LOGISTICAL REGRESSION

```
In [1]:
#Aim: To perform Logistical Regression
#Exp no:10
#Name:Khushi Chandrashekhar Satpute
#Sec:B
#Roll no:43
#Sub:ET-1
#Date: 11/10/2024
Importing Libraries
In [4]:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model selection import train test split
import warnings
warnings.filterwarnings('ignore')
In [5]:
import os
In [6]:
os.getcwd()
Out[6]:
'C:\\Users\\asus'
In [7]:
os.chdir("C:\\Users\\asus\\Desktop")
In [8]:
df=pd.read csv("framingham.csv")
In [9]:
#The "Framingham" heart disease dataset includes over 4,240 records, 15 attributes.
#The goal of the dataset is to predict whether the patient has 10-year risk of future (C
In [10]:
df.head()
```

Out[10]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes
0	1	39	4.0	0	0.0	0.0	0	0	0
1	0	46	2.0	0	0.0	0.0	0	0	0
2	1	48	1.0	1	20.0	0.0	0	0	0
3	0	61	3.0	1	30.0	0.0	0	1	0
4	0	46	3.0	1	23.0	0.0	0	0	0

In [11]:

df.describe()

Out[11]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStrok
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000	4238.00000
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630	0.00589
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584	0.07658
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	0.00000
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	0.00000
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	0.00000
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	0.00000
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	1.00000

In [12]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
	£1+C4/O\ -	-+C1/7\	

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

In [13]:

df.isna().sum()

Out[13]: 0 male age 0 105 education currentSmoker 0 29 cigsPerDay 53 **BPMeds** prevalentStroke 0 0 prevalentHyp diabetes 0 50 totChol sysBP 0 diaBP 0 BMI 19 heartRate 1 388 glucose TenYearCHD 0 dtype: int64

In [14]:

#Since, only a few rows have null values in them, we are only removing those rows from t
#df = df.dropna(subset=['heartRate','BMI','cigsPerDay','totChol','BPMeds'])

In [15]:

df

Out[15]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabe
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
4233	1	50	1.0	1	1.0	0.0	0	1	
4234	1	51	3.0	1	43.0	0.0	0	0	
4235	0	48	2.0	1	20.0	NaN	0	0	
4236	0	44	1.0	1	15.0	0.0	0	0	
4237	0	52	2.0	0	0.0	0.0	0	0	

4238 rows × 16 columns

Missing Value Treatment

Since, 'glucose' and 'education' columns had a significant amount of null values, so we replaced them with the mean of values for their respective columns

```
In [30]:
df['glucose'].fillna(value = df['glucose'].mean(),inplace=True)
In [31]:
df['education'].fillna(value = df['education'].mean(),inplace=True)
In [32]:
df['heartRate'].fillna(value = df['heartRate'].mean(),inplace=True)
In [361:
df['BMI'].fillna(value = df['BMI'].mean(),inplace=True)
In [38]:
df['cigsPerDay'].fillna(value = df['cigsPerDay'].mean(),inplace=True)
In [40]:
df['totChol'].fillna(value = df['totChol'].mean(),inplace=True)
In [42]:
df['BPMeds'].fillna(value = df['BPMeds'].mean(),inplace=True)
In [44]:
df.isna().sum()
Out[44]:
                   0
male
                   0
age
                   0
education
currentSmoker
                   0
                   0
cigsPerDay
BPMeds
                   0
                   0
prevalentStroke
prevalentHyp
                   0
diabetes
                   0
                   0
totChol
sysBP
                   0
diaBP
                   0
BMT
                   0
                   0
heartRate
                   0
glucose
TenYearCHD
                   0
dtype: int64
In [46]:
#Splitting the dependent and independent variables.
x = df.drop("TenYearCHD",axis=1)
y = df['TenYearCHD']
In [48]:
x #checking the features
Out[48]:
```

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabe
0	1	39	4.0	0	0.0	0.00000	0	0	
1	0	46	2.0	0	0.0	0.00000	0	0	
2	1	48	1.0	1	20.0	0.00000	0	0	
3	0	61	3.0	1	30.0	0.00000	0	1	
4	0	46	3.0	1	23.0	0.00000	0	0	
4233	1	50	1.0	1	1.0	0.00000	0	1	
4234	1	51	3.0	1	43.0	0.00000	0	0	
4235	0	48	2.0	1	20.0	0.02963	0	0	
4236	0	44	1.0	1	15.0	0.00000	0	0	
4237	0	52	2.0	0	0.0	0.00000	0	0	

4238 rows × 15 columns

Train Test Split

```
In [51]:
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=42)
In [53]:
y train
Out[53]:
3252
        0
3946
1261
        0
2536
        0
4089
        0
3444
        0
466
       0
3092
        0
3772
        0
Name: TenYearCHD, Length: 3390, dtype: int64
```

Logistic Regression Algorithm

```
In [56]:
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression().fit(x_train,y_train)
    model.score(x_train, y_train)
Out[56]:
```

0.848377581120944

In []: