

CLP

Introdução à programação em Ladder

Objetivos da aula

Relembrar a ligação elétrica em CLP

Relembrar a simbologia básica utilizada em Ladder.

☐ Exercícios de montagem de circuitos.

Esquema de ligação (instalação)

Como um PLC substitui um relé?

Quando for pressionado o botão S1, a bobina do relé K1 será energizada, o que irá chavear o contato que ligará a lâmpada L1!

Como um PLC substitui um relé?

Funcionamento do circuito elétrico:

Quando for pressionado o botão S1, a bobina do relé K1 será energizada, o que irá chavear o contato que ligará a lâmpada L1!

Acionar uma lâmpada a partir de um botão Liga / Desliga;

Condição AND;

Programa

Circuito CLP

Condição OR;

Circuito CLP

LADDER – Equivalência entre funções lógicas

Portas Lógicas	Símbolo	Expressão	Ladder
NOT	A ->- S	$S = \overline{A}$	——————————————————————————————————————
AND	А В Д— s	$S = A \cdot B$	
OR	А В Д>− s	S = A + B	

Circuitos - Identificação de componentes

Os dois circuitos são complementares

A equivalência entre os componentes é mostrada pelo nome do

componente

Identificação dos componentes

Botões: Letra B + número sequencial – (B1 ..., B2 ..., B3...)

Sensores: Letra S + número sequencial - (S1 ..., S2 ..., S3...)

Fins de curso: letra S + no impar p/ recuado e no par p/ avançado – (S1..., S2...)

Solenóide: Letra Y + impar p/ avançar e par p/ retornar (Y1 ..., Y2 ...)

Relês, Contatoras e Temporizadores: Letra K + número sequencial (K1 ..., K2 ...)

Indicador Luminoso: Letra L + número sequencial

Outros: Letra Z + número sequencial

Circuito Elétrico

COMPONENTES DE ENTRADA:

Utilização de contatos normalmente abertos. Incomum, mas é possível associação de contatos.

COMPONENTES DE SAÍDA:

Se necessário, possível associação em paralelo.

A simbologia dos componentes são obrigatórias

A numeração dos contatos é necessária para a montagem física do circuito

Os componentes representados devem existir na prática

EXERCÍCIOS

COMANDO DE UM CILINDRO DE DUPLA AÇÃO

Utilizando uma válvula simples solenoide. Ao ser pressionado um botão (B1), o atuador linear deve avançar e permanecer assim até que o botão S1 seja desacionado.

☐ Elaborar Diagrama LADDER equivalente!

EXERCÍCIOS

Circuito Liga/Desliga e válvula de duplo solenoide. (obs.: neste caso, a função de memória será realizada pela válvula pneumática).

O botão S1 deve ser o responsável por avançar o cilindro e o botão S2 por recuar.

Implementar um <u>novo</u> circuito que impossibilite erros no acionamento simultâneo de S1 e S2. Caso seja pressionado S1 e S2 ao mesmo tempo, o cilindro deve avançar.

A luz deve ser ligada assim que sejam pressionados os botões S1 "OU" S2.

Também conhecida como:

- Disjunção
- Porta OR
- Soma lógica

Obtém-se um sinal de saída quando existir ao menos um sinal de entrada.

EXERCÍCIOS

Lógica "E"

A luz deve ser ligada assim que sejam pressionados simultaneamente os botões S1 "E" S2.

Também conhecida como:

- Conjunção
- Porta AND
- Produto lógico

Obtém-se um sinal de saída, somente quando existirem todos os sinais de entrada.