Applications

Cornou Jean-Louis

16 juillet 2025

1 Applications

1.1 Produit cartésien

Définition 1 Soit E et F deux ensembles. Le **produit cartésien** de E et F, noté $E \times F$ est l'ensemble des couples (x, y) où x parcourt E et y parcourt F.

Remarque

Soit x, x' des éléments de E, puis y et y' des éléments de F. On a l'équivalence $(x,y) = (x',y') \iff x = x'$ et y = y'. L'élément x de E est appelé **première composante** de (x,y), l'élément y de F est appelé **seconde composante** de (x,y). On dit également que x est la première projection de (x,y), et que y est la seconde projection de (x,y).

L'ordre des éléments dans un couple a son importance, en particulier lorsque E = F. Le couple (1,2) de \mathbb{R}^2 n'est pas le même objet que le couple (2,1).

Notation

Dans le cas où E = F, on note $E \times E = E^2$.

On peut représenter un produit cartésien en deux dimensions, en représentant les éléments de E sur un axe horizontal, puis les éléments de F sur un axe vertical. Les couples associés sont des éléments du plan.

1.2 Fonctions, applications

Définition 2 Une **application** est la donnée de trois objets, un ensemble E appelé **ensemble de départ**, un ensemble F appelé **ensemble d'arrivée** et G un graphe fonctionnel de $E \times F$, i.e une partie de $E \times F$ vérifiant $\forall x \in E, \exists ! y \in F, (x, y) \in G$.

Remarque

Cette définition très formelle indique qu'à tout élément de l'ensemble de départ, on associe un unique élément à l'arrivée.

Notation

Soit f = (E, F, G) une application. Pour tout élément x de E, l'unique élément y de F tel que $(x, y) \in G$ est noté f(x). On note alors l'application f sous la forme

$$f: E \to F, x \mapsto f(x)$$

Définition 3 Soit $f: E \to F$ une application et x un élément de E. L'élément f(x) de F est appelé image de x par l'application f. Soit y un élément de F, un élément x de F est appelé antécédent de y par f lorsque f(x) = y.

Pour tout x de E, x possède une unique image par f. Toutefois, pour y un élément de F, l'ensemble des antécédents de y par f peut être vide, ou contenir plus d'un élément, voire une infinité. Par exemple, $\cos(0) = 1$ est bien l'unique image du réel 0 par l'application cosinus. Pour autant, le réel 1 possède une infinité d'antécédents par cette application, tous les réels de la forme $2k\pi$ avec $k \in \mathbb{Z}$, et le réel 2 ne possède aucun antécédent par l'application cosinus.

Exemple 1 Les applications $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \exp(x)$ et $g: \mathbb{R} \to \mathbb{R}^{+*}$, $x \mapsto \exp(x)$ sont distinctes.

Notation

L'ensemble des applications de E dans F (comprendre ayant E pour ensemble de départ et F pour ensemble d'arrivée) est noté $\mathcal{F}(E,F)$ ou F^E .

Remarque

On peut étendre la notion d'application en la notion de fonction, auquel cas tout élément de l'ensemble de départ est associé à **au plus un** élément à l'arrivée. Nous n'insistons pas sur ce point, mais l'étude des fonctions de la variable réelle illustrera ce besoin. Dans la pratique, nous ne différencierons très peu les mots « fonction » et « application ». On rencontrera parfois des expressions dont l'ensemble de définition n'est pas fourni. Il vous appartiendra alors de déterminer un ensemble de départ convenable pour manipuler une application.

Exemple 2 Soit x un réel. L'expression $\ln(x^2 - x - 2)$ est correctement définie pour x appartenant à l'ensemble $]-\infty,-1[\cup]2,+\infty[$. La fonction $g:x\mapsto \ln(x^2-x-2)$ a pour ensemble de définition $]-\infty,-1[\cup]2,+\infty[$. Les fonctions tan et $1/(\cos/\sin)$ n'ont pas le même ensemble de définition.

Définition 4 Soit E un ensemble. Alors l'application $f: E \to E, x \mapsto x$ est appelée l'application **identité** de E. Elle est notée Id_E .

