Summary of Joint Distributions (PSTAT 120A)

Botao Jin

University of California, Santa Barbara — November 28, 2024

Definition of Joint Distributions

- 1. If X, Y are two random variables, then he random vector $(X, Y): \Omega \to \mathbb{R}^2$.
- 2. If we looked at n random variables X_1, \ldots, X_n jointly, then random vectors $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$.
- 3. The probability distribution of (X_1, \ldots, X_n) is represented by $P((X_1, \ldots, X_n) \in B)$ for B is a subset of \mathbb{R}^n .
- 4. In this study guide, we mainly consider the joint distribution of two dimensional cases (X, Y). You can check lecture notes of 120A for more detail about n dimensional cases, but they are quite similar.

Discrete Joint Distributions

- 1. Definition of joint PMF: $P_{X,Y}(x,y) = P(X = x, Y = y) = P(\{X = x\} \cap \{Y = y\})$.
- 2. $P_{X,Y}(x,y) \ge 0$ for all possible x, y.
- 3. $\sum_{x} \sum_{y} P_{X,Y}(x,y) = 1$.
- 4. Expected values $\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) P_{X,Y}(x,y)$.
- 5. Special Case (Multinomial distribution):
 - Joint distribution for (X_1, X_2, \dots, X_r) .
 - Parameters n, r, and (p_1, \ldots, p_r) with $\sum_{i=1}^r p_i = 1$.
 - Support: integer vectors (k_1, \ldots, k_r) in which $k_i \geq 0$ and $k_1 + \cdots + k_r = n$
 - Joint PMF:

$$P(X_1 = k_1, \dots, X_r = k_r) = \binom{n}{k_1, \dots, k_r} p_1^{k_1} \dots p_r^{k_r}$$

• Special case: Binomial distribution (Cases for r=2).

Continuous Joint Distributions

- 1. Joint PDF: $f_{X,Y}(x,y)$ satisfies:
 - $\iint_{\mathbb{R}^2} f_{X,Y}(x,y) dx dy = 1$
 - $f_{X,Y}(x,y) \ge 0$
 - $\iint_B f_{X,Y}(x,y) dxdy = P((X,Y) \in B)$ where B is a subset of \mathbb{R}^2
- 2. $\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx$.
- 3. Special case (Uniform distribution in two dimensions): $(X,Y) \sim \text{Uniform}(D)$, for $D \subseteq \mathbb{R}^2$ with $|D| = \text{Area}(D) < +\infty$, then the density function for (X,Y) is

$$f(x,y) = \begin{cases} 1/|D| & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}$$

Marginal Distributions

- 1. Discrete case:
 - Marginal PMF of X: $p_X(x) = P(X = x) = \sum_y P_{X,Y}(x,y)$
 - Marginal PMF of Y: $p_Y(y) = P(Y = y) = \sum_x P_{X,Y}(x,y)$
- 2. Continuous Case:
 - Marginal PDF of X: $f_X(x) = \int_{\mathbb{R}} f(x, y) dy$
 - Marhinal PDF of Y: $f_Y(y) = \int_{\mathbb{R}} f(x,y) dx$
- 3. For general X, Y, we have joint CDF $F(x,y) = P(X \le x, Y \le y)$ with
 - Marginal CDF of X: $F_X(x) = \lim_{y \to \infty} F(x, y)$
 - Marginal CDF of Y: $F_Y(y) = \lim_{x \to \infty} F(x, y)$

Joint Distributions for independent RVs

- 1. Two dimensional case: Suppose (X,Y) be a random vector with which X and Y are independent
 - If (X,Y) is discrete, then the joint PMF is

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

for p_X and p_Y being marginal PMFs of X and Y, respectively.

• If (X,Y) is continuous, then the joint PDF is

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

for f_X and f_Y being marginal PDFs of X and Y, respectively.

• For general X, Y: for any subsets B_1, B_2 of \mathbb{R} , we have

$$P(X \in B_1, Y \in B_2) = P(X \in B_1)P(Y \in B_2)$$

In particular, joint CDFs $F(x,y) = F_X(x)F_Y(y)$, for F_X and F_Y being marginal CDF of X and Y, respectively.

- 2. Suppose n dimension vector (X_1, \ldots, X_n) with which X_1, \ldots, X_n are independent:
 - Discrete: joint PMF $P(X_1 = x_1, ..., X_n = x_n) = \prod_{k=1}^n P(X_k = x_k)$ i.e. the product of marginal PMFs of X_k
 - Continuous: joint PDF $f(x_1, ..., x_n) = \prod_{k=1}^n f_{X_k}(x_k)$, i.e. the product of marginal PDFs of X_k .
 - General case: Joint CDF $F(x_1, \ldots, x_n) = \prod_{k=1}^n F_{X_k}(x_k)$, i.e. the product of marginal CDFs of X_k .
- 3. Sum of n random variables:
 - (a) For some special distributions:
 - Suppose $X_1 \sim Poisson(\lambda_1), \ldots, X_n \sim Poisson(\lambda_n)$, and X_1, \ldots, X_n are **independent**, then

$$X_1 + \dots + X_n \sim Poisson(\lambda_1 + \dots + \lambda_n)$$

which implies that the sum of independent Poisson random variables still follows Poisson distribution.

• For independent Bernoulli random variables $X_1, \ldots, X_n \sim Ber(p)$, we have

$$X_1 + \cdots + X_n \sim Bin(n, p)$$

In particular, if $X \sim Bin(n_1, p)$, $Y \sim Bin(n_2, p)$, and X and Y are independent, then $X + Y \sim Bin(n_1 + n_2, p)$.

