UCC28740 DESIGN CALCULA

TI Literature Number: SLUC487B

Disclaimer

This product is designed as an aid for customers of Texas Instruments. No warranties, either e fitness for any particular purpose, are claimed by Texas Instruments or the author. The software to its quality and performance is with the customers.

UCC28740 CONSTANT-VOLTAGE, CONSTANT-CURRENT F

CLEAR ALL USER INPUT CELLS BEFORE START ALL GREEN CELLS ARE USER INI

WHERE APPLICABLE, A RECOMMENDED VALUE IS GIVEN THAT WILL BE THE BEST CHC
THE BEST INTEREST OF THE USER TO USE A VALUE AS CLOSE AS POSSIBLE TO TI
ACCURATE RESULTS, THE USER MUST ENTER THE ACTUAL VALUE U

DESIGN REQUIREMENTS

INPUT SPECIFICATIONS		
Input Voltage Type, AC or DC:	AC	
Minimum Input Voltage, V _{INPUTmin} =	85	VAC
Maximum Input Voltage, V _{INPUTmax} =	265	VAC
Nominal Input Voltage, V _{INPUTnom} =	230	VAC
Minimum Line Frequency, f _{LINEmin} =	47	Hz
Minimum Input Voltage for Start-Up, V _{INPUTrun} =	80	VAC

OUTPUT SPECIFICATIONS		
Regulated Output Voltage, Constant Voltage Mode, V _{OUT_CV} =	85	VDC
Full Load Rated Output Current, I _{OUT} =	0.6	A
Target Constant Current Mode Output Load Threshold, I _{occ} =	0.6	A
Target Minimum Output Voltage During Constant Current Regulation, V _{OUT_CC} =	30	VDC
Allowable Output Voltage Drop During Load-Step Transient in Constant Voltage Mode, V _{OUTA} =	0.5	V
Maximum Peak to Peak Output Voltage Ripple, V _{RIPPLE} =	30	mV

Maximum Desired Switching Frequency, User must input value not greater than 100 kHz, f_{max} =	100	kHz
Output Over Voltage Protection, V _{OUT_OVP} =	90	V
Required Positive Load Step Transient Current, I _{TRAN} =	0.65	A
Maximum Allowable Response Time to Load Step Transient, t _{RESP} =	20	ms
Target Maximum Stand By Power Dissipation, P _{SBtarget} =	50	mW

COMPONENT SELECTION USER INPL			
COMPONENT	PARAMETER		
Input Capacitor, C _{BULK}			
Desired Minimum Valley Voltage, V _{BULKvalley_desired} =	100	V	
Recommended Input Bulk Capacitance, C _{BULK} =	233.16	μF	
Actual Input Bulk Capacitance, C _{BULK} , Used =	250.00	μF	
Output Rectifier, D _{out}			
Forward Voltage Drop of Output Rectifier, V _F =	1.25	V	
Output Inductor, L _{out}			
DCR of Output Inductor, DCR _{Lout} , if used =	0	mΩ	
Flyback Transformer, Primary to Secondary Turns Ratio			
Ideal Primary to Secondary Turns Ratio, N _{PSideal} =	1.313		
Actual Primary to Secondary Turns Ratio Used, N _{PS} =	1.321	Enter Actual N _{PS} of Transformer Used	
Current Sense Resistor, R _{cs}			
Recommended Current Sense Resistor, R _{cs} =	0.339	Ω	
Actual Current Sense Resistor Used, R _{cs} =	0.374	Ω	
Flyback Transformer, T			
Recommended Primary Inductance Value, L _P =	260.316	μH	

	•	
Actual Primary Inductance Used, L _P =	250.000	μН
Recommended Primary to Auxillary Turns Ratio, N _{PA} =	4.392	Suggested N _P
Actual Primary to Auxiliary Turns Ratio, N _{PA} =	4.625	Enter Actual N _{PA} of Transformer Used
MOSFET Switch, Q		
Required Drain to Soure Voltage Rating , V _{DSrated} =	635.314	V
MOSFET Rated Drain to Source Voltage, V _{DS} =	800	V
Output Capacitance of Selected MOSFET, C _{oss} =	16	pF
Drain to Source On-Resistance of Selected MOSFET, R_{DSon} =	0.36	Ω
MOSFET Fall Time, t _f =	6	ns
MOSFET Turn Off Delay Time, t _{Doff} =	40	ns
MOSFET Total Gate Charge, Q _g =	30	nC
		·
Output Capacitor, C _{out}		
Recommended Minimum Output Capacitance, C _{OUT} =	470.000	μF
Actual Minimum Output Capacitance, C _{OUT} =	540.000	μF
Recommended Maximum ESR, ESR _{Cout} =	10.988	mΩ
Actual ESR of C _{OUT} Used, ESR _{Cout} =	50.000	mΩ
Bridge Rectifier, D _{BRIDGE}		
Forward Voltage Drop, V _{F BRIDGE} =	1.1	V
Auxiliary Winding Rectifier, D _{AUX}		
Auxiliary Rectifier Forward Voltage Drop, V _{FA} =	1.25	V
Input Line Voltage Turn On Resistor, R _{vs1}	1	_
Recommended Value for R _{VS1} , R _{VS1} =	90.900	kΩ
Actual Value for R _{VS1} , R _{VS1} =	90.900	kΩ
Output Over Voltage Resistor, R _{vs2}		1
Recommended Value for R _{VS2} , R _{VS2} =	20.500	kΩ
Actual Value for R _{VS2} , R _{VS2} =	20.500	kΩ
Line Compensation Resistor, R _{LC}	4 455	l. 0
Recommended Value for R _{LC} , R _{LC} =	1.400	kΩ
Actual Value for R _{LC} , R _{LC} =	1.400	kΩ
Loop Compensation Components, R _{FB1} , R _{FB2} , R _{TL} , R _{OPT} , C _{FB} , C _{EXT}		
Reference Voltage of Shunt Regulator, i.e. TL431, V _{REF431} =	2.5	V
Maximum Reference Input Current of Shunt Regulator, I _{REF431} =	4	μA
Recommended Value for R_{FB2} , R_{FB2} =	44.2	kΩ

Actual Value for R _{FB2} , R _{FB2} =	44.2	kΩ
Recommended Value for R_{FB1} , R_{FB1} =	1470	kΩ
Actual Value for R_{FB1} , R_{FB1} =	1470	kΩ
Minimum Current Transfer Ratio of Selected Opto-Coupler, CTR _{min} =	50	%
Response Fall Time of Opto-Coupler, $t_{f_{-opto}}$ =	18	μS
R_L of Specified Opto-Coupler Fall Time, R_{L_opto} =	100	Ω
Cut-Off Frequency of Opto-Coupler, f _{c opto} =	2	kHz
Input Forward Voltage of Opto-Coupler, V _{F_opto} =	1.2	V
Recommended External Capacitor Across Opto-Coupler Output, C_{EXT} =	0	μF
Actual Value for C _{EXT} Used , C _{EXT} =	0.0015	μF
Recommended Capacitor on Opto_Coupler Emitter, C _{FB} =	0.047	μF
Actual Value for C _{FB} Used, C _{FB} =	0.047	μF
Recommended Value For R_{FB4} , R_{FB4} =	22	kΩ
Actual Value for R _{FB4} Used	22	kΩ
Recommended Value for Shunt Regulator Bias Resistor, R_{TL} =	1.5	kΩ
Actual Value of Shunt Regulator Bias Resistor Used, R_{TL} =	1.5	kΩ
Recommended Value for Compensation Capacitor, C_z =	220	pF
Actual Value of Compensation Capacitor Used, C_z =	1500	pF

ATOR TOOL

xpressed or implied, with respect to this software or its is licensed solely on an "as is" basis. The entire risk as omer.

