Comp From Palant

= US 4098758

PATENT SPECIFICATION

(11) 1 509 283

(21) Application No. 13663/75 (22) Filed 3 April 1975— (31) Convention Application No. 460 331

(32) Filed 12 April 1974

33 - (31) Convention Application No. 556 879

(32) Filed 10 March 1975 in

(33) United States of America (US)

(44) Complete Specification published 4 May 1978

(51) INT CL2 C07C 51/52; B01F 17/00//C08K 9/00

(52) Index at acceptance

10

15

20

25

30

35

C2C 1300 200 20Y 215 220 227 22Y 246 247 253 25Y 292 29Y 30Y 321 32Y 360 362 366 367 368 36Y 37X 567 568 569 620 623 628 658 65X 65Y 660 668 67Y 797 79Y BA BP CM CP CQ LR LS LU YK

CIA HIIB HIIC HIID HIIG HIIH HIIL HI2X HI3

C3B 1C12 1C13M 1C21 1C22 1C6A1 1C6X 1L2CX 1L2X

C3K 111 121 124 125 244 GA

C3Q C12X C8B C8C D1A T2A

C3R 14C 22C C12 C13M C21 C22 C6A1 C6X L2CX L4B

(71) We, KENRICH PETROCHEMICALS, INC., a corporation of the State of Delaware, one of the United States of America. East 22nd Street, Bayonne, New Jersey, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

Inorganic materials have long been used as fillers, pigments, reinforcements and chemical reactants in polymers. They are essentially hydrophilic, i.e., easily wetted by water or able to adsorb water. However, their compatibility with polymers is limited. Therefore, poor utilization is obtained of the potential reinforcement, of color or opacity, or chemical reactivity of inorganic materials.

For example, zinc oxide is a commonly used component in rubber compounds. When comminuted zinc oxide is added to a rubber compound as a dry powder, it is difficult to disperse it completely in the rubber. On the other hand, predispersion of the zinc oxide in an organic medium which is a plasticizer for the rubber forms a stiff paste which is not dusty, is easy to weigh, and aids in the dispersion in the rubber.

Likewise, other comminuted inorganic solids such as magnesium oxide, calcium oxide, other metal oxides, and fillers such as clay, calcium carbonate, colloidal silica and carbon black may be predispersed in an organic plasticizer or polymer prior to addition to a rubber or plastic compound.

Organo-titanium compounds are well known. A wide variety may be prepared from tetraalkyl orfho titanates by reaction with organic acids, as for example in U.S. Patent 2,621,193.

Organo-titanates having di- or tri- alkyl hydrolyzable groups and with therefore, only one or two organic groups which are non-hydrolyzable have been used to treat the surfaces of inorganic materials in order to render them hydrophilic, as for example in U.S. Patent 3.660.134. Such di- or tri- alkyl hydrolyzable titanates form a multi-molecular layer or envelope around the inorganic particles, resulting in less efficient use of the organic-titanate, as well as a weaker bond between the inorganic particle surface and the organic continuous phase.

The reaction is accomplished by adding the organo-titanste to a suspension of the inorganic material in an inert solvent such as naphtha. Enchloroethylene, toluene or hexane. After the reaction is completed, the solvent is removed and the treated, dried inorganic material is subsequently incorporated in an organic

5

10

15

20

25

的现在分词,那么是我们的有种的现在分词,我们就是一种的人的,我们就是一个人的人的人,也是一个人的人的人的人,也是一个人的人的人,也是一个人的人的人,也是一个人的人的人, 1997年,1997年,1998年1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,1998年,19

20

.30

2	1,509,283	2	3
•	polymer system. U.S. Patent 3,697,475, for example, incorporates such treated inorganic fillers in thermoplastic polymer films. According to the present invention there is provided a mixture of organo-		
5	is a hydrolyzable group as hereinafter defined, the or each OCOR' is a non-hydrolyzable group as hereinafter defined, the or each OCOR' is a non-hydrolyzable group as hereinafter defined at least one OCOR' group having from 6 to 24 carbon atoms, and n is more than 3 but not greater than 3.5, the mixture	5	5
	including at least some of one or more of the compounds represented by the		
10	formula Ti(OR), m(QCOR'), where m is an integer of from 1 to 3. By "hydrolyzable" is meant a group which will cleave in an aqueous solution having a pH of about 7 at a temperature of less than 100°C. Hydrolysis may be	10	16
4.5	determined by analysing for liberated acids and alcohols. By "non-hydrolyzable" is meant a group which will not cleave under the aforesaid conditions. Preferably the value of n in the above formula is between 3.1 and 3.25.		
15	The present invention also provides a composition comprising a comminuted inorganic material and an organo-titanate mixture as defined above or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as defined above, the	15	15
20	surface of the inorganic material having been reacted with the titanate mixture or titanate. The present invention further provides a process for producing a dispersion of a comminuted inorganic material in a polymeric medium which comprises admixing an inorganic material, a mixture of organo-titanates as defined	20	20
25	above or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as defined above and a polymeric medium, to form a dispersion of the inorganic material, the surface of which has been reacted with said organo-titanate, in the polymeric medium. The amount of the organo-titanate mixture required is preferably at least 0.1 part, more preferably 0.5 to 10 parts, per 100 of the inorganic	25	25
30	solid. The reaction takes place on the surface of the inorganic solid, whereby the hydrolyzable group is removed and a bond is established, thus forming an organic, hydrophobic surface layer on the inorganic solid. The inorganic solid, prior to surface modification, is difficult to disperse in an organic medium because of its hydrophilic surface. However, when the organo-titanium compound is	30	30
35	incorporated into an organic medium (low molecular weight liquids or higher molecular weight polymeric solids), preferably a rubber medium, the surface of the morganic solid is wet-out, agglomerates are readily broken into individual particles, and a dispersion having improved properties is formed. Alternatively,	35	
	organic medium and thereafter admixed with the latter. The method of the present invention converts the surfaces of inorganic		35
40	materials from a hydrophilic to a hydrophobic state preferably by reaction in an organic medium. This preferred procedure eliminates the prior art intermediate steps of dispersing the morganic material in a solvent, reacting, filtering and drying the inorganic solid before dispersing it in a polymer.	40	40
45	By means of the present invention, the dispersion of inorganic materials in organic polymer media is improved in order to obtain: (1) lower viscosity or higher loading of the dispersate in the organic medium; (2) higher degrees of reinforcement by the use of fillers, thereby resulting in improved physical properties in the filled polymer; (3) more complete utilization of chemical reactivity, thereby reducing the quantity of inorganic reactive solids required; (4)	45	45
50	ratios in a dispersion, and (6) shorter mixing times to achieve dispersion. Also, according to the invention herein, the reaction with the single hydrolyzable group of the organo-titanate may be carried out neat or in an organic	50	50
55	medium to form a liquid, solid, or paste-like solid dispersion which can be used in the compounding of the final polymeric system. Such dispersions are very stable, i.e., having no tendency to settle, separate, or harden on storage to a non-dispersible state.	55	55

Moreover, the invention simplifies the making of inorganic dispersions in organic media by providing a means to eliminate the solvent, to reduce the cost of processing equipment, and to reduce the time and energy required to disperse an inorganic solid material in a liquid or polymeric organic solid.

The present invention results in the formation of a reinforced polymer which

60

65

60 .

65

60

65

has a lower melt viscosity, improved physical properties, and better pigmenting characteristics than are displayed in prior art materials.

The practice of the present invention achieves a product comprising natural or synthetic polymers which contain particulate or fibrous inorganic materials

1,509,283

-	1,509,283	4
;	ethoxydecyl. Alkylthioalkyl groups include methylthiododecyl groups. Primary, secondary and tertiary amines may also serve as the terminal portion of the hydrophobic group. These include disopropylamino, methylaminohexyl, and	
5 .	aminodecyl. The aryl groups include the phenyl and naphthyl groups and substituted derivatives. Substituted alkyl derivatives include toluyl, xylyl, pseudocumyl, mesityl, isoduremyl, durenyl, pentamethylphenyl, ethylphenyl, n-propylphenyl, cumyl, 1,3,5-triethylphenyl, styryl, allylphenyl, diphenylmethyl, triphenylmethyl, tetraphenylmethyl, 1,3,5-triphenylphenyl. Nitro- and halo-substituted may be	5
10	exemplified by chloronitrophenyl, chlorodinitrophenyl, dinitrotoluol, and trinitroxylyl. Amine-substituted components include methylaminotoluyl.	10
15	trimethylaminophenyl, diethylaminophenyl, aminomethylphenyl, diaminophenyl, ethoxyaminophenyl, chloroaminophenyl, bromoaminophenyl and phenylaminophenyl. Halo-substituted aryl groups include fluoro-, chloro-, bromo-, iodophenyl, chlorotoluyl, bromotoluyl, methoxybromophenyl, dimethylaminobromophenyl, trichlorophenyl, bromochlorophenyl, and bromoiodophenyl. Groups denved from aromatic carboxylic acids are also useful. These include	15
20	methylcarboxylphenyl, dimethylaminocarboxyltoluyl, laurylcarboxyltoluyl, nitro- carboxyltoluyl, and aminocarboxylphenyl. Groups derived from substituted alkyl esters and amides of benzoic acid may also be used. These include amino- carboxylphenyl and methoxycarboxyphenyl. Titanates wherein R' is an epoxy group include tall oil epoxides (a mixture of	20
25	6 to 22 carbon alkyl groups) containing an average of one epoxy group per molecule and glycidol ethers of lauryl or stearyl alcohol. Substituted naphthyl groups include nitronaphthyl, chloronaphthyl, aminonaphthyl and carboxynaphthyl groups. Specific compounds which have been prepared and found operative in the practice of the instant invention include:	25
30	$(CH_3)_2CHOTi[OCO(CH_2)_{14}CH(CH_3)_2OCOC(CH_3)=CH_2;$	30
	$(CH_3)_2CHOTI[OCO(CH_2)_{14}CH(CH_3)_2][OCOC(CH_3)=CH_2]_2;$	
	(CH ₃) ₂ CHOT: [OCO CO ₂ (CH ₂) _n CH ₃] ₃ ,	
	where n is greater than 8 and less than 15;	
35	$[(CH_3)_2CHOTi[OCO(CH_2)_{14}CH(CH_3)_2]_2OCOC_{34}H_{78};$	
00	$(CH_3)_2CHOTI[OCO(CH_2)_{16}CH_3]_3;$	35
	(CH ₃) ₂ CHOT ([OCO - NH ₂] ₃	
	(CH ₃) ₂ CHOTi[OCO(CH ₂) ₃ NH ₂] ₃ ; and	
	(CH3)2CHOTI[OCO(CH2)p CH-CH(CH2)qCH3]	
	where the sum of p + q is more than 6 and less than 18.	
49	The inorganic materials may be particulate or fibrous and of any shape or particle size, the surfaces of which are reactive with the hydrolyzable group of the organo-titanium compound by means of hydroxyl groups, or adsorbed water, or both, carbon block profiles reinforcing materials include metals, metal oxides,	40
45	clay, carbon black, calcium carbonate, barium sulfate, silica, mica, glass and asbestos. Reactive inorganic material examples include the metal oxides of zinc, magnesium, lead, and calcium and aluminum, iron filings and turnings, and sulfur. Examples of inorganic pigments include titanium dioxide, iron oxides including vellow iron oxide, zinc chromate, ultramarine blue. As a practical matter, the	45

-			
4		1,509,283	5
5	. 5	particle size of the inorganic material should not be greater than 1 mm, preferably from 1 micron to 500 micron. It is imperative that the organic titanate be properly admixed with the inorganic material so as to permit the surface of the latter to react sufficiently. The optimum amount of the titanate to be used in dependent on the effect to be achieved, the available surface area of and the bonded water in the inorganic Reaction is facilitated by admixing under the proper conditions. Optimum results depend on the properties of the titanate permely admixing to the property of the titanate permely admixed to the property of the p	5
10	10	solid, and its decomposition and fiash point. The particle size, the geometry of the particles, the specific gravity, the chemical composition, among other things, must admixed with the polymeric medium. The appropriate mixing conditions depend on the type of polymer, whether it is the appropriate mixing conditions depend	10
15	15	where the inorganic material is pretreated with the organic titanate, it may be admixed in any convenient type of intensive mixer, such as a Henschel or Hobart The optimum time and temperature is pretreated with the organic titanate, it may be (Trade Mark) mixer or a Waring blender. Even hand mixing may be employed.	15
25	20	reaction between the inorganic material and the organic titanate. Mixing may be performed under conditions at which the organic titanate is in the liquid phase, at temperatures below the decomposition temperature. While it is desirable that the bulk of the hydrolyzable groups be reacted in this step, this is not essential where	20
	25	Polymer processing, e.g., high shar mixing, is generally performed at a temperature well above the second order temperature.	25
30	30	to 450°F; high density polyethylene is best processed at a temperature range of 350° 500°F; and polypropylene from 450° to 475°F; polystyrene from 450° to polymers are known to those skilled in the art and may be determined by reference	30
	35	When the organic titanate and the inorganic materials are dry-blended,	35
	40	substantially completed when the treated filler is admixed with the polymer. In this latter step, the organic titanate may also react with the polymeric material if one or more of the R' groups is reactive with the polymer. To illustrate further the invention, attention is directed to the following examples:	40
5	45	Example A: Preparation of Organo-Titanate Esters. One mole of tetraisopropyl titanate is admitted to a vessel equipped with an agitator, an internal heating and cooling means, a vapor condenser, a distillate trap and liquid-solid feed input means. Agitation is commenced with the tetraisopropyl titanate at room temperature. Liquid isostearic acid is metered into the vessel at a controlled rate so that the exothermic reaction is maintained below about 350°F 171	45
u withings day on age	50	reaction product by distillation at 150°C at 50 mm Hg to remove potentially	50
The debt of the de	55	The organic titanate thus produced has an average of 3.19 moles of isostearate per molecule. This material is hereinafter referred to as the "isostearate 3.19 ester." The ester structure is determined by ascertaining the isopropanol liberated from the reaction and the residual isostearic acid. It is found that about from 3.1 to 3.3 moles of isopropanol are recovered in the typical run. Substantially no unreacted isostearic acid is detected. The physical properties of the ester are:	55
عوده عصديان		Specific Gravity at 74°F 0.944	
(E) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	60	Flash Point (COC), °F 315	
•		Viscosity, LV, at 74°F, cps. 120	60

