Laws of Logic

Logical Connective	Symbol	Python Operator	Precedence	Logic Gate
Negation (Not)		not	Highest	\triangleright
Conjunctive (AND)	\land	and	Medium	
Disjunctive (OR)	V	or	Lowest	\triangleright

Basic Rules of Logic

Implications and Equivalences

Commutative Laws

 $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$

Detachment (Modus Ponens) $(p \to q) \land p \Rightarrow q$

Associative Laws

 $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Indirect Reasoning (Modus Tollens) $(p \to q) \land \neg q \Rightarrow \neg p$

Distributive Laws

 $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

Disjunctive Addition $p \Rightarrow (p \lor q)$

Identity Laws

 $p \vee \mathbf{F} \Leftrightarrow p$ $p \wedge \mathbf{T} \Leftrightarrow p$ Conjunctive Simplification $(p \land q) \Rightarrow p \qquad (p \land q) \Rightarrow q$

Negation Laws

 $p \wedge (\neg p) \Leftrightarrow \mathbf{F}$ $p \vee (\neg p) \Leftrightarrow \mathbf{T}$

Disjunctive Simplification $(p \lor q) \land \neg p \Rightarrow q \qquad (p \lor q) \land \neg q \Rightarrow p$

Idempotent Laws

 $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$

Chain Rule $(p \to q) \land (q \to r) \Rightarrow (p \to r)$

Null Laws

 $p \lor \mathbf{T} \Leftrightarrow \mathbf{T}$ $p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$

Resolution $(\neg\,p\vee r)\wedge(p\vee q)\Rightarrow(q\vee r)$

Absorption Laws

 $p \land (p \lor q) \Leftrightarrow p \qquad p \lor (p \land q) \Leftrightarrow p$

Conditional Equivalence $p \to q \Leftrightarrow \neg p \lor q$

DeMorgan's Laws

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q \qquad \neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

Biconditional Equivalences $(p \leftrightarrow q) \Leftrightarrow (p \to q) \land (q \to p)$ $\Leftrightarrow (p \land q) \lor (\neg q \land \neg q)$

Involution Law

 $\neg(\neg p) \Leftrightarrow p$

Contrapositive $p \to q \Leftrightarrow \neg q \to \neg p$