1.3 Fonctions indicatrices

Définition 5 Soit E un ensemble et A une partie de E. L'indicatrice de A est l'application notée $\mathbb{1}_A$

$$\mathbb{1}_{A}: E \rightarrow \{0,1\}, x \mapsto 1 \text{ si } x \in A, 0 \text{ si } x \notin A$$

Propriété 1 Soit E un ensemble, A et B deux parties de E. On a l'équivalence :

$$A = B \iff \mathbb{1}_A = \mathbb{1}_B$$

Démonstration. On procède par double implication. Supposons A = B. Soit $x \in E$. Premier cas : $x \in A$. Alors $\mathbb{1}_A(x) = 1$. Comme A = B, on a également $x \in B$, donc $\mathbb{1}_B(x) = 1$, d'où $\mathbb{1}_A(x) = \mathbb{1}_B(x)$. Deuxième cas $x \notin A$, alors $\mathbb{1}_A(x) = 0$. Comme A = B, on a également $x \notin B$, donc $\mathbb{1}_B(x) = 0$, d'où $\mathbb{1}_A(x) = \mathbb{1}_B(x)$. Dans tous les cas, $\mathbb{1}_A(x) = \mathbb{1}_B(x)$ et ce pour tout $x \in E$. Conclusion, $\mathbb{1}_A = \mathbb{1}_B$.

Réciproquement, supposons $\mathbb{1}_A = \mathbb{1}_B$ et montrons que A = B. Soit $x \in A$. Alors $\mathbb{1}_A(x) = 1$, donc $\mathbb{1}_B(x) = 1$, donc $x \in B$. Cela démontre l'inclusion $A \subset B$. On fait de même pour démontrer l'inclusion $B \subset A$ et on obtient l'égalité A = B.

Propriété 2 Soit E un ensemble, A et B deux parties de E. Alors

- $1_{E \setminus A} = 1 1_A$.
- $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$.
- $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_A \mathbb{1}_B$.

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \bullet \; \text{Soit} \; x \in E. \; \text{Premier cas} : x \in A. \; \text{Alors} \; x \notin E \setminus A. \; \text{Mais alors} \; \mathbb{1}_{E \setminus A}(x) = 0 \; \text{et} \; 1 - \mathbb{1}_A(x) = 1 - 1 = 0, \\ \textit{d\'où} \; \textit{l\'egalit\'e} \; \mathbb{1}_{E \setminus A}(x) = 1 - \mathbb{1}_A(x). \; \text{Deuxi\`eme cas} : x \notin A. \; \text{Alors} \; x \in E \setminus A. \; \text{Mais alors} \; \mathbb{1}_{E \setminus A}(x) = 1 \; \text{et} \; 1 - \mathbb{1}_A(x) = 1 - \mathbb{1}_A(x). \\ \textit{1} - 0 = 1, \; \textit{d\'où} \; \textit{l\'egalit\'e} \; \mathbb{1}_{E \setminus A}(x) = 1 - \mathbb{1}_A(x). \; \text{Dans tous les cas,} \; \mathbb{1}_{E \setminus A}(x) = 1 - \mathbb{1}_A(x), \; \text{donc} \; \mathbb{1}_{E \setminus A} = 1 - \mathbb{1}_A(x). \\ \textit{1} - 0 = 1, \; \textit{d\'où} \; \textit{l\'egalit\'e} \; \mathbb{1}_{E \setminus A}(x) = 1 - \mathbb{1}_A(x). \; \text{Dans tous les cas,} \; \mathbb{1}_{E \setminus A}(x) = 1 - \mathbb{1}_A(x), \; \text{donc} \; \mathbb{1}_{E \setminus A}(x) = 1 - \mathbb{1}_A(x). \\ \textit{2} - 0 = 1, \; \textit{2}$

• Soit $x \in E$. D'après la définition de l'indicatrice, on a

$$\mathbb{1}_{\mathsf{A}\cap\mathsf{B}}(x)=1 \iff x\in\mathsf{A}\cap\mathsf{B} \iff (x\in\mathsf{A})\wedge(x\in\mathsf{B}) \iff \mathbb{1}_{\mathsf{A}}(x)=1\wedge\mathbb{1}_{\mathsf{B}}(x)=1 \iff \mathbb{1}_{\mathsf{A}}(x)\mathbb{1}_{\mathsf{B}}(x)=1$$

puisque les indicatrices ne prennent que les valeurs 0 et 1. Ainsi, $\mathbb{1}_{A\cap B}=\mathbb{1}_A\mathbb{1}_B$.

• Soit $x \in E$. Si $x \in A \land x \in B$, alors $x \in A \cup B$ et $\mathbb{1}_{A \cup B}(x) = 1$ puis $\mathbb{1}_A(x) + \mathbb{1}_B(x) - \mathbb{1}_A(x)\mathbb{1}_B(x) = 1 + 1 - 1 \times 1 = 1$. Si $x \in A \land x \notin B$, alors $x \in A \cup B$ et $\mathbb{1}_{A \cup B}(x) = 1$ puis $\mathbb{1}_A(x) + \mathbb{1}_B(x) - \mathbb{1}_A(x)\mathbb{1}_B(x) = 1 + 0 - 1 \times 0 = 1$. Le cas $x \notin A \land x \in B$ est parfaitement symétrique. Enfin, si $x \notin A \land x \notin B$, alors $x \notin A \cup B$ et $\mathbb{1}_{A \cup B}(x) = 0$ puis $\mathbb{1}_A(x) + \mathbb{1}_B(x) - \mathbb{1}_A(x)\mathbb{1}_B(x) = 0 + 0 - 0 \times 0 = 0$.

Dans tous les cas, $\mathbb{1}_{A \cup B}(x) = \mathbb{1}_{A}(x) + \mathbb{1}_{B}(x) - \mathbb{1}_{A}(x)\mathbb{1}_{B}(x)$, ce qui donne l'égalité des fonctions.

2 Opérations sur les applications

2.1 Images

Définition 6 Soit $f : E \to F$ une application et A une partie de E. L'**image directe** de A par f, notée f(A) ou f(A) est l'ensemble $\{f(x)|x \in A\}$. C'est l'ensembles des images des éléments de E par f.

Soit y un élément de F. Démontrer que y appartient à f(A), c'est démontrer l'existence d'un élément x de A tel que f(x) = y.

Proposition - définition 1 Soit $f: E \to F$ une application et A une partie de E. Alors $g: A \to F, x \mapsto f(x)$ est une application notée $f_{|A|}$, appelée la **restriction** de f à A.

Définition 7 Soit $f: E \to F$ une application et B une partie de F. L'**image réciproque** de B par f, notée $f^{-1}(B)$ ou $f^{-1}(B)$ est l'ensemble $\{x \in E | f(x) \in B\}$. C'est l'ensemble des antécédents des éléments de B par f.

Méthode

Soit x un élément de E, démontrer que x appartient à $f^{-1}(B)$, c'est démontrer que f(x) appartient à B.

Proposition - définition 2 Soit $f: E \to F$ une application et B une partie de F telle que $f(E) \subset B$. Alors l'application $h: E \to B$, $x \mapsto f(x)$ est une application, appelée la **corestriction** de f à B, notée $f^{|B|}$.

Propriété 3 Soit $f: E \to F$ une application, A_1 et A_2 deux parties de E, B_1 et B_2 deux parties de E. Alors

$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$
$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

Démonstration. Soit y un élément de $f(A_1 \cup A_2)$. Alors il existe un élément x de $A_1 \cup A_2$ tel que f(x) = y. Comme x appartient à A_1 ou A_2 , y appartient à $f(A_1) \cup f(A_2)$. Réciproquement, soit y un élément de $f(A_1) \cup f(A_2)$. Alors il existe un élément x_1 de A_1 tel que $f(x_1) = y$ ou un élément x_2 de A_2 tel que $f(x_2) = y$. Dans tous les cas, il existe un élément x de l'union $A_1 \cup A_2$ tel que f(x) = y, i.e $y \in f(A_1 \cup A_2)$.

Soit y un élément de $f(A_1 \cap A_2)$ alors il existe un élément x de $A_1 \cap A_2$ tel que f(x) = y. Ainsi, y est image d'un élément de A_1 par f et image d'un élément de A_2 par f, donc g appartient à $g(A_1) \cap g(A_2)$.

Soit x un élément de $f^{-1}(B_1 \cup B_2)$. Alors $f(x) \in B_1 \cup B_2$, donc f(x) appartient à B_1 ou à B_2 , donc x appartient à $f^{-1}(B_1)$ ou x appartient à $f^{-1}(B_2)$, i.e $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$. Réciproquement, soit x un élément de $f^{-1}(B_1) \cup f^{-1}(B_2)$. Alors x appartient à $f^{-1}(B_1)$ ou à $f^{-1}(B_2)$, soit $f(x) \in B_1$ ou $f(x) \in B_2$. Ainsi, $f(x) \in B_1 \cup B_2$, ce qui s'écrit $x \in f^{-1}(B_1 \cup B_2)$. La démonstration de la quatrième égalité répète exactement le même procédé. Soit x un élément de x. Alors

$$x \in f^{-1}(B_1 \cap B_2) \iff f(x) \in B_1 \cap B_2 \iff f(x) \in B_1 \wedge f(x) \in B_2 \iff x \in f^{-1}(B_1) \wedge x \in f^{-1}(B_2) \iff x \in f^{-1}(B_1) \cap f^{-1}(B_2)$$

La deuxième inclusion peut être stricte. Prenons $f: \mathbb{R}^2 \to \mathbb{R} \times \{0\}, (x,y) \mapsto (x,0), A_1 = \mathbb{R}^+ \times \{1\}$ et $A_2 = \mathbb{R}^- \times \{0\}$. Ces parties vérifient

$$A_1 \cap A_2 = \emptyset$$
, $f(A_1 \cap A_2) = \emptyset$ et $f(A_1) \cap f(A_2) = \{(0,0)\}$

2.2 Injections, surjections, bijections

Définition 8 Soit $f: E \to F$ une application. On dit que f est une **injection** ou encore **injective** lorsqu'elle vérifie

$$\forall (x, y) \in E^2, f(x) = f(y) \Rightarrow x = y$$

Remarque

En langue française, une application est injective lorsque les images de ses éléments sont deux à deux distinctes. On peut également écrire

$$\forall (x, y) \in E^2, x \neq y \Rightarrow f(x) \neq f(y)$$

via la contraposée.

Exemple 3 $\mathbb{R}^+ \to \mathbb{R}$, $x \mapsto x^2$ est injective, mais $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ ne l'est pas.

Propriété 4 Soit $f: E \to F$ une application injective et A une partie de E. Alors la restriction $f_{|A|}$ est injective.

Démonstration. Soit x, y des éléments de A tels que $f_{|A}(x) = f_{|A}(y)$. Alors x et y sont aussi des éléments de E tels que f(x) = f(y). L'injectivité de f implique alors x = y, donc que $f_{|A}$ est injective.

Exemple 4 Avec les mêmes notations que précédemment, $(Id_E)_{|A}$ est injective.

Définition 9 Soit $f: E \to F$ une application. On dit que f est une surjection ou encore surjective lorsque f(E) = F, autrement dit lorsque tout élément de F appartient l'image directe de E par f.

Méthode

Démontrer qu'une application $f: E \to F$ est surjective, c'est démontrer pour tout élément y de F, l'existence d'un élément x de E tel que f(x) = y

Exemple 5 $\mathbb{C} \to \mathbb{C}$, $z \mapsto z^2$ est surjective grâce à l'extraction de racines carrées complexes prouvée au chapitre précédent. $\mathbb{R} \to \mathbb{R}$, $x \mapsto \cos(x)$ n'est pas surjective.

Propriété 5 Soit $f: E \to F$ une application. Alors l'application $f^{|f(E)|}$ est surjective.

Démonstration. Notons $g = f^{|f(E)|}$ pour alléger les notations. Soit $y \in f(E)$, alors d'après la définition de l'image directe d'une partie par une application, il existe un élément x de E tel que y = f(x), ainsi y = g(x). Ainsi, g est surjective puisque tout élément de son ensemble d'arrivée (f(E)) possède un antécédent par g.

Exemple 6 $\mathbb{R} \to [-1,1], x \mapsto \sin(x)$ est surjective. Cela peut se montrer à l'aide du théorème des valeurs intermédiaires et la continuité du sinus.

Définition 10 Soit $f: E \to F$ une application. On dit que f est une bijection, ou encore bijective lorsque f est à la fois injective et surjective.

Propriété 6 Soit $f: E \rightarrow F$ une application. f est bijective si et seulement si

$$\forall y \in F, \exists ! x \in E, f(x) = y$$

Démonstration. Supposons que f est bijective. Soit y un élément de F. Alors la surjectivité de f assure qu'il existe un élément x de E tel que f(x) = y.. Mais alors pour tout antécédent x' de y, on a f(x') = y = f(x). L'injectivité de f implique alors que x = x', donc qu'il a y un unique antécédent de y par f. Réciproquement, si tout élément de F possède un unique antécédent par f, alors il en possède au moins un, donc f est surjective. D'autre part, soit x, x' des éléments de E tels que f(x) = f(x'). Alors l'élément y = f(x) de F possède pour antécédents x et x' par f. L'unicité de cet antécédent entraîne bien x = x', donc que f est injective. En conclusion, f est bien bijective.

Méthode

Pour démontrer qu'une application $f: E \to F$ est bijective, on peut par exemple procéder par analysesynthèse: pour tout y dans F, supposer l'existence d'un élément x de E tel que f(x) = y, démontrer qu'au plus un seul élément x convient, puis démontrer qu'il convient effectivement.

Proposition - définition 3 Soit $f: E \to F$ une application bijective. Alors, en notant pour tout y, g(y)l'unique élément de E tel que f(g(y)) = y, $G' = \{(y,g(y))|y \in F\}$ est un graphe fonctionnel de $F \times E$ et l'application $g: F \to E, y \to g(y)$ ainsi définie est appelée application réciproque de f. Elle est notée f^{-1} .

Exemple 7 L'application identité de E est bijective de réciproque elle-même. L'application $\mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto$ (x-4y,2x+3y) est bijective de réciproque $\mathbb{R}^2 \to \mathbb{R}^2$, $(s,t) \mapsto (3s/11+4t/11,-2s/11+t/11)$.

Exemple 8 Soit $f: [1, +\infty[\to \mathbb{R}^+, x \mapsto \ln(x + \sqrt{x^2 - 1})]$. C'est une bijection de réciproque $g: \mathbb{R}^+ \to [1, +\infty[, y \mapsto (e^y + e^{-y})/2]]$.

Propriété 7 Soit $f: E \to F$ une application injective. Alors la corestriction $f^{|f(E)|}$ est une bijection.

Définition 11 Soit E et F deux ensembles. On dit que E et F sont **en bijection** ou **équipotents** lorsqu'il existe une application $f : E \to F$ bijective.

Exemple 9 L'application exponentielle assure que \mathbb{R} et \mathbb{R}^{+*} sont en bijection. L'application $\mathbb{N}^2 \to \mathbb{N}^*$, $(n,m) \mapsto 2^n(2m+1)$ est bijective d'après le théorème fondamental de l'arithmétique, ce qui implique que \mathbb{N}^* et \mathbb{N}^2 sont en bijection.

2.3 Composition

Dans tout ce qui suit, on note E, F, G des ensembles.

Définition 12 Soit $f: E \to F$ et $g: F \to G$ deux applications. On définit la **composée** de g par f, notée $g \circ f$ via

$$\forall x \in E, g \circ f(x) = g(f(x))$$

∧ Attention

Faites attention à l'ordre de composition. Écrivez soigneusement $E \to F \to G, x \mapsto f(x) \mapsto g(f(x))$.

