

BIG IP Prototyping

Prototyping and Partitioning

Guri Kamelo Nadav Rosenblat INTEL

June 16, Year (2015)

The Daniel hotel, Herzliya, Israel

Agenda

Introduction

The issue - Big IP

The solution - Partitioning

Who are we

- FPGA team under Validation group.
- Image processing IP.
- Located in INTEL HIFA.

Why prototyping

- Shift left
 - FW
 - Driver
 - Application
 - Low cost (v.s emulation)
- Find HW bugs

My IP Design overview

Big IPWhat is big?

- Balance utilization
- Synthesis directive

- Memory modeling
- P&R strategy
- Location constraints

Synopsys Users Group

Avoid partition

- · Limit IP clock.
- Complex flow .
- Cost

What should we worry about?

- Clock tree
- Reset tree
- Connection types and requirements (Direct, TDM etc.)
- IO limits

Clock tree - Generated clock stay inside

Reset tree

Connection type

- Direct
- Single ended TDM
- High speed TDM
- GTX (not cycle accurate)

- Higher bandwidth
- Higher design complexity
- Harder to close timing

Partitioning

Synopsys Users Group

High speed TDM Latency (HAPS)

LVDS Frequency 1100Mhz				
TDM ratio [for 2 IO]	delay per Ratio[nSec]			
8	34			
16	50			
24	58			
32	68			
40	76			
48	82			
56	90			
64	98			
72	104			
80	112			
88	118			
96	126			
104	134			
112	140			
120	148			
128	156			

 $Latency \sim (TDM \ ratio \ X \ LVDS \ clock \ frequncy) + route \ latency$

Partitioning

LVDS TDM

DesignClock > Latency + FPGA internal routing

TDM ratio\ Design clock	1Mhz	5Mhz	6.3Mhz	10Mhz	20Mhz
8	966	166	116	66	16
16	950	150	100	50	0
24	942	142	92	42	-8
32	932	132	82	32	-18
40	924	124	74	24	-26
48	918	118	68	18	-32
56	910	110	60	10	-40
64	902	102	52	2	-48
72	896	96	46	-4	-54
80	888	88	38	-12	-62
88	882	82	32	-18	-68
96	874	74	24	-26	-76
104	866	66	16	-34	-84
112	860	60	10	-40	-90
120	852	52	2	-48	-98
128	844	44	-6	-56	-106

- Worst case Internal routing will determine max ratio
- Use FF to FF routing
- Using variable ratio to ease timing on specific signals

Partitioning

LVDS TDM

$$\frac{\textit{Num of Signals}}{\textit{Num of IO per connector}* \textit{TDM ratio}} = \textit{Num of connector}$$

TDM ratio 64:2							
Source	Destination	signals	Number of IO	Number of connectors			
А	В	3128	98	3			
А	С	4504	142	3			
А	D	5526	174	4			
А	A'	5526	174	4			
А	B'	2286	72	2			
To	tal A	20970	660	16			

Synopsys Users Group

TDM P&R effect(example)

TDM P&R effect(example)

TDM P&R effect(example)

Synopsys Users Group

IO limited Partitioning

- Routed signals ~25k
- 40 LVDS pairs for FPGA interconnect

Star topology

IO limited partition: Example

- TDM ratio 128:2
- Design frequency 1M

Synopsys Users Group

What do you get on HAPS

- Semi-auto partitioning from my experience
- Full IP view before and after partitioning.
- Auto TDM insertion TDM bist mode
- Backdoor access

Prototyping

Synopsys Users Group

Key principles

		Asic	prototype
\checkmark	keep functional logic	f(x)	f(x)
✓	keep cycle accurate	1 clock	1 clock
✓	control IP interfaces	full control	partial
	IP bandwidth	based on SOC	partial
\checkmark	Push button model	Not there yet	almost there

Supported on Protocompiler

Any question?

Thank You

