

Limitless HTTP in an HTTPS World

Inferring the Semantics of the HTTPS Protocol without Decryption

Blake Anderson, PhD †; Andrew Chi †‡; Scott Dunlop †; and David McGrew, PhD † Cisco, ‡ University of North Carolina contact: blake.anderson@cisco.com

ANRW 2019 (originally presented at CODASPY'19) July 22, 2019

Overview

- ► Goal: Given a stream of encrypted TLS applications records, infer:
 - the underlying HTTP frames, and
 - for HEADERS frames, identify fields/values
- ▶ Higher level goals: Use these techniques to improve the detection of ...
 - Defender: malicious communication/websites, data exfiltration
 - Attacker: blocked domains

Motivation

Motivation

TLS Application Data Records

Encrypted HTTP/2 Frames

Extracting TLS Key Material

```
struct ssl_session_st {
  int ssl_version;
  unsigned int key_arg_length;
  unsigned char key_arg[8];
  int master_key_length;
  unsigned char master_key[48];
  unsigned int session_id_length;
  unsigned char session_id[32];
  ...
```

Decrypting TLS

- Extracting Key Material
 - SSLKEYLOGFILE environment variable when available
 - Regular expressions for OpenSSL, BoringSSL, NSS, Schannel, Tor AES keys
 - ullet Regular expressions tuned to run in \sim 400ms for 1GB memory dump
- ► Decrypting TLS Sessions
 - Bespoke python program supporting SSL 2.0 TLS 1.3
 - Support for HTTP/1.x, HTTP/2.0, Tor
 - Write output as either JSON or a decrypted pcap

```
"type": "application_data",
"length": 1052,
```

```
"type": "application_data",
"length": 1052,
"decrypted_data": {
 "protocol": "Tor",
 "length": 1028,
 "cells": [
     "circ_id": "xxxxxxxx",
     "cell_type": "RELAY",
     "command": "RELAY_DATA",
     "stream_id": "xxxx",
     "digest": "xxxxxxxx",
     "length": 340,
```

Tor Protocol

```
"type": "application_data",
"length": 1052,
"decrypted_data": {
  "protocol": "Tor",
  "length": 1028,
  "cells": [
      "circ_id": "xxxxxxxx",
      "cell_type": "RELAY",
      "command": "RELAY DATA".
      "stream_id": "xxxx",
      "digest": "xxxxxxxxx",
      "length": 340,
      "decrypted_data": {
        "tls_records": [
            "type": "application_data",
            "length": 335.
```

Tor Protocol

TLS Protocol

```
"type": "application_data",
"length": 1052,
"decrypted data": {
 "protocol": "Tor",
 "length": 1028,
 "cells": [
     "circ_id": "xxxxxxxx",
     "cell_type": "RELAY",
     "command": "RELAY DATA".
     "stream_id": "xxxx",
     "digest": "xxxxxxxxx",
     "length": 340,
     "decrypted_data": {
        "tls_records": [
            "type": "application_data",
            "length": 335.
            "decrypted_data": {
              "method": "GET",
              "uri": "/".
              "v": "HTTP/1.1",
              "headers": [
             1.
```

Tor Protocol

TLS Protocol

HTTP Protocol

Decryption Lab

- ► Chrome, Firefox, Tor Browser
- ► Contact each site in the Alexa top-1,000 daily
- ► Record packet captures and key material
 - $\{Firefox, Chrome\} \rightarrow SSLKEYLOGFILE$
 - ullet Tor Browser o memory snapshots of the tor and firefox processes

Malware Sandbox

- ▶ Production malware analysis system running Windows 7 and 10
- ► Submitted samples ran for 5 minutes
- ▶ Key material extracted from memory dump post-run
 - $\bullet~\sim\!80\%$ of TLS connections successfully decrypted

Datasets

Dataset Name	TLS	HTTP/1.1	HTTP/2	
	Connections	TX's	TX's	
firefox	61,091	72,828	132,685	
chrome	379,734	515,022	561,666	
tor	6,067	50,799	0	
malware	86,083	182,498	14,734	

Data Features

We analyze the current, preceding 5, and following 5 TLS records; for each TLS record, we extract:

- 1. The number of packets
- 2. The number of packets with the TCP PUSH flag set
- 3. The average packet size in bytes
- 4. The type code of the TLS record
- 5. The TLS record size in bytes
- 6. The direction of the TLS record

Iterative Classification

Algorithm 1 Iterative HTTP Inference

```
1: procedure iterative_semantics_classify
2:
       given:
          conn := features describing connection
4:
       alp ← application_layer_protocol(conn)
5: 6:
7: 8:
9:
       recs ← classify_message_types(conn, alp)
       for rec \in recs do:
          if rec.type \neq Headers then:
              continue
          get_record_features(rec, alp)
10:
            classify_semantics(rec, alp)
11:
        while not converged do:
            for rec \in recs do:
               if rec.type \neq Headers then:
14:
15:
                   continue
               get_record_features(rec, alp)
16:
               get_inferred_features(rec, alp)
17:
               classify_semantics(rec, alp)
```

Interesting Inferences

Problem	HTTP/1.1 Label Set	HTTP/2 Label Set		
method (request)	GET, POST, OPTIONS	GET, POST, OPTIONS		
	HEAD, PUT	HEAD		
Content-Type (request)	json, plain	json, plain		
status-code (response)	100, 200, 204, 206, 302	200, 204, 206, 301, 302		
	303, 301, 304, 307, 404	303, 304, 307, 404		
Content-Type (response)	html, javascript, image	html, javascript, image		
	video, css, octet, json	video, css, octet, json		
	font, plain	font, plain, protobuf		
Server (response)	nginx-1.13/1.12/1.11/1.10	nginx-1.13/1.12/1.11/1.10		
	nginx-1.8/1.7/1.4, Apache	nginx-1.6/1.4/1.3, nginx		
	cloudflare-nginx, nginx	cloudflare-nginx, Apache		
	AmazonS3, NetDNA/2.2	Coyote/1.1, IIS/8.5, sffe		
	IIS-7.5/8.5, jetty-9.4/9.0	Golfe2, UploadServer		
	openresty, Coyote/1.1	gws, Dreamlab, Tengine		
		Akamai, cafe, Google, GSE		
		Dreamlab, Tengine, ESF		
		AmazonS3, NetDNA/2.2		

Results

		HTTP/1.1			HTTP/2				
Problem	Dataset	Time-Based Split		SNI-Based Split		Time-Based Split		SNI-Based Split	
		F ₁ Score	Acc	F ₁ Score	Acc	F ₁ Score	Acc	F ₁ Score	Acc
message-type	firefox	0.996	0.996	0.995	0.996	0.987	0.991	0.981	0.990
	chrome	0.991	0.993	0.989	0.991	0.986	0.986	0.982	0.984
	malware	0.995	0.996	0.995	0.996	0.981	0.989	0.979	0.986
	tor	0.869	0.878	0.845	0.848				
method	firefox	0.943	0.995	0.956	0.961	0.989	0.997	0.877	0.993
	chrome	0.978	0.998	0.947	0.957	0.936	0.999	0.913	0.993
	malware	0.705	0.996	0.831	0.981	0.687	0.985	0.807	0.987
	tor	0.846	0.965	0.865	0.973				
Content-Type	firefox	0.967	0.978	0.909	0.933	0.982	0.985	0.933	0.956
	chrome	0.977	0.993	0.874	0.875	0.998	0.998	0.842	0.864
	malware	0.888	0.900	0.853	0.862	0.711	0.887	0.811	0.890
	tor	0.836	0.904	0.659	0.864				
Cookie (b)	firefox	0.967	0.974	0.882	0.892	0.941	0.948	0.832	0.867
	chrome	0.977	0.977	0.929	0.934	0.953	0.958	0.856	0.941
	malware	0.916	0.918	0.876	0.876	0.898	0.913	0.850	0.861
	tor	0.756	0.823	0.657	0.740				

Results - Content-Type

Conclusions

- ▶ Detailed inferences about the encrypted HTTP protocol are possible with careful dataset construction and feature selection
- ► Multiplexing and fixed-length records provide a valuable defense against these techniques
- ▶ Results are client dependent; TLS fingerprinting can provide guidance

THANK YOU

