Manuel Gijón Agudo

September 2017 - January 2018

${\bf \acute{I}ndice}$

1.	Mer	moryless resources	3
	1.1.	Sources and average word length	3
	1.2.	Uniquely decodeable codes	3
	1.3.	Optimal codes	4
	1.4.	Extension of sources	5
2.	Info	rmation and entropy	6
_ `		Definitions	6
		Properties of the entropy funcion	6
	2.3.		6
		Product of sources	7
		Markov Chains	7
		Sources with memory	8
	2.0.	bources with memory	C
3.	Info	rmation channels	9
	3.1.	Channel matrix	9
	3.2.	System Entropies and mutual information	9
	3.3.	Extension of noiseless coding theorem to information channels	9
	3.4.	Decision rules	9
	3.5.	Improving reliability	9
	3.6.	Rates of transmision and Hamming distance	9
4.	Fini	te fields	10
	4.1.	Basic definitions	10
	4.2.	Propierties of finite fields	10
	4.3.	Factorization of polynomials	10
5.	Bloc	ck codes	11
	5.1.	Minimun distance	11
	5.2.	Bounds on block codes	11
	5.3	Asymptotically good codes	11

Code Theory 2					
6.	Linear codes				
	6.1. Basics	12			
	6.2. Syndrom decoding	12			
	6.3. Dual code and Mc Williams identities	12			
	6.4. The Griesmer bound	12			
7.	Cyclic codes				
	7.1. Introduction	13			
	7.2. Quadratic residue codes	13			
	7.3. BCH Codes	13			
8.	Maximun distance separable codes				
	8.1. Syngleton bound	14			
	8.2. Linear MDS codes	14			
9.	Alternant codes	15			
10	Low density parity check codes	16			
	10.1. Bipartite graphs with the expander property	16			
	10.2. Low density parity check (LDPC) codes	16			
	10.3. Belief propagation	16			
11	P-adic codes	17			
	11.1. P-adic numbers	17			
	11.2. Polynomials over \mathbb{Q}_p	17			

1. Memoryless resources

1.1. Sources and average word length

Definition 1: a **source** is a finite set S together with a set of random variables $(X_1, X_2, ...)$ whose range is S.

If $P(X_n = S_i)$ only depends on i and not on n then we say the source is **stationary** and if the X_n are independent then it's **memoryless**.

Insert example here

Definition 2: Let \mathcal{T} be a finite set called **alphabet**. A map $\mathfrak{C}: \mathbb{S} \longrightarrow \bigcup_{n \geq 1} T^n$ is called a **code**.

If |T| = r then \mathfrak{C} is a r-ary code.

A code extends from \mathbb{S} to $T \cup T^2 \cup ...$ to $\mathbb{S} \cup \mathbb{S}^2 \cup ...$ to $T \cup T^2 \cup ...$ in obvious way.

insert example here

Definition 3: The average word-length of a code \mathfrak{C} is $L(\mathfrak{C}) := \sum_{i=1}^{n} p_i l_i$ where l_i is the length of the image of the symbol of \mathbb{S} , which is emitted with probability p_i .

For now, we write \mathfrak{C} to be the image of \mathfrak{C} .

1.2. Uniquely decodeable codes

Definition 4: If for any sequencies $u_1...u_n = v_1...v_m$ in \mathfrak{C} implies m = n and $u_i = v_i$ for i = 1, ..., n then we say that \mathfrak{C} is uniquely decodeable.

insert example here

insert example here

insert example here

Let $\mathfrak{C}_0 = \mathfrak{C}$:

- $\mathfrak{C}_n := \{ \omega \in T \cup T^2 \cup ... | u\omega = v \text{ for some } u \in \mathfrak{C}_{n-1}, v \in \mathfrak{C} \text{ or } u\omega = v \text{ for some } u \in \mathfrak{C}, v \in \mathfrak{C}_{n-1} \}$
- $\mathfrak{C}_{\infty} := \bigcup_{k > 1} \mathfrak{C}_k$

Since everythig is finite either $\mathfrak{C}_m = \emptyset$ for some m and then $\mathfrak{C}_n = \emptyset$ for $n \geq m$ or it will be periodic and start repeating.

