

投资学六因子案例

林新凯 2016312010173 吕自立 2016302010145 杨宸宇 2016301550186

摘要

本案例研究基于 Fama & French 1993 年在 The Journal of Finance 上发表的论文 "Common Risk Factors in the Returns on Stocks and Bonds",数据来源于万德数据库,调仓频率为月度,检验时间为 2018 年 1 月 1 日至 2017 年 12 月 31 日。其中我们主要考虑的因子包含了原始的 Fama 三因子,即市场风险因子,市值风险因子 SMB,账面市值比风险因子 HML 在内,度量波动的动量因子 MOM,盈利水平风险因子 RMW 与投资水平风险因子 CMA,整体发现因子较为有效,除了动量因子表现稍差以外其余因子都十分显著。

概述

本案例研究基于 Fama & French 1993 年在 The Journal of Finance 上发表的论文 "Common Risk Factors in the Returns on Stocks and Bonds",参考 Fama 的五因子模型以及 Carhart 的四因子模型,数据来源于万德数据库,调仓频率为月度,检验时间为 2018 年 1 月 1 日至 2017 年 12 月 31 日。其中我们主要考虑的因子包含了原始的 Fama 三因子,即市场风险因子,市值风险因子 SMB,账面市值比风险因子 HML 在内,度量波动的动量因子 MOM,盈利水平风险因子 RMW 与投资水平风险因子 CMA。经过研究,我们发现 HML 和 SMB、ROE 和 SMB 等因子间的相关性在研究期间比较高,从整体上来看,调整 R^2 较为理想,平均可以达到 94.53%,除去动量因子以外其他因子的 t 检验均显著,特别是 Market 和 SMB 因子,但在不同的 25 个组合中 β 和 SMB 相差较大。

研究方法

取样本期(2008-2017)的数据按照如下公式进行回归:

 $E_{i}(r_{i}) - r_{f} = a_{i} + b_{i}[E(r_{m}) - r_{f}] + s_{i}E[SMB] + h_{i}E[HML] + d_{i}E[RMW] + c_{i}E[CMA] + m_{i}E[MOM]$

其中,解释变量:

 $[E(r_m) - r_f]$: 市场指数(万德全 A)相对无风险利率(SHIBOR 隔夜利率)的超额收益

[SMB]:每个月按照总市值排列股票池(全部A股),依据上下四分位划分大小,即总市值最大的25%的股票作为大市值组合,总市值最小的25%的股票作为小市值组合,用小市值组合该月的个股收益率平均值减去大市值组合该月的个股收益率平均值,再减去无风险利率得到当月的SMB值,并按照这个方法计算样本期内每个月的所有SMB值.

[*HML*]: 计算方式与 [SMB] 相同,只是将总市值换为市净率,用当月市净率最低(即账面市值比 BM 值最高)的投资组合的个股月度平均收益率减去当月市净率最高的投资组合的个股月度平均收益率,得到当月的 HML 值,再减去无风险利率得到 HML 的超额收益,即当月的 HML 值,并同样按照这个方法计算样本期内每个月的所有 HML 值.

[RMW]: 计算方式与 [SMB] 相同,只是将总市值换为净资产收益率,用当月净资产收益率最低的投资组合的个股月度平均收益率减去当月净资产收益率最高的投资组合的个股月度平均收益率,得到当月的 RMW 值,再减去无风险利率得到 RMW 的超额收益,即当月的 RMW 值,并同样按照这个方法计算样本期内每个月的所有 RMW 值.

[CMA]: 计算方式与 [SMB] 相同,只是将总市值换为资产增长率,用当月资产增长率最低的投资组合的个股月度平均收益率减去当月资产增长率最高的投资组合的个股月度平均收益率,得到当月的 CMA 值,再减去无风险利率得到 CMA 的超额收益,即当月的 CMA 值,并同样按照这个方法计算样本期内每个月的所有 CMA 值.

[MOM]: 首先对前 11 期月度收益率进行排序得到前 30% 和后 30% 股票, 计算两类的月度收益率差值, 即得当月的 MOM 值, 并同样按照这个方法计算样本期内每个月的所有 MOM 值. 被解释变量:

 $E_{(r_i)} - r_f$: 依据市值、账面价值/市值两个指标,按照五分位划分得到的 5 个大、中、小投资组合,再排列组合成 25 个交集,得到 25 个投资组合,计算他们的超额收益作为被解释变量.

数据

样本期: 2008-01-01 至 2017-12-31

股票池: 全部 A 股

剔除所有 ST 股票当月数据

剔除所有非正常交易股票当月数据

投资组合调仓频率: 月度(每月末)

市场指数: 用万德全 A 指数代替

无风险利率: 用 SHIBOR 隔夜拆借利率的月度平均值代替

总市值 (ME): 用公司的股权公平市场价值代替

账面市值比 (BM): 用市净率代替

账面价值 (BE): 用最新报告期资产负债表股东权益代替

净资产收益率: 用万德的月度 ROE 代替

资产增长率: 用万德的总资产增长率(相较年初)代替

报告内容

1 收益率

可以看到, 动量因子的收益率远高于其它因子, 尤其是在 2015 年中。其余因子的收益率表现 相差不大, 均值都低于 0。

```
In [37]: plt.figure(figsize = (12, 8))
         ax = plt.axes()
         ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
         ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))
         plt.xticks(rotation = 70)
         plt.plot(data.index, data["Shibor"], label = "Shibor")
         plt.plot(data.index, data["Market"], label = "Market")
         plt.plot(data.index, data["SMB"], label = "SMB")
         plt.plot(data.index, data["HML"], label = "HML")
         plt.plot(data.index, data["ROE"], label = "ROE")
         plt.plot(data.index, data["CMA"], label = "CMA")
         plt.plot(data.index, data["CMA"], label = "CMA")
         plt.plot(data.index, data["MOM"], label = "MOM")
         plt.legend()
         plt.ylabel("Return(%)")
         plt.title("Return of Factors")
Out[37]: Text(0.5,1,'Return of Factors')
```


In [38]: data.describe()

Out[38]:		Shibor	Market	SMB	HML	ROE	CMA	\
	count	120.000000	120.000000	120.000000	120.000000	120.000000	120.000000	
	mean	2.391529	-1.855738	-3.077592	-4.464530	-2.133120	-0.963855	
	std	0.889648	8.989121	5.958622	4.553039	2.819122	3.803802	
	min	0.803582	-29.535931	-36.079260	-23.947787	-16.207890	-14.895867	
	25%	1.866313	-6.722316	-6.071562	-6.560288	-3.512013	-2.847319	
	50%	2.413980	-1.355685	-2.925407	-4.442765	-1.914440	-1.000553	
	75%	2.806922	2.844453	0.813304	-1.964928	-0.589128	0.741648	
	max	6.468176	17.584159	8.897063	17.213223	14.100332	17.898765	
		MOM	MEOBPO	MEOBP1	MEOBP2		ME3BP0	\
	count	120.000000	120.000000	120.000000	120.000000		120.000000	
	mean	19.761993	1.664841	1.117263	0.442514		3.702431	
	std	8.325334	11.050989	11.104426	10.730139		11.721207	
	min	10.611562	-26.104895	-31.835864	-33.176358		-26.150575	

25%	14.612304	-5.393821	-5.205359	-5.765252		-3.062910	
50%	17.552181	2.758905	2.282874	1.378960		3.345745	
75%	22.609008	8.841230	6.832669	6.706652		9.730519	
max	77.189281	31.084765	31.253123	25.181478		63.250741	
	ME3BP1	ME3BP2	ME3BP3	ME3BP4	ME4BP0	ME4BP1	\
count	120.000000	120.000000	120.000000	120.000000	120.000000	120.000000	
mean	2.362642	1.780316	1.294371	0.762216	4.320273	1.809436	
std	10.368887	10.244759	10.125552	9.594999	11.353038	9.085804	
min	-26.386979	-29.065758	-29.133660	-26.452483	-21.352238	-23.547693	
25%	-3.097955	-3.228491	-3.978126	-4.311305	-1.533493	-3.284972	
50%	2.389918	2.167422	1.548886	0.767332	4.003287	2.385493	
75%	7.411839	7.401030	6.484346	5.833401	8.323933	6.311672	
max	38.905684	31.259587	24.768550	22.834147	62.828819	25.823137	
	ME4BP2	ME4BP3	ME4BP4				
count	120.000000	120.000000	120.000000				
mean	1.265192	1.735443	1.100763				
std	9.230414	8.721200	9.092975				
min	-25.639417	-22.475910	-26.939990				
25%	-2.977532	-2.524531	-3.831161				
50%	2.117511	2.054107	1.382359				
75%	5.552510	6.588335	5.345399				
max	21.750587	22.480232	31.554630				

[8 rows x 32 columns]

2 统计报告

2.1 因子间相关性

因子间的相关性比较大,这使得模型可能出现过拟合。其中 HML 和 SMB、ROE 和 SMB 等因子间的相关性特别高。如图为 SMB 和 HML 的图例。

correlation.loc[factor_x, factor_y] = np.corrcoef(
 data[factor_x], data[factor_y]
)[0][1]

correlation

Out[39]:		Market	SMB	HML	ROE	CMA	MOM
	Market	1	0.209565	-0.0927207	0.14921	0.0843781	0.292963
	SMB	0.209565	1	-0.634243	0.445343	0.101804	0.0489041
	HML	-0.0927207	-0.634243	1	-0.554817	-0.230356	-0.298643
	ROE	0.14921	0.445343	-0.554817	1	0.381226	0.312093
	CMA	0.0843781	0.101804	-0.230356	0.381226	1	0.325905
	MOM	0.292963	0.0489041	-0.298643	0.312093	0.325905	1

In [40]: sns.lmplot("HML", "SMB", data)

Out[40]: <seaborn.axisgrid.FacetGrid at 0x1848974aa20>

2.2 因子参数

在 25 个分组的被解释变量中,因子的系数值相差不大,模型对不同风格的投资组合的解释性 比较强。

```
In [41]: for factor in factors:
            parameters = pd.DataFrame(
                 index = ["ME" + str(i) for i in range(5)],
                 columns = ["BP" + str(i) for i in range(5)]
             )
            parameters.index.name = "Parameters of " + factor
             for i in range(5):
                for j in range(5):
                     y = list(data["ME" + str(i) + "BP" + str(j)])
                     x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
                     x = sm.add_constant(x)
                    result = sm.OLS(y, x).fit()
                     parameters.iloc[i, j] = result.params[factor]
             display(parameters)
                          BP0
                                    BP1
                                               BP2
                                                         BP3
                                                                   BP4
Parameters of Market
MEO
                      0.973124 0.983065 0.951422 0.994599
                                                             0.97529
ME1
                       1.00197 0.955012 0.989937 0.991315 0.960902
ME2
                      0.937634 0.985608 0.996106 0.965257
                                                             1.01143
ME3
                      0.961281 0.955536 0.994559 1.02404 0.977843
ME4
                       1.03506 0.989141 1.02331 0.934456 0.989226
                       BP0
                                 BP1
                                            BP2
                                                      BP3
                                                                BP4
Parameters of SMB
MEO
                  0.688744 0.714717 0.770626 0.700231 0.699419
ME1
                   0.551344 \quad 0.61614 \quad 0.658785 \quad 0.594067 \quad 0.616434
ME2
                    0.46613 0.435887
                                       0.45953 0.529243 0.504404
ME3
                  0.330681 0.341306 0.361262
                                                 0.32556 0.288235
                  -0.668081 -0.252607 -0.223159 -0.296529 -0.299492
ME4
```

