Statistical Learning Final Report 信用卡消費類別推薦

109024514劉之榆、109024701林承慶

January 4, 2022

玉山AI公開挑戰賽:聰明消費來預3-信用卡消費類別推薦

Goal Predict top 3 highest-amount expense categories next month of each consumer. The target 16 categories and 50000 customer ids are specified.

Scoring NDCG@3

Outline

- 1. EDA
- 2. Preprocessing
- 3. Modeling
- 4. Inference

Variables

EDA •000000000

Original data: 53 variables, 32553986 observations, 7.26 GB.

- 1. 消費行爲:
 - o dt: 月份
 - o txn amt: 刷卡金額
 - o shop_tag: 消費類別
 - o txn_cnt: 刷卡筆數(負值代表有刷退次數)
 - o domestic(overseas)_online(offline)_cnt(/amt_pct): 國内外線上下刷卡筆數/金額占比
 - o card_k_txn_cnt(/amt_pct):卡片k的筆數/金額占比, k=1~15
- 2. 個人資訊:
 - o chid: 客户編號
 - o educd: 教育程度
 - o trdtp: 行業別
 - o gender_code: 性別
 - o age: 年龄

Missing data

EDA 000000000

> Missing values: all are personal infos, and we classified them as 3 types:

- Stable variables: fill with values from former month, e.g. gender_code, educd
- Meaningful missing values: create new level, e.g. trdtp
- Missing at complete random: fill with median/mode

Thoughts

EDA 000000000

> Our thought is to predict next month's txn_amt of each shop_tag, which means we will have 16 models at one time, and for each customer.

By trying to build a baseline prediction, we simply predicted the last month's top 3 categories by using the top 3 categories of the nearest 24/12/6/3 months' data, and get a highest score by previous 12 months' data. Plus, we are not capable to handle such big data for now, so we used only the 11-24 months' data.

amount & category

EDA 0000000000

txn_amt(金額) distributed differently with shop_tag(消費類別).

amount & count

EDA 0000000000

txn_amt & txn_cnt(刷卡筆數): correlated in some shop_tag

sales channel

EDA 0000000000

domestic(/overseas)_online(/offline)_cnt(/amt_ pct)

- overseas_offline(國外線下) is the least
- seems to be a trade-off between online & offline
- o the patterns of cnt(筆數) & amt_pct(金額占比) are different

different cards

EDA 0000000000

- Card 1, 2, 4, 6 dominate: keep them and combine all others
- amt_pct has similar pattern with txn_cnt: drop amt_pct

0000000000 credits

EDA

slam(信用額度) show no difference under different shop_tag.

000000000 credits

EDA

txn_amt & slam: not correlated under different shop_tag

000000000 gender

txn_amt distributed differt under different gender_code.

Feature engineering

- Selecting variables: 23 left
- Categorical variables encoding
 - dummy variables: masts, naty
 - o frequence encoding: trdtp(行業), curog(客户來源)
- Standardization
- Box-Cox transformation on amt
- New variables
 - next txn amt
 - base_ans: top 3(1,2,3) or not(0)
 - count: times being top 3
 - OtherLift

Apriori algorithm:

- 。 (支持度) Support = $P(X \cap Y)$, frequency.
- o (置信度) Confidence $X \to Y = P(Y|X)$, conditional probability.
- 。 (提升度) Lift $_{X \to Y} = P(Y|X)/P(Y)$, association of X & Y.

lift	confidence	support	consequent support	antecedent support	consequents	antecedents
2.555381	0.880000	8000008	0.344371	0.000010	other	29
2.101579	0.632738	0.005557	0.301077	0.008782	15	14

New feature OtherLift: lift of each shop_tag; or, for each tag Y, OtherLift = Lift $_{X \to Y} \times txn_-amt_X$

Cutting data

- Training set: for each shop_tag, use all previous data from dt $=11\sim22$ to predict the last month
- \circ Validation set: use the 23^{th} month to predict the 24^{th} month
- Testing set: 25^{th} month (unknown)

Models & Performance

For each type of method, 16 models are built, and for each customer, 16 prediction will be made. Then, we sort them and get top 3 highest amount of every shop_tags. The highest score is by randomforest.

Linear regression: 0.661986

LASSO: 0.381479

Ridge: 0.353888

Elastic net: 0.381479

o PLS: 0.661882

Randomforest: 0.681385 (top 13%)

XGBoost 0 669545

Models & Performance

For each type of method, 16 models are built, and for each customer, 16 prediction will be made. Then, we sort them and get top 3 highest amount of every shop_tags. The highest score is by randomforest.

• Linear regression: 0.661986

LASSO: 0.381479

Ridge: 0.353888

Elastic net: 0.381479

o PLS: 0.661882

Randomforest: 0.681385 (top 13%)

XGBoost: 0.669545

Our baseline score is 0.688609 (top 9%).

