ICU 내 항생제 치료 전략 및 다제내성균(MDR) 감염의 치료 성공률 분석

TEAM MeMI(Medi+MIMIC)

목차

- 0 Data Set
- 1 Analysis Topic
- 2 Data PreProcessing
- **3** Feature Engineering
- 4 Modeling
- **5** Evaluation Metrics

Data Set

MIMIC III Dataset

- MIMIC-III 데이터셋은 ICU에 입원한 5만 명 이상 환자들의 임상 기록, 생리학적 측정, 처방 정보, 검사 결과, 약물 처방 기록 등 다양한 의료 정보를 포함함
- 데이터 수집 기간 : 2001년 ~ 2012년
- 25개의 CSV 파일 존재

ADMISSIONS.csv
CALLOUT.csv
CAREGIVERS.csv
CHARTEVENTS.csv
CPTEVENTS.csv
DATETIMEEVENTS.csv
DIAGNOSES_ICD.csv
DRGCODES.csv
D_CPT.csv
D_ICD_DIAGNOSES.csv
D_ICD_PROCEDURES.csv

D_ITEMS.csv
D_LABITEMS.csv
ICUSTAYS.csv
INPUTEVENTS_CV.csv
INPUTEVENTS_MV.csv
LABEVENTS.csv
LICENSE.txt
MICROBIOLOGYEVENTS.csv
NOTEEVENTS.csv
OUTPUTEVENTS.csv
PATIENTS.csv

PRESCRIPTIONS.csv
PROCEDUREEVENTS_MV.csv
PROCEDURES_ICD.csv
README.md
SERVICES.csv
SHA256SUMS.txt
TRANSFERS.csv
Untitled.ipynb
checksum_md5_unzipped.txt
checksum_md5_zipped.txt

EDA

전체 데이터 파악

MIMIC 데이터 살펴보기

EDA

ICD-9 코드(국제질병분류 9차 개정판): 전 세계적으로 질병, 상태 및 절차를 분류하는 표준화된 코드 집합

- 질병과 의료 절차를 정확하게 식별하고 기록하는 데 사용
- 의료 기관 간의 진단 일관성을 유지
- 건강 통계 추적, 의료 서비스 청구 및 보험 처리, 연구 데이터 수집에 필수적인 도구
- 특정 질병이나 상태를 나타내는 코드를 통해 의료 제공자들은 환자의 건강 상태를 일관되게 기록하고 분석 가능 https://ko.wikipedia.org/wiki/ICD-9_%EC%BD%94%EB%93%9C_%EB%AA%A9%EB%A1%9D

MIMIC III 에서 ICD-9 범주에 따른 환자 수

Circulatory System > Endocrine/Nutritional/Metabolic > Respiratory System

MIMIC III 에서 ICD-9 범주에 따른 연령 별 환자 수

DISEASE PATTERN

Age Group Distribution Across ICD-9 Categories

Age Group Distribution Across ICD-9 Categories (%)

- Senior 이상에서 환자가 다수를 차지
- Youth에서는 상대적으로 Injury로 인한 입원 환자가 가장 많은 비율
- Adult에서 Digestive System 입원 환자가 많음
- Adult 이상에서는 Circulatory System이 점차 늘어남

DEATH PATTERN

MIMIC III 에서 사망 원인

Congenital anormalies > Neoplasms > Musculoskeletal

DEATH PATTERN

MIMIC III 에서 사망 원인

SOFA SCORE

SOFA(Sequential Organ Failure Assessment) score

- SOFA 점수: 중환자실(ICU)에서 환자의 장기 기능을 평가하고 예후를 예측하는 데 사용
- 기준: 각 장기 시스템(호흡기, 순환기, 신경계 등)의 기능 장애 수준을 0~4점으로 평가하고 합산하여 전체 점수를 계산
- 활용 데이터 및 테이블
 - Respiratory: PaO₂, FiO₂ (labevents, chartevents)
 - Coagulation: Platelets (labevents)
 - Liver: Bilirubin (labevents)
 - Cardiovascular: MAP, Vasopressors (chartevents)
 - CNS: GCS (chartevents)
 - Renal: Creatinine, Urine Output (labevents, outputevents)

System	Parameter	0	1	2	3	4
Respiratory	PaO ₂ /FiO ₂ (mmHg)	≥400	<400	<300	<200	<100
Coagulation	Platelets (×10³/µL)	≥150	<150	<100	< 50	<20
Liver	Bilirubin (mg/dL)	<1.2	1.2-1.9	2.0-5.9	6.0-11.9	≥12
Cardiovasc ular	MAP or vasopresso rs required	MAP ≥70	MAP (70	Dop ≤5	Dop >5 or Epi ≤0.1	Dop >15 or Epi >0.1
CNS	GCS Score	15	13-14	10-12	6-9	< 6
Renal	Creatinine (mg/dL) or UO (mL/day)	<1.2	1.2-1.9	2.0-3.4	3.5-4.9 or UO <500	≥5.0 or UO <200

SOFA SCORE

MIMIC III 에서 SOFA(Sequential Organ Failure Assessment) score

- SOFA score 가 높을 수록 사망률이 높아지는 경향이 있었음
- 평균적으로 볼 때 어느 정도 상관관계는 있어 보이나, 통계적 유의성은 없었음

Analysis Topic

1번째 주제

ICU 환자의 항생제 사용과 치료 성공률 분석

ICU에서 항생제를 사용한 환자들의 치료 성공 여부(퇴원 여부 또는 생존 여부)를 항생제 처방 패턴과 환자의 생리적 상태(LABEVENTS 데이터)를 기반으로 분석 및 예측

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

ICUSTAYS.CSV

- 중환자실 체류 정보
- 컬럼 개수 : 12개

subject_	id had	dm_i d	icustay_id	dbsource	first_careunit	last_careunit	first_wardid	last_wardid	intime	outtime	los	hospital_expire_flag
0 2	268 1	110404	280836	carevue	MICU	MICU	52	52	2198-02-14 23:27:38	2198-02-18 05:26:11	3.2490	1
1 2	269 1	106296	206613	carevue	MICU	MICU	52	52	2170-11-05 11:05:29	2170-11-08 17:46:57	3.2788	0

PRESCRIPTIONS.CSV

- 약물사전
- 컬럼 개수 : 19개

ROW_ID	SUBJECT_ID	HADW_ID	ICUSTAY_ID	STARTDATE	ENDDATE	DRUG_TYPE	DRUG	DRUG_NAME_POE	DRUG_NAME_GENERIC	FORMULARY_DRUG_CD	GSN	NDC	PROD_STRENGTH
0 2214776	6	107064	NaN	2175-06-11 00:00:00	2175-06- 12 00:00:00	MAIN	Tacrolimus	Tacrolimus	Tacrolimus	TACR1	021796	469061711.0	1mg Capsule
1 2214775	6	107064	NaN	2175-06-11 00:00:00	2175-06- 12 00:00:00	MAIN	Warfarin	Warfarin	Warfarin	WARF5	006562	56017275.0	5mg Tablet

LABEVENTS.CSV

- 실험실 검사 결과
- 컬럼 개수 : 9개

	ROW_ID	SUBJECT_ID	HADM_ID	ITEMID	CHARTTIME	VALUE	VALUENUM	VALUEUON	FLAG
0	281	3	NaN	50820	2101-10-12 16:07:00	7.39	7.39	units	NaN
1	282	3	NaN	50800	2101-10-12 18:17:00	ART	NaN	NaN	NaN

ADMISSIONS.CSV

- 환자 입원 정보
- 컬럼 개수 : 19개

ROW_ID	SUBJECT_ID	HADM_ID	ADMITTIME	DISCHTIME	DEATHTIME	ADMISSION_TYPE	ADMISSION_LOCATION	DISCHARGE_LOCATION	INSURANCE	LANGUAGE	RELIGION	MARITAL_STATUS
0 21	22	165315	2196-04-09 12:26:00	2196-04-10 15:54:00	NaN	EMERGENCY	EMERGENCY ROOM ADMIT	DISC-TRAN CANCER/CHLDRN H	Private	NaN	UNOBTAINABLE	MARRIED
1 22	23	152223	2153-09-03 07:15:00	2153-09-08 19:10:00	NaN	ELECTIVE	PHYS REFERRAL/NORMAL DELI	HOME HEALTH CARE	Medicare	NaN	CATHOLIC	MARRIED

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

ICU Data Filtering

```
● ● ● ● ● # ICU내 필요한 Column 필터링
icustays = icustays[['subject_id', 'hadm_id', 'icustay_id', 'los', 'hospital_expire_flag']]
```

• ICUSTAYS 테이블의 필요 컬럼만 유지

∘ subject_id : 환자 ID

∘ hadm_id : 입원 ID

∘ icustay_id : ICU 체류 ID

○ los: ICU 체류 기간(일 단위)

○ hospital_expire_flag : 환자의 사망 여부 플래그

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

ICU Data Filtering

```
# LABEVENTS 검사 지표 필터링
infection_markers = [51300, 51301, 51200, 51000]
infection_tests = labevents[labevents['itemid'].isin(infection_markers)]

# 기존의 Column 유지
infection_tests = infection_tests[['subject_id', 'hadm_id', 'itemid', 'valuenum', 'charttime']]
infection_tests.head()
```

• ICU 환자의 감염 여부 파악(LABEVENTS)

○ item_id : 검사 항목 ID

∘ valuenum: 차트에 기록된 시간

◦ charttime: 환자의 사망 여부 플래그

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

Drug Data Filtering(1차)

```
print('약물 고유 개수 : ', len(antibiotics_prescriptions['DRUG'].unique()))
print('해당 약물 사용 데이터 개수 : ', len(antibiotics_prescriptions['DRUG']))
약물 고유 개수 : 141
해당 약물 사용 데이터 개수 : 193795
```

- 공식 문서에서 참고한 사용 항생제 리스트로 Filtering 진행
- 총 항생제의 개수는 141개

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

Drug Data Filtering(1차)

```
filtering_df| = antibiotics_prescriptions[antibiotics_prescriptions['DRUG'].str.contains('GENTAMICIN',
    case=False, na=False)]

'NEO*IV*Gentamicin', 'Gentamicin', 'Gentamicin Sulfate',
    'Gentamicin Sulfate Ophth.', 'Gentamicin Sulf. Ophth. Soln',
    'Gentamicin ', 'NF*GENTAMICIN SOP', 'Gentamicin ophth oint 0.3%',
    'Gentamicin Intraventricular', 'Gentamicin 0.1% Cream',
    'Gentamicin 0.3% Ophth. Ointment', 'Gentamicin 0.3% Ophth. Soln'
```

```
Penicillin G K Desensitization 의 개수: 195
Meropenem Desensitization 의 개수: 208
CefTAZidime Desensitization 의 개수: 7
CefazoLIN Desensitization 의 개수: 21
Cefepime Desensitization 의 개수: 41
Ceftriaxone Desensitization 의 개수: 13
```

- 항생제의 사용 방법에 관한 데이터 존재(추가 설명)
- But 항생제 사용 여부에 중점을 두기에 해당 데이터 사용

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

Drug Data Filtering(2차)

```
def data_rename(df, renames):
    renames_df = df[df['DRUG'].str.contains(renames, case=False, na=False)]
    unique_list = renames_df['DRUG'].unique()
    df['DRUG'] = df['DRUG'].replace(unique_list, renames)
    return df
```

```
for name in antibiotics:
   antibiotics_prescriptions = data_rename(antibiotics_prescriptions, name)
약물 고유 개수 : 26
해당 약물 사용 데이터 개수 : 193795
```

• 총 26개의 항생제에 관하여 분석 진행

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

Merge Data(제외고려)

```
# ICU, 항생제 관련 Data Merge
data = icustays.merge(antibiotics_prescriptions, on=['subject_id', 'hadm_id'], how='inner')
# data, 검사 지표 Data Merge
data = data.merge(infection_tests, on=['subject_id', 'hadm_id'], how='left')
```

• 환자 ID(subject_id), 입원ID(hadm_id)를 기준으로 하나의 데이터로 병합

- Using Data Set
- Column Filtering
- Merge Data
- Feature Engineering

Feature Engineering

```
data['antibiotic_duration'] = (data['enddate'] - data['startdate']).dt.days
```

• 항생제 투여 기간 계산

```
# 실험실 검사 결과(환자당 각 실험실 검사의 평균 및 최대값)
lab_features = data.groupby(['subject_id', 'hadm_id', 'itemid'])['valuenum'].agg(['mean', 'max']).unstack(fill_value=0)
lab_features.columns = ['_'.join(map(str, col)) for col in lab_features.columns]
```

- 환자의 검사 결과(최대, 최소) 추출
- 결측치 0으로 채움

```
# 최종 데이터 셋
data = data.groupby(['subject_id', 'hadm_id']).first().reset_index()
data = data.merge(lab_features, on=['subject_id', 'hadm_id'], how='left')
```

- 🛑 데이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

학습 데이터 정리

```
# Prepare features and labels
X = data.drop(columns=['hospital_expire_flag', 'subject_id', 'hadm_id', 'icustay_id_y', 'drug'])
y = data['hospital_expire_flag']
```

Feature(X)

- Drop
 - hospital_expire_flag : Target
 - ∘ subject_id, hadm_id , icustay_id_y: 고유 ID
 - ∘ drug : 약물 이름에 관한 정보는 불필요

Label(y)

- Drop
 - ∘ hospital_expire_flag : Target(이진 형태)
 - 0: 생존, 1: 사망

- 🛑 데이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

모델 선정

이진 분류의 특성을 가진 데이터

- 클래스 불균형으로 인해 다수의 생존 데이터에 과적합될 가능성이 있음
 - 생존과 사망 이진 분류로 구성

Random Forest

- 과적합 방지에 유리
- 클래스 불균형 문제를 해결하는 "클래스 가중치 설정" 가능

XGBoost

- 대규모 데이터에 유리
 - MIMIC III의 경우, 대규모 데이터에 해당
- 빠른 속도

- 데이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

모델 적용

Random Forest

- random_state 고정
- 모델 초기화, 학습 및 예측, 성능 평가 순으로 진행
 - o class 0과 1의 Precision, Recall, F1-Score 계산
 - o 2개 class의 Macro Avg, Weighted Avg 계산(추가 설명)
 - 전체 평가 지표 : ROC-AUC Score(지표 사용 이유)

```
rf_model = RandomForestClassifier(random_state=42)

rf_model.fit(X_train, y_train)

y_pred_rf = rf_model.predict(X_test)
y_pred_rf_proba = rf_model.predict_proba(X_test)[:, 1]

print("Classification Report:\n", classification_report(y_test, y_pred_rf))
print("ROC-AUC Score:", roc_auc_score(y_test, y_pred_rf_proba))
```

