LINUX Sistema de Ficheros.

Implantación de Sistemas Operativos.

CONTENIDO.

- 1. Características.
- 2. Directorios del Sistema.
 - a. Actividades.
- 3. Estructura.
- 4. Tipos de Sistemas de archivos.
- 5. Rutas absolutas y relativas.
 - a. Actividad.
 - b. Metacaracteres.
 - c. Órdenes básicas.

- Es el programa encargado de realizar todas las operaciones relacionadas con el amacenamiento y manipulación de los archivos.
- Modo en el que se organizan los ficheros en el disco duro.
- Lo gestiona de una forma estructurada y sin errores.
- Es una estructura jerárquica, en forma de árbol invertido.
- El directorio principal o raíz es el directorio / de él cuelga toda la estructura del sistema.
- Admite nombres largos y se puede utilizar cualquier carácter excepto /.
- No es recomendable utilizar los siguientes caracteres:

```
\ ^! # ? & ( ) ` "´; $ = ¿; < > @ { } * + -
```

Distingue mayúsculas de minúsculas. Texto1.txt es distinto de texto1.txt

- Todos los dispositivos del sistema se pueden tratar como si fueran ficheros.
- Para acceder al contenido de un CD, disquete u otro dispositivo, debemos montarlo en un directorio ya existente en el sistema y navegaremos por él como si se tratara de una carpeta más.

Distingue cinco tipos de archivos:

- Ordinarios: Son los ficheros normales.
- Directorios o carpetas: Es un archivo especial que agrupa otros ficheros de una forma estructurada.
- Archivos especiales: Representan los dispositivos conectados a un ordenador, como puede ser una impresora. De tal forma que introducir información en ese archivo equivale a enviar información a la impresora.
- Enlaces físicos o duros (hard links): Es una etiqueta o un nuevo nombre asociado a un archivo. Es una forma de identificar el mismo contenido pero con distintos nombres.
- Enlaces simbólicos: Hacen referencia a un directorio o fichero que puede estar en un lugar distinto dentro de la estructura de directorios.

/

 Directorio raíz. Nace todo el resto de directorios. Cualquier dirección de archivo empieza en el directorio raíz.

/bin

• Se almacenan todos los binarios ejecutables del usuario. También almacena utilidades estándar: cat, cd, cp, grp, ls, mv, rm, su, ps, tar, vi, kill.

/boot

 Ejecutables y archivos necesarios para el proceso de arranque. También se encuentra el gestor de arranque GRUB.

/dev

- Incluye todos los dispositivos de almacenamiento, en forma de archivos, conectados al sistema: discos duros, memorias USB, CDROM, etc.
- Cualquier dispositivo siempre empieza con /dev y contiene la información de cada uno de los volúmenes.

Ejecutar: Sudo fdisk -l

/dev

- 1ª Unidad de disco flexible se llama /dev/fd0
- 2^a Unidad de disco flexible se llama /dev/fd1
- 1ª Unidad disco SCSI se llama /dev/sda
- 2ª Unidad disco SCSI se llama /dev/sdb
- 1ª Unidad CD-ROM SCSI se llama /dev/scd0 o también /dev/sr0
- El disco maestro en el controlador IDE primario se llama /dev/hda
- El disco esclavo en el controlador IDE primario se llama /dev/hdb
- El disco maestro-esclavo en el controlador IDE secundario se llaman /dev/hdc y /dev/hdd
- /dev/sda1 → Partición primaria 1.
- /dev/sda2 → Partición primaria 2.
- /dev/sda5 → Partición extendida.
- Si conectamos un dispositivo externo, tendremos también:
 - /dev/mouse → Se utiliza para la lectura de entrada del mouse.
 - ...

Ejecutar: sudo fdisk -l

/etc

- Almacena los archivos de configuración, tanto del sistema operativo como de aplicaciones instaladas a posteriori.
 - /etc/X11 → Ficheros de configuración de X Window.
 - /etc/fstab → Información sobre los sistemas a montar. Utilizado por mount/umount.
 - /etc/passwd → Contiene información sobre los usuarios. Login, nombre, etc.
 - /etc/shadow → Almacena los password de forma encriptada y las fechas de expiración.
 - /etc/xinetd .d → Archivo para configuar los demonios.
 - /etc/inittab → Contiene los archivos de booteo del sistema.

