Package 'HKRbook'

October 12, 2022

, .			
Type Package			
Title Apps and Data for the Book ``Introduction to Statistics"			
Version 0.1.3			
Description Functions, Shiny apps and data for the book ``Introduction to Statistics" by Wolfgang Karl Härdle, Sigbert Klinke, and Bernd Rönz (2015) <doi:10.1007 978-3-319-17704-5="">.</doi:10.1007>			
License GPL-3			
Encoding UTF-8			
Depends tools			
Suggests cluster, knitr, magrittr, rmarkdown			
Imports MASS, shiny, shinydashboard, shinyWidgets, shinydashboardPlus, DT, highlight, formatR, scatterplot3d			
RoxygenNote 7.2.1			
VignetteBuilder knitr			
NeedsCompilation no			
Author Sigbert Klinke [aut, cre]			
Maintainer Sigbert Klinke <sigbert@hu-berlin.de></sigbert@hu-berlin.de>			
Repository CRAN			
Date/Publication 2022-10-06 06:20:02 UTC			
R topics documented:			
distributionParams			
gettext			
hm_cell			
htmlTable 6 html_matrix 7			
in_range			
is.ASCII			
man acco			

nen_bin	10
nen_cil	11
nen_ci2	11
nen_cilen	12
nen_cipi	12
nen_cisig	13
nen_corr	13
nen_die	14
nen_dot	14
nen_exp	15
nen_hall	
nen_hist	16
 nen_hyp	17
norm	17
 nen_parn	18
 nen_poi	18
nen rank	19
 nen_regr	20
nen_tab	20
 nen_terr	21
 nen_time	21
nen_tmu1	22
 nen_tmu2	22
nen_tprop	23
nen_vis	24
nmstat.attrVar	24
nmstat.axis	25
	26
nmstat.dec	
nmstat.getDataNames	
mmstat.getDatasets	
nmstat.getLog	
nmstat.getValues	
nmstat.getVar	
nmstat.getVariableNames	
nmstat.getVarNames	31
nmstat.lang	
nmstat.log	32
nmstat.math	33
nmstat.merge	33
nmstat.plotTestRegions	34
mmstat.pos	35
nmstat.range	35
nmstat.rds	36
nmstat.round.down	
nmstat.round.up	
nmstat.set	
nmstat.sliderInput	

checkPackages 3

Index		47
	ZZZ	40
	zebra	
	ucfirst	
	toRDS	
	toHTML.html_matrix	
	table2dataframe	43
	stopif	
	resetpar	42
	mmstat.warn	
	mmstat.ui.update	4
	mmstat.ui.elem	
	mmstat.ui.call	39
	mmstat.ticks	39

checkPackages

checkPackages

Description

Checks if a package is installed without loading it. Returns a logical vector with TRUE or FALSE for each package checked.

Usage

```
checkPackages(
    ...,
   add = c("highlight", "formatR", "shiny", "shinydashboard", "shinydashboardPlus", "DT")
)
```

Arguments

Value

TRUE if successful otherweise an error will be thrown

4 gettext

distributionParams distrib

distributionParams

Description

Computes approximate distribution parameters for the binomial, hypergeometric, Poisson, Exponential and normal distribution for a given mean (and standard deviation). With the sample and the population size the computation can be influenced.

Usage

```
distributionParams(mean, sd, n = 30, N = 60)
```

Arguments

mean numeric: mean

sd numeric: standard deviation (only used for the normal distribution)

n integer: sample size (default: 30)

N integer: population size (default: 60)

Value

a list of parameters for each distribution

Examples

```
# Compute approx. paramaters for a binomial distribution distributionParams(mean=30*0.5, sd=sqrt(30*0.5*0.5))
```

gettext gettext

Description

Returns a translation from loaded PO-file. If the message is not found in the PO-file then original text will be returned.

Usage

```
gettext(msg, utype = "vector")
```

Arguments

msg character: message(s) to translate

utype character: how to return the translated message as vector or named list

hm_cell 5

Value

translated messages

Examples

```
msgs <- c("two.sided", "less", "greater")
gettext(msgs)
# for use in Shiny "choices"
gettext(msgs, "name")
gettext(msgs, "numeric")</pre>
```

hm_cell

hm_cell

Description

- hm_cell or hm_index modify a data cell format (fmt="%s"), value (unnamed parameter) or style (text_align="left")
- hm_col or hm_row modify a row or column format (fmt="%s"), value (unnamed parameter) or style (text_align="left")

Usage

```
hm_cell(x, row = NULL, col = NULL, ..., byrow = FALSE)
hm_index(x, ind, ...)
hm_title(x, ...)
hm_colmargintitle(x, ...)
hm_rowmargintitle(x, ...)
hm_total(x, ...)
hm_table(x, ...)
hm_row(x, ind, ...)
hm_col(x, ind, ...)
hm_colmargin(x, ind, ...)
hm_rowmargin(x, ind, ...)
hm_rowmargin(x, ind, ...)
```