BP2

BP3

BP4

BP1

BP0

Parameters of HML					
MEO	-0.26278 -	-0.276935 -0	0.162308 -	0.125571	-0.0648696
ME1	-0.343722 -	-0.275033 -0	0.201705 -0	.0894505	-0.0357298
ME2	-0.359325 -	-0.330413 -0	0.201201 -	0.111165	-0.0188457
ME3	-0.464203 -	-0.343909 -0	.183689 -	0.159066 0	.000528283
ME4	-1.48505 -	-0.201939 -0	0.103954 -0	.0120891	0.311209
	BPO	BP1	BP2	BP3	BP4
Parameters of ROE					
MEO	-0.285129	-0.225641	-0.293962	-0.214524	-0.286509
ME1	-0.126359	-0.133787	-0.246443	-0.26342	-0.273881
ME2	0.27079	0.0149832 -	-0.0506243	-0.164069	-0.180784
ME3	0.293409	0.0271374	0.0218246	-0.0803569	-0.0717324
ME4	-0.166685	-0.361995	-0.271425	-0.0192589	-0.221915
	BPO) BP1	BP:	2 BP3	BP4
Parameters of CMA	BPC) BP1	BP:	2 BP3	BP4
Parameters of CMA	BP(0.00758401			2 BP3 9 -0.126299	
		l -0.117193	3 -0.11024		-0.211194
MEO	0.00758401	l -0.117193 3 -0.138066	3 -0.11024 5 -0.089526	9 -0.126299	-0.211194 -0.212069
MEO ME1	0.00758401 0.158363 0.213959	-0.117193 -0.138066	3 -0.11024 5 -0.089526 1 -0.14598	9 -0.126299 6 -0.114957	-0.211194 -0.212069 -0.222074
MEO ME1 ME2	0.00758401 0.158363 0.213959	-0.117193 3 -0.138066 9 -0.123631 4 -0.0299374	3 -0.11024 5 -0.089526 -0.14598 4 -0.18639	9 -0.126299 6 -0.114957 8 -0.226035	-0.211194 -0.212069 -0.222074 -0.136125
ME0 ME1 ME2 ME3	0.00758401 0.158363 0.213959 0.0104104	-0.117193 3 -0.138066 9 -0.123631 4 -0.0299374	3 -0.11024 5 -0.089526 -0.14598 4 -0.18639	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059	-0.211194 -0.212069 -0.222074 -0.136125
ME0 ME1 ME2 ME3	0.00758401 0.158363 0.213959 0.0104104 -0.420353	1 -0.117193 3 -0.138066 9 -0.123631 1 -0.0299374 3 0.0984175	3 -0.11024 5 -0.089526 -0.14598 4 -0.18639	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059 3 -0.139896	-0.211194 -0.212069 -0.222074 -0.136125
ME0 ME1 ME2 ME3	0.00758401 0.158363 0.213959 0.0104104	-0.117193 3 -0.138066 9 -0.123631 4 -0.0299374	3 -0.11024 6 -0.089526 1 -0.14598 1 -0.18639 5 0.082294	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059	-0.211194 -0.212069 -0.222074 -0.136125 -0.123009
ME0 ME1 ME2 ME3 ME4	0.00758401 0.158363 0.213959 0.0104104 -0.420353	1 -0.117193 3 -0.138066 9 -0.123631 1 -0.0299374 3 0.0984175	B -0.11024 6 -0.089526 1 -0.14598 1 -0.18639 5 0.082294 BP2	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059 3 -0.139896	-0.211194 -0.212069 -0.222074 -0.136125 -0.123009
ME0 ME1 ME2 ME3 ME4 Parameters of MOM	0.00758401 0.158363 0.213959 0.0104104 -0.420353	BP1	B -0.11024 6 -0.089526 1 -0.14598 1 -0.18639 5 0.082294 BP2	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059 3 -0.139896 BP3	-0.211194 -0.212069 -0.222074 -0.136125 -0.123009
MEO ME1 ME2 ME3 ME4 Parameters of MOM MEO	0.00758401 0.158363 0.213959 0.0104104 -0.420353 BP0	BP1 0.0502839	BP2 0.0158153	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059 3 -0.139896 BP3 -0.0395347 0.0162832	-0.211194 -0.212069 -0.222074 -0.136125 -0.123009 BP4
ME0 ME1 ME2 ME3 ME4 Parameters of MOM ME0 ME1	0.00758401 0.158363 0.213959 0.0104104 -0.420353 BPO 0.0255467 0.120557	BP1 0.0502839 0.117193 0.017193 0.017193 0.017193 0.017193 0.017193	BP2 0.0158153 0.011024: 0.089526 0.14598: 0.082294:	9 -0.126299 6 -0.114957 8 -0.226035 9 -0.155059 3 -0.139896 BP3 -0.0395347 0.0162832 0.0713211	-0.211194 -0.212069 -0.222074 -0.136125 -0.123009 BP4 -0.0356836 0.000880258

2.3 因子 t 值

因子的 t 值指出其统计显著性。大部分的因子都至少在部分投资组合上展现出显著性。尤其是 Market 和 SMB 因子。

```
In [42]: for factor in factors:
             tvalues = pd.DataFrame(
                 index = ["ME" + str(i) for i in range(5)],
                 columns = ["BP" + str(i) for i in range(5)]
             )
             tvalues.index.name = "t values of " + factor
             for i in range(5):
                 for j in range(5):
                     y = list(data["ME" + str(i) + "BP" + str(j)])
                    x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
                    x = sm.add_constant(x)
                    result = sm.OLS(y, x).fit()
                    tvalues.iloc[i, j] = result.tvalues[factor]
             display(tvalues)
                       BP0
                                BP1
                                         BP2
                                                  BP3
                                                           BP4
t values of Market
ME0
                   29.8646 44.6171 42.2722 44.1569
                                                         41.61
ME1
                   31.9636 41.7388 45.8218 42.5176 44.7146
ME2
                    22.572 34.1663 36.8254 40.2031
                                                         46.67
ME3
                    26.528 33.9254 40.1527 42.5493 39.7577
ME4
                   21.9876 38.0984 39.3933
                                               39.147
                                                       58.2079
                    BP0
                             BP1
                                      BP2
                                               BP3
                                                        BP4
t values of SMB
                 10.939 16.7875 17.7198 16.0888
MEO
                                                    15.4431
ME1
                9.10245 13.9362 15.7812 13.1864
                                                    14.8453
ME2
                5.80734 7.81989 8.79203 11.4079
                                                    12.0451
                 4.72276 6.27126 7.54812 7.00067
ME3
                                                      6.065
                -7.3447 -5.03531 -4.44596 -6.42893 -9.12021
ME4
                    BP0
                                                BP3
                                                            BP4
                             BP1
                                      BP2
t values of HML
MF.O
                -3.00392 -4.6817 -2.68613 -2.07656 -1.03089
ME1
                -4.0843 -4.47736 -3.47767 -1.42905
                                                      -0.619308
ME2
                -3.22204 -4.26636 -2.77063 -1.72461
                                                      -0.323905
```

```
ME3
               -4.77165 -4.54808 -2.76232 -2.46183 0.00800064
ME4
               -11.7506 -2.89717 -1.49062 -0.188642
                                                     6.82094
                    BP0
                             BP1
                                       BP2
                                                BP3
                                                         BP4
t values of ROE
MEO
               -2.29255 -2.68303 -3.42184 -2.49525 -3.2025
ME1
               -1.05608 -1.53191 -2.98861 -2.96002 -3.33903
ME2
                ME3
                2.12136  0.252426  0.230844  -0.874756  -0.764109
ME4
               -0.927675 -3.65291 -2.7375 -0.211378 -3.42106
                    BP0
                             BP1
                                      BP2
                                              BP3
                                                      BP4
t values of CMA
MEO
                0.09579 -2.18905 -2.01599 -2.30772 -3.70833
                2.07917 -2.48342 -1.70549 -2.0292 -4.06144
ME1
ME2
                2.11983 -1.76381 -2.22123 -3.87459 -4.21726
               0.118237 -0.437446 -3.09714 -2.65158 -2.27784
ME3
ME4
               -3.67501 1.5601 1.30383 -2.412 -2.97891
                   BP0
                            BP1
                                     BP2
                                              BP3
                                                        BP4
t values of MOM
MEO
               0.66749 1.94298 0.598244 -1.49434
                                                    -1.29614
ME1
               3.27428 2.49643
                                1.39494 0.594588 0.0348739
ME2
               5.33091 3.08284
                                 2.07963
                                         2.52904
                                                    0.675277
ME3
               6.61154 3.54683
                                 2.69934 0.415997
                                                     1.76394
ME4
               1.90424 1.33683 -0.694017
                                          3.69194
                                                     1.64831
```

2.4 因子的 R^2

 R^2 统计模型对数据的解释性,可以看到模型的解释性良好,在不同被解释变量中的平均值高达 94.8%。最好的有 97.29%,最差的也有 94.16%。

```
In [43]: rsquared = pd.DataFrame(
    index = ["ME" + str(i) for i in range(5)],
    columns = ["BP" + str(i) for i in range(5)]
```

```
)
         rsquared.index.name = "R square of Regression"
         for i in range(5):
             for j in range(5):
                 y = list(data["ME" + str(i) + "BP" + str(j)])
                 x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
                 x = sm.add_constant(x)
                 result = sm.OLS(y, x).fit()
                 rsquared.iloc[i, j] = result.rsquared
         display(rsquared)
                             BP0
                                       BP1
                                                  BP2
                                                            BP3
                                                                      BP4
R square of Regression
MEO
                        0.932553 0.969457 0.965867 0.965743 0.960922
ME1
                        0.941684 0.964263 0.968883 0.960963 0.964629
ME2
                        0.905969 0.944476 0.948719 0.956993 0.965179
ME3
                        0.925854 \quad 0.942757 \quad 0.954651 \quad 0.956172 \quad 0.949026
ME4
                        0.866619 0.936654 0.938558 0.941882 0.972901
In [44]: sum(list(rsquared.mean()))/5
Out [44]: 0.9480548778434097
In [45]: max(list(rsquared.max()))
Out [45]: 0.9729007171282669
In [46]: min(list(rsquared.max()))
Out [46]: 0.941683652490355
2.5
In [47]: rsquared_adj = pd.DataFrame(
             index = ["ME" + str(i) for i in range(5)],
             columns = ["BP" + str(i) for i in range(5)]
         )
         rsquared_adj.index.name = "Adjusted R square of Regression"
         for i in range(5):
```

```
for j in range(5):
                 y = list(data["ME" + str(i) + "BP" + str(j)])
                 x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
                 x = sm.add_constant(x)
                 result = sm.OLS(y, x).fit()
                 rsquared_adj.iloc[i, j] = result.rsquared_adj
        display(rsquared_adj)
                                      BP0
                                                BP1
                                                          BP2
                                                                    BP3 \
Adjusted R square of Regression
MEO
                                 0.928972 0.967835 0.964055 0.963924
ME1
                                 0.938587 0.962365 0.967231
                                                                0.95889
ME2
                                 0.900976 0.941528 0.945996
                                                                0.95471
ME3
                                 0.921917 0.939718 0.952243 0.953845
ME4
                                 0.859537 0.933291 0.935296 0.938796
                                      BP4
Adjusted R square of Regression
MEO
                                 0.958847
ME1
                                  0.96275
ME2
                                  0.96333
ME3
                                 0.946319
ME4
                                 0.971462
In [48]: sum(list(rsquared_adj.mean()))/5
Out [48]: 0.9452967297642989
In [49]: max(list(rsquared_adj.max()))
Out [49]: 0.9714618171527766
In [50]: min(list(rsquared_adj.max()))
Out[50]: 0.9385872092597544
```

2.6 回归报告

取其中一个被解释变量展示回归结果。可以看到,除了动量因子以外的所有银子,在统计上都是显著的 (t>2)。 JB 检验和 DW 检验的效果也十分好。

```
In [51]: y = list(data["ME4BP4"])
    x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
    x = sm.add_constant(x)
    result = sm.OLS(y, x).fit()
    print(result.summary())
```

OLS Regression Results

Dep. Variable: y R-squared: 0.973

Model: OLS Adj. R-squared: 0.971

Method: Least Squares F-statistic: 676.1

Date: Wed. 19 Dec 2018 Prob (F-statistic): 4.62e-86

 Date:
 Wed, 19 Dec 2018
 Prob (F-statistic):
 4.62e-86

 Time:
 21:02:59
 Log-Likelihood:
 -218.18

 No. Observations:
 120
 AIC:
 450.4

Df Residuals: 113 BIC: 469.9

Df Model: 6

Covariance Type: nonrobust

COVALIANCE	lype.	noni ob	us 0			
	coef	std err	t	P> t	[0.025	0.975]
const	2.1620	0.489	4.418	0.000	1.192	3.132
Market	0.9892	0.017	58.208	0.000	0.956	1.023
SMB	-0.2995	0.033	-9.120	0.000	-0.365	-0.234
HML	0.3112	0.046	6.821	0.000	0.221	0.402
ROE	-0.2219	0.065	-3.421	0.001	-0.350	-0.093
CMA	-0.1230	0.041	-2.979	0.004	-0.205	-0.041
MOM	0.0329	0.020	1.648	0.102	-0.007	0.072
=======						
Omnibus:		2.3	318 Durbin	n-Watson:		2.234
Prob(Omnib	us):	0.3	314 Jarque	e-Bera (JB):		2.018
Skew:		0.0	083 Prob(JB):		0.365
Kurtosis:		3.	613 Cond.	No.		77.8
=======	=========					

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.7 因子回归图

总结

经过研究,在 2007 年 1 月 1 日到 2017 年 12 月 31 日所有 A 股除去 ST 和非政策交易股票的数据集中,我们发现 HML 和 SMB、ROE 和 SMB 等因子间的相关性在研究期间比较高,从整体上来看,通过 R^2 观察统计模型对数据的解释性,可以看到模型的解释性良好,在不同被解释变量中的 R^2 平均值高达 94.8%。最好的有 97.29%,最差的也有 94.16%。调整 R^2 也较为理想,平均可以达到 94.53%,除去动量因子以外其他因子的 t 检验均显著,特别是 Market 和 SMB 因子,JB 检验和 DW 检验的效果也十分好。但在不同的 25 个组合中 β 和 SMB 相差较大。

参考文献

- [1] Common Risk Factors in The Returns On Stocks and Bonds, Eugene F. Fama a & Kenneth R. French, Journal of Financial Economics 33 (1993) 3-56. North-Holland.
- [2]On Persistence in Mutual Fund Performances, Carhart, The Journey of Finance, NO.1, March 1997.
- [3] A Five-Factor Asset Pricing Model, Eugene F. Fama a & Kenneth R. French, Journal of Financial Economics 116 (2015) 1–22.
- [4] Anomalies in Chinese A Shares, Jason Hsu & Vivek Viswanathan & Michael Wang & Phillip Wool.
- [5] Size, Value, and Momentum in International Stock Returns, Fama& Eugene F.& Kenneth R. French., Journal of Financial Economics 105, no. 3 (2012): 457-472.
- [6] International Tests of A Five-Factor Asset Pricing Model, Fama& Eugene F.& Kenneth R. French.
- [7] Profitability, Investment and Average Returns, Fama & Eugene F.& Kenneth R. French., Journal of Financial Economics 82, no. 3 (2006): 491-518.

