Analysis of Different ML Models

COMP472 Assignment 1
Contributor: Rhina Kim - 40130779

Characteristics of initial dataset

- There are 5 classes: Business,
 Entertainment, Politics, Sport, and
 Tech
- Imbalanced datasets (distribution not uniform)
- Multinomial Naive Bayes does not perform well on imbalanced datasets
 → May overfit data in favor of the class with more number of examples (Testing error may be high)
- Can affect metrics system (F1 measures are superior than accuracy

Task 1: Text Classification (Results)

Multinomial default values: Try 1 and Try 2

Classifier:

MultinomialNB(smoothing=1.0)

Result:

- Same results for both of the trials
- High Accuracy (98.2%)
- High f1 macro avg (98.14%)
- High f1 weighted avg (98.21%)

- No noisy-inputs
- Small features with lowfrequency

(b)	Co	nfusi	ion	matr	ix:
[[11	.3	2	1	0	2]
[0	70	0	0	2]
[0	0	83	0	0]
[0	0	0	93	0]
[0	1	0	0	78]]

(c) Cla	ssific	ation report	(Precisio	on, Recall,	F1):
С	lasses	precision	recall	f1-score	support
business	0	1.00	0.96	0.98	118
entertain	ment 1	0.96	0.97	0.97	72
politics	2	0.99	1.00	0.99	83
sport	3	1.00	1.00	1.00	93
tech	4	0.95	0.99	0.97	79
acc	uracy			0.98	445
macr	o avg	0.98	0.98	0.98	445
weighte	d avg	0.98	0.98	0.98	445

Task 1: Text Classification (Results)

1. Multinomial with smoothing value = 0.0001

(b)	Со	nfus	ion	matr	ix:
[[1:	13	1	1	0	3]
[0	70	0	0	2]
[0	1	82	0	0]
[0	0	0	93	0]
[0	1	1	0	77]]

Classifier:

MultinomialNB(smoothing=0.0001)

Result:

- High Accuracy (97.75%)
- High f1 macro avg (97.65%)
- High f1 weighted avg (97.76%)

Reason:

smoothing value

→ the smoothed values are
closer to the actual data
(Higher possibility of zero
probability)

Result is lower than default

١	(c)	Clas	sifica	ation report	(Precisi	on, Recall,	F1):
,		Cl	asses	precision	recall	f1-score	support
	busir	ness	0	1.00	0.96	0.98	118
	ente	rtainn	nent 1	0.96	0.97	0.97	72
	polit	ics	2	0.98	0.99	0.98	83
	spor	t	3	1.00	1.00	1.00	93
	tech		4	0.94	0.97	0.96	79
	:	accu	racy			0.98	445
	ma	acro	avg	0.97	0.98	0.98	445
	weig	hted	avg	0.98	0.98	0.98	445

Task 1: Text Classification (Results)

1. Multinomial with smoothing value = 0.9

Classifier:

MultinomialNB(smoothing=0.9)

Result:

- Same results for Trial 1 & 2
- High Accuracy (98.2%)
- High f1 macro avg (98.14%)
- High f1 weighted avg (98.21%)

- Smoothing value is very close to default smoothing value (1.0)
 - → Differences in result not significant as first trials

(b)	Co	nfus	ion	matr	ix:
[[1:	13	2	1	0	2]
[0	70	0	0	2]
[0	0	83	0	0]
[0	0	0	93	0]
[0	1	0	0	78]]

(c) Clas	sific	ation report	(Precisio	on, Recall,	F1):
C1	asses	precision	recall	f1-score	support
business	0	1.00	0.96	0.98	118
entertainr	nent 1	0.96	0.97	0.97	72
politics	2	0.99	1.00	0.99	83
sport	3	1.00	1.00	1.00	93
tech	4	0.95	0.99	0.97	79
accu	racy			0.98	445
macro	avg	0.98	0.98	0.98	445
weighted	avg	0.98	0.98	0.98	445

Characteristics of initial dataset

- There are 5 classes: drugY, drugX, drugA, drugC, drugB
- Imbalanced datasets (distribution not uniform)
- Most of the classifiers does not perform well on imbalanced datasets
 - → May overfit data in favor of the class with more number of examples (Testing error may be high)
- Can affect metrics system (F1 measures are superior than accuracy)

1. Classifier: Gaussian(NB)

with Default smoothing

value

Result:

- Moderate to High Accuracy (77.5%)
- Moderate to High f1 macro avg (71.89%)
- Moderate to High f1 weighted avg (78.12%)

- Initial Dataset was unbalanced
- Recall higher than precision for most of the classes
 → A lot of predicted instances are labeled correctly
- drugX score higher since it

