Chapter 1

A Simplified LME Framework for Method Comparison

1.1 LME models in method comparison studies

Linear mixed effects (LME) models can facilitate greater understanding of the potential causes of bias and differences in precision between two sets of measurement. ? views the uses of linear mixed effects models as an expansion on the Bland-Altman methodology, rather than as a replacement. ? remarks that modern statistical computation, such as that used for LME models, greatly improve the efficiency of calculation compared to previous 'by-hand' methods.

Roy provides three case studies, using data sets well known in method comparison studies, to demonstrate how the methodology should be used.

1.1.1 Tests

? considers four independent hypothesis tests.

- Testing of hypotheses of differences between the means of two methods
- Testing of hypotheses in between subject variabilities in two methods,
- Testing of hypotheses of differences in within-subject variability of the two methods,

• Testing of hypotheses in differences in overall variability of the two methods.

Bivariate correlation coefficients have been shown to be of limited use in method comparison studies (?). However, recently correlation analysis has been developed to cope with repeated measurements, enhancing their potential usefulness. Roy incorporates the use of correlation into this methodology.

1.2 Roy's Framework

? uses an approach based on linear mixed effects (LME) models for the purpose of comparing the agreement between two methods of measurement, where replicate measurements on items, typically individuals, by both methods are available. She provides three tests of hypothesis appropriate for evaluating the agreement between the two methods of measurement under this sampling scheme. These tests consider null hypotheses that assume: absence of inter-method bias; equality of between-subject variabilities of the two methods. By intermethod bias we mean that a systematic difference exists between observations recorded by the two methods. Differences in between-subject variabilities of the two methods arise when one method is yielding average response levels for individuals than are more variable than the average response levels for the same sample of individuals taken by the other method. Differences in within-subject variabilities of the two methods arise when one method is yielding responses for an individual than are more variable than the responses for this same individual taken by the other method. The two methods of measurement can be considered to agree, and subsequently can be used interchangeably, if all three null hypotheses are true.

This bias is specified as a fixed effect in the LME model. For a practitioner who has a reasonable level of competency in R and undergraduate statistics (in particular simple linear regression model) this is a straight-forward procedure.

A formal test for inter-method bias can be implemented by examining the fixed effects of the model. This is common to well known classical linear model methodologies. The null hypotheses, that both methods have the same mean, which is tested against the alternative hypothesis, that both methods have different means.

The inter-method bias and necessary t-value and p-value are presented in computer output. A decision on whether the first of Roy's criteria is fulfilled can be based on these values.

Importantly? further proposes a series of three tests on the variance components of an LME model, which allow decisions on the second and third of Roy's criteria. For these tests, four candidate LME models are constructed. The differences in the models are specifically in how the the D and Λ matrices are constructed, using either an unstructured form or a compound symmetry form. To illustrate these differences, consider a generic matrix A,

$$m{A} = \left(egin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}
ight).$$

A symmetric matrix allows the diagonal terms a_{11} and a_{22} to differ. The compound symmetry structure requires that both of these terms be equal, i.e $a_{11} = a_{22}$.

1.3 Systolic Blood Pressure Data Set

? provides three case studies, using data sets well known in method comparison studies, to demonstrate how the methodology should be used. The first two examples used are from the 'blood pressure' data set introduced by ?. The data set is a tabulation of simultaneous measurements of systolic blood pressure were made by each of two experienced observers (denoted 'J' and 'R') using a sphygmomanometer and by a semi-automatic blood pressure monitor (denoted 'S'). Three sets of readings were made in quick succession. Roy compares the 'J' and 'S' methods in the first of her examples.

1.3.1 Demonstration of Roy's testing

The inter-method bias between the two method is found to be 15.62, with a t-value of -7.64, with a p-value of less than 0.0001. Consequently there is a significant inter-method bias present between methods J and S, and the first of the Roy's three agreement criteria is unfulfilled.