- 데이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

모델 적용

XGBoost

- random_state 고정, 라벨 인코더 비활성화(Warning 방지), 평가 지표를 logloss로 설정
- 모델 초기화, 학습 및 예측, 성능 평가 순으로 진행
- 평가 항목은 이전과 동일

```
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
xgb_model.fit(X_train, y_train)

y_pred_xgb = xgb_model.predict(X_test)
y_pred_xgb_proba = xgb_model.predict_proba(X_test)[:, 1]

print("Classification Report:\n", classification_report(y_test, y_pred_xgb))
print("ROC-AUC Score:", roc_auc_score(y_test, y_pred_xgb_proba))
```

- 데이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

모델 적용

Hyperparameter Tuning

- GridSearch 방식
 - 조합할 하이퍼파라미터 값 지정
 - 최적 파라미터 출력
 - 최적 파라미터로 학습한 결과 출력

```
# Define hyperparameters to tune
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'bootstrap': [True, False]
}
```

```
# Get the best parameters
print("Best parameters:", grid_search_rf.best_params_)
...
print("Classification Report:\n", classification_report(y_test, y_pred_rf))
print("ROC-AUC Score:", roc_auc_score(y_test, y_pred_rf_proba))
```

```
# Define hyperparameters to tune
param_grid_xgb = {
    'n_estimators': [100, 200, 300],
    'max_depth': [3, 6, 10],
    'learning_rate': [0.01, 0.05, 0.1],
    'subsample': [0.7, 0.8, 1.0],
    'colsample_bytree': [0.7, 0.8, 1.0]
}
```

```
# Get the best parameters
print("Best parameters:", grid_search_xgb.best_params_)
...
print("Classification Report:\n", classification_report(y_test, y_pred_xgb))
print("ROC-AUC Score:", roc_auc_score(y_test, y_pred_xgb_proba))
```

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

항생제 키워드 필터링_1차

튜닝 이전

Random Forest

ROC-AUC Score: 0.7436463242399466

Classification				
	precision	recall	f1-score	support
0	0.89	0.98	0.93	9784
1	0.50	0.13	0.20	1375
accuracy			0.88	11159
accuracy macro avg	0.69	0.56	0.57	11159
weighted avg	0.84	0.88	0.84	11159
DOC AUG Cooper	0 747040465	3262001		
ROC-AUC Score:	0./4/048465	0203881		

XGBoost

ROC-AUC Score: 0.7470484650263881

Classification	Report: precision	recall	f1-score	support
0 1	0.88 0.61	0.99 0.07	0.94 0.13	9784 1375
accuracy macro avg weighted avg	0.75 0.85	0.53 0.88	0.88 0.53 0.84	11159 11159 11159
ROC-AUC Score:	0.7436463242	399466		

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

항생제 키워드 필터링_1차

튜닝 이후

Random Forest

ROC-AUC Score: 0.7510563814762506 -> 약 0.008 1

```
Best parameters:
    {'bootstrap': True,
        'max_depth': None,
        'min_samples_leaf': 1,
        'min_samples_split': 5,
        'n_estimators': 300
    }
```

Classification	Report: precision	recall	f1-score	support
0 1	0.88 0.62	0.99 0.07	0.94 0.13	9784 1375
accuracy macro avg weighted avg	0.75 0.85	0.53 0.88	0.88 0.53 0.84	11159 11159 11159
ROC-AUC Score:	0.7510563814	762506		

XGBoost

ROC-AUC Score: 0.7640216680294359 -> 약 0.017 1

```
Best parameters:
    {'colsample_bytree': 1.0,
    'learning_rate': 0.01,
    'max_depth': 6,
    'n_estimators': 300,
    'subsample': 0.7
}
```

```
Classification Report:
                            recall f1-score
               precision
                                               support
                   0.88
                             1.00
                                       0.94
                                                 9784
                   0.63
                             0.06
                                       0.10
                                                 1375
                                       0.88
                                                11159
    accuracy
                   0.76
                             0.53
                                       0.52
                                                11159
   macro avq
                   0.85
                                       0.83
                                                11159
weighted avg
                             0.88
ROC-AUC Score: 0.7640216680294359
```

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

항생제 키워드 필터링_2차

튜닝 이전

Random Forest

ROC-AUC Score: 0.7590781981714116

Classification	Report: precision	recall	f1-score	support
0 1	0.88 0.64	0.99 0.08	0.94 0.14	9784 1375
accuracy macro avg weighted avg	0.76 0.86	0.54 0.88	0.88 0.54 0.84	11159 11159 11159
ROC-AUC Score:	0.759078198	1714116		

XGBoost

ROC-AUC Score: 0.7686489630565674

Classification	Report: precision	recall	f1-score	support
0 1	0.89 0.54	0.98 0.16	0.93 0.24	9784 1375
accuracy macro avg weighted avg	0.72 0.85	0.57 0.88	0.88 0.59 0.85	11159 11159 11159
ROC-AUC Score:	0.7686489630	565674		

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

항생제 키워드 필터링_2차

튜닝 이후

Random Forest

ROC-AUC Score: 0.7702528060655616 -> 약 0.011 1

```
Best parameters:
    {'bootstrap': False,
    'max_depth': 20,
    'min_samples_leaf': 4,
    'min_samples_split': 10,
    'n_estimators': 200
}
```

Classification	Report: precision	recall	f1-score	support
0 1	0.89 0.65	0.99 0.09	0.94 0.16	9784 1375
accuracy macro avg weighted avg	0.77 0.86	0.54 0.88	0.88 0.55 0.84	11159 11159 11159
ROC-AUC Score:	0.7702528060	655616		

XGBoost

ROC-AUC Score: 0.7895984167100275 -> 약 0.021 1

```
Best parameters:
    {'colsample_bytree': 1.0,
    'learning_rate': 0.1,
    'max_depth': 6,
    'n_estimators': 100,
    'subsample': 1.0
}
```

Classification	Report: precision	recall	f1-score	support
0 1	0.89 0.65	0.99 0.12	0.94 0.20	9784 1375
accuracy macro avg weighted avg	0.77 0.86	0.55 0.88	0.88 0.57 0.85	11159 11159 11159
ROC-AUC Score:	0.7895984167	100275		

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

Hyperparameter Tuning 추가

Optuna

- 사용 방법
 - o xgboost의 optuna 라이브러리 설치 및 import
 - Study : 목적 함수에 기반한 최적화
 - Trial: 목적함수시행(다양한 조합으로시행)
- 사용 이유
 - 。 GridSearch의 소요 시간 개선
- 추가 조건
 - 클래스 불균형 문제 해결을 위한 class_weight를 <u>balanced</u>로 설정

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

Hyperparameter Tuning 추가

Optuna *RF 기준(XGB도 코드 유사)

• 파라미터 값 설정

```
# 파라미터 값 조합

n_estimators = trial.suggest_int('n_estimators', 50, 300)

max_depth = trial.suggest_int('max_depth', 5, 20)

min_samples_split = trial.suggest_int('min_samples_split', 2, 10)

min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 5)

bootstrap = trial.suggest_categorical('bootstrap', [True, False])

class_weight = 'balanced'
```

• Study 설정 및 Trial 시도 횟수 지정

```
rf_study = optuna.create_study(direction='maximize')
rf_study.optimize(objective_rf, n_trials=20)
print("Best Random Forest Parameters:", rf_study.best_params)
```

- 에이터 및 모델 관련
- 1st Modeling
- 2nd Modeling
- Optuna Tuning

Hyperparameter Tuning 추가

Random Forest

• ROC-AUC Score: 0.7772099317972689 -> 약 0.007 1

```
Best Random Forest Parameters:
    {'n_estimators': 255,
        'max_depth': 20,
        'min_samples_split': 2,
        'min_samples_leaf': 3,
        'bootstap': True
    }
```

Classification	Report: precision	recall	f1-score	support
0 1	0.88 0.70	1.00 0.07	0.93 0.13	6502 938
accuracy macro avg weighted avg	0.79 0.86	0.53 0.88	0.88 0.53 0.83	7440 7440 7440
ROC-AUC Score:	0.777209931	7972689		

XGBoost

• ROC-AUC Score: 0.8033568808416501 -> 약 0.014 1

Classification	Report: precision	recall	f1-score	support
0 1	0.89 0.67	0.99 0.13	0.94 0.21	6502 938
accuracy macro avg weighted avg	0.78 0.86	0.56 0.88	0.88 0.57 0.85	7440 7440 7440
ROC-AUC Score:	0.8033568808	416501		

회고

수치 분석

항생제 사용을 통한 치료 성공률

• 최대 ROC-AUC Score : **0.803**3568808416501 (XGB)

항생제 지표 외 원인 분석

- 데이터 전처리
 - 도메인 지식에 대한 아쉬움 : 데이터 전처리(정규화, 인코딩, 리샘플링) 등이 더욱 체계적으로 이루어질 수 있다면 성능 향상에 도움이 될 것으로 예상
- 항생제 사용 실패 원인
 - 항생제의 사용 유무를 제외한 다른 요소를 고려하지 않음
 - 항생제 부작용 : 감염 치료 효과를 분석하여 부작용 요소를 제거하게 되면, 치료 성공률이 더욱 향상될 것으로 추측

Analysis Topic

2번째 주제

중환자실 내 다제내성균(MDR) 감염 치료 효과 분석

다제내성균 감염 환자의 항생제 사용 실태와 치료 성공률 평가 특정 항생제의 사용이 치료 성공률에 미치는 영향을 분석

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

ADMISSIONS.CSV

- 환자 입원 정보
- 컬럼 개수 : 19개

	ROW_IE	SUBJECT_	ID	HADM_ID	ADMITTIME	DISCHTIME	DEATHTIME	ADMISSION_TYPE	ADMISSION_LOCATION	DISCHARGE_LOCATION	INSURANCE	LANGUAGE	RELIGION	MARITAL_STATUS
(21		22	165315	2196-04-09 12:26:00	2196-04-10 15:54:00	NaN	EMERGENCY	EMERGENCY ROOM ADMIT	DISC-TRAN CANCER/CHLDRN H	Private	NaN	UNOBTAINABLE	MARRIED
,	1 22	2	23	152223	2153-09-03 07:15:00	2153-09-08 19:10:00	NaN	ELECTIVE	PHYS REFERRAL/NORMAL DELI	HOME HEALTH CARE	Medicare	NaN	CATHOLIC	MARRIED

LABEVENTS.CSV

- 실험실 검사 결과
- 컬럼 개수 : 9개

	ROW_ID	SUBJECT_ID	HADW_ID	ITENID	CHARTTIME	VALUE	VALUENUM	VALUEUON	FLAG
0	281	3	NaN	50820	2101-10-12 16:07:00	7.39	7.39	units	NaN
1	282	3	NaN	50800	2101-10-12 18:17:00	ART	NaN	NaN	NaN

PRESCRIPTIONS.CSV

- 약물사전
- 컬럼 개수 : 19개

ROW_ID	SUBJECT_ID	HADM_ID	ICUSTAY_ID	STARTDATE	ENDDATE	DRUG_TYPE	DRUG	DRUG_NAME_POE	DRUG_NAME_GENERIC	FORMULARY_DRUG_CD	GSN	NDC	PROD_STRENGTH
0 2214776	6	107064	NaN	2175-06-11 00:00:00	2175-06- 12 00:00:00	MAIN	Tacrolimus	Tacrolimus	Tacrolimus	TACR1	021796	469061711.0	1mg Capsule
1 2214775	6	107064	NaN	2175-06-11 00:00:00	2175-06- 12 00:00:00	MAIN	Warfarin	Warfarin	Warfarin	WARF5	006562	56017275.0	5mg Tablet

DIAGNOSES_ICD.CSV

- 환자의 상태
- 컬럼 개수 : 5개

	ROW_ID	SUBJECT_ID	HADM_ID	SEQ_NUM	ICD9_CODE
0	1297	109	172335	1.0	40301
1	1298	109	172335	2.0	486

D_LABITEMS.CSV

- 실험실 검사 항목
- 컬럼 개수 : 5개

	ROW_ID	ITENID	LABEL	FLUID	CATEGORY	LOINC_CODE
0	546	51346	Blasts	Cerebrospinal Fluid (CSF)	Hematology	26447-3
1	547	51347	Eosinophils	Cerebrospinal Fluid (CSF)	Hematology	26451-5

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

MDR Patients Filtering

```
mdr_icd_codes = ['04104', '04112', '04119', '04184', '04103','0416', '0417']

# MDR 감염 환자 필터링
mdr_patients = diagnoses_icd[diagnoses_icd['ICD9_CODE'].isin(mdr_icd_codes)]

# 필요한 환자 정보 추출
mdr_subject_ids = mdr_patients['SUBJECT_ID'].unique()
print(f"MDR 감염 환자 수: {len(mdr_subject_ids)}")

MDR 감염 환자 수: 1567
```

- MDR 병원체의 ICD-9 필터링
- MDR 감염 환자 필터링

```
#prescriptions 테이블에서 mdr_subject_ids와 일치하는 항생제 데이터를 추출 mdr_prescriptions = prescriptions[prescriptions['SUBJECT_ID'].isin(mdr_subject_ids)] print(f"MDR 감염 환자의 약물 처방 데이터 수: {mdr_prescriptions.shape}")

MDR 감염 환자의 항생제 처방 데이터 수: (410015, 19)
```

