Basic Differentiation Rules for Elementary Functions

1.
$$\frac{d}{dx}[cu] = cu'$$

2.
$$\frac{d}{dx}[u \pm v] = u' \pm v'$$
 3.
$$\frac{d}{dx}[uv] = uv' + vu'$$

3.
$$\frac{d}{dx}[uv] = uv' + vu$$

4.
$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$$

5.
$$\frac{d}{dx}[c] = 0$$

6.
$$\frac{d}{dx} \left[u^n \right] = nu^{n-1}u'$$

7.
$$\frac{d}{dx}[x] = 1$$

8.
$$\frac{d}{dx}[|u|] = \frac{u}{|u|}(u')$$
 9. $\frac{d}{dx}[\ln u] = \frac{u'}{u}$

9.
$$\frac{d}{dx}[\ln u] = \frac{u}{u}$$

$$10. \frac{d}{dx} \Big[e^u \Big] = e^u u'$$

II.
$$\frac{d}{dx} [\log_a u] = \frac{u'}{(\ln a)u}$$

11.
$$\frac{d}{dx} [\log_a u] = \frac{u'}{(\ln a)u}$$
 12. $\frac{d}{dx} [a^u] = (\ln a)a^u u'$

13.
$$\frac{d}{dx} \left[\sin(u) \right] = (\cos(u))u'$$

14.
$$\frac{d}{dx}[\cos(u)] = (-\sin(u))u'$$
 15.
$$\frac{d}{dx}[\tan(u)] = (\sec^2(u))u'$$

16.
$$\frac{d}{dx}[\cot(u)] = -(\csc^2(u))u^{-1}$$

16.
$$\frac{d}{dx}[\cot(u)] = -(\csc^2(u))u'$$
17.
$$\frac{d}{dx}[\sec(u)] = (\sec(u)\tan(u))u'$$

18.
$$\frac{d}{dx}[\csc(u)] = -(\csc(u)\cot(u))u'$$

19.
$$\frac{d}{dx} \left[\arcsin(u) \right] = \frac{u'}{\sqrt{1 - u^2}}$$

$$20. \quad \frac{d}{dx} \left[\arccos(u) \right] = \frac{-u'}{\sqrt{1 - u^2}}$$

21.
$$\frac{d}{dx} \left[\arctan(u) \right] = \frac{u'}{1+u^2}$$

$$22. \frac{d}{dx} \left[arc \cot(u) \right] = \frac{-u'}{1+u^2}$$

23.
$$\frac{d}{dx} \left[arc \sec(u) \right] = \frac{u'}{|u| \sqrt{u^2 - 1}}$$

$$24. \frac{d}{dx} \left[arc \csc(u) \right] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

"It's not the work that's hard, it's the discipline." **Anonymous**