Programação I e Lógica e Técnica de Programação

T5 - Trabalho 5

Prof.: Paulo Roberto Nunes de Souza

1 Introdução

Este trabalho cobre o assunto de vetores, strings e for. O trabalho é para ser feito em **grupo de até 3** pessoas e deve ser entregue pelo Google Sala de Aula da disciplina.

2 Mensagem codificada

Codificar uma mensagem consiste em embaralhar sua informação de tal forma que, pessoas que não tenham o conhecimento de como desembaralhar as informações não entendam a mensagem, porém as pessoas que tenham esse conhecimento consigam desembaralhar e entender a mensagem com pouco esforço.

Formas mais recentes de codificar mensagem centralizam o conhecimento crucial para embaralhar e desembaralhar a mensagem numa sequencia de caracteres ou números conhecido como **chave**. Com isso o método de embaralhamento pode ser conhecido de todos, mas só quem conhece a **chave** a ser usada consegue corretamente embaralhar e desembaralhar a mensagem.

3 Método de codificação

O método a ser usado utiliza uma operação matemática simples aplicada entre cada letra da mensagem e da chave progressivamente. A operação matemática que será utilizada na codificação chama-se XOR e matematicamente é simbolizada por \oplus e na linguagem C é executado utilizando o símbolo de acento circunflexo (^).

Consideremos que a mensagem original será simbolizada por M, a chave será simbolizada por K e a mensagem codificada será simbolizada por C, sendo que:

$$M = \{m_1, m_2, m_3, \dots, m_n\}$$

$$C = \{c_1, c_2, c_3, \dots, c_n\}$$

$$K = \{k_1, k_2, k_3, \dots, k_n\}$$

3.1 Codificação

Quando estamos de posse da mensagem M e da chave K e temos o interesse de gerar a mensagem codificada C, este processo é chamado de codificação. Este processo é feito aplicando a operação XOR, uma a uma, entre cada letra da mensagem M e cada letra da chave K, gerando assim cada letra da mensagem codificada C. Este processo pode ser representado matematicamente da seguinte forma.

Onde:

n: Tamanho da mensagem M e da mensagem codificada C;

- q: Tamanho da chave K;
- i: Valor arbitrário entre 1 e n. 1 < i < n;
- j: Valor arbitrário entre 1 e q. 1 < j < q.

Ao final o processo terá calculado cada caracter da mensagem codificada $\it C$.

$$c_i = m_i \oplus k_j$$

Observem que, ao codificar cada caracter da mensagem, pode acontecer da chave chegar ao fim. Quando isso acontecer, o processo continua utilizando o primeiro caracter da chave novamente e partindo daí em diante sempre que necessário.

3.2 Decodificação

Quando estamos de posse da mensagem codificada C e da chave K e temos o interesse de gerar a mensagem M, este processo é chamado de decodificação. Este processo é feito aplicando a mesma operação XOR, uma a uma, entre cada letra da mensagem codificada C e cada letra da chave K, gerando assim cada letra da mensagem M. Este processo pode ser representado matematicamente da mesma forma que a codificação, só que aplicando-se à mensagem codificada C para se obter a mensagem M.

Onde:

- n: Tamanho da mensagem M e da mensagem codificada C;
- q: Tamanho da chave K;
- i: Valor arbitrário entre 1 e n. 1 < i < n;
- j: Valor arbitrário entre 1 e q. 1 < j < q.

Ao final o processo terá calculado cada caracter da mensagem M.

$$m_i = c_i \oplus k_i$$

3.3 Exemplo de codificação

Supondo que o valor da mensagem M e da chave K sejam M = "Atividade EARTE" e K = "Segredo", a codificação seria a seguinte.

$^{\prime}$ A $^{\prime}$	't'	'i'	\mathbf{v}	'i'	$\mathrm{'d'}$	$^{\prime}a^{\prime}$	$\mathrm{'d'}$	'e'	, ,	$^{\prime}\mathrm{E}^{\prime}$	'A'	R'	T'	$^{\prime}\mathrm{E}^{\prime}$
\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
'S'	'e'	$^{\prime}\mathrm{g}^{\prime}$	\mathbf{r}	'e'	$\mathrm{'d'}$	$^{\prime}\mathrm{o}^{\prime}$	$^{\prime}$ S $^{\prime}$	'e'	$^{\prime}\mathrm{g}^{\prime}$	\dot{r}	'e'	$\mathrm{'d'}$	$^{\prime}$ o $^{\prime}$	S'
18	17	14	4	12	0	14	55	0	71	55	36	54	59	

Com isso produzimos a mensagem codificada C, que neste exemplo tem o seguinte valor. $M = \{18, 17, 14, 4, 12, 0, 14, 55, 0, 71, 55, 36, 54, 59, 22\}.$

	18	17	14	4	12	0	14	55	0	71	55	36	54	59	22
	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus	\oplus
	'S'	'e'	$^{\prime}\mathrm{g}^{\prime}$	\mathbf{r}	'e'	$\mathrm{'d'}$	$^{\prime}\mathrm{o}^{\prime}$	S'	'e'	$^{\prime}\mathrm{g}^{\prime}$	\mathbf{r}	'e'	$\mathrm{'d'}$	$^{\prime}$ o $^{\prime}$	S'
_	'A'	't.'	'i'	,v,	'i'	'd'	'a'	'd'	'e'	, ,	E'	,A,	'R.'	'T'	'E'

3.4 Exemplo de decodificação

Supondo que o valor da mensagem codificada C e da chave K sejam $M = \{18, 17, 14, 4, 12, 0, 14, 55, 0, 71, 55, 36, 54, 59, 22\}$ e K = "Segredo", a decodificação seria a seguinte.

Com isso produzimos a mensagem M, que neste exemplo tem o seguinte valor. M = "Atividade EARTE".

4 Programa

O programa deverá implementar tanto a codificação quanto a decodificação.

Para permitir que o usuário acesse a opção que ele deseja, o programa deve primeiramente mostrar na tela um menu com 3 opções:

- 1 Codificar;
- 2 Decodificar;
- 3 Sair.

Após apresentado o menu, o programa deve pedir para o usuário digitar a opção escolhida (1, 2, ou 3). Caso o usuário tenha escolhido a opção 1 ou 2, o programa deverá então executar a função escolhida pelo usuário e mostrar o menu novamente ao final. Caso o usuário tenha escolhido a opção 3, o programa deverá terminar.

4.1 Opções codificação e decodificação

Nas operações de codificação e decodificação a mensagem M deve aceitar mensagem de até 60 caracteres, não necessitando ser capaz de manipular mensagens maiores. Da mesma forma, a mensagem codificada C deve aceitar mensagem de até 60 números inteiros, não necessitando ser capaz de manipular mensagens maiores.

Ao iniciar a codificação, o programa deverá solicitar que o usuário digite a mensagem M sem espaços, para codificá-la. Após receber a mensagem e fazer os cálculos correspondentes, o programa deverá imprimir na tela o tamanho da mensagem digitada e a mensagem codificada C correspondente.

Ao iniciar a decodificação, o programa deverá solicitar que o usuário primeiramente digite o tamanho da mensagem que será digitada, em seguida o programa deve solicitar que o usuário digite a mensagem codificada C, para decodificá-la. Após receber a mensagem e fazer os cálculos correspondentes, o programa deverá imprimir na tela mensagem M correspondente.

A mensagem M deverá sempre ser tratada, tanto para leitura quanto para impressão, como uma sequência (vetor) de caracteres. Já a mensagem codificada C deverá sempre ser tratada, tanto para leitura quanto para impressão, como uma sequência (vetor) de números inteiros.

A chave a ser utilizada em ambos os processos será K = "EARTE2020/1".

4.2 Lembretes

- A operação XOR, que matematicamente é simbolizada por ⊕, na linguagem C é executado utilizando o símbolo de acento circunflexo (^);
- Para obter o tamanho da mensagem digitada pelo usuário, pode ser utilizada a função *strlen* da biblioteca *string.h*;

- A chave a ser utilizada em ambos os processos será K = "EARTE2020/1";
- \bullet A mensagem M deverá sempre ser tratada como uma sequência (vetor) de caracteres;
- A mensagem M não poderá ter espaços;
- Antes de digitar a mensagem codificada C, o usuário deverá digitar qual é o tamanho desta mensagem.
- A mensagem codificada C deverá sempre ser tratada como uma sequência (vetor) de números inteiros;
- O trabalho é para ser feito individualmente ou em dupla.

5 Formato de entrega

Os alunos devem entregar o código fonte em linguagem C que resolve o problema proposto num arquivo no formato .c. Atividades entregues em formato PDF, DOC, JPG, PNG, ZIP, URL e etc, terão pontuação descontada por não se adequarem ao solicitado no trabalho.

Informações extras que forem colocadas no arquivo como nome, número de matrícula, curso e etc, devem ser colocados como comentário. Caso não seja feito conforme solicitado o código certamente gerará um erro de compilação, o que acarretará em perda de pontuação na atividade.

6 Entrega

A entrega deve ser feita pelo Google Sala de Aula da disciplina. Entregas feitas após o prazo do trabalho serão penalizadas conforme especificado no Plano de Ensino da disciplina.