International Rectifier

50WQ04FN

SCHOTTKY RECTIFIER

5.5 Amp

$$I_{F(AV)} = 5.5 Amp$$
 $V_R = 40V$

Major Ratings and Characteristics

Chai	racteristics	50WQ04FN	Units
I _{F(AV)}	Rectangular waveform	5.5	А
V _{RRM}		40	V
I _{FSM}	@tp=5 µs sine	550	Α
V _F	@5 Apk, T _J = 125°C	0.44	V
Т	range	-40 to 150	°C

Description/ Features

The 50WQ04FN surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Popular D-PAK outline
- Small foot print, surface moutable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	50WQ04FN
V _R Max. DC Reverse Voltage (V)	40
V _{RWM} Max. Working Peak Reverse Voltage (V)	40

Absolute Maximum Ratings

, to o o tate in a same of the						
	Parameters	50WQ	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	5.5	Α	50% duty cycle @ T _C = 135°C, r	, rectangular wave form	
	* See Fig. 5					
I _{FSM}	Max. Peak One Cycle Non-Repetitive	550	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with	
	Surge Current *See Fig. 7	90		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied	
E _{AS}	Non-Repetitive Avalanche Energy	n-Repetitive Avalanche Energy 9 mJ T _J = 25 °C, I _{AS} = 1.5 Amps, L = 8 mH		3 mH		
I _{AR}	Repetitive Avalanche Current	1.2	Α	Current decaying linearly to zero in 1 µsec		
				Frequency limited by T _J max. V _J	$_{A}$ = 1.5 x V_{R} typical	

Electrical Specifications

	Parameters	50WQ	Units		Conditions
V _{FM}	Max. Forward Voltage Drop	0.51	V	@ 5A	T = 25 °C
	* See Fig. 1 (1)	0.63	V	@ 10A	$T_J = 25 ^{\circ}\text{C}$
		0.44	V	@ 5A	T _{_I} = 125 °C
		0.59	V	@ 10A	1 _J = 123 0
I _{RM}	Max. Reverse Leakage Current	3	mA	T _J = 25 °C	V _P = rated V _P
	* See Fig. 2 (1)	40	mA	T _J = 125 °C	V _R - rated V _R
V _{F(TO}	Threshold Voltage	0.27	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	26.77	mΩ		
C _T	Typical Junction Capacitance	405	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25 °C	
L _s	Typical Series Inductance	5.0	nH	Measured lead to lead 5mm from package body	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

· · · · · · · · · · · · · · · · · · ·				
Parameters		50WQ	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJC}	Max. Thermal Resistance	3.0	°C/W	DC operation *See Fig. 4
	Junction to Case			
wt	Approximate Weight	0.3 (0.01)	g (oz.)	
Case Style		D-Pak		Similar to TO-252AA
Device Marking		50WQ04FN		

 $[\]frac{\binom{*}{d}}{\frac{d}{d}} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

Bulletin PD-20524 rev. F 06/04

Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance $Z_{th,JC}$ Characteristics

50WQ04FN

Bulletin PD-20524 rev. F 06/04

Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV})x$ R_{thJC}; \\ & Pd = Forward Power Loss = $I_{F(AV)}x$ $V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = $V_{R1}x$ $I_R(1-D)$; $I_R @ V_{R1} = 80\%$ rated V_R $I_R(1-D)$; $I_R(1-D)$;$

Outline Table

Marking Information

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 06/04