Escaping Saddle Points in Constant Dimensional Spaces: an Agent-based Modeling Perspective

Grant Schoenebeck, University of Michigan; Fang-Yi Yu, Harvard University

Pipeline to analyze multi-agent systems

- Dynamics on social networks
- Evolutionary Game theory
- Stochastic Gradient Descent

- Escaping saddle points
- Phase portraits

Reinforced random walk with F

$$X_{k+1} - X_k = \frac{1}{n} (F(X_k) + U_k)$$

- Expected difference (drift), F(X)
- Unbiased noise (noise), U_k
- Step size, 1/n

Examples

- Stochastic gradient descent
 - Objective function $H: \mathbb{R}^d \to \mathbb{R}$
 - Parameters $X_t \in \mathbb{R}^d$
 - $X_{k+1} = X_k \eta \left(\nabla H(X_k) + U(X_k) \right)$
- Iterative majority on a complete graph with n nodes
 - Fraction of red opinion: $X_k \in [0,1]$
 - $X_{k+1} = X_k \frac{1}{n} (1[X_k > 0.5] X_k + noise)$

Mean field approximation

$$x'(t) = F(x(t))$$

Limit of mean field approximation

If X_0 is a regular point, for k = O(n), $X_k \approx x\left(\frac{\kappa}{n}\right)$

What would happen if X_0 is at a fixed point?

Theoretical results

1. Local: X_k escapes a saddle point β_i in $\Theta(n \log n)$ steps if F is smooth and U is noisy enough.

2. Global: X_k reaches an <u>attracting fixed point</u> in $\Theta(n \log n)$ steps if F is gradient-like.

(Dis)agreement between communities

Echo chamber

- Beliefs are amplified through interactions in segregated systems
- What is the consensus time given a rich-get-richer opinion formation and the level of intercommunity connectivity?

Node Dynamic $ND(G, f_{ND}, X_0)$

- **Parameters**
 - Fixed a (weighted) graph G = (V, E)
 - update function f_{ND}
 - initial configuration $X_0: V \mapsto \{0,1\}$
- At round t,

Fraction of red neighbors

1. A node v is picked uniformly at random

2.
$$X_t(v) = 1$$
 w.p. $f_{ND}(r_{X_{t-1}(v)})$;
= 0 otherwise

- Examples of ND
 - Voter model
 - Iterative majority
 - 3-majority

Planted Community K(n, p)

- Two communities with equal size
- An edge has weight p if in the same community and 1 1**p** o.w.

Theorem: Given a smooth rich-get-richer function $f_{ND} \in \mathcal{C}^2$, and a planted community graph G = K(n, p), The maximum expected consensus time of $ND(G, f_{ND}, X_0)$ has two cases:

