77 (s, 3H), 4.12 (t, J = 5.9 Hz, 2H), 4.30 (q, J = 7.3 Hz, 2H), 6.94 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.6 Hz, 2H), 7.26 (t, J = 8.1 Hz, 2H), 7.37 (d, J = 8.9 Hz, 2H), 7.39 (s, 1H), 7.45 (d, J = 7.8 Hz, 2H), 8.13 (s, 1H), 8.96 (s, 1H), 9.01 (s, 1H), 10.70 (s, 1H)

Example 54

N-(4-Aminophenyl)-N'-{4-[(2-ethoxycarbonyl-4-methoxy-5-(N-morpholino-2-ethoxy)-phenyl)aminocarbonylethyl]phenyl}urea

 $0.50~\rm g$ of vanillin was dissolved in 20 ml of DMF, and then, 1.23 g of N-(2-chloroethyl)morpholine hydrochloride and 1.38 g of potassium carbonate were added thereto. The mixture was stirred at 69° C for 10 hours. The solvent was removed by distillation under reduced pressure and the residue was poured into water and extracted with dichloromethane. The organic layer was dried with anhydrous magnesium sulfate and concentrated to obtain 0.93 g of yellowish brown liquid.

Subsequently, the resultant liquid was added to 40 ml of concentrated nitric acid in an ice bath over a period of 30 minutes, followed by stirring for an additional 3 hours. The reaction solution was poured into ice and the precipitated solid was separated by filtration and washed with water, followed by vacuum drying. Thus, 0.51 g of yellow solid was obtained.

Thereafter, the resultant solid was dissolved in 20 ml of acetone, 10 ml of aqueous solution comprising 2.00 g of sulfamic acid and 2.00 g of chlorous acid dissolved therein was slowly added dropwise to the reaction solution at room temperature. The reaction solution was stirred in that state for 80 hours and then concentrated to half its initial volume. The residue was adjusted to pH 10 with the aid of an aqueous solution of sodium hydroxide, followed by extraction with dichloromethane. The aqueous layer was concentrated, and the residue, 5.00 g of potassium carbonate, and 7 ml of ethyl iodide were added to 50 ml of DMF, followed by stirring at room temperature for 14 hours. The solvent was removed by distillation under reduced pressure, and the residue was poured into water, followed by extraction with dichloromethane. The organic layer was dried with anhydrous magnesium sulfate and then concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol = 100: 1 → 50: 1) to obtain 0.40 g of

yellow tar.

Next, the resultant tar and 0.24 g of 5% Pd/C were added to 30 ml of ethanol, followed by stirring under hydrogen atmosphere at room temperature for 86 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : methanol = $100: 1 \rightarrow 50: 1$) to obtain 0.19 g of white solid.

Subsequently, the resultant solid was dissolved in 10 ml of dichloromethane. 0.14 g of 4-nitrocinnamoyl chloride and 0.4 ml of diisopropylethylamine were then added thereto, followed by stirring at room temperature for 2 hours. The reaction solution was poured into saturated sodium bicarbonate water and extracted with dichloromethane. The organic layer was dried with anhydrous magnesium sulfate and concentrated. The residue was washed with methanol and subjected to vacuum drying. Thus, 0.28 g of yellow solid was obtained. This solid and 50 mg of 5% Pd/C were added to 50 ml of ethanol, followed by stirring under hydrogen atmosphere at room temperature for 18 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol =50: 1→30: 1) to obtain 0.20 g of yellow tar.

Thereafter, 0.07 g of the resultant solid and 0.04 g of 4-nitrophenyl isocyanate were added to 10 ml of tetrahydrofuran, followed by stirring at 69°C for 30 minutes. The reaction solution was concentrated, and the residue was washed with methanol and subjected to vacuum drying to obtain 0.08 g of white solid. The resultant solid and 50 mg of 5% Pd/C were added to 30 ml of ethanol, followed by stirring under hydrogen atmosphere at room temperature for 14 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was washed with methanol and vacuum dried to obtain 0.02 g of yellow tar.

20 g of the title compound was obtained as a red solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.32 (t, J = 7.0 Hz, 3H), 2.66 (m, 4H), 2.87 (t, J = 7.3 Hz, 2H), 3.30 (m, 2H), 3.57 (t, J = 4.3 Hz, 2H), 3.77 (s, 3H), 4.12 (t, J = 5.9 Hz, 2H), 4.30 (q, J = 7.3 Hz, 2H), 4.74 (s, 2H), 6.49 (d, J = 7.6 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.39 (s, 1H), 8.13 (s, 1H), 8.27 (s, 1H), 8.57 (s, 1H), 10.70 (s, 1H)

Example 55

N-(2-Nitrophenyl)-N'-{4-[(2-carbamoyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.69 (t, J = 7.8 Hz, 2H), 2.89 (t, J = 7.8 Hz, 2H), 3.78 (s, 6H), 7.20 (m, 3H), 7.39 (m, 4H), 7.56 (s, 1H), 7.69 (t, J = 7.3 Hz, 1H), 8.09 (dd, J = 1.1, 8.4 Hz, 1H), 8.14 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 9.63 (s, 1H), 9.82 (s, 1H), 10.74 (s, 1H)

Example 56

N-(3-Nitrophenyl)-N'-{4-[(2-carbamoyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.69 (t, J = 7.3 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.77 (s, 6H), 7.18 (d, J = 8.4 Hz, 2H), 7.41 (m, 4H), 7.55 (m, 2H), 7.72 (d, J = 9.2 Hz, 1H), 7.80 (dd, J = 1.9, 7.8 Hz, 1H), 8.14 (s, 1H), 8.56 (m, 1H), 9.04 (s, 1H), 9.48 (s, 1H), 10.74 (s, 1H)

Example 57

N-(3,4,5-Trimethoxyphenyl)-N'-{4-[(2-carbamoyl-4,5-dimethoxyphenyl)-aminocarbonyl]-3-methoxyphenyl}urea

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.62 (s, 3H), 3.77 (s, 6H), 3.81 (s, 3H), 3.84 (s, 3H), 3.99 (s, 3H), 6.81 (s, 2H), 7.54 (m, 3H), 7.74 (s, 1H), 8.33 (d, J = 8.1 Hz, 1H), 8.51 (s, 1H), 8.55 (s, 1H), 9.49 (s, 1H), 13.28 (s, 1H)

Example 58

N-Phenyl-N'-{3-[(2-carbamoyl-4,5-difluorophenyl)aminocarbonyl]-phenyl}urea

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 6.99 (t, J = 7.3 Hz, 1H), 7.48 (m, 4H), 7.73 (m,1H), 8.04 (m, 3H), 8.46 (s, 1H), 8.78 (m, 12H), 9.03 (s, 1H), 13.11 (s, 1H)

