Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}kx^{-\frac{1}{2}} - 8x$	В1	
	$\frac{d^2 y}{dx^2} = -\frac{1}{4} kx^{-\frac{3}{2}} - 8$	В1	
		2	
11(b)	$x^{-\frac{1}{2}} - 8x = 0 \Rightarrow 1 - 8x^{\frac{3}{2}} = 0 \text{ or } x^{-1} = 64x^2 \left[\Rightarrow x^3 = \frac{1}{64} \text{ or } 8x^{\frac{3}{2}} = 1 \right]$ Setting their $\frac{dy}{dx}$ to zero and solving, providing their only error(s) are incorrect coefficients	M1	OE Award if working leads to $x = \frac{1}{4}$ WWW. Squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ to $x^{-1} - 64x^2 = 0$ gets M0.
	$x = \frac{1}{4}$ only	A1	If $x = 0$ included, A0 and max of 3/4. SC B1 only for $x = \frac{1}{4}$ only from squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ directly to $x^{-1} - 64x^2 = 0$ (SC B1 replacing the M1A1).
	$y = \frac{11}{4}$	A1	SC B1 for $y = \frac{11}{4}$ from squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ to $x^{-1} - 64x^2 = 0$.
	$\frac{d^2y}{dx^2} = -\frac{1}{2}x^{-\frac{3}{2}} - 8 \text{ which is negative, so maximum}$	B1 FT	WWW FT their x-value and their $\frac{d^2y}{dx^2}$. No FT if $x=0$ is the only solution.
		4	

PUBLISHED

Question	Answer	Marks	Guidance
11(c)	When $x = 1$, attempting to find $y = k - 2$ and gradient $= \frac{1}{2}k - 8$	M1*	OE SC B1 if both correct gradients only, or both correct y-coordinates only.
	Equation of tangent is $y-k+2=\left(\frac{1}{2}k-8\right)(x-1)$	A1	OE, e.g. $y = \left(\frac{k}{2} - 8\right)x + \frac{k}{2} + 6 \text{ or } y = \frac{k}{2}x - 8x + \frac{k}{2} + 6.$
	When $x = \frac{1}{4}$, attempting to find $y = \frac{1}{2}k + 1.75$ and gradient = $k - 2$	M1*	OE
	Equation of tangent is $y - \frac{1}{2}k - 1.75 = (k - 2)(x - 0.25)$	A1	OE, e.g. $y = (k-2)x + \frac{k}{4} + \frac{9}{4}$ or $y = kx - 2x + \frac{k}{4} + \frac{9}{4}$.
	Meet at $\left(\frac{1}{2}k - 8\right)(0.6 - 1) + k - 2 = (k - 2)(0.6 - 0.25) + \frac{1}{2}k + 1.75$ Equate two tangent equations and substitute $x = 0.6$	DM1	OE, e.g. $\left(\frac{k}{2} - 8\right)0.6 + \frac{k}{2} + 6 = (k - 2)0.6 + \frac{k}{4} + \frac{9}{4}$. M0 if constants in both equations are the same.
	$\Rightarrow [-0.2k + k + 3.2 - 2 = 0.35k - 0.7 + 0.5k + 1.75]$ $\Rightarrow 0.05k = 0.15$ $k = 3$	A1	
		6	

PUBLISHED