

Universidad Nacional Autónoma de México

FACULTAD DE INGENIERÍA

Laboratorio de Dispositivos y circuitos electrónicos

Reporte de práctica 3

El diodo semiconductor y Zener

	Profesor:
M.I. Guevara Rodríguez	z Ma. del
	Socorro

Grupo: 8

Alumno(s):

Francisco Pablo Rodrigo

 Calificación total
Previo
 Desarrollo
 Conclusiones

Desarrollo

Diodo rectificador con polarización directa

I_D	$10\mu A$	$50\mu A$	$100\mu A$	$500\mu A$	1mA	10mA	20mA	30mA
$V_{D_{teo}}$	0mV	0.5mV	0,53mV	70,59mV	(0.62mV)	$\sqrt{0.7mV}$	0,73mV	V0,74mV
$V_{D_{prac}}$	0mV	0,52mV	70,55mV	70,60mV	0,66mV	$\sqrt{0.74mV}$	70,76mV	V0,79mV

Podemos observar que los valores de voltaje teórico y práctico no difieren en mucho por lo que podemos concluir que la gráfica mostrada en el **Previo** es correcta.

Diodo rectificador con polarización inversa

I_D	$1\mu A$	$5\mu A$	$10\mu A$	$15\mu A$	$20\mu A$	$25\mu A$
$V_{D_{teo}}$	50mV	50,1mV	50,2mV	50,2mV	50,2mV	50,2mV
$V_{D_{prac}}$	0mV	0mV	0mV	0mV	0mV	0mV

En este caso los valores difieron terriblemente ya que en la vida real un rectificador con polarización inversa no debe dejar pasar corriente.

Diodo Zener con polarización directa

I_D	$10\mu A$	$50\mu A$	$100\mu A$	$500\mu A$	1mA	10mA	20mA	30mA
$V_{D_{teo}}$	0.18mV	70,22mV	70,24mV	70,28mV	70,30mV	70,41mV	70,47mV	70,54mV
$V_{D_{prac}}$	0,20mV	70,23mV	70,25mV	70,29mV	70,31mV	70,42mV	70,49mV	V0,60mV

Diodo rectificador con polarización inversa

I_D	$1\mu A$	$5\mu A$	$10\mu A$	$15\mu A$	$20\mu A$	$25\mu A$
$V_{D_{teo}}$	4,82mV	4,86mV	4,88mV	4,89mV	4,90mV	4.9mV
$V_{D_{prac}}$	4,90mV	4,92mV	4,94mV	4,95mV	4,98mV	5,3mV

Para el caso de del diodo Zener hay que recordar que este dispositivo conduce la corriente en ambos sentidos solo que debemos de tener cuidado pues el voltaje del diodo en polarización directa es el mismo que en polarización inversa.

Conclusiones

Tanto el diodo semiconductor como el diodo Zener tienen sus aplicaciones y su importancia para el uso de dispositivos electrónicos. Observando las curvas de cada uno, podemos observar su comportamiento y vemos que, por ejemplo, para el diodo semiconductor, vimos que dependiendo la polaridad en la que estuviera conectado, dejaba que hubiera flujo o no de corriente eléctrica, y eso se comprobó con el foco que conectamos, ya que con polaridad abierta, la corriente circulaba y se prendía el foco, y con polaridad cerrada, había corriente pero no llegaba hasta el foco, por lo tanto, no se enciende.