Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

a TS1579 .A345

B. S. Territor Month Street

MAR 3 0 1973

CATALOGORO - PROPE

Summary of Cotton Fiber and Processing Test Results

U.S. DEPARTMENT OF AGRICULTURE Consumer and Marketing Service Cotton Division, April 1972

CONSTRUCTS

Takendark season, acceptance and acc	
Sumpling (Moreovers	
Mag: Distribution of presention area	
In must by procedure:	
,	
To be Transition	
Te + Results	6
Topic 1 - Area and U. S. sammery	
Tible 2 - State ru mary	
Table 3 - Grade and Staple manary	
Trole - Variety and state summry	
Pable) - Short stap a results	
Table 5 - Median taple result	
Table 7 - Lore staple ranult	
Table 3 - Extra long staple results, American apparent	
Table 3 - K. ru leng stiphe result, American Pinton	
10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Ciento Connelettan	
<u>Fine Correlation</u> Table 10 - Results for the rest at a plant	
malla 3	
Table 1 - Telult for modium tanto	
Table 12 - Reults for the tapin	
Multiple C relation	
Table 13 - Grade, stable, mike, "" game, unif short stable	
Table 14 - Color, nonlint, 2.11 Length, wife - whort stapl	
Table 14 - Color, nonlint, 2.11 length, vise - short staple Table 15 - 2.5% length, vise, $1/6$ " pure, unif., slow short staple. Table 15 - Grade, taple, site, "0" case, unif s disc tuple	
Table 1b - Gride, tiple, site, "0" care, unit sedim tuple	
Table 17 - Color, nonlint, 2. 1 conth, wile - medium clape	
Table $U' - 2.7$ length, like, $1/3''$ core, unit, aidim, - m dim stable.	
Table 19 - 2. 7 length. like, $1/3$ gage, unif., alone a dimensional table 19 - Grade, steple, i.e., "3" quee, unif one of ple,	
raid yard	
Tab = 20 - Color, n nlint, 2. I moth, nie, - long maple	
c.rd.d yarn	
Table 21 - 2.5) 1 rg*h, rik . /8" www, unif., one one starle	
arded yarn	
Table 22 - Grade, table, mile, "" age, unif long tuple	
ombed yarno	
Table 23 - Color, nonlist, 2. / Lingth, sile - Long staple	
comb d yern	
Table 24 - 2.) I length. mike, $1/3$ " gage, unif., eleme length taple	
combed yarne	
Measures used in statistical and yell	
Early for interpretation	

SUMMARY OF COTTON FIBER AND PROCESSING TEST RESULTS CROP OF 1971

INTRODUCTION

This report contains information on the fiber properties and spinning performance of cotton from major commercial production areas of the United States. Similar reports have been published annually since 1946. 1/
These reports summarize and add supplemental information to the data published in biweekly reports which were titled "Cotton Fiber and Processing Test Results, Crop of 1971" and numbered 1 through 13.

The results of fiber and spinning tests made in connection with these annual surveys provide data for studies of the relationships between fiber properties, processing performance and product quality. The data are used to measure the effectiveness of the standards to be sure that they continue to reflect differences in spinning utility. Publication of the bi-weekly reports enables merchants and manufacturers to use the results to locate sources of cotton to meet their specific requirements. Farmers and breeders may also use the data as a source of quality information regarding the various varieties of cottons produced under commercial growing conditions.

SAMPLING PROCEDURES

The procedure for selecting samples for the 1971 survey was designed to provide test lots representing all major varieties in each of the territories served by Cotton Division classing offices. Variety selections were based on the predominant varieties planted in each classing office territory as reported by the Cotton Division in "Cotton Varieties Planted, 1967-1971". A production area was selected to represent the leading variety and one to represent each of the other varieties with an expected production of 10,000 bales or more in each classing office territory. Additional areas were selected for those varieties with a production of over 125,000 bales. One additional production area was selected for each 125,000 bales or portion thereof in excess of the first 125,000 bales. Production areas with at least 70 percent of one variety were designated as that variety with no attempt made to maintain the purity of the variety except by selection of representative production areas. However, in some cases, where there was unusual interest in a particular variety and a low percentage was planted in the area, the classing offices selected lots representing 100 percent of the variety. The locations of the production areas selected for the 1971 survey are shown on figure 1.

^{1/} Copies of past summary reports may be obtained from the Standardization Section, Cotton Division, C&MS, USDA, P. O. Box 17723, Memphis, Tennessee 38117 until supplies are exhausted.

U. S. DEPARTMENT OF AGRICULTURE

Test lots were collected from each production area at intervals of three weeks during the harvest season. Lots were selected to represent the predominant grade and staple being classed at the time of collection. For the most part, these areas produce the specified qualities in quantities large enough to enable buyers to obtain lots of even-running grade and staple. Obviously, other qualities of cotton are available in each area as a result of normal seasonal, soil, harvesting and other variations. Most production areas also produce cotton of varieties other than those included in the tests.

Each spinning lot used in this study was made up of 20 to 30 samples of the same grade and staple length from bales classed for growers under the Smith-Doxey Act. These even-running lots of samples were then tested at Cotton Division fiber and spinning laboratories. While this method of collecting samples does not provide data for all qualities in the crop, it does provide average test results for those qualities in largest supply during each three-week period.

LABORATORY PROCEDURES

As in previous years, all tests in this study were performed in the Cotton Division laboratories at College Station, Texas and Clemson, South Carolina. Fiber and spinning tests on all long and extra long staple lots and on medium staple lots from Missouri and states east of the Mississippi River were performed at the Clemson laboratory. Fiber and spinning tests on all short staple lots and on medium staple lots from states west of the Mississippi River, except Missouri, were performed at the College Station laboratory. Chemical finishing tests on all lots were performed at the Clemson laboratory.

Fiber, spinning, and chemical finishing tests were performed under standardized laboratory procedures. Most of the fiber tests were performed in the standard atmospheric conditions of 65 percent relative humidity at a temperature of 70 degrees F. Standard test procedures as outlined by the American Society for Testing and Materials were used in making tests. Tests not covered by ASTM were performed using commonly accepted procedures as recommended by the instrument manufacturer. Five subsamples were taken at random from each spinning lot to provide representative specimens for the fiber tests.

Yarn processing or spinning tests were performed by a technique developed in the Cotton Division laboratories for processing small lots of cotton on standard-type textile machines. The samples in each lot were thoroughly composited by hand-mixing before being fed to the first process picker. This hand-mixing is similar to the machine mixing normally obtained in cotton textile opening equipment. Observations were made at each process to measure processing behavior and the yarns produced were tested to measure product quality.

On the basis of average past performance, cottons were grouped according to the expected staple length for the specified variety. All cottons of the specified variety were spun in the same manner regardless of differences in staple length. This was done so that direct comparisons of different lots of cotton within a specified variety could be made. These samples were carded at specified production rates and spun into numbers that reflect the manufacturing values of the varieties tested. In general, the rates of carding and yarn numbers spun from the 1971 crop are as follows:

- Group 1.--Short staple cottons, carded at 12-1/2 pounds per hour and spun into carded 8s and 22s yarns with a twist multiplier of 4.40 plus a carded yarn spinning potential test for all lots. This includes varieties which normally produce staple lengths 31/32 and shorter.
- Group 2.--Medium staple cottons, carded at 9-1/2 pounds per hour and spun into carded 22s and 50s yarns with a twist multiplier of 4.00 plus a carded yarn spinning potential test for all lots. This group includes varieties which normally produce cottons from 1 inch through 1-3/32 inches in staple length.
- Group 3.--Long staple cottons, carded at 6-1/2 pounds per hour and spun into both carded and combed 22s and 50s yarns with a twist multiplier of 3.80 plus a carded yarn spinning potential test for all lots. This group includes upland varieties which normally produce cottons from 1-1/8 inches through 1-1/4 inches in staple length.
- Group 4.--Extra long staple cottons, carded at 4-1/2 pounds per hour and spun into combed 50s and 80s yarns with a twist multiplier of 3.60. This group includes all American Pima and American upland extra long staple varieties, which are usually 1-5/16 inches or longer in staple length.

Skeins of yarn from each spinning test lot were bleached and dyed by a technique developed in the Cotton Division laboratories for small scale finishing tests. Color tests were made on gray and chemically finished skeins of yarn as measures of the bleaching and dyeing behavior.

TEST RESULTS

A total of 425 short, medium and long staple American upland spinning lots was tested from the 1971 crop compared to 493 from the 1970 crop. Average results showed the 1971 cottons to be slightly less uniform, slightly finer and weaker than the 1970 cottons. The 1971 cottons showed higher trash content on both the Shirley Analyzer and picker and card waste tests. Yarns spun from

these cottons were weaker with better appearance grades, but with slightly more imperfections. Average spinning potential yarn number was lower than in 1970. (Table 1)

A total of 317 medium staple American upland spinning lots was tested from the 1971 crop compared to 390 from the 1970 crop. Average results showed the 1971 cottons to be slightly longer by the Fibrograph 2.5 percent span length, slightly less uniform, and weaker at zero gage fiber strength than the 1970 cottons. Both Shirley Analyzer nonlint content and picker and card waste were slightly lower in 1971. Yarns spun from these samples were slightly weaker with better appearance grades and the same number of imperfections. Average spinning potential yarn number was slightly lower in 1971.

A total of 40 long staple American upland spinning lots was tested from the 1971 crop. This compares to 40 tested in 1970. Average results showed the 1971 cottons to be slightly less uniform, finer and weaker than the 1970 cottons. Shirley Analyzer nonlint content of the 1971 cottons was lower than the 1970 cottons while picker and card waste was higher. Yarns spun from these samples were weaker with better appearance grades and fewer imperfections than in 1970. Average spinning potential yarn number was higher.

The Southeastern production area includes the states of Virginia, North Carolina, South Carolina, Georgia, Florida and Alabama. A total of 68 medium staple spinning lots was tested from this area in 1971 compared to 83 in 1970. Average results showed the 1971 medium staple cottons to be slightly longer and weaker than in 1970. Both Shirley Analyzer nonlint content and picker and card waste were lower. Yarns spun from these samples were weaker with better appearance grades. Yarns showed more imperfections than in 1970. Average spinning potential yarn number was slightly higher.

A total of 16 long staple American upland spinning lots from the Southeastern area was tested in 1971 compared to 14 lots in 1970. Average results showed the 1971 cottons to be less uniform, finer and weaker than in 1970. Shirley Analyzer nonlint content was lower while picker and card waste was higher. Yarns spun from these long staple samples were weaker with higher appearance grades but showed slightly more imperfections.

The South Central production area includes the states of Tennessee, Missouri, Mississippi, Arkansas and Louisiana. In 1971, a total of 141 medium staple spinning lots was tested from this area. This compares to 171 lots tested from the 1970 crop. Average results showed the 1971 cottons to be slightly longer, less uniform, finer and weaker at zero gage fiber strength than cottons from the 1970 crop. Both Shirley Analyzer nonlint content and picker and card waste were lower. Yarns spun from these samples were slightly stronger with better appearance grades and fewer imperfections. Average spinning potential yarn number was higher than last season.

Three long staple American upland spinning lots were tested from the South Central area in 1971 compared to 6 from the 1970 crop. Average results on these lots showed the 1971 cottons to be longer, slightly more uniform, finer and weaker at zero gage fiber strength than the cottons tested in 1970. Both Shirley Analyzer nonlint content and picker and card waste were higher in 1971. Yarns spun from these samples were stronger with better appearance grades and fewer imperfections. Average spinning potential yarn number was higher than in 1970.

The Southwestern production area consists of the states of Oklahoma and Texas, except far west Texas (served by the Pecos and El Paso classing offices). A total of 68 short staple American upland spinning lots was tested from this area for the 1971 crop. This compares to 63 lots for the 1970 crop. Average results from short staple samples tested show the 1971 cottons to be slightly longer, less uniform, much finer and weaker than the 1970 crop cottons. Both Shirley Analyzer nonlint content and picker and card waste were higher. Yarns spun from these short staple samples were weaker with slightly lower appearance grades and more imperfections than in 1970. Average spinning potential yarn number was lower in 1971.

A total of 48 medium staple American upland spinning lots was tested from the Southwestern area from the 1971 crop compared to 66 in 1970. Average results on medium staple cottons from this area show the 1971 cottons to be shorter, less uniform, finer and weaker than 1970 cottons. Both Shirley Analyzer nonlint content and picker and card waste were higher. Yarns spun from these samples were weaker but with slightly higher appearance grades. Yarn imperfections were higher in 1971 than in 1970. Average spinning potential yarn number was lower than in 1970.

The Western production area consists of the states of California, Arizona, New Mexico and far west Texas. A total of 60 medium staple spinning lots was tested from the 1971 crop in this area compared to 70 from the 1970 crop. Average results from these medium staple samples show the 1971 cottons to be longer and slightly weaker at zero gage fiber strength than the 1970 crop. Picker and card waste was lower while Shirley Analyzer nonlint content remained the same. Yarns spun from these samples were stronger with higher appearance grades and slightly fewer imperfections than in 1970.

A total of 21 (including 6 lots of roller ginned cotton) long staple
American upland spinning lots was tested in 1971 from the Western area. This
compares to 20 spinning lots tested from the crop of 1970. Average results
from these lots showed the 1971 cottons to be shorter, slightly less uniform,
finer and weaker than those lots tested in 1970. Shirley Analyzer nonlint
content was lower while picker and card waste was higher. Yarns spun from
these samples were weaker but with better appearance grades and fewer imperfections. Average spinning potential yarn number was higher in 1971.

A total of 25 extra long staple American Pima spinning lots was tested from the Western Area in 1971 compared to 18 in 1970. Average results showed the 1971 cottons to be shorter, coarser and slightly weaker than the 1970 cottons. Shirley Analyzer nonlint content and comber waste were lower in 1971 while picker and card waste was higher. Yarns spun from these samples were weaker with higher appearance grades and fewer imperfections than in 1970.

Average results of classification, fiber and processing tests from selected gin points, crops of 1970 and 1971 $\underline{1}/$ Table 1.--Cotton:

	Spin. Potent.	No.	43 38		60	61 62	62 55	70	63
results	Yarn imperf. 22s	NO	29 40		18	22 02	29 35	25 24	23
test	Appear- ance 22s	Index	114		101	106	113	113	107
Processing	Skein strength 22s	Lbs	93		102 99	102 103	106	118	106
	Picker & Card waste	Pct.	6.2		6.6	6. N	9.0	5.3	9.0.9
	Total non- lint	Pct.	4.5		3.6	8 8 0 0	w w a w	2.7	3.5
ults	Strength ero 1/8"	G/tex	21 20		5 5 5 7	55 55 55 55 55 55 55 55 55 55 55 55 55	23 28	25	23
test results	Stre Zero gage	Mpsi	98		83 79	82 81	87 84	93	83
Fiber te	Mike	Rdg.	4° %		†.†. †	†• † †• †	0° †	4.5	44
Fi	graph 50/2.5 unif.	Pct.	14e 45		45 45	44 44	7† 9†	7 7 7	47
	Fibro 2.5% span	In.	0.94		1.07	1.09	1.06	1.10	1.08
	Staple	32d in	30.4 30.3	and	34.1 34.4	34.3 34.8	33.5	35.1 35.3	34.3 34.5
	Grade Staple	Index 32d in upland	93	American upland	068 88	92	9 2 88	97	92
	Lots tested	No. Index 32 American upland	63	- Americ	83 68	tral 171 141	99 99	70	390
	Area and Crop Year	SHORT STAPLE -	Soutnwest 1970 1971	MEDIUM STAPLE	Southeast 1970 1971	South Central 1970 17 1971 14	Southwest 1970 1971	West 1970 1971	Average 1970 1971

1/ Based on a limited number of samples of modal quality

Table 1.--Continued

-		1															
			Spin. Potent.	No.		65	69	70		75	ļ	70		61 59	Comber	Maste 17.7 17.5	
	results	Yarn	imperf. 22s	No.		21 22	%	S (S		5 43		33 86 33		54 56 76		rarn 4	
		Appear-	ance 22s	Index		103	8	107		88		93		107	5 5	110 112	
	Processing test	Skein	st r ength 22s	Lbs.		109	300	113		134		120		105	Č	70 65	
		Picker	& Card waste	Pct.		8.6	0,0	9.6		8 9 1.	(20 0.4		4.0		8.0	
		Total	non. lint	Pct.		44	4.5	5.0		. 0	-	3.0		33.		3.5	
	1ts	Strength	1/8" gage	G/tex		53 85 83	た	ът.		27	ļ	55		53 55		34 33	
	Fiber test results	Stre	Zero	Mpsi		82 79	85	83,		25	į) 86 87		33 88		100	
	er tes		Mike	Rdg.		4.7	7,00	4.5		 	-	4 W		# # % Q		3.6	
	Fit	graph	50/2.5 unif.	Pct.		45 43	745	143		お字	-	÷		47 47		31	
		Fibrograph	2.5% span	In		1.14	1.16	1.22	(1.18	,	1.16		1.07	Š	1.48	
		Stanle	1	32d in	٦	35.2 35.4	35.3	37.0		37.0 36.9	(36.1 36.3		33.9	Pima	45.0	
		Grade Stanle	}	Index 32d	uplan	86 85	85	85	•	88	į	78 78		22	- American	۳.4	
			tested	No.	American	174	itral	m		20 21.2/	(0 0 0	IVG.	493 425		18 25	
		Area and	Crop Year		LONG STAPLE - American upland Southeast	1970	South Central	1971	West	1970 1971	Average	1970	U. S. UPLAND AVG.	1970	EXTRA LONG STAPLE	west 1970 1971	

2/ Includes 6 lots of roller ginned cotton

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1970 and 1971

							-12	-						
Spinning	Potential	No.	58 61	62 60	63	64 65	58 64 64	1 9	68	70	62 65	63	60	62
Picker	& card waste	Pet.	9.9	7.0	7.4 7.1	6.6	5.2 10.0	7.5	4.8	9.0	5.7	6.0	6.5	5.6
stock	Com- posite	Index	88	92	88	97	3.8	88	48	\$ 8	\$ 8.	95	8 6	95
Color of raw st	Yellow- ness	No.	пn	ന ന	ma	നവ	m m	3 #	m m	αm	നന	mm	a w	നന
Color	Gray- ness	No.	aa	നന	ณ ค	CI ユ	നന	mm	64	ณ ๓	ma	a a	a a	તા તા
Shirley Analyzer	non- lint	Pct.	8 0 0	4. 3.2	4.5	3.5	भ. ४. भ	3.3	4.3	5.4	& & & &	3.0	3.4	0, 0, 0, 0,
Elon-	gation 1/8"	Pct.	5.4	6.0	6.3 1.3	5.4 6.1	ν. ο. α.	6.5	6.0	6.0	9.9	6.9	0.9	8.9
strength	1/8" gage	G/tex	22 23	23	2½ 22	53	23	23	23 19	2 [†]	22 22	55	23	22
Fiber st	Zero gage	Mpsi	82 79	84 78	84 8 1	84 78	84 81	83	81 76	81 79	83 83	80	80 8	81 79
Micro-	naire	Rdg.	†•†	ተ• ተ ተ• ተ	4.5	4.7	4 4 5 6 6	44.5	4.5 4.1	1, 1, 3.8	†. £. ‡	4.4	4.4	T• †
Fiber length	50/2.5 unif.	Pct.	\$ 5	46 45	9 [†] 1	^{††}	45 42	94	45 41	† † †	45 45	45 45	77-71	24
Fiber	2.5% span	in.	1.06	1.06	1.07	1.10	1.14	1.12	1.16	1,16	1.09	1.09	1.09	1.07
Classification	Staple	32d in.	33.8 34.2	34.0 34.1	34.2 34.7	35.1 35.2	35.0 35.8	35.0 34.9	36.0	35.0	34.2 35.1	34°3 34°4	34.6 34.9	34.0 34.9
Classif	Grade	Index	88	89 87	8,89	91 82	8h 48	91 87	80	86 86	98	92	12 82	85 84 87
Spinning	lots	No.	43 30	16	9	15 10	4 4	3	ю н	4 4	49 39	23	60	15
Area	state and crop year	SOUTHEAST Medium staple:	Alabama 1970 1971	Georgia 1970 1971	North Carolina 1970 1971	South Carolina 1970 1971	Long staple: Alabama 1970 1971	Georgia 1970 1971	North Carolina 1970 1971	South Carolina 1970 1971	SOUTH CENTRAL Medium staple: Arkansas 1970 1971	<u>Louisiana</u> 1970 1971	<u>Mississippi</u> 1 <i>9</i> 70 1 <i>9</i> 71	Missouri 1970 1971

ed yarn	Com- posite	Index	104 111	102	105	107	102	105	102	102	105	105	105	106
Color 22s dyed yarn	Blue-	위	26.8	26.3	26.9	27.3 27.1	26.4	26.8	26.1	26.3	26.7 27.4	26.8	26.9	26.7
Colc	Reflect- ance	묎	28.6	28.7	28.2 26.7	28.3 27.0	29.1 26.7	27.8 26.8	28.2 25.9	28.5 27.4	27.9 26.4	27.9 26.8	28.1	27.4 26.2
ed yarn	Com- posite	Index	101	100	100	103	105	98 103	85	103 104	102 104	103 104	102	101
Color 22s bleached yarn	Yellow- ness	위	3.1	3.3	0.0	9, 9, 9, 9,	3.0°.	3.7	8.0°	ω ω ω ω	9.0 6.0	2.9	2.8	3.0
Color 2	Reflect- ance	뛢	83.4 84.5	83.4 84.4	82.9 83.6	83.7 84.6	84.2 84.1	83.2 84.5	82.5 83.3	83.8 84.5	83.3 84.5	83.6 84.2	83.0 84.5	83.0 84.9
Yarn imprfctns	Second	No. 50's	15	13	14 16	13 20	16	12	17 16	61 13	19	18 80	16	16
Yarn in	22s or 27 tex	No.	19	16	17 21	18	22 22	15	22 18	₹ %	23	25	02 19	22 17
Yarn appearance	Second	Index 50's	78 83	98 86	88 87	85 85	80 82	83 87	88	78 8 2	864	87	77 83	88 88
Yarn ap	22s or 27 tex	Index	98	103	10t 011	105	105	106	100	100	112	113	98	117
elongation	Second	Pct. 50's	4.8	4.9	5.00	5.1	4.7	5.2	5.4 4.5	7°.7	4.3	ተ . ተ ተ	5.0	4.4
Yarn elo	22s or 27 tex	Pet.	6.5	6.5	6.5	6.5	5.9	6.5	6.7	6.8	φ. 	6.3	6.8	6.0
rength	Second	Lbs. 50's	32 34	35	40 35	37	34 37	38	¹ ,1	41 38	35 38	36	35 35	35
Yarn strength	22s or 27 tex	Lbs.	8 6	103	113	106	100	110	211 88	114	101	103	103	101
Spinning	lots	No.	143 30	16	611	15	44	43	ьз	ব ব	49 39	23	60	15
Area	state and crop year	SOUTHEAST Medium staple:	1970 1971	Georgia 1970 1971	North Carolina 1970 1971	South Carolina 1970 1971	Long staple: Alabema 1970 1971	<u>Georgia</u> 1970 1971	North Carolina 1970 1971	South Carolina 1970 1971	SOUTH CENTRAL Medium staple: Arkansas 1970 1971	<u>Louisiana</u> 1970 1971	<u>Mississippi</u> 1970 1971	Missouri 1970 1971

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1970 and 1971--Continued

red yarn	Com- posite	Index	105	105	106	107 104	106		109	102 108	106	107	107	108
Color 22s dyed yarn	Blue- ness	위	26.8 27.8	26.8 27.8	27.2 27.12	26.8 26.8	26.7		29.2 27.1	26.4 27.2	96.6 9.86.6	% % % %	26.8	% % %
Col	Reflect- ance	Rd	27.9	27.9	28.4	27.1 27.6	27.4 27.4		27.8 26.9	29.1 27.2	27.2 28.0	27.5 27.5	27.3	26.9 27.7
ed yarn	Com- posite	Index	101 105	101	101	98	28		103	101	98	104	101	1004
22s bleached yarn	Yellow- ness	위	9 9 9 9	જ જ	<u>ლ</u> დ ლ დ	3.4 9.6	3.5		3.1	3.1 2.9	3.3	9 0 9 0	9.6 9.1	8.9 4.9
Color 2	Reflect- ance	RI RI	83.1 84.6	83.1 84.3	83.7 84.1	82.5 84.4	81.9 83.1		83.9 83.4	83.4 84.4	82.4 84.0	84.1 84.1	83.1 83.4	84.1 83.6
Yarn imprfctns	Second	No. 50's	13	19	38 39	51 76	43 45	50's	97	21 15	39	20	17	% ଧ
Yarn ir	22s or 27 tex	<u>%</u>	, 16 16	27 20	86.52	31 ¹ 47	24 27		21 19	26 19	39 55	27	8 8	36
earance	Second	Index 50's	82 17	73 83	818 123 126	120	120 122	50's	88	8 8	81 80	93	89	76
Yarn appearance	22s or 27 tex	Index	103 114	90	116	113	117		120 123	116 117	104	ц 119	115	98 117
ongation	Second	Pet. 50's	5.1	4.8 5.4	8.8 6.2 6.7	6.7	4°9 4°L	50's	4.3	3.6 4.5	4.3	†•† 4•4	4°3	8°11
Yarn elongation	22s or 27 tex	Pet.	9.9	4.9	5.4 5.6	5.9	5.6		5.6	5.3	5.0	5.8	5.6	6.2
Yarn strength	Second	Lbs. 50's	33	37 42	81s 300 286	316 294	290 305	50°s	37 33	31 37	37 34	35	74 74	34.17
Yarn st	22s or 27 tex	Lbs.	100	106	8.4	95	8 8		105	96 108	109	106	124 128	114
Spinning	lots	d) No.	24 15	m m	15	42 32	96		27	6	27	19	43 42	8 9
Area c+a+a	and crop year	SOUTH CENTRAL (Continued) Medium staple:	<u>Tennessee</u> 1970 1971	Long staple: Mississippi 1970 1971	SOUTHWEST Short staple: Central Texas 1970 1971	Northwest Texas 1970 1971	<u>Oklahoma</u> 1970 1971	Medium staple: South Texas	1 <i>9</i> 70 1 <i>9</i> 71	<u>Central Texas</u> 1970 1971	Northwest Texas 1970 1971	WEST Medium staple: Arizona 1970 1971	California 1970 1971	West Texas 1970 1971

Spinning	Potential	No.	57	49 62	44 37	4t4 37	37 42	67 57	62	58 51	61	73 74	70 26
Picker	& card waste	Pct.	6.3 3.8	4.6	6.7	6.0	5.0	6.0	5.4	6.5	5. v.	5.5	5.8
tock	Com- posite	Index	8 8	\$ 56	8.8	% %	8 %	まる	g %	88	101	100	99
of raw stock	Yellow- ness	<u>N</u>	mm	mm	<i>ਜ</i> ਸ	ব ব	4 4	mm	mm	† †	mm	mm	നന
Color	Gray- ness	No.	ุด ด	m Q1	<i>ਜ</i> ਜ	mm	ุ่นก	ოო	4 6	αm	٦ ح	ת ת	വ ന
Shirley	non- lint	Pet.	2.6 3.1	4.7	3.6 3.6	3.1 4.6	2°8 3°6	3°5 3°5	3.6 3.0	3.4 4.8	2.8 6.5	2.6	3.8
Elon-	gation 1/8"	Pct.	5.8	4.0.0	6.5	6.7	6.8 7.4	5.8	0.9	6.5	6.9	5.5	8.9
rength	1/8" gage	G/tex	% ដ	\$ \$	ส ର	ส ឧ	8 8	ଫ୍ଟ ଝ	55 55	82 83 83	23 23	26 27	23
Fiber strength	Zero gage	Mpsi	82 79	84 83	87 81	3 &	85	85 86	88 87	89 81	85 82	8 %	86 78
Micro-	naire	Rdg.	4.1 4.1	4 4 6 7	₽. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	4.2 3.2	8°4 3°8	4.5	4.5 5.4	3°6 3°8	η·η 1.1	2°4 2°4	3.8
Fiber length	50/2.5 unif.	Pet.	45 45	24 24	45 45	3 ‡	45 45	54 54	††1 5†	4 5	† †	24	##
Fiber	2.5% span	n I	1.06	1.19	%.°°°	0.93 42.0	0.91	1.09	1.10	1.02	1.09	1.10	1.10
Classification	Staple	32d in.	34.0 34.1	36.0	31.1 30.3	30 . 3	30.0	33.9 33.0	34.1 34.3	32.6 31.9	34.3 34.8	35.3 35.5	35.4 34.5
Classi	Grade	Index	まよ	83 85	88	95 85	88	g 8	88	92 48	88 6	97	84
Spinning	lots	No.	2¢ 15	ოო	15 18	42 32	96	27	6	27 21	19	143 142	00
		timed)	=										
Area	state and crop year	SOUTH CENTRAL (Continued)	Tennessee 1970	Long staple: Mississippi 1970 1971	SOUTHWEST Short staple: Central Texas 1970 1971	Northwest Texas 1970 1971	<u>Oklahoma</u> 1970 1971	Medium staple: South Texas 1970 1971	Central Texas 1970 1971	Northwest Texas 1970 1971	WEST Medium staple: Arizona 1970 1971	California 1970 1971	West Texas 1970 1971

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1970 and 1971--Continued

	Spinning	Potential	No.	78	75	75					
	Picker	waste	Pet.	\(\omega\) \(\omega\) \(\omega\)	8.1	9.1					
	ock	Com- posite	Index	104	102	100				.)	
	Color of raw stock	Yellow- ness	No.	r 7	m m	m m					
	Color	Gray- ness	No.	0 1	п п	01 11					
Chirlon	Analyzer	non- lint	Pet.	2.5	3.4	4.1					
	Elon-	gation 1/8"	Pct.	5.6	5.3	5.1					
	rength	1/3" gage	G/tex	27 25	27	88					
	Fiber strength	Zero gage	Mpsi	93	93	91					
	Micro-	naire	Rdg.	4.0	3.7	3.5					
	length	50/2.5 unif.	Pct.	749 743	45 45	71 71					
	Fiber length	2.5% span	li.	1.20	1.18	1.16					
	ication	Staple	32d in.	37.0	37.2 37.2	36.5					
	Classification	Grade	Index	97	97	93					
	Spinning	lots tested	No.	01 W	12	99					
	Area	state and crop year	WEST (Continued)	Arizona 1970 1971	New Mexico 1970 1971	West Texas 1970 1971			-		

ed yarn	Com- posite	Index	106	108	107				
Color 22s dyed yarn	Blue- ness	위	27.4	26.8	26.7				
Col	Reflect- ance	Rd	27.1	8.99 8.09	27.0 26.4				
ed yarn	Com- posite	Index	102	103	101 104				
22s bleached yarn	Yellow- ness	위	3.5	0 e	0.0				
Color 2	Reflect- ance	멝	83.8	η**η8	83.48 84.8				
Yarn imprfctns	Second	No. 50's	15	32	46 25				
Yarn im	22s or 27 tex	No.	22	41 30	30				
earance	Second	Index 50's	80	71	63				
Yarn appearance	22s or 27 tex	Index	95	88 93	80				
ngation	Second	Pet.	6.0	5.7	5.5				
Yarn elongation	22s or 27 tex	Pct.	7.2	6.8	9.9				
rength	Second	Lbs.	52 46	51 49	24 64				
Yarn strength	22s or 27 tex	Ibs.	138	135	131				
Spinning	lots tested	No.	a m	12	99				
Area	and crop year	WEST (Continued) Long staple:	1970 1971	New Mexico 1970 1971	West Texas 1970 1971				

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1971

Staple group,		Spinning	Fiber	Fiber length	Micro-	Fiber strength	trength	Elon-	Shirley	Colc	Color of raw stock	tock	Picker & card	Spinning
grade and staple	aple	tested	2.5% span	50/2.5 unif.	naire	Zero gage	1/8" gage	1/8"	non- lint	Gray- ness	Yellow- ness	Com- posite	waste	tial
Name Code	32d in.	No.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pet.	No	No.	Index	Pct.	No.
TOO OT THE														
Southwest M Lt Sp 32	30	m	.95	45	0.4	80	50	6.5	2.7	α	†	98	5.9	38
SLM Lt Sp 42	30	21 8	₹8°	45	0.4	80 78	88	7.1	w w o r	mm	4 4	93	6.8	36 43
Sp 52	30	33	95	44 42	3.9.6	79	19	6.7	2°4 4°6	<i>ব</i> ব	4 4	88 87	7.3	36
West IM Lt Sp 52	30	ന ന	.87	45 74	 6. 9.	83 84 84	88	†.°9	6.5	നന	オコ	92 93	9.0	33 33
MEDIUM STAPLE GROUP														
Southeast SIM 41	33 35 35	11 9	1.03	ななな	4 4 4 6 6 7 4	79 78 81	22 22 28	6661	3.56.55	ରା ରା ରା	ოოო	848	5.50	57.93
SIM Lt Sp 42	34	4	1.04	94	4.5	77	21	6.3	3.4	m	77	お	6.8	57
51	33 34 35	+ 8 1 7	1.05	544 545	† † † ° † † † †	80 78 79	ដូនន	0,00 0,00 0,00	33.5 3.5 3.5	๛๗๛	m m ณ	<i>\$23</i>	0.00 0.00	6,00
LM Lt Sp 52	34 35	94	1.05	†† ††	44	76 79	8 8	7, 7, 8, 8,	44.5	크 코	mm	84 85	8.2	4. 45
South Central SIM 41	34 36	29 59 17	1.08 1.10 1.14	4 <u>5</u> 4 4 4 4	ក.ភ. ក.ភ.	8888 8008	8 8 8	7.0 6.9	8 6-9 8 7-9	ଉଉଉ	ณ ๓ ๓	100 99	ν.ν.ν. φ.φ. ω.	68 63 68
51	34 35	8	1.07	45 45	4.1 4.5	79 82	22 23	6.9	다. * * *	ന വ	αm	82	7.2	57
Southwest SIM 41	33 34	4 8	1.05	울 	9• †• † †	87 86	22 23	0.0.9	8.8 2.0	લ લ	നന	.6/86	7.7. 9.8.	59 62
SIM Lt Sp 42	32 34	4 6	1.03	# \$	3.8 1.1	84 85	22	6.5	3.9	നന	m m	93	4.9	52 61
51	34	60	1.08	45	7.0	83	23	7.2	1.4	ĸ	m	91	7.1	61
IM Lt Sp 52	33 80 33 80	→ mm	1.01	1112 1112 1112 1113 1113 1113 1113 1113	9.4.w 8.v.v	80 85 85	22 22 23	6.90	3.5. 5.0 1.0	せいち	ታታ M	888	800 800	222

dye		
Color 22s dye	Blue- ness	위
CoJ	Reflect- ance	묎
d yarn	Com- posite	Index
Color 22s bleached yarn	Yellow- ness	위
Color 2	Second 22s or Second 22s or Second 22s or number 27 tex number 37 tex nu	묎
uprfctns	Second	No.
strength Yarn elongation Yarn appearance Yarn imprfctns	22s or 27 tex	No.
pearance	Second	Index
Yarn ap	22s or 27 tex	Index
ngation	Second	Pet.
Yarn elc	22s or 27 tex	Pet.
rength	Second	Lbs.
Yarn	22s or 27 tex	<u>lbs.</u>
Spinning	lots tested	No.
	taple	Name Code 32d in. No.
Staple group,	area, grade and staple	Code
ά	gra	Name

1																		
ed yarn	Com- posite	Index		108	106	102 103	101		011 211 211	108	110 109 109	109	01.1 11.2 21.1	011	113	105	104	101 101 102
Color 22s dyed yarn	Blue- ness	위		27.0	26.6 26.9	26.1	25.9 25.8		27.5 27.7 27.6	27.2	27.4 27.4 27.2	27.3 27.4	27.3 27.7 27.6	27.3 27.4	28.0	26.6	56.6	25.7 25.7 25.9
[00]	Reflect- ance	뀖		27.1	27.4	28.2	28.2 27.9		27.0 26.1 26.3	27.3	26.8 27.4 26.8	27.0	86.3 26.3 26.3	% % 8.8 8.8	26.4	27.6	28.0	28.5 28.2
ed yarn	Com- posite	Index		102	100	99	102 103		103 105 104	103	102 104 103	102	104 105 105	103 104	103	100	66	101 97 100
Color 22s bleached yarn	Yellow- ness	위		3.5	3.6	3.7	6.4 9.1		600 1000	3.2	3.0 0.0	3°.0°	0.00	0.0 0.0	00.	3.4	3.4	999
Color 2	Reflect- ance	Rd		97.48	84.0 83.2	83.7 84.8	85.1 85.9		84.0 84.7 84.5	94.6	84.0 84.1 84.1	84.3 84.2	84.5 84.6 84.6	83.9 84.1	83.9 84.2	83.6	83.1	84. 83. 4. 83.
Yarn imprfctns	Second	No.		8s 47	57 42	51	95		11 23 21 21	17	18 16	14 19	18 14 15	17	14 15	32	20	20 31 31
Yarn in	22s or 27 tex	No.		30	36 27	23	57 73		13	18	888	17	23 20 20	25 25	17	古古	32	67 20 45
earance	Second	Index		8 <u>8</u> 123	120 125	123	0 11 13		50s 87 85 81	85	82 81 89	88	86 89 91	9 2 86	95 94	985	8	72 97 83
Yarn appearance	22s or 27 tex	Index		711	112	117	110 107		11.3 11.14 103	112	108 106	115	107 111 114	120 107	120	110	117	120 110
ongation	Second	Pet.		88.0 9.0	6.9	4.7	6.8		508 7.1 5.2	7.6	7.0 5.1 5.3	44	4.9 5.1 5.2	L. 4 4. 4	3.7	4.3	7.7	4 64
Yarn elc	22s or 27 tex	Pct.		6.1	6.0	6.3	5.8		66.0	6.1	6.5	5.6	9.99	0.0 0.0 0.0	5.9	5.9	6.2	00.00
rength	Second	Lbs.		88 288	288 304	287	297 293		20s 28 33 38	59	32 34 38	27 34	35 39	31 34	32	32 37	38	32 34 34
Yarn strength	22s or 27 tex	Lbs.		48	85 89	83	88 87		89 96 107	8	95 105	2 88	102 105 111	\$ 00 10	101	100	011	98 88
Spinning	lots tested	ું હું		8	28 8	133	നന		۶ 19	†	71 8 tr	40	29 59 17	8	40	. t	8	4 mm
- R		ru.		30	30	30	30		33 34 35	34	33 35 35	34 35	34	34	33	32 34	34	33 33
roup,	staple	le 32d	ROUP	32	745	52	52	GROUP	Ţή	745	51	52	14 14	51	14.1	745	51	52
Staple group,	area, grade and staple	Name Code	SHORT STAPLE GROUP	Southwest M Lt Sp	SIM Lt Sp	LM Lt Sp	West IM Lt Sp	MEDIUM STAPLE	Southeast	SIM Lt Sp	MI	IM Lt Sp	South Central SIM	IM	Southwest	SIM Lt Sp	IM	IM Lt Sp

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1971--(Continued)

	Spinning	tial	No.		52 67 78	80	4.8 6.5 8.1		799	65	80	75
	Picker		Pct.		5.4.7 7.66	9.4	5.5.6		9.9	7.6	8.8	10.3
	ock	Com- posite	Index		103 10 2 95	100	2888		88	85	102 103	102
	Color of raw stock	Yellow- ness	No.		ଷଳଳ	n	mmm		നന	m	mm	m
	Colo	Gray- ness	<u>N</u>		ппп	લ	ભા ભા ભ		നന	4	пп	Т
	Shirley	non- lint	Pct.		8.5 1.6 1.6	2°¢	2.9 3.1		7.4 0.4	4.5	2.6 2.1	2.9
	Elon-	1/8"	Pct.		5.6	5.5	6.0 6.7 5.9		mo 99	6.2	5.5	5.8
	rength	1/8" gage	G/tex		8663	27	22 24 27		55 54	21	27 27	23
	Fiber strength	Zero gage	Mpsi		89 94 97	96	87 86 100		78 83	42	8.8	8
	Micro-	naire	Rdg.		차 차	4.3	ተ 0.0 4 4 4		τ. τ. τ.	4.2	3.9	2.9
	Fiber length	50/2.5 unif.	Pct.		44 44 47 94	94	553		21 ₁ 11	75	††† 5††	745
nar)	Fiber	2.5% span	n <u>I</u>		1.06	1.14	1.03		1.14	1.15	1,18 1,19	1.11
erop or 19/1(concentrated)	Spinning	tested	No.		4 7 14	m	4881		ოო	٣	9 m	m
IST TO TO		aple	32d in.	(Cont'd)	36.33	36	34 36 36		36,3	36	37 38	36
5	Staple group,	area, grade and staple	Code	E GROUP	31	70	1,1	GROUP	51	52	31	147
	Stap	grade	Name	MEDIUM STAPLE GROUP (Cont'd)	West M	+ WIS	WIS	LONG STAPLE GROUP	Southeast	IM It Sp	West M	SIM

	ırn	Com- posite	lex		107	115	104 108 112		109	109	11	104
	dyed ys		Index									
	Color 22s dyed yarn	Blue- ness	위		26.9 27.4 27.4	27.8	26.4 27.0 27.4		27.2	27.2	27.4 27.3	26.1
	20	Reflect- ance	묎		27.6 26.3 26.0	25.1	27.9 26.9 25.7		26.7	26.8	26.3	27.3
	ed yarn	Com- posite	Index		104 102 102	101	100 102 99		105 104	101	104 104	102
-	Color 22s bleached yarn	Yellow- ness	위		8.00 8.00	3.1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0.0	3.3	3.0 3.1	3.4
	Color	Reflect- ance	R		84.0 84.4 83.7	83.3	82.8 83.9 82.8		85.0 84.6	83.9	84.4 85.0	4.48
	Yarn imprfctns	Second	No.		18 15 15	13	1.8 1.9		20 17	19	20	45
	Yarn im	22s or 27 tex	No.		82,42	18	882		ଷଷ	25	25 17	24
	Yarn appearance	Second	Index		ままぬ	26	222		83 87	80	77 83	9
	Yarn ap	22s or 27 tex	Index		120 121 123	120	120 120 118		113	107	102 103	83
	ongation	Second	Pet.		644 7.6.6.	†•†	3.4 4.4 4.3		5.3	J.4	5.5	5.1
	Yarn ele	22s or 27 tex	Pet.		เกษา เลือ	5.7	5.65		6.5	6.1	6.6	6.5
	Yarn strength	Second	Lbs.		31 50 50	17	31 41 51		38	34	48 52	45
	Yarn s	22s or 27 tex	Lbs.		102 119 132	135	99 115 134		102	16	127 135	121
	Spinning	lots	No.	ıt'd)	† 7 †1	ю	75 8 tr		m m	8	9 %	3
		ø	32d in. No.	P (Col	36	36	34 36		35	36	37	36
	roup,	stapl		GROU	31	04	41	ROUP	51	52	31	14
	Staple group,	area, grade and staple	Code	MEDIUM STAPLE GROUP (Cont'd)	.01	+ WIS	SIM	LONG STAPLE GROUP	Southeast	IM Lt Sp		M
	02	Ør.	Name	MEDIUM	West	SI	SI	LONG	Sout	I	West	SIM

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1971

	Spinning Potential	No.	04	43	ካተ የተ	38		62	92	65	63	82.58	68 67 71	55	%%%\$\$%%&
i	k card	Pet.	5.7	₽°5	6.8	7.8		5.0	5.3	5.3	5.6	7.08 F	7.07 8.80 7.	8.7	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
stock	Com-	Index	お	- 26	87 93	8		76	100	100	66	93 88 89	8628	. 62	100 100 100 100 100 100 100 100 100 100
of raw	Yellow-	No.	4	†	オ オ	†1		m	m	m	8	๓๓๓๗	m m ณ	m	ฺ ๓๛๛๛๓๛๛ -
Color	Gray-	No.	8	4	⊅ K	4		П	П	Ø	Q	たららられ	たちら	က	ааанаане
Shirley	Analyzer non- lint	Pct.	2.7	3.2	5.1	4.1		. 2.5	3.0	а 6.	2.6	4.0.4	8.50 5.00 5.00	5.8	พพดดพดดห ๐๐๐๙๛๎๚๚
F	gation 1/8"	Pet.	2.9	7.6	6.6 7.4	9.8		5.7	6.1	4.9	5.5	00.00 21.81	5.8	7.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
strength	1/8" gage	G/tex	23	50	21 20	50		28	27	22	55	20 20 20 21	52 23	22	a a a a a a a a a
Fiber st		Mpsi	48	78	80 75	477		66	97	62	88	76 78 74 77	83 79	80	77 881 882 881 89
	Micro- naire	Rdg.	5.2	4.2	4.8 7.9	3.6		4.1	0.4	9.0	4.5	4444 400°C	m.0.4	3.0	4444444
lenoth	50/2.5 unif.	Pct.	94	45	††1 ††	44		94	94	44	44	4444	444	43	######################################
Fiber		il	0.95	96.0	1.01	76.0		1.15	1.11	1.10	1.13	1.05	1.13	1.07	11111111111111111111111111111111111111
Classification	Staple	32d in.	30-3	31.3	31.3 33.0	30.0		35.9	35.3	35.3	35.3	33.7 33.7 34.0 34.8	35.0 34.7 35.8	33.3	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Classif	Grade	Index	95	89	83 80	8/4		8	%	な	%	3887	92 85 81	82	48488888888888888888888888888888888888
3	lots	No.	m	9	mα	a		30	9	٣	m	mmav	キの キ	ю	mm or to go or m
Droce of my minim	variety, and state	SHORT STAPLE	Anton 99 Central Texas	Lankart <u>57</u> Oklahoma	Lankart LX-571 Central Texas Northwest Texas	Lankart 611 Northwest Texas	MEDIUM STAPLE	<u>Acala SJ-1</u> California	Acala 4-42 California	Auburn M Missouri	Brycot #1. Arkansas	Coker 201 Alabama Georgia North Carolina South Carolina	Coker 417 Alabama Georgia South Carolina	Coker 4104 Northwest Texas	Deltapine 16 Alabama Arkansas Louisiana Mississippi Central Texas Arizona California

ed yarn	Com- posite	Index		112	107	109	108		2112	411	211	011	411 211 211 2110	109	100	112 109 110 100 104 102
Color 22s dyed yarn	Blue- ness	위		27.9	56.6	27.3 26.4	27.0		27.4	27.6	27.5	27.4	27.9 27.9 27.5	27.2 26.3 26.8	25.8	27.79 27.79 27.59 26.69 3.69
[60]	Reflect- ance	찖		56.6	56.9	27.0 27.4	27.0		25.8	25.4	26.2	56.9	25.8 26.4 26.4 26.4	27.0 27.7 27.6	28.5	888.505.888 888.505.888 888.505.888
ed yarn	Com- posite	Index		101	95	102 98	104		101	102	104	104	106 102 98 105	103 104 104	100	105 105 105 105 105
Color 22s bleached yarn	Yellow- ness	린		3.1	4.3	3.4 4.2	3.4		3.2	3.0	2.9	2.9	a 0 a 0 a 0 a 0	8.4.4 6.0.4	3.6	. a a a a a a a a a a a a a a a a a a a
Color 2	Reflect- ance	뀖		83.2	82.8	84.3 84.1	85.1		83.4	83.4	84.3	84.3	84.9 83.6 84.8 84.8	83.9 84.5 84.3	83.7	48 44 64 44 64 44 44 44 44 44 44 44 44 44
Yarn imprfctns	Second	No.		8 <u>8</u> 32	36	45 78	35		50s 16	18	ነተ	13	12 17 14 17	55 57 57	36	24 11 11 11 11 11 11 11 11 11 11 11 11 11
Yarn in	22s or 27 tex	No.	Yarns	18	53	32 49	53		53	98	18	80	14 19 19	28 22 27	53	£85386366
Yarn appearance	Second	Index	Carded Yarns	8 <u>8</u>	125	123 120	115		50s 93	8	8	83	88 88	888	80	2888833
Yarn ap	22s or. 27 tex	Index		127	122	120 105	95		121	120	711	120	711 711 011	102 100 100	103	97 112 104 112 120 120
ongation	Second	Pet.		88.9	7.6	7.0	4.8		50s 4.3	η•η	5.5	4.2	744v 00041	2.5.v 2.5.v	7.4	V V T V T V T V T V T V T V T V T T V T
Yarn el	22s or 27 tex	Pet.		5.7	9.9	0.8	7.4		5.7	5.9	7.0	0.9	00 n0 60 n0	6.66 7.85	6.8	000 F 00 P 00 0 F F 0 P W 0 H 1
Yarn strength	Second	Lbs.		300	305	311	288		50s 50	50	37	37	35835 3585 35835 35835 35835 35835 35835 35835 35835 35835 35835 36835 36835 36835 36835 36835 36835 36835 36835 36835 36835 36835 36835 3	t 17 77 77	36	\$33.33.33 \$3.33.33 \$3.33.33 \$3
Yarn s	22s or 27 tex	Ibs.		89	89	88	48		133	133	105	108	88 88 88 88	111111	106	93 114 108 106 107 101 100
Spinning	lots	No		m	9	m a	8		30	9	60	٣	mmav	ታ የነታ	8	m w o 0,2 2 0 m m
Processing group.	variety, and state		SHORT STAPLE	Anton 99 Central Texas	Lankart 57 Oklahoma	Lankart LX-571 Central Texas Northwest Texas	Lankart 611 Northwest Texas	MEDIUM STAPLE	Acala SJ-1 California	Acala 4-42 California	Auburn M Missouri	Brycot #\textsquare	Coker 201 Alabama Georgia North Carolina South Carolina	Coker 417 Alabama Georgia South Carolina	Coker 4104 Northwest Texas	Deltapine 16 Alabama Arkansas Louisiana Mississippi Central Texas Arizona California