6	1,509,283		
	Pour Point, °F	Below -5	
	Decomposition Point, °F	Above 400	
	Gardner Color	15 Max	•
	Appearance	Reddish Oily Liquid	
5	The above run is repeated, except the isostearic acid, 1.0, 2.0 and 3.0 moles are mixtures of isopropyl isostearate titanates groups per molecule of 1, 2 and 3 moles	having an average number of isostearate	5
10	Examp This example demonstrates the effect with various fillers dispersed in naphth calcium carbonate, calcined clay, high chemically oxidized carbon black. The effecter on the viscosity of the end product	et of admixing the isostearate 3.19 ester enic oil. The fillers employed include surface area silica, carbon black, and ect of varying percentages of the titanate	10
٠			

	ı				·						
	· ∞	· .				80	4,100	300	3,500	25	7,700
Oii)	7					88 	4,700	15 85 3	3,000	80	3,300
aphthenic	9	75 25 0.5	12,600			26-	220	90	345	15 85	s 1,125
eral Oil (N	ν,	70 30 0.5	2,320		•.	28	114	. 38.6	98	28,	3 350
Fillers Dispersed in Mineral Oil (Naphthenic Oil)	4	50 50 0.5	.280	355	22,000	0.08	7,000	20 80	3,800	25 75	16,800
	3	800	32,500	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	1,280	15 85	5,750	15 2 2	4,200	80 80	1 00,5
		35	1,600	30 70.	215	281	. 615	10 90 2	465	15 85	1,612
	-	85	. 83	30	30,000	. 95 	120	, 2000	. 92	010	462
•		CaCO, parts by wt. Mineral Oil, ", Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Calcined Clay, parts by wt. Mineral Oil, "Titanale Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Hi Surface area silica, parts by weight Mineral Oil, ", Titanate Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	Hi Surface area silica, parts by weight Mineral Oil, ", Titunnie Ester, % on Filler	Brookfield Viscosity at 25°C, cps.	cially Oxidize n Black, pts. Oil, "	Titanate Ester, % on Filler Brookfield Viscosity at 25°C, cps.

A regular grade of carbon black was chemically oxidized in situ to convert
carboxyl groups to hydroxyl groups. The results are shown below:

Type of Treatment	ookfield Viscosity at 77°F, cps. of Dispersion	
Carbon Black (untreated)	9,200	
Carbon Black (5% chemically oxidized)	15,800	
Carbon Black (5% chemically oxidized and treated with	·	
3% titanate ester)	2,700	
The aforesaid data clearly show that mate ester make dispersions having substantiall Marked reductions in viscosity are shown part calcined clay, and carbon black. This reduced of mixing these fillers with the organic-type dispersion at lower energy requirements for	y reduced Brookfield viscosities. icularly with the calcium carbonate, viscosity greatly enhances the ease materials and results in improved	
Example C This example, using the procedures of Exorganic titanate compounds on the viscosity of mineral oil dispersions. The compositions test 50 parts of precipitated calcium carbonate a citanate esters. The results are shown below:	cample B, shows the effect of other of calcium carbonate in naphthenic ed contain 50 parts by weight of oil,	-
- Titanate Ester	Brookfield Viscosity at 72°F ± 3%	
None	32,500	
Monoisopropyl diisostearyl, acryl	188	
Monoisopropyl trimonococo, phthalog	1 152	•
Monoisopropyl diisosteary!, methacry	175	
Monoisopropyl dimethacryl, isosteary	175	
Monoisopropyl tri-2-aminoacetyl	34,600	
Monoisopropyl tripropionyl	30,000	
The above table shows the dramatic effect the invention. The last two examples fall outsic hydrolyzable groups are short chain radicals. CaCO ₃ filled oil is substantially unaffected. The effect of isostearic isopropyl titana reactivity of zinc oxide is shown in the follow. Example 1: Effect of Isostearate Esters on the Organic Medium.	de of the invention since all the non- in such cases, the viscosity of the tes on the dispersion and chemical wing examples:	
Formulation	Parts by Weight	
Zinc oxide (-325 mesh, S.A. 5.3 m ²	, 8/	
Zinc oxide (-325 mesh, S.A. 5.3 m ² Hydrocarbon oil (Naphthenic proc		

1C

.

PENETRATION (ASTM TEST No. D1231) at 74°F

 	Isostearate Esters						
Days after Mixing	1:0 mol.	2.0 mols.	3.0 mols.	3.19 mols.*	3.70 mols.		
0	(Could	160	170	165	615		
2	make disper-	125	140	150			
4	sion)	89	105	118		· :.	
6	**	· 85	105	. 115			
7 sostearate 3	**	80	90	112			

The greater the degree of penetration, the more fluid is the mix. After aging, the isostearate 3.19 ester gives the most desirable penetration characteristics. It can be seen by the data that, desirably, the most stable fluid mix is obtained with three or slightly more mols of isostearate in the titanate ester.

The dispersion made with the isostearate 3.19 ester was compared with the same zinc oxide in the untreated powder form in a natural rubber compound except that 10% less zinc oxide was used when making the rubber compound the treated zinc oxide dispersion described in Example 1. The formulation and test

the treated zinc oxide dispersion described in Example 1. The formulation and test results are shown in Example 2, as follows:

Example 2: Effect of Treated Zinc Oxide Dispersion in a Natural Rubber

FORMULATION

Natural Rubber	Zinc Oxide 90% Zinc Oxide Powder (pts. Dispersion (Example 1)
Peptizer—REOGENT (Trade Mark)	100 100
Stearic Acid	2
Zinc Oxide Powder	2.5
90% Zinc Oxide Dispersion (isostearate 3.19 ester)	3.5
HAF Black (high abrasive furnace black) (N330)	3.5
Sulfur	45 45
Ultra-Accelerator e.g. thiuram sulfide or a , dithiocarbonate (AMAX (Trade Mark) No. 1)	.5 .5

1.12

PHYSICAL PROPERTIES

Stress PSI at 300% Elongation (S), Tensile Strength PSI (T), % Elongation (E), Hardness, Shore A (H).

Press Cures	a constitution of								
at 290°F	S	T	Ε	Н	S	T	E	Н	
15 min.	1120	2850	500	55	1380	3810	550	57	
45 min.	1380	2890	460	59	1640	3780	520	59	
60 min.	1460	2900	460	59	1520	3610	500	60	

RATE AND STATE OF CURE

10	Rheometer at 290°F, 60 Sec. Preheat,		ŧ	10
		•		

	Zinc Oxide Powder (pts. by weight)	90% Zinc Oxide Dispersion (Example 1)	
Max. Torque	56.2 in /lbs.	77 in /lbs.	15
Min. Torque	15 ,,	22.5 ,,	
T90 (% degree of cure)	19.5 minutes	17.5 minutes	
T95 "	24 "	22 "	•
T2 ,,	2.2 "	2.7 ,,	

PROCESS TIME	20

Mooney	Scorch	at	250°F
171 00:107	DCOLCII	aι	2JU 1.

Time Scorch Begins	Minutes 5	Minutes	5
Time to 5 Point Rise	3	:	3
Total Time	. 8		8
Rise Last Minute	. 3		3.5
Plasticity	16		35

The table in Example 2 shows the great improvement in physical properties of a natural rubber compound achieved by the use of the isostearate 3.19 ester treatment of the zinc oxide surface even when 10% less zinc oxide is used. Tensile strength is increased by 30%, elongation by 10%, stress at 300% elongation by 10%. It is significant that hardness is not affected. The Mooney plasticity is more than doubled at 250°F, while the rheometer data at 290°F shows that the treated zinc oxide provides a tighter cure.

The following Example 3 shows the improvement in properties obtained when using the zinc oxide dispersion made with the isostearate 3.19 ester of Example 1 in an oil-black extended SBR (styrene-butadiene rubber) compound:

. •
10
. 5
10
15
20

	Example 3 Rubbe	: Effect o	f Treate			Dispersion	n in c	C	T)	
	Rubbe	r Compou	nd.				m m a	Styrene-	-Butadien	E
٠				FORM	1ULAT	NOF				
5	Compound SBR, Oil-B Extended	lack	·	·		. Pow	c Oxide der (pts weight)	. Dis	Zinc Oxide spersion ample !)	:
	PP 1849 (Ph	illips Petro	oleum SI	3R)		24	45	24	45	
	Zinc Oxide		•				3			
10	90% Zinc O 3.19 ester	xide Dispe:)	rsion (is	ostearate	:				3	c
	Anti-Oxidar	nt (Flexzon	e 3C)				1		1	
	Accelerator	-CBTS					1.3		1.3	
•	Sulfur						2.1		2.1	
	Accelerator-	-ТМТМ				٠.	0.55			
15	Ultra-Accele	erator (Vul	tac #5)				1.2		0.55	
	Resin Modif		•	•		10			1.2	. 1
	Stearic Acid							10		
							1		1	
20	Stress PSI at	1 300% Elo	mastion	SICAL			SI (T), %	& Elonga	ation (E),	÷
20	Stress PSI at Hardness, Sh	300% Elc nore A (H)	ongation). Zinc Powo				90% Zii Disp	nc Oxide ersion		2
20 25	Stress PSI at	300% Eldnore A (H)	ongation). Zinc Powo	(S), Ter Oxide ler (pts. veight)	nsile St	rength PS	90% Zii Disp (Exan	nc Oxide ersion nple 1)		
	Stress PSI at Hardness, Si		ongation). Zinc Powe by w	Oxide ler (pts. veight)	nsile St	rength PS	90% Zii Disp (Exan	nc Oxide ersion uple 1)	H	
	Stress PSI at Hardness, Sh Press Cures at 307°F	S	Zinc Powe by w	(S), Ter Oxide ler (pts. veight)	nsile St	rength PS	90% Zii Disp (Exan	nc Oxide ersion nple 1)		
	Press Cures at 307°F 30 min. Press Cures	S	ongation). Zinc Powe by w	Oxide ler (pts. veight)	H 59	S 1325	90% Zii Disp (Exan T	ersion uple 1) E 580	H 59	
	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175	Zince Power by w	(S), Terest Oxide der (pts. veight) E 600	nsile St	rength PS	90% Zii Disp (Exan	nc Oxide ersion uple 1)	H	
	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175	Zince Power by w T 2775	(S), Ter Oxide der (pts. veight) E 600	H 59	S 1325	90% Zii Disp (Exan T	ersion uple 1) E 580	H 59	25
25	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175	Zince Power by w T 2775	Oxide der (pts. veight) E 600 580	H 59 ATE O	S 1325	90% Zii Disp (Exan T	ersion uple 1) E 580	H 59	25
25	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175 1240 Rheome	Zince Power by w T 2775 2800 RATE A seter at 2	(S), Terest Oxide der (pts. veight) E 600 AND STA	H 59 60 ATE O	S 1325 1350 F CURE	90% Zii Disp (Exan T	ersion uple 1) E 580	H 59	· 25
25	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175 1240 Rheome 60 Min.	Zince Power by w T 2775 2800 RATE A seter at 2 Motor,	(S), Ter Oxide der (pts. veight) E 600 AND STA 280°F, 60 50 Rang	H 59 ATE O O Sec. I	S 1325 1350 F CURE Preheat,	90% Zin Disp (Exan T 2929	ersion uple 1) E 580	H 59	· 25
25	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175 1240 Rheome 60 Min. Max. To	Zince Power by w T 2775 2800 RATE A seter at 2 Motor, orque	(S), Ter Oxide ler (pts. veight) E 600 AND STA 280°F, 60 50 Rang 25.75 in	H 59 ATE O O Sec. I ge, 1° A	S 1325 1350 F CURE Preheat, Arc 25.75 in	90% Zin Disp (Exan T 2929	ersion uple 1) E 580	H 59	· 25
25	Press Cures at 307°F 30 min. Press Cures at 280°F	S 1175 1240 Rheome 60 Min.	Zince Power by w T 2775 2800 RATE A seter at 2 Motor, orque	(S), Ter Oxide der (pts. veight) E 600 AND STA 280°F, 60 50 Rang	H 59 60 ATE O Sec. I ge, 1° //	S 1325 1350 F CURE Preheat,	90% Zin Disp (Exan T 2929	ersion uple 1) E 580	H 59	25 25 30

1,509,283

	-

10

15

20

25

30

35

1,509,283						
RATE	AND	STATE	OF CURE	Continued		

5

1: ;

10

15

20

25

35

13

5

10

15

20

25

30

1	2

Phaamatar	24005	~	ъ .	

Rheometer at 340°F, 60 Sec. Preheat,

12 Min. Motor, 50 Range, 1° Arc

Max. Torque 21.1 in./lbs. 22.8 in./lbs.

