

2017/08/25

字符串处理	∠
1、KMP 算法	∠
2、扩展KMP	7
3、Manacher 最长回文子串	7
4、AC 自动机	3
5、后缀数组	10
6、后缀自动机	14
7、字符串HASH	15
8、矩阵HASH	
数学	10
1、素数	
2、素数筛选和合数分解	
3、扩展欧几里得算法(求ax+by=gcd 的解以及逆元素)	
4、求逆元	
5、模线性方程组	
6、随机素数测试和大数分解(POJ 1811)	
7、欧拉函数	
8、高斯消元(浮点数)	
9、FFT	
10、NTT	
11、FWT	
12、高斯消元法求方程组的解	
13、整数拆分	
14、求A^B 的约数之和对MOD 取模	
15、莫比乌斯反演	
16、Baby-Step Giant-Step	
17、自适应simpson 积分	
18、求 n 以内质数个数(n≤1e11)	
19、MT 定理	
20、牛顿迭代法	
21、相关公式	
22、线性递推式拟合	
数据结构	
1、划分树	
2、RMQ	
3、树链剖分	
4、伸展树(splay tree)	
5、动态树	
6、主席树	
7、Treap 8、树状数组	
图论	
1、最短路	
2、最小生成树	
3、次小生成树	
4、有向图的强连通分量	
5、图的割点、桥和双连通分支的基本概念	
6、割点与桥	
7、边双连通分支	
8、点双连通分支	
9、最小树形图	
10、二分图匹配	
11、生成树计数	
11、二分图多重匹配	
12、KM 算法 (二分图最大权匹配)	
13、最大流	
14 最小费田最大流	117

15、2-SAT	120
16、曼哈顿最小生成树	124
17、一般图匹配带花树	127
18、LCA	129
19、欧拉路	136
20、树分治	142
21、删两条边不连通	143
计算几何	144
1、基本函数	144
2、凸包	
3、平面最近点对(HDU 1007)	
4、旋转卡壳	
5、半平面交	155
6、三点求圆心坐标(三角形外心)	159
7、求两圆相交的面积	159
8、Pick 公式	160
动态规划	160
1、最长上升子序列O(nlogn)	
2、石子合并	
3、数位 DP	
4、Dilworth 定理	
博弈	
1、斐波那契博弈	
2、威佐夫博弈	
3、巴什博弈	
4、Anti-num 博弈	
5、Nim 博弈	
6、SG 函数	
搜索	
1、Dancing Links	
其他	
1、高精度	
2、完全高精度	
2、光主尚有及	
4、解决爆栈,手动加栈	
+、肝// (株/ ス・テム)	
6、集合-莫比乌斯反演/变换	
7、二分确定上下界	
8、常见数位关系及运算	
9、STL	
10、输入输出外挂	
11、莫队算法	
12、打表找规律方法	
13、Java 高精度	
14、其他	
15、头文件	

字符串处理

1、KMP 算法

```
* next[]的含义: x[i-next[i]...i-1]=x[0...next[i]-1]
 * next[i]为满足 x[i-z...i-1]=x[0...z-1]的最大 z 值(就是 x 的自身匹配)
void kmp_pre(char x[],int m,int next[])
   int i,j;
    j=next[0]=-1;
    i=0;
   while(i<m)</pre>
       while(-1!=j && x[i]!=x[j])j=next[j];
       next[++i]=++j;
}
* kmpNext[]的意思: next'[i]=next[next[...[next[i]]]] (直到 next'[i]<0 或者
x[next'[i]]!=x[i])
* 这样的预处理可以快一些
void preKMP(char x[],int m,int kmpNext[])
   int i,j;
    j=kmpNext[0]=-1;
    i=0;
   while(i<m) {</pre>
       while (-1!=j \&\& x[i]!=x[j])j=kmpNext[j];
        if (x[++i] == x[++j]) kmpNext[i] = kmpNext[j];
        else kmpNext[i]=j;
    }
}
* 返回 x 在 y 中出现的次数, 可以重叠
int next[10010];
int KMP_Count(char x[],int m,char y[],int n)
{//x 是模式串, y 是主串
   int i,j;
   int ans=0;
    //preKMP(x,m,next);
    kmp_pre(x,m,next);
    i=j=0;
    while(i<n)</pre>
       while(-1!=j && y[i]!=x[j])j=next[j];
       i++;j++;
       if(j>=m)
            ans++;
            j=next[j];
```

```
}
     return ans;
 }
经典题目: POJ 3167
 * POJ 3167 Cow Patterns
  * 模式串可以浮动的模式匹配问题
  * 给出模式串的相对大小,需要找出模式串匹配次数和位置
  * 比如说模式串: 1, 4, 4, 2, 3, 1 而主串: 5,6,2,10,10,7,3,2,9
  * 那么 2,10,10,7,3,2 就是匹配的
  * 统计比当前数小,和于当前数相等的,然后进行 kmp
  * /
 using namespace std;
 const int MAXN=100010;
 const int MAXM=25010;
 int a[MAXN];
 int b[MAXN];
 int n,m,s;
 int as[MAXN][30];
 int bs[MAXM][30];
 void init(){
     for (int i=0;i<n;i++) {</pre>
         if(i==0){
             for (int j=1; j<=25; j++) as[i][j]=0;</pre>
         } else {
             for(int j=1;j<=25;j++)as[i][j]=as[i-1][j];</pre>
         as[i][a[i]]++;
     for(int i=0;i<m;i++) {</pre>
         if(i==0){
             for(int j=1;j<=25;j++)bs[i][j]=0;</pre>
         }else{
             for (int j=1; j<=25; j++)bs[i][j]=bs[i-1][j];</pre>
         bs[i][b[i]]++;
 }
 int next[MAXM];
 void kmp_pre() {
     int i,j;
     j=next[0]=-1;
     i=0;
     while(i<m) {</pre>
         int t11=0, t12=0, t21=0, t22=0;
         for (int k=1; k<b[i]; k++) {</pre>
             if (i-j>0) t11+=bs[i][k]-bs[i-j-1][k];
             else t11+=bs[i][k];
         if (i-j>0) t12=bs[i][b[i]]-bs[i-j-1][b[i]];
         else t12=bs[i][b[i]];
         for (int k=1; k<b[j]; k++) {</pre>
             t21+=bs[j][k];
         t22=bs[j][b[j]];
```

```
if(j==-1 || (t11==t21&&t12==t22))
             next[++i]=++j;
        else j=next[j];
    }
}
vector<int>ans;
void kmp() {
    ans.clear();
    int i,j;
    kmp pre();
    i=j=0;
    while(i<n) {</pre>
        int t11=0,t12=0,t21=0,t22=0;
        for (int k=1; k<a[i]; k++)</pre>
             if(i-j>0)t11+=as[i][k]-as[i-j-1][k];
             else t11+=as[i][k];
        if (i-j>0) t12=as[i][a[i]]-as[i-j-1][a[i]];
        else t12=as[i][a[i]];
        for (int k=1; k<b[j]; k++)</pre>
             t21+=bs[j][k];
        t22=bs[j][b[j]];
        if(j==-1 || (t11==t21&&t12==t22))
             i++; j++;
             if(j>=m)
                 ans.push back(i-m+1);
                 j=next[j];
        else j=next[j];
    }
}
int main(){
    while (scanf ("%d%d%d", &n, &m, &s) == 3) {
        for (int i=0;i<n;i++) {</pre>
             scanf("%d", &a[i]);
        for (int i=0;i<m;i++) {</pre>
            scanf("%d", &b[i]);
        init();
        kmp();
        printf("%d\n", ans.size());
        for(int i=0;i<ans.size();i++)</pre>
            printf("%d\n", ans[i]);
    }
    return 0;
}
```

2、扩展 KMP

```
* 扩展 KMP 算法
 */
 //next[i]:x[i...m-1]与x[0...m-1]的最长公共前缀
//extend[i]:y[i...n-1]与x[0...m-1]的最长公共前缀
 void pre_EKMP(char x[],int m,int next[])
 {
     next[0]=m;
     int j=0;
     while(j+1<m && x[j]==x[j+1])j++;
     next[1]=j;
     int k=1;
     for (int i=2;i<m;i++)</pre>
         int p=next[k]+k-1;
         int L=next[i-k];
         if(i+L<p+1)next[i]=L;
         else
             j=max(0,p-i+1);
             while(i+j<m && x[i+j]==x[j])j++;
             next[i]=j;
             k=i;
         }
 }
 void EKMP(char x[],int m,char y[],int n,int next[],int extend[])
     pre EKMP(x,m,next);
     int j=0;
     while(j \le n \&\& j \le m \&\& x[j] == y[j])j++;
     extend[0]=j;
     int k=0;
     for (int i=1; i<n; i++)</pre>
         int p=extend[k]+k-1;
         int L=next[i-k];
         if(i+L<p+1)extend[i]=L;</pre>
         else
             j=max(0,p-i+1);
             while(i+j<n && j<m && y[i+j]==x[j])j++;</pre>
             extend[i]=j;
             k=i;
         }
 }
```

3、Manacher 最长回文子串

```
/*
   * 求最长回文子串
   */
const int MAXN=110010;
char Ma[MAXN*2];
```

```
int Mp[MAXN*2];
void Manacher(char s[],int len)
    int 1=0;
    Ma[l++]='$';
    Ma[l++]='#';
    for(int i=0;i<len;i++)</pre>
       Ma[1++]=s[i];
       Ma[l++]='#';
    }
    Ma[1]=0;
    int mx=0,id=0;
    for(int i=0;i<1;i++)</pre>
        Mp[i]=mx>i?min(Mp[2*id-i],mx-i):1;
        while (Ma[i+Mp[i]] == Ma[i-Mp[i]]) Mp[i]++;
        if(i+Mp[i]>mx)
            mx=i+Mp[i];
            id=i;
        }
    }
}
/*
* <u>abaaba</u>
 * i: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
 * <u>Ma</u>[i]: $ # a # b # a # a $ b # a #
 * <u>Mp</u>[i]: 1 1 2 1 4 1 2 7 2 1 4 1 2 1
 */
char s[MAXN];
int main()
    while(scanf("%s",s) ==1)
        int len=strlen(s);
        Manacher(s,len);
        int ans=0;
        for(int i=0;i<2*len+2;i++)</pre>
            ans=max(ans, Mp[i]-1);
        printf("%d\n", ans);
    return 0;
}
4、AC自动机
//=========
// HDU 2222
// 求目标串中出现了几个模式串
//=========
struct Trie{
    int next[500010][26],fail[500010],end[500010];
    int root, L;
    int newnode(){
        for(int i = 0;i < 26;i++)</pre>
```

```
next[L][i] = -1;
    end[L++] = 0;
    return L-1;
}
void init(){
   L = 0;
   root = newnode();
void insert(char buf[]){
    int len = strlen(buf);
    int now = root;
    for(int i = 0;i < len;i++)</pre>
        if (next[now] [buf[i]-'a'] == -1)
           next[now][buf[i]-'a'] = newnode();
        now = next[now][buf[i]-'a'];
    end[now]++;
void build() {
   queue<int>Q;
    fail[root] = root;
    for(int i = 0;i < 26;i++)</pre>
        if(next[root][i] == -1)
            next[root][i] = root;
        else{
            fail[next[root][i]] = root;
            Q.push(next[root][i]);
    while(!Q.empty()){
        int now = Q.front();
        Q.pop();
        for(int i = 0;i < 26;i++)</pre>
            if(next[now][i] == -1)
                next[now][i] = next[fail[now]][i];
                fail[next[now][i]]=next[fail[now]][i];
                Q.push(next[now][i]);
int query(char buf[])
    int len = strlen(buf);
    int now = root;
    int res = 0;
    for(int i = 0;i < len;i++)</pre>
        now = next[now][buf[i]-'a'];
        int temp = now;
        while( temp != root )
        {
            res += end[temp];
            end[temp] = 0;
            temp = fail[temp];
    return res;
}
```

```
void debug(){
        for(int i = 0;i < L;i++)</pre>
            printf("id = %3d, fail = %3d, end = %3d, chi = [",i,fail[i],end[i]);
            for(int j = 0; j < 26; j++)</pre>
                 printf("%2d",next[i][j]);
            printf("]\n");
} ;
char buf[1000010];
Trie ac;
int main() {
    int T;
    int n;
    scanf("%d", &T);
    while( T-- ) {
        scanf("%d", &n);
        ac.init();
        for(int i = 0;i < n;i++)</pre>
             scanf("%s",buf);
            ac.insert(buf);
        ac.build();
        scanf("%s",buf);
        printf("%d\n", ac.query(buf));
    return 0;
}
```

5、后缀数组

5.1 DA 算法

```
*suffix array
*倍增算法 O(n*<u>logn</u>)
*待排序数组长度为 n, 放在 0~n-1 中, 在最后面补一个 0
*da(str ,n+1,sa,rank,height, , );//注意是 n+1;
*例如:
*n = 8;
*<u>num</u>[] = { 1, 1, 2, 1, 1, 1, 2, $ };注意 <u>num</u>最后一位为 0, 其他大于 0
*rank[] = { 4, 6, 8, 1, 2, 3, 5, 7, 0 }; rank[0~n-1]为有效值, rank[n]必定为 0 无
       = { 8, 3, 4, 5, 0, 6, 1, 7, 2 }; <u>sa</u>[1~n]为有效值, <u>sa</u>[0]必定为 n 是无效值
*sa[]
*height[]= { 0, 0, 3, 2, 3, 1, 2, 0, 1 };height[2~n]为有效值
*/
const int MAXN=20010;
int t1[MAXN],t2[MAXN],c[MAXN];//求 SA 数组需要的中间变量,不需要赋值
//待排序的字符串放在 s 数组中,从 s[0]到 s[n-1],长度为 n,且最大值小于 m,
//除 s[n-1]外的所有 s[i]都大于 0, r[n-1]=0
//函数结束以后结果放在 sa 数组中
bool cmp(int *r,int a,int b,int 1)
{
   return r[a] == r[b] && r[a+1] == r[b+1];
}
```

```
void da(int str[],int sa[],int rank[],int height[],int n,int m)
   n++;
   int i, j, p, *x = t1, *y = t2;
   //第一轮基数排序,如果 s 的最大值很大,可改为快速排序
   for (i = 0; i < m; i++)c[i] = 0;
   for(i = 0; i < n; i++)c[x[i] = str[i]]++;
   for(i = 1;i < m;i++)c[i] += c[i-1];</pre>
   for(i = n-1;i >= 0;i--)sa[--c[x[i]]] = i;
   for(j = 1; j <= n; j <<= 1)
       p = 0;
       //直接利用 sa 数组排序第二关键字
       for(i = n-j; i < n; i++)y[p++] = i; //后面的j 个数第二关键字为空的最小
       for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
       //这样数组 v 保存的就是按照第二关键字排序的结果
       //基数排序第一关键字
       for (i = 0; i < m; i++)c[i] = 0;
       for(i = 0; i < n; i++)c[x[y[i]]]++;</pre>
       for(i = 1; i < m;i++)c[i] += c[i-1];</pre>
       for(i = n-1; i >= 0;i--)sa[--c[x[y[i]]]] = y[i];
       //根据 sa 和 x 数组计算新的 x
       数组 swap(x,y);
       p = 1; x[sa[0]] = 0;
       for(i = 1;i < n;i++)</pre>
          x[sa[i]] = cmp(y,sa[i-1],sa[i],j)?p-1:p++;
       if (p >= n) break;
       m = p; // 下次基数排序的最大值
   int k = 0;
   n--;
    for(i = 0;i <= n;i++)rank[sa[i]] = i;</pre>
   for(i = 0;i < n;i++)</pre>
       if(k)k--;
       j = sa[rank[i]-1];
       while (str[i+k] == str[j+k])k++;
       height[rank[i]] = k;
   }
}
int rank[MAXN], height[MAXN];
int RMQ[MAXN];
int mm[MAXN];
int best[20][MAXN];
void initRMQ(int n)
   mm[0]=-1;
   for (int i=1;i<=n;i++)</pre>
       mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
   for (int i=1;i<=n;i++)best[0][i]=i;</pre>
   for (int i=1;i<=mm[n];i++)</pre>
       for (int j=1; j+(1<<i) -1<=n; j++)</pre>
          int a=best[i-1][j];
          int b=best[i-1][j+(1<<(i-1))];</pre>
          if (RMQ[a] < RMQ[b]) best[i][j] = a;</pre>
          else best[i][j]=b;
}
```

```
int askRMQ(int a,int b)
   int t;
   t=mm[b-a+1];
   b = (1 << t) -1;
   a=best[t][a];b=best[t][b];
   return RMQ[a] < RMQ[b] ?a:b;</pre>
}
int lcp(int a,int b)
   a=rank[a];b=rank[b];
   if (a>b) swap (a,b);
   return height[askRMQ(a+1,b)];
char str[MAXN];
int r[MAXN];
int sa[MAXN];
int main()
{
   while(scanf("%s",str) == 1)
       int len = strlen(str);
       int n = 2*len + 1;
       for(int i = 0;i < len;i++)r[i] = str[i];</pre>
       for(int i = 0;i < len;i++)r[len + 1 + i] = str[len - 1 - i];</pre>
       r[len] = 1;
       r[n] = 0;
       da(r,sa,rank,height,n,128);
       for (int i=1; i<=n; i++) RMQ[i]=height[i];</pre>
       initRMQ(n);
       int ans=0,st;
       int tmp;
       for (int i=0; i<len; i++)</pre>
          tmp=lcp(i,n-i);//偶对称
          if(2*tmp>ans)
              ans=2*tmp;
              st=i-tmp;
          tmp=lcp(i,n-i-1);//奇数对称
          if(2*tmp-1>ans)
              ans=2*tmp-1;
              st=i-tmp+1;
          }
       }
       str[st+ans]=0;
       printf("%s\n", str+st);
   return 0;
}
   5.2 DC3 算法
da[]和 str[]数组要开大三倍,相关数组也是三倍
/*
 * 后缀数组
 * DC3 算法, 复杂度 O(n)
 * 所有的相关数组都要开三倍
```

```
const int MAXN = 2010;
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x) < tb?(x) *3+1:((x) -tb) *3+2)
int wa[MAXN*3], wb[MAXN*3], wv[MAXN*3], wss[MAXN*3];
int c0(int *r,int a,int b)
    return r[a] == r[b] && r[a+1] == r[b+1] && r[a+2] == r[b+2];
int c12(int k,int *r,int a,int b)
    if(k == 2)
        return r[a] < r[b] || ( r[a] == r[b] && c12(1,r,a+1,b+1) );
    else return r[a] < r[b] \mid | (r[a] == r[b] && wv[a+1] < wv[b+1] );
void sort(int *r,int *a,int *b,int n,int m)
    int i;
    for(i = 0;i < n;i++)wv[i] = r[a[i]];</pre>
    for(i = 0;i < m;i++)wss[i] = 0;</pre>
    for(i = 0;i < n;i++)wss[wv[i]]++;</pre>
    for(i = 1;i < m;i++)wss[i] += wss[i-1];</pre>
    for(i = n-1;i >= 0;i--)
        b[--wss[wv[i]]] = a[i];
void dc3(int *r,int *sa,int n,int m)
    int i, j, *rn = r + n;
    int *san = sa + n, ta = 0, tb = (n+1)/3, tbc = 0, p;
    r[n] = r[n+1] = 0;
    for(i = 0;i < n;i++)if(i %3 != 0)wa[tbc++] = i;</pre>
    sort(r + 2, wa, wb, tbc, m);
    sort(r + 1, wb, wa, tbc, m);
    sort(r, wa, wb, tbc, m);
    for(p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
        rn[F(wb[i])] = c0(r, wb[i-1], wb[i]) ? p - 1 : p++;
    if(p < tbc)dc3(rn,san,tbc,p);</pre>
    else for(i = 0;i < tbc;i++)san[rn[i]] = i;
    for(i = 0; i < tbc; i++) if(san[i] < tb)wb[ta++] = san[i] * 3;
    if (n % 3 == 1) wb[ta++] = n - 1;
    sort(r, wb, wa, ta, m);
    for(i = 0;i < tbc;i++)wv[wb[i] = G(san[i])] = i;</pre>
    for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
        sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
    for(;i < ta;p++)sa[p] = wa[i++];</pre>
    for(; j < tbc; p++) sa[p] = wb[j++];</pre>
//str 和 sa 也要三倍
void da(int str[],int sa[],int rank[],int height[],int n,int m)
{
    for(int i = n;i < n*3;i++)</pre>
       str[i] = 0;
    dc3(str, sa, n+1, m);
    int i,j,k = 0;
    for(i = 0;i <= n;i++)rank[sa[i]] = i;</pre>
    for(i = 0;i < n; i++)</pre>
    {
        if(k) k--;
        j = sa[rank[i]-1];
```

```
while(str[i+k] == str[j+k]) k++;
    height[rank[i]] = k;
}
```

6、后缀自动机

```
const int CHAR = 26;
const int MAXN = 250010;
struct SAM Node
   SAM_Node *fa,*next[CHAR];
   int len;
   int id, pos;
   SAM_Node(){}
   SAM Node (int len)
      fa = 0;
      len = _len;
      memset(next, 0, sizeof(next));
   }
};
SAM Node SAM node[MAXN*2], *SAM root, *SAM last;
int SAM size;
SAM_Node *newSAM_Node(int len)
   SAM node[SAM size] = SAM Node(len);
   SAM_node[SAM_size].id = SAM_size;
   return &SAM_node[SAM_size++];
SAM Node *newSAM Node (SAM Node *p)
{
   SAM_node[SAM_size] = *p;
   SAM node[SAM size].id = SAM size;
   return &SAM node[SAM size++];
}
void SAM_init(){
   SAM size = 0;
   SAM_root = SAM_last = newSAM_Node(0);
   SAM node[0].pos = 0;
void SAM_add(int x,int len)
   SAM Node *p = SAM last, *np = newSAM Node(p->len+1);
   np->pos = len;
   SAM last = np;
   for(;p && !p->next[x];p = p->fa)
       p->next[x] = np;
   if(!p)
      np->fa = SAM_root;
      return;
   SAM_Node *q = p->next[x];
   if(q->len == p->len + 1)
      np->fa = q;
```

```
return:
    }
    SAM Node *ng = newSAM Node(q);
    nq->len = p->len + 1;
    q->fa = nq;
    np->fa = nq;
    for(;p && p->next[x] == q;p = p->fa)
        p->next[x] = nq;
 void SAM_build(char *s){
    SAM_init();
    int len = strlen(s);
    for(int i = 0;i < len;i++)</pre>
       SAM add(s[i] - 'a', i+1);
 }
 //加入串后进行拓扑排序。
 char str[MAXN];
 int topocnt[MAXN];
 SAM Node *topsam[MAXN*2];
       int n = strlen(str);
        SAM build(str);
       memset(topocnt, 0, sizeof(topocnt));
        for(int i = 0;i < SAM_size;i++)</pre>
           topocnt[SAM node[i].len]++;
        for(int i = 1;i <= n;i++)</pre>
           topocnt[i] += topocnt[i-1];
        for(int i = 0;i < SAM size;i++)</pre>
           topsam[--topocnt[SAM_node[i].len]] = &SAM_node[i];
 多串的建立:
 //多串的建立,注意 SAM_init()的调用
 void SAM build(char *s) {
     int len = strlen(s);
     SAM last = SAM root;
     for(int i = 0; i < len; i++) {
         if(!SAM last->next[s[i] - '0'] || !(SAM last->next[s[i] - '0']->len ==
 i + 1))
             SAM add(s[i] - '0', i + 1);
         else SAM last = SAM last->next[s[i] - '0'];
 7、字符串 HASH
 HDU4622 求区间不相同子串个数
const int HASH = 10007;
const int MAXN = 2010;
struct HASHMAP {
   int head[HASH], next[MAXN], size;
   unsigned long long state[MAXN];
   int f[MAXN];
    void init() {
       size = 0;
        memset(head, -1, sizeof(head));
    int insert(unsigned long long val, int id) {
        int h = val % HASH;
        for(int i = head[h]; i != -1; i = next[i])
            if(val == state[i]) {
                int tmp = f[i];
```

```
f[i] = id;
                return tmp;
            }
        f[size] = _id;
        state[size] = val;
        next[size] = head[h];
        head[h] = size++;
        return 0;
    }
} H;
const int SEED = 13331; // 131,161
unsigned long long P[MAXN];
unsigned long long S[MAXN];
char str[MAXN];
int ans[MAXN][MAXN];
int main() {
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
    P[0] = 1;
    for (int i = 1; i < MAXN; i++)
        P[i] = P[i - 1] * SEED;
    int T;
    scanf("%d", &T);
    while(T--) {
        scanf("%s", str);
        int n = strlen(str);
        S[0] = 0;
        for(int i = 1; i <= n; i++)
            S[i] = S[i - 1] * SEED + str[i - 1];
        memset(ans, 0, sizeof(ans));
        for (int L = 1; L \le n; L++) {
            H.init();
            for(int i = 1; i + L - 1 \le n; i++) {
                int l = H.insert(S[i + L - 1] - S[i - 1] * P[L], i);
                ans[i][i + L - 1] ++;
                ans[l][i + L - 1]--;
            }
        }
        for(int i = n; i >= 0; i--)
            for(int j = i; j \le n; j++)
               ans[i][j] += ans[i + 1][j] + ans[i][j - 1] - ans[i + 1][j - 1];
        int m, u, v;
        scanf("%d", &m);
        while(m--) {
            scanf("%d%d", &u, &v);
            printf("%d\n", ans[u][v]);
        }
    return 0;
 8、矩阵 HASH
 * 查询 500*500 的字符矩阵中是否包含两个子矩阵。
 * 求最大子矩阵的边长。
const int MAXN = 510;
int n, m;
char a[MAXN][MAXN];
/**Hash 表**/
const ULL HASH SIZE = 1000007;
struct HNode {
   ULL hv; int nxt;
} hd[HASH SIZE];
int head[HASH_SIZE], tot;
bool HQuery(ULL hv) {
    int u = hv % HASH SIZE;
```

```
assert(u >= 0);
    for(int i = head[u]; ~i; i = hd[i].nxt) {
       if(hd[i].hv == hv) return true;
    return false;
void HAdd(ULL hv) {
   int u = hv % HASH SIZE;
    assert (u >= 0);
    hd[tot].hv = hv;
   hd[tot].nxt = head[u];
   head[u] = tot ++;
void HInit() {
   tot = 0;
   memset(head, -1, sizeof(head));
}
/**矩阵 Hash 部分**/
ULL seed[2] = {131, 13331}; /**行列种子不能相同**/
                           /**行列的权值**/
ULL qz[2][MAXN];
ULL Hash1[MAXN][MAXN];
                           /**列 Hash**/
ULL Hash2[MAXN][MAXN];
                           /**再对 Hash1 行 Hash**/
* 差分求子矩阵 Hash。
 * (xr, yr) 表示矩阵右下点的坐标
 * (nn, mm) 表示矩阵的行高(x轴)和列宽(y轴)
inline ULL getHashV(int xr, int yr, int nn, int mm) {
    assert(xr - nn \geq= 0 && yr - mm \geq= 0);
    - {\rm Hash2[xr-nn][yr]} * {\rm qz[1][nn]} - {\rm Hash2[xr][yr-mm]} * {\rm qz[0][mm]};
bool check(int h) {
    for (int i = h; i \le n; ++i) {
        for(int j = h; j \le m; ++j) {
           ULL hv = getHashV(i, j, h, h);
           if(HQuery(hv)) return true;
           HAdd(hv);
    return false;
int main() {
    qz[0][0] = qz[1][0] = 1; // 求权值
    for(int i = 1; i < MAXN; ++i) {
       qz[0][i] = qz[0][i - 1] * seed[0];
       qz[1][i] = qz[1][i - 1] * seed[1];
    scanf("%d %d", &n, &m);
    HInit();
    for(int i = 1; i \le n; ++i) scanf("%s", a[i] + 1);
    for(int i = 0; i \le n; ++i) Hash1[i][0] = 0;
    for(int j = 0; j \le m; ++j) Hash2[0][j] = 0;
    /**先列 Hash**/
    for(int i = 1; i \le n; ++i) {
        for(int j = 1; j <= m; ++j) {
           Hash1[i][j] = Hash1[i][j - 1] * seed[0] + a[i][j] - 'a';
    /**再行 Hash**/
    for(int i = 1; i \le n; ++i) {
        for(int j = 1; j \le m; ++j) {
           Hash2[i][j] = Hash2[i - 1][j] * seed[1] + Hash1[i][j];
    /**二分长度**/
```

```
int ans = 0, lb = 1, ub = n == m ? n - 1 : min(n, m), md;
while(lb <= ub) {
    md = (lb + ub) >> 1;
    if(check(md)) ans = md, lb = md + 1;
    else ub = md - 1;
}
printf("%d\n", ans);
return 0;
}
```

数学

1、素数

```
1.1 素数筛选(判断<MAXN的数是否素数)
 * 素数筛选,判断小于 MAXN 的数是不是素数。
 * notprime 是一张表,为 false 表示是素数,true 表示不是素数
const int MAXN=1000010;
bool notprime[MAXN];//值为 false 表示素数,值为 true 表示非素数
void init(){
   memset(notprime, false, sizeof(notprime));
   notprime[0] = notprime[1] = true;
   for (int i=2;i<MAXN;i++)</pre>
      if(!notprime[i])
         if(i>MAXN/i)continue;//防止后面 i*i 溢出(或者 i,j 用 long long)
         //直接从 i*i 开始就可以, 小于 i 倍的已经筛选过了,注意是 j+=i
         for(int j=i*i;j<MAXN;j+=i)</pre>
            notprime[j]=true;
}
   1.2 素数筛选 (筛选出小于等于 MAXN 的素数)
* 素数筛选,存在小于等于 MAXN 的素数
 * prime[0] 存的是素数的个数
const int MAXN=10000;
int prime[MAXN+1];
void getPrime()
   memset(prime, 0, sizeof(prime));
   for (int i=2;i<=MAXN;i++)</pre>
      if(!prime[i])prime[++prime[0]]=i;
      for (int j=1;j<=prime[0]&&prime[j]<=MAXN/i;j++)</pre>
         prime[prime[j]*i]=1;
         if(i%prime[j]==0) break;
   }
}
   1.3 大区间素数筛选(POJ 2689)
 * POJ 2689 Prime Distance
* 给出一个区间[L,U],找出区间内容、相邻的距离最近的两个素数和
 * 距离最远的两个素数。
 * 1<=L<U<=2,147,483,647 区间长度不超过1,000,000
 * 就是要筛选出[L,U]之间的素数
const int MAXN=100010;
int prime[MAXN+1];
void getPrime()
```

memset(prime, 0, sizeof(prime));

```
for (int i=2;i<=MAXN;i++)</pre>
        if(!prime[i])prime[++prime[0]]=i;
        for(int j=1;j<=prime[0]&&prime[j]<=MAXN/i;j++)</pre>
             prime[prime[j]*i]=1;
             if(i%prime[j]==0)break;
}
bool notprime[1000010];
int prime2[1000010];
void getPrime2(int L, int R) {
    memset(notprime, false, sizeof(notprime));
    if (L<2) L=2;
    for(int i=1;i<=prime[0]&&(long long)prime[i]*prime[i]<=R;i++)</pre>
        int s=L/prime[i]+(L%prime[i]>0);
        if (s==1) s=2;
        for(int j=s; (long long) j*prime[i] <=R; j++)</pre>
             if((long long)j*prime[i]>=L)
                 notprime[j*prime[i]-L]=true;
    }
    prime2[0]=0;
    for (int i=0;i<=R-L;i++)</pre>
        if(!notprime[i])
            prime2[++prime2[0]]=i+L;
int main()
    getPrime();
    int L,U;
    while (scanf ("%d%d", &L, &U) ==2)
        getPrime2(L,U);
        if (prime2[0]<2) printf ("There are no adjacent primes.\n");</pre>
        else{
             int x1=0, x2=100000000, y1=0, y2=0;
             for (int i=1;i<prime2[0];i++)</pre>
                 if (prime2[i+1]-prime2[i]<x2-x1)</pre>
                    x1=prime2[i]; x2=prime2[i+1];
                 if (prime2[i+1]-prime2[i]>y2-y1)
                     y1=prime2[i];
                     y2=prime2[i+1];
             printf("%d,%d are closest, %d,%d are most distant.\n",x1,x2,y1,y2);
        }
    }
}
```

2、素数筛选和合数分解

//素数筛选和合数分解

```
const int MAXN=10000;
int prime[MAXN+1];
void getPrime()
   memset(prime, 0, sizeof(prime));
   for (int i=2;i<=MAXN;i++)</pre>
       if(!prime[i])prime[++prime[0]]=i;
       for (int j=1;j<=prime[0]&&prime[j]<=MAXN/i;j++)</pre>
          prime[prime[j]*i]=1;
          if(i%prime[j]==0) break;
long long factor[100][2];
int fatCnt;
int getFactors(long long x)
   fatCnt=0;
   long long tmp=x;
   for(int i=1;prime[i] <=tmp/prime[i];i++)</pre>
       factor[fatCnt][1]=0;
       if (tmp%prime[i] ==0)
          factor[fatCnt][0]=prime[i];
          while(tmp%prime[i]==0)
              factor[fatCnt][1]++;
              tmp/=prime[i];
          fatCnt++;
   if (tmp!=1)
       factor[fatCnt][0]=tmp;
       factor[fatCnt++][1]=1;
   return fatCnt;
```

3、扩展欧几里得算法(求 ax+by=gcd 的解以及逆元素)

```
//ax = 1 \pmod{n}
 LL mod reverse(LL a, LL n)
    LL x, y;
    LL d=extend gcd(a,n,x,y);
    if (d==1) return (x%n+n)%n;
    else return -1;
 /**
 * 可以得到 x>=bound 时的 x 和 y,返回 true 表示有解
  * 否则无解,我只想问这个模板无脑调用有木有~ 但是不同的题目特判不同,有的地方记得还是特判,
 比如 a 和 b 的正负和是否为 0~
 */
bool solve(LL a, LL b, LL c, LL bound, LL &x, LL &y) {
    LL xx, yy, d = extend gcd(a, b, xx, yy);
    if(c % d) return false;
    xx = xx * c / d; yy = yy * c / d;
    LL t = (bound - xx) * d / b;
    x = xx + b / d * t;
    if(x < bound) {
        t++;
        x = xx + b / d * t;
    y = yy - a / d * t;
    return true;
 4、求逆元
    4.1 扩展欧几里德法(见上面)
    4.2 简洁写法
 注意:这个只能求 a < m 的情况,而且必须保证 a 和 m 互质
 //求 ax = 1( mod m) 的 x 值, 就是逆元(0<a<m)
 long long inv(long long a,long long m) {
    if(a == 1)return 1;
    return inv(m%a,m) * (m-m/a) %m;
 }
    4.3 利用欧拉函数
mod 为素数,而且 a 和 m 互质
 long long inv(long long a,long long mod) //mod 为素数
    return pow_m(a, mod-2, mod);
    4.4 预处理阶乘逆元(可以用来求组合数)
原理:
                                            inv_x = \frac{1}{(x)!}
                                                                        (10)
                                               = \frac{1}{(x+1)!} * (x+1)
                                                                        (11)
                                               = inv_{x+1} * (x+1)
                                                                        (12)
复杂度:O(n).比传统的做法少一个log_2(n)的倍数。
预处理出阶乘的逆元,可用于O(1)的时间内求出(n \leq 10^6, k \leq n)的组合数C_n^k。
void init() {
```

fac[0] = 1;

```
for (int i = 1; i \le MX; ++i) fac[i] = fac[i - 1] * i % MOD;
    inv[MX - 1] = qpow(fac[MX - 1], MOD - 2); // 快速幂
    for (int i = MX - 2; i \ge 0; --i) inv[i] = inv[i + 1] * (i + 1) % MOD;
// O(1) 求组合数和排列数,自己加特判 n<0,m<0,n<m
LL C(LL n, LL k) { return fac[n] * inv[k] % MOD * inv[n - k] % MOD; }
LL A(LL n, LL k) { return fac[n] * inv[n - k] % MOD; }
     4.5 预处理线性逆元
首先,1^{-1} \equiv 1 \pmod{p}
然后,我们设p=k*i+r,r< i,1< i< p,再将这个式子放到 \mod p意义下就会得到:k*i+r\equiv 0 \pmod p
两边同乘以i^{-1},r^{-1},得:
                                      k * r^{-1} + r \equiv 0
                                                                   (\mod p)
                                                                              (13)
                                            i^{-1} \equiv -k * r^{-1}
                                                                   (\mod p)
                                                                              (14)
                                            i^{-1} \equiv -\lfloor \frac{p}{i} \rfloor * (p \mod i)^{-1}
                                                                   (\mod p)
                                                                              (15)
于是,就可以O(N)递推得到[1,N]的所有逆元。
LL inv[MAXN];
void init()
         inv[1] = 1;
         for(int i = 2; i < MAXN; ++i) {</pre>
         inv[i] = -(MOD / i) * inv[MOD % i] % MOD;
         inv[i] = (inv[i] + MOD) % MOD;
 5、模线性方程组
long long extend gcd(long long a,long long b,long long &x,long long &y){
    if (a == 0 && b == 0) return -1;
     if(b ==0 ) {x = 1; y = 0;return a;}
     long long d = extend gcd(b,a%b,y,x);
     y = a/b*x;
    return d;
 }
 int m[10],a[10];//模数为m,余数为a, X % m = a
 bool solve(int &m0,int &a0,int m,int a)
 {
    long long y, x;
     int g = extend gcd(m0, m, x, y);
    if( abs(a - a0)%g )return false;
    x *= (a - a0)/g;
    x \% = m/q;
    a0 = (x*m0 + a0);
    m0 *= m/q;
    a0 %= m0;
    if ( a0 < 0 ) a0 += m0;
    return true;
 }
 /*
  * 无解返回 false,有解返回 true;
  * 解的形式最后为 a0 + m0 * t (0<=a0<m0)
  * /
 bool MLES(int &m0 ,int &a0,int n) //解为 X = a0 + m0 * k
    bool flag = true;
    m0 = 1;
```

```
a0 = 0;
for(int i = 0;i < n;i++)
    if( !solve(m0,a0,m[i],a[i]) )
{
    flag = false;
    break;
}
return flag;
}</pre>
```

