Name	MAKSIMOVICH, Roman
Date	25,09.2024.
Lab session (Day & time)	26.09.2024, 09:00-10:50
Lab partner	ZHU, Mingyuan

M3 Centripetal Force Lab Report

A. Answer the following questions BEFORE the lab session (6 pts each)

Using words and a mathematical expression to describe the relationship between the centripetal force and angular velocity in uniform circular motion.

2. In Part I of the experiment, you are asked to plot the logarithm of the measured centripetal force as a function of the logarithm of the angular velocity in linear scales. What should the curve look like? If a linear function is used to fit the data, what is the meaning of the fitted slope?

eating of the fitted slope?
$$F = A \cdot \omega^2 = \sum h F = h A + 2h \omega - \lim_{n \to \infty} a_n h \omega$$
.

The curve should be a straight line, the slope represents the exponent of ω in the proportion $F \cap \omega^2$, and normally α should be 2.

Using words and a mathematical expression to describe the relationship between the

centripetal force and radius in uniform circular motion.

$$F = wRw^2 \sim R$$
 — centrated force is proportional to radius, provided that angular velocity is constant.

In Part II of the experiment, you are asked to plot the measured centripetal force as a function of radius in linear scales. What should the curve look like? If a linear function is used to fit the data, what are the expected values of the intercept and slope?