# TD: Logical Aspects of Artificial Intelligence Introduction to DLs & Properties (21/09/2022)

\*\* Exercises related to the previous session \*\*

**Exercise 1.** Let  $\mathcal{K} = (\mathcal{T} \cup \{A \sqsubseteq C\}, \mathcal{A})$  be a knowledge base such that A is a concept name and B is a concept name that does not occur in  $\mathcal{K}$  (B is "new"). Show that  $\mathcal{K}$  is consistent iff  $\mathcal{K}' = (\mathcal{T} \cup \{A \equiv B \sqcap C\}, \mathcal{A})$  is consistent.

**Exercise 2.** Let  $\mathcal{T}^* = \{A_1 \equiv C_1, \dots, A_m \equiv C_m\}$  be an  $\mathcal{ALC}$  TBox satisfying the following properties.

- Every  $A_i$  is a concept name, and  $A_i \equiv C_i$  is an abbreviation for  $A_i \sqsubseteq C_i$  and  $C_i \sqsubseteq A_i$ .
- For all  $i, j \in [1, m]$ , if  $A_j$  occurs in  $C_i$ , then j > i.
- If  $i \neq j \in [1, m]$ , then  $A_i$  and  $A_j$  are syntactically distinct.

Such a TBox  $\mathcal{T}^*$  is called **acyclic**.

- 1. Briefly define an acyclic graph from  $\mathcal{T}^*$ , which would justify the terminology " $\mathcal{T}^*$  is acyclic".
- 2. Given an interpretation  $\mathcal{I}$ , show that there exists an interpretation  $\mathcal{J}$  such that  $\mathcal{J} \models \mathcal{T}^*$ , the interpretations of the role names and concept names different from  $\{A_1, \ldots, A_m\}$  are identical in  $\mathcal{I}$  and  $\mathcal{J}$ .
- 3. Design an algorithm that takes as input a knowledge base  $\mathcal{K} = (\mathcal{T}, \mathcal{A})$  with acyclic  $\mathcal{T}$  and returns an ABox  $\mathcal{A}'$  such that  $\mathcal{K}$  is consistent iff  $(\emptyset, \mathcal{A}')$  is consistent, and  $\mathcal{A}'$  contains no  $A_i$ 's. The proof for the soundness of the algorithm is not requested.
- 4. Explain why your algorithm terminates and analyse its computational complexity.

**Exercise 3**. (Exponential-size interpretations) Define a family of concepts  $(C_n)_{n\geq 1}$  such that each  $C_n$  is of polynomial size in n (for a fixed polynomial),  $C_n$  is satisfiable, and the interpretations satisfying  $C_n$  have at least  $2^n$  individuals in its domains.

**Exercise 4.** (Infinite models) Let  $\mathcal{ALCIN}$  be the extension of  $\mathcal{ALC}$  with unqualified number restrictions and inverse roles. Let  $C = \neg A \sqcap \exists r.A$  and  $\mathcal{T} = \{A \sqsubseteq \exists r.A, \top \sqsubseteq (\leq 1 \ r^-)\}$ . Show that for all interpretations  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  such that  $C^{\mathcal{I}} \neq \emptyset$  and  $\mathcal{I} \models \mathcal{T}, \Delta^{\mathcal{I}}$  is infinite.

\*\* Exercises related to today session\*\*

**Exercise 5**. Let us consider the translation map  $\mathfrak{t}$  into first-order logic. Let  $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$  be an interpretation.

- 1. Let C be a complex concept in  $\mathcal{ALC}$ . Show that for all  $\mathfrak{a} \in \Delta^{\mathcal{I}}$ , we have  $\mathfrak{a} \in C^{\mathcal{I}}$  iff  $\mathcal{I}, \rho[\mathfrak{x} \leftarrow \mathfrak{a}] \models \mathfrak{t}(C, \mathfrak{x})$  where  $\rho$  is a first-order assignment.
- 2. Show that  $\mathcal{I} \models \mathcal{K}$  iff  $\mathcal{I} \models \mathfrak{t}(\mathcal{K})$ .

**Exercise 6**. (Model-checking in PTIME) Let  $\mathcal{I}$  be an interpretation with finite domain and C be an  $\mathcal{ALC}$  concept. Recapitulate the main arguments to show that the algorithm seen in the lecture to compute  $C^{\mathcal{I}}$  indeed runs in polynomial time.

