

SQL injection attack detection in network flow data

Guide:

Dr . Anu P (Assistant Professor), SOC

Students:

124003377 -> Srijith V 125003241 -> Raakul Aravind A R 125003195 -> Narendrapandian J

Layout of this Presentation

- Abstract
- Motivation
- Objective
- Base Paper
- Problem Statement
- Timeline
- Literature Survey
- Hardware and Software
- Data Set
- WorkFlow

- Modules
- Module 1: Data Preprocessing
- Module 2: Graphical Representation -Different Models
- Source Code and outputs
- Conclusion
- References

Abstract

- Research indicates that examining network datagrams can help identify and stop these kinds of attacks. Regretfully, detecting such things typically requires examining every packet that moves via a network of computers. Consequently, the solutions suggested in the literature are typically not applicable to routers responsible for routing large volumes of data. This paper shows that it is possible to identify SQL injection attacks using flow data derived from lightweight protocols. To that end, we collected two databases that gather flow information from many SQL injection assaults on the most widely used database engines.
- After testing a number of machine learning-based methods, we find that a Logistic Regression-based model has a detection rate of over 98.86% and a false alarm rate of less than 0.0081%.

Motivation

- The increasing menace of cyber-attacks poses a heightened worry for both companies and individuals.
- Web applications, essential for online functions, face vulnerability and exploitation, providing opportunities for SQL injections, a prominent security challenge.
- SQL injection attacks (SQLIA) grant unauthorized access to a web application's database, risking information theft or unauthorized modification/deletion of stored data.

Objective

- Develop an efficient machine learning approach for detecting SQL injection attacks using network flow data.
- To find a faster and direct approach using machine learning algorithms.
- Optimize the chosen model's parameters and feature selection techniques to enhance detection accuracy and reduce false positives.
- To compare different ML models and test its accuracy.

Base Paper

• Ignacio Samuel Crespo-Martínez, Adrián Campazas-Vega, Ángel Manuel Guerrero-Higueras, Virginia Riego-DelCastillo, Claudia Álvarez-Aparicio, Camino Fernández-Llamas, "SQL injection attack detection in network flow data", Journal of Computers and Security, Elsevier, Volume 127, April 2023, 103093

Base Paper Link:
 SQL injection attack detection in network flow data - ScienceDirect

(https://www.sciencedirect.com/science/article/pii/S0167404823000032.)

(https://www.sciencedirect.com/science/article/pii/S0167404823000032)

• Indexed in: Sciencedirect | SCI-E

Year: 2023

Problem Statement

- Problem: Developing a robust method for detecting SQL injection attacks using lightweight protocol flow data.
- Challenge: Existing solutions require analyzing all network packets, which is impractical for high-traffic routers.
- Approach: Gathered datasets from SQL injection attacks on popular database engines and evaluated machine learning algorithms minimizing false positives and negatives.

Timeline

- 0th review (22-02-2024)
 - Literature survey and work plan for the existing problem statement
- 1st Review (08-03-2024)
 - Partial implementation of the existing work (at least 40%)
- 2nd Review (13-04-2024)
 - Completion of the existing work (100%) and documentation

LITERATURE SURVEY

Year	Author	Paper Name	Models Adapted	Accuracy	
2023	Ignacio et al.	SQL injection attack detection in network flow data, (Base Paper)	Logistic Regression(LR), Perceptron with Stochastic Gradient Descent(SGD), Voting Classifier(VC), Random Forest(RF),Linear Support Vector Classification(LSVC),K-Nearest Neighbors(KNN)	Model LR Perceptron +SGD VC RF LSVC KNN	Accuracy 97.3% 96.3% 85.6% 84.0% 83.4% 71.8%
2022	Roy et al.	SQL injection attack detection by machine learning classifier.	Naive Bayes(NB), Logistic Regression(LR)	Naive Bayes Accuracy 98.3%	Logistic Regression Accuracy 92.7%

2021	Farooq et al.	Ensemble machine learning approaches for detection of SQL injection attack.	Ensemble machine Learning Algorithm - Gradient Boosting Machine (GBM), AdaBoost, Extended GBM (XGBM), Light GBM (LGBM)	Models Accuracy 99%	
2020	Tripathy et al.	Detecting SQL injection attacks in cloud SaaS using machine learning.	Random Forest (RF), Boosted Tree Classifier, Adaptive Boosting Classifier (AdaBoost), Decision Tree (DT), SGD Classifier model	RF Accuracy 99.8%	Remaining Model Accuracy 98.6%
2019	Hasan et al.	Detection of SQL injection attacks: a machine learning approach.	Boosted Trees and Bagged Trees Ensemble, Linear discriminate(LD),SVM Model	93.8% - Boos and Bagged Ensemble	

2018	Ross et al.	Multi-source data analysis and evaluation of machine learning techniques for SQL injection detection.	jRip, J48, Random Forest(RF), Support Vector Machine(SVM), Artificial Neural Network(ANN)	RF Model Accuracy 98.05%	ANN model Accuracy 97.61%
2017	Uwagbole et al.	Applied machine learning predictive analytics to SQL injection attack detection and prevention	Support Vector Machine (SVM)	Accuracy 98.6%	F1_Score 98.5%

Hardware & Software

Softwares components used:

- Windows 11 23H2
- Jupyter Notebook 7.0.7
- Python 3.12.1

Hardware components used:

- Processor Intel (or) AMD x86 based processor
- RAM Min 4 GB
- Hard disk with 1 GB free storage space

Dataset

- The two datasets containing flow data are retrieved from several SQL injection attacks on popular database engines (such as MySQL, PostgreSQL, and SQL Server) and using lightweight NetFlow V5 flows.
- Then the datasets are collected using DOROTHEA (A tool used by authors to collect flow data using NetFlow protocol)
- The datasets contains 10 attributes and over 68000 rows.

4	А	В	C	D	E	F	G	Н	1	J
	dpkts	doctets	input	output	srcport	dstport	prot	tos	tcp_flags	Label
	1	228	10	8	53	36602	17	0	0	0
}	1	70	8	10	51085	53	17	0	0	0
	1	70	8	10	36602	53	17	0	0	0
5	1	228	10	8	53	51085	17	0	0	0
5	1	83	8	10	53358	53	17	0	0	0
7	1	73	10	8	53	33761	17	0	0	0
3	1	73	10	8	53	35098	17	0	0	0
)	1	70	8	10	52792	53	17	0	0	0
0	1	70	8	10	43092	53	17	0	0	0
1	1	228	10	8	53	52792	17	0	0	0
2	1	228	10	8	53	40757	17	0	0	0
3	1	57	8	10	34127	53	17	0	0	0
4	1	57	8	10	35098	53	17	0	0	0
5	1	73	10	8	53	34127	17	0	0	0
6	1	57	8	10	56449	53	17	0	0	0
7	1	228	10	8	53	43092	17	0	0	C
8	1	70	8	10	40757	53	17	0	0	0
9	1	70	8	10	36273	53	17	0	0	0
20	1	57	8	10	33761	53	17	0	0	0

Workflow (Architecture)

Dataset

Data Preprocessing:

Feature Cleaning
Dimensionality Reduction

Classification

Logistic Regression, Linear Support Vector Classification (LSVC), Perceptron with stochastic gradient descent (SGD), Random Forest (RF), K-Nearest Neighbors(KNN), Voting Classifier(VC)

Ensemble Techniques

Boosted Trees, Bagged Trees, Extended Gradient Boosting Machine(XGBM), Light Gradient Boosting Machine(LGBM)

Results

Modules

- Data preprocessing:
 - Data Cleaning, Dimensionality reduction Data Normalization
- Machine Learning algorithms:
 - Logistic Regression, Perceptron with Stochastic Gradient Descent(SGD), Voting Classifier(VC), Random Forest(RF), Linear Support Vector Classification(LSVC), K-Nearest Neighbors(KNN)
- Preparing DataSets:
 - DataSet split into Training data 80% | Testing data 20%
- Testing & Documentation

Module-I (Data Preprocessing)

- Dimensionality Reduction
 - Remove bad columns
 - Remove features
 - Search Columns with no Variance
- Data Normalization
 - Min Max Scalar
 - Standard Scalar
 - MaxAbs Scalar
 - Robust Scalar

- Data Cleaning
 - Search Columns with no Variance
 - Search Null Data
 - Search Infinite Values
 - Search Negative Values
 - Remove Duplicate rows

Random Forest (RF)

Logistics Regression(LR)

Perceptron+SGD

Voting Classifier

Linear Support Vector Classification (LSVC)

Kth-Nearest Neighbors(KNN)

Source Code: Data Cleaning

```
class Cleaner:
  def search unimportant(self, df):
    print("Searching for columns with no variance...")
    row num=len(df)
    for col in df:
       aux=df[col][o]*row_num
      col sum=sum(df[col])
       if aux!=o:
         if (col_sum)/(aux)==1:
             print("All values in column",col,"are the
same:",float(df[col][o]))
         if col sum==o:
           print("Columns with zero:\n",col)
      if aux==o:
         if col sum==o:
           df.drop(col)
           print("Columns with zero:\n",col)
    print(df)
```

```
def search infinite(self, df, list):
    \#row num = len(df)
    for col in df:
       flag = False
       for i in list:
         if(col == i):
           flag = True
       if not (flag):
         inf_list = np.isinf(df[col].astype('float64'))
         inf num = inf list.sum()
         if not inf num == 0:
           aux = df[col].astype('float64').replace([np.inf, -np.inf], np.nan)
           aux = aux.dropna()
            #Remove infinite values and find mean of that column
            mean = aux.mean()
            #Substitute infinite values with mean in orig dataframe
           df[col] = df[col].astype('float64').replace([np.inf, -np.inf],
mean,inplace=True)
            print("Column %s have %i infinite values" % (col, inf_num))
    return df
```


def search_null(self, df):

print(df)

```
row_num = len(df)
for col in df:
    null_list = df[col].isnull()
    null_num = null_list.sum()
    if not null_num == o:
        print("Column %s have %i Null values" % (col, nan_null))
    return df.fillna(o)

def removeFeatures(self,
df,list=['nexthop','engine_id','engine_type','src_mask','dst_mask','src_a
s','dst_as','#:unix_secs','unix_nsecs','sysuptime','first','last', 'exaddr']):
    print("Removing features...")
    df = df.drop(columns=list)
```

```
def search_negatives(self, df):
    row_num = len(df)
    for col in df:
        neg_list = df[col] < o
        neg_num = neg_list.sum()
        if not neg_num == o:
            print("Column %s have %i negative values" % (col, neg_num))
        print(df)</pre>
```


228

After Data Cleaning

Label

•	23	30002	Ι/	U	U		
	51085	53	17	0	0	1	0
	36602	53	17	0	0	2	0
3	53	51085	17	0	0	3	0
	53358	53	17	0	0	4	0
			₩.				

57224	11	812 65535 4851	. 56298 22 6 8	25	3/224	1
57225	36	6370 4851 6553	5 22 56298 6 0	26	57225	1
57226	27	3337 65535 485	1 56298 22 6 0	26	57226	1
57227	18	3185 4851 4851	. 22 57932 6 0	26	57227	1
57228	5	456 4851 4851	22 57932 6 8	25	57228	1

[57229 rows x 10 columns]

Data Information:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 57229 entries, 0 to 57228 Data columns (total 10 columns):

Column Non-Null Count Dtype

0 dpkts 57229 non-null int64

1 doctets 57229 non-null int64

2 input 57229 non-null int64 3 output 57229 non-null int64

3 output 5/229 non-null int64

4 srcport 57229 non-null int64 5 dstport 57229 non-null int64

6 prot 57229 non-null int64

7 tos 57229 non-null int64

7 tos 5/229 non-nun int64

8 tcp_flags 57229 non-null int64

9 Label 57229 non-null int64

dtypes: int64(10)

memory usage: 4.4 MB

Source Code: Normalization

```
class preprocess:
  def new_dataset(self,dataframe): # function to remove "Label" column
    lc=dataframe["Label"]
    f_lc=dataframe.drop("Label",axis=1)
    new_columns=dataframe.columns.drop("Label")
    print(lc,f_lc,new_columns)
  def minScalingNormal_train(self,dataframe):
    heading=dataframe.columns
    class call=MinMaxScaler()
    #class call.fit(dataframe)
    scaled=class_call.fit_transform(dataframe)
    scaled=pd.DataFrame(scaled,columns=heading)
    return (scaled)
  def minScalingNormal_test(self,dataframe,test_df):
    heading=dataframe.columns
    class_call=MinMaxScaler()
    #class call.fit(dataframe)
    scaled_train=self.minScalingNormal_train(dataframe)
    scaled_test=class_call.fit_transform(test_df)
    scaled=pd.DataFrame(scaled_test,columns=heading)
    print(scaled)
```

```
def maxabsNormal_train(self,dataframe):
    heading=dataframe.columns
    class call=MaxAbsScaler()
    trained=class call.fit transform(dataframe)
    trained=pd.DataFrame(trained,columns=heading)
    print(trained)
def maxabsNormal_test(self,dataframe,test_df):
    heading=dataframe.columns
    scale=MaxAbsScaler()
    scale_trained=self.maxabsNormal_train(dataframe)
    scale_test=scale.fit_transform(test_df)
    scaled_test=pd.DataFrame(scale_test,columns=heading)
    print(scale_test)
def robust_train(self,dataframe):
    heading=dataframe.columns
    class call=RobustScaler()
    trained=class_call.fit_transform(dataframe)
    trained=pd.DataFrame(trained,columns=heading)
    print(trained)
```



```
def robust_test(self,dataframe,test_df):
    heading=dataframe.columns
    scale=RobustScaler()
    scale_trained=self.robust_train(dataframe)
    scale_test=scale.fit_transform(test_df)
    scaled_test=pd.DataFrame(scale_test,columns=heading)
    print(scale_test)
def variance_cal(self,dataframe,limit=o,list=["Label"]):
    for column in dataframe:
      f=False
      for itr in list:
         if itr==column:
           f=True
      if f==False:
        variance=dataframe[column].var()
        print("Columns\n:",column,"Variance:\n",variance) # Reference
        if variance==limit:
           print("Columns\n:",column,"Variance:\n",variance)
           dataframe=dataframe.drop(column,axis=1)
    print(dataframe)
```


After Normalization

MaxAbs Normalization Train:

```
tos tcp_flags Label
0 0.000000 0.000000 0.0
1 0.000000 0.000000 0.0
2 0.000000 0.000000 0.0
3 0.000000 0.000000 0.0
4 0.000000 0.000000 0.0
... ... ...
57224 0.041667 0.806452 1.0
57225 0.000000 0.838710 1.0
57227 0.000000 0.838710 1.0
57228 0.041667 0.806452 1.0
```

[57229 rows x 10 columns]

Random Forest

```
print("Random Forest Algo....")
                                                                       execution time=time.time()-start time
                                                                       prediction=rf.predict(x_test)
data=pd.read_csv("E:\\jupyter\\dataset\\MinScale\\minscaleTrain.
csv")
                                                                       m=classification_report(y_test["Label"].values.ravel(),prediction,d
data=data.sample(frac=1)
                                                                       igits=6)
print(data)
                                                                       print(m)
x=data.drop(columns=['Label'])
                                                                       cohen_kappa=cohen_kappa_score(y_test["Label"].values.ravel(),p
                                                                       rediction)
y=data['Label']
                                                                       matthew_corr=matthews_corrcoef(y_test["Label"].values.ravel(),p
                                                                       rediction)
x_train=pd.read_csv("E:\\jupyter\\dataset\\rf_Model\\x.train.csv")
x_test=pd.read_csv("E:\\jupyter\\dataset\\rf_Model\\x.test.csv")
                                                                       print("Confusion Matrics\n")
y_train=pd.read_csv("E:\\jupyter\\dataset\\rf_Model\\y.train.csv")
                                                                       cm = confusion_matrix(y_test["Label"].values.ravel(), prediction)
y_test=pd.read_csv("E:\\jupyter\\dataset\\rf_Model\\y.test.csv")
                                                                       print(cm)
rf=RandomForestClassifier(criterion='gini',n_estimators=8o)
                                                                       print("\nKappa Score");
                                                                                                             print(cohen_kappa)
start time=time.time()
                                                                       print("Matthew_correlation");
                                                                                                             print(matthew_corr)
rf.fit(x_train,y_train["Label"].values.ravel())
                                                                       print("Execution Time:",execution_time,"Seconds")
```


Random Forest - Output

TOTAL TOTAL STREET						
Unnamed: 0	dpkts	doctets	input	output	srcport	dstport
3406	0.000153	0.000011	0.000000	0.000031	0.882980	0.006904
1532	0.000305	0.000012	0.000031	0.000000	0.007263	0.936959
54581	0.000611	0.000098	0.073908	0.073908	0.728942	0.000951
3380	0.003054	0.000606	0.000000	0.000031	0.985704	0.006904
10063	0.000000	0.000002	0.000000	0.000031	0.673547	0.000508
11458	0.000458	0.000019	0.000031	0.000000	0.007263	0.850958
32571	0.000611	0.000086	0.073908	0.073908	0.569166	0.006904
32734	0.000611	0.000054	0.073908	0.073908	0.007263	0.537917
40097	0.000611	0.000081	0.073908	0.073908	0.007263	0.842397
49097	0.000611	0.000069	0.073908	0.073908	0.001312	0.545329
	3406 1532 54581 3380 10063 11458 32571 32734 40097	3406 0.000153 1532 0.000305 54581 0.000611 3380 0.003054 10063 0.000000 11458 0.000458 32571 0.000611 32734 0.000611 40097 0.000611	3406 0.000153 0.000011 1532 0.000305 0.000012 54581 0.000611 0.000098 3380 0.003054 0.000606 10063 0.000000 0.000002 11458 0.000458 0.000019 32571 0.000611 0.000086 32734 0.000611 0.000081	3406 0.000153 0.000011 0.000000 1532 0.000305 0.000012 0.000031 54581 0.000611 0.000098 0.073908 3380 0.003054 0.000606 0.000000 10063 0.000000 0.000002 0.000000	3406 0.000153 0.000011 0.000000 0.000031 1532 0.000305 0.000012 0.000031 0.000000 54581 0.000611 0.000098 0.073908 0.073908 3380 0.003054 0.000606 0.000000 0.000031 10063 0.000000 0.000002 0.000000 0.000031 11458 0.000458 0.000019 0.000031 0.000000 32571 0.000611 0.000054 0.073908 0.073908 32734 0.000611 0.000081 0.073908 0.073908 40097 0.000611 0.000081 0.073908 0.073908	3406 0.000153 0.000011 0.000000 0.000031 0.882980 1532 0.000305 0.000012 0.000031 0.000000 0.007263 54581 0.000611 0.000098 0.073908 0.073908 0.728942 3380 0.003054 0.000606 0.000000 0.000031 0.985704 10063 0.000000 0.000002 0.000000 0.000031 0.673547 11458 0.000458 0.000019 0.000031 0.000000 0.007263 32571 0.000611 0.000086 0.073908 0.073908 0.007263 40097 0.000611 0.000081 0.073908 0.073908 0.007263

Random Forest - Output

```
tcp flags
                                 Label
         prot
               tos
                      0.774194
36391
       0.3125
               0.0
       0.3125
36176
               0.0
                      0.548387
       0.3125
               0.0
784
                      0.870968
12593
       0.3125
               0.0
                      0.870968
34158
       1.0000
                      0.000000
               0.0
                                   . . .
17446
       0.3125
               0.0
                      0.548387
                                     0
       0.3125
27488
               0.0
                      0.870968
3312
       0.3125
               0.0
                      0.870968
9272
       0.3125
               0.0
                      0.870968
       0.3125
22321
               0.0
                      0.870968
[57229 rows x 11 columns]
```

```
[57229 rows x 11 columns]
              precision
                           recall f1-score
                                              support
                                                 5713
              0.808883
                        0.873447
                                   0.839926
                        0.794349
               0.862990
                                   0.827248
                                                 5733
                                   0.833828
                                                11446
    accuracy
   macro avg
                                   0.833587
                                                11446
               0.835937
                         0.833898
weighted avg
                         0.833828
               0.835984
                                  0.833576
                                                11446
Confusion Matrics
[[4990 723]
 [1179 4554]]
Kappa Score
0.6677020729709133
Matthew correlation
0.6698311433602062
Execution Time: 26.504883766174316 Seconds
```


KNN Classifier

```
print("Implementation of KNN algo....\n")
data=pd.read_csv("E:\\jupyter\\dataset\\MinScale\\minscaleTrai
n.csv")
data=data.sample(frac=1)
print(data)
x=data.drop(columns=['Label'])
y=data['Label']
x_train=pd.read_csv("E:\\jupyter\\dataset\\knn\\x_train.csv")
x_test=pd.read_csv("E:\\jupyter\\dataset\\knn\\x_test.csv")
y_train=pd.read_csv("E:\jupyter\dataset\knn\y_train.csv")
y_test=pd.read_csv("E:\jupyter\dataset\knn\y_test.csv")
knn=KNeighborsClassifier(n_neighbors=1,p=2,algorithm="ball_tr
ee")
start time=time.time()
knn.fit(x_train,y_train["Label"].values.ravel())
execution time=time.time()-start time
```

```
knn=KNeighborsClassifier(n_neighbors=1,p=2,algorithm="ball_tr
ee")
knn.fit(x_train,y_train["Label"].values.ravel())
prediction=knn.predict(x_test)
m=classification_report(y_test["Label"].values.ravel(),prediction,d
igits=6)
print(m);
                      print("Confusion Matrix\n")
cm = confusion_matrix(y_test["Label"].values.ravel(), prediction)
print(cm)
cohen_kappa=cohen_kappa_score(y_test["Label"].values.ravel(),p
rediction)
matthew_corr=matthews_corrcoef(y_test["Label"].values.ravel(),p
rediction)
print("\nKappa Score");
                                     print(cohen_kappa)
print("Matthew_correlation");
                                     print(matthew_corr)
print("Execution Time:",execution_time,"Seconds")
```


