Planning by Dynamic Programming

Prof. Junni Zou

Institute of Media, Information and Network Dept. of Computer Science and Engineering Shanghai Jiao Tong University http://min.sjtu.edu.cn

Spring, 2021

Outline

- Policy Evaluation
- Policy Iteration
- Value Iteration

Table of Contents

- Policy Evaluation
- Policy Iteration
- 3 Value Iteration

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimizing a "program", i.e. a policy

- c.f. linear programming
- A method for solving complex problem
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused
- Markov decision process satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction (policy evaluation):
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - Output: value function v_{π}
- Or for control:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - Output: optimal value function v_* and optimal policy π_*

Iterative Policy Evaluation

- ullet Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- \bullet $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\pi}$
- Using synchronous backups,
 - At each iteration k+1
 - ullet For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - where s' is a successor state of s
- We will discuss asynchronous backups later
- Convergence to v_{π} will be proven at the end of the lecture

Prof. Zou (MIN, SJTU)

Iterative Policy Evaluation (2)

$$\begin{aligned} v_{k+1}(s) &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|s) \bigg(\mathcal{R}_s^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} v_k(s') \bigg) \\ \mathbf{v}^{k+1} &= \mathcal{R}^{\boldsymbol{\pi}} + \gamma \mathcal{P}^{\boldsymbol{\pi}} \mathbf{v}^k \end{aligned}$$

Prof. Zou (MIN, SJTU)

Iterative Policy Evaluation (3)

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated
```

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathcal{S} \text{:} \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r \,|\, s,a) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}$$

9 / 29

Information, and Network

Example: Evaluating a Random Policy in the Small Gridworld

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, · · · , 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- ullet Reward is -1 until the terminal state is reached
- Agent follows uniform random policy $\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$

Example: Iterative Policy Evaluation in Small Gridworld

Example: Iterative Policy Evaluation in Small Gridworld (2)

$$k = 3$$

$$\begin{array}{r}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0
\end{array}$$

$$\begin{array}{r}
0.0 & -6.1 & -8.4 & -9.0
\end{array}$$

$$k = 10$$

$$0.0 | -6.1 | -8.4 | -9.0$$

$$-6.1 | -7.7 | -8.4 | -8.4$$

$$-8.4 | -8.4 | -7.7 | -6.1$$

$$-9.0 | -8.4 | -6.1 | 0.0$$

$$k = \infty$$

$$0.0 - 14. - 20. - 22.$$

$$-14. - 18. - 20. - 20.$$

$$-20. - 20. - 18. - 14.$$

$$-22. - 20. - 14. 0.0$$

Table of Contents

- Policy Evaluation
- Policy Iteration
- Value Iteration

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi^{'}(s) = rg \max_{a \in \mathcal{A}} \, q_{\pi}(s,a)$$

This improves the value from any state s over one step,

$$v_{\pi^{'}} = q_{\pi}(s, \pi^{'}(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) \geq q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

ullet It therefore improves the value function, $v_{\pi'} \geq v_{\pi}(s)$

$$egin{align*} v_{\pi}(s) &\leq q_{\pi}(s,\pi^{'}(s)) = \mathbb{E}_{\pi^{'}}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s] \ &\leq \mathbb{E}_{\pi^{'}}[R_{t+1} + \gamma q_{\pi}(S_{t+1},\pi^{'}(S_{t+1})) | S_{t} = s] \ &\leq \mathbb{E}_{\pi^{'}}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2},\pi^{'}(S_{t+2})) | S_{t} = s] \ &\leq \mathbb{E}_{\pi^{'}}[R_{t+1} + \gamma R_{t+2} + \cdots | S_{t} = s] = v_{\pi^{'}}(s) \end{split}$$

Policy Improvement (2)

If improvements stop,

$$q_{\pi}(s,\pi^{'}(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s,a) = q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- Therefore $v_{\pi}(s) = v_{*}(s), \ \forall s \in \mathcal{S}$
- So π is an optimal policy

Prof. Zou (MIN, SJTU) Reinforcement Learning Spring, 2021 15 / 29

How to Improve a Policy

- Given a policy π
 - Evaluation the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s]$$

• Improvement the policy by acting greedily with respect to v_{π}

$$\pi^{'} = \operatorname{greedy}(v_{\pi})$$

- ullet In Small Gridworld improved policy was optimal, $\pi^{'}=\pi^{*}$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π^*

Prof. Zou (MIN, SJTU)

Policy Iteration

$$\pi_0 \xrightarrow{\to} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\to} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\to} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\to} v_*$$

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

17 / 29

Policy Iteration (2)

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement policy- $stable \leftarrow true$

For each $s \in S$:

each
$$s \in S$$
:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If
$$old\text{-}action \neq \pi(s)$$
, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Reinforcement Learning

e of Media. ation, and Network

Jack's Car Rental

- States: Car numbers in two locations, maximum of 20 cars each
- Actions: Move up to 5 car between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - Poisson distribution, *n* returns/ requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2
- Discount rate: $\gamma = 0.9$
- Question: What is π^* and V^* ?

Policy Iteration in Jack's Car Rental

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \bullet e.g. ϵ -convergence of value function
- \bullet Or simple stop after k iterations of iterative policy evaluation?
- For example, in the small gridworld k = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k=1
 - This is equivalent to value *iteration* (next section)

Table of Contents

- Policy Evaluation
- Policy Iteration
- Value Iteration

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- ullet $v_1 o v_2 o \cdots o v_*$
- Using synchronous backups
 - At each iteration k+1
 - ullet For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy
- intermediate value functions may not correspond to any policy

Value Iteration (2)

$$\begin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right) \\ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

Information, and Network

Value Iteration (3)

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

```
Loop for each s \in \mathcal{S}:
 | \quad Loop for each <math>s \in \mathcal{S}:
 | \quad v \leftarrow V(s) 
 | \quad V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) \left[ r + \gamma V(s') \right] 
 | \quad \Delta \leftarrow \max(\Delta,|v - V(s)|) 
 | \quad \text{until } \Delta < \theta
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy
		Evaluation
Control	Bellman Expectation Equation	Policy Iteration
	+ Greedy Policy Improvement	
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- ullet Could also apply to action-value function $q_\pi(s,a)$ or $q_*(s,a)$
- Complexity $O(m^2n^2)$ per iteration

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function

- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of state/action spaces grows exponentially
- Even one backup can be too expensive

Sample Backups

- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- Instead of reward function \mathcal{R} and transition dynamic \mathcal{P}
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of n = |S|

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- \bullet e.g. Fitted Value Iteration repeats at each iteration k
 - ullet Sample states $\widetilde{\mathcal{S}}\subseteq\underline{\mathcal{S}}$
 - For each state $s \in \mathcal{S}$, estimate target value using Bellman optimality equation,

$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w_k}) \right)$$

• Train next value function $\hat{v}(\cdot, \mathbf{w}_{k+1})$ using targets $\langle s, \tilde{v}_k(s) \rangle$

Spring, 2021