

中山大学计算机学院 人工智能

本科生实验报告

(2023 学年春季学期)

课程名称: Artificial Intelligence

教学班级	刘咏梅班级	专业 (方向)	信息与计算科学
学号	22336313	姓名	郑鸿鑫

一、 实验题目

自然语言推理这个实验的主要任务是自然语言推理(NLI),特别是处理 Quora Question Pairs(QNLI)数据集。NLI 任务要求模型判断两个句子之间 的逻辑关系,例如是否一个句子可以从另一个句子推理出来(entailment)。

二、 实验内容

1. 算法原理

主要的算法原理如下:

- 词向量表示: 使用 Gensim 的 Word2Vec 模型将词语转换为固定长度的向量。对每个句子进行分词,并将每个词转换为对应的词向量。如果词在词向量模型中不存在,则用零向量表示。
- **自定义数据集类**: 创建一个 PyTorch 的数据集类 QNLIDataset,用于处理和加载数据。在数据集类中,实现了将句子分词并转换为词向量的功能。
- LSTM 模型: 定义一个 LSTM 模型,该模型包括 LSTM 层和全连接层。LSTM 用于处理序列数据(句子中的词向量序列),捕捉词与词之间的依赖关系。最后的全连接层用于输出两个类别(entailment 和 not entailment)的预测。

2. 伪代码

Procedure Main

下载 NLTK 需要的资源

DownloadNLTKResources('punkt')

预处理数据文件, 移除多余的逗号

PreprocessFile('path to train data', 'path to train data clean')

PreprocessFile('path to dev data', 'path to dev data clean')

读取预处理后的训练和验证数据

TrainData <- ReadCSV('path_to_train_data_clean', sep='\t', names=['index', 'sentence', 'question', 'label'])

DevData <- ReadCSV('path_to_dev_data_clean', sep='\t', names=['index', 'sentence',


```
'question', 'label'])
    # 训练 Word2Vec 模型并创建句子的词向量
    Sentences <- Tokenize(TrainData['sentence'] + TrainData['question'])
    Word2VecModel <- TrainWord2Vec(Sentences,
                                                     vector size=300,
                                                                        window=5,
min count=1, workers=4)
    # 设置最大句子长度和创建数据加载器
    MaxLen <- 50
    TrainDataset <- QNLIDataset(TrainData, Word2VecModel, MaxLen)
    DevDataset <- QNLIDataset(DevData, Word2VecModel, MaxLen)
    TrainLoader <- DataLoader (TrainDataset, batch size=32, shuffle=True)
    DevLoader <- DataLoader(DevDataset, batch size=32, shuffle=False)
    #初始化LSTM模型参数
    InputSize <- 300
    HiddenSize <- 128
    NumLayers <- 2
    NumClasses <- 2
    # 定义并初始化 LSTM 模型、损失函数、优化器
    Model <- LSTMModel(InputSize, HiddenSize, NumLayers, NumClasses)
    CrossEntropyLoss <- nn.CrossEntropyLoss()
    AdamOptimizer <- optim.Adam(Model.parameters(), lr=0.001)
    # 训练模型
    For Epoch From 1 To NumEpochs
        Model.train()
        For Batch Of TrainLoader
             Premises, Hypotheses, Labels <- Batch
             Premises, Hypotheses, Labels <- ConvertToTensor(Premises, Hypotheses,
Labels).to(device)
             Outputs <- Model(Concatenate(Premises, Hypotheses))
             Loss <- CrossEntropyLoss(Outputs, Labels)
             AdamOptimizer.zero grad()
             Loss.backward()
             AdamOptimizer.step()
        EndFor
    EndFor
    # 评估模型
    Model.eval()
    AllPredictions, AllLabels <- [], []
    For Batch Of DevLoader
        Premises, Hypotheses, Labels <- Batch
        Premises, Hypotheses, Labels <- ConvertToTensor(Premises, Hypotheses,
Labels).to(device)
        Outputs <- Model(Concatenate(Premises, Hypotheses))
        Predictions <- torch.max(Outputs.data, 1)
        AllPredictions.extend(Predictions.cpu().numpy())
        AllLabels.extend(Labels.cpu().numpy())
    Accuracy <- CalculateAccuracy(AllLabels, AllPredictions)
    Print(f'Accuracy: {Accuracy:.2f}')
    Print("Training complete!")
EndProcedure
```

3. 关键代码展示

下载必要资源和数据的预处理部分代码:


```
# 下载 nltk 必要资源
nltk.download('punkt')#下载 NLTK 的 punkt 模块,该模块用于句子和单词的分割
# 定义数据预处理函数
def preprocess_file(input_file, output_file):
   with open(input file, 'r', encoding='utf-8') as f:
       lines = f.readlines()
   with open(output_file, 'w', encoding='utf-8') as f:
      for line in lines:
          # 移除行内多余的逗号
          cleaned_line = re.sub(r'(?<!"),(?!")', '', line)</pre>
          f.write(cleaned line)
# 预处理训练和验证数据文件
preprocess file('C:\\Users\\26618\\Desktop\\人工智能实验\\实验
9\\QNLI\\train_40.tsv',
              'C:\\Users\\26618\\Desktop\\人工智能实验\\实验
9\\QNLI\\train_40_clean.tsv')
preprocess_file('C:\\Users\\26618\\Desktop\\人工智能实验\\实验
9\\QNLI\\dev_40.tsv',
              'C:\\Users\\26618\\Desktop\\人工智能实验\\实验
9\\QNLI\\dev_40_clean.tsv')
# 读取数据,设置 on bad lines='skip' 忽略有问题的行
train data = pd.read_csv('C:\\Users\\26618\\Desktop\\人工智能实验\\实验
9\\QNLI\\train_40_clean.tsv', sep='\t',
                     names=["index", "sentence", "question", "label"],
on_bad_lines='skip')
dev_data = pd.read_csv('C:\\Users\\26618\\Desktop\\人工智能实验\\实验
9\\QNLI\\dev_40_clean.tsv', sep='\t',
                   names=["index", "sentence", "question", "label"],
on bad lines='skip')
```

数据集类的代码实现:

```
# 定义自定义数据集类,用于预处理和词嵌入
class QNLIDataset(Dataset):
    def __init__(self, data, word2vec, max_len):
        #data 是传入的数据,word2vec 是用于词向量转化的模型,max_len 是设定好
句子的最大长度
    self.data = data
    self.word2vec = word2vec
    self.max_len = max_len
    def __len__(self):
        return len(self.data)#返回样本的数量
    def __getitem__(self, idx):
        row = self.data.iloc[idx]
```



```
# 处理句子和问题, 转换为词向量
      premise = self.process_sentence(row['sentence'])
      hypothesis = self.process_sentence(row['question'])
      label = 1 if row['label'] == 'entailment' else 0
      return premise, hypothesis, label
   #getitem 函数根据索引返回一条数据,并进行处理,返回句子及其对应的标签
   def process_sentence(self, sentence):
      tokens = word_tokenize(sentence.lower()) # 将字母小写并分词,得到词
列表。
      # 将每个词转换为词向量,如果词不存在于词向量模型中,则用零向量表示
      vecs = [self.word2vec.wv[token] if token in self.word2vec.wv
else np.zeros(300) for token in tokens]
      #处理后的词向量长度固定为 max_len,不足则补零,超出则截断。
      vecs = vecs[:self.max_len] + [np.zeros(300)] * (self.max_len -
len(vecs))
      return np.array(vecs)
   #该方法将句子进行分词,并将每个词词转换为对应的词向量,最终返回一个固定长度
的词向量数组
```

定义 LSTM 模型的代码实现:

```
# 定义 LSTM 模型,用于处理句子对并进行分类
class LSTMModel(nn.Module):
   def __init__(self, input_size, hidden_size, num_layers,
num classes):
      super(LSTMModel, self).__init__()
      # 定义 LSTM 层
      self.lstm = nn.LSTM(input size, hidden size, num layers,
batch_first=True)
      # 定义全连接层
      self.fc = nn.Linear(hidden_size, num_classes)
   def forward(self, x):
      # 初始化 LSTM 的初始隐藏状态和细胞状态
      h0 = torch.zeros(num_layers, x.size(0), hidden_size).to(device)
      c0 = torch.zeros(num_layers, x.size(0), hidden_size).to(device)
      # LSTM 前向传播
      out, = self.lstm(x, (h0, c0))
      # 取 LSTM 最后一个时间步的输出,输入到全连接层
      out = self.fc(out[:, -1, :])
      return out
```

模型的初始化及训练:

```
# 初始化模型、损失函数和优化器
model = LSTMModel(input_size, hidden_size, num_layers,
```



```
num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
   model.train() #设定模型为训练模式
   for premises, hypotheses, labels in tqdm(train_loader):
      #将输入和标签转换为 tensor 并移动到设备(CPU 或 GPU)
      premises = premises.clone().detach().float().to(device)
      hypotheses = hypotheses.clone().detach().float().to(device)
      labels = labels.clone().detach().long().to(device
      # 前向传播
      outputs = model(torch.cat((premises, hypotheses), dim=1))
      loss = criterion(outputs, labels)
      # 反向传播和优化
      optimizer.zero grad()
      loss.backward()
      optimizer.step()
   model.eval() # 设定模型为评估模式
   all preds = []
   all_labels = []
   with torch.no_grad(): #禁用梯度计算
      for premises, hypotheses, labels in dev_loader:
          #将输入和标签转换为 tensor 并移动到设备(CPU 或 GPU)
          premises = premises.clone().detach().float().to(device)
          hypotheses = hypotheses.clone().detach().float().to(device)
          labels = labels.clone().detach().long().to(device)
          # 前向传播
          outputs = model(torch.cat((premises, hypotheses), dim=1))
          _, predicted = torch.max(outputs.data, 1)
          # 收集预测结果和真实标签
          all preds.extend(predicted.cpu().numpy())
          all_labels.extend(labels.cpu().numpy())
   # 计算验证集上的准确率
   accuracy = accuracy_score(all_labels, all_preds)
   print(f'Epoch [{epoch + 1}/{num_epochs}], Accuracy: {accuracy:.2f}')
```

4. 创新点&优化(如果有)

加入 Attention 机制进行训练。

加入正则化手段如 droppout 防止过拟合

调整学习率,隐藏层大小等参数

三、 实验结果及分析

- 1. 实验结果展示示例(可图可表可文字,尽量可视化) 见下面的分析
- **2. 评测指标展示及分析(机器学习实验必须有此项,其它可分析运行时间等)** 首先使用上文代码展示中的模型来训练并测试得到结果如下:

```
[nltk data] Downloading package punkt to
[nltk_data]
             C:\Users\26618\AppData\Roaming\nltk_data...
[nltk data]
           Package punkt is already up-to-date!
100%| 2261/2261 [00:50<00:00, 44.53it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [1/10], Accuracy: 0.53
100%| 2261/2261 [00:51<00:00, 44.33it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [2/10], Accuracy: 0.53
 0%1
100%
       2261/2261 [00:52<00:00, 43.25it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [3/10], Accuracy: 0.53
100%| 2261/2261 [00:51<00:00, 43.53it/s]
Epoch [4/10], Accuracy: 0.53
100%| 2261/2261 [00:51<00:00, 43.50it/s]
Epoch [5/10], Accuracy: 0.62
100%| 2261/2261 [00:52<00:00, 43.17it/s]
Epoch [6/10], Accuracy: 0.63
| 0/2261 [00:00<?, ?it/s]Epoch [7/10], Accuracy: 0.63
100%| 2261/2261 [00:58<00:00, 38.64it/s]
Epoch [8/10], Accuracy: 0.64
100%| 2261/2261 [00:53<00:00, 42.41it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [9/10], Accuracy: 0.65
100%| 2261/2261 [00:50<00:00, 44.49it/s]
Epoch [10/10], Accuracy: 0.64
Training complete!
```

可以看到最后的结果可以达到 65%的准确度,然后我们尝试加入 Attention 机制来训练模型:

代码如下所示:

```
# 定义带有 Attention 机制的 LSTM 模型

class LSTMWithAttention(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers,
num_classes):
        super(LSTMWithAttention, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,
batch_first=True)
        self.attention = nn.Linear(hidden_size, 1)
        self.fc = nn.Linear(hidden_size, num_classes)

def forward(self, x):
    h0 = torch.zeros(num_layers, x.size(0), hidden_size).to(device)
    c0 = torch.zeros(num_layers, x.size(0), hidden_size).to(device)
```



```
out, _ = self.lstm(x, (h0, c0))
# Apply attention
attn_weights = torch.softmax(self.attention(out), dim=1)
attn_applied = torch.bmm(attn_weights.transpose(1, 2), out)
out = self.fc(attn_applied.squeeze(1))
return out
```