FLYBACK DESIGN CALCULATOR

ING A NEW DESIGN PUTS

DICE TO MEET THE GIVEN SPECIFICATION. IT IS IN HE SUGGESTED RECOMMENDED VALUE. FOR SED IN THE APPROPRIATE CELL.

Choose either AC or DC
For universal line enter 47 Hz
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout
Recommend target to be a minimum of 5% higher than rated lout

	1
JTS COMMENT	
Used to determine the required input bulk capacitor at minimum line, full load. For DC input, use $V_{INPUTrun}$	
Using a value less than recommended will result in a minimum valley voltage less than desired, requiring a larger power stage to accommodate the higher currents due to the lower input rail. Using a value larger than recommended will result in a higher input rail and lower currents on the power stage but higher peak current in the input capacitor itself.	
Enter actual input bulk capacitor used	
Enter V _F at full load	
Enter 0 if no secondary LC filter used	
Recommended N _{PS}	
Recommended R _{cs}	
Enter Actual R _{cs} Used	locc will be less than target locc becar
	l

ı

iA
<u>A</u>
Recommended C _{out}
Recommended C _{OUT}
Recommended C _{OUT} Enter Actual C _{OUT} Used
Recommended C _{OUT} Enter Actual C _{OUT} Used Recommended ESR
Recommended ESR
Recommended ESR
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C _{OUT} Used At I _{INPEAK} Not Applicable for DC input
Recommended ESR Enter Actual ESR of C _{OUT} Used At I _{INPEAK} Not Applicable for DC input
Recommended ESR Enter Actual ESR of C _{OUT} Used At I _{INPEAK} Not Applicable for DC input
Recommended ESR Enter Actual ESR of C _{OUT} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used Recommeded R_{VS2}
Recommended ESR Enter Actual ESR of C_{OUT} Used At I_{INPEAK} Not Applicable for DC input Recommended R_{VS1} Enter Actual R_{VS1} Used Recommended R_{VS2} Enter Actual R_{VS2} Used

Enter Nominal V_{REF} Used
Enter Reference Pin Input Current
Recommended R_{FB2}

Enter Actual R _{FB2} Used
Recommended R _{FB1}
Enter Actual R _{FB1} Used
Enter CTR _{min}
Enter Opto-Coupler t _f
Enter R _L from Opto-Coupler t _f spec
Enter Opto-Coupler Cut-Off Frequency
Enter Maximum V _F of Opto-Coupler
Recommended C _{EXT}
Enter Actual C _{EXT} Used
Recommended C _{FB}
Enter Actual C _{FB} Used
Recommended R _{FB4}
Enter Actual R _{FB4} Used
Recommended R_{TL}
Enter Actual R _{TL} Used
Recommended C _z
Enter Actual C ₇ Used

RECOMMENDED BILL OF MATERIALS			
Reference Designator	Description/Comments		
	Minimum DC Blocking Voltage:	400 V	
BRIDGE RECTIFIER	Minimum Current Rating:	1.184 A	
	Power Dissipation:	3116.985 mW	
	Type:	Aluminum Electrolytic	
C -C +C	Value:	250 µF	Total Capacitance
$\mathbf{C}_{BULKtotal} = \mathbf{C}_{BULK1} + \mathbf{C}_{BULK2}$	Minimum Voltage Rating:	400 V	
	Minimum Ripple Current Rating:	1416.812 mA	
	Туре:	Ceramic	
C _{EXT}	Value:	0.0015 µF	±10%
	Minimum Voltage Rating:	50 V	
	Type:	Ceramic	
C _{FB}	Value:	0.047 µF	±10%
FB	Minimum Voltage Rating:	0.047 μΓ 10 V	±10 /0
	willillituiti voitage Natilig.	10 V	
	Type:	Aluminum Electro	lvtic
	Minimum Value:	540 μF	Total Capacitance
$\mathbf{C}_{OUTtotal} = \mathbf{C}_{OUT1} + \mathbf{C}_{OUT2}$	Minimum Voltage Rating:	85.000 V	
00110141 0011 0012	Minimum Ripple Current Rating:	0.876 A	
	Maximum ESR Rating:	10.988 mΩ	
	Туре:	Ceramic	
C _{SS431}	Value:	1 µF	±10%
	Minimum Voltage Rating:	10 V	
	Type:	Coromio	
c	Type: Minimum Value:	Ceramic 10 μF	±10%
C _{VDD}	Voltage Rating:	50 V	±1070
	Voltage Natilig.		
	Type:	Ceramic	
C _z	Value:	1500 pF	±10%
	Voltage Rating:	10 V	
	Type:	Switching	
D_{AUX}	Minimum Required Blocking Voltage:	128.693 V	
	Minimum Rated Current:	250 mA	

	Type:	Transient Voltage	\$uppressor
D _{CLAMP}	Voltage:	271.297 V	T # P P 1 0 0 0 0 1
- CLAMP	Power Rating:	600.000 W	
	_j . ono. rading.	333.000 VV	
	Type:	Schottky	
_	Minimum Blocking Voltage Rating:	579.072 V	
D _{out}	Minimum Average Current Rating:	1.028 A	
	Power Dissipation:	0.725 W	
	i ower dissipation.	0.723 VV	
	Type:	Ultra Fast	
D_{1}	Voltage Rating:	1000 V	
	Current Rating:	1000 V	
	Current Nating.	17	
	Type	Cla	w Blow
FUSE	Type:		
FUSE	Minimum Voltage Rating:	265 VAC	
	Minimum Peak Current Rating:	3.939 A	
0070 00404 50	ICTD .	50.0/	
OPTO-COUPLER	CTR _{min} :	50 %	
	Minimum V V V V		
	Minimum V _{DS} Voltage Rating:	800 V	
Q	Minimum Continuous Current Rating:	8.731 A	
	Minimum Repetitive Peak Current Rating:	21.877 A	
	Power Dissipation:	0.580 W	
_	Value:	0.374 Ω	±1%
R _{cs}	Power Dissipation:	254.505 mW	
	Туре:	Low I	nductance
	Malara	4.770:0	. 40/
R _{FB1}	Value:	1470 kΩ	±1%
101	Power Rating:	1/10 W	
	Malua	44.01.0	140/
$R_{_{FB2}}$	Value:	44.2 kΩ	±1%
152	Power Rating:	1/10 W	
	Value	4001-0	±10/
R _{FB3}	Value:	100 kΩ	±1%
	Power Rating:	1/10 W	
	Value:	22 kΩ	±1%
$R_{_{FB4}}$	Power Rating:	1/10 W	± 1 /U
	i ower rading.	1/ 10 00	
_	Value:	20 Ω	±1%
$R_{_{\mathrm{INJ}}}$	Power Rating:	1/10 W	±170
	₁ . 5115. (Milly.	1/ 10 00	
_	Value:	1.4 kΩ	±1%
R _{LC}	Power Rating:	1/10 W	
		.,	
	Value:	1 kΩ	±1%
R _{OPT}	Power Rating:	1/10 W	
D	Value:	1.5 kΩ	±1%
$R_{_{TL}}$	Power Rating:	1/10 W	
	<u> </u>		
В	Value:	2 to 50 Ω	As Needed for Voltage
R_{VDD}	Power Rating:	1/10 to 1/2 W	Spike Smoothing
D	Value:	90.9 kΩ	±1%
R _{vs1}	Power Rating:	1/10 W	
$R_{ m vs2}$	Value:	20.5 kΩ	±1%
**VS2	Power Rating:	1/10 W	
SHUNT REGULATOR	Voltage Reference:	2.5 V	
	Primary Inductance:	250 µH	
	Primary to Secondary Turns Ratio:	1.321	N _{PS}
	Primary to Auxiliary Turns Ratio:	4.625	N _{PA}
TDANCEODMED	Peak Primary Current:	2.067 A	
TRANSFORMER	Primary RMS Current:	0.825 A	
	Peak Secondary Current:	2.730 A	
1	,	=:: ••/,	

