- Start as early as possible, and contact the instructor if you get stuck.
- See the course outline for details about the course's marking policy and rules on collaboration.
- Submit your completed solutions to **Crowdmark**.
- 1. Context-Free Languages

Let $\Sigma = \{0, 1\}.$

(a) Let $L_a = \{w \mid w \text{ has odd length and its middle symbol is } 0\}$. Give a context-free grammar G_a such that $L(G_a) = L_a$, and prove that your choice of G is correct.

Proof. We start by defining the context-free grammar G_a .

Let G_a have the start symbol S and be defined by the following productions:

$$G: S \longrightarrow 0|0S0|0S1|1S0|1S1$$

- Prove $L_a \subseteq L(G_a)$
 - $\overline{-}$ Let $x \in L_a$ be arbitrary. Prove by induction on |x|.
 - **Lemma:** The length of x is odd by definition, therefore |x| = 2n + 1 for some n > 0.
 - To induct on |x| we will therefore induct on n following our lemma for all $n \ge 0$.
 - Base n = 0
 - * Then |x| = 2(0) + 1 = 1.
 - * When |x| = 1 there is one production from G_a : $S \Rightarrow 0$.
 - * x has only one symbol which is 0, thus the middle symbol symbol in x must be 0
 - * The length of |x| = 1 which is odd.
 - * The base case holds.
 - Induction (n > 0):
 - Assume for any $x \in L_a$ where |x| = 2n + 1 and n > 0 that x is also an element of $L(G_a)$.
 - * To show this holds for n+1 we take an arbitrary word $w \in L_a$ where |w| = 2(n+1) + 1 then |w| = (2n+1) + 2.
 - * We note that this is the length of our x with an additional 2 symbols added.
 - * We re-write w = yxz for some $y, z \in \Sigma$ which are single symbols with a length of 1.
 - * As $x \in L_a$ we know the middle symbol of x is 0, by adding y and z in a balanced fashion around x, we will not disturb this property at each step.
 - * As we need to consider 2 symbols $y, z \in \Sigma$ where $|\Sigma| = 2$ there are $2^2 = 4$ combination of y and z in an arbitrary w
 - i. w = 0x0, corresponding to the production $S \underset{G_a}{\Rightarrow} 0S0$ in G_a
 - ii. w = 1x0, corresponding to the production $S \stackrel{\circ}{\Rightarrow} 1S0$ in G_a
 - iii. w = 0x1, corresponding to the production $S \underset{G_a}{\Rightarrow} 0S1$ in G_a

- iv. w = 1x1, corresponding to the production $S \Rightarrow 1S1$ in G_a
- * As the only other production in S is $S \Rightarrow 0$ and |w| > 1 we have covered all cases when n is increased by 1 and have shown by induction that given an arbitrary $w \in L_a$ where |w| = 2(n+1) + 1 that $G_a \stackrel{*}{\Rightarrow} w$
- * Therefore $L_a \subseteq L(G_a)$
- Prove $L(G_a) \subseteq L_a$
 - $\overline{-\text{ Let } x \in L(G_a)}$ be arbitrary, prove $x \in L_a$ by induction on |x|.
 - Base |x| = 1
 - * Then the only production from G_a is $S \Rightarrow 0$
 - * Therefore x = 0 which has an odd length and 0 as the middle symbol.
 - * Base case holds.
 - Induction (|x| > 1):
 - For any $y \in L(G_a)$ i.e $S \underset{G_a}{\overset{*}{\Rightarrow}} y$ where |y| < |x| then $y \in L_a$
 - * Since $x \in L_a$, i.e. $S \underset{G_a}{\overset{*}{\Rightarrow}} x$ and $S \longrightarrow 0|0S0|0S1|1S0|1S1$
 - * We write x = 0y0|0y1|1y0|1y1
 - * Because |y| < |x| from our induction hypothesis we know $S \stackrel{*}{\underset{G_{\sigma}}{=}} y$ so it follows that $y \in L_a$
 - * As we have made x with every production of S and S is the only production in G_a we consider each production as a case of x
 - * In all cases of x we are adding two symbols to y which we already have shown is an element of L_a
 - * Since $y \in L_a$ it follows that |y| must be odd and have a middle symbol
 - * Again, in all cases, the two symbols added are balanced around y so the middle symbol does not change
 - * Furthermore, by the property of integers odd integer incremented by 2 finds the next odd number in the series of odd integers; from this it follows that the length of x is odd.
 - * Therefore for any $x \in L(G_a)$ it follows from the above that $x \in L_a$
 - $-L(G_a)\subseteq L_a$
- As we have shown both containments $L_a \subseteq L(G_a)$ and $L(G_a) \subseteq L_a$ we have proven:
- $L(G_a) = L_a$

[8]

(b) Consider the context-free grammar G_b with starting variable S, and productions

$$\begin{array}{ccc} S & \to & \varepsilon |1S|0T \\ T & \to & \varepsilon |0T|1U \\ U & \to & \varepsilon |0T. \end{array}$$

Let L_b be the language of words over Σ which do **not** have 011 as a substring. Prove that $L(G_b) = L_b$. [6]

- 2. A property of context-free grammars
 - Let G be a context-free grammar and let n > 0 be a positive integer.
 - (a) Prove that the number of words w in L(G) which are derived in $\leq n$ steps in G, is finite.

Proof. Let G = (V, T, P, S) be an arbitrary context-free grammar with the start symbol $S \in V$.

- By the properties of context free grammars V, T, and P are finite.
- We let $w \in L(G)$ be an arbitrary word in L(G)
- Then there must be some number of derivation steps in G where $S \stackrel{*}{\rightleftharpoons} w$
- At each derivation step in G one non-terminal symbol is replaced with a finite number of terminal and non-terminal symbols
- To prove the number of possible words w which are produced in fewer than n steps we have $S \stackrel{k}{\Rightarrow} w$ where $k \leq n$ is finite.
- \bullet We prove this by induction on the number of steps k
- Base (k = 1):
 - In one step a derivation can only have a single production where one non-terminal symbol is replaced by a string of terminal and non-terminal symbols.
 - Since the set of production rules in G is finite the number of words generated in a single step must be finite as well.
 - Therefore the base case holds
- Induction $(1 < k \le n)$:
- Assume the number of words generated in k steps is finite. The show that the number of words generated in k+1 steps is finite as well.
 - Let $x \in L(G)$ be an arbitrary word in L(G) generated in k+1 steps.
 - -x can be obtained from G by applying a single production rule to a word generated in k steps.
 - By our induction hypothesis a word generated in k steps is finite.
 - Given the set of production rules in G are finite by the property of contextfree grammars there can only be a finite set of words generated by applying a single production step.
 - Since the set of words generated in k steps is finite and adding another production step only produces a finite number of words
 - Therefore by induction the set of words produced in k+1 steps in G is finite as well.
- By Induction and the properties of context free grammars we have shown that the number of words w in L(G) which are derived in $\leq n$ steps in G, is finite.

[2]

5% penalty per hour late in submitting

(b) Give an example of a context-free grammar, G, in which we can generate infinitely many words w provided we omit the hypothesis that there are $\leq n$ steps in the derivation of w. Briefly explain why your example is correct.

Proof. • Let $\Sigma = \{1, \varepsilon\}$ and G_b be a context-free grammar defined by the production rules

$$G: S \longrightarrow 1S|\varepsilon$$

- It is clear that the above grammar can generate an infinite string of 1s where $S \stackrel{*}{\underset{G}{\Rightarrow}} x$ and $x = 1_0 1_1 \dots 1_n$ where $0 \le n \le \infty$ is unbounded.
- This is achieved, trivially, by choosing the first rule of the productions in S where $S \Rightarrow 1S$ then at each additional step choosing the same production and never choosing $S \Rightarrow \varepsilon$ for an infinite number of steps.

[4]

3. Removing ambiguity in context-free grammars

Let $\Sigma = \{0, 1\}$. Consider the context-free grammar G with starting variable S, and productions

$$\begin{array}{ccc} S & \to & AB \\ A & \to & \varepsilon | 0A \\ B & \to & \varepsilon | 01 | B1. \end{array}$$

(a) Prove that G is ambiguous.

Proof. To show G is ambiguous it will suffice to find an example of a string in G with multiple derivations.

- Consider the string '01'
- $S \underset{G}{\overset{*}{\Rightarrow}} 01$ has multiple derivations.
- The parse tree:

- With derivation: $S \Rightarrow AB \Rightarrow \varepsilon B \Rightarrow \varepsilon 01 \Rightarrow 01$
- The parse tree:

- With derivation: $S \Rightarrow AB \Rightarrow 0AB \Rightarrow 0\varepsilon B \Rightarrow 0\varepsilon B1 \Rightarrow 0\varepsilon\varepsilon 1 \Rightarrow 01$
- There are 2 distinct derivations for the string '01' in G
- $\bullet\,$ Therefore, G is ambiguous.

(b) Exhibit (with proof) an unambiguous grammar, G', such that L(G') = L(G).

Proof. Let G' have the start symbol S and be defined by the following productions:

$$G: S \longrightarrow AB$$

$$A \longrightarrow \varepsilon | 0A$$

$$B \longrightarrow \varepsilon | B1$$

- Lemma:
 - (a) If $A \stackrel{*}{\underset{G'}{\rightleftharpoons}} x$ then x contains no 1s.
 - (b) If $B \stackrel{*}{\rightleftharpoons} x$ then x contains no 0s.
 - (c) If x contains ones and zeros then, $S \underset{G'}{\overset{*}{\Rightarrow}} x$ and we can re-write x = yz, then $S \underset{G'}{\overset{*}{\Rightarrow}} yz$ where all of the zeros are contained in y and all of the ones are contained in z.
- Let $x \in L(G')$ be arbitrary, then prove G' is unambiguous by induction on |x|.
- Base Case $(|x| = 0 \text{ then } x = \varepsilon)$:
 - (a) $A \stackrel{*}{\Rightarrow} \varepsilon : A \Rightarrow \varepsilon$
 - (b) $B \stackrel{*}{\underset{G'}{\Rightarrow}} \varepsilon$: $B \stackrel{*}{\underset{G'}{\Rightarrow}} \varepsilon$
 - (c) $S \stackrel{*}{\Longrightarrow} \varepsilon \colon S \Longrightarrow AB \Longrightarrow \varepsilon B \Longrightarrow \varepsilon \varepsilon \Longrightarrow \varepsilon$
- Induction (|x| > 1): For our induction hypothesis we assume any arbitrary $w \in L(G')$ with $S \underset{G'}{\stackrel{*}{\Rightarrow}} w$, $A \underset{G'}{\stackrel{*}{\Rightarrow}} w$ or $B \underset{G'}{\stackrel{*}{\Rightarrow}} w$ where |w| < |x|, has a unique derivation in G'
- We consider 3 cases which follow from our *Lemma* above:
 - (a) Case 1: "x has $n \ge 1$ zeros and k = 0 ones."
 - Write x as x = 0y
 - Since x has no ones we seem from our lemma that $A \stackrel{*}{\Rightarrow} x$
 - By the shape of G' we must have $S \underset{G'}{\Rightarrow} AB \underset{G'}{\Rightarrow} A\varepsilon \underset{G'}{\Rightarrow} A \underset{G'}{\stackrel{*}{\Rightarrow}} x$ as the only derivation of $S \underset{G'}{\stackrel{*}{\Rightarrow}} x$
 - We see $A \underset{G'}{\Rightarrow} 0A$ so we write $A \underset{G'}{\Rightarrow} 0A \underset{G'}{\Rightarrow} 0y$ where $A \underset{G'}{\stackrel{*}{\Rightarrow}} y$
 - Since |y| < |x| our induction hypothesis says that the derivation of x where "x has $n \ge 1$ zeros and k = 0 ones." is unique.
 - (b) Case 2: "x has n = 0 zeros and $k \ge 1$ ones."
 - Write x as x = y1
 - Since x has no zeros we seem from our lemma that $B \stackrel{*}{\Rightarrow} x$
 - By the shape of G' we must have $S \underset{G'}{\Rightarrow} AB \underset{G'}{\Rightarrow} \varepsilon B \underset{G'}{\Rightarrow} B \underset{G'}{\stackrel{*}{\Rightarrow}} x$ as the only derivation of $S \underset{G'}{\stackrel{*}{\Rightarrow}} x$
 - We see $B \underset{G'}{\Rightarrow} B1$ so we write $B \underset{G'}{\Rightarrow} B1 \underset{G'}{\Rightarrow} y1$ where $B \underset{G'}{\Rightarrow} y$

