STATISTIQUES

I. EXEMPLE ET VOCABULAIRE

On interroge les 25 élèves d'un club sportif afin de connaître leurs âges.

Voici leurs réponses, triées par ordre croissant :

- L'ensemble de ces résultats forme une **série statistique**.
- La **population** étudiée est l'ensemble des élèves du club sportif.
- Le caractère étudié est l'âge des élèves.
- Dans notre exemple, ce caractère peut prendre sept valeurs distinctes: 11; 12; 13; 14; 15; 16; 17.
- Pour chacune de ces valeurs, l'**effectif** correspond au nombre de fois où la valeur a été obtenue. Par exemple, l'effectif de la valeur 11 est 2, l'effectif de la valeur 12 est 4, etc.
- L'**effectif total** est le nombre d'élèves du club. Ici, l'effectif total est 25.

Pour présenter les résultats de manière plus pratique, on utilise fréquemment un tableau des effectifs :

âges	11	12	13	14	15	16	17
effectifs	2	4	4	6	2	3	4

II. FRÉQUENCES

DÉFINITION

La fréquence d'une valeur s'obtient en divisant l'effectif de cette valeur par l'effectif total :

$$fréquence = \frac{effectif}{effectif total}$$

REMARQUE

Les fréquences peuvent être exprimées sous forme fractionnaire, sous forme décimale ou sous forme de pourcentage.

EXEMPLE

Si l'on reprend l'exemple du paragraphe I., la fréquence des élèves âgés de 11 ans est :

$$f = \frac{2}{25} = 0.08 = 8\%$$

L'ensemble des fréquences de cet exemple peut être présenté dans un tableau :

âges	11	12	13	14	15	16	17
fréquences	0,08	0,16	0,16	0,24	0,08	0,12	0,16
fréquences en %	8%	16%	16%	24%	8%	12%	16%

PROPRIÉTÉ

La somme de toutes les fréquences est égale à 1 (c'est à dire 100%).

III. MOYENNE

DÉFINITION

La **moyenne** d'une série statistique s'obtient en divisant la somme de toutes les valeurs de la série par l'effectif total.

Si l'on note $x_1, x_2, x_3, \dots, x_N$ les valeurs de la série et N l'effectif total, la moyenne M vaut :

$$M = \frac{x_1 + x_2 + x_3 + \dots + x_N}{N}$$

EXEMPLE

Sonia a obtenu les notes suivantes à ses contrôles de mathématiques :

L'effectif total est de 6 notes. La moyenne vaut :

$$M = \frac{14 + 9 + 12 + 13 + 12 + 15}{6} = 12,5$$

MOYENNE PONDÉRÉE

Lorsque l'effectif est important, ce mode de calcul peut rapidement devenir fastidieux.

On peut alors utiliser la méthode de la moyenne « pondérée » .

Par exemple, si l'on reprend la série statistique de la partie I., le tableau des effectifs montre que l'âge de 11 ans est présent 2 fois, l'âge de 12 ans : 4 fois, l'âge de 13 ans : 4 fois, etc.

La moyenne vaut alors :
$$M = \frac{11 \times 2 + 12 \times 4 + 13 \times 4 + 14 \times 6 + 15 \times 2 + 16 \times 3 + 17 \times 4}{25}$$

= 14,08

IV. MÉDIANE

DÉFINITION

On s'intéresse à une série statistique dont on a classé les valeurs par ordre croissant. La **médiane** est la valeur qui partage cette série en deux groupes de même effectif.

EXEMPLE 1 (EFFECTIF TOTAL IMPAIR)

Chiara a obtenu les cinq notes suivantes :

15; 12; 7; 13; 17.

On ordonne ces notes:

7; 12; **13**; 15; 17.

La note médiane est 13 (il y a deux notes inférieures et deux notes supérieures).

EXEMPLE 2 (EFFECTIF TOTAL PAIR)

Luc a obtenu les six notes suivantes (déjà triées par ordre croissant) :

11; 12; 14; 14; 15; 17.

La note médiane est 14 (le « milieu » étant situé entre deux notes égales à 14).

EXEMPLE 3 (EFFECTIF TOTAL PAIR)

Sacha a obtenu les six notes suivantes (triées par ordre croissant):

7; 12; 12; 13; 15; 16.

Sa note médiane est située entre 12 et 13. On choisira la moyenne de 12 et 13 soit 12,5 comme médiane.

V. ÉTENDUE D'UNE SÉRIE STATISTIQUE

DÉFINITION

L'**étendue** d'une série statistique est la différence entre la plus grande et la plus petite valeur de cette série.

EXEMPLE

Si l'on reprend l'exemple de la partie I. :

âges	11	12	13	14	15	16	17
effectifs	2	4	4	6	2	3	4

l'étendue est :

$$17 - 11 = 6$$

Cela correspond à la différence d'âge entre l'élève le plus âgé et l'élève le plus jeune.

REMARQUE

L'étendue mesure la **dispersion** ou l'hétérogénéité d'une série statistique.

Par exemple, si l'on considère les notes d'un élève, une étendue élevée signifiera que les résultats de l'élève sont irréguliers.