**Exercise 7**. (from exam 2021/2022) Let X be a finite set of  $\mathcal{ALC}$  concepts closed under subconcepts and  $\mathcal{K}$  (resp. C) be a knowledge base (resp. a concept) such that  $\mathsf{sub}(\mathcal{K}) \cup \mathsf{sub}(C) \subseteq X$ . Let  $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$  be an interpretation such that

- $\mathcal{I} \models \mathcal{K}$  and  $C^{\mathcal{I}} \neq \emptyset$ ,
- for all role names r occurring in X,  $r^{\mathcal{I}}$  is reflexive and transitive.

For all  $\mathfrak{a}, \mathfrak{a}' \in \Delta^{\mathcal{I}}$ , we write  $\mathfrak{a} \sim \mathfrak{a}'$  iff for all concepts  $D \in X$ , we have  $\mathfrak{a} \in D^{\mathcal{I}}$  iff  $\mathfrak{a}' \in D^{\mathcal{I}}$ . As  $\sim$  is an equivalence relation, equivalence classes of  $\sim$  are written  $[\mathfrak{a}]$  to denote the class of  $\mathfrak{a}$ . Let us define the interpretation  $\mathcal{J} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ :

- $\bullet \ \Delta^{\mathcal{I}} \stackrel{\text{def}}{=} \{ [\mathfrak{a}] \mid \mathfrak{a} \in \Delta^{\mathcal{I}} \}.$
- $A^{\mathcal{I}} \stackrel{\text{def}}{=} \{ [\mathfrak{a}] \mid \text{ there is } \mathfrak{a}' \in [\mathfrak{a}] \text{ such that } \mathfrak{a}' \in A^{\mathcal{I}} \} \text{ for all } A \in X.$
- $A^{\mathcal{I}} \stackrel{\text{def}}{=} \emptyset$  for all concept names  $A \notin X$  (arbitrary value).
- $r^{\mathcal{I}} \stackrel{\text{def}}{=} \{([\mathfrak{a}], [\mathfrak{b}]) \mid \text{ there are } \mathfrak{a}' \in [\mathfrak{a}], \mathfrak{b}' \in [\mathfrak{b}] \text{ such that for all } \forall r.D \in X, \mathfrak{a}' \in (\forall r.D)^{\mathcal{I}} \text{ implies } \mathfrak{b}' \in (\forall r.D)^{\mathcal{I}} \} \text{ for all role names } r \text{ occurring in } X.$
- $r^{\mathcal{I}} \stackrel{\text{def}}{=} \emptyset$  for all role names r not occurring in X (arbitrary value).
- $a^{\mathcal{I}} \stackrel{\text{def}}{=} [\mathfrak{a}]$  with  $a^{\mathcal{I}} = \mathfrak{a}$ , for all individual names a.
- 1. Show that for all role names r occurring in X,  $r^{\mathcal{J}}$  is reflexive and transitive.
- 2. Show that  $(\mathfrak{a},\mathfrak{b}) \in r^{\mathcal{I}}$  implies  $([\mathfrak{a}],[\mathfrak{b}]) \in r^{\mathcal{J}}$ , for all role names r occurring in X.
- 3. Assuming that the concept constructors occurring in X are among  $\forall r$  for some r,  $\sqcap$  and  $\neg$ , show that for all  $D \in X$  and  $\mathfrak{a} \in \Delta^{\mathcal{I}}$ , we have  $\mathfrak{a} \in D^{\mathcal{I}}$  iff  $[\mathfrak{a}] \in D^{\mathcal{I}}$ . (This restriction on the concept constructors allows us to reduce the number of cases in the induction step).
- 4. Conclude that there is a finite interpretation  $\mathcal{I}^*$  such that  $\mathcal{I}^* \models \mathcal{K}$  and  $(C)^{\mathcal{I}^*} \neq \emptyset$  and for all role names r occurring in X,  $(r)^{\mathcal{I}^*}$  is reflexive and transitive.

### **Correction: Exercise 1**

Let us show that K is consistent iff  $K' = (T \cup \{A \equiv B \sqcap C\}, A)$  is consistent.

First, suppose that  $\mathcal{K}$  is consistent. There is an interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  such that  $\mathcal{I} \models \mathcal{T} \cup \{A \sqsubseteq C\}$  and  $\mathcal{I} \models \mathcal{A}$ . In particular, we have  $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$ . Let  $\mathcal{I}^{\star} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}^{\star}})$  be the interpretation obtained from  $\mathcal{I}$  by only modifying the interpretation of B with  $\mathcal{I}^{\star}(B) = A^{\mathcal{I}}$ . Let us enumerate properties satisfied by  $\mathcal{I}^{\star}$ .

- $A^{\mathcal{I}^{\star}} = A^{\mathcal{I}} = B^{\mathcal{I}^{\star}} \cap C^{\mathcal{I}^{\star}}$ . Indeed, B does not occur in  $\mathcal{K}$  and therefore we get  $C^{\mathcal{I}^{\star}} = C^{\mathcal{I}}$ .
- Due to "freshness" of B, we can also conclude that  $\mathcal{I}^* \models \mathcal{T}$  and  $\mathcal{I}^* \models \mathcal{A}$ .

Consequently, K' is consistent.

Secondly, suppose that  $\mathcal{K}'$  is consistent. There is an interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  such that  $\mathcal{I} \models \mathcal{T} \cup \{A \equiv B \sqcap C\}$  and  $\mathcal{I} \models \mathcal{A}$ . In particular, we have  $A^{\mathcal{I}} = B^{\mathcal{I}} \cap C^{\mathcal{I}}$ . This entails that  $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$  and therefore  $\mathcal{I} \models A \sqsubseteq C$ . Hence,  $\mathcal{I} \models \mathcal{K}$  and therefore  $\mathcal{K}$  is consistent.

### **Correction: Exercise 3**

We use the following notation:  $(\forall r)^i.D$  with  $i \geq 0$  such that  $(\forall r)^0.D \stackrel{\text{def}}{=} D$  and for all i > 0,  $(\forall r)^{i+1}.D \stackrel{\text{def}}{=} (\forall r)^i.(\forall r.D)$ .

- 1. Let us define the family  $(C_n)_{n>1}$  inductively.
  - $C_1 \stackrel{\text{def}}{=} A_0 \cap \exists r.((\neg A_0) \cap A_1) \cap \exists r.((\neg A_0) \cap \neg A_1).$
  - For all n > 2,

$$C_n \stackrel{\text{def}}{=} (\exists r.A_n) \sqcap (\exists r. \neg A_n) \sqcap (\forall r.C_{n-1}) \sqcap \prod_{i=1}^{n-1} (\forall r)^i \cdot \left( (A_n \Rightarrow \forall r.A_n) \sqcap ((\neg A_n) \Rightarrow \forall r. \neg A_n) \right)$$

Observe that the size of  $C_n$  is quadratic in n. Here is an interpretation  $\mathcal{I}$  in which  $C_3^{\mathcal{I}}$  is not empty.



- 2. Let us show that the only interpretations satisfying  $C_n$  have at least  $2^n$  elements. The proof is by induction on n. Let us show a stronger property, namely if  $\mathfrak{a} \in C_n^{\mathcal{I}}$ , then one can extract from the element  $\mathfrak{a}$ , a complete binary tree of depth n (with the edge-relation  $r^{\mathcal{I}}$ ) for which all the elements in the left subtree are in  $A_n^{\mathcal{I}}$  and all the elements in the right subtree are not in  $A_n^{\mathcal{I}}$ .
  - Suppose that  $C_1^{\mathcal{I}} \neq \emptyset$ . So, there is  $\mathfrak{a} \in \Delta^{\mathcal{I}}$  such that  $\mathfrak{a} \in (\exists r.((\neg A_0) \sqcap A_1)^{\mathcal{I}})$  and  $\mathfrak{a} \in (\exists r.(\neg A_0) \sqcap \neg A_1)^{\mathcal{I}}$ . Consequently, there is  $\mathfrak{b}_1$  such that  $(\mathfrak{a},\mathfrak{b}_1) \in r^{\mathcal{I}}$  and  $\mathfrak{b}_1 \in A_1^{\mathcal{I}}$ , and there is  $\mathfrak{b}_2$  tel que  $(\mathfrak{a},\mathfrak{b}_2) \in r^{\mathcal{I}}$  and  $\mathfrak{b}_2 \notin A_1^{\mathcal{I}}$ . Obviously  $\mathfrak{b}_1 \neq \mathfrak{b}_2$  and therefore  $\operatorname{card}(\Delta^{\mathcal{I}}) \geq 2$ . Similarly,  $\mathfrak{a} \neq \mathfrak{b}_1$  and  $\mathfrak{a} \neq \mathfrak{b}_2$  thanks to the properties on  $A_0$ . It is easy to build  $\mathcal{I}$  such that  $C_1^{\mathcal{I}} \neq \emptyset$ . The tree rooted at  $\mathfrak{a}$  contains  $\mathfrak{b}_1$  and  $\mathfrak{b}_2$ .
  - As induction hypothesis, suppose that the property holds for  $n-1\geq 1$ . Suppose that  $C_n^{\mathcal{I}}\neq\emptyset$ . There is  $\mathfrak{a}\in\Delta^{\mathcal{I}}$  such that  $\mathfrak{a}\in(\exists r.A_n)^{\mathcal{I}}$  and  $\mathfrak{a}\in(\exists r.\neg A_n)^{\mathcal{I}}$ . Consequently, there is  $\mathfrak{b}_1$  such that  $(\mathfrak{a},\mathfrak{b}_1)\in r^{\mathcal{I}}$  and  $\mathfrak{b}_1\in A_n^{\mathcal{I}}$ , and there is  $\mathfrak{b}_2$  such that  $(\mathfrak{a},\mathfrak{b}_2)\in r^{\mathcal{I}}$  and  $\mathfrak{b}_2\not\in A_n^{\mathcal{I}}$ . So,  $\mathfrak{b}_1\neq\mathfrak{b}_2$ . Moreover, as  $\mathfrak{a}\in(\forall r.C_{n-1})^{\mathcal{I}}$ ,  $\mathfrak{b}_1\in C_{n-1}^{\mathcal{I}}$  and  $\mathfrak{b}_2\in C_{n-1}^{\mathcal{I}}$ . By (IH), there is a complete binary tree  $\mathcal{T}_1$  rooted

at  $\mathfrak{b}_1$  of depth n-1 and there is a complete binary tree  $\mathcal{T}_2$  rooted at  $\mathfrak{b}_2$  of depth n-1. In order to extract a complete binary tree of depth n from  $\mathfrak{a}$ , it is sufficient to show that the nodes in  $\mathcal{T}_1$  and  $\mathcal{T}_2$  are disjoint. Actually, as

$$\mathfrak{a} \in (\prod_{i=1}^{n-1} (\forall r)^i. \Big( (A_n \Rightarrow \forall r. A_n) \sqcap ((\neg A_n) \Rightarrow \forall r. \neg A_n) \Big))^{\mathcal{I}},$$

 $\mathcal{T}_1$  is disjoint from  $\mathcal{T}_2$ . Similarly,  $\mathfrak{a}$  is necessarily different from  $\mathfrak{b}_1$  and  $\mathfrak{b}_2$ .

### **Correction: Exercise 4**

Let  $C = \neg A \sqcap \exists r.A$ ,  $\mathcal{T} = \{A \sqsubseteq \exists r.A, \top \sqsubseteq (\leq 1 \ r^-)\}$  and  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$  be an interpretation such that  $C^{\mathcal{I}} \neq \emptyset$  and  $\mathcal{I} \models \mathcal{T}$ . Below, we show that  $\Delta^{\mathcal{I}}$  is infinite. The proof can be found also on page 62 in  $^1$ .

Ad absurdum, suppose that  $\Delta^{\mathcal{I}}$  is finite and let  $\mathfrak{a}_0 \in C^{\mathcal{I}}$ . As  $\mathfrak{a}_0 \in (\exists r.A)^{\mathcal{I}}$ , there is  $\mathfrak{a}_1 \in \Delta^{\mathcal{I}}$  such that  $\mathfrak{a}_1 \in A^{\mathcal{I}}$  and  $(\mathfrak{a}_0, \mathfrak{a}_1) \in r^{\mathcal{I}}$ . As  $\mathcal{I} \models A \sqsubseteq \exists r.A$  and  $\mathfrak{a}_1 \in A^{\mathcal{I}}$ , there is  $\mathfrak{a}_2 \in \Delta^{\mathcal{I}}$  such that  $\mathfrak{a}_2 \in A^{\mathcal{I}}$  and  $(\mathfrak{a}_1, \mathfrak{a}_2) \in r^{\mathcal{I}}$ . By using the same argument, we can show that there is a sequence  $\mathfrak{a}_0, \mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3, \ldots$  such that  $\mathfrak{a}_0 \not\in A^{\mathcal{I}}$ ,  $\{\mathfrak{a}_1, \mathfrak{a}_2, \ldots\} \subseteq A^{\mathcal{I}}$  and for all  $i \in \mathbb{N}$ , we have  $(\mathfrak{a}_i, \mathfrak{a}_{i+1}) \in r^{\mathcal{I}}$ .

As  $\Delta^{\mathcal{I}}$  is supposed to be finite, there are  $0 \leq i < j$  such that  $\mathfrak{a}_i = \mathfrak{a}_j$ . Without any loss of generality, let us assume that i is minimal.



Moreover, as j>0 and  $\mathfrak{a}_0\not\in A^{\mathcal{I}}$ , we have i>0 and j>0. This means that  $\mathfrak{a}_{i-1}$  is an r-predecessor of  $\mathfrak{a}_i$  and  $\mathfrak{a}_{j-1}$  is also an r-predecessor of  $\mathfrak{a}_j=\mathfrak{a}_i$ . By minimality of i,  $\mathfrak{a}_{i-1}$  and  $\mathfrak{a}_{j-1}$  are distinct and therefore  $\mathfrak{a}_i$  has at least two predecessors, which is in contradiction with  $\mathcal{I}\models \top\sqsubseteq (\leq 1\ r^-)$ . Indeed,  $\mathcal{I}\models \top\sqsubseteq (\leq 1\ r^-)$  enforces that every individual in  $\Delta^{\mathcal{I}}$  has at most

<sup>&</sup>lt;sup>1</sup>Introduction to Description Logics by Baader, Horrocks Lutz, Sattler, 2017.

one *r*-predecessor.

### **Correction: Exercise 6**

Let  $\mathcal{I}=(\Delta^{\mathcal{I}},\cdot^{\mathcal{I}})$  be an interpretation with finite domain  $\Delta^{\mathcal{I}}$  and C be an  $\mathcal{ALC}$  concept. Below, we show that  $C^{\mathcal{I}}$  can be computed in polynomial time in  $\operatorname{size}(\mathcal{I})+\operatorname{size}(C)$ . To do so, we take the algorithm seen during the lecture and we annotate it so that the complexity analysis is straighforward.

Let  $C_1,\ldots,C_k$  be the subconcepts of C ordered by increasing size. This means that  $\mathrm{sub}(C)=\{C_1,\ldots,C_k\}$  and  $\mathrm{size}(C)\leq k$ . Without loss of generality, we can assume that  $\mathcal I$  interprets only the concept names and role names that occur in C (and there are at most k such names). The size  $\mathrm{size}(\mathcal I)$  can be defined from a reasonably succinct encoding whose values is in  $\mathcal O(k\times\mathrm{card}(\Delta^\mathcal I)^2)$ . Indeed, each concept name  $k\in\mathrm{sub}(C)$ ,  $k\in\mathrm{card}(K)$  and for each role name  $k\in\mathrm{cuc}(K)$  or  $k\in\mathrm{card}(K)$ .

For each  $\mathfrak{a} \in \Delta^{\mathcal{I}}$ , the algorithm builds a set of concepts  $l(\mathfrak{a})$  such that

- 1. for every  $i \in [1, k]$ , either  $C_i \in l(\mathfrak{a})$ , or  $\neg C_i \in l(\mathfrak{a})$ , but not both at the same time,
- 2. for every  $D \in \{C_1, \dots, C_k, \neg C_1, \dots, \neg C_k\}$ ,  $D \in l(\mathfrak{a})$  iff  $\mathfrak{a} \in D^{\mathcal{I}}$ . This is the property that guarantees correctness but its proofs is out of the scope of this exercise.

The algorithm works as follows for each  $i \in [1, k]$  (i from 1 to k) and for each  $\mathfrak{a} \in \Delta^{\mathcal{I}}$ , we insert either  $C_i$  in  $l(\mathfrak{a})$  or  $\neg C_i$  dans  $l(\mathfrak{a})$ . The total number of insertions is in  $\mathcal{O}(k \times \operatorname{card}(\Delta^{\mathcal{I}}))$ , which is polynomial in  $\operatorname{size}(\mathcal{I}) + \operatorname{size}(C)$ . It remains to show that each single insertion can be done in polynomial-time too. Actually, we shall check that each insertion requires linear-time in  $\operatorname{size}(\mathcal{I})$  in the worst-case.

Note that for all  $\mathfrak{a} \in \Delta^{\mathcal{I}}$ ,  $l(\mathfrak{a})$  is initialized to the empty set.

We run the algorithm with increasing  $i \in [1, k]$  and below  $\mathfrak{a} \in \Delta^{\mathcal{I}}$ . Let us consider three significant cases (other cases for other concept constructors are handled in a similar fashion).

# **Case 1:** $C_i$ is a concept name.

If  $\mathfrak{a} \in C_i^{\mathcal{I}}$  by definition of  $\mathcal{I}$ , then insert  $C_i$  in  $l(\mathfrak{a})$  otherwise insert  $\neg C_i$  in  $l(\mathfrak{a})$ . This step takes time in  $\mathcal{O}(\operatorname{size}(\mathcal{I}))$ .

- Case 2:  $C_i = C_{i_1} \sqcap C_{i_2}$  for some  $i_1, i_2 < i$ . Insert  $C_i$  in  $l(\mathfrak{a})$  if  $\{C_{i_1}, C_{i_2}\} \subseteq l(\mathfrak{a})$  otherwise insert  $\neg C_i$  in  $l(\mathfrak{a})$ . This step takes time in  $\mathcal{O}(k)$ .
- **Case 3:**  $C_i = \exists r. C_{i_1}$  for some  $i_1 < i$ . If there is  $\mathfrak{a}' \in r^{\mathcal{I}}(\mathfrak{a})$  such that  $C_{i_1}$  is in  $l(\mathfrak{a}')$ , then insert  $C_i$  in  $l(\mathfrak{a})$ , otherwise insert  $\neg C_i$  in  $l(\mathfrak{a})$ . This step takes time in  $\mathcal{O}(k \times \mathsf{size}(\mathcal{I}))$ .

### **Correction: Exercise 7**

1. Let  $[\mathfrak{a}] \in \Delta^{\mathcal{J}}$  and r be a role name occurring in X. Obviously, for all  $\forall r.D \in X$ , we have  $\mathfrak{a} \in (\forall r.D)^{\mathcal{I}}$  implies  $\mathfrak{a} \in (\forall r.D)^{\mathcal{I}}$ . Hence,  $([\mathfrak{a}], [\mathfrak{a}]) \in r^{\mathcal{J}}$  by definition of  $r^{\mathcal{J}}$ . As above  $[\mathfrak{a}]$  is an arbitrary element of  $\Delta^{\mathcal{J}}$ ,  $r^{\mathcal{J}}$  is reflexive.

Now suppose that  $([\mathfrak{a}], [\mathfrak{b}]) \in r^{\mathcal{J}}$  and  $([\mathfrak{b}], [\mathfrak{c}]) \in r^{\mathcal{J}}$ . By definition of  $r^{\mathcal{J}}$ , there is  $\mathfrak{a}' \in [\mathfrak{a}]$  and  $\mathfrak{b}' \in [\mathfrak{b}]$  such that for all  $\forall r.D \in X$ ,  $\mathfrak{a}' \in (\forall r.D)^{\mathcal{I}}$  implies  $\mathfrak{b}' \in (\forall r.D)^{\mathcal{I}}$ . Similarly, there is  $\mathfrak{b}'' \in [\mathfrak{b}]$  and  $\mathfrak{c}' \in [\mathfrak{c}]$  such that for all  $\forall r.D \in X$ ,  $\mathfrak{b}'' \in (\forall r.D)^{\mathcal{I}}$  implies  $\mathfrak{c}' \in (\forall r.D)^{\mathcal{I}}$ .

Let  $\forall r.D \in X$  with  $\mathfrak{a}' \in [\mathfrak{a}]$  and  $\mathfrak{a}' \in (\forall r.D)^{\mathcal{I}}$ . Since  $([\mathfrak{a}], [\mathfrak{b}]) \in r^{\mathcal{J}}$ ,  $\mathfrak{b}' \in (\forall r.D)^{\mathcal{I}}$ . Since  $[\mathfrak{b}] = [\mathfrak{b}'] = [\mathfrak{b}'']$ , we have also  $\mathfrak{b}'' \in (\forall r.D)^{\mathcal{I}}$ . Since  $([\mathfrak{b}], [\mathfrak{c}]) \in r^{\mathcal{J}}$ , we get  $\mathfrak{c}' \in (\forall r.D)^{\mathcal{I}}$ . Consequently,  $([\mathfrak{a}], [\mathfrak{c}]) \in r^{\mathcal{J}}$  and therefore  $r^{\mathcal{J}}$  is transitive.

- 2. Assume that  $(\mathfrak{a},\mathfrak{b}) \in r^{\mathcal{I}}$ . As  $r^{\mathcal{I}}$  is reflexive and transitive, for all  $\mathfrak{b}' \in r^{\mathcal{I}}(\mathfrak{b})$ , we have  $\mathfrak{b}' \in r^{\mathcal{I}}(\mathfrak{a})$ .
  - Now suppose that  $\mathfrak{a} \in (\forall r.D)^{\mathcal{I}}$  with  $\forall r.D \in X$ . By  $\mathcal{ALC}$  semantics, for all  $\mathfrak{a}' \in r^{\mathcal{I}}(\mathfrak{a})$ , we have  $\mathfrak{a}' \in D^{\mathcal{I}}$ . A fortiori (by the above remark), for all  $\mathfrak{b}' \in r^{\mathcal{I}}(\mathfrak{b})$ , we have  $\mathfrak{b}' \in D^{\mathcal{I}}$ , i.e.  $\mathfrak{b} \in (\forall r.D)^{\mathcal{I}}$ . As  $\forall r.D$  is arbitrary, we conclude that for all  $\forall r.D \in X$ ,  $\mathfrak{a} \in (\forall r.D)^{\mathcal{I}}$  implies  $\mathfrak{b} \in (\forall r.D)^{\mathcal{I}}$ . By definition of  $r^{\mathcal{I}}$ , we get  $([\mathfrak{a}], [\mathfrak{b}]) \in r^{\mathcal{I}}$  (take  $\mathfrak{a}' = \mathfrak{a}$  and  $\mathfrak{b}' = \mathfrak{b}$ ).
- 3. The proof is by structural induction. For the base D=A, by definition of  $\mathcal{J}$ , we have  $A^{\mathcal{J}} \stackrel{\text{def}}{=} \{[\mathfrak{a}] \mid \text{ there is } \mathfrak{a}' \in [\mathfrak{a}] \text{ such that } \mathfrak{a}' \in A^{\mathcal{I}} \}$ . This is equivalent to  $A^{\mathcal{J}} \stackrel{\text{def}}{=} \{[\mathfrak{a}] \mid \mathfrak{a} \in A^{\mathcal{I}} \}$  since all the elements in  $[\mathfrak{a}]$  agree on the concepts in X. Similarly,  $T^{\mathcal{J}} = \Delta^{\mathcal{J}}$ , which is precisely  $\{[\mathfrak{a}] \mid \mathfrak{a} \in T^{\mathcal{I}} = \Delta^{\mathcal{I}} \}$ . Let us consider now the induction step with a case analysis depending on the outermost concept constructor.

# Case $D = \neg D'$

- $D^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus (D')^{\mathcal{I}}$  (by  $\mathcal{ALC}$  semantics).
- $D^{\mathcal{J}} = \{[\mathfrak{a}] \mid \mathfrak{a} \in \Delta^{\mathcal{I}}\} \setminus \{[\mathfrak{a}] \mid \mathfrak{a} \in (D')^{\mathcal{I}}\}$  (by definition of  $\Delta^{\mathcal{J}}$ , X is closed under subconcepts and by induction hypothesis).
- $D^{\mathcal{I}} = \{[\mathfrak{a}] \mid \mathfrak{a} \not\in (D')^{\mathcal{I}}\}$  (by set-theoretical reasoning).
- $D^{\mathcal{I}} = \{[\mathfrak{a}] \mid \mathfrak{a} \in (\neg D')^{\mathcal{I}}\}$  (by  $\mathcal{ALC}$  semantics).

## Case $D = D_1 \sqcap D_2$

- $D^{\mathcal{I}} = D_1^{\mathcal{I}} \cap D_2^{\mathcal{I}}$  (by  $\mathcal{ALC}$  semantics).
- $D^{\mathcal{I}} = \{[\mathfrak{a}] \mid \mathfrak{a} \in D_1^{\mathcal{I}}\} \cap \{[\mathfrak{a}] \mid \mathfrak{a} \in D_2^{\mathcal{I}}\}$  (X is closed under subconcepts and by induction hypothesis).
- $D^{\mathcal{I}} = \{ [\mathfrak{a}] \mid \mathfrak{a} \in D_1^{\mathcal{I}} \cap D_2^{\mathcal{I}} \}$  (by set-theoretical reasoning).
- $D^{\mathcal{I}} = \{ [\mathfrak{a}] \mid \mathfrak{a} \in (D_1 \sqcap D_2)^{\mathcal{I}} \}$  (by  $\mathcal{ALC}$  semantics).

### Case $D = \forall r.D'$

First, suppose that  $\mathfrak{a} \in (\forall r.D')^{\mathcal{I}}$ . Ad absurdum, suppose that  $[\mathfrak{a}] \notin (\forall r.D')^{\mathcal{I}}$ . By  $\mathcal{ALC}$  semantics, there is  $[\mathfrak{b}]$  such that  $([\mathfrak{a}], [\mathfrak{b}]) \in r^{\mathcal{I}}$  and  $[\mathfrak{b}] \notin (D')^{\mathcal{I}}$ . By definition of  $r^{\mathcal{I}}$ , there is  $\mathfrak{a}' \in [\mathfrak{a}]$  and  $\mathfrak{b}' \in [\mathfrak{b}]$  such that for all  $\forall r.D'' \in X$ ,  $\mathfrak{a}' \in (\forall r.D'')^{\mathcal{I}}$  implies  $\mathfrak{b}' \in (\forall r.D'')^{\mathcal{I}}$ . As  $[\mathfrak{a}] = [\mathfrak{a}']$ ,  $\mathfrak{a}' \in (\forall r.D')^{\mathcal{I}}$  and therefore  $\mathfrak{b}' \in (\forall r.D')^{\mathcal{I}}$ . As  $r^{\mathcal{I}}$  is reflexive,  $\mathfrak{b}' \in (D')^{\mathcal{I}}$  and by the induction hypothesis  $[\mathfrak{b}'] \in (D')^{\mathcal{I}}$  (the set X is closed under subconcepts, so we can use the induction hypothesis). However  $[\mathfrak{b}] = [\mathfrak{b}']$  and therefore  $[\mathfrak{b}] \in (D')^{\mathcal{I}}$ , which leads to contradiction.

