Problem

In $\triangle ABC$, $\angle B=2\angle A$ and AB=2BC. Show that $AB^2=AC^2+BC^2$.

Solution

(D). Method 1 (official solution):

In the adjoining figure MV is an altitude of $\triangle AMV$ ($30^\circ-60^\circ-90^\circ$ triangle), and MV has length $2\sqrt{3}$. The required area of triangle ABV is $\frac{1}{2}(AB)(MV)$

$$=\frac{1}{2}\times 12\times 2\sqrt{3}=12\sqrt{3}.$$
 Method 2 (our solution):

In the adjoining figure we draw EF, an altitude of $\triangle AEB$. EF divides the figure into four congruent triangles. Since $\triangle ABC$ is a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle,

thus AB = 12, AC = 6 and $BC = 6\sqrt{3}$. The area of $\triangle ABC$ is $\frac{1}{2}(AC)(BC) = \frac{1}{2} \times 6 \times 6\sqrt{3} = 18\sqrt{3}$. The required area of triangle ABE, therefore is $\frac{2}{3} \times 18\sqrt{3} = 12\sqrt{3}$.