9/19/2016

Assignment-1

Analysis of Female Labour Participation

GROUP-5

Bhupesh Joshi Amitesh Saha Kiran Soibam Roopam Chabara

- Q1. Estimate a probit model for probability of participation in the labour market.
 - (a) The explanatory variables are to be used as similar to that in Models A and C of Table 3 of Chatterjee et al paper. Identify the 'common' variables available between your data set and that in their study to carry out this analysis. The 'rank' variable in the paper has to be substituted with URBAN4_2011 qualitative variable with four categories. Let these two models be called as variant 1 and variant 2 respectively. Present the results for the estimated coefficients (Table 2) as well as the marginal effects (Table 3). Before this table of results present a table of mean and standard deviation of the variables used in the model (Table 1).

Sol. The list of variable used in the model along with their description and summary are as follows are as follows:

Table 1. Description of the variables used in the empirical analysis

Variable	Description	Mean	SD				
Total number of observations = 75543							
Individual Level							
age	Age	36.39163	19.9032				
age_sq	Squared of age	1720.483	1600.1				
eduyrs	Numbers of years of schooling	4.2542	4.875634				
eduyrs_sq	Schooling Years Squared	61.97215	61.97215				
martlst	Marrital status	1.59525	0.809569				
Household level							
log_NPERSONS	Log of Household Size	1.653694	0.483565				
nchild0_5_sh	Share of Children below 6 years in the household	0.111884	0.144742				
nchild6_15_sh	Share of Children 6 years or more in the household	0.163379	0.183373				
nadlfdep_sh	Share of female dependents (aged 60+) in the	0.400617	0.164692				
	household						
nadlmdep_sh	Share of male dependents (aged 60+) in the household	0.329272	0.163656				
eduadlt_cd	Maximum schooling of household	3.773295	1.659074				
incsohh	Occupation of head of household	3.430072	2.081966				
dst	Household belong to Scheduled Tribes or not	0.088294	0.283724				
dsc	Household belong to Scheduled Castes or not	0.206849	0.405049				
dobc	Household belong to Other Backward Castes or not	0.413857	0.492527				
duch	Household belong to Bhramin caste	0.049098	0.216074				
dosgr	Household belong to Others	0.241902	0.428238				
dhindu	Household belongs to Hindu religion	0.80525	0.396011				
dmuslim	Household belongs to Muslim religion	0.132362	0.338886				
dchrstn	Household belongs to Christian religion	0.026157	0.159604				
djain dorelg dsikh	Household belongs to Jain , other , sikh religion						
Location							

URBAN4_2011	Population from urban or rural	2.003177	0.91265
Employment		•	
psu_sh_wkfarm	Share of Agricultural Self-employed and Regular	0.206152	0.174569
	workers aged 15+ in working age population		
psu_sh_wkagwag	Share of farmed labor aged 15+ in working age	0.109882	0.128965
	population		
psu_sh_wkbsns	Share of Non-Farm Self Employed aged 15+ in working	0.123669	0.152466
	age population (business)		
psu_sh_wknonag	Share of Non-Farm Regular Wage aged 15+ in working	0.174431	0.144335
	age population		
psu_sh_wknrega	Share of All Casual workers aged 15+ in working age	0.024981	0.046415
	population (NAREGA)		
psu_sh_wksalry	Share of Salaried workers aged 15+ in working age	0.184287	0.217865
	population		
psu_sh_wkanim	Share of participation for animals workers aged 15+ in	0.176598	0.121921
	working age population		
ci_terc	Confidence in institution	1.989529	0.813031
ai_index	Economic status	0.096829	2.568423

For estimation of probit model for probability of participation of women in the labor market we use the following two variants of the model.

 $LFP = f_1$ (Individual, Household)

And $LFP = f_2$ (Individual, Household, Location, Employment)

Upon estimation we get the coefficients of dependent variable as following:

Table 2. Coefficient's for working-age women based Different models

Dependent Variable: Labor force participation						
Independent Variable	pendent Variable Variant 1 Variant 2 Variant 3		Note			
Pseudo R2	0.1676	0.2382	0.2402			
Constant	-3.209451	-5.074999	-5.084108			
age	0.1350759	.1537483	.1530292			
age_sq	-0.0016495	-0.00183	0018239			
eduyrs	-0.0647286	-0.0599				
eduyrs_sq	0.0019499	0.003501				
martlst2	-0.0675577	-0.04304	0441904	martlst1 =		
martlst3	0.4246627	0.536099	.5283247	married as base		
log_NPERSONS	-0.2486973	-0.28566	2839304			
nchild0_5_sh	0.7961358	0.757835	.7639516			
nchild6_15_sh	1.312407	1.337841	1.337738			

nadlfdep_sh	1.207782	1.159895	1.168479	
nadlmdep_sh	0.3793375	0.375284	.3778551	
dst	0.3942046	0.171344	.1725641	
dobc	-0.0272393**	-0.10055	1033091	dsc as base
duch	-0.3565557	-0.30511	3154585	dummy
dosgr	-0.1608891	-0.2246	2296929	
dhindu	0.2873151	0.140603	.140375	djain, dorelg
dmuslim	-0.2324797	-0.15582	1571761	dsikh as base
dchrstn	0.1283121	0.126141	.1214068	dummy
URBAN4_20112		0.061219***	.0586 **	URBAN4_20111=
URBAN4_20113		-0.02592*	025331 *	Urban metro as
URBAN4_20114		-0.0212*	0229254 *	base dummy
psu_sh_wkfarm		3.44794	3.445323	
psu_sh_wkagwag		2.316132	2.303227	
psu_sh_wkbsns		1.135435	1.11375	
psu_sh_wknonag		1.235872	1.229981	
psu_sh_wknrega		4.355172	4.349915	
psu_sh_wksalry		0.813235	.8058674	
psu_sh_wkanim		Removed becau	se of collinearity	
edu_cd2			.0270003 *	
edu_cd3			1429303	eduadlt_cd1 =
edu_cd4			358584	Not Literate as base dummy
edu_cd5			2641858	Sase duminy
edu_cd6			.0287482*	
1	•	•	•	•

Table 3. Marginal probability effects for working-age women based on Usual Status

Dependent Variable: Labor force participation							
Independent Variable	Model 1	Model 2a	Model 2b	Note			
Pseudo R2	0.2402	0.2403	0.2407				
age	.0496821	.0497059	.049751				
age_sq	0005922	0005923	0005925				
martlst2	0142154	0141993	0144272	martlst1 = married			
martlst3	.1855298	.1857363	.185712	as base			
log_NPERSONS	0921801	0922725	0919465				
nchild0_5_sh	.2480226	.2478434	.2455033				
nchild6_15_sh	.4343067	.4337885	.4317105				
nadlfdep_sh	.3793554	.3790096	.378305				
nadlmdep_sh	.1226735	.1222927	.122187				

^{*} insignificant at 10% level of significance ** insignificant at 5% level of significance *** insignificant at 1% level of significance

dst	.0584418	.0585869	.0601613				
dobc	0333391	0338082	0335338	dsc as base dummy			
duch	0923898	0932435	0940326				
dosgr	0715808	0720184	0712115				
dhindu	.0442773	.0440155	.045821	djain, dorelg dsikh			
dmuslim	0490624	0492369	0464275	as base dummy			
dchrstn	.0408143	.0421223	.0499276				
	Lo	cation Dummy	1				
Other Metro	.0191863	.0195858*	.0231773	URBAN4_20111=			
More dev. Village	0081985	0075083***	0029012**	Urban metro as			
Less dev. Village	0074286	0068188***	0028058**	base dummy			
psu_sh_wkfarm	1.11855	1.119913	1.118696				
psu_sh_wkagwag	.7477598	.7507863	.7601442				
psu_sh_wkbsns	.3615875	.3622278	.3564842				
psu_sh_wknonag	.3993224	.4027787	.4089087				
psu_sh_wknrega	1.412233	1.417257	1.421005				
psu_sh_wksalry	.2616309	.2642774	.2725031				
	Education cat	tegories (Illiterate a	as base)				
Primary	.0088307	.0090604***	.0096399***				
Middle	0450894	0446576	0437717	edu_cd1 = Not			
Secondary	1057243	1050931	1030949	Literate as base dummy			
Higher Secondary	07890	0781912	0765463	dammy			
Post Hi. Secondary	.0094092	.0100943***	.0120294***				
Quartile of Cor	nfidence in Instituti		base category) ci	terc_pcag2			
Medium	-	.001204***	-	Low confidence as			
High	-	0088942	-	base category			
Quar	tiles of Confidence	in Institution aggre		rel			
psu_sh_cig1	-	-	.0160693				
psu_sh_cig2	-	-	.0666991				
psu_sh_cig3	psu_sh_cig3 Removed because of collinearity						
* insignificant at 10% level of significance							

^{*} insignificant at 10% level of significance

Q 1.a. How will you conclude which variant fits your data better? What are the changes in the results between these two versions of the model?