Min. Torque 5.4 ,, 5.1

TS-2 2.15 minutes 1.9 minutes

S—90 3.9 " 3.7

PROCESS TIME

Mooney Data at 212°F

Initial 50.5 51.5

1.5 minutes 40.5 41.5

4.0 minutes 36.5 37.5

The data in Example 3 show an equal or improved condition of physical properties with the use of 10% less of zinc oxide. In actual processing, it has been observed that the isostearate 3.19 ester treated zinc oxide dispersion of Example 1 is incorporated into the rubber compound in about one-fourth to one-fifth of the time otherwise required for untreated zinc oxide powder. Additionally, the treated zinc oxide powder was non-dusty.

The above data also show that the compound which contains the treated zinc oxide dispersion has a higher degree of reactivity as well as a tighter final cure, as evidenced by the increase in torque, as compared to the untreated zinc oxide

evidenced by the increase in torque, as compared to the untreated zinc oxide.

The following Examples 4, 5 and 6 illustrate the effectiveness of isostearate
3.19 ester in reducing the viscosity of dispersions of various inorganic solids in a

hydrocarbon oil.

The dispersion of zinc oxide in a hydrocarbon oil results in a greatly reduced viscosity when it is reacted with isostearate 3.19 ester, as can be seen in the following Example 4:

Example 4.

	Parts by	Weight	÷.,
Zinc Oxide	. 50	50	30
Naphthenic Process Oil	50	47.5	
Isostearate 3.19 ester	. 0	2.5	
Brookfield Viscosity at 74°F cps (centipoises)	460,000	80,060	

The reduction in viscosity of the zinc oxide dispersion in a hydrocarbon oil by the *in situ* reaction with the isostearate 3.19 ester was 83%.

The viscosity of a dispersion of titanium oxide is similarly reduced by the isostearate 3.19 ester, as shown in the following Example 5:

		#,509,283			
	1	Example 5.	_	•	
		Titanium Dioxide	Parts	by Weight	
		·	. 50	50	
,	5	Naphthenic Process Oil	50	47.5	
ļ		Isostearate 3.19 Ester	C	2.5	
		Brookfield Viscosity at 74°F cps.	110,000	900	
	10	The reduction in viscosity of the titanium did oil by the <i>in situ</i> reaction with the isostearate 3. The viscosity of a dispersion of carbon black reduced by the same ester, as shown in the foll Example 6.	.13 ester was 9	19%.	n y
			Parts b	y Weight	
		Carbon Black FEF N550	30	30	
		Naphthenic Process Oil	. 70	65	
	15	Isostearate 3.19 Ester	. 0		
***		Brookfield Viscosity at 79°F, cps.	104,000	3 46,000	
Petrian e residirque descença describa es es sacionados.	20	The reduction in viscosity of the carbon black by the <i>in situ</i> reaction with the isostearate 3.19 e. The viscosity of a dispersion of calcium carb reduced when the isostearate 3.19 ester is adde Example 7: Example 7.	dispersion in a ster was 56%.	hydrocarbon oil	
ŀ		Example 7.	-		
		Calcium carbonate (low 1)	Parts by	Weight	
	25	Calcium carbonate (low oil absorption type)	50	50	
		Liquid epoxy resin (epoxide equivalent -185)	50	45	
		Isostearate 3.19 Ester	0		
		Brookfield Viscosity at 74°F, cps.	550,000	5 ⁻	
1				in liquid epoxy	

14	1,509,283					14	15
•	Example 8.						
		Part	s by W	/eight			
	Colloidal silica (Neosil A)	5	0	50	**		
5	Liquid polysufide rubber (Thiokol (Trade Mark) TP-90B)		0	45		5	
	Isostearate 3.19 ester		0	5			5
	Brookfield Viscosity at 74°F, cps.	8,00	0	2,250	·····		
10	The penetration of a paste dispersion of a (Thiokol) polysulfide rubber was increased when added. Alternatively, when the amount of calcium increased 50%, the penetration remained the san increased amount of the isostearate 3.19 ester. I following Example 9:	the isoste carbonate ne, through	arate in the h the :	3.19 est dispersi addition	er was on was of an	10	10
	Example 9.		٠				
15	•	Parts	by W	eight		15	•
	Calcium carbonate (Purecal SC)	200	200	300		-	
	Polysulfide liquid rubber (Thiokol LP-32)	100	100	100			
	Isostearate 3.19 ester	0	4	15			15
	Penetration (ASTM Test No. D-1321)	45	82	46			
20	The dispersions of Examples 4 through 9 wer isostearate 3.19 esser by preblending the pigment medium using a Pony mixer. This preblend was the make the final dispersion. Viscosity or penetration	or filler wi en ground (ith the on a th	organic ree-roll	liquid mill to	20	20
25	control comparison. The effect of the titanate ester was then evaluable which the titanate ester was added to the organic limade as described before. Viscosity measureme disclosed very considerable and significant reduced	quid mediv ents made etion in vis	im and on the cosity	the disp e n'ew t demons	persion patches strating	25	
. 30	that the isostearate esters of the invention are effe materials and in different liquid organic medi- indicates that inorganic materials treated by the pr- be used in higher loadings, (2) become more com- medium and in the end product, and (3) crea-	 a. This re rocesses dis apletely dis- ate viscosit 	ductions sclosed persed y leve	on in vi I herein I in the c els whic	can (1) organic in lend	30	25
35	themselves to improved manufacturing processes s mixing or for pumping of such dispersions. These examples demonstrate that the inorgal pretreated and the surface modification can be ac the isostearate thanate ester. Also, the ester is eff	nic materia complishe	iced ei als do d <i>in sit</i>	nergy le not hav u by the	vels for e to be c use of	35	30
40	wide variety of inorganic materials in a wide var The following Example 10 shows the effective producing a shorter mixing time and lower viscosi oxide in hydrocarbon oil. In actual mixing, it is n	riety of org eness of iso ity in a disp	steara ersion	nedia. ite 3.19 i i of mag	ester in nesium	40	. 35
	oxide to the hydrocarbon oil in increments in order of inorganic to organic loading in the shortest	r to obtain	the ma	axınıum	degree		

.57.75

			Example 10	•		
•	· · · · · ·			,	Parts by V	Weight
	Magnesium	Oxide			55	55
	Naphthenic	Process Oil			45	42
5	Isostearate	3.19 ester			0	. 3
		Increment Addition No.	Weight	Time	in Minutes	
		1	16.67	0	0	
		2	8.33	0.5	0.5	
0 .		3	8.33	1.0	1.0	
		4	8.33	2.0	2.0	
		5	5.00	4.0	2.5	
		. 6	4.17	4.5	3.0	
		7	4.17	5.0	3.5	
5			55.00		•	•
	Tin	ne to Complete Di	spersion	6.5	4.5	•
	Per N	netration (ASTM 7 No. D—1321)	Test	160	230	
20	The resultant less mixing time.	t dispersion was th	nerefore ma	de 30% se	ofter while	requiring 31%
:5	0.918) is shown in in making a dispemelt index of 7, w LDPE.	particle grade) in the table below. Trision of calcium control to the table below. The table below to the table table to the table ta	stearate 3.19 situ in low of this table con arbonate in alcium carbo	mpares to low densionate are	olyethylene he melt visc ity polyethy blended wi	(LDPE, sp.g. cosity vs. time vlene having a th 28 parts of
0	mixer. The mixing RPM, using a 5 K measuring the tor	g weight on the r	ng the mixi t a maximur am, while the e mixer in s	ng in a l n temper ne melt vi	Brabender I ature of 200 iscosity was	high intensity OF, and at 82 observed by
5	when two other dis mono-oleate, were CaCO ₃). The result	used at the car	ery, aruminu			1 1 100

