Solutions Série 1

Définition 1. Soient E et F deux ensembles.

- Si il existe une bijection $\phi: E \simeq F$ entre E et F on dit qu'ils ont le meme cardinal ou sont equipollents et on note cette relation |E| = |F|.
- Si il existe une application injective entre E et F, $\phi: E \hookrightarrow F$, on dit que le cardinal de E est plus petit que celui de F et on note cette relation $|E| \leq |F|$.

Exercice 1 (Corr). Montrer que la relation "avoir le meme cardinal" est une relation

1. symmetrique:

$$|E| = |F| \Longrightarrow |F| = |E|.$$

2. transitive: |E| = |F| et $|F| = |G| \implies |E| = |G|$

Solution 1. — On commence par prouver qu'il s'agit d'une relation symétrique. Soit $\phi: E \to F$ une bijection. En particulier, ϕ est une surjection. Donc a tout élément $f \in F$ est l'image d'au moins un élément $e \in E$. Comme ϕ est aussi une injection, cet élément est unique. On le dénote $\phi^{-1}(f)$. On doit prouver que cette application est une bijection.

On note que d'après la définition ci-dessus, l'élément $\phi^{-1}(f)$ est tel que

$$\phi(\phi^{-1}(f)) = f, \ \forall f \in F.$$

On en conclut l'injectivité. Car si $\phi^{-1}(f_1) = \phi^{-1}(f_2)$. On a $f_1 = f_2$ grâce à la relation ci-dessus.

Pour la surjectivité on note que comme pour tout élément $e \in E$ est le seul élément dont l'image est $\phi(e)$, on a la relation

$$\phi^{-1}(\phi(e)) = e, \ \forall e \in E.$$

Cela prouve que tout élément $e \in E$ est dans l'image de ϕ^{-1} . Donc il s'agit bien d'une fonction surjective.

— Maintenant on va prouver la transitivité. Soient $\phi: E \to F, \ \psi: F \to G$ deux fonctions bijectives. On considère la fonction composée $\psi \circ \phi: E \to G$ défini par

$$(\psi \circ \phi)(e) = \psi(\phi(e)).$$

Il suffit maintenant de prouver que cela est une fonction bijective entre E et G. Pour l'injectivité nous remarquons simplement que par l'injectivité de ϕ et ψ

$$\psi(\phi(e_1)) = \psi(\phi(e_2)) \Rightarrow \phi(e_1) = \phi(e_2) \Rightarrow e_1 = e_2.$$

Pour la surjectivité, on raisonnera de la manière suivante : Soit $g \in G$. Comme ψ surjective, il existe en élement $f \in F$ tel que $\psi(f) = g$. De la même façon, comme ϕ est aussi surjective, il existe un élement $e \in E$ tel que $\phi(e) = f$. On en déduit que

$$(\psi \circ \phi)(e) = \psi(f) = g.$$

Donc g appartient à l'image de $(\psi \circ \phi)$. Cela est vrai pour tout les éléments de G. Donc $(\psi \circ \phi)$ est aussi surjective. Nous avons trouvé une bijection entre E et G. Donc

$$|E| = |G|$$
.

Exercice 2 ($\star \star \star$ Le Theoreme de Cantor-Bernstein-Schroeder). En pensant au cas des ensembles finis (ci-dessous) il est tres tentant de penser que

$$|E| \leq |F|$$
 et $|F| \leq |E|$ equivaut a $|E| = |F|$.

Eh bien c'est vrai! Si il existe une injection $\phi: E \hookrightarrow F$ et une injection $\psi: F \hookrightarrow E$ alors il existe une bijection $\varphi: E \simeq F$.

Ce n'est pas du tout evident et meme plutot astucieux.

Pour cela on associe a chaque element de E (resp. de F) une suite (finie ou infinie) $(a_k)_{k\geqslant 0}$ (resp $(b_k)_{k\geqslant 0}$) d'elements appartenant alternativement a E et F:

- Pour $e \in E$ on pose $a_0 = e$, et on pose $a_1 \in F$ l'unique antecedent de e par ψ si cet antecedent existe; si cet antecedent n'existe pas on interrompt la suite. Si a_1 existe, on pose $a_2 \in E$ l'unique antecedent de a_1 par ϕ si il existe; si il n'existe pas on interrompt la suite. Si a_2 existe, on pose $a_3 \in F$ l'unique antecedent de a_2 par ψ si il existe; si il n'existe pas on interrompt la suite...et on continue ainsi a l'infini ou jusqu'a ce qu'on s'arrete.
- Pour $f \in F$ on pose $b_0 = f$, et on pose $b_1 \in E$ l'unique antecedent de f par ϕ si cet antecedent existe; si cet antecedent n'existe pas on interrompt la suite. Si b_1 existe, on pose $b_2 \in F$ l'unique antecedent de b_1 par ψ si il existe; si il n'existe pas on interompt la suite. Si b_2 existe, on pose $b_3 \in E$ l'unique antecedent de b_2 par ϕ si il existe; si il n'existe pas on interrompt la suite...et on continue ainsi a l'infini ou jusqu'a ce qu'on s'arrete.

On note $E_p, E_i, E_\infty \subset E$ les sous-ensembles formes des elements de E dont la suite associe est soit

- finie et se termine sur un indice n pair (par exemple une suite a un element (e_0) ou e_0 n'a pas d'antecedent par ψ dans F)),
- finie et se termine sur un indice n impair (par exemple une suite a deux elements (e_0, f_1) ou f_1 n'a pas d'antecedent par ϕ dans E),
- infinie.

On note de meme $F_p, F_i, F_\infty \subset F$ les sous-ensembles formes des elements de F dont la suite associe est soit

- finie et se termine sur un indice n pair,
- finie et se termine sur un indice n impair,
- infinie.
- 1. Pourquoi les elements a_1, a_2, a_3, \cdots , quand ils existent sont ils uniques?
- 2. Montrer que E_p et F_i sont en bijection ; que F_p et E_i sont en bijection et que E_{∞} et F_{∞} egalement (on regardera ce qui ce passe pour les sous-ensemble $E_0, E_2 \subset E_p, E_1, E_3 \subset E_i$ et $F_0, F_2 \subset F_p, F_1, F_3 \subset F_i$ les elements dont les suites associes se termine a l'indice 0, 2, 1, 3).

3. Conclure.

Solution 2. 1. Lorsqu'ils existent, les éléments a_1 , a_2 , a_3 sont uniques car les applications ϕ et ψ sont injectives.

- 2. Nous allons montrer que $|E_p| = |F_i|$, $|E_i| = |F_p|$ et $|E_{\infty}| = |F_{\infty}|$. On rappelle pour cela que deux ensembles A et B sont en bijection si et seulement s'il existe deux applications $f: A \to B$ et $g: B \to A$ tels que $f \circ g = Id_B$ et $g \circ f = Id_A$.
 - a) $|E_p| = |F_i|$: On définit les deux applications suivantes

$$\Phi_p: E_p \longrightarrow F_i$$

$$e \longmapsto \phi(e),$$

ainsi que

$$\Psi_i: F_i \longrightarrow E_p$$

$$f \longmapsto \phi^{-1}(f),$$

où $\phi^{-1}(f)$ désigne l'unique élément e de E tel que $\phi(e) = f$. Il s'agit premièrement de voir que ces deux applications sont bien définies, c'est- \tilde{A} -dire que $\Phi_p(E_p) \subset F_i$ et $\Psi_i(F_i) \subset E_p$. Or si $e \in E_p$ a comme suite associée $(a_0, a_1, ..., a_{2n})$, alors la suite associée \tilde{A} $\Phi_p(e) = \phi(e)$ est $(\phi(e), a_0, ..., a_{2n})$ qui est bien de longueur paire. De même, si $f \in F_i$ a comme suite $(b_0, ..., b_{2n+1})$, alors $\Psi_i(f) = \phi^{-1}(f)$ possède comme suite $(b_1, ..., b_{2n+1})$ qui est bien de longueur impaire. Finalement, on a par construction

$$\Phi_p \circ \Psi_i = Id_{F_i} \text{ et } \Psi_i \circ \Phi_p = Id_{E_p},$$

 $d'où |E_p| = |F_i|.$

b) $|E_i| = |F_p|$: On définit cette fois

$$\Phi_i: E_i \longrightarrow F_p \\
e \longmapsto \psi^{-1}(e),$$

puis

$$\Psi_p: F_p \longrightarrow E_i$$

$$f \longmapsto \psi(f).$$

On vérifie exactement comme au point a) que les deux applications sont bien définies et que $\Psi_p \circ \Phi_i = Id_{E_i}$ et $\Phi_i \circ \Psi_p = Id_{F_p}$.

c) $|E_{\infty}| = |F_{\infty}|$: On pose

$$\Phi_{\infty}: E_{\infty} \longrightarrow F_{\infty}$$

$$e \longmapsto \phi(e),$$

et

$$\Psi_{\infty}: F_{\infty} \longrightarrow E_{\infty}$$
$$f \longmapsto \phi^{-1}(f).$$

Encore une fois, il est facile de voir que ces deux applications sont bien définies et qu'elles sont inverse l'une de l'autre.

3. Pour conclure que |E| = |F|, on remarque que les deux ensembles admettent les partitions suivantes

$$E = E_p \sqcup E_i \sqcup E_\infty$$
 et $F = F_i \sqcup F_p \sqcup F_\infty$

où le symbole \sqcup signifie "union disjointe". Puisque l'on a montré que $|E_p|=|F_i|$, $|E_i|=|F_p|$ et $|E_{\infty}|=|F_{\infty}|$, on conclut que |E|=|F|. En effet, il suffit pour cela de considérer l'application $\Phi:E\to F$ définie par

$$\Phi(e) = \begin{cases}
\Phi_p(e) & \text{si } e \in E_p, \\
\Phi_i(e) & \text{si } e \in E_i, \\
\Phi_{\infty}(e) & \text{si } e \in E_{\infty}
\end{cases}$$

qui admet comme inverse l'application $\Psi: F \to E$ définie par

$$\Psi(f) = \begin{cases}
\Psi_i(f) & \text{si} \quad f \in F_i, \\
\Psi_p(f) & \text{si} \quad f \in F_p, \\
\Psi_{\infty}(f) & \text{si} \quad f \in F_{\infty}.
\end{cases}$$

Définition 2 (Ensembles finis). Soit $n \ge 1$ un entier non-nul. Si un ensemble E a meme cardinal que l'ensemble

$$\{1,\cdots,n\}$$

on dit que E est fini de cardinal n. On dit que l'ensemble vide \emptyset est de cardinal 0. Un ensemble E est fini si il est de cardinal n pour $n \ge 0$. On note alors ce cardinal |E|.

Un ensemble qui n'est pas fini est dit infini.

Définition 3 (Ensembles denombrables, Corr). Un ensemble infini qui a meme cardinal que \mathbb{N} est dit denombrable.

Exercice 3. Quelques ensembles denombrables.

- 1. Montrer que pour qu'un ensemble infini E soit denombrable il suffit d'exiber une injection $E \hookrightarrow \mathbb{N}$.
- 2. Montrer que \mathbb{Z} est denombrable.
- 3. Montrer directement que \mathbb{N}^2 est denombrable (on pourra faire un dessin).
- 4. Montrer que \mathbb{N}^2 est denombrable (deuxieme methode); soit $\mathcal{P} = \{2, 3, 5, \cdots\}$ l'ensemble des nombres premiers. Montrer que

$$\mathcal{P}^2$$
 denombrable $\Longrightarrow \mathbb{N}^2$ denombrable.

Etablir ce dernier fait en considerant l'application

$$\begin{array}{ccc} \mathcal{P}^2 & \mapsto & \mathbb{N} \\ (p,q) & \mapsto & p^2 q \end{array}$$

- 5. En deduire que \mathbb{Q} est denombrable.
- 6. On appliquera un raisonnement par induction pour montrer que pour tout $k \ge 3$, \mathbb{N}^k est denombrable.

Solution 3. — On va montrer que pour tout ensemble infini, il existe une injection $E \hookrightarrow \mathbb{N}$. On définit une fonction par récurrence de la manière suivante : Comme l'ensemble E est infini, en particulier il n'est pas vide. Donc nous pouvons choisir un élément $x_1 \in E$. On posera $\phi(1) = x_1$.

On suppose maintenant que l'on a choisi $x_1, x_2, \ldots, x_n \in E$ tels que $x_i \neq x_j$ pour $i \neq j$ et que l'on a posé $\phi(i) = x_i$. pour $1 \leq i \leq n$. Comme l'ensemble E est infini, les élément x_1, x_2, \ldots, x_n ne constituent pas la totalité de l'ensemble E. C'est-à-dire, il existe un élément $x_{n+1} \in E$ tel que $x_{n+1} \neq x_i$ pour tout $i \leq n$. On pose alors $\phi(n+1) = x_{n+1}$.

En procédant comme cela, on a produit une fonction $\phi: \mathbb{N} \to E$ tel que, par construction, $\phi(i) \neq \phi(j)$ pour i > j. Autrement dit, ϕ est injective. Donc si jamais on prouve qu'il existe une injection $E \hookrightarrow \mathbb{N}$ ($|E| \leqslant |\mathbb{N}|$), comme on sait déjà que tout ensemble infini satisfait $|Nn| \leqslant |E|$, on en déduit, par l'exercice 2 que |E| = |Nn|.

— On construit une fonction $\phi: \mathbb{Z} \to \mathbb{N}$ qui envoie 0 dans 0, tout les entiers positifs dans les entiers positifs paires et tous les entiers négatifs dans les entiers négatifs impaires de la fa \tilde{A} §on suivante

$$\phi(n) = \begin{cases} 2n, & \text{si } n \geqslant 0, \\ -2n - 1 & \text{si } n < 0, \end{cases}$$

Juste pour avoir une idée, on a

$$\{\ldots \phi(-2), \phi(-1), \phi(0), \phi(1), \phi(2) \ldots\} = \{\ldots 7, 5, 3, 1, 0, 2, 4, 6, 8, \ldots\}.$$

D'après la question précédente, il suffit de montrer que cela est une fonction injective. Supposons que $\phi(m)=\phi(n)$, alors soit on a $m,n\geqslant 0$, soit on a m,n<0, car sinon on serait en train de dire qu'un entier paire est égal a un entier impaire. Donc soit on a 2m=2n et donc m=n, soit on a -2m-1=-2n-1 et donc m=n. Alors la fonction ϕ est bien injective. Comme $\mathbb Z$ est un ensemble infini, d'après le point précédent, $\mathbb Z$ est dénombrable.

— Pour définir une application injective $i : \mathbb{N}^2 \hookrightarrow \mathbb{N}$, on peut considérer celle définie par (voir Figure 1 pour une illustration)

$$i(a,b) = \max(a,b)^2 + \max(2b-a,b) + 1.$$

Montrons que l'application est injective. Soient pour cela (a,b), $(a',b') \in \mathbb{N}^2$ tels que i(a,b)=i(a',b') et montrons que (a,b)=(a',b'). On commence par montrer que l'on a forcément $\max(a,b)=\max(a',b')$. En effet, supposons par l'absurde que $\max(a,b)>\max(a',b')$, il s'ensuit alors que

$$i(a,b) \ge (\max(a',b')+1)^2 + \max(2b-a,b)+1$$

$$\ge \max(a',b')^2 + 2\max(a',b')+1+b+1$$

$$\ge \max(a',b')^2 + \max(2b'-a',b')+1+b+1$$

$$= i(a',b')+b+1 > i(a',b'),$$

ce qui est une contradiction. Maintenant que l'on a égalité des maximums, alors le fait que i(a,b)=i(a',b') implique

$$\max(2b - a, b) = \max(2b' - a', b') \tag{0.1}$$

et on se retrouve avec trois cas : Si l'égalité (0.1) nous donne 2b - a = 2b' - a', alors c'est que $b = \max(a, b) = \max(a', b') = b'$ et l'égalité a = a' suit. Si en revanche (0.1) nous dit que 2b - a = b', alors nous obtenons

$$\max(a', b') = a' \geqslant b' = 2b - a \geqslant \max(a, b).$$

Puisque l'on a égalité des maximums, nous devons avoir 2b-a=b'=a'=b=, d'où a=b=a'=b'. Finalement, si (0.1) nous donne b'=b, alors c'est que $\max(a',b')=a'$ et $\max(a,b)=a$ et donc on a aussi a=a'.

Figure 1 – Illustration de la fonction de comptage i

— la fonction $\phi: \mathcal{P} \to \mathbb{N}$ donné par l'identité, *i.e.* $\phi(p) = p$. Cela est évidemment une fonction injective. Alors par le théorème d'Euclide, comme \mathcal{P} est infini, on a que $|\mathcal{P}| = |\mathbb{N}|$. Soit ψ une bijection entre \mathcal{P} et \mathbb{N} , cela peut être étendu a une bijection entre $\Psi: \mathcal{P}^2 \to \mathbb{N}^2$ de la forme suivante

$$\Psi(p,q) := (\psi(p), \psi(q)).$$

Donc nous avons que $|\mathcal{P}^2| = |\mathbb{N}^2|$. On va maintenant prouver que l'ensemble \mathcal{P}^2 est dénombrable. Il suffit de montre que l'application décrite dans l'exercice est une injection (encore une fois on utilise le premier point). En effet, si

$$p_1^2 q_1 = p_2^2 q_2,$$

avec p_1, p_2, q_1, q_2 des nombres premiers, alors gree au théorème fondamental de l'arithmétique (factorization unique), on a forcément que $p_1 = p_2$ et $q_1 = q_2$, Ceci implique que la fonction est effectivement injective.

— Considérons la fonction $\phi: \mathbb{Q} \to \mathbb{Z}^2$ de la fa§on suivante : Pour chaque rationnel x, on choisit $a, b \in \mathbb{Z}$ tels que $x = \frac{a}{b}$ et posons $\phi(x) = (a, b)$. Tel fonction est injective, car si $\phi(x) = \phi(y)$, alors $x = \frac{a}{b} = y$. Nous savons déjà que \mathbb{Z} est dénombrable, alors

$$|\mathbb{Z}^2| = |\mathbb{N}^2| = |\mathbb{N}|.$$

Soit $\psi : \mathbb{Z}^2 \to \mathbb{N}$ une bijection entre \mathbb{Z}^2 et \mathbb{N} . Alors la fonction $\psi \circ \phi : \mathbb{Q} \to \mathbb{N}$ est une composition de fonctions injectives et donc injective (voir l'exercice 8 ci-dessous). Comme \mathbb{Q} est infini, on a prouvé qu'il est aussi dénombrable.

— On va prouver que \mathbb{N}^k dénombrable implique \mathbb{N}^{k+1} dénombrable.

Supposons que \mathbb{N}^k est dénombrable. On considère une bijection $\phi: \mathbb{N}^k \to \mathbb{N}$ et on définit une application $\psi: \mathbb{N}^{k+1} \to \mathbb{N}^2$ donnée par

$$(x_1,\ldots,x_k,x_{k+1}) \mapsto (\phi(x_1,\ldots,x_k),x_{k+1}).$$

Il est très facile de vérifier que cela nous donne une bijection entre \mathbb{N}^{k+1} et \mathbb{N}^2 . Donc on a que

$$|\mathbb{N}^{k+1}| = |\mathbb{N}^2| = |\mathbb{N}|.$$

Donc \mathbb{N}^{k+1} est aussi dénombrable. Alors on a prouvé

 \mathbb{N}^k dénombrable $\Rightarrow \mathbb{N}^{k+1}$ dénombrable, pour tout $k \geqslant 2$.

Comme on sait déjà que \mathbb{N}^2 est dénombrable, on a de même pour tout $k \geqslant 3$.

Exercice 4 (Cantor). L'intervalle [0, 1[n'est pas dénombrable. On donne ici le célèbre argument diagonal.

On suppose qu'il existe une bijection qu'on note $\phi : \mathbb{N} \simeq [0, 1[$. Ainsi pour tout $n \geqslant 1$, on dispose d'un nombre reel $\phi(n) \in [0, 1[$ dont on note l'écriture décimale

$$\phi(n) = 0, a_{n,1}a_{n,2}\cdots a_{n,k}\cdots, a_{n,k} \in \{0, \cdots, 9\}.$$

On (Cantor) considere le reel

$$C = 0, a_1 a_2 \cdots a_k \cdots \in [0, 1]$$

dont l'écriture décimale est donnée pour $k \ge 1$ par

$$a_k = \begin{cases} a_{k,k} + 1 & \text{si } a_{k,k} < 9 \\ 0 & \text{si } a_{k,k} = 9 \end{cases}.$$

Obtenir une contradiction en etudiant l'entier n correspondant a C via la bijection ϕ et ses liens avec l'écriture décimale de C.

Solution 4. On va prouver que $C \neq \phi(n)$ pour tout $n \in \mathbb{N}$. Cela impliquera que la fonction ϕ nr'est pas surjective. D'où la contradiction.

