SEMICONDUCTOR TOSHIBA

TECHNICAL DATA

TOSHIBA PHOTOCOUPLER

TLP250

GaA_ℓAs IRED & PHOTO-IC

(TLP250)

TRANSISTOR INVERTER
INVERTER FOR AIR CONDITIONOR
IGBT GATE DRIVE
POWER MOS FET GATE DRIVE

The Toshiba TLP250 consists of a GaA ℓ As light emitting diode and a integrated photodetector.

This unit is 8-lead DIP package.

TLP250 is suitable for gate driving circuit of IGBT or power MOS FET.

 $\begin{array}{lll} \bullet & \text{Input Threshold Current} & : & I_F = 5\text{mA (Max.)} \\ \bullet & \text{Supply Current (I_{CC})} & : & 11\text{mA (Max.)} \\ \bullet & \text{Supply Voltage (V_{CC})} & : & 10\text{-}35\text{V} \\ \bullet & \text{Output Current (I_O)} & : & \pm 0.5\text{A (Min.)} \\ \bullet & \text{Switching Time (t}_{\text{pLH}}/\text{t}_{\text{pHL}})} & : & 0.5\mu\text{s (Max.)} \\ \bullet & \text{Isolation Voltage} & : & 2500\text{V}_{\text{rms}} \text{ (Min.)} \\ \end{array}$

• UL Recognized : UL1577, File No.E67349

Option (D4) type

VDE Approved: DIN VDE0884/06.92, Certificate No.76823

 $\begin{array}{lll} \text{Maximum Operating Insulation Voltage} & : 630 V_{PK} \\ \text{Highest Permissible Over Voltage} & : 4000 V_{PK} \end{array}$

(Note) When a VDE0884 approved type is needed, please designate the "Option (D4)"

• Creepage Distance : 6.4mm (Min.) Clearance : 6.4mm (Min.)

SCHMATIC

A $0.1\mu\text{F}$ bypass capcitor must be connected between pin 8 and 5 (See more 5).

TRUTH TABLE

		Tr1	Tr2		
Input	ON	ON	OFF		
LED	OFF	OFF	ON		

9.66±0.25 → 7.62±0.25 →

Unit in mm

JEDEC —

TOSHIBA 11-10C4

Weight: 0.54g

EIAJ

PIN CONFIGURATION (TOP VIEW)

1 : N.C. 2 : ANODE 3 : CATHODE

4 : N.C. 5 : GND

6 : V_O (OUTPUT)

7 : V_O 8 : V_{CC}

(0)	The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
_	TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use.
	No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.). please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve life threatening or critical application, including but not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA cannot accept and hereby disclaims liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

TLP250 – 1	
1996 – 4 – 8	
	TLP250 – 1 1996 – 4 – 8

SEMICONDUCTOR **TOSHIBA**

TECHNICAL DATA

TLP250

(TLP250)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

	CHARACTERISTIC		SYMBOL	RATING	UNIT
	Forward Current	$I_{\mathbf{F}}$	20	mA	
lα	Forward Current Derating (Ta≥70°C)	ΔI _F /ΔTa	-0.36	mA/°C	
LE	Peak Transient Forward Curent	I_{FPT}	1	A	
	Reverse Voltage		v_{R}	5	V
	Junction Temperature		(T _j)	125	°C
	"H" Peak Output Current ($P_W \le 2.5 \mu s$, $f \le 15$	kHZ)(Note 2)	IOPH	-1.5	A
	"L" Peak Output Current (PW \leq 2.5 μ s, f \leq 15	kHZ)(Note 2)	I_{OPL}	+1.5	A
TOR	Output Voltage	(Ta≦70°C)	Vo	35	v
CT(Output Voltage	(Ta=85°C)	v_{O}	24	V
TE(C	(Ta≦70°C)	77.00	35	v
DET	Supply Voltage	(Ta=85°C)	v_{CC}	24	v
	Output Voltage Derating (Ta≥70°C)		ΔV _O /ΔTa	-0.73	V/°C
	Supply Voltage Derating (Ta≥70°C)		ΔV _{CC} /ΔTa	-0.73	V/°C
	Junction Temperature		(T_j)	125	°C
Ope	rating Frequency	f	25	kHz	
Ope	rating Temperature Range	$T_{ m opr}$	-20~70	°C	
Stor	age Temperature Range	$\mathrm{T_{stg}}$	-55~125	°C	
Lead	Solder Temperature (10s)	$T_{ m sol}$	260	°C	
Isola	tion Voltage (AC, 1min., R.H.≦60%, Ta=25°	$BV_{\mathbf{S}}$	2500	Vrms	

Note 1 : Pulse width $P_W \leq 1 \mu s$, 300pps

Note 2: Exporenential Wavefom

Note 3 : Exporenential Wavefom, $I_{OPH} \le -1.0A (\le 2.5 \mu s)$, $I_{OPL} \le +1.0A (\le 2.5 \mu s)$

Note 4: Device considerd a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6,

7 and 8 shorted together.

Note 5: A ceramic capacitor $(0.1\mu F)$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching proparty. The total lead length between capacitor and coupler should not exceed 1cm.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.		UNIT
Input Current, ON	I _F (ON)	7	8	10		mA
Input Voltage, OFF	V _{F (OFF)}	0	_	0.8		V
Supply Voltage	V _{CC} 15 — 30		30	20	V	
Peak Output Current	I _{OPH} / I _{OPL}	_	_	±0	.5	A
Operating Temperature	$T_{ m opr}$	-20	25	70	85	°C

TLP250 – 2
1996 – 4 – 8
TOSHIBA CORPORATION

SEMICONDUCTOR TOSHIBA TECHNICAL DATA

TLP250

(TI P250

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim 70^{\circ}C$, Unless otherwise specified)

		1		i diness outletwise specifical		1		
CHARACTE	RISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.*	MAX.	UNIT
Input Forward V	oltage	$V_{\mathbf{F}}$	_	$I_F = 10 \text{mA}, Ta = 25 ^{\circ}\text{C}$		1.6	1.8	V
Temperature Coe Forward Voltage		ΔV _F /ΔTa	_	$I_{ m F}\!=\!10{ m mA}$	_	-2.0	_	mV/°C
Input Reverse Cu	arrent	$I_{\mathbf{R}}$	_	$V_R=5V$, $T_a=25$ °C		_	10	μ A
Input Capacitano	e	C_{T}	_	V=0, f=1MHz, Ta=25°C	T —	45	250	рF
Output Current	"H" Level	I _{OPH}	3	$V_{CC} = 30V$ $V_{B-6} = 4V$	-0.5	-1.5	_	A
Output Current	"L" Level	I _{OPL}	2	$ \begin{array}{c} \text{(*1)} & \text{I}_{\text{F}} \! = \! 0 \\ \text{V}_{6-5} \! = \! 2.5 \text{V} \end{array} $	0.5	2	_	A
Output Voltage	"H" Level	v _{OH}	4	$egin{array}{l} { m V_{CC1}} = +15 { m V}, \ { m V_{EE1}} = -15 { m V} \ { m R_L} = 200 \Omega, \ { m I_F} = 5 { m mA} \end{array}$	11	12.8	_	v
Output Voltage	"L" Level	v_{OL}	5	$egin{array}{l} { m V_{CC1}} = +15{ m V}, \ { m V_{EE1}} = -15{ m V} \ { m R_L} = 200\Omega, \ { m V_F} = 0.8{ m V} \end{array}$		-14.2	-12.5	v
	"H" Level	ICCH	_	$V_{ m CC}$ =30V, I _F =10mA Ta=25°C	_	7	_	
Supply Current				V_{CC} =30V, I_F =10mA	_	_	11	mA
Supply Current	"L" Level	I _{CCL}	_	$ m V_{CC} = 30V, \ I_F = 0mA \ Ta = 25 ^{\circ}C$	_	7.5	_	
				V_{CC} =30V, I_F =0mA	_	_	11	
Threshold Input Current	"Output L→H"	I _{FLH}	_	$egin{array}{l} { m V_{CC1}} = +15 { m V}, \ { m V_{EE1}} = -15 { m V} \\ { m R_L} = 200 \Omega, \ { m V_O} { m >} 0 { m V} \end{array}$	_	1.2	5	mA
Threshold Input Voltage	"Output H→L"	$v_{ m FHL}$		$V_{CC1} = +15V, V_{EE1} = -15V$ $R_{L} = 200\Omega, V_{O} < 0V$	0.8	_	_	V
Supply Voltage		v_{CC}	_		10	_	35	V
Capacitance (Input-Output)		CS	_	V_S =0, f=1MHz Ta=25°C	_	1.0	2.0	pF
Resistance (Input	-Output)	RS	_	V _S =500V, Ta=25°C R.H.≤60%	5×10 ¹⁰	1014	_	Ω

