Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 8 A

 $L\"{o}sungshinweise$

Aufgabe 1: Für $n \in \mathbb{N}$ seien $g_n : \mathbb{R} \to \mathbb{R}$ und $h_n : [0, 2\pi] \to \mathbb{R}$ definiert durch

$$g_n(x) = \frac{nx}{1+n|x|}$$
 und $h_n(x) = \frac{n\sin(x)}{2n+\cos(x)}$.

- (a) Entscheiden Sie für jede der beiden Folgen $(g_n)_{n\in\mathbb{N}}$ und $(h_n)_{n\in\mathbb{N}}$, ob punktweise Konvergenz vorliegt. Bestimmen Sie gegebenenfalls die Grenzfunktionen.
- (b) Konvergiert $(g_n)_{n\in\mathbb{N}}$ bzw. $(h_n)_{n\in\mathbb{N}}$ gleichmäßig?

Lösung:

(a) Wir untersuchen zunächst die Folge $(g_n)_{n\in\mathbb{N}}$. Für x=0 gilt $g_n(0)=0$ für alle $n\in\mathbb{N}$, also

$$\lim_{n\to\infty}g_n(0)=0,$$

und für $x \in \mathbb{R} \setminus \{0\}$ haben wir

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{nx}{1 + n|x|} = \lim_{n \to \infty} \frac{x}{\frac{1}{n} + |x|} = \frac{x}{|x|} = \begin{cases} -1, & x < 0 \\ 1, & x > 0 \end{cases}.$$

Die Funktionenfolge $(g_n)_{n\in\mathbb{N}}$ konvergiert also punktweise gegen die durch die Formel

$$g(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$$

definierte Funktion $g: \mathbb{R} \to \mathbb{R}$.

Schließlich betrachten wir die Folge $(h_n)_{n\in\mathbb{N}}$. Für jedes feste $x\in[0,2\pi]$ gilt

$$\lim_{n\to\infty} h_n(x) = \lim_{n\to\infty} \frac{n\sin(x)}{2n + \cos(x)} = \lim_{n\to\infty} \frac{\sin(x)}{2 + \frac{\cos(x)}{n}} = \frac{1}{2}\sin(x).$$

Die Funktionenfolge $(h_n)_{n\in\mathbb{N}}$ konvergiert also punktweise gegen die durch die Formel $h(x) = \frac{1}{2}\sin(x)$ definierte Funktion $h: [0, 2\pi] \to \mathbb{R}$.

(b) Gegeben sei $n \in \mathbb{N}$. Für jedes $x \in \mathbb{R} \setminus \{0\}$ können wir dann nachrechnen, dass

$$|g_n(x) - g(x)| = \left| \frac{nx}{1 + n|x|} - \frac{x}{|x|} \right|$$

$$= \left| \frac{nx|x| - x(1 + n|x|)}{|x|(1 + n|x|)} \right|$$

$$= \left| \frac{-x}{|x|(1 + n|x|)} \right|$$

$$= \frac{1}{1 + n|x|},$$

und sehen damit, dass

$$\sup_{x \in \mathbb{R} \setminus \{0\}} |g_n(x) - g(x)| = \sup_{x \in \mathbb{R} \setminus \{0\}} \frac{1}{1 + n|x|} = 1.$$

Weil zudem $g_n(0) - g(0) = 0$ gilt, haben wir zusammenfassend

$$||g_n - g||_{\infty} = \sup_{x \in \mathbb{R}} |g_n(x) - g(x)| = 1.$$

Da dies für jedes $n \in \mathbb{N}$ richtig ist, gilt insbesondere

$$\lim_{n \to \infty} \|g_n - g\|_{\infty} = 1 \neq 0,$$

weshalb die Funktionenfolge $(g_n)_{n\in\mathbb{N}}$ nicht gleichmäßig gegen g konvergieren kann.

Im Gegensatz dazu konvergiert $(h_n)_{n\in\mathbb{N}}$ sogar gleichmäßig gegen h. Um dies einzusehen, geben wir uns ein $x\in[0,2\pi]$ vor und rechnen nach, dass

$$h_n(x) - h(x) = \frac{n\sin(x)}{2n + \cos(x)} - \frac{1}{2}\sin(x)$$

$$= \frac{2n\sin(x) - \sin(x)(2n + \cos(x))}{2(2n + \cos(x))}$$

$$= -\frac{1}{n}\frac{\sin(x)\cos(x)}{2(2 + \frac{\cos(x)}{n})}$$

und damit, wegen $2 + \frac{\cos(x)}{n} \ge 1$ und $|\sin(x)\cos(x)| \le 1$,

$$|h_n(x) - h(x)| \le \frac{1}{n} \frac{|\sin(x)\cos(x)|}{2(2 + \frac{\cos(x)}{n})}$$
$$\le \frac{1}{2n}$$

für alle $n \in \mathbb{N}$ gilt. Also haben wir für alle $n \in \mathbb{N}$

$$0 \le ||h_n - h||_{\infty} \le \frac{1}{2n} \stackrel{n \to \infty}{\longrightarrow} 0$$

und somit gemäß dem Einschachtelungssatz

$$\lim_{n \to \infty} ||h_n - h||_{\infty} = 0.$$

Also konvergiert die Funktionenfolge $(h_n)_{n\in\mathbb{N}}$ gleichmäßig gegen die Funktion h.

Aufgabe 2: Für $n \in \mathbb{N}$ sei $f_n : [0, \infty) \to \mathbb{R}$ definiert durch

$$f_n(x) = \begin{cases} x^n, & 0 \le x < 1 \\ 2^{-n}, & x \ge 1 \end{cases}.$$

- (a) Zeigen Sie, dass $(f_n)_{n\in\mathbb{N}}$ punktweise konvergiert. Geben Sie die Grenzfunktion an.
- (b) Zeigen Sie, dass die Konvergenz nicht gleichmäßig ist.
- (c) Zeigen Sie, dass durch die Funktionenreihe

$$F(x) = \sum_{n=1}^{\infty} f_n(x)$$

eine Funktion $F: [0, \infty) \to \mathbb{R}$ definiert ist und skizzieren Sie den Graphen von F.

Lösung:

(a) Für $x \in [0, 1)$ gilt

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = 0$$

und für $x \in [1, \infty)$ gilt

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{2^n} = 0.$$

Also konvergiert die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ punktweise gegen die Nullfunktion

$$f: [0, \infty) \to \mathbb{R}, \quad x \mapsto 0.$$

(b) Aus Teil (a) kennen wir den punktweisen Limes f der Funktionenfolge $(f_n)_{n\in\mathbb{N}}$. Weil gleichmäßige Konvergenz allgemein punktweise Konvergenz impliziert, ist somit f der einzige mögliche Kandidat für den gleichmäßigen Limes von $(f_n)_{n\in\mathbb{N}}$. Es gilt nun

$$\sup_{x \in [0,\infty)} |f_n(x) - f(x)| \ge \sup_{x \in [0,1)} |f_n(x)| = \sup_{x \in [0,1)} x^n = 1$$

für alle $n \in \mathbb{N}$. Also ist $(f_n)_{n \in \mathbb{N}}$ nicht gleichmäßig konvergent.

(c) Für $x \in [0,1)$ berechnen wir mithilfe der Formel für die geometrische Reihe

$$F(x) = \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} x^n = \left(\sum_{n=0}^{\infty} x^n\right) - 1 = \frac{1}{1-x} - 1 = \frac{x}{1-x}$$

und für $x \in [1, \infty)$ gilt entsprechend

$$F(x) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} - 1 = 1.$$

Also ist

$$F \colon [0, \infty) \to \mathbb{R}, \quad x \mapsto \begin{cases} \frac{x}{1-x}, & \text{falls } x \in [0, 1) \\ 1, & \text{falls } x \in [1, \infty) \end{cases}$$

die gesuchte Grenzfunktion der Funktionenreihe $\sum_{n=1}^{\infty} f_n$.

Skizze:

Aufgabe 3: Es seien $U \subseteq \mathbb{R}$ und $(f_n)_{n \in \mathbb{N}}$ eine Folge von Funktionen $f_n \colon U \to \mathbb{R}$, die gleichmäßig gegen $f \colon U \to \mathbb{R}$ und punktweise gegen $g \colon U \to \mathbb{R}$ konvergiert. Zeigen Sie, dass

$$f(x) = q(x)$$

für alle $x \in U$.

Hinweis: Zeigen Sie, dass $|f(x) - g(x)| < \varepsilon$ für alle $\varepsilon > 0$ und alle $x \in U$.

Lösung: Wir betrachten ein $x \in U$. Weiter sei $\varepsilon > 0$ beliebig vorgegeben. Da $(f_n)_{n \in \mathbb{N}}$ gleichmäßig gegen f konvergiert, gibt es ein $N_1 \in \mathbb{N}$, sodass

$$\sup_{y \in U} |f_n(y) - f(y)| < \frac{\varepsilon}{2} \quad \text{für alle } n \ge N_1,$$

und da $(f_n)_{n\in\mathbb{N}}$ punktweise gegen g konvergiert, gibt es ein $N_2\in\mathbb{N}$, sodass

$$|f_n(x) - g(x)| < \frac{\varepsilon}{2}$$
 für alle $n \ge N_2$.

Also gilt für alle $n \ge \max\{N_1, N_2\}$, dass

$$0 \le |f(x) - g(x)| \le |f(x) - f_n(x)| + |f_n(x) - g(x)|$$

$$\le \sup_{y \in U} |f(y) - f_n(y)| + |f_n(x) - g(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Da $\varepsilon > 0$ beliebig vorgegeben war, folgt |f(x) - g(x)| = 0, d. h. f(x) = g(x).