Assignment-2

Vector Space and Inner Product space

- Show directly that the set V of real valued continuous functions on the interval [0, 1] is a vector space under the pointwise operations we discussed in class.
- (2) Decide if the following two subsets of V are subspaces. If a subspace, prove it. If not a subspace, say why explicitly.
 - W^{even} is the set of real polynomials of even degree.
 - ullet $W^{\mathrm{even\ power}}$ is the set of real polynomials in which every term has even degree.

(3)

Find the span of the subset $S = \{w_1, w_2, w_3, w_4\}$ in \mathbb{R}^3 , where

$$w_1 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}, \qquad w_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \qquad w_3 = \begin{pmatrix} 10 \\ 10 \\ 25 \end{pmatrix}, \qquad w_4 = \begin{pmatrix} 5 \\ -1 \\ 8 \end{pmatrix}.$$

(4)

Show that the set $S = \{v_1, v_2, v_3\}$ is a linearly independent subset of \mathbb{R}^4 , where

$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 1 \\ 4 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 5 \\ 10 \\ 3 \\ 25 \end{pmatrix}.$$

(5)

Suppose V_1, \ldots, V_m are inner product spaces. Show that the equation

$$\langle (u_1,\ldots,u_m),(v_1,\ldots,v_m)\rangle = \langle u_1,v_1\rangle + \cdots + \langle u_m,v_m\rangle$$

defines an inner product on $V_1 \times \cdots \times V_m$.

[In the expression above on the right, $\langle u_1, v_1 \rangle$ denotes the inner product on $V_1, \ldots, \langle u_m, v_m \rangle$ denotes the inner product on V_m . Each of the spaces V_1, \ldots, V_m may have a different inner product, even though the same notation is used here.]

(6)

Show that the square of an average is less than or equal to the average of the squares. More precisely, show that if $a_1, \ldots, a_n \in \mathbf{R}$, then the square of the average of a_1, \ldots, a_n is less than or equal to the average of a_1^2, \ldots, a_n^2 .

(7)

Suppose V is a real inner product space. Prove that

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

for all $u, v \in V$.

(8)

Suppose $u, v \in V$. Prove that ||au + bv|| = ||bu + av|| for all $a, b \in \mathbf{R}$ if and only if ||u|| = ||v||.

(9)

Suppose e_1, \ldots, e_m is an orthonormal list of vectors in V. Let $v \in V$. Prove that

$$||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$$

if and only if $v \in \text{span}(e_1, \dots, e_m)$.

(10)

Suppose x, y, z are linearly independent. Is it true that x+y, y+z, z+x are also linearly independent?