Vibrations (ch24)

Aslak Grinsted Cont Mech 2022

Motivation

- Plate
- PianoTeq
- Earthquakes Inge Lehmann
- Bruel og Kjær

Redefine...

- Position of material particle at time t. (originally located at x)
 - x + u(x,t)
 - Note: this is different from strain chapter where x was new pos.
- So velocity field and acceleration field.
 - $v = \partial u/\partial t$
 - $\mathbf{w} = \partial^2 \mathbf{u}/\partial t^2$

TODO: consider D/Dt .. more formally correct Is this because these are formulated as functions of orig pos.

- We aim to model small vibrations around an equilibrium state.
 - The initial state may already be stressed and deformed.
 - (E.g. a piano frame is already under tremendous stress)
 - (So we can ignore body forces.)

Probably have a good idea where we are going with this.

•
$$\rho \frac{\partial^2 u}{\partial t^2} = f^* = f + \nabla \cdot \sigma$$

• Hooke:

•
$$\sigma = 2\mu\epsilon + \lambda Itr(\epsilon)$$

• Definition of cauchy strain tensor

•
$$\epsilon = u = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})$$

- It would be simple to update our elastostatics cheese
 - Finite Diff code to have a velocity field.

Combine

- Assume isotropic medium
 - (so that we can treat material properties as constants)
- And insert (not shown but see ch9 in index notation)

•
$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \mu \nabla^2 \mathbf{u} + (\lambda + \mu) \nabla \nabla \cdot \mathbf{u}$$

- "Navier's equation of motion"
- You can already see it looks like a wave equation.
 - Second order time deriv. proportional to second order spatial deriv.
 - But now **u** is a vector.

Splitting u to transverse/longitudinal

•
$$\rho \frac{\partial^2 u}{\partial t^2} = \mu \nabla^2 u + (\lambda + \mu) \nabla \nabla \cdot u$$

- We can split u into two components
 - $u = u_L + u_T$
 - $u_{\rm T}$ is divergence free. $\nabla \cdot u_{\rm T} = 0$
 - $m{u}_{
 m L}$ is curl free (purely divergent). $abla imes m{u}_{
 m L} = 0$
- Motivation for this split.
 - Naviers eqn has two RHS terms one deals purely with divergence.

• Divergence in displacement is associated with density and thus pressure change.

• For this reason the longitudinal component is also called the pressure or p-component.

• The divergence free transverse component (no pressure change) is also called the shear component or S-component.

Inserting...

•
$$\rho \frac{\partial^2 u_T}{\partial t^2} = \mu \nabla^2 u_T$$

• Using
$$\nabla \times (\nabla \times u_L) = \nabla (\nabla \cdot u_L) - \nabla^2 u_L$$

•
$$\rho \frac{\partial^2 u_L}{\partial t^2} = (2\mu + \lambda) \nabla^2 u_L$$

Completely separate (uncoupled equations.)

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \mu \nabla^2 \mathbf{u} + (\lambda + \mu) \nabla \nabla \cdot \mathbf{u}$$

• Two wave equations, different speeds

•
$$c_T = \sqrt{\frac{\mu}{\rho}}$$

•
$$c_T = \sqrt{\frac{\mu}{\rho}}$$
• $c_L = \sqrt{\frac{2\mu + \lambda}{\rho}}$

$$\rho \frac{\partial^2 \mathbf{u_T}}{\partial t^2} = \mu \nabla^2 \mathbf{u_T}$$

$$\rho \frac{\partial^2 \mathbf{u_L}}{\partial t^2} = (2\mu + \lambda) \nabla^2 \mathbf{u_L}$$

- Longitudinal faster than transverse.
 - Pressure faster than Shear
 - P & S conveniently also maps to Primary/secondary waves.
- Speed ratio can be rewritten in terms of poisson ratio.
- For normal materials (where $\nu = \frac{1}{3}$). $c_L = 2c_T$

- That's a wave-eqn...
- Natural to write the displacement as a harmonic series
 - Fourier possible for any time dependent field
- So, if we figure something out for an oscillation of the form :

$$m{u}(m{x}) \cdot e^{-i\omega t}$$

Real part is the displacement. $m{u}(m{x},t)$
Imag part: $\partial_t m{u}(m{x},t)/\omega$

• Then we can superpose those to get to a more general soln.

Insert harmonic oscillation in Navier.

•
$$\rho \frac{\partial^2 u}{\partial t^2} = \mu \nabla^2 u + (\lambda + \mu) \nabla \nabla \cdot u$$

•
$$u(x,t) = u(x) \cdot e^{-i\omega t}$$

$$\bullet -\rho\omega^2 \boldsymbol{u} = \mu \nabla^2 \boldsymbol{u} + (\lambda + \mu) \nabla \nabla \cdot \boldsymbol{u}$$

• Now we have a time independent equation for $u(x,\omega)$

Consider a plane wave

•
$$u(x,t) = a \cdot e^{i(k \cdot x - \omega t)}$$

- k: propagation direction & wavelength
- a: "polarization vector" complex

$$-\rho\omega^2 \mathbf{u} = \mu\nabla^2 \mathbf{u} + (\lambda + \mu)\nabla\nabla \cdot \mathbf{u}$$
$$\mathbf{u}(\mathbf{x}, t) = \mathbf{a} \cdot e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

• If we insert t=0 then we can see how the wavelength $\frac{2\pi}{|\mathbf{k}|}$ is related to a, omega

$$\bullet -\rho\omega^2 \mathbf{a} = \mu \mathbf{k}^2 \mathbf{a} + (\lambda + \mu) \mathbf{k} \mathbf{k} \cdot \mathbf{a}$$

Eigen-value equation

for the 3 × 3 matrix
$$\mu k^2 \mathbf{1} + (\lambda + \mu)kk = \{\mu k^2 \delta_{ij} + (\lambda + \mu)k_i k_j\}.$$

Eigen-value equation

what can we use that for?

For a given propagation direction k

- You can find the 3 eigenvectors a
- -with corresponding eigenvalues $\rho\omega^2$

• I.e. 3 distinct 'modes' of polarization which are characterized by their own wavelength.

- Eigenvector 1: a aligned with k
 - Eigenvalue 1: $\rho \omega^2 = (\lambda + 2\mu) \mathbf{k}^2$
 - Longitudinal P-wave
- Eigenvectors 2&3: a perpendicular to k
 - Eigenvalue: $\rho \omega^2 = 2\mu k^2$
 - Transverse S-wave