Quiz: Chapter 1+2 definitions

Definition 1. Let $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathcal{X}$. The *dichotomies* generated by a hypothesis class \mathcal{H} on these points are defined by

$$\mathcal{H}(\mathbf{x}_1,...,\mathbf{x}_N) = \left\{ \left(h(\mathbf{x}_1),...,h(\mathbf{x}_N) \right) : h \in \mathcal{H} \right\}$$

Definition 2. The growth function for a hypothesis class \mathcal{H} is defined to be

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1,...,\mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1,...,\mathbf{x}_N)|.$$

Definition 3. We say that a hypothesis class \mathcal{H} can shatter a dataset $\mathbf{x}_1, ..., \mathbf{x}_N$ if any of the following equivalent statements are true:

- 1. \mathcal{H} is capable of generating all possible dichotomies of $\mathbf{x}_1,...,\mathbf{x}_N$.
- 2. $\mathcal{H}(\mathbf{x}_1, ..., \mathbf{x}_N) = \{-1, +1\}^N$.
- 3. $|\mathcal{H}(\mathbf{x}_1, ..., \mathbf{x}_N)| = 2^N$.

NOTE: You must list all 3 statements.

Definition 4. The integer k is said to be a break point for hypothesis class \mathcal{H} if

no data set of size k can be shattered by \mathcal{H} .

Definition 5. The Vapnik-Chervonenkis dimension (VC dimension) of a hypothesis class \mathcal{H} , denoted by $d_{VC}(\mathcal{H})$ or simply d_{VC} , is

the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$. If $m_{\mathcal{H}}(N) = 2^N$ for all N, then $d_{VC} = \infty$.

Theorem 1 (VC generalization bound). For any tolerance $\delta > 0$, we have that with probability at least $1 - \delta$,

$$E_{\text{out}} \le E_{\text{in}} + O\left(\sqrt{\frac{d_{\text{VC}} \log N - \log \delta}{N}}\right).$$

NOTE: The more precise, non-asymptotic formulas would also be acceptable.

Theorem 2 (Finite Hypothesis Class Generalization Theorem). For any tolerance $\delta > 0$, we have that with probability at least $1 - \delta$,

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{\log 2M - \log \delta}{2N}}.$$

NOTE: The less precise, asymptotic formulas would also be acceptable.

Theorem 3 (Hoeffding Inequality). Let $a_1, ..., a_N$ be N independent and identically distributed random variables satisfying $0 \le a_i \le 1$. Let $\nu = \frac{1}{n} \sum_{i=1}^N a_i$ be the empirical average and $\mu = \mathbb{E}\nu$ be the true mean of the underlying distribution.

Then, for all
$$\epsilon > 0$$
,
$$\mathbb{P}\left(|\nu - \mu| \ge \epsilon\right) \le 2\exp(-2\epsilon^2 N). \tag{1}$$

NOTE: The version based on $1-\delta$ would also be acceptable. Asymptotic versions of either inequality are also acceptable.