ETロボコン公式トレーニング データロギング

データログを開発に役立てよう!

この教材について

■ 目的

この教材は、ETロボコンに参加されるみなさんに、開発 に必要となる知識やスキル取得の機会を提供することを 目的に作成されております

■著作

- この教材はETロボコン実行委員会が作成したものです
- この教材の著作権は、 ETロボコン実行委員会に帰属します
- ■使用について
 - ETロボコンの参加資格(企業/大学/個人)の範囲内に限り、ご自由に活用していただいてかまいません

必要な開発・実行環境

■ ハードウェア

- PC
 - Bluetooth通信可能であること
 - PCに通信デバイスがない場合は、USB接続タイプのBluetoothレシーバなどを利用してください
- 走行体
 - 組立図にしたがって組み立ててください
- ソフトウェア
 - NXTGamepad
 - 以下のURLからダウンロードしてください
 http://lejos-osek.sourceforge.net/download.htm?group_id=196690
 - サンプルプログラム datalogging 開発環境に含まれています

試走

実際にロボットを走行させて、その性能を評価します

試走会の様子

課題の発見と解決

試走では様々な課題が発見されます。 その原因を特定し、解決することが要求されます。

データロギング

各センサーからの入力値、モーターの動きを数値と して連続的に記録し、そのデータを分析することは 走行体の動きを把握するための効果的な方法です。

〈冗長設計項目〉 ※検討したミスケース

- (1) 光の外乱を受けてトレースできなくなる
- (2) 下り坂で倒立制御しないので前のめりになって倒れる
- (3) 車体が後ろ加重になるので空転して走行距離がくるう
- (4) 速度が速すぎてカーブでコースを逸脱する

対応

- (1)の結果: トレースできる車体角度を調査し、安定して
 - 走れる角度を決める
- (2)の結果:下り坂では、車体を前のめりにならない角度
 - までさらに倒す
- (3)の結果: 空転しない車体角度と速度のバランスをとる
- (4)の結果: カーブで内外輪差をつけて強制的に曲がれ
 - るようにする

[Ⅲ]にて制御仕様を記述

尻尾走行の検討 HELIOSさん

最も簡単なデータロギング方法

NXTGamepadを使用します。

NXTGamepadは走行体から送られるデー △ タを受信し、CSVファイルに記録する機能 を備えています。 走行体側にはデータ送信する機能を備えたプログラムを配置します。 ここではサンプルプログラム"datalogging"を 使用します。

走行体側の準備

走行体にサンプルプログラムを配置します。

サンプルプログラム"datalogging"は/nextOSEK/samples_Cにあります。

Bluetoothデバイス名が重複しないように、"ET+チームID"としてください。datalogging.c に次のコードを追加します。

```
/* LEJOS OSEK hooks */↓

void ecrobot_device_initialize()↓
{↓

→ ecrobot_init_sonar_sensor(NXT_PORT_S2);↓

→ // デバイス名を設定する///////////////////

→ // デバイス名は重複しないように ET + チームIDとする↓

→ if(ecrobot_get_bt_status()==BT_NO_INIT){↓

→ ecrobot_set_bt_device_name("ET500");↓

→ }↓

→ ecrobot_init_bt_slave("LEJOS-OSEK");↓

→ ↓

}↓
```

Makeして、走行体にロードします。

ペアリング

①走行体でdataloggingを実行します

②PCでデバイスを追加します。

コントロールパネルーハードウェアとサウンドーデバイスとプリンタからデバイスの追加を実行します。

デバイスのペアリング コードを入力

これにより、正しいデバイスと接続していることが確認されます。

LEJOS-OSEK

コードはデバイス上に表示されているか、またはデバイスに付属の書類 に記載されています。

ペアリング

③追加されたデバイスのポートを確認します。

NXTGamepadの実行

Releaseフォルダに解凍された、NXTGamePad.exeを実行します。

ポートを設定し接続します。ペアリング時に割り当てられたポートを指定します。

データロギング開始

走行体のRunボタンを押すと、PCへのデータ送信が開始されます。

uetooth Serial Interface	•	Exit
Setting	onnected to COM4	Version
Analog Stick Control		
Analog Inputi		100
Analog Input2		100
NXT Data Acquisition	Stop	