数据处理部分代码 (Python)

```
In [1]: import os
    import pandas as pd
   PYk+knimport datetime as dt
   from scipy import stats
    import statsmodels.api as sm
    import matplotlib.pyplot as plt
    import seaborn as sns
    import WindPy as w
   from WindPy import *
   w.start()
   path = os.getcwd()
    start = "2008-01-01"
    end = "2017-12-31"
   def months_list(start = start, end = end):
        , , ,
        参数:
           start: 开始日期 ("YYYY-MM-DD")。(str)
            end: 结束日期 ("YYYY-MM-DD")。(str)
        返回:
           样本期的月份列表。(string list)
        file_path = path + r"/months.csv"
        if os.path.isfile(file_path):
           months = pd.read_csv(
               open(file_path, 'r', encoding = 'utf-8'),
               index_col = [0]
           )[12:]
           months_list = list(months["Month"])
           months_list = [x[:7] for x in months_list]
           else:
           months = w.tdays(start, end, "Period=M", usedf = True)[1]
           months.columns = ["Month"]
```

```
months.to_csv(file_path)
       months_list = list(months["Month"])
       months_list = [x.strftime('%Y-%m') for x in months_list]
    return months_list
months_list = months_list()
def market(
   start = start,
   end = end,
   hs300 = False,
   windA = True,
):
    111
    参数:
       start: 开始日期 ("YYYY-MM-DD")。(str)
       end: 结束日期 ("YYYY-MM-DD")。(str)
       hs300: 是否用沪深 300 代表市场指数。(bool)
       windA: 用万德全 A 代表市场指数。(bool)
    返回:
       市场指数在样本期内的表现。(pd.DataFrame)
       index: Month, 日期 (YYYY-MM-DD)。(string)
       column: Market, 当月涨跌幅(%)。(float)
    111
   file_path = path + r"/market.csv"
    if os.path.isfile(file_path):
       market = pd.read_csv(
           open(file_path, 'r', encoding = 'utf-8'),
           index_col = [0]
       )[12:]
    else:
       if hs300:
           market_code = "000300.SH"
       elif windA:
           market_code = "881001.WI"
       market = w.wsd(
           market_code,
```

```
"pct_chg",
           start,
           end,
           "Period=M",
           usedf = True
       )[1]
       market.index = pd.to_datetime(market.index).strftime("%Y-%m")
       market.index.name = "Month"
       market.columns = ["Market"]
       market.dropna(inplace = True) # 剔除缺失值
       market.to_csv(file_path)
    return market
market = market()
def shibor(start = start, end = end):
    , , ,
    参数:
       start: 开始日期 ("YYYY-MM-DD")。(str)
        end: 结束日期 ("YYYY-MM-DD")。(str)
    返回:
       无风险利率,以 SHIBOR 隔夜利率的月平均值代表。(pd.DataFrame)
        index: Month, 日期 (YYYY-MM-DD)。 (pd.datetime)
       column: Shibor, 当月涨跌幅(%)。(float)
   file_path = path + r"/shibor.csv"
    if os.path.isfile(file_path):
       shibor = pd.read_csv(
           open(file_path, 'r', encoding = 'utf-8'),
           index_col = [0]
       )[12:]
    else:
       shibor = w.wsd(
           "SHIBORON.IR",
           "close",
           start,
           end,
```

```
ш,
          usedf = True
       )[1]
       shibor.index = pd.to_datetime(shibor.index).strftime('%Y-%m')
       shibor = pd.DataFrame(shibor.groupby(shibor.index)["CLOSE"].mean())
       shibor.index.name = "Month"
       shibor.columns = ["Shibor"]
       shibor.dropna(inplace = True) # 剔除缺失值
       shibor.to_csv(file_path)
   return shibor
shibor = shibor()
def all_data(
   start = start,
   end = end,
   universe = "A",
   trading_only = True,
   non_ST_only = True
):
    111
   参数:
       start: 开始日期 ("YYYY-MM-DD")。(str)
       end: 结束日期 ("YYYY-MM-DD")。(str)
       universe: 股票池, 沪深 300('hs300') 或全部 A 股 ('A')。(str)
       trading_only: 是否只保留正常交易的股票。(bool)
       non_ST_only: 是否只保留非 ST 股票。(bool)
   返回:
       指定样本期的全部数据。(pd.DataFrame)
       index: Month, 日期 (YYYY-MM)。(str)
       columns:
          Code, 股票代码。(str)
          Name, 股票简称。(str)
          Return, 当月涨跌幅(%)。(float)
          ME, 当月总市值。(float)
          Book, 当月账面价值。(float)
          Price, 当月股价。(float)
```

```
BP, 当月账面市值比。(float)
       Asset, 当月账面价值。(float)
       ROE, 权益回报。(float)
       ST, 是否为 ST 股票。(str)
111
file_path = path + r"/data.csv"
if os.path.isfile(file_path):
   data = pd.read_csv(
       open(
           file_path,
           'r',
           encoding = 'utf-8'
       ),
       index_col = [0]
   )
   if trading_only:
       data = data.dropna() # 剔除缺失值
   if non_ST_only:
       data = data[data['ST'] == '否'] # 剔除 ST 股票
   data["Asset"] = data["Asset"].astype("str")
   data["Asset"] = [''.join(x.split(",")) for x in list(data["Asset"])]
   data["Asset"] = data["Asset"].astype("float")
else:
   if universe == "hs300":
       stocks_list = list(w.wset(
           "sectorconstituent",
           "date="+end+"; windcode=000300.SH",
           usedf = True
       )[1].sample(100)['wind_code']) # ".sample(100)" 仅测试用
   elif universe == "A":
       stocks_list = list(
           w.wset(
```

```
"date="+end+";sectorid=a001010100000000",
                    usedf = True
                )[1]['wind_code'] # ".sample(100)" 仅测试用
            )
        data = pd.DataFrame()
        for stock in stocks_list:
            stock_data = w.wsd(
                stock,
                '''trade_code,pct_chg,ev,roe,yoyassets,trade_status
                ,riskwarning''',
                start,
                end,
                '''unit=1;ruleType=3;period=2;returnType=1;index=000001.SH;
                Period=M;Fill=Previous''',
                usedf = True
            )[1]
            stock_data.index = pd.to_datetime(stock_data.index)\
                                     .strftime("%Y-%m")
            data = data.append(stock_data)
        data.index.name = "Month"
        data.columns = [
            "Code", "Return",
            "ME", "ROE",
            "Asset", "Status", "ST"
        ]
        data.to_csv(file_path)
    return data
data = all_data()
def excess(data):
```

"sectorconstituent",

```
, , ,
   参数:
       data: 要操作的数据表。(pd.DataFrame)
   返回:
       添加了无风险利率和超额收益列的原数据表。(pd.DataFrame)
    ,,,
   col_list = list(data.columns)
   data["Shibor"] = list(shibor["Shibor"])
   for column in col_list:
       data[column] = data[column] - data["Shibor"]
   return data[col_list]
def value_weighted_data(data):
    111
   参数:
       data: 要操作的数据表。(pd.DataFrame)
   扳回:
       将 Return 列替换为按 ME 列 (市值) 加权后的 Return。 (pd. DataFrame)
   total ME = data.sum(axis = 0)["ME"]
   data["Weight"] = data["ME"] / total_ME
   data["Return"] = data["Return"] * data["Weight"]
   return data
def monthly_return(factor, value_weighted = True):
   参数:
       factor: 因子指标名。(str)
       value_weighted: 是否将收益市值加权。(bool)
   返回:
       每个月按照因子排列的大小投资组合的收益。(pd.DataFrame)
    , , ,
   small_ret_list, big_ret_list = [], []
   for month, monthly_data in data.groupby(data.index):
       sort = monthly_data.sort_values(by = factor)
       small = sort[:round(len(monthly_data)/3)]
       big = sort[-round(len(monthly_data)/3):]
```

```
if value_weighted:
           small_ret = value_weighted_data(small).sum(axis = 0)["Return"]
           big_ret = value_weighted_data(big).sum(axis = 0)["Return"]
       else:
           small_ret = small.sum(axis = 0)["Return"]/len(small)
           big_ret = big.sum(axis = 0)["Return"]/len(big)
       small_ret_list.append(small_ret)
       big_ret_list.append(big_ret)
   monthly_return = pd.DataFrame(index = months_list)
   monthly_return["Small " + factor] = small_ret_list
   monthly_return["Big " + factor] = big_ret_list
    return monthly_return
def MKT(excess_return = True):
    , , ,
    参数:
        excess_return: 是否计算超额收益。(bool)
    返回:
       指定 Fama French 三因素模型的市场因子。(pd.DataFrame)
    ,,,
   MKT = market
   MKT.columns = ["MKT"]
    if excess_return:
       MKT = excess(MKT)
   return MKT
MKT = MKT()
def SMB(excess_return = True):
    111
    参数:
        excess_return: 是否计算超额收益。(bool)
    返回:
       指定 Fama French 三因素模型中的 HML 因子。(pd.DataFrame)
    ,,,
    data = monthly_return('ME')
    data["SMB"] = data["Small ME"] - data["Big ME"]
```

```
if excess_return:
       data = excess(data)
   return data[["SMB"]]
SMB = pd.read_csv(path + r"/SMB.csv", index_col = [0])
SMB.to_csv(path + r"SMB.csv")
def HML(excess_return = True):
    ,,,
    参数:
       excess_return: 是否计算超额收益。(bool)
    返回:
       指定 Fama French 三因素模型中的 HML 因子。(pd.DataFrame)
    111
    data = monthly_return('BP')
    data["HML"] = data["Big BP"] - data["Small BP"]
    if excess_return:
       data = excess(data)
   return data[["HML"]]
HML = HML()
def ROE(excess_return = True):
    ,,,
    参数:
       excess_return: 是否计算超额收益。(bool)
    返回:
       指定 Fama French 模型中的 ROE 因子。(pd.DataFrame)
    , , ,
    data = monthly_return("ROE")
    data["ROE"] = data["Big ROE"] - data["Small ROE"]
    if excess_return:
       data = excess(data)
   return data[["ROE"]]
ROE = ROE()
```

```
def CMA(excess_return = True):
    , , ,
    参数:
       excess_return: 是否计算超额收益。(bool)
    返回:
       指定 Fama French 模型中的 CMA 因子。(pd.DataFrame)
    111
    data = monthly_return("Asset")
    data["CMA"] = data["Big Asset"] - data["Small Asset"]
    if excess_return:
       data = excess(data)
    return data[["CMA"]]
CMA = CMA()
def MOM(excess_return = True):
    , , ,
    参数:
       excess_return: 是否计算超额收益。(bool)
    返回:
       指定 Fama French 模型中的 MOM 因子。(pd.DataFrame)
    ,,,
    data = monthly_return("Return")
    data["MOM"] = data["Big Return"] - data["Small Return"]
    if excess_return:
       data = excess(data)
    return data [["MOM"]]
MOM = MOM()
def Y(excess_return = True):
    , , ,
    参数:
       excess_return: 是否计算超额收益。(bool)
    返回:
       被解释变量。(pd.DataFrame)
```

```
111
    Y = \{\}
    for i in range(5):
        for j in range(5):
            Y["ME" + str(i) + "BP" + str(j)] = []
    for month, monthly_data in data.groupby(data.index):
        sort_ME = monthly_data.sort_values(by = "ME")
        sort_BP_ME = monthly_data.sort_values(by = "BP")
        length = round(len(monthly_data)/5)
        for i in range(5):
            for j in range(5):
                ME_list = list(sort_ME[i*length:(i+1)*length]["Code"])
                BP_ME_list = list(sort_BP_ME[j*length:(j+1)*length]["Code"])
                stock_list = [x for x in ME_list if x in BP_ME_list]
                portfolio = monthly_data[monthly_data["Code"] \
                                                      .isin(stock_list)]
                portfolio_ret = value_weighted_data(portfolio)\
                                             .sum(axis = 0)["Return"]
                Y["ME" + str(i) + "BP" + str(j)].append(portfolio_ret)
    return pd.DataFrame(Y, index = months_list)
Y = Y()
FamaFrench = pd.DataFrame()
FamaFrench["Shibor"] = shibor["Shibor"]
FamaFrench["Market"] = MKT["MKT"]
#FamaFrench["SMB"] = SMB["SMB"]
FamaFrench["HML"] = HML["HML"]
FamaFrench["ROE"] = ROE["ROE"]
FamaFrench["CMA"] = CMA["CMA"]
FamaFrench["MOM"] = MOM["MOM"]
FamaFrench = pd.concat(
    [FamaFrench, Y],
    axis = 1,
    sort = False
```

)

```
FamaFrench.to_csv(path + r"/FamaFrench.csv")

FamaFrench = pd.read_csv(
    open(
        path + r"/FamaFrench.csv",
        'r',
        encoding = 'utf-8'
    ),
    index_col = [0]
)
```

数据分析部分代码 (Python)

```
import os
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
plt.rcParams.update({"font.size": 11})
import numpy as np
import statsmodels.api as sm
from IPython.display import display
import seaborn as sns
path = os.getcwd()
data = pd.read_csv(
    open(
        path + "\\FamaFrench.csv",
        'r',
        encoding = "utf-8"
    ),
    index_col = [0]
)
data.index = pd.to_datetime(data.index, format = '%b-%y').strftime('%Y-%m')
# 收益率
# 可以看到, 动量因子的收益率远高于其它因子, 尤其是在 2015 年中。
plt.figure(figsize = (12, 8))
ax = plt.axes()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))
plt.xticks(rotation = 70)
plt.plot(data.index, data["Shibor"], label = "Shibor")
plt.plot(data.index, data["Market"], label = "Market")
plt.plot(data.index, data["SMB"], label = "SMB")
plt.plot(data.index, data["HML"], label = "HML")
plt.plot(data.index, data["ROE"], label = "ROE")
```

```
plt.plot(data.index, data["CMA"], label = "CMA")
plt.plot(data.index, data["CMA"], label = "CMA")
plt.plot(data.index, data["MOM"], label = "MOM")
plt.legend()
plt.ylabel("Return(%)")
plt.title("Return of Factors")
data.describe()
# 统计报告
# 因子间相关性
factors = list(data.columns[1:7])
correlation = pd.DataFrame(index = factors, columns = factors)
for factor_x in factors:
    for factor_y in factors:
        correlation.loc[factor_x, factor_y] = np.corrcoef(
            data[factor_x], data[factor_y]
        )[0][1]
correlation
sns.lmplot("HML", "SMB", data)
# 因子参数
# 其中系数相对较大的有 $\beta$ 和 SMB。
for factor in factors:
    parameters = pd.DataFrame(
        index = ["ME" + str(i) for i in range(5)],
        columns = ["BP" + str(i) for i in range(5)]
    )
    parameters.index.name = "Parameters of " + factor
```

```
for i in range(5):
        for j in range(5):
            y = list(data["ME" + str(i) + "BP" + str(j)])
            x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
            x = sm.add_constant(x)
            result = sm.OLS(y, x).fit()
            parameters.iloc[i, j] = result.params[factor]
    display(parameters)
for factor in factors:
    tvalues = pd.DataFrame(
        index = ["ME" + str(i) for i in range(5)],
        columns = ["BP" + str(i) for i in range(5)]
    )
    tvalues.index.name = "t values of " + factor
    for i in range(5):
        for j in range(5):
            y = list(data["ME" + str(i) + "BP" + str(j)])
            x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
            x = sm.add_constant(x)
            result = sm.OLS(y, x).fit()
            tvalues.iloc[i, j] = result.tvalues[factor]
    display(tvalues)
rsquared = pd.DataFrame(
    index = ["ME" + str(i) for i in range(5)],
    columns = ["BP" + str(i) for i in range(5)]
)
rsquared.index.name = "R square of Regression"
for i in range(5):
    for j in range(5):
        y = list(data["ME" + str(i) + "BP" + str(j)])
        x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
        x = sm.add_constant(x)
```

```
result = sm.OLS(y, x).fit()
        rsquared.iloc[i, j] = result.rsquared
display(rsquared)
rsquared_adj = pd.DataFrame(
    index = ["ME" + str(i) for i in range(5)],
    columns = ["BP" + str(i) for i in range(5)]
)
rsquared_adj.index.name = "Adjusted R square of Regression"
for i in range(5):
    for j in range(5):
        y = list(data["ME" + str(i) + "BP" + str(j)])
        x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
        x = sm.add_constant(x)
        result = sm.OLS(y, x).fit()
        rsquared_adj.iloc[i, j] = result.rsquared_adj
display(rsquared_adj)
# 回归报告
# 取其中一个被解释变量展示回归结果。
y = list(data["ME4BP0"])
x = data.loc[:, ["Market", "SMB", "HML", "ROE", "CMA", "MOM"]]
x = sm.add_constant(x)
result = sm.OLS(y, x).fit()
print(result.summary())
# 因子回归图
fig = plt.figure(figsize = (12, 8))
fig = sm.graphics.plot_partregress_grid(result, fig = fig)
```

-11.574414	-10.066122	-7.8060422	-11.019039	16.4751931	3.94558362	-1.9035272	-6.8103661	-9.9847961	1.68171	2010-05
-10.783206	-10.984498	-7.4976507	-10.409585	21.1001109	-0.0925171 21.10012	-1.2424373	-6.3104492	-8.9970818	1.30440952	2010-04
5.06978928	6.39039737	5.3855422	8.12526438	16.1114256	0.37795965	-0.2005222	-4.9334446	1.20747934	1.34753913	2010-03
5.67623752		8.73060124 6.63500643	9.40550874	26.7261952	-14.895867	-1.672778	-19.298429	1.56793615	1.53203333	2010-02
-3.4923624	-3.4980169	-1.5480145	-6.0863037	20.9994245	-1.293168	-0.0577038	-6.5776072	-9.6869116	1.11511	2010-01
3.86389417	3.47793004	4.69616528 3.47793004	-1.3029043	17.8853681	-0.1293745	-1.3346142	1.26357349	1.78523985	1.17967826	2009-12
13.6705388	15.4839408	13.9238052 15.4839408	22.4874666 13.7653861	22.4874666	-4.9990683	-0.2599579	-4.708257	7.28944702	1.19369048	2009-11
11.7069744	11.9305391	11.8753076	11.2504136	16.7297368	-0.0696566	-0.5473287	-3.3821225	8.12341292	1.238175	2009-10
4.58402531		3.03571765	16.9550728 1.64811928 3.03571765 0.98011748	16.9550728	3.2688606	0.03351511	-3.1069672	3.86908444	1.20472273	2009-09
-18.184568	-14.943974	-13.002292	-15.893394	24.4972628	-2.1685515	0.25952381	-7.3768774	-22.370038	1.15700476	2009-08
8.63486018	10.2742238	11.578991		-7.0169504 29.3506976 10.0292286	-7.0169504	-2.6654306	-2.9794107	14.9990027	1.25266522	2009-07
4.378972	3.18118064	4.03564587	10.3585107	28.5353409	8.82155674	-0.8377384	-7.0734588	10.7003999	0.87364545	2009-06
4.38523701		6.35377068 8.48503846	9.4930504	20.1968886	0.21694335	-1.023747	-1.9167231	4.60736812	0.80983333	2009-05
5.30949289	7.41891949	6.78636064	4.79554178	21.6028842	0.41776094	1.33877431	-1.6771908	4.11132664	0.80666667	2009-04
21.1302359	21.5907332	21.3475406 21.5907332 21.1302359	23.3688087	1.01946754 27.0012213	1.01946754	-1.0164476	-8.8936249	17.5841591	0.80358182	2009-03
7.44088654	5.3862676		24.7418109 10.4622895 5.53691672	24.7418109	-2.270187	-3.1521027	-2.62005	4.91162281	0.82156	2009-02
13.1402949	13.2131593	15.3655663	15.2319096	23.5959995	-1.0452698	-0.1884888	1.15637145	12.2882036	0.85592	2009-01
5.7071674		4.58257218 10.9237537 11.1854255	4.58257218	29.218128	1.40483967	-4.5769442	-7.9175126	0.33995056	1.12292174	2008-12
18.012874	22.4557028	21.4458925	23.5009793	29.0760514	1.0446781	-7.0605481	-5.5702384	10.4847038	2.15235	2008-11
-26.73201	-25.941688	-25.781057	-26.104895	1.0783783 22.1144772	-1.0783783	-4.074657	-9.6468757	-28.251809	2.50318	2008-10
-12.615507	-11.235016	-11.371063	-8.965124	23.3822356	-11.362224	-0.7535367	1.9682406	-9.3544166	2.7379	2008-09
-24.054532	-24.478031	-24.463867	-24.027222	21.2998415	2.67746749	0.58489846	-1.369344	-19.762012	2.66094286	2008-08
12.1656322	9.59556539	11.6582302	9.85035315	18.5943646	-2.7779999	-1.2224459	-3.8207153	0.53785363	2.50766957	2008-07
-28.864424	-22.93946	-24.440067	-25.620735	15.1709456	-0.5810571	-0.0543491	-5.6301383	-25.233117	2.81831	2008-06
-1.0092947	-3.6949054	-1.5785582	-3.7705372		-1.8877719	0.01686379	-5.0481654	-10.067207	2.520375	2008-05
-8.9548492	-12.550924	-9.8680484	-11.5521	29.2263357	-8.3992346	1.50859268	0.99046012	0.37896327	2.2890619	2008-04
-17.100119	-15.476359	-15.959303	-18.51633	20.4957582	2.08871639	-1.8186451	-4.4393246	-21.200326	2.08465714	2008-03
8.29347267	9.6459851	9.19327256	11.4576086	19.0991068	-2.8728804	-4.8145673	-5.5769219	1.13271686	2.2916125	2008-02
-8.3964115	-8.9967483	-10.320073	-9.4969724	24.3305687	-1.1606112	-4.1115219	-1.9839089	-13.071154	1.98321818	2008-01
ME0BP3	ME0BP2	ME0BP1	ME0BP0	MOM	CMA	ROE	HML	Market	Shibor	Month

-10.126269	-8.3879875	-9.1738466	-4.6498869	-7.007913	-11.565298	-11.64958	-8.0922595	-5.5320685	-8.0975671	-11.494106
-11.305472	-8.3975989	-7.8546107	-6.2675801	-6.0544784	-10.407882	-11.026787	-9.8320399	-5.8088577	-4.8005479	-10.012687
3.32639105	2.25625206 3.32639105	3.85440172	4.13619977	8.53108541	2.66591152	1.6837983	5.66519633	6.60674515	9.74396768	3.88865624
5.27307427	7.11844146	7.02911784	8.63981256	4.79138018	5.06812599	5.87270988	7.92659304	8.66983838	8.07951378	8.38227396
-5.1942819	-2.4530381		-3.8763961 1.49196431	-3.1130114	-2.4363351	-4.2600858	-1.5603941	-1.1007874	-5.8841222	-4.8260324
1.09901508	3.37237232	3.45057389	3.55416553	1.02269904	1.53581087	3.91799796	3.45214812	3.50465891	1.15788719	4.27918096
16.8308761	15.7199745 16.8308761	13.1701377	14.8298796 13.1701377	16.163377	14.8157828	17.98391	17.4208275	13.7857309	16.8109064	11.5414209
10.7212223	10.7570274	11.2937571	12.0273789	9.46817377	11.2242902	12.8891009	11.7454104	14.437277	10.7280945	12.457704
1.33158804	0.82337276	3.72315616	2.76659728	19.6928865	2.77799089	4.15577578	5.48974604	3.62720678	1.81776808	3.59961748
-14.847193		-17.485502	-15.706991	-12.710574	-13.80901	-17.767034	-16.14482	-13.40854	-13.169785	-17.723478
16.8472574	13.3390558	13.7518294	15.4603659	12.6381816	10.6636999	11.462307	14.3174813	16.6176708	14.0243937	8.64231166
4.73085232	3.53588586 4.73085232		2.95378016	7.64810023	2.00037658	6.71790378	2.45039764	5.59789149	13.9325696	3.56376306
6.8127563	7.40254144	5.96213782	7.99315565	10.9419362	7.86460291	5.15946766	6.93784812	9.07967986	10.1216939	5.94527752
6.7313386	4.40724984	6.99365492	11.1516685	6.00667927	2.28158509	7.95774408	9.53817846	7.19479241	11.1874548	7.90401615
21.9190275	21.5866191	20.7446978	21.2556677	23.9478412	22.1068453	23.216383	23.0838253	23.9427478	27.2907849	21.9960164
11.1121767	9.51343749 11.1121767		7.52126065 13.1451225	10.4035909	9.23830006	7.09365481	10.5966739	6.89903983	9.35845211	6.02116718
17.7146973	19.2013931	18.5668131	14.6288467	17.3860448	16.695559	14.5092317	14.3873758	16.6244839	13.5767707	17.4232841
3.749979	3.56029845	3.12585092	9.48255509	14.0417187	3.36596222	8.53554785	8.69803806	11.2476351	16.221079	3.58204395
19.8709397		18.8882049 22.9634576	18.8882049	24.125274	19.1104767	19.7101141	21.5527177	23.2829353	23.1379725	17.0064903
-27.607934	-26.495668	-29.359963	-27.149125	-23.338518	-25.597099	-26.278172	-25.982898	-25.508535	-23.231572	-25.135855
-8.6790864	-9.486153	-6.5550265	-7.3835776	-9.0900721	-7.4651713	-8.2209849	-11.972359	-10.250247	-9.3753159	-8.4961294
-24.017793	-25.146554	-22.053613	-22.90159	-22.394877	-23.869639	-22.547396	-24.458997	-22.488529	-22.282486	-23.289401
9.18827606	8.85922116 9.18827606		11.4059823 10.4874972	10.8801004	10.9262504	11.5257822	10.8148101	9.22625031	13.0881382	11.0582956
-26.962953	-26.891446	-24.004815	-25.841554	-20.003638	-27.512535	-26.846371	-27.670344	-23.415928	-26.088239	-28.501908
-6.9595635	-3.6778148	-2.9252119	-0.6700764	1.74389169	-4.0253358	-4.6716845	-4.7588053	0.72045701	-1.9845016	-6.0692952
-4.4697584	-5.5298494	-3.1291966	-2.7961606	-2.8663253	-10.380507	-9.3820354	-10.458081	-3.7368671	-7.6539438	-11.963587
-21.63379	-19.430702	-19.609211	-18.562353	-14.131082	-20.343198	-18.965671	-19.674648	-16.95311	-18.981875	-21.109639
6.90199875	10.6067915		11.1632761	9.51994187	8.72414955	10.5921872	11.9907632	9.6469314	12.1602992	11.5622411
-6.3098638	-4.0763534	-4.9734832	-6.1932396	-5.6450942	-4.0959815	-6.8029974	-7.0586463	-4.8010544	-7.5072157	-5.169178
ME2BP4	ME2BP3	ME2BP2	ME2BP1	ME2BP0	ME1BP4	ME1BP3	ME1BP2	ME1BP1	ME1BP0	ME0BP4

-9.4897631	-11.154195	-6.5884364	-7.9560011	-2.7386704	-9.5336985	-9.2068963	-5.3461929	-5.2521074	-3.6628211
-8.6579217	-6.3368976	-6.6949145	-6.9062073	0.10525622	-8.5665063	-7.4340218	-7.7905422	-2.989582	-2.8874771
1.94267969	3.09633785 1.94267969	1.68998471	2.32576385	4.63725773	0.13910531	1.53116496	3.94044659	3.9354714	11.0836586
2.3127648	2.25972749	2.572389	2.92434802	62.8288188	5.81665658	4.12726268	8.75618209	5.59836386	7.38992823
-11.78546	-7.4829233	-8.6988213	-8.138477	-4.5253887	-4.309919	-2.1598239	-0.9187668	0.96562073	1.39694693
4.67471484	2.66065295	9.36895409	1.13773478	1.04552663	1.44309028	2.66036388	1.89588267	1.913935	2.16530156
10.1681686	8.90673495	6.81311439 8.90673495 10.1681686	7.68342186	14.341617	17.4455068	14.4760944 15.7159235	14.4760944	20.1051038	17.0448085
9.38303622	8.19862762 9.38303622	11.3073568	11.8193277	9.42230417	14.5837944	11.1843002	12.1265365	16.1132907	14.4997187
6.83878086	4.05167628	5.78608141	6.37435842	7.50838983	3.55793425	5.32365791	5.95591748	6.01394427	7.91284195
-23.905902			-18.26926	-16.50758	-16.380085	-16.839681	-12.996491	-12.645453	-12.306917
23.2064825	18.808581	19.7612263	17.4729268	28.2876419	13.2338474	18.0493178	18.5737633	14.1171	16.7063092
17.2789013	9.39828605		12.1387736	40.306979	6.59126771	5.88894944 6.59126771	4.20514012	5.87917916	8.41199815
8.43088549	3.71474967	5.83979763	4.635165	8.41049266	4.78296703	5.39959309	6.65625415	8.14357493	6.38977666
7.01208931	6.76021074	4.39794084 6.76021074 7.01208931		6.49823643	7.28403316	7.59734813	6.41551896	10.1588494	6.732942
17.0156962	16.2411165	21.7505873 16.2411165 17.0156962	25.4728987	20.7664993	21.2228553	21.3237499	22.087068	23.0760664	21.870241
6.12588779	6.58664586	5.32721944 6.58664586 6.12588779	10.9328506	8.57029073	7.95274684	8.07267586	11.8638352	7.1892944	7.52774756
14.3895263	12.8515276 14.3895263	12.3197177	13.9257718	8.29508014	18.1082933	18.1992296	19.3723195	13.4470716	16.2466462
2.07212014	0.77790302 2.07212014	1.51763856	-3.1891747	4.97380555	2.41103279	6.19340504	5.72146078	10.1510874	12.7067564
10.6629727	11.8254359	15.2205599 11.8254359 10.6629727	15.1438478	15.3880703	16.3915481	17.3894487	19.7596204	19.282479	24.9209751
-26.93999	-21.444341	-24.963553	-22.823841	-19.104617	-26.021285	-28.673987	-27.033576	-24.424067	-22.718203
1.37837347	2.40317632	-6.9458199 2.40317632 1.37837347	-1.5626205	-2.0506947	-5.7926564	-6.0609038	-6.7648733	-7.9706703	-4.4846147
-18.977051	-11.8965	-11.903999	-16.464913	-15.860479	-21.448197	-25.147682	-24.44979	-20.354761	-21.237796
1.49286402	1.52285311 1.49286402	3.64382497	3.4238496	4.23003795	8.98634665	7.08289447	8.03812488	7.34152381	9.46107282
-20.251941	-22.47591	-25.639417	-21.692132	-17.602372	-26.452483	-25.415234	-24.394743	-21.884139	-17.280196
-6.5975511	-0.2387148	-11.306421	-8.329447	-3.7744046	-7.425575	-4.3672816	-2.0995606	-3.888449	-3.5769529
7.67361204	4.4134109 11.3150455	4.4134109	2.91300329	8.68941859	0.01559389	-2.2993797	-2.3771336	-0.1651336	2.06202336
-19.643837	-19.341432 -19.643837	-19.977057	-19.334779	-18.915317	-18.2577	-20.728565	-17.699222	-20.929913	-19.407683
1.22623761	2.27969602 1.22623761	1.70052699	4.68733263	5.86867496	5.88875189	9.3777674	7.09546366	7.62278526	7.95045208
-8.9637458	-14.678281	-18.80572	-11.914051	-11.538205	-4.8102377	-4.2911934	-5.0874796	-5.4306689	-4.1226997
ME4BP4	ME4BP3	ME4BP2	ME4BP1	ME4BP0	ME3BP4	ME3BP3	ME3BP2	ME3BP1	ME3BP0

-12.693483	-13.048771	-13.136173	-11.574202	15.7816744	-0.9590221	-3.2914772	0.13191506	-8.3762439	2.41620455	2012-11
-1.1494916	-1.201549	-1.4921753	0.78420793	11.8927693	-1.9957419	-5.0154546	-4.7877604	-3.6518065	2.73762222	2012-10
-0.244626	-0.6298996	0.30869586	-0.0596897	11.8813261	-2.0603362	-2.2996712	-1.4568746	-0.5089416	2.89924	2012-09
4.28072503	4.2908426	4.42639483	5.15631118	17.4424052	-4.1507108	-3.951262	-5.9168667	-5.1608427	2.74311304	2012-08
-14.459985	-13.853543	-12.54927	-13.134588	14.9412768	1.68844418	-1.5352947	-3.6783633	-8.2575319	2.7182	2012-07
-5.3312571	-5.3237783	-5.3775046	-5.4316914	15.6433526	2.27426719	-0.0722923	-6.4774927	-7.8485722	2.76981	2012-06
2.9384944		1.55067426	0.54661013 1.55067426 0.80332318	14.0649974	-0.7470383	-1.6181659	-3.820438	-2.1943076	2.15196364	2012-05
3.64849254		4.74543575 5.04634823	7.29276625	12.7598358	-2.4470077	-0.4237129	-3.5214908	2.71555069	3.19397059	2012-04
-9.8511742	-7.2797908	-10.036467	-9.795873	11.9274362	-0.5939031	-1.728431	-4.2908928	-9.3606945	2.47261818	2012-03
13.3739401		14.6098484 14.3265311	13.958004	13.4872806	-4.1979113	-3.2174768	-6.5545153	3.678459	3.43050476	2012-02
-3.9291159	-3.5521369	-4.6925114	-2.9422071	13.8360312	-3.5179903	-5.4622055	-1.3042991	-1.2483689	4.48974667	2012-01
-19.073772		-17.855928	-19.129513	0.39238093 19.3380208	0.39238093	-2.9827517	0.50958256	-10.251577	2.98919091	2011-12
-4.9449102	-3.657525	-5.167889	-2.9672951	12.2679028	-2.7299758	-3.3961121	-5.7603481	-8.3747193	3.32447727	2011-11
4.27998663	6.41645349 3.68801727 4.27998663	6.41645349	2.86384321	12.1172983	-3.349166	-1.9253534	-3.7737468	0.86611253	3.44755625	2011-10
-13.904145	-12.672522	-13.095611	-16.876319	10.862299	-6.0591757	-4.0849011	-2.3502666	-12.355079	3.47602381	2011-09
-2.0249009	-1.1803352	-2.3926521	13.4848954 0.05293133 -2.3926521		-0.9016894	-3.6629022	-5.8594077	-7.7586176	3.16809565	2011-08
-1.0510687		3.13649112 0.52388506		14.2424544 4.84953022	-2.2655443	-5.3045728	-7.4544381	-5.3732355	4.35064762	2011-07
1.45527354	1.77780219	2.15922541	2.2239343	10.6115622	-3.188135	-4.8240409	-4.7148867	-2.318136	4.72191905	2011-06
-9.391073	-7.4738197		-7.7085264	10.7009456	-2.0533444	-2.1078794	-4.9121285	-8.9392228	2.95300952	2011-05
-8.2831476	-5.7614233	-5.3177691	-4.3145681	14.6886182	-0.2015369	-3.5722634	-1.6635088	-3.4499589	2.08576316	2011-04
-1.8589676	-1.0607691	0.88546055	-1.1291824 0.88546055	16.8870872	-0.0720883	-2.318536	1.75788671	-1.6188296	1.809	2011-03
8.77497695	9.34777541	10.6854678	8.88030177	14.5617535	-3.6861448	-1.5883039	-4.0739371	2.79607028	2.51529333	2011-02
-7.3576516	-7.7872845	-7.766934	-7.9207247	15.3185478	-3.9181039	-5.6456079	1.41398793	-5.9530731	3.920145	2011-01
-3.2562888	-2.7245567	-2.7848117	-2.9208678	17.0069399	-2.6998374	-4.8829279	-3.941439	-3.6926291	2.80312609	2010-12
1.9255993	1.80614208	3.37189892	27.9781694 1.58387548 3.37189892	27.9781694	6.8716478	0.21128735	-10.618753	-5.96012	1.71445909	2010-11
6.44642923	6.06878183	7.83762084 6.06878183	7.16622569	25.3935908	-3.2539829	-3.0949126	-0.1505903	10.4096651	1.59955	2010-10
-2.790285	-2.9537771	-0.6013198	-3.903016	18.3641256	-2.1455613	-3.789641	-5.11713	-0.7478579	1.81278421	2010-09
10.0847751	6.92159069	10.956751	8.41075539	22.6663355	2.18350757	-1.3947338	-10.451154	0.96302426	1.57777273	2010-08
15.3913034	14.6301056	15.1877355	16.6100312	15.9946207	-0.7241254	-2.9995439	-0.6352585	10.1892843	1.6771	2010-07
-10.305434	-10.581368	-10.068078	-9.3514004	14.133496	-0.8947418	-1.8159909	-1.9809965	1961278.6-	2.22158421	2010-06

964 3.68035209 3.5227894 1.81052013 2.79973087 603 -1.8542343 -0.8902443 -3.5265347 -5.0063413 905 -12.796321 -12.100205 -12.971631 -14.291425 339 6.36316875 5.37042798 3.91846157 4.13802144 933 -0.6951722 -3.7591056 -3.6562314 -3.720624 947 -14.114615 -14.761141 -17.201781 -16.083143 947 -2.0742674 -1.2112136 -1.7889806 -1.5678552 948 13.6326866 13.2128882 13.1708008 12.9662978 941 2.00955365 2.43164335 3.1508653 0.40472098 942 -7.2359209 -4.7523878 -5.7876323 -7.5293292 943 6.34952901 2.59044462 2.36049337 3.56378861 943 0.03427189 0.29141434 0.81062909 1.63226763 946 1.88844361 -0.4483399 -0.2540051 -0.0443996	13.2128882 7 -6.2254706 5 8.35987463 5 2.43164335 1 -4.7523878 6 -7.9597797 1 2.59044462 1 0.29141434 1 -0.4483399	-6.5002816 6.34952901 0.03427189 1.88844361	1.260184 0.466982		0.31240024	-0.3405857	-0.4441435	-0.043643Z -0.6866617	-1.5187698
	5 13.21288 7 -6.22547 5 8.359874 5 2.431643 9 -4.75238 6 -7.95977 1 2.5904444 9 0.291414	-6.5002816 6.34952901 0.03427189	1.260184	Н		0:10		-0.0436432	
1.81052013 -3.5265347 -12.971631 3.91846157 -3.6562314 -17.201781 -17.889806 13.1708008 -7.4292422 7.89447166 3.1508653 -5.7876323 -10.273991 2.36049337				_2 3035862	-1.2099688	-0.2629652		00150100	-0.916559
1.81052013 -3.5265347 -12.971631 3.91846157 -3.6562314 -17.201781 -1.7889806 13.1708008 -7.4292422 7.89447166 3.1508653 -5.7876323 -10.273991			3.88281693	2.40255323	3.31276403	4.17637054	4.21030791	4.23041955	2.90820615
1.81052013 -3.5265347 -12.971631 3.91846157 -3.6562314 -17.201781 -1.7889806 13.1708008 -7.4292422 7.89447166 3.1508653 -5.7876323			-7.2259945	-10.327534	-9.2661108	-10.631005	-8.6597457	-10.112316	-16.344779
1.81052013 -3.5265347 -12.971631 3.91846157 -3.6562314 -17.201781 -1.7889806 13.1708008 -7.4292422 7.89447166 3.1508653		-7.2359209	-6.215466	-7.1015162	-3.8196915	-6.3684828	-5.4448873	-5.3313623	-4.7331611
394 1.81052013 2.79973087 2443 -3.5265347 -5.0063413 205 -12.971631 -14.291425 2798 3.91846157 4.13802144 056 -3.6562314 -3.720624 141 -17.201781 -16.083143 2136 -1.7889806 -1.5678552 2136 -1.7889806 -1.5678552 2136 -7.4292422 -8.9463107 2463 7.89447166 7.06916603	13.21288 7 -6.22547 5 8.359874	2.00955365	2.07749141	0.83727486	2.14455059	2.1307283	2.57595881	2.94513624	4.02873959
394 1.81052013 2.79973087 4443 -3.5265347 -5.0063413 1205 -12.971631 -14.291425 1798 3.91846157 4.13802144 1056 -3.6562314 -3.720624 141 -17.201781 -16.083143 1136 -1.7889806 -1.5678552 1882 13.1708008 12.9662978 1706 -7.4292422 -8.9463107	13.21288 -6.22547	6.27464605	9.75744462	5.88215531	4.75295139	5.4465356	8.65160824	9.95512369	1.14958112
394 1.81052013 2.79973087 2443 -3.5265347 -5.0063413 205 -12.971631 -14.291425 2798 3.91846157 4.13802144 056 -3.6562314 -3.720624 141 -17.201781 -16.083143 2136 -1.7889806 -1.5678552 3882 13.1708008 12.9662978	6 13.21288	-3.6027037	-6.8104216	-9.0984292	-8.6229114	-6.8392607	-7.8014657	-9.1588162	-9.1791043
394 1.81052013 2.79973087 2443 -3.5265347 -5.0063413 205 -12.971631 -14.291425 2798 3.91846157 4.13802144 2056 -3.6562314 -3.720624 2136 -1.7889806 -1.5678552		13.6326866	14.5820687	12.6914953	14.47525	15.3500975	16.1470713	\vdash	14.8407328
394 1.81052013 2.79973087 2443 -3.5265347 -5.0063413 205 -12.971631 -14.291425 2798 3.91846157 4.13802144 2056 -3.6562314 -3.720624 2141 -17.201781 -16.083143	1 -1.2112136	-2.0742674	0.17514145	-1.6880912	-3.0547653	-4.5377998	-2.1144112	-1.057532	-4.0079477
394 1.81052013 2.79973087 2443 -3.5265347 -5.0063413 2005 -12.971631 -14.291425 2798 3.91846157 4.13802144 2005 -3.6562314 -3.720624	5 -14.761141		-15.849627	-17.138814	-17.078974	-16.065583	-14.039327	-17.613656	-16.558851
394 1.81052013 2.79973087 2443 -3.5265347 -5.0063413 2005 -12.971631 -14.291425 2798 3.91846157 4.13802144	2 -3.7591056	-0.6951722	-3.6394733	-4.8419069	-5.4034143	-4.2175274	-4.1474948	-3.9396841	-3.2857148
1.81052013 -3.5265347 -12.971631	5 5.370427	6.36316875	5.61148639	2.84791372	3.85238317	4.40799544	5.31952979	4.6190102	3.40284431
1.81052013 -3.5265347	L -12.100205	-12.796321	-11.776905	-11.848784	-13.00053	-11.529156	-11.342865	-11.520286	-13.027195
1.81052013	3 -0.8902443	-1.8542343	-3.5663503	-4.2651613	-2.1573059	-1.4946527	-0.01037	-0.5519511	-0.4741178
	3.5227894	3.68035209	4.71077964	1.00065732	2.25441418	1.91445213	4.32658515	2.84177506	1.00938613
3.64595329 4.33362162 4.81814708 2.53815165	4.333621	3.64595329	4.25938619	2.18436706	3.23672957	4.79243712	3.82520532	3.59735646	1.49231697
-7.8346357		-5.6928991	-5.3945966	-8.2074251	-7.2753061	-7.1261151	-6.1062898	-5.0241923	-9.1406837
5239 -6.9476793 -3.3781453	3 -2.7795239	-6.0385816	1.8845953	-5.8501725	-5.7827319	-4.2923153	-2.8439873	-4.1259972	-9.0231808
3327 -2.4798969 -1.6480554	2 -2.7223327	-2.5293302	-3.56109	-0.0809263	-2.763037	-2.4491663	-1.3603975	-3.1233687	-1.4928384
5148 10.0247675 8.88496699	3 10.0115148	10.9227618	11.1746041	9.29140342	9.12873563	9.7596766	9.30925142	7.78386771	9.17466251
1157 -6.1253365 -4.4362017	6 -4.1144157		-4.8385182	-4.675819	-6.3059805	-8.5540935	-6.8677912	-7.0282152	-6.6801293
7094 -2.9341584 -4.4688106	5 -1.0587094	_ 1.1832135	-3.9569191	-3.2565163	-4.4062666	-1.6555419	-1.9258195	-4.1570917	-2.6542083
1.26821208 3.01075005 -2.9862187		4.19606542 4.42238437	_	-1.1479546	1.45823543	3.47315002	5.30707127	3.32334925	-1.9593523
3743 7.93727101 8.42987247	10.0818743	9.59428351	10.4794275	8.78193737	8.19695327	7.86435278	6.45818064	9.42730254	6.54529708
318 -2.6250982 0.02392587	0.825818	732 0.76276477		0.54290039	-2.4253542	0.37139047	-1.3885636	-2.5927325	-0.6583258
9.27979393 6.81710492 7.44479232		13.8893994 10.3362682		7.81168637	7.41814966	10.0696917	10.2954462	12.2002166	8.26588307
)927 15.9287098 17.3162175	1 15.0530927	18.1576574	14.8289953	16.5646998	15.3147879	14.4605357	14.3970724	11.223918	13.5029401
077 -10.378008 -11.022776) -10.16077	-7.5900159	-5.1306523	-11.627542	-9.0468783	-7.7287739	-9.3657095	-8.7952422	-10.827979

-4.1815097	-2.5090079	85 -7.2526632 -2.5090079 -4.1815097	-3.57551	-9.3211906	-9.8381908	-10.989781	-12.136864	-11.800393	-10.961958
-0.5476594	-0.4067745		1.20175452	4.25445882	0.08157622	-0.5833817	-1.29083	0.30240301	-0.7671496
5.34394766	0.86175296	4.65895822	1.3773641	4.13621163	0.69597387	-0.5252992	2.54630938	0.77017964	2.0878757
-5.177669		-2.6711234	-1.7903976	-4.3367754	-1.3921255	1.34179674	1.55479471	1.51169604	3.1216916
-4.0648285	-5.0104991	-4.703216	-4.3195274	-2.4005871	-11.485179	-7.746845	-8.8272776	-7.0959966	-6.4397789
-5.5215034	-5.2571257	-4.2721297	-4.4069671	0.31820761	-7.2055133	-4.5136116	-6.5910451	-5.843582	-6.3505875
-0.1811667	0.8639171	1.5358376	4.53109053	3.46236004	3.10037518	2.76511853	3.95111332	3.39682788	4.95403064
6.53597226	6.35329268	6.65955887	8.14366275	5.37674141	6.98114955	8.91245163	9.28930408	5.88878416	8.65786917
-6.9629477	-7.245057	-8.217213	-5.0871622	-5.6773917	-7.0071781	-7.2785777	-6.5150999	-5.9779413	-6.3470049
5.4778688	5.24646808	9.05476171	10.8435493	7.61157782	12.0707324	13.1519107	12.893144	13.8268294	14.2862337
5.78670283	4.97470737	4.95104917	2.67100712	0.92040406	-1.8499194	-0.2762179	-0.1824063	0.90527849	-0.5531627
-3.7532715	-3.2374888	-6.6463173	-9.7352929	-5.8769602	-12.618747	-14.043094	-13.101298	-12.672983	-14.578804
-5.5173421		-6.5802559	-5.3601588	-0.8685668	-5.2208746	-3.87377	-3.1326913	-3.7932215	-2.2936741
6.24281342	3.11651116	2.07836107	2.4452218	6.41146132	3.91487459	4.49860725	4.44796825	4.1784781	6.05531229
-7.7995713	-8.3015724	-12.138436	-7.981692	-9.5698117	-11.882846	-12.599806	-12.550223	-12.066363	-12.916791
-4.5452351	-5.713773	-3.197602	-4.307856	-0.8770516	-3.7506486	-4.4856388	-5.0952308	-0.9957134	-0.4028291
-2.4380283	-0.584491	2.37744901	0.87627775	6.77055497	3.79296709	1.35101006	1.47286706	4.16498828	3.34762215
3.47547382	3.14476033	3.40706754	3.10101244	3.63932867	3.92539689	3.6049737	3.20737463	2.78829851	4.37267259
-5.9771539	-7.0904229	-7.6571413	-4.255073	-4.0410586	-7.9768448	-5.0285813	-7.8891747	-7.325466	-6.0855013
0.45598833	-2.1606982	-2.9041751	-0.3786485	-1.2922726	-4.3154624	-3.7601004	-3.5158913	-2.1439613	-2.3429535
2.58869361	0.47789142	-3.5232989	0.78006362	-4.3240331	-1.7586824	-1.4551779	-3.0172838	-0.1407756	-0.1802824
4.52873601			5.03039767	8.23081574	9.66410484	11.0578561	10.6661421	10.6483546	11.3256939
1.15095532	1.01877063	-0.9520891	-6.6568698	-3.9258155	-4.1466283	-4.8643733	-5.3657982	-8.2109912	-9.3845891
0.52767647	-0.6328113 0.52767647	1.38350356	0.78114504	2.34481415	-1.947886	-4.801349	-1.4945678	-3.5685787	-1.0768679
-7.5384212	-5.587355	-2.2452356	-2.5824353	6.20250037	0.73794026	1.76205735	0.00747212	4.85644384	5.91739433
17.2257962	19.0199721	14.6085236	19.9282663	15.6371691	10.876121	8.20659159	10.2050617	9.51019589	11.1432529
0.56630842	4.24730291	0.73864169	5.78807523	6.93643346	-0.0247062	-0.7747916	0.45343838	1.22845385	3.34386755
0.79266813	3.53638225	3.90418293	8.46493279	11.6440268	7.91219708	6.44571281	7.52637843	10.6931772	17.132884
14.4168159	13.7703542	10.9727698	15.0255764	11.8651186	14.7559352	16.0794785	14.4820863	15.3757883	13.1003588
-8.3012195	-5.4069484	-8.5446669	-9.537807	-7.9263414	-9.7693942	-7.4773763	-8.689588	-9.7746736	-8.0851784

21.4728947	25.1814782	31.2531226 25.1814782 21.4728947	31.0847649	77.1892811	17.8987651	14.1003324	-23.947787	13.836538	1.2084	2015-05
14.7620617	12.3527574	16.3958044 18.4513273 12.3527574 14.7620617	16.3958044	37.9934697	-2.1626354	2.41089595	-9.5434495	16.6805565	2.28319048	2015-04
18.3645194	17.1735822		21.7711458	31.0480462	-1.5447084	-1.290787	-12.682041	15.44497	3.33651818	2015-03
6.6321961	5.18509797		8.27297789 8.09770415	18.0316158	1.95666228	-0.0215025	-9.8809838	3.19927483	3.05396	2015-02
6.99472548		9.58207265 9.31585462 8.60389951	9.58207265	29.6904578	1.99399118	-0.5883788	-16.349022	-0.8124724	2.77865	2015-01
-12.111397	-12.845689	-11.692981	-12.359276	43.4012302	5.0098231	-16.20789	17.2132229	8.21335851	3.0243913	2014-12
5.02154728	3.51524521	4.58366433 2.85365605 3.51524521		22.8228155	2.66789804	-5.2158429	1.646257	6.47811282	2.5376	2014-11
0.76836592	-1.0414712 0.76836592	-0.0510163	3.12118216	13.8493731	-2.3838539	-2.0617762	-1.4145357	-0.4210209	2.49501111	2014-10
17.0258102		17.9331465 16.6285557	15.0284124	22.556313	-5.9602573	-3.0270584	-7.6986746	6.89596939	2.7825	2014-09
6.47367856	7.76271059	6.97159325 7.76271059 6.47367856	8.61894381	16.466973	-4.4384691	-1.2693923	-7.3371611	-0.1068944	2.93719048	2014-08
5.85128407	6.35263347	4.78159325 6.34418718 6.35263347		16.4957328	-5.3608044	-6.3246606	-0.8518956	5.3617301	3.2097913	2014-07
5.68762817		6.85941442 5.08567602 4.94382541	6.85941442	13.5629869	-2.2954796	-1.6986423	-5.4417863	0.38137258	2.69834	2014-06
3.13216098	3.45354275	2.85162001	2.81642771	12.3185642	-3.2063523	-2.5306181	-5.1575719	-0.9190624	2.411755	2014-05
-2.2885962		-0.2750799 0.00776473 -1.7527444	-0.2750799	12.6090756	-0.4021328	-2.3001459	-2.1705158	-3.2453232	2.47767619	2014-04
-2.9741505	-1.2957892	-2.7043067	-2.6732204	16.7739517	-2.3750485	-2.7828976	0.65625488	-5.0677645	2.27602381	2014-03
4.04782009	3.47614825	3.97679425 5.30303359 3.47614825	3.97679425	22.3948622	-4.5859886	0.02354126	-4.9540252	-1.8996111	2.76733125	2014-02
0.22801971	2.65646357	4.25406287	1.74541756	23.7628451	0.66988934	-1.7422651	-10.327903	-4.5970241	3.3991	2014-01
-4.6426245	-3.4049838	-2.4244093	-5.78317	12.9994373	-1.6945565	-3.0089385	-4.8908255	-7.6294029	3.68339091	2013-12
10.2302394	11.0643854	10.6338091 11.0643854 10.2302394	9.90559001		-4.8434893	-4.0786921	-6.7859136	1.35836197	3.88667143	2013-11
-2.8571559	-0.971182	-3.2172939	-2.4061395	16.0791332	-2.8545139	-4.003091	-3.4432269	-6.419954	3.61572222	2013-10
4.13215378	3.70491015	5.48342169 3.70491015 4.13215378	3.4917505		-3.0242053	-6.3921932	-4.8057645	2.25431059	3.15052632	2013-09
6.86974023	7.68783977	6.6927448	8.82820559	20.1652601	-6.5258405	-4.217348	-2.0629917	3.38270103	3.21937727	2013-08
7.37861809		8.72325084 6.59752429 9.10993886	8.72325084	20.4899172	-2.2272325	-1.2506087	-8.2638763	0.39272845	3.37004348	2013-07
-17.976456	-16.409636	-15.650608	-15.583056	13.9961744	-2.0097688	-6.5819631	-10.061699	-21.465915	6.46817647	2013-06
12.1572188	15.8601354 12.1572188	15.9409808	15.0700663	22.6990721	1.43641102	0.82582446	-6.9921583	6.87686789	2.92112273	2013-05
-3.8554924	-5.3929099	-3.3787408	-5.3811981	12.8277177	0.70509897	-1.894086	-4.0724253	-4.5552662	2.46625556	2013-04
-6.2066217	-6.0919125	-3.741133	-3.0583178	17.6639698	1.23310275	-2.45559	-4.7219257	-7.6867789	2.32762381	2013-03
3.50620953	3.67955335	4.43745123 3.67955335	5.11034502	12.5454089	-0.2467042	-1.4778945	-4.4462063	-1.5697531	2.83779333	2013-02
3.8364913	4.15454047	4.13599714 4.15454047	4.16146393	17.6619566	0.3042863	0.3669048	-2.1649026	2.98960302	2.102065	2013-01
13.9173702		15.2974448 17.0084668	16.4445727	17.97627	0.49412435	0.2249152	0.25646821	12.673008	2.36937143	2012-12

