Christophe Bontemps Toulouse School of Economics (INRA)

Séminaire joint :

Séminaire Statistique TSE et Réseau des Ingénieurs Statisticiens **Toulousains** 13 mai 2014

PLAN

Pourquoi ce "non"

Définition par le " non'

Estimer une densité

Des boites et des bosses En pratique avec R

La fenêtre!

Critère

La régression

La fenêtre!
Cas pratiques avec R
Les cas moins simples
Cas pratiques avec R

A quoi ça sert tout ça?

Estimation d'une probabilité conditionnelle Ajustement, prévisions et simulations Vous avez demandé un test?

Une définition par le " non"

- ► *Non*-paramétrique ne s'oppose pas vraiment à paramétrique
- ► C'est l'objet d'intérêt qui *n'est pas* un paramètre
- On parle aussi d'estimation fonctionnelle, de paramètre fonctionnel
- Une estimation non-paramétrique comporte des choix de paramètres
- ▶ ∃ de multiples façon d'estimer non-paramétriquement
- → Focus sur les méthodes "à noyau"
 - ► Beaucoup de méthodes sont programmées dans *R*

- ▶ Soit $\{(X_i), i = 1, ..., n\}, X_i \text{ iid } \sim f(x)$
- → Tout le monde a déjà estimé une densité non-paramétriquement
 - ► L'histogramme c'est un estimateur de la densité!

▶ On partage le support de *x* en segments de largeur *h* et on construit des "boites" de hauteur $\frac{1}{h}$

$$\widehat{f_h(x)} = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} \cdot \mathbb{1}_{\left[X_i \text{ dans le meme segment que } x\right]}$$

► L'histogramme c'est une "**somme de boites**" de largeur *h*

Demo 1

- ▶ Pour l'estimation non-paramétrique de la densité :
- ▶ On choisit un "noyau" i.e. une fonction $K(\cdot)$, par exemple :

K(.) est une sorte de "bosse" et vérifie : $\int K(u)du = 1, \int u K(u)du = 0, \text{ et } \int u^2 K(u)du = \kappa_2 < \infty$

► L'estimateur à noyau de Parzen-Rosenblatt est :

$$\widehat{f_h(x)} = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

► Ca ressemble à l'histogramme non?

$$\widehat{f_h(x)} = \frac{1}{nh} \sum_{i=1}^{n} \mathbb{1}_{\left[X_i \text{ dans le meme segment que } x\right]}$$

▶ Peut être vu comme une "somme de bosses"

Comment ça marche? Exemple sur 10 points

Une bosse autour de chaque point

Une somme de bosses

L'estimateur = somme de bosses

Une somme de bosses (h=1)

Une somme de bosses (h=1.5)

Une somme de bosses (h=0.25)

En pratique avec R

- ► La commande *plot(density(x))* permet de représenter graphiquement la densité
- Plusieurs packages permettent rapidement d'estimer une densité
- ► KernSmooth, np
- ► *ggplot2* permet également de faire des representations (très jolies)
- \rightarrow Focus sur np ici pour des raisons explicitées plus tard.

▶ Visuellement ...

Pourquoi ce "non"

- ► Calculer un critère pour différentes valeurs de *h* et prendre le minimum...
- ► Directement avec l'erreur quadratique en un point $MSE(\widehat{f}_h(x))$:

$$MSE(\widehat{f}_h(x)) = E\left[(\widehat{f}(x) - f(x))^2\right] = Var(\widehat{f}_h(x)) + \left\{Biais(\widehat{f}_h(x))\right\}^2$$

► Mieux encore, l' $IMSE(\widehat{f}_h) = \int MSE(\widehat{f}_h(x))dx$

$$\simeq \frac{1}{nh} \int K^2(z)dz + \frac{h^4}{2} \cdot \kappa_2^2 \cdot \int (f''(z))^2 dz$$
$$= \frac{1}{nh} \cdot \Phi_0 + \frac{h^4}{2} \cdot \kappa_2^2 \cdot \Phi_1$$

► Et ça c'est vachement utile!

- ► $1'IMSE(\widehat{f}_h) = \frac{1}{nh} \cdot \Phi_0 + \frac{h^4}{2} \cdot \kappa_2^2 \cdot \Phi_1$ et donc :
 - \rightsquigarrow si $nh \nearrow \infty$ le premier terme disparaît \rightsquigarrow et si $h \searrow 0$; c'est le second!
- ► La fenêtre qui minimise l' $IMSE(\widehat{f}_h)$ est : $h_{opt} = c \cdot n^{-1/5}$ avec $c = \left[\frac{\int K^2(z)dz}{(\int z^2K(z)dz)^2 \cdot (\int (f^n(z))^2 dz}\right]^{1/5}$
- ► On a ensuite le choix :
 - "Faire comme si" on connaissait $\kappa_2, \ \Phi_0, \ et \ \Phi_1$
 - \rightarrow Règle du pouce : $h_{RoT} = 1.059 \cdot \sigma(x) \cdot n^{-1/5}$
 - ► Estimer toutes ces choses là : $\int (f''(x))^2 dx$, ... $\sim \hat{c}$
 - \rightarrow Méthode de *Plug-in* : $h_{Plug} = \hat{c} \cdot n^{-1/5}$

Comment choisir sa fenêtre (validation croisée)

► On peut aussi décomposer l' $ISE(\widehat{f}_h(x))$:

$$ISE(\widehat{f}_{h}(x)) = \int \left(\widehat{f}_{h}(x) - f(x)\right)^{2} dx$$

$$= \underbrace{\int \widehat{f}_{h}(x)^{2} dx - 2}_{\text{calculable}} \underbrace{\int \widehat{f}_{h}(x) f(x) dx}_{E(\widehat{f}_{h}(x))} + \underbrace{\int f(x)^{2} dx}_{\text{pas de h }!}$$

► Quelques calculs plus tard... on minimise un critère empirique basé sur l'estimation de ces valeurs

$$CV(h) = \frac{1}{n^2 h} \sum_{i=1}^{n} \sum_{j=1}^{n} K^{(2)} \left(\frac{X_j - X_i}{h} \right) - \frac{2}{n} \sum_{i=1}^{n} \widehat{f}_h^{-i}(X_i)$$

où
$$\widehat{f}_h^{-i}(X_i)$$
 = leave-one-out et $K^{(2)}(u) = \int K(u-t)K(t)dt$.

► Et la fenêtre choisie $\hat{h}_{CV} = \arg\min_{h} CV(h)$

Comment choisir sa fenêtre en pratiquei

- ► Plusieurs critères :
 - ▶ Dans *KernSmooth*, on peut utiliser la commande *dpik(x)* pour calculer une fenêtre qui sera directement "*pluggée*" dans l'estimateur .
 - ▶ Dans *np*, on privilégie une approche *data-driven* : la validation croisée.
- ► On procédera donc toujours en deux étapes dans **R** :
 - 1. On estime la (ou les) fenêtre(s)
 - On estime la fonction (densité, regression ou autre) avec cette (ces) fenêtre(s)
 - 2-bis On peut ensuite visualiser le résultat en estimant les valeurs de $\widehat{f}_h(x)$) sur un ensemble de points régulièrement espacés (séquence ou grille)
 - → Demo 2

► L'objet statistique à étudier est :

$$m(x) \equiv E(Y|X=x) = \int y f(y|x) dy = \int y \frac{f(x,y)}{f(x)} dy$$

► On met des chapeaux partout!

$$\widehat{m(x)} = \int y \frac{\widehat{f(x,y)}}{\widehat{f(x)}} dy$$

► On montre que : (Estimateur de Nadaraya-Watson)

$$\widehat{m}(x) = \frac{\sum_{i=1}^{n} Y_i K\left(\frac{X_i - x}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)}$$

 \blacktriangleright C'est une somme pondérée des Y_i

$$\widehat{m}(x) = \sum_{i=1}^{n} Y_i W(X_i, x, h)$$

Comment choisir sa fenêtre pour la régression?

- ► Même logique, calculs différents
- ► Fenêtre optimale :

$$h_{opt} = \left[\frac{\int \sigma^2(x) f^{-1}(x) dx \int K^2(u) du}{\int \left\{ 2m'(x) f'(x) f^{-1}(x) + m''(x) \right\}^2 dx \kappa_2^2} \right]^{1/5} n^{-1/5}$$

- ▶ Plug-in : Ben "YAKA" estimer tout ces trucs et remplacer...
- ► Règle du pouce : $h_{RoT} \propto \sigma(x) \cdot n^{\frac{-1}{5}}$
- ▶ Validation croisée :

$$h_{CV} = \arg\min_{h} \frac{1}{n} \sum_{i=1}^{N} \left(Y_i - \widehat{m^{-i}}(X_i) \right)^2$$

Démo dans un cas simple (avec Shiny)

Oui, mais dans la vraie vie :

- ► Et si on a plusieurs variables?
 - \hookrightarrow Une fenêtre par variable, noyaux multiplicatifs :

$$\widehat{m}(x,z) = \frac{\sum_{i=1}^{n} Y_{i} K\left(\frac{X_{i}-x}{h_{x}}\right) \cdot K\left(\frac{Z_{i}-z}{h_{z}}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h_{x}}\right) \cdot K\left(\frac{Z_{i}-z}{h_{z}}\right)}$$

- ▶ Et si on a une variable discrète, x^d , avec c catégories?
 - → Il existe des noyaux généralisés (Aitchison and Aitken)

$$l(X_i^d, x^d) = \begin{cases} 1 - \lambda & \text{if } X_i^d = x^d \\ \frac{\lambda}{c - 1} & \text{otherwise.} \end{cases}$$

ou
$$\lambda \in [0, (c-1)/c]$$
.

- ► Oui : on peut mixer les deux!
 - \hookrightarrow cf exemple dans une minute!!

- ► Et si on a beaucoup d'observations, la CV ça prend du temps?
 - \hookrightarrow Oui!

- → Package *npRmpi* permet de paralléliser les calculs
- \hookrightarrow On peut aussi "ruser"...
- ► Et comment on compare avec un modèle linéaire?
 - $\hookrightarrow \exists$ des tests :
 - ► *npcmstest* pour tester la correcte spécification d'un modèle linéaire (Hsiao, Li, and Racine (2007))
 - npsigtest sour tester la significativité des régresseurs (Racine, Hart, and Li (2006))
- ► On peut aussi invoquer une représentation graphique pour comparer...
 - \hookrightarrow cf exemple dans 30 secondes!

Démo complète sur un jeu de données (pas à pas!)

- ► 4.623 ménages en France déclarant tous leurs achats alimentaires (y compris boissons)
- ► Classifiés en "buveur d'eau du robinet" (irob = 1) ou non (irob = 0)
- ► Information individuelle composée de variables continues :
 - Revenu déclaré *Income* et indice mesurant la qualité de l'environnemental local : Poor Raw Water Quality (PRWQ)
 → PRWQ > si l'environnement est dégradé
- et de variables discrètes (ordonnées ou pas)
 - diplome, region, habitant en milieu rural, retired.
- ► Modèle estimé (probit) (cf Bontemps & Nauges (2009))

	Estimate	$Pr(\mid Z\mid >z)$
(Intercept)	2.3296	0.0000
PRWQ	-1.8113***	0.0021
Income	-0.5492**	0.0155
diploma	-	-
diplo.L	-0.1328	0.0464
diplo.Q	0.0435	0.4433
diplo.C	-0.0229	0.5703
Region	-	-
Region2	-0.0284	0.7376
Region3	-0.5879***	0.0000
Region4	-0.0590	0.3836
Region5	-0.0468	0.5887
Region6	0.3706***	0.0000
Region7	0.1486***	0.0576
Region8	0.2974***	0.0005
deleg	-0.0178	0.6966
rural	0.2397	0.0095
iret	-1.3491***	0.0089
PRWQ×Income	0.5789**	0.0166
PRWQ× iret	0.9461*	0.0871

► L'objet statistique est la probabilité conditionnelle de Y (0/1) conditionnelle à $X = (X^c, X^d, \tilde{X}^d)$

$$g(Y = y|X = x) = \frac{f(x,y)}{f(x)} \tag{1}$$

► Pour un $x = (x^c, x^d, \tilde{x}^d)$ donné, l'estimateur de f(x) est :

$$\begin{split} \widehat{f}(x) &= \widehat{f}(x^c, x^d, \tilde{x}^d) \\ &= n^{-1} \sum_{i=1}^n \prod_{j=1}^p W(X_{ij}^c, x_j^c) \prod_{j=1}^q l(X_{ij}^d, x_j^d) \prod_{j=1}^r \tilde{l}(\tilde{X}_{ij}^d, \tilde{x}_j^d) \end{split}$$

On a là 3 types de noyaux différents suivant la nature des variables (Li & Racine, 2003).

$$W(X_{ij}^c, x_j^c) = \frac{1}{h_j} K\left(\frac{X_{ij}^c - x_j^c}{h_j}\right)$$

avec $K(\cdot)$ notre noyau "classique" et h_i la fenêtre associée.

▶ Pour une **variable discrète** x_i^d avec c_i categories, on a :

$$l(X_{ij}^d, x^d) = \left\{ \begin{array}{ll} 1 - \lambda_j & \text{if } X_{ij}^d = x_j^d \\ \frac{\lambda_j}{c_i - 1} & \text{sinon.} \end{array} \right.$$

avec la "fenêtre" $\lambda_i \in [0, (c_i - 1)/c_i]$.

▶ Pour une **variable discrète ordonnée** \tilde{x}_i^d , on a :

$$\tilde{l}(\tilde{X}^d_{ij},\tilde{x}^d) = \left\{ \begin{array}{ll} 1 & \text{if } \tilde{X}^d_{ij} = \tilde{x}^d_j \\ \gamma_j |\tilde{X}^d_{ij} - \tilde{x}^d_j| & \text{sinon.} \end{array} \right.$$

avec la "fenêtre" $\gamma_i \in [0, 1]$.

	Estimate	$Pr(\mid Z\mid > z)$	Bandwidth	upper bound
(Intercept)	2.3296	0.0000	-	-
PRWQ	-1.8113***	0.0021	0.1801905	∞
Income	-0.5492**	0.0155	1.294752	∞
diploma	-	-	0.8634835	1
diplo.L	-0.1328	0.0464	-	-
diplo.Q	0.0435	0.4433	-	-
diplo.C	-0.0229	0.5703	-	-
Region	-	-	0.1208747	0.875
Region2	-0.0284	0.7376	-	-
Region3	-0.5879***	0.0000	-	-
Region4	-0.0590	0.3836	-	-
Region5	-0.0468	0.5887	-	-
Region6	0.3706***	0.0000	-	-
Region7	0.1486***	0.0576	-	-
Region8	0.2974***	0.0005	-	-
deleg	-0.0178	0.6966	0.5	0.5
rural	0.2397	0.0095	0.0721212	0.5
iret	-1.3491***	0.0089	3.253532e-13	0.5
PRWQ×Income	0.5789**	0.0166	-	-
$PRWQ \times iret$	0.9461*	0.0871	-	-
irob	-	-	9.802058e-15	0.5

	Estimate	$Pr(\mid Z\mid > z)$	Bandwidth	upper bound
(Intercept)	2.3296	0.0000	-	-
PRWQ	-1.8113***	0.0021	0.1801905	∞
Income	-0.5492**	0.0155	1.294752	∞
diploma	-	-	0.8634835	1
diplo.L	-0.1328	0.0464	-	-
diplo.Q	0.0435	0.4433	-	-
diplo.C	-0.0229	0.5703	-	-
Region	-	-	0.1208747	0.875
Region2	-0.0284	0.7376	-	-
Region3	-0.5879***	0.0000	-	-
Region4	-0.0590	0.3836	-	-
Region5	-0.0468	0.5887	-	-
Region6	0.3706 ***	0.0000	-	-
Region7	0.1486***	0.0576	-	-
Region8	0.2974***	0.0005	-	-
deleg	-0.0178	0.6966	0.5	0.5
rural	0.2397	0.0095	0.0721212	0.5
iret	-1.3491***	0.0089	3.253532e-13	0.5
PRWQ×Income	0.5789**	0.0166	-	-
PRWQ× iret	0.9461*	0.0871	-	-
irob	-	-	9.802058e-15	0.5

TABLE: Modèle Probit et modèle non-paramétrique estimés sur ces données - Coefficients (probit) et fenêtres optimales (CV)

	Estimate	$Pr(\mid Z\mid > z)$	Bandwidth	upper bound
(Intercept)	2.3296	0.0000	-	-
PRWQ	-1.8113***	0.0021	0.1801905	∞
Income	-0.5492**	0.0155	1.294752	∞
diploma	-	-	0.8634835	1
diplo.L	-0.1328	0.0464	-	-
diplo.Q	0.0435	0.4433	-	-
diplo.C	-0.0229	0.5703	-	-
Region	-	-	0.1208747	0.875
Region2	-0.0284	0.7376	-	-
Region3	-0.5879***	0.0000	-	-
Region4	-0.0590	0.3836	-	-
Region5	-0.0468	0.5887	-	-
Region6	0.3706***	0.0000	-	-
Region7	0.1486***	0.0576	-	-
Region8	0.2974***	0.0005	-	-
deleg	-0.0178	0.6966	0.5	0.5
rural	0.2397	0.0095	0.0721212	0.5
iret	-1.3491***	0.0089	3.253532e-13	0.5
PRWQ×Income	0.5789**	0.0166	-	-
PRWQ× iret	0.9461*	0.0871	-	-
irob	-	-	9.802058e-15	0.5

	Estimate	$Pr(\mid Z\mid > z)$	Bandwidth	upper bound
(Intercept)	2.3296	0.0000	-	-
PRWQ	-1.8113***	0.0021	0.1801905	∞
Income	-0.5492**	0.0155	1.294752	∞
diploma	-	-	0.8634835	1
diplo.L	-0.1328	0.0464	-	-
diplo.Q	0.0435	0.4433	-	-
diplo.C	-0.0229	0.5703	-	-
Region	-	-	0.1208747	0.875
Region2	-0.0284	0.7376	-	-
Region3	-0.5879***	0.0000	-	-
Region4	-0.0590	0.3836	-	-
Region5	-0.0468	0.5887	-	-
Region6	0.3706 ***	0.0000	-	-
Region7	0.1486***	0.0576	-	-
Region8	0.2974***	0.0005	-	-
deleg	-0.0178	0.6966	0.5	0.5
rural	0.2397	0.0095	0.0721212	0.5
iret	-1.3491***	0.0089	3.253532e-13	0.5
PRWQ×Income	0.5789**	0.0166	-	-
PRWQ× iret	0.9461*	0.0871	-	-
irob	-	-	9.802058e-15	0.5

Une autre vision des résultats

- ► On peut représenter en 2-D la probabilité de boire de l'eau du robinet comme une fonction certaines variables du modèle.
- ▶ Il faut fixer les autres variables à un niveau déterminé (médiane, moyenne, autre)
- ► Les interactions entre variables sont spécifiées dans le modèle paramétrique, mais sont automatiques dans le modèle non-paramétrique (fonction)

▶ Probabilité de boire de l'eau du robinet comme une fonction de l'indice *PRWQ* pour **différentes regions**.

► Probabilité de boire de l'eau du robinet comme une fonction du **revenu** pour différent **niveaux de l'indice** *PRWO*.

 Probabilité de boire de l'eau du robinet comme une fonction du revenu pour différent niveaux de l'indice PRWQ.

Estimated conditional prob of drinking tap water using Probit estimator

Region= 3 . Retired= 0 . Diploma= 1 . Rural= 0 .

Estimated conditional prob of drinking tap water using NP estimator

Region= 3 , Retired= 0 , Diploma= 1 , Rural= 0 .

- L'estimation non paramétrique, c'est pas si horrible que ça!
- ► Les outils existent dans 🙊 et sont bien documentés
- ► L'estimation non paramétrique est utile (selon moi) si :
 - On cherche des non-linéarités (sur une variable)
 - ► On cherche principalement à prédire
 - ▶ On cherche à estimer une fonction dans un calcul intermédiaire (une densité par exemple)
 - On cherche à tester la pertinence de spécifications
- ▶ Les difficultés sont dans :
 - ► La compréhension des modèles estimés (pb de représentation de fonctions)
 - ► La diffusion des résultats en grande dimension
 - ▶ et (quand même aussi!) si on a beaucoup d'observations et/ou de grandes dimensions

► Ne quittez pas...

Pourquoi ce "non"

► Sébastien arrive