32,768 WORD × 8 Bit CMOS Static RAM

FEATURES

- Fast Access Time: 70, 85, 100, 120ns (Max.)
- · Low Power Dissipation

Standby (CMOS): $10\mu W$ (Typ.) L-Version

5μW (Typ.) LL-Version

: 35mW/1MHz (Max.)

Single 5V ± 10% Power Supply

- . TTL Compatible Inputs and Outputs
- Fully Static Operation

No clock or refresh required

Three State Outputs

Operating

- . Low Data Retention Voltage: 2V (Min.)
- Standard Pin Configuration

KM62256BLP/BLP-L : 28-DIP-600B KM62256BLG/BLG-L : 28-SOP-450 KM62256BLS/BLS-L : 28-DIP-300 KM62256BLTG/BLTG-L : 28-TSOP1-0813.4F

KM62256BLRG/BLRG-L: 28-TSOP1-0813.4R

GENERAL DESCRIPTION

The KM62256BL/BL-L is a 262,144-bit high-speed Static Random Access Memory organized as 32,768 words by 8 bits.

The device is fabricated using Samsung's advanced CMOS process with polyresistors.

The KM62256BL/BL-L has an output enable input for precise control of the data outputs.

It also has a chip enable input for the minimum current power down mode.

The KM62256BL/BL-L has been designed for high speed and low power application. It is particularly well suited for battery back-up nonvolatile memory application.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Pin Name	Pin Function
A ₀ -A ₁₄	Address Inputs
WE	Write Enable Input
<u>CS</u>	Chip Select Input
ŌĒ	Output Enable Input
1/O ₁ -1/O ₈	Data Inputs/Outputs
V _{cc}	Power (+5V)
V _{SS}	Ground
N.C.	No Connection (32-TSOP only)

PIN CONFIGURATIONS (Top View)

28-pin TSOP (0813.4)

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	VIN, VOUT	-0.5 to Vcc +5.5	V
Voltage on Vcc Supply Relative to Vss	Vcc	-0.5 to 7.0	٧
Power Dissipation	Po	1.0	W
Storage Temperature	Tstg	-65 to 150	°C
Operating Temperature	TA	0 to 70	°C
Soldering Temperature and Time	Tsolder	260° C, 10 sec(Lead only)	

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (TA=0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	ViH	2.2		Vcc+0.5	V
Input Low Voltage	VIL	-0.5*		0.8	V

^{*} VIL(min)=-3.0V for ≤ 50 ns pulse

DC AND OPERATING CHARACTERISTICS

(Ta=0 to 70°C, Vcc=5V \pm 10%, unless otherwise specified)

Item	Symbol	Test Condition		Min	Тур*	Max	Unit
Input Leakage Current	lu	Vin=Vss to Vcc		-1	_	1	μA
Output Leakage Current	lLO	CS=VIN or OE=VIH or WE=VIL, VI/O=	Vss to Vcc	-1		1	μA
Operation Power Supply Current	Icc	CS=VIL, Vin=VIH or VIL I/io=0mA	_	7	15	mA	
Average Operating	Icc1	Cycle Time=1 μ S, 100% Duty $\overline{\text{CS}} \leq$ 0.2V, V _{IL} \leq 0.2V V _{IH} \geq V _{CC} -0.2V, I ν O=0mA			i	7	mA
Current Icc2		Min Cycle. 100% Duty CS=VIL, VIN=VIL or VIH II/O=0mA			45	70	mA
Standby Power	ISB	CS=ViH		_		1	mA
Supply Current	ISB1	CS≥Vcc-0.2V, Vin≥Vcc-0.2 or	L-Ver	_	2	100	μA
Oupply Ourient Isl	1081	Vin≤0.2V			1	20	μA
Output Low Voltage	Vol	loL=2.1mA				0.4	٧
Output High Voltage	Vон	loн=-1.0mA	2.4	_		V	

^{*}Typ: Vcc=5V, Ta=25° C

CAPACITANCE (f = 1MHz, T_A = 25°C)

Item	Symbol	Test Conditions	Min	Max	Unit
Input Capacitance	Cin	V _{IN} = 0V		6	pF
Input/Output Capacitance	C _{I/O}	V _{1/O} = 0V	_	8	pF

Note: Capacitance is sampled and not 100% tested.

TEST CONDITIONS ($T_A = 0$ to 70° C, $V_{CC} = 5V \pm 10\%$, unless otherwise specified)

Parameter	Value
Input Pulse Level	0.8 to 2.4V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Loads	C _L = 100pF + 1 TTL

* Including Scope and Jig Capacitance

READ CYCLE

Parameter	Symbol	KM62256BL-7 KM62256BL-7L		KM62256BL-8 KM62256BL-8L		KM62256BL-10 KM62256BL-10L		KM62256BL-12 KM62256BL-12L		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	70		85		100		120		ns
Address Access Time	taa		70		85		100		120	ns
Chip Select to Output	too		70		85		100		120	ns
Output Enable to Valid Output	toE		35		45		50		60	ns
Chip Select to Low-Z Output	t _{LZ}	10		10		10		10		ns
Output Enable to Low-Z Output	tolz	5	1	5		5		5		ns
Chip Disselect to High-Z Output	t _{HZ}	0	30	0	30	0	35	0	40	ns
Output Disable to High-Z Output	tonz	0	30	0	30	0	35	0	40	ns
Output Hold from Address Change	t _{oH}	5		5		10		10		ns

WRITE CYCLE

Parameter	Symbol	KM62256BL-7 KM62256BL-7L		KM62256BL-8 KM62256BL-8L		KM62256BL-10 KM62256BL-10L		KM62256BL-12 KM62256BL-12L		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	twc	70		85		100		120		ns
Chip Select to End of Write	t _{cw}	60		75		80		85		ns
Address Valid to End of Write	taw	60		75		80		85		ns
Address Set-up Time	tas	0		0		0		0		ns
Write Pulse Width	twe	50		60		60		70		ns
Write Recovery Time	twe	0		0		0		0	ALCO POLICE	ns
Write to Output High-Z	t _{whz}	0	25	0	30	0	30	0	40	ns
Data to Write Time Overlap	t _{DW}	30		40		40		50		ns
Data Hold from Write Time	t _{DH}	0		0		0		0		ns
End Write to Output Low-Z	tow	5		5	1	5		5		ns

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE (1) (Address Controlled)

 $(\overline{CS} = \overline{OE} = V_{iL}, \ \overline{WE} = V_{iH})$

TIMING WAVEFORM OF READ CYCLE (2)

 $(\overline{WE} = V_{IH})$ (Note 1, 2, 3, 4)

TIMING WAVEFORM OF WRITE CYCLE (3)

(OE Clocked) (Note 5, 6, 7, 8)

TIMING WAVEFORM OF WRITE CYCLE (4)

(OE Low Fixed) (Note 5, 6, 7, 8, 9)

Notes

- t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to the V_{OH} or V_{OL} level.
- 2. At any given temperature and voltage condition t_{HZ} (max.) is less than t_{LZ} (min.) both for a given device and from device to device.
- 3. WE is high for read cycle.
- 4. Address valid prior to or coincident with CS transition Low.
- 5. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and \overline{WE} .
- 6. During this period, I/O pins are in the output state. The input signals out of phase must not applied.
- 7. CS or WE must be high during address transition state.
- 8. If \overline{OE} is high, I/O pins remain in a high-impedance state.
- 9. \overline{OE} is continuously low ($\overline{OE} = V_{11}$).

FUNCTIONAL DESCRIPTION

ĊS	WE	ŌĒ	Mode	I/O Pin	V _{cc} Current
Н	Х*	Х	Power Down	High-Z	I _{SB} , I _{SB1}
L	Н	Н	Output Disable	High-Z	loc
L	Н	L	Read	D _{out}	lcc
L	L	Х	Write	D _{IN}	lcc

^{*} X means Don't Care.

DATA RETENTION CHARACTERISTICS (TA = 0 to 70°C)

Parameter	Symbol	Test Condit	Min	Тур	Max	Unit	
V _{cc} for Data Retention	V _{DR}	CS≥V _{cc} ~ 0.2V	2.0		5.5	٧	
Data Retention Current	I _{DR}	V _{CC} = 3.0V	L		1	50*	μΑ
		$V_{CC} = 3.0V$ $\overline{CS} \ge V_{CC} - 0.2V$	L-L		0.5	10**	μΑ
Data Retention Set-up Time	t _{SDR}	See Data Retention Waveforms (below)		0			กร
Recovery Time	t _{RDR}			t _{RC} ***			ns

^{* 20} μ A (Max.) at 0°C ~ 40°C

DATA RETENTION WAVEFORM (CS Controlled)

^{** 3}µA (Max.) at 0°C~40°C

^{***} t_{RC}: Read Cycle Time