PHYSICS 880,08 PROBLEM SET #3 SOLUTIONS 1. Directly Solving for Do." Goal: solve (37- 2m -4) 4°(27: 217) = 83 (22) 8(7-71)(1) subject to the finite temperature fermion boundary conditions 「男(マト、ヤア)=-り(マロ、アイツ)(コ) a) We first introduce the Fourier transforms to (three-) momentum space, which will enable us to change the spatial part from a differential equation in \$25 to an abordic equation in R Clearing just a first-order differential equation in ?). 1 9°(2,7-11) = (32 e-1 E-(221) 9°(27, 211) 1 10 (27, 2/7) = (3k 01E, (27) 15 (E, (-4) Since (4) isolates the \$ at \$' dependence, we can directly apply (37-5m-4) to both sides and into change with Sams (新一新一川出(文下,文下) = (新) e(是,长文)(是+是一川)出。(下,十八) (5) but (8'(x-x') = (13K) e(x-x') (1) so he can exporte coefficients of each E (or else project in out) :

- Here are many ways to have known that Do is a function of 12-2) and (T-1): By physics, since it applies for a translationally invariant system lin space at time) so there can be no preferred & or P; by Fourier transforming of with respect to X > R and X > R and observing that he get SIRRY), which manifests XXV, by chaving the Lehmann or spectral representation, as in class; by assumption, as the did above.

b) In the two regions, the room of the solution is so we simply have

$$\frac{(\frac{1}{2} + \frac{1}{6} + \frac{1}{9}) \frac{1}{9} (\frac{1}{6}, \frac{1}{6}, \frac{1}{9})}{(\frac{1}{6} + \frac{1}{6} + \frac{1}{9}) \frac{1}{9} (\frac{1}{6}, \frac{1}{6}, \frac{1}{9})} = 0$$
where $\frac{(\frac{1}{6} + \frac{1}{6} + \frac{1}{9}) \frac{1}{9} (\frac{1}{6}, \frac{1}{6} + \frac{1}{9})}{(\frac{1}{6} + \frac{1}{9}) (\frac{1}{6} + \frac{1}{9})} = \frac{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9})}{(\frac{1}{6} + \frac{1}{9})} = \frac{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9})}{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9})} = \frac{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9})}{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9})} = \frac{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9})}{(\frac{1}{6} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9})} = \frac{(\frac{1}{6} + \frac{1}{9} + \frac{1}$

2. The Beachball Diagram
(a) On page (135) we derived the expression for the contribution E2 of the beach ball diagram to the energy density to be
$\begin{cases} \mathcal{E}_{2} = -4 \times M_{9} (g-1) = \frac{3}{(2\pi)^{3}} $
INOTE: The expression is not yet regularized and renormalized, but it is this expression we need to compare to perturbation Beary.]
- We recall that k====================================
We recall from PS#1, problem (3) That 3nd-order participation largers is a E(3) = S KOHINITE (3) where is one "2p-3h" states! They differ states above \$F\$ [C(570 1-1) × O(5-01-1)] and two holes (missing particles) below \$F\$ [C(570 1-1) × O(5-01-1)] and two holes (missing particles) below \$F\$ [C(1-571) & (1-571)], and the matrix element is just in (the minus sign is from \$F_0 < F_1). The energy denominator is just [F_0 = 1] interpret in first [3) En = 1 [1] En = 1 [1] And the interpret ord Hala-1) factors are the sum over \$1+0\$.
· The divergence is monifiest in the u integration!
$ \left[\begin{array}{c c} \sqrt{33u} & \frac{1}{\sqrt{24i\eta}} \rightarrow \sqrt{34u} \rightarrow \infty \\ \sqrt{41} & \sqrt{24i\eta} \rightarrow \sqrt{41} \end{array}\right] $
a linear divergence.

D) In momentum space, on pg (30) we got the expression!

$$2 = -\frac{i\lambda^2}{4}g(g-1) \int_{B\pi/4}^{24} \int_{[2\pi)^4}^{44} \int_{[2\pi)^4}^{44} G(\bar{p})G(\bar{p})G(\bar{k})G(\bar{k}+\bar{q})G(\bar{p}-\bar{q})$$

with $G(\bar{k}) = \frac{O(|\bar{k}-k_f|)}{k_6-\mu_k^2+i\epsilon} + \frac{O(k_6-|\bar{k}|)}{k_0-\mu_k^2-i\epsilon}$ (5)

· We'll make the some charge of variables eventually to 5, 7, and in (see page (2D), but first me have to do the frequency integrals over Ko, 10, 90.

Each variable appears in two G's.

· Step through the integrals:

We evaluate these as contour integrals. We can close in eiter half plane, so me get a nonzero result only for products of poles in opposite half plane > 0×0 and 0×0. Close in the upper half plane > 21 i for each:

The Po integral is the same with R-p and q= -90, 9--9

Now just the go integral left. Once again, only the terms with poles in opposite half planes survive; (3)(3) and (3)(4)

