MATERI 12

TUJUAN INSTRUKSIONAL KHUSUS

Setelah menyelesaikan pertemuan ini mahasiswa diharapkan :

- Dapat menghitung eigen value dan eigen vektor suatu matriks
- Dapat mengetahui contoh aplikasi dari eigen value dan eigen vektor suatu matriks

eigenvalues eigenvectors

Definisi:

Matriks A ($n \times n$); $\mathbf{x} \in \mathbb{R}^n$ dan

$$Ax = \lambda x$$

maka λ disebut *eigenvalue* A, dan x disebut *eigenvector* dari A yang "berpasangan" dengan λ

Jika diketahui matriks A (n×n), bagaimana mencari *eigenvalue(s)* dari matriks A?

- 1. Bentuk persamaan karakteristik determinan ($\lambda I A$) = 0 (akan terbentuk persamaan derajat n)
- 2. Cari akar-akar persamaan karakteristik di atas, ada n akar; akar-akar ini merupakan *eigenvalue(s)* dari matriks A

Jika diketahui matriks A (n×n), bagaimana mencari eigenvalue(s) dari matriks A?

- 1. Bentuk persamaan karakteristik determinan ($\lambda I A$) = 0 (akan terbentuk persamaan derajat n)
- 2. Cari akar-akar persamaan karakteristik di atas, ada n akar; akar-akar ini merupakan *eigenvalue(s)* dari matriks A

Contoh:
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \rightarrow (\lambda I - A) = \begin{bmatrix} \lambda - 3 & 0 - 0 \\ 0 - 8 & \lambda + 1 \end{bmatrix} = \begin{bmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{bmatrix}$$

Det
$$(\lambda I - A) = 0 \rightarrow (\lambda - 3)(\lambda + 1) + 0 = 0$$

maka $\lambda_1 = 3 \& \lambda_2 = -1$

Definisi:

Matriks A ($n \times n$); $x \in \mathbb{R}^n$ dan

$$Ax = \lambda x$$

maka λ disebut *eigenvalue* A, dan x disebut *eigenvector* dari A yang "berpasangan" dengan λ

Jika diketahui matriks A (n×n), bagaimana mencari *eigenvector(s)* dari matriks A?

Setelah *eigenvalue* λ_k dari matriks A diperoleh, maka *eigenvector(s)* x_k yang "berpasangan" dengan λ_k ditentukan dari persamaan $(\lambda I - A) x_k = 0$

Jika diketahui matriks A (n×n), bagaimana mencari eigenvector(s) dari matriks A?

Setelah *eigenvalue* λ_k dari matriks A diperoleh, maka *eigenvector* x_k yang "berpasangan" dengan λ_k ditentukan dari persamaan $(\lambda I - A) x_k = 0$

Contoh: dari soal terdahulu
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 $\lambda_1 = 3$ & $\lambda_2 = -1$

eigenvector
$$x_1: (\lambda_1 I - A) x_1 = 0 \rightarrow (3I - A) x_1 = 0$$

$$\begin{bmatrix} \mathbf{3-3} & \mathbf{0-0} \\ \mathbf{0-8} & \mathbf{3+1} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ -\mathbf{8} & \mathbf{4} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{} x_{12} = 2x_{11} \\ \xrightarrow{} x_{11} = skalar s$$

eigenspace = himpunan eigenvector
$$\mathbf{x}_1 = \{ (s, 2s) \}$$

Jika diketahui matriks A (n×n), bagaimana mencari eigenvector(s) dari matriks A?

Setelah *eigenvalue* λ_k dari matriks A diperoleh, maka *eigenvector* x_k yang "berpasangan" dengan λ_k ditentukan dari persamaan $(\lambda I - A) x_k = 0$

Contoh: dari soal terdahulu
$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 $\lambda_1 = 3$ & $\lambda_2 = -1$

eigenvector
$$\mathbf{x}_2$$
: $(\lambda_2 \mathbf{I} - \mathbf{A}) \mathbf{x}_2 = \mathbf{0} \rightarrow (-1 \mathbf{I} - \mathbf{A}) \mathbf{x}_2 = \mathbf{0}$

$$\begin{bmatrix} -1 - 3 & 0 - 0 \\ 0 - 8 & -1 + 1 \end{bmatrix} \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{-4} & \mathbf{0} \\ \mathbf{-8} & \mathbf{0} \end{bmatrix} \quad \begin{bmatrix} x_{21} \\ x_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow x_{21} = 0$$

$$\Rightarrow x_{22} = skalar s$$

eigenspace = himpunan eigenvector
$$\mathbf{x_2} = \{ (0, s) \}$$

EIGEN VALEU DAN EIGEN VEKTOR

Diagonalisasi:

Matriks $A(n \times n)$

akan dicari matriks P yang invertibel sedemikian sehingga $P^{-1}AP = matriks diagonal$

Matriks A disebut diagonalizable

Matriks P disebut mendiagonalisasi (diagonalizes) matriks A

Teorema: Matriks $A(n \times n)$

Matriks A disebut *diagonalizable* ↔ A memiliki n *eigenvectors* yang linearly independent

ŊA.

Algoritma untuk menentukan matriks P

Matriks A (n × n) *diagonalizable*, maka langkah-langkah untuk menentukan P sbb.:

- 1. Bentuk fungsi karakteristik determinan ($\lambda I A$) = 0
- 2. Tentukan *eigenvalues* dari A: λ₁, λ₂, λ₃,, λ_n
- 3. Tentukan *eigenspaces* yang berpasangan dengan *eigenvalues* λ_1 , λ_2 , λ_3 ,, λ_n tersebut
- 4. Tentukan basis-basis dari eigenspaces di atas
- 5. Matriks P diperoleh dengan menuliskan basis-basis tersebut sebagai vektor kolom

Diagonalisasi Ortogonal:

Matriks $A(n \times n)$

akan dicari matriks P yang ortogonal ($P^{-1} = P^{T}$)

sedemikian sehingga $P^{-1}AP = P^{T}AP = matriks diagonal$

Matriks A disebut orthogonally diagonalizable

Matriks P disebut mendiagonalisasi secara ortogonal

(orthogonally diagonalizes) matriks A

Algoritma untuk menentukan matriks P

Matriks A (n × n) *orthogonally diagonalizable*, maka langkahlangkah untuk menentukan P sbb.:

- 1. Bentuk fungsi karakteristik determinan ($\lambda I A$) = 0
- 2. Tentukan *eigenvalues* dari A: $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n$
- 3. Tentukan *eigenspaces* yang berpasangan dengan *eigenvalues* λ_1 , λ_2 , λ_3 ,, λ_n tersebut
- 4. Tentukan basis-basis dari eigenspaces di atas
- 5. Aplikasikan metode Gram-Schmidt untuk mendapatkan basis-basis ortonormalnya
- 6. Matriks P diperoleh dengan menuliskan basis-basis hasil langkah 5 tersebut sebagai vektor kolom

Teorema:

Jika matriks A (n×n), maka yang berikut ini ekivalen

- a) Matriks A simetrik
- b) Matriks A orthogonally diagonalizable
- c) Matriks A memiliki n eigenvectors yang ortonormal

Jika a) benar maka b) dan c) benar, dsb

Jika a) salah maka b) dan c) salah, dsb

Contoh:

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

determinan
$$(\lambda I - A) = 0 \rightarrow (\lambda - 2)^2 (\lambda - 8) = 0$$

eigenvector
$$x_1$$
: $(\lambda_1 I - A) x_1 = 0 \rightarrow (2I - A) x_1 = 0$

$$\begin{pmatrix}
-2 & -2 & -2 & 0 \\
-2 & -2 & -2 & 0 \\
-2 & -2 & -2 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

eigenspace (λ_1)

$$\left\{ \begin{pmatrix} -x_{12} - x_{13} \\ x_{12} \\ x_{13} \end{pmatrix} \right\} = \left\{ \begin{array}{c} x_{12} \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{array} \right\} + \left. \begin{array}{c} x_{13} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{array} \right\} \\
\text{EIGEN VALEU DAN EIGEN VEKTOR}$$