Sol. Pseudo R² is one of the measure to know the goodness of fit of a model. As clear from Table 2 Variant 2 fits the data better. The Pseudo R² increase to 0.24 form 0.17 on addition for new variables of employment and location. The overall explanatory power of Variant 2 is much higher than that of Variant 1 suggesting that the local structure of employment matters.

This all signifies that though the new model fits the data better but the participation rate of women along the rural-urban gradation are not significantly different (at 1% LoS). The coefficients of

^{**} insignificant at 5% level of significance

^{***} insignificant at 1% level of significance

URBAN4_20113 and URBAN4_20114 are highly insignificant means that with local employment structure being taken into account there is virtually no difference in the participation rates between more developed villages, less developed village and urban metro cities.

Marginal effect is defined as, how much the predicted probability of labor force participation changes for a unit increase in the corresponding explanatory variable.

Between the two variants of the model most of the variables have similar effect with insignificant changes. The marginal effects of age and education represent an Inverted-U shaped. The predicted probability of female labor participation first decreases with an increasing rate with years of schooling (increases for age) and then decreases at a decreasing rate. The marginal effect of marriage is positive and significant. Married women are less likely to participate according to both the models. Having more children or more dependent people in household does effect the participation rate of women in labor force.

There is a positive marginal effect of caste for ST when compared to SC's, however negative for others. The marginal effect of OBC's becomes significant in Variant 2. Muslim women are less likely to participate in workforce as compared to other religions.

- Q.1.b. Choose the best fitting version and instead of education in years and its square as continuous variables, replace it with the dummy variables for level of education. Let this be variant 3. Compare the results for marginal effects (add another column in Table 3 to make this comparison).
 - i) Assuming that variant 2 fits better than variant 1 (or else use variant 1 for comparison) how will you interpret the effect of education on female work participation? Will the interpretation be the same in both variants?

Sol. Replacing the education in years and its square with the dummy variables for level of education, improves the overall explanatory power of the model only marginally. The change in marginal effects of all the explanatory variables is very small and similar (in direction).

The rate of marginal effect of education increases till secondary education and again falls after that. This means that with an increase in level of education from primary to middle to secondary the predicted probability of female labor participation in the workforce goes decreasing at an increasing rate (till secondary education), however the rate of decrease of predicted probability of female labor participation with an increase in level of education falls after the secondary education. This confirms the inverted U- shaped curve of effect of education on the labor participation of women.

Yes, the interpretation will be similar for both the variants (Variant 3 and Variant 2). As evident from Variant 2 the variable square of years of education (eduyrs_sq) which tells us the rate of change of marginal effect is positive which means that the predicted probability of female labor participation first decreases with an increasing rate with years of schooling (increases for age) and then decreases at a decreasing rate. However, it would be difficult to tell the level of education post which the direction of rate of change of marginal effect changes in Variant 2.

(ii) If you have to compare the effect of education, for differences in place of residence (URBAN4_2011 variable), which variant will you choose. Illustrate your justification using the graphical approach.

For Urban areas (Metro and other Urban) the effect of education is U-Shaped in nature which means that with an increase in years of education the predicted probability of participation of female in the labor force first decreases with increase in years in education and then increases with an increase in years of education. This is because in urban areas there are more skilled jobs available which leads to increased participation of women with increase in education.

For rural areas (More and less developed villages) the effect of education is an inverted U shaped curve. This means that the predicted probability of participation of female in the labor force first increases with increase in years in education and then decreases with an increase in years of education. This is because in the rural areas there are more agricultural and daily wage job which does not requires much education, therefore an increase with increase in years of education. But since there is less supply of educated jobs (or white collared jobs) therefor with an increase in education after a certain limit the predicted probability of female labor participation decreases. Hence an inverted U shaped curve.

Q. 2) After you have chosen the 'best fitting' model from the results in 1 above, keep that as the benchmark model and call it say model 1.

Sol. The best fitted model based on Pseudo R² comes out to be Variant 3. Let it be called Model 1

a) In model 1 add the variables that capture the perception of the confidence of institutions (ci) at the individual level, let this be model 2a.

Sol. Let the model be:

LFP = m_{2a} (Individual, Household, Location, Employment, CI)

For model 2a if the confidence in institution increases from low to medium there is no change in marginal effect i.e. there is no change in predicted probability of labor force participation for women does not changes with an increased confidence in institution from low to medium. However, with the increase in confidence in institutions from low to high there is a decrease in predicted probability of labor force participation for women.

b) Estimate another model 2b with the perceptions of the confidence of institutions aggregated at the 'psu' level (see variable names above) instead of the (ci) in 2a. What is your conclusion about the choice between the models 2a and 2b? Why do you think, the results are different even though you are using one or the other form of 'ci'?

