Key to Final Exam S2 Computer Architecture

Duration: 1 hr 30 min.

Answer on the answer sheet <u>only</u>.

Do not show any calculation unless you are explicitly asked.

Do not use red ink.

Exercise 1 (5 points)

- 1. Convert the numbers given on the <u>answer sheet</u> into their **single-precision** IEEE-754 representations. Write down the final result in its **binary form** and specify the three fields.
- 2. Convert the **double-precision** IEEE-754 words given on the <u>answer sheet</u> into their associated representations. If a representation is a number, use the following base-10 form: $k \times 2^n$ where k and n are integers (either positive or negative).

Exercise 2 (4 points)

We want to build a 2-Mib ROM device (labelled M) from several 16-Kib ROM devices (labelled m). The M device has a 16-bit data bus. The m devices have a 4-bit data bus. Answer the questions on the answer sheet.

Exercise 3 (5 points)

- 1. Wire the flip-flops (<u>figure 1</u>) in order to design a **modulo-11 asynchronous up counter**.
- 2. Wire the flip-flops (figure 2) in order to design a modulo-11 asynchronous down counter.
- 3. Wire the flip-flops (figure 3) in order to design a shift register (E \rightarrow Q0 \rightarrow Q1 \rightarrow Q2 \rightarrow Q3).

Exercise 4 (6 points)

The table shown on the <u>answer sheet</u> gives the sequence of a counter we want to design. This counter should be made up of JK flip-flops.

- 1. Complete the table shown on the <u>answer sheet</u>.
- 2. Write down the most simplified expressions of J and K for each flip-flop on the <u>answer sheet</u>. <u>Complete the Karnaugh maps for the solutions that are not obvious</u>. An obvious solution does not have any logical operations apart from the complement (for instance: J0 = 1, $K1 = \overline{Q2}$).

Key to Final Exam S2

Key to Final Exam S2 2/6

Last name:	First name:	Group:
------------	-------------	--------

ANSWER SHEET

Exercise 1

1.

Number	Number S E		M	
75.75	75.75 0 10000101		00101111000000000000000	
0.46875	0	01111101	11100000000000000000000	

2.

IEEE-754 Representation	Associated Representation
20A1 8000 0000 0000 ₁₆	35×2^{-506}
7FF7 0000 0000 0000 ₁₆	NaN
0004 2000 0000 0000 ₁₆	$33 \times 2^{-1,029}$

Exercise 2

Question	Answer
What is the depth of the <i>m</i> memory?	2 ¹² words
What is the depth of the <i>M</i> memory?	2 ¹⁷ words
What is the number of address lines of the <i>m</i> memory?	12 lines
What is the number of address lines of the <i>M</i> memory?	17 lines
How many memory devices should be put in parallel?	4 memory devices
How many memory devices should be put in series?	32 memory devices
How many address lines are required to control the <i>CS</i> input of the memory devices?	5 address lines
When the M memory is active, how many m memory devices are active simultaneously?	4 m memory devices

Exercise 3

Figure 1

Figure 2

Figure 3

Exercise 4

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
0	0	0	0	Φ	0	Ф	1	Φ
0	0	1	0	Φ	1	Φ	Φ	0
0	1	1	0	Φ	Φ	0	Φ	1
0	1	0	1	Φ	Φ	0	0	Φ
1	1	0	Φ	0	Φ	0	1	Φ
1	1	1	Φ	0	Φ	1	Φ	0
1	0	1	Φ	0	0	Φ	Φ	1
1	0	0	Φ	1	0	Ф	0	Ф

Do not use Karnaugh maps for obvious solutions.

$$J0 = \overline{Q1}.\overline{Q2} + Q1.Q2 = \overline{Q1} \oplus \overline{Q2}$$

		Q1 Q0					
	J1	00	01	11	10		
02	0	0	1	Ф	Φ		
Q2	1	0	0	Φ	Φ		

$$J1 = Q0.\overline{Q2}$$

$$J2 = \overline{Q0}.Q1$$

$$\mathbf{K0} = \overline{\mathbf{Q1}}.\mathbf{Q2} + \mathbf{Q1}.\overline{\mathbf{Q2}} = \mathbf{Q1} \oplus \mathbf{Q2}$$

		Q1 Q0						
	K1	00 01 11 10						
02	0	Φ	Ф	0	0			
Q2	1	Φ	Φ	1	0			

$$K1 = Q0.Q2$$

		Q1 Q0						
	K2	00 01 11 10						
02	0	Φ	Ф	Φ	Φ			
Q2	1	1	0	0	0			

$$K2 = \overline{Q0}.\overline{Q1}$$

$Computer\ Architecture - EPITA - S2 - 2016/2017$ Feel free to use the blank space below if you need to: