

Drive-by-wire Go-kart

By Nissanka Weerekoon

System Overview

Steering

Comms Board

Brake

Motor Control

Speed Sensor

System Overview

Previous Work

2011- 4 students

- PCB design of CANBus boards
- Choose actuators
- Modify Go-kart chassis

2012- 1 student

- Python API for laptop control
- Bench testing of actuator control only

Contribution this year

1. Get existing system on to go-kart; show basic movement

2. Show integration with computer vision navigation

Drive-by-wire movement

Hardware:

Actuator bracket
Connectors
PWM board modification

Movement control

Laptop GUI

System Integration

Calibration – Brake, Steering, Speed Motor control interface - through PWM board

Proportional Speed control

Vision Integration

- Combining OpenCV checkerboard tracking algorithm (C++) with Python API
- · Track the middle and maintain a set distance from checkerboard

<u>Target</u>	<u>Go-kart</u> <u>response</u>
Moves left	Steer left
Moves right	Steer right
Too close	Reduce speed, brake and stop if needed
Too far	Increase speed

Challenges Encountered

- There is a significant gap between bench testing and running on the gokart
 - Grounding of boards and motor drivers
 - Interference from motor
 - Power sourcing and fusing
- Make minimal hardware changes/additions
- Latency of checkerboard tracking to actuator response needs further testing
- Debugging error states including code from previous years (approx 3000 lines)

Future Work

Two possible paths...

Autonomous movement

- Computer vision navigation
- Off-kart emergency stop
- Sensors for navigation (GPS, infrared..)

Rerun of current hardware

- Better connectors
- Wireless/Bluetooth
- Compatibility with new PWM boards

Thank you!

Any Questions?

System Block Diagram

CANBus System States

Laptop Interface

Checkerboard Tracking

- Uses OpenCV computer vision library
- Finds the pose in 3D of a checkerboard of a given dimensions (number of squares)
- Can provide: rotation and translation vector fully describes pose
- Uses
 - Thresholding
 - Intrinsic parameters of the camera
 - Planar homography techniques
- Developed separately in computer vision course