

Machine Learning

Lecture 7: Support Vector Machine

Fall 2023

Instructor: Xiaodong Gu

The family of classification

Recall: Linear Classifiers

- **Given**: a training set $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ of N samples $x^{(\ell)} \in \mathbb{R}^d$: input, $y^{(\ell)} \in \{-1, 1\}$:target (label)
- Assume that the problem is linearly separable: there exists a linear surface to separate the two classes

Goal:

Find $wx+w_0=0$ that perfectly separates the two classes

The Problem

• There can be multiple separating hyperplanes.

The Idea:

• Find a decision boundary that maximizes the margin between two classes.

Margin and generalization:

Statistical learning theories have shown that the boundary with the largest margin generalizes best (i.e., has the smallest generalization error).

skinny margin is more flexible, thus more complex

fat margin is less complex

Today

Support Vector Machine

- Problem Formulation
- Dual Problem
- Loss and Optimization

Problem Formulation

• A linear discriminant function models a linear decision boundary of two classes.

Problem Formulation

• A linear discriminant function models a linear decision boundary of two classes.

Maximizing the Margin

$$w^{\mathrm{T}} \chi + w_0 = \begin{cases} 1 & \text{for the closest points on one side} \\ -1 & \text{for the closest points on the other} \end{cases}$$

- Let $x^{(1)}$ and $x^{(2)}$ be two closest points on each side of the hyperplane.
- Note that

$$\mathbf{w}^{\mathrm{T}} x^{(1)} + w_0 = +1$$

 $\mathbf{w}^{\mathrm{T}} x^{(2)} + w_0 = -1$

which imply

$$\mathbf{w}^{\mathrm{T}}(x^{(1)}-x^{(2)})=2.$$

Hence, the margin can be given by

margin =
$$\frac{\mathbf{w}^{T}(x^{(1)}-x^{(2)})}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

Maximizing the margin is equivalent to minimizing $\frac{1}{2} \| \mathbf{w} \|$

Inequality Constraints

• Given: $D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$, we want **w** and w_0 to satisfy

$$\mathbf{w}^{\mathrm{T}} \chi^{(\ell)} + w_0 \begin{cases} \ge +1 & \text{if } y^{(\ell)} = +1 \\ \le -1 & \text{if } y^{(\ell)} = -1 \end{cases}$$

• Or, equivalently,

$$y^{(\ell)}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}^{(\ell)}+\boldsymbol{w}_0) \geq 1$$

SVM = Solving an Optimization Problem

In summary, SVM aims to solve a constrained optimization problem:

minimize
$$\frac{1}{2} ||\mathbf{w}||^2$$

subject to $y^{(\ell)}(\mathbf{w}^T x^{(\ell)} + w_0) \ge 1, \ \ell = 1, ..., N$

- This is a quadratic programming (QP) problem, which is one type of convex optimization problem.
- The complexity depends on the dimensionality d of inputs

Model Architecture

• The same as Perceptron.

- Train:
 - optimize the parameters w and w_0 using data
- Test:
 - calculate $g(x) = w^T x + w_0$ and choose C_1 if g(x) > 1 or choose C_2 if g(x) < -1.

Loss Function

min
$$\frac{1}{2} ||\mathbf{w}||^2$$

s.t. $y^{(\ell)} (\mathbf{w}^T x^{(\ell)} + w_0) \ge 1, \ \ell = 1, ..., N$

- For a given input x, the model outputs a score $g(x) = w^T x + w_0$. Let $y \in \{-1, +1\}$ be the label of the real class $(y = +1: x \in C_1, y = -1: x \in C_2)$:
 - if $y(\mathbf{w}^Tx+w_0)$ <1: we aim to maximize $y(\mathbf{w}^Tx+w_0)$ until reaching 1, cost is $1-y(\mathbf{w}^Tx+w_0)$
 - if $y(\mathbf{w}^T x + w_0) > 1$: outlier points, no need to optimize, cost is **0**
- Can writhe this succinctly as a **Hinge** loss:

$$\ell(\mathbf{w}, w_0 | x, y) = \max(0, 1 - y(\mathbf{w}^T x + w_0))$$

• Given: $D = \{(x^{(1)}, r^{(1)}), ..., (x^{(N)}, r^{(N)})\}$, the loss over the dataset is defined as:

$$L(\mathbf{w}, w_0 \mid D) = \frac{1}{N} \sum_{\ell=1}^{N} \max(0, 1 - y^{(\ell)}(\mathbf{w}^T x^{(\ell)} + w_0)) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Optimization – Gradient Descend

$$w_{\text{new}} = w_{\text{old}} - \eta \frac{\partial L}{\partial w}$$

$$\bigcirc$$
 What is $\frac{\partial L}{\partial w}$?