								10
		Torque	e Reading	s (gmsı	meter²)			
	Additives	Time (seconds) 60	90	120	. 150	190	
	Isostearate 3.19 Ester	1250	900	900	900	750	750	
5	No Additive	2000	2000	1900	1750	1750	1750	. 5
	Aluminum Tristearate	1900	1400	1300	1250	1250	1250	
	Polyglycerol 400 Mono-Oleate	2150	1400	1150	1000	1000	1000	
10 15	When no additive was emp 2,000 gmsq. meter, and after When the isostearate 3.19 es sq. meter in 30 seconds, and was melt viscosity in a very short ti When the Aluminum tristea gmsq. meter after 30 seconds, a than the titanase ester. The potorque of 2,150 gmsq. meter a after 190 seconds of mixing. The effectiveness of the iso demonstrated by an additional to with additional LDPE polymer is the second of the secon	190 seco ster was to 750 at 19 me. trate was and to 1, lyglycerc fter 30 s stearate	nds was 1 used, the to seconds sused, the 250 after 101 400 mo econds of 3.19 ester 101 the 70	750. orque has, showing to torque 190 secono-olean mixing as a dis	ad dropping the grice had dronds, apping addition, and a separation of the dispersion of the dispersio	oed to 12. eat reduction opped to reciably ive productorque o	50 gm ction in 5 1,900 higher uced a f 1,000 as also	10
25	blown-film extrusion. The resultinumber of remaining agglomerar additive was employed, there we titanate ester was employed, the foot.	ng film w ted parti ere 312 a	as then ex cles per so agglomera	camined quare fo	visually ot. Whe square f	to measi n no disp	ore the persion	20 25
	This example is similar in	Examp	ie 12.		., , .	~		
30	This example is similar in Titanium dioxide (rutile) was us LDPE as used in Example 11. 2.67% dispersion additive (based The following table shows the Brabender mixer after 30 second had dropped to 1,100. When the 30 seconds was reduced to 1,250	ed as the The disp lon the hat with s was 2,2 isosteara	e inorgani ersion wa TiO ₂), an no dispers 250 gmsc te 3.19 es	ic dispers s made d 23 pars sion add q. meters ter was a	sed pha at 75 parts of L itive the and aft	se in the arts TiO ₂ DPE. torque er 180 se he torque	e same using on the conds	30

was reduced to 1,250 gm.-sq. meter, and after 180 seconds was 750.

30

2.

3:

4(

4:

16		7	1	,509,283				٠	
	. ! .		Torq	ue Read	ings (gms	meter²)			17
	-	Additive		(second	s)	120	1:50	180	
5	5	Control No Additive	225	0 1750) 1250		1150		
		Isostearate 3.19 ester	1250	900	900	900	750		5
	ļ	Polyglycerol 400 Mono-Oleate	2000	1500	1250	1000	1000	750	•
	-	Aluminum Tristearate	1000	750		600	500	1000 500	
5	15	When the TiO ₂ dispersion made, the number of agglomer with the isostearate ester the afoot. There was also a very no It can also be seen from polyglycerol 400 mono-oleate superior to the titanate ester as This example is similar in dispersed phase was yellow iron additive (based on the iron oxishows the results.	aggiomer oticeable the table was info s a dispe Exam procedur	rate cour increase that in erior, wherein aid the property of	t was re in opac the case hile the	duced to ity and ve of TiO aluminum	150 pe vhitenes dispers n stear	r square is. sion the ate was	10
a de la como de la la co			Torque	•	gs (gmsı				20
		Additive Control	30	60	90	120	150	180	
	. 25	No Additive	2500	1750	1000	1000	1000	1000	25
		Isostearate 3.19 ester	2500	1400	850	750	750	750	23
		Aluminum Tristearate	2000	1250	850	800	800	800	
1	,	Polygiycerol 400 Mono-Oleate	2000	1100	1000	900	800	800	•
en kelaman dan beradapan at para sasar samusian mengan berada mahada dakat para dakat para dakat para dakat pa	30 35	When no dispersion additive 2,500 gmsq. meter after 30 sec isostearate 3.19 ester was added, the meter, but after 180 seconds the When the yellow oxide dispersion additive was employed. agglomerate count dropped to 11. The above table also shows the stearate or polyglycerol 400 mono	torque he sion was lomerate When the per squart the tip-oleate in the second control of	e after 30 and drop reduced count whe isoster dure foot tanate es n reduci	seconds ped to 7 i to a con as 685 pe arate 3.19 t. ster was s	was also 50. Icentration square for ester was uperior to the trisco	s. When 2,500 gm of 5% oot when s added o alumisty.	n the nsq. and n no the num	30
addition accepts they have the constitution of	45	tensile and melt index properties (HDPE) with mineral fillers at a log A laboratory Banbury was use HDPE at a concentration of 5%. Cumberland grinder employing a 14 Henschel-type mixer with the filler ratio. The dry blend was a second to the laboratory blend to the laboratory ble	ester wa of inject pading ra d to mas The re d mesh so to give	s used to tion-gradinge of I terbatch sultant of treen, an	the orga compound thereal	nic titans d was g	olyethyl ite with round i lended i	the n a in a	40
;		using the Banbury in 3 minutes cy	yele time	es, 60 ps	i ram pr	esired per essure, a	rcent fil ind a di	ler, rop	•

S

temperature of 200° F. The finished compounds were ground and injection-molded into plaques having dimensions of 0.105 × 0.500 × 2.375 inches for testing. The molding took place at 400°F; at an injection pressure of 1,000 psi; ram forward, 10 seconds; and mold close time of 15 seconds.

The results obtained are shown in the following table:

	Filler	Titanate Ester percent,	EVA,	Melt index.	Tensile Strength,	Tensile Modulus	Impact Strength ftlb./fn.	
ation	percent	based on filler	percent	g./10 min.	p.s.i.	10 ³ p.s.i.	of noteh	
Control (HDPE only)	0	0		19.7	2,050	0.86	0.93	
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Ommmm		20.8 22.3 22.3 22.3	2,430 2,460 2,220 2,060 1,770	81.7 49.0 59.4 63.3 70.0	0.58 0.60 0.64 0.76 0.91	
Aluminum Silicate	60 60 60 60 60 60	Ommmm		14.0 12.9 8.4 1.5	2,510 3,020 2,790 2,490 2,350	99.8 133.2 140.1 145.3 150.9	0.40 0.60 0.53 0.45 0.37	· · . · · · · · · · · · · · · · · · · ·
Calcium Metasilicate, CaSiO,	30 30 50 60 60	0 ოოოო		16.5 16.5 16.5 12.0	2,330 2,230 2,020 1,800 1,610	72.2 87.2 106.0 121.3	0.56 0.77 0.81 0.88	
	30 30 50 60 60	<i>).</i> Ommmm		16.3 18.8 18.4 17.7 17.8	1,960 2,330 1,730 1,770 1,800	217.9 180.6 163.4 150.9 130.8	0.53 0.57 0.78 0.97 1.01	
Ethylene-Vinyl Acetute Polymer with Calcined Clay Filler	04 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	๛๛๛๛	5.8 10.8 15.8 20.8	2.7 2.9 5.7	2,900 2,710 2,470 2,180	112.1 109.3 106.0 102.2	0.82 1.52 2.39 4.54	

19		1,:	509,283				19
. •	system with the org filled system withou	t the titanate ester	better imp	act strengt	he 30% fi	ller/HDPE equivalent	19
10	containing calcium impact strength wa Additionally, the st HDPE is significan decreases with inc significantly, the ten high as 60%.	is equal to or be iffness or tensile tly reduced by 3	etter than modulus of for the control for the	the high of the calcorganic tita	barium s density pol ium carbo nate. Surp	ulfate, the lyethylene. nate filled risingly, it	5
	Finally, the me HDPE remains re characteristics similar	It index of the beasonably constant to the 100% H	IIII AI NI	1. 100410	cium carbo g, they h	nate-filled nave flow	
20	In this exampl polyethylene is desc carbonate is tested elongation and tear scarbonate after having 3.19 ester of the infollowing table:	e the application ribed. The unfille for volume resistrength, as company heep dry-blend	stivity (V.F sted to the led with 19	ene admixe R.). tensile polyethyler	ed with 40°, strength, ne filled wit	% calcium modulus, h calcium	15 20
	Properties	Unfilled Polyethylene	4(0% Calcium	Carbonate		
. 25	Percent Isostearate 3.19 Ester		0%	!%	2%	3%	25
	V.R., 50°C, ohm-cm × 10 ¹⁴	60+	60+	60+	60+	60+	٠
.30	Tensile Strength, psi	1638	1464	1245	1222	1124	30
	300% Modulus, psi	1204			· <u> </u>	964	
	Elongation	530	40	80	150	420	
35	Tear Strength, Die C: Pounds per inch	500	228	262	276	284	35
•	Relative energy to tear	1100	100	230	280	450	
40	It will be noted to elongation and the term However, it should be the unfilled polyethyle	noted that these r	t with the mpared to properties a	orgamo-tita the umtreat re not resto	nate impro ed filled n ored to the	oves the naterial. level of	40
45	This example show calcium carbonate on experiments, the heat-a polypropylene. polyproand polypropylene fille been previously dry-ble	ged and unaged in pylene filled with	isostearat ngth of fil npact streng 40 weight	ths are con	opylene. In npared for a alcium carl	n these unfilled bonate,	45
50	been previously dry-ble on CaCO ₃) as shown in of the long term aging e with a high intensity He least 30 sec. at 3600 rp	the table below. H	leat aging a	t 150°C is a	3.19 ester in accelerat	(based ted test	50

100.0

2,180

20.8

₹

The following table shows the impact strength of the unaged and heat-aged samples:

5			in	nnotched Izod npact Strength t. lb./in. width	·- ₅
	Composition		Unaged	Heat Aged at 150°C for 48 hours.	-
	Unfilled Polypropylene		8.3	Not tested	-
10	Polypropylene containing 40% calcium carbonate		6.3	0.57	10
	Polypropylenecontaining 40% calcium carbonate dry-blended with 0.5% isostearate 3.19 ester		. 5.9	6.0	- :
15	Polypropylene containing 40% calcium carbonate dry-blended with 0.75% isostearate 3.19 ester		7.0	6.2	15
	Polypropylene containing 40% calcium carbonzte dry-blended with 1% isostearate 3.19 ester		8.5	7.2	
20	Polypropylene containing 40% calcium carbonate and 3% isostearate 3.19 ester		12.2	Not tested	20
25	The above data clearly shows that the invention substantially maintai polypropylene in spite of the heat aging, the filled polypropylene loses its impadegree. The data also show that the i greatly improved by the use of 3% of	whereasy ct strengt	mpact strewithout the h (becomes	ength of the filled isostearate 3.19 ester, brittle) to a marked	25
30	In this example, the effect of the ise filled polypropylene is evaluated. Two effect of the mixing procedures on the	methods physical r	are emplo	yed to ascertain the	30
35	dry-blended in a Henschel mixer at 360 place initially at room temperature, bu during the mixing operation. Therafter, with polypropylene, followed by screw method, the material from the Hensch	e and the 00 rpm fout the adm, test samplingection in the less samples are less to the less than the	organic tit or one minu nixture incr ples are for molding at	anate compound are te. The mixing takes eases in temperature med by dry-blending 450°F. In the second	35
40	double concentric screw mixer at 450°F at this temperature. The following table	Inerenii	er commiec	are injection molded	40

10

15

20

25

45

21

1,509,283

2·1 Flexural Falling Notched Unnotched Tensile Modulus, Dart Impact, Izod Izoa Strength, psi 10³, psi ft.-!bs./in. ft.-lbs./in. ft.-lbs./in. Method 1 5 No filler 5,000 240 1.0 0.7 Not tested 40% CaCO₃ No titanate ester 6,460 950 0.6 0.4 2.6 40% CaCO₃ 0.3% titanate ester* 5,715 635 1.0 0.6 3.3 10 40% CaCO₃ 0.6% titanate ester* 10 5,125 590 1.4 1.1 6.0 Method 2 40% CaCO, 0.6% titanate ester* 15 Extruded (high shear 15 mixing) 4,740 460 2.5 2.0 7.4 * based on CaCo, The above table clearly shows that the polypropylene containing the treated calcium carbonate has substantially improved properties, as compared to the untreated filled material. Where 0.6% of the organic titanate is used, the impact 20 strength is markedly improved. Similarly, the use of the double concentric screw 20 used in Method 2 results in a further improvement of properties. It is hypothesized that this additional high shear mixing provides a more thorough reaction between the organic titanate and the inorganic material. 25 Example 18. The application of the invention to polystyrene is shown in this example. The 25 table below shows a comparison of the specific gravity and melt index of polystyrene, polystyrene admixed 50/50 with calcium carbonate, and polystyrene admixed 50/50 with calcium carbonate which has been pretreated with 0.5 part of 30 the isostearate 3.19 ester. The titanate ester and the calcium carbonate were dryblended in a high shear dry blender initially at ambient conditions. The filler was 30 admixed with the polystyrene in a two-roll mixer at a temperature of 307°F until mixing was complete. The sheets were comminuted and the specific gravity and melt index determined: 35 Melt Index at 190°C, 35 Method E (ASTM) Material Specific By Weight Formulation By Relative Gravity m gms. Vol. in mls. Unfilled Polystyrene 1.04 0.90 0.86 40 Polystyrene 50% CaCO, 1.50 0.3640 0.24Polystyrene 50% pretreated CaCO, .5% isostearate 3.19 ester

> The aforesaid table shows that the treated filled polystyrene is more readily moldable. The untreated filled polystyrene has a melt index which indicates that it cannot be as readily molded on conventional equipment.