• MDR 감염환자에게 처방한 약물 데이터 필터링

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

DRUG Data Filtering

```
# 항생제 목록
target_antibiotics = [
    'GENTAMICIN', 'OXACILLIN', 'ERYTHROMYCIN', 'PENICILLIN', 'LEVOFLOXACIN',
    'NITROFURANTOIN', 'PIPERACILLIN/TAZO', 'MEROPENEM', 'CEFTAZIDIME',
    'CEFAZOLIN', 'CEFEPIME', 'TRIMETHOPRIM/SULFA', 'TOBRAMYCIN', 'IMIPENEM',
    'CEFTRIAXONE', 'CIPROFLOXACIN', 'VANCOMYCIN', 'CLINDAMYCIN', 'TETRACYCLINE',
    'RIFAMPIN', 'CHLORAMPHENICOL', 'AMPICILLIN', 'LINEZOLID', 'PIPERACILLIN',
    'AMPICILLIN/SULBACTAM', 'CEFUROXIME', 'PENICILLIN G', 'DAPTOMYCIN',
    'AMIKACIN', 'CEFPODOXIME'
# PRESCRIPTIONS 테이블에서 항생제 필터링
mdr_antibiotics = mdr_prescriptions[
   mdr_prescriptions['DRUG_NAME_GENERIC'].str.upper().isin(target_antibiotics)
# 필터링된 데이터 확인
print(f"필터링된 항생제 데이터 수: {mdr_antibiotics.shape[0]}")
필터링된 항생제 데이터 수: 1318
```

• MDR 환자에게 처방한 약물 데이터에서 항생제 데이터 필터링

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

LABEVENTS Data Filtering

```
# MDR 감염 환자의 SUBJECT_ID를 기반으로 LABEVENTS 필터링
mdr_labevents = labevents[labevents['SUBJECT_ID'].isin(mdr_prescriptions['SUBJECT_ID'].unique())]
# 필터링된 LABEVENTS 데이터에서 ITEMID 추출
mdr_item_ids = mdr_labevents['ITEMID'].unique()

# D_LABITEMS 테이블에서 해당 ITEMID에 매핑된 LABEL 확인
mdr_labels = d_labitems[d_labitems['ITEMID'].isin(mdr_item_ids)]
print(f"총 라벨 개수: {mdr_labels.shape[0]}")
총 라벨 개수: 637
```

- MDR 감염 환자 환자 ID 필터링
- MDR 감염 환자의 검사 항목 필터링

```
# 감염 지표로 유효한 항목의 ITEMID 필터링
infection_related_itemids = [
50889, # C-Reactive Protein
51300, # WBC Count(백혈구 수)
51144, # Bands(미성숙 백혈구)
51256, # Neutrophils(중성구)
51265, # Platelet Count(혈소판 수치)
50954 # Lactate(조직 저산소증 및 패혈증 평가)
]
filtered_labevents = labevents[labevents['ITEMID'].isin(infection_related_itemids)]
print(f"감염 관련 라벨 수: {filtered_labevents.shape[0]}")
감염 관련 라벨 수: 9
```

• 검사 항목 중 감염 지표 관련 데이터 필터링

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

LABEVENTS Data Filtering

```
# 철소판 수치(ITEMID=51265)의 값 데이터 필터링
platelet_data = labevents[labevents['ITEMID'] == 51265]
platelet_data = platelet_data.sort_values(by=['SUBJECT_ID', 'CHARTTIME'])

print(platelet_data[['SUBJECT_ID', 'CHARTTIME', 'VALUENUM', 'FLAG']])

SUBJECT_ID CHARTTIME VALUENUM FLAG
609 2 2138-07-17 20:48:00 5.0 abnormal
632 2 2138-07-17 21:10:00 302.0 NaN
```

• 혈소판 수치 관련 데이터 필터링

```
# FLAG가 abnormal(이상) 데이터 필터링
abnormal_data = labevents[labevents['FLAG'] == 'abnormal']
print(abnormal_data[['SUBJECT_ID', 'ITEMID', 'CHARTTIME', 'VALUENUM', 'VALUEUOM', 'FLAG']])
         SUBJECT_ID ITEMID
                                                                      FLAG
                                      CHARTTIME VALUENUM VALUEUOM
                                                                  abnormal
                      50808 2101-10-12 18:17:00
                                                           mmol/L
                                                    0.93
15
                     50912 2101-10-13 03:00:00
                                                    1.70
                                                            mg/dL
                                                                  abnormal
```

• 검사 결과가 이상으로 나온 데이터 필터링

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

LABEVENTS Data Filtering

```
# ITEMID가 필요한 데이터로 필터링
# 치료 효과 분석: 검사 결과 초기 값과 이후 값 비교
def calculate_change(group):
    initial = group.iloc[0]['VALUENUM']
    final = group.iloc[-1]['VALUENUM']
    return pd.Series({'INITIAL_VALUE': initial, 'FINAL_VALUE': final, 'CHANGE': final - initial})
filtered_labevents = labevents[labevents['ITEMID'].isin(infection_related_itemids)]
changes = filtered_labevents.groupby(['SUBJECT_ID', 'ITEMID']).apply(calculate_change).reset_index()
print(changes.head())
        SUBJECT_ID ITEMID INITIAL_VALUE FINAL_VALUE CHANGE
                    51144
                                 0.0
                                             1.0
                                                        1.0
                    51256
                                                      -30.0
                                100.0
                                             70.0
```

