University of Tlemcen

Academic year 2023-2024

Faculty of Sciences

(L1 ING-INF)

Department of Informatic

Algebra (First Year)

Worksheet $N^{\circ}2/$ "Sets - Applications" Correction.

Exercise 01: Let $E = \{x, y, z\}$ and $F = \{-2, 2\}$.

(1) Identifie the power set (ensemble des parties): $\wp(E)$, $\wp(F)$ and $\wp(\wp(F))$.

The power set is the set of the sub-set of E.

$$\wp(E) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}, E\}.2^{3}$$

$$G = \{\emptyset\}$$

$$G \subset \wp(E)$$

$$\wp\left(F\right) = \left\{ \begin{array}{c} \emptyset, \left\{ \frac{-2}{b}, \frac{\{2\}}{c}, \frac{F}{d} \right\}, 2^2; 2^4 = 16 \\ \\ \wp\left(\wp\left(F\right)\right) = \left\{ \begin{array}{c} \emptyset, \left\{\emptyset\right\}, \left\{\left\{-2\right\}\right\}, \left\{\left\{2\right\}\right\}, \left\{F\right\}, \left\{\emptyset, \left\{-2\right\}\right\}, \left\{\emptyset, \left\{2\right\}\right\}, \left\{\emptyset, F\right\}, \\ \left\{\left\{-2\right\}, F\right\}, \left\{\left\{2\right\}, F\right\}, \left\{\emptyset, \left\{-2\right\}, \left\{2\right\}\right\}, \left\{\emptyset, \left\{-2\right\}, E\right\}, \left\{\left\{-2\right\}, \left\{2\right\}\right\}, \\ \left\{\emptyset, \left\{2\right\}, F\right\}, \left\{\left\{-2\right\}, \left\{2\right\}, F\right\}, \wp\left(F\right) \end{array} \right\} \end{array} \right\}$$

(2) Determine 3 examples of partition of the set E.

$$(1)P(E) = \{\{x\}, \{y\}, \{z\}\}.$$

$$(2)P(E) = \{\{x,y\},\{z\}\}.$$

$$(3)P(E) = \{\{x\}, \{y, z\}\}.$$

(3) Add the following symbols: \in, \notin, \subset or $\not\subset$.

1) element
$$\in$$
 or \notin in a set.

2) set
$$\subset$$
 or $\not\subset$ in a set.

$$E = \{x, y, z\}$$
 and $F = \{-2, 2\}$

$x \in E$	$\{y\} \subset E$	$3 \notin F$	$\{3\} \not\subset F$
$x \notin \wp(E)$	$\{y\} \in \wp(E)$	$\varnothing \in \wp(E)(\varnothing \subset \wp(E))$	$\{\varnothing\}\subset\wp\left(E\right)$
$\{3\} \notin \wp(F)$	$\{-2,1\} \notin \wp(F)$	$\{-2\} \in \wp\left(F\right)$	$\{\{-2\}\} \subset \wp\left(F\right)$
$\{y\} \notin \wp(\wp(E))$	$\{\{y\}\} \in \wp\left(\wp\left(E\right)\right)$	$\varnothing \in \wp(\wp(F)) \text{ or } \subset$	$\{\varnothing\} \in \wp(\wp(F))$ or \subset

$x \in E$	$\{y\} \subset E$	$3 \notin F$	$\{3\} \not\subset F$
$x \notin \wp(E)$	$\{y\} \in \wp\left(E\right)$	$\varnothing \in \wp(E)$	$\{\varnothing\}\subset\wp\left(E\right)$
$\{3\} \notin \wp(F)$	$\{-2,1\} \notin \wp(F)$	$\{-2\} \in \wp\left(F\right)$	$\{\{-2\}\} \subset \wp(F)$
$\{y\} \notin \wp(\wp(E))$	$\{\{y\}\}\subset\wp\left(\wp\left(E\right)\right)$	$\varnothing \in \wp(\wp(F))$	$\{\varnothing\} \in \wp(\wp(F))$

Exercise 02: Let E be a nonempty set, A, B and C three sub-sets of E. Prove that:

$$A \subset B \Leftrightarrow C_E^B \subset C_E^A \Leftrightarrow A \cup B = B.$$

Remark: To prove that:

$$H \Leftrightarrow K \Leftrightarrow P$$
,

just prove:

$$H \Rightarrow K \Rightarrow P \Rightarrow H$$
.

a) Prove that:

$$A\subset B\Rightarrow C_E^B\subset C_E^A?C_E^B=\overline{B}.$$
 If $x\in C_E^B$ then $[x\in E \text{ and } x\notin B],$

which implies that:

$$x \in E$$
 and $x \notin A$ because $A \subset B \Rightarrow x \in C_E^A$.

