identification.

L37 1 SEA FILE=CASREACT ABB=ON "CLEUGH ERNEST STEPHEN"/AU

=> s 137 or (137 and 131,136) 1 L37 OR (L37 AND (L31 OR L36))

=> dup rem 141,140 FILE 'CASREACT' ENTERED AT 10:45:56 ON 18 DEC 2006 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CAPLUS' ENTERED AT 10:45:56 ON 18 DEC 2006 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS) PROCESSING COMPLETED FOR L41

PROCESSING COMPLETED FOR L40

2 DUP REM L41 L40 (1 DUPLICATE REMOVED)

ANSWER '1' FROM FILE CASREACT ANSWER '2' FROM FILE CAPLUS

=> d ibib abs hit 1; d ibib ed abs hitstr 2

L42 ANSWER 1 OF 2 CASREACT COPYRIGHT 2006 ACS on STN DUPLICATE 1

ACCESSION NUMBER:

142:463452 CASREACT Full-text

TITLE:

Production process of optically pure

2-(4-hydroxyphenoxy)propionic acid

INVENTOR(S):

Cleugh, Ernest Stephen Syngenta Limited, UK

PATENT ASSIGNEE(S): SOURCE:

PCT Int. Appl., 10 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KINI					ND	DATE			A :	PPLI	CATI	N NC	DATE					
WO 2005042460			A1 20050512				W	20	04-G	7	20040816							
	W:	· AE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	BZ,	CA,	CH,	
														ES,				
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	ΚP,	KR,	ΚZ,	LC,	
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NA,	NI,	
		NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	
		ТJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	zw	
	RW:	вW,	GH,	GM,	ΚE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	
		AZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	
		EE,	ES,	FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PL,	PT,	RO,	SE,	
		SI,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	NE,	
		SN,	TD,	TG														
CA	2535	039		A	1	2005	0512		CA 2004-2535039 20040816									
EP	1670	743		A	1	2006	0621		E	P 20	04-7	6806	0	2004	0816			
	R:	ΑT,	ΒE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
		ΙE,	SI,	FI,	RO,	CY,	TR,	BG,	CZ,	EE,	HU,	PL,	SK					
CN	1852	884		Α		2006	1025		CN 2004-80026709									
BR	2004	0149	25	Α		2006	1107		B	R 20	04-1	4925		2004	0816			

US 2006270851 Al 20061130 PRIORITY APPLN. INFO.:

US 2006-571863 20060314 GB 2003-22917 20030930 WO 2004-GB3497 20040816

AΒ A process for producing optically pure (R)-2-(4-hydroxyphenoxy)propanoic acid (I) or a salt or ester thereof comprises reaction of hydroquinone or a salt thereof with a (S)-2-halopropanoic acid or a salt thereof in the presence of a mild reducing agent. This process prevents over-alkylation which gives bis(1carboxyethoxy) benzene, and oxidation of hydroquinone which results in highly colored byproducts. The compound I is useful as an intermediate in making herbicidal products (e.g. quizalofop-P-Et and haloxyfop-P-methyl) in industrial scale. Thus, hydroquinone (574 g, 5.22 mol) was charged to a reaction flask followed by sodium bisulfite (5.74 g) and water (1,014 g). mixture was stirred under N and heated to 50° and 47% sodium hydroxide solution (799.5 g, 9.39 mol) was added. The solution was heated to 65° and an aqueous solution of (S)-2-chloropropanoic acid sodium salt (544.4 g, 32.5% as the free acid, 1.63 mol) was added. The reaction mixture was held at 65° for 4 h to give the total reaction mass (2937.6 g) with I content of 8.60 %, equivalent to 252.5 g product or 85% yield. H2O (700 g) was added and the temperature adjusted to below 45°. H3PO4 (120 g) was added to adjust the pH to about 11 and then 98% sulfuric acid (250 g) was added to reduce the pH to 6,5-7.5, the temperature being controlled at 55° during these addns. The solution was then extracted with Me iso-Bu ketone to give a solution of hydroquinone in MiBK for use in the next cycle. The aqueous phase was then acidified to pH 2±0.2 using 98% H2SO4 and extracted with MiBK to give a solution of I which was washed with a solution of 155.5 g KOH and 2.15 g sodium bisulfite in 280 q H2O. The aqueous solution was acidified to pH 1 with 32% HCl, cooled to 20°, and filtered to give, after washing the solid with water, 62% I.

REFERENCE COUNT:

THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

RX(1) OF 1 A + B ===> C

HO

HO

HO

HO

Na

$$(1)$$

C

YIELD 85%

RX(1) RCT A 123-31-9

STAGE(1)

RGT D 7631-90-5 NaHSO3

SOL 7732-18-5 Water

CON room temperature -> 50 deg C

STAGE(2)

RGT E 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) 50 deg C

SUBSTAGE(2) 50 deg C -> 65 deg C

STAGE (3)

RCT B 74533-11-2 SOL 7732-18-5 Water CON 4 hours, 65 deg C

STAGE (4)

RGT F 7732-18-5 Water

CON <45 deg C

STAGE (5)

RGT G 7664-38-2 H3PO4 SOL 7732-18-5 Water CON 55 deg C, pH 11

STAGE (6)

RGT H 7664-93-9 H2SO4 SOL 7732-18-5 Water CON 55 deg C, pH 6.5 - 7.5

STAGE (7)

RGT D 7631-90-5 NaHSO3, I 1310-58-3 KOH

SOL 7732-18-5 Water CON room temperature

STAGE(8)

RGT J 7647-01-0 HCl SOL 7732-18-5 Water CON 20 deg C, pH 1

PRO C 94050-90-5

NTE stereoselective, workup, inert, industrial manufacture, hydroquinone can be recycled by extraction with methylisobutyl ketone

IN Cleugh, Ernest Stephen

L42 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1994:245553 CAPLUS Full-text

DOCUMENT NUMBER:

120:245553

TITLE:

Isomerization process for pyrethroids Cleugh, Ernest Stephen; Milner, David John

INVENTOR(S):

Imperial Chemical Industries PLC, UK

PATENT ASSIGNEE(S): SOURCE:

Brit. UK Pat. Appl., 11 pp.

CODEN: BAXXDU

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	CENT I	NO.			KIN	D	DATE			APPL	ICAT:	ION I	NO.		D	ATE	
						-									-	- -	
GB	2262	737			Α		1993	0630		GB 1	992-	2585	6		1:	9921	211
WO	9313	053			A2		1993	0708	1	WO 1	992-0	GB23	23		1:	9921	215
WO	9313	053			A3		1993	0805									
	W:	AU,	BB,	BG,	BR,	CA,	CS,	FI,	HU,	JP,	KP,	KR,	LK,	MG,	MN,	MW,	NO,
		NZ,	PL,	RO,	RU,	SD,	UΑ,	US									
	RW:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,
		BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	ML,	MR,	SN,	TD,	TG			
AU	9230	932			Α		1993	0728		AU 1	992-	3093	2		1:	9921	215

AU	679168		В2	19970626			
EP	618896		A1	19941012	EP 1992-924842		19921215
EP	618896		B1	19960911	•		
	R: AT,	BE, CH	, DE,	DK, ES, FR,	GB, GR, IE, IT, LI,	LU, M	IC, NL, PT, SE
JP	07502995	•	T	19950330	JP 1993-511234		19921215
JP	3490083		В2	20040126			
BR	9206983		Α	19951205	BR 1992-6983		19921215
HU	71704		A2	19960129	HU 1994-1811		19921215
HU	214673		В	19980428			
AT	142617		T	19960915	AT 1992-924842		19921215
ES	2091497		Т3	19961101	ES 1992-924842		19921215
RO	114125		В1	19990129	RO 1994-1080		19921215
RU	2129536		C1	19990427	RU 1994-31154		19921215
CZ	287245		В6	20001011	CZ 1994-1536		19921215
SK	281750		В6	20010710	SK 1994-760		19921215
CA	2126180		С	20030506	CA 1992-2126180		19921215
ZA	9209971		Α	1,9930707	ZA 1992-9971		19921222
US	5334744		Α	19940802	US 1992-995861		19921223
FI	9402989		Α	19940621	FI 1994-2989		19940621
FI	114465		B1	20041029			
NO	9402400		Α	19940811	NO 1994-2400		19940623
NO	300678		B1	19970707			
PRIORITY	APPLN.	INFO.:			GB 1991-27355	A	19911224
					CS 1994-1536	Α	19921215
					WO 1992-GB2323	Α	19921215

OTHER SOURCE(S): MARPAT 120:245553

ED Entered STN: 14 May 1994

AB A process for obtaining an isomer of a compound of general formula RCH(CN)R' (I), (each of R and R' may be any organic radical linked directly or through a heteroatom to the carbon atom bearing the cyano group provided that at least one of R and R' comprises at least one resolved chiral center) which comprises the step of treating the epimer of the isomer, or the racemate comprising the epimer and the enantiomer of the epimer, in solution in a polar organic solvent, or in slurry in a polar organic liquid diluent in which the epimer or the racemate is partially soluble, with a source of cyanide ions, in the absence of a base, the isomer, or the racemic modification comprising the isomer and its enantiomer, being less soluble in the solvent or diluent than the epimer of the isomer, or the racemate comprising the epimer of the isomer and the enantiomer of the epimer, resp. The compound of formula I may be a pyrethroid, e.g. deltamethrin, acrinathrin, S-fenvalerate or λ -cyhalothrin.

CLAIM 1

=> fil capl; d que 124

FILE 'CAPLUS' ENTERED AT 10:46:54 ON 18 DEC 2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 18 Dec 2006 VOL 145 ISS 26 FILE LAST UPDATED: 17 Dec 2006 (20061217/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

http://www.cas.org/infopolicy.html
'OBI' IS DEFAULT SEARCH FIELD FOR 'CAPLUS' FILE

L17 STR

VAR G1=1/21 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 20

STEREO ATTRIBUTES:
STEREO DEFAULT ABSOLUTE
NUMBER OF CHIRAL CENTERS IS 2
L19 72 SEA FILE=REGISTRY SSS FUL L17

=> s 124 not 140

L43 14 L24 NOT L40

=> fil casrea; d stat que 131 FILE 'CASREACT' ENTERED AT 10:47:13 ON 18 DEC 2006 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT:1840 - 17 Dec 2006 VOL 145 ISS 25

New CAS Information Use Policies, enter HELP USAGETERMS for details.

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

L26 STR

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 14 STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 1

L28 97 SEA FILE=CASREACT SSS FUL L26 (747 REACTIONS)

L29 S7

RRT=REACTANT OR REAGENT PRO=PRODUCT

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 19

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 2

L31 5 SEA FILE=CASREACT SUB=L28 SSS FUL L29 (18 REACTIONS)

100.0% DONE 28 VERIFIED 18 HIT RXNS 5 DOCS

SEARCH TIME: 00.00.01

=> s 131 not 141

L44 4 L31 NOT L41

=> dup rem 144,143

FILE 'CASREACT' ENTERED AT 10:47:27 ON 18 DEC 2006 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CAPLUS' ENTERED AT 10:47:27 ON 18 DEC 2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

PROCESSING COMPLETED FOR L44

PROCESSING COMPLETED FOR L43

L45 16 DUP REM L44 L43 (2 DUPLICATES REMOVED)

ANSWERS '1-4' FROM FILE CASREACT ANSWERS '5-16' FROM FILE CAPLUS

=> d ibib abs hit 1-4; d ibib ed abs hitstr 5-16

L45 ANSWER 1 OF 16 CASREACT COPYRIGHT 2006 ACS on STN DUPLICATE 1

ACCESSION NUMBER:

113:40160 CASREACT Full-text

TITLE:

Preparation and purification of D-[2-(4-

hydroxyphenoxy)]propionic acid as a herbicide

intermediate

INVENTOR(S):

Moyne, Jose

PATENT ASSIGNEE(S):

Rhone-Poulenc Chimie SA, Fr.

SOURCE:

Eur. Pat. Appl., 6 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

French

FAMILY ACC. NUM. COUNT:

. 1

PATENT INFORMATION:

PAT	CENT NO.		KIND	DATE		API	PLICATION N	O. DATE
							- -	
EP	352168		A1	19900124		EP	1989-40197	19890710
EP	352168		B1	19930616				
	R: AT	, BE,	CH, DE	, ES, FR,	GB,	GR,	IT, LI, LU,	NL, SE
FR	2634481		A1	19900126		FR	1988-9793	19880720
FR	2634481		B1	19900914				
JP	0204854	5	A	19900219		JP	1989-14851	.5 19890613
JP	0503393	7	В	19930520				
AT	90658		T	19930715		AT	1989-40197	19890710
ES	2058571		T3	19941101		ES	1989-40197	19890710
DK	8903570		Α	19900121		DK	1989-3570	19890719
CA	1323039		С	19931012		CA	1989-60612	19890719
US	4981998	•	A	19910101		US	1989-38231	.2 19890720
PRIORITY	APPLN.	INFO.	. :			FR	1988-9793	19880720
						EP	1989-40197	19890710

GI

The title compound (I) was prepared and purified as follows. Reaction of MeCHClCO2Na (L-isomer) with p-NaOC6H4ONa, followed by adjustment of the reaction mixture to pH 1, removal of a part of the aqueous layer containing salts, addition of H2O, heating, and then cooling, gave optically pure I.

$$RX(1)$$
 OF 3 ...A + B ===> C

HO2C Me

Na

HO

Na

HO

CO2H

A

B

$$(1)$$

C

RX(1) RCT A 74533-11-2, B 123-31-9 PRO C 94050-90-5

L45 ANSWER 2 OF 16 CASREACT COPYRIGHT 2006 ACS on STN DUPLICATE 2

ACCESSION NUMBER:

106:18108 CASREACT Full-text

TITLE:

Optically active 2-(4-hydroxyphenoxy) propionic acid

INVENTOR(S):

Fujinawa, Shoji; Hashiba, Isao; Suzuki, Kenji;

Tsuchiya, Shuji; Takakuwa, Yasuo

PATENT ASSIGNEE(S):

Nissan Chemical Industries, Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF Patent

DOCUMENT TYPE: LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61158947	Α	19860718	JP 1984-279711	19841228
JP 06010154	В	19940209		
US 4625053	Α	19861125	US 1985-794566	19851106
CA 1257874	A1	19890725	CA 1985-494991	19851112
EP 192849	A1	19860903	EP 1985-116097	19851217
EP 192849	B1	19880831		
R: CH, DE,	FR, GB	, IT, LI, NL	•	
PRIORITY APPLN. INFO	. :		JP 1984-279711	19841228
OTHER SOURCE(S):	MA	RPAT 106:18108		
CT				

GΙ

The title acid (I), useful as an intermediate for herbicides (no data), is AΒ prepared by reaction of XCHMeCO2M (II; X = Cl, Br; M = H, alkali metal) with hydroquinone (III) or its alkali salts in the presence of alkali hydroxides and H2O. Thus, saponification of 98 g 1-ClCHMeCO2Me with aqueous NaOH at 20-40° gave 1-II (X = Cl, M = Na), which was treated with 110 g II in H2O at 40° under N to give d-I, which was esterified with EtOH in the presence of H2SO4 to give 147 g d-I Et ester with 93% enantiomer excess.

RX(1) OF 6 ...A + B ===> C...

- RX(1) RCT A 74533-11-2, B 123-31-9 PRO C 94050-90-5
- RX(4) OF 6 COMPOSED OF RX(1), RX(2)RX(4) A + B + D ===> E

RX(1) RCT A 74533-11-2, B 123-31-9

PRO C 94050-90-5

RX(2) RCT C 94050-90-5, D 64-17-5 PRO E 71301-98-9

L45 ANSWER 3 OF 16 CASREACT COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 143:422130 CASREACT Full-text

TITLE: Process for the preparation of substituted tetralin

and substituted indane derivatives

INVENTOR(S): Zhang-Plasket, Fan; Zhong, Hua; Villani, Frank

PATENT ASSIGNEE(S): US

SOURCE:

U.S. Pat. Appl. Publ., 64 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

I	PATENT NO.			KI	ND	DATE			APPLICATION NO.					DATE				
-														- -				
Ţ	JS	2005	2400	49	A.	1	2005	1027		U.	US 2005-1			9	2005	0420		
I	U£	2005238485			A1		20051110			A	U 20	05-2	5-238485		2005	0420		
V	VO	2005105737			A1		20051110			WO 2005-US13870 2005042					0420			
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BW,	BY,	ΒZ,	CA,	CH,
			CN,	CO,	·CR,	.CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,
			GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KM,	KP,	KR,	ΚZ,
			LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	NA,
			NI,	NO,	NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,
			SM,	SY,	TJ,	TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,
			ZM,	ZW														
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	ΤŻ,	ŪĠ,	ZM,	ZW,	AM,
			AZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM,	ΑT,	ΒĒ,	BG,	CH,	CY,	CZ,	DE,	DK,
			EE,	ES,	FI,	FR,	GB,	GR,	HU,	ΙĒ,	IS,	IT,	LT,	LU,	MC,	NL,	ΡL,	PT,
			RO,	SE,	SI,	SK,	TR,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,
			MR,	NE,	SN,	TD,	TG											
PRIOR	ΙΤΥ	APP	LN.	INFO	. :					U	S 20	04-5	6415	9P	2004	0421		
÷										W	0 20	05-U	S138	70	2005	0420		

GI .

The present invention relates to novel processes for the preparation of substituted tetralin. and substituted indane derivs I [Q = OH, NH2, or Oprotected or N-protected group; R1 and R2 independently = H, alkyl, alkoxyalkyl, etc.; R3 = H, alkoxy, halo, etc.; R4 = H, alkoxy, alkenyl, etc.; n = 1-6]. Thus, e.g., II was prepared via diastereomeric resolution of tert-Bu 2-(2-ethylaminoindan-5-ylsulfanyl)-2-methylpropionate (preparation given) followed by amidation with 4-(trifluoromethoxy)phenyl isocyanate and subsequent deprotection. The present invention is further directed to novel processes for the preparation of intermediates in the preparation of the substituted tetralin and substituted indane derivs.

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(37) OF 145 COMPOSED OF RX(6), RX(7)RX(37) U + V + P ===> X

X: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C ·

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(7) RCT P 685832-40-0, W 105118-15-8

PRO X 868159-07-3

SOL 7732-18-5 Water, 64-17-5 EtOH

CON SUBSTAGE(1) 30 - 35 deg C

SUBSTAGE(2) 2 hours, 0 deg C

NTE stereoselective

RX(38) OF 145 COMPOSED OF RX(6), RX(13)

RX(38) U + V + P ===> AJ

```
RX(6) RCT U 7474-05-7
STAGE(1)
```

RGT S 1310-73-2 NaOH SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(13) RCT P 685832-40-0, W 105118-15-8

PRO AJ 868159-12-0

SOL 109-99-9 THF

CON SUBSTAGE(1) 50 deg C

SUBSTAGE(2) overnight, room temperature

NTE stereoselective

RX(60) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(7)

AND REACTION SEQUENCE RX(5), RX(7)

$$... W + V ===> W...$$

 $...M + O + W ===> X$

$$HO_2C$$
 Me
 V
 $STEPS$

START NEXT REACTION SEQUENCE

X: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

```
PRO W 105118-15-8
NTE stereoselective
```

RX(5) RCT M 868159-05-1

STAGE(1)

RGT Q 16853-85-3 LiAlH4

SOL 109-99-9 THF

CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C SUBSTAGE(2) 4 hours, reflux

STAGE(2)

RGT R 67-56-1 MeOH

CON <25 deg C

STAGE(3)

RCT O 23877-12-5

CON SUBSTAGE(1) 5 - 7 deg C
SUBSTAGE(2) 2 hours, room temperature

STAGE(4)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON room temperature

PRO P 685832-40-0

RX(7) RCT P 685832-40-0, W 105118-15-8

PRO X 868159-07-3

SOL 7732-18-5 Water, 64-17-5 EtOH

CON SUBSTAGE(1) 30 - 35 deg C

SUBSTAGE(2) 2 hours, 0 deg C

NTE stereoselective

RX(61) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(13)

AND REACTION SEQUENCE RX(5), RX(13)

... U + V ===> W......M + O + W ===> AJ

AJ: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(5) RCT M 868159-05-1

STAGE(1)

RGT Q 16853-85-3 LiAlH4

SOL 109-99-9 THF

CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C SUBSTAGE(2) 4 hours, reflux

STAGE(2)

RGT R 67-56-1 MeOH

CON <25 deg C

STAGE(3)

RCT O 23877-12-5

CON SUBSTAGE(1) 5 - 7 deg C

SUBSTAGE(2) 2 hours, room temperature

STAGE(4)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON room temperature

PRO P 685832-40-0

RX(13) RCT P 685832-40-0, W 105118-15-8

PRO AJ 868159-12-0

SOL 109-99-9 THF

CON SUBSTAGE(1) 50 deg C

SUBSTAGE(2) overnight, room temperature

NTE stereoselective

RX(63) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(7)

AND REACTION SEQUENCE RX(4), RX(5), RX(7)

 \dots 2 J + O + W ===> X

$$HO_2C$$
 Me
 HO
 V

START NEXT REACTION SEQUENCE

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(4) RCT J 74124-94-0

STAGE(1)

RGT K 7440-66-6 Zn

SOL 75-05-8 MeCN

CON room temperature

STAGE (2)

RGT N 75-78-5 Me2SiCl2

SOL 75-05-8 MeCN

CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C SUBSTAGE(2) 20 hours, room temperature

PRO M 868159-05-1

RCT M 868159-05-1 RX(5)

STAGE(1)

RGT Q 16853-85-3 LiAlH4

SOL 109-99-9 THF

SUBSTAGE(1) 25 minutes, 60 - 66 deg C SUBSTAGE(2) 4 hours, reflux

STAGE(2)

RGT R 67-56-1 MeOH

CON <25 deg C

STAGE(3)

RCT O 23877-12-5

CON SUBSTAGE(1) 5 - 7 deg C

SUBSTAGE(2) 2 hours, room temperature

STAGE (4)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON room temperature

PRO P 685832-40-0

RCT P 685832-40-0, W 105118-15-8 RX(7)

PRO X 868159-07-3

SOL 7732-18-5 Water, 64-17-5 EtOH.