/home

Destinado a almacenar todos los archivos de usuario.

/home/usuario1 /home/usuario2

/lib

 Incluye las bibliotecas necesarias para ejecutar los binarios almacenados en /bin y /sbin, así como también los módulos del propio kernel.

/media

 Punto de montaje de los volúmenes lógicos. Particiones de discos, memorias USB, etc. Si tenemos varios usuarios, los puntos de montaje para cada usuario sería:

/media/usuario1 /media/usuario2

/root

Es el directorio principal del usuario root.

/srv

 Almacena archivos y directorios relativos a servidores instalados en el sistema, tales como www, FTP, CVS, etc.

•Ej: /srv/www

/usr

"User System Resources". Almacena archivos de solo lectura de las utilidades de usuario.

/usr

- "User System Resources". Almacena archivos de solo lectura de las utilidades de usuario.
 - /usr/bin → Herramientas de uso general.
 - /usr/etc → Ficheros de configuración generales.

 - /usr/lib → Librerías generales.
 - /usr/local → Para personalizar el sistema.
 - /usr/sbin → Programas del administrador del sistema
 - /usr/share/man → Páginas del manual.
 - /usr/src → Código fuente de diferentes programas del sistema.

2. a. Actividades.

- 1. ¿En qué directorio se encuentran los ficheros de configuración del sistema?
- 2. Para entrar en un sistema Linux hace falta:
 - a. Nombre de usuario, contraseña y dirección IP.
 - b. Nombre de usuario y contraseña.
 - c. Únicamente una contraseña.
- 3. Muestra el contenido del directorio que está justo a un nivel superior.
- 4. ¿En qué día de la semana naciste? Utiliza el comando cal para averiguarlo.
- 5. ¿Qué sucede si se intenta crear un directorio dentro de /etc?

- Linux
- . /
- bin
- dev
- etc
- home
 - usuario
 - Escritorio
- media (o mnt)
 - cdrom
 - usb
- tmp
- ... (usr, sbin, lib, var, proc. sys)

- Windows
- · C:\
 - Archivos de programa
 - Documents and Settings
 - usuario
 - Escritorio
 - Windows
 - Temp
- D:\ (ej.: CD-ROM)
- E:\ (ej.: Memoria USB)

- El sistema de ficheros consta de varias partes importantes:
 - Bloque de carga.
 - Superbloque.
 - Tabla de inodos
 - Bloques de datos. (Bloques de 512 bytes o múltiplo).

Bloque de carga

 O bloque 0, reservado para almacenar un programa que utiliza el sistema para gestionar el resto de las partes del sistema de ficheros.

Superbloque

Contiene información sobre el sistema de ficheros.

Inodo

La tabla de inodos es el equivalente a las entradas de la FAT.
 Cada fichero tiene asociado un elemento de esta tabla que contiene un número. Este identifica la ubicación del archivo dentro del área de datos.

Inodo

- En un inodo se guarda la siguiente información:
 - Identificador del dispositivo que alberga el sistema de archivos.
 - El número de inodo que identifca al archivo.
 - La longitud del archivo.
 - El identificador del usuario creador o propietario.
 - El identificador del grupo.
 - El modo de acceso.
 - Las marcas de tiempo con las fechas de última modificación (mtime), acceso (atime) y de alteración del propio inodo (ctime).
 - El número de enlaces (hard links), es decir, el número de nombres (entradas de directorio) asociados con este inodo. Si hay varios nombres asociados a un mismo inodo (enlaces duros) entonces todos los nombres son equivalentes entre sí.
 - El número de enlaces se emplea para eliminar el archivo, tanto el inodo como el contenido, cuando se han borrado todos los enlaces.

Is -i → Ver número de i-nodo.stat nombre_fichero → Ver información de un fichero.

