

Entrance Exam 2012 - 2013

Mathematics

Duration: 3 hours July 07, 2012

The distribution of grades is over 25

I- (1.5 pt) The plane is referred to a direct orthonormal system of origin O. Consider the points A(1;0) and B(3;1).

Let z_1 be the affix of \overrightarrow{OB} and z_2 that of \overrightarrow{AB} .

- 1- Determine an argument of $z_1 z_2$ in terms of α and β .
- 2- Determine the algebraic form of each of z_1 , z_2 and $z_1 z_2$.
- 3- Deduce the value of the sum $\alpha + \beta$.

II- (3.5 pts) Consider the sequence (I_n) defined, for $n \ge 1$, by $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$.

1- Calculate I_1 and I_2 .

2- Prove that, for all $n \ge 1$, $I_n + I_{n+2} = \frac{1}{n+1}$. Deduce $\int_{-\frac{\pi}{4}}^{0} \tan^3 x \ dx$ and $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^4 x \ dx$.

3- a) Prove that , for all $n \ge 1$, $I_n \ge 0$. Deduce that $I_n \le \frac{1}{n+1}$.

- b) Prove that the sequence (I_n) is decreasing. Deduce that $I_n \ge \frac{1}{2(n+1)}$
- 4- Prove that the sequence (I_n) is convergent and calculate its limit.
- III- (5.5 pts) A- The complex plane is referred to a direct orthonormal system.

1- Solve, in the set of complex numbers, the equation $z^2 - 2(1 + \cos 2\alpha)z + 2(1 + \cos 2\alpha) = 0$ where $\alpha \in]0; \frac{\pi}{2}[$.

2- Determine the exponential form of the complex number $q = 1 + \cos 2\alpha + i \sin 2\alpha$.

3- Consider the complex number $z = \frac{4}{q^2}$ and designate its image by M.

a) Determine the exponential form of z in terms of α . Deduce that $z = 1 - \tan^2 \alpha - 2i \tan \alpha$.

b) Prove that , as α traces]0; $\frac{\pi}{2}[$, the set of M is a part of a parabola to be determined .

B- Consider the parabola (P) of equation $y^2 = 4 - 4x$.

- 1- Determine the vertex S of (P) and draw (P) in an orthonormal system $(O; \vec{i}, \vec{j})$.
- 2- Let A and B be two points of (P) distinct from S such that (SA) and (SB) are perpendicular. Let 2a and 2b be the respective ordinates of A and B.
 - a) Determine b in terms of a.
 - b) Prove that, as a varies in IR^* , (AB) passes through the fixed point I such that $\overrightarrow{OI} = -3\overrightarrow{OS}$.
 - c) Let K be the symmetric of S with respect to (AB). Prove that, as a varies in IR^* , K varies on a fixed circle to be determined.
 - d) Determine the abscissa of the point of intersection L of the tangents to (P) at A and B respectively and prove that, as a varies in IR^* , L varies on a fixed straight line to be determined.

IV-(3.5 pts) A beginner in darts executes successive throws. We know that:

- The probability that he hits the target at the first throw is equal to 0.5.
- If he hits the target at a certain throw, the probability that he hits the target at the next throw is equal to 0.4.
- If he misses the target at a certain throw, the probability that he misses it at the next throw is equal to 0.8.

For all natural numbers $n \ge 1$, consider the events A_n : "the player hits the target at the n^{th} throw " and

- B_n : "the player misses the target at the n^{th} throw " and let $p_n = p(A_n)$.
- 1- For all $n \ge 1$, determine $p(A_{n+1}/A_n)$ and $p(A_{n+1}/B_n)$.
- 2- Prove that, for all $n \ge 1$, $p_{n+1} = 0.2(1 + p_n)$.
- 3- Consider the sequence (V_n) defined, for all $n \ge 1$, by $V_n = p_n 0.25$.
 - a) Prove that (V_n) is a geometric sequence whose common ratio and first tem are to be determined.
 - b) Calculate V_n and then p_n in terms of n and determine $\lim_{n \to +\infty} p_n$.
- 4- Knowing that the player hits the target at the second throw, calculate the probability that he missed it at the first throw.
- V- (4 pts) Given a circle (γ) of diameter [BC], BC = 2 and center O. (d) is the tangent to (γ) at C; the triangle ABC is direct and equilateral of center G. (AB) cuts (γ) at E, (AC) cuts (γ) at F and (BF) cuts (d) at J. D is the mid point of [CF].