CON SUBSTAGE(1) 30 - 35 deg C

SUBSTAGE(2) 2 hours, 0 deg C

NTE stereoselective

RX(64) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(13)

AND REACTION SEQUENCE RX(4), RX(5), RX(13)

STEPS

 \dots U + V ===> W...

...2 J + O + W ===> AJ

$$HO_2C$$
 Me
 HO
 V

START NEXT REACTION SEQUENCE

$$AJ: CM 1$$

AJ: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(4) RCT J 74124-94-0

STAGE(1)

RGT K 7440-66-6 Zn

SOL 75-05-8 MeCN

CON room temperature

STAGE(2)

```
RGT N 75-78-5 Me2SiCl2
              SOL 75-05-8 MeCN
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
         PRO M 868159-05-1
RX(5)
         RCT M 868159-05-1
           STAGE(1)
              RGT Q 16853-85-3 LiAlH4
              SOL 109-99-9 THF
              CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C
                   SUBSTAGE(2) 4 hours, reflux
           STAGE(2)
              RGT R 67-56-1 MeOH
              CON <25 deg C
           STAGE(3)
              RCT O 23877-12-5
              CON SUBSTAGE(1) 5 - 7 deg C
                   SUBSTAGE(2) 2 hours, room temperature
           STAGE (4)
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON room temperature
         PRO P 685832-40-0
         RCT P 685832-40-0, W 105118-15-8
RX(13)
         PRO AJ 868159-12-0
         SOL
              109-99-9 THF
             SUBSTAGE(1) 50 deg C
              SUBSTAGE(2) overnight, room temperature
         NTE stereoselective
RX(90) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(7)
              AND REACTION SEQUENCE RX(3), RX(4), RX(5), RX(7)
             ===> W...
... Ŭ +
\dots 2 G + O + W ===> X
                   CO2H
```

W

START NEXT REACTION SEQUENCE

$$CO_2H$$
 CO_2H
 CO_2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(3) RCT G 74124-92-8

```
STAGE(1)
              RGT K 7440-66-6 Zn
               SOL 75-05-8 MeCN
               CON 50 - 60 deg C
            STAGE(2)
              RGT L 7647-01-0 HCl
               SOL 7732-18-5 Water
               CON SUBSTAGE(1) 1 hour, 70 - 75 deg C
                   SUBSTAGE(2) 30 minutes, 75 deg C -> 30 deg C
          PRO J 74124-94-0
RX(4)
         RCT J 74124-94-0
           STAGE(1)
              RGT K 7440-66-6 Zn
               SOL 75-05-8 MeCN
               CON room temperature
           STAGE(2)
              RGT N 75-78-5 Me2SiCl2
               SOL 75-05-8 MeCN
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
          PRO M 868159-05-1
RX(5)
         RCT M 868159-05-1
           STAGE(1)
             RGT Q 16853-85-3 LiAlH4
. SOL 109-99-9 THF
              CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C
                   SUBSTAGE(2) 4 hours, reflux
           STAGE(2)
              RGT R 67-56-1 MeOH
              CON <25 deg C
           STAGE(3)
              RCT O 23877-12-5
               CON SUBSTAGE(1) 5 - 7 deg C
                   SUBSTAGE(2) 2 hours, room temperature
           STAGE(4)
              RGT S 1310-73-2 NaOH
               SOL 7732-18-5 Water
              CON room temperature
         PRO P 685832-40-0
         RCT P 685832-40-0, W 105118-15-8
RX (7)
          PRO X 868159-07-3
         SOL 7732-18-5 Water, 64-17-5 EtOH
         CON SUBSTAGE(1) 30 - 35 deg C
              SUBSTAGE(2) 2 hours, 0 deg C
         NTE stereoselective
```

RX(91) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(13)
AND REACTION SEQUENCE RX(3), RX(4), RX(5), RX(13)

...
$$U + V ===> W...$$

...2 $G + O + W ===> AJ$

START NEXT REACTION SEQUENCE

$$t-BuO$$
 Bf
 Me
 HO
 Me
 $STEPS$
 $STEPS$

$$AJ: CM 1$$

AJ: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

```
RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON <25 deg C
           STAGE(2)
              RCT V 123-31-9
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) <55 deg C
                   SUBSTAGE(2) 2 hours, 55 - 60 deg C
           STAGE(3)
              RGT L 7647-01-0 HCl
              SOL 7732-18-5 Water
              CON 15 - 30 deg C, pH 4.3
         PRO W 105118-15-8
         NTE stereoselective
         RCT G 74124-92-8
RX(3)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON 50 - 60 deg C
           STAGE(2)
              RGT L 7647-01-0 HCl
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) 1 hour, 70 - 75 deg C
                   SUBSTAGE(2) 30 minutes, 75 deg C -> 30 deg C
         PRO J 74124-94-0
         RCT J 74124-94-0
RX(4)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON room temperature
           STAGE(2)
              RGT N 75-78-5 Me2SiCl2
              SOL 75-05-8 MeCN
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
         PRO M 868159-05-1
         RCT M 868159-05-1
RX(5)
           STAGE(1)
              RGT Q 16853-85-3 LiAlH4
              SOL 109-99-9 THF
              CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C
                   SUBSTAGE(2) 4 hours, reflux
           STAGE(2)
              RGT R 67-56-1 MeOH
              CON <25 deg C
```

STAGE (3)

RCT O 23877-12-5

CON SUBSTAGE(1) 5 - 7 deg C

SUBSTAGE(2) 2 hours, room temperature

STAGE (4)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON room temperature

PRO P 685832-40-0

RX(13) RCT P 685832-40-0, W 105118-15-8

PRO AJ 868159-12-0

SOL 109-99-9 THF

CON SUBSTAGE(1) 50 deg C

SUBSTAGE(2) overnight, room temperature

NTE stereoselective

RX(93) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(7)

AND REACTION SEQUENCE RX(2), RX(3), RX(4), RX(5), RX(7)

... U + V ===> W...

 \dots 2 C + O + W ===> X

5 STEPS

START NEXT REACTION SEQUENCE

$$t$$
 - BuO t - Me t - BuO t -

```
RX(6) RCT U 7474-05-7
```

STAGE(1)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(2) RCT C 13935-80-3

STAGE(1)

SOL 75-05-8 MeCN

CON 3 - 5 deg C

STAGE(2)

RGT H 7790-94-5 ClSO3H

CON SUBSTAGE(1) 30 minutes, <15 deg C

SUBSTAGE(2) <15 deg C -> room temperature

SUBSTAGE(3) 30 minutes, room temperature -> 80 deg C

SUBSTAGE(4) 20 hours, 50 deg C

STAGE(3)

RGT E 7732-18-5 Water, I 75-05-8 MeCN

CON SUBSTAGE(1) 10 - 15 minutes, 5 deg C -> -6 deg C

SUBSTAGE(2) 30 minutes, 0 - 5 deg C

```
PRO G 74124-92-8
         RCT G 74124-92-8
RX(3)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON 50 - 60 deg C
           STAGE (2)
              RGT L 7647-01-0 HCl
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) 1 hour, 70 - 75 deg C
                   SUBSTAGE(2) 30 minutes, 75 deg C -> 30 deg C
         PRO J 74124-94-0
         RCT J 74124-94-0
RX(4)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON room temperature
           STAGE(2)
              RGT N 75-78-5 Me2SiCl2
              SOL 75-05-8 MeCN
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
         PRO M 868159-05-1
RX(5)
         RCT M 868159-05-1
           STAGE(1)
              RGT Q 16853-85-3 LiAlH4
              SOL 109-99-9 THF
              CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C
                   SUBSTAGE(2) 4 hours, reflux
           STAGE(2)
              RGT R 67-56-1 MeOH
              CON <25 deg C
           STAGE(3)
              RCT O 23877-12-5
              CON SUBSTAGE(1) 5 - 7 deg C
                   SUBSTAGE(2) 2 hours, room temperature
           STAGE (4)
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON room temperature
         PRO P 685832-40-0
         RCT P 685832-40-0, W 105118-15-8
RX(7)
         PRO X 868159-07-3
         SOL 7732-18-5 Water, 64-17-5 EtOH ·
```

CON SUBSTAGE(1) 30 - 35 deg C SUBSTAGE(2) 2 hours, 0 deg C NTE stereoselective

RX(94) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(13)

AND REACTION SEQUENCE RX(2), RX(3), RX(4), RX(5), RX(13)

.. U + V ===>· W...

START NEXT REACTION SEQUENCE

$$AJ: CM 1$$

AJ: CM 2

```
RX(6)
      RCT U 7474-05-7
           STAGE(1)
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON <25 deg C
           STAGE(2)
              RCT V 123-31-9
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) <55 deg C
                   SUBSTAGE(2) 2 hours, 55 - 60 deg C
           STAGE(3)
              RGT L 7647-01-0 HCl
              SOL 7732-18-5 Water
              CON 15 - 30 deg C, pH 4.3
         PRO W 105118-15-8
         NTE stereoselective
         RCT C 13935-80-3
RX(2)
           STAGE(1)
              SOL 75-05-8 MeCN
              CON 3 - 5 deg C
           STAGE(2)
              RGT H 7790-94-5 ClSO3H
              CON SUBSTAGE(1) 30 minutes, <15 deg C
                   SUBSTAGE(2) <15 deg C -> room temperature
                   SUBSTAGE(3) 30 minutes, room temperature -> 80 deg C
                   SUBSTAGE(4) 20 hours, 50 deg C
           STAGE(3)
              RGT E 7732-18-5 Water, I 75-05-8 MeCN
              CON SUBSTAGE(1) 10 - 15 minutes, 5 deg C -> -6 deg C
                SUBSTAGE(2) 30 minutes, 0 - 5 deg C
         PRO G 74124-92-8
         RCT G 74124-92-8
RX(3)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON 50 - 60 deg C
           STAGE(2)
              RGT L 7647-01-0 HCl
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) 1 hour, 70 - 75 deg C
                   SUBSTAGE(2) 30 minutes, 75 deg C -> 30 deg C
        PRO J 74124-94-0
RX(4)
        RCT J 74124-94-0
          STAGE(1)
```

```
RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON room temperature
           STAGE(2)
              RGT N 75-78-5 Me2SiCl2
              SOL 75-05-8 MeCN
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
         PRO M 868159-05-1
RX (5)
         RCT M 868159-05-1
           STAGE(1)
              RGT Q 16853-85-3 LiAlH4
              SOL 109-99-9 THF
              CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C
                   SUBSTAGE(2) 4 hours, reflux
           STAGE(2)
              RGT R 67-56-1 MeOH
              CON <25 deg C
           STAGE(3)
              RCT O 23877-12-5
              CON SUBSTAGE(1) 5 - 7 deg C
                   SUBSTAGE(2) 2 hours, room temperature
           STAGE (4)
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON room temperature
         PRO P 685832-40-0
RX(13)
         RCT P 685832-40-0, W 105118-15-8
         PRO AJ 868159-12-0
         SOL 109-99-9 THF
         CON SUBSTAGE(1) 50 deg C
              SUBSTAGE(2) overnight, room temperature
         NTE stereoselective
RX(96) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(7)
              AND REACTION SEQUENCE RX(1), RX(2), RX(3), RX(4), RX(5), RX(7)
            ===> W...
... Ŭ +
\dots2 A + 2 B + O + W ===> X
```

START NEXT REACTION SEQUENCE

X: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

```
PRO W 105118-15-8
         NTE stereoselective
         RCT A 2975-41-9
RX(1)
           STAGE(1)
              RGT D 497-19-8 Na2CO3
              SOL 7732-18-5 Water, 141-78-6 AcOEt
              CON 5 - 7 deg C
           STAGE(2)
              RCT B 75-36-5
              CON SUBSTAGE(1) 2 hours, <10 deg C
                   SUBSTAGE(2) 1 hour, room temperature
         PRO C 13935-80-3
         RCT C 13935-80-3
RX(2)
           STAGE(1)
              SOL 75-05-8 MeCN
              CON 3 - 5 deg C
           STAGE(2)
              RGT H 7790-94-5 ClSO3H
              CON SUBSTAGE(1) .30 minutes, <15 deg C
                   SUBSTAGE(2) <15 deg C -> room temperature
                   SUBSTAGE(3) 30 minutes, room temperature -> 80 deg C
                   SUBSTAGE(4) 20 hours, 50 deg C
           STAGE(3)
              RGT E 7732-18-5 Water, I 75-05-8 MeCN
              CON SUBSTAGE(1) 10 - 15 minutes, 5 deg C -> -6 deg C
                   SUBSTAGE(2) 30 minutes, 0 - 5 deg C
         PRO G 74124-92-8
         RCT G 74124-92-8
RX(3)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON 50 - 60 deg C
           STAGE(2)
              RGT L 7647-01-0 HCl
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) 1 hour, 70 - 75 deg C
                   SUBSTAGE(2) 30 minutes, 75 deg C -> 30 deg C
         PRO J 74124-94-0
         RCT J 74124-94-0
RX(4)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON room temperature
            STAGE (2)
```

```
RGT N 75-78-5 Me2SiCl2
                  75-05-8 MeCN
              SOL
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
         PRO M 868159-05-1
        RCT M 868159-05-1
RX(5)
           STAGE(1)
              RGT Q 16853-85-3 LiAlH4
              SOL
                   109-99-9 THF
              CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C
                   SUBSTAGE(2) 4 hours, reflux
           STAGE(2)
              RGT R 67-56-1 MeOH
              CON <25 deg C
           STAGE(3)
              RCT O 23877-12-5
              CON SUBSTAGE(1) 5 - 7 deg C
                   SUBSTAGE(2) 2 hours, room temperature
           STAGE (4)
              RGT S 1310-73-2 NaOH
              SOL 7732-18-5 Water
              CON room temperature
         PRO P 685832-40-0
         RCT P 685832-40-0, W 105118-15-8
RX(7)
         PRO X 868159-07-3
             7732-18-5 Water, 64-17-5 EtOH
         SOL
         CON SUBSTAGE(1) 30 - 35 deg C
              SUBSTAGE(2) 2 hours, 0 deg C
         NTE stereoselective
RX(97) OF 145 COMPOSED OF REACTION SEQUENCE RX(6), RX(13)
              AND REACTION SEQUENCE RX(1), RX(2), RX(3), RX(4), RX(5), RX(13)
...2 A + 2 B + 0
                     + W ===> AJ
                   CO2H
```

W

START NEXT REACTION SEQUENCE

HO CO₂H

$$_{\text{HO}}$$
 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{CO}_{2}}$ H

 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{Me}}$
 $_{\text{Me}}$

AJ: CM 2

RX(6) RCT U 7474-05-7

STAGE(1)

RGT S 1310-73-2 NaOH SOL 7732-18-5 Water

CON <25 deg C

STAGE(2)

RCT V 123-31-9

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON SUBSTAGE(1) <55 deg C

SUBSTAGE(2) 2 hours, 55 - 60 deg C

STAGE(3)

RGT L 7647-01-0 HCl

SOL 7732-18-5 Water

CON 15 - 30 deg C, pH 4.3

PRO W 105118-15-8

NTE stereoselective

RX(1) RCT A 2975-41-9

STAGE(1)

RGT D 497-19-8 Na2CO3

```
SOL 7732-18-5 Water, 141-78-6 AcOEt
              CON 5 - 7 deg C
           STAGE(2)
              RCT B 75-36-5
              CON SUBSTAGE(1) 2 hours, <10 deg C
                   SUBSTAGE(2) 1 hour, room temperature
         PRO C 13935-80-3
         RCT C 13935-80-3
RX(2)
           STAGE(1)
              SOL 75-05-8 MeCN
              CON 3 - 5 deg C
           STAGE(2)
              RGT H 7790-94-5 ClSO3H
                   SUBSTAGE(1) 30 minutes, <15 deg C
                   SUBSTAGE(2) <15 deg C -> room temperature
                   SUBSTAGE(3) 30 minutes, room temperature -> 80 deg C
                   SUBSTAGE(4) 20 hours, 50 deg C
           STAGE(3)
              RGT E 7732-18-5 Water, I 75-05-8 MeCN
              CON SUBSTAGE(1) 10 - 15 minutes, 5 deg C -> -6 deg C
                   SUBSTAGE(2) 30 minutes, 0 - 5 deg C
         PRO G 74124-92-8
         RCT G 74124-92-8
RX(3)
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON 50 - 60 deg C
           STAGE(2)
              RGT L 7647-01-0 HC1
              SOL 7732-18-5 Water
              CON SUBSTAGE(1) 1 hour, 70 - 75 deg C
                   SUBSTAGE(2) 30 minutes, 75 deg C -> 30 deg C
         PRO J 74124-94-0
RX (4)
         RCT J 74124-94-0
           STAGE(1)
              RGT K 7440-66-6 Zn
              SOL 75-05-8 MeCN
              CON room temperature
           STAGE (2)
              RGT N 75-78-5 Me2SiCl2
              SOL 75-05-8 MeCN
              CON SUBSTAGE(1) 1 hour, room temperature -> 60 deg C
                   SUBSTAGE(2) 20 hours, room temperature
         PRO M 868159-05-1
```

RX(5) RCT M 868159-05-1

STAGE(1)

RGT Q 16853-85-3 LiAlH4

SOL 109-99-9 THF

CON SUBSTAGE(1) 25 minutes, 60 - 66 deg C

SUBSTAGE(2) 4 hours, reflux

STAGE(2)

RGT R 67-56-1 MeOH

CON <25 deg C

STAGE(3)

RCT O 23877-12-5

CON SUBSTAGE(1) 5 - 7 deg C

SUBSTAGE(2) 2 hours, room temperature

STAGE(4)

RGT S 1310-73-2 NaOH

SOL 7732-18-5 Water

CON room temperature

PRO P 685832-40-0

RX(13) RCT P 685832-40-0, W 105118-15-8

PRO AJ 868159-12-0

SOL 109-99-9 THF

CON SUBSTAGE(1) 50 deg C

SUBSTAGE(2) overnight, room temperature

NTE stereoselective

L45 ANSWER 4 OF 16 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

95:150172 CASREACT Full-text

TITLE:

Substituted phenoxycarboxylic acids

PATENT ASSIGNEE(S):

Ihara Chemical Industry Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				
JP 56059718	Α	19810523	JP 1979-135010	19791019
PRIORITY APPLN. INFO.	:		JP 1979-135010	19791019

GI

AB Phenols I (R = H, halo, nitro, cyano, alkyl, CF3) were treated with R1X (R1 = CHR2CO2R3, CH2CR2:CHCO2R3, etc., R2, R3 = H, alkyl), a base and a phase-

transfer catalyst to give II. Thus, heating hydroquinone with BrCHMeCO2H, K2CO3 and PhCH2NEt3Cl in H2O 3 h at 90° gave 65.5% 4-HOC6H4OCHMeCO2H.

RX(1) OF 1 A + B ===> C

RX(1) RCT A 123-31-9, B 598-72-1 PRO C 67648-61-7

L45 ANSWER 5 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1995:995754 CAPLUS Full-text

DOCUMENT NUMBER:

124:116868

TITLE:

Preparation of optically active α -

(hydroxyphenoxy) alkanoates

INVENTOR(S):

Metivier, M. Pascal

PATENT ASSIGNEE(S):

Rhone-Poulenc Chimie SA, Fr.

SOURCE:

Eur. Pat. Appl., 9 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

French

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
EP 679629	A1	19951102	EP 1995-400892		19950421
EP 679629	B1	19980812			
R: CH, DE, FR,	GB, IT	', LI			
FR 2719042	A1	19951027	FR 1994-4933		19940425
FR 2719042	B1	19960515			
JP 07291895	A	19951107	JP 1995-100907		19950425
US 5654338	Α	19970805	US 1995-428710		19950425
PRIORITY APPLN. INFO.:			FR 1994-4933	A	19940425
OTHER SOURCE(S):	CASREA	CT 124:11686	8; MARPAT 124:116868		

ED Entered STN: 22 Dec 1995

AB The title process comprises saponification of an optically active α-haloester followed by condensation of the product with a hydroxyphenol. Thus, L-MeCHClCO2Me (97% optical purity) was converted in 75.3% yield to D-4-(HO)C6H4OCHMeCO2H of 96% optical purity.

