

(a) Assign the 2 protons at δ 1.8.

2

8

6

(b) Assign each multiplet from δ 2.8 to 3.3 (4 protons)

(c) Make a detailed assignment of the 3 protons at δ 2.3. Report δ , multiplicity and couplings.

2.45 2.40 2.35 2.30 2.25 ppm

(d) Assign the 3 protons at δ 7.1 to 7.3. Label the expansion below with assignments and coupling trees.

8

6

Problem R-08K (C₁₉H₂₀O₂). You are asked to assign the protons of steroid from the ¹H NMR spectrum and a H-H COSY. Only answer the questions, it is not necessary to do a complete analysis of all of the signals.

- (a) Assign the 2 protons at δ 1.8.
- From chemical shift consideration, these are the H¹² protons, one a ddd (J=14,11,6) from coupling to the gem and two vicinal protons, the other a dddd 2 (J=14,7,3,1) with an additional long-range coupling. In the COSY they are coupled only to the H11 protons at 3.08 and 3.25

- (b) Assign the 4 protons at δ 2.8 to 3.3.
 - 2.89: H^{15} (dd, $^2J = 19$, $^3J = 9.5$) COSY correlation to other H^{15} and H^{14} . α -keto gives large 2J (19 Hz)
- 3.08: H^{11} axial (ddd, 2J = 17 Hz, 3J = 11 Hz, 3J = 6 Hz) α -phenyl also raises 2J (17 Hz) 8
 - 3.25: H¹¹ equatorial COSY correlation to other H¹¹ and the H¹² protons
 - 3.25: H^{14} (t, J = 10 Hz) COSY shows correlation to both H^{15} protons)
 - (c) Make a detailed assignment of the 3 protons at δ 2.3. Report δ , multiplicity and couplings.

These are the superimposed signals of the two protons at H¹⁷ (an AB quartet with a very small δ_{AB} and large ${}^2J_{AB}$ (ca 17 Hz), outer lines barely visible, inner lines not resolved, so it cannot be solved) and a dd for one of the H¹⁵ protons

(d) Assign the 3 protons at δ 7.1 to 7.3. Label the expansion below with assignments and coupling trees.

Hard to assign H⁶ and H⁷ - accept either. The 7.59 signal is quite a bit broader - if assign to H⁷, could be possible coupling to H¹⁴ (which is broadened). The 7.17 signal, if assigned to H⁶ could be coupled to H⁴ (but H⁴ is not particularly broad. There is also the argument that generally α protons are downfield of β -protons in naphthalenes.

The AB quartet cannot be solved because the middle two lines are not separated.