Let S be the similitude of center C that transforms F into J .

- 1- a) Determine S(D) and S(A).
 - b) Determine the ratio and an angle of S.
 - c) Prove that S(E) = A and that S(O) = G.

- 2- Let (γ') be the image of the circle (γ) by S.
 - a) Prove that (γ') is the circle circumscribed about the triangle ABC.
 - b) Prove that J belongs to (γ') . Draw (γ') .
 - c) Calculate the area of the circle (γ') .
- VI- (7 pts) A- Consider the differential equation (E): xy'+(1-x)y+x=0 where y is a function defined on $\mathbb{R}-\{0\}$.
 - 1- Prove that the function z such that z = xy x is the general solution of the differential equation (1): z' z = -1.
 - 2- Solve the equation (I) and determine the general solution of the equation (E).
 - 3- Determine the particular solution of the equation (E) that has a finite limit at 0.
 - **B-** Consider the function f defined on IR such that f(0) = 0 and , if $x \ne 0$, $f(x) = \frac{x + 1 e^x}{x}$.
 - Let (C) be the representative curve of f in an orthonormal system $(O; \overrightarrow{i}, \overrightarrow{j})$.
 - 1- Let g be the function defined on IR by $g(x) = x e^x$.
 - Calculate g(0) and g'(0). Deduce $\lim_{x\to 0} \frac{x+1-e^x}{x}$ and prove that f is continuous at 0.
 - 2- a) We know that, for all $x \ne 0$, $-x^2 \frac{1}{2}x < f(x) < -\frac{1}{2}x$. Deduce that f is differentiable at 0.
 - b) Determine an equation of the tangent (δ) to (C) at the origin O .
 - 3- Let h be the function defined on IR by $h(x) = (1-x)e^x$. Set up the table of variations of h and prove that, for all x in $IR - \{0\}$, h(x) < 1.
 - 4- a) Prove that, for x in $IR \{0\}$, $f'(x) = \frac{h(x) 1}{x^2}$ and set up the table of variations of f.
 - b) Determine the asymptote (d) to (C) at $-\infty$. Draw (d), (δ) and (C). (Unit: 2 cm)

Entrance Exam 2012 - 2013

Solution of Mathematics

Duration: 3 hours July 07, 2012

Exercise 1

1- The figure shows that $(\overrightarrow{u}; \overrightarrow{OC}) = \alpha$ (2π) and $(\overrightarrow{u}; \overrightarrow{AC}) = \beta$ (2π) then α is an argument of z_1 and β is an argument of z_2 ; therefore $\alpha + \beta$ is an argument of $z_1 z_2$.

2- $\overrightarrow{OC}(3;1)$ then $z_1 = 3+i$ and $\overrightarrow{AC}(2;1)$ then $z_2 = 2+i$; therefore $z_1 z_2 = (3+i)(2+i) = 5+5i$.

3- $z_1 z_2 = 5 + 5i = 5\sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \right) = 5\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ then $\frac{\pi}{4}$ is also an argument of $z_1 z_2$.

 $\alpha + \beta$ and $\frac{\pi}{4}$ are two arguments of the complex number $z_1 z_2$ then there exists an algebraic integer

k such that $\alpha + \beta = \frac{\pi}{4} + 2k\pi$.

 $0 < \alpha < \frac{\pi}{2}$ and $0 < \beta < \frac{\pi}{2}$ then $0 < \alpha + \beta < \pi$; therefore $\alpha + \beta = \frac{\pi}{4}$.

Exercise 2

1-a) •
$$I_1 = \int_0^{\frac{\pi}{4}} \tan x \, dx = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \, dx = -\int_0^{\frac{\pi}{4}} \frac{(\cos x)'}{\cos x} \, dx = -\left[\ln \left| \cos x \right| \right]_0^{\frac{\pi}{4}} = -\ln \frac{1}{\sqrt{2}} + \ln 1 = \ln \sqrt{2}$$
.

$$I_2 = \int_0^{\frac{\pi}{4}} \tan^2 x \, dx = \int_0^{\frac{\pi}{4}} (1 + \tan^2 x - 1) \, dx = \left[\tan x - x \right]_0^{\frac{\pi}{4}} = 1 - \frac{\pi}{4} \ .$$