Conclusion:

$$A \subset B \Rightarrow C_E^B \subset C_E^A$$
.

b) Prove that:

$$C_E^B \subset C_E^A \Rightarrow A \cup B = B$$
?

i) Prove that: $A \cup B \subset B$?

$$x \in A \cup B \Rightarrow \begin{cases} x \in A \Rightarrow x \notin \overline{A} \Rightarrow x \notin \overline{B}(\mathrm{Hyp}) \Rightarrow x \in B, \\ \text{or } x \in B, \end{cases}$$
$$\Rightarrow x \in B. \text{ (in both cases)}$$

ii) Let's prove that: $B \subset A \cup B$ (obvious in any case). Conclusion:

$$A \cup B = B$$
.

c) Prove that:

$$A \cup B = B \Rightarrow A \subset B$$
?

Indeed:

$$x \in A \Rightarrow x \in A \cup B \Rightarrow x \in B \text{ because } (A \cup B = B).$$

 $\Rightarrow A \subset B.$

Conclusion:

$$A\subset B\Leftrightarrow C_E^B\subset C_E^A\Leftrightarrow A\cup B=B.$$

$$C_E^{A \cup B} = C_E^A \cap C_E^B.$$

Remark:

$$x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B.$$

If
$$x \in C_E^{A \cup B} \Leftrightarrow x \in E \text{ and } x \notin A \cup B$$

 $\Leftrightarrow x \in E \text{ and } [x \notin A \text{ and } x \notin B]$
 $\Leftrightarrow [x \in E \text{ and } x \notin A] \text{ and } [x \in E \text{ and } x \notin B] \text{ (distributive property)}$
 $\Leftrightarrow (x \in C_E^A) \text{ and } (x \in C_E^B) \Leftrightarrow x \in C_E^A \cap C_E^B.$

$$A \cap B = A \cap C \Leftrightarrow A \cap C_E^B = A \cap C_E^C$$

So we prove that:

$$A \cap B = A \cap C \Rightarrow A \cap C_E^B = A \cap C_E^C$$
?
and
 $A \cap C_E^B = A \cap C_E^C \Rightarrow A \cap B = A \cap C$?

" \Rightarrow " hypothesis: $A \cap B = A \cap C$.

Problem: $A \cap C_E^B = A \cap C_E^C$?

a) prove that: $A \cap C_E^B \subset A \cap C_E^C$.

$$x \quad \in \quad A \cap C_E^B \Rightarrow x \in A \text{ and } x \in C_E^B$$

 $\Rightarrow x \in A \text{ and } [x \in E \text{ and } x \notin B] (P_1 \text{ and } P_2 \text{ and } P_3)$

 $\Rightarrow x \in E \text{ and } [x \in A \text{ and } x \notin B] (P_2 \text{ and } P_1 \text{ and } P_3)$

 $\Rightarrow x \in E \text{ and } [x \notin A \cap B]$

 $\Rightarrow x \in E \text{ and } [x \notin A \cap C] \text{ because } A \cap B = A \cap C \text{ (hypothesis)}.$

 $\Rightarrow x \in E \text{ and } [x \in A \text{ and } x \notin C] \text{ because } x \in A,$

 $\Rightarrow x \in A \text{ and } [x \in E \text{ and } x \notin C]$

 $\Rightarrow x \in A \text{ and } x \in C_E^C \Rightarrow x \in A \cap C_E^C.$

b) Prove that: $A \cap C_E^C \subset A \cap C_E^B$?

$$x \in A \cap C_E^C \Rightarrow x \in A \text{ and } x \in C_E^C$$

 $\Rightarrow x \in A \text{ and } [x \in E \text{ and } x \notin C]$

 $\Rightarrow x \in E \text{ and } [x \in A \text{ and } x \notin C]$

 $\Rightarrow x \in E \text{ and } [x \notin A \cap C]$

 $\Rightarrow x \in E \text{ and } [x \notin A \cap B] \text{ because } A \cap B = A \cap C. \text{(hypothesis)}$

