OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini

> July 4, 2017 07:20

CONTENTS

1	Introduction						
	1.1	Cmgui files for cmgui-2.9					
	1.2	_	tions to consider	_			
	1.3	Folde	r structure	5			
2	Hov	v to wo	o work on this document				
3	Diffusion equation						
	3.1		tion in general form	6			
	3.2 Example-0001						
	9	3.2.1	Mathematical model - 2D	5			
		3.2.2	Mathematical model - 3D	5			
		3.2.3	Computational model	5			
		3.2.4	Result summary	8			
	3.3	Exam	ple-0001-u	11			
		3.3.1	Mathematical model - 2D	11			
		3.3.2	Mathematical model - 3D	11			
		3.3.3	Computational model	11			
		3.3.4	Result summary	12			
	3.4	ple-0002	15				
		3.4.1	Mathematical model - 2D	15			
		3.4.2	Mathematical model - 3D	1			
		3.4.3	Computational model	1			
		3.4.4	Result summary	16			
	3.5 Example-0003			19			

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

[†] Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

13

Figure 7	3D results, iron reference w/ command line argu-				
	ments [2.0 1.0 1.0 8 4 4 1 0]	14			
Figure 8	3D results, current run w/ command line arguments				
	[2.0 1.0 1.0 8 4 4 1 0]	14			
Figure 9	2D results, iron reference w/ command line argu-				
	ments [2.0 1.0 0.0 8 4 0 1 0]	16			
Figure 10	2D results, current run w/ command line arguments				
	[2.0 1.0 0.0 8 4 0 1 0]	17			
Figure 11	3D results, iron reference w/ command line argu-				
	ments [2.0 1.0 1.0 8 4 4 1 0]	17			
Figure 12	3D results, current run w/ command line arguments				
	[2.0 1.0 1.0 8 4 4 1 0]	18			
Figure 13	2D results, iron reference w/ command line argu-				
O O	ments [2.0 1.0 0.0 8 4 0 1 0]	21			
Figure 14	2D results, current run w/ command line arguments				
	[2.0 1.0 0.0 8 4 0 1 0]	21			
Figure 15	3D results, iron reference w/ command line argu-				
0)	ments [2.0 1.0 1.0 8 4 4 1 0]	22			
Figure 16	3D results, current run w/ command line arguments				
	[2.0 1.0 1.0 8 4 4 1 0]	22			
Figure 17	2D results, iron reference w/ command line argu-				
1180110 17	ments [8 4 0 2 0]	24			
Figure 18	2D results, current run w/ command line arguments	-4			
116416 10	[8 4 0 2 0]	24			
Figure 19	2D results, iron reference w/ command line argu-	-4			
riguic 19	ments [2.0 1.0 0.0 8 4 0 1 0 1 1]	27			
Figure 20	2D results, current run w/ command line arguments	27			
riguic 20	[2.0 1.0 0.0 8 4 0 1 0 1 1]	27			
Figure 21	3D results, iron reference w/ command line argu-	27			
rigule 21	•	28			
Eiguro 22	ments [2.0 1.0 1.0 8 4 4 1 0 1 1 1]	20			
Figure 22	3D results, current run w/ command line arguments	~0			
Eigura 22	[2.0 1.0 1.0 8 4 4 1 0 1 1 1]	28			
Figure 23	Results, analytical solution.	31			
Figure 24	Results, Abaqus reference	31			
Figure 25	Results, iron reference	32			
Figure 26	Results, current run.	32			
Figure 27	Results, analytical solution.	34			
Figure 28	Results, Abaqus reference	34			
Figure 29	Results, iron reference	35			
Figure 30	Results, current run.	35			
LIST OF TABLES					
Table 1	Initials of people working on examples, in alphabeti-				
	cal and or (cumamos)	_			

INTRODUCTION 1

This document contains information about examples used for testing OpenCMISSiron. Read: How-to¹ and [1].

- Cmgui files for cmgui-2.9
- Variations to consider
 - Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

1.3 Folder structure

TBD..

HOW TO WORK ON THIS DOCUMENT

In the Google Doc at https://docs.google.com/spreadsheets/d/1RGKj8vVPqQ-PH0UwMX_ e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

- no mark: to be done
- x: currently working on it
- xx: done

Initials	Full name
СВ	Christian Bleiler
AH	Andreas Hessenthaler
TK	Thomas Klotz
AK	Aaron Krämer
BM	Benjamin Maier
SM	Sergio Morales
MM	Mylena Mordhorst
HS	Harry Saini

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

The governing equation is,

$$\partial_t \mathbf{u} + \nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = \mathbf{f}, \tag{1}$$

with conductivity tensor $\boldsymbol{\sigma}.$ The conductivity tensor is,

- defined in material coordinates (fibre direction),
- diagonal,
- defined per element.

