

NASDAQ Closing Stock Price Prediction

15.072 Advanced Analytics Edge

Zeki Yan, Meredith Gao, Lucas Goh, Tim Zhou

Introduction

Final 10 minutes of stock market offer critical information to market participants

- Stock exchanges experience high intensity and volatility, especially in the final ten minutes of the trading day.
- During this time, market makers (i.e. Optiver) combine data from traditional order books with auction book.
- Information from these two sources is essential to offering optimal prices to all market participants.

Target Variable

Our target variable measures the performance of a stock relative to an index

Target =
$$\left(\frac{Stock\ WAP_{t+60}}{Stock\ WAP_t} - \frac{Index_{t+60}}{Index_t}\right) \times 10,000$$

- Stock WAP $_t$ = Weighted Average Price of a Stock at time t
- $Index_t = Value \ of \ Stock \ Index \ at \ time \ t$

Positive Target → stock outperforms market in the next minute; Helps market makers to **predict price movements**

Exploratory Data Analysis

Our target variable measures the performance of a stock relative to an index

WAP is always sandwiched between **bid_price** and ask_price; Several variables are **highly correlated**

Feature Engineering

Comprehensive feature engineering to power our modeling efforts

Scope

Features Engineered

Row-level

Volume = bid_size + ask_size
Liquidity Imbalance = (bid_size - ask_size) / Volume
Price Spread = ask_price - bid_price
Imbalance Size = bid_size/ask_size

Market Urgency = price_spread * liquidity imbalance
Lag Prices

• • • • •

Stock-specific

Median Volume Median Price Max Spread 115 features in total

Finance knowledge leveraged to engineer specific features

One approach is to predict values of Stock WAP at t+60

Target =
$$\left(\frac{Stock\ WAP_{t+60}}{Stock\ WAP_{t}} - \frac{Index_{t+60}}{Index_{t}}\right) \times 10,000$$

We can opt to only predict Stock WAP at t+60, only **If we know how Index is computed**

We solved a linear regression to retrieve the formula for *Index*

Target =
$$\left(\frac{Stock\ WAP_{t+60}}{Stock\ WAP_{t}} - \frac{Index_{t+60}}{Index_{t}}\right) \times 10,000$$

- 1. We hypothesize that Index is a weighted sum of all *Stock WAPs*
- 2. This allow us to solve for $Index_t$ using the following linear regression:

$$Index_t = w_0 \cdot Stock WAP_{0,t} + ... + w_{199} \cdot Stock WAP_{199,t}$$

A R-squared of ~1.0 confirms our hypothesis as we retrieved the weights with success

To continue with approach #1, we had to impute values for the last 60 seconds

- We lack data for 10^{th} minute WAP for each day \rightarrow we can use the 9^{th} minute WAP, Index, and Target to impute missing data
- Solve a Linear Optimization Problem using Gurobi for each ten-second interval t:

• Obtain last-time WAP to include in training set.

To predict for *Target* directly

Target =
$$\left(\frac{Stock\ WAP_{t+60}}{Stock\ WAP_t} - \frac{Index_{t+60}}{Index_t}\right) \times 10,000$$

We can also employ a more straightforward approach: to predict *Target* directly

Results

We achieve decent performance for using both approach; target outperforms still

Table 1: MAE of each model								
MAE	Baseline	ARIMA	XGBoost	RF	NN	LightGBM	Ensemble	Kaggle 1^{st}
$\begin{array}{c} \text{Predict WAP}_{t+60} \\ \text{Predict target} \end{array}$	6.407 6.407	$14.566 \\ 5.452$	5.612 5.413	$5.784 \\ 5.340$	6.192 5.314	5.581 5.314	$5.648 \\ 5.412$	5.308 5.308
			ν_					
		+17%				-0.1%		

We achieve **competitive results** with both LightGBM and Neural Network

Results Analysis

Compare MAE of each model across to detect which stock is the hardest to predict

- MAE for each stock using test set data across six models
- The models exhibited similar patterns
- Some stocks consistently present challenges in prediction, regardless of the model used

Results Analysis

Models' prediction results vs. actual values Time Series of Stock 151

- The actual target line shows instances of high volatility
- The graph reveals that the NN and LGBM models most closely align with the actual target's high instability

Trading Strategy

Potential trading strategy based on our prediction models and results

For Risk Averse

Prioritize strategy-making on stocks that are easy to predict (e.g. Stock 151)

For Risk Neutral

Trust the model (LightGBM is ~75% accurate in stock's general trend)

For Risk Taking

Short/buy stocks that have drastic fluctuations according to predictions

Conclusion

Our models reduce information gap, enhance market transparency

- Closing prices are critical for investors, analysts and market stakeholders, serving as key indicators for assessing securities performance.
- Our model enhances prediction performance by consolidating signals from auction books and order books.
- This result helps reduce information asymmetry, aiding informed decision making and enhancing market transparency.

Thank you!

Zeki Yan, Meredith Gao, Lucas Goh, Tim Zhou