$$L(\mathbf{w}, w_0 | D) = \begin{cases} \frac{\lambda}{2} ||\mathbf{w}||^2 & \text{if } y^{(\ell)}(\mathbf{w}^T x^{(\ell)} + w_0) \ge 1\\ \frac{1}{N} \sum_{\ell=1}^{N} 1 - y^{(\ell)}(\mathbf{w}^T x^{(\ell)} + w_0) + \frac{\lambda}{2} ||\mathbf{w}||^2 & \text{otherwise} \end{cases}$$

For each
$$\mathbf{w}_{j}$$
 $(j = 0, ..., d)$:
$$\frac{\partial L}{\partial \mathbf{w}_{j}} = \begin{cases} \lambda \mathbf{w}_{j} & \text{if } y^{(\ell)}(\mathbf{w}^{T} x^{(\ell)} + \mathbf{w}_{0}) \geq 1 \\ \lambda \mathbf{w}_{j} - y^{(\ell)} x_{j}^{(\ell)} & \text{o.w.} \end{cases}$$
$$\frac{\partial L}{\partial \mathbf{w}_{0}} = \begin{cases} 0 & \text{if } y^{(\ell)}(\mathbf{w}^{T} x^{(\ell)} + \mathbf{w}_{0}) \geq 1 \\ -y^{(\ell)} & \text{o.w.} \end{cases}$$

The Algorithm

Gradient Descend for SVM

```
Input: D = \{(x^{(\ell)}, y^{(\ell)})\}\ (\ell=1:N)
for j = 0, ..., d
        w_i \leftarrow rand(-0.01, 0.01)
repeat
      for \ell = 1,...,N
               a \leftarrow 0
               for j = 0, ..., d
                       a \leftarrow a + \mathbf{w}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}^{(\ell)}
               for j = 0, ..., d
                    \Delta w_i \leftarrow \lambda w_i
              \Delta w_0 \leftarrow 0
               if v^{(\ell)}a < 1:
                         for j = 0, ..., d
                                  \Delta w_{j} \leftarrow \Delta w_{j} - y^{(\ell)} x_{j}^{(\ell)}
                        \Delta w_0 \leftarrow \Delta w_0 - y^{(\ell)}
         for j = 0, ..., d
               w_i \leftarrow w_i - \eta \Delta w_i
until convergence
```

Lagrangian

• The primal optimization problem:

minimize
$$\frac{1}{2} ||w||^2$$

subject to $y^{(\ell)}(wx^{(\ell)}+w_0) \ge 1$, $\forall \ell$

• <u>Lagrangian</u>: $\mathcal{L} = \frac{1}{2} ||w||^2 - \sum_{\ell} \alpha_{\ell} (y^{(\ell)} (wx^{(\ell)} + w_0) - 1)$

$$\nabla_{\mathbf{w},w_0} \mathcal{L} = 0 \implies \begin{cases} \frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 & \Rightarrow \mathbf{w} = \sum_{\ell=1}^{N} \alpha_{\ell} y^{(\ell)} x^{(\ell)} \\ \frac{\partial \mathcal{L}}{\partial w_0} = 0 & \Rightarrow \sum_{\ell=1}^{N} \alpha_{\ell} y^{(\ell)} = 0 \end{cases}$$

• Substitute back in the primal to get the dual

maximize
$$\mathcal{L}(\alpha) = \sum_{\ell} \alpha_{\ell} - \frac{1}{2} \sum_{\ell=1}^{N} \sum_{\ell'=1}^{N} \alpha_{\ell} \alpha_{\ell'} y^{(\ell')} y^{(\ell')} (x^{(\ell')})^{T} x^{(\ell')}$$

subject to $\alpha_{\ell} \ge 0$, $\sum_{\ell=1}^{N} \alpha_{\ell} y^{(\ell)} = 0$

The Dual Problem

Dual optimization problem:

maximize
$$\sum_{\ell=1}^{N} \alpha_{\ell} - \frac{1}{2} \sum_{\ell=1}^{N} \sum_{\ell'=1}^{N} \alpha_{\ell} \alpha_{\ell'} y^{(\ell)} y^{(\ell')} (x^{(\ell')})^{\mathrm{T}} x^{(\ell')}$$
subject to
$$\sum_{\ell=1}^{N} \alpha_{\ell} y^{(\ell)} = 0$$
$$\alpha_{\ell} \ge 0, \ \ell = 1 \dots \mathrm{N}$$

• This is also a QP problem, but its complexity depends on the sample size N (rather than the input dimensionality d)

Primal and Dual

Primal

$$\min \frac{1}{2} ||\boldsymbol{w}||^2$$
s.t. $y^{(\ell)}(\boldsymbol{w}^T \boldsymbol{x}^{(\ell)} + w_0) \ge 1, \forall \ell$

The complexity depends on the dimensionality d of inputs

Dual

$$\max \sum_{\ell} \alpha_{\ell} - \frac{1}{2} \sum_{\ell} \sum_{\ell} \alpha_{\ell} \alpha_{\ell} \cdot y^{(\ell)} y^{(\ell')} (x^{(\ell')})^{T} x^{(\ell')}$$
s.t.
$$\sum_{\ell} \alpha_{\ell} y^{(\ell)} = 0$$

$$\alpha_{\ell} \ge 0, \quad \ell = 1 \dots N$$

The complexity depends on the sample size N

- It turns out to be more convenient to solve the dual problem than solving the primal problem (N < d)
- We can firstly solve **Dual** to obtain $\{\alpha_{\ell}\}$, and then obtain the *W* in **Primal**

Training (Dual)

- Given: $D = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$
- minimize the **loss function** $L(\alpha)$ using any general purpose optimization toolkits (e.g., Matlab)
- But SVM is usually optimized using the **SMO** (sequential minimal optimization)

```
• Goal: \min_{\alpha} L(\alpha)
• Iteration: Update two variables each time until convergence \{ 1. Select an \alpha_1 that violates the KKT condition 2. Pick a second multiplier \alpha_2 and optimize L(\alpha) w.r.t. \alpha_1 and \alpha_2 \}
```

https://en.wikipedia.org/wiki/Sequential_minimal_optimization

Support Vectors

Suppose the optimal $\{\alpha_{\ell}\}$ have been obtained

- Patterns for which $y^{(\ell)}(wx^{(\ell)}+w_0) > 1$ $\alpha_{\ell}=0 \text{ (inactive constraints)} \Rightarrow x^{(\ell)} \text{ irrelevant}$ $\text{recall complimentary slackness: } \lambda_i^*g_i(x^*)=0$
- Patterns that have $\alpha_{\ell} > 0$ (active constraints) $y^{(\ell)}(wx^{(\ell)} + w_0) = 1 \Rightarrow x^{(\ell)}$ lies on margin

- Most of the dual variables vanish with α_{ℓ} =0. They are points lying beyond the margin with **no effect** on the hyperplane.
- Solution is only determined by the examples on the margin (support vectors), i.e., $x^{(\ell)}$ with $\alpha_{\ell} > 0$, hence the name support vector machine (SVM).

Computation of Primal Variables

• Having obtained the optimal α , we can obtain w:

$$\mathbf{w} = \sum_{\ell=1}^{N} \alpha_{\ell} y^{(\ell)} \mathbf{x}^{(\ell)} = \sum_{\mathbf{x}^{(\ell)} \in \mathcal{SV}} \alpha_{\ell} y^{(\ell)} \mathbf{x}^{(\ell)}$$

where SV denotes the set of support vectors.

- The support vectors must lie on the margin, so they should satisfy $y^{(\ell)}(\mathbf{w}^T\mathbf{x}^{(\ell)} + w_0) = 1$ or $w_0 = y^{(\ell)} \mathbf{w}^T\mathbf{x}^{(\ell)}$
- For numerical stability, all support vectors are used to compute w_0 :

$$w_0 = rac{1}{|\mathcal{SV}|} \sum_{\mathbf{x}^{(\ell)} \in \mathcal{SV}} \left(y^{(\ell)} - \mathbf{w}^T \mathbf{x}^{(\ell)}
ight)$$

Prediction

• Discriminant Function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

$$= \left(\sum_{\mathbf{x}^{(\ell)} \in \mathcal{SV}} \alpha_{\ell} y^{(\ell)} \mathbf{x}^{(\ell)} \right)^T \mathbf{x} + \frac{1}{|\mathcal{SV}|} \sum_{\mathbf{x}^{(\ell)} \in \mathcal{SV}} \left(y^{(\ell)} - \mathbf{w}^T \mathbf{x}^{(\ell)} \right)$$

• Decision Rule:

Choose
$$\begin{cases} C_1 & \text{if } g(x) > +1 \\ C_2 & \text{if } g(x) < -1 \end{cases}$$

Programming Time

Tutorial: SVM from scratch with explanation (Python)

https://towardsdatascience.com/implementing-svm-from-scratch-784e4ad0bc6a

https://www.kaggle.com/code/misbahbilgili/svm-from-scratch-with-

What's Next

Perceprton

Logistic Regression

SVM

The curse of nonlinearity

I can approximate any non-linear functions!

