

CLAIMS

1. A compound of formula (I),

5

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

10 n is 0, 1 or 2;

X is N or CR^5 , wherein R^5 is hydrogen or taken together with R^1 may form a bivalent radical of formula $-\text{CH}=\text{CH}-\text{CH}=\text{CH}-$;

15 R^1 is $\text{C}_{1-6}\text{alkyl}$ or thienyl;

R^2 is hydrogen or hydroxy or taken together with R^3 or R^4 may form $=\text{O}$;

R^3 is a radical selected from

20 $-(\text{CH}_2)_s-\text{NR}^6\text{R}^7$ (a-1),
-O-H (a-2),
-O- R^8 (a-3),
-S- R^9 (a-4), or
—C≡N (a-5),

25 wherein

s is 0, 1, 2 or 3;

R^6 is $-\text{CHO}$, $\text{C}_{1-6}\text{alkyl}$, hydroxy $\text{C}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylcarbonyl}$,

di($\text{C}_{1-6}\text{alkyl}$)amino $\text{C}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkyloxyC}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylcarbonylaminoC}_{1-6}\text{alkyl}$, piperidinyl $\text{C}_{1-6}\text{alkylaminocarbonyl}$, piperidinyl, piperidinyl $\text{C}_{1-6}\text{alkyl}$,

30 piperidinyl $\text{C}_{1-6}\text{alkylaminocarbonyl}$, $\text{C}_{1-6}\text{alkyloxy}$, thienyl $\text{C}_{1-6}\text{alkyl}$, pyrrolyl $\text{C}_{1-6}\text{alkyl}$, aryl $\text{C}_{1-6}\text{alkylpiperidinyl}$, arylcarbonyl $\text{C}_{1-6}\text{alkyl}$, arylcarbonylpiperidinyl $\text{C}_{1-6}\text{alkyl}$, haloindozolylpiperidinyl $\text{C}_{1-6}\text{alkyl}$, or aryl $\text{C}_{1-6}\text{alkyl}(\text{C}_{1-6}\text{alkyl})\text{aminoC}_{1-6}\text{alkyl}$;

R^7 is hydrogen or $\text{C}_{1-6}\text{alkyl}$;

35 R^8 is $\text{C}_{1-6}\text{alkyl}$, $\text{C}_{1-6}\text{alkylcarbonyl}$ or di($\text{C}_{1-6}\text{alkyl}$)amino $\text{C}_{1-6}\text{alkyl}$; and

R⁹ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
or R³ is a group of formula

-Z-

(b-1),

wherein

5 Z is a heterocyclic ring system selected from

(c-1)

(c-2)

(c-3)

(c-4)

(c-5)

(c-6)

10

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, arylC₁₋₆alkyl,

di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl,

15 aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino;

R⁴ is hydrogen, C₁₋₆alkyl, furanyl, pyridinyl, arylC₁₋₆alkyl or

20 aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

with the proviso that when

n is 0, X is N, R² is hydrogen, R³ is a group of formula (b-1), Z is the heterocyclic ring system (c-2) or (c-4) wherein said heterocyclic ring system Z is attached to the rest of the molecule with a nitrogen atom, and R¹⁰ is hydrogen; then

25 R⁴ is other than C₁₋₆alkyl or pyridinyl.

2. A compound as claimed in claim 1 wherein

n is 0 or 1; X is N or CR⁵, wherein R⁵ is hydrogen; R³ is a radical selected from (a-1), (a-2) or (a-3) or is a group of formula (b-1) i.e. -Z-; s is 0, 1 or 2; R⁶ is -CHO, C₁-alkyl, piperidinylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl or

5 arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; R⁸ is C₁₋₆alkyl; when R³ is a group of formula (b-1) then Z is a heterocyclic ring system selected from (c-2) or (c-4); and each R¹⁰ independently is hydrogen, C₁₋₆alkyl or C₁₋₆alkyloxyC₁₋₆alkylamino.

3. A compound according to claim 1 and 2 wherein

10 n is 0; X is N or CR⁵, wherein R⁵ is hydrogen; R¹ is C₁₋₆alkyl; R² is hydrogen or hydroxy or taken together with R⁴ may form =O; R³ is a radical selected from (a-1) or (a-2); s is 0 or 1; R⁶ is -CHO or C₁₋₆alkyl; and R⁴ is

hydrogen, C₁₋₆alkyl or .

15 4. A compound according to claim 1, 2 and 3 wherein the compound is selected from compound No 1, compound No 5, compound No 7, compound No 3 and compound No 17.

	compound 1		compound 5
	compound 7		compound 3
	compound 17		

5. A compound as claimed in any of claims 1 to 4 for use as a medicine.

20

6. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 4.

25 7. A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 4 are intimately mixed.

8. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein said compound is a compound of formula (I)

5

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

10 n is 0, 1 or 2;

X is N or CR⁵, wherein R⁵ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15 R¹ is C₁₋₆alkyl or thienyl;

R² is hydrogen or hydroxy or taken together with R³ or R⁴ may form =O;

R³ is a radical selected from

20 -(CH₂)_s- NR⁶R⁷ (a-1),
-O-H (a-2),
-O-R⁸ (a-3),
-S- R⁹ (a-4), or
—C≡N (a-5),

25 wherein

s is 0, 1, 2 or 3;

R⁶ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl,

di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl,

30 piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁷ is hydrogen or C₁₋₆alkyl;

35 R⁸ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; and

R⁹ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
or R³ is a group of formula

-Z-

(b-1),

wherein

5 Z is a heterocyclic ring system selected from

(c-1)

(c-2)

(c-3)

(c-4)

(c-5)

(c-6)

10

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, arylC₁₋₆alkyl,

di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl,

15 aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino;

R⁴ is hydrogen, C₁₋₆alkyl, furanyl, pyridinyl, arylC₁₋₆alkyl or

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

20

9. Use according to claim 8 of a PARP inhibitor of formula (I) for the manufacture of a medicament for the treatment of a PARP-1 mediated disorder

10. Use according to claim 8 and 9 wherein the treatment involves chemosensitization.

25

11. Use according to claim 8 and 9 wherein the treatment involves radiosensitization.

12. A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

5

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

10

X is N or CR⁵, wherein R⁵ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl or thienyl;

15

R² is hydrogen or hydroxy or taken together with R³ or R⁴ may form =O;

R³ is a radical selected from

-(CH₂)_s-NR⁶R⁷ (a-1),

20 -O-H (a-2),

-O-R⁸ (a-3),

-S- R⁹ (a-4), or

—C≡N (a-5),

wherein

25 s is 0, 1, 2 or 3;

R⁶ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, piperidinyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thienylC₁₋₆alkyl,

30 pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁷ is hydrogen or C₁₋₆alkyl;

R⁸ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; and

35 R⁹ is di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

or R³ is a group of formula

-Z- (b-1),

wherein

Z is a heterocyclic ring system selected from

5

10 wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, arylC₁₋₆alkyl, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino;

R⁴ is hydrogen, C₁₋₆alkyl, furanyl, pyridinyl, arylC₁₋₆alkyl or ;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

20 13. A process for preparing a compound as claimed in claim 1, characterized by

a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran.

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents.

10

15

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) wherein R^{h} is $\text{C}_{1-6}\text{alkyl}$, into compounds of formula (I), wherein X is N, herein referred to as compounds of formula (I-i), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like.