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 x = y = 0, (3)$$

$$u = 1$$
 $x = 2, y = 1.$ (4)

No material parameters to specify.

3.2.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{5}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{6}$$

$$u = 1$$
 $x = 2, y = z = 1.$ (7)

No material parameters to specify.

3.2.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.2.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 24 / 24

No failed tests.

Figure 1: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 2: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 3: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

Figure 4: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.3 Example-0001-u

Example uses user-defined regular meshes in CHeart mesh format and solves a static problem, i.e., applies the boundary conditions in one step.

3.3.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{8}$$

with boundary conditions

$$u = 0 x = y = 0, (9)$$

$$u = 1$$
 $x = 2, y = 1.$ (10)

No material parameters to specify.

3.3.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{11}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{12}$$

$$u = 1$$
 $x = 2, y = z = 1.$ (13)

No material parameters to specify.

3.3.3 Computational model

Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

```
2.0 1.0 0.0 8 4 0 1 1
2.0 1.0 0.0 2 1 0 2 1
2.0 1.0 0.0 4 2 0 2 1
2.0 1.0 0.0 8 4 0 2 1
2.0 1.0 1.0 2 1 1 1 0
2.0 1.0 1.0 4 2 2 1 0
2.0 1.0 1.0 8 4 4 1 0
2.0 1.0 1.0 2 1 1 2 0
2.0 1.0 1.0 4 2 2 2 0
2.0 1.0 1.0 8 4 4 2 0
2.0 1.0 1.0 2 1 1 1 1
2.0 1.0 1.0 4 2 2 1 1
2.0 1.0 1.0 8 4 4 1 1
2.0 1.0 1.0 2 1 1 2 1
2.0 1.0 1.0 4 2 2 2 1
2.0 1.0 1.0 8 4 4 2 1
```

• Note: Binary uses command line arguments to search for the relevant mesh files.

3.3.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 24 / 24

No failed tests.

Figure 5: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1

Figure 6: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 7: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1

Figure 8: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.4 Example-0002

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.4.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{14}$$

with boundary conditions

$$u = 15y$$
 $x = 0$, (15)

$$u = 25 - 18y$$
 $x = 2.$ (16)

No material parameters to specify.

3.4.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{17}$$

with boundary conditions

$$u = 15y x = 0, (18)$$

$$u = 25 - 18y$$
 $x = 2.$ (19)

No material parameters to specify.

3.4.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.4.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 24 / 24

No failed tests.

Figure 9: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 10: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 $\,$ o].

Figure 11: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10].

Figure 12: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

3.5 Example-0003

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.5.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{20}$$

with boundary conditions

$$u = 15y \qquad x = 0, \tag{21}$$

$$u = 15y$$
 $x = 0,$ (21) $\vartheta_n u = 25 - 18y$ $x = 2.$ (22)

No material parameters to specify.

3.5.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{23}$$

with boundary conditions

$$u = 15y$$
 $x = 0$, (24)

$$\partial_n u = 25 - 18y$$
 $x = 2.$
(25)

No material parameters to specify.

3.5.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

```
2.0 1.0 0.0 8 4 0 1 1
2.0 1.0 0.0 2 1 0 2 1
2.0 1.0 0.0 4 2 0 2 1
2.0 1.0 0.0 8 4 0 2 1
2.0 1.0 1.0 2 1 1 1 0
2.0 1.0 1.0 4 2 2 1 0
2.0 1.0 1.0 8 4 4 1 0
2.0 1.0 1.0 2 1 1 2 0
2.0 1.0 1.0 4 2 2 2 0
2.0 1.0 1.0 8 4 4 2 0
2.0 1.0 1.0 2 1 1 1 1
2.0 1.0 1.0 4 2 2 1 1
2.0 1.0 1.0 8 4 4 1 1
2.0 1.0 1.0 2 1 1 2 1
2.0 1.0 1.0 4 2 2 2 1
2.0 1.0 1.0 8 4 4 2 1
```

