+29/1/4+

L1 FOM Quiz Séquence 3

Test 20mn/Aucun document autorisé —

$\boxtimes 2 \square 2 \boxtimes 2 \square 2 \square 2 \square 2 \square 2 \square 2 \square 2$
□8 □8 □8 □8 □8 □8 □8 □8 □8 □8 □8 □8 □8 □8

← Écrivez ci-contre votre numéro d'étudiant.

Par exemple si votre numéro est 58314955, cochez la case "5" de la première colonne, la case "8" de la seconde colonne, la case "3" de la troisième, et ainsi de suite jusqu'à la case "5" de la dernière colonne.

Nom: ..CAUTY.....

Prénom : Conoc.....

Question 1 \clubsuit Cochez les propriétés correctes (sans justifier).

 $\exists n \in \mathbb{N} \, \forall k \in \mathbb{N} \, (n^2 + n - 2 \ge 3k^2 + 8)$

 $\forall n \in \mathbb{N} \left[(n+1)^2 \ge 2 \Rightarrow \exists k \in \mathbb{N} \left(k \ne 0 \land n \ge k \right) \right]$

 $\forall n \in \mathbb{N} \ (n \ge 1 \land \exists k \in \mathbb{N} \ (n > k))$

Question 2 La propriété

 $\forall n \in \mathbb{N} \left[(\exists k_1 \in \mathbb{N}^* \, \exists k_2 \in \mathbb{N}^* \, n = 2k_1 + 2k_2) \Rightarrow \exists k \in \mathbb{N} \, (n = 2k + 2) \right]$

st-elle vraie (on convient que $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$)? Justifier ci-après.	☐f 愛 p ☐j Réservé
Cette propriété est vious En es	fer, slit
existe & EINX BEINX to	: n= 2b, + 2b,
alors n= 2 (b, + bz) (1)	
On peut régétire l'égalité n:	= 2h + 2
Men n=	
Donc en posant by = h et by	107 107
bien (1) + sauf 5 &= 0, donc	

0/1

1/2

On se donne les relations C(x) ct R(x) pour exprimer respectivement que "x est un cube" et que "x est rouge".

Question 3 . Cochez la (ou les) formule(s) qui exprime(nt) qu'aucun cube n'est rouge.

- $\forall x (C(x) \Rightarrow \neg R(x))$
- $\bigvee x(C(x) \wedge R(x))$

3/3

3/3

2/3

1/1

 $\forall x (R(x) \Rightarrow \neg C(x))$

Question 4 & Cochez la (ou les) formule(s) qui exprime(nt) que certains cubes ne sont pas rouges.

Soit la suite réelle $(u_n)_{n\in\mathbb{N}}$ d'équation $u_{n+1}=\frac{2n}{u_n-2}$, mais où u_0 est encore non fixé.

Question 5 Pour le cas $u_0 = 0$, montrer par récurrence que la proposition

 $\forall n \in \mathbb{N} (n \ge 1 \Rightarrow u_n < 0)$ est vraie.

On pose P(n): $\forall n \in \mathbb{N}$, $(n \times 1 \Rightarrow) \cup_n \times 0)$ like

Initialisation: n = 0 done P(0) vrai \mathbb{N} $\mathbb{N$

Done Up-2<-Z<0 donc P(n+1) vroise. Par principe de récurrence on a moutré P(n) vroise tin EIN.

Question 6 \clubsuit Cocher la(les) valeur(s) de u_0 pour la(les)quelle(s) la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie.

 $u_0 = 0$ $u_0 = 1$ $u_0 = 3$

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=2,\ u_1=1,$ et $u_{n+2}=u_{n+1}+12u_n.$ Question 7 Laquelle des expressions ci-dessous est vraie ?

1/1