Propriété 8 Soit $f: E \to F$, $g: F \to G$, $h: G \to H$ trois applications. Alors

$$(h \circ g) \circ f = h \circ (g \circ f)$$

On dit que la composition d'applications est associative.

Définition 13 L'identité de E est l'application $E \to E, x \mapsto x$. Elle est notée id_E .

Propriété 9 Soit $f: E \rightarrow F$ une application. Alors

$$f \circ Id_E = f$$
 et $Id_F \circ f = f$

Théorème 1 Soit $f: E \to F$ et $g: F \to G$ deux applications injectives. Alors l'application $g \circ f$ est injective.

Démonstration. Soit x et y des éléments de E tels que $g \circ f(x) = g \circ f(y)$. Alors les éléments f(x) et f(y) de F vérifient g(f(x)) = g(f(y)). L'injectivité de g implique alors f(x) = f(y). Mais alors l'injectivité de f implique à son tour f(x) = f(y). On ainsi prouvé

$$\forall (x, y) \in E^2, g \circ f(x) = g \circ f(y) \Rightarrow x = y,$$

i.e l'injectivité de l'application $g \circ f$.

Théorème 2 Soit $f: E \to F$ et $g: F \to G$ deux applications surjectives. Alors l'application $g \circ f$ est surjective.

Démonstration. Soit z un élément de G. Alors la surjectivité de g implique l'existence d'un élément y de F tel que z=g(y). On applique ensuite la surjectivité de l'application f à l'élément y de F, elle entraîne qu'il existe un élément x de F tel que y=f(x). On obtient ainsi, $z=g(f(x))=g\circ f(x)$, ce qui démontre que z possède un antécédent par $g\circ f$, et ce pour tout élément z de G. C'est bien établir la surjectivité de $g\circ f$.

Exercice 1 Avec les mêmes notations, montrer que si $g \circ f$ est injective, alors f est injective. De même, montrer que si $g \circ f$ est surjective, alors g est surjective.

Théorème 3 Soit $f: E \to F$ une application. Pour que f soit bijective, il faut et il suffit qu'il existe une application $g: F \mapsto E$ telle que

$$f \circ g = id_F$$
 et $g \circ f = id_E$

Le cas échéant, l'application g est nécessairement l'application réciproque f^{-1} de f.

Démonstration. Si f est bijective, alors pour tout y de F, $f^{-1}(y)$ est l'unique élément de E tel que $f(f^{-1}(y)) = y$, i.e $f \circ f^{-1}(y) = y$. Ainsi, $f \circ f^{-1} = \mathrm{id}_F$. De plus pour tout élément x de E, f(x) possède pour unique antécédént x par f, i.e $f^{-1}(f(x)) = x$, ce qui s'écrit $f^{-1} \circ f(x) = x$. On a alors prouvé que $f^{-1} \circ f = \mathrm{id}_E$.

Supposons à présent qu'il existe une application $g: F \to E$ vérifiant les deux égalités d'applications composées. Montrons que f est injective. Soit x_1, x_2 des éléments de E tels que $f(x_1) = f(x_2)$. Alors en composant par g, on obtient $g(f(x_1)) = g(f(x_2))$, soit $g \circ f(x_1) = g \circ f(x_2)$, i.e $\mathrm{id}_E(x_1) = \mathrm{id}_E(x_2)$, soit $x_1 = x_2$. L'injectivité est alors prouvée. Démontrons à présent que f est surjective. Soit y un élément de F, alors f(g(y)) = y, donc g(y) est un antécédent

Soit à présent deux applications g_1 , g_2 de F dans E vérifiant les compositions. Alors

$$g_1 \circ f \circ g_2 = id_E \circ g_2 = g_2$$
 et $g_1 \circ f \circ g_2 = g_1 \circ id_F = g_1$,

cela implique que $g_1 = g_2$.

Remarque

L'une des compositions implique l'injectivité de f, l'autre implique sa surjectivité. Laquelle est laquelle?

Méthode

Pour prouver la bijectivité d'une application, il peut être plus rapide de proposer sa réciproque et de vérifier les compositions indiquées plus haut.

