- The input source to a noisy communication channel is a random variable X over the four symbols $\{a,b,c,d\}$.
- The output from this channel is a random variable Y over these same four symbols.

The joint distribution of these two random variables is as follows:

	x=a	x=b	x=c	x=d
y=a	1/8	1/16	1/16	1/4
y=b	1/16	1/8	1/16	0
y=c	1/32	1/32	1/16	0
y=d	1/32	1/32	1/16	0

- Write down the marginal distribution for X and compute the marginal entropy H(X).
- Write down the marginal distribution for Y and compute the marginal entropy H(Y).
- (next class) What is the joint entropy H(X, Y) of the two random variables?
- (next class) What is the conditional entropy H(Y|X)?
- (next class) What is the conditional entropy H(X|Y)?
- (next class) What is the mutual information I(X; Y) between the two random variables?

The marginal distribution of these two random variables is as follows:

	x=a	x=b	x=c	x=d	P(Y)
y=a	1/8	1/16	1/16	1/4	0.50
y=b	1/16	1/8	1/16	0	0.25
y=c	1/32	1/32	1/16	0	0.125
y=d	1/32	1/32	1/16	0	0.125
P(X)	0.25	0.25	0.25	0.25	

• H(X), the entropy of X, is computed as

$$H(X) = -\sum P(x_i)\log_2 P(x_i)$$

- $H(X) = (-0.25 \times -2) + (-0.25 \times -2) + (-0.25 \times -2) + (-0.25 \times -2)$
- H(X) = 2b
- H(X), the entropy of Y, is computed as

$$H(Y) = -\sum P(y_j)\log_2 P(y_j)$$

- $H(Y) = (-0.5 \times -1) + (-0.25 \times -2) + (-0.125 \times -3) + (-0.125 \times -3)$
- H(Y) = 1.75b

5/5