PH-105 QM Sheet 1

Vipul Singh

07.10.2012

30. The dispersion relation for a lattice wave propagating in a one dimensional chain of atoms of mass m bound together by force constant β is given by the following equation.

$$\omega = \omega_0 \sin(ka/2)$$
$$\omega_0 = \sqrt{\frac{4\beta}{m}}$$

Here a is distance between atoms.

- (a) Show that in the long wavelength limit the medium is non-dispersive.
- (b) Find the group and phase velocities at $k = \pi/a$.

Solution

In the long wavelength limit, we have $k \to 0$. So, $\omega \to \omega_0(ka/2)$. Hence phase speed $= \omega/k = \omega_0(a/2)$ which is independent of k and hence, the medium is non-dispersive.

At $k = \pi/a$, sin(ka/2) = 1 while cos(ka/2) = 0. Hence, phase speed $= \omega/k = \omega_0 a/\pi$ and group speed $= d\omega/dk = 0$.