LPN Codes for PCG and PCF

Shen Dong

SJTU

January 3, 2024

Outline

- PCG Based on LPN
- 2 Linear Test Framwork
- 3 Expander-Accumulator Codes
- 4 Expander-Convolute Codes
- Silver LDPC Codes

Contents

- PCG Based on LPN
 - Pseudorandom Correlation Generator
 - Learning Parity with Noise
 - Timeline of LPN-friendly Codes for PCG
- 2 Linear Test Framwork
- 3 Expander-Accumulator Codes
- 4 Expander-Convolute Codes
- 5 Silver LDPC Codes

Primal LPN

Definition

(Primal LPN). Let $\mathcal{D}(\mathcal{R}) = \{\mathcal{D}_{k,n}(\mathcal{R})\}_{k,n\in\mathbb{N}}$ denote a family of efficiently sampleable distributions over a ring \mathcal{R} , such that for any $k, n \in \mathbb{N}$, $\operatorname{Im}(\mathcal{D}_{k,n}(\mathcal{R})) \subseteq \mathcal{R}^n$. Let \mathbf{C} be a probabilistic code generation algorithm such that $\mathbf{C}(k, n, \mathcal{R})$ outputs a matrix $A \in \mathcal{R}^{n \times k}$. For dimension $k = k(\lambda)$, number of samples (or block length) $n = n(\lambda)$, and ring $\mathcal{R} = \mathcal{R}(\lambda)$, the (primal) $(\mathcal{D}, \mathbf{C}, \mathcal{R})$ -LPN(k, n) assumption states that

$$\left\{ (A, \mathbf{b}) \mid A \stackrel{\$}{\leftarrow} \mathbf{C}(k, n, \mathcal{R}), \mathbf{e} \stackrel{\mathbb{F}}{\leftarrow} \mathcal{D}_{k, n}(\mathcal{R}), \mathbf{s} \stackrel{\mathbb{F}}{\leftarrow} \mathbb{F}^{k}, \mathbf{b} \leftarrow A \cdot \mathbf{s} + \mathbf{e} \right\}$$

$$\stackrel{c}{\approx} \left\{ (A, \mathbf{b}) \mid A \stackrel{\$}{\leftarrow} \mathbf{C}(k, n, \mathcal{R}), \mathbf{b} \stackrel{\$}{\leftarrow} \mathcal{R}^{n} \right\}.$$

Dual LPN

Definition

(Dual LPN) Let $\mathcal{D}(\mathcal{R}) = \{\mathcal{D}_{k,n}(\mathcal{R})\}_{k,n\in\mathbb{N}}$ denote a family of efficiently sampleable distributions over a ring \mathcal{R} , such that for any $k, n \in \mathbb{N}, \operatorname{Im} (\mathcal{D}_{k,n}(\mathcal{R})) \subseteq \mathcal{R}^n$. Let \mathbf{C}' be a probabilistic code generation algorithm such that C'(n-k, n, R) outputs a matrix $H \in \mathcal{R}^{(n-k)\times n}$. For dimension (n-k) and number of samples (or block length)n, $n=n(\lambda)$, $k = k(\lambda)$, and ring $\mathcal{R} = \mathcal{R}(\lambda)$, the (dual) $(\mathcal{D}, \mathbf{C}', \mathcal{R})$ -LPN(n - k, n)assumption states that

$$\left\{ (H, \mathbf{b}) \mid H \stackrel{\$}{\leftarrow} \mathbf{C}'(n - k, n, \mathcal{R}), \mathbf{e} \stackrel{\mathbb{F}}{\leftarrow} \mathcal{D}_{k, n}(\mathcal{R}), \mathbf{b} \leftarrow H \cdot \mathbf{e} \right\}$$

$$\stackrel{c}{\approx} \left\{ (H, \mathbf{b}) \mid H \stackrel{\$}{\leftarrow} \mathbf{C}'(n - k, n, \mathcal{R}), \mathbf{b} \stackrel{\$}{\leftarrow} \mathcal{R}^{n - k} \right\}.$$

Noise Distributions

- Bernoulli noise: $\mathbf{e} \leftarrow \mathrm{Ber}^n_{w/n}(\mathbb{F}_2)$
- Exact hamming weight noise: $\mathbf{e} \leftarrow \mathrm{HW}^n_w(\mathbb{F}_2)$
- Regular noise: $\mathbf{e} \leftarrow \mathrm{Reg}_w^n(\mathbb{F}_2)$

LPN-friendly Codes

What codes are secure in LPN assumption?

- Standard LPN
- Variable-Density LPN (2020,2023)
- Silver LDPC Codes (2021)
- Expander-Accumulator Codes (2022)
- Expander-Convolute Codes (2023)

Contents

- 1 PCG Based on LPN
- 2 Linear Test Framwork
 - Linear Attacks
 - Relation to Minimum Distance
- 3 Expander-Accumulator Codes
- Expander-Convolute Codes
- 5 Silver LDPC Codes

Linear Attacks

Current Attacks:

- Gaussian Elimination
- BKW Algorithm and Covering Codes
- Information Set Decoding Attacks
- Generalized Birthday Attacks
- Statistical Decoding Attacks
- ...

Linear attacks! A common framework in which an adversary is trying to detect a bias in the LPN samples by computing a linear combination of the samples.

from [BCG+20] VDLPN

Bias of Distributions

Definition

(Bias of a Distribution). Given a distribution \mathcal{D} over \mathbb{F}^n and a vector $\mathbf{u} \in \mathbb{F}^n$, the bias of \mathcal{D} with respect to \mathbf{u} , denoted $\operatorname{bias}_{\mathbf{u}}(\mathcal{D})$, is equal to

$$\mathrm{bias}_{\mathbf{u}}(\mathcal{D}) = \left| \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\mathbf{u}^{\top} \cdot \mathbf{x} \right] - \mathbb{E}_{\mathbf{x} \sim \mathcal{U}_n} \left[\mathbf{u}^{\top} \cdot \mathbf{x} \right] \right| = \left| \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\mathbf{u}^{\top} \cdot \mathbf{x} \right] - \frac{1}{|\mathbb{F}|} \right|,$$

where \mathcal{U}_n denotes the uniform distribution over \mathbb{F}^n . The bias of \mathcal{D} , denoted bias(\mathcal{D}), is the maximum bias of \mathcal{D} with respect to any nonzero vector \mathbf{u} .

Linear Test Framework

Definition

(Security against Linear Tests).

Let \mathcal{R} be a ring, and let $\mathcal{D} = \{\mathcal{D}_{k,n}\}_{k,n\in\mathbb{N}}$ denote a family of noise distributions over \mathcal{R}^n . Let \mathbf{C} be a probabilistic code generation algorithm such that $\mathbf{C}(k,n)$ outputs a matrix $H \in \mathcal{R}^{k \times n}$. Let $\varepsilon, \eta : \mathbb{N} \mapsto [0,1]$ be two functions. We say that the $(\mathcal{D}, \mathbf{C}, \mathcal{R})$ -LPN(k,n) is (ε, η) -secure against linear tests if for any (possibly inefficient) adversary \mathcal{A} which, on input H outputs a nonzero $\mathbf{v} \in \mathcal{R}^n$, it holds that

$$\Pr\left[H \stackrel{\$}{\leftarrow} \mathbf{C}(k, n), \mathbf{v} \stackrel{\$}{\leftarrow} \mathcal{A}(H) : \operatorname{bias}_{\mathbf{v}}(\mathcal{D}_H) \geq \varepsilon(\lambda)\right] \leq \eta(\lambda),$$

where \mathcal{D}_H denotes the distribution induced by sampling $\mathbf{e} \leftarrow \mathcal{D}_{n,N}$, and outputting the LPN samples $H \cdot \mathbf{e}$.

Minimum Distance and Dual Distance

Definition

(Minimum Distance). the smallest Hamming distance between any two different codewords, and is equal to the minimum Hamming weight of the non-zero codewords in the code.

If A is a generator matrix of a linear code C, then its minimum distance write d(A)

 $d(A) = \sharp the \ minimum \ weight \ of \ a \ vector \ in \ A$'s rowspan.

Definition

(Dual Distance). If H is the parity check matrix of C, the largest integer d such that every subset of d rows of H is linearly independent is called the dual distance of C.

$$dd(H) = d(A)$$

Linear Test based on Minimum Distance

Lemma

For any $d \in \mathbb{N}$, the $(\mathcal{D}, \mathbf{C}, \mathcal{R})$ -LPN(k, n) is (ε_d, η_d) -secure against linear tests, where

$$\varepsilon_d = \max_{HW(\mathbf{v})>d} \operatorname{bias}_{\mathbf{v}} \left(\mathcal{D}_{k,n} \right), \qquad \eta_d = \operatorname{Pr}_{H \leftarrow \mathbf{C}(k,n)} [\operatorname{d}(H) \leq d].$$

$$\Pr\left[H \overset{\$}{\leftarrow} \mathbf{C}(k, n), \mathbf{v} \overset{\$}{\leftarrow} \mathcal{A}(H) : \operatorname{bias}_{\mathbf{v}}(\mathcal{D}_{H}) \geq \varepsilon_{d}\right] \leq \eta_{d}$$

$$\Pr\left[H \overset{\$}{\leftarrow} \mathbf{C}(k, n), \mathbf{v} \overset{\$}{\leftarrow} \mathcal{A}(H) : \operatorname{bias}_{\mathbf{v}}(\mathcal{D}_{H}) \geq \max_{HW(\mathbf{v}) > d} \operatorname{bias}_{\mathbf{v}}(\mathcal{D}_{k, n})\right] \leq \Pr_{H \overset{\$}{\leftarrow} \mathbf{C}(k, n)}[\operatorname{d}(H) \leq d]$$