Propriété 10 Soit $f: E \to F$, $g: F \to G$ deux applications bijectives. Alors $g \circ f$ est bijective, de réciproque

 $D\acute{e}monstration$. L'application $g\circ f$ est bijective puisqu'injective et surjective d'après les propriétés précédentes. Mais alors

$$g \circ f \circ f^{-1} \circ g^{-1} = g \circ id_F \circ g^{-1} = g \circ g^{-1} = id_G$$

 $f^{-1} \circ g^{-1} \circ g \circ f = f^{-1} \circ id_F \circ f = id_E$

On peut alors affirmer d'après le théorème précédent que $f^{-1} \circ g^{-1}$ est la réciproque de $g \circ f$.

Propriété 11 Soit $f: E \to F$ une application bijective et B une partie de F. Alors l'image réciproque de B par f, $f^{-1}(B)$, est égale à l'image directe de B par l'application f^{-1} (la réciproque de f).

Démonstration. Comme f est bijective, tout élément b de B possède un unique antécédent par f, il s'agit de $f^{-1}(b)$. Autrement dit,

$$f^{-1}(B) = \{f^{-1}(b) | b \in B\}.$$

C'est bien ici l'image directe de B par l'application réciproque f^{-1} .

Propriété 12 Soit E un ensemble fini et A une partie de E. Alors A = E ssi A a autant d'éléments que E.

Démonstration. Si A ≠ E, alors on dispose d'un élément de E qui n'est pas dans A, mais alors A possède strictement moins d'éléments que E.

Théorème 4 Soit E, F deux ensembles finis ayant même nombre d'éléments et $f: E \to F$ une application. Alors on a l'équivalence : f bijective \iff f injective \iff f surjective.

Démonstration. Supposons f injective. Alors l'image directe f(E) possède autant d'éléments que E puisque deux éléments distincts ont des images distinctes par f. Mais alors |f(E)| = |E| = |F|, donc la partie f(E) de F est égale à F, ce qui signifie que f est surjective, donc bijective. Supposons à présent que f est surjective. Alors f(E) = F a autant d'éléments que E. Par conséquent, si deux éléments distincts x, y de E ont même image par f, alors |f(E)| < E, ce qui est absurde. On a ainsi prouvé que f est injective, donc bijective.

Rappels sur les fonctions de \mathbb{R} dans \mathbb{R} .

Surjectivité

On commence par le TVI et le lien avec la surjectivité.

Théorème 5 (Théorème des valeurs intermédiaires) Soit a < b deux réels, et $f : [a, b] \to \mathbb{R}$ une application continue. Alors tout réel c compris entre f(a) et f(b) possède un antécédent dans [a, b] par f, i.e

$$\forall c \in [\min(f(a), f(b)), \max(f(a), f(b))], \exists x \in [a, b], f(x) = c$$

Il ne s'agit pas strictement de la surjectivité de f, car cette application peut prendre des valeurs en dehors de l'intervalle $[\min(f(a),f(b),\max(f(a),f(b))]$. Prendre par exemple, le cosinus sur l'intervalle $[0,3\pi/2]$. On a $\cos(0)=1$ et $\cos(3\pi/2)=0$, mais $\cos(\pi)=-1 \notin [0,1]$. Rajoutons une hypothèse de monotonie pour nous rapprocher de la surjectivité :

Propriété 13 Soit a < b deux réels, et $f : [a,b] \to \mathbb{R}$ une application **continue** et monotone. En notant $m = \min(f(a), f(b))$ et $M = \max(f(a), f(b))$,

$$\forall c \in [m, M], \exists x \in [a, b], f(x) = c$$

Autrement dit, $f^{|[m,M]}$ est surjective.

Dans le cas où f est croissante, on a $f(a) \le f(b)$ et $f^{[f(a),f(b)]}$ surjective. Dans le cas où f est décroissante, on a $f(b) \le f(a)$ et $f^{[f(b),f(a)]}$ surjective. Dans le cas où f n'est pas définie sur un segment mais un intervalle plus général, on dispose de la version suivante :

Propriété 14 Soit a < b deux réels ou $\pm \infty$, et $f: (a,b) \to \mathbb{R}$ une application **continue** et monotone. On suppose que f admet des limites (finies ou infinies) en a et en b, notées respectivement L_a et L_b . On note alors $m = \min(L_a, L_b)$ et $M = \max(L_a, L_b)$

$$\forall c \in (m, M), \exists x \in (a, b), f(x) = c$$

Autrement dit, $f^{|(m,M)|}$ est surjective.

