Assignment-Solutions Hypothesis Testing

A textile factory consumes on average 1000m³ of water per day. If a sample of 100 days is drawn randomly to test is the mean daily water intake remains 1000 m³ against the alternative that the mean water consumption has increased.

Assume that the sample mean equals \bar{x} (x-bar) = 1005 m³ and the sample variance is $s^2 = 400$ m⁶.

- a) Define the null and alternative hypotheses for this test
- b) Perform the test at the significance level $\alpha = 0.05$.
- c) What is the smallest value of α for which the null hypothesis can be rejected?
- d) Calculate the power of the test in two scenarios: If the true mean water consumption equals $\mu 1 = 1000 \text{m}^3$ and $\mu 1 = 1008 \text{m}^3$.
- e) Indicate which of the following statements are true/false and justify your answer:
 - 1. If we reject the hypothesis at the level α = 0.05, we can also reject H_0 at the level α = 0.1
 - 2. The Type-I error is the probability to reject the null hypothesis when H1 is true
 - 3. If the p-value equals 0.15, we can reject the null hypothesis at the level 10%

Solution:

a) Hypothesis stated as H_0 : $\mu \le 1000$ m3 vs. H1: $\mu > 1000$ m3

b) Under H_0 , T =

$$\frac{\bar{X}-\mu_0}{s/\sqrt{n}} \sim_{aprox.} \mathcal{N}(0, 1).$$

$$t = 1005 - 1000 / \sqrt{400} / \sqrt{100} = 2.5$$

Rejection Region is given by

$$RR_{0.05} = (z_{0.05}, \infty) = (1.65, \infty)$$

 $t \in RR_{0.05}$, we reject H₀ for $\alpha = 0.05$

- c) p-value = P(Z > 2.5) = 0.0062, where $Z \sim N(0, 1)$
- d) The probability of rejecting H_0 when the true mean equals $\mu 1$.

Thus, power(μ 1) = P (X⁻ – μ 0 /s/V n > 1.65 | μ = μ 1) = P (X ⁻ >1003.3 | μ = μ 1) \approx P (Z > 1003.3 – μ 1/ 2).

For $\mu 1$ = 1000 m3, as $\mu 1$ = $\mu 0$, the power coincides with the significance level α .

That is, power of test (1000) = 0.05.

For $\mu 1 = 1008 \text{ m}3$,

power of test (1008) $\approx P (Z > -2.35)$

= 1 - P (Z > 2.35)

= 0.9906

e)

- 1) True (our p-value is less than 0.05, implying that it is also lower than 0.1)
- 2) False (it is the error made when we reject H₀ while H₀ is true),
- 3) False (we would reject for significance levels larger than 15%)