

A Novel Fundamental PWM Excitation-Based Rotor Position Estimation Method for Precision Sensorless Control of IPMSMs

Ziyan Zhao, Chuxiong Hu*, Shuaihu Wu, Ze Wang and Yu Zhu

Dept. of Mechanical Engineering, Tsinghua University, China

- Introduction
- **Existing Sensorless Control methods**
- **Proposed Sensorless Control Scheme**
- 4 Experimental Verification

- Introduction
- **Existing Sensorless Control methods**
- **3** Proposed Sensorless Control Scheme
- 4 Experimental Verification

1.1 Backgrounds

> IPMSMs (Interior Permanent Magnet Synchronous Motors) are widely used in many aspects

CNC machine

mechanical arm

Electric vehicle

- **★ High efficiency**
- **★ Compact size**
- **★ Wide speed range**
- **★ High torque performance**
- **★ Fast dynamic response**

1.2 Rotor position feedback of IPMSM

stator windings

rotor with interior PMs (permanent magnets)

> Field-oriented control (FOC) of IPMSM requires rotor position feedback

> Industrial challenges

rotor

stator

- ★ Long-term reliability
- Reduction of cost
- Mass & volume compression
- Thermal stability

Any other methods to meet these challenges?

1.3 (Position) Sensorless control

> Sensorless control —— a promising solution in many applications

advantages:

- **★** Cost ↓
- **★** Volume ↓
- ★ Power density ↑
- **★** Reliability ↑

- > Ideal—perfect sensorless control
 - > The rotor position is estimated from phase current and voltage;
 - Closed-loop servo control just like a physical position sensor is installed:
 - > Whole speed range;
 - > Irrelevant to load;
 - > No extra disturbance.

- Higher reliability; Easier to maintain;
- **S**
- Simpler design; Longer battery life;

- 1 Introduction
- **Existing Sensorless Control methods**
- **3** Proposed Sensorless Control Scheme
- 4 Experimental Verification

2.1 Technical routes of sensorless control

PMSM circuit

$$\begin{cases} 0 = i_A + i_B + i_C \\ u_A = e_A + i_A R + L_{AA} \frac{di_A}{dt} + L_{AB} \frac{di_B}{dt} + L_{AC} \frac{di_C}{dt} \\ u_B = e_B + i_B R + L_{BA} \frac{di_A}{dt} + L_{BB} \frac{di_B}{dt} + L_{BC} \frac{di_C}{dt} \\ u_C = e_C + i_C R + L_{CA} \frac{di_A}{dt} + L_{CB} \frac{di_B}{dt} + L_{CC} \frac{di_C}{dt} \end{cases}$$

- Known: Voltage u, current i
- Aim: Solve rotor position θ

IPMSM circuit equation (matrix format)

$$u = (e(\theta, \omega)) + Ri + (L(\theta) \cdot \frac{d}{dt}i)$$

$$\begin{aligned} e_A &= K_e \omega \sin(\theta) \\ e_B &= K_e \omega \sin(\theta - 120^\circ) \\ e_C &= K_e \omega \sin(\theta + 120^\circ) \end{aligned}$$

$L_{xx}(\theta) = L_{\Sigma} + L_{\Delta} \cos(2\theta + \varphi)$

Back EMF-based

- Disturbance observer;
- Sliding mode observer;
- Extended Kalman filter;
- Flux linkage observer;
- • •

Injection-based

- INFORM (Indirect Flux Online React Measurement) method;
- Rotary high-frequency signal injection;
- Stationary frame highfrequency injection;
- •

2.2 Back EMF(electromotive force)-based methods

Back EMF-based sensorless control methods

$$\hat{e} = u - Ri - L \cdot \frac{\mathrm{d}}{\mathrm{d}t}i$$
 back EMF observation $e_i = K_e \omega \sin(\theta - \varphi_i)$ relation of back EMF to position & speed where $\varphi_A = 0$, $\varphi_B = 120^\circ$, $\varphi_C = 240^\circ$

a basic algorithm to estimate rotor position:

- Works well at high-speed
- ♠ Performs poor in the low-speed range due to low SNR
- **△** Sensitive to *R* change

Fails at long-term standstill NOT "perfect sensorless"

2.3 Injection-based methods

Injection-based sensorless control methods

- $\star L(\theta)$ is independent of speed
- **★** How to measure?

$$u = e(\theta, \omega) + Ri + L(\theta) \left(\frac{\mathrm{d}}{\mathrm{d}t}i\right)$$

★ *L* can only be measured through high-frequency response!