Inodo

Área de datos.

- Es el equivalente a la zona de datos en FAT. En esta zona están almacenados los ficheros y directorios de nuestro sistema.
- Un directorio es un fichero que contiene los nombres de los ficheros que contiene, junto con el número del inodo que contiene la información de cada uno de ellos.

4. Tipos de sistemas de archivos.

- Soporta gran variedad de sistemas de ficheros, desde sistemas basados en discos: ext2, ext3, ReiserFS, XFS, JFS, UFS, ISO9660 a sistemas de ficheros que sirven para comunicar equipos en la red de diferentes sistemas operativos como NFS (para compartir recursos entre equipos LINUX) o SMB (comparte entre máquinas LINUX y Windows).
- También soporta: FAT, FAT32 y NTFS.

4. Tipos de sistemas de archivos.

ext2.

- Hasta hace poco era el estándar de Linux.
- Fragmentación muy baja.
- Algo lento manejando archivos de gran tamaño.
- Admite particiones de hasta 4TB y ficheros de hasta 2 GB.
- Nombres de ficheros de hasta 255 caracteres.
- Sistema muy estable.

ext3.

- Versión mejorada de ext2.
- Previsión de pérdida de datos por fallos del disco o apagones.
- Es el más difundido y es considerado como el estándar.
- Se puede actualizar de ext2 a ext3 incluso con el sistema ext2 montado.
- Sistema muy fiable.

4. Tipos de sistemas de archivos.

ext4.

- Última versión del sistema ext.
- Es muy eficiente. Menor uso de CPU, mejoras en la velocidad de L/E.
- Ficheros de hasta 16TB.
- Sistema de ficheros de hasta 1024PB (PetaBytes).

· ReiserFS.

- Sistema de última generación.
- Organiza los ficheros de tal forma que agiliza mucho las operaciones con ellos.

Swap.

• Sistema de ficheros para la partición de intercambio de Linux. Todos los sistemas Linux necesitan una partición de este tipo para cargar programas y no saturar la RAM. En Windows se hace con el archivo pagefile.sys en la misma partición de trabajo, con los consiguientes problemas que conlleva.

5. Rutas absolutas y relativas.

- Rutas absolutas.
 - Se pone el camino completo partiendo del directorio raiz.
- Rutas relativas.
 - Se indica la ruta relativa al directorio en el que estamos.
 - Los caminos relativos NO comienzan con "/".

Comandos:

5.a. Actividad.

Crea la siguiente estructura en solo 3 pasos:

- Comprueba que lo has creado correctamente utilizando el comando tree.
- Si es correcto, vuelca el resultado en un archivo llamado "arbol.txt"
- Visualiza su contenido con el comando cat.

5.b. Metacaracteres.

· Son caracteres que sirven de comodín.

?	Sustituye a un único carácter.
*	Sustituye a un conjunto de caracteres.
[]	Conjunto de caracteres.
[^] o	Excepto ese conjunto de caracteres.

Ejemplos:

```
[abc] → "a" o "b" o "c".
[a-c] → Igual. El guión se utiliza para poner rangos. [0-9]
[!abc] → Cualquier carácter menos a, b, c
Le[ae]me → leame o leeme.
```

```
[1-3]???t.* \rightarrow ar[cC]hivo.txt \rightarrow
```


5.c. Órdenes básicas.

• **clear** Limpiar la pantalla

Who Muestra los usuarios conectados al sistema.

• whoiam Muestra información del usuario actual.

• **UNAME** Muestra información del sistema.

logname Muestra el nombre del usuario conectado.

id Muestra el identificador y el grupo del usuario.

date Informa de la fecha y la hora actual.

passwd –d nombreusuario (Borramos la contraseña de un usuario)

uptime Indica el tiempo que lleva encendida la máquina.

cal
 Muestra por pantalla un calendario simple.

5.c. Órdenes básicas.

- cat Visualiza el contenido de un archivo.
- Concatenar órdenes:

Is -I | more

Redireccionar la salida: >

cal 2017 > calendario.txt

