EXHIBIT 16

```
1
                           UNITED STATES DISTRICT COURT
 2
                        NORTHERN DISTRICT OF CALIFORNIA
 3
 4
                                              )
             GOOGLE LLC,
 5
                    PLAINTIFF,
 6
              VS.
                                                 NO.
                                                3:20-cv-06754-
 7
             SONOS, INC.,
                                                 WHA
 8
                    DEFENDANT.
 9
             GOOGLE LLC,
10
                    PLAINTIFF,
11
               VS.
                                                NO. C 20-06754 WHA
12
             SONOS, INC.,
13
                    DEFENDANT.
14
15
16
                    ZOOM VIDEO DEPOSITION OF EXPERT WITNESS
17
18
                              DOUGLAS SCHMIDT, PH.D.
19
                              THURSDAY, MARCH 3, 2022
20
21
22
23
24
           JOB NO. 5116748
25
          REPORTED BY: D'ANNE MOUNGEY, CSR 7872
                                                          Page 1
```

1	DEPOSITION OF DOUGLAS SCHMIDT, PH.D., TAKEN ON BEHALF OF
2	GOOGLE AT REDWOOD CITY, CALIFORNIA, COMMENCING AT
3	9:08 A.M. ON THURSDAY, MARCH 3, 2022, BEFORE D'ANNE
4	MOUNGEY, CSR 7872.
5	
6	
7	APPEARANCES OF COUNSEL:
8	
9	FOR SONOS, INC.:
10	LEE SULLIVAN SHEA & SMITH, LLP.
	BY: GEORGE LEE, ESQ.
11	MICHAEL BOYEA, ESQ.
	656 W RANDOLPH STREET
12	SUITE 5W
	CHICAGO, ILLINOIS 60661
13	1-312-754-9602
13	LEE@LS3IP.COM
14	HILEHOUTI .COM
15	
13	FOR GOOGLE, LLC:
16	Total Goodelly Eller
	QUINN EMANUEL URQUHART & SULLIVAN, LLP
17	BY: MARC L. KAPLAN, ESQ.
	555 TWIN DOLPHIN DRIVE
18	5TH FLOOR
	REDWOOD SHORES, CALIFORNIA 94065
19	312-705-7400
	MARCKAPLAN@QUINNEMANUEL.COM
20	
21	
	ALSO PRESENT:
22	
	KIMBERLEE DECKER, VIDEOGRAPHER
23	, ·
24	
25	
	Page 2
	rage 2

1				INDEX	
2					
3	WITNESS			EXAMINATION	PAGE
4	DOUGLAS	SCHMI	IDT, PH.D.,		
5				BY MR. KAPLAN	6
6					
7					
8					
9					
10			E	CXHIBITS	
11					
	NO.		PAGE	DESCRIPTION	
12					
	EXHIBIT	1	7	EXPERT REPORT OF DOUGLAS C.	
13				SCHMIDT	
14	EXHIBIT	2	14	U.S. PATENT U.S. 9,967,615	
15	EXHIBIT	3	31	U.S. PATENT U.S. 10,779,033	
16	EXHIBIT	4	71	U.S. PATENT U.S. 2011/000433	
17	EXHIBIT	5	84	U.S. PATENT U.S. 2012/00899	
18	EXHIBIT	6	121	KEY STL FEATURES: CONTAINERS	, AND
				ALGORITHMS	
19					
20					
21					
22					
23					
			QUESTIONS	INSTRUCTED NOT TO ANSWER	
24					
				(NONE)	
25					
				Page	<u> </u>

1	REDWOOD CITY, CALIFORNIA	
2	THURSDAY, MARCH 3, 2022; 9:08 A.M.	
3		
4		
5	THE VIDEOGRAPHER: Good morning. We're on	09:08:27
6	the record at 9:08 a.m. on March 3rd of 2022.	
7	All participants are attending remotely.	
8	Audio and video recording will continue to	
9	take place, unless all parties agree to go off the	
10	record.	09:08:58
11	This is media unit 1 of the recorded	
12	deposition of Douglas Schmidt, Ph.D., taken by	
13	counsel for Sonos in the matter of "Google versus	
14	Sonos," U.S. District Court, Northern District of	
15	California. 3:20-CV-06754.	09:09:16
16	And "Sonos versus Google, U.S. District	
17	Court, Northern District of California.	
18	3:21-CV-7559.	
19	My name is Kimberlee Decker from Veritext	
20	Legal Solutions and I am the videographer. The	09:09:39
21	court reporter is D'Anne Moungey. I am not related	
22	to any party in this action, nor am I financially	
23	interested in the outcome.	
24	Counsel and all present will now state	
25	their appearances and affiliations for the record.	09:09:50
		Page 4

1	If there are any objections to proceeding, please	
2	state them at the time of your appearance, beginning	
3	with the noticing attorney.	
4	MR. KAPLAN: This is Marc Kaplan from Quinn	
5	Emanuel Urquhart & Sullivan on behalf of Google. 09:10:00	
6	MR. LEE: This is George Lee from	
7	Lee Sullivan Shea & Smith on behalf of Sonos. I	
8	also have with me today Michael Boyea from Lee	
9	Sullivan Shea & Smith.	
10	One clarification is that this deposition 09:10:19	
11	is being taken by Mr. Kaplan, who is counsel for	
12	Google in the case.	
13	THE VIDEOGRAPHER: Will the court reporter	
14	please swear in the witness.	
15		
16	DOUGLAS SCHMIDT, PH.D.,	
17	having been first duly sworn by the reporter, was	
18	examined and testified as follows:	
19		
20	MR. KAPLAN: Ready to proceed? 09:10:52	
21	THE VIDEOGRAPHER: Please proceed.	
22	///	
23	///	
24		
25	09:10:54	
	Page 5	

1	EXAMINATION	
2	BY MR. KAPLAN:	
3	Q Dr. Schmidt, can you please state your	
4	first and last name for the record.	
5	A D-O-U-G-L-A-S, S-C-H-M-I-D-T.	09:11:01
6	Q And your county of residence?	
7	A Williamson County.	
8	Q Did you meet with any attorneys for Sonos	
9	to prepare for your deposition today?	
10	A I did.	09:11:19
11	Q Who did you meet with?	
12	A I met with George Lee, Jae Pak, and Michael	
13	Boyea.	
14	Q How long did you meet with Mr. Pak, Mr. Lee	
15	and Mr. Boyea?	09:11:37
16	A At what point?	
17	Q To prepare for your deposition today.	
18	A Probably maybe four to six hours.	
19	Q Did you meet with anyone else besides the	
20	attorneys for Sonos to prepare for your deposition	09:11:58
21	today?	
22	A No.	
23	Q Dr. Schmidt, how long did you spend	
24	preparing your claim construction declaration?	
25	A I don't recall off the top of my head.	09:12:19
		Page 6

1	Q So	you have access to Exhibit Share?	
2	A I d	do.	
3	Q Cou	ıld you open up Exhibit 1, please.	
4	A Sur	ce.	
5	(Whereupon, Google Exhibit 1 was	9:12:32
6	n	marked for identification by the	
7	C	Court Reporter.)	
8	THE	E WITNESS: Okay. I have it open.	
9	BY MR. KAPLA	AN:	
10	Q Thi	is is the claim construction declaration 0	9:12:49
11	that we're g	going to be discussing today and that you	
12	prepared; is	s that right?	
13	A Tha	at is correct.	
14	Q Rou	ighly how long do you think you spent	
15	preparing th	nis declaration?	9:13:03
16	A I'm	sorry. I don't recall off the top of	
17	my head. It	was not something I remember tracking	
18	in my mind.		
19	Q Do	you think it was more than 20 hours?	
20	A 20	hours is probably a rough estimate.	9:13:25
21	Something al	long those lines.	
22	Q Dr.	Schmidt, who is your current employer?	
23	A I'm	currently employed by Vanderbilt	
24	University.		
25	Q You	a also do expert consulting?	9:13:45
			Page 7

1	А	That is correct.	
2	Q	Do you do expert consulting out of the	
3	litigatio	on context?	
4	А	I've done expert consulting outside the	
5	litigatio	on context, that's correct, yes.	09:14:01
6	Q	Roughly what percentage of your income do	
7	you think	comes from expert consulting for	
8	litigatio	on?	
9	А	Oh, that's a good question.	
10		Again, I'm not really sure off the top of	09:14:14
11	my head.		
12	Q	Do you think it would be around 50 percent?	
13	А	No.	
14	Q	Do you think it would be more than	
15	50 percen	at or less than 50 percent?	09:14:24
16	А	Less than 50 percent.	
17	Q	Do you think it would be more than	
18	25 percen	nt?	
19	А	I'm not sure. I haven't looked at the I	
20	haven't l	ooked at my tax 1099s for the past year.	09:14:36
21	I haven't	got around to doing my taxes yet, so I	
22	don't kno	w.	
23	Q	Dr. Schmidt, you've been deposed before;	
24	right?		
25	А	That's correct.	09:14:48
			Page 8

1	Q So you're familiar with the ground rules of	
2	depositions; is that fair?	
3	A Yes.	
4	Q I'll be very brief, then.	
5	So the deposition process consists of me	09:14:59
6	asking you questions and you responding to them	
7	fully and truthfully.	
8	Understand?	
9	A I do.	
10	Q And from time to time your attorney may	09:15:08
11	interpose an objection. The objection is generally	
12	just to preserve the record, so what you should do	
13	is let your attorney interpose his objection and	
14	then answer the question, unless you're instructed	
15	not to answer for some reason.	09:15:21
16	Does that make sense?	
17	A It does.	
18	Q We can take a break whenever you need	
19	during the deposition. And we're not going to be	
20	going particularly long today. Just let me know if	09:15:31
21	you would like a break. The only thing I ask is if	
22	there is a question pending, that you answer the	
23	question before we take a break. Okay?	
24	A Sure.	
25	Q Everything that is being said at this	09:15:42
		Page 9

1	deposition is being taken down by the court reporter	
2	in realtime, so we should try not to talk over each	
3	other to make her job a bit easier today.	
4	Does that make sense?	
5	A It does.	09:15:53
6	Q And if at any time in the deposition I	
7	guarantee you there will be times that I ask you a	
8	question that's not clear to you. Please let me	
9	know and I will try to clarify it for you. Okay?	
10	A You bet.	09:16:05
11	Q The court reporter has placed you under	
12	oath. You understand that your testimony is being	
13	given under oath and subject to penalty of perjury,	
14	just as if you were testifying in a court of law?	
15	Do you understand that?	09:16:18
16	A Yes.	
17	Q And because of that, it's very important	
18	that we get your most accurate and full testimony	
19	today.	
20	Is there any reason you can't testify	09:16:28
21	accurately and fully today?	
22	A No.	
23	Q Dr. Schmidt, you mentioned that you're a	
24	professor at Vanderbilt University.	
25	Do you have a particular field of	09:16:43
		Page 10

1	expertise?	
2	A I have a number of areas that I focus on.	
3	I focus on my research focuses on mobile Cloud	
4	computing, distributed and network systems, cyber	
5	physical systems, software engineering, distributed	09:17:25
6	realtime and embedded systems, machine learning, and	
7	artificial intelligence, data science.	
8	And I also teach a number of courses	
9	related to mobile device programming and accessing	
10	Cloud services, web services and so on.	09:17:49
11	Q That's a long list.	
12	Dr. Schmidt, which of those fields of	
13	expertise did you think were applicable to the	
14	opinions that you issued in your claim construction	
15	declaration?	09:18:08
16	A Well, many of those fields relate to the	
17	topics that I opine upon here. Certainly topics	
18	related to distributed and network systems, mobile	
19	Cloud computing, systems related to software	
20	engineering, software development, and, in general,	09:18:27
21	my knowledge about web-based programming, web	
22	systems.	
23	I draw from many of my different fields of	
24	expertise for declarations in general and reports in	
25	general. And this particular one, it would be a	09:18:45
		Page 11

1	number of those different areas that I mentioned	
2	before.	
3	Q Would you say that your background in	
4	software engineering was important to your	
5	declarations?	09:18:58
6	A Certainly software engineering plays a role	
7	in understanding how almost everything else I do	
8	related to distributed systems or web-based systems	
9	or cyber systems, and so on, and mobile Cloud	
10	computing. My knowledge of software design and	09:19:14
11	testing, programming, which is part and parcel of	
12	software engineering, plays a key part in my	
13	experience and my expertise in this field these	
14	fields.	
15	Q Do you teach courses on software	09:19:28
16	engineering?	
17	A I have taught courses on software	
18	engineering in the past. My current courses focus	
19	largely again on developing mobile applications in	
20	Cloud computing environments, and software	09:19:42
21	engineering plays a key part in terms of software	
22	design, software implementation techniques, software	
23	testing, and quality assurance techniques, software	
24	processes.	
25	So pretty much everything I do ultimately	09:19:58
		Page 12

1	is based upon my knowledge of effective software	
2	development, techniques and practices.	
3	Q Which software languages have you taught in	
4	your course work?	
5	A Oh, gosh. Lots. So I've taught going	09:20:18
6	back to the early days when I was actually a grad	
7	student, I taught courses in Ada, and Pascal, and C	
8	and C++.	
9	And then later when I became a professor, I	
10	taught courses that related to Java and JavaScript	09:20:38
11	and various other scripting languages, very shell	
12	script languages.	
13	And I'm probably forgetting a few. I think	
14	I taught courses using functional programming	
15	languages and/or functional programming features in	09:20:54
16	modern languages, like functional program features	
17	in C++, functional programming features in Java and	
18	so on.	
19	I'm probably leaving a few languages out,	
20	but I've taught literally hundreds of courses over	09:21:08
21	my 35 plus years as a professional, so I've	
22	encountered lots of different languages.	
23	MR. KAPLAN: Dr. Schmidt, I'm going to	
24	introduce another exhibit, which will be the '615	
25	Patent.	09:21:28
		Page 13

1	Let me know when you see that.	
2	(Whereupon, Google Exhibit 2 was	
3	marked for identification by the	
4	Court Reporter.)	
5	THE WITNESS: I have successfully	09:21:54
6	downloaded that patent.	
7	BY MR. KAPLAN:	
8	Q Okay. You're familiar with the '615	
9	Patent; right?	
10	A That's correct.	09:22:01
11	Q And the declaration that you issued that's	
12	going to be available, you can download it and refer	
13	to it as you want. This isn't a memory test.	
14	But for now, I'm going to be asking you	
15	about the '615 Patent. Okay?	09:22:16
16	A Okay.	
17	Q I would like you to turn to claim 13 of the	
18	'615 Patent. For reference, it begins column 19,	
19	line 48, or so.	
20	A I'm there.	09:22:43
21	Q Okay. You're familiar with claim 13 of the	
22	'615 Patent?	
23	A I am.	
24	Q The first element of claim 13 of the '615	
25	Patent reads:	09:22:58
		Page 14

1	"A tangib	le nontransitory	
2	computer reada	able storage medium,	
3	including ins	tructions for	
4	execution by	a processor,	
5	instructions	when executed cause	09:23:08
6	a control dev	ice to implement a	
7	method compris	sing."	
8	Do you see	e that?	
9	A I do.		
10	Q Is source code	e executable by a processor?	09:23:19
11	MR. LEE: Obj	ection to form.	
12	THE WITNESS:	Are you speaking what	
13	level do you mean exec	utable?	
14	BY MR. KAPLAN:		
15	Q I'm not sure l	how to rephrase the question.	09:23:49
16	This source co	ode, in its source code form,	
17	that's readable by a h	uman, executable by a	
18	processor?		
19	MR. LEE: Same	e objection.	
20	THE WITNESS:	It	09:24:03
21	MR. LEE: Vag	rue and incomplete.	
22	THE WITNESS:	It depends.	
23	BY MR. KAPLAN:		
24	Q So source code	e as it's written by humans is	
25	executable by a process	sor?	09:24:18
			Page 15

1		
1	MR. LEE: Same objection; mischaracterizes.	
2	THE WITNESS: Depending on the context,	
3	source code could either be compiled by some kind of	
4	translator into some lower level formalism typically	
5	referred to as assembly code or perhaps machine	09:24:40
6	code. And under some scenarios, the machine code	
7	would then be what would be executed by a processor	
8	directly by the processor or directly as would be	
9	the case in a normal chip set.	
10	But, of course, depending on what kind of	09:24:59
11	language and what kind of environment, there could	
12	also be interpreted code, such that the source code	
13	would be interpreted by some type of interpreter	
14	which would be running on top of a processor.	
15	That's why I'm a little confused as to your	09:25:15
16	question, what you mean by "source code" in this	
17	context, since it's a little bit vague as to what	
18	that term means.	
19	BY MR. KAPLAN:	
20	Q Typically machine code rather than source	09:25:24
21	code is what is executed by a processor; is that	
22	fair?	
23	MR. LEE: Objection to form.	
24	THE WITNESS: Again, it really depends on	
25	the context in which you're referring, because you	09:25:35
		Page 16

1	can have hardware again, it just depends on the	
2	context.	
3	There's no one answer there that covers	
4	everything in its entirety.	
5	BY MR. KAPLAN:	09:25:52
6	Q So in your view, source code can be	
7	directly executed by a processor?	
8	MR. LEE: Objection to form.	
9	THE WITNESS: Again, I'm not sure what you	
10	mean by "a processor." But I think I put forth at	09:26:01
11	least two different scenarios that are very common,	
12	one of which is source code in some language such as	
13	C++ or Java or C or JavaScript or whatnot.	
14	Could be translated by a compiler into a	
15	lower level formalism either, again, assembly code	09:26:22
16	or machine code and that code could be executed by a	
17	processor.	
18	But depending on what kind of processor	
19	you're referring to, there's also interpreters that	
20	can execute code in its, quote, "source form."	09:26:35
21	So, again, there's no one answer there that	
22	applies in every situation.	
23	BY MR. KAPLAN:	
24	Q For mobile applications distributed through	
25	IOS or the Android app store, are those executed in	09:26:50
		Page 17

1	source code form?	
2	MR. LEE: Objection to form, vague,	
3	incomplete.	
4	THE WITNESS: Again, we'd have to be more	
5	specific.	09:27:07
6	So there are a whole range of different	
7	ways of being able to run mobile applications.	
8	Sometimes we have mobile apps or called native	
9	apps, which are often written in languages like Java	
10	or Kotlin, for the Android operating platform, or	09:27:24
11	Objective-C or, say, Swift for the Apple IOS	
12	operating platform. That's one way to do things.	
13	There's other ways you could implement	
14	mobile applications using scripting languages and	
15	conceivably possible to write for processors that	09:27:43
16	would interpret the programs written in interpreted	
17	code.	
18	So I would have to know more specifics	
19	about the details of a particular platform to give	
20	you a precise answer that wouldn't leave out certain	09:27:59
21	options that are either doable or have been done.	
22	BY MR. KAPLAN:	
23	Q In the IOS ecosystem, can you give me an	
24	example of a program that's distributed through	
25	IOS	09:28:14
		Page 18

1	MR. LEE: Objection; foundation	
2	BY MR. KAPLAN:	
3	Q that is executed in source code form, as	
4	opposed to machine readable code?	
5	MR. LEE: Objection; foundation, form.	09:28:23
6	THE WITNESS: Again, as I was mentioning	
7	earlier, scripting languages like JavaScript are	
8	interpreted running on top of various forms of	
9	virtual or physical machines.	
10	So they would be an example of something	09:28:44
11	those types of languages would be examples of things	
12	where the source code is really what's executed by	
13	the underlying virtual machine as opposed to being	
14	compiled down to a lower level.	
15	BY MR. KAPLAN:	09:29:01
16	Q You mentioned programs are generally	
17	written in Swift and Objective-C that are posted on	
18	the app store; is that right?	
19	A I think I said those were native. Native	
20	apps. It's possible to run applications on IOS that	09:29:11
21	are written in other languages besides Swift or	
22	Objective-C.	
23	Q Are programs distributed through the app	
24	store that aren't written in Swift or Objective-C?	
25	MR. LEE: Objection; foundation.	09:29:28
		Page 19

1	THE WITNESS: Well, there's a wide range	
2	of what should we call them mobile device	
3	independent programming frameworks and languages,	
4	such as Unity or PhoneGap or React Native, just to	
5	list a few, that allow developers to write in other	09:29:52
6	languages besides Objective-C and Swift and have	
7	those apps run in the context of mobile devices.	
8	BY MR. KAPLAN:	
9	Q For the file that's downloaded from the	
10	Apple App Store to the user's device, is that file	09:30:09
11	in executable form or does it need to be extracted	
12	and installed?	
13	MR. LEE: Objection; foundation, form.	
14	THE WITNESS: I'm not sure what you mean by	
15	"extracted."	09:30:26
16	BY MR. KAPLAN:	
17	Q Can a mobile processor within an iPhone	
18	execute a downloadable from the IOS app store	
19	without any processing being done to that file?	
20	MR. LEE: Objection; foundation, form,	09:30:42
21	vague, incomplete hypothetical, outside the scope.	
22	THE WITNESS: You'll have to give me a more	
23	specific example. I'm not really sure off the top	
24	of my head.	
25	///	09:30:59
		Page 20

1	BY MR. KAPLAN:	
2	Q What more specifics would you need?	
3	MR. LEE: Objection; form.	
4	THE WITNESS: I'm just not sure what	
5	you're when you talk about extracted or	09:31:11
6	additional processing, I'm not sure what those	
7	I'm not sure how you're using those terms.	
8	BY MR. KAPLAN:	
9	Q What is the format of an app that's	
10	downloaded from the Apple App Store?	09:31:21
11	MR. LEE: Objection; vague, foundation.	
12	THE WITNESS: I'm not sure I recall off the	
13	top of my head.	
14	BY MR. KAPLAN:	
15	Q Do you know what the format of an app	09:31:35
16	that's downloaded from the Google App Store is	
17	called?	
18	MR. LEE: Same objection.	
19	THE WITNESS: Well, again, if you're	
20	referring to something like an APK file, that may be	09:31:46
21	what you're referring to, but there's lots of	
22	different pieces there, so I'm not sure if that's	
23	what you're getting at.	
24	BY MR. KAPLAN:	
25	Q What is an APK file?	09:31:56
		Page 21

1	A It's basically a file that describes the	
2	various components that are necessary to make up an	
3	application that runs in the context of Google of	
4	Android, really.	
5	Q Is an APK file executable?	09:32:09
6	MR. LEE: Objection; foundation, relevance.	
7	THE WITNESS: I'm not sure what you mean by	
8	"executable."	
9	BY MR. KAPLAN:	
10	Q Can a processor execute an APK without	09:32:22
11	additional processing being done on the APK?	
12	MR. LEE: Objection; foundation, form,	
13	compound.	
14	THE WITNESS: Again, I'm really not sure	
15	what you're asking. An APK file contains various	09:32:37
16	types of components or resources and a the Google	
17	platform, the package manager.	
18	In fact, portion of that platform uses the	
19	contents of the APK file. It does processing to it.	
20	It executes it.	09:32:57
21	I think something else jumped in. That	
22	wasn't me.	
23	I said the Google package manager I'm	
24	sorry the Android package manager is the one	
25	of the various pieces of the Android platform that	09:33:16
		Page 22

1	uses the APK file the contents of the APK file to		
2	install an application a native application.		
3	There's other ways of installing and		
4	running applications on an Android or global device		
5	besides that, but that's one way to do it.	09:33:34	
6	BY MR. KAPLAN:		
7	Q And after the native application is		
8	installed, can it be executed?		
9	MR. LEE: Objection; form, foundation,		
10	relevance.	09:33:41	
11	You know, Marc, I let this go a little bit,		
12	but we're really here to talk about claim		
13	construction and his declaration, I thought, and I'm		
14	not really sure how any of this relates. It's		
15	outside the scope.	09:33:51	
16	Sounds like you may have some other		
17	infringement questions you're trying to get to, but		
18	I think that would be improper here.		
19	Try to get back to his declaration or some		
20	of the exhibits you marked.	09:34:03	
21	BY MR. KAPLAN:		
22	Q You can answer.		
23	A Can you repeat the question, please?		
24	Q It was for the native application that is		
25	installed, that can be executed; right?	09:34:19	
		Page 23	

1	MR. LEE: Objection to form, foundation.	
2	Once again, Marc, this is really nothing to	
3	do with claim construction, his declaration that	
4	we're here for. You can get this from your expert	
5	if you want.	09:34:32
6	But I just don't see that this is part of	
7	his declaration. In fact, you have the exhibits	
8	marked and the questions don't relate to it at all.	
9	You can answer.	
10	THE WITNESS: You have to explain what	09:34:44
11	you mean by "execute" and what's doing the	
12	execution, how does that execution differ from the	
13	previous steps required from an APK file.	
14	I'm sort of at a loss for understanding the	
15	context of the question.	09:34:56
16	BY MR. KAPLAN:	
17	Q If you can't answer, that's okay. If you	
18	need more information, let me know.	
19	A The terms you're using, execute execute	
20	by what? I don't know what's doing the execution.	09:35:12
21	Q This is going to be my last question on	
22	this topic, but as we were just discussing, there's	
23	an APK download that was installed and then the	
24	question was simply: Can it be executed by the	
25	device?	09:35:34
		Page 24

1	A	Under what set of assumptions?	
2	Q	Are there assumptions necessary?	
3	А	Sure.	
4	Q	Tell me what assumptions you think are	
5	necessary	y.	09:35:54
6		MR. LEE: Objection to the form.	
7		THE WITNESS: It's the there's so many	
8	assumption	ons that are required there.	
9		Is it actually a validate APK file?	
10		Is this a user of the device?	09:36:05
11		If there's a user of the device, does the	
12	user acti	ually want to launch whatever was	
13	downloade	ed?	
14		Those are all things.	
15		Another thing that's still not clear from	09:36:14
16	the scope	e of your question is: What does it mean to	
17	execute }	by the device?	
18		What's doing the execution?	
19		Earlier you asked me about appeared like	
20	you were	asking about a processor, but now it sounds	09:36:25
21	like you	're talking about a device.	
22		Is the device hardware?	
23		Is the device software?	
24		There's so many parts to the hypothetical	
25	you're pu	utting forth there, so I need to understand	09:36:35
			Page 25

1	more thoroughly what it is you're putting forth in	
2	the hypothetical to be able to give an answer that	
3	wouldn't just be a wild guess.	
4	(Speaking simultaneously.)	
5	THE REPORTER: I'm sorry. You were	09:36:52
6	speaking over each other.	
7	MR. LEE: I didn't realize you were	
8	talking, Marc.	
9	Go ahead.	
10	BY MR. KAPLAN:	09:36:58
11	Q Let's move to the second element in claim	
12	13 which begins:	
13	"Causing a graphical	
14	interface to display a control	
15	interface including one or more	09:37:05
16	transport controls to control	
17	playback by the control device."	
18	Do you see that?	
19	A I do.	
20	Q Do you have an understanding of what this	09:37:15
21	claim element means?	
22	MR. LEE: Objection; form, foundation,	
23	relevance.	
24	I don't think this is part of his	
25	declaration.	09:37:25
		Page 26

1	You can answer, if you can.	
2	THE WITNESS: I do understand what the	
3	claim element means, yes.	
4	BY MR. KAPLAN:	
5	Q What are transport controls?	09:37:41
6	A Let's go look.	
7	As has been noted a number of times, I	
8	think that is probably not something that was part	
9	of my declaration, so I will have to go through and	
10	read the spec to see if I can find it.	09:38:01
11	This file doesn't appear to be searchable,	
12	so this is going to take a very long time. I have	
13	to read through the entire patent, since the file	
14	you've given me is not searchable.	
15	Q That's weird. It's searchable on my side.	09:38:30
16	A When I search for "transport," it doesn't	
17	find anything.	
18	Q Did you download the file or are you	
19	looking at it in on the Exhibit Share website?	
20	A I did download it.	09:38:53
21	Let me try to look for it in the Exhibit	
22	Share.	
23	Q I'm looking at it on the website. It's OCR	
24	for me.	
25	A Yeah. I'm unable when I just click on	09:39:09
		Page 27

1	the link that's provided in the Exhibit Share, it	
2	doesn't work at all.	
3	Q So if you click the link I see.	
4	Give me a moment.	
5	It's funny. I have one version of the	09:39:55
6	patent in Exhibit Share that is searchable and one	
7	version that isn't now, so I understand your issues.	
8	I think, Dr. Schmidt, if you right click	
9	the document and download it	
10	A Yeah, that's what I've done. I've	09:40:12
11	downloaded it.	
12	Q It's not searchable after you do that?	
13	A No. I mean, it's very weird. I have	
14	like I'm I downloaded my exhibit my	
15	declaration, sorry, my claim construction	09:40:30
16	declaration, and that's searchable quite well. I	
17	can search that no problem.	
18	Q Huh. Hmm.	
19	So when you downloaded the '615 Patent	
20	natively to your desktop, it's not searchable when	09:40:45
21	you open it in Adobe or Chrome?	
22	A Yeah. No. It's weird.	
23	Right now I'm searching on transport and	
24	it's highlighting the word "on" in the middle of	
25	claim 9, and so it's like now I click on "next" and	09:41:00
		Page 28