Les parenthèses sont là pour synthétiser les différents cas, selon que les extrémités des intervalles considérés sont finies ou non, appartiennent à l'intervalle ou non.

Injectivité

Définition 14 Soit $f:I \to \mathbb{R}$ une application définie sur un intervalle I non vide et non réduit à un point. On dit que f est strictement croissante lorsque

$$\forall (x, y) \in I^2, x < y \Rightarrow f(x) < f(y)$$

On dit que f est strictement décroissante lorsque

$$\forall (x, y) \in I^2, x < y \Rightarrow f(y) < f(x)$$

On dit que f est strictement monotone lorsque f est strictement croissante ou strictement décroissante.

Propriété 15 Soit $f: I \to \mathbb{R}$ une application définie sur un intervalle I non vide et non réduit à un point, strictement monotone. Alors f est injective.

Cela résulte du fait que deux réels distincts peuvent toujours être ordonnés. Vous connaissez des outils de dérivabilité pour justifier de la stricte monotonie d'une fonction.

Propriété 16 Soit $f: I \to \mathbb{R}$ une application définie sur un intervalle I non vide et non réduit à un point. On suppose que f est dérivable.

- Si f' > 0, alors f est strictement croissante (donc injective).
- Si $f' \ge 0$ et f' s'annule en un nombre au plus dénombrable de points, alors f est strictement croissante (donc injective).
- Si f' < 0, alors f est strictement décroissante (donc injective).
- Si $f' \le 0$ et f' s'annule en un nombre au plus dénombrable de points, alors f est strictement décroissante (donc injective).

Cette propriété que vous utilisez depuis longtemps résulte d'outils plutôt élaborés. Nous verrons une caractérisation propre plus tard dans l'année.

Bijectivité

On peut combiner les résultats précédents pour former les différentes versions du « théorème de la bijection ».

Théorème 6 Soit a < b deux réels, et $f : [a, b] \to \mathbb{R}$ une application **continue** et **strictement monotone**. En notant $m = \min(f(a), f(b))$ et $M = \max(f(a), f(b))$,

$$\forall c \in [m, M], \exists ! x \in [a, b], f(x) = c$$

Autrement dit, $f^{|[m,M]}$ est bijective.

On peut adapter à des intervalles plus généraux que les segments

Propriété 17 Soit a < b deux réels ou $\pm \infty$, et $f:(a,b) \to \mathbb{R}$ une application **continue** et **strictement monotone**. On suppose que f admet des limites en a et en b, notées respectivement L_a et L_b . On note alors $m = \min(L_a, L_b)$ et $M = \max(L_a, L_b)$

$$\forall c \in (m, M), \exists ! x \in (a, b), f(x) = c$$

Autrement dit, $f^{|(m,M)|}$ est bijective.

D'après les critères suffisants de stricte monotonie précédents, on peut établir alors

Propriété 18 Soit a < b deux réels ou $\pm \infty$, et $f:(a,b) \to \mathbb{R}$ une application dérivable. On suppose que

- f admet des limites (finies ou infinies) en a et en b, notées respectivement L_a et L_b . (On note alors $m = \min(L_a, L_b)$ et $M = \max(L_a, L_b)$).
- f' est de signe constant et s'annule qu'un un nombre au plus dénombrable de fois.

Alors $f^{|(m,M)|}$ est bijective. De plus, la réciproque de cette application a même monotonie que f.

Faites attention, la réciproque n'est pas nécessairement dérivable sur (m, M). Pensez par exemple à la racine carrée qui n'est pas dérivable en 0 et qui est la réciproque de la fonction dérivable $\mathbb{R}^+ \to \mathbb{R}^+, x \mapsto x^2$.