IT 94050-90-5P

RL: IMF (Industrial manufacture); SPN (Synthetic preparation); PREP (Preparation)

(preparation of optically active α -(hydroxyphenoxy)alkanoates)

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

IT 29617-66-1, L- α -Chloropropionic acid methyl ester

RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation of optically active α -(hydroxyphenoxy)alkanoates)

RN 29617-66-1 CAPLUS

CN Propanoic acid, 2-chloro-, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

L45 ANSWER 6 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1993:168822 CAPLUS Full-text

DOCUMENT NUMBER: 118:168822

TITLE: Preparation of 2-(4-hydroxyphenoxy)propionic acid

dicyclohexylamine salt

INVENTOR(S): Hashimoto, Masaki; Fukami, Jiichi

PATENT ASSIGNEE(S): Suntory, Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 04297438	Α	19921021	JP 1991-63195	19910327
PRIORITY APPLN. INFO.:			JP 1991-63195	19910327

OTHER SOURCE(S): CASREACT 118:168822

ED Entered STN: 01 May 1993

The title compound (I), useful as intermediate for herbicides, is prepared by treatment of reaction mixts. containing I and hydroquinone with dicyclohexylamine, followed by separation of the crystals. Hydroquinone (11 g) was treated with Na (RS)-2-chloropropionate in aqueous NaOH at 80° for 1 h, adjusted to pH 8, filtered to remove hydroquinone, and the filtrate was adjusted to pH 0.8, extracted with AcOEt, and treated with dicyclohexylamine to give 17 g (RS)-I.

IT 74533-11-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and etherification of, with hydroquinone)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

IT 94050-90-5P, (R)-2-(4-Hydroxyphenoxy)propionic acid

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation and salt formation of, with dicyclohexylamine)

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

IT 146671-28-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as intermediate for herbicides)

RN 146671-28-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (R)-, compd. with N-cyclohexylcyclohexanamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 94050-90-5

CMF C9 H10 O4

Absolute stereochemistry. Rotation (+).

CM 2

CRN 101-83-7 CMF C12 H23 N

L45 ANSWER 7 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1991:449380 CAPLUS Full-text

DOCUMENT NUMBER: 115:49380

TITLE: Preparation of tetrahydrofurfuryl phenoxypropionates

as herbicides or intermediates therefor

INVENTOR(S): Kagawa, Takumi; Ito, Mikio; Aman, Shunji; Morooka,

Takashi; Watanabe, Eiroyuki; Tsuzuki, Kenji

PATENT ASSIGNEE(S): Tosoh Corp., Japan

SOURCE: Eur. Pat. Appl., 29 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
				-	
EP 410758	A2	19910130	EP 1990-308209		19900726
EP 410758	A3	19921119			
R: BE, CH, DE,	FR, GB	, LI, NL			
JP 03056483	Α	19910312	JP 1989-191252		19890726
JP 03204869	A	19910906	JP 1989-232861		19890911
JP 03106868	A	19910507	JP 1989-240266		19890918
JP 03127786	Α	19910530	JP 1989-264984		19891013
JP 03145465	A	19910620	JP 1989-281805		19891031
JP 03157370	A	19910705	JP 1989-294805		19891115
JP 03184977	A	19910812	JP 1989-322574		19891214
US 5258521	A	19931102	US 1990-556716		19900725
PRIORITY APPLN. INFO.:			JP 1989-191252	A	19890726
			JP 1989-232861	A	19890911
•			JP 1989-240266	Α	19890918
			JP 1989-264984	A	19891013
			JP 1989-281805	Α	19891031
			JP 1989-294805	Α	19891115
			JP 1989-322574	Α	19891214

OTHER SOURCE(S): MARPAT 115:49380

ED Entered STN: 10 Aug 1991

GΙ

RO
$$O = CO_2CH_2$$
 $O = RO$ $O = CO_2R^1$ $O = RO$ $O = R$

The title compds. I (R = H, 3-chloro-5-trifluoromethyl-2-pyridyl) were prepared by, e.g., (1) transesterification of ester II (R1 = Me) with tetrahydrofurfuryl alc. (III) in the presence of an acid catalyst; or (2) esterification of carboxylic acid II (R1 = H) with tetrahydrofurfuryl alc. in the presence of a hydrogen halide. Thus, II (R = 3-chloro-5- trifluoromethyl-

2-pyridyl; R1 = Me), III, and p-toluenesulfonic acid in benzene was refluxed for 5 h to give I (R = 3-chloro-5-trifluoromethyl-2- pyridyl).

IT 29617-66-1 94050-90-5 96562-58-2

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction of, in preparation of herbicide intermediate)

29617-66-1 CAPLUS RN

Propanoic acid, 2-chloro-, (2S)- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry. Rotation (-).

94050-90-5 CAPLUS RN

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 96562-58-2 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, methyl ester, (2R)- (9CI) INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 8 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

1991:608792 CAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER:

115:208792

Chiral liquid-crystalline polymers by TITLE:

polymer-analogous reactions

Kapitza, Heinrich; Zentel, Rudolf AUTHOR(S):

Inst. Org. Chem. Makromol. Chem., Heinrich-Heine-CORPORATE SOURCE:

Univ., Duesseldorf, 4000, Germany

Makromolekulare Chemie (1991), 192(8), 1859-72 SOURCE:

CODEN: MACEAK; ISSN: 0025-116X

DOCUMENT TYPE: Journal

LANGUAGE: English ED

Entered STN: 15 Nov 1991 A synthetic route to combined main-chain/side-group chiral liquid-crystalline AB (lc) polyether-polyesters via precursor polymers containing phenolic side

groups is presented. A polymer-analogous reaction with chiral acids (phenol

esterification conversions 90-100%) gives 33 new chiral lc polymers, which exhibit chiral smectic C*, smectic A, and cholesteric phases.

IT 136883-06-2P 136883-07-3P 136883-15-3P

136883-21-1P 136883-25-5P 136883-33-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (liquid-crystalline, preparation and characterization of)

RN 136883-06-2 CAPLUS

CN Propanedioic acid, [6-[(4'-hydroxy[1,1'-biphenyl]-4-yl)oxy]hexyl]-, diethyl ester, polymer with (E)-6,6'-[azobis(4,1-phenyleneoxy)]bis[1-hexanol], (S)-2-chloropropanoate (9CI) (CA INDEX NAME)

CM 1

CRN 29617-66-1 CMF C3 H5 Cl O2

Absolute stereochemistry. Rotation (-).

CM 2

CRN 136691-95-7

CMF (C25 H32 O6 . C24 H34 N2 O4)x

CCI PMS

CM 3

CRN 117823-20-8 CMF C25 H32 O6

CM 4

CRN 109359-32-2 CMF C24 H34 N2 O4

Double bond geometry as shown.

HO (CH₂) 6 OH
$$(CH_2)$$
 6 OH

RN 136883-07-3 CAPLUS

CN Propanedioic acid, [6-[(4'-hydroxy[1,1'-biphenyl]-4-yl)oxy]hexyl]-, diethyl ester, polymer with (Z)-6,6'-[azoxybis(4,1-phenyleneoxy)]bis[1-hexanol], (S)-2-chloropropanoate (9CI). (CA INDEX NAME)

CM 1

CRN 29617-66-1 CMF C3 H5 Cl O2

Absolute stereochemistry. Rotation (-).

CM 2

CRN 136691-91-3

CMF (C25 H32 O6 . C24 H34 N2 O5)x

CCI PMS

CM 3

CRN 117823-20-8 CMF C25 H32 O6

CM 4

CRN 114464-39-0 CMF C24 H34 N2 O5

Double bond geometry as shown.

HO (CH₂) 6 OH
$$Z$$
 N

RN 136883-15-3 CAPLUS

CN Propanedioic acid, [6-[(4'-hydroxy[1,1'-biphenyl]-4-yl)oxy]hexyl]-,

diethyl ester, polymer with 6,6'-[[1,1'-biphenyl]-4,4'-diylbis(oxy)]bis[1-hexanol], (S)-2-chloropropanoate (9CI) (CA INDEX NAME)

CM 1

CRN 29617-66-1 CMF C3 H5 Cl O2

Absolute stereochemistry. Rotation (-).

CM 2

CRN 136691-90-2

CMF (C25 H32 O6 . C24 H34 O4)x

CCI PMS

CM 3

CRN 117823-20-8 CMF C25 H32 O6

CM 4

CRN 97087-90-6 CMF C24 H34 O4

RN -136883-21-1 CAPLUS

CN Propanedioic acid, [6-[(4'-hydroxy[1,1'-biphenyl]-4-yl)oxy]hexyl]-, diethyl ester, polymer with 6,6'-[(3-bromo[1,1'-biphenyl]-4,4'-diyl)bis(oxy)]bis[1-hexanol], (S)-2-chloropropanoate (9CI) (CA INDEX NAME)

CM 1

CRN 29617-66-1 CMF C3 H5 Cl O2 Absolute stereochemistry. Rotation (-).

CM 2

CRN 136691-94-6

CMF (C25 H32 O6 . C24 H33 Br O4)x

CCI PMS

CM 3

CRN 117823-20-8 CMF C25 H32 O6

CM 4

CRN 114464-37-8 CMF C24 H33 Br O4

RN 136883-25-5 CAPLUS

CN Propanedioic acid, [6-[4-[(4-hydroxyphenyl)azoxy]phenoxy]hexyl]-, diethyl ester, (Z)-, polymer with (E)-6,6'-[azobis(4,1-phenyleneoxy)]bis[1-hexanol], (S)-2-chloropropanoate (9CI) (CA INDEX NAME)

CM 1

CRN 29617-66-1 CMF C3 H5 Cl O2

Absolute stereochemistry. Rotation (-).

CM 2

CRN 198495-64-6

CMF (C25 H32 N2 O7 . C24 H34 N2 O4) \times

CCI PMS

CM 3

CRN 198495-62-4

CMF C25 H32 N2 O7

CCI IDS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 4

CRN 109359-32-2

CMF C24 H34 N2 O4

Double bond geometry as shown.

$$_{\rm HO}$$
 (CH₂) 6 0 (CH₂) 6 OH

RN 136883-33-5 CAPLUS

CN Propanedioic acid, [6-[4-[(4-hydroxyphenyl)azoxy]phenoxy]hexyl]-, diethyl ester, (Z)-, polymer with 6,6'-[[1,1'-biphenyl]-4,4'-diylbis(oxy)]bis[1-hexanol], (S)-2-chloropropanoate (9CI) (CA INDEX NAME)

CM 1

CRN 29617-66-1

CMF C3 H5 C1.O2

Absolute stereochemistry. Rotation (-).

CM 2

CRN 198495-65-7

CMF (C25 H32 N2 O7 . C24 H34 O4)x

CCI PMS

CM 3

198495-62-4 CMF C25 H32 N2 O7 CCI IDS, MAN

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM

CRN 97087-90-6 CMF C24 H34 O4

29617-66-1P TT

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and sp. rotation and esterification of, with polymers containing

phenolic side groups)

29617-66-1 CAPLUS RN

Propanoic acid, 2-chloro-, (2S)- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry. Rotation (-).

L45 ANSWER 9 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1991:206794 CAPLUS Full-text

DOCUMENT NUMBER:

114:206794

TITLE:

Preparation of (d)-2-(4-hydroxyphenoxy)propionic acid

esters

INVENTOR (S):

Nishihira, Keigo; Fujikawa, Shuzo; Hirakawa, Takafumi

PATENT ASSIGNEE(S):

Ube Industries, Ltd., Japan; Nissan Chemical

Industries, Ltd.

SOURCE:

Jpn. Kokai Tokkyo Koho, 10 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

1

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-			
JP 02311444	Α	19901227	JP 1989-132894	19890529
JP 2549173	B2	19961030		
PRIORITY APPLN. INFO.:			JP 1989-132894	19890529

Entered STN: 31 May 1991 ED

(1)-2-Halopropionic acids are treated with hydroquinone or its alkali metal AB salts in the presence of alkali metal hydroxides in H2O to give an aqueous

solution of (d)-2-(4-hydroxyphenoxy)propionic acid (I) alkali metal salts, which is acidified with acids and extracted with organic solvents to remove the H2O layer, the organic layer is neutralized with aqueous solution of alkali metal hydroxides, separated, and the H2O layer is acidified, concentrated, and cooled, followed by esterification of the preferentially crystallized I in the presence of catalysts to give the title esters useful as intermediates for herbicidal (d)-2-phenoxypropionic acids. An aqueous NaOH solution was added dropwise to (1)-MeCHClCO2Me (95% e.e.) to give an aqueous slurry of (1)-MeCHClCO2Na, which was mixed with an aqueous slurry of p-C6H4(ONa)2 at 30-40 ° for 15 h and kept for 2 h, the reaction mixture was adjusted to pH 1.5 with an aqueous H2SO4 solution and extracted with MIBK twice. The MIBK extract containing I and p-C6H4(CHMeCO2H)2 (II) at the weight ratio 12.6 was diluted with H2O and adjusted to pH 7.5 with an aqueous NaOH solution, then separated, the H2O layer was vacuum-evaporated at 40°, diluted with H2O, and then cooled to 20° to give a wet crystal with I/II weight ratio 89. I thus obtained was esterified with EtOH in toluene containing H2SO4 to qive I Et ester with 96.5% chemical purity and 98.5% e.e., vs. 90.6% and 93.2% e.e., resp., for a control obtained by esterification of MIBK extract

IT 74533-11-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and etherification of, with hydroquinone disodium, monoether from)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

IT 87129-32-6P 94050-90-5DP, esters 96562-58-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as intermediate for herbicides)

RN 87129-32-6 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, butyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 96562-58-2 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, methyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

IT 133647-88-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation, acidification, and extraction of, free acid from)

RN 133647-88-8 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, monosodium salt, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

Na

IT 94050-90-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation, salt formation, and acidification of, and preferential crystallization)

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 10 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1990:440164 CAPLUS Full-text

DOCUMENT NUMBER:

113:40164

TITLE: Preparation of high-purity optically active

2-(4-hydroxyphenoxy) propionic acid

INVENTOR(S): Nishiwaki, Minoru; Hirota, Hideji

PATENT ASSIGNEE(S): Daicel Chemical Industries, Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
JP 02032039	A	19900201	JP 1988-181285	19880720	
JP 2514072	B2	19960710			
RIORITY APPLN. INFO.:			JP 1988-181285	19880720	

ED Entered STN: 03 Aug 1990

The title compound (I), useful as an intermediate for herbicides, is prepared in high purity from hydroquinone (II) by successive crystallization of II and I from a crude reaction mixture containing II alkali metal salts and I alkali metal salts. (S)-MeCHClCO2Me was treated with an aqueous NaOH solution and the resulting aqueous solution of (S)-MeCHClCO2Na was added dropwise to a solution of II in an aqueous NaOH solution at 80°, subsequently the reaction mixture was cooled at 5° and adjusted to pH 7 to recover 72.3% II, while the filtrate was adjusted to pH 1 to give 84.7% (R)-I of 98.4% e.e. Further recrystn. in H2O gave (R)-I of 100% e.e.

IT 74533-11-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and condensation of, with hydroquinone sodium, (hydroxyphenoxy)propionic acid from)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 11 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN ACCESSION NUMBER:

DOCUMENT NUMBER:

1989:548900 CAPLUS Full-text

111:148900

TITLE:

Optically-active propionic acid thiazolinyl thioester

derivatives as selective herbicides

INVENTOR (S):

Ito, Mikio; Watanabe, Hiroyuki; Tsuzuki, Kenji;

Someya, Shinzo; Kora, Seigo

PATENT ASSIGNEE(S):

Agro-Kanesho Co., Ltd., Japan; Tosoh Corp.

SOURCE:

Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 01050882	Α	19890227	JP 1987-207173	19870820
PRIORITY APPLN. INFO.:			JP 1987-207173	19870820

OTHER SOURCE(S):

MARPAT 111:148900

Entered STN: 28 Oct 1989 ED

GI

$$\mathsf{CF}_3 \xrightarrow{\mathsf{X}} \mathsf{O} \xrightarrow{\mathsf{OCHMeCOS}} \overset{\mathsf{N}}{\underset{\mathsf{S}}{\longrightarrow}} \quad \mathsf{I}$$

AB The title derivs. (R)-I (X = H, Cl) are prepared A solution of 0.84 g 2mercaptothiazoline in CH2Cl2 was treated with 2.97 g (R)-(+)-2-[4-(3-chloro-5trifluoromethyl-2-pyridyloxy)phenoxy]propionyl chloride (preparation given) at room temperature to give 1.9 g (R)-I (X = Cl) (II). An emulsion was formulated from II 20, xylene 60, and Sorpol 2806B 20 parts. II, at 0.2 g/are, showed complete control of barnyard grass, Digitaria adscendens, and Avena sativa, without any damage to crops in pot expts., vs., poor control using racemic II. IT

94050-90-5P, (R)-(+)-2-(4-Hydroxyphenoxy)propionic acid RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reaction of, with chlorotrifluoromethylpyridine derivs.)

RN 94050-90-5 CAPLUS

Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry. Rotation (+).

IT 74533-11-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reaction of, with hydroquinone)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

L45 ANSWER 12 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1989:523975 CAPLUS Full-text

DOCUMENT NUMBER:

111:123975

TITLE:

Phenoxypropionate ester derivatives for ferroelectric

liquid-crystal display devices

INVENTOR(S):

Shoji, Tadao; Takehara, Sadao; Fujisawa, Noburu;

Ogawa, Hiroshi; Osawa, Masashi

PATENT ASSIGNEE(S):

Dainippon Ink and Chemicals, Inc., Japan; Kawamura

Physical and Chemical Research Institute

SOURCE:

Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
JP 01042455	A	19890214	JP 1987-198152	19870810	
PRIORITY APPLN. INFO.:			JP 1987-198152	19870810	
OTHER SOURCE(S):	MARPAT	111:123975			

ED Entered STN: 01 Oct 1989

GI

$$R^{10}$$
 Co_2 Co_2 Co_2 Co_2 Co_2

The title derivs. I (R1 = C \leq 20 n-alkyl; R2 = C \leq 20 n-alkyl, optically-active alkyl; X = H, halo; l, m, n = 0, l; n = 1 when l = 0; n = 0 when l = 1) are claimed. I or liquid-crystal compns. containing I show a chiral smectic C phase at a wide range of temperature and are useful for display devices with a quick response. Successive treatment of (R)-ClCHMeCO2Na with 4,4'-biphenol and (S)-(-)-EtCHMeCH2OH gave (S,S)-4- HOC6H4C6H4OCHMeCO2CH2CHMeEt-4, which was treated with 4-Me(CH2)7OC6H4COCl to give (S,S)-I (R1 = octyl; R2 = CH2CHMeEt; l = 0; m = n = 1) (II). A mixture of II and 4-Me(CH2)9OC6H4CO2C6H4O(CH2)7Me-4 having no chiral smectic phase showed a chiral smectic C phase.

IT 74533-11-2P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation and condensation of, with hydroquinone or biphenols, in preparation

of liquid crystals)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

IT 113918-70-0P 122330-44-3P

RL: RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(preparation and esterification of, with benzoyl chloride in preparation of liquid

crystal)

RN 113918-70-0 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, hexyl ester, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 122330-44-3 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, 2-methylbutyl ester, [R-(R*,S*)]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 94050-90-5P, (R)-2-(4-Hydroxyphenoxy) propionic acid

RL: RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent) (preparation and esterification of, with methylbutanol or hexanol, in preparation

of liquid crystals)

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 13 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1989:553635 CAPLUS Full-text

DOCUMENT NUMBER:

111:153635

TITLE:

Preparation of optically active α -[2-[4-

(trifluoromethyl-2-pyridyloxy)phenoxy]propionyloxy]ace

tamide derivatives as herbicides

INVENTOR(S):

Someya, Shinzo; Kora, Seigo; Ito, Mikio; Watanabe,

Hiroyuki; Tsuzuki, Kenji

PATENT ASSIGNEE(S):

Agro-Kanesho Co., Ltd., Japan; Tosoh Corp.

SOURCE:

Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				-
JP 01009975	Α	19890113	JP 1987-165972	19870702
PRIORITY APPLN. INFO.:			JP 1987-165972	19870702

OTHER SOURCE(S):

MARPAT 111:153635

ED Entered STN: 28 Oct 1989

GΙ

CF3
$$\longrightarrow$$
 OCHMeCO2CH2CONR¹R²

CF3 \longrightarrow OCHMeCOCl

The title compds. [(R)-I; R1, R2 = Me, MeO, methoxyethyl; X = H, halo], useful as selective herbicides, are prepared Optically active propionyl chloride (R)-II (preparation given) was reacted with HOCH2CONMeOMe in CH2Cl2 containing Et3N to give (R)-I (X = H, R1 = Me, R2 = MeO) [(R)-II]. At 0.4 g/a (R)-II was more effective than (±)-II in controlling barnyard grass.

