Inleiding

Elke halveringstijd halveert het aantal radioactieve kernen. Dit verband wordt gegeven door de formule:

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

Een vergelijkbaar verband bestaat voor de verhouding tussen de activiteit en de oorspronkelijke activiteit.

$$\frac{A}{A_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

De verhouding tussen de doorgelaten (I) en oorspronkelijke intensiteit (I_0) van kernstraling neemt af met de dikte (d) van het materiaal, volgens het volgende verband.

$$\frac{I}{I_0} = \left(\frac{1}{2}\right)^{\frac{d}{d_1/2}}$$

Wiskundige achtergrond

Al deze verbanden zijn voorbeelden van een exponentieel verband. Dus van de vorm:

$$y = a^x$$

Hierbij is a je grondgetal. Wanneer y bekend is en x gevraagd wordt gebruik je het $logaritme~(\log)$. Hiervoor kennen we de volgende rekenregels:

$$y = a^x \longleftrightarrow {}^a \log(y) = x$$

"Tot welke macht moet ik a doen om y te krijgen? Tot de macht x"

Natuurkundige toepassing

Hier gaan we rekenen met de formule $\frac{N}{N_0}=\left(\frac{1}{2}\right)^{\frac{t}{1/2}},$ maar je kan dezelfde methode toepassen bij de andere verbanden genoemd in de inleiding.

Met deze rekenregels kan je dus de verhouding tussen tijd en halveringstijd $(\frac{t}{t_1/2})$ bepalen wanneer de verhouding tussen het huidig aantal kernen en het oorspronkelijk aantal kernen bekend is. We beginnen met de vergelijking:

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

Dan stel je jezelf de vraag: "Tot welke macht moet ik $(\frac{1}{2})$ doen om $\frac{N}{N_0}$ te krijgen?" Het grondgetal is hier $\frac{1}{2}$. Het logaritme ziet er dus alsvolgt uit:

$$^{\frac{1}{2}}log(rac{N}{N_0}) = rac{t}{t_{1/2}}$$

Op deze manier kan je $\frac{t}{t_0}$ uitrekenen om vervolgens t uit te rekenen.

Rekenmachine gebruiken

Op de reken machine kan je het grondgetal niet opdezelfde manier invoeren. Daar moet je een truc voor gebruiken. Vul het dan opdeze manier in in je rekenmachine:

$$\frac{\log(\frac{N}{N_0})}{\log(\frac{1}{2})} = \frac{t}{t_{1/2}}$$

Voorbeeld berekening

raag

Een stralingsbron bevat radium-228, met een halveringstijd van 5,75 jaar. Aan het begin heeft deze bron een activiteit van 8,0 MBq. Hoe lang duurt het voordat de bron een activiteit heeft van 0,75 Mbq?

Uitwerking

$$A = 0,75 MBq A_0 = 8,0 Mbq t_{1/2} = 5,75 y$$

$$t = ?$$

$$\frac{A}{A_0} = \left(\frac{1}{2}\right)^{\frac{t}{t_1/2}}$$

$$\frac{A}{A_0} = \frac{0,75}{8,0} = 0,094 = \left(\frac{1}{2}\right)^{\frac{t}{5,75}}$$

$$\frac{1}{2} \log(0,094) = \frac{t}{5,75}$$

$$\frac{\log(0,094)}{\log(\frac{1}{2})} = \frac{t}{5,75}$$

$$3,411... = \frac{t}{5,75}$$

$$t = 19,75... y$$

$$t = 20 y$$

Extra check

We vergelijken de verhouding tussen de oorspronkelijke en huidge activiteit. Hoevaak is de activiteit gehalveerd? Het gaat van $8,0\ MBq$ naar $0,75\ MBq$. 1 keer halveren zou $4,0\ Mbq$ geven, 2 keer halveren zou $2,0\ Mbq$ geven, 3 keer halveren zou $1,0\ Mbq$ geven en 4 keer halveren zou $0,5\ Mbq$ geven.

Dus de $\frac{t}{t_1/2}$ zou tussen de 3 en de 4 moeten liggen. Wij komen op $3,411\ldots$ uit, dus ons antwoord is logisch.

Extra oefeningen

Antwoorden staan achteraan.

Opdracht 1

Van een radioactieve isotoop is na 24 uur 28 procent van de kernen over. Bereken de halveringstijd van deze isotoop.

Opdracht 2

De halveringsdikte van lood voor gamma-straling van 5,0 MeV is gelijk aan 1,23 cm. Hoe dik moet een loden plaat zijn om 4/5 van de gamma-straling te blokkeren?

Antwoorden

1: t = 13,1 h

2: d = 2.9 cm