6 htmlTable

Arguments

X	html_matrix object
row	integer: row(s) to access
col	integer: column(s) to access
	elements to change
byrow	logical: order indices by row or column (default: FALSE)
ind	integer vector or matrix: access various (row and columns) elements (first column: row, second column: column)

Value

modified html_matrix object

Examples

```
1 <- html_matrix(matrix(1:6, ncol=2))</pre>
# replace l[1,1] by NA
hm_cell(1, 1, 1, NA)
# replace 1[1,1] by NA and set the text_align to center
hm_cell(1, 1, 1, NA, text_align="center")
# replace 1[1,3] and 1[2,1] by NA
rcind <- cbind(c(1,3), c(2, 1))
hm_index(1, rcind, NA)
# set a new title
hm_title(1, "new title")
# set a new row or column title
hm_row(1, 2, "row 2")
hm_col(1, 1, "col 1")
# set fmt by column or row
print(hm_cell(1, fmt=c("%.0f", "%.1f", "%.2f"), byrow=FALSE), which="fmt")
print(hm_cell(1, fmt=c("%.0f", "%.1f"), byrow=TRUE), which="fmt")
```

htmlTable

htmlTable

Description

Creates a HTML table from a two dimensional table object.

Usage

```
htmlTable(
  tab,
  vars = NULL,
  lines = NULL,
  cex = 1,
  title = "",
```

html_matrix 7

```
rowsum = NULL,
colsum = NULL,
fmt = "%.0f",
total = NULL,
...
)
```

Arguments

tab	two dimensional table object
vars	character: names of row and column variable
lines	character: final line (default: NULL)
cex	numeric: font size (default: 1)
title	character: table title (default: '')
rowsum	character: add row sums at the right (default: NULL)
colsum	character: add column sums at the bottom (default: NULL)
fmt	character: format string for sprintf (default: "%.0f")
total	character: add the grand total at the bottom left (default: NULL)
	further parameters given to html_matrix

Value

html_matrix object

Examples

```
htab <- htmlTable(apply(Titanic,1:2,sum), c("Sex", "Class"), title="Titanic")
toHTML(htab, browser=interactive())</pre>
```

Description

Creates from a vector, matrix, array, or table a HTML representation of it. The HTML representation has one column and row more than the data. The additional row and column are used to have a title (top left), the column names (top), and the row names (left).

You can set the style attributes () via hm_cell, hm_title, hm_col, and hm_row. For example: hm_cell(hm, 1, 1, text_align="right") will lead to () for the cell (1,1) and any unnamed element will change the cell value. Note: since - is an operator in R, we use _ instead. Of course, you could use "text-align"="right", but I'am lazy.

8 html_matrix

Usage

```
html_matrix(x, ...)

## Default S3 method:
html_matrix(
    x,
    ...,
    byrow = FALSE,
    numeric = list(text_align = "right"),
    integer = list(text_align = "right"),
    char = list(text_align = "left"),
    logical = list(text_align = "right"),
    border = "#999999"
)
```

Arguments

Χ	vector, matrix, array, table or html_matrix: input
	further parameters
byrow	logical: create a row or column matrix if x is one-dimensional (default: FALSE)
numeric	<pre>list: list of HTML style properties for a cell if class(x[i,j])=="numeric" (default: list(text_align="right"))</pre>
integer	<pre>list: list of HTML style properties for a cell if class(x[i,j])=="integer" (default: list(text_align="right"))</pre>
char	list: list of HTML style properties for a cell if $class(x[i,j])=="character"$ (default: list(text_align="left"))
logical	<pre>list: list of HTML style properties for a cell if class(x[i,j])=="logical" (default: list(text_align="right"))</pre>
border	character: vector of background color for a border cell (default: "#999999"))

Value

html_matrix returns a html_matrix, print returns invisible a character matrix

```
m <- matrix(1:6, ncol=2)
m
1 <- html_matrix(m)
1</pre>
```

in_range 9

in_range

in_range

Description

Checks if x is between lower and upper,

Usage

```
in_range(x, lower, upper, rightmost.closed = TRUE, left.open = FALSE)
```

Arguments

x numeric: vaklues to check lower numeric: lower bound upper numeric: upper bound

rightmost.closed

logical: if true then x<=upper is checked otherwise x<upper (default: TRUE)

left.open logical: if true then upper<x is checked otherwise lower<=x (default: FALSE)

Value

a logical vector whether x is in range or not

Examples

```
in_range(-1:2, 0, 1)
```

is.ASCII

is.ASCII

Description

Checks if txt contains only ASCII characters.