IT 94050-90-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reaction of, in preparation of herbicides)

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

IT 74533-11-2 94050-90-5, (R)-2-(4-Hydroxyphenoxy)propionic

acid

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, in preparation of herbicides)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 14 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1988:446353 CAPLUS Full-text

DOCUMENT NUMBER: 109:46353

TITLE: Ferroelectric liquid-crystal compounds for display

devices

INVENTOR(S): Jackson, David Anthony; Gemmell, Peter Alan

PATENT ASSIGNEE(S): Imperial Chemical Industries PLC, UK

SOURCE: Eur. Pat. Appl., 21 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 259995	A1	19880316	EP 1987-307355	19870820
ED 259995	R1	19901017		

R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE

AT 57524	${f T}$	19901115	AΤ	1987-307355		19870820
US 4906402	Α	19900306	US	1987-91895		19870901
JP 63077840	A	19880408	JP	1987-223221		19870908
PRIORITY APPLN. INFO.:			GB	1986-21689	Α	19860909
			EP	1987-307355	A	19870820

ED Entered STN: 05 Aug 1988

The compds. are preferably CpH2p+1OA1A2TA3Z1CH(Me)CO2CqH2q+1, where p = 6-12; q = 2-12; Z1 = O or S; T = COO or COS; and A1, A2, A3 = 1,4-phenylene, 1,4-cyclohexylene (optionally with 1 or 2 C atoms replaced by O or S), 1,4-bicyclo-[2.2.2]octane, 1,6-naphthylene, or 1,4-naphthylene, unsubstituted or F-substituted. (R)-2-(4- Hydroxyphenoxy)propionic acid was esterified with 1-pentanol, and 4-(4-octyloxyphenyl)benzoic acid was converted into its acid chloride. The ester and the acid chloride were reacted to form pentyl (R)-2-(4-[4-(4-octyloxyphenyl)benzoyloxy]phenoxy)propanoate, m. 55° and having sp. optical rotation +16° at 589 nm and 20-25° in CHCl3.

IT 87129-32-6P 94050-90-5P 96562-58-2P

113918-70-0P 114755-07-6P 114755-10-1P

114755-11-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reaction of, in formation of ferroelec. liquid crystals

for

display devices)

RN 87129-32-6 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, butyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 96562-58-2 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, methyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 113918-70-0 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, hexyl ester, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 114755-07-6 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, pentyl ester, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 114755-10-1 CAPLUS

CN Propanoic acid, 2-(2-fluoro-4-hydroxyphenoxy)-, methyl ester, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 114755-11-2 CAPLUS

CN Propanoic acid, 2-(3-fluoro-4-hydroxyphenoxy)-, methyl ester, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 29617-66-1 87129-32-6 94050-90-5

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction of, in formation of ferroelec. liquid crystals for display devices)

RN 29617-66-1 CAPLUS

CN Propanoic acid, 2-chloro-, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

RN 87129-32-6 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, butyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 15 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1987:439415 CAPLUS Full-text

DOCUMENT NUMBER: 107:39415

TITLE: Optically active 2-(4-hydroxyphenoxy)propionic acid as

herbicide intermediate

INVENTOR(S): Suzuki, Kenji; Hashiba, Isao; Tsuchiya, Shuji;

Takakuwa, Yasuo

PATENT ASSIGNEE(S): Nissan Chemical Industries, Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	- -			
JP 62016446	Α	19870124	JP 1984-225327	19841026
JP 06010153	В	19940209		
PRIORITY APPLN. INFO.:			JP 1984-225327	19841026

ED Entered STN: 08 Aug 1987

The title acid (I), useful as an intermediate for herbicides, is prepared An EtOH solution of 1-MeCHClCO2Na, obtained from 85.8 g 1-MeCHClCO2Me and NaOH, was heated with 110 g p-HOC6H4OH (II) and NaOH at 60°, and refluxed in C6H6 to give 130 g d-I Et ester having 93% enantiomeric excess.

IT 74533-11-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and condensation of, with hydroquinone)

RN 74533-11-2 CAPLUS

CN Propanoic acid, 2-chloro-, sodium salt, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

Na

IT 96562-58-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as herbicide intermediate)

RN 96562-58-2 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, methyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L45 ANSWER 16 OF 16 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1987:66753 CAPLUS Full-text

DOCUMENT NUMBER:

INVENTOR(S):

106:66753

TITLE:

Optical resolution of (\pm) -2-chloropropionic acid Nohira, Hiroyuki; Endo, Koji; Nishiyama, Takahito

PATENT ASSIGNEE(S):

Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

UAGE: Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61172846	Α	. 19860804	JP 1985-15203	19850129
RITY APPLN. INFO.:			JP 1985-15203	19850129

ED Entered STN: 07 Mar 1987

AB (+)- Or (-)-2-chloropropionic acid [(+)- or (-)-I], useful as intermediate for optically active alanine and lactic acid, were prepared by optical resolution of (±)-I by treating with optically active p- RC6H4CH(CHMe2)CH2NH2 (II; R = H, Me). Thus, (±)-I and (+)-II (R = H) (III) were heated, then (-)-I, (+)-III salt was added and left at room temperature for 5 h to give 31.5% (-)-I, (+)-II salt, which was treated with aqueous NaOH to give 24.2% (-)-I in 83.2% optical purity.

IT 106498-33-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and decomposition of)

RN 106498-33-3 CAPLUS

CN Propanoic acid, 2-chloro-, (S)-, compd. with (S)- β -(1-methylethyl)benzeneethanamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 106498-32-2 CMF C11 H17 N

Absolute stereochemistry. Rotation (+).

CM 2

CRN 29617-66-1 CMF C3 H5 Cl O2

Absolute stereochemistry. Rotation (-).

IT 29617-66-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as intermediate for optically active alanine and lactic acid)

RN 29617-66-1 CAPLUS

CN Propanoic acid, 2-chloro-, (2S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

CLAIM 7

=> fil capl; d que 125

FILE 'CAPLUS' ENTERED AT 10:48:37 ON 18 DEC 2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 18 Dec 2006 VOL 145 ISS 26 FILE LAST UPDATED: 17 Dec 2006 (20061217/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

http://www.cas.org/infopolicy.html
'OBI' IS DEFAULT SEARCH FIELD FOR 'CAPLUS' FILE

L3	1	EA FILE=REGISTRY ABB=ON 72619-32-0
L4	1	EA FILE=REGISTRY ABB=ON 114420-56-3
L6	1	EA FILE=REGISTRY ABB=ON FLUAZIFOP-P-BUTYL/CN
L10	1	EA FILE=REGISTRY ABB=ON CYHALOFOP-BUTYL/CN
L11	1	EA FILE=REGISTRY ABB=ON QUIZALOFOP-P-ETHYL/CN
L12	1	EA FILE=REGISTRY ABB=ON 71283-80-2
L13	6	EA FILE=REGISTRY ABB=ON (L11 OR L3 OR L6 OR L4 OR L10 OR
		12)
L14	28	EA FILE=CAPLUS ABB=ON L13/P
L17		TR

VAR G1=1/21 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 20

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 2

L19 72 SEA FILE=REGISTRY SSS FUL L17

L20 49 SEA FILE=REGISTRY ABB=ON 46.150.18/RID AND L19

L23 115 SEA FILE=CAPLUS ABB=ON L20

L25 11 SEA FILE=CAPLUS ABB=ON L23 AND L14

=> s 125 not 143,140

L46 10 L25 NOT (L43 OR L40)

=> fil casreact; d stat que 136

FILE 'CASREACT' ENTERED AT 10:48:57 ON 18 DEC 2006

USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications.

FILE CONTENT: 1840 - 17 Dec 2006 VOL 145 ISS 25

New CAS Information Use Policies, enter HELP USAGETERMS for details.

Some CASREACT records are derived from the ZIC/VINITI database (1974-1991) provided by InfoChem, INPI data prior to 1986, and Biotransformations database compiled under the direction of Professor Dr. Klaus Kieslich.

This file contains CAS Registry Numbers for easy and accurate substance identification.

L34 STR

Page 1-A

Page 2-A
VAR G1=H/ME/ET/N-BU
VAR G2=38/44/49/55/61/72
NODE ATTRIBUTES:
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 82

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 1

L36 19 SEA FILE=CASREACT SSS FUL L34 (70 REACTIONS)

·100.0% DONE 424 VERIFIED 70 HIT RXNS 19 DOCS

SEARCH TIME: 00.00.01

=> dup rem 147,146 FILE 'CASREACT' ENTERED AT 10:49:28 ON 18 DEC 2006 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS) FILE 'CAPLUS' ENTERED AT 10:49:28 ON 18 DEC 2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

PROCESSING COMPLETED FOR L47

PROCESSING COMPLETED FOR L46

L48 27 DUP REM L47 L46 (2 DUPLICATES REMOVED)

ANSWERS '1-19' FROM FILE CASREACT ANSWERS '20-27' FROM FILE CAPLUS

=> d ibib abs hit 1-19; d ibib ed abs hitstr 20-27; fil hom

L48 ANSWER 1 OF 27 CASREACT COPYRIGHT 2006 ACS on STN DUPLICATE 1

ACCESSION NUMBER:

144:412325 CASREACT Full-text

TITLE:

Synthesis of R-(+)-Haloxyfop-methyl

AUTHOR (S):

Yan, Xin; Song, Meng; Lin, Zhou; Wang, Zun-yao

CORPORATE SOURCE:

Department of Chemical Engineering, Yancheng Institute

of Technology, Yancheng, 224003, Peop. Rep. China

SOURCE:

Jiangsu Huagong (2004), 32(4), 26-28, 33

CODEN: JHIUAC; ISSN: 1002-1116

PUBLISHER:

Jiangsusheng Huagong Xinxi Zhongxin

DOCUMENT TYPE:

Journal

LANGUAGE:

Chinese

AB Title compound was prepared by the etherification of R-(+)-Me 2-(4-hydroxyphenoxy)propionate and 2,3-dichloro-5-trifluoromethylpyridine with the presence of tetrabutylammonium bromide as phase transfer catalyst and powdered anhydrous potassium carbonate as bounding acid, provided product with yield 88%. The product was characterized by IR, 1H NMR, GC-MS and polarimetry.

RX(1) OF 1 A + B ===> C

F3C
$$N$$
 Me OMe Me OMe OMe

$$F_3C \\ \hline \\ C_1 \\ \hline$$

C YIELD 88%

RX(1) RCT A 69045-84-7

STAGE(1)

RGT D 584-08-7 K2CO3

SOL 67-68-5 DMSO

CON 1.5 hours, room temperature

STAGE(2)

RCT B 96562-58-2

CAT 1643-19-2 Bu4N.Br

SOL 67-68-5 DMSO

CON 37 hours, room temperature

PRO C 72619-32-0

NTE regioselective, phase transfer catalyst used, optimization study, yield depends on the kind of solvents, the amount of catalyst, the reaction time

L48 ANSWER 2 OF 27 CASREACT COPYRIGHT 2006 ACS on STN DUPLICATE 2

ACCESSION NUMBER:

113:77920 CASREACT Full-text

TITLE:

An improved process for the minimization of

racemization in the preparation of optically active

[(aryloxy)phenoxy]propionate herbicides

Kershner, Larry D.; Tai, Jimmy J. INVENTOR(S):

PATENT ASSIGNEE(S):

Dow Chemical Co., USA

SOURCE:

Eur. Pat. Appl., 10 pp. CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO	. KIND	DATE	APPLICATION NO.	DATE
	A2		EP 1989-109844	19890531
EP 344746	A3	19911127		
EP 344746	B1	19941221		
R: A	T, BE, CH, DI	E, FR, GB,	IT, LI, NL, SE	
US 489748	1 A	19900130	US 1988-200400	19880531
CA 132780	4 C	19940315	CA 1989-601119	19890530
IL 90460	Α	19941128	IL 1989-90460	19890530
AU 893587	6 A	19891207	AU 1989-35876	19890531
AU 614620	B2	19910905	·	
WO 891204	3 A1	19891214	WO 1989-US2378	19890531
. W: B	R, DK, JP, St	J		
BR 890699	7 A	19901218	BR 1989-6997	19890531
JP 025046	39 Т	19901227	JP 1989-506598	19890531
JP 287836	0 B2	19990405		
DK 900025	3 A	19900130	DK 1990-253	19900130
DK 175378	B1	20040920		
SU 181152	1 A3	19930423	SU 1990-4743141	19900130
PRIORITY APPLN	. INFO.:		US 1988-200400	19880531
	·		WO 1989-US2378	19890531 -

OTHER SOURCE(S): MARPAT 113:77920

GI

The process for reducing the amount of racemization in preparation of title compds. I (Ar = aryl activated toward aromatic nucleophilic substitution; R = C1-8 alkyl, C3-8 alkoxyalkyl) is characterized by reacting an alkali metal salt of an appropriate phenoxypropionic acid with ArX (X = halo). (R)-4-HOC6H4OCHMeCO2H (9.2 g; R/S = 97/3) and 3,4-F2C6H3CN in DMSO were reacted with K2CO3 at 85° and kept for 2 h to give (R)-I [Ar = 4,2-(NC)FC6H3; R = H] which was converted to (R)-I [Ar = 4,2-(NC)FC6H3; R = Me] (R/S ratio 97/3).

RX(1) OF 2 A + B + C ===> D

(1)

D

RX(1) RCT A 94050-90-5, B 89719-90-4, C 74-88-4 PRO D 72619-32-0

RX(2) OF 2 A + E + C ===> F

RCT A 94050-90-5, E 64248-62-0, C 74-88-4 RX(2) PRO F 122088-57-7

CASREACT COPYRIGHT 2006 ACS on STN L48 ANSWER 3 OF 27

ACCESSION NUMBER:

142:134429 CASREACT Full-text

Direct Formation of 2,3,5-Trichloropyridine and its TITLE:

Nucleophilic Displacement Reactions in Ionic Liquid

AUTHOR (S): Zhong, Ping; Hu, Huanan; Guo, Shengrong

CORPORATE SOURCE: Department of Chemistry, Wenzhou Normal College,

Wenzhou, Peop. Rep. China

Synthetic Communications (2004), 34(23), 4301-4311 SOURCE:

CODEN: SYNCAV; ISSN: 0039-7911

PUBLISHER: Taylor & Francis, Inc.

Journal DOCUMENT TYPE:

LANGUAGE: English GI

Reaction of trichloroacetaldehyde and acrylonitrile in the presence of a AΒ catalytic amount of copper (I) chloride in ionic liquid afforded 2,3,5trichloropyridine, fluorination of which with KF and CsF in ionic liquid afforded 3,5-dichloro-2-fluoro- and 5-chloro-2,3-dichloropyridines. Reaction of 2,3,5-trichloro-, 3,5-dichloro-2-fluoro-, or 5-chloro-2,3-dichloropyridine with 2-(4-hydroxyphenoxy)propionates in ionic liquid afforded the corresponding 2-aryloxylpropionates, e.g., I, in good yields.

THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 22 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT RX(4) OF 44 ...C + L ===> M

M YIELD 75%

RX(4) RCT C 16063-70-0, L 65343-67-1

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO M 60074-47-7

RX(5) OF 44 ...G + L ===> M

M YIELD 82%

RX(5) RCT G 823-56-3, L 65343-67-1

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO M 60074-47-7

RX(6) OF 44 ...H + L ===> C

O YIELD 81%

RX(6) RCT H 89402-43-7, L 65343-67-1

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO O 105511-94-2

RX(7) OF 44 ...C + P ===> Q

Q YIELD 77%

RX(7) RCT C 16063-70-0, P 60075-04-9

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO Q 60074-46-6

RX(8) OF 44 ...G + P ===> Q

$$C1$$
 F
 H_{\star}
 OMe
 OMe

Q YIELD 85%

RX(8) RCT G 823-56-3, P 60075-04-9

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO Q 60074-46-6

RX(9) OF 44 ...H + P ===> R...

F

N

$$H \star O$$
 $H \star O$
 $H \star$

R YIELD 80%

RX(9) RCT H 89402-43-7, P 60075-04-9

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO R 87035-49-2

RX(10) OF 44 H + P ===> F

R YIELD 70%

RX(10) RCT H 89402-43-7, P 60075-04-9

STAGE(1)

RGT I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO R 87035-49-2

$$RX(17)$$
 OF 44 COMPOSED OF $RX(1)$, $RX(4)$
 $RX(17)$ A + B + L ===> M

7758-89-6 CuCl CAT SOL 75-05-8 MeCN

CON 120 deg C

M YIELD 75%

RCT C 16063-70-0, L 65343-67-1 RX(4)

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO M 60074-47-7

RX(18) OF 44 COMPOSED OF RX(1), RX(7)

RX(18) A + B + P ===> Q

STEPS

RX(24) 2 C + L ===> M

Q YIELD 77%

```
RX(1)
          RCT A 107-13-1, B 75-87-6
          RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
          PRO C 16063-70-0
              7758-89-6 CuCl
          CAT
              75-05-8 MeCN
          SOL
          CON 120 deg C
RX(7)
         RCT C 16063-70-0, P 60075-04-9
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
               SOL 75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
            STAGE(2)
              SOL 7732-18-5 Water
          PRO Q 60074-46-6
RX(24) OF 44 COMPOSED OF RX(2), RX(5)
```

M YIELD 82%

RX(2) RCT C 16063-70-0 I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF PRO G 823-56-3, H 89402-43-7 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, SOL tetrafluoroborate(1-) CON 10 hours, 200 deg C RX(5) RCT G 823-56-3, L 65343-67-1 STAGE(1) RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3 SOL 75-05-8 MeCN CON 40 hours, 50 - 60 deg C STAGE (2)

PRO M 60074-47-7

SOL 7732-18-5 Water

RX(25) OF 44 COMPOSED OF RX(2), RX(8) RX(25) 2 C + P ===> Q

Q YIELD 85%

```
RX(2)
         'RCT C 16063-70-0
         RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF
         PRO G 823-56-3, H 89402-43-7
         SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
         CON 10 hours, 200 deg C
RX(8)
         RCT G 823-56-3, P 60075-04-9
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
               SOL 75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
         PRO Q 60074-46-6
```

$$RX(26)$$
 OF 44 COMPOSED OF $RX(2)$, $RX(6)$ $RX(26)$ 2 C + L ===> O

O YIELD 81%

RX(2) RCT C 16063-70-0 RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF PRO G 823-56-3, H 89402-43-7 SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)

CON 10 hours, 200 deg C

RX(6) RCT H 89402-43-7, L 65343-67-1

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO O 105511-94-2

$$RX(27)$$
 OF 44 COMPOSED OF $RX(2)$, $RX(9)$ $RX(27)$ 2 C + P ===> R

R YIELD 80%

```
C 16063-70-0
RX(2)
         RCT
              I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF
          RGT
          PRO G 823-56-3, H 89402-43-7
              174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
          SOL
              tetrafluoroborate(1-)
              10 hours, 200 deg C
          CON
         RCT H 89402-43-7, P 60075-04-9
RX(9)
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
              SOL 75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
          PRO R 87035-49-2
RX(28) OF 44 COMPOSED OF RX(3), RX(6)
RX(28)
       G + L ===> O
                                    Мe
                                                   2
                                                 STEPS
 G
                  L
```

O YIELD 81%

RX(3)

RCT G 823-56-3

RGT I 584-08-7 K2CO3, K 13400-13-0 CsF

PRO H 89402-43-7

SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
tetrafluoroborate(1-)

CON 8 hours, 100 - 110 deg C, 200 mmHg

RX(6)

RCT H 89402-43-7, L 65343-67-1

```
STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
                   75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE (2)
              SOL 7732-18-5 Water
         PRO O 105511-94-2
RX(29) OF 44 COMPOSED OF RX.(3), RX(9)
RX(29)
      G + P ===> R
                                                   2
                                                 STEPS
 G
                            Мe
 R
YIELD 80%
RX(3)
         RCT G 823-56-3
         RGT
             I 584-08-7 K2CO3, K 13400-13-0 CsF
         PRO H 89402-43-7
              174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
             8 hours, 100 - 110 deg C, 200 mmHg
         CON
RX (9)
         RCT H 89402-43-7, P 60075-04-9
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
                   75-05-8 MeCN
              SOL
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
         PRO R 87035-49-2
```

RX(30) OF 44 COMPOSED OF RX(9), RX(15) RX(30) H +
$$P$$
 ===> AA

AA YIELD 82%

```
RX(9) RCT H 89402-43-7, P 60075-04-9
```

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

2 STEPS

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO R 87035-49-2

RX(15) RCT R 87035-49-2

STAGE(1)

RGT AB 1310-73-2 NaOH SOL 123-91-1 Dioxane

CON 3 hours, 35 deg C

STAGE(2)

RGT AC 7647-01-0 HCl SOL 7732-18-5 Water

PRO AA 87135-08-8

RX(32) OF 44 COMPOSED OF RX(1), RX(2), RX(5)RX(32) 2 A + 2 B + L ===> M

M YIELD 82%

```
RCT A 107-13-1, B 75-87-6
RX(1)
         RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
         PRO C 16063-70-0
         CAT
              7758-89-6 CuCl
         SOL
              75-05-8 MeCN
         CON
              120 deg C
RX(2)
         RCT C 16063-70-0
             I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF
         RGT
         PRO G 823-56-3, H 89402-43-7
         SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
         CON 10 hours, 200 deg C
         RCT G 823-56-3, L 65343-67-1
RX (5)
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
              SOL 75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
```