- Since |y| < |x| our induction hypothesis says that the derivation of x where "x has n = 0 zeros and $k \ge$ ones." is unique.
- (c) Case 3: "x has $n \ge 1$ zeros and $k \ge 1$ ones."
 - Write x as x = yz
 - By the shape of G' it's clear S only has a single production $S \longrightarrow AB$
 - From this we see, if $S \stackrel{*}{\Rightarrow} x$ then $S \stackrel{*}{\Rightarrow} yz$
 - Then $A \stackrel{*}{\underset{G'}{\Rightarrow}} y$ and $B \stackrel{*}{\underset{G'}{\Rightarrow}} x$
 - By our induction hypothesis and following from our first two cases we know the derivations of y and z are unique since |y| < |x| and |z| < |x|
 - Therefore the derivation of $S \stackrel{*}{\Rightarrow} x$ is unique.
- Since S is the start symbol and we have proven for an arbitrary $x \in L(G')$ that the derivation $S \stackrel{*}{\Rightarrow} x$ is unique we have now proven G' is unambiguous.
- Next we will prove that L(G) = L(G') by showing any arbitrary string generated in L(G') must be in L(G) and any arbitrary string generated in L(G) must be in L(G')
- **Prove:** L(G') = L(G)
 - Prove $L(G') \subseteq L(G)$
 - * Let $x \in L(G')$ be arbitrary, then induct on the length of x
 - * **Base** (|x| = 0)
 - From L(G) we have the production $S \Rightarrow_G AB \Rightarrow_G \varepsilon B \Rightarrow_G \varepsilon \varepsilon \Rightarrow_G \varepsilon$
 - · From L(G') we have the production $S \Rightarrow AB \Rightarrow \varepsilon B \Rightarrow \varepsilon \varepsilon \Rightarrow \varepsilon$
 - · Since these productions have a 1:1 correspondence and are the only productions which yield ε , the base case holds.
 - * $\mathbf{In}L(G') = L(G)\mathbf{duction} (|x| > 0)$
 - * Assume that all words in L(G') shorter than x are also in L(G)
 - * Consider a word $x \in L(G')$ with |x| > 1
 - * There are three cases to consider for the derivation of x
 - (a) x derives from $S \Rightarrow_{G'} AB \Rightarrow_{G'} \varepsilon B \Rightarrow_{G'} B1 \Rightarrow_{G'} \dots$
 - (b) x derives from $S \underset{G'}{\Rightarrow} AB \underset{G'}{\Rightarrow} A\varepsilon \underset{G'}{\Rightarrow} 0A \underset{G'}{\Rightarrow} \dots$
 - (c) x derives from $S \underset{G'}{\Rightarrow} AB \underset{G'}{\Rightarrow} 0AB \underset{G'}{\Rightarrow} 0AB1 \underset{G'}{\Rightarrow} \dots$ * **Case 1** x derives from $S \underset{G'}{\Rightarrow} AB \underset{G'}{\Rightarrow} \varepsilon B \underset{G'}{\Rightarrow} B1$
 - - \cdot Then x consists of only ones.
 - · We can rewrite x as x = 0y
 - · We derive y in G' using $B \stackrel{*}{\Rightarrow} y$
 - y is shorter than x so $y \in L(G')$ by our inductive hypothesis.
 - · Using the rule $B \Rightarrow B1$ we can thus derive x in L(G)
 - * Case 2 x derives from $S \Rightarrow AB \Rightarrow A\varepsilon \Rightarrow 0A$
 - · Then x consists of only zeros.
 - · We can rewrite x as x = y
 - · We derive y in G' using $A \stackrel{*}{\Rightarrow} y$