Pseudorandom Minimum Distance

Definition

(Pseudodistance) Let \mathbf{C} be a probabilistic code generation algorithm such that $\mathbf{C}(k,n)$ outputs a matrix $H \in \mathbb{F}_2^{k \times n}$. For a weight parameter $\delta(\lambda)$, we say that $\mathbf{C}(k(\lambda), n(\lambda))$ has pseudodistance $\delta(\lambda)$ if for every PPT algorithm \mathcal{A} there is a negligible function **negl** such that

$$\Pr\left[\mathcal{A}(H) = \vec{x} \ s.t. \ \vec{x} \neq \overrightarrow{0} \ and \ \mathcal{HW}\left(\vec{x}^{\top} H\right) \leq \delta n \mid H \xleftarrow{\$} \mathbf{C}(k,n)\right] \leq \mathbf{negl}(\lambda)$$

Computing minimum distance is NP hard. Silver, EA-Code: estimate the minimum distance in a **heuristic/empirical** way.(making silver fail...)

Minimum Distance and Noise Rate

If |v| = d, and noise rate is r, then

$$\Pr\left[\mathbf{e} \leftarrow \operatorname{Ber}_{r}^{n}(\mathbb{F}_{2}) : \mathbf{v}^{\top} \cdot \mathbf{e} = 1\right] = \frac{1 - (1 - 2r)^{d}}{2}$$
$$\operatorname{bias}_{\mathbf{v}}\left(\operatorname{Ber}_{r}^{n}(\mathbb{F}_{2})\right) = (1 - 2r)^{d} \leq e^{-2rd}$$

Leverage between minimum distance and noise rate:

 $A\mathbf{s} + \mathbf{e}$, \mathbf{s} is uniformly random, d(A) = d.

- If the adversary choose \vec{v} s.t. $wt(\vec{v}) \leq d$, then $\vec{v}^T A \neq \vec{0}$, and $\vec{v}^T A \vec{s}$ is uniformly random.
- If the adversary choose \vec{v} s.t. $wt(\vec{v}) > d$, then by adding noise rate make $\vec{v}^T \mathbf{e}$ looks random.

Contents

- 1 PCG Based on LPN
- 2 Linear Test Framwork
- 3 Expander-Accumulator Codes
 - Definition and Structure
 - Security Analysis
- 4 Expander-Convolute Codes
- 5 Silver LDPC Codes

Expander-Accumulator Code

Definition

 $H \stackrel{\$}{\leftarrow} EAGen(k, n, p, \mathcal{R})$

- $\vec{r_1}^T, \dots, \vec{r_k}^T \overset{\$}{\leftarrow} Ber_p^n(\mathcal{R})$ independently, and put $B = [\vec{r_1} || \vec{r_2} \dots || \vec{r_k}]^T$
- $A \in \mathbb{R}^{n \times n}$ is the Accumulator matrix, with 1's on and below the main diagonal, and 0's elsewhere.
- from EAGen outputs $H = BA, B \in \mathcal{R}^{k \times n}, A \in \mathcal{R}^{n \times n}, H \in \mathcal{R}^{k \times n}$

It's assumed that $\mathcal{R} = \mathbb{F}_2$.

EA-LPN Assumption

Definition

(EA-LPN Assumption).

$$\left\{ (H, \vec{b}) \mid H \stackrel{\$}{\leftarrow} \mathrm{EAGen}(k, n, p, \mathcal{R}), \vec{e} \stackrel{\$}{\leftarrow} \mathcal{D}_{N}(\mathcal{R}), \vec{b} \leftarrow H \cdot \vec{e} \right\}$$

$$\stackrel{c}{\approx} \left\{ (H, \vec{b}) \mid H \stackrel{\$}{\leftarrow} \mathrm{EAGen}(k, n, p, \mathcal{R}), \vec{b} \stackrel{\$}{\leftarrow} \mathcal{R}^{N} \right\}.$$

According to the Linear Test Framework, we should prove that d(H) is unlikely to be small.

$$\mathcal{HW}(\vec{y}^T) = \mathcal{HW}(\vec{x}^T H) = \mathcal{HW}(\vec{x}^T B A)$$

Bound $\mathcal{HW}(\vec{x}^T H)$

Lemma

Denote code rate $R = \frac{k}{n}$. Fix $p \in (0, \frac{1}{2})$ and $\delta > 0$. Let $r \in \mathbb{N}$ and let $\vec{x} \in \mathbb{F}_2^k$ be a vector of weight r. define $\xi_r = (1 - 2p)^r$, Then

$$\Pr\left[\mathcal{HW}(\vec{x}^T H) \le \delta n\right] \le 2 \exp\left(-2n\frac{1-\xi_r}{1+\xi_r}(\frac{1}{2}-\delta)^2\right)$$

Markov Chain and Random Walk

- ullet state space V
- transition matrix $P \in \mathbb{R}^{V \times V}$, $P_{u,v} = \Pr[\vec{u} \to \vec{v}]$.
- a distribution over the state space $\vec{\nu} \in \mathbb{R}^V$.
- random walk by P on $V: x_0 \leftarrow \vec{\nu}$. For $i \in [n]$, sample $x_i \leftarrow P_{x_{i-1}}$.
- stationary distribution: $\vec{\pi} \in \mathbb{R}^V$ s.t. $\vec{\pi}P = \vec{\pi}$
- irreducible: strongly connected
- reversible: $\forall u, v \in V, \quad \vec{\pi}_u P_{u,v} = \vec{\pi}_v P_{v,u}$
- spectral gap of *P*

Irreducible chain has a unique stationary distribution, therefore has unique max eigenvalue 1.

Expander Hoeffding Bound

Theorem

(Expander Hoeffding Bound). Let (\mathcal{V}, P) denote a finite, irreducible and reversible Markov chain with stationary distribution $\vec{\pi}$ and second largest eigenvalue λ . Let $f \colon \mathcal{V} \to [0,1]$ with $\mu = \mathbb{E}_{V \sim \vec{\pi}}[f(V)]$. For any integer $N \geq 1$, consider the random variable $S_N = \sum_{i=1}^N f(V_i)$, where V_0 is sampled uniformly at random from V and then V_1, \ldots, V_N is a random walk starting at V_0 . Then, for $\lambda_0 = \max(0, \lambda)$ and any $\varepsilon > 0$ with $\mu + \varepsilon < 1$, the following bound holds:

$$\Pr\left[S_N \ge N(\mu + \varepsilon)\right] \le \exp\left(-2\frac{1 - \lambda_0}{1 + \lambda_0}N\varepsilon^2\right)$$

Piling-up Lemma

Lemma

(Piling-up Lemma). For any $r \in (0, \frac{1}{2})$ and any integer n, given n random variables X_1, \ldots, X_n i.i.d. to $Ber_r(\mathbb{F}_2)$, we have

$$\Pr\left[\bigoplus_{i=1}^{n} X_i = 0\right] \le \frac{1}{2} + \frac{(1-2r)^n}{2}$$

EA Code Viewed as Random Walk

$$B = [\vec{c_1}, \dots, \vec{c_n}], \vec{c_i} \in \mathbb{F}_2^k$$

$$H = BA = [(\vec{c_1} + \dots + \vec{c_n}), (\vec{c_2} + \dots + \vec{c_n}), \dots, \vec{c_n}]$$

$$(y_1, \dots, y_n) = (\vec{x}^T (\vec{c_1} + \dots + \vec{c_n}), \vec{x}^T (\vec{c_2} + \dots + \vec{c_n}), \dots, \vec{x}^T \vec{c_n})$$

$$y_n = \vec{x}^T \vec{c_n}, y_i = y_{i+1} + \vec{x}^T \vec{c_i}, \forall 1 \le i \le n-1$$

See y_n, \ldots, y_1 as a random walk on state space $\mathcal{V} = \{0, 1\}$, and each step is a random variable $\vec{x}^T \vec{c_i}$.

 $wt(\vec{x}^T) = r, \vec{c_i} \stackrel{\$}{\leftarrow} Ber_p^k(\mathbb{F}_2)$, then by piling-up lemma:

$$\Pr\left[\vec{x}^T \vec{c_i} = 0\right] = \frac{1}{2} + \frac{(1 - 2p)^r}{2} = \frac{1 - \xi_r}{2}$$

EA Code Viewed as Random Walk

$$\Pr\left[\vec{x}^T \vec{c_i} = 0\right] = \frac{1}{2} + \frac{(1 - 2p)^r}{2} = \frac{1 - \xi_r}{2}$$
transition $P = \begin{bmatrix} 0 \to 0 & 0 \to 1 \\ 1 \to 0 & 1 \to 1 \end{bmatrix} = \begin{bmatrix} \frac{1 + \xi_r}{2} & \frac{1 - \xi_r}{2} \\ \frac{1 - \xi_r}{2} & \frac{1 + \xi_r}{2} \end{bmatrix}$