1	now it's highlighting the word "playback."	
2	For some reason there's something wrong	
3	with that PDF. It's probably something wrong with	
4	the PDF file, I guess.	
5	Is there another way to get the '615	09:41:20
6	Patent?	
7	Q I mean, it's not ideal, but you could go to	
8	Google patents and download it yourself from that	
9	website.	
10	A Let me try that, if you don't mind.	09:41:33
11	Q I'll probably have to ask you a couple	
12	questions to make sure you're looking at the same	
13	document, but this is just the nature of online	
14	depositions these days, I suppose.	
15	A Let me see if I can what is it, 9967615?	09:41:47
16	I think that's the right one.	
17	The patent's name is "Networked Music	
18	Playback"; is that right?	
19	Q Correct.	
20	A Good. That part looks good so far.	09:42:03
21	That is so weird.	
22	Q That doesn't work either, downloading it	
23	from Google?	
24	A That's the same problem. Exactly the same	
25	problem.	09:42:27
		Page 29

1	Q I just did it on my computer and I can	
2	search it, so	
3	A Let me ask another is it the case that	
4	the specification for the '033 Patent is the same as	
5	the one for the '615?	09:42:42
6	Q I believe they're the same.	
7	A Because I have a copy of the '033 Patent	
8	that seems to be searchable. I have no idea why.	
9	Q Well, we can use the '033 Patent, that's	
10	fine.	09:43:00
11	A Okay. Let's do that. It won't have all	
12	the same claims, but we can probably find those	
13	other ways.	
14	Q Right.	
15	MR. KAPLAN: Let me introduce the '033	09:43:06
16	Patent as an exhibit and I'll ask some questions to	
17	make sure we're looking at the same document, even	
18	though you're using your version.	
19	Is that okay?	
20	THE WITNESS: Okay. That's fine.	09:43:17
21	MR. KAPLAN: I've introduced as Exhibit 3,	
22	U.S. Patent number 10779033.	
23	THE WITNESS: All right.	
24	///	
25	///	09:44:09
		Page 30

1	(Whereupon, Google Exhibit 3 was	
2	marked for identification by the	
3	Court Reporter.)	
4	BY MR. KAPLAN:	
5	Q Do you see that exhibit?	09:44:11
6	A It's loading. It should be there	
7	momentarily.	
8	Q Now, given the searching issues,	
9	Dr. Schmidt, can you confirm that the version of the	
10	'033 Patent that you're looking at is the same as	09:44:21
11	the '033 Patent that I introduced as Exhibit 3?	
12	A I'm actually using the version that you	
13	just put up there.	
14	Q Okay.	
15	A And it works fine. Go figure. I can	09:44:33
16	search that one.	
17	So the good news is, I can read the claims	
18	from '615, but I can search in the '033. I think	
19	between those two things we should be fine.	
20	Q Okay. So I'm going to ask you a slightly	09:45:04
21	different question. Let's just turn back to the	
22	'615 Patent.	
23	A Okay. I'm there.	
24	Q If you go to claim 13.	
25	A I'm there.	09:45:27
		Page 31

1	Q In claim 13, there's a claim term	
2	"multimedia content."	
3	Do you see that?	
4	A I do.	
5	Q Do you have an understanding of what	09:45:57
6	multimedia content means in the context of the '615	
7	Patent?	
8	MR. LEE: Calls for a legal conclusion.	
9	You can answer, if you can.	
10	THE WITNESS: Let me just take a quick look	09:46:16
11	and see if I discuss that in my declaration.	
12	So let's see. Let me see if I can point	
13	you well, if you take a look at my claim	
14	construction declaration, paragraph 33, page 10, I	
15	mention a description of I'm summarizing the '615	09:46:52
16	Patent, and its description at a local playback	
17	system.	
18	And it talks about how the local playback	
19	system is capable of playing back multimedia	
20	content, such as audio. I think that's the first	09:47:09
21	sentence in paragraph 33. It gives a bunch of	
22	references to '615 Patent for various portions	
23	describing that.	
24	So if we go back to the patent that I can	
25	now search, then let me find something real quick	09:47:30
		Page 32

1	here.	
2	(Document reviewed by the witness.)	
3	THE WITNESS: So in reading through the	
4	patent spec, it makes it clear that audio is an	
5	example of multimedia content.	09:48:40
6	BY MR. KAPLAN:	
7	Q And what is an example of audio that would	
8	be multimedia content?	
9	A Well, if you take a look on paragraph 47 of	
10	my declaration, it mentions a single song would be	09:49:26
11	an example of multimedia content. I give other	
12	examples of other things it can be. Multimedia	
13	content as well.	
14	It says: Single song, a video, particular	
15	Internet radio station, a user defined playlist with	09:49:44
16	multiple songs or videos, a service defined playlist	
17	of multiple songs, videos, and album of songs,	
18	et cetera.	
19	Q And how would one identify that a person	
20	was looking at a single song?	09:50:06
21	MR. LEE: Objection to form.	
22	THE WITNESS: I'm sorry. I don't	
23	understand your question, what does it mean to look	
24	at a single song?	
25	///	09:50:21
		Page 33

1	BY MR. KAPLAN:	
2	Q What are the you said a single song as	
3	an example of multimedia content; is that fair?	
4	A That's one example, yes.	
5	Q And how do I know that I'm looking at a	09:50:30
6	single song which is an example of multimedia	
7	content?	
8	MR. LEE: Objection to form, vague.	
9	THE WITNESS: In what context?	
10	BY MR. KAPLAN:	09:50:47
11	Q Like what other characteristics of the	
12	single song that we're talking about which is an	
13	example of multimedia content?	
14	MR. LEE: Objection to form; vague, and	
15	confusing.	09:51:02
16	THE WITNESS: I guess I don't understand	
17	when you say "looking." Looking at a looking at	
18	audio. What does that mean by "looking at it"?	
19	Are you referring to some kind of user	
20	interface?	09:51:14
21	Are you referring to looking at a thumb	
22	drive that contains the contents?	
23	What does it mean to look at a song in the	
24	way you're asking the question?	
25	///	09:51:26
		Page 34

1	BY MR. KAPLAN:	
2	Q What would be an example of a single song	
3	that would meet your definition of audio?	
4	A Again, in what context are you asking?	
5	Q You said that a single song is an example	09:51:41
6	of audio, which is an example of multimedia content;	
7	right?	
8	A I believe I said something along those	
9	lines, but I'm trying to understand what I'm	
10	trying to understand what you're asking me, the	09:51:57
11	context in which you're asking me.	
12	Are you asking sorry. Go ahead.	
13	Q Well, so a single song is an example of	
14	audio which is an example of multimedia content and	
15	my question is: What's an example of a single song?	09:52:08
16	MR. LEE: Objection to form.	
17	THE WITNESS: Again, I'm not sure I	
18	understand in what context you're asking me, what's	
19	an example.	
20	You're asking me to name songs or are you	09:52:23
21	asking me to name formats that you could use to play	
22	songs back, be they electronic or magnetic or some	
23	other media?	
24	I'm not sure I understand the context of	
25	the question.	09:52:37
		Page 35

1	BY MR. KAPLAN:	
2	Q Would an Mp3 file of Drake's newest hit be	
3	an example of a single song in this context?	
4	MR. LEE: Objection; foundation.	
5	THE WITNESS: I'm not familiar with Drake's	09:52:50
6	latest hit, but one there's many different ways	
7	to represent audio content. And Mp3 files are one	
8	way to represent audio content.	
9	BY MR. KAPLAN:	
10	Q Are there any other ways that you could	09:53:03
11	represent audio content that you're aware of?	
12	A Sure.	
13	Q What are those?	
14	A There's other formats besides Mp3. There's	
15	other formats besides digital formats that can be	09:53:20
16	used to represent audio content.	
17	Q What's an example of a format that's not	
18	digital format that could be used to represent audio	
19	content?	
20	A In what context?	09:53:41
21	Q I thought you just said that you could	
22	represent audio in the digital context, for example,	
23	with an Mp3 or you could represent it in the	
24	non-digital context; is that	
25	A That is correct. That is correct.	09:53:56
		Page 36

1	Q What would be an example of a non-digital	
2	context?	
3	A A 45 record from back in the day.	
4	Q Okay. Multimedia content playback is	
5	referred to the specification of the '615 Patent and	09:54:22
6	the '033 Patent.	
7	Do you understand that?	
8	A I see the specification for the '033 and	
9	'615 Patent includes the phrase "multimedia	
10	playback," yes, I see that.	09:54:56
11	Q I was actually looking at "multimedia	
12	content playback."	
13	Do you see that, too?	
14	A I see several references to "multimedia	
15	content playback"	09:55:28
16	Q What would sorry. Go ahead.	
17	A in the specification.	
18	Q Okay. What would be an example of	
19	multimedia content playback?	
20	A The way I see the phrase used in the	09:55:40
21	specification appears, at least in column 2,	
22	starting on line 23 where it refers to a "multimedia	
23	content playback," and inside parenthesis it then	
24	says, "EG Sonos TM," and then it says "system."	
25	Q Does multimedia content playback just mean	09:56:15
		Page 37

1	playback of the multimedia content we were just	
2	discussing?	
3	A I don't believe I've rendered an opinion on	
4	that. I would have to take a closer look to see how	
5	that particular term is used, but I don't believe	09:56:32
6	I've rendered an opinion on the meaning of	
7	"multimedia content."	
8	Let me take a look before I say that. Let	
9	me take a look and see what I said, if I said	
10	anything.	09:56:44
11	(Document reviewed by the witness.)	
12	THE WITNESS: I don't think I I don't	
13	think my declaration, unless I may need to read	
14	through it more carefully, but off the top of my	
15	head, I don't think it talks about the phrase	09:57:07
16	"multimedia content playback."	
17	I would have to take a more careful look to	
18	see what that term means before I render an opinion	
19	on it.	
20	BY MR. KAPLAN:	09:57:19
21	Q Can I turn your attention back to claim 13	
22	of the '615 Patent.	
23	A I'm there.	
24	Q Okay. Under I'm going to call it	
25	element A, which is roughly halfway down in the	09:57:34
		Page 38

1	claim 13		
2		Do you see that?	
3	A	I think so.	
4	Q	The towards the end of paragraph A, the	
5	claim rea	ads:	09:57:56
6		"Corresponding to respective	
7		locations of a multimedia	
8		content."	
9		Do you see that?	
10	A	I do.	09:58:04
11	Q	Do you have an understanding of what that	
12	means?		
13	А	Yes.	
14	Q	What does it mean?	
15	А	So in the context of what it's describing,	09:58:12
16	it's expl	laining how there's one or more resource	
17	locators	that are corresponding to respective	
18	locations	s of the multimedia content.	
19		So my understanding of corresponding to in	
20	this cont	text would be something akin to associated	09:58:31
21	with or 1	related to.	
22	Q	Is the resource locator providing a	
23	location		
24		MR. LEE: Objection to form.	
25		THE WITNESS: I'm not sure what you mean by	09:59:01
			Page 39

1	"providing a location."	
2	BY MR. KAPLAN:	
3	Q Does the resource locator have to provide a	
4	location to meet this claim element?	
5	MR. LEE: Objection to form, calls for a	09:59:14
6	legal conclusion, scope.	
7	THE WITNESS: I would have to read through	
8	the specification more carefully to get a sense of	
9	how resource locator relates to providing a	
10	location, but what my understanding here as the	09:59:34
11	claim is written, resource locator is the phrase	
12	corresponding to mean associated with or related to.	
13	So it doesn't look to me like it	
14	necessarily has to provide a location directly. It	
15	just needs to be able to be associated with	09:59:51
16	locations and there's many different ways to do	
17	that, above and beyond providing a particular	
18	location of a resource.	
19	BY MR. KAPLAN:	
20	Q Is there a difference in your mind between	10:00:17
21	the resource locator being associated with the	
22	location versus related to a location?	
23	MR. LEE: Objection to form.	
24	THE WITNESS: I think those are largely	
25	synonymous.	10:00:30
		Page 40

1	BY MR. KAPLAN:	
2	Q Is it fair to say that, in your view, the	
3	resource locator doesn't have to provide a location?	
4	MR. LEE: Objection to form.	
5	THE WITNESS: Well, I describe this topic	10:00:59
6	in my claim construction declaration in several	
7	places, one of which is in paragraph 1 of 1, and I	
8	describe what my understanding that a POSITA would	
9	have had at the time of the invention, which is that	
10	it would be a resource locator, generally refers to	10:01:22
11	information that enables the device to access a	
12	resource or be associated with or related to a	
13	resource.	
14	And I mention that that information could	
15	take various forms. It could take the form of some	10:01:33
16	kind of identifier, such as maybe a key in a	
17	database, for example, an address perhaps in memory.	
18	It could be a uniform resource indicator, which is	
19	different from a Uniform Resource Locator.	
20	It could be other things that facilitate	10:01:53
21	some means by which a device could access a	
22	resource. And there's many, many other ways of	
23	doing it beyond the ones I listed there. Those are	
24	just some of the ones that would be obvious, but	
25	there's other ones that could be used, things like	10:02:08
		Page 41

1	object references or monikers or UUIDs. There's a	
2	whole bunch of different ways to identify a	
3	resource.	
4	So some of those would involve addresses,	
5	some addresses in the sense of, say, an IP address	10:02:23
6	or a port number in the Internet, but many other	
7	ways of being able to identify resources that would	
8	not require addresses.	
9	In fact, it's even possible to use URLs	
10	that don't encode an address in them by using a	10:02:39
11	concept of persistent URL, which is really more of	
12	an access to a locator service as opposed to	
13	directly encoding the address into the URL itself.	
14	BY MR. KAPLAN:	
15	Q Would a song name correspond to a location	10:02:53
16	of that song?	
17	MR. LEE: Objection to form.	
18	THE WITNESS: Depends quite a bit on how	
19	the lookup model would work. So it depends on the	
20	context, it depends on the use case.	10:03:13
21	BY MR. KAPLAN:	
22	Q So a song might correspond to a location of	
23	another resource or it might not; is that right?	
24	A Again, it depends on the implementation and	
25	the way in which the data models and data stores are	10:03:28
		Page 42

1	managed.	
2	Q So a song name might correspond to a	
3	location of a resource, just depending on how the	
4	system is architected; is that right?	
5	A I wouldn't quite use those terms, but	10:03:47
6	depending on how the data model or the data	
7	management portion of the system is structured,	
8	there's various ways of being able to identify	
9	resources. An identifier could be used. The	
10	identifier conceivably could be the name of the	10:04:04
11	song. That could be one way to do it, depending on	
12	how the data model and the database or the data	
13	management system is constructed.	
14	Might not be the most efficient way of	
15	doing it in terms of minimizing footprint, but	10:04:18
16	that's really just an encoding question.	
17	Q So as long as there's a way to translate	
18	between the song name and its address, would the	
19	song be corresponding to a location of the song?	
20	MR. LEE: Objection to form.	10:04:42
21	THE WITNESS: Again, I would have to	
22	understand a little bit better about what you mean	
23	by some of those terms, but as I describe here in	
24	paragraph 1 of 1 of my claim construction	
25	declaration, the concept of resource locator	10:04:58
		Page 43

1	generally refers to some kind of information which	
2	could be many different forms.	
3	It could take the form of identifiers or	
4	addresses, or URIs, URLs, object references,	
5	whatever whatever is needed to be able to	10:05:14
6	un-ambiguously associate that resource locator with	
7	the actual resource that's of interest.	
8	BY MR. KAPLAN:	
9	Q So let me give you an example. I'm on	
10	iTunes. I download an Mp3 of my favorite artist.	10:05:31
11	Are you with me so far?	
12	A Okay.	
13	Q I've got the Mp3 stored on my own computer	
14	and I play it from time to time. Okay?	
15	A Okay.	10:05:47
16	Q In that hypothetical, would the song name	
17	correspond to a location of where the song is	
18	stored?	
19	MR. LEE: Objection to form, foundation,	
20	incomplete.	10:06:03
21	THE WITNESS: When you say "song name," I'm	
22	not quite sure I understand how you're using the	
23	term "song name."	
24	BY MR. KAPLAN:	
25	Q So when I downloaded the song from iTunes,	10:06:12
		Page 44

1	I saved it as "Drake's new hit" and that's the song	
2	name.	
3	MR. LEE: Objection to form. Same	
4	objection.	
5	THE WITNESS: So depends on a whole bunch	10:06:28
6	of different other factors as to whether that song	
7	name would be the resource locator.	
8	BY MR. KAPLAN:	
9	Q So in my hypothetical, after I downloaded	
10	the song from iTunes and saved it as Drake's song in	10:06:45
11	my computer, it's possible, in your view, that the	
12	song name would correspond to the location of the	
13	song?	
14	A Again, I would have to there's so many	
15	different pieces of your hypothetical that I don't	10:07:03
16	quite understand yet, so it's hard to be able to	
17	answer that question.	
18	Q What other information can I give you that	
19	will allow you to answer the question?	
20	A So where did you store the file?	10:07:15
21	Are you are you	
22	Q I'm sorry. Let me take it one by one.	
23	I stored it on my desktop.	
24	A And in what did you what specifically	
25	was the name that you used?	10:07:35
		Page 45

1	Q "New hit song" was the name of the file.	
2	A Does the file have a file extension?	
3	Q Dot Mp3.	
4	A Okay. Are there spaces or hyphens?	
5	Q There are spaces.	10:07:58
6	A So if I understand your question or your	
7	hypothetical, rather, if there was a file in some	
8	folder in your or in your desktop say, in your	
9	desktop, there's a file that has a name that is	
10	"Drake's new hit song" dot Mp3, then were you to	10:08:24
11	click on that in your finder or file Explorer, or	
12	whatever desktop you're using, then that would	
13	cause assuming that everything was configured	
14	properly in your operating system, that would cause	
15	the appropriate media player to be launched to play	10:08:48
16	that song.	
17	So this is the part I'm a little confused	
18	on. Is the name of the song, what's associated?	
19	Well, there's a way to be able to launch it and this	
20	is just straightforward from using a file browser on	10:09:05
21	a desktop computer or laptop or whatever.	
22	You're simply launching something that has	
23	a name and that is associated with the content	
24	that's being played.	
25	Q So is your answer yes, the name of the file	10:09:24
		Page 46

1	would correspond to the location?	
2	A Well	
3	MR. LEE: Objection to form.	
4	THE WITNESS: the way I would again,	
5	there's lots of different ways to look at that, but	10:09:38
6	in that particular situation, I was simply	
7	explaining how if you have a file on the desktop	
8	computer and you launch the file and the file has	
9	the appropriate suffix that's understood by the	
10	system and the system knows how to launch the	10:09:59
11	appropriate app to properly do something with	
12	whatever it is you're launching, that that will	
13	cause it to be launched.	
14	As to how that relates to the original	
15	topic we were discussing, which is from element A in	10:10:19
16	claim 13 in the '615 Patent, that was describing	
17	resource locators that correspond to respective	
18	locations of multimedia content.	
19	So topping off the stack a couple layers,	
20	the name of the file could be one way to associate	10:10:44
21	or locate the multimedia content.	
22	BY MR. KAPLAN:	
23	Q So in the hypothetical, the name of the	
24	file could be a resource locator?	
25	A Well, I think that's consistent with what I	10:11:00
		Page 47

1	say here in paragraph 101 of my claim construction	
2	declaration, that a resource locator generally	
3	refers to information that enables a device to	
4	access a resource and that that information could	
5	take various forms, such as an identifier, an	10:11:24
6	address, a URI, a URL, and so on.	
7	And so the name of a file or I guess	
8	more specifically here, the ability provided by a	
9	file browser on a modern computer to be able to	
10	click on the name of something that has an	10:11:44
11	application associated with it, that's a form of an	
12	identifier. That could then be able to facilitate a	
13	device accessing your resource.	
14	Q Let me add to the hypothetical.	
15	So we've got the song stored on the	10:12:06
16	desktop. The file name is New Hit Song.	
17	Within that file there's metadata	
18	identifying the name of the song, which is going to	
19	be Al for purposes of the hypothetical.	
20	Do you follow so far?	10:12:23
21	A I think so.	
22	Q Would Al be strike that.	
23	Would Al correspond to the location of the	
24	file?	
25	MR. LEE: Objection to form, incomplete.	10:12:37
		Page 48

1	THE WITNESS: I don't understand what you	
2	mean.	
3	BY MR. KAPLAN:	
4	Q We have a song that has been downloaded.	
5	It has a file name. It also has within the	10:12:51
6	metadata, some name information.	
7	And my question is whether that name	
8	information corresponds to the location of the file?	
9	MR. LEE: Same objection.	
10	THE WITNESS: Yeah. I would have to look	10:13:08
11	more carefully into the way in which that	
12	information be stored. I don't know off the top of	
13	my head. I would have to look into it in more	
14	detail to see.	
15	I'm also not sure what name you're	10:13:18
16	referring to in the metadata either.	
17	BY MR. KAPLAN:	
18	Q On that last point, are you aware that	
19	files can be associated with metadata?	
20	A Files can be associated in what context?	10:13:38
21	Q Well, if you download an Mp3, are you aware	
22	that programs can pull out metadata from that file	
23	to identify, for example, artist and song name?	
24	A Yes.	
25	Q So in this example, I'm asking whether the	10:14:08
		Page 49

1	song name metadata corresponds to the location of	
2	the file?	
3	MR. LEE: Objection to form, incomplete	
4	hypothetical.	
5	THE WITNESS: I am I would have to look	10:14:18
6	more carefully into the way in which the Mp3 format	
7	stores name information to see what the relationship	
8	is, if any, between metadata associated with the	
9	name of the song and the location of the song to be	
10	able to answer that question precisely.	10:14:34
11	BY MR. KAPLAN:	
12	Q What would be the ways in which it was	
13	stored where it would correspond to the location of	
14	the file?	
15	MR. LEE: Objection to form.	10:14:48
16	THE WITNESS: Again, without knowing more	
17	about the way the specific detail about how Mp3	
18	stores names in metadata, I would have to look at	
19	that in more detail to know.	
20	BY MR. KAPLAN:	10:15:07
21	Q I'm trying to ask a question and maybe the	
22	answer is I don't know, but I want to make sure the	
23	question is clear.	
24	What I'm trying to ask is: What would be	
25	the instances where you would say yes, that main	10:15:15
		Page 50

1	metadata information does correspond to the location	
2	of the file?	
3	MR. LEE: Objection to form.	
4	THE WITNESS: Again, I would have to look	
5	more deeply into the specifics of how metadata is	10:15:30
6	stored in Mp3 in order to know what relationship, if	
7	any, there would be between metadata that's stored	
8	in Mp3 file associated with name and any location	
9	relevance, or not, that there might be, so I just	
10	don't know that off the top of my head.	10:15:50
11	I would prefer not to speculate on that	
12	because I would just be making a guess. And in	
13	order to do a proper analysis, I would have to look	
14	more carefully how it's stored.	
15	MR. LEE: Marc, I think we've been going	10:16:02
16	about an hour.	
17	Is this a good time for a break?	
18	MR. KAPLAN: I'm happy to take a break.	
19	THE VIDEOGRAPHER: We're off the record at	
20	10:16 a.m.	10:16:10
21	(Whereupon, a recess was held	
22	from 10:16 a.m. to 10:28 a.m.)	
23	THE VIDEOGRAPHER: We're on the record at	
24	10:28 a.m.	
25	///	10:28:28
		Page 51

1	BY MR. I	KAPLAN:	
2	Q	Dr. Schmidt, welcome back.	
3	А	Thank you.	
4	Q	Do you understand you're still under oath?	
5	А	Yes.	10:28:33
6	Q	Did you have any discussions with your	
7	attorney	ys about the substance of your testimony	
8	during t	the break?	
9	A	No.	
10	Q	Let's turn to paragraph 47 of your claim	10:28:41
11	construc	ction declaration, which is Exhibit 1.	
12	А	I'm there.	
13	Q	In this first sentence in paragraph 47, you	
14	wrote th	nat:	
15		"POSITA would have understood	10:29:14
16		that a 'playback queue' is, in	
17		more of a colloquial sense, a	
18		'container' that can hold	
19		multimedia for playback and that	
20		different types and arrangements	10:29:28
21		of multimedia could be queued,"	
22		and it goes on from there.	
23		Do you see that?	
24		You put "container" in quotes there.	
25		What does "container" mean for you in this	10:29:39
			Page 52

1	context?	
2	A It's basically the data construct of some	
3	kind, as I say in the rest of the sentence, can be	
4	used to hold multimedia or media content for	
5	playback.	10:29:56
6	Q Is there a difference between a data	
7	construct and a data structure?	
8	A Depends on the context.	
9	Q Let's start with what you understand both	
10	to mean.	10:30:16
11	So what is a data construct to you?	
12	A Well, I give examples of data constructs in	
13	paragraph 58, a little bit further down from	
14	paragraph 47 that we were just discussing, and I	
15	gave examples of data constructs.	10:30:39
16	So a single data variable would be an	
17	example of a data construct. Multiple data	
18	variables would be an example of a data construct.	
19	A data array, those would be that would be	
20	another example of a data construct.	10:30:55
21	It's some way of arranging data, one or	
22	more datum or data.	
23	Q For the multiple data variables that would	
24	be a data construct to you, would there need to be a	
25	relationship between those multiple data variables	10:31:20
		Page 53

1	or not?	
2	MR. LEE: Objection to form.	
3	THE WITNESS: Help me understand what you	
4	mean by "relationship."	
5	BY MR. KAPLAN:	10:31:31
6	Q Well, let me ask the question: Could you	
7	have unrelated multiple data variables that would	
8	form a data construct, in your view?	
9	MR. LEE: Objection to form.	
10	THE WITNESS: Again, I'm not sure what	10:31:43
11	"unrelated" means in this context as you're using	
12	the term.	
13	Related to what?	
14	BY MR. KAPLAN:	
15	Q Well, what did you mean by saying "multiple	10:31:52
16	data variables could be a data construct"?	
17	What would be strike that.	
18	What would be an example, in your view, of	
19	multiple data variables that would form a data	
20	construct?	10:32:07
21	A So if you take a look at paragraph 88 in my	
22	claim construction declaration, I give an example, I	
23	believe, that illustrates this.	
24	It says:	
25	"A POSITA would have known	10:32:22
		Page 54

1	that a 'playback device' could	
2	store in its memory plural	
3	'multimedia items' across	
4	multiple data variables (in other	
5	words, not stored as an 'ordered	10:32:33
6	list') and still playback the	
7	media in a specified order."	
8	And then I go on and talk in the rest of	
9	that paragraph about how the playback device could	
10	have a data variable called "play_now." It gets	10:32:44
11	populated by a first multimedia item. And another	
12	data variable called "play_next" that gets populated	
13	by a second multimedia item. And then have the	
14	logic play the media corresponding to the play_now	
15	data variable before the media corresponding to the	10:33:00
16	play_next data variable.	
17	And, of course, this is just a specific	
18	example in a different part of my declaration	
19	talking about singular versus plural items, but I	
20	think it answers your question about the concept of	10:33:17
21	a data construct and how the data construct could be	
22	something that would involve multiple variables,	
23	multiple data variables, as it says in paragraph 58.	
24	Q In your example in paragraph 88, is there a	
25	relationship between the play_now and play_next data	10:33:39
		Page 55

1	variables?	
2	MR. LEE: Objection to form.	
3	THE WITNESS: Again, I don't know what you	
4	mean by "relationship." So the example that's	
5	described here gives an instance of how these two	10:33:56
6	variables could store data or store, in this case,	
7	the logic that is going to be populated by a	
8	multimedia item, which could be various things that	
9	I describe also in my declaration. And the code	
10	that implements this or the logic that uses the	10:34:18
11	play_now and play_next data variables could use them	
12	in the way as described here.	
13	I don't know how that corresponds to the	
14	phrase you use, "relationship."	
15	BY MR. KAPLAN:	10:34:33
16	Q Well, presumably you could have two	
17	variables that, in your view, together do constitute	
18	a data construct, or in the alternative, you could	
19	have two variables that together do not constitute a	
20	data construct; is that fair?	10:34:49
21	A Again, without understanding the context,	
22	it's hard to know how to answer that question.	
23	Q Are every two variables going to form a	
24	data construct, in your view?	
25	A Again, without knowing without	10:35:05
		Page 56

1	understanding the context, it's hard to answer that	
2	question. I'm giving you a specific example here	
3	which are a pair of data variables that, as I	
4	described earlier in paragraph 58, would be an	
5	example of a data construct in this particular case	10:35:23
6	relating to playback devices, having the ability to	
7	store in the memory multimedia items, plural.	
8	Q Right.	
9	What I'm trying to get at here is, I want	
10	to understand the basis for your opinion that allows	10:35:40
11	you to identify when multiple independent variables	
12	will form a construct and when they won't.	
13	Do you understand my question?	
14	A I think so. I think I just gave you an	
15	example where two data variables are being used	10:36:04
16	together with logic in order to perform some	
17	capability that could be useful in the context of a	
18	playback system that would form a data construct, as	
19	I describe in paragraph 58.	
20	Q Can you give me an example of when two data	10:36:24
21	variables would not form a data construct, in your	
22	view?	
23	MR. LEE: Objection to form, incomplete,	
24	relevance.	
25	THE WITNESS: I would have to think more	10:36:38
		Page 57

1	about it. In this case, I was looking for examples	
2	that demonstrated a data construct where multiple	
3	data variables could be used in the context of	
4	playback devices which, as I understand it, are the	
5	focus of the my claim construction declaration	10:36:55
6	one of the focal points of my claim construction	
7	declaration.	
8	BY MR. KAPLAN:	
9	Q So let me try to narrow the question and	
10	I'll see if that helps.	10:37:06
11	In the context of playback devices, can you	
12	give me an example of when you would have two	
13	variables that would not form a data construct, in	
14	your view?	
15	MR. LEE: Objection to form, vague,	10:37:21
16	confusing, scope, relevance.	
17	THE WITNESS: Yeah. I would have to think	
18	about that some more. It's outside the scope of	
19	what I've done here.	
20	My analysis is focusing on the different	10:37:32
21	ways in which Google's construction of playback	
22	queue is overly narrow and, in fact, reads out a	
23	number of the different embodiments that are	
24	disclosed in the specification.	
25	///	10:38:10
		Page 58

