COL703 Assignment - 1

B.V.N.S.Aditya~(2019CS50471)

$12^{th} \text{ Sep, } 2022$

Contents

1	Problem 1	1
	1.a Part - b	1
	1.b Part - d	1
2	Problem 3	2
3	Problem 4	4
	3.a Part c	4
	3.b Part d	4
4	Problem 7	5
5	Problem 8	6
	5.a Part b	6
	5.b Part d	6

1 Problem 1

1.a Part - b

1. ¬p 2. p ∨ q	Premise Premise
3. p 4. ⊥ 5. q	$\begin{array}{c} \text{Premise} \\ \neg \text{e } 1, 3 \\ \bot \text{e } 4 \end{array}$
6. q	Premise
7. q	$\forall e \; 5, 6$

So, $\neg p$, $p \lor q \vdash q$ is valid.

1.b Part - d

1. p ∧ ¬p	Premise
2. p	$\wedge e_1 1$
3. ¬p	$\wedge e_2 1$
4. ⊥	$\neg e 2, 3$
$5. \neg (r \rightarrow q) \land (r \rightarrow q)$	\perp e 4

So, p $\land \neg p \vdash \neg (r \to q) \land (r \to q)$ is valid.

Rule for \leftrightarrow Introduction (\leftrightarrow i):

$$\frac{\phi \to \psi, \psi \to \phi}{\phi \leftrightarrow \psi}$$

Rule-1 for \leftrightarrow Elimination (\leftrightarrow e₁):

$$\frac{\phi \leftrightarrow \psi, \phi}{\psi}$$

Rule-2 for \leftrightarrow Elimination (\leftrightarrow e₂):

$$\frac{\phi \leftrightarrow \psi, \psi}{\phi}$$

Rule-3 for \leftrightarrow Elimination (\leftrightarrow e₃):

$$\frac{\phi \leftrightarrow \psi, \neg \phi}{\neg \psi}$$

Rule-4 for \leftrightarrow Elimination (\leftrightarrow e₄):

$$\frac{\phi \leftrightarrow \psi, \neg \psi}{\neg \phi}$$

Proof for Introduction:

1. $\phi \to \psi$	Premise
$2. \psi \rightarrow \phi$	Premise
3. $(\phi \to \psi) \land (\psi \to \phi)$	$\wedge i 1, 2$
$4. \phi \leftrightarrow \psi$	Interpretation of 1

Proof for Elimination - 1:

1. $\phi \leftrightarrow \psi$	Premise
2. $(\phi \to \psi) \land (\psi \to \phi)$	Interpretation of 1
$3. \phi$	Premise
$\begin{vmatrix} 3. & \phi \\ 4. & \phi \to \psi \end{vmatrix}$	$\wedge e_1 \ 2$
$5. \psi$	MP 4, 3

Proof for Elimination - 2:

1. $\phi \leftrightarrow \psi$	Premise
2. $(\phi \to \psi) \land (\psi \to \phi)$	Interpretation of 1
$3. \psi$	Premise
4. $\psi \to \phi$	$\wedge e_2$ 2
5. ϕ	MP 4, 3

Proof for Elimination - 3:

1. $\phi \leftrightarrow \psi$	Premise
2. $(\phi \to \psi) \land (\psi \to \phi)$	Interpretation of 1
$3. \neg \phi$	Premise
$4. \ \psi \rightarrow \phi$	$\wedge e_2$ 2
$5. \neg \psi$	MT 4, 3

Proof for Elimination - 4:

1. $\phi \leftrightarrow \psi$	Premise
2. $(\phi \to \psi) \land (\psi \to \phi)$	Interpretation of 1
$3. \neg \psi$	Premise
$4. \phi \rightarrow \psi$	$\wedge e_2$ 2
$5. \neg \phi$	MT 4, 3

So, we have proofs for Introduction and Elimination using basic proof rules. So, the rules of introduction, elimination of the connective \leftrightarrow are derived rules.

3.a Part c

1. $(p \rightarrow r) \land (q \rightarrow r)$	Premise
$2. (p \rightarrow r)$	$\wedge e_1 1$
3. p ∧ q	Assumption
3. p ∧ q 4. p	∧e 3
5. r	\rightarrow e 2, 4
6. $(p \land q) \rightarrow r$	\rightarrow i 3 - 5

So, $(p \to r) \, \wedge \, (q \to r) \vdash (p \wedge q) \to r$ is valid.

3.b Part d

1. $p \rightarrow q \wedge r$	Premise
2. p 3. q ∧ r 4. q	Assumption MP 1, 2 $\land e_1 \ 3$
$5. p \to q$	→i 2 - 4
6. p 7. q ∧ r 8. r	Assumption MP 1, 6 \land e ₂ 7
$\begin{vmatrix} 9. & p \rightarrow r \\ 10. & (p \rightarrow q) \land (p \rightarrow r) \end{vmatrix}$	→i 6 - 8 ∧i 5, 9

So, $p \to q \wedge r \vdash (p \to q) \wedge (p \to r)$ is valid.

Truth Table of $p \leftrightarrow q$:

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	T	F
F	F	T

Claim - 1: Any formula formed using $\{\leftrightarrow, \neg\}$ having more than 1 atom has even number of T's in its truth table

Proof:

Induction on number of connectives

Base Case: Let number of connectives = 1. Formula we can form using one connective and having more than 1 atom is $p \leftrightarrow q$. From the truth table of $p \leftrightarrow q$, we can see that it has 2 T's. So, our claim is true.

Induction Hypothesis: Let's assume that our claim is true for all formulas with number of connectives less than k.

Induction Step: Let's consider a formula F with k connectives.

F can be of form $A \leftrightarrow B$ or $\neg A$ where A, B are formulas with less than k connectives

Case - 1: $F = A \leftrightarrow B$. From Induction Hypothesis, truth table of A, B have even number of T's. Number of entries in truth table is also even (because number of atoms > 1). Let no of entries in truth tables of A, B be 2*k1, 2*k2 respectively. Let number of T's in A = 2*m. So, number of F's in A = 2*k1 - 2*m. Similarly, number of T's in B = 2*n. So, no of F's in B = 2*k2 - 2*n. From the truth table of \leftrightarrow , we can say that F will be true only when both A, B are true or both A, B are false. So, F will be true $\min(2*m, 2*n) + \min(2*k1 - 2*m, 2*k2 - 2*n)$ times which is even. Hence, our claim is true in this case.

Case - 2: $F = \neg A$. From Induction Hypothesis, A has even number of T's in its truth table. Let no of entries in the truth table of 2*k1 and no of T's be 2*m. So, no of F's in truth table of A are 2*k1 - 2*m. So, no of T's in the truth table of F are 2*k1 - 2*m which is even. So, our claim is true in this case.

Hence, our claim is proved.

Claim - 2: A formula of type $A \to B$ can't be represented by using $\{\leftrightarrow, \neg\}$ and has only one atom.

Proof:

Proof by Contradiction.

As we can use only one atom, we can use only \neg connective. Let the propositional atoms be $\{p,q\}$. Let's assume that a formula F formed is equivalent to $p \to q$. Now, F has only one propositional atom, let it be p. Let v, w be defined as v(p) = T, v(q) = T, v(p) = T, v(q) = T. From here, $v(p) \to q$ but v(p) = v(q). This is a contradiction. Hence, we can't represent a formula of form $p \to q$ using only one atom

The formula $p \to q$ have odd number of T's in their truth tables. And from claim-2, we need at least 2 atoms to represent it. So, we can't represent this using $\{\leftrightarrow, \neg\}$ because of Claim - 1 (As any formula formed have even number of T's). So, $\{\leftrightarrow, \neg\}$ is not adequate.

5.a Part b

Given sequent: $\neg r \to (p \lor q), \, r \land \neg q \vdash r \to q$

р	q	r	$\neg q$	$\neg r$	$p \lor q$	$\neg r \to (p \lor q)$	$r \wedge \neg q$	$r \rightarrow q$
Т	Т	Т	F	F	Т	Т	F	Т
T	Т	F	F	Т	Т	Т	F	Т
T	F	Т	Т	F	Т	Т	Т	F
F	Т	Т	F	F	Т	Т	F	T
T	F	F	Т	Т	Т	Т	F	T
F	Т	F	F	Т	Т	Т	F	T
F	F	Т	Т	F	F	Т	Т	F
F	F	F	Т	Т	F	F	F	Т

From rows 3, 7, we can observe that for valuations p = T/F, q = F, r = T, the truth values of formulas on left is T and the truth value for formula on right is F. So, the given sequent is not valid.

5.b Part d

Given sequent: $p \to (q \to r) \vdash p \to (r \to q)$

n	α	r	$a \rightarrow r$	$r \rightarrow q$	$p \rightarrow (q \rightarrow r)$	$p \to (r \to a)$
Р	q	1	$q \rightarrow r$	$r \rightarrow q$	$p \rightarrow (q \rightarrow r)$	$p \rightarrow (r \rightarrow q)$
T	T	T	T	T	T	Т
T	T	F	F	Т	F	T
T	F	Т	Т	F	T	F
F	T	T	T	T	Т	Т
T	F	F	T	T	Т	Т
F	T	F	F	T	T	Τ
F	F	Т	T	F	Т	Т
F	F	F	T	Т	Т	Т

From row 3, we can observe that for valuation p = T, q = F, r = T, the truth values of formulas on left is T and the truth value for formula on right is F. So, the given sequent is not valid.