Университет ИТМО

Физико-технический мегафакультет

Группа <u>Р3208</u>	К работе допущен
Студенты Ступин Т.Р. Петров В.М. Есоян В.С.	Работа выполнена
Преподаватель Сорокина Е. К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №2

Исследование скольжения тележки по наклонной плоскости

1. Цель работы.

- 1. Эксперимент по проверке равноускоренного движения тележки по наклонной плоскости
- 2. Измерение модуля ускорения свободного падения

2. Задачи, решаемые при выполнении работы.

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренного движения тележки
- 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения

3. Объект исследования.

Ускорение тележки при различных углах наклона

4. Метод экспериментального исследования.

Многократное измерение промежутков времени, за которое тележка проходит заданное расстояние по наклонной плоскости при разных углах наклона

5. Рабочие формулы и исходные данные.

• Перемещение

$$Y = x_2 - x_1$$

• Полуразность квадратов значений времени

$$Z = \frac{t_2^2 - t_1^2}{2}$$

• Абсолютна погрешность Ү

$$\Delta_Y = \sqrt{\left(\frac{\partial f_1}{\partial x_1} \cdot \Delta x_1\right)^2 + \left(\frac{\partial f_1}{\partial x_2} \cdot \Delta x_2\right)^2}$$

• Абсолютна погрешность Z

$$\Delta_Z = \sqrt{(\frac{\partial f_2}{\partial t_1} \cdot \Delta t_1)^2 + (\frac{\partial f_2}{\partial t_2} \cdot \Delta t_2)^2}$$

• Абсолютна погрешность Ү

$$\varepsilon_Y = \frac{\Delta_Y}{Y} \cdot 100\%$$

• Абсолютна погрешность Z

$$\varepsilon_z = \frac{\Delta_Z}{Z} \cdot 100\%$$

• Коэффициент α в зависимости $Y = \alpha Z$

$$\alpha = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}$$

Среднеквадратичное отклонение коэффициента α

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a \cdot Z_i)^2}{(N-1) \cdot \sum_{i=1}^{N} Z_i^2}}$$

• Абсолютная погрешность коэффициента α

$$\Delta_a = 2\sigma_a$$

• Относительная погрешность ускорения

$$\varepsilon_a = \frac{\Delta_a}{a} \cdot 100\%$$

• Синуса угла наклона рельса к горизонту

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}$$

• Среднее значение ускорения

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$

• Погрешность значения ускорения для каждой серии измерений

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{\tiny M2}})^2 + (\Delta x_{\text{\tiny M1}})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta_{t_1})^2 + (\langle t_2 \rangle \Delta_{t_2})^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

• Коэффициент из теоретической линейной зависимости $a = A + B sin \alpha$

$$B \equiv g = \frac{\sum_{i=1}^{N} (a_i \cdot \sin \alpha_i) - \frac{1}{N} \cdot \sum_{i=1}^{N} a_i \cdot \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2}$$

• Коэффициент из теоретической линейной зависимости $a = A + B sin \alpha$

$$A = \frac{1}{N} \cdot (\sum_{i=1}^{N} a_i - B \cdot \sum_{i=1}^{N} \sin \alpha_i)$$

• Среднеквадратичное отклонение ускорения свободного падения

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} (a_i - (A + B \cdot \sin \alpha_i))^2}{(\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2) \cdot (N - 2)}}$$

• Абсолютная погрешность коэффициента д

$$\Delta_a = 2\sigma_a$$

• Относительная погрешность д

$$\varepsilon_g = \frac{\Delta_g}{g} \cdot 100\%$$

• Среднее значение времени

$$\langle t \rangle = \frac{\sum_{i=1}^{N} t_i}{N}$$

• Среднеквадратичное отклонение (t)

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

• Доверительный интервал для $\langle t \rangle$

$$\Delta_{\langle t \rangle} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

• Количество измерений

$$N = 5$$

• Табличное значение ускорения свободного падения

$$g_{\text{табл}} = 9,82 \frac{\text{м}}{\text{c}^2}$$

6. Измерительные приборы.