1.49

E.17

0.79

45

.5

 	1,509,283				22		
A composition containing of clay, and 0.2 weight percent by blending the day, the titana 600°F for one minute. After molded and the physical projects	Example 19. This example shows the use of isobutyl tri(6-aminocaproyl) titanates for the improvement of properties of 50% clay-filled nylon 66. A composition containing 50 weight percent of nylon 66, 49.8 weight percent of clay, and 0.2 weight percent of a titanate ester, hereinafter defined, is prepared by blending the day, the titanate ester and the nylon 66 in a twin-screw extruder at 600°F for one minute. After the blending is complete, samples are injection molded and the physical properties determined. The titanate esters, primarily isobutyl tri(6-ammocaproyl) titanate, have the formula: [(C ₂ H ₃)(CH ₃)CHO] Ti[OCO(CH ₂) ₃ NH ₂] _n						
¶(C₂H₃)(CH	,)CHO]Ti[OCO	(CH ₂),NH ₂]_		10		
where n is 2.8, 3.4 and 3.7. The following table shows	the properties of	these 50%	clay-filled	nylons:			
Property	No Titanate	n=2.8	n=3.4	n=3.7	•		
Flexural Strength * 10° psi	13.6	14.6	17.1	14.2			
Flexural Modulus x 10 ⁵ psi	10.4	10.8	10.7	10.8	15		
Tensile Strength x 10° psi	7.9	8.0	9.4	7.8			
Tensile Modulus x 10 ⁵ psi	13.6	13.4	13.5	13.2			
WHAT WE CLAIM IS:— 1. A mixture of orga Ti(OR),—n(OCOR'), wherein th defined, the or each OCOR' is a one OCOR' group having from greater 3.5, the mixture including represented by the formula Ti(C	no-titanates re e or each OR is a non-hydrolyzable 6 to 24 carbon aton ng at least some of	oresented hydrolyzagroup as he ms, and n is	by the ble group erein define more than	formula as herein d, at least 3 but not	25		
3. 2. A mixture according to 3. A mixture according to having from 1 to 5 carbon atom 4. A mixture according to OCOR' group is a stearic or is	claim I wherein n claim I or claim ns. any of the precedi	is betwee 2 wherein	n 3.1 and 3 R is an alk	3.25. Cyl group	30		
isopropyl group. 6. A composition comprising as claimed in any of the property	any of the prec	eding clair	ns wherein	R is an			
the inorganic material having been reacted with the titanate mixture or titanate. 7. A composition according to claim 6 wherein the inorganic material is a metal, a metal oxide, carbon black, sulfur, calcium carbonate, silica or clay. 8. A composition according to claim 7 wherein the metal oxide is zinc oxide.							
metal, a metal oxide, carbon bi 8. A composition according	receding claims of OCOR' are as de een reacted with the g to claim 6 whereack, sulfur, calcius to claim 7 whereing to claim 7	r a titana fined in cla ne titanate cin the ino m carbona n the metal	aterial and a te of the aim I, the si mixture or rganic mat te, silica or	n mixture formula urface of titanate, erial is a clay.	35 40		
metal, a metal oxide, carbon bi 8. A composition according magnesium oxide, titanium oxid 9. A composition accordin material and the titanate mixture medium to form a hydrophobic to render the latter highly dispe	receding claims of OCOR' are as de een reacted with the general to claim 6 where ack, sulfur, calciusto claim 7 whereing to any of claims or titanate have be organo-titanate supersible in said organo-titanate supersible s	or a titana fined in cla ne titanate ein the ino m carbona n the metal e, calcium of 6 to 8 wh face on the nic mediu	aterial and a te of the sim I, the si mixture or rganic mat te, silica or oxide is ziu oxide or lea erein the i lin a rubber e inorganic	a mixture formula urface of titanate. erial is a clay. nc oxide, d oxide. norganic r organic material			
metal, a metal oxide, carbon bi 8. A composition according magnesium oxide, titanium oxid 9. A composition accordin material and the titanate mixture medium to form a hydrophobic	receding claims of OCOR' are as de seen reacted with the generated wit	or a titana fined in classe titanate cin the inome carbona in the metal control of to 8 wheen reacted face on the nic medium of to 8 whatted on the cin the polyteen the polyteen the polyteen to 10 medium of the polyteen the polyteen the medium of the polyteen the polyteen the tin the	aterial and a te of the sim I, the simixture or reganic mat te, silica or oxide is zin oxide or lea erein the i in a rubber e inorganic m. terein the in e surface the	a mixture formula urface of titanate. erial is a clay, no oxide, d oxide, norganic r organic material morganic ereof, is	40		

15

20

:5

)

5	13. A process for producing a dispersion of a comminuted inorganic material in a polymeric medium which comprises admixing an inorganic material, a mixture of organo-titanates as claimed in any of claims 1 to 6 or a titanate of the formula Ti(OR)(OCOR'), where OR and OCOR' are as defined in claim 1, and a polymeric medium, to form a dispersion of the inorganic material, the surface of which has been reacted with said organo-titanate, in the polymeric medium. 14. A process according to claim 13 wherein the mixture of organo-titanates or titanate is reacted with the surface of said-inventors.	
10	with said polymeric medium. 15. A process according to claim 13 wherein the mixture of organo-titanates or titanate reacts with the surface of said organic material and the polymeric material in situ during the mixing of said the material and the polymeric	10
15	Example B or Example C. 17. A composition according to claim 6 and substantially as described in of Examples 1 to 19. 18. A process according to claim 13 and substantially as described in any of Examples 1 to 19.	15
20	19. A dispersion whenever produced by a process as claimed in any of claims 13 to 15 and 18. URQUHART-DYKES AND LORD	20

URQUHART-DYKES AND LORD,
Chartered Patent Agents,
Agents for the Applicants,
11th Floor, Tower House,
Merrion Way, Leeds, LS2 8PB
— and —
11th Floor, St. Martin's House,
140, Tottenham Court Road,
London, W1P OJN.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потить

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)