Continuous Functions

Felix Lentze & Dominic Plein

Date: July 10th, 2024

Contents

1	Cor	ntinuous Functions	2
2	Exa	amples	3
	2.1	The constant function is continuous	3
	2.2	Functions $x \mapsto mx + y_0$ are continuous	3
	2.3	The parabola is continuous	4
	2.4	The hyperbola is continuous	6

1 Continuous Functions

Text excerpts remixed from Vladimir A. Zorich - Mathematical Analysis I as well as Stephen Abbott - Understanding Analysis.

Let f be a real-valued function defined in a neighborhood of a point $a \in \mathbb{R}$. In intuitive terms, the function f is continuous at a if its value f(x) approaches the value f(a) that it assumes at the point a itself as x gets nearer to a.

Definition 1 (Continuous at a point). A function $f:D\subseteq\mathbb{R}\to\mathbb{R}$ is continuous at the point $a\in D$ if

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D : \quad \left(|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon \right)$$
 (1)

If f is continuous at every point in the domain D, then we say that f is continuous on D.

2 Examples

Here, we give a few examples of continuous functions alongside the respective proofs.

2.1 The constant function is continuous

Theorem 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function given by f(x) := c, where $c \in \mathbb{R}$. That is, f is a constant function. Then f is continuous at every point $a \in \mathbb{R}$.

Proof. Let $a \in \mathbb{R}$ be an arbitrary point where we want to show that f is continuous. Let $\varepsilon > 0$. We choose $\delta = 1 > 0$. Let $x \in \mathbb{R}$. Then:

$$|f(x) - f(a)| = |c - c| = |0| = 0 < \varepsilon.$$

With that, the implication also holds true since its conclusion is always true (as shown above) irregardless of the premise.

$$|x - a| < \delta \Rightarrow |f(x) - f(a)| = 0 < \varepsilon.$$

Therefore, f is continuous at a.

2.2 Functions $x \mapsto mx + y_0$ are continuous

Theorem 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function given by $f(x) := m \cdot x + y_0$, where $m, y_0 \in \mathbb{R}$. Then f is continuous at every point $a \in \mathbb{R}$.

Proof. Let $a \in \mathbb{R}$ be an arbitrary point where we want to show that f is continuous.

We first consider the simpler case where the slope is 0, that is $\mathbf{m} = \mathbf{0}$. Then our function is given by $f(x) = y_0$ for all $x \in \mathbb{R}$. This is a constant function and we have already shown that constant functions are continuous. Therefore, f is continuous at a when m = 0.

Now to the more interesting where $\mathbf{m} \neq \mathbf{0}$. Let $\varepsilon > 0$. We choose $\delta = \frac{\varepsilon}{|m|}$. Since $\epsilon > 0$ and |m| > 0, we have $\delta > 0$.

Let $x \in \mathbb{R}$ and $|x - a| < \delta$. Then:

$$|f(x) - f(a)| = |(m \cdot x + y_0) - (m \cdot a - y_0)|$$

$$= |m \cdot x - m \cdot a|$$

$$= |m \cdot (x - a)|$$

$$= |m| \cdot |x - a|$$

$$< |m| \cdot \delta = |m| \cdot \frac{\varepsilon}{|m|} = \varepsilon$$

In the last line, we have used the fact that $|x-a| < \delta$ and then plugged in the definition of δ .

The argument shows that $|f(x) - f(a)| < \varepsilon$, which proves the continuity of f at a.

2.3 The parabola is continuous

Sei $f(x) = x^2$. Wir beweisen, dass f an jeder Stelle $x \in \mathbb{R}$ stetig ist. Vorbereitende Schritte:

1. Definition von δ :

$$\delta = \min\left(\frac{\epsilon}{2|x|+1}, 1\right)$$

Diese Wahl von δ stellt sicher, dass $\delta > 0$ und $\delta \leq 1$.

2. Positivität von δ :

$$0 < \delta$$

Da $\epsilon > 0$ und 2|x| + 1 > 0, folgt $0 < \frac{\epsilon}{2|x|+1}$. Somit ist $\delta > 0$.

3. Obere Schranke von δ :

$$\delta < 1$$

Dies folgt direkt aus der Definition von δ .

4. Weitere obere Schranke von δ :

$$\delta \leq \frac{\epsilon}{2|x|+1}$$

Auch dies folgt direkt aus der Definition von δ .

5. Beziehung zwischen |y| und |x|:

$$|y| < |x| + \delta$$

Da $|y| = |x + (y - x)| \le |x| + |y - x|$ und $|y - x| < \delta$, folgt $|y| < |x| + \delta$.

6. Beziehung zwischen |x+y| und |x|+|y|:

$$|x+y| \le |x| + |y|$$

Dies ist eine Anwendung der Dreiecksungleichung.

7. Nichtnegativität von |x-y|:

$$0 \le |x - y|$$

Da |x-y| der Betrag einer reellen Zahl ist, ist er nicht negativ.

8. Obere Schranke von |x-y|:

$$|x - y| \le \delta$$

Da $|y - x| < \delta$, folgt $|x - y| = |y - x| < \delta$.

9. Beziehung zwischen |x| + |y| und $|x| + (|x| + \delta)$:

$$|x| + |y| < |x| + (|x| + \delta)$$

Da $|y| < |x| + \delta$, folgt $|x| + |y| < |x| + (|x| + \delta)$.

10. Beziehung zwischen $2|x| + \delta$ und 2|x| + 1:

$$2|x| + \delta \le 2|x| + 1$$

Da $\delta \le 1$, folgt $2|x| + \delta \le 2|x| + 1$.

Beweis:

Sei $\epsilon>0$ gegeben. Wir wählen δ als $\delta=\min\left(\frac{\epsilon}{2|x|+1},1\right)$. Nach den obigen vorbereitenden Schritten wissen wir, dass $0<\delta$.

Sei $|y-x|<\delta.$ Wir müssen zeigen, dass $|y^2-x^2|<\epsilon.$

$$\begin{split} |y^2-x^2| &= |(y+x)(y-x)| & \text{(Ringregel)} \\ &= |y+x|\cdot |y-x| & \text{(Absorptions regel)} \\ &\leq (|x|+|y|)\cdot |y-x| & \text{(Anwendung von Schritt 6)} \\ &\leq (|x|+(|x|+\delta))\cdot \delta & \text{(Anwendung von Schritt 5 und 8)} \\ &= (2|x|+\delta)\cdot \delta & \text{(Anwendung von Schritt 10)} \\ &\leq (2|x|+1)\cdot \delta & \text{(Anwendung von Schritt 10)} \\ &\leq (2|x|+1)\cdot \frac{\epsilon}{2|x|+1} & \text{(Anwendung von Schritt 4)} \\ &= \epsilon & \text{(Feldregel)} \end{split}$$

Daraus folgt, dass $|y^2 - x^2| < \epsilon$.

2.4 The hyperbola is continuous

Proof. Sei $x \in \mathbb{R}$ mit $x \neq 0$ und $\epsilon > 0$ gegeben. Wir müssen ein $\delta > 0$ finden, so dass für alle y mit $0 < |y - x| < \delta$ gilt, dass $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$.

Setze $\delta = \min\left(\frac{\epsilon|x|^2}{2}, \frac{|x|}{2}\right)$.

• Da $\epsilon > 0$ und |x| > 0, ist $\delta > 0$.

Sei nun y mit $y \neq 0$ und $|y - x| < \delta$ gegeben.

- Zuerst zeigen wir, dass $\left|\frac{1}{x} \frac{1}{y}\right| = \left|\frac{y-x}{xy}\right|$: $\left|\frac{1}{x} \frac{1}{y}\right| = \left|\frac{y-x}{xy}\right|$ $= \frac{|y-x|}{|x||y|}$
- Da $|y-x|<\delta\leq \frac{|x|}{2},$ folgt $|y|>\frac{|x|}{2}$: |y|=|x+(y-x)| $\geq |x|-|y-x|$ $>|x|-\frac{|x|}{2}$ $=\frac{|x|}{2}$
- Da $\delta \leq \frac{\epsilon |x|^2}{2}$, folgt:

$$\begin{aligned} \frac{|x-y|}{|x||y|} &< \frac{\delta}{|x| \cdot \frac{|x|}{2}} \\ &= \frac{\delta}{\frac{|x|^2}{2}} \\ &\leq \frac{\frac{\epsilon|x|^2}{2}}{\frac{|x|^2}{2}} \\ &= \epsilon \end{aligned}$$

Somit haben wir gezeigt, dass für alle y mit $y \neq 0$ und $|y - x| < \delta$ gilt, dass $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$. Daher ist f stetig an x.