Segnali e immagini 30 ottobre 2019

Analisi di Fourier

L'analisi di Fourier permette di passare da segnali temporali o spaziali a frequenziale e viceversa.

Serie di Fourier

Funzione di sintesi Una funzione $f:R\to R$ periodica di periodo T, con variabile continua t, può essere espressa come:

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{j\frac{2\pi n}{T}t}$$
 (sintesi)

con $n \in Z$. Praticamente la funzione di analisi sintetizza ol segnale come somma di molteplici oggetti. I coefficienti c_n rappresentano i pesi, mentre le esponenziali $e^{j\frac{2\pi n}{T}t}$ rappresentano le fratures/caratteristiche del signali (dipendono da n).

Funzione di analisi I coefficienti c_n sono calcolati come segue:

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(t)e^{-j\frac{2\pi n}{T}t} dt$$
 (analisi)

per $n \in Z$.

Rappresentazione dei coefficienti I coefficienti possono essere rappresentati nelle forma rettangolare ($c_n = Re + jIm$) oppure nella forma polare ($c_n = |c_n|e^{j\theta_n}$).

Spiegazione della funzione di sintesi L'esponenziale $e^{j\frac{2\pi n}{T}t}$ viene interpretata come un fasore, dove $\frac{2\pi n}{T}t$ rappresenta la sua velocità angolare¹.

Quindi ogni termine della sommatoria, ottenuto dalla moltiplicazione di un numero complesso e un fasore, sarà un altro fasore:

$$c_n e^{j\frac{2\pi n}{T}t} = |c_n|e^{j\theta_n}e^{j\frac{2\pi n}{T}t} = |c_n|e^{j\frac{2\pi n}{T}t+\theta_n}$$

In questo modo, praticamente, estendo il fasore iniziale $e^{j\frac{2\pi n}{T}t}$ ad una lunghezza $|c_n|$, facendolo partire con un angolo θ_n (detto angolo di fase).

¹Più grande è n (che dipende dal coefficiente c_n), più giri vengono effettuati nell'unità di tempo, e quindi più grande è la velocità angolare.

Segnali e immagini 30 ottobre 2019

Caso coefficiente reale

Notiamo che:

- c_n può appartenere agli $\mathbb R$, nel qual caso significa che θ_n non compare, avendo quindi solo un cambiamento nella lunghezza dell'n-esimo fasore pari a $|c_n|$

$$c_n = |c_n| e^{i\theta_n}$$

$$c_n e^{j\frac{2\pi n}{T}t} = |c_n|e^{j\frac{2\pi n}{T}t} = |c_n|e^{j\frac{2\pi n}{T}t}$$

Segnali e immagini 30 ottobre 2019

Proprietà della serie di Fourier Lo spettro di ampiezza e di fase sono funzioni nel dominio delle frequenze che formano lo spettro di Fourier. Nel caso di segnali periodici, lo spettro di Fourier gode delle seguenti proprietà:

- Lo spettro di ampiezza è simmetrico rispetto all'asse y;
- Lo spettro di fase è antisimmetrico rispetto all'asse y;
- Se i coefficienti c_n sono reale, allora lo spettro di fase non esiste;
- Entrambi gli spettri sono funzioni a pettine, definite su frequenze $\frac{2\pi n}{T}$, con $n \in Z$ (ovvero frequenze multiple rispetto a quella fondamentale $\frac{2\pi}{T}$).