

Bináris összeadás

Α	В	ci	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

1 bites teljes összeadó

A,B: operandusok

ci: átvitel az előző helyi értékről

S: összeg

co: átvitel a következő helyi érték felé

$$S = A \oplus B \oplus ci$$

 $S_{1,3}^{3}$

co

$$co = A \cdot B + A \cdot ci + B \cdot ci$$

Összeadás - kaszkádosítás

4 bites összeadó: $Z_{3..0} = X_{3..0} + Y_{3..0}$

Mikor érvényes az eredmény?

n bites összeadó \rightarrow n * $\Delta t_{t\ddot{o}}$

Összeadás – gyors átvitelképzés

$$co = A \cdot B + A \cdot ci + B \cdot ci = \underbrace{A \cdot B}_{\text{generate}} + ci \cdot \underbrace{(A + B)}_{\text{propagate}}$$

$$co0 = A_0 \cdot B_0 + A_0 \cdot c0 + B_0 \cdot c0 = G_0 + P_0 \cdot c0$$

$$co1 = A_1 \cdot B_1 + A_1 \cdot c1 + B_1 \cdot c1 = G_1 + P_1 \cdot c1 = G_1 + P_1(G_0 + P_0 \cdot c0) = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot c0$$

$$\vdots$$

$$co_i = A_i \cdot B_i + A_i \cdot c_i + B_i \cdot c_i = G_i + P_i \cdot c_i = G_i + P_i \cdot G_{i-1} + P_i \cdot P_{i-1} \cdot G_{i-2} + \dots + P_i \cdot P_{i-1} \cdot \dots \cdot P_0 \cdot c0$$

3 szintű hálózat

Aritmetika - kivonás

$$Z = X - Y = X + (-Y)$$
 (-Y) \rightarrow kettes komplemes

Kettes komplemens képzés

$$-Y = \overline{Y} + 1$$

Aritmetikai túlcsordulás: az eredmény már nem ábrázolható Különböző előjelű operandusok esetén **nem** léphet fel

4 bites kettes komplemens: -8 ... +7

6: 0110 3: 0011 -6: 1010 -3: 1101

túlcsordulás: azonos előjelű operandusok esetén az eredmény előjele nem egyezik meg az operandusok előjelével

túlcsordulás ≠ átvitel !!

Aritmetikai túlcsordulás: overflow (OVF)

kettes komplemes előjel: a legmagasabb helyiérték

Ha a legmagasabb helyiértéket előállító összeadó átvitel bemenete és átvitel kimenete elérhető:

Összeadó/kivonó

$$Z = X + Y$$
, ha $v=0$

$$Z = X + Y$$
, ha $v=0$ $Z = X - Y$, ha $v=1$ $-Y = \overline{Y} + 1$

4 bites összeadó/kivonó

Előjel kiterjesztés

X: n bites pozitív

→ n+1 bites pozitív

$$X_{n-1} X_{n-2} ... X_1 X_0$$

$${f 0} \ {\bf X}_{{\bf n}-{\bf 1}} \ {\bf X}_{{\bf n}-{\bf 2}} \ \dots \ {\bf X}_{{\bf 1}} \ {\bf X}_{{\bf 0}}$$

a szám pozitív kell, hogy maradion

X: n bites kettes komplemens

→ n+1 bites kettes komplemens

$$(X_{n-1})X_{n-2} \dots X_1 X_0$$

előjel

$$X_{n-1}X_{n-2} \dots X_1 X_0$$
 $X_{n-1}X_{n-1} X_{n-2} \dots X_1 X_0$

a szám előjele nem változhat meg

4 bites kettes komplemens 1111 5 bites kettes komplemens 11111

n bites kettes komplemens 11...11

Aritmetika – BCD összeadás

BCD összeadó

Használjunk bináris összeadót

maximális érték

- bináris eredmény <= 9 bináris eredmény >9
- → BCD eredmény = bináris eredmény
- → BCD eredmény = bináris eredmény + 6

Aritmetika – BCD összeadás

BCD átvitel előállítása

$$C_{BCD} = co + S3 \cdot S2 + S3 \cdot S1$$

Aritmetika – BCD összeadás

BCD összeadó → A, B, S: BCD számok

$$C_{BCD} = co + S3 \cdot S2 + S3 \cdot S1$$

6: 0110

Decimális szám szorzása "kézzel"

123 * 456

492

615

738

56088

Mit kell tudni?

- Egyjegyű számmal szorozni
- Összeadni

Mekkora lesz az eredmény?

999 * 999 = 998001

6 jegyű szám

Két n jegyű szám szorzata legfeljebb 2n jegyű

Bináris számok szorzása

Egyjegyű bináris szorzás

4 bites szorzás → eredmény 8 bites

Hány bites összeadó kell?

Egyszerre elegendő 4 bitet összeadni

Hány összeadó kell?

4 bites operandus \rightarrow 3 összeadó

4 bites szorzás

