Math 449: Numerical Applied Mathematics Lecture 19

10/22/2017 Wenzhen

Today's topic: Iterative Methods in Numerical Linear Algebra

Today: Iterative methods numerical lin.alg (continued)

idea: $A\vec{z} = \vec{b}$ construct sequence $\chi^{(k)} \to soln$. as $k \to \infty$. Recall if $\rho(M) < l$, then $(I-M)^- = I + M + M^2 + M^3 + ...$

Can solve $(1-M)\vec{x} = \vec{b}$ using iteration $x^{(b)} = \vec{b}$ $x^{(k+1)} = \vec{b} + Mx^{(k)}$ Generalization: Split

Iteration:

$$N \times^{(0)} = b$$

$$N x^{(k+1)} = b + P x^{(k)}$$

This equiv to $(N-P) \times = b$ $N^{7}(N-P) \times = N^{-1}b$ $(1-NP) \times = N^{-1}b$ i.e. $M = N^{-1}$

So any as $k \rightarrow \infty$ when $p(N^{-1}P) < 1$

Two main import ways to choose N.

1. Jacobi method.

$$N = diag(A)$$

$$P = N - A$$

$$\left(\begin{array}{c} \\ \\ \end{array} \right) = \left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \end{array} \right)$$

$$O(n^2)$$

2. Gauss-Seidal methods.

N = tril(A) (lower triangular part of A) P = N - A $\left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) = \begin{pmatrix} 0 \\ \end{array} \right)$ Each step $O(n^2)$ When does this converge?

Use the fact that spectrual radius is bounded above by any matrix norm. $\|\cdot\|_1$ and $\|\cdot\|_\infty$ are easy to compute.

Def.
$$A \in \mathbb{R}^{n \times n}$$
 is strictly diagonalized dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $i = 1, ..., n$.

For Jacobi's method.

$$N^{-1}P = diag(A)^{-1}[diag(A) - A] = I.$$

$$= I - diag(A)^{-1}A$$

aii +0.

Note: If A is s.d.d. then diag(A) is monsingular, since $|a_{ii}| > 0$.

Thm: A is strictly de dominant \Leftrightarrow || I - diag(A) - A || $_{\infty}$ < |

Proof.
$$|| I - \operatorname{diag}(A)^{-1}A ||_{\infty} = \max_{\hat{i}=1,...,n} \left[\sum_{j\neq \hat{i}} \left| \frac{\operatorname{aij}}{\operatorname{aii}} \right| + || -1 \right]$$

$$= \max_{\hat{i}=1,...,n} \frac{1}{|\alpha_{ij}|} \sum_{j\neq \hat{i}} || \operatorname{aij} || < ||$$

$$\Leftrightarrow A \text{ s.d.d.} \qquad \boxtimes$$

Cor If A is sold, then the Jawbion method crys.

Proof.
$$\rho(N^{-1}P) = \rho(I - diag(A^{-1})A)$$

$$\leq ||I - diag(A^{-1})A||_{\infty}$$

$$\leq ||X - diag(A^{-1})A||_{\infty}$$

This is equivalent to $(N-P) \vec{z} = b$ $N^{-1}(N-P) \vec{z} = N^{-1}b$

 $(I - N^{-1}P)$ $\overrightarrow{z} = N^{-1}b$

i.e.
$$M = N^{-1}P$$
 so evgs as $k \to \infty$ when $p(N^{-1}P) < 1$

The conjugate gradient method.

Used to solve $A\vec{x} = \vec{b}$ when A is symmetric positive definite (spd.). Defn. $A \in \mathbb{R}^{N \times N}$ is spd when A = A

· A^T = A • ZA x^T > D for x ≠ 0

Rmle. This is condition for $\langle x,y \rangle = x^T A y$ to be an inner product on \mathbb{R}^h . Facts about spd matrixes.

Since Symmetric, spectral thm says that A is diagonizable, with real eigs and compute orthonormal basis of eigenvectors.

• Since positive definite. $\forall \lambda > 0$ $Av = \lambda v : \vec{v} \neq 0$ $v^{7}Av = \lambda(v^{7}v) > 0.$

Prop let $A \in \mathbb{R}^{n \times n}$ be spd. $A \times = b \Leftrightarrow \times \text{ minimizes } f(x) = \frac{1}{2} x^{T} A \times - x^{T} b$ $\frac{1}{2} A x^{2} - b \times \times \xi A \times - b) = 0.$

Proof.
$$\nabla f(x) = Ax - b$$

$$f(x) = \frac{1}{2} \sum_{i \neq j} a_{i,j} x_i x_j - \sum_j b_j x_j$$

$$\frac{\partial f}{\partial x_k} = \frac{1}{2} \sum_i a_{i,k} x_i + \frac{1}{2} \sum_j a_{k,j} x_j - b_k$$

$$= \sum_j \left(\frac{a_{jk} + a_{k,j}}{2} \right) x_j - b_k$$

$$= \sum_j a_{k,j} x_j - b_k$$

$$= (Ax - b)_k$$

Given a guess $x^{(k)}$, pick a search direction $s^{(k)}$

and take
$$\chi^{(k+1)} = \chi^{(k)} + t^{(k)} S^{(k)}$$

$$\underbrace{Scalar \ vector}$$

$$\Delta \chi^{(k)}$$

Move dist $t^{(k)}$ along the line through $x^{(k)}$ in direction $s^{(k)}$ s.t. $f(x^{(k+1)})$ is minimized along the direction.

Expanding
$$\frac{d}{dt^{(k)}} f(x^{(k)} + t^{(k)} s^{(k)}) = 0$$

$$\Rightarrow t^{(k)} = -\frac{s^{(k)^{T}} (A x^{(k)} - b)}{s^{(k)^{T}} A s^{(k)}}$$

Gradient Descent.

Pick
$$s^{(k)} = -\nabla f(x^{(k)})$$
$$= -(Ax^{(k)} - b)$$
$$t^{(k)} = \frac{s^{(k)^T} s^{(k)}}{s^{(k)^T} A s^{(k)}}$$

$$x^{(k+1)} = x^{(k)} + \frac{s^{(k)^{T}} s^{(k)}}{s^{(k)^{T}} A s^{(k)}} s^{(k)}$$

where
$$s^{(k)} = -(Ax^{(k)} - b)$$

To avoid repeated $s^{(k)}$ in same direction, conjugate gradient method ensures $s^{(k)}As^{(l)} = 0$ $\forall l < k$.