Оптимизация алгоритма Риттера Взгляд на сжатие как на предварительную обработку текста

Алексей Хворост, Иван Бурмистров

5 апреля 2012

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует неколько подходов, например:

- Алгоритмы эффективного ввода вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Увеличение производительности за счет предварительной обработки.

Существует неколько подходов, например:

- Алгоритмы эффективного ввода вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Увеличение производительности за счет предварительной обработки.

С ростом размера входных данных для классических задач меняются алгоритмы, способные их эффективно решать.

Существует неколько подходов, например:

- Алгоритмы эффективного ввода вывода алгоритмы, минимизирующие чтение данных с жесткого диска.
- Увеличение производительности за счет предварительной обработки.

Замечание

Предварительная обработка – это построение структур данных на основе исходной информации.

Примеры:

- Обратный индекс
- Суффиксные структуры (суффиксный массив, суффиксное дерево, суффиксный автомат)
- ..

Введение

Введение

Введение

Введение

Другое представление «придуманной» структуры данных

$$\mathcal{X}_{1} = b$$

$$\mathcal{X}_{2} = a$$

$$\mathcal{X}_{3} = \mathcal{X}_{2} \cdot \mathcal{X}_{1}$$

$$\mathcal{X}_{4} = \mathcal{X}_{3} \cdot \mathcal{X}_{2}$$

$$\mathcal{X}_{5} = \mathcal{X}_{4} \cdot \mathcal{X}_{3}$$

$$\mathcal{X}_{6} = \mathcal{X}_{5} \cdot \mathcal{X}_{4}$$

$$\mathcal{X}_{7} = \mathcal{X}_{6} \cdot \mathcal{X}_{5}$$

Вывод

Сжатие – один из способов предварительной обработки, сохраняющий информацию о некоторых свойствах исходного текста

Для данного текста описанная структура является способом сжатия

Вывод

Сжатие – один из способов предварительной обработки, сохраняющий информацию о некоторых свойствах исходного текста

Определение

Введение

Прямолинейная программа (ПП) \mathcal{X} размера n – это последовательность правил вывода

$$\mathcal{X}_1 = expr_1, \mathcal{X}_2 = expr_2, \dots, \mathcal{X}_n = expr_n,$$

где \mathcal{X}_i – это **переменные**, а $expr_i$ – это **выражения** вида:

- $expr_i$ символ из алфавита Σ (терминальные правила).
- ullet $expr_i = \mathcal{X}_l \cdot \mathcal{X}_r \ (l,r < i) \ ($ нетерминальные правила).

Прямолинейная программа — это грамматика, выводящая в точности одно слово.

Определение

Введение

Прямолинейная программа (ПП) \mathcal{X} размера n – это последовательность правил вывода

$$\mathcal{X}_1 = expr_1, \mathcal{X}_2 = expr_2, \dots, \mathcal{X}_n = expr_n,$$

где \mathcal{X}_i – это **переменные**, а $expr_i$ – это **выражения** вида:

- $expr_i$ символ из алфавита Σ (терминальные правила).
- ullet $expr_i = \mathcal{X}_l \cdot \mathcal{X}_r \ (l, r < i) \ ($ нетерминальные правила).

Прямолинейная программа – это грамматика, выводящая в точности одно слово.

$\Pi\Pi \ \mathcal{X}$, выводящая строку **«** abaababaabaab»

Пример

$$\mathcal{X}_1 = b$$
 $\mathcal{X}_2 = a$
 $\mathcal{X}_3 = \mathcal{X}_2 \cdot \mathcal{X}_1$
 $\mathcal{X}_4 = \mathcal{X}_3 \cdot \mathcal{X}_2$
 $\mathcal{X}_5 = \mathcal{X}_4 \cdot \mathcal{X}_3$
 $\mathcal{X}_6 = \mathcal{X}_5 \cdot \mathcal{X}_4$
 $\mathcal{X}_7 = \mathcal{X}_6 \cdot \mathcal{X}_5$

Дерево вывода ${\mathcal X}$

Введение

Теорема

Пусть \mathcal{T} – ПП размера n, выводящая строку T, \mathcal{P} – ПП размера m, выводящая строку P.

Алгоритм Лившица позволяет найти все вхождения текста P в текст T за время $O(n^2m)$.

Пример

Если $T=a^{2^n}, P=a^{2^m}$, то алгоритм Лившица будет работать за время $O(n^2m)$ (при условии, что для этих текстов уже построены ПП), в то время как классический алгоритм КМП – за время $O(2^n+2^m)$.

Теорема

Пусть $\mathcal{T}-\Pi\Pi$ размера n, выводящая строку T, $\mathcal{P}-\Pi\Pi$ размера m, выводящая строку P.

Алгоритм Лившица позволяет найти все вхождения текста P в текст T за время $O(n^2m)$.

Пример

Если $T=a^{2^n}, P=a^{2^m}$, то алгоритм Лившица будет работать за время $O(n^2m)$ (при условии, что для этих текстов уже построены ПП), в то время как классический алгоритм КМП — за время $O(2^n+2^m)$.

Преимущества ПП

- Как правило, размер ПП меньше размера породившего ее
- Хорошо структурированы
- Полиномиально разрешимые классические строковые
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк

 - Поиск квадратов в сжатой строке

Преимущества ПП

- Как правило, размер ПП меньше размера породившего ее текста
- Хорошо структурированы
- Полиномиально разрешимые классические строковые задачи, например:
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк
 - Поиск палиндромов в сжатой строке
 - Поиск квадратов в сжатой строке

• Как правило, размер ПП меньше размера породившего ее текста

- Хорошо структурированы
- Полиномиально разрешимые классические строковые задачи, например:
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк
 - Поиск палиндромов в сжатой строке
 - Поиск квадратов в сжатой строке

Преимущества ПП

- Как правило, размер ПП меньше размера породившего ее текста
- Хорошо структурированы
- Полиномиально разрешимые классические строковые задачи, например:
 - Поиск сжатого образца в сжатом тексте
 - Поиск наибольшей общей подстроки двух сжатых строк
 - Поиск палиндромов в сжатой строке
 - Поиск квадратов в сжатой строке

Введение

Утверждение

Задача построения минимальной ПП, выводящей заданную строку T – NP-полная.

Для построения ПП требуется использовать приближенные алгоритмы. Введение

Утверждение

Задача построения минимальной ПП, выводящей заданную строку T – NP-полная.

Для построения ПП требуется использовать приближенные алгоритмы.

Идея

Строить ПП на основе классических алгоритмов сжатия.

Алгоритм Лемпеля-Зива

ВХОД: T — строка над некоторым конечным алфавитом Σ ВЫХОД: Набор объектов m_1, m_2, \cdots, m_k , где m_i является либо символом из алфавита Σ , либо парой чисел (I, r), I < r. АЛГОРИТМ:

- $m_1 = T[1]$
- Пусть алгоритм отработал для префикса строки длины j и построил объекты m_1, m_2, \cdots, m_i . Тогда алгоритм ищет наибольший префикс $T[j+1\cdots|T|]$, входящий как подстрока в $T[1\cdots j]$. Если такой префикс есть и совпадает с подстрокой $T[I\cdots r]$, то $m_{i+1}=(I,r)$. Иначе, $m_{i+1}=T[i+1]$.

Идея

Строить ПП на основе классических алгоритмов сжатия.

Алгоритм Лемпеля-Зива

ВХОД: T – строка над некоторым конечным алфавитом Σ ВЫХОД: Набор объектов m_1, m_2, \cdots, m_k , где m_i является либо символом из алфавита Σ , либо парой чисел (I, r), I < r. АЛГОРИТМ:

- $m_1 = T[1]$
- Пусть алгоритм отработал для префикса строки длины j и построил объекты m_1, m_2, \cdots, m_i . Тогда алгоритм ищет наибольший префикс $T[j+1\cdots|T|]$, входящий как подстрока в $T[1\cdots j]$. Если такой префикс есть и совпадает с подстрокой $T[I\cdots r]$, то $m_{i+1}=(I,r)$. Иначе, $m_{i+1}=T[j+1]$.

Пример

Пусть T – строка «abaabaabaab».

- $m_1 = a$
- $m_2 = b$
- $m_3 = (1,1)$
- $m_4 = (1,3)$
- $m_5 = (2,6)$
- $m_6 = (1,2)$

Определение

LZ77-факторизация строки T – это набор слов f_1, f_2, \dots, f_k , который строится следующим образом:

- $f_1 = T[1]$
- ullet Пусть $T[1\cdots j]=f_1\cdot f_2\cdot\ldots\cdot f_{i-1}$. Тогда f_i наибольший префикс $T[j+1\cdots |T|]$, входящий как подстрока в $T[1\cdots j]$. Если такого префикса нет, то $f_i=T[j+1]$.

Пример

LZ77-факторизация слова «abaababaabaab» имеет вид:

 $a \cdot b \cdot a \cdot aba \cdot baaba \cdot ab$.

Определение

Бинарное дерево называется *AVL-сбалансированным*, если для каждого его узла высоты левого и правого поддеревьев различаются не более, чем на 1.

Определение

Прямолинейную программу T будем называть AVL-сбалансированной, если ее дерево вывода является AVL-сбалансированным.

Введение

Определение

Бинарное дерево называется *AVL-сбалансированным*, если для каждого его узла высоты левого и правого поддеревьев различаются не более, чем на 1.

Определение

Прямолинейную программу T будем называть AVL-cбалансированной, если ее дерево вывода является AVL-cбалансированным.

AVL-сбалансированные ПП

Лемма

AVL-сбалансированное дерево из n узлов имеет высоту порядка $O(\log n)$.

Следствие

AVL-сбалансированная ПП T имеет высоту порядка $O(\log |T|)$.

Введение

Лемма

AVL-сбалансированное дерево из n узлов имеет высоту порядка $O(\log n)$.

Следствие

AVL-сбалансированная ПП T имеет высоту порядка $O(\log |T|)$.

Операция конкатенации двух AVL-сбалансированных ПП

 $Bxoд: \mathcal{A}, \mathcal{B} - AVL$ -сбалансированные $\Pi\Pi$.

Выход: AVL-сбалансированная ПП \mathcal{G} , выводящая $A \cdot B$.

Алгоритм:

Алгоритм:

Операция перебалансировки:

Асмптотическая сложность операции конкатенации

Операция конкатенации двух AVL-сбалансированных ПП $\mathcal A$ и $\mathcal B$ выполняется за время $O(h(\mathit{Tree}(\mathcal A)) - h(\mathit{Tree}(\mathcal B)))$, где $\mathit{Tree}(\mathcal X))$ – дерево вывода ПП $\mathcal X$. Также в ходе операции порождается $O(h(\mathit{Tree}(\mathcal A)) - h(\mathit{Tree}(\mathcal B)))$ новых правил вывода.

Введение

Операция взятия подстроки

Вход: \mathcal{T} – AVL -сбалансированная ПП, выводящая строку T и целые числа I и r , такие, что $1 \leq \mathit{I} < \mathit{r} \leq |\mathcal{T}|$. Выход: AVL -сбалансированная ПП \mathcal{S} , выводящая строку $\mathit{T}[\mathit{I} \dots \mathit{r}]$.

Прямолинейные программы

Введение

Практические результаты

Введение

Асмптотическая сложность операции взятия подстроки

Для AVL-сбалансированной ПП \mathcal{T} , выводящей строку T, операция взятия подстроки выполняется за время $O(\log |T|)$, при этом порождает не более $O(\log |T|)$ новых правил вывода.

Алгоритм Риттера

 Bxo д: Строка T длины n, факторизация

 $F(T): T = f_1 \cdot f_2 \cdot \dots \cdot f_k$. Также для каждого фактора f_i , если он не однобуквенный, известна позиция его вхождения в строку $T_{i-1} = f_1 \cdot f_2 \cdot \dots \cdot f_{i-1}$, то есть, известны числа I_i и t_i такие, что $f_i = T[I_i \dots r_i]$.

 $\mathrm{Выход}$: ПП \mathcal{T} , выводящая \mathcal{T} .

ХОД АЛГОРИТМА:

- Строим тривиальную *AVL*-сбалансированную ПП \mathcal{T}_1 , выводящую однобуквенный фактор f_1 .
- ullet Возьмем фактор f_{i+1} . Пусть $f_{i+1} = T_i[I_i \dots r_i]$.
- С помощью операции взятия подстроки построим ПП S, выводящую строку $T_i[I_i \dots r_i]$.
- С помощью алгоритма конкатенации построим ПП $\mathcal{T}_{i+1} = \mathcal{T}_i \cdot \mathcal{S}$.

Теорема

Пусть дан текст T и его LZ77-факторизация размера k. Тогда алгоритм Риттера позволяет построить ПП $\mathcal T$ размером $O(k \cdot \log |\mathcal T|)$ за время $O(k \cdot \log |\mathcal T|)$.

Узкое место алгоритма Риттера

$$S = ba^{2^n}ba^{2^{n-1}}\dots ba.$$

LZ77-факторизация этой строки:

$$b \cdot a \cdot a \cdot a^2 \cdot a^4 \cdot \cdots \cdot a^{2^{n-1}-1} \cdot ba^{2^{n-1}} \cdot ba^{2^{n-2}} \cdot \cdots \cdot ba$$
.

Число операций перебалансировки:

$$\sum_{i=0}^{n-1} (n + (n-1-i) - (i)) = \sum_{i=0}^{n-1} (2n-2i-1) = n^2$$

Прямолинейные программы

Функция минимального количества перебалансировок

Пусть есть набор правил $\mathcal{F}_1, \mathcal{F}_2, \dots \mathcal{F}_k$.

$$arphi(i,j) = \left\{egin{array}{l} 0,$$
 если $i=j \ \min_{r=i}^j (arphi(i,r) + arphi(r+1,j) + |\log(|F_i| + \cdots + |F_r|) - \\ -\log(|F_{r+1}| + \cdots + |F_j|)|), \end{array}
ight.$ иначе.

Функция минимального количества перебалансировок

Пусть есть набор правил $\mathcal{F}_1, \mathcal{F}_2, \dots \mathcal{F}_k$.

$$arphi(i,j) = \left\{ egin{array}{l} 0,$$
 если $i = j \ \min_{r=i}^j (arphi(i,r) + arphi(r+1,j) + |\log(|F_i| + \cdots + |F_r|) - |\log(|F_{r+1}| + \cdots + |F_j|)|), \ \mathrm{иначe}. \end{array}
ight.$

Утверждение

Функция $\varphi(\cdot,\cdot)$ может быть вычислена за время $O(k^3)$.

Модернизированный алгоритм Риттера

Bxoд: Строка T длины n, факторизация

 $F(T): T = f_1 \cdot f_2 \cdot \dots f_k$. Также для каждого фактора f_i , если он не однобуквенный, известна позиция его вхождения в строку $T_{i-1} = f_1 \cdot f_2 \cdot \dots \cdot f_{i-1}$, то есть, известны числа I_i и t_i такие, что $f_i = T[I_i \dots r_i]$.

 $\mathrm{Выход}$: ПП \mathcal{T} , выводящая \mathcal{T} .

Введение

etaАЗА: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

- них входит как подстрока в T_i , а f_{i+r+1} уже не входит.

- Применим к набору правил алгоритм конкатенации в

Введение

 $ext{БA3A}$: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили AVL-сбалансированную ПП \mathcal{T}_i для строки $\mathcal{T}_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- ① Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.
- ② Для каждого фактора f_{i+s} с помощью операции взятия подстроки построим ПП \mathcal{F}_s , выводящую f_{i+s} .
- ullet Для полученного набора правил вычислим таблицу arphi(i,j).
- Применим к набору правил алгоритм конкатенации в порядке, который диктует функция $\varphi(i,j)$. Таким образом, построим ПП S, выводящую $F_1 \cdot F_2 \cdot \ldots F_r$
- \bullet С помощью алгоритма конкатенации построим $\Pi\Pi$ $\mathcal{T}_{i\perp r}=\mathcal{T}_i\cdot\mathcal{S}$.

etaАЗА: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили AVL-сбалансированную ПП \mathcal{T}_i для строки $T_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- **1** Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.

