Fermion spin

Fermion spin state $|s\rangle$ is a normalized vector in \mathbb{C}^2 .

$$|s\rangle = \begin{pmatrix} c_+ \\ c_- \end{pmatrix}, \quad |c_+|^2 + |c_-|^2 = 1$$

Spin measurement probabilities are the transition probabilities from $|s\rangle$ to an eigenstate. For the z direction we have

$$\Pr\left(S_z = +\frac{\hbar}{2}\right) = |\langle z_+ | s \rangle|^2$$

$$\Pr\left(S_z = -\frac{\hbar}{2}\right) = |\langle z_- | s \rangle|^2$$

Define the z eigenstates as

$$|z_{+}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |z_{-}\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

By definition of expectation value we have

$$\langle S_z \rangle = \frac{\hbar}{2} \Pr \left(S_z = + \frac{\hbar}{2} \right) - \frac{\hbar}{2} \Pr \left(S_z = -\frac{\hbar}{2} \right)$$

Rewrite as

$$\langle S_z \rangle = \frac{\hbar}{2} |\langle z_+ | s \rangle|^2 - \frac{\hbar}{2} |\langle z_- | s \rangle|^2$$

Rewrite again as

$$\langle S_z \rangle = \frac{\hbar}{2} \langle s | z_+ \rangle \langle z_+ | s \rangle - \frac{\hbar}{2} \langle s | z_- \rangle \langle z_- | s \rangle$$

Then by

$$\langle S_z \rangle = \langle s | S_z | s \rangle$$

we have

$$S_z = \frac{\hbar}{2} |z_+\rangle \langle z_+| - \frac{\hbar}{2} |z_-\rangle \langle z_-| = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

From spin commutation relations we obtain the eigenstates

$$|x_{+}\rangle = \frac{|z_{+}\rangle + |z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
$$|x_{-}\rangle = \frac{|z_{+}\rangle - |z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

and

$$|y_{+}\rangle = \frac{|z_{+}\rangle + i|z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix}$$
$$|y_{-}\rangle = \frac{|z_{+}\rangle - i|z_{-}\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix}$$

By analogy with the derivation of S_z we have

$$S_x = \frac{\hbar}{2} |x_+\rangle \langle x_+| - \frac{\hbar}{2} |x_-\rangle \langle x_-| = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

and

$$S_y = \frac{\hbar}{2} |y_+\rangle \langle y_+| - \frac{\hbar}{2} |y_-\rangle \langle y_-| = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

1. Verify that

$$S_x = \frac{\hbar}{2}(|x_+\rangle\langle x_+| - |x_-\rangle\langle x_-|)$$

$$S_y = \frac{\hbar}{2}(|y_+\rangle\langle y_+| - |y_-\rangle\langle y_-|)$$

$$S_z = \frac{\hbar}{2}(|z_+\rangle\langle z_+| - |z_-\rangle\langle z_-|)$$

```
xp = sqrt(1/2) (1,1)
xm = sqrt(1/2) (1,-1)

yp = sqrt(1/2) (1,i)
ym = sqrt(1/2) (1,-i)

zp = (1,0)
zm = (0,1)

Sx = hbar / 2 ((0,1),(1,0))
Sy = hbar / 2 ((0,-i),(i,0))
Sz = hbar / 2 ((1,0),(0,-1))

check(Sx == hbar / 2 (outer(xp,conj(xp)) - outer(xm,conj(xm))))
check(Sy == hbar / 2 (outer(yp,conj(yp)) - outer(ym,conj(ym))))
check(Sz == hbar / 2 (outer(zp,conj(zp)) - outer(zm,conj(zm))))
```

2. Let $|s\rangle$ be the following spin state.

$$|s\rangle = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i \\ \frac{2}{3} \end{pmatrix}$$

Verify that $|s\rangle$ is normalized and that

$$\langle \mathbf{S} \rangle = \langle s | \mathbf{S} | s \rangle = \frac{\hbar}{2} \begin{pmatrix} \frac{4}{9} \\ \frac{8}{9} \\ \frac{1}{9} \end{pmatrix}$$

Note: In component form we have

$$\langle s|\mathbf{S}|s\rangle = s_{\beta}^* S^{\alpha\beta}{}_{\gamma} s^{\gamma}$$

Eigenmath requires a transpose so that the β indices are adjacent.

$$\langle s|\mathbf{S}|s\rangle = s_{\beta}^* S^{\beta\alpha}{}_{\gamma} s^{\gamma}$$

```
s = (1/3 - 2/3 i, 2/3)
check(dot(conj(s),s) == 1)

Sx = hbar / 2 ((0,1),(1,0))
Sy = hbar / 2 ((0,-i),(i,0))
Sz = hbar / 2 ((1,0),(0,-1))

S = (Sx,Sy,Sz)
check(dot(conj(s),transpose(S),s) == hbar / 2 (4/9, 8/9, 1/9))
```

3. Let $|s\rangle$ be the following spin state.

$$|s\rangle = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i\\ \frac{2}{3} \end{pmatrix}$$