KNN Classifier - Output

	Hanamada A	dolate c	doctota	i nout	au+pu+	enenant	detpost
	Unnamed: 0	dpkts	doctets	input	output	srcport	dstport
36391	3406	0.000153	0.000011	0.000000	0.000031	0.882980	0.006904
36176	1532	0.000305	0.000012	0.000031	0.000000	0.007263	0.936959
784	54581	0.000611	0.000098	0.073908	0.073908	0.728942	0.000951
12593	3380	0.003054	0.000606	0.000000	0.000031	0.985704	0.006904
34158	10063	0.000000	0.000002	0.000000	0.000031	0.673547	0.000508
17446	11458	0.000458	0.000019	0.000031	0.000000	0.007263	0.850958
27488	32571	0.000611	0.000086	0.073908	0.073908	0.569166	0.006904
3312	32734	0.000611	0.000054	0.073908	0.073908	0.007263	0.537917
9272	40097	0.000611	0.000081	0.073908	0.073908	0.007263	0.842397
22321	49097	0.000611	0.000069	0.073908	0.073908	0.001312	0.545329

MBAKONAMI CHENKININ Classifier - Output

	prot	tos	tcp_flags	Label
36391	0.3125	0.0	0.774194	0
36176	0.3125	0.0	0.548387	0
784	0.3125	0.0	0.870968	1
12593	0.3125	0.0	0.870968	0
34158	1.0000	0.0	0.000000	0

17446	0.3125	0.0	0.548387	0
27488	0.3125	0.0	0.870968	1
3312	0.3125	0.0	0.870968	1
9272	0.3125	0.0	0.870968	1
22321	0.3125	0.0	0.870968	1
[57229	rows x	11 co	lumns]	

```
[57229 rows x 11 columns]
             precision recall f1-score
                                            support
            0.725443 0.722933 0.724186
                                               5782
              0.718156 0.720692 0.719422
                                               5664
                                  0.721824
                                              11446
    accuracy
   macro avg 0.721799 0.721813 0.721804
                                              11446
weighted avg 0.721837 0.721824 0.721828
                                              11446
Confusion Matrix
[[4180 1602]
 [1582 4082]]
Kappa Score
0.44360934763967064
Matthew correlation
0.4436120568841371
Execution Time: 0.06882309913635254 Seconds
```


Voting Classifier

```
print("Voting Classifier Algo...\n")
data=pd.read_csv("E:\\jupyter\\dataset\\MinScale\\robustScaleT
rain.csv")
data=data.sample(frac=1)
print(data);
                      x=data.drop(columns=['Label'])
y=data['Label']
x_train=pd.read_csv("E:\\jupyter\\dataset\\VC\\x_train.csv")
x_test=pd.read_csv("E:\\jupyter\\dataset\\VC\\x_test.csv")
y_train=pd.read_csv("E:\\jupyter\\dataset\\VC\\y_train.csv")
y_test=pd.read_csv("E:\\jupyter\\dataset\\VC\\y_test.csv")
robust=VotingClassifier(estimators=[("Logistic_Regression_Classi
fier", Logistic Regression (dual=False)), ("KNeighbors_Classifier", KN
eighborsClassifier(n_neighbors=5)),("SGD_Classifier",SGDClassifi
er()),("LinearSVC",LinearSVC(dual=False)),("Random Forest Cla
ssifier",RandomForestClassifier(n_estimators=100))],voting="hard
```

```
start time=time.time()
robust.fit(x_train,y_train["Label"].values.ravel())
execution time=time.time()-start time
prediction=robust.predict(x_test)
m=classification_report(y_test["Label"].values.ravel(),prediction,d
igits=6,zero_division=1)
print(m);
                      print("Confusion Matrix\n")
cm = confusion_matrix(y_test["Label"].values.ravel(), prediction)
print(cm)
cohen_kappa=cohen_kappa_score(y_test["Label"].values.ravel(),p
rediction)
matthew_corr=matthews_corrcoef(y_test["Label"].values.ravel(),p
rediction)
                                     print(cohen_kappa)
print("\nKappa Score");
                                     print(matthew_corr)
print("Matthew correlation");
print("Execution Time:",execution_time,"Seconds")
```


Woting Classifier - Output

TOTAL TOTAL STREET						
Unnamed: 0	dpkts	doctets	input	output	srcport	dstport
3406	0.000153	0.000011	0.000000	0.000031	0.882980	0.006904
1532	0.000305	0.000012	0.000031	0.000000	0.007263	0.936959
54581	0.000611	0.000098	0.073908	0.073908	0.728942	0.000951
3380	0.003054	0.000606	0.000000	0.000031	0.985704	0.006904
10063	0.000000	0.000002	0.000000	0.000031	0.673547	0.000508
11458	0.000458	0.000019	0.000031	0.000000	0.007263	0.850958
32571	0.000611	0.000086	0.073908	0.073908	0.569166	0.006904
32734	0.000611	0.000054	0.073908	0.073908	0.007263	0.537917
40097	0.000611	0.000081	0.073908	0.073908	0.007263	0.842397
49097	0.000611	0.000069	0.073908	0.073908	0.001312	0.545329
	3406 1532 54581 3380 10063 11458 32571 32734 40097	3406 0.000153 1532 0.000305 54581 0.000611 3380 0.003054 10063 0.000000 11458 0.000458 32571 0.000611 32734 0.000611 40097 0.000611	3406 0.000153 0.000011 1532 0.000305 0.000012 54581 0.000611 0.000098 3380 0.003054 0.000606 10063 0.000000 0.000002 11458 0.000458 0.000019 32571 0.000611 0.000086 32734 0.000611 0.000081	3406 0.000153 0.000011 0.000000 1532 0.000305 0.000012 0.000031 54581 0.000611 0.000098 0.073908 3380 0.003054 0.000606 0.000000 10063 0.000000 0.000002 0.000000	3406 0.000153 0.000011 0.000000 0.000031 1532 0.000305 0.000012 0.000031 0.000000 54581 0.000611 0.000098 0.073908 0.073908 3380 0.003054 0.000606 0.000000 0.000031 10063 0.000000 0.000002 0.000000 0.000031 11458 0.000458 0.000019 0.000031 0.000000 32571 0.000611 0.000054 0.073908 0.073908 32734 0.000611 0.000081 0.073908 0.073908 40097 0.000611 0.000081 0.073908 0.073908	3406 0.000153 0.000011 0.000000 0.000031 0.882980 1532 0.000305 0.000012 0.000031 0.000000 0.007263 54581 0.000611 0.000098 0.073908 0.073908 0.728942 3380 0.003054 0.000606 0.000000 0.000031 0.985704 10063 0.000000 0.000002 0.000000 0.000031 0.673547 11458 0.000458 0.000019 0.000031 0.000000 0.007263 32571 0.000611 0.000086 0.073908 0.073908 0.007263 40097 0.000611 0.000081 0.073908 0.073908 0.007263

Voting Classifier - Output

```
tcp flags
         prot
               tos
                                Label
       0.3125
                     0.774194
36391
               0.0
       0.3125 0.0
36176
                     0.548387
       0.3125
               0.0
784
                     0.870968
12593
       0.3125
              0.0
                     0.870968
34158
       1.0000
               0.0
                     0.000000
                                   . . .
17446
       0.3125
               0.0
                     0.548387
       0.3125
27488
               0.0
                     0.870968
3312
       0.3125
               0.0
                     0.870968
9272
       0.3125 0.0
                     0.870968
       0.3125
22321
               0.0
                     0.870968
[57229 rows x 11 columns]
```

```
[57229 rows x 11 columns]
              precision
                          recall f1-score
                                             support
              0.798318 0.875177 0.834983
                                                5640
                                                5806
               0.866236 0.785222 0.823742
                                               11446
    accuracy
                                  0.829547
                                               11446
   macro avg
              0.832277 0.830200
                                  0.829362
weighted avg
              0.832769 0.829547 0.829281
                                               11446
Confusion Matrix
[[4936 704]
 [1247 4559]]
Kappa Score
0.6594918121970941
Matthew correlation
0.6624734656580583
Execution Time: 107.90777206420898 Seconds
```


Perceptron + SGD

```
print("Perceptron+SGD....")
data=pd.read csv("E:\\jupyter\\dataset\\MinScale\\robustscaleTrain.csv")
data=data.sample(frac=1)
print(data)
x=data.drop(columns=['Label'])
y=data['Label']
x_train=pd.read_csv("E:\\jupyter\\dataset\\perceptron+SGD\\x_train.csv")
                                                                              on)
x_test=pd.read_csv("E:\\jupyter\\dataset\\perceptron+SGD\\x_test.csv")
y_train=pd.read_csv("E:\\jupyter\\dataset\\perceptron+SGD\\y_train.csv")
                                                                              on)
y test=pd.read csv("E:\\jupyter\\dataset\\perceptron+SGD\\y test.csv")
sgd=SGDClassifier(loss="perceptron",n iter no change=9,penalty=None,
learning rate="optimal",early stopping=False,max iter=1400,shuffle=True)
start time=time.time()
```

```
sgd.fit(x train,y train["Label"].values.ravel())
execution time=time.time()-start time
prediction=sgd.predict(x test)
m=classification report(y test["Label"].values.ravel(),prediction,digits=
6,zero division=1)
print(m)
cm=confusion_matrix(y_test["Label"].values.ravel(),prediction)
print(cm)
cohen_kappa=cohen_kappa_score(y_test["Label"].values.ravel(),predicti
matthew_corr=matthews_corrcoef(y_test["Label"].values.ravel(),predicti
print("\nKappa Score");
                                         print(cohen_kappa)
print("Matthew correlation");
                                         print(matthew corr)
print("Execution Time:",execution time,"Seconds")
```


