PDE 求解框架-https://github.com/mjx20060910/PDE-

一、类的成员变量,成员函数及继承关系

类名	成员变量	成员函数	继承关系
Mesh	start: float (网格起始坐标) h: float (网格步长) - N: int (网格节点数) x_vec: array (网格坐标向量)	init():初始化网格参数 str():返回网格对象的字符 串描述	无 (基类)
Field	val: array (存储场变量的数值 (继 承 Mesh 的 start、h、N、x_vec)	init(): 初始化网格和场值- str(): 返回场对象的字符串描述	继承自 Mesh
Source	val: array (存储源项的数值) (继承 Mesh 的 start、h、N、x_vec)	init(): 初始化网格和源项值-make_sin (omega): 生成正弦 波源项-make_gaussian (pos, sigma): 生成高斯分布源项 str(): 返回源项对象的字符 串描述	继承自 Mesh
PDE	u: Field (方程的解) f: Source (方程的源项) (继承 Mesh 的 start、h、N、x_vec)	init():初始化网格、解场和源项 build_diff_matrix():构建差分矩阵(待子类实现) solve():求解方程(待子类实现) save_fig():保存结果图像(待子类实现) str():返回方程对象的字符串描述	继承自 Mesh
LaplaceE q	-A: matrix (拉普拉斯方程的差分矩阵) (继承 PDE 的 u、f、start、h、N、x_vec)	init(): 初始化网格和差分矩阵 make_equation (f): 类方法, 从源项创建方程实例 build_diff_matrix (): 构建	继承自 PDE

		拉普拉斯方程的差分矩阵-make_sin (omega):调用源项的正弦生成方法-make_gaussian (pos, sigma):调用源项的高斯生成方法-solve ():求解拉普拉斯方程-str():返回拉普拉斯方程对象的字符串描述	
HeatEq	t_end: float(模拟结束时间)- dt: float(时间步长)(继承 PDE 的 u、f、start、h、N、x_vec)	init():初始化网格、时间参数 build_diff_matrix():构建热传导方程的差分矩阵 solve():求解热传导方程(显式/隐式方法 str():返回热传导方程对象的字符串描述	继承自 PDE
PDEFacto ry	无	create_pde (pde_type, *args, **kwargs): 根据类型 字符串创建对应的 PDE 子类实 例	无

二、设计范式应用说明

该项目实现了一个基于面向对象设计的偏微分方程 (PDE) 求解框架,主要用于数值求解一维的拉普拉斯方程和热传导方程。采用了模块化设计,通过继承和多态实现代码复用,并使用工厂模式简化对象。

在 PDE 求解框架中,工厂模式通过 PDEFactory 类中导入 LaplaceEq 和 HeatEq 类实现了对象创建的封装和抽象,使客户端代码可以通过统一接口获取不同类型的 PDE 求解器,无需关心具体实现类的构造细节,轻松扩展支持新的方程类型,这种设计使框架具有良好的可维护性和扩展性

三、Uml 图