データログの保存

STOPボタンを押すとファイルダイアログが開きます。 ログ出力先のファイル名(CSV形式)を指定し、ログを書き出します。

ログの内容

CSVファイルには次のデータが保存されます。

Time: データ取得タイムスタンプ [msec]

Data1/Data2: ユーザー選択データ

Battery: バッテリ電圧 [mV]

Motor Rev A/B/C: ポートA/B/Cの各モータ回転角度 [度]

ADC S1/S2/S3/S4: ポートS1/S2/S3/S4の各A/Dセンサ生データ

I2C: 超音波センサ距離データ [cm]

CSVファイルに保存されたデータをMicrosoft ExcelやMATLABなどのソフトウェアを用いて解析することも可能です。

No.		+										
	А	В	С	D	Е	F	G	Н	I	J	K	L
1	Time	Data1	Data2	Battery	Motor Rev A	Motor Rev B	Motor Rev C	ADC S1	ADC S2	ADC S3	ADC S4	I2C
2	0	0	0	8807	0	0	0	607	1023	1023	1023	0
3	50	1	-1	8793	0	0	0	604	1023	1023	1023	255
4	100	2	-2	8793	0	0	0	609	1023	1023	1023	255
5	150	3	-3	8807	0	0	0	607	1023	1023	1023	255
6	200	4	-4	8779	0	0	0	605	1023	1023	1023	255
7	250	5	-5	8765	0	0	0	607	1023	1023	1023	255
8	300	6	-6	8793	0	0	0	605	1023	1023	1023	255
9	350	7	-7	8779	0	0	0	606	1023	1023	1023	255
10	400	8	-8	8779	0	0	0	607	1023	1023	1023	255
11	450	9	-9	8779	0	0	0	607	1023	1023	1023	255
12	500	10	-10	8807	0	0	0	608	1023	1023	1023	255
13	550	11	-11	8793	0	0	0	607	1023	1023	1023	255
14	600	12	-12	8779	0	0	0	609	1023	1023	1023	255
15	650	13	-13	8793	0	0	0	607	1023	1023	1023	255
16	700	14	-14	8793	0	0	0	608	1023	1023	1023	255
17	750	15	-15	8807	0	0	0	608	1023	1023	1023	255
18	800	16	-16	8793	0	0	0	607	1023	1023	1023	255
19	850	17	-17	8793	0	0	0	606	1023	1023	1023	255
20	900	18	-18	8765	0	0	0	605	1023	1023	1023	255
21	950	19	-19	8779	0	0	0	605	1023	1023	1023	255
22	1000	20	-20	8751	0	0	0	607	1023	1023	1023	255
00	1050	04	04	0007	^	^	^	607	1.000	1.000	1.000	٥٣٦

dataloggingで使用する関数

関数	説明
U8 ecrobot_set_bt_device_name(const CHAR*bd_name)	Bluetoothデバイス名の設定 引数: bd_name: デバイス名(最大16文字) 戻り値: 1(succeeded)/0(failure)
SINT ecrobot_get_bt_status(void)	Bluetooth接続状態の取得 引数: 無し 戻り値: Bluetooth接続状態 BT_NO_INIT (未初期化状態) BT_INITIALIZED (初期化状態) BT_CONNECTED (接続確立状態) BT_STREAM (データ送受信可能状態)
void ecrobot_init_bt_slave(const CHAR *pin)	NXT をBluetooth通信のスレーブデバイスとして 初期化し、マスターデバイス(PC, NXTマスター デバイス)との接続を確立します。 引数: pin: パスキー交換用ピンコード(最大16文字) 戻り値: 無し

dataloggingで使用する関数

	ROBOT (1)
関数	説明
void ecrobot_bt_data_logger(S8 data1,S8 data2)	データロギング用送信API。NXTの全ポートに接続されたセンサおよびモータ(回転角度)のデータおよび内部状態データ(システムタイマー、バッテリ電圧)等を送信します。 データパケット 0-3バイト: システムタイマー値[msec], データタイプ U32 データパケット 4バイト: ユーザーデータ1, データタイプ S8 データパケット 5バイト: ユーザーデータ2, データタイプ S8 データパケット 6-7バイト: パッテリ電圧値[mV], データタイプ U16 データパケット 8-11バイト: ポートA サーボモータ回転角度[度], データタイプ S32 データパケット12-15バイト: ポートB サーボモータ回転角度[度], データタイプ S32 データパケット16-19バイト: ポートC サーボモータ回転角度[度], データタイプ S32 データパケット16-19バイト: ポートC サーボモータ回転角度[度], データタイプ S32 データパケット20-21バイト: ポートS1 A/Dセンサデータ, データタイプ S16 データパケット24-25バイト: ポートS3 A/Dセンサデータ, データタイプ S16 データパケット26-27バイト: ポートS4 A/Dセンサデータ, データタイプ S16 データパケット28-31バイト: 超音波センサデータ, データタイプ S32 引数: data1: ユーザーデータ1 (例, 左側ゲームパッド入力) はtata2: ユーザーデータ2 (例, 右側ゲームパッド入力) 戻り値: 無し
void ecrobot_term_bt_connection(void)	Bluetooth通信終了処理用API。 引数: 無し 戻り値: 無し

技術教育の演習で使用する場合

- モデリング技術教育の演習の際にデータロギングを使用できると非常に 効果的です
 - 使用するには、model_impl.c に以下のコードを追加してください

model impl.c

※赤太文字部分が追加箇所です。

```
// デバイス初期化用フック関数
void ecrobot device initialize()
   // 各デバイスの初期化関数をここで実装することができます
   // ⇒ 光センサ赤色LEDをONにする
   ecrobot set light sensor active(NXT PORT S3);
   // ⇒ Bluetooth通信開始処理を行う
   // デバイス名を設定します
   // デバイス名は重複しないように ET + チームIDとします
   if(ecrobot get bt status() == BT NO INIT) {
      ecrobot set bt device name("ET500");
   // bluetooth通信のスレーブデバイスとして初期化します
   // 引数はパスキーです
   ecrobot init bt slave("LEJOS-OSEK");
// デバイス終了用フック関数
void ecrobot device terminate()
   // 各デバイスの終了関数をここで実装することができます。
   // ⇒ 光センサ赤色LEDをOFFにする
   ecrobot set light sensor inactive(NXT PORT S3);
   // ⇒ Bluetooth通信終了処理を行う
   ecrobot term bt connection();
```

```
TASK (TaskMain)
   // オブジェクト間のリンクを構築する
   // (省略)
   // 各オブジェクトを初期化する
   // (省略)
   // 4ms周期で、ライントレーサにトレース走行を依頼する
   while(1)
      LineTracer trace(&lineTracer);
      // NXTの全ポートに接続されたセンサおよび
      // モータ(回転角度)のデータおよび
      // 内部状態データ(システムタイマー、バッテリ電圧)
      // 等を送信します。
      ecrobot bt data logger(0, 0);
      systick wait ms(4);
```

最後に

データロギングにより走行体の動きを把握することにより、走行性 能改善の検討を効率的に行うことができます。

今回はもっとも簡単な方法を紹介しましたが、開発を進めていくと、 さまざまな機能が欲しくなると思います。

このような開発環境の整備にも力を注ぎ、開発の効率化を図ること をお勧めします。

おやじプログラマーず さん