Advanced Partial Differential Equations Exams

Andrea Bonifacio January 23, 2025

1 Exams 2021/22

1.1 June 2021

Exercise 1

For $a, \gamma \in \mathbb{R}$, consider the Cauchy problem for the wave equation

$$\begin{cases} u_{tt} - 4u_{xx} = 0 & (x,t) \in \mathbb{R} \times (0,\infty) \\ u(x,0) = e^{-x^2} + \gamma e^{-(x-a)^2} & x \in \mathbb{R} \\ u_t(x,0) = 0 & x \in \mathbb{R} \end{cases}$$

Show that the mass M of the solution is constant, then find the couples (a, γ) such that:

- M = 0.
- The solution u(x, 1) at t = 1 consists of only two "bumps".

To show that the mass M of the solution is constant we need to define such a mass, and then check its behavior over time.

The mass M of the solution is defined as $M(t) := \int_{\mathbb{R}} u(x,t) dx$.

$$M''(t) = \frac{\partial^2}{\partial^2 t} \int_{\mathbb{R}} u(x,t) \, dx = \int_{\mathbb{R}} u_{tt} \, dx = \int_{\mathbb{R}} 4u_{xx} \, dx = 4 \underbrace{\int_{\mathbb{R}} (u_x)_x \, dx}_{\text{div. form=0}} = 0$$

So M(t) = A + Bt. But M'(t) = B, and also $M'(t) = \int_{\mathbb{R}} u_t(x,t) dx$. Since M'(t) is constant we take $M'(0) = \int_{\mathbb{R}} u_t(x,0) dx = 0 \Rightarrow B = 0$.

Then we conclude that M(t) = A is constant too, and $M(0) = \int_{\mathbb{R}} e^{-x^2} + \gamma e^{-(x-a)^2} dx$

$$\int_{\mathbb{R}} e^{-x^2} + \underbrace{\gamma e^{-(x-a)^2}}_{\substack{x-a=y\\dx=dy}} dx = (1+\gamma) \int_{\mathbb{R}} e^{-y^2} dy = \sqrt{\pi} (1+\gamma)$$

After that we need to show that M=0, so $\sqrt{\pi}(1+\gamma)=0 \iff \gamma=-1$ Then we look for the values of a such that the solution consists of two "bumps".

Remark 1

For a hyperbolic equation, we know that the solution $u(x,t) = \frac{1}{2}(g(x+ct) + g(x-ct))$

In this case we have $u(x,t) = \frac{1}{2}(g(x+2t) + g(x-2t))$, which becomes

$$u_{a,\gamma}(x,t) = \frac{1}{2} \left(e^{-(x+2t)^2} + \gamma e^{-(x-a+2t)^2} + e^{-(x-2t)^2} + \gamma e^{-(x-a-2t)^2} \right)$$

that, for $\gamma = -1$ and t = 1

$$u_{a,\gamma}(x,1) = \frac{1}{2} \left(e^{-(x+2)^2} - e^{-(x-a+2)^2} + e^{-(x-2)^2} - e^{-(x-a-2)^2} \right)$$

We can see that this solution has four "bumps" in x = -2, x = 2, x = a - 2, x = a + 2. To obtain two bumps we manipulate a and see that

•
$$-2 = a - 2 \Rightarrow a = 0 \Rightarrow u_{0,\gamma}(x,1) = \frac{1}{2}(e^{-(x+2)^2} - e^{-(x+2)^2} + e^{-(x-2)^2} - e^{-(x-2)^2}) = 0$$

•
$$-2 = a + 2 \Rightarrow a = -4 \Rightarrow u_{-4,\gamma}(x,1) = \frac{1}{2}(e^{-(x+2)^2} - e^{-(x+6)^2} + e^{-(x-2)^2} - e^{-(x+2)^2}) = \frac{1}{2}(-e^{-(x+6)^2} + e^{-(x-2)^2})$$

•
$$2 = a - 2 \Rightarrow a = 4 \Rightarrow u_{-4,\gamma}(x,1) = \frac{1}{2}(e^{-(x+2)^2} - e^{-(x-2)^2} + e^{-(x-2)^2} - e^{-(x-6)^2}) = \frac{1}{2}(-e^{-(x-6)^2} + e^{-(x+2)^2})$$

•
$$-2 = a - 2 \Rightarrow a = 0 \Rightarrow u_{0,\gamma}(x,1) = \frac{1}{2}(e^{-(x+2)^2} - e^{-(x+2)^2} + e^{-(x-2)^2} - e^{-(x-2)^2}) = 0$$

We can see that the solution has only two "bumps" in the cases $a=\pm 4$, so we conclude that the desired couples of (a,γ) are

$$\begin{cases} \gamma = -1 \\ a = -4 \end{cases} \lor \begin{cases} \gamma = -1 \\ a = 4 \end{cases}$$

Let $\Omega \subset \mathbb{R}^n (n \geq 2)$ be a bounded smooth domain, let a be a measurable function in Ω . Consider the problem

$$\begin{cases}
-\Delta u = a(x)u^3 & \Omega \\
u = 0 & \partial\Omega
\end{cases}$$
 (P)

Under which assumptions on the space dimension n can we write a variational formulation of problem (P) in $H_0^1(\Omega)$? For each of these dimensions find the most general assumptions on a that allow to write the variational formulation. Finally, write the variational formulation.

First, a quick reminder on Sobolev embedding, which will be very useful a.e. in this document

Remark 2

Let $\Omega \subseteq \mathbb{R}^n$ open with $\partial \Omega \in \text{Lip}$, $s \geq 0$,

$$H^{s}(\Omega) \subset \begin{cases} L^{p}(\Omega) & \forall 2 \leq p \leq 2^{*} & \text{if } n > 2s \\ L^{p}(\Omega) & \forall 2 \leq p < \infty & \text{if } n = 2s \\ C^{0}(\bar{\Omega}) & \text{if } n < 2s \end{cases}$$

Increasing s increases the regularity, while increasing n decreases it.

The exponent 2^* is called critical exponent and is defined as $2^* := \frac{2n}{n-2s}$.

If Omega is bounded, all these embeddings are compact except $H^s(\Omega) \subset L^{2^*}$ when n > s.

Since we want to know the variational formulation in H_0^1 we have s=1 and need to check $n=2, n\geq 3$. Remember a variational formulation makes sense if $\int_{\Omega} fv < \infty$.

n=2. In this case we have $u^3, v \in H_0^1(\Omega)$, so by Sobolev embedding we know $u^3, v \in L^p(\Omega)$ for $2 \le p < \infty$.

$$\left| \int_{\Omega} a(x)u^3v \right| dx \leq \int_{\Omega} |a(x)| \left| u^3 \right| |v| dx \leq \int_{\Omega} |a(x)|^r \int_{0}^{\frac{1}{r}} \left(\int_{\Omega} \left| u^3 \right|^p \right)^{\frac{1}{p}} \left(\int_{\Omega} \left| v \right|^q \right)^{\frac{1}{q}} < \infty.$$

To use Holder inequality we need to find r, p, q such that $\frac{1}{r} + \frac{1}{p} + \frac{1}{q} = 1$. We see that,

$$\frac{1}{r} + \frac{1}{p} + \frac{1}{q} = 1 \iff a(x) \in L^r(\Omega) \quad \text{with } r > 1$$

 $n \geq 3$. In this case we have $u^3, v \in H_0^1(\Omega)$, so by Sobolev embedding we know $u^3, v \in L^p(\Omega)$ for $2 \leq p \leq 2^*$. We proceed as before, using Holder inequality, but decide to use $p = \frac{2^*}{3}$ and $q = \frac{1}{2^*}$.

$$\left| \int_{\Omega} a(x)u^{3}v \right| dx \leq \int_{\Omega} |a(x)| |u^{3}| |v| dx \leq \int_{\Omega} |a(x)|^{r} \int_{0}^{\frac{1}{r}} \left(\int_{\Omega} |u^{3}|^{2^{*}} \right)^{\frac{3}{2^{*}}} \left(\int_{\Omega} |v|^{2^{*}} \right)^{\frac{1}{2^{*}}} < \infty.$$

In this case Holder inequality gives us

$$\frac{1}{r} + \frac{3}{2^*} + \frac{1}{2^*} = 1 \iff \frac{1}{r} = 1 - \frac{4}{2^*} \iff r = \frac{2^* - 4}{2^*}$$

Substituting $2^* = \frac{2n}{n-2}$ we get $r = \frac{n}{-n+4}$. Since r > 0 we need n < 4. In this case we have $a(x) \in L^3(\Omega)$ for n = 3, but also $a(x) \in L^\infty(\Omega)$ for n = 4.

At this point we can write the weak formulation of the problem. We multiply the equation by a test function $v \in H_0^1(\Omega)$ and obtain

$$\int_{\Omega} -\Delta u v \, dx = \int_{\Omega} a(x) u^3 v \, dx \qquad \forall v \in H_0^1(\Omega)$$

We integrate by parts the left hand side and obtain

$$\int_{\Omega} \nabla u \nabla v \, dx = \int_{\Omega} a(x) u^3 v \, dx \qquad \forall v \in H_0^1(\Omega)$$

This is the weak formulation of the problem. This is well posed if

Dimension	Assumptions on $a(x)$
n=2	$a \in L^r(\Omega), r > 1$
n=3	$a \in L^3(\Omega)$
n=4	$a \in L^{\infty}(\Omega)$
$n \geq 5$	No variational formulation

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set of class C^1 , and let u be a sufficiently regular solution of the problem

$$\begin{cases} u_t - \Delta u = 0 & \Omega \times (0, \infty) \\ u = 0 & \partial \Omega \times (0, \infty) \\ u(x, 0) = \alpha(x) & x \in \Omega \end{cases}$$

Study monotonicity/boundedness properties of the energy $E_u(t) = \int_{\Omega} |\nabla u|^2 dx$.

The energy functional is defined as $E_u(t) = \int_{\Omega} |\nabla u|^2 dx = ||\nabla u||^2_{L^2(\Omega)}$. We want to study its behavior over time, so we need to compute its derivative with respect to time.

$$\frac{d}{dt}E_{u}(t) = \frac{d}{dt} \int_{\Omega} |\nabla u|^{2} dx = \int_{\Omega} \frac{d}{dt} |\nabla u|^{2} dx = \int_{\Omega} 2\nabla u \cdot \nabla u_{t} dx =$$

$$= \int_{\partial\Omega} 2\underbrace{u \cdot \nu}_{=0} u_{t} - \int_{\Omega} 2\Delta u u_{t} dx = -\int_{\Omega} 2(\Delta u)^{2} dx \leq 0.$$
 \Rightarrow E is non-increasing

We see that the energy is non-increasing, since we obtain a positive quantity with a negative sign. Now we want to study the boundedness of the energy. We start by multiplying the equation by u

$$\int_{\Omega} u_t u \, dx - \int_{\Omega} \Delta u u \, dx = 0$$

Integrating by parts the second term we obtain

$$\int_{\Omega} u_t u \, dx - \int_{\partial \Omega} u \nabla u \cdot \nu \, dS + \int_{\Omega} (\nabla u)^2 \, dx = 0$$