Secondary RMS Current:	1.028 A	
Maximum Switching Frequency:	93.714 kHz	

UCC28740 DESIGN CALCULATIONS

The Values Entered by the User on the DESIGN INPUT Page are Used in the Design Calculations

	INPUT			
Input Voltage Type	AC or DC:	AC		
Minimum Input Voltage	V _{INPUTmin} =	85	VAC	
Maximum Input Voltage	V _{INPUTmax} =	265	VAC	User Input Values From Design Input
Nominal Input Voltage	V _{INPUTnom} =	230	VAC	Page
Minimum Line Frequency	f _{LINEmin} =	47	Hz	
Minimum Input Voltage for Start-Up	V _{INPUTrun} =	80	VAC	
Minimum Peak Bulk Input Voltage	V _{BULKmin} =	120.208	V	
Maximum Peak Bulk Input Voltage	V _{BULKmax} =	374.767	V	
Nominal Peak Bulk Input Voltage	V _{BULKnom} =	325.269	>	
Turn-On Peak Bulk Input Voltage	V _{BULKstartup} =	113.137	V	
Line Cycle Period	t _{LINE} =	21.277	ms	
	OUTPUT			
Regulated Output Voltage, Constant Voltage Mode	V _{OUT_CV} =	85	>	
Full Load Rated Output Current	I _{OUT} =	0.6	Α	
Target Constant Current Mode Output Load Threshold	I _{OCC_target} =	0.6	A	
Target Minimum Output Voltage During Constant Current Regulation	V _{OUT_CC} =	30	V	
Allowable Output Voltage Drop During Load-Step Transient in Constant Voltage Mode	V _{OUTA} =	0.5	٧	User Input Values From Design Input Page
Maximum Peak to Peak Output Voltage Ripple	V _{RIPPLE} =	30	mV	
Required Positive Load Step Transient Current	I _{TRAN} =	0.65	A	
Maximum Allowable Response Time to Load Step Transient	t _{resp} =	20	ms	
Output Over Voltage Protection	V _{OUT_OVP} =	90	V	
Maximum Stand By Power Dissipation	P _{SBtarget} =	50	mW	
Estimated Efficiency	η =	0.850		
Output Power	P _{out} =	51.000	W	
Estimated Input Power	P _{IN} =	60.000	W	

COMPONENT PARAMETER CALCULATIONS

INPUT CAPACITOR, C _{BULK}				
Recommended Input Bulk Capacitance	C _{BULKrecommended} =	233.16	μF	
Actual Input Bulk Capacitance	C _{BULKactual} =	250.000	μF	User Input
Input Capacitor Value Used in Calculations	C _{BULK} =	250.000	μF	
Minimum Valley Voltage on Input Bulk Capacitors	V _{BULKvalley} =	101.326	V	
Minimum Input Capacitor Ripple Current Rating	I _{CINripple} =	1416.812	mA	
Minimum Input Capacitor Voltage Rating	V _{Cin} =	400	V	

INPUT FUSE			
Voltage Rating	V _{FUSE} =	265	VAC
Peak Input Current	I _{INpeak} =	3.939	A

BRIDGE RECTIFIER			
Voltage Rating	V _{BRIDGE_minrating} =	400.000	V
Current Rating	BRIDGE_minrating =	1.184	A
Forward Voltage Drop	V _{F_BRIDGE} =	1.100	V User Input
Full Load Power Dissipation of Bridge Rectifier	P _{BRIDGE} =	3116.985	mW

TRANSFORMER TURNS-RATIO, N _{PS}				
Demagnetizing Duty Cycle	D _{DEMAG_CC} =	0.425		Device Parameter
Amplitude Modulation Control Ratio	K _{AMnom} =	4		Device Parameter
Maximum Desired Switching Frequency	f _{max_target} =	100.000	kHz	User Input
Desired Switching Period	t _{SW_target} =	10.000	μs	
Resonant Frequency During DCM Dead Time	f _{RES} =	0.500	MHz	
Time to First Resonant Valley	t _{res} =	1.000	μs	
Estimated Maximum Duty Cycle	D _{max_target} =	0.475		

Ideal Primary to Secondary Turns Ratio	N _{PSideal} =	1.3130	Ideal N _{PS}
Actual Primary to Secondary Turns Ratio	N _{PSactual} =	1.321	User Input
Primary to Secondary Turns Ratio Used in Calculations	N _{PS} =	1.321	
Actual Flyback Voltage	V _{FLYBACK} =	113.936	V
Allowable Leakage Inductance Voltage Spike	V _{LEAKAGE} =	311.297	V
Estimated Maximum On-Time	t _{ONestimated} =	4.764	μs
Estimated Transformer Efficiency	η _{XFMR} =	0.9	

CURRENT SENSE RESISTOR, $R_{\rm cs}$, PEAK PRIMARY CURREN	T, I _{PP}			
Constant Current Regulation Factor, Minimum	V _{CCR_min} =	318	mV	Device Parameter
Constant Current Regulation Factor, Nominal	V _{CCR_nom} =	330	mV	Device Parameter
Constant Current Regulation Factor, Minimum	V _{CCR_min} =	343	mV	Device Parameter
Initial estimate for L _P	L _{P_estimate} =	251.721	μΗ	
Recommended Current Sense Resistor Value	R _{CSrecommended} =	0.339	Ω	
Actual Current Sense Resistor Used	R _{CSactual} =	0.374	Ω	User Input
Current Sense Resistor Value Used in Calculation	R _{cs} =	0.374	Ω	
Power Dissipation of R _{cs}	P _{Rcs} =	254.505	mW	
Maximum Current Sense Threshold Voltage, Minimum	V _{CSTmax_min} =	738	mV	Device Parameter
Maximum Current Sense Threshold Voltage, Nominal	V _{CSTmax_nom} =	773	mV	Device Parameter
Maximum Current Sense Threshold Voltage, Maximum	V _{CSTmax_max} =	810	mV	Device Parameter
Peak Primary Current, Minimum, Full Load	I _{PPmin} =	1.973	Α	
Peak Primary Current, Nominal, Full Load	I _{PPnom} =	2.067	A	
Peak Primary Current, Maximum, Full Load	I _{PPmax} =	2.166	A	
Actual Output Current During Constant Current Mode	I _{OCC_actual} =	0.580	Α	
Peak Primary Current During Light Load, FM Mode	I _{PP_FM} =	0.517	A	
Worst Case Peak Primary Current	I _{PP_WC} =	2.188	Α	Assumes -1%R $_{\rm CS}$ and V $_{\rm CSTmax_max}$
Maximum Output Current During Constant Current Mode	I _{OCCmax} =	0.614	A	Worst Case Estimate

TRANSFORMER PRIMARY INDUCTANCE, L _P			
Calculated L _P to meet f _{max target} with chosen R _{CS}	L _{Pcalc} =	260.316	μH
Recommended Primary Inductance to meet t _{CSLEB} with chosen R _{CS}	L _{Precommended} =	260.316	μΗ Ideal L _P
Actual Primary Inductance	L _{Pactual} =	250.000	μH User Input
Primary Inductance Used in Calculations	L _p =	250.000	μΗ
Actual Maximum Nominal Switching Frequency	f _{max} =	93.714	kHz
Actual Switching Period	t _{SWactual} =	10.671	µs
Actual Maximum On-Time	t _{ONmax} =	5.099	µs
Maximum Duty Cycle	D _{MAX} =	0.478	
Demagnetization Time	t _{DEMAG} =	4.535	μs
Primary RMS Current	I _{PRI_RMS} =	0.825	A
Secondary Peak Current	I _{SPmax} =	2.730	A
Secondary RMS Current	I _{SEC_RMS} =	1.028	A
VDD Under Voltage Lock Out (UVLO) Voltage, Maximum	VDD _{OFF_max} =	8.150	V Device Parameter
VDD Under Voltage Lock Out (UVLO) Voltage, Minimum	VDD _{OFF_min} =	7.350	V Device Parameter
Recommended Auxiliary to Secondary Turns Ratio	N _{ASrecommended} =	0.301	
Recommended Primary to Auxilliary Turns Ratio	N _{PArecommended} =	4.392	
Actual Primary to Auxiliary Turns Ratio	N _{PAactual} =	4.625	User Input
Primary to Auxiliary Turns Ratio Used in Calculations	N _{PA} =	4.625	
Nominal VDD Voltage	VDD =	23.385	V
Actual Auxiliary to Secondary Turns Ratio	N _{AS} =	0.286	
Minimum On-Time, t _{CSLEB}	t _{ONmin(limit)} =	280.000	ns
Actual Minimum On-Time	t _{ONmin(actual)} =	344.689	ns
Minimum Demagnetizing Time	t _{DEMAGmin} =	1.134	µs
Minimum Output Voltage During Constant Current Mode	V _{OUT_CCmin} =	28.860	v

MOSFET, Q			
Required Drain to Soure Voltage Rating , V _{DSrated} =	V _{DSmin_rating} =	635.314 V	
MOSFET Rated Drain to Source Voltage	V _{DS} =	800.000 V	
Output Capacitance of Selected MOSFET	C _{oss} =	16 pF	
Drain to Source On-Resistance of Selected MOSFET	R _{DSon} =	0.360 Ω	User Innut Values From Design Innut

MOSFET Truit Off Deby Time	MOSFET Fall Time	t, =	6.000 ns	Page
MOSPET Place Carlo Resonant Place Q				_
Actual Resonant Frequency During DCM Dead Time In. 1789 MHz Actual Estimated Time to First Resonant Valley U.S. 2016 Valley Switching Achieved? YES or NO VES or NO YES MOSPET Dry, Dending V. 2000 MOSPET Dry, Dending V. 2000 MOSPET Dry Bending V. 2000 MOSPET Pulsed Current Rating P. 2000 France Time Control Time Conduction Losese P. 2000 Processes 2. 21.877A MOSPET Power Loses P. 2000 Pettimeted MOSPET Switching Loseses P. 2000 Processes P. 2000 Recommended Clamying Valley on Drain V. 2000 Valley State Control Control P. 2000 Recommended Clamying Valley on Drain V. 2000 Control Control Control P. 2000 AUXILLARY WORNDO GOLDS P. 2000 AUXIL	·			
Acute Estimated Time to First Resonant Valley	-	-		
Valley Switching Activities Vestinate	Actual Resonant Frequency During DCM Dead Time	t _{RES_actual} =	1.779 MHz	
MOSFET Pulsed Current Rating	Actual Estimated Time to First Resonant Valley	t _{RES_actual} =	0.281 μs	
MOSFET Continuous Current Rating	Valley Switching Achieved?	YES or NO	YES	
	MOSFET V _{DS} Derating	V _{DSderated} =	0.794	
	MOSFET Continuous Current Rating	I _{DRAIN} =	8.731 A	
Elimated MOSFET Sudding Losses			21.877 A	
Estimated MOSFET Switching Losses Particular Partic	-			
Total Estimated MOSFET Power Loss				
Recommended Clamping Voltage on Drain V_scottages 271.297 V	-			
OUTPUT DIODE, Degree Power Degree D		V =		
Forward Voltage Drop of Output Rectifier, V, = V, = 1.256) V User Input Minimum Required Blocking Voltage Rating Voltage Rating From Voltage Page 1.0.28 A Power Dissipation of D _{car} P _{but} = 1.0.28 A Power Dissipation of D _{car} P _{but} = 1.256 V User Input Power Dissipation of D _{car} P _{but} = 1.256 V User Input Voltage Page Rectified Output Current Voltage Power Dissipation of D _{car} P _{but} = 1.256 V User Input Voltage Page Rating Voltage Rating Voltag	. toooniii oraaa olainpii g votage on Draii	DRAINclamp	2.1.201	
Minimum Required Blocking Voltage Rating Vocations England Minimum Average Rectified Output Current Industry England Minimum Average Rectified Output Current Industry England Industry Industr	OUTPUT DIODE, D _{OUT}			
Required Minimum Repaired Copy Without Opto-Coupled FeedBack County Feedback County Feedback County Feedback County Feedback	Forward Voltage Drop of Output Rectifier, V _F =		1.250 V	User Input
AUXILIARY WINDING DIODE, D _{min} Auxiliary Rectifier Forward Voltage Drop W _{fin} = 1.250 V User Input Value toward 1.28 093 V Value towa	Minimum Required Blocking Voltage Rating	V _{DOUT_blocking} =	579.072 V	
AUXILIARY WINDING DIODE, D _{mix} Auxiliary Rectifier Forward Voltage Drop W _{1,A} = 1.250 V User Input V _{10000 Busting} = 128.953 V OUTPUT INDUCTOR, L _{corr} DOR of Output Inductor DCR ₁₀₀₁ = 0, mΩ User Input OUTPUT CAPACITOR, C _{corr} Minimum Required C _{corr} , Without Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Required Minimum Repole Current Rating C _{corr} = 540,000 μF Resultant Output Voltage Peak to Peak Ripple Voltages = 50,000 mΩ User Input Voltages = 50,000 mΩ User Input Voltages Repole Voltage Peak to Peak Ripple Voltages = 136,628 mV Voltages Repole Current, Minimum Voltages Repole Current, Venninal Voltages Repole Current, Venni		I _{Dout} =		
Auxiliary Rectifier Forward Voltage Drop V _{IA} = 1.250 \ User Input Minimum Required Blocking Voltage Rating V _{oltage bustons} = 128.693 \ V DCR of Output Inductor DCR ₁₀ = 0 mΩ User Input The importance of using opto feedback of the importance of using opto feedback should be noted here! Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled Court User Input Court User in Court User Input Cou	Power Dissipation of D _{OUT}	P _{Dout} =	0.725W	
Auxiliary Rectifier Forward Voltage Drop V _{IA} = 1.250 \ User Input Minimum Required Blocking Voltage Rating V _{oltage bustons} = 128.693 \ V DCR of Output Inductor DCR ₁₀ = 0 mΩ User Input The importance of using opto feedback of the importance of using opto feedback should be noted here! Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Recommended Minimum Required Output Capacitor With Opto-Coupled Court User Input Court User in Court User Input Cou	ALIVILIA BY WINDING DIODE D			
Minimum Required Blocking Voltage Rating V_cook books 128.693 V V_cook books 128.693 V V_cook books 128.693 V V_cook books V_cook b				
OUTPUT INDUCTOR, Lour DCR of Output Inductor DCR _{teat} = 0 mΩ User input OUTPUT CAPACITOR, Cover Without Opto-Coupled FeedBack Courrections 26000,000 μF The importance of using opto feedback should be noted here! Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Courrections 470,000 μF Lever input Actual Output Capacitance Used Courrections Courrections 540,000 μF Lever input Required Minimum Ripple Current Rating Lours 0.876 lA 10,988 mΩ Actual ESR of Courted Maximum ESR 580,000 mΩ Lever input Recommended Maximum ESR ESR Concessedated Sections 10,988 mΩ 19,988 mΩ Actual ESR of Courted Maximum ESR 50,000 mΩ Lever input Actual ESR of Court Used ESR Concessedated Sections 50,000 mΩ Lever input Lever input Resultant Output Voltage Peak to Peak Ripple Voltages 130,600 mΩ Lever input VS Line Sense Run Current, Minimum Lever input Levice Parameter VS Line Sense Run Current, Minimum Levice Parameter VS Line Sense Run Current, Maximum Levice Input 1,000 μA Device Paramet		V _{FA} =		User Input
DCR of Output Inductor DCR _{cos} = 0 mΩ User input OUTPUT CAPACITOR, C _{out} Minimum Required C _{out} Without Opto-Coupled FeedBack C _{Out to to the county of the co}	Mınımum Required Blocking Voltage Rating	V _{DBIAS_blocking} =	128.693 V	
DCR of Output Inductor DCR _{cos} = 0 mΩ User input OUTPUT CAPACITOR, Cour Minimum Required Co _{cut} Without Opto-Coupled FeedBack Co _{CUT-No.5000} = 26000.000 μF The importance of using opto feedback should be noted here! Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Co _{CUT-No.5000} = 470.000 μF Image: Second	OUTPUT INDUCTOR 1			
Minimum Required C _{OUT} Without Opto-Coupled FeedBack C _{OUT,100,200} = 26000.000 µF The importance of using opto feedback should be noted here!		DCR =	0,00	User Innut
Minimum Required C _{OLT} Without Opto-Coupled FeedBack C _{OLT Recommended} 26000.000 μF The importance of using opto feedback should be noted here! The importance of using the feedback should be noted here! The importance of using the feedback should be noted here! The importance of using the feedback should be noted here! The importance of using the feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feed	DCR of Output Inductor	DOI C _{Lout} -	UIIILI	Oser input
Minimum Required C _{OLT} Without Opto-Coupled FeedBack C _{OLT Recommended} 26000.000 μF The importance of using opto feedback should be noted here! The importance of using the feedback should be noted here! The importance of using the feedback should be noted here! The importance of using the feedback should be noted here! The importance of using the feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feedback should be noted here! The importance of using opto feed	OUTPUT CAPACITOR, Cour			
Recommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Actual Output Capacitance Used Courrecommended Minimum Required Output Capacitor With Opto-Coupled FeedBack Actual Coupled Capacitance Used Courrecommended Minimum Rippel Current Rating Required Minimum Rippel Current Rating Required Minimum Rippel Current Rating Recommended Maximum ESR ESR_Conscommended = 10,998 mm Actual ESR of Co _{urr} Used ESR_Conscommended = 10,998 mm Actual ESR of Co _{urr} Used ESR_Conscommended = 10,998 mm Actual ESR of Co _{urr} Used ESR_Conscommended = 10,000 mm ESR Used in Calculations ESR_Conscommended = 10,000 mm Actual ESR of Co _{urr} Used ESR_Conscommended = 10,000 mm Actual ESR of Co _{urr} Used ESR_Conscommended = 10,000 mm ESR_Used in Calculations Indicate Indic				The importance of using onto feedback
Actual Output Capacitance Used Coutractual 540,000 μF User Input	Minimum Required C _{out} Without Opto-Coupled FeedBack	C _{OUT_no_opto} =	26000.000 µF	
Actual Output Capacitance Used Coutractual 540,000 μF User Input	Becommended Minimum Required Output Congeiter With Onto Coupled			
Court Local materials Court 540,000 μF Required Minimum Ripple Current Rating Incourtme 0.876 μA Recommended Maximum ESR ESR_contented 10.988 mΩ Actual ESR of Court Used ESR_contented 50.000 mΩ ESR Contented ESR_contented 50.000 mΩ ESR Contented 50.000 mΩ Resultant Output Voltage Peak to Peak Ripple Voltage Test State		C _{OUTrecommended} =	470.000 µF	
Court Local materials Court 540,000 μF Required Minimum Ripple Current Rating Incourtme 0.876 μA Recommended Maximum ESR ESR_contented 10.988 mΩ Actual ESR of Court Used ESR_contented 50.000 mΩ ESR Contented ESR_contented 50.000 mΩ ESR Contented 50.000 mΩ Resultant Output Voltage Peak to Peak Ripple Voltage Test State	A street Ordered Composition and I have	C -	540.000F	Hearland
Required Minimum Ripple Current Rating I COUTITINS ESR CONSTRUMENT ESR ESR CONSTRUMENT ESR ESR CONSTRUMENT ESR				Oser input
SR_commended Maximum ESR				
Second	, , , , ,	I _{COUTrms} =		
ESR Sed in Calculations ESR Soud = 50.000 mΩ				Hear Innut
Page		FSR =		Oser input
VOLTAGE SENSE DIVIDER, R _{VSI} , R _{VS2} VS Line Sense Run Current, Minimum I _{VSLun min} = 190 μA Device Parameter VS Line Sense Run Current, Maximum I _{VSLun min} = 225 μA Device Parameter VS Line Sense Run Current, Maximum I _{VSLun min} = 275 μA Device Parameter VS Line Sense Stop Current, Minimum I _{VSLun min} = 70 μA Device Parameter VS Line Sense Stop Current, Nominal I _{VSLun min} = 80 μA Device Parameter VS Line Sense Stop Current, Maximum I _{VSLun min} = 100 μA Device Parameter VS Line Sense Stop Current, Maximum I _{VSLun min} = 100 μA Device Parameter VS Line Sense Stop Current, Maximum I _{VSLun min} = 100 μA Device Parameter VS Line Sense Stop Current, Maximum I _{VSLun min} = 100 μA Device Parameter VS Line Sense Stop Current, Maximum Start Up Line Voltage R _{VSTactual} = 90.900 μΩ Recommended Resistor Value Gr Minimum Start Up Line Voltage R _{VSTactual} = 90.900 μΩ Actual Resistor Value Used for Minimum Start Up Line Voltage R _{VSTactual} = 90.900 μΩ Resultant Turn On Voltage, Minimum V _{TURRONomin} = 56.483 VAC Resultant Turn On Voltage, Nominal V _{TURRONomin} = 56.483 VAC Resultant Turn On Voltage, Maximum V _{TURRONomin} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{RECOMNOLTmin} = 34.161 VAC <				
VS Line Sense Run Current, Minimum VS Line Sense Run Current, Nominal VS Line Sense Run Current, Nominal VS Line Sense Run Current, Maximum VS Line Sense Run Current, Maximum VS Line Sense Stop Current, Minimum VS Line Sense Stop Current, Maximum Recommended Resistor Value for Minimum Start Up Line Voltage Recommended Resistor Value Used for Minimum Start Up Line Voltage Resultant Resistor Value Used for Minimum Start Up Line Voltage Resultant Turn On Voltage, Minimum VTURNONIMIN START UP LINE VOLTAGE Resultant Turn On Voltage, Mominal VTURNONIMIN START UP LINE VOLTAGE Resultant Turn On Voltage, Maximum VTURNONIMIN START UP LINE VOLTAGE Resultant Turn On Voltage, Maximum VBROWNOUTIMIN START UP LINE VOLTAGE VBROWNOUTIMIN STA		OUTripple		
