MICB405 BIOINFORMATICS

MIDTERM

October 10th, 2019

DO NOT START, until you are informed that you can start.

- You have 80 mins to complete this closed book exam.
- Please put your name and student number on the cover page.
- Please ensure that your student number is on every page of this exam in case the pages are separated .
- There are 5 double-sided pages to this exam (including this cover page). Check that you have both sides of all question pages before you begin.
- To receive full marks, please ensure that you write legibly and in pen. We have to be able to read your answer to mark it.
- This exam is closed book and closed neighbour. Notes, books, or other materials are not allowed. Candidates guilty of any of the following, or similar dishonest practices, shall be liable to disciplinary action:
 - i. Making use of any books, papers, or memoranda, calculators or computers, audio or visual players, or other memory aid devices, other than those authorized by the examiners.
 - ii. Speaking or communicating with other candidates
 - iii. Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
- If you have any questions during the exam, raise your hand.

GOOD LUCK!

Name:			
Student Number:			

_		
Student Number:	MICB405 MIDTERM	Oct. 10th, 2019

- 1. Define the following terms:
- a. Chastity Filtering (1 mark)

Illumina sequencers performs an internal quality filtering on the first 25 bases called to detect polyclonal clusters, with one allowed failed, where (Brightness intensity)/(brightest position + 2^{nd} brightest position) >/= 0.6 .This step flags polyclonal clusters.

b. The Kernel (1 mark)

The kernel of Unix is the hub of the OS. Allocates time and memory to programs. It handles the file store and communications in response to the system calls.

c. Mapping Quality (1 mark)

A mapping quality is assigned to the read to indicate how confident the aligner is with respect to the read mapping to its position. The negative log transformed probability that the read alignment is incorrect.

Student Number:	MICB405 MIDTERM	Oct. 10th, 2019
-----------------	-----------------	-----------------

2. Name **two** types of experimental measurements for which explicit controls are absent (**2 marks**). For one measurement describe 2 ways that the results can be assessed. (**2 marks**)

Ex: Biophysical methods: DNA sequencing, X-ray crystallography, Experimental results assessment done by internal statistical scores, reproducibility and expected outcomes. ie. For DNA sequencing, we expect 4 bases, GC content etc...

- 3. You are a microbiologist working at the Centre for Disease Control and have been sent to the respiratory ward of the General Hospital to investigate a bacterial infection outbreak in the patients. A phlegm sample collected from the lungs of an infected patient was used to generate a sequencing library that was subsequently sequenced on an Illumina HiSeq platform using paired-end chemistry.
- a) Describe (a figure might help) the computational steps in the correct order that you would perform to align the resulting fastq file(s) to a reference genome to generate an indexed bam file. (4 marks)

align reads, using bwa mem or bwa aln need to convert sai to sam for bwa, convert to bam, sort and index:

- bwa mem indexed_genome r1.fq r2.fq | samtools sort -n | samtools view -b > out.bam
- samtools index out.bam
- OR
- Bwa aln indexed_genome r1.fq > r1.sai; bwa aln index_genome r2.fq > r2.sai
- Bwa sampe refix> <in1.sai> <in2.sai> <in1.fq> <in2.fq> > out.sam

Student Number:	MICB405 MIDTERM	Oct. 10th, 2019
b) The sequencing team that generated your an elevated phasing rate.	sequencing data reports	that the lane had
Name and describe the two types of phasing marks)	g that can occur during	Illumina SBS? (4
Phasing: a fragment being sequenced in a clusequencing by synthesis cycle.	ister runs behind of the	current
Prephasing: a fragment being sequenced i sequencing by synthesis cycle.	n a cluster runs ahea	d of the current
Can you think of a reason for why this run migh	nt have an increased pha	asing? (1 mark)
Flow cell was overloaded and clusters to clos answer would be acceptable.	se. Any reasonable reag	ent based
c) Following the run you download the resulting format of the fastq file. (2 marks) Assuming you files were generated for this run? (1 mark)		
@ sequence header sequence		
+ quality scores, ascii 32 Two files generated		

d) To begin your analysis you need to know how many sequences are present in a resulting fastq file named 'F01.fastq'. Assuming you have access to a unix bash shell describe how you could calculate this value. (2 marks)

wc -l / 4 (many ways to to this, but counting lines and dividing by four is acceptable)

e) You next decide to look at the overall quality of the fastq files. What tool could you use to perform this analysis? (1 mark)

fastqc

f) Below is a quality string for one sequence in your fastq file that has passed chastity filtering. Calculate the mean base quality for this very short read. Show your work for full marks (2 marks).

((()))

$$(=(40-33)=7)$$

 $=(41-33)=8$
 $3(7)+3(8)/6=7.5$

g. Being satisfied with the overall quality of the fastq file you use **BWA aln** and **sampe** to align the fastq files to a reference and generate a SAM file. Below is an excerpt from the SAM file.

i) What is the length of the reference sequence used in this alignment? (1 mark)

ref length: 4912977

ii) Are the two reads shown paired – provide an explanation for your answer. (2 marks)

yes, same read name (same x y coordinate). reciprocal read positions etc

iii) What is the observed template length for the read pairs shown below? Show your reasoning for full marks (4 marks)

```
M01783:4:0000000000-A4CKG:1:1101:1685:16112
                                       NZ_CP012076.1 4035794 29
                                 83
CAGCGCTTTGACGCCATGCTGCGGGCGGGACTGGTGGGCGGGGTGCGCCGCCTGCATGCCCGGCGGCGACCTGCCCCGGGCCTGCTTTGGGTGCGGTGCGTGGGTACCGCCGGATATGGC
----;---@-=F9/9--;---@-;/BBFFE:;;-9----@==-999--?B/F?B;@-9-@-A9-;-9--9--FE;-99:/-;--@-9@-9-@9-9-BB9:;--
--/BB/B-@9---9A@-;-9--;///;-9--BEB;;00;;..@--..9.9-9-.GC..-:-<--</<//C?EBBEE>>/B//E>>/GE1FGDF@1AB0HE@E>EA//////A?//EA00A0
1AA11>?1FF?AA111
              XT:A:M NM:i:13 SM:i:29 AM:i:29 XM:i:13 X0:i:0 XG:i:0 MD:Z:8C1A2A3ZA11C2C6C16A21C11C9C1C4A84
M01783:4:0000000000-A4CKG:1:1101:1685:16112
                                 163
                                       NZ_CP012076.1 4035540 29
                                                              250M =
                                                                         4035794
111>11>>A10>0F0AA00AEG10B/B//AEEE?GHGG/?/FF?/E//>/>/BB?C1?/FBFCEG1DGE1?GA0F>@@ACH10C?@-A@@:;?...C/FB0FGFBFFFGGG
;?@.;EFFFFFF-@?B@F?EBBFFF-99>=--AEF-=@@@;@@=-;=@F-@@@;/B-99EF?9-/AB/;F/;B/BF--9@@F?@;-@@;-9-@@--9;9-9F/;/AA-=---;9AA-9A;@
9-//;:AB@-/99//- XT:A:U NM:i:6 SM:i:29 AM:i:29 X0:i:1 X1:i:0 XM:i:6 X0:i:0 XG:i:0 MD:Z:0G188A17G28G0A11A0
```

TLEN = (LEFPOS – RIGHPOS) + (LEFTMOSTCIGARSTRING from first starting match))

TLEN= 4035794 - 4035540 + 221 = 475. Tlen is 475

iv) Draw the alignment of the sequence reads relative to the reference (shown as line below) indicating as much information as possible from the SAM file entry directly above (4 marks)

h. To save space you convert the SAM file into a BAM file and sort the file by reference position. What tool could you use to do these two steps? (2 marks)

samtools sort samtools view

samtools sort out.sam | samtools view -b > out.sorted.bam many other combinations acceptable

4. Define batch effects (1 mark), what can cause batch effects (1 mark) and two ways to minimize batch effects in experimental design (2 marks).

Batch effects are sources of variation that are "unrelated to the biological or scientific variables in a study". Technical variabilities that potentially contribute to batch effects include experiments conducted by different personnel and labs, different experimental/sample prep dates, different sample processing methods/reagents/equipment. Ways to minimize include replication, randomization, blocking independent biological replicates etc...

