Areal Data: Rasters

HES 505 Fall 2023: Session 9

Matt Williamson

Loday's Plan

By the end of today, you should be able to:

- Access the elements that define a raster
- Build rasters from scratch using matrix operations and
 - terra
- Evaluate logical conditions with raster data
- Calculate different measures of raster data

Revisiting the Raster Data Model

- Vector data describe the "exact" locations of features on a landscape (including a Cartesian landscape)
- Raster data represent spatially continuous phenomena (NA is possible)
- Depict the alignment of data on a regular lattice (often a square)
 - Operations mimic those for matrix objects in R
- Geometry is implicit; the spatial extent and number of rows and columns define the cell size

Rasters with terra

- syntax is different for terra compared to sf
- Representation in **Environment** is also different
- Can break pipes, Be Explicit

Rasters by Construction

Rasters by Construction

```
1 mtx <- matrix(1:16, nrow=4)</pre>
 2 mtx
    [,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
            8 12 16
[4,1]
 1 rstr <- terra::rast(mtx)</pre>
 2 rstr
class : SpatRaster
dimensions: 4, 4, 1 (nrow, ncol,
nlyr)
resolution : 1, 1 (x, y)
extent : 0, 4, 0, 4 (xmin,
xmax, ymin, ymax)
coord. ref. :
source(s) : memory
name : lyr.1
min value :
max value : 16
```


Rasters by Construction: Origin

• Origin defines the location of the intersection of the x and y axes

```
1 r <- rast(xmin=-4, xmax = 9.5, ncc
2 r[] <- runif(ncell(r))
3 origin(r)

[1] 0.05 0.00

1 r2 <- r
2 origin(r2) <- c(2,2)</pre>
```


Rasters by Construction: Resolution

- Geometry is implicit; the spatial extent and number of rows and columns define the cell size
- Resolution (res) defines the length and width of an individual pixel

```
1 r < - rast(xmin = -4, xmax = 9.5,
                                                       r \leftarrow rast(xmin=-4, xmax = 9.5,
                ncols=10)
                                                              res=c(0.5,0.5)
                                                    3 ncol(r)
 3 \operatorname{res}(r)
[1] 1.35 1.00
                                                  [1] 27
                                                    1 r2 < - rast(xmin=-4, xmax = 9.5,
 1 r2 \leftarrow rast(xmin=-4, xmax = 5,
               ncols=10)
                                                                    res=c(5,5)
 3 \operatorname{res}(r2)
                                                    3 \text{ ncol(r2)}
[1] 0.9 1.0
                                                  [1] 3
```

Predicates and measures in terra

Extending predicates

- **Predicates**: evaluate a logical statement asserting that a property is **TRUE**
- terra does not follow the same hierarchy as sf so a little trickier

Unary predicates in terra

- Can tell us qualities of a raster dataset
- Many similar operations for SpatVector class (note use of .)

predicate	asks
is.lonlat	Does the object have a longitude/latitude CRS?
inMemory	is the object stored in memory?
is.factor	Are there categorical layers?
hasValues	Do the cells have values?

Unary predicates in terra

• **global**: tests if the raster covers all longitudes (from -180 to 180 degrees) such that the extreme columns are in fact adjacent

```
1 r <- rast()
2 is.lonlat(r)

[1] TRUE

1 is.lonlat(r, global=TRUE)

[1] TRUE</pre>
```

• perhaps: If TRUE and the crs is unknown, the method returns TRUE if the coordinates are plausible for longitude/latitude

```
1 crs(r) <- ""
2 is.lonlat(r)

[1] NA
1 is.lonlat(r, perhaps=TRUE, warn=FALSE)

[1] TRUE
1 crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-1 2 is.lonlat(r)

[1] FALSE</pre>
```

Binary predicates in terra

- Take exactly 2 inputs, return 1 matrix of cell locs where value is TRUE
- adjacent: identifies cells adajcent to a set of raster cells

Rooks Case

Bishops Case

Queen's (Kings) Case

Unary measures in terra

- Slightly more flexible than **sf**
- One result for each layer in a stack

measure	returns
cellSize	area of individual cells
expanse	summed area of all cells
values	returns all cell values
ncol	number of columns
nrow	number of rows
ncell	number of cells
res	resolution
ext	minimum and maximum of x and y coords
origin	the orgin of a SpatRaster
crs	the coordinate reference system
cats	categories of a categorical raster

Binary measures in terra

Returns a matrix or SpatRaster describing the measure

measure	returns
distance	shortest distance to non-NA or vector object
gridDistance	shortest distance through adjacent grid cells
costDistance	Shortest distance considering cell-varying friction
direction	azimuth to cells that are not NA

