

Final Listing Price Prediction for Private Used Car Sellers

Group 2 - Ji-Soo Kim, Tae-Yoon Kim, Jun-Beom Lee, Jin-Joo Yang, Sung-Hyun Kim

Table of Contents

1. Introduction	
2 Data Dramacaccina	
2. Data Preprocessing ———	
3. Modeling Preview —	
4. Model - Linear Regression —	
5. Model - Decision Tree ——	
6. Model - Random Forest —	

1. Inroduction

Target: Used car owners

Goal: Final Listing Price Prediction

using crawled private sale car record data from various sites

2. Data Preprocessing

Setting a range for handling outliers in the **Price** column

2. Data Preprocessing

collect the horsepower of the models in the dataset lidentify the min & max

Setting a range for handling outliers in the **PowerPS** column

2. Data Preprocessing

Handle duplicate rows (Some of the features are exactly the same)

Our Project's Goal: Final Listing Price

Sort by 'createdAt', leaving the most recent row.

3. Modeling preview - model & performance

Linear Regression

represent linear relationship (ft. input, output) # fast # easy to interpret good for non-linear relationship # good at handling outlier

Random Forest

combine several decision trees
better generalization (ft. decision tree)

3. Modeling preview - model & performance

R^2

indicate how well explain real value

MAPE

(Mean Absolute Percentage Error)

actual value - predict value | (%)

=> used in all price range (regardless size of price)

adjusted R^2

MAD

(Mean signed difference)

MAE

(Mean absolute error)

MSE

(Mean squared error)

calculate the average error for all price
=> relatively high error at low price

Base Line → K-fold validation → Normalization

performance	prediction (price)
R^2	0.551
MAPE (Mean Absolute Percentage Error)	1.029

Base Line → K-fold validation → Normalization

k = 5

$$k = 10$$

performance	prediction (price)
R^2	0.551
MAPE (Mean Absolute Percentage Error)	1.029

performance	prediction (price)
R^2	0.551
MAPE (Mean Absolute Percentage Error)	1.029

10

Base Line → K-fold validation → Normalization

prediction (price)

0.549

Normalizer

powerPS kilometer vehicleType how old

<- continuous variable

linear regression

Used car prices are likely not to change linearly...

=> Let's consider nonlinear models

such as Random Forest etc.

Optimal Parameters → Base Line → K-fold validation → Normalization

Optimal Parameters → Base Line → K-fold validation → Normalization

Max Tree Depth

Start Value	Stop Value	Step Size	Best Param
1	300	5	11
1	30	1	12

Minimize Split Node Size

Start Value	Stop Value	Step Size	Best Param
1	300	5	21
1	30	1	18

Minimize Node Size

Start	Stop	Step	Best
Value	Value	Size	Param
1	9	1	8

The Optimal Combination

Max Tree Depth: 12, Minimize Split Node Size: 18, Minimize Node Size: 8

performance	prediction (price)
R^2	0.841
MAPE (Mean Absolute Percentage Error)	0.365

Optimal Parameters → Base Line → K-fold validation → Normalization

performance	prediction (price)
R^2	0.854
MAPE (Mean Absolute Percentage Error)	0.368

performance	prediction (price)
R^2	0.854
MAPE (Mean Absolute Percentage Error)	0.369

16

MAPE

(Mean Absolute Percentage Error)

0.378

4. Model - Decision Tree Line Plot

Decision tree

Optimal Parameters → Base Line → K-fold validation → Normalization

Optimal Parameters → Base Line → K-fold validation → Normalization

Max Tree Depth

Start Value	Stop Value	Step Size	Best Param
1	300	10	31
1	50	1	24
1	25	1	24

Minimize Node Size

Start	Stop	Step	Best
Value	Value	Size	Param
1	50	1	1

The Optimal Combination

max_tree_Depth: 24, minimize_node_size: 1, 5

performance	prediction (price)
R^2	0.858
MAPE (Mean Absolute Percentage Error)	0.399

Optimal Parameters ──→Base Line ──→K-fold validation ──→Normalization

k = 5

k = 10

performance	prediction (price)
R^2	0.857
MAPE (Mean Absolute Percentage Error)	0.394

performance	prediction (price)
R^2	0.855
MAPE (Mean Absolute Percentage Error)	0.402

Optimal Parameters → Base Line → K-fold validation → Normalization

performance	prediction (price)
R^2	0.865
MAPE (Mean Absolute Percentage Error)	0.393

5. Model - Outcomes

Random Forest

Q & A

Thank you for listening!