10.3 変分線形回帰

平成 28 年 9 月 11 日

概 要

PRML の「10.3 変分線形回帰」についての実装と考察

目 次

1	問題設定	2
2	アルゴリズム	2
3	コード	3
4	結果 4.1 多項式基底 4.2 ガウス基底 4.3 シグモイド基底 4.4 tanh 基底	5
5	まとめ	7

1 問題設定

線形回帰を行う. 超パラメータ α , β についてエビデンス近似ではなく変分近似で近似してみる.

2 アルゴリズム

線形回帰では、超パラメータまで最適化しようとすると、解析的に解くことのできない積分が出てきた. 今まで、これをエビデンス近似で対処してきたが、ここでは変分近似を用いてみる.(ただし、 β は既知とする)

まず、wに対する尤度関数とWの事前分布は、

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} N(t_n|\mathbf{w}^T \boldsymbol{\phi}_n, \beta^{-1}) \quad (10.87)$$

$$p(\mathbf{w}|\alpha) = N(\mathbf{w}|\mathbf{0}, \alpha^{-1}I) \quad (10.88)$$

とする. また, α の事前分布は共役事前分布として

$$p(\alpha) = G(\alpha|a_0, b_0)$$
 (10.89)

を選ぶ. 以上より, すべての変数の同時分布は

$$p(\mathbf{t}, \mathbf{w}, \alpha) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}|\alpha)p(\alpha)$$
 (10.90)

となる.

ここでの目標は事後分布 $p(\mathbf{w}, \alpha | \mathbf{t})$ の近似を求めることなので、このため分解される変分事後分布を考える。

$$q(\mathbf{w}, \alpha) = q(\mathbf{w})q(\alpha)$$
 (10.91)

まず, $\ln q(\alpha)$ は

$$\ln q^*(\alpha) = \ln p(\alpha) + E_{\mathbf{w}}[\ln p(\mathbf{w}|\alpha)] + const$$
$$= (a_0 - 1) \ln \alpha - b_0 \alpha + \frac{M}{2} \ln \alpha - \frac{\alpha}{2} E[\mathbf{w}^T \mathbf{w}] + const \quad (10.92)$$

これは、ガンマ分布の対数であり

$$q^*(\alpha) = Gam(\alpha|a_N, b_N)$$
 (10.93)

となる. ここで

$$a_N = a_0 + \frac{M}{2}$$
 (10.94), $b_N = b_0 + \frac{1}{2}E[\mathbf{w}^T \mathbf{w}]$ (10.95)

とした.

また, $\ln q(\mathbf{w})$ は

$$\ln q^*(\mathbf{w}) = \ln p(\mathbf{t}|\mathbf{w}) + E_{\alpha}[\ln p(\mathbf{w}|\alpha)] + const$$

$$= -\frac{\beta}{2} \sum_{n=1}^{N} {\{\mathbf{w}^T \phi_n - t_n\}^2 - \frac{1}{2} E[\alpha] \mathbf{w}^T \mathbf{w} + const}$$

$$= -\frac{1}{2} \mathbf{w}^T (E[\alpha]I + \beta \Phi^T \Phi) \mathbf{w} + \beta \mathbf{w}^T \Phi^T \mathbf{t} + const$$

これは、ガウス分布の対数であり

$$q^*(\mathbf{w}) = N(\mathbf{w}|\mathbf{m}_N, S_N) \quad (10.99)$$

となる. ここで

$$\mathbf{m}_N = \beta S_N \Phi^T \mathbf{t}$$
 (10.100), $S_N = (E[\alpha]I + \beta \Phi^T \Phi)^{-1}$ (10.101)

とした.

これらの計算には

$$E[\alpha] = \frac{a_N}{b_N}$$
 (10.102), $E[\mathbf{w}^T \mathbf{w}] = \mathbf{m}_N \mathbf{m}_N^T + S_N$ (10.103)

を用いて, 交互に再推定していく.

- 変分線形回帰 ———

- 1. まず $q^*(\alpha)$ のパラメータを初期化する.
- 2. $q^*(\mathbf{w})$ のパラメータを推定する.
- $3. q^*(\alpha)$ のパラメータを推定する.
- 4. 2,3を繰り返す.

3 コード

変分線形回帰のコード (variational_linear_regression.py).

```
for N in [20,100,500]:
        x=data[:N,0]
        t=data[:N,1]
        for M in [4,10,20]:
                mu = [(m+0.5)*(2*pi/(M+1)) \text{ for m in range}(M)]
                 s=(2*pi)**2/12
                 P=np.zeros((N,M))
                 for n in range(N):
                         for m in range(M):
                                  P[n,m]=polynomial_basis(x[n],m)
                                  #tanh_basis(x[n],m,mu[m],s)
                 I=np.identity(M)
                 beta=1/(0.3)**2
                 a0,b0=1,1
                 aN,bN=a0+M/2,1
                 mN=np.zeros(M)
                 SN=np.zeros((M,M))
                 diff=10**6
                 while diff>=10**-6:
                         diff=0
                         SN=inv(aN/bN*I+beta*dot(P.T,P))
                         diff+=norm(tmp-SN)
                         tmp=mN
                         mN=beta*np.dot(SN,dot(P.T,t))
                         diff+=norm(tmp-mN)
                         tmp=bN
                         bN=b0+trace(outer(mN,mN)+SN)/2
                         diff += abs (tmp-bN)
```

4 結果

 $\alpha=10^{-10},\ \beta=1.0/(0.3)^2$ に固定して実験を行った. この β は元のデータの分散が $(0.3)^2$ であることに由来する. α については適当.

4.1 多項式基底

基底 $\Phi(x)$ に $\phi_i(x) = x^i$ を選んだ. 「多項式曲線フィッテイング」で行ったものと等しい.

M	20	100	500
4	1.08	0.81	0.80
10	0.67	-	-
20	-	-	-

表 1: E_{RMS} の N,M との関係 (多項式基底)

4.2 ガウス基底

基底 $\Phi(x)$ に $\phi_i(x)=exp\{-\frac{(x-\mu_i)^2}{2s^2}\}$ をもちいる.またここでは μ は区間 $[0,2\pi]$ を M 個に等分する区間の中心を用い,s には x の分散を用いた.

mu = [(m+0.5)*(2*pi/(M+1)) for m in range(M)] s = (2*pi)/M

M	20	100	500
4	1.68	1.07	1.00
10	1.68	0.74	0.74
20	0.94	0.74	0.62

表 2: E_{RMS} の N,M との関係 (ガウス基底)

4.3 シグモイド基底

基底 $\Phi(x)$ に $\phi_i(x)=\sigma(\frac{x-\mu_i}{s})$ をもちいる. ただし, $\sigma(a)=\frac{1}{1+e^{-a}}$

M	20	100	500
4	1.82	1.14	0.80
10	1.05	0.74	0.61
20	1.05	0.74	-

表 3: E_{RMS} の N,M との関係 (シグモイド基底)

4.4 tanh 基底

基底 $\Phi(x)$ に $\phi_i(x) = tanh(\frac{x-\mu_i}{s})$ をもちいる.

M	20	100	500
4	0.92	0.81	0.81
10	0.94	0.77	0.30
20	0.95	0.31	0.30

表 4: E_{RMS} の N,M との関係 (tanh 基底)

5 まとめ

毎回のように、tanh 関数 を基底関数とするのが一番よく、多項式基底はあまり良くない。繰り返しを要するので収束しないこともあった。