Part 2

- 5. Consider the following population scenarios. In each, determine if an exponential, linear, or neither of these models would be a suitable fit. Explain your choice. If exponential or linear, find an equation to best describe the population as a function of time measured in years, assuming at t=0 the population is 500,000.
- a) each year, the town grows by roughly 1000 residents.
- b) each year, the town grows by roughly 9%.
- c) each year, the town is decreasing at a continuous rate of 4%.
- d) each year, the town shrinks by roughly 15%.
- e) each year, the town loses roughly 2500 residents.
- 6. Write the following expressions with no terms in the exponent and no negative exponents.
 - a) 2^{x+3}

- b) 3^{2x-1}
- c) $\frac{1}{3^{x-3}}$
- d) $2(5^{-x+2})$

- 7. Solve the following exactly:
 - (A) $\log_2(1-x) + \log_2(4-x) = 3$

(B) $e^{2x} - 4e^x = 5$

(C) $18^x = 3^{2x-1}$

(D) $2\log_4(3x+1)+4=9$

(E) $\log(x) - 2\log(x-3) = 1$