Matrix theory - Assignment 9

Shreeprasad Bhat AI20MTECH14011

Abstract—This document proves result on linear transformations

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment9/

1 Problem

Let **V** be the space of $n \times 1$ matrices over F and let **W** be the space of $m \times 1$ matrices over F. Let **A** be a fixed $m \times n$ matrix over F and let T be the linear transformation from **V** into **W** defined by $T(X) = \mathbf{AX}$. Prove that T is the zero transformation if and only if **A** is the zero matrix.

2 Proof

If **A** is a zero transformation, then $\mathbf{AX} = 0$ where **X** can take any value. Let's take $\mathbf{X_j}$ as vector with jth entry 1 and remaining 0. Now $\mathbf{AX_j} = 0 \implies \mathbf{A_j} = 0$. Since $\mathbf{A_j} = 0$, for j=1,2,...n in the linear transformation $\mathbf{AX} = 0$, **A** is zero matrix.

Let us assume **A** is a zero matrix, then $0.\mathbf{X} = 0, \forall \mathbf{X} \in F$. Hence the if **A** is zero matrix, linear transformation $T(X) = \mathbf{AX}$ is the zero transformation.