Lexical Analysis

Lecture 03

Example or Regular Expression / Regular Definition:

Regular Expression for numbers

```
digit \rightarrow 0|1|...|9
digits \rightarrow digit digit*
optional_fraction \rightarrow .digits|\epsilon
optional_exponent \rightarrow ( E (+|-| \epsilon) digits ) | \epsilon
num \rightarrow digits optional_fraction optional_exponent
```

Using shorthands:

```
digit \rightarrow 0|1|...|9
digits \rightarrow digit<sup>+</sup>
optional_fraction \rightarrow (.digits)?
optional_exponent \rightarrow ( E (+|-| \epsilon) digits ) ?
num \rightarrow digits optional_fraction optional_exponent
```

Transition Diagram

- A stylized flowchart produced intermediately in the construction of lexical analyzer
- Depicts the actions take place in lexical analyzer
- states: positions in a transition diagram
- **edges**: arrows connecting the states
- start state: initial state of transition diagram
- accepting state: token recognized
- action: (optional) associated with a state that is executed when the state is entered

Transition diagram for token relop

Return (gettoken(), install_id())

Capturing Multiple Tokens

Capturing keyword "begin"

start
$$b$$
 e g i m WS

Capturing variable names

WS – white space

A – alphabetic

AN – alphanumeric

What if both need to happen at the same time?

Capturing Multiple Tokens

Machine is much more complicated – just for these two tokens!

Implementing a Transition Diagram

- Systematic approach for all transition diagrams
 - Program size ∞ number of states and edges
- We try each diagram and when we fail then we go to try the next diagram

- Transition diagram for WS should be placed at the beginning rather at the end
 - Generalize: frequently occurring tokens should come earlier

Finite State Automata (FSAs)

 AKA "Finite State Machines", "Finite Automata", "FA"

- One start state
- Many final states
- Each state is labeled with a state name
- Directed edges, labeled with symbols
- Two types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

Nondeterministic Finite Automata

A **nondeterministic finite automaton** (NFA) is a mathematical model that consists of

- 1. A set of states S
 - $S = \{s_0, s_1, ..., s_N\}$
- 2. A set of input symbols Σ
 - $\Sigma = \{a, b, \ldots\}$
- 3. A transition function that maps state/symbol pairs to a set of states:

$$S \times \{\Sigma + \varepsilon\} \rightarrow set of S$$

- 4. A special state s_0 called the start state
- 5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no

Example: NFA

$$S = \{ 0,1,2,3 \}$$

$$S_0 = 0$$

$$\Sigma = \{a,b\}$$

$$F = \{3\}$$

Transition Table:

STATE	а	b	3
0	0,1	0	3
1		2	
2		3	
3			

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a mathematical model that consists of

- 1. A set of states S
 - S= $\{s_0, s_1,, s_N\}$
- 2. A set of input symbols Σ
 - $\Sigma = \{a, b, \ldots\}$
- A transition function that maps state/symbol pairs to a state:
 S x Σ → S
- 4. A special state s_0 called the start state
- 5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no

DFA Execution

```
DFA(int start_state) {
    state current = start_state;
    input_element = next_token();
    while (input to be processed) {
        current = transition(current,table[input_element])
        if current is an error state return No;
        input_element = next_token();
    }
    if current is a final state return Yes;
    else return No;
}
```

Relation between RE, NFA and DFA

- 1. There is an algorithm for converting any RE into an NFA.
- 2. There is an algorithm for converting any NFA to a DFA.
- 3. There is an algorithm for converting any DFA to a RE.

These facts tell us that REs, NFAs and DFAs have equivalent expressive power.

All three describe the class of regular languages.

DFA vs NFA

- Both DFA and NFA are the recognizers of regular sets.
- But time-space trade space exists
- DFAs are faster recognizers
 - Can be much bigger too...

Converting Regular Expressions to NFAs

Thompson's Construction

The **regular expressions** over finite Σ are the strings over the alphabet $\Sigma + \{ \}$, (, |, *) such that:

- { } (empty set) is a regular expression for the empty set
- Empty string ε is a regular expression denoting $\{\varepsilon\}$

$$\frac{\text{start}}{i}$$
 ϵ

• a is a regular expression denoting $\{a\}$ for any a in Σ

$$\underbrace{\text{start}}_{i}$$
 \underbrace{a}

Converting Regular Expressions to NFAs

If P and Q are regular expressions with NFAs N_p , N_q :

P | Q (union)

PQ (concatenation)

Converting Regular Expressions to NFAs

If Q is a regular expression with NFA N_q : Q* (closure)

Example (ab* | a*b)*

Starting with:

Example (ab* | a*b)*

Terminology: ε-closure

Defn: ε -closure(T) = T + all NFA states reachable from any state in T using only ε transitions.

$$\epsilon$$
-closure($\{1,2,5\}$) = $\{1,2,5\}$
 ϵ -closure($\{4\}$) = $\{1,4\}$
 ϵ -closure($\{3\}$) = $\{1,3,4\}$
 ϵ -closure($\{3,5\}$) = $\{1,3,4,5\}$

Converting NFAs to DFAs (subset construction)

- Idea: Each state in the new DFA will correspond to some set of states from the NFA. The DFA will be in state {s₀,s₁,...} after input if the NFA could be in any of these states for the same input.
- Input: NFA N with state set S_N , alphabet Σ , start state s_N , final states F_N , transition function T_N : $S_N \times \{\Sigma \cup \epsilon\} \rightarrow S_N$
- Output: DFA D with state set S_D , alphabet Σ , start state $s_D = \varepsilon$ -closure(s_N), final states F_D , transition function $T_D: S_D \times \Sigma \to S_D$

Algorithm: Computation of ε-closure

```
push all states a \in T onto stack STK

initialize: ε-closure(T) = T

while STK is not empty do begin

pop t, the top element, off STK

for each stat u with and edge from t to u labeled ε do begin

if u is not in ε-closure(T) do begin

add u to ε-closure(T)

push u onto STK

end if

end for

end while
```

Algorithm: Subset Construction

```
\begin{split} s_{\text{D}} &= \epsilon\text{-closure}(s_{\text{N}}) & -\text{-create start state for DFA} \\ S_{\text{D}} &= \{s_{\text{D}}\} \text{ (unmarked)} \\ \text{while there is some unmarked state R in } S_{\text{D}} \\ \text{mark state R} \\ \text{for all a in } \Sigma \text{ do} \\ \text{s} &= \epsilon\text{-closure}(T_{\text{N}}(R,a)); \\ \text{if s not already in } S_{\text{D}} \text{ then add it (unmarked)} \\ T_{\text{D}}(R,a) &= s; \\ \text{end for} \\ \text{end while} \\ F_{\text{D}} &= \text{any element of } S_{\text{D}} \text{ that contains a state in } F_{\text{N}} \end{split}
```

NFA

NFA N with

- State set $S_N = \{1,2,3,4,5\},\$
- Alphabet $\Sigma = \{a,b\}$
- Start state s_N=1,
- Final states F_N={5},
- Transition function T_N : $S_N x \{\Sigma \cup \epsilon\} \rightarrow S_N$

	а	b	3
1	3	-	2
2	5	5, 4	-
3	-	4	-
4	5	5	-
5	-	-	-

	а	b
{1,2}		

NFA

	а	b
{1,2}	{3,5}	{4,5}
{3,5}		
{4,5}		

	а	b
{1,2}	{3,5}	{4,5}
{3,5}	-	{4}
{4,5}		
{4}		

NFA

	а	b
{1,2}	{3,5}	{4,5}
{3,5}	-	{4}
{4,5}	{5}	{5}
{4}		
{5}		

NFA

	а	b
{1,2}	{3,5}	{4,5}
{3,5}	-	{4}
{4,5}	{5}	{5}
{4}	{5}	{5}
{5}	-	-

NFA

NFA

DFA

NFA

DFA

Converting DFAs to REs

- 1. Combine serial links by concatenation
- 2. Combine parallel links by alternation
- 3. Remove self-loops by Kleene closure
- 4. Select a node (other than initial or final) for removal. Replace it with a set of equivalent links whose path expressions correspond to the in and out links
- 5. Repeat steps 1-4 until the graph consists of a single link between the entry and exit nodes.

parallel edges become alternation

serial edges become concatenation

Find paths that can be "shortened"

Describing Regular Languages

- Generate all strings in the language
- Generate only strings in the language

Try the following:

- Strings of {a,b} that end with 'abb'
- Strings of {a,b} where every a is followed by at least one b

Strings of (a|b)* that end in abb

re: (a|b)*abb

Relationship among RE, NFA, DFA

- The set of strings recognized by an NFA can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an NFA.
- The set of strings recognized by an DFA can be described by a Regular Expression.
- The set of strings described by a Regular Expression can be recognized by an DFA.
- DFAs, NFAs, and Regular Expressions all have the same "power".
 They describe "Regular Sets" ("Regular Languages")
- The DFA may have a lot more states than the NFA. (May have exponentially as many states, but...)

Suggestions for writing NFA/DFA/RE

- Typically, one of these formalisms is more natural for the problem. Start with that and convert if necessary.
- In DFAs, each state typically captures some partial solution
- Be sure that you include all relevant edges (ask does every state have an outgoing transition for all alphabet symbols?)

Non-Regular Languages

Not all languages are regular"

The language ww where w=(a|b)*

Non-regular languages cannot be described using REs, NFAs and DFAs.