6、随机素数测试和大数分解(POJ 1811)

```
* Miller Rabin 算法进行素数测试
* 速度快,可以判断一个 < 2^63 的数是不是素数
const int S = 8; //随机算法判定次数,一般 8~10 就够了
// 计算 ret = (a*b)%c a,b,c < 2^63
long long mult_mod(long long a, long long b, long long c) {
   a %= c;
   b %= c;
   long long ret = 0;
   long long tmp = a;
   while(b) {
      if(b & 1)
      {
         ret += tmp;
         if(ret > c)ret -= c;//直接取模慢很多
      tmp <<= 1;
      if(tmp > c)tmp -= c;
      b >>= 1;
   return ret;
}
// 计算 <u>ret_</u>= (a^n)%mod
long long pow_mod(long long a,long long n,long long mod){
   long long ret = 1;
   long long temp = a%mod;
   while(n)
       if(n & 1)ret = mult_mod(ret, temp, mod);
      temp = mult mod(temp, temp, mod);
       n >>= 1;
   return ret;
}
// 通过 a^(n-1)=1 (mod n)来判断 n 是不是素数
// n-1 = x*2^t 中间使用二次判断
// 是合数返回 true, 不一定是合数返回 false
bool check(long long a,long long n,long long x,long long t){
    long long ret = pow_mod(a,x,n);
    long long last = ret;
```

```
for(int i = 1;i <= t;i++)
      ret = mult mod(ret,ret,n);
      if(ret == 1 && last != 1 && last != n-1)return true;//合数
      last = ret;
   if(ret != 1)return true;
   else return false;
//***********
// Miller Rabin 算法
// 是素数返回 true, (可能是伪素数)
// 不是素数返回 false
//**********
bool Miller Rabin(long long n) {
   if( n < 2)return false;</pre>
   if( n == 2)return true;
   if((n&1) == 0)return false;//偶数
   long long x = n - 1;
   long long t = 0;
   while ( (x\&1) == 0 ) \{x >>= 1; t++; \}
   for(int i = 0;i < S;i++)</pre>
      long long a = rand() % (n-1) + 1;
      if( check(a,n,x,t)) return false;
   return true;
}
//***********
// pollard rho 算法进行质因素分解
//
//
//***********
long long factor[100];//质因素分解结果(刚返回时时无序的)
int tol;//质因素的个数,编号 0~tol-1
long long gcd(long long a,long long b) {
   long long t;
   while(b)
      t = a;
      a = b;
      b = t%b;
   if(a >= 0)return a;
   else return -a;
}
//找出一个因子
long long pollard_rho(long long x,long long c){
   long long i = 1, k = 2;
   srand(time(NULL));
   long long x0 = rand() % (x-1) + 1;
   long long y = x0;
   \mathbf{while}(1)
      i ++;
      x0 = (mult mod(x0,x0,x) + c) %x;
```

```
long long d = gcd(y - x0,x);
       if( d != 1 && d != x)return d;
       if(y == x0)return x;
       if(i == k) {y = x0; k += k;}
}
//对 n 进行素因子分解, 存入 factor. k 设置为 107 左右即可
void findfac(long long n,int k){
    if(n == 1)return;
    if(Miller Rabin(n)){
       factor[tol++] = n;
       return;
    long long p = n; int c = k; while( p >= n)
      p = pollard rho(p,c--); //值变化,防止死循环 k
    findfac(p,k);
    findfac(n/p,k);
}
//给出一个 N(2 \le N < 2^54),如果是素数,输出"Prime",否则输出最小的素因子
int main(){
    int T;
    long long n;
    scanf("%d", &T);
    while (T--)
       scanf("%I64d", &n);
       if (Miller_Rabin(n))printf("Prime\n");
       else
          tol = 0;
          findfac(n, 107);
          long long ans = factor[0];
          for(int i = 1;i < tol;i++)</pre>
             ans = min(ans, factor[i]);
          printf("%I64d\n", ans);
       }
    return 0;
7、欧拉函数
   6.1 分解质因素求欧拉函数
      getFactors(n);
      int ret = n;
      for(int i = 0;i < fatCnt;i++)</pre>
         ret = ret/factor[i][0]*(factor[i][0]-1);
   6.2 筛法欧拉函数
int euler[3000001];
void getEuler()
   memset(euler, 0, sizeof(euler));
   euler[1] = 1;
```

for(int i = 2;i <= 3000000;i++)</pre>

```
if(!euler[i])
         for(int j = i; j <= 3000000; j += i)</pre>
             if(!euler[j])
                 euler[j] = j;
             euler[j] = euler[j]/i*(i-1);
}
   6.2 求单个数的欧拉函数
long long eular(long long n) {
   long long ans = n;
   for(int i = 2;i*i <= n;i++)</pre>
      if(n % i == 0)
          ans -= ans/i;
          while(n % i == 0)
             n /= i;
   if(n > 1) ans -= ans/n;
   return ans;
}
   6.3 线性筛 (同时得到欧拉函数和素数表)
const int MAXN = 10000000;
bool check[MAXN+10];
int phi[MAXN+10];
int prime[MAXN+10];
int tot;//素数的个数
void phi_and_prime_table(int N)
   memset(check,false,sizeof(check));
   phi[1] = 1;
    tot = 0;
    for(int i = 2; i <= N; i++)</pre>
        if(!check[i])
            prime[tot++] = i;
           phi[i] = i-1;
        for(int j = 0; j < tot; j++)
            if(i * prime[j] > N)break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0)
               phi[i * prime[j]] = phi[i] * prime[j];
               break;
               phi[i * prime[j]] = phi[i] * (prime[j] - 1);
       }
    }
}
```

8、高斯消元 (浮点数)

```
#define eps 1e-9
 const int MAXN=220;
 double a [MAXN] [MAXN], x [MAXN]; //方程的左边的矩阵和等式右边的值,求解之后 x 存的就是结果
 int equ, var; //方程数和未知数个数
 *返回0表示无解,1表示有解
 */
 int Gauss() {
    int i,j,k,col,max_r;
    for (k=0, col=0; k<equ&&col<var; k++, col++)</pre>
        \max r=k;
        for(i=k+1;i<equ;i++)</pre>
         if (fabs(a[i][col])>fabs(a[max r][col]))
           max r=i;
        if (fabs (a[max_r][col]) < eps) return 0;</pre>
        if(k!=max r)
           for(j=col;j<var;j++)</pre>
             swap(a[k][j],a[max_r][j]);
           swap(x[k],x[max r]);
        }
        x[k]/=a[k][col];
        for (j=col+1; j<var; j++) a[k][j]/=a[k][col];</pre>
        a[k][col]=1;
        for (i=0; i < equ; i++)</pre>
         if(i!=k)
             x[i] = x[k] *a[i][k];
             for (j=col+1; j<var; j++) a[i][j]-=a[k][j]*a[i][col];</pre>
             a[i][col]=0;
         }
    return 1;
 }
 9、FFT
/** FFT **/
const int MAXN = 262144 + 5; /// 数组大小应为 2^k
//typedef complex<double> CP;
struct CP {
    double x, y;
    CP() {}
    CP (double x, double y) : x(x), y(y) {}
    inline double real() { return x; }
    inline CP operator * (const CP& r) const { return CP(x * r.x - y *
r.y, x * r.y + y * r.x); }
    inline CP operator - (const CP& r) const { return CP(x - r.x, y -
r.v); }
    inline CP operator + (const CP& r) const { return CP(x + r.x, y +
r.y); }
    inline CP conj(const CP &r) { return CP(r.x, -r.y); }
}:
CP a[MAXN], b[MAXN];
int r[MAXN], res[MAXN];
void fft_init(int nm, int k) {
```

```
// Rader 操作
    for (int i = 0; i < nm; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) <<
(k - 1));
void fft(CP ax[], int nm, int op) {
    for(int i = 0; i < nm; ++i) if(i < r[i]) swap(ax[i], ax[r[i]]);
    for(int h = 2, m = 1; h <= nm; h <<= 1, m <<= 1) { // 枚举长度
        CP wn = CP(cos(op * 2 * PI / h), sin(op * 2 * PI / h));
                                            // 枚举所有长度为 h 的区间
        for (int i = 0; i < nm; i += h) {</pre>
            CP w(1, 0);
                                             // 旋转因子
            for(int j = i; j < i + m; ++j, w = w * wn) { // 枚举角度
                                             // 蝴蝶操作
                CP t = w * ax[j + m];
                ax[j + m] = ax[j] - t;
                ax[j] = ax[j] + t;
        }
    if (op == -1) for (int i = 0; i < nm; ++i) ax[i].x /= nm;
void trans(int ax[], int bx[], int n, int m) {
    int nm = 1, k = 0;
    while (nm < 2 * n | | nm < 2 * m) nm <<= 1, ++k;
    for (int i = 0; i < n; ++i) a[i] = CP(ax[i], 0);
    for (int i = 0; i < m; ++i) b[i] = CP(bx[i], 0);
    for (int i = n; i < nm; ++i) a[i] = CP(0, 0);
    for (int i = m; i < nm; ++i) b[i] = CP(0, 0);
    fft init(nm, k);
    fft(a, nm, 1); fft(b, nm, 1);
    for (int i = 0; i < nm; ++i) a[i] = a[i] * b[i];</pre>
    fft(a, nm, -1);
    nm = n + m - 1;
    for(int i = 0; i < nm; ++i) res[i] = (int)(a[i].real() + 0.5);
 //HDU 1402 求高精度乘法
 const double PI = acos(-1.0);
 //复数结构体
 struct Complex
    double x,y;//实部和虚部 x+yi
    Complex (double _x = 0.0, double _y = 0.0)
      x = x;
       y = y;
    Complex operator -(const Complex &b) const{
      return Complex(x-b.x,y-b.y);
    Complex operator + (const Complex &b) const
       return Complex(x+b.x,y+b.y);
    Complex operator *(const Complex &b) const
    {
       return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
```

```
};
* 进行 FFT 和 IFFT 前的反转变换。
 * 位置 i 和 (i 二进制反转后位置)互换
 * len 必须去 2 的幂
*/
void change(Complex y[],int len)
   int i,j,k;
   for(i = 1, j = len/2;i <len-1;i++)</pre>
      if(i < j)swap(y[i],y[j]);</pre>
       //交换互为小标反转的元素, i<j 保证交换一次
       //i 做正常的+1, j 左反转类型的+1, 始终保持 i 和 j 是反
      转的 k = len/2;
      while(j >= k)
          j = k;
          k /= 2;
      if(j < k)j += k;
   }
}
/*
* 做 FFT
* len 必须为 2^k 形式,
* on==1 时是 DFT, on==-1 时是 IDFT
*/
void fft(Complex y[],int len,int on)
{
   change(y,len);
   for(int h = 2; h <= len; h <<= 1)</pre>
       Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
       for(int j = 0; j < len; j+=h)</pre>
          Complex w(1,0);
          for (int k = j; k < j+h/2; k++)
             Complex u = y[k];
             Complex t = w*y[k+h/2];
             y[k] = u+t;
             y[k+h/2] = u-t;
             w = w*wn;
       }
   if(on == -1)
      for(int i = 0;i < len;i++)</pre>
          y[i].x /= len;
}
const int MAXN = 200010;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN/2],str2[MAXN/2];
int sum[MAXN];
int main(){
   while (scanf("%s%s", str1, str2) == 2) {
      int len1 = strlen(str1);
      int len2 = strlen(str2);
```

```
int len = 1;
       while(len < len1*2 || len < len2*2)len<<=1;</pre>
       for(int i = 0;i < len1;i++)</pre>
          x1[i] = Complex(str1[len1-1-i]-'0',0);
       for(int i = len1;i < len;i++)</pre>
          x1[i] = Complex(0,0);
       for(int i = 0;i < len2;i++)</pre>
          x2[i] = Complex(str2[len2-1-i]-'0',0);
       for(int i = len2;i < len;i++)</pre>
          x2[i] = Complex(0,0);
       //求 DFT
       fft(x1,len,1);
       fft(x2,len,1);
       for(int i = 0;i < len;i++)</pre>
          x1[i] = x1[i]*x2[i];
       fft(x1, len, -1);
       for(int i = 0;i < len;i++)</pre>
          sum[i] = (int)(x1[i].x+0.5);
       for(int i = 0;i < len;i++)</pre>
          sum[i+1] += sum[i]/10;
          sum[i]%=10;
       len = len1 + len2 - 1;
       while(sum[len] <= 0 && len > 0)len--;
       for(int i = len;i >= 0;i--)
          printf("%c", sum[i]+'0');
       printf("\n");
   return 0;
//HDU 4609
//给出 n 条线段长度, 问任取 3 根, 组成三角形的概率。
          用 FFT 求可以组成三角形的取法有几种
//n<=10^5
const int MAXN = 400040;
Complex x1[MAXN];
int a[MAXN/4];
long long num[MAXN];//100000*100000 会超 int
long long sum[MAXN];
int main(){
   int T;
   int n;
   scanf("%d", &T);
   while (T--) {
       scanf("%d", &n);
       memset(num, 0, sizeof(num));
       for(int i = 0;i < n;i++){</pre>
          scanf("%d", &a[i]);
          num[a[i]]++;
       }
       sort(a,a+n);
       int len1 = a[n-1]+1;
       int len = 1;
       while(len < 2*len1) len <<= 1;</pre>
       for(int i = 0;i < len1;i++)</pre>
          x1[i] = Complex(num[i], 0);
       for(int i = len1;i < len;i++)</pre>
          x1[i] = Complex(0,0);
```

```
fft(x1,len,1);
        for(int i = 0;i < len;i++)</pre>
           x1[i] = x1[i]*x1[i];
        fft(x1, len, -1);
        for(int i = 0;i < len;i++)</pre>
           num[i] = (long long)(x1[i].x+0.5);
        len = 2*a[n-1];
        //减掉取两个相同的组合
        for(int i = 0;i < n;i++)</pre>
           num[a[i]+a[i]]--;
        for (int i = 1; i <= len; i++) num[i]/=2;</pre>
        sum[0] = 0;
        for(int i = 1;i <= len;i++)</pre>
           sum[i] = sum[i-1] + num[i];
        long long cnt = 0;
        for(int i = 0;i < n;i++)</pre>
           cnt += sum[len]-sum[a[i]];
           //减掉一个取大,一个取小的
           cnt -= (long long) (n-1-i) *i;
           //减掉一个取本身,另外一个取其它
           cnt -= (n-1);
           cnt -= (long long) (n-1-i) * (n-i-2)/2;
        long long tot = (long long) n* (n-1)* (n-2) / 6;
        printf("%.71f\n", (double) cnt/tot);
    return 0;
 }
 10, NTT
/** NTT **/
/** 1e9 以内 double fft, 1e14 以内 long double 的 fft, 1e15-4e17 果断 nnt **/
const int MAXN = 262144 + 5;
const LL G = 3, MOD = 40531930642382849LL; //(479 << 21) + 1;998244353;
LL a[MAXN], b[MAXN];
int r[MAXN];
/** 将z = x * y % MOD 替换为 z = quick mul(x, y)**/
LL quick mul(LL x, LL y) {
    return (x * y - (LL)(x / (long double)MOD * y + 1e-3) * MOD + MOD) % MOD;
template<typename T> T quick_pow(T a, T b) {
    T ret = 1;
    while(b) {
        if(b & 1) ret = quick_mul(ret, a);
        a = quick mul(a, a);
        b >>= 1;
    return ret;
void ntt init(int nm, int k) {
    for (int i = 0; i < nm; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (k - 1));
template<typename T> void ntt(T ax[], int nm, int op) {
    for (int i = 0; i < nm; ++i) if (i < r[i]) swap (ax[i], ax[r[i]]);
    for(int h = 2, m = 1; h <= nm; h <<= 1, m <<= 1) {</pre>
        T wn = quick pow(G, (MOD - 1) / h);
        for(int i = 0; i < nm; i += h) {</pre>
            T w = 1;
            for (int j = i; j < i + m; ++j, w = quick_mul(w, wn)) {
                T t = quick_mul(w, ax[j + m]);
                ax[j + m] = ax[j] - t + MOD;
                if(ax[j + m] >= MOD) ax[j + m] -= MOD;
                ax[j] = ax[j] + t;
```

```
WONZY の ACM 模板
                if(ax[j] >= MOD) ax[j] -= MOD;
            }
        }
    if(op == -1) {
        for(int i = 1; i < nm / 2; i++) swap(ax[i], ax[nm - i]); // Caution!</pre>
        T inv = quick_pow((LL)nm, MOD - 2);
        for (int i = 0; i < nm; ++i) ax[i] = quick_mul(ax[i], inv);
    }
template<typename T> void trans(T ax[], T bx[], int n, int m) {
    int nm = 1, k = 0;
    while (nm < 2 * n | | nm < 2 * m) nm <<= 1, ++k;
    for (int i = 0; i < n; ++i) a[i] = ax[i];
    for (int i = 0; i < m; ++i) b[i] = bx[i];
    for(int i = n; i < nm; ++i) a[i] = 0;
    for(int i = m; i < nm; ++i) b[i] = 0;</pre>
    ntt init(nm, k);
    ntt(a, nm, 1); ntt(b, nm, 1);
    for(int i = 0; i < nm; ++i) a[i] = quick_mul(a[i], b[i]);</pre>
    ntt(a, nm, -1);
   nm = n + m - 1;
    for (int i = 0; i < nm; ++i) ax[i] = a[i];
 11, FWT
/* 复杂度 O(nlogn), LEN 为区间长度
    LEN 必须为 2 的 n 次幂
    模数只是为了防止爆 long long
    如果答案不会爆 long long, 可以不模数
LL gpow(LL a, LL b) {
   LL ret = 1;
    while (b > 0) {
        if(b & 1) ret = ret * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    return ret;
LL inv2 = qpow(2, MOD - 2);
/** 注意: 注意注释掉不用的 **/
void fwt(LL ax[], int n) {
    for (int h = 2, md = 1; md < n; h <<= 1, md <<= 1) {
        for(int i = 0; i < n; i += h) {</pre>
            for(int j = i; j < i + md; ++j) {</pre>
                LL x = ax[j];
                LL y = ax[j + md];
                 /** xor **/
                ax[j] = (x + y) % MOD;
                ax[j + md] = (x - y + MOD) % MOD;
                 /** and **/
                ax[j] = (x + y) % MOD;
                //ax[j + md] = y % MOD;
                 /** or **/
                ax[j + md] = (x + y) % MOD;
                //ax[j] = x % MOD;
       }
/** 注意: 注意注释掉不用的 **/
void ifwt(LL ax[], int n) {
    for(int h = 2, md = 1; md < n; h <<= 1, md <<= 1) {</pre>
        for(int i = 0; i < n; i += h) {
            for(int j = i; j < i + md; ++j) {</pre>
```

```
WONZY の ACM 模板
```

```
LL x = ax[j];
                LL y = ax[j + md];
                 /** xor **/
                ax[j] = (x + y) * inv2 % MOD;
                ax[j + md] = (x - y + MOD) % MOD * inv2 % MOD;
                 /** and **/
                ax[j] = (x - y + MOD) % MOD;
                //ax[j + md] = y % MOD;
                 /** or **/
                ax[j + md] = (y - x + MOD) % MOD;
                //ax[j] = x % MOD;
  }
void fwt_run(LL a[], LL b[], int LEN) {
   fwt(a, LEN - 1); fwt(b, LEN - 1);
    for(int i = 0; i < LEN; ++i) a[i] = a[i] * b[i] % MOD;</pre>
    ifwt(a, LEN - 1);
```

12、高斯消元法求方程组的解

12.1 一类开关问题,对 2 取模的 01 方程组 POJ 1681 需要枚举自由变元,找解中 1 个数最少的

```
//对 2 取模的 01 方程组
```

```
const int MAXN = 300;
//有 equ 个方程, var 个变元。增广矩阵行数为 equ, 列数为 var+1, 分别为 0 到 var
int equ, var;
int a[MAXN][MAXN]; //增广矩阵
int x[MAXN]; //解集
int free x[MAXN];//用来存储自由变元(多解枚举自由变元可以使用)
int free num; //自由变元的个数
//返回值为-1表示无解,为0是唯一解,否则返回自由变元个数
int Gauss(){
    int max r,col,k;
    free num = 0;
    for(k = 0, col = 0; k < equ && col < var; k++, col++){
       \max r = k;
       for(int i = k+1;i < equ;i++) {</pre>
           if(abs(a[i][col]) > abs(a[max r][col]))
               \max r = i;
       if(a[max r][col] == 0) {
           free x[free num++] = col;//这个是自由变元
           continue;
       if (max r != k) {
           for(int j = col; j < var+1; j++)</pre>
               swap(a[k][j],a[max r][j]);
       for(int i = k+1;i < equ;i++)</pre>
           if(a[i][col] != 0)
            {
               for(int j = col; j < var+1; j++)</pre>
                   a[i][j] ^= a[k][j];
           }
```

```
for(int i = k;i < equ;i++)</pre>
        if(a[i][col] != 0)
            return -1;//无解
    if(k < var) return var-k;//自由变元个数
    //唯一解,回代
    for(int i = var-1; i >= 0;i--)
        x[i] = a[i][var];
        for(int j = i+1; j < var; j++)</pre>
            x[i] ^= (a[i][j] \&\& x[j]);
    return 0;
int n;
void init(){
    memset(a, 0, sizeof(a));
    memset(x, 0, sizeof(x));
    equ = n*n;
    var = n*n;
    for(int i = 0;i < n;i++)</pre>
        for(int j = 0; j < n; j++)</pre>
            int t = i*n+j;
            a[t][t] = 1;
            if(i > 0)a[(i-1)*n+j][t] = 1;
            if(i < n-1)a[(i+1)*n+j][t] = 1;
            if(j > 0)a[i*n+j-1][t] = 1;
            if(j < n-1)a[i*n+j+1][t] = 1;
void solve(){
    int t = Gauss();
    if(t == -1){
        printf("inf\n");
        return;
    } else if(t == 0) {
        int ans = 0;
        for(int i = 0;i < n*n;i++)</pre>
            ans += x[i];
        printf("%d\n", ans);
        return;
    } else {
        //枚举自由变元
        int ans = 0x3f3f3f3f;
        int tot = (1 << t);
        for(int i = 0;i < tot;i++)</pre>
            int cnt = 0;
            for(int j = 0; j < t; j++)</pre>
            {
                if(i&(1<<j))
                    x[free_x[j]] = 1;
                    cnt++;
                else x[free x[j]] = 0;
            }
```

```
for(int j = var-t-1; j >= 0; j--)
                int idx;
                for(idx = j;idx < var;idx++)</pre>
                    if(a[j][idx])
                        break;
                x[idx] = a[j][var];
                for(int 1 = idx+1;1 < var;1++)</pre>
                    if(a[j][l])
                        x[idx] ^= x[1];
                        cnt += x[idx];
            }
            ans = min(ans,cnt);
        printf("%d\n", ans);
char str[30][30];
int main() {
   int T;
    scanf("%d", &T);
    while (T--)
        scanf("%d", &n);
        init();
        for(int i = 0;i < n;i++)</pre>
            scanf("%s",str[i]);
            for(int j = 0; j < n; j++)</pre>
            {
                if(str[i][j] == 'y')
                   a[i*n+j][n*n] = 0;
                else a[i*n+j][n*n] = 1;
        solve();
   return 0;
}
   12.2 解同余方程组
POJ 2947 Widget Factory
//求解对 MOD 取模的方程组
const int MOD = 7;
const int MAXN = 400;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//最后得到的解集
inline int gcd(int a, int b) {
    while(b != 0){
        int t = b;
       b = a%b;
        a = t;
    }
    return a;
inline int lcm(int a,int b) {
   return a/gcd(a,b)*b;
long long inv(long long a, long long m) {
   if(a == 1) return 1;
```

```
return inv(m%a,m) * (m-m/a) %m;
}
int Gauss(int equ,int var)
{
    int max_r,col,k;
    for (k = 0, col = 0; k < equ && col < var; k++, col++)
        max_r = k;
        for(int i = k+1; i < equ;i++)</pre>
            if(abs(a[i][col]) > abs(a[max r][col]))
                max_r = i;
        if(a[max r][col] == 0){
            k--;
            continue;
        if(max_r != k)
            for(int j = col; j < var+1; j++)</pre>
                swap(a[k][j],a[max r][j]);
        for(int i = k+1;i < equ;i++) {</pre>
            if(a[i][col] != 0)
                int LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                int ta = LCM/abs(a[i][col]);
                int tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col] < 0)tb = -tb;</pre>
                for(int j = col; j < var+1; j++)</pre>
                    a[i][j] = ((a[i][j]*ta - a[k][j]*tb)%MOD + MOD)%MOD;
            }
        }
    for(int i = k;i < equ;i++)</pre>
        if(a[i][col] != 0)
            return -1;//无解
    if(k < var) return var-k;//多解
    for(int i = var-1;i >= 0;i--)
        int temp = a[i][var];
        for(int j = i+1; j < var; j++)</pre>
            if(a[i][j] != 0)
                temp -= a[i][j]*x[j];
                temp = (temp%MOD + MOD)%MOD;
        x[i] = (temp*inv(a[i][i],MOD))%MOD;
    return 0;
}
int change(char s[])
    if(strcmp(s,"MON") == 0) return 1;
   else if(strcmp(s,"TUE")==0) return 2;
   else if(strcmp(s,"WED")==0) return 3;
   else if(strcmp(s,"THU")==0) return 4;
   else if(strcmp(s,"FRI")==0) return 5;
   else if(strcmp(s,"SAT")==0) return 6;
   else return 7;
}
```

```
int main(){
    int n,m;
    while(scanf("%d%d", &n, &m) == 2) {
        if(n == 0 && m == 0)break;
        memset(a, 0, sizeof(a));
        char str1[10],str2[10];
        int k;
        for(int i = 0;i < m;i++)</pre>
            scanf("%d%s%s",&k,str1,str2);
            a[i][n] = ((change(str2) - change(str1) + 1)%MOD + MOD)%MOD;
            int t;
            while (k--)
                 scanf("%d", &t);
                t--;
                a[i][t] ++;
                a[i][t]%=MOD;
            }
        }
        int ans = Gauss(m,n);
        if(ans == 0)
            for(int i = 0;i < n;i++)</pre>
                if(x[i] <= 2)
                     x[i] += 7;
            for(int i = 0;i < n-1;i++)printf("%d ",x[i]);</pre>
            printf("%d\n", x[n-1]);
        else if(ans == -1)printf("Inconsistent data.\n");
        else printf("Multiple solutions.\n");
   return 0;
}
```

13、 整数拆分

```
HDU 4651
```

```
const int MOD = 1e9+7;
int dp[100010];
void init(){
   memset(dp, 0, sizeof(dp));
   dp[0] = 1;
   for(int i = 1;i <= 100000;i++)</pre>
       for(int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0; <math>j++, r *= -1)
          dp[i] += dp[i - (3 * j * j - j) / 2] * r;
          dp[i] %= MOD;
          dp[i] = (dp[i] + MOD) % MOD;
          if(i - (3 * j * j + j) / 2 >= 0){
              dp[i] += dp[i - (3 * j * j + j) / 2] * r;
              dp[i] %= MOD;
              dp[i] = (dp[i] + MOD) % MOD;
          }
       }
   }
```

```
int main(){
   int T;
   int n;
   init();
   scanf("%d", &T);
   while (T--) {
       scanf("%d", &n);
       printf("%d\n", dp[n]);
   return 0;
}
HDU 4658
数 n(<=10^5)的划分,相同的数重复不能超过 k 个。
const int MOD = 1e9+7;
int dp[100010];
void init(){
   memset(dp, 0, sizeof(dp));
   dp[0] = 1;
   for(int i = 1;i <= 100000;i++)</pre>
       for(int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0; <math>j++, r *= -1)
          dp[i] += dp[i - (3 * j * j - j) / 2] * r;
          dp[i] %= MOD;
          dp[i] = (dp[i] + MOD) % MOD;
          if(i - (3 * j * j + j) / 2 >= 0)
              dp[i] += dp[i - (3 * j * j + j) / 2] * r;
              dp[i] %= MOD;
              dp[i] = (dp[i] + MOD) % MOD;
          }
       }
   }
int solve(int n,int k)
   int ans = dp[n];
   for (int j = 1, r = -1; n - k*(3 * j * j - j) / 2 >= 0; <math>j++, r *= -1)
       ans += dp[n -k*(3 * j * j - j) / 2] * r;
       ans %= MOD;
       ans = (ans+MOD) %MOD;
       if( n - k*(3 * j * j + j) / 2 >= 0 )
          ans += dp[n - k*(3 * j * j + j) / 2] * r;
          ans %= MOD;
          ans = (ans+MOD) %MOD;
       }
   }
   return ans;
int main(){
   init();
   int T;
   int n,k;
   scanf("%d", &T);
```

```
while(T--)
{
    scanf("%d%d",&n,&k);
    printf("%d\n",solve(n,k));
}
return 0;
}
```

14、求 A^B 的约数之和对 MOD 取模

```
参考 POJ 1845
里面有一种求 1+p+p^2+p^3+...p^n 的方法。 需要素数筛
选和合数分解的程序,需要先调用 getPrime();
long long pow_m(long long a,long long n)
   long long ret = 1;
   long long tmp = a%MOD;
   while(n)
       if(n&1)ret = (ret*tmp)%MOD;
       tmp = tmp*tmp%MOD;
       n >>= 1;
   return ret;
}
//计算 1+p+p^2+...+p^n
long long sum(long long p,long long n) {
   if(p == 0)return 0;
   if(n == 0)return 1;
   if(n & 1)
       return ((1+pow m(p, n/2+1))%MOD*sum(p, n/2)%MOD)%MOD;
   else return ((1+pow m(p,n/2+1)) %MOD*sum(p,n/2-1)+pow m(p,n/2) %MOD; %MOD;
//返回 A^B 的约数之和 % MOD
long long solve(long long A, long long B) {
   getFactors(A);
   long long ans = 1;
   for(int i = 0;i < fatCnt;i++) {</pre>
       ans *= sum(factor[i][0],B*factor[i][1])%MOD;
       ans %= MOD;
   return ans;
}
```

15、莫比乌斯反演

莫比乌斯反演公式:

$$F(n) = \sum_{d|n} f(d)$$
 \emptyset $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$

莫比乌斯函数 μ

$$\mu(n) = \begin{cases} 1 & n = 1 \\ (-1)^k & n = p_1 p_2 \cdots p_k \\ 0 & \text{其余情况} \end{cases}$$

另外一种更常用的形式:

在某一范围内:
$$F(n) = \sum_{n|d} f(d)$$
 则 $f(n) = \sum_{n|d} \mu \left(\frac{d}{n}\right) F(d)$

线性筛法求解积性函数 (莫比乌斯函数)

```
const int MAXN = 1000000;
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus() {
    memset(check, false, sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for(int i = 2; i <= MAXN; i++) {</pre>
        if(!check[i]){
            prime[tot++] = i;
            mu[i] = -1;
        for(int j = 0; j < tot; j++) {</pre>
            if(i * prime[j] > MAXN) break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0)
                mu[i * prime[j]] = 0;
                break;
            } else{
               mu[i * prime[j]] = -mu[i];
        }
   }
}
```

例题: BZOJ 2301

对于给出的 n 个询问,每次求有多少个数对 (x,y),满足 a \leq x \leq b,c \leq y \leq d,且 gcd (x,y) = k, gcd (x,y) 函

```
数为 x 和 y 的最大公约数。 1 \le n \le 50000, 1 \le a \le b \le 50000, 1 \le c \le d \le 50000, 1 \le k \le 50000
const int MAXN = 100000;
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus()
    memset(check, false, sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for(int i = 2; i <= MAXN; i++) {</pre>
        if(!check[i]) {
            prime[tot++] = i;
            mu[i] = -1;
        for(int j = 0; j < tot; j ++) {</pre>
            if( i * prime[j] > MAXN) break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
             } else {
                mu[i * prime[j]] = -mu[i];
        }
    }
int sum[MAXN+10];
//找[1,n],[1,m]内互质的数的对数
long long solve(int n,int m) {
    long long ans = 0;
    if(n > m) swap(n,m);
    for(int i = 1, la = 0; i <= n; i = la+1)</pre>
        la = min(n/(n/i), m/(m/i));
        ans += (long long) (sum[la] - sum[i-1])*(n/i)*(m/i);
    }
    return ans;
int main() {
   Moblus();
    sum[0] = 0;
    for(int i = 1;i <= MAXN;i++)</pre>
        sum[i] = sum[i-1] + mu[i];
    int a,b,c,d,k;
    int T;
    scanf("%d", &T);
    while (T--)
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
        long long ans = solve(b/k, d/k) - solve((a-1)/k, d/k) - solve(b/k, (c-1)/k)
+ solve((a-1)/k, (c-1)/k);
       printf("%lld\n",ans);
    }
   return 0;
}
```

16 Baby-Step Giant-Step

```
(POJ 2417,3243)
//baby step giant step
// a^x = b (\underline{mod} n) n 是素数和不是素数都可以
// 求解上式 0<=x < n 的解
#define MOD 76543
int hs[MOD], head[MOD], next[MOD], id[MOD], top;
void insert(int x,int y)
    int k = x%MOD;
   hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++;
int find(int x) {
   int k = x%MOD;
    for(int i = head[k]; i != -1; i = next[i])
       if(hs[i] == x)
           return id[i];
   return -1;
int BSGS(int a,int b,int n) {
   memset(head, -1, sizeof(head));
   top = 1;
   if(b == 1) return 0;
    int m = sqrt(n*1.0), j;
   long long x = 1, p = 1;
    for(int i = 0; i < m; ++i, p = p*a%n)insert(p*b%n,i);</pre>
    for(long long i = m; ;i += m)
       if( (j = find(x = x*p%n)) != -1)return i-j;
       if(i > n)break;
   return -1;
}
17、自适应 simpson 积分
double simpson(double a, double b) {
   double c = a + (b-a)/2;
   return (F(a) + 4*F(c) + F(b))*(b-a)/6;
double asr(double a, double b, double eps, double A) {
   double c = a + (b-a)/2;
   double L = simpson(a,c), R = simpson(c,b);
   if(fabs(L + R - A) \le 15*eps)return L + R + (L + R - A)/15.0;
   return asr(a,c,eps/2,L) + asr(c,b,eps/2,R);
double asr(double a, double b, double eps) {
   return asr(a,b,eps,simpson(a,b));
18、求 n 以内质数个数(n≤1e11)
       求n以内质数个数
       使用前,先 init(), n ≤ 1e11
       lehmer pi(n)求n以内质数的个数
```

```
const int N = 5e6 + 2;
bool np[N];
int prime[N], pi[N];
int getprime() {
    int cnt = 0;
    np[0] = np[1] = true;
    pi[0] = pi[1] = 0;
    for(int i = 2; i < N; ++i) {</pre>
         if(!np[i]) prime[++cnt] = i;
         pi[i] = cnt;
         for(int j = 1; j <= cnt && i * prime[j] < N; ++j) {
    np[i * prime[j]] = true;</pre>
             if(i % prime[j] == 0) break;
    return cnt;
const int M = 7;
const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
int phi[PM + 1][M + 1], sz[M + 1];
void init() {
    getprime();
    sz[0] = 1;
    for(int i = 0; i <= PM; ++i) phi[i][0] = i;</pre>
    for(int i = 1; i <= M; ++i) {</pre>
         sz[i] = prime[i] * sz[i - 1];
         for (int j = 1; j <= PM; ++j) {</pre>
             phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
    }
int sqrt2(LL x) {
    LL r = (LL) sqrt(x - 0.1);
    while (r * r \le x)
    return int(r - 1);
int sqrt3(LL x) {
    LL r = (LL) cbrt (x - 0.1);
    while (r * r * r <= x) ++r;</pre>
    return int(r - 1);
LL getphi(LL x, int s) {
    if(s == 0) return x;
if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];</pre>
    if(x <= prime[s]*prime[s]) return pi[x] - s + 1;</pre>
    if(x <= prime[s]*prime[s] *prime[s] && x < N) {</pre>
         int s2x = pi[sqrt2(x)];
         LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
         for(int i = s + 1; i \le s2x; ++i) {
             ans += pi[x / prime[i]];
         return ans;
    return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
LL getpi(LL x) {
                 return pi[x];
    if(x < N)
    LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
    for (int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i \le ed; ++i) {
        ans -= getpi(x / prime[i]) - i + 1;
    return ans;
LL lehmer_pi(LL x) {
    if(x < N) return pi[x];</pre>
    int a = (int) lehmer_pi (sqrt2(sqrt2(x)));
    int b = (int) lehmer_pi (sqrt2(x));
```

```
int c = (int) lehmer_pi(sqrt3(x));
    LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2;
    for (int i = a + 1; i <= b; i++) {</pre>
        LL w = x / prime[i];
        sum -= lehmer pi(w);
        if (i > c) continue;
        LL lim = lehmer_pi(sqrt2(w));
        for (int j = i; j <= lim; j++) {</pre>
            sum -= lehmer_pi(w / prime[j]) - (j - 1);
    return sum;
int main() {
    init();
    LL n;
    while(cin >> n) {
        cout << lehmer_pi(n) << endl;</pre>
    return 0;
}
 19、MT 定理
 * url:http://www.spoj.com/problems/HIGH/
 * Matrix-Tree 定理的裸题
 * 构造方法: C 矩阵=D 矩阵-G 矩阵, D[i][i]表示 i 的度, 其他位置为 0
 * G[i][j]=1 表示 i 和 j 之间有一条边。
 * 之后,我们用高斯消元去求 C 的其中一个余子式的行列式就行了。
 * 为了方便,我们通常取(n-1,n-1)的余子式。
 * 这里有几个要注意的地方:
 * 1.如果最后的答案非常大,要取模,就把高斯消元的除法改成逆元
 * 2.如果我们消元的那个位置 A[i][i]为 0,应该及时返回 0,否则就会除以 0
 * 3. 得多留意重边之类的处理。
const int MX = 10 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-8;
typedef double Matrix[MX][MX];
int n, m;
Matrix C;
int G[MX][MX], D[MX][MX];
double det(Matrix A, int n) {
    double ret = 1;
    int i, j, k, r;
    for(i = 0; i < n; i++) {</pre>
        r = i;
        for(j = i + 1; j < n; j++) {</pre>
            if(fabs(A[j][i]) > fabs(A[r][i])) r = j;
        if(r != i) for(j = 0; j < n; j++) swap(A[r][j], A[i][j]);</pre>
        if(fabs(A[i][i]) < eps) return 0;</pre>
        for (k = i + 1; k < n; k++) {
            double f = A[k][i] / A[i][i];
            for(j = i; j < n; j++) A[k][j] -= f * A[i][j];</pre>
        ret = ret * A[i][i];
    return ret;
int main() {
   int T; //FIN;
    scanf("%d", &T);
```

```
while(T--) {
         memset(D, 0, sizeof(D));
         memset(G, 0, sizeof(G));
         scanf("%d%d", &n, &m);
         for (int i = 1; i <= m; i++) {</pre>
             int u, v;
             scanf("%d%d", &u, &v);
             if(u == v) continue;
             u--; v--;
             G[u][v] = G[v][u] = 1;
             D[u][u]++; D[v][v]++;
         for (int i = 0; i < n; i++) {</pre>
              for (int j = 0; j < n; j++) {
                  C[i][j] = D[i][j] - G[i][j];
         printf("%.0f\n", fabs(det(C, n - 1)));
    return 0;
20、牛顿迭代法
 多次用来迭代求f(x_n)=0的解.
 原理: \mathbf{x}_{n+1} = \mathbf{x}_n + \frac{f(\mathbf{x}_n)}{f(\mathbf{x}_n)},要求f(\mathbf{x})二阶可导,并且要选取恰当的起始点(猜的近似值)。
 应用: 实现函数求 t=sqrt(x) \rightarrow t*t=x \rightarrow 求函数 f(x)=x^2-t=0 的解。 f(x)=2x,那么只需迭代计算
 x_{n+1} = x_n + \frac{x_n^2 - t}{2x_n}
 double my sqrt(double x) {
     static const double eps = 1e-8;
     double pre, rs = 1.0; // 1.0 为猜测值,在这里可以随意给一个
     do {
         pre = rs:
         rs = pre - pre / 2.0 + x / 2.0 / pre;
     } while(fabs(rs - pre) > eps);
     return rs;
 }
21、相关公式
   1、欧拉定理
对于互质的整数 a 和 n, 有 a^{\varphi(n)} \equiv 1 \pmod{n}
费马定理: a 是不能被质数 p 整除的正整数, 有 a^{p-1} \equiv 1 \pmod{p}
设G是p个对象的一个置换群,用k种颜色去染这p个对象,若一种染色方案在群G的作
用下变为一种方案,则这两个方案当作是同一种方案,这样的不同染色方案数为:
L = \frac{1}{|G|} \times \sum \left(k^{\mathcal{C}(f)}\right), f \in G
C(f)为循环节,G 表示群的置换方法数。
对于 n 个位置的手镯, 有 n 种旋转置换和 n 种翻转置换
对于旋转置换:
C(f_i) = \gcd(n, i), i 表示旋转 i 颗宝石以后。 i=0 时 \gcd(n,0)=n
对于翻转置换:
```

如果 n 为偶数: 则有 n/2 个置换 $C(f) = \frac{n}{2}$, 有 n/2 个置换 $C(f) = \frac{n}{2} + 1$

如果 n 为奇数: 则有 n 个置换 $C(f) = \frac{n}{2} + 1$

3、欧拉函数φ(n)

$$\varphi(n)$$
 积性函数,对于一个质数 p 和正整数 k ,有

$$\varphi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1} = p^k(1-\frac{1}{p})$$

$$\sum_{d|n} \varphi(d) = n$$

当n > 1时, $1 \dots n$ 中与n互质的整数和为 $\frac{n\varphi(n)}{2}$

4. 循环小数性质

证明论文《康明昌-循环小数》

- 1. 循环小数的每个循环节长度为偶数,(记为2k),那么每个循环节中第 i ($1 \le i \le k$) 个数字 + 第(i+k)个数字之和为9 ;
- 2. 如果p是质数,并且d是 $\frac{1}{p}$ 的循环节的位数,则d可以整除p-1;
- 3. 如果 $1 \le b < a$,a没有2或者5的质因数,并且a与b互质,那么 $\frac{b}{a}$ 的循环节位数等于: $min\{e \in N: 10^e \equiv 1 (\mod a)\}$;
- 4. 如果 $1 \le b < a$, a没有2或者5的质因数 , 并且a与b互质 , 那么 $\frac{b}{a}$ 的循环节位数必整除 $\psi(a)$ (即a的欧拉函数);
- 5. 如果 $n,m \ge 3$,2和5都不整除mn,并且n与m是互质的正整数,则 $\frac{1}{mn}$ 的循环位数是 $\frac{1}{n}$ 与 $\frac{1}{m}$ 循环小数位数的最小公倍数;
- 6. , 其他定理可以参考论文。

5. 奇怪的公式

GCD(a,b,c)=1,则必然有 ax+by+cz=1,与扩展欧几里德的原理是一样的若有 GCD(x,n)=1,那么在一个圈中隔点报数必能全部报完

x<=1e9,则说明最多只会由 9 个质数组成 与 n 互质的所有数 (<n) 的和为 n*phi (n) /2,要注意 n=1 时

错排公式 F[i]=(i-1)*(F[i-1]+F[i-2]) 其中边界 F[1]=0,F[2]=1

一些质数: 999983

卡特兰数定义: F(n)=C(2n,n)/(n+1)

F(n) = C(2n, n) - C(2n, n-1)

F(n) = F(0) *F(n-1) + F(1) *F(n-2) + ... + F(n-1) *F(0), n >= 1, F(0) = (1) = 1 遊推公式: F(n) = F(n-1) * (4n-2) / (n+1), F(1) = 1

斐波那契数列 F[1]=F[2]=1,F[n]=F[n-1]+F[n-2]

F[n]=1/sqrt(5)*(pow((1+sqrt(5))/2,n)-pow((1-sqrt(5))/2,n));

奇项求和 F[1]+F[3]+F[5]+...+F[2n-1]=F[2n]

偶项求和 F[2]+F[4]+F[6]+...+F[2n]=F[2n+1]-1

全部求和 F[1]+F[2]+...+F[n]=F[n+2]-1

平方求和 F[1]*F[1]+F[2]*F[2]+...+F[n]*F[n]=F[n]*F[n+1]

```
两倍关系 F[2*n]/F[n]=F[n-1]+F[n+1]
 其他关系
 F[n-1]*F[n+1]-F[n]*F[n]=(-1)^n
 F[1]+2*F[2]+3*F[3]+...+n*F[n]=n*F[n+2]-F[n+3]+2
 F[m]F[n]+F[m-1]F[n-1]=F[m+n-1]
 F[m]F[n+1]+F[m-1]F[n]=F[m+n]
 N比较大的时候,前一项/后一项=黄金分割数
 杨辉三角每行相加等于斐波那契数列
 斐波那契数列个位数每 60 一循环
 平方剩余:存在一个整数 x 使得 x*x%p=a
 如果 p 是奇质数,则 a 平方剩余当且仅当 power(a,(p-1)/2,p)==1
 且在 1,2,...p-1 中恰好有 (p-1)/2 个数是平方剩余的
 对于一般的数论题, 所以通常取一个比较小的质数 p, 然后开始找规律
 F=(a+sqrt(b))^n
 可以写成递推式 F(n)=a*F(n-1)+(b+a*sqrt(b))*F(n-2)
 海伦公式 p=(a+b+c)/2 S=sqrt(p*(p-a)*(p-b)*(p-c))
22、线性递推式拟合
  * 根据前若干项求线性递推式。
  * 打表打出前面若干项即可。
  * /
 typedef long long LL;
 typedef vector<int> VI;
 \#define rep(i,a,n) for (int i=a;i<n;i++)
 #define per(i,a,n) for (int i=n-1;i>=a;i--)
 #define pb push back
 #define mp make pair
 \#define all(x) (x).begin(),(x).end()
 #define fi first
 #define se second
 \#define SZ(x) ((int)(x).size())
                                    /** 注意取模 **/
 const LL mod = 1000000007;
 LL qmod(LL a, LL b) {
    LL res = 1;
    a %= mod;
    assert(b >= 0);
    for(; b; b >>= 1) {
        if(b & 1)res = res * a % mod;
        a = a * a % mod;
    }
    return res;
 namespace linear seq {
 const int N = 100100;
 LL res[N], base[N], _c[N], _md[N];
 vector<int> Md;
 void mul(LL *a, LL *b, int k) {
    rep(i, 0, k + k) _c[i] = 0;
```

```
rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) %
mod;
    for (int i = k + k - 1; i \ge k; i--) if (_c[i])
            rep(j, 0, SZ(Md)) c[i - k + Md[j]] = (c[i - k + Md[j]] - c[i] *
md[Md[j]]) % mod;
    rep(i, 0, k) a[i] = c[i];
LL solve(LL n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
         printf("%d\n",SZ(b));
   LL ans = 0, pnt = 0;
   int k = SZ(a);
    assert(SZ(a) == SZ(b));
    rep(i, 0, k) \quad md[k - 1 - i] = -a[i];
    _{md[k]} = 1;
    Md.clear();
   rep(i, 0, k) if (md[i] != 0) Md.push back(i);
    rep(i, 0, k) res[i] = base[i] = 0;
   res[0] = 1;
   while ((111 << pnt) <= n) pnt++;
    for (int p = pnt; p >= 0; p--) {
       mul(res, res, k);
        if((n >> p) & 1) {
            for (int i = k - 1; i \ge 0; i--) res[i + 1] = res[i];
            res[0] = 0;
            rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * md[Md[j]]) %
mod;
    rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
   if (ans < 0) ans += mod;
    return ans;
VI BM(VI s) {
    VI C(1, 1), B(1, 1);
    int L = 0, m = 1, b = 1;
    rep(n, 0, SZ(s)) {
        LL d = 0;
        rep(i, 0, L + 1) d = (d + (LL)C[i] * s[n - i]) % mod;
        if (d == 0) ++m;
        else if (2 * L \le n) {
            VI T = C;
            LL c = mod - d * qmod(b, mod - 2) % mod;
            while (SZ(C) < SZ(B) + m) C.pb(0);
            rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
            L = n + 1 - L, B = T, b = d, m = 1;
        } else {
            LL c = mod - d * qmod(b, mod - 2) % mod;
            while (SZ(C) < SZ(B) + m) C.pb(0);
            rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
            ++m;
        }
    return C;
LL gao(VI a, LL n) {
    VI c = BM(a);
    c.erase(c.begin());
    rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
    return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
```

```
int main() {
    int T; LL n, ans;
    scanf("%d", &T);
    while(T --) {
        scanf("%d", &n);
        /**输入打出的表,并调整第二个参数**/
        ans = linear_seq::gao(VI{31, 197, 1255, 7997, 50959, 324725, 2069239, 13185773, 84023455, 535421093}, n - 2);
        printf("%lld\n", ans);
    }
    return 0;
}
```

数据结构

1、划分树

```
* 划分树(查询区间第 k 大)
const int MAXN = 100010;
int tree[20][MAXN];//表示每层每个位置的值
int sorted[MAXN];//已经排序好的数
int toleft[20][MAXN];//toleft[p][i]表示第i层从1到i有数分入左边
void build(int 1,int r,int dep)
{
   if(1 == r)return;
   int mid = (1+r)>>1;
   int same = mid - 1 + 1; //表示等于中间值而且被分入左边的个数
   for(int i = 1; i <= r; i++) //注意是 1, 不是 one
      if(tree[dep][i] < sorted[mid])</pre>
         same--;
   int lpos = 1;
   int rpos = mid+1;
   for(int i = 1;i <= r;i++)</pre>
      if(tree[dep][i] < sorted[mid])</pre>
         tree[dep+1][lpos++] = tree[dep][i];
      else if(tree[dep][i] == sorted[mid] && same > 0)
         tree[dep+1][lpos++] = tree[dep][i];
         same--;
      } else
         tree[dep+1][rpos++] = tree[dep][i];
      toleft[dep][i] = toleft[dep][l-1] + lpos - 1;
   build(1,mid,dep+1);
   build(mid+1,r,dep+1);
//查询区间第 k 大的数, [L, R]是大区间, [1, r]是要查询的小区间
int query(int L,int R,int l,int r,int dep,int k)
   if(l == r)return tree[dep][1];
   int mid = (L+R) >>1;
   int cnt = toleft[dep][r] - toleft[dep][l-1];
   if(cnt >= k)
      int newl = L + toleft[dep][l-1] - toleft[dep][L-1];
      int newr = newl + cnt - 1;
      return query(L,mid,newl,newr,dep+1,k);
   } else {
      int newr = r + toleft[dep][R] - toleft[dep][r];
      int newl = newr - (r-l-cnt);
      return query(mid+1,R,newl,newr,dep+1,k-cnt);
int main() {
```

```
int n,m;
   while (scanf ("%d%d", &n, &m) ==2) {
      memset(tree, 0, sizeof(tree));
      for(int i = 1;i <= n;i++) {</pre>
          scanf("%d", &tree[0][i]);
          sorted[i] = tree[0][i];
      }
      sort(sorted+1, sorted+n+1);
      build(1,n,0);
      int s,t,k;
      while(m--) {
          scanf("%d%d%d", &s, &t, &k);
          printf("%d\n", query(1, n, s, t, 0, k));
      }
   }
   return 0;
}
2、RMQ
   2.1 一维
求最大值,数组下标从 1 开始。
求最小值,或者最大最小值下标,或者数组从 0 开始对应修改即可。
const int MAXN = 50010;
int dp[MAXN][20];
int mm[MAXN];
//初始化 RMQ, b 数组下标从 1 开始,从 0 开始简单修改
void initRMQ(int n,int b[])
{
   mm[0] = -1;
   for(int i = 1; i <= n;i++)</pre>
      mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
      dp[i][0] = b[i];
   for(int j = 1; j <= mm[n];j++)</pre>
      for(int i = 1;i + (1<<j) -1 <= n;i++)</pre>
          dp[i][j] = max(dp[i][j-1], dp[i+(1<<(j-1))][j-1]);
//查询最大值
int rmq(int x,int y)
   int k = mm[y-x+1];
   return max(dp[x][k],dp[y-(1<<k)+1][k]);</pre>
}
   2.2 二维
 * 二维 RMQ, 预处理复杂度 n*m*log*(n)*log(m)
* 数组下标从1开始
*/
int val[310][310];
int dp[310][310][9][9];//最大值
int mm[310];//二进制位数减一,使用前初始化
```

```
void initRMO(int n,int m) {
   for(int i = 1;i <= n;i++)</pre>
       for(int j = 1; j <= m; j++)</pre>
           dp[i][j][0][0] = val[i][j];
   for(int ii = 0; ii <= mm[n]; ii++)</pre>
       for(int jj = 0; jj <= mm[m]; jj++)</pre>
           if(ii+jj)
              for(int i = 1; i + (1<<ii) - 1 <= n;i++)</pre>
                  for(int j = 1; j + (1<<jj) - 1 <= m;j++)</pre>
                     if(ii)dp[i][j][ii][jj] =
\max(dp[i][j][ii-1][jj], dp[i+(1<<(ii-1))][j][ii-1][jj]);
                      else dp[i][j][ii][jj] =
\max(dp[i][j][ii][jj-1], dp[i][j+(1<<(jj-1))][ii][jj-1]);
//查询矩形内的最大值(x1<=x2,y1<=y2)
int rmq(int x1,int y1,int x2,int y2)
   int k1 = mm[x2-x1+1];
   int k2 = mm[y2-y1+1];
   x2 = x2 - (1 << k1) + 1;
   y2 = y2 - (1 << k2) + 1;
   return
\max(\max(dp[x1][y1][k1][k2], dp[x1][y2][k1][k2]), \max(dp[x2][y1][k1][k2], dp[x2]
[y2][k1][k2]));
int main() {
   //在外面对 mm_数组进行初始化
   mm[0] = -1;
   for(int i = 1;i <= 305;i++)</pre>
       mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
   int n,m;
   int Q;
   int r1, c1, r2, c2;
   while (scanf ("%d%d", &n, &m) == 2)
       for(int i = 1;i <= n;i++)</pre>
           for(int j = 1; j <= m; j++)</pre>
              scanf("%d", &val[i][j]);
       initRMQ(n,m);
       scanf("%d", &Q);
       while (Q--)
           scanf("%d%d%d%d", &r1, &c1, &r2, &c2);
           if(r1 > r2) swap(r1, r2);
          if(c1 > c2) swap(c1,c2);
           int tmp = rmq(r1,c1,r2,c2);
          printf("%d ",tmp);
          if(tmp == val[r1][c1] || tmp == val[r1][c2] || tmp == val[r2][c1] ||
tmp == val[r2][c2])
              printf("yes\n");
           else printf("no\n");
       }
   }
   return 0;
}
```

3、树链剖分

3.1 点权

基于点权,查询单点值,修改路径的上的点权(HDU 3966 树链剖分+树状数组)

```
const int MAXN = 50010;
struct Edge
   int to, next;
}edge[MAXN*2];
int head[MAXN], tot;
int top[MAXN];//top[v] 表示 v 所在的重链的顶端节点
int fa[MAXN];//父亲节点
int deep[MAXN];//深度
int num[MAXN];//num[v] 表示以 v 为根的子树的节点数
int p[MAXN];//p[v]表示 v 对应的位置
int fp[MAXN];//fp和p数组相反
int son[MAXN];//重儿子
int pos;
void init(){
   tot = 0;
   memset(head, -1, sizeof(head));
   pos = 1; //使用树状数组, 编号从头 1 开
   memset(son, -1, sizeof(son));
void addedge(int u,int v){
    edge[tot].to = v; edge[tot].next = head[u]; head[u] = tot++;
void dfs1(int u,int pre,int d)
   deep[u] = d;
   fa[u] = pre;
   num[u] = 1;
    for(int i = head[u];i != -1; i = edge[i].next)
       int v = edge[i].to;
       if(v != pre)
           dfs1(v,u,d+1);
           num[u] += num[v];
           if(son[u] == -1 \mid \mid num[v] > num[son[u]])
           son[u] = v;
}
void getpos(int u,int sp)
   top[u] = sp;
   p[u] = pos++;
    fp[p[u]] = u;
   if(son[u] == -1) return;
    getpos(son[u],sp);
    for(int i = head[u];i != -1;i = edge[i].next)
       int v = edge[i].to;
       if( v != son[u] && v != fa[u])
           getpos(v,v);
```

```
}
//树状数组
int lowbit(int x) { return x&(-x); }
int c[MAXN];
int n;
int sum(int i) {
   int s = 0;
    while(i > 0){
        s += c[i];
        i -= lowbit(i);
    return s;
void add(int i,int val) {
    while(i <= n){
        c[i] += val;
        i += lowbit(i);
}
void Change(int u,int v,int val)//u->v 的路径上点的值改变 val
    int f1 = top[u], f2 = top[v];
    int tmp = 0;
    while(f1 != f2)
        if(deep[f1] < deep[f2])</pre>
           swap(f1,f2);
           swap(u,v);
        add(p[f1],val);
        add(p[u]+1,-val);
        u = fa[f1];
        f1 = top[u];
    if(deep[u] > deep[v]) swap(u,v);
    add(p[u],val);
    add(p[v]+1,-val);
int a[MAXN];
int main(){
    int M, P;
    while (scanf ("%d%d%d", &n, &M, &P) == 3) {
        int u, v;
        int C1, C2, K;
        char op[10];
        init();
        for(int i = 1;i <= n;i++) {</pre>
            scanf("%d", &a[i]);
        while (M--) {
            scanf("%d%d", &u, &v);
            addedge(u,v);
            addedge(v,u);
        dfs1(1,0,0);
        getpos(1,1);
```

```
memset(c, 0, sizeof(c));
        for(int i = 1;i <= n;i++)</pre>
           add(p[i],a[i]);
           add(p[i]+1,-a[i]);
        }
        while (P--)
           scanf("%s", op);
           if(op[0] == 'Q')
               scanf("%d", &u);
               printf("%d\n", sum(p[u]));
               scanf("%d%d%d", &C1, &C2, &K);
               if(op[0] == 'D')
                   K = -K;
               Change (C1, C2, K);
            }
        }
    }
   return 0;
}
   3.2 边权
基于边权,修改单条边权,查询路径边权最大值(SPOJ QTREE 树链剖分+线段树 )
const int MAXN = 10010;
struct Edge{
     int to,next;
}edge[MAXN*2];
int head[MAXN],tot;
int top[MAXN];//top[v]表示 v 所在的重链的顶端节点
int fa[MAXN]; //父亲节点
int deep[MAXN];//深度
int num [MAXN]; //num [v] 表示以 v 为根的子树的节点数
int p[MAXN];//p[v]表示 v 与其父亲节点的连边在线段树中的位置
int fp[MAXN];//和p数组相
反 int son[MAXN];//重儿子
int pos;
void init(){
    tot = 0;
    memset(head, -1, sizeof(head));
    pos = 0;
    memset(son, -1, sizeof(son));
void addedge(int u,int v)
    edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
void dfs1(int u,int pre,int d) //第一遍 dfs 求出 fa,deep,num,son
    deep[u] = d;
    fa[u] = pre;
    num[u] = 1;
    for(int i = head[u];i != -1; i = edge[i].next)
       int v = edge[i].to;
       if(v != pre)
        {
```

```
dfs1(v,u,d+1);
            num[u] += num[v];
            if(son[u] == -1 \mid \mid num[v] > num[son[u]])
                son[u] = v;
       }
    }
}
void getpos(int u,int sp) //第二遍 dfs 求出 top 和 p
   top[u] = sp;
   p[u] = pos++;
   fp[p[u]] = u;
   if(son[u] == -1) return;
   getpos(son[u],sp);
    for(int i = head[u] ; i != -1; i = edge[i].next)
        int v = edge[i].to;
        if(v != son[u] && v != fa[u])
           getpos(v,v);
}
//线段树
struct Node
     int 1,r;
     int Max;
}segTree[MAXN*3];
void build(int i,int l,int r)
   segTree[i].l = l;
   segTree[i].r = r;
   segTree[i].Max = 0;
   if(l == r)return;
   int mid = (1+r)/2;
   build(i<<1,1,mid);
   build((i<<1)|1,mid+1,r);
}
void push_up(int i)
   segTree[i].Max = max(segTree[i<<1].Max,segTree[(i<<1)|1].Max);</pre>
void update(int i,int k,int val) // 更新线段树的第 k 个值为 val
   if (segTree[i].l == k && segTree[i].r == k)
       segTree[i].Max = val;
       return;
   int mid = (segTree[i].l + segTree[i].r)/2;
   if(k <= mid)update(i<<1,k,val);
   else update((i<<1)|1,k,val);
   push_up(i);
int query(int i,int l,int r) //查询线段树中[l,r] 的最大值
   if(segTree[i].1 == 1 && segTree[i].r == r)
       return segTree[i].Max;
    int mid = (segTree[i].l + segTree[i].r)/2;
```

```
if(r <= mid)return query(i<<1,1,r);</pre>
    else if(l > mid)return query((i<<1)|1,1,r);</pre>
    else return max(query(i<<1,1,mid),query((i<<1)|1,mid+1,r));
int find(int u,int v)//查询 u->v 边的最大值
    int f1 = top[u], f2 = top[v];
    int tmp = 0;
    while(f1 != f2)
        if(deep[f1] < deep[f2])</pre>
            swap(f1,f2);
            swap(u,v);
        tmp = max(tmp, query(1, p[f1], p[u]));
        u = fa[f1]; f1 = top[u];
    if(u == v)return tmp;
    if (deep[u] > deep[v]) swap(u,v);
    return max(tmp,query(1,p[son[u]],p[v]));
}
int e[MAXN][3];
int main(){
   //freopen("in.txt","r",stdin);
   //freopen("out.txt", "w", stdout);
   int T;
    int n;
    scanf("%d", &T);
    while (T--)
        init();
        scanf("%d", &n);
        for(int i = 0;i < n-1;i++)</pre>
            scanf("%d%d%d", &e[i][0], &e[i][1], &e[i][2]);
            addedge(e[i][0],e[i][1]);
            addedge(e[i][1],e[i][0]);
        dfs1(1,0,0);
        getpos(1,1);
        build(1,0,pos-1);
        for(int i = 0;i < n-1; i++)</pre>
            if (deep[e[i][0]] > deep[e[i][1]])
                swap(e[i][0],e[i][1]);
            update(1,p[e[i][1]],e[i][2]);
        char op[10];
        int u, v;
        while(scanf("%s",op) == 1)
            if(op[0] == 'D')break;
            scanf("%d%d", &u, &v);
            if(op[0] == '0')
                printf("%d\n", find(u,v));//查询 u->v 路径上边权的最大
            值 else update(1,p[e[u-1][1]],v);//修改第 u 条边的长度为 v
        }
    }
```

```
return 0;
```

4、伸展树(splay tree)

题目:维修数列。 经典题,插入、删除、修改、翻转、求和、求和最大的子序列

```
求和最大的子序列
#define Key value ch[ch[root][1]][0]
const int MAXN = 500010;
const int INF = 0x3f3f3f3f;
int pre[MAXN], ch[MAXN][2], key[MAXN], size[MAXN];
int root, tot1;
int sum[MAXN], rev[MAXN], same[MAXN];
int lx[MAXN],rx[MAXN],mx[MAXN];
int s[MAXN],tot2;//内存池和容量
int a[MAXN];
int n,q;
void Treavel(int x) {
   if(x)
       Treavel (ch[x][0]);
       printf("结点: %2d: 左儿子 %2d 右儿子 %2d 父结点 %2d size
= 2d^n, x, ch[x][0], ch[x][1], pre[x], size[x]);
      Treavel(ch[x][1]);
   }
}
void debug() {
   printf("root:%d\n", root);
   Treavel (root);
void NewNode(int &r,int father,int k)
   if(tot2) r = s[tot2--];//取的时候是 tot2--,存的时候就是++tot2
   else r = ++tot1;
   pre[r] = father;
   ch[r][0] = ch[r][1] = 0;
   key[r] = k;
   sum[r] = k;
   rev[r] = same[r] = 0; lx[r]
   = rx[r] = mx[r] = k;
   size[r] = 1;
void Update_Rev(int r)
{
   if(!r)return;
   swap(ch[r][0],ch[r][1]);
   swap(lx[r],rx[r]);
   rev[r] ^= 1;
void Update Same(int r,int v)
```

```
if(!r)return;
    key[r] = v;
    sum[r] = v*size[r];
    lx[r] = rx[r] = mx[r] = max(v,v*size[r]);
    same[r] = 1;
}
void push up(int r)
    int lson = ch[r][0], rson = ch[r][1];
    size[r] = size[lson] + size[rson] + 1;
    sum[r] = sum[lson] + sum[rson] + key[r];
    lx[r] = max(lx[lson], sum[lson] + key[r] + max(0, lx[rson]));
    rx[r] = max(rx[rson], sum[rson] + key[r] + max(0, rx[lson]));
   mx[r] = max(0,rx[lson]) + key[r] + max(0,lx[rson]);
   mx[r] = max(mx[r], max(mx[lson], mx[rson]));
void push down(int r){
    if(same[r])
    {
        Update Same(ch[r][0], key[r]);
        Update_Same(ch[r][1], key[r]);
       same[r] = 0;
    if(rev[r])
        Update_Rev(ch[r][0]);
        Update_Rev(ch[r][1]);
       rev[r] = 0;
void Build(int &x,int 1,int r,int father)
   if(1 > r)return;
    int mid = (1+r)/2;
   NewNode(x, father, a[mid]);
   Build(ch[x][0],1,mid-1,x);
   Build(ch[x][1], mid+1, r, x);
   push up(x);
void Init()
{
   root = tot1 = tot2 = 0;
    ch[root][0] = ch[root][1] = size[root] = pre[root] = 0;
    same[root] = rev[root] = sum[root] = key[root] = 0;
    lx[root] = rx[root] = mx[root] = -INF;
   NewNode(root, 0, -1);
   NewNode(ch[root][1], root, -1);
    for(int i = 0;i < n;i++)</pre>
        scanf("%d", &a[i]);
   Build(Key_value, 0, n-1, ch[root][1]);
    push up(ch[root][1]); push up(root);
//旋转,0 为左旋,1 为右旋
void Rotate(int x,int kind)
   int y = pre[x];
   push down(y);
    push down(x);
   ch[y][!kind] = ch[x][kind];
    pre[ch[x][kind]] = y;
```

```
if(pre[y])
        ch[pre[y]][ch[pre[y]][1]==y] = x;
    pre[x] = pre[y];
    ch[x][kind] = y;
    pre[y] = x;
    push up(y);
//Splay 调整,将r结点调整到 goal 下面
void Splay(int r,int goal)
    push down(r);
    while (pre[r] != goal)
        if(pre[pre[r]] == goal)
            push_down(pre[r]);
            push down(r);
            Rotate(r, ch[pre[r]][0] == r);
        }else{
            push_down(pre[pre[r]]);
            push_down(pre[r]);
            push_down(r);
            int y = pre[r];
            int kind = ch[pre[y]][0]==y;
            if(ch[y][kind] == r)
                Rotate(r,!kind);
                Rotate(r,kind);
                Rotate(y, kind);
                Rotate(r,kind);
        }
    }
    push up(r);
    if(goal == 0) root = r;
int Get_kth(int r,int k)
    push_down(r);
    int t = size[ch[r][0]] + 1;
    if(t == k)return r;
    if(t > k)return Get kth(ch[r][0],k);
    else return Get kth(ch[r][1],k-t);
}
//在第 pos 个数后面插入 tot 个数
void Insert(int pos,int tot)
{
    for(int i = 0;i < tot;i++)scanf("%d",&a[i]);</pre>
    Splay(Get_kth(root,pos+1),0);
    Splay(Get kth(root,pos+2),root);
    Build(Key_value, 0, tot-1, ch[root][1]);
    push_up(ch[root][1]);
    push up(root);
}
//删除子树
void erase(int \mathbf{r})
```

```
if(!r)return;
    s[++tot2] = r;
    erase(ch[r][0]);
    erase(ch[r][1]);
}
//从第 pos 个数开始连续删除 tot 个数
void Delete(int pos,int tot) {
    Splay(Get_kth(root,pos),0);
    Splay(Get_kth(root,pos+tot+1),root);
    erase(Key_value);
   pre[Key_value] = 0;
   Key value = 0;
   push up(ch[root][1]);
   push up(root);
//将从第 pos 个数开始的连续的 tot 个数修改为 c
void Make_Same(int pos,int tot,int c)
   Splay(Get_kth(root,pos),0);
   Splay(Get_kth(root,pos+tot+1),root);
   Update Same (Key value, c);
   push up(ch[root][1]);
   push up(root);
//将第 pos 个数开始的连续 tot 个数进行反转
void Reverse(int pos,int tot)
{
   Splay(Get_kth(root,pos),0);
    Splay(Get kth(root,pos+tot+1),root);
   Update_Rev(Key_value);
   push_up(ch[root][1]);
   push up(root);
//得到第 pos 个数开始的 tot 个数的和
int Get_Sum(int pos,int tot)
    Splay(Get kth(root,pos),0);
   Splay(Get_kth(root,pos+tot+1),root);
    return sum[Key_value];
//得到第 pos 个数开始的 tot 个数中最大的子段和
int Get_MaxSum(int pos,int tot)
   Splay(Get kth(root,pos),0);
   Splay(Get kth(root,pos+tot+1),root);
   return mx[Key_value];
void InOrder(int r)
   if(!r)return;
   push_down(r);
   InOrder(ch[r][0]);
   printf("%d ", key[r]);
   InOrder(ch[r][1]);
int main(){
   //freopen("in.txt","r",stdin);
   //freopen("out.txt", "w", stdout);
   while(scanf("%d%d",&n,&q) == 2)
```

```
Init();
    char op[20];
    int x,y,z;
    while (q--) {
         scanf("%s", op);
         if (strcmp (op, "INSERT") == 0) {
             scanf("%d%d", &x, &y);
             Insert (x, y);
         }else if(strcmp(op,"DELETE") == 0) {
             scanf("%d%d", &x, &y);
             Delete(x, y);
         }else if(strcmp(op,"MAKE-SAME") == 0) {
             scanf("%d%d%d", &x, &y, &z);
             Make_Same(x, y, z);
         }else if(strcmp(op, "REVERSE") == 0) {
             scanf("%d%d", &x, &y);
             Reverse (x, y);
         }else if(strcmp(op,"GET-SUM") == 0) {
             scanf("%d%d", &x, &y);
             printf("%d\n",Get Sum(x,y));
         }else if(strcmp(op,"MAX-SUM") == 0)
             printf("%d\n", Get MaxSum(1, size[root]-2));
}
return 0;
```

5、动态树

5.1 HDU 4010(切割、合并子树,路径上所有点的点权增加一个值,查询路径上点权的最大值)

```
//动态维护一组森林,要求支持一下操作:
//link(a,b): 如果 a,b 不在同一颗子树中,则通过在 a,b 之间连边的方式,连接这两颗子树
//cut(a,b): 如果 a,b 在同一颗子树中,且 a!=b,则将 a 视为这颗子树的根以后,切断 b 与其父亲结
点 的连接
//ADD(a,b,w): 如果 a,b 在同一颗子树中,则将 a,b 之间路径上所有点的点权增加 w
//query(a,b): 如果 a,b 在同一颗子树中,返回 a,b 之间路径上点权的最大值
const int MAXN = 300010;
int ch[MAXN][2],pre[MAXN],key[MAXN];
int add[MAXN], rev[MAXN], Max[MAXN];
bool rt[MAXN];
void Update_Add(int r,int d)
   if(!r)return;
   key[r] += d;
   add[r] += d;
   Max[r] += d;
void Update_Rev(int r)
   if(!r)return;
   swap(ch[r][0],ch[r][1]);
   rev[r] ^= 1;
void push down(int r)
```

```
if (add[r])
        Update Add(ch[r][0],add[r]);
       Update_Add(ch[r][1],add[r]);
       add[r] = 0;
    if(rev[r])
       Update_Rev(ch[r][0]);
       Update Rev(ch[r][1]);
        rev[r] = 0;
void push_up(int r)
   Max[r] = max(max(Max[ch[r][0]], Max[ch[r][1]]), key[r]);
void Rotate(int x)
{
   int y = pre[x], kind = ch[y][1]==x;
   ch[y][kind] = ch[x][!kind];
   pre[ch[y][kind]] = y;
   pre[x] = pre[y];
   pre[y] = x;
   ch[x][!kind] = y;
   if(rt[y])
       rt[y] = false, rt[x] = true;
       ch[pre[x]][ch[pre[x]][1]==y] = x;
   push up(y);
}
//P 函数先将根结点到 r 的路径上所有的结点的标记逐级下放
void P(int r)
    if(!rt[r])P(pre[r]);
   push down(r);
}
void Splay(int r)
   P(r);
   while( !rt[r] )
       int f = pre[r], ff = pre[f];
       if(rt[f])
           Rotate(r);
        else if( (ch[ff][1]==f)==(ch[f][1]==r) )
           Rotate(f), Rotate(r);
        else
           Rotate(r), Rotate(r);
   push_up(r);
int Access(int x)
   int y = 0;
    for( ; x ; x = pre[y=x])
        Splay(x);
```

```
rt[ch[x][1]] = true, rt[ch[x][1]=y] = false;
       push up(x);
    }
   return y;
}
//判断是否是同根(真实的树,非 splay)
bool judge(int u,int v)
   while(pre[u]) u = pre[u];
   while(pre[v]) v = pre[v];
   return u == v;
}
//使 r 成为它所在的树的根
void mroot(int r)
{
   Access(r);
   Splay(r);
   Update Rev(r);
//调用后 u 是原来 u 和 v 的 lca, v 和 ch[u][1]分别存着 lca 的 2 个儿子
// (原来 u 和 v 所在的 2 颗子树)
void lca(int &u,int &v)
   Access(v), v = 0;
   while(u)
       Splay(u);
       if(!pre[u])return;
       rt[ch[u][1]] = true;
       rt[ch[u][1]=v] = false;
       push_up(u);
       u = pre[v = u];
}
void link(int u,int v)
   if(judge(u,v))
       puts("-1");
       return;
    }
   mroot(u);
   pre[u] = v;
//使 u 成为 u 所在树的根, 并且 v 和它父亲的边断开
void cut(int u,int v)
{
    if(u == v \mid \mid !judge(u, v))
       puts("-1");
       return;
   mroot(u);
    Splay(v);
   pre[ch[v][0]] = pre[v];
   pre[v] = 0; rt[ch[v][0]]
    = true;
   ch[v][0] = 0;
   push_up(v);
```

```
void ADD(int u,int v,int w)
    if(!judge(u,v))
        puts("-1");
        return;
    lca(u,v);
    Update Add(ch[u][1],w);
    Update_Add(v,w);
    key[u] += w;
   push up(u);
}
void query(int u,int v)
    if(!judge(u,v))
        puts("-1");
       return;
    lca(u,v);
   printf("%d\n", max(max(Max[v], Max[ch[u][1]]), key[u]));
}
struct Edge
    int to, next;
}edge[MAXN*2];
int head[MAXN],tot;
void addedge(int u,int v)
    edge[tot].to = v;
    edge[tot].next = head[u];
   head[u] = tot++;
}
void dfs(int u)
    for(int i = head[u];i != -1; i = edge[i].next)
        int v = edge[i].to;
        if (pre[v] != 0) continue;
        pre[v] = u;
        dfs(v);
}
int main()
   //freopen("in.txt","r", stdin);
   //freopen("out.txt", "w", stdout);
   int n,q,u,v; while(scanf("%d",&n)
   == 1)
    {
        tot = 0;
        for(int i = 0;i <= n;i++)</pre>
            head[i] = -1;
            pre[i] = 0;
            ch[i][0] = ch[i][1] = 0;
```

rev[i] = 0;

```
add[i] = 0;
            rt[i] = true;
        }
        Max[0] = -20000000000;
        for(int i = 1;i < n;i++)</pre>
            scanf("%d%d", &u, &v);
            addedge(u,v);
            addedge(v,u);
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d", &key[i]);
            Max[i] = key[i];
        scanf("%d", &q);
        pre[1] = -1;
        dfs(1);
        pre[1] = 0;
        int op;
        while (q--)
            scanf("%d", &op);
            if(op == 1)
                int x,y;
                scanf("%d%d", &x, &y);
                link(x,y);
            else if(op == 2)
                int x,y;
                scanf("%d%d", &x, &y);
                cut(x,y);
            }
            else if(op == 3)
                int w,x,y;
                scanf("%d%d%d", &w, &x, &y);
                ADD(x,y,w);
            }
            else
            {
                    int x,y; scanf("%d%d",&x,&y); query(x,y);
        printf("\n");
   return 0;
}
```