Next, the first variability test is carried out, yielding maximum likelihood estimates of the betweensubject variance covariance matrix, for both the null model, in compound symmetry (CS) form, and the alternative model in symmetric (symm) form. These matrices are determined to be as follows;

$$\hat{\boldsymbol{G}}_{CS} = \left(\begin{array}{ccc} 946.50 & 784.32 \\ 784.32 & 946.50 \end{array} \right), \qquad \qquad \hat{\boldsymbol{G}}_{Symm} = \left(\begin{array}{ccc} 923.98 & 785.24 \\ 785.24 & 971.30 \end{array} \right).$$

A likelihood ratio test is perform to compare both candidate models. The log-likelihood of the null model is -2030.7, and for the alternative model -2030.8. The test statistic, presented with greater precision than the log-likelihoods, is 0.1592. The p-value is 0.6958. Consequently we fail to reject the null model, and by extension, conclude that the hypothesis that methods J and S have the same between-subject variability. Thus the second of the criteria is fulfilled.

1.4 Roy's Variability Tests

Variability tests proposed by ? affords the opportunity to expand upon Carstensen's approach.

The first test allows of the comparison the begin-subject variability of two methods. Similarly, the second test assesses the within-subject variability of two methods. A third test is a test that compares the overall variability of the two methods.

The tests are implemented by fitting a specific LME model, and three variations thereof, to the data. These three variant models introduce equality constraints that act null hypothesis cases.

Other important aspects of the method comparison study are consequent. The limits of agreement are computed using the results of the first model.

1.4.1 Test 2

The second variability test determines maximum likelihood estimates of the within-subject variance covariance matrix, for both the reference model, in CS form, and the alternative model in symmetric form.

$$\hat{\Sigma}_{CS} = \begin{pmatrix} 60.27 & 16.06 \\ 16.06 & 60.27 \end{pmatrix}, \qquad \hat{\Sigma}_{Symm} = \begin{pmatrix} 37.40 & 16.06 \\ 16.06 & 83.14 \end{pmatrix}.$$

A likelihood ratio test is perform to compare both candidate models. The log-likelihood of the alternative model model is -2045.0. As before, the null model has a log-likelihood of -2030.7. The

test statistic is computed as 28.617, again presented with greater precision. The p-value is less than 0.0001. In this case we reject the null hypothesis of equal within-subject variability. Consequently the third of Roy's criteria is unfulfilled. The coefficient of repeatability for methods J and S are found to be 16.95 mmHg and 25.28 mmHg respectively.

1.4.2 Test 3

The last of the three variability tests is carried out to compare the overall variabilities of both methods. With the null model the MLE of the within-subject variance covariance matrix is given below. The overall variabilities for the null and alternative models, respectively, are determined to be as follows;

$$\hat{\mathbf{\Omega}}_{CS} = \begin{pmatrix} 1007.92 & 801.65 \\ 801.65 & 1007.92 \end{pmatrix}, \qquad \hat{\mathbf{\Omega}}_{Symm} = \begin{pmatrix} 961.38 & 801.40 \\ 801.40 & 1054.43 \end{pmatrix},$$

The log-likelihood of the alternative model model is -2045.2, and again, the null model has a log-likelihood of -2030.7. The test statistic is 28.884, and the p-value is less than 0.0001. The null hypothesis, that both methods have equal overall variability, is rejected. Further to the second variability test, it is known that this difference is specifically due to the difference of within-subject variabilities.

1.4.3 Correlation

Lastly, ? considers the overall correlation coefficient. The diagonal blocks $\hat{r}_{\Omega ii}$ of the correlation matrix indicate an overall coefficient of 0.7959. This is less than the threshold of 0.82 that Roy recommends.

$$\hat{\mathbf{r}}_{\Omega ii} = \begin{pmatrix} 1 & 0.7959 \\ 0.7959 & 1 \end{pmatrix} \tag{1.1}$$

The off-diagonal blocks of the overall correlation matrix $\hat{r}_{\Omega ii'}$ present the correlation coefficients further to ?.

$$\hat{m{r}}_{\Omega ii'} = \left(egin{array}{ccc} 0.9611 & 0.7799 \ 0.7799 & 0.9212 \end{array}
ight).$$

The overall conclusion of the procedure is that method J and S are not in agreement, specifically due to the within-subject variability, and the inter-method bias. The repeatability coefficients are substantially different, with the coefficient for method S being 49% larger than for method J. Additionally the overall correlation coefficient did not exceed the recommended threshold of 0.82.

1.5 Roy's Model

Bland-Altman's blood data

With the alternative model, the MLE of the between-subject variance covariance matrix is given by

$$\hat{\boldsymbol{G}}_{Symm} = \begin{pmatrix} 923.98 & 785.24 \\ 785.24 & 971.30 \end{pmatrix} \tag{1.2}$$

With the refence model the MLE is as follows:

$$\hat{\boldsymbol{G}}_{CS} = \begin{pmatrix} 946.50 & 784.32 \\ 784.32 & 946.50 \end{pmatrix} \tag{1.3}$$

```
> anova(MCS1,MCS2)
>

Model df    AIC    BIC logLik    Test L.Ratio p-value
MCS1    1  8 4077.5 4111.3 -2030.7
MCS2    2  7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
```

The test statistic is the difference of the -2 log likelihoods; 0.153. The p-value is 0.696. Therefore we fail to reject the hypothesis that both have the same between-subject variabilities.

1.6 Model Fit 2

Nested Model (Between-Item Variability)

```
> NMB.fit = lme(y ~ meth-1, data = dat, #CS , Symm#
+ random = list(item=pdCompSymm(~ meth-1)),
+ correlation = corSymm(form=~1 | item/repl),
+ method="ML")
```

This is a simple model, this time with an interaction effect. There is a fixed effect for each method. This model has random effects at two levels b_i for the subject, and another, b_{ij} , for the respective method within each subject.

$$y_{ijk} = \beta_j + b_i + b_{ij} + \epsilon_{ijk}, \qquad i = 1, \dots, 2, j = 1, \dots, 85, k = 1, \dots, 3$$
$$b_i \sim \mathcal{N}(0, \sigma_1^2), \qquad b_{ij} \sim \mathcal{N}(0, \sigma_2^2), \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

In this model, the random interaction terms all have the same variance σ_2^2 . These terms are assumed to be independent of each other, even within the same subject.

Linear mixed-effects model fit by REML

Data: dat

Log-restricted-likelihood: -2047.714

Fixed: BP ~ method

(Intercept) methodS

127.40784 15.61961

Random effects:

Formula: ~1 | subject

(Intercept)

StdDev: 28.28452

Formula: ~1 | method %in% subject

(Intercept) Residual

StdDev: 12.61562 7.763666

Number of Observations: 510

Number of Groups:

subject method %in% subject

85 170

1.6.1 Variability test 2

This is a test on whether both methods A and B have the same within-subject variability or not.

$$H_0: \ \sigma_A = \sigma_B \tag{1.4}$$

$$H_A: \ \sigma_A = \sigma_B \tag{1.5}$$

This model is performed in the same manner as the first test, only reversing the roles of \hat{G} and $\hat{\Sigma}$. The null model is constructed a symmetric form for $\hat{\Sigma}$ while the alternative model uses a compound symmetry form. This time \hat{G} has a symmetric form for both models, and will be the same for both.

Bland-Altman's Blood Data

For the null model the MLE of the within-subject variance covariance matrix is given below.

$$\hat{\Sigma}_{Symm} = \begin{pmatrix} 37.40 & 16.06 \\ 16.06 & 83.14 \end{pmatrix} \tag{1.6}$$

With the alternative model the MLE is as follows:

$$\hat{\Sigma}_{CS} = \begin{pmatrix} 60.27 & 16.06 \\ 16.06 & 60.27 \end{pmatrix}$$
 (1.7)

The outcome of this test is that it can be assumed that they have equal The test statistic is the difference of the -2 log likelihoods; 28.617. The p-value is less than 0.0001. In this case we reject the null hypothesis that both models have the same within-subject variabilities.

1.6.2 Model Fit 3

This model is a more general model, compared to 'model fit 2'. This model treats the random interactions for each subject as a vector and allows the variance-covariance matrix for that vector to be estimated from the set of all positive-definite matrices. y_i is the entire response vector for the *i*th subject. X_i and Z_i are the fixed- and random-effects design matrices respectively.

$$y_i = X_i \beta + Z_i b_i + \epsilon_i, \qquad i = 1, \dots, 85$$

$$oldsymbol{Z_i} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Psi}), \qquad oldsymbol{\epsilon_i} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\sigma^2}oldsymbol{\Lambda})$$

1.6.3 Variability Test 3

This is a test on whether both methods A and B have the same overall variability or not.

$$H_0: \ \sigma_A = \sigma_B \tag{1.8}$$

$$H_A: \ \sigma_A = \sigma_B \tag{1.9}$$

The null model is constructed a symmetric form for both \hat{D} and $\hat{\Lambda}$ while the alternative model uses a compound symmetry form for both.

Bland-Altman's Blood Data

With the null model the MLE of the within-subject variance covariance matrix is given below.

$$\hat{\Sigma}_{Symm} = \begin{pmatrix} 961.38 & 801.40 \\ 801.40 & 1054.43 \end{pmatrix}$$
 (1.10)

With the alternative model the MLE is as follows:

$$\hat{\Sigma}_{CS} = \begin{pmatrix} 1007.92 & 801.65 \\ 801.65 & 1007.92 \end{pmatrix}$$
 (1.11)

The test statistic is the difference of the -2 log likelihoods; 28.884. The p-value is less than 0.0001. We again reject the null hypothesis. Each model has a different overall variability, a foregone conclusion from the second variability test.

1.7 Likelihood Ratio Test

The first model acts as an alternative hypothesis to be compared against each of three other models, acting as null hypothesis models, successively. The models are compared using the likelihood ratio test. Likelihood ratio tests are a class of tests based on the comparison of the values of the likelihood functions of two candidate models. LRTs can be used to test hypotheses about covariance parameters or fixed effects parameters in the context of LMEs. The test statistic for the likelihood ratio test is the difference of the log-likelihood functions, multiplied by -2.

The probability distribution of the test statistic is approximated by the χ^2 distribution with $(\nu_1 - \nu_2)$ degrees of freedom, where ν_1 and ν_2 are the degrees of freedom of models 1 and 2 respectively. Each of these three test shall be examined in more detail shortly.

A general method for comparing nested models fit by maximum liklihood is the liklihood ratio test. This test can be used for models fit by REML (restricted maximum liklihood), but only if the fixed terms in the two models are invariant, and both models have been fit by REML. Otherwise, the argument: method=ML must be employed (ML = maximum liklihood).

Example of a liklihood ratio test used to compare two models:

The output will contain a p-value, and this should be used in conjunction with the AIC scores to judge which model is preferred. Lower AIC scores are better.

Generally, liklihood ratio tests should be used to evaluate the significance of terms on the random effects portion of two nested models, and should not be used to determine the significance of the fixed effects.

A simple way to more reliably test for the significance of fixed effects in an LME model is to use conditional F-tests, as implemented with the simple anova function.

1.7.1 LRTs with R

Likelihood ratio tests are very simple to implement in R, simply use the 'anova()' commands. Sample output will be given for each variability test. The likelihood ratio test is the procedure used to compare the fit of two models. For each candidate model, the '-2 log likelihood' (M2LL) is computed. The test statistic for each of the three hypothesis tests is the difference of the M2LL for each pair of models. If the p-value in each of the respective tests exceed as significance level chosen by the analyst, then the null model must be rejected.

$$-??2ln\Lambda_d = [M2LL \text{ under H0 model}] - [M2LL \text{ under HA model}]$$
 (1.12)

These test statistics follow a chi-square distribution with the degrees of freedom computed as the difference of the LRT degrees of freedom.

$$\nu_{=}[LRT \text{ df under H0 model}] - [LRT \text{ df under HA model}]$$
 (1.13)

Model	df	AIC	BIC	logLik	Test	L.Ratio	p-value
MCS1	8	4077.5	4111.3	-2030.7			
MCS2	7	4075.6	4105.3	-2030.8	1 vs 2	0.15291	0.6958

```
#ANOVAs
```

```
test1 = anova(fit1,fit2) # Between-Subject Variabilities
test2 = anova(fit1,fit3) # Within-Subject Variabilities
test3 = anova(fit1,fit4) # Overall Variabilities
```

To perform a likelihood ratio test for two candidate models, simply use the anova() command with the names of the candidate models as arguments. The following piece of code implement the first of Roy's variability tests.

```
> anova(MCS1,MCS2)
Model df     AIC     BIC logLik    Test L.Ratio p-value
MCS1     1  8 4077.5 4111.3 -2030.7
MCS2     2  7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
>
```

The matter of how well two methods of measurement are said to be in agreement is a frequently posed question in statistical literature. A useful, and broadly consistent, set of definitions of what this agreement entail is put forth by Barnhart et al and Roy (2009). As pointed out by earlier contributors to the subject (commonly referred to as Method Comparison Studies)

Shared with previous contributions (Bland and Altman, Carstensen) is the condition that there should no systematic tendency for one of the methods to consistently provide a value higher that than of the other method. If such a tendency did exist, we would refer to it as an inter-method bias.

In earlier literature, the emphasis was placed up on single measurements simultaneously by each of the methods of measurement. Several different approaches, such as the Bland-Altman plot, and Orthogonal Regression (a special case of Deming Regression where the residual variances are assumed to be equal) have been proposed. Arguably, for the single replicate case, the established methodologies are sufficient for assessing agreement between two methods.

In subsequent contributions, the matter of assessing agreement in the presence of replicate measurements was addressed. Some approaches extended already established approaches (Bland-Altam 1999). Other contributions were based on methodologies not seen previously in Method comparison Study Literature (for example, Carstensen et al 2008 and Roy 2009, using LME models).

1.7.2 Worked Eamples: LikelihoodRatio Tests

The likelihood Ratio test is very simple to implement in R. All that is required it to specify the reference model and the relevant nested mode as arguments to the command anova().

The figure below displays the three tests described by Roy (2009).

```
> # Between-Subject Variabilities
> testB = anova(Ref.Fit,NMB.fit)
>
> # Within-Subject Variabilities
> testW = anova(Ref.Fit,NMW.fit)
>
> # Overall Variabilities
> test0 = anova(Ref.Fit,NMO.fit)
```

```
> anova(MCS1,MCS2)
>

Model df AIC BIC logLik Test L.Ratio p-value

MCS1 1 8 4077.5 4111.3 -2030.7

MCS2 2 7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
```

1.7.3 Nested Model (Between-Item Variability)

```
> NMB.fit = lme(y ~ meth-1, data = dat, #CS , Symm#
+ random = list(item=pdCompSymm(~ meth-1)),
+ correlation = corSymm(form=~1 | item/repl),
+ method="ML")
```

• Blood (JSR) data:

• **PEFR Data:** ARoy20092009

• Oximetry data: BXC2004

• Fat data: BXC2004

• Trig Gerber Data: BXC2008

• Nadler Hurley:

• Hamlett:

Chapter 2

Other Data Sets

2.1 IC/RV comparison

For the the RV-IC comparison, \hat{D} is given by

$$\hat{D} = \begin{bmatrix} 1.6323 & 1.1427 \\ 1.1427 & 1.4498 \end{bmatrix}$$
 (2.1)

The estimate for the within-subject variance covariance matrix is given by

$$\hat{\Sigma} = \begin{bmatrix} 0.1072 & 0.0372 \\ 0.0372 & 0.1379 \end{bmatrix}$$
 (2.2)

The estimated overall variance covariance matrix for the the 'RV vs IC' comparison is given by

$$Block\Omega_i = \begin{bmatrix} 1.7396 & 1.1799 \\ 1.1799 & 1.5877 \end{bmatrix}. \tag{2.3}$$

The power of the likelihood ratio test may depends on specific sample size and the specific number of replications, and the author proposes simulation studies to examine this further.

Chapter 3

Fitting MCS Models with R

3.0.1 Criteria for Agreement

Roy (2009) proposes a suite of hypothesis tests for assessing the agreement of two methods of measurement, when replicate measurements are obtained for each item, using a LME approach. (An item would commonly be a patient).

Two methods of measurement can be said to be in agreement if there is no significant difference between in three key respects. Firstly, there is no inter-method bias between the two methods, i.e. there is no persistent tendency for one method to give higher values than the other.

Secondly, both methods of measurement have the same within-subject variability. In such a case the variance of the replicate measurements would consistent for both methods. Lastly, the methods have equal between-subject variability.

For the mean measurements for each case, the variances of the mean measurements from both methods are equal.

? sets out three criteria for two methods to be considered in agreement. Firstly that there be no significant bias. Second that there is no difference in the between-subject variabilities, and lastly that there is no significant difference in the within-subject variabilities. ? further proposes examination of the the overall variability by considering the second and third criteria be examined jointly. Should both the second and third criteria be fulfilled, then the overall variabilities of both methods would be equal.

? describes the sources of disagreement as differing population means, different between-subject

variances, different within-subject variances between two methods and poor correlation between measurements of two methods.

- ? considers two methods to be in agreement if three conditions are met.
- 1. no significant bias, i.e. the difference between the two mean readings is not "statistically significant",
- 2. high overall correlation coefficient,
- 3. the agreement between the two methods by testing their repeatability coefficients.
- ? demonstrates a LME model specification, and a series of tests that look at each of these agreement criteria individually. If two methods of measurement lack agreement, the specific reason or reasons for this lack of agreement can be identified.

3.1 LME models in method comparison studies

3.1.1 Demonstration of Roy's testing

The inter-method bias between the two method is found to be 15.62, with a t-value of -7.64, with a p-value of less than 0.0001. Consequently there is a significant inter-method bias present between methods J and S, and the first of the Roy's three agreement criteria is unfulfilled.

3.2 Roy's Variability Tests

Variability tests proposed by ? affords the opportunity to expand upon Carstensen's approach.

The first test allows of the comparison the begin-subject variability of two methods. Similarly, the second test assesses the within-subject variability of two methods. A third test is a test that compares the overall variability of the two methods.

The tests are implemented by fitting a specific LME model, and three variations thereof, to the data. These three variant models introduce equality constraints that act null hypothesis cases.

Other important aspects of the method comparison study are consequent. The limits of agreement are computed using the results of the first model.

3.2.1 Correlation

Lastly, ? considers the overall correlation coefficient. The diagonal blocks $\hat{r}_{\Omega ii}$ of the correlation matrix indicate an overall coefficient of 0.7959. This is less than the threshold of 0.82 that Roy recommends.

$$\hat{\mathbf{r}}_{\Omega ii} = \begin{pmatrix} 1 & 0.7959 \\ 0.7959 & 1 \end{pmatrix} \tag{3.1}$$

The off-diagonal blocks of the overall correlation matrix $\hat{r}_{\Omega ii'}$ present the correlation coefficients further to ?.

$$\hat{m{r}}_{\Omega ii'} = \left(egin{array}{ccc} 0.9611 & 0.7799 \\ 0.7799 & 0.9212 \end{array}
ight).$$

The overall conclusion of the procedure is that method J and S are not in agreement, specifically due to the within-subject variability, and the inter-method bias. The repeatability coefficients are substantially different, with the coefficient for method S being 49% larger than for method J. Additionally the overall correlation coefficient did not exceed the recommended threshold of 0.82.

3.3 Roy's Candidate Models

```
> Ref.Fit = lme(y ~ meth-1, data = dat, #Symm , Symm#
+    random = list(item=pdSymm(~ meth-1)),
+    weights=varIdent(form=~1|meth),
+    correlation = corSymm(form=~1 | item/repl),
+    method="ML")
```

Roy(2009) presents two nested models that specify the condition of equality as required, with a third nested model for an additional test. There three formulations share the same structure, and can be specified by making slight alterations of the code for the Reference Model.

3.4 Model terms

It is important to note the following characteristics of this model. Let the number of replicate measurements on each item i for both methods be n_i , hence $2 \times n_i$ responses. However, it is assumed that there may be a different number of replicates made for different items. Let the maximum number of replicates be p. An item will have up to 2p measurements, i.e. $\max(n_i) = 2p$.

Later on X_i will be reduced to a 2×1 matrix, to allow estimation of terms. This is due to a shortage of rank. The fixed effects vector can be modified accordingly. Z_i is the $2n_i \times 2$ model matrix for the random effects for measurement methods on item i. b_i is the 2×1 vector of random-effect coefficients on item i, one for each method. ϵ is the $2n_i \times 1$ vector of residuals for measurements on item i. G is the 2×2 covariance matrix for the random effects. R_i is the $2n_i \times 2n_i$ covariance matrix for the residuals on item i. The expected value is given as $E(y_i) = X_i\beta$. (?) The variance of the response vector is given by $Var(y_i) = Z_iGZ'_i + R_i$ (?).

3.4.1 Roy's Reference Model

Conventionally LME models can be tested using Likelihood Ratio Tests, wherein a reference model is compared to a nested model.

? presents two nested models that specify the condition of equality as required, with a third nested model for an additional test. There three formulations share the same structure, and can be specified by making slight alterations of the code for the Reference Model.

3.4.2 Model Fit 1

This is a simple model with no interactions. There is a fixed effect for each method and a random effect for each subject.

$$y_{ijk} = \beta_j + b_i + \epsilon_{ijk}, \qquad i = 1, \dots, 2, j = 1, \dots, 85, k = 1, \dots, 3$$

$$b_i \sim \mathcal{N}(0, \sigma_b^2), \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

```
> Ref.Fit = lme(y ~ meth-1, data = dat, #Symm , Symm#
+    random = list(item=pdSymm(~ meth-1)),
+    weights=varIdent(form=~1|meth),
+    correlation = corSymm(form=~1 | item/repl),
+    method="ML")
```

Linear mixed-effects model fit by REML

Data: dat

Log-restricted-likelihood: -2155.853

Fixed: BP ~ method

(Intercept) methodS

127.40784 15.61961

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 29.39085 12.44454

Number of Observations: 510

Number of Groups: 85

The following output was obtained.

Linear mixed-effects model fit by REML

Data: dat

Log-restricted-likelihood: -2047.714

Fixed: BP ~ method

(Intercept) methodS

127.40784 15.61961

Random effects:

Formula: ~1 | subject

(Intercept)

StdDev: 28.28452

Formula: ~1 | method %in% subject

(Intercept) Residual

StdDev: 12.61562 7.763666

Number of Observations: 510

Number of Groups:

subject method %in% subject

85 170

For the blood pressure data used in ?, all four candidate models are implemented by slight variations of this piece of code, specifying either pdSymm or pdCompSymm in the second line, and either corSymm or corCompSymm in the fourth line.

Using this R implementation for other data sets requires that the data set is structured appropriately (i.e. each case of observation records the index, response, method and replicate). Once formatted properly, implementation is simply a case of re-writing the first line of code, and computing the four candidate models accordingly.

A likelihood ratio test is perform to determine which model is more suitable. To perform this test, simply use the anova command with the names of the candidate models as arguments. The following piece of code implement the first of Roy's variability tests.

```
> anova(MCS1,MCS2)
Model df     AIC     BIC logLik    Test L.Ratio p-value
MCS1     1  8 4077.5 4111.3 -2030.7
MCS2     2  7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
>
```

The fixed effects estimates are the same for all four candidate models. The inter-method bias can be easily determined by inspecting a summary of any model. The summary presents estimates for all of the important parameters, but not the complete variance-covariance matrices (although some simple R functions can be written to overcome this). The variance estimates for the random effects for MCS2 is presented below.

Random effects:

Formula: ~method - 1 | subject Structure: Compound Symmetry StdDev Corr

methodJ 30.765

methodS 30.765 0.829

Residual 6.115

Similarly, for computing the limits of agreement the standard deviation of the differences is not explicitly given. Again, A simple R function can be written to calculate the limits of agreement directly.

3.5 Likelihood Ratio Test

The first model acts as an alternative hypothesis to be compared against each of three other models, acting as null hypothesis models, successively. The models are compared using the likelihood ratio test. Likelihood ratio tests are a class of tests based on the comparison of the values of the likelihood functions of two candidate models.

LRTs can be used to test hypotheses about covariance parameters or fixed effects parameters in the context of LMEs. The test statistic for the likelihood ratio test is the difference of the log-likelihood functions, multiplied by -2.

The probability distribution of the test statistic is approximated by the χ^2 distribution with $(\nu_1 - \nu_2)$ degrees of freedom, where ν_1 and ν_2 are the degrees of freedom of models 1 and 2 respectively. Each of these three test shall be examined in more detail shortly.

A general method for comparing nested models fit by maximum liklihood is the liklihood ratio test. This test can be used for models fit by REML (restricted maximum liklihood), but only if the fixed terms in the two models are invariant, and both models have been fit by REML. Otherwise, the argument: method="ML" must be employed (ML = maximum liklihood).

The output will contain a p-value, and this should be used in conjunction with the AIC scores to judge which model is preferred. Lower AIC scores are better.

Generally, likelihood ratio tests should be used to evaluate the significance of terms on the random effects portion of two nested models, and should not be used to determine the significance of the fixed effects.

A simple way to more reliably test for the significance of fixed effects in an LME model is to use conditional F-tests, as implemented with the simple anova() function.

3.5.1 LRTs with R

Likelihood ratio tests are very simple to implement in R, simply use the 'anova()' commands. Sample output will be given for each variability test. The likelihood ratio test is the procedure used to compare the fit of two models. For each candidate model, the '-2 log likelihood' (M2LL) is computed. The test statistic for each of the three hypothesis tests is the difference of the M2LL for each pair of models. If

the p-value in each of the respective tests exceed as significance level chosen by the analyst, then the null model must be rejected.

$$-2ln\Lambda_d = [M2LL \text{ under H0 model}] - [M2LL \text{ under HA model}]$$
(3.2)

These test statistics follow a chi-square distribution with the degrees of freedom computed as the difference of the LRT degrees of freedom.

$$\nu_{=}[LRT \text{ df under H0 model}] - [LRT \text{ df under HA model}]$$
 (3.3)

Model	df	AIC	BIC	logLik	Test	L.Ratio	p-value
MCS1	8	4077.5	4111.3	-2030.7			
MCS2	7	4075.6	4105.3	-2030.8	1 vs 2	0.15291	0.6958

```
#ANOVAs
```

```
test1 = anova(fit1,fit2) # Between-Subject Variabilities
test2 = anova(fit1,fit3) # Within-Subject Variabilities
test3 = anova(fit1,fit4) # Overall Variabilities
```

To perform a likelihood ratio test for two candidate models, simply use the anova() command with the names of the candidate models as arguments. The following piece of code implement the first of Roy's variability tests.

```
> anova(MCS1,MCS2)
Model df
            AIC
                   BIC logLik
                                 Test L.Ratio p-value
            8 4077.5 4111.3 -2030.7
MCS1
MCS2
            7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
>
```

The matter of how well two methods of measurement are said to be in agreement is a frequently posed question in statistical literature. A useful, and broadly consistent, set of definitions of what this agreement entail is put forth by Barnhart et al and Roy (2009). As pointed out by earlier contributors to the subject (commonly referred to as Method Comparison Studies)

Shared with previous contributions (Bland and Altman, Carstensen) is the condition that there should no systematic tendency for one of the methods to consistently provide a value higher that than of the other method. If such a tendency did exist, we would refer to it as an inter-method bias.

In earlier literature, the emphasis was placed up on single measurements simultaneously by each of the methods of measurement. Several different approaches, such as the Bland-Altman plot, and Orthogonal Regression (a special case of Deming Regression where the residual variances are assumed to be equal) have been proposed. Arguably, for the single replicate case, the established methodologies are sufficient for assessing agreement between two methods.

In subsequent contributions, the matter of assessing agreement in the presence of replicate measurements was addressed. Some approaches extended already established approaches (Bland-Altam 1999). Other contributions were based on methodologies not seen previously in Method comparison Study Literature (for example, Carstensen et al 2008 and Roy 2009, using LME models).

3.5.2 Worked Eamples: Likelihood Ratio Tests

The likelihood Ratio test is very simple to implement in R. All that is required it to specify the reference model and the relevant nested mode as arguments to the command anova().

The figure below displays the three tests described by Roy (2009).

```
> # Between-Subject Variabilities
> testB = anova(Ref.Fit,NMB.fit)
>
> # Within-Subject Variabilities
> testW = anova(Ref.Fit,NMW.fit)
>
```

```
> # Overall Variabilities
> test0 = anova(Ref.Fit,NMO.fit)
```

```
> anova(MCS1,MCS2)
>
Model df    AIC    BIC logLik    Test L.Ratio p-value
MCS1    1  8 4077.5 4111.3 -2030.7
MCS2    2  7 4075.6 4105.3 -2030.8 1 vs 2 0.15291 0.6958
```

3.5.3 Nested Model (Between-Item Variability)

```
NMB.fit <- lme(y ~ meth-1,
data = dat,
random = list(item=pdCompSymm(~ meth-1)),
correlation = corSymm(form=~1 | item/repl),
method="ML")</pre>
```