Understand Bitcoin: Mining Software

December 8, 2015
Charlie Hume
Dustin Gay
Roma Koulikov

Background

- Bitcoin Advantages
 - No control by central monetary authority
 - Can be mined by anybody with computing resources
 - Completely digital perfect for e-commerce, remittances, micro-payments

Research Question

Understand effect of BTC price changes on the types of commits for the most popular miners

Most Popular Mining Software

Miner	GitHub Commits	
CGminer	7536	
BFGminer	12632	
BTCminer	NA	
Bitminter	NA	
Diablo miner	262	
Poclbm	232	

Bitcoin Mechanics

potential next blocks

Mining Software Creates Blocks

Field	Purpose	Size (Bytes)
Version	Block version number	4
hashPrevBlock	256-bit hash of the previous block header	32
hashMerkleRoot	256-bit hash based on all of the transactions in the block	32
Time	Current timestamp as seconds since 1970-01-01T00:00 UTC	4
Bits	Current target in compact format	4
Nonce	32-bit number (starts at 0)	4

- SHA-256
- All fields are constant widths
- The Merkle Root is a single value that represents all transactions in the block

Merkle Root

^ Coinbase

- Your unique bitcoin address
- Block subsidy
- Extra nonce

Proof of Work

Field	Size (Bytes)
Version	4
hashPrevBlock	32
hashMerkleRoot	32
Time	4
Bits	4
Nonce	4

- Concatenate all fields as hex values into one string
- The hash of the string in hex must have at least 'Bits' 0's on the end (little-endian)
- The nonce is incremented until this is achieved
- The extra nonce recalculates the Merkle Root

Inside Mining Software

- The main task is to prepare a block and send this block's unique proof-of-work problem to a device that solves and returns the answer
 - CPU
 - GPU
 - FPGA
 - ASIC
- The second most important aspect of the code is extensive driver and device compatibility

Inside Mining Software

- Four main categories of features
 - Diagnostic output
 - Documentation/updates
 - Drivers / Compatibility
 - Remote Access / Control

Goal: Determine Effect of Price on Commit Count

- Obtain all commits from November 2013 -November 2015 for CG Miner and BFG Miner
- Categorize commits
- Build linear regression models

Data Acquisition

Github API

Branches

API Request Limit

Stored in a mongodb

BTC Price

BTC Price 10/31/13-11/01/15

CG Miner Weekly Commits 11/01/13 - 11/01/15

BFG Miner Weekly Commits 11/01/13 - 11/01/15

Time Series Analysis Differences

Differences Analysis - BFG Miner

Clustering / Classification

- First, create term-document matrix from all commit comments
- Convert to weighted matrix
- Deploy Algorithms
 - k Means Clustering
 - · Naive Bayes

k Nearest Neighbors

- Compute distance to other training records.
- 2. Identify k nearest neighbors.
- Assign test record label from majority label of k-nearest neighbors.

Variable 1

All models are wrong but...

Method

Linear models for lags j = 1-12 weeks:

Post Count of Category $i_t = \beta$ Price t_{-j}

Price Effect on Post Counts

Explanatory Power

Insight

- BTC price explains greater portion of variation in CG Miner vs. BFG Miner
- CG Miner price effect lag of 5 weeeks
- BFG Miner price effect lag of 9 weeks
- Actual effect of price change on post count is small

Model Improvement

- Improve classification by training on greater number of records
- Examine linear regression assumptions
- Tune ks for kNN algorithm
- Fix Naive Bayes model
- Incorporate control variables

Appendix

CG Miner P-Values

Lag	Diagnostic Output	Documentation / Updates	Drivers / Compatibility	Remote Access / Control
1	7.25E-04	6.44E-09	4.43E-09	2.53E-04
2	1.32E-02	7.09E-13	1.30E-12	6.64E-05
3	5.76E-03	1.02E-14	7.34E-16	4.29E-07
4	2.21E-02	2.38E-14	1.32E-17	5.46E-09
5	4.32E-03	1.37E-14	3.85E-18	3.34E-11
6	1.09E-03	9.42E-14	3.63E-14	2.71E-09
7	6.78E-04	1.30E-14	1.26E-13	4.16E-09
8	2.98E-05	1.10E-15	2.18E-11	1.84E-07
9	1.00E-04	1.65E-12	7.21E-09	3.43E-06
10	1.52E-04	3.31E-11	6.17E-08	5.36E-05
11	2.05E-03	1.09E-10	1.85E-09	4.52E-06
12	2.06E-03	3.56E-11	1.91E-10	1.45E-05

BFG Miner P Values

Lag	Diagnostic Output	Documentation / Updates	Drivers / Compatibility	Remote Access / Control
1	8.67E-04	5.38E-03	4.11E-03	4.22E-04
2	2.02E-04	2.59E-03	3.54E-03	2.46E-05
3	2.75E-04	1.87E-03	1.61E-02	1.73E-04
4	2.40E-04	7.45E-05	6.30E-03	1.30E-05
5	6.91E-05	2.27E-06	3.06E-03	3.27E-06
6	1.10E-05	1.89E-06	1.47E-03	5.69E-06
7	4.75E-07	2.64E-07	7.71E-05	2.53E-06
8	5.16E-08	1.92E-08	1.75E-06	1.19E-07
9	3.84E-07	8.66E-10	9.21E-07	1.07E-08
10	9.67E-06	2.21E-08	3.13E-05	2.87E-07
11	2.51E-05	4.04E-08	6.73E-05	2.91E-07
12	3.22E-05	1.09E-06	5.65E-04	4.36E-06

Autocorrelation at Higher Lags

Lag

Lag