Groupe 2 Promo 49 Poste 11

Coudeville Adèle Mosnier Florian

Compte rendu TP n°1

Objectifs:

- Mettre en pratique les techniques d'ensemencement et caractériser les bactéries au niveau morphologique
- Trouver les facteurs qui influencent le développement des microorganismes et mettre en évidence le métabolisme énergétique

<u>Protocole expérimental:</u>

On a pratiqué la technique d'ensemencement dans le but de mettre en évidence le métabolisme et l'influence du milieu extérieur sur les bactéries.

Ensemencement:

- Prendre un échantillon de colonie à l'aide de la pipette ou de l'oëse préalablement stérilisé
- Appliquer l'échantillon par la méthode des cadrans pour un milieu solide ou juste tremper et agiter l'oëse dans un milieu liquide.

Coloration de gram:

- Effectuer de multiples colorations d'un frotti
- Observer la lame au microscope à objectif 100

Résultats obtenus :

Caractères macroscopiques et microscopiques des souches :

Souche	Aspect des colonies sur milieu solide	Aspect des colonies sur milieu liquide	Examen microscopique, coloration de gram	Examen microscopique, forme et arrangement des bactéries
Staphylococcus epidermis	Plutôt rugeux, bombé, bords dentelé		Gram +	Coques en amas
Bacillus subtilis	Rugueux	Peu opaque, aspect en chainette, aucun dépôt	Gram +	Batonnets, chaîne
Escherichia coli	Lisse vers semi- rugeux, plat	Presque opaque, dépôt au fond du tube	Gram +	Ovale Amas d'environ 10 bactéries
Pseudonomas fluorescenc	Rugueux	Opacité légère, un peu trouble, dépôt au fond du tube	Gram -	Bacille rose
Clostridium sprorogenes	Rugueux, noir	Dépot lisse au ond du tube	Gram +	Coques batonnets

Observation des empreintes de doigts sur des milieux de culture :

Sur le milieu TSA, il y a 3 groupes de colonies contenant respectivement 11, 6 et 2 UFC, toutes d'aspect rugueux, tandis que dans le milieu CHAPMAN, il n'y a aucune colonie.

Influence des conditions extérieures sur le développement des bactéries :

On étudie le développement *d'E.coli*.

Quelque soit la température, le tube reste trouble donc la température n'influe pas sur le développement.

Pour des pH de 6.8 et 8.6 seulement, les tubes sont troubles donc le développement d'*E.coli* est favorisé pour des pH plutôt neutres.

Pour un ajout de 5 % de NaCl dans le bouillon nutritif (BN), le tube est trouble, donc le développement a eu lieu, ce qui n'est pas le cas pour des ajouts supérieurs à 10 % de NaCl.

Mise en évidence du métabolisme énergétiques

Souche	E.coli	Psedonomas	Clostridium
Type respiratoire	Développement homogène dans le tube → AAF	Développement seulement à la surface → Aérobie stricte	Tube trouble et aucunes bactéries à la surface → Anaérobie stricte
Oxydase	Coloration orange → oxydase -	Coloration violette → Oxydase +	Coloration orange → oxydase -
Catalase	Faible dégagement de gaz → catalase +	Émulsion → catalase +	Aucunes bulles de gaz → catalase -

Critique des modes opératoires :

La coloration Gram de *E.coli* semble ne pas avoir apporté les résultats souhaités. La description de l'aspect reste très subjective, elle n'est que qualitative et devrait être plus quantitative.

Dans l'expérience sur l'influence des conditions extérieures, le mélange des tubes issus de chaque paillasse ne permet pas de donner un regard objectif sur les résultats. De plus, il aurait fallu prendre en considération certaines incertitudes et des possibles erreurs de manipulations.

En définitive, les bactéries ont des caractères morphologiques très variés, certaines ont un aspect macroscopique rugueux en colonies, d'autres paraissent plus lisses. Le pH, la température et la pression osmotiques peuvent avoir plus ou moins d'influence sur le développement des bactéries.

De plus, il existe différentes manières de classifier les bactéries. D'une part, on peut différencier les bactéries en deux classes, les bactéries Gram – et les bactéries Gram + qui permettent de mettre en relief les structures de la paroi. D'autre part, la classification peut être construite sur le métabolisme énergétique en se basant sur le type respiratoire ainsi que sur les enzymes repiratoires. On peut alors savoir si la bactérie est aérobie ou anaérobie, ou si elles contiennent des enzymes telles que l'oxydase et la catalase. On peut donc se demander s'il n'y a pas d'autres techniques de classification des bactéries pour les différencier de façon plus précise.