6、主席树

6.1 查询区间有多少个不同的数(SPOJ DQUERY)

```
/*
* 给出一个序列,查询区间内有多少个不相同的数
*/
```

```
const int MAXN = 30010;
const int M = MAXN * 100;
int n,q,tot;
int a[MAXN];
int T[MAXN],lson[M],rson[M],c[M];
int build(int 1,int r)
    int root = tot++;
    c[root] = 0;
    if(1 != r)
        int mid = (1+r)>>1;
        lson[root] = build(1, mid);
        rson[root] = build(mid+1,r);
    return root;
int update(int root,int pos,int val)
    int newroot = tot++, tmp = newroot;
    c[newroot] = c[root] + val;
    int 1 = 1, r = n;
    while(l < r)</pre>
        int mid = (l+r)>>1;
        if (pos <= mid)</pre>
            lson[newroot] = tot++; rson[newroot] = rson[root];
           newroot = lson[newroot]; root = lson[root];
           r = mid;
        }
        else
            rson[newroot] = tot++; lson[newroot] = lson[root];
            newroot = rson[newroot]; root = rson[root];
            1 = mid+1;
        c[newroot] = c[root] + val;
    return tmp;
int query(int root,int pos){
    int ret = 0;
    int 1 = 1, r = n;
    while(pos < r)</pre>
        int mid = (l+r)>>1;
        if(pos <= mid)</pre>
           r = mid;
            root = lson[root];
        }
        else
           ret += c[lson[root]];
           root = rson[root];
            1 = mid+1;
        }
    }
```

```
return ret + c[root];
}
int main()
   //freopen("in.txt","r", stdin);
   //freopen("out.txt", "w", stdout);
   while(scanf("%d", &n) == 1)
    {
        tot = 0;
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d", &a[i]);
        T[n+1] = build(1,n);
        map<int,int>mp;
        for(int i = n;i>= 1;i--)
            if(mp.find(a[i]) == mp.end())
                T[i] = update(T[i+1],i,1);
            }
            else
                int tmp = update(T[i+1], mp[a[i]], -1);
                T[i] = update(tmp, i, 1);
            mp[a[i]] = i;
        scanf("%d", &q);
        while (q--)
            int 1,r;
            scanf("%d%d", &1, &r);
            printf("%d\n", query(T[1],r));
    }
   return 0;
}
   6.2 静态区间第 k 大(POJ 2104)
const int MAXN = 100010; const int M = MAXN * 30; int n,q,m,tot;
int a[MAXN], t[MAXN];
int T[MAXN], lson[M], rson[M], c[M];
void Init_hash()
{
    for(int i = 1; i <= n;i++)</pre>
       t[i] = a[i];
    sort(t+1, t+1+n);
    m = unique(t+1, t+1+n)-t-1;
}
int build(int 1,int r)
    int root = tot++;
    c[root] = 0;
    if(1 != r)
        int mid = (1+r)>>1;
        lson[root] = build(1,mid);
        rson[root] = build(mid+1,r);
    return root;
```

```
int hash(int x) {
    return lower bound(t+1,t+1+m,x) - t;
int update(int root,int pos,int val)
    int newroot = tot++, tmp = newroot;
   c[newroot] = c[root] + val;
    int 1 = 1, r = m;
   while(1 < r)</pre>
        int mid = (l+r)>>1;
        if (pos <= mid)</pre>
            lson[newroot] = tot++; rson[newroot] = rson[root];
           newroot = lson[newroot]; root = lson[root];
            r = mid;
        else
            rson[newroot] = tot++; lson[newroot] = lson[root];
           newroot = rson[newroot]; root = rson[root];
            1 = mid+1;
        c[newroot] = c[root] + val;
   return tmp;
int query(int left root,int right root,int k)
    int 1 = 1, r = m;
   while( 1 < r)
        int mid = (1+r)>>1;
        if(c[lson[left root]]-c[lson[right root]] >= k )
            r = mid;
            left_root = lson[left_root];
            right root = lson[right root];
        }else{
           l = mid + 1;
            k -= c[lson[left_root]] - c[lson[right_root]];
           left root = rson[left root];
            right root = rson[right root];
        }
   return 1;
}
int main()
    //freopen("in.txt","r",stdin);
   //freopen("out.txt", "w", stdout);
   while(scanf("%d%d", &n, &q) == 2)
        tot = 0;
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d", &a[i]);
        Init hash();
        T[n+1] = build(1,m);
```

```
for(int i = n; i ; i--)
            int pos = hash(a[i]);
            T[i] = update(T[i+1], pos, 1);
        while (q--)
           int 1, r, k;
            scanf("%d%d%d",&l,&r,&k);
            printf("%d\n",t[query(T[1],T[r+1],k)]);
   return 0;
   6.3 树上路径点权第 k 大(SPOJ COT)
LCA + 主席树
//主席树部分 ************
const int MAXN = 200010;
const int M = MAXN * 40;
int n,q,m,TOT;
int a[MAXN], t[MAXN];
int T[MAXN], lson[M], rson[M], c[M];
void Init hash()
    for(int i = 1; i <= n;i++)</pre>
       t[i] = a[i];
    sort(t+1,t+1+n);
   m = unique(t+1, t+n+1)-t-1;
}
int build(int 1,int r)
    int root = TOT++;
    c[root] = 0;
    if(1 != r)
        int mid = (1+r)>>1;
       lson[root] = build(1, mid);
       rson[root] = build(mid+1,r);
    return root;
int hash(int x) {
   return lower bound(t+1,t+1+m,x) - t;
int update(int root,int pos,int val){
    int newroot = TOT++, tmp = newroot;
    c[newroot] = c[root] + val;
    int 1 = 1, r = m;
    while( 1 < r)
        int mid = (1+r)>>1;
        if (pos <= mid)</pre>
            lson[newroot] = TOT++; rson[newroot] = rson[root];
           newroot = lson[newroot]; root = lson[root];
           r = mid;
        }
        else
```

```
rson[newroot] = TOT++; lson[newroot] = lson[root];
           newroot = rson[newroot]; root = rson[root];
           1 = mid+1;
       c[newroot] = c[root] + val;
   return tmp;
int query(int left_root,int right_root,int LCA,int k)
   int lca root = T[LCA];
   int pos = hash(a[LCA]);
   int 1 = 1, r = m;
   while(1 < r)
       int mid = (l+r)>>1;
       int tmp = c[lson[left root]] + c[lson[right root]] - 2*c[lson[lca root]]
+ (pos >= 1 && pos <= mid);
       if(tmp >= k)
        {
           left root = lson[left root];
           right root = lson[right root];
           lca root = lson[lca root];
           r = mid;
        }else{
           k -= tmp;
           left root = rson[left root];
           right root = rson[right root];
           lca_root = rson[lca_root];
           1 = mid + 1;
   return 1;
}
int rmq[2*MAXN]; //rmq数组,就是欧拉序列对应的深度序列
struct ST
   int mm[2*MAXN];
   int dp[2*MAXN][20];//最小值对应的下标
   void init(int n)
       mm[0] = -1;
       for(int i = 1;i <= n;i++)</pre>
           mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
           dp[i][0] = i;
       for(int j = 1; j <= mm[n];j++)</pre>
           for(int i = 1; i + (1<<j) - 1 <= n; i++)</pre>
               dp[i][j] = rmq[dp[i][j-1]] <
rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
   int query(int a,int b)//查询[a,b]之间最小值的下标
       if(a > b) swap(a,b);
       int k = mm[b-a+1];
```

```
return rmq[dp[a][k]] <=</pre>
rmq[dp[b-(1<< k)+1][k]]?dp[a][k]:dp[b-(1<< k)+1][k];
};
//边的结构体定义
struct Edge
   int to, next;
} ;
Edge edge[MAXN*2];
int tot,head[MAXN];
int F[MAXN*2];//欧拉序列,就是dfs 遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN]; //P[i] 表示点 i 在 F 中第一次出现的位置
int cnt;
ST st;
void init()
{
   tot = 0;
   memset(head, -1, sizeof(head));
void addedge(int u,int v)//加边,无向边需要加两次
   edge[tot].to = v;
   edge[tot].next = head[u];
   head[u] = tot++;
void dfs(int u,int pre,int dep)
{
   F[++cnt] = u;
   rmq[cnt] = dep;
   P[u] = cnt;
   for(int i = head[u];i != -1;i = edge[i].next)
       int v = edge[i].to;
       if(v == pre)continue;
       dfs(v,u,dep+1);
       F[++cnt] = u; rmq[cnt]
       = dep;
    }
}
void LCA init(int root,int node num) //查询 LCA 前的初始化
   cnt = 0;
   dfs(root, root, 0);
   st.init(2*node num-1);
int query_lca(int u,int v)//查询u,v的lca编号
   return F[st.query(P[u],P[v])];
void dfs build(int u,int pre)
   int pos = hash(a[u]);
   T[u] = update(T[pre],pos,1);
    for(int i = head[u]; i != -1;i = edge[i].next)
```

```
int v = edge[i].to;
        if(v == pre)continue;
        dfs build(v,u);
}
int main()
   //freopen("in.txt","r", stdin);
   //freopen("out.txt", "w", stdout);
   while(scanf("%d%d", &n, &q) == 2)
        for (int i = 1; i <= n; i++)</pre>
            scanf("%d", &a[i]);
        Init hash();
        init();
        TOT = 0;
        int u, v;
        for(int i = 1;i < n;i++)</pre>
            scanf("%d%d", &u, &v);
            addedge(u,v);
            addedge(v,u);
        LCA_init(1,n);
        T[n+1] = build(1,m);
        dfs_build(1,n+1);
        int k;
        while (q--)
            scanf("%d%d%d", &u, &v, &k);
            \label{eq:printf} \textbf{printf}("%d\n", t[query(T[u], T[v], query_lca(u, v), k)]);
        return 0;
   return 0;
   6.4 动态第 k 大(ZOJ 2112)
树状数组套主席树
const int MAXN = 60010;
const int M = 2500010;
int n,q,m,tot;
int a[MAXN], t[MAXN];
int T[MAXN], lson[M], rson[M],c[M];
int S[MAXN];
struct Query
    int kind;
    int l,r,k;
}query[10010];
void Init_hash(int k)
   sort(t, t+k);
   m = unique(t, t+k) - t;
int hash(int x)
{
```

```
return lower bound(t, t+m, x) -t;
int build(int 1,int r)
    int root = tot++;
    c[root] = 0;
    if(1 != r)
        int mid = (1+r)/2; lson[root]
        = build(l,mid); rson[root] =
       build(mid+1,r);
   return root;
}
int Insert(int root,int pos,int val)
    int newroot = tot++, tmp = newroot;
    int 1 = 0, r = m-1;
    c[newroot] = c[root] + val;
    while(1 < r){
        int mid = (l+r)>>1;
        if (pos <= mid)</pre>
            lson[newroot] = tot++; rson[newroot] = rson[root];
            newroot = lson[newroot]; root = lson[root];
            r = mid;
        }else{
           rson[newroot] = tot++; lson[newroot] = lson[root];
            newroot = rson[newroot]; root = rson[root];
            1 = mid+1;
        c[newroot] = c[root] + val;
   return tmp;
}
int lowbit(int x)
   return x&(-x);
int use[MAXN];
void add(int x,int pos,int val)
    while(x <= n)</pre>
       S[x] = Insert(S[x], pos, val);
        x += lowbit(x);
int sum(int x)
    int ret = 0;
    while (x > 0)
       ret += c[lson[use[x]]];
        x \rightarrow lowbit(x);
    return ret;
```

```
int Query(int left,int right,int k)
    int left root = T[left-1];
    int right_root = T[right];
    int 1 = 0, r = m-1;
    for(int i = left-1;i;i -= lowbit(i)) use[i] = S[i];
    for(int i = right;i ;i -= lowbit(i)) use[i] = S[i];
    while(l < r)</pre>
        int mid = (1+r)/2;
        int tmp = sum(right) - sum(left-1) + c[lson[right root]] -
c[lson[left root]];
        if(tmp >= k)
            r = mid;
            for(int i = left-1; i ;i -= lowbit(i))
                use[i] = lson[use[i]];
            for(int i = right; i; i -= lowbit(i))
                use[i] = lson[use[i]];
            left root = lson[left root];
            right root = lson[right root];
        }
        else
            1 = mid+1;
            k -= tmp;
            for(int i = left-1; i;i -= lowbit(i))
                use[i] = rson[use[i]];
            for(int i = right; i ; i -= lowbit(i))
                use[i] = rson[use[i]];
            left_root = rson[left_root];
            right_root = rson[right_root];
        }
    return 1;
void Modify(int x,int p,int d)
{
    while(x <= n)</pre>
       S[x] = Insert(S[x],p,d);
        x += lowbit(x);
}
int main()
   //freopen("in.txt","r", stdin);
   //freopen("out.txt", "w", stdout);
   int Tcase;
   scanf("%d", &Tcase);
    while (Tcase--)
        scanf("%d%d", &n, &q);
        tot = 0;
        m = 0;
        for(int i = 1;i <= n;i++)</pre>
```

```
scanf("%d", &a[i]);
            t[m++] = a[i];
        char op[10];
        for(int i = 0;i < q;i++)</pre>
            scanf("%s",op);
            if(op[0] == 'Q')
                query[i].kind = 0;
                scanf("%d%d%d", &query[i].1, &query[i].r, &query[i].k);
            }
            else
                query[i].kind = 1;
                scanf("%d%d", &query[i].1, &query[i].r);
                t[m++] = query[i].r;
        }
        Init_hash(m);
        T[0] = build(0, m-1);
        for(int i = 1;i <= n;i++)</pre>
            T[i] = Insert(T[i-1], hash(a[i]), 1);
        for(int i = 1;i <= n;i++)</pre>
            S[i] = T[0];
        for(int i = 0;i < q;i++)</pre>
            if(query[i].kind == 0)
                printf("%d\n",t[Query(query[i].1,query[i].r,query[i].k)]);
            else
                Modify(query[i].1, hash(a[query[i].1]),-1);
                Modify(query[i].1, hash(query[i].r),1);
                a[query[i].1] = query[i].r;
            }
        }
   return 0;
}
```

7、Treap

```
ZOJ3765
long long gcd(long long a,long long b) {
    if(b == 0) return a;
    else return gcd(b,a%b);
}
const int MAXN = 300010;
int num[MAXN],st[MAXN];
struct Treap
{
    int tot1;
```

```
int s[MAXN], tot2;//内存池和容量
int ch[MAXN][2];
int key[MAXN], size[MAXN];
int sum0[MAXN], sum1[MAXN];
int status[MAXN];
void Init() {
    tot1 = tot2 = 0;
    size[0] = 0;
    ch[0][0] = ch[0][1] = 0;
    sum0[0] = sum1[0] = 0;
bool random(double p) {
    return (double) rand() / RAND_MAX < p;</pre>
int newnode(int val,int status)
{
    int r;
    if(tot2)r = s[tot2--];
    else r = ++tot1;
    size[r] = 1;
    key[r] = val;
    status[r] = _status;
    ch[r][0] = ch[r][1] = 0;
    sum0[r] = sum1[r] = 0;//需要push_up
    return r;
void del(int r) {
    if(!r)return;
    s[++tot2] = r;
    del(ch[r][0]);
    del(ch[r][1]);
void push_up(int r) {
    int lson = ch[r][0], rson = ch[r][1];
    size[r] = size[lson] + size[rson] + 1;
    sum0[r] = gcd(sum0[lson],sum0[rson]);
    sum1[r] = gcd(sum1[lson],sum1[rson]);
    if(status[r] == 0)
        sum0[r] = gcd(sum0[r], key[r]);
    else sum1[r] = gcd(sum1[r],key[r]);
void merge(int &p,int x,int y)
{
    if(!x || !y)
        p = x | y;
```

```
else if(random((double)size[x]/(size[x]+size[y])))
        {
            merge(ch[x][1],ch[x][1],y);
            push_up(p=x);
        } else {
            merge(ch[y][0],x,ch[y][0]);
            push_up(p=y);
   void split(int p,int &x,int &y,int k) {
        if(!k){
            x = 0; y = p;
            return;
        if(size[ch[p][0]] >= k){
            y = p;
            split(ch[p][0],x,ch[y][0],k);
            push up(y);
        } else {
            split(ch[p][1], ch[x][1], y, k - size[ch[p][0]] - 1);
            push_up(x);
        }
    }
   void build(int &p,int 1,int r)
        if(l > r)return;
        int mid = (1 + r)/2;
        p = newnode(num[mid],st[mid]);
        build(ch[p][0],1,mid-1);
        build(ch[p][1],mid+1,r);
        push up(p);
   void debug(int root)
    {
        if(root == 0)return;
        printf("%d 左儿子: %d 右儿子: %d size = %d key
= %d\n", root, ch[root][0], ch[root][1], size[root], key[root]);
        debug(ch[root][0]);
        debug(ch[root][1]);
} ;
Treap T;
char op[10];
int main()
```

```
//freopen("in.txt","r",stdin);
//freopen("out.txt", "w", stdout);
int n,q;
while(scanf("%d%d", &n, &q) == 2)
    int root = 0;
    T.Init();
    for(int i = 1;i <= n;i++)</pre>
        scanf("%d%d", &num[i], &st[i]);
    T.build(root, 1, n);
    while (q--)
        scanf("%s", op);
        if(op[0] == 'Q')
             int 1,r,s;
             scanf("%d%d%d",&1,&r,&s);
             int x,y,z;
             T.split(root,x,z,r);
             T.split(x, x, y, l-1);
             if(s == 0)
                 printf("%d\n",T.sum0[y] == 0? -1:T.sum0[y]);
             else
                 printf("%d\n", T.sum1[y] == 0?-1:T.sum1[y]);
             T.merge(x, x, y);
             T.merge(root,x,z);
        else if(op[0] == 'I')
         {
             int v,s,loc;
             scanf("%d%d%d", &loc, &v, &s);
             int x,y;
             T.split(root, x, y, loc);
             T.merge(x,x,T.newnode(v,s));
             T.merge(root, x, y);
        else if(op[0] == 'D')
         {
             int loc;
             scanf("%d", &loc); int x,y,z;
             T.split(root,x,z,loc);
             T.split(x, x, y, loc-1);
             T.del(y);
             T.merge(root, x, z);
        }
```

```
else if(op[0] == 'R')
            {
                int loc;
                scanf("%d", &loc);
                int x,y,z;
                T.split(root, x, z, loc);
                T.split(x,x,y,loc-1);
                T.status[y] = 1-T.status[y];
                T.push up(y); T.merge(x,x,y);
                T.merge(root, x, z);
            }else{
                int loc, v;
                scanf("%d%d", &loc, &v);
                int x,y,z;
                T.split(root,x,z,loc);
                T.split(x, x, y, loc-1);
                T.key[y] = v;
                T.push up(y);
                T.merge(x, x, y);
                T.merge(root, x, z);
            }
   return 0;
}
```

8、树状数组

8.1 一维树状数组的区间修改、区间查询

原理:原数组为 a_i ,差分数组为 $d_i=a_i-a_{i-1}$ 则 $a_n=\sum_{i=1}^n d_i$. 所以,

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \sum_{j=1}^{i} d_j = \sum_{i=1}^{n} [(n-i+1)*d_i] = (x+1) \sum_{i=1}^{n} d_i - \sum_{i=1}^{n} (d_i*i)$$

通过维护差分数组 d_i ,以及 d_i*i 。就可以维护原数组的前缀和。进而维护出原数组的区间和。

```
// poj 3468
const int MAXN = 100000 + 5;

int n, q;
template<class T> struct BIT {
    T C[MAXN];
    void I() { memset(C, 0, sizeof(C)); }
    inline T lowbit(T x) { return x & (-x); }
    void update(int x, LL val) {
        while(x < MAXN) { C[x] += val; x += lowbit(x); }
    }
    T query(int x) {
        T ret = 0;
        while(x > 0) { ret += C[x]; x -= lowbit(x); }
        return ret;
    }
};
```

```
BIT<LL> a, b; // 如果不幸卡常,可以将 a,b 的 update 和 query 合并
void update(int x, LL v) { a.update(x, v); b.update(x, v * x); }
void update(int 1, int r, LL v) { update(1, v); update(r + 1, -v); }
LL presum(int x) { return (LL)(x + 1) * a.query(x) - b.query(x); }
LL query(int 1, int r) { return presum(r) - presum(1 - 1); }
int main() {
    char op[5]; LL 1, r, v;
    while(~scanf("%d %d", &n, &q)) {
        a.I(); b.I();
        vector<LL> \mathbf{A}(n + 1);
        A[0] = 0;
        for (int i = 1; i <= n; i++) {</pre>
            scanf("%lld", &A[i]);
            update(i, A[i] - A[i - 1]); /// 注意这里
        while(q --) {
            scanf("%s %lld %lld", op, &l, &r);
            if(op[0] == 'Q') {
               printf("%lld\n", query(1, r));
             else {
                scanf("%lld", &v);
                update(1, r, v);
            }
    return 0;
```

8.2 二维树状数组的区间修改、区间查询

原理:对于原矩阵A,用矩阵 d_{ij} 表示(1,1)-(n,m)的增量,那么子矩阵(1,1)-(x,y)的和为:

$$sum = \sum_{i=1}^{x} \sum_{j=1}^{y} [d_{i,j} * (x - i + 1) * (y - i + 1)]$$

$$= \sum_{i=1}^{x} \sum_{j=1}^{y} \{d_{i,j} * [(x + 1) * (y + 1) - (x + 1) * j - (y + 1) * i + i * j]\}$$

$$= \sum_{i=1}^{x} \sum_{j=1}^{y} [(x + 1) * (y + 1) * d_{ij} - (x + 1) * j * d_{ij} - (y + 1) * i * d_{ij} + i * j * (\mathfrak{P})_{j}]$$
(8)

因此,用四个树状数组分别维护: d_{ij} , $(i*d_{ij})$, $(j*d_{ij})$, $(i*j*d_{ij})$

```
/// POJ 2155
const int MAXN = 1010 + 5;
int n, q;
template < class T> struct BIT 2D {
    struct Core {
        T C[4][MAXN][MAXN];
        void I() { memset(C, 0, sizeof(C)); }
          inline T lowbit(const T& x) { return x & (-x); }
        void update(const int& x0, const int& y0, const T& val) {
            for (int x = x0; x \le n; x += x & (-x)) {
                 for (int y = y0; y \le n; y += y & (-y)) {
                     C[0][x][y] += val;
                     C[1][x][y] += val * x0;
                     C[2][x][y] += val * y0;

C[3][x][y] += val * x0 * y0;
                 }
        T query (const int& x0, const int& y0) {
            T ret = 0;
            for (int x = x0; x > 0; x -= x & (-x)) {
                 for (int y = y0; y > 0; y -= y & (-y)) {
                     ret += C[0][x][y] * (x0 + 1) * (y0 + 1);
                     ret -= C[1][x][y] * (y0 + 1);
                     ret -= C[2][x][y] * (x0 + 1);
                     ret += C[3][x][y];
```

```
return ret;
        }
    } core;
    void I() { core.I(); }
    void update (const int& x0, const int& y0, const int& x1, const int& y1,
const T& val)
        int dx[4] = \{x0, x1 + 1, x0, x1 + 1\};
        int dy[4] = \{y0, y1 + 1, y1 + 1, y0\};
        T v[4] = {val, val, -val, -val};
        for (int i = 0; i < 4; ++i) {
            core.update(dx[i], dy[i], v[i]);
    T query(const int& x0, const int& y0, const int& x1, const int& y1) {
        T ret = 0;
        int dx[4] = \{x0 - 1, x1, x0 - 1, x1\};
        int dy[4] = \{y0 - 1, y1, y1, y0 - 1\};
        int v[4] = \{1, 1, -1, -1\};

for (int i = 0; i < 4; ++i) {
            ret += (T)v[i] * core.query(dx[i], dy[i]);
        return ret;
    }
}:
BIT 2D<int> bit;
int main() {
    char op[5]; int x[2], y[2]; int , cas = 0;
    scanf("%d", &_);
    while(_ --) {
        if(cas) printf("\n"); cas ++;
        bit.I();
        scanf("%d %d", &n, &q);
        while(q --) {
            scanf("%s", op);
            if(op[0] == 'Q') {
                 scanf("%d %d", &x[0], &y[0]); x[1] = x[0], y[1] = y[0];
                 LL ans = bit.query(x[0], y[0], x[1], y[1]);
                printf("%d\n", (int) (ans & 1));
             } else {
                 scanf("%d %d %d %d", &x[0], &y[0], &x[1], &y[1]);
                 bit.update(x[0], y[0], x[1], y[1], 1);
    return 0;
}
```

图论

1、最短路

```
1.1 Dijkstra 单源最短路,邻接矩阵形式 权值必
  须是非负
/*
* 单源最短路径, Dijkstra 算法, 邻接矩阵形式, 复杂度为 O(n^2)
* 求出源 beg 到所有点的最短路径,传入图的顶点数,和邻接矩阵 cost [] []
 * 返回各点的最短路径 lowcost[], 路径 pre[].pre[i]记录 beg 到i 路径上的父结点,
pre[beg] = -1
* 可更改路径权类型,但是权值必须为非负
 */
const int MAXN=1010;
#define typec int
const typec INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
int pre[MAXN];
void Dijkstra(typec cost[][MAXN], typec lowcost[], int n, int beg)
    for (int i=0;i<n;i++)</pre>
       lowcost[i]=INF; vis[i]=false; pre[i]=-1;
    lowcost[beg]=0;
    for (int j=0; j<n; j++)</pre>
       int k=-1;
       int Min=INF;
       for(int i=0;i<n;i++)</pre>
           if(!vis[i]&&lowcost[i]<Min)</pre>
               Min=lowcost[i];
               k=i;
           }
```

if(!vis[i]&&lowcost[k]+cost[k][i]<lowcost[i]){
 lowcost[i]=lowcost[k]+cost[k][i];</pre>

1.2 Dijkstar 算法+堆优化 使用优 先队列优化,复杂度 O (E log E)

}

}

if (k==-1)break;
vis[k]=true;

for (int i=0;i<n;i++)</pre>

pre[i]=k;

```
/*
 * 使用优先队列优化 Dijkstra 算法
 * 复杂度 O(ElogE)
 * 注意对 vector<Edge>E[MAXN]进行初始化后加边
 */
const int INF=0x3f3f3f3f;
```

```
const int MAXN=1000010;
struct qnode
    int v;
    int c;
    qnode(int _v=0,int _c=0):v(_v),c(_c){}
    bool operator <(const qnode &r)const</pre>
        return c>r.c;
};
struct Edge
    int v,cost;
    Edge(int _v=0,int _cost=0):v(_v),cost(_cost){}
vector<Edge>E[MAXN];
bool vis[MAXN];
int dist[MAXN];
void Dijkstra(int n,int start)//点的编号从1开始
    memset(vis, false, sizeof(vis));
    for (int i=1;i<=n;i++) dist[i]=INF;</pre>
    priority queue<qnode>que;
    while(!que.empty())que.pop();
    dist[start]=0;
    que.push(qnode(start,0));
    qnode tmp;
    while(!que.empty())
        tmp=que.top();
        que.pop();
        int u=tmp.v;
        if (vis[u]) continue;
        vis[u]=true;
        for (int i=0;i<E[u].size();i++)</pre>
            int v=E[tmp.v][i].v;
            int cost=E[u][i].cost;
            if(!vis[v]&&dist[v]>dist[u]+cost)
                dist[v]=dist[u]+cost;
                que.push(qnode(v,dist[v]));
        }
}
void addedge(int u,int v,int w)
    E[u].push_back(Edge(v,w));
   1.3 单源最短路 bellman_ford 算法
 * 单源最短路 bellman_ford 算法,复杂度 O(VE)
```

* 可以判断是否存在负环回路。返回 true, 当且仅当图中不包含从源点可达的负权回路

* 可以处理负边权图。

```
* vector<Edge>E; 先 E.clear() 初始化,然后加入所有边
* 点的编号从1开始(从0开始简单修改就可以了)
const int INF=0x3f3f3f3f;
const int MAXN=550;
int dist[MAXN];
struct Edge
   int u, v;
   int cost;
   Edge(int u=0,int v=0,int cost=0):u(u),v(v),cost(cost){}
vector<Edge>E;
bool bellman ford(int start,int n) //点的编号从 1 开始
{
    for (int i=1;i<=n;i++) dist[i]=INF;</pre>
   dist[start]=0;
   for(int i=1;i<n;i++)//最多做 n-1 次
       bool flag=false;
       for(int j=0;j<E.size();j++)</pre>
           int u=E[j].u;
           int v=E[j].v;
           int cost=E[j].cost;
           if (dist[v]>dist[u]+cost)
               dist[v]=dist[u]+cost;
               flag=true;
           }
       if(!flag)return true;//没有负环回路
   for(int j=0;j<E.size();j++)</pre>
       if (dist[E[j].v]>dist[E[j].u]+E[j].cost)
           return false; //有负环回路
   return true; //没有负环回路
}
   1.4 单源最短路 SPFA
* 单源最短路 SPFA
 * 时间复杂度 0(kE)
 * 这个是队列实现,有时候改成栈实现会更加快,很容易修改
* 这个复杂度是不定的
*/
const int MAXN=1010;
const int INF=0x3f3f3f3f;
struct Edge
   int v;
   int cost;
   Edge(int v=0,int cost=0):v( v),cost( cost){}
vector<Edge>E[MAXN];
void addedge(int u,int v,int w)
```

```
E[u].push back(Edge(v,w));
   }
   bool vis[MAXN];//在队列标志
   int cnt[MAXN];//每个点的入队列次数
   int dist[MAXN];
   bool SPFA(int start,int n)
       memset(vis, false, sizeof(vis));
       for (int i=1;i<=n;i++) dist[i]=INF;</pre>
       vis[start]=true;
       dist[start]=0;
       queue<int>que;
       while(!que.empty())que.pop();
       que.push(start);
       memset(cnt, 0, sizeof(cnt));
       cnt[start]=1;
       while(!que.empty())
           int u=que.front();
           que.pop();
           vis[u]=false;
           for (int i=0;i<E[u].size();i++)</pre>
               int v=E[u][i].v;
               if (dist[v]>dist[u]+E[u][i].cost)
                   dist[v]=dist[u]+E[u][i].cost;
                   if(!vis[v])
                       vis[v]=true;
                       que.push(v);
                       if(++cnt[v]>n)return false;
                       //cnt[i]为入队列次数,用来判定是否存在负环回路
                   }
               }
           }
       return true;
1.5 SLF 优化的单源最短路 SPFA
   const int MX = 1e5 + 5;
   const int MS = 1e5 + 5;
   template<class T> struct SPFA {
       struct Edge {
           T w;
           int v, nxt;
       } E[MS << 1];
       int Head[MX], erear;
       bool vis[MX];
       T d[MX], INF;
       deque<int> Q;
       void init() {
           erear = 0;
           memset(Head, -1, sizeof(Head));
       void add(int u, int v, T w) {
           E[erear].v = v;
           E[erear].w = w;
           E[erear].nxt = Head[u];
```

```
Head[u] = erear++;
    inline void relax(int u, int v, T w) {
        if(d[u] + w < d[v]) {
            d[v] = d[u] + w;
            if(!vis[v]) {
                if(!Q.empty() && d[v] <= d[Q.front()]) {</pre>
                     Q.push_front(v);
                } else Q.push_back(v);
                vis[v] = 1;
            }
        }
    void run(int u) {
        Q.clear();
        memset(d, 0x3f, sizeof(d)); INF = d[0];
        d[u] = 0; Q.push back(u); vis[u] = 1;
        while(!Q.empty()) {
            int u = Q.front(); Q.pop_front(); vis[u] = 0;
            for(int i = Head[u]; \sim i; i = E[i].nxt) {
                relax(u, E[i].v, E[i].w);
        }
    }
};
SPFA<LL> spfa;
```

2、最小生成树

2.1 Prim 算法

```
* Prim 求 MST
* 耗费矩阵 cost[][], 标号从 0 开始, 0~n-1
 * 返回最小生成树的权值,返回-1表示原图不连通
*/
const int INF=0x3f3f3f3f;
const int MAXN=110;
bool vis[MAXN];
int lowc[MAXN];
int Prim(int cost[][MAXN],int n)//点是 0~n-1
    int ans=0;
    memset(vis, false, sizeof(vis));
    vis[0]=true;
    for (int i=1;i<n;i++) lowc[i]=cost[0][i];</pre>
    for (int i=1;i<n;i++)</pre>
        int minc=INF;
        int p=-1;
        for(int j=0;j<n;j++)</pre>
            if(!vis[j]&&minc>lowc[j])
                minc=lowc[j];
                р=j;
            }
```

```
if(minc==INF)return -1;//原图不连通
       ans+=minc;
       vis[p]=true;
       for(int j=0;j<n;j++)</pre>
           if(!vis[j]&&lowc[j]>cost[p][j])
               lowc[j]=cost[p][j];
   return ans;
}
   2.2 Kruskal 算法
/*
* Kruskal 算法求 MST
const int MAXN=110;//最大点数
const int MAXM=10000;//最大边数
int F[MAXN];//并查集使用
struct Edge
   int u, v, w;
}edge[MAXM];//存储边的信息,包括起点/终点/权值
int tol;//边数,加边前赋值为 0
void addedge(int u,int v,int w)
{
     edge[tol].u=u; edge[tol].v=v; edge[tol++].w=w;
}
bool cmp(Edge a, Edge b)
{//排序函数,讲边按照权值从小到大排序
   return a.w<b.w;</pre>
int find(int x) {
   if(F[x]==-1)return x;
   else return F[x]=find(F[x]);
}
int Kruskal (int n) //传入点数,返回最小生成树的权值,如果不连通返回-1
   memset(F,-1,sizeof(F));
   sort(edge,edge+tol,cmp);
   int cnt=0;//计算加入的边数
   int ans=0;
    for (int i=0;i<tol;i++)</pre>
       int u=edge[i].u;
       int v=edge[i].v;
       int w=edge[i].w;
       int t1=find(u);
       int t2=find(v);
       if(t1!=t2)
           ans+=w;
           F[t1]=t2;
           cnt++;
       if (cnt==n-1)break;
   if(cnt<n-1)return -1;//不连通
   else return ans;
}
```

3、次小生成树

```
* 次小生成树
 * 求最小生成树时,用数组 Max[i][j]来表示 MST 中 i 到 j 最大边权
 * 求完后,直接枚举所有不在 MST 中的边,替换掉最大边权的边,更新答案
 * 点的编号从 0 开始
*/
const int MAXN=110;
const int INF=0x3f3f3f3f;
bool vis[MAXN];
int lowc[MAXN];
int pre[MAXN];
int Max[MAXN][MAXN];//Max[i][j]表示在最小生成树中从 i 到 j 的路径中的最大边权
bool used[MAXN][MAXN];
int Prim(int cost[][MAXN],int n)
    int ans=0;
   memset(vis, false, sizeof(vis));
   memset(Max, 0, sizeof(Max));
   memset(used, false, sizeof(used));
   vis[0]=true;
    pre[0]=-1;
    for (int i=1;i<n;i++)</pre>
       lowc[i]=cost[0][i];
       pre[i]=0;
    lowc[0] = 0;
    for(int i=1;i<n;i++)</pre>
       int minc=INF;
        int p=-1;
        for (int j=0; j<n; j++)</pre>
            if(!vis[j]&&minc>lowc[j])
               minc=lowc[j];
               р=j;
        if (minc==INF) return -1;
        ans+=minc;
        vis[p]=true;
        used[p][pre[p]]=used[pre[p]][p]=true;
        for (int j=0; j<n; j++)</pre>
            if(vis[j])Max[j][p]=Max[p][j]=max(Max[j][pre[p]],lowc[p]);
            if(!vis[j]&&lowc[j]>cost[p][j])
                lowc[j]=cost[p][j];
               pre[j]=p;
    return ans;
```

}

4、有向图的强连通分量

```
4.1 Tarjan
* Tarjan 算法
 * 复杂度 O (N+M)
const int MAXN = 20010;//点数
const int MAXM = 50010;//边数
struct Edge
   int to, next;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong 数组的值是 1~scc
int Index, top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含点的个数,数组编号 1~scc
//num 数组不一定需要,结合实际情况
void addedge(int u,int v)
   edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
void Tarjan(int u)
{
   int v;
   Low[u] = DFN[u] = ++Index;
   Stack[top++] = u;
   Instack[u] = true;
    for(int i = head[u];i != -1;i = edge[i].next)
       v = edge[i].to;
       if( !DFN[v] )
           Tarjan(v);
           if( Low[u] > Low[v] )Low[u] = Low[v];
       else if(Instack[v] && Low[u] > DFN[v])
           Low[u] = DFN[v];
    if(Low[u] == DFN[u])
       scc++;
       do
           v = Stack[--top];
           Instack[v] = false;
           Belong[v] = scc;
           num[scc]++;
       while( v != u);
    }
}
```

```
void solve(int N)
   memset(DFN, 0, sizeof(DFN));
   memset(Instack, false, sizeof(Instack));
   memset(num, 0, sizeof(num));
   Index = scc = top = 0;
    for(int i = 1;i <= N;i++)</pre>
       if(!DFN[i])
           Tarjan(i);
void init()
{
   tot = 0;
   memset(head, -1, sizeof(head));
}
   4.2 Kosaraju
 * Kosaraju 算法, 复杂度 O(N+M)
* /
const int MAXN = 20010;
const int MAXM = 50010;
struct Edge
    int to,next;
}edge1[MAXM],edge2[MAXM];
//edge1 是原图 G, edge2 是逆图 GT
int head1[MAXN], head2[MAXN];
bool mark1[MAXN], mark2[MAXN];
int tot1, tot2;
int cnt1, cnt2;
int st[MAXN];//对原图进行dfs,点的结束时间从小到大排
序 int Belong[MAXN];//每个点属于哪个连通分量(0~cnt2-
1) int num; //中间变量,用来数某个连通分量中点的个数
int setNum[MAXN];//强连通分量中点的个数,编号 0~cnt2-1
void addedge(int u,int v) {
    edge1[tot1].to = v;edge1[tot1].next = head1[u];head1[u] = tot1++;
    edge2[tot2].to = u;edge2[tot2].next = head2[v];head2[v] = tot2++;
void DFS1(int u) {
   mark1[u] = true;
    for(int i = head1[u];i != -1;i = edge1[i].next)
       if(!mark1[edge1[i].to])
           DFS1(edge1[i].to);
    st[cnt1++] = u;
void DFS2(int u) {
   mark2[u] = true;
   num++;
   Belong[u] = cnt2;
    for(int i = head2[u];i != -1;i = edge2[i].next)
       if(!mark2[edge2[i].to])
           DFS2(edge2[i].to);
void solve(int n)//点的编号从1开始
   memset(mark1, false, sizeof(mark1));
   memset (mark2, false, sizeof (mark2));
   cnt1 = cnt2 = 0;
```

```
for(int i = 1;i <= n;i++)
    if(!mark1[i])
        DFS1(i);

for(int i = cnt1-1;i >= 0; i--)
    if(!mark2[st[i]]) {
        num = 0;
        DFS2(st[i]);
        setNum[cnt2++] = num;
    }
}
```

5、图的割点、桥和双连通分支的基本概念

[点连通度与边连通度]

在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为**割点集合**。一个图的**点连通度**的定义为,最小割点集合中的顶点数。 类似的,如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为**割边集合**。一

个图的边连通度的定义为,最小割边集合中的边数。

[双连通图、割点与桥]

如果一个无向连通图的点连通度大于 1,则称该图是**点双连通的(point biconnected)**,简称**双连通**或**重连通**。一个图有割点,当且仅当这个图的点连通度为 1,则割点集合的唯一元素被称为**割点(cut point)**,又叫**关**节点(articulation point)。

如果一个无向连通图的边连通度大于 1,则称该图是**边双连通的**(edge biconnected),简称双连通或重连通。一个图有桥,当且仅当这个图的边连通度为 1,则割边集合的唯一元素被称为**桥**(bridge),又叫**关节 边** (articulation edge)。

可以看出,点双连通与边双连通都可以简称为双连通,它们之间是有着某种联系的,下文中提到的双连通,均既可指点双连通,又可指边双连通。

[双连通分支]

在图 G 的所有子图 G'中,如果 G'是双连通的,则称 G'为**双连通子图**。如果一个双连通子图 G'它不是任何一个双连通子图的真子集,则 G'为**极大双连通子图**。**双连通分支(biconnected component)**,或**重连通分支**,就是图的极大双连通子图。特殊的,点双连通分支又叫做**块**。

[求割点与桥]

该算法是 R.Tarjan 发明的。对图深度优先搜索,定义 DFS(u)为 u 在搜索树(以下简称为树)中被遍历到的 次 序号。定义 Low(u)为 u 或 u 的子树中能通过非父子边追溯到的最早的节点,即 DFS 序号最小的节点。 根据 定义,则有:

Low(u)=Min { DFS(u) DFS(v) (u,v)为后向边(返祖边) 等价于 DFS(v)<DFS(u)且 v 不为 u 的父亲节点 Low(v) (u,v) 为树枝边(父子边) }

一个顶点 u 是割点,当且仅当满足(1)或(2) (1) u 为树根,且 u 有多于一个子树。 (2) u 不为树根,且满足存在(u,v)为树枝边(或称父子边,即 u 为 v 在搜索树中的父亲),使得 DFS(u)<=Low(v)。 一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足 DFS(u)<Low(v)。

[求双连通分支]

下面要分开讨论点双连通分支与边双连通分支的求法。 对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前 双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果遇到某时满 足 DFS(u)<=Low(v),说明 u 是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与 其关联的点,组成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一 个点双连通分支。 对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则 每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属 于一个边双连通分支。[构造双连通图] 一个有桥的连通图,如何把它通过加边变成边双连通图? 方法为首先求出所有的桥,然

[构造双连通图] 一个有桥的连通图,如何把它通过加边变成边双连通图? 方法为首先求出所有的桥,然后删除这些桥边, 剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这 个图一定是一棵树,边连通度为 1。

统计出树中度为 1 的节点的个数,即为叶节点的个数,记为 leaf。则至少在树上添加(leaf+1)/2 条边,就能使树达到边二连通,所以至少添加的边数就是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2 次,把所有点收缩到了一起。

6、割点与桥

```
模板:
* 求 无向图的割点和桥
* 可以找出割点和桥,求删掉每个点后增加的连通块。
* 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
*/
const int MAXN = 10010;
const int MAXM = 100010;
struct Edge
{
   int to, next;
  bool cut;//是否为桥的标记
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN];
int Index, top;
bool Instack[MAXN];
bool cut[MAXN];
int add block[MAXN];//删除一个点后增加的连通块
int bridge;
void addedge(int u,int v)
{
   edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
  head[u] = tot++;
}
void Tarjan(int u,int pre)
{
   int v;
   Low[u] = DFN[u] = ++Index;
   Stack[top++] = u;
   Instack[u] = true;
   int son = 0;
   for(int i = head[u];i != -1;i = edge[i].next)
      v = edge[i].to;
      if(v == pre)continue;
      if(!DFN[v])
      {
         son++;
         Tarjan(v,u);
         if(Low[u] > Low[v])Low[u] = Low[v];
         //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足 DFS(u)<Low(v)。
         if(Low[v] > DFN[u])
            bridge++;
            edge[i].cut = true;
            edge[i^1].cut = true;
         //割点
         //一个顶点 u 是割点, 当且仅当满足(1)或(2)(1) u 为树根, 且 u 有多于一个子树。
         //(2) u 不为树根,且满足存在(u,v)为树枝边(或称父子边,
         //即 u 为 v 在搜索树中的父亲), 使得 DFS (u) <=Low (v)
```

```
if(u != pre && Low[v] >= DFN[u])//不是树根
             cut[u] = true;
             add block[u]++;
      else if( Low[u] > DFN[v])
          Low[u] = DFN[v];
   }
   //树根,分支数大于1
   if(u == pre && son > 1)cut[u] = true;
   if(u == pre) add block[u] = son - 1;
   Instack[u] = false;
   top--;
调用:
1) UVA 796 Critical Links 给出一个无向图,按顺序输出桥
void solve(int N)
{
   memset(DFN, 0, sizeof(DFN));
   memset(Instack, false, sizeof(Instack));
   memset(add block, 0, sizeof(add block));
   memset(cut, false, sizeof(cut));
   Index = top = 0;
   bridge = 0;
   for(int i = 1;i <= N;i++)</pre>
      if(!DFN[i])
          Tarjan(i,i);
   printf("%d critical links\n",bridge);
   vector<pair<int,int> >ans;
   for(int u = 1;u <= N;u++)</pre>
      for(int i = head[u];i != -1;i = edge[i].next)
          if(edge[i].cut && edge[i].to > u)
             ans.push back(make pair(u,edge[i].to));
          }
   sort(ans.begin(),ans.end());
   //按顺序输出桥
   for(int i = 0;i < ans.size();i++)</pre>
      printf("%d - %d\n", ans[i].first-1, ans[i].second-1);
   printf("\n");
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
//处理重边
map<int,int>mapit;
inline bool isHash(int u,int v)
   if (mapit[u*MAXN+v]) return true;
   if (mapit[v*MAXN+u]) return true;
   mapit[u*MAXN+v] = mapit[v*MAXN+u] = 1;
   return false;
int main() {
   int n;
```

```
while (scanf ("%d", &n) == 1)
      init();
      int u;
      int k;
      int v;
       //mapit.clear();
       for(int i = 1;i <= n;i++)</pre>
          scanf("%d (%d)", &u, &k);
          u++;
          //这样加边,要保证正边和反边是相邻的,建无向图
          while(k--)
             scanf("%d", &v);
             v++;
             if(v <= u)continue;</pre>
             //if(isHash(u,v))continue;
             addedge(u,v);
             addedge(v,u);
          }
      solve(n);
   return 0;
}
2) POJ 2117 求删除一个点后,图中最多有多少个连通块
void solve(int N)
   memset(DFN, 0, sizeof(DFN));
   memset(Instack, 0, sizeof(Instack));
   memset(add block, 0, sizeof(add block));
   memset(cut, false, sizeof(cut));
   Index = top = 0;
   int cnt = 0;//原来的连通块数
   for(int i = 1;i <= N;i++)</pre>
      if( !DFN[i] )
         Tarjan(i,i);//找割点调用必须是 Tarjan(i,i)
         cnt++;
      }
   int ans = 0;
   for(int i = 1;i <= N;i++)</pre>
      ans = max(ans,cnt+add block[i]);
   printf("%d\n", ans);
}
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
}
int main()
   int n,m;
   int u, v;
   while(scanf("%d%d", &n, &m) ==2)
      if(n==0 && m == 0)break;
      init();
```

```
while (m--)
{
    scanf("%d%d", &u, &v);
    u++;v++;
    addedge(u,v);
    addedge(v,u);
}
solve(n);
}
return 0;
}
```

7、边双连通分支

去掉桥,其余的连通分支就是边双连通分支了。一个有桥的连通图要变成边双连通图的话,把双连通子图 收缩为一个点,形成一颗树。需要加的边为(leaf+1)/2 (leaf 为叶子结点个数) POJ 3177 **给定一个连通的无向图 G,至少要添加几条边,才能使其变为双连通图。**

```
const int MAXN = 5010;//点数
const int MAXM = 20010;//边数,因为是无向图,所以这个值要*2
struct Edge
   int to,next;
   bool cut;//是否是桥标记
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong 数组的值是 1~block
int Index, top;
int block;//边双连通块数
bool Instack[MAXN];
int bridge;//桥的数目
void addedge(int u,int v)
   edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut=false;
   head[u] = tot++;
}
void Tarjan(int u,int pre)
   int v;
   Low[u] = DFN[u] = ++Index;
   Stack[top++] = u;
   Instack[u] = true;
   for(int i = head[u];i != -1;i = edge[i].next){
      v = edge[i].to;
      if(v == pre)continue;
      if( !DFN[v] )
          Tarjan(v,u);
          if( Low[u] > Low[v] )Low[u] = Low[v];
          if(Low[v] > DFN[u])
             bridge++;
             edge[i].cut = true;
             edge[i^1].cut = true;
          }
```

```
else if( Instack[v] && Low[u] > DFN[v] )
          Low[u] = DFN[v];
   if(Low[u] == DFN[u])
      block++;
      do
          v = Stack[--top];
          Instack[v] = false;
          Belong[v] = block;
      while( v!=u );
   }
}
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
}
int du[MAXN];//缩点后形成树,每个点的度数
void solve(int n)
   memset(DFN, 0, sizeof(DFN));
   memset(Instack, false, sizeof(Instack));
   Index = top = block = 0;
   Tarjan(1,0);
   int ans = 0;
   memset(du,0,sizeof(du));
   for(int i = 1;i <= n;i++)</pre>
      for(int j = head[i]; j != -1; j = edge[j].next)
        if (edge[j].cut)
           du[Belong[i]]++;
   for(int i = 1;i <= block;i++)</pre>
      if(du[i]==1)
        ans++;
   //找叶子结点的个数 ans,构造边双连通图需要加边 (ans+1)/2
   printf("%d\n", (ans+1)/2);
int main()
{
   int n,m;
   int u, v;
   while (scanf ("%d%d", &n, &m) ==2)
   {
      init();
      while (m--)
          scanf("%d%d", &u, &v);
          addedge(u,v);
          addedge(v,u);
      solve(n);
   return 0;
}
```

8、点双连通分支

对于点双连通分支,实际上在求割点的过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果遇到某时满足 DFS(u)<=Low(v),说明 u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。

POJ 2942

奇圈, 二分图判断的染色法, 求点双连通分支

/ *

POJ 2942 Knights of the Round Table 亚瑟王要在圆桌上召开骑士会议,为了不引发骑士之间的冲突, 并且能够让会议的议题有令人满意的结果,每次开会前都必须对出席会议的骑士有如下要求: 1、 相互憎恨的两个骑士不能坐在直接相邻的 2 个位置;

2、 出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果。

注意: 1、所给出的憎恨关系一定是双向的,不存在单向憎恨关系。2、由于是圆桌会议,则每个出席的骑士身边必定刚好有 2 个骑士。即每个骑士的座位两边都必定各有一个骑士。 3、一个骑士无法开会,就是说至少有 3 个骑士才可能开会。

首先根据给出的互相憎恨的图中得到补图。 然后就相当于找出不能形成奇圈的点。 利 用下面两个定理:

int v = edge[i].to;

- (1)如果一个双连通分量内的某些顶点在一个奇圈中(即双连通分量含有奇圈),那么这个双连通分量的其他顶点也在某个奇圈中;
- (2) 如果一个双连通分量含有奇圈,则他必定不是一个二分图。反过来也成立,这是一个充要条件。

所以本题的做法,就是对补图求点双连通分量。 然后对于求得的点双连通分量,使用染色法判断是不是二分图,不是二分图,这个双连通分量的点是可以 存在的

```
const int MAXN = 1010;
const int MAXM = 2000010;
struct Edge
   int to, next;
}edge[MAXM];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN];
int Index, top;
int block; //点双连通分量的个数
bool Instack[MAXN];
bool can[MAXN];
bool ok[MAXN];//标记
int tmp[MAXN];//暂时存储双连通分量中的点
int cc;//tmp 的计数
int color[MAXN];//染色
void addedge(int u,int v){
   edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
bool dfs(int u,int col) //染色判断二分图
   color[u] = col;
   for(int i = head[u];i != -1;i = edge[i].next)
```

```
if( !ok[v] )continue;
      if(color[v] != -1)
          if(color[v]==col)return false;
          continue;
      if(!dfs(v,!col))return false;
   return true;
void Tarjan(int u,int pre)
   int v;
   Low[u] = DFN[u] = ++Index;
   Stack[top++] = u;
   Instack[u] = true;
   for(int i = head[u];i != -1;i = edge[i].next)
      v = edge[i].to;
      if(v == pre)continue;
      if( !DFN[v] )
          Tarjan(v,u);
          if(Low[u] > Low[v])Low[u] = Low[v];
          if( Low[v] >= DFN[u])
             block++;
             int vn;
             cc = 0;
             memset(ok, false, sizeof(ok));
             do
             {
                 vn = Stack[--top];
                 Belong[vn] = block;
                 Instack[vn] = false;
                 ok[vn] = true;
                 tmp[cc++] = vn;
             while( vn!=v );
             ok[u] = 1;
             memset(color,-1,sizeof(color));
             if(!dfs(u,0))
                 can[u] = true;
                 while (cc--) can [tmp[cc]] = true;
              }
          }
      else if(Instack[v] && Low[u] > DFN[v])
         Low[u] = DFN[v];
   }
void solve(int n) {
   memset(DFN, 0, sizeof(DFN));
   memset(Instack, false, sizeof(Instack));
   Index = block = top = 0;
   memset(can, false, sizeof(can));
   for(int i = 1;i <= n;i++)</pre>
     if(!DFN[i])
```

```
for(int i = 1;i <= n;i++)</pre>
       if(can[i])
        ans--;
   printf("%d\n", ans);
void init() {
   tot = 0;
   memset(head, -1, sizeof(head));
int g[MAXN][MAXN];
int main(){
  int n,m;
   int u, v;
   while(scanf("%d%d", &n, &m) ==2)
       if(n==0 && m==0)break;
      init();
      memset(g, 0, sizeof(g));
       while (m--)
          scanf("%d%d",&u,&v);
          g[u][v]=g[v][u]=1;
       for(int i = 1;i <= n;i++)</pre>
        for(int j = 1; j <= n; j++)</pre>
           if(i != j && g[i][j]==0)
             addedge(i,j);
       solve(n);
   return 0;
}
9、最小树形图
* 最小树形图
* int 型
 * 复杂度 O (NM)
 * 点从 0 开始
const int INF = 0x3f3f3f3f;
const int MAXN = 1010;
const int MAXM = 40010;
struct Edge
   int u, v, cost;
};
Edge edge[MAXM];
int pre[MAXN],id[MAXN],visit[MAXN],in[MAXN];
int zhuliu(int root,int n,int m,Edge edge[])
   int res = 0, u, v;
```

while(1)

for (int i = 0; i < n; i++)
in[i] = INF;</pre>

Tarjan(i,-1);

int ans = n;

```
for(int i = 0;i < m;i++)</pre>
          if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v])</pre>
              pre[edge[i].v] = edge[i].u;
              in[edge[i].v] = edge[i].cost;
          }
       for(int i = 0;i < n;i++)</pre>
          if(i != root && in[i] == INF)
              return -1;//不存在最小树形图
       int tn = 0;
       memset(id,-1,sizeof(id));
       memset(visit,-1,sizeof(visit));
       in[root] = 0;
       for(int i = 0;i < n;i++)</pre>
          res += in[i];
          v = i;
          while ( visit[v] != i && id[v] == -1 && v != root)
             visit[v] = i;
             v = pre[v];
          if( v != root && id[v] == -1 )
              for(int u = pre[v]; u != v ;u = pre[u])
                 id[u] = tn;
              id[v] = tn++;
          }
       if(tn == 0)break;//没有有向环
       for(int i = 0;i < n;i++)</pre>
          if(id[i] == -1)
             id[i] = tn++;
       for(int i = 0;i < m;)</pre>
          v = edge[i].v;
          edge[i].u = id[edge[i].u];
          edge[i].v = id[edge[i].v];
          if(edge[i].u != edge[i].v)
              edge[i++].cost -= in[v];
          else
             swap(edge[i],edge[--m]);
       }
       n = tn;
       root = id[root];
   return res;
int g[MAXN][MAXN];
int main(){
   int n,m;
   int iCase = 0;
   int T;
   scanf("%d", &T);
   while( T-- )
       iCase ++;
       scanf("%d%d", &n, &m);
       for(int i = 0;i < n;i++)</pre>
```

```
for(int j = 0; j < n; j++)
              g[i][j] = INF;
       int u, v, cost;
       while (m--)
          scanf("%d%d%d", &u, &v, &cost);
          if(u == v)continue;
          g[u][v] = min(g[u][v], cost);
       int L = 0;
       for(int i = 0;i < n;i++)</pre>
          for(int j = 0; j < n; j++)</pre>
              if(g[i][j] < INF)
                 edge[L].u = i;
                 edge[L].v = j;
                  edge[L++].cost = g[i][j];
       int ans = zhuliu(0,n,L,edge);
       printf("Case #%d: ",iCase);
       if (ans == -1)printf("Possums!\n");
       else printf("%d\n", ans);
   return 0;
}
```

10、二分图匹配

1) 一个二分图中的最大匹配数等于这个图中的最小点覆盖数

König 定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。

2)最小路径覆盖 = |G|-最大匹配数

在一个 N*N 的有向图中,路径覆盖就是在图中找一些路经,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集. 由上面可以得出:

- 1.一个单独的顶点是一条路径;
- **2.**如果存在一路径 p1,p2,......pk, 其中 p1 为起点, pk 为终点, 那么在覆盖图中, 顶点 p1,p2,......pk 不再与其它的

顶点之间存在有向边. 最小路径覆盖就是找出最小的路径条数,使之成为G的一个路径覆盖. 路径覆盖与二分图匹配的关系:最小路径覆盖=|G|-最大匹配数;

3) 二分图最大独立集=顶点数-二分图最大匹配

独立集:图中任意两个顶点都不相连的顶点集合。

10.1 邻接矩阵(匈牙利算法)

```
//顶点编号从 0 开始的
const int MAXN = 510;
int uN, vN; //u, v 的数目, 使用前面必须赋值
int q[MAXN][MAXN];//邻接矩阵
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)
   for (int v = 0; v < vN;v++)</pre>
      if(g[u][v] && !used[v])
          used[v] = true;
          if(linker[v] == -1 || dfs(linker[v]))
             linker[v] = u;
             return true;
          }
      return false;
int hungary() {
   int res = 0;
   memset(linker, -1, sizeof(linker));
   for (int u = 0; u < uN; u++)
      memset(used, false, sizeof(used));
      if(dfs(u))res++;
   return res;
}
   10.2 邻接表 (匈牙利算法)
 * 匈牙利算法邻接表形式
 * 使用前用 init()进行初始化,给 uN 赋值
* 加边使用函数 addedge (u, v)
*/
const int MAXN = 5010;//点数的最大值
const int MAXM = 50010;//边数的最大值
struct Edge
   int to, next;
}edge[MAXM];
int head[MAXN],tot;
void init(){
   tot = 0;
   memset(head, -1, sizeof(head));
void addedge(int u,int v){
   edge[tot].to = v; edge[tot].next = head[u];
   head[u] = tot++;
}
int linker[MAXN];
bool used[MAXN];
int uN;
bool dfs(int u){
   for(int i = head[u]; i != -1; i = edge[i].next)
```

```
int v = edge[i].to;
      if(!used[v])
          used[v] = true;
          if(linker[v] == -1 || dfs(linker[v]))
             linker[v] = u;
             return true;
      }
   return false;
}
int hungary() {
   int res = 0;
   memset(linker,-1,sizeof(linker));
   //点的编号 0~uN-1
   for(int u = 0; u < uN;u++) {</pre>
      memset(used, false, sizeof(used));
      if(dfs(u))res++;
   return res;
}
   10.3 Hopcroft-Carp 算法
/* *********
* 二分图匹配(Hopcroft-Carp 算法)
 * 复杂度 O (<u>sqrt</u>(n)*E)
 * 邻接表存图, vector 实现
 * vector 先初始化,然后假如边
 * uN 为左端的顶点数,使用前赋值(点编号0开始)
* /
const int MAXN = 3000;
const int INF = 0x3f3f3f3f;
vector<int>G[MAXN];
int uN;
int Mx[MAXN], My[MAXN];
int dx[MAXN],dy[MAXN];
int dis;
bool used[MAXN];
bool SearchP()
   queue<int>Q;
   dis = INF;
   memset(dx,-1,sizeof(dx));
   memset(dy,-1,sizeof(dy));
   for(int i = 0 ; i < uN; i++)</pre>
      if (Mx[i] == -1)
          Q.push(i);
          dx[i] = 0;
      }
   while(!Q.empty())
      int u = Q.front();
      Q.pop();
      if(dx[u] > dis)break;
      int sz = G[u].size();
      for(int i = 0;i < sz;i++)</pre>
```

```
int v = G[u][i];
          if(dy[v] == -1)
              dy[v] = dx[u] + 1;
              if(My[v] == -1)dis = dy[v];
                  dx[My[v]] = dy[v] + 1;
                  Q.push(My[v]);
          }
       }
   return dis != INF;
bool DFS(int u) {
   int sz = G[u].size();
   for(int i = 0;i < sz;i++)</pre>
       int v = G[u][i];
       if(!used[v] && dy[v] == dx[u] + 1)
          used[v] = true;
          if (My[v] != -1 && dy[v] == dis)continue;
          if(My[v] == -1 \mid \mid DFS(My[v]))
              My[v] = u;
              Mx[u] = v;
              return true;
       }
   }
   return false;
int MaxMatch()
   int res = 0;
   memset(Mx,-1,sizeof(Mx));
   memset(My,-1,sizeof(My));
   while (SearchP())
       memset (used, false, sizeof (used) );
       for(int i = 0;i < uN;i++)</pre>
          if (Mx[i] == -1 && DFS(i))
              res++;
   return res;
}
```

11、生成树计数

Matrix-Tree 定理(Kirchhoff 矩阵-树定理)

1、G 的度数矩阵 D[G]是一个 n*n 的矩阵,并且满足:当 i≠j 时,dij=0;当 i=j 时,dij 等于 vi 的度数。 2、G 的邻接矩阵 A[G]也是一个 n*n 的矩阵,并且满足:如果 vi、vj 之间有边直接相连,则 aij=1,否则

我们定义 G 的 Kirchhoff 矩阵(也称为拉普拉斯算子)C[G]为 C[G]=D[G]-A[G],则 Matrix-Tree 定理可以描述为: G 的所有不同的生成树的个数等于其 Kirchhoff 矩阵 C[G]任何一个 n-1 阶主子式的行列式的绝对

值。所谓 n-1 阶主子式,就是对于 r(1≤r≤n),将 C[G]的第 r 行、第 r 列同时去掉后得到的新矩阵,用 Cr[G]表示。

// HDU 4305

// 求生成树计数部分代码, 计数对 10007 取模

```
const int MOD = 10007;
int INV[MOD];
//求 ax = 1( mod m) 的 x 值,就是逆元(0<a<m)
long long inv(long long a, long long m) {
   if(a == 1) return 1;
   return inv(m%a,m) * (m-m/a) %m;
}
struct Matrix{
   int mat[330][330];
   void init()
      memset(mat, 0, sizeof(mat));
   int det(int n) //求行列式的值模上 MOD, 需要使用逆元
       for(int i = 0;i < n;i++)</pre>
          for(int j = 0; j < n; j++)
             mat[i][j] = (mat[i][j]%MOD+MOD)%MOD;
       int res = 1;
       for(int i = 0;i < n;i++)</pre>
          for(int j = i; j < n; j++)</pre>
              if(mat[j][i]!=0)
                 for (int k = i; k < n; k++)
                    swap (mat[i][k], mat[j][k]);
                 if(i != j)
                    res = (-res+MOD)%MOD;
                 break;
              }
          if(mat[i][i] == 0)
             res = -1; // 不存在 (也就是行列式值为 0)
             break;
          for(int j = i+1; j < n; j++)</pre>
              //int mut = (mat[j][i]*INV[mat[i][i]])%MOD;//打表逆元
              int mut = (mat[j][i]*inv(mat[i][i], MOD))%MOD;
              for (int k = i; k < n; k++)
                 mat[j][k] = (mat[j][k]-(mat[i][k]*mut)%MOD+MOD)%MOD;
          res = (res * mat[i][i])%MOD;
       return res;
   }
};
  Matrix ret;
  ret.init();
  for(int i = 0;i < n;i++)</pre>
      for(int j = 0; j < n; j++)
         if(i != j && g[i][j]) {
             ret.mat[i][j] = -1;
             ret.mat[i][i]++;
```

```
printf("%d\n", ret.det(n-1));
计算生成树个数,不取模,SPOJ 104
const double eps = 1e-8;
const int MAXN = 110;
int sgn(double x) {
   if(fabs(x) < eps)return 0;</pre>
   if(x < 0) return -1;
   else return 1;
double b[MAXN][MAXN];
double det(double a[][MAXN],int n)
   int i, j, k, sign = 0;
   double ret = 1;
   for(i = 0;i < n;i++)</pre>
       for(j = 0; j < n; j++)</pre>
          b[i][j] = a[i][j];
   for(i = 0;i < n;i++)</pre>
   {
       if(sgn(b[i][i]) == 0)
          for(j = i + 1; j < n;j++)</pre>
              if(sgn(b[j][i]) != 0)
                  break;
          if(j == n)return 0;
          for(k = i; k < n; k++)
              swap(b[i][k],b[j][k]);
          sign++;
       }
       ret *= b[i][i];
       for(k = i + 1; k < n; k++)
          b[i][k]/=b[i][i];
       for(j = i+1;j < n;j++)</pre>
          for(k = i+1; k < n; k++)
             b[j][k] -= b[j][i]*b[i][k];
   if(sign & 1)ret = -ret;
   return ret;
double a[MAXN][MAXN];
int g[MAXN][MAXN];
int main()
{
   int T;
   int n,m;
   int u, v;
   scanf("%d", &T);
   while (T--)
       scanf("%d%d", &n, &m);
       memset(g,0,sizeof(g));
       while (m--)
          scanf("%d%d", &u, &v);
          u--;v--;
          g[u][v] = g[v][u] = 1;
```

```
memset(a, 0, sizeof(a));
       for(int i = 0;i < n;i++)</pre>
          for(int j = 0; j < n; j++)</pre>
              if(i != j && g[i][j])
                 a[i][i]++;
                 a[i][j] = -1;
              }
       double ans = det(a, n-1);
       printf("%.01f\n",ans);
   return 0;
}
11、二分图多重匹配
const int MAXN = 1010;
const int MAXM = 510;
int uN, vN;
int g[MAXN][MAXM];
int linker[MAXM][MAXN];
bool used[MAXM];
int num[MAXM];//右边最大的匹配数
bool dfs(int u)
   for (int v = 0; v < vN; v++)
       if(g[u][v] && !used[v])
          used[v] = true;
          if(linker[v][0] < num[v])</pre>
              linker[v][++linker[v][0]] = u;
              return true;
          for(int i = 1;i <= num[0];i++)</pre>
              if(dfs(linker[v][i]))
                 linker[v][i] = u;
                 return true;
   return false;
int hungary()
   int res = 0;
   for(int i = 0;i < vN;i++)</pre>
      linker[i][0] = 0;
   for(int u = 0; u < uN; u++) {</pre>
       memset(used, false, sizeof(used));
       if(dfs(u))res++;
   }
   return res;
```

12、KM 算法(二分图最大权匹配)

```
/* KM 算法
* 复杂度 O(nx*nx*ny)
 * 求最大权匹配
   若求最小权匹配,可将权值取相反数,结果取相反数
 * 点的编号从0开始
const int N = 310;
const int INF = 0x3f3f3f3f;
int nx, ny; //两边的点数
int g[N][N];//二分图描述
int linker[N], lx[N], ly[N]; //y 中各点匹配状态, x, y 中的点标号
int slack[N];
bool visx[N], visy[N];
bool DFS(int x)
   visx[x] = true;
   for (int y = 0; y < ny; y++)
      if (visy[y]) continue;
      int tmp = lx[x] + ly[y] - g[x][y];
      if(tmp == 0)
          visy[y] = true;
          if(linker[y] == -1 || DFS(linker[y]))
             linker[y] = x;
             return true;
      else if(slack[y] > tmp)
          slack[y] = tmp;
   return false;
}
int KM()
   memset(linker, -1, sizeof(linker));
   memset(ly,0,sizeof(ly));
   for(int i = 0;i < nx;i++)</pre>
      lx[i] = -INF;
      for(int j = 0; j < ny; j++)</pre>
          if(g[i][j] > lx[i])
             lx[i] = q[i][j];
   for (int x = 0; x < nx; x++) {
      for(int i = 0;i < ny;i++)</pre>
          slack[i] = INF;
      while(true)
       {
          memset(visx, false, sizeof(visx));
          memset(visy, false, sizeof(visy));
          if(DFS(x))break;
          int d = INF;
          for(int i = 0;i < ny;i++)</pre>
             if(!visy[i] && d > slack[i])
                 d = slack[i];
```

```
for(int i = 0;i < nx;i++)</pre>
              if(visx[i])
                   lx[i] -= d;
           for(int i = 0;i < ny;i++)</pre>
               if(visy[i])ly[i] += d;
              else slack[i] -= d;
       }
   int res = 0;
   for(int i = 0;i < ny;i++)</pre>
       if(linker[i] != -1)
          res += g[linker[i]][i];
   return res;
//HDU 2255
int main()
{
   int n;
   while(scanf("%d", &n) == 1)
       for(int i = 0;i < n;i++)</pre>
           for (int j = 0; j < n; j++)</pre>
              scanf("%d", &g[i][j]);
       nx = ny = n;
       printf("%d\n", KM());
   return 0;
}
```

13、最大流

13.1 SAP 邻接矩阵形式

```
* SAP 算法 (矩阵形式)
 * 结点编号从 0 开始
const int MAXN=1100;
int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int sap(int start,int end,int nodenum)
   memset(cur, 0, sizeof(cur));
   memset(dis, 0, sizeof(dis));
   memset(gap, 0, sizeof(gap));
   int u=pre[start]=start,maxflow=0,aug=-1;
   gap[0]=nodenum; while(dis[start]<nodenum)</pre>
       loop:
        for(int v=cur[u];v<nodenum;v++)</pre>
          if(maze[u][v] && dis[u]==dis[v]+1)
          {
              if (aug==-1 || aug>maze[u][v]) aug=maze[u][v];
              pre[v]=u;
```

```
u=cur[u]=v;
             if (v==end)
                 maxflow+=aug;
                 for (u=pre[u]; v!=start; v=u, u=pre[u])
                    maze[u][v]-=aug;
                    maze[v][u]+=aug;
                 aug=-1;
              }
             goto loop;
          int mindis=nodenum-1;
          for (int v=0; v<nodenum; v++)</pre>
             if (maze[u][v]&&mindis>dis[v])
                cur[u]=v;
                mindis=dis[v];
          if((--gap[dis[u]]) == 0) break;
          gap[dis[u]=mindis+1]++;
          u=pre[u];
   return maxflow;
}
   13.2 SAP 邻接矩阵形式 2
保留原矩阵,可用于多次使用最大流
 * SAP 邻接矩阵形式
 * 点的编号从 0 开始
 * 增加个 flow 数组,保留原矩阵 maze,可用于多次使用最大流
* /
const int MAXN=1100;
int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN];//存最大流的容量
int sap(int start,int end,int nodenum)
   memset(cur, 0, sizeof(cur));
   memset(dis, 0, sizeof(dis));
   memset(gap, 0, sizeof(gap));
   memset(flow, 0, sizeof(flow));
   int u=pre[start]=start,maxflow=0,aug=-1;
   gap[0]=nodenum; while(dis[start]<nodenum)</pre>
   {
      loop:
        for(int v=cur[u];v<nodenum;v++)</pre>
          if (maze[u][v]-flow[u][v] && dis[u]==dis[v]+1)
             if(aug==-1 ||
aug>maze[u][v]-flow[u][v])aug=maze[u][v]-flow[u][v];
             pre[v]=u;
             u=cur[u]=v;
             if (v==end)
                 maxflow+=aug;
                 for (u=pre[u]; v!=start; v=u, u=pre[u])
```

```
flow[u][v]+=aug;
                    flow[v][u]-=aug;
                aug=-1;
             }
             goto loop;
          int mindis=nodenum-1;
          for (int v=0; v<nodenum; v++)</pre>
            if (maze[u][v]-flow[u][v]&&mindis>dis[v])
                cur[u]=v;
                mindis=dis[v];
          if((--gap[dis[u]])==0)break;
          gap[dis[u]=mindis+1]++;
          u=pre[u];
   return maxflow;
}
   13.3 ISAP 邻接表形式
const int MAXN = 100010;//点数的最大值
const int MAXM = 400010;//边数的最大值
const int INF = 0x3f3f3f3f;
struct Edge
    int to, next, cap, flow;
}edge[MAXM];//注意是 MAXM
int tol;
int head[MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN];
void init(){
    tol = 0;
   memset(head, -1, sizeof(head));
//加边,单向图三个参数,双向图四个参数
void addedge(int u,int v,int w,int rw=0)
   edge[tol].to = v;edge[tol].cap = w;edge[tol].next = head[u];
    edge[tol].flow = 0;head[u] = tol++;
    edge[tol].to = u;edge[tol].cap = rw;edge[tol].next = head[v];
    edge[tol].flow = 0;head[v]=tol++;
//输入参数:起点、终点、点的总数
//点的编号没有影响,只要输入点的总数
int sap(int start,int end,int N)
   memset(gap, 0, sizeof(gap));
   memset(dep, 0, sizeof(dep));
   memcpy(cur, head, sizeof(head));
   int u = start;
    pre[u] = -1;
    gap[0] = N;
    int ans = 0;
    while(dep[start] < N)</pre>
       if(u == end)
      {
          int Min = INF;
```

```
for (int i = pre[u]; i != -1; i = pre[edge[i^1].to])
             if (Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
          for(int i = pre[u];i != -1; i = pre[edge[i^1].to])
             edge[i].flow += Min;
             edge[i^1].flow -= Min;
          }
          u = start;
          ans += Min;
          continue;
      bool flag = false;
      int v;
      for(int i = cur[u]; i != -1;i = edge[i].next)
          v = edge[i].to;
          if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
             flag = true;
             cur[u] = pre[v] = i;
             break;
          }
      if(flag) {
          u = v;
          continue;
      int Min = N;
      for(int i = head[u]; i != -1;i = edge[i].next)
          if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)</pre>
             Min = dep[edge[i].to];
             cur[u] = i;
      gap[dep[u]]--;
      if(!gap[dep[u]])return ans;
      dep[u] = Min+1;
      gap[dep[u]]++;
      if(u != start) u = edge[pre[u]^1].to;
   return ans;
   13.4 ISAP+bfs 初始化+栈优化
const int MAXN = 100010;//点数的最大值
const int MAXM = 400010;//边数的最大值
const int INF = 0x3f3f3f3f;
struct Edge
   int to, next, cap, flow;
}edge[MAXM];//注意是 MAXM
int tol;
int head[MAXN];
int gap[MAXN], dep[MAXN], cur[MAXN];
void init(){
   tol = 0;
   memset(head, -1, sizeof(head));
void addedge(int u,int v,int w,int rw = 0) {
```

```
edge[tol].to = v; edge[tol].cap = w; edge[tol].flow = 0;
   edge[tol].next = head[u]; head[u] = tol++;
   edge[tol].to = u; edge[tol].cap = rw; edge[tol].flow = 0;
   edge[tol].next = head[v]; head[v] = tol++;
int Q[MAXN];
void BFS(int start,int end)
   memset(dep, -1, sizeof(dep));
   memset(gap, 0, sizeof(gap));
   gap[0] = 1;
   int front = 0, rear = 0;
   dep[end] = 0;
   O[rear++] = end;
   while(front != rear)
       int u = Q[front++];
       for(int i = head[u]; i != -1; i = edge[i].next)
          int v = edge[i].to;
          if (dep[v] != -1) continue;
          Q[rear++] = v;
          dep[v] = dep[u] + 1;
          gap[dep[v]]++;
   }
}
int S[MAXN];
int sap(int start,int end,int N)
{
   BFS(start,end);
   memcpy(cur, head, sizeof(head));
   int top = 0;
   int u = start;
   int ans = 0;
   while(dep[start] < N)</pre>
      if(u == end)
          int Min = INF;
          int inser;
          for(int i = 0;i < top;i++)</pre>
             if (Min > edge[S[i]].cap - edge[S[i]].flow)
                 Min = edge[S[i]].cap - edge[S[i]].flow;
                 inser = i;
             }
          for(int i = 0;i < top;i++)</pre>
             edge[S[i]].flow += Min;
             edge[S[i]^1].flow -= Min;
          }
          ans += Min;
          top = inser;
          u = edge[S[top]^1].to;
          continue;
      bool flag = false;
       int v;
```

```
for(int i = cur[u]; i != -1; i = edge[i].next) {
           v = edge[i].to;
           if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
              flag = true;
              cur[u] = i;
              break;
        if(flag)
        {
           S[top++] = cur[u];
           u = v;
           continue;
        }
        int Min = N;
        for(int i = head[u]; i != -1; i = edge[i].next)
           if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)</pre>
              Min = dep[edge[i].to];
              cur[u] = i;
           }
        gap[dep[u]]--;
        if(!gap[dep[u]])return ans;
        dep[u] = Min + 1;
        gap[dep[u]]++;
        if(u != start)u = edge[S[--top]^1].to;
    return ans;
 }
    13.5 Dinic 邻接表
                           // 点数
const int MX = 1e3 + 5;
const int MS = 4e5 + 5;
                            // 边数
template<class T> struct Max Flow {
   int n;
    int Q[MX], sign;
    int head[MX], level[MX], cur[MX], pre[MX];
    int nxt[MS], pnt[MS], E;
    T cap[MS];
    void Init(int n) {
        E = 0;
        this->n = n + 1;
        fill(head, head + this->n, -1);
    void Add(int from, int to, T c, T rw = 0) {
        pnt[E] = to; cap[E] = c; nxt[E] = head[from]; head[from] = E++;
        pnt[E] = from; cap[E] = rw; nxt[E] = head[to]; head[to] = E++;
    bool BFS(int s, int t) {
        sign = t;
        fill(level, level + n, -1);
        int *front = Q, *tail = Q;
        *tail++ = t; level[t] = 0;
        while (front < tail && level[s] == -1) {</pre>
            int u = *front++;
            for (int e = head[u]; e != -1; e = nxt[e]) {
                if (cap[e ^ 1] > 0 && level[pnt[e]] < 0) {</pre>
                    level[pnt[e]] = level[u] + 1;
                    *tail++ = pnt[e];
                }
```

```
return level[s] != -1;
    void Push(int t, T &flow) {
        T mi = INF;
        int p = pre[t];
        for (int p = pre[t]; p != -1; p = pre[pnt[p ^ 1]]) {
            mi = min(mi, cap[p]);
        for (int p = pre[t]; p != -1; p = pre[pnt[p ^ 1]]) {
            cap[p] -= mi;
            if (!cap[p]) {
                sign = pnt[p ^ 1];
            cap[p ^ 1] += mi;
        flow += mi;
    void DFS(int u, int t, T &flow) {
        if (u == t) {
            Push(t, flow);
            return;
        for (int &e = cur[u]; e != -1; e = nxt[e]) {
            if (cap[e] > 0 && level[u] - 1 == level[pnt[e]]) {
                pre[pnt[e]] = e;
                DFS(pnt[e], t, flow);
                if (level[sign] > level[u]) {
                    return;
                sign = t;
        }
    T Dinic(int s, int t) {
        pre[s] = -1;
        T flow = 0;
        while (BFS(s, t)) {
            copy(head, head + n, cur);
            DFS(s, t, flow);
        return flow;
};
Max Flow<int> mflow;
```

14、最小费用最大流

最小费用最大流,求最大费用只需要取相反数,结果取相反数即可。

14.1 ZKW 费用流

```
const int MAXN = 4005; // 点数
const int MAXE = 40010; // 边数*2

template<class T> struct MinCostMaxFlow {
    struct Edge {
        int v, nxt;
        T cap, cost;
    } edge[MAXE];
    int head[MAXN], tot;
    bool vis[MAXN];
    T d[MAXN];
    T cost, mincost, maxflow, src, des, n;
    void init(int nx, int sx, int tx) {
        n = nx, src = sx, des = tx;
        tot = 0;
        mincost = maxflow = cost = 0;
```

```
WONZY の ACM 模板
```

```
memset(head, -1, sizeof(head));
    inline void add_edge(const int& u, const int& v, const T& cap, const T&
cost) {
        edge[tot] = Edge{v, head[u], cap, cost};
        head[u] = tot ++;
        edge[tot] = Edge{u, head[v], 0, -cost};
        head[v] = tot ++;
    T aug(int u, T f) {
        if(u == des) {
            mincost += cost * f;
            maxflow += f;
            return f;
        vis[u] = true;
        T \text{ tmpf} = f;
        for(int i = head[u]; ~i; i = edge[i].nxt) {
            if(edge[i].cap == 0 || edge[i].cost != 0 || vis[edge[i].v])
continue;
            T delta = aug(edge[i].v, min(tmpf, edge[i].cap));
            edge[i].cap -= delta;
            edge[i ^ 1].cap += delta;
            tmpf -= delta;
            if(!tmpf) return f;
        return f - tmpf;
    bool modlabel() {
        for(int i = 0; i <= n; i++) d[i] = INF;</pre>
        d[des] = 0;
        deque<int> Q; Q.push_back(des);
        while (!Q.empty())
            int u = Q.front(); Q.pop_front();
            T tmp;
            for(int i = head[u]; ~i; i = edge[i].nxt) {
               if (edge[i ^ 1].cap == 0 || (tmp = d[u] - edge[i].cost) >=
d[edge[i].v]) continue;
                if((d[edge[i].v] = tmp) <= d[Q.empty() ? src : Q.front()])</pre>
Q.push_front(edge[i].v);
                else Q.push_back(edge[i].v);
        /** 根据需要,看节点编号从 0 开始还是从 1 开始 **/
        for(int u = 1; u <= n; u++) {
            for (int i = head[u]; i != -1; i = edge[i].nxt) {
                edge[i].cost += d[edge[i].v] - d[u];
        cost += d[src];
        return d[src] < INF; // or INFL</pre>
    void zkw() {
        while (modlabel()) {
                memset(vis, 0, sizeof(vis));
            } while(aug(src, INF)); //or INFL
MinCostMaxFlow<int> mcmf;
```

14.2 SPFA 最小费用流

点的总数为 N, 点的编号 0~N-1

```
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
   int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N; //节点总个数, 节点编号从 0~N-1
void init(int n)
   N = n;
   tol = 0;
   memset(head, -1, sizeof(head));
void addedge(int u,int v,int cap,int cost)
{
   edge[tol].to = v;
   edge[tol].cap = cap;
   edge[tol].cost = cost;
   edge[tol].flow = 0;
   edge[tol].next = head[u];
   head[u] = tol++;
   edge[tol].to = u;
   edge[tol].cap = 0;
   edge[tol].cost = -cost;
   edge[tol].flow = 0;
   edge[tol].next = head[v];
   head[v] = tol++;
bool spfa(int s,int t)
   queue<int>q;
   for(int i = 0;i < N;i++)</pre>
      dis[i] = INF;
      vis[i] = false;
      pre[i] = -1;
   dis[s] = 0;
   vis[s] = true;
   q.push(s);
   while(!q.empty())
       int u = q.front();
      q.pop();
       vis[u] = false;
       for(int i = head[u]; i != -1;i = edge[i].next)
          int v = edge[i].to;
          if(edge[i].cap > edge[i].flow &&
             dis[v] > dis[u] + edge[i].cost)
             dis[v] = dis[u] + edge[i].cost;
             pre[v] = i;
             if(!vis[v])
```

```
vis[v] = true;
                q.push(v);
             }
         }
   }
   if(pre[t] == -1)return false;
   else return true;
//返回的是最大流, cost 存的是最小费用
int minCostMaxflow(int s,int t,int &cost)
   int flow = 0;
   cost = 0;
   while(spfa(s,t))
      int Min = INF;
      for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
          if (Min > edge[i].cap - edge[i].flow)
            Min = edge[i].cap - edge[i].flow;
      for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
         edge[i].flow += Min;
         edge[i^1].flow -= Min;
         cost += edge[i].cost * Min;
      flow += Min;
   return flow;
}
15、2-SAT
   15.1 染色法(可以得到字典序最小的解)
const int MAXN = 20020;
const int MAXM = 100010;
struct Edge
   int to, next;
}edge[MAXM];
int head[MAXN],tot;
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
void addedge(int u,int v)
   edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
bool vis[MAXN];//染色标记,为true表示选择
int S[MAXN],top;//栈
bool dfs(int u)
```

```
if(vis[u^1])return false;
   if(vis[u])return true;
   vis[u] = true;
   S[top++] = u;
   for(int i = head[u];i != -1;i = edge[i].next)
      if(!dfs(edge[i].to))
          return false;
      return true;
bool Twosat(int n)
   memset(vis, false, sizeof(vis));
   for(int i = 0; i < n; i += 2)
      if(vis[i] || vis[i^1])continue;
      top = 0;
      if(!dfs(i))
          while(top)vis[S[--top]] = false;
          if(!dfs(i^1)) return false;
   return true;
int main()
   int n,m;
   int u, v;
   while(scanf("%d%d",&n,&m) == 2)
      init();
      while (m--)
          scanf("%d%d", &u, &v);
          u--;v--;
          addedge(u,v^1);
          addedge(v,u^1);
      if(Twosat(2*n))
          for(int i = 0;i < 2*n;i++)</pre>
             if(vis[i])
               printf("%d\n",i+1);
      else printf("NIE\n");
   return 0;
   15.2 强连通缩点法(拓扑排序只能得到任意解)
POJ 3648 Wedding
//2-SAT 强连通缩点
const int MAXN = 1010;
const int MAXM = 100010;
struct Edge
   int to,next;
}edge[MAXM];
int head[MAXN],tot;
```

```
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
}
void addedge(int u,int v)
{
   edge[tot].to = v; edge[tot].next = head[u]; head[u] = tot++;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong 数组的值 1~scc
int Index, top;
int scc;
bool Instack[MAXN];
int num[MAXN];
void Tarjan(int u)
   int v;
   Low[u] = DFN[u] = ++Index;
   Stack[top++] = u;
   Instack[u] = true;
   for(int i = head[u];i != -1;i = edge[i].next)
      v = edge[i].to;
      if( !DFN[v] )
          Tarjan(v);
          if(Low[u] > Low[v])Low[u] = Low[v];
       else if(Instack[v] && Low[u] > DFN[v])
          Low[u] = DFN[v];
   if(Low[u] == DFN[u])
   {
      scc++;
      do
       {
          v = Stack[--top];
          Instack[v] = false;
          Belong[v] = scc;
          num[scc]++;
      while(v != u);
   }
}
bool solvable(int n)//n 是总个数,需要选择一半
   memset(DFN, 0, sizeof(DFN));
   memset(Instack, false, sizeof(Instack));
   memset(num, 0, sizeof(num));
   Index = scc = top = 0;
   for(int i = 0;i < n;i++)</pre>
      if(!DFN[i])
          Tarjan(i);
   for(int i = 0;i < n;i += 2)</pre>
      if(Belong[i] == Belong[i^1])
          return false;
   }
   return true;
```

```
//拓扑排序求任意一组解部分
queue<int>q1,q2;
vector<vector<int> > dag; //缩点后的逆向 DAG 图
char color[MAXN];//染色,为'R'是选择的
int indeg[MAXN];//入度
int cf[MAXN];
void solve(int n)
   dag.assign(scc+1, vector<int>());
   memset(indeg, 0, sizeof(indeg));
   memset(color, 0, sizeof(color));
   for (int u = 0; u < n; u++)
       for(int i = head[u];i != -1;i = edge[i].next)
          int v = edge[i].to;
          if(Belong[u] != Belong[v])
             dag[Belong[v]].push_back(Belong[u]);
             indeg[Belong[u]]++;
   for(int i = 0;i < n;i += 2)</pre>
      cf[Belong[i]] = Belong[i^1];
      cf[Belong[i^1]] = Belong[i];
   while(!q1.empty())q1.pop();
   while(!q2.empty())q2.pop();
   for(int i = 1;i <= scc;i++)</pre>
       if(indeg[i] == 0)
          q1.push(i);
   while(!q1.empty())
   {
       int u = q1.front();
      q1.pop();
       if(color[u] == 0)
          color[u] = 'R';
          color[cf[u]] = 'B';
       }
       int sz = dag[u].size();
       for(int i = 0;i < sz;i++)</pre>
          indeg[dag[u][i]]--;
          if(indeg[dag[u][i]] == 0)
             q1.push(dag[u][i]);
       }
   }
}
int change(char s[])
   int ret = 0;
   int i = 0;
   while(s[i]>='0' && s[i]<='9')</pre>
```

```
ret *= 10;
       ret += s[i]-'0';
       i++;
   if(s[i] == 'w')return 2*ret;
   else return 2*ret+1;
int main()
   int n,m;
   char s1[10],s2[10];
   while(scanf("%d%d", &n, &m) == 2)
       if(n == 0 && m == 0)break;
      init();
       while (m--)
          scanf("%s%s",s1,s2);
          int u = change(s1);
          int v = change(s2);
          addedge(u^1,v);
          addedge(v^1,u);
       addedge(1,0);
       if(solvable(2*n))
          solve(2*n);
          for(int i = 1;i < n;i++)</pre>
              //注意这一定是判断 color [Belong [
              if(color[Belong[2*i]] == 'R')printf("%dw",i);
              else printf("%dh",i);
              if(i < n-1)printf(" ");</pre>
              else printf("\n");
       else printf("bad luck\n");
   return 0;
```

16、曼哈顿最小生成树

POJ 3241 求曼哈顿最小生成树上第 k 大的边

```
const int MAXN = 100010;
const int INF = 0x3f3f3f3f;
struct Point
{
    int x,y,id;
}p[MAXN];
bool cmp(Point a,Point b)
{
    if(a.x != b.x) return a.x < b.x;
    else return a.y < b.y;
}
//树状数组,找y-x大于当前的,但是y+x最小的struct BIT</pre>
```

```
int min_val,pos;
    void init()
    {
       min_val = INF;
       pos = -1;
    }
}bit[MAXN];
//所有有效边
struct Edge
   int u, v, d;
}edge[MAXN<<2];</pre>
bool cmpedge (Edge a, Edge b)
   return a.d < b.d;</pre>
int tot;
int n;
int F[MAXN];
int find(int x)
   if(F[x] == -1) return x;
   else return F[x] = find(F[x]);
void addedge(int u,int v,int d)
   edge[tot].u = u;
   edge[tot].v = v;
   edge[tot++].d = d;
int lowbit(int x)
{
   return x&(-x);
}
void update(int i,int val,int pos)
{
    while(i > 0)
        if(val < bit[i].min_val)</pre>
           bit[i].min_val = val;
           bit[i].pos = pos;
        i -= lowbit(i);
}
int ask(int i,int m)//查询[i,m]的最小值位置
    int min_val = INF,pos = -1;
    while(i <= m)</pre>
        if(bit[i].min_val < min_val)</pre>
           min_val = bit[i].min_val;
           pos = bit[i].pos;
        i += lowbit(i);
```

```
return pos;
}
int dist(Point a, Point b)
    return abs(a.x - b.x) + abs(a.y - b.y);
}
void Manhattan minimum spanning tree(int n, Point p[])
    int a[MAXN],b[MAXN];
    tot = 0;
    for(int dir = 0; dir < 4;dir++)</pre>
        //4 种坐标变换
        if(dir == 1 || dir == 3)
            for(int i = 0;i < n;i++)</pre>
                swap(p[i].x,p[i].y);
        else if(dir == 2)
            for(int i = 0;i < n;i++)</pre>
                p[i].x = -p[i].x;
        sort(p,p+n,cmp);
        for(int i = 0;i < n;i++)</pre>
            a[i] = b[i] = p[i].y - p[i].x;
        sort(b,b+n);
        int m = unique(b,b+n) - b;
        for(int i = 1;i <= m;i++)</pre>
            bit[i].init();
        for(int i = n-1 ;i >= 0;i--)
            int pos = lower bound(b,b+m,a[i]) - b + 1;
            int ans = ask(pos,m);
            if (ans !=-1)
                addedge(p[i].id,p[ans].id,dist(p[i],p[ans]));
            update(pos,p[i].x+p[i].y,i);
}
int solve(int k)
    Manhattan minimum spanning tree(n,p);
    memset(F,-1,sizeof(F));
    sort(edge,edge+tot,cmpedge);
    for(int i = 0;i < tot;i++)</pre>
        int u = edge[i].u;
        int v = edge[i].v;
        int t1 = find(u), t2 = find(v);
        if(t1 != t2)
            F[t1] = t2;
            k--;
            if(k == 0)return edge[i].d;
        }
    }
int main()
```

```
{
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    int k;
    while(scanf("%d%d", &n, &k) == 2 && n)
    {
        for(int i = 0; i < n; i++)
        {
            scanf("%d%d", &p[i].x, &p[i].y);
            p[i].id = i;
        }
        printf("%d\n", solve(n-k));
    }
    return 0;
}</pre>
```

17、一般图匹配带花树

```
URAL 1099
const int MAXN = 250;
int N; //点的个数,点的编号从 1 到 N
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN], InPath[MAXN], InBlossom[MAXN];
int Head, Tail;
int Queue[MAXN];
int Start, Finish;
int NewBase;
int Father[MAXN], Base[MAXN];
int Count; //匹配数, 匹配对数是 Count/2
void CreateGraph()
    int u, v;
    memset(Graph, false, sizeof(Graph));
    scanf("%d", &N);
    while(scanf("%d%d", &u, &v) == 2)
        Graph[u][v] = Graph[v][u] = true;
}
void Push(int u)
    Queue[Tail] = u;
    Tail++;
   InQueue[u] = true;
}
int Pop()
    int res = Queue[Head];
    Head++;
    return res;
int FindCommonAncestor(int u,int v)
    memset(InPath, false, sizeof(InPath));
    while(true)
```

```
u = Base[u]; InPath[u]
        = true; if(u == Start)
        break; u =
        Father[Match[u]];
    while(true)
    {
        v = Base[v];
        if(InPath[v])break;
        v = Father[Match[v]];
    return v;
}
void ResetTrace(int u)
    int v;
    while (Base[u] != NewBase)
        v = Match[u];
       InBlossom[Base[u]] = InBlossom[Base[v]] = true;
        u = Father[v];
        if(Base[u] != NewBase) Father[u] = v;
void BloosomContract(int u,int v)
   NewBase = FindCommonAncestor(u, v);
    memset(InBlossom, false, sizeof(InBlossom));
    ResetTrace(u);
    ResetTrace(v);
    if(Base[u] != NewBase) Father[u] = v;
    if(Base[v] != NewBase) Father[v] = u;
    for(int tu = 1; tu <= N; tu++)</pre>
        if(InBlossom[Base[tu]])
            Base[tu] = NewBase;
            if(!InQueue[tu]) Push(tu);
}
void FindAugmentingPath()
    memset(InQueue, false, sizeof(InQueue));
    memset(Father, 0, sizeof(Father));
    for(int i = 1;i <= N;i++)</pre>
        Base[i] = i;
    Head = Tail = 1;
    Push(Start);
    Finish = 0;
    while (Head < Tail)</pre>
        int u = Pop();
        for(int v = 1; v <= N; v++)</pre>
            if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
                if((v == Start) \mid | ((Match[v] > 0) && Father[Match[v]] > 0))
                    BloosomContract(u,v);
                else if(Father[v] == 0)
                {
```

```
Father[v] = u;
                    if(Match[v] > 0)
                         Push (Match[v]);
                    else
                         Finish = v;
                         return;
                    }
                }
            }
}
void AugmentPath()
    int u, v, w;
    u = Finish;
    while (u > 0)
        v = Father[u];
        w = Match[v];
        Match[v] = u;
        Match[u] = v;
        u = w;
void Edmonds()
    memset(Match, 0, sizeof(Match));
    for(int u = 1; u <= N; u++)</pre>
        if(Match[u] == 0)
            Start = u;
            FindAugmentingPath();
            if(Finish > 0)AugmentPath();
void PrintMatch()
    Count = 0;
    for(int u = 1; u <= N;u++)</pre>
        if(Match[u] > 0)
            Count++;
    printf("%d\n",Count);
    for(int u = 1; u <= N; u++)</pre>
        if(u < Match[u])</pre>
            printf("%d %d\n",u,Match[u]);
}
int main()
   CreateGraph();//建图 Edmonds();//
   进行匹配 PrintMatch();//输出匹配数和
   return 0;
}
```

18 LCA

```
* LCA (POJ 1330)
 * 在线算法 DFS + ST
const int MAXN = 10010;
int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
    int mm[2*MAXN];
    int dp[2*MAXN][20];//最小值对应的下标
   void init(int n)
       mm[0] = -1;
       for(int i = 1;i <= n;i++)</pre>
           mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
           dp[i][0] = i;
       for(int j = 1; j <= mm[n];j++)</pre>
           for(int i = 1; i + (1<<j) - 1 <= n; i++)</pre>
               dp[i][j] = rmq[dp[i][j-1]] <
rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
   }
   int query(int a, int b) //查询[a, b] 之间最小值的下标
       if(a > b) swap(a,b);
       int k = mm[b-a+1];
       return rmq[dp[a][k]] <=</pre>
rmq[dp[b-(1<< k)+1][k]]?dp[a][k]:dp[b-(1<< k)+1][k];
   }
};
//边的结构体定义
struct Edge
{
   int to, next;
};
Edge edge[MAXN*2];
int tot, head[MAXN];
int F[MAXN*2];//欧拉序列,就是dfs 遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
   tot = 0;
   memset(head, -1, sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
    edge[tot].to = v;
    edge[tot].next = head[u];
   head[u] = tot++;
void dfs(int u,int pre,int dep)
   F[++cnt] = u;
    rmq[cnt] = dep;
```

```
P[u] = cnt;
    for(int i = head[u];i != -1;i = edge[i].next)
       int v = edge[i].to;
       if(v == pre)continue;
       dfs(v,u,dep+1);
       F[++cnt] = u; rmq[cnt]
       = dep;
}
void LCA_init(int root,int node_num) //查询 LCA 前的初始化
   cnt = 0;
   dfs(root, root, 0);
   st.init(2*node_num-1);
int query_lca(int u,int v)//查询u,v的lca编号
   return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int main()
    int T;
    int N;
   int u, v;
    scanf("%d", &T);
   while (T--)
       scanf("%d", &N);
       init();
        memset(flag, false, sizeof(flag));
        for(int i = 1; i < N;i++)</pre>
            scanf("%d%d",&u,&v);
           addedge(u,v);
            addedge(v,u);
           flag[v] = true;
        int root;
        for(int i = 1; i <= N;i++)</pre>
            if(!flag[i])
               root = i;
               break;
       LCA_init(root,N);
        scanf("%d%d", &u, &v);
       printf("%d\n", query_lca(u, v));
   return 0;
   18.2 离线 Tarjan 算法
* POJ 1470
* 给出一颗有向树, Q 个查询
* 输出查询结果中每个点出现次数
*/
/*
```

```
* LCA 离线算法, Tarjan
* 复杂度 O (n+Q);
const int MAXN = 1010;
const int MAXQ = 500010;//查询数的最大值
//并查集部分
int F[MAXN];//需要初始化为-1
int find(int x)
   if(F[x] == -1)return x;
   return F[x] = find(F[x]);
void bing(int u,int v)
   int t1 = find(u);
   int t2 = find(v);
   if(t1 != t2)
       F[t1] = t2;
}
//*******
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Edge
   int to, next;
}edge[MAXN*2];
int head[MAXN],tot;
void addedge(int u,int v)
{
   edge[tot].to = v;
   edge[tot].next = head[u];
   head[u] = tot++;
}
struct Query
   int q,next;
   int index;//查询编号
}query[MAXQ*2];
int answer[MAXQ];//存储最后的查询结果,下标 0~Q-1
int h[MAXQ];
int tt;
int Q;
void add_query(int u,int v,int index)
   query[tt].q = v;
   query[tt].next = h[u];
   query[tt].index = index;
   h[u] = tt++;
   query[tt].q = u;
   query[tt].next = h[v];
   query[tt].index = index;
   h[v] = tt++;
}
void init()
{
```

```
tot = 0;
    memset(head, -1, sizeof(head));
    memset(h,-1,sizeof(h));
    memset(vis, false, sizeof(vis));
    memset(F,-1,sizeof(F));
    memset(ancestor, 0, sizeof(ancestor));
}
void LCA(int u)
    ancestor[u] = u;
    vis[u] = true;
    for(int i = head[u];i != -1;i = edge[i].next)
        int v = edge[i].to;
        if(vis[v])continue;
        LCA(v);
        bing(u,v);
        ancestor[find(u)] = u;
    for(int i = h[u];i != -1;i = query[i].next)
        int v = query[i].q;
        if(vis[v])
            answer[query[i].index] = ancestor[find(v)];
    }
}
bool flag[MAXN];
int Count num[MAXN];
int main()
   int n;
    int u, v, k;
    while(scanf("%d",&n) == 1)
        init();
        memset(flag, false, sizeof(flag));
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d:(%d)",&u,&k);
            while(k--)
                scanf("%d", &v);
                flag[v] = true;
                addedge(u,v);
                addedge(v,u);
            }
        scanf("%d", &Q);
        for(int i = 0;i < Q;i++)</pre>
            char ch;
            cin>>ch;
            scanf("%d %d)", &u, &v);
            add_query(u,v,i);
```

```
int root;
        for(int i = 1;i <= n;i++)</pre>
            if(!flag[i])
                root = i;
                break;
            }
        LCA(root);
        memset(Count num, 0, sizeof(Count num));
        for(int i = 0;i < Q;i++)</pre>
            Count_num[answer[i]]++;
        for(int i = 1;i <= n;i++)</pre>
            if(Count num[i] > 0)
                printf("%d:%d\n",i,Count num[i]);
    }
   return 0;
}
   18.3 LCA 倍增法
 * POJ 1330
* LCA 在线算法
*/
const int MAXN = 10010;
const int DEG = 20;
struct Edge
    int to, next;
}edge[MAXN*2];
int head[MAXN],tot;
void addedge(int u,int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
void init()
    tot = 0;
   memset(head, -1, sizeof(head));
int fa[MAXN][DEG];//fa[i][j]表示结点i的第 2^j 个祖先
int deg[MAXN];//深度数组
void BFS(int root)
    queue<int>que;
    deg[root] = 0;
    fa[root][0] = root;
    que.push(root);
    while(!que.empty())
        int tmp = que.front();
        que.pop();
        for(int i = 1;i < DEG;i++)</pre>
            fa[tmp][i] = fa[fa[tmp][i-1]][i-1];
        for(int i = head[tmp]; i != -1;i = edge[i].next)
```

```
int v = edge[i].to;
            if(v == fa[tmp][0])continue;
            deg[v] = deg[tmp] + 1;
            fa[v][0] = tmp;
            que.push(v);
        }
    }
int LCA(int u,int v)
    if (deg[u] > deg[v]) swap(u,v);
    int hu = deg[u], hv = deg[v];
    int tu = u, tv = v;
    for(int det = hv-hu, i = 0; det ;det>>=1, i++)
        if (det &1)
            tv = fa[tv][i];
    if(tu == tv)return tu;
    for(int i = DEG-1; i >= 0; i--)
        if(fa[tu][i] == fa[tv][i])
           continue;
        tu = fa[tu][i];
        tv = fa[tv][i];
    return fa[tu][0];
bool flag[MAXN];
int main()
   int T;
   int n;
    int u, v;
    scanf("%d", &T);
    while(T--)
        scanf("%d", &n);
        init();
        memset(flag,false,sizeof(flag));
        for(int i = 1;i < n;i++)</pre>
            scanf("%d%d", &u, &v);
            addedge(u,v);
            addedge(v,u);
            flag[v] = true;
        int root;
        for(int i = 1;i <= n;i++)</pre>
            if(!flag[i])
                root = i;
                break;
            }
        BFS(root);
        scanf("%d%d", &u, &v);
        printf("%d\n", LCA(u, v));
   return 0;
}
```

19、欧拉路

欧拉回路:每条边只经过一次,而且回到起点 欧拉路径:每条边只经过一次,不要求回到起点

欧拉回路判断: 无向图:连通(不考虑度为0的点),每个顶点度数都为偶数。

有向图:基图连通(把边当成无向边,同样不考虑度为 0 的点),每个项点出度等于入度。 混合图(有无向边和有向边):首先是基图连通(不考虑度为 0 的点),然后需要借助网络流判定。 首先给原图中的每条无向边随便指定一个方向(称为初始定向),将原图改为有向图 G',然后的任务就是 改变 G'中某些边的方向(当然是无向边转化来的,原混合图中的有向边不能动)使其满足每个点的入度等于出度。

设 D [i]为 G'中(点 i 的出度 - 点 i 的入度)。 可以发现,在改变 G'中边的方向的过程中,任何点的 D 值的

奇偶性都不会发生改变(设将边<i, j>改为<j, i>,则 i 入度加 1 出度减 1, j 入度减 1 出度加 1, 两者之 差加 2 或减 2, 奇偶性不变)! 而最终要求的是每个点的入度等于出度,即每个点的 D 值都为 0, 是偶数,故 可得: 若初始定向得到的 G'中任意一个点的 D 值是奇数,那么原图中一定不存在欧拉环!

若初始 D 值都是偶数,则将 G'改装成网络:设立源点 S 和汇点 T,对于每个 D[i]>0 的点 i,连边<S, i>, 容量为 D[i]/2;对于每个 D[j]<0 的点 j,连边<j,T>,容量为-D[j]/2; G'中的每条边在网络中仍保 留,容量为 1(表示该边最多只能被改变方向一次)。求这个网络的最大流,若 S 引出的所有边均满流,则 原混合图是欧拉图,将网络中所有流量为 1 的中间边(就是不与 S 或 T 关联的边)在 G'中改变方向,形成的 新图 G''一定是有向欧拉图;若 S 引出的边中有的没有满流,则原混合图不是欧拉图。

欧拉路径的判断: 无向图:连通(不考虑度为 0 的点),每个顶点度数都为偶数或者仅有两个点的度数为偶数。 有向图:基图连通(把边当成无向边,同样不考虑度为 0 的点),每个顶点出度等于入度 或者有且仅有一个点的出度比入度多 1,有且仅有一个点的出度比入度少 1,其余出度等于入度。混合图: 如果存在欧拉回路,一点存在欧拉路径了。否则如果有且仅有两个点的(出度-入度)是奇数,那么给这个两个点加边,判断是否存在欧拉回路。

19.1 有向图

POJ 2337

给出 n 个小写字母组成的单词,要求将 n 个单词连接起来,使得前一个单词的最后一个字母和后一个单词的 第一个字母相同。输出字典序最小的解。

```
struct Edge
{
    int to,next;
    int index;
    bool flag;
}edge[2010];
int head[30],tot;
void init()
{
    tot = 0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int index)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    edge[tot].index = index;
```

```
edge[tot].flag = false;
   head[u] = tot++;
string str[1010];
int in[30],out[30];
int cnt;
int ans[1010];
void dfs(int u)
    for(int i = head[u] ;i != -1;i = edge[i].next)
        if(!edge[i].flag)
        {
            edge[i].flag = true;
            dfs(edge[i].to);
            ans[cnt++] = edge[i].index;
        }
int main()
{
   //freopen("in.txt","r",stdin);
   //freopen("out.txt", "w", stdout);
   int T,n;
   scanf("%d", &T);
    while (T--)
    {
        scanf("%d", &n);
        for(int i = 0;i < n;i++)</pre>
            cin>>str[i];
        sort(str,str+n);//要输出字典序最小的解,先按照字典序排序
        init();
        memset(in,0,sizeof(in));
        memset(out, 0, sizeof(out));
        int start = 100;
        for(int i = n-1; i >= 0; i--) //字典序大的先加入
            int u = str[i][0] - 'a';
            int v = str[i][str[i].length() - 1] - 'a';
            addedge(u,v,i);
            out[u]++;
           in[v]++;
           if(u < start) start = u;</pre>
           if(v < start)start = v;</pre>
        int cc1 = 0, cc2 = 0;
        for(int i = 0;i < 26;i++)</pre>
```

```
if(out[i] - in[i] == 1)
               cc1++;
               start = i; //如果有一个出度比入度大 1 的点,就从这个点出发,否则从最小的点
出发
           else if(out[i] - in[i] == -1)
               cc2++;
           else if(out[i] - in[i] != 0)
               cc1 = 3;
       }
       if(! ( cc1 == 0 && cc2 == 0) || (cc1 == 1 && cc2 == 1) ))
           printf("***\n");
           continue;
       cnt = 0;
       dfs(start);
       if(cnt != n)//判断是否连通
           printf("***\n");
           continue;
       for(int i = cnt-1; i >= 0;i--)
           cout<<str[ans[i]];</pre>
           if(i > 0)printf(".");
           else printf("\n");
       }
   return 0;
19.2 无向图
SGU 101
struct Edge
   int to, next;
   int index;
   int dir;
   bool flag;
}edge[220];
int head[10],tot;
void init()
   memset(head, -1, sizeof(head));
   tot = 0;
void addedge(int u,int v,int index)
   edge[tot].to = v;
```

```
edge[tot].next = head[u];
    edge[tot].index = index;
    edge[tot].dir = 0;
    edge[tot].flag = false;
    head[u] = tot++;
    edge[tot].to = u;
    edge[tot].next = head[v];
    edge[tot].index = index;
    edge[tot].dir = 1;
    edge[tot].flag = false;
    head[v] = tot++;
int du[10];
vector<int>ans;
void dfs(int u)
    for(int i = head[u]; i != -1;i = edge[i].next)
        if(!edge[i].flag )
        {
            edge[i].flag = true;
            edge[i^1].flag = true;
            dfs(edge[i].to);
            ans.push_back(i);
        }
int main(){
   //freopen("in.txt","r",stdin);
   //freopen("out.txt", "w", stdout);
   int n;
    while(scanf("%d", &n) == 1)
        init();
        int u, v;
        memset(du,0,sizeof(du));
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d%d", &u, &v);
            addedge(u,v,i);
            du[u]++;
            du[v]++;
        int s = -1;
        int cnt = 0;
        for(int i = 0;i <= 6;i++)</pre>
            if(du[i]&1) {cnt++; s = i;}
            if(du[i] > 0 && s == -1)
                s = i;
        bool ff = true;
        if(cnt != 0 && cnt != 2)
            printf("No solution\n");
            continue;
        ans.clear();
        dfs(s);
        if(ans.size() != n)
```

```
printf("No solution\n");
            continue;
        for(int i = 0;i < ans.size();i++)</pre>
            printf("%d ",edge[ans[i]].index);
            if (edge[ans[i]].dir == 0)printf("-\n");
            else printf("+\n");
        }
   return 0;
}
19.3 混合图
POJ 1637 (本题保证了连通,故不需要判断连通,否则要判断连通)
const int MAXN = 210;
//最大流 ISAP 部分
const int MAXM = 20100;
const int INF = 0x3f3f3f3f;
struct Edge
    int to, next, cap, flow;
}edge[MAXM];
int tol;
int head[MAXN];
int gap[MAXN], dep[MAXN], pre[MAXN], cur[MAXN];
void init()
    tol = 0;
    memset(head, -1, sizeof(head));
}
void addedge(int u,int v,int w,int rw = 0)
    edge[tol].to = v;
    edge[tol].cap = w;
    edge[tol].next = head[u];
    edge[tol].flow = 0;
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = rw;
    edge[tol].next = head[v];
    edge[tol].flow = 0;
    head[v] = tol++;
int sap(int start,int end,int N)
    memset(gap, 0, sizeof(gap));
    memset(dep, 0, sizeof(dep));
    memcpy(cur, head, sizeof(head));
    int u = start;
    pre[u] = -1;
    gap[0] = N;
    int ans = 0;
    while(dep[start] < N)</pre>
        if(u == end)
            int Min = INF;
            for(int i = pre[u]; i != -1;i = pre[edge[i^1].to])
                if (Min > edge[i].cap - edge[i].flow)
```

```
Min = edge[i].cap - edge[i].flow;
            for(int i = pre[u];i != -1;i = pre[edge[i^1].to])
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
            u = start;
            ans += Min;
            continue;
        bool flag = false;
        int v;
        for(int i = cur[u];i != -1;i = edge[i].next)
            v = edge[i].to;
            if(edge[i].cap - edge[i].flow && dep[v] + 1 == dep[u])
                flag = true;
                cur[u] = pre[v] = i;
                break;
            }
        }
        if(flag)
            u = v;
           continue;
        int Min = N;
        for(int i = head[u];i != -1;i = edge[i].next)
            if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)</pre>
                Min = dep[edge[i].to];
               cur[u] = i;
            }
        gap[dep[u]]--;
        if(!gap[dep[u]])return ans;
        dep[u] = Min+1;
        gap[dep[u]]++;
        if(u != start)u = edge[pre[u]^1].to;
   return ans;
//the end of 最大流部分
int in [MAXN], out [MAXN]; //每个点的出度和入度
int main()
   //freopen("in.txt","r",stdin);
   //freopen("out.txt","w", stdout);
   int T;
   int n,m;
    scanf("%d", &T);
    while (T--)
        scanf("%d%d", &n, &m);
        init();
        int u, v, w;
        memset(in,0,sizeof(in));
```

memset(out, 0, sizeof(out));

```
while (m--)
            scanf ("%d%d%d", &u, &v, &w);
            out[u]++; in[v]++;
            if(w == 0)//双向
               addedge (u, v, 1);
        }
        bool flag = true;
        for(int i = 1;i <= n;i++)</pre>
            if(out[i] - in[i] > 0)
               addedge(0,i,(out[i] - in[i])/2);
            else if(in[i] - out[i] > 0)
               addedge(i,n+1,(in[i] - out[i])/2);
            if((out[i] - in[i]) & 1) flag = false;
        if(!flag)
        {
            printf("impossible\n");
            continue;
        sap(0,n+1,n+2);
        for(int i = head[0]; i != -1;i = edge[i].next)
            if(edge[i].cap > 0 && edge[i].cap > edge[i].flow)
                flag = false;
               break;
        if(flag)printf("possible\n");
        else printf("impossible\n");
    return 0;
 }
 19.4 Fleury 打印欧拉回路
* 删边要注意复杂度,尽量别用标记删除,而是直接删除
 * 无向图满足欧拉回路: 度为偶数,或者度为奇数的点个数为 2
 * 有向图满足欧拉回路: 入度全部等于出度,或者 1 个点入度-出度=1,一个点出度-入度=1,其他点入
度等于出度
void Fleury(int u) {
   for(int i = Head[u]; ~i; i = Head[u]) {
       Head[u] = E[i].nxt;
       if(!vis[i | 1]) {
           int v = E[i].v;
           vis[i | 1] = 1;
           Fleury(V);
   Path[++r] = u;
 20、树分治
/*点分治通常采用前序遍历*/
int Tree cnt(int u, int f) {
   int ret = 1;
   for(int i = Head[u]; ~i; i = E[i].nxt) {
       int v = E[i].v;
       if(v == f || vis[v]) continue;
       ret += Tree_cnt(v, u);
```

```
return ret;
int G_DFS(int n, int u, int f, int &ansn, int &ansid) {
    A[u] = 1; int ret = 0;
    for(int i = Head[u]; ~i; i = E[i].nxt) {
       int v = E[i].v;
       if(v == f || vis[v]) continue;
       int nxt = G_DFS(n, v, u, ansn, ansid);
       ret = max(ret, nxt); A[u] += ret;
    ret = max(ret, n - A[u]);
    if(ret < ansn) ansn = ret, ansid = u;</pre>
   return A[u];
/*一键查找树重心,注意打标记 vis 隔开子树*/
int Tree G(int u) {
    int cnt = Tree_cnt(u, -1), ansn = INF, ansid = 0;
    G_DFS(n, u, -1, ansn, ansid);
    return ansid;
/*维护点到根的距离,用 DFN 标记方便排序*/
void Tree_deep(int u, int f, int d, int &DFN) {
   A[++DFN] = d;
    for(int i = Head[u]; ~i; i = E[i].nxt) {
       int v = E[i].v, cost = E[i].cost;
       if(v == f || vis[v]) continue;
       Tree_deep(v, u, d + cost, DFN);
```

