BACHELOR OF COMPUTER SC. ENGG. EXAMINATION, 2014

(3rd Year, 1st Semester) VLSI DESIGN

Time: Three hours Full Marks: 100

Answer any five questions

1.	a)	How do	you define LS	I and	VLSI? W	hat is	Moore's law?
	-						

- b) Compare Silicon versus Germanium in the use of chip designing.
- c) Explain VLSI design Cycle.
- d) What are the advantages and disadvantages of CMOS over MOSFET?
- e) Explain lithography.

3+3+6+3+5

- 2. a) Prove that the ratio of impedances Z_{pu} and Z_{pd} of the pull-up to pull-down transistors of an nMOS inverter is 4:1.
 - b) What is the significance of finding the ratio Z_{pu}/Z_{pd}?
 - c) An n MOS inverter is driven by another nMOS inverter having pull-up to pull-down ratio of 4.50:1, through 3 pass transistors each having threshold voltage of 0.265 V_{DD}. Find the desired ratio of the pull-up to pull-down impedance of the driven inverter.
 - d) What is photoresist? Explain its uses in fabrication process.

10+2+5+3

- 3. a) Implement the following Boolean function with the help of (i) nMOS (ii) pMOS

 NAND gates (iv) CMOS single complex cell design.

 Y=ab+bd+cd

 Y=ab+bd+cd
 - b) Draw the coloured stick and mask diagrams for implementing the Boolean function mentioned in question 3 (a) using (i) NMOS (ii) CMOS.

10+10

- a) Explain physical design cycle.
- b) Why do we need partitioning? What are the different levels of partitioning?
- c) Show how the Kernighan-Lin Heuristic works on the ladder graph with 2n vertices (Fig.1), starting with initial partition of $V_1 = \{1,2,3,\ldots,n\}$, and $V_2 = \{n+1,n+2,n+3,\ldots,2n\}$. Consider n as odd.
- d) What are the drawbacks of Kernighan-Lin Heuristic.

12/3 - 115

d) Obtain a rectangular dual of the following adjacency graph (Fig. 2).

Fig.2

2+5+6+7

- 6. a) State the consequences and importance of placement in VLSI Design
 - b) Explain the Force directed Placement algorithm with its prospects and consequences.
 - c) Explain the different procedures for Breuer's Algorithm.

4+8+8

- a) Explain Global Routing and Detailed Routing.
- b) Fig. 3 shows a grid graph with several blocked vertices. It also shows terminals s and t as source and target of a two-terminal net. Use Lee's algorithm to find the path for this net.
- c) Route the following channel of 11 columns using the Left edge algorithm, where 0 indicates an empty position. TOP = 3 4 0 1 2 4 3 5 2 1 0

Fig. 3