MATH 220A: Homework #7

Due on Nov 15, 2024 at 23:59pm

 $Professor\ Ebenfelt$

Ray Tsai

A16848188

Problem 1

Let $I(r) = \int_{\gamma} \frac{e^{iz}}{z} dz$ where $\gamma : [0, \pi] \to \mathbb{C}$ is defined by $\gamma(t) = re^{it}$. Show that $\lim_{r \to \infty} I(r) = 0$.

Proof. Note that $\gamma'(t) = ire^{it}$ and so

$$|I(r)| = \left| \int_0^\pi \frac{e^{ire^{it}}}{re^{it}} \cdot ire^{it} \, dt \right| = \left| i \int_0^\pi e^{ire^{it}} \, dt \right| \leq \int_0^\pi \left| e^{ire^{it}} \right| \, dt = \int_0^\pi \left| e^{r(i\cos(t) - \sin(t))} \right| \, dt = \int_0^\pi e^{-r\sin(t)} \, dt.$$

Pick $\epsilon > 0$. There exists integer $N > -\log(\epsilon)$ such that for all r > N and $t \in [0, \pi]$,

$$\left| e^{-r\sin(t)} \right| \le e^{-r} < e^{-N} < \epsilon.$$

Hence, $e^{-r\sin(t)}$ uniformly converges to 0 on $[0,\pi]$, and thus

$$\lim_{r \to \infty} \int_0^{\pi} e^{-r \sin(t)} dt = 0.$$

The result now follows.

Let $\gamma(t)=2e^{it}$ for $-\pi \leq t \leq \pi$ and find $\int_{\gamma}(z^2-1)^{-1}\,dz$.

Proof. Note that $\gamma'(t) = 2ie^{it}$. We then have

$$\int_{\gamma} (z^2 - 1)^{-1} dz = \int_{-\pi}^{\pi} \frac{2ie^{it}}{(2e^{it})^2 - 1} dt = \int_{-\pi}^{\pi} \frac{2ie^{it}}{4e^{2it} - 1} dt.$$

Let $u = 2e^{it} + 1$, then $du = 2ie^{it} dt$ and so

$$\int_{-\pi}^{\pi} \frac{2ie^{it}}{4e^{2it}-1} \, dt = \int_{1}^{1} \frac{1}{u(u-2)} \, dt = 0.$$

Problem 3

Show that if F_1 and F_2 are primitives for $f:G\to\mathbb{C}$ and G is connected, then there is a constant c such that $F_1(z)=c+F_2(z)$ for each z in G.

Proof. Suppose $F'_1 = F'_2 = f$. Then

$$\frac{d}{dz}(F_1(z) - F_2(z)) = F_1'(z) - F_2'(z) = 0,$$

so the function $F_1(z) - F_2(z)$ is constant, and the result now follows.

Show that the function defined by (2.2) is continuous.

Proof. Pick $\epsilon > 0$. Since φ is continuous in a compact set, φ is uniformly continuous. Thus, there exists $\delta > 0$ such that for all $s \in [a,b]$, $|\varphi(s,t) - \varphi(s,x)| < \frac{\epsilon}{b-a}$ for all $x,t \in [c,d]$ and $|x-t| < \delta$. It now follows that for all $s \in [a,b]$ and $|t-x| < \delta$,

$$|g(t) - g(x)| = \left| \int_a^b \varphi(s, t) - \varphi(s, x) \, ds \right| \le \int_a^b |\varphi(s, t) - \varphi(s, x)| \, ds < \frac{\epsilon}{b - a} \cdot (b - a) < \epsilon.$$

Prove the following analogue of Leibniz's rule (this exercise will be frequently used in the later sections.) Let G be an open set and let γ be a rectifiable curve in G. Suppose that $\varphi : \{\gamma\} \times G \to \mathbb{C}$ is a continuous function and define $g : G \to \mathbb{C}$ by

$$g(z) = \int_{\gamma} \varphi(w, z) \, dw$$

then g is continuous. If $\frac{\partial \varphi}{\partial z}$ exists for each (w,z) in $\{\gamma\} \times G$ and is continuous, then g is analytic and

$$g'(z) = \int_{\gamma} \frac{\partial \varphi}{\partial z}(w, z) \, dw. \tag{1}$$

