Computational Companion to "Quasi-Symmetric Nets: A Constructive Approach to the Equimodular Elliptic Type of Kokotsakis Polyhedra" — Example 4 Helper

A. Nurmatov, M. Skopenkov, F. Rist, J. Klein, D. L. Michels Tested on: Mathematica 14.0

```
In[233]:=
     ====*)
     (*Quit*)
     (*All angle sets in degrees*)
     anglesDeg = {
        {91.32487959870187, 27.53122212644406,
        103.21844931187813, 120}, (*Vertex 1*)
        {115.75047063536742,
        29.335366103921295, 109.7807695499394, 80}, (*Vertex 2*)
        {31.19200181228523,
        113.66642350596918, 89.61760260813426, 85}, (*Vertex 3*)
        {28.19551791700786, 107.67391515450669,
        121.75654544610931, 75} (*Vertex 4*)};
     (*----*)
     (*Function to compute sigma from 4 angles*)
     computeSigma[\{\alpha_{-}, \beta_{-}, \gamma_{-}, \delta_{-}\}] := (\alpha + \beta + \gamma + \delta) / 2;
```

```
(*----*)
(*Function to compute a,b,c,d from angles*)
computeABCD[\{\alpha_{-}, \beta_{-}, \gamma_{-}, \delta_{-}\}] :=
  Module [{alpha = \alpha Degree, beta = \beta Degree, gamma = \gamma Degree,
    delta = \delta Degree, sigma}, sigma = computeSigma[\{\alpha, \beta, \gamma, \delta\} Degree];
   {Sin[alpha] / Sin[sigma - alpha], Sin[beta] / Sin[sigma - beta],
    Sin[gamma] / Sin[sigma - gamma], Sin[delta] / Sin[sigma - delta]}];
(*Compute all \sigma values*)
sigmas = computeSigma /@ anglesDeg;
(*Compute all {a,b,c,d} values*)
results = computeABCD /@ anglesDeg;
(*Optional:extract individual values*)
{a1, b1, c1, d1} = results[1];
{a2, b2, c2, d2} = results[2];
{a3, b3, c3, d3} = results[3];
{a4, b4, c4, d4} = results[4];
\{\sigma 1, \sigma 2, \sigma 3, \sigma 4\} = FullSimplify[sigmas];
====*)
CONDITION (N.0) ========*)
====*)
(*uniqueCombos={\{1,1,1,1\},\{1,1,1,-1\},\{1,1,-1,-1\},}
  \{1,1,-1,1\},\{1,-1,1,1\},\{1,-1,-1,1\},\{1,-1,1,-1\},\{1,-1,-1,-1\}\};
checkConditionN0Degrees[\{\alpha_{-},\beta_{-},\gamma_{-},\delta_{-}\}]:=Module[
  {angles=\{\alpha,\beta,\gamma,\delta\},results},results=Mod[uniqueCombos.angles,360]//Chop;
  !MemberQ[results,0]];
conditionsN0=checkConditionN0Degrees/@anglesDeg;
allVerticesPass=And@@conditionsN0;
Column[{TextCell[Style["========== CONDITION (N.0) ==============,
    Darker[Green],Bold, 16],"Text"],
  If[allVerticesPass,
   Style["✓ All vertices satisfy (N.0).", Darker[Green], Bold],
   Style["X Some vertices fail (N.0).",Red,Bold]]}]*)
uniqueCombos = \{\{1, 1, 1, 1\}, \{1, 1, 1, -1\}, \{1, 1, -1, -1\}, \{1, 1, -1, 1\},
   \{1, -1, 1, 1\}, \{1, -1, -1, 1\}, \{1, -1, 1, -1\}, \{1, -1, -1, -1\}\};
```

```
checkConditionN0Degrees[\{\alpha_{-}, \beta_{-}, \gamma_{-}, \delta_{-}\}] :=
 Module[{angles = {\alpha, \beta, \gamma, \delta}, results},
  results = Mod[uniqueCombos.angles, 360] // Chop;
  results];
(*apply to all vertices*)
resultsPerVertex = checkConditionNODegrees /@ anglesDeg;
(*check pass/fail*)
conditionsN0 = Map[! MemberQ[#, 0] &, resultsPerVertex];
allVerticesPass = And @@ conditionsN0;
Column[{TextCell[Style["========== CONDITION (N.0) ==============,
   Darker[Green], Bold, 16], "Text"], (*summary line*)If[allVerticesPass,
  Style["✓ All vertices satisfy (N.0).", Darker[Green], Bold],
  Style["* Some vertices fail (N.0).", Red, Bold]],
 (*detailed results for each vertex*)
 Grid[Prepend[Table[{"Vertex "<> ToString[i], resultsPerVertex[i],
     If[conditionsN0[i], " Pass", " Fail"]}, {i, Length[anglesDeg]}],
   {"Vertex", "Combinations (mod 360)", "Status"}], Frame → All]}]
====*)
CONDITION (N.3) ========*
====*)
Ms = FullSimplify[Times@@@ results];
allEqualQ = Simplify[Equal@@Ms];
Column[{TextCell[Style["========== CONDITION (N.3) ==============,
   Blue, Bold, 16], "Text"], If[allEqualQ,
  Row[{Style["✓ M1 = M2 = M3 = M4 = ", Bold], Ms[[1]]}],
  Style["x M_i are not all equal.", Red, Bold]]}]
====*)
====*)
aList = results[All, 1];
cList = results[All, 3];
dList = results[All, 4];
```

```
rList = FullSimplify /@ (aList * dList); {r1, r2, r3, r4} = rList;
sList = FullSimplify /@ (cList * dList); {s1, s2, s3, s4} = sList;
Column[{TextCell[Style["=========== CONDITION (N.4) ==============,
    Darker[Blue], Bold, 16], "Text"],
  If[r1 == r2 && r3 == r4 && s1 == s4 && s2 == s3, Column[
    {Row[{Style["✓ r1 = r2 = ", Bold], r1, Style["; ✓ r3 = r4 = ", Bold], r3}],
     Row[\{Style[" < s1 = s4 = ", Bold], s1, Style["; < s2 = s3 = ", Bold], 
       s2}]}], Style["X Condition (N.4) fails.", Red, Bold]]
 }]
====*)
CONDITION (N.5) ==========*)
fList = FullSimplify /@ (aList * cList); {f1, f2, f3, f4} = fList;
M1 = Ms[1];
m[M1_] := Piecewise[{{1 - M1, M1 < 1}, {(M1 - 1) / M1, M1 > 1}}] // N;
K = EllipticK[m[M1]] // N;
Kp = EllipticK[1 - m[M1]] // N;
computeTi[i_] :=
  Module[{sigma = sigmas[i], r = rList[i], s = sList[i], f = fList[i], base},
   base = I * Im[InverseJacobiDN[Piecewise[
         {{Sqrt[f], M1 < 1}, {1 / Sqrt[f], M1 > 1}}], m[M1]]] / Kp;
   Which[sigma < 180, Which[r > 1 & s > 1, base, (r < 1 & s > 1) \mid \mid (r > 1 & s < 1),
     1 + base, r < 1 && s < 1, 2 + base], sigma > 180, Which[r > 1 && s > 1,
     2 + base, (r < 1 \& s > 1) \mid \mid (r > 1 \& s < 1), 3 + base, r < 1 \& s < 1, base]]];
tList = computeTi /@ Range[4];
RoundWithTolerance[x_, tol_:10^(-15)] :=
  Module[{nearest}, nearest = Round[x];
   If[Abs[x - nearest] ≤ tol, nearest, x]];
checkValidCombination[M1_, \varepsilon_:10^(-15)] :=
  Module [{i, combo, dotProd, rePart, imPart, n2, expr, foundQ = False},
   Print[Style["\triangle Approximate validation using \epsilon-tolerance. For rigorous
       proof, see the referenced paper.", Darker@Orange, Italic]];
   Do[combo = uniqueCombos[i]];
    dotProd = tList.combo;
    rePart = Abs[Re[dotProd]];
    imPart = Abs[Im[dotProd]];
    If [M1 < 1,
```

```
If \lceil Mod \lceil RoundWithTolerance \lceil rePart \rceil, 4] < \epsilon,
      If [Mod[RoundWithTolerance[imPart], 2] < \varepsilon, expr =
         tList[1] + combo[2] \times tList[2] + combo[3] \times tList[3] + combo[4] \times tList[4];
       Print[Style["▼ Valid Combination Found (M < 1):",
          Darker[Green], Bold], "\n", Style["e1 = ", Bold], combo[2],
         Style[", e2 = ", Bold], combo[[3]], Style[", e3 = ", Bold], combo[[4]],
         "\n", Style["t1 = ", Bold], Re[tList[1]], "K + ", Im[tList[1]], "iK'",
         "\n", Style["t2 = ", Bold], Re[tList[2]], "K + ", Im[tList[2]], "iK'",
         "\n", Style["t3 = ", Bold], Re[tList[3]], "K + ", Im[tList[3]], "iK'",
         "\n", Style["t4 = ", Bold], Re[tList[4]], "K + ", Im[tList[4]],
         "iK'", "\n", Style["t1 + e1*t2 + e2*t3 + e3*t4 = ", Bold],
         Re[expr], "K + ", Im[expr], "iK'"];
        foundQ = True;
        Break[]]]];
    If M1 > 1,
     If [Mod[RoundWithTolerance[imPart], 2] < \epsilon,
      n2 = Quotient[RoundWithTolerance[imPart], 2];
      If [Mod[RoundWithTolerance[Abs[rePart - 2 n2]], 4] < \varepsilon, expr =
         tList[1] + combo[2] \times tList[2] + combo[3] \times tList[3] + combo[4] \times tList[4];
       Print[Style["✓ Valid Combination Found (M > 1):",
          Darker[Green], Bold], "\n", Style["e1 = ", Bold], combo[2],
         Style[", e2 = ", Bold], combo[[3]], Style[", e3 = ", Bold], combo[[4]],
         "\n", Style["t1 = ", Bold], Re[tList[[1]]], "K + ", Im[tList[[1]]], "iK'",
         "\n", Style["t2 = ", Bold], Re[tList[[2]]], "K + ", Im[tList[[2]]], "iK'",
         "\n", Style["t3 = ", Bold], Re[tList[3]], "K + ", Im[tList[3]], "iK'",
         "\n", Style["t4 = ", Bold], Re[tList[4]], "K + ", Im[tList[4]],
         "iK'", "\n", Style["t1 + e1*t2 + e2*t3 + e3*t4 = ", Bold],
         Re[expr], "K + ", Im[expr], "iK'"];
        foundQ = True;
        Break[]]]], {i, Length[uniqueCombos]}];
   If[! foundQ, Print[Style["X No valid combination found.", Red, Bold], "\n",
     Style["t1 = ", Bold], Re[tList[1]], "K + ", Im[tList[1]], "iK'", "\n",
     Style["t2 = ", Bold], Re[tList[2]]], "K + ", Im[tList[2]]], "iK'", "\n",
     Style["t3 = ", Bold], Re[tList[3]], "K + ", Im[tList[3]], "iK'", "\n",
     Style["t4 = ", Bold], Re[tList[4]], "K + ", Im[tList[4]], "iK'", "\n"]];];
Column[{TextCell[Style["======== CONDITION (N.5) =========",
    Purple, Bold, 16], "Text"]}]
res = checkValidCombination[M1];
```

```
OTHER PARAMETER======*)
cosSigmaAlt[Mi_, fi_, ri_, si_] :=
  (Mi (fi+ri+si-1) + ri fi si - ri fi - ri si - fi si) / (2 Sqrt[ri si fi] (1 - Mi));
Column[
 {TextCell[Style["========== OTHER PARAMETERS =========",
    Darker[Orange], Bold, 16], "Text"],
  Row[{Style["u = ", Bold], 1 - M1}],
  Row[\{Style["\sigma1 = ", Bold], \sigma1 Degree, Style[", \sigma2 = ", Bold], \sigma2 Degree, \}]
    Style[", \sigma3 = ", Bold], \sigma3 Degree, Style[", \sigma4 = ", Bold], \sigma4 Degree}],
  Row[{Style["\sigma1 \approx ", Bold], N[\sigma1], Style["\circ", Bold], Style[", \sigma2 \approx ", Bold],
    N[\sigma 2], Style["°", Bold], Style[", \sigma 3 \approx ", Bold], N[\sigma 3],
    Style["°", Bold], Style[", \sigma 4 \approx ", Bold], N[\sigma 4], Style["°", Bold]}],
  Row[{Style["cosσ1 = ", Bold], Simplify@cosSigmaAlt[M1, f1, r1, s1],
    Style[", cos\sigma2 = ", Bold], Simplify@cosSigmaAlt[M1, f2, r2, s2],
    Style[", cosσ3 = ", Bold], Simplify@cosSigmaAlt[M1, f3, r3, s3],
    Style[", cos\sigma 4 = ", Bold], Simplify@cosSigmaAlt[M1, f4, r4, s4]}],
  Row[{Style["f1 = ", Bold], f1, Style[", f2 = ", Bold],
    f2, Style[", f3 = ", Bold], f3, Style[", f4 = ", Bold], f4}],
  Row[\{Style["z1 = ", Bold], FullSimplify[1/(f1-1)], Style[", z2 = ", Bold], \}]
    FullSimplify[1/(f2-1)], Style[", z3 = ", Bold], FullSimplify[1/(f3-1)],
    Style[", z4 = ", Bold], FullSimplify[1/(f4-1)]}],
