MEME15203 Statistical Inference

Assignment 2

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2023 Due by: 16/3/2023

Q1. Consider $f(x|\theta) = \begin{cases} p, & x = 0\\ (1-p)\frac{(\ln \theta)^x}{\theta x!}, & x = 1, 2, 3, \dots\\ 0, & \text{otherwise} \end{cases}$

Suppose parameters are $p \in [0,1]$ and $\theta \geq 0$. Then, for X_1, X_2, \ldots, X_n iid with this, find a method of moments estimator for the parameter vector (p, θ) based on the first two sample moments.

(15 marks)

Q2. Let X_1, X_2, \ldots, X_n be a random sample from the probability density function:

$$f(x_i) = \begin{cases} 4\theta x_i^{4\theta-1}, & 0 < x_i < 1, \theta > 0 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the MLE of θ .
- (b) Find c such that $c\hat{\theta}$ is an unbiased estimator of θ , where $\hat{\theta}$ is the MLE of θ .

(15 marks)

Q3. Let
$$X \sim POI(\mu)$$
. Suppose $\theta = e^{-\mu}$ and $\tilde{\theta} = u(x) = \begin{cases} 1, \text{for } x = 0 \\ 0, \text{for } x = 1, 2, \dots \end{cases}$. Compare the MSEs of $\hat{\theta}$ and $\tilde{\theta}$ for estimating θ when $\mu = 5$

(20 marks)

Q4. Let X_1, X_2, \ldots, X_n denote a random sample from the density function given by

$$f(x) = \begin{cases} \frac{4}{\theta} x^3 e^{-x^4/\theta}, & \theta > 0, x > 0, \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the MLE of θ .
- (b) Find the CRLB of θ .
- (c) Find the UMVUE for θ .

(15 marks)

MEME15203 Statistical Inference

- Q5. Let X_1, X_2, \ldots, X_n denote a random sample from an exponentially distributed population with mean $\lambda = \frac{1}{\theta}$. Let $\Theta \sim \chi^2(2v)$.
 - (a) Find the Bayes estimator for $\lambda = \frac{1}{\theta}$ under square error loss.
 - (b) Show that it is a biased but consistent estimator for $\lambda = \frac{1}{\theta}$.

(20 marks)

Q6. Suppose $X|\theta \sim U(\theta - \frac{1}{6}, \theta + \frac{5}{6})$ and that a prior distribution of θ is $N(\mu, 1)$. Find the Bayes estimator of θ under squared error loss.

(15 marks)