Discrete Mathematics: Lecture 11

- Last time:
 - Chap 3.1: Algorithms
 - Chap 3.2: The Growth of functions
- Today:
 - Chap 3.3: Complexity of algorithms
 - Chap 4.1: Divisibility and modular arithmetic
- Next time:
 - Chap 4.2: Integer representations and algorithms
 - Chap 4.3: Primes and greatest common divisors

Review of last time

- Algorithms, pseudocode description of algorithms
- Linear search and binary search
- Insertion sort and bubble sort
- Greedy algorithms
- The halting problem is unsolvable
- Big-O/ Ω/Θ notation and results

An Example

Give an algorithm for finding the maximum value in a finite sequence of integers.

```
procedure max(a_1, a_2, \ldots, a_n : integers)
max := a_1
for i := 2 to n
  if max < a_i then max := a_i
\{max \text{ is the largest element}\}
```

Searching Algorithms

Problem: Given a pile of assignments, find your own assignment

Locating an element x in an ordered list of distinct elements a_1,a_2,\ldots,a_n , or determine that it is not in the list

The linear search algorithm

```
procedure linear search(x: integer, a_1, a_2, \ldots, a_n: distinct integers) i \coloneqq 1 while (i \le n \text{ and } x \ne a_i) i \coloneqq i+1 if i \le n then location \coloneqq i else location \coloneqq 0
```

Binary Search

Problem: If the pile of assignments is sorted according to increasing order of student number, can you find your assignments more efficiently?

Example: To search for 19 in the list 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

The binary search algorithm

else location := 0

```
procedure binary search(x: integer, a_1, a_2, \ldots, a_n: increasing integers) i \coloneqq 1 j \coloneqq n while (i < j) m \coloneqq \lfloor (i+j)/2 \rfloor if x > a_m then i \coloneqq m+1 else j \coloneqq m if x = a_i then location \coloneqq i
```

Sorting Algorithms

Problem: Sort a pile of assignments according to increasing order of student number

Insertion sort: consider elements one by one, when considering the jth element, insert it into the correct position of the previously sorted j-1 elements

Example: Sort 3,2,4,1,5

```
procedure insertion \operatorname{sort}(a_1,a_2,\dots,a_n:\operatorname{real\ numbers\ with\ }n\geq 2) for j:=2 to n i:=1 \operatorname{while\ }a_j>a_i i:=i+1 m:=a_j for k:=i to j-1 a_{k+1}:=a_k a_i:=m
```

Bubble sort

compare adjacent elements, interchange them if they are in the wrong order

© The McGraw-Hill Companies, Inc. all rights reserved.

Third pass
$$\begin{bmatrix} 2 \\ 1 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$

procedure bubble $\operatorname{sort}(a_1,a_2,\ldots,a_n: \operatorname{real} \operatorname{numbers} \operatorname{with}\ n\geq 2)$ for $i\coloneqq 1$ to n-1 for $j\coloneqq 1$ to n-i if $a_j>a_{j+1}$ then interchange a_j and a_{j+1}

guaranteed to be in correct order

Time complexity (时间复杂性)

- expressed in terms of the number of operations used
- the operations can be comparison of integers, addition, multiplication, and division of integers
- not described in terms of actual computer time because of the difference in time needed for different computers to perform basic operations

Examples

- find the maximum value in a sequence
- linear search
- worst-case complexity (最坏情况复杂性): the largest number of operations needed
- binary search
- average-case complexity (平均情况复杂性): the average number of operations needed; usually more difficult to analyze than worst-case complexity
- average-case complexity of linear search
 - \bullet assumption: x is in the list and it is equally likely x is in any position

Examples

- from now on, we ignore the comparisons needed to determine if we have reached the end of a loop
- worst-case complexity of bubble sort
- worst-case complexity of insertion sort
- complexity of matrix multiplication
- how should the matrix chain $A_1A_2...A_n$ be computed?
 - e.g., A_1 is 30×20 , A_2 is 20×40 , A_3 is 40×10

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.

Complexity	Terminology		
$\Theta(1)$	Constant complexity		
$\Theta(\log n)$	Logarithmic complexity		
$\Theta(n)$	Linear complexity		
$\Theta(n \log n)$	$n \log n$ complexity		
$\Theta(n^b)$	Polynomial complexity		
$\Theta(b^n)$, where $b > 1$	Exponential complexity		
$\Theta(n!)$	Factorial complexity		

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 2 The Computer Time Used by Algorithms.								
Problem Size	Bit Operations Used							
n	log n	n	$n \log n$	n^2	2"	n!		
10	$3 \times 10^{-9} \text{ s}$	10^{-8} s	$3 \times 10^{-8} \text{ s}$	10^{-7} s	10^{-6} s	$3 \times 10^{-3} \text{ s}$		
10^{2}	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$7 \times 10^{-7} \text{ s}$	10^{-5} s	$4 \times 10^{13} \text{ yr}$	*		
10^{3}	$1(0 \times 10^{-8} \text{ s})$	10^{-6} s	$1 \times 10^{-5} \text{ s}$	10^{-3} s	*	*		
10^{4}	$1(3 \times 10^{-8} \text{ s})$	10^{-5} s	$1 \times 10^{-4} \text{ s}$	10^{-1} s	*	*		
10^{5}	$1(7 \times 10^{-8} \text{ s})$	10^{-4} s	$2 \times 10^{-3} \text{ s}$	10 s	*	*		
10^{6}	$2 \times 10^{-8} \text{ s}$	10^{-3} s	$2 \times 10^{-2} \text{ s}$	17 min	*	*		

*: more than 10^{100} years

Tractable problems

- A problem that is solvable using an algorithm with polynomial-time (多项式时间) worst-case complexity is called tractable.
- The expectation is that the algorithm will produce the solution for reasonably sized input in a relatively short time.
- However, the expectation might not hold if the polynomial has high degree or the coefficients are extremely large
- Fortunately, in practice, the degree and coefficients of polynomials are often small.

Intractable problems (难解问题)

- A problem that is not tractable is called intractable.
- Usually, an extremely large amount of time is required to solve the problem for the worst cases of even small input values.
- However, in practice, an algorithm might be able to solve a problem much more quickly for most cases than for its worst cases.
- Another way that intractable problems are handled is to look for approximate solutions (近似解法).

NP and NP-complete problems (optional)

- Problems for which a solution can be checked in polynomial time are said to belong to the class NP (tractable problems are said to belong to class P).
- NP-complete problems (NP完全问题) have the property that
 if any of these problems can be solved by a polynomial
 worst-case time complexity algorithm, then so can all NP
 problems.
- So far we do not know if P=NP. There is a 1 million dollar prize for solving this problem.
- But it is generally accepted that $P \neq NP$.
- The satisfiability problem: check if a compound proposition is satisfiable. It is an NP-complete problem.

Number theory (数论)

- The part of mathematics involving the integers and their properties belongs to number theory.
- This chapter develops the basic concepts of number theory used throughout computer science.

Division

- Definition: If a and b are integers with $a \neq 0$, we say that a divides b, denoted by $a \mid b$, if there is an integer c such that b = ac. When a divides b, we say that a is a factor of b and b is a multiple of a. We write $a \nmid b$ if a does not divide b.
- Example: Let n and d be positive integers. How many positive integers not exceeding n are divisible by d?
- ullet Theorem: Let a, b, and c be integers. Then

 - 2 if $a \mid b$, then $a \mid bc$ for all integers c;
 - \bullet if $a \mid b$ and $b \mid c$, then $a \mid c$.
- Corollary: If a, b, and c are integers such that $a \mid b$ and $a \mid c$, then $a \mid (mb + nc)$ whenever m and n are integers.

Quotient and remainder

- Theorem: Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r. We write q = a div d, and $r = a \mod d$. d divisor, a dividend, q quotient (商), r reminder (余数).
- Example: divide -11 by 3

Modular arithmetic (模算术)

- Definition: Let a and b be integers and m a positive integer. We say that a is congruent to b modulo m (模m同余), denoted by $a \equiv b \pmod{m}$, if m divides a b.
- Theorem: Let a and b be integers and m a positive integer. Then $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$.
- Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$.
- Corollary: Let m be a positive integer. Then $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$ and $ab \mod m = ((a \mod m)(b \mod m)) \mod m$.

Arithmetic modulo *m*

•
$$\mathbf{Z}_m = \{0, 1, \dots, m-1\}$$

- $a +_m b = a + b \mod m$, $a \cdot_m b = a \cdot b \mod m$
- Properties: closure, associativity, commutativity, identity elements, additive inverse, distributivity