DEL 1Uten hjelpemidler

Oppgave 1 (3 poeng)

Deriver funksjonene

- a) $f(x) = \cos(\pi x 2)$
- b) $g(x) = x \cdot \sin x$

Oppgave 2 (5 poeng)

Bestem integralene

- a) $\int (4x^2 + 3x) \, dx$
- b) $\int 4x^2 \cdot \ln x \, dx$
- $c) \int_{0}^{\sqrt{12}} \frac{2x}{x^2 + 4} dx$

Oppgave 3 (3 poeng)

I en aritmetisk rekke $a_1 + a_2 + \cdots + a_n$ er $a_2 = 4$ og $a_5 = 13$.

Bestem en eksplisitt formel for summen av denne rekken.

Oppgave 4 (3 poeng)

En differensiallikning er gitt ved

$$y' = (\sin x) \cdot y^2$$

- a) Bestem den generelle løsningen av differensiallikningen.
- b) Bestem den løsningen av differensiallikningen som er slik at $y(\pi) = 1$.

Oppgave 5 (4 poeng)

Funksjonen f er gitt ved

$$f(x) = 1 - x^2$$

Et flatestykke er avgrenset av x-aksen og grafen til f.

a) Bestem arealet av flatestykket.

Vi får et omdreiningslegeme ved å dreie flatestykket 360° om x-aksen.

b) Bestem volumet av omdreiningslegemet.

Oppgave 6 (8 poeng)

Funksjonen f er gitt ved

$$f(x) = 2\sin\left(\frac{\pi}{2}(x-1)\right)$$
, $x \in \langle 1, 9 \rangle$

- a) Bestem eventuelle toppunkter og bunnpunkter på grafen til f.
- b) Bestem nullpunktene til f.
- c) Lag en skisse av grafen til f.
- d) Løs likningen $f(x) = \sqrt{3}$

Oppgave 7 (6 poeng)

En kuleflate er gitt ved

$$x^2 - 6x + y^2 + 4y + z^2 - 8z - 20 = 0$$

a) Vis at sentrum i kulen er S(3, -2, 4). Bestem radien til kuleflaten.

Et plan er gitt ved

$$6x-3y+2z-4=0$$

b) Bestem avstanden fra kulens sentrum S til planet.

Skjæringen mellom kuleflaten og planet er en sirkel.

c) Bestem arealet av sirkelen.

Oppgave 8 (4 poeng)

En uendelig geometrisk rekke er gitt ved

$$S(x) = 1 - 2x + 4x^2 - 8x^3 + \dots$$

- a) Bestem konvergensområdet til rekken.
- b) For hvilke verdier av a har likningen S(x) = a løsning?

DEL 2 Med hjelpemidler

Oppgave 1 (6 poeng)

Funksjonene f og g er gitt ved

$$f(x) = -x^2 + 3x + 3$$

 $g(x) = x^2 + 1$

a) Bruk graftegner til å tegne grafene til f og g i samme koordinatsystem.

Grafene til f og g avgrenser et flatestykke med areal A.

Bestem A ved hjelp av CAS.

Tyngdepunktet T til flatestykket er $\left(\frac{M}{A}, \frac{N}{A}\right)$, der M og N er gitt ved

$$M = \int_{a}^{b} x \cdot (f(x) - g(x)) \, \mathrm{d}x$$

$$M = \int_{a}^{b} x \cdot (f(x) - g(x)) dx$$

$$N = \frac{1}{2} \int_{a}^{b} (f(x)^{2} - g(x)^{2}) dx$$

Tallene a og b er x-koordinatene til skjæringspunktene mellom grafene til f og g, der a < b.

Bestem koordinatene til T ved hjelp av CAS.

Oppgave 2 (6 poeng)

Gitt punktene A(0, 0, 0), B(1, t+2, 3t), C(0, 4, t+1) og D(t-3, 8, 1), der $0 \le t \le 10$.

- a) Bestem arealet av trekanten ABC for t = 2.
- b) Bruk CAS til å bestemme t slik at arealet til trekanten ABC blir lik 6.
- c) Bestem t slik at volumet av pyramiden ABCD blir størst mulig.

Oppgave 3 (8 poeng)

I en by med 12 000 innbyggere sprer det seg en smittsom sykdom. Det viser seg at vekstfarten i antall smittede personer til enhver tid er proporsjonal med antall personer som ennå ikke er smittet. Vi lar k være proporsjonalitetskonstanten.

a) Sett opp en differensiallikning som beskriver antall smittede personer y(t), der t er antall uker etter at sykdommen ble oppdaget.

Da sykdommen ble oppdaget, var 100 personer smittet.

b) Vis at $y(t) = 12000 - 11900 \cdot e^{-kt}$

Etter 10 uker var 4 000 personer smittet.

- c) Bruk dette til å bestemme k.
- d) Ved hvilket tidspunkt var halvparten av innbyggerne i byen smittet av sykdommen?

Oppgave 4 (4 poeng)

Figuren nedenfor viser hvordan femkanttallene er bygd opp.

Femkanttallene er gitt ved den rekursive formelen

$$P_{n+1} = P_n + 3n + 1$$
, $P_1 = 1$

a) Vis ved induksjon at

$$P_n = \frac{3n^2 - n}{2}$$

Mathias observerer at det er mulig å regne ut P_n som summen av tre trekanttall, der trekanttall nummer n er $T_n = 1 + 2 + \dots + n$. Se figuren nedenfor. Han brukte dette til å

vise at
$$P_n = \frac{3n^2 - n}{2}$$

Mathias' oppdeling av P_5

b) Bruk ideen til Mathias til å utlede formelen for P_n .