2º Caso:

Maximizar 'Z'

Restrições de 'S' são do tipo '\ge '

Maximizar: $Z = 40X_1 + 60X_2$

Sujeito a:

S
$$\begin{cases} 2X_1 + X_2 \le 70 \\ X_1 + X_2 \ge 40 \\ X_1 + 3X_2 \le 90 \end{cases}$$

1º Passo:

Inserir uma variável de folga em cada inequação, obtendo assim um novo sistema $'S_1'$.

Obs.: Para a inequação de tipo '≥' o sinal da Variável de Folga é Negativo

$$\mathbf{S_1} \begin{cases} 2X_1 + X_2 + \mathbf{X_3} & = 70 \\ X_1 + X_2 & -\mathbf{X_4} & = 40 \\ X_1 + 3X_2 & +\mathbf{X_5} & = 90 \end{cases}$$

2º Passo:

Inserir uma Variável Artificial (com sinal Positivo) na inequação '≥', obtendo assim um novo sistema 'S₂'.

$$\mathbf{S_2} \begin{cases} 2X_1 + X_2 + X_3 & = 70 \\ X_1 + X_2 & -X_4 & +X_6 & = 40 \\ X_1 + 3X_2 & +X_5 & = 90 \end{cases}$$

3º Passo:

Como há uma Variável Artificial, então há uma Função Artificial 'M'. Ela é igual ao valor da variável artificial, mas com o sinal trocado (Negativo).

$$\mathbf{M} = \mathbf{X}_6$$

4º Passo:

Jogar os coeficientes das restrições, da função 'Z' e da função artificial 'M' na tabela.

Obs.: Os coeficientes de 'Z' e de 'M' devem ter o sinal trocado na tabela.

	\mathbf{X}_{1}	X_2	X_3	X_4	X_5	X_6	b	Q
	2	1	1	0	0	0	70	
	1	1	0	- 1	0	1	40	
	1	3	0	0	1	0	90	
Z	- 40	- 60	0	0	0	0	0	
M	0	0	0	0	0	+1	0	

5ºPasso: Encontrar a Matriz Identidade na tabela. Elas são as Variáveis Básicas (VB) e devem ter valor '0' na última linha.

Caso isso não aconteça, deve ser feito UM <u>Ajuste</u>, aplicando operações Elementares de modo que apareçam '0' nas ultimas linhas de VB. O valor de 'M' aparecerá automaticamente com o Ajuste.

Dica: Para saber qual número usar na operação elementar, basta pegar o numero correspondente da coluna e dividi-lo pelo Pivo, invertendo o sinal.

			VB		VB	VB			
	\mathbf{X}_{1}	X_2	X ₃	X_4	X_5	X_6	b	Q	
	2	1	1	0	0	0	70		
	1	1	0	- 1	0	1	40		
	1	3	0	0	1	0	90		
Z	- 40	- 60	0	0	0	0	0		
M	0	0	0	0	0	1	0		E ₅₂ (-1)
						7			

6ºPasso:

Encontrar os novos valores de 'X' e 'M'.

As Variáveis Não Básicas (VNB) possuem valor Zero. E as VB possuem o valor encontrado na coluna 'b'.

			VB		VB	VB		
	\mathbf{X}_{1}	\mathbf{X}_2	X_3	X_4	X_5	X_6	b	Q
	2	1	1-	0	0	0	- 70	
	1	1	0	- 1	0	1	- 40	
	1	3	0	0	1	0	- 90	
Z	- 40	- 60	0	0	0	0	0	
М	- 1	- 1	0	1	0	0	- 40	

$$(X_1, X_2, X_3, X_4, X_5, X_6) = (0, 0, 70, 0, 90, 40)$$

$$M = -X_6 = -40$$

7º Passo: Inicio do Ciclo Simplex:

 1° - Encontrar o maior número negativo em módulo. Se der empate escolha aquele cujo X tem um coeficiente maior na Função Objetiva.

	$\mathbf{X_1}$	X_2	X_3	X_4	X_5	X_6	b	Q
	2	1	1	0	0	0	70	
	1	1	0	- 1	0	1	40	
	1	3	0	0	1	0	90	
Z	- 40	- 60	0	0	0	0	0	
M	- 1	- 1_	0	1	0	0	- 40	
		(
		17 – 7	$40X_1 + 0$	60 Y .\				

$2^{\rm o}$ - Dividir os valores de 'b' pela coluna selecionada no passo $1^{\rm o}.$ O resultado será a coluna 'Q'

Obs.: A linha que possui a função 'Z' e 'M' não é dividida. E caso tenha números negativos, também Não se faz a divisão.

	\mathbf{X}_{1}	X_2	X_3	X_4	X_5	X_6	b	Q
	2	1	1	0	0	0	70	70
	1	1	0	- 1	0	1	40	40
	1	3	0	0	1	0	90	30
Z	- 40	- 60	0	0	0	0	0	
M	- 1	- 1	0	1	0	0	- 40	

3º - Encontrar o menor numero da coluna 'Q'

	\mathbf{X}_{1}	\mathbf{X}_2	\mathbf{X}_3	X_4	X_5	X_6	b	Q
	2	1	1	0	0	0	70	70
	1	1	0	- 1	0	1	40	40
	1	3	0	0	1	0	90	30
Z	- 40	- 60	0	0	0	0	0	
M	- 1	- 1	0	1	0	0	- 40	

4º - Encontrar o Pivo na intersecção do passo 1º com o passo 3º.

	\mathbf{X}_{1}	X_2	X ₃	X_4	X ₅	X_6	b	Q
	2	1	1	0	0	0	70	70
	1	1	0	- 1	0	1	40	40
	1	3	0	0	1	0	90	30
Z	- 40	- 60	0	0	0	0	0	
M	-1	-1	0	1	0	0	- 40	

5º – Aplicar Operações Elementares de modo que o Pivo tenha o valor '1' e os demais itens da coluna tenham valor '0'.

Dica: Para saber qual número usar na operação elementar, basta pegar o numero correspondente da coluna e dividi-lo pelo Pivo, invertendo o sinal.

	$\mathbf{X_1}$	\mathbf{X}_2	\mathbf{X}_3	X_4	X_5	X_6	b	Q	
	2	1	1	0	0	0	70	70	E ₁₃ (- 1/3)
	1	1	0	- 1	0	1	40	40	$\mathbf{E}_{23}(-1/3)$
	1	3	0	0	1	0	90	30	E ₃ (1/3)
Z	- 40	- 60	0	0	0	0	0		E ₄₃ (20)
M	- 1	- 1	0	1	0	0	- 40		E ₅₃ (1/3)

Fim do Ciclo Simplex.

Obtida a nova Tabela, começar tudo de novo desde o '5º Passo'.

Obs.: Quando 'M' tiver valor igual a '0', então elimine a linha dele e a coluna com a Variável Artificial e continue uma nova tabela com a linha de Z. Se não houver mais números negativos na linha de <u>M</u>, mas o valor de <u>M</u> continuar sendo <u>diferente de 0</u>, então é porque não há solução para o problema.

Quando não houver mais números negativos na linha de 'Z', é porque a tabela chegou ao fim. E o valor máximo de 'Z' foi encontrado.

Se não houver mais números negativos na linha de <u>Z</u>, mas o valor de <u>Z</u> continuar sendo <u>Negativo</u>, então é porque não há solução para o problema.