- 시간에 따른 치료 효과 분석
- 시간 별 감염 지표에 대한 차이점
- ex) 51144의 검사 항목의 점수가 1점 올라감(치료 효과 有)
- ex) 51256의 검사 항목의 점수가 30점 떨어짐(치료 효과 無)

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

LABEVENTS Data Filtering

```
# 성공 기준 정의
success_criteria = {
   50889: lambda x: x < 10,
                                  # C-Reactive Protein (CRP); < 10 mg/L</pre>
   51300: lambda x: 4 <= x <= 11, # WBC Count : 4-11 × 10°/L
   51144: lambda x: x < 5,
                                  # Bands : < 5%
   51256: lambda x: 40 <= x <= 70, # Neutrophils : 40-70%
   51265: lambda x: 150 <= x <= 450, # Platelet Count : 150-450 K/uL
                                  # Lactate : < 2 mmol/L (중증 감염 시 중요)
   50954: lambda x: x < 2
# 성공 여부 추가
changes['SUCCESS'] = changes.apply(
   lambda row: success_criteria[row['ITEMID']](row['FINAL_VALUE']) if row['ITEMID'] in
success_criteria else False,
   axis=1
print(changes[['SUBJECT_ID', 'ITEMID', 'INITIAL_VALUE', 'FINAL_VALUE', 'SUCCESS']])
       SUBJECT_ID ITEMID INITIAL_VALUE FINAL_VALUE SUCCESS
                    51256
                              100.0
                                            70.0
                                                        True
```

• 결과가 이상함

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

LABEVENTS Data Filtering

```
# ADMISSIONS에서 생존 여부 가져오기 admissions_filtered = admissions[['SUBJECT_ID', 'HOSPITAL_EXPIRE_FLAG']]
# 생존 여부 추가 admissions_filtered['SURVIVAL'] = admissions_filtered['HOSPITAL_EXPIRE_FLAG'] == 0
final_results = final_results.merge(admissions_filtered, on='SUBJECT_ID')
print(final_results[['SUBJECT_ID', 'SUCCESS', 'SURVIVAL']])
```

• 환자별 치료 성공률 데이터 프레임으로 제작

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

결과 지표

그래프에서 관찰된 점

- 1) 치료효과 = True에서 높은 생존율
 - 치료가 성공한 환자의 생존율이 매우 높음
- 2) 치료효과 = False에서도 높은 생존율
 - 치료가 성공하지 못했음에도 불구하고 생존율이 비교적 높음

Correlation

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

감염 지표와 치료 성공 여부의 관계

감염 지표(CRP, WBC 등)의 초기값(INITIAL_VALUE), 최종값(FINAL_VALUE), 변화량 (CHANGE)이 치료 성공 여부(SUCCESS)에 미치는 영향을 확인

Correlation

- Using Data Set
- Column Filtering
- Feature Engineering
- Result Indicator

항생제 사용과 치료 성공 여부의 관계

특정 항생제의 사용이 치료 성공에 미치는 영향을 확인

• 새롭게 선정된 항생제 목록에 따른 사용 빈도 시각화

Modeling

Logistic Regression

Random Forest

Logistic Regression

```
# 로지스틱 회귀 모델 학습
lr_model = LogisticRegression(random_state=42)
lr_model.fit(X_train, y_train)

# 예측
y_pred_lr = lr_model.predict(X_test)

# 성능 평가
from sklearn.metrics import accuracy_score, classification_report
print("Accuracy:", accuracy_score(y_test, y_pred_lr))
print(classification_report(y_test, y_pred_lr))
```

Accuracy: 0.890005008625967						
pro	ecision	recall	f1-score	support		
False	0.64	0.01	0.01	3962		
True	0.89	1.00	0.94	31976		
accuracy			0.89	35938		
macro avg	0.76	0.50	0.48	35938		
weighted avg	0.86	0.89	0.84	35938		

Modeling

Logistic Regression

Random Forest

Random Forest

```
# Random Forest 모델 학습
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train)

# 예측
y_pred = rf_model.predict(X_test)

# 성능 평가
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

Accuracy: 0.8691913851633368						
pr	ecision	recall	f1-score	support		
False	0.17	0.05	0.08	3962		
True	0.89	0.97	0.93	31976		
accuracy			0.87	35938		
macro avg	0.53	0.51	0.50	35938		
weighted avg	0.81	0.87	0.84	35938		

회고

회고

감사합니다!

지금까지 MEMI였습니다.