Chapter 1

Axioms of Probability

1.1 Sample Space and Events

Definition. The set of all possible outcomes of an experiment is called the *sample* space of the experiment and is denoted by Ω .

Example. If the experiment consists of tossing two dice, then the sample space is

$$\Omega = \{(i, j) : i, j \in \{1, 2, 3, 4, 5, 6\}\}.$$

Definition. Let Ω be a sample space of an experiment. A subset Σ of the power set of Ω is called a σ -algebra if the following conditions hold.

- (a) $\Omega \in \Sigma$.
- (b) For all $E \in \Sigma$, $\Omega \setminus E \in \Sigma$.
- (c) If E_1, E_2, \ldots is a sequence of elements in Σ , then

$$\bigcup_{i=1}^{\infty} E_i \in \Sigma.$$

Definition. A pair (Ω, Σ) where Σ is a σ -algebra in Ω is called a *measurable space*.

Definition. In a measurable space (Ω, Σ) , each element of Σ is called an *event* of Ω (in Σ).

Remark. An event of Ω is a subset of Ω .

Definition. Two events E and F are mutually exclusive if $E \cap F = \emptyset$.

Definition. Let (Ω, Σ) be a measurable space. A function $P : \Sigma \to \mathbb{R}$ is called a probability function and (Ω, Σ, P) is a probability space if the following conditions hold.

- (a) For all $E \in \Sigma$, $P(E) \geq 0$.
- (b) $P(\Omega) = 1$.
- (c) If E_1, E_2, \ldots is a sequence of events that are pairwise mutually exclusive, then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i).$$

Theorem 1.1. Let (Ω, Σ, P) be a probability space. Let $E, F \in \Sigma$. Then $P(F \setminus E) = P(F) - P(E \cap F)$.

Proof. Since $E \cap F$ and $F \setminus E$ are mutually exclusive, we have

$$P(F) = P((E \cap F) \cup (F \setminus E)) = P(E \cap F) + P(F \setminus E).$$

Thus,
$$P(F \setminus E) = P(F) - P(E \cap F)$$
.

Corollary. $P(\Omega \setminus E) = 1 - P(E)$ holds for any event E, implying $P(\emptyset) = 0$.

Corollary. If $E \subseteq F$, then $P(E) \leq P(F)$ because $P(F) - P(E) = P(F \setminus E) \geq 0$.

Theorem 1.2 (Inclusive-exclusive Principle). Let (Ω, Σ, P) be a probability space. If $E_1, \ldots, E_n \in \Sigma$, then

$$P\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{r=1}^{n} (-1)^{r+1} \sum_{1 \le i_{1} < \dots < i_{r} \le n} P(E_{i_{1}} \cap \dots \cap E_{i_{r}}).$$

Proof. The proof is by induction on n. The theorem holds for n = 0 and n = 1 trivially. For n = 2, since $E_1 \cap E_2$ and $E_1 \setminus E_2$ are mutually exclusive, we have

$$P(E_1) = P((E_1 \cap E_2) \cup (E_1 \setminus E_2)) = P(E_1 \cap E_2) + P(E_1 \setminus E_2).$$

Thus, since $E_1 \setminus E_2$ and E_2 are mutually exclusive, we have

$$P(E_1 \cup E_2) = P((E_1 \setminus E_2) \cup E_2)$$

= $P(E_1 \setminus E_2) + P(E_2)$
= $P(E_1) - P(E_1 \cap E_2) + P(E_2)$.

Now suppose that the theorem holds for some $n \geq 2$, and we prove that the theorem is true for n + 1. Since $E_1 \cup \cdots \cup E_n$ and E_{n+1} are mutually exclusive, we have

$$P(E_1 \cup \cdots \cup E_n \cup E_{n+1}) = P(E_1 \cup \cdots \cup E_n) + P(E_{n+1}) - P((E_1 \cup \cdots \cup E_n) \cap E_{n+1}),$$

where the first term can be written as

$$P(E_1 \cup \dots \cup E_n) = \sum_{r=1}^n (-1)^{r+1} \sum_{1 \le i_1 < \dots < i_r \le n} P(E_{i_1} \cap \dots \cap E_{i_r}),$$

and the last term can be written as

$$P((E_{1} \cup \cdots \cup E_{n}) \cap E_{n+1})$$

$$= P((E_{1} \cap E_{n+1}) \cup \cdots \cup (E_{k} \cap E_{n+1}))$$

$$= \sum_{s=1}^{n} (-1)^{s+1} \sum_{1 \leq i_{1} \cdots \leq i_{s} \leq n} P((E_{i_{1}} \cap E_{n+1}) \cap \cdots \cap (E_{i_{s}} \cap E_{n+1}))$$

$$= \sum_{s=1}^{n} (-1)^{s+1} \sum_{1 \leq i_{1} \cdots \leq i_{s} \leq n} P(E_{i_{1}} \cap \cdots \cap E_{i_{s}} \cap E_{n+1})$$

$$= -\sum_{r=2}^{n+1} (-1)^{r+1} \sum_{1 \leq i_{1} \cdots \leq i_{r-1} \leq n} P(E_{i_{1}} \cap \cdots \cap E_{i_{r-1}} \cap E_{i_{r}}).$$

Now we consider r, which is the number of sets in each intersection. The second term is actually the case with r = 1, and the last term consists of the cases with $r \geq 2$. Thus,

$$P(E_{n+1}) - P((E_1 \cup \dots E_n) \cap E_{n+1}) = \sum_{r=1}^n (-1)^{r+1} \sum_{\substack{1 \le i_1 \dots \le i_{r-1} \le n \\ i_r = n+1}} P(E_{i_1} \cap \dots \cap E_{i_r}).$$

Furthermore, note that the first term consists of the case where E_{n+1} does not appear in the intersection, while the difference above consists of the case where E_{n+1} appears in the intersection. Thus, by summing up all terms, we have

$$P(E_1 \cup \dots \cup E_n \cup E_{n+1}) = \sum_{r=1}^{n+1} (-1)^{r+1} \sum_{1 \le i_1 \le \dots \le i_r \le n+1} P(E_{i_1} \cap \dots \cap E_{i_r}),$$

which completes the proof.

