Open book/lecture note, but closed zoom video class sessions

Copyright:

This exam is posted for your view only and it is not allowed to download for keeping/distribution.

Submission guide:

- * Exam answers should be written on blank papers and please submit your answer sheets as scanned pdf or photo copy (pdf, png, or jpg);
- * Please organize your answer sheets in the order of the question numbers; write your name and student ID on the first page, and write a page number on each page (right-upper corner);
- * Please make a .zip file (do not use .rar) containing all your answer sheets; make your file name and email title as "CS113-final-exam-YourFirstName-YourLastName.zip"; and send it to me < <u>ipark@csufresno.edu</u> > within the exam session.

(10 pts) 1. Performance

Consider the following instruction count and CPI values for machines M1 and M2:

	instruction-count	<u>CPI on M1</u>	CPI on M2
type-1:	30	1	2
type-2:	40	2	1
type-3:	10	3	3
type-4:	20	4	2

Assume that clock rates of machines M1 and M2 are 500MHz and 400 MHz, respectively.

- (a) Which machine is more efficient in terms of CPU execution time? ______ Please show your computations of the CPU execution times (for M1 and M2).
- (b) Which machine is more efficient in terms of MIPS rate?

 Please show your computations of the MIPS rates (for M1 and M2).

(10 pts) 2. MIPS ISA

Consider the following MIPS assembly code segment for implementing a while loop:

```
Start: sll $t2, $s2, 2

lw $t0, 8($t2)

beq $t0, $s5, Done

addi $s2, $s2, 2

subi $s2, $s2, 1

j Start

Done:
```

- (a) Write the MIPS machine code (in hexadecimal number) for the 3rd instruction, i.e., <u>bne \$t0</u>, <u>\$s5</u>, <u>Done</u>. Opcode for beg is 4 in decimal; register numbers for \$t0 and \$s5 are 8 and 21 in decimal, respectively.
- (b) Assume that the first instruction (sll \$t2, \$s2, 2) is stored in the memory at starting byte address 80 in hexadecimal, and write the MIPS machine code (in hexadecimal number) for the last instruction, i.e., j Start.

(15 pts) 3. CPU – pipelined implementation

Consider the following diagram of the MIPS pipelined datapath and answer.

- (a) Write the register names for RED color circled numbers, i.e., 1 2 3 4 5
- (b) Write the micro operations done in the ID stage of a load instruction.
- (c) Write the micro operations done in the EX stage of a branch (beq) instruction.

(15 pts) 4. MIPS pipeline more

Consider the following sequence of instructions for (a) and (b).

- lw \$s2, 40(\$s1);
- add \$s3, \$s4, \$s2;
- sub \$s5, \$s2, \$s6;
- and \$s7, \$s2, \$s3;
- (a) If the system allows only stalling, what is the minimum total execution cycles needed? _______ Justify your answer (show the timing diagram).
- (b) If the system allows all forwardings and 2phase clocking, what is the minimum total execution cycles needed? ______; Justify your answer (show the timing diagram).
- (c) Assume that the branch instruction is resolved at the end of ID (2nd) stage.

 How many stall cycles are needed for a <u>taken branch</u> with <u>Predict-not-Taken</u> scheme?

How many stall cycles are needed for a <u>not-taken branch</u> with <u>Predict-not-Taken</u> scheme?

- (a) Consider a set-associative cache system and describe the steps of operations for a cache read. Please include both hit and miss cases.
 - 1. CPU issues a memory block address;

2.

. . . .

- (b) Is the replacement policy needed for the direct-mapped cache? (Circle: yes, no) Justify your answer, i.e., explain the reason.
- (c) When is the main memory updated in a system with WB cache?

(10 pts) 6. Memory hierarchy

Consider the following system:

Physical address: 34 bits total, right-most 2-bits are for byte-offset.

Cache: direct-mapped cache, 256KB total data size, 32 bytes data per block, no valid bit used.

Show sizes of labeled parts (a,b,c,d) in the following diagram.

physical address		Бу	yte-offset (2bits)		
a	1	b c			
				a:_	<u>bits</u>
		05 (WD		b:_	bits
d		256 KB			
(space)				c:_	<u>bits</u>
	32		. 32	d:_	bytes
=		Mux	X 32		
hit		data	ı		

(20 pts) 7. Memory hierarchy more

(a) Assume that the cache block size is 20 words, and cache miss penalty consists of the followings:

address transfer: 1 clock cycle DRAM access: 20 clock cycles data transfer: 2 clock cycles

Compute the miss penalty in the interleaved memory system with 5 memory banks. Also compute the memory bandwidth in this system.

(b) Consider the following series of word address references: 1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43 Assume that a 2-way set associative cache is used and the capacity of the entire cache is 8 words, with one word per block. The cache is initially empty, and the LRU replacement policy is used.

Answer how many hits are made: . .

(c) Consider a virtual memory system with the following properties:

42-bit virtual address (byte address)

8-KB page size

32-bit physical address (byte address)

- What is the total size of the page table for each process on this machine? Assume that each entry of the page table contains a valid-bit and a physical page number.
- What is the total virtual memory size of each process?
- What is the total physical memory size for each process?

(5 pts) 8. Now, follow the submission guide shown in the first page and submit your file by 1:00 pm.

• Late submissions (1:00 pm - 1:10 pm) will be given some penalty points and submissions beyond 1:10 pm will not be considered for grading.