

CURSO:

Taller de Machine Learning para el análisis y visualización en Power Bl

Laboratorio de Inteligencia Artificial

Tema 04 – Deep Learning

Profesor: Saúl Domínguez Isidro, PhD. Contacto: saul.dominguez@lania.edu.mx

Objetivo

Conocer conceptos básicos del aprendizaje profundo

Contenido

- Introducción
- Redes neuronales artificiales
- Anatomía de una red neuronal convolucional

Aprendizaje

• El aprendizaje profundo cae bajo el paraguas del aprendizaje automático, que es un subconjunto de la inteligencia artificial (IA).

• El aprendizaje profundo es un término para las tecnologías que utilizan algoritmos de redes neuronales artificiales (ANN). Los expertos consideran que el aprendizaje profundo y las ANN son la misma cosa y usan los términos indistintamente

Diferencias con ML

Perspectiva de DL

Jojo Moolayil, Learn Keras for Deep Neural Networks, 2019

Tecnología a favor

 Hacer que una red neuronal funcione rápidamente es difícil. Cientos o miles de neuronas deben interactuar entre sí en paralelo. Dependiendo de la tarea, las CPU tradicionales podrían tardar semanas en generar una predicción a partir de una ANN. Con las GPU, la misma tarea que llevó semanas solo puede llevar días u horas.

Las GPU fueron construidas por primera vez por NVIDIA para manejar las operaciones masivamente paralelas que los videojuegos

En 2009, Andrew Ng y varios otros descubrieron que podían usar GPU para el aprendizaje profundo a gran escala.

El punto de inflexión en DL

- 2006 Geoffrey Hinton, et al. punto de inflexión para las ANN.
 - Introdujo un algoritmo que podría afinar el procedimiento de aprendizaje utilizado para entrenar a las ANN con múltiples capas ocultas. La clave fue utilizar un algoritmo de descenso de gradiente que podría ajustar cada capa de la ANN por separado.
 - El otro descubrimiento clave optimizó la configuración inicial de los pesos. Esto permitió que los datos de alta dimensión, o datos con muchas características, se convirtieran en datos de baja dimensión, aumentando el poder predictivo.

Inspiración biológica

 Las bases de las Redes Neuronales Artificiales (RNA) descansan en la conceptualización de las neuronas, el cómo reciben datos, los procesan, obtienen un resultado y transmiten la información hacia otras neuronas, formando circuitos o redes

- La unión entre dos neuronas mediante estas señales se conoce como sinapsis
- Cada neurona mantiene un líquido en su interior, diferente en composición al exterior
- A esta diferencia se le llama potencial de reposo

 Al llegar señales procedentes de otras neuronas a través de las dendritas, actúan de manera acumulativa, bajando ligeramente el potencial de reposo de la neurona en cuestión

Este potencial modificado afecta a su vez la permeabilidad de la membrana

- La inversión de voltaje se conoce como potencial de acción
- El potencial de acción se propaga a lo largo del axón

- Algunas señales de entrada estarán activas y otras en reposo
- La suma de los efectos excitadores e inhibidores determina si la neurona será o no estimulada

1943

Modelo computacional de una Neurona biológica

Warren McCulloch

Walter Pitts

Elementos de una neurona

Elementos de una RNA

Regla de propagación

• permite obtener el valor del potencial postsináptico h_i de una neurona, a partir de las entradas y los pesos

$$h_i(t) = \sigma_i\left(w_{ij}, x_j(t)\right)$$

La función más habitual es de tipo lineal, y consiste en la suma ponderada de las entradas con los pesos sinápticos, que formalmente se puede interpretar como un producto escalar de los vectores de entradas y pesos

Función lineal

$$h_i(t) = \sum_j w_{ij} x_j = W_j^T.X$$

Distancia Euclidea (usada en mapas de Kohonen)

$$h_i(t) = \sqrt{\sum_{j} (x_j - w_{ij})^2}$$

Función de activación o transferencia

• proporciona el estado de activación actual

• La función de activación *f(.)* se considera determinista, y en la mayor parte de los modelos es monótona creciente y continua, emulando las neuronas biológicas.

Lineal o indentidad

$$f(x) = x$$

Rectified Linear Unit (ReLU)

$$f(x) = \max(0, x)$$

Softplus

$$f(x) = \ln(1 + e^x)$$

Umbral o Escalonada

$$f(x) = \begin{cases} 1 & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

$$f(x) = \begin{cases} 1 & \text{si } x \ge 0 \\ -1 & \text{si } x < 0 \end{cases}$$

Lineal y Mixta (Lineal a Tramos)

$$f(x) = \begin{cases} 0 & \text{si } x < -c \\ 1 & \text{si } x > c \\ \frac{x}{2c} + \frac{1}{2} & \text{en otro caso} \end{cases}$$

$$f(x) = \begin{cases} -1 \text{ si } x < -c \\ 1 \text{ si } x > c \\ a. x \text{ en otro caso} \end{cases}$$

Sigmoide (logaritmo sigmoidal)

$$f(x) = \frac{1}{1 + e^{-x}}$$

Tangente hiperbólica

$$f(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$$

Función de salida

• Esta función proporciona la salida global de la neurona $y_i(t)$ en función de su estado de activación actual $a_i(t)$

• Usualmente en los modelos neuronales la función de salida es simplemente la identidad f(x)=x, de tal forma que el estado de activación de la neurona se considera como la propia salida

$$y_i(t) = F_i(a_i(t)) = a_i(t)$$

Tipos de redes

Monocapa

Multicapa

Recurrentes

Clasificación general

Número de capas	Tipo de conexiones	Dirección	Redes neuronales
Redes Monocapa	Lineales	Hacia adelante (Feedforward)	 Perceptrón
	Recurrentes	Autorecurrentes	Máquina de BoltzmanBrain-State-In-A-Box
		No Autorrecurrentes	Red de Hopfield
Redes Multicapa	Lineales (Mixtas según aplique)	Hacia adelante (Feedforward)	Perceptrón multicapaADALINE – MADALINE
		Hacia atrás (Feedback)	 Kohonen SOM (Self- Organizing Maps)
		Ambos sentidos	 ART (Adaptive Resonance Theory)

CNN

Convolución