Example 59

N-Phenyl-N'-{3-[(6-carbamoyl-2-pyridyl)aminocarbonylmethoxy]phenyl}-urea

The title compound was synthesized in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 4.80 (s, 2H), 6.63 (dd, J = 1.9, 8.4 Hz, 1H), 7.00 (m, 2H), 7.25 (m, 5H), 7.44 (d, J = 7.3 Hz, 2H), 7.86 (s, 1H), 8.19 (dd, J = 1.4, 7.8 Hz, 1H), 8.33 (s, 1H), 8.49 (dd, J = 1.9, 9.9 Hz, 1H), 8.70 (s, 1H), 8.77 (s,

1H), 11.98 (s, 1H)

Example 60

N-Phenyl-N'-{3-[(2-carbamoyl-4,5-diacetoxyphenyl)-aminocarbonylmethoxy]phenyl}urea

0.50 g of 2-amino-4,5-dimethoxyphenylcarboxamide was dissolved in 20 ml of dichloromethane. In an isopropanol/dry ice bath, a mixed solution of 2 ml of boron tribromide and 10 ml of dichloromethane was added dropwise thereto. Thereafter, the mixture was stirred at room temperature for 16 hours. The reaction solution was poured into water and extracted with ethyl acetate, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. Thus, 0.54 g of black solid was obtained. The resultant solid was dissolved in 20 ml of DMF and 0.56 g of acetic anhydride and 0.56 g of triethylamine were then added thereto, followed by stirring at room temperature for 7 hours. The solvent was removed by distillation under reduced pressure, the residue was then poured into water, the precipitated solid was separated by filtration, and washed with water, followed by vacuum drying. Thus, 0.35 g of cream solid was obtained. The resultant solid and 0.08 g of 5% Pd/C were added to 50 ml of methanol and the mixture was stirred under hydrogen atmosphere at room temperature for 19 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol = $100:1 \rightarrow 50:1$) to obtain 0.17 g of pale yellow solid.

Synthesis was thereafter carried out in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.31 (s, 3H), 2.32 (s, 3H), 4.68 (s, 2H), 6.68 (dd, J = 2.1, 8.1 Hz, 1H), 6.97 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H), 7.25 (m, 4H), 7.45 (d, J = 7.8 Hz, 2H), 7.79 (s, 1H), 7.88 (s, 1H), 8.29 (s, 1H), 8.56 (s, 1H), 8.76 (s, 1H), 8.83 (s, 1H), 12.66 (s, 1H)

Example 61

N-Phenyl-N'-{3-[(2-carbamoyl-4,5-dimethoxyphenyl)-aminocarbonylmethyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 3.62 (s, 2H), 3.76 (s, 3H), 3.77 (s, 3H), 6.95 (m, 2H), 7.34 (m, 7H), 7.56 (s, 1H), 8.16 (s, 1H), 8.29 (s, 1H), 8.81 (s, 1H), 8.86 (s, 1H), 12.19 (s, 1H)

Example 62

 $N-Phenyl-N'-\{3-[(5-carbamoyl-4-methyl-2-thienyl)aminocarbonyl]phenyl\}-urea$

Synthesis was carried out in the same manner as in Example 18.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.41 (s, 3H), 6.72 (s, 1H), 6.99 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 8.1 Hz, 2H), 7.47 (m, 3H), 7.72 (m, 2H), 8.04 (s, 1H), 8.75 (s, 1H), 9.01 (s, 1H), 12.99 (s, 1H)

Example 63

Benzyl-{4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)aminocarbonyl]-phenyl}carbamate

60 mg of ethyl 2-(4-aminophenyl)carbonylamino-4,5-dimethoxybenzoate, 0.5 ml of benzyloxycarbonyl chloride, and 30 mg of 4-dimethylaminopyridine were added to 20 ml of tetrahydrofuran and the mixture was stirred at room temperature for 30 minutes. The reaction solution was poured into water and extracted with dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was washed with ethanol and subjected to vacuum drying. Thus, 60 mg of the title compound was obtained as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.33 (t, J = 7.0 Hz, 3H), 3.80 (s, 3H), 3.87 (s, 3H), 4.36 (q, J = 7.3 Hz, 4H), 5.19 (s, 2H), 7.41 (m, 6H), 7.67 (d, J = 8.6 Hz, 2H), 7.89 (d, J = 8.9 Hz, 2H), 8.41 (s, 1H), 10.20 (s, 1H), 11.72 (s, 1H)

Example 64

(4-Pyridylmethyl) {4-[(4,5-dimethoxy-2-ethoxycarbonylphenyl)-aminocarbonylethyl]phenyl}carbamate

0.32 g of 1,1-carbonyldiimidazole was dissolved in 3 ml of tetrahydrofuran (THF). 0.22 g of 4-pyridinemethanol was then added thereto and the mixture was stirred at room temperature for 1 hour. 0.35 g of 4-aminohydrocinnamic acid, 0.60 g of DBU (1,8-diazabicyclo[4.3.0]undec-7-ene), and 0.5 ml of triethylamine were added to 10 ml of tetrahydrofuran, followed by stirring at room temperature for 1 hour. The former solution was added to the latter solution and the obtained mixture was stirred in The solvent was removed by distillation under reduced that state for 18 hours. The residue was poured into water and adjusted to pH 6 with the aid of 1N pressure. hydrochloric acid. The precipitated solid was separated by filtration and subjected to 80.0 g of (4-pyridylmethyl) Thus, drying. vacuum hydroxycarbonylethylphenyl)carbamate was obtained as a pink solid. The resultant solid was added to 20 ml of toluene, and 0.1 ml of oxalyl chloride and 0.01 ml of DMF were added thereto, followed by stirring at room temperature for 5 hours. The precipitated solid was separated by filtration and washed with toluene and then with ether. 0.05 g of ethyl 2-amino-4,5-dimethoxybenzoate was dissolved in 10 ml of dichloromethane and the resultant solid and 0.5 ml of triethylamine were added thereto, followed by stirring at room temperature for 1 hour. The reaction solution was poured into saturated sodium bicarbonate water and extracted with dichloromethane. The organic layer was dried with anhydrous magnesium sulfate and concentrated. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : methanol = $100: 1 \rightarrow 40: 1$) and was further washed with methanol, followed by drying. Thus, 30 mg of the title compound was obtained as a white solid.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.31 (t, J = 7.0 Hz, 3H), 2.67 (t, J = 7.5 Hz, 2H), 2.88 (t, J = 7.5 Hz, 2H), 3.76 (s, 3H), 3.81 (s, 3H), 4.29 (q, J = 7.3 Hz, 4H), 5.19 (s, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.37 (m, 5H), 8.12 (s, 1H), 8.57 (dd, J = 1.9, 4.3 Hz, 2H), 9.80 (s, 1H), 10.71 (s, 1H)

Example 65

 $N-Ethyl-N'-\{4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]-phenyl\}urea$

0.60 g of 2-amino-4,5-dimethoxyacetophenone was dissolved in 30 ml of THF. 0.75 g of 4-nitrocinnamoyl chloride and 0.45 g of triethylamine were then added thereto and the mixture was stirred under reflux for 1.5 hours. The solvent of the reaction solution was removed by distillation under reduced pressure. The residue was washed with methanol and then dried. Thus, 1.22 g of yellow solid was obtained.