PRO M 60074-47-7

Q YIELD 85%

SOL 75-05-8 MeCN CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO Q 60074-46-6

RX(34) OF 44 COMPOSED OF RX(1), RX(2), RX(6)RX(34) 2 A + 2 B + L ===> O

O YIELD 81%

RX(1) RCT A 107-13-1, B 75-87-6 RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-) PRO C 16063-70-0 CAT 7758-89-6 CuCl SOL 75-05-8 MeCN CON 120 deg C RX(2) RCT C 16063-70-0 RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF PRO G 823-56-3, H 89402-43-7 SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-) CON 10 hours, 200 deg C

RCT H 89402-43-7, L 65343-67-1 RX(6)

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO O 105511-94-2

RX(35) OF 44 COMPOSED OF RX(1), RX(2), RX(9)

$$RX(35)$$
 2 A + 2 B + P ===> R

В

STEPS

R YIELD 80%

RX(1) RCT A 107-13-1, B 75-87-6

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)

PRO C 16063-70-0

CAT 7758-89-6 CuCl

SOL 75-05-8 MeCN

120 deg C CON

```
RX(2)
         RCT C 16063-70-0
         RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF
          PRO G 823-56-3, H 89402-43-7
          SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
          CON
              10 hours, 200 deg C
         RCT H 89402-43-7, P 60075-04-9
RX (9)
           STAGE (1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
                   75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
         PRO R 87035-49-2
RX(36) OF 44 COMPOSED OF RX(2), RX(3), RX(6)
         2 C + L ===> 0
```

O YIELD 81%

RX(2)

RCT C 16063-70-0

RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF

PRO G 823-56-3, H 89402-43-7

SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,

tetrafluoroborate(1-)

CON 10 hours, 200 deg C

RX(3)

RCT G 823-56-3

RCT T 504-00-7 K2GO2 K 12400-13-0 CcF

RX(3) RCT G 823-56-3 RGT I 584-08-7 K2CO3, K 13400-13-0 CsF PRO H 89402-43-7 SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)
CON 8 hours, 100 - 110 deg C, 200 mmHg

RX(6) RCT H 89402-43-7, L 65343-67-1

STAGE(1)
RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3
SOL 75-05-8 MeCN
CON 40 hours, 50 - 60 deg C

STAGE(2)
SOL 7732-18-5 Water

PRO O 105511-94-2

RX(37) OF 44 COMPOSED OF RX(2), RX(3), RX(9) RX(37) 2 C + P ===> R

R YIELD 80%

RX(2) RCT C 16063-70-0 I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF RGT G 823-56-3, H 89402-43-7 PRO 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, SOL tetrafluoroborate(1-) 10 hours, 200 deg C CON RX(3) RCT G 823-56-3 RGT I 584-08-7 K2CO3, K 13400-13-0 CsF PRO H 89402-43-7 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, SOL tetrafluoroborate(1-) CON 8 hours, 100 - 110 deg C, 200 mmHg

RX(9) RCT H 89402-43-7, P 60075-04-9

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO R 87035-49-2

RX(38) OF 44 COMPOSED OF RX(1), RX(2), RX(3), RX(6)

RX(38) A + B + L ===> O

O YIELD 81%

RX(1) RCT A 107-13-1, B 75-87-6

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)

PRO C 16063-70-0

CAT 7758-89-6 CuCl

SOL 75-05-8 MeCN

CON 120 deg C

RX(2) RCT C 16063-70-0

RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF

PRO G 823-56-3, H 89402-43-7

SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,

tetrafluoroborate(1-)

CON 10 hours, 200 deg C

RX(3) RCT G 823-56-3

RGT I 584-08-7 K2CO3, K 13400-13-0 CsF

PRO H 89402-43-7

SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)
CON 8 hours, 100 - 110 deg C, 200 mmHg

RX(6)

RCT H 89402-43-7, L 65343-67-1

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN
CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO O 105511-94-2

RX(39) OF 44 COMPOSED OF RX(1), RX(2), RX(3), RX(9) RX(39) A + B + P ===> R

RX(1) RCT A 107-13-1, B 75-87-6

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)

PRO C 16063-70-0

CAT 7758-89-6 CuCl

SOL 75-05-8 MeCN

CON 120 deg C

RX(2) RCT C 16063-70-0

RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF

PRO G 823-56-3, H 89402-43-7

SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-)

CON 10 hours, 200 deg C

RCT G 823-56-3

RX(3)

RGT I 584-08-7 K2CO3, K 13400-13-0 CsF
PRO H 89402-43-7
SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
tetrafluoroborate(1-)
CON 8 hours, 100 - 110 deg C, 200 mmHg

RX(9)
RCT H 89402-43-7, P 60075-04-9

STAGE(1)
RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
tetrafluoroborate(1-), I 584-08-7 K2CO3
SOL 75-05-8 MeCN
CON 40 hours, 50 - 60 deg C

STAGE(2)
SOL 7732-18-5 Water

PRO R 87035-49-2

RX(40) OF 44 COMPOSED OF RX(2), RX(9), RX(15)RX(40) 2 C + P ===> AA

STEPS

AA YIELD 82%

RX(2) RCT C 16063-70-0 RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF PRO G 823-56-3, H 89402-43-7 SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-) CON 10 hours, 200 deg C

RCT H 89402-43-7, P 60075-04-9 RX(9)

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE (2)

SOL 7732-18-5 Water

PRO R 87035-49-2

RX(15) RCT R 87035-49-2

STAGE(1)

RGT AB 1310-73-2 NaOH

SOL 123-91-1 Dioxane

CON 3 hours, 35 deg C

STAGE (2)

RGT AC 7647-01-0 HCl

SOL 7732-18-5 Water

PRO AA 87135-08-8

RX(41) OF 44 COMPOSED OF RX(3), RX(9), RX(15)

RX(41) G + P ===> AA

3 STEPS

AA YIELD 82%

RX(3) RCT G 823-56-3

RGT I 584-08-7 K2CO3, K 13400-13-0 CsF

PRO H 89402-43-7

SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,

tetrafluoroborate(1-)

CON 8 hours, 100 - 110 deg C, 200 mmHg

RX(9) RCT H 89402-43-7, P 60075-04-9

STAGE(1)

RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3

SOL 75-05-8 MeCN

CON 40 hours, 50 - 60 deg C

STAGE(2)

SOL 7732-18-5 Water

PRO R 87035-49-2

RX(15) RCT R 87035-49-2

STAGE(1)

RGT AB 1310-73-2 NaOH

SOL 123-91-1 Dioxane

CON 3 hours, 35 deg C

STAGE(2)

RGT AC 7647-01-0 HCl

SOL 7732-18-5 Water

PRO AA 87135-08-8

 ${\tt RX\,(42)}$ OF 44 COMPOSED OF ${\tt RX\,(1)}$, ${\tt RX\,(2)}$, ${\tt RX\,(9)}$, ${\tt RX\,(15)}$

RX(42) 2 A + 2 B + P ===> AA

RX(43) 2 C + P ===> AA

AA YIELD 82%

```
RX(1)
         RCT A 107-13-1, B 75-87-6
         RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
         PRO C 16063-70-0
         CAT 7758-89-6 CuCl
         SOL 75-05-8 MeCN
         CON 120 deg C
         RCT C 16063-70-0
RX(2)
         RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF
         PRO G 823-56-3, H 89402-43-7
         SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
              tetrafluoroborate(1-)
         CON 10 hours, 200 deg C
         RCT H 89402-43-7, P 60075-04-9
RX(9)
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
              SOL 75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
         PRO R 87035-49-2
         RCT R 87035-49-2
RX(15)
           STAGE(1)
              RGT AB 1310-73-2 NaOH
              SOL 123-91-1 Dioxane
              CON 3 hours, 35 deg C
           STAGE(2)
              RGT AC 7647-01-0 HCl
              SOL 7732-18-5 Water
          PRO AA 87135-08-8
RX(43) OF 44 COMPOSED OF RX(2), RX(3), RX(9), RX(15)
```

AA YIELD 82%

```
RX(2)
         RCT C 16063-70-0
         RGT I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF
         PRO G 823-56-3, H 89402-43-7
              174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
         SOL
              tetrafluoroborate(1-)
         CON
              10 hours, 200 deg C
RX(3)
         RCT
              G 823-56-3
             I 584-08-7 K2CO3, K 13400-13-0 CsF
         RGT
         PRO H 89402-43-7
             174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
         SOL
              tetrafluoroborate(1-)
         CON 8 hours, 100 - 110 deg C, 200 mmHg
         RCT H 89402-43-7, P 60075-04-9
RX(9)
           STAGE(1)
              RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-,
                   tetrafluoroborate(1-), I 584-08-7 K2CO3
              SOL 75-05-8 MeCN
              CON 40 hours, 50 - 60 deg C
           STAGE(2)
              SOL 7732-18-5 Water
         PRO R 87035-49-2
RX(15)
         RCT R 87035-49-2
           STAGE(1)
              RGT AB 1310-73-2 NaOH
              SOL 123-91-1 Dioxane
              CON 3 hours, 35 deg C
```

STAGE(2)

RGT AC 7647-01-0 HCl SOL 7732-18-5 Water

PRO AA 87135-08-8

$$RX(44)$$
 OF 44 COMPOSED OF $RX(1)$, $RX(2)$, $RX(3)$, $RX(9)$, $RX(15)$ $RX(44)$ 2 A + 2 B + P ===> AA

AA YIELD 82%

RX(1) RCT A 107-13-1, B 75-87-6 RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-) PRO C 16063-70-0 CAT 7758-89-6 CuCl SOL 75-05-8 MeCN 120 deg C CON RX(2) RCT C 16063-70-0 I 584-08-7 K2CO3, J 7789-23-3 KF, K 13400-13-0 CsF RGT PRO G 823-56-3, H 89402-43-7 SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-) 10 hours, 200 deg C CON

RX(3) RCT G 823-56-3

RGT I 584-08-7 K2CO3, K 13400-13-0 CsF PRO H 89402-43-7 SOL 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-) CON 8 hours, 100 - 110 deg C, 200 mmHg RCT H 89402-43-7, P 60075-04-9 RX(9) STAGE(1) RGT D 174501-65-6 1H-Imidazolium, 1-butyl-3-methyl-, tetrafluoroborate(1-), I 584-08-7 K2CO3 SOL 75-05-8 MeCN CON 40 hours, 50 - 60 deg C STAGE(2) SOL 7732-18-5 Water PRO R 87035-49-2 RCT R 87035-49-2 RX(15) STAGE(1) RGT AB 1310-73-2 NaOH SOL 123-91-1 Dioxane CON 3 hours, 35 deg C STAGE(2) RGT AC 7647-01-0 HCl SOL 7732-18-5 Water PRO AA 87135-08-8 L48 ANSWER 4 OF 27 CASREACT COPYRIGHT 2006 ACS on STN 116:6426 CASREACT Full-text ACCESSION NUMBER: Solvent-free process for the preparation of TITLE: [(pyridinyloxy)phenoxy]propionate derivatives Love, Jim; Grant, Charles B.; Gatling, Sterling INVENTOR(S): DowElanco, USA PATENT ASSIGNEE(S): SOURCE: U.S., 4 pp. CODEN: USXXAM DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-			
US 5049675	A	19910917	US 1990-471347	19900129
EP 439857	A2	19910807	EP 1990-203426	19901219
EP 439857	A3	19911121		
EP 439857	B1	19941221		
R: CH, DE,	ES, FR	, GB, IT, LI,	NL	
BR 9008621	Α	19911119	BR 1990-8621	19901219
ES 2065473	Т3	19950216	ES 1990-203426	19901219
AU 9169993	A	19910801	AU 1991-69993	19910125
JP 07070071	A	19950314	JP 1991-23738	19910125
HU 56067	A2	19910729	HU 1991-291	19910128
CA 2035107	A1	19910730	CA 1991-2035107	19910128
IL 97077	A	19950315	IL 1991-97077	19910128

PRIORITY APPLN. INFO.:

US 1990-471347 19900129

OTHER SOURCE(S):

MARPAT 116:6426

GI

$$R^2$$
 R^1 OCHMeCO₂R R^2

Phenoxypropionates I (R = alkyl; R1 = H, F, Cl; R2 = Cl, Br, iodo, CF3) were prepared by treating a 2-fluoropyridine with 4-HOC6H4OCHMeCO2R in the presence of an anhydrous base in the absence of solvent. Thus (R)-I (R = Me, R1 = F, R2 = CF3) was obtained in 96% yield and 99.2% purity from 2,3-difluoro-5-trifluoromethylpyridine and (R)-4-HOC6H4OCHMeCO2Me in the presence of K2CO3.

RX(1) OF 1 A + B ===> C

C YIELD 96%

RX(1) RCT A 89402-42-6, B 96562-58-2

RGT D 584-08-7 K2CO3 PRO C 89402-39-1

L48 ANSWER 5 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

113:23634 CASREACT Full-text

TITLE:

Synthesis of deuterium labelled analogs of fluazifop

and haloxyfop

AUTHOR(S):

Bartels, Michael J.; Gatling, Sterling C. Dow Chem. Co., Midland, MI, 48674, USA

CORPORATE SOURCE: SOURCE:

Journal of Labelled Compounds and Radiopharmaceuticals

(1990), 28(2), 235-40

CODEN: JLCRD4; ISSN: 0362-4803

DOCUMENT TYPE:

Journal

GI

LANGUAGE: English

Title compds. I (R = H, Cl) were prepared by the condensation of AΒ phenoxypropanoic acid derivative II with pyridine derivs. III (R = H, R1 = F; R = R1 = C1) resp. II was prepared via acid-catalyzed deuteration of 4-HOC6H4OCHMeCO2H.

RX(1) OF 2

C YIELD 82%

RX(1) RCT A 127893-32-7

STAGE(1)

RGT D 1310-73-2 NaOH

SOL 67-68-5 DMSO, 7732-18-5 Water

STAGE(2)

RCT B 69045-82-5

PRO C 127893-33-8

RX(2) OF 2 A + G ===> H

YIELD 32%

RCT A 127893-32-7, G 69045-84-7 RX(2)

RGT I 584-08-7 K2CO3, J 4368-51-8 1-Heptanaminium, N,N,N-triheptyl-,

bromide

PRO H 127893-34-9

127-18-4 Perchloroethene, 7732-18-5 Water

CASREACT COPYRIGHT 2006 ACS on STN L48 ANSWER 6 OF 27

ACCESSION NUMBER:

111:57539 CASREACT Full-text

TITLE:

Preparation of 2-[4-(3,5-disubstituted-2-

pyridyloxy) fluorophenoxy] alkanoates as herbicides

INVENTOR(S): PATENT ASSIGNEE(S): Rogers, Richard B.

Dow Chemical Co., USA

SOURCE:

U.S., 19 pp. Cont.-in-part of U.S. Ser. No. 550,328,

abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4750931	A	19880614	US 1985-787824	19851015
ZA 8408416	A	19860625	ZA 1984-8416	19841029
AU 8434896	A	19850516	AU 1984-34896	19841101
AU 576332	B2	19880825		
DK 8405351	A	19850511	DK 1984-5351	19841109
JP 60116649	A	19850624	JP 1984-236565	19841109
JP 02014342	В	19900406		
BR 8405719	A	19850910	BR 1984-5719	19841109
CA 1219585	A1	19870324	CA 1984-467435	19841109
US 4888050	Α	19891219	US 1988-154821	19880211
PRIORITY APPLN. INFO.:			US 1983-550328	19831110
			US 1985-787824	19851015

OTHER SOURCE(S):

MARPAT 111:57539

GI

$$Q = Y$$
 $Q = Y$
 $Q =$

The title compds. [I; 1 of G, G1 = F, the other = H, F; R = (un) substituted aryl, heteroaryl; R1 = C1-3 alkyl; Z = organic moiety containing N, O, or S atoms or a metallic, ammonium, or organic amine cation and is, or can be, hydrolyzed and/or oxidized in plants or soil to a carboxyl moiety in (un) dissociated form] were prepared 2,4-F(O2N)C6H3OH (preparation given) was stirred 45 min. at 100° with MeCHBrCO2Me in DMSO containing K2CO3 to give 2,4-F(O2N)C6H3OCHMeCO2Me which was reduced to the amine. The latter was diazotized and hydrolyzed to give 2,4-F(HO)C6H3OCHMeCO2Me which was stirred 30 min at 125-140° with chloropyridine QCl (X = Cl, Y = CF3) in DMSO containing K2CO3 to give title compound II (X = Cl) (III). Preemergence, 0.28 kg III/ha gave 100% control of barnyardgrass, yellow foxtail, Johnson grass and wild oats. III gave 100% postemergence control of crabgrass and the above weeds at 7.8-31.25 ppm.

RX(8) OF 34 N + O ===> P..

$$F_3C$$

$$\downarrow N$$

P YIELD 87%

RX(8) RCT N 99045-15-5, O 72537-17-8 PRO P 99044-99-2

RX(25) OF 34 COMPOSED OF RX(8), RX(9) RX(25) N + O ===> Q

Q YIELD 93%

RX(8) RCT N 99045-15-5, O 72537-17-8

PRO P 99044-99-2

RX(9) RCT P 99044-99-2 PRO Q 120594-32-3

L48 ANSWER 7 OF 27 CASREACT COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 108:150426 CASREACT Full-text

TITLE: Synthesis of ethyl 2-[4-(3-fluoro-2-

quinoxalinyloxy)phenoxy]propanoate as herbicide

AUTHOR(S): Makino, Kenzi; Yoshioka, Hirosuke

CORPORATE SOURCE: Inst. Phys. Chem. Res., Wako, 351-01, Japan

SOURCE: Journal of Fluorine Chemistry (1987), 37(1), 119-24

CODEN: JFLCAR; ISSN: 0022-1139

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GI

AB The syntheses of title compound I (R = F), a new fluoro analog of the herbicide quizalofopethyl, from 2,3-dichloroquinoxaline and of Et 2-[4-(6-chloro-3,4-dihydro-3-oxoquinoxalinyl-2-oxy)phenoxy]propanoate from Et 2-[4-(3,6-dichloro-2-quinoxalinyloxy)phenoxy]propanoate via nucleophilic substitution with CsF coupled with 18-crown-6 are described. The growth inhibitory activity of I (R = H, F, Cl, Me) on rice plants was examined The herbicidal activity of I increases in the decreasing order of bulkiness of R.

RX(6) OF 11 3 F + 2 K ===> L + M..

$$C1$$
 N
 $C1$
 K
 (6)

L

М

RX(6) RCT F 65343-67-1, K 2958-87-4

RGT H 584-08-7 K2CO3

PRO L 113760-13-7, M 113760-15-9

SOL 75-05-8 MeCN

RX(7) OF 11 2 F + K ===> L

L YIELD 29%

RX(7) RCT F 65343-67-1, K 2958-87-4 RGT C 13400-13-0 CsF, D 17455-13-9 18-Crown-6 PRO L 113760-13-7

PRO L 113760-13-7 SOL 109-99-9 THF

RX(11) OF 11 COMPOSED OF RX(6), RX(8)

RX(11) 3 F + 2 K ===> N

N YIELD 77%

RX(6) RCT F 65343-67-1, K 2958-87-4

RGT H 584-08-7 K2CO3

PRO L 113760-13-7, M 113760-15-9

SOL 75-05-8 MeCN

RX(8) RCT M 113760-15-9

RGT C 13400-13-0 CsF, D 17455-13-9 18-Crown-6

PRO N 113760-14-8

SOL 109-99-9 THF

L48 ANSWER 8 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 102:149124 CASREACT Full-text

TITLE: Herbicidal trifluoromethylpyridinyloxyphenoxy- and

-pyridinylthiophenoxy propanenitriles and their

derivatives

INVENTOR(S): Johnston, Howard; Troxell, Lillian H.

PATENT ASSIGNEE(S): Dow Chemical Co., USA

SOURCE: U.S., 16 pp. Division of U.S. Ser. No. 918,550.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.		DATE	APPLICATION NO.	DATE
US 4491468	Α	19850101		19820820
US 4753673	Α	19880628	US 1978-918550	19780623
EP 57473	A2	19820811	EP 1982-101502	19780630
EP 57473	A3	19830511		
R: BE, DE	, FR, GB	, NL, SE	·	
AU 8063039	A	19810205	AU 1980-63039	19801007
AU 529649	B2	19830616		
CA 1321590	C2	19930824	CA 1981-388668	19811023
US 4479001	A	19841023	US 1983-467552	19830217
AU 568503	В2	19880107	AU 1983-17941	19830812
AU 8317941	A	19831208		
US 4523017	A	19850611	US 1983-529178	19830902
US 4551170	A	19851105	US 1984-679976	19841210
US 4628099	A	19861209	US 1985-720844	19850408
PRIORITY APPLN. INFO			US 1977-817943	19770722
			US 1978-918550	19780623
•			CA 1978-305900	19780621
			AU 1978-37703	19780703
			EP 1980-101361	19801029
	•		US 1982-357346	19801029
			US 1982-409791	19820820
			US 1982-409811	19820820

GΙ

$$X \longrightarrow Q \longrightarrow OCHMeCN$$

AB Several examples of the title compds. I (Q = O, S; X = Cl, Br, CF3; Y = H, Cl, Br, CF3, and at least one of X or Y is CF3) and their derivs., preemergent and postemergent herbicides, were prepared Thus, treating 2-(4-hydroxyphenoxy)propanoic acid with 2-chloro-3,5-bis(trifluoromethyl)pyridine in presence of NaOH gave 2-[4-[3,5-bis(trifluoromethyl)-2-pyridinyloxy]phenoxy]propanoic acid (II). II was also amidated, or reduced, then esterified to produce derivs. At 1 lb/acre, I (X = Cl, Y = CF3, Q = O) gave 100% control of Johnson grass.

RX(2) OF 26 C + D ===> E...

CO2H
$$F_3C$$
 N CF_3 CF_3

Ε

$$RX(12)$$
 OF 26 COMPOSED OF $RX(2)$, $RX(3)$
 $RX(12)$ C + D + F ===> G

G

RX(2) RCT C 67648-61-7, D 70158-60-0

PRO E 70158-55-3

RX (3) RCT E 70158-55-3, F 67-56-1 PRO G 70158-66-6

RX(19) OF 26 COMPOSED OF RX(2), RX(11), RX(10)

C + D + F ===> G

$$F_3C$$
 N
 Me
 Me
 Me

G

RCT C 67648-61-7, D 70158-60-0 RX(2)

E 70158-55-3

RCT E 70158-55-3 RX(11)

> H 7719-09-7 SOC12 RGT

V 74900-19-9 PRO

V 74900-19-9, F 67-56-1 RX(10) RCT

> PRO G 70158-66-6

121-44-8 Et3N CAT

L48 ANSWER 9 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

103:191463 CASREACT Full-text Herbicide compositions containing

TITLE:

pyridinyloxyphenoxyalkanoic acids,

pyridinylthiophenoxyalkanoic acids, and their

derivatives

INVENTOR (S):

Johnson, Howard; Troxell, Lillian H.

PATENT ASSIGNEE(S):

Dow Chemical Co., USA Ger. (East), 55 pp.

SOURCE:

CODEN: GEXXA8

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DD 217694	A5	19850123	DD 1983-257404	19831201
PRIORITY APPLN. INFO.	:		DD 1983-257404	19831201
GI				

$$R \longrightarrow X \longrightarrow OCH(R^1) Y_n R^2$$

The title compds. I (R = CF3, CHF2, CClF2, Br; R1 = H, alkyl; R2 = CO2H; X = O, S; Y = alkylene; n = 0-1) are herbicides. Thus, in the greenhouse, 7.8 ppm Me 2-[4-(3-fluoro-5-chloro-2-pyridinyloxy)phenoxy]propionate [87035-49-2] totally controlled barnyard grass (Echinochloa crus-galli) and other weeds, with no phytotoxicity to soybean, cotton, and other culture plants. The preparation of I is given.

$$RX(4)$$
 OF 28 ...D + E ===> F...

F

RX(4) RCT D 89402-29-9, E 67648-61-7 PRO F 89402-30-2

RX(10) OF 28 COMPOSED OF RX(3), RX(4) RX(10) C + E ===> F

F

RX(15) OF 28 COMPOSED OF RX(2), RX(3), RX(4) RX(15) B +
$$\mathbf{E}$$
 ===> \mathbf{F}

$$F_3C$$
 N
 $C \stackrel{\star}{=} N$
 Me
 $STEPS$
 $STEPS$

F

RX(16) OF 28 COMPOSED OF RX(1), RX(2), RX(3), RX(4) RX(16)
$$A + E ===> F$$

F.

RX(1)	RCT	A 80194-70-3
	PRO	B 80194-71-4
RX(2)	RCT	B 80194-71-4
	PRO	C 89402-28-8
RX(3)	RCT	C 89402-28-8
	PRO	D 89402-29-9
RX(4)	RCT	D 89402-29-9, E 67648-61-7
	PRO	F 89402-30-2

L48 ANSWER 10 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

101:72612 CASREACT Full-text

TITLE:

2,3-Difluoro-5-(trifluoromethyl)pyridine as

intermediate for herbicides

PATENT ASSIGNEE(S):

Dow Chemical Co., USA

SOURCE:

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 59020269	A	19840201	JP 1983-110035	19830618
JP 04046271	В	19920729		
US 4480102	Α	19841030	US 1982-401057	19820723
EP 104715	A2	19840404	EP 1983-303323	19830608
EP 104715	A3	19841227		
EP 104715	B1	19881012		

	R:	BE,	CH,	DE,	FR,	GB,	IT,	LI,	NL,	SE		
DK	8302	812		Α		1984	0124		DK	1983-2812	19830	517
DK	1604	90		В		1991	0318					
DK	1604	90		C		1991	0826			•		
ZA	8304	460		Α		19850	0227		ZA	1983-4460	19830	617
CA	1202	308		A1	. :	19860	0325		CA	1983-432386	5 19830'	713
HU	3234	9		A2	: :	19840	730		HU	1983-2596	19830	722
нU	1884	79		В		1984	0.730					
US	4625	035	·	Α	• .	1986	1125		US	1985-78979	19851	021
JP	0506	5272		Α		1993	0319		JP	1992-54142	199202	206
JP	0706	1997		В		19950	705					
PRIORITY	APP	LN. I	INFO.	:					US	1982-40105	7 19820	723
									US	1984-621343	3 19840	518
GI												

$$F_3C$$
 R^1
 $Q = Q = Q$
OCHMeCO₂R

The title compound (I, R = R1 = F) (II), intermediate for herbicidal (no data) [(pyridyloxy)phenoxy]alkanoic acids, was prepared Thus, a mixture of 50 mL Me2SO, 1.9 g CsF, and about 0.5 g K2CO3 was heated at 115° until a yellowish solution resulted, the temperature lowered to 70°, 1.98 g I (R = F, R1 = Cl) added and the resulting mixture heated at 105° for 21 h to give II (yield not given). Treatment of II with HQ in Me2SO-H2O containing NaOH at 70-80° gave I (R = Q, R1 = F).

$$RX(1)$$
 OF 3 ...A + B ===> C

C

RX(1) RCT A 89402-42-6, B 67648-61-7 PRO C 89402-30-2

RX(3) OF 3 COMPOSED OF RX(2), RX(1)

RX(3) D + B ===> C

С

RX(2) RCT D 72537-17-8 PRO A 89402-42-6

RX(1) RCT A 89402-42-6, B 67648-61-7 PRO C 89402-30-2

L48 ANSWER 11 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

100:138965 CASREACT Full-text

TITLE:

Pyridyl(oxy/thio)phenoxy compounds and herbicidal

compositions

INVENTOR(S):

Johnston, Howard; Troxell, Lillian Heitz

PATENT ASSIGNEE(S):

Dow Chemical Co., USA

SOURCE:

Eur. Pat. Appl., 57 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

				· · · · · · · · · · · · · · · · · · ·	
PAT	TENT NO.	KIND	DATE	APPLICATION NO.	DATE
	 -				
EP	97460	Al	19840104	EP 1983-303353	19830609
ΕP	97460	B1	19880406		
	R: AT, BE	, CH, DE	, FR, IT, LI,	NL, SE	
US	4565568	A	19860121	US 1983-497295	19830523
ΙL	68822	A	19900712	IL 1983-68822	19830531
AU	8315334	A	19831215	AU 1983-15334	19830602
ΑU	556172	B2	19861023		
GB	2123819	Α	19840208	GB 1983-15847	19830609
GB	2123819	В	19860416		

AΤ	33387	T	19880415	ΑT	1983-303353	19830609
DK	8302811	A	19831219	DK	1983-2811	19830617
DK	157015	В	19891030		•	
DK	157015	С	19900326			
BR	8303329	A	19840207	BR	1983-3329	19830617
ES	523398	A1	19841001	ES	1983-523398	19830617
CA	1179350	A1	19841211	CA	1983-430592	19830617
za.	8304462	A	19850227	ZA	1983-4462	19830617
JP	59007165	A	19840114	JР	1983-110033	19830618
JР	62049269	В	19871019			
HU	36458	A2	19850930	HU	1983-3719	19831028
нU	189768	В	19860728			
ES	530713	Al	19850501	ES	1984-530713	19840316
ES	530712	A1	19850516	ES	1984-530712	19840316
CA	1182459	A2	19850212	CA	1984-457507	19840626
US	4678509	A	19870707	US	1985-793865	19851101
US	4851539	A	19890725	US	1985-799702	19851119
JР	62142156	A	19870625	JP	1986-275483	19861120
JP	62142154	A	19870625	JP	1986-275484	19861120
JP	62142157	A	19870625	JP	1986-275485	19861120
US	33478	E	19901211	US	1988-267490	19881031
PRIORITY	APPLN. INFO.:			US	1982-389840	19820618
				US	1983-497295	19830523
				ΕP	1983-303353	19830609
				CA	1983-430592	19830617

OTHER SOURCE(S):

MARPAT 100:138965

GΙ

The title compds. I (X = O, S; R = CF3, CHF2, CC1F2, Br, Cl; R1 = hydrolyzable or oxidizable organic group) were prepared Thus, 3-chloro-2-fluoro-5-trifluoromethylpyridine was treated with KCN and the resulting nitrile was fluorinated to give II (R2 = cyano). Hydrolysis of the nitrile group and treatment of the acid with Br gave II (R2 = Br) which was treated with 4-HOC6H4OCHMeCO2H to give II (R2 = 4-OC6H4OCHMeCO2H) (III). At 31.25 ppm postemergence III gave 100% control of e.g. barnyardgrass.

RX(1) OF 34 A + B ===> C...

$$B$$
 CO_2H F_3C N Br B

С

RX(1) RCT A 67648-61-7, B 89402-29-9 PRO C 89402-30-2

RX(13) OF 34 ...S + A + T ===> U

F
N
$$H_{\star}$$
OH
S
A
 $H_{3}C$
 $H_{3}C$

U

RX(13) RCT S 89402-43-7, A 67648-61-7, T 67-56-1 PRO U 87035-49-2

RX(25) OF 34 COMPOSED OF RX(15), RX(13) RX(25) W + A + T ===> \mathbf{U}

RX(15) RCT W 16063-70-0 PRO S 89402-43-7

U

RX(13) RCT S 89402-43-7, A 67648-61-7, T 67-56-1 PRO U 87035-49-2

RX(28) OF 34 COMPOSED OF RX(1), RX(3), RX(6) RX(28) A + B ===> \mathbf{I}

I

RX(1) RCT A 67648-61-7, B 89402-29-9

PRO C 89402-30-2

RX(3) RCT C 89402-30-2

PRO F 89402-33-5

RX(6) RCT F 89402-33-5

PRO I 89402-34-6

L48 ANSWER 12 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

97:23638 CASREACT Full-text

TITLE:

Herbicidal and plant growth regulating

pyridyloxyphenoxypropionic acid derivatives

INVENTOR (S):

Rempfler, Hermann; Schurter, Rolf; Foery, Werner

PATENT ASSIGNEE(S):

Ciba-Geigy Corp. , USA

SOURCE:

U.S., 8 pp. Cont.-in-part of U.S. Ser. No. 860,409.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

GI

English ·

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4325729	A	19820420	US 1980-206518	19801113
SU 1120916	A3	19841023	SU 1977-2558101	19771226
PRIORITY APPLN. INFO.	:		US 1977-860409	19771213
OTHER SOURCE(S):	MA	RPAT 97:23638		

R1
F3C OCHMeCO2R

AB Esters I (R = cyanoalkyl, R1 = H or halo) were prepared, and they are useful as herbicides and plant growth regulators (no data). Thus, 4-HOC6H4OCHMeCO2Me in Me2SO was treated with NaH in Me2SO, the mixture was stirred, 2,6-dichloro-3-(trifluoromethyl)pyridine was introduced, and the new mixture was stirred 2 h to give I (R = Me, R1 = C1). Also prepared was I (R = CH2CN, R1 = C1).

 $RX(3) ext{ OF 7} ext{ D} + ext{ E} ===> A...$

RX(3) RCT D 52334-81-3, E 60075-04-9 PRO A 69335-90-6

RX(6) OF 7 COMPOSED OF RX(3), RX(1) RX(6) D + E ===> B

2

STEPS

В.

RX(1) RCT A 69335-90-6 PRO B 69335-91-7

RX(7) OF 7 COMPOSED OF RX(3), RX(1), RX(2)

$$RX(7)$$
 D + E ===> C

RX(3) RCT D 52334-81-3, E 60075-04-9 PRO A 69335-90-6

RX(1) RCT A 69335-90-6 PRO B 69335-91-7

RX(2) RCT B 69335-91-7 PRO C 69045-80-3

L48 ANSWER 13 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

98:53933 CASREACT Full-text

TITLE:

Quinoxaline derivatives as herbicides

PATENT ASSIGNEE(S):

ICI Australia Ltd., Australia

SOURCE:

Jpn. Kokai Tokkyo Koho, 17 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

2

	PAT	TENT N	10.		KIND	DATE				PLICATION NO	. DATE	E .
					Α	1982	•			1982-2384	1982	20112
	JP	04074	352		В	1992	1126					
	ΑU	81791	.53		Α	19820	722		AU	1981-79153	1981	10112
	ΑU	54745	54		B2	1985	1024					
	US	46558	319		Α	19870	0407		US	1981-334384		1224
	$_{ ext{IL}}$	64707	7		Α	19870	0831		$_{ m IL}$	1982-64707	1982	20104
	ZA	82000	45		Α	1982	1124		ZA	1982-45	1982	20105
	EP	60607	7		A1	19820	922		EP	1982-300074	1982	20107
	EP	60607	7		B1	1985	0828					
		R:	AT,	BE,	CH, DE	, FR,	GB,	IT,	LU, N	NL, SE		
	ΑT	15192	2		Т	1985	915		ΑT	1982-300074	1982	20107
	BR	82000	79		A	1982	1116		BR	1982-79	1982	20108
	HU	28591	Ļ		A2	1983	1228		HÜ	1982-48	1982	20108
	HU	18646	3		В	1985	0828					
	ES	50862	29		A1	1982	1101		ES	1982-508629	1982	20111
	CS	22891	.1		B2	1984	0514		CS	1982-211	1982	20111
	CA	12126	76		Al	1986	1014		CA	1982-393929	1982	20112
	US	48032	273		A	1989	0207		US	1986-939694	1986	51209
PRIOR	RITY	APPI	.N.	INFO.	. :				AU	1981-7201	1981	10112
									ΑU	1979-9617	1979	90717
									AU	1980-3093	1980	00411
									US	1980-164933	1980	0701
									UŞ	1981-334384	1987	L1224
									EP	1982-300074	1982	20107

MARPAT 98:53933

GI

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

Seventeen quinoxaline derivs. (I; R,Rl = halo, Me, halomethyl; R2 = HO, HS, C1-10 alkoxy, C2-10 alkenloxy, cycloalkoxy, etc.; m, n = 0.1), effective herbicides at 0.25-5.0 kg/ha, were prepared Thus, a mixture of 2-fluoro-4-benzyloxyphenol 0.054, Et 2-bromopropionate 0.054, and K2CO3 0.059 mol in MeCOEt was refluxed 3 h to give 75% 2,4- F(PhCH2O)C6H3OCHMeCO2Et, which was treated with atmospheric H over 10% Pd-C to give 95% 2,4-F(HO)C6H3OCHMeCO2Et, which (0.005 mol) was heated with 0.005 mol 2,6-dichloroquinoxaline and 0.0055 mol K2CO2 in DMF at 100° to give 66% I (R = Cl, Rl = 2-F, R2 = EtO, m = n = 0).

I

RX(3) OF 17 ...D + E ===> F...

RX(3) RCT D 78689-30-2, E 18671-97-1 PRO F 84352-12-5

RX(4) OF 17 ...D + G ===> H...

$$RX(10)$$
 OF 17 COMPOSED OF $RX(3)$, $RX(5)$ $RX(10)$ D + E ===> I

Н

I

RX(5) RCT F 84352-12-5 PRO I 84352-20-5

RX(4) RCT D 78689-30-2, G 55687-02-0 PRO H 84352-21-6

RX(6) RCT H 84352-21-6 PRO J 84352-24-9

L48 ANSWER 14 OF 27 CASREACT COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 97:182223 CASREACT Full-text

TITLE:

J

 α -[(5'-Trifluoromethylpyridyl-2'-

oxy)phenoxy]propionic acid γ -butyrolactone ester and thioester with a herbicidal effects, their

production and applications

INVENTOR(S):

Boehner, Beat; Rempfler, Hermann

PATENT ASSIGNEE(S):

Ciba-Geigy A.-G. , Switz.

SOURCE:

Ger. Offen., 14 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-			
DE 3131363	, A1	19820826	DE 1981-3131363	19810807
CH 645375	A5	19840928	CH 1980-6060	19800811
US 4395277	A	19830726	US 1981-288860	19810731
PRIORITY APPLN. INFO.	:		CH 1980-6060	19800811
GT				

AB I (R = H, Cl; X = O, S) were prepared and shown to be active as herbicides. Thus, 4-HOC6H4OCHMeCO2Me was etherified with 2,3-dichloro-5- (trifluoromethyl)pyridine, saponified, and treated with $\alpha\text{-bromo-}\gamma\text{-butyrolactone}$ to give I (R = Cl, X = O).

RX(1) OF 2 A + B ===> C

RX(1) RCT A 60075-04-9, B 69045-84-7 PRO C 69806-40-2

L48 ANSWER 15 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

96:6755 CASREACT Full-text

TITLE:

С

Herbicidal quinoxalines

PATENT ASSIGNEE(S):

Nissan Chemical Industries, Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 11 pp.

DOCUMENT TYPE:

CODEN: JKXXAF

LANGUAGE:

Patent Japanese

FAMILY ACC. NUM. COUNT:

. 1

PATENT INFORMATION:

PATENT NO.

KIND DATE

APPLICATION NO. DATE

JP 56057769 A 19810520

JP 1979-132819 19791017 JP 1979-132819 19791017

PRIORITY APPLN. INFO.:

Twenty-six herbicidal quinoxalines I (R = Cl, F; Rl = CO2Bu, CONMe2, CO2Na, CH2OH, CH:CHCO2Me, etc.) were prepared via various routes. I caused no damage to cotton or soybean at 5-10 kg/ha by foliar application. Thus, 2,6-dichloroquinoxaline 10 was heated with p-HOC6H4OCHMeCO2Pr 10 and K2CO3 14 mmol in MeCN 12 h to give 86% I (R = Cl, Rl = CO2Pr).

RX(2) OF 24 A + D ===> E

RX(2) RCT A 18671-97-1, D 81947-94-6 PRO E 76578-39-7

RX(16) OF 24 AD + D ===> AF

AD
$$\frac{1}{N}$$
 C1 $\frac{1}{N}$ $\frac{1}{N}$

RX(16) RCT AD 55687-33-7, D 81947-94-6 PRO AF 76578-52-4

L48 ANSWER 16 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 9

95:115603 CASREACT Full-text

TITLE:

AF

Quinoxaline derivatives

PATENT ASSIGNEE(S):

Nissan Chemical Industries, Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 56046868	A	19810428	JP 1979-124466	19790927
PRIORITY APPLN. INFO.	:		JP 1979-124466	19790927
CT		,		

Quinoxaline derivs. I (R, R1 = Br, H; Br, Me; Br, Et; Br, Me2CH; iodo, Me; Me, Me; Me, Et; Me, Me2CH; Br, Na) were prepared and used as herbicides (data given against Echinochloa crus-galli, Digitaria adscendens, Portulaca oleracea, etc.). Thus, 56.1 g 3,4-(H2N)2C6H3Br in H2O was added to an aqueous mixture of 32.1 g NaIO4 and 39.3 g di-Bu L-(+)-tartrate and the whole stirred 3 h at 70-80° to give 65% 2-hydroxy-6- bromoquinoxaline, which (22.5 g) was refluxed with POCl3 2 h to give 83% 2-chloro-6-bromoquinoxaline, which (2.4 g) was refluxed with 2.4 g 4-HOC6H4OCHMeCO2Me and 2 g K2CO3 in MeCN 12 h to give

67% I (R = Br, R1 = Me) (II). Hydrolysis of II with aqueous NaOH by refluxing 1 h gave 84% I (R = Br, R1 = H).

RX(2) OF 3 ...B + D ===> E

$$Br$$
 N
 O
 Me
 OMe

RX(2) RCT B 55687-02-0, D 60075-04-9 PRO E 76578-33-1 CAT 584-08-7 K2CO3

RX(3) OF 3 COMPOSED OF RX(1), RX(2) RX(3) A + D ===> E

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

RX(1) RCT A 55687-34-8

RGT C 10025-87-3 POC13 PRO B 55687-02-0

RX(2) RCT B 55687-02-0, D 60075-04-9

PRO E 76578-33-1 CAT 584-08-7 K2CO3

L48 ANSWER 17 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

95:25134 CASREACT Full-text

TITLE:

Quinoxalinyloxyphenoxyalkane carboxylic acid

derivatives and their use as herbicides

INVENTOR(S):

Serban, Alexander; Watson, Keith Geoffrey; Farquharson

PATENT ASSIGNEE(S):

ICI Australia Ltd., Australia

SOURCE:

Eur. Pat. Appl., 63 pp.

•

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 2

PATENT NO.		DATE		PLICATION NO.	DATE
EP 23785				1980-302411	19800717
EP 23785	A3	19810429			
EP 23785	B1	19850403		·	
R: AT, BE	CH, DE	, FR, GB,	IT, NL,	SE	
AU 540234	. B2	19841108	AU	1980-59547	19790717
AU 8059547	A	19810806			
ZA 8003928	A	19810624	ZA	. 1980-3928	19800630
IL 60506	A	19861231	IL	1980-60506	19800706
CA 1314549			CA	1980-356027	19800711
HU 26554	A2	19830928	· HU	1980-1762	19800715
HU 186299	В	19850729			
DK 8003068	A	19810118	. DK	1980-3068	19800716
DK 160426	В	19910311			
DK 160426	С	19910819			
BR 8004413	Α	19810127	BR	1980-4413	19800716
ES 493431	A1	19810701	ES	1980-493431	19800716
	B2	19860116	CS	1980-5044	19800716
SU 1261564	A1	19860930	SU	1980-2951003	19800716
JP 56039077	A	19810414	JF	1980-96960	19800717
JP 06013489	В	19940223			
AT 12495	T	19850415	ΓA	1980-302411	19800717
US 4655819	$\cdot \mathbf{A}$	19870407	US	1981-334384	19811224
US 4803273	Α	19890207	บร	1986-939694	19861209
DK 8901684	A	19890407	DK	1989-1684	19890407
DK 168380	B1	19940321			
DK 8901685	A	19890407	DK	1989-1685	19890407
DK 162521	В	19911111			
DK 162521	C	19920330			
ORITY APPLN. INFO	o.:		AU	1979-9617	19790717
			. AU	1980-3093	19800411
			US	1980-164933	19800701
	•		EF	1980-302411	19800717
	•		AU	1981-7201	19810112
			US	1981-334384	19811224

The title compds. I (X = optionally substituted OC6H4O, OC6H4S, SC6H4S; R = H, optionally substituted alkyl, acyl; R1 = H, optionally substituted alkyl; RR1 = alkylene; R2 = cyano, carbamoyl, optionally esterified CO2H, substituted Me; R3 = H, halogen, cyano, thiocyano, optionally substituted NH2, aliphatic, OH, SH, CO2H, or CONH2; m, n = 0, 1; p = 0-2) were prepared Thus, 2,6-dichloroquinoxaline was treated with 4-HOC6H4OCHMeCO2Me to give 70% II. At 1 kg/ha preemergence II gave 100% control of ryegrass and Japanese millet.

$$RX(3)$$
 OF 4 ...B + E ===> F

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

RX(3) RCT B 78104-57-1, E 6007.5-04-9 PRO F 78104-58-2

RX(4) OF 4 COMPOSED OF RX(1), RX(3)RX(4) A + E ===> F

RX(1) RCT A 18671-97-1 PRO B 78104-57-1

RX(3) RCT B 78104-57-1, E 60075-04-9 PRO F 78104-58-2

L48 ANSWER 18 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

94:103186 CASREACT Full-text

TITLE:

4-(2-Pyridyloxy)phenoxyalkanecarboxylic acids and

their derivatives

PATENT ASSIGNEE(S):

Ishihara Sangyo Kaisha, Ltd., Japan

SOURCE:

F

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 55139361	Α	19801031	JP 1979-48147	19790419
JP 63043389	В	19880830		
US 4267336	A	19810512	US 1980-137954	19800407
GB 2048864	Α	19801217	GB 1980-12507	19800416
GB 2048864	В	19830525		
FR 2454439	A1	19801114	FR 1980-8831	19800418
FR 2454439	B1	19830624		
BR 8002431	Α	19801202	BR 1980-2431	19800418
PRIORITY APPLN. INFO.	:		JP 1979-48147	19790419
GI				

Phenoxypyridines I (R = halo, CF3; R1 = H, halo; R2 = Me; R3 = halo; l = 0-2; m = 0-5) were treated with p-HOC6H4OCHMe(CH2)nCO2R4 (II; R4 = H, alkyl, cation; n = 0, 2) or their derivs. to give III. Thus, heating 5.4 g 2-chloro-5-trifluoromethylpyridine with 2,6-Cl2C6H3OH and KOH in Me2SO 3 h at 110° gave 7.5 g corresponding I, which (2 g) was heated with II (R4 = H, n = 0) and KOH in Me2SO 4 h at 100° to give 1.3 g corresponding III.

RX(2) OF 3 ...C + D ===> E

RX(2) RCT C 105626-83-3, D 67648-61-7 PRO E 69335-91-7

RX(3) OF 3 COMPOSED OF RX(1), RX(2)RX(3) A + B + D ===> E

RX(1) RCT A 52334-81-3, B 120-83-2

PRO C 105626-83-3

RX(2) RCT C 105626-83-3, D 67648-61-7

PRO E 69335-91-7

L48 ANSWER 19 OF 27 CASREACT COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

90:203882 CASREACT Full-text

TITLE:

[[[(Trifluoromethyl)pyridyl]oxy]phenoxy]propionic acid

and analogs

PATENT ASSIGNEE(S):

Dow Chemical Co., USA

SOURCE:

Jpn. Kokai Tokkyo Koho, 20 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 2

PA	TENT NO.		KIND	DATE	API	PLICATION NO.	DATE
JР	54024879	- 	A	19790224	JP	1978-89287	19780721
JP	63050345		В	19881007			
CA	1247625		A1	19881227	. CA	1978-305900	19780621
ΕP	483		A1	19790207	EP	1978-100291	19780630
EP	483		B1	19811014			
	R: BE,	DE,	FR, GB	, NL, SE			
EP	57473		A2	19820811	EP	1982-101502	19780630
EP	57473		A3	19830511			
				, NL, SE			
ΑU	7837703		A	19800110	AU	1978-37703	19780703
AU	519094		B2	19811105			
DK	7803260		A	19790123	DK	1978-3260 1978-4724	19780721
DK	156830		В	19891009			
DK	156830		С	19900312		•	
BR	7804724		Α	19790410	BR	1978-4724	19780721
BR	7804725		\mathbf{A}	19790410	BR	19/8-4/25	19/80/21
						1980-63039	19801007
AU	529649		B2	19830616			
JP	56123971		Α	19810929	JP	1980-141111	19801008
JP	63044148		В	19880902			
EP	17767		A1	19801029	EP	1980-101361	19801029
	17767						
	R: BE,	DE,	FR, GB	, NL, SE			•
CA	1321590		C2	19930824	CA	1981-388668	19811023
JP	58083675		Α	19830519	JP	1982-173144	19821001
						1982-173143	19821001
JP	63052026		В	19881017			
JP	58099464		Α	19830613	JP	1982-173142	19821001

US 447900)1 <i>F</i>	4	19841023	US	1983-467552	19830217
JP 58201	766 <i>P</i>	Ą	19831124	JP	1983-66813	19830415
JP 590625	567 <i>F</i>	Ą	19840410	JP	1983-129293	19830715
JP 590625	568 <i>P</i>	4	19840410	JP	1983-129296 [.]	19830715
JP 590672	202 <i>F</i>	A .	19840416	JP	1983-129292	19830715
JP 630139	961 E	3	19880329			
JP 590672	267 <i>F</i>	A.	19840416	JP	1983-129294	19830715
JP 010031	192 E	3	19890119			
JP 590672	268 <i>F</i>	A.	19840416	JР	1983-129295	19830715
JP 630447	747 E	3.	19880906			
JP 591302	271 <i>F</i>	A.	19840726	JP	1983-147929	19830812
US 452303	17 P	Ą	19850611	US	1983-529178	19830902
US 455117	70 <i>P</i>	Ą	19851105	US	1984-679976	19841210
JP 611065	503 <i>P</i>	Ą	19860524	JP	1985-207714	19850919
JP 630178	B01 E	3 .	19880415			
JP 631523	302 P	A	19880624	JP	1987-206201	19870819
JP 02019	109 E	3	19900427			
PRIORITY APPL	N. INFO.:			ÚS	1977-817943	19770722
				CA	1978-305900	19780621
				US	1978-918550	19780623
				UA	1978-37703	19780703
				EP	1980-101361	19801029
				US	1982-357346	19820311
				US	1982-409791	19820820

OTHER SOURCE(S):

MARPAT 90:203882

GI

$$R1$$
 X OCHMER I

The title compds. [I, R = COR3 (R3 = OH, alkoxy, NH2, alkylamino), CN, CH2OH; R1, R2 = Cl, CF3; X = O, S] were prepared and their herbicidal activity evaluated. Thus, p-HOC6H4OCHMeCO2H in MeSO-NaOH-H2O was treated with 2-chloro-3,5-bis(trifluoromethyl)pyridine at 110° for 35 min to give I (R = CO2H, R1 = R2 = CF3, X = O).

RX(8) OF 36 L + M ===> N

$$F_3C$$
 \downarrow^*
 N
 C_{F_3}
 H_{\star}
 M
 C_{F_3}
 M
 M
 M
 M

$$\begin{array}{c|c} F_3C & & O & \\ \hline \\ CF_3 & & \\ \end{array}$$

N

RX(8) RCT L 70158-60-0, M 67648-61-7 PRO N 70158-55-3

L48 ANSWER 20 OF 27 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1992:571472 CAPLUS Full-text

DOCUMENT NUMBER:

117:171472

TITLE:

optically active (R)-4-[[(2-

quinoxalinyl)oxy]phenoxy]propionates and a process for

their preparation

INVENTOR (S):

Zeiss, Hans Joachim; Mildenberger, Hilmar

PATENT ASSIGNEE(S):

Hoechst A.-G., Germany

SOURCE:

Eur. Pat. Appl., 9 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

: 1

PATENT INFORMATION:

	PAT	ENT N	o.			KINI)	DATI	3		API	PLICATION NO.		DATE
													- -	
	ΕP	49262	9			A2		1992	20701		\mathbf{EP}	1991-122231		19911224
	ΕP	49262	9			A3		1993	30113			•		
	ΕP	49262	9			В1		1999	50920					
		R:	BE,	CH,	DE,	FR,	GB,	IT	LI,	NL				
	DE	40420	98		·	A1		1992	20702		DE	1990-4042098		19901228
	DE	40420	98			C2		1993	31007			•		
	BR	91055	29			А		1992	20901		BR	1991-5529		19911219
	ZA	91100	55			А		1992	20930		ZA	1991-10055		19911220
	CA	20583	20			A1		1992	20629		CA	1991-2058320		19911223
	ΑU	91900	80			Α		1992	20702		ΑU	1991-90080		19911224
	ΑU	65337	6			В2		1994	10929					
	JP	04295	469			А		1992	21020		JР	1991-345246		19911226
		10053				A		1996	50331		IL	1991-100531		19911226
		61291				A2		1992	21228		HU	1991-4124		19911227
		20868				В			31228					
TOE		Z0000 APPL		INFO		_					DE	1990-4042098	Α	19901228
. 1 01				11,1	• •							42DD2m 112 12147	2	

OTHER SOURCE(S):

CASREACT 117:171472; MARPAT 117:171472

ED Entered STN: 01 Nov 1992

GI

A process for the preparation of optically active C1-18-alkyl, benzyl, AΒ cycloalkyl, or alkenyl (R)-4-[[(2-quinoxalinyl)oxy]phenoxy]propionates comprises the condensation reaction of a 2-substituted quinoxaline with a lower alkyl (R)-2-(4-hydroxyphenoxy)propionate and transesterification of the ester thus obtained without racemization. The title compds. are herbicides, whereby the (R)-isomers have a greater biol. activity than the (S)-isomers (no data). A mixture of 2,6-dichloroquionoxaline (5.00 g), Et D-2-(4hydroxyphenoxy)propionate (5.40 g), potassium carbonate (3.50 g), polyethylene glycol (0.3 g) and xylene was refluxed for 6 h to give Et (R)-2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]propionate in 91.1% yield (82% optically pure). Transesterification of the latter with (\pm) -tetrahydrofurfuryl alc. gave (\pm) tetrahydrofurfuryl (R)-2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]propionate (I) in 88.6% yield.

71301-98-9, Ethyl (R)-2-(4-hydroxyphenoxy)propionate IT RL: RCT (Reactant); RACT (Reactant or reagent) (condensation reaction of, with dichloroquinoxaline)

RN 71301-98-9 CAPLUS

Propanoic acid, 2-(4-hydroxyphenoxy)-, ethyl ester, (2R)- (9CI) (CA INDEX CNNAME)

Absolute stereochemistry. Rotation (+).

IT 100646-51-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and transesterification of)

100646-51-3 CAPLUS RN

Propanoic acid, 2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]-, ethyl ester, CN (2R) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CAPLUS COPYRIGHT 2006 ACS on STN L48 ANSWER 21 OF 27

1990:552054 CAPLUS Full-text ACCESSION NUMBER: DOCUMENT NUMBER:

113:152054

TITLE:

Preparation of herbicidal

[(cyanofluorophenoxy)phenoxy]alkanoic acids and

derivatives

INVENTOR(S):

Pews, R. Garth; Jackson, Lucinda A.; Carson, Chrislyn

Μ.

PATENT ASSIGNEE(S):

Dow Chemical Co., USA

SOURCE:

U.S., 17 pp. Cont.-in-part of U.S. Ser. No. 82,030,

abandoned. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4894085	A	19900116	US 1988-277619	19881129
ES 2045018	Т3	19940116	ES 1988-109559	19880615
AU 8819061	A	19890209	AU 1988-19061	19880714
AU 605327	B2	19910110		
BR 8804034	A	19890228	BR 1988-4034	19880802
JP 01066156	A	19890313	JP 1988-195283	19880804
JP 06078293	В	19941005		
US 4980494	A	19901225	US 1989-448047	19891208
PRIORITY APPLN. INFO.:			US 1987-82030 B	2 19870805
			US 1988-277619 A	3 19881129

OTHER SOURCE(S):

MARPAT 113:152054

Entered STN: 27 Oct 1990 ED

GI

$$NC$$
 R^{1}
 $OCHCO_{2}H$

Title acids I (R1 = C1-3 alkyl) and their opticl isomers and agriculturally AB acceptable acid-group derivs. (esters, salts, amides, alcs., halides, tetrazoles, nitriles, etc.) are prepared as selective postemergent herbicides for grassy weeds, useful in wheat, barley, and especially rice. Thus, etherification of 4-HOC6H4OCHMeCO2Me with 3,4-F2C6H3CN using NaOH in DMSO at 80° gave I (R1 = Me) Me ester. This underwent saponification with KOH-MeOH, conversion to the acid chloride with SOCl2, and reesterification with BuOHpyridine in CCl4 to give the Bu ester (II). In a postemergent paddy test, II at 200 g/ha gave 92% control of Leptochloa filiformis without damage to rice. Eighteen syntheses, 8 formulations, and numerous postemergent tests are described.

IT 122008-85-9P

RL: AGR (Agricultural use); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (preparation of, as herbicide)

122008-85-9 CAPLUS RN

Propanoic acid, 2-[4-(4-cyano-2-fluorophenoxy)phenoxy]-, butyl ester, CN (2R) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 96562-58-2

RL: RCT (Reactant); RACT (Reactant or reagent) (reaction of, in preparation of herbicides)

RN 96562-58-2 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, methyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L48 ANSWER 22 OF 27 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1989:496861 CAPLUS Full-text

DOCUMENT NUMBER:

111:96861

TITLE:

Herbicidal [(fluorocyanophenoxy)phenoxy]alkanoates,

their compositions, use, and preparation

INVENTOR(S):

Pews, Garth R.; Jackson, Lucinda A.; Carson, Chrislyn

Μ.

PATENT ASSIGNEE(S):

Dow Chemical Co., USA

SOURCE:

Eur. Pat. Appl., 25 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PA'	rent 1	NO.			KIND)	DATE		API	PLICAT:	ON NO	•		DATE
			 .												
	ΕP	3022	03			A1		1989	0208	EP	1988-	109559			19880615
	ΕP	3022	03			B1 .		1992	1028						
		R:	BE,	DE,	ES,	FR,	GB,	, IT,	NL						•
	ES	2045	018			T3		1994	0116	ES	1988-	109559			19880615
	UA	8819	061			A		1989	0209	ΑÜ	1988-	19061			19880714
	ΑU	6053	27			B2		1991	0110						
	BR	8804	034			Α		1989	0228	BR	1988-	4034			19880802
	JΡ	0106	6156			Α	•	1989	0313	JP	1988-	195283			19880804
	JΡ	0607	8293			В		1994	1005						
PRIOR	IT	Y APP	LN.	INFO	. :					US	1987-	82030	1	Ą	19870805
OTHER	S	OURCE	(S):			MARE	TA	111:	96861						

ED Entered STN: 16 Sep 1989

GI For diagram(s), see printed CA Issue.

AB Title acids I (R1 = C1-3 alkyl; R2 = H) and their enantiomers and/or derivs. are prepared as selective herbicides, especially for controlling grassy weeds in crops such as wheat, barley, and especially rice. Etherification of 4-

HOC6H4OCHMeCO2Me with 3,4-F2C6H3CN in Me2SO containing NaOH at 80° gave I (R1 = R2 = Me) (II). At 560 g/ha postemergence under paddy conditions, II completely killed Echinochloa crus-galli and Leptochloa filiformis without phytotoxicity to rice.

96562-58-2 IT

> RL: RCT (Reactant); RACT (Reactant or reagent) (etherification of, with difluorobenzonitrile)

96562-58-2 CAPLUS RN

Propanoic acid, 2-(4-hydroxyphenoxy)-, methyl ester, (2R)- (9CI) CN INDEX NAME)

Absolute stereochemistry. Rotation (+).

122008-85-9P IT

RL: AGR (Agricultural use); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (preparation of, as herbicide)

RN 122008-85-9 CAPLUS

Propanoic acid, 2-[4-(4-cyano-2-fluorophenoxy)phenoxy]-, butyl ester, CN (2R) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

CAPLUS COPYRIGHT 2006 ACS on STN L48 ANSWER 23 OF 27

ACCESSION NUMBER:

1988:204504 CAPLUS Full-text

DOCUMENT NUMBER:

108:204504

TITLE:

Propynyl [(pyridinyloxy)phenoxy]propionate, a procedure for its preparation, and its use as a

herbicide and grass growth inhibitor

INVENTOR(S):

Schurter, Rolf

PATENT ASSIGNEE(S):

Ciba-Geigy A.-G., Switz. Eur. Pat. Appl., 24 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent German

LANGUAGE:

SOURCE:

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 248968	A1	19871216	EP 1986-810300	19860707

R: AT	г, ве, сн,	DE,	FR, GB, IT,	LI, LU, NL, SE		
CH 679396		A 5	19920214	CH 1986-2376		19860612
DK 8603071	L	Α	19871213	DK 1986-3071		19860627
DK 162216		В	19910930			
DK 162216		C	19920316			
FI 8602769	9	Α	19871213	FI 1986-2769		19860630
FI 87772		В	19921113	•		
FI 87772		C	19930225			
NO 8602665	5	Α	19871214	NO 1986-2665		19860701
NO 168528		В	19911125			
NO 168528		C	19920304			
AU 8659491	L	Α	19871217	AU 1986-59491		19860702
AU 592804		В2	19900125			
DD 253754		A5	19880203			19860702
DD 272069		A5	19890927			19860702
ZA 8604947	7	Α	19880224			19860703
CS 261243		B2	19890112	CS 1986-5038		19860703
IL 79330		Α	19891215	IL 1986-79330		19860703
HU 41602		A2	19870528	ни 1986-2832		19860707
HU 206243		В	19921028			
CA 1236106	5	A1	19880503			19860708
JP 6229275	58	Α	19871219	JP 1986-165450		19860714
JP 0502922	21	В	19930428			
ES 2000663	3	Α6	19880316			19860714
PL 147477		Bl	19890630			19860714
BR 8603383	l	Α				19860717
SU 1567116	5	A3	19900523			19860731
CN 8610488	37	Α				19860805
ES 2007333		A6	19890616	ES 1987-267		19870205
PRIORITY APPLN	. INFO.:			CH 1986-2376	Α	19860612

ED Entered STN: 11 Jun 1988

GΙ

$$C1 \longrightarrow 0$$
 (R)
 $OCHMeCO_2CH_2C \equiv CH$

AB The title compound (I), useful as a herbicide and plant growth regulator (no data), was prepared by 6 methods. I was prepared in 4 steps from 2,5-dichloro-3-nitropyridine (II). Ten formulations were given, with ingredients as percentages.

