Shortest Paths and Matrix Multiplication

Assumption: negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path:

- Consider a shortest path p_{ij}^{m} from v_i to v_j such that $|p_{ij}^{m}| \le m$
 - \blacktriangleright i.e., path p_{ij}^{m} has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple \Rightarrow m is finite \Rightarrow $m \le n-1$
- $i = j \implies |p_{ii}| = 0 \& \omega(p_{ii}) = 0$
- $i \neq j \implies \text{decompose path } p_{ij}^{\ m} \text{ into } p_{ik}^{\ m-1} \ \& \ v_k \rightarrow v_j \text{ , where} |p_{ik}^{\ m-1}| \leq m-1$
 - $ightharpoonup p_{ik}^{m-1}$ should be a shortest path from v_i to v_k by optimal substructure property.
 - ► Therefore, $\delta(v_i, v_j) = \delta(v_i, v_k) + \omega_{kj}$

Shortest Paths and Matrix Multiplication

(2) A Recursive Solution to All Pairs Shortest Paths Problem:

- d_{ij}^{m} = minimum weight of any path from v_i to v_j that contains at most "m" edges.
- m = 0: There exist a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

• $m \ge 1$: $d_{ij}^{m} = \min \{ d_{ij}^{m-1}, \min_{1 \le k \le n \ \Lambda \ k \ne j} \{ d_{ik}^{m-1} + \omega_{kj} \} \}$ = $\min_{1 \le k \le n} \{ d_{ik}^{m-1} + \omega_{kj} \} \text{ for all } v_k \in V,$ since $\omega_{j,j} = 0 \text{ for all } v_j \in V.$

Shortest Paths and Matrix Multiplication

- to consider all possible shortest paths with ≤ m edges from v_i to v_i
 - ▶ consider shortest path with $\leq m$ -1 edges, from v_i to v_k , where $v_k \in R_{v_i}$ and $(v_k, v_i) \in E$

• note: $\delta(v_i, v_j) = d_{ij}^{n-1} = d_{ij}^{n} = d_{ij}^{n+1}$, since $m \le n - 1 = |V| - 1$

Shortest Paths and Matrix Multiplication

- (3) Computing the shortest-path weights bottom-up:
- given $W = D^1$, compute a series of matrices D^2 , D^3 , ..., D^{n-1} , where $D^m = (d_{ij}^m)$ for m = 1, 2, ..., n-1
 - ► final matrix D^{n-1} contains actual shortest path weights, i.e., $d_{ij}^{n-1} = \delta(v_i, v_j)$
- SLOW-APSP(W) $D^{1} \leftarrow W$ for $m \leftarrow 2$ to n-1 do $D^{m} \leftarrow \text{EXTEND}(D^{m\text{-}1}, W)$ return $D^{n\text{-}1}$

Shortest Paths and Matrix Multiplication

EXTEND (D, W) $\blacktriangleright D = (d_{ij}) \text{ is an n x n matrix}$ $for <math>i \leftarrow 1 \text{ to } n \text{ do}$ $for <math>j \leftarrow 1 \text{ to } n \text{ do}$ $d_{ij} \leftarrow \infty$ $for <math>k \leftarrow 1 \text{ to } n \text{ do}$ $d_{ij} \leftarrow \min\{d_{ij}, d_{ik} + \omega_{k,j}\}$ return D

MATRIX-MULT (A, B)

► $\mathbf{C} = (\mathbf{c}_{ij})$ is an n x n result matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $\mathbf{c}_{ij} \leftarrow 0$ for $k \leftarrow 1$ to n do $\mathbf{c}_{ij} \leftarrow \mathbf{c}_{ij} + \mathbf{a}_{ik} \times \mathbf{b}_{kj}$ return \mathbf{C}

Shortest Paths and Matrix Multiplication

- relation to matrix multiplication C = A×B: c_{ij} = ∑_{1≤k≤n} a_{ik} x b_{kj},
 D^{m-1} ↔ A & W ↔ B & D^m ↔ C
 "min" ↔ "t" & "t" ↔ "x" & "∞" ↔ "0"
- Thus, we compute the sequence of matrix products

s, we compute the sequence of matrix products
$$D^{1} = D^{0} \times W = W \text{ ; note } D^{0} = \text{identity matrix,}$$

$$D^{2} = D^{1} \times W = W^{2}$$

$$D^{3} = D^{2} \times W = W^{3}$$

$$\vdots$$

$$D^{n-1} = D^{n-2} \times W = W^{n-1}$$

$$0 \text{ if } i = j$$

$$\bullet \text{ i.e., } d_{ij}^{0} = \begin{cases} 0 \text{ if } i \neq j \end{cases}$$

- running time : $\Theta(n^4) = \Theta(V^4)$
 - ▶ each matrix product : $\Theta(n^3)$
 - ▶ number of matrix products : *n*-1

Example:

	1	2	3	4	5
1	0	3	8	2	-4
2	3	0	-4	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	8	∞	1	6	0

$$D^2 = D^I W$$

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^4 = D^3 W$$

	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	∞	4	0	8	∞
4	2	∞	-5	0	∞
5	8	8	8	6	0

$$D^{1} = D^{0}W$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$1 \quad 0 \quad 3 \quad -3 \quad 2 \quad -4$$

$$2 \quad 3 \quad 0 \quad -4 \quad 1 \quad -1$$

$$3 \quad 7 \quad 4 \quad 0 \quad 5 \quad 11$$

$$4 \quad 2 \quad -1 \quad -5 \quad 0 \quad -2$$

$$5 \quad 8 \quad 5 \quad 1 \quad 6 \quad 0$$

$$D^3 = D^2 W$$