Таблица 1 Измерительные приборы

Наименование	Предел измерений	Цена деления	Класс точности	Погрешность
Линейка на рельсе	1,3 м	1 см/дел	-	5,0 мм
Линейка на угольнике	250 мм	1 мм/дел	-	0,5 мм
ПКЦ-3 в режиме секундомера	100 с	0,1 c	-	0,1 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Схема для задания 1

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Задание 1. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренного движения тележки

Таблица 2

X, M	х', м	h_0 , mm	h'_0 , mm
$0,220 \pm 0,005$	$1,000 \pm 0,005$	$222,0 \pm 0,5$	$222,0 \pm 0,5$

Таблица 3 Результаты прямых измерений (Задание 1)

	Измеренные величины				Рассчитанные величины	
№	х ₁ , м	х ₂ , м	<i>t</i> ₁ , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2
1	0,15	0,40	1,1	2,2	0,250 ± 0,001	1,815 ± 0,164
2	0,15	0,50	1,1	2,6	0,350 ± 0,002	2,775 ± 0,188
3	0,15	0,70	1,1	3,1	0,550 ± 0,002	4,200 ± 0,219
4	0,15	0,90	1,1	3,6	$0,750 \pm 0,003$	5,875 ± 0,251
5	0,15	1,10	1,0	4,0	0,950 ± 0,004	7,500 ± 0,275

Задание 2. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту.

Определение ускорения свободного падения

Таблица 4 Результаты прямых измерений (Задание 2)

n_p	<i>h</i> , мм	h^\prime , мм	No	t_1 , c	t ₂ , c
			1	1,1	4,0
			2	1,1	4,0
1	213	221	3	1,1	4,0
			4	1,1	4,0
			5	1,1	4,0
			1	0,8	2,9
			2	0,8	2,9
2	203	220	3	0,8	2,9
			4	0,8	2,9
			5	0,9	3,0
			1	0,7	2,4
			2	0,7	2,4
3	193	219	3	0,7	2,4
			4	0,7	2,5
			5	0,7	2,4
			1	0,6	2,1
			2	0,6	2,1
4	183	218	3	0,6	2,1
			4	0,6	2,1
			5	0,6	2,1

			1	0,6	1,8
			2	0,6	1,8
5	173	217	3	0,5	1,8
			4	0,6	1,9
			5	0,5	1,8

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Задание 1. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренного движения тележки.

Заполним таблицу 3

По результатам прямых измерений рассчитаем величины:

$$Y = x_2 - x_1$$
$$Z = \frac{(t_2^2 - t_1^2)}{2}$$

и заполним последние два столбца таблицы 3

Для примера рассчитаем для первой строки

$$Y = 0.40 - 0.15 = 0.25$$

$$Z = \frac{(2,2^2 - 1,1^2)}{2} = 1,815$$

Теперь вычислим ускорение тележки методом наименьших квадратов

Вычислим коэффициент а в теоретической зависимости $Y = \alpha Z$

$$a = \frac{\sum_{i=1}^{5} Z_i Y_i}{\sum_{i=1}^{5} Z_i^2} = 0,129 \frac{M}{c^2}$$

Теперь найдём среднеквадратичное отклонение σ_a этого коэффициента

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - 0.129 \cdot Z_i)^2}{(5-1) \cdot \sum_{i=1}^{N} Z_i^2}} = 0.001 \frac{M}{c^2}$$

Рассчитаем абсолютную погрешность коэффициента α для доверительной вероятности $\alpha = 0.90$

$$\Delta_a = 2 \cdot 0.001 = 0.002 \frac{M}{c^2}$$

Наконец найдём относительную погрешность ускорения

$$\varepsilon_a = \frac{0,002}{0,129} \cdot 100\% = 1,746\%$$

Задание 2. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту.

Определение ускорения свободного падения

Заполним таблицу 5

Для каждой серии измерений вычислим $\sin \alpha$ и занесём результаты во второй столбец В качестве примера вычислим $\sin \alpha$ для первой серии измерений

$$\sin \alpha = \frac{(222,0 - 213,0) - (222,0 - 221,0)}{1,0 \cdot 10^3 - 0,22 \cdot 10^3} = 0,010$$

Теперь вычислим средние значения времени $\langle t_1 \rangle$ и $\langle t_2 \rangle$, заполнив третий и четвёртый столбцы Для первой серии измерений получим

$$\langle t_1 \rangle = \frac{\sum_{i=1}^5 t_{1_i}}{5} = 1.1c$$
 $\langle t_2 \rangle = \frac{\sum_{i=1}^5 t_{2_i}}{5} = 4.0 c$

Вычислим среднее значение ускорения $\langle a \rangle$ и его погрешность Δa , заполнив последний столбец Для примера вычислим значения в первой строке

$$\langle a \rangle = \frac{2(1,1-0,15)}{4,0^2-1,1^2} = 0,128 \frac{M}{c^2}$$

$$\Delta a = 0,128 \cdot \sqrt{\frac{0,005^2+0,005^2}{(1,1-0,15)^2} + 4 \cdot \frac{(1,1\cdot0,082)^2+(4,0\cdot0,082)^2}{(4,0^2-1,1^2)^2}} = 0,006 \frac{M}{c^2}$$

Теперь для теоретической линейной зависимости $a = A + B \sin \alpha$ вычислим коэффициенты A и B

$$B \equiv g = \frac{\sum_{i=1}^{5} (a_i \cdot sin\alpha_i) - \frac{1}{5} \cdot \sum_{i=1}^{5} a_i \cdot \sum_{i=1}^{5} sin\alpha_i}{\sum_{i=1}^{5} sin\alpha_i^2 - \frac{1}{5} \cdot (\sum_{i=1}^{5} sin\alpha_i)^2} = 10,7247 \frac{M}{c^2}$$

$$A = \frac{1}{5} \cdot (\sum_{i=1}^{5} a_i - 10,7247 \cdot \sum_{i=1}^{5} \sin \alpha_i) = -0,0058 \frac{M}{C^2}$$

Наконец вычислим среднеквадратичное отклонения ускорения свободного падения g (коэффициента B)

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{5} (a_i - (-0,0058 + 10,7247 \cdot \sin \alpha_i))^2}{(\sum_{i=1}^{5} \sin \alpha_i^2 - \frac{1}{5} \cdot (\sum_{i=1}^{5} \sin \alpha_i)^2) \cdot (5-2)}} = 0,5173 \frac{M}{c^2}$$

Определим абсолютную погрешность коэффициента g для доверительной вероятности $\alpha = 0.90$

$$\Delta_g = 2 \cdot 0.5173 = 1.0346 \frac{M}{c^2}$$

Также вычислим относительную погрешность д

$$\varepsilon_g = \frac{1,0346}{10.7247} \cdot 100\% = 9,65\%$$

Вычислим абсолютное отклонение экспериментального значения ускорения свободного падения g от его табличного значения $g_{\text{табл}}$ для Санкт-Петербурга

$$\Delta_{g_{\text{табл}}} = |g - g_{\text{табл}}| = |10,7247 - 9,82| = 0,9047 \frac{M}{c^2}$$

А также относительное отклонение от табличного значения

$$\varepsilon_{g_{{ ext{Ta6}}\pi}} = \frac{\Delta_{g_{{ ext{Ta6}}\pi}}}{g_{{ ext{Ta6}}\pi}} \cdot 100\% = \frac{0,9047}{9,82} \cdot 100\% = 9,21\%$$

Таблица 5 Результаты расчетов (Задание 2)

$N_{\Pi J}$	sin α	$\langle t_1 \rangle \pm \Delta_{t_1}, c$	$\langle t_2 \rangle \pm \Delta_{t_2}$, c	$\langle a \rangle \pm \Delta a, \frac{M}{c^2}$
1	0,012	1,100 ± 0,082	4,000 ± 0,082	$0,128 \pm 0,006$
2	0,023	$0,820 \pm 0,085$	2,920 ± 0,085	$0,242 \pm 0,016$
3	0,035	$0,700 \pm 0,082$	2,420 ± 0,085	$0,354 \pm 0,028$
4	0,046	$0,600 \pm 0,082$	2,100 ± 0,082	$0,469 \pm 0,041$
5	0,058	$0,560 \pm 0,087$	1,820 ± 0,085	0,634 ± 0,069

 $N_{\Pi \Pi}$ – количество пластин

$$\langle t_{1,2} \rangle = \frac{1}{N} \sum_{i=1}^{N} t_{1i,2i}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Задание 1

Вычислим погрешность для косвенных измерений Y и Z

Начнём с относительной погрешности Δ_{γ}

В формуле f_1 это функция двух переменных x_1 и x_2 определяющая значение Y, таким образом

$$f_1 = x_2 - x_1$$

Вычисляя частные производные по переменным x_1 и x_2 получаем:

$$\frac{\partial f_1}{\partial x_1} = -x_1$$
 $\frac{\partial f_1}{\partial x_2} = x_2$

Абсолютную погрешность Δx_1 и Δx_2 вычислим, используя инструментальную погрешность $\Delta_{\rm u}$ линейки на рельсе из таблицы 1 и пересчитав её для доверительной вероятности $\alpha=0.95$

$$\Delta x_1 = \Delta x_1 = \frac{2}{3} \cdot 0,005 = 0,003 \text{ M}$$

Получаем итоговую формулу для относительной погрешности Ү

$$\Delta_Y = 0.003 \cdot \sqrt{x_1^2 + x_2^2}$$

Для примера, в первой строке получим

$$\Delta_Y = 0.003 \cdot \sqrt{0.15^2 + 0.40^2} = 0.001 \text{ M}$$

Аналогично рассчитываем относительную погрешность Δ_Z

$$f_2 = \frac{t_2^2 - t_1^2}{2}$$

$$\frac{\partial f_2}{\partial t_1} = -t_1 \quad \frac{\partial f_2}{\partial t_2} = t_2$$

$$\Delta t_1 = \Delta t_2 = \frac{2}{3} \cdot 0, 1 = 0,07 c$$

$$\Delta_Z = 0,07 \cdot \sqrt{t_1^2 + t_2^2}$$

Для примера, в первой строке получим

$$\Delta_Z = 0.07 \cdot \sqrt{1.1^2 + 2.2^2} = 0.17 c$$

Задание 2

Опишем процесс вычисления погрешности для $\langle t_1 \rangle$ и $\langle t_2 \rangle$ на примере первой серии измерений Начнём с $\langle t_1 \rangle$

Рассчитаем среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t_1 \rangle} = \sqrt{\frac{1}{5(5-1)} \sum_{i=1}^{5} (t_{1_i} - 1, 1)^2} = 0 c$$

Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.90$:

$$t_{\alpha,N} = 2.132$$

Рассчитаем доверительный интервал:

$$\Delta_{\langle t_1 \rangle} = t_{\alpha,N} \cdot \sigma_{\langle t_1 \rangle} = 2.132 \cdot 0 = 0 \text{ c}$$

Определим абсолютную погрешность измерения с учетом доверительного интервала $\Delta_{\langle t_1 \rangle}$ и инструментальной погрешности $\Delta_{ut} = 0.1$ с:

$$\Delta_{t_1} = \sqrt{\Delta_{\langle t_1 \rangle}^2 + \left(\frac{2}{3} \cdot \Delta_{\text{M}t}\right)^2} = \sqrt{0^2 + \left(\frac{2}{3} \cdot 0, 1\right)^2} = 0.082 c$$

Расчёты для $\langle t_2 \rangle$ аналогичны

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость Y от Z

График 2. Зависимость а om sina

12. Окончательные результаты.

• Ускорение из задания 1

$$a = (0.129 \pm 0.002) \frac{M}{c^2}$$
 $\varepsilon_a = 1.746\%$ $\alpha = 0.90$

• Вычисленное значение ускорения свободного падения

$$g = (10,7247 \pm 1,0346) \frac{M}{C^2}$$
 $\varepsilon_g = 9,65\%$ $\alpha = 0,90$

• Абсолютное и относительное отклонение измеренного ускорения свободного падения от его табличного значения

$$\Delta_{g_{\text{табл}}} = 0.9047 \frac{M}{c^2} \quad \varepsilon_{g_{\text{табл}}} = 9.21\%$$

13. Выводы и анализ результатов работы

Во время выполнения лабораторной работы были проведены необходимые измерения. Таким образом, мы исследовали движение тележки по наклонной плоскости, проверили, что оно равноускоренное (на основе графика №2, т. к. с учётом погрешности ускорения, зависимость получилась линейной), а также определили величину ускорения свободного падения.

Абсолютная погрешность полученного ускорения свободного падения примерно равна абсолютному отклонению относительно табличного значения $g_{\text{табл}}$ для Санкт-Петербурга. Поэтому можно считать, что полученная величина – достоверная.