  Row[\{Style["x1 = ", Bold], FullSimplify[1/(r1-1)], Style[", x2 = ", Bold], \}]
    FullSimplify[1/(r2-1)], Style[", x3 = ", Bold], FullSimplify[1/(r3-1)],
    Style[", x4 = ", Bold], FullSimplify[1/(r4-1)]}],
  Row[{Style["y1 = ", Bold], FullSimplify[1/(s1-1)], Style[", y2 = ", Bold],}
    FullSimplify[1/(s2-1)], Style[", y3 = ", Bold], FullSimplify[1/(s3-1)],
    Style[", y4 = ", Bold], FullSimplify[1 / (s4 - 1)]}],
  Row[{Style["p1 = ", Bold], Simplify[Sqrt[r1-1]],
    Style[", p2 = ", Bold], Simplify[Sqrt[r2-1]], Style[", p3 = ", Bold],
    Simplify[Sqrt[r3-1]], Style[", p4 = ", Bold], Simplify[Sqrt[r4-1]]}],
  Row[{Style["q1 = ", Bold], Simplify[Sqrt[s1-1]],
    Style[", q2 = ", Bold], Simplify[Sqrt[s2-1]], Style[", q3 = ", Bold],
    Simplify[Sqrt[s3-1]], Style[", q4 = ", Bold], Simplify[Sqrt[s4-1]]}],
  Row[{Style["p1.q1 = ", Bold], Simplify[Sqrt[r1-1] Sqrt[s1-1]],
    Style[", p2 \cdot q2 = ", Bold], Simplify[Sqrt[r2-1] Sqrt[s2-1]],
    Style[", p3\cdot q3 = ", Bold], Simplify[Sqrt[r3-1] Sqrt[s3-1]],
    Style[", p4 \cdot q4 = ", Bold], Simplify[Sqrt[r4-1] Sqrt[s4-1]]}]
 }]
====*)
BRICARD's EQUATIONS========**)
```

```
====*)
(*Bricard's equation as defined in terms of angles and variables*)
BricardsEquation[\{\alpha_{-}, \beta_{-}, \gamma_{-}, \delta_{-}\}, \sigma_{-}, x_{-}, y_{-}\}:= Module[
   {c22, c20, c02, c11, c00},
   c22 = Sin[\sigma - \delta] Sin[\sigma - \delta - \beta];
   c20 = Sin[\sigma - \alpha] Sin[\sigma - \alpha - \beta];
   c02 = Sin[\sigma - \gamma] Sin[\sigma - \gamma - \beta];
   c11 = -\sin[\alpha] \sin[\gamma];
   c00 = Sin[\sigma] Sin[\sigma - \beta];
   c22 x^2 y^2 + c20 x^2 + c02 y^2 + 2 c11 x y + c00
  ];
(*Step 1: Bricard's system of equations*)
Column[{(*Header*)TextCell[
   Style["====== Bricard's System of Equations =========",
     Darker[Purple], Bold, 16], "Text"], (*Explanatory note*)
    {TextCell[Style["We introduce new notation for the cotangents of half of
         the dihedral angles. Denote Z:= ", GrayLevel[0.3], 13],
      "Text"], TraditionalForm[cot[Subscript[\theta, 1] / 2]], TextCell[
      Style[", W<sub>2</sub>= ", GrayLevel[0.3], 13], "Text"],
     TraditionalForm[cot[Subscript[\theta, 2] / 2]],
     TextCell[Style[", U:= ", GrayLevel[0.3], 13], "Text"],
     TraditionalForm[cot[Subscript[\theta, 3] / 2]],
     TextCell[Style[", and W<sub>1</sub>= ", GrayLevel[0.3], 13], "Text"],
     TraditionalForm[cot[Subscript[\theta, 4] / 2]]
   }], Spacer[12],
   (*Traditional form results*)Row[{"P,(Z, W,) = ",
     TraditionalForm[Collect[FullSimplify[BricardsEquation[anglesDeg[1] Degree,
         sigmas[1] Degree, Z, W,]], W,]], " = 0"}], Spacer[6],
  Row[{"P_2(Z, W_2) = ",}
     TraditionalForm[Collect[FullSimplify[BricardsEquation[anglesDeg[2] Degree,
         sigmas[2] Degree, Z, W<sub>2</sub>]], W<sub>2</sub>]], " = 0"}], Spacer[6],
  Row[{"P_3(U, W_2) = ",}
     TraditionalForm[Collect[FullSimplify[BricardsEquation[anglesDeg[3] Degree,
         sigmas[3] Degree, U, W<sub>2</sub>]], W<sub>2</sub>]], " = 0"}], Spacer[6],
  Row[{"P_4(U, W_1) = ", TraditionalForm[Collect[FullSimplify[BricardsEquation[]]]} 
         anglesDeg[4] Degree, sigmas[4] Degree, U, W, ]], W, ]], " = 0"}]
 }]
FLEXION 1========*)
Z[t_] := t;
W1[t_] := (2.2689737907253456)(10.50393110877767) t - 2.542115267025096)
          \sqrt{(1-0.5721009760467486 t^2)(-1+7.594436687028424 t^2))}
```

```
(14.662902846473798^+ + 7.594436687028424^+ t^2);
U[t_{-}] := (0.20405148639750417) (1.1778865025892307) t + 10.102197432038)
         \sqrt{(1-0.5721009760467486 t^2) (-1+7.594436687028424 t^2)})
    (3.6622434357916323^{-2.099237700754583^{t^2});
W2[t_{-}] := (1.3011995890502461) (5.832687748284718) t - 1.6606733509905591)
          \sqrt{(1-0.5721009760467486 t^2) (-1+7.594436687028424 t^2)})
   (3.588495042139688 + 7.594436687028424 t^2);
FLEXION 2=======*)
Z2[t_] := t;
W12[t_{]} := (2.2689737907253456) (10.50393110877767) t + 2.542115267025096)
         \sqrt{(1-0.5721009760467486 t^2) (-1+7.594436687028424 t^2)})
    (14.662902846473798 + 7.594436687028424 t^2);
U2[t_{-}] := (0.20405148639750417) (1.1778865025892307) t - 10.102197432038)
         \sqrt{\left(\text{1-0.5721009760467486} \right.^{\text{2}}\right) \left.\left(\text{-1+7.594436687028424} \right.^{\text{2}}\right)\right) \Big/}
    (3.6622434357916323^{-2.099237700754583^{t^2});
W22[t_{]} := (1.3011995890502461) (5.832687748284718) t + 1.6606733509905591)
         \sqrt{(1-0.5721009760467486 t^2) (-1+7.594436687028424 t^2)}
    (3.588495042139688 + 7.594436687028424 t^2);
(*Step 2: Formulas for flexions*)
Column[
 {(*Header*)TextCell[Style["=========== FLEXIONS =============,
    Red, Bold, 16], "Text"], (*Explanatory note*)TextCell[Style[
    "Solutions to Bricard's equations under a free parameter t := Z \in C:",
    GrayLevel[0.3], 13], "Text"], Spacer[12],
  (*Heading for results*) TextCell[Style["Solution 1:", Bold, 14], "Text"],
  Spacer[6], (*Traditional form results*)
  Row[{"Z(t) = ", TraditionalForm[FullSimplify[Z[t]]]}], Spacer[6],
  Row[{"W<sub>2</sub>(t) = ", TraditionalForm[FullSimplify[W2[t]]]}], Spacer[6],
  Row[{"U(t) = ", TraditionalForm[FullSimplify[U[t]]]}], Spacer[6],
  Row[{"W,(t) = ", TraditionalForm[FullSimplify[W1[t]]]}], Spacer[12],
  (*Heading for results*) TextCell[Style["Solution 2:", Bold, 14], "Text"],
  Spacer[6], (*Traditional form results*)
  Row[{"Z(t) = ", TraditionalForm[FullSimplify[Z2[t]]]}], Spacer[6],
  Row[{"W<sub>2</sub>(t) = ", TraditionalForm[FullSimplify[W22[t]]]}], Spacer[6],
  Row[{"U(t) = ", TraditionalForm[FullSimplify[U2[t]]]}], Spacer[6],
  Row[{"W,(t) = ", TraditionalForm[FullSimplify[W12[t]]]}]
 }]
```

```
(*Step 3: Checking that W_1(t) and W_2(t) solves P_1(t, W_1) =
 0 and P_2(t, W_2) = 0 even when +- signs do NOT agree*)
(*t-range*)
tMin = 0.4;
tMax = 1.25;
Column[
 {(*Header*)TextCell[Style["========== Equations: P,(t, W,) = 0
       Orange, Bold, 16], "Text"], (*Explanatory note*)TextCell[
   Style["Let W_{1s1} and W_{1s2} be formulas for W_1(t) from solutions
       1 and 2, respectively. Similarly, let W<sub>251</sub> and W<sub>252</sub> be
       the formulas for W_2(t). We show that all four pairs -
       (W_{1s1}, W_{2s1}), (W_{1s1}, W_{2s2}), (W_{1s2}, W_{2s1}), and (W_{1s2}, W_{2s2})
       - solve equations P_1(t, W_1) = 0 and P_2(t, W_2) = 0.",
    GrayLevel[0.3], 13], "Text"], Spacer[12],
  (*Heading for results*)
  TextCell[Style["Pair 1, (W_1, W_2) = (W_{1s1}, W_{2s1}):", Bold, 14], "Text"],
  Spacer[6], (*Traditional form results*)
  Row[{"P,(t, W,) = ", TraditionalForm[FullSimplify[BricardsEquation[
        anglesDeg[[1] Degree, sigmas[[1] Degree, Z[t], W1[t]]]]]], Spacer[6],
  Row[{"P}_2(t, W_2) = ", TraditionalForm[FullSimplify[BricardsEquation[}
        anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W2[t]]]]}], Spacer[12],
  (*Verification Plots Module:This entire Module is now the last item inside
      the main Column.It will execute and place the resulting Panel here.*)
  Module[{PiExpr, labels}, (*1. Define the two polynomial expressions
    to be plotted*)PiExpr = {FullSimplify[BricardsEquation[
        anglesDeg[1] Degree, sigmas[1] Degree, Z[t], W1[t]]], FullSimplify[
       BricardsEquation[anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W2[t]]]};
   (*2. Define the labels for each plot*)
   labels = {Row[{Subscript["P", 1], "(t, ", Subscript["W", 1], ")", " ≈ 0 ",
        Style["√", Darker[Green], Bold]}], Row[{Subscript["P", 2], "(t, ",
        Subscript["W", 2], ")", " ≈ 0 ", Style["√", Darker[Green], Bold]}]};
   (*3. Display the plots in the specified panel style*)
   Panel[GraphicsGrid[Partition[Table[Plot[PiExpr[i]], {t, tMin, tMax},
         PlotLabel \rightarrow Style[labels[i]], Bold, 14], PlotRange \rightarrow {-10^-10, 10^-10},
         (*Zoom in to confirm zero*)AxesLabel → {"t", None}, ImageSize → 300],
        {i, Length[PiExpr]}], 2 (*Arrange plots in rows of 2*)],
      Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]],
  TextCell[Style["Pair 2, (W<sub>1</sub>, W<sub>2</sub>) = (W<sub>151</sub>, W<sub>252</sub>):", Bold, 14], "Text"],
  Spacer[6], (*Traditional form results*)
  Row[{"P,(t, W<sub>1</sub>) = ", TraditionalForm[FullSimplify[BricardsEquation[
        anglesDeg[1] Degree, sigmas[1] Degree, Z[t], W1[t]]]]]], Spacer[6],
  Row[{"P<sub>2</sub>(t, W<sub>2</sub>) = ", TraditionalForm[FullSimplify[BricardsEquation[
        anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W22[t]]]]}], Spacer[12],
```

```
(*Verification Plots Module:This entire Module is now the last item inside
   the main Column.It will execute and place the resulting Panel here.*)
Module[{PiExpr, labels}, (*1. Define the two polynomial expressions
  to be plotted*)PiExpr = {FullSimplify[BricardsEquation[
     anglesDeg[[1] Degree, sigmas[[1] Degree, Z[t], W1[t]]], FullSimplify[
    BricardsEquation[anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W22[t]]];
 (*2. Define the labels for each plot*)
 labels = {Row[{Subscript["P", 1], "(t, ", Subscript["W", 1], ")", " ≈ 0 ",
     Style["\forall", Darker[Green], Bold]}], Row[{Subscript["P", 2], "(t, ",
     Subscript["W", 2], ")", " ≈ 0 ", Style["√", Darker[Green], Bold]}]};
 (*3. Display the plots in the specified panel style*)
 Panel[GraphicsGrid[Partition[Table[Plot[PiExpr[i]], {t, tMin, tMax},
       PlotLabel \rightarrow Style[labels[i]], Bold, 14], PlotRange \rightarrow \{-10^{-}10, 10^{-}10\},
       (*Zoom in to confirm zero*)AxesLabel → {"t", None}, ImageSize → 300],
      {i, Length[PiExpr]}], 2 (*Arrange plots in rows of 2*)],
   Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]],
