Unsupervised Learning: PCA and EM Algorithm Report

Asif Azad Student ID: 1905004

Department of CSE, Bangladesh University of Engineering and Technology Email: asifazad0178@gmail.com

I. INTRODUCTION

This report covers the implementation and analysis of two widely used unsupervised learning methods: Principal Component Analysis (PCA) and the Expectation-Maximization (EM) algorithm. The tasks include:

- 1) PCA for dimensionality reduction and visualization.
- UMAP and t-SNE plots for high-dimensional data visualization.
- 3) EM algorithm to estimate parameters of a Poisson mixture model.

II. INSTRUCTIONS TO RUN THE CODE

- Place the provided datasets pca_data.txt and em_data.txt in the same directory as the notebook.
- Run the code cells sequentially in the Jupyter Notebook.
 Ensure that the required Python libraries (e.g., NumPy, pandas, matplotlib, seaborn, sklearn, umap-learn, and scipy) are installed.
- The output includes PCA, UMAP, t-SNE visualizations, EM algorithm results, and a log-likelihood plot.

III. PRINCIPAL COMPONENT ANALYSIS (PCA)

A. Implementation

PCA was implemented from scratch, leveraging linear algebra for eigen decomposition. The dataset pca_data.txt (1000 samples, 500 features) was reduced to two dimensions for visualization.

B. Results

- Figure 1 shows the 2D scatter plot of the PCA-transformed data.
- The first two principal components capture the majority of the variance in the dataset.

IV. UMAP AND T-SNE VISUALIZATIONS

The UMAP and t-SNE visualizations of the original dataset provide alternative perspectives on the data structure.

Fig. 1. 2D Scatter Plot of PCA Transformed Data

Fig. 2. (Left) UMAP Plot, (Right) t-SNE Plot

V. EXPECTATION-MAXIMIZATION (EM) ALGORITHM

A. Implementation

The EM algorithm was implemented to estimate:

- The mean number of children in families with and without family planning.
- The proportions of families with and without family planning.

The dataset em_data.txt was modeled as a mixture of two Poisson distributions.

B. Results

The EM algorithm converged in \boldsymbol{X} iterations. The estimated parameters are:

- Mean (with family planning): $\mu_1 = 1.78$
- Mean (without family planning): $\mu_2 = 4.91$
- Proportion (with family planning): $\pi_1=0.36$
- Proportion (without family planning): $\pi_2 = 0.64$

Fig. 3. Log-Likelihood Progression

VI. CONCLUSION

This report demonstrates the implementation of PCA and EM algorithms for unsupervised learning tasks. The results highlight the utility of dimensionality reduction and parameter estimation in analyzing real-world datasets.