Departamento de Engenharia Elétrica - EESC-USP

SEL-0339 Introdução à Visão Computacional

Aula 6 Reconhecimento de Objetos

Prof. Dr. Marcelo Andrade da Costa Vieira Prof. Dr. Adilson Gonzaga

mvieira@sc.usp.br

Visão Computacional

Elementos de Visão Computacional:

Visão Computacional Processamento de Baixo Nível Processamento de Nível Intermediário Processamento de Imagens

Processamento de Alto Nível

Elementos de Visão Computacional:

As linhas tracejadas mostram que a divisão não é rígida:

Ex: Limiarização - pode ser usada tanto para melhoramento da Imagem (pré-processamento) como para segmentação.

Padrões:

- ☐ Um Padrão é uma descrição quantitativa ou estrutural de um objeto ou de uma região de interesse em uma imagem.
- ☐ Um Padrão é formado por uma ou mais características, também chamados de descritores.
- □ O ato de gerar os descritores que caracterizam um objeto ou partes de uma imagem é chamado de Extração de Características.
- \square Uma Classe de Padrões é uma família de padrões que compartilham algumas propriedades comuns e são denotadas como w_1 , w_2 , w_3 , w_M onde M é o número de classes.

Arranjos de Padrões:

 Vetores - descrições quantitativas (área, largura, textura, etc..)

Vetores de Características:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 x_i é o i-ésimo descritor
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 x_i o número de descritores ou características

Exemplo_1:

Descrever três tipos de flores: (Iris setosa, virginica e versicolor)

3 classes W₁,W₂,W₃

Características a serem utilizadas: (largura e comprimento de suas pétalas) 2 descritores x₁ e x₂

☐ Uma vez que um conjunto de medidas tenha sido selecionado, um vetor de características torna-se representação completa de cada amostra física.

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Cada flor do conjunto de amostras de flores, é um ponto no espaço euclidiano bi-dimensional.

Seleção das Características:

- ☐ No exemplo anterior, as características "comprimento e largura" das pétalas permitiram separar bem apenas a classe das "Iris Setosa".
- ☐ A Seleção das Características que gerarão o Vetor de Características, possui uma influência profunda no desempenho de um sistema de Visão Computacional.

Exemplo_2:

Escolher as características para o Vetor de Características, visando classificar diversas formas ruidosas quase-circulares. (Peças com desgastes ou defeitos)

Uma solução seria utilizar a descrição por Assinatura:

A cada intervalo θ dado por $\theta_1, \theta_2, \dots \theta_n$

Gerar os Vetores de Características:

$$x_1 = r(\theta_1)$$
$$x_1 = r(\theta_1)$$

 $x_2 = r(\theta_2)$

$$x_n = r(\theta_n)$$

- ☐ Outra solução seria calcular os Momentos de cada peça e gerar o Vetor de Características com os *m* primeiros momentos.
- ☐ As Características a serem selecionadas podem gerar o Vetor de Características através de diversas técnicas como por exemplo:
 - Momentos
 - Número do Formato
 - Descritores Topológicos
 - outros....
- ☐ Geralmente a utilização de características geradas por diferentes metodologias, tornam o Reconhecimento facilitado.

Métodos de Decisão:

Funções de Decisão ou Funções Discriminantes.

Seja $x=(x_1,x_2,....x_n)^T$ um Vetor de Características n-dimensional e $w_1,w_2,....w_M$ M Classes de Padrões.

O Reconhecimento de Padrões consiste em encontrar as M funções de decisão $d_1(x)$, $d_2(x)$, $d_M(x)$ tal que:

• Se o padrão x pertencer à classe w_i, então:

$$d_i(x) > d_j(x)$$
 $j = 1, 2, ..., M; j \neq i$

Ou seja:

$$x \in W_i$$
 se $d_i(x)$ é o maior valor

Fronteira de Decisão:

A Fronteira que separa duas classes w_i e w_j é dada pelos valores de x para os quais $d_i(x) = d_i(x)$, ou seja:

$$d_i(x) - d_j(x) = 0$$

Pode-se identificar a Fronteira de Decisão entre duas classes através da função:

$$d_{ij} = d_i(x) - d_j(x) = 0$$

Ou seja, se $d_{ij}(x) > 0$ o padrão pertence à classe w_i e se $d_{ij}(x) < 0$ o padrão pertence à classe w_j

Classificador de Distância Mínima:

☐ Uma Classe de Padrões pode ser representada por um vetor protótipo (ou médio).

$$m_j = \frac{1}{N_j} \sum_{x \in w_j} x$$
 $j = 1, 2, ..., M$

☐ Uma maneira de definir a pertinência de um Vetor de Características (x) desconhecido, é atribuí-lo à classe de seu protótipo mais próximo.

Distância euclidiana:
$$D_j(x) = ||x-m_j||$$
 $j = 1,2,...M$

Onde: $||a|| = (a^T a)^{1/2}$ é a norma euclidiana.

 $x \in W_i$ se $D_i(x)$ for a menor distância

Classificador de Distância Mínima:

Isso equivale a avaliar as funções:

$$d_j(x) = x^T m_j - \frac{1}{2} m_j^T m_j$$
 $j = 1, 2, ..., M$

e atribuir x à classe w_i se $d_i(x)$ for o maior valor.

☐ A Fronteira de Decisão entre as classes w_i e w_j para o Classificador de Distância Mínima é:

$$d_{ij} = d_i(x) - d_j(x) = x^T (m_i - m_j) - \frac{1}{2} (m_i - m_j)^T (m_i - m_j) = 0$$

$$n = 2 ---- \text{ uma reta}$$

$$n = 3 ---- \text{ um plano}$$

$$n > 3 ---- \text{ hiperplano}$$

Exemplo:

Vetor desconhecido a ser classificado

$$m_1 = (4.3 , 1.3)^T$$

 $m_2 = (1.5 , 0.3)^T$

Fronteira de Decisão:

$$d_j(x) = x^T m_j - \frac{1}{2} m_j^T m_j$$
 $j = 1, 2, ..., M$

$$d_1(x) = x^T m_1 - \frac{1}{2} m_1^T m_1$$

$$(x_1 \quad x_2) \begin{pmatrix} 4.3 \\ 1.3 \end{pmatrix} - \frac{1}{2} (4.3 \quad 1.3) \begin{pmatrix} 4.3 \\ 1.3 \end{pmatrix} =$$

$$4.3x_1 + 1.3x_2 - \frac{1}{2}(4.3 \times 4.3 + 1.3 \times 1.3) =$$

$$4.3x_1 + 1.3x_2 - 10.09$$

$$d_2(x) = x^T m_2 - \frac{1}{2} m_2^T m_2$$

$$d_2(x) = 1.5x_1 + 0.3x_2 - 1.17$$

Equação da Fronteira:

$$d_{12}(x) = d_1(x) - d_2(x) =$$

$$2.8x_1 + 1.0x_2 - 8.9 = 0$$

Qualquer padrão desconhecido x pode ser classificado observando-se o sinal de d₁₂

$$d_{12}(x) < 0$$
 --- Classe w_2

$$d_{12}(x) > 0$$
 --- Classe w_1

Classificador Bayesiano:

Um problema envolvendo duas classes de padrões governadas por densidades gaussianas, com médias m_1 e m_2 e desvios padrão σ_1 e σ_2 respectivamente, pode ser resolvido usando-se as funções de decisão na forma:

$$d_{j}(x) = p(x/w_{j})P(w_{j}) =$$

$$\frac{1}{\sqrt{2\pi\sigma_{j}}} \exp\left[-\frac{(x-m_{j})^{2}}{2\sigma_{j}^{2}}\right]P(w_{j}) \quad j = 1,2$$

Outros Classificadores:

- ☐ Classificadores por Redes Neurais Artificiais
- ☐ Classificadores por Lógica Nebulosa ("Fuzzy Sets")
- ☐ Existem muitos outros classificadores:

Cluster Analysis: (Análise de agrupamentos)

- É um método de Estatística Multivariada que identifica grupos em um grande número de objetos, baseado em suas características.
- •Similarmente à Análise Discriminante, cada objeto tem múltiplas características que podem ser expressas como um vetor **X** = (**x1**, **x2**,**xp**) com valores que variam de objeto para objeto.
- •O Objetivo principal da Análise de Agrupamentos é identificar objetos similares baseada em suas características.

Cluster Analysis: (Análise de agrupamentos)

 "Cluster analysis" agrupa objetos similares em grupos tal que os objetos dentro de um grupo são similares e objetos entre os diferentes grupos são significativamente diferentes em suas

características.

• Diferentemente da Análise Discriminante onde o número de grupos e seus nomes são conhecidos previamente, na Análise de Agrupamentos o número de grupos e suas características são desconhecidas antes da análise.

Exemplo: Analisar o Agrupamento de cereais da Tabela de acordo com suas características nutricionais.

