588 West Jindu Road, Songjiang District, Shanghai, China

Telephone: +86 (0) 21 6191 5666 Report No.: SHEMO10080104805

Fax: +86 (0) 21 6191 5655 Page 1 of 42

Tino.Pan@sgs.com

TEST REPORT

Application No.: SHEMO10080104805

Applicant: Celsius X VI II

Address: Paris Innovation République - Celsius X VI II

18, rue du Faubourg du Temple

75011 Paris - FRANCE

FCC ID: YVQ2N1 Equipment Under Test (EUT): EUT Name: 2N1

Brand Name: Celsius X VI II

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Standards: FCC Part 2, 24E

Date of Receipt: Aug 16, 2010

Date of Test: Aug 16, 2010 to Sep 30, 2010

Date of Issue: Sep 30, 2010

Test Result : PASS *

Tino Pan

E&E Section Manager

SGS-CSTC(Shanghai) Co., Ltd.

Jack Wu

Project Engineer

SGS-CSTC(Shanghai) Co., Ltd.

Jack Wu

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above. Please refer to section 2 of this report for further details.

ReportNo.: SHEMO10080104805

Page: 2 of 42

2 Test Summary

Description of Test	FCC Rules	Result
RF Power Output	2.1046(a) 24.232(c)	Compliant
Occupied Bandwidth	2.1049(h)	Compliant
Effective Isotropic Radiated Power	2.1046(a) 24.232(c)	Compliant
Out of Band Emissions at antenna Terminals and Band Edge	2.1051 24.238(a)	Compliant
Field Strength of Spurious Emissions	2.1053 24.238(a)	Compliant
Frequency Stability vs. Temperature and Voltage	2.1055(a)&(d)	Compliant

ReportNo.: SHEMO10080104805

Page: 3 of 42

3 Contents

			Page
1	CC	OVER PAGE	1
2	TE	EST SUMMARY	2
3	CC	ONTENTS	3
4		ENERAL INFORMATION	
	4.1	CLIENT INFORMATION	3
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	TEST LOCATION	
	4.4	TEST FACILITY	
	4.5	TEST METHODOGY	
5	EC	QUIPMENTS USED DURING TEST	3
6	TE	EST RESULTS	3
	6.1	E.U.T. TEST CONDITIONS	3
	6.2	RF Power Output	3
	6.3	OCCUPIED BANDWIDTH	3
	6.4	EFFECTIVE ISOTROPIC RADIATED POWER	3
	6.5	OUT OF BAND EMISSIONS AT ANTENNA TERMINALS	3
	6.5	.5.1 Band edges emissions	
	6.6	FIELD STRENGTH OF RADIATED SPURIOUS EMISSIONS	
	6.7	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
	6.8	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	3
	6.9	CONDUCTED EMISSIONS MAINS TERMINALS, 150 KHZ TO 30MHZ	3

ReportNo.: SHEMO10080104805

Page: 4 of 42

4 General Information

4.1 Client Information

Applicant: Celsius X VI II

Address of Applicant: Paris Innovation République - Celsius X VI II

18, rue du Faubourg du Temple

75011 Paris - FRANCE

Manufacturer: Celsius X VI II

Address of Manufacturer: Paris Innovation République - Celsius X VI II

18, rue du Faubourg du Temple

75011 Paris - FRANCE

4.2 General Description of E.U.T.

EUT Name:	2N1
Brand Name:	Celsius X VI II
Model No:	2N1
Marketing Name:	LeDIX
Support Frequency Band:	GSM 900/1800/1900
Testing Frequency Band:	GSM 1900
Power Supply:	Model: FS5GU, Reference: PI00200005AA (Input :100-240V~ 50-60 Hz, 75mA, Output : 5.0 VDC, 600mA)
Battery:	Celsius battery DC 3.7V, Reference: PI00200001AA