Since u = 0 on the boundary we have

$$\int_{\Omega} u_t u \, dx = -\int_{\Omega} (\nabla u)^2 \, dx$$

We can rewrite the energy as

$$E_u(t) = \int_{\Omega} |\nabla u|^2 dx = -\int_{\Omega} u_t u \, dx = -\frac{1}{2} \int_{\Omega} (u^2)_t \, dx$$

Since the energy is non-increasing, we have that $E_u(t) \leq E_u(0) \forall t \geq 0$, so we have

$$E_u(t) = -\frac{1}{2} \int_{\Omega} (u^2)_t \, dx \le -\frac{1}{2} \int_{\Omega} (u(x,0)^2)_t \, dx = -\frac{1}{2} \int_{\Omega} \alpha(x)^2 \, dx$$

Since $\alpha(x)$ is bounded (is a function in H_0^1) we have that the energy is bounded too.

Let $(X, \|\cdot\|)$ be a Banach space, and let $u \in C^1([0, T]; X)$. Using the following abstract version of the Fundamental Theorem of Calculus:

$$\int_0^T u'(t) \, dt = u(T) - u(0)$$

prove that $\Lambda_{u'} = (\Lambda_u)' \in \mathcal{D}(0,T;X)$ where

$$\Lambda_f(\varphi) = \int_0^T \varphi(t)f(t) dt \qquad \forall f \in L^1(0, T; X)$$

By the definition of distributional derivative we have

$$(\Lambda_u(\varphi))' = -\Lambda_u(\varphi') \forall \varphi \in \mathcal{D}(0, T)$$

where

$$\Lambda_u(\varphi)' = -\int_0^T \varphi'(t)u(t) dt$$

We can integrate by parts the above expression

$$(\Lambda_u(\varphi))' = -\int_0^T \varphi'(t)u(t) dt = \underbrace{-\varphi(t)u(t)|_0^T}_{-0} + \int_0^T \varphi(t)u'(t) dt = \int_0^T \varphi(t)u'(t) dt = \Lambda_{u'}(\varphi)$$

We have shown that $\Lambda_{u'} = (\Lambda_u)'$ in $\mathcal{D}(0, T; X)$.

1.2 July 2021

Exercise 1

Let $\Omega \subseteq \mathbb{R}^2$ be a bounded open set of class C^{∞} , let $f \in L^2(\Omega)$. Consider the Dirichlet problem

$$\begin{cases} 2\partial_x^2 u + 3\partial_y^2 u + 2\partial_{xy} u = f & \Omega \\ u = 0 & \partial \Omega \end{cases}$$
 (P)

- (1) Prove that (P) admits a unique solution $u \in H_0^1(\Omega)$.
- (2) What is the minimum $m \in \mathbb{N}$ for which $f \in H^m(\Omega)$ implies $u \in H^5(\Omega)$?

We can rewrite the equation in the form $\operatorname{div}(A\nabla u)$ with $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$. Let's check if A is the correct matrix.

$$\operatorname{div}(A\nabla u) = \operatorname{div}\left(\begin{pmatrix} 2 & 1\\ 1 & 3 \end{pmatrix} \begin{pmatrix} u_x\\ u_y \end{pmatrix}\right) = \operatorname{div}\left(\begin{pmatrix} 2u_x + u_y\\ u_x + 3u_y \end{pmatrix}\right) = 2u_{xx} + 3u_{yy} + 2u_{xy}$$

Our Hilbert triplet is $H_0^1(\Omega) \subset L^2(\Omega) \subset H^{-1}(\Omega)$. We define $V = H_0^1(\Omega)$, $H = L^2(\Omega)$, $V' = H^{-1}(\Omega)$. We can now write the weak formulation of the problem. We multiply the equation by a test function $v \in V$ and obtain

$$\int_{\Omega} \operatorname{div}(A\nabla u)v \, dx = \int_{\Omega} fv \, dx \qquad \forall v \in V$$

We integrate by parts the left-hand side and obtain

$$\int_{\Omega} A \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad \forall v \in V$$

This is the weak formulation of the problem. Now we use Lax-Milgram theorem to prove the existence and uniqueness of the solution. We need to check the coercivity and boundedness of the bilinear form. We have that the bilinear form is

$$a(u,v) = \int_{\Omega} A\nabla u \cdot \nabla v \, dx$$

A bilinear form is continuous if there exists a constant C > 0 such that

$$|a(u,v)| \le C||u||_V ||v||_V$$

Remark 1

In $H_0^1(\Omega)$ we have the norm $||u||_V = ||\nabla u||_{L^2}$

We write the bilinear form explicitly and bound it

$$|a(u,v)| = \left| \int_{\Omega} A \nabla u \cdot \nabla v \, dx \right| \le \int_{\Omega} |A| |\nabla u| |\nabla v| \, dx \le |A| ||\nabla u||_{L^{2}} ||\nabla v||_{L^{2}} = |A| ||u||_{V} ||v||_{V}$$

We have that the bilinear form is continuous. We need to check the coercivity of the bilinear form. A bilinear form is coercive if there exists a constant c > 0 such that

$$a(u, u) \ge c \|u\|_V^2$$

We write the bilinear form explicitly

$$a(u,u) = \int_{\Omega} A \nabla u \cdot \nabla u \, dx = \int_{\Omega} |A| |\nabla u|^2 \, dx = |A| ||\nabla u||_{L^2}^2 \ge ||\nabla u||_{L^2}^2 = ||u||_V^2$$

We have that the bilinear form is coercive. By Lax-Milgram theorem we have that the problem admits a unique solution $u \in V$.

The second request is about the minimum m such that $f \in H^m(\Omega)$ implies $u \in H^5(\Omega)$.

Remark 2

We know that if $f \in H^m(\Omega)$ then $u \in H^{m+2}(\Omega)$.

We have that $f \in H^m(\Omega)$ implies $u \in H^{m+2}(\Omega)$, so we need $m+2 \ge 5 \Rightarrow m \ge 3$. The minimum m is 3.

Find solitary waves for the problem

$$\begin{cases} u_t - u_{xx} - u_x^2 = 0 & \mathbb{R} \times (0, \infty) \\ u(x, 0) = g(x) & x \in \mathbb{R} \end{cases}$$

Moreover, discuss mass and momentum conservation for general solutions $u \in S(\mathbb{R})$ of (P).

Quick reminder about the solitary waves for parabolic equations.

Remark 3

In the case of a parabolic equation, we have that the solution u(x,t) = g(x+ct) where c is the speed of the wave.

We are working with solution of the form u(x,t) = g(x+ct), so we substitute this solution in the equation and obtain

$$cg'(x+ct) - g''(x+ct) - (g'(x+ct))^2 = 0 \Rightarrow cg'(x+ct) - g''(x+ct) = (g'(x+ct))^2$$

We perform a change of variable s = x + ct and obtain

$$cg'(s) - g''(s) = (g'(s))^2$$

At this point we are working with an ODE, so we can solve it. We start by defining y(s) = g'(s) and obtain

$$cy(s) - y'(s) = y(s)^2 \Rightarrow y'(s) = y(s)^2 - cy(s)$$

To solve this we introduce

$$z(s) = \frac{1}{y(s)} \Rightarrow z'(s) = -\frac{y'(s)}{y(s)^2}$$

We substitute y'(s) and obtain

$$z'(s) = -\frac{cy(s) - y(s)^2}{y(s)^2} = -c\frac{1}{y(s)} + 1 \Rightarrow z'(s) + cz(s) = 1$$

Solving this ODE we obtain

$$z(s) = e^{-cs} \left(k + \int_0^s e^{ct} dt \right) = e^{-cs} \left(k + \frac{e^{ct}}{c} \Big|_0^s \right) = e^{-cs} \left(k + \frac{e^{cs} - 1}{c} \right) = ke^{-cs} + \frac{1}{c} - \frac{e^{-cs}}{c} = e^{-cs} \left(k - \frac{1}{c} \right) + \frac{1}{c} = k_0 e^{-cs} + \frac{1}{c}$$

At this point we use the definition of z(s) and obtain

$$y(s) = \frac{1}{z(s)} = \frac{1}{k_0 e^{-cs} + \frac{1}{s}} = \frac{ce^{cs}}{ck_0 + e^{cs}} = \frac{ce^{cs}}{k_1 + e^{cs}}$$

We have found the solution for g'(s), so we can integrate it to find g(s)

$$g(s) = \int_0^s \frac{ce^{cs}}{k_1 + e^{cs}} ds = \log(k_1 + e^{cs}) + k_2$$

We have found the solution for $g(s) = \log(k_1 + e^{cs}) + k_2$.

Now we can discuss mass and momentum conservation for general solutions $u \in S(\mathbb{R})$ of (P). We start by defining the mass and momentum of the solution

$$M(t) = \int_{\mathbb{R}} u(x, t) \, dx$$

$$\mathcal{M}(t) = \int_{\mathbb{R}} u(x,t)^2 \, dx$$

We compute the derivative of the mass

$$M'(t) = \frac{d}{dt} \int_{\mathbb{R}} u(x,t) \, dx = \int_{\mathbb{R}} u_t(x,t) \, dx = \int_{\mathbb{R}} u_{xx}(x,t) + u_x(x,t)^2 \, dx = \int_{\mathbb{R}} \underbrace{(u_x)_x}_{\text{div. form=0}} + u_x^2 \, dx = \int_{\mathbb{R}} u_x^2 \, dx \ge 0$$

We do not have mass conservation, since mass is not constant over time. We compute the derivative of the momentum

$$\mathcal{M}'(t) = \frac{d}{dt} \int_{\mathbb{R}} u(x,t)^2 dx = \int_{\mathbb{R}} 2u(x,t)u_t(x,t) dx = \int_{\mathbb{R}} 2uu_{xx} + 2u(x,t)u_x^2 dx =$$

$$= \int_{\mathbb{R}} 2uu_{xx} + \int_{\mathbb{R}} 2uu_x^2 dx = 2\left(uu_x - \int_{\mathbb{R}} u_x^2 dx\right) + \int_{\mathbb{R}} 2uu_x^2 dx =$$

$$= 2\int_{T} eal(u-1)u_x^2 dx$$

As we can see, the momentum is not conserved either.

By using the Helmoltz-Weyl theorem and the variational formulation of the Stokes problem, explain how to derive the role of pressure.

Remark 4

We introduce three spaces:

- $G_1 := \{ f \in L^2(\Omega) \mid \nabla \cdot f = 0, \gamma_{\nu} f = 0 \}$
- $G_2 := \{ f \in L^2(\Omega) \mid \nabla \cdot f = 0, \exists g \in H^1(\Omega) \text{ s.t. } f = \nabla g \}$
- $G_3 := \{ f \in L^2(\Omega) \mid \exists g \in H_0^1(\Omega) \text{ s.t. } f = \nabla g \}$

We also introduce the space $\mathbf{V} := \{ f \in \mathbf{L}^2(\Omega) \mid \nabla \cdot f = 0 \}$ which is the space of divergence-free functions. We know that \mathbf{V} is dense in \mathbf{G}_1 .

A famous result by Helmoltz and Weyl states that the spaces G_1, G_2, G_3 are mutually orthogonal in $L^2(\Omega)$ and that $L^2(\Omega) = G_1 \oplus G_2 \oplus G_3$.

We start by writing the strong formulation of the Stokes problem with $f \in L^2(\Omega)$

$$\begin{cases}
-\eta \Delta u + \nabla p = f & \Omega \\
\nabla \cdot u = 0 & \Omega \\
u = 0 & \partial \Omega
\end{cases}$$
(S)

Then we multiply the equation by a test function $v \in V$ to obtain the weak formulation

$$\int_{\Omega} -\eta \nabla u : \nabla v + \int_{\Omega} p \nabla \cdot v = \int_{\Omega} f v \qquad \forall v \in \mathbf{V}$$

By the Helmoltz-Weyl theorem we know that $\nabla p \in G_2 \oplus G_3$, so when we multiply the equation by a test function $v \in V$ we have

$$\int_{\Omega} \nabla p \cdot v = 0$$

since V is dense in G_1 and G_1 is orthogonal to $G_2 \oplus G_3$. We can now write the variational formulation of the Stokes problem

$$\int_{\mathbb{R}} -\eta \nabla u : \nabla v = \int_{\Omega} fv \qquad \forall v \in \mathbf{V}$$

Now we observe that for every $f \in L^2$ the function $v \mapsto \int_{\Omega} fv$ is a bounded linear functional on V. Then, by Lax-Milgram corollary we obtain

$$\forall f \in \mathbf{L}^2 \quad \exists ! u \in \mathbf{V} \text{ s.t. } \int_{\Omega} -\eta \nabla u : \nabla v = \int_{\Omega} f v \qquad \forall v \in \mathbf{V}$$

Also, thanks to elliptic regularity we have that $u \in \mathbf{H}^2(\Omega)$, so we have

$$\forall f \in \mathbf{L}^2 \quad \exists ! u \in \mathbf{H}^2 \cap \mathbf{V} \text{ s.t. } \int_{\Omega} -\eta \nabla u : \nabla v = \int_{\Omega} fv \qquad \forall v \in \mathbf{V}$$

Since V is dense in G_1 we rewrite it as

$$\forall f \in \mathbf{L}^2 \quad \exists ! u \in \mathbf{H}^2 \cap \mathbf{V} \text{ s.t. } \int_{\Omega} (\eta \Delta u + f) v = 0 \qquad \forall v \in \mathbf{G}_1$$

As for ∇p , this means that $(\eta \Delta u + f) \in \mathbf{G}_2 \oplus \mathbf{G}_3$. Thanks to this finding we can write

$$\exists ! p \in \mathbf{H}^1 / \mathbb{R} \text{ s.t. } - \nabla p = \eta \Delta u + f$$

where the space $\boldsymbol{H}^1/\mathbb{R}$ is the space of functions in \boldsymbol{H}^1 up to a constant. So we have $\underbrace{-\eta\Delta u}_{\in \boldsymbol{G}_1\oplus \boldsymbol{G}_2} + \underbrace{\nabla p}_{\in \boldsymbol{G}_2\oplus \boldsymbol{G}_3} = \underbrace{\boldsymbol{f}}_{\in \boldsymbol{G}_1\oplus \boldsymbol{G}_2\oplus \boldsymbol{G}_3}$ the equation projected on \boldsymbol{G}_2 .

1.3 September 2021

Exercise 1

Find solitary waves for the problem

$$\begin{cases} u_t - u_{xxx} = 0 & \mathbb{R} \times (0, \infty) \\ u(x, 0) = g(x) & x \in \mathbb{R} \end{cases}$$
 (P)

Moreover, discuss mass and momentum conservation for general solutions $u \in S(\mathbb{R})$ of (P).

We start by finding the solitary waves for the problem. We know that the solution is of the form u(x,t) = q(x+ct), so we substitute this solution in the equation and obtain

$$cg'(x+ct) - g'''(x+ct) = 0 \Rightarrow cg'(x+ct) = g'''(x+ct)$$

We perform a change of variable s = x + ct and obtain

$$cq'(s) = q'''(s)$$

At this point we are working with an ODE, so we can solve it. We start by defining p(l) as the characteristic polynomial of the ODE

$$p(l) = l^3 - cl = l(l^2 - c) = 0$$

and now study the behavior of the roots of the polynomial when c > 0, c = 0, c < 0.

c>0. We have three real roots $l=0,\sqrt{c},-\sqrt{c}$. The general solution is

$$g(s) = k_1 + k_2 e^{\sqrt{c}s} + k_3 e^{-\sqrt{c}s}$$

c=0. We have a triple root l=0. The general solution is

$$g(s) = k_1 + k_2 s + k_3 s^2$$

c < 0. We have a complex conjugate pair of roots $l = 0, \pm i\sqrt{-c}$. The general solution is

$$g(s) = k_1 + k_2 \cos(\sqrt{-c}s) + k_3 \sin(\sqrt{-c}s)$$

We have found the solution for g(s). Now we can discuss mass and momentum conservation. Defining the mass and momentum of the solution as

$$M(t) = \int_{\mathbb{R}} u(x, t) \, dx$$

$$\mathcal{M}(t) = \int_{\mathbb{P}} u(x,t)^2 \, dx$$

Starting from the mass, we take its derivative

$$M'(t) = \frac{d}{dt} \int_{\mathbb{R}} u(x,t) dx = \int_{\mathbb{R}} u_t(x,t) dx = \int_{\mathbb{R}} u_{xxx}(x,t) dx = \int_{\mathbb{R}} \underbrace{(u_x x)_x}_{\text{div. form}=0} dx = 0$$

We have mass conservation, since mass is constant over time.

We compute the derivative of the momentum

$$\mathcal{M}'(t) = \frac{d}{dt} \int_{\mathbb{R}} u(x,t)^2 dx = \int_{\mathbb{R}} 2u(x,t)u_t(x,t) dx = \int_{\mathbb{R}} 2uu_{xxx} dx = 2\left(\underbrace{uu_{xx}}_{\mathbb{R}} - \int_{\mathbb{R}} u_x u_{xx} dx\right) =$$

$$= -\int_{\mathbb{R}} \underbrace{(u_x^2)_x}_{\text{div. form=0}} dx = 0$$

We have also momentum conservation.

Let $\Omega := B(0,1) \subset \mathbb{R}^n$ with $n \geq 2$, and let $f \in H^3(\Omega)$. Justify or confute the following statements:

- (1) one can surely conclude that $f \in C(\Omega)$;
- (2) one can surely conclude that $\gamma_2(f) \in H^{1/2}(\partial\Omega)$;
- (3) one can surely exclude that $\gamma_0(f) \in H^1(\partial\Omega)$;
- (4) if n = 8, then $f \in L^{15/2}(\Omega)$.

We start by recalling the Sobolev embeddings with 2s = 6

$$H^{3}(\Omega) \subset C(\Omega) \qquad \text{if } n < 6$$

$$H^{3}(\Omega) \subset L^{p}(\Omega) \qquad \forall 2 \le p < \infty \qquad \text{if } n = 6$$

$$H^{3}(\Omega) \subset L^{p}(\Omega) \qquad \forall 2 \le p \le \frac{2n}{n-6} \qquad \text{if } n > 6$$

Then we check the statements

- (1) In this case we have that $f \in C(\Omega)$ if n < 6. Since $n \ge 2$ we can surely conclude that $f \in C(\Omega)$.
- (2) In this case we recall that $\gamma_j(f) \in H^{s-j-1/2}(\partial\Omega)$. In the case of $f \in H^3(\Omega)$ we have that $\gamma_2(f) \in H^{3-2-1/2}(\partial\Omega) = H^{1/2}(\partial\Omega)$. We can surely conclude that $\gamma_2(f) \in H^{1/2}(\partial\Omega)$.
- (3) In this case we proceed as before, but with j=0. We have that $\gamma_0(f) \in H^{3-0-1/2}(\partial\Omega) = H^{5/2}(\partial\Omega)$. Since $H^{5/2} \subset H^1$ we cannot surely exclude that $\gamma_0(f) \in H^1(\partial\Omega)$.
- (4) In this case we have n=8 so we need to check if $f\in L^p(\Omega)$ with $2\leq p\leq 2^*$. The critical exponent is $p=\frac{2\cdot 8}{8-6}=8$. Since 15/2<8 we can surely conclude that $f\in L^{15/2}(\Omega)$.

Let $\ell > 0$ and consider the eigenvalue problem

$$\begin{cases} \Delta^2 u + \lambda u_{xx} = 0 & (0, \pi) \times (-\ell, \ell) \\ u = \Delta u = 0 & \partial \left[(0, \pi) \times (-\ell, \ell) \right] \end{cases}$$
(P)

Prove that $\lambda = 1$ is not an eigenvalue of (P). For which values of ℓ is the least eigenvalue double?

For this problem we know that the eigenvalues of the problem are of the form

$$\lambda_{m,n} = m^2 + \frac{n^2 \pi^2}{\ell^2}$$
 $m, n \in \mathbb{N} \iff \begin{cases} -\Delta u = \lambda u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$ has a non-trivial solution

The space of eigenfunctions is given by

$$EF = \left\{ u_{m,n}(x,y) = \sin(mx)\sin\left(\frac{n\pi y}{\ell}\right) \mid m,n \in \mathbb{N} \right\}$$

Now we can rewrite the Laplacian operator as

$$\Delta u_{m,n} = -\lambda_{m,n} u_{m,n}$$

While the two derivatives are

$$u_x = -m\cos(mx)\sin\left(\frac{n\pi y}{\ell}\right)$$
 $u_{xx} = -m^2\sin(mx)\sin\left(\frac{n\pi y}{\ell}\right)$

so $u_{xx} = -m^2 u_{m,n}$. As for the bi-Laplacian operator we have

$$\Delta^2 u_{m,n} = -\Delta \lambda_{m,n} u_{m,n} = -\lambda_{m,n}^2 u_{m,n}$$

We can now substitute the derivatives in the equation and obtain

$$-\lambda_{m,n}^2 u_{m,n} + \lambda m^2 u_{m,n} = 0 \Rightarrow \lambda = \frac{\lambda_{m,n}^2}{m^2}$$

We have obtained an explicit expression for λ

$$\lambda = \frac{1}{m^2} \left(m^2 + \frac{n^2 \pi^2}{\ell^2} \right)^2$$

Putting this expression equal to 1 we obtain

$$m^2 = \left(m^2 + \frac{n^2 \pi^2}{\ell^2}\right)^2 \Rightarrow m = m^2 + \frac{n^2 \pi^2}{\ell^2} \Rightarrow m - m^2 = \frac{n^2 \pi^2}{\ell^2}$$

Then, since $m, n \in \mathbb{N}$ we have

$$n^{2} = \frac{\pi^{2}}{\ell^{2}} \left(m - m^{2} \right) > 0 \Rightarrow \left(m - m^{2} \right) > 0 \Rightarrow m(m - 1) < 0 \Rightarrow m \in (0, 1)$$

Since $m \in \mathbb{N}$ we have that this is impossible, so $\lambda = 1$ is not an eigenvalue of (P). Now we want to find the values of ℓ for which the least eigenvalue is double. To do so we fix n = 1, since we know that the smallest eigenvalue is $\lambda_{1,1} = \left(1 + \frac{\pi^2}{\ell^2}\right)^2$, and obtain

$$\lambda_{m,n}^2 \ge \lambda_{m,1}^2 = \left(m^2 + \frac{\pi^2}{\ell^2}\right)^2 \qquad \forall m \in \mathbb{N}$$

Since we are looking for the least eigenvalue, we are looking at a minimization problem.

$$\min_{m \in \mathbb{N}} \lambda_{m,1}^2 = \min_{m \in \mathbb{N}} \left(m + \frac{\pi^2}{\ell^2 m} \right)^2 = \mu^*$$

This is the same as minimizing the function $f(x) = (x + \frac{a^2}{x})^2$ with $a = \frac{\pi}{\ell}$. What we know about f?

- $f:[1,\infty)\to\mathbb{R}$
- $f \in C^{\infty}$
- $f'(x) = \ge 0 \iff x \ge a$
- $\lim_{x\to\infty} f(x) = \infty$

If $a>1, a\in\mathbb{N}$ means that μ^* can have multiplicity greater than 1. We choose 1< a<2 so that $(\ell<\pi<2\ell)$ and $\mu^*=\min\left\{\lambda_{1,1}^2,\lambda_{2,1}^2\right\}$. We define $\mu_{m,n}=\lambda_{m,n}^2$ and we have

$$\mu_{1,1} = \left(1 + \frac{\pi^2}{\ell^2}\right)^2$$
 $\mu_{2,1} = \left(2 + \frac{\pi^2}{2\ell^2}\right)^2$.

To have them ordered $\mu_{1,1} < \mu_{2,1} \iff \pi \leq \ell \sqrt{2}$. Then we have three cases:

- $\ell \leq \pi < \ell \sqrt{2} \Rightarrow \mu^* = \mu_{1,1}$ which is simple;
- $\ell\sqrt{2} < \pi < 2\ell \Rightarrow \mu^* = \mu_{2,1}$ which is simple;
- $\pi = \ell \sqrt{2} \Rightarrow \mu^* = \mu_{1,1} = \mu_{2,1}$ which is double.

So, the value of ℓ for which the least eigenvalue is double is $\ell = \frac{\pi}{\sqrt{2}}$.

1.4 January 2022

Exercise 1

For the Korteweg-de Vries equation

$$\begin{cases} u_t + u_{xxx} + 6uu_x = 0 & \mathbb{R} \times (0, \infty) \\ u(x, 0) = g(x) & x \in \mathbb{R} \end{cases}$$
 (P)

prove that the "energy" $E(t) = \int_{\mathbb{R}} (u_x^2 - 2u^3) dx$ is conserved for general solutions $u \in S(\mathbb{R})$ of (P).

We start by computing the derivative of the energy

$$E'(t) = \frac{d}{dt} \int_{\mathbb{R}} (u_x^2 - 2u^3) \, dx = \int_{\mathbb{R}} 2u_x u_{xt} - 6u^2 u_t \, dx = \int_{\mathbb{R}} 2u_x u_{xt} \, dx - 6 \int_{\mathbb{R}} u^2 u_t \, dx$$

Dividing the problem in two parts we have

$$\int_{\mathbb{R}} 2u_x u_{xt} \, dx = \underbrace{2u_x u_t}_{\mathbb{R}} - \int_{\mathbb{R}} 2u_{xx} u_t \, dx = -\int_{\mathbb{R}} 2u_{xx} (-u_{xxx} - 6uu_x) \, dx =$$

$$= \int_{\mathbb{R}} 2u_{xx} u_{xxx} + 12u \underbrace{u_x u_{xx}}_{=\left(\frac{u_x^2}{2}\right)_x} \, dx = \int_{\mathbb{R}} \underbrace{(u_{xx}^2)_x}_{=0} + 12u \underbrace{u_x^2}_{=0} - 12 \int_{\mathbb{R}} u_x \frac{u_x^2}{2} \, dx = -6 \int_{\mathbb{R}} u_x^3 \, dx$$

For the second part we have

$$6 \int_{\mathbb{R}} u^2 u_t \, dx = 6 \int_{\mathbb{R}} u^2 (-u_{xxx} - 6uu_x) \, dx = -\int_{\mathbb{R}} 6u^2 u_{xxx} - 6uu_x \, dx = -\int_{\mathbb{R}} 6u^2 u_x \, dx = -\int_{\mathbb{R}} 6u^$$

$$= \underline{-6u^2u_{xx}|_{\mathbb{R}}} + 6\int_{\mathbb{R}} 2uu_x u_{xx} - 9\int_{\mathbb{R}} \underbrace{(u^4)_x}_{=0} dx = 12\int_{\mathbb{R}} uu_x u_{xx} dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u\left(\frac{u^2}{2}\right)_x dx = \underline{6uu_x^2|_{\mathbb{R}}} - 6\int_{\mathbb{R}} u_x u_x dx = 12\int_{\mathbb{R}} u(u_x u_x u_x dx + u_x u_x dx + u_x u_x dx + u_x u_x dx = 12\int_{\mathbb{R}} u(u_x u_x u_x dx + u_x u_x dx + u_x u_x dx + u_x u_x dx = 12\int_{\mathbb{R}} u(u_x u_x u_x dx + u_x u_x dx + u_x u_x dx + u_x u_x dx + u_x u_x dx = 12\int_{\mathbb{R}} u(u_x u_x u_x dx + u$$

To recap, we have

$$E'(t) = \int_{\mathbb{R}} 2u_x u_{xt} dx - 6 \int_{\mathbb{R}} u^2 u_t dx$$
$$\int_{\mathbb{R}} 2u_x u_{xt} dx = -6 \int_{\mathbb{R}} u_x^3 dx$$
$$\int_{\mathbb{R}} 6u^2 u_t dx = -6 \int_{\mathbb{R}} u_x^3 dx$$

We can now substitute these results in the derivative of the energy

$$E'(t) = -6 \int_{\mathbb{R}} u_x^3 dx + 6 \int_{\mathbb{R}} u_x^3 dx = 0$$

We have that the energy is conserved for general solutions $u \in S(\mathbb{R})$ of (P).

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain of class C^1 , and let $f \in L^2(0,T;L^2(\Omega))$. Moreover, let $u_0 \in H^1(\Omega)$ and $u_1 \in L^2(\Omega)$. Prove that, for every $\gamma > 0$, the Galerkin method can be applied to the problem

$$\begin{cases} u_{tt} - \Delta u + \gamma u = f & \Omega \times (0, T) \\ \partial_{\nu} u = 0 & \partial \Omega \times (0, T) \\ u = u_{0} & \Omega \times \{0\} \\ u_{t} = u_{1} & \Omega \times \{0\} \end{cases}$$
(P)

which, therefore, admits a unique solution.

We start by writing the weak formulation of the problem, choosing adequate function spaces. We define the spaces

$$V = H^1(\Omega) \subseteq H = L^2(\Omega)$$
 $V' = (H^1(\Omega))'$

We also need to introduce the space of weakly continuous functions over [0, T].

Remark 1

Let H be a Hilbert space. The space of weakly continuous functions over [0,T] is defined as

$$C_w^0([0,T];H) = \left\{ u \in L^\infty(0,T;H) \mid \lim_{t \to t_0} (u(t) - u(t_0), v)_H = 0, \quad \forall t_0 \in [0,T], \forall v \in H \right\}$$

We can now write the weak formulation of the problem (P), by multiplying the equation by a test function $v \in V$ and integrating over Ω

$$\int_{\Omega} f(t)v \, dx = \int_{\Omega} u_{tt}v \, dx + \int_{\Omega} (-\Delta u + \gamma u)v \, dx =
= \int_{\Omega} u_{tt}v \, dx - \int_{\partial\Omega} \partial_{\nu} uv \, d\sigma + \int_{\Omega} [\nabla u \cdot \nabla v + \gamma uv] \, dx = = \int_{\Omega} u_{tt}v \, dx + \int_{\Omega} \underbrace{\nabla u \cdot \nabla v + \gamma uv}_{B(u,v)} \, dx$$

To write it more compactly we have

$$\frac{d^2}{dt^2}(u,v)_{L^2} + B(u,v) = (f,v)_{L^2} \qquad \forall v \in V$$

Another important abstract result is the following

Remark 2

If B(u, v) is continuous and coercive, $u_0 \in V$ and $u_1 \in H$ and $f \in L^2(0, T; V')$, then we know that

$$\exists ! u \in C_w^0([0,T];V) \cap C^0([0,T];H)$$
 with $u_t \in C_w^0([0,T];H)$, $u_{tt} \in L^2([0,T];V')$ for (P).

So, we need to check if B(u, v) is continuous and coercive. We start by checking the continuity of B(u, v)

$$\begin{split} |B(u,v)| & \leq \int_{\Omega} |\nabla u \cdot \nabla v| + |\gamma| |u| |v| \overset{\text{CS}}{\leq} \overset{\text{H}}{\leq} \underbrace{\|\nabla u\|_{L^{2}}} \|\nabla v\|_{L^{2}} + |\gamma| \|u\|_{L^{2}} \|v\|_{L^{2}} \leq \\ & \leq (1+|\gamma|) \|u\|_{V} \|v\|_{V} \leq C \|u\|_{V} \|v\|_{V} \end{split}$$

We have that B(u, v) is continuous. We now check if it is coercive

$$B(u,u) = \int_{\Omega} |\nabla u|^2 + |\gamma||u|^2 = (1+|\gamma|) \int_{\mathbb{R}} |\nabla u|^2 + |u|^2 \ge (1+|\gamma|) ||u||_V^2$$

We need that $\alpha \geq 0$ to obtain $B(u,u) \geq \min\{\alpha,1\} \|u\|_V^2$. Since $\gamma > 0$ by hypothesis, we have that B(u,v) is coercive. We can now apply the abstract result and conclude that the solution of (P) exists and is unique.

Let $\Omega := B(0,1) \subset \mathbb{R}^n$, and let

$$f(x) \coloneqq \frac{e^{|x|} - 1}{|x|^{\alpha}}, \text{ with } \alpha > 0$$

Find the values of α for which $f \in H^1(\Omega)$.