Vzorka príkladov korešpondujúca s problematikou numerického cvičenia č. 11

- 1. Výťah s hmotnosťou 1,2 tony sa za 0,5 minúty zdvihol do výšky 15 m. Napätie na svorkách elektromotora, ktorý dvíhal výťah je 230 V a jeho účinnosť je 90%. Určte prúd prechádzajúci elektromotorom.
- 2. Elektrický zdroj dodáva do vzdialenosti 6 km prúd 2 A pri napätí 4000 V. Aký priemer musí mať medený drôt pre diaľkový prenos energie, ak straty vo vedení nemajú presahovať 3% prenášanej energie? Merný elektrický odpor medi je $0,017~\mu\Omega.m.$
- 3. Aké bude napätie medzi bodmi AC v obvode znázornenom na obrázku vpravo, ak do uvedeného obvodu medzi body AB pripojíme konštantné elektrické napätie 100 V ? Odpor rezistorov $R=50~\Omega$.

- 4. Medený drôt s priemerom 2 mm máme nahradiť hliníkovým drôtom, ktorý má mať rovnakú dĺžku aj elektrický odpor. Aký musí byť jeho priemer ? Merný elektrický odpor medi je 0,017 μΩ.m, hliníka 0,027 μΩ.m.
- 5. Na obrázku vpravo je znázornená časová závislosť elektrického prúdu *I* pretekajúceho vodičom. Napíšte, aký celkový náboj pretiekol prierezom uvedeného vodiča v časovom intervale (2s, 5s).

6. Aký bude výkon zdroja konštantného jednosmerného elektrického napätia veľkosti 10 V, ktorý pripojíme medzi body AB do obvodu znázorneného na obrázku vpravo? Elektrický odpor rezistorov $R=1~\Omega$.

- 7. Ako sa zmení elektrický odpor medzi koncami drôtu, keď ho natiahneme na desaťnásobok jeho pôvodnej dĺžky? Hmotnosť drôtu ani jeho materiálové konštanty (hustota, rezistivita) sa pri natiahnutí nezmenia.
- 8. Konce vodiča s celkovým odporom $R=10~\Omega$ sme pripojili na zdroj elektrického prúdu. Elektrický prúd pretekajúci vodičom po pripojení zdroja rovnomerne vzrastal počas desiatich sekúnd z nulovej hodnoty na hodnotu $I_0=5~\mathrm{A}$, na ktorej sa ustálil. Minútu po pripojení sme zdroj odpojili. Elektrický prúd po odpojení rovnomerne klesol z hodnoty I_0 na nulovú hodnotu počas dvadsiatich sekúnd. Vypočítajte:
- a) celkový náboj, ktorý pretiekol prierezom vodiča.
- b) prácu vykonanú pretekajúcim elektrickým prúdom.
- 9. Vo vodiči, ktorého elektrický odpor je $R=3~\Omega$ tečie elektrický prúd, ktorý s časom rovnomerne narastá. Počas doby $\Delta t=8~s$ narastania prúdu z nulovej hodnoty vzniklo vo vodiči teplo $Q=200~\rm J$. Vypočítajte, aký náboj pretiekol vodičom za tento časový interval.
- 10. Dva voltmetre s rovnakým rozsahom, ale s rozličnými vnútornými odpormi $R_1 = 17300 \Omega$ a $R_2 = 5200 \Omega$ sú zapojené za sebou a pripojené na konštantné napätie 220 V. Určte, aké sú výchylky na jednotlivých voltmetroch.
- 11. Vodičom s celkovým elektrickým odporom R=100 W pretekal elektrický prúd, ktorého intenzita I sa v závislosti od času menila. Graf jej časovej závislosti I(t) je znázornený na obrázku vpravo. Určte, prácu prúdu vykonanú v časovom intervale $\langle \tau_1 ; \tau_2 \rangle$ ak za časový interval $\langle 0; \tau_3 \rangle$ pretiekol prierezom uvedeného vodiča celkový elektrický náboj Q=10 C. Počiatočná hodnota elektrického prúdu (t.j. veľkosť jeho intenzity v časovom okamihu t=0 s) je $I_0=0,5$ A. $\tau_1=10$ s, $\tau_2=15$ s, $\tau_3=20$ s.

