

## planetmath.org

Math for the people, by the people.

## properties of spanning sets

Canonical name PropertiesOfSpanningSets

Date of creation 2013-03-22 18:05:40 Last modified on 2013-03-22 18:05:40

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)

Entry type Result
Classification msc 15A03
Classification msc 16D10

Let V be a vector space over a field k. Let S be a subset of V. We denote Sp(S) the span of the set S. Below are some basic properties of spanning sets.

1. If  $S \subseteq T$ , then  $\operatorname{Sp}(S) \subseteq \operatorname{Sp}(T)$ . In particular, if  $\operatorname{Sp}(S) = V$ , every superset of S spans (generates) V.

Proof. If  $v \in \operatorname{Sp}(S)$ , then  $v = r_1v_1 + \cdots + r_nv_n$  for  $v_i \in S$ . But  $v_i \in T$  by assumption. So  $v \in \operatorname{Sp}(T)$  as well. If  $\operatorname{Sp}(S) = V$ , and  $S \subseteq T$ , then  $V = \operatorname{Sp}(S) \subseteq \operatorname{Sp}(T) \subseteq V$ .

2. If S contains 0, then  $Sp(S - \{0\}) = Sp(S)$ .

Proof. Let 
$$T = S - \{0\}$$
. So  $\operatorname{Sp}(T) \subseteq \operatorname{Sp}(S)$  by 1 above. If  $v \in \operatorname{Sp}(S)$ , then  $v = r_1v_1 + \cdots + r_nv_n$ . If one of the  $v_i$ 's, say  $v_i$ , is 0, then  $v = r_2v_2 + \cdots + r_nv_n \in \operatorname{Sp}(T)$ .

3. It is not true that if  $S_1 \supseteq S_2 \supseteq \cdots$  is a chain of subsets, each spanning the same subspace W of V, so does their intersection.

*Proof.* Take  $V = \mathbb{R}^n$ , the Euclidean space in n dimensions. For each i = 1, 2, ..., let  $S_i$  be the closed ball centered at the origin, with radius 1/i. Then  $\operatorname{Sp}(S_i) = V$ . But the intersection of these  $S_i$ 's is just the origin, whose span is itself, not V.

4. S is a basis for V iff S is a minimal spanning set of V. Here, minimal means that any deletion of an element of S is no longer a spanning set of V.

*Proof.* If S is a basis for V, then S spans V and S is linearly independent. Let T be the set obtained from S with  $v \in S$  deleted. If T spans V, then v can be written as a linear combination of elements in T. But then  $S = T \cup \{v\}$  would no longer be linearly independent, contradiction the assumption. Therefore, S is minimal.

Conversely, suppose S is a minimal spanning set for V. Furthermore, suppose that S is linearly dependent. Let  $0 = r_1v_1 + \cdots + r_nv_n$ , with  $r_1 \neq 0$ . Then

$$v_1 = s_2 v_2 + \dots + s_n v_n, \tag{1}$$

where  $s_i = -r_i/r_1$ . So any linear combination of elements in S involving  $v_1$  can be replaced by a linear combination not involving  $v_1$  through equation (1). Therefore  $\operatorname{Sp}(S) = \operatorname{Sp}(S - \{v\})$ . But this means that S is not minimal, contrary to our assumption. Therefore, S must be linearly independent.

**Remark**. All of the properties above can be generalized to modules over rings, except the last one, where the implication is only one-sided: basis implying minimal spanning set.