1 EE method

$$d_i^{(j)} = \frac{Y(\mathbf{X}_{\sim \mathbf{i}}^{(\mathbf{j})}, X_i^{(j)} + \Delta^{(i,j)})}{\Delta^{(i,j)}},$$
(1)

$$\mu_i = \frac{1}{r} \sum_{j=1}^r d_i^{(j)}.$$
 (2)

$$\sigma_i = \frac{1}{r} \sum_{j=1}^r (d_i^{(j)} - \mu_i)$$
 (3)

$$\mu_i^* = \frac{1}{r} \sum_{j=1}^r \left| d_i^{(j)} \right|. \tag{4}$$

$$\mu_{i,\sigma}^* = \mu_i^* \frac{\sigma_{X_i}}{\sigma_Y}.\tag{5}$$

Scaling provides link from "deterministic effect" to impact on variation of Y. Parameters may have large effects on Y but not on its variation: The impact of X may be strong but always the same if $\sigma_x = \epsilon$. Especially tricky, if Y does also not vary a lot.

Example: linear function with two parameters: high coeff - low SD and low coeff, high SD.

2 Sampling schemes

One EE per parameter per subsample.

$$\mathbf{R}_{(k+1)\times k} = \begin{pmatrix} a_1 & a_2 & \dots & a_k \\ \mathbf{b_1} & a_2 & \dots & a_k \\ a_1 & \mathbf{b_2} & \dots & a_k \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & \mathbf{b_k} \end{pmatrix}$$

$$(6)$$

Contains choice of (quasi-random) sequence. Implies share of very high steps.

$$\mathbf{T}_{(k+1)\times k} = \begin{pmatrix}
a_1 & a_2 & \dots & a_k \\
\mathbf{b_1} & a_2 & \dots & a_k \\
\mathbf{b_1} & \mathbf{b_2} & \dots & a_k \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{b_1} & \mathbf{b_2} & \dots & \mathbf{b_k}
\end{pmatrix}$$
(7)

Contains choice of two numerical parameters. Lower bound of step is 0.5 given step function.

3 EE method for correlated inputs

1.
$$z = \Phi^{-1}(u)$$

2.
$$\mathbf{z_c} = \mathbf{Q^T} \mathbf{z^T}$$

3.
$$\mathbf{x} = \boldsymbol{\mu} + \mathbf{z_c(i)}\boldsymbol{\sigma(i)}$$

Transform samples. N(3k+1) and 3Nk function evals. Correlations include step.

$$\mathcal{T}_{1}(\mathbf{T_{i+1,*}}; i-1) = \begin{pmatrix}
a_{k} & a_{1} & \dots & \dots & a_{k-1} \\
\mathbf{b_{1}} & a_{2} & \dots & \dots & a_{k} \\
\mathbf{b_{2}} & a_{3} & \dots & \dots & \mathbf{b_{1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{b_{k}} & \mathbf{b_{1}} & \dots & \dots & \mathbf{b_{k-1}}
\end{pmatrix}$$
(8)

$$\mathcal{T}_{1}(\mathbf{T}_{i,*}; i-1) = \begin{pmatrix}
a_{1} & a_{2} & \dots & \dots & a_{k} \\
a_{2} & \dots & \dots & a_{k} & \mathbf{b_{1}} \\
a_{3} & \dots & \dots & \mathbf{b_{1}} & \mathbf{b_{2}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{b_{1}} & \mathbf{b_{2}} & \dots & \dots & \mathbf{b_{k}}
\end{pmatrix}$$
(9)

Correlations exclude step.

$$\mathcal{T}_{1}(\mathbf{T}_{\mathbf{i},*}; i-1) = \begin{pmatrix}
a_{2} & a_{3} & \dots & \dots & a_{1} \\
a_{3} & \dots & a_{k} & \mathbf{b}_{1} & a_{2} \\
a_{4} & \dots & \mathbf{b}_{1} & \mathbf{b}_{2} & a_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbf{b}_{2} & \mathbf{b}_{3} & \dots & \dots & \mathbf{b}_{1}
\end{pmatrix}$$
(10)

Trajectory design only.

Activates distortions by numerical parameters and general differences in drawing the elements between schemes.

$$d_i^{full,T} = \frac{f(\mathcal{T}(\mathbf{T_{i+1,*}}; i-1)) - f(\mathcal{T}(\mathbf{T_{i,*}}; i))}{\Delta}.$$
 (11)

$$d_i^{ind,T} = \frac{f(\mathcal{T}(\mathbf{T_{i+1,*}};i)) - f(\mathcal{T}(\mathbf{T_{i,*}};i))}{\Delta}.$$
 (12)

Improvements. Denominator can be written much simpler as $\mathcal{T}(b_i) - \mathcal{T}(a_i)$.

$$d_i^{c,T} = \frac{f\left(\mathcal{T}(\mathbf{T_{i+1,*}}; i-1)\right) - f\left(\mathcal{T}(\mathbf{T_{i-1,*}}; i)\right)}{F^{-1}\left(\Phi^u(b_i)\right) - F^{-1}\left(\Phi^u(a_i)\right)}$$
(13)

$$d_{i}^{u,T} = \frac{f(\mathcal{T}(\mathbf{T}_{i+1,*};i)) - f(\mathcal{T}(\mathbf{T}_{i,*};i))}{F^{-1}(Q^{T}_{k,*k-1}(j)T_{i+1,*k-1}^{T}(j) + Q^{T}_{k,k}\Phi^{u}(b_{i})) - F^{-1}(Q^{T}_{k,*k-1}(j)T_{i,*k-1}^{T}(j) + Q^{T}_{k,k}\Phi^{u}(a_{i}))}$$
(14)

4 Replication and Validation

Linear function with three parameters and Correlations equal to 0.9, 0.4, 0.01. Numerical parameter lead to re-lineariation of measures in GM'17.

Let $f(X_1,...,X_k) = \sum_{i=1}^k c_i X_i$ be an arbitrary linear function. Let $\rho_{i,j}$ be the linear correlation between X_i and X_j . Then, for all $i \in 1,...,k$, I expect:¹

$$d_i^{u,*} = c_i \tag{15}$$

$$d_i^{c,*} = \sum_{j=1}^k \rho_{i,j} c_j.. \tag{16}$$

Both equations state that, conceptually, the result does not depend on the sampling scheme.

¹These results correspond to the intuition provided by the example in Saltelli et al. (2008), p. 123.

4 Replication and Validation

Table 1. Replication and validation - trajectory design

Measure	GM'17	Repl. $\mu^{*\dagger}$	Repl. σ^{\ddagger}	S'20
	1.20	1.36	0.83	1.00
$\mu^{*,ind}$	1.30	1.48	0.91	1.00
	3.20	3.11	1.94	1.00
	0.55	0.00	0.56	0.00
σ^{ind}	0.60	0.00	0.62	0.00
	1.30	0.00	1.32	0.00
	14.90	16.20	9.97	2.30
$\mu^{*,full}$	12.50	13.45	8.31	1.91
	10.00	9.93	6.18	1.41
	6.50	0.00	6.74	0.00
σ^{full}	5.50	0.00	5.63	0.00
	4.00	0.00	4.20	0.00

 ${\bf Table~2.}~{\bf Replication~and~validation~-~radial~design}$

Measure	GM'17	Replication	S'20
	0.60	0.57	1.00
$\mu^{*,ind}$	0.75	0.85	1.00
	1.50	1.31	1.00
	0.20	0.10	0.00
σ^{ind}	0.30	0.41	0.00
	0.85	0.22	0.00
	7.50	6.84	2.30
$\mu^{*,full}$	6.80	7.77	1.91
	4.75	4.19	1.41
	2.90	1.15	0.00
σ^{full}	2.65	3.68	0.00
	2.50	0.70	0.00

 $[\]overline{\dagger 0^{num}} = 0.00001 \text{ and } l = 4.$ ${}^{\ddagger} 0^{num} = 0.00000001 \text{ and } l = 24.$

Figure 1. Grid points in standard normal sample space for trajectory design with l=4

5 Results: Uncertainty Analysis

Figure 2. Probability distribution of quantity of interest q

Figure 3. Comparison of shares of occupation decision over time between scenarios with cone plots

5.1 Results: Qualitative Sensitivity Analysis

Be cautious!

Table 3. Mean absolute correlated and uncorrelated elementary effects (based on 150 subsamples in trajectory and radial design)

Parameter	$\mu_T^{*,c}$	$\mu_R^{*,c}$	$\mu_T^{*,u}$	$\mu_R^{*,u}$
General				
δ	17	23	476	415
Blue- $collar$				
eta^b	1	3	43	88
eta_e^b	11	14	406	443
eta^b_b	25	51	688	1169
eta^b_{bb}	871	934	15 540	17860
eta^b_w	29	48	73	143
eta_{ww}^b	389	460	869	1183
White-collar				
eta^w	1	3	50	117
eta_e^w	26	28	943	852
eta_w^w	24	47	718	1521
eta_{ww}^w	933	997	12257	18069
eta^w_b	131	127	309	356
eta^w_{bb}	120	1352	2088	2477
Education				
eta^e	0.0008	0.0002	0.001	0.003
eta^e_{he}	0.0001	0.0002	0.001	0.001
eta^e_{re}	0.0003	0.0002	0.0003	0.0006
Home				
eta^h	0.0003	0.0003	0.00002	0.00002
Lower Triangula	r Cholesky Matr	ix		
c_1	8	16	18	37
c_2	8	11	22	24
c_3	0.0004	0.0004	0.0004	0.0007
c_4	0.0004	0.00008	0.0002	0.0003
$c_{1,2}$	4	4	10	10
$c_{1,3}$	0.0005	0.0006	0.0006	0.0005
$c_{2,3}$	0.0003	0.0005	0.0006	0.001
$c_{1,4}$	0.00004	0.00005	0.0004	0.0005
$c_{2,4}$	0.0001	0.0002	0.0001	0.0002
$c_{3,4}$	0.0001	0.0001	0.00008	0.0001

Figure 4. Sigma-normalized mean absolute Elementary Effects for trajectory design

Figure 5. Sigma-normalized mean absolute Elementary Effects for radial design

5.2 Review: Estimation Results

 ${\bf Table~4.~Estimates~for~the~distribution~of~input~parameters}$

Parameter	Mean	Standard error (SE)	SE in KW94
General			
δ	0.95	0.00084	-
Blue-collar			
eta^b	9.21	0.013	0.014
eta_e^b	0.038	0.0011	0.0015
eta^b_b	0.033	0.00044	0.00079
eta^b_{bb}	-0.0005	0.000013	0.000019
eta_w^b	0.0	0.00067	0.0024
eta^b_{ww}	0.0	0.000029	0.000 096
White-collar			
eta^w	8.48	0.0076	0.0123
eta_{e}^{w}	0.07	0.00047	0.00096
eta_w^w	0.067	0.00055	0.00090
eta_{ww}^w	-0.001	0.000017	0.000070
eta^w_b	0.022	0.00033	0.0010
eta_{bb}^w	-0.0005	0.000021	0.000 030
Education			
eta^e	0.0	330	459
eta^e_{he}	0.0	155	410
eta^e_{re}	-4000	202	660
Home			
eta^h	17750	390	1442
Lower Triange	ular Cholesky Mo	atrix	
c_1	0.2	0.0015	0.0056
c_2	0.25	0.0013	0.0046
c_3	1500	108	350
c_4	1500	173	786
$c_{1,2}$	0.0	0.0064	0.023
$c_{1,3}$	0.0	143	0.412
$c_{2,3}$	0.0	116	0.379
$c_{1,4}$	0.0	232	0.911
$c_{2,4}$	0.0	130	0.624
$c_{3,4}$	0.0	177	0.870

5.3 Improvement: Sampling scheme tailored to Sobol' indices

Similar to trajectory design to have interactions still included. Base row is expectation. Shuffle row. Add random value between [0, 0.5]. Take square root of squared difference and divide by step.

References

References

Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola (2008). *Global Sensitivity Analysis: The Primer*. John Wiley & Sons.