(c) Classific	ation report	(Precisi	on, Recall,	F1):
Classes	precision	recall	f1-score	support
drugA 0	0.50	1.00	0.67	3
drugB 1	0.50	1.00	0.67	3
drugC 2	0.40	1.00	0.57	2
drugX 3	1.00	1.00	1.00	13
drugY 4	1.00	0.53	0.69	19
accuracy			0.78	40
macro avg	0.68	0.91	0.72	40
weighted avg	0.89	0.78	0.78	40

1. Classifier: Default

DecisionTreeClassifier()

Criterion: gini

Min-split-sample: 2 Max-depth: None

Result:

- Highest Accuracy (100%)
- Highest f1 macro avg (100%)
- Highest f1 weighted avg (100%)

Reason:

 Due to its ability to use different feature subsets and decision rules

 \rightarrow Best for categorical

data

 Easy to handle categorical and numerical variables

(c) Clas	sific	ation report	(Precisi	on, Recall,	F1):
Cla	sses	precision	recall	f1-score	support
	0	1.00	1.00	1.00	3
	1	1.00	1.00	1.00	3
	2	1.00	1.00	1.00	2
	3	1.00	1.00	1.00	13
	4	1.00	1.00	1.00	19
accı	ıracy			1.00	40
macro	avg	1.00	1.00	1.00	40
weighted	avg	1.00	1.00	1.00	40

1. Classifier: Best

DecisionTreeClassifier()

criterion: gini

max_depth: 6

min_samples_leaf: 0.02

Result: Same as default decision tree classifier

Reason: Same as default decision tree classifier

- Range of Entropy: 0 to 1
- Range of Gini Impurity: 0 to 0.5
 - → Gini Impurity is better since entropy range is small to select the best features

(c)	Clas	sific	ation report	(Precisi	on, Recall,	F1):
	Cla	sses	precision	recall	f1-score	support
		0	1.00	1.00	1.00	3
		1	1.00	1.00	1.00	3
		2	1.00	1.00	1.00	2
		3	1.00	1.00	1.00	13
		4	1.00	1.00	1.00	19
	accu	racy			1.00	40
m	acro	avg	1.00	1.00	1.00	40
weig	hted	avg	1.00	1.00	1.00	40

1. Classifier: Default **Perceptron()**

(b)) C	onf	ion	matrix:	
11	0	0	0	3	0]
]	0	0	0	3	0]
]	0	0	0	2	0]
]	0	0	0	12	1]
]	0	0	0	9	10]]

Result:

- Low Accuracy (55%)
- Low macro avg (24.76%)
- Low weighted avg (50.24%)

- Perceptron was not really suitable for categorical dataset with mainly nominal attributes
 - → perceptron is mostly used to classify binary data

(c) Classi	lfica	ation report	(Precisi	on, Recall,	F1):
Class	ses	precision	recall	f1-score	support
	0	0.00	0.00	0.00	3
	1	0.00	0.00	0.00	3
	2	0.00	0.00	0.00	2
	3	0.41	0.92	0.57	13
	4	0.91	0.53	0.67	19
accura	ісу			0.55	40
macro a	avg	0.26	0.29	0.25	40
weighted a	avg	0.57	0.55	0.50	40

1. Classifier: Default

MLPClassifier()

hidden_layer_sizes: 100 activation: logistic f(x) =

 $1/(1 + \exp(-x))$

solver: sdg

Result:

- Low Accuracy (65%)
- Low macro avg (27.85%)
- Low weighted avg (57.26%)

(b)		matrix:			
					2]
[0	0	0	3	0]
[0	0	0	1	1]
[0	0	0	8	5]
	0	0	0	1	18]]

(c)	c) Classification report			(Precision, Recall,		F1):
	Clas	ses	precision	recall	f1-score	support
		0	0.00	0.00	0.00	3
		1	0.00	0.00	0.00	3
		2	0.00	0.00	0.00	2
		3	0.57	0.62	0.59	13
		4	0.69	0.95	0.80	19
accuracy					0.65	40
macro avg			0.25	0.31	0.28	40
weighted avg			0.51	0.65	0.57	40

Classifier: Best
 MLPClassifier()

hidden_layer_sizes: (30,

50)

activation: tanh solver: adam

Result:

- Low Accuracy (95%)
- Low macro avg (91.83%)
- Low weighted avg (94.91%)

(b)) C	onf	matrix:			
					0]	
[0]	
[0	0	2	0	0]	
[0	0	0	12	1]	
]	0	0	0	0	19]]	

ll, F1):
e support
3
5 3
2
5 13
7 19
40
40
40