Contoh:

determinan
$$(\lambda I - A) = 0 \rightarrow (\lambda - 2)^2 (\lambda - 8) = 0$$

eigenvector
$$x_2$$
: $(\lambda_2 I - A) x_2 = 0 \rightarrow (8I - A) x_2 = 0$

$$\begin{pmatrix}
4 & -2 & -2 & 0 \\
-2 & 4 & -2 & 0 \\
-2 & -2 & 4 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

eigenspace (λ_2)

$$\left\{ \left(\begin{array}{c} x_{23} \\ x_{23} \\ x_{23} \end{array}\right) \right\} = \left\{\begin{array}{c} x_{23} \left(\begin{array}{c} 1 \\ 1 \\ \end{array}\right) \\ \text{EIGEN VALEU DAN EJGEN VEKTOR} \right\}$$

Basis eigenspace (λ_1)

$$\left\{ \begin{array}{c} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\} \quad \text{dengan Gram-Schmidt} \quad \left\{ \begin{array}{c} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{array} \right\}, \quad \begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{pmatrix} \right\}$$

Basis eigenspace (λ_2)

$$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\} \qquad \text{dengan Gram-Schmidt} \qquad \left\{ \begin{array}{c} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{array} \right\}$$

$$\left\{ \begin{array}{c} 1/\sqrt{3} \\ 1/\sqrt{3} \end{array} \right\}$$

Maka matriks P yang
$$-1/\sqrt{2}$$
 $-1/\sqrt{6}$ $1/\sqrt{3}$ orthogonally diagonalizes $1/\sqrt{2}$ $-1/\sqrt{6}$ $1/\sqrt{3}$ matriks (A) adalah0 $2/\sqrt{6}$ $1/\sqrt{3}$

$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

Maka matriks P yang
$$-1/\sqrt{2}$$
 $-1/\sqrt{6}$ $1/\sqrt{3}$ orthogonally diagonalizes $1/\sqrt{2}$ $-1/\sqrt{6}$ $1/\sqrt{3}$ matriks (A) adalah0 $2/\sqrt{6}$ $1/\sqrt{3}$

CONTOH:

Sistem persamaan perpindahan penduduk,

$$C_{n+1} = 0.85C_n + 0.10S_n$$
 untuk $n \ge 0$
 $S_{n+1} = 0.15C_n + 0.90S_n$

Dalam hal ini :
$$\bar{x}_n = \begin{bmatrix} C_n \\ S_n \end{bmatrix}$$

Matriks transisinya :
$$A = \begin{bmatrix} 0.85 & 0.10 \\ 0.15 & 0.90 \end{bmatrix}$$

Persamaan karakteristik dari A:

Persamaan karakteristik dari A:

$$\left(\frac{17}{20} - \lambda\right) \left(\frac{9}{10} - \lambda\right) - \left(\frac{3}{20}\right) \left(\frac{1}{10}\right) = 0;$$

$$(17 - 20\lambda)(9 - 10\lambda) - 3 = 0$$

$$200\lambda^{2} - 350\lambda + 150 = 0$$

$$4\lambda^{2} - 7\lambda + 3 = 0$$

$$(\lambda - 1)(4\lambda - 3) = 0 \rightarrow \lambda_{1} = 1, \lambda_{2} = 0, 75$$

*) Untuk $\lambda 1$, pers. $(A-\lambda I)=0$

$$\begin{bmatrix} -0.15 & 0.10 \\ 0.15 & -0.10 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \overline{x_1} = S(2,3),$$

*) Untuk $\lambda 2 = 0.75$, pers. (A- λI)=0

$$\begin{bmatrix} 0,10 & 0,10 \\ 0,15 & 0,15 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow x_2 = S(-1,1),$$

$$A = PDP^{-1}, P = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 \\ 0 & \frac{3}{4} \end{bmatrix}, P^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -3 & 2 \end{bmatrix}$$
 untuk k >>

$$\left(\frac{3}{4}\right)^k \approx 0$$

$$A^{k} = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \left(\frac{3}{4}\right)^{k} \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -3 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -3 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$$

Dengan k yang cukup besar,

$$\overline{x}_{k} = A^{k} \overline{x}_{0} \approx \frac{1}{5} \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} C_{0} \\ S_{0} \end{bmatrix} = (C_{0} + S_{0}) \begin{bmatrix} 0, 4 \\ 0, 6 \end{bmatrix}$$

Untuk waktu yang lama (k >>) karena vector (0,4,0,6) dengan λ=1, pembagian penduduk antara kota dan pinggiran tidak mengalami perubahan lagi, yaitu menjadi 40% berada di kota dan 60% berada di pinggiran