	Keeping the i2 = -1 from the other integrals,
	- 2012 27 (0(1/21- kg) 6(kg- / F- / G) 6/1/21- kg) 6(kg- / F- / G))
	C(1 121) WF= 1-k(16(kc-101) C(10-0)-kc)?
	+ 6(k+-121)6(k+=121-k+)6(k+-121)6(12-21-k+)
	M6-M2-4 +MK-M2+4 + 15
	If we take \$-> \$= \$x\(\frac{1}{5} + \text{\$\frac{1}{5}}\), \$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$\$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$\$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$\$\$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$\$\$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$\$\$\$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$\$\$\$\$\$\$\$\$ = \$\frac{1}{5} - \text{\$\frac{1}{5}}\), \$
	一大いったいとうとうできませんとうないとうないというないというしているようなはってり
	$=\frac{1}{m}(\frac{1}{2}-\sqrt{2})-i\varepsilon$
	The I from the two terms combines with 8 from the Jacobian to obtain 16x4=4. The m comes from here and top/kg= kg as expected.
	> ve reproduce Equation (1).
	C) In one dimension, The Feynman rules lead to essentially the
	. some expression as (1), only without rector syme and with
	same expression as (1), only without rector signs and with Senso Sensor and similarly with t and u. ti to the and the Sacobian is only 2 instead of 8 => factor of 4 smaller
	75 - 2 Malan K (4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	=> = - 2 Mala-1) Kp Jas Jat Jau 6(1-15+1)6(1+5+1)6(5+4)-1)6(5+4)-1)
	147 Y
	The integration regions are shown.
_	We can restrict s to 0 to 1
	3 t from 6 to 5-1 rand
	u from stl to a
	=> factor of 2×2×2=8

So he tind

\[\varepsilon_{g} = -\frac{1}{\pi^2} \text{Mg/g-1} \text{kg \ds \left du \left \frac{1}{\pi^2} \text{2} \\

\text{145 0 mathematica}
\]

\[\text{Mg/g-4 \text{ from Mathematica}} \] (8) = - = Mg(g-1) kp The Mathematica command to do the integral is: [Ategrate [Tategrale [1/(una-tna), fu, 1+5, Infinity], [t, 0,1-5]], · Recall that g= glat = Es/N = Es/9 = - JT 2M(g-1). The result and first order results combined with this new result: | = 当年+ (g-1) (g-1) + ... (9) $\lambda = \frac{1}{m\alpha_{\lambda}} = \frac{1}{2m} \left(\frac{1}{3} + (9-1) \frac{1}{m_{k}\alpha_{\lambda}} - (9-1) \frac{1}{2(m_{k}\alpha_{\lambda})^{2}} \right) + \dots$ attractive: axes ? repulsive: 0270 E

Note third-order diagrams with only a contact interaction are

We can use the Fryman rules in enter coordinate space or momentum space fore.

Order: (symmetry factor: * (spin sum) * (i.G. factors) * [spin sums from part b)]

O) (3/4/4) (i.G. [K]) 2/2 (1/4/4) (i.G. [K]) 2/2 (1/4) (i.G. [K]) 2/2 (1/4) 2/2 (1/4) 2/4 (

 $(\frac{1}{2}) \times (-2g(g_1)^2) \left(\frac{1}{2\pi i} \times (-$

 $(2) \begin{array}{c} (2) &$

3) \$ the 1/3 (3.73 3) * (49(9-1)) (dip die, die die die (\$ + k_1) (6° (\$ + k_2) (6° (\$ + k_3) (6° (\$ - k_3)) (6° (\$ - k_3))

e) $(3!) \times (-9(9-1)93) (30 84) (211) (160 (63) 160 (63) 160 (63) 160 (63) 160 (63) 160 (63) 160 (63) 160 (63) 160 (63) 160 (63) 160 (63)$

[Note: many ofter axignments of momenta are possible.]

c) We can immediately conclude that diagrams a) and c) are anomalous and terretore vanish at T=0 because they have two or more lines with the same $E \Rightarrow O(|E|-E_f) * O(E_f-|E|) = 0$ Factors.

Diagrams d' and e) do not vanish but b) is not so der.

In fact, diagram b) does varish. The analysis is essentially the same as for the beach ball diagram on momentum space. Eproblem 2. b) I, except that now one of the Green's functions (in doesn't matter which) is squared. (There is also an integral for the tall pole, but that factors.)

For the tallpole, but that Factors.)
The squared term means that the denominators in the
final expression (after the 3rd momentum integration) are
squared and there is a relative minus sign between the
terms

· For the beachball, a charge of variables shows the two terms are equal and add, giving a factor of 3. For diagram b), they cancel identically > 700.

4. Three-body Forces.
a) The relevant term in the Lagrangian is - \$ (att) 3 (where we're being somewhat schematic in the notation).
The townst order diagram is
b) The Faynman rules, generalized appropriately, give us the contribution to the energy density.
· 13! For 1 equivalent 3-tuple of lines to the same rectex times the oxerall i factor spin sum (Sapp, Soups Soups + Sap Soups to Saps Soups Soups)
= spin sun (Song, Soupa Song) + Song, Song + Song, Song p,
+ Salpi Somps Son, p2 + Soi, p3 Son p2 Son, + Soi, p3 Sonpi, Songs)
x (80,61 80262 8263)
$= (-q)^{3} + (-q)^{2} + (-q)^{2} + (-q)^{2} + (-q)^{2} + (-q)^{2} = -q^{3} + 3q^{2} - 2q$
=-9(9-1)(9-2)
· (Iny (1916 + e ikon i Golf)) = (-(13k 0 (kg-k)) 3 = -(15) 3
$= \sum_{3} = \beta g(g-1)(g-3) \frac{t_{\beta}^{q}}{\ b^{q}\ \cdot \ b^{q}} = \frac{\beta}{3!} (1 - \frac{1}{g})(1 - \frac{9}{g}) \beta^{3}$