NMB - Oefenzitting 6: Eigenwaardenproblemen

Simon Telen, Dries De Samblanx, Daan Camps

1 Defectieve matrices

Opgave 1. Beschouw de $n \times n$ -matrix

$$A = \begin{bmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & 1 & \end{bmatrix}$$

a) Wat zijn de eigenwaarden van deze matrix en wat is de multipliciteit ervan?

Oplossing. De matrix heeft slechts één eigenwaarde, namelijk $\lambda = 1$, met algebraïsche multipliciteit gelijk aan n. De geometrische multipliciteit is gelijk aan het aantal onafhankelijke eigenvectoren. Er is slechts 1 onafhankelijke eigenvector, $[1\ 0\cdots 0]^T$, de geometrische multipliciteit is dus 1. Aangezien de algebraïsche multipliciteit groter is dan de geometrische, is de matrix defectief.

b) Perturbeer het element $a_{n,1}$ van deze matrix. Wat zijn de eigenwaarden?

Oplossing. Stel $a_{n,1} = \epsilon$. De eigenwaarden liggen op een cirkel in het complexe vlak met centrum 1 en straal $\epsilon^{1/n}$. Zie ook Opgave1.m

c) Wat is je besluit?

Oplossing. Eigenwaarden met te weinig eigenvectoren (lange Jordanketting) zijn slecht geconditioneerd.

2 Stellingen van Gerschgorin en Bauer-Fike

Opgave 2. In deze oefening tonen we onderstaande stelling aan en passen we ze toe om de eigenwaarden van een matrix te localiseren.

Stelling 1 (Gerschgorin) Gegeven een $m \times m$ matrix A en de m gesloten ronde schijven D_i (disks) in het complexe vlak met middelpunten a_{ii} en stralen $\sum_{i \neq j} |a_{ij}|$. Enerzijds liggen alle eigenwaarden van A in de unie van al deze schijven D_i . Anderzijds, als k schijven met elkaar overlappen en een aaneengesloten domein vormen dat disjunct is van de andere m - k schijven, dan liggen er exact k eigenwaarden in dit domein.

a) Toon het eerste deel van bovenstaande stelling aan. (Hint: beschouw een willekeurige eigenwaarde λ en bijhorende eigenvector x genormaliseerd in de ∞ -norm.)

Oplossing. Beschouw λ met bijhorende eigenvector x, $||x||_{\infty} = 1$. We kunnen dus zonder verlies aan algemeenheid veronderstellen dat $x_i = 1$ voor een zekere i = 1, ..., m. Er geldt:

$$A \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + \dots + a_{1i}x_i + \dots + a_{1m}x_m \\ \vdots \\ a_{i1}x_1 + \dots + a_{ii}x_i + \dots + a_{im}x_m \\ \vdots \\ a_{m1}x_1 + \dots + a_{mi}x_i + \dots + a_{mm}x_m \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_i \\ \vdots \\ \lambda x_m \end{bmatrix}$$

Uit de i-de rij leiden we af:

$$|\lambda - a_{ii}| = |\sum_{j \neq i} a_{ij} x_j| \le \sum_{j \neq i} |a_{ij}|.$$

b) Beschouw de matrix:

$$A = \begin{bmatrix} -3 & 0.5 & 0.1 \\ 0.2 & -4 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Wat kan je gebaseerd op de stelling van Gerschgorin zeggen over de ligging van de eigenwaarden?

Oplossing. De Gerschgorin schijven van A zijn: $D_1(-3,0.6)$, $D_2(-4,0.2)$, en $D_3(1,2)$. Hier gebruiken we de notatie $D_i(c,r)$ voor de i-de Gerschgorin schijf met middelpunt c en straal r. Vermits A reëel is, kunnen we besluiten dat er één reële eigenwaarde ligt in het interval [-3.6,-2.4], één reële eigenwaarde ligt in het interval [-4.2,-3.8] en één reële eigenwaarde ligt in het interval [-1,3]. Het interval voor de laatste eigenwaarde kunnen we nog verder verfijnen tot [0.9,1.1] indien we de Gerschgorin schijven van A^T beschouwen.

c) Toon aan dat indien A een diagonaal dominante matrix is, dat A niet singulier is.

Oplossing. Voor alle i = 1, ..., m geldt $|a_{ii}| > \sum_{i \neq j} |a_{ij}|$. Uit de stelling van Gerschgorin volgt dus dat $|\lambda| > 0$.

Opgave 3. In deze oefening gaan we na wat de invloed is van een additieve perturbatie op een matrix A op het spectrum van A. We gaan er vanuit dat A diagonalizeerbaar (of niet defectief) is. Stel $\tilde{A} = A + \delta A$ en noem $\Lambda(A)$ het spectrum van A. We bestuderen volgende stelling.

Stelling 2 (Bauer-Fike) Beschouw een eigenwaarde $\tilde{\lambda}$ van \tilde{A} en noem V de matrix met als kolommen de eigenvectoren van A. Er bestaat een $\lambda \in \Lambda(A)$ zodanig dat

$$|\lambda - \tilde{\lambda}| \le \kappa_p(V) ||\delta A||_p$$

met $p \ge 1$ en κ_p het conditiegetal ten opzichte van de p-norm.

a) Genereer een random niet defectieve 7×7 matrix A in Matlab met eigenwaarden $0, 1, \ldots, 6$ en matrix van eigenvectoren V met $\kappa_2(V) = 7$. Bereken ook de geperturbeerde matrices $\tilde{A}_k = 0$

 $A + \delta A_k$ waarbij δA_k random matrices zijn met $\|\delta A_k\|_2 = 10^k \cdot \epsilon_{\text{mach}}$, $1 \le k \le 10$. Plot het verloop van de absolute verandering van de grootste eigenwaarde ten opzichte van k tesamen met de bovengrens van Bauer-Fike voor de 2-norm.

Oplossing. Zie opgave3.m.

b) Vervang de matrix A uit de eerste deelvraag door een matrix met eigenwaarden $1, 10, \dots 10^6$ en maak op dezelfde manier een figuur. Wat gebeurt er en hoe valt dit te verklaren?

Oplossing. De bovengrens lijkt onjuist voor k < 6. Dit is te wijten aan afrondingsfouten door eindige precisie berekeningen. Matlab berekent de eigenwaarden van een matrix A op een achterwaarts stabiele manier. Dat wil zeggen dat de berekende eigenwaarden de eigenwaarden zijn van $A + \Delta A$ met $\|\Delta A\| \approx \|A\| \epsilon_{\text{mach}} \approx 10^{-10}$. Dit betekent dat als we een perturbatie opleggen die veel kleiner is dan 10^{-10} (of k < 6), dan blijven de berekende eigenwaarden de exacte eigenwaarden van een sterker geperturbeerde matrix en dan geldt de Bauer Fike bovengrens voor $\|\delta A\| \approx 10^{-10}$.

c) Bewijs dat voor een normale matrix $(A^{\top}A = AA^{\top})$ de waarde van $|\lambda - \tilde{\lambda}|$ begrensd is door $||\delta A||_2$ en ga dit na op dezelfde manier als in de vorige deelvragen.

Oplossing. Normale matrices zijn orthogonaal diagonalizeerbaar, dus $||V||_2 = 1$.

3 De QR-methode

Opgave 4. Het laatste deel van de oefenzitting mag je gebruiken om aan de implementatie van qr_rayleighshift uit opgave 5 van het practicum te werken. Wanneer je de code van die opgave klaar hebt, kan je ze testen met de volgende voorbeeldproblemen.

Construeer twee testmatrices:

• $A_1 = P_1 \Lambda_1 P_1^T$ met P_1 orthogonaal en

$$\Lambda_1 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{array} \right]$$

• $A_2 = P_2 \Lambda_2 P_2^{-1}$ met $\kappa(P_2) = 10^5$ en $\Lambda_2 = \Lambda_1$

Bepaal voor de 2 testmatrices hoe de convergentie verloopt en waarom dat je dit gedrag ziet.

Oplossing. Matrix A_1 is symmetrisch bijgevolg verloopt de convergentie kubisch, A_2 is niet-symmetrisch waardoor de convergentie slechts kwadratisch verloopt. De convergentie wordt in ondertaande figuren grafisch geillustreerd.

