

Circuit Theory and Electronics Fundamentals

Department of Physical Engineering, Técnico, University of Lisbon

Audio Amplifier

June 3rd, 2021 Diogo Simões, Júlia Mestre, Rafael Dias

Contents

1	Introduction	1
2	Simulation Analysis	2
3	Theoretical Analysis	3
4	Experimental Results	5
5	Conclusion	7

1 Introduction

The objective of this laboratory assignment is to build an amplifying circuit based on an OP-AMP component.

In Section 3, a theoretical analysis of the circuit is presented. In Section 2, the circuit is analysed by simulation, and the results are compared to the theoretical results obtained in Section 3. The conclusions of this study are outlined in Section 5.

Figure 1: OP-AMP Circuit

2 Simulation Analysis

We simulated the circuit using frequency analysis, using the supplied model of the OP-AMP:

Table 1: Values of capacitances and resistances for various circuit components

Vcc	10.0V
Vee	10.0V
C1	220nF
C2	220nF
R1	1000Ohm
R2	500Ohm
R3	100kOhm
R4	1000Ohm

We simulate the circuit using frequency analysis and $\max(\text{vin(t)})=1$, obtaining the following gain in v_fin , which is the gain at the end of the circuit:

The calculated input impedance is $(990.01 + i \cdot 7.32)Ohm$. A different setup was used to calculate the output impedance which yielded $(-0.09519 + i \cdot 7.234)Ohm$.

This circuit has a cost of 113.44, a maximum gain of 36.55dB, central frequency of 1006.5Hz. The calculated merit is therefore $3.9375 \cdot 10^{-4}$.

3 Theoretical Analysis

Firstly, we computed the central frequency and the gain depending on the frequency, utilizing the expressions from the laboratory class. We obtain the values of 1023.08Hz for the central frequency and a bandwidth of 723.4Hz.

We then used the incremental model of the OP-AMP component, yielding the following equations for the nodal analysis of the circuit:

$$(C1*w*j+1/R1+1/Zi)*V_{pos}-1/Zi*V_{neg}=V_{in}*C1*w*j\\ -Av*V_{pos}+V_A+Av*V_{neg}=0\\ -1/Zo*V_A+(1/R2+1/Zo+1/R3)*V_{out}-1/R3*V_{neg}-1/R2*V_{fin}=0\\ -1/Zi*V_{pos}-1/R3*V_{out}+(1/R3+1/R4+1/Zi)*V_{neg}=0\\ -1/R2*V_{out}+(1/R2+C2*w*j)*V_{fin}=0$$
 (1)

We therefore obtain the following plot for the gain as a function of frequency:

As such the central frequency is 81.855Hz, the gain at this frequency is 21.542dB and the bandwidth is 143.57. These values are not consistent with the values given by simulation, however, they are consistent with the transfer function provided in the lab class:

$$T(s) = \frac{R1 * C1 * s}{1 + R1 * C1 * s} \cdot \frac{1 + R3/R4}{1 + R2 * C2 * s}$$
 (2)

As we can see in the plot below:

The input and output impedances were also calculated yielding values of 1009.6Ohm and $2.24\cdot 10^{-5}Ohm$ respectively.

4 Experimental Results

We were able to build the circuit presentially utilizing a breadboard and the various components.

Then, the frequency of the input voltage source was ajusted, from 50Hz to 50kHz, at various increments and, for each value, the value of the output voltage was measured. The results are in the following table:

These results were graphed below as to compare them to the theoretical analysis and simulation done above:

Table 2: Gain as a function of frequency

Table 2. Gai					
f(Hz)	$V_L(mV)$	f(Hz)	$V_L(mV)$		
50.0	98	1600.0	660		
75.0	133	1700.0	640		
100.0	173	1800.0	630		
125.0	209	1900.0	610		
150.0	249	2000.0	590		
200.0	318	2200.0	540		
225.0	346	2600.0	510		
250.0	378	3000.0	470		
275.0	406	3300.0	430		
300.0	440	3600.0	400		
325.0	462	3900.0	380		
350.0	500	4200.0	350		
375.0	520	4500.0	330		
400.0	540	5000.0	300		
450.0	580	5500.0	277		
500.0	610	6000.0	257		
550.0	640	6500.0	241		
600.0	670	7000.0	225		
700.0	710	7500.0	213		
800.0	720	8000.0	197		
900.0	730	9000.0	181		
1000.0	740	10000.0	165		
1100.0	720	12000.0	141		
1200.0	720	15000.0	117		
1300.0	710	20000.0	88		
1400.0	690	50000.0	38		
1500.0	680				

5 Conclusion

In this laboratory assignment the objective of building a bandpass filter with central frequency at aproximately 1kHz and gain at central frequency 40dB was achieved. The central frequency was 1006.5Hz, so it presents a deviation of only 0.65%. The maximum obtained was 36.55dB, which presents a deviation of 8.6%. The cost was 113.44 MU and the merit was $3.9375 \cdot 10^{-4}$

The results from both the physical circuit at the laboratory and the circuit simulation using ngspice appear to match, as we can see in the following figure:

We can conclude that the physical circuit and simulation analysis yield very similar results. However, the theoretical analysis yielded very lacklustre values. This is probably due to the complexity of the OP-AMP component which the simple model used failed to replicate.