Answers final exam Calculus B (2WBB0), 29-01-2018

- 1 (c): Draw a right-angled triangle with angle α for which $\sin(\alpha) = \frac{2}{5}$, so opposite side 2 and hypotenuse 5. Then the near side is $\sqrt{21}$, and $\cos(\alpha) = \frac{1}{5}\sqrt{21}$.
- **2** (b): The solution to the differential equation is $y(t) = 10 e^{t/10}$. Solving $10 e^{t/10} = 4000$ gives (use the hint) $\frac{t}{10} \approx 6$.
- **3 (b)** An easy way is $(x + \mathcal{O}(x^3) 1 + \frac{1}{2}x^2 + \mathcal{O}(x^4))^2 = 1 + x^2 2x x^2 + \mathcal{O}(x^3) = 1 2x + \mathcal{O}(x^3)$.

One may also compute the result using the definition of a Taylor series.

- **4 (d)** Implicit differentiation yields $3x^2 + y^3 + 2xyy' + 3y^2y' = 0$ so $3x^2 + y^3 + (2xy + 3y^2)y' = 0$.
- 5 (c) The normal vectors are $v = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ and $w = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$. The cosine of these vectors is $\frac{v \cdot w}{\|v\| \|w\|} = \frac{7}{\sqrt{14}\sqrt{14}} = \frac{1}{2}$.
- **6** The inner product of $x \alpha y = \begin{bmatrix} 1 2\alpha \\ 2 3\alpha \\ 3 4\alpha \end{bmatrix}$ and y should be 0, so $2(1 2\alpha) + 3(2 3\alpha) + 4(3 4\alpha) = 0$, so $\alpha = \frac{20}{29}$.
- 7 (a) $y = \frac{3}{\ln(x) 1}$ so $y(\ln(x) 1) = 3$ so $\ln(x) = \frac{y + 3}{y}$ and $x = e^{\frac{y + 3}{y}} = f^{-1}(y)$.
 - (b) The range of f^{-1} is the domain of f, so (e, ∞) . The domain of f^{-1} is the range of f. Since $\lim_{x\to e^+} f(x) = \infty$ and $\lim_{x\to \infty} f(x) = 0$, this is $(0, \infty)$.

Note that the domain of f^{-1} is not $\mathbb{R}\setminus\{0\}$; this would correspond to domain of $(0,e)\cup(e,\infty)$ of f.

- **8** (a) This is a limit of type 0 times "oscillating factor", so we use the squeeze theorem: $0 = \lim_{x \to 0} -x \le \lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right) \le \lim_{x \to 0} x = 0$, so the answer is 0.
 - **(b)** This is a limit of type 1^{∞} , so we use $e^{\ln n}$: $\lim_{n \to \infty} e^{n \ln(1 + \frac{1}{\sqrt{n}})}$. Consider the exponent: $\lim_{n \to \infty} n \ln(1 + \frac{1}{\sqrt{n}})$.

This is a limit of type $\infty \cdot 0$, so we rewrite it to type 0/0: $\lim_{n \to \infty} \frac{\ln(1 + \frac{1}{\sqrt{n}})}{1/n}$.

We can now use l'Hôpital: $\lim_{n\to\infty}\frac{1}{1+\frac{1}{\sqrt{n}}}\cdot -\frac{1}{2n^{3/2}}\Big/-\frac{1}{n^2}=\lim_{n\to\infty}\frac{\sqrt{n}}{2(1+\frac{1}{\sqrt{n}})}=\infty.$

So the answer is $e^{\infty} = \infty$.

As an alternative way, instead of using l'Hôpital, it is more elegant to substitute $x = \frac{1}{\sqrt{n}}$, then the limit becomes $\lim_{x \to 0^+} \frac{\ln(1+x)}{x^2}$.

Now use l'Hôpital: $\lim_{x\to 0^+} \frac{1}{1+x}/2x = \infty$.

9 (a) With substitution
$$u = x^2 + 1$$
, $du = 2xdx$, and $x^2 = u - 1$ we get
$$\int x \cdot (x^2)^2 \sqrt{x^2 + 1} = \frac{1}{2} \int (u - 1)^2 \sqrt{u} \, du = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} - u^{1/2}) \, du$$
$$= \frac{1}{2} (\frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} - \frac{2}{3} u^{3/2}) = \sqrt{x^2 + 1} \cdot (\frac{1}{7} (x^2 + 1)^3 - \frac{2}{5} (x^2 + 1)^2 - \frac{1}{3} (x^2 + 1)) + C.$$

(b) Twice partial integration:

$$\int e^{2x} \sin(x) dx = -e^{2x} \cos(x) + \int 2e^{2x} \cos(x) dx$$
$$= -e^{2x} \cos(x) + 2e^{2x} \sin(x) - \int 4e^{2x} \sin(x) dx$$

so
$$5 \int e^{2x} \sin(x) dx = -e^{2x} \cos(x) + 2e^{2x} \sin(x)$$
 and therefore $\int e^{2x} \sin(x) dx = -\frac{1}{5} e^{2x} \cos(x) + \frac{2}{5} e^{2x} \sin(x) + C$.

10 The homogeneous part $\frac{dy}{dx} = -2\frac{y}{x}$ gives $\int \frac{dy}{y} = -2\int \frac{dx}{x}$ so $\ln|y| = -2\ln|x| + C$ so $y(x) = C \frac{1}{x^2}$.

Solving the inhomogeneous differential equation by, e.g., variation of constants yields $C'(x)\frac{1}{x^2} + C(x) \cdot -\frac{2}{x^3} + 2\frac{C(x)}{x^2 \cdot x} = 2\frac{e^{x^2}}{x}$. Therefore, $C'(x) = 2xe^{x^2}$, and $C'(x) = \int 2xe^{x^2} dx + D = e^{x^2} + D$ (by substitution

So the general solution is $y(x) = \frac{1}{x^2}(e^{x^2} + D)$. Using the initial condition we get D = 2 - e.