USP-ICMC-SME0806 - Estatística Computacional 1^{ϱ} trabalho - $1^{\varrho}/2020$

- 1. Um método simples para gerar n observações de uma variável aleatória $X \sim \text{normal}(0, 1)$ é descrito abaixo.
 - (a) Gerar $U_{i,1}, \ldots, U_{i,12} \stackrel{\text{iid}}{\sim} \text{uniforme}(0, 1)$.

(b) Fazer
$$X_i = \sum_{j=1}^{12} U_{i,j} - 6$$
, para $i = 1, \dots, n$.

Apresente uma justificativa para este método e implemente-o.

- 2. Considere $X \sim \text{Poisson}(\lambda)$, $\lambda > 0$. O esquema descrito abaixo permite gerar uma amostra aleatória de X.
 - (a) Faça P = 1 e N = 0.
 - (b) Gere $U \sim \text{uniforme}(0, 1)$, faça P = PU e N = N + 1 até que $P < e^{-\lambda}$.
 - (c) $X = N 1 \sim \text{Poisson}(\lambda)$.

Implemente o método descrito acima.

3. Implemente dois diferentes métodos para gerar amostras aleatórias para a função densidade triangular $f(x) = \max(0, 1 - |x|), x \in \mathbb{R}$.

Importante Em todos os itens apresente resultados de testes de hipóteses sobre as distribuições das quais as amostras são geradas.