^{*} All typical values are at $Ta=25^{\circ}C$

TLP250 - 3 1996 - 4 - 8 TOSHIBA CORPORATION

^{(*1) :} Duration of I_O time $\leq 50 \mu s$

SEMICONDUCTOR **TOSHIBA**

TECHNICAL DATA

TLP250

(TLP250

SWITCHING CHARACTERISTICS ($Ta = -20 \sim 70^{\circ}$ C, Unless otherwise specified)

CHARACTER	ISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.*	MAX.	UNIT
Propagation	$L{\to}H$	${ m t_{pLH}}$		$I_{\mathbf{F}} = 8 \mathbf{m} \mathbf{A}$	1	0.15	0.5	
Delay Time	$H{\rightarrow}L$	${ m t_{pHL}}$		$V_{CC1} = +15V, V_{EE1} = -15V$		0.15	0.5	
Output Rise Time		t_r			ı		_	μ s
Output Fall Time		tf		$ m R_L = 200\Omega$	I		-	
Common Mode Tr Immunity at High Output		C _{MH}	7	$V_{ m CM} = 600 m V, \ I_{ m F} = 8 m mA \ V_{ m CC} = 30 m V, \ Ta = 25 m ^{\circ} C$	-5000	_	_	V/μs
Common Mode Tr Immunity at Low Output		C _{ML}	7	$V_{ m CM} = 600 m V, \ I_{ m F} = 0 m mA$ $V_{ m CC} = 30 m V, \ Ta = 25 m ^{\circ} C$	5000	_	_	V/μs

^{*} All typical values are at $Ta = 25^{\circ}C$

TLP250 – 4 1996 – 4 – 8

TOSHIBA CORPORATION

TECHNICAL DATA

(TLP250)

TEST CIRCUIT 1:

TEST CIRCUIT 2: IOPL

TEST CIRCUIT 3: IOPH

TEST CIRCUIT 4: VOH

TEST CIRCUIT 5 : VOL

TLP250 – 5	_
1996 – 4 – 8	
TOSHIBA CORPORATION	

TOSHIBA

TECHNICAL DATA

(TLP250)

TEST CIRCUIT 6 : t_{pLH} , t_{pHL} , t_{r} , t_{f}

TEST CIRCUIT 7 : CMH, CML

$$\begin{aligned} \mathrm{C_{ML}} &= \frac{480\,\mathrm{(V)}}{\mathrm{t_r}\,(\mu\mathrm{s})} \\ \mathrm{C_{MH}} &= \frac{480(\mathrm{V})}{\mathrm{t_f}\,(\mu\mathrm{s})} \end{aligned}$$

 $C_{ML}\left(C_{MH}\right)$ is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

TLP250 – 6
1996 – 4 – 8
TOSHIBA CORPORATION

SEMICONDUCTOR **TOSHIBA**

TECHNICAL DATA

TLP250

(TLP250)

TLP250 – 7*
1996 – 4 – 8
TOSHIBA CORPORATION