Trustworthy Federated Learning

Franziska Boenisch and Adam Dziedzic Course on Trustworthy Machine Learning

Threat Models and Adversaries

M Users

Privacy

Individuals Generate Sensitive Data

Companies apply Machine Learning

ML Models Leak Private Information

ML Privacy: Attacks

Membership Inference

Attribute Inference

Model Inversion

Centralized vs. Federated Learning

Centralized Learning

Key Properties of Federated Learning

Central Server

+ Heterogenous data+ Efficient communication+ Low costs

- Performs compute
 - Provides storage
- + Keeps data locally

Federated Learning is Extremely Popular

In A New At Research, Federated Learning Enables Big Data For Rare **Cancer Boundary Detection**

By Aneesh Tickoo - December 13, 2022

් Reddit

What Trust Model is Needed for Privacy?

Federated Learning

What Trust Model is Needed for Privacy?

Federated Learning

Alice's Privacy Relies purely on the Gradients

Prior Work: Reconstructing Data

Limitations:

- Computationally expensive
 - Small mini-batch sizes
 - Low-complexity data
- Data from different classes

We Extract Large Amounts of Data Perfectly

Original Data

Extracted Data

... from all kinds of class distribution ... from large mini-batches with 100 data points ... with high complexity ... at near-zero computational costs

Forward Pass through Fully-Connected Layer

Prior Extraction Works only for Single Data Points

Extraction for Large Mini-Batches Should Fail

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{w}_{i}^{T}} = \sum_{j=1}^{B} \frac{\partial \mathcal{L}}{\partial y_{i,j}} \frac{\partial y_{i,j}}{\partial \boldsymbol{w}_{i}^{T}}$$

Mini-batch gradient

Data Leaks Directly from Model Gradients

```
weights_gradient = gradients[0].numpy()
inverse_bias = 1 / gradients[1].numpy()
extracted_data = inverse_bias * weights_gradient
plot(extracted_data, num_rows = 3, num_cols = 6)
```

$$\mathbf{x} = \left(\frac{\partial \mathcal{L}}{\partial b_i}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{w}_i}$$

... but they actually look like that!

mini-batch size=100

Gradients can Leak Single Data Points

Why can we still extract individual data points x?

Gradient of a single data point

What Trust Model is Needed for Privacy?

Even a passive, honest-but-curious attacker can extract a significant amount of sensitive user-data.

What Trust Model is Needed for Privacy?

Even a passive, honest-but-curious attacker can extract a significant amount of sensitive user-data.

Our Trap Weights Increase Natural Leakage

Trap Weights: Induce $x^T w_i + b_i \le 0$ for most input data points x

Gradients

Makes other points extractable-

- 1) Initialize model weights at random
- 2) Scale positive components down by s < 1

$$\rightarrow (x^T s w_i^+) + (x^T w_i^-) + b_i \leq 0$$
 more often

Assumes input features x in range [0, 1]

Standard pre-processing-

Influence of Scaling Factor "s"

Inconspicuous!

Active Extraction

Baseline: Passive Extraction

Scaling Factor (s)	Activated Neurons (by 1 data point) (%)	Extracted Data (%)
0.4	0	0
0.5	0	0
0.9	0	0
0.99	65.5 (51.4)	45.7
1.0	99.9 (4.4)	21.8

ImageNet Extraction: Mini-Batch Size = 100, 1000 Neurons

Our Trap Weights Improve Extraction

	Passive	Active
MNIST	5.8	54
CIFAR10	25.5	54
ImageNet	21.8	45.7
IMDB	25.4	65.4

Extracted Data (%),
Mini-Batch Size = 100,
1000 Neurons

More Neurons and Smaller Mini-Batches Let us Extract More Data

What Trust Model is Needed for Privacy?

An active, malicious attacker can significantly increase privacy risks for users.

What Trust Model is Needed for Privacy?

An active, malicious attacker can significantly increase privacy risks for users.

Differential Privacy Protects Individual Data

(1) Clip Gradients

(2) Noise Gradients

Differential Privacy in Federated Learning

Central DP: Server adds noise

Distributed DP: Users add noise

After aggregation

Local DP: Users add noise

$$\mathcal{N}\left(0)\partial_{(M-1)}^{2}c^{2}\right)$$

Aggregate via Secure Aggregation

Overhead:

- Computation
- Communication
- Storage
- Availability of PKI

Local Noise: $\mathcal{N}\left(0, \frac{\sigma^2}{(M-1)}c^2\right)$

Attacking FL protected by DDP+SA

DDP Reduces to LDP with Low Privacy Levels

What Trust Model is Needed for Privacy?

Even in hardened variants of the protocol, a malicious attacker can breach individual users' privacy.

Power Imbalance Makes FL Vulnerable

Server wants Utility

User Provisioning & Sampling

Model Manipulations

Users need Privacy

Unknown Collaborators

Unverified shared model and computations

Defending FL is Complex and Costly

User Sampling

Gradient Calculation and Aggregation

Conclusion for Privacy in FL

Participate **only** in Protocols with Trusted Server

Replace Trust by Verifiable Mechanisms

Poisoning and Backdoors

Poisoning Attacks

Goal: Reduce overall model performance.

Not limited to Federated Learning!

Untargeted Attack:

Reduce prediction accuracy of the model overall.

Targeted Attack:

Reduce prediction accuracy for a particular group/class of samples.

Backdoor Attacks

Not limited to Federated Learning!

Backdoor Attacks

On clean data:

$$f_{\theta}(\mathbf{x}) = \mathbf{y}$$

On poisoned/trigger data:

untargeted
$$f_{\theta}(x') \neq y$$

Targeted $f_{\theta}(x') = z$

Connection to Adversarial Examples

Both called "Evasion Attacks"

Federated Learning's Vulnerability

Thank you!

Franziska Boenisch and Adam Dziedzic boenisch@cispa.de, adam.dziedzic@cispa.de sprintml.com

Course on Trustworthy Machine Learning

Further Reading

- [1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural information processing systems 32 (2019).
- [2] Boenisch, Franziska, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and Nicolas Papernot. "When the curious abandon honesty: Federated learning is not private." In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), pp. 175-199. IEEE, 2023.
- [3] Boenisch, Franziska, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, and Nicolas Papernot. "Reconstructing Individual Data Points in Federated Learning Hardened with Differential Privacy and Secure Aggregation." In 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), pp. 241-257. IEEE, 2023.
- [4] Bonawitz, K. A., Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Daniel Ramage, Aaron Segal, and Karn Seth. "Practical Secure Aggregation for Federated Learning on User-Held Data.", CCS 2017
- [5] Geiping, Jonas, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. "Inverting gradients-how easy is it to break privacy in federated learning?." Advances in neural information processing systems 33 (2020): 16937-16947.
- [6] Tian, Zhiyi, Lei Cui, Jie Liang, and Shui Yu. "A comprehensive survey on poisoning attacks and countermeasures in machine learning." ACM Computing Surveys 55, no. 8 (2022): 1-35.