

Discover User-App Interactions & Solutions to Reducing the Initial User-CPU Latency

Thy Nguyen Milon Chakkalakal Pranav Thaenraj

Advisors: Jamel Tayeb, Bijan Arbab, Sruti Sahani, Oumaima Makhlouk, Praveen Polasam, Chansik Im

Abstract

- Data loading icons signal an unpleasant user-wait experience and can tear people away from using an app.
- We mitigate the initial latency by collecting system usage data using Intel's Telemetry and analyzing user-app interaction by EDA, HMM, and LSTM/RNN.

Methodology of Data Collection

- Tools: Software Development Kit, Environment Server, Intel® System Usage Report framework
- Purposes Anonymously gather and analyze data usage from multiple devices.

Exploratory Data Analysis

Chrome is the top frequently used app of this user according to the time measurement in 01/2023

Methodology of Predictive Tasks

Hidden Markov Model (HMM)

- Problem Statement: Predict the likelihood of using an app given the former sequence of application usage
- Idea: Use conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- A1. Markov Chain: Only the <u>current</u> state q_{i-1} plays the most crucial role in predicting the future in the sequence
 - $P(q_i = a | q_1 q_2 \dots q_{i-1}) = P(q_i = a | q_{i-1})$
- A2. Output Independence: The probability of observing an event o_i only relies on the state q_i that <u>directly</u> produced o_i

Recurrent Neural Network (LSTM/RNN)

• Problem Statement: Predict the (total) time usage of an app/tab/recorded process using the past time-series data

- Feature Engineering:
- 1. Hourly split daily usage into 24 cols (labeled 0 23)
- 2. Lookback 3-5 time steps from the current timestamp
- 3. One-hot-encoding; Min-Max scaler
- Experiments: Train/Test: 80/20, no shuffle; Keras

Predictive Results

HMM Metrics: Preds==True if within top n probabilities

LSTM Metrics: RMSE, TP/TN/FP/FN, Preds==True if w/in 1 sec

LSTM/RNN Performance

Model	Design (N=nodes)	Eval Bins/Criteria	Performance
Vanilla LSTM > Split Hourly > OH(Process Name)	Input RNN (64N) Hidden Dense (4N) Output Dense (1N)	[0, 0.01] (0.01, 0.02] (0.02, 0.2] (0.2, max]	TP = 691, TN = 0 FP = 65, FN = 0 ACC = \approx 91.4%
Stacked LSTM > Split Hourly > OH(Process Name)	Input LSTM (16N) Hidden LSTM (32N) Hidden Dense (64N) Output Dense (1N)	[0, 0.01] (0.01, 0.02] (0.02, 0.2] (0.2, max]	TP = 467, TN = 52 FP = 13, FN = 224 ACC = \approx 68.65%
Stacked LSTM > Split Hourly > Lookback(5 timesteps)	Input LSTM (50N) Hidden LSTM (50N) Output Dense (1N)	Preds==True if abs(diff) <= 3mins	RMSE = 1134.68 ACC = ≈ 27%

Table 1. LSTM/RNN Performance

Conclusions

- We should collect data <u>continuously</u> and <u>consistently</u> to achieve high accuracies in detecting patterns of user behaviors
- The results help infer daily app sequence and time usage, so we can develop a script to process background tasks and utilize *Task Manager* to open the next app 2-3 mins beforehand