ÖDEV-1

Problemleri çözünüz 1.1.1- 1.1.4 (sayfa 8-9) Problemleri çözünüz 1.3.1, 1.3.2, 1.3.4, 1.3.7, 1.3.9 (sayfa 20-21)

CÖZÜMLER

- 1.1.1. Determine whether each of the following is true / false (ODEV-1)
 - a) Ø⊆Ø

Yes it is true. The null set (empty set) is a subset of all sets.

b) Ø∈Ø

False. An empty set is a set with no elements.

c) $\emptyset \in \{\emptyset\}$

Yes. \emptyset is empty set with cardinality 0. However, $\{\emptyset\}$ is a set with one element

Ø.

d) $\emptyset \subseteq \{\emptyset\}$

Yes. The null set (empty set) is a subset of all sets.

e) $\{a, b\} \in \{a, b, c, \{a, b\}\}$

Yes. As $\{\{a,b\}\}\$ is an element of $\{a,b,c,\{a,b\}\}\$.

f) $\{a, b\} \subseteq \{a, b, \{a, b\}\}$

Yes. As $\{a,b\}$ is an element of $\{a,b,c,\{a,b\}\}$

g) $\{a,b\}\subseteq Power\ set\ of\ \{a,b,\{a,b\}\}$

Yes.

h) $\{ \{a, b\} \} \in Power set of \{a, b, \{a, b\} \}$

Yes.

i) $\{a, b, \{a, b\}\} - \{a, b\} = \{a, b\}$

False. It must be $\{\{a,b\}\}$

1. 1.2.

- (a) {3, 5}
- **(b)** {3, 5, 7}
- **(c)** {1, 2, 7, 9}
- **(d)** {8}, {7, 8}, {8, 9}, {7, 8, 9}
- **(e)** {∅}
- **(f)** {0, 1, 4, 9, 25, 36...} (the perfect squares)
- **(g)** ∅ (since the square root of 2 is not an integer)

1.1.3.

(a)
$$A \cup (B \cap C)$$
 = $(B \cap C) \cup A$ commutativity
= $(B \cup A) \cap (C \cup A)$ distributivity
= $(A \cup B) \cap (A \cup C)$ commutativity

(b)
$$A \cap (B \cup C) = (B \cup C) \cap A$$
 commutativity $= (B \cap A) \cup (C \cap A)$ distributivity $= (A \cap B) \cup (A \cap C)$ commutativity

(c)
$$A \cap (A \cup B) = (A \cup B) \cap A$$
 commutativity
= A absorption

- **1.1.4. (a)** $\{(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2),, (1,2,3)\}$
 - (b) 2
 - (c) $\{(\emptyset,1), (\emptyset,2), (\{1\}, 1), (\{1\}, 2), (\{2\}, 1), (\{2\}, 2), (\{1,2\}, 1), (\{1,2\}, 2)\}$

1.3.1.

a) $R=\{(a, c), (c, e), (e, e), (e, b), (d, b), (d, d)\}$

b) $R^{-1}=\{(c,a),(e,c),(e,e),(b,e),(b,d),(d,d)\}$

c) $RUR^{-1}=\{(a, c), (b, e), (b, d), (c, e), (c, a), (e, c), (e, e), (e, b), (d, b), (d, d)\}$

d) $R n R^{-1} = \{(e, e), (d, d)\}$

1.3.2.

- **a)** R is not reflexive, is not symmetric, is not transitive S is not reflexive, is symmetric, is not transitive
- **b)** RUS is reflexive, is not symmetric, is not transitive

1.3.3.

1.3.4.

Let us assume any set and any relation R for that set.

Let set $A = \{1, 2, 3, 4\}$ and the relation for set A will be $R = \{(a, b): a + b = 10\}$

So, we observe that $a + b \neq 10$ for any two elements of set A.

Therefore $(a, b) \notin R$ for any $a, b \in A$.

R does not contain elements of A×A. So, R will be the empty set.

And, R will be the empty relation on set A. So, empty relation is not reflexive because it does not contain (a, a) for any $a \in \mathbb{R}$.

As we know the definition of symmetric relation that if A be a set in which the relation R is defined. Then R is said to be a symmetric relation, if $(a, b) \in R \Rightarrow (b, a) \in R$.

Now for empty relation R does not contain any element of set A. So, relation R will be trivially symmetric.

As we know the definition of transitive relation that a relation R over a set A is transitive if for all elements a, b, c in A. Whenever R relates a to b and b to c, then R also relates a to c.

So, a empty relation has no element. So, it will also be trivially transitive.

So, empty relation is not reflexive but is symmetric and transitive.