19.8719717	25.4797853	31.9344068	39.3949228 31.9344068	67.8629565	17.5174374	22.9963235	29.1398373	32.3453237	46.4150755	17.5162523
13.9088317		18.2159172 15.9255363	24.2726227	20.8568114	14.7888974	15.2129463	17.7122985	17.4960591	20.7872573	12.3212355
18.3367663		21.7360143	23.5858591	28.2239595	19.3571492	24.3979686	20.3377683	22.7771428	26.0174781	19.9744465
5.74262745	7.14060111	7.09109637	9.24274865)67	6.14092084	5.85125017	6.9620079	8.14704699	7.9978565	3.91154396
5.26585877	11.4828059 7.70982808 7.70003444 5.26585877	7.70982808	11.4828059	11.6291058	5.70494366	5.67222218	8.33904363	8.73622769	10.0185435	4.88874353
-4.8874758	-4.999802	-6.2908098	-5.8398024	-7.5376414	-7.0615713	-5.0449012	-9.734205	-11.152327	-5.1698174	-11.104498
5.13100946	5.1084928	4.96798199	6.261574	8.63254315	2.91251342	3.8025438	5.09034119	3.11911746	7.95903799	3.59321267
1.99011349	0.72954776	3.2624499	3.75045602	1.69204958	1.87764713	5.05411523	1.89125746	4.40757136	4.55436704	0.15601835
14.3288267	14.152129	14.3075613	16.3156325	17.2828437	15.6552315	14.257193	15.6864447	20.0960659	17.1626344	13.4535212
2.93414581	10.3931899 6.32146522 2.93414581	10.3931899	7.24450072	8.02689527	5.83830132	6.78081182	4.78357834	8.00448702	8.58800474	4.25400196
7.79809958	6.13756339 9.03917902 7.29673378 7.79809958	9.03917902	6.13756339	8.31799078	8.76229399	6.8967886	6.01800076	7.19374323	5.16091748	6.67828837
3.14337206	5.91108375 4.04070297 4.57922856 3.14337206	4.04070297	5.91108375	8.36634998	2.8548404	4.7876567	6.39984707	9.52434937	7.6764465	2.49749903
1.66745526	1.96828434	3.81131689	5.8184198	6.67145007	0.40167169	3.5880447	3.83719669	2.31678026	4.95498644	2.33272145
-3.4790546		-2.8886888 -0.5802994	-2.1548232	-0.8169158	-0.995685	-2.258172	-1.0350069	-1.2539525	1.16259427	-1.4710449
-1.2340797	-2.3489937	-2.8880853	-5.1148874	-1.7103763	-1.3165421	-0.0128559	-1.6494179	-1.7694966	-3.5998363	-2.216192
2.92680928	4.18001285	2.89181249	11.9065841 7.19551464 2.89181249 4.18001285	11.9065841	4.02576602	3.4430144	3.49851081	5.49930912	7.05513151	1.71663026
-3.074743	-0.2416183	3.2573274	6.49997439	<u> </u>	-2.4924061	-0.1315721	1.57139943	6.66886659	4.84617908	-3.09385
-4.05316	-4.0802198	-2.3800902	-2.0630868	-1.713555	-2.1284707	-3.3579612	-2.799005	-3.062359	-3.9602209	-2.8425639
9.19319322	8.0557395		9.20550764 8.08532466	9.2777891	6.98886903	10.4496342	12.0260407	11.0892756	10.2956858	7.52537681
-1.1855675	-2.0798029	-2.7720252	-1.0300976	-4.8214303	-2.4439763	-2.1374774	-4.2904564	-0.2672304	-0.2711164	-3.3591221
3.0022495		4.43224496 5.01529566	8.2903183	6.03418219	3.83816987	3.1785707	5.31147972	4.84572083	6.61306668	2.97039831
9.00372529		9.10284758 8.91330891	7.05987421	13.8458484	7.22140665	8.19415348	8.43652806	8.82320948	9.45174358	6.26250611
4.82734968		7.94906663 8.53365579	8.27975349	10.1220991	3.32121559	5.59471193	7.79293992	7.48427974	8.10156453	6.72563722
-17.487647	-16.4793	-15.755107	-15.493676	-12.972186	-16.734494	-16.173903	-17.405202	-14.099011	-16.828247	-18.048599
13.8479945	15.1737809 13.8479945	15.1284817	17.0997962	16.5025774 17.0997962	11.2830749	15.5074298	14.8256305	16.8649594	13.8266981	15.8310514
-3.7288822	-4.3643041		-1.9456401	-1.8993679	-5.1566339	-5.9759237	-4.0209849	-2.6841518	-3.698406	-5.2065422
-4.9772561	-4.6948443	-2.7452491	-1.2498052	-2.2811043	-4.2655479	-1.7971349	-1.4052154	-2.4565892	-3.4882882	-6.6985267
3.42721452	3.60102372	4.46106829 3.60102372	3.96822536		1.40167949	4.70319774	3.61564066	4.4912165	4.44907958	4.93599144
6.01032457	6.01615973	7.983572	7.96442248	7.57826024	5.40686304	6.95449345	7.44105177	7.11746002	5.44473271	3.19516498
16.9731103	17.5606448	16.6969761 17.5606448	18.5324193	16.1417426	15.9026238	17.0702367	16.2068621	16.7747008	18.9636923	14.1011251

2.34423659	19.1323303	13.9300774 19.1323303 2.34423659	16.7147213	22.8341473 33.0160863	22.8341473	22.7549535	31.2595871	38.9056837	63.2507412
19.7002708	22.3396839	21.0333575	20.5403814	31.6226623	17.0612601	19.5222627	18.9453967	18.1191475	29.8745006
14.7413999	16.6708691	15.0958088 16.6708691 14.7413999	22.0728593	24.4841604	20.5925201	24.7685497	23.4929972	27.0784566	28.843467
3.94301156	8.83597716	6.05406227	7.49655428	13.1806708	5.88363586	8.34887367	8.33623062	12.0991736	9.12647049
-5.4851381	3.24655515	9.1582795	3.74638211	19.5953868	3.39393394	6.70091518	9.36760135	11.3706241	10.6120659
31.5546303	22.4802324 31.5546303	21.1070216	25.8231374	11.4434746	4.784113	-1.8784547	-2.4137731	-2.3511007	-4.0958816
13.1406757	13.6988927 13.1406757	18.0396105	10.7334192	8.41200896	7.31545959	5.71044096	8.13787081	4.04924054	4.38429397
3.74546645	3.73759567	2.15666018 3.73759567 3.74546645	1.26858339	2.1248566	3.13034115	1.56660644	2.54679333	1.99153811	1.20693042
4.88102421	8.31280746 4.88102421	8.02597221	6.29077668	12.5213513	10.7299225	11.4856197	13.1436612	11.7173239	15.6120344
0.09875159	1.84423064	2.44177119 1.84423064 0.09875159	2.82789692	6.2819393	4.51332733	5.01772561	6.50220302	7.26628222	7.25552506
9.72797714	8.98801976 9.72797714	7.56051385	7.87504208	6.25072325	9.83339103	9.35136844	8.05491397	6.7605471	9.97335289
2.00648913	1.36689483	4.00850779 1.36689483 2.00648913	1.7776024	4.8523965	3.02378309	3.58374484	3.42444821	6.79239709	6.1914303
0.22048977	1.58863997	0.79535128	2.48136274	2.59839134	0.79672471	2.042001	3.39405773	3.88315222	4.37650636
1.38634398	-1.0799059 1.38634398	0.93568173	0.05173859	1.49585956	-2.2085878	-1.8064719	-2.3939101	-0.7549679	-1.9462143
-0.6524002	-2.4245352 -0.6524002	0.75261354	-4.390601	-6.5480237	-2.2967504	-0.9796777	-3.8912674	-5.611648	-3.8826778
3.74348429	-0.7156085 3.74348429	-0.3330521	3.21519038	0.02438285	1.30589375	1.44077016	5.46619689	5.63912019	8.33347203
-4.5633123	-0.2793641 -4.5633123	-0.3681405	0.72674208	5.61344344	-2.4317247	2.84291575	2.40991829	6.29839485	10.0998773
-4.5849308	-3.4830467	-2.4774164	-4.2477417	-1.456882	-3.0017047	-3.6108492	-2.4681189	-1.6685003	-2.2964094
3.64017821	3.74862635 3.64017821	5.09864265	4.23757578	7.91761872	5.57971242	9.56774631	9.41448316	10.0577744	7.78296971
-0.6651597	-2.0278898	0.25169244 -2.0278898 -0.6651597	-1.9626478	-1.2593971	-1.2961285	-3.6967439	-4.2367383	-2.8687259	-3.3135379
4.54980937	11.5834968		10.8623223	9.15621303	2.28294708	6.01905098	7.35924715	6.81469239	9.64957461
6.46641756	12.4141622	6.46181945	4.5180356	4.7676054	9.74037131	9.9210257	8.1021095	7.04579606	12.019001
0.72807856	2.31670397	5.16984242 2.31670397 0.72807856	3.22204622	7.55645504	3.40629087	6.36792127	7.99552119	10.0185915	12.267238
-15.091783	-9.6571442	-12.439244	-11.911935	-10.006708	-16.694009	-14.098383	-15.846699	-11.927686	-14.108189
5.34975113	11.7915044 5.34975113	10.5077479	11.1502702	9.36999133	12.3739486	13.3432608	15.3173673	16.8751932	18.5922318
-2.1664742	-2.4141348	-0.7435708	-1.8684789	0.39483824	-3.5687437	-0.4170266	-1.2291508	-1.3653538	-1.8240992
-6.2065788	-3.1443232 -6.2065788	-6.0671277	-3.4797827	1.83409443	-5.6401902	-5.3142437	-2.4966352	-1.3836308	-1.2058337
-0.6234159	0.32563626	1.21534821 0.32563626	-1.1496862	2.25469307	3.13630245	5.72954253	3.48748381	3.73700294	5.24590468
5.93413741	7.01796391 5.93413741	7.74140962	2.72687331	8.26230929	5.12242311	6.60024587	6.62680129	5.71115637	8.18572084
20.4305725	13.3603456 20.4305725	18.8272955	15.4473948	14.4374316	17.3149364	17.3566613	17.9553337	19.6087176	17.834603

-10.27468	-10.528781	-10.294107	-8.108237	15.6401074	-2.4082144	-4.1762535	-0.9554311	-5.6793928	2.72791818	2017-11
-4.5426108	-1.6225785	-2.1597381	-0.5397906	15.9076525	3.20075938	-2.9875087	-4.8635438	-1.5545226	2.66019412	2017-10
0.92338002	0.73546847 0.31570552 0.92338002	0.73546847	4.462599	15.9205761	3.58953265	-0.589378	-7.4625592	-1.4630005	2.74206667	2017-09
3.5169883	6.25974855	6.75394254	9.25942868	14.7549317	-0.0651022	0.09740714	-7.7401667	0.22914695	2.82102609	2017-08
-6.7240963	-6.7916044	-5.7118881	-5.6876912	17.9107345	-4.7592894	-4.0439795	-0.8040894	-1.0658062	2.67962857	2017-07
3.25506512	3.56914001	2.40652297	4.38162384	12.0566754	0.83480165	-1.5815984	-5.0336404	2.02510319	2.77741818	2017-06
-11.36883		-10.200337 -10.039827	-4.6689357	18.4012973	-1.0420832	-6.0913021	0.30527531	-5.5845793	2.74593	2017-05
-9.885513	-6.2631038	-10.611982	-6.296727	17.4302251	2.33301139	-1.6633416	-2.2525845	-5.50116	2.56428333	2017-04
-2.6596327	-5.7767373	-3.4913456	5.14425775	15.5367279	3.58701851	-2.2827094	-5.443571	-3.0714367	2.48920435	2017-03
2.67682549	5.85638483	10.3324483 5.85638483 2.67682549	15.7297941	14.1927419	2.79308841	-0.9605159	-9.5840381	0.80334089	2.35459444	2017-02
-4.828109	-5.1320523	-0.1299396	1.77113803	14.629154	-3.03659	-3.9364103	1.12264385	-2.4544093	2.20131111	2017-01
-1.6236834		3.76505593 0.36609437 -3.9534303	3.76505593	17.042509	-3.1367463	-2.7255997	-3.4003383	-7.6598633	2.30028636	2016-12
3.08285026	5.08559784	2.57880012	17.7895032	16.5159732	-1.207011	-3.2961233	-1.7548455	1.68969515	2.25123636	2016-11
3.03460205	6.1684469 3.07528364 3.03460205	6.1684469	8.3996628	12.5238623	-2.9540152	-1.9003475	-4.5980468	0.95411635	2.2003125	2016-10
-0.0492998	2.0483764	1.76332247	8.70007761	13.6313732	-1.9679205	-2.3852764	-3.392875	-3.8694471	2.134705	2016-09
5.75707114	6.22856874	6.81734263 4.80964833 6.22856874 5.75707114	6.81734263	18.3875288	1.9751661	0.45465522	-5.7604152	2.70060574	2.0252	2016-08
1.47173285	-2.7555998	-1.8851431	-0.8793953	18.6767463	-0.4715828	-3.5943321	0.04584907	-1.4825983	2.00947619	2016-07
3.93630287	5.71508328	5.9338721	8.63524354	19.9250154	0.71059622	1.56841083	-7.6778685	1.4554851	2.0145	2016-06
-3.6372509		-1.4403917	-4.5043789	13.9590653	-0.767064	-1.0559933	-3.2985683	-2.4667161	2.0033	2016-05
2.31457239	2.05708165	4.17351867	2.70138221	16.9805211	-0.0657995	-2.5908048	-2.2562503	-3.8690243	2.008915	2016-04
19.9791088	22.0782276	20.3277034 21.2673705 22.0782276 19.9791088	20.3277034	24.579885	-1.3537869	1.24265547	-7.0826042	14.4564863	1.97373913	2016-03
-2.0749827	-2.9772397	-3.2469453	-2.4973464	16.3611425	-0.7741473	-2.6765531	-2.325923	-4.6618788	1.9756875	2016-02
-32.287243	-33.176358	-31.835864	-24.511469	22.1664057	-0.4222616	-2.6121075	-0.2280477	-29.535931	1.97875	2016-01
9.53806058	10.41452		9.75137859 14.0216476	27.3454727	-2.8449202	-2.6790498	-3.2739444	3.49391225	1.84078261	2015-12
8.09447983	11.0735746	12.4608243 11.0735746	17.7829086	35.07314	4.89574661	-0.5998976	-11.623969	4.42180789	1.78571429	2015-11
18.429933		22.3867528 22.3502902 22.2010707	22.3867528	32.3651728	2.71994298	0.15637252	-11.947641	15.226817	1.87482353	2015-10
-8.0013849	-3.5273414	-4.3571224	-3.660678	20.3853373	3.28845891	-0.5085427	-5.5129334	-7.8285782	1.909205	2015-09
-15.785489	-15.775436	-16.897486	-14.372045	28.2519313	-4.5868629	-3.3215165	-3.2933448	-17.03121	1.6847619	2015-08
-25.136157	-21.045031	-21.057104	-13.293361	29.0055519	5.31629503	2.38967606	-5.5112627	-17.048639	1.27677391	2015-07
-15.324369	-8.658938	-10.707167	-6.1025639	41.7387744	-10.515118	-7.0196444	-0.3702514	-11.683916	1.163	2015-06

-7.9493291	-6.3474219	-6.7020342	-7.045887	-5.656807	-9.2944182	-6.4487756	-8.7860078	-4.7013074	-3.3988707	-10.203714
-2.0356114	-2.4834691	-0.9652053	-1.1686207	4.85383332	-1.0933488	-2.7034212	-3.2417899	-1.193058	0.50465654	-4.4980664
0.53713666	1.97187784	3.51078001	4.69634429 3.51078001 1.97187784 0.53713666	2.60200995	-0.3199182	2.40690338	2.13213755	2.52358854	14.6274105	-0.469586
3.36690861	3.11746243	2.42372495	8.92829001	11.9944402	2.30095304	3.89744391	6.27728234	5.79533706	11.6558076	4.2924106
-0.7431909		0.25098907 1.08838926	-1.3679508	3.53825687	-2.8332944	-1.2916421	-1.8403734	-0.2205215	-0.9523149	-2.7643548
3.39433981	2.9773852	3.45607192	4.96690424		2.03050137	4.27594418	2.60453727	4.45300019	4.84820131	4.0408911
-8.603495	-6.0137011	-5.6518059	-6.4812912	-4.1261574	-8.7597296	-8.2061971	-8.021789	-7.2455895	-5.5189513	-10.747402
-7.1183445	-6.3939591	-4.1059169	-3.9041147	1.46564872	-8.7388739	-7.5809958	-7.5590942	-7.690004	-4.7548789	-11.617489
-2.2994146	-0.3229602	0.12525656	0.83555678	-1.4109359	-3.1749129	-2.8469451	-1.2636837	-1.6968628	3.54001675	-6.3660713
3.26915652	5.48311138 5.00307292 3.26915652	5.48311138	6.0894632	10.0902551	3.64020406	4.0025088	5.15088311	7.57052761	13.2072206	4.85494589
-2.1189516	-2.1640629	-3.7379833	-2.3304631	-2.1370189	-3.3775113	-2.9308132	-2.6730831	-1.4777969	-0.2645575	1.12221168
-3.7501175	-3.4335607	-4.7095772	-3.6092542	-1.9306024	-3.8807724	-3.6512112	-7.0257139	-5.9001853	-2.6132036	-3.4036585
5.84063647	2.8656694	2.23516841	2.0976626	6.12576021	2.30457259	2.83060567	3.44153166	7.55265691	11.4694003	2.26524426
3.11736802		3.69480028	4.89477787 3.69480028 4.93519135	8.59592102	4.89085916	2.94558404	12.6839219 4.11398197	12.6839219	8.79646246	3.82003203
-0.9836258	-1.7732356	-0.0710253	-0.5934639	-1.3500991	0.37132621	-0.2024319	3.48612786	1.23333801	0.2799326	0.20680677
4.25942656	5.97945969 4.63691513 4.25942656	5.97945969	4.59119181	5.59631117 12.1753067	5.59631117	5.45405346	4.34036322	4.4387453	13.2571537	5.49032124
-0.7374022	-1.4037875	1.03574427	1.5273417	9.98162457	-1.7483412	-0.7880699	-1.3536455	-2.7478308	4.96896226	-0.8592774
3.3096264	6.84759966	7.52263978	10.0934651	9.26287751	6.96714518	5.4516598	5.80997278	7.45167018	13.956586	4.7493255
-2.4550212	-0.5062511	1.75777649	2.22330357	1.68015339	-2.9863564	-3.4649167	-1.1866043	-0.8430526	2.20242511	-6.3456975
-0.1871239	-0.7575612	-0.3730371	2.49156669	-1.1480762	-1.8140672	2.59100536	0.1839956	3.95708093	2.46364412	1.20360231
16.4256817	17.7482658	19.9398909	20.0485528	22.0453265	17.1130249	17.2259502	18.909679	20.0021713	19.8939223	16.0343897
-3.1342789	1.43177221	-1.0554943	-2.5055532	-1.6498633	-2.3840486	-3.6716189	-2.3712938	-2.6565436	-0.2409225	-0.2429996
-29.017975	-29.307175	-26.945471	-30.226419	-23.978322	-28.65481	-29.919822	-26.753029	-26.866698	-22.821539	-31.124067
6.27261525	9.1560919	4.49475606	5.58406164 4.49475606	10.568674	7.50395933	7.84084255	10.0127629	10.3612364	11.001478	7.15043764
8.27554679		14.4410279	15.3719805 14.4410279 7.83828738	22.2606961	8.50175261	8.63725235	12.1304351	16.2795523	18.5415086	8.25747177
20.1083585	21.056041		19.8578863 26.7532758	27.0476969	17.9297432	17.8169431	24.1627708	26.3007718	23.2691556	19.1186909
-3.8003882	-4.1808792	-4.3399792	-1.2605513	3.82697335	-4.7380579	-2.6991933	-2.7011258	-2.3042803	-1.3813458	-4.7026568
-13.832989	-10.572601	-14.821658	-12.561782	-11.414993	-15.206868	-14.242652	-12.028637	-13.43876	-10.600936	-14.793712
-18.776303	-17.470453	-17.364983	-15.357402	-3.9784842	-21.727801	-20.628853	-19.960354	-15.642646	-13.974575	-26.209416
-9.6166576	-4.7089052	-6.6575538	-4.4042564	-7.159666	-11.213053	-9.862032	-11.770119	-6.9265483	-10.587337	-11.897112

0.31906241	-0.4538452	-1.321488	-1.6233377	-1.5944631	-3.4175139	-2.9229264	-3.7541223	-3.4298331	-5.0948994
2.19824945	4.98892035	1.35940499	6.68197916	7.16671715	-2.2595929	-0.7665161	-1.2919304	-0.697383	-0.8189639
0.07805935	1.8484856	1.92075047	2.151804	7.40021451	0.17313689	1.392179	2.03659777	3.52779125	5.54561792
2.1821044	5.07044836	3.15789839	6.25662845	7.61628165	1.51361304	4.0204829	4.64334343	4.29169377	9.60638254
4.26761754	5.57566198	4.97937789	3.76704355	3.87036282	3.96050103	1.88847416	1.3692046	3.60034067	1.59200988
3.7488171	3.29887752	4.23727834 3.29887752 3.74881716	8.99877614	7.66178371	4.84392414	4.66245083	4.01501066	5.22281228	4.74574378
1.99558817	-1.6088679	0.33271365	-0.0606168	-2.7472842	-6.8150667	-6.5027966	-6.0931519	-6.7134352	-5.2981156
-0.2237544	1.3897935	-0.515231	-0.3978976	3.73684915	-5.2302517	-3.1154549	-3.5338133	-2.7276425	-4.1479743
0.00832987	0.35166864	2.84552263	4.24649613	2.1297462	-1.4726821	-0.9169529	-1.8785391	-1.1441455	11.4386996
1.9990466	3.04112018 1.99904664	3.55948987	7.03107109	12.8965778	4.34161797	3.54818113	4.51817276	5.01507792	4.50942946
4.48582749	2.52511291	1.75868669	-0.3796888	1.71260585	-0.4261895	-1.7669768	-1.992492	-2.0235712	-3.9729966
-4.990603	-5.8534478	-3.9534018	-5.1326888	-4.6174453	-4.5831754	-5.0916135	-2.9721651	-5.9133126	-3.6394814
7.1481676	7.75120527	5.47465258	1.44341027	8.99010629	3.13172469	2.49952102	2.29824707	1.06555026	2.07570181
3.29611721	3.48767716	4.41582346	2.00625816	4.63749014	2.46524922	3.55327988	5.69086964	4.03470641	4.71792269
-2.2397834	-1.880242	-1.5622262	-1.4785685	-1.5324139	-2.9723451	-1.4639895	-2.8637655	-1.8928513	-2.9793678
4.5050602	9.03212106	3.12546841 9.03212106 4.50506027	3.52925711	11.6723032	4.25257162	6.30441609	2.89515721	4.88460757	15.1942849
3.91369261	4.20147197	3.18293626	2.79354997	0.36240663	0.63936568	1.72634625	-0.2592942	-2.5810713	0.13409883
0.4881615	5.4629197	2.15767355	3.90354703	6.98727034	3.61731777	6.38438756	5.92914172	7.68939723	15.183576
0.0888135	0.61524902	2.31983694 0.61524902 0.08881351	2.96071762	0.99380809	-0.4026003	0.7216737	1.19763749	1.7263275	-1.1648341
-0.9914198	-3.616838	-2.0063128	-3.2200355	-1.5367317	-1.2069499	-1.1056025	5.88990658	-2.1196392	-1.3274104
11.8935944	13.4714259	14.5110909 13.4714259	12.9974292	17.004317	15.3930531	17.8212695	20.7312694	21.2012062	20.632477
-0.1498182	-2.5711019	-1.3420175	-1.50466	1.18852686	-2.3525115	-2.5828663	-1.2651173	-2.2749609	-0.4287529
-19.974673	-21.289341	-23.332339	-23.547693	-21.352238	-26.192033	-29.13366	-29.065758	-26.386979	-26.150575
3.7950414	10.6534243	5.19739826	3.40112529	1.98004869	5.60698966	4.43804881	6.63677373	10.2763865	8.66803303
2.10392712	5.55616733	2.22956078 5.55616733	4.81242375	12.5504073	8.76246144	9.97361075	6.61014173	13.7627293	16.3299115
9.48001133	12.6016014	15.2835384	14.5266979	20.7287063	14.375428	21.3295629	21.3905288	21.4698841	24.4148995
-3.1623219	-4.5907109	-4.3507561	-1.3360586	0.89876588	-5.8543537	-5.1933641	-2.3446201	-3.4230753	0.82490367
-11.108044	-10.633303	-12.754672	-9.2008256	-5.4795109	-11.739947	-16.302608	-13.242324	-14.416843	-10.319741
-13.234595	-12.133282	-13.246773	-7.7404515	-9.4026119	-13.962968	-14.744702	-12.681664	-10.864813	-11.83705
0.5137939	-3.5663672 0.51379398	-6.7893354	-3.7213437	-1.6076575	-11.900859	-7.0347314	-8.1263291	-5.8481117	-2.9517041

-3.7123751
2.62354356
3.7123751 2.62354356 -2.1902072 -2.11714
59
-4.3337602
-4.3337602 -3.4736209 0.2444796
0.24447963
-0.9731351
-2.7180419
-2.1754094
-3.3064624

-0.1096195
1096195 0.54244766 0.09767522
0.09767522
-1.1271181
-1.0150607
-0.1096195 0.54244766 0.09767522 -1.1271181 -1.0150607 3.03875802 3.2289458
3.22894587
3.45301115
2.52776908 0.68
0.68192462