 $\Rightarrow x \in E \text{ and } [x \in A \text{ and } x \notin B] \text{ because } x \in A$

 $\Rightarrow x \in A \text{ and } [x \in E \text{ et } x \notin B]$

 $\Rightarrow x \in A \text{ and } x \in C_E^B \Rightarrow x \in A \cap C_E^B.$

" <= " hypothesis: $A \cap C_E^B = A \cap C_E^C.$

First method:

Problem: $A \cap B = A \cap C$? a) Prove that: $A \cap B \subset A \cap C$? If,

$$\begin{array}{lll} x & \in & A \cap B \Rightarrow x \in A \text{ and } x \in B \\ & \Rightarrow & x \in A \text{ and } x \notin C_E^B \Rightarrow x \notin A \cap C_E^B \\ & \Rightarrow & x \notin A \cap C_E^C \Rightarrow x \notin C_E^C \text{ because } x \in A. \\ & \Rightarrow & x \in A \text{ and } x \in C \Rightarrow x \in A \cap C \end{array}$$

b) Prove that: $A \cap C \subset A \cap B$? If,

$$\begin{array}{ll} x & \in & A \cap C \Rightarrow x \in A \text{ and } x \in C \\ \\ \Rightarrow & x \in A \text{ and } x \notin C_E^C \Rightarrow x \notin A \cap C_E^C \\ \\ \Rightarrow & x \notin A \cap C_E^B \Rightarrow x \notin C_E^B \text{ because } x \in A. \\ \\ \Rightarrow & x \in A \text{ and } x \in B \Rightarrow x \in A \cap B. \end{array}$$

Conclusion:

$$A\cap B=A\cap C\Leftrightarrow A\cap C_E^B=A\cap C_E^C.$$

2nd method: We have: $\forall A, B, C$:

$$\forall a \in \mathbb{R}, a^2 + a + 1 > 0.$$

$$A \cap B = A \cap C \Rightarrow A \cap \overline{B} = A \cap \overline{C}...(1)$$

 $\forall A, G, L$:

$$A \cap G = A \cap L \Rightarrow A \cap \overline{G} = A \cap \overline{L}...(2)$$

We put:

$$G = \overline{B}$$
 and $L = \overline{C}$.

So (2) implies: $\forall A, B, C$:

$$A \cap \overline{B} = A \cap \overline{C} \Rightarrow A \cap B = A \cap C.$$

(b) Give two assertions equivalent to the following assertion:

$$x \in (A - B) \Rightarrow x \notin A \cap B$$
.

$$[K\Rightarrow L]\Leftrightarrow \overline{[L}\Rightarrow \overline{K}] \ \ \text{and} \ \ [K\Rightarrow L]\Leftrightarrow \overline{\overline{[K\Rightarrow L]}}.$$

First: (Contraposition)

$$x \in A \cap B \Rightarrow x \notin (A - B)$$
.(True)

Second: (Double negation)

$$\overline{K \Rightarrow L} \Leftrightarrow K \wedge \overline{L}.$$

$$\overline{[x \in (A-B) \Rightarrow x \notin A \cap B]} \Leftrightarrow \overline{[x \in (A-B)] \land [x \in A \cap B]}$$
$$\Leftrightarrow [x \notin (A-B)] \lor x \notin (A \cap B).$$

- Say if this implication is true or false? The proposition is True because the contraposition is true.

Exercise 03: Let f and g be two defined applications of \mathbb{R} in \mathbb{R} such as:

$$f(x) = x^2 - 3x + 3$$
 and $g(x) = \frac{x^2 - 5}{x^2 + 2}$.

(1) f and g are they injective? surjective? (Method of definitions) For the function:

$$f(x) = x^2 - 3x + 3.$$

a) For injective,

1st method:

$$\forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \Rightarrow x_1^2 - 3x_1 + 3 = x_2^2 - 3x_2 + 3$$

$$\Rightarrow x_1^2 - x_2^2 - 3(x_1 - x_2) = 0$$

$$\Rightarrow (x_1 - x_2) [(x_1 + x_2 - 3)] = 0,$$

then just choose x_1 and x_2 that check $x_1 + x_2 - 3 = 0$, for example:

$$x_1 = 1 \text{ and } x_2 = 2, \text{ so:}$$

$$x_1 \neq x_2$$
 but $f(x_1) = f(x_2) = 1$.

Conclusion: f is not injective.

