Singular Value

Decomposition

Hung-yi Lee

Outline

- Diagonalization can only apply on some square matrices.
- Singular value decomposition (SVD) can apply on any matrix.

• Reference: Chapter 7.7

SVD

Any m x n matrix A

Any m x n matrix A

0

If A is a m x n matrix, and B is a n x k matrix.

$$Rank(AB) \leq min(Rank(A), Rank(B))$$

If B is a matrix of rank n, then Rank(AB) = Rank(A)

If A is a matrix of rank n, then Rank(AB) = Rank(B)

SVD

Any m x n matrix A

 $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_k > 0$ **SVD** σ_{k-1} σ_k is deleted Any m x n matrix A $n \times n$ $m \times m$ $m \times n$ m x nIndependent \sqrt{T} A Independent Diagonal What is the rank of A'? # $m \times (k-1) (k-1) \times (k-1) (k-1) \times n$ $m \times n$ k-1 A A' is the rank k-1 matrix minimizing $||A - \mathbb{K}||$

自己所有 roma的 k+73矩阵是被近月的

Low rank approximation using the singular value decomposition

レニ

https://www.youtube.com/watch?v=pAiVb7gWUrM

Thank You for Your Attention

https://www.youtube.com/watch?v=R9UoFyqJca8

