1

Assignment 17

Matish Singh Tanwar

Abstract—This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 17

1 Problem

Let **P** be a 2×2 complex matrix such that

$$\mathbf{P}^{\theta}\mathbf{P} = \mathbf{I} \tag{1.0.1}$$

where \mathbf{P}^{θ} is the conjugate transpose of **P**.Then the eigen values of **P** are

- 1) real
- 2) complex conjugates of each othe
- 3) reciprocals of each other
- 4) of modulus 1

2 SOLUTION

Options	Explanation
REAL	
Counter Example	$\mathbf{P} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$
	$\mathbf{P}^{\theta} = \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix}$
	$\mathbf{P}^{\theta}\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}$
	Eigen values of \mathbf{P} are i, i which are not real
	Hence,incorrect.
Complex Conjugates of each other.	From above, (i, i) are not complex conjugate of each other
	Hence,incorrect.
Reciprocals of each other	Reciprocal of $i = \frac{1}{i} = \frac{i^4}{i} = i^3 \neq i$
Recipiocals of cach other	
	Hence,incorrect.
of modulus 1	
Proof	$\mathbf{PV} = \lambda \mathbf{V}$
	where, V is eigen vector of P and
	λ is eigen value of P
	Taking conjugate transpose on both sides,we get $\mathbf{V}^{\theta}\mathbf{P}^{\theta} = \lambda^{\theta}\mathbf{V}^{\theta}$
	$\mathbf{V}^{\theta}\mathbf{P}^{\theta}\mathbf{P}\mathbf{V} = \lambda^{\theta}\mathbf{V}^{\theta}\lambda\mathbf{V} \qquad , :: \mathbf{P}\mathbf{V} = \lambda\mathbf{V}$
	$\mathbf{V}^{\theta}\mathbf{I}\mathbf{V} = \lambda^{\theta}\lambda\mathbf{V}^{\theta}\mathbf{V} \qquad , :: \mathbf{P}^{\theta}\mathbf{P} = \mathbf{I}$
	$(1 - \lambda^{\theta} \lambda) \mathbf{V}^{\theta} \mathbf{V} = 0$
	Since,V is not zero.
	$(1 - \lambda^{\theta} \lambda) = 0$
	$\lambda^{\theta}\lambda = 1$
	$ \lambda ^2 = 1$
	$\lambda = 1$
	Hence, correct.

TABLE 1: Finding Correct Option