Table 4. -- Continued

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1971--Continued

Spinning Classification Fiber length Microlots Grade Staple 2.5% 50/2.5 naire	Classification Fiber length Grade Staple 2.5% 50/2.5	Fiber length 2.5% 50/2.5 span unif.	er length 50/2.5	10.	Micro- naire		Fiber st	strength	Elon-gation 1/8"	Shirley Analyzer non-	Color Gray-	of raw st.	stock Com-	Picker & card waste	Spinning Potential
	No.	Index	32d in.	티	Pct.	Rdg.	Mpsi	G/tex	Pet.	Pet.	-	No.	Index	Pct.	No.
MEDIUM STAPLE (Continued)															1
	mm	75	34.7	1.07	1,5 1,6	0.1 1.1	81 78	23.33	6.5	ካ . 4	a a	mm	101	5.5	960
	m 4 m	88 44 85	33.7 34.0 35.0	1.05 1.02 1.06	44 45 65	4.1 4.7 4.5	80 78 86	22 22 23	5.0.0	a w7 6 v.a	m4 m	നനന	9 89 57 9 57	6.1 7.2 7.8	222
	m	88	34.0	1.07	24	3.9	98	23	2.9	4.1	က	m	91	4.9	
	9	88	32.5	1.03	7.7	3.4	82	55	7.2	4.3	m	4		6.9	45
-	m	91	35.0	1.06	3	ተ• ተ	81	22	7.9	3.9	m	α	32	6.7	. (1
	4	98	34.8	1.06	91	4.2	48	23	4.9	0.4	m	QI	: ま	. 89	1 9
	ოო	753	34.7 35.0	1.10	77 77	4.3 5.0	86 85	23	ۍ. ۳. د.	23.4 7.5	α α	mm	88	5.0	28.69
	683 9 5 5 6 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	£88£3£	3.4.5.5.5 3.4.5.5.5.5 5.5.5.5.5 5.5.5.5 5.5 5.5	11.09	まる まるちょう	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	430 B B B B B B B B B B B B B B B B B B B	888885	0000 v.	યું હું હું હું મું હું મું હું હું આ માન છું હું		ച നനനന	7198838	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 £7 83 8
	Q	82	35.0	1.10	45	4.2	80	23	5.4	4.1	4	α	48	7.6	. 89
	m	66	37.3	1.19	24	3.9	88	27	6.1	3.5	ч	m	. 101	4.6	83
	9	86	37.2	1.17	45	3.7	8	. 92	5.8	8.8	н	ĸ	102	6,9	78
	mm	88	36.0 37.3	1.15	44 43 43 43	3.7	88	25	5.3	2.5		ചെ ന	103 101	8.8	76
_)			

d
a)
2
Ξ.
نــٰـ
0
Ċ
- 1
٠.
_
Ψ
겁
ah
F

ed yarn	Com- posite	Index	112	109 107 107	107	104	111	011	109	109	108	Ħ	108	106
Color 22s dyed yarn	Blue- ness	위	27.5	27.3 27.0 27.0	8.9	7.98	27.6	4.72	27.2 27.9	27.3 27.5 27.1 26.3 26.3	27.0	27. h	86.9	26.6 26.6
Cole	Reflect-	쮩	26.4	27.0 27.6 27.3	27.6	27.7	26.7	56.6	26.8	26.9 26.9 27.8 27.8	27.0	4 .	. 9.92	27.3
ed yarn	Com- posite	Index	105	104 103 103	66	66	105	103	106	100 100 100 100 100 100 100	88	104	102	104 103
Color 22s bleached yarn	Yellow- ness	위	2.9 3.1	0, m 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	3.5	9°8	8.	8.8	2.5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3.2	0.	3.3	0.0°
Color 2	Reflect-	쮩	84.6 85.0	84.6 83.9	83.3	83.8	4.48	83.9	84.7 83.6	48 84 88 88 83 64 64 64 64 64 64 64 64 64 64 64 64 64	82.2	84.14	ή•ή8	84.7 84.2
Yarn imprfctns	Second	No.	20s 20 19	4 6 9	18	41	80	17	21	1.7 1.7 1.6 1.6	12	2.2	%	19
Yarn in	22s on 27 tex	No.	21 19	18 14 19	56	57	55	55	27 24	Z % % % %	ର	35	30	21 34
Yarn appearance	Second	Index	50s 80 87	83.75	8	78	83	85	88	228333	95	70	77	80
Yarn app	22s or 27 tex	Index	100	113 122 103	111	103	103	112	113	103 118 120 120 120	115	100	76	100 87
elongation	Second	Pet.	500s 5.3	9•4 4 4 7	τ • τ	J. 4	5.2	5.4	4.1	4.3.7.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4.0.4	4.8	7.	5.5	4.5
Yarn elc	22s or 27 tex	Pet.	6.9	6.0.0 6.0.0 7.	6.1	9.9	4.9	6.8	7,7, 8,0,	7 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.9	6.7	6.7	4.0
rength	Second	Lbs.	50s 36 36	30 30	39	35	37	39	34	3375	35	84	50	24 94
Yarn strength	22s or 27 tex	Lbs.	103 102	2 88 %	011	101	105	011	103	93 109 105 97 102	100	126	130	123 125
Spinning	lots	d)	mm	m# m	ന	9	m	4	mm	25 6 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	N	m	9	നന
Processing group,	variety, and state	MEDIUM STAPLE (Continued)	Deltapine 45A Mississippi Missouri	Dixie King II Alabama Georgia Mississippi	Lockett EXL Northwest Texas	Lockett 4789A Northwest Texas	McNair 511 North Carolina	McNair 1032 North Carolina	Stoneville 7A Arkansas Mississippi	Stoneville 213 Alabama Arkansas Louisiana Mississippi California West Texas	TH-149 North Carolina	LONG STAPLE Acala 1517C West Texas	Acala 1517V New Mexico	Acala 1517-70 Arizona New Mexico

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1971--Continued

ı										
	Spinning	Potential	No.		4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					
	Picker	& card waste	Pct.		000 000 000 000 000		8.5	8.1	8.9	9.6
	ock	Com- posite	Index		28888		102	91	ή8	8,8
	Color of raw stock	Yellow- ness	No.		നനനന		m	77	9	6/2
	Color	Gray- ness	No.		nn tna		ч	≉	77	ωſv
	Shirley	non- lint	Pct.		4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		2.5	2.5	3.5	3.4 2.3
		gation 1/8"	Pct.		0,000 0,000 0,000 0,000		5.4	7.7	7.5	6.9
	rength	1/8" gage	G/tex		\$ \$ \$ \$ \$ \$ \$		31	32	35	34 32
	Fiber strength	Zero gage	Mpsi		81 78 76 79 83		108	100	26	103 97
	Micro-	naire	Rdg.		227 67 66.10 76.10 76.10		0.4	3.9	3.6	3.9
	Length	50/2.5 unif.	Pct.		35555 5555 555 555 555 555 555 555 555		30	31	32	333
	Fiber length	2.5% span	In.		1.13		1.42	1,41	1,42	1.49
	cation	Staple	32d in.		34.9 34.9 37.8		0.04	ht.0	० क्ष	0° ††
7071170	Classification	Grade	Index		88 88 84 89 88 84		100	American Pima 3 44.0	#	4 E
יייי באוריייייייייייייייייייייייייייייייייייי	Spinning	lots tested	No.		とヤてくか		m	4	4	mm
TO do To	roup,	variety, and state		LONG STAPLE (Continued)	Coker 310 Alabama Georgia North Carolina South Carolina Mississippi	EXTRA LONG STAPLE	<u>Del Cerro</u> Arizona	Pima S-2 New Mexico	Pima S-3 West Texas	Pima S-4 Arizona West Texas

	ed yarn	Com- posite	Index
	Color 22s dyed yarn	Blue- ness	취
	COL	Reflect- Blue-	Rd
	ed yarn	Com- posite	Index
	Color 22s bleached yarn	Yellow- ness	위
	Color 2	Second 22s or Second 22s on Second Reflect- Yellow-number 27 tex number 27 tex number ance ness	Rd
	prfctns	Second	No.
	Yarn imprictns	22s on 27 tex	No.
	earance	Second	Index
	Yarn app	22s or 27 tex	Index
	rn elongation Yarn appearance	Second	Pct.
	Yarn elo	22s or 27 tex	Pct.
	Yarn strength Yarn	Second	Lbs. Lbs.
	Yarn st	22s or Second 22s of tex number 27 tex	Lbs.
	Spinning	lots	No.
Table 4Continued	Processing group.	variety, and state	

	Continuing	Yarn strength	rength	Yarn elongation	ngation	Yarn appearance	earance	Yarn imprfctus	prfctns	Color 2	Color 22s bleached yarn	ed yarn	Col	Color 22s dyed yarn	ed yern
rocessing group, variety, and state	lots	22s or 27 tex	Second	22s or 27 tex	Second	22s or 27 tex	Second	22s on 27 tex	Second	Reflect-	Yellow- ness	Com- posite	Reflect- ance	Blue- ness	Com- posite
	<u>ş</u>	Lbs.	Ibs.	Pet.	Pet.	Index	Index	S	No.	胐	₽Ι	Index	뛢	위	Index
LONG STAPLE (Continued)														•	
Coker 310 Alabama Georgia North Carolina South Carolina Mississippi	3 ヤトノ ヤ	102 102 88 106 113	238 238 45 45 45 45 45 45 45 45 45 45 45 45 45	66.1 6.1 6.7 6.7	4 N4 N N 8 0 N 4 4	110 110 120 102	388838	82888	16 16 18 18 18	84.5 83.3 84.5 84.5	6 4 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	103 103 97 104	26.7 26.8 25.9 27.4	27.5 27.0 27.7 27.7 27.3	1108 108 113 106
EXTRA LONG STAPLE							Combed Yarns	Yarns							
Del Cerro Arizona	m	<u>50s</u> 67	80s 38	50s 5.2	808 11-6	50s 100	80s 93	50 <u>s</u>	80s 6	83.5	5.6	103	77.98	28.7	911
Pima S-2 New Mexico	4	65	36	5.8	5.2	115	115	લ	α	83.7	3.8	%	27.2	27.1	108
Pima S-3 West Texas	4	65	36	0.9	5.2	108	108	, ‡	m	82,1	ट•म	ま	27.1	27.1	108
Pima S-4 Arizona West Texas	mm	. 71	39 35	5.8	5.2 5.1	110	107	ವ ನ	m.m	83.3 83.3	3.6	96	27.8	26.9	106

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971

Ctato December	004	חיהות	Fibrograph		Fiber st	st.renot.h		Shirley A	Anglyzer	Color	of raw stock	الم	
Chronological sampling		ישור דהואים	10 TO	Micro		100	Elon-	.	100 6-01				Picker
and Classification	0[20]	2.5% span length	50/2.5 unif.	micro-	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card waste
Tane	orante.												
Name Code	32d in.	<u>ln</u>	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pet.	Pct.	No.	No.	Index	Pct.
SOUTH WEST SOUTH TEXAS MATHIS	LA	LANKART 611			9	8 PERCENT							
M 31 LM LT SP 52 LM LT SP 52	31 30 30	0.92 0.95 0.97	4 4 4 5 5 5 6	4.5	79 79 79	20 20 19	7.8 6.8 6.3	1.1 2.0 2.0	3.52	799	4 11 4	99 80 80	5.2 6.2 5.8
CENTRAL TEXAS COMMERCE	2	LANKART 57			6	90 PERCENT	1-						
M 31 SLM LT SP 42 LM LT SP 52	30 30 29	0.96 0.98 0.98	4 4 4 7 4 7	7 0	83 79 79	20 19 19	6.9 6.6 6.1	1.3 2.0 1.7	2.3	N 4 W	4 4 4	99 91 83	5.7 6.0 6.1
ITASCA	L.A	LANKART LX-571	57.1		100	O PERCENT							
SLM LT SP 42 LM LT SP 52 1/LM LT SP 52	30 32 32	0.97 1.03 1.03	4 4 4 5 6 7 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5.1 4.5 3.9	82 77 81	20 21 21	0.7	3.6 3.9 3.3	4 • • • • • • • • • • • • • • • • • • •	w L 4	444	95 82 85	5.9
LOCKHART	A	ANTON 99			10	00 PERCENT*	*						
M LT SP 32 SLM LT SP 42 SLM LT SP 42	30 31	0.97 0.92 0.97	94 41 42	5.0 5.0 4.0	88 82 81	22 19 22	6.1 7.4 6.7	1.3 2.1 1.9	2.0	746	444	98 91 92	5.3 5.3
TEMPLE	LA	LANKART 57			6	95 PERCENT	L.						
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	30	0.91 0.90 0.95	44 45 45	5.2	84 77 79	19 19 20	7.4	2.0 1.8 2.8	3.2 3.9	w w 4	444	92 93 87	6.6 7.6 6.0
TERRELL	7	LANKART 57			6	99 PERCENT							
SLM LT SP 42 LM LT SP 52 1/LM LT SP 52	31 30 30	0.99 0.98 0.98	9 7 7 7	5.0	78 73 78	20 19 18	6.6	3.0	4.3 7.0	m 4 0	444	93 85 80	6.5
WACO	רא	LANKART LX-571	571		16	7 PERCENT	ī.						
SLM LT SP 42 30 SLM LT SP 42 30 SLM LT SP 42 30 * 100 percent selected for tests, \(\frac{1}{2} \) reduced from 42 because of bark	30 30 30 for tests, ise of barl	0.97 44 0.93 46 0.96 46 , less than 100 per	44 46 46 100 perce	5.3 8 5.4 8 5.3 8	84 81 85 area	20 20 20	6.2	2.2	30.0	4 m 4	444	8 8 8 8	6.6

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area	a Yarn	strength	Yarn elongation		Yarn appe	appearance	Yarn imp	imprfctns.	Spin-	Color -	22s gray	y yarn	Color-22s		blehd.yarn	Color .	- 22s d	dyed yarn
Chronological sampling and Classification Grade Staple	8s or 74 tex	22s or 27 tex	8s or 74 tex	22s or 27 tex	8s or 74 tex	22s or 27 tex	8s or 74 tex	22s or 27 tex	ning Poten- tial	Reflct- ance	Yellow- ness p	Com- osite	Reflct-	Yellow-	Com- posite	Reflct- ance	Blue- ness	Com- posite
Name Code 32d in.	n. Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	No.	Rd	위	Index	Rd	위	Index	R _d	위	Index
SOUTH WEST SOUTH TEXAS MATHIS		LANKART	. 611			9	8 PERCENT	T _N										
M 31 31 LM LT SP 52 30 LM LT SP 52 30	1 307 0 294 0 291	7 89 4 86 1 88	7.7	6.1 6.1 5.6	120 130 130	120 120 120	34	25 28 21	4 4 4 3 8 4 3 8 4 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	68.9 59.9 58.8	11.1 10.3 10.2	94 76 74	84.1 83.7 83.6	3.2 3.5	102 100 100	25.4 28.3 29.2	28.7 26.4 26.7	118 103 104
CENTRAL TEXAS COMMERCE		LANKART	. 57			6	90 PERCENT	F										
SLM LT SP 42 3- LM LT SP 52 2-	0 298 0 282 9 280	8 88 2 83 0 80	6.9	5.50	130 120 130	120 120 120	28 50 43	18 29 29	37 34 34	69.7 65.1 61.9	11.8 11.7 10.8	9 8 8 8 8 0	83.8 83.6 85.0	2.7 3.0 2.9	104 102 106	25.3 27.7 27.6	28.4 27.2 26.9	117 107 106
ITASCA		LANKART	LX-571			100	0 PERCENT	Į,										
SLM LT SP 42 3 LM LT SP 52 3 1/LM LT SP 52 3	0 302 2 318 2 314	2 91 8 93 4 94	6.9 7.1 7.0	5.9	130 120 120	130 110 120	31 50 55	22 35 38	44 43 43	68.2 63.6 63.2	11.9	96 85 84	84.4 84.1 84.4	3.0	104 101 101	25.5 27.4 28.0	28.4 26.9 26.6	117 107 104
LOCKHART		ANTON 9	66			10	00 PERCE	*1										
M LT SP 32 30 SLM LT SP 42 30 SLM LT SP 42 31	0 308 0 275 1 316	8 92 5 83 6 93	6.6 7.6	5.5	130 130 130	120 130 130	26 37 33	15 18 21	40 44	69.1 66.7 66.5	11.5	96 91 89	83.1 82.7 83.8	3.0 3.0	101 100 102	26.2 26.6 26.9	28.4 27.8 27.4	115 112 110
TEMPLE		LANKART	57			0	5 PERCENT	TN										
SLM LT SP 42 30 SLM LT SP 42 30 SLM LT SP 42 30	0 263 0 260 0 289	3 73 0 78 9 86	5.9 6.2 7.1	5.2	120 123 130	120 120 120	35 34 40	22 24 25	29 27 38	66.3 66.6 64.4	11.9 12.3 11.9	91 93 87	83.8 84.1 85.2	3.1 3.1 3.3	102 103 104	28.0 26.7 26.6	26.5 27.7 28.1	104 111 113
TERRELL		LANKART	1 57			6	99 PERCENT	L										
SLM LT SP 42 3 LM LT SP 52 3 1/LM LT SP 52 3	31 297 30 280 30 257	7 89 0 82 7 74	7.2	6.0	123 123 120	120 120 110	45 46 46	27 33 35	42 41 33	66.4 64.6 61.8	12.0 11.5 10.6	92 86 79	83.7 86.1 83.8	3.1 2.8 3.5	102 109 100	25.9 27.7 28.8	28.0 27.5 27.0	114 109 104
WACO		LANKARI	LANKART LX-571			6	7 PERC	ENT										
SLM LT SP 42 30 258 SLM LT SP 42 30 265 SLM LT SP 42 30 284 * 100 percent selected for tests, 1/reduced from M2 herenise of hark	0 258 0 265 0 284 ed for tes		75 5.9 4.6 78 5.8 4.9 83 6.4 5.4 less than 100 percent		130 130 130 in the are	120 120 110	41 32 39	28 21 30	30 29 36	65.0 67.9 64.4	12.1 12.0 11.7	89 95 86	83.7 83.9 84.8	3.3 3.1 3.4	101 102 103	27.5 26.6 27.7	26.2 27.6 26.8	104 111 106

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

	Omposite & Card		Index Pct.		94 6.9 86 8.8		97 6.9 95 7.9 93 7.1		90 8.5		95 6.4 100 6.6 94. 8.9		92 7.3 91 6.1 89 7.7		100 5.4 96 6.8 95 6.6		98 6.8 97 7.6 94 6.5		92 8.7 91 8.6 89 8.4
of raw stock	Yellow- Com		No.		44		444		4		ттт		444		w ro 4		444		444
Color	Gray-	2221	No.		m 4		288		4		m N m		m 4 4		NMM		226		ጠጠታ
Analyzer	Total		Pct.		4.2		3.2 6.8 4.1		4.8		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4 6 8 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		3.0 3.1 3.4		0.4		5.0
Shirley A	Visible	2233	Pct.		2.7		1.8 5.2 2.7		3.1		2.1 2.3 3.4		2.8 2.1 2.8		1.4		2.5		W Z W W W W W W W W W W W W W W W W W W
į	Elon- gation	o /-	Pct.		8.6 8.6		6.6 7.0 6.7		7.4		7.1 6.8 7.4		8 8 8 4 • 8 • 8		6.7 7.6 7.6		7.1 6.9 7.0		7.2 6.6 7.0
strength	1/8"	28	G/tex	100 PERCENT	20 19	5 PERCENT	19 20 20	D PERCENT	20	5 PERCENT	20 20 22) PERCENT	20 18 19	5 PERCENT	20 20 19	5 PERCENT	21 21 19	D PERCENT	22 22 22
Fiber s	Zero	9	Mpsi	100	73 76	6	75 74 80	06	75	98	78 81 79	70	71 73 73	1.6	76 77	75	78 79 79	80	81 82 82
	Micro- naire		Rdg.		3.5		3.0 3.0 2.9		4.3		3.2 2.8		2.8 3.6 3.0		3.6 2.9 3.1		2.9 2.9 2.7		2.8 2.8 3.1
Fibrograph	50/2.5	•	Pct.		43 44	STORMPROOF	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		44		43 43		43 43	R A-5	45 44		44 42 45	202	4 4 7 4 6 4 7
Digital Fil	2.5% span	110 9111	In.	LANKART 611	76.0	WESTERN STO	0.96 0.92 0.97	LANKART 57	1.00	TRIPPER 31	0.93 0.95 0.89	LANKART 57	0.98 0.97 0.98	BLIGHTMASTER	0.91 0.90 0.88	STRIPPER 31	0.95 0.98 0.91	PAYMASTER 2	0.92 0.95 0.87
Area,	on	Staple	32d in	2	30	3	30. 30. 30.	٦	30	ST	30 30 30	7	31 30 30	18	30 30 29	S	30	۵	30 30 30 se of bark se of bark
State, Production Area,	Chronological sampling and Classification	Grade	Name Code	SOUTH WEST NORTHWEST TEXAS ANSON	SLM LT SP 42 1/LM LT SP 52	BIG SPRING	M LT SP 32 SLM LT SP 42 SLM LT SP 42	COLEMAN	1/LM LT SP 52	COTTON CENTER	SLM LT SP 42 2/LM 51 1/LM LT SP 52	HAMLIN	SLM LT SP 42 SLM LT SP 42 1/LM LT SP 52	LAMESA	3/SLM LT SP 32 3/SLM LT SP 42 3/SLM LT SP 42	LOCKNEY	3/SLM LT SP 42 3/SLM LT SP 42 3/SLM LT SP 42	MULESHOE	1/ LM LT SP 52 1/ LM LT SP 52 1/ LM LT SP 52 1/ reduced from 42 because 2/ reduced from 41 because

Table 5a. --Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

tex Res or Res or Res	Уa	Yarn s	strength	Yarn elongation		Yarn appe	appearance	Yarn imp	imprfctns.	Spin-	Color	- 22s gre	ay yarn	Color-22s		blchd.yarn	Color	- 22s dy	/ed yarn
100 PERCENT 1010 PERCENT 101	8s or 22s or 8s 74 tex 27 tex 74	22s or 27 tex	88	or	22s or 27 tex		٠ +		s or tex	Poten- tial	Refl	-Yellow- ness	Com- osite	+ c	Yellow-	Com- osite	1.5		Com- posite
100 PERCENT 10 120 64 37 42 66.3 11.2 89 85.4 3.7 103 26.8 26.9 1 11 20 120 65 37 42 66.3 11.2 89 85.4 3.7 103 26.8 26.9 1 12 120 120 65 39 39 66.5 11.0 88 84.8 3.2 104 27.3 27.0 1 13 120 110 65 39 39 66.5 11.2 87 85.0 3.8 102 27.2 26.3 1 14 120 110 53 33 38 65.6 11.2 87 85.0 3.8 102 27.2 26.3 1 15 120 110 70 48 36 39 68.4 10.9 92 81.1 4.4 90 27.6 25.3 1 16 120 110 70 74 41 70.4 11.2 92 84.9 3.9 101 28.3 25.6 1 17 PERCENT 18 120 110 59 39 36 67.7 11.2 92 84.9 3.9 101 28.3 25.6 1 18 120 110 59 36 36 67.7 11.4 93 85.5 3.6 104 27.7 26.3 1 18 120 120 58 39 36 67.7 11.4 93 85.5 3.6 104 27.0 26.3 1 18 120 120 58 39 36 67.7 11.4 93 85.5 3.6 104 27.0 26.3 1 18 120 120 58 39 39 35 67.1 11.4 91 85.1 3.7 103 27.2 26.3 1 18 120 120 69 39 39 36 67.1 11.8 95 83.1 3.7 102 27.0 26.3 1 19 PERCENT 10 100 74 47 73 66.5 11.2 91 84.3 4.2 99 27.0 26.3 1 10 100 74 47 73 66.5 11.2 91 84.3 4.2 99 27.0 26.3 1 11 120 120 86 53 39 66.5 11.7 91 84.3 4.2 99 27.2 26.3 1 12 120 120 86 53 39 66.5 11.2 91 84.3 4.2 99 27.2 26.3 1 13 110 100 74 47 73 66.5 11.2 91 84.3 4.2 99 27.2 26.3 1 14 120 110 64 45 56 57.3 12.1 89 86.1 101 23.2 25.7 1 15 120 110 64 45 56 57.3 12.1 89 86.1 101 23.2 25.7 1 16 120 110 67 44 67 57 66.5 11.7 91 84.3 4.2 99 27.2 26.3 1 17 120 110 69 4 68 39 66.5 11.7 91 84.3 4.2 99 27.1 25.9 1 18 120 110 60 45 56 57.7 11.8 95 87.1 10.7 95 87.7 1 18 120 110 86 59 39 87.2 12.1 87.3 4.4 10.7 27.7 1 18 120 110 86 59 39 87.2 12.1 87.3 4.4 10.7 10.7 27.7 1 18 120 110 86 59 39 87.7 11.2 97 87.7 11.7	in. Lbs. Lbs. Pct.	.1	Pet	-1	Pet.	Index	Index	No.	No.	No.	Rd	q ₊	Index	Rd	q	Index	R _d	위	Index
-2 120 120 64 37 42 66.5 11.2 89 85.4 3.7 103 26.8 26.9 10.6 120 120 65 39 39 68.1 11.2 93 85.1 3.8 102 27.2 26.3 12.0 110 65 39 39 68.1 11.2 81 84.0 3.7 103 27.2 26.3 12.0 110 110 65 39 65.9 11.2 81 83.4 3.6 90 27.6 25.3 12.0 110 110 120 27.2 26.3 12.0 110 110 120 27.2 26.3 12.0 110 110 120 27.2 26.3 12.0 110 110 120 27.2 26.3 12.0 110 120 27.2 26.3 12.0 110 120 27.2 26.3 12.0 110 100 24 25 25 25 25 25 25 25	LANKART 611		611				100		Z										
9 PERCENT • 120 110 65 39 39 68.1 11.2 93 85.1 3.8 102 27.2 26.3 1 • 120 110 65 39 39 68.1 11.2 81 84.0 3.7 100 26.9 26.3 1 • 120 110 53 33 38 65.6 11.2 87 85.0 3.8 102 27.2 26.3 1 • 120 110 53 33 38 65.6 11.2 87 85.0 3.8 102 27.2 26.3 1 • 120 110 54 8 36 88.4 10.9 92 81.1 4.4 90 27.6 25.3 1 • 120 110 100 48 35 67.7 11.2 92 84.9 3.9 101 28.3 25.6 1 • 120 110 59 35 36 66.9 11.4 91 85.1 3.7 102 27.0 26.9 26.1 1 • 120 120 120 58 39 56.7 11.4 93 85.5 3.6 104 27.8 26.3 1 • 120 120 120 58 39 56.7 11.4 93 85.5 3.6 104 27.8 26.3 1 • 120 120 120 58 39 56.7 11.4 93 85.5 3.6 104 27.8 26.3 1 • 120 120 120 58 39 66.1 11.4 93 85.5 3.6 104 27.8 26.3 1 • 120 120 120 58 39 66.1 11.4 93 85.5 3.6 104 27.8 26.3 1 • 120 120 120 58 39 66.1 11.4 93 85.5 3.6 104 27.8 26.3 1 • 120 120 120 69 39 35 67.1 11.4 93 85.5 3.6 104 27.8 26.3 1 • 110 100 74 47 39 68.1 11.8 95 84.8 3.9 102 27.0 26.3 1 • 110 100 87 60 37 66.5 11.7 91 84.3 4.2 99 27.2 26.3 1 • 110 100 97 60 37 66.5 11.1 99 84.3 4.2 99 27.2 25.9 1 • 120 110 100 69 48 58 35 65.3 12.1 89 86.3 4.2 103 23.2 25.7 1 • 120 120 120 58 8 55 31 66.5 11.7 91 84.3 4.2 103 23.2 25.7 1 • 120 120 120 58 8 55 3 5 65.3 12.1 89 86.3 4.2 103 23.2 25.7 1 • 120 120 120 58 8 55 3 5 65.3 12.1 89 86.3 4.2 103 23.2 25.7 1	294 86 8.2 281 82 8.7	5	8.2		7.2	7	120	9	37		6.	11.2	8 8 8 8	5.		103	4.	6.	
6.4 120 110 65 39 68.1 11.2 91 85.1 3.6 92 27.2 26.3 16.6 110 120 120 120 27.2 26.3 11.2 120 1	WESTERN STORMPROOF		STORME	ď	00F		56	PERCE	L										
6.4 120 110 53 33 38 65.6 11.2 87 85.0 3.8 102 27.7 25.3 1 6.2 120 100 48 36 39 68.4 10.9 92 81.1 4.4 90 27.6 26.3 1 6.8 120 110 78 41 41 77.7 11.2 92 84.9 4.0 101 28.3 25.6 1 7.0 PERCENT 6.8 120 110 59 35 40 65.3 11.1 88 85.0 3.7 102 28.9 26.1 7.1 120 120 59 35 40 65.3 11.1 88 85.0 3.7 103 27.1 26.1 7.2 120 120 58 39 35 67.7 11.4 91 85.1 3.7 103 27.1 26.4 7.2 120 120 58 39 35 67.2 11.5 92 84.8 3.9 102 27.2 26.3 7.2 120 100 74 47 39 68.1 11.8 93 85.2 3.6 103 27.2 26.3 7.2 120 100 74 47 39 68.1 11.5 91 84.3 4.2 99 27.2 26.3 7.2 120 100 74 47 39 68.1 11.2 91 84.3 4.2 99 27.2 26.3 7.2 110 100 74 47 39 66.5 11.7 91 84.3 4.2 99 27.1 25.9 7.3 120 100 74 47 33 66.5 11.7 91 84.3 4.2 99 27.1 25.9 7.4 120 120 94 48 35 65.3 12.1 95 85.0 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 86.5 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 86.5 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 86.0 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 85.0 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 85.0 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 85.0 4.1 101 23.2 25.7 7.5 120 110 94 48 35 65.3 12.1 89 85.0 4.1 101 23.2 25.7 7.5 120 110 80 80 80 80 80 80	275 79 6.5 290 82 7.1 308 87 7.6	42	6.5 7.1 7.6		5.9	120 120 110	110 120 110	65 61 70	36	39 41 39	30.0	11.2	93 91 88	3.4		102 100 99	7 9 .	6.	000
6.4 120 110 53 33 38 65.6 11.2 87 85.0 3.8 102 27., 25.3 1 6.2 120 100 48 36 36 34 10.9 92 81.1 4.4 90 27.6 26.3 1 6.5 120 110 78 41 41 70.4 10.7 96 84.6 4.0 100 28.1 25.1 1 6.8 120 110 70 74 40 43 65.7 11.2 94 84.6 4.0 100 28.3 25.6 1 7.3 120 110 54 40 43 65.7 11.0 87 84.7 4.3 99 26.6 26.8 1 7.5 120 120 50 36 35 40 66.3 11.1 88 85.0 3.7 102 26.9 26.7 1 6.6 120 120 50 36 35 67.7 11.4 91 85.1 3.7 103 27.1 26.6 1 7.5 120 120 59 39 35 67.7 11.4 91 85.1 3.7 103 27.1 26.6 1 7.6 120 120 50 34 35 67.7 11.4 91 85.1 3.7 103 27.1 26.6 1 7.7 120 120 59 39 35 67.7 11.2 93 85.5 3.6 103 27.2 26.3 1 7.5 120 120 74 47 39 68.1 11.8 95 84.8 3.8 102 27.2 26.3 1 6.2 110 100 74 47 33 66.5 11.7 91 84.3 4.2 99 27.2 25.8 1 80 PERCENT 6.2 110 100 94 48 35 65.3 12.1 92 83.3 4.4 94 3.2 25.7 1 6.5 110 120 94 48 35 65.3 12.1 92 83.3 4.4 94 4.3 25.5 1 6.7 120 120 96 43 35 65.3 12.1 97 84.2 99 65.7 1 6.8 120 120 26 43 35 65.3 12.1 89 65.5 4.1 101 23.2 25.7 1 6.8 120 120 26 43 35 65.3 12.1 25.9 1 6.9 120 120 26 43 35 65.3 12.1 25.9 1 6.0 120 120 26 43 35 65.3 12.1 25.8 1 6.1 120 120 26 43 35 65.3 12.1 25.8 1 6.2 110 120 26 43 35 65.3 12.1 25.8 1 6.3 120 120 26 43 35 65.3 12.1 25.5 1 6.4 120 120 26 27.0 25.7 1 6.5 110 120 27.0 27.0 25.7 1 6.7 120 120 27.0 27.0 25.7 1 6.8 120 120 27.0 27.0 25.7 1 6.9 120 27.0 27.0 25.7 1 6.9 120 27.0 27.0 25.7 1	LANKART 57		57				36	PERC	N T										
6.2 120 100 48 36 99 68.4 10.9 92 81.1 4.4 90 27.6 26.3 1 6.5 110 100 48 36 87.7 11.2 92 84.9 3.9 101 28.3 25.6 1 1 2 2 120 110 54 40 43 65.7 11.0 87 84.7 4.3 99 26.6 26.8 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	280 81 7.4	1 7.	7.4				110	53			5	1.	87	5.		0	7	\$	0
6.5 120 100 48 36 39 68.4 10.9 92 81.1 4.4 90 27.6 26.3 1 6.5 120 110 106 74 36 57.7 11.2 92 84.9 3.9 101 28.3 25.6 1 7.0 PERCENI 6.8 120 110 54 40 43 65.7 11.0 87 84.7 4.3 99 26.6 26.8 1 7.1 120 110 59 35 40 65.3 11.1 88 85.0 3.7 102 26.9 26.7 7.2 120 120 58 39 35 67.7 11.4 91 85.1 3.7 103 27.1 26.6 6.8 120 120 59 39 35 67.7 11.4 91 85.1 3.7 103 27.1 26.6 7.2 120 120 59 39 35 67.7 11.8 93 85.2 3.6 104 27.8 26.3 1 7.2 120 100 74 47 39 68.1 11.8 95 83.1 3.7 93 27.2 26.3 1 6.3 110 100 74 47 39 68.1 11.7 91 84.3 4.2 99 29.3 24.7 6.4 120 120 28 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 1 6.5 110 100 86 53 33 66.4 12.1 89 86.3 4.1 101 23.2 25.7 1 6.6 120 110 60 43 35 65.3 12.1 89 86.7 103 23.2 25.7 1 6.7 120 120 20 20 20 20 20	STRIPPER 31							PERC	NT NT										
6.8 120 110 54 40 43 65.7 11.0 87 84.7 4.3 99 26.6 26.8 1 7.3 120 110 54 40 66.3 11.1 88 85.0 3.7 102 26.9 26.7 1 7.6 110 100 87 52 36 66.9 11.4 91 85.1 3.7 103 27.1 26.6 1 7.7 120 120 58 39 35 67.7 11.6 93 85.5 3.6 104 27.8 26.3 1 7.2 120 120 58 39 35 67.7 11.4 93 85.5 3.6 104 27.5 26.3 1 7.2 120 120 59 39 35 67.7 11.6 93 85.5 3.6 103 27.5 26.3 1 7.2 120 120 69 39 35 67.7 11.5 92 84.8 3.8 102 27.5 26.3 1 7.5 PERCENT 6.3 110 100 74 47 39 68.1 11.8 95 83.1 3.7 99 27.2 26.3 1 8.0 PERCENT 6.2 110 100 86 53 33 66.5 11.7 91 84.3 4.2 99 29.3 27.2 26.3 1 6.1 120 110 86 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 1 6.1 120 110 60 43 35 65.3 12.1 89 86.3 4.2 103 28.2 25.7 1 6.1 120 110 86 53 33 66.4 12.1 89 86.3 25.7 1 6.1 120 110 60 42 48 35 65.3 12.1 89 86.3 4.2 103 28.2 25.7 1	297 88 7.0 275 81 6.7 298 88 7.2	8 7. 1 6. 8 7.	7.0		5.9	7 7 1	100	48 78 106	36 41 74	39 41 36	8.0	0.0	96	1 4 4	0 0 0	90 100 101	8 8 .	6.	104 102 100
6.8 120 110 59 40 43 65.7 11.0 87 84.7 4.3 99 26.6 26.8 1 7.5 120 110 59 35 40 66.9 11.1 88 85.0 3.7 102 26.9 26.7 1 6.6 120 120 59 35 67.7 11.4 93 85.5 3.6 104 27.8 26.3 1 7.5 PERCENT 6.6 120 120 59 39 35 67.7 11.4 93 85.5 3.6 104 27.8 26.3 1 7.5 PERCENT 6.3 110 100 74 47 39 68.1 11.8 95 83.1 3.7 93 27.2 26.3 1 6.3 110 100 97 60 37 68.2 11.2 91 85.0 3.9 102 27.9 25.7 1 6.3 110 100 86 53 33 66.4 12.1 91 84.3 4.4 96 27.1 25.9 1 6.4 120 120 90 60 43 32 65.3 12.1 89 86.3 4.2 101 23.2 25.7 1 6.5 110 100 86 53 33 66.4 12.1 89 86.3 4.2 101 23.2 25.7 1 6.6 120 110 94 48 35 65.3 12.1 89 86.3 4.2 29.3 24.7 1 6.7 1 2.2 23.3 24.7 1 6.8 2.2 25.7 1 6.9 26.0 26.0 26.0 2 6.0 2 2 25.0 2 6.0 2 2 25.7 1 6.1 2 2 2 25.7 1 6.2 2 2 25.7 1 6.3 2 2 25.7 1 6.3 2 2 25.7 1	LANKART 57		57				70	PERCE	N.										
6.6 120 120 50 36 35 67.7 11.4 93 85.5 3.6 104 27.8 26.3 1 7.1 120 120 58 39 35 67.1 11.8 93 85.5 3.6 104 27.8 26.3 1 7.2 120 110 69 39 35 67.2 11.5 92 84.8 3.8 102 27.5 26.4 1 7.5 PERCENT 6.3 110 100 74 47 39 68.1 11.8 95 83.1 3.7 93 27.2 26.3 1 6.3 110 100 97 60 37 68.2 11.7 91 84.3 4.2 99 29.3 24.7 80 PERCENT 6.2 110 100 86 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 1 6.1 120 110 94 48 35 65.3 12.1 89 86.3 4.2 103 28.2 25.7 1 6.6 120 110 60 43 32 66.5 11.8 92 85.0 4.1 101 23.2 25.7 1	295 85 8.3 282 87 8.3 297 85 9.1	5 - 2	8.3 8.3		6.8 7.3 7.6	120 120 110	110	54		43	5.	:::	87 88 91	4		900	6.	6.9	000
120 120 58 36 35 67.7 11.4 93 85.5 3.6 104 27.8 26.3 1 120 120 58 39 35 67.1 11.8 93 85.2 3.6 103 27.5 26.4 1 120 110 69 39 35 67.2 11.5 92 84.8 3.8 102 27.5 26.4 1 110 100 74 47 39 68.1 11.8 95 83.1 3.7 93 27.2 26.3 1 110 100 70 146 97 33 66.5 11.7 91 84.3 4.2 99 29.3 24.7 80 PERCENT 110 100 86 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 1 120 110 94 48 35 65.3 11.2 89 86.3 4.2 103 28.2 25.7 1 120 110 20 44 83 56.6 11.8 92 85.0 4.1 101 23.2 25.7 1	8LIGHTMASTER A-	LIGHTMASTER	STER		2		15	PERCE	N										
75 PERCENT 110 100 74 47 39 68-1 11.8 95 83-1 3.7 98 27.2 26.3 1 110 100 97 66 37 68-2 11.2 93 85.0 3.9 102 27.9 25.8 1 100 70 146 97 33 66.5 11.7 91 84.3 4.2 99 29.3 24.7 80 PERCENT 110 100 86 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 1 120 110 94 48 35 65.3 12.1 89 86.3 4.2 103 28.2 25.7 1 120 110 60 43 32 66.5 11.8 92 85.0 4.1 101 23.2 25.7 1	280 81 7.7 284 83 7.8 302 89 8.0	1 7. 3 7. 9 8.	7.7 7.8 8.0		6.6 7.1 7.2	120 120 120	120 120 110		36 39				93	5.		000		9 9	104 105 107
110 100 74 47 39 68.1 11.8 95 83.1 3.7 93 27.2 26.3 1 1 10 100 97 60 37 68.2 11.2 93 85.0 3.9 102 27.9 25.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STRIPPER 31	RIPPER						PERCE	N.										
80 PERCENT 110 100 86 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 10 120 110 94 48 35 65.3 12.1 89 86.3 4.2 103 28.2 25.7 10 120 110 60 43 32 66.6 11.8 92 85.0 4.1 101 23.2 25.7 10	311 91 7.0 287 85 7.2 294 85 7.3	1 7. 5 7. 5 7.	7.0		6.3	1 0	100 100 70		47 60 97	33	8.0		95	4.5		98 102 99	7 . 6	4	105 101 94
110 100 86 53 33 66.4 12.1 92 83.3 4.4 96 27.1 25.9 10 120 110 94 48 35 65.3 12.1 89 86.3 4.2 103 28.2 25.7 10 120 110 60 43 32 66.6 11.8 92 85.0 4.1 101 23.2 25.7 10	PAYMASTER 202						80	PERCE	NT										
	52 30 303 88 7.4 52 30 296 85 7.2 52 30 308 90 7.2 42 because of bark 41 because of bark	88 85 90	7.4		6.2 6.1 6.6	1 2 2	1100	86 94 60	4 4 3 3 3 3		920	2. 2. 1.	92 89 92	50.0		600	~ 00 m	222	000

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

Color of raw stock	y- Yellow- Composite & Card	70700	. No. Index Pct.		5 5 85 6.5 4 83 5.9		3 4 92 9.7 3 3 93 9.6 4 88 9.4		8 4 92 8.0 8 4 94 6.3		3 93 7.0 4 90 7.6 4 90 8.1		4 90 6.3 4 90 5.7 4 92 4.9		3 . 91 7.5 3 3 94 7.2 4 4 90 6.4		3 94 6.1 4 92 5.4 6 91 4.1
Analyzer	Total Gray-		Pct. No.		3.9		7.9 6.4 7.2		6.6		5.22		3.64		4.22		3.0
Shirley Analyzer	n- on Visible		Pct.		2.2		4 4 8 8 × × × × × × × × × × × × × × × ×		3.0		2.3		2.2 2.1 1.8		2.1		11.8
Fiber strength	-	3 A A A A	si G/tex Pct.	90 PERCENT	80 21 7.2 76 20 8.5 77 19 8.2	80 PERCENT	77 20 7.0 76 19 6.6 80 19 6.6	100 PERCENT	74 20 7.1 76 21 7.6	90 PERCENT	82 20 6.3 80 19 6.8 78 20 7.3	100 PERCENT	82 21 7.0 77 20 8.0 81 20 7.9	70 PERCENT	87 21 6.8 81 21 7.4 85 20 7.1	100 PERCENT	76 21 7.2 78 20 7.3
ph Fil	Micro-Zero		t. Rdg. Mpsi		3.7		3.2 3.0 2.8		4.1		3.0 2.9 2.9		4.2 4.1 3.7		3.2 2.9 3.1		4.1
Digital Fibrograp	2.5% span 50/2.5		In. Pct.	LANKART 57	1.01 0.99 0.95 45	PAYMASTER 18	0.94 45 0.95 45 0.91 44	LANKART LX-571	1.05 43 1.06 44	STRIPPER 31	0.89 44 0.88 0.86	LANKART 57	0.99 43 1.00 46 0.95 43	LANKART 611	0.92 44 0.95 45 0.94 44	LANKART 57	0.99 46 0.99 45
State, Production Area,	Chronological sampling and Classification	le Staple	Code 32d in.	TEXAS	SP 42 31 43 31 43 31		SP 52 31 SP 52 30 SP 52 30		SP 52 33 SP 52 33	S	SP 42 29 SP 52 29 SP 52 29	_	SP 42 32 SP 42 31 SP 42 31	7	SP 42 30 SP 42 30 SP 42 30	7	SLM LT SP 42 32 SLM LT SP 42 31
State, Pr	Chronolog and Cla	Grade	Name	SOUTH WEST NORTHWEST PADUCAH	SLM LT SI SLM SP SLM SP	PLAINVIEW	1/LM LT SI 1/LM LT SI 1/LM LT SI	RULE	1/LM LT SI	TULIA	SLM LT SI	OK LAHOMA ALTUS	SLM LT SI SLM LT SI SLM LT S	SAYRE	SLM LT S SLM LT S SLM LT S	SNYDER	SLM LT S

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

yarn		;	51													
dyed ya	Com- posite	Tude	Spirit I	107 108 106		108 101 96		106		101 100 100		104 105 106		101 102 100		108 108 110
- 22s d	Blue- ness	4	?	26.6 26.7 26.5		26.8 25.7 25.2		26.7		25.7 25.6 25.8		26.2 26.1 26.6		25.9 25.8 25.9		26.9 26.7 27.3
Color	Reflct- ance	R	†	26.8 26.4 26.9		26.6 27.9 29.3		27.4		28.1 28.4 28.6		27.4 26.9 27.4		28.4 27.7 28.7		26.9 26.4 26.6
Color-22s blchd.yarn	Com- posite	Indox	V Priir	98 100 99		96 103 102		96		97 95 97		97 91 92		96 98		97
22s blc	Yellow-	4	2	4.1 4.0 4.0		4.1 3.8 3.8		4.2		4.5		4.3		4.5		4.1 4.3 4.1
Color-2	Reflct- ance	Rd	'	83.9 84.3 83.9		82.8 85.4 84.8		84.2		84.2 82.8 83.4		83.7 82.0 81.9		84.9 83.6 82.5		83.5 82.4 83.3
y yarn	Com- F	Tudos	Vanita de la constanta de la c	86 80 81		92 91 90		88		87 89 89		87 86 87		89 91 91		86 86 87
22s gray	Yellow-	4	2	11.5 12.4 12.5		11.7		11.1		11.0		11.1		11.4		10.9
Color -	Reflct- ance	Rd	'	64.7 60.2 60.4		66.9 67.3 66.9		65.1		65.8 65.4 65.6		65.5 64.9 65.2		66.3 66.9 67.5		65.3 65.4 64.8
Spin-	ning Poten- tial	S. N.		46 45 41		36 36 32		45		38 31 25		443 42		37 43 40		444 043
imprfctns.	22s or 27 tex	N.		36 69 47	-	53 50 57	<u>-</u>	58 40	<u> </u>	29 38 36	-	21 18 21	-	35 37	- 7	25 27 25
Yarn imp	8s or 74 tex	Ş	_	65 121 88	PERCENT	82 77 95	PERCENT	86 71	PERCENT	52 56 55	PERCENT	42 28 30	PERCENT	61 59 69	PERCENT	35 45 39
appearance	22s or 27 tex	Index	06	110 90 110	80	120 110 110	100	100	90	120 120 110	100	120 130 120	70	110 100 110	100	120 120 120
Yarn appe	8s or 74 tex	Index		120 110 120		120 120 120		120		120 120 120		120 130 130		120 110 120		120 130 120
\vdash	22s or 27 tex	Po+		4 9 8 9		6.3 6.3		6.0		6.0		6.4 6.8		6.1 6.5 6.2		6.2 6.7 6.5
Yarn elongation	8s or 74 tex	+50	57	7.6	18	7.2 7.0 7.2	LX-571	7.1	31	7.2	25	7.1 7.9 8.0	611	6.3 7.2 7.2	57	7.4
strength Y	22s or 27 tex	The different	LANKART S	90 06	PAYMASTER 18	92 85 87	LANKART L	84 92	STRIPPER	84 85 84	LANKART	88 91 91	LANKART	87 95 91	LANKART	986
Yarn stre	8s or 74 tex	- 1	LA LA	292 303 299	. PA	304 294 291	LA	288 316	S	290 290 292	7	297 312 311	1	293 313 307	2	299 306 305 s of barl
	99			31		31 30 30		33		29 29 29		32 31 31		30		32 31 31
ion A	samping cation	_	TEXAS	45 43 43		52 52 52		52 52		42 52 52		45 45 45		45 45 45		45 42 42 42
oduct	ssifi	n 2000	Š .	T SP	TEW	7 SP 7 SP 7 SP		T SP		7 SP 7 SP 7 SP	4	T SP		T SP T SP		T SP T SP from
State, Production Area	and Classification	Grade	SOUTH WEST NORTHWEST PADUCAH	SLM LT SLM SP SLM SP	PLAINVIEW	1/ LM LT	RULE	1/LM LT	TULIA	SLM LT 1/LM LT 1/LM LT	OKLAHOMA ALTUS	SLM LT SLM LT SLM LT	SAYRE	SLM LT SLM LT SLM LT	SNYDER	SLM LT SP 42 32 299 SLM LT SP 42 31 306 SLM LT SP 42 31 305 1/reduced from 42 because of bark

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

State Production Area.	Area,	Digital Fibrograph	rograph		Fiber strength	trength		Shirley Analyzer	nalyzer	Color	Color of raw stock	ck	Dioker
Chronological sampling and Classification	ling on	2.5% span	50/2.5 unif.	Micro- naire	Zero Gage	1/8" Gage	Elon- gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card
Grade	Staple)											
Name Code	32d in.	·ui	Pct.	Rdg.	Mpsi	G/tex	Pet.	Pct.	Pct.	No.	S S	Index	Pet.
WEST													
NEW MEXICO CAUSEY	g	GREGG 35			, -	75 PERCENT	<u></u>						
1/1M LT SP 52	30	0.85	45	3.0	83	19	6.3	4.5	0.9	E O 4	4.	92	8 9
1/LM LT SP 52	59	0.88	45	5.9	85	20	5.9	5°0	9.9	m n	ታጣ	76 76	ο α ο κ
1/LM LT SP 52	59	0.88	46	3.0	82	50	6.5	0.4	9.0	n	n	*	•
PORTALES		RILCOT 90			Ĩ	80 PERCENT	1						
1/1 M 1 T CD 52	30	0.87	45	2.9	83	20	6.8	5.8	7.9	ю	4	91	11.1
1/L	30	0.83	45	2.1	85	20	6.2	5.9	7.8	m	m	95	11.0
1/LM LT SP 52	53	0.85	45	2.9	82	21	6.7	9.6	7.2	4	4	06	9.8
1/reduced from 42 because of bark	anse of bar	Ż.											

Table 5a.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1971--Continued

gray yarn Color-22s blchd.yarn Color - 22s dyed yarn	Com- Reflet-Yellow Com- Reflet-Blue- Com- posite ance ness posite	Index Rd +b Index Rd -b Index		91 86.6 4.1 105 28.2 25.8 101 92 85.2 4.0 102 28.5 25.4 99 95 84.9 3.7 102 28.9 25.4 98		91 84.9 4.1 101 27.6 26.0 103 93 86.3 4.1 104 28.0 25.6 100 91 85.2 4.0 102 27.3 27.0 107
Color - 22s gra	Reflct-Yellow- Com- ance ness posite	Rd +b		.1 11.9 .2 11.4 .2 11.7		7 11.7 5 11.5 5 11.5
	ning Poten- tial	No.		31 66.1 33 67.2 33 68.2		35 66.7 33 67.5 30 66.5
Yarn appearance Yarn imprfetns.	8s or 22s or 74 tex	No. No.	75 PERCENT	120 75 99 61 104 58	80 PERCENT	108 79 1111 66 81 52
ppearance Ya	22s or 27 tex	Index	75	120 1 110 110 1	80	100 100 110
	or 8s or 74 tex	Pct. Index		5.7 120 5.9 110 6.3 110		5.9 110 5.9 110 6.3 110
Yarn elongation	8s or 22s or 74 tex 27 tex	Pct. Pc		6.8	0	6.7 6.5 7.1 6
Yarn strength	22s or 27 tex	Lbs.	GREGG 35	84 86 91	RILCOT 90	91 86 86
		32d in. Lbs.		0 287 9 291 9 301		299 292 9 299
State, Production Area	ChronoLogical sampling and Classification Grade Staple	Name Code 32d in	WEST NEW MEXICO CAUSEY	1/LM LT SP 52 30 1/LM LT SP 52 29 1/LM LT SP 52 29	PORTALES	1/LM LT SP 52 30 299 1/LM LT SP 52 30 292 1/LM LT SP 52 29 299 1/reduced from 42 because of bark

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971

١	· m																			
D. 540.40	& Card		Pct.			5.4	5.3	7.2		4 4 9		5.0		5.8 4.0		6.5		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		5.0
stock	Composite color		Index			96	99	16		98 95 98		99 95 97		92 98 97		97 92 96		97 98 101 97		96 94 96
of raw	Yellow- ness		No.			3	2	a w		ммм		m m m		m N m -		4 6 0				44 M
Color	Gray- ness		No.			3	7	2 2		2 8 2		2 8 2		523		282		2 1 2 2		m N m
Analyzer	Total		Pct.			2.5	2.5	2.7		2.7 3.1 3.3		2.3 2.9 2.1		3.7		3.5		2.4 3.2 2.0 3.1		3.2 2.2 1.8
Shirley Ar	Visible waste		Pct.			1.8	1.5	1.9		1.6 1.4 2.1		1.4	ı	2.6 1.5 2.9		2.7		1.6 2.1 1.4 2.0		2.5 1.6 1.0
- RJ ∩ R	gation 1/8"		Pct.		=	7.2	8.0	6.9	<u> </u>	7.6 8.3 7.7	E	7.5 6.0 6.1	<u>+</u>	7.0	-	5.7	<u> </u>	5.0 5.0 5.0 5.0	E	7.0 6.5 6.4
strength	1/8" Gage		G/tex		75 PERCENT	21	22	22	100 PERCENT	21 21 22	100 PERCENT	22 21 20	90 PERCENT	23 22 21	75 PERCENT	25 22 22	100 PERCENT	23 23 24	100 PERCENT	22 20 19
Fiber s	Zero Gage		Mpsi			75	74	78	_	79 75	-	77 79 73		77 75 75		86 84 83	-	82 83 85	_	77 77
	Micro- naire		Rdg.			4.6	4.	4 4 5.2		4.3 4.1		444 7.6.6.		4 4 4 8 8 8 9 9 9		5.1 4.9		4444 40 m u		444
orograph	50/2.5 unif.		Pct.		16	45	44	3	16	4 t t t		4 4 4 4 3 2	11	46 45 45	28	4 4 4 8 6 4		4 4 4 6 4 4 6 6 4 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	213	L 4 4 4 4 4
Digital Fibrograph	2.5% span length		In.		DELTAPINE	1.13	1.10	1.08	DEL TAP INE	1.11	COKER 201	1.10	DIXIE KING	1.11 1.08 1.08	MCNAIR 10328	1.04	COKER 417	1.12	STONEVILLE	1.13 1.06 1.02
Area,	on on	Staple	32d in.		_	34	34	34	_	35 35 34	J	34 34 33		35 35 35		333		35 35 35		35 34 33
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	le.		41	14:	51	,,,	41 SP 42 SP 42	ā	41 41 41	J.	51 51 51	ER Y	41 51 51	. LE	41 41 51	יורר פ	41 41 41
State, I	chronold and Cl	Gre	Name	SOUTH EAST	ATMORE	SLM	SLM	E E	CHEROKEE	SLM SLM LT SLM LT	GERALDINE	SLM SLM SLM	LAFAYETTE	ELL	MONTGOMERY	SLM LM LM	PRATTVILLE	LA SLA SLA SLA	RUSSELLVILLE	SLM SLM SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971

dyed yarn	Com- posite	Index		111 113 113 108		113 114 109		117		113 113 108		114 1114 103		109 1112 1110 1105		110 113 105
22s dy	Blue- ness	위		27.3 28.1 28.1 27.1		27.3 27.9 27.2		28.4 27.7 27.7		27.9 28.1 26.8		28.1 27.9 26.1		27.1 27.6 27.6 26.5		27.2 28.0 26.8
Color -	Reflct- ance	Rd		26.3 26.9 26.5 27.2		25.3 25.8 27.0		25.4 25.1 26.8		26.3 26.7 26.4		26.1 25.7 27.9		26.8 26.0 27.4 27.6		26.3 26.3 28.2
. yarn	Com- posite	Index		105 110 108 102		104 106 104		107 108 103		106 105 102		103 104 100		104 106 104 98		101 106 102
s blchd	ellow-	위		2.7		3.0 2.9 3.1		2.7		2.9		2.9 3.1 3.4		2.8 2.8 3.0		3.4
Color-22s	eflct-Y	묎		84.6 86.2 85.6 84.3		84.4 85.1 84.8		85.4 85.6 83.8		85.1 84.5 83.9		84.1 84.6 83.5		84.1 85.2 84.3 82.1		94.1 85.2 84.2
yarn	Com- R posite	Index		93 94 94 88		93 93		93		87 95 93		94 88 91		95 96 96 90		89 97 90
22s gray	ellow- ness	위		10.3 10.2 10.2 10.1		10.8 10.7 10.6		10.3 10.6 10.2		10.4 10.3 10.6		10.7 111.0 9.6		11.2 10.6 10.3 9.6		11.5
Color -	Reflct-Y	찚		69.6 70.4 70.2 67.7		69.0 68.9 68.7		70.4 69.1 68.6		66.7 70.7 69.3		69.7 66.3 69.8		68.9 68.5 71.1 69.2		66.2 69.7 67.5
Spin-		<u>.</u>		61 61 62 57		63 62 58		60 58 49		69 61 64		59 56 58		70 66 69		67 61 51
imprfctns.	50s or 12 tex	No.	17	16 10 14 18	L N	27 21 19	<u>-</u>	13 13	ENT	12 8 18	ENT	9 14 18	12	28 24 21 14	۲,	22 15 14
arn	22s or 27 tex	No.	PERCENT	16 10 17 23	PERCE	35 28 24	PERCENT	14 16 12	PERC	17 10 19	PERC	13 14 25	PERCENT	35 28 22 22	PERCENT	30 19 15
appearance	50s or 2	Index	75	80 80 80 70	100	220	100	80 90 90	90	0 0 0	75	90 100 80	100	70 80 80 90	100	900
l c	e e	Index		110 100 110 90		100 90		110 120 120		120 120 110		120 120 100		100 110 100 100		90 120 100
tion Yar	50s or 22s	Pet. In		5.9 5.4 5.5		5.5 5.2 4.8		5.3 4.6 4.9		5.6		4.7		4.9 5.2 5.4 5.1		5.0
elongatio			so.		•				Ξ		8			8 8 8 8 8	213	
Yarn	22s or 27 tex	Pct.	INE 10	6.1 6.8 6.1 6.4	INE 1	6.9 6.9	201	6.9	KING II	7.2	10328	6.0 6.2 6.1	417	6.9 6.9 6.8	TILE	6.0
strength	50s or 12 tex	Lbs.	DELTAPINE 16	9 8 8 8 8	DELTAPINE 16	34 32 28	COKER	33 29 25	DIXIE	346	MCNAIR	35 32	COKER	41 44 43 43	STONEVILLE 213	36 32 25
Yarn st	22s or 27 tex	Ibs.		99 94 97 98		97 93 89		94 90 82		101 97 99		105 102 97		110 113 113 108		107 92 80
ea,		i i		4444		35		34 33		35 35		999		355		35 34 33
tion Ar	sampli ication Sta	32d		41 41 51 51		41 SP 42 SP 42	111	4 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	ш	51 51 51	۲,	41 51 51	E E	41 41 41 51	ILLE	41 41 41
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH EAST ALABAMA ATMORE	N W W W	CHEROKEE	SLM LT S	GERALDINE	SLM	LAFAYETTE	555	MONTGOMER	SLA	PRATTVILL	SLA SLA SLA	RUSSELLVILLE	SLM SLM SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

		1															
Diokor	& Card		Pct.		5.8 7.3 6.2 6.8		5.5 6.3 6.4		5.5 7.2 8.0 8.0		6.2 6.3 6.9		6.4 6.8 7.2		5.0		6.2 7.9 7.8 7.5
stock	Composite color		Index		76 96 76 76		96 93 96		94 95 83		96 96 87		97 93 96		101 99 93		96 91 88 93
of raw	Yellow- ness		No.		m N m m		ммм		ታ ጠጠጠ		ታ ጠጠ		m m m		N m m		m 4 4 N
Color	Gray- ness		No.		2535		K & Z		ጠጠፋኒ		m 01 4		2 8 2		3 2 3		N m 4 m
Analyzer	Total waste		Pet.		3.6 4.6 2.9		1.9 2.8 3.2		33.00 9.00 9.00 9.00		3.4 2.8 3.2		3.7		2°5 3°5 3°5		# 9 \$ \$ # # # # # # # #
Shirley A	Visible waste		Pct.		2.7 3.5 1.9		1.2 2.2 2.2		2.5 2.5 2.5		2.5 1.8 2.3		2.8 1.4 1.6		1.2		2.4 2.7 2.8 3.1
٦٥	gation 1/8"		Pct.	=	5.0 5.0 6.0	1	5.2	-	55.00 5.00 7.00 7.00	_	6.4 5.6 6.3	E	5.7	F	7.0 7.1 6.1	ļ.	5.8 5.1 9.9
strength	1/8" Gage		G/tex	85 PERCENT	22 22 23 22	100 PERCENT	21 21 21	100 PERCENT	21 20 20 20	100 PERCENT	20 21 20	100 PERCENT	22 23 22	80 PERCENT	22 24 22	99 PERCENT	21 21 20 22
Fiber	Zero Gage		Mpsi		82 79 78 80	-	82 80 77	-	80 78 76		81 77 76	1	82 81 78		76 79 80		80 78 77
	Micro- naire		Rdg.		4 4 4 4 0 7 0 0		4.4		7.44		4.4 6.8 6.3		3.9 4.1 3.9		4.1 4.1 4.3		4 4 4 4 2 2 2 2 2
brograph	50/2.5 unif.		Pct.		46 45 43	11	44 43 43	Ξ	44 44 452		45 47 43		4 4 4 4 6 7 4 4 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	16	4 4 4 4 0 4		4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Digital Fibrograph	2.5% span length)	In.	COKER 201	1.09 1.10 1.08 1.07	DIXIE KING	1.03	DIXIE KING	1.02 1.03 1.01 1.03	COKER 201	1.06	COKER 417	1.11	DELTAPINE	1.08	COKER 201	1.06 1.06 1.04 1.07
Area,	pling, ion	Staple	32d in.	5	3 3 3 4 4	0	34 34 33	O	3444 3444 34444	5	34 33	ບັ	35 34	Ō	35 34 34	ວັ	34 34 34 34
State, Production Area,	Chronological sampling, and Classification	Grade	Code	_ ~	41 51 51 51	A	41 51 51		SP 42 SP 42 SP 52 SP 52		41 41 51	<u> </u>	51 51		41 41 51	z	41 SP 52 SP 42 51
State,	Chronol and C	G	Name	SOUTH EAST ALABAMA ST. CLAIR	SLM SLM LM	SYLACAUGA	E E E	GEORGIA BOSTWICK	SLM LT SLM LT LM LT LM LT	COMER	SLM	PINEHURST	255	SHELLMAN	SLM SLM SLM	STAPLETON	SLM LT SLM LT SLM LT

Table 6a, -- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971-- Continued

Chronological sampling, and Classification Grade Staple	logical sampling, classification stable stable		22s or 27 tex	50s or 12 tex	22s or 27 tex	r 50s or	22s or 27 tex	r 50s or x 12 tex	22s o 27 te	r 50s or x 12 tex	ning Poten- tial	Reflet	Yellow-	Com- posite	Reflct-Yellow-	Yellow-	Com- posite	Reflet	Blue- ness	Com- posite
Name Code	324	ri I	Lbs.	Lbs.	Pct.	Pet.	Index	Index	No.	No.	No.	Rd	뤼	Index	찖	위	Index	묎	위	Index
SOUTH EAST ALABAMA ST. CLAIR			3	COKER 201	12			æ	S PERCENT	, L										
SLM SLM SLM	41 51 51 3	NN 44	100 98 97 91	32 34 29	6.0 5.9 6.3 6.1	4.5 5.0 4.1	120 100 110 100	90 90 90 80	14 24 20 19	13 17 16 21	57 63 58 57	69.5 68.6 69.9 70.1	10.7 10.2 10.1 9.8	94 90 93	84.1 84.4 83.5	2.8 3.4 2.8	104 105 100 103	25.1 26.7 26.9 27.0	28.6 27.5 26.7 26.7 27.8	118 111 107 111
SYLACAUGA			0	DIXIE KI	KING II			01	O PERC	ENT										
SLA	41 3 51 3 51 3	440	90	29 34 31	6.8	4.4 6.9	120 120 100	80 90 70	12 20 21	8 18 17	54 59	68.4 67.3 69.2	10.7	92 89 92	84.5 85.1 84.1	3.2 2.7 2.9	103 107 103	27.1 26.6 27.4	26.8 27.7 27.5	107 112 109
GEORGIA BOSTWICK			10	DIXIE KI	KING 11			100	O PERCENT	TV.										
SLM LT SP SLM LT SP LM LT SP LM LT SP	42 3 42 3 52 3	4444	93 93 84 81	30 31 26 26	6.2 5.8 5.6 6.4	44 M 4 8 9 6 4	120 130 120 120	90 100 90 100	12 14 16 13	8 10 10 10	58 57 55 52	66.7 67.2 62.8 63.4	11.5 11.2 10.9 10.2	91 91 82 81	84.4 84.4 84.6 85.0	3.2	102 103 103 103	27.3 27.7 27.5 27.5	27.0 26.8 27.2 27.2	107 106 108 107
COMER			ວັ	COKER 201	11			10	00 PERCENT	L N										
SLM SLM SLM	41 3 41 3 51 3	446	100 97 88	34 29	6.6 5.9 6.2	7.4 0.0 8.8	120 120 110	90 100 80	17 18 21	12 13 25	69 29	67.6 67.5 63.0	11.1	91 90 80	83.9 83.9 83.8	3.1 2.7 3.1	100 104 102	25.3 25.0 26.0	27.2 28.4 28.0	112 118 114
PINEHURST			ວັ	COKER 41	17			10	O PERCENT	L										
555	51 3 51 3 51 3	420	116 109 107	42 41 39	7.3	5.44	100	80 80 80	19 31 16	21 21 17	65 69 67	68.5 65.5 67.6	10.3 10.5 10.1	90 85 88	83.7 85.3 84.5	3.2 3.1 3.0	101 106 104	27.2 27.3 28.5	26.4 26.9 26.9	105 107 105
SHELLMAN			IO	DELTAPINE	NE 16			80	80 PERCENT	IN										
SLM SLM LM	41 3 41 3 51 3	440	107 101 103	38 37	7.3 6.7 6.5	5.7	110 100 100	90 80 70	19 18 27	16 16 22	67 64 65	71.0 69.5 65.7	10.2 10.8 10.6	95 94 86	84.6 85.3 84.7	2.9 3.0	105 106 103	27.1 26.8 27.6	26.9 27.8 27.3	107 112 108
STAPLETON			ວັ	COKER 20	201			6	9 PERCENT	IN										
SLM LM LT SP SLM LT SP LM	41 3 52 3 42 3 51 3	4444	100 96 86 87	35 31 27 28	6.5 5.8 5.8	5.1 4.5 4.3	120 130 110	80 90 90 90	14 15 20 14	11 16 19 15	54 55 52	68.4 66.1 65.0 66.9	11.2 11.2 10.9	93 88 85 87	84.6 85.1 84.7 93.7	3.1 3.2 3.0 2.9	104 105 104 103	26.4 27.1 27.2 28.3	27.8 27.5 27.7 27.1	112 110 110 106

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971-Continued

Picker			Pet.		99 6.2 93 6.8 92 7.1 94 7.1		9.9 4.6 9.7 6.7 9.4 6.8		87 7.5 82 7.7		83 7.9 82 8.6		95 7.4 95 8.0 87 7.9 91 7.5		13 7.8 15 8.7		93 7.2 90 7.3 88 7.4 88 8.0
w Stock	ow- Composite		Index		2 2 2 2 3 3 4 3 4 3		22 9 9 9		3 8		33		23 2 2 2 2 3				2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3
COTOR OF FAW	y- Yellow-		No.		3335		m 2 m		4 0		10 10				ν 4		
	l Gray- e ness		No				~ 8 K						0.400 - - 		on at		N C E E
ey Analyzer	e Total waste		Pct		4.0 4.2 4.1 3.8		m 4 m		4.1		4.9		4.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		4 4		ν. ν. φ. φ. φ. γ.
OHITTES	n Visible waste		Pct.		22.3		3.9		3.1 3.3		2.7		64 64 64 64 64 64 64 64 64 64 64 64 64 6		3.3		4400
Elon-	συ		x Pct.	PERCENT*	6.5 6.4 6.1	PERCENT*	6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PERCENT	5.0 4.0	PERCENT	5.7	PERCENT	5.9 6.6 6.1 6.2	PERCENT	5.7	PERCENT	6.2 6.2 6.1 5.9
i serengen	1/8" Gage	-	i G/tex	100 PER	94 24 80 23 82 23 79 23	100 PER	1 22 1 23 1 23	100 PER	79 22 81 24	100 PER	75 20 74 20	100 PER	77 22 78 21 79 23 77 21	100 PER	78 21 75 20	100 PER	76 22 81 24 80 22 79 22
7.700	Micro- Zero naire Gage		Rdg. Mpsi		1281		4.4 4.3 8 8 8		4.4 7 4.1 8		7 4.4		4.2 7 4.4 7 4.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7		4.2 7		3.9 7 4.1 8 4.1 8
ribrograpii	50/2.5 Mi unif.		Pct. R		7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		455		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		40 4		7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Digital ribio	2.5% span 50 length u		In.	MCNAIR 1032	1.07 1.07 1.04 1.05	MCNAIR 511	1.08 1.06 1.04	TH-149	1.09	COKER 201	1.06	COKER 201	1.10 1.11 1.11 1.07	COKER 201	1.12	COKER 417	1.14 1.16 1.13 1.12
Area,	jon jon	Staple	32d in.)¥	3 3 3 3 5 4 5 5 5	Ĭ	33 SS	Ξ	35 35	3	34	ຮັ	9 3 3 3 4 9 5 5 5 5	5	35 34	ฉี	LM LT SP 52 36 LM LT SP 52 36 LM LT SP 52 36 LM LT SP 52 35
State, Frontecton Area,	ronological samplinand Classification	Grade	Code	ST AROLINA 3URG	50 51 51 51	BURG	41 41 51	LE	51 T SP 52		T SP 52 T SP 52	OUTH CAROLINA CALHOUN FALLS	51 51 T SP 52 51	~	T SP 52 T SP 52	7	51 T SP 52 T SP 52 T SP 52
State,	chrono	G	Name	SOUTH EAST NORTH CAROLINA LAURINBURG	± E E E	LAURINBURG	SLM	PINEVILLE	LM LM LT	SHELBY	רא רד רא רד	SOUTH CAROLINA CALHOUN FALLS	5555	CHESTER	LA LT	MINTURN	222

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

rn		×ı														
dyed yarn	Com- posite	Index		113 113 108 108		115 112 107		107		107		112 114 113 104		111		109 105 106 104
- 22s d	Blue- ness	위		27.7 27.8 27.1 27.1		28.1 27.8 27.0		26.8		26.8		27.5 27.7 27.9 26.5		27.7		27.3 26.3 26.7 26.7
Color	Reflct- ance	Rd		26.0 26.2 27.2 27.2		25.8 26.5 27.7		27.1		27.2		26.2 25.4 26.1 27.9		25.7		27.2 27.2 27.6 28.5
hd. yarn	Com- posite	Index		104 103 104 102		104 107 103		99		66 86		104 105 105 105		106		105 103 105 103
22s blchd	Yellowness	₽		2.9 2.8 2.8 2.7		3.0		3.5		3.6		3.0		3.2		3.0
Color-22s	Reflet-	쬐		84.5 83.8 84.1 83.2		84.6 84.9 83.8		82.3 82.0		83.5 83.3		84.7 84.6 85.3 84.9		85.5		84.8 84.0 84.3 84.1
ay yarn		Index		94 87 85		86 89 87		90		85 75		9 9 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		79 80		87 86 83 85
22s gr	Yellow- ness	위		10.2 10.4 9.9 8.8		10.5 9.8 9.4		9.6		9.7		10.9 10.6 10.7 9.9		10.6		10.4 10.4 9.8 9.4
Color -		묎		70.3 66.7 66.0 68.9		66.0 68.8 67.8		63.5		66.1		68.7 69.2 64.7 66.1		61.9		66.8 65.0 65.1 66.5
Gnin.	ning Poten- tial	No.		66 62 66 62		61 63 59		63		55		62 67 61 61		60 52		72 70 73 68
imprfctus.	50s or 12 tex	No.	*	19 15 16 19	ENT*	19 21 19	ENT	12 13	F.	11 16	<u> </u>	14 18 14 12	F.	28 17	ENT	29 119 25 21
Yarn im		No.) PERCENT*	21 20 21 25	PERC	21 24 21	O PERCE	19	O PERCENT	16) PERCENT	15 22 24 14	PERCE	32	O PERCE	30 22 30 26
annearance	50s or 12 tex	Index	100	06 90 90 90	100	80 80 90	100	90	100	906	100	90 100 100 90	100	70 80	100	80 80 80 80 area
varn an		Index		110 110 110 120		100		110		110		120 120 110 110		100		100 100 100 100 in the a
notion	50s or 12 tex	Pet.		5.2		5.23		5.0		4.3		0000 4044		4.9		
Varn elongatio	22s or 27 tex	Pct.	1032	7.0 6.8 6.7 6.8	511	6.3		6.2	-	5.7		6.9 6.8 6.7 6.6		5.8	_	115 42 7.2 5.6 115 43 6.8 5.6 107 41 6.5 5.2 102 37 6.4 5.0 for tests, less than 100 percent
d+march	ы×	<u>Ibs.</u>	MCNAIR 10	41 40 39 36	MCNAIR 5	37 35	TH-149	36 34	COKER 20	26 26	COKER 201	38	COKER 201	30	COKER 417	42 43 41 37 3, less t
Variation variable	22s or 27 tex	Ibs.	Œ.	115 112 110 104	ž	107 107 100	±	102 97	ដ	81 81	5	108 108 102 97	ວ	90	5	115 115 107 102 for tests
0 0 5		32d In.		332		35 35		35		34		3333		35		51 36 52 36 52 36 52 35 selected 1
4 4	samplication St	-	LINA	50 51 51 51	₉	41 41 51		51 P 52		P 52 P 52	LINA	51 51 8 52 51		p 52 p 52		51 P 52 P 52 P 52 It sel
1000	Chronological sampling, and Classification Grade Stable	Name Code	SDUTH EAST NORTH CAROLINA LAURINBURG	ĒĒĒĒ	LAURINBURG	SLM	PINEVILLE	LM LT SP	SHELBY	LM LT SP LM LT SP	SOUTH CAROLINA CALHOUN FALLS	LM LT SP	CHESTER	LM LT SP	MINTURN	LM LT SP LM LT SP LM LT SP * 100 percent

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area,	on Area,	Digital Fibrogra	lbrograph		Fiber s	strength	- uo	Shirley Analyzer	halyzer	Color	of raw	stock	Diokon
Chronological Sampling, and Classification	arion	2.5% span	50/2.5	Micro- naire	Zero	1/8"	gation 1/8"	Visible	Total	Gray-	Yellow-	Composite	& Card
Grade	Staple	0			0								
Name Code	32d in.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
SOUTH CENTRAL ARKANSAS													
CLARENDON		DELTAPINE 16	16			97 PERCENT	 						
SLM 41 1/LM 51 1/LM 51	36 36 35	1.16 1.12 1.06	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.7	78 80 82	23 23 22	7.2 6.5 6.8	1.6 3.0 2.2	2.2 4.0 3.0	222	223	100 96 97	5.9
DUMAS	S	STONEVILLE	213		10	100 PERCENT	1						
SLM 41 SLM 41 SLM 41	36 35 34	1.12 1.09 1.06	9 9 4 9 4 4 7	4.9 4.6 3.1	8 8 8 8 8 8	22 22 24	6.6 6.0 7.1	1.9	2.5 1.9 3.0	777	622	66 96 66	5.2 4.1 5.8
ELAINE	S	STONEVILLE	213		01	100 PERCENT	-						
SLM 41 SLM 41 1/A 51	9 9 4 8	1.09 1.08 1.08	4 4 4 5 4 5	4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	84 84 87	22 23 23	6.4	3.2	3.8 4.1 5.5	222	600	96 98 97	6.4
EUDORA	ü	DELTAPINE 16	16		o,	95 PERCENT	_						
SLN 41 SLN 41 SLN 41	36 35 35	1.15 1.13 1.12	4 6 4 6 4 6	4.0	85 79 78	25 24 23	7.5	1.9	2.6	2 5 1	822	96 96 100	4.7 5.1 5.0
нивнеѕ	S	STONEVILLE	213		01	100 PERCENT	-						
SLM 41 SLM 41 SLM 41	36 35 34	1.16 1.11 1.07	4 4 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	444 8 w.w.	85 79 80	23 22 21	5.9 6.6 6.7	1.5	2.5	m 2 m	m m m	95 99 95	4.8 5.2 5.1
KEISER	٥	DELTAPINE	16		10	100 PERCENT	_						
SLM 41 SLM 41 SLM 41	36 35	1.19 1.13 1.12	4 4 4 7 2	4. 9.4 1.0	83 81 84	23 24	7.3 7.2 7.6	2.1 1.8 1.4	2.9	2 1 2	222	100 1000	6.4 6.8 5.2
LEACHVILLE	a.	BRYCOT #4			10	100 PERCENT	_						
SLM 41 M 31 SLM 41	36 35	1.17 1.13 1.09	4 4 4 4 4 4	444	89 90 84	23 22 21	6.0 5.3	2.0	2.9 2.4 2.6	2 1 2	m m N	96 102 100	5.2
1/reduced from 41 because of	because of gr	grass											

Table 6a, -- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

yarn	Com- posite	Index		114 108 113		110 110 109		1113 1116 109		110		108 108 108		115 113 114		14 08 07
22s dyed	Blue- Conness po	위		8.0 1 7.0 1 7.9 1		7.4 11		7.9 11 8.3 11 6.9 10		5 5		6.8 10 7.0 10 7.1 10		7.9 11.7.7 11.8.7		11 100
١,		R.		3 2 2 2 2 2 2		1 2		3 2 2		.1 27. 7 27. 6 27.		1 2 0		5 0 2 2 2 2 2		3 28. 2 27. 2 26.
yarn Color	Reflct-			25. 27. 26.		26. 26. 26.		26. 25. 26.		26. 26. 26.		26. 27. 27.		25. 26. 25.		26. 27. 27.
blchd. ya	7- Com- posite	Index		106 104 101		107 102 105		104 106 104		106 106 106		102 106 103		105 106 107		103 105 103
	-Yellow- ness	₽I		2.6		2.7 3.1 3.0		3.0 2.9 2.8		2.8 2.6 2.6		3.0		2.5 2.5 2.7		2.8 2.7 3.1
Color-22s	Reflct- ance	낊		84.5 84.0 83.2		85.1 83.7 84.9		84.7 85.0 84.3		85.0 84.6 84.6		83.4 85.2 84.2		84.2 84.5 85.2		83.8 84.6 84.4
y yarn	Com- posite	Index		96 95 95		96 96 97		97 98 98		92 93 95		92 94 91		96 96		92 98 94
22s gray	Yellow-	₽		10.1 10.5 9.8		10.5 10.3 11.0		10.7 10.4 10.3		10.4 10.0 9.3		10.6 10.6 9.9		9.7 9.7 10.1		10.5
Color -	Reflct- ance	짬		71.3 70.1 71.4		70.5 70.9 70.3		71.1 72.1 72.1		68.8 70.3 72.3		68.7 69.6 69.2		70.9 72.3 71.2		68.8 72.1 70.5
Spin-	ning Poten- tial	No.		72 67 64		65 64 70		59 62 63		71 67 74		71 64 59		79 70 74		71 60 58
imprfctns.	50s or 12 tex	No.	E	15 15 12	F.	12 10 27	Ä	13 14 17	LN.	13 13	L N	15 16 16	N T	111	F	15 13 11
Yarn im	22s or 27 tex	No.	. PERCENT	18 22 24	PERCENT	14 16 37	PERCENT	15 20 26	5 PERCENT	22 19 20	PERCENT	20 22 24	PERCENT	23 15 16	PERCENT	21 17 21
appearance	50s or 12 tex	Index	16	100	100	100	100	100 90 100	66	90 100 100	100	100 90 90	100	90 100 100	100	100 90 90
Yarn app	22s or 27 tex	Index		130 120 120		120 130 120		120 120 120		120 130 120		120 120 120		120 120 120		120 120 120
_	50s or 12 tex	Pct.		5.1		5.0		444		5.0		4 4 4 9 6 6		5.5		3.9
Yarn elongation	22s or 27 tex	Pct.	16	6.3	: 213	6.2	213	6.0	16	6.6	E 213	6.1 6.3 6.2	91	6.8 7.1 7.1		6.0 6.1 5.9
	50s or 2	Lbs.	DELTAPINE 16	41 38 38	STONEVILLE 213	338	STONEVILLE 213	339	DELTAPINE 16	41 (STONEVILLE 213	41 38 34	DELTAPINE 16	44 47 47 47 47 47 47 47 47 47 47 47 47 4	BRYCOT #4	35
Yarn strength	22s or 5	Lbs.	DEL	114 107 108	STO	108 110 115	STO	1111 1110 1112	DEL	115 112 114	STO	1112 105 104	DEL	120 115 119	BRY	114 104 105
		32d In.		36 35		9 20 4		333		335		336		36		335
tion Ar	sampli cation Sta	1	یا	41 51 51		41		41		41 41 41		141		4 4 1 1 4	110	1481
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL ARKANSAS CLARENDON	SLM 1/LM	DUMAS	SLM	ELAINE	SLM SLM 1/LM	EUDORA	SLM SLM SLM	HUGHES	SLA	KEI SER	SLM SLM SLM	LEACHVILLE	SLM 41 36 114 M 31 35 104 SLM 41 35 105

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

	0		Index Pct.			100 5.9 97 5.8 98 5.7		99 5.4 98 6.6 98 5.9		90 7.2 96 5.3 100 5.5		100 5.9 99 5.9 98 7.4		93 7.7 99 6.0 96 5.7		98 5.6 100 5.8 97 7.7		100 4.8
r of raw stock	Yellow-		No.			ммм		m 0 m		mmN		822		MMM		mm ~		m
Color	Gray-	ness	No.			777		7 7 7		822		7 7 7		2 2 3		222		2
Analyzer	Total	waste	Pct.			3.4 2.5 3.0		2.9 4.2 3.2		5.2 2.3 3.0		2.8 3.2 4.6		4.8 3.4.8 5.4.8		2.8 4.8 8.8		2.5
Shirley	Visible	waste	Pct.			2.4 1.2 2.0		2.2		4.2 1.6 1.8		1.8 2.2 3.1		3.6 2.4 2.6		1.9		1.7
	gation	1/8"	Pet.		_	7.77.0	 -	5.7	_	6.1 5.8 6.3	-	7.4 6.2 7.4	-	6.4 6.3	+	7.4 7.1 8.4	 	1.9
strength	1/8"	Gage	G/tex		100 PERCENT	23 22 22	100 PERCENT	22 22 20	95 PERCENT	22 21 21	100 PERCENT	21 21 21	100 PERCENT	22 22 23	100 PERCENT	24 22 23	100 PERCENT	23
Fiber	Zero	Gage	Mpsi		a	82 81 81	-	87 88 82		82 81 81	-	80 79 81	1	83 83 84	1	83 76 81	-	83
	Micro-	Pitali	Rdg.			4.2		4.0 4.6 4.2		3.9 4.0 4.1		4.4		4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6.4 6.4 6.4 6.4		9.4
Fibrograph	50/2.5		Pct.		213	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 A	44 43 43		94 94 4 7	213	4 4 4 4 4 4 4 6 7	213	44 46 46	16	4 4 4 5 2 5 4 5 5 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6	213	45
Digital F	2.5% span	length	In.		STONEVILLE	1.16 1.10 1.09	STONEVILLE	1.13	REX SL-66	1.14	STONEVILLE	1.07	STONEVILLE	1.16	DELTAPINE	1.15	STONEVILLE	1.07
Area,	ling, on	Staple	32d in.		S	36 35 35	S	36 34 34	æ	36 34 34	S	34 44	s	36 35 35	0	36 34	S	35
State, Production Area,	Chronological sampling, and Classification	Grade	Code	RAL	LE	41 41 41		41 50 41		61 41 41		41 41 51		50 41 41		41 41 51	V IDENCE	31
State,	Chronol and C	Gr	Name	SQUIH CENTRAL	AKKANSAS LEACHVILLE	SLM	OSCEOLA	SLM LM+ SLM	PARKIN	SGO SLM SLM	PROCTOR	SLM	WILSON	CM+ SCM SCM	HANNE	SLM	LOUI SIANA LAKE PROVIDENCE	Σ

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

1 -	ŧ	ı															
dyed yarn	Com- posite	Index			122 114 110		109 109 109		111 109 105		109 112 108		117		109 113 106		111 1110 105
22s	Blue- ness	위			29.2 27.7 27.4		27.0 27.3 27.3		27.0 27.1 26.7		27.2 27.6 26.9		28.6 27.3 27.3		27.2 27.9 26.4		27.5 27.5 26.5
Color -	Reflct- ance	Rd Rd			24.3 25.4 26.6		26.5 27.0 26.9		25.6 26.5 27.8		26.7 26.1 26.8		25.7 25.7 26.5		26.7 26.1 27.0		26.7 26.8 27.5
Color-22s blchd. yarn Color	Com- posite	Index			104 104 107		104 107 106		101 104 102		108 105 100		105 107 101		105 106 101		105 106 104
22s blc	Yellow- ness	위			2.9 3.0 2.6		2.7 2.9 2.6		3.0		2.9 3.1 3.3		2.9 2.9 3.4		2.9 2.7 3.4		2.8
Color-8	Reflct- ance	묎			84.4 84.7 85.0		83.9 85.6 84.5		83.3 84.2 83.5		86.1 85.1 83.1		84.8 85.4 83.9		84.6 85.0 83.7		84.5 84.4 84.3
gray yarn	Com- posite	Index			99		97 98 97		86 94 95		98 97 92		93 96 93		94 98 93		93 96 97
22s	rellow-	₽			10.8 10.7 10.7		10.7 10.0 10.4		10.2		10.8 10.8 9.8		10.9 10.6 10.2		10.7 10.5 10.2		10.1
Color -	Reflct-	Rd Id			71.9 69.8 69.0		70.8 72.7 71.4		66.1 70.5 72.0		71.471.169.9		68.7 70.5 69.6		69.6 72.2 69.7		70.2 71.3 72.3
Spin-	ning Poten- tial	No.			70 62 66		66 59 51		70 74 66		59 57 54		69 60 61		68 60 65		57 59 60
prfctns.	50s or 12 tex	S		-	22 14 14	17	21 15 27	-	11 11 9	L 2	13 15 34	F.	22 16 13	-	26 15 26	Ļ	18 19 23
Yarn imprfctns	22s or 27 tex	No.		PERCENT	28 18 21	PERCENT	30 19 31	PERCENT	27 16 15	PERCENT	28 27 48	PERCENT	32 22 21	PERCENT	37 21 37	PERCENT	26 30 33
earance	50s or 12 tex	Index		100	90 100 90	100	06 06 06	95	100	100	90 90 70	100	100 90 90	100	06 06	100	100 90 90
Yarn appearance	22s or 27 tex	Index			110 123 120		110 120 110		120 120 130		110 120 100		120 120 120		120 120 120		120 120 110
gation	50s or 12 tex	Pet.			5.2 4.8 4.9		4.4 4.0 0.0		4.8 4.6 4.1		4.4		4.4		4.4		4 4 4
Yarn elongation	22s or 27 tex	Pct.		E 213	6.6	E 7A	6.1 5.6 5.7		6.0	E 213	6.4	E 213	6.9	16	6.1 6.5 6.7	E 213	6.3
_	50s or 2	Lbs.		STONEVILLE 213	4.2 3.6 3.8	STONEVILLE 7A	39 36 28	REX SL-66	41 38	STONEVILLE 213	36 36 34	STONEVILLE 213	40 36 39	DELTAPINE 16	40 37 39	STONEVILLE	35 37 36
Yarn strength	ex ex	Ibs.		STO	117 104 109	STO	110 106 92	REX	110 105 104	STC	104 107 100	STC	1113 106 111	DEL	1112 107 109	STO	103 108 106
_		32d In.			35 35		346		35 34		\$ \$ \$ \$ \$ \$ \$ \$		35 35		3 6 3 5 3 4		35
ion Ar	sampli cation Sta	1	_		444		41 50 41		61 41 41		41 41 51		50 41 41		41 41 51	DENCE	31 41
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL	ARKANSAS LEACHVILLE	SLM SLM SLM	OSCEOLA	SLM LM+ SLM	PARKIN	SCO SLM SLM	PROCTOR	SLM SLM LM	MILSON	LM+ SLM SLM	MANNE	SLM SLM SLM	LOUI SIANA LAKE PROVIDENCE	SLM

Table 6 .-- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971-- Continued

Diolog	Ficker & Card waste	Pct.		5.3 4.9		7 7 5 6 6		6.65		5.4		5.9		5.2 6.2		4 m 4
	Composite color	Index		98 99 103		95 95 99		96 88 90		98 100 100		93 89 98		96 86 96		94
of raw stock	Yellow- ness	No.		8 2 2		e e 2		ታ ጠጠ		8 8 8		m m N		. 22		4 m n
Color	Gray- ness	No.		2 5 1		m m N		444		222		m 4 0		222		222
alyzer	Total waste	Pct.		2.6 2.3 2.1		3.2 3.1 2.8		3.9		2.0		3.5		2.3 2.6 3.7		2.3
Shirley Analyzer	Visible waste	Pct.		1.3		1.8 1.8		1.8 2.9 2.3		1.0		3.9		1.4		1.5
F	<u> </u>	Pet.		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		5.9 7.1 7.5		7.5 6.4 6.7		7.6 7.6 8.2		5.9 6.3 7.1		6.8 7.1 8.0		6.0
strength	1/8" Gage	G/tex	O PERCENT		70 PERCENT	21 21 21	75 PERCENT	18 20 19	O PERCENT	23 23 23	O PERCENT	23 22 22	00 PERCENT	23 22 23	85 PERCENT	22 21 21
Fiber st	Zero Gage	Mpsi		80 81 81	7	80 81 79	7	73 76	100	77 77 87	100	85 81 81	10	82 79 79	∞	78 78
	Micro- naire	Rdg.		4.4 4.4 4.1		4°.4 3°.5 3°.9		444 040		4°.6 2°.8 8		5.0 4.8 1.1		4 4 6 4 6 8		6.0
ibrograph	50/2.5 unif.	Pet.	91	4 4 4 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	45A	4 4 4 20 00 20 00	213	4 4 4 4 0 0	16	44 41 41	213	7 4 4 7 4 4 7 6 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	16	9 4 4 0 7 4	213	4 4 4 0 0 0
Digital Fibrogra	2.5% span length	il.	DEL TAPINE 16	1.13 1.10 1.09	DELTAPINE	1.06	STONEVILLE	1.03	DELTAPINE	1.09	STONEVILLE	1.11	DELTAPINE	1.13 1.14 1.13	STONEVILLE	1.09
Area,	oling, ion	32d in.		35 34 34	0	# # # # # #	S	3 3 4	0	34 34 34	S	35 4	٥	35 35	s	3.4
State, Production Area,	Chronological sampling, and Classification	Grade	RAL	41 41 31	снеѕ	4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	15	SP 42 51 51	JRT	41 41 41	ISLAND	41 41 41	30 F	41 41 51	I do	4 4
State,	Chronol and C	Name	SDUTH CENTRAL LOUI SIANA MONROF	SLM SLM	NATCHITOCHES	SLM SLM SLM	OPELOUSAS	SLM LT LM LM	SHREVEPORT	SLM SLM SLM	SICILY	SLM SLM SLM	WATERPROOF	SLM	MISSISSIPPI BRUCE	SLA

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

l a	!	1														
dyed yarn	Com- posite	Index		111 109 111		107 116 110		108 109 106		111 110 103		109 112 106		107		111 117 108
22s dy	Blue- ness	위		27.4 27.3 27.5		26.9 28.4 27.4		27.1 27.4 26.8		27.2 27.2 26.3		27.1 27.5 26.7		26.9 27.5 27.6		27.9 28.5 27.2
Color -	Reflct- ance	찕		26.4 27.0 26.6		27.1 25.9 26.7		27.2 27.5 27.5		26.1 26.2 27.9		26.8 25.9 27.4		27.5 26.3 26.8		27.3 25.6 27.6
. yarn	Com- posite	Index		106 104 107		102 104 101		103 107 99		105 103 107		104 98 100		106 107 103		103 106 103
s blch	rellow-	위		2.8 2.9 2.3		3.2 2.9 2.9		3.0 2.8 3.0		2.9 3.2 3.0		3.0		2.5		2.8 2.5 3.0
Color-22s blchd	Reflct-Yellow- ance ness	쬐		84.9 84.5 84.7		83.8 84.3 82.9		84.2 85.6 82.4		84.6 84.6 85.8		84.3 83.2 83.0		84.4 84.9 83.7		83.6 84.7 84.2
yarn	Com- posite	Index		94 97 98		92		85 88 89		96 98 92		94 94 97		97 93 90		92 95 95
22s gray	Yellow-	위		10.3 10.0 10.0		10.9 10.2 10.1		10.6 10.3 10.0		10.6 10.2 9.7		10.7 10.5 10.0		10.1 10.3 10.1		10.8 10.7 9.6
Color -	Reflct-	집		70.1		68.2 70.2 70.7		65.2 67.4 68.1		70.8 72.6 70.3		69.3 69.8 71.9		71.8 69.5 68.7		68.3 69.9 71.6
Spin-		No.		66 59 60		60 61 59		47 49 52		66 67 64		56 58 55		63 72 69		65 57 59
imprfctns.	50s or 12 tex	No.	+	26 23 18	L N	16 14 24	F	17 16 14	L N	17 20 59	N L	111 19 12	μ	15 16 18	N	12 12 8
Yarn imp	22s or 27 tex	No.) PERCENT	35 24 25	O PERCENT	21 23 31	S PERCENT	18 22 24	D PERCENT	22 25 70	D PERCENT	17 28 19	D PERCENT	21 25 26	5 PERCENT	13 12 12
appearance	50s or 12 tex	Index	100	80 80 90	2	90 100 90	7.	90 100 100	100	06	100	90 100 100	100	06	80	06
Yarn app	22s or 27 tex	Index		110 110 120		120 120 120		120 120 120		120 110 70		120 130 120		120 130 120		120 110 110
g	ЯX	Pct.		5.0 4.6 4.8		4.4.	-	3.5		5.0		4.1		4.7 4.4		5.0
Yarn elongatio	22s or 27 tex	Pct.	16	6.7 6.6 6.7	45A	6.2 6.1 6.7	E 213	5.6	16	6.6	E 213	5.9	16	6.5	.E 213	6.6
	- V	Lbs.	DELTAPINE	38 38	DELTAPINE 45A	36 37 37	STONEVILLE 213	26 26 27	DELTAPINE 16	38 39 38	STONEVILLE 213	34 36 36	DELTAPINE 16	39 39	STONEVILLE	35 31 32
Yarn strength	-	Lbs. I	DEL	106 103 106	DEL	105 105 103	STO	85 86 87	DEL	108 108 109	STC	103 106 104	DEL	110 110 108	STO	98 92 93
—	aa			35 1 34 1 34 1		34		344		35 1 34 1 34 1		35 1 35 1		35 1 35 1		34
n Are	mpling, tion Staple	32d In		41 3	S	444		42 51 51		441	QN	41 41		41 51		41
luctio	sifica	Code	T R A L		энэо.		SAS	S	ORT		ISEA		300F		IPPI	
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name O	SOUTH CENTRAL LOUI SIANA MONROE	SLA	NATCHITOCHES	SLM SLM SLM	OPELOUSAS	SLM LT	SHREVEPOR	SLM SLM SLM	SICILY ISLAND	SLM	WATERPROOF	SLM SLM LM	MI SSISSIPPI BRUCE	SLM SLM SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area,	Digital Fibrogr	brograph		Fiber strength	trength	Elon-	Shirley Analyzer	Analyzer	Colc	Color of raw stock	ock	Dicker
	2.5% span	50/2.5 unif.	Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible	Total	Gray-	Yellow-	Composite	& Card
Staple				þ	5							
32d in.	In.	Pct.	Rdg	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
0,	STONEVILLE 213	213		100	O PERCENT	_						
35 35 35	1.13 1.08 1.04	44 0 40	4.9 2.8	81 84 86	23 22	6.1 5.9 6.5	2.5 3.3	3.6 3.1 4.3	222	mmN	98 100 100	6.1 6.3 8.0
U	DELTAPINE 1	16		100	O PERCENT	_						
35 35	1.13	6 4 4 4 4 4	4.3	79 83 78	24 23 22	6.8 7.5 7.3	1.6 2.1 2.9	2.4	325	2 2 1	94 94 94	5.2 6.6 6.7
σ,	STONEVILLE	213		80	5 PERCENT	_						
35 35	1.07	4 4 4 4 4 7	4.4 4.6 4.1	81 60 80	21 22 22	6.5	1.8 2.0 1.9	2.9 2.7 2.8		mmN	101 101 102	2.0 4.0 6.0
U	DELTAPINE	16		100	O PERCENT	_						
35	1.09 1.09 1.09	4 4 4 2 4 4 4	4.8 4.3 4.1	79 80 81	22 23 23	6.9 6.8 7.2	1.2	2.4	2 2 2	m N m	99 102 100	6.4 6.1 6.2
σ,	STONEVILLE	213		100	O PERCENT	_						
35	1.12	4 4 4 4 0 4	5.0	80 80 78	23 22 22	6.1 6.2 5.8	2.3 2.1 1.6	3.4 2.8 5.5	3	m m N	98 95 100	5.9 6.9 6.5
Ο,	STONEVILLE	213		100	O PERCENT	_						
35 34	1.10	46 45 41	5.1 5.2 4.0	81 81 81	22 21 21	6.1 6.1 7.1	7.3 2.3 1.9	4.5 2.9 3.0	2 2 1	m m N	98 96 101	7.7
_	DELTAPINE	16		100	O PERCENT	-						
36	1.15	42	4.4	81 80	23	7.1	1.6	2.4	2	e 2	99	4.2 5.5

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

l E	l u	×I														
dyed yarn	Com- posite	Index		108 1113 109		111 106 108		113 116 107		116 111 112		110 111 106		111 115 107		109
- 22s d	Blue- ness	위		27.1 28.0 27.4		27.5 26.7 27.4		27.8 28.6 27.1		28.2 27.5 27.6		27.4 27.5 27.0		27.6 28.2 26.8		26.8
Color	Reflct. ance			27.4 26.6 27.2		26.7 27.3 27.6		26.3 26.1 27.6		25.5 26.5 26.4		26.9 26.6 27.9		26.9 25.7 27.3		26.0
d. yarn	Com- posite	Index		103 106 103		106 100 105		109 106 104		109 103 105		102 106 98		107 105 103		105
22s blchd.	Yellow- ness	₽I		2.6 2.9 3.3		2.7 3.6 2.7		2.6		2.6 3.1 2.7		2.7 2.6 3.6		2.7 2.7 2.7		2.2
Color-22s	Reflct- ance	묎		83.5 85.0 84.6		84.9 83.9 84.6		85.6 84.6 84.3		85.8 84.3 84.2		83.3 84.6 83.1		85.3 84.2 83.4		84.6 85.1
y yarn	Com- posite	Index		96		94 96 88		96 96		95 98 93		94 92 94		96 93 95		16
22s gray	Yellow- ness	위		10.4 10.5 10.3		10.1 9.5 9.1		10.7 10.4 9.7		10.3 9.8 10.6		10.9 10.8 9.6		10.5 11.0 10.0		10.0
Color -	Reflct- ance	Rd		70.9 72.7 70.7		70.5 72.3 69.2		70.5 70.7 72.0		70.8 73.5 69.2		69.0 68.5 71.2		70.9 68.5 71.3		72.3
Spin-	ning Poten- tial	No.		67 61 60		58 60 59		59 80 62		64 62 64		59 58 56		59 55 54		70 78
imprfctns.	50s or 12 tex	No.	۳	14 12 18	L.	12 12 22	<u> </u>	112 114 20	L	12 11 13	L X	14 18 13	F	20 17 16	L Z	12 13
Yarn im	22s or 27 tex	No.	PERCENT	19 18 23	PERCENT	13 20 23	PERCENT	15 16 21	PERCENT	17 14 18	PERCENT	14 24 15	PERCENT	27 21 21	PERCENT	12 19
appearance	50s or 12 tex	Index	100	80 70 70	100	90 70 70	85	900	100	8 80 80 80	100	90 80	100	0 0 0 0 0 8	100	80
Yarn app	22s or 27 tex	Index		110 120 90		110 100 100		120 120 100		120 100 110		100 100 110		100 100 100		100
uo	50s or 12 tex	Pct.	,	5.3 5.1		5.3 5.0 5.0	•	4.0 5.3 8.0 7.0		5.1 5.5 5.5		4.8 5.0		4.7 4.8 5.1		5.7
Yarn elongati	22s or 27 tex	Pct.	E 213	6.3	16	6.9 6.8 6.6	E 213	6.3	16	6.5 6.9 7.1	E 213	6.3	E 213	6.0	16	7.0
	50s or 2	Lbs.	STONEVILLE 213	37 35 33	DELTAPINE 16	38 33	STONEVILLE 21	31 35 36	DELTAPINE 16	35 35 37	STONEVILLE 213	34 32	STONEVILLE	34 31 32	DELTAPINE 16	38
Yarn strength	22s or 27 tex	Ibs.	ST	102 102 97	DE	107 103 98	ST	94 102 101	DE	100 108 104	ST	98 96 93	ST	96 92 95	90	110
<u></u>		In.		355		35 35		355		35 35		355		35		36
ion A	sampli cation	32d	,	51 41 51		41 41 51		411		41 41 42		51 51 41		51 51 41		41
State, Production Area,	Chronological sampling, and Classification Grade Staple	Code	SOUTH CENTRAL MISSISSIPPI CLARKSDALE		DODDSVILLE	***	EDWARDS	.	EDWARDS	SLM SLM SLM LT SP	GLENDORA	III	GREENWOOD	2	GUNNISON	E F
State,	Chrono	Name	SDUTH MISSI CLAR	SLA	000	SLA	EDW	SLM	E DW	SLA	GLE	SLA	GRE	L'A S'A	GUNI	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

a l
unif. naire
Pct. Rdg.
444 880
5 5 5 0 5 0
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 4.6 6 4.4 3 3.7
44 4.3 46 5.0 43 4.1
4.6 4.1 4.0
43 4.5 41 3.1 39 3.4

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area,	ction Area,	Digital Fibrogr	'ibrograph		Fiber s	strength	E-	Shirley Analyzer	Analyzer	Color	r of raw stock	ck	Diokon
unronological sampling, and Classification	rication	2.5% span length	1 50/2.5 unif.	Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card
Grade	Staple				b								
Name Code	le 32d in.	n. In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
SOUTH CENTRAL MISSISSIPPI TRALAKE		DELTAPINE 16	16		10	100 PERCENT							
SLM 41 SLM 41 SLM 41	58 1 36 1 35	1.14	5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	4.4 4.1 4.7	80 78 78	23 24 23	7.5 6.8 7.1	1.2	1.8 2.4 2.1	7 7 7	777	102 100 97	5.4
TRIBBETT		STONEVILLE	47 E		10	100 PERCENT	L						
SLM 41 SLM 41 SLM 41	35 1 35 1	1.12 1.11 1.12	7 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4°.9	84 91 79	23 24	4.8 4.5 7.1	1.5 1.2 1.8	2.5	888	8 m R	66 66 66	6.2 6.0 5.3
WATER VALLEY		DELTAPINE	16		6	9 PERCENT	_						
SLM 41 SLM 41 SLM 41	35 1 35 1 34	1.06	44 43 43	4 4 4 5 6 6 2	79 78 79	21 21 21	5.9 7.8 7.0	1.5	2.2	1 5 5	8 8 8	99 100 102	2.00 4.02.00
MISSOURI BELL CITY		DELTAPINE	45A		10	100 PERCENT	_						
SLM 41 SLM 41 SLM 41	1 35 1 34	1.06	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	444	75 80 80	24 22 22	9.9	1.1	1.9	2 2 1	m m m	100 100 102	5.26
CARDWELL		DELTAPINE	16			75 PERCENT	L.						
SLM 41 SLM 41 SLM 41 SLM 41	1 35 1 36 1 35	1.14 1.11 1.13 1.10	44 43 43 43 43	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	81 81 81 79	21 21 23 22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.8 2.5 2.0	3.4 2.4 2.6	2 2 2 2	m m m m	103 100 100 100	0000 4000
SENATH		AUBURN M			10	100 PERCENT	l ea						
SLM 41 SLM 41 SLM 41	1 35 1 35	1.12 1.11 1.06	44 43 43	9.4 9.8	79 80 77	22 22 22	6.6 6.4 6.1	1.5	1.7 2.2 2.9	2 2 2	m m m	102 99 98	5.0
SIKESTON		STONEVILLE	E 213		σ,	90 PERCENT							
SLM 41 SLM 41 SLM 41	1 35 1 35 1 34	1.05	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 . 1	75 77 97	21 21 21	6.2 7.4 6.9	1.1	2.1 2.4 2.2	7 1 7	m m m	101 101 99	4 rc rc 8 rc rc

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area,	tion A	Area,	Yarn s	Yarn strength	Yarn elongat	ongation	Yarn ap	appearance	Yarn imprfctns.	rfctns.	Spin-	Color -	22s gray	yarn	Color-22s	2s blchd.	d. yarn	Color -	22s	dyed yarn
Chronological sampling, and Classification	samp.		22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	ning Poten- tial	Reflct- ance	Yellow-	Com- posite	Reflct-Yellow ance ness	Yellow- ness	Com- posite	Reflct- ance	Blue- ness	Com- posite
Name Code	7	32d In.	Ibs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.	No.	Rd	위	Index	〗	위	Index	Rd	<u>ا</u> م	Index
SOUTH CENTRAL MISSISSIPPI TRALAKE	٦.		_	DELTAPINE	NE 16			100) PERCENT	;										
SLM SLM SLM	41 41 41	3 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	113 108 108	41 39 39	7.2	5.8 5.4 5.7	110 100 120	06	11 12 11	9 114 10	71 67 70	73.0 71.4 70.6	9.6	97 94 92	84.3 84.9 83.4	2.7 2.4 2.9	105 107 102	25.7 26.2 26.7	28.1 27.5 27.6	115 112 111
TRIBBETT			,	STONEVILLE	LLE 7A			100	D PERCENT	-										
SLM SLM SLM	144	35	94 98 109	31 32 39	5.7	3.9	90 110 100	70 90 80	22 20 30	18 17 19	54 59 62	71.0 69.8 70.2	10.2	95 93 93	83.4 83.3 84.2	2.7 2.6 2.3	103 103 106	27.5 25.2 26.7	27.3 28.7 27.8	108 118 112
WATER VALLEY	LEY			DELTAPINE	NE 16			66	PERCENT	-										
SLM SLM SLM	111	35	95	31 36 33	6.5 7.0 6.9	5.0	110 120 110	90 100 80	12 13 14	9 113 10	659	69.5 72.5 72.2	10.8 10.4 9.8	96 96	85.0 86.5 85.1	2.8	106 111 106	26.0 26.0 27.1	27.6 28.4 27.5	112 116 110
MISSOURI BELL CITY			-	DELTAPINE	NE 45A			100) PERCENT	F										
SLM SLM SLM	444	35 35 34	101	34 35	6.9	5.2	110 120 100	90	19 19 20	19 20 17	58 60 59	69.0 70.0 70.9	10.9 10.5 10.2	94 94 95	85.2 85.2 84.7	2.9 3.2 3.1	106 105 104	25.8 26.5 26.6	28.1 27.4 27.3	115 111 110
CARDWELL			_	DELTAPINE	NE 16			15	5 PERCENT	-										
SLM SLM SLM SLM	1111	35 35 35	116 106 102 102	42 34 37 35	7.4 7.1 6.7 7.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	100 120 110 100	80 80 80 80 80	19 11 19 18	13 8 17 14	74 62 63 60	72.9 70.6 69.6 69.4	10.3 10.3 10.1 10.1	99 95 92 93	84.6 84.5 84.9 85.0	2.7 2.8 2.6 3.7	105 105 107 102	25.1 26.6 26.5 26.5	27.3 27.7 27.7 27.5	113 112 112 111
SENATH				AUBURN	×			100) PERCENT	F										
SLM SLM SLM	4 4 1 4 1 1 4	35 35	112 107 97	41 37 34	7.0	5.4	120 120 110	06	24 14 16	18 10 13	71 66 57	70.7 68.9 69.1	10.5 10.9 10.1	96 93 91	84.8 83.9 84.2	2.8 2.9 2.9	106 103 104	25.2 26.7 26.7	28.1 27.5 27.0	116 111 109
SIKESTON				STONEVI	STONEVILLE 213			06	D PERCENT	17										
SLM SLM SLM	4 1 4 4 1 4 1 4 1 4 1 4 1 4 1 1 4 1	35	99 106 100	34 37 34	6.8 7.5 7.3	5.5	110 110 100	90 90 80	13 17 18	111 18 16	61 63 59	70.7 69.7 70.2	10.5	96 94 94	85.3 85.9 85.6	2.8 3.2 3.1	107 107 106	26.4 25.5 25.9	28.0 27.8 27.6	113 114 113

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

Dicker	& Card		Pet.		5.8		6.2 5.9 6.4		4.7 5.8 5.6		6.3		7.4		ω κ. υ ο υ . 4		6.1 7.0 7.7
ck	Composite		Index		101 101 103		98 100 101		98 101 101		97 97 98		95 95 97		101 99 95		82 80 81
of raw stock	Yellow- ness		No.		r # 2		m m N		mvm		ммм		m m N		m 4 m		m r 4
Color	Gray- ness		No.				1 2 2		1 1 1		222		m m N		3 2 2		non
alyzer	Total waste	_	Pct.		3.4 3.1 2.7		3.5 2.8 2.7		2.6 3.3 1.3		2.8 2.0 2.6		4 4 4 6 8 8 1 1 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9		3.0 3.0		3.4 3.3 4.1
Shirley Analyzer	Visible waste		Pct.		2.4 2.1 1.9		2.5 1.9 2.1		1.6 2.1 0.8		2.0 1.4 1.8		м м ф м м м		1.7 1.8 1.9		2.1 1.8 2.8
- a0 [H	gation 1/8"		Pct.	_	7.0		6.4 6.5	_	7.6 7.8 7.3	_	5.6 6.4 6.2	_	5.7		6.3 4.3 5.3		6 5 3 3 5 5 3 3
strength	1/8" Gage		G/tex	98 PERCENT	23 21 22	95 PERCENT	19 20 21	95 PERCENT	21 21 21	85 PERCENT	20 20 21	90 PERCENT	20 20 22	87 PERCENT		90 PERCENT	21 22 20
Fiber s	Zero Gage		Mpsi	v	78 79 78		78 77 80		82 79 78		78 78 78		90 77		84 30 81		88 77
	Micro- naire		Rdg.		4.4		4 4 4 8 7 6 8 7 6		4.3		4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4 4 4		4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4 4 4 5 5 5 5
Fibrograph	50/2.5 unif.		Pet.	16	44 43 64 7	21	44 44 52	16	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.1	44 46 46	LEAF	4 4 4 4 6 2	213	944	7 A	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Digital Fi	2.5% span length	,	in.	DEL TAPINE 1	1.11	STONEVILLE	1.07	DELTAPINE	1.12 1.09 1.07	DIXIE KING	1.00	REX SMOOTH LEAF	1.07 1.07 1.05	TONEVIL	1.06 1.06 1.11	STONEVILLE	1.08 1.01 0.99
Trea,	ung, on	Staple	32d in.	ā	35 34 34	S	35 34 34	ā	35 35 34	Q	33 33 33	œ.	34	V	33 34 34	S	33 32 32
State, Production Area,	Chronological sampling, and Classification	de	Code	KAL	4 t 1 t 4 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t		41 41 51		41 41 SP 32		41 SP 42 SP 42	N	51 51 51	18	41 41 41		SP 52 SP 52 SP 52
State, P.	Chronolo and Cl	Grade	Name	SOUTH CENTRAL TENNESSEE BRADEN	SLM SLM SLM	CORDOVA	SLM SLM	GAD SDEN	SLM SLM M LT S	MCK ENZIE	SLM LT S SLM LT S SLM LT S	MILLINGTON	355 CEE	SOUTH WEST SOUTH TEXAS	SLM	вІЅНОР	LM LT S

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

,																	
dyed yarn	200	Com- posite	Index		111 115 106		115 106 112		117 118 112		118 113 115		110 115 110		1117		105
22s		Blue- ness	9		27.5 28.1 26.9		28.2 26.9 27.9		28.2 28.5 27.7		28.7 27.7 28.1		27.3 27.9 27.5		28.4 28.4 27.1		26.5 26.1 25.6
Color -		Reflct- ance	Rd		26.4 25.7 27.6		25.8 27.6 26.8		24.8 25.1 26.3		25.3 25.8 25.9		26.5 25.5 27.0		25.3 25.4 27.2		27.7 27.6 28.3
d. varn		Com- posite	Index		105 108 101		109 104 102		103 109 103		107 107 101		105 105 103		104 101 103		97 97 100
2s blehd.		Yellow- ness	위		2.7		2.7 3.2 3.0		2.9 2.5 3.0		2.7 3.1 3.2		2.9		3.1 3.1 3.0		9.00 9.00 4.00
Color-22s	10100	Reflct- ance	P _H		84.3 85.2 83.6		86.0 84.8 83.5		83.8 85.6 83.9		85.2 85.8 83.5		84.6 84.7 83.9		84.7 83.4 84.2		82.1 82.3 93.3
v varn	3 3 00.11	Com- posite	Index		96 96		97 95 93		94 97 95		95 90 89		92 93 94		97 98 93		74
20s grav		Yellow- ness	위		10.4 10.1 9.6		10.7		10.8 10.2 10.2		10.7 111.3 10.4		10.9 10.8 10.1		10.7 11.0 10.6		9.9 10.5 11.2
- nolon		Reflct- ance	Rd		71.0 71.0 72.2		70.9 71.9 69.5		69.3 71.6 70.7		70.1 66.8 67.5		68.1 68.9 70.7		70.9		59.0 60.7 61.2
	Spin-	ning Poten- tial	No.		62 63 61		58 2		59 66 59		53 6		61 6 62 6 59 7		59 63 61		57 54 43
importor	• 1	50s or 12 tex	No.	_	14 17 11	_	16 12 14	-	12 16 7	-	15 15 18	-	13 12 9	-	14 12 15	N L	15 17 19
	rarn nup	22s or 27 tex	No.	PERCENT	16 17 13	PERCENT	17 13 20	PERCENT	14 15 7	PERCENT	18 20 21	PFRCENT	20 16 13	PERCENT	18 18 20	PERCEN	22 21 24
		tex	Index	86	06	95	066	95 1	060	85 (06	9 06	100	87	060	06	000
	appearance	12															1
\vdash	Yaru	22s or 27 tex	Index		120 110 100		110 100 120		110 120 110		110 110 110		130 130 120		120 120 120		120 120 120
	ongation	50s or 12 tex	Pct.		5.00		4.8 5.1 4.7		5.80		4.8		4.7 5.0 4.8		4.4		3.4.
	Yarn elongatı	22s or 27 tex	Pct.	E 16	7.3	LE 213	6.3	E 16	7.5	KING II	6.0	REX SMOOTH LEAF	6.5	.LE 213	5.0 5.0	LF 7A	5.0
:	strength	50s or 12 tex	Lbs.	DELTAPINE	3.7 3.8 3.5	STONEVILLE	32 31 29	DELTAPINE	38 37 32	DIXIE KI	31 26 29	X SMOO	31 32 30	STOMEVILLE	34 35 36	STONEVILLE 7A	31 30 24
	Yarn st	22s or 27 tex	Lbs.	90	106 105 101	S	95 92 90	90	107 107 95	0	95 86 89	æ	94 94 92	S	102 100 100	S	98
	_		In.		35 34		35 34		35 35 34		3333		34		33 34 34		33 32 32
1	Production Area,	sampl	32d		411411		41 41 51		41 41 32		41 42 42		51 51 51		41 41 41		52 52 52
	oduct.	ical	Code	IT RAL				-	SP	ш	SP SP	STON		ST EXAS			T SP T SP
	State, Pro	Chronological sampling, and Classification Grade Staple	Name	SOUTH CENTRAL TENNESSEE BRADEN	SLM SLM SLM	CORDOVA	SLM SLM LM	GADSDEN	SLM SLM M LT	MCK ENZIE	SLM LT SLM LT SLM LT	MILLINGTON	EEE	SOUTH WEST SOUTH TEXA ALAMO	SLM	B I SHOP	LM LT

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

200	Flcker & Card waste		Pet.		4.1 5.5 6.1		4.9 5.5 5.1		5.0		5.6		5.8		4.6 5.0 5.2		5.3 5.5 6.2
ck	Composite		Index		100 88 82		38 97 96		97 99 86		98 99 85		06		. 96 93		96 98 94
Color of raw stock	Yellow-		No.		4 M 4		ታ ጠጠ		~ ~ ~		<i>.</i>		4 4		4 m m		m m m
Color	Gray-		No.		7 4 v		40m		224		224		7 4		m m 2		226
alyzer	Total		Pct.		2.1 2.5 4.3		2.3 2.6 1.9		3.0		3.0 3.2 9.9		2.8		2.5 2.2 2.9		2.1 3.6
Shirley Analyzer	Visible		Pct.		1.2 1.3 3.1		1.6		1.7		1.6 2.0 3.0		1.9		1.6		1.6 1.6 1.9
T]0n=	gation 1/8"		Pct.		6.4 9.0		6.3 5.1 6.5		5.1 6.0 7.4		5.0		8 • 9		5 5 8 8 9		7.2 7.6 7.7
strength	1/8" Gage	0	G/tex	91 PERCENT	22 22 22	85 PERCENT	23 22 22	93 PERCENT	23 23 23	82 PERCENT	22 21 21	97 PERCENT	21 22	70 PERCENT	23 24 22	100 PERCENT	21 23 21
Fiber s	Zero	0	Mpsi	0	84 89 82	۵	84 92 84	ď	96 89 80	w	95 90 86	Ū.	94	,-	8 6 89 89	01	78 82 78
	Micro- naire		Rdg		4 4 4 4 . 8 7 . 9		4.5		4°.4 4°.8		444		4.0		5.5 4.7		4.5
brograph	50/2.5		Pct.	213	444 0104	91	45 45 46	7 A	46		44 44 44	0	94	7 A	44	91	45 43 43
Digital Fibrograph	2.5% span	0	Ţņ.	STONEVILLE 213	1.04	DELTAPINE	1.10	STONEVILLE 7A	1.04	TPSA 110	1.06	LANKART 3840	0.97	STUNEVILLE 7A	1.12	DELTAPINE 16	1.12
Area,	on no.	Staple	32d in.	ν _α	33 32 32	ă	34 33	S	34 33 34	Ē	3334	٢	31 32	is	35 34 34	ō	34
State, Production Area,	Unronological Sampling, and Classification	Grade	Code	(AS HRISTI	SP 32 SP 42 SP 52	(1)	SP 42 41 41	Z	41 41 51	7	41 41 SP 52	02	31 SP 42	FEXAS	4 t t t 1	,	41 41 SP 42
State,	and (£.	Name	SOUTH WEST SOUTH TEXAS CORPUS CHRISTI	H LT SLM LT LM LT	DANEVANG	SLM LT SLM SLM	HARLINGEN	SLM	SAN JUAN	SLM SLM LM LT	WOODSBORO	SLM LT	CENTRAL TEXAS CROCKETT	SLM SLM SLM	PEARSALL	SLM SLM SLM LT

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

arn	te.	×I		10.000		0100		0.50		2 0 0				0.6.57		
dyed yarn	Com- posite	Index		115		112 109 109		109 113 106		109 112 102		113		110 105 102		112 110 111
22s	Blue- ness	위		27.7 27.2 25.3		27.6 27.0 27.5		27.2 28.1 26.7		27.0 27.8 26.0		28.1 27.1		27.3 26.9 26.3		27.8 27.4 27.7
Color -	Reflct- ance	Rd		25.0 26.7 27.9		26.0 26.3 27.3		26.8 26.5 27.5		26.4 26.4 28.1		26.7		26.6 28.4 28.4		26.8 26.6 26.8
d. yarn	Com- posite	Index		104 99 95		103 105 102		100 102 100		101 103 99		102		101 104 103		106 107 103
2s blch	rellow- ness	위		3.1 3.2 3.6		3.2 2.9 2.1		3.2 3.1 2.9		3.2 3.3		3.0		2.8 2.7 2.8		3.0
Color-22s blchd.	Reflct-Yellow- ance ness	湿		84.6 82.6 31.7		84.5 84.7 83.0		83.0 84.0 82.8		83.6 84.0 82.9		83.7		83.0 84.0 83.9		85.5 85.4 84.2
yarn	Com- F	Index		96 85 75		85 95 95		95 97 83		99		98		96 93 89		97
22s gray	Yellow- ness E	₽		12.0 11.0 10.0		10.8 11.2 10.7		10.3 10.5 9.6		10.7 10.5 11.0		11.9		11.2 11.0 10.4		10.5
Color -	Reflct-	Rd		68.2 64.3 59.4		64.9 69.2 69.8		70.7 71.4 65.0		70.0 72.9 67.2		69.5		69.4 68.3 67.9		71.5 71.3 66.9
_	ning Poten- tial	No.		62 57 54		66 66 56		57 59 61		61 62 64		46		60 63 56		64 71 63
imprfctns.	50s or 12 tex	No.	IN.	111	IN	15 12 15	L	13 11 12	IN	16 14 14	IN	13	IN	8 9 11	INT	14 28 24
Yarn imy	22s or 27 tex	No.	91 PERCENT	14 14 16	5 PERCENT	22 18 17	93 PERCENT	16 14 21	82 PERCENT	20 18 26	97 PERCENT	14 20	70 PERCENT	12 15 14	O PERCENT	19 30 28
appearance	50s or 12 tex	Index	6	100	60	90 100 100	6	100	æ	100 90 90	6	100	7	100	100	90 08 08
Yarn app	22s or 27 tex	Index		130 130 120		120 120 120		130 120 130		120 120 130		120		130 120 120		110
ion	50s or 12 tex	Pet.		3.7		4.0		3.7		3.95		3.5		3.7		5.6
Yarn elongat	22s or 27 tex	Pct.	.E 213	5.7 5.5 5.2	16	5.8 6.1 5.8	.E 7A	5.0		5.1 5.2 5.6	3840	5.0	.E 7A	5.5	16	7.0
	50s or 2	Lbs.	STONEVILLE 213	38 32 31	DELTAPINE 16	40 38 31	STONEVILLE	31 33 37	TPSA 110	34 31 37	LANKART	24	STONEVILLE	36 40 35	DELTAPINE 16	36 42 35
Yarn strength	or	Lbs.	ST	107 99 97	DE	112	ST	105 100 107	4	104 100 107	LA	94	ST	111 113 105	DE	103 118 101
		ul I		33 32		344		34		334		31 32		35 34		344
nn Are	umpling, ttion Staple	32d	STI	32 42 52		42 41 41		41 41 51		41 41 52		31	15	41 41 41		41 41 42
uctic	al sé ifics	Code	XAS CHRI	S P S	9	SP	N N		Z	SP	080	SP	TEX!		ٻ	T SP
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name C	SOUTH WEST SOUTH TEXAS CORPUS CHRISTI	SLM LT	DANEVANG	SLM LT SLM SLM	HARL INGEN	SLM SLM SLM	SAN JUAN	SLM SLM LM LT	WOODSBORD	SLM LT	CENTRAL TEXAS CROCKETT	SLA	PEARSALL	SLM SLM SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

10 10 10 10 10 10 10 10		Digital Fibrogr	rograph	Micro-	l	strength	Elon-	Shirley Analyzer	nalyzer	Color	of raw	stock	Picker
Pet. Ridg. Mgni G/tex Pet. Pet. Pet. Ridg. Indox I	2.5% leng	span	50/2.5 unif.	naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card waste
10 Percent													
16 4.7 91 23 5.9 2.8 3.9 3 99 93 94 94 95 94 95 94 95 94 95 94 95 95 94 95 94 95 94 95 95 94 95 95 94 95 95 95 95 95 95 95 95 95 95 95 95 95		In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
16 4.7 91 23 5.9 2.8 3.9 3 3 94 111 44 2.9 77 20 6.2 2.6 3.9 4 4 6 88 45 2.9 77 20 7.5 2.6 3.9 4 4 6 88 111 45 2.9 77 20 7.5 2.6 3.0 4 4 6 90 44 3.0 82 22 7.3 3.2 5.0 4 4 90 44 3.0 82 22 7.3 3.2 5.0 4 4 90 45 4.0 86 23 7.7 4.0 6.0 4 4 90 47 4.0 86 23 7.1 7 4.0 6.0 4 4 90 47 4.0 86 23 7.1 7 2.5 2.3 4.7 3 3 99 48 2.7 78 21 7.4 2.3 5.6 3 3 4 90 49 4 2 2.7 8 22 7.1 7 2.5 2.2 3.8 4 9 90 41 2.1 89 22 7.3 3.0 8.2 8.2 8.3 8.4 8 90 42 2.7 8 2.1 8 2.2 7.3 8.0 8.2 8 90 43 2.1 8 2.2 8.2 8.2 8.2 8.2 8.2 8.3 8 90 44 2.1 89 2.1 8.2 8.2 8.2 8.2 8.3 8 90 45 4.0 86 21 7.4 4.1 2.5 8.6 3 3 9 90 46 4.0 86 21 7.4 4.1 2.5 8.6 3 3 9 90 47 4.0 86 22 7.8 8.2 8.2 8.2 8.2 8.3 8 90 48 2.1 89 2 8.2 8.2 8.2 8.2 8.2 8.3 8 90 49 4.0 80 PERCENT 49 2.1 89 22 7.8 8.2 8.2 8.2 8.3 8 90 40 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8 90 40 8.2 8.2 8.2 8.2 8.3 8.3 8 90 40 8.2 8.2 8.3 8.3 8.3 8 90 40 8.2 8.3 8.3 8.3 8 90 40 8.3 8.3 8.3 8.3 8 90 40 8.3 8.3 8.3 8.3 8 90 40 8.3 8.3 8.3 8 90 40 8.3 8.3 8.3 8 90 40 8.3 8.3 8 90 40 8.3 8.3 8 90 40 8.5 8 90 40 8 8 90 40 8 8 90 40 8 8 90 40 8 8 90 40 8 8 90 40 8 8 90 40 8 8 90 40 8 90 40 8 90 40 8 90									٠				
11	ELT	APINE 1	9		10		_						
11	_	1.08	94	4.7	9.1	23	6*6	2.8	3.9	9	٣	46	6.1
43 3.3 80 21 6.2 3.1 4.7 3 99 93 99 99 99 99 99 99 99 99 99 99 9	A	PAYMASTER I	11				_						
## 100 PERCENT ## 3.0	000	0.97 0.95 0.97	4 4 4 5 4 7	3.3 2.9 2.8	80 77 80	21 20 20	6.2 7.5 7.6	3.1 2.6 3.6	4 m m	m 4 4	W 4 4	99 88 88	7.0 8.1 9.4
45 3.0 82 22 7.3 3.2 5.0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	A	PAYMASTER I	1.1		Φ.		_						
45 4.2 85 24 6.4 3.2 4.7 3 3 92 47 4.0 86 23 6.4 2.3 3.4 4 91 49 A 43 2.7 78 21 7.4 4.1 5.6 3 96 43 2.7 78 21 7.4 4.1 5.6 3 99 43 2.7 80 21 7.4 4.1 5.6 3 99 43 2.7 88 21 7.7 2.2 3.8 4 99 43 2.7 88 21 7.7 2.2 3.6 9.6 99 43 3.1 82 21 6.9 1.8 3.4 3 4 99 44 2.4 77 22 8.5 3.6 6.2 3 99 45 3.1 83 22 7.8 3.4 4.8 3 96 46 3.9 6.9 4.8 3.9 5.4 4.8 3 96 47 3 3.1 83 22 7.8 3.4 4.8 3 96 48 3.0 80 22 7.4 5.4 5.4 3 99	000	.96 .90 .97	7 4 4 7 4 4	3.0	82 79 80	22 21 22	7.3	3.7 3.4 4.0	5.0 6.0 0.0	m 4 4	444	95	8.7 7.8
45 4.2 85 24 6.4 3.2 4.7 3 3 92 47 4.0 86 23 6.4 2.3 3.4 4 99 48 4.0 86 23 6.4 2.3 3.4 4 99 49 A 100 PERCENT 111 43 2.7 80 21 7.4 4.1 5.6 3 3 3 99 45 2.6 78 82 21 7.7 2.2 4.4 2 99 47 4.3 2.7 89 6.5 8.2 2.2 4.4 2 99 48 2.1 80 PERCENT 49 2.7 89 6.9 1.8 3.4 3 99 49 6.2 99 40 6.2 99 40	LOCKETT				01		_						
43 2.7 78 21 7.4 4.1 5.6 3 3 96 42 2.7 80 21 7.7 2.2 4.4 2 99 43 2.6 78 22 8.2 2.2 3.8 4 5 90 III 43 3.1 82 21 6.9 1.8 3.4 3 4 94 41 2.4 77 22 8.5 3.6 6.2 3 4 99 44 3 3.1 83 23 7.2 3.6 6.2 3 4 99 45 3.0 PERCENT 48 3.1 83 22 7.8 3.9 5.4 2 99 46 99 47 48 3.1 83 3 99 48 93 3.1 83 99 48 93 3.1 99		06	44 45	4 4 4 . 0 0 . 0	8 6 8 6 8 6	24 23 23	6.4 6.4 7.1	3.2 2.3 2.5	4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m	ጠታጠ	m 4 4	92 90 91	7.0
43 2.7 78 21 7.4 4.1 5.6 3 3 96 42 2.7 80 21 7.7 2.2 4.4 2 3 99 43 2.6 78 22 8.2 2.2 4.4 2 3 96 43 3.1 82 21 6.9 1.8 3.4 3 4 94 43 2.7 83 23 7.2 3.6 6.2 3 4 92 41 2.4 77 22 8.5 3.6 5.6 5 6 84 1 43 3.1 93 22 7.8 3.9 5.4 2 8 94 43 3.0 78 22 7.0 3.4 4.8 3 3 96 42 3.0 78 22 7.0 3.4 4.8 3 3 96 43 3.0 80 22 7.4 5.4 7.2 3 93 93 43 3.0 80 22 7.4 5.4 7.2 3 93 93	LOCKETT				01		_						
43 3.1 82 21 6.9 1.8 3.4 3 4 94 43 2.7 83 23 7.2 3.6 6.2 3 4 92 41 2.4 77 22 8.5 3.6 5.6 5 6 84 1 43 3.1 83 22 7.8 3.9 5.4 2 3 97 42 3.0 78 22 7.4 4.8 3 3 96 43 3.0 80 22 7.4 5.4 7.2 3 93 93	0	03	445 43	2.7	78 80 78	21 21 22	7.7	4.1 2.2 2.2	N 4 W 0 0 4 &	m N 4	w w 2	06 66 96	7.9
43 3.1 82 21 6.9 1.8 3.4 3 4 94 43 2.7 83 23 7.2 3.6 6.2 3 4 92 41 2.4 77 22 8.5 3.6 5.6 5 6 84 1 100 PERCENT 43 3.1 83 22 7.8 3.9 5.4 2 3 97 42 3.0 78 22 7.4 5.4 7.2 3 997 43 3.0 22 7.4 5.4 7.2 3 998	PAYM	AYMASTER I	11		ъ		_						
43 3.1 93 22 7.8 3.9 5.4 2 3 97 42 3.0 78 22 7.0 3.4 4.8 3 3 96 43 3.0 80 22 7.4 5.4 7.2 3 3 93	000	0.96 0.95 0.99	43 41	3.1 2.7 2.4	82 83 77	21 23 22	6.9 7.2 8.5	1.8 3.6 3.6	8 9 . 0 4 . 0	m m w			6.8 9.0 10.2
43 3.1 83 22 7.8 3.9 5.4 2 3 97 42 3.0 78 22 7.0 3.4 4.8 3 3 96 43 3.0 80 22 7.4 5.4 7.2 3 3 93	OKE	COKER 4104			01							,	
	LM 51 34 1 1/LM LT SP 52 33 1 1/reduced from 42 because of bark	1.10	44 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.0 3.0	83 78 80	22 22 22	7.8	W W W O O O O O O O O O O O O O O O O O	5.4 4.8 7.2	2 6 6	m m m	97 96 93	8.1 8.2 9.8

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971 --Continued

	yarn	Com- posite	Index		601		102		103 104 102		107		101		105 103 98		101
	22s dyed	Blue- Co	위		7.0 1		5.9 1 5.9 1 5.8		6.4 1 6.4 1 6.3 1		6.7 1 6.8 1 7.1 1		5.9 1 6.4 1 5.6		404		5.6 1
	,		Rd		27		.7 2		.5 2		.1 2 .5 .5 .4 .2		2 2 2 2 2 2 2 2		.5 26 .6 26 .8 25		8.5 26
- 1	yarn Color	Reflct-			4 26		27.		28 27 28		27 27 27		28 27 27 28		27 27 28		000
	blchd. ye	/- Com- posite	Index		104		98 103 98		104 102 102		98 97 98		102 100 101		103 101 103		97 99 103
		Yellow-	위		3.1		4.2 3.5 3.9		3.5		9.00 9.00		4.0 3.6 3.7		3.5		3.6
	Color-22s	Reflct-	뀖		84.6		83.8 84.8 83.3		85.2 84.7 84.7		83.3 83.2 82.8		85.5 83.8 84.3		85.0 84.2 85.5		82.9 83.3 84.9
	y yarn	Com- posite	Index		87		92 86 86		92 87 91		87 86 88		89 90 85		92 89 80		92 90
	22s gray	Yellow-	위		11.3		11.0		11.2 11.9 11.5		10.7 10.7 11.0		11.2 11.1 12.3		11.6 12.2 12.9		10.9 10.8 11.4
	Color -	eflct- ance	Rd		65.3		68.2 64.7 64.3		67.6 64.6 66.9		66.0 65.7 66.3		66.6 66.9 62.6		67.0 64.9 59.5		70.5 68.2 66.5
_		ning Poten- R tial	No.		58		49 64 6		8 7 0 0 7		62 56 58		52 6		44 46 43		50 66 6
\vdash	imprictus.	50s or 12 tex	No.	-	11	_	35 48 64	-	26 35 39	-	18 21 20	-	56 50 79	_	26 50 111	_	30 41
	Yarn ımpr	or	No.	PERCENT	16	PERCENT	58 64 83	PERCENT	34 46 51	PERCENT	29 29 27	PERCENT	77 67 12	PERCENT	31 69 46	PERCENT	46
		s or 22s		100	00	75	800	80	90	100	06	100	70 70 60 1	80	90 70 1	100	000
	appearance	508	Index		-												8 8 8
	Yarn	22s or 27 tex	Index		130		110 100 80		120 110 110		120 120 120		90		110 100 60		100 123 93
	elongation	50s or 12 tex	Pet.		3.9		4.1 4.6 4.5		3.4		4.3 4.1 4.2		5.2		3.9		4 4 4 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	Yarn elon	22s or 27 tex	Pct.	16	2.1	Ξ	5.9	11	6.4	4 6874	5.8 5.8	4789 A	6.9 7.1 7.3	111	6.0	4	4.0
Н	1		•1	DELTAPINE 16	4	PAYMASTER III	30 31 30	PAYMASTER III	* * 7		2 9		34 35 31	PAYMASTER III	27 36 33	R 4104	3.6
	strength	50s or 12 tex	Ibs	DELT	е	PAYM		PAYM	900	LOCKETT		LOCKETT		PAYM		COKER	
	Yarn	22s or 27 tex	Lbs.		107		93		92 88 97		109 107 108		101 100 98		95 103 99		LM LT SP 52 33 103 1/LM LT SP 52 33 103 1/LM LT SP 52 33 105 1/reduced from 42 because of bark 2/reduced from 43 because of bark
	Area,	pling, ion Staple	32d In		34	Ŋ	30		31		34		32 32 30		30		33 33 becau
	tion	samp icati		XAS	P 42	TEXA	SP 42 SP 52 SP 52		SP 52 SP 52 SP 52		SP 42 SP 42 SP 42	щ	SP 42 SP 42 43		SP 42 SP 52 53		51 19 52 10 42 0m 42 0m 43
	roduc	ssif assif	Code	EST L TE	SLM LT SP	EST	555	NELL	בבב	ON	בבב	1111	LT	OLE	LT S LT S SP	z	LT S
-	State, Production Area,	Chronological sampling, and Classification Grade Staple	Name	SOUTH WEST CENTRAL TEXA SUGARLAND	SLM	NORTHWEST TEXAS	SLM L/LM	O* DONNELL	LL R	RAYLAND	SLM	ROPESVILLE	SLM	SEMINOLE	SLM LT	SLATON	L/LM 1/LM reduce

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area,	on Area,	Digital Fibrogr	brograph		Fiber s	strength		Shirley A	Analyzer	Color	of raw	stock	
Chronological sampling, and Classification	ampling, ution	2.5% span	50/2.5	Micro- naire	Zero	1/8"	Elon- gation	1 0	Total	Gray-	1 .	Composite	Picker & Card
Grade	Staple	_			Gage	Gage	1/0	waste	waste	ness	ness	color	waste
Name Code	32d in.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
SOUTH WEST NDRTHWEST TEXAS VERNON		LOCKETT 8XL			10	100 PERCENT							
LM 51 SLM LT SP 42 SLM LT SP 42	34	1.07	45	4.1 3.8 3.9	8 8 6 8 5 8 5	23 23 23	4.9 7.9 6.9	3.4	4.8 3.8 8.8	4 m m	m m r	89 91 92	7.7 6.1 5.3
WEST ARIZONA CASA GRANDE	J	DELTAPINE	91		01	100 PERCENT							
SLM 41 M LT SP 32	9 9 5	1.12	4 4 5 5	444 0.8.0	85 81 83	23 22 22	6.2 6.7 7.2	1.4	2.1 2.3 2.7	1 1 2 2	m 0 4	102 101 100	4.0 4.0 4.0 4.0
PARKER	J	DELTAPINE	16		0.	90 PERCENT							
M 31 M LT SP 32	3 3 3 4 4	1.09 1.08 1.10	44 43 45	4 4 4 0 4 0	88 86 83	24 24 22	6.2 6.4 6.9	1.8 1.4 1.6	2.9 2.5 3.4	1 2 2	ጣጠታ	101 102 100	5.7 6.0 6.3
QUEEN CREEK	_	DELTAPINE	16		J.	99 PERCENT							
SLM 41 SLM 41 M LT SP 32	35 35 34	1.08	44 44 45	4 4 6 6 9 4 6 6 9 9 9 9 9 9 9 9 9 9 9 9	83 81 81	22 22 22	7.0	1.5	2.5 2.9 2.9	2 2 2	224	94 99 98	5.0
SAFFORD	J	DELTAPINE	16)1	100 PERCENT	*						
M LT SP 32 M 31 M LT SP 32	35 35 35	1.16 1.14 1.09	44 44 42	3.6	79 78 79	23 23 22	8.0 8.7 7.3	0.9 1.0 2.0	1.8 2.0 3.5	2 1 2	404	100	4.5 5.4 5.4
CAL I FORNIA ARV IN	,	ACALA 4-42			10	100 PERCENT					·		
M 31 SLM 41 SLM 41	35 35 36	1.11 1.09 1.13	4 4 4 6 6 9	44.0	98 96 95	27 27 26	5.7 6.1 6.3	1.5 2.4 2.3	2.1 3.4 3.4		m 0 m	102 100 101	5.5 5.3
BAKERSFIELD		ACALA SJ-1			10	100 PERCENT							
SLM 41	3 6 3 6 3 6	1.10	4 4 4 4 5 7 4 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6	4 4 4	103 96 96	27 27 27	5.0 5.0 5.0	1.2	1.8	1 2 2	e 0 m	101	7.00
* 100 percent selected for tests, less than 100	ed for test.	s, less than	100 percent										

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971 --Continued

Ctate Production Area.	Area.		Yarn strength	Yarn elc	Yarn elongation	Yarn app	appearance	Yarn	imprfctns.	Spin-	Color -	22s gray	yarn	Color-22s	2s blchd.	d. yarn	Color -	22s	dyed yarn
logical sam Classificat	pling, ion Staple	- CU CU	50s or 12 tex			22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	ning Poten- tial	Reflct- ance	Yellow- ness	Com- posite	Reflet-Y	Yellow-	Com- posite	Reflct- ance	Blue- ness	Com- posite
Code	32d In.	. Ibs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.	No.	Rd	위	Index	R	- 1	Index	Rd	위	Index
SOUTH WEST NORTHWEST TEXAS VERNON	ST		LOCKETT	. BXL			100) PERCENT	L										
LM LT SP 42 SLM LT SP 42 SLM LT SP 42	34 34 34 34	113 110 108	39 39	6.2 6.2 5.9	444	120 110 120	906	29 24 24	17 18 18	64 62 58	66.2 66.6 67.4	10.3 10.8 10.7	88 8 8 9	83.7 82.7 83.4	33.56	100 98 100	27.9 27.5 27.3	26.9 27.0 26.8	106 107 107
WEST ARIZONA CASA GRANDE			DELTAPINE 16	NE 16			100) PERCENT	LV.										
M 31 SLM 41 M LT SP 32	1 35 1 35 2 35	108 106 111	37 36 39	5.8 6.0 6.0	4.4 4.3 4.2	120 120 120	100 90 100	23 22 20	15 15 14	61 59 62	72.8 73.3 69.0	10.4 9.7 11.6	96 96 96	84.1 84.7 83.5	2.7 2.5 2.7	104 106 103	27.2 28.0 27.3	26.9 26.8 27.0	107 105 107
PARKER			DEL TAPINE 16	NE 16			90	D PERCENT	IN:										
M 31 M LT SP 32	35	98 98 97	31 30 30	5.5 5.2 5.5	3.6	110 120 110	900	27 28 26	21 22 23	49 53 52	73.3 73.2 72.5	10.6	1000	84.2 83.4 82.9	3.1 3.1 2.9	103 101 101	28.7 27.1 28.1	26.3 27.7 26.7	102 111 105
QUEEN CREEK			DELTAPINE	NE 16			6	9 PERCE	N.										
SLM 41 SLM 41	1 35 1 35 2 34	103 111 104	35 39 35	5.9	4 4 4 6 9 8 8	120 130 120	100 100 90	18 24 17	12 16 13	59 61 58	72.1 73.5 68.5	9.5 10.1 12.0	95 99 97	84.7 84.0 83.5	3.0	104 104 102	28.6 27.8 27.6	26.2 26.8 26.8	102 106 106
SAFFORD			DELTAPINE 16	NE 16			100	O PERCE	* 12										
M LT SP 32 M 31 M LT SP 32	2 36 1 35 2 35	116 105 104	41 37 33	7.1	5.7	120 120 120	900	16 18 44	13 15 32	72 65 61	71.0 73.8 68.9	10.9 10.3 11.3	98 100 95	85.5 85.2 83.8	2.9 2.7 3.2	107 107 102	25.2 26.4 28.2	27.3 27.0 26.7	113 109 104
CAL I FORNIA ARVIN			ACALA 4-42	-45			100	O PERCE	L N										
M 31 SLM 41 SLM 41	1 35 1 35 1 36	131 139 134	49 52 50	6.0	4.6	130 120 120	001	12 29 26	11 21 17	75 79 76	72.0 72.4 71.5	10.6	966	84.8 84.7 83.2	2.8 2.9 2.7	106 105 102	25.3 25.7 25.3	28.1 27.4 27.1	116 112 112
BAKERSFIELD			ACALA S	5.1-1			100	PER	CENT										
	1 35 1 36 1 36	125 130 123	4 4 4 6 9 9	45 5.4 4.2 49 5.8 4.4 46 5.1 3.9	4.64	120 120 120	06	21 24 21	18 21 15	68 73 72	70.171.3	10.7	98 97 96	84.5 83.5 81.6	3.4 3.1 3.2	102 101 96	25.9 26.1 26.1	27.6 26.5 27.0	113 108 110
* 100 percent sel	Lected	selected for tests,	sts, less	than 100	percent 1	n the	area												

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

Paire Zero J/6" Set Waste Notal Gray Weste Notal Gray Waste Notal Gray Weste Notal Gray Waste Notal Gray Notal	State, Production Area, Chronological sampling,	Digital	brogra	Micro-	- I	strength	Elon-	ا <u>ح</u> ا	Analyzer	Color	of raw sto	stock	
## Bidg. Mpsi G/tex Pect. Pect. Pect. No. III. 100 PERCENT 100 PERCENT 1.5 2.2 1 2 3 4.5 1.5 2.4 2.5 3 3 4.5 1.5 2.4 2.5 3 3 3 4.5 1.5 2.5 3 3 3 3 3 3 3 3 3	2.5% span length	면묘	an 50/2.5 unif.	naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	į.	Composite color	& Card waste
### WEST Jack Free, Fr		- 1	-			1/2	-	4	f	1			
4.6 89 24 5.6 1.3 2.2 1 2 2 4.6 6.1 1.3 2.7 1 2 3 3 4.0 PERCENT 100 PERCENT 10	32d in. In.		Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.		Index	Pct.
## 4.6 # 89	DELTAPINE 16	Ż	E 16		71		-						
100 PERCENT 100 P	34 1.05 34 1.07 34 1.00		4 4 4 8 5 8	444	88 88 89	24 22 23	5.6 5.4 6.1	1.3	2.2 2.1 2.6	1 2 5	355	103 103 99	5.5
4.0 98 28 5.2 1.2 2.0 1 3.5 100 28 5.7 2.2 3.5 2 4.6 101 28 5.7 1.5 2.2 1 3.7 102 28 5.7 1.5 2.2 1 3.7 102 28 5.8 1.1 2.3 2.1 1 3.9 99 29 6.0 1.3 2.1 1 3.9 90 22 4.8 1.8 2.8 1 4.6 93 22 5.4 2.0 3.2 1 4.6 102 28 5.8 1.2 2.6 3.2 4.6 99 29 5.1 1.6 2.5 2 4.6 99 27 5.6 5.1 1.6 2.5 2 4.6 100 PERCENT 4.4 93 22 5.4 2.0 3.2 2 4.6 100 PERCENT 5 4.6 100 PERCENT 6 4.6 99 27 5.9 1.9 3.2 2 7 4.6 100 PERCENT 7 4.6 99 27 5.9 1.9 3.2 2 7 5.9 1.9 3.2 2 7 6.2 2.8 2.8 1 7 7 7 8 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACALA SJ-1	\dot{z}	7		1		-						
4.6 101 28 5.7 1.5 2.2 1 3 4.5 98 28 5.8 1.1 2.7 2.7 2 4.0 100 PERCENT 5 4.6 90 22 4.8 1.8 2.8 1 4.6 90 22 5.4 2.0 3.2 1 4.6 102 28 4.8 1.2 2.5 1 100 PERCENT 6 4.6 90 22 5.4 2.0 3.2 2 7 4.6 90 22 5.4 2.0 3.2 2 7 4.6 90 22 5.4 2.0 3.2 2 7 4.6 90 22 5.4 2.0 3.2 2 7 5.9 1.9 3.2 2 7 7 7 26 6.1 3.1 4.8 3 7 7 7 26 6.1 3.1 2 7 7 7 2 2 2 2 4.8 1.2 2.5 2 7 7 7 2 2 3 3 4 4.8 1.2 2.5 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	36 1.16 36 1.15 36 1.15		9 4 4 4 6 9 9	4.0	98 100 99	28 28 28	5.2 5.7 6.1	1.2 2.2 1.2	2.0 3.5 2.4	1 2 2	mmm	102 100 99	5.9
4.6 101 28 5.7 1.5 2.2 1 3 4.5 98 28 5.8 1.1 2.2 1 3 4.5 98 28 6.0 1.8 2.7 2 3 4.0 100 PERCENT 1.3 2.1 1 3 4.4 99 29 29 6.2 1.3 2.5 1 3 4.4 93 22 4.8 1.8 2.6 2.5 1 3 4.6 90 22 5.4 2.0 3.2 1 3 4.6 90 22 5.4 2.0 3.2 1 3 4.6 90 22 5.4 2.0 2.5 2 2 2 4 4.6 98 23 5.1 1.6 2.2 2 2 2 4 5.9 97 26 6.1 3.1 4.8 3.2 2 4 5.9 99 27 5.9 1.9	ACALA SJ-1	-	1		ā		_						
4.0 100 PERCENT 100 PERCENT 101 28 4.9 1.3 2.1 1 3 3 4 2 3 4 2 3 3 4 2 2 3 4 2 3 4 2 3 3 4 2 2 3 4 2 2 3 4 2 3 3 4 4 2 3 3 4 4 2 4 4 6 90 22 5.4 2.0 3.2 1 3 3 4 4 6 90 22 5.4 2.0 3.2 1 3 3 4 4 6 90 22 5.4 2.0 3.2 1 3 3 4 4 6 90 22 5.4 2.0 3.2 1 3 3 4 4 6 90 27 5.0 1.9 3.2 2 2 2 2 2 4 6 6.1 3.1 4.8 3.2 2 3 3 4 4 6 90 27 5.9 1.9 3.2 2 2 3 3 4 4 6 100 PERCENT 100 PER	36 1.15 36 1.13 36 1.15	10.45.5	9 4 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.75	101 98 102	28 28 28	5.7	1.5 1.1 1.8	2.2 2.2 2.7	1 2 2	ммм	101 102 97	4.5
4.0 100 28 4.9 1.3 2.1 1 3 7 3.7 102 27 5.6 2.2 3.4 2 3 4.4 93 29 4.8 1.8 2.8 1 3 4.6 90 22 4.8 1.8 2.8 1 3 4.6 90 22 5.4 2.0 3.2 1 3 4.6 90 22 5.4 2.0 3.2 1 3 5 4.6 98 23 5.1 1.6 2.5 2 2 5 4.4 98 27 5.9 1.9 3.2 2 3 6 4.4 97 26 6.1 3.1 4.8 3 4 8 4.4 98 27 5.9 1.9 3.2 2 3 8 4.4 100 27 5.2 1.3 2 3 9 4.4 100 27 5.2 3.2 2 2 8 4.1 100 27 5.2 2 2 3 9 4.5 5.0 1.3 2	ACALA SJ-1	7-1			ā		_						
4.4 93 22 4.8 1.8 2.8 1 3 4.6 90 22 5.4 2.0 3.2 1 3 2 4.6 98 23 5.1 1.6 2.5 2 2 4.6 102 28 4.8 1.2 2.4 2 3 5 4.4 98 27 5.9 1.9 3.2 2 3 6 4.4 97 26 6.1 3.1 4.8 3 4 8 4.4 97 26 6.1 3.1 4.8 3 4 8 4.4 100 27 5.2 1.5 2.2 2 3 8 4.4 100 27 5.2 1.5 2.2 2 3 8 4.1 100 27 5.2 1.3 2 2 2 9 2.6 6.1 2.2 3.2 2 2 2 104 29 26 6.1 2.2 2 2 2 104 29 20 2.2 2 2 2 2 104 29 20	36 1.13 36 1.14 36 1.14		4 4 4 4 5	3.9	100 102 99	28 27 29	6.5 6.2	1.3 2.2 1.3	2.1 3.4 2.5	1 2 1	ммм	104 99 102	4 0 0 0 0
4.4 93 22 4.8 1.8 2.8 1 3 4.6 98 23 5.1 1.6 2.5 2 2 5.4 2.0 3.2 1 3 4.6 102 28 4.8 1.2 2.4 2 3.9 27 26 6.1 3.1 4.8 3 4.4 100 PERCENT 1	STONEVILLE 213	וונ	213		ā	00 PERCEN	*						
4.6 102 28 4.8 1.2 2.4 2 3 1 4.4 98 27 5.9 1.9 3.2 2 3 4 4 5 5.9 1.9 3.2 2 3 4 4 5 5.9 1.9 3.1 4.8 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	34 1.04 34 1.05 34 1.05	A 10- 1-	45 45 45	111	93 90 88	22 22 23	4.8 5.4 5.1	1.8 2.0 1.6	2 · 8 2 · 5 5 · 5	1 1 5	mmN	103 100 99	5.9
4.6 102 28 4.8 1.2 2.4 2 3 1 1 4.4 98 27 5.9 1.9 3.2 2 3 4 3 4 4.8 1.0 PERCENT 4.4 100 27 5.2 1.5 2.1 2 3 4 4.1 100 27 5.2 1.5 2.1 2 3 4 5.0 1.3 2.7 2 3 3 4 5.0 1.3 2.7 2 3 3 5.2 2 5 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	ACALA SJ-1	÷	-1		-		-						
4.4 100 27 5.2 1.5 2.1 2 3 4.1 98 26 6.1 2.2 3.2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	36 1-11 36 1-14 36 1-15		9 4 4 9 4 4	3.46	102 98 97	28 27 26	4.8 5.9 6.1	1.2 1.9 3.1	3.2	3 2	mm4	. 101 98 92	4.8 7.0
4.4 100 27 5.2 1.5 2.1 2 3 4.1 98 26 6.1 2.2 2 2 2 3.0 1.3 2.7 2 3	ACALA SJ-1	ب			1		-						
C 2 107 Col 100 C2 101 Col	SLM 40 36 1-14 SLM 41 36 1-17 SLM 41 36 1-17		1.14 46 1.17 48 1.14 47	4.4	100 98 104	27 26 29	5.2 6.1 6.0	1.5 2.2 1.3	2.1	. 2 2	ค๛ค	66 66	4.0.0

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

State, Production Area,	ion /	Area,	Yarn St	Yarn Strength	Yarn eld	Yarn elongation	Yarn ap	Yarn appearance	Yarn	imprfctns.		Colór -	22s gray	yarn	Color-22s	2s blchd.	d. yarn	Color -	22s	dyed yarn
Chronological sampling, and Classification Grade Staple	samp: icatio		22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	ning Poten- tial	Reflct- ance	Yellow- ness I	Com- posite	Reflct-	Yellow- ness	Com- posite	Reflct- ance	Blue- ness	Com- posite
Name Code	1	32d In.	. Ibs.	Lbs.	Pct.	Pet	Index	Index	No.	No.	S S	Rd Id	위	Index	뀖	위	Index	Rd	위	Index
WEST CALIFORNIA BRAWLEY			J	DELTAPINE 16	NE 16			100	O PERCENT	F Z										
SLMM	31 41	34 34	98 109 95	29 · 35 28	5.0	3.3 3.7 3.2	120 120 120	90 100 80	22 19 36	18 14 24	4 2 4 8 8 4 4 4	74.8 74.1 71.6	9.8 10.2 10.4	100 100 97	84.1 84.8 83.4	2.6 2.5 2.8	105 107 102	28.0 28.2 28.3	26.9 26.3 26.5	106 103 103
CHOWCHILLA	•		7	ACALA S	5.3-1			100	O PERCENT	L Z										
SLM	31 41 41	36 36	143 139 137	53 53	5.9	4 4 4 9 4 4	120 120 110	900	20 31 26	14 18 20	86 89 83	71.0 70.1 68.3	10.7	97 95 91	83.5 83.0 81.8	3.4	001 66 96	26.5 26.5 27.0	27.1 26.1 27.3	109 105 109
CORCORAN				ACALA S	SJ-1			100	O PERCEN	Ę										
SEMM	31 31 41	36 36 36	129 132 132	4 8 5 0	5.7	4.3 4.3	120 110 110	90	27 24 36	19 18 25	73 83 82	71.0 72.4 67.9	10.7 10.4 11.2	97 98 92	84.0 83.7 83.2	3.2 2.9 3.5	102 103 99	25.2 26.2 25.5	28.2 27.6 28.0	116 112 115
DOS PALOS			•	ACALA S	5.3-1			100	00 PERCENT	FZ										
SLA	31 41 31	36 36 36	138 136 136	52 51 52	5.1 5.1 5.8	4.3 4.1	120 110 130	900	27 32 24	18 27 13	80 82 79	71.9 70.0 69.5	11.0	99 95 96	84.0 83.2 84.0	2.9 3.1 3.4	103 101 101	26.2 25.4 26.0	26.9 27.3 27.8	109 112 113
EL CENTRO				STONEVILLE	LLE 213			10	O PERCE	* 1										
SLM	31 41 41	34 34 34	104 102 101	31 32 31	5.0	33.0	120 120 120	90 100 100	24 22 20	18 16 15	49 51 45	72.2 72.2 70.0	10.8 10.2 9.8	99 97 92	83.9 83.8 82.2	3.0	103 102 99	27.1 27.9 28.5	26.8 26.4 25.6	107 104 99
HURON				ACALA S	S J-1			001	O PERCENT	L Z										
SLM+	31 40 41	36 36 36	131 130 121	50 4 4 9 5 9	5°57 6°57	6 4 6 8 6 8	130 120 110	100 100 90	18 19 32	11 14 24	75 80 77	71.6 70.8 64.4	11.1	99 98 85	83.7 82.6 82.0	3.5 3.5	102 98 96	25.7 24.5 24.9	27.5 27.6 28.1	113 115 117
KERMAN				ACALA S	1-15			100	PERC	ENT										
SLM+ 40 36 SLM 41 36 SLM 41 36 * 100 percent selected for	40 41 41 selec	36 36 36 36	137 139 134 or tests	52 53 51 5, less t	137 52 5.8 139 53 5.7 134 51 5.8 tests, less than 100 perc	4.4 4.3 4.2 percent in	120 130 120 1 the area	100 100 100	18 17 21	12 11 14	79 90 82	71.5 68.8 68.1	10.4	97	83.5 92.6 80.9	2.7 3.1 2.9	103 99 96	25.6 25.4 26.4	27.7 27.1 27.1	114 112 110

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

Diokor	& Card		Pct.		4.9 4.9		4.1 5.9 6.2		5.6 4.7		4.3 5.9 5.9		4.5 4.6 5.2		6.7 8.6 7.1		5.9
ock	Composite		Index		103		102 97 96		99 103 103		102 99 101		103 102 102		90 91 95		95 98 99
Color of raw stock	Yellow-		No.		mom		мюм		ммм		m 2 m		m m m		4 N M		4 101 11
Color	Gray-		No.		101		1 2 2 2		2 1 1		1 2				4 m m		m 2 2
nalyzer	Total waste		Pet.		2.2		3.2		2.6 1.9 2.3		1.6 2.3 3.8		2.2		4.8 4.1		3.4
Shirley Analyzer	Visible waste		Pct.		1.4		1.2		1.7		1.2		1.3		3.8 2.9 6.5		2.1 0.9 1.4
Elon-	gation 1/8"		Pct.		5.9 6.0	*	5.5 6.2 6.6	_	5.8	_	5.2	_	5.6 5.7 6.4	*	5.9 7.1	*	7.2 6.6 7.2
strength	1/8" Gage		G/tex	100 PERCENT	27 27 27	100 PERCENT	27 28 26	100 PERCENT	27 29 27	100 PERCENT	28 29 28	100 PERCENT	27 29 27	100 PERCENT	21 22 21	100 PERCENT *	21 22 21
Fiber s	Zero		Mpsi	91	93 94 95	01	97 98	10	104 100 95	10	104 97 101	10	99 100 92	10	81 77 78	10	77 75 80 area
	Micro- naire		Rdg.		4.5		4.2 3.6 3.1		3.9 4.1 4.1		4 4 4 9 m m		3.8 3.9 3.9		3.9 4.2 3.8		4.6 3.9 3.7
ibrograph	50/2.5 unif.		Pct.		4 4 4 5 5 5		4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4		7 4 4 4 7		44 44 44		4 4 4 5 4 5	16	44 47 75	213	44 44 44 100 percent
Digital Fibrograph	2.5% span length		In.	ACALA SJ-1	1.16	ACALA 4-42	1.14 1.09 1.09	ACALA SJ-1	1.19 1.17 1.18	ACALA SJ-1	1.10 1.16 1.14	ACALA SJ-1	1.11	DELTAPINE	1.10	STUNEVILLE	1.10 4 1.08 4 1.03 4
Area,	ion.	Staple	32d in.	A	36 36 36	A	36 35 35	A	36 36 36	Ą	35 36 36	Ā	35 36 36	ā	34 34 34	S	35 35 34 d for tests.
State, Production Area,	and Classification	Grade	Code	A LS	31	NIO	40 41 41		31	9	31 41 41		31 31	S1	SP 42 51 SP 42		41 41 41 nt selected
State,	and (C	Name	 WES! CALIFORNIA LOST HILLS	ΣΣΣ	SAN JOAQUIN	SLM+ SLM+ SLM	SHAFTER	SLM	STRATFORD	SLM	WASCO	ΣΣΣ	WEST TEXAS COYANOSA	SLM LT LM SLM LT	PECOS	SLM 41 35 SLM 41 35 SLM 41 34 * 100 percent selected for tests,

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1971--Continued

yarn	i te	lex				10		10.55								
dyed y	Com- posite	Index		113 115 111		115 113 113		115 109 109		118 116 113		111		103 101 102		106 110 108
- 228	Blue	위		27.4 28.0 28.0		28.0 27.3 27.5		27.9 26.9 26.7		28.4 28.1 27.6		27.2 27.3 26.9		26.2 26.1 26.3		26.7 27.4 27.0
COTOL	Reflct- ance	R		25.2 25.4 27.4		25.3 25.2 25.7		25.1 26.3 25.8		24.8 25.1 25.8		26.0 26.1 25.6		27.8 28.6 28.8		27.4 26.6 27.0
14. y car 11	- Com- posite	Index		105 101 104		102 98 97		101 101 103		100 100 98		103 102 101		103 102 97		132 100 96
בבם טבכוות	rellow	위		2.9 3.1 2.8		3.0 3.1		3.5		3.6 3.3 3.1		3.1 3.1 3.1		3.3		3.6
10100	Reflct-	묎		84.6 83.5 84.2		83.8 82.0 82.1		84.2 83.8 84.2		83.9 83.2 82.3		84.2 84.0 83.4		84.6 83.8 82.8		84.7 84.1 81.8
ay yours	Com- posite	Index		102 101 100		06 66		95 98 100		98		100 99 98		96 97 96		93
CC0 64	Yellow- ness	위		11.0 10.9 10.8		11.0 10.8 11.0		11.0		10.9 10.7 10.9		11.1		11.6		11.6 10.9 11.1
COTOL	Reflct-	Rd I		73.3 73.3		71.6 67.5 67.1		69.6 71.8 72.0		71.3 70.9 69.8		72.0 71.7 71.5		68.0 71.3 68.7		67.5 71.0
-urds	ning Poten- tial	No.		71 81 77		80 74 73		91 83 80		74 82 64		79 81 76		54 57 57		64 53 54
unpricuis.	50s or 12 tex	No.	=	12 13 15	ENT *	13 21 28	ENT	19 112 110	ENT	11 16 18	<u> </u>	12 15 24	*	31 19 32	ENT *	119
I or II Tul	22s or 27 tex	No.	PERCENT	20 118 20	PERCE	18 31 42	PERC	27 18 15	PERC	17 22 21	PERCEN	18 19 28	PERCE	42 31 46	PERCE	26 19 23
appear ance	50s or 12 tex	Index	100	001	100	800	100	90	100	100 90 90	100	900	100	8 80 80	100	90
ושנוו שההב	22s or 5	Index		130 120 130		120 110 120		120 120 130		130 130 120		120 120 120		110 120 113		120 120 1 120 1
erongarron	50s or 2	Pct. I		444		44.0		444		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 . 5 . 3		4.0.		5.0 3.9 3.9
Igrii etc	22s or 27 tex	Pct.	1	6.1	-42	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	S J-1	5.8 6.1 6.0	SJ-1	5.4	SJ-1	5.8	E 16	0.00 0.00 0.00	LE 213	37 6.7 5 33 6.2 4 32 5.8 3
rengui	50s or 12 tex	Lbs.	ACALA SJ-1	48 51 47	ACALA 4-	55 44 47	ACALÀ SJ	51 52 50	ACALA SJ	520	ACALA SJ	49 51 48	DELTAPINE 16	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	STUNEVILLE 213	
iarn strength	22s or 27 tex	Lbs.	A	130 133 125	Ā	137 131 127	Ā	136 136 132	A	135 137 132	Ā	133 134 129	٥	98 103 99	S	106 98 99 for tests
100,		d In.		36 36		36 35		36 36		35 36 36		35 36 36		35		3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1101	sampl catio	32d		31 31	z	4 th th		31		31 41 41		31 31		42 51 42		41 35 41 35 41 34
State, Fronuction Area,	Chronological sampling, and Classification Grade : Staple	Name Code	WEST CALIFORNIA LOST HILLS	EEE	SAN JOAQUIN	SLM+ SLM+ SLM+	SHAFTER	SLM	STRATFORD	SLM	WASCO	III	WEST TEXAS COYANOSA	SLM LT SP LM SLM LT SP	PECOS	SLM SLM SLM

Table /..-Cotton, American upland long staple: Quality characteristics by production areas, crop of 1971

ı	р	1.										() io .÷		7 C
	Picker & Card waste	Pet.		3.2 10.2 10.2 10.3		8.9 9.1 3.6		9.5 9.3 10.4 10.4		9.6		10.0 8.5 10.4 11.3		8.8 10.0 10.1
stock	Composite	Index		87 95 95 95		98 85 92		96 92 91 81		95		95 101 82 90		95 96
of raw	Yellow- ness	No.		4 m 0 0		ткт		m m m m		3		m N m m		~ ~ ~ ~
Color	Gray- ness	No.		4 11 11 11		240		0 m m 4		4		w w 4		2 2 2
Analyzer	Total waste	Pct.		444 600 800 800		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		W 4 5 0 W		3.0		4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5.2 5.1
Shirley	Visible waste	Pct.		ጽሐመሪ ቁጥታሪ		2.3		2 m m 2 v v v v v v v v v v v v v v v v		2.1		3.4.3. 3.4.3. 8.0.4.		4.4
	Elon- gation 1/8"	Pct.	-	5.00 5.00 5.00 5.00	-	6.9	_	6.1 6.3 6.3	-	6.5	-	0.4.6.4		5.0 5.0 5.0
strength	1/8" Gage	G/tex	100 PERCENT	22 23 23 23	100 PERCENT	23	100 PERCENT	22 23 21 21	100 PERCENT	19	100 PERCENT	23 24 21 22	100 PERCENT	5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Fiber 8	Zero Gage	Mpsi	7	84 83 81 77	_	83 78 75	1	77 78 78 80 87	1	76	1	84 79 78 76	1	79 88 82
	Micro- naire	Rdg.		4444		4 6 4		4444 		4.1	4	3.6 3.6 3.9 9.8		4.9
Fibrograph	50/2.5 unif.	Pet.		44 43 43 43		4 4 4 4 0 4		4 4 4 4 4 4 4 6		41		45 42 41 41		44 44 44 44
Digital F	2.5% span length	In.	COKER 310	1.16	COKER 310	1.16	COKER 310	1.14 1.12 1.12 1.09	COKER 310	1.13	COKER 310	1.18 1.15 1.15 1.16	COKER 310	1.21
Area,	pling ion	Staple 32d in.	3	3 3 6 3 6 3 6	3	36 34	3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	J	36	J	3.66 3.56 3.56	J	38 37 36
State. Production Area.	Chronological sampling and Classification	Grade	– 4	. SP 52 51 51 51		41 51 51		SP 42 SP 42 51 SP 52	ROLINA	SP 52	ROLINA	51 41 SP 52 SP 52	TRAL PP I	51 51 51
State.	Chronc	Name	SOUTH EAST ALABAMA ORRVILLE		GEORGIA	SLM LM	MADISON	SLM LT SLM LT LM LT	NORTH CAROLINA FALLSTON	LM LT SP	SOUTH CAROLINA RIDGE SPRINGS	SIN CH	SOUTH CENTRAL MISSISSIPPI TUNICA	555

Table 7a.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1971

	arn Color-22s blchd, yarn Color - 22s dyed yarn	Com- Reflet-Yellow- Com- Reflet Blue- Com- posite ance ness posite ance ness posite		ex Rd +b Index Rd -b Index		95 83.4 3.0 101 26.7 27.9 112 91 84.7 2.8 105 26.8 27.4 110 92 84.5 3.2 103 26.6 26.6 107 95 83.9 2.8 103 26.6 28.1 113		93 85.1 3.1 105 26.3 27.5 111 83 85.8 3.0 107 26.3 27.6 112 86 83.7 3.3 101 27.2 26.1 104		90 84.2 3.2 103 26.3 28.0 113 88 84.4 3.2 103 26.2 27.7 112 86 85.2 3.3 104 27.2 25.9 103 84 83.3 3.2 100 28.0 26.1 102		78 83.3 4.0 97 25.9 27.7 113		94 94.6 3.0 104 26.2 27.0 110 95 84.6 2.7 105 27.6 26.7 106 80 85.1 2.9 106 27.8 26.1 103 84 83.8 2.8 103 27.9 26.2 103		93 84.0 2.9 103 27.0 27.4 110 96 84.6 2.8 105 25.6 28.5 117
	Color - 22s gray yarn	Reflct-Yellow- Co		Rd +b Index		63.6 11.7 67.9 10.9 69.3 10.3 70.8 10.2		68.7 10.9 64.1 10.5 66.7 10.0		66.6 11.4 66.2 11.0 66.3 10.4 65.2 10.3		61.8 9.9		69.6 10.7 70.8 10.3 62.5 10.3 65.3 10.1		69.3 10.5 70.3 10.9
+	Yarn imprfctns. Spin-	50s or Poten- 12 tex tial	_	No. No.	ENT	14 65 11 60 22 69 19 62	ENT	15 67 20 74 21 63	ENT	14 65 19 65 22 56 22 59	ENT	16 59	ENT	19 68 11 71 28 70 25 62	-	18 71 6
	appearance	r 50s or 22s or x 12 tex 27 tex		Index No.	100 PFRCENT	0 80 20 0 80 29 0 80 29	100 PERCENT	0 90 18 0 90 24 0 90 19	100 PERCENT	90 20 90 24 0 80 25	100 PERCENT	0 90 18	100 PERCENT	0 90 23 0 90 16 0 70 36 0 80 25	100 PERCENT	80 20 90 21
:	elongation Yarn	or 50s or 22s or 27 tex		Pct. Index		4.5 110 4.7 110 5.3 110 4.9		5.5 100 5.3 120 5.4 110		5.1 110 5.4 110 4.9 110 4.9 110		4.5 120		5.8 110 5.8 110 5.0 90 5.2 100		5.6 100
	strength Yarn	r 50s or 22s or x 12 tex 27 tex		Lbs. Pct.	COKER 310	1 37 5.7 1 35 6.1 7 39 6.3 2 36 6.3	COKER 310	2 40 6.7 8 39 6.6 9 35 6.3	COKER 310	4 36 6.4 4 37 6.4 6 33 6.3 1 31 6.2	COKER 310	88 29 6.1	COKER 310	2 39 7.2 2 40 6.8 3 37 6.5 8 34 6.4	COKER 310	42 6.5
L	Production Area, Yarn	ification 22s or 27 tex	Staple	Code 32d In. Ibs.		SP 52 36 101 51 36 101 51 36 107 51 35 102		41 36 112 51 35 108 51 34 99		SP 42 35 104 SP 42 35 104 51 35 96 SP 52 34 91	ROL INA N	52 36	ROLI NA PRINGS	51 36 112 41 36 112 SP 52 36 103 SP 52 35 98	RAL P I	51 38 113 51 37 114
	State, Production Area, Chronological sampling.	and Classification	Grade	Neme Co	SOUTH EAST ALABAMA ORRVILLE		GEORGIA COMER	S LA	MADISON	SLM LT SLM LT LM LT	NORTH CAROLINA FALLSTON	LM LT SP	SOUTH CAROLINA RIDGE SPRINGS	SEM SEM CH CT	SOUTH CENTRAL MISSISSIPPI TUNICA	55

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1971--Continued

Table 7a.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1971--Continued

i i	v															
dyed yarn	Com- posite	Index		108 108 192		112 105 105		115 106 99		116 110 108		111 109 109		===		108 111 108
22s	Blue- ness	위		26.9 26.8 26.2		27.6 26.5 26.2		27.8 26.4 25.6		28.2 27.2 26.9		27.1 27.0 27.0		27.3 27.4 27.6		26.7 27.4 26.6
Color -	Reflct- ance	낊		26.9 26.6 28.4		26.3 27.4 27.0		25.2 27.0 28.9		25.6 26.2 26.6		25.9 26.5 26.6		26.2 26.2 26.9		26.5 26.3 26.1
yarı	(1)	Index		104 104 104		103 106 102		104 104 100		107		102		103		107
blchd,		다. 우l		3.6 3.0		3.2		3.0		3.2		3.4.1		27.0		5 1 1
Color-22s	Reflct-Yellow ance ness	뀖		4.3		4.6 4.9		3.5		3.7		9 8 9		5.4 3.6 2.4 4.2		5.0 3
yarn Cc	Com- Re posite a	Index		100 8 100 8 99 8		96 99 98 98		97 8 94 8 94 8		98 8 98 8 96 8		93 8 95 8 94 8		94 8 97 8 97 8		96 98 95 95
gray				2.3 0.9 1.8		9.1		9-1-0		2 6 5		8 8 4		1.6		.1.
- 22s	r-Yellow-	₽		12 10 11		100		010101		01		100		1101		10
Color	a Re	뀙		69.7 72.6 70.0		70.6 72.7 71.0		71.3 69.5 69.2		72.3 72.6 70.5		68.8 69.6 70.0		68.2 71.6 71.8		70.8 72.1 71.0
Spin-	ning Poten- tial	No.		77		80 78 81		81 66 65		81 88 84		77 87 77		83 87 78		75 76 78
imprfctns.	50s or 12 tex	No.	* *	18 18 20	*	13 15 43	*	20 33 46	ENT	22 17 43	ENT *	28 19 39	* IN	32 21 27	N _T	11 14 45
Yarn imp	22s or 27 tex	No.	PERCE	22 17 25	PERCE	18 15 48	PERCE	19 31 51	PERC	27 18 37	PERC	31 31 35	PERCE	33	PERCE	13 16 43
appearance	50s or 12 tex	Index	100	80 80 80	100	90	100	80 70 60	80	07 07 07	100	80 80 70	100	60 70 80	75	90 80 60
Yarn appe	s or tex	Index		100 110 90		110 100 80		100 80 80		100 100 80		100 90 100		90 100 110		110 100 90 the area
-	s or 22; tex 27	ct. II				5.6		5.4 6.8 2.2		5.3		5.5		5.6		6 5 .ent in
elongation	12	μį		4 W W		4,4,4,		0.44		u. u. u.		41 41 41		u, a, a,) perc
Yarn e	22s or 27 tex	Pct.	517-70	6.0	5170	6.6	1517-70	5.9	1517V	6.6 7.0	151711	6.7 6.5 6.8	517C <u>1</u> √	6.6 6.7 6.8	15170	6.7 6.7 7.0 than 10
ength	50s or 12 tex	Ibs.	ACALA 1517-70	4 4 4 9 9 9	ACALA 1517V	53 51 50	ACALA 1	53 47 40	ACALA 1	50 51 52	ACALA 1	50 48 45	ACALA 1517C1	44 47 47	ACALA 1	47 46 45 45 ;, less
Yarn strength	22s or 27 tex	Lbs.	4	120 124 124	∢	139 131 131	A	136 127 112	A	133 130 132	⋖	134 125 119	A	130 125 124	∢	124 126 121 or tests 1 roller
		희		36 36		38 36		38		37		37 37		38		37 36 36 ted fc
Production Area,	Staple	32d		32		31 31 41		31 41 41		31 31 41		32 31 32		31		31 31 41 selec
oducti	ssific	Code	A A	LT SP	KIC O		~				RUCES	LT SP	TEXAS PASO	LT SP	SO	rcent
State, Production Area,	and Classification Grade Stap	Name	WEST ARIZONA ELFRIDA	EEE	NEW MEXICO ARTESIA	SLA	DEXTER	SLM	HATCH	SLAM	LAS CRUCES	EFE	WEST TEX	IEI	EL PASO	M 31 37 124 47 6.7 5.6 M 31 36 126 46 6.7 5.2 SLM 41 36 121 45 7.0 5.5 * 100 percent selected for tests, less than 100 percent 1/Upland cotton ginned on roller gin

Table 70. --Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1971

suc	or	tex	.1												
Yarn imperfections	508	12 tex	No.		11 8		400		12 17 9		9		6 9 13		111 6 3
Yarn im	22s or	27 tex	No		13 4 18 11		3 12 10		5 15 8 12		4		7 9 112 115		12 10 4
ıce	9	Average	Index		110 120 95 105		120 110 105		120 105 105 100		110		110 110 100 100		90 105 115
Yarn appearance	50s or	12 tex	Index		100 110 90 90		110 100 90		110 100 100 90		100		100 100 90 90		80 90 100
	i	27 tex	Index		120 130 100 120		130 120 120		130 110 110 110		120		120 120 110 110		100 120 130
ngation	50s or	12 tex	Pct.	ENT	4 N N N 0 0 N N	ENT	5.5 5.0 5.0	ENT	0 0 0 0 0 0 0 0 0 0 0 0	ENT	4.8	ENT	0	ENT	N N N N • N
Yarn elongation	22s or	27 tex	Pct.	100 PERCENT	0 0 0 0 0 0 0 0	100 PERCENT	7.2 7.2 6.7	100 PERCENT	6.9 6.8 6.8	100 PERCENT	6.5	100 PERCENT	7.3 7.0 7.1 6.8	100 PERCENT	6.3
ngth	Average	Break Factor	No.		2293 2442 2434 2359		2572 2456 2268		2431 2315 2431 2091		2127		2655 2536 2420 2232		2655 2594 2677
n skein strength		12 tex	Lbs.		7 4 4 4 7 4 4 4 7 4 4 4		47 45 41		44 44 34 44 74		38		4444		49 47 49
Yarn	22s or	27 tex	Lbs.		113 122 119 119		127 121 113		121 115 121 106		101		130 126 120 112		130 129 132
	Comber	waste	Pet.	COKER 310	13.8 20.2 14.5 16.6	COKER 310	15.2 15.1 17.2	COKER 310	18.1 15.0 22.8 17.7	COKER 310	19.0	COKER 310	17.4 15.2 19.6 17.5	COKER 310	16.2 14.7 18.4
80	, Br	Staple	32d in.	J	36 36 35	J	36 35 34	J	35 35 35 4	J	36	J	36 36 36 35		38 37 36
State. Production Area.	Chronological Sampling	and Classification Grade	Code	ST .e	r SP 52 51 51 51		41 51 51	-	7 SP 42 7 SP 42 51 7 SP 52	AROLINA IN	r SP 52	OUTH CAROLINA RIDGE SPRINGS	51 41 F SP 52 F SP 52	NTRAL IPP I	51 51 51
State. P	Chronolo	and CLs Grade	Name	SOUTH EAST ALABAMA ORRVILLE	E E E E	GEORGIA COMER	SLM	MADISON	SLM LT SLM LT LM LM LM LM LM LM LM LM LM LM LM LM LM	NORTH CAROLINA FALLSTON	LM LT SP	SOUTH CAROLINA RIDGE SPRINGS	SLM SLM LM LT	SOUTH CENTRAL MISSISSIPPI TUNICA	222

Table 7b. --Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1971--Continued

imperfections	50s or 12 tex		No.			11 8 9		13 4 25		12 12 24		16 11 20		8 11 17		19 9 16		9 111 30
Yarn imper	22s or 27 te x		No.			14 11 8		14 6 29		13 15 23		19 13 22		11 14 21		33 14 16		7 10 27
0	Average		Index			90 100 110		95 110 80		95 8 5 7		95 95 85		105 95 90		80 110 100		110 95 85
Yarn appearance	50s or 12 tex		Index			80 90 100		90 100 70		90 80 80		90 90 70		100 90 80		70 100 90		100 80 70
Ya	22s or 27 tex		Index			100 110 120		100 120 90		100 90 90		100		011 100 100		90 120 110		120 110 120
elongation	50s or 12 tex		Pct.		*	5 2 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*	55.9	* 17	5.0 5.0	L-7	5.7	*	5.8	*	5.7 5.8 5.8	-	5.8 5.6 5.7
Yarn eld	22s or 27 tex		Pct.		100 PERCENT *	6.4 6.7	100 PERCENT *	6.8 7.0 7.1	100 PERCENT	6.0 6.0	80 PERCENT	6.8 7.2 7.0	100 PERCENT	6.9 7.2 7.2	100 PERCENT	6.9 7.1 7.2	75 PERCENT	7.0 6.9
ıgth	Average Break	Factor	No.			2887 2901 3017		3150 3075 3111		3172 2937 2818		3028 3075 3100		3111 2840 2829		2901 2970 2840		2890 2887 2901
skein strength	50s or 12 tex		Lbs.			53 54 56		60 57 58		60 55 52		56 57 58		58 52 52		54 55 52		54 53 54
Yarn	22s or 27 tex		Lbs.		02	142 141 147		150 150 151	7.0	152 142 138		148 150 150	7	151 140 139	\T	141 145 140		M 31 37 14.9 140 54 M 31 36 16.0 142 53 SLM 41 36 20.6 141 54
	Comber waste		Pet.		ACALA 1517-70	17.1 17.1 20.8	ACALA 1517V	12.8 17.4 19.5	ACALA 1517-70	14.9 17.9 22.8	ACALA 1517V	14.7 14.8 17.6	ACALA 1517V	15.8 14.8 18.0	ACALA 1517C	13.3 15.2 14.2	ACALA 1517C	14.9 16.0 20.6
d	, po	Staple	32d in.		∢	36 36 36	∢	38 36	A	38 36	4	37 37 37	∢	37 37 37	4	38 37 37	∢	37 36 36
State. Production Area.	Chronological Sampling and Classification		Code			SP 32 31 SP 32	0	31 41		31 41 41		31 31 41	ES	SP 32 31 SP 32	S	SP 32 31 31		31 41
State Pro	Chronologi and Clas.	Grade	Name	1	MESI ARIZONA FIFRIDA		NEW MEXICO ARTESIA	SLAM	DEXTER	SLA	НАТСН	SLA	LAS CRUCES	***	WEST TEXAS EL PASO	IXI	EL PASO	SCREE

* LOU percent selected for tests, less than 100 percent in the area $\pm \sqrt{\mathrm{Upl}}$ and cotton ginned on roller gin

Table 8.--Cotton: American upland extra long staple: Quality characteristics by production areas, crop of 1971

	١												
Comper	waste	Pete								17.2	14.8	16.8	
Picker	& card waste	Do+	0 1							7.9	8.6	8.0	
	Com- posite	7.480.0	TUGEY							103	101	103	
	Yellow- ness	;	og							٣) (r	m	
	Gray- ness		No.							_		ı ~	
	Total waste		Pct.						o i	c	אָר אַר	. w	
-	Visible waste		₽o≠					O Domoen	100 101 001		⊣ -	7. 7.	
- i -	Elon- gation 1/8"	_	±°C	• 004				,	"	-	5.4	2.5	
rengun	1/8" gage		71.	c/ rex							31	9,9	J.
Fiber st	Zero			Mpsı							112	8,5	TOT
	Micro- naire			Rdg.					0	1	0.4	4.1	χ. γ.
ength	Coeff.	; ;		Pet.					Del Cerr		32	27	31
Array 1	Upper	duartire		In.							1.41	1.41	1.14
q		3table	Z C C	32d in.							O	2 2	Ot
1. At 0. Are	netion are cal Samplin sification			Code							7	국 문	31
4	State, From Chronologic and Class	0.00	orage.	Name		WEST		Arizona	!	Aguila		≅≥	M
	Array length Fiber Strength	Array length Kicro-Zero 1/8" Elon-Visible Total Upper Coeff, naire gage gage 1/8" waste waste	uction Area, Array length Kiro- Zero 1/8" Elon- Visible Total Gray- Yellow- Com- & card sampling Upper Coeff. naire gage gage 1/8" Waste waste ress ness posite waste Stanle Stanle	Array length Rico- Zero 1/8" gation waste ness ness posite waste stand chartile of Var'n naire gage gage posite chartile of Var'n naire chartile of Var'n naire chartile of Var'n naire chartile	Array length Micro- Quartile Zero Quartile 1/8" gage Elon- Wisible Quartile Total Waste Total Maste Total Waste Total Waste	Array length Array length Micro- Zero 1/8" Elon- Visible Total Gray- Yellow- Com- & card waste Quartile of Var'n In aire gage gage 1/8" Rdg. Mpsi G/tex Pct. Pct. Rdg. Mpsi G/tex Pct. Rct. Ros. Mo. Index Pct.	State, Production Area, Array length Chronological Sampling typer of Var'n aire Grage Grag	State, Production Area, Array length Array length Chronological Sampling Upper Coeff. Oracle Staple Code 32d in. In. Pct. Rdg. Mpsi C/tex Name Code 32d in. In. Pct. Rdg. Mpsi C/tex Name Code Staple Code 32d in. In. Pct. Rdg. Mpsi C/tex Npsi	State, Production Area, Array length (trongles) State, Production Area, (trongles) Sampling (trongles) Sampling (trongles) Sampling (trongles) Sampling (trongles) Sampling (trongles) Sampling (trongles) Staple	State, Production Area, Array length Chronological Sampling Upper Coeff. Grade Staple Code 32d in. In. Pct. Rdg. Mpsi G/tex Pct. Pct. Pct. Rdg. Mpsi G/tex Pct. Rdg. Mpsi G/tex Pct. Rdg. Mpsi G/tex Pct. Rdg. Mpsi G/tex Pct. Rdg. Rdg. Mpsi G/tex Pct. Rdg. Rdg. Mpsi G/tex Pct. Rdg. Rdg. Rdg. Rdg. Rdg. Rdg. Rdg. Rdg	State, Production Area, Array length Chronological Sampling Upper Coeff. Upper Grade Staple Staple Crade Staple Staple Crade Staple Staple Code 32d in. In. Pct. Rdg. Mpsi G/tex Pct. Pct. Pct. Pct. Rdg. Mpsi G/tex Pct. Pct. Rdg. Rdg. Mpsi G/tex Pct. Rdg. Rdg. Rdg. Rdg. Rdg. Rdg. Rdg. Rdg	State, Production Area, Array length Rico- Fiber Strength Rico- Geno Fiber Strength Rico- Geno Geno Rico- Geno Asste Rico- Geno Rico- Rico- Geno Rico- R	State, Production Area, Array length Array le

Table 8,--Cotton: American upland extra long staple: Quality characteristics by production areas, crop of 1971--(Continued)

Color - 50s dued year	ayea yatii	Com	posite	Index				109 118 121
- 50°	200	Blue-	ness	위				27.7 28.9 29.5
2[0]	707	Reflect-	ance	絽				27.8 26.0 25.5
and warm	11 20 0 20		an Tsod	Index				104
doedly s	DECACH	Yellow-	nesses	1				20.00
Color-50s bleached warn	00-10-00	Reflect- Yellow- Com-	ance	Rd				83.8 83.1 83.5
Warn	J 42 11	,	DOST SOC	Index				888
Color - 50s gray warn	100 Bt 43	1	ness	1			100 Percent	9.7
Color -	TOTOO	Reflect-	on or	Rd			100	73.5 71.2 73.0
Varn imprectns	Pr T Corre	80s or	Y	No.				t-
		50s or	דכ הבע	No				104
Varn annearance	ייים שוורכ	80s or	, cc.	Index				888
Varn anr	dd mari	50s or	75 000	Index				100
ngation	11600011		Y 200 }	Pet.			Del Cerro	844
Varn elongation	Talli CTO	50s or 80s or	75 CC	Pet.			2	7,7,7 6,1,6,
		50s or 80s or		Lbs.				332
Vorn strongth	ICTII SC	50s or	דכ הבע	Lbs				69 63 70
	on Area,	umpling ttion	Staple	Code 32d in.				222
-	oductio	ical Stissific		Code				31
	State, Froduction Area,	Chronological Sampling and Classification	Grade	Name	WEST	Arizona	Aguila	ZZZ

Table 9.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1971

	Se Se		اند		945		098		0.640		7665		のたよの		1507		250
	Combe r waste		Pet		18.6 17.4 18.5		17.0 17.6 18.8		16.2 14.7 14.8 16.0		18.5 17.6 17.6 15.7		17.3 17.7 17.4 18.9		16.1 16.9 18.4		18.7 18.5 20.6
Picker	& card waste		Pet.		8.8 7.7 9.7		9.0		7.8 7.7 8.2 8.2		7.6 7.3 8.5		88890 4000		7.5 8.0 8.1 8.1		8.7 9.6
stock	Com- posite	200	Index		888		5 238		% 8 8 8 9 % 9 8 9 9		8883		86 83 84 84		. 8888		88 87 87 87
of raw	Yellow-		No.		4 らら		ろろろ		ろろろろ		NNN0		0000		0000		991
Color	Gray-		No.		m m.±		4 m m		なれたひ		ナののよ		ろろろう		বৰ <i>ন্</i> ত		W # W
Analyzer	Total waste		Pet.		30.00		9.00		0 8 9 9 2 2 1 5		0.00 0.00 0.01 0.01		4.00.0 4.00.0		2.01		20. 10. 10. 10. 10.
Shirley	Visible		Pet.	Percent	2.1 2.2	rcent	1.9.0 0.0	Percent	4444 6466	100 Percent*	1.3 0.9 1.9	Percent*	1.0.0.0 1.0.0.0 1.0.0.0	Percent	0.00	Percent*	1.0
Elon-	gation 1/8"		Pet.	70 Pe	6.50	100 Percent	6.88	71 Pe	7.6	100 Pe	7.6	100 Pe	7.57	95 Pe	7.1 8.0 7.0	100 Pe	6.9
strength	1/8"	979	G/tex		32 34 33		32 36 33		33 35 35 35		32 32 31		32 33 32 32		33 32 33 33		33 30 34
Fiber :	Zero	2923	Mpsi		98 86		103 102 103		97 100 101 103		99 101 102		19828		98 99 97 102		223
	Micro- naire		Rdg.	Pima S-2	33.60	Pima S-4	w w w ø ø ø	ma S-4	www.∓ ∞°0°∞°0.	Pima S-2	64 66 64 66	Pima S-3	2000 E	Pima S-4	4 8 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Pima S-4	
length	Coeff.	17 10 10	Pct.	II.	32 30	긺	333	Pim	88 83 88 88	됩	33 88	IJ.	33333	됩	333333	Pi	32 29 37
Array	Upper Chartile	gur. Lite	In.		1.44		1.47		1.52		1.43 1.43 1.43		1.49 1.41 1.41 1.39		1.47		1.43
я,	hū	Staple	32d in.		4 44		† † † † † † †		ቴ <mark>ድ</mark> ዩድ		在在在在,		4444		2244		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Production Area,	al Sampling fication	Grade			おろれ		† † †		これなる		๓๓๓๘		₩ to to to		ተቴማማ		w w 4
State, Produ	Chronological Sampling and Classification		WEST	Casa Grande		Peoria		Safford		NEW NEXICO		WEST TEXAS		El Paso		Pecos	

* 100 percent selected for tests, less than 100 percent in the area

Table 9.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1971--(Continued)

1	1									- 75 -								
dyed yarn	Com-	posite	Index		102 112 99		103 109 107		111111111111111111111111111111111111111		107 107 109 109		110 105 104		112 117 104 105		107 106 109	
- 50s	Blue-	ness	위		26.6 28.4 25.9		26.3 27.5 27.0		27.6 27.7 27.9 27.4		26.8 27.2 27.2		27.4 27.8 26.7 26.7		27.5 28.6 26.8 26.5		27.1 27.1 27.4	
Color	Reflect-	ance	Rd		29.2 27.7 29.1		28.3 27.3 27.7		26.5 27.9 28.0		27.3 27.7 27.1 26.9		86.6 27.9 27.6		26.1 25.5 28.6 27.5		27.5 28.0 27.5	
ed yarn		posite	Index		101 99 97		10,8%		8888		88.87		8888		3883		97 102 93	
Color-50s bleached yarn		ness	4		33.80		3.6		7 m m m 0 m r m		6.00 6.00 7.00 7.00		1092		244 K		4.9.5	
Color-50	Reflect-	ance	Rd		83.5 83.1 82.7		83.4 82.2 84.2		83.0 83.1 83.1		82.9 81.4 84.0 82.8		83.9 81.4 81.7 81.3		83.3 82.4 81.6 81.5		84.3 84.3 82.1	
yarn	Com-	posite	Index		95 99		93		8888		87 89 89		88 88 88 88 88 88 88		86 85 87 87		87 90 87	
50s gray	Yellow-	ness	위	IC+	12.4 12.4 12.6	ابد	12.6	اند	13.1 12.5 12.7 12.8	*	12.5 12.5 12.4 13.1	*	12.9 12.8 13.0	اند	12.8 12.7 13.1 12.8	*	13.6 13.0 13.3	
Color -	Reflect-	ance	Rd	70 Percent	66.9 69.0 67.8	100 Percent	66.1 66.2 66.5	71 Percent	63.3 64.5 66.8 65.4	100 Percent*	63.9 63.6 64.7 63.7	100 Percent*	63.6 61.0 61.4 60.2	95 Percent	62.8 63.0 63.2	100 Percent*	62.0 64.1 62.7	
Yarn imprfetns	80s or	7 tex	No.	7	0 O Z	위	H 674	I	4000	위	нн юн	위	0 th 0	ON	чыгы	위	0 H S	
Yarn im	50s or	12 tex	No.		01 01 TV		のうみ		こならし		нн ю а		4230		d 200 P		01 mVo	
appearance	80s or	/ tex	Index		999		100		130 110 120		011 150 110		130 100 80 90		1100		120	
Yarn appe	50s or	12 tex	Index		223		100		2011		11000		130		100 001		130	:
Yarn elongation	80s or	/ tex	Pct.	Pima S-2	5.1 5.1	Pima S-4	52.53	Pima S-4	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Pima S-2	50.00 50.00 10.00	Pima S-3	0.1.4.0.	Pima S-4	0.00 d	Pima S-4	V V V V	
Yarn elc	50s or	12 tex	Pct.		5.5		5.3		5.9 6.1 5.7		7.00.00		0000 0000		5.50		5.5	000
strength	80s or	7 tex	Lbs.		37 37 38		39 39		37 37 35		37 36 37 36		37 35 35 35		32 32 32 32		37 34 33	
Yarn st	50s or	12 tex	Lbs.		67 63 67		1202		65 67 67		66 62 66 67		75 75 75 75 75 75 75 75 75 75 75 75 75 7		4 6884		67 62 59	4004
n Area,	mpling tion	Staple	32d in.		###		#### ####		\$22\$		\$\$\$\$		### #################################		<u> </u>		## ##	9 6-4
State, Production Area,	Chronological Sampling and Classification	Grade	WEST	Casa Grande	य लयं.	Peoria	###	Safford	ひななの	NEW MEXICO Las Cruces	೯೯೯೩	WEST TEXAS	ひなたの	El Paso	೯೯೩೩	Pecos	m m #	*

* 100 percent selected for tests, less than 100 percent in the area

-76-

Table 10.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 68 short staple samples collected at triweekly intervals from selected gin points, crop of 1971

									, ,								
		Spinning Potential	No. 37.6 5.0	+.225 +.646	+.680 091 +.106	279 +.251 +.264	196	+.040 018 053	024		+.516	+,403 +,356	+.194 +.134	228	229 361 329	231 +.175 276	381 +.237 +.311
	Dicker	& card waste	Pet. 7.12 1.42	625	443 052 502	+.099 +.013 180	+.807 +.845	017 133 061		470	128	168 034	522 374	+.611 +.646	+.175 +.094 +.191	+.430 +.215 +.208	+.408 456 456
	stock	Com- posite	Index 91.4 4.5	+.591	249 059 204	+.084 +.228 +.001	129 124	942	061	053	+.079	+.030	167 +.025	+*00+ +*031	+.850 +.182 +.846	+.002 +.061 047	291 +.017 +.130
	Color of raw st	Yellow- ness	3.9 3.9	+.044 +.140	+.206 +.028 +.144	129 103 +.255	105 121	+.187	133	-,018	015	+.102	+.095	020	228 +.398 124	011 182 +.115	278 +.266 +.278
	Color	Gray- Y	3.4 3.4	518 +.006	+.198 +.075 +.216	108 289 +.077	+.061	+.187	017	040*+	121	097 096	+.195 +.025	107	832 216 825	075	+.262 006 111
	nalyzer	Total waste	Pet. 4.34 1.42	643 076	323 106 520	+.026 +.023 208	626*+	+.058 121 124	+.845	238	+.102 +.111	089 +.026	471	+.570	+.087 +.071 +.106	+.301 +.346 +.049	+.383 460 462
	Shirley Analyzer	Visible waste	Pet. 2.85 1.22	618 034	276 031 429	+.070	64.979	+.061 105 129	+.807	196	+.134 +.146	146 033	414	+.506	+.079 +.099 +.110	+ + 280	+.305
	E]00	gation 1/8"	Pct. 7.07	+.094	+.220 185 150	592	250	+.077 +.255 +.001	-,180	+.264	+,145 +,160	+.703	122	+.069	080 +.009 118	128 +.195 227	366 +.175 +.252
	strength	1/8" gage	G/tex 20.0 .9	+.033	+.074 +.181 104	+.331	+.083	289	+.013	+.251	+.549 +.478	+.016	066	022	+.195 +.134 +.218	067 +.261 195	096
	Fiber st	Zero gage	Mpsi 79.2 3.6	+.081	379 +.317 +.111	+.331	+.070	108 129 +.084	+*066	279	+.054 +.115	575 499	+.113 +.116	024 056	+.182 +.199 +.245	071	+.216 098 143
		naire	Rdg. 3.78 .93	+.321	+,418	+.111 104 150	429	+.216 +.144 204	502	+,106	236	324	+.684 +.503	712 684	180 +.012 162	198 709 +.253	438 +.762 +.681
	length	50/2.5 unif.	Pet. 44.5	+.032 042	144 +.381	+.317 +.181 185	031 106	+.075 +.028 059	052	091	+.111 +.174	232	+.369 +.421	303	086 +.328 +.039	+.000	335 +.384 +.389
	Fiber le	2.5% span	In. .95	+.089	144	379 +.074 +.220	276	+.198 +.206 249	£44*-	+*680	+.146 +.124	+.258 +.148	+.284	301	310 226 387	218 124 102	321 +.328 +.334
		Staple	32d in. 30.3	+.033	+.688 042 +.206	272 +.267 +.239	034	+.006 +.140 065	283	949*+	+.358	+.255	+.131 +.054	126 116	201 034 221	23 ⁴ +.173 260	319 +.202 +.254
-		Grade	Index 85.9 5.5	+.033	+.089 +.032 +.321	+.081 +.033 +.094	618	518 +.044 +.591	625	+.225	027	007	+.292	479 488	+.397 +.029 +.373	- 260 - 228 - 086	526 +.436 +.506
		Item	Sample Distribution: Nean Standard deviation (±) Correlation Coef. for:	Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronaire Fiber Fibe	Zero gage	Visible Wastepct Total Wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8s (74 tex)pounds 22s (27 tex)pounds Yarn elonation:	8s (74 tex)pct 22s (27 tex)pct Yarn Appearance:	8s (7½ tex)index 22s (27 tex)index Varn immenfactions.	8s (74 tex)No. 22s (77 tex)No. Color - 22s man vern.	ReflectanceRd Yellownesstb Composite Maches Warn	Reflectance yan. Reflectances.	ReflectanceRd Bluenessbd

	Yarn strength	ength	Yarn elongation		Yarn appearance	arance	Yarn imprfctns	rfetns	Color -	22s gray yarn	yarn	Color-22s bleached yarn	bleached		Color - 2	22s dyed yarn	yarn
Item	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine (22s	Coarse 8s	Fine F	Reflect- ance	Yellow ness	Com-	Reflect- Ye	Yellow- C	Com- Re posite a	Reflect- ance	Blue- ness p	Com- posite
Sample Distribution: Mean. Standard deviation (±)	Lbs.	Lbs.	Pet. 7.2	Pct. 6.2	Index 119.9	Index 112.5	No. 63.2	39.6	Rd. 66.0	4 11.5	89.2	Rd 84.2	3.8 10	Index 100.3 2	<u>Rd</u> 27.4,	위 영·	Index 105.3
Correlation Coef. for Classification: Gradeindex Staple32d inches	027	030	+.000	' +	었다	+.270 +.054	126	488	+.397	+.029 034	+.373	260	228 +.173	260	526	+,436	+. 506 +. 254
2.5% spaninches 50/2.5pct Micronairereading	+.146 +.111 2%	+.124 +.174 238	+.258 232 324	+.148 262 517	+.28 ⁴ +.369 +.68 ⁴	+.054 +.421 +.503	301 303 712	327 326 684	310 086 180	226 +.328 +.012	387 +.039 162	218 +.000 198	124 308 709	102 +.182 +.253	321 335 438	+.328 +.384 +.762	+.334 +.389 +.681
Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	+.054 +.549 +.145	+.115 +.478 +.160	575 +.016 +.703	- 499 + .079 + .666	+.113	+.116 +.035 232	024 022 +.069	056	+.182 +.195 080	+.199 +.134 +.009	+.245 +.218 118	071 067 128	014 +.261 +.195	042 +.195 227	+.216 096 366	098	143 008 +.252
Visible wastepct Total wastepct	+.134	+.146 +.111	146 089	033	414 471	216	+.506	+.553	+.079 +.087	+.099	+.110	+.296	+.280	+.083	+.305	375	376
Grayness	121 015 +.079	087	007 +.102 +.030	096 +.055 +.128	+.195	+.025	107 020 +.044	106 033 +.031	832 228 +.850	216 +.398 +.182	825 124 +.846	075	060	017 +.115 047	+.262 278 291	006 +.266 +.017	111 +.278 +.130
Picker & card wastepct	128	112	-,168	- *03#	525	374	+.611	949*+	+.175	460°+	+.191	+.430	+.215	+.208	+,408	- .456	474
Spinning PotentialNo.	+.516	+.517	+,403	+*356	+.194	+.134	228	262	229	361	329	231	+.175	276	381	+.237	+.311
Yarn skein strength: 8s (74 tex)pounds 22s (27 tex)pounds Yarn elonsation:	076°+	046*+	+.465 +.389	+.522	133	044 018	+.083 +.084	+.075	+.020 +.018	₹₹₹0°+ 000°+	+.017	253	+.396	395	177	062	+.029
8s (74 tex)pct 22s (27 tex)pct	+,465	+.389	+,902	+.902	192	202	+.149 +.309	+.119 +.256	018 +.072	211	109	+.002	+.270	-,161	219	007	+.078
8s (74 tex)index 22s (27 tex)index Varn imperfections.	133 044	089	192	331	+.742	+.742	785	794	213	136	225	276	348	022	357	+.524 +.429	+,499
8s (7t tex)	+.083	+.084	+.149 +.19	+.309	785	749	+.971	+.971	+.097	+.162	+.126	+,428	+.366	+.130	+.428	612	585
ReflectanceRd Yellownessth Compositeindex	+.020 +.000 +.017	+.018 +.044 +.033	018	+.072	213	063	+.097 +.162 +.126	+.101 +.141 +.128	+.113	+.113	+.957	+.068 +.123 +.098	019	+.046 +.175 +.119	146 241 195	+.004 +.103 +.039	+.063 +.159 +.105
ReflectanceRd Yellowness+b Compositeindex	+.396	251 +.346 366	+.002 +.270 161	+.077 +.383169	276 348 022	169	+.428 +.366 +.130	+.419 +.347 +.135	+.068 019 +.046	+.123 135 +.175	+.098 089 +.119	162	162	+.803	+.213 +.352 053	145 674 +.270	177 584 +.198
ReflectanceRd Bluenessb Compositeindex	177 062 +.029	208 002 +.083	219 007 +.078	112 182 080	357 +.524 +.499	320 +.429 +.428	+.428 612 585	+.441 601 579	146 +.004 +.063	241 +.103 +.159	195 +.039 +.105	+.213 145 177	+.352 674 584	053 +.270 +.198	794	+.967	915 +.967

Table 11.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 317 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1971

	Spinning	Potential	No.	62.8 8.9	+.366	+.769 +.339 +.024	+ 4.496 + 697 - 116	218	363 256 +.132	-,462		+.822 +.876	+.078 +.207	+,240 +,207	231 266	+.276 107 +.268	112 166 +.000	512 +.280 +.408
	Picker	Waste	Pct.	6.05	776	446 205 328	338 374 +.032	+.740 +.795	+.546		-,462	453 426	+*050 +*034	407	024°+ 7447°+	532 +.070 548	005 +.351 160	+.391 274 352
+ ook	- Book	posite	Index	7.2	+,436	+.148 030 +.056	+.087 +.136 +.103	322	527	338	+.132	+.158 +.148	+.151 +.167	001 +.008	148 134	+.513 124 +.508	+.132 279 +.250	1 ⁴ 3 +.168 +.170
Color of raw etook	Yellow-	ness	No.	2.8	089	301 +.058 048	+.046 114 061	+.026 +.084	+.373	060*+	256	137	235 253	+.007	+.318 +.318	434 +.711 216	019 +.359 177	+.059 116 108
0.00	Crav?	ness	No.	2.2	718	362 +.029 055	238 371 079	+,486	+.373	÷.546	363	391	203 240	037	+.284 +.271	850 +.203 820	152 +.414 306	+.323 324 352
remilan	Total	waste	Pct.	3.14	698	270 069 335	166 214 +.060	+,920	+.552 +.084 366	+.795	270	185	+.013	206	+,466	475 +.162 457	074 +.346 219	+.289 324 337
remilent welning	Vicible	waste	Pct.	2.12	675	199 +.040 171	178 216 016	+.920	+.486 +.026 322	04/-+	218	183 164	+•034 +•022	169 129	+.330	-,400 +,091 -,397	010 +.248 130	+.215 220 234
	Elon-	gation 1/8"	Pct.	6.46	058	+.008 308 412	-,490 -,224	016 +.060	079 061 +.103	+.032	116	124 074	+.618 +.455	274 270	+.314 +.328	+.119 076 +.090	+.287 068 +.245	+.073 027 054
Fiber strength	1/8"	gage	G/tex	22.6	+.412 +.474	+.510 +.285 087	+.790	216 214	371 114 +.136	374	+.697	+ . 864 +.838	198	+.196 +.130	010	+.261 +.092 +.305	288 +.034 239	311 +.071 +.185
Riber o	Zero	gage	Mpsi	82.9	+.396	+.300	064	178	238 +.046 +.087	338	964.+	+.750	5 ⁴ 4 168	+.324	014	+.163 +.247 +.261	-,414 +,150 -,368	241 008 +.097
	Micro-	naire	Rdg.	4.26	+.220 +.329	+.228 +.390	+.000 087 412	171	055 048 +.056	328	+ * 05#	135	286 145	+.382 +.430	672 663	+.140 189 +.102	+.014 411 +.198	238 +.420 +.374
Jength	50/2 5	unif.	Pet.	1.5	+ <u>,116</u> + <u>,228</u>	+.152	+.285 +.285 308	690° -	+.029 +.058 030	205	+.339	+.360	265	+,465	266	036 +.112 +.006	139 036 074	372 +.275 +.342
Fiber 1	2 50	span	il.	1.09	+.391	+,152 +,228	+.300 +.510 +.008	199	362 301 +.148	944	+.769	+.627	+.159	+.150 +.158	277	+.388 203 +.336	+.034 351 +.149	364 +.298 +.362
	Staple		32d in.	34.5	+,402	+.819 +.228 +.329	+.289 +.474 158	190	419 376 +.207	-,438	+.726	+.543 +.608	+.079 +.226	+.218 +.236	-,451	+,416 -,316 +,345	017	-•443 +•364 +•439
	Grade		Index	91.4	+,402	+.391 +.116 +.220	+.396 +.412 058	675 698	718 089 +.436	776	+.366	+• 447 +• 398	095	+.277 +.244	317	+.685 006 +.732	+.029 306 +.186	368 +.329 +.368
	Item		Sample Distribution:	Mean. Standard deviation (±) Correlation Coef. for:	Grapleindex Staple32d inches	2.5% spaninches 50/2.5pct Microairepct Wicher strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct Shirley Analyzer:	Visible wastepct Total wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct Varn Amearance:		22s (27 tex)No. 50s (12 tex)No. Color - 22s gray varn:	ReflectanceRd Yellownesstb Compositetb	Reflectance	ReflectanceRd Bluenessb Compositeindex

yarn	Com- posite	Index	109.9	+.368	+.362 +.342 +.374	+.097 +.185 054	234	352 108 +.170	352	+.408	+.220	+.133	+.218 +.179	-,452	+.282 054 +.307	+.181 419 +.372	875
22s dyed yarn	Blue- ness	위	27.3	+.329	+.298 +.275 +.420	008 +.071 027	220 324	324 116 +.168	274	+.280	+.078	+.157	+.172	458	+.321 101 +.291	+.393	879-
Color -	Reflect- ance	뗾	26.7	368 443	364 372 238	241 311 +.073	+.215	+.323 +.059 143	+.391	512	389 425	083	248	+.341	222 057 287	043 +.277 206	678
Color-22s bleached yarn	Com- posite	Index	103.3	+.186	+.149 074 +.198	368 239 +.245	130	306 177 +.250	-,160	000*+	169	+.438	095	205	+.348 161 +.323	+.811	206
2s bleac	Yellow- ness	위	0 %	306	351 036 411	+.150 +.034 068	+.248	+.414 +.359 279	+.351	-,166	970°-	211	103	+.443	464 +.389 371	324 719	+.277
Color-22	Reflect- ance	踞	84.2	+.029	+.034 139 +.014	414 288 +.287	010	152 019 +.132	005	112	233	+.453	234	900	+.189 +.028 +.175	32 ⁴ +.811	043 +.393 +.181
yarn	Com- posite	Index	93.1	+.732+.345	+.336 +.006 +.102	+.261 +.305 +.090	397	820 216 +.508	548	+.268	+.371 +.338	+.091	+.183 +.144	225	+.936	+.175 371 +.323	287 +.291 +.307
22s gray yarn	Yellow- ness	위	10.5	006	203 +.112 189	+.247 +.092 076	+.091	+.203 +.711 124	+.070	107	+,106 +,040	220	+.070	+.398	297	+.028 +.389 161	057
Color -	Reflect- ance	Rd.	69.4	+.685	+.388 036 +.140	+.163 +.261 +.119	400	850 434 +.513	532	+.276	+.313 +.306	+ . 166 +.163	+.121 +.111	319	 297 +.936	+.189 464 +.348	222 +.321 +.282
rfctns	Fine 50s	છ	17.7	325	295	078 053 +.328	+.310	+.271 +.318 134	024.+	266	050	+ . 160 +.038	544	+.965	322 +.372 239	+.049 +.391 138	+.327 407 412
Yarn imprfctns	Coarse 22s	<u></u>	23.3	317	277	014 010 +.314	+.330	+.284 +.318 148	Δηη. +	231	+.009	+.103	461	+.%5	319 +.398 225	006 +.443 205	+.341
arance	Fine 50s	Index	9.1	+.244 +.236	+.158 +.481 +.430	+.250 +.130 270	129	026 013 +.008	37₺	+.207	+.226 +.173	362	+.798	-,475	+.111 020 +.144	213 142 064	205 +.139 +.179
Yarn appearance	Coarse 22s	Index	113.3	+.277	+.150	+.324 +.196 274	169	037 +.007 001	204	+.240	+.277	425	+.798	461	+.121 +.070 +.183	234 103 095	248 +.172 +.218
ngation	Fine 50s	Pct.	4.7	061	+.248 166 145	468 102 +.455	+.022 041	240 253 +.167	+.034	+.207	004	+.894	433	031 +.038	+.163 260 +.079	+,4448	190 +.252
Yarn elongat	Coarse 22s	Pct.	6.3	095	+.159	544 198 +.618	+.034	203 235 +.151	+.050	+.078	052	+.894	425	+.103	+.166 220 +.091	+.453	083 +.157 +.133
	Fine 50s	Lbs.	36.7	+.398	+.689 +.339 132	+.655 +.838 074	164	391 196 +.148	426	+.876	+.972	+.056 +.142	+.212	016	+.306 +.040 +.338	172 046 117	425 +.120 +.267
Yarn strength	Coarse 22s	Lbs.	105.5	+.447	+.627	+.750 +.864 124	183	391	453	+.822	+.972	052	+.277	+.009	+.313 +.106 +.371	233 004 169	389 +.078 +.220
	Item	Sample Distribution.	Mean. Standard deviation (±). Correlation Coef. for:	Classification: Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Microairereading Fiber strangth.	Zero gageMpsi 1/8" gagegrams/tex Elongation [1/8")pct	Visible wastepct Total wastepct Total wastepct	Grayness	Picker & card waste.pct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (2t tex)pounds	22s (27 tex)pct 50s (12 tex)pct	Jarn Appearance: 22s (27 tex)index 50s (12 tex)index	228 (27 tex)No. 508 (12 tex)No.	Reflectance	Reflectance	ReflectanceRd Bluenessb Compositeindex

