Übungen zu Funktionentheorie 2

Sommersemester 2020

Prof. Dr. R. Weissauer Dr. Mirko Rösner Musterlösung Blatt 6

Abgabe auf Moodle bis zum 18. Dezember

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Darauf operiert $\text{SL}(2, \mathbb{R})$ und insbesondere die Modulgruppe $\Gamma = \text{SL}(2, \mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Die Eisensteinreihen als Funktion von $\tau \in \mathbb{H}$ sind

$$G_k(\tau) = G_k(\mathbb{Z} \oplus \mathbb{Z}\tau) = \sum_{0 \neq (c,d) \in \mathbb{Z}^2} (c + d\tau)^{-k}.$$

Die besten vier Aufgaben werden gewertet.

24. Aufgabe: (2+2=4 Punkte)

- (a) Zu jedem $a \in \mathbb{H}$ existiert eine nichttriviale holomorphe elliptische Modulform in $[\Gamma, 12]$, die in a eine Nullstelle besitzt.
- (b) Sei $f \in [\Gamma, k]$ eine holomorphe elliptische Modulform ohne Nullstellen in \mathbb{H} . Zeigen Sie, dass f ein Vielfaches einer Potenz der Diskriminante Δ ist. Das bedeutet k ist ein Vielfaches von 12 und es gibt $c \in \mathbb{C}$ mit $f = c\Delta^{k/12}$.

Lösung:

- (a) Wenn a eine Nullstelle von G_{12} ist, so ist G_{12} die gesuchte Modulform. Andernfalls wähle $f(z) = \frac{G_{12}(z)}{G_{12}(a)} \frac{\Delta(z)}{\Delta(a)}$.
- (b) Aus der k/12-Formel folgt sofort, dass k ein Vielfaches von zwölf ist. Wenn k=0, dann ist f=c konstant. Für k>0 verwende vollständige Induktion. Nach der k/12-Formel gibt es mindestens eine Nullstelle, diese muss dann bei $i\infty$ liegen, also ist f eine Spitzenform. Angenommen, die Aussage gilt für k-12. Sei f eine beliebige Modulform vom Gewicht zwölf ohne Nullstellen, dann ist $\frac{f}{\Delta}$ eine holomorphe Modulform vom Gewicht k-12 ohne Nullstellen. [Man muss dazu zeigen, dass f/Δ beschränkt ist für große Werte Werte von $\mathrm{Im}(\tau)$. Das gilt weil f in ∞ eine Nullstelle mindestens erster Ordnung hat.] Nach Induktionssannahme ist damit $\frac{f}{\Delta}=c\Delta^{(k-12)/12}$ ein Vielfaches einer Potenz vom Δ . Auflösen nach f zeigt die Aussage für k.
- **25.** Aufgabe: (3+1+2=6 Punkte) Sei $\widetilde{\Gamma} \subseteq \Gamma$ die Untergruppe von Γ erzeugt durch

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 und $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

(a) Für jedes $z \in \mathbb{H}$ gibt es $M \in \widetilde{\Gamma}$ sodass Mz im abgeschlossenen Fundamentalbereich $\overline{\mathcal{F}}$ liegt.

- (b) Sei $A \in \Gamma$ beliebig und sei $\tau \in \mathcal{F}$ ein innerer Punkt des Fundamentalbereichs. Dann gibt es $M \in \widetilde{\Gamma}$ sodass $MA\tau \in \overline{\mathcal{F}}$.
- (c) Zeigen Sie $MA \in \{\pm E_2\}$ und folgern Sie daraus $\Gamma = \widetilde{\Gamma}$.

Hinweis zu a): Modifizieren Sie den entsprechenden Beweis aus Abschnitt 9.7 im Skript. Bemerkung: $(ST)^3 = S^2 = -E_2$ operiert trivial auf der oberen Halbebene.