Usage

```
is.ASCII(txt)
```

Arguments

txt character: text to check

Value

logical

10 men_bin

Examples

```
is.ASCII("Congratulations")
is.ASCII("Herzlichen Glückwunsch")
```

men_asso

Association

Description

Shiny app for the association coefficients between two categorical variables. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_asso(...)
```

Arguments

.. one or more data sets

Value

nothing

Examples

```
if (interactive()) men_asso()
if (interactive()) men_asso(HairEyeColor, Titanic)
```

men_bin

men_bin

Description

Visualization of the probability mass and the cumulative distribution function of a binomial distribution.

Usage

```
men_bin(size = 10, prob = 0.5)
```

Arguments

size integer: number of trials (zero or more)
prob numeric: probability of success on each trial

men_ci1

Value

nothing

Examples

```
if (interactive()) men_bin()
if (interactive()) men_bin(20, 0.25)
```

men_ci1

men_ci1

Description

Shiny app for a confidence interval for the mean. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_ci1(...)
```

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_ci1()
if (interactive()) men_ci1(stackloss)
```

men_ci2

men_ci2

Description

Shiny app for a confidence interval for the difference of two means. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_ci2(...)
```

12 men_cipi

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_ci2()
if (interactive()) men_ci2(CO2)
```

men_cilen

men_cilen

Description

Shiny app for a length of a confidence interval for the mean.

Usage

```
men_cilen()
```

Value

nothing

Examples

```
if (interactive()) men_cilen()
```

men_cipi

men_cipi

Description

Shiny app for a confidence interval for the proportion. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_cipi(...)
```

Arguments

... one or more data sets

men_cisig 13

Value

nothing

Examples

```
if (interactive()) men_cipi()
if (interactive()) men_cipi(Titanic)
```

men_cisig

men_cisig

Description

Shiny app for a confidence interval for the variance. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_cisig(...)
```

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_cisig()
if (interactive()) men_cisig(stackloss)
```

men_corr

Correlation

Description

Shiny app for the correlation coefficients between two numeric variables. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_corr(...)
```

men_dot

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_corr()
if (interactive()) men_corr(iris)
```

men_die

men_die

Description

Shiny app for detecting if a die is fair or unfair.

Usage

```
men_die()
```

Value

nothing

Examples

```
if (interactive()) men_die()
```

men_dot

 men_dot

Description

Shiny app for visualizing a univariate numeric variable as dotplot including univariate parameters. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_dot(...)
```

Arguments

... one or more data sets

men_exp

Value

nothing

Examples

```
if (interactive()) men_dot()
if (interactive()) men_dot(iris)
```

men_exp

men_exp

Description

Visualization of the density and the cumulative distribution function of a exponential distribution.

Usage

```
men_exp(rate = 1)
```

Arguments

rate

numeric: rate

Value

nothing

Examples

```
if (interactive()) men_exp()
if (interactive()) men_exp(3)
```

men_hall

men_hall

Description

Shiny app for the Monty Hall problem:

Usage

```
men_hall(pointdoor = 1, afteropen = 1)
```

Arguments

pointdoor integer: to which door to point (default: 1)

afteropen integer: play strategy 1=keep door, 2=change door (default: 1)

16 men_hist

Details

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Value

nothing

Examples

```
if (interactive()) men_hall()
if (interactive()) men_hall(4, 2)
```

men_hist

men_hist

Description

Shiny app for visualizing a univariate numeric variable as histögram. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory. #'

Usage

```
men_hist(...)
```

Arguments

... one or more data sets

Value

nothing

```
if (interactive()) men_hist()
if (interactive()) men_hist(iris)
```

men_hyp

men_hyp men_hyp

Description

Visualization of the probability mass and the cumulative distribution function of a hypergeometric distribution.

Usage

```
men_hyp(N = 60, M = 30, n = 20)
```

Arguments

N integer: the number of black and white balls in the urn

M integer: the number of white balls in the urn n integer: the number of balls drawn from the urn

Value

nothing

Examples

```
if (interactive()) men_hyp()
if (interactive()) men_hyp(50, 25, 10)
```

men_norm

men_norm

Description

Visualization of the density and the cumulative distribution function of a normal distribution.

Usage

```
men_norm(mean = 0, sd2 = 1)
```

Arguments

mean numeric: mean sd2 numeric: variance

Value

nothing

18 men_poi

Examples

```
if (interactive()) men_norm()
if (interactive()) men_norm(1, 0.5)
```

men_parn

men_parn

Description

Shiny app for the distribution of sample parameters. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_parn(...)
```

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_parn()
if (interactive()) men_parn(iris)
```

men_poi

men_poi Visualization of the probability mass and the cumulative distribution function of a Poisson distribution.

Description

men_poi Visualization of the probability mass and the cumulative distribution function of a Poisson distribution.

Usage

```
men_poi(lambda = 5)
```

Arguments

lambda

numeric: (non-negative) mean

men_rank 19

Value

nothing

Examples

```
if (interactive()) men_poi()
if (interactive()) men_poi(3)
```

men_rank

men_rank

Description

Shiny app for the rank correlation coefficients between two ordered variables. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_rank(...)
```

Arguments

... one or more data sets

Value

nothing

```
if (interactive()) men_rank()
if (interactive()) {
  data("plantTraits", package="cluster")
  men_rank(plantTraits)
}
```

20 men_tab

men_regr men_regr

Description

Shiny app for a simple linear regression. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_regr(...)
```

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_regr()
if (interactive()) men_regr(stackloss)
```

men_tab

Frequency tables

Description

Shiny app for frequency tables for two categorical variables. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_tab(...)
```

Arguments

... one or more data sets

Value

nothing

men_terr 21

Examples

```
if (interactive()) men_tab()
if (interactive()) men_tab(HairEyeColor, Titanic)
```

men_terr

men_terr

Description

Shiny app for a test for the true mean. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_terr(...)
```

Arguments

.. one or more data sets

Value

nothing

Examples

```
if (interactive()) men_terr()
if (interactive()) men_terr(iris)
```

men_time

men_time

Description

Shiny app for classical time series analysis If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_time(...)
```

Arguments

... one or more time series

men_tmu2

Value

nothing

Examples

```
if (interactive()) men_time()
if (interactive()) men_time(co2)
```

men_tmu1

men_tmu1

Description

Shiny app for a test for the true mean. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_tmu1(...)
```

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_tmu1()
if (interactive()) men_tmu1(iris)
```

men_tmu2

men_tmu2

Description

Shiny app for a test on difference of two true means. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_tmu2(...)
```

men_tprop 23

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_tmu2()
if (interactive()) men_tmu2(CO2)
```

men_tprop

men_tprop

Description

Shiny app for test on the proportion. The data used is considered as a population from which random samples can be drawn. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_tprop(...)
```

Arguments

... one or more data sets

Value

nothing

```
if (interactive()) men_tprop()
if (interactive()) men_tprop(Titanic)
```

24 mmstat.attrVar

men_vis men_vis

Description

Shiny app for visualizing the univariate numeric variable, e.g. boxplot, stripchart, histogram, and cumulative distribution function. If no data are given then the default data from the book will be used. Otherwise the data will be stored as RDS file in a temporary directory.

Usage

```
men_vis(...)
```

Arguments

... one or more data sets

Value

nothing

Examples

```
if (interactive()) men_vis()
if (interactive()) men_vis(iris)
```

mmstat.attrVar

mmstat.attrVar

Description

Returns the parameters for a variable. If type="numeric" then descriptive measures will be returned. Otherwise absolute and relative frequencies will be returned. For using a subset of observation set index.

Usage

```
mmstat.attrVar(var, type, index = NULL)
```

Arguments

var vector: values of a mmstat variable

type character: type of values, allowed are numvars, binvars, ordvars or facvars index integer: observation numbers to use for computation, default is to use all obser-

vations

mmstat.axis 25

Value

descriptive measures

Examples

```
# make sure that no other data sets are loaded
mmstat.set(datasets=NULL)
mmstat.getDataNames(mmstat.rds("CARS"))
# summary of first numeric variable in first data set in mmstat
var <- mmstat.getVar(1, 1, 'numeric')
mmstat.attrVar(var, "numeric")
# summary of first factor variable in first data set in mmstat
var <- mmstat.getVar(1, 1, 'factor')
mmstat.attrVar(var, 'factor')</pre>
```

mmstat.axis

mmstat.axis

Description

Based on range the position of the labels are determined and the axis is plotted.

Usage

```
mmstat.axis(side, range, at, labels, ...)
```

Arguments

side	an integer specifying which side of the plot the axis is to be drawn on. The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.
range	range: a data range
at	the points at which tick-marks are to be drawn. Non-finite (infinite, NaN or NA) values are omitted. By default (when NULL) tickmark locations are computed, see 'Details' below.
labels	this can either be a logical value specifying whether (numerical) annotations are to be made at the tickmarks, or a character or expression vector of labels to be placed at the tickpoints. (Other objects are coerced by as graphicsAnnot.) If this is not logical, at should also be supplied and of the same length. If labels is of length zero after coercion, it has the same effect as supplying TRUE.

... further parameters to graphics::axis

Value

adds a axis to a plot

26 mmstat.baraxis

Examples

```
oldpar <- par(mfrow=c(1,2))</pre>
plot(iris[,1])
plot(iris[,1], axes=FALSE)
mmstat.axis(2, iris[,1])
par(oldpar)
```

mmstat.baraxis

mmstat.baraxis

Description

Based on range the position of the labels are determined and the axis is plotted.

Usage

```
mmstat.baraxis(side, range, at, labels, ...)
```

Arguments

an integer specifying which side of the plot the axis is to be drawn on. The axis side

is placed as follows: 1=below, 2=left, 3=above and 4=right.

range: a data range range

at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN or NA)

values are omitted. By default (when NULL) tickmark locations are computed,

see 'Details' below.

labels this can either be a logical value specifying whether (numerical) annotations are

> to be made at the tickmarks, or a character or expression vector of labels to be placed at the tickpoints. (Other objects are coerced by as.graphicsAnnot.) If this is not logical, at should also be supplied and of the same length. If labels

is of length zero after coercion, it has the same effect as supplying TRUE.

further parameters to graphics::axis . . .