Perceptron + SGD

		The same of the sa					
100	Unnamed: 0	dpkts	doctets	input	output	srcport	dstport
40961	36183	0.0	-0.026087	0.999587	1.000000	0.225957	-0.003049
48490	50720	0.0	0.088406	0.999587	1.000000	-0.692558	0.762704
26372	3621	-4.0	-0.820290	0.000000	-0.000413	-0.693130	1.150758
37369	22625	-3.0	-0.772464	0.000000	-0.000413	-0.684876	0.838253
36882	44908	0.0	-0.117391	0.999587	1.000000	-0.692558	1.020687
45721	14247	67.0	5.500000	-0.000413	0.000000	0.555537	-0.003049
39848	4429	7.0	1.105797	-0.000413	0.000000	0.433627	-0.003049
26845	19692	18.0	2.215942	-0.000413	0.000000	0.022350	-0.003049
29118	53597	0.0	0.256522	0.999587	1.000000	-0.692558	0.886021
25977	12774	0.0	-0.284058	0.000000	-0.000413	-0.684876	1.049610

Perceptron + SGD

```
tcp_flags
                              Label
       prot
             tos
40961
        0.0
             0.0
                    0.000000
48490
        0.0
             0.0
                   0.000000
26372
             0.0
       11.0
                   -9.000000
37369
        0.0
             0.0
                   -3.666667
36882
        0.0
             0.0
                   0.000000
45721
        0.0
             0.0
                   1.333333
39848
        0.0
             0.0
                    1.333333
             0.0
26845
        0.0
                   1.333333
             0.0
29118
        0.0
                   0.000000
25977
        0.0
             0.0
                   -1.000000
[57229 rows x 11 columns]
```

```
precision
                          recall f1-score
                                              support
              0.999199
                        0.874715
                                  0.932823
                                                 5707
              0.889147 0.999303
                                  0.941012
                                                 5739
                                   0.937183
                                                11446
    accuracy
                                  0.936917
                                                11446
  macro avg
              0.944173 0.937009
weighted avg 0.944019 0.937183
                                  0.936929
                                                11446
[[4992 715]
     4 5735]]
Kappa Score
0.8743219568971681
Matthew correlation
0.8811533377750003
Execution Time: 4.104285001754761 Seconds
```


LSVC

```
print("Linear Support Vector Classification\n")
data=pd.read_csv("E:\\jupyter\\dataset\\MinScale\\robustscaleTr
ain.csv")
data=data.sample(frac=1)
print(data)
x=data.drop(columns=['Label'])
y=data['Label']
x_train=pd.read_csv("E:\\jupyter\\dataset\\LSVC\\x_train.csv")
x_test=pd.read_csv("E:\\jupyter\\dataset\\LSVC\\x_test.csv")
y_train=pd.read_csv("E:\\jupyter\\dataset\\LSVC\\y_train.csv")
y_test=pd.read_csv("E:\\jupyter\\dataset\\LSVC\\y_test.csv")
lsvc=LinearSVC(dual=True,max_iter=1800,loss="squared_hinge")
start time=time.time()
lsvc.fit(x_train,y_train["Label"].values.ravel())
```

```
execution time=time.time()-start time
prediction=lsvc.predict(x test)
m=classification_report(y_test["Label"].values.ravel(),prediction,d
igits=6,zero division=1)
print(m)
print("Confusion Matrix\n")
cm = confusion_matrix(y_test["Label"].values.ravel(), prediction)
print(cm)
cohen_kappa=cohen_kappa_score(y_test["Label"].values.ravel(),p
rediction)
matthew_corr=matthews_corrcoef(y_test["Label"].values.ravel(),p
rediction)
print("\nKappa Score");
                                     print(cohen_kappa)
print("Matthew correlation");
                                     print(matthew corr)
print("Execution Time:",execution_time,"Seconds")
```


LSVC

	Unnamed: 0	dpkts	doctets	input	output	srcport	dstport
37158	41753	0.0	0.001449	0.999587	1.000000	0.124238	-0.010735
13167	22192	0.0	-0.234783	0.000000	-0.000413	-0.684876	0.972792
13558	56164	0.0	0.165217	0.999587	1.000000	-0.684876	0.954370
47068	49505	0.0	0.089855	0.999587	1.000000	-0.684876	1.013022
37531	16574	70.0	5.743478	-0.000413	0.000000	0.380545	-0.003049
3615	50789	0.0	0.004348	0.999587	1.000000	0.083686	-0.010735
55406	7474	-4.0	-0.533333	0.000000	-0.000413	-0.693130	1.109744
15286	48850	0.0	0.069565	0.999587	1.000000	-0.692558	0.681820
32833	39816	0.0	0.050725	0.999587	1.000000	0.164409	-0.010735
40050	5620	-4.0	-0.676812	0.000000	-0.000413	-0.693130	1.083849

LSVC

	prot	tos	tcp_flags	Label
37158	0.0	0.0	0.000000	1
13167	0.0	0.0	-1.000000	9
13558	0.0	0.0	0.000000	1
47068	0.0	0.0	0.000000	1
37531	0.0	0.0	1.333333	0
3615	0.0	0.0	0.000000	1
55406	11.0	0.0	-9.000000	0
15286	0.0	0.0	0.000000	1
32833	0.0	0.0	0.000000	1
40050	11.0	0.0	-9.000000	0
[57229	rows	x 11	columns]	

	precision	recall	f1-score	support
0	0.767331	0.870238	0.815551	5749
1	0.848559	0.733720	0.786972	5697
accuracy			0.802289	11446
macro avg	0.807945	0.801979	0.801262	11446
weighted avg	0.807760	0.802289	0.801326	11446
Confusion Mat	rix			
[[5003 746] [1517 4180]]				
Kappa Score				
0.60432768451	99257			
Matthew_corre	lation			
0.60989470041	52991			
Execution Tim	e: 12.49980	1397323608	Seconds	

