Documentazione del Codice

Emanuele d'Ajello

1 Introduzione

Questo documento fornisce una documentazione del codice fornito, che implementa una dashboard di analisi e predizione per il dataset coin_Bitcoin.

2 Librerie Utilizzate

Il codice utilizza diverse librerie Python per l'analisi dei dati e la creazione dell'interfaccia della dashboard. Le principali librerie utilizzate sono:

- streamlit: una libreria per la creazione di interfacce utente interattive.
- pandas: una libreria per la manipolazione e l'analisi dei dati.
- matplotlib: una libreria per la creazione di grafici e visualizzazioni.
- seaborn: una libreria per la visualizzazione dei dati basata su matplotlib.
- scikit-learn: una libreria per l'apprendimento automatico e l'analisi dei dati.

3 Caricamento dei Dati

Il codice utilizza la funzione load_data() per caricare i dati dal file "coin_Bitcoin.csv" e seleziona solo le colonne "Date", "Open" e "Close" per l'analisi. I dati vengono memorizzati in un DataFrame di pandas.

4 Filtri di Visualizzazione

La dashboard consente all'utente di selezionare un intervallo di date tramite la sidebar. Il codice filtra i dati in base all'intervallo di date selezionato dall'utente.

5 Addestramento del Modello di Regressione

Il codice utilizza la regressione lineare fornita dalla libreria scikit-learn per addestrare un modello di regressione. Le variabili indipendenti sono prese dalla colonna "Open" e la variabile dipendente è presa dalla colonna "Close". I dati vengono suddivisi in un set di addestramento e un set di test utilizzando la funzione train_test_split().

6 Grafico di Regressione

Il codice crea un grafico scatterplot dei dati filtrati utilizzando la libreria seaborn. Mostra anche la linea di regressione generata dal modello addestrato utilizzando la libreria matplotlib.

Dashboard di Analisi e Predizione per coin_Bitcoin

Figure 1: Grafico regressione.

7 Valutazione del Modello di Regressione

Il codice calcola il coefficiente di determinazione (R^2) e l'errore quadratico medio (RMSE) per valutare le prestazioni del modello di regressione.

8 Standardizzazione dei Dati

Il codice standardizza i dati utilizzando la media e la deviazione standard delle colonne "Open" e "Close". Questo viene fatto per calcolare la matrice di varianza-covarianza.

9 Matrice di Varianza-Covarianza

Il codice calcola la matrice di varianza-covarianza utilizzando i dati standardizzati e la visualizza come tabella.

Matrice di Varianza-Covarianza

	Open	Close
Open	1	0.9986
Close	0.9986	1

Figure 2: Grafico regressione.

10 Previsione dei Prezzi di Chiusura

L'utente può utilizzare lo slider per inserire un valore di apertura e il codice restituirà il prezzo di chiusura previsto corrispondente utilizzando il modello di regressione.

Previsione dei Prezzi di Chiusura

Utilizzando il modello di regressione, possiamo fare una previsione dei prezzi di chiusura.

Prezzo di Apertura

28551.25

68.50

63523.75

Prezzo di Apertura: 28551.25

Prezzo di Chiusura Previsto: 28576.57392549583

Figure 3: Previsioni

11 Conclusioni

In questa documentazione, abbiamo descritto il codice fornito per la dashboard di analisi e predizione per coin. Bitcoin. Sono state illustrate le librerie utilizzate, il caricamento dei dati, i filtri di visualizzazione, l'addestramento del modello di regressione, la creazione del grafico di regressione, la valutazione del modello, la standardizzazione dei dati, il calcolo della matrice di varianza-covarianza e la previsione dei prezzi di chiusura. Questa documentazione fornisce una panoramica completa del codice fornito e delle sue funzionalità.