Importance

	2	6	10	12	13	15	18	19	21	22	25	26	36	37	39	48
dt	0.097	0.068	0.088	0.089	0.104	0.091	0.104	0.104	0.099	0.101	0.105	0.099	0.077	0.082	0.102	0.093
txn_cnt	0.052		0.069		0.103	0.087	0.039	0.027	0.040	0.042	0.042				0.033	0.075
domestic_offline_cnt	0.032	0.024	0.003	0.011	0.000	0.038	0.015	0.009	0.021	0.022	0.024	0.029	0.032	0.029	0.019	0.024
domestic_online_cnt	0.005	0.015	0.024	0.014	0.063	0.015	0.010	0.009	0.006	0.006	0.006	0.010	0.050	0.017	0.005	0.011
overseas_online_cnt	0.000	0.000	0.037	0.001	0.028	0.003	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.009
domestic_offline_amt_pct	0.011	0.016	0.004	0.014	0.000	0.013	0.011	0.012	0.016	0.010	0.011	0.016	0.014	0.011	0.016	0.015
$domestic_online_amt_pct$	0.007	0.014	0.019	0.014	0.035	0.014	0.011	0.014	0.009	0.005	0.007	0.009	0.024	0.012	0.009	0.014
overseas_online_amt_pct	0.001	0.001	0.029	0.001	0.016	0.003	0.002	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.009
card_1_txn_cnt	0.015	0.011	0.011	0.010	0.012	0.023	0.012	0.011	0.016	0.008	0.014	0.014	0.013	0.009	0.011	0.011
card_2_txn_cnt	0.006	0.006	0.006	0.006	0.005	0.006	0.006	0.007	0.007	0.004	0.006	0.010	0.005	0.006	0.011	0.011
card_4_txn_cnt	0.006	0.005	0.006	0.007	0.005	0.006	0.007	0.005	0.007	0.004	0.005	0.006	0.008	0.024	0.005	0.007
educd	0.044	0.035	0.044	0.046	0.036	0.040	0.054				0.048		0.047	0.052		0.045
trdtp	0.091	0.056	0.083	0.082	0.065	0.082	0.094	0.097	0.097	0.093	0.097	0.081	0.081	0.083	0.082	0.081
gender_code	0.018	0.013	0.017	0.015	0.014	0.015	0.014	0.011	0.015	0.009	0.012	0.019	0.012	0.017	0.015	0.018
age	0.053	0.034	0.043	0.050	0.030	0.047	0.052	0.052	0.058	0.046	0.041	0.055	0.042	0.053	0.061	0.046
card_others_txn_cnt	0.020	0.013	0.023	0.012	0.029	0.027	0.014	0.013	0.013	0.024	0.014	0.015	0.030	0.011	0.015	0.023
txn_amt	0.218	0.256	0.220	0.261	0.241	0.204	0.236	0.237	0.242	0.249	0.251	0.222		0.231	0.233	
count	0.119	0.248	0.099	0.140	0.069	0.081	0.107	0.105	0.070	0.106	0.083	0.113	0.091	0.111	0.105	0.139
base_ans	0.012	0.010	0.010	0.010	0.007	0.012	0.011	0.012	0.009	0.008	0.010	0.010	0.009	0.007	0.012	0.012
OtherLift	0.194		0.166	0.167	0.138	0.193	0.199	0.219	0.219	0.209	0.225	0.184	0.180	0.167	0.207	0.186

Partial dependence plot

Tags including 2, 6, 10, 12, 13, 15, 36, 37, 48 have higher predicted value on average, and their dependence plot are similar.

Partial dependence plot

Tags including 18, 19, 21, 22, 25, 26, 39 have smaller predicted value on average.

Reasoning

- o txn amt: 若前一月消費金額小於7單位,則下月消費和其成 正比;若大於7單位,則下月消費會隨之增加而減少。
- o count: 愈常是top3的類別,下月金額愈高。
- o Otherlift: 取決於不同的類別。
- o dt: 若最後一月消費是在前1~2個月,則下一月的消費金額 會較少;若在3個月之前則差異不大。
- o age: 取決於不同的類別,大致有隨年紀增加而增 加(21,26,39,..)和減少兩類(2,10,12,13,15,48,..)。
- o txn_cnt: 隨著上月消費的次數增加而增加(即使有刷退紀錄 也是退愈多次下月金額愈高),當次數到10次之後就持平(較 少超過十次的)。

Division of work

- EDA: 之榆
- o Pre-processing:
 - 1. Missing value: 之榆
 - 2. Feature engineering: 承慶
- o Modeling: 承慶
- o Presentation: 之榆