

WAVE AND PSEUDO-DIFFUSION EQUATIONS FROM SQUEEZED STATES

Jamil Daboul

*Physics Department, Ben Gurion University of the Negev,
Beer Sheva, ISRAEL. Bitnet:DABOUL@BGUVMS*

Abstract

We show that the probability distributions $P_n(q, p; y) := |\langle n|p, q; y \rangle|^2$, which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension and also as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies $S_n(y)$, and show that they have minima at zero squeezing, $y = 0$.

1 Introduction

This talk is based mainly on a work which was done in collaboration with Salomon Mizrahi from Brazil.

Squeezed oscillator states are defined in terms of the bosonic creation and annihilation operators, $a^\dagger := \frac{1}{\sqrt{2}}(x - \frac{\partial}{\partial x})$, and $a := \frac{1}{\sqrt{2}}(x + \frac{\partial}{\partial x})$, as follows:

$$|z; \xi\rangle = |p, q; \xi\rangle := \mathcal{D}(q, p)\mathcal{S}(\xi)|0\rangle, \quad \text{where } z := (q + ip)/\sqrt{2}, \quad (1)$$

and $|0\rangle$ is the ground state of the harmonic oscillator. Both \mathcal{D} and \mathcal{S} are unitary operators. \mathcal{D} creates the coherent state, and is defined by

$$\mathcal{D}(q, p) := \exp[z a^\dagger - z^* a] = \exp[ipx - q \frac{\partial}{\partial x}], \quad (2)$$

and $\mathcal{S}(\xi)$ is the **squeezing operator**:

$$\mathcal{S}(\xi) := \exp[\frac{1}{2}(\xi a^{\dagger 2} - \xi^* a^2)], \quad (3)$$

where ξ is a complex variable. For $\xi = 0$, we recover the ordinary (unsqueezed) coherent states. The squeezed states satisfy the completeness relation, $\int |p, q; \xi\rangle \langle p, q; \xi| \frac{dp dq}{2\pi} = 1$, for every ξ . Therefore,

$$\int P_n(q, p; \xi) \frac{dp dq}{2\pi} = 1, \quad \text{where } P_n(q, p; \xi) := |\langle p, q; \xi | n \rangle|^2, \quad (4)$$

where $|n\rangle$ is the number state. If we interpret the real parameters q and p as the position and momentum variables, then (4) allows us to interpret the non-negative functions P_n as probability distributions in the (q, p) -phase plane, for every n and ξ .

In this talk, I shall consider these P_n for real values of the squeezing parameter ξ , which will be denoted by y . In particular, I shall show that the $P_n(q, p; y)$ satisfy the interesting partial differential equations (9) and (12), to which two intuitive interpretations can be given. Finally, I shall show that the Wehrl entropy $S_n(y)$ (14) of the P_n must have their minima at zero squeezing, $y = 0$.

2 Explicit Form of the Distributions P_n

The distribution $P_n(q, p; \xi) := |\langle n|p, q; \xi \rangle|^2$ gives the probability of finding n bosons (photons) in the squeezed states $|q, y; \xi\rangle$. It is a physically important quantity, and it has been calculated by different methods. The dependence of $P_n(q, p; \xi)$ on n was studied by Schleich and Wheeler [2]. For $\xi = y$, the P_n is given by the following complicated expression [1,3,7]:

$$P_n(q, p; y) := |\langle p, q; y | n \rangle|^2 = \frac{2\sqrt{\gamma}}{2^n n! (\gamma + 1)} |\tilde{H}_n(2, \eta; w)|^2 \exp \left[-\frac{q^2 + \gamma p^2}{1 + \gamma} \right], \quad n \geq 0, \quad (5)$$

where

$$\gamma := e^{2y}, \quad \eta := \frac{1 - \gamma}{1 + \gamma}, \quad \text{and} \quad w := \frac{q + i\gamma p}{\gamma + 1}, \quad (6)$$

and where $\tilde{H}_n(2, \eta; w)$ are the generalized Hermite polynomials (\mathcal{GHP}), which are defined in terms of the raising operators $R(\alpha, \beta; x) = \alpha x - \beta \frac{\partial}{\partial x}$, as follows [1]:

$$\tilde{H}_n(\alpha, \beta; x) = R^n(\alpha, \beta; x) \cdot 1 = \sum_{s=0}^{[n/2]} \frac{n!}{(n - 2s)! s!} \left(-\frac{\alpha \beta}{2} \right)^s (\alpha x)^{n-2s}. \quad (7)$$

