Time Series

OC Data Driven Insights

August 12, 2018

Introduction to Time Series

Outline

- ▶ What is a time series? Time series model?
 - ► Time Series Examples
- Fundamental building blocks of time series
 - White noise
 - Moving average
 - Random walk
- Second order properties and stationarity
- ► When/why linear regression fails

What is a Time Series?

- Simply: data points indexed by time order
- ► Natural temporal order of data
- Typically: Equally spaced points in time
- Often different than what we see in a regression setting

Why Care about Time Series

- They are everywhere!
- ► Economics (stock market, unemployment, etc)
- Social sciences (population series like birth rates or school enrollments)
- Epidemiology (influenza outbreaks)
- Medicine (blood pressure measurements)

Working with Time Series

- ► Time series analysis
 - Analyzing observed data
 - Focus on characteristics of the data
 - Explanatory focus
- ► Time series forecasting
 - Generating a model
 - Predictive focus

Some Additional Terminology

- Stochastic process
 - ► A sequence of random variables
 - Example: flipping a coin
- Sample path
 - Sample path of a stochastic process
 - One sample from a stochastic process
 - For example: HTHHTT (six coin flips)
- A stochastic process can generate MANY sample paths (infinitely many)

Fundamental Stochastic Processes

- ▶ White noise
- Moving average
- ► Random walks

White Noise

- Fundamental building block of other stochastic processes
- ► Key: no correlation between observations
- Assume $e_t \sim N(0,1)$ is a collection of IID random variables all following a normal distribution
- Normal distribution? Anyone? Anyone at all?
- ▶ Define $Y_t = e_t$ for all t
- Y_t is called white noise (process looks like white light of spectrometers)

White Noise: 1 Sample Path

White Noise: Many Sample Paths

Moving Average

- Big difference: there IS correlation between observations
- Assume $e_t \sim N(0,1)$ is a collection of IID random variables all following a normal distribution
- ▶ Define $Y_t = \frac{e_t + e_{t+1}}{2}$ for all t
- \triangleright Y_t is a type of moving average stochastic process

Moving Average: 1 Sample Path

Moving Average: Many Sample Paths

Random Walk

- Assume $e_t \sim N(0,1)$ is a collection of IID random variables all following a normal distribution
- ▶ Define $Y_t = e_1 + e_2 + ... + e_t$ for all t
- \triangleright Y_t is a random walk

Random Walk: 1 Sample Path

Random Walk: Many Sample Paths

Why Care about Stochastic Processes?

- We have ONE sample path of observations
- ► From this sample path we intend to infer the stochastic process that generated it
- We are NOT fitting lines to the data
- ▶ We are understanding the sample paths the process could take

Typical Process

- ▶ We observe a process to a specific point
- We determine what sample paths are likely as we look later in time

Stationarity

- Heavily mathematical definition
- Essence of it:
 - ► The mean (or expected value of the stochastic process) is constant
 - Covariance (or corelation between points only depends on distance between points and not on the value of t)
- Stationarity is an extremely common assumption in time series modeling!

Time Series: Linear Trend

- Assume stochastic process is $Y_t = \beta_0 + \beta_1 t + X_t$
- Assume $E[X_t] = 0$ and X_t is stationary
- ► This is just like linear regression so let's use OLS

Time Series: Linear Trend

Time Series

► Linear regression recovers the true parameters (close)

Time Series: Linear Model for Random Walk

- ▶ What if we fit a random walk Y_t with a linear model?
- ▶ Put another way: what if we regress a random walk on time with a linear model?
- Good choice, bad choice?

Linear Model for a Random Walk

Linear Model for a Random Walk

- Linear regression fails. Hard
- ► Significant trend when there is NOT one
- Reminder: there is not a trend because the expected value of Y_t is 0

What Happened?

- Spurious regression
- DO NOT regress non-stationary time series
- Our mistake
 - Coefficient is okay
 - Standard error is underestimated
- ► A random walk does not follow required linear regression assumptions!
 - ▶ Which key assumption does it not follow?