GSM 1900

	Operating frequency	Rated Power			
Cellular phone standards Frequency Range and Power:	GSM/GPRS/E-GPRS 1900	GSM/GPRS/E-GPRS 1900 1850MHz-1910MHz			
IMEI:	358751030001594	-			
Hardware Version:	V0x				
Software Version:	EA, V19				

ReportNo.: SHEMO10080104805

Page: 5 of 42

4.3 Test Location

Tests were performed at:

SGS-CSTC Standards Technical Services(Shanghai) Co., Ltd. 588 West Jindu Road, Songjiang District, Shanghai, China

Tel: +86 21 61915666 Fax: +86 21 61915655

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. Date of expiry: 2011-07-29.

FCC – Registration No.: 402683

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered and fully described in a report filed with the Federal Communications Commission (FCC). The acceptance letter from the FCC is maintained in our files. Registration No.: 402683, Expiry Date: 2012-03-17.

Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A. Expiry Date: 2011-09-29.

4.5 Test Methodogy

Both conducted and radiated testing were performed according to the procedures document on TIA/EIA-603-C-2004 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

ReportNo.: SHEMO10080104805

Page: 6 of 42

5 Equipments Used during Test

2011-6-3 2011-6-3 2011-4-10 2011-6-3
2011-6-3
2011-4-10
011-6-3
010-10-8
2010-10-14
011-04-26
2010-10-14
011-6-17
011-1-15
2011-5-7
011-5-4
2011-08-24
011-1-26
011-1-26
2011-6-3
200

ReportNo.: SHEMO10080104805

Page: 7 of 42

6 Test Results

6.1 E.U.T. test conditions

Operating Environment:

Temperature: 20.0 -25.0 °C

Humidity: 38-52% RH

Atmospheric Pressure: 992 -1010 mbar

Configuration of

Tested System:

Remote Side

CMU200

ReportNo.: SHEMO10080104805

Page: 8 of 42

6.2 RF Power Output

Test Requirement: 2.1046(a)

24.232(c) Mobile and portable stations are limited to 2 watts

Test Setup

Measurement Setup for testing on Antenna connector.

Test Date: Sep 07, 2010

Test Status: Test lowest, middle, highest channel.

Test Procedure:

The transmitter output was connected to calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power in dBm. The power output at the transmitter antenna port was determined by adding the value of attenuator to the power meter reading.

ReportNo.: SHEMO10080104805

Page: 9 of 42

RF Conducted output power:

PCS 1900(GMSK) Result:

Frequency(MHz)	Frequency(MHz) Channel:		AV power
		(dBm)	(dBm)
1850.2	512	29.3	29.1
1880.0	1880.0 661		29.0
1909.8	810	29.0	28.9

PCS 1900(8-PSK) Result:

Frequency(MHz) Channel:		Peak power	AV power
		(dBm)	(dBm)
1850.2	1850.2 512		25.4
1880.0	1880.0 661		25.0
1909.8 810		28.4	25.4

ReportNo.: SHEMO10080104805

Page: 10 of 42

6.3 Occupied Bandwidth

Test Requirement: 2.1049(h)
Test Date: Sep 07, 2010

Test Status: Test lowest, middle, highest channel.

Test Procedure:

The EUT output RF connector was connected with a short a cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW>=3 times RBW, 99% bandwidth were measured, the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

Test result:

EUT Mode	Frequency (MHz)	СН	99% Bandwidth (kHz)
DCC 1000	1850.2	512	243.590
PCS 1900 GMSK	1880.0	661	243.590
GWBK	1909.8	810	243.590
EUT Mode	Frequency (MHz)	СН	99% Bandwidth (kHz)
DCC 1000	1850.2	512	237.180
PCS 1900 8-PSK	1880.0	661	243.590
0.151	1909.8	810	243.590

EUT Mode	Frequency (MHz)	СН	26dB Bandwidth (kHz)
DCC 1000	1850.2	512	325.705
PCS 1900 GMSK	1880.0	661	322.116
OMSK	1909.8	810	323.718
EUT Mode	Frequency (MHz)	СН	26dB Bandwidth (kHz)
DCC 1000	1850.2	512	325.705
PCS 1900 8-PSK	1880.0	661	323.718
	1909.8	810	327.308

ReportNo.: SHEMO10080104805

Page: 11 of 42

99% bandwidth

GSM 1900 GMSK

Graph: Channel Low

Channel Middle

ReportNo.: SHEMO10080104805

Page: 12 of 42

Channel High

GSM 1900 8-PSK

Graph: Channel Low

ReportNo.: SHEMO10080104805

Page: 13 of 42

Channel Middle

Channel High

ReportNo.: SHEMO10080104805

Page: 14 of 42

26dB bandwidth GSM 1900 GMSK

Channel Middle

ReportNo.: SHEMO10080104805

Page: 15 of 42

Channel High

GSM 1900 8-PSK

Graph: Channel Low

ReportNo.: SHEMO10080104805

Page: 16 of 42

Channel Middle

Channel High

ReportNo.: SHEMO10080104805

Page: 17 of 42

6.4 Effective Isotropic Radiated Power

Test Requirement: 2.1046(a)

24.232(c) Mobile and portable stations are limited to 2 watts

Test Date:

Sep 25, 2010

Test Setup:

(A) Radiated emission Test setup, Below Frequency 1000MHz:

(B) Radiated emission Test setup frequency over 1GHz:

(C) Substituted Method Test setup:

ReportNo.: SHEMO10080104805

Page: 18 of 42

Test Procedure:

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.

EIRP in frequency band 1850.5-1909.8MHz were measured using a substitution method. The EUT was replaced by a horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

EIRP= S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss(dB)

ERP/EIRP:GSM/PCS: Below 1GHz was RBW=300KHz, VBW=1MHz; Above 1GHz was RBW=1MHz, VBW=3MHz

ReportNo.: SHEMO10080104805

Page: 19 of 42

Measurement result: The RBW, VBW of SPA for frequency

Below 1GHz was RBW=300KHz, VBW=1MHz;

Above 1GHz was RBW=1MHz, VBW=3MHz.

EUT mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. output (dBm)	Antenna Gain (dBi)	Cable loss (dB)	EIRP (dBm)	Limit (dBm)
	1850.2	512	Н	V	101.83	18.96	9.15	4.45	23.66	33.00
DCC	1630.2	312	п	Н	99.53	16.92	9.15	4.45	21.62	33.00
PCS 1900	1000.0	661	**	V	101.17	18.76	9.22	4.57	23.41	33.00
GMSK	1880.0	661	Н	Н	99.38	16.68	9.22	4.57	21.33	33.00
GWSK	1909.8	810	Н	V	100.87	17.77	9.25	4.48	22.54	33.00
				Н	99.01	16.21	9.25	4.48	20.98	33.00
EUT mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. output (dBm)	Antenna Gain (dBi)	Cable loss (dB)	EIRP (dBm)	Limit (dBm)
	1050.0	510	**	V	100.16	17.39	9.15	4.45	22.09	33.00
	1850.2	512	Н	Н	98.33	15.38	9.15	4.45	20.08	33.00
PCS	1000.0	661	***	V	100.62	17.66	9.22	4.57	22.31	33.00
1900	1880.0	661	Н	Н	98.59	15.47	9.22	4.57	20.12	33.00
8-PSK	1000.0	010	11	V	99.75	17.21	9.25	4.48	21.98	33.00
	1909.8	810	Н	Н	97.84	15.10	9.25	4.48	19.87	33.00

ReportNo.: SHEMO10080104805

Page: 20 of 42

6.5 Out of band emissions at antenna Terminals

6.5.1 Band edges emissions

Test Requirement: Part 2.1051

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log(Mean power in watts) dBc below the mean

power output outside a license's frequency block(-13dBm).

Test Date: Sep 07, 2010

Test Procedure:

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emission is any up to 10th harmonic.

For the out of band: set RBW=1MHz, VBW=3MHz, stat=30MHz, stop= 10 th harmonic. Limit= -- 13dBm Band Edge requirements: In 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 % of bandwidth of fundamental emission of the transmitter any be employed to measure the out of band emission. Limit=--13dBm.

ReportNo.: SHEMO10080104805

Page: 21 of 42

Measurement result: GSM 1900 GMSK:

Channel Low

ReportNo.: SHEMO10080104805

Page: 22 of 42

Channel Mid

ReportNo.: SHEMO10080104805

Page: 23 of 42

Channel High

ReportNo.: SHEMO10080104805

Page: 24 of 42

Band Edge emission Channel Low

Band Edge emission Channel high

ReportNo.: SHEMO10080104805

Page: 25 of 42

ReportNo.: SHEMO10080104805

Page: 26 of 42

Channel Mid

ReportNo.: SHEMO10080104805

Page: 27 of 42

Channel High

ReportNo.: SHEMO10080104805

Page: 28 of 42

Band Edge emission Channel Low

Band Edge emission Channel high

ReportNo.: SHEMO10080104805

Page: 29 of 42

6.6 Field Strength of Radiated Spurious Emissions

Test Requirement: Part 2.1051

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log(Mean power in watts) dBc below the mean

power output outside a license's frequency block(-13dBm).

Test Date: Sep 27, 2010 to Sep 28, 2010

Test Procedure:

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emission is any up to 10th harmonic.

For the out of band: set RBW, VBW=1MHz, stat=30MHz, stop= 10 th harmonic. Limit= -- 13dBm.

Band Edge requirements: In 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 % of bandwidth of fundamental emission of the transmitter any be employed to measure the out of band emission. Limit=--13dBm.

Test Setup:

(A) Radiated emission Test setup, Below Frequency 1000MHz:

ReportNo.: SHEMO10080104805

Page: 30 of 42

(B) Radiated emission Test setup frequency over 1GHz:

(C) Substituted Method Test setup:

Test Procedure:

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ReportNo.: SHEMO10080104805

Page: 31 of 42

EIRP in frequency band 1850.5-1909.8MHz were measured using a substitution method. The EUT was replaced by a horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

EIRP=S.G. output (dBm) + Antenna Gain (dBi)-Cable Loss (dB)

Radiated spurious Emission Measurement Result: PCS 1900 mode

Operation mode: TX CH Low mode Fundamental Frequency: 1850.2MHz

Frequency (MHz)	Ant.Pol. H/V	S.G Output (dBm)	Antenna Gain (dBi)	Cable Loss (dBm)	EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
100.0	Н	-55.95	2.6	1	-54.35	-13	41.35
200.0	Н	-56.90	9.1	1.42	-49.22	-13	36.22
800.0	Н	-55.60	8.7	2.86	-49.76	-13	36.76
1800.0	Н	-50.93	7	4.38	-48.31	-13	35.31
3700.4	Н	-42.83	8.35	6.77	-41.25	-13	28.25
5550.6	Н	-43.46	9.55	8.1	-42.01	-13	29.01
7400.8	Н	-48.35	9.75	9.51	-48.11	-13	35.11
9251.0	Н	-46.86	10.55	11.08	-47.39	-13	34.39
100.0	V	-55.57	2.6	1	-53.97	-13	40.97
200.0	V	-56.35	9.1	1.42	-48.67	-13	35.67
800.0	V	-55.00	8.7	2.86	-49.16	-13	36.16
1800.0	V	-50.39	7	4.38	-47.77	-13	34.77
3700.4	V	-44.05	8.35	6.77	-42.47	-13	29.47
5550.6	V	-46.07	9.55	8.1	-44.62	-13	31.62
7400.8	V	-47.80	9.75	9.51	-47.56	-13	34.56
9251.0	V	-46.30	10.55	11.08	-46.83	-13	33.83

Remark:

1 emission behaviors belong to narrowband spurious emission.

2 The result basic equation calculation is as follow:

ERP/EIRP(dBm)=S.G. Output(dBm) + Antenna Gain(dBd/dBi)-Cable Loss

ReportNo.: SHEMO10080104805

Page: 32 of 42

Radiated spurious Emission Measurement Result: PCS 1900 mode

Operation mode: TX CH mid mode Fundamental Frequency: 1880.0MHz

Frequency (MHz)	Ant.Pol. H/V	S.G Output (dBm)	Antenna Gain (dBi)	Cable Loss (dBm)	EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
100	Н	-56.71	2.6	1	-55.11	-13	42.11
200	Н	-57.25	9.1	1.42	-49.57	-13	36.57
800	Н	-55.21	8.7	2.86	-49.37	-13	36.37
1800	Н	-50.77	7	4.38	-48.15	-13	35.15
3760.0	Н	-43.05	8.42	6.84	-41.47	-13	28.47
5640.0	Н	-45.52	9.5	8.31	-44.33	-13	31.33
7520.0	Н	-48.97	9.78	9.6	-48.79	-13	35.79
9400.0	Н	-47.45	10.61	11.32	-48.16	-13	35.16
100.0	V	-55.89	2.6	1	-54.29	-13	41.29
200.0	V	-56.45	9.1	1.42	-48.77	-13	35.77
800.0	V	-55.10	8.7	2.86	-49.26	-13	36.26
1800.0	V	-50.11	7	4.38	-47.49	-13	34.49
3760.0	V	-48.79	8.42	6.84	-47.21	-13	34.21
5640.0	V	-43.69	9.5	8.31	-42.50	-13	29.50
7520.0	V	-47.05	9.78	9.6	-46.87	-13	33.87
9400.0	V	-46.73	10.61	11.32	-47.44	-13	34.44

Remark:

1 emission behaviors belong to narrowband spurious emission.

2 The result basic equation calculation is as follow:

ERP/EIRP(dBm)=S.G. Output(dBm) + Antenna Gain(dBd/dBi)-Cable Loss

ReportNo.: SHEMO10080104805

Page: 33 of 42

Radiated spurious Emission Measurement Result: PCS 1900 mode

Operation mode: TX CH High mode Fundamental Frequency: 1909.8MHz

Frequency (MHz)	Ant.Pol.	S.G Output (dBm)	Antenna Gain (dBi)	Cable Loss (dBm)	EIRP (dBm)	Limit (dBm)	Safe Margin (dB)
100.0	Н	-56.47	2.6	1	-54.87	-13	41.87
200.0	Н	-56.79	9.1	1.42	-49.11	-13	36.11
800.0	Н	-54.07	8.7	2.86	-48.23	-13	35.23
1800.0	Н	-50.61	7	4.38	-47.99	-13	34.99
3981.6	Н	-49.41	8.42	6.88	-47.87	-13	34.87
5972.4	Н	-45.56	9.5	8.48	-44.54	-13	31.54
7963.2	Н	-48.74	9.78	9.7	-48.66	-13	35.66
9954	Н	-47.40	10.61	11.64	-48.43	-13	35.43
100.0	V	-54.98	2.6	1	-53.38	-13	40.38
200.0	V	-55.37	9.1	1.42	-47.69	-13	34.69
800.0	V	-53.67	8.7	2.86	-47.83	-13	34.83
1800.0	V	-49.93	7	4.38	-47.31	-13	34.31
3981.6	V	-46.73	8.42	6.88	-45.19	-13	32.19
5972.4	V	-46.02	9.5	8.48	-45.00	-13	32.00
7963.2	V	-47.76	9.78	9.7	-47.68	-13	34.68
9954.0	V	-46.19	10.61	11.64	-47.22	-13	34.22

Remark:

1 emission behaviors belong to narrowband spurious emission.

2 The result basic equation calculation is as follow:

ERP/EIRP(dBm)=S.G. Output(dBm) + Antenna Gain(dBd/dBi)-Cable Loss

ReportNo.: SHEMO10080104805

Page: 34 of 42

6.7 Frequency Stability V.S. TEMPERATURE MEASUREMENT

Test Requirement:

Part 2.1055(a)(1)

Test Date:

Sep 09, 2010

Test Status:

Test in fixed channel.

Test Setup:

Temperature Chamber

Variable DC Power Supply

Note: Measurement setup for testing On antenna connector.

Test procedure:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the Spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25 degree operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30 degree. After the temperature stabilized for approximately 30 minutes record the frequency. Repeat step measure with 10 degree per stage until the highest temperature of 50 degree reached.

Frequency Tolerance: +/-2.5ppm

ReportNo.: SHEMO10080104805

Page: 35 of 42

PCS1900:

-031900.				
	Reference Frequency:	PCS channel 1850.2M	IHz@ 25 degree	
	Limit:	+/- 2.5ppm = 4700Hz		
Power Supply	Environment	Frequency	Delta	Limit
Vdc	Temperature(degree)	(MHz)	(Hz)	(Hz)
3.9	-30	1850.200055	55	4700
3.9	-20	1850.200046	46	4700
3.9	-10	1850.200019	19	4700
3.9	10	1850.200010	10	4700
3.9	20	1850.200008	8	4700
3.9	30	1850.200011	11	4700
3.9	40	1850.200020	20	4700
3.9	50	1850.200034	34	4700

Reference Frequency: PCS channel 1880MHz@ 25 degree				
	Limit:	+/- 2.5ppm = 4700H	łz	
Power Supply	Environment	Frequency	Delta	Limit
Vdc	Temperature(degree)	(MHz)	(Hz)	(Hz)
3.9	-30	1880.000044	44	4700
3.9	-20	1880.000040	40	4700
3.9	-10	1880.000026	26	4700
3.9	10	1880.000015	15	4700
3.9	20	1880.000006	6	4700
3.9	30	1880.000022	22	4700
3.9	40	1880.000018	18	4700
3.9	50	1880.000029	29	4700

ReportNo.: SHEMO10080104805

Page: 36 of 42

Reference Frequency: PCS channel 1909.8MHz@ 25 degree					
	Limit:	+/- 2.5ppm = 4700F	Iz		
Power Supply	Environment	Frequency	Delta	Limit	
Vdc	Temperature(degree)	(MHz)	(Hz)	(Hz)	
3.9	-30	1909.799976	24	4700	
3.9	-20	1909.799978	22	4700	
3.9	-10	1909.800018	18	4700	
3.9	10	1909.800009	9	4700	
3.9	20	1909.800006	6	4700	
3.9	30	1909.800017	17	4700	
3.9	40	1909.800022	22	4700	
3.9	50	1909.800031	31	4700	

ReportNo.: SHEMO10080104805

Page: 37 of 42

6.8 Frequency Stability V.S. VOLTAGE MEASUREMENT

Test Requirement:

Part 2.1055(d)

Test Date:

Sep 10, 2010

Test Status:

Test in fixed channel.

Test Setup:

Temperature Chamber

Variable DC Power Supply

Note: Measurement setup for testing On antenna connector.

Test procedure:

Set chamber temperature to 25 degree. Use a variable AC power/ DC power supply to power the EUT and set the Voltage to rated voltage. Set the spectrum analyzer RBW enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specified extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.

ReportNo.: SHEMO10080104805

Page: 38 of 42

PCS1900:

Reference Frequency: PCS channel 1850.2MHz@ 25 degree				
	Limit:	+/- 2.5ppm = 4700H	Iz	
Power Supply	Environment	Frequency	Delta	Limit
Vdc	Temperature(degree)	(MHz)	(Hz)	(Hz)
4.1	25	1850.199965	35	4700
4.0	25	1850.199987	13	4700
3.9	25	1850.199997	3	4700
3.8	25	1850.199983	17	4700
3.7	25	1850.199975	25	4700
3.65	25	1850.199976	24	4700

Reference Frequency: PCS channel 1880MHz@ 25 degree				
	Limit:	+/- 2.5ppm = 4700H	Iz	
Power Supply	Environment	Frequency	Delta	Limit
Vdc	Temperature(degree)	(MHz)	(Hz)	(Hz)
4.1	25	1879.999982	18	4700
4.0	25	1879.999989	11	4700
3.9	25	1879.999997	3	4700
3.8	25	1879.999994	6	4700
3.7	25	1879.999986	14	4700
3.65	25	1879.999984	16	4700

ReportNo.: SHEMO10080104805

Page: 39 of 42

Reference Frequency: PCS channel 1909.8MHz@ 25 degree				
	Limit:	+/- 2.5ppm = 4700F	Iz	
Power Supply	Environment	Frequency	Delta	Limit
Vdc	Temperature(degree)	(MHz)	(Hz)	(Hz)
4.1	25	1909.799975	25	4700
4.0	25	1909.799985	15	4700
3.9	25	1909.799994	6	4700
3.8	25	1909.799991	9	4700
3.7	25	1909.799989	11	4700
3.65	25	1909.799984	16	4700

Note: The High voltage is DC 4.1V, the normal voltage is DC 3.9V, and the low voltage is DC 3.65V.

ReportNo.: SHEMO10080104805

Page: 40 of 42

6.9 Conducted Emissions Mains Terminals, 150 kHz to 30MHz

Test Requirement: Part 15.207

Test Method: ANSI C63.4:2003
Test Date: Aug 27, 2010
Frequency Range: 150KHz to 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak if maximised peak within 6dB of Quasi-Peak limit

EUT Operation:

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Plan View of Test Setup

Limit:

Frequency range	Lin dB(t	
MHz	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

Note

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

ReportNo.: SHEMO10080104805

Page: 41 of 42

GSM 1900 connected mode:

Final Measurement Results

Frequency MHz	QP Level dBμV	QP Limit dΒμV	QP Delta dB
2.16455	30.59	56.00	25.41
2.42	37.19	56.00	18.81
2.53851	40.35	56.00	15.65
3.0249	36.67	56.00	19.33
3.19842	35.71	56.00	20.29
3.32842	35.79	56.00	20.21

Frequency	AV Level	AV Limit	AV Delta
MHz	dΒμV	dΒμV	dB
2.16455	15.23	46.00	30.77
2.42	21.09	46.00	24.91
2.53851	24.24	46.00	21.76
3.0249	23.58	46.00	22.42
3.19842	24.17	46.00	21.83
3.32842	23.12	46.00	22.88

ReportNo.: SHEMO10080104805

Page: 42 of 42

Final Measurement Results

3.00089

3.2498

Frequency	QP Level	QP Limit	QP Delta
MHz	dBμV	dΒμV	dB
2.14738	39.87	56.00	16.13
2.27055	41.79	56.00	14.21
2.59993	36.31	56.00	19.69
2.83809	36.33	56.00	19.67
3.00089	32.79	56.00	23.21
3.2498	38.75	56.00	17.25
Frequency	AV Level	ΑV Limit	AV Delta
MHz	dΒμV	dBμV	dB
2.14738	21.26	46.00	24.74
2.27055	26.77	46.00	19.23
2.59993	25.54	46.00	20.46
2.83809	27.18	46.00	18.82

46.00

46.00

26.40

23.51

~End of Report~

19.60

22.49