

Wavelet Augmented Regression Profiling (WARP): improved long-term estimation of travel time series with recurrent congestion

Alvaro Cabrejas-Egea, Colm P. Connaughton

The Alan Turing Institute

Long term forecast and Profile Estimation

- Aims:
 - Long term estimation of Highway Travel Time from Historical Data
 - Reach best estimate of the underlying true temporal distribution of travel times
 - Use these estimates to forecast a week ahead
- Challenges:
 - Need to classify non-recurrent congestion as noise
 - Need to extract all seasonality
 - Automatically ignore rare events

Site Selection and Rationale

Current Profile Estimates

- Uses EWMA + Segmentation
- Can lead to overestimation or repetition of events

$$\hat{x}_i^{d+1} = \alpha * x_i^d + (1 - \alpha) * \hat{x}_i^d$$

Examples of Travel Times

- Each link is the network has assigned a "Traffic Profile" = $\mathbb{E}[travel\ time]\ \forall\ t$
- Different regimes: Background and Spikes
- Not all spikes contain information about recurring congestion

 $Travel\ Time = Background + Spikes + Noise$

Travel Time: Components

- Background
 - Stable Around Mean
 - High Frequency Low Amplitude
 - Suitable for Spectral Filtering

- Spikes
 - Zero most of the time
 - Low Frequency High Amplitude
 - Suitable for Seasonal Analysis

Autocorrelation of travel time series

Algorithm: Wavelet based decomposition

Algorithm: Decomposition

Algorithm: Background Analysis

Algorithm: Seasonal Analysis

Algorithm: Recombination

Results – Time of the Day (M6 & M11)

Results – Percentile of Travel Times (M6 & M11)

Results – Mean Absolute Relative Error Distribution

TABLE I: MARE Distribution in M6 prediction

Profile / MARE	(> -25%]	(-25%, -15%]	(-15%, -5%]	(-5%, 5%)	[5%, 15%)	[15%, 25%)	[> 25%)
Published M6	1.58	0.54	5.69	56.21	30.79	$\frac{3.17}{0.70}$	2.02
Wavelet M6	1.57	0.51	3.22	81.73	12.14		0.13

TABLE II: MARE Distribution in M11 prediction

Profile / MARE	(> -25%]	(-25%, -15%]	(-15%, -5%]	(-5%, 5%)	[5%, 15%)	[15%, 25%)	[> 25%)
Published M11 Wavelet M11	$0.85 \\ 0.78$	$1.15 \\ 0.32$	19.21 3.29	62.83 81.33	13.21 12.47	1.65 1.09	1.10 0.73

Conclusion and Way Forward

- Achieved:
 - Presented an Algorithm for Profile Generation and Forecasting
 - Based on seasonal variation, frequency smoother and filtering of rare events
 - Much better accuracy than existing estimation methods
 - Ability to distinguish between recurrent and outstanding congestion
- Way Forward:
 - More sophisticated analysis in the Frequency Space
 - Extensions for incident detection
 - Data-guided automatization of the filtering parameter

Thank you!

If you have any questions, please do not hesitate to email: alvaro.cabrejas-egea[at]warwick.ac.uk