Subsequently, this solid and 90 mg of 5% Pd/C were added to a mixed solvent comprising 100 ml of ethanol and 30 ml of THF and the mixture was stirred under hydrogen atmosphere at room temperature for 32 hours. The reaction solution was filtered and the filtrate was concentrated. Thus, 0.92 g of 2-(4-aminophenyl)carbonylaminoethyl-4,5-dimethoxyacetophenone was obtained as a white solid.

Thereafter, 70 mg of the resultant solid, 0.11 g of ethyl isocyanate, and 20 mg of 4-dimethylaminopyridine were added to 20 ml of tetrahydrofuran and the mixture was stirred at 70°C for 5 hours. The reaction solution was concentrated and the residue was purified by column chromatography on silica gel (eluent, dichloromethane: methanol = $100:1\rightarrow30:1$). The residue was washed with methanol and was vacuum dried to obtain 50 mg of the title compound as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.03 (t, J = 7.0 Hz, 3H), 2.60 (s,

1H), 2.65 (t, J = 7.3 Hz, 2H), 2.85 (t, J = 7.3 Hz, 2H), 3.10 (5, J = 7.0 Hz, 2H), 3.82 (s, 1H), 6.03 (t, 1H), 7.09 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 8.23 (s, 1H), 8.30 (s, 1H), 11.65 (s, 1H)

Example 66

N-Phenyl-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]-phenyl}urea

Synthesis was carried out in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 1H), 2.67 (t, J = 7.6 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 3.82 (s, 6H), 6.95 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.27 (t, J = 8.1 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 8.24 (s, 1H), 8.59 (s, 1H), 8.64 (s, 1H), 11.67 (s, 1H)

Example 67

N-(4-Aminophenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 3.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.66 (t, J = 7.6 Hz, 2H), 2.87 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 4.57 (s, 2H), 6.49 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.43 (s, 1H), 8.10 (s, 1H), 8.24 (s, 1H), 9.40 (s, 1H), 11.67 (s, 1H)

Example 68

N-(4-Nitrophenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 65.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.51 (s, 3H), 2.68 (t, J = 7.6 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.85 (s, 6H), 7.19 (d, J = 7.3 Hz, 2H), 7.40 (m, 3H), 7.68 (d, J = 9.5 Hz, 2H), 8.20 (m, 3H), 8.86 (s, 1H), 9.42 (s, 1H), 11.68 (s, 1H)

Example 69

N-(2-Aminophenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 3.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.67 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 4.76 (s, 2H), 6.56 (dt, J = 1.4, 7.3 Hz, 1H),

6.72 (dd, J = 1.4, 7.8 Hz, 1H), 6.83 (dt, J = 1.4, 7.8 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 7.36 (m, 3H), 7.43 (s, 1H), 7.71 (s, 1H), 8.24 (s, 1H), 8.69 (s, 1H), 11.66 (s, 1H)

Example 70

 $N-(2-Nitrophenyl)-N'-\{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl\}urea$

The title compound was synthesized in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.68 (t, J = 7.3 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 7.16 (m, 3H), 7.40 (m, 3H), 7.69 (dt, J = 1.6, 8.4 Hz, 1H), 8.09 (dd, J = 1.4, 8.4 Hz, 1H), 8.25 (s, 1H), 8.31 (d, J = 8.4 Hz, 1H), 9.58 (s, 1H), 9.79 (s, 1H), 11.69 (s, 1H)

Example 71

N-(3-Aminophenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 3.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.67 (t, J = 7.3 Hz, 2H), 2.88 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 5.01 (s, 2H), 6.17 (d, J = 9.5 Hz, 1H), 6.54 (d, J = 8.6 Hz, 1H), 6.76 (s, 1H), 6.87 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.39 (s, 1H), 8.14 (s, 1H), 8.40 (s, 1H), 8.55 (s, 1H), 11.67 (s, 1H)

Example 72

 $N-(3-Nitrophenyl)-N'-\{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl\}urea$

The title compound was synthesized in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.69 (t, J = 7.3 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 7.19 (d, J = 8.9 Hz, 2H), 7.40 (m, 3H), 7.56 (t, J = 8.1 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.80 (dd, J = 1.9, 8.4 Hz, 1H), 8.24 (s, 1H), 8.56 (m, 1H), 8.78 (s, 1H), 9.20 (s, 1H), 11.68 (s, 1H)

Example 73

 $N-(4-Piperidino)-N'-\{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl\}urea$

The title compound was synthesized in the same manner as in Example 51.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.76 (m, 4H), 2.59 (s, 3H), 3.00 (m, 8H), 3.60 (m, 1H), 3.82 (s, 6H), 6.54 (d, J = 7.3 Hz, 1H), 7.09 (d, J = 8.4 Hz, 2H),

7.27 (d, J = 8.9 Hz, 2H), 7.43 (s, 1H), 8.23 (s, 1H), 8.40 (s, 1H), 8.56 (s, 1H), 11.66 (s, 1H)

Example 74

N-(3,4,5-Trimethoxyphenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl}phenyl}urea

The title compound was synthesized in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.51 (s, 3H), 2.67 (t, J = 7.6 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 3.60 (s, 3H), 3.74 (s, 6H), 3.82 (s, 6H), 6.78 (s, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 8.24 (s, 1H), 8.54 (s, 1H), 8.60 (s, 1H), 11.68 (s, 1H)

Example 75

 $N-(4-Pyridyl)-N'-\{4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]-phenyl\}urea$

The title compound was synthesized in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.68 (t, J = 7.3 Hz, 2H), 2.90 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 7.19 (d, J = 8.4 Hz, 2H), 7.40 (m, 5H), 8.24 (s, 1H), 8.34 (d, J = 6.5 Hz, 2H), 8.83 (s, 1H), 9.11 (s, 1H), 11.66 (s, 1H)

Example 76

N-(4-Piperidinomethyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 51.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.77 (m, 5H), 2.60 (s, 3H), 3.00 (m, 8H), 3.60 (m,2H), 3.82 (s, 6H), 6.28 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 7.43 (s, 1H), 8.23 (s, 1H), 8.44 (s, 1H), 11.66 (s, 1H)

Example 77

N-Phenyl-N'-{2-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]-phenyl}urea

Synthesis was carried out in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 1H), 2.67 (t, J = 7.6 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 3.82 (s, 6H), 7.00 (m, 2H), 7.25 (m, 4H), 7.45 (m, 3H), 7.76 (d, J = 7.3 Hz, 1H), 8.02 (s, 1H), 8.25 (s, 1H), 8.99 (s, 1H), 11.71 (s, 1H)

Example 78

N-(4-Aminophenyl)-N'-{2-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 3.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.70 (t, J = 7.6 Hz, 2H), 2.93 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 4.76 (s, 2H), 6.49 (d, J = 8.6 Hz, 2H), 6.97 (dt, J = 1.1, 7.3 Hz, 2H), 7.14 (m, 4H), 7.43 (s, 1H), 7.80 (m, 2H), 8.25 (s, 1H), 8.50 (s, 1H), 11.70 (s, 1H)

Example 79

N-(4-Nitrophenyl)-N'-{2-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylethyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.57 (s, 3H), 2.72 (t, J = 7.6 Hz, 2H), 2.96 (t, J = 7.6 Hz, 2H), 3.80 (s, 6H), 7.08 (dt, J = 0.8, 7.3 Hz, 1H), 7.20 (m, 2H), 7.29 (s, 1H), 7.68 (m, 3H), 8.19 (m, 3H), 8.34 (s, 1H), 9.77 (s, 1H), 11.70 (s, 1H)

Example 80

N-Phenyl-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylpropyl]-phenyl}urea

Synthesis was carried out in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.90 (m, 2H), 2.38 (t, J = 7.3 Hz, 2H), 2.51 (t, J = 7.3 Hz, 2H), 2.62 (s,3H), 3.82 (s, 6H), 6.95 (t, J = 7.3 Hz, 3H), 7.12 (d, J = 8.9 Hz, 2H), 7.26 (t, J = 7.8 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.44 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 8.27 (s, 1H), 8.80 (s, 1H), 8.85 (s, 1H), 11.68 (s, 1H)

Example 81

N-(4-Aminophenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylpropyl]phenyl}urea

Synthesis was carried out in the same manner as in Example 3.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.89 (m, 2H), 2.37 (t, J = 7.3 Hz, 2H), 2.56 (t, J = 7.3 Hz, 2H), 2.62 (s,3H), 3.82 (s, 6H), 4.76 (s, 2H), 6.49 (d, J = 7.3 Hz, 2H), 7.11 (m,4H), 7.33 (d, J = 8.9 Hz, 2H), 7.44 (s, 1H), 8.13 (s, 1H), 8.27 (s, 1H), 8.43 (s, 1H), 11.68 (s, 1H)

Example 82

N-(4-Nitrophenyl)-N'-{4-[(2-acetyl-4,5-dimethoxyphenyl)-aminocarbonylpropyl]phenyl}urea

The title compound was synthesized in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.91 (m, 2H), 2.38 (t, J = 7.3 Hz, 2H), 2.59 (t, J = 7.3 Hz, 2H), 2.61 (s,3H), 3.82 (s, 6H), 7.15 (d, J = 8.4 Hz, 2H), 7.42 (m, 3H), 7.69 (d, J = 9.2 Hz, 2H), 8.18 (d, J = 9.1 Hz, 2H), 8.27 (s, 1H), 9.02 (s, 1H), 9.60 (s, 1H), 11.68 (s, 1H)

Example 83

N-Phenyl-N'-{3-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonyl]-phenyl}urea

Synthesis was carried out in the same manner as in Example 65.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.70 (s, 3H), 3.87 (s, 3H), 3.90 (s, 3H), 6.99 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.8 Hz, 2H), 7.51 (m, 5H), 7.75 (d, J = 7.3 Hz, 2H), 8.05 (s, 1H), 8.54 (s, 1H), 8.82 (s, 1H), 9.02 (s, 1H), 12.77 (s, 1H)

Example 84

(4-Pyridylmethyl) {4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]-phenyl}carbamate

The title compound was synthesized in the same manner as in Example 64.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.59 (s, 1H), 2.66 (t, J = 7.6 Hz, 2H), 2.88 (t, J = 7.6 Hz, 2H), 3.82 (s, 6H), 5.19 (s, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.39 (m, 5H), 8.22 (s, 1H), 8.57 (dd, J = 1.4, 4.3 Hz, 2H), 9.82 (s, 1H), 11.65 (s, 1H)

Example 85

(4-Pyridylmethyl) {4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylpropyl]-phenyl}carbamate

The title compound was synthesized in the same manner as in Example 64.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.89 (m, 2H), 2.37 (t, J = 7.3 Hz, 2H), 2.56 (t, J = 7.3 Hz, 2H), 2.62 (s,3H), 3.82 (s, 6H), 5.19 (s, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.39 (m, 5H), 8.22 (s, 1H), 8.57 (dd, J = 1.4, 4.3 Hz, 2H), 9.82 (s, 1H), 11.65 (s, 1H)

Example 86

(5-Hydroxypentyl) {4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]-phenyl}carbamate

0.04 g of triphosgene was dissolved in 5 ml of tetrahydrofuran (THF), and a solution of 0.08 g of 5-benzyloxypentyl alcohol and 0.06 g of diisopropylethylamine in 10 ml of THF was slowly added dropwise thereto at room temperature. of 2-(4-0.07 60°C 1 hour. mixture was stirred for aminophenyl)carbonylaminoethyl-4,5-dimethoxyacetophenone 30 and mg of dimethylaminopyridine were added thereto and the mixture was stirred at 69°C for 2 The reaction solution was poured into water and extracted with hours. dichloromethane, and the organic layer was dried with anhydrous magnesium sulfate, followed by concentration. The residue was purified by column chromatography on silica gel (eluent, dichloromethane : methanol = $100:1 \rightarrow 40:1$), was further washed with methanol, and was then dried. Thus, 0.13 g of pale yellow solid was obtained. Subsequently, the resultant solid and 50 mg of 5% Pd/C were added to 40 ml of methanol and the mixture was stirred under hydrogen atmosphere at room temperature for 22 hours. The reaction solution was filtered and the filtrate was concentrated. The residue was washed with methanol and subjected to vacuum drying. Thus, 40 mg of the title compound was obtained as a white solid.

