Técnicas y Herramientas Modernas

2025-04-23

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                         dist
##
    Min.
          : 4.0
                   Min.
                           : 2.00
   1st Qu.:12.0
                   1st Qu.: 26.00
    Median:15.0
                   Median: 36.00
##
   Mean
           :15.4
                   Mean
                           : 42.98
    3rd Qu.:19.0
                   3rd Qu.: 56.00
##
    Max.
           :25.0
                   Max.
                           :120.00
```

Si quiero saber que significa la tabla de valores al colocar "cars" debo poner en la consola ? cars y me da información y comandos que puedo ejecutar a modo de ejemplos

¿Cómo hago para ver sólo la columna de las velocidades?

cars\$speed

```
## [1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 ## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
```

Si quiero ver estadísticas básicas de una variable o de una tabla, tengo que usar el comando summary

summary(cars)

```
##
        speed
                        dist
   Min.
           : 4.0
                   Min.
                          : 2.00
   1st Qu.:12.0
                   1st Qu.: 26.00
##
   Median:15.0
                   Median: 36.00
                          : 42.98
  Mean
           :15.4
                   Mean
   3rd Qu.:19.0
                   3rd Qu.: 56.00
           :25.0
   Max.
                          :120.00
                   Max.
```

El comando summarymuestra los valores estadísticos básicos (máximo, mínimo, mediana, etc.) a partir de la tabla de velocidad y distancia

```
# Toda línea que en el código del programa aparece después de un numeral, es un comentario
# Rutina para convertir de pies a metros

distancia = cars$dist*0.31
```

Cómo contar la cantidad de filas de una columna:

length(cars\$dist)

[1] 50

Cómo calcular el promedio de las velocidades

mean(cars\$speed)

[1] 15.4

#mode(cars\$speed)

Cómo hacer un gráfico de velocidad vs distancia:

plot(cars,main="Distancia de frenado del Chevrolet Impala 1963",xlab="distancia en ft",ylab="velocidad

Distancia de frenado del Chevrolet Impala 1963

Histogramas

hist(cars\$dist)

Histogram of cars\$dist

también se pueden colocar los títulos y nombres a los ejes

Gráfico de densidad

plot(density(cars\$dist))

density(x = cars\$dist)

Aquí

Cómo poner una flecha de asignación de valores a una variable:

```
a <- 23
a
```

[1] 23

Cómo convertir una variable en un vector:

```
b <- c(10,9,8,7,6,5,4,3,2,1)
b
```

```
## [1] 10 9 8 7 6 5 4 3 2 1
```

Para hacer un gráfico de tortas:

pie(b)

library(readr)

Puertos_Chile <- read_csv("https://themys.sid.uncu.edu.ar/rpalma/R-cran/Puertos_Chile.csv")

```
## Rows: 150 Columns: 6
## -- Column specification ------
## Delimiter: ","
## chr (1): Puerto
## dbl (5): F, Tecnologia, Normas, Seguridad, Equipo
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Puertos_Chile
```

A tibble: 150 x 6

##		F	Tecnologia	${\tt Normas}$	Seguridad	Equipo	Puerto			
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>			
##	1	1	5.1	3.5	1.4	0.2	Iqui			
##	2	2	4.9	3	1.4	0.2	Iqui			
##	3	3	4.7	3.2	1.3	0.2	Iqui			
##	4	4	4.6	3.1	1.5	0.2	Iqui			
##	5	5	5	3.6	1.4	0.2	Iqui			
##	6	6	5.4	3.9	1.7	0.4	Iqui			
##	7	7	4.6	3.4	1.4	0.3	Iqui			
##	8	8	5	3.4	1.5	0.2	Iqui			
##	9	9	4.4	2.9	1.4	0.2	Iqui			
##	10	10	4.9	3.1	1.5	0.1	Iqui			

i 140 more rows

Warning: Expecting numeric in B27 / R27C2: got '339 2.0'

Tecnicas_y_herramientas_excel

## # A tibble: 34 x 5										
##	Fecha	`Venta de:`	`Precio costo`	`Precio venta`	Ganancia					
##	<dttm></dttm>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>					
##	1 2024-01-09 00:00:00	319	7000	23269.	16269.					
##	2 2024-01-09 00:00:00	343	40000	132200	16269.					
##	3 2024-01-11 00:00:00	317	25000	45000	92200					
##	4 2024-01-11 00:00:00	321	48000	71160	20000					
##	5 2024-01-12 00:00:00	323	15000	20000	23160					
##	6 2024-01-16 00:00:00	320	70000	136186	5000					
##	7 2024-01-16 00:00:00	318	106900	160600	5900					
##	8 2024-01-16 00:00:00	322	75000	128170	66186					
##	9 2024-01-16 00:00:00	326	40000	169200	53700					
##	10 2024-01-16 00:00:00	324	10000	23780	53170					
## # i 24 more rows										

plot(Tecnicas_y_herramientas_excel\$`Precio venta`,Tecnicas_y_herramientas_excel\$`Venta de:`,main="Tecni

Tecnicas y herramientas modernas

EJERCICIO DE MICROBENCHMARCK

Para la clase que viene

```
library(microbenchmark)
set.seed(2017)
n <- 10000
p <- 100
X <- matrix(rnorm(n*p), n, p)</pre>
y <- X ** rnorm(p) + rnorm(100)
check_for_equal_coefs <- function(values) {</pre>
tol <- 1e-12
max_error <- max(c(abs(values[[1]]- values[[2]]),</pre>
abs(values[[2]] - values[[3]]),
abs(values[[1]] - values[[3]])))
max_error < tol</pre>
mbm \leftarrow microbenchmark("lm" = { b \leftarrow lm(y \sim X + 0)$coef },
"pseudoinverse" = {
b <- solve(t(X) %*% X) %*% t(X) %*% y
},
"linear system" = {
b <- solve(t(X) %*% X, t(X) %*% y)
check = check_for_equal_coefs)
```

```
## Unit: milliseconds
##
            expr
                       min
                                  lq
                                         mean
                                                median
                                                                      max neval
                                                             uq
##
              lm 35.63215 99.84405 147.1790 140.8953 209.8997 302.3286
                                                                            100
## pseudoinverse 153.43436 300.67107 452.0862 401.3330 520.3132 1302.3193
                                                                            100
## linear system 92.90494 201.15541 326.4535 301.1359 400.0800 1598.3024
                                                                            100
```

Clase 30/04/2025

Problema: Penintencia de Newton Hallar un algoritmo para sumar todos los números comprendidos entre $1\ y$ 100

```
n <- 100
suma <- (n * (n + 1))/ 2
print(paste("La suma es:", suma))</pre>
```

[1] "La suma es: 5050"