

# Modularity in Complex Gene Transcription Networks

Andras Gyorgy and Domitilla Del Vecchio

gyorgy@mit.edu



## Motivation

In order to build large, complex systems of DNA, one needs to be able to compose small pieces in a modular fashion. But can we design biomolecular systems modularly?



Unfortunately, the behavior of a module changes once connected in a network due to retroactivity effects [1],[2]. Retroactivity arises whenever two molecules bind describing the effect that these molecules become unavailable for other reactions.



# Research questions

#### **Question #1**

How do the dynamics of isolated nodes change once connected?

Isolated node  $X_i$ 





#### **Question #2**

How do the dynamics of isolated modules change once connected?



Isolated module A



## Restoring modular composition

## Effective retroactivity to the input of node i

$$R_i(p_i) = \frac{\partial [\text{bound parents of } X_i]}{\partial [\text{free parents of } X_i]}$$

Property of the promoter, describes the loading effect the node has on its parents. Function of measurable biochemical parameters, independent of network topology.

### Internal retroactivity of module A

$$R^A\left(x^A,u^A
ight) = \sum_{i \in A} rac{V_i R_i \left(p_i
ight) V_i^T}{v_i}$$

Property of module A, captures loading effects due to intramodular binding reactions.

#### Answer #1

 $\begin{vmatrix} \text{connected} \\ \text{node dynamics} \end{vmatrix} = \left[ I + R^A \left( x^A, u^A \right) \right]^{-1} \end{vmatrix}$ 

 $\|R^A\left(x^A,u^A\right)\|_2 \approx 0$  the connected nodes behave as if they were isolated

## Effective retroactivity to the input of module A to B

$$\Delta R_B^A\left(x^A,u^A\right) = \sum_{i \in A} W_i R_i \left(p_i\right) W_i^T$$

$$_{i \in A} \text{binary matrix describing network topology}$$

Property of module A, captures loading effects due to intermodular binding reactions.



 $\left\|\Delta R_B^A\left(x^A, u^A\right)\right\|_2 \approx 0$ 

the connected modules behave as if they were isolated

#### Answer #2

$$\begin{bmatrix} \text{connected} \\ \text{module dynamics} \end{bmatrix} = \left[ I + \begin{bmatrix} I + R^A (x^A, u^A) & 0 \\ 0 & I + R^B (x^B, u^B) \end{bmatrix}^{-1} \Delta R_B^A (x^A, u^A) \right]^{-1} \begin{bmatrix} \text{isolated} \\ \text{module dynamics} \end{bmatrix}$$

Modules are described by: (i) isolated dynamics, (ii) internal retroactivity and (iii) input retroactivity. Now one can combine transcriptional modules modularly by explicitly accounting for loading effects.

# Implications about autorepression and competitive regulation





Competitive binding couples the dynamics of regulator transcription factors





