Lab-Activity-1

Exercise 1 - Phototaxis

Analisi del problema

L'esercizio richiede di implementare il comportamento di un robot capace di riconoscere la luce e muoversi verso di essa.

L'arena è quindi formata dai soli muri di perimetro e da una fonte di luce. Ho deciso di generare randomicamente la posizione della luce all'interno dell'arena, in modo da analizzare il comportamento su simulazioni diverse. Anche la posizione iniziale del robot è randomica.

Soluzione proposta

Il comportamento implementato si basa sulla lettura dei valori dei sensori di rilevamento luce disposti lungo la circonferenza del robot. In particolare, ho tenuto in considerazione 4 sensori per ogni direzione, sinistra, destra e fronte. In ogni ciclo di simulazione, il robot valuta quale delle tre direzioni presenta l'intensità luminosa maggiore, cioè quale somma dei relativi 4 sensori è maggiore:

- Se la luce proviene frontalmente, il robot avanza in linea retta e il led diventa giallo.
- Se la luce è maggiore a sinistra, il robot ruota verso sinistra e il led diventa blu.
- Se la luce è maggiore a destra, il robot ruota verso destra e il led diventa verde.
- Se non viene rilevata luce significativa (sotto una soglia), il robot esegue un movimento casuale ogni 50 passi per esplorare l'ambiente e il led rimane spento (nero)

Exercise 2 - Collision Avoidance

Analisi del problema

Lab-Activity-1

L'esercizio richiede di implementare il comportamento di un robot capace di riconoscere gli ostacoli durante il suo percorso e di schivarli.

L'arena è quindi formata dai muri di perimetro e da un numero modificabile di ostacoli. Anche il numero di robot stessi può essere modificato, in quanto ogni robot dovrà essere in grado di evitare la collisione con gli altri.

Soluzione proposta

Il comportamento implementato si basa sulla lettura dei valori dei sensori di prossimità disposti lungo la circonferenza del robot. In particolare, prendo in considerazione 8 di questi sensori, quattro in direzione sinistra-frontale, quattro in direzione destra-frontale.

In assenza di ostacoli, cioè quando nessuno dei sensori recepisce un valore di prossimità maggiore rispetto alla soglia, il robot si muove in maniera randomica.

A ogni step, viene calcolato il sensore che rileva il valore massimo, cioè quello che rileva l'ostacolo più vicino. Se il sensore è uno dei quattro di sinistra, allora il robot eviterà l'ostacolo girando a destra, e viceversa.

Lab-Activity-1 2