Verify that the probabilities for measuring $\pm \hbar/2$ are

$$\Pr\left(S_{x} = +\frac{\hbar}{2}\right) = |\langle x_{+}|s\rangle|^{2} = \frac{13}{18}$$

$$\Pr\left(S_{x} = -\frac{\hbar}{2}\right) = |\langle x_{-}|s\rangle|^{2} = \frac{5}{18}$$

$$\Pr\left(S_{y} = +\frac{\hbar}{2}\right) = |\langle y_{+}|s \rangle|^{2} = \frac{17}{18}$$

$$\Pr\left(S_{y} = -\frac{\hbar}{2}\right) = |\langle y_{-}|s \rangle|^{2} = \frac{1}{18}$$

$$\Pr\left(S_z = +\frac{\hbar}{2}\right) = |\langle z_+ | s \rangle|^2 = \frac{5}{9}$$

$$\Pr\left(S_z = -\frac{\hbar}{2}\right) = |\langle z_- | s \rangle|^2 = \frac{4}{9}$$

$$s = (1/3 - 2/3 i, 2/3)$$

$$xp = sqrt(1/2) (1,1)$$

$$xm = sqrt(1/2) (1,-1)$$

$$yp = sqrt(1/2) (1,i)$$

$$ym = sqrt(1/2) (1,-i)$$

$$zp = (1,0)$$

$$zm = (0,1)$$

$$check(Pr(xp,s) == 13/18)$$

$$check(Pr(xm,s) == 5/18)$$

$$check(Pr(yp,s) == 17/18)$$

$$check(Pr(ym,s) == 1/18)$$

$$check(Pr(zp,s) == 5/9)$$

$$check(Pr(zm,s) == 4/9)$$

4. Let $|s\rangle$ be the following spin state.

$$|s\rangle = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i \\ \frac{2}{3} \end{pmatrix}$$

Verify that the following spin state $|\chi\rangle$ is indistinguishable from $|s\rangle$.

$$|\chi\rangle = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \exp(i\phi) \end{pmatrix}$$

where

$$\cos(\theta/2) = \sqrt{\frac{\langle z \rangle + 1}{2}} = \frac{\sqrt{5}}{3}$$

and

$$\sin(\theta/2)\exp(i\phi) = \frac{\langle x \rangle + i\langle y \rangle}{\sqrt{\langle x \rangle^2 + \langle y \rangle^2}} = \frac{2+4i}{3\sqrt{5}}$$

with

$$\langle x \rangle = \frac{2}{\hbar} \langle S_x \rangle$$
$$\langle y \rangle = \frac{2}{\hbar} \langle S_y \rangle$$
$$\langle z \rangle = \frac{2}{\hbar} \langle S_z \rangle$$

```
s = (1/3 - 2/3 i, 2/3)

Sx = hbar / 2 ((0,1),(1,0))
Sy = hbar / 2 ((0,-i),(i,0))
Sz = hbar / 2 ((1,0),(0,-1))

S = (Sx,Sy,Sz)

x = 2 / hbar dot(conj(s),Sx,s)
y = 2 / hbar dot(conj(s),Sy,s)
z = 2 / hbar dot(conj(s),Sz,s)

cp = sqrt((z + 1) / 2)
cm = sqrt((1 - z) / 2) (x + i y) / sqrt(x^2 + y^2)

chi = (cp,cm)
```

check(dot(conj(s),transpose(S),s) == dot(conj(chi),transpose(S),chi))

```
5. Verify the following spin commutation relations using \mathbf{S}\psi=(\mathbf{r}\times\mathbf{p})\psi. [S_x,S_y]=i\hbar S_z \\ [S_y,S_z]=i\hbar S_x \\ [S_z,S_x]=i\hbar S_y \\ [S^2,S_x]=0 \\ [S^2,S_y]=0 \\ [S^2,S_z]=0 \\ [S^2,S_z]=0 \\ [S^2,S_z]=0
```

```
Sx(psi) = -i hbar (y d(psi,z) - z d(psi,y))
Sy(psi) = -i hbar (z d(psi,x) - x d(psi,z))
Sz(psi) = -i hbar (x d(psi,y) - y d(psi,x))

psi = Psi()

check(Sx(Sy(psi)) - Sy(Sx(psi)) == i hbar Sz(psi))
check(Sy(Sz(psi)) - Sz(Sy(psi)) == i hbar Sx(psi))
check(Sz(Sx(psi)) - Sx(Sz(psi)) == i hbar Sy(psi))

S2(psi) = Sx(Sx(psi)) + Sy(Sy(psi)) + Sz(Sz(psi))

check(S2(Sx(psi)) - Sx(S2(psi)) == 0)
check(S2(Sy(psi)) - Sy(S2(psi)) == 0)
check(S2(Sz(psi)) - Sz(S2(psi)) == 0)

Sp(psi) = Sx(psi) + i Sy(psi)
Sm(psi) = Sx(psi) - i Sy(psi)

check(Sp(Sm(psi)) - Sm(Sp(psi)) == 2 hbar Sz(psi))
```