

Optimizing Student Schedule Coordination through GenAl

Student Schedule Coordination

Task:

- Challenge of coordinating 10 students' schedules
- Traditional manual scheduling inefficiencies

Goal:

- Find timeslots with 8+ students available
- Test GenAl capability in automated schedule optimization
- Use Ground Truth, to measure accuracy of the different models

Methodology

Data preparation & GenAl implementation

Prompt engineering for models [1] to filter out all unavailable timeslots

Timetable generation

Timeslots to timetable generation

Evaluation framework

Metrics:

Accuracy Precision Recall F1 Score

Ground truth comparison, evaluate model quantitatively

GenAl Prompt

Prompt (ChatGPT as an example)

Question

solve the problem step by step Ten Students are working on a group project. They want to find some time to meet. They have the following constraints (morning means from 8 AM to 12 PM, and afternoon means from 1 PM to 5PM): Student A: I have classes on Monday and Wednesday from 2 PM to 4 PM, club activities on Tuesday and Thursday evenings from 7 PM to 9 PM, and I'm available on Friday afternoons. Student B: I have a lab on Monday from 9 AM to 11 AM, classes on Tuesday and Thursday afternoons from 1 PM to 3 PM, and I'm free all day on Friday, but I might have to work late in the evening after 10 PM. Student C: I have classes every weekday morning from 8 AM to 10 AM. I may have to work on weekends from 3 PM to 5 PM. If A calls me on Friday morning, we'll go play tennis in the a roon 6 PM – 8 PM. I'm free otherwise. Student D. I have classes on Monday and Friday from 10 AM to 12 PM

Answer

To solve this problem, let's break it down step by step. We'll go through each student's schedule to find the times they are unavailable, then cross-reference these times to identify any overlapping free times where at least 8 students are available.

Step 1: Summarize Each Student's Availability and Unavailability

We'll outline the unavailable times first, noting these in a weekly schedule format (Monday through Sunday, 8 AM - 10 PM).

1. Student A:

- Unavailable: Monday, Wednesday (2 PM 4 PM), Tuesday, Thursday (7 PM 9 PM).
- Available: Friday afternoon.

2. Student B:

- Unavailable: Monday (9 AM 11 AM), Tuesday, Thursday (1 PM 3 PM), possibly Friday evening after 10 PM.
- Available: All day Friday until 10 PM.

3. Student C:

Filtering & Timetable Generation

Python libraries:

Libraries	Uses			
openai	GPT-40 API			
re & ast [1]	Extract each timeslots data from string			
	Convert string to dictionary format			
pandas	Create table, can export as excel file			
	Import excel file, calculate model's performance			

[1] re: Regular Expression, ast: Abstract Syntax Trees

Evaluation Framework

Ground Truth: The baseline benchmark for comparison

Metrics:

Predicted

Positive

Predicted

Negative

A 1 I	D 141
	Positive
Actual	1 031111

Actual Negative

True Positive (TP)	False Positive (FP)
--------------------	---------------------

True Negative (TN)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Results & Evaluation

Model	Accuracy	Precision	Recall	F1-score
GPT-4o	0.62	0.98	0.63	0.77
Claude-3.5-Sonnet	0.74	1.00	0.74	0.85
Gemeni-1.5-Pro	0.3	0.47	0.45	0.46
Llama3.1-405B	0.387	0.59	0.53	0.56

Table 1: Model performance vs Ground Truth

Best Performing Model: Claude-3.5-Sonnet

Conclusion

Contributions:

- We proposed a method, to streamline the process of time scheduling via GenAl
- Created a standardized prompt engineering approach for timetabling

Future work:

- Integration with calendar systems (eg: Google Calendar)
- Expanding to handle more complex scheduling constraints