Primitives et intégration : L'essentiel du cours

Primitives d'une fonction sur un intervalle

- F est une primitive de f sur un intervalle I si F est dérivable sur I et si pour tout x de I, F'(x) = f(x).
- Si F_0 est une primitive de f sur intervalle I alors toutes les primitives de fsur I sont de la forme $F(x) = F_0(x) + C$ où C est une constante réelle.
- Toute fonction continue sur un intervalle I admet des primitives sur I.
- Primitives des fonctions usuelles : (F représente une primitive de f)

f(x) = a	F(x) = ax
f(x) = x	$F(x) = \frac{x^2}{2}$
$f(x) = x^2$	$F(x) = \frac{x^3}{3}$
$f(x) = x^3$	$F(x) = \frac{x^4}{4}$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$
$f(x) = \frac{1}{x^3}$	$F(x) = -\frac{1}{2x^2}$
$f(x) = \frac{1}{x}$	$F(x) = \ln x$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = e^{ax+b}$	$F(x) = \frac{1}{a}e^{ax+b}$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$

• Formules générales :

forme de f	une primitive de f	exemples
U'U	$\frac{U^2}{2}$	$f(x) = \frac{1}{x} \times \ln x \Rightarrow F(x) = \frac{(\ln x)^2}{2}$
$\frac{U'}{U} (U(x) > 0)$	$\ln U$	$f(x) = \frac{3}{(3x+1)} \Rightarrow F(x) = \ln(3x+1)$
$U' e^U$	e^U	$f(x) = 2x e^{(x^2)} \Rightarrow F(x) = e^{(x^2)}$

• Recherche pratique d'une primitive :

Pour les fonctions usuelles, on utilise directement les formules.

Pour autres fonctions, il faut d'abord identifier la forme qui ressemble le plus à la fonction. Si on a la forme exacte, on utilise directement la formule correspondante. Dans le cas contraire, on écrit la forme exacte qu'il faudrait pour la fonction f et on rectifie en multipliant par le coefficient adéquat.

► Exemple: Soit f définie sur]-2; +∞[par $f(x) = \frac{1}{(3x+6)}$.

On pense à la forme $\frac{U'}{U}$ (dont une primitive est $\ln U$) . On écrit que $f(x)=\frac{1}{3}$ ×

Une primitive de f sur]-2; $+\infty[$ est donc F définie par $F(x) = \frac{1}{2} \times \ln(3x+6)$.

Intégration

Soit f une fonction continue sur un intervalle I:

 \bullet Pour tous a et b de I:

 $f(x) dx = [F(x)]_a^b = F(b) - F(a)$ où F est une primitive de f sur I.

► Exemple :

$$\int_0^{\ln 2} 3e^{3x} dx = \left[e^{3x}\right]_0^{\ln 2} = e^{3\ln 2} - e^0 = e^{\ln(2^3)} - 1 = e^{\ln(8)} - 1 = 8 - 1 = 7.$$

Propriétés de l'intégrale :

Pour f et q continues sur un intervalle I et pour a, b et c de I:

- $\bullet \int_{b}^{a} f(x) dx = \int_{a}^{b} f(x) dx.$
- $\bullet \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx \text{ (Relation de Chasles)}$ $\bullet \int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \text{ (linéarité de l'intégrale)}$
- Pour tout réel k, $\int_{a}^{b} (kf)(x) dx = k \int_{a}^{b} f(x) dx$ (linéarité de l'intégrale)

1

• Si $a \le b$ et si $f(x) \le 0$ sur [a,b] alors $\int_a^b f(x) dx \le 0$

• Si $a \le b$ et si $f(x) \le g(x)$ sur [a, b] alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$

Calculs d'aires

f et g sont deux fonctions continues sur [a, b].

- Si pour tout $x \in [a, b]$, $f(x) \leq g(x)$ alors l'aire de la partie du plan comprise entre les courbes de f et g et les droites d'équation x = a et x = b est égale à c^b
- $\int_{a}^{b} g(x) f(x) dx$ en unités d'aire.

(« intégrale de la plus grande moins la plus petite »)

- Si pour tout $x \in [a,b]$, $f(x) \ge 0$ alors l'aire de la partie du plan comprise entre la courbe de f, l'axe des abscisses et les droites d'équation x=a et x=b est égale à $\int_{a}^{b} f(x) dx$ en **unités d'aire**.
- Si pour tout $x \in [a, b]$, $f(x) \le 0$ alors l'aire de la partie du plan comprise entre la courbe de f, l'axe des abscisses et les droites d'équation x = a et x = b est égale à $-\int_a^b f(x) \, dx$ en **unités d'aire**.

ightharpoonup Remarques:

- \bullet Pour avoir l'aire en cm², il faut multiplier le résultat en unités d'aire par : (la valeur en cm d'une unité sur l'axe des abscisses) \times (la valeur en cm d'une unité sur l'axe des ordonnées).
- Pour déterminer l'aire entre deux courbes, il faut d'abord connaitre leur position relative sur l'intervalle en question afin de savoir quelle est « la plus grande » et « la plus petite ».

Valeur moyenne d'une fonction sur un intervalle

Si f est continue sur [a,b], la valeur moyenne de f sur [a,b] est égale à $\frac{1}{b-a}\int_a^b f(x)\,dx$