Review - Chapter 4: Basic Topology

Parker Hyde

February 18, 2022

4.2 Points in Open and Closed Sets

The Krantz book uses the terms 'limit point' and 'accumulation point' interchangebly. Let's define these terms and prove they're the same thing.

Definition 1 (limit point). A point $x \in R$ is a **limit point** of a set $S \subset R$ if $\forall \epsilon > 0$, $N_{\epsilon}(x)$ contains an element of S other than x.

Definition 2 (accumulation point). A point $x \in R$ is a **accumulation point** of a set $S \subset R$ if $\forall \epsilon > 0$, $N_{\epsilon}(x)$ contains infinitely many elements of S.

Basically we consider every $N_{\epsilon}(x)$ to determine what kind of point x is for a set $S \subset R$.

- 1) if every $N_{\epsilon}(x)$ contains a point other than x in $S \to x$ is a limit point
- 2) if every $N_{\epsilon}(x)$ contains an infinite number of points in $S \to x$ is an accumulation point

Proposition 1. A point $x \in S \subset R$ is a limit point of S iff it's an accumulation point of S.

Proving accumulation point \implies limit point seems pretty simple. Any $N_{\epsilon}(x)$ of an accumulation point contains infinitely many points in S. In particular it contains at least 2 points in S. So it contains a point in S other than S.

Alright lets try the other direction. We have some $N_{\epsilon}(x)$ for a limit point x and we need to show it satisfies the requirements for an accumulation point. x is a limit point so $N_{\epsilon}(x)$ contains some $s_1 \neq x \in S$. Cool, we have one point. Infinitely many to go. But this is actually pretty easy right? We can just choose $s_2 \neq x \in S$ from a smaller $N_{\epsilon'}(x)$ where ϵ' is set to $|s_1 - x|$. We can do this infinitely many times and always get a new s_n becaues x is a limit point. Thus we get an infinite number of $s_1 \neq x, s_2 \neq x, \ldots \in S$ so x is an accumulation point.

Other sources have a variety of definitions for these terms. So this result just follows from our particular definitions. Moving on...

boundary points, interior points, isolated points

Definition 3 (boundary point). $b \in R$ is a **boundary point** of $S \subset R$ if every $N_{\epsilon}(b)$ contains points in S and points in $R \setminus S$. We denote the set of boundary points for S as ∂S .

For the most part, boundary points are what we expect them to be. You can perturb a boundary point in the appropriate direction and it will no longer be in S.

Boundary points may or may not be in the set S. We'll see in a second that

- 1) closed sets contain all their boundary points
- 2) open sets contain none of their boundary points

Oh this is pretty interesting. The boundary set of Q, ∂Q , is the entire real line. This makes sense because any neighborhood around a rational contains infinitely many rational and irrational numbers.

Definition 4 (interior point). A point $s \in S \subset R$ is an interior point of S if there is an $N_{\epsilon}(s) \subset S$.

From this definition we see that open sets require all points to interior points.

Definition 5 (isolated point). A point $t \in S \subset R$ is an **isolated point** if there is an $N_{\epsilon}(t)$ such that $N_{\epsilon}(t) \cap S = \{t\}$

Proposition 2. Each point of $S \subset R$ is either an interior point or a boundary point.

Proof. let $x \in S$. If x is an interior point then we're done. Suppose x is not an interior point. Then all $N_{\epsilon}(x)$ contain points in $R \setminus S$. Also $N_{\epsilon}(x)$ contains $x \in S$. So x contains points in both S and $R \setminus S$. x is a boundary point.

Quick remark. interior points are a special class of boundary points. Also accumulation point can either be interior or boundary points but never isolated.

Proposition 3. The boundary ∂S of a set $S \subset R$ is also the boundary of $R \setminus S$.

Proof.

$$b \in \partial S \iff \text{there exsits } N_{\epsilon}(b) \text{ containing points in } S \text{ and } R \setminus S$$

$$\iff \text{there exsits } N_{\epsilon}(b) \text{ containing points in } R \setminus S \text{ and } S$$

$$\iff b \in \partial R \setminus S$$

This is trivial if you think about it. The definition of ∂A and ∂A^c is identical no matter the set A.