Sol. Let the model 2b be:

$$LFP = m_{2b}$$
 (*Individual, Household*, Location, Employment, PSUCI)

The estimated marginal effects are presented in Table 4. Model 2b is a better fit for the data based on pseudo R²

In contrast with the result presented by the dummy variable for confidence in institution the variable which aggregates the confidence at "PSU" level gives a clear result. The PSU which has higher confidence in institutions has a greater positive marginal effect. This means that the increase predicted probability of labor force participation for women will be more for a similar increase in share of confidence at PSU level for a higher confidence level. i.e.

$$\frac{\partial Pr}{\partial PSUCI(medium)} > \frac{\partial Pr}{\partial PSUCI(low)}$$

This can be because a safe village or locality provides a greater sense of security to women and hence an incentive to move out to participate in the work force as compared as compared to the women in unsafe locality.

The results are different in case of individual confidence in institution and the one aggregated at the PSU level because

- 1. The decision of participation also depends on society; hence a safe locality is will provide more incentive for women to work.
- 2. The individual confidence in institution will not be good explanatory variable because ours being a patriarchal society a lot depends on how the society/community feels as a whole.

- Q. 3) Test for equality of coefficients of the share of workers in the different sectors at the psu level using the final model in 2b above. What is your conclusion?
- Sol. Let the hypothesis to be tested be

 $H0: \quad psu_sh_wkagwag=psu_sh_wkbsns=psu_sh_wkfarm=psu_sh_wknonag=psu_sh_wknrega=psu_sh_wksalry$

H1: not H0

The result are as follows:

 $Chi^{2}(6) = 3956.79$ Prob > $Chi^{2} = 0.0000$

Since we can reject the null hypothesis base on the result of the test we can safely say that coefficients of the share of workers in the different sectors at the psu level is not equal.

Q.4) (a) Add state level dummies in model 2b, how do the results change and what do you conclude from that?

Sol. Let model to be estimated be

 $LFP = m_{2b.1}$ (*Individual, Household*, Location, Employment, PSUCI, STATEDUMMY)

Since the model is unable to converge using a probit model we use logit model to estimate the data.

<u>Table 4. Marginal probability effects for working-age women based on different models</u>

	Dependent Variable: Labor force participation					
Independent Variable	Model 2b.1	Model 2b.2	Model 2b.3	Model 2b.4	Logit Model	
Pseudo R ²	0.2591	0.2653	0.2601	0.2678	0.2693	
age	.0506998	.050869	.0506884	.0507291	.0511995	
age_sq	0006025	0006	0006019	0005998	0006086	
martlst2	0162759	0170265*	0175071*	0050065*	0039017*	
martlst3	.1953009	.1824494	.1974978	.1946193	.206005	
log_NPERSONS	0925065	0647019	0916705	1047042	102549	
nchild0_5_sh	.2408004	.1939735	.2510177	.2569281	.2550769	
nchild6_15_sh	.4295367	.3817568	.4412756	.4303025	.4118138	
nadlfdep_sh	.3568446	.3393623	.3578733	.3685746	.3565581	
nadlmdep_sh	.1122072	.1013628	.1077252	.0901879	.0837081	
dst	.0552894	.048238	.0601329	.0516874	.0484026	
dobc	0401047	027812	0398724	0381104	0363249	
duch	1053187	0858105	1056498	0951357	0882425	
dosgr	0721413	0525928	0726242	0711827	0687053	
dhindu	.0158285*	.0115654*	.0160747*	.0170536*	.0154739*	

dmuslim	0650167	0740976	0638513	0593223	0592168		
dchrstn	.03651***	.037085***	.03552***	.0378898***	.035713***		
Loc	Location dummy (Urban metro as base)- URBAN4_20111						
Other Metro	.0134764*	.0099355*	.0135267*	.013751*	.0173958*		
More Developed Vill.	.03093***	.02159***	.03179***	.0325046***	.0365994***		
Less Developed Vill.	.0498154	.0330958	.0522624	.0492381	.0534801		
psu_sh_wkfarm	1.013565	.9988665	1.01626	.9663617	.938784		
psu_sh_wkagwag	.6787889	.6440338	.6792125	.6055075	.5890367		
psu_sh_wkbsns	.3556934	.3861295	.3488376	.375717	.3667733		
psu_sh_wknonag	.4686801	.4488457	.4614254	.4772153	.4677489		
psu_sh_wknrega	.9010827	.8794441	.911859	.8395714	.8093843		
psu_sh_wksalry	.2678482	.3113495	.262725	.3209503	.3191584		
	Education ca	tegories (Illiter	ate as base)- e	educd1			
Primary	.0200431	.0330932	.0195625	0239522	.01987		
Middle	0467072	0260219	0478043	0377675	0386227		
Secondary	0974718	0669919	098723	0854138	0826185		
Higher Secondary	0775924	0364117	0788721	0605033	060796		
Post Hi. Secondary	.0157374	.0802976	.0154873	.0434116	.0392568		
psu_sh_cig1	0315084	0314829	0309457	0376236	0364568		
psu_sh_cig2	.0239036	.0222513	.0261267	.0279023	.0266681***		
Per Capita Income (Quartiles Dumi	my (lowest as b	base and rest i	n increasing ord	er)- pcincq1		
pcincq2	-	-	0341024	-	-		
pcincq3	-	-	0000855*	-	-		
pcincq4	-	-	.01563***	1	1		
pcincq5	-	-	.013513***	-	-		
Occu	pation of Hous	se hold head (A	Agri.&Alld as ba	ase category)			
Ag. Labor	-	-	-	.03407	.0320949		
Non Ag. Labor	-	-	-	0346531	0334315		
Artisan	-	-	-	0790852	0773272		
Business	-	-	-	0591741	058477		
Salaried	-	-	-	0960455	0918807		
Others	-	-	-	1670373	15667		
	ndex quartiles	- I	e and rest in in	creasing order)			
quin_g2	-	0444987	-	-	-		
quin_g3	-	0559558	-	-	-		
quin_g4	-	1099939	-	-	-		
quin_g5	-	1567401	-	-	-		
	1	l dummy (J & I		* *			
Himanchal	.1754141	.1942371	.1746561	.187446	.1912209		
Punjab	0738569	0443969	0736912	0870787	0795959		
Chandigarh	0120676*	0073789*	0069464*	0216977*	0235818*		

Uttarakhand	.061655***	.066272***	.065222***	.0477892***	.0471613
Haryana	0483456	0292576	0479025	0630038	0593347
Rajhasthan	.04694***	.04569***	.04892***	.0357682***	.03606***
UP	0515701	0733313	0427309	0674088	0651153
Bihar	115539	1380208	1071808	1234662	1160353
Sikkim	.0352862*	.0142124*	.0366216*	.0224212*	.0182623*
Arunachal Pradesh	05799***	05578***	05939***	069971***	0629537***
Nagaland	055763**	022046**	052814**	0576933**	0555479*
Manipur	1426348	1574723	1417866	1405473	1377183
Mizoram	.120944***	.184541***	.119435***	.1282774***	.1359614***
Tripura	1434532	1547056	1432161	14656	1357531
Meghalaya	0165953*	026733*	0184691*	0352754*	0248714*
Assam	1461169	1595601	1442356	1557109	1458377
West Bengal	108297	1267054	1033035	1228257	1162541
Jharkhand	1219358	1364067	1150724	1291118	1199253
Orissa	1337112	1489734	1254781	1444297	1328142
Chhattisgarh	.0836342	.0749253	.097234	.0623845	.0620643
MP	.0455215**	.0274796**	.0552737**	.0264273**	.0258247**
Gujarat	01028***	00793***	00490***	032081***	0305251***
Daman & Diu	07309***	05628***	07451***	088201***	0821211***
Dadar and Nagar	0174334*	0103622*	0141857*	0255093*	020662*
Haveli					
Maharashtra	006987**	007113**	004763**	0279324**	0241001**
Andhra	.0545934**	.0507432**	.0590095**	.0291592**	.0302057**
Karnataka	.025579*	.0195057*	.0287632*	0029059*	0011622*
Goa	1600978	1613169	1586516	1658217	1560763
Kerala	0779566	0614025	0750886	0936765	0841097
Tamil Nadu	0042681*	.0109011*	002452*	0255256*	0232058*
Pondicherry	0678024	0404916	06743	0930748	0810222

^{*} insignificant at 10% level of significance

After addition of state level dummies, the pseudo R² increases. The location of an individual have an effect on the female labor participation rate.

The addition of state level dummy provides a better fit for the data.

Q.4 b) Now add the variables that capture household's economic status. How do the results change and why do they change? Does the paper have this variable?

Sol. Let us capture the economic status of the household using 5 quartiles.

^{**} insignificant at 5% level of significance

^{***} insignificant at 1% level of significance

$LFP = m_{2b.2}$ (Individual, Household, Location, Employment, PSUCI, STATEDUMMY, Economic Status (asset ownership))

The pseudo R² increases after addition of the variable explaining the effect of Economic Status of a household in model. This means that the model 2b.2 is better fit for data as compared to model 2b.1. There is no significant difference in the marginal effects of the various independent variables between the two model.

The marginal effect decreases (increases in magnitude) as the economic status of household increases. This means that the change predicted probability of participation of female in labor force further goes on decreasing as the economic status of the household increases from the lowest category.

$$mag(\frac{\partial Pr}{\partial Status(low)}) < mag(\frac{\partial Pr}{\partial Status(medium)}) < mag(\frac{\partial Pr}{\partial Status(high)}) < mag(\frac{\partial Pr}{\partial Status(V.High)})$$

All the marginal effects have negative direction. As the economic status of the household increase the predicted probability of participation of female in labor force decreases because for a lower income group the need for participation in workforce is more. As the economic status increases the patriarchal society treats women as unequal's and does not favors its participation in the labor force.

Yes, the paper has this variable. The economic status of household is captured by the land size in the paper.

Q.4 c) Instead of quintiles of asset index which captures economic status, you want to use quintiles of per capita income (pcincq). Note that both these variables (asset or per capita income) are categorical in nature now. Is there any reason that the authors give on what they do not include 'income' variable in their model? How is the asset index variable different from per capita income variable that you can use to counter the arguments given in the paper to include it in the model?

Sol. Let call this model as model 2b.3

$LFP = m_{2b.3}$ (*Individual, Household*, Location, Employment, PSUCI, STATEDUMMY, Economic Status (per capita income))

As evident from the above Table the pseudo R² decreases if we replace the variable that captures the economic status by quintiles of asset index with quintiles of per capita income (pcincq). This means that per capita income is not a good measure to capture the economic status of the household. Further the rate of decrease of marginal effect decreases with an increase in per capita income. This means that as the per capita income increases the predicted probability of participation of female in labor force increases.

According to author income is not the best measure to know the economic status on an individual. The income-effect hypothesis is weakened by the fact that there is a large gap in female LFPR between rural and urban households with similar living standards. An additional reason to be skeptical about the income effect-hypothesis comes from short-term economic fluctuations due to natural disasters or unforeseen circumstances (also seasonal fluctuation).

The other reason can be that often respondent does not reveal their true income. The income of an individual is usually underreported because of psychological reasons as well fear of government. The biasness in the reporting of income variable creates unexpected results as evident from the model 2b.3.

However, ownership of assets is a better measure to derive the economic status of the household because it is accurately reported and is unbiased in nature. The asset ownership is not subjected to short-term fluctuation. The economic status of a household is aggregated using multiple assets owned by a household. This gives a fair estimate of the economic status of the household.

Q.4 d) What happens if you use the variable 'occupation of the head of the household' instead of the quintiles of asset index variables? Which of the two models will you choose between (b) and (d) based on your results? Will it help you better in supporting the author's contention as discussed in (c) and in the paper?

Sol. Let the estimated model 2b.4 be:

 $LFP = m_{2b.4}$ (Individual, Household, Location, Employment, PSUCI, STATEDUMMY, Occupation of the head of the household)

The marginal effects are presented in Table 4.

The pseudo R² increases when we compare it with model 2b.2 (presented in Q4. b). This means that the model is better fit as compared to model 2b.2. Yes, this helps us in supporting the authors contention discussed in part c. As evident the occupation of household is able to better explain the economic status of the household as compared to per capita income. This is mainly fact that in most of the cases the head of the household is main source of earning. The occupation is not subjected to seasonal or short term fluctuation.

It can also be said that there is no biasness reporting of occupation status of the household. As evident the marginal effect is high and negative for high earning profession which depicts the higher economic status of household.

Therefor income is not the best measure to know the economic status of the household.

Q. 5) Why do you prefer to present the results as 'marginal effects' and not the estimated coefficients? Based on the analysis above given your data set, what do you conclude about the role of supply side and demand side variables in influencing women's participation in the workforce? The paper will give an idea of what are the supply side and demand side variables.

Sol. We know that for a model given by:

$$Y_i = F(x_i, \beta) + \epsilon_i$$

the marginal effect for a probit model is given by:

$$\frac{\partial Pr}{\partial x_{ij}} = f(x_i, \beta) * \beta$$

Since the marginal effects are not independent of x_i therefore we present the result of the models as marginal effects rather than the coefficients. The direction of marginal effect will be similar to that of the coefficient but not the magnitude.

The analysis of the data set shows a considerable effect of demand-side variables. With only supply side variables like age, education, economic status etc. the explanatory power of the model is low. I increase once we include the demand-side variables like local employment structure, location etc. In the analysis the variant 1 represent the standard supply side model whereas the variant 2 incorporates the demand side of the model as well. The marginal effect of demand side variables is high as compared to the supply side variable as evident from Table 3. This suggests that a unit change in the demand side variables changes the predicted probability more as compared to the supply side variables. Therefore, it is necessary to study the demand side variables along with the supply side variables affecting the participation of female in labor force.

Q. 6) Based on the final set of explanatory variables, estimate a logit model. Do you find that the logit model fits that data better than the probit model? Justify your answer with suitable results/analysis.

Sol. Yes, the Logit model does fit the data better than the probit model. As evident from Table 4 (Logit) the pseudo R² is more for logit model as compared to the probit model. Further as evident from Table 4 most of the coefficient of variables (and the marginal effect) are overestimated in case of probit model.

Q.7) Use the odds ratio to:

a) Compare between Muslim and 'other' religion women
 Sol. Odds ratio is defined as

$$\Omega(x_i) = \frac{p_i}{1 - p_i}$$

For a discrete change in x the odds ratio is defined as

$$\frac{\Omega(x_i, x_j + \delta)}{\Omega(x_i, x_j)} = e^{\beta_j * \delta}$$

The odds for female participating in the labor force decreases by 0.7070152 for a Muslim woman when compared to "other" religion women holding all other variables constant.

b) Compare between Muslim and Hindu women.

Sol.
$$Odds\ ratio = \frac{Odds\ ratio\ of\ hindu\ given\ others}{Odds\ ratio\ of\ muslim\ given\ others}$$

Odds ratio =
$$\frac{1.098}{0.707}$$
 = 1.55

The odd for female participating in the labor force is 1.55 times higher for a Hindu woman as compared to a Muslim woman holding all other variables constant.

c) Interpret the variable 'children in 0-5 age group'.

Sol. We know that the coefficient of the logit model for 'children in 0-5 age group' is 1.418353. It can be said that

For an additional child aged between 0-5 we expect the logit (log of Odds) to change by 1.418353.

Section II: Multiple Response Models

Q.1) Use the variable wrk_3cat to estimate a multinomial logit model with the explanatory variables chosen on the basis of the final results in the previous section. Choose 'NILF' as the omitted category. Interpret the results based on the age, education, 'ci' variables and 'psu share of workers in different occupation' using RRR.

Sol. The pseudo R² for the estimated model is 0.2468. Relative risk ratio (RRR) is defined as

$$RRR = \frac{\Omega_{m/n}(x_{ij})}{\Omega_{m/n}(x_{ij}+\delta)} = e^{\beta_{jm}-\beta_{in}}$$

Age: With an increase of age by one year the ratio of odds of an individual with part-time job relative to that of the one not in labor force is 1.309504, whereas for an individual with part-time job relative to that of the one not in labor force is 1.410664.

Education: 1. With a shift of education from illiterate to primary ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 1.123254, whereas for an individual being in full-time job relative to that of the one not in labor force is 1.153636.

- 2. With a shift of education from illiterate to middle school ratio of odds of an individual being in parttime job relative to that of the one not in labor force is .8252517, whereas for an individual being in full-time job relative to that of the one not in labor force is .7713139.
- 3. With a shift of education from illiterate to secondary ratio of odds of an individual being in parttime job relative to that of the one not in labor force is .6065889, whereas for an individual being in full-time job relative to that of the one not in labor force is .6521608.
- 4. With a shift of education from illiterate to higher secondary ratio of odds of an individual being in part-time job relative to that of the one not in labor force is .6065889, whereas for an individual being in full-time job relative to that of the one not in labor force is 1.04036.
- 5. With a shift of education from illiterate to post higher secondary ratio of odds of an individual being in part-time job relative to that of the one not in labor force is .7675157, whereas for an individual being in full-time job relative to that of the one not in labor force is 2.374404.

Confidence in Institutions: 1. With 1% increase in confidence in institutions of the "PSU" at low category the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is .8348129, whereas for an individual being in full-time job relative to that of the one not in labor force is .8153902.

2. With 1% increase in confidence in institutions of the "PSU" at medium category the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 1.250834, whereas for an individual being in full-time job relative to that of the one not in labor force is .8733464.

Psu share of workers in different occupation: 1. With 1% increase in the share of workers in farm labors at a PSU level the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 152.1737, whereas for an individual being in full-time job relative to that of the one not in labor force is 220.3746.

- 2. With 1% increase in the share of workers in agriculture wage labors at a PSU level the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 19.70777, whereas for an individual being in full-time job relative to that of the one not in labor force is 67.39558.
- 3. With 1% increase in the share of workers in business at a PSU level the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 5.80482, whereas for an individual being in full-time job relative to that of the one not in labor force is 19.39243.
- 4. With 1% increase in the share of workers in non-agriculture wage labors at a PSU level the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 10.5531, whereas for an individual being in full-time job relative to that of the one not in labor force is 32.64917.
- 5. With 1% increase in the share of workers in NEREGA labors at a PSU level the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 74.72612, whereas for an individual being in full-time job relative to that of the one not in labor force is 50.36668.
- 6. With 1% increase in the share of workers in Salaried labors at a PSU level the ratio of odds of an individual being in part-time job relative to that of the one not in labor force is 2.651867, whereas for an individual being in full-time job relative to that of the one not in labor force is 25.36086.
- Q.2) Test the hypothesis that
- (a) 'education' has the same effect for both part-time and full-time jobs.
- Sol. The null and alternate hypothesis for testing are as follows:

HO:
$$\beta_{partime(primary)} = \beta_{fulltime(primary)}$$

H1: $\beta_{partime(primary)} \neq \beta_{fulltime(primary)}$

Since Prob > chi2 = 0.6793 we fail to reject the null hypothesis

```
H0: \beta_{partime(middle)} = \beta_{fulltime(middle)}
H1: \beta_{partime(middle)} \neq \beta_{fulltime(middle)}
```

Since Prob > chi2 = 0.1764 we fail to reject the null hypothesis

```
H0: \beta_{partime(Secondary)} = \beta_{fulltime(Secondary)}
H1: \beta_{partime(Secondary)} \neq \beta_{fulltime(Secondary)}
```

Since Prob > chi2 = 0.2416 we fail to reject the null hypothesis

```
HO: \beta_{partime(HiSecondary)} = \beta_{fulltime(HiSecondary)}
H1: \beta_{partime(HiSecondary)} \neq \beta_{fulltime(HiSecondary)}
```

Since Prob > chi2 = 0.0000 we reject the null hypothesis

HO: $\beta_{partime(PostHiSecondary)} = \beta_{fulltime(PostHiSecondary)}$

H1: $\beta_{partime(PostHiSecondary)} \neq \beta_{fulltime(PostHiSecondary)}$

Since Prob > chi2 = 0.0000 we reject the null hypothesis

b) part-time and full-time work are indistinguishable Sol. We test the following hypothesis

```
H0: \beta_{part\ time}(matrix\ of\ cofficients) = \beta_{full\ time}(matrix\ of\ cofficients)
H1: \beta_{part\ time}(matrix\ of\ cofficients) \neq \beta_{full\ time}(matrix\ of\ cofficients)
```

Since Prob > chi2 = 0.0000 we reject the null hypothesis.

c) IIA for part-time as the new category, keeping NILF and full-time as the original categories.

Sol. Independence of irrelevant alternative means that the new category added (part time) will have no effect on the odds ratio of other two.

We followed the following steps to test for IIA using Hausman test.

Step1: We estimate the full model and save the outcome.

Step 2: Estimate the restricted model i.e. model with removing part-time as a category and save the outcome.

Step 3: Then we use the Hausman test statistics which follows chi-square distribution to test the presence of IIA

The null hypothesis is as follows:

HO: Difference in coefficients not systematic (presence of IIA)

H1: Difference in coefficients is systematic (not IIA)

Since Prob > chi2 = 0.0000 we reject the null hypothesis i.e. the presence of IIA.

Q.2) Estimate an ordered logit model based on the three outcomes. Discuss how the 'ordering' will be formed along with some results to support that multinomial logit and not ordered logit is more suited for this analysis or vice-versa.

Sol. The ordering is formed with number of hours worked. We estimate the value of cut1 and cut2 as 7.640082 and 10.08987. We form the ordering as

$$Y_i = \begin{cases} 1 \ (NILF) & 0 < no. \ of \ hours \ in \ labor \ force < 7.64 \\ 2 \ (Part \ Time) & 7.64 < no. \ of \ hours \ in \ labor \ force < 10.09 \\ 3 \ (Full \ time) & no. \ of \ hours \ in \ labor \ force > 10.09 \end{cases}$$

The pseudo R^2 is very low for ordered for the multinomial logit model (0.2468) than the Ordered logit model (0.1981). Therefore, multinomial logit is more suited for this analysis.