TextCell[Style["Pair 3, (W_1, W_2) = (W_{152}, W_{251}):", Bold, 14], "Text"],
Spacer[6], (*Traditional form results*)
Row[{"P,(t, W<sub>1</sub>) = ", TraditionalForm[FullSimplify[BricardsEquation[
     anglesDeg[1] Degree, sigmas[1] Degree, Z[t], W12[t]]]]]], Spacer[6],
Row[{"P<sub>2</sub>(t, W<sub>2</sub>) = ", TraditionalForm[FullSimplify[BricardsEquation[
     anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W2[t]]]}], Spacer[12],
(*Verification Plots Module:This entire Module is now the last item inside
   the main Column.It will execute and place the resulting Panel here.*)
Module[{PiExpr, labels}, (*1. Define the two polynomial expressions
  to be plotted*)PiExpr = {FullSimplify[BricardsEquation[
     anglesDeg[1] Degree, sigmas[1] Degree, Z[t], W12[t]]], FullSimplify[
    BricardsEquation[anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W2[t]]];
 (*2. Define the labels for each plot*)
 labels = {Row[{Subscript["P", 1], "(t, ", Subscript["W", 1], ")", " ≈ 0 ",
     Style["\script["P", 2], "(t, ",
     Subscript["W", 2], ")", " ≈ 0 ", Style["√", Darker[Green], Bold]}]};
 (*3. Display the plots in the specified panel style*)
 Panel[GraphicsGrid[Partition[Table[Plot[PiExpr[i]], {t, tMin, tMax},
       PlotLabel \rightarrow Style[labels[i], Bold, 14], PlotRange \rightarrow {-10^-10, 10^-10},
       (*Zoom in to confirm zero*)AxesLabel → {"t", None}, ImageSize → 300],
      {i, Length[PiExpr]}], 2 (*Arrange plots in rows of 2*)],
   Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]],
TextCell[Style["Pair 4, (W_1, W_2) = (W_{152}, W_{252}):", Bold, 14], "Text"],
Spacer[6], (*Traditional form results*)
Row[{"P,(t, W<sub>1</sub>) = ", TraditionalForm[FullSimplify[BricardsEquation[
     anglesDeg[1] Degree, sigmas[1] Degree, Z[t], W12[t]]]]}], Spacer[6],
Row[{"P<sub>2</sub>(t, W<sub>2</sub>) = ", TraditionalForm[FullSimplify[BricardsEquation[
     anglesDeg[[2]] Degree, sigmas[[2]] Degree, Z[t], W22[t]]]]]]], Spacer[12],
(*Verification Plots Module:This entire Module is now the last item inside
```

```
the main Column.It will execute and place the resulting Panel here.*)
  Module[{PiExpr, labels}, (*1. Define the two polynomial expressions
    to be plotted*)PiExpr = {FullSimplify[BricardsEquation[
        anglesDeg[1] Degree, sigmas[1] Degree, Z[t], W12[t]]], FullSimplify[
       BricardsEquation[anglesDeg[2] Degree, sigmas[2] Degree, Z[t], W22[t]]];
    (*2. Define the labels for each plot*)
   labels = {Row[{Subscript["P", 1], "(t, ", Subscript["W", 1], ")", " ≈ 0 ",
        Style["\", Darker[Green], Bold]}], Row[{Subscript["P", 2], "(t, ",
        Subscript["W", 2], ")", " ≈ 0 ", Style["√", Darker[Green], Bold]}]};
   (*3. Display the plots in the specified panel style*)
   Panel[GraphicsGrid[Partition[Table[Plot[PiExpr[i]], {t, tMin, tMax},
         PlotLabel \rightarrow Style[labels[i], Bold, 14], PlotRange \rightarrow {-10^-10, 10^-10},
          (*Zoom in to confirm zero*)AxesLabel \rightarrow {"t", None}, ImageSize \rightarrow 300],
        {i, Length[PiExpr]}], 2 (*Arrange plots in rows of 2*)],
      Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]]
 }]
(*Step 4: Checking that W_1(t) and W_2(t) does NOT satisfy W_1(t)/W_2(t) =
 c and W_1(t)W_2(t) = c where c is constant even when +- signs do NOT agree*)
expressions = \{Z[t] * U[t], Z[t] / U[t], Z[t] * U2[t], Z[t] / U2[t],
   Z2[t] * U[t], Z2[t] / U[t], Z2[t] * U2[t], Z2[t] / U2[t]};
labels = {"W_{1s1} * W_{2s1}", "W_{1s1} / W_{2s1}", "W_{1s1} * W_{2s2}", "W_{1s1} / W_{2s2}",
   W_{1s2} * W_{2s1}, W_{1s2} / W_{2s1}, W_{1s2} * W_{2s2}, W_{1s2} / W_{2s2};
Column [
 Pairs =======", Darker[Orange], Bold, 16], "Text"],
  (*Explanatory text*)
  TextCell[Style["Checking that all four pairs - (W<sub>1s1</sub>, W<sub>2s1</sub>), (W<sub>1s1</sub>, W<sub>2s2</sub>),
       (W_{1s2}, W_{2s1}), and (W_{1s2}, W_{2s2}) - does NOT satisfy W_1(t)/W_2(t)
       = const and W<sub>1</sub>(t)W<sub>2</sub>(t) = const.", GrayLevel[0.3]], "Text"],
  Spacer[12],
  (*Plots panel*)
  Panel[GraphicsGrid[Partition[Table[Plot[expressions[i]], {t, tMin, tMax},
        PlotLabel → Style[labels[i], Bold, 14], PlotRange → All,
        AxesLabel → {"t", None}, ImageSize → 250], {i, Length[expressions]}], 2],
    Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]
 }]
(*Step 5: Solving P_3(U, W_2) = 0 and P_4(U, W_1) = 0 for W_1 and W_2*)
(*Define the first Bricard equation P_3(U, W_2) = 0*)
P3 = BricardsEquation[anglesDeg[3] Degree, sigmas[3] Degree, U, Ww2];
(*Solve for W21,W22*)
solutionW2Expressions =
```

```
(Ww2 /. FullSimplify[Solve[Rationalize[P3, 0] == 0, Ww2]]);
Ww21[U ] := solutionW2Expressions[1];
Ww22[U ] := solutionW2Expressions[2];
(*Define the fourth Bricard equation P_4(U, W_1) = 0*)
P4 = BricardsEquation[anglesDeg[4] Degree, sigmas[4] Degree, U, Ww1];
(*Solve for W11,W12*)
solutionW1Expressions =
  (Ww1 /. FullSimplify[Solve[Rationalize[P4, 0] == 0, Ww1]]);
Ww11[U_] := solutionW1Expressions[[1]];
Ww12[U ] := solutionW1Expressions[2];
Column[
 {(*Header*)TextCell[Style["======== Equations: P<sub>3</sub>(U, W<sub>2</sub>) = 0
       Darker[Cyan], Bold, 16], "Text"], (*Explanatory note*)
  TextCell[Style["We solve P_3(U, W_2) = 0 and P_4(U, W_1) = 0 for W_1 and W_2.",
     GrayLevel[0.3], 13], "Text"], Spacer[12],
  (*Heading for results*)Row[{"W,,(U) = ", TraditionalForm[Ww11[U]]}],
  Row[{"W<sub>12</sub>(U) = ", TraditionalForm[Ww12[U]]}],
  Spacer[6], Row[{"W21(U) = ", TraditionalForm[Ww21[U]]}],
  Row[{"W<sub>22</sub>(U) = ", TraditionalForm[Ww22[U]]}]
 }]
(*Step 6: Checking that pairs (W_{11}(U), W_{21}(U)), (W_{11}(U), W_{22}(U)),
(W_{12}(U), W_{21}(U)), \text{ and } (W_{12}(U), W_{22}(U)) \text{ does NOT satisfy } W_1(U)/W_2(U) =
 c and W_1(U)W_2(U) = c where c is constant*)
UMin = 0;
UMax = 1;
expressions =
  {Ww11[U] * Ww21[U], Ww11[U] / Ww21[U], Ww11[U] * Ww22[U], Ww11[U] / Ww22[U],
   Ww12[U] * Ww21[U], Ww12[U] / Ww21[U], Ww12[U] * Ww22[U], Ww12[U] / Ww22[U];
labels = {"W_{11} * W_{21}", "W_{11} / W_{21}", "W_{11} * W_{22}",
   W_{11} / W_{22}, W_{12} * W_{21}, W_{12} / W_{21}, W_{12} * W_{22}, W_{12} / W_{22};
Column[
 \{TextCell[Style]^{"==========} Plots of W_1(U)W_2(U) and W_1(U)/W_2(U) For All \}
       Pairs =======", Magenta, Bold, 16], "Text"],
  (*Explanatory text*)
  TextCell[Style["Checking that all four pairs - (W,,(U),
       W_{2,1}(U)), (W_{1,1}(U), W_{2,2}(U)), (W_{1,2}(U), W_{2,1}(U)), and
       (W_{12}(U), W_{22}(U)) - does NOT satisfy W_1(U)/W_2(U) = const
       and W_1(U)W_2(U) = const.", GrayLevel[0.3]], "Text"],
  Spacer[12],
```

```
(*Plots panel*)
  Panel[GraphicsGrid[Partition[Table[Plot[expressions[i]], {U, UMin, UMax},
        PlotLabel → Style[labels[i]], Bold, 14], PlotRange → All,
        AxesLabel → {"t", None}, ImageSize → 250], {i, Length[expressions]}], 2],
     Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]
 }]
(*Step 7: Compute and print all P i for flexions 1 and 2*)
TextCell[
 Orange, Bold, 16], "Text"]
funcs = \{\{Z, W_1\}, \{Z, W_2\}, \{U, W_2\}, \{U, W_1\}\};
TextCell[Style["Solution 1:", Bold, 14], "Text"]
Do[angles = anglesDeg[i] Degree;
  sigma = sigmas[i] Degree;
  \{\alpha, \beta, \gamma, \delta\} = angles;
  poly = Which[i == 1, BricardsEquation[\{\alpha, \beta, \gamma, \delta\}, sigma, Z[t], W1[t]],
     i = 2, BricardsEquation[{\alpha, \beta, \gamma, \delta}, sigma, Z[t], W2[t]],
     i = 3, BricardsEquation[\{\alpha, \beta, \gamma, \delta\}, sigma, U[t], W2[t]],
     i = 4, BricardsEquation[{\alpha, \beta, \gamma, \delta}, sigma, U[t], W1[t]]];
  Print[Row[{Subscript["P", i], "(", funcs[i, 1],
      ", ", funcs[i, 2], ") = ", FullSimplify[poly]}]], {i, 1, 4}];
(*Build P_i(t) consistently with your printing logic*)
Clear[PiExpr, labels, funcs];
funcs = \{\{Z, W1\}, \{Z, W2\}, \{U, W2\}, \{U, W1\}\};
PiExpr = Table[Module[{angles = anglesDeg[i] Degree,
      sigma = sigmas[i] Degree, \alpha, \beta, \gamma, \delta, poly}, \{\alpha, \beta, \gamma, \delta} = angles;
     poly = BricardsEquation[\{\alpha, \beta, \gamma, \delta\}, sigma, funcs[i, 1][t], funcs[i, 2][t]];
     FullSimplify[poly]], {i, 1, 4}];
labels = Table[Row[
     {Subscript["P", i], "(", ToString@funcs[i, 1], ", ", ToString@funcs[i, 2],
      ")", " ≈ 0 ", Style["√", Darker[Green], Bold]}], {i, 1, 4}];
(*Pretty panel with plots like your style*)
Column[{TextCell[Style["========== FLEXION 1 ===========,
     Darker[Cyan], Bold, 16], "Text"], TextCell[
   Style["Polynomials Pi(t) built from Bricard's equations for flexion 1.",
     GrayLevel[0.3]], "Text"], Spacer[12],
  Panel[GraphicsGrid[Partition[Table[Plot[Evaluate@PiExpr[i]],
         {t, tMin, tMax}, PlotLabel → Style[labels[i]], Bold, 14],
        PlotRange \rightarrow \{-10^{(-11)}, 10^{(-11)}\}, AxesLabel \rightarrow \{"t", None\},
        ImageSize \rightarrow 250], {i, Length[PiExpr]}], 2], Spacings \rightarrow {2, 2}],
   Background → Lighter[Gray, 0.95], FrameMargins → 15]}]
```

```
(*Compute and print all P_i for flexion 2*)
TextCell[Style["Solution 2:", Bold, 14], "Text"]
funcs = \{\{Z, W_1\}, \{Z, W_2\}, \{U, W_2\}, \{U, W_1\}\};
Do[angles = anglesDeg[i] Degree;
  sigma = sigmas[i] Degree;
  \{\alpha, \beta, \gamma, \delta\} = angles;
  poly = Which[i == 1, BricardsEquation[\{\alpha, \beta, \gamma, \delta\}, sigma, Z2[t], W12[t]],
    i = 2, BricardsEquation[{\alpha, \beta, \gamma, \delta}, sigma, Z2[t], W22[t]],
    i = 3, BricardsEquation[{\alpha, \beta, \gamma, \delta}, sigma, U2[t], W22[t]],
    i = 4, BricardsEquation[{\alpha, \beta, \gamma, \delta}, sigma, U2[t], W12[t]]];
  Print[Row[{Subscript["P", i], "(", funcs[i, 1]),
     ", ", funcs[i, 2], ") = ", FullSimplify[poly]}]], {i, 1, 4}];
(*Build P_i(t) consistently with your printing logic*)
Clear[PiExpr, labels, funcs];
funcs = \{\{Z2, W12\}, \{Z2, W22\}, \{U2, W22\}, \{U2, W12\}\};
PiExpr = Table[Module[{angles = anglesDeg[i] Degree,
     sigma = sigmas[i] Degree, \alpha, \beta, \gamma, \delta, poly}, \{\alpha, \beta, \gamma, \delta} = angles;
    poly = BricardsEquation[\{\alpha, \beta, \gamma, \delta\}, sigma, funcs[i, 1][t], funcs[i, 2][t]];
    FullSimplify[poly]], {i, 1, 4}];
labels = Table[Row[
    {Subscript["P", i], "(", ToString@funcs[i, 1], ", ", ToString@funcs[i, 2],
     ")", " ≈ 0 ", Style["√", Darker[Green], Bold]}], {i, 1, 4}];
(*Pretty panel with plots like your style*)
Column[{TextCell[Style["========== FLEXION 2 ===========,",
    Magenta, Bold, 16], "Text"], TextCell[
   Style["Polynomials Pi(t) built from Bricard's equations for flexion 2.",
    GrayLevel[0.3]], "Text"], Spacer[12],
  Panel[GraphicsGrid[Partition[Table[Plot[Evaluate@PiExpr[i]],
        {t, tMin, tMax}, PlotLabel → Style[labels[i], Bold, 14],
        PlotRange \rightarrow \{-10^{(-11)}, 10^{(-11)}\}, AxesLabel \rightarrow \{"t", None\},
        ImageSize \rightarrow 250], {i, Length[PiExpr]}], 2], Spacings \rightarrow {2, 2}],
   Background → Lighter[Gray, 0.95], FrameMargins → 15]}]
=====*)
====*)
(*{TraditionalForm[cot[Subscript[θ,1]/2]],
  TraditionalForm[cot[Subscript[\theta,2]/2]],
  TraditionalForm[cot[Subscript[\theta,3]/2]],
  TraditionalForm[cot[Subscript[\theta,4]/2]]};*)
```

```
FLEXION 1========*)
(*List of expressions& labels*)
expressions =
  {Z[t] *U[t], Z[t] /U[t], W1[t] *W2[t], W1[t] /W2[t], Z[t] *W2[t], Z[t] /W2[t],
   U[t] * W1[t], U[t] / W1[t], Z[t] * W1[t], Z[t] / W1[t], W2[t] * U[t], W2[t] / U[t]};
labels = {"Z * U", "Z / U", "W, * W,", "W, / W,", "Z * W,", "Z / W,",
   "U * W_1", "U / W_1", "Z * W_1", "Z / W_1", "W_2 * U", "W_2 / U"};
Column[{TextCell[Style["======== NOT LINEAR COMPOUND =========",
     Darker[Brown], Bold, 16], "Text"],
  (*Explanatory text*)TextCell[
   Style["Above we consider the first pair of equations (P_1(t, W_1) = 0) and
       P_2(t, W_2) = 0). Solving them as quadratic equations in W_1 and W_2,
       respectively we parametrize the solutions by the first two and
       fourth expressions in Solutions 1 and 2 in a neighborhood of any
       point (W_1, t, W_2) such that the expression in the square root and
       denominators are not zero. Here, we choose any continuous branch
       of the square root in this neighborhood, and the signs in ± need
       Not agree (this means we consider all 4 pairs we describe above).
       We conclude that NO component of the solution set of the first
       pair of Bricard's equations satisfies W<sub>1</sub>/W<sub>2</sub>=const NOR W<sub>1</sub>W<sub>2</sub>=const.
Analogously, NO component of the solution set of the other pair
       of equations (P_3(U, W_2) = 0 \text{ and } P_4(U, W_1) = 0) satisfies
       W<sub>1</sub>/W<sub>2</sub>=const NOR W<sub>1</sub>W<sub>2</sub>=const. As a result, NO component
       of the solution set of all four equations satisfies
       W<sub>1</sub>/W<sub>2</sub>=const NOR W<sub>1</sub>W<sub>2</sub>=const. So, our example does not belong
       to the linear compound class, even after switching the
boundary strips.", GrayLevel[0.3]], "Text"],
  Spacer[6],
  TextCell[Style[
     "Below, we also present the plots of functions ZU, Z/U, W_1W_2, W_1/W_2, ZW_2,
       Z/W<sub>2</sub>, UW<sub>1</sub>, U/W<sub>1</sub>, ZW<sub>1</sub>, Z/W<sub>1</sub>, W<sub>2</sub>U, W<sub>2</sub>/U.", GrayLevel[0.3]], "Text"],
  Spacer[6],
  TextCell[Style["Solution 1:", Bold, 14], "Text"], Spacer[12],
  Panel[GraphicsGrid[Partition[Table[Plot[expressions[i]], {t, tMin, tMax},
        PlotLabel → Style[labels[i]], Bold, 14], PlotRange → All,
        AxesLabel \rightarrow {"t", None}, ImageSize \rightarrow 250], {i, Length[expressions]}], 2],
     Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]
 }]
FLEXION 2=======*)
(*List of expressions& labels*)
```

```
expressions = {Z2[t] * U2[t], Z2[t] / U2[t], W12[t] * W22[t], W12[t] / W22[t],
   Z2[t] * W22[t], Z2[t] / W22[t], U2[t] * W12[t], U2[t] / W12[t],
   Z2[t] * W12[t], Z2[t] / W12[t], W22[t] * U2[t], W22[t] / U2[t]};
labels = {"Z * U", "Z / U", "W_1 * W_2", "W_1 / W_2", "Z * W_2", "Z / W_2",
   "U * W<sub>1</sub>", "U / W<sub>1</sub>", "Z * W<sub>1</sub>", "Z / W<sub>1</sub>", "W<sub>2</sub> * U", "W<sub>2</sub> / U"};
Column[{ TextCell[Style["Solution 2:", Bold, 14], "Text"], Spacer[12],
  (*Plots panel*)
  Panel[GraphicsGrid[Partition[Table[Plot[expressions[i]], {t, tMin, tMax},
       PlotLabel → Style[labels[i], Bold, 14], PlotRange → All,
       AxesLabel → {"t", None}, ImageSize → 250], {i, Length[expressions]}], 2],
    Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]
 }]
====*)
NOT TRIVIAL========*)
====*)
FLEXION 1========*)
(*List of expressions to plot*)
expressions = {Z[t], W2[t], U[t], W1[t]};
labels = {"Z", "W<sub>2</sub>", "U", "W<sub>1</sub>"};
Column[{TextCell[
   Style["========= NOT TRIVIAL (FLEXION 1) ===============",
    Pink, Bold, 16], "Text"],
  (*Explanatory text*)
  TextCell[Style["This configuration does not belong to the trivial class -
      even after switching the boundary strips - since none of the
      functions Z, W2, U, or W1 is constant.", GrayLevel[0.3]], "Text"],
  Spacer[12],
  (*Plots in a light panel*)
  Panel[GraphicsGrid[Partition[Table[Plot[expressions[i]], {t, tMin, tMax},
       PlotLabel → Style[labels[i]], Bold, 14], PlotRange → All,
       AxesLabel \rightarrow {"t", None}, ImageSize \rightarrow 250], {i, Length[expressions]}], 2],
    Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]
 }]
FLEXION 2=======*)
(*List of expressions to plot*)
```

```
expressions = {Z2[t], W22[t], U2[t], W12[t]};
labels = {"Z", "W,", "U", "W,"};
Column[{TextCell[
   Style["========== NOT TRIVIAL (FLEXION 2) ============,
    Darker[Pink], Bold, 16], "Text"],
  (*Explanatory text*)
  TextCell[Style["This configuration does not belong to the trivial class -
      even after switching the boundary strips - since none of the
      functions Z, W2, U, or W1 is constant.", GrayLevel[0.3]], "Text"],
  Spacer[12],
  (*Plots in a light panel*)
  Panel[GraphicsGrid[Partition[Table[Plot[expressions[i]], {t, tMin, tMax},
       PlotLabel → Style[labels[i], Bold, 14], PlotRange → All,
       AxesLabel → {"t", None}, ImageSize → 250], {i, Length[expressions]}], 2],
    Spacings \rightarrow {2, 2}], Background \rightarrow Lighter[Gray, 0.95], FrameMargins \rightarrow 15]
 }1
====*)
SWITCHING BOUNDARY STRIPS=========*)
====*)
SwitchingRightBoundaryStrip[anglesDeg_List] := Module[{modified = anglesDeg},
  (*Indices:{row,column}={1,2},{1,3},{4,2},{4,3}*)
  modified[[1, 2]] = 180 - anglesDeg[[1, 2]]; (*β1*)
  modified[[1, 3]] = 180 - anglesDeg[[1, 3]]; (*γ1*)
  modified[[4, 2]] = 180 - anglesDeg[[4, 2]]; (*β4*)
  modified[4, 3] = 180 - anglesDeg[4, 3]; (*γ4*)
  modified]
SwitchingLeftBoundaryStrip[anglesDeg_List] := Module[{modified = anglesDeg},
  (*Indices:{row,column}={2,2},{2,3},{3,2},{3,3}*)
  modified[2, 2] = 180 - anglesDeg[2, 2]; (*\beta 2*)
  modified[2, 3] = 180 - anglesDeg[2, 3]; (*γ2*)
  modified[3, 2] = 180 - anglesDeg[3, 2]; (*β3*)
  modified[3, 3] = 180 - anglesDeg[3, 3]; (*γ3*)
  modified]
SwitchingLowerBoundaryStrip[anglesDeg_List] := Module[{modified = anglesDeg},
  (*Indices: {row, column} = {1,1}, {1,2}, {2,1}, {2,2}*)
```

```
modified[1, 1] = 180 - anglesDeg[1, 1]; (*\alpha1*)
  modified[[1, 2]] = 180 - anglesDeg[[1, 2]]; (*β1*)
  modified[2, 1] = 180 - anglesDeg[2, 1]; (*\alpha 2*)
  modified[[2, 2]] = 180 - anglesDeg[[2, 2]]; (*β2*)
  modified]
SwitchingUpperBoundaryStrip[anglesDeg_List] := Module[{modified = anglesDeg},
  (*Indices:{row,column}={3,1},{3,2},{4,1},{4,2}*)
  modified[3, 1] = 180 - anglesDeg[3, 1]; (*\alpha 3*)
  modified[3, 2] = 180 - anglesDeg[3, 2]; (*β3*)
  modified[4, 1] = 180 - anglesDeg[4, 1]; (*\alpha4*)
  modified[4, 2] = 180 - anglesDeg[4, 2]; (*β4*)
  modified]
====*)
CONJUGATE & NOT ISOGONAL==========*)
=====*)
uniqueCombos = \{\{1, 1, 1, 1\}, \{1, 1, 1, -1\}, \{1, 1, -1, -1\}, \{1, 1, -1, 1\},
   \{1, -1, 1, 1\}, \{1, -1, -1, 1\}, \{1, -1, 1, -1\}, \{1, -1, -1, -1\}\};
checkConditionN0Degrees[\{\alpha_{-}, \beta_{-}, \gamma_{-}, \delta_{-}\}] :=
  Module[{angles = {\alpha, \beta, \gamma, \delta}, results},
   results = Mod[uniqueCombos.angles, 360] // Chop;
   ! MemberQ[results, 0]];
Column[{TextCell[Style[
    "========== NOT CONIC & NOT CHIMERA & NOT LINEAR CONJUGATE & NOT
      ISOGONAL===========", Darker[Magenta], Bold, 16], "Text"],
  TextCell[Style[
    "Condition (N.0) is satisfied for all i=1,...,4 \Rightarrow NOT equimodular-conic,
      NOT chimera, NOT isogonal and NOT linear conjugate.
      Applying any boundary-strip switch still preserves
      (N.0), so no conic, no chimera, no isogonal and no
      linear conjugate form emerges.", GrayLevel[0.3]], "Text"]
 }]
(*Now the exact same Module for checking all switch combinations...*)
Module[{angles = anglesDeg, switchers, combinations, results},
 (*Define switch functions*)
 switchers = <|"Right" → SwitchingRightBoundaryStrip,</pre>
   "Left" → SwitchingLeftBoundaryStrip, "Lower" → SwitchingLowerBoundaryStrip,
   "Upper" → SwitchingUpperBoundaryStrip|>;
 (*Generate all combinations of switches (from size 1 to 4)*)
```

```
combinations = Subsets[Keys[switchers], {1, Length[switchers]}];
 (*Evaluate condition after each combination of switches*)results = Table[
   Module[{switched = angles, name, passQ}, name = StringRiffle[combo, " + "];