Table 12.--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 40 long staple samples, collected at triweekly intervals from selected gin points, crop of 1971

							-	80-								
	Spinning Potential	No. 72.1 8.2	+.777 +.637	+,450	+.713 +.750 412	553	633 +.059 +.678	-,475		+. 879 +.	+.533 +.641	390	+.269 +.223	+.641 +.112 +.670	+.250 033 +.219	343 +.146 +.240
2	Ficker & card waste	Pct. 9.38 .98	516	217 248 +.107	3 ¹⁴ 4 447 +.261	+.529	+.525		-,475	476	121 388	184	+.501	395 067 401	327 +.057 278	+.266 248 271
ock	Com- posite	Index 97.5 6.2	+.883	+.192 +.341 546	+.792 +.731 546	643	960	944	+.678	+ . 838 +.820	+.350	415	+,103 +,156	+.928 +.151 +.942	+.196 082 +.205	158 +.007 +.075
Color of raw stock	Yellow- ness	No. 2.9	+.011	+.012 +.066 +.048	+.107 086 022	058	+,186	051	+.059	012	142 106	009	+.100	309 +.656 097	002 +.222 100	+.012 +.057 +.039
Color	Gray- Y	No. 2.0 1.3	860	148 342 +.535	733 672 +.502	+.677	+.186 960	+,525	633	797	308	+.354	050	879 094 876	226 +.089 232	+.118 +.009 050
lyzer	Total waste	Pct. 3.44 1.15	728	+.110 354 +.463	619 470 +.392	+.973	+.643 054 623	+.553	%4	571	029	+.224 +.201	+.018	- 483	082	+.202 +.056 033
Shirley Analyzer	Visible waste	Pet. 2.38 1.13	776	+.119 382 +.524	+.404 +.404	+.973	+.677	+.529	553	909:-	075	+.295 +.280	074 149	496 027 501	094 297 +.078	+.138 +.085 +.009
1	gation 1/8"	Fet. 5.95 .46	- 1449	143 +.017 +.330	697	+.404	+.502 022 546	+.261	-,412	550	+.115	+.357	+.007	480 345 574	199 020 144	+.097
rength	1/8" (gage	G/tex 24.2 2.3	+.792	+.538 +.564 245	+.676	964*-	672 086 +.731		+.750	+. 865 +.	+.324	231	+.021	+.735 +.078 +.730	+.222 226 +.291	397 +.267 +.352
Fiber strength	Zero gage	Mpsi 85.6 6.4	+.786 +.638	+.237 +.305 609	+.676 697	624 619	733 +.107 +.792	344	+.713	+.843 +.848	+,160 +,226	503	+.232	+.692 +.312 +.776	+.162 +.088 +.092	186 015 +.071
	Micro- naire	Rdg. 3.96 .53	508	+.136 +.074	609 245 +.330	+.524 +.463	+.535	+,107	864	570	307	+.686 +.586	511	422 +.036 422	093	173 +.492 +.391
ıgth	50/2.5 unif.	Pct. 43.6 1.7	+.545	+.368	+.305 +.564 +.017	382	342 +.066 +.341	248	+.502	+.519	+.265 +.390	011	+.059 +.018	+.293 +.034 +.283	+.017	372 +.200 +.279
Fiber lengt	2.5% span	In. 1.16	+.196	+.368 +.136	+.237 +.538 143	++	148 +.012 +.192	-,217	+,450	+ <u>,</u> 441 + <u>,</u> 457	+.261 +.438	023	062	+.221 +.098 +.249	+.090	380 +.444 +.471
	Staple	32d in. 36.3 1.1	+*586	+.654 +.346 349	+.638 +.727 504	351	572 035 +.582	398	+.637	+.760	+.168 +.348	339	+ <u>,</u> 120 + <u>,</u> 084	+.511 +.069 +.538	+.190 096 +.189	332 +.239 +.317
	Grade	Index 91.9 7.1	+.586	+.196 +.545 508	+.786 +.792 449	776	860 +.011 +.883	516	+-774	+.871 +.860	+.337	372	+.117 +.103	+.782 +.144 +.805	+.259 +.007 +.219	226 +.022 +.111
	Item	Sample Distribution: Mean Standard deviation (±). Correlation Coef. for:	Classification: Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronairereading	Zero gage	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds		22s (27 tex)index 50s (12 tex)index Varn imperfections.	22s (27 tex)No. 50s (12 tex)No.	ect owr	Reflectance	ReflectanceRd Bluenessb Compositeindex

rn	Com- posite	Index	108.8	+.111	+.471 +.279 +.391	+.071 +.352 094	+.009	050 +.039 +.075	271	+.240	+.213	+.114	+.432	312	+.146 +.032 +.153	+.107 160 +.168	878 +.961
22s dyed yarn	ze- Cc		27.1 10						Ċ								
- 1 -		위	27	+.022	+.444 +.200 +.492	015 +.267 082	+.085	+.009 +.057 +.007	248	+,146	+.105	+.030	+,461	368	+.093 +.079 +.111	+.029	726+
Color	Reflect	찖	26.7	226	380 372 173	186	+.138	+.118 +.012 158	+.266	343	318	236 284	320	+.186	192 +.065 170	201	726
hed yarn	Com- posite	Index	103.4	+.219 +.189	+.245 +.078 +.075	+.092 +.291 144	+.078	232 100 +.205	278	+.219	+,282	+.263	+.067	218	+.286 +.093 +.291	+.837	129 +.146 +.168
Color-22s bleached yarn	Yellow- ness	₽1	. T.E.	4.007	354	+.088 226 020	297	+.089	+.057	033	940	147	154	+.284	240 +.144 166	126	038 235 160
Color-2	Reflect-	쬐	4.48	+.259 +.190	+.090 +.017 093	+.162 +.222 199	094	226 002 +.196	327	+.250	+.300	+.24 ⁴ +.288	+.007	095 149	+.212 +.172 +.250	126	201 +.029 +.107
y yarn	Com- posite	Index	92.8	+.805	+.249 +.283 422	+.776 +.730 574	501	876 097 +.942	-,401	029.+	+.802	+.335	263	+.056	+.955	+.250 166 +.291	170 +.111 +.153
22s gray yarn	Yellow-	위	10.7	+.144	+.098 +.034 +.036	+.312 +.078 345	027	094 +.656 +.151	290	+.112	+,171	196	198	990	 016 +.266	+.172 +.144 +.093	+.065 +.079 +.032
Color -	Reflect- ance	Rd.	69.0	+.782	+.221 +.293 422	+.692 +.735 480	496	879 309 +.928	395	+.641	+2.765 +.754	+.398	272	+.015	016	+.212 240 +.286	192 +.093 +.146
rfctns	Fine 50s	No.	9.5	+.103 +.084	152 +.018 596	+.260 021 055	149	111 032 +.156	+,462	+.223	+.217	+.137	698	+.911	+.072 066 +.067	149 +.304 284	+.197
Yarn imprfctns	Coarse 22s	Sl	25.4	+.117 +.120	062 +.059 511	+.232 +.021 +.007	074 +.018	050 +.100 +.103	+.501	+.269	+.221 +.221	+.104 028	700	+.911	+.015 +.087 +.056	095 +.284 218	+.186 368 312
arance	Fine 50s	Index	79.2 9.4	290	+.022 066 +.586	415 217 +.267	+.280	+.258 +.035 305	267	hh2	386	050 +.031	+.787	812	257	+.028 158 +.118	178 +.348 +.303
Yarn appearance	Coarse 22s	Index	102.0	372	023 011 +.686	503 231 +.357	+.295 +.224	+.354 009 415	184	390	481	125	+.787	700	272 198 338	+.007	320 +.461 +.432
	Fine 50s	Pet.	6.5	+.461 +.348	+.438 +.390 212	+.226 +.521 +.002	149	427 106 +.466	388	+.641	795.+	+.855	102 +.031	028	+.502 091 +.461	+.288 203 +.326	284 +.063 +.154
Yarn elongation	Coarse 22s	Pet.	6.5	+.337	+.261 +.265 307	+.160 +.324 +.115	075	308 142 +.350	121	+.533	+.429	+.855	125	+.104	+.398 196 +.335	+.244 147 +.263	236 +.030 +.114
	Fine 50s	.sqi	42.8 6.5	+.860	+.457 +.526 558	+.848 +.865 572	609	780 006 +.820	491	906*+	+.991	+.410	483	+.221	+.754 +.167 +.792	+.279 046 +.251	312 +.103 +.205
Yarn strength	Coarse 22s	.sqi	13.5	+.871.	+,441	+.843	606	797 012 +.838	924	+.879	+.991	+.429	481	+.221	+.765 +.171 +.802	+.300	318 +.105 +.213
	Item	Common Distriction	Mean. Mean. Standard deviation(±). Correlation Coef. for:	Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronairereading Fiber et and the F	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	CaynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds	22s (27 tex)pct 50s (12 tex)pct	1arn Appearance: 22s (27 tex)index 50s (12 tex)index	120	Reflectance	Reflectance	Contor - Zes uyeu yarn: ReflectanceRd Bluenessb Compositeindex

Table 12a--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on combed yarns from 40 long staple samples from selected gin points, crop of 1971

	Yarn imperfections	50s	No.	11.2		+,285 +,174	128	643	+.362 +.173 189	309 234	257 +.005 +.318	+,169	+.394	+,122	+.359	+°025 +°048	787	+,917
	Yarn imp	22s	No.	13.1		+.266 +.232	+.022 +.105	505	+.318 +.258 143	236	172 +.126 +.247	+.207	+*456	0 1 0°-	+.347	+.060 +.078	814 829	+.917
	earance	50s	Index	91 .2 10.9		235	+.032 +.096	+.614	40t 19t +.293	+.263 +.228	+.242 022 318	137	401	062	382	+°036 +°039	+.829	829
Combed Yarn Values	Yarn appearance	22s	Index	110.2		36 2 411	068	+* 598	470 349 +.353	+.334	+.257 036 323	061	LO4*	+.011	*.456 481	+.027 +.038	+.829	814 787
Combed	gation	50s	Pct.	5. 5.		+,421 +,204	+.300	136	+.158 +.396 +.150	111	306 009 +.328	280	+.524	288	+,415	+.760	+.038 +.039	+.078 +.048
	Yarn elongation	22s	Pet.	8.9		+.338 +.112	+.172 +.380	170	+.006 +.313 +.226	163	1 <i>27</i> 162 +.150	116	944*+	213	+.264 +.243	+.760	+.027 +.036	+.060
	ength	50s	Lbs.	49.9		+.850	+.388 +.452	656	+.882 +.796 576	625 591	816 004 +.848	844	948*+	154	+*695	+.243 +.421	481 387	+.365
	Yarn strength	22s	Lbs.	133.1 13.9		+.868 +.721	+.356+.4.458	637	+.886 +.798 577	628	827 012 +.867	+T+*-	7±84-	-,126	+.992	+.264 +.415	456	+.347
Comber	waste		Pet.	16.86 2.44		368	521 442	264	510	+.099 +.107	+.107 057 134	994°+	904*-		126 154	213 288	+.011	040 +.122
Picker	& Card	w gs c c	Pct.	9.38		516	217 248	+.107	344 147 +.261	+.529 +.553	+.525 051 446		475	994*+	844*- 4148	116	061	+.207 +.169
T	Statistical Items		Sample Distribution:	Mean. Standard deviation (±)	Correlation Coeff. for	Classification: Gradeindex Staple32d inches	2.5% spaninches 50/2.5 unifpct	Micronairereading	Zero gage	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Comber wastepct		22s (27 tex)pct 50s (12 tex)pct	22s (27 tex)index 50s (12 tex)index Combed varn imperfections:	22s (27 tex)No. 50s (12 tex)No.

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 68 short staple samples, collected at triweekly intervals from selected gin points, crop of 1971 Table 13. -- Cotton:

						Depend	Dependent Variables	les					
Statistical Items	Picken	Yarn skeir	Yarn skein strength	Yarn el	elongation	Yarn appearance	earance	Yarn imp	Yarn imperfections		ව	Color of 22s	yarn
	& card	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse	Fine 22s	Coarse	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for: Dependent variable. Grade index. Staple length Mcronaire Fiber strength (0 gage)	Pet. 7.1 86 30.3 3.8 7.9 1.5	1.08. 293 86 30.3 3.8 7.9	108. 86 86 30.3 3.8 79	Pet. 7.2 86 30.3 3.8 79	76t. 6.2 86. 30.3 3.8 79	Index 120 120 86 30.3 3.8 79	Index 112 86 30.3 3.8 79	No. 63 863 30.3 3.8 7.9	No. 100.33	30.3 30.3 30.3 7.9 7.9	Index 89 86 30.3 3.8 79	Index 100 86 30.3 3.8 79	105 86 30.3 3.8 79
Standard Deviations (±) for Dependent variable. Grade index. Staple length. Micronaire. Fiber strength (0 gage). Uniformity ratio.	1.42 5.5 86 3.6	14.1 5.5 .86 .93 3.6	7.4.7	,		7.0 7.5 .86 .93 .93	11.2 23.6 33.6 1.1	27.7 5.5 3.6 3.6	17.0 5.8 8.93 3.63	5.0 5.0 3.6 3.6 1.1	, 4 m	7.5. 2.6.93.6.1.1	7. 7. 88 3.633.633
Grade index. Grade index. Staple length. Micronaire. Fiber strength (0 gage). Uniformity ratio. Maltiple Cor. Data for: DEFENDENT VARIABLE with			03 +.33 +.12 +.12 +.17	+ +		+.29 +.13 +.68 +.11	+ . 27 + . 50 + . 50 + . 12 + . 42	48 13 71 02			+.37 16 +.25 +.04		+ + . 51 + 68 +
GRADE INDEX, STAPLE LENGTH Multiple Cor. Coef Partial Cor. Coef. for:	.68	•36	ųξ.	.25	.21	•32	.27	64.	20	.68	44.	.27	.56
Grade index. Staple length	†6	+.36	+.34 +.34	01 +.25	+.20	+.29	+.27	48	49	+.27	+.39	08	+ + .52
Grade index	*98.	04* +.36	*46.+	01* +.25*	+.20*	+.29* +.12*	+.27*	48 11*	48	*50* + + • 64	+.38	***************************************	+,50 +,24*
Constant (a)	+33.87	+122,91	+33.33	+1.56	+2.62	+58.31	+47.56	+375.37	+227.37	-91.40	+99.93	+136.46	+27.29
Grade index Staple length. Standard error (±) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MTGROMATRE.	-,16 -,43 1,04	10 +5.92 13.18	₩ 48 48 48		01 +114 60	+.37 +.99 6.66	+,55 +,59 10.82	-2.38 -3.55 24.10	-1,49 -1,98 14,71	+.18 +3.74 3.69	+.32 -1.26 4.13	05 -1.06 3.39	+,44 +1,34 4,01
Multiple Cor. Coef	•73	•53	94.	84.	.61	69.	.52	92.	472.	.68	.51	54.	.76
Grade index. Staple length. Micronaire. Beta Coefficients for:	59	+.10 +.45 41	+.07 +.41 34	+.14+.35	+.14 +.37 59	+.10 01 +.64	+.13	+.02	- 4 63	+ + .29 + .66 13	+	21 34 +.37	+•43 +•19 +•61
Grade index. Staple length. Micronaire. Regression Emation:	21*	**00*+ ††*+ ****-	+.07* +.07* 3 ⁴ *	+.13*	+.12*	**00*+ **00*+	+.12*	+.01* 62	30 +.02*	+.2\psi * +.66 +.6611*	+,47	20* +.39*	+ + + + + .33
Contant (a) Regression Coef. for:	+30.68	+77.68	+20.93	55	32	+93.94	+88•65	+242.29	+150.19	74.26-	+90.19	+146.89	+47.73
	13 34 45 .97 *Statistic	13 +.23 +. 34 +7.26 +2. 45 -6.35 -1. .97 12.00 4. *Statistically insignificant	+.06 +2.21 -1.74 h.18 ificant	+ - 01	+.01 +.23 41 49	+,10 -,06 +5,01 5,09	+24 62 +5.77 9.62	-1.40 +39 -18.69 17.99	92 +.30 -10.84 11.40	+.21 +3.86 57 3.65	+.39 97 -1.37 3.96	-13 -1.36 +1.46 3.15	+.28 +.74 +2.87 3.16

	yarn	Dyed yarn	Index	.78	+,45 +,10 +,65	. + + + •	+81.09	+ + + + + + + + + + + + + + + + + + +	.83	+ + + + + + + + + + + + + + + + + + + +	**************************************	+30.27	+ + + + + + + + + + + + + + + + + + + +
	of 22s	Bleached yarn	Index	84.	17 38 +.40	- 16* - 39 - 14: - 18*	+165.05	10 -1.59 +1.57 17 3.09	64.	+ + + + + + + + + + + + + + + + + + +	**************************************	+153.16	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
	Color	Gray y er n	Index	.55	+ - 13 + - 38 + 238	+.42 12* +.31*	+62,62	+ 11-1 + 8 17-14-15-15-15-15-15-15-15-15-15-15-15-15-15-	.55	+ + 1 + + + 100	+ - 1 + + + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	+47.22	+ - 1 - + + 6
	1	Spinning Potential	No.	69•	+ + .31 + .63 11	+ + - 62 + + - 09* - 12*	-77.50	+.23 +3.64 47 17 3.61	69•		**************************************	-77.16	+ £ 1 1 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	imperfections	Fine 22s	No.	-7h	- + · + +	***************************************	+127.32	92 +.56 -10.97 +.20 11.38	•75	41 +.03 57 +.11		+206.54	-10.01
les	Yarn imp	Coarse 8s	No.	94.	+ .05 + .05 + .12	28 + 0.4 + 6.4 + 0.4 + 0.4	+172,82	-1.41 +1.17 -19.07 +.61 17.87	77.	1 + 1 + 1		+269.08	11.47 +1.03 -17.90 + +81
Dependent Variables	earance	Fine 22s	Index	.52	+ - 13	+ 11* - 03* + 47 + 05*	+73.04	+ .23 +5.68 +1.14 9.61	•58	+ 17	+ + + + + + + + + + + + + + + + + + + +	24.44-	+ . 4 . 26 . 27 . 11 . 13
Depend	Yarn appearance	Coarse	Index	69•	+ + + + + 64 + 05	***************************************	+86.27	+ .10 + .03 + .96 + .07 5.08	02.	+ + + + + + 58	**************************************	+51.33	+ + + + + + + + + + + + + + + + + + + +
	elongation	Fine 22s	Pet.	.72	+ + - 13 - 59 - 59	+ + + 56 + + + - 100 + + + - 100	+7.73	+.01 +.14 37 07	.72	+ • • • • • • • • • • • • • • • • • • •	+ + - 11* + 20* + 10* + 10* + 10*	94.5+	+ + 1 1 + 4 + 01
	Yarn e]	Coarse	Pet.	19.	+.15 +.23 40	++.12*	+9.59	+ 01 + 11 + 12 - 24 - 09	19•	+ + - 1.6 54.01 1.75.1	+ + 13* 10* + 10* + 108*	+7.75	++-++
	strength	Fine 22s	Lbs.	.54	+ + .01 + .48 + .39	+ + + + + + + + + + + + + + + + + + +	-18.20	+ + 01 -1.98 -1.98 3.98	.61	+ + + + + + + + + + + + + + + + + + + +	* 16++	-73.68	+ 4.05
	Yarn skein	Coarse 8s	Lbs.	.57	+ + + + + + + + 26	+.0\psi	-19.06	+ 4. 4. 4. 5. 11. 58. 11.	•63		**************************************	-170.89	+ 88.68 4.61 4.61 83.73
	Picker	& card waste	Pct.	+ ₁ / ₂ .		53 16* 31 +.13*	+5h . 86	41 72 4 7.0.0 96	•7 ¹ 4	+ + 1 1 1 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		+22.56	11.1++
	Statistical Items		DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH (O GAGE)	Multiple Cor. Coef.	Grade index Staple length Micronaire Fiber str. (O gage) Beta Coefficients for	Grade index Staple length Micronaire Fiber str. (0 gage) Regression Emarion:	Constant (a)Regression Coef. for:	Grade index Staple length Micronaire Fiber str. (0 gage) Standard Error (+) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMAIRE, FIFER STREMSTH.	(O GAGE), UNIFORMITY RATIO Maltiple Cor. Coef	Grade index. Staple length. Micronaire. Fiber str. (O gage) Uniformity ratio. Beta Coefficients for:	Grade index. Staple length. Micronaire. Fiber str. (O gage) Uniformity ratio. Regression Equation:	Constant (a)Regression Coef. for:	Grade index Staple length Micronaire Fiber str. (0 gage) Uniformity ratio Standard Error (±)

Table 14.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 68 short staple samples, collected at triweekly intervals from selected gin points, crop of 1971.

						Depend	Dependent Variables	les					
Statistical Items	Dicker	Yarn skein strength	strength	Yarn el	Yarn elongation	Yarn appearance	earance	Yarn impe	Yarn imperfections		Col	Color of 22s ;	yarn
	& card	Coarse 8s	Fine 22s	Coarse 8s	Fine 22's	Coarse	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pet.	Lbs.	Lbs.	Pet.	Pet.	Index	Index		્ર શ	No.	Index	Index	Index
Dependent variable	7.1	293	86	7.2	6.2	120	112	63	04	38	89	100	105
Yellowness	γ .4	m 4	ಣವ	m=	ಣವ	m.=	നം	m=	m=	m-	m-	m-	. m.
Nonlint content (S.A.)	4.3	t 4	۲.4 د.4	τ ₃	t t 53	t 4	, tr =	, t, t	, 4 4	, 4 + 4	ر ب ب	7 7	7 7 7
2.5% span Length	6.	. 95	2.	56°	9,	9.	, 2,	.69	.65	9,6	96.	. 20	. 65
Standard Deviation (±) for:) .)))	0.0	0.0	3.0	3.0	3.0	α . α	α . α	3°C	3.8	3,00	3.8
Dependent VariableGrayness.	1.42	14.1	L•4	63	9.0	7.0	11.2	27.7	17.0	5.0	9*4	3.5	4.8
Yellowness)-t	74.	· 4	シュ	ッゴ	ッゴ	たな	ッユ	シュ	シュ	ু ন	シュ	ত্'ব
Nonlint content (S.A.)	4.	1.4	1.4	1.4	1.4	1.4	1.4	1.4	7.1	7.1	7.1	†. 1	7.1
Micronaire.	58.	. 60	÷ &	5.8.	રું હં		5.8.	.93	5.8.	.93	.93	9.65	20.05
Grayness	02	-,12	60*-	-,01	10	00.+	+ 03	נו -	נני	- +	ά	S	ŗ
Yellowness	-,13	02	-05	+10	90.+	60.+	10°+	- 02	- 3	- 05	- 12	+.12	+ . 28
2.5% span length.	4,02	+ +	+ + 1 !	• +	+ + + +	74		+.57	+.61	†3°-	1. +	+.05	94
Multiple Cor. Data for:	50	-30	17.	.32	. 52	+ - +	+ +	71		+ +	39	+.25	+ +
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS													
Multiple Cor. Coef	.13	.12	60.	п.	.12	• 20	•03	ਜ਼.	ਜ਼.	• 05	.83	.12	.32
Grayness Yellowness Beta Coefficients for:	+.01	12 +.01	800	 1	+.07	+ + 18	+,002	1.9	.10	+0.+	+.05	-,04 +,12	17 +.31
Grayness	**00*+	*12*	*60	*60*-	*11.	+.18*	**00*+	*1	-,10*	+*02*	83	*†0*-	17*
Regression Equation:	T?	*TO•+	*00°-	* +	*90°+	*90°+	*00*+	*00°+	*10	*00*-	**03*	+.12*	+.31*
Constant (a)Regression Coef. for:	†8°8+	+298.75	+87.83	46.61	46.02	+111.15	+111,12	+74.13	+48.26	+37.99	+102,15	+96.81	+94.56
Grayness. Yellowness. Standard Error (±). DEFENDENT VARIABLE with	+.01 45 1.41	-1.88 +.26 14.02	02.4 40	+ 102	07 +.11 .61	+1.40 +1.01 6.87	+.30 +.09 11.24	-3.23 +.03 27.52	-1.91 5 ⁴ 16.87	+.25 32 5.01	-4.16 +.34 2.60	-15 +1.03 3.49	+3.56 43.56
GRAYNESS, YELLOWNESS, NONLINT (S.A.)													
Multiple Cor. Coef	.85	91.	.15	.13	.13	.52	•29	•59	•63	.25	48.	41.	.53
Grayness. Yellowness. Nonlint (S.A.). Beta Coefficients for:	12 03 +.84	. + + + 113	09 +.01 12	2 6 8	다 # +	+.25 01 49	+.05 04 29	++10	+ + + + 63	+.07	- + + + + 28 - 28	04 +.13 +.07	- 15 + - 28 - 44; -
Grayness. Yellowness. Nonlint (S.A.). Regression Equation:	06* 02* +.85	13* +.02* +.11*	+ + 01* + + 12*	- 05* - 10* - 08*	**************************************	+.22* 01* 48	+.05* 04*	- 16* + 08* + 59	-16* +.07* +.63	+.07*	+ .05*	05* +.13* +.07*	13* +.25* 42
Constant (a) Regression Coef. for:	+4+03	+292,39	+85.60	+6.80	+5.91	+124.73	+124.33	48.94	+5.59	+42.97	+99,18	+95.86	+102.75
Grayness. Yellowness.	1.06	-2.03 +.78	41°+	+.15	08 +.12	+1.71	98.	-4.71 +5.33	-2.8 9	+.36	+ + 58	17	+2.93
Standard Error (±)	4.05	13.94 13.94	99° †	- 03	+ 0. 19.	-2.39 5.99	-2.32 10.76	+11.47 22.29	47.51 13.15	. 88 . 85	+.52 2.49	+.17	-1.44 4.10
	* DISTIBLIC	Statistically insignificant	ficant										

						Depen	Dependent Variables	les					
Statistical Items	Dicker	Yarn skein streng	strength	Yarn ele	elongation	Yarn ap	Yarn appearance	Yarn impe	Yarn imperfections		S	Color of 22s	yarn
	& card	Coarse 8s	Fine 22s	Coarse	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray yarn	Bleached	Dyed yarn
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.), 2.5% SPAN	Bt.	Lbs.	Libs.	Pct.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	98•	.28	,2 ^t	.27	-22	•53	•30	09*	49.	02.	98.	•18	• 56
Grayness Vellowness Nonlint (S.A.). 2.5% span length.	+ + .01 32	16 01 +.18 +.23		. + + + +	1 ⁴ +.05 +.10 +.18	+ - 24	+ 06	-17 +.12 +.54 13	-117 ++58 -15	- 07 - 21 + - 68 + 68	++.15 -117 -36	. + + . 11. 11.	1 + 1 +
Deta Coefficients for: Valowness Nonlint (S.A.). 2.5% span length.	02* +.01* +.79 18*	16* 01* +.19*	*30°- + 194 + 194 + 194	* * * * * * * * * * * * * * * * * * *	-14* +05* +11* +20*	+.21* 02* 45 +.10*	+.06* 03* 05*	-14* +10* +55 -12*	-14* +00* +59 -13*	**************************************	++.08* 209*	03* 03* 12*	+.22* +.36 +.21*
Regression Equation: Constant (a)	+8,83	+227.81	99*99+	+3.72	+3.61	4111.14	+135.27	+68.91	94,•94+	-23.82	+118,18	+103.59	£4° 48+
Grayness Yellowness Nonlint (S.A.). 2.5% Span length Standard Error (±).	04 +.02 +.79 -5.36	-2.50 -30 +1.89 +70.87 13.57	63 18 +.62 +20.80 4.57	40°-+ 60°-+ 73°-99	+ + + 5 + + 5 + + 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	+1.63 32 -2.23 +14.51 5.96	+.69 80 -2.46 -12.02 10.74	-4.28 +6.34 +10.75 -65.80 22.10	-2.58 +3.61 +7.02 -44.90 13.00	27 -1.85 07 +73.83 3.57	-20.24 -20.24 -20.24 -20.32	11.24 +.07 -8.50 3.46	+2.59 -1.22 +20.37 -1.00
GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN LENGTH, MICRONAIRE Maltiple Coc. Coc. Partial Cor. Coc.	98.	£4.	.35	09•	.70	02.	<u>4</u> .	92.	.75	•73	88	. 42	27.
Grayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire	0 ⁴ 0 ⁴ 79		88488	1.4.4.98	+ + + + + + + + + + + + + + + + + + +	+	- 00 - 00 - 05 - 19 - 19	03 +.14 +.34 +.02	++1	+.01 21 17 +.71	+ + + + + + + + + + + + + + + + + + +	+ + + + + + 39	. +
beta Coefficients for: Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire.	. 02* . 18* . 02*		**************************************	**************************************	* * * * * * * * * * * * * * * * * * *	*.00* *.00* *.03* +.59		**************************************	*†0°++ 1 6†1	+.00* 15* 14* 78	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	**************************************
Constant (a)	+8.83	+228.94	46.95	+3.81	+3.72	+170.011+	+134.00	+71.99	+48.12	-23.52	+118.11	+103.25	+83.63
Grayness Yellowness Nonlint (S.A.) 2.5% span length Micronaire Standard Error (±)	03 +.02 +.78 -5.25 03 * Statistic	03 -1.15 +.0224 +.78 +.01 -5.25 +98.57 +27.8 03 -6.35 -1.6 .71 12.76 + * Statistically insignificant	29 17 +.14 +27.87 -1.62 4.41	+ +	+ + - + - + + - + - + - + - + - + - + -	+	142.23 146.92 9.48	4.59 45.60 17.33 18.11	+4.32 +4.32 -5.30 -9.07	+ .03 -1.84 -50 -1.55 -1.45 -1.45	4.53 +.88 +.63 -25.05 -25.05 2.18	50 +1.22 +.62 -16.52 +1.84 3.19	1. 2.75 3.55 3.09

Table 15.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measuremonts with processing tests performed on 68 chort stuple samples, collected at triweekly intervals from selected gin points, crop of 1971

Statistical Items	Picker	Yarn skein	strength	Yarn el	elongation	Depend Yarn app	Dependent Variables	10	Yarn imperfections		(%)	Color of 22s y	yarn
≪ ≽	& card waste	Coarse	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
	Pet. 7.1 .95 3.8 20 45 7.1	293 293 .95 3.8 20 4,5	1008. 86 .95 3.8 20 4.5 7.1	Pet. 7.2 . 95 3.8 20 45 7.1	Pet. 6.2 3.8 20 45 7.1	Index 120 •95 3.8 20 45 7.1	Index 112 .95 3.8 20 45 7.1	No. 63 3.8 20 45 7.1	No. 100. 1	No. 38 3.8 20 45 7.1	Index 89 .95 20 45 7.1	Index 100 .95 3.8 20 45	Index 105 .95 3.8 20 45 7.1
	1.42 .05 .93 1.1	14.1 .05 .93 1.1	4.7 .05 .93 .11	.63 .05 .93 .11	.62 .05 .93 .1.1	7.0 .05 .93 1.1		27.7 .05 .93 1.1	17.0 .05 .93 .1.1	5.0	4.6 .05 .05 .1.1	3.5.05	4.8 .05 .93 .93 .1.1
	-,44 50 05 05	+ - + + + + + + + + + + + + + + + + + +	. 12 - 24 - 24 + 18 + 17 + 16	+	+.15 52 +.08 +.67	+.28 +.68 +.37 12	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	30 71 02 +.07	+ · · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + + +	- 339 - 16 - 16 - 12 - 12		+ + • • • • • • • • • • • • • • • • • •
	.56	. 45	.34	45.	.65		•53	.71	69•	.71	.39	.3 ⁴	. 68
	30	+.31 40	+.25	9 †*+	49*-	00	20	01	90*-	+.70	- 36	24 +.33	+.07
	28*	+.33*	+.27*	+,48	44.+	*	19* +.58	00*	* 99.	+.77	*00*	25*	*90*+
Ŧ	+17.13	+228.93	+68,17	+2.68	+2.71		+126.98	+146.15	+102,02	-32.67	+123.68	+112.23	+86.73
•	-8.23	+94.50 -6.60 12.83	+26.16 -1.79 4.43	+6.17 36 .53	+5.55 47 .47	35 +5.20 5.12	-43.62 +7.08 9.52	-2.79 -21.24 19.43	-17.40 -12.16 12.35	+78.97 -1.16 3.55	-36.44 00 00	-18.09 +1.36 3.31	+5.94 +3.43 3.53
	• 56	ħ9°	.55	.55	.65	.68	.54·	.72	69•	.73	94.	.37	69.
	29	+ : . + + : . 54 + : . 54	+ - +	94°+ - 50 - 03°-	+,47	+.05	22 +.54 +.13	+.01 68 14	05 64 12	+.70 24 +.25	39 +.04 +.27	22 +.31 15	90.4.4.
	28* 38 01*	+.26* +.49	+.21.* +.43 +.43		+•\th	*.00*	21* +.60 +.11.*	+.01* 73 10*	*40	+.7\t 19* +.18*	+.04* +.25*	23* 14*	***************************************
+	+17.30	+95.92	+29.17		+3.02	+99.83	+102.77	+197.85	4131.19	-49.57	+101.36	+121.80	+81.45
	-8.20 59 01 1.17	-8.20 +74.18 +20.3 59 -5.37 -1.1 01 +7.37 +2 1.17 10.83 3.3	+20.21 -1.43 +2.16 3.94 iificant	46.31 05 53	+5.60 47 02	-146 +204 5.12	-47.32 +7.30 +1.34 9.44	+5.11 -21.71 -2.86 19.25	-12.95 -12.43 -1.62 12.26	+76.38 -1.01 +.94 3.44	-39.85 + 20 +1.24 +1.08	-16.63 +1.27 53 3.27	+5.13 +3.47 +.29 3.52

						Guara	Donondon+ Verial						
Ctotiction Ttoms		Yarn skein	strength	Yarn el	elongation	Yarn appearance	earance	Yarn imperfections	rfections		Col	Color of 22s ya	yarn
CONTRACTOR TO COMPA	Picker & card waste	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICROWAIRE FIBER STR. (1/8" GAGE), INTRORMATTY RATIO	Pet.	Lbs.	Lbs.	Pet.	Pet.	Index	Index	્રી		No.	Index	Index	Index
Multiple Cor. Coef	.57	.68	.62	.55	99•	.70	.57	.72	69•	•73	747.	.37	.70
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Beta Coefficients for	25 37 +.08	+ .39 + .47 + .31	+.34 +.37 +.37 +.34	+,46 -,47 -,11 +,08	+ 48 - 61 - 07 + 12	+ + - 53	- 14 - 14 - 140 - 120 - 121	+.01 62 13	08	+.68 25 +.21 +.10	 	+ .18 + .16 + .06	+.14 +.51 +.00 +.22
2.5% span length Mcronaire Fiber str. (1/8" gage) Uniformity ratio. Repression Fonation:	. 26* - 1.03* - 08*	+ 1 + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+.51 58 10* +.08*	+,48 -,77 -,06* +,11.*	+.05*	- 14* + 48 + 06* + 21*	+.01* 72 09*	07* 63 07*	+.78 23* +.15* +.08*	+ + . 111* + 29\$	21* +.29* 16* +.07*	+.12* +.55 +.20*
Constant (a)	+12.92	-64.01	-34.73	+1.65	0ή*+	+57.56	+12.90	+209.80	+185.44	14.99-	+122.19	+112.27	+45.19
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio Standard Error (‡). DEPENDENT VARIABLE with 2.5% SPAN LENGTH,MICROMAIRE FIBER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION (1/8" GAGE)	-7.42 66 04 10 1.17	108.71 -7.30 46.21 13.59 10.31	+33.63 -2.45 +1.69 +1.45 3.71	4.05 + .05 53	6 20	7.07 4.51 1.28 7.03 5.03	-31.65 +5.81 +2.12 9.24	+2.98 -21.52 -2.77 -2.8	-22.78 -11.53 -1.80 -1.27 12.20	+80.36 -1.27 +.82 +.33 3.42	42.83 + .56 + .50 + .1.40 + .06	-14.85 41.12 60 +.22 3.27	+11.71 +2.88 +.02 +.85 3.43
Multiple Cor. Coef	09•	69•	•63	.78	.83	.70	.58	.72	.70	47.	74.	14.	.80
2.5% span length Micronaire. Fiber str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage) Beta Coefficients for:	1.17 1.09 1.09 1.09	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ 39 - 39 39 	* • • • • • • • • • • • • • • • • • • •	+ + + + + + + .51	+ + + .33 + .23 - 111	+	40.55	49. 49. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40	+ + + + + + + + + + + + + + + + + + +		. + + + +
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Regression Equation:	17* 51 08* 28*	+ .47 + .47 + .128 + .128	+ + + + + + + + + + + + + + + + + + +	+ . 28 * + . 04 * + . 05 * + . 60 *	+	***************************************	* + + + + + + + + + + + + + + + + + + +	+.03* 74 11* 01*	* 990	+ .19* + .18* + .08*	+.†.†. +.30* +.13* +.03*		04* +.70 +.10* +.41
Constant (a)Regression Coef. for:	+15.21	-76.93	-40.10	-1.19	-2,11	+58.97	+21.56	+224.00	+195.56	- 69°04-	-121.15	+117.00	+30.38
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio Elongation (1/8" gage). Standard Error (1)	-4.97 78 12 +.12 +.12 1.13	-4.97 +94.53 +27 78 -7.226 12 +6.64 +1 +.12 +5.52 +1 +.12 +2.63 +1 1.13 10.18 Statistically insignificant	+27.76 -2.16 +1.87 +1.41 +1.09 3.65 ficant	43.60 1.4.4.4.57 1.57.7.4.60	+3.37 -1.38 -1.05 -1.05 -1.05 -1.05	+8.58 +4.43 -33 -1.00 -28 -28	-22.38 +5.36 +.37 +2.17 -1.74 9.18	+18.21 -22.26 -3.24 -3.24 -2.19 -2.86 19.17	-11.91 -12.06 -1.54 -1.21 -2.04 -2.04	+75.59 -1.04 +.34 +.88 3.38	143.93 + 1.62 + 1.52 + 1.52 + 1.06	-9.75 +887 25 3.21	4.20 4.51 5.20 2.99 2.91

Table 15. -- Continued

Table 10. -- Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 317 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1971

Fine congaction (1975)			Vous along	1	,		Depen	Dependent Variables	les					
Control Course Fine Course Fine Course Fine Course Fine Course Fine Fine Course Fine	Statistical Items	Picker	rarn skein	strengtn	Yarn e	elongation	Yarn ap	pearance	Yarn imp	erfections		CoJ	lor of 22s	yarn
No. 1985 1		& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
10	Mean Values for:	. Ret.	Lbs.	Lbs.		Pct.	Index	Index	일	No.	No.	1	Index	Index
1.5	Dependent variableGrade index	6.0	901	37		7.4	113	88 6	23	81 6	62		103	011
1. 1. 1. 1. 1. 1. 1. 1.	Staple length	34.5	34.5	34.5		34.5	34.5	34.5	34.5	34.5	34.5		34.5	34.5
1,	Wicronaire Fiber strength (O gage)	83 83	4°3	83 83		4°3	4.3 83	4.3 83	83.	83	83		4.3 83	4.3
1, 10 1, 1	Uniformity ratio Standard Deviations (±) for:	45	45	45		45	45	42	45	1,5	45		45	45
1.56 1.56	Dependent variable	1,10	12.4	6.2		₹9•	11.1	9.1	13.5	6.6	8.9		5.0	4.3
1.00 1.20	Grade index	5.6	5.6	5.6		5.6	5.6	2.6	79.0	2.6	2.6	2.6	2.6	2.6
1.0	Micropaire	 8.6	1.20	1.20		1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
1.5 1.5	Fiber strength (O gage)	7.0	7.0	7.0		20.	20.	2.0.	2.0.7	20.2	7.0	7.0	7.0	20.7
1.00 1.00	Uniformity ratio	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
1. 1. 1. 1. 1. 1. 1. 1.	Grade index	78	+,45	04.+		90	+.28	+.24	32	32	+.37	+.73	+.19	+.37
1. 1. 1. 1. 1. 1. 1. 1.	Micronaire	‡ ?	+.5 ⁺	+.61		+.23	+ + -	+°54	 75.	94	+.73	+.34	+.17	77.
FRICENTI	Fiber strength (O gage)	 	+.75	99.+		- 47	+.32 4	÷.+.) O	80.	+ + 50	3 %	23.4	+ + 10
1.79	Uniformity ratio	20	+.36	+.34		17	9ħ.+	+.48	27	32	+•34	+.01	07	+.34
The color of the	DEPENDENT VARIABLE with													
	Miltial Com Coof	Ċ	(,	ì	0								
73 +.30 +.53 +.13 +.2114 +.27 +.21 +.151717 +.12 +.16 +.18 +.16 +.18 +.16 +.18 +.16 +.18 +.16 +.18 +.16 +.18 +.16 +.16 +.16 +.11 +.10 +.10 +.10 +.10 +.10 +.10 +.10	Mulliple Cor. Coel	6).	09•	.63	•16	. 28	•30	. 29	24.	84.	•73	.73	.21	64.
	Grade index.	73	+*30	+.21	14	17	+.21	+.17	17	17	+.12	69.+	+.13	+.23
	Beta Coefficients for:	22	† †	+.53	+.13	+.27	+,12	+.16	37	38	+* 68	+ 08	т. ,	+.34
-1.5 + 4.3 + 5.3 + 1.14 + 4.30 + 1.13 + 1.16 + 2.339 + 6.9 + 6.6 + 1.11 + 1.11 + 1.18 + 1.15 + 1	Grade index	72	+.27	+,18	15*	18	+.23	+,18	-,16*	17	*60.+	+.71	+,14*	+.23
FIGURE 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.	Staple Length Regression Equation:	15	+•43	+.53	+,14*	+•30	+.13*	+,16*	-•39	39	69. +	*90*+	+.11*	+.35
FINCTIFY -114 +4.60 +2.20 -0.22 +4.45 +1.25 -1.33 -3.25 +1.44 +1.65 +1.87 -1.34 +1.84 +1.25 +1.84 +1.84 +1.84 +1.85 +1.84 +1.84 +1.85 +1.85 +1.	Constant (a)	+23.73	-104.58	-77.64	+5.34	4.11	+31.86	+19.08	+208.34	+156.87	-127,37	+26,58	+87.04	+51,35
-114	Regression Coef. for:		,)					
FINCTH,	Grade index	†† *	09.4	4.20	+ 07	02 7.	+,45	+ 59	1,39	-30	+.14 45.13	+ + 63	+.07	+,17
FNOTH,	Standard Error (\pm)	.68	9.93	4.83	.59	.61	10.57	8.70	11.84	8.66	6.07	3.40	2.86	3.73
73 +.37 +.29 11 15 +.19 +.14 13 14 +.16 +.72 +.11 +.06 27 28 +.72 +.11 +.06 27 28 +.72 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.12 +.11 +.06 +.03 +.03 +.14* 10* 11* +.17 +.12* +.11 +.06* +.03* +.10\$ +.10\$* +.10\$* +.10*	GRADE INDEX, STAPLE LENGTH,													
73 +.37 +.291115 +.19 +.141314 +.16 +.72 +.11 +.06 +.72 +.13 +.03 +.052728 +.72 +.11 +.06 +.72 +.11 +.06 +.72 +.13 +.03 +.052728 +.72 +.11 +.06 +.07 +.11 +.06 +.07 +.12 +.14 +.15 +.05 +.07 +.12 +.14 +.15 +.14 +.15 +.14 +.15 +.14 +.15 +.14 +.15 +.14 +.15 +.15 +.14 +.15 +.15 +.15 +.15 +.15 +.15 +.15 +.15	Miltiple Cor. Coef	S	02	72	96	30	č	7'1	C	C	C	Ď	L	Ĺ
73 +.37 +.291115 +.19 +.141314 +.16 +.70 +.12 +.19 +.141314 +.16 +.70 +.12 +.10 +.10 +.102728 +.72 +.11 +.06 +.10 +.10 +.10 +.10 +.10 +.10 +.10 +.10	Partial Cor. Coef. for:		•	01.	000	će•	Ç + •	9	>).	٠ (ح	,,.	+).	(7.	• 23
70 +.31 +.2312* +.16* +.19 +.14*10*11* +.11* +.72 +.12* +.07*2123 +.76 +.08* +.07* +.08* +.07*2223 +.76 +.08* +.07* +.08* +.07*08* +.15*08* +.15*08* +.15*08* +.15*08* +.15*08* +.15*08* +.15*08* +.15*08*2525252525252525	Grade index. Staple length. Micronaire	73	++.37	+ + - 5 49. + + - 64 48 1	11 +.22 32	15 +.33 23	+.19 +.03 +.32	+.14 +.05 +.37	13 27 62	14 28 61	+.16	+.70	41. 41.	ส. ส. ส. ส.
70 +.31 +.2312*16* +.19 +.14*10*11* +.11* +.72 +.12* +.72 +.12* +.55 +.24 +.36 +.03* +.05*2223 +.76 +.08* +.07* +.15*14 +.65 +.24 +.36 +.33 +.38 +.27262525 +.26 +.27* +.15*14 +.69 +.250102 +.38 +.222419 +.18 +.64 +.0710 +.562 +.35 +.12 +.19 +.30 +.422419 +.18 +.64 +.0710 +.562 +.35 +.12 +.19 +.30 +.4224419 +.18 +.64 +.07309464,904029 +.728 +.69215.51 -11.1344883 +.86 +.1029 +.728 +.2515.51 -11.1344883 +.86 +.12 +.13 +.14 +.1344883 +.86 +.12 +.13 +.14 +.13 +.14 +.14 +.13 +.14 +.14 +.14 +.14 +.14 +.14 +.14 +.14	Beta Coefficients for:													
-11 + +69 + +25 - 01 - 02 + +38 + +22 - 24 - 196.89 + 148.64 - 130.68 +25.96 +87.67 + + + +69 + 148.64 - 130.68 +25.96 +87.67 + + + +69 + 12 + 12 + 13 + 142 + 122 + 1.92 + 1.92 + 1.92 + 1.92 + 1.92 + 1.92 + 1.93 + 1.94 + 1.97 + 1.90 - 14.90 - 14.90 - 10.00 8.07 9.33 6.90 5.69 3.38 2.83	Stane index Staple length Micronaire Regression Equation:	70	+ + - 38	+ + . 65	12* +.24 34	16* +.36 23	+.19 +.03* +.33	+.14* +.05* +.38	10*	11*	+.11* +.76 25	+.72	+.12* +.07* +.15*	+ + 5.50 + 2.74
14 +.69 +.250102 +.38 +.222419 +.18 +.64 +.07 10 +5.62 +3.36 +.12 +.19 +.30 +.42 -2.47 -1.92 +5.66 +.35 +.17 30 -9.46 -4.904029 +7.28 +6.92 -15.51 -11.13 -4.4883 +.86 66 8.88 4.24 .56 .60 10.00 8.07 9.33 6.90 5.69 3.38 2.83	Constant (a)Regression Coef. for:	+23.51	-111.57	-81.26	+5.05	+.89	+37.24	+24.20	+196.89	+148.64	-130.68	+25.96	+87.67	+52.85
10 +5.62 +3.36 +.12 +.19 +.30 +.42 -2.47 -1.92 +5.66 +.35 +.1730 -9.46 -4.904029 +7.28 +6.92 -15.51 -11.13 -4.4883 +.8683 +.8686 10.00 8.07 9.33 6.90 5.69 3.38 2.83	Grade index	14	69*+	+.25	01	02	+.38	+.22	24	19	+,18	+.64	+.07	+,16
. 66 8.88 4.24 .56 .60 10.00 8.07 9.33 6.90 5.69 3.38 2.83	Micronaire	10	-5.65 -9.45	+3.36 -4.90	4.12 04	+.19	+.30	4,45	-2.47 -15.51	-1.92	+5.66 4-4-	+ 35	+ 17	+ .99
	Standard Error (#)	99•	8.88	4.24	• 56	09.	10.00	8.07	9.33	06.9	5.69	3.38	2.83	3.61

						Deneng	Denendent Variables) Pe					
Statistical Items	100	Yarn skein strength	strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn	imperfections		Co.	Color of 22s yarn	yarn
	Ficker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed yarn
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIBER STRENGTH (O GAGE)	Pet.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	 	No.	No.	Index	Index	Index
Multiple Cor. Coef	.80	.87	†18°	•72	.67	.51	.50	.73	•72	.81	47.	.55	.5 ⁴
Grade index Staple length. Micronaire. Fiber Str. (Ogage)	70 15 22	++.08	+ + + + + + + . 50	++ + + + + + + + + + + + + + + + + + + +	+ .50	+ .09	+.06 +.01 +.41 +.23	17 29 61 +.14	+ 1 1.5	+ + + + + + + + + + + + + + + + + + +	+.69	+ + + .30 + .08 50	. + + + .08 .08 .08
Grade index. Staple length. Micronaire Fiber Str. (0 gage).	69 10* 14 04*	+ + + + + + + + + + + + + + + + + + + +	+ + .02*	+.10*	+,04*	+.09* +.37 +.30	+.06* +.01* +.41	14 24 56 +.11*	- 124 - 24 - 56 + 04*	++.01 +.71 +.21 +.29	+.73 +.10* 09*	+.31 +.18 +.07*	* + + + 1 083 084 084
Constant (a) Regression Coef. for:	+23.55	-111.99	-82.74	46.08	+1.84	+30°63	+20.05	+194.26	+147.95	-135.12	+26.77	+90.78	+53.49
:::::	41 01 10 66	+.11 +.15 -7.43 -1.03 6.07	4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		90° + + + 1° 0° 0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	+ .18 + .23 + .47 9 .56	7.4.4.7.88	- 34 - 272 - 15.09 - 1.21 9.23		+ + .02 + 5.25 + 3.77 5.23 5.23		2	+ 11.05 +1.05 +1.93 1.05 3.60
Multiple Cor. Coef	.80	68.	.87		89•	• 56	.57	•73	.72	.83	47.	.55	.58
	70 15 17 02	++++++	+ + • + + + + + + + + + + + + + + + + +		+ + 1 1 + + 60	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + . 00 + . 08 + . 32	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.1.1 88.47.88	+ + .07 + .74 42 + .27 + .33	+ + 1 08 0 07 0 08 0 07 0 08	+ + + + + + + + + + + + + + + + + + +	+ + + 29 - 1.12 - 1.19
	1.10*	**************************************	+,07* +,55 +,37 +,37 +,23		* 00.4 4 . 1 . 4 50.4 40.4	+.14* 04* +.25 +.30	+ + + + + + + + + + + + + + + + + + +	1. 1. 2. 2. 4. 1. 2. 5. 5. 4. 1. 2. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2. 4. 1. 2.	1.24 1.54 1.07*	+ 1.30 + 1.30 + 1.19	+ + 10. 1.06. 1.06. 1.06.	+ + + + + + + + + + + + + + + + + + +	+ + + 28 - 128 - 139 - 27
:	45h.79	-178.34	-117.57	•	+.25	-47.53	-50.59	+202.02	+164.30	-181.95	+34.35	+98.64	+25.92
	14 09 27 00 04 64 * Statistic	14 +.21 +.08 09 +4,37 +2.84 27 -9.66 -5.26 00 +1.87 +.33 04 +1.86 +.99 .66 5.63 3.11 * Statistically insignificant	+.08 +2.84 -5.26 +.33 +.99 3.11 ificant	+ + + 19 10.+ 10.+ 10.+ 14.	+ + + + + + +	+ 32 + 32 + - 24 + - 24 + - 27 - 24 - 24	+.18 +.00 +5.04 +2.05 7.46	-2.71 -14.82 + 23 + 23 9.23	-10.46 -10.46 -10.47 -10.47	+ .08 -5.39 -5.39 -4.35 -4.95	3.35 3.35	5 + + + + + + + + + + + + + + + + + + +	+ i + i + i + i + i + i + i + i + i + i

Table 17.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests on 31% medium staple samples, collected at triweekly intervals from selected gin points, crop of 1971

						Depend	Dependent Variables	les					
Statistical Items	Dicker	Yarn skeil	Yarn skein strength	Yarn e	elongation	Yarn app	appearance	Yarn impe	Yarn imperfections		Co	Color of 22s	yern
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pct.	Lbs.	Lbs.		Pct.	Index	Index	No.	No.	No.	Index	Index	Index
Dependent variable	0.0	106	37		L*+1	113	88 0	23	18	62	93	103	011
Yellowness	ı m i	y mi	u m		v m	v m	VΜ	Nω	Nω	N M	N M	N M	വ ന
Nonlint content (S.A.) 2.5% span length	3.L	3.1	3.1		3•1 1•09	3.1 1.09	3,1	3.1	3.1	3.1	3.1	3,1	3.1
Micronaire	4.3	4.3	4.3		4.3	4.3	4.3	1. 1.	4.3	4.	4.3	4.3	4.3
Dependent variable	1.10	12.4	6.2		1 9•	11,1	9.1	13.5	6.6	8.9	5.0	2.9	4.3
Grayness	1.0	1.0	J.0		р , 0	D.0	0.1	0.1	1,0	1.0	1.0	1.0	1.0
Nonlint content (S.A.)	1.0	٦.٥٠	1.0		٠,٠	٠٠,	7.0	٠.٠	٠. ٥	٠. ١	٠. ٥	٠٠ د	۲• ۱
2.5% span length		50.05	.05	50.	.05	.05	.05	.05	0.05	.05	.05	05	.05
Simple Correlation Coef. for	.					,							•
Yellowness	+ +	1.39	660	බ _්	₹ K	- +	 	+ + + +	+.27	98%	- 82	.31	-35
Nonlint Content (S.A.)	8.	19	18	10°+		21	8	74.+	** **	27	94		17.
2.5% span Length	45	+.63 56. 1	4.69	+ . 16	+.25	+.15	+,16	- 28	29	+.77	+.34	+,15	+.36
Multiple Cor. Data for:	cc•-	CT.	CT	62	- -	+.30	+ + T).q. -	99.	გე. +	oT•+	+ 50	+•37
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS													
Multiple Cor. Coef.	• 56	•39	.39	.27	•30	[†] 10°	•03	•36	•36	•39	.83	•31	.35
Cartial Cor. Coel. Ior:		ĵ	i d	;		-					,		
Yellowness	+.25 15	+.01		. 18 1.	16 18	+.02	02	+.19 +.24	+ <u>.</u> 17 + <u>.</u> 24	33 14	82 +.17	26	34 +.03
Grayness	+-60	υη' -	37	***	*21 -	*450	*00 -	+	85 +	۲	70	O	Č
Yellowness Regression Equation:	- 13*	*10.+	*90.	.18	19	+.02*	*00	+ + 1.25 + 25	+.25	31 14*	+ 10	07*	+.03*
Constant (a)Regression Coef. for	+5.22	+115.74	+43.23	+6.92	+5.16	+113.31	+89,12	+3.54	+3.31	+73.56	+100,35	+105.98	+112.76
Grayness	+.65	-4-85	-2.28	08	13	[5	00	75 0+	47 L+	-0 73	71.06	- 8	נט
Yellowness. Standard Error (±). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.)	.92	11.41	5.72	-17	.18	11.07	9.09	12.53	+3.74 9.25	1.87 8.20	2.82 2.82	2.32	3.99
Multiple Cor. Coef	.81	•39	۰۱۰	•29	.31	• 23	.23	.55	.53	04.	.83	.32	•39
Grayness Yellowness Nonlint (S.A.) Beta Coefficients for:	+.21 05 +.70	+05+	31 05 +.04	-15	18 17 +.09	+ - 03	+ + 40	- 10 + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	19	76 +.17 +.02	.08	19
Grayness. Yellowness. Nonlint (S.A.).	+.1703* +.70	-,t2 +,02* +,02*	***************************************	23 +.16*	23 18* +.10*	+.12*	+,14*	11* +.32 +.50	11* +.32 +.47	23	87 +.11 +.01*	*60.1	±2 *00
Regression Equation: Constant (a)	+3.27	+1114.27	+42,55		45,30	+120.80	195,4,1	-13,32	-8.42	£4.92+	71 001+	+106 69	אס קרו+
Regression Coef. for:									!)	-		-
Vellowness Yellowness Nonlint (S.A.) Standard Error (±)	+ - +	-5.20 11.4.40 11.40	+.18 -5.20 -2.44 05 +.3248 +.80 +.61 +.28 .65 11.40 5.71	13 +.09 -57	15 17 +.07 61	+1.28 24 -3.07 10.80	1.29 8.59 8.84	-1.47 -6.41 -11,24	-1.07 +4.74 +4.81 8.41	-2.05 -2.11 -1.17 8.14	4- 	65	-1.01
	* Statistic	cally insign	nificant										

						- Coroll	Donom on twenty by	100					
		Yarn skein strer	strength	Yarn el	elongation	Yarn ap	Yarn appearance		Yarn imperfections		[OD	Color of 22s varn	ar.n
boattroical trems	Picker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray		Dyed
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.), 2.5% SPAN	[kf	Lbs.	Lbs.	Pet.	Pet.	Index	Index	No.	S	No.	Index	Index	Index
Multiple Cor. Coef	₩8.	29.	.72	•30	⁴ ε•	.26	.27	• 56	. 5 ⁴	77.	.83	.32	94.
Grayness. Yellowness Nonlint (S.A.). 2.5% span length. Bet Coefficients for	+.20 14 71	17 +.17 +.14 +.59	13 +.16 +.65	- 15 - 14 + + + 08	13 +.13 +.16	+.12 +.01 +.21 +.13	+.15 01 +.21	. + +	13 +.30 14	+ 1.05	74 19 +.03	17 08 07 +.02	- 13 + 05 + 26
Craymess. Yellowness. Nonlint (S.A.). 2 5% span length.	+.14 08* +.67 25	+ + 18 + 114 + 134 + 60	12* +.09* +.13*	-19* -15* +108*	16* 14* +.12* +.17*	+.16* +.02* +.25 +.14*	+ 1.9* + 2.01* + 1.5*	-14* +30 +16 -10*	. 15* . 15* . 13*	00# 003 73	+.12 +.02* +.07*	* * * * * * * * * * * * * * * * * * *	16* +.05* 17* +.27
Constant (a)Regression Coef. for:	+10,12	-75.57	-62,51	45.40	+2.55	+81.24	+61.04	+25° µ6	+25.26	-88.03	+91.20	+105.00	+85.98
Grayness Yellowness. Nonlint (S.A.). 2.5% span length Standard Error (±) DEPENDENT VARIABLE with GRAYNESS, TELLOWNESS, NONLINT (S.A.), 2.5% SPAN LENGTH, MICRONAIRE	41.+ 7 60.00	-2.18 +2.67 +1.66 +1.59.09 9.21	- 1.77 - 1.88 - 1.88 - 1.88 - 1.86 -	11. 11. 11. 12. 14. 14.	, , , , , , , , , , , , , , , , , , ,	+1.80 +25.45 +33.38 10.70	+1.73 16 -2.39 +29.01 8.76	-1.87 +5.97 +6.72 -30.30	11.43 44.62 8.32 8.32	38 05 25 +139.65 5.62	-4.16 +.91 +.12 +7.54 2.80	63 25 -1.37 25	67 +.35 74 +24.52 3.79
Multiple Cor. Coef.	±84.	.72	.77	24.	•39	04.	44.	77.	•75	62.	.83	.36	45.
Grayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire Beta Coefficients for:	+.21 +.67 36		+ + 10 + 10 + 71 - 39	1.07 1.16 1.14 1.14		+ + 05	+.06 +.03 +.07 +.37	+ + + 27		+.01 02 14 +.75 27	- 7 ⁻ - 7 ⁻ - 20 07 09 10	20 07 01 +.17	
Grayness. Yellowness Nonlint (S.A.). 2.5% span length Micronaire Regression Emation:	2. 1. + 1. + 1. 0.09* 2. 0.09*		03* +.07* 72	1.15* 1.15* 1.15*	1.15* + 1.04* + 2.21	**************************************	+.08* +.01* +.07* +.39		4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	+.01* 01* 11* 19	98° + + + + .	27 07* 01* +.18	+
or:	+10.42	-58.19	-53.40	+6.35	+3.15	463.09	+43.74	+60.97	+53.35	-79.67	+89.65	+102,41	+79.62
	+.17 15 +.74 -5.65 12 .60 * Statistic	+.17 -1.0819 15 +2.38 +.67 +.74 +.09 +.04 -5.65 +173.99 +95.85 12 -7.11 -3.73 .60 8.62 3.99 * Statistically insignificant	19 +.67 +.04 +95.85 -3.73 3.99 ificant		11.4 4.03 4.63 6.63 7.99	+.71 +.56 -1.23 +17.92 +7.38 10.16	+.70 +.13 84 +14.28 +7.03 8.15	+ .36 + .32 + .32 + .33 -15.59 -62	+ 13 + 13 + 2.12 - 4.74 - 6.52	+.09 -1.00 +146.73 -3.38 5.41	4++4 42,84 43,63 43 43,63 43 43,63 43 43,63 43 43,63 43 43,63 43 43,63 43 43 43,63 4	79 31 02 84 84 05	-1.04 +4.6 -1.17 +19.12 +2.58 3.60

Table 18.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 317 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1971

													73-													
	yern	Dyed	Index	110	453	٥. ٠	**************************************	4. 1. 2. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	ye +	+ + +	+.34		74.	+ +31	+ + +	10.1	469.48	+26.84 +2.62 3.77		84.	+ + +	+.2 ⁴	+*33	+69.63	+22.21	3.75
	Color of 22s	Bleached	Index	103	45	0°2	v. 0.0.0.	2.1	+	· + ·	+.24		.22	+.11	*11.+	J .	+91.51	46.87 +1.01 2.85		04.	+ + + 5 60° 4°	+ 33	*60.+	491.06	+21.03	2.67
	S)	Gray yarn	Index	93 1.09 4.3	45	ن د	0.05	2.1 7.1.28	¬γ. +	4 + +	60°+		•34	+.32	+*33		+53.29	+35.54 +.27 4.71		.38	+ + 19 + 07 + 18	+.22	+.07*	+53.67	+23.53	4.4
		Spinning Potential	No.	62 1.09	23 5	0 0	20°0°	1.5.1	4.77	+ +	12		.78	+.78	+,81	0 ;	-93.22	+153.91 -2.84 5.51		.85	+.67 14 +.53	+ 59	*80.+	-91.91	+112.18	41.67
	Yarn imperfections	Fine 50s	읾	18	23.5	· · ·	y 2000	1.5	8		+ .33		.68	 9	-15	00.	+105.68	-32.20 -12.42 7.27		.68	· · ·	13*	*40	+105.52	-26.96	7.26
les	Yarn impe	Coarse 22s	임	23	57,	C. C.	13.7 .05	1.5	1 00	79.	+.31		.68	17	-13	1 1	+137.77	-37.72 -17.25 9.81		.68	큐 +	13*	*00.+	+137.77	-37.79	6.81
Dependent Variables	appearance	Fine 50s	Index	1.09	23 45 7	C (, , , , ,	1.5	+.16	+ + +	27		.43	+.07	*90°++	7t	ま。ま	+12.35 +7.54 8.18		94.	70°-+ 71°++	*40*-	+.46	+43.60	-8 -8 -68 -48	8.05 8.05
Depen	Yarn ap	Cóarse 22s	Index	113	55.3	0 [.05	1.5	+ 15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	27		•39	+.07	+*00+	· ·	+61.53	+15.84 +8.11 10.22		54.	+ + .41	*60	+ + 58	+62.69	-21.43 +9 hh	11.49
	elongation	Fine 50s	Pet.	1.09	254 57.	n :	\$ 25 5	1.5	+ 25	11.1	- + - +		•32	+.29	+ - 30	7 :	+J.*	+4.06 27		94.	+ 0% 4%	+.52	30	+1.35	+7.06	-12
	Yarn e	Coarse 22s	æt.	6.3	23. 45. 7.		8 25 5	1.5	+.16	8.8.8	+.62		.37	+.24 34	†2°+ 17°+ 17°-	ָרְי לְּיִר	99.4	+3.05 41 .56		•56	+ 7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	+.52	45	+4+.57	+6.66 53	
	n strength	Fine 50s	Lbs.	37	. 45 		50.05	2.1 5.1 82	69*+	. + + E. 4	07		•75	+.75	4.76	ָּרָ נָּלְ בַּיּלְ	-57.73	+101.56 -3.79 4.11		.91	+ - 4.63	+,42	17 +.61	-56.30	+55.97	11.83 2.63
	Yarn skein strengt	Coarse 22s	Lbs.	106	23. 7.7.	0 0	4. 50. 50.	1.5	+,63	1++	84.		69•	+.68	69.	1	-65.05	+185.06 -7.25 8.98		8.	4 1 +	+*30	14 +.70	-61.80	+81.21	15 +4,116 +1.8 .92 5.37 2.6
	Di olege	& card	Pet.	0.0	153 145 17	5 -	50.05	1.5	54	.33	+.03		.50	38:	- 33	0.1	+TQ.45	-9.31 53 .95		•55	22	2h	30	+18.30	-5.58	.92
	Statistical Items		Mean Values for:	2.5% span length.	Fiber str. (1/8" gage) Uniformity ratio Elonestion (1/8" gage)	Standard Deviation (#) for	2.5% span length	Fiber str. (1/8"gage) Uniformity ratio Elongation (1/8" gage)	Simple Correlation Coef. for: 2.5% span length	Micronaire	Elongation (1/8" gage)	DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE	Multiple Cor. Coef	2.5% span length.	Beta Coefficients for: 2.5% span length	Regression Equation:	Constant (a)	2.5% span length Micronaire Standard Error (±)	DEFENDENT VARIABLE WIEN 2.5% SPAN LENGTH, MICRONAIRE FIRER STR. (1/8" GAGE)	Multiple Cor. Coef	2.5% span length	Beta Coefficients for: 2.5% span length	Micronaire Fiber str. (1/8" gage)	Constant (a)	2.5% span length	Fiber str. (1/8" gage).

						Depen	Dependent Variables	oles					
Statistical Items	Diokon	Yarn skein	n strength	Yarn e	elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		Co.	Color of 22s yarn	arn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed yarn
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONALRE, FIBER STR. (1/8" GAGE), INTRODAMINY BATIO	Pet.	Lbs.	<u>Lbs.</u>	Pet.	<u>k</u> t.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef	.56	.92	•93	• 56	94.	•53	.55		.68	.87	04.	.41	.51
2.5% span length. Micronaire. Fiber str. (1/8° gage) Uniformity ratio. Beta Cnefficients for:	23 30 +.04	+ + + + + + + + + + + + + + + + + + +	+ . 69 + . 73 + . 47	††† + ††† + †††	+ + + + + + + + + + + + + + + + + + + +	14 +.27 +.13 +.31	-11 + 29 + 05 + 34	1 ¹ ⁴ 60 00 +.01	11.1	+ + + + + + 30	+.22 +.13 +.22 14	+ + 29	+.17 +.22 +.00 +.20
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Bernession Emnetion:	***************************************	+ + + + + + + + + + + + + + + + + + + +	+ + + 51 + 51 + 23	+ .53 43 49 04*	 	. + + + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+ + + + .35*	13* 64 00* +.01*	11* 61 02* 05*	+ + 1 + 23	+.26 +.14* +.26 15*	+ + + .35	+.19 +.23 +.00*
Constant (a)	+17.58	-135.63	-92.29	+4.87	+1.56	51	-11.26	+136.68	+113.88	-145.97	+65.82	+93.82	+55.02
ge)	-5.78 + 1.16 -92	+89.04 -6.25 -3.58 +2.01 4.76	+59.13 -3.51 +1.54 +1.00 2.32	5.82 1.1.4 5.00 5.00	+7.18 36 12 01	-36.16 +6.17 +2.14 9.41	-23.55 +5.36 +2.22 +2.19 7.58	-38.24 -17.31 -01 +05 9.81	-23.71 -12.12 -11 -37 7.25	1119,50 -3.26 -11,27 -11,42 4,35	+28.13 +1.40 +.63 +.59	+22.17 + 67 - 53 - 12 2.67	+17.29 +1.96 +.01 +.61 3.68
r. Coef.	.59	-92	•93	. 68	.5 ⁴	.53	.55	69*	69.	88.	† ††	74.	.52
	1.15	+ · · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + + +	+ 1 1 1 +	+ 1 1 1 + 1.09	리 라 : + : + : -	0 4 8 4 4 6 0 4 8 8 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.16 1.53 1.03 1.08	41 50 00 00	+ .72 + .33 + .37 + .37	+ + .21 + .28 + .14 14	+ + + + + + + + + + + + + + + + + + +	
(e) (e)		+ 58 58 	+ + + + + + + + + + + + + + + + + + +	+ • • • • • • • • • • • • • • • • • • •	+ 1 1 1 + 1 39 * 1 36 *	- 14* - 13* - 04*	+10* + .03* + .03* 04*	16* 61 +.03* +.01*	-14* 57 05* +.00\$*	*60 * • • • • • • • • • • • • • • • • • • •	+ + . 17* +	+ + 1 1 + + 8	+.13* +.31 +.07* +.21 +.15*
or:	+19.94	-131.36	-91.68	+2.22	58	+3.64	-7.5 ⁴	+127.23	+106.24	-138.40	+54.67	+86.16	9 ₹. 84+
(((((((((((((((((((-3.81 95 21 +.02 90 .90 .\$tatistic	+92.40 -6.70 +3.49 +2.00 53 4.74	-3.81 +92.40 +59.61 95 -6.70 -3.58 21 +3.49 +1.53 +0.2 +2.00 +1.00 303308 .90 4.74 2.32 * Statistically insignificant	+t.56 +t.34 +34 +t.44	+5.35 13 07 +.28 53	-32.71 +5.72 +2.43 -5.53	-20.44 +1.96 +1.33 +2.18 -1.48	-46.23 -16.28 -16.28 +.20 +.07 +1.22 9.78	-30.16 -11.28 +.07 35 7.21	125.41 -4.05 -1.10 -1.40 95 4.30	+18.73 +2.62 +.88 +1.44 +4.9	+15.70 +1.51 36 10 +.99 2.59	12.03 +2.65 +.15 -4.63 3.64

Table 18. -- Continued

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 40 long staple samples, carded yarns, collected at triweekly intervals from selected gin points, crop of 1971 Table 19. -- Cotton:

						Depen	Dependent Variables	les					
Statistical Items	Dioker	Yarn skei	Yarn skein strength	Yarn el	Yarn elongation	Yarn ap	Yarn appearance	Yarn impe	Yarn imperfections		Col	Color of 22s y	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pct.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	임	No.	Index	Index	Index
Dependent variable	4.68	116	t ¹ 3	6.5	5.3	102	62	52	22	72	33	103	109
Staple length.	36.3	36.3	36.3	36.3	36.3	36.3	36.3	8,4	36.3 36.3	36.3 36.33	36.3	36 . 3	36.3 36.3
Micronaire. Fiber strength (O gage)	o•† 98	o• 4 98	°*,0	o•† 86	o• † 98	0•4 88	o•†*	o•†*	o• † 98	- - 2	4.78	7 %	4.8
Uniformity ratio	† ₁ † ₁	114	‡	∄	44	† †	11	4	74	<u>†</u>	<u></u>	74	3≢
Dependent variable	86.	13.5	6.5	-34	•39	10.9	4.6	4.6	9.5	8.2	5.6	2.1	4.1
Staple length	1.07	1.07	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
Micronaire	.53	.53	.53	.53	•53	•53	.53	.53	.53	.53	.53		
Uniformity ratio	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	6.4	6.4
Grade index	52	+.87	+.86	+*34	+,46	37	29	+,12	+10	+-77	+.8]	+ 00	רני+
Staple length	04	+.76	1.77	+.17	+.35	34	28	+.12	+*08	+.64	+.54	+.19	+.32
Fiber strength (0 gage)	- ·	- + - 8 - 4	+ .	+ 3T	ਰ ਵ ਦ ਦ	+ •	4.70	+ + 52	8 %	50	- + 28	L0°++	+ +
Uniformity ratio	25	+.52	+.53	+.27	+.39	01	-°07	90.+	+.02	+.50	+.28	+ 08	+ 58
DEPENDENT VARIABLE with													
Multiple Cor. Coef	.53	.92	-98	45.	74.	04.	32	.13	11.	.81	8	8	33
Partial Cor. Coef. for:	(. ())				?	
Staple length	38	+.81 +.63	+ + - 64	+°30 -°0†	+.34 +.11	23	91 -1	90°+ + +	+.07	+.64 +.36	+.72	+.14 +.08	10 +.31
Grade index	*64	+.65	+.62	+*36*	+.39*	*58*	19*	*4.07*	+*00*+	+.61	+.75	+.16*	-,11*
Regression Equation:	*†T•	9£.+	04.+	*†0	+.12*	18*	17*	*80°+	*†0°+	+.28*	+.10*	*60°+	+*38*
Constant (a)	+19.64	-170.64	-99.45	+5.41	+1.78	+207.33	+157.20	-7.92	+.77	-70.72	+19.67	+92.30	+61.45
Grade index	90	41.00	+, 57	+ 00	00+	01 -	20.	+		4	4	4	Č
Staple length. Standard Error (\pm) .	-13	44.81	4.0	10.	+		٠ ا ا ا ا ا	+ 0	5.4	- 1 - 2	+ + 53	. + . 0	- t- c
DEPENDENT VARIABLE with			R.		•		;	14.6	£	· ·	3.30	(0.3	2.00
MICRONAIRE													
Multiple Cor. Coef	• 56	.93	•93	•38	74.	69.	•59	.5 ⁴	ħ9°	.81	.81	.32	479°
Grade index.	43	+.77 +.64	+-74 + 65	+ 22	+ + 33	40°+	4.07	18	±2	+ + 58	+ 68	+.22	+.17
MicronaireBeta Coefficients for:	22	33	900	17	경+	+.62	+.53	53	63	-18	02	+.23	+.58
Grade index	53*	+.58	+.56	+.28*	+*\4.	******	*80°+	21*	*56*	+.55	+.74	+.28*	+,18*
Micronaire	16*	+.37	+.39	**00	+*12* +*00*	-13* +.66	+.58*	+.03*	02*	+.27*	+.10*	*.5%.+	+,43*
Constant (a)Regression Coef. for:	+23.10	-138.80	-85.13	44.94	+1.55	+91.85	00.69+	+83.12	+112.78	-54.53	+20•63	+83.57	+19.93
Grade index	To	41.09	+.51	+.01	+.02	90*+	+,10	27	34	ħ9°+	+, 58	** 08	+,10
Micronaire	 51.4.6.	-3.73 4.88	-1.68 -1.68 -1.44	8 21.8	후 6.4 + +	-1.35 +13.52	-1.11 +10.33	+.27	-13.12	4.08 1.98	÷	+ 1 02 0	1,4°6
	*Statistic	*Statistically insignificant	ficant	٠.	•	0:-	66.	00.	000-1	4.19	2.30	20.5	3.17

						Depen	Dependent Variables	les					
Statistical Items	Di o leon	Yarn skein strength	strength	Yarn el	elongation	Yarn ap	Yarn appearance	Yarn impe	Yarn imperfections		OD	Color of 22s yarn	arn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed
DEPENDENT VARIABLE with GRADE INDEX, STAFIE LENGTH, MICROMAIRE, FIBER STRENGTH	<u></u> 물	Lbs.	Lbs.	Pet.	Pct.	Index	Index	임	<u>چ</u> ا	No.	Index	Index	Index
(O GAGE) Multiple Cor. Coef	.57	₹.	ま・	54.	.55	.70	09.	±5.	49•	-82	±8.	•33	49.
Fartial Cor. Coer. Ior: Grade Index Staple length Micronaire Fiber str. (0 gage)	37 18 17 +.10	+ + 64 + 57 + .32	+ + + + + + + + + + + + + + + + + + +	+.34 +.05 27 27	+ + + + + + + + + + + + + + + + + + +	+ - +	+ 12 - 08 + 47 - 10	41+ 41.02 44+		+ + + + + + + + + + + + + + + + + + +	+.37 01 +.15 +.39	4 + + 1 21. 10. 00.	++++
Beta Coefficients for: Grade index Staple length. Micronaire Fiber str. (0 gage).		+ .47 + .31 09* + .22*	+ + + + .33 + .07*	+.63* +.06* 31*	+ 81* + 25* - 10* - 53*	+ 15* - 09* + 61 - 17*	+ 18* - 09* - 15*	**************************************	33* 05* 71 +.10*	+ + .24* + .09* + .11*	+ + + + + + + + + + + + + + + + + + +	+ - 15* - 15* - 16*	+.07* +.10* +.67 +.14*
Regression Equation: Constant (a)	+23,60	-140,11	-85.30	94	\$6°+	+89,50	1466,41	+83,70	+1114.85	-53.08	+27.06	+82.58	+21.57
regression Coer, for and		+ + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	, + , + , 33 , 1, 2, 33 , 2, 2, 33 , 2, 2, 33	313333333333333333333333333333333333333		+.23 91 +12.59 29 7.79	+, 24 +, 77 +9,61 -, 22 -, 56	-10.55 +.04 7.88		+1.48 -1.48 -1.45 +1.14 4.76	+ .33 + .36 + .38 3.03	1.4.4.12	+,04 +1,53 +5,15 +,09 3,14
(U GAGE), UNLFURMITY RATIO Multiple Cor. Coef	•59	-95	.95	64.	.57	.70	.62	.61	.71	.83	98*	.38	4 9°
Fartial COT. COGI. 10F. Grade index. Staple length. Micronaire. Fiber str. (0 gage). Dariermity ratio.	14. 12. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	+ + + + + + + + + + + + + + + + + + +	+ + • + + + + + + + + + + + + + + + + +	+ + +	+ + + 22 - 16 - 16 - 17	+ - +	+ · + · · · · · · · · · · · · · · · · ·		100 100 100 100 100 100 100	44	+ + + + + + + + + + + + + + + + + + +	 21.25 11.25	
Grade index. Staple length. Micronaire. Fiber str. (0 gage).	* * * * * * * * * * * * * * * * * * *	+ + + + + + 17* + 17* + 18*	+.27* +.31 15* +.28* +.20*	+ + + + + + + + + + + + + + + + + + +	+ + 64* + 19* + 19* + 19*		* * * * * * * * * * * * * * * * * * *	+ +	* * * * * * * * * * * * * * * * * * *	+ 29* + 108* + 104* + 23*	**************************************	+ + + + + + + + + + + + + + + + + + +	**************************************
Constant (a)	+21.57	-163.30	-97.55	+5.21	+.29	09*16+	+85.43	+49.73	+77.55	-70.51	440.67	+87.74	+22.22
Crade index. Crade index. Staple length Mcronaire. Fiber str. (O gage). Uniformity ratio. Standard Error (±).	12 21 51 +.03 +.19 .79 .73	12 +.61 +.24 21 +3.71 +1.88 51 -4.25 -1.90 +.03 +.51 +1.29 +.13 +1.40 +7.74 .79 +1.77 2.07 Statistically insignificant	+.24 +1.88 -1.90 +.29 +.74 2.07 ificant	+ .02 + .01 + .02 + .02 + .05	+ + + + + + + + + + + + + + + + + + +	+.33 +13.31 50 7.76	+,48 +11,31 -,27 -1,19	73 -13.61 +3.11 +2.14 7.41	91 84 -15.97 +2.33 6.67	+ .34 +1.68 -3.01 +1.08 +1.08	2. + + + + + + + + + + + + + + + + + + +	+ .19 + .36 32 1.95	+ .05 + .53 + .05 + .09 3.14

Table 20.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 40 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1971

						Depen	Dependent Variables	les					
Statistical Items	Diokon	Yarn skei	Yarn skein strength	Yarn el	elongation	Yarn ap	appearance	Yarn impe	Yarn imperfections		တ	Color of 22s	yarn
	& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for: Dependent variable Grayness	Pct. 9.4 2	<u>lbs</u> . 116 2	Lbs.	Pet. 6.5	Pet. 2	<u>Index</u> 102 2	<u>Index</u> 79	No. 25 2	22 l8	No. 72 2	Index 93	Index 103 2	Index 109 2
Yellowness	3.4. 1.16	3.1. 1.16	33.4 1.16	3.t.	3.4 1.16	33.4 1.16	3.4 1.16	3.4 1.16	33.4 1.16	33.4 1.16	3.4	33.4 1.16	33.4
Standard Deviation (±) for: Dependent variable.	86.	13.5	. 6.	3.34	9.39	10.9	, o.	0. 4.6	2 6.	± ∞,	5.00	4 %, 0. L.	4.0
Yellomess Nonlint content (S.A.)	 	เก๋น ชุง	 	เก๋ง					1 1 20 10	 	1 1 2 4 10		i i urag
Micronaire	•53	•53	•53	•53	•53	.53	•53	.53	.53	.53	.53	.53	.53
Grayness	+.52	80	78	31	43	+.35	+ + + • • • • • • • • • • • • • • • • •	+.10	1	+ .63	88	23	05 +.04
Nonlint content (S.A.)	+.55	7.57 4.44.+	57 +.46		. + £.∓.	+.22	+ +	+ 05	08	+ + + 50	+ . 25	+ 54 + 24	- 03
Multiple Cor. Data for: DEPENDENT VARIABLE with CPANNESS VET CAMPESS	1.)ζ	٠ <u>٠</u>	31	-21	69.+	+ 60.	51	09••	50	-,42	LO.+	+.39
Multiple Cor. Coef	•55	.81	62.	.32	64.	•36	.26	.12	11.	99.	88.	,24	70.
Grayness. Yellowness.	+.54	81 +.23	79	29	42	+.36	+.26 01	07	1	+.23	88 +.14	22	+.05 +.05
Grayness.	+.55	82 +.14*	81 +.14*	*65	42*	+.37*	+.26*	07*	11*	67	*4.07	22*	*90°-
regression Equation: Constant (a)Regression Coef. for:	+9.33	+123.60	+46.14	+6.81	+5.60	+100.11	+76.03	+20.89	+24.62	+72.76		+104.78	+108.14
Tarness Standard Error (±) DEPENDENT VARIABLE with GRATNESS, YELLOWNESS,	# i 888 888	-8.80 +3.49 7.93	-4.19 11.74 3.98	.33	13 02 .35	+3.19 -1.55 10.17	+1.95 24 9.12	53 +1.93 9.28	82 20 9.44	-4.35 +2.76 6.19	-3.96 -3.96 2.68	37 23 2.05	19 +.38 4.08
NONLINT (S.A.) Multiple Cor. Coef	09.	.81	80	.38	74.	.36	.26	.15	п.	99•	68.	.39	200
Grayness Yellowness Nonlin (S.A.) Reta Coefficients for:	+.28 11 +.30	70 +.21 08	+ 60 	35	++.02+	+ .29	+.17 00 +.05	11 +.13 +.09	07	+.21 10	+ + - 84 + 25 + 25	37 +.02 +.31	05 +.05 +.01
Grayness Yellowness Yollow (S.A.) Regression Emustion	+ .32* + .32* + .34*	78 +.13* 06*	76 +.13* 07*	-,48* +,28*	+.59* +.25*	+.39*	**************************************	16* +.14* +.13*	10* 01* 01*	60 +.16* 10*	-1.00 +.10* +.16*	50* +.01* +.41*	07* +.05* +.01*
Constant (a)Regression Coef. for:	+8.37	+125.98	+47.50	46.54	+5.32	+101,10	474.45	+17.52	454.99	+75.21		+102,30	+107.98
Grayness Yellowness Nonlint (S.A.). Standard Error (±)	+.25 +.25 +.29 ************************************	+.25 -8.35 -3.9 17 +3.22 +1.5 +2.9724.	-3.93 +1.58 41 3.97	- 13 + 08 + 32	- 18 - 01 - 08 - 08 - 08 - 08	+3.37 -1.66 -30 10.16	+1.66 06 +.48 9.11	-1.16 +2.32 +1.02 9.24	75 24 119	-3.90 +2.48 74 6.16	-4.43 +1.00 +.77 2.60	83 +.06 +.75 1.94	- + + + + 092 tr. 092
	TOGETOBOO .	TOTAL TIPTE	LITCHIC										

Deper	Yarn skein strength Yarn elongation Yarn a	CoarseFineCoarseFineCoarse22s50s22s	<u>Ibs. Pct. Pct. Index</u>	.88 .98 .58 .37	79773747 +.29 +.18 +.17060309 2931 +.16 +.1004 +.60 +.61 +.18 +.39 +.04	+.35*828049*59 +.39* 07* +.09* +.09*06*02*09* +.43*20*22* +.21* +.11*05* 23* +.37 +.39 +.18* +.36* +.04*	+14,72 -14,67 -25,03 +4,79 +1,37 +87,67	-8.79 -4.171318 +5.33 +2.22 +1.070402 -1.76 -2.37 -1.26 +.06 +.0446 +129,43 +66.77 +1.60 +3.62 +12.36 6.35 3.14 .31 10.15	ος. 64. 16. 16.	77752842 +.09 +.18 +.17080308 2830 +.20 +.1114 +.70 +.71 +.25 +.4013 5150 :2811 +.65	+.45*716936*54* +.09*06*08* +.08* +.08*07*03*06*06* +.46*17*19* +.25* +.12*14*10*27*30*30*32*12* +.75	+14,92 -11.63 -23.55 +4.87 +1.40 +81.51	+.35 -7.55 -3.581017 +.82 -1.16 +1.93 +1.920402 -1.16 +1.93 +1.94 +1.93 +1.95 +1.06 +1.07 +1.04 -1.33 +1.07 +1.04 +1.06 +1.07 +1.04 +1.07
Dependent Variables	Yarn appearance	Fine 50s	Index	.27	+ - 16	+.02* +.01* +.04*	+60.14	+1.62 16 +.31 +13.15 9.10	09•	1005 1005 1006 1009 1009	******	+55.46	32 +.29 35 -18,52 -11,68
es	Yarn imperfections	Coarse Fine 22s 50s	No. No.	.19	1006 +.14 +.01 +.12 +.04 1118	+ + 1.14* + 1.17* - 1.17* - 1.11*	+47.00 +74.55	-1.0562 +2.53 +.11 +1.36 +.47 -27.15 -145.58 9.19 9.30	.61	+.12 +.14 +.22 +.22 +.14 +.03 04 59	+.14* +.22* +.12*02* +.26* +.15* +.03*03*	+52.16 +80.07	1.02 1.66 42.04 - 42 42.09 1.25 47.27 1.25 12.59 13.73 7.17
	ions	e Spinning Potential	No.	.21	26 - 60 21 + 17 34 - 28 18 + 52	08*65 +.01* +.12* +.06*26* 18* +.41	55 -20.87	52 -4.26 11 +1.80 17 -1.87 18 +88.53 30 5.25	.81	53 17 26 4 460 411	28*53 +.11* 55*22* +.48 732*	7 -18,85	6 -3.45 11.61 5 -1.58 3 +102.01 4 -1.97 7 4.79
	Color	Gray	Index	.68	1 + + +	-1.02 +.09* +.12* +.09*	+81.49 +93.87	-4.53 +.90 +.59 +13.61 -2.55	68.	1 + + + + + + + + + + + + + + + + + + +	- + + + + + + + + + + + + + + + + + + +	+81.38 +93.57	-4.5797 +91 +03 +12.87 +56 +2.87 +567 2.55 1.90
	of 22s yarn	Bleached Dyed yarn	Index Index	6tı. Ltı.	3810 0000 +.2715 +.14 +.49	50*12* 00*00* +.35*18* +.14* +.51	87 +48.63	8438 0002 +.6565 +7.74 +54.56 1.92 3.56	η9· ηη·	4127 +.01 +.02 +.2522 +.11 +.44 +.17 +.47	58*31* +.01* +.02* +.33*24* +.10* +.41* +.19* +.50	57 +47.08	77 -1.02 51 +1.12 51 +44.11 66 +3.86

Table 21.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 40 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1971

						Depend	Dependent Variables	les					
Statistical Items	Picker	Yarn skein	n strength	Yern el	elongation	Yarn app	earance	Yarn impe	Carn imperfections		CoJ	lor of 22s	ern
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
Mean Values for:	Pct.	Lbs.	Lbs.	Pet.	Pct.	Index	Index) 일	No.	Index	Index	Index
Dependent variable. 2.5% span length.	9.4	116	43 1.16	6.5	5.3	102	1.16	25	22	72	93	103	109
Micronaire Fiber str. (1/8" gage)	o. † †?	0.42	0.45	0. 47.	0.42	o. 47.	0.42	o• 42	o• † †;	o. 4 42	0.45	0.4.5	0.42
Elongation (1/8" gage) Standard Deviation (±) for:	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	6°5	5.9	4 ⁴ 4
Dependent variable	86.	13.5	6.5	₹. †ö.	39	10.9	4.6	4.6	9.5	8.2	5.6	2.1	4°-1
Micronaire Fiber str. (1/8" gage)	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2333	.53
Uniformity ratio Elongation (1/8" gage)	1.7	1.7	1.7 .46	1.7	1.7 .46	1.7	1.7 .46	1.7	.46	1.7	1.7	1.7	1.7 .46
2.5 span length	22	† *	94.+	+.2%	4,44.	02	+.02	90*-	15	+,45	+.25	+.24	+,47
Micronaire. Fiber str. (1/8" gage)	t.+.	57 +.87	+ 56 86	+.32	21 +.52	+.69	+.59	+.02	60	+.75	42 +.73	+.07	+ + 35
Uniformity ratio Elongation (1/8" gage)	25 +.26	+.52	+.53	+.27	+.39	+.36	07 +.27	+.06	+.02	+.50	+.28	+.08 14	+ -
Multiple Cor. Data for: DEPENDENT VARIABLE with													
Multiple Cor. Coef	.26	.77	.78	·43	.52	.70	.59	.51	09.	.72	.52	.25	.58
2.5% span length	45	†9°+	+.65	+.32	+,48	16	70	+.01	60	9.+	+.34	+ + +	94.+
Beta Coefficients for:		•	•	0	10.	•	66.	TC	·	50	04.	÷	+.3(
2.5% span length	*†1°+	+.53	+.54	+.31*	+.48	12*	**90*+	+.01*	07*	+.53	+.31*	+*5/+ +*0/+	+,43
Constant (a)	+15.35	-34.32	-33.63	+4.18	+.55	70° 48+	04.42+	+58.83	+84.58	-23.84	+59.34	+87.51	+46.12
Action Coes. 101. 2.5% span length	-6.02 +.26	+185.27	+92.44 -7.77	+2.76	+4.77	-33.66 +14.39	-14.56	+1.97	-17.84	+112.76	45.64	+13.11	+45.35
Standard Error (±) DEPENDENT VARIABLE with 2 5% SPAN LENGTH MICRONAIPE	.95	8.53	4.13	•31	•33	7.84	7.63	8.04	7.60	69.5	4.79	2.04	3.34
FIBER STR. (1/8" GAGE) Multiple Cor. Coef.	4.	٠ ٢٥	ησ	ų,	α	C	C	C	7	á	Q	ć	(
Partial Cor. Coef. for:					? !	•		3	70.	2.		• 23	Co.
Micronaire Fiber str. (1/8" gage)	.38	+	+ - +	+ - 3 + - 10 - 10	+.27 19 +.30	14 +.67 +.01	- + - - 574 - 06	+.10 52 16	+.05	+.30	15	+ + 13 + 23 + 23	+ + + + + 32
2.5% span length. Micronaire. Fiber str. (1/8" gage)	+.04* 01* 47*	+.12* 41 +.70	+.1\h. \h. +.69	+.24*	+.29* 17* +.33*	12* +.70 +.01*	02* +.57 07*	+.11*	+.05*	+.21*	12*	+.07*	+ .23 + .44 + .34 + .34
Regression Equation: Constant (a)	+13.22	L4.6+	-12.86	+4.37	+1.13	+84.44	+51.53	+51.09	64.57+	-3.40	478.49	+90.28	+52.48
2.5% span length	**	+41.75	+24.37	+2.14	+2.87	-34.90	-5.16	+27.31	+11.95	+45.77	-17.12	†0°†+	+24.53
Fiber str. (1/8" gage)			25.5	+ - 05 31:	+.05	77.84 7.84	27 7.62	-10.03	7.4±-7.	+1.92 4.53	3.53	. + . : 8 % %	+3.40 +.60 3.17
	* Statisti	ically insig	nificant										

						Depen	Dependent Variables	les					
Statistical Items	Dicken	Yarn skein strength	strength	Yarn e	elongation	Yarn ap	Yarn appearance	Yarn imp	imperfections		CoJ	Color of 22s y	yarn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), INTERPARTIVE PARTY	Pct.	<u>l.bs.</u>	Lbs.	Pet.	Pet.	Index	Index	 -	No.	No.	Index	Index	Index
OMITUDE COR. COEF	54.	96•	.95	24.	.59	.70	09.	.57	99•	98.	.78	.37	.63
Micronaire Fiber str. (1/8" gage) Uniformity ratio.	+.02	+.32 +.82 +.81 +.43	+ + 35 + + 79 + 435	+.07 34 01 +.19	+.17 23 +.18 +.17	1 + + -	++.04		13 64 31 +.27	+ 61 + + + 5 + 34	05 27 +.66	+ + + 14 17 1.28 1.16	. + + + - 30 - 05
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Bennession Frustion.	**************************************	+.12* 45 +.60 +.17*	+.14* 45 +.58 +.18*	+.10*	+.19* +.22* +.18*	10* +.71 +.03*	+.05*	08* 63 34* +.25*	15* 71 +.26*	+ 1.18* + 1.23* + 23*	05* 20* +.81 12*	+.21* +.18* +.40* 19*	* 50¢* • 1.0¢*
Constant (a)	+13.24	-30.14	-33.04	44.58	+1.01	+82.69	64.74+	+65.57	04.06+	-27.04	+78.02	+88.60	+52,44
Account out to the first out of the firs	#	41.65 -11.47 +3.50 11.34 3.83	+24.23 -5.53 -1.64 -69. 1.96		1.95 1.0.4 4.0.4 1.0.4 1.0.4	-27.82 +114.59 +1.14 22 7.83	+12.36 +10.56 02 55 7.58	-20.40 -11.02 -1.36 -1.38 -7.70	-37.64 -12.72 -1.52 +1.14 7.17	-37.62 -6.92 -11.41 -1.12 -1.26	-6.96 -2.10 -1.98 -1.38 3.49	+11.37 +.70 +.33 1.96	+27,23 +3,47 +,65 -10 3,16
Multiple Cor. Coef.	·45	%.	.97	.58	99*	.71	09.	.57	99.	.86	.80	.37	•63
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Beta Coefficients for:	+	38 + + + + + 1 + + 1 + + 1 + + 1 + + 1 + + 1 + + 1 + + 1 + + 1 + + 1 +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ · + + + + + + + + + + + + + + + + + +	99.4.4.4.4.5	84					+ + 11¢ + 2¢ + 2¢ + 16 + 16	25.4.4. 20.33.33.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage).	+ 005* + 1005* + 1005* + 1005*	* * * * * * * * * * * * * * * * * * *	* 1 + + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	**************************************	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	+ + + + + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * *	1.15*	* * * * * * * * * * * * * * * * * * *	*70 *18.* * +.66 * +.04.*	* 17.51* + 1.62* + 1.03*	****** 033*** 0033*
Constant (a)Regression Coef. for:	+12.52	-17.68	-24.61	+2.33	86	+47.73	430.67	+51.71	+91.84	-22.51	+92.75	69.78+	+54.72
	+1.03 04 19 01 +.11 .88 * Statistic	+1.03 +47.27 +27.97 04 -11.13 -5.31 19 +2.87 +1.21 01 +1.79 +1.21 +.11 -4.09 -2.75 .88 3.55 1.71 * Statistically insignificant	+27.97 -5.31 +1.21 +.99 -2.75 1.71 ificant	1. 1. 26 20. 1. 1. 26 2. 23 2. 28	4 . + + +	-17.24 +14.19 +.90 +.90 75 +4.89	+17.35 +10.36 +.35 81 +2.38 7.53	-15.93 -11.18 -1.07 +1.18 +1.87 7.67	-38.11 -12.70 -1.55 +1.46 20	438.28 6.6.22 1.1.22 1.14 24.14	-10.45 -1.92 -1.62 -2.30 3.40	+11.64 +	+26.71 +3.50 +5.59 06 3.16

Table 22.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 40 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1971

				Dependent Variables					
Statistical Items	,	Yarn skein	skein strength	Yarn elongation	ongation	Yarn app	appearance	Yarn imperfections	rfections
	Comberwaste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for: Dependent variable. Orade index. Staple length. Micronaire Fiber strength (O gage). Uniformity ratio.	Pet. 16.9 26.3 36.3 4.0	133 292 36.3 4.0	Lbs. 50 92 36.3 36.3 4.10 4.10	Pet. 6.8 36.3 36.3 4.0 86.4 44	Pet. 5.5 92 36.3 4.0 86	Index 110 92 36.3 4.0	Index 91 92 36.3 4.0	No. 3% 28 4. 3% 4. 3% 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	11 86.0 4.33.33
Standard Deviation (±) for: Dependent variable. Grade index. Staple length. Micronaire. Fiber strength (0 gage). Uniformity ratio.	2.44 7.1 1.07 1.03 .53 6.4	13.9 7.1 1.07 .53 6.4	6.5 1.01 1.03 1.04	.32 7.1 1.07 1.03 6.4	.31 7.1 1.07 1.03 6.4 1.7	11.9 7.1 1.07 1.53 6.4	10.9	6.8 7.1 1.07 1.07 .53	6.1 1.07 1.03 6.4
Simple Correlation Coef. for Crade index. Stable length. Micronaire. Fiber strength (0 gage). Uniformity ratio. Multiple Cor. Data for: DEPENDENT VARIABLE with			++.+.+.+ ++.+.+.+	+.34 17 17 +.01	24. 20 41. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	36 1 7 07		+.27 +.23 +.32 +.10	+ .28 + .17 + .36 + .05
GRADE INDEX, STAPLE LENGTH Multiple Cor. Coef.	.38	.91	8.	•35	टम्.	711.	. 29	. 28	. 28
Staple length	08	+.79 +.53	+.76 +.57	+.34	+ · 38 06	16 26	10	+.17 +.10	+.23
Grade index	10* 31*	+.68	+.63 +.37	+,42*	*9†°+	19*	11* 21*	+.20* +.12*	+.28*
Constant (a)	445.79	-141.75	-84.27	+6.52	+4+38	+260.45	+184.62	-31,31	-21.97
Grade index Staple length. Standard Error (±) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH,	03 71 2.26	1.32 5.88 5.88	+.57 +2.25 2.79	02 04 03	2025.	31 -3.36 10.68	-17 -2.14 10.44	+.19 +.74 6.57	+.24 +.06 5.84
Multiple Cor. Coef.	.62	•93	.93	.35	£4.	†9°	.63	.51	•65
Grade index. Staple length Micromaire. Beta Coefficients for:	32 34 53	+.75	+.72 +.62 55	+,31	+.38 05 +.10	+ · . 8	+.18 16 +.59	02 +.07 44	700
Grade index. Staple length Mcronaire. Regression Fountation	36* 36* 57	+.57 +.30 24	+ + 50	+,41* -,13* -,01*	+.51* 06* +.10*	*******	+.19*	***************************************	***************************************
Constant (a)	+68.20	-87.40	-55.51	46.56	+3.88	-157.57	06*69+	+22.89	+52.95
	12 82 -2.62 1.92 * Statisticall	12 +1.11 82 +5.97 -2.62 -6.37 1.92 5.11 * Statistically insignificant	+.45 +2.12 -3.37 -3.32	+,02-	4 . + . + . + . + . + . + . + . + . + .	+.11 -2.89 +12.05 9.15	+.29 -1.61 13.43 8.44	- +	03 24 -7.72 4.66

			•						
			Depe	Dependent Variables					
Q+a+ic+ic+ic		Yarn skei	Yarn skein strength	Yarn elongation	ngation	Yarn appearance	earance	Yarn imperfections	fections
20001 10010 2000	Comberwaste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 te x	50s or 12 tex
DEFENDENT VARIABLE with GRADE INDEX, STAPIE LENGTH, MICRONAIRE, FIBER STRENGTH	Pet.	<u>Lbs.</u>	Lbs.	Pct.	Pet.	Index	Index	No.	No.
Multiple Cor. Coef	•63	.95	-95	.57	.51	₄ 9•	₦9•	.51	.65
Grade index. Staple length. Micromaire. Fibra et (O.200)		+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+.55	+ + + • • • • • • • • • • • • • • • • •	+ + + + + + + + + + + + + + + + + + + +	4	- + - 00 - + - 07	03 04
Beta Coefficients for:	%†15°+	04°+	+ + +9	43	÷ +	06 +.13*	L3 +.32*	02	+,01
Staple length	***************************************	+.22 +.15* +.35	+ 27	* * * * * * * * * * * * * * * * * * * *	*003*	+ + 52 + 50 * 00*	*11.	* * * * * * * * * * * * * * * * * * * *	**00.+ +**01.*
Constant (a)Regression Coef. for:	19*69+	-91.56	-57.11	+5.80	+3.43	+155.43	+66.19	+22,40	+53.09
Grade index. Staple length. Micronaire. Fiber str. (O gage). Standard Error (t).	1.14.19 89.03.89	+ 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+ † 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	+ + · · · · · · · · · · · · · · · · · ·	+ 0°+ + 0°5 + 0°5 + 0°5 - 0°5	+.21 -2.63 -11.50 -1.7 9.13	+.49 -1.12 -12.39 -33	- 01 - 6-45 - 6-45 - 03 - 03	
GRADE INDEX, STAPLE IENGTH, MICROWAINE, FIBER STRENGTH, (O GAGE), UNIFORMITY RATIO MALLIPLE COr. Coef.	†9 •	.95	%.	.62	.59	†9°	†9°	45.	•65
Grade index Staple length. Micronaire Fiber str. (0 gage) Uniformity ratio.	25 33 	+ + + + 2245 3245 3245	+ + + + + + + + + + + + + + + + + + +	++ - ++ - 23 - 24 - 29	+ + .29 18 28 34	+.13 +.46 07	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	. +	
Grade index. Staple length. Micronaire. Fiber str. (0 gage) Uniformity ratio. Repression Femation.	. 43* - 41* - 41* - 13*	+.29* +.20* +.37 +.14*	+.21* +.25 26 +.35 +.17*	+.77* 37* +.32*	+.55* +.20* 45* +.40*		+.33* 11* 61 19*		05* 05* + .02*
Constant (a)Regression Coef. for:	+72.62	-110,51	-67.57	98*+1+	+2.29	09*291+	+67.86	. +6.92	60.64+
Grade indexStaple length		+.57	+.19 +1.50	+.03	+.02 +.01	+ -36 -2-49	1.1.	. + . 20 7. 5. 7.	60.0
Fiber str. (0 gage) Uniformity ratio. Standard Error (±).	+ + · -		7 + + - 3 % % & &	+ 2.40 %	+ 	412.14 200.11.10	+ 	+ 	+ +
-	* Statistically insignificant	insignificant		/3.	(3.	00.6) • •	:) t

Table 23.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 40 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1971

			Deper	Dependent Variables					
1 to		Yarn skein	skein strength	Yarn elc	Yarn elongation	Yarn appe	appearance	Yarn imperfections	fections
ממסרות הונטון	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s o r 12 te x	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
Mean Values for:	Pct.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.
Dependent variable	16.9	133	200	8.0	5.5	110	۲°	13	11 0
Yellowness	1 m	1 m	1 m (ı m	1 m (1 m (<u>-</u> ا ۳ (ımı
Nonlint content (S.A.) 2.5% span length	3.4	3.4 1.16	3.4 1.16	3.4 1.16	3.4 1.16	3.4 1.16	3.4	3.4	3.4 1.16
Micronaire	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Dependent variable	2.44	13.9	6.5	.32	.31	9.1°	10.9	۵. د د د	6.1
Yellowness					 		 	 	
Nonlint content (S.A.)	2. 10.	۲. اور	1.2	1.2	1.2 .04	1.2	د. م.	o. 1	1.04
Micromatic	•53	.53	•53	•53	•53	•53	.53	•53	.53
Grayness	т . +	83	82	13	31	+.26	+.24	17	26
Yellowness	9:+	01	00.1	16 10	01 07	±0°• +°30	 - 23 - +	+.13 16	53
2.5% span length	-,52	+	+ 33	+.17	+ 30	70°-	+ +	+.02	-13
Multiple Cor. Data for:	0.	•	9	7.	† •	-		T(†
DEFENDENT VARIABLE WICH GRAYNESS, YELLOWNESS									
Multiple Cor. Coef.	.13	₹8.	.83	.19	.31	.27	.25	. 2 ⁴	. 28
Grayness	+.12	₹%	+ - 83	10	31 +.05	+.27	+.25	- + - 50	8,8
Beta Coefficients for:				!					
Grayness	**15* *00*	85 +.15*	84 +.15*	-10*	32* +.05*	*52*+	*50*+	+°16*	27* +.05*
Regression Equation:	c4.71+	4141.08	+53.24	. 60-7+	+5.61	+110.57	+90-84	+6-33	76, 11+
Regression Coef. for:)		ì			
Grayness	+.24	-9.45 +3.75	-4-32 -1-82	. o.	80°+	+2.57 -1.88	72.21 1.38	-1.10 +2.05	-1.29 +.61
DEPENDENT VARIABLE with GRAYNESS,	, , ,),(•),	3.61	•31	930	÷.	5C•0T	0000	2.00
Multiple Cor. Coef	41.	48.	.83	.20	•36	.32	.56	,24	.27
Grayness	<u> 20°+</u>	47	72	03	35	60°+	4.14	-13	15
Nonlint (S.A.)	,0°.+ +.03		+. 1 01.		+.19	05 +.17	+ 0.0	+ -	m 8 • •
Grayness	*60°+	82	80	*50	*84*-	+,12*	+*18*	17*	*02
Yellowness	*40*+	**J7** -*00**	+.14*	16* 08*	*†2°+	05* +.22*	05* +.11*	+,16* -,05*	**************************************
Regression Equation: Constant (a)	+17.12	+143.33	+54-57	+7.17	+5.39	+102.90	+87.43	+10.23	+13.83
Regression Coef. for:	0	0	000	5	C	12	14	8	Ċ
Yellowness	+•10 32	-9-03 +3-50	+1.67	10 . -	+.05	1.14	11.57 99	+1.95	+ 39
	60°+	-68	- 40 3,59	-02	+°00+	+2,32 11,36	+1.03	-27	5.5%
_	* Statistically insignificant	r insignificant	7	•	ì	ì)

			Deper	Dependent Variables					
1		Yarn skein	n skein strength	Yarn elongation	ngation	Yarn appearance	arance	Yarn imperfections	fections
Statistical items	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN	Pct.	Lbs.	Tps.	Pet.	Pet.	Index	Index	No.	No.
Length Multiple Cor. Coef	• 56	888	. 88	.27	5ħ.	•33	.27	ή ζ .	.31
Crayness Vallowness Nonlint (S.A.) 2.5% span length.	+.15	+.21 +.21 +.47	79 27 57		37 +.07 +.12 +.23	+ · + ·	+ 13	1 1 1 1	1
beta Coefficients for: Grayness. Vellowness. Nonlint (S.A.). 2.5% span length	+.17* 01* +.26* 57	84 +.11* 16* +.27		**************************************		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	*10°+ *00°+ *00°+	. 138* - 105* - 16*
Regression Equation: Constant (a)	+56.52	+37.84	-1.81	+5.39	43.40	+130.56	+71.03	+10.14	+41.88
Grayness. Yellowness. Yellowness. Nonlint (S.A.). 2.5% span length. Standard Error (±). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.), 2.5% SPAN	23.55 2.03 2.03 2.03	9.4.2.2 4.5.2 6.4 6.67	4.22 1.27 1.06 3.06		- + + 1 4 4 4 5 5 8 3 5 8 3 5 8 3 5 8 3 5 8 3 5 8 3 5 8 3 5 8 3 5 8 5 8	7.22 81 84 85 85 85 11	1.53 1.11 1.84 1.5.06 10.50	6.65 6.65	-25.74 -55.74 -7.79
LENGTH, MICRONAIRE Multiple Cor. Coef	•63	96.	ま.	.32	5 [†] .	η9°	.63	.55	.65
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micromaire. Reta Coefficients for:	+ . +	. + . +	. + 24 27 	+.01 18 10 +.22		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ · · · · · · · · · · · · · · · · · · ·		000000 +++
Grayness Yellowness Nonlint (S.A.) 2.5% span length Micronaire Remassion Frantian	+ 1 + 1 98* - 30* - 30* - 30*	1 + 1 + 1 09*		+.01.* 19* 13* +.24* 21*	**************************************	14* 10.11* 17* 1.22* 1.68	* * * * 00. • • • • • • • • • • • • • • • • • • •		+.10* +.00* 02*
Constant (a)	+57.17	74 <u>.</u> 14+	+,10	45.44	+3.41	+124,45	+65.29	+13.30	445.09
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micropaire. Standard Error (±).	+.59 -7.78 11 +2.40 +.65 -1.40 -31.91 +121.58 -1.61 -9.09 1.91 5.41 * Statistically insignificant	-7.78 +2.40 -1.40 +121.58 -9.09 5.41 insignificant	-3.43 -1.08 -1.73 -1.73 -1.73	+	. + + 1 4.9.3 88.0 88.0	-1.30 -66.64 -66.64 -5.20 9.11		+ + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++

Table 24.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 40 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1971

			1 1	Dependent Variables						
Statistical Items		Yarn skein	skein strength	Yarn eld	Yarn elongation	Yarn appearance	pearance	Yarn impe	Yarn imperfections	
	vaste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	
Mean Values for: Dependent variable 2.5% snan lenoth	Pet. 16.9	133 133	Libs. 50	Pct. 6.8	Pet. 5.5	Index 110	Index 91	No.	No.	
Micronaire (1/9"		0°+	0.4	0.1.	0.4	01-1	0.4	0.4	0.4	
Fiber Str. (1/0 gage)	₹.‡	1	ŧ.	ŧ.	ŧ.5	ŧ.5	74 74	†4 5	₹₹	
Elongation (1/8" gage)	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	
Dependent variable	2.44	13.9	6.5	.32	ಕ್ಷ.	11.9	10.9	6.8	6-1	
Micronaire	2.5.	53.	.53	53	÷.c.	÷ £.	÷ £.	4.€.	. 53 573	
Fiber str. (1/8" gage)	2.3	 	2.3	. 69 -	9.0	9.50	0 r	o .	ู้ดำ	
Elongation (1/8" gage).	94.	94.	94.	94.). %)•1 94•	94.	94.	
2.5% span length	52	+*36	+.39	+.17	+.30	70	+*03	+.02	13	
Micronaire	26	†9°+	99.+	17 +.31	դլ +-	+.60	+,61	15.1	6 ⁴	
Uniformity ratio	†††••	9ħ°+	+ 54.7	+ +	64.+	70	1000	+	- 05	
Multiple Cor. Data for: DEPENDENT VARIABLE with	ç. •	? •	•	ç.	(1.1	4.32	۲.۲۶	† Τ•-	• .	
2.5% SPAN LENGTH, MICRONAIRE	ì	Ç	ć	ì		,	,	1	,	
artial Cor. Coef. for:	٥٢.	9/.	.81	%.	.35	.62	.62	.51	₩9•	
2.5% span length	15.	+.58	+ • • • • • • • • • • • • • • • • • • •	8.8	+.32	19	70	+,11	-05	
Beta Coefficients for:	} -		<u>.</u>		(•	, .	10.	† •	
2.5% span length	49 20*	+.45	++ 49 72	*50* - 50*	+.32* 18*	15* +.62	+ .05*	+.09*	*†0	
Regression Equation: Constant (a)	+56.89	+15.94	-10,15	45°34	+2,89	+109,93	+58.09	1, 20, 24	+117.62	
Regression Coef. for:				. ;	` ;					
2.5% span length Micronaire Standard Error (±)	-31.43 90 2.03	+163.45 -18.29 8.76	+81.67 -8.76 3.76	+1.66 12 .31	42.64 11	-46.88 +13.81 9.35	-14.89 +12.73 8.59	+16.57 -6.67 5.88	-6.52 -7.30 4.66	
2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE)										
Multiple Cor. Coef	29*	.92	.93	•33	5h.	.63	.62	.52	.65	
2.5% span length	22	+.17	+,33	†°0°+	+.13	40°-	₹0°-	+•01	08	
Micronaire Fiber str. (1/8" gage) Beta Coefficients for:	- 40 - 45	4.79	81 +.79	11 +.21	+.2°+	+.55	+.58	- 45 51.+	+.07	
2.5% span length	21*	*80*+	+,14*	+.05*	+,16*	*40+	*†0°-+	+.02*	*80	
Fiber str. (1/8" gage)	3	+.63	+.59	*56*+	*63.+	-19*	*20	+.13*	*4.00+	
Constant (a)Regression Coef. for:	4-51-47	456.64	+7.39	+5.73	+3.31	94.66+	46.94+	74.42+	449.45	
2.5% span length. Micronaire. Fiber str. (1/8" gage). Standard Error (±).	-13.65 -1.62 -51 51	+30.09 -12.92 +3.83 5.44	+24.19 -6.45 +1.65 2.31	++.+ +0+ +0.+	1.26 1.05 1.04 28	-12.56 +12.43 99 9.18	-11.11 +12.58 -11.	+2.75 -6.11 + 4.00 5.83	-12.53 -7.06 +1.17 4.65	
	* Statistically insignificant	insignificant								

			Depe	Dependent Variables					
1		Yarn skein strength	1.	Yarn elongation	ngation	Yarn api	Yarn appearance	Yarn imperfections	rfections
Scattration recip	Comberwaste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex
DEPENDENT VARIABLE with	Pct.	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.
FIBER STR. (1/8", GAGE), UNIFORMITY RATIO									
Multiple Cor. Coef	.68	.93	お.	.43	45.	.63	.62	.53	.65
2.5% span length	17	+.16	+332	13	<u>70</u>	05	-11	40	90
Fiber str. (1/8" gage)	35.	7.60° 1. + +	+ + + 23.	, + + 503.	. + + 50.0	+.54 17	+ - ·	\$ % ? • • •	. + .
Beta Coefficients for:	TT	† 0	1.3/	÷.30	+. 30	ZO*+	ZT•+	60°+	01
Micronaire (1/8" 202)	17*	+.07*	+.14* 57	17*	-*08* -18*	05* +.55	13*	05*	07*
Uniformity ratio	42*	+.53	+.49 +.17*	+,04*	*††•+	* *30.+ +		*80°+ +	+*07* -*01*
Constant (a)Regression Coef. for:	+52.59	+20.34	-10,42	+5.87	+3.20	+100.26	+63.20	+56.94	+49.10
2.5% span length	-10.88	+26.66	+23.52	-1.39	99	-16.45	-36.30	-8.81	-11,15
Fiber str. (1/8" gage)	-1.51 44	-13.91 +3.20	-6.90 +1.36	12	+,00	+12.34	+12.02	-6.38 + 23	-7.03
Uniformity ratio	1.80	+1.36 5.10	2.14 2.14	+.07 29	÷ %	+ + 13 9.18	+ .78 8.52	+ .37	10.4
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MCRONAIRE, FIRER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION (1/8" GAGE)									
Multiple Cor. Coef	69.	16.	%	.59	.62	1 79•	•63	.53	.65
2.5% span length	18	+.22	+,41	80	03	03	60	02	05
Fiber str. (1/8" gage)	နှ <u>န့်</u>	+.52	- + -	9. c. + .	+ .23 + .23	- 06	+.55	-,47 +,10	58 +.09
Elongation (1/8" gage) Beta Coefficients for:	1.18	. 44. 	45°+ 64°-	+.12 +.45	+.25 +.37	02 +.10	60°+	+ + -00.	±0°+
2.5% span length	18*	*60°+	+,16*	*01	*40*-	* 70 -	-111*	*60*-	*90
Fiber str. (1/8" gage)	31*	+.36	+ .32	* *9†.+	22* + .34*	+.54	**************************************	51 +.16*	62 +.13*
Uniformity ratio Elongation (1/8" gage)	03*	+.25	+.25	+,14* +,53*	+.27*	03*	*400*+	+°05* +°10*	*†0°-
Constant (a)Regression Coef. for:	+57.56	+41.83	-1.00	97.8+	+1.52	+81.25	+50.97	+16.33	69 *2 †+
	-11.50	+33.75		80	31	-10.98	-32.60	-5.73	-9.21
Fiber str. (1/8" gage) Uniformity ratio	59	45.23 45.05	8.8	 	+ + 05	62	+ - 59	; + +	15.3 1.4 1.4
Elongation (1/8" gage) Standard Error (±)	92 1.77 * Statictically	92 -6.41 1.77 4.58		+.37	82°+ 72°	+2.7 3 9.13	+1.71 8.50	+1.52	8.4
	ATTO TO STORE OF	Tip relition of the							

MEASURES USED IN STATISTICAL ANALYSIS

Some of the statistical concepts used in this study may be unfamiliar to many who will find the information in this report useful. Results reported in this study include the means, standard deviations, simple and multiple correlation coefficients, beta values, partial correlation coefficients and regression equations for each cotton quality measurement. Formulas of each of these results may be found in any good textbook on statistical correlation. However, for those not familiar with these concepts the following common language explanation is given for each item as it is used in this report:

- (1) Mean Value is the simple arithmetical average of each measured property for the spinning lots included in the study.
- (2) Standard deviation is a measure of dispersion around the mean value, expressed in the same terms as the variable. For a normal distribution, approximately 68 percent of the values will be within plus or minus one standard deviation of the mean, 95 percent within plus or minus two standard deviations, and nearly all values will be within plus or minus three standard deviations.

Example: (from Table 16, column 1, page 89)
The mean or average value for picker and card waste, the dependent variable, is 6.0 percent and the standard deviation is 1.10 percent. This indicates that 68 percent of the lots tested in the medium staple group should contain between 4.9 and 7.1 percent waste (6.0 \pm 1.10). Ninety five percent of the lots tested would have from 3.8 to 8.2 percent waste (6.0 \pm 2.20) and nearly all of the test lots would show waste values between 2.7 and 9.3 percent (6.0 \pm 3.30).

(3) Simple correlation coefficient (r) is a measure of the linear relationship between two variables, ie. how one variable is associated with the other. A correlation coefficient of O indicates no relationship, and 1.0 indicates a perfect relationship. A plus sign before the correlation coefficient indicates that the values for both variables change in the same direction, whereas a minus sign indicates that they change in opposite directions.

Example: (from Table 16, column 1, page 89)
The simple correlation coefficient (r) of grade index with picker and card waste is -.78. This indicates that grade index and picker and card waste are related. It further indicates by the - sign that as one goes up or down the other goes in the opposite direction.

(4) Multiple correlation coefficient (R) is a measure of the linear relationship between one dependent variable and two or more independent variables. It has no plus or minus sign because one independent variable may contribute positively, and another negatively, in explaining the variation in the dependent variable. The multiple R may fall between 0 and 1.0, with 0 indicating no relationship and 1.0 a perfect relationship.

Example: (from Table 16, column 1, page 89)
The multiple R for the dependent variable of picker and card waste with independent variables of grade index, staple length and micronaire is .80. This indicates that the combination of grade index, staple length and micronaire shows a definite relationship to picker and card waste. It does not explain, however, whether grade index, staple length and micronaire contribute positively or negatively to picker and card waste or which of the three is most important.

(5) Although the <u>coefficient of determination</u> $(R^2, or r^2)$ is not given, it may be easily obtained by squaring the simple r's or multiple R's and multiplying by 100. This gives the percentage of variation explained, a measure of the amount of variation in the dependent variable which is explained by variation in the independent variables.

Example:
The multiple R in the example above is .80. When this is squared and multiplied by 100 the result is 64.0. This means that 64.0 percent of the variation in picker and card waste is explained by grade index, staple length and micronaire. The remaining 36.0 percent of the variation is unexplained.

(6) Partial correlation coefficient (r) in a multiple analysis is similar to a simple correlation coefficient. The simple r indicates the statistical relationship between two variables without any control of other variables. In a multiple analysis, the partial correlation coefficient is one measure of the net relationship between one independent variable and the dependent variable while the influence of the other independent variables are statistically removed.

Example: (from Table 16, column 1, page 89)
The partial correlation coefficients (r) for picker and card waste with grade index, staple length and micronaire are: -.73 for grade index, -.16 with staple length and -.21 with micronaire. This shows that picker and card waste is related to grade index and that when one goes up or down the other goes in the opposite direction. It further shows that staple length and micronaire have less affect on picker and card waste than grade index since the values for these two variables are much smaller.

(7) Beta coefficients (B) in a multiple correlation are sometimes preferred over use of partial r's. A Beta coefficient is another measure of the relative importance of a variable in a multiple correlation, with the influence of the other variables removed. Quite often, only one of these measures (Beta or partial r) is used for interpretation; both are included in this report. An asterisk beside the Beta value indicates that the result is statistically insignificant (less than three times its standard error).

Example:
The Beta (B) coefficients in the above example are -.70 for grade index,
-.11* for staple length and -.14 for micronaire. This shows the same relative
results as the partial correlation coefficients (r) and the * further indicates that the -.11 Beta value for staple length is statistically insignificant.

(8) Regression equation or estimating equation is used to predict changes in the dependent variable which will result from changes in the independent variable or variables. It is written:

$$Y = a + b_1 X_1 + b_2 X_2 + ... b_N X_N$$

where Y is the dependent variable and the X's are independent variables.

The constant "a" indicates the starting point or height of the regression line when it is to be plotted on a graph or to be used in calculating changes in the dependent variable. The regression coefficient "b" indicates the change in the dependent variable that is associated with each unit change in the independent variable. The spread or scatter of the data around the regression line is measured by the standard error. The standard error has the same relationship to the regression line as the standard deviation has to the mean value. (see paragraph (2) above)

Example: (from Table 16, column 1, page 89)

Regression equation for picker and card waste:

Constant (a)		+23.51
Regression coefficients	(b)	
Grade index		14
Staple length		10
Micronaire		30
Standard error		±.66

With regression coefficients (b) of -.14 for grade index, -.10 for staple length and -.30 for micronaire reading the following average conditions should exist:

- 1. With any unit change in grade index, picker and card waste percentage should change .14 in the opposite direction.
- 2. With any unit change (32nd) in staple length, picker and card waste percentage should change .10 in the opposite direction.
- 3. With any unit change (1.0) in micronaire reading, picker and card waste percentage should change .30 in the opposite direction.

Expressing this equation algebraically we have:

Estimated picker and card waste (percent) = 23.51 - .14 (grade index) -.10 (staple length) -.30 (micronaire)

Thus if we wished to predict the amount of picker and card waste from a bale of cotton of Strict Low Middling (94 index), a staple length of 1-1/16 inches (34 32ds) and a micronaire of 4.5, the equation would be:

Estimated picker and card waste = 23.51 - .14(94) - .10(34) - .30(4.5)

Estimated picker and card waste = 5.60%

The standard error of the equation of $\pm .66$ indicates that the actual picker and card waste obtained from this kind of cotton would be within plus or minus .66 percent (between 4.94 and 6.26) 68 times in 100.

A check on the accuracy of this figure can be made from the average results for SLM grade, 1-1/16 inch staple, in Table 3 for the different Areas.

Regression equations are given in the tables for multiple relationships only. Equations for simple relationships may be calculated by using the formula:

$$Y = a + bX$$
where $a = Mean Y - b(Mean X)$

$$b = r \frac{Std. Dev. Y}{Std. Dev. X}$$

INTERPRETING STATISTICAL DATA

In referring to the data presented in the tables of this report, it is well to keep in mind several factors which influence the results and could lead to erroneous conclusions.

Correlation values are significantly influenced by the specific variables included, and by their number. This is due to the interrelationships of fiber properties. As interrelated properties are added to a correlation, the specific contribution of a given property may decrease sharply while at the same time the overall correlation will increase. For example, a correlation of staple length with yarn strength usually shows a good relationship, with a large amount of the variation in yarn strength explainable by differences in staple length. But, as other measures are taken into consideration, particularly fiber strength at 1/8-inch gage, the importance of staple length in explaining the total variation in yarn strength decreases rather sharply, even though the total variation explained is increased. This situation occurs because fiber strength is more closely related to yarn strength than is staple length. Yet, when fiber strength is not included in the correlation, some of the effects of strength are evidenced through the interrelation of strength and staple length.

Perhaps the most important fact to be kept in mind is that the use of only one statistic, such as a multiple R, a partial r, or a Beta value, can lead to erroneous conclusions. In order to determine the importance of any variable, all of the statistical items for each study should be considered.

BASIS FOR INTERPRETATION

The following explanation of the data published in Tables 1 through 9 of this report may be helpful in the interpretation of test results:

Classification

Classification was made in accordance with the official Cotton Standards for grade and staple length. These results are presented under the usual terms for the individual lots but the grade values were converted to an index for averaging in the summary tables.

Grade index, as reported in the summary tables is designed to reflect differences in market value and provides a method for averaging the grade for a number of individual lots. Middling grade is used as the basis of 100, and higher or lower index numbers reflect higher or lower average market values, respectively. Index values for white, spotted, tinged and gray grades of upland cotton are shown below:

	:			Grade	index fo	r		
Grade Name	:	White	: Light : Spotted:	Spotted	lTinged	: Light : Gray	:	Gray
	:					·		
Good Middling	:	105	103	101	94	99		93
Strict Middling	:	104	102	99	91	98		91
Middling Plus	:	102						
Middling	:	100	97	93	82	92		84
Strict Low Middling plus	:	97						
Strict Low Middling	:	94	89	83	75	85		75
Low Middling plus	:	90				•		
Low Middling	:	85	80	75	68			
Strict Good Ordinary plus	:	8í						
Strict Good Ordinary	:	76						
Good Ordinary plus	:	73						
Good Ordinary	•	70						
Below Grade	:	60						
	:							

The grade of cotton is obtained by evaluating color, leaf and preparation in relation to the official standards. Grade provides an indication of fiber color and the waste content of a sample of cotton. Experience has shown the average relationship between picker and card waste and various grades of upland cotton to be approximately as given in the tabulation shown in the subsequent section on manufacturing waste. In comparing these average grade figures with the picker and card waste data, it should be understood that variations from the averages for individual samples are attributable to the nature of the extraneous material present in the cotton, the characteristics of the fiber, and whether the grade designation was low

because of poor color.

Staple length is the length of a typical portion of the fibers in the samples as determined by the classer in comparison with official standards. Uniformity of fiber length, as well as other fiber properties, influence to some extent the classer's selection of the typical portion of the fibers on which the staple length designation is based. In general, there is a fairly close relationship between the staple length as designated by the classer and the fineness and strength of the yarn that can be manufactured from the cotton. These relationships, however, are also influenced by other fiber properties, the measurements of which will be discussed in the paragraphs which follow.

Fiber Tests

Fiber length data were obtained by the Digital Fibrograph method for the short, medium, and long staple American upland samples and by the array method for the extra long American Pima and upland samples. Briefly, the Digital Fibrograph method consists of placing representative specimens of cotton weighing approximately 30 centigrams at random on a pair of combs, parallelizing the beards of cotton extending from one side of the combs, and scanning these beards photoelectrically on the instrument at 3 length intervals beginning at 0.15 inch from the teeth of the combs and ending near the outer fringe. The 2.5 percent span length and the 50/2.5 uniformity ratio values reported for each lot are based on five specimens tested by each of two technicians.

The Digital Fibrograph 2.5 percent span length values reported indicate the length which will be spanned by 2.5 percent of the fibers when they are parallel and randomly distributed. It is also the length where the amount of fibers indicated by the instrument is 2.5 percent of the amount at the starting point of 0.15 inch. The Digital Fibrograph 2.5 percent span length values are closely related to staple length designations.

The Digital Fibrograph 50/2.5 uniformity ratio values reported indicate the relative uniformity of fiber length in the samples. They represent the ratios between the 50 percent span length and the 2.5 percent span length, expressed as percentages. Larger values indicate more uniform fiber length distribution. Unusually low fiber length uniformity tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. The following adjective descriptions will serve to classify cottons from the standpoint of 2.5 percent span length and fiber length uniformity:

2.5 percent	span length	50/2.5 uni	formity ratio
Below 1.00 1.00 - 1.14 1.15 - 1.29 Above 1.29	Long	Below 42 42 - 43 44 - 45 46 - 47 Above 47	Very low Low Average High Very high

Data source - 1575 American upland lots tested from the crops of 1966-68.

Array tests for the extra long staple American Pima and upland samples were performed on the Suter-Webb fiber sorter. Briefly, this method consists of parallelizing the fibers in a representative 75-milligram specimen of cotton through a series of combs, separating the fibers into length groups at 1/8-inch intervals, and weighing the fibers in each length group. The upper quartile length and coefficient of variation values reported are based on one specimen tested by each of two technicians.

The array upper quartile length values reported indicate the length which is exceeded by 25 percent of the weight of the fibers in the samples. They are closely related to and longer than both the Fibrograph and the classer's staple designations. This relationship may vary, however, because the methods measure different fiber length characteristics.

The array coefficient of length variation values reported indicate the relative variability of fiber length in the samples. They represent the standard deviation of the weight-length frequencies expressed as a percentage of the mean length. Smaller values indicate more uniform fiber length distributions. Excessive fiber length variation tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. It is, therefore, considered desirable for a cotton to have a low coefficient of variation. The following adjective descriptions will serve to classify cottons from the standpoint of upper quartile length and fiber length variation:

Upper Quartile Length Coef	fficient of Fiber Length Variation
1.10 - 1.24 Medium 26 - 1.25 - 1.39 Long 30 - Above 1.39 Extra Long 34 -	- 33 Average variation

Data source - 830 American upland lots tested from the crops of 1958-60 (more recent data not available).

Fiber fineness and maturity in combination were determined by the micronaire test. This is an instrument test which measures the resistance of a plug of cotton to air flow. A representative standard weight of cotton fibers is placed in the instrument specimen holder and compressed to a fixed

volume. Air at a known pressure is forced through the specimen and the amount of flow is indicated by a direct reading scale. Readings obtained are relative measures of either the weight per unit length, or the cross sectional size of the fibers. Because the instrument measures may differ from the actual weight per inch, depending upon the fiber characteristics of the sample, the results are reported in terms of "micronaire reading" instead of micrograms per inch. These readings are taken from the curvilinear scale adopted in 1950, and now in international use. Fiber fineness contributes to yarn strength, particularly when fine numbers are spun, but it also tends to increase neppiness and to require a reduced rate of processing.

Fiber maturity, also an important factor affecting the appearance of yarns and fabrics, is a desirable characteristic from the standpoint of low picker and card waste. Immature fibers are susceptible to the formation of neps, and contribute to lower yarn appearance grades. The desirability of micronaire reading, therefore, depends on the specific end product or use of the cotton.

Several instruments, including the Micronaire, Fibronaire, and Port-Ar, may be used for these tests. All instruments now use the same scale and report results in the same terms, i.e. "micronaire reading". The micronaire reading is now a part of the official standards for upland cotton along with grade and staple length.

Fiber strength is an important factor in determining yarn strength. Cottons with good fiber strength usually give less trouble in the manufacturing processes than the weak fibered cottons. Tests for fiber strength were made without a space between the clamp jaws (0 gage) using the Pressley flat bundle tester, and with a 1/8-inch spacer between the clamp jaws (1/8-inch gage) using the Stelometer. Strength results from both the Pressley and the Stelometer were controlled at the same level by use of standard calibration cottons. Use of the Stelometer also provides a measure of fiber elongation. Comparative tests have shown that the results of the 1/8-inch gage tests are more highly correlated with yarn strength than the results of the zero gage tests. Results for both methods are reported, however, because the zero gage tests are widely used by the cotton industry.

The results for the Pressley zero gage test are reported in terms of thousand pounds per square inch, as calculated by the use of Formula 1. These results may be converted to other methods of expressing fiber strength by use of Formulas 2, 3, and 4:

(1) Thousand pounds per square inch (Mpsi) =

breaking load in 1b x 10.81 bundle weight in mg

(2) Grams per tex $(gm/tex) = Mpsi \times 0.496$

- (3) Strength-weight ratio = Mpsi : 10.81
- (4) Strength-weight ratio = gm/tex : 5.36

The results of the 1/8-inch gage tests are reported in terms of grams per tex in accordance with the recommendations of the American Society for Testing and Materials (ASTM), and the International Standards Organization (ISO). A tex unit is equal to the weight in grams of 1000 meters of the material. There is a correlation between the 1/8-inch gage strength test results and fiber length. Cottons with short lengths tend to have lower average strength values than long staple cottons. Results for 1/8-inch gage tests are calculated by use of Formula 5. Stelometer results are adjusted to Pressley level by use of calibration cottons.

(5) Grams per tex =
$$\frac{\text{breaking load (kg)} \times 15}{\text{bundle weight in mg}}$$

The following descriptive terms may be applied to the data shown in this report:

Staple length group and descriptive designation	Zero gage strength (thousand psi)	1/8-inch gage strength (grams per tex)
Short staple: Low Average High	70 - 75 76 - 81 82 - 87	18 - 19 20 - 21 22 - 23
Medium staple: Low Average High	74 - 80 81 - 87 88 - 94	20 - 21 22 - 23 24 - 25
Long staple: Low Average High	85 - 88 89 - 92 93 - 96	23 - 24 25 - 26 27 - 28
Extra-long staple: Low Average High	93 - 96 97 - 100 101 - 104	31 - 32 33 - 34 35 - 36

Data source - 291 short staple, 1206 medium staple, 78 long staple, and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Fiber elongation results were obtained in connection with the 1/8-inch gage fiber strength tests by using the Stelometer instrument. The following adjective ratings will assist in the interpretation of the fiber elongation results reported:

Descriptive designation	Fiber elongation (percent)
Very low	5.3 and below
Low	5.4 - 6.2
Average	6.3 - 7.1
High	7.2 - 8.0
Very high	8.1 and above

Data source - 1575 American upland lots tested from the crops of 1966-68.

Color measurements were made on samples of raw stock from each lot by using the Nickerson-Hunter Colorimeter. The basic color values reported are in terms of grayness and yellowness scales designed especially for cotton. The grayness scale ranges from 0 for the brightest samples (no gray) through 9 for the darkest color. The yellowness scale ranges from 0 for the lightest color (no yellow) to 9 for the yellowest color. In other words, the larger the number reported the darker or yellower the cotton becomes. The relationship of these new cotton color scales to Rd and +b values and to the color of the Universal Grade Standards for upland cotton is shown in Figure 2 and for American Pima cotton in Figure 3.

The color of raw cotton is also reported as a single index number. The relationship of the index number to Rd and +b and the color of the Universal Grade Standards for upland cotton is shown in Figure 4.

Fig. 2--Colorimeter diagram for upland cotton

Fig. 3--Colorimeter diagram for American Pima cotton

Fig. 4--Conversion diagram for converting raw cotton color to color index

Nonlint content for the various lots was determined by the use of the Shirley Analyzer which separates the lint from the foreign matter. The total nonlint values reported include both visible and invisible loss. These results are distinguished from total picker and card waste in that practically no fiber is included, whereas textile mill wastes include appreciable amounts of fiber. Tests performed in previous years show the following average relationship of Shirley Analyzer nonlint to grade:

American upland grade	Average nonlint content (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	1.8 2.3 3.0 4.2 5.5 6.7

Data source - 5561 American upland lots tested from crops of 1966-68.

The following scale has been developed to represent the average nonlint content for grades of American Pima cotton:

American Pima grade	Average nonlint content (percent)
1	2.0
2 3	2.5 3.0
կ 5	4.1 5.4
6	6.3 8.4
8	9.9
9	12.2

Data source - 431 American Pima lots tested from the crops of 1966-68.

Differences between results obtained for individual lots and the average percentages shown for the grades may be caused by: (1) Grade is a combination of color, leaf and preparation; any one of which may be the limiting factor, (2) there is a range of trash allowable within each specific grade and (3) these data are based on weight and do not take into consideration the nature of the trash, which may be as important as weight in determining the final grade.

Yarn Processing Tests

The results of yarn processing tests reported in this summary were obtained by procedures adopted in 1962 which include heavier weights for laps, slivers and rovings than those used in previous years. These procedures also include spinning from single roving instead of double roving for the two standard yarn numbers and the spinning of a third yarn number on all the samples to provide a small-scale measure of spinning end-breakage or spinning performance. In 1965, metallic card clothing was installed on the carding machines to replace the conventional fillet clothing used previously, and in 1966, crusher rolls were installed on the card machines. These changes reflect similar changes that have taken place in the cotton textile industry including increased emphasis on running quality since the Mid-1940's when long-draft systems were adopted for both the roving and spinning processes in the routine laboratory spinning test procedures. These changes were designed to bring the laboratory processing procedures more in line with current textile mill practices and thus make the processing evaluations more applicable to present day mill operations.

The card production rate employed and the yarn numbers spun for each cotton were selected on the basis of the staple length expected in the specified area of growth as described in the earlier section on test procedures. Four different length groupings were used to cover the range of cottons grown in this country and to approach commercial practices in processing these cottons. The spinning twist multipliers were selected to provide maximum yarn strength on the basis of staple length. Details of the spinning test procedures are shown at the end of this section of the report (Table 25). Results of previous tests show that decreasing the card production rate results in fewer neps, improved yarn appearance grades, and removal of more waste at the card. Results of tests on the various lots should therefore be compared directly for only those lots in the same length group which were processed in a comparable manner.

Manufacturing waste reported for a sample of cotton is important because excessive waste increases the cost of cotton products. The percentage of waste extracted by the picking and carding processes in performing a spinning test provides a measure of manufacturing waste. There is an average relationship between this waste and grade as discussed in the previous section on the grade of cotton. The rate at which the cotton is carded, however, affects the picker and card waste values because the more thorough carding action obtained when the carding rate is decreased extracts a larger quantity of waste. The longer staple cottons are generally carded at a lower rate than the shorter cottons in order to obtain acceptable yarn quality. Tests performed in recent years show the following average relationship of picker and card waste to grade:

American upland grade	Average picker and card waste (percent)	American <u>Pi</u> ma	Average picker and card waste (percent)
Strict Middling	4.7	1	7.5
Middling	5.1	2	7.9
Strict Low Middling	5.7	3	8.4
Low Middling	6.7	4	9.5
Strict Good Ordinar	y 7.8	5	10.8
Good Ordinary	8.9	6	11.7
		7	13.7
		8	15.2
		9	17.5

Data source - 5561 samples of American upland cotton and 431 samples of American Pima cotton tested for Shirley Analyzer nonlint content from the crops of 1966-68 and picker and card waste calculated from its relationship to Shirley Analyzer nonlint content.

The percentage of waste removed by the comber is reported in addition to the picker and card waste for cottons processed into combed yarn. The shorter staple cottons are processed through the comber with a closer setting than for the longer staple cottons because smaller comber waste percentages are usually extracted from this cotton in commercial practice.

Yarn strength is perhaps the most important and reliable test of yarn quality. Yarn strength not only determines the range of usefulness of a given cotton, but is also an indication of spinning and weaving performance. Yarn strength is reported in terms of skein strength since studies have shown that such strength values are more closely related to fabric strength as well as to fiber properties than single strand yarn strength. Skein strength data for the two numbers spun are reported for each lot. There is an average relationship between yarn strength and staple length but it varies for the individual cottons because of differences in other characteristics of the fiber.

The following descriptive terms may be of help in determining the relative level of yarn strength in this report:

Kind of yarn, staple length group and description	Yarn skein st in pounds fo specified yarn	or the
Carded yarns: Short staple group: Low Average High	265 - 290 291 - 316 317 - 342	22s 78 - 86 87 - 95 96 - 104
Medium staple group: Low Average High	22s 95 - 104 105 - 114 115 - 125	50s 30 - 35 36 - 41 42 - 47
Long staple group: Low Average High	22s 125 - 131 132 - 138 139 - 145	50s 45 - 48 49 - 52 53 - 56
Combed yarns: Long staple group: Low Average High	22s 142 - 149 150 - 157 158 - 165	<u>50s</u> 52 - 55 56 - 59 60 - 63
Extra-long staple group: Low Average High	50s 66 - 68 69 - 71 72 - 74	80s 36 - 37 38 - 39 40 - 41

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn elongation results were obtained in connection with yarn skein strength tests. Elongation in the yarn is highly correlated with fiber elongation. Yarns with high elongation give less end breakage in weaving than yarns with low elongation.

The following descriptive terms may be of some help in determining the relative levels of yarn elongation:

Kind of yarn, staple length group, and description	Yarn elongation in percent for the specified yarn numbers		
Carded yarns: Short staple group: Low Average High	8s 6.5 - 7.3 7.4 - 8.1 8.2 - 9.0	22s 5.5 - 6.2 6.3 - 7.0 7.1 - 7.8	
Medium staple group: Low Average High	22s 5.4 - 5.9 6.0 - 6.5 6.6 - 7.1	50s 4.0 - 4.5 4.6 - 5.1 5.2 - 5.7	
Long staple group: Low Average High	22s 6.2 - 6.5 6.6 - 6.9 7.0 - 7.3	50s 5.2 - 5.4 5.5 - 5.7 5.8 - 6.0	
Combed yarns: Long staple group: Low Average High	22s 6.6 - 6.9 7.0 - 7.3 7.4 - 7.7	50s 5.5 - 5.7 5.8 - 6.0 6.1 - 6.3	
Extra-long staple group: Low Average High	50s 5.6 - 5.8 5.9 - 6.1 6.2 - 6.4	80s 4.6 - 4.8 4.9 - 5.1 5.2 - 5.4	

Data source - 291 short staple, 1206 medium staple and 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance refers to the relative evenness, smoothness and freedom from foreign material of the yarn as evaluated by a visual comparison of the yarn with the latest standards adopted by the American Society for Testing and Materials. Since appearance is very important in many types of cotton products, high yarn appearance grades are desirable. The following descriptive terms may be of help in determining the relative levels of yarn appearance in this report.

Kind of yarn, staple length group, and description	Yarn appearance index for the specified yarn numbers		
Carded yarns: Short staple group: Low Average High	8s 105 - 113 114 - 122 123 - 130	22s 92 - 104 105 - 117 118 - 130	
Medium staple group:	22s	50s	
Low	93 - 105	77 - 87	
Average	106 - 118	88 - 98	
High	119 - 130	99 - 109	
Long staple group:	22s	50s	
Low	71 - 86	65 - 78	
Average	87 - 102	79 - 92	
High	103 - 118	93 - 106	
Combed yarns: Long staple group: Low Average High	<u>22s</u> 81 - 97 98 - 114 115 - 130	50s 70 - 85 86 - 101 102 - 117	
Extra-long staple group:	50s	80s	
Low	102 - 111	98 - 106	
Average	112 - 121	107 - 115	
High	122 - 130	116 - 124	

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Yarn Appearance Grades

Grade	Index
Δ.	120
A	130
B+	120
В	110
C+	100
С	90
D+	80
D	70
Below D	60

Yarn imperfections are reported for the two yarn numbers spun for each lot of cotton. These results were obtained on "Neptel" instruments which electronically count the abrupt changes in the silhouette of the yarn while passing it through a beam of light. They are expressed as the number of imperfections per 50 yards of yarn and are based on the average of 10 determinations. This value is an instrument measure of product quality which is associated with the characteristics of the cotton. It is more highly correlated with fiber properties than either neps in card web or yarn appearance grade. The following descriptive terms may be of help in determining the relative level of yarn imperfections in this report:

Kind of yarn, staple length group, and description	Yarn imperf for th specified yar	е
Carded yarns: Short staple group: Low Average High	8s 6 - 31 32 - 57 58 - 83	22s 6 - 21 22 - 37 38 - 53
Medium staple group: Low Average High	22s 3 - 15 16 - 28 29 - 41	50s 2 - 11 12 - 21 22 - 31
Long staple group: Low Average High	22s 7 - 22 23 - 38 39 - 54	50s 6 - 17 18 - 29 30 - 41
Combed yarns: Long staple group: Low Average High	22s 0 - 8 9 - 20 21 - 32	50s 0 - 6 7 - 16 17 - 26
Extra-long staple group: Low Average High	50s 0 - 1 2 - 3 4 - 5	80s 0 - 1 2 - 3 4 - 5

Data source - 291 short staple, 1206 medium staple, 78 long staple and 67 extra-long staple lots of cotton tested from the crops of 1966-68.

Spinning potential yarn number indicates the finest yarn number that can be spun from a cotton sample without any end-breakage when using specific processing procedures. In performing these tests, new travelers, draft gears, and twist gears are installed for the selected yarn number and it is spun for a 15-minute trial period. The yarn number selected is considered acceptable if there is an end-breakage involving 5 to 15 of the 96 spindles employed during the trial run. If end-breakages occur on less than 5 or more than 15 of the 96 spindles during the trial period, a different yarn number is selected to be spun for another 15-minute trial period until the acceptable end-breakage rate is obtained. The acceptable trial period is also used for a warm-up period which is followed by a l-hour test period. The spinning potential yarn number is calculated from the deviation of the actual yarn number spun from the desired yarn number and the number of spindles with endbreakages during the 1-hour test run. The following descriptive terms may be of help in determining the relative level of spinning potential yarn numbers in this report:

Spinning Potential (SPY No.)

	Short staple group	Medium staple group	Long staple group
Low	31 - 39	55 - 63	77 - 83
Average	40 - 48	64 - 72	84 - 90
High	49 - 57	73 - 81	91 - 97

Data source - 123 short staple, 688 medium staple and 48 long staple lots of cotton tested from the crops of 1967-68.

Chemical Finishing Tests

Information with respect to the bleaching and dyeing properties of different varieties and growths of cotton is of particular significance to textile manufacturers from the standpoint of providing a basis for avoiding problems that may result from blending different varieties and growths having different dyeing properties. Data with respect to the chemical finishing properties of the principal varieties and growths of cotton as herein reported may thus be used as a basis for selecting cottons of similar finishing properties. Details of the chemical finishing tests are described in Agricultural Information Bulletin No. 167 - "Bleaching, Dyeing, and Mercerizing Test Results on Some Varieties of Cotton Grown by Selected Cotton Improvement Groups, Crop of 1955".

Color measurements of cotton yarn samples were made on a Gardner Automatic Color Difference Meter. These values are reported in terms of Rd and b, two of the three scales on the instrument. The $R_{\rm d}$ scale measures percentages of diffuse reflectance from O to 100. The b scale provides a measure of yellowness in the direction of +b and of blueness in the direction of -b. The degree of either yellowness or blueness increases as the scale numbers increase. These data when plotted with $R_{\rm d}$ on the vertical ordinate and with

b on the horizontal ordinate are similar to the color values for raw cotton when plotted in relation to the official grade standards as described in the earlier section on color of raw stock.

While the color factors R_d and b are not independent of each other and should be considered together in any overall interpretation, for many purposes it would be convenient in evaluating results to have them in terms of a single number. For raw cotton the grade index provides one way to do this in a straightforward manner. A similar method has been followed in developing conversion formulae and diagrams for each form of cotton measured for color as a part of the chemical finishing studies of the Cotton Division. In each, the index for Middling is held at 100 and that for Good Ordinary is held close to 70. By use of such indices the color measurements of raw stock, gray yarns, bleached yarns, and bleached and dyed yarns may be converted to a single number specification. For details see "Grade and Color Indexes Developed for Evaluating Results of USDA Cotton Finishing Tests", (AMS-245, June 1958).

Table 25 .-- Cotton: Standard machine settings and specifications for processing specified staple length groupings

	Process	Staple length groups			
		Short	Medium	Long	Extra long
1.	PICKER				
	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Each test lot is processed through a finisher type				•
	picker twice to produce the specified weight of				
	lapounces per yard	14	14	14	11
	Type of beater	Kirschner	Kirschner	Kirschner	2-blade
	Beater speedr.p.m.	1,000	1,000	1,000	1,000
	Settings:			·	ŕ
	Feed roll to beaterinches	3/16	3/16	3/16	3/8
	Grids to beater, topinches	5/16	5/16	5/16	9/16
	Grids to beater, bottominches	11/16	11/16	11/16	11/16
			·	· ·	•
2.	CARD				
	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Picker lap fedounces per yard	14	14	14	11
	Sliver deliveredgrains per yard	50	50	50	40
	Production ratepounds per hour	12-1/2	9 - 1/2	6-1/2	4-1/2
	Doffer speedr.p.m.	11	8	6	4
	Cylinder speedr.p.m.	165	165	165	165
	Flat speedinches per minute	2-7/8	2 - 7/8	2-7/8	2-7/8
	Licker-in speedr.p.m.	435	435	435	435
	Clothing:				
	Cylinder, Hollingsworth metallicnumber	35	35	25	25
	Doffer, Hollingsworth metallicnumber	29	29	29	29
	Flats, Filletnumber	110	110	130	130
	Settings:				
	Feed plate to licker-ininches	0.010	0.010	0.010	0.017
	Mote knife to licker-in, topinches	.012	.012	.012	.012
	Mote knife to licker-in, bottominches	.010	.010	.010	.010
	Licker-in screen, frontinches	.029	.029	.029	.029
	Licker-in screen, backinches	.017	.017	.017	.017
	Licker-in to cylinderinches	.007	.007	.007	.007
	Flats to cylinder, back, center, and frontinches	.009	.009	.009	.009
	Back plate to cylinder, topinches	.029	.029	.029	.029
	Back plate to cylinder, bottominches	.034	.034	.034	.034
	Front plate to cylinder, topinches	.029	.029	.029	.029
	Front plate to cylinder, bottominches	.034	.034	.034	.034
	Doffer to cylinderinches	.007	.007	.007	.007
	Cylinder screen, backinches	.029	.029	.029	.029
	Cylinder screen, centerinches	.034	.034	.034	.034
	Cylinder screen, frontinches	3/16	3/16	3/16	3/16
	Doffer comb to dofferinches	.022	.022	.022	.022
	Crusher rolls pressurepounds	281	281	281	281
3.	SLIVER LAPFER (combed only)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	60
	Sliver fed, 20 eachgrains per yard			50	40
	Lap deliveredgrains per yard			595	525
	Speedyards per minute			46	46
	Roll settings (center to center):			- 1- 4	- 1
	First to secondinches plus fiber length 1/			5/16	5/16
	Second to thirdinches plus fiber length 1/			9/16	9/16

 $[\]underline{1}$ Allowances listed are in addition to fiber lengths in terms of "pulls" made on card sliver. These pulls are estimated from Fibrograph length tests except for extra long staple cottons.

Table 25 .--Cotton: Standard machine settings and specifications for processing specified staple length groupings--Continued

	Process	Staple length groups			
	Process	Short	Medium	Long	Extra long
4.	RIBBON LAPPER (combed only)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	_60
	Laps fed, 4grains per yard Laps deliveredgrains per yard			595	525
	Speedyards per minute			610 47	610 47
	Roll settings (center to center):			71	71
	First to secondinches plus fiber length 1/			4/16	4/16
	Second to thirdinches plus fiber length 1/			7/16	7/16
	Third to fourthinches plus fiber length 1/			10/16	10/16
5.	COMBER (Model D-4)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	60
	Laps fed, 8 eachgrains per yard			610	610
	Sliver deliveredgrains per yard Production per hourpounds			50 16	40 13
	Setting of cushion plate to detaching rollinches			.48	13 •54
	Nominal wastepercent			16 to 17	16 to 17
_					
6.	DRAWING FRAME (synthetic top rolls)				
	Standard atmospheric conditions: Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	First process:	-			
	Sliver fed, 6 eachgrains per yard	50	50	50	40
	Sliver deliveredgrains per yard	60	53	53	42
	Second process: Sliver fed, 6 eachgrains per yard	60	E2	50	l.o
	Sliver deliveredgrains per yard	70	53 55	53 55	42 44
	Speedyards per minute	36	36	36	36
	Roll settings (center to center):		•	•	3-
	First to secondinches plus fiber length 1/	4/16	4/16	4/16	4/16
	Second to thirdinches plus fiber length 1/	7/16	7/16	7/16	7/16
	Third to fourthinches plus fiber length 1/	10/16	10/16	10/16	10/16
7.	LONG DRAFT ROVING (8 x 4, 2 apron type)				
' '	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Sliver fedgrains per yard	70 1.10	55 1.80	55 1.80	44 4.25
	Roving deliveredhank Spindle speedr.p.m.	1235	1235	1235	1235
	Roll settings (center to center):	1237	1237	1237	1237
	First to second, standardinches	2-1/4	2-1/4	2-1/4	2-1/4
	Third to fourthinches plus fiber length 1/	1/4	1/4	1/4	1/4
8.	LONG DRAFT SPINNING (2 apron type)				
.,,	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	65	65	65	65
	Roving fed singlehank	1.10	1.80	1.80	4.25
	Twist multipliernumber	4.4	4.0 22s & 50s	3.8 22s & 50s	3.6
	Carded yarnsnumber 2/ Combed yarnsnumber	8s & 22s	w	22s & 50s	50s & 80s
	Spindle speedr.p.m. 3/	9000	9000	9000	9000
	Roll settings (center to center):				
	First to second, standardinches	2-1/16	2 - 1/16	2-1/16	2-1/16
	Second to third, standardinches	1-3/4	1-3/4	1-3/4	1-3/4

^{2/} Additional yarn is spun on a 96 spindle wide gage frame at 9,000 r.p.m. spindle speed to determine the spinning potential yarn number or the finest yarn number that can be spun without end-breakage.

^{3/} All standard yarn numbers are spun on narrow gage frames with spindle speeds of 9,000 r.p.m. except for δs , which are spun on a wide gage frame with spindle speed of 5,500 r.p.m.