3.5.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 0 / 24

Failed tests:

```
current_run/l2x1x0_n2x1x0_i1_s0/Example.part0.exnode
current_run/l2x1x0_n4x2x0_i1_s0/Example.part0.exnode
current_run/l2x1x0_n8x4x0_i1_s0/Example.part0.exnode
current_run/l2x1x0_n2x1x0_i2_s0/Example.part0.exnode
current_run/l2x1x0_n4x2x0_i2_s0/Example.part0.exnode
current_run/l2x1x0_n8x4x0_i2_s0/Example.part0.exnode
current_run/l2x1x0_n2x1x0_i1_s1/Example.part0.exnode
current_run/l2x1x0_n4x2x0_i1_s1/Example.part0.exnode
current_run/l2x1x0_n8x4x0_i1_s1/Example.part0.exnode
current_run/l2x1x0_n2x1x0_i2_s1/Example.part0.exnode
current_run/l2x1x0_n4x2x0_i2_s1/Example.part0.exnode
current_run/l2x1x0_n8x4x0_i2_s1/Example.part0.exnode
current_run/l2x1x1_n2x1x1_i1_s0/Example.part0.exnode
current_run/l2x1x1_n4x2x2_i1_s0/Example.part0.exnode
current_run/l2x1x1_n8x4x4_i1_s0/Example.part0.exnode
current_run/l2x1x1_n2x1x1_i2_s0/Example.part0.exnode
current_run/l2x1x1_n4x2x2_i2_s0/Example.part0.exnode
current_run/l2x1x1_n8x4x4_i2_s0/Example.part0.exnode
current_run/l2x1x1_n2x1x1_i1_s1/Example.part0.exnode
\verb|current_run/l2x1x1_n4x2x2_i1_s1/Example.part0.exnode|\\
current_run/l2x1x1_n8x4x4_i1_s1/Example.part0.exnode
current_run/l2x1x1_n2x1x1_i2_s1/Example.part0.exnode
current_run/l2x1x1_n4x2x2_i2_s1/Example.part0.exnode
current_run/l2x1x1_n8x4x4_i2_s1/Example.part0.exnode
```

- Iron $|_{2} = 161.167$ CHeart | CHeart - Iron $|_{-2} = 518.432$ | CHeart - Iron $|_{2} = 1863.05$ | CHeart - Iron $|_{-2} = 52.2529$ - Iron $|_{2} = 154.821$ CHeart CHeart - Iron $|_{-2} = 514.318$ | CHeart - Iron $|_{2} = 161.167$ - Iron $|_{-2} = 518.432$ | CHeart - Iron $|_{2} = 1863.05$ CHeart CHeart - Iron $|_{-2} = 218.476$ - Iron $|_2 = 1082.19$ | CHeart - Iron $|_{-2} = 6926.52$ | CHeart - Iron $|_{2} = 1190.46$ CHeart CHeart - Iron $|_{-2} = 7060.73$

| CHeart

| CHeart

| CHeart

| CHeart

| CHeart

CHeart

CHeart

CHeart

| CHeart

| CHeart

- Iron $|_{-2} = 52.2529$

- Iron $|_{2} = 154.821$

- Iron $|_{-2} = 514.318$

- Iron $|_{2} = 56067.2$

- Iron $|_{-2} = 218.476$

- Iron $|_{2} = 1082.19$

- Iron $|_{-2} = 6926.52$

- Iron $|_{2} = 1190.46$ - Iron $|_{-2} = 7060.73$

- Iron $|_2 = 56066.9$

Figure 13: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 10].

Figure 14: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 $\,$ o].

Figure 15: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10].

Figure 16: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 $\,$

3.6 Example-0004

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.6.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{26}$$

with boundary conditions

$$u = 2.0e^{x} \cdot \cos(y)$$
 on $\partial\Omega$. (27)

No material parameters to specify.

3.6.2 Computational model

• Commandline arguments are:

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

42010

84010

21020

42020

84020

42011

84011

21021

42021

84021

100 50 0 1 0 (not tested yet..)

100 50 0 2 0 (not tested yet..)

100 50 0 1 1 (not tested yet..)

100 50 0 2 1 (not tested yet..)

3.6.3 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 10 / 10

No failed tests.

Figure 17: 2D results, iron reference w/ command line arguments [8 4 0 2 0].

Figure 18: 2D results, current run w/ command line arguments [8 4 0 2 0].

3.7 Example-0011

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.7.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot [\sigma \nabla u] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{28}$$

with boundary conditions

$$u = 0 x = y = 0, (29)$$

$$u = 1$$
 $x = 2, y = 1.$ (30)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{31}$$

3.7.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{32}$$

with boundary conditions

$$u = 0$$
 $x = y = z = 0,$ (33)

$$u = 1$$
 $x = 2, y = z = 1.$ (34)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{35}$$

3.7.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: σ_{11} float: σ_{22}

float: σ_{33} (ignored for 2D)

• Commandline arguments for tests are:

3.7.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Passed tests: 24 / 24

No failed tests.

Figure 19: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1011].

Figure 20: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0 1 1].

Figure 21: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10111].

Figure 22: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

4 LINEAR ELASTICITY

4.1 Equation in general form

$$\partial_{tt} \mathbf{u} + \nabla \cdot \mathbf{\sigma}(\mathbf{u}, \mathbf{t}) = \mathbf{f}(\mathbf{u}, \mathbf{t}) \tag{36}$$

4.2 Example-0101

4.2.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \sigma(\mathbf{u}, \mathbf{t}) = 0$$
 $\Omega = [0, 160] \times [0, 120] \times [0, 120], \mathbf{t} \in [0, 5],$ (37)

with time step size $\Delta_t = 1$ and $u = [u_x, u_y]$ in 2D $u = [u_x, u_y, u_z]$ in 3D. The boundary conditions in 2D are given by

$$u_x = u_y = 0 \qquad \qquad x = y = 0, \tag{38}$$

$$u_x = 16$$
 $x = 160$, (39)

and in 3D by

$$u_x = u_y = u_z = 0$$
 $x = y = z = 0$, (40)

$$u_x = 16$$
 $x = 160$. (41)

The material parameters are

$$E = 10000MPa,$$
 (42)

$$v = 0.3,$$
 (43)

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3. \tag{44}$$

4.2.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

• Commandline arguments for tests are:

4.2.3 Results

4.2.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 23: Results, analytical solution.

Figure 24: Results, Abaqus reference.

Figure 25: Results, iron reference.

Figure 26: Results, current run.

4.3.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \sigma(\mathbf{u}, \mathbf{t}) = 0$$
 $\Omega = [0, 160] \times [0, 120] \times [0, 120], \mathbf{t} \in [0, 5],$ (45)

with time step size $\Delta_t = 1$ and $\mathbf{u} = [u_x, u_y]$ in 2D $\mathbf{u} = [u_x, u_y, u_z]$ in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad y = 0, \tag{46}$$

$$u_y = 8$$
 $x = 160,$ (47)

and in 3D by

$$u_x = u_z = 0 x = 0, (48)$$

$$u_y = 0 y = 0, (49)$$

$$u_x = 160$$
 $x = 160$, (50)

$$u_y = 8$$
 $x = 160.$ (51)

The material parameters are

$$E = 10000MPa,$$
 (52)

$$v = 0.3, \tag{53}$$

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3. \tag{54}$$

4.3.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

• Commandline arguments for tests are:

• • •

4.3.3 Results

4.3.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 27: Results, analytical solution.

Figure 28: Results, Abaqus reference.

Figure 29: Results, iron reference.

Figure 30: Results, current run.

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

6.1 Equation in general form

$$\partial_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f}$$
 (55)

6.2 Example-0302-u

Example uses user-defined simplex meshes in CHeart mesh format with quadratic/linear interpolation for velocity/pressure and solves a dynamic problem.

Setup is the well-known lid-driven cavity problem on the unit square or unit cube in two and three dimensions

6.2.1 Mathematical model - 2D

We solve the incompressible Navier-Stokes equation,

$$\partial_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f}$$
 $\Omega = [0, 1] \times [0, 1],$ (56)

$$\nabla \cdot \mathbf{v} = 0, \tag{57}$$

with boundary conditions

$$\mathbf{v} = \mathbf{0} \qquad \qquad \mathbf{x} = \mathbf{0}, \tag{58}$$

$$\mathbf{v} = 0 \qquad \qquad \mathbf{x} = 1, \tag{59}$$

$$v = 0 y = 0, (60)$$

$$\mathbf{v} = [1, 0]^{\mathsf{T}} \qquad \qquad \mathbf{y} = 1. \tag{61}$$

Density $\rho = 1$, viscosity $\mu = 0.0025$. Thus, Reynolds number Re = 400.

6.2.2 Mathematical model - 3D

We solve the incompressible Navier-Stokes equation,

$$\partial_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f}$$
 $\Omega = [0, 1] \times [0, 1] \times [0, 1],$ (62)

$$\nabla \cdot \mathbf{v} = 0, \tag{63}$$

with boundary conditions

$$v = 0 x = 0, (64)$$

$$\mathbf{v} = \mathbf{0} \qquad \qquad \mathbf{x} = \mathbf{1}, \tag{65}$$

$$v = 0 y = 0, (66)$$

$$\mathbf{v} = [1, 0]^{\mathsf{T}} \qquad \qquad \mathbf{y} = 1, \tag{67}$$

$$v = 0 z = 0, (68)$$

$$v = 0 z = 1. (69)$$

Density $\rho = 1$, viscosity $\mu = 0.01$. Thus, Reynolds number Re = 100.

6.2.3 Computational model

• Commandline arguments are:

integer: number of dimensions (2: 2D, 3: 3D integer: mesh refinement level (1, 2, 3, ...)

float: start time float: stop time float: time step size

float: density float: viscosity

integer: solver type (o: direct; 1: iterative)

- Commandline arguments for tests are:
 - 2 1 0.0 0.01 0.001 1.0 0.0025 0
- Note: Binary uses command line arguments to search for the relevant

6.2.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Progress in biophysics and molecular biology, 107(1):32-47, 2011.