VS Line Sense Run Current, Nominal VS Line Sense Run Current, Maximum VS Line Sense Run Current, Maximum VS Line Sense Stop Current, Minimum VS Line Sense Stop Current, Minimum VS Line Sense Stop Current, Nominal VS Line Sense Stop Current, Nominal VS Line Sense Stop Current, Maximum VS Line Sense Stop Current, Maximum VS Line Sense Stop Current, Maximum I VS Line Sense Stop Current, Maximum Recommended Resistor Value for Minimum Start Up Line Voltage Recommended Resistor Value Used for Minimum Start Up Line Voltage R VS Line Sense Stop Current, Maximum Recommended Resistor Value Used for Minimum Start Up Line Voltage R VS Line Sense Stop Current, Maximum Resultant Turn On Voltage, Minimum V TURNONIMIN START Up Line Voltage Resultant Turn On Voltage, Minimum V TURNONIMIN START Up Line Voltage, Minimum V TURNONIMIN START Up Line Voltage, Minimum V RESULTANT UP LINE VOLTAGE Resultant Input Brown Out Voltage, Minimum V RECOMNOUTIMIN START Up Line Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V RECOMNOUTIMIN START Up Line Voltage Alacid VAC Resultant Input Brown Out Voltage, Maximum V R	VOLTAGE SENSE DIVIDER, R _{VS1} , R _{VS2}			
VS Line Sense Run Current, Maximum Vostation Sense Run Current, Maximum Vostation Final Parameter Vostation Sense Stop Current, Minimum Vostation Final Parameter Vostation Sense Stop Current, Nominal Vostation Final Parameter Vostation Final Parameter Vostation Sense Stop Current, Nominal Vostation Final Parameter	VS Line Sense Run Current, Minimum	I _{VSLrun_min} =	190 _µ A	Device Parameter
VS Line Sense Stop Current, Minimum VS Line Sense Stop Current, Nominal VS Line Sense Stop Current, Nominal VS Line Sense Stop Current, Nominal VS Line Sense Stop Current, Maximum I _{VSLstop, mon} = 80 μA Device Parameter VS Line Sense Stop Current, Maximum I _{VSLstop, max} = 100 μA Device Parameter Recommended Resistor Value for Minimum Start Up Line Voltage Recommended Resistor Value Used for Minimum Start Up Line Voltage R _{VS1recommended} = 90.900 kΩ Line Voltage Grammeter VS Line Sense Stop Current, Maximum Start Up Line Voltage Resultant Turn On Voltage Minimum Start Up Line Voltage R _{VS1} = 90.9 kΩ User Input V _{URNONmin} = 56.483 VAC Resultant Turn On Voltage, Nominal V _{TURNONmin} = 66.887 VAC Resultant Turn On Voltage, Minimum V _{TURNONmin} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{SURNONMIN} = 34.161 VAC Resultant Input Brown Out Voltage, Nominal V _{BROWNOUTmax} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmin} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmin} = 4.710 V Device Parameter	VS Line Sense Run Current, Nominal	I _{VSLrun_nom} =	225 _µ A	Device Parameter
VS Line Sense Stop Current, Nominal VS Line Sense Stop Current, Maximum VS Line Sense Stop Current, Maximum VS Line Sense Stop Current, Maximum Recommended Resistor Value for Minimum Start Up Line Voltage Recommended Resistor Value Used for Minimum Start Up Line Voltage R _{VS1 tecommended} = 90.900 kΩ Was Input VS Value Used in Calculations R _{VS1} = 90.9 kΩ Resultant Turn On Voltage, Minimum V _{TURNONmin} = 56.483 VAC Resultant Turn On Voltage, Nominal V _{TURNONmin} = 66.887 VAC Resultant Turn On Voltage, Maximum V _{TURNONmin} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{ROWNOUTmin} = 34.161 VAC Resultant Input Brown Out Voltage, Nominal V _{ROWNOUTmin} = 37.134 VAC Resultant Input Brown Out Voltage, Maximum V _{ROWNOUTmin} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter V _{OVPmin} = 4.50 V Device Parameter V _{OVPmin} = 4.600 V Device Parameter	VS Line Sense Run Current, Maximum	VSLrun_max =		Device Parameter
VS Line Sense Stop Current, Maximum VS Line Sense Stop Current, Maximum VS Line Voltage R _{VS1 tecommended} Po.900 kΩ	,			
Recommended Resistor Value for Minimum Start Up Line Voltage $R_{VS1recommended} =$ 90.900 kΩ Actual Resistor Value Used for Minimum Start Up Line Voltage $R_{VS1} =$ 90.9 kΩ User Input R_{VS1} Value Used in Calculations $R_{VS1} =$ 90.9 kΩ User Input Resultant Turn On Voltage, Minimum $V_{TURNONmin} =$ 56.483 VAC Resultant Turn On Voltage, Nominal $V_{TURNONmin} =$ 66.887 VAC Resultant Turn On Voltage, Maximum $V_{TURNONmin} =$ 81.751 VAC Resultant Input Brown Out Voltage, Minimum $V_{BROWNOUTmin} =$ 34.161 VAC Resultant Input Brown Out Voltage, Nominal $V_{BROWNOUTmin} =$ 37.134 VAC Resultant Input Brown Out Voltage, Maximum $V_{BROWNOUTmax} =$ 43.079 VAC Internal VS Over Voltage Threshold, Minimum $V_{OVPmin} =$ 4.52 V Device Parameter Internal VS Over Voltage Threshold, Maximum $V_{OVPmin} =$ 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum $V_{OVPmin} =$ 4.710 V Device Parameter		VSLstop_nom =		
Actual Resistor Value Used for Minimum Start Up Line Voltage R _{VS1} = 90.9 kΩ User Input R _{VS1} Value Used in Calculations R _{VS1} = 90.9 kΩ Resultant Turn On Voltage, Minimum V _{TURNONmin} = 56.483 VAC Resultant Turn On Voltage, Nominal V _{TURNONmax} = 66.887 VAC Resultant Turn On Voltage, Maximum V _{TURNONmax} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{BROWNOUTmin} = 34.161 VAC Resultant Input Brown Out Voltage, Nominal V _{BROWNOUTmax} = 37.134 VAC Resultant Input Brown Out Voltage, Maximum V _{BROWNOUTmax} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V _{OVPmin} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmin} = 4.710 V Device Parameter	VS Line Sense Stop Current, Maximum	VSLstop_max =	100 μA	Device Parameter
Actual Resistor Value Used for Minimum Start Up Line Voltage R_{VS1} = 90.9 kΩ User Input R_{VS1} Value Used in Calculations R_{VS1} = 90.9 kΩ Resultant Turn On Voltage, Minimum $V_{TURNONini}$ = 56.483 VAC Resultant Turn On Voltage, Nominal $V_{TURNONinom}$ = 66.887 VAC Resultant Turn On Voltage, Maximum $V_{TURNONinin}$ = 81.751 VAC Resultant Input Brown Out Voltage, Minimum $V_{BROWNOUTmin}$ = 34.161 VAC Resultant Input Brown Out Voltage, Nominal $V_{BROWNOUTmin}$ = 37.134 VAC Resultant Input Brown Out Voltage, Maximum $V_{BROWNOUTmax}$ = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V_{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V_{OVPmin} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V_{OVPmin} = 4.710 V Device Parameter	Recommended Resistor Value for Minimum Start Up Line Voltage	R _{VS1recommended} =	90.900 kΩ	
R _{VS1} Value Used in Calculations R _{VS1} = 90.9 kΩ Resultant Turn On Voltage, Minimum V _{TURNONmin} = 56.483 VAC Resultant Turn On Voltage, Nominal V _{TURNONmin} = 66.887 VAC Resultant Turn On Voltage, Maximum V _{TURNONmax} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{BROWNOUTmin} = 34.161 VAC Resultant Input Brown Out Voltage, Nominal V _{BROWNOUTmin} = 37.134 VAC Resultant Input Brown Out Voltage, Maximum V _{BROWNOUTmax} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V _{OVPmin} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmax} = 4.710 V Device Parameter	-			
Resultant Turn On Voltage, Minimum V TURNONmin = 56.483 VAC Resultant Turn On Voltage, Nominal Resultant Turn On Voltage, Maximum V TURNONmin = 66.887 VAC Resultant Turn On Voltage, Maximum V TURNONmin = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V RESUltant Input Brown Out Voltage, Minimum V RESUltant Input Brown Out Voltage, Nominal Resultant Input Brown Out Voltage, Maximum V RESUltant Input Brown Out Voltage, Maximum V RESUltant Input Brown Out Voltage, Maximum V RESUltant Input Brown Out Voltage, Minimum V RESULTANT ON VOLTAGE Threshold, Minimum V OVPINION	Actual Resistor Value Used for Minimum Start Up Line Voltage	R _{VS1actual} =	90.9 kΩ	User Input
Resultant Turn On Voltage, Minimum V TURNONmin = 56.483 VAC Resultant Turn On Voltage, Nominal Resultant Turn On Voltage, Maximum V TURNONmin = 66.887 VAC Resultant Turn On Voltage, Maximum V TURNONmin = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V RESUltant Input Brown Out Voltage, Minimum V RESUltant Input Brown Out Voltage, Nominal Resultant Input Brown Out Voltage, Maximum V RESUltant Input Brown Out Voltage, Maximum V RESUltant Input Brown Out Voltage, Maximum V RESUltant Input Brown Out Voltage, Minimum V RESULTANT ON VOLTAGE Threshold, Minimum V OVPINION	R _{vs1} Value Used in Calculations	R _{vs1} =	90.9kΩ	
Resultant Turn On Voltage, Nominal V _{TURNONnom} = 66.887 VAC Resultant Turn On Voltage, Maximum V _{TURNONmax} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{BROWNOUTmin} = 34.161 VAC Resultant Input Brown Out Voltage, Nominal V _{BROWNOUTmax} = 37.134 VAC Resultant Input Brown Out Voltage, Maximum V _{BROWNOUTmax} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V _{OVPmon} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmax} = 4.710 V Device Parameter	701			
Resultant Turn On Voltage, Maximum V _{TURNONmax} = 81.751 VAC Resultant Input Brown Out Voltage, Minimum V _{BROWNOUTmin} = 34.161 VAC Resultant Input Brown Out Voltage, Nominal Resultant Input Brown Out Voltage, Maximum V _{BROWNOUTmax} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V _{OVPmax} = 4.710 V Device Parameter				
Resultant Input Brown Out Voltage, Minimum VBROWNOUTmin = 34.161 VAC Resultant Input Brown Out Voltage, Nominal Resultant Input Brown Out Voltage, Nominal Resultant Input Brown Out Voltage, Maximum VBROWNOUTmax = 43.079 VAC Internal VS Over Voltage Threshold, Minimum VOVPmin = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal VOVPmon = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum VOVPmax = 4.710 V Device Parameter		V _{TURNONmax} =		
Resultant Input Brown Out Voltage, Nominal V _{BROWNOUTnom} = 37.134 VAC Resultant Input Brown Out Voltage, Maximum V _{BROWNOUTmax} = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V _{OVPmon} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmax} = 4.710 V Device Parameter		V _{BROWNOUTmin} =	34.161 VAC	
Resultant Input Brown Out Voltage, Maximum V_BROWNOUTmax = 43.079 VAC Internal VS Over Voltage Threshold, Minimum V_OVPmin = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V_OVPnom = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V_OVPmax = 4.710 V Device Parameter	Resultant Input Brown Out Voltage, Nominal	V _{BROWNOUTnom} =		
Internal VS Over Voltage Threshold, Minimum V _{OVPmin} = 4.52 V Device Parameter Internal VS Over Voltage Threshold, Nominal V _{OVPmom} = 4.600 V Device Parameter Internal VS Over Voltage Threshold, Maximum V _{OVPmax} = 4.710 V Device Parameter	Resultant Input Brown Out Voltage, Maximum	V _{BROWNOUTmax} =		
Internal VS Over Voltage Threshold, Maximum V _{OVPmax} = 4.710 V Device Parameter		V _{OVPmin} =		
Recommended Resistor Value for Desired Output Over Voltage Limit $R_{VS2recommended} = 20.500 k\Omega$	Internal VS Over Voltage Threshold, Maximum	V _{OVPmax} =	4.710 V	Device Parameter
V5.//ECOMMERCED	Recommended Resistor Value for Desired Output Over Voltage Limit	R _{vs2} =	20.500kΩ	
		VS2recommended	20.000 112	
Actual Resistor Value Used for Desired Output Over Voltage Limit $R_{_{VS2actual}} = 20.500$ kΩ User Input	Actual Resistor Value Used for Desired Output Over Voltage Limit	R _{vspartual} =	20.500 kΩ	User Input
R_{VS2} Used in Calculations $R_{VS2} = 20.500 k\Omega$	1	K _{VS2} =		
Resultant Output Over Voltage Threshold, Minimum Vour Overwaltent Output Over Voltage Threshold, Marriage V = 89.769V Actual Output Over Voltage		V OUT_OVPmin =		Actual Output Over Veltaria
INCOMINATE OF VOILAGE THEODOM, NOTHING TO THE OVER ACTUAL OF VOITAGE	Resultant Output Over Voltage Threshold, Nominal Resultant Output Over Voltage Threshold, Maximum	V _{OUT_OVPnom} =	88.768 V	Actual Output Over Voltage
	Pasultant Output Over Voltage Threshold Maximum	V _{OUT_OVPmax} =	90.861 V	