2nd method:

$$f(x) = \left(x - \frac{3}{2}\right)^2 + \frac{3}{4}$$
 (canonical form).

For example we put:

$$x - \frac{3}{2} = 2$$
 or $x - \frac{3}{2} = -2$, (we have a square)

wich implies that: $x_1 = \frac{7}{2}$ or $x_2 = -\frac{1}{2}$, so:

$$x_1 \neq x_2 \text{ but } f(x_1) = f(x_2) = \frac{19}{4}.$$

Conclusion: f is not injective.

b) For surjective,

1st method: The problem is to show if we have:

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) = y$$
?

Indeed,

$$f(x) = y \Leftrightarrow x^2 - 3x + 3 = y$$
$$\Leftrightarrow x^2 - 3x + 3 - y = 0, \dots (1)$$
$$\triangle = 9 - 4(3 - y) = 4y - 3,$$

so the equation (1) admits solutions if $\Delta \geq 0$, otherwise for example if $y = \frac{1}{2}$, then in this case $\Delta < 0$ so,

$$\forall x \in \mathbb{R}, f(x) \neq y,$$

wich implies that f is n't surjective.

2nd method:

$$f(x) = \left(x - \frac{3}{2}\right)^2 + \frac{3}{4}$$
 (canonical form).

So, $f(x) \ge \frac{3}{4}$ then for $y < \frac{3}{4}$,

$$\forall x \in \mathbb{R}, f(x) \neq y,$$

wich implies that f is n't surjective.

For the function:

$$g(x) = \frac{x^2 - 5}{x^2 + 2} = \frac{x^2 + 2 - 2 - 5}{x^2 + 2} = 1 - \frac{7}{x^2 + 2}.$$

a) For injective:

For
$$x_1 = 1$$
 and $x_2 = -1, x_1 \neq x_2$ but $g(x_1) = g(x_2) = \frac{-4}{3}$.

Conclusion: g is not injective.

b) For surjective,

The problem is to show if we have:

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, q(x) = y$$
?

Indeed,

$$g(x) = y \Rightarrow 1 - \frac{7}{x^2 + 2} = y \Rightarrow \underbrace{1 - y}_{>0 \text{ and } \le 0} = \underbrace{\frac{7}{x^2 + 2}}_{>0},$$

so, for example if y = 1,

$$\forall x \in \mathbb{R}, g(x) \neq y,$$

wich implies that g is n't surjective.

Reminder: 1) If $f: E \to F$ is bijective so f is injective and surjective and the inverse application exists noted f^{-1} with:

$$f^{-1}$$
 : $F \to E$
 $y \mapsto f^{-1}(y) = x$.

In this we have: $f^{-1}(y), \forall y \in F$.

2) If $f: E \to F$ be an application and $B \subset F$, so $f^{-1}(B)$ exists with:

$$f^{-1}(B) = \{x \in E, \exists y \in B/f(x) = y\}.$$

Example 1

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = \sin x.$

 $f^{-1}(0)$ does n't exist because f is n't bijective.

But:

$$f^{-1}\{0\} = \{k\pi, k \in \mathbb{Z}\}.$$

because: $\sin k\pi = 0, \forall k \in \mathbb{Z}$.

(2) Say if the following propositions are true or false?

$$f(x) = x^2 - 3x + 3 = \left(x - \frac{3}{2}\right)^2 + \frac{3}{4}$$
 and $g(x) = \frac{x^2 - 5}{x^2 + 2}$.

The table of variation for the function f is:(Ici c'est $\frac{3}{2}$)

x	$-\infty$	$\frac{2}{3}$	+∞
f'(x)	-	þ	+
f(x)	+∞ <	<u>3</u>	→ ^{+∞}

The table of variation for the function g is:

x	$-\infty$	0	$+\infty$
$g\prime\!(x)$	-	þ	+
g(x)	+1	, E.	+1
9(-)	,	$\frac{-3}{2}$	13:50,

(a) $f({0}) = 3$ is false because $f({0}) = {3}$.

(b) $0 \in f^{-1}(\{3\})$ is true because f(0) = 3.

(c) $\{0\} = f^{-1}(\{3\})$ is false because f(0) = 3 but $\exists x_2 \neq 0$ and $f(x_2) = 3$.

(d) $g^{-1}(0) = \sqrt{5}$ is false because g is n't bijective.

(e) $g^{-1}(\{0\}) = \{\sqrt{5}\}$ is false because $g^{-1}(\{0\}) = \{\sqrt{5}, -\sqrt{5}\}$.

(f) $g^{-1}(\{10\}) = \emptyset$ is true because $g(\mathbb{R}) = \left[-\frac{5}{2}; 1\right]$.

Remainder:

$$f(A \cup B) = f(A) \cup f(B)$$
 and $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

(3) Find

$$\begin{split} f\left([0;1]\right) &= f\left(\left[0;\frac{2}{3}\right] \cup \left[\frac{2}{3};1\right]\right) = f\left(\left[0;\frac{2}{3}\right]\right) \cup f\left(\left[\frac{2}{3};1\right]\right) \\ &= \left(\left[f\left(\frac{2}{3}\right);f\left(0\right)\right]\right) \cup \left(\left[f\left(\frac{2}{3}\right);f\left(1\right)\right]\right) \\ &= \left(\left[\frac{3}{4};3\right]\right) \cup \left(\left[\frac{3}{4};1\right]\right) = \left[\frac{3}{4};3\right]. \end{split}$$

$$f^{-1}([0;1]) = f^{-1}\left(\left[0; \frac{3}{4}\right] \cup \left[\frac{3}{4}; 1\right]\right)$$

$$= f^{-1}\left(\left[0; \frac{3}{4}\right]\right) \cup f^{-1}\left(\left[\frac{3}{4}; 1\right]\right)$$

$$= \varnothing \cup [1; 2] \text{ because } f^{-1}(\{1\}) = \{1, 2\}$$

$$= [1; 2].$$

$$x^2 - 3x + 3 = 1 \Rightarrow x^2 - 3x + 2 = 0, \Delta = 1, x_1 = 1 \text{ and } x_2 = 2.$$

$$\begin{split} f\left(\mathbb{R}\right) &=& \left[\frac{3}{4}; +\infty\right[.\\ g\left(\left[0;1\right]\right) &=& \left[g\left(0\right); g\left(1\right)\right] = \left[-\frac{5}{2}; -\frac{4}{3}\right]. \end{split}$$

Exercise 04: Let f defined from E in F by $: f(x) = \frac{3x}{x^2 + x - 2}$.

(1) Find E for f to be an application. f is an application if and only if: $E = D_f$.

$$D_f = \left\{ x \in \mathbb{R}/x^2 + x - 2 \neq 0 \right\} = \mathbb{R} - \{-2, 1\}.$$

$$-\infty + -2 - 1 + + \infty$$

(2) Study the application f and draw its table of variations.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{3}{x} = 0.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3}{x} = 0.$$

$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{3x}{x^2 + x - 2} = \frac{-6}{0^+} = -\infty.$$

$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{3x}{x^2 + x - 2} = \frac{-6}{0^-} = +\infty.$$

$$\lim_{x \to -1} f(x) = \lim_{x \to 1} \frac{3x}{x^2 + x - 2} = \frac{3}{0^-} = -\infty.$$

$$\lim_{x \to -1} f(x) = \lim_{x \to 1} \frac{3x}{x^2 + x - 2} = \frac{3}{0^+} = +\infty.$$

The derivative of:

$$f\left(x\right) = \frac{3x}{x^2 + x - 2}.$$

$$f'(x) = \frac{3(x^2 + x - 2) - (2x + 1)3x}{(x^2 + x - 2)^2}$$
$$= \frac{-3x^2 - 6}{(x^2 + x - 2)^2} = -3\frac{(x^2 + 2)}{(x^2 + x - 2)^2} < 0.$$

The table of variation for the function f is:

- (3) Say if f is injective and if it is surjective from E in \mathbb{R} ? (Don't forget to write the definitions and the rationale for your answer).
 - a) For injective,

$$\forall x_1, x_2 \in D_f, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2).$$

f is n't injective because: (We use the table)

$$\exists x_1 \in]-\infty, ; -2[, x_2 \in]-2; 1[, x_1 \neq x_2 \Rightarrow f(x_1) = f(x_2) \text{ (negative value)}.$$

b) For surjective,

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) = y \text{ or } f(E) = \mathbb{R}.$$

We use the table, we have: $f(E) = \mathbb{R}$, which implies that f is surjective.

(4) Otherwise give examples from the table of variations where f is bijective. A few cases we use the table, f is bijective for example if:

$$(1)f$$
: $]-\infty;-2[\rightarrow]-\infty;0[$.

$$(2)f$$
: $]-2;1[\rightarrow]-\infty;+\infty[$.

$$(3) f$$
: $]0; +\infty[\rightarrow]0; +\infty[$.

(5) (Additional) Answer the same questions to: $g(x) = \frac{2}{\sqrt{(x+4)^2+1}} - 3$.

$$D_g = \mathbb{R}$$
.

Limits:

$$\lim_{x \to \infty} g(x) = -3.$$

$$\lim_{x \to -\infty} g\left(x\right) = -3.$$

$$\lim_{x \to +\infty} g\left(x\right) = -3.$$

The derivative is:

$$g'(x) = \frac{-\frac{2(x+4)\times 2}{2\sqrt{(x+4)^2+1}}}{\left(\sqrt{(x+4)^2+1}\right)^2} = -2\frac{(x+4)}{\left((x+4)^2+1\right)\sqrt{(x+4)^2+1}}.$$

The sign of the derivative:

$$-\infty$$
 + -4 - $+\infty$

The table of variation for the function g is:

(6) (Additional) Answer the same questions to: $h(x) = \frac{2}{\sqrt{x^2-1}}$.

$$D_h =]-\infty; -1[\cup]1; +\infty[.$$

Limits:

$$\lim_{x \to -\infty} h(x) = 0.$$

$$\lim_{x \to +\infty} h(x) = 0.$$

$$\lim_{x \to -1} h(x) = +\infty.$$

$$\lim_{x \to -1} h(x) = +\infty.$$

The derivative is:

$$h'(x) = \frac{-\frac{2x \times 2}{2\sqrt{x^2 - 1}}}{\left(\sqrt{x^2 - 1}\right)^2} = -2\frac{x}{(x^2 - 1)\sqrt{x^2 - 1}}.$$

The sign of the derivative:

$$-\infty$$
 + $-1*****0*****1$ - $+\infty$

The table of variation for the function h is:

Exercise 05: (Additional) Let $a, b, c d \in \mathbb{R}^*$ and let f be defined as follows:

$$f: A \to B$$

 $x \mapsto f(x) = \frac{ax+c}{bx+d}.$

How should the greatest unknowns A and B and other constants be selected so that f is:

(1) f is an application if: $\forall x \in A, \exists y \in B \text{ with: } y = f(x)$.

We remark that f(x) exists for $x \neq -\frac{d}{b}$, which implies that:

$$A = \mathbb{R} - \left\{ -\frac{d}{b} \right\}.$$

(2) f is injective if:

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

$$f(x_1) = f(x_2) \Rightarrow \frac{ax_1 + c}{bx_1 + d} = \frac{ax_2 + c}{bx_2 + d}$$

$$\Rightarrow (ax_1 + c)(bx_2 + d) = (bx_1 + d)(ax_2 + c),$$

$$\Rightarrow abx_1x_2 + adx_1 + cbx_2 + cd = abx_1x_2 + bcx_1 + dax_2 + cd,$$

$$\Rightarrow adx_1 + cbx_2 = bcx_1 + dax_2,$$

$$\Rightarrow (ad - bc)x_1 = (ad - bc)x_2,$$

so to have $x_1 = x_2$ it's sufficient that: $(ad - bc) \neq 0$.

Conclusion: for f to be injective:

$$(ad - bc) \neq 0$$
 and $A = \mathbb{R} - \left\{-\frac{d}{b}\right\}$.

(3) f is surjective if:

$$\forall y \in B, \exists x \in A \text{ such as: } f(x) = y.$$

$$f(x) = y \Leftrightarrow \frac{ax+c}{bx+d} = y \Leftrightarrow ax+c = (bx+d)y$$

$$\Leftrightarrow x = \frac{dy-c}{a-by} \text{ that exists if } y \neq \frac{a}{b}.$$

So f is surjective if:

$$y \neq \frac{a}{b} \Leftrightarrow B = \mathbb{R} - \left\{\frac{a}{b}\right\} \text{ and } A = \mathbb{R} - \left\{-\frac{d}{b}\right\}.$$
 (the condition of application)

(4) f is a bijective application if and only if: f is injective and surjective so:

$$A = \mathbb{R} - \left\{ -\frac{d}{b} \right\}, (ad - bc) \neq 0 \text{ and } B = \mathbb{R} - \left\{ \frac{a}{b} \right\}.$$

Sincere wishes you success (MESSIRDI BACHIR)