    Do[switched = switchers[sw][switched], {sw, combo}];
    passQ = And @@ (checkConditionNODegrees /@ switched);
    (*Print the result after switching*)
    (*Print["\nSwitch combination: ",name];
    Print["Switched anglesDeg:"];
    Print[MatrixForm[switched]];*)
    {name, passQ}], {combo, combinations}];
 (*Display results*)
 Column[Prepend[Table[Module[{comboName = res[[1]], passQ = res[[2]]},
     Row[{Style[comboName <> ": ", Bold],
       If[passQ,
        Style["Condition (N.0) is still satisfied.", Darker[Green]],
        Style["Condition (N.0) fails.", Red, Bold]
       ]
      }
     ]], {res, results}], TextCell[
    Style["CONDITION (N.0) AFTER SWITCHING BOUNDARY STRIPS", 14], "Text"]]]]
====*)
NOT ORTHODIAGONAL======*)
====*)
(*Column[
  {TextCell[Style["=========== NOT ORTHODIAGONAL ==============,
     Darker[Blue],Bold,16],"Text"],
  TextCell[Style[
     "\cos(\alpha i) \cdot \cos(\gamma i) \neq \cos(\beta i) \cdot \cos(\delta i) for each i = 1 \Rightarrow NOT orthodiagonal.
       Switching boundary strips does not
       correct this.", GrayLevel[0.3]],"Text"]
  }]
Module[{angles=anglesDeg,switchers,combinations,results},
  (*Define switch functions*)switchers=<|"Right"→SwitchingRightBoundaryStrip,
    "Left"→SwitchingLeftBoundaryStrip,"Lower"→SwitchingLowerBoundaryStrip,
    "Upper"→SwitchingUpperBoundaryStrip|>;
  (*Helper function:compute and print difference only*)
  formatOrthodiagonalCheck[quad_List]:=
   Module[{vals},vals=Table[Module[{a,b,c,d,lhs,rhs,diff},{a,b,c,d}=quad[i];
       lhs=FullSimplify[Cos[a Degree] Cos[c Degree]];
       rhs=FullSimplify[Cos[b Degree] Cos[d Degree]];
```

```
diff=Chop[lhs-rhs];
        Style[Row[{"cos(\alpha"<>ToString[i]<>") \cdot cos(\gamma"<>ToString[i]<>") - ",
            "\cos(\beta"<>ToString[i]<>") \cdot \cos(\delta"<>ToString[i]<>") = ",
           NumberForm[diff, {5,3}]}], If[diff==0, Red, Black]]], {i, Length[quad]}];
    Column[vals]];
  (*Orthodiagonal check for anglesDeg before any switching*)
  Print[TextCell[Style["\nInitial anglesDeg (no switches):",Bold]]];
  Print[MatrixForm[angles]];
  Print[TextCell[Style[
     "Orthodiagonal check: cos(\alpha_i) \cdot cos(\gamma_i) - cos(\beta_i) \cdot cos(\delta_i) for i = 1..4",
     Italic]]];
  Print[formatOrthodiagonalCheck[angles]];
  (*Generate all combinations of switches (from size 1 to 4)*)
  combinations=Subsets[Keys[switchers], {1, Length[switchers]}];
  (*Evaluate condition after each combination of switches*)results=
   Table[Module[{switched=angles,name,passQ},name=StringRiffle[combo," + "];
     Do[switched=switchers[sw][switched],{sw,combo}];
     passQ=And@@(checkConditionN0Degrees/@switched);
     Print[Style["\nSwitch combination: ", Bold],name];
     Print[Style["Switched anglesDeg:", Italic]];
     Print[MatrixForm[switched]];
     Print[
      TextCell[Style["Orthodiagonal check: cos(\alpha_i) \cdot cos(\gamma_i) - cos(\beta_i) \cdot cos(\delta_i)
           for i = 1..4", Italic]]];
     Print[formatOrthodiagonalCheck[switched]];
      {name,passQ}],{combo,combinations}];]*)
Column[
 {TextCell[Style["========== ORTHOGONALITY CHECK =============",
    Brown, Bold, 16], "Text"],
  TextCell[Style["cos(\alpha_i) \cdot cos(\gamma_i) \neq cos(\beta_i) \cdot cos(\delta_i) for at least
       one i = 1,..., 4 \Rightarrow NOT orthodiagonal. Switching boundary
       strips does not correct this.", GrayLevel[0.3]], "Text"]}]
(*Helper
 function: Returns True if at least one cosine product difference is non-
   zero.Returns False if all differences are zero.*)
isNotOrthodiagonal[quad_List] :=
  Or @@ Table [Module [{a, b, c, d, diff}, {a, b, c, d} = quad [i];
     diff = Chop[Cos[a Degree] Cos[c Degree] - Cos[b Degree] Cos[d Degree]];
     diff # 0], {i, Length[quad]}];
(*First,check the initial,unswitched angles*)
Print[TextCell[Style["\nInitial anglesDeg (no switches):", Bold]]];
If[isNotOrthodiagonal[anglesDeg], Print[Style[
    " -> Condition met: At least one difference is non-zero.", Darker@Green]],
```

```
Print[Style[" -> Condition NOT met: All differences are zero.", Red]]];
(*Now, use your desired module to check all switch combinations*)
Module[{angles = anglesDeg, switchers, combinations, results},
 (*Define switch functions*)
 switchers = <|"Right" → SwitchingRightBoundaryStrip,</pre>
   \verb"Left" $\rightarrow$ SwitchingLeftBoundaryStrip, "Lower" $\rightarrow$ SwitchingLowerBoundaryStrip,
   "Upper" → SwitchingUpperBoundaryStrip|>;
 (*Generate all combinations of switches (from size 1 to 4)*)
 combinations = Subsets[Keys[switchers], {1, Length[switchers]}];
 (*Evaluate condition after each combination
 of switches and store in'results'*)results = Table[
  Module[{switched = angles, name, passQ}, name = StringRiffle[combo, " + "];
    Do[switched = switchers[sw][switched], {sw, combo}];
    (* ***THIS IS THE KEY CHANGE****) (*Set passQ using our
     new helper function*)passQ = isNotOrthodiagonal[switched];
    {name, passQ}], {combo, combinations}];
 (*Display results in the specified column format*)
 Column[Prepend[Table[Module[{comboName = res[[1]], passQ = res[[2]]},
     Row[{Style[comboName <> ": ", Bold], If[passQ,
        Style["Condition met (at least one difference is non-zero).", Darker[
          Green]], Style["Condition NOT met (all differences are zero).",
         Red, Bold]]}]], {res, results}], TextCell[
    Style["\nNON-ORTHOGONALITY CHECK AFTER SWITCHING BOUNDARY STRIPS", 14],
    "Text"]]]]
====*)
NOT CONJUGATE-MODULAR==========*)
====*)
(*Column[{TextCell[
     Style["========= NOT CONJUGATE-MODULAR ==============,
      Purple,Bold,16],"Text"],
    TextCell[Style["M1 = M2 = M3 = M4 = M
        and M \neq 2 \Rightarrow NOT conjugate-modular. Boundary-strip
        switches preserve this.",GrayLevel[0.3]],"Text"]
   }]
  Ms=FullSimplify[Times@@results];
allEqualQ=Simplify[Equal@@Ms];
Module[{angles=anglesDeg,switchers,combinations,results,
  computeConjugateModularInfo},(*Define switch functions*)
 switchers=<|"Right"→SwitchingRightBoundaryStrip,
```

```
"Left"→SwitchingLeftBoundaryStrip,"Lower"→SwitchingLowerBoundaryStrip,
   "Upper"→SwitchingUpperBoundaryStrip|>;
 (*Computes Mi and pi and prints them,
 with classification*)computeConjugateModularInfo[quad_List]:=
  Module[{abcdList,Ms,summary},abcdList=computeABCD/@quad;
   Ms=FullSimplify[Times@@@abcdList];
   summary=If[Simplify[Equal@@Ms]&&Ms[1]]=!=2,
     Style["M1 = M2 = M3 = M4 = M \text{ and } M \neq 2", Bold],
     Style["M1 = M2 = M3 = M4 = M and M = 2",Red,Bold]];
   Column[{Style["Mi values:",Bold],Row[{"M1 = ",Ms[1],
       ", M2 = ",Ms[2],", M3 = ",Ms[3],", M4 = ",Ms[4]],summary]];
 (*Original anglesDeg check*)
 Print[
  TextCell[Style["\nInitial configuration (no switches applied):",Bold]]];
 Print[MatrixForm[angles]];
 Print[computeConjugateModularInfo[angles]];
 (*Generate all switch combinations (from size 1 to 4)*)
 combinations=Subsets[Keys[switchers], {1, Length[switchers]}];
 (*Evaluate each switched configuration*)results=
  Table[Module[{switched=angles,name,passQ},name=StringRiffle[combo," + "];
    Do[switched=switchers[sw][switched],{sw,combo}];
    passQ=And@@(checkConditionNODegrees/@switched);
    Print[Style["\nSwitch combination: ", Bold],name];
    Print[Style["Switched anglesDeg:", Italic]];
    Print[MatrixForm[switched]];
    Print[computeConjugateModularInfo[switched]];
    {name,passQ}],{combo,combinations}];]*)
Column[{TextCell[
   Style["======== CONJUGATE-MODULAR CHECK ==============,
    Darker[Brown], Bold, 16], "Text"],
  TextCell[Style["M1 = M2 = M3 = M4 = M and M \neq 2 \Rightarrow NOT conjugate-modular.
      Boundary-strip switches preserve this.", GrayLevel[0.3]], "Text"]}]
(*Helper Function:Returns True if all M_i values are equal
   AND their common value is not 2. Returns False otherwise.*)
isNotConjugateModular[quad_List] :=
  Module[{abcdList, Ms}, abcdList = computeABCD /@ quad;
   Ms = FullSimplify[Times@@@ abcdList];
   (*The condition is met if they are all equal AND the value isn't 2*)
   Simplify[Equal@@Ms] && (Ms[1] \neq 2)];
(*First,check the initial,unswitched angles*)
Print[TextCell[Style["\nInitial anglesDeg (no switches):", Bold]]];
If[isNotConjugateModular[anglesDeg], Print[
   Style[" -> Condition met: All Mi are equal and M # 2.", Darker@Green]],
```

```
Print[Style[" -> Condition NOT met.", Red]]];
(*Now,use the clean module to check all switch combinations*)
Module[{angles = anglesDeg, switchers, combinations, results},
 (*Define switch functions*)
 switchers = <|"Right" → SwitchingRightBoundaryStrip,</pre>
   "Left" → SwitchingLeftBoundaryStrip, "Lower" → SwitchingLowerBoundaryStrip,
   "Upper" → SwitchingUpperBoundaryStrip|>;
 (*Generate all combinations of switches (from size 1 to 4)*)
 combinations = Subsets[Keys[switchers], {1, Length[switchers]}];
 (*Evaluate condition after each combination
  of switches and store the result*)results = Table[
   Module[{switched = angles, name, passQ}, name = StringRiffle[combo, " + "];
    Do[switched = switchers[sw][switched], {sw, combo}];
    (*Set passQ using our new helper function for this check*)
    passQ = isNotConjugateModular[switched];
    {name, passQ}], {combo, combinations}];
 (*Display results in the specified column format*)
 Column[Prepend[Table[Module[{comboName = res[1], passQ = res[2]}},
     Row[{Style[comboName <> ": ", Bold], If[passQ,
         Style["Condition met (All M_i are equal and M \neq 2).", Darker[Green]],
        Style["Condition NOT met.", Red, Bold]]}]], {res, results}],
   TextCell[Style["\nCONJUGATE-MODULAR CHECK AFTER SWITCHING BOUNDARY STRIPS",
     14], "Text"]]]]
```

✓ All vertices satisfy (N.0).

Out[248]=

Vertex	Combinations (mod 360)	Status
Vertex 1	{342.075, 102.075, 255.638,	✓ Pass
	135.638, 287.012, 80.5752, 47.0121, 200.575}	
Vertex 2	{334.867, 174.867, 315.305,	✓ Pass
	115.305, 276.196, 56.6343, 116.196, 256.634}	
Vertex 3	{319.476, 149.476, 330.241,	✓ Pass
	140.241, 92.1432, 272.908, 282.143, 102.908}	
Vertex 4	{332.626, 182.626, 299.113,	✓ Pass
	89.1129, 117.278, 233.765, 327.278, 83.7651}	

```
\checkmark M1 = M2 = M3 = M4 = 0.924668
Out[257]=
   \checkmark r1 = r2 = 1.13168; \checkmark r3 = r4 = 0.68379
   \checkmark s1 = s4 = 1.17093; \checkmark s2 = s3 = 1.09802
Out[267]=
```

```
△ Approximate validation using
          \varepsilon-tolerance. For rigorous proof, see the referenced paper.

✓ Valid Combination Found (M < 1):
</p>
       e1 = -1, e2 = 1, e3 = -1
       t1 = 0.K + 0.309024iK'
       t2 = 0.K + 0.502198iK'
       t3 = 1.K + 0.519082iK'
       t4 = 1.K + 0.325908iK'
       t1 + e1*t2 + e2*t3 + e3*t4 = 0.K + -3.33067 \times 10^{-16} iK'
Out[270]=
       ======== OTHER PARAMETERS ==========
       u = 0.0753316
       \sigma 1 = 2.98516, \sigma 2 = 2.92226, \sigma 3 = 2.78795, \sigma 4 = 2.90271
       \sigma 1 \approx 171.037^{\circ}, \sigma 2 \approx 167.433^{\circ}, \sigma 3 \approx 159.738^{\circ}, \sigma 4 \approx 166.313^{\circ}
       \cos \sigma 1 = -0.98779, \cos \sigma 2 = -0.976043, \cos \sigma 3 = -0.938119, \cos \sigma 4 = -0.971603
       f1 = 1.0682, f2 = 1.27867, f3 = 0.70414, f4 = 0.857702
       z1 = 14.6629, z2 = 3.5885, z3 = -3.37998, z4 = -7.02752
       x1 = 7.59444, x2 = 7.59444, x3 = -3.16246, x4 = -3.16246
       y1 = 5.85051, y2 = 10.2019, y3 = 10.2019, y4 = 5.85051
       p1 = 0.362871, p2 = 0.362871, p3 = 0.+0.562325 i, p4 = 0.+0.562325 i
       q1 = 0.413431, q2 = 0.313084, q3 = 0.313084, q4 = 0.413431
       p1 \cdot q1 = 0.150022, p2 \cdot q2 = 0.113609
         , p3 \cdot q3 = 0. + 0.176055 i, p4 \cdot q4 = 0. + 0.232483 i
Out[272]=
       ====== Bricard's
          System of Equations =========
       We introduce new notation for the
          cotangents of half of the dihedral angles. Denote Z:=
        \cot\left(\frac{\theta_1}{2}\right), W_2 = \cot\left(\frac{\theta_2}{2}\right), U := \cot\left(\frac{\theta_3}{2}\right), and W_1 = \cot\left(\frac{\theta_4}{2}\right)
       P_{2}(Z, W_{2}) = W_{2}^{2}(0.848101 Z^{2} + 0.400742) - 1.6951 W_{2} Z + 0.298319 Z^{2} + 0.14531 = 0
```

```
P_1(Z, W_1) = W_1^2(0.310125 Z^2 + 0.598771) - 1.94649 W_1 Z + 0.777254 Z^2 + 0.0926553 = 0
P_3(U, W_2) = (-0.606188 U^2 - 0.647883) W_2^2 + 0.200836 U^2 - 1.03579 U W_2 + 0.249417 = 0
P_4(U, W_1) = (-0.281613 U^2 - 0.625792) W_1^2 + 0.338269 U^2 - 0.803495 U W_1 + 0.202049 = 0
```

Out[281]=

========== FLEXIONS ==========

Solutions to Bricard's equations under a free parameter t := Z \in C:

Solution 1:

$$Z(t) = t$$

$$W_{2}(t) = \frac{0.999349 \ t - 0.284533 \ \sqrt{-4.34478 \ t^{4} + 8.16654 \ t^{2} - 1}}{1. \ t^{2} + 0.472516}$$

$$U(t) = \frac{0.98196 \sqrt{-4.34478 t^4 + 8.16654 t^2 - 1} + 0.114494 t}{1.74456 - 1. t^2}$$

$$W_{1}(t) = \frac{3.13824 \ t - 0.759502 \ \sqrt{-4.34478 \ t^{4} + 8.16654 \ t^{2} - 1}}{1. \ t^{2} + 1.93074}$$

Solution 2:

$$Z(t) = t$$

$$W_{2}(t) = \frac{0.284533 \sqrt{-4.34478 t^{4} + 8.16654 t^{2} - 1} + 0.999349 t}{1. t^{2} + 0.472516}$$

$$U(t) = \frac{0.114494 \ t - 0.98196 \ \sqrt{-4.34478 \ t^4 + 8.16654 \ t^2 - 1}}{1.74456 - 1. \ t^2}$$

$$W_{1}(t) = \frac{0.759502 \sqrt{-4.34478 t^{4} + 8.16654 t^{2} - 1}}{1. t^{2} + 1.93074} + 3.13824 t$$

Out[284]=

W_1) = 0 and P_2 (t, W_2) = 0 ==========

Let W_{1s1} and W_{1s2} be formulas for $W_{1}\left(t\right)$ from solutions 1 and 2, respectively. Similarly, let W_{2s1} and W_{2s2} be the formulas for $W_2(t)$. We show that all four pairs - (W_{1s1}, W_{2s1}) , (W_{1s1}, W_{2s2}) , (W_{1s2}, W_{2s1}) , and (W_{1s2}, W_{2s2}) - solve equations $P_1(t, W_1) = 0$ and $P_2(t, W_2) = 0$.

Pair 1, $(W_1, W_2) = (W_{1s1}, W_{2s1})$:

$$\begin{array}{lll} {\sf P_1}\left({\tt t,\;W_1}\right) &=& \frac{1}{\left(1.\;t^2+1.93074\right)^2} \left({\tt t\;\left(2.67507\times10^{-15}\;t^4-1.16063\times10^{-14}\;t^2+3.55271\times10^{-15}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\;t+2.00199\times10^{-14}\right) - \\ & & 5.77316\times10^{-15}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\right) - 2.41619\times10^{-15} \right) \end{array}$$

$$\begin{array}{lll} {\sf P_2}\left({\tt t,\;W_2}\right) &=& \frac{1}{(1.\;t^2+0.472516)^2} \left(t\; \left(t\; \left(1.3248\times 10^{-16}\; t^4-6.62401\times 10^{-17}\; t^2+8.88578\times 10^{-16}\; \sqrt{-4.34478\; t^4+8.16654\; t^2-1}\; t-2.18592\times 10^{-15}\right) + \\ & & 8.88178\times 10^{-16}\; \sqrt{-4.34478\; t^4+8.16654\; t^2-1}\; \right) + 1.9458\times 10^{-16} \end{array}$$

Pair 2, $(W_1, W_2) = (W_{1s1}, W_{2s2})$:

$$\begin{array}{lll} {\sf P_1}\left({\tt t,\;W_1}\right) &=& \frac{1}{(1.\;t^2+1.93074)^2} \left({\tt t\;\left({\tt 2.67507\times10^{-15}\;t^4-1.16063\times10^{-14}\;t^2+3.55271\times10^{-15}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\;t+2.00199\times10^{-14}\right) - \\ & & & 5.77316\times10^{-15}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\right) - 2.41619\times10^{-15} \right) \end{array}$$

$$\begin{array}{lll} {\sf P_2}\left({\tt t,\;W_2}\right) &=& \frac{1}{\left(1.\;t^2+0.472516\right)^2} \left(t\;\left(t\;\left(1.3248\times10^{-16}\;t^4-6.62401\times10^{-17}\;t^2-8.88578\times10^{-16}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\;t-2.18592\times10^{-15}\right) - \\ & & 8.88178\times10^{-16}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\right) + 1.9458\times10^{-16} \end{array}$$

Pair 3, $(W_1, W_2) = (W_{1s2}, W_{2s1})$:

$$\mathsf{P_1}\left(\mathsf{t},\;\mathsf{W_1}\right) \; = \; \frac{1}{(1.\;t^2+1.93074)^2} \left(t\; \left(t\; \left(2.67507\times 10^{-15}\; t^4-1.16063\times 10^{-14}\; t^2-1.16063\times 10^{-14}\; t^4-1.16063\times 10^{-14}\; t^4$$

$$\begin{array}{lll} {\sf P_2}\left({\tt t,\ W_2}\right) &=& \frac{1}{\left(1.\ t^2+0.472516\right)^2} \left(t\ \left(t\ \left(1.3248\times 10^{-16}\ t^4-6.62401\times 10^{-17}\ t^2+8.88578\times 10^{-16}\ \sqrt{-4.34478\ t^4+8.16654\ t^2-1}\ t-2.18592\times 10^{-15}\right) + \\ & & 8.88178\times 10^{-16}\ \sqrt{-4.34478\ t^4+8.16654\ t^2-1}\ \right) + 1.9458\times 10^{-16} \end{array}$$

Pair 4, $(W_1, W_2) = (W_{1s2}, W_{2s2})$:

$$\begin{array}{lll} {\sf P_1}\left({\tt t,\;W_1}\right) &=& \frac{1}{(1.\;t^2+1.93074)^2} \left({\tt t\;\left({\tt 2.67507\times10^{-15}\;t^4-1.16063\times10^{-14}\;t^2-1}\right.}\right.\\ && 3.55271\times10^{-15}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\;\;t+2.00199\times10^{-14}\right) + \\ && 5.77316\times10^{-15}\;\sqrt{-4.34478\;t^4+8.16654\;t^2-1}\right) - 2.41619\times10^{-15}\right) \end{array}$$

$$\begin{array}{ll} \mathsf{P_2}\left(\mathtt{t,\ W_2}\right) &= \frac{1}{(1.\ t^2 + 0.472516)^2} \left(t\ \left(t\ \left(1.3248 \times 10^{-16}\ t^4 - 6.62401 \times 10^{-17}\ t^2 - 3.88578 \times 10^{-16}\ \sqrt{-4.34478}\ t^4 + 8.16654\ t^2 - 1\ t - 2.18592 \times 10^{-15}\right) - \\ & 8.88178 \times 10^{-16}\ \sqrt{-4.34478}\ t^4 + 8.16654\ t^2 - 1\ \right) + 1.9458 \times 10^{-16} \end{array}$$

Out[287]=

========= Plots of $W_1(t)W_2(t)$ and $W_1(t)/W_2(t)$ For All Pairs ========

Checking that all four pairs - (W_{1s1}, W_{2s1}) , (W_{1s1}, W_{2s2}) , (W_{1s2}, W_{2s1}) , and (W_{1s2}, W_{2s2}) - does NOT satisfy $W_1(t)/W_2(t) = const$ and $W_1(t)W_2(t) = const$.

Out[296]=

```
W_2) = 0 and P_4 (U, W_1) = 0 ==========
We solve P_3(U, W_2) = 0 and P_4(U, W_1) = 0 for W_1 and W_2.
W_{\text{1.1}}\left(U\right) \ = \ \left(785\,075\,686\,532\,519\,\left(-\sqrt{\left(\frac{496\,280\,591\,367\,232\,664\,614\,220\,778\,988\,068\,\textit{U}^4}{3\,103\,731\,454\,578\,013}\right.}\right.\right. + \\
               68\,067\,333\,362\,384\,661\,407\,133\,160\,086\,126\,094\,655\,740\,418\,273\,\,U^2
                         94 309 449 855 884 820 125 100 815 987
               212 700 795 365 993
   (215929997 (1326526088509749 U^2 + 2947765589535578))
W_{12}(U) = (785\,075\,686\,532\,519)
      94 309 449 855 884 820 125 100 815 987
                    3 103 731 454 578 013
             212 700 795 365 993
   (215929997 (1326526088509749 U^2 + 2947765589535578))
W_{2\,\,1}\,\,(\,U\,) \quad = \quad \left(12\,632\,\,129\,\,231\,\,006\,\,053\,\,\left(\,-\,\,\frac{1}{\sqrt{366\,633\,\,289\,649\,\,269\,\,544\,\,689\,\,138\,\,024\,\,494\,\,489}}\right)\right)
          (\sqrt{1422696506085811215664299703025802263771973484032}\,U^{4} +
                6\,421\,738\,798\,276\,188\,584\,442\,497\,071\,245\,567\,749\,166\,671\,004\,433\, U^2 +
                1888 362 313 921 430 846 177 320 630 986 380 830 579 012 874 896) -
         92 460 837 U) / (714 126 584 (1 914 362 650 630 586 U^2 + 2 046 034 380 138 707))
W_{2\ 2}\ (U) \quad = \quad \left(12\ 632\ 129\ 231\ 006\ 053\ \left(\ \frac{1}{\sqrt{366\ 633\ 289\ 649\ 269\ 544\ 689\ 138\ 024\ 494\ 489}}\right.\right)
         (\sqrt{1422696506085811215664299703025802263771973484032}U^4 +
              6\,421\,738\,798\,276\,188\,584\,442\,497\,071\,245\,567\,749\,166\,671\,004\,433\,{\it U}^2\,+
              1888 362 313 921 430 846 177 320 630 986 380 830 579 012 874 896) -
         92 460 837 U) / (714 126 584 (1 914 362 650 630 586 U^2 + 2 046 034 380 138 707))
```

Out[301]=

========= Plots of $W_1(U)W_2(U)$ and $W_1(U)/W_2(U)$ For All Pairs ======

Checking that all four pairs - $(W_{11}(U), W_{21}(U)), (W_{11}(U),$ $W_{22}(U)$), $(W_{12}(U), W_{21}(U))$, and $(W_{12}(U), W_{22}(U))$ - does NOT satisfy $W_1(U)/W_2(U) = const$ and $W_1(U)W_2(U) = const$.

