

A Simulation Preorder for Koopman-like Lifted Control Systems

Antoine Aspeel & Necmiye Ozay University of Michigan

Introduction

Finite-dimensional Koopman liftings have been successfully used to construct high dimensional linear approximations of dynamical systems, allowing to leverage linear control techniques to control nonlinear systems.

In this work, a simulation preorder among lifted systems — a generalization of finite-dimensional Koopman approximations to systems with inputs — is introduced. It is proved that this simulation relation implies the containment closed-loop behaviors.

These results enable us to compare different lifting functions and alternative lifted systems in terms of their usefulness in control design.

$$x^{+} \in f_{X}(x, u)$$

$$y = \psi(x)$$

$$y^{+} \in Ay + Bu \oplus W$$

$$x = Cy$$

Lifted systems

Def. A **lifted system** is defined as
$$LS_Y$$
:
$$\begin{cases} y(0) = \psi_Y(x(0)) \\ y(t+1) \in f_Y(y(t), u(t)) \\ x(t) = C_Y y(t) \end{cases}$$

with $x(t) \in X$, $u(t) \in U$, $y(t) \in \mathbb{R}^{n_Y}$ and $C_Y \psi_Y(x) = x$.

<u>Important examples of lifted systems:</u>

- 1. Unlifted (i.e., classical) systems $x^+ \in f_X(x, u)$ are lifted systems with $n_Y = n_X$ and $\psi_Y = C_Y = id$.
- 2. Affine (or piecewise affine) lifted systems

$$y(t+1) \in Ay(t) + Bu(t) \oplus W$$
$$x(t) = Cy(t)$$

for which linear control methods can be used.

<u>Def.</u> The **behavior** of LS_Y under a policy π is the set

$$\boldsymbol{B}_{\pi}[LS_Y] = \{ (\boldsymbol{x}, \boldsymbol{u}) \mid \exists \boldsymbol{y} \text{ s. t. } (\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{y}) \text{ is a max. sol. }$$

&
$$u(t) = \pi(x(0), ..., x(t))$$
 }.

<u>Def.</u> A **specification** is a set of (finite or infinite) sequences of (x, u) pairs: $S \subseteq (X \times U)^{\infty}$. (e.g., safety or LTL constraints)

<u>Def.</u> The specification S is **satisfied** by the lifted system LS_Y under the policy π if $\mathbf{B}_{\pi}[LS_Y] \subseteq S$. This is written $LS_Y \vDash_{\pi} S$.

Simulation between lifted systems

<u>Def.</u> LS_Y is **simulated** by LS_Z (denoted $LS_Y \leq LS_Z$) if there exists a set-valued map $\rho: \mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}$ s.t.

- $\forall x \in X : \psi_Y(x) \in \rho(\psi_Z(x))$ (Relation between liftings)
- $\forall (z,u) \in \mathbb{R}^{n_Z} \times U : f_Y(\rho(z),u) \subseteq \rho(f_Z(z,u))$ (dynamics)
- $\forall z \in \mathbb{R}^{n_z} : C_Y \rho(z) \subseteq \{C_Z z\}$ (outputs)

Theorem Given two lifted systems LS_Y and LS_Z and a policy π , if LS_Y is simulated by LS_Z , then the closed loop behavior of LS_Y under π is included in the closed loop behavior of LS_Z under π , i.e.,

$$LS_Y \leq LS_Z \implies \boldsymbol{B}_{\pi}[LS_Y] \subseteq \boldsymbol{B}_{\pi}[LS_Z]$$

Consequently, if a specification S is satisfied by LS_Z under the policy π , then S is also satisfied by LS_Y under the same policy π , i.e.,

$$LS_Y \leq LS_Z \vDash_{\pi} S \implies LS_Y \vDash_{\pi} S$$

If a nonlinear system of interest LS_X (e.g., unlifted) is simulated by an affine lifted system LS_Y , then linear control methods can be used to find a policy π s.t. $LS_Y \vDash_{\pi} S$. The policy can be used to control LS_X .

If LS_X is simulated by two lifted systems LS_Y and LS_Z and if $LS_Y \leq LS_Z$, then LS_Y is a "not worse" representation of LS_X than LS_Z in terms of specification satisfaction.

Some special cases of $LS_Y \leq LS_Z$:

If LS_Y is unlifted and

- LS_Z is affine
 - reduces to **Koopman over-approximation** in [1]
- LS_Z is affine and both systems are autonomous
 - reduces to **approximate immersion** in [2]
- LS_Z is picewise affine and unlifted
 - reduces to **hybridization** in [3]

Computational aspects

Given two lifted systems LS_Y and LS_Z , verifying if $LS_Y \leq LS_Z$ is an **infinite dimensional** feasibility problem.

- → We derive **finite-dimensional** sufficient conditions to
- 1. find an affine lifted system that simulates a polynomial system
- 2. verify if one affine lifted system simulates another

In practice...

Given a classical (i.e., unlifted) system LS_X : $x^+ \in f_X(x, u)$

- 1. Pick K lifting functions $\psi_1, ..., \psi_K$
- 2. For each, compute an affine lifted system: LS_k s.t. $LS_X \leq LS_k$
- 3. If $LS_i \leq LS_i$, use LS_i instead of LS_i

Experiments with Backward reachable sets (BRS)

For the system LS_X : $\ddot{x} = 2x - 2x^3 - 0.5\dot{x} + u$ and three lifting functions, we find three affine lifted systems simulating LS_X . We could verify that $LS_1 \leq LS_3$. As expected, their corresponding BRSs satisfy $BRS_1 \supseteq BRS_3$.

References

[1] Balim, H., Aspeel, A., Liu, Z., & Ozay, N. (2023). Koopman-inspired Implicit Backward Reachable Sets for Unknown Nonlinear Systems. *IEEE L-CSS*.

[2] Wang, Z., Jungers, R. M., & Ong, C. J. (2023). Computation of invariant

sets via immersion for discrete-time nonlinear systems. *Automatica*. [3] Girard, A., & Martin, S. (2011). Synthesis for constrained nonlinear

systems using hybridization and robust controllers on simplices. *IEEE TAC*.