加入 Attention 机制后得到结果如下所示:

```
[nltk_data] Downloading package punkt to
              C:\Users\26618\AppData\Roaming\nltk_data...
[nltk_data]
[nltk data]
            Package punkt is already up-to-date!
100%| 2261/2261 [00:59<00:00, 37.96it/s]
             | 0/2261 [00:00<?, ?it/s]Epoch [1/10], Accuracy: 0.62
 0%
100%| 2261/2261 [00:50<00:00, 44.70it/s]
 0%|
             | 0/2261 [00:00<?, ?it/s]Epoch [2/10], Accuracy: 0.63
100%
            2261/2261 [00:50<00:00, 44.42it/s]
             | 0/2261 [00:00<?, ?it/s]Epoch [3/10], Accuracy: 0.63
 0%|
100%
             2261/2261 [00:53<00:00, 42.50it/s]
 0%|
             0/2261 [00:00<?, ?it/s]Epoch [4/10], Accuracy: 0.62
            2261/2261 [00:54<00:00, 41.85it/s]
100%
 0%|
             | 0/2261 [00:00<?, ?it/s]Epoch [5/10], Accuracy: 0.62
100%|
             2261/2261 [00:54<00:00, 41.75it/s]
             | 0/2261 [00:00<?, ?it/s]Epoch [6/10], Accuracy: 0.62
 0%
100%
            2261/2261 [00:53<00:00, 42.08it/s]
             | 0/2261 [00:00<?, ?it/s]Epoch [7/10], Accuracy: 0.62
 0%
100%| 2261/2261 [00:53<00:00, 41.99it/s]
Epoch [8/10], Accuracy: 0.62
100%| 2261/2261 [00:54<00:00, 41.79it/s]
             | 0/2261 [00:00<?, ?it/s]Epoch [9/10], Accuracy: 0.61
 0%
100%| 2261/2261 [00:55<00:00, 40.47it/s]
Epoch [10/10], Accuracy: 0.60
Training complete!
```

我们可以看到,加入了 Attention 机制后,模型的稳定性好了不少,基本维持在 60%以上,但是加入后准确率的最大值反而下降,不加 attention 时最高能达到 65%,但是加上以后最高只达到 63%。

因此加上定期衰减的学习率来训练:

```
scheduler = optim.lr_scheduler.StepLR(optimizer,
```

step_size=5, gamma=0.5) # 每 5 个 epoch 后学习率减半

得到结果如下:


```
D:\Aconda\envs\torch\python.exe D:\Code\Python\Lab9\NLP\NLP.py
100%| 2261/2261 [00:54<00:00, 41.46it/s]
Epoch [1/10], Accuracy: 0.62
100%| 2261/2261 [00:55<00:00, 40.80it/s]
Epoch [2/10], Accuracy: 0.63
100%| 2261/2261 [00:55<00:00, 40.45it/s]
Epoch [3/10], Accuracy: 0.62
100%| 2261/2261 [00:55<00:00, 40.48it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [4/10], Accuracy: 0.62
100%| 2261/2261 [00:56<00:00, 40.37it/s]
Epoch [5/10], Accuracy: 0.63
100%| 2261/2261 [00:55<00:00, 40.48it/s]
Epoch [6/10], Accuracy: 0.62
100%| 2261/2261 [00:55<00:00, 40.84it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [7/10], Accuracy: 0.61
 0%|
100%| 2261/2261 [00:55<00:00, 40.93it/s]
Epoch [8/10], Accuracy: 0.62
100%| 2261/2261 [00:55<00:00, 41.01it/s]
            | 0/2261 [00:00<?, ?it/s]Epoch [9/10], Accuracy: 0.62
100%| 2261/2261 [00:54<00:00, 41.79it/s]
Epoch [10/10], Accuracy: 0.61
Training complete!
```

可以看到一样可以保持比较稳定的准确率,最高准确率仍然是 63%,但是平均准确率比上一版本升高了一些。

四、 参考资料

- 1) 自然语言推理-文本蕴含识别简介 识别文本蕴含数据集-CSDN 博客
- 2) 解决: pandas. errors. ParserError: Error tokenizing data. C error: Expected 2 fields in line 18, saw 4-CSDN 博客
- 3) pandas. read csv 参数详解 李旭 sam 博客园 (cnblogs. com)