Propositional Logic-Solution

- 1) Translate the following Propositional Logic to English sentences.

 Let:
 - E=Liron is eating
 - H=Liron is hungry
 - (a) $E \Rightarrow \neg H$

Answer: If Liron is eating, then Liron is not hungry

(b) $E \wedge \neg H$

Answer: Liron is eating and not hungry

(c) $\neg (H \Rightarrow \neg E)$

Answer: Liron is hungry and eating

- 2) Translate the following English sentences to Propositional Logic.

 Propositions: (R)aining, Liron is (S)ick, Liron is (H)ungry, Liron is (HA)appy,
 Liron owns a (C)at, Liron owns a (D)og
 - (a) It is raining if and only if Liron is sick

Answer: $R \Leftrightarrow S$

(b) If Liron is sick then it is raining, and vice versa

Answer: $(S \Rightarrow R) \land (R \Rightarrow S)$ (which is equivalent to $R \Leftrightarrow S$)

(c) It is raining is equivalent to Liron is sick

Answer: $R \Leftrightarrow S$

(d) Liron is hungry but happy

Answer: $H \wedge HA$

(e) Liron either owns a cat or a dog

Answer: $(C \land \neg D) \lor (\neg C \land D)$

- **3)** Which of the following propositions are tautologies? Which are contradictions? Why?
 - (a) Three is a prime number.

Answer: neither a tautology nor a contradiction

(b) It is raining or it is not raining.

Answer: tautology

(c) It is raining (P) and it is not raining $(\neg P)$.

Answer: contradiction

Example reasoning:

All rows in the truth table evaluate to false.

Р	$P \wedge \neg P$
t	f
f	f

- 4) Which of the following propositions are tautologies? Why?
 - (a) P

Answer: not a tautology

(b) $P \Rightarrow P$

Answer: tautology

(c) $(P \Rightarrow P) \Rightarrow P$

Answer: not a tautology

Example reasoning:

Not all rows in the truth table evaluate to true.

Р	$P \Rightarrow P$	$P \mid (P \Rightarrow P) \Rightarrow P$	
t	t	t	
f	t	f	

(d) $P \Rightarrow (P \Rightarrow P)$

Answer: tautology

- **5)** Which of the two following propositions are equivalent in the sense that one can always be substituted for the other one in any proposition without changing its truth value? Why?
 - (a) first proposition: $P \Rightarrow Q$ second proposition: $\neg P \lor Q$

Answer: yes

Example reasoning:

All rows in the truth table evaluate to the same truth value.

Р	Q	$P \Rightarrow Q$	$\neg P \lor Q$
t	t	t	t
t	f	f	f
f	t	t	t
f	f	t	t

(b) first proposition: $\neg P$ second proposition: $P \Rightarrow False$

Answer: yes

(c) first proposition: $\neg P$ second proposition: $False \Rightarrow P$

Answer: no

(d) first proposition: $\neg P$ second proposition: $\neg P \lor Q$

Answer: no

- 6) Is it possible that
 - (a) $(KB \models S)$ and $(\neg KB \models S)$

Answer: Yes. For example, if $S \equiv TRUE$, then any interpretation that satisfies KB or $\neg KB$ also satisfies S.