Brand	Calories (Cal/oz)	Protein (g)	Fat (g)	Na (mg)	Fiber (g)	Carbs (g)	Sugar (g)	K (mg)
Cheerios	110	6	2	290	2.0	17.0	1	105
Cocoa Puffs	110	1	1	180	0.0	12.0	13	55
Honey Nut Cheerios	110	3	1	250	1.5	11.5	10	90
Kix	110	2	1	260	0.0	21.0	3	40
Lucky Charms	110	2	1	180	0.0	12.0	12	55
Oatmeal Raisin Crisp	130	3	2	170	1.5	13.5	10	120
Raisin Nut Bran	100	3	2	140	2.5	10.5	8	140
Total Corn Flakes	110	2	1	200	0.0	21.0	3	35
Total Raisin Bran	140	3	1	190	4.0	15.0	14	230
Trix	110	1	1	140	0.0	13.0	12	25
Wheaties Honey Gold	110	2	1	200	1.0	16.0	8	60
All-Bran	70	4	1	260	9.0	7.0	5	320
Apple Jacks	110	2	0	125	1.0	11.0	14	30
Corn Flakes	100	2	0	290	1.0	21.0	2	35
Corn Pops	110	1	0	90	1.0	13.0	12	20
Mueslix Crispy Blend	160	3	2	150	3.0	17.0	13	160
Nut & Honey Crun	ch 120	2	1	190	0.0	15.0	9	40
Nutri Grain Almond Raisin	140	3	2	220	3.0	21.0	7	130
Nutri Grain Wheat	90	3	0	170	3.0	18.0	2	90
Product 19	100	3	0	320	1.0	20.0	3	45
Raisin Bran	120	3	1	210	5.0	14.0	12	240
Rice Krispies	110	2	0	290	0.0	22.0	3	35
Special K	110	6	0	230	1.0	16.0	3	55
Life	100	4	2	150	2.0	12.0	6	95
Puffed Rice	50	1	0	0	0.0	13.0	0	15

O número de variáveis e quais serão selecionadas, afetarão o resultado final.

Conjunto de Dados típicos em Cluster Analysis:

Objects	Variables						
	1	2		p			
1	x_{11}	x_{12}	***	x_{1p}			
2 :	x_{21}	x ₂₂		x_{1p} x_{2p} \vdots			
N	x_{N1}	x_{N2}		x_{Np}			

Passo 1: Selecionar as Variáveis de Agrupamento e a Medida de Distância.

Passo 2: Selecionar o algoritmo de Agrupamento (Hierárquico ou não-hierárquico)

Passo 3: Realizar a Análise de Agrupamento.

Passo 4: Interpretar os Agrupamentos.

Medidas de Similaridade : Distâncias

Distância Euclidiana (DE):

$$d_{ik} = \sqrt{\sum_{j=1}^{p} (x_{ij} - x_{kj})^2}$$

		7	Variables	
Objects	1	2		p
1	x_{11}	x_{12}		x_{1p}
2	x_{21}	x ₂₂		x_{1p} x_{2p} \vdots
$\stackrel{:}{N}$	x_{N1}	x_{N2}		x_{Np}

 $d_{ik} \rightarrow$ DE entre o objeto *i* e o objeto *k* (Vetor *i* e Vetor *k*)

• A escala numérica das variáveis pode variar significativamente.

No Exemplo:

Brand	Calories (Cal/oz)	Protein (g)	Fat (g)	Na (mg)	Fiber (g)	Carbs (g)	Sugar (g)	K (mg)
Cheerios	110	6	2	290	2.0	17.0	1	(105)
Cocoa Puffs	110	1	1	180	0.0	12.0	13	55
Honey Nut Cheerios	110	3	1	250	1.5	11.5	10	90

Distância Euclidiana Normalizada: (Distância de Pearson)

- Se não se deseja que dados com maiores valores dominem o resultado, deve-se normalizar a escala.
- Cada dado x_{ij} deve ser normalizado para z_{ij} : $z_{ij} = \frac{x_{ij} x_{j}}{s_{j}}$

Onde:
$$\overline{x}_{,j} = \frac{\sum_{k=1}^{N} x_{kj}}{N}$$
 É a Média de cada característica

$$s_j = \sqrt{\frac{\sum_{k=1}^{N} (x_{kj} - \overline{x}_{,j})^2}{N-1}}$$
 É o Desvio Padrão das características

Logo, a Distância Euclidiana Normalizada (Distância de Pearson) entre cada Vetor (*i* e *k*) será:

$$d_{ik} = \sqrt{\sum_{j=1}^{p} (z_{ij} - z_{kj})^2}$$

Matriz de Distâncias:

As Distâncias entre cada objeto, ou melhor, entre todos os Vetores de toda a população de Vetores de Características, podem ser colocadas em uma Matriz de Distância para a análise.

$$\mathbf{D} = \begin{bmatrix} 0 & d_{12} & d_{13} & \cdots & d_{1N} \\ d_{21} & 0 & d_{23} & \cdots & d_{2N} \\ d_{31} & d_{32} & 0 & \cdots & d_{3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ d_{N1} & d_{N2} & d_{N3} & \cdots & 0 \end{bmatrix}$$

Distância Manhattan ou Distância City Block:

$$d_{ik} = \sum_{j=1}^{p} |x_{ij} - x_{kj}|$$

Distância Manhattan ou Distância City Block Normalizada:

$$d_{ik} = \sum_{i=1}^{p} |z_{ij} - z_{kj}|$$

Diferença entre a Distância Manhattan e a Distância Euclidiana:

Diferença entre Agrupamentos e Método de Ligação:

• Em "Cluster Analysis" é desejável que as distâncias entre os Vetores(objetos) dentro de um "cluster" (grupo) sejam pequenas e que as distâncias entre diferentes "clusters" sejam grandos

grandes.

