Software Defined Networking

Lab Work 5 – Load Balancing with OpenFlow

Jeremias Blendin, Leonhard Nobach, Christian Koch, Julius Rückert, Matthias Wichtlhuber

PS - Peer-to-Peer Systems Engineering Lab
Dept. of Electrical Engineering and Information Technology
Technische Universität Darmstadt
Rundeturmstr. 12, D-64283 Darmstadt, Germany
http://www.ps.tu-darmstadt.de/

Lab 5: Overview and Getting Started

- This lab gives you experience how to achieve load balancing with OpenFlow
- Put the script lab5-topo.py into your Mininet home directory
 - Simplified topology of a datacenter and client network linked together.

Lab 5 Topology

Lab 5 Topology

- * s2 is linked to several client hosts
 - > E.g. customers of an ISP
- \$ s1 is a datacenter switch connected to servers

Load Balancer

Source: http://www.netdigix.com/images/load-balance.jpg

Task 1: Design a Load Balancer with OpenFlow

- Create a Ryu application which **load-balances** requests from clients (e.g. h1-h6) between srv1 and srv2
 - Select a virtual IP address.
 - Whenever this virtual IP address is used by the clients, connections to it are load-balanced between the servers.
 - This way, servers are equally utilized

Requirements:

- A connection from the same IP address must use the same server over and over again
- Different IP addresses may use different servers
- The scheme used must be able to cope with arbitrary client IP addresses, not only with the addresses of h1-h6 (Hint: IP Wildcard matching)
- Implement a stateless load balancer

Challenges:

- Use the controller to handle ARP requests to the virtual IP.
- You can hard-code MAC addresses of the servers, if you want.

Programming with Ryu

Resources

- http://osrg.github.io/ryu/
- Documentation http://ryu.readthedocs.org/en/latest/index.html
- Book with examples http://osrq.github.io/ryu-book/en/html/

Things to be aware of

- Ryu relies on a concurrent networking library called Eventlet (http://eventlet.net)
- Eventlet is a concurrent networking library that uses coroutines for parallelism
 - Approach is similar to cooperative multitasking
 - No preemption of processes
- What does that mean?
 - Make tasks that can take a long time to process preemptible
 - How?
 - Allow the scheduler to select another task by giving back the control from time to time
 - Normal function call:

```
self.fancy method(A,B,C)
```

Function call that allows the scheduler to switch tasks:

```
hub.spawn(self.fancy method, A, B, C)
```

Running Ryu

- Use Linux
 - Use either the existing VM, which already has Ryu installed
 - Install it on a new OS by running pip install ryu
- But my Main Computer Runs Windows!
 - Ryu can made run on Windows, but does not work properly
 - Therefore: run Linux inside a VM
 - Connect the Linux VM to the outer network using "Bridged networking"
 - For the duration of the work, disable DHCP on the network interface of your Windows Computer