LINE COMPENSATION, R _{LC}					
Line Compensation Current Ratio, Nominal	K _{LCnom} =	25	A/A	Device Parameter	
Total Estimated Current Sense Delay	t _{DELAY} =	90	ns		
Recommended Resistor Value for Line Compensation	R _{LCrecommended} =	1.400	kΩ		
Actual Resistor Value Used for Line Compensation	R _{LCactual} =	1.400	kΩ	User Input	
R _{LC} Used in Calculations	R _{LC} =	1.400	kΩ		
Result of R _{Lc} selection	Output Constant Current will have minimal deviation over input line voltage range.				

VDD CAPACITOR, C _{VDD}			
Device Supply Current During Run Mode, Maximum	I _{RUNmax} =	2.65 mA	Device Parameter
VDD _{on} Voltage, Maximum	VDD _{ONmax} =	23 V	Device Parameter
VDD _{OFF} Voltage, Maximum	VDD _{OFFmax} =	8.15 V	Device Parameter
Estimated Minimum Switching Frequency at No-Load	f _{SWmin} =	1.199 kHz	
Estimated Over Voltage Charge Duration	t _{ov} =	20.000 ms	
Minimum VDD Capacitor for Start UP	C _{VDD1} =	10.000 μF	
Minimum VDD Capacitor for Load Transient	C _{VDD2} =	4.700 μF	
Minimum VDD Capacitor for Target Ripple on VDD	C _{VDD3} =	2.200 μF	
Recommended Capacitor on VDD	C _{VDDrecommended} =	10.000 μF	

