Métodos de la Física matemática

Demostración del teorema de Liouville

Sea f(z) analítica y acotada para todos los valores de z en el plano complejo. Debido a la analiticidad de f(z) entonces esta es acotada, i.e. $|f(z)| \leq M \quad \forall z$. Por tanto de la desigualdad de Cauchy para n=1 se tiene que

 $|f'(z)| \le \frac{M}{r}.$

Dado que r es un número positivo arbitrario, podemos hacer $r \to +\infty$ con lo cual se obtiene que $|f'(z)| \to 0 \quad \forall z$. Entonces se puede concluir que f(z) es una constante compleja.

Funciones enteras

Una función f(z) que es analítica para todos los valores finitos de z ($|z| < \infty$) es llamada función entera o también función integral. Ejemplos de funciones no constantes que sean enteras son los polinomios en z de grado $n \le 1$, e^z , $\sin z$, $\cos z$, $\sinh z$ y $\cosh z$. Debido al teorema de Liouville, estas funciones no son acotadas.

Ejemplos sobre la función entera

Sea f(z) = u + iv una función entera y tal que $|f(z)| \le M|z|$ (M > 0) para todo z. Probar que f(z) = az donde a es una constante.

Solución:

La condición $|f(z)| \le M|z|$ implica, en particular, que $|f(0)| \le M|0| = 0$; es decir, |f(0)| = 0. Así, |f(z)| = z g(z), dónde g(z) es una función entera. Definimos, entonces, una nueva función: $G(z) = \frac{f(z)}{z}$ siz $\neq 0$ con G(0) = g(0). De la propia definición, se tiene que esta función es entera y, además, $|G(z)| = \frac{|f(z)|}{|z|} \le M$ siz $\neq 0$ con G(0) = g(0), es decir, está acotada. Luego el teorema de Liouville nos asegura que $G(z) = \frac{f(z)}{z} = \text{constante} = a$, luego f(z) = az

Sea f(z) = u + iv una función entera y tal que $u(x,y) \le K$ para todo punto del plano. Probar que u(x,y) es una función constante.

Solución:

Tomamos la función: $h(z) = e^{f(z)}$. Dicha función es entera pues la compuesta de dos funciones enteras (la función exponencial y f(z)). Además, $|h(z)| = |e^{f(z)}| = |e^{u(x,y)+iv(x,y)}| = e^{u(x,y)} \le e^k$. Aplicando el Teorema de Liouville, obtendremos que $h(z) = e^{f(z)}$ es una función constante, luego $|h(z)| = e^{u(x,y)} = K \rightarrow u(x,y) = cte$

Teorema del valor medio

Sea f analítica dentro de un círculo de radio r y centrado on z_0 , entonces

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Demostración: sabemos que

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz,$$

donde γ : $z-z_0=re^{i\theta}$ con $0\leq\theta\leq 2\pi$. Entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} rie^{i\theta} d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Esto significa que el valor de una función analítica en el centro de un círculo es el promedio de sus valores alrededor del círculo.

Teorema del máximo relativo

Sea f analítica sobre una región A y supongamos que |f| tiene un máximo relativo en $z_0 \in A$. En otras palabras $|f(z)| < |f(z_0)| \ \forall z \neq z_0 \ \text{con} \ z \in A$. Entonces f es constante en la vecindad de z_0 .

Demostración: Del teorema del valor medio, es fácil ver que el promedio de f no puede ser más grande o igual al máximo, excepto si todos los valores son iguales.

Ejercicios varios (no vistos en clase)

Ejercicio con la fórmula integral de Cauchy

Este problema tiene que ver con funciones analíticas definidas por integrales. Sea f(z, w) continua en ambas coordenadas, i.e. z y w. Supongamos que z esta definida en una región A y w sobre una curva γ . Suponga f es analítica en z para cada w sobre γ . Sea

$$F(z) = \int_{\gamma} f(z, w) dw,$$

muestre que F es analítica y que

$$F'(z) = \int_{\gamma} \frac{\partial f}{\partial z}(z, w) dw.$$

Solución:

Sea $z_0 \in A$. Sea γ_0 un círculo en A centrado en z_0 cuyo interior esta en A. Por a z dentro de γ_0 ,

$$f(z,w) = \frac{1}{2\pi i} \int_{\gamma_0} \frac{f(\zeta,w)}{\zeta - z} d\zeta.$$

Entonces

$$F(z) = \frac{1}{2\pi i} \int_{\gamma} \left[\int_{\gamma_0} \frac{f(\zeta, w)}{\zeta - z} d\zeta \right] dw.$$

Cambiando el orden de integración obtenemos

$$F(z) = \frac{1}{2\pi i} \int_{\gamma_0} \left[\frac{1}{\zeta - z} \int_{\gamma} f(\zeta, w) dw \right] d\zeta = \frac{1}{2\pi i} \int_{\gamma_0} \frac{F(\zeta)}{\zeta - z} d\zeta.$$

Esto significa que F es analítica dentro de γ_0 . Además

$$F'(z) = \frac{1}{2\pi i} \int_{\gamma_0} \frac{F(\zeta)}{(\zeta - z)^2} d\zeta$$

$$\Rightarrow F'(z) = \frac{1}{2\pi i} \int_{\gamma_0} \int_{\gamma} \frac{f(\zeta, w)}{(\zeta - z)^2} dw d\zeta$$

$$\Rightarrow F'(z) = \int_{\gamma} \left[\frac{1}{2\pi i} \int_{\gamma_0} \frac{f(\zeta, w)}{(\zeta - z)^2} d\zeta \right] dw$$

$$\Rightarrow F'(z) = \int_{\gamma} \frac{\partial f}{\partial z}(z, w) dw.$$

Ejercicio: Regiones múltiplemente conexas

Suponga que A es una región que intersecta el eje real y que f es una función continua en A y analítica sobre A excepto sobre el eje real. Entonces f es analítica sobre A.

Solución:

Suponga que R es la trayectoria rectangular como es muestra en la figura

Si la trayectoria R no toca el eje real entonces se satisface que $\int_R f = 0$. De otro lado si R toca el eje real entonces tenemos que $\int_R f = \int_{R_1} f + \int_{R_2} f$, donde R_1 y R_2 son las trayectorias mostradas en la figura con uno de los bordes sobre el eje x. Como las trayectorias sobre el eje x de cada una de las dos trayectorias se superponen y van en direcciones opuestas entonces se cancelan sus contribuciones.

Por tanto es suficiente con demostrar que $\int_R f = 0$ cuando R es un rectángulo con un lado sobre el eje x como se muestra en la figura abajo.

Sea los puntos a y b los extremos del lado que esta sobre el eje x. Ya que f es continua, entonces

$$|f(z_1) - f(z_2)| \le \varepsilon$$
 cuando $|z_1 - z_2| \le \delta$

donde z_1 y z_2 estan sobre el rectángulo R o su interior. Podemos también supones que $\delta \leq \varepsilon$. Sea $M = \max_{z} |f(z)|$ con z en R y su interior. Sea S otro rectángulo similar a R pero con su lado sobre el eje x desplazado una distancia δ , como se muestra en la figura. Entonces

$$\left| \int_{R} f - \int_{S} f \right| = \left| \int_{\gamma_{1}} f + \int_{\gamma_{2}} f + \int_{\gamma_{3}} f - \int_{\gamma_{4}} f \right|$$

$$\left| \int_{R} f - \int_{S} f \right| \le \left| \int_{\gamma_{1}} f \right| + \left| \int_{\gamma_{2}} f - \int_{\gamma_{4}} f \right| + \left| \int_{\gamma_{4}} f \right|$$

$$\left| \int_{R} f - \int_{S} f \right| \le \delta M + \left| \int_{\gamma_{2}} f - \int_{\gamma_{4}} f \right| + \delta M$$

$$\left| \int_{R} f - \int_{S} f \right| \le 2\delta M + \int_{a}^{b} |f(x) - f(x + \delta i)| \, dx$$

$$\left| \int_{R} f - \int_{S} f \right| \le 2\delta M + \varepsilon (b - a)$$

Esta última expresión es válida para todo $\varepsilon \geq 0$, entonces la tenemos que $\int_R f - \int_S f = 0$. Por el teorema de Cauchy sabemos que $\int_S f = 0$, por tanto $\int_R f = 0$. Esto significa que f es analítica sobre A.