Second, suppose that  $[\mathfrak{a}] \in (\forall r.D')^{\mathcal{I}}$ . *Ad absurdum*, suppose that there is  $\mathfrak{a}' \in [\mathfrak{a}]$  such that  $\mathfrak{a}' \notin (\forall r.D')^{\mathcal{I}}$ . By  $\mathcal{ALC}$  semantics, there is  $\mathfrak{b}'$  such that  $(\mathfrak{a}',\mathfrak{b}') \in r^{\mathcal{I}}$  and  $\mathfrak{b}' \notin (D')^{\mathcal{I}}$ .

By Question 2,  $([\mathfrak{a}'], [\mathfrak{b}']) \in r^{\mathcal{J}}$  and therefore  $([\mathfrak{a}], [\mathfrak{b}']) \in r^{\mathcal{J}}$ . Since X is closed under subconcepts, by the induction hypothesis, we obtain  $[\mathfrak{b}'] \not\in (D')^{\mathcal{J}}$  too. Hence,  $[\mathfrak{a}] \not\in (\forall r.D')^{\mathcal{J}}$ , which leads to contradiction.

4. First, the concept constructors  $\sqcup$  and  $\exists r$  may occur in  $\mathcal{K}, C$  but these occurrences can be eliminated by using duality properties in order to have X satisfying the assumptions from Question 3. Let us show that  $\mathcal{I}^* = \mathcal{J}$  does the job with  $X = \mathsf{sub}(\mathcal{K}) \cup \mathsf{sub}(C)$ .

- $\Delta^{\mathcal{J}}$  is finite and  $\operatorname{card}(\Delta^{\mathcal{J}}) \leq 2^{\operatorname{card}(X)}$  with finite X.
- By Question 3, for all  $D \in X$ , we have  $D^{\mathcal{I}} = \{[\mathfrak{a}] \mid \mathfrak{a} \in D^{\mathcal{I}}\}.$
- Consequently,  $C^{\mathcal{I}} \neq \emptyset$  implies  $C^{\mathcal{I}} \neq \emptyset$ .
- Furthermore,  $D^{\mathcal{I}} \subseteq (D')^{\mathcal{I}}$  implies  $D^{\mathcal{J}} \subseteq (D')^{\mathcal{J}}$  and therefore for all GCIs  $D \sqsubseteq D' \in \mathcal{T}$ , we have  $\mathcal{I} \models D \sqsubseteq D'$  implies  $\mathcal{J} \models D \sqsubseteq D'$ . As  $\mathcal{I} \models \mathcal{T}$  we get  $\mathcal{J} \models \mathcal{T}$ .
- Let  $a:D\in\mathcal{A}$ . By assumption, we have  $\mathcal{I}\models a:D$  and therefore  $a^{\mathcal{I}}\in D^{\mathcal{I}}$ . By Question 3,  $[a^{\mathcal{I}}]\in D^{\mathcal{I}}$ . By definition of  $\mathcal{J}$ ,  $a^{\mathcal{I}}=[a^{\mathcal{I}}]$  and therefore  $\mathcal{J}\models a:D$ .
- Let  $(a,b): r \in \mathcal{A}$ . By assumption, we have  $\mathcal{I} \models (a,b): r$  and therefore  $(a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$ . By Question 2,  $([a],[b]) \in r^{\mathcal{I}}$ . As  $a^{\mathcal{I}} = [a]$  and  $b^{\mathcal{I}} = [b]$  by definition of  $\mathcal{I}$ , we get  $(a^{\mathcal{I}},b^{\mathcal{I}}) \in r^{\mathcal{I}}$ . Therefore  $\mathcal{I} \models (a,b): r$  (by  $\mathcal{ALC}$  semantics).
- For all role names r occurring X,  $r^{\mathcal{J}}$  is reflexive and transitive by Question 1.