Towards Robust Nano-CMOS Sense Amplifier Design: A Dual-Threshold versus Dual-Oxide Perspective

O. Okobiah¹, S. P. Mohanty², E. Kougianos³:

University of North Texas

P. Mahesh⁴: Oxford Brookes University

Email: 000032@unt.edu¹, saraju.mohanty@unt.edu²,

eliask@unt.edu³, 09137484@brookes.ac.uk⁴

Overview

- Motivation
- Novel Contributions
- Functional Design of Sense Amplifier Circuit
- Statistical Analysis of Design
- Proposed Design Flow

 Dual Threshold

 Technique vs Dual Oxide Technique
- Conclusion & Future Work

Motivation

3

- Impact of Process variations in nanoscale design is increasing
- Issues in Nanoscale circuit design
 - Variability
 - Leakage
 - Power consumption
- Memory systems are important component of Computing
 - Sense amplifiers are vital for DRAMs

Contributions of this Paper

- Efficient process variation aware design methodology.
- Analysis of effects of device parameters on different sense amplifier FoMs.
- Analysis of effect of process variation on the performance of full latch sense amplifier.
- Exploring dual-Vth and dual-Tox for more sense amplifier performance characteristics.

Prior Related Research

5

Research	Parameter	Feature	Approach	Result Improvement
Sherwin[2]	V_{DD}	Voltage gain	Physical measurements	-
Chow[2]	C_{BL}	Sense Speed	Spice simulations	Sense speed – 40%
Laurent[8]	C_{BL} , V_{th} , β	Signal Margin	Spice Simulations	-
Choudhary[3]	V _{th} , L, W	Yield	Monte Carlo analysis	Improved Yield
Singh[13]		SE rise time	Spice simulations	Eliminated offset voltage
This paper	Dual- V_{th} , T_{ox}	Process variability	Optimization	Sense delay – 54% Sense margin – 40%

Functional Design of Sense Amplifier

Equations for Charge Sharing

$$\Delta V = \frac{C_S}{C_S + C_{BL}} \left(V_{CS} - \frac{V_{DD}}{2} \right)$$

when bit cell value is 1, $V_{CS} = V_{DD} - V_{th}$

$$\triangle V \approx \frac{C_S}{C_{BL}} \left(\frac{V_{DD}}{2} - V_t \right)$$

when bit cell value is 1, $V_{CS} = 0$

$$\Delta V \approx -\frac{C_S}{C_{BL}} \left(\frac{V_{DD}}{2} \right)$$

Physical Layout for 45nm Sense Amplifier

Figures of Merit

- Precharge and Equalization Time
- Average Power Consumption
- Sense Delay
- Sense Margin

Table for Figures of Merit Characterization

Circuit	Precharge	Power	Sense Delay	Sense Margin
Schematic	18.024 ns	1.166 µW	7.46 ns	29.331 mV
Layout	18.20 ns	1.175 μW	7.45 ns	29.256 mV

The following parameters analyzed

- Gate Lengths and Widths (L_n, L_p, W_n, W_p)
- Voltage Supply (V_{DD})
- Cell Capacitance (C_S)
- Bitline Capacitance (C_{BL})
- Oxide Thickness (T_{oxn},T_{oxp})
- Threshold Voltage (V_{thn}, V_{thp})

Parametric Analysis: Results and Comparion

Parameter	Precharge Time	Power Dissipation	Sense Delay	Sense Margin
L _n	decrease	increase	decrease	increase
L _p	increase	decrease	mild increase	mild decrease
W _n	decrease	increase	decrease	decrease
W_p	increase	increase	mild decrease	mild decrease
V_{DD}	decrease	increase	decrease	increase
C _S	increase	increase	increase	increase
C _{BL}	increase	increase	mild increase	mild decrease
V_{thn}	decrease	decrease	decrease	increase
V_{thp}	decrease	decrease	mild increase	mild increase
t _{oxn}	decrease	increase	decrease	increase
t _{oxp}	decrease	decrease	mild decrease	mild increase