P is irreducible and reversible, and ξ_r is the second largest eigenvalue of P, and $\left(\frac{1}{2}, \frac{1}{2}\right)$ is the stationary distribution of P. Define a function $f: \mathcal{V} \to [0,1]$: f(0) = 1, f(1) = 0, then by Expander Hoeffding Bound we have:

$$\Pr\left[\mathcal{HW}(\vec{x}^T H) \le \delta n\right] = \Pr\left[\sum_{i=0}^n V_i \le \delta n\right]$$
$$= \Pr\left[S_n = \sum_{i=0}^n f(V_i) \ge (1-\beta)n\right]$$
$$\le \exp\left(-2\frac{1-\xi_r}{1+\xi_r}n\beta^2\right)$$

Bound on d(H)

Use union bound for all $\vec{x} \in \mathbb{F}_2^k$ of weight r:

Theorem

Theorem 3.10 Let $k, n \in \mathbb{N}$ with $k \le n$ and put $R = \frac{k}{n}$, which we assume to be a constant. Let C > 0 and set $p = \frac{C \ln n}{n} \in (0, 1/2)$. Fix $\delta \in (0, 1/2)$ and put $\beta = 1/2 - \delta$. Then, assuming n is sufficiently large and assume $R < \min \left\{ \frac{2}{\ln 2} \cdot \frac{1 - e^{-1}}{1 + e^{-1}} \cdot \beta^2, \frac{2}{e} \right\}$ and $C > \frac{1}{\beta^2}$, we have

$$\Pr[d(H) \ge \delta n \mid H \stackrel{\$}{\leftarrow} EAGen(k, n, p)] \ge 1 - 2Rn^{-2\beta^2 C + 2}.$$

$$p = \Theta(\frac{\log n}{n})$$
, constant rate, $\Pr[d(H) = \Omega(n)] = 1 - 1/\operatorname{poly}(n)$
 $p = \Theta\left(\frac{\log^2 n}{n}\right)$, constant rate, $\Pr[d(H) = \Omega(n)] = 1 - 1/n^{-O(\log n)}$, which is negligible in n .

Variants

- B's rows from exact weight distribution
- B's rows from regular distribution

heuristically using $\mathcal{HW}(\vec{x}^T H)$ as d(H). Blue corresponds to exact; red corresponds to regular; and orange corresponds to Bernoulli.

Contents

- 1 PCG Based on LPN
- 2 Linear Test Framwork
- 3 Expander-Accumulator Codes
- 4 Expander-Convolute Codes
 - Definition and Structure
 - Security Analysis
- 5 Silver LDPC Codes

Expander-Convolute Codes

Definition

 $H \stackrel{\$}{\leftarrow} ECGen(k, n, p, \mathcal{R})$

For a ring \mathcal{R} and parameters $w, k, n \in \mathbb{N}$ with $w \ll k \leq n$, which is B's row weight. $m \in \mathbb{N}$, $m \leq n$ is the size of convolutional internal state.

- $B \in \mathcal{R}^{k \times n}$, $B_{i,j} \leftarrow \operatorname{Ber}_{p_{w}}(\mathcal{R})$, $p_{w} = \frac{w}{n}$
- convolutional code generator matrix $C \in \mathbb{R}^{n \times n}$ upper-triangular matrix with state size m, below the diagonal being some linear combination of the following m columns.
- from ECGen outputs $H = BC, B \in \mathcal{R}^{k \times n}, C \in \mathcal{R}^{n \times n}, H \in \mathcal{R}^{k \times n}$

Better than EA-Code, more generalized.

EC-LPN Assumption

Definition

(EC-LPN). Let $\mathcal{D}(\mathcal{R}) = \{\mathcal{D}_n(\mathcal{R})\}_{n \in \mathbb{N}}$ denote a family of efficiently sampleable distributions over a ring \mathcal{R} , such that for any $n \in \mathbb{N}$, Im $(\mathcal{D}_n(\mathcal{R})) \subseteq \mathcal{R}^n$. For a dimension $k = k(\kappa)$, number of samples $n = n(\kappa)$, expansion weight $w = w(\kappa) \in [n]$, state size $m = m(\kappa) \in [n]$, convolving density $p_c = p_c(\kappa) \in [0, 1]$ and ring $\mathcal{R} = \mathcal{R}(\kappa)$, the $(\mathcal{D}, \mathcal{R})$ -EC-LPN (w, m, k, n, p_c) assumption states that

$$\{(H, \mathbf{b}) \ s.t. \ H \leftarrow ECGen(w, m, k, n, p_c, \mathcal{R}), \mathbf{e} \leftarrow \mathcal{D}_n(\mathcal{R}, \mathbf{b} \leftarrow H\mathbf{e})\}$$

$$\stackrel{c}{\approx} \left\{ (H, \mathbf{b}) \ s.t. \ H \leftarrow ECGen(w, m, k, n, p_c, \mathcal{R}), \mathbf{b} \leftarrow \mathcal{R}^k \right\}.$$

Roadmap: also random walking on Markov chains, and bound the visits to the state 1. But irreversible???

EC Code Viewed as Random Walk

$$B = [\vec{c_1}, \dots, \vec{c_n}], \vec{c_i} \in \mathbb{F}_2^k, \vec{c_i} \leftarrow \operatorname{Ber}_{p_w}^k$$
$$y_i = \Sigma_{j \in [m]} \alpha_{i,j} y_{i,j} + \vec{x}^T \vec{c_i}, \forall 2 \le i \le n$$

Denote the internal state by $\vec{\sigma_i} = (y_{i-1}, \dots, y_{i-m})$, so $y_i = \vec{x}^T \vec{c_i} + \vec{\sigma_i}^T \vec{\alpha_i}$.

$$\begin{aligned} & \Pr\left[y_{i}=1 \mid \vec{\sigma_{i}}\right] \\ & = \Pr\left[\vec{x}^{T}\vec{c_{i}}=0\right] \Pr\left[\vec{\sigma_{i}}^{T}\vec{\alpha_{i}}=1\right] + \Pr\left[\vec{x}^{T}\vec{c_{i}}=1\right] \Pr\left[\vec{\sigma_{i}}^{T}\vec{\alpha_{i}}=0\right] \\ & = \frac{1+(1-2p_{w})^{r}}{2} \Pr\left[\vec{\sigma_{i}}^{T}\vec{\alpha_{i}}=1\right] + \frac{1-(1-2p_{w})^{r}}{2} \Pr\left[\vec{\sigma_{i}}^{T}\vec{\alpha_{i}}=0\right] \end{aligned}$$

 $\alpha_{i,j}$ is random(if $p_c = \frac{1}{2}$), but the internal state has impact on the probability.

EC Code Viewed As Random Walk

$$\Pr \left[y_i = 1 \mid \vec{\sigma}_{i-1} \neq \vec{0} \right] = \frac{1}{2}$$

$$\Pr \left[y_i = 1 \mid \vec{\sigma}_{i-1} = \vec{0} \right] = \frac{1 - (1 - 2p_w)^r}{2}$$

$$\Pr \left[y_i = 0 \mid \vec{\sigma}_{i-1} \neq \vec{0} \right] = \frac{1}{2}$$

$$\Pr \left[y_i = 0 \mid \vec{\sigma}_{i-1} = \vec{0} \right] = \frac{1 + (1 - 2p_w)^r}{2}$$

Situation is only bad when $\vec{\sigma}_{i-1} = \vec{0}$, intuitively better than EA-Code. Then we can view the **changes of internal state** as a random walk on $\mathcal{V} = \{0,1\}^m$, and each step is y_i . Imagine the transition matrix being $2^m \times 2^m$, but with many 0's.

But this scale is too large to analyze, so we shrink the Markov chain.

EC Code Viewed As Random Walk, Shrunk

Intuition: only all-0 state matter, so we only care how far is the internal state from all-0 state.

We can group states based on the suffix of the m bits representing the state, shrinking all the 2^m states to m-1 states:

$$1, 0_1, 0_2, \dots, 0_{m-1}, 0_m$$
. Define $p_r := \frac{1 - (1 - 2p_w)^r}{2}$

Figure: 1, Shrunk Markov Chain, irreversible

EC Code Viewed As Random Walk, Reversible

for some $\theta_m > 0$, $\Pr[0 \to 0] = 1 - p_r$, $\Pr[0 \to ?] = p_r$, $\Pr[? \to 0] = 2^{-(m+\theta_m)}$, $\Pr[? \to ?] = 1 - 2^{-(m+\theta_m)}$ 0 is the same as 0_m , and ? emulates all other states, containing all different paths to 0_m .

Figure: 2, Coupling Markov Chain, reversible

Reversible. Claim walking on these two Markov Chains, \sharp (steps on ?) bounds \sharp (steps on 1) because of the coupling of the two chains.

Theorem

Let n denote the length of the random walks performed on the chains in Figures 1 and 2, where $m \ge \log n + 2$. Starting from state 0_m of the irreversible chain (Figure 1), let X_i be the indicator of being in state 1 at step i. Starting from state 0 of the reversible chain (Figure 2), let Y_i be the indicator of being in state? at step i and then uniformly mapping? to $\{0,1\}$ (with probability $\frac{1}{2}$). Fix $\delta \in [0,1]$ and $\hat{k} > 0$. Then, there exists $\theta_m \in [0,1)$ such that

$$\Pr\left[\sum_{i\in[n]} X_i \le \delta n - \hat{k}(m-1)\right] \le \frac{1}{1 - \exp\left(-\frac{\tilde{\delta}_r \hat{k}}{2 + \tilde{\delta}_r}\right)} \Pr\left[\sum_{i\in[n]} Y_i \le \delta n\right]$$

where
$$\tilde{\delta}_r = \frac{\hat{k}}{n \cdot 2^{-(m+\theta_m)} \cdot p_r}$$
.

Conjecture: Theorem holds for all m > 2.

Flip a Coin, But Heavier

In i steps, $S_0: 0_m \to \dots 0_m \to 1$ $S_1: 1 \to \dots \to 0_{m-1} \to 0_m$

In i steps, $S'_0: 0 \to \dots 0 \to ?$ $S'_1:? \to \dots \to ? \to 0$ $S_0 = S'_0, S_1(p) - (m-1) \ge S'_1(p).$

Lemma

Fix $\hat{k} > 0$. Define $\tilde{\delta}_r = \frac{\hat{k}}{n \cdot 2^{-m} \cdot p_r}$. Then, we have with probability at least $1 - \exp\left(-\frac{\tilde{\delta}_r \hat{k}}{2 + \tilde{\delta}_r}\right)$:

$$HW(Z_{\tilde{\mathbf{x}}}) \ge HW(Z_{\tilde{\mathbf{x}}}) - \hat{k}(m-1)$$

Theorem

$$\Pr\left[\sum_{i\in[n]}X_i \leq \delta n - \hat{k}(m-1)\right] \leq \frac{1}{1 - \exp\left(-\frac{\tilde{\delta}_r\hat{k}}{2 + \tilde{\delta}_r}\right)} \Pr\left[\sum_{i\in[n]}Y_i \leq \delta n\right]$$

where $\tilde{\delta}_r = \frac{\hat{k}}{n \cdot 2^{-(m+\theta_m) \cdot p_r}}$.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ○ □

Bound $\Sigma_{i \in [n]} Y_i$ on Reversible Chain

$$\vec{\pi}_r = \left(\frac{2^{-(m+\theta_m)}}{p_r + 2^{-(m+\theta_m)}}, \frac{p_r}{p_r + 2^{-(m+\theta_m)}}\right)$$

$$\lambda_r = 1 - p_r - 2^{-(m+\theta_m)}$$

Walk on the reversible chain for n steps, the time we visit? is bounded by Expander Hoeffding Inequality:

$$\Pr\left[N_? < n\vec{\pi}_{r,?} - \epsilon\right] \le \left(1 + 2^{m + \theta_m} p_r\right) \exp\left(-2\frac{\epsilon^2}{n} \cdot \frac{1 - \lambda_r}{1 + \lambda_r}\right)$$

And in the ? state, suppose we walk T steps on the flipping-coin chain, bound the time we visit $1,\ \epsilon=(\frac{1}{2}-\beta)\,T$

$$\Pr\left[N_1 \le \frac{1}{2}T - \epsilon\right] \le \exp\left(\frac{-2\epsilon^2}{T}\right) = \chi_{\beta,T}$$

$$N_{?}, N_{1} \to \Pr\left[\sum_{i \in [n]} Y_{i} \leq \delta n\right] \to \Pr\left[\sum_{i \in [n]} X_{i} \leq \delta n - \hat{k}(m-1)\right] \to \mathcal{HW}(\vec{k}, T) \to \Pr\left[d(H) \leq \delta n - \hat{k}(m-1)\right]$$

Theorem

Let $w, m, k, n \in \mathbb{N}$ with $w, m, k \leq n$. Define $R = \frac{k}{n}$. Fix $\delta \in [0, 1]$ and $\hat{k} > 0$. We assume that the following hold: $w = C \ln n$ for some C > 2; $m = C_m \log n$ for some $C_m > 1$; $R \leq \frac{2}{e}$, $C\left(\frac{20}{41} - \delta\right)^2 > 2$ and $R < \frac{1}{\ln 2} \cdot \frac{e-1}{e+1} \left(\frac{20}{41} - \delta\right)^2$; $\hat{k} \geq n^{1-C_m}$ and $\hat{k} \geq 2 \ln 2$. Then, for all sufficiently large n,

$$\Pr\left[d(G) < \delta n - \hat{k}(m-1) : G \leftarrow \operatorname{ECGen}\left(w, m, k, n, \frac{1}{2}, \mathbb{F}_2\right)\right]$$

$$\leq 2Rn^{-C\left(\frac{20}{41} - \delta\right)^2 + C_m + 3}$$

When $\mathcal{R} = \mathbb{F}_2$, $w, m = \Theta(\log n), p_c = \frac{1}{2}$, secure against Linear Test.

Contents

- 1 PCG Based on LPN
- 2 Linear Test Framwork
- 3 Expander-Accumulator Codes
- 4 Expander-Convolute Codes
- 5 Silver LDPC Codes
 - Preliminaries for Silver Codes
 - From Uniform, TZ to Silver
 - Failed Security

Empirical Method Guided

fastest(linear encoding time, cache-friendly), linear minimum time.

Warning: The conjectured linear minimum distance of this work has been shown to be false. Silver codes should not be used. See [RRT23].

The Construction of Silver:

- Empirical estimation of minimum distance
 - Brouwer-Zimmerman algorithm: solving exact minimum distance (exponential, $n \le 180$)
 - Noise impulse method: by solving a flipped vector close to zero vector to approximate d(H)
- Try to fit into an efficient decoder: g-ALT (better efficiency)
- Try to get better memory locality (better efficiency)

g-Approximate Lower Triangle Matrix

Definition

(g-ALT). If H can be transformed into the form below with **only** column and row swaps, then it can be encode in $O(n+g^2)$ time

- lacktriangle null space of H doesn't change with only column and row swaps
- ② Silver want to keep $g = O(\sqrt{n})$ to achieve linear encoding time.

Fig. 9: The structure of an g approximate lower triangular matrix. The diagonal of C should all be ones.

LDPC Code and Tanner Graph

Definition

(regular LDPC Code). An LDPC code with constant number of 0's per row and per column.

Definition

(Tanner Graph). A Tanner graph of an LDPC code with parity check matrix \mathbf{H} is a bipartite graph $\{V_1, V_2\}$, having one vertex in V_1 for each row of \mathbf{H} (called check nodes) and one vertex in V_2 for each column of \mathbf{H} (called variable nodes), and there is an edge between two vertice c_i and v_j exactly when $h_{ij} \neq 0$.

Tanner Graph and Minimum Distance

- We don't want short circle, which means small d(H)
- We don't want too many variable nodes with degree 2, if $H \in \mathbb{F}_2^{k \times n}$, if $n_2/m < 1$, $d(H) = O(\log n)$; $n_2/m > 1$, $\Pr[d(H) = O(n)] > 0$
- ullet It is well-known that odd column weight t LDPC codes achieve better minimum distance performance

Standard LDPC

- well-studied security, under Alekhnovich Assumption
- g = O(n), which cannot be efficiently encoded.

						2	m						
1	1		1			1	1	1			1		
		1		1						1			1
1					1	1			1		1		1
		1	1		1		1					1	
	1		1	1				1	1			1	
1		1				1				1	1	1	1
	1			1	1		1			1			
	1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1			1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tillich-Zémor Code

- with structure H = [L||R], k = m = n/2. L is a $m \times m$ matrix standard sparse, R is a $m \times m$ matrix with a diagonal bind, its n_2/m is 1.
- sublinear minimum distance due to the diagonal bind.
- fast encoding, O(n)

Tillich-Zémor Code

The diagonal bind is concentrated, R cancelling L.

- start with TZ Codes, removing weight-2 columns(i.e. degree-2 variable nodes in Tanner Graph)
- efficient encoding, g = O(1) which depends on the fixed column weight(the hight of the left bottom).
- much better minimum distance than TZ Codes.

						2	m						
1	1		1			1	1		1	1			
		1		1				1	1		1		
1					1	1				1		1	
		1	1		1					1	1	1	1
	1		1	1			1				1		1
1		1				1		1				1	1
	1			1	1		1	1	1				

- start with TZ Codes, removing weight-2 columns (i.e. degree-2 variable nodes in Tanner Graph)
- efficient encoding, g = O(1) which depends on the fixed column weight(the hight of the left bottom).
- much better minimum distance than TZ Codes. But still sublinear due to clumping.

(b) Average minimum distance of weight t=5

- adding additional weight one diagonals below the main diagonal prevents clumping, because there may be some 1 at bottom.
- achieve almost linear minimum distance, close to uniform LDPC.
- keep efficient encoding, g = O(1)

(b) $d_{\sf avg}$ of column weight 5 codes.

Silver #3, #5

Silver #3, #5

(a) Average minimum distance of Slv2, Slv3 vs uniform with t=5.

Failed Security

- A kind of convolutional code which has been studied (trubo-like codes), but with weak internal state.
- Failed linear minimum distance at large scale: Silver was only able to evaluate the codes of size up to n = 800 and observed minimum distance up to 140. our attacks show that the minimum distance of these codes stop growing at approximately 8 705 or 4, 158 depending on the variant.
- Stronger turbo-like variant with permutation matrix rather than shifts in silver, only achieve linear minimum distance when w is relatively small, i.e. w 5, 11 as Silver specifies.

Possible Future Analysis

- silver-turbo-RA-EA-EC
- regular ISD

References

PCF from VDLPN https://eprint.iacr.org/2020/1417 revisited https://eprint.iacr.org/2023/650.pdf silver LDPC https://eprint.iacr.org/2021/1150 https://www.youtube.com/watch?v=FCNcrxcFLtU Expand-Accumulate Codes https://eprint.iacr.org/2022/1014 Expand-Convolute Codes https://eprint.iacr.org/2023/882