	class Robot Implements the robot's functionality. Member variables allow easy sharing of data between different functions.					class Map State machine that
	Line Following / Recovery	Position tracking	Egg processing	Propulsion	Framework & Communication	represents the playing area.
Member functions	update_line_sensors() Updates line_sensors_history with latest data. calculate_demand() Carries out control loop operations; outputs desired wheel velocities. recovery() Carries out recovery strategy to attempt to reach a line.	update_tracking() Reads the motor speeds, and then uses a second-order Euler integrator to infer current position, orientation, speed and path curvature.	<pre>egg_pickup() egg_identify() egg_crack() egg_inside_identify() egg_inside_drop() egg_drop()</pre>	move(MotorDemand) Scales the requested motor demand and sends it to the motors via PWM.	Robot(), ~Robot() Memory management. load_constants() Retrieves constants from robot.cfg configuration file, parses command-line options. initialise() Opens connection to robot; preliminary setup.	populate() Parses the human-readable playing area representation file and populates the data structure. advance() Changes the state machine state by advancing in one direction.
Data types	union LineSensors Represents a data frame from the I2C light sensor board. typedef LineSensorsHistory Represents a series of timestamped LineSensors data, stored in a std::vector.	struct Tracking Represents the robot's kinematic state. Has members to store respectively position, orientation, speed and path curvature. typedef TrackingHistory Represents a series of timestamped Tracking data, stored in a std::vector.	enum EggType Contains each of the possible egg types. enum EggInsideType	class MotorDemand Contains the wheel speeds for the two propulsion motors.	class LinkError : Exception Exception that triggers reconnection & reconfiguration. class Vector2d A simple 2-dimensional vector. template <typename t=""> struct Timestamp Contains a value and an integer number of milliseconds.</typename>	class Point Represents a point of interest in the playing area. class Line Represents a white line path between two points of interest.
Key member variables	LineSensorsHistory line_sensors_history Contains all the line sensor values since the beginning of time. bool on_line Whether the line following algorithm has lost track of the white line. bool at_crossroad Whether the robot is at a crossroad.	TrackingHistory tracking_history Contains all the Tracking values since the beginning of time.	EggType egg_type EggInsideType egg_inside_type		robot_link rlink Interface to microcontroller functions. stopwatch sw	std::vector <point> points Points of interest in the playing area. std::vector<line> lines White lines connecting the points of interest. bool at_point int cur_point int cur_line Current robot location.</line></point>

Fig.	Software subsystem structure
Drawn by: Antoine Dupuis (ard61)	Accepted by:
Date: 24/02/2016	Date: