EE2022 Electrical Energy Systems

Lecture 5: AC Power Problem Solving

Instantaneous power:

Average Power in a Resistor

$$p(t) = V_m I_m Cos^2 \omega t = \frac{1}{2} \left[1 + c_n 2\omega t \right]_{n=1}^{\infty} V_m$$

Average of this function is equal to half of the peak amplitude:

$$P_{R,avg} = \frac{V_m I_m}{2}$$

$$P_{R,avg} = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} = V_{rms} I_{rms}$$

$$V_{rms} = RI_{rms}$$

Current, voltage, and power versus time for a purely resistive |

Average Power in an Inductor

$$p(t) = V_{rms} I_{rms} \sin(2\omega t)$$

Average power, $P_{avg} = 0$

Average Power in a Capacitor

$$p(t) = V_{rms}I_{rms}\sin(2\omega t)$$

Average power, $P_{avg} = 0$

Real, Reactive and Apparent Power

Generic Load

Apparent Power

We express power in d.c. and a.c. circuits as follows:

$$P_{dc} = V_{dc}I_{dc}$$
 Watts

$$P_{ac} = V_{rms} I_{rms} \cos \theta$$
 Watts

Apparent Power $|S| = V_{rms} I_{rms}$ VA (volt-amperes)

So, the power in a.c. circuit may also be expressed in terms of apparent power as follows:

$$P = |S| \cos \theta$$

Power Triangle

P – Real (or active) power; power consumed in the resistive part of the circuit

Q – Reactive power consumed by the device, due to inductor or capacitor

Example 2: Compute the instantaneous, average, real and reactive powers in the following circuit if $v(t)=14.14 \sin((377t))$ $\sqrt{214.14}$

Complex Power

Apparent power, |S| =V_{rms} I_{rms}

Complex Power

Complex power $S = V_{\cdot}I^{*}$ Complex power, $S = V_{rms}I_{rms}\cos\theta + jV_{rms}I_{rms}\sin\theta$

$$S = |S| \cos \theta + j |S| \sin \theta$$
$$= (P) + jQ$$

S	Complex power	VA	$S = S \angle \theta = P + jQ = VI^* =$
			$= V I \angle \theta = V I (\cos \theta + j \sin \theta)$
5	Apparent power	VA	$ S = V I = \sqrt{P^2 + Q^2}$
Р	Active power Average power, Real power	W	$P = \operatorname{Re}(S) = S \cos(\theta) = V I \cos(\theta)$
Q	Reactive power	var	$Q = \operatorname{Im}(S) = S \sin(\theta) = V I \sin(\theta)$

Example 1: A voltage source with series resistor is connected to a parallel combination of inductor and resistor. Find the complex power, and hence real power and reactive power delivered to the load.

Power Factor of an a.c. circuit

Now, we will define Power Factor of an a.c. circuit as the ratio of real power to the apparent power.

Power Factor
$$=\frac{P}{|S|} = \frac{P}{|V|\,|I|} = \cos\theta$$

S P

Power factor angle (θ) is the same in <u>power triangle</u>, <u>impedance</u> triangle, and the angle between voltage and current.

Leading \ Lagging Power Factor

Power Factor

$$P = |S|\cos(\theta) = |V||I|\cos(\theta)$$

$$|S| = \sqrt{P^2 + Q^2}$$

$$P - \begin{cases} \int \cos(\theta) = \frac{P}{|S|} = \frac{P}{\sqrt{P^2 + Q^2}} \end{cases}$$

$$\cos(\theta) = \cos\left(\tan^{-1}\left(\frac{Q}{P}\right)\right)$$

Power Factor Correction

Loads are usually connected to a fixed voltage supply, e.g. 220V, 50 Hz in Singapore,

hence V_{rms} is given.

$$p. f. = \frac{P}{V_{rms}I_{rms}}$$

To deliver a certain amount of power to the load, current will be larger if power factor is smaller.

Hence it is desirable that power factor be as close to 1 as possible. i.e. θ should be as small as possible.

Once the load is connected, its θ cannot be changed.

Another reactive element can be added parallel to the load to improve power factor.

If the load is originally inductive, choose a capacitor
If the load is originally capacitive, choose an inductor as correcting device

Power Factor Correction

If P is the active power consumption of the load, the current drawn by the load can be

When a capacitor is connected to improve the power factor, the current

drawn by this capacitor: $Q_{c} = Q_{new} - Q_{ad}$

Power Factor Correction

Example 2 - Power Factor Correction

A load connected across a 200 V, 50Hz line draws 10 kW at 0.5 power factor lagging. A capacitor C is now connected in parallel with the load to improve the power factor. What must be the value of C to make the overall power factor

(i) 0.9 lagging, (ii) unity and (iii) 0.8 leading?

Solution: Take source voltage as reference. So, current drawn at 0.5 p.f.

lagging is

$$\begin{array}{c|c}
I' & I \\
V & C & Load
\end{array}$$

Case 1: 0.9 lagging

2 c 2 2 new - old = 4843-17320 = -12477 = -12477

Prem f j Qnew = Pold f J Qnew = 10000 f j Qnew .

Znew = P & Sh (cost (ff. new))

10000. Sm (c31(0.9)) = 4843 1-9 VAR

Case 2: Unity p.f.

$$C = \frac{\&c}{\&V^2} = \frac{17320}{25 \times 50 \times 200}$$

Case 3: 0.8 leading

Qnew:
$$\frac{f}{pf}$$
. Six $(-36.87) = -7500 VAR$.

Transmission Line Loss

Industrial load connected to a substation

 V_S = Substation or sending end voltage.

 V_L = Voltage at the load.

I = Current drawn by the load.

R = Resistance of the transmission line.

X = Reactance of the transmission line.

The transmission line loss is given by: $P_{loss} = |I|^2 R$

For the same real power demand, if the power factor of the load decreases, then |I| increases as shown by the following equation. This results in heavy line losses.

$$|I| = \frac{P}{|V| \cos \theta}$$

A poor power factor results in higher current and hence higher power loss.

Capital Cost of Power Plants

Three industrial customers A, B and C are drawing power from the Power Plant. Let the load at each of the three industries be 100 MW at a p.f. of 0.5 lagging. The maximum demand of each consumer is

Max. Demand
$$= |V||I| = \frac{P}{\cos \theta} = \frac{100}{0.5} = 200 \text{ MVA}$$

So the installed capacity of the plant should be

$$\sum$$
 Max. Demand = 600 MVA

If \$X is the capital cost per annum per MVA of the plant, the total annual capital cost is

Capital cost = \$600X

The three consumers will share the capital cost equally in this case and each will pay \$200X.

If the load at each of the three industries is 100 MW at unity p.f., the maximum demand of each consumer is

$$\text{Max. Demand } = |V||I| = \frac{P}{\cos \ \mathbf{\theta}} = \frac{100}{1.0} = 100 \ \text{MVA}$$

So the installed capacity of the plant should be

$$\sum$$
 Max. Demand = 300 MVA

As the plant capacity is only 300 MVA, the total annual capital cost in this case is

Capital cost = \$300X

The three consumers will share the capital cost equally in this case also and each will pay \$100X.

Two points become evident from this example:

- Plant capacity gets affected by the maximum demand of each consumer.
- Annual capital cost gets affected by the power factor of the load.