

Motor Synchrony in Adolescents with Autism Spectrum Disorder:

A Feasibility Study on the Use of a Novel Dance Game Intervention

Allison Langer¹, K. Bartley³, E. Ferguson³, J. Pandey^{2,3}, R.T. Schultz^{2,3}

¹Biological Basis of Behavior Program, ²Department of Pediatrics and Psychiatry

University of Pennsylvania, Philadelphia, USA

³Children's Hospital of Philadelphia Center for Autism Research

INTRODUCTION

- All living beings experience synchrony; birds flock, bees swarm, humans dance. This instinct to coordinate movements with others may be an essential component of human social behavior.
- Recent empirical studies have shown how synchronous movement can increase cooperation, feelings of closeness, and empathy (Wiltermuth et al., 2009; Tarr et al., 2016; Koehne et al., 2016).
- Research is beginning to examine how synchrony may be connected to social context and behavior for people with social impairments, such as those with Autism Spectrum Disorder (ASD).
- Individuals with ASD have motor synchrony deficits and atypical activation and connectivity in brain regions associated with imitation (Marsh et al., 2013; Wasworth et al., 2017; Fishman et al., 2015).

HYPOTHESIS

Motor synchrony plays an important role in successful social communication, thus we expect improving synchronous motor skills will have a positive effect on social communication ability.

Motor Synchrony

Social Communication

OBJECTIVES

- 1. Assess feasibility of an 8 week synchrony-based intervention
- 2. Train and quantify synchronous motor behavior using dance video game
- 3. Examine link between gross motor ability and synchrony ability

METHODS

PARTICIPANTS

Intake Group	Participant ID	Gender	Age in Years	FSIQ (SS)(WASI -II)	ADOS-2 Social Interaction Total	ADOS-2 Calibrated Severity Score (1-10)	SRS Raw
ASD (N=2)	Sync03	M	18	108	12	6	58
	Sync06	M	17	99	10	6	80
TDC (N=2)	Sync04	M	16	103	2	2	13
	Sync05	M	15	104	3	1	18

METHODS, CONT.

1. Assess Feasibility

 Administer Engagement Interview to determine the optimal length, duration, and content of each training session

2. Synchronous Movement

Tracked Body Parts

R Clavicle

R Shoulder

Mid Spine

Lower Spine

Соссух

R Hand

R Hip

R Knee

R Ankle

R Foot

R Toe

Measure baseline synchrony ability pre and post training

Chest

L Clavicle

L Shoulder

L Elbow

L Hand

L Hip

L Knee

L Ankle

L Foot

L Toe

- Train synchronous movement using dance video game (30m/session)
- Use Kinect camera to create 3D skeletal model of subject's body to track movements over time

Synchrony Tracking

3. Gross Motor Ability

 Use Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2) pre and post training to measure manual and body coordination

STUDY DESIGN

PRELIMINARY RESULTS

1. FEASIBILITY

Participant feedback was generally positive in both groups:

Participant Retention Rate: 100%

2. Synchronous Movement

A quantitative pipeline for comparing movement synchrony is being developed and will be applied to each participant at each time.

3. Gross Motor Ability

- TDC Participants performed average (41-59) or just below average (31-40) in both categories compared to age group
- ASD Participants performed below average (31-40) in body coordination and well-below average (30 and below) in manual coordination
- Once complete, BOT-2 T2 scores will be used to compare pre and post intervention coordination ability.

FUTURE DIRECTIONS

- Does gross motor ability predict motor synchrony ability?
- Does motor synchrony intervention have an impact on brain regions involved in imitation processing?

For Phase II:

- Develop finely graded dance video repository to allow for more gradual learning
- Standardize dance instruction using recorded training sessions
- Use measures of social ability to investigate synchrony generalizability

Funding: McMorris Family Foundation

Acknowledgements: Thank you to Dr. Schultz, Dr. Pandey, Emily Ferguson, Keith Bartley, Alison Pomykacz, Katherine

Bassannello, and the families that participated in our research.