Costo de operadores

Operación selección

En la altura del árbol n es la cantidad de registros que entran en un bloque, y K la cantidad de valores diferentes de la clave de búsqueda.

agoritmo	Condicion	costo (peor caso)	Aclaracion
Busqueda lineal		b_r	
Busqueda binaria	Si el campo de la seleccion es la calve con la que esta ordenado el archivo	$\log_2(b_r)$	
A3	Indice primario, igualdad basada en la clave	$\log_(n/2)(K) + 1$	
A4	Indice primario, igualdad en atributo no clave	$\log_(n/2)(K) + b_s$	b_S cantidad de bloques conteniendo registroscon la clave de busqueda especificada que son leidos
A5	Indice secundario, igualdad en clave	h_i+1	
A5bis	Indice secundario, igualdad en no clave	h_i*r_s	r_s cantidad de registros que cumplen la condicion.

Involucrando comparaciones

Selecciones de la forma $\sigma_{(A<=V)}$ o $\sigma_{A>=V}$

Se puede hacer con un escaneo lineal

o usando indices.

Para los casos de indice secundario la búsqueda lineal puede ser mas barata. E implica una E/S para cada registro.

Condicion	costo(en bloques)	aclaracion
Indice primario con tabla ordenada en A para >=	hi+b	b = numero de bloques conteniendo registros A>=V
Para <=	se escanea la tabla secuencial-mente = b	b = cantidad de bloques de la tabla
Indice secundario para A>=V	h_i+2n	n cantidad de registros que cumplen la condición. Se usa la primera entrada de indice >= V, se recorren los indices secuencialmente
Indice secundario para A<=V	h_i+2n	n cantidad de registros que cumplen la condicion. Se recorren los indices secuencialmente hasta la primera

Condicion	costo(en bloques)	aclaracion
		entrada > V.

Operación de proyección

 Requiere recorrer todos los registros y realizar una proyección de cada uno. -> Se recorren todos los bloques de la tabla. Costo:

 $b_r = ext{cantidad de bloques de tabla r}$

Operación ordenación

La ordenación depende de a cantidad de bloques disponibles en la memoria principal. En el peor caso entra un bloque en memoria. Luego el coste es

$$b_r(2\lceil\log_{M-1}(b_r/M)
ceil+1)$$

donde b_r cantidad de bloques de la tabla donde M cantidad de bloques que entran en memoria

Operación reunión selectiva

Algoritmo	costo(Peor caso)	costo(mejor caso)
Reunion selectiva de loop anidado	$n_r*b_s+b_r$	b_s+b_r
Loop anidado por bloques	$\lceil b_r/(M-2) \rceil * b_s + b_r$	-
Loop anidado indexado	-	-
Merge-sort	$b_r + b_s$ + Costo de ordenar si no lo estan	-

Agregación

El costo es el mismo que eliminación de duplicados

Concatenación, intersección y resta

El costo para estos casos es el mismo

$$b_r + b_s$$