Student Number:	MICB405 MIDTERM	Oct. 10th, 2019
5. List two differences and two similarities l	petween STAR and BWA (4	marks).
BWA aligner: index/hashing-> fm-index, smith-waterman method prefix/suffix used/designed for DNA alignment, does r	matching algorithms.	Bwa generally
Star aligner: Designed to specifically addresplice aware alignment. Algorithm: seed for maximal mappable prefix (MMP). This domakes the algorithm very fast. Then a Cluapplied. Can use long cDNA reads.	inding done by sequential one using a uncompressed s	search for a suffix array, also
6. Name the 3 parts of the UNIX operating	system. (3 marks)	
The kernel, the shell, the programs		
7. Where on the sequence read is the see bwa and what is the default seed length in		ence alignment in
Extracted from 5' end of read. Default see	ed length is 32bp	
8. List two reasons for why RNA-Sec advantageous than un-stranded library p sequencing reads from stranded library pre How about when you use HTSeq (1 mark)?	rotocols (2 marks)? Do ye ps differently when you use	ou need to align
saves information of which strand the mr	rna is derived from (the + o	r – strand)
can differentiate and quantify overlappin	g features	
you do not need to specify strandedness i	for the STAR aligner.	

9. List 3 differences between second and third-generation sequencing platforms. (1 mark for each difference, 3 marks total)

- 10. You have been accepted to a progressive graduate program that includes bioinformatics training as part of the core curriculum. You have been provided with a user name and password for the University's unix server.
- a. When you ssh into the server what command(s) would you run to view the contents of the root directory? (2 marks)

ls /

b. What command can you run to list **the permissions** of **all** the files in the /scripts directory? (**1 mark**)

ls -al /scripts

Student Number:	MICB405 MIDTERM	Oct. 10th, 2019
c. You find a file called tellmethetime.sh in the and has the following permissions: -rwrw-	e /scripts directory that is	not owned by you
Translate the permissions in the space below.	(2 marks).	
user: can read, can write group: cannot do anything /no permissions other users: can read, can write		
You less into the file and confirm that the coccalled currenttime.txt. What will happen if you /scripts/tellmethetime.sh		
/scripts/terimethethme.sn		
Nothing happens, you cannot execute the fil	e.	
44		

11. ENTREZ uses a combination of hard links and neighbors to link entries across databases. Define and provide an example of a hard link and neighbor in ENTREZ. (4 marks)

Hard link: direct connections between entries in different databases. Examples: Link to paper describing a nt seq, link to taxonomy database for a protein query, link from a nt seq to its protein CDS, link from protein seq to 3d structure.

Neighbors: entry in another dataset with subjective / similar connections. Examples: sequences similar to a nucleotide or protein query, related papers, similarity between protein structures.

12. During sequence alignment using bwa aln a 100 nt sequence read has aligned to two positions in the reference. Both alignments have a single but different mismatch to the reference. In **position 1**, the base quality of the mismatched base is 10 and in **position 2** the base quality of the mismatched base is 40. Which alignment position(s) will be reported in the SAM file and why? (3 marks)

Position 1, would be reported. The mismatch at position 1 has a lower quality value then the mismatched base at position 2. This means the base at position 1 is more likely to be a sequencing error rather than position 2 where the base call has a higher quality call.

	Col	${f Field}$	\mathbf{Type}	Regexp/Range	Brief description
_	1	QNAME	String	[!-?A-~]{1,254}	Query template NAME
	2	FLAG	Int	[0,2 ¹⁶ -1]	bitwise FLAG
	3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
	4	POS	Int	[0,2 ³¹ -1]	1-based leftmost mapping POSition
	5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
	6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
	7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
	8	PNEXT	Int	[0,2 ³¹ -1]	Position of the mate/next read
	9	TLEN	Int	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
	10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
_	11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

SAM file column descriptors

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	\$	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	∨ertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2 C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	р
17	11	Device control 1	49	31	1	81	51	Q	113	71	ď
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	8
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	u	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	х
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	3 D	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F		127	7F	

ASCII Table