Truck – 10t capacity

What is the optimum cargo combination of the following items?

- •Item 1: \$5 (3t)
- •Item 2: \$7 (4t)
- •Item 3: \$8 (5t)

First, define output function *f(i,w)*

Function f is the optimum value for a combination of items 1 to i with a cumulative weight of w or less.

- •Item 1: value₁=\$5; w_1 =3t
- •Item 2: value₂ = \$7; w_2 = 4t
- •Item 3: value₃ = \$8; w_3 = 5t

Output function f(i,w)

ONE Item i + optimum combination of weight w-w_i

NO Item i + optimum combination items 1 to i-1

	1	2	3	4	5	6	7	8	9	10
1			U	sing	j on	ly i	tem	1		
2										
3										

	1	2	3	4	5	6	7	8	9	10
1										
2			Usiı	ng c	nly	ite	m 1	& 2		
3										

	1	2	3	4	5	6	7	8	9	10	
1											
2											
3			Usi	ng	iten	ns 1	, 2	& 3			

$$f(i,w)=Max[value_i + f(i,w-w_i) ; f(i-1,w)]$$

Table – filling in f(2, 5)

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10	10	10	15	15
2	0 •	0	5	7						
3										

3t / \$5

4t / \$7

+ value₂ (= 7) ____
$$\overline{5-4} = 1$$

$$f(i,w)=Max[(value_i + f(i,w-w_i))]; f(i-1,w)]$$

Table – filling in f(2, 5)

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10	10	10	15	15
2	0 •	0	5	7	7					
3										

3t / \$5

4t / \$7

+ value₂ (= 7)

$$f(i,w)=Max[value_i + f(i,w-w_i)]$$

; **f(i>1,w)**

Table – filling in f(2, 6)

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10,	10	10	15	15
2	0	0,	5	7	7					
3										

3t / \$5

4t / \$7

+ value₂ (= 7) _____
$$6 - 4 = 2$$

$$f(i,w)=Max[(value_i + f(i,w-w_i))(; f(i-1,w))]$$

Table – filling in f(2, 6)

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10,	10	10	15	15
2	0	0,	5	7	7	10				
3										

3t / \$5

4t / \$7

$$+ value_2 (= 7)$$

 $f(i,w)=Max[value_i + f(i,w-w_i)]; f(i-1,w)]$

Knapsack Problem (truck)

Table – fill row for first item

	1	2	3	4	5	6	7	8	9	10	•
1											

(Fill in table values)

Knapsack Problem (truck)

Table – fill row for second item

	1	2	3	4	5	6	7	8	9	10	Weight
1											3t / \$5
2											4t / \$7

Knapsack Problem (truck)

Table – fill row for third item

	1	2	3	4	5	6	7	8	9	10	Weight
1											3t / \$5
2											4t / \$7
3											5t / \$8

İ

(item number)

COMPLETED TABLE

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10	10	10	15	15
2	0	0	5	7	7	10	12	14	15	17
3	0	0	5	7	8	10	12	14	15	17

Path – Which items were used?

	1	2	3	4	5	6	7	8	9	10
1	0	0	5	5	5	10	10	10	15	15
2	0	0	5	7	7	10	12	14	15	17
3	0	0	5	7	8	10	12	14	15	1 7

Item 1 Item 2

Optimal: $2 \times 1 + 1 \times 1 \times 2$