Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

CLASE 13 - 18/09/2025

Series

Proposición 3.40 (criterio de equivalentes)

Sean $\sum a_n$, $\sum b_n$ dos series de términos positivos.

- Si $\lim \frac{a_n}{b_n} = L > 0$, entonces las dos series son de la misma clase (es decir que o ambas son convergentes, o ambas divergentes).
- Si $\lim \frac{a_n}{b_n} = 0$, entonces si $\sum b_n$ converge, $\sum a_n$ converge también

Demostración

Primera parte:

Supongamos que $\lim \frac{a_n}{b_n} = L > 0$. Entonces, tomando $\varepsilon := \frac{L}{2}$, a partir de un n_0 , tenemos que:

$$\begin{split} \frac{L}{2} & \leq \frac{a_n}{b_n} \leq \frac{3L}{2} \\ & \iff \text{(multiplico por } b_n \geq 0\text{)} \\ \frac{L}{2}b_n & \leq a_n \leq \frac{3L}{2}b_n \end{split}$$

A partir de esto nomenclamos las desigualdades de la siguiente forma:

- $\begin{array}{ll} \bullet & \frac{L}{2}b_n \leq a_n & (*_1) \\ \bullet & a_n \leq \frac{3L}{2}b_n & (*_2) \end{array}$

Tengamos presente lo siguiente:

- Si b_n converge, también lo hace $\frac{L}{2}b_n$ Si b_n converge, también lo hace $\frac{3L}{2}b_n$

Entonces usando el criterio de comparación, podemos llegar a:

- Si b_n converge, entonces a_n converge, utilizando (\ast_2)
- Si b_n diverge, entonces a_n diverge, utilizando (\ast_1)

Segunda parte:

Es análoga a la primera, pero sin considerar la primera igualdad $(*_1)$

Conclusión

Con este resultado entonces, para estudiar la convergencia de una serie, basta estudiar una serie cuyo término general sea equivalente. Así, cualquier serie cuyo término general a_n sea un cociente de polinomios será muy fácil de calcular.

Ejemplos

Ejemplo 1

Como $\frac{1}{n^2} \sim \frac{1}{n(n+1)}$, y sabemos que la serie $\sum \frac{1}{n(n+1)}$ converge.

Ejemplo 2

Si $\alpha > 2$, entonces $\frac{1}{n^{\alpha}} \leq \frac{1}{n^2}$, y como vimos que la serie $\sum \frac{1}{n^2}$ converge, por el criterio de comparación podemos concluir que $\sum \frac{1}{n^{\alpha}}$ también converge. De esta forma, solo nos queda el sector con $\alpha \in (1,2)$ sin clasificar para esta serie.

Ejemplo 3

La serie $\sum \sin(\frac{1}{n})$ es divergente pues $\sin(\frac{1}{n}) \sim \frac{1}{n}$ y tenemos que $\sum \frac{1}{n}$ es divergente.

Ejemplo 4

La serie $\sum \frac{1}{\sqrt{n(n+2)}}$ es divergente pues el término general es equivalente a $\frac{1}{n}$

Ejemplo 5

La serie $\sum \frac{1}{\sqrt{n(n+1)(n+2)(n+3)}}$ es convergente pues el término general es equivalente a $\frac{1}{n^2}$

Criterio del cociente (o criterio de D'Alambert)

Sea $\sum a_n$ una serie de términos positivos, tal que existe $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$. Entonces:

- Si L < 1 entonces a_n converge.
- Si L > 1 entonces a_n diverge.

Demostración

CASO 1 (L < 1):

Observemos que por definición de límite, podemos llegar a la siguiente desigualdad a partir de un cierto $n_0 \in \mathbb{N}$:

$$\frac{a_{n+1}}{a_n} < k < 1$$

Observación: Esto lo hacemos tomando $\varepsilon := \frac{1-L}{2} > 0$ por ejemplo.

Entonces, tenemos este resultado $\forall n > n_0$, que se puede simplificar en:

• $a_n < ka_{n-1}$

Y esto se puede usar recursivamente hasta n_0 :

$$a_n < ka_{n-1} < k^2a_{n-2} < k^3a_{n-3} < \ldots < k^{n-n_0}a_{n_0}$$

Y ahora podemos simplificar en:

$$\begin{array}{l} k^{n-n_0}a_{n_0} \\ = \\ \frac{k^n}{k^{n_0}}a_{n_0} \\ = \\ \frac{a_{n_0}}{k^{n_0}}k^n \end{array}$$

Como tenemos que 0 < k < 1, tenemos que $\sum k^n$ es convergente, y por el criterio de comparación, también lo hace $\sum a_n$.

CASO 2 (L > 1):

Observemos que por definición de límite, podemos llegar a la siguiente desigualdad a partir de un cierto $n_0 \in \mathbb{N}$:

$$\frac{a_{n+1}}{a_n} > k > 1$$

Observación: Esto lo hacemos tomando $\varepsilon := \frac{L-1}{2} > 0$ por ejemplo.

Entonces, tenemos este resultado $\forall n > n_0$, que se puede simplificar en:

• $a_{n+1} > ka_n$

Y además como k > 1, tenemos que:

• $a_{n+1} > ka_n > a_n$

Y como este resultado vale $\forall n>n_0$, la serie $\sum a_n$ diverge, pues a partir de n_0 su término general es estrictamente creciente.

Ejemplos 3.43

Ejemplo 1

Estudiemos la serie $\sum \frac{n!}{n^n}$. Utilicemos el criterio del cociente:

$$\lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!}$$

$$=$$

$$\lim_{n \to \infty} \frac{(n+1)n!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!}$$

$$=$$

$$\lim_{n \to \infty} \frac{n^n}{(n+1)^n}$$

$$=$$

$$\lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n$$

$$=$$

$$\lim_{n \to \infty} \left(\frac{n}{n(1+\frac{1}{n})}\right)^n$$

$$=$$

$$\lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n}$$

$$=$$

$$\frac{1}{e}$$

La última igualdad es un resultado teórico de sucesiones.

Ejemplo 2

Estudiemos la serie $\sum \frac{2^n}{n!}$. Utilicemos el criterio del cociente:

$$\lim_{n\to\infty} \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n}$$

$$=$$

$$\lim_{n\to\infty} \frac{2^n 2}{(n+1)n!} \cdot \frac{n!}{2^n}$$

$$=$$

$$\lim_{n\to\infty} \frac{2}{n+1}$$

$$=$$

$$0$$