- y is shorter than x so $y \in L(G')$ by our inductive hypothesis.
- · Using the rule $A \Rightarrow_G 0A$ we can thus derive x in L(G)
- * Case 3 x derives from $S \Rightarrow AB \Rightarrow 0AB \Rightarrow 0AB1$
 - · Then x consists of zeros and ones.
 - · We can rewrite x as x = yz
 - · We derive y in G' using $A \stackrel{*}{\rightleftharpoons} y$
 - · We derive z in G' using $B \stackrel{*}{\Rightarrow} y$
 - y is shorter than x so $y \in L(G')$ by our inductive hypothesis.
 - z is shorter than x so $z \in L(G')$ by our inductive hypothesis.
 - · Using the rule $S \Rightarrow AB \Rightarrow A\varepsilon \Rightarrow 0A$ we can thus derive y in L(G)
 - · Using the rule $S \Rightarrow AB \Rightarrow \varepsilon B \Rightarrow B1$ we can thus derive y in L(G)
 - · From our inductive hypothesis y and z are in L(G') and we can derive x in G with

$$S \underset{G}{\Rightarrow} yB \underset{G}{\Rightarrow} yz \underset{G}{\Rightarrow} x$$

- Prove $L(G) \subseteq L(G')$

- * Let $x \in L(G)$ be arbitrary
- * As the only production rule that is different across both grammars is when $B \Rightarrow 01$ we need to make sure this case is covered in L(G)
- * **Base** (|x| = 0)
 - From L(G) we have the production $S \Rightarrow_G AB \Rightarrow_G \varepsilon B \Rightarrow_G \varepsilon \varepsilon \Rightarrow_G \varepsilon$
 - · From L(G') we have the production $S \Rightarrow AB \Rightarrow \varepsilon B \Rightarrow \varepsilon \varepsilon \Rightarrow \varepsilon$
 - · Since these productions have a 1:1 correspondence and are the only productions which yield ε , the base case holds.
- * Induction (|x| > 0)
- * Assume that all words in L(G') shorter than x are also in L(G)
- * We have two cases to consider for the production rule $B \Rightarrow 01$
- (a) x derives from $S \underset{G}{\Rightarrow} AB \underset{G'}{\Rightarrow} \varepsilon B \underset{G'}{\Rightarrow} 01$
- (b) x derives from $S \stackrel{\Rightarrow}{\underset{G}{\Rightarrow}} AB \stackrel{\Rightarrow}{\underset{G'}{\Rightarrow}} AB \stackrel{\Rightarrow}{\underset{G'}{\Rightarrow}} A01$
- * Case 1 x derives from $S \Rightarrow_G AB \Rightarrow_{G'} \varepsilon B \Rightarrow_{G'} 01$
- * Case 2 x derives from $S \Rightarrow_G AB \Rightarrow_{G'} AB \Rightarrow_{G'} A01$
- Therefore L(G') = L(G)

[4]

5% penalty per hour late in submitting

4. A pushdown automaton

Let $\Sigma = \{0, 1\}$. Consider this pushdown automaton, P:

(a) Give an explicit sequence of instantaneous descriptions witnessing

$$(q_0,0000,Z_0) \stackrel{*}{\vdash} (q_1,\varepsilon,0000Z_0).$$

$$(q_0, 0000, Z_0) \vdash (q_1, 000, 0Z_0)$$

 $\vdash (q_1, 00, 00Z_0)$
 $\vdash (q_1, 0, 000Z_0)$
 $\vdash (q_1, \varepsilon, 0000Z_0)$

5% penalty per hour late in submitting

[4] (b) Give an explicit sequence of instantaneous descriptions witnessing

$$(q_0, 0110, Z_0) \stackrel{*}{\vdash} (q_0, \varepsilon, Z_0).$$

$$(q_0, 0110, Z_0) \vdash (q_1, 110, 0Z_0) \vdash (q_1, 10, Z_0) \vdash (q_2, 0, 1Z_0) \vdash (q_2, \varepsilon, Z_0) \vdash (q_0, \varepsilon, Z_0)$$