Table of Fourier Series for Common Signals

Table of Fourier Series for Common Signals				
Name	Waveform		$c_k, k \neq 0$	Comments
Sawtooth	$X(t)$ X_0	$\frac{X_0}{2}$	$jrac{X_0}{2\pi k}$	
Impulse train	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{T_0}$	$rac{X_0}{T_0}$	
Rectangular wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{TX_0}{T_0}$	$\frac{TX_0}{T_0}\operatorname{sinc}\left(\frac{Tk\omega_0}{2\pi}\right)$	$\frac{Tk\omega_0}{2\pi} = \frac{Tk}{T_0}$
Square wave	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$-jrac{2X_0}{\pi k}$	$c_k = 0, k$ even
Triangular wave sine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{X_0}{2}$	$\frac{-2X_0}{(\pi k)^2}$	$c_k = 0, k \text{ even}$

Table of Fourier transform pairs

Tuble of Fourier transform parts				
f(t)	$F(\omega)$			
$\delta(t)$	1			
1	$2\pi \delta(\omega) = \delta\!\left(\frac{\omega}{2\pi}\right)$			
u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$			
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$			
$e^{j\omega_0 t}$	$2\pi \delta(\omega-\omega_0)$			
$\cos \omega_0 t$	$\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$			
$\sin \omega_0 t$	$\frac{\pi}{j}\delta(\omega-\omega_0)-\frac{\pi}{j}\delta(\omega+\omega_0)$			
e^{-bt^2}	$\sqrt{\pi/b} \mathrm{e}^{-\omega^2/(4b)}$			
$\sum_{n=-\infty}^{\infty} \delta(t - nT_0)$	$\sum_{k=-\infty}^{\infty} \omega_0 \delta(\omega - k\omega_0)$			

f(t)	$F(\omega)$
$\frac{1}{b^2 + t^2}$	$\frac{\pi}{b} e^{-b \omega }$
$e^{-b t }$	$\frac{2b}{b^2 + \omega^2}$
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}\left(T\frac{\omega}{2\pi}\right)$
$\mathrm{tri}(t)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$
$\frac{\omega_0}{2\pi}\operatorname{sinc}\left(\frac{\omega_0}{2\pi}t\right)$	$\operatorname{rect}\left(\frac{\omega}{\omega_0}\right)$
$\operatorname{sinc}^2(t)$	$\operatorname{tri}\!\left(\frac{\omega}{2\pi}\right)$
$e^{-at} u(t)$	$\frac{1}{j\omega + a}$
$\frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$	$\frac{1}{(j\omega+a)^n}$
$\frac{j}{\pi t}$	$\operatorname{sgn}(\omega)$

 $h = -\infty$ $h = -\infty$ h

Properties of the Continuous-Time Fourier Transform

Properties of the Continuous-Time Fourier Transform			
	Time	Fourier	
Synthesis, Analysis	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$	
Eigenfunction	$h(t) * e^{j\omega_0 t} = H(\omega_0)e^{j\omega_0 t}$	$H(\omega)2\pi\delta(\omega-\omega_0)$	
		$=H(\omega_0)2\pi\delta(\omega-\omega_0)$	
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1 F_1(\omega) + a_2 F_2(\omega)$	
Time transformation	$f(at+b), a \neq 0$	$\frac{1}{ a }e^{j\omega b/a}F(\omega/a)$	
Time shift	f(t- au)	$F(\omega)e^{-j\omega\tau}$	
Time reversal	f(-t)	$F(-\omega)$	
Time-scaling	$f(at), a \neq 0$	$\left(\frac{1}{ a }F\left(\frac{\omega}{a}\right)\right)$	
Convolution	$f_1(t) * f_2(t)$	$F_1(\omega) \cdot F_2(\omega)$	
Time-domain Multiplication	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$	
Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$	
Modulation (cosine)	$f(t)\cos(\omega_0 t)$	$\frac{F(\omega - \omega_0) + F(\omega + \omega_0)}{2}$	
Time. Differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$	
Freq. Differentiation	$(-jt)^n f(t)$	$\frac{d^n}{d\omega^n}F(\omega)$	
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega)$	
Conjugation	$f^*(t)$	$F^*(-\omega)$	
Symmetry properties	f(t) real	$F(\omega) = F^*(-\omega)$	
	$f(t) = f^*(-t)$	$F(\omega)$ real	
Duality	$F^*(t)$	$2\pi f^*(\omega)$	
Duality	F(t)	$2\pi f(-\omega)$	
Relation to Laplace	$F(\omega) = \left. F(s) \right _{s=j\omega}$, if ROC includes $j\omega$ axis		
Parseval's Theorem	$\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$		
Parseval/Rayleigh Theorem	$E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$		
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$		

A function that satisfies $f(t) = f^*(-t)$ is said to have **Hermitian symmetry**.

Table of Laplace transform pairs

f(t)	F(s)	ROC
$\delta(t)$	1	$\forall s$
u(t)	$\frac{1}{s}$	$real\{s\} > 0$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$real\{s\} > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$\operatorname{real}\{s\} < \operatorname{real}\{-a\}$
$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$

f(t)	F(s)	ROC
$\sin(\omega_0 t) u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$real\{s\} > 0$
$\cos(\omega_0 t) u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$real\{s\} > 0$
$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2 + \omega_0^2}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega_0^2}$	$\operatorname{real}\{s\} > \operatorname{real}\{-a\}$
$u_n(t) = \frac{d^n}{dt^n} \delta(t)$	s^n	$\forall s$
$u_{-n}(t) = \underbrace{u(t) * \dots * u(t)}_{\text{n times}}$	$\frac{1}{s^n}$	$real\{s\} > 0$

Properties of the Laplace Transform

	Time	Laplace	ROC (of result)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$	contains $\mathrm{ROC}_1 \cap \mathrm{ROC}_2$
Time shift	$a_1 f_1(t) + a_2 f_2(t)$ $f(t - \tau)$ $f(at), a \neq 0$	$e^{-s\tau}F(s)$	same
Time-scaling	$f(at), a \neq 0$	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	aROC
Time reversal	f(-t)	F(-s)	-ROC
Convolution	$f_1(t) * f_2(t)$	$F_1(s) \cdot F_2(s)$	contains $\mathrm{ROC}_1 \cap \mathrm{ROC}_2$
Frequency shift	$f_1(t) * f_2(t)$ $f(t)e^{j\omega_0 t}$ $f(t)e^{s_0 t}$	$F(s-j\omega_0)$	same
Frequency shift	$f(t)e^{s_0t}$	$F(s-s_0)$	$ROC + real\{s_0\}$
Time Differentiation	$\frac{d^n}{dt^n}f(t)$	$s^n F(\omega)$	contains ROC
s-domain Differentiation	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{d^n}{ds^n}F(\omega)$	same
Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{s}F(s)$	contains $ROC \cap \{real\{s\} > 0\}$
DC Value	$\int_{-\infty}^{\infty} f(t) dt = F(0)$		must contain s = 0