Out[302]=

======== FLEXIBILITY (Double Checking) =========

Out[304]=

Solution 1:

$$\begin{array}{lll} P_1 \; (\; Z \; , \; \; W_1 \;) \; &= \; \frac{1}{\left(1.93074 + 1.\; t^2\right)^2} \; \left(-2.41619 \times 10^{-15} \; + \right. \\ & \; t \; \left(-5.77316 \times 10^{-15} \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; + t \; \left(2.00199 \times 10^{-14} - 1.16063 \times 10^{-14} \; t^2 \; + \right. \\ & \; 2.67507 \times 10^{-15} \; t^4 \; + 3.55271 \times 10^{-15} \; t \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; \right) \right) \right) \\ P_2 \; (\; Z \; , \; \; W_2 \;) \; &= \; \frac{1}{\left(0.472516 + 1.\; t^2 \right)^2} \; \left(1.9458 \times 10^{-16} \; + \right. \\ & \; t \; \left(8.88178 \times 10^{-16} \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; + t \; \left(-2.18592 \times 10^{-15} - 6.62401 \times 10^{-17} \; t^2 \; + \right. \\ & \; 1.3248 \times 10^{-16} \; t^4 \; + 3.88578 \times 10^{-16} \; t \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; \right) \right) \right) \\ P_3 \; (\; U \; , \; \; W_2 \;) \; &= \; \frac{1}{\left(0.824332 + 1.27204 \; t^2 - 1. \; t^4 \right)^2} \\ & \; \left(1.68121 \times 10^{-16} \; + t \; \left(-3.78271 \times 10^{-15} \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; + \right. \\ & \; t \; \left(1.1096 \times 10^{-14} \; + t \; \left(-5.37986 \times 10^{-15} \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; + \right. \\ & \; t \; \left(8.74227 \times 10^{-15} - 2.03426 \times 10^{-14} \; t^2 + 6.85092 \times 10^{-15} \; t^4 \; + \right. \\ & \; 4.37114 \times 10^{-15} \; t \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; \right) \right) \right) \right) \\ P_4 \; (\; U \; , \; \; W_1 \;) \; = \; \frac{1}{\left(3.36829 - 0.186184 \; t^2 - 1. \; t^4 \right)^2} \\ & \; \left(2.78246 \times 10^{-15} \; + \; t \; \left(-4.47977 \times 10^{-14} \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; + \; t \; \left(4.89714 \times 10^{-14} \; + \right. \right. \\ & \; t \; \left(2.22597 \times 10^{-15} \; \sqrt{-1 + 8.16654 \; t^2 - 4.34478 \; t^4} \; + \; t \; \left(-7.5683 \times 10^{-14} - 6.67791 \times 10^{-15} \right. \right) \right) \right) \right) \right)$$

Out[310]=

Polynomials $P_i(t)$ built from Bricard's equations for flexion 1.

Out[311]=

Solution 2:

$$\begin{array}{ll} P_1 \; (\, Z \; , \; W, \,) \; = \; \frac{1}{\left(1.93074 + 1. \; t^2\right)^2} \; \left(-2.41619 \times 10^{-15} \, + \right. \\ & \hspace{1.5cm} t \; \left(5.77316 \times 10^{-15} \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \; + t \; \left(2.00199 \times 10^{-14} - 1.16063 \times 10^{-14} \, t^2 \, + \right. \\ & \hspace{1.5cm} 2.67507 \times 10^{-15} \; t^4 - 3.55271 \times 10^{-15} \; t \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \; \right) \right) \right) \\ P_2 \; (\, Z \; , \; W_2 \;) \; = \; \frac{1}{\left(0.472516 + 1. \; t^2\right)^2} \; \left(1.9458 \times 10^{-16} \, + \right. \\ & \hspace{1.5cm} t \; \left(-8.88178 \times 10^{-16} \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \; + t \; \left(-2.18592 \times 10^{-15} - 6.62401 \times 10^{-17} \, t^2 \, + \right. \\ & \hspace{1.5cm} 1.3248 \times 10^{-16} \; t^4 - 3.88578 \times 10^{-16} \; t \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \; \right) \right) \right) \\ P_3 \; (\, U \; , \; W_2 \;) \; = \; \frac{1}{\left(0.824332 + 1.27204 \, t^2 - 1. \, t^4\right)^2} \\ & \hspace{1.5cm} \left(1.68121 \times 10^{-16} \, + t \; \left(3.78271 \times 10^{-15} \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \, + t \; \left(8.74227 \times 10^{-15} - 2.03426 \times 10^{-14} \right. \right. \\ & \hspace{1.5cm} t^2 + 6.85092 \times 10^{-15} \; t^4 - 4.37114 \times 10^{-15} \; t \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \, \right) \right) \right) \right) \\ P_4 \; (\, U \; , \; W_1 \;) \; = \; \frac{1}{\left(3.36829 - 0.186184 \, t^2 - 1. \, t^4\right)^2} \\ & \hspace{1.5cm} \left(2.78246 \times 10^{-15} + t \; \left(4.47977 \times 10^{-14} \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \, + \right. \\ & \hspace{1.5cm} t \; \left(4.89714 \times 10^{-14} + t \; \left(-2.22597 \times 10^{-15} \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \, + \right. \\ & \hspace{1.5cm} t \; \left(4.89714 \times 10^{-14} + t \; \left(-2.22597 \times 10^{-15} \; t^2 + 1.81556 \times 10^{-14} \, t^4 - \right. \\ & \hspace{1.5cm} 1.00169 \times 10^{-14} \; t \; \sqrt{-1 + 8.16654} \, t^2 - 4.34478 \, t^4 \; \right) \right) \right) \right) \right) \\ \end{array}$$

Out[318]=

======= FLEXION 2 ===========

Polynomials $P_1(t)$ built from Bricard's equations for flexion 2.

Out[321]=

======= NOT LINEAR COMPOUND ========

Above we consider the first pair of equations $(P_1(t, W_1) = 0)$ and $P_2(t, W_2) = 0$). Solving them as quadratic equations in W_1 and W₂, respectively we parametrize the solutions by the first two and fourth expressions in Solutions 1 and 2 in a neighborhood of any point (W_1, t, W_2) such that the expression in the square root and denominators are not zero. Here, we choose any continuous branch of the square root in this neighborhood, and the signs in \pm need Not agree (this means we consider all 4 pairs we describe above). We conclude that NO component of the solution set of the first pair of Bricard's equations satisfies $W_1/W_2 = const$ NOR $W_1W_2 = const$.

Analogously, NO component of the solution set of the other pair of equations $(P_3(U, W_2) = 0 \text{ and } P_4(U, W_1) = 0)$ satisfies $W_1/W_2 = const NOR W_1W_2 = const.$ As a result, NO component of the solution set of all four equations satisfies $W_1/W_2 = const$ NOR $W_1W_2 = const$. So, our example does not belong to the linear compound class, even after switching the boundary strips.

Below, we also present the plots of functions ZU, Z/U, W_1W_2 , W_1/W_2 , ZW_2 , Z/W_2 , UW_1 , U/W_1 , ZW_1 , Z/W_1 , W_2U , W_2/U .

Solution 1:

Out[324]=

Solution 2:

Out[327]=

======== NOT TRIVIAL (FLEXION 1) ==========

This configuration does not belong to the trivial class — even after switching the boundary strips since none of the functions ${\sf Z}$, ${\sf W2}$, ${\sf U}$, or ${\sf W1}$ is constant.

Out[330]=

======== NOT TRIVIAL (FLEXION 2) ==========

This configuration does not belong to the trivial class - even after switching the boundary strips since none of the functions Z, W2, U, or W1 is constant.

Out[337]=

========= NOT CONIC & NOT CHIMERA & NOT LINEAR CONJUGATE & NOT ISOGONAL==========

Condition (N.0) is satisfied for all i=1,...,4⇒ NOT equimodular-conic, NOT chimera, NOT isogonal and NOT linear conjugate. Applying any boundary-strip switch still preserves (N.0), so no conic, no chimera, no isogonal and no linear conjugate form emerges.

Out[338]=

```
CONDITION (N.0) AFTER SWITCHING BOUNDARY STRIPS
      Right: Condition (N.0) is still satisfied.
      Left: Condition (N.0) is still satisfied.
      Lower: Condition (N.0) is still satisfied.
      Upper: Condition (N.0) is still satisfied.
      Right + Left: Condition (N.0) is still satisfied.
      Right + Lower: Condition (N.0) is still satisfied.
      Right + Upper: Condition (N.0) is still satisfied.
      Left + Lower: Condition (N.0) is still satisfied.
      Left + Upper: Condition (N.0) is still satisfied.
      Lower + Upper: Condition (N.0) is still satisfied.
      Right + Left + Lower: Condition (N.0) is still satisfied.
      Right + Left + Upper: Condition (N.0) is still satisfied.
      Right + Lower + Upper: Condition (N.0) is still satisfied.
      Left + Lower + Upper: Condition (N.0) is still satisfied.
      Right + Left + Lower + Upper: Condition (N.0) is still satisfied.
Out[339]=
      ========= ORTHOGONALITY CHECK ===========
      cos(\alpha_i) \cdot cos(\gamma_i) \neq cos(\beta_i) \cdot cos(\delta_i) for
        at least one i = 1, ..., 4 \Rightarrow NOT orthodiagonal.
        Switching boundary strips does not correct this.
      Initial anglesDeg (no switches):
       -> Condition met: At least one difference is non-zero.
Out[343]=
      NON-ORTHOGONALITY CHECK AFTER SWITCHING BOUNDARY STRIPS
      Right: Condition met (at least one difference is non-zero).
      Left: Condition met (at least one difference is non-zero).
      Lower: Condition met (at least one difference is non-zero).
      Upper: Condition met (at least one difference is non-zero).
      Right + Left: Condition met (at least one difference is non-zero).
      Right + Lower: Condition met (at least one difference is non-zero).
      Right + Upper: Condition met (at least one difference is non-zero).
      Left + Lower: Condition met (at least one difference is non-zero).
      Left + Upper: Condition met (at least one difference is non-zero).
      Lower + Upper: Condition met (at least one difference is non-zero).
      Right + Left + Lower: Condition met (at least one difference is non-zero).
      Right + Left + Upper: Condition met (at least one difference is non-zero).
      Right + Lower + Upper: Condition met (at least one difference is non-zero).
      Left + Lower + Upper: Condition met (at least one difference is non-zero).
      Right + Left + Lower + Upper:
       Condition met (at least one difference is non-zero).
Out[344]=
      ======== CONJUGATE-MODULAR CHECK ============
      M1 = M2 = M3 = M4 = M \text{ and } M \neq 2 \Rightarrow NOT
        conjugate-modular. Boundary-strip switches preserve this.
```

Initial anglesDeg (no switches):

```
-> Condition met: All M_i are equal and M \neq 2.
Out[348]=
```

CONJUGATE-MODULAR CHECK AFTER SWITCHING BOUNDARY STRIPS

```
Right: Condition met (All M_i are equal and M \neq 2).
Left: Condition met (All M_i are equal and M \neq 2).
Lower: Condition met (All M_i are equal and M \neq 2).
Upper: Condition met (All M_i are equal and M \neq 2).
Right + Left: Condition met (All Mi are equal and M \neq 2).
Right + Lower: Condition met (All M_i are equal and M \neq 2).
Right + Upper: Condition met (All M_i are equal and M \neq 2).
Left + Lower: Condition met (All M_i are equal and M \neq 2).
Left + Upper: Condition met (All M_i are equal and M \neq 2).
Lower + Upper: Condition met (All M_i are equal and M \neq 2).
Right + Left + Lower: Condition met (All M_i are equal and M \neq 2).
Right + Left + Upper: Condition met (All M_i are equal and M \neq 2).
Right + Lower + Upper: Condition met (All M_i are equal and M \neq 2).
Left + Lower + Upper: Condition met (All M_i are equal and M \neq 2).
Right + Left + Lower + Upper: Condition met (All M_i are equal and M \neq 2).
```