21、删两条边不连通

先搞一颗生成树,给每条非树边随机 hash 对于每条树边 hash 值=所有经过他的非树边的 hash 值 xor 和 如果存在两条边的 hash 值相等,则不连通。

计算几何

1、基本函数

```
1.1 Point 定义
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x)
   if(fabs(x) < eps)return 0;</pre>
   if(x < 0)return -1;
   else return 1;
}
struct Point
   double x,y;
   Point(){}
   Point(double _x,double _y)
       x = _x; y = _y;
   Point operator - (const Point &b) const
       return Point(x - b.x,y - b.y);
    }
    //叉积
   double operator ^(const Point &b)const
       return x*b.y - y*b.x;
    }
    //点积
   double operator *(const Point &b)const
       return x*b.x + y*b.y;
    //绕原点旋转角度 B (弧度值),后 x,y 的变化
   void transXY(double B)
    {
       double tx = x, ty = y;
       x = tx*cos(B) - ty*sin(B);
       y = tx*sin(B) + ty*cos(B);
```

```
};
   1.2 Line 定义
struct Line
   Point s,e;
   Line(){}
   Line(Point _s,Point _e)
       s = _s;e = _e;
    //两直线相交求交点
    //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
    //只有第一个值为2时,交点才有意义
   pair<int, Point> operator &(const Line &b) const
      Point res = s;
      if(sgn((s-e)^(b.s-b.e)) == 0)
         if(sqn((s-b.e)^(b.s-b.e)) == 0)
             return make pair(0,res);//重合
         else return make pair(1,res);//平行
      double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x += (e.x-s.x)*t;
      res.y += (e.y-s.y) *t;
      return make pair(2,res);
} ;
   1.3 两点间距离
//*两点间距离
double dist(Point a, Point b)
   return sqrt((a-b) * (a-b));
}
   1.4 判断:线段相交
//*判断线段相交
bool inter(Line 11, Line 12)
   return
   \max(11.s.x, 11.e.x) >= \min(12.s.x, 12.e.x) &&
   \max(12.s.x, 12.e.x) >= \min(11.s.x, 11.e.x) &&
   \max(11.s.y, 11.e.y) >= \min(12.s.y, 12.e.y) &&
   \max(12.s.y, 12.e.y) >= \min(11.s.y, 11.e.y) &&
   sgn((12.s_11.e)^(11.s_11.e)) *sgn((12.e_11.e)^(11.s_11.e)) <= 0 \&\&
   sgn((11.s-12.e)^(12.s-12.e))*sgn((11.e-12.e)^(12.s-12.e)) <= 0;
}
   1.5 判断: 直线和线段相交
//判断直线和线段相交
bool Seg_inter_line(Line 11, Line 12) //判断直线 11 和线段 12 是否相交
{
   return sgn((12.s-11.e)^(11.s-11.e))*sgn((12.e-11.e)^(11.s-11.e)) <= 0;
}
   1.6 点到直线距离
```

```
//点到直线距离
//返回为 result, 是点到直线最近的点
Point PointToLine (Point P, Line L)
   Point result;
   double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
   result.x = L.s.x + (L.e.x-L.s.x)*t;
   result.y = L.s.y + (L.e.y-L.s.y)*t;
   return result;
   1.7 点到线段距离
//点到线段的距离
//返回点到线段最近的点
Point NearestPointToLineSeg(Point P, Line L)
   Point result;
   double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
   if(t >= 0 && t <= 1)
      result.x = L.s.x + (L.e.x - L.s.x)*t;
      result.y = L.s.y + (L.e.y - L.s.y)*t;
}else{
      if (dist(P,L.s) < dist(P,L.e))</pre>
         result = L.s;
      else result = L.e;
   return result;
}
   1.8 计算多边形面积
//计算多边形面积
//点的编号从 0~n-1
double CalcArea(Point p[],int n)
   double res = 0;
   for(int i = 0;i < n;i++)</pre>
      res += (p[i]^p[(i+1)%n])/2;
   return fabs(res);
}
   1.9 判断点在线段上
//*判断点在线段上
bool OnSeg(Point P, Line L)
{
   return
   sgn((L.s-P)^(L.e-P)) == 0 &&
   sgn((P.x - L.s.x) * (P.x - L.e.x)) \le 0 &&
   sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;
}
   1.10 判断点在凸多边形内
//*判断点在凸多边形内
//点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
//点的编号:0~n-1
//返回值:
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inConvexPoly(Point a, Point p[], int n)
   for(int i = 0;i < n;i++)</pre>
```

```
if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1;</pre>
       else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0;
   return 1;
}
   1.11 判断点在任意多边形内
//*判断点在任意多边形内
//射线法, poly[]的顶点数要大于等于 3, 点的编号 0~n-1
//返回值
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inPoly(Point p, Point poly[], int n) {
   int cnt;
   Line ray, side;
   cnt = 0;
   ray.s = p;
   ray.e.y = p.y;
   ray.e.x = -100000000000.0;//-INF,注意取值防止越界
   for(int i = 0;i < n;i++)</pre>
       side.s = poly[i];
       side.e = poly[(i+1)%n];
       if(OnSeg(p,side))return 0;
       //如果平行轴则不考虑
       if(sgn(side.s.y - side.e.y) == 0)
           continue;
       if(OnSeg(side.s,ray))
           if(sgn(side.s.y - side.e.y) > 0)cnt++;
       else if(OnSeg(side.e,ray))
           if(sgn(side.e.y - side.s.y) > 0)cnt++;
       else if(inter(ray, side))
           cnt++;
   if(cnt % 2 == 1)return 1;
   else return -1;
   1.12 判断凸多边形
```

//判断凸多边形

```
//允许共线边
//点可以是顺时针给出也可以是逆时针给出
//点的编号 1~n-1
bool isconvex(Point poly[],int n)
   bool s[3];
   memset(s, false, sizeof(s));
    for(int i = 0;i < n;i++)</pre>
       s[sgn((poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]))+1] = true;
       if(s[0] && s[2])return false;
   return true;
}
2、凸包
* 求凸包, Graham 算法
* 点的编号 0~n-1
* 返回凸包结果 Stack[0~top-1]为凸包的编号
const int MAXN = 1010;
Point list[MAXN];
int Stack[MAXN],top;
//相对于 list[0]的极角排序
bool cmp(Point p1, Point p2)
    double tmp = (p1-list[0])^(p2-list[0]);
    if(sgn(tmp) > 0)return true;
    else if (sgn(tmp) == 0 \&\& sgn(dist(p1,list[0]) - dist(p2,list[0])) <= 0)
       return true;
   else return false;
void Graham(int n)
   Point p0;
   int k = 0;
   p0 = list[0];
    //找最下边的一个点
    for(int i = 1;i < n;i++)</pre>
       if((p0.y > list[i].y) \mid | (p0.y == list[i].y && p0.x > list[i].x))
           p0 = list[i];
           k = i;
       }
    swap(list[k],list[0]);
    sort(list+1,list+n,_cmp);
    if(n == 1)
       top = 1;
       Stack[0] = 0;
       return;
    if(n == 2)
    {
```

```
top = 2;
        Stack[0] = 0;
        Stack[1] = 1;
        return ;
    }
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2;i < n;i++)</pre>
        while(top > 1 &&
sgn((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <=</pre>
0)
        top--;
        Stack[top++] = i;
}
3、平面最近点对(HDU 1007)
const double eps = 1e-6;
const int MAXN = 100010;
const double INF = 1e20;
struct Point
   double x, y;
};
double dist(Point a, Point b)
   return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
Point p[MAXN];
Point tmpt[MAXN];
bool cmpxy(Point a, Point b)
   if(a.x != b.x)return a.x < b.x;</pre>
  else return a.y < b.y;</pre>
bool cmpy(Point a, Point b)
   return a.y < b.y;</pre>
double Closest_Pair(int left,int right)
{
   double d = INF;
   if(left == right)return d;
   if(left + 1 == right)
      return dist(p[left],p[right]);
   int mid = (left+right)/2;
   double d1 = Closest Pair(left, mid);
   double d2 = Closest Pair(mid+1, right);
   d = min(d1, d2);
   int k = 0;
   for(int i = left;i <= right;i++)</pre>
      if(fabs(p[mid].x - p[i].x) \le d)
          tmpt[k++] = p[i];
   sort(tmpt, tmpt+k, cmpy);
```

```
WONZY の ACM 模板
   for(int i = 0; i <k; i++)
      for(int j = i+1; j < k && tmpt[j].y - tmpt[i].y < d; j++)</pre>
           d = min(d, dist(tmpt[i], tmpt[j]));
       }
   return d;
}
int main()
{
   int n;
   while(scanf("%d", &n) ==1 && n)
      for(int i = 0;i < n;i++)</pre>
          scanf("%lf%lf",&p[i].x,&p[i].y);
      sort(p,p+n,cmpxy);
      printf("%.21f\n",Closest Pair(0,n-1)/2);
   return 0;
}
4、旋转卡壳
   4.1 求解平面最远点对(POJ 2187 Beauty Contest)
struct Point
   int x,y;
   Point(int _x = 0, int _y = 0)
      x = _x; y = _y;
   Point operator - (const Point &b) const
```

```
bool cmp (Point p1, Point p2)
   int tmp = (p1-list[0])^(p2-list[0]);
   if(tmp > 0)return true;
   else if(tmp == 0 && dist2(p1,list[0]) <= dist2(p2,list[0]))
       return true;
   else return false;
}
void Graham(int n)
   Point p0;
   int k = 0;
   p0 = list[0];
   for(int i = 1;i < n;i++)</pre>
       if(p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
          p0 = list[i];
          k = i;
       }
   swap(list[k],list[0]);
   sort(list+1,list+n, cmp);
   if(n == 1)
       top = 1;
       Stack[0] = 0;
      return;
   }
   if(n == 2)
       top = 2;
       Stack[0] = 0; Stack[1] = 1;
       return;
   Stack[0] = 0; Stack[1] = 1;
   top = 2;
   for(int i = 2;i < n;i++)</pre>
       while(top > 1 &&
((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0)
          top--;
       Stack[top++] = i;
   }
}
//旋转卡壳,求两点间距离平方的最大值
int rotating_calipers(Point p[],int n)
   int ans = 0;
   Point v;
   int cur = 1;
   for(int i = 0;i < n;i++)</pre>
       v = p[i]-p[(i+1)%n];
       while((v^(p[(cur+1)%n]-p[cur])) < 0)</pre>
          cur = (cur+1) %n;
       ans = \max(ans, \max(dist2(p[i], p[cur]), dist2(p[(i+1)%n], p[(cur+1)%n])));
   return ans;
}
Point p[MAXN];
```

```
int main() {
   int n;
   while(scanf("%d",&n) == 1)
       for(int i = 0;i < n;i++)list[i].input();</pre>
      Graham(n);
      for(int i = 0;i < top;i++)p[i] = list[Stack[i]];</pre>
      printf("%d\n", rotating_calipers(p, top));
   return 0;
}
   4.2 求解平面点集最大三角形
//旋转卡壳计算平面点集最大三角形面积
int rotating_calipers(Point p[],int n)
{
   int ans = 0;
   Point v;
   for(int i = 0;i < n;i++)</pre>
      int j = (i+1)%n;
      int k = (j+1)%n;
       while(j != i && k != i)
          ans = \max(ans, abs((p[j]-p[i])^(p[k]-p[i])));
          while ((p[i]-p[j])^(p[(k+1)%n]-p[k])) < 0)
             k = (k+1) %n;
          j = (j+1) %n;
   return ans;
}
Point p[MAXN];
int main(){
   int n;
   while(scanf("%d", &n) == 1)
       if(n == -1)break;
       for(int i = 0;i < n;i++)list[i].input();</pre>
      Graham(n);
      for(int i = 0;i < top;i++)p[i] = list[Stack[i]];</pre>
      printf("%.2f\n", (double) rotating_calipers(p,top)/2);
   return 0;
   4.3 求解两凸包最小距离 (POJ 3608)
const double eps = 1e-8;
int sgn(double x) {
   if(fabs(x) < eps)return 0;</pre>
   if(x < 0) return -1;
   else return 1;
struct Point{
   double x,y;
   Point(double _x = 0,double _y = 0) {
         x = _x; y = _y;
   Point operator -(const Point &b)const{
      return Point(x - b.x, y - b.y);
```

```
double operator ^(const Point &b)const{
      return x*b.y - y*b.x;
   double operator *(const Point &b)const{
      return x*b.x + y*b.y;
   }
   void input(){
     scanf("%lf%lf",&x,&y);
} ;
struct Line{
  Point s,e;
  Line(){}
   Line(Point _s, Point _e) {
     s = _s; e = _e;
} ;
//两点间距离
double dist(Point a, Point b) {
   return sqrt((a-b) * (a-b));
}
//点到线段的距离,返回点到线段最近的点
Point NearestPointToLineSeg(Point P,Line L) {
   Point result;
   double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
   if(t >=0 && t <= 1) {
      result.x = L.s.x + (L.e.x - L.s.x)*t;
      result.y = L.s.y + (L.e.y - L.s.y)*t;
      if(dist(P,L.s) < dist(P,L.e))</pre>
         result = L.s;
      else result = L.e;
   return result;
}
* 求凸包, Graham 算法
* 点的编号 0~n-1
* 返回凸包结果 Stack[0~top-1]为凸包的编号
```

```
const int MAXN = 10010;
Point list[MAXN];
int Stack[MAXN], top;
//相对于 list[0]的极角排序
bool _cmp(Point p1, Point p2) {
    double tmp = (p1-list[0])^(p2-list[0]);
    if(sgn(tmp) > 0)return true;
    else if(sgn(tmp) == 0 \&\& sgn(dist(p1,list[0]) - dist(p2,list[0])) <= 0)
         return true;
    else return false;
void Graham(int n) {
    Point p0;
    int k = 0;
    p0 = list[0];
    //找最下边的一个点
    for(int i = 1;i < n;i++) {</pre>
        if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) ) {
           p0 = list[i];
            k = i;
        }
    }
    swap(list[k],list[0]);
    sort(list+1, list+n, _cmp);
    if(n == 1) {
       top = 1;
        Stack[0] = 0;
       return;
    if(n == 2) {
        top = 2;
        Stack[0] = 0;
       Stack[1] = 1;
       return;
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2;i < n;i++) {</pre>
        while(top > 1 &&
sgn((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <=</pre>
0)
            top--;
        Stack[top++] = i;
    }
}
//点 p0 到线段 p1p2 的距离
double pointtoseg(Point p0, Point p1, Point p2)
   return dist(p0,NearestPointToLineSeg(p0,Line(p1,p2)));
//平行线段 p0p1 和 p2p3 的距离
double dispallseq(Point p0, Point p1, Point p2, Point p3) {
   double ans1 = min(pointtoseg(p0,p2,p3),pointtoseg(p1,p2,p3));
   double ans2 = min(pointtoseg(p2,p0,p1),pointtoseg(p3,p0,p1));
   return min(ans1,ans2);
```

```
//得到向量 a1a2 和 b1b2 的位置关系
double Get angle(Point a1, Point a2, Point b1, Point b2) {
   return (a2-a1) ^ (b1-b2);
double rotating_calipers(Point p[],int np,Point q[],int nq){
   int sp = 0, sq = 0;
   for(int i = 0;i < np;i++)</pre>
       if(sgn(p[i].y - p[sp].y) < 0)
          sp = i;
   for(int i = 0;i < nq;i++)</pre>
      if(sgn(q[i].y - q[sq].y) > 0)
          sq = i;
   double tmp;
   double ans = dist(p[sp],q[sq]);
   for(int i = 0;i < np;i++) {</pre>
       while (sgn(tmp = Get angle(p[sp],p[(sp+1)%np],q[sq],q[(sq+1)%nq])) < 0)
          sq = (sq+1) %nq;
       if(sgn(tmp) == 0)
          ans = min(ans, dispallseg(p[sp], p[(sp+1)%np], q[sq], q[(sq+1)%nq]));
       else ans = min(ans,pointtoseg(q[sq],p[sp],p[(sp+1)%np]));
       sp = (sp+1) %np;
   return ans;
double solve(Point p[],int n,Point q[],int m) {
   return min(rotating_calipers(p,n,q,m),rotating_calipers(q,m,p,n));
Point p[MAXN],q[MAXN];
int main() {
   int n,m;
   while(scanf("%d%d",&n,&m) == 2) {
       if(n == 0 && m == 0)break;
       for(int i = 0;i < n;i++)</pre>
          list[i].input();
      Graham(n);
       for(int i = 0;i < top;i++)</pre>
          p[i] = list[i];
       n = top;
       for(int i = 0;i < m;i++)</pre>
          list[i].input();
       Graham(m);
       for(int i = 0;i < top;i++)</pre>
          q[i] = list[i];
      m = top;
      printf("%.4f\n", solve(p,n,q,m));
   }
   return 0;
}
5、半平面交
```

5.1 半平面交模板(from UESTC)

```
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x) {
```

```
if(fabs(x) < eps) return 0;</pre>
    if(x < 0) return -1;
    else return 1;
struct Point{
    double x, y;
    Point(){}
    Point(double _x, double _y)
       x = _x; y = _y;
    Point operator - (const Point &b) const
       return Point(x - b.x, y - b.y);
    double operator ^(const Point &b)const
    {
       return x*b.y - y*b.x;
    double operator *(const Point &b)const
       return x*b.x + y*b.y;
    }
};
struct Line
    Point s,e;
    double k;
    Line(){}
    Line(Point s, Point e)
       s = _s; e = _e;
       k = atan2(e.y - s.y,e.x - s.x);
    Point operator & (const Line &b) const
    {
       Point res = s;
       double t = ((s - b.s)^(b.s - b.e))/((s - e)^(b.s - b.e));
       res.x += (e.x - s.x)*t;
       res.y += (e.y - s.y) *t;
       return res;
    }
};
//半平面交,直线的左边代表有效区域
bool HPIcmp(Line a, Line b)
    if(fabs(a.k - b.k) > eps)return a.k < b.k;</pre>
   return ((a.s - b.s)^(b.e - b.s)) < 0;
Line Q[110];
void HPI(Line line[], int n, Point res[], int &resn)
   int tot = n;
    sort(line,line+n,HPIcmp);
   tot = 1;
    for(int i = 1;i < n;i++)</pre>
        if(fabs(line[i].k - line[i-1].k) > eps)
            line[tot++] = line[i];
```

```
int head = 0, tail = 1;
    Q[0] = line[0];
    Q[1] = line[1];
    resn = 0;
    for(int i = 2; i < tot; i++)</pre>
        if(fabs((Q[tail].e-Q[tail].s)^(Q[tail-1].e-Q[tail-1].s)) < eps | |
fabs((Q[head].e-Q[head].s)^(Q[head+1].e-Q[head+1].s)) < eps)</pre>
        return:
        while(head < tail && (((Q[tail]&Q[tail-1]) -</pre>
line[i].s)^(line[i].e-line[i].s)) > eps)
           tail--;
        while(head < tail && (((Q[head]&Q[head+1]) -</pre>
line[i].s)^(line[i].e-line[i].s)) > eps)
            head++; Q[++tail]
        = line[i];
    while(head < tail && (((Q[tail]&Q[tail-1]) -</pre>
Q[head].s)^(Q[head].e-Q[head].s)) > eps)
       tail--;
    while(head < tail && (((Q[head]&Q[head-1]) -</pre>
Q[tail].s)^(Q[tail].e-Q[tail].e)) > eps)
       head++;
    if(tail <= head + 1) return;</pre>
    for(int i = head; i < tail; i++)</pre>
        res[resn++] = Q[i]&Q[i+1];
    if (head < tail - 1)</pre>
       res[resn++] = Q[head]&Q[tail];
}
   5.2 普通半平面交写法
POJ 1750
const double eps = 1e-18;
int sgn(double x) {
    if(fabs(x) < eps)return 0;</pre>
    if(x < 0) return -1;
    else return 1;
struct Point{
    double x,y;
    Point(){}
    Point(double x,double y)
        x = _x; y = _y;
    Point operator - (const Point &b) const
       return Point(x - b.x, y - b.y);
    double operator ^(const Point &b) const
        return x*b.y - y*b.x;
    double operator *(const Point &b)const
        return x*b.x + y*b.y;
    }
};
//计算多边形面积
double CalcArea(Point p[],int n)
```

```
double res = 0;
    for(int i = 0;i < n;i++)</pre>
        res += (p[i]^p[(i+1)%n]);
    return fabs(res/2);
}
//通过两点,确定直线方程
void Get equation(Point p1, Point p2, double &a, double &b, double &c)
   a = p2.y - p1.y;
   b = p1.x - p2.x;
    c = p2.x*p1.y - p1.x*p2.y;
}
//求交点
Point Intersection (Point p1, Point p2, double a, double b, double c)
    double u = fabs(a*p1.x + b*p1.y + c);
    double v = fabs(a*p2.x + b*p2.y + c);
    Point t;
    t.x = (p1.x*v + p2.x*u)/(u+v);
    t.y = (p1.y*v + p2.y*u)/(u+v);
    return t;
}
Point tp[110];
void Cut(double a,double b,double c,Point p[],int &cnt)
{
    int tmp = 0;
    for(int i = 1;i <= cnt;i++) {</pre>
        //当前点在左侧, 逆时针的点
        if(a*p[i].x + b*p[i].y + c < eps)tp[++tmp] = p[i];
        else{
            if(a*p[i-1].x + b*p[i-1].y + c < -eps)
                tp[++tmp] = Intersection(p[i-1],p[i],a,b,c);
            if(a*p[i+1].x + b*p[i+1].y + c < -eps) tp[++tmp]
                = Intersection(p[i],p[i+1],a,b,c);
        }
    for(int i = 1;i <= tmp;i++)</pre>
       p[i] = tp[i];
    p[0] = p[tmp];
    p[tmp+1] = p[1];
    cnt = tmp;
double V[110], U[110], W[110];
int n;
const double INF = 100000000000.0;
Point p[110];
bool solve(int id)
    p[1] = Point(0,0);
    p[2] = Point(INF, 0);
    p[3] = Point(INF, INF);
    p[4] = Point(0, INF);
    p[0] = p[4];
    p[5] = p[1];
    int cnt = 4;
    for(int i = 0;i < n;i++)</pre>
        if(i != id)
```

```
WONZY の ACM 模板
           double a = (V[i] - V[id])/(V[i]*V[id]);
           double b = (U[i] - U[id])/(U[i]*U[id]);
           double c = (W[i] - W[id])/(W[i]*W[id]);
           if(sqn(a) == 0 && sqn(b) == 0)
               if(sgn(c) >= 0)return false;
               else continue;
           Cut(a,b,c,p,cnt);
    if(sgn(CalcArea(p,cnt)) == 0)return false;
   else return true;
int main(){
   while (scanf ("%d", &n) == 1) {
       for(int i = 0;i < n;i++)</pre>
           scanf("%lf%lf%lf", &V[i], &U[i], &W[i]);
       for(int i = 0;i < n;i++) {</pre>
           if(solve(i))printf("Yes\n");
           else printf("No\n");
   return 0;
6、三点求圆心坐标(三角形外心)
//过三点求圆心坐标
Point waixin(Point a, Point b, Point c)
   double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1)/2;
   double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2)/2;
   double d = a1*b2 - a2*b1;
   return Point(a.x + (c1*b2 - c2*b1)/d, a.y + (a1*c2 -a2*c1)/d);
7、求两圆相交的面积
//两个圆的公共部分面积
double Area of overlap (Point c1, double r1, Point c2, double r2)
    double d = dist(c1,c2);
    if(r1 + r2 < d + eps)return 0;
   if(d < fabs(r1 - r2) + eps)
       double r = min(r1, r2);
       return PI*r*r;
```

double x = (d*d + r1*r1 - r2*r2)/(2*d);

return r1*r1*t1 + r2*r2*t2 - d*r1*sin(t1);

double t1 = acos(x / r1);double t2 = acos((d - x)/r2); }

8、Pick 公式

顶点坐标均是整点的简单多边形:面积=内部格点数目+边上格点数目/2-1

动态规划

1、最长上升子序列 0(nlogn)

```
const int MAXN=500010;
 int a[MAXN],b[MAXN];
 //用二分查找的方法找到一个位置,使得 num>b[i-1] 并且 num<b[i],并用 num 代替 b[i]
 int Search(int num, int low, int high) {
    int mid;
    while(low<=high) {</pre>
       mid=(low+high)/2;
       if(num>=b[mid]) low=mid+1;
       else high=mid-1;
    return low;
 int DP(int n) {
    int i,len,pos;
    b[1]=a[1];
    len=1;
    for (i=2;i<=n;i++) {</pre>
       if(a[i]>=b[len])//如果a[i]比b[]数组中最大还大直接插入到后面即可
          len=len+1;
          b[len]=a[i];
       } else//用二分的方法在 b[]数组中找出第一个比 a[i]大的位置并且让 a[i]替代这个位置
          pos=Search(a[i],1,len);
          b[pos]=a[i];
    return len;
 }
 2、石子合并
 2.1 四边形不等式优化
复杂度: 0(n^2)
void solve() {
   sum[0] = 0;
   memset(dp, 0x3f, sizeof(dp));
```

```
for(int i = 1; i <= n; i++) {
       sum[i] = sum[i - 1] + a[i];
       dp[i][i] = 0; p[i][i] = i;
   for(int len = 2; len <= n; len++) {</pre>
       for(int i = 1; i + len - 1 <= n; i++) {</pre>
           int j = i + len - 1;
           for(int k = p[i][j - 1]; k \le p[i + 1][j]; k++) {
               if (k + 1 > j) continue;
               int v = dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1];
               if(dp[i][j] > v) {
                   dp[i][j] = v;
                   p[i][j] = k;
          }
      }
   }
 2.2 GarsiaWachs 算法
 复杂度: 0(nlogn)
 步骤:
 设序列是 stone[], 从左往右, 找一个满足 stone[k-1] <= stone[k+1]的 k, 找到后合并 stone[k]
 和 stone[k-1], 再从当前位置开始向左找最大的 j, 使其满足 stone[j] > stone[k]+stone[k-1],
 插到 j 的后面就行。一直重复,直到只剩下一堆石子就可以了。在这个过程中,可以假设 stone [-1] 和
 stone[n]是正无穷的。
 基本思想是通过树的最优性得到一个节点间深度的约束,之后证明操作一次之后的解可以和原来的解一一
 对应,并保证节点移动之后他所在的深度不会改变。具体实现这个算法需要一点技巧,精髓在于不停快速
 寻找最小的 k, 即维护一个"2-递减序列"朴素的实现的时间复杂度是 O(n*n), 但可以用一个平衡树来优
 化,使得最终复杂度为O(nlogn)。
const int MAXN = 50000 + 5;
int n, t, stone[MAXN];
LL ans;
void combine(int k) {
   int tmp = stone[k] + stone[k - 1];
   ans += tmp;
   for(int i = k; i < t - 1; i++) stone[i] = stone[i + 1];
   for (j = k - 1; j > 0 \&\& stone[j - 1] < tmp; j--)
      stone[j] = stone[j - 1];
   stone[j] = tmp;
   while(j \ge 2 \&\& stone[j] \ge stone[j - 2]) {
       int d = t - j;
       combine (i - 1);
       j = t - d;
int main() {
   while(~scanf("%d", &n)) {
       if(n == 0) break;
       for(int i = 0; i < n; i++) scanf("%d", stone + i);</pre>
       t. = 1:
       ans = 0;
       for (int i = 1; i < n; i++) {</pre>
           stone[t++] = stone[i];
           while (t \geq 3 && stone[t - 3] <= stone[t - 1])
               combine(t - 2);
       while(t > 1) combine(t - 1);
       printf("%I64d\n", ans);
```

return 0;

}

3、数位 DP

```
int dfs(int pos, int pre, int status, int limit) {
    if(pos < 1) return status;

    if(!limit && dp[pos][pre][status] != -1) return dp[pos][pre][status];

    int ret = 0, lst = limit ? DIG[pos] : 9;

    for(int i = 0; i <= lst; i ++)
        ret += dfs(pos - 1, i, status || (pre == 4 && i == 9), limit && (i == lst));

    if(!limit) dp[pos][pre][status] = ret;
    return ret;
}
LL solve(LL x) {
    int len = 0;
    while(x > 0) {
        dig[++ len] = x % 10;
        x /= 10;
    }
    return dfs(len, 0, 0, true);
}
```

4、Dilworth 定理

偏序集的两个定理:

定理 1 令 (x, \le) 是一个有限偏序集,并令 x 是其最大链的大小。则 x 可以被划分成 x 个但不能再少的 反链。

其对偶定理称为 Dilworth 定理:

定理 2 令 (x, \le) 是一个有限偏序集,并令 m 是反链的最大的大小。则 x 可以被划分成 m 个但不能再少的链。

说白了就是,链的最少划分数=反链的最长长度

相关的题目有 pku 1065, pku 3636, pku 1548。

这三个题目可以归结为:

给定 n 个二元组 (x, y) ,问存在最少多少个划分使得每个划分里面的二元组都满足 x1 <= x2 并且 y1 <= y2。

如果定义 $x1 \le x2$ && $y1 \le y2$ 为偏序关系的话,那么问题就转化成求这个集合的链的最少划分数。可以通过找最长反链长度来解决,这里的反链关系是 x1 > x2 || y1 > y2。如果把 n 个二元组按照 x 递增排序,相同的 x 按照 y 递增排序,那么我们只需对 y 找到一个最长递减子序列就是所求的答案,复杂度 O(nlogn)。对于相同的 x 之所以按照 y 递增排序是因为这里偏序关系带等号,这样相同的 x 其实可以划分到一起,把 y 按照递增排序就可以使得相同的 x 最多只选择一个 y。

还有的题目要求满足 x1 < x2 && y1 < y2, 这就需要把偏序关系相应修改。修改之后对于相同的 x, 每一个都会被划分到不同的集合(因为相等是不满足偏序关系的),所以这里的排序关系要改一下,x 相同的 y 要按照降序排列,这样求一个最长不递增子序列就是答案,y 递减保证可能会有多个 x 相同的二元组选入到结果中。

可惜对于贪心做法的正确性依然想不出来>.<

偏序集的 Dilworth 定理 (转载) 2008/04/21 18:48 先介绍一下偏序关系:

偏序是在集合 X 上的二元关系 \le (这只是个抽象符号,不是"小于或等于"),它满足自反性、反对称性和传递性。即,对于 X 中的任意元素 a,b 和 c ,有:

自反性: a≤a;

反对称性:如果 $a \le b ext{ 且 } b \le a$,则有 a = b; 传递性:如果 $a \le b ext{ 且 } b \le c$,则 $a \le c$ 。 带有偏序关系的集合称为偏序集。

 $\diamondsuit(X,\le)$ 是一个偏序集,对于集合中的两个元素 a、b,如果有 a ≤ b 或者 b ≤ a,则称 a 和 b 是可比的,否则 a 和 b 不可比。

在 X 中,对于元素 a,如果任意元素 b,由 b≤a 得出 b=a,则称 a 为极小元。

- 一个反链 A 是 X 的一个子集,它的任意两个元素都不能进行比较。
- 一个链 C 是 X 的一个子集,它的任意两个元素都可比。

定理1的证明。

证明:设 p 为最少反链个数

(1)先证明 X 不能划分成小于 r 个反链。由于 r 是最大链 C 的大小,C 中任两个元素都可比,因此 C 中任两个元素都不能属于同一反链。所以 p>=r。

(2)设 X1 = X,A1 是 X1 中的极小元的集合。从 X1 中删除 A1 得到 X2。注意到对于 X2 中任意元素 a2,必存在 X1 中的元素 a1,使得 a1 < = a2。令 A2 是 X2 中极小元的集合,从 X2 中删除 A2 得到 X3……最终,会有一个 Xk 非空而 X(k+1)为空。于是 A1,A2,…,Ak 就是 X 的反链的划分,同时存在链 a1 < = a2 < = ... < = ak,其中 ai 在 Ai 内。由于 r 是最长链大小,因此 r> = k。由于 X 被划分成了 k 个反链,因此 r> = k> = p。因此 r= p,定理 1 得证。

回过头来看导弹拦截第二问。我们定义偏序关系 \le :a \le b表示 a 出现不迟于 b 且 a 的值不小于 b 的值。这个偏序集的最长反链即最长上升子序列,它的不上升子序列是偏序集的链。由 Dilworth 定理可知,**不上升子序列的最小划分数**=最长上升子序列的长度。

p.s. 这里的贪心方法是,每次选出所有的在它前面没有大于或等于它的数作为一组。其实我们每次选的是偏序集的最小元,因此我们最终得到的答案就是上面的 k。由 r<=p及 r>=k>=p可以得到 r=k=p,因此贪心正确。

练习题目:1677(hdu): Nested Dolls

博弈

1、斐波那契博弈

题意:1 堆石子 n 个,第一个人可以取任意个数但不能全部取完,以后每次拿的个数不能超过上一次对手拿的个数 的 2 倍,轮流拿石子,问先手是否必赢

思路: 斐波那契博弈,后手赢的情况的数字会呈现斐波那契数列。

2、威佐夫博弈

题意:有两堆物品,数目分别为 a,b,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜

思路:威佐夫博弈博弈,满足黄金分割,且每个数字只会出现一次。满足 $a = \left\lfloor \frac{1+\sqrt{5}}{2} \right\rfloor$, b = a + k,后手必胜,否则先手必胜。当 a, b 比较大的时候,可以用乘法模拟(a, $b \le 10^{18}$)或者高精度来减少精度 。 计算 $\sqrt{5}$ 时,

Java 的 BigDemical 中没有开根号的函数。需要自己写二分或者牛顿迭代法开根号。

```
if(a >= b) swap(a, b);

int k = b - a;

int x = (sqrt(5.0) + 1) / 2 * k, y = x + k;

if(a == x && b == y) printf("0\n");

else printf("1\n");
```

3、巴什博弈

题意:什么是巴什博弈:只有一堆 n 个物品,两个人轮流从这堆物品中取物 , 规定每次至少取一个,最多 取 m 个。最后取光者得胜。

思路: 巴什博弈, 当 m%(n+1)!=0 时, 先手赢, 否则后手赢

4、Anti-num 博弈

SG 函数的求法一模一样,最后如果只有一堆,也能用 SJ 定理 如果为 Anti-Nim 游戏,如下情况先手 胜 SG 异或和为 0,且单个游戏的 SG 全部<=1 SG 异或不为 0,且存在单个游戏的 SG>1,即<=1 的 个数不等于独立游戏个数

5、Nim 博弈

题意:有若干堆石子,每堆石子的数量都是有限的,合 法的移动是"选择一堆石子并拿走若干颗(不能不拿)",如果轮到某个人时所有的 石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动)。

思路:Nim 游戏相当于把独立游戏分开计算 SG 函数,然后再用位异或 Sg[u]=Mex({后继的集合})相当于取出最小的集合中不存在的数字,可以发现 mex 的值总是比后继的个数要少 而且 vis 数组通常都是开在函数内部,不开在全局变量中,防止冲突。

对于一个 Nim 游戏的局面 (a1,a2, ..., an), 它是 P-Position 当且仅当 a1^a2^...^an=0.

6、SG 函数

6.1 计算从 1-n 范围内的 SG 值

```
* F(存储可以走的步数, Array[0]表示可以有多少种走法)
 * F[]需要从小到大排序
 * 1. 可选步数为 1-m 的连续整数,直接取模即可, SG(x)=x%(m+1);
 * 2. 可选步数为任意步, SG(x) = x;
 * 3. 可选步数为一系列不连续的数,用 GetSG (计算)
int SG[MAX], Hash[MAX];
void init(int F[], int n) {
   int i, j;
   memset(SG, 0, sizeof(SG));
   for (i = 0; i <= n; i++) {</pre>
       memset(Hash, 0, sizeof(Hash));
       for (j = 1; j \le F[0]; j++) {
           if(i < F[j])
               break;
           Hash[SG[i - F[j]]] = 1;
       for(j = 0; j <= n; j++) {</pre>
           if(Hash[j] == 0) {
               SG[i] = j;
               break;
       }
```

```
/**
* k 为可走步数,F 数组存储可走步数 (0~k-1)
int F[101], sg[10001], k;
int getsg(int m) {
    int hash[101] = \{0\};
    int i;
    for(i = 0; i < k; i++) {</pre>
        if(m - F[i] < 0)
            break;
        if(sg[m - F[i]] == -1)
            sg[m - F[i]] = getsg(m - F[i]);
        hash[sg[m - F[i]]] = 1;
    for(i = 0;; i++)
       if(hash[i] == 0)
            return i;
}
```

搜索

1. Dancing Links

1.1 精确覆盖

```
/*
* POJ3074
*/
const int N = 9; //3*3 数独
const int MaxN = N*N*N + 10;
const int MaxM = N*N*4 + 10;
const int maxnode = MaxN*4 + MaxM + 10;
char g[MaxN];
struct DLX
    int n,m,size;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[MaxN],S[MaxM];
    int ansd, ans[MaxN];
    void init(int _n,int _m) {
        n = _n;
        m = _m;
        for(int i = 0;i <= m;i++) {</pre>
            S[i] = 0;
            U[i] = D[i] = i;
            L[i] = i-1;
           R[i] = i+1;
        }
        R[m] = 0; L[0] = m;
        size = m;
        for(int i = 1;i <= n;i++)H[i] = -1;</pre>
    void Link(int r,int c)
        ++S[Col[++size]=c];
        Row[size] = r;
        D[size] = D[c];
```

```
U[D[c]] = size;
        U[size] = c;
        D[c] = size;
        if(H[r] < 0)H[r] = L[size] = R[size] = size;</pre>
            R[size] = R[H[r]];
            L[R[H[r]]] = size;
            L[size] = H[r];
            R[H[r]] = size;
        }
    void remove(int c){
        L[R[c]] = L[c]; R[L[c]] = R[c];
        for(int i = D[c];i != c;i = D[i])
            for(int j = R[i]; j != i; j = R[j])
                U[D[i]] = U[i];
                D[U[j]] = D[j];
                --S[Col[j]];
    void resume(int c) {
        for(int i = U[c];i != c;i = U[i])
            for(int j = L[i]; j != i; j = L[j])
                ++S[Col[U[D[j]]=D[U[j]]=j]];
        L[R[c]] = R[L[c]] = c;
    bool Dance(int d) {
        if(R[0] == 0)
            for (int i = 0; i < d; i++) g[(ans[i]-1)/9] = (ans[i]-1)%9 + '1';
            for(int i = 0;i < N*N;i++)printf("%c",g[i]);</pre>
            printf("\n");
            return true;
        int c = R[0];
        for(int i = R[0];i != 0;i = R[i])
            if(S[i] < S[c])
                c = i;
            remove(c);
        for(int i = D[c];i != c;i = D[i])
            ans[d] = Row[i];
            for(int j = R[i]; j != i; j = R[j]) remove(Col[j]);
            if (Dance (d+1)) return true;
            for(int j = L[i];j != i;j = L[j])resume(Col[j]);
        resume(c);
        return false;
};
void place(int &r,int &c1,int &c2,int &c3,int &c4,int i,int j,int k)
    r = (i*N+j)*N + k; c1 = i*N+j+1; c2 = N*N+i*N+k;
    c3 = N*N*2+j*N+k; c4 = N*N*3+((i/3)*3+(j/3))*N+k;
DLX dlx;
int main(){
   while (scanf("%s",g) == 1) {
```

```
return 0;
}
   1.2 可重复覆盖
* FZU1686
* /
const int MaxM = 15*15+10;
const int MaxN = 15*15+10;
const int maxnode = MaxN * MaxM;
const int INF = 0x3f3f3f3f;
struct DLX
    int n,m,size;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[MaxN],S[MaxM];
    int ansd;
    void init(int _n,int _m)
    {
       n = _n;
       m = _m;
        for(int i = 0;i <= m;i++)</pre>
           S[i] = 0;
           U[i] = D[i] = i;
           L[i] = i-1;
           R[i] = i+1;
       R[m] = 0; L[0] = m;
        size = m;
        for(int i = 1;i <= n;i++)H[i] = -1;</pre>
    void Link(int r,int c)
        ++S[Col[++size]=c];
       Row[size] = r;
        D[size] = D[c];
        U[D[c]] = size;
        U[size] = c;
        D[c] = size;
        if(H[r] < 0)H[r] = L[size] = R[size] = size;</pre>
        else{
           R[size] = R[H[r]];
           L[R[H[r]]] = size;
           L[size] = H[r];
           R[H[r]] = size;
        }
```

```
void remove(int c) {
        for(int i = D[c];i != c;i = D[i])
            L[R[i]] = L[i], R[L[i]] = R[i];
    void resume(int c) {
        for(int i = U[c];i != c;i = U[i])
           L[R[i]] = R[L[i]] = i;
    bool v[MaxM];
    int f()
        int ret = 0;
        for(int c = R[0]; c != 0;c = R[c])v[c] = true;
        for(int c = R[0]; c != 0;c = R[c])
            if(v[c])
                ret++;
                v[c] = false;
                for(int i = D[c];i != c;i = D[i])
                    for(int j = R[i]; j != i; j = R[j])
                        v[Col[j]] = false;
        return ret;
    void Dance(int d) {
        if(d + f() >= ansd) return;
        if(R[0] == 0) {
            if(d < ansd) ansd = d;</pre>
            return;
        int c = R[0];
        for(int i = R[0];i != 0;i = R[i])
            if(S[i] < S[c])
                c = i;
        for(int i = D[c];i != c;i = D[i])
            remove(i);
            for(int j = R[i]; j != i; j = R[j]) remove(j);
            Dance(d+1);
            for(int j = L[i]; j != i; j = L[j]) resume(j);
           resume(i);
};
DLX g;
```

```
int a[20][20];
int id[20][20];
int main(){
    int n,m;
    while(scanf("%d%d", &n, &m) == 2){
         int sz = 0;
        memset(id, 0, sizeof(id));
         for(int i = 0;i < n;i++)</pre>
             for (int j = 0; j < m; j++)</pre>
                 scanf("%d", &a[i][j]);
                 if(a[i][j] == 1)id[i][j] = (++sz);
         g.init(n*m,sz);
         sz = 1;
         int n1,m1;
         scanf("%d%d", &n1, &m1);
         for(int i = 0;i < n;i++)</pre>
             for (int j = 0; j < m; j++)</pre>
                 for(int x = 0;x < n1 && i + x < n;x++)</pre>
                      for(int y = 0;y < m1 && j + y < m;y++)</pre>
                          if(id[i+x][j+y])
                              g.Link(sz,id[i+x][j+y]);
                 sz++;
             }
         g.ansd = INF;
         g.Dance(0);
        printf("%d\n",g.ansd);
   return 0;
}
```

其他

1、高精度

```
/*
 * 高精度,支持乘法和加法
 */
struct BigInt{
   const static int mod = 10000;
   const static int DLEN = 4;
   int a[600],len;
```

```
BigInt()
{
    memset(a, 0, sizeof(a));
    len = 1;
BigInt(int v)
    memset(a, 0, sizeof(a));
    len = 0;
    do{
        a[len++] = v%mod;
        v /= mod;
    } while (v);
}
BigInt(const char s[])
    memset(a, 0, sizeof(a));
    int L = strlen(s);
    len = L/DLEN;
    if (L%DLEN) len++;
    int index = 0;
    for(int i = L-1;i >= 0;i -= DLEN)
        int t = 0;
        int k = i - DLEN + 1;
        if (k < 0) k = 0;
        for(int j = k; j <= i; j++)</pre>
            t = t*10 + s[j] - '0';
        a[index++] = t;
    }
}
BigInt operator +(const BigInt &b)const
    BigInt res;
    res.len = max(len,b.len);
    for(int i = 0;i <= res.len;i++)</pre>
        res.a[i] = 0;
    for(int i = 0;i < res.len;i++)</pre>
        res.a[i] += ((i < len)?a[i]:0)+((i < b.len)?b.a[i]:0);
        res.a[i+1] += res.a[i]/mod;
        res.a[i] %= mod;
    if(res.a[res.len] > 0)res.len++;
    return res;
BigInt operator *(const BigInt &b)const
{
    BigInt res;
    for(int i = 0; i < len;i++)</pre>
        int up = 0;
        for(int j = 0; j < b.len; j++)</pre>
            int temp = a[i]*b.a[j] + res.a[i+j] + up;
            res.a[i+j] = temp%mod;
            up = temp/mod;
        }
```

2、完全高精度

```
HDU 1134 求卡特兰数
```

```
* 完全大数模板
* 输出 ci<u>n</u>>>a
* 输出 a.print();
* 注意这个输入不能自动去掉前导 0 的,可以先读入到 char 数组,去掉前导 0,再用构造函数。
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
class BigNum
private:
  int a[500]; //可以控制大数的位数
  int len;
public:
  BigNum(){len=1;memset(a,0,sizeof(a));} //构造函数
                     //将一个 int 类型的变量转化成大数
  BigNum(const int);
                     //将一个字符串类型的变量转化为大数
  BigNum(const char*);
  BigNum (const BigNum &); //拷贝构造函数
  BigNum & operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
  friend istream& operator>>(istream&,BigNum&); //重载输入运算符
   friend ostream& operator<<(ostream&,BigNum&); //重载输出运算符
  BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加运算
  BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减运算
  BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算
  BigNum operator/(const int &)const; //重载除法运算符,大数对一个整数进行相除
运算
                                    //大数的 n 次方运算
  BigNum operator^(const int &)const;
                                    //大数对一个 int 类型的变量进行取模运算
  int operator%(const int &)const;
                                    //大数和另一个大数的大小比较
  bool operator>(const BigNum &T)const;
                                    //大数和一个 int 类型的变量的大小比较
  bool operator>(const int &t)const;
                   //输出大数
  void print();
};
BigNum::BigNum(const int b) //将一个int 类型的变量转化为大数
  int c,d=b;
```

```
len=0;
   memset(a, 0, sizeof(a));
   while (d>MAXN)
      c=d-(d/(MAXN+1))*(MAXN+1);
      d=d/(MAXN+1);
      a[len++]=c;
   a[len++]=d;
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
   int t,k,index,L,i;
   memset(a, 0, sizeof(a));
   L=strlen(s);
   len=L/DLEN;
   if(L%DLEN)len++;
   index=0;
   for (i=L-1; i>=0; i-=DLEN)
      t=0;
      k=i-DLEN+1;
      if(k<0)k=0;
      for(int j=k;j<=i;j++)</pre>
          t=t*10+s[j]-'0';
      a[index++]=t;
   }
BigNum::BigNum(const BigNum &T):len(T.len) //拷贝构造函数
   int i;
   memset(a, 0, sizeof(a));
   for (i=0;i<len;i++)</pre>
      a[i]=T.a[i];
}
BigNum & BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
   int i;
   len=n.len;
   memset(a, 0, sizeof(a));
   for (i=0;i<len;i++)</pre>
      a[i]=n.a[i];
      return *this;
}
istream& operator>>(istream &in,BigNum &b)
   char ch[MAXSIZE*4];
   int i=-1;
   in>>ch;
   int L=strlen(ch);
   int count=0, sum=0;
   for (i=L-1; i>=0;) {
      sum=0;
      int t=1;
       for(int j=0;j<4&&i>=0;j++,i--,t*=10)
          sum+=(ch[i]-'0')*t;
```

```
b.a[count]=sum;
       count++;
   }
   b.len=count++;
   return in;
}
ostream& operator<<(ostream& out,BigNum& b) //重载输出运算符
   int i;
   cout<<b.a[b.len-1];</pre>
   for (i=b.len-2; i>=0; i--)
      printf("%04d",b.a[i]);
   return out;
}
BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算
   BigNum t(*this);
   int i,big;
   big=T.len>len?T.len:len;
   for (i=0;i<big;i++)</pre>
       t.a[i]+=T.a[i];
       if(t.a[i]>MAXN)
          t.a[i+1]++;
          t.a[i] -= MAXN+1;
   if(t.a[big]!=0)
      t.len=big+1;
   else t.len=big;
   return t;
}
BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算
   int i,j,big;
   bool flag;
   BigNum t1,t2;
   if(*this>T)
       t1=*this;
      t2=T;
       flag=0;
   } else {
       t1=T;
       t2=*this;
      flag=1;
   big=t1.len;
   for (i=0;i<big;i++)</pre>
       if(t1.a[i] < t2.a[i])</pre>
          j=i+1;
          while (t1.a[j]==0)
              j++;
          t1.a[j--]--;
```

```
while (j>i)
              t1.a[j--] += MAXN;
          t1.a[i] += MAXN+1-t2.a[i];
      else t1.a[i]-=t2.a[i];
   }
   t1.len=big;
   while(t1.a[len-1]==0 && t1.len>1)
      t1.len--;
      big--;
   if(flag)
      t1.a[big-1]=0-t1.a[big-1];
   return t1;
}
BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘
   BigNum ret;
   int i,j,up;
   int temp, temp1;
   for (i=0;i<len;i++)</pre>
      up=0;
      for (j=0; j<T.len; j++)</pre>
          temp=a[i]*T.a[j]+ret.a[i+j]+up;
          if (temp>MAXN)
             temp1=temp-temp/(MAXN+1) * (MAXN+1);
             up=temp/(MAXN+1); ret.a[i+j]=temp1;
          }else{
             up=0;
             ret.a[i+j]=temp;
       }
       if (up!=0)
         ret.a[i+j]=up;
   ret.len=i+j;
   while (ret.a[ret.len-1] == 0 && ret.len>1) ret.len--;
   return ret;
BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算
   BigNum ret;
   int i, down=0;
   for (i=len-1; i>=0; i--)
      ret.a[i]=(a[i]+down*(MAXN+1))/b;
      down=a[i]+down*(MAXN+1)-ret.a[i]*b;
   ret.len=len;
   while (ret.a[ret.len-1] == 0 && ret.len>1)
      ret.len--;
   return ret;
int BigNum::operator%(const int &b)const //大数对一个 int 类型的变量进行取模
```

```
int i, d=0;
   for(i=len-1;i>=0;i--)
      d=((d*(MAXN+1))%b+a[i])%b;
   return d;
}
BigNum BigNum::operator^(const int &n)const //大数的 n 次方运算
   BigNum t, ret(1);
   int i;
   if(n<0)exit(-1);
   if (n==0) return 1;
   if (n==1) return *this;
   int m=n;
   while (m>1)
      t=*this;
      for (i=1; (i<<1) <=m; i<<=1)</pre>
         t=t*t;
      m-=i;
      ret=ret*t;
      if (m==1) ret=ret* (*this);
   return ret;
bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较
   int ln;
   if(len>T.len)return true;
   else if(len==T.len)
      ln=len-1;
      while (a[ln] == T.a[ln] & & ln>=0)
      if(ln>=0 && a[ln]>T.a[ln]) return true;
      else return false;
   else return false;
}
bool BigNum::operator>(const int &t)const //大数和一个int 类型的变量的大小比较
  BigNum b(t);
   return *this>b;
void BigNum::print() //输出大数
{
   int i;
   printf("%d",a[len-1]);
   for (i=len-2;i>=0;i--)
   printf("%04d",a[i]);
   printf("\n");
}
BigNum f[110];//卡特兰数
int main() {
   f[0]=1;
   for (int i=1;i<=100;i++)</pre>
       f[i]=f[i-1]*(4*i-2)/(i+1);//卡特兰数递推式
   int n;
   while (scanf("%d", &n) ==1)
    {
```

```
if(n==-1)break;
    f[n].print();
}
return 0;
}
```

3、strtok 和 sscanf 结合输入

空格作为分隔输入,读取一行的整数:

```
gets(buf);
int v;
char *p = strtok(buf," ");
while(p) {
         sscanf(p,"%d",&v);
         p = strtok(NULL," ");
}
```

4、解决爆栈,手动加栈

```
#pragma comment(linker, "/STACK:1024000000,1024000000")
```

5、位运算枚举子集/父集

复杂度:设全集大小为 n,复杂度就是其子集的个数 3^n.

```
// 升序枚举子集, ss 表示子集
void ascending(int s) {
    for(int ss = 0; ; ss = (ss - s) & s) {
        printf("[%d], ", ss);
        if(ss == s) break; // 根据是否包含本身移动本语句位置
    }
    printf("\n");
}
// 降序枚举子集, ss 表示子集
void descending(int s) {
    for (int ss = s; ; ss = (ss - 1) & s) {
        printf("[%d], ", ss);
        if(ss == 0) break; // 判断是否含空集移动本语句位置
    }
    printf("\n");
}
```

6、集合-莫比乌斯反演/变换

原理: 每次枚举元素相差一个的子集。集合大小为 n 的话,复杂度就是 $0(n*2^n)$ 。而如果用上面的方法枚举子集是 $0(n*3^n)$ 。

```
* 莫比乌斯反演复杂度 O(n*2^n)
* 若原先为整个集合的所有子集的答案之和
* 通过反演后,就能得到本身的答案
*/
for(int i = 0; i < n; i++) {
    for(int s = 0; s < 1 << n; s++) {
        if(s >> i & 1) continue;
```

```
WONZY の ACM 模板
       dp[s | (1 << i)] -= dp[s];
   }
 * 莫比乌斯变换复杂度 O(n*2^n)
 * 可以将子集的答案求和,加到自己上面
for (int i = 0; i < n; i++) {</pre>
   for (int s = 0; s < 1 << n; s++) {
       if(s >> i & 1) continue;
       dp[s | (1 << i)] += dp[s];
 7、二分确定上下界
int lower search(int v, int sz, int x[]) {
    int 1\overline{b} = 0, ub = sz - 1, mid;
   while(lb <= ub) {</pre>
       mid = (lb + ub) >> 1;
       if(x[mid] < v) lb = mid + 1;
       else ub = mid - 1;
   return 1b;
int upper_search(int v, int sz, int x[]) {
    int l\overline{b} = 0, ub = sz - 1, mid;
   while(lb <= ub) {</pre>
       mid = (lb + ub) >> 1;
       if(x[mid] \le v) lb = mid + 1;
       else ub = mid - 1;
   return lb; /// 改成 ub, 将返回闭区间
 * int x[7] = \{1, 2, 3, 4, 4, 4, 5\};
 * lower search(4, 7, x) == 3; // 左闭区间
 * upper search(4, 7, x) == 6; // 右开区间
 8、常见数位关系及运算
 8.1 位运算操作
x xor (1 << i); // 将x的某一位反转
x and ~(1 << i); // 将x 的某一位置 0
x or (1 << i); // 将x 的某一位置 1
 8.2 位运算关系
(x xor y) + ((x and y) << 1) = x + y; // 加法与位异或、位与之间的关系
 8.3 零碎知识
1. 判断一个浮点数是不是 NaN【阶码全 1, 尾数非全 0 的无效数】
template<typename T>bool isNaN(T x) { return x != x; }
2. 判断一个浮点数是否为 Inf【阶码全 1, 尾数全 0】
template<typename T>bool isInf(T x) { return !isNaN(x) && isNaN(x-x); }
```

9, STL

```
5.1 优先队列 priority_queue
empty() 如果队列为空返回真
pop() 删除对顶元素
push()加入一个元素
size() 返回优先队列中拥有的元素个数
top()返回优先队列队顶元素 在默认的优先队列中,优先级高的先出队。在默认的 int
型中先出队的为较大的数。
priority_queue<int>q1;//大的先出对
 priority queue<int, vector<int>, greater<int> >q2; //小的先出队
 自定义比较函数:
 struct cmp
 {
    bool operator () (int x, int y)
       return x > y; // x 小的优先级高
    //也可以写成其他方式,如: return p[x] > p[y];表示 p[i] 小的优先级高
 }
 };
 priority queue<int, vector<int>, cmp>q;//定义方法
 //其中,第二个参数为容器类型。第三个参数为比较函数。
 结构体排序:
 struct node
   int x, y;
   friend bool operator < (node a, node b)</pre>
      return a.x > b.x; //结构体中, x 小的优先级高
 };
 priority_queue<node>q;//定义方法
 //在该结构中, y 为值, x 为优先级。
 //通过自定义 operator<操作符来比较元素中的优先级。
 //在重载"<"时,最好不要重载">",可能会发生编译错误
   5.2 set 和 multiset
 set 和 multiset 用法一样,就是 multiset 允许重复元素。 元素放入容器时,会按照一定的排
 序法则自动排序,默认是按照 less<>排序规则来排序。不 能修改容器里面的元素值,只能插
 入和删除。
 自定义 int 排序函数: (默认的是从小到大的,下面这个从大到小)
 struct classcomp {
  bool operator() (const int& lhs, const int& rhs) const
  {return lhs>rhs;}
 };//这里有个逗号的,注意
 multiset<int,classcomp> fifth;
                                   // class as Compare
```

上面这样就定义成了从大到小排列了。

```
结构体自定义排序函数:
```

```
(定义 set 或者 multiset 的时候定义了排序函数,定义迭代器时一样带上排序函数)
struct Node
{
    int x,y;
};
struct classcomp//先按照 x 从小到大排序, x 相同则按照 y 从大到小排序
{
    bool operator() (const Node &a,const Node &b)const
    {
        if (a.x!=b.x)return a.x<b.x;
        else return a.y>b.y;
    }
}; //注意这里有个逗号
multiset<Node,classcomp>mt;
multiset<Node,classcomp>::iterator it;
```

主要函数:

```
begin() 返回指向第一个元素的迭代器
clear() 清除所有元素
count() 返回某个值元素的个数 empty()
如果集合为空,返回 true end() 返回
指向最后一个元素的迭代器
erase() 删除集合中的元素 (参数是一个元素值,或者迭代器)
find() 返回一个指向被查找到元素的迭代器
insert() 在集合中插入元素
size() 集合中元素的数目
lower_bound() 返回指向大于(或等于)某值的第一个元素的迭代器
upper_bound() 返回大于某个值元素的迭代器
equal_range() 返回集合中与给定值相等的上下限的两个迭代器
```

(注意对于 multiset 删除操作之间删除值会把所以这个值的都删掉, 删除一个要用迭代器)

10、输入输出外挂

```
//适用于正负整数
template <class T>
inline bool scan_d(T &ret) {
   char c; int sgn;
   if(c=getchar(),c==EOF) return 0; //EOF
   while(c!='-'&&(c<'0'||c>'9')) c=getchar();
   sgn=(c=='-')?-1:1;
   ret=(c=='-')?0:(c-'0');
   while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
   ret*=sgn;
   return 1;
}
inline void out(int x)
   { if(x>9) out(x/10);
   putchar(x%10+'0');
```

11、莫队算法

莫队算法,可以解决一类静态,离线区间查询问题。 BZOJ 2038: [2009 国家集训队]小 Z 的袜子(hose)

Description

作为一个生活散漫的人,小 Z 每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。 终于有一天,小 Z 再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小 Z 把这 N 只袜子从 1 到 N 编号,然后从编号 L 到 R(L

Input

输入文件第一行包含两个正整数 N 和 M。N 为袜子的数量,M 为小 Z 所提的询问的数量。接下来一行包含 N 个正整数 Ci,其中 Ci 表示第 i 只袜子的颜色,相同的颜色用相同的数字 表示。再接下来 M 行,每行两个正整数 L,R 表示一个询问。

Output

包含 M 行,对于每个询问在一行中输出分数 A/B 表示从该询问的区间[L,R]中随机抽出两只 袜子颜色相同的概率。若该概率为 0 则输出 0/1,否则输出的 A/B 必须为最简分数。(详见样例)

Sample Input

6 4

1 2 3 3 3 2

2 6

1 3

3 5

1 6

Sample Output

2/5

0/1

1/1

4/15

题解:
$$P = \frac{\sum C_{\tau_i}^2}{C_{R-L+1}^2} = \frac{\sum \tau_i * (\tau_i - 1) / 2}{(R-L+1) * (R-L) / 2} = \frac{\sum \tau_i^2 - \sum \tau_i}{(R-L+1) * (R-L)}$$

只需要统计区间内各个数出现次数的平方和

莫队算法,两种方法,一种是直接分成 sqrt(n)块,分块排序。 另外一种是求得曼哈顿距离最小生成树,根据 manhattan MST 的 dfs 序求解。

7.1 分块

```
const int MAXN = 50010;
const int MAXM = 50010;
struct Query{
   int L,R,id;
}node[MAXM];
long long gcd(long long a,long long b){
```

```
if(b == 0)return a;
    return gcd(b,a%b);
struct Ans{
    long long a,b;//分数 a/b
    void reduce()//分数化简
        long long d = gcd(a,b);
        a /= d; b /= d;
}ans[MAXM];
int a[MAXN];
int num[MAXN];
int n,m,unit;
bool cmp (Query a, Query b)
    if(a.L/unit != b.L/unit) return a.L/unit < b.L/unit;</pre>
    else return a.R < b.R;</pre>
void work()
    long long temp = 0;
    memset(num, 0, sizeof(num));
    int L = 1;
    int R = 0;
    for(int i = 0;i < m;i++)</pre>
        while(R < node[i].R)</pre>
            R++;
            temp -= (long long)num[a[R]]*num[a[R]];
            num[a[R]]++;
            temp += (long long)num[a[R]]*num[a[R]];
        while(R > node[i].R)
            temp -= (long long)num[a[R]]*num[a[R]];
            num[a[R]]--;
            temp += (long long)num[a[R]]*num[a[R]];
            R--;
        while(L < node[i].L)</pre>
            temp -= (long long)num[a[L]]*num[a[L]];
            num[a[L]]--;
            temp += (long long)num[a[L]]*num[a[L]];
            L++;
        while(L > node[i].L)
        {
            L--;
            temp -= (long long)num[a[L]]*num[a[L]];
            num[a[L]]++;
            temp += (long long)num[a[L]]*num[a[L]];
        ans[node[i].id].a = temp - (R-L+1);
        ans[node[i].id].b = (long long) (R-L+1)*(R-L);
```

```
ans[node[i].id].reduce();
    }
}
int main()
   while(scanf("%d%d", &n, &m) == 2)
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d", &a[i]);
        for(int i = 0;i < m;i++)</pre>
            node[i].id = i;
            scanf("%d%d", &node[i].L, &node[i].R);
        unit = (int)sqrt(n);
        sort(node, node+m, cmp);
        work();
        for(int i = 0;i < m;i++)</pre>
            printf("%lld/%lld\n", ans[i].a, ans[i].b);
    }
   return 0;
}
   7.2 Manhattan MST 的 dfs 顺序求解
const int MAXN = 50010;
const int MAXM = 50010;
const int INF = 0x3f3f3f3f;
struct Point
    int x,y,id;
}p[MAXN],pp[MAXN];
bool cmp(Point a, Point b)
{
    if(a.x != b.x) return a.x < b.x;</pre>
   else return a.y < b.y;</pre>
}
//树状数组,找 y-x 大于当前的,但是 y+x 最小的
struct BIT
    int min_val,pos;
    void init()
       min_val = INF;
       pos = -1;
}bit[MAXN];
struct Edge
    int u, v, d;
}edge[MAXN<<2];</pre>
bool cmpedge (Edge a, Edge b)
   return a.d < b.d;</pre>
}
int tot;
int n;
int F[MAXN];
int find(int x)
```

```
{
    if(F[x] == -1) return x;
    else return F[x] = find(F[x]);
void addedge(int u,int v,int d)
    edge[tot].u = u;
    edge[tot].v = v;
    edge[tot++].d = d;
}
struct Graph
   int to, next;
}e[MAXN<<1];</pre>
int total,head[MAXN];
void _addedge(int u,int v)
    e[total].to = v;
    e[total].next = head[u];
   head[u] = total++;
int lowbit(int x)
   return x&(-x);
}
void update(int i,int val,int pos)
    while(i > 0)
        if(val < bit[i].min val)</pre>
            bit[i].min_val = val;
            bit[i].pos = pos;
        i -= lowbit(i);
int ask(int i,int m)
    int min_val = INF,pos = -1;
    while(i <= m)</pre>
        if(bit[i].min_val < min_val)</pre>
            min_val = bit[i].min_val;
           pos = bit[i].pos;
        i += lowbit(i);
   return pos;
int dist(Point a, Point b)
   return abs(a.x - b.x) + abs(a.y - b.y);
void Manhattan_minimum_spanning_tree(int n,Point p[])
   int a[MAXN],b[MAXN];
```

```
tot = 0;
    for(int dir = 0;dir < 4;dir++)</pre>
        if(dir == 1 || dir == 3)
            for(int i = 0;i < n;i++)</pre>
                swap(p[i].x,p[i].y);
        else if(dir == 2)
            for(int i = 0;i < n;i++)</pre>
                p[i].x = -p[i].x;
        sort(p,p+n,cmp);
        for(int i = 0;i < n;i++)</pre>
            a[i] = b[i] = p[i].y - p[i].x;
        sort(b,b+n);
        int m = unique(b,b+n) - b;
        for(int i = 1;i <= m;i++)</pre>
            bit[i].init();
        for(int i = n-1;i >= 0;i--)
            int pos = lower bound(b,b+m,a[i]) - b + 1;
            int ans = ask(pos,m);
            if(ans != -1)
                addedge(p[i].id,p[ans].id,dist(p[i],p[ans]));
            update(pos,p[i].x+p[i].y,i);
        }
    }
    memset(F,-1,sizeof(F));
    sort(edge,edge+tot,cmpedge);
    total = 0;
    memset(head, -1, sizeof(head));
    for(int i = 0;i < tot;i++)</pre>
        int u = edge[i].u, v = edge[i].v;
        int t1 = find(u), t2 = find(v);
        if(t1 != t2)
            F[t1] = t2;
            addedge(u,v);
            _addedge(v,u);
    }
int m;
int a[MAXN];
struct Ans
    long long a,b;
}ans[MAXM];
long long temp ;
int num[MAXN];
void add(int l,int r)
    for(int i = 1;i <= r;i++)</pre>
        temp -= (long long) num[a[i]] *num[a[i]];
```

}

```
num[a[i]]++;
        temp += (long long) num[a[i]] *num[a[i]];
void del(int l,int r)
    for(int i = 1;i <= r;i++)</pre>
        temp -= (long long) num[a[i]] * num[a[i]];
        num[a[i]]--;
        temp += (long long) num[a[i]] *num[a[i]];
void dfs(int l1,int r1,int l2,int r2,int idx,int pre)
    if(12 < 11) add(12,11-1);
    if (r2 > r1) add (r1+1, r2);
    if(12 > 11) del(11,12-1);
    if(r2 < r1) del(r2+1,r1);</pre>
    ans[pp[idx].id].a = temp - (r2-12+1);
    ans[pp[idx].id].b = (long long) (r2-12+1)*(r2-12);
    for(int i = head[idx];i != -1;i = e[i].next)
        int v = e[i].to;
        if(v == pre) continue;
        dfs(12,r2,pp[v].x,pp[v].y,v,idx);
    if(12 < 11)del(12,11-1);</pre>
    if(r2 > r1)del(r1+1,r2);
    if(12 > 11) add(11,12-1);
    if(r2 < r1) add(r2+1, r1);
long long gcd(long long a,long long b)
    if(b == 0) return a;
    else return gcd(b,a%b);
int main()
   while(scanf("%d%d",&n,&m) == 2)
        for(int i = 1;i <= n;i++)</pre>
            scanf("%d", &a[i]);
        for(int i = 0;i < m;i++)</pre>
            scanf("%d%d", &p[i].x, &p[i].y);
            p[i].id = i;
            pp[i] = p[i];
        Manhattan_minimum_spanning_tree(m,p);
        memset(num, 0, sizeof(num));
        temp = 0;
        dfs(1,0,pp[0].x,pp[0].y,0,-1);
        for(int i = 0;i < m;i++)</pre>
            long long d = gcd(ans[i].a,ans[i].b);
            printf("%11d/%11d\n", ans[i].a/d, ans[i].b/d);
        }
```

```
}
return 0;
}
```

12、打表找规律方法

- 直接找规律
- 差分后找规律
- 找积性
- 点阵打表
- 相除
- 找循环节
- 凑量纲
- 猜想满足P(n)f(n) = Q(n)f(n-2) + R(n)f(n-1) + C,其中P,Q,R都是关于n的二次多项式

13、Java 高精度

```
public class test1_format {
   public static void main(String[] args) {
       BigDecimal decimal = new BigDecimal("1.12345");
       System.out.println(decimal);
       BigDecimal setScale = decimal.setScale(4,BigDecimal.ROUND_HALF_DOWN);
       System.out.println(setScale);
       BigDecimal setScale1 = decimal.setScale(4,BigDecimal.ROUND_HALF_UP);
       System.out.println(setScale1);
   }
 }
  BigDecimal.setScale()方法用于格式化小数点
  setScale(1)表示保留一位小数,默认用四舍五入方式
  setScale(1,BigDecimal.ROUND DOWN)直接删除多余的小数位,如2.35会变成2.3
                                                                   就0.5时和_UP不
  setScale(1,BigDecimal.ROUND_UP)进位处理, 2.35变成2.4
  setScale(1,BigDecimal.ROUND_HALF_UP)四舍五入,2.35变成2.4
  setScaler(1,BigDecimal.ROUND_HALF_DOWN)四舍五入,2.35变成2.3,如果是5则向下舍
```

ROUND CEILING:向正无穷方向舍入

ROUND_DOWN:向零方向舍入

ROUND FLOOR:向负无穷方向舍入

ROUND_HALF_DOWN: 向(距离)最近的一边舍入,除非两边(的距离)是相等,如果是这样,向下舍入,例如 1.55 保留一位小数结果为 1.5

ROUND_HALF_EVEN:向(距离)最近的一边舍入,除非两边(的距离)是相等,如果是这样,如果保留位数是奇数,使用 ROUND_HALF_UP,如果是偶数,使用 ROUND_HALF_DOWN ROUND_HALF_UP:向(距离)最近的一边舍入,除非两边(的距离)是相等,如果是这样,向上舍入,1.55保留一位小数结果为1.6

ROUND UNNECESSARY: 计算结果是精确的,不需要舍入模式

ROUND UP:向远离 0 的方向舍入

14、其他

1. 洗牌函数 shuffle、random shuffle:

```
random shuffle(a.begin(),a.end());
或者:
#include <random>
                           // std::default random engine
                           // std::chrono::system clock
#include <chrono>
uint seed =chrono::system_clock::now().time_since_epoch().count();
shuffle(a.begin(),a.end(),default random engine(seed));
2. for each() 迭代:
// vector<T> a;
for each(a.begin(),a.end(),[](T item){ cout << item << endl; });</pre>
15、头文件
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef unsigned int uint;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
typedef pair<LB, LB> PLB;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const LL INFL = 0x3f3f3f3f3f3f3f3f1LL;
const long double PI = acos(-1.0);
const long double eps = 1e-4;
template<typename T> inline void umax(T &a, T b) { a = max(a, b); }
template<typename T> inline void umin(T &a, T b) { a = min(a, b); }
template <typename T> inline bool scan d (T &ret) {
    char c; int sqn;
    if (c = getchar(), c == EOF) return 0; //EOF
    while (c != '-' \&\& (c < '0' || c > '9')) if((c = getchar()) == EOF)
return 0;
    sgn = (c == '-') ? -1 : 1;
    ret = (c == '-') ? 0 : (c - '0');
    while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
   ret *= sgn;
   return 1;
}
template<typename T, typename ...R> inline bool scan d (T &ret, R& ...r)
{ scan_d(ret); scan_d(r...); }
template<typename T> void print(T x) {
    static char s[33], *s1; s1 = s;
    if (!x) *s1++ = '0';
    if (x < 0) putchar('-'), x = -x;
    while(x) *s1++ = (x % 10 + '0'), x /= 10;
    while (s1-- != s) putchar (*s1);
}
inline void print(char ch) { putchar(ch); }
inline void println() { putchar('\n'); }
template<typename T, typename \dotsR> void print (T f, R \dotsr) { print(f);
putchar(' '); print (r...); }
template<typename T, typename \dotsR> void println(T f, R \dotsr) { print(f);
putchar(' '); print (r...); println(); }
template<typename T> T randIntv(T a, T b) { return rand() % (b - a + 1) + a; }
/*[a, b]*/
void debug() { cout << endl; }</pre>
```

WONZY の ACM 模板

```
 \hline \texttt{template} < \texttt{typename T, typename ...R} > \texttt{void debug (T f, R ...r) } \{ \texttt{cout} << \texttt{"[" << } ] \} 
 f << "]"; debug (r...); }
 int main() {
 #ifdef ___LOCAL_WONZY_
     freopen ("input.txt", "r", stdin);
 // freopen ("ans2.txt", "w+", stdout);
 #endif // __LOCAL_WONZY___
int a, b, c;
     scan_d(a, b, c); // 读入多个数字
     print(a, b, c); // 读入多个字符或数字
                          // 换行
     println();
     println(a, b, c); // 输出多个字符或数字并换行
     debug("debug", a, b, c);
 #ifdef ___LOCAL_WONZY__
    cout << "Time elapsed: " << 1.0 * clock() / CLOCKS PER SEC * 1000 << "
 ms." << endl;
#endif // ___LOCAL_WONZY___
   return 0;
}
```