Class 14 Structured random effects: time series and related models

Andrew Parnell andrew.parnell@mu.ie

Learning outcomes

- ► Fit some time series models in Stan and use these with hierarchical models
- Some new methods
 - Autoregressive models
 - Stochastic Volatility Models
 - State space and dynamic models
 - A repeated measures time series
- Do some model comparison with Stan
- Show we can do shrinkage rather than model selection

A short introduction to time series methods

Almost all of time series is based on two ideas:

- 1. Base your future predictions on previous values of the data
- 2. Base your future predictions on how wrong you were in your past predictions

Everything else in time series is just an extension of these!

In this class we will only discuss *discrete time series*, i.e. where t=1,2,3,...

Decomposing time series

▶ We decompose time series commonly as:

$$y_t = \text{trend}_t + \text{seasonality}_t + \text{error}_t$$

- but sometimes it is not easy to separate these into different parts
- ▶ The concept of *stationarity* helps us decompose the time series

A time series with a big trend?

Generating the series

```
set.seed(123)
y <- cumsum(sample(c(-1, 1), size=1000, replace=TRUE))</pre>
```

- ► The sample command just produces a set of 1000 values either -1 or 1
- cumsum just cumulatively adds them up
- ► This is a random walk series

Autoregressive (AR) models

- Autoregressive models literally perform a linear regression of the time series against the previous lag of the series
- ► For example, an AR(1) process can be written as:

$$y_t = \alpha + \beta y_{t-1} + \epsilon_t$$

- where $\epsilon_t \sim N(0, \sigma^2)$ just like a linear regression.
- In a probability distribution format, we might write:

$$y_t \sim N(\alpha + \beta y_{t-1}, \sigma^2)$$

... and maximise the likelihood as normal

Interpretation of the AR parameters

- ightharpoonup lpha is an estimate of the stable mean of the process
- $\triangleright \beta$ is interesting:
 - Values close to 1 indicate that the series is almost like a random walk.
 - ► Values close to 0 indicate that the series is almost completely composed of random normally-distributed error terms
 - ▶ Values less than 0 indicate that the series is 'repulsive'
 - Values greater than 1 (or less than -1) indicate that the series is chaotic

Fitting an AR model in rstan

```
stan_code = '
model {
 for (t in 2:N)
   y[t] ~ normal(alpha + beta * y[t-1], sigma);
  // Priors
  alpha ~ normal(0, 10);
  beta ~ normal(0, 10);
  sigma ~ uniform(0, 100);
```

Forest fire data

Another way of running stan

Set up a stan model

```
stan_mod_ar1 = stan_model(model_code = stan_code)
```

Now choose either full MCMC...

... or just optimizing:

Changing the variance instead

The AR model has a mean that changes but the variance is constant:

$$y_t \sim N(\alpha + \beta y_{t-1}, \sigma^2)$$

Instead we could try:

$$y_t \sim N(\alpha, \sigma_t^2)$$

- Lots of different ways to model this:
 - Autoregressive Conditional Heteroskedasticity (ARCH)
 - Generalised Autoregressive Conditional Heteroskedasticity (GARCH)
 - Stochastic Volatility Models (SVM)
- ► They follow the same principles as AR models, but work on the standard deviations or variances instead of the mean

Stochastic Volatility Modelling

- ► A Stochastic Volatility Model (SVM) models the variance as its own *stochastic process*
- The general model structure is often written as:

$$y_t \sim N(\alpha, \exp(h_t))$$

 $h_t \sim N(\mu + \phi h_{t-1}, \sigma^2)$

➤ You can think of an SVM being like a GLM but with a log link on the variance parameter

Mixing up models

- ► What if we wanted to fit an AR(1) model with stochastic volatility
- ► Impossible in almost any R package
- Simple to do in Stan!

Code for a an AR(1)-SVM

```
stan code = '
data {
  int<lower=0> N; // number of observations
  vector[N] y; // response variable
parameters {
  real alpha; // intercept
  real beta; // AR parameter
  vector[N] h; // stochastic volatility process
  real alpha h; // SVM mean
  real beta_h; // SVM AR parameter
  real<lower=0> sigma_h; // SVM residual SD
model {
  h[1] ~ normal(alpha_h, 1);
  for (t in 2:N) {
    y[t] ~ normal(alpha + beta * y[t-1], sqrt(exp(h[t])));
    h[t] ~ normal(alpha_h + beta_h * h[t-1], sigma_h);
```

15/33

Find the posterior distribution

-1.47

-0.54

-1.75

-1.74

0.69

print(stan_run_svm)

h[4]

h[5]

h[6]

h[7]

h[11]

```
## post-warmup draws per chain=1000, total post-warmup draws=400
##
                                  2.5%
                                          25%
                                                 50%
                                                        75%
                                                             97.
##
             mean se_mean
                             sd
## alpha
            -0.25
                     0.00
                           0.08
                                 -0.40
                                        -0.30
                                               -0.25
                                                      -0.19
                                                             -0.
             0.09
                     0.00
                           0.07
                                 -0.05
                                         0.05
                                                0.09
                                                       0.14
## beta
                                                              0.
## h[1]
                     0.03
                           1.18
                                        -1.78
                                               -0.95
                                                      -0.16
            -0.97
                                 -3.29
                                                              1.
## h[2]
             1.21
                     0.01
                           0.79
                                 -0.10
                                         0.65
                                                1.12
                                                       1.68
                                                              2.
## h[3]
            -1.30
                     0.03
                           1.36
                                 -3.99 - 2.20
                                               -1.31
                                                      -0.37
                                                              1.
```

Inference for Stan model: fe789435a2f878b474bc085314281fc3.

4 chains, each with iter=2000; warmup=1000; thin=1;

0.02

0.02

0.01

0.02

0.04

h[8] -1.480.02 1.37 -4.02-2.43-1.47-0.591. ## h[9] -1.990.02 1.42 -4.81 -2.93-1.99-1.050. ## h[10] -0.700.02 1.08 -2.55 -1.47-0.80 -0.051.

1.31

0.99

0.80

1.40

1.49

-4.01

-2.31

-0.65

-4.58

-4.66

-2.35

-1.23

0.12

-2.67

-2.71

-1.49

-0.62

0.62

-1.69

-1.71

-0.62

0.08

1.18

-0.80

-0.7416/31.

1.

1.

2.

0.

Plot the important parameters

Plot the $\sqrt{\exp(h)}$ values

```
h_post = summary(stan_run_svm, pars = c("h"))$summary[,'500]
plot(ff$year, sqrt(exp(h_post)), type = 'l')
```


A repeated measures example

Let's return to the Geese example all the way back on day 1:

What model would we like for these data?

- ▶ We have *repeated measures* more than one observation at each time point.
- We would like the model to fill in the gaps and separate out the uncertainty due to the change over time from the uncertainty to do with repeated measurement
- We have to separate out the model into two layers:
 - 1. The observations and how they link to a single time series value on that day
 - 2. The underlying time series model defined at each time point
- A possible model:

$$y_t \sim \mathit{N}(\mu_{\mathsf{day}_t}, \sigma^2)$$
 $\mu_{\mathsf{day}} \sim \mathit{N}(\mu_{\mathsf{day}-1}, \sigma^2_\mu)$

Stan code for a repeated measures random walk model

```
stan code rm = '
data {
 int<lower=0> N; // number of observations
 int<lower=0> N_day; // total number of days
 vector[N] y; // response variable
 int day[N]; // variable to match days to observations
parameters {
 real<lower=0> sigma; // st dev within day
 real<lower=0> sigma mu; // st dev of RW
 vector[N dav] mu: // repeated measure parameter
model {
 mu[1] ~ normal(0, sigma_mu);
 for(t in 2:N_day) {
   mu[t] ~ normal(mu[t-1], sigma_mu);
 sigma ~ uniform(0, 10):
 sigma_mu ~ uniform(0, 10);
 for (i in 1:N)
   y[i] ~ normal(mu[day[i]], sigma);
```

Optimise the parameters

convergence, Rhat=1).

```
print(stan run rm, pars = c('sigma mu', 'sigma'))
## Inference for Stan model: 9824a40eeca19f5c917c651042e0bc
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draw
##
##
          mean se_mean
                        sd 2.5% 25% 50% 75% 97.5% n e
## sigma 0.41 0.00 0.02 0.37 0.40 0.41 0.42 0.45 40
##
## Samples were drawn using NUTS(diag_e) at Tue Oct 9 15:3
## For each parameter, n eff is a crude measure of effective
## and Rhat is the potential scale reduction factor on spl:
```

Plot the interesting parameters

Plot the best fit model

Shrinkage and AR models

- ▶ It's possible to do variable selection with AR models of multiple orders
- Suppose we want to choose the order of auto-regression p in an AR(p) model
- ▶ We would fit a model for a large number of *p* values and put a prior to reduce the size on the coefficients on them
- ► The normal isn't the only choice, an even more popular one is the double exponential (or Laplace) distribution

Reminder: wheat data

Fitting a shrinkage AR model

```
stan code ar shrink = '
data {
 int<lower=0> N; // number of observations
 int<lower=0> max P: // maximum number of AR lags
 vector[N] y; // response variable
parameters {
 real alpha; // intercept
 vector[max_P] beta; // AR parameter
 real<lower=0> sigma; // residual sd
model {
 for (t in (max P+1):N) {
       real mu:
       mu = alpha;
       for(k in 1:max_P)
         mu = mu + beta[k] * v[t-k];
       y[t] ~ normal(mu, sigma);
 // Priors
 alpha ~ normal(0, 10);
 for (k in 1:max_P) {
    beta ~ double_exponential(0, 1);
  sigma ~ uniform(0, 100);
```

Fitting the model

beta[9]

beta[10]

0.15

0 02

print(stan_run_ar_shrink)

```
4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draw
##
##
                          sd
                              2.5%
                                     25%
                                           50%
                                                75% 97
            mean se mean
## alpha
            0.27
                   0.00 0.10
                              0.08
                                    0.21
                                          0.27
                                                0.34
                                                    0
## beta[1]
            0.37
                   0.00 0.15
                              0.07
                                    0.27
                                          0.37
                                               0.48 0
## beta[2]
           -0.02
                   0.00 0.11
                              -0.25 -0.08 -0.01
                                               0.04 0
## beta[3]
            0.08
                   0.00 0.11
                              -0.10
                                    0.00
                                          0.06
                                               0.14
                                                     0
## beta[4]
            0.17
                   0.00 0.13
                              -0.05
                                    0.06
                                          0.15
                                                0.26
                                                     0
```

Inference for Stan model: ea24da5bc3933a959f2a5cf4093b89

beta[5] 0.22 0.00 0.15 -0.02 0.11 0.20 0.31 0 ## beta[6] 0.04 0.00 0.11 -0.16 -0.02 0.03 0.10 0 ## beta[7] 0.07 0.00 0.11 -0.12 0.00 0.06 0.13 0 ## beta[8] 0.06 0.00 0.11 -0.13 -0.01 0.05 0.12 0

0.00 0.13

0 00 0 09

-0.05

-0.15 - 0.04

0.05

0.13

0 01

0.23

 $0.0^{\frac{26}{3}}$

0

Plot the AR parameters

```
plot(stan_run_ar_shrink, pars = c('beta'))
```


Mixing up state space models, multivariate time series, Gaussian processes

- ► We can extend the simple state space model we met earlier to work for multivariate series
- We would have a state equation that relates our observations to a multivariate latent time series (possibly of a different dimension)
- We could change the time series model of the latent state to be an ARIMA model, an O-U process, a Gaussian process, or anything else you can think of!

Dynamic linear models

- ➤ So far in all our models we have forced the time series parameters to be constant over time
- ▶ In a *Dynamic Linear Model* we have a state space model with :

$$y_t = F_t x_t + \epsilon_t, \ \epsilon_t \sim MVN(0, \Sigma_t)$$
$$x_t = G_t x_{t-1} + \gamma_t, \ \gamma_t \sim N(0, \Psi_t)$$

- The key difference here is that the transformation matrices F_t and G_t can change over time, as can the variance matrices Σ_t and Ψ_t , possibly in an ARCH/GARCH type framework
- ▶ These are very hard models to fit in JAGS/Stan but simple versions can work

Latent factor time series models

- ▶ If we have very many series, a common approach to reduce the dimension is to use Factor Analysis or Principal components
- ▶ In a latent factor model we write:

$$y_t = Bf_t + \epsilon_t$$

where now B is a numseries \times numfactors factor loading matrix which transforms the high dimensional y_t into a lower dimensional f_t .

- f_t can then be run using a set of univariate time series, e.g. random walks
- ► The *B* matrix is often hard to estimate and might require some tight priors

Summary

- ► Time series analysis involves using regression-type models to predict new data from previous time points
- With a Bayesian model you can do the model selection inside the modelling step
- ➤ Some really cool and flexible models can be fitted with advanced tools like state space models