Adaptive Importance Sampling for Finite-Sum Optimization and Sampling with Decreasing Step-Sizes

Ayoub El Hanchi David A. Stephens

McGill University

December 2020

Setup

- Loss/Log-density : $f(x) = \sum_{i=1}^{N} f_i(x)$
- SGD: $x_{t+1} = x_t \alpha_t \hat{g}^t$
- SGLD: $x_{t+1} = x_t \alpha_t \hat{g}^t + \mathcal{N}(0, 2\alpha_t)$
- where \hat{g}^t is an estimator for $\nabla f(x_t)$
- We require: $\mathbb{E}\left[\hat{g}^{t}\right] = \nabla f(x_{t})$
- We run the algorithm for T iterations, and assume that the step sizes $\{\alpha_t\}_{t=1}^T$ are decreasing.

Setup

 The usual estimator is formed by sampling I_t uniformly and defining:

$$\hat{g}^t = N\nabla f_{I_t}(x_t)$$

• More generally, we can sample $I_t \sim p^t$, and estimate the gradient with:

$$\hat{g}^t = \frac{1}{\rho_{I_t}^t} \nabla f_{I_t}(x_t)$$

• Question: How can we choose $\{p^t\}_{t=1}^T$ so as to minimize the variance of $\hat{g}^t \to$ accelerate convergence ?

Setup

It is not hard to show that picking

$$p_i^t \propto \|\nabla f_i(x_t)\|_2$$

minimizes the variance of \hat{g}^t .

- Unfortunately, this means that computing the optimal distribution is as expensive as computing the full gradient.
- Alternatively, we can formulate the problem as an online learning problem and look for a no-regret algorithm.

Online learning formulation

- At each time step t we will choose a distribution p^t from which we sample I_t , and we only get back $\|\nabla f_{I_t}(x_t)\|_2$ as feedback.
- Cost function given by: $c_t(p) = \sum_{i=1}^N \frac{1}{p_i} \|\nabla f_i(x_t)\|_2^2$
- Goal: design an algorithm with sub-linear expected dynamic regret:

$$\mathsf{Regret}_D(T) = \sum_{t=1}^T \left[c_t(p^t) - \min_{p \in \Delta} c_t(p)
ight]$$

where Δ is the probability simplex in \mathbb{R}^N .

Main Idea

- While we don't have access to $\|\nabla f_i(x_t)\|_2$, we can store $\|h_i^t\|_2$, the norm of the last seen gradient of the i^{th} function at time t. (à la SAGA)
- Naively, we could then choose $p_i^t \propto \|h_i^t\|_2$, but this runs the risk of assigning near zero probability to some index, from which our algorithm cannot recover.

Main Idea

• Instead, at time t, we lower bound the probability of picking any index by ε_t and use the following sequence:

$$p^{t} \in \underset{p \in \Delta(\varepsilon_{t})}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{1}{p_{i}} \left\| h_{i}^{t} \right\|_{2}^{2}$$

where:

$$\Delta(arepsilon_t) := \left\{ p \in \mathbb{R}^N \mid p_i \geq arepsilon_t, \ \sum_{i=1}^N p_i = 1
ight\}$$

- Our analysis suggests a specific decay rate for $\{\varepsilon_t\}_{t=1}^T$ to achieve optimal dynamic regret.
- We also give an explicit algorithm for the computation of $\{p^t\}_{t=1}^T$.

Theory

Theorem

Assuming the functions $\{f_i(x)\}_{i=1}^N$ are smooth and have bounded gradients, if SGD is run with the given probabilities $\{p^t\}_{t=1}^T$ and step-sizes $\mathcal{O}(1/t)$, then:

$$\mathbb{E}\left[Regret_D(T)\right] \leq \mathcal{O}(T^{2/3})$$

and for SGLD:

$$\mathbb{E}\left[Regret_D(T)\right] \leq \mathcal{O}(T^{5/6})$$

under the same conditions.

Experiments