- \bigcirc $L(\theta)$ is independent of speed
- ▲ Injection causes extra heating, hearable noise and disturbance

2.4 The contradiction

Back EMF-based

- ✓ Good at high-speed
- × Standstill failure
- × Sensitive to R change

Injection-based

- ✓ Good at standstill & low-speed
- × Extra energy loss and noise
- × Injected signals disturb control

Demands of IPMSM applications

- **★** Standstill stability
- **★** High dynamics load variation
- **★** Whole speed range servo control
- **★** High efficiency & low noise
- **★** Complex thermal environment

• Existing commercial sensorless solutions

- 1 Introduction
- **Existing Sensorless Control methods**
- **Proposed Sensorless Control Scheme**
- 4 Experimental Verification

3.1 The idea of Fundamental PWM Excitation (FPE)

> commonly-used Pulse Width Modulation (PWM) drive of IPMSM

> Directly consider PWM switching as excitation

- \star voltage switch in a short time (~1 μ s)
- $\star \theta$, ω approximately unchange
- \star current *i* is continuous (appr.

Speed irrelevant; R insensitive; No injection

Transient model of IPMSM

3.2 The proposed FPE method

Transient model

$$\Delta \boldsymbol{u} = \boldsymbol{L}(\theta) \cdot \Delta \left(\frac{\mathrm{d}\boldsymbol{i}}{\mathrm{d}t}\right)$$

denote:

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$
$$\Delta (d\boldsymbol{i}/dt) \triangleq \boldsymbol{\tau} = \begin{bmatrix} \tau_A & \tau_B & \tau_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} = \boldsymbol{L}(\theta) \cdot \Delta \begin{pmatrix} \frac{\mathrm{d}\boldsymbol{i}}{\mathrm{d}t} \end{pmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\tau} = \begin{bmatrix} \tau_A & \tau_B & \tau_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\tau} = \begin{bmatrix} \tau_A & \tau_B & \tau_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\Delta \boldsymbol{u} \triangleq \boldsymbol{\mu} = \begin{bmatrix} \mu_A & \mu_B & \mu_C \end{bmatrix}$$

$$\begin{bmatrix} L_{AA} & L_{AB} & L_{AC} \\ L_{BA} & L_{BB} & L_{BC} \\ L_{CA} & L_{CB} & L_{CC} \end{bmatrix} = \boldsymbol{L}_{\boldsymbol{\Sigma}} \begin{bmatrix} 1 & -1/2 & -1/2 \\ -1/2 & 1 & -1/2 \\ -1/2 & -1/2 & 1 \end{bmatrix} + \boldsymbol{L}_{\boldsymbol{\Delta}} \begin{bmatrix} \cos(2\boldsymbol{\theta}) & \cos(2\boldsymbol{\theta} - 120^{\circ}) & \cos(2\boldsymbol{\theta} + 120^{\circ}) \\ \cos(2\boldsymbol{\theta} - 120^{\circ}) & \cos(2\boldsymbol{\theta} + 120^{\circ}) & \cos(2\boldsymbol{\theta} - 120^{\circ}) \end{bmatrix}$$

- \star each rising/falling edge of PWM \rightarrow one (μ, τ) observation group.
- Aim: find the best θ to fit all groups \rightarrow estimated rotor position $\hat{\theta}$.
- **Use Nonlinear Least-Squares (LS) algorithm!**

objective function:
$$\min_{\theta} F(\theta) = \sum_{i=1}^{n} \| \boldsymbol{\mu}^{(i)} - \boldsymbol{L}(\theta) \cdot \boldsymbol{\tau}^{(i)} \|_{2}^{2}$$

Major innovation: FPE position estimation → Nonlinear LS problem

3.3 Solving the nonlinear LS problem

- Known: a group of (μ, τ) observations.
- Aim: minimize the objective function

$$\min_{\theta} F(\theta) = \sum_{i=1}^{n} \left\| \boldsymbol{\mu}^{(i)} - \boldsymbol{L}(\theta) \cdot \boldsymbol{\tau}^{(i)} \right\|_{2}^{2}$$

Numerical solutions are computational

,However

$$\min_{\theta} F(\theta) \Leftrightarrow \min_{\theta} \left(\cos (2\theta) \cdot \left[\sum_{i=1}^{n} g(\boldsymbol{\mu}^{(i)}, \boldsymbol{\tau}^{(i)}) \right] + \sin (2\theta) \cdot \left[\sum_{i=1}^{n} h(\boldsymbol{\mu}^{(i)}, \boldsymbol{\tau}^{(i)}) \right] \right) \longrightarrow F \text{ is sinusoidal}$$

$$\Leftrightarrow 2\hat{\theta} = \operatorname{atan2}\left(-\sum_{i=1}^{n} g(\mu^{(i)}, \tau^{(i)}), -\sum_{i=1}^{n} h(\mu^{(i)}, \tau^{(i)})\right)$$
Computational cost is small

where

$$\begin{cases} g(\boldsymbol{\mu}, \boldsymbol{\tau}) = L_{\Sigma}(\tau_{\alpha} + \tau_{\beta})(\tau_{\alpha} - \tau_{\beta}) + (\mu_{\alpha}\tau_{\alpha} - \mu_{\beta}\tau_{\beta}) \\ h(\boldsymbol{\mu}, \boldsymbol{\tau}) = L_{\Sigma}(2\tau_{\alpha}\tau_{\beta}) + (\mu_{\alpha}\tau_{\beta} + \mu_{\beta}\tau_{\alpha}) \end{cases} \quad \text{and} \quad \begin{cases} \mu_{\alpha} = (2\mu_{A} - \mu_{B} - \mu_{C})/3 \\ \mu_{\beta} = \sqrt{3}(\mu_{B} - \mu_{C})/3 \\ \tau_{\alpha} = (2\tau_{A} - \tau_{B} - \tau_{C})/3 \\ \tau_{\beta} = \sqrt{3}(\tau_{B} - \tau_{C})/3 \end{cases}$$

$$\begin{cases} \mu_{\alpha} = (2\mu_{A} - \mu_{B} - \mu_{C})/3 \\ \mu_{\beta} = \sqrt{3}(\mu_{B} - \mu_{C})/3 \\ \tau_{\alpha} = (2\tau_{A} - \tau_{B} - \tau_{C})/3 \\ \tau_{\beta} = \sqrt{3}(\tau_{B} - \tau_{C})/3 \end{cases}$$

3.4 implementation of the solution

> Proposed FIFO-based Nonlinear LS rotor position estimation algorithm

Calculation	Add/Sub	Mult	Div	Paral_add	CORDIC
count	0	0	0	0	0

(2) Clarke transform

$$-\sum_{i=1}^{n} g(\boldsymbol{\mu}^{(i)}, \boldsymbol{\tau}^{(i)}), -\sum_{i=1}^{n} h(\boldsymbol{\mu}^{(i)}, \boldsymbol{\tau}^{(i)})$$

$$\begin{cases} g^{(i)} = L_{\Sigma}(\tau_{\alpha} + \tau_{\beta})(\tau_{\alpha} - \tau_{\beta}) + (\mu_{\alpha}\tau_{\alpha} - \mu_{\beta}\tau_{\beta}) \\ h^{(i)} = L_{\Sigma}(2\tau_{\alpha}\tau_{\beta}) + (\mu_{\alpha}\tau_{\beta} + \mu_{\beta}\tau_{\alpha}) \end{cases}$$

3.5 Sensorless control based on the proposed method

- 1 Introduction
- **Existing Sensorless Control methods**
- **3** Proposed Sensorless Control Scheme
- 4 Experimental Verification

4.1 Actual implementation issues

ightharpoonup How to measure instantaneous di/dt in practice?

Final version: SNR>93dB

"mother of success"

4.2 Experimental setup

Laptop

DC supply control board stm32+FPGA

logic analyzer

IPMSM drive

on-board di/dt measurement

Controller & driver

IPMSM

Load

measured current & di/dt waveform (2Msps)

test IPMSM

4.3 Experimental results

Sensorless speed servo control: Trapezoidal speed trajectory

reference speed & actual speed (400 rpm/div)

position estimation error(1°/div) speed servo error (10 rpm/div)

Sensorless position servo control:Swept-frequency sinusoidal trajectory

reference & actual & estimated position (5 rounds/div)

position estimation error(1°/div) position servo error (1°/div)

4.4 Experimental results

> experimental data

error	max err	rms err
position estimation	1.346°	0.335°
position servo	1.968°	0.534°
speed servo	19.94rpm	3.812rpm

> speed range comparison

method	speed range	
back EMF	200rpm~1200rpm	
HF injection	0rpm~150rpm	
proposed FPE	0rpm~1200rpm	

Sensorless speed servo control

4.5 Experimental results

← As sensorless elevator tractor

↑ As sensorless robot joint

4.6 Conclusions

- > We have proposed a novel nonlinear LS-based FPE position estimation method towards IPMSMs perfect sensorless control.
- > The proposed method can achieve closed-loop control without a physical position sensor, having the potential to save cost, increase reliability and power density.
- > Our goal is to provide general-proposed or specialized servo drivers with perfect sensorless control technology.

Thanks for your attention! **O&A**

Ziyan Zhao, Chuxiong Hu*, Shuaihu Wu, Ze Wang and Yu Zhu Dept. of Mechanical Engineering, Tsinghua University, China