Value

adds a axis to a plot

```
oldpar <- par(mfrow=c(1,2))</pre>
x < -0:15
px <- dbinom(x, 10, 0.5)
plot(x, px, type="h")
plot(x, px, type="h", axes=FALSE)
mmstat.baraxis(1, range(x), at=x, labels=as.character(x))
par(oldpar)
```

mmstat.dec 27

mmstat.dec

mmstat.dec

Description

Computes the number of the significant digits based on the smallest non-zero difference of the sorted data.

Usage

```
mmstat.dec(x, ord = NULL)
```

Arguments

x numeric: data vector

ord index: subset of the ordered data (default: NULL)

Value

The number of significant digits and (the subset of) the order of the data.

Examples

```
x <- rnorm(20)
d <- mmstat.dec(x)
# create strings so that they are unique (if they were)
sprintf("%.*f", d$dec, x)</pre>
```

 ${\tt mmstat.getDataNames}$

mmstat.getDataNames

Description

Returns the names of data sets and stores them in the internal environment. The name of the data set is base name without extension.

Usage

```
mmstat.getDataNames(...)
```

Arguments

.. character: names of the data sets.

Value

the names of the data sets

28 mmstat.getLog

Examples

```
files <- mmstat.rds("HAIR.EYE.COLOR", "TITANIC")
mmstat.getDataNames(files)</pre>
```

mmstat.getDatasets

mmstat.getDatasets

Description

Reads data set(s) into the mmstat object.

Usage

```
mmstat.getDatasets(...)
```

Arguments

```
... character: file name(s) of RDS data file(s)
```

Value

the names of the data set(s)

Examples

```
# not used, deprecated??
```

 ${\tt mmstat.getLog}$

mmstat.getLog

Description

Returns the internal log message as HTML. In a Shiny app the log message are updated every 100 milliseconds

Usage

```
mmstat.getLog(session)
```

Arguments

session

session object

Value

HTML code

mmstat.getValues 29

Examples

```
# will work only in A Shiny app
if (interactive()) {
 require("shiny")
 ui <- fluidPage(</pre>
    titlePanel("getLog example"),
       sidebarLayout(sidebarPanel(
         actionButton("quit", "Quit")),
         mainPanel(textOutput("log"))
  )
)
#
 server <- function(input, output, session) {</pre>
   observeEvent(input$quit, { stopApp() })
    output$log <- renderText({ mmstat.getLog(session) })</pre>
 }
 shinyApp(ui, server)
```

mmstat.getValues

mmstat.getValues

Description

mmstat.getValues returns a list with named elements. If the parameter is NULL then a default value stored local will be used. mmstat.getValue returns a value. If the parameter is NULL or NA then def will be returned

Usage

```
mmstat.getValues(local, ...)
mmstat.getValue(val, def)
```

Arguments

```
local list: default values for the named parameter
... list of named parameters
val value for a parameter
def default value for a parameter
```

Value

a list of requested parameters

30 mmstat.getVar

Examples

```
def <- list(a=3)
mmstat.getValues(def, b=3, a=NULL)
mmstat.getValue(NA, 5)
mmstat.getValue(NULL, 5)
mmstat.getValue(3, 5)</pre>
```

mmstat.getVar

mmstat.getVar

Description

Returns the from a data set a variable from the given type.

Usage

```
mmstat.getVar(
  dataname = NULL,
  varname = NULL,
  vartype = NULL,
  na.action = stats::na.omit
)
```

Arguments

dataname integer: number of data set varname integer: number of variable

vartype character: variable type, one of numeric, binary, ordered, or factor

na.action function: indicate what should happen when the data contain NAs (default:

stats::na.omit)

Value

a variable of the given type

```
# make sure that no other data sets are loaded
mmstat.set(datasets=NULL)
mmstat.getDataNames(mmstat.rds("CARS"))
# summary of first numeric variable in first data set in mmstat
str(mmstat.getVar(1, 1, 'numeric'))
# summary of first factor variable in first data set in mmstat
str(mmstat.getVar(1, 1, 'factor'))
```

mmstat.getVariableNames

mmstat.getVariableNames

Description

Returns all variable names of data set stored in the internal environment.

Usage

```
mmstat.getVariableNames(name)
```

Arguments

name character or numeric: name or index of data set

Value

vector of names

Examples

```
# Delete all stored data sets
mmstat.set(datasets=NULL)
# Load CAR data set into mmstat
mmstat.getDataNames(mmstat.rds("CARS"))
# Extract names of all variables
mmstat.getVariableNames(1)
```

mmstat.getVarNames

mmstat.getVarNames

Description

Returns the variable names of a specific type from a mmstat data set.

Usage

```
mmstat.getVarNames(dataname, vartype, which = NULL)
```

Arguments

dataname character: name of data set

vartype character: type of variable, either numeric, ordered, factor, or binary

which integer: index number

32 mmstat.log

Value

a vector or element of variable names which have the type vartype

Examples

```
# Load CAR data set into mmstat
mmstat.getDataNames(mmstat.rds("CARS"))
# Extract names of numeric variables
mmstat.getVarNames(1, "numeric")
```

mmstat.lang

mmstat.lang

Description

Loads a PO file for a translation into the internal environment.

Usage

```
mmstat.lang(pof = NULL)
```

Arguments

pof

character: file name

Value

nothing

Examples

```
mmstat.lang()
```

 ${\tt mmstat.log}$

mmstat.log

Description

Writes a message into the internal log.

Usage

```
mmstat.log(txt)
```

Arguments

txt

character: message to write

mmstat.math 33

Value

nothing

Examples

```
mmstat.log("Test")
```

mmstat.math

mmstat.math

Description

Returns a math expression based on HTML special characters notation.

Usage

```
mmstat.math(txt)
```

Arguments

txt

character: input text

Value

expression

Examples

```
mmstat.math(" &bar(X);~&N(mu[0], sigma^2/n); ")
mmstat.math("&H[0];: &mu==mu[0]; vs. &H[1];: &mu!=mu[0]; ")
```

mmstat.merge

mmstat.merge

Description

Computes a new range from by a union of the two ranges.

Usage

```
mmstat.merge(range1, range2)
```

Arguments

range1 range: first range range2 range: second range

Value

new range

Examples

```
mmstat.merge(c(0,1), c(0.5, 2)) # returns c(0, 2)
```

mmstat.plotTestRegions

mmstat.plotTestRegions

Description

Plots the test regions in a plot

Usage

```
mmstat.plotTestRegions(
   crit,
   xlim,
   ylim,
   cex,
   close = FALSE,
   col = "black",
   label = NULL,
   pos = 1
)
```

Arguments

```
crit
                   numeric(2): critical value(s)
                   numeric(2): the x limits of the plot
xlim
ylim
                   numeric(2): the y limits of the plot
                   numeric: amount by which plotting text should be magnified relative to the de-
cex
                   fault
                   logical: should the region box be closed by vertical lines (default: FALSE)
close
col
                   color: pecification for the default plotting color (default: "black")
label
                   unused
                   unused
pos
```

Value

adds test regions to a plot

mmstat.pos 35

Examples

```
x <- (-30:30)/10

px <- dnorm(x)

plot(x, px, type="l", ylim=c(-0.25, max(px)), xlim=range(x))

mmstat.plotTestRegions(crit=c(-1.96, +1.96), xlim=range(x), ylim=c(-0.2, -0.1), cex=1)
```

mmstat.pos

mmstat.pos

Description

Returns a linear interpolation based on minmax.

Usage

```
mmstat.pos(minmax, pos)
```

Arguments

minmax

numeric(2): range to interpolate between

pos

numeric: proportion(s) to interpolate, usually between zero and one

Value

interpolated values

Examples

```
mmstat.pos(c(0,360), 0.5)
```

 ${\tt mmstat.range}$

mmstat.range

Description

Computes a range from several R objects by union.

Usage

```
mmstat.range(...)
```

Arguments

... R objects

36 mmstat.round.down

Value

range

Examples

```
mmstat.range(-5:5, 0:10) # returns c(-5, 10)
```

mmstat.rds

mmstat.rds

Description

Returns the full file names of all or specific data set that come with the package.

Usage

```
mmstat.rds(...)
```

Arguments

... names of data sets

Value

full file names

Examples

mmstat.round.down

mmstat.round.down

Description

Rounds down.

Usage

```
mmstat.round.down(x, digits = 0)
```

Arguments

x numeric: values for rounding

digits numeric: digits for rounding (default: 0)

mmstat.round.up 37

Value

down rounded values

Examples

```
x <- runif(5)
cbind(x, mmstat.round.down(x, 1))</pre>
```

mmstat.round.up

mmstat.round.up

Description

Rounds up.

Usage

```
mmstat.round.up(x, digits = 0)
```

Arguments

x numeric: values for rounding digits numeric: digits for rounding (default: 0)

Value

uprounded values

Examples

```
x <- runif(5)
cbind(x, mmstat.round.up(x, 1))</pre>
```

mmstat.set

mmstat.set

Description

mmstat.set sets one (or more) parameter to the internal environment. mmstat.get return one or more parameters from the internal environment.

Usage

```
mmstat.set(...)
mmstat.get(...)
```

38 mmstat.sliderInput

Arguments

... named parameters with values or names

Value

nothing

Examples

```
mmstat.set(debug=0)
mmstat.get("debug")
mmstat.get("debug", "shiny") # returns a list
```

mmstat.sliderInput

mmstat.sliderInput

Description

A modified sliderInput for mmstat which supports user defined tick marks.

Usage

```
mmstat.sliderInput(...)
```

Arguments

... parameters for shiny::sliderInput

Value

```
the HTML output
```

```
ticks <- c(80, 85, 90, 95, 98, 99, 99.5, 99.9)
mmstat.sliderInput("id", "label", min=1, max=length(ticks), value=3, step=1, ticks=ticks)
```

mmstat.ticks 39

mmstat.ticks

mmstat.ticks

Description

Returns tick marks for a log based scale between nmin and nin.

Usage

```
mmstat.ticks(nin, nmin = 3, tin = 11)
```

Arguments

nin integer: maximun of scale nmin integer: minimun of scale

tin integer: number of desired tick marks

Value

vector of tick marks

Examples

```
mmstat.ticks(506)
```

mmstat.ui.call

mmstat.ui.call

Description

Calls the underlying Shiny UI element (selectInput, ...).

Usage

```
mmstat.ui.call(inputId, ...)
```

Arguments

inputId character: the input slot called
... further parameters given to the call

Value

whatever the call to the underlying Shiny UI element returns

40 mmstat.ui.elem

Examples

```
mmstat.ui.elem(inputId="alpha", type="significance")
mmstat.ui.call("alpha")
```

mmstat.ui.elem

mmstat.ui.elem

Description

Adds a new UI element to the app interface. The following types from Shiny are allowed:

- actionButton,
- checkboxInput,
- checkboxGroupInput,
- dateInput,
- dateRangeInput,
- fileInput,
- helpText,
- numericInput,
- radioButtons,
- selectInput,
- sliderInput,
- submitButton, and
- textInput.

Additionally some standard statistical UI elements are supported (links go to the Shiny element used):

- sampleSize,
- drawSample,
- speedSlider,
- confidenceLevel,
- significance,
- testHypotheses,
- dataSet,
- variable1,
- variableN, and
- fontSize.

Partially these elements have default settings which can be overwritten.

mmstat.ui.update 41

Usage

```
mmstat.ui.elem(inputId, type, ...)
```

Arguments

inputId character: input slot that will be used to access the value

type character: element type

... further named parameter to Shiny UI elements

Value

nothing

Examples

```
mmstat.ui.elem(inputId="alpha", type="significance")
```

mmstat.ui.update

mmstat.ui.update

Description

Call for a update of an underlying Shiny UI element (selectInput, ...).

Usage

```
mmstat.ui.update(inputId, ...)
```

Arguments

inputId character: the input slot called
... further parameters given to the call

Value

whatever the update to the underlying Shiny UI element returns

```
mmstat.ui.elem(inputId="alpha", type="significance")
mmstat.ui.call("alpha")
```

42 resetpar

mmstat.warn

mmstat.warn

Description

Writes a warning text into the log object in the internal mmstat object.

Usage

```
mmstat.warn(cond, txt)
```

Arguments

cond

logical: condition to test

txt

character: text to write if cond is true

Value

nothing

Examples

```
mmstat.warn(TRUE, "just a true seen")
```

resetpar

resetpar

Description

Resets the par if necessary.

Usage

```
resetpar(oldpar)
```

Arguments

oldpar

graphical parameters

Value

nothing

stopif 43

Examples

```
par("mar")
oldpar <- par(no.readonly = TRUE)
par(mar = c(0,0,0,0))
par("mar")
resetpar(oldpar)
par("mar")</pre>
```

stopif

stopif

Description

A equivalent to stopifnot: if cond is TRUE then a error is thrown.

Usage

```
stopif(cond, txt)
```

Arguments

cond logical: condition to test txt character: error message

Value

nothing

Examples

```
if (interactive()) stopif(1+1==2, "1+1 can not be 2, this is fake science!")
```

table2dataframe

table2dataframe

Description

Converts a table to a full data frame.

Usage

```
table2dataframe(tab, ...)
```

Arguments

```
table: contingency table
```

... further parameters given to base::as.data.frame.table

Value

```
a data frame with sum(tab) rows and length(dim(tab)) cols
```

Examples

```
table2dataframe(Titanic)
```

```
toHTML.html_matrix toHTML
```

Description

Returns a HTMl representation of a matrix and optionally shows the result in the browser. If you decide to view the result in a browser then the HTML will be written to a temporary file and utils::browseURL() called

Usage

```
## S3 method for class 'html_matrix'
toHTML(x, browser = FALSE, ...)
## S3 method for class 'table'
toHTML(x, browser = FALSE, ...)
## S3 method for class 'matrix'
toHTML(x, browser = FALSE, ...)
```

Arguments

```
x html_matrix object
browser logical: show HTML in a browser (default: FALSE)
... further parameters to utils::browseURL()
```

Value

html_matrix object

```
library("tools")
m <- matrix(1:12, ncol=4)
hm <- html_matrix(m)
html <- toHTML(hm, browser=interactive())</pre>
```

toRDS 45

toRDS toRDS

Description

Saves one or more data sets in RDS format to a temporary directory (tmpdir()). Data sets must have the class ts or something that can be converted to a data frame, e.g. matrix, table, etc.

