Superspace coinvariants and hyperplane arrangements

arXiv:2404.17919

by Trevor K. Karn (U. Minnesota) (joint with Robert Angarone, Patricia Commins, Satoshi Murai, and Brendon Rhoades) on Saturday, 12 October, 2024 Main problem:

find a linear basis for the ring SR_n .

Approach:

 $\mathcal{S}\mathcal{T}$ algebras of SW arrangements

What is SR_n ?

The coinvariant ring:

$$R_n = \mathbb{Q}[x_1, x_2, \dots, x_n]/I^+$$

Superspace:

$$\mathbb{Q}[\mathbf{x},\theta] = \mathbb{Q}[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n,\theta_1,\theta_2,\ldots,\theta_n]$$

where
$$\theta_i\theta_j=-\theta_j\theta_i$$

Superspace:

$$\mathbb{Q}[\mathbf{x},\theta] = \mathbb{Q}[\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n,\theta_1,\theta_2,\ldots,\theta_n]$$

where
$$\theta_i\theta_j = -\theta_j\theta_i$$

The superspace coinvariant ring:

$$SR_n = \mathbb{Q}[\mathbf{x}, \theta]/SI^+$$

Sagan and Swanson [SS24] conjectured the following \mathbb{Q} -basis of monomials for SR_n :

$$\mathcal{M} = \bigcup_{J \subseteq [n]} \{ \mathbf{x}^{\alpha} \theta_J : \alpha \le (J\text{-staircase}) \}$$

Sagan and Swanson [SS24] conjectured the following \mathbb{Q} -basis of monomials for SR_n :

$$\mathcal{M} = \bigcup_{J \subseteq [n]} \{ \mathbf{x}^{\alpha} \theta_{J} : \alpha \leq (J\text{-staircase}) \}$$

Definition

A *J*-staircase is $(st(J)_1, st(J)_2, \dots, st(J)_n)$ where

$$\operatorname{st}(J)_1 = \begin{cases} -1 & 1 \in J \\ 0 & 1 \notin J \end{cases}$$

and

$$\operatorname{st}(J)_{i+1} = \begin{cases} \operatorname{st}(J)_i & i \in J \\ \operatorname{st}(J)_i + 1 & i \notin J \end{cases}$$

Let $J = \{2, 4, 5\} \subseteq [6]$. Then the *J*-staircase is (0, 0, 1, 1, 1, 2).

Let $J = \{2, 4, 5\} \subseteq [6]$. Then the *J*-staircase is (0, 0, 1, 1, 1, 2).

Let $J = \{2, 4, 5\} \subseteq [6]$. Then the *J*-staircase is (0, 0, 1, 1, 1, 2).

So $\mathcal M$ contains monomials

» Punchline

Elements of ${\mathcal M}$ correspond to filled diagrams like

Staircase shape \longleftrightarrow skew-commutative θ factor

Staircase filling \longleftrightarrow commutative x factor

Conjecture [SS24]/Theorem [ACK+24

$$\bigcup_{J\subseteq[n]} \{\mathbf{X}^{\alpha}\theta_{J} : \alpha \leq (J\text{-staircase})\}$$

is a basis for SR_n .

What are SW arrangements and \mathcal{ST} algebras?

For the rest of the talk $S = \mathbb{Q}[x_1, x_2, \dots, x_n]$.

The colon ideal (I:f) is the kernel of $\times f$. So

$$0 \to S/(I:f) \stackrel{\times f}{\to} S/I$$

is exact.

» Transfer principle

Rhoades and Wilson [RW23] showed that it suffices to show

$$\mathcal{M}(\mathit{J}) = \{\mathbf{x}^{\alpha} : \alpha \leq (\mathit{J}\text{-staircase})\}$$

is a basis for

$$S/(I^+:f_J)$$

where

$$f_J = \prod_{j \in J} x_j \prod_{i > j} (x_j - x_i)$$

» Transfer principle

Rhoades and Wilson [RW23] showed that it suffices to show

$$\mathcal{M}(J) = \{ \mathbf{x}^{\alpha} : \alpha \leq (J\text{-staircase}) \}$$

is a basis for

$$S/(I^+:f_J)$$

where

$$f_J = \prod_{i \in J} x_i \prod_{i > j} (x_j - x_i)$$

Unshot

Trade a skew-commutative problem for a family of commutative problems.