Theorem 1: \mathfrak{C} is uniquely decodeable $\iff \mathfrak{C} \cap \mathfrak{C}_{\infty} = \emptyset$.

proof: Insert proof here

insert example here

insert example here

insert example here

Definition 5: A code is a **prefix-code** if no codeword is prefix of another (ie. $\mathfrak{C}_1 = \emptyset$).

A prefix code is uniquely decodeable.

Theorem 2: (Kraft's inequality) $\exists r$ -ary prefix code with word lengths $l_1, l_2, ..., l_q \iff$

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

proof: Insert proof here

insert example here

Theorem 3: (McMillan's inequality) \exists r-ary uniquely decodeable code with word lengths $l_1, l_2, ..., l_q \iff$

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

proof: Insert proof here

1.3. Optimal codes

Let be S a source with symbols $s_1, ..., s_q$ emitted with probabilities $p_1, ..., p_q$ and \mathfrak{C} is a code which encodes s_i with a codeword length l_i . Recall $L(\mathfrak{C}) = \sum_{i=1}^q p_i l_i$.

Definition 6: An **optimal code** for S is an uniquely decodeable code \mathfrak{D} such that $L(\mathfrak{C}) \geq L(\mathfrak{D})$ for all uniquel decodeable code \mathfrak{C} .

inset example here

insert example here

Definition 7: A code constructed in this way is called a **Hoffman code**.

insert example here

Construct the r-arg Huffman code we sum together (at each step) the r smallest probabilities.

For this to work we need $q \equiv 1(r-1)$. Recall q is the number of symbols in the source. If not, then we add symbols with probabilities zero so that it is.

insert example here

Lemma 1: Every source S has an optimal binary code \mathfrak{D} in which two of the longest codewords are **siblings**, ie. $\exists x$ (a string) such that $x_0, x_1 \in \mathfrak{D}$.

proof: Insert proof here

Theorem 4: The Huffman code is an optimal code.

proof: Insert proof here

1.4. Extension of sources

Given a source S we define S^n the source with $|S|^n$ symbols, typically $s_1, ..., s_n$, emitted with $p_1, ..., p_n$ probabilities.

insert example here

2. Information and entropy

2.1. Definitions

Definition 1: the **information** coveyed by a source is a function $I: S \to [0, \infty)$ where S is a **source** ¹ with the properties:

- $I(s_i)$ is a decreasing function of the propability p_i , with $I(s_i) = 0$ if $p_i = 1$.
- $I(s_i s_j) = I(s_i) + I(s_j)$, ie.the information geined by two symbols is the sum of the information obtained from each where the source has symbols $s_1, ..., s_q$ emitted with probabilities $p_1, ..., p_q$.

Lemma 1: $I(s_i) = -\log_r p_i$ for some r.

proof: Insert proof here

Definition 2: The r-ary entropy $H_r(S)$ of a source S is the average information coveyed by S.

$$H_r(S) := -\sum_{i=1}^q p_i \log_r p_i$$

, by convenction $x \log_r x$ evaluated at 0 is 0.

Insert five examples

2.2. Properties of the entropy function

Theorem 1: $H_r(S) \leq \log_r q$ with equality if and only iff S is the source where each symbol is emitted with probability 1/q.

proof: Insert proof here

Theorem 2: $H_r(S) \leq L(C)$ for unique decodeable code C.

proof: Insert proof here

2.3. Shannon-Fano Code

Let S be the source with symbols s_i and probabilities p_i . Let $l_i := \lceil \log_r 1/p_i \rceil$.

Then:
$$\sum_{i=1}^{q} r^{-l_i} \le \sum r^{-\log_r 1/p_i} = \sum p_i = 1$$

¹A **source** is a finite set S together with a sequence of random variables X_i whose range is S

Definition 3: by Kraft exists a prefix code with woed length $l_1, l_2, ..., l_1$. This code is called **Shannon-Fano code**.

Inert example here

Lemma 2: For the Shannon-Fano code $C: H_r(S) \leq L(C) < H_r(S) + 1$.

proof: Insert proof here

2.4. Product of sources

Let S and T be two memoryless sources, S with symbols s_i and probabilities p_i and T with symbols t_j and probabilities q_j .

Definition 4: The **product source** $S \times T$ is a source with symbols $s_i t_j$ and probabilities $p_i q_j$.

Theorem 3: $H_r(S \times T) = H_r(S) + H_r(T)$.

proof: Insert proof here

Corollary 1: $H_r(S^n) = nH_r(S)$.

Theorem 4: Noiseless Coding The average word length L_n of an optiml code of S^n satisfies:

$$\frac{L_n}{n} \longrightarrow H_r(S), n \to \infty$$

proof: Insert proof here

some examples

2.5. Markov Chains

Definition 4: A Markov Chain is a sequency of random variables where X_{n+1} depends only for X_n .

$$P(X_{n+1} = s_j | X_n = s_j) = p_{i,j}$$

This can be represented in a direct graph and also by a matrix $P := (p)_{i,j}$.

Suppose u_0 is the vector which describes the initial distribution, ie. the *i*-th coordinate of u_0 is probability we start at s_i . Probability of beeing in the *i*-th state after r steps is the *i*-th coordinate of u_0P^r .

Theorem 5: if $\exists r \in \mathbb{N}$ such that P^r has no zero entries, then $u_0P^r \longrightarrow u$, as $n \to \infty$.

Definition 5: This vector u is called the **stationary distribution**. It is normalised eigenvector of P^t with eigenvalue 1, ie. $u_j = \sum_i p_{i,j} u_i$ and $\sum_j u_j = 1$.

Definition 6: If P is the matrix of a Markov Chain and $\exists r$ such that P^r has non zero entries then we say that the Markov Chain is **regular**.

2.6. Sources with memory

Suppose S is a Markov Chain source with random variables $X_1, X_2, ...$ such that

$$P(X_{n+1} = s_j | X_n = s_j) = p_{i,j}$$

Definition 7: *S* is **not memoryless**, but it is stationary.

Theorem 6: suppose S is a regular Markov Chain source with stationary distribution $u = (u_1, ..., u_j)$. Let S' be the stationary memoryless source with the same source elements as S (where s_i is emmitted with probability w_i). Then:

$$H_r(S) \leq H_r(S')$$

proof: Insert proof here

3. Information channels

- 3.1. Channel matrix
- 3.2. System Entropies and mutual information
- 3.3. Extension of noiseless coding theorem to information channels
- 3.4. Decision rules
- 3.5. Improving reliability
- 3.6. Rates of transmision and Hamming distance

- 4. Finite fields
- 4.1. Basic definitions
- 4.2. Propierties of finite fields
- 4.3. Factorization of polynomials

- 5. Block codes
- 5.1. Minimun distance
- 5.2. Bounds on block codes
- 5.3. Asymptotically good codes

6. Linear codes

- 6.1. Basics
- 6.2. Syndrom decoding
- 6.3. Dual code and Mc Williams identities
- 6.4. The Griesmer bound

7. Cyclic codes

- 7.1. Introduction
- 7.2. Quadratic residue codes
- 7.3. BCH Codes

Decision problem, yes/no problem

- 8. Maximun distance separable codes
- 8.1. Syngleton bound
- 8.2. Linear MDS codes

9. Alternant codes

- 10. Low density parity check codes
- 10.1. Bipartite graphs with the expander property
- 10.2. Low density parity check (LDPC) codes
- 10.3. Belief propagation

11. P-adic codes

Breve comenterio

11.1. P-adic numbers

11.2. Polynomials over \mathbb{Q}_p