- Pushdown Automata
- \Box CFG = PDA
- Deterministic PDA

A More Powerful Machine

limitation of FA related to fact that they can only "remember" a bounded amount of information

- What is the simplest alteration that adds unbounded "memory" to our machine?
- □ Should be able to recognize, e.g., {0ⁿ1ⁿ: n ≥ 0}

Pushdown Automata (PDA)

- We will define nondeterministic PDA immediately
 - potentially several choices of "next step"
 - \blacksquare essentially an ε -NFA with a stack
- Deterministic PDA defined later
 - weaker than NPDA
- □ Two ways to describe NPDA
 - diagram
 - formal definition

NPDA Diagram

transition: input symbol read, stack symbol popped → stack symbol pushed

NPDA Operation

□ Taking a transition labeled:

a, b
$$\rightarrow$$
 c

- $a \in (Σ \cup {ε})$ Σ: input alphabet
- b, c \in ($\Gamma \cup \{\epsilon\}$) Γ : stack alphabet
- read a from input, or don't read from input if $a = \varepsilon$
- \blacksquare pop b from stack, or don't pop from stack if b = ϵ
- push c onto stack, or don't push onto stack if $c = \epsilon$

Example NPDA

$$\Sigma = \{0, 1\}$$

 $\Gamma = \{0, 1, \$\}$

Input: 0011

001

0101

What language does this NPDA accept?

Formal Definition of NPDA

- \square A NPDA is a 6-tuple (Q, Σ, Γ, δ, q₀, F) where:
 - Q is a finite set of states
 - \blacksquare Σ is a finite input alphabet
 - \blacksquare Γ is a finite stack alphabet
 - δ : Q x (Σ \cup {ε}) x (Γ \cup {ε}) \rightarrow \wp (Q x (Γ \cup {ε})) is the transition function
 - \blacksquare q₀ is an element of Q called the start state
 - F is a subset of Q called the accepting states

Example of Formal Definition

$$\square$$
 Q = {q₀, q₁, q₂, q₃}

$$\Box$$
 $\Sigma = \{0, 1\}$

$$\Gamma = \{0, 1, \$\}$$

$$\Box$$
 F = {q₀, q₃}

$$\delta(q_0, \, \varepsilon, \, \varepsilon) = \{(q_1, \, \$)\}$$

$$\delta(q_1, 0, \varepsilon) = \{(q_1, 0)\}$$

$$\delta(q_1, 1, 0) = \{(q_2, \varepsilon)\}$$

$$\delta(q_2, 1, 0) = \{(q_2, \varepsilon)\}$$

$$\delta(q_2, \varepsilon, \$) = \{(q_3, \varepsilon)\}$$

 $\{a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

 ${a^ib^jc^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k}$

 $\{ww^{R} \mid w \in \{0, 1\}^{*}\}$

 $\{ww^{R} \mid w \in \{0, 1\}^{*}\}$

Instantaneous Descriptions

□ To reason about PDA computation, we use Instantaneous Descriptions (ID) of the PDA. An ID is a triple:

$$(q, w, \gamma)$$

where q is the state, w the remaining input, and γ the stack content.

- □ If $(p, Y) \in \delta(q, a, X)$, then we denote $(q, aw, Xβ) \vdash (p, w, Yβ)$
- We define |-* to be the reflexive-transitive closure of |-.

NPDA Computation Example 2.18

Acceptance by *Final State* and by *Empty Stack*

Acceptance by final state

$$(q_0, w, \$) \mid -* (p, \varepsilon, \gamma)$$

p in F

☐ Acceptance by **empty stack**

$$(q_0, w, \$) \mid -* (p, \epsilon, \epsilon)$$

□ They are equivalent

- Pushdown Automata
- \Box CFG = PDA
- Deterministic PDA

Equivalence of NPDA and CFG

Theorem 2.12: a language is context free iff some pushdown automaton recognizes it.

Must prove two directions:

- L is recognized by a NPDA ⇒ L is described by a CFG.
- L is described by a CFG ← L is recognized by a NPDA.

Proof of (⇐): L is described by a CFG
implies L is recognized by a NPDA.

an initial idea to design an NPDA from the CFG:

- start from the start symbol; nondeterministically guess the derivation, and form it on the stack
- compare the resulting terminal string with the input string; accept if they are identical

- What is wrong with this approach?
 - only have access to the top of stack
- Allow to match stack terminals with the input during the process of producing the derivation on the stack

- ☐ informal description of construction:
 - place \$ and start symbol S on the stack
 - repeat:
 - □ if the top of the stack is a non-terminal A, pick a production with A on the lhs and substitute the rhs for A on the stack
 - ☐ if the top of the stack is a terminal b, read b from the input, and pop b from the stack.
 - ☐ if the top of the stack is \$, enter the accept state.

shorthand for:

Example: CFG → NPDA

$$S \rightarrow aTb \mid b$$

T $\rightarrow Ta \mid \epsilon$

Proof of (⇒): L is recognized by a
NPDA implies L is described by a CFG.

