

Winning Space Race with Data Science

Eric Vierzigmann 15.01.2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Methodologies

- Explorative Data Analysis
 - SQL Queries
 - Visualization
- Geographical Visualization
- Interactiv Visualization
- Training of different Machine Learning Models

Results

- Correlation between various features and success rate
- Predicting of successful landing possible
- Training and Test Data to small

Introduction

Goal: We want to outperform SpaceX

Question: Can we predict the cost of a rocket launch from SpaceX?

- The cost of a launch highly dependes on the reusage of the first stage
- Can we predict whether the first stage of a rocket will land successfully?

Methodology

Executive Summary

- Data collection methodology:
 - API requests & webscrapping
- Perform data wrangling
 - Create binary outcome class
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Linear Regression, SVM, Decision Tree, kNN
 - Gridsearch for best Hyperparameters

Data Collection

- Describe how data sets were collected.
- You need to present your data collection process use key phrases and flowcharts

Data Collection – SpaceX API

- Loading data for past launches
- Selecting relevant features and feature IDs
 - Rocket ID
 - Payload ID
 - Launchpad ID
 - Core ID
- Loading additional data by using the IDs
- Storing the data in a dataframe

API request for past launches

First feature selection

API request for specific features

GitHub: CourseraFinalProject/01 jupyter-labs-spacex-data-collection-api.ipynb at main · dashm00n/CourseraFinalProject (github.com)

Data Collection - Scraping

- Loading HTML file from Wikipedia
- Creating BeautifulSoup object
- Searching for tables (name='table')
- Searching for columns (name='th')
 - Drop unnecessary columns
- Iterating over rows and storing information in a dataframe

Github: CourseraFinalProject/02 jupyter-labs-webscraping.ipynb at main · dashm00n/CourseraFinalProject (github.com)

Data Wrangling

- Getting first insights by searching for null values and counting unique entries
- Generating an output variable to be predicted
 - Landing outcome successful (1) or not (0)

Collect unique landing outcomes

Map success or failure to each outcome

New column with a binary landing outome

EDA with Data Visualization

To get a rough overview, some features and their correlation are shown in graphs

- Scatter plots of all launches with landing outcome as label
 - Compared features:
 - Launch Site
 - Payload Mass (kg)
 - Flight Number
 - Orbit
- Success Rate per Orbit in a bar chart

Github: CourseraFinalProject/05 jupyter-labs-eda-dataviz.ipynb at main · dashm00n/CourseraFinalProject (github.com)

EDA with SQL

- Get unique launch sites
- Get first 5 entires of CCAFS launch sites
- Get total payload that was transported for NASA (CRS)
- Get average payload that was transported with Booster Version F9 v1.1
- Get unique landing outcomes
- · Get date first successful landing on a ground pad
- Get Booster Versions that landed successfully on a drone shipe having a payload mass between 4000 and 6000kg
- Get the number of each unique mission outcome
- Get Booster Versions that carried the maximum payload mass

Build an Interactive Map with Folium

- A folium map was created for the geographical representation of the launches and the launch sites, this contains the following objects:
 - Markers
 - Icons
 - Lines
 - Line-Text
- These objects can be used to determine insights such as the distances to certain land features, other launch sites and more

Build a Dashboard with Plotly Dash

- A pie chart was created to show the distribution of starts per launch sites
- · A pie chart with the success rate can also be displayed for each launch site
- A scatterplot was created for the correlation between landing outcome and payload mass
 - Display of all launch sites
 - Display of a specific launch site
 - Display of the respective booster version per launch
 - Choosing of the displayed payload range

Predictive Analysis (Classification)

- For classification whether a landing would be successful, 4 types of models were analysed
 - Linear Regression
 - Support Vector Machine
 - Decision Tree
 - K Nearest Neighbors
- The hyperparameter for each model were tuned using Gridsearch

Github: CourseraFinalProject/08_SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite.ipynb at main · dashm00n/CourseraFinalProject (github.com)

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- The payload mass increases with larger flight number
- The success rate of landing outcomes increases with larger flight number

Payload vs. Launch Site

VAFB SLC 4E dosen't carry payloads heavier than 10000kg

Success Rate vs. Orbit Type

- ES-L1, GEO, HEO and SSO have a 100% success rate
- No rocket return successfully from SO
- The rockets from GTO, ISS, LEO, MEO and PO have a 50-70% chance of landing successfully

Flight Number vs. Orbit Type

- In the beginning, rockets only flew to GTO, PO, ISS and LEO
- Launches to GEO only startet recently
- The success rate of LEO increases with the flight number
- There is nearly no correlation between the orbit and the flight number regarding the landing success

Payload vs. Orbit Type

- With heavy payloads the positive landing rate are more for Polar, LEO and ISS
- For GTO, there is no correlation between payload and successful landing
- In VLEO, there are only heavy payloads over 14000kg

Launch Success Yearly Trend

- In total, the success rate is increasing over the years
- It kept constant from 2014-2015
- It shows a drop in the years
 2018 and 2021

All Launch Site Names

- There are 4 different launch sites from SpaceX
 - CCAFS LC-40
 - CCAFS SLC-40
 - VAFB SLC-4E
 - KSC LC-39A

• The launch sites CCAFS LC-40 and SLC-40 are located next to each other

Launch Site Names Begin with 'CCA'

• In the first 3 years, there were only very few launches from launch sites beginning with "CCA"

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	Nasa (Cots)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Query:

%sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Customer LIKE '%NASA (CRS)%'

Total amount of payload that NASA (CRS) transported with SpaceX rockets:

Average Payload Mass by F9 v1.1

Query:

%sql SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Booster_Version LIKE 'F9 v1.1%'

Average amount of payload that rockets with a F9 v1.1 Booster transported:

AVG(PAYLOAD_MASS__KG_)

2534.66666666666

First Successful Ground Landing Date

Query:

%sql SELECT min(Date) FROM SPACEXTABLE WHERE Landing_Outcome='Success (ground pad)'

First successful landing on a ground pad:

Successful Drone Ship Landing with Payload between 4000 and 6000

Query:

%sql SELECT Booster_Version, PAYLOAD_MASS__KG_ FROM SPACEXTABLE WHERE Landing_Outcome='Success (drone ship)' AND PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000

There are only 4 successful Drone Ship Landing with Payload between 4000 and 6000:

Booster_Version	PAYLOAD_MASS_KG_
F9 FT B1022	4696
F9 FT B1026	4600
F9 FT B1021.2	5300
F9 FT B1031.2	5200

Total Number of Successful and Failure Mission Outcomes

Query:

%sql SELECT Mission Outcome, count(*) FROM SPACEXTABLE GROUP BY Mission Outcome

Almost all missions were successful – there is only one record of a failure during flight:

Mission_Outcome	count(*)
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Boosters Carried Maximum Payload

Query:

```
%sql SELECT Booster_Version, PAYLOAD_MASS__KG_ FROM SPACEXTABLE
WHERE PAYLOAD_MASS__KG_=(SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTABLE)
```

Booster Versions that carried the maximum payload of 15600kg:

Booster_Version	PAYLOAD_MASS_KG_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

2015 Launch Records

Query:

```
%sql SELECT SUBSTR(Date, 6,2), Landing_Outcome, Booster_Version, Launch_Site FROM SPACEXTABLE WHERE SUBSTR(Date, 0, 5) = '2015' and Landing_Outcome LIKE 'failure (drone ship)'
```

Records that show failure of landing on drone ships in the year 2015:

SUBSTR(Date, 6,2)	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Query:

```
%sql SELECT Landing_Outcome, count(Landing_Outcome) AS count_outcome FROM SPACEXTABLE WHERE Date BETWEEN '2010-06-04' AND '2017-03-20' GROUP BY Landing_Outcome ORDER BY count_outcome DESC
```

Ranking of Landing Outcomes:

Landing_Outcome	count_outcome
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Launch Site Locations of SpaceX

- All launch sites are at the coast
- 3 out of 4 are located next to each other
- All launch sites are located at a southernmost possible point of the USA
 - Closest to the equator as possible

Landing Outcomes at CCAFS LC-40

- Launches at CCAFS LC-40
- At the beginning, all landings failed
- In recent times, the success rate increased

Landmarks near CCFAS LC-40

- The launch site CCFAS LC-40 is pretty close to the next road, railway and the coast line (less then 1km)
- It is far away from the next city Cape Canaveral (17.2km)

SpaceX Launch Records

- KSC LC-39 has the most successful landings
- CCAFS SLC-40 has the least successful landings
- Rockets with Booster Version v1.1 are most likely not going to land successfully

Landing Outcomes of KSC LC-39

- KSC LC-39 with the most total successful landings also has the highest success rate
- It mostly uses the Booster Version FT
- The Rockets carried pay load masses between 2500 and 6750kg

Payload vs Success in specific range

- Payload between 4000 and 6000kg
- In this range, all rockets with Booster Version v1.1 failed during landing

Classification Accuracy

- The kNN model has the lowest accuracy
- The models SVM and Decision Tree have the highest test score
- The train score of SVM is better then the one of the Decision Tree

Therefore SVM is the best model for this usecas

Confusion Matrix

- There are no False Negative predictions
- The main issue is the number of False positive predictions

Conclusions

- We found some correlations regarding the successful landing, for example:
 - Payload mass
 - Orbit type
 - Whether the rocket is already reused
 - Booster Version
- We can predict with great certainty when a rocket will land safely again
- If our prediction is that the rocket will not land safely, there is still a chance that it will land correctly
- With a bigger dataset, we could train a better model with higher accuracy

Conclusions

- We found some correlations regarding the successful landing, for example:
 - Payload mass
 - Orbit type
 - Whether the rocket is already reused
 - Booster Version
- We can predict with great certainty when a rocket will land safely again
- If our prediction is that the rocket will not land safely, there is still a chance that it will land correctly
- With a bigger dataset, we could train a better model with higher accuracy

Appendix

Columns from the original data:

```
['static_fire_date_utc', 'static_fire_date_unix', 'tbd', 'net', 'window', 'rocket',
'success', 'details', 'crew', 'ships', 'capsules', 'payloads', 'launchpad', 'auto_update',
'failures', 'flight_number', 'name', 'date_utc', 'date_unix', 'date_local',
'date_precision', 'upcoming', 'cores', 'id', 'fairings.reused', 'fairings.recovery_attempt',
'fairings.recovered', 'fairings.ships', 'links.patch.small', 'links.patch.large',
'links.reddit.campaign', 'links.reddit.launch', 'links.reddit.media',
'links.reddit.recovery', 'links.flickr.small', 'links.flickr.original', 'links.presskit',
'links.webcast', 'links.youtube id', 'links.article', 'links.wikipedia', 'fairings']
```

Appendix

Head of dataframe after first cleansing

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
0	1	2010-06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
1	2	2012-05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
2	3	2013-03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
3	4	2013-09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
4	5	2013-12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