 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 1.42 (m, 4H), 1.61 (m, 2H), 2.51 (s, 1H), 2.63 (t, J = 7.3 Hz, 2H), 2.87 (t, J = 7.6 Hz, 2H), 3.40 (t, J = 5.7 Hz, 2H), 3.82 (s, 6H), 4.05 (t, J = 6.8 Hz, 2H), 4.37 (t, J = 5.1 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.42 (s, 1H), 8.22 (s, 1H), 9.50 (s, 1H), 11.65 (s, 1H)

Example 87

{4-[(2-Acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]phenyl} phenylcarbamate

1.1 g of 3-(4-hydroxyphenyl)propionic acid was dissolved in 30 ml of THF and 0.82 g of acetic anhydride and 0.83 g of pyridine were then added thereto. The mixture was stirred at room temperature for 16 hours. The solvent was removed by distillation under reduced pressure and 5% citric acid was added to the residue. The precipitated solid was separated by filtration and washed with water and subjected to vacuum drying. Thus, 0.80 g of white solid was obtained. The resultant solid and 10 ml of thionyl chloride were added to 30 ml of chloroform and the mixture was stirred under reflux for 2 hours. The solvent was removed by distillation under reduced pressure and dissolved in 30 ml of THF. Thereafter, 0.59 g of 2-amino-4,5-dimethoxyacetophenone and 0.61 g of triethylamine were added thereto and the mixture was stirred under reflux for 3 hours. After the solvent was removed by distillation under reduced pressure, the residue and 0.20 g of sodium hydroxide were added to a

mixed solvent comprising 10 ml of methanol and 30 ml of water and the mixture was stirred at room temperature for 16 hours. Half of the solvent was removed by distillation under reduced pressure and neutralized with hydrochloric acid. The precipitated solid was separated by filtration, washed with a mixed solvent of dichloromethane/methanol, and subjected to vacuum drying. Thus, 0.56 g of white solid was obtained. 0.11 g of the resultant solid, 90 mg of phenyl isocyanate, and 60 mg of triethylamine were added to 10 ml of THF and the mixture was stirred at room temperature for 16 hours. The precipitated solid was separated by filtration to obtain 58 mg of the title compound as a white solid.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 1H), 2.74 (t, J = 7.3 Hz, 2H), 2.96 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 7.04 (t, J = 7.3 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 7.31 (m, 4H), 7.43 (s, 1H), 7.49 (d, J = 7.8Hz, 2H), 8.24 (s, 1H), 10.18 (s, 1H), 11.69 (s, 1H)

Example 88

{4-[(2-acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]phenyl} 4-nitrophenylcarbamate

The title compound was synthesized in the same manner as in Example 87.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.77 (t, J = 7.3 Hz, 2H), 2.97 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 7.18 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.9 Hz, 2H), 7.43 (s, 1H), 7.73 (d, J = 9.1 Hz, 2H), 8.24 (s, 1H), 8.25 (d, J = 9.1 Hz, 2H), 10.90 (s, 1H), 11.69 (s, 1H)

Example 89

{4-[(2-Acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]phenyl} 4-aminophenylcarbamate

Synthesis was carried out in the same manner as in Example 3.

¹H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.73 (t, J = 7.3 Hz, 2H), 2.95 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 4.85 (s, 2H), 6.50 (d, J = 8.1 Hz, 2H), 7.10 (m, 4H), 7.28 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 8.24 (s, 1H), 9.66 (s, 1H), 11.69 (s, 1H)

Example 90

{4-[(2-Acetyl-4,5-dimethoxyphenyl)aminocarbonylethyl]phenyl} 4-pyridylcarbamate

The title compound was synthesized in the same manner as in Example 87. 1 H-NMR (DMSO-d₆, 270 MHz) δ ppm : 2.60 (s, 3H), 2.65 (t, J = 7.3 Hz,

 $^{\circ}$ 2H), 2.82 (t, J = 7.3 Hz, 2H), 3.82 (s, 6H), 7.19 (dd, J = 1.6, 5.9 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 7.95 (d, J = 6.2 Hz, 2H), 8.40 (s, 1H), 9.16 (s, 1H), 11.65 (s, 1H)

Test Example 1: Inhibition test against PDGF-BB-stimulated proliferation of smooth muscle cells

Human coronary vessel smooth muscle cells (primary culture) were spread on a 96-well microplate (50,000 cells/well) and cultured for 24 hours. After cells were confirmed to be confluent, the cells were cultured in a serum-free culture medium comprising 0.4 or 2 μM of compound added thereto (containing 20 ng/ml PDGF-BB) for 24 hours. ³H-thymidine (1 μCi/well) was added and was cultured for 4 hours. After cells were collected on a filter, Creasol (4 ml/vial) was added and the uptake quantity of ³H-thymidine was measured with a scintillation counter. The activity for inhibiting proliferation of the test compound was represented by a concentration (IC₅₀) indicating 50% inhibition based on the untreated group (no PDGF-BB added). As a control compound, tranilast and Reference Example 1 (compound of Compound 17 in Example 4 described in WO 97/09301) were employed. The result is as shown in Table 11.

Table 11

Name of compound	Inhibition against PDGF-BB-stimulated proliferation of smooth muscle cell, IC ₅₀ (μM)	
Example 1	0.28	
Example 3	0.10	
Example 4	0.40	
Example 5	0.23	
Example 6	0.33	
Example 8	0.15	
Example 9	0.20	
Example 10	0.44	
Example 11	0.19	
Example 13	0.34	
Example 14	0.23	
Example 15	0.57	
Example 16	0.14	
Example 17	0.75	

Example 18	0.40	
Example 20	0.27	
Example 23	0.72	
Example 24	0.24	
	0.07	
Example 25		
Example 28	0.25	
Example 32	0.36	
Example 33	0.56	
Example 34	0.64	
Example 36	0.55	
Example 37	0.57	
Example 38	0.82	
Example 39	0.65	
Example 39 Example 41	0.20	
Example 43	0.15	
Example 45	0.0001	
Example 46	0.057	
Example 47	0.011	
Example 48	0.008	
Example 49	0.015	
Example 50	<0.08	
Example 53	<0.0032	
Example 54	0.20	
Example 55	0.014	
Example 56	0.028	
Example 57	0.28	
Example 61	0.67	
Example 62	0.34	
Example 63	0.3	
Example 64	<0.0032	
Example 66	<0.0032	
Example 67	0.010	
Example 68	0.020	
Example 69	0.061	
Example 70	0.045	
Example 71	0.061	
Example 72	0.039	
Example 74	0.31	
Example 75	0.16	
Example 77	0.20	
Example 80	0.05	
Litampie 60	0.02	

0.06
0.002
0.31
0.044
0.079
0.49
0.083
<0.016
0.31
0.22
0.39
0.011
0.037
0.17
24.5
6.3

$$\begin{array}{c} HO_2C \\ O \\ N \\ H \end{array}$$

Test Example 2: Inhibition test against PDGF-BB-stimulated proliferation of mesangial cells

Human mesangial cells (primary culture) were spread on a 96-well microplate (27,000 cells/well) and cultured for 24 hours. After cells were confirmed to be confluent, the cells were cultured in a serum-free culture medium comprising 0.016, 0.08, or 0.4 μ M of test compound added thereto (containing 20 ng/ml PDGF-BB) for 24 hours. ³H-thymidine (1 μ Ci/well) was added and was cultured for 4 hours. Cells were then collected on a filter and the uptake quantity of ³H-thymidine was measured with a scintillation counter. The activity for inhibiting proliferation of the test compound was represented by a concentration (IC₅₀) for inhibiting 50% of the increase in the uptake quantity of ³H-thymidine by PDGF-BB stimulation (the value determined by subtracting a control without PDGF-BB added from a control with PDGF-BB added). As a control compound, tranilast was employed. The result is as shown in Table 12.