• For independent normal random variables $X_i \sim N(\mu_i, \sigma_i^2)$ for i = 1, ..., n, where $a_i, b \in \mathbb{R}$, then

$$X = a_1 X_1 + \dots + a_n X_n + b \sim N(\mu, \sigma^2)$$

with $\mu = a_1\mu_1 + \cdots + a_n\mu_n + b$ and $\sigma^2 = a_1^2\sigma_1^2 + \cdots + a_n^2\sigma_n^2$. In particular, if there are two independent normal random variables $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$, then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

(b) Linearity of Expectation: For random variables X_1, \ldots, X_n (no need to be independent) and real numbers a_1, \ldots, a_n :

$$E[a_1X_1 + \dots + a_nX_n] = a_1E[X_1] + \dots + a_nE[X_n]$$

(c) Product of expectation: For independent random variables X_1, \ldots, X_n , we have

$$E\left[\prod_{k=1}^{n} X_n\right] = \prod_{k=1}^{n} E[X_k]$$

In particular, the moment generating function of the sum is

$$M_{X_1 + \dots + X_n}(t) = E[\exp\{t(X_1 + \dots + X_n)\}] = E\left[\prod_{k=1}^n e^{tX_k}\right] = \prod_{k=1}^n E[e^{tX_k}] = \prod_{k=1}^n M_{X_k}(t)$$

(d) Sum of variance: For independent random variables X_1, \ldots, X_n , we have

$$Var(X_1 + \cdots + X_n) = Var(X_1) + \cdots + Var(X_n)$$

Covariance

1. Let X, Y be two random variables with mean μ_1, μ_2 , then the covariance of X and Y is

$$Cov(X, Y) = E[(X - \mu_1)(Y - \mu_2)] = E[XY] - E[X]E[Y]$$

2. If X, Y are independent, then Cov(X, Y) = 0. But the converse is not true. For example, X has a PMF P(X = 1) = P(X = 0) = 1/2, consider X and X^3 .

Remark. If both X and Y are Gaussian (normal) distribution, then Cov(X,Y)=0 implies X and Y are independent.

3. Variance of sum of random variables X_1, \ldots, X_n :

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{1 \le i < j \le n} Cov(X_i, X_j)$$

4. Correlation: For random variables X and Y,

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Conditional distribution

1. Let X be a discrete random variables and B be an event with P(B) > 0, then conditional PMF of X on B is

$$p_{X|B}(k) = P(X = k|B) = \frac{P(\{X = k\} \cap B)}{P(B)}$$

for $k \in S_X$ with S_X be a support of X.

3

• Conditional expectation:

$$E[X|B] = \sum_{k \in S_X} k p_{X|B}(k) = \sum_{k \in S_X} k P(X = k|B)$$

• Suppose B_1, \ldots, B_n be a partition of sample space Ω , then by Law of total probability:

$$P(X = k) = \sum_{i=1}^{n} P(X = k|B_i)P(B_i)$$

for $k \in S_X$ and the expected value

$$E[X] = \sum_{k \in S_x} kP(X = k)$$

$$= \sum_{k \in S_x} k \sum_{i=1}^n P(X = k|B_i)P(B_i)$$

$$= \sum_{i=1}^n P(B_i) \sum_{k \in S_x} kP(X = k|B_i)$$

$$= \sum_{i=1}^n E[X|B_i]P(B_i)$$

2. Let X, Y are discrete random variables with supports S_X, S_Y and $x \in S_X, y \in S_Y$, the conditional PMF is

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• Conditional expectation:

$$E[X|Y = y] = \sum_{x \in S_X} x p_{X|Y}(x|y)$$

for $y \in S_Y$.

• Since events $\{Y = y\}$ for $y \in S_Y$ form a partition of Ω , we have

$$E[X] = \sum_{y \in S_Y} E[X|Y = y]P(Y = y)$$

3. Let X, Y are continuous random variables, the conditional density of X given Y = y is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

with $f_{X,Y}$ joint PDF, f_Y marginal PDF of Y.

• Conditional expectation:

$$E[X|Y = y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$$

ullet To derive the expectation of X given the conditional expectation of X given Y and marginal distribution of Y, we have

$$E[X] = \iint x f_{X,Y}(x,y) dx dy$$

$$= \iint x f_{X|Y}(x|y) f_Y(y) dx dy$$

$$= \iint x f_{X|Y}(x|y) dx f_Y(y) dy$$

$$= \int E[X|Y = y] f_Y(y) dy$$

- 4. Tower Property:
 - For general X, Y, E[X|Y = y] is a function of y, rather than X, so E[X|Y] should be a function of Y.
 - Tower property: E[E[X|Y]] = E[X].

Applications

Suppose that X_1, X_2, \ldots be a random sample (i.i.d) with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$, both μ and σ are finite. Define $\bar{X}_n = (\sum_{i=1}^n X_i)/n$, which is the average/mean of first n observations.

- 1. Weak Law of large numbers: for any $\epsilon > 0$, $P(|\bar{X}_n \mu| < \epsilon) = 1$ as $n \to \infty$.
- 2. Strong Law of large number (Optional): $P(\lim_{n\to\infty} \bar{X}_n = \mu) = 1$.
- 3. Central Limit Theorem (120B): mean $E[\bar{X}_n] = \mu$ and $Var(\bar{X}_n) = \sigma^2/n$

$$P\left(a < \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \le b\right) \to \Phi(b) - \Phi(a)$$

for Φ be CDF of standard normal distribution

 $\textbf{Note} \hbox{: } \textbf{This study guide is used for Botao Jin's sections only. Comments, bug reports: b_jin@ucsb.edu}$