1st Order Equations

Separable Equations

Solve: 1. Separate variables. 2. Integrate both sides. 3. Solve

Example: $\frac{dy}{dx} = 2xy, y(0) = 1. \Rightarrow y = e^{x^2}$

Equilibrium & Stability

Equilibrium: Set $\frac{dy}{dx} = 0$. Stability:

• Stable: Solutions approach equilibrium.

• Unstable: Solutions move away.

• Semi-stable: Approach one side, move away other.

Example: $\frac{dy}{dx} = y(2-y)$: y = 0 (unstable), y = 2 (stable).

Linear Equations

Solve: Write y' + p(x)y = q(x). Find integrating factor $I(x) = e^{\int p(x)dx}$, multiply both sides, integrate, solve for y.

Bernoulli Equations

Solve: Write $y' + p(x)y = q(x)y^n$. Substitute $v = y^{1-n}$, solve as linear equation.

Exact Equations

Solve: 1. Check $M_y = N_x$. 2. Integrate M and N to find potential function $\Psi(x,y)$.

Logistic Equations

Formula: $p(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-Mkt}}$

Example: Suppose that I 00 rabbits are shipwrecked on a deserted island and their population P(t) after t years is determined by a logistic growth model, where the natural growth rate of the rabbits is k = 0.000 I and the carrying capacity of the island is I 000 rabbits.

$$p(t) = \frac{1000(100)}{100 + (1000 - 100)e^{-1000(0.0001)t}}$$

Mixing Problems

Formula: $\frac{dx}{dt} = rate_{in} - rate_{out}$

Example: A tank contains 100 L water, 10 g salt. Brine (5 g/L salt) enters at 4 L/min, drained at 2 L/min. Find salt after 10 min:

 $\frac{dx}{dt} = 20 - \frac{2x(t)}{100 + 2t}$

Newton's Law of Cooling

Formula: $\frac{dT}{dt} = -k(T - T_{\text{ambient}})$ Example: Coffee at 90°C cools in room at 20°C, after 10 min

it's 70°C. $T(t) = 20 + Ce^{-kt}$.

2nd Order Equations

Homogeneous Equations

Solve ay'' + by' + cy = 0:

• Distinct roots: $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

• Repeated root: $y = (C_1 + C_2 x)e^{rx}$

• Complex roots: $y = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$

Non-Homogeneous Equations

Solve y'' + by' + cy = f(x): 1. Solve complementary solution y_c . 2. Guess y_p based on f(x).

General solution: $y(x) = y_c(x) + y_p(x)$

Undetermined Coefficients

The form of y_p depends on f(x):

• Polynomial f(x): $y_p = x^k \times \text{poly.}$ k is number of 0 roots.

• $f(x) = e^{ax}$: $y_p = x^k e^{ax}$. k is times a is root.

• $f(x) = e^{ax}\cos(bx)$ or $\sin(bx)$: assume $y_p = x^k e^{ax}(\text{poly}\cos(bx) + \text{poly}\sin(bx))$ k is times a+bi are roots.

Example: y'' + 3y' + 2y = 3x + 5, $y_c = C_1 e^{-x} + C_2 e^{-2x}$, guess $y_p = Ax + B$.

Wronskian & Linearity

Check linear independence:

 $W(y_1, y_2) = y_1 y_2' - y_1' y_2 \neq 0 \implies \text{independent}.$

Mechanical Vibrations

Free Vibrations: mx'' + cx' + kx = 0

• Undamped (c = 0): $x(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t)$, $\omega =$

• Damped: Depends on $c^2 - 4mk$ (over/under/critically damped)

Forced Vibrations: Solve mx'' + cx' + kx = F(t) using undetermined coefficients or variation of parameters.

Variation of Parameters

Solve complementary equation $y_c = C_1 y_1 + C_2 y_2$. $y_p = v_1(x)y_1 + v_2(x)y_2$, solve for v_1, v_2 using:

$$v_1' = \frac{-y_2 f(x)}{W(y_1, y_2)}, \quad v_2' = \frac{y_1 f(x)}{W(y_1, y_2)}$$