Table 12

Name of compound	Inhibition against PDGF-BB-stimulated proliferation of mesangial cell, IC ₅₀ (µM)	
Example 1	0.81	
Example 3	1.72	
Example 5	0.87	
Example 6	0.33	
Example 8	0.95	
Example 9	2.3	
Example 16	0.29	
Example 17	1.80	
Example 18	1.27	
Example 24	0.58	
Example 25	0.17	
Example 39	0.51	

Tranilast (78% inhibition concentration): 10 µM

Test Example 3: Proliferation of human funis venous endothelial cell (HUVEC)

HUVEC that was purchased from Clonetics (San Diego) was cultured in EGM-2 medium in the presence of 5% CO₂ at 37°C. HUVEC was wound into a U-bottomed 96-well plate (Falcon) to realize 3 × 10³ cells/100μl/well and was cultured at 37°C for 24 hours. Thereafter, 100 ì l of solution of a compound, which was prepared to a two-fold concentration in EGM-2 medium, was added and was cultured for an additional three days. [Methyl-³H] thymidine (1 μCi/20μl/well, Amersham) was added and four hours later cells were trapped into a 96-well glass filter (UniFilter-GF/C, Packard Japan) with the aid of a cell harvester for TopCount. A scintillation cocktail (MICROSCINT-20, Packard Japan) was added to bring the mixture to 20 μl/well, radioactivity was measured using TopCount (Packard Japan), and the inhibitive capacity against cell proliferation of various compounds was determined. As a control, as with Test Example 1, tranilast and a tranilast derivative (a compound of Compound 17, Example 4 described in WO 97/09301) were employed. The result is shown in Table 13.

Table 13

	140.0 12		
Name of compound	Inhibition against proliferation of human funis vascular endothelial cell, IC ₅₀ (µM)		
Example 4 1.2			
Example 6	3.6		
Example 15	2.1		
Example 18	0.5		
Example 45	0.0002		
Example 48	0.05		
Example 53	0.05		
Example 55	0.28		
Example 64	0.03		
Example 66	0.05		
Example 67	0.20		
Example 68	0.0006		
Example 74	1.3		
Example 75	0.16		
Example 77 1.7			
Example 82	0.0008		
Example 93	0.04		
Example 94	0.88		
Tranilast	10.0		
Reference Example 1	>10		

Preparation Example

Tablets having the following formulation were prepared in accordance with the conventional method.

Compound of Example 1	100 mg
Lactose	120 mg
Potato starch	30 mg
Hydroxypropylcellulose	5 mg
Carboxymethylcellulose sodium	7 mg
Magnesium stearate	0.5 mg

All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

INDUSTRIAL APPLICABILITY

The diarylamide derivative of the present invention has inhibitive activity

against cell proliferation caused by PDGF and is useful for prevention or treatment of cell proliferative diseases such as arteriosclerosis, vascular reocclusion disease, and nephritis.

CLAIMS

1. A diarylamide derivative represented by general formula (1) or a pharmaceutically acceptable salt thereof:

$$R^{5}$$
 R^{4}
 R^{3}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}

wherein,

A is an aromatic ring selected from the group consisting of a benzene ring, a pyridine ring, a thiophene ring, a furan ring, and a naphthalene ring;

a substituent represented by COY and a substituent represented by NHCOX are adjacent to each other and these substituents are linked to a carbon atom in the aromatic ring;

X denotes a C_1 - C_4 -alkylene group, a C_1 - C_4 -alkyleneoxy group, or a single bond;

Y is selected from the group consisting of a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a hydroxyl group, and $N(R^6)(R^7)$ in which each of R^6 and R^7 , which can be the same or different, is selected from the group consisting of a hydrogen atom, a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a C_3 - C_9 -cycloalkyl group, a C_4 - C_9 -cycloalkyl-alkyl group, a C_5 - C_8 -morpholino-N-alkoxy group, a C_3 - C_9 -alkenyl group, a phenyl group, a pyridyl group, and an aralkyl group, wherein the phenyl group and the pyridyl group and the aromatic ring of the aralkyl group are optionally substituted with 1 to 3 substituents selected from the group consisting of a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, and a halogen atom;

 R^1 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a C_1 - C_4 -alkyl group, a C_3 - C_9 -cycloalkyl group, a C_4 - C_9 -cycloalkyl-alkyl group, a C_1 - C_4 -alkoxy group, a C_3 - C_9 -cycloalkyloxy group, a C_4 - C_9 -cycloalkyl-alkoxy group, an aralkyloxy group, a C_1 - C_4 -acyl group, and a nitro group and 1 to 4 R^1 s are present at a desired position in A, each of which can be the same or different, and

when two R¹s are present, they may together form a C₁-C₄-alkylenedioxy group, provided that, when A is a benzene ring, R¹ does not denote a hydrogen atom;

B denotes a benzene, pyridine, or thiophene ring;

 R^2 is a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxyl group, a C_1 - C_4 -alkyl group, a C_1 - C_4 -alkoxy group, a C_1 - C_4 -alkylthio group, a C_1 - C_4 -hydroxyalkoxy group, a C_3 - C_9 -cycloalkyloxy group, a C_4 - C_9 -cycloalkyl-alkoxy group, an aralkyloxy group, a C_1 - C_4 -acyl group, a cyano group, a C_5 - C_8 -morpholino-N-alkoxy group, and an amino group which can be monosubstituted or disubstituted with a C_1 - C_4 -alkyl group, and 1 to 4 R^2 s, each of which can be the same or different, are present at a desired position;

R³ and R⁴ denote, when Y denotes other than a C₁-C₄-alkyl group, an oxygen atom or NR⁸ in which each R⁸ is selected from the group consisting of a hydrogen atom and a C₁-C₄-alkyl group, each of which can be the same or different, and when Y denotes a C₁-C₄-alkyl group, R³ denotes an oxygen atom or NR⁸ and R⁴ denotes an oxygen atom, NR⁸, or a single bond;

R⁵ is selected from the group consisting of a C₁-C₈-alkyl group, a C₂-C₄-alkenyl group, a C₃-C₉-cycloalkyl group, a C₄-C₉-cycloalkyl-alkyl group, a tetrahydropyranyl group, an aralkyl group, an indanyl group, an aromatic acyl group, a phenyl group, a pyridyl group, a furyl group, and a thienyl group wherein the aromatic rings of the aralkyl group, the indanyl group, and the aromatic acyl group, the phenyl group, the pyridyl group, the furyl group, and the thienyl group optionally have 1 to 5 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a cyano group, a C₁-C₄-alkyl group, a C₁-C₄-alkoxy group, a C₁-C₄-alkylthio group, a C₂-C₅-alkoxycarbonyl group, a carboxyl group, a C₁-C₄-acyl group, an aromatic acyl group, a C₁-C₄-acyloxy group, a trifluoromethyl group, a phenyl group, a phenoxy group, a phenylthio group, a pyridyl group, a morpholino group, and an amino group that is optionally monosubstituted or disubstituted with a C₁-C₄-alkyl group or a C₁-C₄-acyl group, and wherein adjacent two substituents may together form a C₁-C₄-alkylenedioxy group to form a ring; and

Z denotes an oxygen or sulfur atom.

- 2. The compound according to claim 1 wherein, in general formula (1), X denotes a C_1 - C_4 -alkylene group.
 - 3. The compound according to claim 1 wherein, in general formula (1), X

denotes a single bond.

- 4. The compound according to claim 1 wherein, in general formula (1), each of A and B, which can be the same or different, denotes a benzene ring or a pyridine ring.
- 5. The compound according to claim 1 wherein, in general formula (1), A and B denote a benzene ring.
- 6. The compound according to claim 1 wherein, in general formula (1), Y denotes an unsubstituted amino group, a hydroxyl group, or a C_1 - C_4 -alkoxy group.
- 7. The compound according to claim 1 wherein, in general formula (1), Y denotes a C_1 - C_4 -alkyl group.
- 8. The compound according to claim 1 wherein, in general formula (1), R^2 denotes a hydrogen atom or a C_1 - C_4 -alkoxy group.
- 9. The compound according to claim 1 wherein, in general formula (1), R⁵ denotes a benzyl group, a phenyl group, a pyridyl group, or a pyridylmethyl group wherein the aromatic rings of the benzyl group and the pyridylmethyl group and the phenyl group and the pyridyl group optionally have 1 to 5 substituents selected from the group consisting of a halogen atom, a C₁-C₄-alkyl group, a C₁-C₄-alkoxy group, a C₂-C₅-alkoxycarbonyl group, a C₁-C₄-acyl group, a trifluoromethyl group, a C₁-C₄-alkyl group, and an amino group which has been disubstituted with a C₁-C₄-alkyl group.
- 10. The compound according to claim 1 wherein, in general formula (1), R^5 denotes a C_1 - C_4 -alkyl group, a C_2 - C_4 -alkenyl group, or a C_3 - C_6 -cycloalkyl group.
- 11. The compound according to claim 1 wherein, in general formula (1), R^3 and R^4 denote NH.
- 12. The compound according to claim 1 wherein, in general formula (1), R^3 denotes NH and R^4 denotes an oxygen atom.
 - 13. A pharmaceutical composition comprising, as an active ingredient, the

compound or pharmaceutically acceptable salt thereof according to claim 1.

- 14. A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to claim 1, that is usable for prevention or treatment of diseases caused by abnormal proliferation of vascular smooth muscle cells.
- 15. A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to claim 1, that is usable for prevention or treatment of restenosis or atherosclerosis after percutaneous transluminal coronary angioplasty or coronary artery bypass surgery.
- 16. A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to claim 1, that is usable for prevention or treatment of diseases caused by abnormal proliferation of mesangial cells.
- 17. A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to claim 1, that is usable for prevention or treatment of diseases caused by abnormal proliferation of vascular endothelial cells or epidermal cells.
- 18. A pharmaceutical composition comprising, as an active ingredient, the compound or pharmaceutically acceptable salt thereof according to claim 1, that is usable for prevention or treatment of psoriasis, diabetic retinopathy, or senile disciform macular degeneration.

ň.,

ABSTRACT

This invention relates to a diarylamide derivative represented by formula (1) or a salt thereof and a pharmaceutical composition comprising, as an active ingredient, the compound:

$$R^{5}$$
 R^{4}
 R^{3}
 R^{2}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}

wherein,

A and B denote an aromatic ring such as a benzene ring; COY and NHCOX are adjacent to each other and these substituents are linked to carbon in the aromatic ring A; X denotes alkylene, alkyleneoxy, or a single bond; Y denotes an alkyl, alkoxy, hydroxyl, or substituted or unsubstituted amino group; R¹ denotes hydrogen, halogen, hydroxyl, alkyl or the like, provided that, when A denotes a benzene ring, R¹ does not denote hydrogen; R² denotes hydrogen, halogen, hydroxyl, alkyl or the like; R³ and R⁴ denote a substituted or unsubstituted imino group, an oxygen atom, or a single bond; R⁵ denotes alkyl, substituted or unsubstituted phenyl or the like; and Z denotes oxygen or sulfur.

Attorneys Docket	No.:
------------------	------

DECLARATION, POWER OF ATTORNEY AND PETITION

I (We), the undersigned inventor(s), hereby declare that: My residence, post office address and citizenship are as stated below next to my name, I (We) believe that I am (we are) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled NOVEL DIARYLAMIDE DERIVATIVES AND PHARMACEUTICAL APPLICATION THEREOF the specification of which ☐ is attached hereto. □ was filed on _____as Application Serial No. and amended on ■ was filed as PCT international application Number PCT/JP00/06667 on <u>September 27, 2000</u> and was amended under PCT Article 19 _____(if applicable).

I (We) hereby state that I (We) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above; that I (We) do not know and do not believe that this invention was ever known or used before my invention or discovery thereof, or patented or described in any printed publication in any country before my invention or discovery thereof, or more than one year prior to this application, or in public use or on sale in the United States for more than one year prior to this application; that this invention or discovery has not been patented or made the subject of an inventor's certificate in any country foreign to the United States on an application filed by me or my legal representatives or assigns more than twelve months before this application.

I (We) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

I (We) hereby claim foreign priority benefits under Section 119(a)-(d) of Title 35 United States Code, of any foreign application(s) for patent or inventor s certificate listed below and have also identified below any foreign application for patent or inventor s certificate having a filing date before that of the application on which priority is claimed:

	•		Priorit	y	
Application No.	Country	Filing date	claimed	i	
_281271/1999	<u>Japan</u>	October 1, 1999	■ Yes	□ No	
_290789/1999	Japan	October 13, 1999	■ Yes	□ No	
			☐ Yes	□ No	
			□ Yes	□ No	
of any United State	es application(s) listed below.			
(Application Num	ber)	(Filing Date)			
(Application Num	ber) .	(Filing Date)			

I (We) hereby claim the benefit under Section 120 of Title 35 United States Code, of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Section 112 of Title 35 United States Code, I (We) acknowledge the duty to disclose material information as defined in Section 1.56(a) of Title 37 Code of Federal Regulations, which occurred between the filing date of the prior application and national or PCT international filing date of this application:

Status (pending,

Application Serial No.	Filing Date	patented, abandoned)

)

