- 1. Určete skalární součin vektorů $(1; \sqrt{5}; -\sqrt{5})$ a $(\sqrt{5}; 2; \sqrt{5})$. $-5 + 3\sqrt{5}$
- **2.** Určete všechna $a \in \mathbb{R}$ tak, aby vektory (2; a; 4) a (a; 1; -5) byly kolmé. $a = \frac{20}{2}$
- **3.** Určete odchylku vektorů (1;3;2) a (-2;1;3). $\frac{\pi}{2}=60^{\circ}$
- **4.** Určete souřadnice součtu vektorů $B-A,\,C-B$ a $A-C,\,$ pokud $A[2;-3],\,B[-4;7],\,C[-2;5]$ (0;0;0)
- **5.** Určete vzdálenost bodů A[1;2;3] a B[-6;-5;-4] $7\sqrt{3}$
- **6.** Určete všechna $p \in \mathbb{R}$ tak, aby vzdálenost bodů A[1;p] a B[2;-1] byla 2. $p_1 = -1 + \sqrt{3}, \ p_2 = -1 \sqrt{3}$
- 7. Určete všechna $k \in \mathbb{R}$ tak, aby vzdálenost bodů M[5;7] a $M+k\mathbf{u}$ byla 3, kde $\mathbf{u}=(1;3)$. $k=\pm\frac{3}{\sqrt{10}}$
- 8. Určete souřadnice vektoru \mathbf{u} , který bude mít stejný směr jako vektor (3;-2) a bude platit $|\mathbf{u}|=1$. $(\frac{3}{\sqrt{13}};-\frac{2}{\sqrt{13}})$
- 9. Určete souřadnice vektoru \mathbf{u} , který bude mít opačný směr jako vektor (3;-2) a bude platit $|\mathbf{u}|=1$. $(-\frac{3}{\sqrt{13}};\frac{2}{\sqrt{13}})$
- **10.** Určete číslo $r \in \mathbb{R}$ tak, aby platilo $M + k\mathbf{v} = [7; r]$ pro nějaké $k \in \mathbb{R}$, pokud M[1; 3] a $\mathbf{v} = (2; -1)$ r = 0
- **11.** Určete všechna čísla $s \in \mathbb{R}$ tak, aby ABCD byl obdélník, pokud A[-2;3], B[2;4], C[s;1]. $s = \frac{11}{4}$
- **12.** Určete souřadnice všech vektorů \mathbf{v} , které jsou kolmé na vektory (1;-1;1) a (1;0;-1) a $|\mathbf{v}|=\sqrt{6}$. $\pm(1;2;1)$
- **13.** Určete souřadnice středu úsečky $S_{AB}S_{CD}$, kde $A[5;2], B[1;-1], C[2;4], D[-1;1]. <math>[\frac{7}{4};\frac{3}{2}]$
- **14.** Určete všechna $a, b \in \mathbb{R}$ tak, aby $a\mathbf{u} + b\mathbf{v} = \mathbf{w}$, kde $\mathbf{u} = (1; 3)$, $\mathbf{v} = (2; 5)$, $\mathbf{w} = (4; 4)$. a = -12, b = 8
- **15.** Určete souřadnice všech bodů T takových, že |AT|=1, |BT|=2, kde A[1;2], B[2;1]. $\left[\frac{1}{4}\left(3\pm\sqrt{7}\right);\frac{1}{4}\left(3\pm\sqrt{7}\right)+\frac{3}{2}\right]$