2- a)
$$I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} (\tan^n x + \tan^{n+2} x) dx = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) dx = \left[\frac{\tan^{n+1} x}{n+1} \right]_0^{\frac{\pi}{4}} = \frac{1}{n+1}$$
.

b) • The function
$$x \to \tan^3 x$$
 is odd then
$$\int_{-\frac{\pi}{4}}^{0} \tan^3 x \, dx = -\int_{0}^{\frac{\pi}{4}} \tan^3 x \, dx = -I_3 = -\frac{1}{2} + I_1 = -\frac{1}{2} + \ln \sqrt{2}$$

• The function
$$x \to \tan^4 x$$
 is even then
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^4 x \ dx = 2 \int_{0}^{\frac{\pi}{4}} \tan^4 x \ dx = 2 I_4 = 2 \left(\frac{1}{3} - I_2 \right) = \frac{\pi}{2} - \frac{4}{3}.$$

3-a) • For all
$$x$$
 in $[0; \frac{\pi}{4}]$, $\tan x \ge 0$ then, for all x in $[0; \frac{\pi}{4}]$ and for all $n \ge 1$, $\tan^n x \ge 0$.
$$\tan^n x \ge 0 \text{ and } 0 < \frac{\pi}{4} \text{ then } I_n \ge 0.$$

• Using the relation
$$I_n + I_{n+2} = \frac{1}{n+1}$$
 we find $I_n = \frac{1}{n+1} - I_{n+2}$ where $I_{n+2} > 0$ then $I_n < \frac{1}{n+1}$.

b) •
$$I_{n+1} - I_n = \int_0^{\frac{\pi}{4}} (\tan^{n+1}x - \tan^n x) dx = \int_0^{\frac{\pi}{4}} \tan^n x (\tan x - 1) dx$$
 where, in the interval $[0; \frac{\pi}{4}]$, $\tan^n x \ge 0$ $\tan x \le 1$ and $0 < \frac{\pi}{4}$ then $I_{n+1} - I_n \le 0$; that is $I_{n+1} \le I_n$ and (I_n) is decreasing.

•
$$(I_n)$$
 is decreasing then $I_n + I_{n+2} \le 2I_n$.

Using the relation
$$I_n + I_{n+2} = \frac{1}{n+1}$$
 we find $\frac{1}{n+1} \le 2I_n$ then $I_n \ge \frac{1}{2(n+1)}$.

c) The sequence (I_n) is decreasing and is bounded from below by 0 then it is convergent .

- 3-• (I_n) is decreasing and bounded from below by 0 then (I_n) is convergent.
 - The limit ℓ should satisfy the relation $\ell + \ell = \lim_{n \to +\infty} \frac{1}{n+1}$; therefore $2\ell = 0$ and $\ell = 0$.

$$OR \quad \frac{1}{2(n+1)} \le I_n < \frac{1}{n+1} \text{ where } \lim_{n \to +\infty} \frac{1}{n+1} = \lim_{n \to +\infty} \frac{1}{2(n+1)} = 0 \text{ then } \lim_{n \to +\infty} I_n = 0.$$

Exercise 3

- A- 1- For all real numbers α , $z^2 2(1 + \cos 2\alpha)z + 2(1 + \cos 2\alpha) = 0$ is a second degree equation whose discriminant is $\Delta' = (1 + \cos 2\alpha)^2 2(1 + \cos 2\alpha) = \cos^2 2\alpha 1 = -\sin^2 2\alpha = (i \sin 2\alpha)^2$. The solutions in C of the given equation are $z = 1 + \cos 2\alpha + i \sin 2\alpha$ and $z = 1 + \cos 2\alpha i \sin 2\alpha$.
 - $\begin{aligned} &2 q = 1 + \cos 2\alpha + i \sin 2\alpha \quad \text{where} \ \ 0 < \alpha < \frac{\pi}{2} \ . \\ &q = 1 + \cos 2\alpha + i \sin 2\alpha = 2 \cos^2 \alpha + 2i \sin \alpha \cos \alpha = 2 \cos \alpha (\cos \alpha + i \sin \alpha) = 2 \cos \alpha e^{i\alpha} \ \text{where} \\ &\cos \alpha > 0 \ \text{since} \ \ 0 < \alpha < \frac{\pi}{2} \ \ ; \ \text{therefore} \ , \ \text{the exponential form of} \ \ q \ \text{ is} \ \ q = 2 \cos \alpha e^{i\alpha} \ . \end{aligned}$
 - 3- Consider the complex number $z = \frac{4}{q^2}$. Let M be the image of z.
 - a) $q^2 = 4\cos^2 \alpha e^{i2\alpha}$ then $z = \frac{4}{q^2} = \frac{1}{\cos^2 \alpha} e^{-i2\alpha}$.

$$z = \frac{1}{\cos^2 \alpha} e^{-i2\alpha} = \frac{1}{\cos^2 \alpha} \left(\cos 2\alpha - i\sin 2\alpha\right) = \frac{\cos 2\alpha}{\cos^2 \alpha} - \frac{\sin 2\alpha}{\cos^2 \alpha} i = \frac{2\cos^2 \alpha - 1}{\cos^2 \alpha} - \frac{2\sin \alpha \cos \alpha}{\cos^2 \alpha} i$$
$$= 2 - \left(1 + \tan^2 \alpha\right) - 2\tan \alpha i = 1 - \tan^2 \alpha - 2\tan \alpha i.$$

b) The coordinates of M are $x = 1 - \tan^2 \alpha$ and $y = -2 \tan \alpha$.

As α varies, the coordinates of M satisfy the relation $x = 1 - \frac{1}{4}y^2$ then M belongs to the parabola of equation $y^2 = -4(x-1)$.

As α traces the interval $]0; \frac{\pi}{2}[$ the ordinate y of M traces the interval $]-\infty; 0[$.

Therefore the set of N is the part of the parabola lying below the axis of abscissas.

- **B-** (P) is the parabola of equation $y^2 = 4 4x$; $y^2 = 4(1 x)$.
 - 1- The vertex of (P) is the point S(1; 0). Drawing (P).

- 2- The abscissa of the point A of (P) with ordinate a such that $a \neq 0$ is equal to $1-a^2$ then $A(1-a^2; 2a)$. Similarly, $B(1-b^2; 2b)$.
 - a) $\overrightarrow{SA}(-a^2; 2a)$ and $\overrightarrow{SB}(-b^2; 2b)$. (SA) and (SB) are perpendicular if and only if $\overrightarrow{SA}.\overrightarrow{SB}=0$; that is $a^2b^2+4ab=0$; ab(ab+4)=0 where $ab \neq 0$ then ab+4=0 and $b=-\frac{4}{a}$.
 - b) The point I is such that $\overrightarrow{OI} = -3\overrightarrow{OS}$ then I(-3;0). $\det(\overrightarrow{IA}; \overrightarrow{IB}) = \begin{vmatrix} 4-a^2 & 2a \\ 4-b^2 & 2b \end{vmatrix} = 8b - 2a^2b - 8a + 2ab^2 \text{ with } b = -\frac{4}{a} \text{ then } a$

$$\det(\overrightarrow{IA}; \overrightarrow{IB}) = -\frac{32}{a} + 8a - 8a + \frac{32}{a} = 0.$$

Therefore, as a varies in IR^* , A, B and I are collinear then (AB) passes I.

c) Let H be the orthogonal projection of S on (AB).

The angle $S\widehat{H}I$ is right with S and I are fixed then H varies on the circle (γ) of diameter [SI]. The symmetric of S with respect to (AB) is the point K such that $\overline{SK} = 2\overline{SH}$ then K is the image of H by the dilation h(S;2). Therefore K varies on the circle $(\gamma') = h((\gamma))$ with diameter [SJ]. where J = h(I); J(-7;0).

d) The equation $y^2 = 4 - 4x$ gives 2yy' = -4 then the slope of the tangent to (P) at A is equal to $-\frac{1}{a}$.

An equation of the tangent (d_1) to (P) at A is $y = -\frac{1}{a}(x-1+a^2)+2a$; $y = -\frac{1}{a}(x-1-a^2)$.

Similarly, an equation of the tangent (d_2) to (P) at B is $y = -\frac{1}{b}(x-1-b^2)$.

The abscissa of the point of intersection L of (d_1) and (d_2) is the solution of the equation

$$\frac{1}{a}(x-1-a^2) = \frac{1}{b}(x-1-b^2) \; ; \; b(x-1-a^2) = a(x-1-b^2) \; ; \; (a-b)x = a-b+ab^2-ab^2 \; ; \; x=1-ab=5 \; .$$

As a varies in \mathbb{R}^* , the point L that has a constant abscissa varies of the straight line of equation x = 5.