IT 114365-33-2

RL: RCT (Reactant); RACT (Reactant or reagent)
 (etherification of, with chlorodifluoropyridine)

RN 114365-33-2 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, 2-propynyl ester, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 114420-56-3P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation and conversion of, to acid chloride)

RN 114420-56-3 CAPLUS

CN Propanoic acid, 2-[4-[(5-chloro-3-fluoro-2-pyridinyl)oxy]phenoxy]-, (2R)(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L48 ANSWER 24 OF 27 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1986:625789 CAPLUS Full-text

DOCUMENT NUMBER:

105:225789

TITLE:

Resolution of 2-(4-hydroxyphenoxy)propionic acid

INVENTOR (S):

Matsumoto, Hiroo; Obara, Yoshio; Arai, Kazutaka;

Tsuchiya, Shuji

PATENT ASSIGNEE(S):

Nissan Chemical Industries, Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61083144	Α	19860426	JP 1984-204363	19840928
JP 05017214	В	19930308		
PRIORITY APPLN. INFO.:			JP 1984-204363	19840928

ED Entered STN: 26 Dec 1986

The title compound (I), useful as an intermediate for herbicides, was prepared by resolving racemic or partially-resolved I using optically-active RC6H4CH(NH2)CH2R1 (II; R = H, halo, alkyl, NO2; R1 = H, OH, alkyl). Thus, a solution of racemic I in EtOH was stirred with (-)-II (R = R1 = H) at 28-30° to give 47.5% diastereomeric salts, which were separated and decomposed (+)-I of 100% enantiomeric excess was crystallized from EtOH. (-)-I could be obtained from the filtrate by repeating the process with (+)-II (R = R1 = H).

IT 94050-90-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and esterification of)

RN 94050-90-5 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

IT 100646-51-3P

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as intermediate for herbicides)

100646-51-3 CAPLUS RN

Propanoic acid, 2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]-, ethyl ester, CN (2R) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L48 ANSWER 25 OF 27 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1984:455094 CAPLUS Full-text

DOCUMENT NUMBER:

101:55094

TITLE:

Benzoxazolyl- and benzothiazolyloxyphenoxypropionic

acid derivatives

INVENTOR(S):

Zeiss, Hans Joachim; Mildenberger, Hilmar; Handte,

Reinhardt

PATENT ASSIGNEE(S):

Hoechst A.-G. , Fed. Rep. Ger.

SOURCE:

Ger. Offen., 14 pp. CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

	PAT	TENT 1	10.			KIND	١.	DATE	ı	AP	PLICATION NO.		DATE
			- -										
	DE	32367	730			A1		1984	0405	DE	1982-3236730		19821004
	EР	10549	94			A2		1984	0418	EP	1983-109804		19830930
	EР	10549	94			A3		1985	1106				
	ΕP	10549	94			В1		1988	0810				
		R:	CH,	DE,	FR,	GB,	IT,	LI,	NL				
	IL	69875	5			A		1987	0916	IL	1983-69875		19830930
	BR	83054	151			A		1984	0515	BR	1983-5451		19831003
	JР	59084	1877			A		1984	0516	JP	1983-183237		19831003
	JР	05001	L263			В		1993	0107				
	ZA	83073	379			Α		1984	0627	ZA	1983-7379		19831003
	HU	32576	5			A2		1984	0828	HU	1 1983-3436		19831003
	HU	18975	52			В		1986	0728		•		
	CA	12104	103			A1		1986	0826	CA	1983-438222		19831003
PRIOF	RITY	APPI	N.	INFO	. :					DE	1982-3236730	A	19821004
OTHER	S	URCE	(S):			CASR	EAC	T 10	1:5509	94: M	ARPAT 101:55094	ļ	

ED Entered STN: 18 Aug 1984

GI

The title compds. I [X = O, S; R = halogen, CF3; R1 = (un)substituted alkyl] were prepared by treating halobenzazoles II (R2 = halogen) with 4-HOC6H4OCHMeCO2R1 in presence of quaternary ammonium or phosphonium or a polyalkylene glycol catalyst. Thus 2,6-dichlorobenzothiazole was treated with 4-HOC6H4OCHMeCO2Et in the presence of Bu4P+Br- to give 96.8% I (X = S, R = 6-Cl, R1 = Et) of >97% purity.

IT 71283-80-2P

RN 71283-80-2 CAPLUS

CN Propanoic acid, 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy]-, ethyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 71301-98-9

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with halobenzazoles)

RN 71301-98-9 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, ethyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

L48 ANSWER 26 OF 27 CAPLUS COPYRIGHT 2006 ACS on STN ACCESSION NUMBER: 1981:424528 CAPLUS Full-text

DOCUMENT NUMBER: 95:24528

TITLE: Optically active α -phenoxypropionic acid

derivatives for herbicides

INVENTOR(S): Nestler, Hans Juergen; Hoerlein, Gerhard; Handte,

Reinhard; Bieringer, Hermann; Schwerdtle, Friedhelm;

Langelueddeke, Peter; Frisch, Peter

PATENT ASSIGNEE(S):

Hoechst A.-G., Fed. Rep. Ger. Brit. UK Pat. Appl., 21 pp.

SOURCE:

CODEN: BAXXDU

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
GB 2042503	Α	19800924	GB 1979-2307		19790122
PRIORITY APPLN. INFO.:			GB 1979-2307	A	19790122

Entered STN: 12 May 1984 ED

GI

$$\begin{array}{c|c}
R^1 \\
\downarrow \\
Me
\end{array}$$

The title compds. I [R = optionally substituted (o.s.) PhO, o.s. 2-pyridyloxy, AB o.s. 2-benzoxazolyloxy, o.s. 2-benzothiazolyloxy, o.s. CH2Ph; R1 = o.s. CO2H, o.s. C(O)SH, o.s. CONH2, o.s. CONHNH2, o.s. CSNH2] were prepared E.g., 4-ClC6H4OC6H4OH-4 condensed with L-lactic acid Et ester toluenesulfonate in the presence of K2CO3 (MeCOEt, reflux, 56 h) to give 97% I (R = OC6H4Cl-4, R1 = CO2Et). I are more potent herbicides than their racemic analogs, e.g. the ED (ED95) of I (R = OC6H4Cl-4, R1 = CO2CH2CHMe2) in the postemergence treatment of annual blackgrass in sugar beet was 0.44 kg/ha whereas that of the racemic analog was 0.76 kg/ha.

IT 71301-98-9

> RL: RCT (Reactant); RACT (Reactant or reagent) (condensation reaction of, with dichlorobenzoxazole or nitrochlorobenzotrifluoride)

71301-98-9 CAPLUS RN

Propanoic acid, 2-(4-hydroxyphenoxy)-, ethyl ester, (2R)- (9CI) (CA INDEX CN

Absolute stereochemistry. Rotation (+).

IT 71283-80-2P

> RL: AGR (Agricultural use); BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (preparation of, as herbicide)

RN 71283-80-2 CAPLUS

Propanoic acid, 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy]-, ethyl ester, CN

(2R) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L48 ANSWER 27 OF 27 CAPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER:

1979:540579 CAPLUS Full-text

DOCUMENT NUMBER:

91:140579

TITLE:

Optically-active aryloxypropionic acid derivatives for

use as herbicides

PATENT ASSIGNEE(S):

Hoechst A.-G., Fed. Rep. Ger.

SOURCE:

Belg., 50 pp. CODEN: BEXXAL

Patent

DOCUMENT TYPE:

LANGUAGE:

French

FAMILY ACC. NUM. COUNT:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 073044	A1	19790516	BE 1979-193191	19790131
	A1	19790705	DE 1977-2758002	
	A1	19790705	ES 1978-476100	19781218
ES 476100	A1	19790711	EP 1978-101792	19781220
EP 2800	B1	19811202	EP 19/8-101/92	17/01220
EP 2800	B1 B2	19911202		
EP 2800				
R: BE, DE, FR,			US 1978-971427	19781220
US 4531969	A	19850730		19781221
ZA 7807210	A	19791227	ZA 1978-7210	19781221
DK 7805790	A	19790625	DK 1978-5790	19/61222
DK 156511	В	19890904		
DK 156511	C	19950522		10701000
AU 7842849	A	19790628	AU 1978-42849	19781222
AU 527127	B2	19830217		10701000
BR 7808443	Α	19790821	BR 1978-8443	19781222
DD 141403	A5.	19800430	DD 1978-210128	19781222
RO 75478	, Al	19810330	RO 1978-96022	19781222
CS 204959	B2	19810430	CS 1978-8850	19781222
AT 7809212	Α	19820215	AT 1978-9212	19781222
AT 368357	В	19821011		
RO 79065	A1	19820625	RO 1978-99034	19781222
HU 25775	A2	19830829	НU 1978-НО2126	19781222
HU 182883	В	19840328		
SU 1336939	A3	19870907	SU 1978-2700051	19781222
IL 56283	A	19870916	IL 1978-56283	19781222
CA 1268475	A1	19900501	CA 1978-318525	19781222
JP 54112828	A	19790904	JP 1978-158179	19781223
PL 122180	B1	19820630	PL 1978-212111	19781223
FR 2447366	A1	19800822	FR 1979-1604	19790123
FR 2447366	B1	19841116		
SU 1075969	A 3	19840223	SU 1981-3233698	19810120
JP 63211250	A	19880902	JP 1987-251741	19871007

US 5254527	Α	19931019	US	1991-790128		19911107
US 5712226	Α	19980127	US	1995-465889		19950606
PRIORITY APPLN. INFO.:			DE	1977-2758002	Α	19771224
			FR	1979-1604		19790123
			US	1978-971427	A3	19781220
•			US	1985-730295	B1	19850503
			US	1988-144612	B1	19880111
			US	1989-434490	B1	19891109
			US	1991-663274	_ B1	19910228
			US	1991-790128	A3	19911107
•			US	1993-98452	Bl	19930727
			US	1994-238974	B1	19940505
			US	1995-400175	B1	19950306

OTHER SOURCE(S): MARPAT 91:140579

ED Entered STN: 12 May 1984

GI

$$H = \begin{matrix} R \\ C \\ Me \end{matrix} \longrightarrow \begin{matrix} R^1 \\ R^1 \end{matrix}$$

2-Phenoxypropionic acid derivs. I [R = CO2R2 [R2 = H, alkyl, cycloalkyl, halocycloalkyl, cycloalkenyl, alkynyl, or alkyl-, alkoxy-, halo-, nitro-, or (trifluoromethyl)phenyl], C(O)SR3 (R3 = alkyl, alkenyl, alkylphenyl, halophenyl), CONR4R5 [R4 and R5 are independently H, alkyl, hydroxyalkyl, cycloalkyl, or alkyl-, alkoxy-, halo-, or (trifluoromethyl)phenyl], CONR6NR7R8 (R6 = H, Me; R7 = H, Me, Et; R8 = H, Me, Et, Ph), CSNH2; R1 = 2-phenoxy, 2-pyridyloxy, benzoxazol-2-yloxy, benzothiazol-2-yloxy, or benzyl group], which showed herbicidal activity, were prepared from lactate esters and phenols. 4-(4-Chlorophenoxy)phenol, Et L-(-)-O-tosyllactate, and K2CO3 in MeCOEt were refluxed 56 h to yield I (R = CO2Et, R1 = 4-ClC6H4O).

IT 71283-80-2P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)

RN 71283-80-2 CAPLUS

CN Propanoic acid, 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy]-, ethyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 71301-98-9

RL: RCT (Reactant); RACT (Reactant or reagent)
 (O-arylation of)

RN 71301-98-9 CAPLUS

CN Propanoic acid, 2-(4-hydroxyphenoxy)-, ethyl ester, (2R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

FILE 'HOME' ENTERED AT 10:51:23 ON 18 DEC 2006

SEARCH HISTORY

=> d stat que 124; d stat que 131; d stat que 125; d stat que 136; d his nofile STR L17

VAR G1=1/21 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 20

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 2

72 SEA FILE=REGISTRY SSS FUL L17 L19 49 SEA FILE=REGISTRY ABB=ON 46.150.18/RID AND L19 L20 23 SEA FILE=REGISTRY ABB=ON L19 NOT L20 L21 412 SEA FILE=CAPLUS ABB=ON L21 L22

115 SEA FILE=CAPLUS ABB=ON L20 L23

15 SEA FILE=CAPLUS ABB=ON L22 AND L23 L24

STR L26

NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 14

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 1

L28 97 SEA FILE=CASREACT SSS FUL L26 (747 REACTIONS)

L29 STR

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 19

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 2

L31 5 SEA FILE=CASREACT SUB=L28 SSS FUL L29 (18 REACTIONS)

100.0% DONE 28 VERIFIED 18 HIT RXNS 5 DOCS

SEARCH TIME: 00.00.01

L3	1	SEA FILE=REGISTRY ABB=ON 72619-32-0
L4	1	SEA FILE=REGISTRY ABB=ON 114420-56-3
L6	1	SEA FILE=REGISTRY ABB=ON FLUAZIFOP-P-BUTYL/CN
L10	1	SEA FILE=REGISTRY ABB=ON CYHALOFOP-BUTYL/CN
L11	1	SEA FILE=REGISTRY ABB=ON QUIZALOFOP-P-ETHYL/CN
L12	1	SEA FILE=REGISTRY ABB=ON 71283-80-2
L13	6	SEA FILE=REGISTRY ABB=ON (L11 OR L3 OR L6 OR L4 OR L10 OR
		L12)
L14	28	SEA FILE=CAPLUS ABB=ON L13/P
L17		STR

VAR G1=1/21 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 20

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 2

L19 72 SEA FILE=REGISTRY SSS FUL L17

L20 49 SEA FILE=REGISTRY ABB=ON 46.150.18/RID AND L19

L23 115 SEA FILE=CAPLUS ABB=ON L20

L25 11 SEA FILE=CAPLUS ABB=ON L23 AND L14

L34 STR

Page 1-A

Page 2-A VAR Gl=H/ME/ET/N-BU VAR G2=38/44/49/55/61/72 NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 82

STEREO ATTRIBUTES:

STEREO DEFAULT ABSOLUTE

NUMBER OF CHIRAL CENTERS IS 1

L36 19 SEA FILE=CASREACT SSS FUL L34 (70 REACTIONS)

100.0% DONE 424 VERIFIED 70 HIT RXNS 19 DOCS

SEARCH TIME: 00.00.01

(FILE 'HOME' ENTERED AT 09:20:42 ON 18 DEC 2006)

FILE 'CAPLUS' ENTERED AT 09:21:05 ON 18 DEC 2006

E US2006-571863/APPS

L1 1 SEA ABB=ON US2006-571863/AP

D SCAN

SEL RN

FILE 'REGISTRY' ENTERED AT 09:21:37 ON 18 DEC 2006

L2

19 SEA ABB=ON (14265-45-3/BI OR 15181-46-1/BI OR 100646-51-3/BI
OR 114420-56-3/BI OR 122008-85-9/BI OR 123-31-9/BI OR 14844-076/BI OR 23134-05-6/BI OR 29617-66-1/BI OR 302-01-2/BI OR
50-81-7/BI OR 62607-44-7/BI OR 71283-80-2/BI OR 72619-32-0/BI
OR 7446-09-5/BI OR 74533-11-2/BI OR 7631-90-5/BI OR 79241-46-6/
BI OR 94050-90-5/BI)
D SCAN

FILE 'CAPLUS' ENTERED AT 09:27:05 ON 18 DEC 2006 . D SCAN L1

FILE 'REGISTRY' ENTERED AT 09:27:06 ON 18 DEC 2006

L3 1 SEA ABB=ON 72619-32-0

D SCAN

L4 1 SEA ABB=ON 114420-56-3

D SCAN

E HALOXYFOP-P-METHYL/CN

L5 1 SEA ABB=ON HALOXYFOP-P-METHYL/CN

D SCAN

E FLUAZIFOP-P-BUTYL/CN

```
1 SEA ABB=ON FLUAZIFOP-P-BUTYL/CN
 L6
               D SCAN
               E FENOXAPROP-P-ETHYL/CN
             1 SEA ABB=ON "FENOXAPROP-P-ETHYL-BENSULFURON METHYL MIXT."/CN
 L7
               D SCAN
               STR
 L8
     FILE 'CAPLUS' ENTERED AT 10:12:25 ON 18 DEC 2006
               D SCAN L1
     FILE 'REGISTRY' ENTERED AT 10:12:26 ON 18 DEC 2006
              1 SEA ABB=ON L3 OR L5
 L9
                E CYHALOFOP-BUTYL/CN
              1 SEA ABB=ON CYHALOFOP-BUTYL/CN
 L10
               D SCAN
                E QUIZALOFOP-P-ETHYL/CN
              1 SEA ABB=ON QUIZALOFOP-P-ETHYL/CN
 L11
               D SCAN
                D SCAN L7
               D IDE L7
              1 SEA ABB=ON 71283-80-2
 L12
               D SCAN
              6 SEA ABB=ON (L11 OR L3 OR L6 OR L4 OR L10 OR L12)
L13
    FILE 'CAPLUS' ENTERED AT 10:18:07 ON 18 DEC 2006
             28 SEA ABB=ON L13/P
 L14
     FILE 'REGISTRY' ENTERED AT 10:19:19 ON 18 DEC 2006
 L15
               STR L8
             9 SEA SSS SAM L15
 L16
               STR L15
 L17
             6 SEA SSS SAM L17
 L18
               D SCAN
            72 SEA SSS FUL L17
 L19
               SAVE TEMP L19 NAG863FULL/A
             49 SEA ABB=ON 46.150.18/RID AND L19
 L20
               SAVE TEMP L20 NAG863SUB1/A
 L21
             23 SEA ABB=ON L19 NOT L20
                SAVE TEMP L21 NAG863SUB2/A
    FILE 'CAPLUS' ENTERED AT 10:28:00 ON 18 DEC 2006
            412 SEA ABB=ON L21
 L22
 L23
            115 SEA ABB=ON L20
            15 SEA ABB=ON L22 AND L23
 L24
            11 SEA ABB=ON L23 AND L14
 L25
               D SCAN TI L25
     FILE 'CASREACT' ENTERED AT 10:30:03 ON 18 DEC 2006
 L26
               STR L17
             8 SEA SSS SAM L26 ( 210 REACTIONS)
 L27
             97 SEA SSS FUL L26 ( 747 REACTIONS)
 L28
               SAVE TEMP L28 NAG863CASRF/A
 L29
               STR L17
             1 SEA SUB=L28 SSS SAM L29 ( 13 REACTIONS)
 L30
               D SCAN
               D STAT QUE
              5 SEA SUB=L28 SSS FUL L29 ( 18 REACTIONS)
 L31
               SAVE TEMP L31 NAG863CASRSB1/A NAG863CSRSB1/A
               D QUE L24
 L32
               STR L26
```

```
2 SEA SUB=L28 SSS SAM L32 ( 4 REACTIONS)
L33
              D SCAN
L34
              STR L32
          2 SEA SSS SAM L34 ( 4 REACTIONS)
19 SEA SSS FUL L34 ( 70 REACTIONS)
L35
L36
              SAVE TEMP L36 NAG863CSRSB2/A
              E CLEUGH/AU
             1 SEA ABB=ON "CLEUGH ERNEST STEPHEN"/AU
L37
FILE 'CAPLUS' ENTERED AT 10:44:26 ON 18 DEC 2006
             E CLEUGH E/AU
             2 SEA ABB=ON CLEUGH E?/AU
L38
            1 SEA ABB=ON L1 AND L38
L39
    FILE 'CAPLUS' ENTERED AT 10:45:16 ON 18 DEC 2006
              D QUE NOS L38
             2 SEA ABB=ON L38 OR (L38 AND (L24 OR L25))
L40
     FILE 'CASREACT' ENTERED AT 10:45:37 ON 18 DEC 2006
             D QUE NOS L37
             1 SEA ABB=ON L37 OR (L37 AND (L31 OR L36))
L41
    FILE 'CASREACT, CAPLUS' ENTERED AT 10:45:56 ON 18 DEC 2006
L42 2 DUP REM L41 L40 (1 DUPLICATE REMOVED)
                   ANSWER '1' FROM FILE CASREACT
                  ANSWER '2' FROM FILE CAPLUS
               D IBIB ABS HIT 1
               D IBIB ED ABS HITSTR 2
     FILE 'CAPLUS' ENTERED AT 10:46:54 ON 18 DEC 2006
              D QUE L24
L43
            14 SEA ABB=ON L24 NOT L40
    FILE 'CASREACT' ENTERED AT 10:47:13 ON 18 DEC 2006
             D STAT QUE L31
             4 SEA ABB=ON L31 NOT L41
L44
    FILE 'CASREACT, CAPLUS' ENTERED AT 10:47:27 ON 18 DEC 2006
L45 16 DUP REM L44 L43 (2 DUPLICATES REMOVED)
                   ANSWERS '1-4' FROM FILE CASREACT
                    ANSWERS '5-16' FROM FILE CAPLUS
               D IBIB ABS HIT 1-4
               D IBIB ED ABS HITSTR 5-16
     FILE 'CAPLUS' ENTERED AT 10:48:37 ON 18 DEC 2006
            D QUE L25
            10 SEA ABB=ON L25 NOT (L43 OR L40)
L46
     FILE 'CASREACT' ENTERED AT 10:48:57 ON 18 DEC 2006
          D STAT QUE L36
            19 SEA ABB=ON L36 NOT (L44 OR L41)
L47
     FILE 'CASREACT, CAPLUS' ENTERED AT 10:49:28 ON 18 DEC 2006
            27 DUP REM L47 L46 (2 DUPLICATES REMOVED)
L48
                   ANSWERS '1-19' FROM FILE CASREACT
                    ANSWERS '20-27' FROM FILE CAPLUS
              D IBIB ABS HIT 1-19
              D IBIB ED ABS HITSTR 20-27
```

FILE 'HOME' ENTERED AT 10:51:23 ON 18 DEC 2006