Agenda

- Data Preprocessing and EDA (Exploratory Data Analysis)
- Feature Engineering (One-hot encoding & PCA)
- Classification Analysis
 - Naive Bayes
 - o KNN
 - Support Vector Machine (SVM)
 - Random Forest
 - XGBoost
- Evaluation and Conclusion

Data preprocessing & EDA

Data preprocessing

- Deleted the meaningless attributes:
 - a. There are 27 variables and 9612 obs. in this data. We deleted 2 variables (EMP_ID and JOBCODE) which are meaningless.
 - b. TERMINATION_YEAR is determined by STATUS, so remove it.
- Deal with the missing value:
 - a. Deleted the missing value in ETHNICITY.
 - b. Converted the missing value in REFERRAL SOURCE change to "Unknown" category.

Data preprocessing

- Regrouping JOB_GROUP:
 There are too many levels in JOB_GROUP, therefore, we regroup them to 6 levels based on the job title meaning.
- Normalize the numeric variables by Min-max normalization.
- Factorize the categorical variables.
- Convert Outlier to mean: Leverage = $h = \frac{1}{N} + \frac{(X X)^2}{\sum (X X)^2}$, Outlier in X if h > 4/N

Basic description

- 44% of employees are terminal and 56% of employees are still in the company
- The main employee might be female, education level lower and white

Job description

- 41% of employees work in the production department
- About 50% of employees change team less than 1 time
- Only 9% of employees are rehired
- Most employees do not work for the first time
- The rate of DISABLE EMP and VET are both around 10%

Rating score and Status situation

- 51% of employees feel satisfy their job (more than 3)
- 80% of employees are rated more than 3 point
- 0 of the PREVYR1~5 are more than 45%
- The highest termination year is 2007, and the high termination year are 2005~2007 and 2014~2017

Status v.s. Ethnicity & Job Group

- Most ethnicity have no significant difference in STATUS, however, the rate of AMIND terminal is more than other ethnicity. (more than 44%)
- The terminal rate of Marketing Department is more than other department. Otherwise, the rate
 of Administrative Personnel, Technical and Supply Chain these 3 departments are less than 44%

Variable correlation

- From the variable correlation picture, we found out some variables are positive relative: MARITAL & AGE, EDU & AGE, JOB_SAT & TEAM CHANGED, JOB_SAT & FIRST JOB, GROUP & many rate scores, PREVYRs
- Negative relative: JOB_SAT & AGE, JOB_SAT & TEAM CHANGED, AGE & FIRST JOB, EDU & FIRST JOB

Feature Engineering & Classification Analysis

Road Map

- 1. Select influential variables using Feature Engineering (One-hot Encoding & PCA).
- 2. Improve performance using ensemble methods (Random Forest & XGBoost).
- 3. Optimize models using Cross Validation.
- 4. Optimize parameters using Grid Search.

Feature Engineering

- 1. Convert multi-level attributes to dummy variables using one-hot encoding
- 2. Select most relevant variable using PCA (threshold = 80%)

Naive Bayes

Metrics Performance of 10 folds

Detail Results of 10 folds

_					
	fold_count	accur_list	recall_list	pre_list	f1_list
1	1	0.5977131	0.5888889	0.6583851	0.6217009
2	2	0.616025	0.5788497	0.6872247	0.6283988
3	3	0.5987526	0.5592593	0.6711111	0.610101
4	4	0.5987526	0.5611111	0.670354	0.6108871
5	5	0.5712799	0.5092593	0.6516588	0.5717256
6	6	0.6118626	0.5695733	0.6852679	0.6220871
7	7	0.5920916	0.5732839	0.656051	0.6118812
8	8	0.5931322	0.5473098	0.6674208	0.6014271
9	9	0.5947917	0.5695733	0.6616379	0.6121635
10	10	0.6087409	0.593692	0.6708595	0.6299213

Mean Results of 10 folds:

Accuracy: 0.598

Recall: 0.565

Precision: 0.668

KNN

Metrics Performance of 10 folds

Detail Results of 10 folds

	fold_count	accur_list	recall_list	pre_list	f1_list
1	1	0.5519751	0.5974955	0.6185185	0.6078253
2	2	0.5546306	0.5996409	0.619666	0.6094891
3	3	0.5706861	0.6135957	0.6351852	0.6242038
4	4	0.5509356	0.5981818	0.6092593	0.6036697
5	5	0.5587929	0.6066176	0.6111111	0.6088561
6	6	0.5712799	0.6173752	0.619666	0.6185185
7	7	0 578564	0 6213768	0 6363636	0 6287809
8	8	0.55359	0.6022305	0.6011132	0.6016713
9	9	0.5427083	0.5856164	0.6345083	0.6090828
10	10	0.5608741	0.6077348	0.6122449	0.6099815

Mean Results of 10 folds:

Accuracy: 0.56

Recall: 0.605

Precision: 0.620

Support Vector Machine (SVM)

Metrics Performance of 10 folds

Detail Results of 10 folds

Mean Results of 10 folds:

Accuracy: 0.616

Recall: 0.734

Precision: 0.636

Random Forest

Metrics Performance of 10 folds

Detail Results of 10 folds

1 1 0.6233091 0.877551 0.6150845 0.723241 2 2 0.6191467 0.8537037 0.6163102 0.715838 3 3 0.6257796 0.88888889 0.6153846 0.727272 4 4 0.6416667 0.8868275 0.6281209 0.735384 5 0.6430801 0.8701299 0.6320755 0.732240		fold_count
3	1	l 1
4 4 0.6416667 0.8868275 0.6281209 0.735384	2	2 2
	3	3 3
5 0.6430801 0.8701299 0.6320755 0.732240	4	4
	5	5 5
6 6 0.6372141 0.8740741 0.626826 0.730085	6	5 6
7	7	7 7
8 0.6382536 0.8814815 0.6263158 0.732307	8	3 8
9 9 0.635796 0.8756957 0.6251656 0.729520	9	9
10 10 0.6378772 0.8719852 0.6275033 0.729813	10	l0 10

Mean Results of 10 folds:

Accuracy: 0.631

Recall: 0.87

Precision: 0.623

XGBoost

Metrics Performance of 10 folds

Detail Results of 10 folds

	fold_count	accur_list	recall_list	pre_list	f1_list
1	1	0.6118626	0.755556	0.6286595	0.686291
2	2	0.6444906	0.7730627	0.6567398	0.7101695
3	3	0.6181061	0.7305503	0.6311475	0.6772208
4	4	0.6524454	0.7885714	0.6499215	0.7125645
5	5	0.6503642	0.766791	0.6607717	0.7098446
6	6	0.6129032	0.7522442	0.6416539	0.692562
7	7	0.6451613	0.7682243	0.6544586	0.7067928
8	8	0.6237006	0.7722008	0.621118	0.6884682
9	9	0.6097815	0.7677903	0.6202723	0.6861925
10	10	0.6586889	0.7758621	0.6944444	0.732899

Mean Results of 10 folds:

accur list

- recall_list

Accuracy: 0.633

Recall: 0.77

Precision: 0.646

XGBoost_Grid Search

Metrics Performance of 10 folds

Best parameters based on Grid Search

Mean Results of 10 folds:

Accuracy: 0.614

Recall: 0.704

Precision: 0.642

Evaluation and Conclusion

- 1. One-hot encoding did not work in the case.
- 2. PCA helped improve accuracy roughly 3%~5%.
- 3. Among 5 classification algorithms, the two ensemble algorithms are better than the others.
- 4. Grid search did not work in the case.
- 5. In the future work, more sophisticated feature engineering need to be implemented. (e.g. resampling, regrouping categorical variables)