

BCC241 – Projeto e Análise de Algoritmos Lista de Exercícios E1

- 1. Em cada item indique e explique se f=O(g), f=O(g), f=O(g), f=O(g) ou f=O(g)
 - a. n -100 n-200 b. $n^{1/2}$ $n^{2/3}$ log² n c. log n log n² d. 10 log n $e. n^2$ n log n f. $n^{1/2}$ 5^{log}2ⁿ g. 2ⁿ 2ⁿ⁺¹ 2ⁿ h. n!
- 2. Exercício 0.4 a e b de DPV.
- 3. Preencha a tabela a seguir, informando o tempo gasto por um programa, para resolver um problema com instâncias de tamanho n. Considere o tempo para cada instrução/passo de 10⁻⁶ segundos e a função de complexidade especificada em cada linha.

	Tamanho da instância (N)					
Função de Complexidade	10	30	40	50	60	70
N + 10						
$2N^2+N+5$						
$2^{N} + N^{2}$						

4. Para cada função f(n) e cada tempo t na tabela a seguir, determine o maior tamanho n de um problema que pode ser resolvido no tempo t, supondo-se que o algoritmo para resolver o problema demore f(n) microssegundos e o tempo de cada instrução é 10⁻⁶ segundos.

f(n) \	t	1 segundo	1 minuto	1 hora	1 dia
lg n					
\sqrt{n}					
n					
n ²					
n ³					
2 ⁿ					
n!					

5. A tabela a seguir mostra o tamanho da maior instância de um problema que um computador atual consegue resolver em 1 hora, dado a função de complexidade do algoritmo. Preencha a tabela mostrando o maior tamanho de instância que se consegue resolver em uma hora em um computador 100 vezes e 1000 vezes mais rápido que o atual

Maior instância que um computador resolve em 1 hora								
Função de	Computador Atual	Computador 100x	Computador 1000x					
complexidade		mais rápido	mais rápido					
N	N							
n^2	M							
n ⁴	P							
4 ⁿ	R							

- 6. Você dispõe de dois algoritmos A1 e A2 para resolver um mesmo problema. As funções de complexidade dos mesmos são $n^2 + n \ e \ 10^3 n \ log \ log \ n$, respectivamente. Qual algoritmo você escolheria? Discuta todas as possibilidades.
- 7. Seja o seguinte trecho de pseudo-código:

Defina o valor de *a* em função de *n*.

8. Prove que
$$T(n) = T\left(\frac{n}{2}\right) + 1 = O(\log n)$$
.

9. Responda com V ou F. Justifique sua resposta por item.

```
Um algoritmo de ordem de complexidade polinomial é sempre preferível a um algoritmo de ordem de complexidade exponencial.

Se o pior caso do tempo de computação T de um algoritmo A é \Omega(n^2), então é possível que T seja O(n) para algumas entradas de A.

log n^2 = \Theta(log n + 5)
3^n = O(2^n)
n^2 log n = \Omega(n\sqrt{n})
T(n) = 64T(n/8) + n^2 = \Theta(n^2)
Sempre que f = O(h) e g = O(h), f = O(g)
Se f \neq g e f = O(g) então g = O(f)
As funções g = O(g) então g = O(g) para qualquer constante g = O(g) para qualquer constante g = O(g) para g
```

10. Encontre a complexidade de cada um dos seguintes trechos de programa:

```
a) Dois loops em següência:
```

```
for (i = 0; i < N; i++) {
         seqüência de comandos // O(1)
}
for (j = 0; j < M; j++) {
         seqüência de comandos // O(1)
}</pre>
```

O que acontece se trocarmos a complexidade do segundo loop por N ao invés de M?

b) Um loop aninhado seguido por um loop não aninhado:

```
for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
        seqüência de comandos; // O(1)
    }
}
for (k = 0; k < N; k++) {
    seqüência de comandos // O(1)
}</pre>
```

c) Um loop aninhado onde o número de vezes do loop mais interno depende do valor do índice no loop mais externo:

```
for (i = 0; i < N; i++) {
    for (j = i; j < N; j++) {
        seqüência de comandos // O(1)
    }
}</pre>
```

11. Encontre a complexidade de melhor caso e de pior caso do seguinte trecho de programa:

12. Analise os algoritmos considerando inteiros grandes, ou seja, o tamanho da instância de entrada corresponde à quantidade de bits utilizada, das Figuras 1.1, 1.2, 1.4 e 1.5 de DPV.

[DPV] DASGUPTA, Sanjoy; PAPADIMITRIOU, Christos H.; VAZIRANI, Umesh Virkumar. Algoritmos. São Paulo: McGraw-Hill, 2009. Disponível em: http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf