Tema 4: Casos de Uso y Diagramas de Casos de Uso

Análisis y Diseño del *Software* Grado en Ingeniería Informática

Departamento de Estadística, Informática y Matemáticas Universidad Pública de Navarra-*Nafarroako Unibertsitate Publikoa*

Curso académico 2022-2023

Nafarroako Unibertsitate Publikoa

Objetivos del tema

- Identificación y modelado de requisitos del sistema a desarrollar.
- Descripción de casos de uso y diagramas de casos de uso.

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

Extracción y análisis de requisitos

- La especificación de los requisitos del sistema a desarrollar se desglosa en dos tareas.
- Extracción de requisitos
 - Es un proceso de indagación sobre las ideas que el cliente tiene del sistema a desarrollar.
 - Como como resultado se obtiene una descripción del sistema en términos comprensibles tanto por el cliente como por el equipo de desarrollo.
- Análisis de requisitos: estudia los requisitos informales obtenidos del cliente para definir una especificación técnica del sistema a desarrollar (modelo para análisis).

Extracción de requisitos

- La comprensión del cliente se limita al dominio del problema pero no incluye el dominio de la solución no se puede esperar que el cliente verbalice exactamente lo que quiere.
- Es necesaria una relación dialéctica entre cliente y equipo de desarrollo.
 - Ayuda al cliente a formular sus requisitos.
 - Ayuda al equipo a entender esos requisitos.

Técnicas para extracción de requisitos

- **Cuestionarios:** pedir al usuario final que responda una lista de preguntas pre-formuladas.
- Análisis de tareas: observar a los usuarios finales en su entorno operativo.
- **Escenarios:** bosquejar el uso del sistema como una colección (incompleta) de interacciones concretas entre actores y sistema.
- Casos de uso: confeccionar abstracciones que agrupen diferentes escenarios en una misma clase.

- El enfásis del equipo de desarrollo durante la identificación de actores y la descripción de escenarios es comprender el dominio de la aplicación.
- Se busca una comprensión del ámbito del sistema y del soporte que hay que proporcionar a los procesos de trabajo de los usuarios.
- Una vez que se han descrito escenarios operativos e identificado los actores que intervienen, el equipo de desarrollo formaliza los escenarios en casos de uso.

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

Concepto de actor

- Los actores son abstracciones de roles que las entidades que interactúan con el sistema adoptan en esa interacción.
- No necesariamente son humanos, pueden ser sistemas externos.
- Se conectan a los casos de uso mediante asociaciones.
- Una asociación entre un actor y un caso de uso indica una comunicación/interacción directa entre ambos

Utilidad de los actores

- La identificación de actores tiene dos propósitos:
 - Definir las fronteras del sistema a desarrollar.
 - Encontrar las diferentes perspectivas desde las cuales el equipo de desarrollo necesita ver el sistema para poder construirlo.
- En las etapas iniciales de la extracción de requisitos resulta difícil distinguir entre actores y componentes del sistema (objetos de análisis, subsistemas).
 - Ejemplo: un subsistema de base de datos puede parecer a veces un actor, mientras que otras veces puede parecer parte del sistema a desarrollar.
- Los actores quedan completamente perfilados una vez se ha definido la frontera del sistema a desarrollar.
 - Los actores quedan fuera de la frontera.
 - Objetos y subsistemas quedan dentro de la frontera.

Preguntas para identificar actores

- ¿A qué grupos de usuarios da soporte el sistema?
- ¿Qué grupos de usuarios emplean las principales funcionalidades del sistema?
- ¿Qué grupos de usuarios emplean funcionalidades secundarias como mantenimiento y administración?
- ¿Con qué software (interno o externo) debe interactuar el sistema?

Actores en los diagramas

Actor4

Requisitos

- Tras la identificación de cada actor hay que determinar la funcionalidad que el sistema debe aportar a ese actor.
- Esa información se extrae definiendo escenarios y formalizando casos de uso.

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

Concepto de escenario

- Un escenario es una descripción informal de una prestación simple del sistema desde el punto de vista de un actor concreto.
 - Los escenarios proporcionan un material común que es comprensible por desarrolladores y clientes.
- Los escenarios permiten a los desarrolladores ir dando forma a los requisitos.
 - En su descripción es posible identificar actores.
 - Su descripción se puede generalizar en casos de uso.
- Los escenarios se centran en situaciones específicas o eventos concretos entre el sistema a desarrollar y sus usuarios.
 - A diferencia de los casos de uso que proporcionan completas descripciones generalizadas de la interacción entre usuarios y sistema.

Requisitos

- Ejemplo: escenario de un sistema de gestión de alertas.
 - Durante su patrulla en coche, los agentes Agente A y Agente B detectan humo saliendo de una nave de un polígono industrial.
 - Agente B abre el mapa de su terminal y obtiene las coordenadas geográficas para ubicar la nave y las introduce en su aviso de alerta junto con una indicación de la posición de la columna de humo (esquina noroeste de la nave) y el nivel de emergencia.
 Añade al aviso una petición de unidades médicas móviles debido a que el área parece bastante ocupada. Confirma su entrada y espera confirmación del aviso.
 - Sargento Supervisor, oficial de guardia en la central, recibe notificación de la alerta. Revisa la información recibida y decide atender la alerta. Seguidamente destina una unidad de bomberos y otra unidad médica al sitio del incidente, recibe estimación del tiempo de llegada y devuelve confirmación del aviso y tiempo estimado de llegada a Agente B.
 - Agente B recibe la confirmación y el tiempo de llegada de las unidades médicas solicitadas

• **Ejemplo:** observaciones sobre el escenario descrito.

Requisitos

- Describe una situación concreta (instancia) de aviso de incidente con fuego.
- No describe todas las posibles situaciones en las que se puede dar un aviso de incendio.
- Presenta a ciertos participantes en el escenario (Agente A, Agente B y Sargento Supervisor) y describe sus roles en ese escenario.
- Esos roles se pueden generalizar en los actores *FieldOfficer* y *Dispatcher*.

Otros escenarios que surgen al interrogar al cliente

- Un accidente de automóvil sin heridos ocurre en la autovía.
 Agentes de tráfico realizan el atestado y dirigen el tráfico mientras retiran los coches accidentados.
- Un gato doméstico se ha encaramado en un árbol. Se destina un camión de bomberos a rescatar al gato. Dado que el incidente es de baja prioridad, la unidad destinada hace la ruta sin forzar el paso. Entretanto, el dueño del gato sube al árbol, cae y se rompe una pierna, necesitando una ambulancia para ser trasladado al hospital.
- Un terremoto sin precedentes daña edificios y carreteras, produciendo múltiples incidentes y activando un plan nacional de emergencias. Las carreteras dañadas impiden dar respuesta a los avisos.

Diseño de escenarios

- No intenta abstraer ideas genéricas, sino que se centra en descripciones concretas de instancias particulares.
- Está orientada a describir comportamientos y funcionalidades;
 no está orientada a tecnología.
- No trata de ser completa y es bastante informal.
- Intenta dar forma al producto deseado, más allá de las ideas iniciales del cliente.

Preguntas guía para preparar escenarios

- ¿Cuáles son las tareas que el actor quiere que el sistema realice?
- ¿A qué información accede el actor? ¿Quién genera esos datos? ¿Se pueden modificar o eliminar? ¿Por quién?
- ¿Sobre qué cambios externos necesita el actor informar al sistema? ¿Con qué frecuencia? ¿Por quién?
- ¿Sobre qué eventos necesita el sistema informar al actor? ¿Con qué latencia?

- La respuesta a esas preguntas se construye con diferentes fuentes:
 - Requisitos expuestos por el cliente

Requisitos

- Necesidades de los usuarios del sistema
- Observaciones de campo realizadas por el equipo de desarrollo

Especificación orientada a escenarios

- El diseño de escenarios es un proceso iterativo.
- Cada escenario debe considerarse como un documento de trabajo susceptible de ser iterado (aumentado o reorganizado) cuando los requisitos, el criterio de aceptación del cliente o la situación de desarrollo cambie.
- La generalización de escenarios y la identificación de los casos de uso de más alto nivel que el sistema tiene que soportar habilitan a los desarrolladores a definir el alcance del sistema.

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

Concepto de caso de uso

- Se emplean casos de uso para describir el comportamiento externo del sistema, es decir, el comportamiento desde el punto de vista de los actores.
- Un caso de uso especifica todos los posibles escenarios en los que los actores interactúan con una pieza de funcionalidad concreta del sistema.
 - En ese sentido, un escenario es una instancia de un caso de uso.
- Cada caso de uso es iniciado por un actor. Tras su arranque pueden intervenir otros actores e iniciar otros casos de uso.
- La descripción de un caso de uso consiste en una secuencia de eventos que muestran la interacción completa de los actores con el sistema cuando activan una funcionalidad concreta del mismo.
 - Esa interacción se denomina de forma genérica comunicación.

• **Ejemplo:** descripción del caso de uso *ReportEmergency*.

https://miaulario.unavarra.es/access/content/group/ 2022_0_240501_1_G/teoria/ADS-4%3A%20casos%20de%20uso/ reportemergency.pdf

Cómo nombrar un caso de uso

- El nombre debe ser una locución verbal que denote el objetivo del actor que inicia el caso de uso (qué es lo que actor iniciador trata de conseguir del sistema).
- Ese nombre debe reflejar la perspectiva del actor iniciador, no del sistema.
- **Ejemplo:** el nombre *ReportEmergency* indica que el actor iniciador *FieldOfficer* está intentando informar de una emergencia al sistema (y, por tanto, informar al actor *Dispatcher*).
 - Un nombre como RecordEmergency recogería la perspectiva del sistema.
 - Un nombre como *AttemptToReportEmergency* reflejaría la actividad desarrollada durante el caso de uso, no el objetivo.

- Para nombrar a los actores se deben usar locuciones nominales.
- **Ejemplo:** los actores participantes del escenario *ReportEmergency*
 - Los nombres *Agente A* y *Agente B* se generalizan como *FieldOfficer*; el rol *FieldOfficer* es el actor iniciador.
 - El nombre Sargento Supervisor se convierte en el actor Dispatcher.

Partes de un caso de uso

- Partes obligatorias
 - Actores participantes
 - Descripción de la condición de entrada
 - Descripción del flujo de eventos
 - Descripción de la condición de salida
 - Descripción de excepciones (describe qué ocurre cuando las cosas van mal)
 - Descripción de requisitos no funcionales
- Se pueden incluir otras secciones para describir flujos excepcionales de eventos, reglas e invariantes que el caso de uso debe cumplir durante el flujo de eventos.

Descripción del flujo de eventos

- Se usa lenguaje natural informal para describir la secuencia de pasos desde que se inicia el caso hasta que se completa.
 - **Ejemplo:** el caso de uso *ReportEmergency* debe describir todas las interacciones entre actores y sistema desde el inicio del aviso hasta la recepción de la confirmación.
- La longitud de la descripción no debiera exceder de dos o tres páginas.
- Si fuera mayor, se debe pensar en descomponer el caso en casos más simples relacionados mediante *include* y *extend*.

Exigencias de la descripción del flujo de eventos

- Debe mostrar la relación causal entre pasos consecutivos.
- Debe mostrar claramente la frontera del sistema: se debe distinguir entre pasos completados por los actores y los completados por el sistema.
- Cada paso se describe en voz activa (no en voz pasiva) para explicitar el sujeto (actor o sistema) que completa el paso.
- Las excepciones deben ser descritas separadamente.
- No debe describir ni mencionar elementos de la interfaz de usuario del sistema (menú, botones, orden concreta, etc)

• **Ejemplo:** caso de su mal especificado.

https://miaulario.unavarra.es/access/content/group/ 2022_0_240501_1_G/teoria/ADS-4%3A%20casos%20de%20uso/ badreportemergency.pdf

Pautas para el modelado de requisitos de un sistema

- Establecer el contexto del sistema.
- Identificar los actores y organizarlos en jerarquías.
 - Grupos que requieren ayuda del sistema para completar sus tareas
 - Grupos necesarios para ejecutar las funciones del sistema.
 - Grupos que interactúan con hardware externo o con otros sistemas de software.
 - Grupos que realizan funciones secundarias de administración mantenimiento.
- Considerar el comportamiento que cada actor espera del sistema o requiere que el sistema proporcione.
- Nombrar comportamientos comunes mediante casos de uso.
- Factorizar el comportamiento común y el comportamiento variante de cada caso.
- Modelar en un diagrama de casos de uso; incluir notas para requisitos no funcionales.

33 / 64

Casos de uso en los diagramas

- Los casos de uso siempre están dentro de un recuadro que identifica y delimita el sistema
 - Los actores están fuera del sistema

- Requisitos
- 2 Identificación de actores
- Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
 - Actores y casos de uso
 - Entre actores
 - Entre casos de uso
 - Ejemplo relaciones
- 6 Errores comunes
- Ejercicio

- Linea continua simple entre actores y casos de uso
- Los actores participan en el caso de uso
- Todos los actores deben estar relacionados con al menos un caso de uso
- Es posible mostrar multiplicidad
 - Mas de un actor con el mismo rol participa

Generalización/Herencia

- Se usa para generalizar y definir comportamientos comunes
- Y hereda de X
 - Y también participa en todas las asociaciones de X
- Si no hay instancias de un actor se le puede etiquetar como {abstract}

Ejemplo generalización actores

Relaciones entre casos de uso

- Ayudan a reducir tanto la complejidad como la redundancia en la descripción de los requisitos del sistema.
- Tres tipos de relaciones:
 - Inclusión para descomponer casos de uso largos en otros más cortos.
 - Extensión para tratar flujos excepcionales debidos a eventos alternativos
 - Generalización para refinar casos de uso abstractos.

Relación <<include>>

- Un caso de uso base incorpora expresamente el comportamiento de otro caso de uso.
 - El flujo de eventos debe indicar el evento concreto que arranca el caso incluido.
 - En el diagrama es corriente incluir alguna indicación del punto de inclusión.
- Dos posibilidades de empleo:
 - Descomposición funcional de comportamientos complejos (reduce complejidad de descripción)
 - Reutilización de funcionalidades ya definidas (elimina redundancias)

Entre casos de uso

Requisitos

Significado <<include>>

- A incluye a B
- El comportamiento de B esta integrado en A
- Cuando A se ejecuta, B siempre se ejecutara

Entre casos de uso

Requisitos

Descomposición funcional

- Problema: el comportamiento de interacción de un caso de uso es demasiado largo o complejo.
- Solución: describir esa interacción como agregación de un conjunto de interacciones más simples definidas como casos de uso.
- Ejemplo: el caso de uso que describe la gestión de un incidente se descompone en partes.

- Problema: existen redundancias (partes idénticas) en el flujo de eventos de dos o más casos de uso. ¿Cómo reutilizar flujos de eventos en lugar de duplicarlos?
- Solución: la asociación de inclusión entre el caso de uso A y el caso de uso B indica que una instancia del caso A presenta todo el comportamiento del caso de uso B.
- **Ejemplo:** el caso de uso *ViewMap* describe una funcionalidad que se incluye en los casos *OpenIncident y AllocateResources*.

