ESCUELA TECNICA SUPERIOR DE INGENIERIA DE TELECOMUNICACION

Asignatura: Señales y Sistemas II Ejercicios de autoevaluación de la práctica 1

Profesores: J.R. Casas, J. Hernando, J.B. Mariño, A. Oliveras, P. Salembier.

Figura 1

Todas las preguntas de este cuestionario hacen referencia al esquema de la figura 1, donde se muestra un sistema discreto y el entorno analógico en el que actúa. Se admite que los filtros analógicos son ideales con frecuencias de corte F_{c1} y F_{c2} .

- 1. Si la señal analógica x(t) es una sinusoide con frecuencia F kHz $< F_{c1}$, ¿cuál de las aseveraciones siguientes es correcta?:
 - **1A**: x[n] es una secuencia con periodo 1/F.
 - **1B**: x[n] es una secuencia con periodo 8/F.
 - **1C**: x[n] es una secuencia periódica sólo si F es un número entero.
 - **1D**: Si x[n] es una secuencia periódica, el número de muestras de su periodo es 8/F o un múltiplo de 8/F.
 - **1E**: Cuanto menor sea la frecuencia F mayor será el periodo de x[n].
- 2. Bajo el supuesto de que la relación entrada-salida del sistema es y[n] = x[n] y la frecuencia de muestreo F_{m2} es 8 kHz, si la señal analógica x(t) es una *onda cuadrada* de frecuencia 1 kHz (cuya composición frecuencial sólo contiene los armónicos impares), se puede afirmar que:
 - **2A**: Si $F_{c1} = F_{c2} = 4$ kHz, y(t) = x(t).
 - **2B**: Si $F_{c1} = 6$ kHz y $F_{c2} = 4$ kHz, los componentes frecuenciales de y(t) son 1 kHz y 3 kHz.
 - **2C**: Si $F_{c1} = F_{c2} = 4$ kHz, los componentes frecuenciales de y(t) son 1 kHz y 3 kHz.
 - **2D**: Si $F_{c1} = 4$ kHz y $F_{c2} = 6$ kHz, los componentes frecuenciales de y(t) son 1 kHz y 3 kHz.

Figura 2

- 3. Una sinusoide x(t) de frecuencia $F_1 = 1.7$ kHz es procesada por el sistema diezmador de la figura 2 que trabaja en el entorno analógico de la figura 1, donde los filtros antialiasing y reconstructor cumplen la condición de Nyquist. Si N = 3, se pide:
 - a) Las frecuencias f_1 y f_2 de las sinusoides discretas que representan a la sinusoide analógica F_1 antes y después del diezmador.
 - b) La frecuencia de conversión F_{m2} para que el sistema trabaje en tiempo real.
 - c) La frecuencia F_i de cada una de las sinuoides analógicas presentes a la salida del filtro reconstructor tras el convertidor D/A.