Hung-yi Lee

李宏毅

Sophisticated Input

Input is a vector

Input is a set of vectors

One-hot Encoding

cat =
$$[0 \ 0 \ 1 \ 0 \ 0 \dots]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0 \dots]$$

elephant =
$$[0 \ 0 \ 0 \ 1 \dots]$$

Word Embedding

To learn more: https://youtu.be/X7PH3NuYW0Q (in Mandarin)

• Graph is also a set of vectors (consider each **node**

• Graph is also a set of vectors (consider each **node**

as a vector)

$$H = [1 \ 0 \ 0 \ 0 \ \dots]$$

$$C = [0 \ 1 \ 0 \ 0 \ 0 \dots]$$

$$O = [0 \ 0 \ 1 \ 0 \ 0 \dots]$$

What is the output?

• Each vector has a label.

Example Applications

What is the output?

• Each vector has a label.

The whole sequence has a label.

Example Applications

What is the output?

• Each vector has a label.

focus of this lecture

The whole sequence has a label.

• Model decides the numbers of labels itself.

seq2seq

Sequence Labeling

FC Fully-connected

Is it possible to consider the context?

FC can consider the neighbor

How to consider the whole sequence?

a window covers the whole sequence?

https://arxiv.org/abs/1706.03762₁₂

Can be either input or a hidden layer

Find the relevant vectors in a sequence

Additive

$$\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$$

$$q^1 = W^q a^1 \qquad k^2 = W^k a^2$$

$$k^2 = W^k a^2$$

$$k^3 = W^k a^3$$

$$k^4 = W^k a^4$$

$$k^1 = W^k a^1$$

Self-attention Extract information based on attention scores

$$b^1 = \sum_i \alpha'_{1,i} v^i$$

$$v^1 = W^v a^1$$

$$v^2 = W^v a^2$$

$$v^3 = W^v a^3$$

$$v^4 = W^v a^4$$

Can be either input or a hidden layer

$$\alpha_{1,1} = \begin{bmatrix} \mathbf{k^1} & \mathbf{q^1} \\ \mathbf{q^1} & \alpha_{1,2} = \end{bmatrix} \mathbf{k^2} \mathbf{q^1}$$

$$\alpha_{1,3} = \begin{bmatrix} \mathbf{k^3} & \mathbf{q^1} & \alpha_{1,4} = \begin{bmatrix} \mathbf{k^4} & \mathbf{q^1} \end{bmatrix}$$

$$\alpha_{1,1} = k^1 q^1 \alpha_{1,2} = k^2 q^1$$

$$\alpha_{1,3} = \mathbf{k^3} \mathbf{q^1} \quad \alpha_{1,4} = \mathbf{k^4} \mathbf{q^1}$$

$$\begin{array}{c}
\alpha_{1,1} \\
\alpha_{1,2} \\
\alpha_{1,3}
\end{array} = \begin{array}{c}
k^1 \\
k^2 \\
k^3
\end{array}$$

$$\alpha_{1,4} \quad k^4$$

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Positional Encoding

Each column represents a positional vector e^i

- No position information in self-attention.
- Each position has a unique positional vector e^i
- hand-crafted
- learned from data

Table 1. Comparing position representation methods

https://arxiv.org/abs/ 2003.09229

Methods	Inductive	Data-Driven	Parameter Efficient
Sinusoidal (Vaswani et al., 2017)	✓	X	✓
Embedding (Devlin et al., 2018)	X	✓	X
Relative (Shaw et al., 2018)	×	✓	✓
This paper	✓	✓	✓

Many applications ...

Transformer

https://arxiv.org/abs/1706.03762

BERT

https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)!

Self-attention for Speech

Speech is a very long vector sequence.

If input sequence is length L

Self-attention for Image

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-RGB-matrix_fig15_282798184

DEtection Transformer (DETR)

https://arxiv.org/abs/2005.12872

Self-attention v.s. CNN

On the Relationship between Self-Attention and Convolutional Layers

https://arxiv.org/abs/1911.03584

Self-attention v.s. CNN

Good for more data

Self-attention

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/pdf/2010.11929epdf

Self-attention v.s. RNN FC FC FC FC **RNN RNN** RNN **RNN** memory hard to consider nonparallel parallel Self-attention easy to consider

Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention https://arxiv.org/abs/2006.16236

Self-attention for Graph

Consider **edge**: only attention to connected nodes

This is one type of **Graph Neural Network (GNN)**.

Self-attention for Graph

To learn more about GNN ...

https://youtu.be/eybCCtNKwzA (in Mandarin)

https://youtu.be/M9ht8vsVEw8 (in Mandarin)

To Learn More ...

Long Range Arena: A Benchmark for Efficient Transformers

https://arxiv.org/abs/2011.04006

Efficient Transformers: A Survey https://arxiv.org/abs/2009.06732

