

Concepts for Multi-Speed Rotorcraft Drive System -Status of Design and Testing at NASA GRC

Mark A. Stevens Mechanical Engineer

David G. Lewicki Research Mechanical Engineer

Robert F. Handschuh Research Mechanical Engineer

NASA, John H. Glenn Research Center Brook Park, Ohio, 44135

Presented at the AHS 71st Annual Forum, Virginia Beach, Virginia, May 5-7, 2015. This is a work of the U.S. Government and is not subject to copyright protection in the U.S.

Objective

Overview the Status of Three Drive Designs from an earlier concept study:

1. Design/testing of two *multi-speed drives*.

Highlight some positive/negative aspects and future development areas.

2. Update to the design of *third concept*.

Variable-speed gear drive based on a dual-input planetary differential.

Background

Future advances in rotorcraft propulsion systems require increased efficiency, power, and enhanced capabilities

Studies show that *variable rotor speed* is required for:

- Reduction in noise
- Increased performance
- Enhanced capabilities (speed capacity range)

Advances are contingent upon varying rotor speeds 50%. Present Limitations ~15% (via engine control).

Future Rotorcraft Propulsion System Configuration V/M-S Gearbox Application

Hover Ratio 131.4:1 Forward Flight Ratio 243.6:1

Test Article Design Requirements

- 250 HP nominal (200 HP facility capacity)
- Inline configuration (input-output shafts)
- Input Speed 15,000 rpm
- Output Speeds 15,000 rpm (hover), 7,500 rpm (cruise)
- Employ straight spur gear geometry (budget consideration)
- Drive should fail safe to the high-speed (hover) mode
- Lubricant: DOD-PRF-85734A, synthetic ester-based oil
 - 40C 104F 23.0 cSt
 - 100C 212F 4.90-5.40 cSt
 - -54C -65F pour point
- ^a Provide high-speed positive drive element
- ^b Light-weight rotating components (flight like)
- ^c Housing design (modular, possibility of windage shrouds)

a requirement dropped due to complexity and budget

b requirement dropped due to scope and budget

^c not an original requirement

Modules: Gear & Clutch

Baseplate/Supports/Housing

Fwd Brg Intermediate Aft Brg Rotating Feed-Support Brg Support Support **Through Support**

Two-Speed Drive Test Configurations

Configuration 1: OCG / Dry-Clutch (Tested)

Configuration 2: **DSI / Dry-Clutch** (Tested)

Configuration 3: OCG / Wet-Clutch (In assembly)

Gear Module 1: (OCG) - Offset-Compound Gear

Balancing the OCG Cluster Assembly

Gear Module 2: (DSI) - Dual Star-Idler Planetary

DSI Planetary Gear Design

Gear Parameters - OCG vs. DSI

OCG Gear Train

Material: 9310, Backlash: 0.006-0.011 inch,

Width: 0.375 inch, Contact Angle 20°

Gear	Pitch	Pitch Dia (inch)	N _{teeth}	Rpm
Input	8.727	2.865	25	15,000
2	8.727	4.240	37	10,135
3	8.0	3.875	31	10,135
Ring	8.0	5.250	42	7,481

DSI Gear Train

Material: 9310, Backlash: 0.010-0.015 inch,

Width: 0.600 inch, Contact Angle 20°

Gear	Pitch	Pitch Dia (inch)	N _{teeth}	Rpm
Sun	12	4.1667	50	15,000
Star	12	1.5833	19	39,474
Idler	12	1.6667	20	37,500
Ring	12	8.4167	101	7,426

Observations: DSI planet gears spin at 4x the speed of the OCG cluster gear.

Bearing Parameters - OCG vs. DSI

OCG Bearing Parameters.

Site	Rpm	Size	D _{brg}	<u>d_{brg}</u>	dN factor
Input	15,000	206	62	30	450,000
2	10,135	1822	140	110	1,114,850
3	10,135	1822	140	110	1,114,850
Ring	7,481	210	90	50	374,050

DSI Bearing Parameters.

Site	Rpm	Size	D _{brg}	d _{brg}	dN factor
Sun	15,000	206	62	30	450,000
Star	39,474	202	35	15	592,110
Idler	37,500	202	35	15	562,500
Ring	7,426	210	90	50	371,300

(Bearing diameters in millimeters)

Observations: Bearing dN are higher for OCG despite high speeds of the DSI planet bearings.

Observations – Gear Trains

High planet gear speed is an inherent aspect of a single stage planetary gear train with a 2:1 output since the ratio is defined by the ratio of pitch diameters of the ring and sun gears.

For a basic 2:1 Planetary: Ø5.0 sun & Ø10.0 ring yields the following intermediate gear speeds for an input speed of 15,000 rpm

Gear Train	Intermediate Speed (rpm)
Basic Planetary	30,000
·	
DSI (idler addition)	37,500 +25% speed increase due to reduced diameter planets
OCG	10,000

The OCG is simpler to lubricate due to reduced number of gear meshes and bearings.

Clutch Module: (DC) DRY-CLUTCH

* Unique hardware necessary to meet the inline design requirement

Dry-Clutch Design

Clutch Module: (WC) Wet-Clutch

Wet-Clutch Design

Output Shaft Hydraulic / Lubrication Passages (Wet-Clutch)

Clutch Release Closed-Loop Load Path

Rotating Hydraulic/Lubricant Feed-Through

Sprag (Overrunning Clutch)

Future Design (Concept 3)

Variable-Speed Drive Dual-Input Planetary Differential

- Concept Variable-Speed Drive leveraged from the DSI Planetary Gear Train & Lubrication Design
 - Sun Gear Input
 - Carrier Control (Second Input)
 - Ring Gear Output
- Direct Point Bearing and Gear Lubrication

Second Input Is Not Within Current Scope

DUAL-INPUT PLANETARY DIFFERENTIAL

CONCLUDING REMARKS

- Presented an overview of designs and current status of two-speed drive concepts developed at NASA GRC.
- Identified a few areas for future development.
 Many more are discussed in detail in the paper.
- Presented an updated concept for a variable-speed gear drive based on a dual-input planetary differential.

Questions?