Supposons que $C = \phi(n)$. Alors il y a deux possibilités. Rappelons que tout nombre réel possède au plus deux représentations décimales. En comparant le n-ième chiffre de la représentation décimale de ces deux nombre, on a $a_{n,n}$ pour $\phi(n)$ et a_n pour C, où

$$a_k = \begin{cases} a_{k,k} + 1 & \text{si } a_{k,k} < 9 \\ 0 & \text{si } a_{k,k} = 9. \end{cases}$$

Donc ces chiffres sont forcément distincts. On a envie de dire que cela implique que $\phi(n) \neq C$, mais il a une subtilité. C'est que certains nombres réels possèdent deux

représentations décimales distinctes (c'est le cas pour les nombres dont la représentation décimales finit par 00... ou 99...). Par exemple

$$0.123000000... = 0.122999999...$$

Or il suffit de montrer que le nombre C n'a pas une telle représentation décimale. Pour cela, il suffit par exemple de montrer que dans la réprésentation décimale de C il a une infinité de chiffres différents de 0 et 9. D'après la surjectivité de ϕ il existe des entiers X_i tels que

$$\begin{cases} \phi(x_1) = 0.211111...\\ \phi(x_2) = 0.121111...\\ \phi(x_3) = 0.112111...\\ \vdots \end{cases}$$

Par la définition de C, le x_i -iéme chiffre de la représentation décimale de C est soit égal à 2 ou 3.

On a demontré que la représentation décimale de C contient une infinité de chiffres que sont égaux á 2 ou 3. Alors C n'est pas un nombre avec deux représentations décimales distinctes est donc on a terminé.

Exercice 5 (Corr). Soient E et F des ensembles finis et

$$F^E := \{ \phi : E \to F \}$$

l'ensemble des applications de E vers F.

1. Montrer que F^E est fini et que son cardinal vaut

$$|F^E| = |F|^{|E|}.$$

2. Montrer que $|\mathcal{P}(E)|$ le nombre de sous-ensembles de E est equal a $2^{|E|}$ (on etablira une bijection entre $\mathcal{P}(E)$ et l'ensemble $\{0,1\}^E$).

Solution 5. - On sait que E et F sont finis, on suppose que |E| = n et |F| = k, et on pose

$$E = \{e_1, e_2, \dots, e_n\}, \qquad F = \{f_1, f_2, \dots, f_k\},\$$

c'est à dire que nous faisons des listes des éléments de E et de F. Alors une application $\phi \colon E \to F$ est uniquement charactérisée par une élément $(\phi(e_1), \dots, \phi(e_n)) \in F^n$: chaque élément du produit F^n est admissible et donne une unique application. Alors on a l'égalité des ensembles $F^E = F^n$ et ainsi

$$|F^E| = |F|^{|E|}.$$

En mots : pour le premier élément $e_1 \in E$ on peut choisir librement un élément de F pour son image, et ainsi on a |F| choix. Mais la même chose est vraie pour le deuxième élément $e_2 \in E$, indépendamment du choix fait à la première étape, et ainsi on a |F| choix pour cette étape; celui donne $|F| \cdot |F|$ choix pour les deux premières étapes.

Comme on a |E| étapes on déduit le résultat voulu : $|F| \cdot |F| \cdots |F|$, où le produit est pris |E| fois.

- On définit d'abord une application $\Psi \colon \mathcal{P}(E) \to \{0,1\}^E$, et on prouve après que Ψ est une bijection. Soit $K \in \mathcal{P}(E)$ c'est à dire $K \subseteq E$, alors on construit l'application $\Psi(K) \colon E \to \{0,1\}$ donnant comme image pour chaque élément $e \in E$:

$$\Psi(K)(e) := \begin{cases} 0, & e \notin K \\ 1, & e \in K. \end{cases}$$

On veut maintenant prouver que Ψ est une bijection.

-(injective) : on prend K, L deux sous-ensembles de E, s'ils sont différents on peut supposer qu'il y a un élément $e \in E$ tel que $e \in K$, mais $e \notin L$. Alors $1 = \Psi(K)(e) \neq \Psi(L)(e) = 0$, et alors $\Psi(K) \neq \Psi(L)$ comme applications.

-(surjective) : soit $\phi \in \{0,1\}^E$, c'est à dire $\phi \colon E \to \{0,1\}$, il faut construire un sous-ensemble K_{ϕ} de E tel que $\Psi(K_{\phi}) = \phi$. Pour cela on pose

$$K_{\phi} := \{ e \in E \quad \text{telle que} \quad \phi(e) = 1 \}.$$

On a donc bien $\Psi(K_{\phi})(e) = \phi(e)$ pour chaque $e \in E$, parce que, par définition,

$$\Psi(K_{\phi})(e) = \begin{cases} 0, & e \notin K_{\phi} & \text{i.e. } \phi(e) = 0\\ 1, & e \in K_{\phi} & \text{i.e. } \phi(e) = 1. \end{cases}$$

Exercice 6 (Corr). On suppose que |E| = n; montrer que le cardinal de l'ensemble des bijections Bij(E, F) vaut soit 0 soit $n! = 1 \cdot .2 \cdot ... \cdot .n$.

Solution 6. On sait que |E| = n. Il faut prouver que

$$|\operatorname{Bij}(E, F)| = \begin{cases} 0 & |F| \neq n \\ n! & |F| = n. \end{cases}$$

On sait qu'il existe une bijection entre E et un autre ensemble F si et seulement si |E| = |F|. Cela prouve la première partie. Pour la deuxième partie on suppose |F| = n, et on cherche les bijections $E \to F$. En effet il suffit de chercher les injections $E \to F$ parce que, parmi deux ensembles finis de même cardinalité, une application est une injection si et seulement si elle est une bijection.

Pour construire une application injective $\phi \colon E = \{e_1, \dots, e_n\} \to F = \{f_1, \dots, f_n\}$ on

- n choix pour $\phi(e_1)$,
- n-1 choix pour $\phi(e_2)$, comme il faut éviter $\phi(e_1)$,
- ...
- 2 choix pour $\phi(e_{n-1})$, comme il faut éviter $\phi(e_1)$, $\phi(e_2)$, ..., $\phi(e_{n-2})$.
- 1 choix pour $\phi(e_n)$, comme il faut éviter $\phi(e_1), \phi(e_2), \ldots, \phi(e_{n-1})$.

Alors on a $n! = n \cdot \cdots \cdot 2 \cdot 1$ injections $E \to F$.

Exercice 7 (Corr). Soit $\phi: E \to F$ et $\psi: F \to E$ des applications entre des ensembles finis E et F.

- 1. Montrer que si ϕ est injective et $|E| \ge |F|$ alors ϕ est bijective.
- 2. Montrer que si ϕ est surjective et $|E| \leq |F|$ alors ϕ est bijective.
- 3. Montrer que si ϕ et ψ sont toutes les deux injectives alors elles sont bijectives.
- 4. Montrer que si ϕ et ψ sont toutes les deux surjectives alors elles sont bijectives.

Solution 7.

Remarque. Pour une application $\phi: E \to F$ entre deux ensembles finis, ϕ est injective si et seulement si $|E| = |\operatorname{Im}(\phi)|$ et ϕ est surjective si et seulement si $|F| = |\operatorname{Im}(\phi)|$. Nous notons également l'inégalité $|E| \ge |\operatorname{Im}(\phi)|$.

- Si ϕ est injective, nous avons $|E| = |\operatorname{Im}(\phi)|$, ce qui implique que $|E| \leqslant |F|$. On déduit donc du fait que $|E| \geqslant |F|$ que |E| = |F|. Nous avons donc $|E| = |\operatorname{Im}(\phi)| = |F|$, et cela implique donc que ϕ est également surjective et donc bijective.
- Si ϕ est surjective, nous avons $|E| \ge |\operatorname{Im}(\phi)| = |F|$. On déduit donc du fait que $|E| \le |F|$ que |E| = |F|. Nous avons donc $|E| = |\operatorname{Im}(\phi)|$, ce qui implique que ϕ est également injective et donc bijective.
- L'injectivité de ϕ implique que $|E| \leq |F|$, tandis que l'injectivité de ψ implique que $|F| \leq |E|$. Par le premier point de l'exercice nouss avons que ϕ et ψ sont bijectives.
- La surjectivité de ϕ implique que $|E| \geqslant |F|$, tandis que la surjectivité de ψ implique que $|F| \geqslant |E|$. Par le second point de l'exercice nous avons que ϕ et ψ sont des bijections.

Exercice 8 (Corr). Soient E, F, G des ensembles (pas forcement finis) et $\phi : E \to F$ et $\psi : F \to G$ deux applications entre les ensembles E et F et les ensembles F et G et $\varphi = \psi \circ \phi : E \to G$ l'application composee.

- 1. Montrer que si ϕ et ψ sont surjectives alors φ l'est.
- 2. Montrer que si ϕ et ψ sont injectives alors φ l'est.
- 3. Montrer que si ϕ et ψ sont bijectives alors φ l'est et calculer l'application reciproque φ^{-1} en fonction de celle de ϕ et de celle de ψ .
- 4. Montrer que si φ est surjective alors ψ est surjective. Donner un exemple montrant que ϕ ne l'est pas forcement.
- 5. Montrer que si φ est injective alors ϕ est injective. Donner un exemple montrant que ψ ne l'est pas forcement.
- **Solution 8.** Démontrer que $\varphi = \psi \circ \phi : E \to G$ est surjective revient à montrer que pour tout $g \in G$ il existe $e \in E$ tel que $\varphi(e) = g$. Soit donc $g \in G$ un élément quelconque. Comme ψ est surjective, nous pouvons choisir $f \in F$ tel que $\psi(f) = g$. De même, comme ϕ est surjective, nous choisissons $e \in E$ tel que $\phi(e) = f$. Nous en déduisons facilement que

$$\varphi(e) = \psi \circ \phi(e) = \psi(\phi(e)) = \psi(f) = g,$$

et donc φ est bien surjective.

— Démontrer que φ est injective revient à montrer que pour tout $e, e' \in E$,

$$\varphi(e) = \varphi(e') \Rightarrow e = e'.$$

Supposons donc que $\varphi(e) = \varphi(e')$. Par définition, donc, $\psi(\phi(e)) = \psi(\phi(e'))$. Mais comme ψ est injective, nous avons que $\phi(e) = \phi(e')$. L'injectivité de ϕ nous permet donc de conclure que e = e' et donc que φ est bien injective.

— Si ϕ et ψ sont bijectives, alors en particulier elles sont injectives et surjectives et par les deux points précédants, φ est également injective et surjective, ce qui implique par définition que φ est bijective. Soit ϕ^{-1}, ψ^{-1} les applications inverse de ϕ et ψ respectivement et posons

$$\tau := \phi^{-1} \circ \psi^{-1} : G \to E.$$

Nous allons montrer que $\tau = \varphi^{-1}$. En effet, pour tout $e \in E$

$$\tau \circ \varphi(e) = \phi^{-1} \circ \psi^{-1} \circ \psi \circ \phi(e) = \phi^{-1}(\psi^{-1}(\psi(\phi(e)))) = \phi^{-1}(\phi(e)) = e,$$

et donc $\tau \circ \varphi$ est bien l'application $\mathrm{Id}_E : E \to E$. Par un calcul quasi-identique nous avons également $\varphi \circ \tau = \mathrm{Id}_G : G \to G$, et donc $\varphi^{-1} = \varphi^{-1} \circ \psi^{-1}$.

— Supposons que φ est surjective. Nous voulons démontrer que ψ est également surjective. Soit donc $g \in G$ quelconque, et nous voulons trouver un antécédant de g pour ψ . Par la surjectivité de φ , nous pouvons choisir $e \in E$ tel que $\varphi(e) = g$. Nous notons $\varphi(e) = f \in F$ et comme $\varphi(e) = \psi(\varphi(e)) = \psi(f) = g$, f est un antécédant de g pour ψ , ce qui démontre sa surjectivité.

Nous allons construire un exemple avec $\varphi = \psi \circ \phi$ surjective tel que ϕ ne soit pas surjective. Soit donc $E = \{0\}, F = \{0,1\}$ et $G = \{0\}$ avec ϕ et ψ définies par $\phi(0) = 0$, et $\psi(0) = \psi(1) = 0$. Il est facile de voir que φ est surjective car $\varphi(0) = 0$ qui est l'unique élément de G, tandis que ϕ n'est pas surjective car par exemple $1 \in F$ n'a pas d'antécédant dans E.

— Supposons que φ est injective. Nous voulons démontrer que ϕ est également injective. Soit donc $e, e' \in E$ tels que $\phi(e) = \phi(e')$. Cela implique donc que

$$\varphi(e) = \psi(\phi(e)) = \psi(\phi(e')) = \varphi(e'),$$

et l'injectivité de φ implique que e=e'. Cela prouve donc que ϕ est injective. Nous voyons aisément que l'exemple du point précédant est tel que φ est injective tandis que ψ ne l'est pas.