And I (We) hereby appoint: Bing Ai, Registration No. 43,312; Richard J. Anderson, Registration No. 36,732; James W. Babineau, Registration No. 42,276; Joseph R. Baker, Registration No. 40,900; Ingrid A. Beattie, Registration No. 42,306; Robert M. Bedgood, Registration No. 43,488; Christine P. Bellon, Registration No. 41,611; William E. Booth, Registration No. 28,933; Samuel Borodach, Registration No. 38,388; Roger S. Borovoy, Registration No 20,193; Charles J. Boudreau, Registration No. 42,350; John A. Burtis, Registration No. 39,924; Elizabeth Chien-Hale, Registration No. 44077; Ruffin B. Cordell, Registration No. 33,487; John D. Cowart, Registration No. 38,415; Gary L. Creason, Registration No. 34,310; Lee Crews, Registration No. 43,567; Andrew T. D'Amico, Jr., Registration No. 33,375; Sean P. Daley, Registration No. 40,978; Peter J. Devlin, Registration No. 31,753; John A. Dragseth. Registration No. 42,497; William J. Egan, III, Registration No. 28,411; Mark S. Ellinger, Registration No. 34,812; Eldora L Ellison, Registration No. 39,967; J. Peter Fasse, Registration No. 32,983; David L. Feigenbaum, Registration No. 30,378; Ruchard P. Ferrara, Registration No. 30,632; Stephan J. Filipek, Registration No. 33,384; J. Patrick Finn III, Registration No. 44,109; Janis K. Fraser, Registration No. 34,819; John W. Freeman, Registration No. 29,066; Timothy A. French, Registration No. 30,175; John J. Gagel, Registration No. 38,461; Diane L. Gardner, Registration No. 36,518; Kurt L. Glitzenstein, Registration No. 39,686; David J. Goren, Registration No. 34,609; Robert A. Greenberg, Registration No. P-44,133; James A. Gromada, Registration No. P-44,727; H. Sanders Gwin, Jr., Registration No. 33,242; William D. Hare, Registration No. 32,030; Scott C. Harris, Registration No. 32,030; John F. Hayden, Registration No. 37,640; Mark J. Hebert, Registration No. 31,766; George E. Heibel, Registration No. 42,648; Gilbert H. Hennessey, Registration No. 25,759; Charles Hieken, Registration No. 18,411; Robert E. Hillman, Registration No. 22,837; William J. Hone, Registration No. 26,739; Shane H. Hunter, Registration No. 41,858; Allison A. Johnson, Registration No. 36,173; Mark D. Kirkland, Registration No. 40,048; Lawrence K. Kolodney, Registration No. 43,807; Linda Liu Kordziel, Registration No. 39,732; Phyllis K. Kristal, Registration No. 38,524; John Land, Registration No. 29,554; Celia H. Leber, Registration No. 33,524; G. Roger Lee, Registration No. 28,963; Samuel S. Lee, Registration No. 42,791; Monica L. Lewis, Registration No. 42,600; John T. Li, Registration No. 44,210; Ronald C. Lundquist, Registration No. 37,875; Stuart Macphail, Registration No. 44,217; Gregory A. Madera, Registration No. 28,878; Denis G. Maloney, Registration No. 29,670; Christopher S. Marchese, Registration No. 37,177; John F. McCabe, Registration No. 42,854; Monica McCormick Graham, Registration No. 42,600; Anita L. Meiklejohn,

Registration No. 35,283; Todd G. Miller, Registration No. 42,003; Ralph A. Mittelberger, Registration No. 33,195; Chris T. Mizumoto, Registration No. 42,899; James E. Mrose, Registration No. 33,264; Louis Myers, Registration No. 35,965; Robert C. Nabinger, Registration No. 33,431; Greg O'Bradovich, Registration No. 42,945; Frank R. Occhiuti, Registration No. 35,306; George C. Pappas, Registration No. 35,065; Andrew N. Parfomak, Registration No. 32,431; John B. Pegram, Registration No. 25,198; John C. Phillips, Registration No. 35,322; Frank P. Porcelli, Registration No. 27,374; Timothy A. Porter. Registration No. 41,258; Jon M. Powers, Registration No. 43,868; Eric L. Prahl, Registration No. 32,590; Paul A. Pysher, Registration No. 40,780; Frederick H. Rabin, Registration No. 24,488; J. Robin Rohlicek, Registration No. 39,823; Stephen R. Schaefer, Registration No. 39,823; Stephen R. Schaefer, Registration No. 37,927; Richard M. Sharkansky, Registration No. 25,800; Steven J. Shumaker, Registration No. 36,275; Robert J. Silverman, Registration No. 42,149; John M. Skenyon, Registration No. 27,468; Jack L. Slobodin, Registration No. 29,110; Alan D. Smith, Registration No. 32,005; Jeffrey L. Snow, Registration No. 39,037; Reginald J. Suyat, Registration No. 28,172; Rene D. Tegtmeyer, Registration No. 33,567; Bao Q. Tran, Registration No. 37,955; Hans R. Troesch, Registration No. 36,950; Y. Rocky Tsao, Registration No. 34,053; Natasha C. Us, Registration No. P-44,381; Jonathan J Wainer, Registration No. 36,712; Gary A. Walpert, Registration No. 26,098; John R. Wetherell, Jr., Registration No. 31,678; Dorothy P. Whelan, Registration No. 33,814; Wayne E. Willenberg, Registration No. 28,488; John N. Williams, Registration No. 18,948; Charles C. Winchester, Registration No. 21,040.

I(We) hereby request that all correspondence regarding this application be sent to the firm of FISH & RICHARDSON P.C. whose Post office address is: 45 Rockefeller Plaza, Suite 2800, New York, New York 10111 U.S.A.

I (We) declare further that all statements made herein of my (our) knowledge are true and that all statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

2	Haruhisa OGITA	Residence: <u>Saitama, Japan </u>
	NAME OF FIRST SOLE INVENTOR	
	March 11, 2002 Date Color March 12, 2002 Havulisa Ogita Signature of Inventor	Citizen of: Japan Post Office Address: c/o JAPAN ENERGY CORPORATION, 17-35, Niizominami 3-chome, Toda-shi, Saitama 335-8502 Japan
20	Yoshiaki ISOBE NAME OF SECOND JOINT INVENTOR	Residence: Saitama, Japan
	March 11, 2002 Date Toshiaki (Sohe Signature of Inventor	Citizen of: Japan Post Office Address: c/o JAPAN ENERGY CORPORATION, 17-35, Niizominami 3-chome, Toda-shi, Saitama 335-8502 Japan
34) <u>Ḥaruo TAKAK</u> U NAME OF THIRD JOINT INVENTOR	Residence: <u>Saitama, Japan</u>
	March 11, 2002 Date Larus Jakaku Signature of Inventor	Citizen of: Japan Post Office Address: c/o JAPAN ENERGY CORPORATION, 17-35, Niizominami 3-chome, Toda-shi, Saitama 335-8502 Japan