Example. For any three events E_1, E_2, E_3 , we have $P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3) - P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1) + P(E_1 \cap E_2 \cap E_3)$.

1.2 Sample Spaces with Equally Likely Outcomes

Theorem 1.3. Let $\Omega = \{\omega_1, \ldots, \omega_n\}$ be a finite sample space and let P be a probability function such that $P(\{\omega_i\}) = P(\{\omega_j\})$ for $i, j \in \{1, \ldots, n\}$. Then for each event $E \subseteq \Omega$ with |E| = k, we have

$$P(E) = \frac{k}{n}.$$

Proof. Let p denote the probability of each elementary event $\{\omega_i\}$ for all $i \in \{1, \ldots, n\}$. Then we have

$$1 = P(\Omega) = P\left(\bigcup_{i=1}^{n} \{\omega_i\}\right) = \sum_{i=1}^{n} P(\{\omega_i\}) = np.$$

Thus,

$$p = \frac{1}{n}.$$

Let $E = \{\omega_{i_1}, \ldots, \omega_{i_k}\}$. Then

$$P(E) = P\left(\bigcup_{r=1}^{k} \{\omega_{i_r}\}\right) = \sum_{r=1}^{k} P(\{\omega_{i_r}\}) = \frac{k}{n}.$$

Chapter 2

Conditional Probability and Independence

2.1 Conditional Probability

Definition. Let (Ω, Σ, P) be a probability space. If E is an event with P(E) > 0, then define

$$P(F \mid E) = \frac{P(E \cap F)}{P(E)}$$

for any event F.

Theorem 2.1. Let (Ω, Σ, P) be a probability space. If E is an event with P(E) > 0, then the function $P_E : \Sigma \to \mathbb{R}$ is a probability function if

$$P_E(F) = P(F \mid E)$$

for any event F.

Proof. For events E and F,

$$P_E(F) = \frac{P(E \cap F)}{P(E)} \ge 0.$$

Moreover,

$$P_E(\Omega) = \frac{P(E \cap \Omega)}{P(E)} = \frac{P(E)}{P(E)} = 1.$$

If F_1, F_2, \ldots is a sequence of events that are piecewise mutually exclusive, then

$$P_E\left(\bigcup_{i=1}^{\infty} F_i\right) = \frac{P\left(E \cap \bigcup_{i=1}^{\infty} F_i\right)}{P(E)} = \frac{P\left(\bigcup_{i=1}^{\infty} (E \cap F_i)\right)}{P(E)} = \sum_{i=1}^{\infty} \frac{P(E \cap F_i)}{P(E)} = \sum_{i=1}^{\infty} P_E(F_i).$$

Thus, P_E is a probability function.

2.2 Bayes' Formula

Definition. A partition of Ω is a family of nonempty events such that each element in Ω is in exactly one of these events.

Theorem 2.2. Let E_1, \ldots, E_n form a partition of Ω such that $P(E_i) > 0$ for each $i \in \{1, \ldots, n\}$. Then for any event F,

$$P(F) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i).$$

Proof. Since

$$F = F \cap \Omega = F \cap \bigcup_{i=1}^{n} E_i = \bigcup_{i=1}^{n} (F \cap E_i),$$

it follows that

$$P(F) = P\left(\bigcup_{i=1}^{n} (F \cap E_i)\right) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i).$$

Theorem 2.3 (Bayes' Formula). Let E_1, \ldots, E_n form a partition of Ω such that $P(E_j) > 0$ for each $j \in \{1, \ldots, n\}$. Then for any event F with P(F) > 0, for any $i \in \{1, \ldots, n\}$, we have

$$P(E_i \mid F) = \frac{P(F \mid E_i)P(E_i)}{\sum_{j=1}^{n} P(F \mid E_j)P(E_j)}.$$

Proof. By Theorem 2.2, we have

$$P(E_i \mid F) = \frac{P(E_i \cap F)}{P(F)} = \frac{P(F \mid E_i)P(E_i)}{\sum_{j=1}^{n} P(F \mid E_j)P(E_j)}.$$

2.3 Independence

Definition. Let E_1, \ldots, E_n be events in a probability space (Ω, Σ, P) .

• E_1, \ldots, E_n are independent if

$$P\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} P(E_i)$$

holds for any nonempty subset I of $\{1, \ldots, n\}$.

• E_1, \ldots, E_n are dependent if they are not independent.

Definition. Let E_1, \ldots, E_n and F be events in a probability space (Ω, Σ, P) , where P(F) > 0. Then E_1, \ldots, E_n are independent given event F if

$$P\left(\bigcap_{i\in I} E_i \mid F\right) = \prod_{i\in I} P(E_i \mid F)$$

holds for any nonempty subset I of $\{1, \ldots, n\}$.