Proof. Fix $z_0 \in G$. Pick $\epsilon > 0$. Note that $\gamma : [a,b] \to G$, for some interval [a,b]. We first show that g is continuous. Put $L = \int_{\gamma} |dw|$. Since γ is continuous on a compact set, its image $\{\gamma\}$ is compact. For r > 0 such that the closed ball $\overline{B_r(z_0)} \subset G$, φ is uniformly continuous on $\{\gamma\} \times \overline{B_r(z_0)}$. Thus, there exists $\delta_r > 0$ such that $|\varphi(s,z) - \varphi(s,w)| < \frac{\epsilon}{L}$ for all $s \in \{\gamma\}$ and $z, w \in \overline{B_r(z_0)}$ with $d(z,w) < \delta_r$. It now follows that for all $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are $s \in \{\gamma\}$ and $s \in \{\gamma\}$ are

$$|g(z) - g(z_0)| = \left| \int_{\gamma} \varphi(s, z) - \varphi(s, z_0) \, ds \right| \le \int_{\gamma} |\varphi(s, z) - \varphi(s, z_0)| \, |ds| < \frac{\epsilon}{L} \cdot L = \epsilon.$$

Now suppose that $\varphi' = \frac{\partial \varphi}{\partial z}$ exists for each (w,z) in $\{\gamma\}$ and is continuous. It suffices to verify (1), as the continuity of g' follows from (1) and the first part of the proof. Since φ' is uniformly continuous on $\{\gamma\} \times \overline{B_r(z_0)}$, there exists $\delta'_r > 0$ such that $|\varphi'(s,w) - \varphi'(s,z)| < \epsilon/L$ for all $s \in \{\gamma\}$ and $w,z \in \overline{B_r(z_0)}$ with $d(w,z) < \delta'_r$. This implies that for all for $s \in \{\gamma\}$ and $d(z,z_0) < \delta'_r$,

$$\left| \int_{z_0}^z [\varphi'(s, w) - \varphi'(s, z_0)] dw \right| \le \frac{\epsilon(z - z_0)}{L}. \tag{2}$$

Given a fixed $s \in \{\gamma\}$, $\Phi(z) = \varphi(s,z) - z\varphi'(s,z_0)$ is a primitive of $\varphi'(s,z) - \varphi'(s,z_0)$. It now follows from (2) and the funamental theorem of calculus that

$$|\varphi(s,z) - \varphi(s,z_0) - (z-z_0)\varphi'(s,z_0)| \le \frac{\epsilon(z-z_0)}{L}.$$

By the definition of q, we have

$$\left| \frac{g(z) - g(z_0)}{z - z_0} - \int_{\gamma} \varphi'(s, z_0) \, ds \right| \le \int_{\gamma} \left| \frac{\varphi(s, z) - \varphi(s, z_0)}{z - z_0} - \varphi'(s, z_0) \right| \, |ds| < \frac{\epsilon}{L} \cdot L = \epsilon,$$

for
$$d(z, z_0) < \delta'_r$$
.

Suppose that γ is a rectifiable curve in \mathbb{C} and φ is defined and continuous on $\{\gamma\}$. Use Exercise 2 to show that

$$g(z) = \int_{\gamma} \frac{\varphi(w)}{w - z} \, dw$$

is analytic on $\mathbb{C} - \{\gamma\}$ and

$$g^{(n)}(z) = n! \int_{\gamma} \frac{\varphi(w)}{(w-z)^{n+1}} dw.$$
 (3)

Proof. Define $\phi(w,z) = \frac{\varphi(w)}{w-z}$ for $w \in \{\gamma\}$ and $z \in \mathbb{C} - \gamma$. Note that ϕ is continuous on $\{\gamma\} \times (\mathbb{C} - \gamma)$, as φ and $\frac{1}{w-z}$ are continuous. Since $\frac{\partial \phi}{\partial z} = \frac{\varphi(w)}{(w-z)^2}$ exists and is continuous, g is analytic on $\mathbb{C} - \gamma$ and $g'(z) = \int_{\gamma} \frac{\varphi(w)}{(w-z)^2} dw$, by the previous exercise. We now proceed by induction on n to show (3). The base case is done. Suppose n > 1. By induction,

$$g^{(n)}(z) = \frac{\partial}{\partial z} \left[(n-1)! \int_{\gamma} \frac{\varphi(w)}{(w-z)^n} dw \right].$$

Since $\frac{\partial}{\partial z} \frac{\varphi(w)}{(w-z)^n} = \frac{n\varphi(w)}{(w-z)^{n+1}}$ exists and is continuous,

$$g^{(n)}(z) = (n-1)! \int_{\gamma} \frac{\partial}{\partial z} \frac{\varphi(w)}{(w-z)^n} dw = n! \int_{\gamma} \frac{\varphi(w)}{(w-z)^{n+1}} dw.$$