TECNOLOGIE DIGITALI - DI LIETO

Tecnologie Digitali - Relazione: convertitore di impedenza negativa e circuito Howland

Salvatore Bottaro¹ and Lorenzo M. Perrone²

¹salvo.bottaro@hotmail.it ²lorenzo.perrone.lmp@gmail.com

Sommario—In questa relazione mostriamo le caratteristiche e i limiti di un convertitore di impedenza negativa e la sua applicazione nel circuito Howland.

I. CONVERTITORE DI IMPEDENZA NEGATIVA Si consideri il circuito in figura 1.

Figura 1: Convertitore di impedenza negativa

Si mostri in che senso esso sia un convertitore di impedenza negativa applicando le regole d'oro dell'op-amp e risolvendo le equazioni del circuito. Come si vede in figura 1 la tensione V_{In+} all'ingresso non-invertente dell'op-amp è la tensione V_g del generatore VG. Per le regole d'oro dell'op-amp si ha la stessa tensione all'ingresso invertente ed essendo l'op-amp in configurazione non-invertente, tale tensione viene amplificata di un fattore $1+\frac{R_2}{R_1}$, da cui:

$$V_{out} = (1 + \frac{R_2}{R_1})V_{in} \tag{1}$$

Pertanto la corrente che scorre da V_{In+} a V_{out} è data da:

$$I = \frac{V_{In+} - V_{out}}{R_3} = -\frac{R_2}{R_1 R_3} \, V_g \, \rightarrow V_g = -\frac{R_1 \, R_3}{R_2} \, I \quad (2)$$

da cui si evince come il generatore "veda" un'impedenza equivalente negativa.

Poiché l'espressione della resistenza equivalente segue direttamente dall'equazione 1 si ha che un modo per verificare il corretto comportamento del circuito è verificare se l'op-amp si comporta correttamente in configurazione non-invertente e dunque cercare di delineare i limiti di tale configurazione.

Per quanto riguarda il dimensionamento di R_1 e R_2 si ha che ovviamente esse devono essere tali che V_{out} non sia troppo

Figura 2: Convertitore realizzato con TINA

alto in rapporto alle tensioni di alimentazione. Come si legge dal foglio di specifiche, il *Maximum peak output voltage swing* al massimo è $\pm 12 \div 14~V$, pertanto deve risultare:

$$V_{in} \left(1 + \frac{R_2}{R_1}\right) \le 12 \sim 14V$$
 (3)

Ad esempio si confrontino le simulazioni fatte con TINA (vedi figura 2) in cui sono stati impiegati Gain all'invertente G = 11 (figura 3) G = 101 (figura 4). Si nota come nel primo caso il convertitore funzioni correttamente nel range di tensione scelto, nel secondo caso invece satura appena supera i 12 V.

Figura 3: Simulazione del convertitore per G=11

Per quanto riguarda R_3 invece, essa deve essere scelta in modo tale che non scorra troppa corrente verso il ramo non-invertente cosicché l'op-amp non riesca a stabilire il giusto feedback e dunque uguagliare le tensioni ai due ingressi, ovvero non deve essere troppo piccola. In figura 5 si vede come per tensioni vicine a 1 V si perda l'andamento lineare.

TECNOLOGIE DIGITALI - DI LIETO 2

Figura 4: Simulazione del convertitore con G=101

Figura 5: Simulazione del convertitore con G=11 e R=300 Ω

Se si osserva il grafico in figura 6 si vede come per $V_{in}=1V$ il segnale in V_{out} non dipenda da R_3 a partire dai 380 Ω circa.

Figura 6: Dipendenza del segnale in uscita da V_{out} in funzione di $R_3 \ {\rm con} \ {\rm G=}11$

Non disponendo di equazioni o modelli per dimensionare correttamente R_3 , in base a varie prove effettuate possiamo fornire in tabella I dei valori minimi indicativi per R_3 in funzione del gain G con una tensione di ingresso di 1 V.

Tabella I: Valori minimi indicativi per R_3

G	R
11	380
10	230
9	150
8	110
7	80
6	60

La possibilità di disporre di un circuito con impedenza equivalente negativa trova molte applicazioni, una di queste è il circuito di Howland.

II. CIRCUITO DI HOWLAND

Lo schema del circuito di Howland è in figura 7.

Figura 7: Circuito Howland

In base ai risultati ottenuti in precedenza, il circuito è equivalente al parallelo fra le resistenze R_G , R_L e R_{eq} come si evince in figura 8.

Figura 8: Circuito equivalente al circuito Howland

Pertanto è immediato scrivere le equazioni che regolano il circuito. Prendendo come maglie fondamentali quella contenente il generatore e R_L e quella contenente R_L e R_G , e come verso convenzionale per le correnti I_1 e I_2 in entrambe le maglie quello antiorario, si hanno le seguenti equazioni:

$$V_G - R_G I_1 - R_L I_1 + R_L I_2 = 0 (4)$$

$$-R_{eq}I_2 + R_LI_1 - R_LI_2 = 0 (5)$$

Da cui si deducono le correnti:

$$I_1 = \frac{V_G(R_L + R_{eq})}{R_G R_L + R_L R_{eq} - R_G R_{eq}}$$
 (6)

$$I_2 = \frac{V_G R_L}{R_G R_L + R_L R_{eq} - R_G R_{eq}}$$
 (7)

TECNOLOGIE DIGITALI - DI LIETO 3

Dal momento che la corrente che scorre in R_L è I_1-I_2 , si ha, posto $R_{eq}=-R$:

$$I_L = I_1 - I_2 = -\frac{V_G R}{R_G R_L - R_L R + R_G R}$$
 (8)

Si vede come se nell'equazione precedente si pone $R_G=R,$ l'espressione per I_L diventa semplicemente:

$$I_L = -\frac{V_G}{R} \tag{9}$$

Ovvero la corrente che scorre nel carico R_L non dipende dal carico, ovvero dimensionando opportunamente R_1 , R_2 ed R_3 si ha che il circuito Howland si comporta come un generatore ideale di corrente.