- Koulutusohjelma: TKT
- Mitä ohjelmointikieltä käytät? Python
- Projekti tehdään suomeksi.
- Kerro myös mitä muita kieliä hallitset siinä määrin, että pystyt tarvittaessa vertaisarvioimaan niillä tehtyjä projekteja.
 - R
- Mitä algoritmeja ja tietorakenteita toteutat työssäsi?
 - Tarkoitus on käyttää Dijkstra ja Jump Point Search, mahdollisesti myös A* mikäli siihen jää aikaa. Dikstraan ei implementoida ohjaajan kommentin perusteella.
- Minkä ongelman ratkaiset?
 - Ratkaistava ongelma on löytää tehokkain algoritmi reitinhakuongelman ratkaisemiseen
 - Osana ongelman ratkaisu algoritmien toiminta visualisoidaan mahdollisimman yksinkertaisella tavalla. Tähän tapaan minulla ei ole vielä ideoita.
- Mitä syötteitä ohjelma saa ja miten niitä käytetään?
 - Karttoja, niitä käytetään reitinhakualgoritmien testaamiseen ja vertailuun
- Tavoitteena olevat aika- ja tilavaativuudet (esim. O-analyysit)
 - Dijkstra:
 - Aikavaativuus: $O(n+m\log m)$.
 - Tilavaativuus:
 - **JPS**
 - Aikavaativuus: Tavoitteena parempi performanssi kuin muilla algoritmeilla
 - Tilavaativuus:
 - Α*

$$O(|E|\log |V|) = O(b^d)$$

$$\mathcal{O}(|V|) = \mathcal{O}(b^d)$$

- Tilavaativuus:
- Lähteet, joita aiot käyttää.
 - o Tietorakenteet ja algoritmit -kurssin materiaalit
 - o Tämän kurssin lähteissä mainitut JPS-algoritmin kuvaukset
 - o A* algoritmin lähteistä ei ole vielä tietoa -> tähän tarvitaan vinkkiä
 - Wikipedia
 - o Muita algoritmeja tutkiessa löytyviä lähteitä