1	BY MR. KAPLAN:	
2	Q Okay. Can you give me an example in the	
3	context of playback devices where you would have a	
4	single variable that would not form a queue?	
5	MR. LEE: Same objection; form, scope,	10:38:36
6	relevance.	
7	THE WITNESS: A single variable that would	
8	not form a queue?	
9	MR. LEE: It's vague, confusing. I'm	
10	sorry.	10:38:52
11	THE WITNESS: A Boolean flag of some sort,	
12	perhaps. Keep in mind, I haven't done that	
13	particular analysis in my declaration, so I would	
14	have to think about it, but seems like some Boolean	
15	flag.	10:39:12
16	BY MR. KAPLAN:	
17	Q So what I'm getting at here is, you've	
18	provided I think at least an example in the case	
19	where you have two variables where that might fit	
20	the data construct definition that you gave, right,	10:39:27
21	that's paragraph 88?	
22	A That's correct.	
23	Q I just want to ask one more time to make	
24	sure that the answer is clear.	
25	Sitting here today, you can't give me an	10:39:40
		Page 59

1	example of two variables in the playback device	
2	context that would not form a data construct; right?	
3	MR. LEE: Objection to form,	
4	mischaracterizes, vague, confusing.	
5	THE WITNESS: Yeah. I wouldn't I don't	10:39:57
6	think that's what I answered you before when you	
7	asked the same question.	
8	BY MR. KAPLAN:	
9	Q Well, then, I would like your answer as to	
10	what is an example of two variables in a playback	10:40:08
11	context that don't form a data construct?	
12	MR. LEE: Objection to form, vague,	
13	incomplete, scope, relevance.	
14	THE WITNESS: I just go back to the answer	
15	I gave you when you asked the question two or three	10:40:22
16	minutes ago.	
17	I don't remember exactly what the answer	
18	was, but I'm sure it's there for the record.	
19	BY MR. KAPLAN:	
20	Q I thought that the answer was that you	10:40:32
21	couldn't give me an example, sitting here today,	
22	because you thought it was outside the scope of your	
23	declaration.	
24	A I don't think that's quite what I said, but	
25	I stand by what I said before.	10:40:44
		Page 60

1	Q Well, I'm going to have to ask it again	
2	because I think we had different understandings of	
3	what your testimony was, so I'll ask it one more	
4	time.	
5	Can you give me an example in the playback	10:40:55
6	device context of two variables that together don't	
7	form a data construct?	
8	A And I'll just give the same answer I gave	
9	before.	
10	I believe I asked you asked me that	10:41:06
11	question before and I think I gave you an answer	
12	that I stand behind, so you may have a different	
13	interpretation of what the answer is, but I believe	
14	my answer is my answer.	
15	Q I don't know what your answer was. I	10:41:24
16	didn't get an example and I don't think you said	
17	I don't recall an example, so can you answer it one	
18	more time, please?	
19	MR. LEE: Objection to form, incomplete	
20	hypothetical, vague, confusing, relevance, beyond	10:41:36
21	the scope.	
22	THE WITNESS: Again, I'll just point back.	
23	You asked me the question probably now four	
24	minutes ago and I gave you an answer at that time	
25	and I don't remember every detail of what I said,	10:41:48
		Page 61

1	but I think I answered your question.	
2	So I'm just going to stick with what I said	
3	before, which should be in the record.	
4	BY MR. KAPLAN:	
5	Q Well, it's all in the record and I'm not	10:41:56
6	trying to cross-examine you against your prior	
7	answer, both of those will be in the record, but I	
8	don't recall hearing an example like I asked for.	
9	If you think you gave me one, I would like	
10	to hear that example again.	10:42:08
11	A I think my previous answer gave you the	
12	answer to your question.	
13	Q Can you give me an example I'll ask it	
14	one more time and then we will move on. Okay?	
15	Sitting here today, in the playback device	10:42:24
16	context, can you give me an example of two variables	
17	that, together, don't form a data construct?	
18	MR. LEE: Same objection; incomplete,	
19	vague, confusing, scope, relevance.	
20	THE WITNESS: So again, I'll point you back	10:42:41
21	to the response I gave you when you asked me that	
22	question the first time. I'm going to stay with	
23	that answer to your question.	
24	BY MR. KAPLAN:	
25	Q If you go to page 17 of your declaration.	10:43:32
		Page 62

1	I'm going to be looking at footnote 4.	
2	A I see that.	
3	Q Is it your view that Google's construction	
4	is unclear as to whether or not it covers user	
5	defined playlists?	10:44:02
6	MR. LEE: Objection to form.	
7	THE WITNESS: Let me see the context in	
8	which that footnote appears.	
9	So this footnote appears in the context of	
10	one of my other opinions that Google's proposed	10:44:44
11	construction appears to be given just a very narrow	
12	example of one potential embodiment, good	
13	embodiment, in my opinion, good potential	
14	embodiment, a playback queue, which, in my mind,	
15	appears to be more associated with what a person in	10:45:13
16	the ordinary skill in the art would be associated	
17	with being a user defined playlist rather than	
18	actually explaining what a playback queue is in the	
19	construction.	
20	And so that's the context. That's the	10:45:23
21	sentence that appears towards the end of	
22	paragraph 47, and this footnote is just ripping on	
23	this a little further, talking about a topic that	
24	actually appears later in I think it's section D	
25	of my declaration where I'm saying it's not clear	10:45:42
		Page 63

1	to me as I read the proposed Google claim	
2	construction whether they're only intending for a	
3	playlist to be satisfied by a sorry a playback	
4	queue, not a playlist a playback queue to be	
5	satisfied by a user defined playlist, which is the	10:46:03
6	way the construction appears to suggest because it	
7	says something about selected by the user for	
8	playback. That's the particular phrase that I'm	
9	addressing here.	
10	And it appears to me that if that was the	10:46:20
11	intent of Google's construction, it would exclude a	
12	number of different embodiments or examples that are	
13	explicitly described in the specification having to	
14	do with playing an album of songs, or a service	
15	defined playlist, or something as I say, actually,	10:46:40
16	right above the footnote at the bottom of page 17	
17	continuing on to the top of page 18 where you could	
18	have some kind of online disk jockey service that	
19	will decide what songs to play next, which really	
20	isn't the same thing as being something selected by	10:47:00
21	the user, or a song selected by the user, or	
22	multimedia content selected by the user.	
23	So that's the way in which I'm addressing	
24	this issue of selected by the user for playback. It	
25	just wasn't clear to me, given the construction put	10:47:15
		Page 64

1	forward what Google's intent was.	
2	BY MR. KAPLAN:	
3	Q In paragraph 49 of your declaration, you	
4	set forth an opinion that Google's proposed	
5	construction would exclude service defined	10:47:32
6	playlists.	
7	Do you see that?	
8	A Well, I think I'm just describing what an	
9	example of a service defined playlist is, or an	
10	Internet radio station is in paragraph 49, as I read	10:47:53
11	paragraph 49.	
12	Q Do you have a critique of Google's	
13	construction that service defined playlists would be	
14	excluded improperly by Google's construction?	
15	A I think as I mentioned in footnote 4, it's	10:48:07
16	just not clear to me what Google's construction	
17	means, because the construction includes the phrase	
18	"selected by the user for playback," and that	
19	particular analysis of the playback queue not being	
20	limited to user selected content, unlike what it	10:48:35
21	appears that Google may be saying, actually appears	
22	starting towards the bottom of page 31.	
23	And as I say in paragraph 93 on page 32,	
24	it's unclear to me whether Google's use of the term	
25	"selected by the user for playback," it's not clear	10:48:59
		Page 65

1	to me whether Google intends that language to	
2	include queuing a list of media items curated by a	
3	third party media service, that's kind of a service	
4	provided approach, automatically queuing album songs	
5	by virtue of the user selecting the first song of an	10:49:17
6	album.	
7	And when I say other examples, having	
8	things related to queueing of other media items, or	
9	as we talked about before, some kind of disk jockey	
10	service. It's just not clear what Google means.	10:49:32
11	So I think my main critique, which	
12	continues on paragraph 93 and below, this is my	
13	understanding of my my not understanding of	
14	Google's phrase, because I don't understand what it	
15	means.	10:49:49
16	It appears that if it were to only be	
17	playback items that were multimedia that were	
18	selected by the user for playback, that would be	
19	inconsistent with a POSITA's understanding of the	
20	term "playback queue," as described in the two	10:50:04
21	patents at issue.	
22	Q Do you understand Google's proposed	
23	construction to require that the multimedia items	
24	are selected by the user for playback?	
25	A I think the point I'm making, I don't	10:50:20
		Page 66

1	understand what Google means. It seems very	
2	unclear. So because it's unclear, I'm trying to	
3	provide an analysis of what it might mean and then	
4	describe why I believe that that analysis why	
5	that those meanings would be inconsistent with	10:50:40
6	what's the intended part of the patents at issue.	
7	Q Is it your understanding that the org list	
8	for the multimedia items are selected by playback	
9	strike that. I didn't correctly quote the	
10	construction.	10:50:59
11	So Google's proposed construction says:	
12	"An order list of multimedia	
13	items is selected by the user for	
14	playback."	
15	Do you see that?	10:51:10
16	A I see Google's proposed construction, yes.	
17	Q Is it your understanding that the "is	
18	selected by the user for playback" refers to	
19	multimedia items, or an ordered list?	
20	MR. LEE: Objection to form.	10:51:26
21	THE WITNESS: So if you take a look at	
22	paragraph 91 of my declaration, I say essentially	
23	it's my understanding that:	
24	"Google's proposed	
25	construction for 'playback queue'	10:51:50
		Page 67

1	further requires that the	
2	'ordered list of multimedia	
3	items' be 'selected by the user	
4	for playback.'"	
5	BY MR. KAPLAN:	10:52:01
6	Q But Google's proposed construction uses the	
7	word "is," which refers to a singular subject as	
8	opposed to a plural subject.	
9	So Google's construction is actually	
10	grammatically saying it's the ordered list that is	10:52:12
11	selected by the user for playback; right?	
12	A Well, as I read it here, it's the ordered	
13	list of multimedia items.	
14	Q And the ordered list is a singular subject;	
15	correct?	10:52:30
16	A Ordered list is a singular subject, but	
17	it's my understanding that the phrase "ordered list	
18	of multimedia items" is what Google's proposing be	
19	selected by the user for playback.	
20	Q So under Google's proposed construction,	10:52:48
21	it's not the multimedia items themselves that are	
22	selected by the user for playback, it's the ordered	
23	list; right?	
24	A I'm not really sure what distinction you're	
25	making here. When I read the analysis here in	10:53:08
		Page 68

1	section D of my declaration, I'm referring to the	
2	phrase "ordered list of multimedia items" as being	
3	what Google is proposing be selected by the user for	
4	playback.	
5	Q Well, part of your critique I'm sorry.	10:53:26
6	Go ahead, Dr. Schmidt.	
7	A And the analysis in section D of this part	
8	of my claim construction declaration is asking	
9	questions about what does that mean?	
10	And it's not clear what that means, as I	10:53:42
11	describe here. It's not clear whether it excludes	
12	or includes queueing a playlist of media items, so I	
13	think leaving aside the whole issue of ordered,	
14	whether it has to be an ordered list, that's	
15	discussed in section C of my declaration.	10:54:01
16	But as I say in paragraph 93, it's not	
17	clear whether Google's construction excludes	
18	queueing a playlist of media items, or a playlist is	
19	singular, to your point, of media items that is	
20	curated, so there's the singular "is," by a third	10:54:19
21	party media service.	
22	That's the part of the analysis here that I	
23	find confusing and unclear and it appears that it	
24	could very well be the case that Google's if that	
25	is the intent, that the playlist must be selected,	10:54:32
		Page 69

1	whether that's something that is it's not clear	
2	what Google is suggesting here and whether they're	
3	reading out things that appear to be intentionally	
4	part of the patents at issue.	
5	Q If it's the playlist that's selected by the	10:54:51
6	user, then falling under that would be examples like	
7	Pandora where a radio station is selected by the	
8	user; right?	
9	A There's a bunch of different examples that	
10	I think occur in the patent of ways to get content	10:55:10
11	play.	
12	Q Pandora being one of them, I believe.	
13	Spotify is another example; correct?	
14	A Let's see.	
15	The patent gives several different examples	10:55:34
16	of third party music applications, including	
17	Pandora, Rhapsody, Spotify, and so on.	
18	Q And in the Pandora example for just	
19	taking that as a single example, you understand that	
20	for a user to use Pandora, he or she selects a radio	10:55:52
21	station which is associated with a service defined	
22	playlist; right?	
23	A That's my understanding.	
24	Q And in that example, the user is not	
25	actually identifying and selecting all of the songs	10:56:08
		Page 70

1	or multimedia items within that radio station, the	
2	service is identifying them in playing those; right?	
3	A Again, that's my understanding.	
4	Q Let's turn to paragraph 51 of your	
5	declaration.	10:56:34
6	A Okay.	
7	MR. KAPLAN: I'm going to introduce another	
8	exhibit. Please let me know when you have it up.	
9	THE REPORTER: Is this Exhibit 4?	
10	MR. KAPLAN: This is Exhibit 4. And it	10:57:14
11	will be United States Patent application number	
12	U.S. 2011/4330.	
13	(Whereupon, Google Exhibit 4 was	
14	marked for identification by the	
15	Court Reporter.)	10:57:56
16	MR. LEE: Don't worry about the dogs. I	
17	know Mike has at least two sitting there.	
18	THE REPORTER: Sorry.	
19	MR. LEE: It's not a problem at all.	
20	THE WITNESS: Okay. I got it.	10:58:07
21	BY MR. KAPLAN:	
22	Q Can you turn to paragraph 51 of that	
23	reference. I apologize.	
24	Can you turn to paragraph 48 of that	
25	reference.	10:58:28
		Page 71

1		A	I'm there.	
2		Q	There's a sentence within that paragraph	
3	that	beg:	ins:	
4			"When the decision 316	
5			determines that the specified	10:58:42
6			media item is to be played back	
7			next, the specified media item	
8			can be added 318 to a top of a	
9			playback queue. Alternatively,	
10			when the decision 316 determines	10:58:54
11			that the specified media item is	
12			not to be played back next, the	
13			specified media item can be added	
14			320 to a bottom of the playback	
15			queue."	10:59:07
16			Do you see that?	
17		A	I do.	
18		Q	This portion of the reference is describing	
19	how	media	a items can be added or removed from a	
20	quei	ıe?		10:59:16
21		A	No.	
22		Q	Why not?	
23		A	I don't see anything in that in the line	
24	you	read	to me that describes removing an item.	
25		Q	Fair enough.	10:59:54
				Page 72

1	This portion of the record is just	
2	describing adding items to a queue; is that fair?	
3	A The reference says what it says. It says	
4	that the in this particular context, it talks	
5	about how an item can be added to the top of a	11:00:12
6	playback queue or added to the bottom of a playback	
7	queue. I see that.	
8	Q What does that mean, "top of a playback	
9	queue"?	
10	A I would have to read further to see what	11:00:23
11	they're referring to by "playback queue" here to see	
12	what they mean.	
13	Q Would a person of art understand what the	
14	top or bottom of a queue refers to?	
15	While you think about it, let me ask a	11:00:58
16	slightly better question that actually makes sense.	
17	Would a person of skill in the art	
18	understand what the top or bottom of a queue refers	
19	to, "Q-U-E-U"	
20	A It depends on the context.	11:01:11
21	Q Do you understand what adding a media item	
22	to the top or bottom of a queue means?	
23	A That's what I'm looking for, to see how	
24	it's being used in this particular patent	
25	description and how it's defined.	11:01:31
		Page 73

1	Again, I'm trying to see if there's a	
2	definition of how queue is defined here.	
3	Q So can you answer my question without	
4	finding the definition on the patent, or not?	
5	A Well, depending on the context in which	11:02:57
6	queue is used, top and bottom are not common terms	
7	used to describe queues. That's why I was trying to	
8	see if they were defining it in some other way.	
9	Q What terms are used to describe the front	
10	and end of a queue, typically?	11:03:13
11	A Again, it depends on the context in which	
12	we're referring.	
13	Q How about in the playback device context?	
14	A Typically people well, again, it's hard	
15	to say. If you think about a queue, queues can mean	11:03:35
16	many different things. As I describe in my report	
17	on paragraph 47, a queue is a playback queue is a	
18	container that can be used to pull multimedia for	
19	playback and different types and arrangements of	
20	multimedia could be queued. So what that's really	11:04:03
21	saying is, there's different ways to understand what	
22	a queue could be.	
23	So I don't know if there's I don't think	
24	there's really one dictionary definition of a	
25	playback queue that would be appropriate for all	11:04:13
		Page 74

1	context, and that's why I describe here in	
2	paragraph 47 and later in paragraphs 58 and 59, how	
3	I believe a person of ordinary skill in the art	
4	would have understood playback queue to be	
5	interpreted in the context of this patent.	11:04:31
6	How the other patent that's why I was	
7	trying to see how they're giving definition of a	
8	playback queue, and they may be defining it in some	
9	more specific way.	
10	Q Have you ever heard of queues described as	11:04:48
11	having a first-in/first-out characteristic?	
12	A Queues can be organized in all kinds of	
13	different ways, so that's one potential way of	
14	organizing, but there's lots of other ways to	
15	organize queues as well.	11:05:03
16	Q Have you ever programmed using queues that	
17	have a first-in/first-out characteristic?	
18	A I have.	
19	Q In what context strike that.	
20	Have you ever taught in any of your classes	11:05:14
21	at Vanderbilt University that queues might have a	
22	first-in/first-out characteristic?	
23	A I have taught queues in a number of	
24	different ways. Typically when I talk about queues,	
25	I talk about them being able to have different	11:05:32
		Page 75

organized in terms of so-called priority order. There's other protocols where you can move elements around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from the beginning or add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:1 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence.			
include things like last-in/first-out; other protocols are first-in/first-out. There are other protocols where queues are 11:05:4 organized in terms of so-called priority order. There's other protocols where you can move elements around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from 11:06:0 the you can add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:0 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:0 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:0	1	queuing disciplines or queuing protocols, if you	
There are other protocols where queues are 11:05:4 There are other protocols where queues are organized in terms of so-called priority order. There's other protocols where you can move elements around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from the beginning or add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:2 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:2 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:2	2	will, and some of the queuing protocols would	
There are other protocols where queues are organized in terms of so-called priority order. There's other protocols where you can move elements around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from the beginning or add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:2 A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:2	3	include things like last-in/first-out; other	
organized in terms of so-called priority order. There's other protocols where you can move elements around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from the you can add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:3 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	4	protocols are first-in/first-out.	
There's other protocols where you can move elements around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from the beginning or add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:1 A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	5	There are other protocols where queues are	11:05:48
around in a queue. There's other protocols that do other things where you can add or remove items from the beginning and end. You can then add them from the you can add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to thave an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	6	organized in terms of so-called priority order.	
other things where you can add or remove items from the beginning and end. You can then add them from the you can add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:3 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	7	There's other protocols where you can move elements	
the beginning and end. You can then add them from the beginning or add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Have you taught that queues don't need to 11:06:30 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:30 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:40	8	around in a queue. There's other protocols that do	
the you can add or remove them from the beginning or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:2 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:3 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	9	other things where you can add or remove items from	
or add or remove them from the end. There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:3 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:3 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	10	the beginning and end. You can then add them from	11:06:04
There's a number of different ways to teach what queues do. Q Have you taught that queues don't need to 11:06:3 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:3 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	11	the you can add or remove them from the beginning	
what queues do. Q Have you taught that queues don't need to 11:06:2 have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:3 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	12	or add or remove them from the end.	
15 Q Have you taught that queues don't need to 11:06:1 16 have an order? 17 A Again, there's different ways to organize 18 queues. Yes, there are certainly queues that do not 19 have an order from the point of view from the way 20 the user is going to access their contents. 11:06:3 21 Q What's an example of a queue that doesn't 22 have an order? 23 A A queue that would provide the elements in 24 a random sequence. 25 Q Would the queue be stored in the computer 11:06:4	13	There's a number of different ways to teach	
have an order? A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	14	what queues do.	
A Again, there's different ways to organize queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. 11:06:3 Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	15	Q Have you taught that queues don't need to	11:06:16
queues. Yes, there are certainly queues that do not have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	16	have an order?	
have an order from the point of view from the way the user is going to access their contents. Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	17	A Again, there's different ways to organize	
the user is going to access their contents. 21 Q What's an example of a queue that doesn't 22 have an order? 23 A A queue that would provide the elements in 24 a random sequence. Q Would the queue be stored in the computer 11:06:4	18	queues. Yes, there are certainly queues that do not	
Q What's an example of a queue that doesn't have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	19	have an order from the point of view from the way	
have an order? A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	20	the user is going to access their contents.	11:06:32
A A queue that would provide the elements in a random sequence. Q Would the queue be stored in the computer 11:06:4	21	Q What's an example of a queue that doesn't	
24 a random sequence. 25 Q Would the queue be stored in the computer 11:06:4	22	have an order?	
Q Would the queue be stored in the computer 11:06:4	23	A A queue that would provide the elements in	
	24	a random sequence.	
Page 76	25	Q Would the queue be stored in the computer	11:06:44
			Page 76

1	or memory with an order?	
2	MR. LEE: Objection; form, foundation.	
3	THE WITNESS: I'm not sure what you mean by	
4	"order."	
5	BY MR. KAPLAN:	11:07:02
6	Q So I think you were saying that a user	
7	might access the elements of a queue in a random	
8	order.	
9	Did I get that right?	
10	A I think I said a random sequence.	11:07:13
11	Q Fair enough.	
12	The user may access the elements of a queue	
13	in a random sequence according to you; right?	
14	A That's correct.	
15	Q Would the queue as it's stored in the	11:07:23
16	computer have an order?	
17	MR. LEE: Objection to form, vague,	
18	confusing, incomplete.	
19	THE WITNESS: Again, it's not clear what	
20	you mean by "order."	11:07:40
21	BY MR. KAPLAN:	
22	Q So you have you heard of people	
23	describing queues as having an order?	
24	A It is possible for queues to have order;	
25	although not every queue needs to be ordered.	11:07:52
		Page 77

1	Q What is an example of a queue that's not	
2	ordered?	
3	A A queue where the elements are accessed	
4	randomly.	
5	Q What is an example of a queue that's	11:08:07
6	well, let me ask a better question.	
7	What is an example of a queue where the	
8	elements can only be accessed randomly?	
9	MR. LEE: Objection to the form.	
10	THE WITNESS: A random queue.	11:08:25
11	Are you asking for what's an application of	
12	such a thing?	
13	BY MR. KAPLAN:	
14	Q Well, I'm not sure I understand what you	
15	mean by "random queue."	11:08:37
16	Can you describe that a bit more?	
17	A Sure.	
18	You could have some collection of elements	
19	and you might want to select the elements in some	
20	random order, so it there could be lots of	11:08:54
21	different reasons for doing this.	
22	You might want to do this for some kind of	
23	encryption purposes, or you might want to do this	
24	for some kind of testing purposes. You might want	
25	to be able to see how different kinds of algorithms	11:09:07
		Page 78

1	might behave when confronted with data that's in random order, literally.	
2	random order. literally.	
2		
3	For example, certain algorithms behave very	
4	well on data that's nearly sorted. They perform	
5	differently on data that's randomly sorted, or not	11:09:22
6	sorted at all. Randomly just randomly values	
7	that come in random ways.	
8	And so the ability to be able to take some	
9	collection of values and provide those values in	
10	some order that's not predefined but is, in fact,	11:09:41
11	going to be accessed based on a random number	
12	generator is not uncommon.	
13	I do that all the time when I'm	
14	demonstrating various capabilities in courses I	
15	teach at Vanderbilt and elsewhere. So that would be	11:09:58
16	an example of a way to take a collection of data, a	
17	queue of data, and access it in a random order.	
18	Q Are the elements within that queue	
19	connected to the other elements within that queue	
20	randomly?	11:10:17
21	MR. LEE: Objection to the form, vague.	
22	THE WITNESS: I'm not sure what you mean by	
23	"randomly."	
24	BY MR. KAPLAN:	
25	Q Are the elements stored in the queue in an	11:10:28
		Page 79

1	order in your random queue example?	
2	MR. LEE: Objection to the form.	
3	THE WITNESS: Not necessarily, no. Because	
4	they could move around. In fact, in many	
5	implementations of these forms of data algorithms	11:10:41
6	and data constructs and data structures and so on,	
7	they doesn't really matter what order they're	
8	stored in, you're going to be accessing them in	
9	random order or random sequence.	
10	BY MR. KAPLAN:	11:10:59
11	Q The random order or random sequence, are	
12	you removing elements from the queue that are not at	
13	the front or at the end of the queue?	
14	MR. LEE: Objection to form, vague,	
15	incomplete.	11:11:11
16	THE WITNESS: In fact, there's many	
17	different implementations of the style of data	
18	generation I'm describing here. Some remove	
19	elements; some don't remove elements.	
20	The key issue here is that you're accessing	11:11:23
21	each element in that's queued up in a manner that	
22	is going to produce random output. And whether or	
23	not something is removed or not is really an	
24	implementation detail of how you would implement	
25	that particular abstraction.	11:11:40
		Page 80

1	BY MR. KAPLAN:	
2	Q In the random queue that you're describing,	
3	are elements added to the queue randomly in order to	
4	randomize it?	
5	A Again.	11:11:55
6	MR. LEE: Objection to the form, incomplete	
7	hypothetical, vague.	
8	THE WITNESS: There's various ways to	
9	implement these kind of techniques. Some of the	
10	ways would add the elements in some order and then	11:12:05
11	access them randomly; others would add them randomly	
12	and access them randomly. You could add them	
13	randomly and access sequentially. There's all	
14	different ways to implement these kinds of data	
15	abstracts.	11:12:21
16	BY MR. KAPLAN:	
17	Q In your view, what are the characteristics	
18	of a queue?	
19	A Well, again, in what context?	
20	Q A playback device context.	11:12:32
21	A So in the playback device context, as I	
22	describe in paragraph 47 of my declaration, a queue	
23	is a container that can hold multimedia or resource	
24	locators to multimedia items for playback and have	
25	different types and arrangements of multimedia data	11:12:53
		Page 81

1	that could be queued up, such as single songs or	
2	playlist and so on.	
3	Later I go into more detail in the context	
4	of how a POSITA would understand a playback queue to	
5	be realized in the context of the patents at issue	11:13:08
6	in the case which appear in paragraphs 58 and 59.	
7	Q In your view, the queue can be a single	
8	data variable; right?	
9	MR. LEE: Objection.	
10	THE WITNESS: Certainly, yes.	11:13:29
11	BY MR. KAPLAN:	
12	Q And in your view, the queue can be multiple	
13	data variables; right?	
14	A As described on paragraph 58 in my report,	
15	I mention that POSITA at the time of the invention	11:13:42
16	would have understood that a queue could be	
17	implemented in different ways, taking different	
18	forms, such as a data construct, like a single data	
19	variable, multiple data variables, DataRay, and	
20	there's obviously other ways to do it as well.	11:13:58
21	Q What ways can a queue not be constructed?	
22	MR. LEE: Objection to form.	
23	THE WITNESS: There's infinite ways which a	
24	queue cannot be constructed.	
25	///	11:14:15
		Page 82

1	BY MR. KAPLAN:	
	DI MR. RAPLAN.	
2	Q If you were trying to hold multiple pieces	
3	of data, for example, songs, how would you store	
4	those in some type of data structure that's not a	
5	queue?	11:14:26
6	MR. LEE: Objection to form, vague,	
7	incomplete hypothetical, foundation.	
8	THE WITNESS: I mean, you could certainly	
9	store anything in a way that would not be accessible	
10	in the manner that is being described here in the	11:14:56
11	patents at issue.	
12	BY MR. KAPLAN:	
13	Q What do you mean by that?	
14	A You could store you asked me, are there	
15	ways to implement something that are not a queue.	11:15:07
16	You could store data in a way that had no	
17	way to access the elements at all.	
18	Q Besides not being able to access the	
19	elements at all, what are the ways that you could	
20	store data, for example, songs, not in a queue?	11:15:20
21	MR. LEE: Objection to form, foundation,	
22	scope.	
23	THE WITNESS: I would have to spend more	
24	time thinking about that. I haven't prepared that	
25	analysis for today. I have to think about it some	11:15:36
		Page 83

1	more.	
2	BY MR. KAPLAN:	
3	Q Okay. Let's move on to paragraph 52.	
4	Let me know when you're there.	
5	A I'm there.	11:16:01
6	MR. KAPLAN: This requires me to get	
7	another reference. Give me one moment.	
8	I've introduced Exhibit 5.	
9	(Whereupon, Google Exhibit 5 was	
10	marked for identification by the	11:16:34
11	Court Reporter.)	
12	BY MR. KAPLAN:	
13	Q Please let me know when you see it,	
14	Dr. Schmidt.	
15	Exhibit 5 will be United States patent	11:16:38
16	application number 2012/89910.	
17	A Okay. I'm there.	
18	Q Can you go to paragraph 50 of Exhibit 5 and	
19	let me know when you're there.	
20	A I'm there.	11:17:42
21	Q If you could read the portion to yourself,	
22	Dr. Schmidt, that begins "Selecting the play_next	
23	button 524 causes playback."	
24	(Document reviewed by the witness.)	
25	THE WITNESS: Okay. I see that.	11:18:18
		Page 84

1	BY MR. KAPLAN:		
2	Q And did y	you read through the rest of	
3	paragraph 50?		
4	A Oh, no.	Sorry. I just read that sentence.	
5	I'll read	d the rest of it.	11:18:28
6	Q Thank you	1.	
7	(Document	reviewed by the witness.)	
8	MR. KAPLA	AN: It seemed too quick.	
9	THE WITNE	ESS: Okay. I see that.	
10	I've read	l it. Sorry.	11:19:04
11	BY MR. KAPLAN:		
12	Q In the se	econd sentence that you just read,	
13	the specification	here refers to:	
14	"Plac	cing the selected media	
15	items at	the front of the	11:19:18
16	playback	queue."	
17	Do you kr	now what "front of the playback	
18	queue" refers to?		
19	MR. LEE:	Objection; form, foundation.	
20	THE WITNE	ESS: Again, I would have to go	11:19:46
21	back and see more	how they're describing what a	
22	playback queue is	in this context.	
23	I think t	the main purpose of this reference	
24	was just to point	out that queues can have zero	
25	items. They can h	have one item, they can have more	11:20:01
			Page 85

1	than one item. There's no requirement that a queue	
2	has to hold multiple items, which appears to be what	
3	the construction has for from Google.	
4	BY MR. KAPLAN:	
5	Q Do you see in the portion you just read,	11:20:19
6	the specification also describes appending tracks to	
7	the end of the existing playback queue?	
8	Do you see that?	
9	I'm paraphrasing.	
10	A No, I don't see.	11:20:40
11	Where is that located?	
12	Q The sentence that begins:	
13	"Selecting the Append to	
14	Queue button 526 causes the one	
15	or more selected tracks to be	11:21:05
16	added to the end of an existing	
17	playback queue."	
18	Do you see that?	
19	A I do.	
20	Q The fact that the queue has a strike	11:21:18
21	that.	
22	Does the fact that the queue that they're	
23	discussing here in this specification have a front	
24	and an end indicate to you that this queue is	
25	ordered?	11:21:29
		Page 86

1	MR. LEE: Objection to form, foundation.	
2	THE WITNESS: Again, I need to go and look	
3	more carefully how they're defining the data	
4	structures or if they're defining the data	
5	structures that they're calling a playback queue in	11:21:45
6	this context.	
7	BY MR. KAPLAN:	
8	Q If you want to take a moment, you can do	
9	that.	
10	MR. LEE: Caution the witness to be	11:22:10
11	thorough in reviewing the document.	
12	THE WITNESS: So I looked through all the	
13	references to playback queue in the specification	
14	that I could search for, or that came up when I	
15	searched for "playback queue," and as far as I can	11:24:42
16	tell, they don't disclose the structure of the	
17	queue.	
18	But I will mention that the specification	
19	makes it very clear that a playback queue can be	
20	empty and it also mentions that playback queue can	11:24:54
21	contain one element, which in my mind is, again, as	
22	I mention in my declaration, inconsistent with	
23	Google's proposed construction that says that a	
24	queue must be an ordered list of multimedia items,	
25	implying that there's more than one of them.	11:25:14
		Page 87

1		
1	And, therefore, as I say in my report	
2	towards the end of paragraph 76 or my	
3	declaration, sorry, that the definition that the	
4	proposal for the construction that Google is putting	
5	forth would appear to not count a queue having zero	11:25:33
6	or one elements as being part of the construction of	
7	playback queue.	
8	So I think that this reference here that I	
9	just looked through would be further indication of	
10	the inconsistency that Google has with Google's	11:25:50
11	proposed construction has with other extrinsic	
12	evidence at the time.	
13	BY MR. KAPLAN:	
14	Q In your view, can a queue be a list?	
15	MR. LEE: Objection to form, vague.	11:26:08
16	THE WITNESS: There's many different ways	
17	to implement queues. You can implement queues as	
18	raised contiguous data structures. You can	
19	implement queues as linked lists. You can implement	
20	queues as trees. You can implement queues as hash	11:26:22
21	tables. You can implement queues as file systems.	
22	You can implement queues, as I describe in my	
23	declaration, in using other data constructs, such as	
24	multiple data variables or single data variable.	
25	There's different ways to implement queues.	11:26:40
		Page 88

1	BY MR. KAPLAN:	
2	Q Some of those ways involve lists; right?	
3	A Again, depending on how list is defined,	
J	A Again, depending on now list is defined,	
4	there's different kinds of lists. So I think that's	
5	a case where certain terms are used broadly that	11:26:56
6	probably need to be narrowed down or we have to	
7	recognize, as I mention in my report, that the	
8	implementation of the queue container data construct	
9	can take many different forms and so there's no one	
10	representation.	11:27:16
11	I think one of the big issues I have with	
12	Google's proposed construction is it tries to narrow	
13	the understanding of a playback queue to something	
14	that looks a lot more like a user defined playlist	
15	or user specified playlist as opposed to being how I	11:27:30
16	think the term "playback queue" is actually	
17	described in the patents at issue.	
18	So the instruction is just very, very	
19	narrow, overly narrow. It's reading a particular	
20	implementation detail in a way that's not	11:27:43
21	representative of what a POSITA would understand the	
22	queue to be, and by doing so, it's also excluding a	
23	number of different embodiments that are put forth	
24	explicitly in the specification of the patents.	
25	Q Let's say you have a queue that's an order	11:28:01
		Page 89

1	list of three items.	
2	Do you follow me so far?	
3	A Okay.	
4	Q And you remove two of those items from your	
5	queue.	11:28:13
6	Follow me so far?	
7	A Okay.	
8	Q Is what's remaining an ordered list, or	
9	not?	
10	MR. LEE: Objection to the form, incomplete	11:28:23
11	hypothetical, foundation.	
12	THE WITNESS: Again, we have to define what	
13	an "ordered list" means. So that's something also	
14	that's not really clear from Google's construction,	
15	what is meant by an ordered list.	11:28:41
16	Ordered according to what?	
17	A list. It's just a lot I guess my main	
18	issue here is that the construction that Google is	
19	putting forth is inherently ambiguous because terms	
20	like "ordered list" are not really defined.	11:28:58
21	And to the extent that they're narrowed	
22	down to be given a definition, then the construction	
23	that's put forth is overly narrow and it starts	
24	excluding various capabilities that are disclosed in	
25	the '615 and '033 patents.	11:29:16
		Page 90

1	BY MR. KAPLAN:	
2	Q I'm trying to ask a narrower question here,	
3	which is I think we agree that you can have an	
4	order list that could be an example of a queue and	
5	then you can remove items from that queue until you	11:29:32
6	get down to one or zero items left in the queue.	
7	Are you with me so far?	
8	A I understand what you said so far, yes.	
9	Q And my question is: Does the queue stop	
10	being an ordered list, as soon as you get down to	11:29:52
11	having one or zero items left in the queue, or not?	
12	MR. LEE: Objection to form, vague,	
13	ambiguous.	
14	THE WITNESS: Again, it's not really clear	
15	from your hypothetical when you say "ordered list,"	11:30:06
16	what that means. It's also not really clear, you	
17	can there's a concept of something being	
18	vacuously true.	
19	So is something is the data structure	
20	that's empty, a data structure?	11:30:23
21	It depends how you want to define that or a	
22	data construct.	
23	I think the main issue for me is that the	
24	way in which Google is defining the construction	
25	using terms like "ordered list of multimedia items"	11:30:37
		Page 91

1	is vague and overly narrow and reads out things that	
2	are part explicitly anticipated and disclosed in the	
3	specification. That's the key part for my analysis.	
4	BY MR. KAPLAN:	
5	Q Is the fact that Google's construction uses	11:30:55
6	the term "ordered list" incorrect because a queue	
7	can have zero or one items in it?	
8	MR. LEE: Objection to form.	
9	THE WITNESS: The problem with well,	
10	let's see. I think I describe that.	11:31:13
11	I think this is in section C.	
12	Let's see. Let me just make sure.	
13	So as I describe on paragraph 87 of my	
14	declaration, leaving aside whether we're dealing	
15	with one or more items, it's my opinion that a	11:31:43
16	POSITA at the time of the invention would have known	
17	that an ordered list was not necessary in order to	
18	implement a playback queue.	
19	And really as I describe several other	
20	places, such as paragraph 47 and paragraphs 48 and	11:32:01
21	49, a playback queue is really about a container	
22	that holds the element or elements or no elements,	
23	for that matter, to be played back rather than a	
24	particular data structure organized in a particular	
25	way.	11:32:23
		Page 92

1	And to the key point, I think this is	
2	really getting square on to your question about	
3	ordered list, a POSITA would have understood, as	
4	people note in general who understand computing and	
5	data management, that there's lots of different ways	11:32:38
6	to implement something like a playback queue that	
7	can take different forms, different implementation	
8	approaches, different ways of realizing the concept	
9	of a playback queue.	
10	And an ordered list might be one of those	11:32:54
11	ways, but it's not necessarily the best way to do	
12	it. Certainly not the only way to do it.	
13	And so using a construction that predefines	
14	a particular implementation detail for a construct	
15	that doesn't require that level of detail to	11:33:08
16	represent what a playback queue does in the context	
17	of these patents is just overly narrow and	
18	restrictive.	
19	BY MR. KAPLAN:	
20	Q I would like you to focus on my question	11:33:19
21	because it's a bit narrower than the answer you just	
22	gave.	
23	My question is: Is the fact that Google's	
24	construction uses the term "ordered list" incorrect	
25	because a queue can have zero or one items in it?	11:33:32
		Page 93

1	A Well, again, as described in section C, I	
2	break this up into two parts: One is zero or more	
3	items or zero or one items, or zero, one or two or	
4	more items. That's one aspect.	
5	The ordered list part, though, as I think I	11:33:51
6	just described, was incorrect not so much because of	
7	the plurality of multimedia items part of ordered	
8	list of multimedia items, that's a different	
9	analysis.	
10	But the ordered list is problematic because	11:34:07
11	a POSITA would have known, as I say here in	
12	paragraphs in paragraph 88 sorry 87, that	
13	there are different ways to implement a queue or a	
14	playback queue because that's really what's doing	
15	here is a playback queue, and that an ordered list	11:34:27
16	is not the essence of what it means to be a playback	
17	queue.	
18	So that's the reason why that's	
19	problematic. It has to do with that.	
20	And paragraph 88 gives an example that we	11:34:37
21	talked about earlier how you could implement a	
22	playback queue that is not an ordered list, but that	
23	satisfies the playback queue nature of what's	
24	required by the patents.	
25	Q In your example on paragraph 88 with	11:34:52
		Page 94

1	play_now and play_next, do those variables have an	
2	order?	
3	A The variables do not have an order, no.	
4	Q And the variables do not need to have an	
5	order in your view to qualify as a queue; right?	11:35:07
6	MR. LEE: Objection to the form.	
7	THE WITNESS: So I think I describe it	
8	pretty succinctly in paragraph 88 how you can have	
9	data variables that are not stored as an ordered	
10	list, as it says here, and, yet, still be able to	11:35:29
11	play back the media in a specified order.	
12	So it describes how you could have the	
13	logic of the code play things back such that	
14	play_now goes first followed by play_next which goes	
15	next. And the actual data variables that are part	11:35:45
16	of the data construct need not to have any order and	
17	we still get the right affect that would be desired	
18	for that particular implementation.	
19	BY MR. KAPLAN:	
20	Q We talked about random queues in the past	11:35:59
21	prior in this deposition.	
22	Would it be your opinion that if you	
23	randomly played the data variable play_now and the	
24	random and randomly played strike that.	
25	Let me try to ask a better question.	11:36:16
		Page 95

1	Would it be your opinion modifying your	
2	example in paragraph 88 with play_now and play_next,	
3	if you played those data variables in a random	
4	order, that it would still constitute a queue?	
5	A Well, I think a good example of that would	11:36:31
6	be the shuffle feature that you often find in	
7	playback devices where the elements in your playback	
8	queue could be played back in whatever order is	
9	deemed by the particular device to be shuffled.	
10	In other words, not an order that a user	11:36:50
11	might necessarily anticipate wouldn't be the first	
12	track of the album followed by the second track of	
13	the album followed by the third track of the album	
14	or whatever, be an album or playlist, but it would	
15	be shuffled.	11:37:05
16	So in that particular case, in this case,	
17	we have a playback queue with two elements in it and	
18	we could put it in shuffle mode and I think that	
19	would be actually a very common way of being able to	
20	use playback devices if you get tired of hearing	11:37:18
21	songs in the same order.	
22	Q If we modified your example in	
23	paragraph 88, which has play_now and play_next, to	
24	remove play_next, would you still have a queue?	
25	A I think as described in other parts of my	11:37:33
		Page 96

1	declaration, the '615 and '033 patents make it very	
2	clear that you can have playback queues that play a	
3	song.	
4	So there's a number of discussions, that's	
5	actually the whole part about that's the whole	11:37:50
6	part in section C starting on paragraph 76 where	
7	it's there's no reason to think that you have to	
8	have multiple items in the playback queue in order	
9	for it to still be in playback queue.	
10	I have a bunch of different citations where	11:38:07
11	it describes being able to play a song or something	
12	that's singular and that representation, the	
13	implementation or realization of that, probably a	
14	better term, of that capability is still done with	
15	the playback queue, just has one item in it.	11:38:22
16	Q So the answer to my question was yes;	
17	correct?	
18	MR. LEE: Objection to form.	
19	THE WITNESS: I think as I say in	
20	paragraph 88, the '615 Patent and by extension, the	11:38:39
21	'033 Patent repeatedly describes queueing only a	
22	single piece of multimedia content for playback	
23	which would mean that the playback queue would only	
24	contain a single resource locator that corresponds	
25	to or indicates a single piece of multimedia	11:38:58
		Page 97

1	content.	
2	So in that particular case, it's certainly	
3	plausible to have a single data variable be used to	
4	store the content in the playback queue, which is	
5	the single piece of media that's disclosed in the	11:39:14
6	patent specifications.	
7	BY MR. KAPLAN:	
8	Q So in your example, if you just had the	
9	play_now variable, that could still be a queue;	
10	right?	11:39:34
11	MR. LEE: Objection to form.	
12	THE WITNESS: Again, as I say in this part	
13	of the report, for example, on paragraph 82, I see	
14	nothing in the claims of these patents, or in the	
15	specification of the patents, that limits the	11:39:54
16	playback queue to something that has to contain a	
17	plurality or plural multimedia items.	
18	It could have just a single item, in which	
19	case you could have a single data variable, as I	
20	think I mention in paragraph 47, as well, as various	11:40:10
21	ways that the concept of a playback queue container	
22	could be realized.	
23	BY MR. KAPLAN:	
24	Q So I've asked you a specific question about	
25	your example in paragraph 88, three times now. I'm	11:40:22
		Page 98

1	going to ask it one more time.	
2	Taking your example in paragraph 88, which	
3	has the play_now and play_next data variables, if we	
4	took out the play_next data variable, would you	
5	still have a queue?	11:40:37
6	A I think I've answered that question three	
7	times by pointing out that I see nothing in the	
8	specification or the claims in these patents that	
9	require the playback queue to have multiple,	
10	multiple items in it.	11:40:55
11	And the particular example on paragraph 88	
12	is demonstrating how you could play things back in a	
13	particular order without requiring an ordered list.	
14	So that's the particular scenario.	
15	But generalizing from the earlier	11:41:11
16	discussions that I've given you those answers to	
17	your questions before, since the patent spec and the	
18	patent claims don't require the having more than	
19	one item, then you could have a queue that had an	
20	item had a single data variable. I think I've	11:41:33
21	been consistent in saying that.	
22	Q Right. I'm not sure why you're fighting	
23	this question so hard.	
24	You gave an example in your declaration.	
25	I'm asking about a very, very simple modification	11:41:45
		Page 99

1	and I don't know why you're not answering my	
2	question with respect to if you removed the	
3	play_next variable in your example in paragraph 88,	
4	yes or no whether you would have a queue still?	
5	MR. LEE: Objection to form, asked and	11:42:02
6	answered.	
7	THE WITNESS: Yeah. I think I've given you	
8	the same answer each time.	
9	So as I mentioned, as I say in	
10	paragraph 83, there's nothing in the specification	11:42:13
11	that requires there to be multiple items, plural.	
12	You could have a single item.	
13	The example that's in paragraph 88 is	
14	illustrating a slightly different point, which is	
15	that you can have ordered behavior without requiring	11:42:28
16	the use of an ordered list.	
17	If you remove one of the variables and you	
18	have a single variable, you know, then assuming the	
19	example would need to be modified perhaps, the	
20	description of the example in paragraph 88 would	11:42:43
21	have to be tweaked a little bit because it's really	
22	describing something slightly different in terms of	
23	the use case.	
24	But I thought the answer I gave to your	
25	question multiple times was: It's certainly	11:42:52
		Page 100

1	possible to have a playback queue that has a single	
2	data variable in it. I think that's said	
3	consistently throughout my declaration.	
4	As far as what would be need to be	
5	changed in paragraph 88, I would have to look more	11:43:07
6	carefully because it's being used for a slightly	
7	different purpose.	
8	But I think the bigger answer to your	
9	question is, as far as I see, the specifications and	
10	the claims for the two patents at issue in the case,	11:43:20
11	it's possible to have a data construct, which is a	
12	single variable, be an implementation of a playback	
13	queue.	
14	BY MR. KAPLAN:	
15	Q Let's turn to paragraph 59 of your report.	11:43:34
16	A Okay. I'm there.	
17	Q Do you see two and three lines from the	
18	bottom of paragraph 59 you describe media items?	
19	Do you see that?	
20	A I do.	11:44:05
21	Q What did you mean by "media items"?	
22	A Are you referring to the thing that says:	
23	"That can contain data	
24	identifying one or more media	
25	items (e.g. one or more resource	11:44:23
		Page 101

1	locators)"?
2	Q You use "media items" there and also in the
3	following line. I'm referring to both places.
4	A So in this case let's see.
5	MR. LEE: Marc, we've been going an 11:45:03
6	hour-and-a-half and it seems like we're switching
7	gears as Doug looks.
8	Is this okay to take a break, lunch break?
9	MR. KAPLAN: I prefer to get on to my
10	pending question, but then I'm happy to take a 11:45:15
11	break.
12	MR. LEE: Okay. That's good.
13	Are you thinking lunch now or press on?
14	MR. KAPLAN: Up to you and the witness.
15	And, of course, the court reporter and videographer. 11:45:26
16	MR. LEE: I could it's almost
17	2:00 o'clock for me, but that's fine.
18	THE WITNESS: So my understanding of or
19	what I meant by "media items" in this context would
20	be something akin to media content, for example, 11:45:51
21	audio files as we described before that could be
22	identified by or associated with resource
23	locators one or more resource locators.
24	MR. KAPLAN: Let's go off the record.
25	THE VIDEOGRAPHER: We're off the record 11:46:18
	Page 102

1	11:46 a.m.	
2	(Whereupon, a lunch recess was held	
3	from 11:46 a.m. to 12:20 p.m.)	
4	THE VIDEOGRAPHER: We're on the record at	
5	12:20 p.m.	12:20:24
6	BY MR. KAPLAN:	
7	Q Welcome back, Dr. Schmidt.	
8	You understand that you're still under	
9	oath?	
10	A I do.	12:20:38
11	Q Let's turn to paragraph 100 of your	
12	declaration.	
13	A I'm there.	
14	Q In the sentence beginning, "Notably in this	
15	paragraph," you say that a POSITA would understand	12:20:59
16	that a URL is so limited to having an address.	
17	Do you see that?	
18	A I is it the part that says, "Whereas a	
19	POSITA would understand a URL is not so limited"; is	
20	that what you're referring to?	12:21:18
21	Q Correct.	
22	A I see that, yes.	
23	Q Can you give me an example of a URL that	
24	doesn't have an address?	
25	A Yes.	12:21:29
		Page 103

1	Q Go ahead.	
2	A A so-called persistence or persistent	
3	URL sorry persistent Uniform Resource Locator,	
4	or PURL, P-U-R-L, would be an example of a URL that	
5	does not contain the address of the resource that's	12:21:46
6	being requested.	
7	Q How does a PURL identify a resource?	
8	A It provides information that is sent to	
9	essentially the lookup service or a resolution	
10	service that then goes ahead and finds where the	12:22:06
11	actual resource is and then sends back what's called	
12	a URL redirect back to the requester that will	
13	redirect the requester back to the actual item	
14	that's being requested.	
15	So you can think of it essentially as some	12:22:25
16	sort of proxy, or like I said, a location service or	
17	directory service where you look things up and it	
18	doesn't actually contain the address of the	
19	resource, it contains something that can be used by	
20	the persistent URL service to identify the resource.	12:22:44
21	Q Will you turn to paragraph 103 of your	
22	report. Paragraph 103.	
23	A I'm there.	
24	Q In this paragraph, you excerpt a few	
25	different portions of the '615 Patent specification.	12:23:08
		Page 104

1	Do you see that?	
2	A I do.	
3	Q Are any of those portions of the	
4	specification referencing resource locators?	
5	A If I understand your question, you're	12:23:27
6	referring to the portions that are from the '615	
7	Patent that starts at the very first indented	
8	paragraph on page 35 where it's talking about	
9	uniform resource indicator.	
10	And then shortly thereafter, it's talking	12:24:25
11	about how an application has the song identifier,	
12	which is another quote from the '615 spec, and then	
13	shortly below there it talks about an identifier for	
14	a single track and so on.	
15	Are those the paragraphs that you're	12:24:40
16	referring to that are excerpts from spec?	
17	Q That's right.	
18	A Right.	
19	So all of those things, as I say here in	
20	paragraph 104, right underneath that:	12:24:50
21	"It is my opinion that a	
22	POSITA would understand from	
23	reading the '615 Patent that the	
24	'resource locator'" that's in	
25	the claims "is meant to	12:25:02
		Page 105

1	encompass more than a 'URL,' as	
2	evidenced by at least the '615	
3	Patent references to" and then	
4	I talk about "'some other	
5	identification,' 'identifier,'	12:25:12
6	and 'information,'" and so on.	
7	And these are the kinds of things that are	
8	described above: Song identifier, identifier,	
9	Uniform Resource Locator. Those are examples	
10	those are all examples given in the specification of	12:25:24
11	resource locators demonstrating to my bigger point	
12	here in this section that resource locator is a	
13	different broader concept than a so-called Uniform	
14	Resource Locator.	
15	Q Is it your opinion that PURLs are used to	12:25:43
16	identify resources in the Cloud?	
17	MR. LEE: Objection; form, foundation.	
18	THE WITNESS: I'm sorry. Could you repeat	
19	the question?	
20	BY MR. KAPLAN:	12:26:03
21	Q Is it your opinion that PURLs are used to	
22	identify resources in the Cloud?	
23	A PURLs can be used to identify resources in	
24	a number of different locations or different	
25	contacts. The Cloud could certainly be used as one	12:26:17
		Page 106

1	of them.	
2	Q Are URLs used to identify resources in the	
3	Cloud?	
4	MR. LEE: Objection to form.	
5	THE WITNESS: So just to be clear, when we	12:26:31
6	say "the Cloud," we're referring broadly to Cloud	
7	services provided by Cloud providers; is that	
8	correct?	
9	BY MR. KAPLAN:	
10	Q That's fine.	12:26:46
11	A So uniform resources Uniform Resource	
12	Locators, or URLs, are one of a number of different	
13	naming regimes that can be used to identify	
14	resources in the Cloud.	
15	Q What are the other naming regimes that can	12:27:03
16	be used to identify resources in the Cloud?	
17	A Oh, there's all kinds of things.	
18	A good example from the world of the common	
19	object request broker architecture, technology	
20	standards and specifications and implementations,	12:27:19
21	which began in the mid 1990s continuing on to today	
22	would be something called an object reference, which	
23	is another way of being able to locate resources in	
24	the Cloud.	
25	Other technologies over time, such as	12:27:33
		Page 107

the Microsoft's COW mechanism and D-COMM mechanism used something called a moniker, which is another way of being able to identify resources that dreexisting in servers or Clouds, or basically different ways of being able to access information title different ways of being able to access information the different ways of being able to access information the different ways of being able to access information the different ways of being able to access information the different ways of being able to access information the different ways of being able to access information the different ways of being able to access information the different ways of the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like think uses a resource an object reference like the different ways and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify the different ways to be able to identify techniques in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave techniques that are used in order to identify such resources. Q Do each of the examples you just gave tidentify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49 Page 108			
another way of being able to identify resources that are existing in servers or Clouds, or basically different ways of being able to access information 12:27:52 across the Internet or the World Wide Web. There's also other concepts that have been used over the years, such as the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like 12:28:07 model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify 12:28:25 resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	1	the Microsoft's COM mechanism and D-COMM	
different ways of being able to access information 12:27:52 across the Internet or the World Wide Web. There's also other concepts that have been used over the years, such as the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like 12:28:07 model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify 12:28:25 resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	2	mechanism used something called a moniker, which is	
different ways of being able to access information across the Internet or the World Wide Web. There's also other concepts that have been used over the years, such as the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like think uses a resource sin distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	3	another way of being able to identify resources that	
across the Internet or the World Wide Web. There's also other concepts that have been used over the years, such as the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like 12:28:07 model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify 12:28:25 resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	4	are existing in servers or Clouds, or basically	
There's also other concepts that have been used over the years, such as the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	5	different ways of being able to access information	12:27:52
used over the years, such as the mechanisms you would find in the data distribution service, which I think uses a resource an object reference like think uses a resource sin distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	6	across the Internet or the World Wide Web.	
would find in the data distribution service, which I think uses a resource an object reference like 12:28:07 model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify 12:28:25 resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	7	There's also other concepts that have been	
think uses a resource an object reference like 12:28:07 model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	8	used over the years, such as the mechanisms you	
model to identify resources in distributed systems and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	9	would find in the data distribution service, which I	
and networks and clouds. There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify 12:28:25 resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	10	think uses a resource an object reference like	12:28:07
There's also things such as universal unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	11	model to identify resources in distributed systems	
unique IDs, UIDs, global unique IDs, GO IDs. All kinds of different ways to be able to identify 12:28:25 resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	12	and networks and clouds.	
kinds of different ways to be able to identify resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	13	There's also things such as universal	
resources in Clouds and other distributed systems. So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	14	unique IDs, UIDs, global unique IDs, GO IDs. All	
So URL is just one of a number of different techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAS object references, you 12:28:49	15	kinds of different ways to be able to identify	12:28:25
techniques that are used in order to identify such resources. Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	16	resources in Clouds and other distributed systems.	
19 resources. 20 Q Do each of the examples you just gave 12:28:37 21 identify location? 22 MR. LEE: Objection to form. 23 THE WITNESS: So that's a great question. 24 So kind of going back to the concept of a 25 persistent URL, with CORBAs object references, you 12:28:49	17	So URL is just one of a number of different	
Q Do each of the examples you just gave 12:28:37 identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	18	techniques that are used in order to identify such	
identify location? MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	19	resources.	
MR. LEE: Objection to form. THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	20	Q Do each of the examples you just gave	12:28:37
THE WITNESS: So that's a great question. So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	21	identify location?	
So kind of going back to the concept of a persistent URL, with CORBAs object references, you 12:28:49	22	MR. LEE: Objection to form.	
persistent URL, with CORBAs object references, you 12:28:49	23	THE WITNESS: So that's a great question.	
	24	So kind of going back to the concept of a	
Page 108	25	persistent URL, with CORBAs object references, you	12:28:49
			Page 108

1	can use object references in a couple different	
2	ways.	
3	One way to use an object reference is to	
4	identify a particular resource in a distributed	
5	system or in a Cloud. That would be one where the	12:29:04
6	address information is actually encoded in the	
7	object reference.	
8	As with persistent URLs, however, you can	
9	also have object references that didn't point to a	
10	particular resource but they pointed to some kind of	12:29:17
11	naming service or directory service or locator	
12	service or whatnot, and that would then find the	
13	resource of interest, redirect send a redirect	
14	message back to the client, called location	
15	forwarding response, and then that would cause the	12:29:34
16	client to redirect the call to the actual resource.	
17	Very, very much along the same lines of how	
18	a persistent URL works.	
19	So these concepts of distributed location	
20	and distributed naming and so on have been around	12:29:47
21	for decades.	
22	BY MR. KAPLAN:	
23	Q How would you implement a system that can	
24	playback multiple songs without using a queue?	
25	MR. LEE: Objection to the form,	12:29:58
		Page 109

1	incomplete, vague, foundation.	
2	THE WITNESS: How could I'm not sure I	
3	understand the question.	
4	BY MR. KAPLAN:	
5	Q Do you have a playback system that can	12:30:13
6	playback multiple songs?	
7	Is it possible to implement that without	
8	using a queue?	
9	MR. LEE: Same objection.	
10	THE WITNESS: Probably. I haven't really	12:30:29
11	thought about it very hard, but it's probably	
12	doable. I'm not sure. I don't know quite know	
13	the context in which you're asking the question.	
14	But it could be possible. I don't really	
15	know. I haven't done the analysis to think that	12:30:41
16	through.	
17	BY MR. KAPLAN:	
18	Q Do you have any examples that you can think	
19	of on how to implement such a system without using a	
20	queue?	12:30:50
21	A I would have to think about it. I don't	
22	know off the top of my head.	
23	Q Is Sonos's own music queue a playback	
24	queue?	
25	MR. LEE: Objection to form, foundation.	12:31:06
		Page 110

1	I don't know if he's looked at Sonos's	
2	systems.	
3	THE WITNESS: Yeah. I'm not really	
4	familiar with the details of how Sonos works.	
5	I'm also not sure if there's one queue or	12:31:22
6	I'm not sure if there's without the Sonos queue,	
7	I don't know if the products have different ways of	
8	implementing the queues, much like disclosed in the	
9	patents, there's different ways of implementing	
10	playback queues, so I'm not familiar with how those	12:31:35
11	worked.	
12	BY MR. KAPLAN:	
13	Q Have you ever used Sonos products to play	
14	music from a queue?	
15	MR. LEE: Objection; relevance.	12:31:44
16	THE WITNESS: I've used Sonos's products	
17	before, but I'm not sure the way in which I used	
18	them, whether I used the queue or not. I didn't	
19	look at the internals of how they were set up to be	
20	configured.	12:32:06
21	BY MR. KAPLAN:	
22	Q Would you have to look at the internals of	
23	how they're set up to be configured to determine	
24	whether or not they used a queue?	
25	MR. LEE: Objection; form, hypothetical.	12:32:14
		Page 111

1	THE WITNESS: Like I said, I'm not I	
2	don't remember enough about the context in which I	
3	used them in order to form an opinion on that or	
4	not.	
5	BY MR. KAPLAN:	12:32:27
6	Q How did you use the Sonos products?	
7	A My son has some Sonos speakers and he has	
8	shown me how to use them, but I don't recall the	
9	details of how he did it.	
10	Q Do you recall if you played more than one	12:32:48
11	song on the Sonos speakers that you used?	
12	A No.	
13	Q Did you cite any technical dictionaries	
14	that define the term "resource locator" by itself?	
15	A As I say on paragraph 99 in my claim	12:33:23
16	construction declaration, the opinions that I put	
17	forth are based on my analysis of the intrinsic and	
18	extrinsic evidence of the '615 Patent as cited	
19	below.	
20	My own experience is and my	12:33:39
21	determination of how the POSITA would understand	
22	would have understood the term "resource locator" in	
23	the context of the '615 Patent at the time of the	
24	invention.	
25	And looking through the list of intrinsic	12:33:49
		Page 112

1	and extrinsic evidence that I cite here, I do not	
2	have dictionary definitions I cite to, intrinsic	
3	evidence and also extrinsic evidence in the form of	
4	other, I believe mostly, other patents from the	
5	general timeframe of the invention that used the	12:34:11
6	word "resource locator" or the phrase "resource	
7	locator."	
8	Q Let's say when a user transfers playback	
9	from their computing device to the playback device	
10	that they have an Internet server that sends the	12:34:38
11	playback device a list of media items and those are	
12	going to be played back in some order on the	
13	playback device.	
14	Do you understand the hypothetical so far?	
15	A Sort of. So	12:34:54
16	Q Sure.	
17	Under your constructions, do you think that	
18	the Internet server is adding identifiers to a local	
19	playback queue?	
20	MR. LEE: Objection to the form, incomplete	12:35:09
21	hypothetical, foundation.	
22	THE WITNESS: Wow. I would have to take a	
23	look I mean, to do a proper analysis, I really	
24	have to spend some time looking through the means by	
25	which the information was requested and received and	12:35:29
		Page 113

1	so on to answer that question properly.	
2	MR. LEE: Are you asking if that's the only	
3	way that that could work, Marc?	
4	MR. KAPLAN: My question was under	
5	Dr. Schmidt's constructions, would he agree that the	12:35:44
6	Internet server's adding identifiers to a local	
7	playback queue.	
8	MR. LEE: Yeah.	
9	Objection; vague and ambiguous, relevance,	
10	foundation.	12:35:58
11	BY MR. KAPLAN:	
12	Q Under your constructions, Dr. Schmidt,	
13	would you agree that the Internet server's adding	
14	resource locators to a local playback queue?	
15	MR. LEE: Objection; vague.	12:36:10
16	I don't even know what construction we're	
17	talking about.	
18	THE WITNESS: So I will answer the question	
19	by reference to section B in subsection B in	
20	section 7 of my report which talks about issues	12:36:34
21	related to what a playback queue might or might not	
22	contain with respect to multimedia items, whether or	
23	not they would be in so-called data form or	
24	identifier resource locator form.	
25	And as I say throughout that section,	12:36:54
		Page 114

1	there's different ways to implement such a mechanism	
2	and or such mechanisms, and so I'd have to know a	
3	little bit more in your hypothetical about what	
4	we're referring to here is and how it's being used	
5	and specifically what you mean by my construction. 12:37:15	
6	BY MR. KAPLAN:	
7	Q So to answer the last question, the	
8	construction when I said "my construction," I	
9	meant the construction that you agreed with in your	
10	declaration, which is Sonos's construction. 12:37:25	
11	A Okay.	
12	MR. LEE: Same objection.	
13	Still not sure what construction.	
14	BY MR. KAPLAN:	
15	Q Well, I want to make sure it's clear. 12:37:37	
16	Dr. Schmidt, do you understand which	
17	constructions I'm referring to?	
18	MR. LEE: Objection to Sonos's	
19	construction.	
20	MR. KAPLAN: I don't know how I can refer 12:37:50	
21	to Sonos's construction otherwise, so let me ask the	
22	witness.	
23	BY MR. KAPLAN:	
24	Q If I refer to Sonos's construction for the	
25	local playback queue and resource locator terms, 12:38:00	
	Page 115	

1	will you understand what I'm referencing?	
2	MR. LEE: Same objection.	
3	I think he's just critiquing those	
4	constructions of Google's.	
5	THE WITNESS: So in looking at if I have	12:38:15
6	in my declaration under Google's proposed	
7	construction, Google's proposed construction, as we	
8	all know, is an ordered list of multimedia items	
9	that's selected by the user for playback and Sonos's	
10	proposed construction is plain and ordinary meaning,	12:38:31
11	no construction is necessary.	
12	So is that when you say Sonos's	
13	construction, are you do you mean by that plain	
14	and ordinary meaning, no construction necessary?	
15	BY MR. KAPLAN:	12:38:47
16	Q I mean the plain and ordinary meaning	
17	construction proposed by Sonos and as discussed by	
18	you in your declaration.	
19	A Okay.	
20	Q So you can answer.	12:39:03
21	A Now that we've narrowed it down to what is	
22	meant by my construction, which is really the plain	
23	and ordinary meaning no construction necessary	
24	construction, can we please repeat the question?	
25	Q Under Sonos's proposed constructions, would	12:39:17
		Page 116

1	you agree that the Internet server's adding resource	
2	locators to a playback queue?	
3	MR. LEE: Same objection; incomplete	
4	hypothetical, vague.	
5	THE WITNESS: Again, I would really have to	12:39:31
6	take a look to see what is going on here. I don't	
7	know how said Internet servers work. I don't know	
8	how the playback queue is being defined. I don't	
9	know how I mean, in your hypothetical, I'm not	
10	sure what you mean by "resource locators" and what	12:39:53
11	kinds of information is coming from the Internet.	
12	So really to do a fair and thorough justice	
13	to your question, I would have to know more the	
14	hypothetical would have to be flushed out quite a	
15	bit. I probably would have to do some analysis to	12:40:10
16	see what it's doing to know if it matches the	
17	construction, the plain and ordinary meaning	
18	construction.	
19	BY MR. KAPLAN:	
20	Q Are you familiar with the C++ Standard	12:40:18
21	Template Library?	
22	A Yes.	
23	Q You've taught the C++ Standard Template	
24	Library in your classes at Vanderbilt?	
25	A I have.	12:40:30
		Page 117

1	Q Does the C++ Standard Library define	
2	queues?	
3	A Yes. It defines several different queues.	
4	Q There's one queue in particular that's	
5	defined in the C++ Standard Template Library; right?	12:40:40
6	MR. LEE: Objection.	
7	THE WITNESS: No, there's not.	
8	BY MR. KAPLAN:	
9	Q How many different queues are defined in	
10	the C++ Standard Template Library?	12:40:41
11	A Well, there's at least three different	
12	queues that are defined in the Standard Template	
13	Library.	
14	Q What are their names?	
15	A One is called Queue, another one is called	12:41:03
16	Priority Queue, and there's another one that's	
17	called Stack.	
18	But then there's other types of queues that	
19	are defined in other ways that work in different	
20	that provide collections of data.	12:41:19
21	So there's probably more of them, but those	
22	are three they're actually what's known as	
23	container adapters.	
24	Q So when I say the C++ Standard Template	
25	Library Queue, can we agree that I'm referring to	12:41:33
		Page 118

1	the actual queue as designed in the C++ Standard
2	Template Library?
3	THE REPORTER: I'm sorry. Can you say that
4	question again?
5	MR. KAPLAN: Maybe I can rephrase the 12:41:54
6	question just to make sure the witness and I are
7	speaking the same language.
8	BY MR. KAPLAN:
9	Q When I ask what the names of the different
10	queues are as defined in the C++ Standard Template 12:42:06
11	Library, I believe you said that they are Queue,
12	Priority Queue and Stack.
13	Is that fair?
14	A Those are some of the queues the
15	queueing mechanisms that are defined in C++ Standard 12:42:21
16	Template Library.
17	Q So the first one of those is called Queue
18	and I'd like to refer to that as the C++ Standard
19	Template Library Queue. Is that okay?
20	A I think maybe a more precise way of saying 12:42:39
21	that would be the container adapter whose class name
22	is Queue, because, again, there's other kinds of
23	queues that are part of the C++ Standard Template
24	Library.
25	Q That's a bit of a mouthful. 12:42:58
	Page 119

1	If I said the class that's called Queue,	
2	would you understand what I'm referring to?	
3	A Yes.	
4	Q The class that's called Queue, is that a	
5	FIFO structure?	12:43:11
6	MR. LEE: Objection to the form,	
7	foundation, vague.	
8	THE WITNESS: That's a good question.	
9	I believe it is, but I would have to go	
10	back and double check to make sure there's not other	12:43:39
11	capabilities that can be accessed through that	
12	interface.	
13	BY MR. KAPLAN:	
14	Q With the class Queue, you can push elements	
15	into the end of the queue; correct?	12:43:49
16	MR. LEE: Objection; form.	
17	THE WITNESS: The class in C++ whose name	
18	is Queue, as I recall, has a push method that will	
19	add an element to the end of the underlying data	
20	representation.	12:44:21
21	There could be different representations	
22	used to implement the queue. That's one of the	
23	features of queues or container adapters in C++, is	
24	you can actually have data structures under the hood	
25	that implement the mechanisms that they provide.	12:44:36
		Page 120

1	But if my memory serves me correctly, one	
2	of the operations on the C++ STL queue is indeed	
3	push, keeping in mind that there are other types of	
4	queues in C++ STL.	
5	BY MR. KAPLAN: 12:44:54	
6	Q The class queue has the ability to pop	
7	elements off the front of the queue; correct?	
8	MR. LEE: Same objection; form, vague.	
9	THE WITNESS: Again, it's my recollection	
10	that the C++ class named queue has pop operator that 12:45:06	
11	will remove an item from the front of the queue,	
12	although it's got rather strange semantics in that	
13	it does not actually return the item that was	
14	removed, which is kind of strange.	
15	But, again, it's one of a number of 12:45:30	
16	different ways of implementing the concept of the	
17	queue.	
18	MR. KAPLAN: Dr. Schmidt, could you open	
19	Exhibit 6, which I've just uploaded.	
20	(Whereupon, Google Exhibit 6 was 12:45:51	
21	marked for identification by the	
22	Court Reporter.)	
23	THE WITNESS: Okay. I've got it.	
24	BY MR. KAPLAN:	
25	Q Exhibit 6 is a presentation entitled "Key 12:46:23	
	Page 121	

1	STL Features: Containers, Iterators, & Algorithms,"	
2	and it has your name, Douglas C. Schmidt, on the	
3	first page.	
4	Do you see that?	
5	A I do.	12:46:41
6	Q Is this a presentation that you created	
7	while you were at Vanderbilt?	
8	A Actually, it's a portion of a presentation	
9	that I created when I was a professor earlier and	
10	have used at Vanderbilt.	12:46:55
11	Q You've used this presentation Exhibit 6 at	
12	Vanderbilt?	
13	A That's correct.	
14	Q Did you use this presentation in	
15	conjunction with teaching a C++ class?	12:47:06
16	A It was a course called Intermediate	
17	Software Design, which is a course that covers	
18	different ways of advanced well, maybe	
19	intermediary programming intermediate software	
20	development focusing on design patterns, as well as	12:47:24
21	good programming techniques, debugging techniques,	
22	source code, and software engineering, management	
23	techniques, and parts of C++ are also covered as	
24	well.	
25	Q If you go to page 7 of this presentation,	12:47:40
	Pag	ge 122

1	there's a chart on the right. It includes a column,
2	in the second row down, that chart element says
3	"queue" and then to the right of that there's a
4	column that says "characteristics." It says,
5	"First-in/first-out data structure." 12:48:00
6	Do you see that?
7	A There's a bunch of pages named number 7.
8	Which one are you referring to in the PDF?
9	Q There are. I'm actually referring to the
10	final page 12:48:15
11	A Okay.
12	Q of the PDF.
13	A Yes. Those are the examples of the various
14	container adapters we were talking about earlier.
15	Q Next to queue, it says, "First-in/first-out 12:48:27
16	data structure."
17	Do you see that?
18	A I do.
19	Q Does that refresh your recollection as to
20	whether or not the class queue is the 12:48:34
21	first-in/first-out data structure?
22	A That's the way it's defined in C++, yes.
23	Q In this presentation, do you refer to
24	stacks as queues?
25	A If you take a this is as I mentioned, 12:48:52
	Page 123

1	this is an excerpt from a much longer set of	
2	material on C++ and the Standard Template Library.	
3	If you were to go look in more detail at	
4	later parts that have been omitted here in the	
5	slides you're showing me, there's extensive	12:49:08
6	discussions of the APIs that are available for both	
7	Stack well, for both Stack, Queue and Priority	
8	Queue, and they all have the same API.	
9	And so as a result, they're treated	
10	inconsistent in consistent ways with respect to	12:49:24
11	the operations. It's simply that the way in which	
12	the container's implemented and the semantics as	
13	defined in C++, which is not the only way to do	
14	things, of course, relative to what queues are;	
15	certainly not relevant to playback queues, per se.	12:49:44
16	So, yes. There's parts of those APIs that	
17	are similar, so they all have the same interface.	
18	Q In the larger set of materials that you're	
19	referring to, those materials refer to the class	
20	queue strike that.	12:49:59
21	Sorry. I have to do a big wind up again in	
22	the larger set of materials that you're referring	
23	to.	
24	Are there portions of those materials that	
25	refer to the class Stack as a queue?	12:50:12
		Page 124

1	A There are portions of that material that	
2	describe how the interfaces for stacks and queues	
3	and priority queues are all the same and, therefore,	
4	what differs is the way the implementation handles	
5	the protocol for adding or removing elements from	12:50:31
6	the container adapter.	
7	Q For example sorry.	
8	Go ahead.	
9	A So when I teach those parts of the course,	
10	I always mention that the interface is for Stack and	12:50:44
11	Queue and Priority Queue are the same.	
12	Q The operations within the class queue are	
13	different than the operations within the class	
14	Stack; right strike that.	
15	I can ask a better question.	12:51:06
16	The functions within the class queue are	
17	different than the functions within the class Stack;	
18	correct?	
19	MR. LEE: Objection to form.	
20	THE WITNESS: I think as I just explained,	12:51:16
21	the interface is for Stack and Queue and Priority	
22	Queue are all the same. They have operations	
23	like or largely the same. They have operations	
24	like I believe it's push and pop, which are very	
25	strange names for a queue especially.	12:51:32
		Page 125

1	I believe, if I'm not mistaken, they have	
2	operations push and pop defined on all of them, and	
3	so those operations have the same signatures.	
4	Is that what you are asking?	
5	BY MR. KAPLAN:	12:51:48
6	Q Is the class Stack in the C++ Standard	
7	Template Library a last-in/first-out data structure?	
8	MR. LEE: Objection to form.	
9	THE WITNESS: It depends what you'd	
10	substantiate it with.	12:52:05
11	BY MR. KAPLAN:	
12	Q So can I draw your attention to the last	
13	page of the presentation in Exhibit 6.	
14	And on that last page next to Stack, it	
15	says "first-in/last-out data structure."	12:52:17
16	Do you see that?	
17	A I do.	
18	Q Do you agree that the Stack is a	
19	first-in/last-out data structure?	
20	A Again, if you're asking me in the context	12:52:26
21	of C++ STL, it all depends on what kind of container	
22	parameter you pass to the container adapter.	
23	Container adapters are basically, as the name	
24	suggests, adapters, and you provide them with	
25	container implementations, for lack of a better	12:52:51
		Page 126

1	term, and they adapt them in different ways.	
2	So depending what you pass in, how you	
3	how you parameterize the container adapter, be it	
4	Stacked, Queue or Priority Queue, that actually	
5	dictates the behavior that you will get when you	12:53:08
6	called a common operations push and pop on instances	
7	of those container adapters that have been	
8	substantiated.	
9	Q So is it your opinion that the Stack	
10	container might be a first-in/last-out data	12:53:22
11	structure and it might not?	
12	A That is correct.	
13	Q Is your opinion that the Queue might be a	
14	first-in/first-out data structure, or it might not?	
15	A That's also correct.	12:53:33
16	Q Is that what your presentation says here on	
17	the final page of Exhibit 6?	
18	A No. This is just describing one of the	
19	out-of-the box behaviors. But if your question was	
20	how does a Stack work, how does the Stack container	12:53:48
21	adapter work in C++ STL, the thorough answer to the	
22	question is it depends on the type of container	
23	implementation that you use to substantiate the	
24	Stack template.	
25	Q Does a Stack strike that.	12:54:06
		Page 127

1	Does a Queue as defined by the C++ Standard	
2	Template Library have order?	
3	MR. LEE: Objection to form.	
4	THE WITNESS: Again, keeping in mind the	
5	bigger context here, the term "playback queue" as	12:54:23
6	defined in the '615 and '033 Patent and not relating	
7	to C++ in any way, shape, or form.	
8	One of the default behaviors for the C++	
9	container adapter queue is to provide	
10	first-in/first-out semantics.	12:54:42
11	As to how it achieves that, again, is an	
12	implementation detail.	
13	BY MR. KAPLAN:	
14	Q My question was: Does a queue as defined	
15	in the C++ Standard Template Library have order?	12:54:59
16	MR. LEE: Objection to form.	
17	THE WITNESS: Again, going back to what I	
18	was saying before, in the C++ Standard Template	
19	Library, the behavior of the queue depends on how	
20	you substantiate the queue container and adapter.	12:55:20
21	So there's no one answer to that question, number 1.	
22	So the answer is it depends similar to the question	
23	you asked me before.	
24	Likewise, just to make the point more	
25	clear, the C++ STL container adapters that have the	12:55:34
		Page 128

1	word "queue" in them are not at all relevant in the	
2	context of playback queue as defined in the '615 and	
3	the '033 Patent specifications and claims.	
4	MR. KAPLAN: Can we take a very quick	
5	three- or four-minute break?	12:56:10
6	MR. LEE: Sure. Let's go off the record.	
7	Sit in place.	
8	THE VIDEOGRAPHER: We're off the record at	
9	12:56 p.m.	
10	(Whereupon, a recess was held	12:56:19
11	from 12:56 p.m. to 1:02 p.m.)	
12	THE VIDEOGRAPHER: We're on the record at	
13	1:02 p.m.	
14	MR. KAPLAN: Dr. Schmidt, thank you very	
15	much for your time today.	13:02:50
16	No further questions.	
17	THE WITNESS: Thank you.	
18	MR. LEE: We have no questions for you	
19	either, Dr. Schmidt.	
20	THE WITNESS: Thank you.	13:02:56
21	MR. KAPLAN: You may reserve signature.	
22	MR. LEE: We'll reserve signature.	
23	Thank you, Marc.	
24	THE VIDEOGRAPHER: Off the record at	
25	1:03 p.m.	13:03:09
		Page 129

```
This concludes today's testimony given by
 1
 2
      Douglas Schmidt, Ph.D. The total number of media
 3
      units used was four and will be retained by Veritext
      Legal Solutions.
 4
 5
                (Whereupon the deposition proceedings
                were concluded at 1:03 p.m.)
 6
 7
                              -000-
8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
                                                   Page 130
```

```
1
      STATE OF CALIFORNIA
                                )
                                ) ss.
 2
      COUNTY OF LOS ANGELES
                               )
 3
 4
 5
                    I, DOUGLAS SCHMIDT, Ph.D., declare
 6
      under penalty of perjury that the foregoing
 7
      testimony is true and correct to the best of my
      knowledge and belief.
8
9
               Dated this ____ day of ______, 2022.
10
11
12
13
14
                                 (DOUGLAS SCHMIDT, Ph.D.)
15
16
17
18
19
20
21
22
23
24
25
                                                  Page 131
```

1	STATE OF CALIFORNIA)
2	COUNTY OF LOS ANGELES) ss.
3	
4	I, D'Anne Moungey, C.S.R. No. 7872 in and
5	for the State of California, do hereby certify:
6	That prior to being examined, the witness
7	named in the foregoing deposition was by me duly
8	sworn to testify to the truth, the whole truth, and
9	nothing but the truth;
10	That said deposition was taken down by me
11	in shorthand at the time and place therein named and
12	thereafter reduced to typewriting under my
13	direction, and the same is a true, correct, and
14	complete transcript of said proceedings;
15	That if the foregoing pertains to the
16	original transcript of a deposition in a Federal
17	Case, before completion of the proceedings, review
18	of the transcript $\{X\}$ was $\{\ \}$ was not required.
19	I further certify that I am not interested
20	in the event of the action.
21	Witness my hand this 8th day of March,
22	2022.
23	Lane Maingry
24	Certified Shorthand Reporter
	For the State of California
25	
	Page 132

```
1
     GEORGE LEE, ESQ.
 2
      lee@ls3ip.com
                                                March 8, 2022
 3
     RE: GOOGLE LLC VS. SONOS, INC.
 4
     MARCH 3, 2022, DOUGLAS SCHMIDT, PH.D., JOB NO. 5116748
 5
6
     The above-referenced transcript has been
      completed by Veritext Legal Solutions and
7
     review of the transcript is being handled as follows:
8
9
      ___ Per CA State Code (CCP 2025.520 (a)-(e)) - Contact Veritext
10
         to schedule a time to review the original transcript at
         a Veritext office.
11
12
      ___ Per CA State Code (CCP 2025.520 (a)-(e)) - Locked .PDF
         Transcript - The witness should review the transcript and
13
14
        make any necessary corrections on the errata pages included
        below, notating the page and line number of the corrections.
15
16
         The witness should then sign and date the errata and penalty
17
         of perjury pages and return the completed pages to all
         appearing counsel within the period of time determined at
18
19
         the deposition or provided by the Code of Civil Procedure.
       _ Waiving the CA Code of Civil Procedure per Stipulation of
20
         Counsel - Original transcript to be released for signature
21
         as determined at the deposition.
22
      ___ Signature Waived - Reading & Signature was waived at the
23
24
         time of the deposition.
25
                                                            Page 133
```

_X_Federal R&S Requested (FRCP 30(e)(1)(B)) - Locked .PDF Transcript - The witness should review the transcript and make any necessary corrections on the errata pages included below, notating the page and line number of the corrections. The witness should then sign and date the errata and penalty of perjury pages and return the completed pages to all appearing counsel within the period of time determined at the deposition or provided by the Federal Rules. ___ Federal R&S Not Requested - Reading & Signature was not requested before the completion of the deposition. Page 134

Case 3:20-cv-06754-WHA Document 200-16 Filed 04/04/22 Page 136 of 164

RE: GOOGLE LLC VS. SONOS, INC.	
DOUGLAS SCHMIDT, PH.D., JOB NO. 5116748	
ERRATA SHEET	
PAGE LINE CHANGE	
REASON	
PAGE LINE CHANGE	
REASON	
PAGE LINE CHANGE	
REASON	
PAGE LINE CHANGE	
REASON	
PAGE LINE CHANGE	
REASON	
PAGELINECHANGE	
REASON	
WITNESS Date	
Page 135	
	DOUGLAS SCHMIDT, PH.D., JOB NO. 5116748 E R R A T A S H E E T PAGE LINE CHANGE

[& - ability]

&	1990s 107:21	75:2 81:22 92:20	656 2:11
	1:02 129:11,13	98:20	7
& 2:10,16 5:5,7,9	1:03 129:25 130:6	48 14:19 71:24	-
122:1 133:23	2	92:20	7 3:12 114:20
134:9		49 65:3,10,11	122:25 123:7
0	2 3:14 14:2 37:21	92:21	71 3:16
033 30:4,7,9,15	20 7:19,20	5	7559 4:18
31:10,11,18 37:6,8	20-06754 1:11		76 88:2 97:6
90:25 97:1,21	2011/000433 3:16	5 3:17 84:8,9,15,18	7872 1:25 2:4
128:6 129:3	2011/4330 71:12	50 8:12,15,15,16	132:4
06754 1:6 4:15	2012/00899 3:17	84:18 85:3	8
1	2012/89910 84:16	51 71:4,22	8 133:3
	2022 1:19 2:3 4:2	5116748 1:24	82 98:13
1 3:12 4:11 7:3,5 41:7,7 43:24,24	4:6 131:10 132:22	133:5 135:2	83 100:10
52:11 128:21	133:3,5	52 84:3	84 3:17
134:1	2025.520 133:9,12	524 84:23	87 92:13 94:12
1-312-754-9602	23 37:22	526 86:14	88 54:21 55:24
2:13	25 8:18	555 2:17	59:21 94:12,20,25
10 32:14	2:00 102:17	58 53:13 55:23	95:8 96:2,23
10 32.14 10,779,033 3:15	3	57:4,19 75:2 82:6	97:20 98:25 99:2
10,779,033 3.13 100 103:11	3 1:19 2:3 3:15 4:2	82:14	99:11 100:3,13,20
100 103.11 101 48:1	30:21 31:1,11	59 75:2 82:6	101:5
101 48.1 103 104:21,22	133:5	101:15,18	8th 132:21
103 104.21,22 104 105:20	30 134:1	5th 2:18	9
10779033 30:22	31 3:15 65:22	5w 2:12	9 28:25
10779033 30.22 1099s 8:20	312-705-7400 2:19	6	9,967,615 3:14
10:36 51:20,22	316 72:4,10	6 3:5,18 121:19,20	9,907,015 3:14
10:10 51:20,22 10:28 51:22,24	318 72:8	121:25 122:11	
10:28 31:22,24 11:46 103:1,3	32 65:23	126:13 127:17	93 65:23 66:12 69:16
121 3:18	320 72:14	60661 2:12	94065 2:18
121 5.16 12:20 103:3,5	33 32:14,21	615 13:24 14:8,15	94005 2:18 99 112:15
12:20 103.3,3 12:56 129:9,11	35 13:21 105:8	14:18,22,24 28:19	99 112:13 9967615 29:15
13 14:17,21,24	3:20 1:6 4:15	29:5 30:5 31:18	9:08 2:3 4:2,6
26:12 31:24 32:1	3:21 4:18	31:22 32:6,15,22	
38:21 39:1 47:16	3rd 4:6	37:5,9 38:22	a
14 3:14	4	47:16 90:25 97:1	a.m. 2:3 4:2,6
17 62:25 64:16	4 3:16 63:1 65:15	97:20 104:25	51:20,22,22,24
17 62.23 64.16 18 64:17	71:9,10,13	105:6,12,23 106:2	103:1,3
18515 132:23	45 37:3	112:18,23 128:6	a1 48:19,22,23
19 14:18	47 33:9 52:10,13	129:2	ability 48:8 57:6
17 17.10	53:14 63:22 74:17		79:8 121:6
	33.14 03.22 /4.1/		

[able - arrangements]