Logistic Regression Classifier

```
print("Logistic Regression Classifier....")
data=pd.read_csv("E:\\jupyter\\dataset\\MinScale\\robustscaleTr
ain.csv")
data=data.sample(frac=1)
print(data)
x=data.drop(columns=['Label'])
y=data['Label']
x_train=pd.read_csv("E:\\jupyter\\dataset\\LR\\x_train.csv")
x_test=pd.read_csv("E:\\jupyter\\dataset\\LR\\x_test.csv")
y_train=pd.read_csv("E:\\jupyter\\dataset\\LR\\y_train.csv")
y_test=pd.read_csv("E:\\jupyter\\dataset\\LR\\y_test.csv")
lr=LogisticRegression(dual=False,max_iter=150,intercept_scaling=
1.0)
start_time=time.time()
```

```
lr.fit(x_train,y_train["Label"].values.ravel())
execution_time=time.time()-start_time
prediction=lr.predict(x_test)
m=classification_report(y_test["Label"].values.ravel(),prediction,d
igits=6,zero_division=1)
print(m)
cm=confusion_matrix(y_test["Label"].values.ravel(),prediction)
print(cm)
```

```
cohen\_kappa=cohen\_kappa\_score(y\_test["Label"].values.ravel(), p rediction) matthew\_corr=matthews\_corrcoef(y\_test["Label"].values.ravel(), p rediction)
```


Logistic Regression Classifier

Logist	ic Regressio	n Class	sifier	2003				
	Unnamed: 0	dpkts	doctets	input	output	srcport	dstport	\
45174	50271	0.0	-0.026087	0.999587	1.000000	0.061590	-0.010735	
38555	53294	0.0	0.394203	0.999587	1.000000	-0.692558	1.054607	
10775	55551	0.0	0.240580	0.999587	1.000000	-0.692558	0.970759	
16233	5553	-4.0	-0.826087	-0.000413	0.000000	0.340861	-0.011307	
4152	36863	0.0	0.233333	0.999587	1.000000	-0.684876	0.756437	
20879	6896	3.0	3.984058	0.000000	-0.000413	-0.684876	0.699394	
42012	42780	0.0	0.036232	0.999587	1.000000	0.504656	-0.010735	
7487	8957	9.0	1.218841	-0.000413	0.000000	0.360015	0.000000	
42582	19075	-2.0	0.147826	0.000000	-0.000413	-0.684876	0.989858	
34861	8494	-4.0	-0.757971	0.000000	-0.000413	-0.693130	0.965508	

Logistic Regression Classifier

	prot	tos	tcp_flags	Label
45174	0.0	0.0	0.0	1
38555	0.0	0.0	0.0	1
10775	0.0	0.0	0.0	1
16233	11.0	0.0	-9.0	0
4152	0.0	0.0	0.0	1
20879	0.0	0.0	0.0	0
42012	0.0	0.0	0.0	1
7487	0.0	0.0	0.0	0
42582	0.0	0.0	-1.0	0
34861	11.0	0.0	-9.0	0
[57229	rows	x 11	columns]	

		precision	recall	f1-score	support
	0	0.991638	0.985328	0.988473	5657
	1	0.985751	0.991881	0.988807	5789
accur	acy			0.988642	11446
macro	avg	0.988695	0.988605	0.988640	11446
weighted	avg	0.988661	0.988642	0.988642	11446
[[5574 [47 57	83] 742]]				
Kappa Sco	ore				
0.9772799	7104	50105			
Matthew_o	corre	lation			
0.977299	31467	40303			
Execution	n Tim	e: 0.399454	5936584472	7 Seconds	

Conclusion

- The objective of this paper is to detect SQL injection attacks (SQLIA) in network flow data by training and testing several machine learning models.
- The results show that the Logistic Regression and Perceptron with Stochastic Gradient Descent models achieve the best performance.
- The authors conclude that detecting SQLIA attacks in networks is possible using NetFlow as a flow-based protocol.

References

- Campazas-Vega, A., Crespo-Martínez, I. S., 2022. SQL Injection Attack Netflow (D1-D2). :Online;
 accessed July 26, 2022.
- Deriba, F. G., SALAU, A. O., Mohammed, S. H., Kassa, T. M., Demilie, W. B., 2022.Development of a compressive framework using machine learning approaches for SQL injection attacks. Przeglad Elektrotechniczny
- IPT-netflow, 2022. Ipt-netflow: netflow iptables module for linux kernel. https://github.com/aabc/ipt-netflow (accessed July 28, 2022).
- Junjin, M., 2009. An approach for SQL injection vulnerability detection. In: 2009 Sixth International Conference on Information Technology: New Generations,pp. 1411–1414. doi: 10.1109/ITNG.2009.34
- Kemp, C., Calvert, C., Khoshgoftaar, T., 2018. Utilizing netflow data to detect slow read attacks. In: 2018 IEEE Iternational Conference on Information Reuse and Integration (IRI). IEEE, pp. 108–116.
- A. Campazas-Vega, I.S. Crespo-Martínez, Á.M. Guerrero-Higueras, C. Fernández-Llamas "Flow-data gathering using netflow sensors for fitting malicious-traffic detection models Sensors", 20 (24) (2020), p. 7294

Thank You