Ejercicio

Relación <<extend>>

- Un caso de uso A extiende otro caso de uso base B si, bajo ciertas condiciones, este último incluye el comportamiento del caso A.
- Permite separar flujos de eventos corrientes de flujos de eventos que ocurren bajo circunstancias específicas.
 - Como ejemplos de extensiones puede pensarse en la invocación de avuda en línea, la cancelación de una transacción, o la forma de afrontar un fallo de conexión.
- En la descripción del flujo de eventos del caso extendido, el evento que arranca el caso extensión se indica como precondición del mismo.

Significado <<extend>>

- B extiende a A
- A puede usar el comportamiento de B
- Cuando A se ejecuta, B es opcional
- Se puede especificar una condición en el enlace
 - La condición también se puede mostrar con una nota
- En A se puede especificar un extension point que define cuando se introduce B

Entre casos de uso

Requisitos

Ejemplo <<extend>>

 Ejemplo: la comunicación entre patrulla y central se corta y el aviso de la patrulla no llega a la central; desde central deben notificar esa situación a la patrulla y las medidas para proseguir.

Heurística para decidir entre inclusión y extensión

- Emplea <<include>> para comportamiento que se repite en dos o más casos de uso.
- Emplea <<extend>> para comportamiento excepcional, opcional o infrecuente.
- Aplica las reglas anteriores con criterio para no sobreestructurar el modelo.

Ejemplo

- **Ejemplo:** incorporación del caso de uso *ConnectionDown* al caso *ReportEmergency*.
 - Mediante inclusión:

```
https://miaulario.unavarra.es/access/content/group/2022_0_240501_1_G/teoria/ADS-4%3A%20casos%20de%20uso/includedown.pdf
```

Mediante extensión:

```
https://miaulario.unavarra.es/access/content/group/2022_0_240501_1_G/teoria/ADS-4%3A%20casos%20de%20uso/extenddown.pdf
```

Generalización/Herencia

- Un caso de uso incorpora el comportamiento de otro caso de uso, que concreta o modifica.
- **Ejemplo:** el caso de uso *ValidateUser* es responsable de autenticar (verificar identidad) al usuario. Como requisito del cliente, el sistema a desarrollar debería permitir autenticación mediante contraseña y/o mediante huella dactilar.

Entre casos de uso

Requisitos

Significado generalización

- A generaliza a B
- B hereda el comportamiento de A y sus relaciones
 - Asociaciones, <<include>> o <<extend>>
 - B decide que y como se ejecuta

Ejemplo relaciones

Requisitos

Ejemplo final

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

Modelado de procesos

Limites incorrectos del sistema

Mezclar niveles de abstracción

Descomposición de las funcionalidades

Descomposición de las funcionalidades (correcto)

Asociaciones incorrectas

Asociaciones incorrectas (correcto)

Casos de uso redundantes

Casos de uso redundantes (correcto)

- Requisitos
- 2 Identificación de actores
- 3 Identificación de escenarios
- 4 Identificación de casos de uso
- 5 Relaciones entre elementos del diagrama
- **6** Errores comunes
- Ejercicio

Gestión estudiantes

Diseñar una oficina de apoyo a estudiantes de una universidad

- Los estudiantes se pueden matricular en cursos, inscribirse o abandonar. La inscripción implica matricularse.
- Los estudiantes reciben expedientes impresos por un empleado. Los profesores envían las notas a la oficina. Un sistema de notificación informa a los estudiantes automáticamente de la disponibilidad de sus expedientes.
- Hay dos tipos de empleados: (todos los empleados pueden dar información)
 - Se encargan exclusivamente de la gestión de tramites de estudiantes (matricula, inscripción, abandono)
 - Realizan el resto de tareas (administrativos)
- Los administrativos entregan expedientes cuando los estudiantes van a recogerlos. También pueden crear cursos, cuando realizan esta tarea tienen la opción de reservar aulas.

Solución