- Применим к набору правил алгоритм конкатенации в

etaАЗА: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили AVL-сбалансированную ПП \mathcal{T}_i для строки $T_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- **1** Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.
- 2 Для каждого фактора f_{i+s} с помощью операции взятия подстроки построим ПП \mathcal{F}_s , выводящую f_{i+s} .
- Применим к набору правил алгоритм конкатенации в

Прямолинейные программы

Алгоритм:

 $oxdot{BA3A}$: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили AVL-сбалансированную ПП \mathcal{T}_i для строки $T_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- **1** Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.
- 2 Для каждого фактора f_{i+s} с помощью операции взятия подстроки построим $\Pi\Pi \mathcal{F}_s$, выводящую f_{i+s} .
- \odot Для полученного набора правил вычислим таблицу $\varphi(i,j)$.
- Применим к набору правил алгоритм конкатенации в

etaАЗА: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили *AVL*-сбалансированную ПП \mathcal{T}_i для строки $T_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- **①** Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.
- ② Для каждого фактора f_{i+s} с помощью операции взятия подстроки построим ПП \mathcal{F}_s , выводящую f_{i+s} .
- f 3 Для полученного набора правил вычислим таблицу arphi(i,j).
- Применим к набору правил алгоритм конкатенации в порядке, который диктует функция $\varphi(i,j)$. Таким образом, построим ПП \mathcal{S} , выводящую $F_1 \cdot F_2 \cdot \ldots F_r$
- \bullet С помощью алгоритма конкатенации построим $\Pi\Pi$ $\mathcal{T}_{i+r} = \mathcal{T}_i \cdot \mathcal{S}.$

Введение

etaАЗА: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили AVL-сбалансированную ПП \mathcal{T}_i для строки $T_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- **①** Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.
- ② Для каждого фактора f_{i+s} с помощью операции взятия подстроки построим ПП \mathcal{F}_s , выводящую f_{i+s} .
- ullet Для полученного набора правил вычислим таблицу arphi(i,j).
- Применим к набору правил алгоритм конкатенации в порядке, который диктует функция $\varphi(i,j)$. Таким образом, построим ПП \mathcal{S} , выводящую $F_1 \cdot F_2 \cdot \ldots F_r$
- $footnote{f 0}$ С помощью алгоритма конкатенации построим $\Pi\Pi$ $\mathcal{T}_{i+r}=\mathcal{T}_i\cdot\mathcal{S}.$

Введение

etaАЗА: Построим тривиальную AVL-сбалансированную ПП \mathcal{T}_1 для однобуквенного фактора f_1 .

 \coprod АГ: Пусть мы построили AVL-сбалансированную ПП \mathcal{T}_i для строки $T_i = f_1 \cdot f_2 \cdot \ldots \cdot f_i$.

- **①** Возьмем факторы $f_{i+1}, f_{i+1}, \dots, f_{i+r}$, такие что, каждый из них входит как подстрока в T_i , а f_{i+r+1} уже не входит.
- ② Для каждого фактора f_{i+s} с помощью операции взятия подстроки построим ПП \mathcal{F}_s , выводящую f_{i+s} .
- ullet Для полученного набора правил вычислим таблицу arphi(i,j).
- Применим к набору правил алгоритм конкатенации в порядке, который диктует функция $\varphi(i,j)$. Таким образом, построим ПП \mathcal{S} , выводящую $F_1 \cdot F_2 \cdot \ldots F_r$
- $footnote{f 0}$ С помощью алгоритма конкатенации построим $\Pi\Pi$ $\mathcal{T}_{i+r}=\mathcal{T}_i\cdot\mathcal{S}.$

Теорема

Введение

Пусть дан текст T и его LZ77-факторизация размера k. Тогда модернизированный алгоритм Риттера позволяет построить ПП $\mathcal T$ размером $O(k \cdot \log |\mathcal T|)$ за время $O(k \cdot \log |\mathcal T|)$.

Число перебалансировок

∘ - SLPclassic • - SLPnew