- harder direction
- first step: convert NPDA into "normal form":
 - single accept state
 - empties stack before accepting
 - each transition either pushes or pops a symbol, but not both

- □ main idea: non-terminal A_{p,q} generates exactly the strings that take the NPDA from state p (with empty stack) to state q (with empty stack)
- □ then A_{start, accept} generates all of the strings in the language recognized by the NPDA.

☐ To get from state p to q, case 1:

☐ To get from state p to q, case 2:

string taking NPDA from p to q

- \square NPDA P = (Q, Σ , Γ , δ , start, {accept})
- CFG G:
 - non-terminals: $V = \{A_{p,q} \mid p, q \in Q\}$
 - start variable: A_{start, accept}
 - productions:

for every p, r, $q \in Q$, add the rule $A_{p,q} \rightarrow A_{p,r}A_{r,q}$;

Case 1

for every p, r, s, q \in Q, d \in Γ , and a, b \in ($\Sigma \cup \{\epsilon\}$) if $(r, d) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, d)$, add the rule $A_{p,q} \rightarrow aA_{r,s}b$;

for every $p \in Q$, add the rule $A_{p,p} \rightarrow \epsilon$

- □ Two claims to verify correctness:
- 1. if $A_{p,q}$ generates string x, then x can take NPDA P from state p (with empty stack) to q (with empty stack)
- 2. if x can take NPDA P from state p (with empty stack) to q (with empty stack), then $A_{p,q}$ generates string x

- 1. if $A_{p,q}$ generates string x, then x can take NPDA P from state p (with empty stack) to q (with empty stack)
 - induction on length of derivation of x.
 - Basis: one step derivation. must use rules that have only terminals on rhs. In G, must be productions of form A_{p,p} → ε.
 - Induction: $A_{p,q} \Rightarrow * x$.
 - □ verify case: $A_{p,q} \Rightarrow A_{p,r}A_{r,q} \Rightarrow k x = yz$ ($A_{p,r} \Rightarrow k y$, $A_{r,q} \Rightarrow k z$)
 - verify case: $A_{p,q} \Rightarrow aA_{r,s}b \Rightarrow k x = ayb$ $A_{r,s}b \Rightarrow k x = ayb$ $A_{r,s}b \Rightarrow k x = ayb$

- 2. if x can take NPDA P from state p (with empty stack) to q (with empty stack), then $A_{p,q}$ generates string x
 - induction on # of steps in P's computation
 - Basis: 0 steps. starts and ends at same state p. only has time to read empty string ε. G contains $A_{p,p} \rightarrow ε$.

- 2. if x can take NPDA P from state p (with empty stack) to q (with empty stack), then $A_{p,q}$ generates string x
 - Induction:
 - ☐ if stack becomes empty sometime in the middle of the computation (at state r)
 - y is read going from state p to r (A_{p,r} ⇒ * y)
 - z is read going from state r to q (A_{r,q} ⇒ * z)
 - conclude: $A_{p,q} \Rightarrow A_{p,r}A_{r,q} \Rightarrow *yz = x$

- 2. if x can take NPDA P from state p (with empty stack) to q (with empty stack), then $A_{p,q}$ generates string x
 - if stack becomes empty only at beginning and end of computation.
 - first step: state p to r, read a, push d
 - **g** go from state r to s, read string y $(A_{r,s} \Rightarrow * y)$
 - last step: state s to q, read b, pop d
 - conclude: $A_{p,q} \Rightarrow aA_{r,s}b \Rightarrow *ayb = x$

- □ Pushdown Automata
- \square CFG = PDA
- Deterministic PDA

Deterministic PDA

- ☐ Intuitively: never a choice of move.
 - δ (q, a, Z) is empty or a singleton for any q, a, Z (including a = ε).
 - If $\delta(q, \epsilon, Z)$ is nonempty, then $\delta(q, a, Z)$ must be empty for all input symbols a.
- ☐ Parsers, as in YACC, are really DPDA's.
 - Thus, the question of what languages a DPDA can accept is really the question of what programming language syntax can be parsed conveniently.

Some Language Relationships

- □ If L is a regular language, then L is a DPDA language.
 - A DPDA can simulate a DFA, without using its stack (acceptance by final state).
- ☐ If L is a DPDA language, then L is a CFL that is not inherently ambiguous.
 - A DPDA yields an unambiguous grammar in the standard construction.