Benchmarking of Plasmonic MIM and MSM Waveguide Couplers for an Integrated Computing System

Samantha Lubaba Noor¹, Pol Van Dorpe², Dennis Lin², Francky Catthoor², and Azad Naeemi¹

School of Electrical and Computer Engineering, Georgia Tech [1], Imec [2]

SPP and Plasmonic Computing

- Surface plasmon polariton (SPP): Electromagnetic wave propagating at metal-dielectric interface
- Plasmonic computing

Plasmonic Device

- Miniaturization, dense integration (Electronic computing)
- High Speed (Photonic computing)
- Research goal: System-level performance optimization: Footprint Throughput Energy

Plasmonic MIM and MSM WG Couplers

Plasmonic Detector

CMOS

Coupling Efficiency

CL =	$-10\log(\eta)$

- CL < 1dB for most couplers
- Directional coupling: weakest due to large mode effective index difference

Coupling Scheme	CL
	dB
End-Butt Coupler	0.38
Aligned Coupler	1.03
Overlap1 Coupler	0.76
Overlap2 Coupler	0.86
Directional Coupler	3.5
Perpendicular Coupler	0.65

Static and Dynamic Performance of the Coupled Structures

- · Static and dynamic as well as noise analysis performed
- Directional coupler: lowest Power absorption, lowest photocurrent
 - $P_{abs} = -0.5\omega |E|^2 Im(\epsilon)$
- End-butt coupler: Highest power absorption and photocurrent
- Bandwidth mostly transit time limited
- Overlap1 coupler:
- ✓ High I_{dark}, higher noise
- ✓ High Capacitance, RC-limited bandwidth

(fJ/bit)

Overlap1

Directional @

Overlap2

Aligned 4

End-butt 4

3.2

3.0

Footprint (µm²)

Benchmarking of couplers

Holistic metric: min energy to detect single bit sent from MIM WG, E_{min}/bit

$$\frac{E_{min}}{bit} = \frac{NEP}{System \ Bandwidth}$$

- E_{min}/bit encompasses,
- ✓ Coupling loss
- Power transmission in MSM WG
- Responsivity of detector
- Noise in the detector
- ✓ System bandwidth
- trade-off between E_{min}/bit and footprint:

Perpendicular coupler best choice

Effect of Receiver Circuit

- If R_{I pad} increases, E_{min}/bit beyond transit time-limit:
- > Except Overlap1: constant
- Overlap1: increases
- If C_{Load} increases, E_{min}/bit increases

Simulation Method

Raphael, Synopsys Poisson's Eqn Result: Capacitance

Summary

- Plasmonic MIM and MSM WG couplers designed
- Coupler performance evaluated
- Holistic performance metric introduced
- Couplers are benchmarked
- Effect of receiver circuit quantified

Charge Transport Solver

Poisson & Drift-Diffusion Egn