

Mark Scheme (Results)

June 2011

GCE Core Mathematics C4 (6666) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027663
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- · dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 FINAL Core Mathematics C4 6666 Mark Scheme

Question Number	Scheme		Marks	
1.	$9x^2 = 1$	$A(x-1)(2x+1)+B(2x+1)+C(x-1)^2$		B1
		$9 = 3B \implies B = 3$		M1
	$x \rightarrow -\frac{1}{2}$	$\frac{9}{4} = \left(-\frac{3}{2}\right)^2 C \implies C = 1$	Any two of A , B , C	A1
	x^2 terms	$9 = 2A + C \implies A = 4$	All three correct	A1 (4)
	Alternatives for finding A.			[4]
		$0 = -A + 2B - 2C \implies A = 4$ $\text{ms} 0 = -A + B + C \implies A = 4$		

Question Number	Scheme	Marks	
_	Scheme $f(x) = (\dots + \dots)^{-\frac{1}{2}}$ $= 9^{-\frac{1}{2}} (\dots + \dots)^{-\frac{1}{2}}$ $(1+kx^2)^n = 1 + nkx^2 + \dots$ $(1+kx^2)^{-\frac{1}{2}} = \dots + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} (kx^2)^2$ $ft their k \neq 1 \left(1 + \frac{4}{9}x^2\right)^{-\frac{1}{2}} = 1 - \frac{2}{9}x^2 + \frac{2}{27}x^4 f(x) = \frac{1}{3} - \frac{2}{27}x^2 + \frac{2}{81}x^4$	Marks M1 B1 M1 A1 ft A1 (6) [6]	

Question Number	Scheme	Marks	
3.	(a) $\frac{dV}{dh} = \frac{1}{2}\pi h - \pi h^2$ or equivalent	M1 A1	
	At $h = 0.1$, $\frac{dV}{dh} = \frac{1}{2}\pi (0.1) - \pi (0.1)^2 = 0.04\pi$ $\frac{\pi}{25}$	M1 A1 (4	4)
	(b) $\frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} = \frac{\pi}{800} \times \frac{1}{\frac{1}{2}\pi h - \pi h^2} \qquad \text{or } \frac{\pi}{800} \div \text{ their (a)}$	M1	
	At $h = 0.1$, $\frac{dh}{dt} = \frac{\pi}{800} \times \frac{25}{\pi} = \frac{1}{32}$ awrt 0.031	A1 (2)	2)
		[6	5]

Question Number	Scheme	Mark	S
4.	(a) 0.0333, 1.3596 awrt 0.0333, 1.3596	B1 B1	(2)
	(b) Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} [\dots]$	B1	
	$\approx \dots \left[0 + 2(0.0333 + 0.3240 + 1.3596) + 3.9210\right]$	M1	
	≈ 1.30 Accept	A1	(3)
	(c) $u = x^2 + 2 \implies \frac{\mathrm{d}u}{\mathrm{d}x} = 2x$	B1	
	Area $(R) = \int_0^{\sqrt{2}} x^3 \ln(x^2 + 2) dx$	B1	
	$\int x^3 \ln(x^2 + 2) dx = \int x^2 \ln(x^2 + 2) x dx = \int (u - 2) (\ln u) \frac{1}{2} du$	M1	
	Hence Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du$ *	A1	(4)
	(d) $\int (u-2)\ln u du = \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u^2}{2} - 2u\right) \frac{1}{u} du$	-M1 A1	
	$= \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u}{2} - 2\right) du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) (+C)$	-M1 A1	
	Area $(R) = \frac{1}{2} \left[\left(\frac{u^2}{2} - 2u \right) \ln u - \left(\frac{u^2}{4} - 2u \right) \right]_2^4$ = $\frac{1}{2} \left[(8 - 8) \ln 4 - 4 + 8 - ((2 - 4) \ln 2 - 1 + 4) \right]$	-M1	
	$= \frac{1}{2} (2 \ln 2 + 1) \qquad \ln 2 + \frac{1}{2}$	A1	(6) [15]

Question Number	Scheme	Marks
5.	$\frac{1}{y} \frac{dy}{dx} = \dots$ $\dots = 2 \ln x + 2x \left(\frac{1}{x}\right)$ At $x = 2$, $\ln y = 2(2) \ln 2$ leading to $y = 16$ Accept $y = e^{4 \ln 2}$	B1 M1 A1 M1 A1
	At (2,16) $\frac{1}{16} \frac{dy}{dx} = 2 \ln 2 + 2$ $\frac{dy}{dx} = 16(2 + 2 \ln 2)$	M1 A1 (7) [7]
	Alternative $y = e^{2x \ln x}$ $\frac{d}{dx} (2x \ln x) = 2 \ln x + 2x \left(\frac{1}{x}\right)$ $\frac{dy}{dx} = \left(2 \ln x + 2x \left(\frac{1}{x}\right)\right) e^{2x \ln x}$ At $x = 2$, $\frac{dy}{dx} = (2 \ln 2 + 2) e^{4 \ln 2}$	B1 M1 A1 M1 A1 M1
	$=16(2+2\ln 2)$	A1 (7)

Question Number	Scheme	Marks	
6.	(a) i: $6-\lambda = -5+2\mu$ j: $-3+2\lambda = 15-3\mu$ Any two equations leading to $\lambda = 3$, $\mu = 4$ $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + 3 \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix} \text{ or } \mathbf{r} = \begin{pmatrix} -5 \\ 15 \\ 3 \end{pmatrix} + 4 \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix}$ $\mathbf{k}: \text{ LHS } = -2+3(3)=7, \text{ RHS } = 3+4(1)=7$ (As LHS = RHS, lines intersect) Alternatively for B1, showing that $\lambda = 3$ and $\mu = 4$ both give $\begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix}$	M1 M1 A1 M1 A1 B1 (6)	
	(b) $\begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = -2 - 6 + 3 = \sqrt{14} \sqrt{14} \cos \theta (\theta \approx 110.92^{\circ})$ Acute angle is 69.1° awrt 69.1	M1 A1 A1 (3)	
	(c) $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix} + 1 \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} (\Rightarrow B \text{ lies on } l_1)$	B1 (1)	
	(d) Let d be shortest distance from B to l_2 $AB = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix}$ $\begin{vmatrix} A & \theta \\ -1 \\ 1 \end{vmatrix} = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ $ AB = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ $ AB = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ $ AB = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ $ AB = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ $ AB = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$ $ AB = \sqrt{(2^2 + (-4)^2 + (-6)^2)} = \sqrt{56}$	M1	
	$\frac{d}{\sqrt{56}} = \sin \theta$ $d = \sqrt{56} \sin 69.1^{\circ} \approx 6.99$ awrt 6.99	M1 A1 (4) [14]	

$\tan \theta = \sqrt{3} \text{or } \sin \theta = \frac{\sqrt{3}}{2}$ $\theta = \frac{\pi}{3}$ $\frac{dx}{d\theta} = \sec^2 \theta, \frac{dy}{d\theta}$ $\frac{dy}{dx} = \frac{\cos \theta}{\sec^2 \theta} (=$		M1 A1	(2)
$\frac{dx}{d\theta} = \sec^2 \theta, \frac{dy}{d\theta}$ $\frac{dy}{dx} = \frac{\cos \theta}{\sec^2 \theta} (=$	$\frac{\partial}{\partial t} = \cos \theta$	A1	(2)
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos\theta}{\sec^2\theta} (=$			
	$\cos^3 \theta$		
$_{2}(\pi)$		M1 A1	
$m = \cos^3\left(\frac{\pi}{3}\right) =$	$\frac{1}{8}$ Can be implied	A1	
mm' = -1, $m' = -8y - \frac{1}{2}\sqrt{3} = -8(x - \sqrt{3})$		M1 M1	
		A1	(6)
$y^{2} dx = \int y^{2} \frac{dx}{d\theta} d\theta = \int \sin^{2} \theta \sec^{2} \theta$ $= \int \tan^{2} \theta d\theta$ $= \int (\sec^{2} \theta - 1) d\theta$ $= \tan \theta - \theta (+C)$	$ heta\mathrm{d} heta$	M1 A1 A1 A1 A1 A1 A1	(7) [15]
	$y^{2} dx = \int y^{2} \frac{dx}{d\theta} d\theta = \int \sin^{2} \theta \sec^{2} \theta$ $= \int \tan^{2} \theta d\theta$ $= \int (\sec^{2} \theta - 1) d\theta$ $= \tan \theta - \theta (+C)$ $\pi \int_{0}^{\frac{\pi}{3}} y^{2} dx = \left[\tan \theta - \theta\right]_{0}^{\frac{\pi}{3}} = \pi \left[\left(\sqrt{\frac{\pi}{3}}\right)^{\frac{\pi}{3}}\right] = \pi$	$y^{2} dx = \int y^{2} \frac{dx}{d\theta} d\theta = \int \sin^{2}\theta \sec^{2}\theta d\theta$ $= \int \tan^{2}\theta d\theta$ $= \int (\sec^{2}\theta - 1) d\theta$ $= \tan\theta - \theta (+C)$ $\pi \int_{0}^{\frac{\pi}{3}} y^{2} dx = \left[\tan\theta - \theta\right]_{0}^{\frac{\pi}{3}} = \pi \left[\left(\sqrt{3} - \frac{\pi}{3}\right) - (0 - 0)\right]$	g to $x = \frac{17}{16}\sqrt{3} \qquad (k = \frac{17}{16})$ $1.0625 \qquad \text{A1}$ $y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta = \int \sin^2 \theta \sec^2 \theta d\theta$ $= \int \tan^2 \theta d\theta$ $= \int (\sec^2 \theta - 1) d\theta$ $= \tan \theta - \theta (+C)$ $\pi \int_0^{\frac{\pi}{3}} y^2 dx = \left[\tan \theta - \theta\right]_0^{\frac{\pi}{3}} = \pi \left[\left(\sqrt{3} - \frac{\pi}{3}\right) - (0 - 0)\right]$ M1

Question Number	Scheme	Marks
8.	(a) $\int (4y+3)^{-\frac{1}{2}} dx = \frac{(4y+3)^{\frac{1}{2}}}{(4)(\frac{1}{2})} + C$ $\left(=\frac{1}{2}(4y+3)^{\frac{1}{2}} + C\right)$	M1 A1 (2)
	(b) $\int \frac{1}{\sqrt{(4y+3)}} dy = \int \frac{1}{x^2} dx$ $\int (4y+3)^{-\frac{1}{2}} dy = \int x^{-2} dx$	B1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x} (+C)$	M1
	Using $(-2, 1.5)$ $\frac{1}{2}(4 \times 1.5 + 3)^{\frac{1}{2}} = -\frac{1}{-2} + C$ leading to $C = 1$ $\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{-1} + 1$	M1 A1
	$\frac{1}{2}(4y+3)^{\frac{1}{2}} = -\frac{1}{x}+1$ $(4y+3)^{\frac{1}{2}} = 2 - \frac{2}{x}$ $y = \frac{1}{4}\left(2 - \frac{2}{x}\right)^2 - \frac{3}{4}$ or equivalent	M1 A1 (6)
		[8]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA027663 June 2011

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com/quals}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

