Algoritmi Avansaţi 2023 C-11 Genetic Algorithms

Lect. Dr. Ştefan Popescu

Email: stefan.popescu@fmi.unibuc.ro

Grup Teams:

What are they used for?

Sunt utilizaţi în probleme de optim, pentru care

- spaţiul de căutare a soluţiilor posibile este mare
- nu se cunosc algoritmi exacţi mai rapizi Furnizează o soluţie care nu este neapărat optimă.
- Căutarea în spaţiul soluţiilor candidat euristică, bazată pe principii ale evoluţiei în genetică

Denumirea lor se datorează preluării unor mecanisme din biologie: moștenirea genetică și evoluția naturală pentru populații de indivizi

What are they used for?

Aplicații

- Robotică, bioinformatică, inginerie
- Probleme de trafic, rutare, proiectare
- Criptare, code-breaking
- Teoria jocurilor
- Clustering etc

Informal talk

Informal talk

Exemplu ilustrativ (scop didactic)

Maximul unei funcții pozitive

Fie $f:D \to R$. Să se calculeze $\max\{ f(x) \mid x \in D \}, \text{ unde } D = [a, b].$

• Presupunem f(x) > 0, $\forall x \in D$.

Cromozom = mulţime ordonată de elemente (gene) ale căror valoare (alele) determină caracteristicile unui individ

1 0 1 1	1 0	0 1	0 0
---------	-----	-----	-----

Cromozom = mulţime ordonată de elemente (gene) ale căror valoare (alele) determină caracteristicile unui individ

Populație = mulțime de indivizi care trăiesc într-un mediu la care trebuie să se adapteze

Cromozom = mulţime ordonată de elemente (gene) ale căror valoare (alele) determină caracteristicile unui individ

Populație = mulțime de indivizi care trăiesc într-un mediu la care trebuie să se adapteze

Fitness (adecvare) = măsură a gradului de adaptare la mediu pentru fiecare individ (funcţie de fitness)

Generație = etapă în evoluția populației

Generație = etapă în evoluția populației **Selecție** = proces prin care sunt promovați indivizii cu grad ridicat de adaptare la mediu

Generație = etapă în evoluția populației **Selecție** = proces prin care sunt promovați indivizii cu grad ridicat de adaptare la mediu

Operatori genetici:

 încrucişare (combinare, crossover) - indivizii din noua generație moștenesc caracteristicile părinților

Generație = etapă în evoluția populației **Selecție** = proces prin care sunt promovați indivizii cu grad ridicat de adaptare la mediu

Operatori genetici:

- **încrucişare** (combinare, crossover) indivizii din noua generație moștenesc caracteristicile părinților
- mutaţie indivizii din noua generaţie pot dobândi şi caracteristici noi

Structura pas-cu-pas a unui Algoritm Genetic

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D

t=t+1

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D
- Cât timp nu există condiția de terminare:

t=t+1

Condiții de terminare

- număr maxim de iterații / durată de execuție
- stabilizarea performanţei medii /maxime
- am obținut o soluție suficient de bună

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D
- Cât timp nu există condiția de terminare:
 - o construim o populație nouă P(t+1) pe baza indivizilor din P(t) astfel:
 - selecție: generează o populație intermediară P¹(t) selectând indivizi din P(t) după un anumit criteriu de selecție

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D
- Cât timp nu există condiția de terminare:
 - o construim o populație nouă P(t+1) pe baza indivizilor din P(t) astfel:
 - selecție: generează o populație intermediară P¹(t) selectând indivizi din P(t) după un anumit criteriu de selecție
 - aplicăm operatorul de încrucișare pentru (unii) indivizi din P¹(t) obținând populația intermediară P²(t)

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D
- Cât timp nu există condiția de terminare:
 - o construim o populație nouă P(t+1) pe baza indivizilor din P(t) astfel:
 - selecție: generează o populație intermediară P¹(t) selectând indivizi din P(t) după un anumit criteriu de selecție
 - aplicăm operatorul de încrucișare pentru (unii) indivizi din P¹(t) obținând populația intermediară P²(t)
 - aplicăm operatorul de mutație peste (unii) indivizi din P²(t) obținând populația P(t+1)
- t=t+1

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D
- Cât timp nu există condiția de terminare:
 - o construim o populație nouă P(t+1) pe baza indivizilor din P(t) astfel:
 - selecție: generează o populație intermediară P¹(t) selectând indivizi din P(t) după un anumit criteriu de selecție
 - aplicăm operatorul de încrucișare pentru (unii) indivizi din P¹(t) obținând populația intermediară P²(t)
 - aplicăm operatorul de mutație peste (unii) indivizi din P²(t) obținând populația P(t+1)
 - lacktriangle opțional: la P(t+1) se adaugă elementul/elementele elitiste din P(t)
- t=t+1

- t=0
- Consideră, o populație inițială P(0): alegem aleator indivizi din intervalul D
- Cât timp nu există condiția de terminare:
 - o construim o populație nouă P(t+1) pe baza indivizilor din P(t) astfel:
 - selecție: generează o populație intermediară P¹(t) selectând indivizi din P(t) după un anumit criteriu de selecție
 - aplicăm operatorul de încrucișare pentru (unii) indivizi din P¹(t) obținând populația intermediară P²(t)
 - aplicăm operatorul de mutație peste (unii) indivizi din P²(t) obținând populația P(t+1)
 - lacktriangle opțional: la P(t+1) se adaugă elementul/elementele elitiste din P(t)
- t=t+1

Exemplu: maximizarea unei funcții pozitive

Date de intrare + parametri de control

- intervalul [a, b]
- precizia p (numărul de zecimale)
- dimensiunea populației n
- numărul de generații
- probabilitatea de încrucişare pc
- probabilitatea de mutație pm

Dimensiune (număr de cromozomi):

n - fixă, dată constantă pe parcursul algoritmului

Dimensiune (număr de cromozomi):

n - fixă, dată constantă pe parcursul algoritmului

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Dimensiune (număr de cromozomi):

n - fixă, dată constantă pe parcursul algoritmului

Cum calculăm lungimea pentru puncte din D = [a,b]?

Dimensiune (număr de cromozomi):

n - fixă, dată constantă pe parcursul algoritmului

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Cum calculăm lungimea pentru puncte din D = [a,b]? Depinde de nivelul de discretizare al intervalului [a,b]

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Pentru D = [a,b] și o precizie p dată (ca număr de zecimale):

discretizarea intervalului =>

subintervale (elemente)

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Pentru D = [a,b] și o precizie p dată (ca număr de zecimale):

discretizarea intervalului => (b-a)x10^p subintervale (elemente)

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Pentru D = [a,b] și o precizie p dată (ca număr de zecimale):

- discretizarea intervalului => (b-a)x10^p subintervale (elemente)
- lungimea cromozomului este:

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Pentru D = [a,b] și o precizie p dată (ca număr de zecimale):

- discretizarea intervalului => (b-a)x10^p subintervale (elemente)
- lungimea cromozomului este:

$$2^{l-1} < (b-a)10^p \le 2^l \implies l = \lceil \log_2((b-a)10^p) \rceil$$

Codificare = cum asociem unei configurații din spațiul de căutare un cromozom În general: codificare binară, lungime fixă

Pentru D = [a,b] și o precizie p dată (ca număr de zecimale):

- discretizarea intervalului => (b-a)x10^p subintervale (elemente)
- lungimea cromozomului este:

$$2^{l-1} < (b-a)10^p \le 2^l \implies l = \lceil \log_2((b-a)10^p) \rceil$$

• valoarea codificată din D=[a,b] – translație liniară $X_{(2)} \to X_{(10)} \to \frac{b-a}{2^l-1} X_{(10)} + a$

Populație

Populația inițială se generează aleator

Funcția de fitness

- se pot folosi distanțe cunoscute (euclidiană, Hamming)
- pentru problema de maxim funcția este chiar f

Selecția

determinarea unei populații intermediare, ce conține indivizi care vor fi supuși operatorilor genetici

- Selecție elitistă
- Selecție turneu
- Selecție bazată pe ordonare

Selecția proporțională

Presupunem P(t)={X1,...,Xn}

asociem fiecărui individ Xi o probabilitate pi de a fi selectat, în funcție de performanța acestuia (dată de funcția de fitness f)

Selecția proporțională

Presupunem P(t)={X1,...,Xn}

asociem fiecărui individ Xi o probabilitate pi de a fi selectat, în funcție de performanța acestuia (dată de funcția de fitness f)

$$p_{i} = \frac{f(X_{i})}{F}$$

$$F = \sum_{j=1}^{n} f(X_j) = performanţa totală a populaţiei$$

Selecția proporțională

Presupunem P(t)={X1,...,Xn}

asociem fiecărui individ Xi o probabilitate pi de a fi selectat, în funcție de performanța acestuia (dată de funcția de fitness f)

$$p_i = \frac{f(X_i)}{F}$$

$$F = \sum_{j=1}^{n} f(X_j) = performanţa totală a populaţiei$$

folosind metoda ruletei selectăm n indivizi (!copii), cu distribuția de probabilitate (p1, p2, ..., pn)

Selecția proporțională - metoda ruletei

Folosind metoda ruletei selectăm n indivizi (!copii), cu distribuția de probabilitate (p_1 , p_2 , ..., p_n)

Etapa de Selecție:

- P¹(t)=∅
- repetă de *n* ori:
 - \circ generează j cu probabilitatea $(p_1, p_2, ..., p_n)$ folosind metoda ruletei
 - genereaza u variabila uniformă pe [0,1)
 - determină indicele j astfel încât u este între $q_{j-1} = p_1 + ... + p_{j-1}$ și $q_j = p_1 + ... + p_j$ (cu convenția $q_0 = 0$)
 - o adaugă la populația selectată P¹(t) o copie a lui X_j

Selecția

Selecție elitistă = trecerea explicită a celui mai bun individ în generația următoare

Selecție turneu = se aleg aleatoriu k indivizi din populație și se selectează cel mai performant dintre ei

Selecție bazată pe ordonare = se ordonează indivizii după performanță și li se asociază câte o probabilitate de selecție în funcție de locul lor după ordonare

Permite combinarea informațiilor de la părinți

Doi părinți dau naștere la doi descendenți

- cu un punct de tăietură (de rupere)
- cu mai multe puncte de rupere
- uniformă
- etc

FRUG: FRENCH BULLDOG PUG MIX

Cu un punct de tăietură (de rupere)

WWW.PUGIOKES.COM

FRUG: FRENCH BULLDOG PUG MIX

2 părinți => 2 indivizi noi care iau locul părinților în populație

X 1	•••	Xi	Xi+1		Xl		y 1	•••	y i	Xi+1	•••	Xl
						\Rightarrow						
y 1	•••	y i	yi+1	•••	yı		X1	•••	Xi	yi+1	•••	y ₁

i – punct de rupere generat aleator

Cu un punct de tăietură (de rupere)

Nu toți cromozomii din P¹(t) participă la încrucișare.

Un cromozom participă la încrucișare cu o probabilitate fixată pc (probabilitate de încrucișare - dată de intrare)

FRUG: FRENCH BULLDOG PUG MIX

Cu un punct de tăietură (de rupere)

FRUG: FRENCH BULLDOG PUG MIX

Un cromozom participă la încrucișare cu o probabilitate fixată pc (probabilitate de încrucișare – dată de intrare)

Etapa de încrucișare:

• Notăm $P^1(t) = \{X_1, X_2, ..., X_n\}$

Cu un punct de tăietură (de rupere)

FRUG: FRENCH BULLDOG PUG MIX

Un cromozom participă la încrucișare cu o probabilitate fixată pc (probabilitate de încrucișare – dată de intrare)

Etapa de încrucișare:

- Notăm $P^1(t) = \{X_1, X_2, ..., X_n\}$
- for i = 1,n
 - o genereaza u variabila uniformă pe [0,1]

Cu un punct de tăietură (de rupere)

FRUG: FRENCH BULLDOG PUG MIX

Un cromozom participă la încrucișare cu o probabilitate fixată pc (probabilitate de încrucișare – dată de intrare)

Etapa de încrucisare:

- Notăm $P^1(t) = \{X_1, X_2, ..., X_n\}$
- for i = 1,n
 - o genereaza u variabila uniformă pe [0,1]
 - o daca **u<pc** atunci <u>marcheaza</u> (va participa la incrucisare)

Cu un punct de tăietură (de rupere)

FRUG: FRENCH BULLDOG PUG MIX

Un cromozom participă la încrucișare cu o probabilitate fixată pc (probabilitate de încrucișare – dată de intrare)

Etapa de încrucisare:

- Notăm $P^1(t) = \{X_1, X_2, ..., X_n\}$
- for i = 1,n
 - o genereaza u variabila uniformă pe [0,1]
 - daca u<pc atunci <u>marcheaza</u> (va participa la incrucisare)
- formeaza perechi disjuncte de cromozomi marcați și
- aplică pentru fiecare pereche operatorul de încrucișare;

Cu un punct de tăietură (de rupere)

FRUG: FRENCH BULLDOG PUG MIX

Un cromozom participă la încrucișare cu o probabilitate fixată pc (probabilitate de încrucișare – dată de intrare)

Etapa de încrucisare:

- Notăm $P^1(t) = \{X_1, X_2, ..., X_n\}$
- for i = 1,n
 - o genereaza u variabila uniformă pe [0,1]
 - daca u<pc atunci <u>marcheaza</u> (va participa la incrucisare)
- formeaza perechi disjuncte de cromozomi marcați și
- aplică pentru fiecare pereche operatorul de încrucișare;
- descendeții rezultați înlocuiesc părinții în populație

Mutația

schimbarea valorilor unor gene din cromozom

asigură diversitatea populației

probabilitatea de mutație pm - dată de intrare

Mutația

Etapa de mutație - Varianta 1 (mutație rară):

- Notăm $P^2(t) = \{X_1, ..., X_n\}$ populația obținută după încrucișare
- for i = 1,n
 - o genereaza u variabila uniformă pe [0,1)
 - o daca u<pm atunci generează o poziție aleatoare p și
 - trece gena p din cromozomul X_i la complement $0 \leftrightarrow 1$

Mutația

Etapa de mutație - Varianta 2:

- Notăm $P^2(t) = \{X_1, ..., X_n\}$ populația obținută după încrucișare
- for i = 1,n
 - o for j = 1, len(X_i)
 - genereaza u variabila uniformă pe [0,1)
 - daca u<pm atunci
 - trece gena j din cromozomul X_i la complement 0↔1

Alte exemple

Next Time

