Conflict Serializability | Practice Problems

► Database Management System

Conflict Serializability-

Before you go through this article, make sure that you have gone through the previous article on **Conflict Serializability**.

How much could you save on your monthly cloud compute bill?

Spot by Netapp

We have discussed-

- The concept of serializability helps to identify the correct non-serial schedules that will maintain the consistency of the database.
- · There are two types of serializability-

In this article, we will discuss practice problems based on conflict serializability.

AWS Certification C

Ad

Industry's highest cours 24x7 support, Ridiculou Edureka

Open

PRACTICE PROBLEMS BASED ON CONFLICT SERIALIZABILITY-

Problem-01:

Check whether the given schedule S is conflict serializable or not-

 $S : R_1(A), R_2(A), R_1(B), R_2(B), R_3(B), W_1(A), W_2(B)$

Solution-

Step-01:

List all the conflicting operations and determine the dependency between the transactions-

- $\bullet \ \mathsf{R}_2(\mathsf{A}) \ , \ \mathsf{W}_1(\mathsf{A}) \ (\mathsf{T}_2 \to \mathsf{T}_1)$
- $R_1(B)$, $W_2(B)$ $(T_1 \to T_2)$
- $R_3(B)$, $W_2(B)$ $(T_3 \rightarrow T_2)$

Step-02:

Draw the precedence graph-

- Clearly, there exists a cycle in the precedence graph.
- Therefore, the given schedule S is not conflict serializable.

Problem-02:

Check whether the given schedule S is conflict serializable and recoverable or not-

T1	T2	Т3	T4
	R(X)		
		W(X)	
		Commit	
W(X)			
Commit			
	W(Y)		
	R(Z)		
	Commit		
			R(X)
			R(Y)
			Commit

Solution-

<u>Checking Whether S is Conflict Serializable Or</u> <u>Not-</u>

Step-01:

List all the conflicting operations and determine the dependency between the transactions-

AWS Certification Online

Learn AWS with Edureka & tak home one of the fattest paych in the industry

- $R_2(X)$, $W_3(X)$ $(T_2 \rightarrow T_3)$
- $R_2(X)$, $W_1(X)$ $(T_2 \to T_1)$
- $\bullet \ \ W_3(X) \ , \ W_1(X) \ (T_3 \to T_1)$
- $\bullet \ \ W_3(X) \ , \ R_4(X) \ (T_3 \to T_4)$
- $\bullet \ \ W_1(X) \ , \ R_4(X) \ (T_1 \to T_4)$
- $\bullet \ \ W_2(Y) \ , \ R_4(Y) \ (T_2 \to T_4)$

Step-02:

Draw the precedence graph-

- Clearly, there exists no cycle in the precedence graph.
- Therefore, the given schedule S is conflict serializable.

Checking Whether S is Recoverable Or Not-

- Conflict serializable schedules are always recoverable.
- Therefore, the given schedule S is recoverable.

Alternatively,

- There exists no dirty read operation.
- This is because all the transactions which update the values commits immediately.
- Therefore, the given schedule S is recoverable.
- Also, S is a **Cascadeless Schedule**.

Problem-03:

Check whether the given schedule S is conflict serializable or not. If yes, then determine all the possible serialized schedules-

T1	T2	Т3	T4
	R(A)		R(A)
W(D)		R(A)	
W(B)	W(A)		
		R(B)	
	W(B)		

Solution-

<u>Checking Whether S is Conflict Serializable Or</u> <u>Not-</u>

Step-01:

List all the conflicting operations and determine the dependency between the transactions-

- $R_4(A)$, $W_2(A)$ $(T_4 \rightarrow T_2)$
- $R_3(A)$, $W_2(A)$ $(T_3 \rightarrow T_2)$
- $\bullet \ \ W_1(B) \ , \ R_3(B) \ (T_1 \to T_3)$
- $W_1(B)$, $W_2(B)$ $(T_1 \rightarrow T_2)$
- $\bullet \ \ \mathsf{R}_3(\mathsf{B}) \ , \ \mathsf{W}_2(\mathsf{B}) \ (\mathsf{T}_3 \to \mathsf{T}_2)$

Step-02:

Draw the precedence graph-

- Clearly, there exists no cycle in the precedence graph.
- Therefore, the given schedule S is conflict serializable.

Finding the Serialized Schedules-

- All the possible topological orderings of the above precedence graph will be the possible serialized schedules.
- The topological orderings can be found by performing the <u>Topological Sort</u> of the above precedence graph.

After performing the topological sort, the possible serialized schedules are-

$$1.\ T_1 \rightarrow T_3 \rightarrow T_4 \rightarrow T_2$$

$$2.\ T_1 \rightarrow T_4 \rightarrow T_3 \rightarrow T_2$$

3.
$$T_4 \rightarrow T_1 \rightarrow T_3 \rightarrow T_2$$

Problem-04:

Determine all the possible serialized schedules for the given schedule-

T1	T2
R(A)	
A = A-10	
	R(A) Temp = 0.2 x A W(A) R(B)
W(A) R(B) B = B+10 W(B)	
	B = B+Temp W(B)

Solution-

The given schedule S can be rewritten as-

T1	T2
R(A)	
	R(A)
	W(A)
	R(B)
W(A)	
R(B)	
W(B)	
	W(B)

AWS Certification C

Δd

Industry's highest cours 24x7 support, Ridiculou Edureka

Open

This is because we are only concerned about the read and write operations taking place on the database.

Checking Whether S is Conflict Serializable Or Not-

Step-01:

List all the conflicting operations and determine the dependency between the transactions-

- $\bullet \quad \mathsf{R}_1(\mathsf{A}) \;,\; \mathsf{W}_2(\mathsf{A}) \; (\mathsf{T}_1 \to \mathsf{T}_2)$
- $\bullet \ \ \mathsf{R}_2(\mathsf{A}) \ , \ \mathsf{W}_1(\mathsf{A}) \ (\mathsf{T}_2 \to \mathsf{T}_1)$

- $\bullet \ \ \mathsf{W}_2(\mathsf{A}) \ , \ \mathsf{W}_1(\mathsf{A}) \ (\mathsf{T}_2 \to \mathsf{T}_1)$
- $R_2(B)$, $W_1(B)$ $(T_2 \rightarrow T_1)$
- $R_1(B)$, $W_2(B)$ $(T_1 \rightarrow T_2)$
- $W_1(B)$, $W_2(B)$ $(T_1 \rightarrow T_2)$

Step-02:

Draw the precedence graph-

- Clearly, there exists a cycle in the precedence graph.
- Therefore, the given schedule S is not conflict serializable.
- Thus, Number of possible serialized schedules = 0.

Next Article- View Serializability in DBMS

Get more notes and other study material of **Database Management System (DBMS)**.

Watch video lectures by visiting our YouTube channel **LearnVidFun**.

Summary	

Article Name Conflict Serializability | Practice

Problems

Description Practice Problems based on Conflict

Serializability and How to check whether a given schedule is conflict serializable or not. Serializability in DBMS is a concept that helps to identify the correct non-serial schedules that will maintain the consistency of the database.

Author Akshay Singhal

Publisher Name Gate Vidyalay

Publisher Logo

AWS Certification Online

Ad Edureka

System Notesgatevidyalay.com

Management

Database

Advance Certification Program

Ad Intellipaat.com

Relational Algebra | Relational Algebra in DBMS

gatevidyalay.com

EKS Workshop

Concurrency Problems | DBMS View Serializability in DBMS

View Seria in DBMS | Problems

Ad Spot by Netapp

gatevidyalay.com

gatevidyalay.com

gatevidyalay.com