Consider the diagram $\tilde{\Phi}_5$:

Definition

An arrangement \mathcal{A} is called a *southwest arrangement* if its defining polynomial $Q(\mathcal{A})$ is a product of terms of a southwest-closed subset of $\tilde{\Phi}_n$.

The *h*-function of a southwest arrangement is the number of hyperplanes on each southeast diagonal.

\mathcal{A} defined by

$$x_1x_2(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_2-x_3)(x_2-x_4)(x_2-x_5)(x_3-x_4)$$

is southwest. It has h-function (1, 2, 2, 3, 1).

» Non-example

The arrangement defined by f_J is not a southwest arrangement. E.g. $J = \{2, 3\}$:

Definition

Let

$$\tilde{f}_J = \prod_{i \in J} \prod_{i > j} (x_j - x_i)$$

Note that \tilde{f}_J defines a southwest arrangement.

$$f_J = \prod_{j \in J} x_j \prod_{i > j} (x_j - x_i)$$

$$\widetilde{f}_J = \prod_{j \in J} \prod_{i > j} (x_j - x_i)$$

If $J = \{2, 3\}$, then \tilde{f}_J corresponds to the southwest arrangement

Definition [AMMN19]

Let $\mathfrak{a}: \mathbb{Der}(\mathcal{A}) \to S$ be an S-module homomorphism. Define the Solomon-Terao algebra to be

$$\mathcal{ST}(\mathcal{A};\mathfrak{a})=\mathit{S}/\operatorname{im}\mathfrak{a}$$

Theorem [ACK+24

Let $\mathcal A$ be an essential southwest arrangement in $\mathbb Q^n$ with h-function $h(\mathcal A)$. Let $\mathfrak i: \operatorname{Der}(\mathcal A) \to S$ be defined by $\partial_i \mapsto 1$. Then the monomials

$$\{\mathbf{x}^{\alpha}: \alpha < h(\mathcal{A})\}$$

descend to a basis for $\mathcal{ST}(\mathcal{A}; i)$.

Definition

Let $J\subseteq [n]$ Let \mathcal{A}_J denote the hyperplane arrangement defined by

$$x_1x_2\cdots x_n\prod_{j\notin J}\prod_{i>j}(x_j-x_i)$$

Example

Let $J = \{2, 4\}$, then \mathcal{A}_I is

Lemma

The *J*-staircase is bounded above by the *h*-function of A_J

Theorem [ACK+24⁻

$$\mathcal{M}(J)$$
 is a basis for $S/(I^+:f_J)$

Proof:

$$0 \to S/(I^+: f_J) \stackrel{\times x^J}{\to} S/(I^+: \tilde{f}_J) = \mathcal{ST}(\mathcal{A}_J, \mathfrak{i})$$

is exact.

Theorem [ACK+24⁻

 $\mathcal{M}(J)$ is a basis for $S/(I^+:f_J)$

Proof:

$$0 \to S/(I^+:f_J) \stackrel{\times x^J}{\to} S/(I^+:\tilde{f}_J) = \mathcal{ST}(\mathcal{A}_J,\mathfrak{i})$$

is exact.

Corollary

 \mathcal{M} is a basis for SR_n , resolving conjecture of [SS24]

THANK YOU!

» References

- Robert Angarone, Patricia Commins, Trevor Karn, Satoshi Murai, and Brendon Rhoades, <u>Superspace coinvariants and</u> hyperplane arrangements, 2024.
- Takuro Abe, Toshiaki Maeno, Satoshi Murai, and Yasuhide Numata, Solomon-Terao algebra of hyperplane arrangements, J. Math. Soc. Japan **71** (2019), no. 4, 1027–1047. MR 4023295
- Brendon Rhoades and Andy Wilson, The hilbert series of the superspace coinvariant ring, 2023.
- Bruce E. Sagan and Joshua P. Swanson, *q*-Stirling numbers in type *B*, European J. Combin. **118** (2024), Paper No. 103899, 35. MR 4674564