Probability Density Function of Different FoMs of the Sense Amplifier

11	Parameters	Prechar	ge PDF	Powe	r PDF	Sense De	lay PDF	Sense Ma	rgin PDF
		μ (ns)	σ(ps)	μ (μW)	σ(nW)	μ (ns)	σ(ps)	μ (mV)	σ(mV)
	L _n	5.474	4.22	94.93	3.13	770.10	80.85	7.89	907.49
	L _p	5.546	674.26	1.54	44.33	2.165	272.9	49.4	2.06
	W _n	5.398	664.4	1.53	44.04	2.118	255.6	49.51	1.97
	W _p	5.546	671.63	1.54	44.26	2.166	274.03	49.39	2.06
	V_{DD}	6.308	3256.8	1.55	215.8	2.58	1534.3	49.49	8.64
	C _S	5.546	671.65	1.54	44.91	2.171	294.2	49.38	2.66
	C _{BL}	5.55	725.64	1.54	89.5	2.167	275.1	49.44	2.88
	V_{thn}	5.557	775.5	1.54	47.6	2.172	306.8	49.4	2.27
	V_{thp}	5.545	671.7	1.55	45.77	2.166	274	49.39	2.07
	t _{oxn}	5.566	741.25	1.54	45.57	2.173	293.4	49.39	2.34
	t _{oxp}	5.546	671.64	1.54	43.6	2.166	274	49.39	2.06

Probability Density Function of FoMs

Discover the power of ideas.

Proposed Design Flow:

Algorithm 1 Design Flow for the Optimal Sense Amplifier Design.

- 1: Perform the baseline sense amplifier circuit design.
- 2: Simulate baseline sense amplifier for functional verification.
- 3: Characterize the sense amplifier for the target figures of merit.
- 4: Perform the physical design of the sense amplifier.
- 5: Perform DRC and LVS of the physical design.
- 6: Perform RLCK extraction to obtain parasitic-aware netlist.
- 7: Parameterize parasitic-aware netlist of the sense amplifier.
- 8: Perform parametric analysis to identify impact on FoMs.
- 9: Perform statistical yield analysis for process variation effects.
- 10: Select the device parameters for optimization.
- 11: Perform sense amplifier optimization using Algorithm 2.
- 12: Obtain the optimal physical design of the sense amplifier.
- 13: Characterize the optimal design of the sense amplifier.
- 14: Perform quality analysis of the optimization.

Dual V_{th}, T_{ox}, Technology

- A Monte Carlo analysis of the effects of process variation of design parameters on FoMs
 - Parameters were varied at +/- 5% of selected values from parametric analysis
- A Monte Carlo analysis of the FoMs reaction to variation of individual parameters
- Transistors are assigned different threshold voltages for optimizing design
 - $V_{th,high} = 0.40V$ $T_{ox,high} = 1.7nm$
 - $V_{th,low} = 0.22V$ $T_{ox,low} = 3.0$ nm
- FoM's are analyzed with different threshold voltages

Heuristic Optimization Algorithm: Dual V_{th}, T_{ox}

Algorithm 2 Heuristic for Sense Amplifier Circuit Optimization.

- 1: Start with a parameterized parasitic netlist of sense amplifier.
- 2: Assign all the transistors to nominal V_{th} (or t_{ox}).
- 3: Number each of the transistors in the netlist from 1 to N.
- 4: **for** {Each of the transistors i = 1 to N} **do**
- 5: Analyze the impact of each transistor on a specific figure of merit (e.g. precharge time) of the sense amplifier circuit.
- 6: Rank the transistors according to their contribution to a figure of merit.
- 7: Mark the significant transistors from ranks (e.g. top 30%).
- 8: end for
- 9: Start with the highest ranked transistor as i = 0.
- 10: **while** {Design constraint of sense amplifier is met and transistor M_i is a significant transistor that contributes to the FoM} **do**
- 11: Increase threshold voltage (or thickness oxide) of M_i .
- 12: Move to the next ranked transistor.
- 13: end while
- 14: **return** $\{V_{th} \text{ (or } t_{ox}) \text{ assignment of each transistor } M_i.\}$

Characterization of Optimized Design

The FoM's are improved on the final design

Circuit	Precharge Time	Power Dissipation	Sense Delay	Sense Margin
Schematic	18.024 ns	1.166 µW	7.460 ns	29.331 mV
Layout	18.20 ns	1.175 μW	7.45 ns	29.256 mV
Dual-V _{th}	6.61 ns	0.941 µW	3.476 ns	40.851 mV
Dual-T _{ox}	6.596 ns	0.895 µW	3.464 ns	40.77 mV

Conclusions

- The effects of process variation were analyzed through parametric and Monte Carlo analysis
- A method of producing more tolerant and optimal designs was presented.
- FoM's were improved
 - Precharge by 63.3% using dual-V_{th} techniques
 - Precharge by 63.4% using dual-V_{th} techniques
- Methodology will be extended to different sense amplifier topologies

Thank you...

you can find copy of presentation at:

http://www.cse.unt.edu/~smohanty/

Questions?