These polynomials are equal to the standard Hermite polynomials for $\alpha = 2$ and $\beta = 1$. In the limit, $\beta \rightarrow 0$, these $\tilde{H}_n(x)$ becomes simple powers of x : $\tilde{H}_n(\alpha, 0, x) = \alpha^n x^n$. Therefore, in the limit of zero squeezing, $\gamma \rightarrow 1$, we have $\eta \rightarrow 0$, so that the above \mathcal{GHP} 's become simple powers of w . Thus, for $y \rightarrow 0$, equation (5) gives the following well-known Poisson distribution of the unsqueezed coherent states:

$$P_n(q, p; 0) = \frac{\rho^{2n}}{2^n n!} \exp \left[-\frac{\rho^2}{2} \right], \quad n \geq 0, \quad \text{where} \quad \rho^2 := q^2 + p^2, \quad (8)$$

When discussing probability distributions, it is useful to think of the regions that are surrounded by the **equipotential curves**, $P_n(q, p; y) = \text{const.}$; I shall call these regions **potential regions**. Thus, the potential regions of the above Poisson distribution $P_n(q, p; 0)$ are concentric circles in the (q, p) -plane. But for $y \neq 0$, these regions will have approximately elliptical shapes, whose the major axes lie along the p -axis for $y < 0$ and along the q -axis for $y > 0$. These regions become more elongated in one direction and narrower in the other, as $|y|$ increases.

3 The Partial Differential Equation for the P_n

Since the integral (4) of the distributions $P_n(q, p; y)$ over the whole (q, p) -space remains constant under squeezing, it is useful to think of the change of $P_n(q, p; y)$ as functions of y as a

redistribution of probability densities in phase space, which maintains the positivity condition $P_n(q, p; y) \geq 0$ for all y . This redistribution of the $P_n(q, p; y)$ is governed by the following interesting and amazingly simple partial differential equation:

$$\frac{\partial}{\partial \gamma} P_n(q, p; y(\gamma)) = \frac{1}{4} \left(\frac{\partial^2}{\partial q^2} - \frac{1}{\gamma^2} \frac{\partial^2}{\partial p^2} \right) P_n(q, p; y(\gamma)), \quad \text{where } \gamma := e^{2y}. \quad (9)$$

This equation was originally obtained [1] by straightforward but lengthy differentiation of the expression (5), and by using the following property of the \mathcal{GHP} [1]:

$$\frac{\partial}{\partial \eta} \tilde{H}_n(\alpha, \eta, w) = -\frac{1}{4} \frac{\partial^2}{\partial w^2} \tilde{H}_n(\alpha, \eta, w). \quad (10)$$

However, we can now derive it by two other more general methods [5], as reported in the summary section.

4 Interpretation as Wave and Pseudo-Diffusion Equations

I shall now present two possible intuitive interpretations of the above differential equation:

(I) **D'Alembert or Wave Equation:** The following is a new interpretation, which was not discussed in [1]: For a *fixed squeezing parameter* y , equation (9) looks like the wave equation for one space dimension q , if we think of the p variable in (9) as the time variable t :

$$\left(\frac{\partial^2}{\partial q^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \Phi(q, t; y) = -4\pi\rho(q, t; y), \quad \text{where } \rho(q, t; y) = -\frac{1}{\pi} \frac{\partial}{\partial \gamma} P_n(q, t; y(\gamma)), \quad (11)$$

In this interpretation, the parameter γ would then play the role of the speed of light $c(n)$ in matter, which depends on the parameter y , similar to the dependence of $c(n)$ on the index of refraction index n . If the P_n are thought of as electromagnetic potentials $\Phi(q, t; y)$, then $4\frac{\partial}{\partial \gamma} P_n(q, p; y(\gamma))$ will play the role of a time-dependent charge distributions $-4\pi\rho(q, t; y)$.

(II) **Pseudo-Diffusion Equation:** By substituting $\frac{\partial}{\partial y} = 2e^{2y} \frac{\partial}{\partial \gamma}$ into (9), we obtain a more symmetric differential equation for the P_n :

$$\frac{\partial}{\partial y} P_n(q, p; y) = \frac{1}{2} \left(e^{2y} \frac{\partial^2}{\partial q^2} - e^{-2y} \frac{\partial^2}{\partial p^2} \right) P_n(q, p; y). \quad (12)$$

This equation is also new and permits a more pertinent intuitive understanding of the redistribution process of the P_n , by comparing (12) with the diffusion equation in two dimensions [6]:

$$\frac{\partial}{\partial t} T(q, p; t) = \sigma \left(\frac{\partial^2}{\partial q^2} + \frac{\partial^2}{\partial p^2} \right) T(q, p; t), \quad (13)$$

where σ is the diffusion coefficient. Equations (12) and (13) are similar, if we interpret the squeezing parameter y as the time variable. However, the two equations differ in two interesting aspects:

- (1) The sign in front of $\frac{\partial^2}{\partial p^2}$ in (12) is negative rather than positive. Such a “negative diffusion coefficient” leads to “infusion” rather than diffusion in the p -direction. Consequently, as y increases, the equi-probability curves, $P_n(q, p; y) = \text{const.}$, move towards the origin along the p -axis, but away from the origin along the q -axis. Therefore, we expect the probability regions to be concentric elongated “quasi ellipses” which are extended along the p -axis for $y \rightarrow -\infty$. They become more and more circular as y approaches zero, and then stretch outwards along the q -axis, as $y \rightarrow \infty$. For the above reasons, we shall call equations (9) and (12) “pseudo diffusion equation”.
- (2) The “diffusion coefficients” $\exp[2y]/2$ and $-\exp[-2y]/2$ and in front of $\frac{\partial^2}{\partial q^2}$ and $\frac{\partial^2}{\partial p^2}$ in (12) depend on y . For $y \rightarrow +\infty$, the term $\frac{1}{2}e^{2y}\frac{\partial^2}{\partial q^2}P_n$ dominates the r.h.s. of (12), whereas for $y \rightarrow -\infty$, the second term dominates. This dependence on y can be given an interesting intuitive explanation: Let us consider the redistribution process when y is very large: In this case the probability densities $P_n(q, p; y)$ are extended in the q -direction and tightly squeezed or compressed in the p -axis, which makes it difficult to compress them further along the p -axis. For this reason the “infusion coefficient” becomes so small, namely $\propto \exp[-2y]$. In contrast, the diffusion along the q -axis must become faster and faster, in order to diffuse all the incoming density flux from the other orthogonal p -direction, which is entering the cigar-shaped potential regions through their lengthy boundaries.

5 The Wehrl Entropy for the P_n

A useful measure for the information content of the probability distributions $P_n(q, p; y)$ is the Gibbs or Wehrl entropy [7], which is defined by

$$S_n(y) := - \int P_n(q, p; y) \ln P_n(q, p; y) \frac{dp dq}{2\pi}. \quad (14)$$

Because of the symmetry $P_n(q, p; -y) = P_n(p, q; y)$, the entropy (14) is even in y : $S_n(-y) = S_n(y)$. Therefore, at $y = 0$ each $S_n(y)$ must have either a maximum or a minimum. We shall now argue that $S_n(0)$ should correspond to a minimum: We assume that $S_n(y)$ does not oscillate as a function of y . Therefore, it is enough to argue that $S_n(y)$ grows with $|y|$ for large values of $|y|$. For large positive y , equation (12) behaves essentially like a one-dimensional diffusion equation in the q -variable. But it is well-known that the solutions of diffusion equations lead to entropies which increase with time [6]. Therefore, the $S_n(y)$ must increase as $y \rightarrow \infty$. But since the $S_n(y)$ are even in y , they must also grow as $y \rightarrow -\infty$. Hence, the $S_n(0)$ must lie at the bottom of the curves $S(y)$ vs. y .

Finally, we note that the von Neumann entropy $S_{vN}(\rho) := -\text{Tr}(\rho \ln \rho)$ for the pure states $\rho := |n\rangle\langle n|$ must vanish. In contrast, explicit calculations of the Wehrl entropies of the Poisson

distributions (8) shows that $S_n(0) \geq 1$ for all n , in accordance with a conjecture by Wehrl [7], which was proved by Lieb [8].

To summarize this section: in contrast to diffusion equations, where the entropies of their solutions always increase with time, the entropies $S_n(y)$ for the solutions of the above pseudo-diffusion equation first decrease monotonically as y grows from $-\infty$ to zero, but then increase monotonically as y grows from zero to $+\infty$.

6 Summary and Outlook

Two equivalent partial differential equations (9) and (12) were presented and then interpreted, as wave and as pseudo-diffusion equations. The probability densities $P_n(q, p; y)$ (5) provide infinite number of their solutions.

By the time of writing the present lecture notes, we succeeded in proving, by two general methods, that the expectation values $\langle q, p; \xi | O | q, p; \xi \rangle$ of an arbitrary operator O , satisfy a generalized version of the above partial differential equations, which also include rotations, i.e for the general squeezing $\xi = r e^{i\phi}$. Interesting examples of O are the number operators N and N^2 ; their expectation values provide the simplest solutions of (9) and (12). Also the projection operator $|q, p; \xi\rangle\langle q, p; \xi|$, and consequently its Wigner function, satisfy these equations.

References

- [1] S. S. Mizrahi and J. Daboul, "Squeezed States, Generalized Hermite Polynomials And Pseudo-Diffusion Equation", to be published in Physica A.
- [2] W. Schleich and J. A. Wheeler, J. Opt. Soc. Am. B **4**, 1715 (1987).
- [3] D. Stoler, Phys. Rev. **D 1**, 3217 (1971).
- [4] D. V. Widder, *The Heat Equation*, (Academic Press, London, 1975).
- [5] J. Daboul and S. S. Mizrahi, "Partial Differential Equations For The Projection Operator Of Squeezed States", in preparation.
- [6] P. M. Morse and H. Feshbach, *Methods of Theoretical Physics*, (McGraw Hill, 1954), p. 173.
- [7] A. Wehrl, Rep. Mod. Phys. **16**, 353 (1979).
- [8] E. H. Lieb, Comm. Math. Phys. **62**, 35 (1978).