Exercise 4

- 1- It is given that, if he hits the target at a certain throw, the probability that he hits it at the next throw is equal to 0.4; therefore $p(A_{n+1}/A_n) = 0.4$.
 - If he misses the target at a certain throw, the probability that he misses it at the next throw is equal to 0.8; therefore $p(B_{n+1}/B_n) = 0.8$.

Hence
$$p(A_{n+1}/B_n) = p(\overline{B_{n+1}}/B_n) = 1 - p(B_{n+1}/B_n) = 0.2$$
.

2- For all
$$n \ge 1$$
, $p_{n+1} = p(A_{n+1}) = p(A_{n+1} \cap A_n) + p(A_{n+1} \cap B_n)$.

$$= p(A_n) \times p(A_{n+1} / A_n) + p(B_n) \times p(A_{n+1} / B_n)$$

$$= 0.4 p_n + (1 - p_n) \times 0.2 = 0.2 p_n + 0.2 = 0.2 (1 + p_n)$$
.

- 3- The sequence (V_n) is defined, for all $n \ge 1$, by $V_n = p_n 0.25$.
 - a) $V_{n+1} = p_{n+1} 0.25 = 0.2 p_n + 0.2 0.25 = 0.2 p_n 0.05 = 0.2 (p_n 0.25) = 0.2 V_n$. Therefore (V_n) is a geometric sequence whose common ratio is r = 0.2 and first tem $V_1 = p_1 0.25 = 0.5 0.25 = 0.25$.

b)
$$V_n = V_1 \times r^{n-1} = 0.25 \times (0.2)^{n-1}$$
 and $p_n = 0.25 \times (0.2)^{n-1} + 0.25$.
Since $0 < 0.2 < 1$, $\lim_{n \to +\infty} (0.2)^{n-1} = 0$; therefore $\lim_{n \to +\infty} p_n = 0.25$.

4- The required probability is

$$p(B_1/A_2) = \frac{p(B_1 \cap A_2)}{p(A_2)} = \frac{p(B_1) \times p(A_2/B_1)}{p_2} = \frac{0.5 \times 0.2}{0.2p_1 + 0.2} = \frac{0.5}{p_1 + 1} = \frac{0.5}{0.5 + 1} = \frac{1}{3}.$$

Exercise 5

S is the similar of center C such that S(F) = J.

1-a)
$$S(F) = J$$
 then $S([CF]) = [CJ]$.

D is the mid point of [CF] then S(D) is the mid point I of [CJ].

• Let
$$S(A) = A'$$
.

The triangle ABC is equilateral and (BF) is a height in this triangle; therefore F is the mid point of [CA].

$$S(C) = C$$
, $S(F) = J$, $S(A) = A'$.

A is the symmetric of C with respect to F then A' is the symmetric of C with respect to J.

S(F) = J and

$$(\overrightarrow{CF}; \overrightarrow{CJ}) = (\overrightarrow{CB}; \overrightarrow{CJ}) - (\overrightarrow{CB}; \overrightarrow{CF}) = -\frac{\pi}{2} + \frac{\pi}{3} = -\frac{\pi}{6}$$
 (2 π) then $-\frac{\pi}{6}$ is an angle of S .

The ratio of *S* is $\frac{CJ}{CF} = \frac{1}{\cos \frac{\pi}{6}} = \frac{2}{\sqrt{3}}$. $S = S(C; \frac{2}{\sqrt{3}}; -\frac{\pi}{6})$.

b) • In the triangle *CEA* we have
$$(\overrightarrow{CE}; \overrightarrow{CA}) = -\frac{\pi}{6}$$
 (2π) and $\frac{CA}{CE} = \frac{1}{\cos\frac{\pi}{6}} = \frac{2}{\sqrt{3}}$, then $S(E) = A$.

• In the triangle
$$COG$$
 we have $(\overrightarrow{CO}; \overrightarrow{CG}) = -\frac{\pi}{6}$ (2π) and $\frac{CG}{CO} = \frac{1}{\cos\frac{\pi}{6}} = \frac{2}{\sqrt{3}}$, then $S(O) = G$.

2- The circle (γ') is the image of the circle (γ) by S.

- a) (γ) is the circle of center O passing though E then its image (γ') is the circle of center G = S(O) passing through A = S(E). Hence, (γ') is the circle circumscribed about the triangle ABC.
- b) F belongs to (γ) and S(F) = J then J belongs to (γ') . Drawing (γ')

c) The radius of the circle (γ) is OC = 1 then the radius of the circle (γ') which is $S((\gamma))$, is equal to $\frac{2}{\sqrt{3}}$ then its area is $\pi \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3}\pi$ units of area.

Exercise 6

- A- (E): xy'+(1-x)y+x=0 where y is a function defined on $IR-\{0\}$.
 - 1- If z = xy x then z' = y + xy' 1 and z' z = (y + xy' 1) (xy x) = xy' + (1 x)y + x 1 = -1. Therefore z is the general solution of the differential equation (I): z' - z = -1.
 - 2- The general solution of the reduced equation z' z = 0 is $z = Ce^x$. The general solution of the equation (1) is $z = Ce^x + 1$.

The general solution of the equation (E) is $y = \frac{x+z}{x}$; that is $y = \frac{x+1+Ce^x}{x}$.

3-
$$\lim_{x\to 0} (x+1+Ce^x) = 1+C$$
.

If
$$C \neq -1$$
 then, $\lim_{x \to 0} y = \pm \infty$.

If
$$C = -1$$
 then, $\lim_{x \to 0^+} y = \lim_{x \to 0^+} \frac{1 - e^x}{1} = 0$.

The particular solution of the equation (1) that has a finite limit at 0 is $y = \frac{x+1-e^x}{x}$.

- **B-** The function f defined on IR by $\begin{cases} f(x) = \frac{x+1-e^x}{x} & \text{if } x \neq 0 \\ f(0) = 0 \end{cases}$
 - 1- The function g is defined on IR by $g(x) = x e^x$.

$$g(0) = -1$$
; $g'(x) = 1 - e^x$ then $g'(0) = 0$.

$$\lim_{x \to 0} \frac{x + 1 - e^x}{x} = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = g'(0) = 0.$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x + 1 - e^x}{x} = 0 = f(0)$$
; therefore f is continuous at 0 .

- 2- Given that, for all $x \neq 0$, $-x^2 \frac{1}{2}x < f(x) < -\frac{1}{2}x$.
 - For all x < 0, $-\frac{1}{2} < \frac{f(x)}{x} < -x \frac{1}{2}$ with $\lim_{x \to 0^{-}} (-x \frac{1}{2}) = -\frac{1}{2}$ then $\lim_{x \to 0^{-}} \frac{f(x)}{x} = -\frac{1}{2}$.

• For all x > 0, $-x - \frac{1}{2} < \frac{f(x)}{x} < -\frac{1}{2}$ with $\lim_{x \to 0^+} (-x - \frac{1}{2}) = -\frac{1}{2}$ then $\lim_{x \to 0^+} \frac{f(x)}{x} = -\frac{1}{2}$.

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2} \text{ which is finite then } f \text{ is differentiable at } 0 \text{ and } f'(0) = -\frac{1}{2}.$$

An equation the tangent (δ) to (C) at the origin is $y = -\frac{1}{2}x$.

3- The function h is defined on IR by $h(x) = (1-x)e^{x}$

$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} (e^x - xe^x) = 0 \text{ and } \lim_{x \to +\infty} h(x) = -\infty$$

$$h'(x) = -xe^x$$

The table of variations of h shows that h(0) = 1

- is the absolute maximum of h and then, for all x in $IR \{0\}$, h(x) < 1.
- 4- a) For x in $IR \{0\}$, $f(x) = \frac{x+1-e^x}{x}$ then $f'(x) = \frac{(1-x)e^x 1}{x^2} = \frac{h(x)-1}{x^2}$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(1 + \frac{1}{x} - \frac{e^x}{x} \right) = 1.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 + \frac{1}{x} - \frac{e^x}{x} \right) = -\infty$$

For x in $IR - \{0\}$, $f'(x) = \frac{h(x) - 1}{x^2} < 0$ since h(x) < 1.

Table of variations of f.

c) $\lim_{x \to \infty} g(x) = 1$ then the straight line (d) is asymptote to (C) at $-\infty$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + 1 - e^x}{x^2} = \lim_{x \to +\infty} \left(\frac{1}{x} + \frac{1}{x^2} - \frac{e^x}{x^2} \right) = -\infty \text{ since } \lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty.$$

Therefore (C) has at $+\infty$ an asymptotic direction parallel to the axis of ordinates.

Drawing (d), (δ) and (C). (Unit: 2 cm)