- A Distância entre os grupos depende da relação definida entre eles.
- Esta relação é chamada de Método de Ligação ("Linkage Method")

Método de Ligação Simples.

$$d_{(R)(S)} = \min\{d_{rs} | r \in R, s \in S\}$$

 A distância entre dois grupos ("clusters") é definida como a Distância entre os Vizinhos mais Próximos.

Exemplo:

Cluster 1 (Objetos 1,2,3)

Cluster 2 (Objetos 4,5,6)

 A Distância entre os dois grupos (1 e 2) será:

$$\begin{split} d_{(1)(2)} &= \min\{d_{14}, d_{15}, d_{16}, d_{24}, d_{25}, d_{26}, d_{34}, d_{35}, d_{36}\} \\ &= \min\{10, 8, 6, 6, 9, 5, 13, 11, 8\} = 5 = d_{26} \end{split}$$

Método de Ligação Completa:

$$d_{(R)(S)} = \max\{d_{rs} | r \in R, s \in S\}$$

 A distância entre dois grupos ("clusters") é definida como a Distância entre os Vizinhos mais Distantes.

Exemplo:

Cluster 1 (Objetos 1,2,3)

Cluster 2 (Objetos 4,5,6)

 A Distância entre os dois grupos (1 e 2) será:

$$\begin{split} d_{(1)(2)} &= \max\{d_{14}, d_{15}, d_{16}, d_{24}, d_{25}, d_{26}, d_{34}, d_{35}, d_{36}\} \\ &= \max\{10, 8, 6, 6, 9, 5, 13, 11, 8\} = 13 = d_{34} \end{split}$$

Método de Ligação Média:

$$d_{(R)(S)} = \frac{\sum_{r} \sum_{s} d_{rs}}{n_R n_S}$$

 A distância entre dois grupos ("clusters") é definida como a A Média de todas as distâncias entre os dois grupos.

Exemplo:

$$\mathbf{D} = \begin{bmatrix} 1 & . & . & . & 10 & 8 & 6 \\ 2 & . & . & . & 6 & 9 & 5 \\ 3 & . & . & 0 & 13 & 11 & 8 \\ 4 & . & . & . & 0 & . & . \\ 5 & . & . & . & . & 0 & . \\ 6 & . & . & . & . & . & . \end{bmatrix}$$

Cluster 1 (Objetos 1,2,3)

Cluster 2 (Objetos 4.5.6)

 A Distância entre os dois grupos (1 e 2) será:

$$\begin{split} d_{(1)(2)} &= \frac{d_{14} + d_{15} + d_{16} + d_{24} + d_{25} + d_{26} + d_{34} + d_{35} + d_{36}}{3 \times 3} \\ &= \frac{10 + 8 + 6 + 6 + 9 + 5 + 13 + 11 + 8}{9} = 8.44 \end{split}$$

Método de Ligação Centróide:

 A distância entre dois grupos ("clusters") é definida como a A distância entre os Centros Gravitacionais de cada grupo.

- Sejam os grupos: R
 com n_R objetos e S com n_S objetos:
- A coordenada do Centro de Gravidade de cada Grupo será:

$$\overline{\mathbf{x}}_{R} = \frac{\sum_{r} \mathbf{x}_{r}}{n_{R}} = \begin{bmatrix} \overline{\mathbf{x}}_{r1} \\ \overline{\mathbf{x}}_{r2} \\ \vdots \\ \overline{\mathbf{x}}_{rp} \end{bmatrix} \qquad \overline{\mathbf{x}}_{S} = \frac{\sum_{s} \mathbf{x}_{s}}{n_{S}} = \begin{bmatrix} \overline{\mathbf{x}}_{s1} \\ \overline{\mathbf{x}}_{s2} \\ \vdots \\ \overline{\mathbf{x}}_{sp} \end{bmatrix}$$

• Logo, a Distância Euclidiana entre os dois grupos será:

$$d_{(R)(S)} = \sqrt{(\overline{\mathbf{x}}_{r1} - \overline{\mathbf{x}}_{s1})^2 + \dots + (\overline{\mathbf{x}}_{rp} - \overline{\mathbf{x}}_{sp})^2}$$

Similaridade:

• Similaridade é a diferença entre dois objetos (vetores) ou entre dois Grupos de Objetos ("clusters").

• Quanto maior é a Similaridade menor é a distância entre eles.

• Dados dois objetos x_r e x_s , a Similaridade é dada por s_r e obedece às seguintes condições:

- 1. $0 \le s_{rs} \le 1$
- 2. $s_{rs} = 1$ if and only if $\mathbf{x}_r = \mathbf{x}_s$
- 3. $s_{rs} = s_{sr}$

Similaridade:

• A medida de Similaridade pode ser dada por:

$$s_{rs} = 1 - \frac{d_{rs}}{d_{max}}$$

Onde, d_{max} é a Máxima Distância na Matriz de Distâncias D.

 Uma outra maneira de medir a Similaridade é através da Correlação de Momentos do Produto de Pearson

$$q_{rs} = \frac{\sum_{j=1}^{p} (x_{rj} - \overline{x}_{r.})(x_{sj} - \overline{x}_{s.})}{\left[\sum_{j=1}^{p} (x_{rj} - \overline{x}_{r.})^{2} \sum_{j=1}^{p} (x_{sj} - \overline{x}_{s.})^{2}\right]}$$

Agrupamento Hierárquico

• Agrupamento Hierárquico (Hierarchical clustering) é uma maneira de investigar o agrupamento dos dados, simultâneamente em várias escalas, através da geração de uma Árvore de Grupos (Cluster Tree).

• A Árvore de Grupos não é apenas um simples conjunto de grupos, mas uma Hierarquia em multi-nível onde grupos em um nível são unidos a grupos em um próximo nível mais alto.

• Isto permite decidir qual nível ou escala de agrupamento é mais apropriada para cada aplicação.

Agrupamento Hierárquico

- O número de Agrupamentos ("clusters") e quais são eles é desconhecido.
- Usa a Matriz de Distâncias para construir um gráfico de Árvore de Grupo chamado de Dendrograma.

Algoritmo:

- 1. Considerar inicialmente todos os elementos (Vetores/Objetos) individuais como um cluster formado por ele mesmo.
- 2. Combinar em um cluster dois objetos com a menor distância.
- 3. Computar as distâncias entre os objetos e o novo cluster formado.
- 4. Repetir o processo até que o número de clusters seja reduzido a 1.
- 5. Decidir o número de grupos para solucionar o problema.

• Comportamento do tempo em uma cidade Norte-americana no mês de Fevereiro entre os anos de 1982 e 1990

Year	x_1 , Mean temp.	x_2 , Max. temp.	x ₃ , Min. temp.	x ₄ , Soil temp. (@ 10 cm)	x ₅ , Monthly rainfall (mm)	x_6 , Max. rain in a day	x ₇ , Days with snow
1982	4.2	13.3	-5.3	4.0	23	6	0
1983	1.0	7.8	-5.3	3.0	34	11	8
1984	2.9	11.4	-5.1	3.2	65	17	0
1985	1.6	10.2	-6.0	2.9	7	2	5
1986	-1.1	2.7	-9.0	1.5	22	5	24
1987	3.3	13.4	-7.3	2.7	46	15	2
1988	4.5	13.0	-2.9	3.7	89	22	4
1989	5.7	13.5	-2.7	5.2	92	16	0
1990	6.6	14.9	-0.6	5.5	131	29	0

Passo 0 : Normalizar a matriz

$$z_{ij} = \frac{x_{ij} - \overline{x}_{j}}{s_{j}}$$

$$\overline{x}_{j} = \frac{\sum_{k=1}^{N} x_{kj}}{N}$$

$$s_j = \sqrt{\frac{\sum_{k=1}^{N} (x_{kj} - \overline{x}_{,j})^2}{N-1}}$$

9 Vetores de Características ou Objetos (*k*)

• Comportamento do tempo em uma cidade Norte-americana no mês de Fevereiro entre os anos de 1982 e 1990

Year	X1	X2	Х3	X4	X5	Х6	X7
1982	4.2	13.3	-5.3	4.0	23.0	6.0	0.0
1983	1.0	7.8	-5.3	3.0	34.0	11.0	8.0
1984	2.9	11.4	-5.1	3.2	65.0	17.0	0.0
1985	1.6	10.2	-6.0	2.9	7.0	2.0	5.0
1986	-1.1	2.7	-9.0	1.5	22.0	5.0	24.0
1987	3.3	13.4	-7.3	2.7	46.0	15.0	2.0
1988	4.5	12.0	-2.9	3.7	89.0	22.0	4.0
1989	5.7	12.5	-2.7	5.2	92.0	16.0	0.0
1990	6.6	14.9	-0.6	5.5	131.0	29.0	0.0
Média	3.2	10.9	-4.9	3.5	56.6	13.7	4.8
SD	2.4	3.7	2.5	1.3	40.8	8.7	7.7

7 Característicaş

Passo 0: Normalizar a matriz

$$z_{ij} = \frac{x_{ij} - \overline{x}_{j}}{s_{j}}$$

$$\overline{x}_{,j} = \frac{\sum_{k=1}^{N} x_{kj}}{N}$$

$$s_j = \sqrt{\frac{\sum_{k=1}^{N}(x_{kj} - \overline{x}_{,j})^2}{N-1}}$$

9 Vetores de Características ou Objetos

 Comportamento do tempo em uma cidade Norte-americana no mês de Fevereiro entre os anos de 1982 e 1990

Year	X1	X2	Х3	X4	X5	X6	X7	7 Características
1982	0.4	0.6	-0.2	0.4	-0.8	-0.9	-0.6	
1983	-0.9	-0.8	-0.2	-0.4	-0.6	-0.3	0.4	
1984	-0.1	0.1	-0.1	-0.3	0.2	0.4	-0.6	
1985	-0.7	-0.2	-0.4	-0.5	-1.2	-1.3	0.0	
1986	-1.8	-2.2	-1.6	-1.6	-0.8	-1.0	2.5	
1987	0.0	0.7	-0.9	-0.7	-0.3	0.2	-0.4	
1988	0.5	0.3	0.8	0.1	0.8	1.0	-0.1	
1989	1.0	0.4	0.9	1.3	0.9	0.3	-0.6	
1990	1.4	1.1	1.7	1.6	1.8	1.8	-0.6	*

9 Vetores de

Passo 1 : Cálculo da Matriz de Distâncias

$$\mathbf{D} = \begin{bmatrix} 0.00 & 2.44 & 1.90 & 1.86 & 5.32 & 1.82 & 2.70 & 2.56 & 4.48 \\ 2.44 & 0.00 & 1.92 & 1.49 & 3.31 & 2.16 & 2.98 & 3.69 & 5.23 \\ 1.90 & 1.92 & 0.00 & 2.45 & 4.98 & 1.25 & 1.57 & 2.36 & 3.78 \\ 1.86 & 1.48 & 2.45 & 0.00 & 3.75 & 2.19 & 3.64 & 4.01 & 5.84 \\ 5.32 & 3.31 & 4.98 & 3.75 & 0.00 & 4.73 & 5.90 & 6.71 & 8.13 \\ 1.82 & 2.16 & 1.25 & 2.19 & 4.73 & 0.00 & 2.40 & 3.10 & 4.59 \\ 2.70 & 2.98 & 1.57 & 3.64 & 5.90 & 2.40 & 0.00 & 1.57 & 2.42 \\ 2.56 & 3.69 & 2.36 & 4.01 & 6.71 & 3.10 & 1.57 & 0.00 & 2.05 \\ 4.48 & 5.23 & 3.78 & 5.83 & 8.13 & 4.59 & 2.42 & 2.05 & 0.00 \end{bmatrix}$$

Características ou Objetos

Distância Euclidiana Normalizada

$$d_{ik} = \sqrt{\sum_{j=1}^{p} (z_{ij} - z_{kj})^2}$$

Passo 2 : Encontrar a menor distância e criar um novo cluster.

$$\mathbf{D} = \begin{bmatrix} 0.00 & 2.44 & 1.90 & 1.86 & 5.32 & 1.82 & 2.70 & 2.56 & 4.48 \\ 2.44 & 0.00 & 1.92 & 1.49 & 3.31 & 2.16 & 2.98 & 3.69 & 5.23 \\ 1.90 & 1.92 & 0.00 & 2.45 & 4.98 & 1.25 & 1.57 & 2.36 & 3.78 \\ 1.86 & 1.48 & 2.45 & 0.00 & 3.75 & 2.19 & 3.64 & 4.01 & 5.84 \\ 5.32 & 3.31 & 4.98 & 3.75 & 0.00 & 4.73 & 5.90 & 6.71 & 8.13 \\ 1.82 & 2.16 & 1.25 & 2.19 & 4.73 & 0.00 & 2.40 & 3.10 & 4.59 \\ 2.70 & 2.98 & 1.57 & 3.64 & 5.90 & 2.40 & 0.00 & 1.57 & 2.42 \\ 2.56 & 3.69 & 2.36 & 4.01 & 6.71 & 3.10 & 1.57 & 0.00 & 2.05 \\ 4.48 & 5.23 & 3.78 & 5.83 & 8.13 & 4.59 & 2.42 & 2.05 & 0.00 \end{bmatrix}$$

- Menor distância → entre o objeto(Vetor) 3 e o 6
- Combinar o objeto 3 e o 6 em um único cluster.