12. Vodič kruhového prierezu s plochou $S=2\text{mm}^2$ a dĺžkou L=12 cm je zhotovený z materiálu s merným elektrickým odporom $\rho=3.10^{-2}\,\Omega$.m. Vodič pripojíme k jednosmernému napäťovému zdroju, ktorého napätie rovnomerne vzrastá z hodnoty $U_0=5\text{V v čase }t=0$ s na hodnotu $U_1=50\text{ V v čase }t_1=20$ s. Vypočítajte:

- a) Aký celkový náboj pretečie prierezom vodiča za uvedených 20 sekúnd.
- b) Akú prácu vykoná elektrický prúd za uvedených 20 sekúnd.
- 13. Teleso tvaru pravidelného zrezaného štvorbokého ihlana má podstavy tvaru štvorca. Veľkosť strany dolnej podstavy je a=5 cm a veľkosť strany hornej podstavy je b=2 cm. Výška zrezaného ihlanu je h=8 cm (pozri obrázok vpravo). Vypočítajte celkový elektrický odpor medzi podstavami uvedeného telesa, keď je zhotovené z materiálu s rezistivitou $\rho=10^{-3}\,\Omega$.m. Predpokladajte, že pri transporte elektrického náboja cez objem telesa je prúdová hustota v každom mieste rovnaká.

14. Teleso tvaru zrezaného rotačného kužela má podstavy tvaru kruhu. Polomer hornej podstavy je $R_1=2$ cm a polomer dolnej podstavy je $R_2=5$ cm. Výška zrezaného kužela je h=8 cm (pozri obrázok vpravo). Vypočítajte celkový elektrický odpor medzi podstavami zrezaného kužela, keď je zhotovený z materiálu s merným elektrickým odporom $\rho=10^{-3}~\Omega$.m. Predpokladajte, že pri transporte elektrického náboja cez objem telesa je prúdová hustota v každom mieste rovnaká.

- 15. Elektrický náboj Q=50 C pretiekol (za nekonečne dlhý čas) medeným vodičom s dĺžkou L=100 m a prierezom S=1 mm². Intenzita prúdu I pritom exponenciálne klesala tak, že každých $\tau=20$ s sa jej hodnota zmenšila na polovicu. Vypočítajte prácu vykonanú pri transporte uvedeného náboja. Merný elektrický odpor medi je $\rho=1,75.10^{-8}$ Ω .m
- 16. Aká musí byť hodnota elektrického odporu R_x v zapojení, ktoré je znázornené na obrázku vpravo, aby vetvou, v ktorej je rezistor s odporom R_x zapojený, pretekal elektrický prúd 0,2 A? Medzi bodmi A B je jednosmerné napärie 1 V a odpor $R = 1 \Omega$.

17. Riešte obvod, ktorý je zobrazený na obrázku vpravo ak $R = 10 \Omega$ a U = 100 V

18. Vypočítajte prúdy vo všetkých vetvách obvodu, ktorý je znázornený na obrázku vpravo.

$$R_1 = 10\Omega$$
, $R_2 = 100 \Omega$, $R_3 = R_4 = R_5 = 1\Omega$, $U_1 = 100 \text{ V}$, $U_2 = U_3 = 10 \text{ V}$.

 $R_1 = 5 \Omega$, $R_2 = 7 \Omega$, $R_3 = 10 \Omega$, $U_{e1} = 10 V$, $U_{e2} = 20 V$.

19. Vypočítajte, aké prúdy pretekajú v jednotlivých vetvách obvodu znázorneného na obrázku vpravo, ak platí:

20. Vodičom tvaru valca s polomerom R = 2 mm preteká elektrický prúd tak, že veľkosť hustoty prúdu rovnomerne klesá v závislosti na vzdialenosti od osi vodiča. Určte aký celkový náboj pretečie prierezom vodiča za čas $\Delta t = 3$ s, keď hustota prúdu na jeho osi má hodnotu $i_0 = 15$ A.cm⁻² a pri povrchu má hodnotu $i_1 = 5$ A.cm⁻².