武汉大学 2015-2016 学年第二学期期末考试 高等数学(弘毅班) A2(A卷)

- 1、(9 分) 设长方体三条棱长为|OA| = 5,|OB| = 3,|OC| = 4,OM 为对角线,求 \overline{OA} 在 \overline{OM} 上的投影。
- 2、(7 分)求函数 $u = e^{-2y} \ln(x+z)$ 在点(e,1,0)沿曲面 $z = x^2 e^{3y-1}$ 法线方向的方向导数。 3、(10 分)设 z = z(x,y) 由方程 $z = x + y\varphi(z)$ 所确定,其中 φ 二阶可导,且 $1 y\varphi'(z) \neq 0$,求 $\frac{\partial^2 z}{\partial x^2}$ 。
- 4、(9分) 求函数 $z = 2x^2 + 3y^2 + 4x 8$ 在闭域 $D: x^2 + y^2 \le 4$ 上的最大值和最小值。
- 5、(10 分)设 Q是由 $z = \sqrt{1-x^2-y^2}$ 及 z = 0 所围的闭区域,试将 $\iint_{\Omega} f(x^2+y^2) dv$ 分别化成球面、柱面坐标下的三次积分式。
- 6、 $(9 分) 求二元可微函数 <math>\varphi(x,y)$,满足 $\varphi(0,1)=1$,并使曲线积分

 $I_1 = \int_L (3xy^2 + x^3) dx + \varphi(x, y) dy \ \mathcal{D} \ I_2 = \int_L \varphi(x, y) dx + (3xy^2 + x^3) dy \ \text{and} \$

- 7、(9分)设 f(x) 在[-L,L]内有连续的导函数,且 f(-L)=f(L)。已知 f(x) 展成以 2L 为周期的傅立叶级数的系数为 a_0,a_n,b_n , $n=1,2,3,\cdots$ 。试用 a_0,a_n,b_n 表示 f'(x) 的傅立叶系数 A_0,A_n,B_n , $n=1,2,3,\cdots$ 。
- 8、(9分)设函数 f(z), g(z) 都是可微函数,求曲线 x = f(z), y = g(z) 在对应于 $z = z_0$ 点处的切线方程和法平面方程。
- 9、(7分) 计算曲面积分 $I = \bigoplus_{\Sigma} xydxdz + xy^2dydz$ 其中 Σ 是曲面 $x = y^2 + z^2$ 与平面 y = 0, z = 0 及 x = 1 在第一卦限所围成立体的表面的内侧。
- 10、(7 分) 试求函数 $f(x) = \arctan x$ 在点 $x_0 = 0$ 的泰勒级数展开式,并求 $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \left(\frac{3}{4}\right)^n$ 之值。
- 11、(8 分) 设有直线 l_1 : $\frac{x}{4} = \frac{y}{1} = \frac{z}{1}$, l_2 : $\begin{cases} z = 5x 6 \\ z = 4y + 3 \end{cases}$, l_3 : $\begin{cases} y = 2x 4 \\ z = 3y + 5 \end{cases}$, 求平行于 l_1 而分别与 l_2 , l_3 相交的直线的方程。
- 12、(6分) 设级数 $\sum_{n=1}^{\infty} (u_n u_{n-1})$ 收敛,又级数 $\sum_{n=1}^{\infty} V_n$ 绝对收敛,试证级数 $\sum_{n=1}^{\infty} u_n V_n$ 收敛。