CHAP 16 - SERIES NUMERIQUES

1 Généralités

1.1 Définitions

Définition 1

Soit $(u_n)_{n\in\mathbb{N}}$ une suite, réelle ou complexe.

- On appelle série numérique de terme général u_n , notée $\sum u_n$, le couple $\left((u_n)_{n\in\mathbb{N}}, \left(\sum_{k=0}^n u_k\right)_{n\in\mathbb{N}}\right)$.
- La suite $(S_n)_{n\in\mathbb{N}}$ de terme général $S_n = \sum_{k=0}^n u_k$ est appelée somme partielle de la série $\sum u_n$.
- Soit $n_0 \in \mathbb{N}^*$. La série $\sum v_n$ où $v_0 = \cdots = v_{n_0-1} = 0$, et $\forall n \geq n_0, v_n = u_n$ est encore appelée série de terme général u_n ; elle se note $\sum_{n \geq n_0} u_n$.

Exemple 1

La série $\sum_{n>1} \frac{1}{n}$ est appelée **série harmonique**.

Définition 2

On dit que la série $\sum u_n$ est **convergente**, ou qu'**elle converge**, si la suite de ses sommes partielles (S_n) est convergente.

Si une série n'est pas convergente, on dit qu'elle est divergente, ou qu'elle diverge.

Deux séries sont dites **de même nature** lorsqu'elles sont soit toutes les deux convergentes, soit toutes les deux divergentes.

Remarque 1

La convergence d'une série ne dépend pas de ses premiers termes.

Définition 3

On appelle somme d'une série convergente $\sum u_n$ (resp. $\sum_{n\geq n_0} u_n$, où $n_0\in\mathbb{N}^*$), et on note $\sum_{n=0}^{+\infty} u_n$

(resp. $\sum_{n=n_0}^{+\infty} u_n$) la limite de ses sommes partielles :

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n \quad (\text{resp.} \sum_{n=n_0}^{+\infty} u_n = \lim_{n \to +\infty} S_n)$$

Définition 4

Etant donnés un série convergente $\sum u_n$ et un entier naturel p, on appelle **reste d'ordre** p de la série, et on note R_p la somme de la série $\sum_{n\geq p+1} u_n$:

$$R_p = \sum_{n=p+1}^{+\infty} u_n$$

Remarque 2

Si la série
$$\sum u_n$$
 converge, alors pour tout $p \in \mathbb{N}, \sum_{n=0}^{+\infty} u_n = S_p + R_p$.

1.2 **Propriétés**

Proposition 1

Soit
$$R_p = \sum_{n=p+1}^{+\infty} u_n$$
 le reste d'ordre p d'une série convergente $\sum u_n$. On a :

$$\lim_{n \to +\infty} R_p = 0$$

Proposition 2

Deux séries différant d'un nombre fini de termes sont de même nature.

Proposition 3

Soient $(u_n)_{n\in\mathbb{N}}$ une suite complexe, $(a_n)_{n\in\mathbb{N}}$ (resp. $(b_n)_{n\in\mathbb{N}}$) la suite de ses parties réelles (resp. imagi-

La série $\sum u_n$ converge si, et seulement si $\sum a_n$ et $\sum b_n$ convergent. En cas de convergence, on a :

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} a_n + i \sum_{n=0}^{+\infty} b_n$$

Théorème 1 Si la série $\sum u_n$ converge, alors $\lim_{n\to+\infty} u_n = 0$.

Attention! La réciproque est fausse.

Par exemple, la série harmonique $\sum_{n\geq 1} \frac{1}{n}$ a un terme général qui a une limite nulle, pourtant elle diverge.

Définition 5

Une série dont le terme général ne tend pas vers 0 est dite grossièrement divergente.

Proposition 4

Soient $\lambda \in \mathbb{R}^*$, $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ deux séries numériques.

- $\sum u_n$ et $\sum \lambda u_n$ sont de même nature et si elles convergent, on a : $\sum_{n=0}^{+\infty} u_n = \lambda \sum_{n=0}^{+\infty} u_n$.
- Si $\sum u_n$ et $\sum v_n$ sont convergentes, alors $\sum (u_n + v_n)$ est convergente, et on a : $\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n.$
- Si $\sum u_n$ converge et $\sum v_n$ diverge, alors $\sum (u_n + v_n)$ diverge.

si $\sum u_n$ et $\sum v_n$ divergent, on ne peut rien dire à priori sur la convergence de $\sum (u_n + v_n)$.

1.3 Séries télescopiques

Définition 6

Soit $(u_n)_{n\geq n_0}$ une suite réelle ou complexe. Pour $n\geq n_0$, on pose $v_n=u_{n+1}-u_n$. La série $\sum v_n$ est dite série télescopique.

Théorème 2

La série télescopique $\sum_{n\geq n_0} v_n$ telle que $\forall n\geq n_0, v_n=u_{n+1}-u_n$ converge si, et seulement si la suite

$$(u_n)_{n\geq n_0}$$
 converge, et dans ce cas, on a :
$$\sum_{n=n_0}^{+\infty} v_n = \lim_{n\to+\infty} u_n - u_{n_0}.$$

Séries géométriques 1.4

Définition 7

On appelle série géométrique une série dont le terme général est celui d'une suite géométrique : $\sum q^n$, avec $q \in \mathbb{C}^*$.

Proposition 5

Les sommes partielles d'une série géométrique $\sum q^n$ avec $q \neq 1$ sont :

$$S_n = \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Théorème 3

Une série géométrique $\sum q^n$ converge si, et seulement si |q| < 1. Sa somme vaut alors :

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$$

1.5 Série exponentielle

Théorème 4 Série exponentielle

$$\forall z \in \mathbb{C}, \quad e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

Remarque 4

En particulier, on a : $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.

$\mathbf{2}$ Séries à termes positifs

2.1Généralités

Définition 8

 $\sum u_n$ est dite **série à termes positifs** si le terme général u_n est positif à partir d'un certain rang.

Théorème 5

Une série à termes positifs converge si, et seulement si la suite de ses sommes partielles est majorée.

Théorème de comparaison

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que : $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \leq v_n$. \leadsto Si $\sum v_n$ converge, alors $\sum u_n$ converge. \leadsto Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

$$\leadsto$$
 Si $\sum v_n$ converge, alors $\sum u_n$ converge

$$\rightsquigarrow$$
 Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

Corollaire

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs, telles que $\lim_{n\to +\infty} \frac{u_n}{v_n} = L \in \mathbb{R}$. \leadsto Si $L\neq 0$, alors les deux séries sont de même nature. En particulier :

$$u_n \underset{n \to +\infty}{\sim} v_n \Longrightarrow \sum u_n$$
 et $\sum v_n$ sont de même nature

$$\rightsquigarrow$$
 Si $L=0$ (i.e. $u_n = o(v_n)$) et si $\sum v_n$ converge, alors $\sum u_n$ converge.

2.2 Comparaison série - intégrale

Proposition 6

Soient $n_0 \in \mathbb{N}$, et f une fonction réelle définie sur $[n_0, +\infty[$, continue, positive et croissante (resp. décroissante).

Pour $p \in \mathbb{N}$, on note S_p la somme partielle d'ordre p de la série de terme général $u_n = f(n)$. Alors, pour tout $n \ge n_0 + 1$ on a :

$$S_{n-1} \le \int_{n_0}^n f(t) dt \le S_n - f(n_0)$$
 (resp. $S_n - f(n_0) \le \int_{n_0}^n f(t) dt \le S_{n-1}$)

Théorème 7

Soient $n_0 \in \mathbb{N}$, et f une fonction réelle définie sur $[n_0, +\infty[$, continue, positive et décroissante.

La série de terme général $u_n = f(n)$ converge si, et seulement si la fonction $F: x \mapsto \int_{n_0}^x f(t) dt$ admet une limite finie en $+\infty$.

2.3 Séries de Riemann

Définition 9

Les séries de Riemann sont les séries de terme général de la forme $u_n = \frac{1}{n^a}$, où $a \in \mathbb{R}$.

Théorème 8

Une série de Riemann converge si, et seulement si a > 1.

Proposition 7 Critère de Riemann

Soit $\sum u_n$ une série à termes positifs.

- S'il existe a > 1 tel que $\lim_{n \to +\infty} u_n n^a = 0$, alors $\sum u_n$ converge.
- S'il existe $a \leq 1$ tel que $\lim_{n \to +\infty} n^a u_n = +\infty$, alors $\sum u_n$ diverge.