Usage

```
toRDS(...)
```

Arguments

... data sets to save

Value

returns the name of the created files

Examples

```
toRDS(Titanic) # saves to tempdir/Titanic.rds
```

ucfirst

ucfirst

Description

Uppercases the first character in txt.

Usage

```
ucfirst(txt)
```

Arguments

txt

character:

Value

character

```
ucfirst("hello world")
```

46 zzz

zebra zebra

Description

zebra

Usage

```
zebra(x, col = c("#FFFFFF", "#CCCCCC"), byrow = TRUE)
```

Arguments

x html_matrix object

col a vector of colors to zebra with (default:c("#FFFFFF", "#CCCCCC"))

byrow logical: zebra by row or by column (default: TRUE)

Value

html_matrix object

Examples

```
library("magrittr")
library("tools")
m     <- matrix(1:12, ncol=4)
hm     <- html_matrix(m) %>% zebra()
html <- toHTML(hm, browser=interactive())</pre>
```

ZZZ

ZZZ

Description

Checks if all necessary packages are installed.

Usage

zzz()

Value

a logical vector which of the required packages are available

Examples

zzz()

Index

```
actionButton, 40
                                                 men_asso, 10
as.graphicsAnnot, 25, 26
                                                 men_bin, 10
                                                 men_ci1, 11
base::as.data.frame.table,43
                                                 men_ci2, 11
                                                 men_cilen, 12
checkboxGroupInput, 40
                                                 men_cipi, 12
checkboxInput, 40
                                                 men_cisig, 13
checkPackages, 3
                                                 men_corr, 13
confidenceLevel, 40
                                                 men_die, 14
                                                 men_dot, 14
dataSet, 40
                                                 men_exp, 15
dateInput, 40
                                                 men_hall, 15
dateRangeInput, 40
                                                 men_hist, 16
distributionParams, 4
                                                 men_hyp, 17
drawSample, 40
                                                 men_norm, 17
                                                 men_parn, 18
fileInput, 40
                                                 men_poi, 18
fontSize, 40
                                                 men_rank, 19
                                                 men_regr, 20
gettext, 4
                                                 men_tab, 20
graphics::axis, 25, 26
                                                 men_terr, 21
                                                 men_time, 21
helpText, 40
                                                 men_tmu1, 22
hm_cell, 5
                                                 men_tmu2, 22
hm_col(hm_cell), 5
                                                 men_tprop, 23
hm_colmargin(hm_cell), 5
                                                 men_vis, 24
hm_colmargintitle(hm_cell), 5
                                                 mmstat.attrVar, 24
hm_index (hm_cell), 5
                                                 mmstat.axis, 25
hm_row(hm_cell), 5
                                                 mmstat.baraxis, 26
hm_rowmargin(hm_cell), 5
                                                 mmstat.dec, 27
hm_rowmargintitle(hm_cell), 5
                                                 mmstat.get (mmstat.set), 37
hm_table(hm_cell), 5
                                                 mmstat.getDataNames, 27
hm_title(hm_cell), 5
                                                 mmstat.getDatasets, 28
hm_total (hm_cell), 5
                                                 mmstat.getLog, 28
hm_tr(hm_cell), 5
                                                 mmstat.getValue (mmstat.getValues), 29
html_matrix, 7
                                                 mmstat.getValues, 29
htmlTable, 6
                                                 mmstat.getVar, 30
in_range, 9
                                                 mmstat.getVariableNames, 31
is.ASCII, 9
                                                 mmstat.getVarNames, 31
```

48 INDEX

```
mmstat.lang, 32
mmstat.log, 32
mmstat.math, 33
mmstat.merge, 33
mmstat.plotTestRegions, 34
mmstat.pos, 35
mmstat.range, 35
mmstat.rds, 36
mmstat.round.down, 36
mmstat.round.up, 37
mmstat.set, 37
mmstat.sliderInput, 38
mmstat.ticks, 39
mmstat.ui.call, 39
mmstat.ui.elem, 40
mmstat.ui.update, 41
\mathsf{mmstat.warn}, 42
numericInput, 40
radioButtons, 40
resetpar, 42
sampleSize, 40
selectInput, 40
shiny::sliderInput, 38
significance, 40
sliderInput, 40
speedSlider, 40
stats::na.omit, 30
stopif, 43
submitButton, 40
table2dataframe, 43
testHypotheses, 40
textInput, 40
toHTML.html_matrix,44
toHTML.matrix(toHTML.html_matrix),44
toHTML.table(toHTML.html_matrix),44
toRDS, 45
ucfirst, 45
utils::browseURL(),44
variable1, 40
variableN, 40
zebra, 46
zzz, 46
```