Passo 3 : Atualizar as distâncias.

$$\begin{split} d_{1,(3,6)} &= \min(d_{13}, d_{16}) = \min(1.90, 1.82) = 1.82 \\ d_{2,(3,6)} &= \min(d_{23}, d_{26}) = \min(1.92, 2.16) = 1.92 \\ d_{4,(3,6)} &= \min(d_{43}, d_{46}) = \min(2.45, 2.19) = 2.19 \\ d_{5,(3,6)} &= \min(d_{53}, d_{56}) = \min(4.98, 4.73) = 4.73 \\ d_{7,(3,6)} &= \min(d_{73}, d_{76}) = \min(1.57, 2.40) = 1.57 \\ d_{8,(3,6)} &= \min(d_{83}, d_{86}) = \min(2.36, 3.10) = 2.36 \\ d_{9,(3,6)} &= \min(d_{93}, d_{96}) = \min(3.78, 4.59) = 3.78 \end{split}$$

 Foi utilizado o Método de Ligação Simples.

Passo 4: Repetir os Passos 2 e 3 estabelecendo um Dendrograma.

• Observando-se o Dendrograma pode-se decidir que 4 clusters solucionam o problema, ou seja, cortando-se o gráfico na distância 1.818 tem-se os clusters: (2 e 4) (1,3, 6, 7 e 8) (9) (5)

							Number
	Number of	Similarity	Distance	Clus	ters	New	of obs. in
Step	clusters	level	level	join	ed	cluster	new cluster
1	8	84.67	1.246	3	6	3	2
2	7	81.71	1.486	2	4	2	2
3	6	80.70	1.569	7	8	7	2
4	5	80.64	1.573	3	7	3	4
5	4	77.63	1.818	1	3	1	5
6	3	77.12	1.860	1	2	1	7
7	2	74.83	2.046	1	9	1	8
8	1	59.28	3.309	1	5	1	9

• Utilizando a Similaridade ao invés da Distância, pode-se agrupar os vetores através do índice de similaridade entre eles.

							Number
	Number of	Similarity	Distance	Clus	ters	New	of obs. in
Step	clusters	level	level	join	ed	cluster	new cluster
1	8	84.67	1.246	3	6	3	2
2	7	81.71	1.486	2	4	2	2
3	6	80.70	1.569	7	8	7	2
4	5	80.64	1.573	3	7	3	4
5	4	77.63	1.818	1	3	1	5
6	3	77.12	1.860	1	2	1	7
7	2	74.83	2.046	1	9	1	8
8	1	59.28	3.309	1	5	1	9

• Interpretação dos resultados: 75% de similaridade (3 grupos)

Year	x_1 , Mean temp.	x_2 , Max. temp.	x_3 , Min. temp.	x ₄ , Soil temp. (@ 10 cm)	x_5 , Monthly rainfall (mm)	x_6 , Max. rain in a day	x ₇ , Days with snov
1982	4.2	13.3	-5.3	4.0	23	6	0
1983	1.0	7.8	-5.3	3.0	34	11	8
1984	2.9	11.4	-5.1	3.2	65	17	0
1985	1.6	10.2	-6.0	2.9	7	2	5
1986	-1.1	2.7	-9.0	1.5	22	5	24
1987	3.3	13.4	-7.3	2.7	46	15	2
1988	4.5	13.0	-2.9	3.7	89	22	4
1989	5.7	13.5	-2.7	5.2	92	16	0
1990	6.6	14.9	-0.6	5.5	131	29	0

- Cluster 1: (2,4,1,3,6,7,8)
 (1982,1983,1984,1985,1987, 1988,1989) → Fevereiro
 típico (não muito frio, não muito quente, neve e chuva na média)
- Cluster 2: (5) (1986) → Fevereiro frio e com neve
- Cluster 3: (9) (1990) → Fevereiro quente e chuvoso

Agrupamento Não-Hierárquico.

• No método de Agrupamento Não-hierárquico o analista deve primeiramente especificar o número de "clusters" desejados.

Método K-Means (K-Médias)

- Passo 1: Especificar inicialmente k sementes cada uma delas como um cluster. Calcular seus centróides.
- Passo 2: Calcular a distância de cada objeto (Vetor) para o centróide de cada cluster. Atribuir o objeto ao cluster mais próximo. Re-atribuir se necessário.
- Passo 3: Recalcular o centróide baseado nas re-atribuições e repetir o Passo 2. Parar se nenhum objeto puder ser re-atribuído a um cluster.

Agrupamento Não-Hierárquico.

- Algumas dificuldades com o K-Means.
 - A composição dos grupos é muito sensível às sementes iniciais.
 Para diferentes sementes pode-se ter diferentes tipos de clusters.
 Não há garantia que convirja para uma solução ótima.
- 2. Algumas vezes é difícil escolher um bom número de grupos antes de analisar os dados.
 - Pode-se combinar os métodos hierárquicos e não-hierárquicos para identificar as sementes e o número de grupos. Os resultados podem então ser usados no agrupamento não-hierárquico para refinar a solução.

- Valores Unidimensionais
- V = {3,1,2,0,2,10,12,9,8,11}
- Inicio:
 - -M1 = 1
 - M2 = 3
- Iteração
 - 1ª Iteração
 - G1 = {1,2,0,2}
 - G2 = {3,10,12,9,8,11}
 - M1 = 1.25
 - M2 = 8.8
 - 2ª Iteração
 - G1 ={3, 1, 2, 0, 2}
 - G2 = {10, 12, 9, 8, 11}
 - M1 = 1.6
 - M2 = 10

2a.

1a. iteração

•
$$K = 2$$

- Distâncias entre cada objeto e as Médias (M1 e M2)
- Matriz de Distâncias

$$M1 = (1+2+0+2)/4 = \frac{5}{4} = 1.25$$

$$M2 = (3+10+12+9+8+11)/6 = \frac{53}{6} = 8.8$$

a

			_	_	•	_	10	12				
iteração	M1=1.25	(1.75)	0.25	0.75	1.25	0.75	8.75	10.75	7.75	6.75	9.75)
iteração	M1=1.25 M2=8.8	5.8	7.8	6.8	8.8	6.8	1.2	3.2	0.2	0.8	2.2	

• Valores Bi-dimensionais

Objeto	Atributo_1(X): Índice de Peso	Atributo_2(Y): pH
Produto_A	1	1
Produto_B	2	1
Produto_C	4	3
Produto_D	5	4

Vetores de Características (X Y)

$$A = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

 $B = \begin{pmatrix} 2 & 1 \end{pmatrix}$
 $C = \begin{pmatrix} 4 & 3 \end{pmatrix}$
 $D = \begin{pmatrix} 5 & 4 \end{pmatrix}$

• Centróides Iniciais:

$$C_1 = (1 \ 1)$$

$$C_2 = (2 \ 1)$$

• D⁰ = Matriz de Distâncias na iteração 0.

Coluna → Objeto Linha → Distância ao centróide

$$D^0 = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix}$$

3.61 5
$$C_1 = (1,1)$$
 $grupo_1$ $C_2 = (2,1)$ $grupo_2$

• Iteração 0.

• Distâncias Euclidianas

$$D(A, C_1) = \sqrt{(1-1)^2 + (1-1)^2} = 0$$
$$D(B, C_1) = \sqrt{(2-1)^2 + (1-1)^2} = 1$$

$$D(C, C_1) = \sqrt{(4-1)^2 + (3-1)^2} = \sqrt{9+4} = \sqrt{13} = 3.61$$
$$D(D, C_1) = \sqrt{(5-1)^2 + (4-1)^2} = \sqrt{16+9} = \sqrt{25} = 5$$

$$D(A, C_2) = \sqrt{(1-2)^2 + (1-1)^2} = 1$$

$$D(B, C_2) = \sqrt{(2-2)^2 + (1-1)^2} = 0$$

$$D(C, C_2) = \sqrt{(4-2)^2 + (3-1)^2} = \sqrt{4+4} = \sqrt{8} = 2.83$$

$$D(D, C_2) = \sqrt{(5-2)^2 + (4-1)^2} = \sqrt{9+9} = \sqrt{18} = 4.24$$

• G⁰ = Matriz de Grupos na iteração 0.

$$D^0 = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix}$$

$$G^0 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$Grupo_1 = (A)$$

 $Grupo_2 = (B C D)$

• Observando-se a Matriz de Distâncias D⁰, atribui-se o valor 1 na Matriz de Grupos G⁰ à posição de menor distância de cada objeto.

- Iteração 1.
 - Novos Centróides

$$C_1 = (1,1)$$

$$C_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right) = \left(\frac{11}{3}, \frac{8}{3}\right) = (3.67 \ 2.67)$$

$$C1 = (1,1)$$
 $grupo_1$
 $C2 = (3.67, 2.67)$ $grupo_2$

• Iteração 1.

$$D^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 5 \\
1 & 1 & 3 & 4
\end{bmatrix} X$$

$$G^1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$Grupo_1 = (A B)$$

$$Grupo_2 = (C D)$$

$$C1 = (1,1)$$
 $grupo_1$
 $C2 = (3.67, 2.67)$ $grupo_2$

Novos Centróides

$$C_1 = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1.5 \ 1)$$

$$C_2 = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = (4.5 \ 3.5)$$

• Iteração 2.

$$D^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.2 & 4.61 \\ 4.3 & 3.54 & 0.71 & 0.71 \end{bmatrix}$$

$$A \quad B \quad C \quad D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} X$$

$$G^2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$C_1 = (1.5 \ 1)$$

$$C_2 = (4.5 \ 3.5)$$

• Como G² = G¹ os objetos não mais se moverão entre os grupos, logo a partição que agrupa os Produtos Similares é:

$$Grupo_1 = (A B)$$

$$Grupo_2 = (C D)$$