			1= 4= 10 10
able 18:7 26:2	adding 73:2,21	67:3,4 68:25 69:7	app 17:25 19:18
40:15 42:7 43:8	113:18 114:6,13	69:22 83:25 92:3	19:23 20:10,18
44:5 45:16 46:19	117:1 125:5	94:9 110:15	21:9,10,15,16
48:9,12 50:10	additional 21:6	112:17 113:23	47:11
75:25 78:25 79:8	22:11	117:15	appear 27:11 70:3
83:18 95:10 96:19	address 41:17	android 17:25	82:6 88:5
97:11 107:23	42:5,10,13 43:18	18:10 22:4,24,25	appearance 5:2
108:3,5,15	48:6 103:16,24	23:4	appearances 2:7
abstraction 80:25	104:5,18 109:6	angeles 131:2	4:25
abstracts 81:15	addresses 42:4,5,8	132:2	appeared 25:19
access 7:1 41:11	44:4	answer 3:23 9:14	appearing 133:18
41:21 42:12 48:4	addressing 64:9	9:15,22 17:3,21	134:7
76:20 77:7,12	64:23	18:20 23:22 24:9	appears 37:21
79:17 81:11,12,13	adobe 28:21	24:17 26:2 27:1	63:8,9,11,15,21,24
83:17,18 108:5	advanced 122:18	32:9 45:17,19	64:6,10 65:21,21
accessed 78:3,8	affect 95:17	46:25 50:10,22	66:16 69:23 86:2
79:11 120:11	affiliations 4:25	56:22 57:1 59:24	append 86:13
accessible 83:9	ago 60:16 61:24	60:9,14,17,20 61:8	appending 86:6
accessing 11:9	agree 4:9 91:3	61:11,13,14,14,15	apple 18:11 20:10
48:13 80:8,20	114:5,13 117:1	61:17,24 62:7,11	21:10
accurate 10:18	118:25 126:18	62:12,23 74:3	applicable 11:13
accurately 10:21	agreed 115:9	93:21 97:16 100:8	application 22:3
achieves 128:11	ahead 26:9 35:12	100:24 101:8	23:2,2,7,24 48:11
action 4:22 132:20	37:16 69:6 104:1	114:1,18 115:7	71:11 78:11 84:16
actual 44:7 95:15	104:10 125:8	116:20 127:21	105:11
104:11,13 109:16	akin 39:20 102:20	128:21,22	applications 12:19
119:1	album 33:17 64:14	answered 60:6	17:24 18:7,14
ada 13:7	66:4,6 96:12,13,13	62:1 99:6 100:6	19:20 23:4 70:16
adapt 127:1	96:14	answering 100:1	applies 17:22
adapter 119:21	algorithms 3:18	answers 55:20	approach 66:4
125:6 126:22	78:25 79:3 80:5	99:16	approaches 93:8
127:3,21 128:9,20	122:1	anticipate 96:11	appropriate 46:15
adapters 118:23	allow 20:5 45:19	anticipated 92:2	47:9,11 74:25
120:23 123:14	allows 57:10	api 124:8	apps 18:8,9 19:20
126:23,24 127:7	alternative 56:18	apis 124:6,16	20:7
128:25	alternatively 72:9	apk 21:20,25 22:5	architected 43:4
add 48:14 76:9,10	ambiguous 90:19	22:10,11,15,19	architecture
76:11,12 81:10,11	91:13 114:9	23:1,1 24:13,23	107:19
81:12 120:19	ambiguously 44:6	25:9	areas 11:2 12:1
added 72:8,13,19	analysis 51:13	apologize 71:23	arrangements
73:5,6 81:3 86:16	58:20 59:13 65:19		52:20 74:19 81:25

[arranging - called]

arranging 53:21	attorneys 6:8,20	behavior 100:15	broadly 89:5
array 53:19	52:7	127:5 128:19	107:6
art 63:16 73:13,17	audio 4:8 32:20	behaviors 127:19	broker 107:19
75:3	33:4,7 34:18 35:3	128:8	browser 46:20
artificial 11:7	35:6,14 36:7,8,11	belief 131:8	48:9
artist 44:10 49:23	36:16,18,22	believe 30:6 35:8	bunch 32:21 42:2
aside 69:13 92:14	102:21	38:3,5 54:23	45:5 70:9 97:10
asked 25:19 60:7	automatically	61:10,13 67:4	123:7
60:15 61:10,10,23	66:4	70:12 75:3 113:4	button 84:23
62:8,21 83:14	available 14:12	119:11 120:9	86:14
98:24 100:5	124:6	125:24 126:1	c
128:23	aware 36:11 49:18	best 93:11 131:7	
asking 9:6 14:14	49:21	bet 10:10	c 1:11 3:12 6:5
22:15 25:20 34:24	b	better 43:22 73:16	13:7,8,17 17:13,13
35:4,10,11,12,18		78:6 95:25 97:14	18:11 19:17,22,24
35:20,21 49:25	b 3:10 114:19,19	125:15 126:25	20:6 69:15 92:11
69:8 78:11 99:25	134:1	beyond 40:17	94:1 97:6 117:20
110:13 114:2	back 13:6 23:19	41:23 61:20	117:23 118:1,5,10
126:4,20	31:21 32:19,24	big 89:11 124:21	118:24 119:1,10
aspect 94:4	35:22 37:3 38:21	bigger 101:8	119:15,18,23
assembly 16:5	52:2 60:14 61:22	106:11 128:5	120:17,23 121:2,4
17:15	62:20 72:6,12 85:21 92:23 95:11	bit 10:3 16:17	121:10 122:2,15 122:23 123:22
associate 44:6	95:13 96:8 99:12	23:11 42:18 43:22	
47:20	103:7 104:11,12	53:13 78:16 93:21	124:2,13 126:6,21 127:21 128:1,7,8
associated 39:20	103.7 104.11,12	100:21 115:3	127.21 128.1,7,8
40:12,15,21 41:12	104.13 108.24	117:15 119:25	c.s.r. 132:4
46:18,23 48:11	120:10 128:17	boolean 59:11,14	ca 133:9,12,20
49:19,20 50:8		bottom 64:16	ca 133.9,12,20 california 1:2 2:2
51:8 63:15,16	background 12:3 based 11:21 12:8	65:22 72:14 73:6	2:18 4:1,15,17
70:21 102:22	13:1 79:11 112:17	73:14,18,22 74:6	131:1 132:1,5,24
assuming 46:13	basically 22:1 53:2	101:18	call 20:2 38:24
100:18	108:4 126:23	box 127:19	109:16
assumptions 25:1	basis 57:10	boyea 2:11 5:8	called 18:8 21:17
25:2,4,8	began 107:21	6:13,15	55:10,12 76:6
assurance 12:23	beginning 5:2	break 9:18,21,23	104:2,11 106:13
attending 4:7	76:10,11 103:14	51:17,18 52:8	104.2,11 100.13
attention 38:21	begins 14:18 26:12	94:2 102:8,8,11	107.22 108.2
126:12	72:3 84:22 86:12	129:5	118:15,15,17
attorney 5:3 9:10	behalf 2:1 5:5,7	brief 9:4	119:17 120:1,4
9:13	behave 79:1,3	broader 106:13	122:16 127:6
	7.1,J		122.10 127.0

[calling - conjunction]

calling 87:5	characteristics	69:11,17 70:1	compiler 17:14
calls 32:8 40:5	34:11 81:17 123:4	77:19 87:19 90:14	complete 132:14
capabilities 79:14	chart 123:1,2	91:14,16 97:2	completed 133:7
90:24 120:11	check 120:10	107:5 115:15	133:17 134:6
capability 57:17	chicago 2:12	128:25	completion 132:17
97:14	chip 16:9	click 27:25 28:3,8	134:10
capable 32:19	chrome 28:21	28:25 46:11 48:10	components 22:2
careful 38:17	citations 97:10	client 109:14,16	22:16
carefully 38:14	cite 112:13 113:1,2	closer 38:4	compound 22:13
40:8 49:11 50:6	cited 112:18	cloud 11:3,10,19	compound 22:13
51:14 87:3 101:6	city 2:2 4:1	12:9,20 106:16,22	computer 15:2
case 5:12 16:9	civil 133:19,20	106:25 107:3,6,6,7	30:1 44:13 45:11
30:3 42:20 56:6	claim 6:24 7:10	107:14,16,24	46:21 47:8 48:9
57:5 58:1 59:18	11:14 14:17,21,24	109:5	76:25 77:16
69:24 82:6 89:5	23:12 24:3 26:11	clouds 108:4,12,16	computing 11:4
96:16,16 98:2,19	26:21 27:3 28:15	code 15:10,16,16	11:19 12:10,20
100:23 101:10	28:25 31:24 32:1	15:24 16:3,5,6,6	93:4 113:9
102:4 132:17	32:1,13 38:21	16:12,12,16,20,21	conceivably 18:15
cause 15:5 46:13	39:1,5 40:4,11	17:6,12,15,16,16	43:10
46:14 47:13	41:6 43:24 47:16	17:20 18:1,17	concept 42:11
109:15	48:1 52:10 54:22	19:3,4,12 56:9	43:25 55:20 91:17
causes 84:23 86:14	58:5,6 64:1 69:8	95:13 122:22	93:8 98:21 106:13
causing 26:13	112:15	133:9,12,19,20	108:24 121:16
caution 87:10	claims 30:12 31:17	collection 78:18	concepts 108:7
ccp 133:9,12	98:14 99:8,18	79:9,16	109:19
certain 18:20 79:3	101:10 105:25	collections 118:20	concluded 130:6
89:5	129:3	colloquial 52:17	concludes 130:1
certainly 11:17	clarification 5:10	column 14:18	conclusion 32:8
12:6 76:18 82:10	clarify 10:9	37:21 123:1,4	40:6
83:8 93:12 98:2	class 119:21 120:1	com 108:1	configured 46:13
100:25 106:25	120:4,14,17 121:6	come 79:7	111:20,23
124:15	121:10 122:15	comes 8:7	confirm 31:9
certified 132:24	123:20 124:19,25	coming 117:11	confronted 79:1
certify 132:5,19	125:12,13,16,17	comm 108:1	confused 16:15
cetera 33:18	126:6	commencing 2:2	46:17
change 135:4,7,10	classes 75:20	common 17:11	confusing 34:15
135:13,16,19	117:24	74:6 96:19 107:18	58:16 59:9 60:4
changed 101:5	clear 10:8 25:15	127:6	61:20 62:19 69:23
characteristic	33:4 50:23 59:24	compiled 16:3	77:18
75:11,17,22	63:25 64:25 65:16	19:14	conjunction
	65:25 66:10 69:10		122:15

[connected - csr]

connected 79:19	constructions	context 8:3,5 16:2	correctly 67:9
consistent 47:25	113:17 114:5,12	16:17,25 17:2	121:1
99:21 124:10	115:17 116:4,25	20:7 22:3 24:15	correspond 42:15
consistently 101:3	constructs 53:12	32:6 34:9 35:4,11	42:22 43:2 44:17
consists 9:5	53:15 80:6 88:23	35:18,24 36:3,20	45:12 47:1,17
constitute 56:17	consulting 7:25	36:22,24 37:2	48:23 50:13 51:1
56:19 96:4	8:2,4,7	39:15,20 42:20	corresponding
construct 53:2,7	contact 133:9	49:20 53:1,8	39:6,17,19 40:12
53:11,17,18,20,24	contacts 106:25	54:11 56:21 57:1	43:19 55:14,15
54:8,16,20 55:21	contain 87:21	57:17 58:3,11	corresponds 49:8
55:21 56:18,20,24	97:24 98:16	59:3 60:2,11 61:6	50:1 56:13 97:24
57:5,12,18,21 58:2	101:23 104:5,18	62:16 63:7,9,20	counsel 2:7 4:13
58:13 59:20 60:2	114:22	73:4,20 74:5,11,13	4:24 5:11 133:18
60:11 61:7 62:17	container 52:18	75:1,5,19 81:19,20	133:21 134:7
82:18 89:8 91:22	52:24,25 74:18	81:21 82:3,5	count 88:5
93:14 95:16	81:23 89:8 92:21	85:22 87:6 93:16	county 6:6,7 131:2
101:11	98:21 118:23	102:19 110:13	132:2
constructed 43:13	119:21 120:23	112:2,23 126:20	couple 29:11
82:21,24	123:14 125:6	128:5 129:2	47:19 109:1
construction 6:24	126:21,22,23,25	contiguous 88:18	course 13:4 16:10
7:10 11:14 23:13	127:3,7,10,20,22	continue 4:8	55:17 102:15
24:3 28:15 32:14	128:9,20,25	continues 66:12	122:16,17 124:14
41:6 43:24 48:1	container's 124:12	continuing 64:17	125:9
52:11 54:22 58:5	containers 3:18	107:21	courses 11:8 12:15
58:6,21 63:3,11,19	122:1	control 15:6 26:14	12:17,18 13:7,10
64:2,6,11,25 65:5	contains 22:15	26:16,17	13:14,20 79:14
65:13,14,16,17	34:22 104:19	controls 26:16	court 1:1 4:14,17
66:23 67:10,11,16	content 32:2,6,20	27:5	4:21 5:13 7:7 10:1
67:25 68:6,9,20	33:5,8,11,13 34:3	copy 30:7	10:11,14 14:4
69:8,17 86:3	34:7,13 35:6,14	corbas 108:25	31:3 71:15 84:11
87:23 88:4,6,11	36:7,8,11,16,19	correct 7:13 8:1,5	102:15 121:22
89:12 90:14,18,22	37:4,12,15,19,23	8:25 14:10 29:19	covered 122:23
91:24 92:5 93:13	37:25 38:1,7,16	36:25,25 59:22	covers 17:3 63:4
93:24 112:16	39:8,18 46:23	68:15 70:13 77:14	122:17
114:16 115:5,8,8,9	47:18,21 53:4	97:17 103:21	created 122:6,9
115:10,13,19,21	64:22 65:20 70:10	107:8 120:15	critique 65:12
115:24 116:7,7,10	97:22 98:1,4	121:7 122:13	66:11 69:5
116:11,13,14,17	102:20	125:18 127:12,15	critiquing 116:3
116:22,23,24	contents 22:19	131:7 132:13	cross 62:6
117:17,18	23:1 34:22 76:20	corrections 133:14	csr 1:25 2:4
		133:15 134:3,4	

[curated - determination]

curated 66:2	dataray 82:19	defined 33:15,16	describe 41:5,8
69:20	date 133:16 134:5	63:5,17 64:5,15	43:23 56:9 57:19
current 7:22 12:18	135:24	65:5,9,13 70:21	67:4 69:11 74:7,9
currently 7:23	dated 131:10	73:25 74:2 89:3	74:16 75:1 78:16
cv 1:6 4:15,18	datum 53:22	89:14 90:20 117:8	81:22 88:22 92:10
cyber 11:4 12:9	day 37:3 131:10	118:5,9,12,19	92:13,19 95:7
d	132:21	119:10,15 123:22	101:18 125:2
	days 13:6 29:14	124:13 126:2	described 56:5,12
d 3:1 6:5,5 63:24	dealing 92:14	128:1,6,14 129:2	57:4 64:13 66:20
69:1,7 108:1	debugging 122:21	defines 118:3	75:10 82:14 83:10
d'anne 1:25 2:3	decades 109:21	defining 74:8 75:8	89:17 94:1,6
4:21 132:4	decide 64:19	87:3,4 91:24	96:25 102:21
data 11:7 42:25,25	decision 72:4,10	definition 35:3	106:8
43:6,6,12,12 53:2	decker 2:22 4:19	59:20 74:2,4,24	describes 22:1
53:6,7,11,12,15,16	declaration 6:24	75:7 88:3 90:22	72:24 86:6 95:12
53:17,17,18,19,20	7:10,15 11:15	definitions 113:2	97:11,21
53:21,22,23,24,25 54:7,8,16,16,19,19	14:11 23:13,19	demonstrated	describing 32:23
, , , , , ,	24:3,7 26:25 27:9	58:2	39:15 47:16 65:8
55:4,10,12,15,16	28:15,16 32:11,14	demonstrating	72:18 73:2 77:23
55:21,21,23,25	33:10 38:13 41:6	79:14 99:12	80:18 81:2 85:21
56:6,11,18,20,24	43:25 48:2 52:11	106:11	100:22 127:18
57:3,5,15,18,20,21	54:22 55:18 56:9	depending 16:2,10	description 3:11
58:2,3,13 59:20	58:5,7 59:13	17:18 43:3,6,11	32:15,16 73:25
60:2,11 61:7	60:23 62:25 63:25	74:5 89:3 127:2	100:20
62:17 79:1,4,5,16	65:3 67:22 69:1,8	depends 15:22	design 12:10,22
79:17 80:5,6,6,17 81:14,25 82:8,13	69:15 71:5 81:22	16:24 17:1 42:18	122:17,20
82:18,18,19 83:3,4	87:22 88:3,23	42:19,20,24 45:5	designed 119:1
83:16,20 87:3,4	92:14 97:1 99:24	53:8 73:20 74:11	desired 95:17
88:18,23,24,24	101:3 103:12	91:21 126:9,21	desktop 28:20
89:8 91:19,20,22	112:16 115:10	127:22 128:19,22	45:23 46:8,9,12,21
92:24 93:5 95:9	116:6,18	deposed 8:23	47:7 48:16
95:15,16,23 96:3	declarations 11:24	deposition 1:17	detail 49:14 50:17
98:3,19 99:3,4,20	12:5	2:1 4:12 5:10 6:9	50:19 61:25 80:24
101:2,11,23 108:9	declare 131:5	6:17,20 9:5,19	82:3 89:20 93:14
114:23 118:20	deemed 96:9	10:1,6 95:21	93:15 124:3
	deeply 51:5	130:5 132:7,10,16	128:12
120:19,24 123:5 123:16,21 126:7	default 128:8	133:19,22,24	details 18:19
125:16,21 126:7	defendant 1:8,13	134:8,10	111:4 112:9
120:15,19 127:10	define 90:12 91:21	depositions 9:2	determination
database 41:17	112:14 118:1	29:14	112:21
43:12			
73.12			

[determine - embodiment]

determine 111:23	88:16,25 89:4,9,23	109:19,20	114:12 115:16
determined	93:5,7,7,8 94:8,13	distribution 108:9	121:18 129:14,19
133:18,22 134:7	97:10 100:14,22	district 1:1,2 4:14	drake's 36:2,5
determines 72:5	101:7 104:25	4:14,16,17	45:1,10 46:10
72:10	106:13,24,24	doable 18:21	draw 11:23 126:12
developers 20:5	107:12 108:5,15	110:12	drive 2:17 34:22
developing 12:19	108:17 109:1	document 28:9	duly 5:17 132:7
development	111:7,9 115:1	29:13 30:17 33:2	
11:20 13:2 122:20	118:3,9,11,19	38:11 84:24 85:7	e
device 11:9 15:6	119:9 120:21	87:11	e 3:1,10 73:19
20:2,10 23:4	121:16 122:18	dogs 71:16	133:9,12 134:1
24:25 25:10,11,17	125:13,17 127:1	doing 8:21 24:11	135:3,3,3
25:21,22,23 26:17	differently 79:5	24:20 25:18 41:23	e.g. 101:25
41:11,21 48:3,13	differs 125:4	43:15 78:21 89:22	earlier 19:7 25:19
55:1,9 60:1 61:6	digital 36:15,18,22	94:14 117:16	57:4 94:21 99:15
62:15 74:13 81:20	36:24 37:1	dolphin 2:17	122:9 123:14
81:21 96:9 113:9	direction 132:13	dot 46:3,10	early 13:6
113:9,11,13	directly 16:8,8	double 120:10	easier 10:3
devices 20:7 57:6	17:7 40:14 42:13	doug 102:7	ecosystem 18:23
58:4,11 59:3 96:7	directory 104:17	douglas 1:18 2:1	effective 13:1
96:20	109:11	3:4,12 4:12 5:16	efficient 43:14
dictates 127:5	disciplines 76:1	122:2 130:2 131:5	either 16:3 17:15
dictionaries	disclose 87:16	131:14 133:5	18:21 29:22 49:16
112:13	disclosed 58:24	135:2	129:19
dictionary 74:24	90:24 92:2 98:5	download 14:12	electronic 35:22
113:2	111:8	24:23 27:18,20	element 14:24
differ 24:12	discuss 32:11	28:9 29:8 44:10	26:11,21 27:3
difference 40:20	discussed 69:15	49:21	38:25 40:4 47:15
53:6	116:17	downloadable	80:21 87:21 92:22
different 11:23	discussing 7:11	20:18	120:19 123:2
12:1 13:22 17:11	24:22 38:2 47:15	downloaded 14:6	elements 76:7,23
18:6 21:22 31:21	53:14 86:23	20:9 21:10,16	77:7,12 78:3,8,18
36:6 40:16 41:19	discussions 52:6	25:13 28:11,14,19	78:19 79:18,19,25
42:2 44:2 45:6,15	97:4 99:16 124:6	44:25 45:9 49:4	80:12,19,19 81:3
47:5 52:20 55:18	disk 64:18 66:9	downloading	81:10 83:17,19
58:20,23 61:2,12	display 26:14	29:22	88:6 92:22,22
64:12 70:9,15	distinction 68:24	dr 6:3,23 7:22	96:7,17 120:14
74:16,19,21 75:13	distributed 11:4,5	8:23 10:23 11:12	121:7 125:5
75:24,25 76:13,17	11:18 12:8 17:24	13:23 28:8 31:9	emanuel 2:16 5:5
78:21,25 80:17	18:24 19:23	52:2 69:6 84:14	embedded 11:6
81:14,25 82:17,17	108:11,16 109:4	84:22 103:7 114:5	embodiment
, ,	,		63:12,13,14

[embodiments - fighting]

embodiments	examine 62:6	executable 15:10	extension 46:2
58:23 64:12 89:23	examined 5:18	15:13,17,25 20:11	97:20
employed 7:23	132:6	22:5,8	extensive 124:5
employer 7:22	example 18:24	execute 17:20	extent 90:21
empty 87:20 91:20	19:10 20:23 33:5	20:18 22:10 24:11	extracted 20:11,15
enables 41:11 48:3	33:7,11 34:3,4,6	24:19,19 25:17	21:5
encode 42:10	34:13 35:2,5,6,13	executed 15:5 16:7	extrinsic 88:11
encoded 109:6	35:14,15,19 36:3	16:21 17:7,16,25	112:18 113:1,3
encoding 42:13	36:17,22 37:1,18	19:3,12 23:8,25	f
43:16	41:17 44:9 49:23	24:24	facilitate 41:20
encompass 106:1	49:25 53:17,18,20	executes 22:20	48:12
encountered 13:22	54:18,22 55:18,24	execution 15:4	fact 22:18 24:7
encryption 78:23	56:4 57:2,5,15,20	24:12,12,20 25:18	42:9 58:22 79:10
engineering 11:5	58:12 59:2,18	exhibit 3:12,14,15	80:4,16 86:20,22
11:20 12:4,6,12,16	60:1,10,21 61:5,16	3:16,17,18 7:1,3,5	92:5 93:23
12:18,21 122:22	61:17 62:8,10,13	13:24 14:2 27:19	factors 45:6
entire 27:13	62:16 63:12 65:9	27:21 28:1,6,14	fair 9:2 16:22 34:3
entirety 17:4	70:13,18,19,24	30:16,21 31:1,5,11	41:2 56:20 72:25
entitled 121:25	76:21 78:1,5,7	52:11 71:8,9,10,13	73:2 77:11 117:12
environment	79:3,16 80:1 83:3	84:8,9,15,18	119:13
16:11	83:20 91:4 94:20	121:19,20,25	falling 70:6
environments	94:25 96:2,5,22	122:11 126:13	familiar 9:1 14:8
12:20	98:8,13,25 99:2,11	127:17	14:21 36:5 111:4
errata 133:14,16	99:24 100:3,13,19	exhibits 23:20	111:10 117:20
134:3,5	100:20 102:20	24:7	far 29:20 44:11
especially 125:25	103:23 104:4	existing 86:7,16	48:20 87:15 90:2
esq 2:10,11,17	107:18 125:7	108:4	90:6 91:7,8 101:4
133:1	examples 19:11	experience 12:13	101:9 113:14
essence 94:16	33:12 53:12,15	112:20	favorite 44:10
essentially 67:22	58:1 64:12 66:7	expert 1:17 3:12	feature 96:6
104:9,15	70:6,9,15 106:9,10	7:25 8:2,4,7 24:4	features 3:18
estimate 7:20	108:20 110:18	expertise 11:1,13	13:15,16,17
et 33:18	123:13	11:24 12:13	120:23 122:1
event 132:20	excerpt 104:24	explain 24:10	federal 132:16
evidence 88:12	124:1	explained 125:20	134:1,8,9
112:18 113:1,3,3	excerpts 105:16	explaining 39:16	field 10:25 12:13
evidenced 106:2	exclude 64:11 65:5	47:7 63:18	fields 11:12,16,23
exactly 29:24	excluded 65:14	explicitly 64:13	12:14
60:17	excludes 69:11,17	89:24 92:2	fifo 120:5
examination 3:3	excluding 89:22	explorer 46:11	fighting 99:22
6:1	90:24		

[figure - given]

figure 31:15	flushed 117:14	83:21 85:19 87:1	frcp 134:1
file 20:9,10,19	focal 58:6	88:15 90:10 91:12	front 74:9 80:13
21:20,25 22:1,5,15	focus 11:2,3 12:18	92:8 95:6 97:18	85:15,17 86:23
22:19 23:1,1	58:5 93:20	98:11 100:5	121:7,11
24:13 25:9 27:11	focuses 11:3	106:17 107:4	full 10:18
27:13,18 29:4	focusing 58:20	108:22 109:25	fully 9:7 10:21
36:2 45:20 46:1,2	122:20	110:25 111:25	functional 13:14
46:2,7,9,11,20,25	folder 46:8	112:3 113:3,20	13:15,16,17
47:7,8,8,20,24	follow 48:20 90:2	114:23,24 120:6	functions 125:16
48:7,9,16,17,24	90:6	120:16 121:8	125:17
49:5,8,22 50:2,14	followed 95:14	125:19 126:8	funny 28:5
51:2,8 88:21	96:12,13	128:3,7,16	further 53:13
files 36:7 49:19,20	following 102:3	formalism 16:4	63:23 68:1 73:10
102:21	follows 5:18 133:8	17:15	88:9 129:16
final 123:10	footnote 63:1,8,9	format 21:9,15	132:19
127:17	63:22 64:16 65:15	36:17,18 50:6	g
financially 4:22	footprint 43:15	formats 35:21	
find 27:10,17	foregoing 131:6	36:14,15,15	g 6:5
30:12 32:25 69:23	132:7,15	forms 19:8 41:15	gears 102:7
96:6 108:9 109:12	forgetting 13:13	44:2 48:5 80:5	general 11:20,24 11:25 93:4 113:5
finder 46:11	form 15:11,16	82:18 89:9 93:7	
finding 74:4	16:23 17:8,20	forth 17:10 25:25	generalizing 99:15 generally 9:11
finds 104:10	18:1,2 19:3,5	26:1 65:4 88:5	19:16 41:10 44:1
fine 30:10,20	20:11,13,20 21:3	89:23 90:19,23	48:2
31:15,19 102:17	22:12 23:9 24:1	112:17	generation 80:18
107:10	25:6 26:22 33:21	forward 65:1	generation 79:12
first 5:17 6:4	34:8,14 35:16	forwarding	george 2:10 5:6
14:24 32:20 52:13	39:24 40:5,23	109:15	6:12 133:1
55:11 62:22 66:5	41:4,15 42:17	foundation 19:1,5	getting 21:23
75:11,11,17,17,22	43:20 44:3,19	19:25 20:13,20	59:17 93:2
75:22 76:3,4,4	45:3 47:3 48:11	21:11 22:6,12	give 18:19,23
95:14 96:11 105:7	48:25 50:3,15	23:9 24:1 26:22	20:22 26:2 28:4
119:17 122:3	51:3 54:2,8,9,19	36:4 44:19 77:2	33:11 44:9 45:18
123:5,5,15,15,21	56:2,23 57:12,18	83:7,21 85:19	53:12 54:22 57:20
123:21 126:7,15	57:21,23 58:13,15	87:1 90:11 106:17	58:12 59:2,25
126:19 127:10,14	59:4,5,8 60:2,3,11	110:1,25 113:21	60:21 61:5,8
127:14 128:10,10	60:12 61:7,19	114:10 120:7	62:13,16 84:7
fit 59:19	62:17 63:6 67:20	four 6:18 61:23	103:23
flag 59:11,15	77:2,17 78:9	129:5 130:3	given 10:13 27:14
floor 2:18	79:21 80:2,14	frameworks 20:3	31:8 63:11 64:25
	81:6 82:22 83:6		90:22 99:16 100:7

[given - implementing]

106:10 130:1	121:20 133:4	hear 62:10	identified 102:22
gives 32:21 56:5	135:1	heard 75:10 77:22	identifier 41:16
70:15 94:20	google's 58:21	hearing 62:8	43:9,10 48:5,12
giving 57:2 75:7	63:3,10 64:11	96:20	105:11,13 106:5,8
global 23:4 108:14	65:1,4,12,14,16,24	held 51:21 103:2	106:8 114:24
go 4:9 23:11 26:9	66:14,22 67:11,16	129:10	identifiers 44:3
27:6,9 29:7 31:15	67:24 68:6,9,18,20	help 54:3	113:18 114:6
31:24 32:24 35:12	69:17,24 87:23	helps 58:10	identify 33:19
37:16 55:8 60:14	88:10 89:12 90:14	highlighting 28:24	42:2,7 43:8 49:23
62:25 69:6 82:3	92:5 93:23 116:4	29:1	57:11 104:7,20
84:18 85:20 87:2	116:6,7	hit 36:2,6 45:1	106:16,22,23
102:24 104:1	gosh 13:5	46:1,10 48:16	107:2,13,16 108:3
108:14 120:9	grad 13:6	hmm 28:18	108:11,15,18,21
122:25 124:3	grammatically	hold 52:18 53:4	109:4
125:8 129:6	68:10	81:23 83:2 86:2	identifying 48:18
goes 52:22 95:14	graphical 26:13	holds 92:22	70:25 71:2 101:24
95:14 104:10	great 108:23	hood 120:24	ids 108:14,14,14
going 7:11 9:19,20	ground 9:1	hour 51:16 102:6	illinois 2:12
13:5,23 14:12,14	guarantee 10:7	hours 6:18 7:19,20	illustrates 54:23
24:21 27:12 31:20	guess 26:3 29:4	huh 28:18	illustrating 100:14
38:24 48:18 51:15	34:16 48:7 51:12	human 15:17	implement 15:6
56:7,23 61:1 62:2	90:17	humans 15:24	18:13 80:24 81:9
62:22 63:1 71:7	h	hundreds 13:20	81:14 83:15 88:17
76:20 79:11 80:8	h 3:10 6:5 135:3	hyphens 46:4	88:17,19,19,20,21
80:22 99:1 102:5	half 102:6	hypothetical	88:22,25 92:18
108:24 113:12	halfway 38:25	20:21 25:24 26:2	93:6 94:13,21
117:6 128:17	hand 132:21	44:16 45:9,15	109:23 110:7,19
good 4:5 8:9 29:20	handled 133:8	46:7 47:23 48:14	115:1 120:22,25
29:20 31:17 51:17	handles 125:4	48:19 50:4 61:20	implementation
63:12,13 96:5	happy 51:18	81:7 83:7 90:11	12:22 42:24 80:24
102:12 107:18	102:10	91:15 111:25	89:8,20 93:7,14
120:8 122:21	hard 45:16 56:22	113:14,21 115:3	95:18 97:13
google 1:4,9 2:2,15	57:1 74:14 99:23	117:4,9,14	101:12 125:4
4:13,16 5:5,12 7:5	110:11	i	127:23 128:12
14:2 21:16 22:3	hardware 17:1	idea 30:8	implementations
22:16,23 29:8,23	25:22	ideal 29:7	80:5,17 107:20
31:1 64:1 65:21	hash 88:20	identification 7:6	126:25
66:1,10 67:1 69:3	head 6:25 7:17	14:3 31:2 71:14	implemented
70:2 71:13 84:9	8:11 20:24 21:13	84:10 106:5	82:17 124:12
86:3 88:4,10			implementing
90:18 91:24	38:15 49:13 51:10	121:21	111:8,9 121:16

[implements - kaplan]

implements 56:10 109:6 113:25 113:1	0,18 114:6 items 55:3,19 57:7
_	3 117:1,7,11 66:2,8,17,23 67:8
	ose 9:11,13 67:13,19 68:3,13
	ret 18:16 68:18,21 69:2,12
	retation 69:18,19 71:1
improperly 65:14 inside 37:23 61:13	
	reted 16:12 81:24 85:15,25
	8 18:16 19:8 86:2 87:24 90:1,4
134:3 23:8,25 24:23 75:5	91:5,6,11,25 92:7
	eter 16:13 92:15 93:25 94:3
_	reters 17:19 94:3,4,7,8 97:8
	ic 112:17 98:17 99:10
26:15 70:16 127:6 112:2	25 113:2 100:11 101:18,21
income 8:6 instructed 3:23 introdu	ace 13:24 101:25 102:2,19
incomplete 15:21 9:14 30:15	5 71:7 113:11 114:22
18:3 20:21 44:20 instruction 89:18 introdu	aced 30:21 116:8
48:25 50:3 57:23 instructions 15:3 31:11	84:8 iterators 122:1
60:13 61:19 62:18 15:5 inventi	on 41:9 itunes 44:10,25
77:18 80:15 81:6 intelligence 11:7 82:15	5 92:16 45:10
83:7 90:10 110:1 intended 67:6 112:2	24 113:5 j
113:20 117:3 intending 64:2 involve	jae 6:12
inconsistency intends 66:1 89:2	iava 13·10·17
	:25 18:11,23 17:13 18:9
	0.19:20.20:18 iavascrint 13:10
67:5 87:22 124:10 intentionally 70:3 ip 42:	5 17.13 19.7
	20:17 ioh 1:24 10:3
	64:24 66:21
	69:13 70:4 iockev 64:18 66:9
	1 82:5 83:11 jumped 22:21
,	90:18 91:23 instice 117:12
indicate 86:24 34:20 120:12 101:1	.0
, ,	11:14 14:11
	28:7 31:8 kaplan 2:17 3:5
	5:4,4,11,20 6:2 5:11 13 56:8 7:9 13:23 14:7
	55.11,15 50.0
	7,11,13,24 15:14,23 16:19
,	21 85:25 17:5,23 18:22
	97:15 98:18
	9,20 100:12 21:1,8,14,24 22:9
40 0 10 50 7 51 1 1.4	0 101 11 10 72.6 71 74.16
49:8,12 50:7 51:1 internet 33:15 104:1 104:8 106:6 108:5 42:6 65:10 108:6	23:6,21 24:16 26:10 27:4 30:15

[kaplan - list]

30:21 31:4 33:6	44:1 53:3 64:18	laptop 46:21	91:12 92:8 95:6
34:1,10 35:1 36:1	66:3,9 78:22,24	largely 12:19	97:18 98:11 100:5
36:9 38:20 40:2	81:9 108:24	40:24 125:23	102:5,12,16
40:19 41:1 42:14	109:10 121:14	larger 124:18,22	106:17 107:4
42:21 44:8,24	126:21	latest 36:6	108:22 109:25
45:8 47:22 49:3	kinds 75:12 78:25	launch 25:12	110:9,25 111:15
49:17 50:11,20	81:14 89:4 106:7	46:19 47:8,10	111:25 113:20
51:18 52:1 54:5	107:17 108:15	launched 46:15	111.23 113.20
54:14 56:15 58:8	117:11 119:22	47:13	114.2,8,13 113.12
59:1,16 60:8,19	know 8:22 9:20	1,,,,,	117:3 118:6 120:6
		launching 46:22	
62:4,24 65:2 68:5	10:9 14:1 18:18	47:12	120:16 121:8
71:7,10,21 77:5,21	21:15 23:11 24:18	law 10:14	125:19 126:8
78:13 79:24 80:10	24:20 34:5 49:12	layers 47:19	128:3,16 129:6,18
81:1,16 82:11	50:19,22 51:6,10	learning 11:6	129:22 133:1,2
83:1,12 84:2,6,12	56:3,13,22 61:15	leave 18:20	left 91:6,11
85:1,8,11 86:4	71:8,17 74:23	leaving 13:19	legal 4:20 32:8
87:7 88:13 89:1	84:4,13,19 85:17	69:13 92:14	40:6 130:4 133:7
91:1 92:4 93:19	100:1,18 110:12	lee 2:10,10,13 5:6	level 15:13 16:4
95:19 98:7,23	110:12,15,22	5:6,7,8 6:12,14	17:15 19:14 93:15
101:14 102:9,14	111:1,7 114:16	15:11,19,21 16:1	library 117:21,24
102:24 103:6	115:2,20 116:8	16:23 17:8 18:2	118:1,5,10,13,25
106:20 107:9	117:7,7,9,13,16	19:1,5,25 20:13,20	
109:22 110:4,17	knowing 50:16	21:3,11,18 22:6,12	124:2 126:7 128:2
111:12,21 112:5	56:25	23:9 24:1 25:6	128:15,19
114:4,11 115:6,14	knowledge 11:21	26:7,22 32:8	likewise 128:24
115:20,23 116:15	12:10 13:1 131:8	33:21 34:8,14	limited 65:20
117:19 118:8	known 54:25	35:16 36:4 39:24	103:16,19
119:5,8 120:13	92:16 94:11	40:5,23 41:4	limits 98:15
121:5,18,24 126:5	118:22	42:17 43:20 44:19	line 14:19 37:22
126:11 128:13	knows 47:10	45:3 47:3 48:25	72:23 102:3
129:4,14,21	kotlin 18:10	49:9 50:3,15 51:3	133:15 134:4
keep 59:12	1	51:15 54:2,9 56:2	135:4,7,10,13,16
keeping 121:3	1 2:17 6:5 104:4	57:23 58:15 59:5	135:19
128:4	lack 126:25	59:9 60:3,12	lines 7:21 35:9
key 3:18 12:12,21	language 16:11	61:19 62:18 63:6	101:17 109:17
41:16 80:20 92:3	17:12 66:1 119:7	67:20 71:16,19	link 28:1,3
93:1 121:25	languages 13:3,11	77:2,17 78:9	linked 88:19
kimberlee 2:22	13:12,15,16,19,22	79:21 80:2,14	list 11:11 20:5
4:19	18:9,14 19:7,11,21	81:6 82:9,22 83:6	55:6 66:2 67:7,12
kind 16:3,10,11	20:3,6	83:21 85:19 87:1	67:19 68:2,10,13
17:18 34:19 41:16	40.3,0	87:10 88:15 90:10	68:14,16,17,23

[list - meant]

69:2,14 87:24	locator 39:22 40:3	looks 29:20 89:14	marckaplan 2:19
88:14 89:3 90:1,8	40:9,11,21 41:3,10	102:7	marked 7:6 14:3
90:13,15,17,20	41:19 42:12 43:25	lookup 42:19	23:20 24:8 31:2
91:4,10,15,25 92:6	44:6 45:7 47:24	104:9	71:14 84:10
92:17 93:3,10,24	48:2 97:24 104:3	los 131:2 132:2	121:21
94:5,8,10,15,22	105:24 106:9,12	loss 24:14	matches 117:16
95:10 99:13	106:14 109:11	lot 89:14 90:17	material 124:2
100:16 112:25	112:14,22 113:6,7	lots 13:5,22 21:21	125:1
113:11 116:8	114:24 115:25	47:5 75:14 78:20	materials 124:18
listed 41:23	locators 39:17	93:5	124:19,22,24
lists 88:19 89:2,4	47:17 81:24 102:1	lower 16:4 17:15	matter 4:13 80:7
literally 13:20	102:23,23 105:4	19:14	92:23
79:2	106:11 107:12	ls3ip.com 2:13	mean 15:13 16:16
litigation 8:3,5,8	114:14 117:2,10	133:2	17:10 20:14 22:7
little 16:15,17	locked 133:12	lunch 102:8,13	24:11 25:16 28:13
23:11 43:22 46:17	134:1	103:2	29:7 33:23 34:18
53:13 63:23	logic 55:14 56:7,10	m	34:23 37:25 39:14
100:21 115:3	57:16 95:13		39:25 40:12 43:22
llc 1:4,9 2:15	long 6:14,23 7:14	m 6:5	49:2 52:25 53:10
133:4 135:1	9:20 11:11 27:12	machine 11:6 16:5	54:4,15 56:4 67:3
llp 2:10,16	43:17	16:6,20 17:16	69:9 73:8,12
loading 31:6	longer 124:1	19:4,13	74:15 77:3,20
local 32:16,18	look 27:6,21 32:10	machines 19:9	78:15 79:22 83:8
113:18 114:6,14	32:13 33:9,23	magnetic 35:22	83:13 97:23
115:25	34:23 38:4,8,9,17	main 50:25 66:11 85:23 90:17 91:23	101:21 113:23
locate 47:21	40:13 47:5 49:10		115:5 116:13,16
107:23	49:13 50:5,18	making 51:12 66:25 68:25	117:9,10
located 86:11	51:4,13 54:21		meaning 38:6
location 39:23	67:21 87:2 101:5	managed 43:1	116:10,14,16,23
40:1,4,10,14,18,22	104:17 111:19,22	management 43:7 43:13 93:5 122:22	117:17
40:22 41:3 42:15	113:23 117:6	manager 22:17,23	meanings 67:5
42:22 43:3,19	124:3	22:24	means 16:18 26:21
44:17 45:12 47:1	looked 8:19,20	manner 80:21	27:3 32:6 38:18
48:23 49:8 50:1,9	87:12 88:9 111:1	83:10	39:12 41:21 54:11
50:13 51:1,8	looking 27:19,23	marc 2:17 5:4	65:17 66:10,15
104:16 108:21	29:12 30:17 31:10	23:11 24:2 26:8	67:1 69:10 73:22
109:14,19	33:20 34:5,17,17	51:15 102:5 114:3	90:13 91:16 94:16
locations 39:7,18	34:17,18,21 37:11	129:23	113:24
40:16 47:18	58:1 63:1 73:23	march 1:19 2:3	meant 90:15
106:24	112:25 113:24	4:2,6 132:21	102:19 105:25
	116:5	133:3,5	115:9 116:22
		155.5,5	

[mechanism - newest]

mechanism 108:1	mid 107:21	49:21 50:6,17	named 121:10
108:2 115:1	middle 28:24	51:6,8	123:7 132:7,11
mechanisms 108:8	mike 71:17	multimedia 32:2,6	names 50:18
115:2 119:15	mind 7:18 29:10	32:19 33:5,8,11,12	118:14 119:9
120:25	40:20 59:12 63:14	34:3,6,13 35:6,14	125:25
media 4:11 35:23	87:21 121:3 128:4	37:4,9,11,14,19,22	naming 107:13,15
46:15 53:4 55:7	minimizing 43:15	37:25 38:1,7,16	109:11,20
55:14,15 66:2,3,8	minute 129:5	39:7,18 47:18,21	narrow 58:9,22
69:12,18,19,21	minutes 60:16	52:19,21 53:4	63:11 89:12,19,19
72:6,7,11,13,19	61:24	55:3,11,13 56:8	90:23 92:1 93:17
73:21 85:14 95:11	mischaracterizes	57:7 64:22 66:17	narrowed 89:6
98:5 101:18,21,24	16:1 60:4	66:23 67:8,12,19	90:21 116:21
102:2,19,20	mistaken 126:1	68:2,13,18,21 69:2	narrower 91:2
113:11 130:2	mobile 11:3,9,18	71:1 74:18,20	93:21
medium 15:2	12:9,19 17:24	81:23,24,25 87:24	native 18:8 19:19
meet 6:8,11,14,19	18:7,8,14 20:2,7	91:25 94:7,8	19:19 20:4 23:2,7
35:3 40:4	20:17	97:22,25 98:17	23:24
memory 14:13	mode 96:18	114:22 116:8	natively 28:20
41:17 55:2 57:7	model 42:19 43:6	multiple 33:16,17	nature 29:13
77:1 121:1	43:12 108:11	53:17,23,25 54:7	94:23
mention 32:15	models 42:25	54:15,19 55:4,22	nearly 79:4
41:14 82:15 87:18	modern 13:16	55:23 57:11 58:2	necessarily 40:14
87:22 89:7 98:20	48:9	82:12,19 83:2	80:3 93:11 96:11
125:10	modification	86:2 88:24 97:8	necessary 22:2
mentioned 10:23	99:25	99:9,10 100:11,25	25:2,5 92:17
12:1 19:16 65:15	modified 96:22	109:24 110:6	116:11,14,23
100:9 123:25	100:19	music 29:17 70:16	133:14 134:3
mentioning 19:6	modifying 96:1	110:23 111:14	need 9:18 20:11
mentions 33:10	moment 28:4 84:7	n	21:2 24:18 25:25
87:20	87:8	n 3:1	38:13 53:24 76:15
message 109:14	momentarily 31:7	name 4:19 6:4	87:2 89:6 95:4,16
met 6:12	moniker 108:2	29:17 35:20,21	100:19 101:4
metadata 48:17	monikers 42:1	42:15 43:2,10,18	needed 44:5
49:6,16,19,22 50:1	morning 4:5	44:16,21,23 45:2,7	needs 40:15 77:25
50:8,18 51:1,5,7	moungey 1:25 2:4	45:12,25 46:1,9,18	network 11:4,18
method 15:7	4:21 132:4	46:23,25 47:20,23	networked 29:17
120:18	mouthful 119:25	48:7,10,16,18 49:5	networks 108:12
michael 2:11 5:8	move 26:11 62:14	49:6,7,15,23 50:1	new 45:1 46:1,10
6:12	76:7 80:4 84:3	50:7,9 51:8	48:16
microsoft's 108:1	mp3 36:2,7,14,23	119:21 120:17	newest 36:2
	44:10,13 46:3,10	122:2 126:23	

[news - page]

news 31:17	41:4 42:17 43:20	71:20 84:3,17,25	128:2,15
non 36:24 37:1	44:19 45:3,4 47:3	85:9 90:3,7	ordered 55:5
nontransitory	48:25 49:9 50:3	101:16 102:8,12	67:19 68:2,10,12
15:1	50:15 51:3 54:2,9	115:11 116:19	68:14,16,17,22
normal 16:9	56:2 57:23 58:15	119:19 121:23	69:2,13,14 77:25
northern 1:2 4:14	59:5 60:3,12	123:11	78:2 86:25 87:24
4:17	61:19 62:18 63:6	omitted 124:4	90:8,13,15,16,20
notably 103:14	67:20 77:2,17	once 24:2	91:10,15,25 92:6
notating 133:15	78:9 79:21 80:2	ones 41:23,24,25	92:17 93:3,10,24
134:4	80:14 81:6 82:9	online 29:13 64:18	94:5,7,10,15,22
note 93:4	82:22 83:6,21	open 7:3,8 28:21	95:9 99:13 100:15
noted 27:7	85:19 87:1 88:15	121:18	100:16 116:8
noticing 5:3	90:10 91:12 92:8	operating 18:10	ordinary 63:16
number 11:2,8	95:6 97:18 98:11	18:12 46:14	75:3 116:10,14,16
12:1 27:7 30:22	100:5 106:17	operations 121:2	116:23 117:17
42:6 58:23 64:12	107:4 108:22	124:11 125:12,13	org 67:7
71:11 75:23 76:13	109:25 110:9,25	125:22,23 126:2,3	organize 75:15
79:11 84:16 89:23	111:15,25 113:20	127:6	76:17
97:4 106:24	114:9,15 115:12	operator 121:10	organized 75:12
107:12 108:17	115:18 116:2	opine 11:17	76:6 92:24
121:15 123:7	117:3 118:6 120:6	opinion 38:3,6,18	organizing 75:14
128:21 130:2	120:16 121:8	57:10 63:13 65:4	original 47:14
133:15 134:4	125:19 126:8	92:15 95:22 96:1	132:16 133:10,21
0	128:3,16	105:21 106:15,21	outcome 4:23
o 6:5	objections 5:1	112:3 127:9,13	output 80:22
o'clock 102:17	objective 18:11	opinions 11:14	outside 8:4 20:21
o0o 130:7	19:17,22,24 20:6	63:10 112:16	23:15 58:18 60:22
oath 10:12,13 52:4	obvious 41:24	opposed 19:4,13	overly 58:22 89:19
103:9	obviously 82:20	42:12 68:8 89:15	90:23 92:1 93:17
object 42:1 44:4	occur 70:10	options 18:21	p
107:19,22 108:10	ocr 27:23	order 51:6,13 55:7	p 104:4
108:25 109:1,3,7,9	office 133:11	57:16 67:12 76:6	p.m. 103:3,5 129:9
objection 9:11,11	oh 8:9 13:5 85:4	76:16,19,22 77:1,4	129:11,11,13,25
9:13 15:11,19	107:17	77:8,16,20,23,24	130:6
16:1,23 17:8 18:2	okay 7:8 9:23 10:9	78:20 79:2,10,17	package 22:17,23
19:1,5,25 20:13,20	14:8,15,16,21	80:1,7,9,11 81:3	22:24
21:3,11,18 22:6,12	24:17 30:11,19,20	81:10 89:25 91:4	page 3:3,11 32:14
23:9 24:1 25:6	31:14,20,23 37:4	92:17 95:2,3,5,11	62:25 64:16,17
26:22 33:21 34:8	37:18 38:24 44:12	95:16 96:4,8,10,21	65:22,23 105:8
34:14 35:16 36:4	44:14,15 46:4	97:8 99:13 108:18	122:3,25 123:10
39:24 40:5,23	59:2 62:14 71:6	112:3 113:12	126:13,14 127:17

[page - playback]

122.15 124.4	nont 12:11 12 21	105.7 22 106.2	nh d 1.19 2.1 2.4
133:15 134:4	part 12:11,12,21	105:7,23 106:3	ph.d. 1:18 2:1 3:4
135:4,7,10,13,16	24:6 26:24 27:8	112:18,23 128:6	4:12 5:16 130:2
135:19	29:20 46:17 55:18	129:3	131:5,14 133:5
pages 123:7	67:6 69:5,7,22	patent's 29:17	135:2
133:14,17,17	70:4 88:6 92:2,3	patents 29:8 66:21	phonegap 20:4
134:3,6,6	94:5,7 95:15 97:5	67:6 70:4 82:5	phrase 37:9,20
pair 57:3	97:6 98:12 103:18	83:11 89:17,24	38:15 40:11 56:14
pak 6:12,14	119:23	90:25 93:17 94:24	64:8 65:17 66:14
pandora 70:7,12	participants 4:7	97:1 98:14,15	68:17 69:2 113:6
70:17,18,20	particular 10:25	99:8 101:10 111:9	physical 11:5 19:9
paragraph 32:14	11:25 18:19 33:14	113:4	piece 97:22,25
32:21 33:9 39:4	38:5 40:17 47:6	patterns 122:20	98:5
41:7 43:24 48:1	57:5 59:13 64:8	pdf 29:3,4 123:8	pieces 21:22 22:25
52:10,13 53:13,14	65:19 73:4,24	123:12 133:12	45:15 83:2
54:21 55:9,23,24	80:25 89:19 92:24	134:1	place 4:9 129:7
57:4,19 59:21	92:24 93:14 95:18	penalty 10:13	132:11
63:22 65:3,10,11	96:9,16 98:2	131:6 133:16	placed 10:11
65:23 66:12 67:22	99:11,13,14 109:4	134:5	places 41:7 92:20
69:16 71:4,22,24	109:10 118:4	pending 9:22	102:3
72:2 74:17 75:2	particularly 9:20	102:10	placing 85:14
81:22 82:14 84:3	parties 4:9	people 74:14	plain 116:10,13,16
84:18 85:3 88:2	parts 25:24 94:2	77:22 93:4	116:22 117:17
92:13,20 94:12,20	96:25 122:23	percent 8:12,15,15	plaintiff 1:5,10
94:25 95:8 96:2	124:4,16 125:9	8:16,18	platform 18:10,12
96:23 97:6,20	party 4:22 66:3	percentage 8:6	18:19 22:17,18,25
98:13,20,25 99:2	69:21 70:16	perform 57:16	plausible 98:3
99:11 100:3,10,13	pascal 13:7	79:4	play 35:21 44:14
100:20 101:5,15	pass 126:22 127:2	period 133:18	46:15 55:10,12,14
101:18 103:11,15	patent 3:14,15,16	134:7	55:14,16,25,25
104:21,22,24	3:17 13:25 14:6,9	perjury 10:13	56:11,11 64:19
105:8,20 112:15	14:15,18,22,25	131:6 133:17	70:11 84:22 95:1
paragraphs 75:2	27:13 28:6,19	134:6	95:1,11,13,14,14
82:6 92:20 94:12	29:6 30:4,7,9,16	persistence 104:2	95:23 96:2,2,23,23
105:15	30:22 31:10,11,22	persistent 42:11	96:24 97:2,11
parameter 126:22	32:7,16,22,24 33:4	104:2,3,20 108:25	98:9 99:3,3,4,12
parameterize	37:5,6,9 38:22	109:8,18	100:3 111:13
127:3	47:16 70:10,15	person 33:19	playback 26:17
paraphrasing 86:9	71:11 73:24 74:4	63:15 73:13,17	29:1,18 32:16,18
parcel 12:11	75:5,6 84:15	75:3	37:4,10,12,15,19
parenthesis 37:23	97:20,21 98:6	pertains 132:15	37:23,25 38:1,16
	99:17,18 104:25		52:16,19 53:5

[playback - proper]

5516057610	0614		07 10 110 10 11
55:1,6,9 57:6,18	96:14	posita's 66:19	97:13 110:10,11
58:4,11,21 59:3	playlists 63:5 65:6	possible 18:15	117:15 118:21
60:1,10 61:5	65:13	19:20 42:9 45:11	problem 28:17
62:15 63:14,18	plays 12:6,12,21	77:24 101:1,11	29:24,25 71:19
64:3,4,8,24 65:18	please 5:1,14,21	110:7,14	92:9
65:19,25 66:17,18	6:3 7:3 10:8 23:23	posted 19:17	problematic 94:10
66:20,24 67:8,14	61:18 71:8 84:13	potential 63:12,13	94:19
67:18,25 68:4,11	116:24	75:13	procedure 133:19
68:19,22 69:4	plural 55:2,19	practices 13:2	133:20
72:9,14 73:6,6,8	57:7 68:8 98:17	precise 18:20	proceed 5:20,21
73:11 74:13,17,19	100:11	119:20	proceeding 5:1
74:25 75:4,8	plurality 94:7	precisely 50:10	proceedings 130:5
81:20,21,24 82:4	98:17	predefined 79:10	132:14,17
84:23 85:16,17,22	plus 13:21	predefines 93:13	process 9:5
86:7,17 87:5,13,15	point 6:16 32:12	prefer 51:11 102:9	processes 12:24
87:19,20 88:7	49:18 61:22 62:20	prepare 6:9,17,20	processing 20:19
89:13,16 92:18,21	66:25 69:19 76:19	prepared 7:12	21:6 22:11,19
93:6,9,16 94:14,15	85:24 93:1 100:14	83:24	processor 15:4,10
94:16,22,23 96:7,7	106:11 109:9	preparing 6:24	15:18,25 16:7,8,14
96:17,20 97:2,8,9	128:24	7:15	16:21 17:7,10,17
97:15,22,23 98:4	pointed 109:10	present 2:21 4:24	17:18 20:17 22:10
98:16,21 99:9	pointing 99:7	presentation	25:20
101:1,12 109:24	points 58:6	121:25 122:6,8,11	processors 18:15
110:5,6,23 111:10	pop 121:6,10	122:14,25 123:23	produce 80:22
113:8,9,11,13,19	125:24 126:2	126:13 127:16	products 111:7,13
114:7,14,21	127:6	preserve 9:12	111:16 112:6
115:25 116:9	populated 55:11	press 102:13	professional 13:21
117:2,8 124:15	55:12 56:7	presumably 56:16	professor 10:24
128:5 129:2	port 42:6	pretty 12:25 95:8	13:9 122:9
played 46:24 72:6	portion 22:18 43:7	previous 24:13	program 13:16
72:12 92:23 95:23	72:18 73:1 84:21	62:11	18:24
95:24 96:3,8	86:5 122:8	prior 62:6 95:21	programmed
112:10 113:12	portions 32:22	132:6	75:16
player 46:15	104:25 105:3,6	priority 76:6	programming
playing 32:19	124:24 125:1	118:16 119:12	11:9,21 12:11
64:14 71:2	posita 41:8 52:15	124:7 125:3,11,21	13:14,15,17 20:3
playlist 33:15,16	54:25 82:4,15	127:4	122:19,21
63:17 64:3,4,5,15	89:21 92:16 93:3	probably 6:18	programs 18:16
65:9 69:12,18,18	94:11 103:15,19	7:20 13:13,19	19:16,23 49:22
69:25 70:5,22	105:22 112:21	27:8 29:3,11	proper 51:13
82:2 89:14,15	100.22 112.21	30:12 61:23 89:6	113:23
32.2 37.1 1,10		33.12 31.25 37.0	110.20

[properly - random]

properly 46:14	112:16	74:22,25 75:4,8	queued 52:21
47:11 114:1	putting 25:25 26:1	76:8,21,23,25 77:7	74:20 80:21 82:1
proposal 88:4	88:4 90:19	77:12,15,25 78:1,3	queueing 66:8
proposed 63:10	q	78:5,7,10,15 79:17	69:12,18 97:21
64:1 65:4 66:22	qualify 95:5	79:18,19,25 80:1	119:15
67:11,16,24 68:6	quality 12:23	80:12,13 81:2,3,18	queues 74:7,15
68:20 87:23 88:11	quanty 12.23 question 8:9 9:14	81:22 82:4,7,12,16	75:10,12,15,16,21
89:12 116:6,7,10	9:22,23 10:8	82:21,24 83:5,15	75:23,24 76:5,14
116:17,25	15:15 16:16 23:23	83:20 85:16,18,22	76:15,18,18 77:23
proposing 68:18	24:15,21,24 25:16	86:1,7,14,17,20,22	77:24 85:24 88:17
69:3	31:21 33:23 34:24	86:24 87:5,13,15	88:17,19,20,20,21
protocol 125:5	35:15,25 43:16	87:17,19,20,24	88:22,25 95:20
protocols 76:1,2,4	45:17,19 46:6	88:5,7,14 89:8,13	97:2 111:8,10
76:5,7,8	49:7 50:10,21,23	89:16,22,25 90:5	118:2,3,9,12,18
provide 40:3,14	54:6 55:20 56:22	91:4,5,6,9,11 92:6	119:10,14,23
41:3 67:3 76:23	57:2,13 58:9 60:7	92:18,21 93:6,9,16	120:23 121:4
79:9 118:20	60:15 61:11,23	93:25 94:13,14,15	123:24 124:14,15
120:25 126:24	62:1,12,22,23	94:17,22,23 95:5	125:2,3
128:9	73:16 74:3 78:6	96:4,8,17,24 97:8	queuing 66:2,4
provided 28:1	91:2,9 93:2,20,23	97:9,15,23 98:4,9	76:1,1,2
48:8 59:18 66:4	95:25 97:16 98:24	98:16,21 99:5,9,19	quick 32:10,25
107:7 133:19	99:6,23 100:2,25	100:4 101:1,13	85:8 129:4
134:8	101:9 102:10	109:24 110:8,20	quinn 2:16 5:4
providers 107:7	105:5 106:19	110:23,24 111:5,6	quinnemanuel.c
provides 104:8	108:23 110:3,13	111:14,18,24	2:19
providing 39:22	114:1,4,18 115:7	113:19 114:7,14	quite 28:16 42:18
40:1,9,17	116:24 117:13	114:21 115:25	43:5 44:22 45:16
proxy 104:16	119:4,6 120:8	117:2,8 118:4,15	60:24 110:12
pull 49:22 74:18	125:15 127:19,22	118:16,25 119:1	117:14
purl 104:4,7	128:14,21,22	119:11,12,17,19	quote 17:20 67:9
purls 106:15,21,23	questions 3:23 9:6	119:22 120:1,4,14	105:12
purpose 85:23	23:17 24:8 29:12	120:15,18,22	quotes 52:24
101:7	30:16 69:9 99:17	121:2,6,7,10,11,17	r
purposes 48:19	129:16,18	123:3,15,20 124:7	r 104:4 135:3,3
78:23,24	queue 52:16 58:22	124:8,20,25	r&s 134:1,9
push 120:14,18	59:4,8 63:14,18	125:11,11,12,16	radio 33:15 65:10
121:3 125:24	64:4,4 65:19	125:21,22,25	70:7,20 71:1
126:2 127:6	66:20 67:25 72:9	127:4,4,13 128:1,5	raised 88:18
put 17:10 31:13	72:15,20 73:2,6,7	128:9,14,19,20	randolph 2:11
52:24 64:25 89:23	73:9,11,14,18,22	129:1,2	random 76:24
90:23 96:18	74:2,6,10,15,17,17		77:7,10,13 78:10

[random - representation]

78:15,20 79:2,7,11	113:23 116:22	references 32:22	111:15 114:9
79:17 80:1,9,9,11	117:5,12	37:14 42:1 44:4	relevant 124:15
80:11,22 81:2	realtime 10:2 11:6	87:13 106:3	129:1
95:20,24 96:3	reason 9:15 10:20	108:25 109:1,9	remaining 90:8
randomize 81:4	29:2 94:18 97:7	referencing 105:4	remember 7:17
randomly 78:4,8	135:6,9,12,15,18	116:1	60:17 61:25 112:2
79:5,6,6,20,23	135:21	referred 16:5 37:5	remotely 4:7
81:3,11,11,12,13	reasons 78:21	referring 16:25	remove 76:9,11,12
95:23,24	recall 6:25 7:16	17:19 21:20,21	80:18,19 90:4
range 18:6 20:1	21:12 61:17 62:8	34:19,21 49:16	91:5 96:24 100:17
react 20:4	112:8,10 120:18	69:1 73:11 74:12	121:11
read 27:10,13	received 113:25	101:22 102:3	removed 72:19
31:17 38:13 40:7	recess 51:21 103:2	103:20 105:6,16	80:23 100:2
64:1 65:10 68:12	129:10	107:6 115:4,17	121:14
68:25 72:24 73:10	recognize 89:7	118:25 120:2	removing 72:24
84:21 85:2,4,5,10	recollection 121:9	123:8,9 124:19,22	80:12 125:5
85:12 86:5	123:19	refers 37:22 41:10	render 38:18
readable 15:2,17	record 4:6,10,25	44:1 48:3 67:18	rendered 38:3,6
19:4	6:4 9:12 37:3	68:7 73:14,18	repeat 23:23
reading 33:3 70:3	51:19,23 60:18	85:13,18	106:18 116:24
89:19 105:23	62:3,5,7 73:1	refresh 123:19	repeatedly 97:21
133:23 134:9	102:24,25 103:4	regimes 107:13,15	rephrase 15:15
reads 14:25 39:5	129:6,8,12,24	relate 11:16 24:8	119:5
58:22 92:1	recorded 4:11	related 4:21 11:9	report 3:12 74:16
ready 5:20	recording 4:8	11:18,19 12:8	82:14 88:1 89:7
real 32:25	redirect 104:12,13	13:10 39:21 40:12	98:13 101:15
realization 97:13	109:13,13,16	40:22 41:12 54:13	104:22 114:20
realize 26:7	reduced 132:12	66:8 114:21	reported 1:25
realized 82:5	redwood 2:2,18	relates 23:14 40:9	reporter 4:21 5:13
98:22	4:1	47:14	5:17 7:7 10:1,11
realizing 93:8	refer 14:12 115:20	relating 57:6	14:4 26:5 31:3
really 8:10 16:24	115:24 119:18	128:6	71:9,15,18 84:11
19:12 20:23 22:4	123:23 124:19,25	relationship 50:7	102:15 119:3
22:14 23:12,14	reference 14:18	51:6 53:25 54:4	121:22 132:24
24:2 42:11 43:16	71:23,25 72:18	55:25 56:4,14	reports 11:24
64:19 68:24 74:20	73:3 84:7 85:23	relative 124:14	represent 36:7,8
74:24 80:7,23	88:8 107:22	released 133:21	36:11,16,18,22,23
90:14,20 91:14,16	108:10 109:3,7	relevance 22:6	93:16
92:19,21 93:2	114:19	23:10 26:23 51:9	representation
94:14 100:21	referenced 133:6	57:24 58:16 59:6	89:10 97:12
110:10,14 111:3		60:13 61:20 62:19	120:20

[representations - see]

representations	resources 22:16	rough 7:20	schmidt's 114:5
120:21	42:7 43:9 106:16	roughly 7:14 8:6	science 11:7
representative	106:22,23 107:2	38:25	scope 20:21 23:15
89:21	107:11,14,16,23	row 123:2	25:16 40:6 58:16
request 107:19	108:3,11,16,19	rules 9:1 134:8	58:18 59:5 60:13
requested 104:6	respect 100:2	run 18:7 19:20	60:22 61:21 62:19
104:14 113:25	114:22 124:10	20:7	83:22
134:1,9,10	respective 39:6,17	running 16:14	script 13:12
requester 104:12	47:17	19:8 23:4	scripting 13:11
104:13	responding 9:6	runs 22:3	18:14 19:7
require 42:8 66:23	response 62:21	S	se 124:15
93:15 99:9,18	109:15	s 3:10 6:5,5 135:3	search 27:16
required 24:13	rest 53:3 55:8 85:2	satisfied 64:3,5	28:17 30:2 31:16
25:8 94:24 132:18	85:5	satisfies 94:23	31:18 32:25 87:14
requirement 86:1	restrictive 93:18	saved 45:1,10	searchable 27:11
requires 68:1 84:6	result 124:9	saveu 43.1,10 saying 54:15 63:25	27:14,15 28:6,12
100:11	retained 130:3	65:21 68:10 74:21	28:16,20 30:8
requiring 99:13	return 121:13	77:6 99:21 119:20	searched 87:15
100:15	133:17 134:6	128:18	searching 28:23
research 11:3	review 132:17	says 33:14 37:24	31:8
reserve 129:21,22	133:8,10,13 134:2	37:24 54:24 55:23	second 26:11
residence 6:6	reviewed 33:2	64:7 67:11 73:3,3	55:13 85:12 96:12
resolution 104:9	38:11 84:24 85:7	73:3 87:23 95:10	123:2
resource 39:16,22	reviewing 87:11	101:22 103:18	section 63:24 69:1
40:3,9,11,18,21	rhapsody 70:17	123:2,4,4,15	69:7,15 92:11
41:3,10,12,13,18	right 7:12 8:24	126:15 127:16	94:1 97:6 106:12
41:19,22 42:3,23	14:9 19:18 23:25	scenario 99:14	114:19,20,25
43:3,25 44:6,7	28:8,23 29:16,18	scenarios 16:6	see 14:1 15:8 24:6
45:7 47:17,24	30:14,23 35:7	17:11	26:18 27:10 28:3
48:2,4,13 81:23	42:23 43:4 57:8	schedule 133:10	29:15 31:5 32:3
97:24 101:25	59:20 60:2 64:16	schmidt 1:18 2:1	32:11,12,12 37:8
102:22,23 104:3,5	68:11,23 70:8,22	3:4,13 4:12 5:16	37:10,13,14,20
104:7,11,19,20	71:2 77:9,13 82:8	6:3,23 7:22 8:23	38:4,9,18 39:2,9
105:4,9,24 106:9	82:13 89:2 95:5	10:23 11:12 13:23	49:14 50:7 52:23
106:11,12,14	95:17 98:10 99:22	28:8 31:9 52:2	58:10 63:2,7 65:7
107:11 108:10	105:17,18,20	69:6 84:14,22	67:15,16 70:14
109:4,10,13,16	118:5 123:1,3	103:7 114:12	72:16,23 73:7,10
112:14,22 113:6,6	125:14	115:16 121:18	73:11,23 74:1,8
114:14,24 115:25	ripping 63:22	122:2 129:14,19	75:7 78:25 84:13
117:1,10	role 12:6	130:2 131:5,14	84:25 85:9,21
		133:5 135:2	86:5,8,10,18 92:10

[see - spec]

	I	I	I
92:12 98:13 99:7	66:10 69:21 70:21	88:24 97:22,24,25	106:8 112:11
101:9,17,19 102:4	71:2 104:9,10,16	98:3,5,18,19 99:20	songs 33:16,17,17
103:17,22 105:1	104:17,20 108:9	100:12,18 101:1	35:20,22 64:14,19
117:6,16 122:4	109:11,11,12	101:12 105:14	66:4 70:25 82:1
123:6,17 126:16	services 11:10,10	singular 55:19	83:3,20 96:21
select 78:19	107:7	68:7,14,16 69:19	109:24 110:6
selected 64:7,20	set 16:9 25:1 65:4	69:20 97:12	sonos 1:7,12 2:9
64:21,22,24 65:18	111:19,23 124:1	sit 129:7	4:13,14,16 5:7 6:8
65:20,25 66:18,24	124:18,22	sitting 59:25 60:21	6:20 37:24 111:4
67:8,13,18 68:3,11	shape 128:7	62:15 71:17	111:6,13 112:6,7
68:19,22 69:3,25	share 7:1 27:19,22	situation 17:22	112:11 116:17
70:5,7 85:14	28:1,6	47:6	133:4 135:1
86:15 116:9	shea 2:10 5:7,9	six 6:18	sonos's 110:23
selecting 66:5	shell 13:11	skill 63:16 73:17	111:1,16 115:10
70:25 84:22 86:13	shores 2:18	75:3	115:18,21,24
selects 70:20	shorthand 132:11	slides 124:5	116:9,12,25
semantics 121:12	132:24	slightly 31:20	soon 91:10
124:12 128:10	shortly 105:10,13	73:16 100:14,22	sorry 7:16 22:24
send 109:13	showing 124:5	101:6	26:5 28:15 33:22
sends 104:11	shown 112:8	smith 2:10 5:7,9	35:12 37:16 45:22
113:10	shuffle 96:6,18	software 11:5,19	59:10 64:3 69:5
sense 9:16 10:4	shuffled 96:9,15	11:20 12:4,6,10,12	71:18 85:4,10
40:8 42:5 52:17	side 27:15	12:15,17,20,21,22	88:3 94:12 104:3
73:16	sign 133:16 134:5	12:22,23 13:1,3	106:18 119:3
sent 104:8	signature 129:21	25:23 122:17,19	124:21 125:7
sentence 32:21	129:22 132:23	122:22	sort 24:14 59:11
52:13 53:3 63:21	133:21,23,23	solutions 4:20	104:16 113:15
72:2 85:4,12	134:9	130:4 133:7	sorted 79:4,5,6
86:12 103:14	signatures 126:3	son 112:7	sounds 23:16
sequence 76:24	similar 124:17	song 33:10,14,20	25:20
77:10,13 80:9,11	128:22	33:24 34:2,6,12,23	source 15:10,16,16
sequentially 81:13	simple 99:25	35:2,5,13,15 36:3	15:24 16:3,12,16
server 113:10,18	simply 24:24	42:15,16,22 43:2	16:20 17:6,12,20
server's 114:6,13	46:22 47:6 124:11	43:11,18,19,19	18:1 19:3,12
117:1	simultaneously	44:16,17,21,23,25	122:22
servers 108:4	26:4	45:1,6,10,10,12,13	spaces 46:4,5
117:7	single 33:10,14,20	46:1,10,16,18	speakers 112:7,11
serves 121:1	33:24 34:2,6,12	48:15,16,18 49:4	speaking 15:12
service 33:16	35:2,5,13,15 36:3	49:23 50:1,9,9	26:4,6 119:7
42:12 64:14,18	53:16 59:4,7	64:21 66:5 97:3	spec 27:10 33:4
65:5,9,13 66:3,3	70:19 82:1,7,18	97:11 105:11	99:17 105:12,16
, ,	. , , , -		, , ,

[specific - take]

anaifia 19.5 20.22	124:2 126:6 128:1	street 2:11	21.12.22.22.7.14
specific 18:5 20:23 50:17 55:17 57:2			21:12,22 22:7,14 23:14 25:3 29:12
	128:15,18	strike 48:22 54:17	
75:9 98:24	standards 107:20	67:9 75:19 86:20	30:17 35:17,24 36:12 39:25 44:22
specifically 45:24	start 53:9	95:24 124:20	
48:8 115:5	starting 37:22	125:14 127:25	49:15 50:22 54:10
specification 30:4	65:22 97:6	structure 53:7	59:24 60:18 68:24
37:5,8,17,21 40:8	starts 90:23 105:7	83:4 87:16 91:19	77:3 78:14,17
58:24 64:13 85:13	state 4:24 5:2 6:3	91:20 92:24 120:5	79:22 92:12 99:22
86:6,23 87:13,18	131:1 132:1,5,24	123:5,16,21 126:7	110:2,12 111:5,6
89:24 92:3 98:15	133:9,12	126:15,19 127:11	111:17 113:16
99:8 100:10	states 1:1 71:11	127:14	115:13,15 117:10
104:25 105:4	84:15	structured 43:7	119:6 120:10
106:10	station 33:15	structures 80:6	129:6
specifications 98:6	65:10 70:7,21	87:4,5 88:18	swear 5:14
101:9 107:20	71:1	120:24	swift 18:11 19:17
129:3	stay 62:22	student 13:7	19:21,24 20:6
specifics 18:18	steps 24:13	style 80:17	switching 102:6
21:2 51:5	stick 62:2	subject 10:13 68:7	sworn 5:17 132:8
specified 55:7 72:5	stipulation 133:20	68:8,14,16	synonymous
72:7,11,13 89:15	stl 3:18 121:2,4	subsection 114:19	40:25
95:11	122:1 126:21	substance 52:7	system 32:17,19
speculate 51:11	127:21 128:25	substantiate	37:24 43:4,7,13
spend 6:23 83:23	stop 91:9	126:10 127:23	46:14 47:10,10
113:24	storage 15:2	128:20	57:18 109:5,23
spent 7:14	store 17:25 19:18	substantiated	110:5,19
spotify 70:13,17	19:24 20:10,18	127:8	systems 11:4,5,6
square 93:2	21:10,16 45:20	successfully 14:5	11:18,19,22 12:8,8
ss 131:1 132:2	55:2 56:6,6 57:7	succinctly 95:8	12:9 88:21 108:11
stack 47:19 118:17	83:3,9,14,16,20	suffix 47:9	108:16 111:2
119:12 124:7,7,25	98:4	suggest 64:6	t
125:10,14,17,21	stored 44:13,18	suggesting 70:2	t 3:10 6:5 135:3,3
126:6,14,18 127:9	45:23 48:15 49:12	suggests 126:24	tables 88:21
127:20,20,24,25	50:13 51:6,7,14	suite 2:12	take 4:9 9:18,23
stacked 127:4	55:5 76:25 77:15	sullivan 2:10,16	27:12 32:10,13
stacks 123:24	79:25 80:8 95:9	5:5,7,9	33:9 38:4,8,9,17
125:2	stores 42:25 50:7	summarizing	41:15,15 44:3
stand 60:25 61:12	50:18	32:15	45:22 48:5 51:18
standard 117:20	straightforward	suppose 29:14	54:21 67:21 79:8
117:23 118:1,5,10	46:20	sure 7:4 8:10,19	79:16 87:8 89:9
118:12,24 119:1	strange 121:12,14	9:24 15:15 17:9	93:7 102:8,10
119:10,15,18,23	125:25	20:14,23 21:4,6,7	113:22 117:6
			113.22 117.0

[take - translator]

123:25 129:4	town 16.10 22.1	40.24 47.25 49.21	92.15 92.24 99.12
	term 16:18 32:1	40:24 47:25 48:21	82:15 83:24 88:12
taken 2:1 4:12	38:5,18 44:23	51:15 55:20 57:14	92:16 99:1 100:8
5:11 10:1 132:10	54:12 65:24 66:20	57:14,25 58:17	107:25 112:23
talk 10:2 21:5	89:16 92:6 93:24	59:14,18 60:6,24	113:24 129:15
23:12 55:8 75:24	97:14 112:14,22	61:2,11,16 62:1,9	132:11 133:10,18
75:25 106:4	127:1 128:5	62:11 63:24 65:8	133:24 134:7
talked 66:9 94:21	terms 12:21 21:7	65:15 66:11,25	timeframe 113:5
95:20	24:19 43:5,15,23	69:13 70:10 73:15	times 10:7 27:7
talking 25:21 26:8	74:6,9 76:6 89:5	74:15,23 77:6,10	98:25 99:7 100:25
34:12 55:19 63:23	90:19 91:25	83:25 85:23 88:8	tired 96:20
105:8,10 114:17	100:22 115:25	89:4,11,16 91:3,23	tm 37:24
123:14	test 14:13	92:10,11 93:1	today 5:8 6:9,17
talks 32:18 38:15	testified 5:18	94:5 95:7 96:5,18	6:21 7:11 9:20
73:4 105:13	testify 10:20 132:8	96:25 97:7,19	10:3,19,21 59:25
114:20	testifying 10:14	98:20 99:6,20	60:21 62:15 83:25
tangible 15:1	testimony 10:12	100:7 101:2,8	107:21 129:15
taught 12:17 13:3	10:18 52:7 61:3	104:15 108:10	today's 130:1
13:5,7,10,14,20	130:1 131:7	110:15,18,21	top 6:25 7:16 8:10
75:20,23 76:15	testing 12:11,23	113:17 116:3	16:14 19:8 20:23
117:23	78:24	119:20 125:20	21:13 38:14 49:12
tax 8:20	thank 52:3 85:6	thinking 83:24	51:10 64:17 72:8
taxes 8:21	129:14,17,20,23	102:13	73:5,8,14,18,22
teach 11:8 12:15	thing 9:21 25:15	third 66:3 69:20	74:6 110:22
76:13 79:15 125:9	64:20 78:12	70:16 96:13	topic 24:22 41:5
teaching 122:15	101:22	thorough 87:11	47:15 63:23
technical 112:13	things 18:12 19:11	117:12 127:21	topics 11:17,17
techniques 12:22	25:14 31:19 33:12	thoroughly 26:1	topping 47:19
12:23 13:2 81:9	41:20,25 56:8	thought 23:13	total 130:2
108:18 122:21,21	66:8 70:3 74:16	36:21 60:20,22	track 96:12,12,13
122:23	76:3,9 92:1 95:13	100:24 110:11	105:14
technologies	99:12 104:17	three 60:15 90:1	tracking 7:17
107:25	105:19 106:7	98:25 99:6 101:17	tracks 86:6,15
technology 107:19	107:17 108:13	118:11,22 129:5	transcript 132:14
tell 25:4 87:16	124:14	thumb 34:21	132:16,18 133:6,8
template 117:21	think 7:14,19 8:7	thursday 1:19 2:3	133:10,13,13,21
117:23 118:5,10	8:12,14,17 11:13	4:2	134:2,2
118:12,24 119:2	13:13 17:10 19:19	time 5:2 9:10,10	transfers 113:8
119:10,16,19,23	22:21 23:18 25:4	10:6 27:12 41:9	translate 43:17
124:2 126:7	26:24 27:8 28:8	44:14,14 51:17	translated 17:14
127:24 128:2,15	29:16 31:18 32:20	59:23 61:4,18,24	translator 16:4
128:18	38:12,13,15 39:3	62:14,22 79:13	
	1	1	I.

[transport - variables]

transport 26:16	u	70:23 71:3 89:13	63:17 64:5,7,21,21
27:5,16 28:23		102:18	64:22,24 65:18,20
treated 124:9	u 6:5 73:19,19 104:4	understandings	65:25 66:5,18,24
trees 88:20		61:2	67:13,18 68:3,11
tries 89:12	u.s. 3:14,14,15,15	understood 47:9	68:19,22 69:3
true 91:18 131:7	3:16,16,17,17 4:14	52:15 75:4 82:16	70:6,8,20,24 76:20
132:13	4:16 30:22 71:12	93:3 112:22	77:6,12 89:14,15
truth 132:8,8,9	uids 108:14	uniform 41:18,19	96:10 113:8 116:9
truthfully 9:7	ultimately 12:25 un 44:6	104:3 105:9 106:9	user's 20:10
try 10:2,9 23:19		106:13 107:11,11	uses 22:18 23:1
27:21 29:10 58:9	unable 27:25	unique 108:14,14	56:10 68:6 92:5
95:25	unclear 63:4 65:24	unit 4:11	93:24 108:10
trying 23:17 35:9	67:2,2 69:23	united 1:1 71:11	uuids 42:1
35:10 50:21,24	uncommon 79:12	84:15	V
57:9 62:6 67:2	underlying 19:13	units 130:3	
74:1,7 75:7 83:2	120:19	unity 20:4	vacuously 91:18
91:2	underneath	universal 108:13	vague 15:21 16:17
turn 14:17 31:21	105:20	university 7:24	18:2 20:21 21:11
38:21 52:10 71:4	understand 9:8	10:24 75:21	34:8,14 58:15
71:22,24 101:15	10:12,15 25:25	unrelated 54:7,11	59:9 60:4,12
103:11 104:21	27:2 28:7 33:23	uploaded 121:19	61:20 62:19 77:17
tweaked 100:21	34:16 35:9,10,18 35:24 37:7 43:22	uri 48:6	79:21 80:14 81:7
twin 2:17		uris 44:4	83:6 88:15 91:12
two 17:11 31:19	44:22 45:16 46:6 49:1 52:4 53:9	url 42:11,13 48:6	92:1 110:1 114:9
56:5,16,19,23		103:16,19,23	114:15 117:4
57:15,20 58:12	54:3 57:10,13	104:3,4,12,20	120:7 121:8
59:19 60:1,10,15	58:4 66:14,22 67:1 70:19 73:13	106:1 108:17,25	validate 25:9
61:6 62:16 66:20		109:18	values 79:6,9,9
71:17 90:4 94:2,3	73:18,21 74:21 78:14 82:4 89:21	urls 42:9 44:4	vanderbilt 7:23
96:17 101:10,17	91:8 93:4 103:8	107:2,12 109:8	10:24 75:21 79:15
type 16:13 83:4		urquhart 2:16 5:5	117:24 122:7,10
127:22	103:15,19 105:5	use 30:9 35:21	122:12
types 19:11 22:16	105:22 110:3 112:21 113:14	42:9,20 43:5	variable 53:16
52:20 74:19 81:25	112:21 113:14	56:11,14 65:24	55:10,12,15,16
118:18 121:3	120:2	70:20 96:20	59:4,7 82:8,19
typewriting		100:16,23 102:2	88:24 95:23 98:3
132:12	understanding 12:7 24:14 26:20	109:1,3 112:6,8	98:9,19 99:4,20
typically 16:4,20	32:5 39:11,19	122:14 127:23	100:3,18 101:2,12
74:10,14 75:24	40:10 41:8 56:21	useful 57:17	variables 53:18,23
		user 25:10,11,12	53:25 54:7,16,19
	57:1 66:13,13,19 67:7,17,23 68:17	33:15 34:19 63:4	55:4,22,23 56:1,6
	07.7,17,23 00.17		56:11,17,19,23

[variables - yeah]

57:3,11,15,21 58:3	want 14:13 24:5	web 11:10,21,21	95:7 97:19 98:12
58:13 59:19 60:1	25:12 50:22 57:9	12:8 108:6	100:7 102:14,18
60:10 61:6 62:16	59:23 78:19,22,23	website 27:19,23	106:18 107:5
82:13,19 88:24	78:24 87:8 91:21	29:9	108:23 110:2,10
95:1,3,4,9,15 96:3	115:15	weird 27:15 28:13	111:3,16 112:1
99:3 100:17	way 18:12 23:5	28:22 29:21	113:22 114:18
various 13:11 19:8	29:5 34:24 36:8	welcome 52:2	115:22 116:5
22:2,15,25 32:22	37:20 42:25 43:11	103:7	117:5 118:7 119:6
41:15 43:8 48:5	43:14,17 46:19	wha 1:7,11	120:8,17 121:9,23
56:8 79:14 81:8	47:4,20 49:11	whatnot 17:13	125:20 126:9
90:24 98:20	50:6,17 53:21	109:12	128:4,17 129:17
123:13	56:12 64:6,23	wide 20:1 108:6	129:20 132:6,21
veritext 4:19	74:8 75:9,13	wild 26:3	133:13,16 134:2,5
130:3 133:7,9,11	76:19 79:16 83:9	williamson 6:7	135:24
version 28:5,7	83:16,17 89:20	wind 124:21	word 28:24 29:1
30:18 31:9,12	91:24 92:25 93:11	witness 1:17 3:3	68:7 113:6 129:1
versus 4:13,16	93:12 96:19	5:14 7:8 14:5	words 55:5 96:10
40:22 55:19	107:23 108:3	15:12,20,22 16:2	work 13:4 28:2
video 1:17 4:8	109:3 111:17	16:24 17:9 18:4	29:22 42:19 114:3
33:14	114:3 119:20	19:6 20:1,14,22	117:7 118:19
videographer 2:22	123:22 124:11,13	21:4,12,19 22:7,14	127:20,21
4:5,20 5:13,21	125:4 128:7	24:10 25:7 27:2	worked 111:11
51:19,23 102:15	ways 18:7,13 23:3	30:20,23 32:10	works 31:15
102:25 103:4	30:13 36:6,10	33:2,3,22 34:9,16	109:18 111:4
129:8,12,24	40:16 41:22 42:2	35:17 36:5 38:11	world 107:18
videos 33:16,17	42:7 43:8 47:5	38:12 39:25 40:7	108:6
view 17:6 41:2	50:12 58:21 70:10	40:24 41:5 42:18	worry 71:16
45:11 54:8,18	74:21 75:13,14,24	43:21 44:21 45:5	wow 113:22
56:17,24 57:22	76:13,17 79:7	47:4 49:1,10 50:5	write 18:15 20:5
58:14 63:3 76:19	81:8,10,14 82:17	50:16 51:4 54:3	written 15:24 18:9
81:17 82:7,12	82:20,21,23 83:15	54:10 56:3 57:25	18:16 19:17,21,24
88:14 95:5	83:19 88:16,25	58:17 59:7,11	40:11
virtual 19:9,13	89:2 93:5,8,11	60:5,14 61:22	wrong 29:2,3
virtue 66:5	94:13 98:21 108:5	62:20 63:7 67:21	wrote 52:14
vs 1:6,11 133:4	108:15 109:2	71:20 77:3,19	X
135:1	111:7,9 115:1	78:10 79:22 80:3	x 3:1,10 132:18
W	118:19 121:16	80:16 81:8 82:10	134:1
w 2:11	122:18 124:10	82:23 83:8,23	
waived 133:23,23	127:1	84:24,25 85:7,9,20	y
waiving 133:20	we've 48:15 51:15	87:2,10,12 88:16	yeah 27:25 28:10
waiving 155.20	102:5 116:21	90:12 91:14 92:9	28:22 49:10 58:17

[yeah - zoom]

[yeah - zoom]
60:5 100:7 111:3
114:8
year 8:20
years 13:21 108:8
Z
zero 85:24 88:5
91:6,11 92:7
93:25 94:2,3,3 zoom 1:17
ZUOIII 1.17

Federal Rules of Civil Procedure Rule 30

- (e) Review By the Witness; Changes.
- (1) Review; Statement of Changes. On request by the deponent or a party before the deposition is completed, the deponent must be allowed 30 days after being notified by the officer that the transcript or recording is available in which:
- (A) to review the transcript or recording; and
- (B) if there are changes in form or substance, to sign a statement listing the changes and the reasons for making them.
- (2) Changes Indicated in the Officer's Certificate. The officer must note in the certificate prescribed by Rule 30(f)(1) whether a review was requested and, if so, must attach any changes the deponent makes during the 30-day period.

DISCLAIMER: THE FOREGOING FEDERAL PROCEDURE RULES

ARE PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

THE ABOVE RULES ARE CURRENT AS OF APRIL 1,

2019. PLEASE REFER TO THE APPLICABLE FEDERAL RULES

OF CIVIL PROCEDURE FOR UP-TO-DATE INFORMATION.

VERITEXT LEGAL SOLUTIONS COMPANY CERTIFICATE AND DISCLOSURE STATEMENT

Veritext Legal Solutions represents that the foregoing transcript is a true, correct and complete transcript of the colloquies, questions and answers as submitted by the court reporter. Veritext Legal Solutions further represents that the attached exhibits, if any, are true, correct and complete documents as submitted by the court reporter and/or attorneys in relation to this deposition and that the documents were processed in accordance with our litigation support and production standards.

Veritext Legal Solutions is committed to maintaining the confidentiality of client and witness information, in accordance with the regulations promulgated under the Health Insurance Portability and Accountability Act (HIPAA), as amended with respect to protected health information and the Gramm-Leach-Bliley Act, as amended, with respect to Personally Identifiable Information (PII). Physical transcripts and exhibits are managed under strict facility and personnel access controls. Electronic files of documents are stored in encrypted form and are transmitted in an encrypted fashion to authenticated parties who are permitted to access the material. Our data is hosted in a Tier 4 SSAE 16 certified facility.

Veritext Legal Solutions complies with all federal and State regulations with respect to the provision of court reporting services, and maintains its neutrality and independence regardless of relationship or the financial outcome of any litigation. Veritext requires adherence to the foregoing professional and ethical standards from all of its subcontractors in their independent contractor agreements.

Inquiries about Veritext Legal Solutions' confidentiality and security policies and practices should be directed to Veritext's Client Services Associates indicated on the cover of this document or at www.veritext.com.