OPTO-COUPLED FEEDBACK				
Reference Voltage of TL431 Shunt Regulator	VREF ₄₃₁ =	2.5	/ User Input	
Shunt Regulator Reference Input Current, Maximum	I _{REF431} =	4	ıA User Input	
Recommended Bottom Resistor Value for Output Voltage Set Point	R _{FB2recommended} =	44.2	Ω	
Actual Bottom Resistor Value Used for Output Voltage Set Point	R _{FB2actual} =	44.2	Ω User Input	
R _{FB2} Used in Calculations	R _{FB2} =	44.2	Ω	
Recommended Top Resistor Value for Output Voltage Set Point	R _{FB1recommended} =	1470	Ω	
Actual Top Resistor Value Used for Output Voltage Set Point	R _{FB1actual} =	1470	Ω User Input	
R _{FB1} Used in Calculations	R _{FB1} = R _{INJ} =	1470.02		
Noise Injection Resistor For Loop Analysis	R _{INJ} =	20	May be changed by Use	er here
Resultant Nominal Constant Voltage Output Voltage	V _{OUT_CV} =	85.646	1	
Minimum Current Transfer Ratio of Selected Opto-Coupler	CTR _{min} =	50	% User Input	
Response Fall Time of Opto-Coupler	t _{f opto} =	3	us User Input	
R _L of Specified Opto-Coupler Fall Time	R _{L_opto} =	100	User Input	
Cut-Off Frequency of Opto-Coupler	f _{c_opto} =	80	Hz User Input	
Input Forward Voltage of Opto-Coupler	V _{F_opto} =	1.4	/ User Input	
Equivalent Opto-Coupler Output Capacitance	C _{OPTO} =	4.775	nF	
Equivalent Internal UCC28740 Dynamic Reistance	R _{EQU} =	40	Ω	
Recommended Value for External Capacitor on Opto-Coupler	C _{EXTrecommended} =	0	ıF	
Actual Value of External Capacitor on Opto-Coupler Used	C _{EXTactual} =	0.0015	F User Input	
C _{EXT} Used in Calculations	C _{EXT} =	0.0015	ıF	
Recommended C _{FB}	C _{FBrecommended} =	0.047	ıF	
Actual C _{FB} Used	$C_{FBactual} = C_{FB} =$	0.047	ıF User Input	
C _{FB} Used in Calculations	C _{FB} =	0.047		
Recommended Value For R _{FB4}	R _{FB4recommended} =	22	Ω	
Actual Value for R _{FB4} Used	R _{FB4actual} = R _{FB4} =	22	Ω User Input	
R _{FB4} Used in Calculations	R _{FB4} =	22	Ω	
Opto-Coupler Emitter Current to FB Pin Current Gain	G _{FB1} =	0.355		
FB Pin Current to Control Law Voltage Gain, Full Load	G _{FB2} =	-192	Ω	
Control Law Voltage to Power Stage Modulation Gain, FM Mode	K _{FM4} =	50.4	Hz/V	
Power Stage Modulation (FM) to Average Current Gain	G _{P4} =	6.402	ıC	
Recommeded Value for Shunt Regulator Bias Resistor	R _{TLrecommended} =	1.5	Ω	
Actual Value of Shunt Regulator Bias Resistor Used	R _{TLactual} =	1.5	Ω User Input	
R _{TL} Used in Calculations	R _{TLactual} = R _{TL} =	1.5	Ω	
Recommended Value for Compensation Capacitor	C _{Zrecommended} =	220)F	
Actual Value Used C _z	C _{Zactual} =	1500	F User Input	
C _z Used in Calculations	C _z =	1500	oF	