Lösung:

(a) Für $z \in \mathbb{H}$ gilt bekanntlich $\operatorname{Im}(M \langle z \rangle) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$. Der Nenner variiert über $0 \neq (c,d) \in \mathbb{Z}^2$ und nimmt ein Minimum an, da $\mathbb{Z} \oplus \mathbb{Z} z$ diskret ist. Also gibt es $M_0 \in \widetilde{\Gamma}$ mit

$$\operatorname{Im}(M_0 \langle z \rangle) = \max \{ \operatorname{Im}(M \langle z \rangle) \mid M \in \widetilde{\Gamma} \} .$$

OBdA sei $M_0 = \mathrm{id}$, sonst ersetze z durch $M_0 \langle z \rangle$. Sei $n = \lfloor \mathrm{Re}(z) + \frac{1}{2} \rfloor$ (Gaußklammer), dann gilt $|\mathrm{Re}(T^{-n}z)| \leq 1/2$. OBdA sei n = 0, sonst ersetze z durch $T^{-n}z$, das ändert nicht den Imaginärteil. Beachte jetzt wegen der Wahl von z gilt

$$\operatorname{Im}(z) \ge \operatorname{Im}(S\langle z \rangle) = \frac{\operatorname{Im}(z)}{|z|^2}.$$

Insbesondere ist $|z| \ge 1$ und damit ist z im abgeschlossenen Fundamentalbereich.

- (b) Setze $z := A \langle \tau \rangle$, die Aussage folgt nun aus dem ersten Schritt.
- (c) Wir haben bereits gezeigt, dass \mathcal{F} ein Fundamentalbereich für Γ ist. Sowohl τ als auch $MA \langle \tau \rangle \in \overline{\mathcal{F}}$ liegen im abgeschlossenen Fundamentalbereich. Das ist nur möglich, falls $MA = \pm E_2$ oder falls $MA \langle \tau \rangle$ auf dem Rand liegt. Wenn $MA \neq \pm E_2$, dann gibt es also eine Folge von Punkten τ_n in \mathcal{F} , die gegen $\tau_n \to MA \langle \tau \rangle$ konvergiert. Da Moebius-Transformationen stetig sind, konvergiert $(MA)^{-1} \langle \tau_n \rangle$ gegen $\tau = (MA)^{-1} (MA) \langle \tau \rangle$. Aber $(MA)^{-1} \langle \tau_n \rangle$ liegt nicht im Fundamentalbereich. Das ist ein Widerspruch, da τ ein innerer Punkt von \mathcal{F} ist. Daraus folgt $MA = \pm E_2$.

Da sowohl $-E_2 = S^2 \in \widetilde{\Gamma}$ als auch M in $\widetilde{\Gamma}$ liegen, folgt $A \in \widetilde{\Gamma}$. Da A in Γ beliebig war, ist $\Gamma \subseteq \widetilde{\Gamma}$. Die umgekehrte Inklusion ist klar.

Damit wird Γ von den Matrizen S und T erzeugt.

26. Aufgabe: (4 Punkte) Sei Δ eine endliche Gruppe und $\chi: \Delta \to \mathbb{C}^{\times}$ ein nichttrivialer Gruppenhomomorphismus. Zeigen Sie

$$\sum_{d \in \Delta} \chi(d) = 0 .$$

Lösung: Nach Annahme ist χ ein nicht-trivialer Homomorphismus. Damit ist insbesondere Δ nicht trivial, enthält also ein Element $d_0 \in \Delta$ mit $\chi(d_0) \neq 1$. Wir bezeichnen die Summe mit S, dann ist

$$\chi(d_0)S = \chi(d_0) \sum_{d \in \Delta} \chi(d) = \sum_{d \in \Delta} \chi(d_0d) = \sum_{d_1 \in \Delta} \chi(d_1) = S$$
.

Die letzte Gleichheit gilt, weil $d_1 = d_0 d$ ebenfalls alle Elemente von Δ durchläuft. Damit gilt für die Summe $\chi(d_0)S = S$. Daraus folgt S = 0, weil $\chi(d_0) \neq 1$.

27. Aufgabe: (4 Punkte) Für eine Funktion $f: \mathbb{H} \to \mathbb{C}$ und eine Matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2, \mathbb{R})$ definieren wir eine Funktion

$$f|_k M : \mathbb{H} \to \mathbb{C}$$
 , $z \mapsto (cz+d)^{-k} f(M\langle z \rangle)$.

Zeigen Sie $(f|_k M)|_k N = f|_k (MN)$ für Matrizen M und N in $SL(2, \mathbb{R})$.

Lösung: Einfach nachrechnen.

- **28. Aufgabe:** (1+1+2=4 Punkte) Für ganzes $N \ge 1$ seien $\frac{1}{N}W = \{z \in \mathbb{C} \mid Nz \in W\}$ die N-Teilungspunkte eines elliptisches Periodengitters $W = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$.
 - (a) Die volle Modulgruppe operiert auf $\frac{1}{N}W$ durch Möbiustransformationen.
 - (b) Die Hauptkongruenzgruppe $\Gamma[N]$ operiert trivial auf $\frac{1}{N}W/W$.
 - (c) Die Operation von $\Gamma/\Gamma[2]$ auf $\frac{1}{2}W$ permutiert die Werte $\{e_1, e_2, e_3\}$ und definiert dadurch einen Isomorphismus $\Gamma/\Gamma[2] \cong S_3$ in die symmetrische Gruppe S_3 .

Lösung:

- (a) Seien $w\in \frac{1}{N}W$ und $M\in \Gamma$ beliebig. Dann ist $diag(N,N)\cdot Mw=M\cdot diag(N,N)z\in M\cdot \Gamma\subseteq \Gamma$. Also ist $Mw\in \frac{1}{N}W$.
- (b) Sei $w \in \frac{1}{N}W$ und $M \in \Gamma[N]$. Dann ist $M = \mathrm{id} + NB$ würde eine ganzzahlige Matrix B. Also ist $Mw = w + N \cdot Bw = w + B \cdot Nw$. Da $Nw \in W$ folgt $B \cdot Nw \in W$ nach Aufgabe Eins auf dem ersten Zettel. Also ist $Mw = w + BNw \in w + W$, damit gilt $Mw \equiv w \pmod{W}$.
- (c) Hier setzen wir N=2. Dann ist $\frac{1}{2}W/W\cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. Darauf operiert die Modulgruppe Γ . Das Nullelement in $\frac{1}{2}W/W$ entspricht dem Gitter W und wir von Γ auf sich selbst geschickt. Also operiert Γ auf der Menge $\{1/2,\tau/2,(1+\tau)/2\}+W$. Dies liefert einen Homomorphismus $\phi:\Gamma/\Gamma[2]\to\mathcal{S}_3$ in die symmetrische Gruppe. Der Kern von ϕ enthält alle Matrizen, die $\frac{1}{2}W/W$ fixieren. Es bleibt zu zeigen, dass ker $\phi=\Gamma[2]$.

Eine Inklusion folgt aus b). Für die umgekehrte Richtung sei $M \in \ker(\phi)$ beliebig. Wir schreiben $(a,b) := (a+b\tau)$. Dann ist $M(1/2,0)^t = (1/2+c,d)^t$ für $c,d \in \mathbb{Z}$, also in Koordinaten $(\frac{1}{2}M_{11},\frac{1}{2}M_{21})=(\frac{1}{2}+c,d)$. Das bedeutet M_{21} ist gerade und M_{11} ist ungerade. Mit dem entsprechenden Argument für $\tau/2=(0,\frac{1}{2})$ zeigt man dass M_{12} gerade und M_{22} ungerade ist. Insgesamt $M \equiv E_2 \pmod{2}$, also $M \in \Gamma[2]$.

Damit faktorisiert ϕ über einen injektiven Gruppenhomomorphismus von $SL(2, \mathbb{Z}/2\mathbb{Z}) \cong \Gamma/\Gamma[2] \to \mathcal{S}_3$. Weil Definitions- und Wertebereich je sechs Elemente haben, ist dies ein Isomorphismus.

Alternativ gibt es einen direkten Beweis: Man stellt für $SL(2,\mathbb{Z})$ und S_3 je eine Multiplikationstabelle auf.