

Pessoas impulsionando inovação. Inovação impulsionando negócios.

Everton Dias etgdb@cesar.org.br

Janaína Branco jcb@cesar.org.br

APACHE SPARK

Nesta fase abordaremos alguns conceitos ligados ao Apache Spark, processamento distribuído, big data e outros.

CONCEITOS

Framework que fornece uma plataforma analítica **unificada** para processamento de dados em **larga escala**.

Desenvolvido na Universidade da Califórnia e posteriormente repassado para a Apache Foundation o framework Spark provê uma série de recursos para processamento em clusters utilizando paralelismo e tolerância a falhas.

Usos do Spark

Preparar dados para análise

Analisar dados em tempo real

Criação de modelos de Machine Learning

Spark SQL & DataFrame : trabalha com

SparkSQL

Dataframe

Streaming: trabalha com processamento em tempo real

Spark MLib: Trabalha com pipelines de machine learning.

Spark GraphX: Segmento de recursos trabalhar com processamento de grafos.

O **driver program** é o componente responsável pela orquestração do programa Spark, tendo uma posição como uma função principal contendo toda a lógica de execução do código, possui uma quantidade de memória alocada, necessitando uma atenção para evitar estouro de memória.

O **spark context** é o componente que faz a mediação entre o driver program e os executores, no spark context fazemos a configuração da quantidade de memória dos executores e número de cores dos executores.

Os planos lógicos de execução possuem uma grande similaridade aos planos lógicos de execução dos bancos de dados, eles registram um passo a passo para operação nos dados, com base nesse plano lógico ele irá criar um dos componentes mais importantes do spark o - **DAG - Dynamically Acyclic Graph** - que irá manter as etapas para execução das nossas transformações em stages e com base nelas irá criar um **plano físico de execução**.

DAG SCHEDULER

MODOS DE EXECUÇÃO DO SPARK

Os modos de execução do Spark irão diferir onde o driver program do spark irá rodar.

RDD - Resilient Distributed Dataset

- Imutáveis
- Transformations e Actions
- Lazy Evaluation
- Conhecer a lista de partitions
- Saber gerenciar as dependências de cálculo (DAG)

SPARK E HADOOP

Hadoop é uma estrutura de software open-source para armazenar dados e executar aplicações em clusters de hardwares comuns. Ele fornece armazenamento massivo para qualquer tipo de dado, grande poder de processamento e a capacidade de lidar quase ilimitadamente com tarefas e trabalhos ocorrendo ao mesmo tempo.

SPARK E HADOOP

- Armazena resultados parciais e finais em disco;
- Map Reduce;

- Armazena resultados parciais em memória e apenas os finais em disco;
- Map Reduce e outras funções de transformações de dados;

Alunos Cesar

Part #1 Recife

Narrow Dependency

Part #2 Agreste

Part #3 Sertão

Alunos Cesar

alunos.map(...).filter(...).reducebykey(...)

Part #1 Recife

>=18

18-25

Part #2 Agreste

Idade

Idade

>=18

25-35

Part #3 Sertão

Idade

>=18

>35

Alunos Cesar

alunos.map(...).filter(...).reducebykey(...).collect()

Part #1 Recife

Idade

$$\qquad \qquad \Box \rangle$$

>=18

18-25

Part #2 Agreste

Idade

>=18

>35 /

25-35

Part #3 Sertão $\qquad \qquad \Box \rangle$

Idade

>=18

USO DE MEMÓRIA NO SPARK

MEMORY_ONLY

RDDs SALVOS EM MEMÓRIA, PARTE EXCEDENTE SENDO RECALCULADA QUANDO NECESSÁRIO

DISK_ONLY

TODOS DADOS DE RDDs SALVOS EM DISCO

MEMORY_AND_DISK

SALVA TODOS RDDs NA MEMÓRIA E O EXCEDENTE EM DISCO

PRÁTICA

AMANHÃ TEM MAIS SPARK!