A ring of radius $a = r_o \sin \theta_o$ and uniform charge density λ , is centerd on the z axis at $z_o = r_o \cos \theta_o$, so that the face of the ring is parallel to the xy plane. The ring is inside a grounded sphere of radius R. The potential at point r, θ due to a ring with coordinates r_o, θ_o is

$$\varphi(r,\theta;r_o,\theta_o) = \sum_{\ell} \frac{\lambda a}{2R} P_{\ell}(x) P_{\ell}(x_o) \left[\left(\frac{r_{<}}{R}\right)^{\ell} \left(\left(\frac{R}{r_{>}}\right)^{\ell+1} - \left(\frac{r_{>}}{R}\right)^{\ell} \right) \right]$$
(1)

where $r_{>}$ is the greater of of r and r_{o} , and $r_{<}$ is the lesser of r and r_{o} , i.e. the potential has discontinuous derivative at $r = r_{o}$.

- (a) Determine the charge per area, σ on the surface of the sphere.
- (b) By integrating the charge per area, show that the induced charge is $-Q = -\lambda(2\pi a)$. Explain why this is the expected result.
- (c) (Optional) Show that the charge per area as the ring approaches the surface of the sphere, approaches a physically intuitive result, *i.e.* a negative ringlike band on the surface of the sphere¹.

¹ Answer: $\sigma = -\frac{Q}{2\pi R^2} \delta(\cos \theta - \cos \theta_o)$