Кольца вычетов

Опр: 1. Сравнимость целых чисел по модулю $m \in \mathbb{N}$: $k \equiv l \pmod{m}$, если $k - l \in m$ (то есть разность чисел k - l делится на m). Эквивалентным образом: k и l имеют одинаковые остатки при делении на m.

Опр: 2. Класс вычетов числа $k \in \mathbb{Z}$ по модулю m (вычет числа k по модулю m) это множество:

$$k \mod m = \{l \in \mathbb{Z} : l \equiv k \pmod m\} = \{l = k + m \cdot n : n \in \mathbb{Z}\} = k + m \cdot \mathbb{Z}$$

где $m \cdot \mathbb{Z}$ - это множество всех целых чисел кратных m.

Обозначение: $k \mod m = \overline{k}$.

Основные свойства классов вычетов

- 1) В одном классе вычетов все числа сравнимы между собой по модулю m, поскольку имеют один и тот же остаток при делении на m;
- 2) Числа из разных классов вычетов несравнимы по модулю m, поскольку имеют разные остатки при делении на m;
- 3) Разные классы вычетов между собой не пересекаются;
- 4) Любое целое число попадает в какой-то класс вычетов, то есть все классы вычетов по модулю m образуют разбиение $\mathbb Z$ на попарно непересекающиеся подмножества;

Множество классов вычетов по модулю m обозначается как $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{m-1}\}$. Графически это множество можно представить так:

Рис. 1: Геометрическое изображение классов вычетов.

Или же "свернуть" в окружность длины m, то тогда все элементы из одного и того же класса вычетов попадут в одну и ту же точку на окружности:

Рис. 2: Геометрическое изображение классов вычетов в виде окружности.

Таким образом, прямая превратилась в окружность. Точка $\bar{0}$ - класс вычетов нуля и так далее до класса $\overline{m-1}$, а дальше снова вернемся в класс вычетов $\overline{0}$. Таким образом, разумнее изображать точками на окружности, плюс отсюда становится ближе терминология кольца вычетов.

Опр: 3. Определим операции над вычетами следующим образом:

- 1) Сумма вычетов: $\overline{k} + \overline{l} = \overline{k+l}$:
- 2) Произведение вычетов: $\overline{k} \cdot \overline{l} = \overline{k} \cdot \overline{l}$:

Утв. 1. (Корректность определения) Операции над вычетами определены однозначно (то есть не зависят от выбора представителей классов вычетов).

- \square Пусть $k' \equiv k$, $l' \equiv l \Rightarrow k' = k + m \cdot r$, $l' = l + m \cdot s$, тогда:
 - 1) $k' + l' = k + l + m \cdot (r + s) \equiv k + l$:
 - 2) $k' \cdot l' = k \cdot l + m \cdot r \cdot l + k \cdot m \cdot s + m^2 \cdot r \cdot s = k \cdot l + m \cdot (r \cdot l + k \cdot s + m \cdot r \cdot s) \equiv k \cdot l$:

Пример: Рассмотрим $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}: \overline{3} + \overline{4} = \overline{7} = \overline{2}, \overline{3} \cdot \overline{2} = \overline{6} = \overline{1}.$

Свойства операций в \mathbb{Z}_m определяются свойствами операций в \mathbb{Z} . В частности из этих свойств вытекает, что \mathbb{Z}_n - коммутативное, ассоциативное кольцо с единицей (кольцо вычетов по модулю m).

Отметим, что в кольце целых чисел нет делителей нуля, тогда как в кольце вычетов они могут быть.

Пример: Рассмотрим \mathbb{Z}_6 : $\overline{3} \cdot \overline{2} = \overline{0}$, то есть в кольце вычетов могут быть делители нуля.

Утв. 2. Для делителей нуля кольца вычетов \mathbb{Z}_m будет верно следующее:

- 1) $\overline{k} \in \mathbb{Z}_m$ делитель нуля $\Leftrightarrow k \not\mid m$ и k,m имеют общие делители больше 1;
- 2) $\bar{k} \in \mathbb{Z}_m^{\times} \Leftrightarrow k, m$ взаимно просты, то есть не имеют общих делителей больших 1;

Rm: 1. Из утверждения видно, что любой элемент кольца вычетов это либо ноль, либо делитель нуля, либо обратимый элемент.

1) (\Rightarrow) \overline{k} - делитель нуля $\Leftrightarrow \overline{k} \neq \overline{0} \land \exists \overline{l} \neq 0 \colon \overline{k} \cdot \overline{l} = \overline{0}$. Переформулируем эти свойства:

$$\overline{k} \neq \overline{0} \Leftrightarrow k \not \mid m$$

$$\exists\, \bar{l} \neq 0 \colon \overline{k} \cdot \bar{l} = \overline{0} \Leftrightarrow \exists\, l \not\mid m \colon k \cdot l \ \vdots \ m \Rightarrow (k,m) > 1$$

то есть k и m имеют общие делители больше 1. Если бы k не имело общих делителей с m, а произведение делилось бы на m, то l : m, что не так по условию.

 (\Leftarrow) Пусть верно:

$$k \not \mid m, k = k' \cdot d, m = m' \cdot d, m > d = (k, m) > 1$$

Возьмем l=m' < m, тогда $k \cdot l = k' \cdot d \cdot m' = k' \cdot m \Rightarrow k \cdot l : m \Rightarrow \overline{k}$ - делитель нуля;

- 2) (\Rightarrow) $\overline{k} \in \mathbb{Z}_m^{\times} \Rightarrow \overline{k} \neq \overline{0} \wedge \overline{k}$ неделитель нуля (т.к. они необратимы) $\Leftrightarrow k \not\mid m \wedge (k,m) = 1$, то есть числа k и m не имеют общих делителей больше $1 \Leftrightarrow k$ и m взаимно просты.
 - (\Leftarrow) Пусть верно: $\overline{k} \neq \overline{0}$ и \overline{k} неделитель нуля. Рассмотрим множество произведений:

$$\{\overline{k}\cdot\overline{0},\overline{k}\cdot\overline{1},\overline{k}\cdot\overline{2},\ldots,\overline{k}\cdot\overline{m-1}\}$$

таких произведений будет m штук. Более того, $\overline{k} \cdot \overline{i} = \overline{k} \cdot \overline{j} \Rightarrow \overline{i} = \overline{j}$, поскольку на неделители нуля можно сокращать. Следовательно, все такие произведения будут различными и верно равенство:

$$\{\overline{k}\cdot\overline{0},\overline{k}\cdot\overline{1},\overline{k}\cdot\overline{2},\ldots,\overline{k}\cdot\overline{m-1}\}=\{\overline{0},\overline{1},\overline{2},\ldots,\overline{m-1}\}$$

В частности, $\exists \, \overline{l} \in \mathbb{Z}_m \colon \overline{k} \cdot \overline{l} = \overline{1} \Rightarrow \overline{k}$ - обратим;

Следствие 1. \mathbb{Z}_m - поле $\Leftrightarrow m$ - простое число.

 \square \mathbb{Z}_m - поле $\Leftrightarrow \mathbb{Z}_m^{\times} = \mathbb{Z}_m \setminus \{\overline{0}\} \Leftrightarrow \forall k=1,2,\ldots,m-1$ - взаимно просты с m, то есть (m,k)=1. Это как раз и означает, что m - простое число.

Пример: $\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ является полем.

Утв. 3. В \mathbb{Z}_m верно свойство: $\underbrace{\overline{1} + \overline{1} + \ldots + \overline{1}}_m = \overline{0}$.

$$\square$$
 Очевидно: $\underbrace{\overline{1} + \overline{1} + \ldots + \overline{1}}_{m} = \overline{m} = \overline{0}$.

Это необычное для полей свойство, например в \mathbb{R} сложение единиц бесконечно растёт.

Опр: 4. Пусть K - произвольное поле, назовем его характеристикой char K наименьшее число $p \in \mathbb{N}$ такое, что: $\underbrace{1+1+\ldots+1}_{p}=0$ в K. Если такого p не существует, то char K=0.

Примеры характеристик полей:

- 1) $\operatorname{char} \mathbb{Q} = 0$, $\operatorname{char} \mathbb{R} = 0$, $\operatorname{char} \mathbb{Z} = 0$;
- 2) Пусть p простое, тогда char $\mathbb{Z}_p = p$;

Утв. 4. Характеристика любого поля это либо 0, либо простое число.

 \square Пусть char K = p > 0 и предположим, что $p = k \cdot l$, где 1 < k, l < p. Рассмотрим следующие суммы:

$$\underbrace{1+1+\ldots+1}_{k} \neq 0, \underbrace{1+1+\ldots+1}_{l} \neq 0$$

Но если мы их переменожим, то получим:

$$(\underbrace{1+1+\ldots+1}_k)\cdot(\underbrace{1+1+\ldots+1}_l)=\underbrace{1\cdot 1+1\cdot 1+\ldots+1\cdot 1}_{k\cdot l}=\underbrace{1+1+\ldots+1}_p=0$$

Таким образом, два ненулевых элемента дали $0 \Rightarrow$ в поле K есть делители нуля \Rightarrow противоречие с тем, что в поле нет делителей нуля, так как все ненулевые элементы обратимы.

Утв. 5. Пусть char K = p > 0, тогда верно следующее:

$$\forall x, y \in K : (x+y)^p = x^p + y^p$$

□ Раскроем скобки по формуле бинома Ньютона:

$$(x+y)^p = x^p + C_n^1 x^{p-1} y^1 + \dots + C_n^k x^{p-k} y^k + \dots + y^p$$

Рассмотрим k-ое слагаемое в такой сумме:

$$C_p^k x^{p-k} y^k = (\underbrace{1+1+\ldots+1}_{C_n^k}) \cdot x^{p-k} \cdot y^k$$

Поскольку p - простое, при $k \neq p$ или $k \neq 0$, будет верно:

$$C_p^k = \frac{p!}{k!(p-k)!} \Rightarrow p! : p, \ k!(p-k)! \not/ p \Rightarrow C_p^k : p, \ 0 < k < p \Rightarrow$$

$$\Rightarrow (\underbrace{1+1+\ldots+1}_{C_p^k}) = (\underbrace{1+1+\ldots+1}_p) + \ldots + (\underbrace{1+1+\ldots+1}_p) = 0 + \ldots + 0 = 0, \ 0 < k < p \Rightarrow$$

$$\Rightarrow C_p^k x^{p-k} y^k = (\underbrace{1+1+\ldots+1}_{C_p^k}) \cdot x^{p-k} \cdot y^k = 0 \cdot x^{p-k} \cdot y^k = 0, \ 0 < k < p \Rightarrow$$

$$\Rightarrow (x+y)^p = x^p + C_p^1 x^{p-1} y^1 + \ldots + C_p^k x^{p-k} y^k + \ldots + y^p = x^p + 0 + \ldots + 0 + \ldots + 0 + y^p = x^p + y^p$$

Следствие 2. Если char K = p > 0, то тогда будет верно:

$$\forall x_1, \dots, x_n, (x_1 + \dots + x_n)^p = x_1^p + \dots + x_n^p$$

 \square Доказательство идёт индукцией по числу слагаемых. Для n=2 мы уже доказали, пусть верно для n-1, тогда:

$$(x_1 + \ldots + x_{n-1} + x_n)^p = ((x_1 + \ldots + x_{n-1}) + x_n)^p = (x_1 + \ldots + x_{n-1})^p + x_n^p = x_1^p + \ldots + x_{n-1}^p + x_n^p$$

Теорема 1. (Малая теорема Ферма) Пусть p - простое число, тогда $\forall n \in \mathbb{Z}, n^p \equiv n \pmod{p}$.

 \square На языке вычетов по модулю p надо доказать следующее:

$$\forall n \in \mathbb{Z}_p, \, \overline{n}^p = \overline{n}$$

По предыдущему следствию будет верно:

$$\overline{n} = \underbrace{\overline{1} + \ldots + \overline{1}}_{n} \Rightarrow \overline{n}^{p} = \underbrace{\overline{1}^{p} + \ldots + \overline{1}^{p}}_{n} = \underbrace{\overline{1} + \ldots + \overline{1}}_{n} = \overline{n}$$

Комплексные числа

Система комплексных чисел это некоторое расширение системы действительных чисел. Исторически расшерение чисел можно представить так:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

В \mathbb{N} не всегда выполнимо вычитание $\Rightarrow \mathbb{Z}$, но в \mathbb{Z} не всегда выполнимо деление $\Rightarrow \mathbb{Q}$, но не все длины измеримы (стороны в рациональных числах, но диагонали уже нет, например) $\Rightarrow \mathbb{R}$, но в \mathbb{R} не всегда разрешимы квадратные уравнения.

Хочется уметь извлекать квадратные корни из отрицательных чисел. Для этого достаточно уметь извлекать корень из -1: $\sqrt{-1} \Rightarrow \forall d < 0$ можно извлечь квадратный корень:

$$\sqrt{d} = \sqrt{-1} \cdot \sqrt{|d|}$$

Мы пришли к задаче расширения \mathbb{R} до такой системы, в которой существует $\sqrt{-1}$ и не добавлено ничего лишнего (выполнялись все арифметические операции в этой системе и не выходило за её рамки).

Опр: 5. <u>Полем комплексных чисел</u> называется поле \mathbb{C} , обладающее следующими свойствами:

- 1) $\mathbb{R} \subset \mathbb{C}$;
- 2) $i \in \mathbb{C}$: $i^2 = -1$, этот элемент называется мнимой единицей;
- 3) Условие минимальности: Если K подполе: $\mathbb{R} \subseteq K \subseteq \mathbb{C}, i \in K \Rightarrow K = \mathbb{C};$

Rm: 2. Заметим, что это аксиоматическое определение. Похожим образом мы определяли группы.

Такое определение оставляет открытым вопрос, а существует ли такое поле? А если существует, то сколько таких полей? Пока мы отложим вопросы о существовании и единственности этого поля и изучим его структуру. После чего будет легче ответить на вопросы о существовании и единственности.

Опр: 6. Алгебраической формой записи комплексного числа $z \in \mathbb{C}$ называется запись вида:

$$z=x+iy,\,z\in\mathbb{C},\,x,y\in\mathbb{R}$$

где число $x \in \mathbb{R}$ называется действительной частью комплексного числа $z \in \mathbb{C}$ и обозначается $\operatorname{Re}(z) = x$, а число $y \in \mathbb{R}$ называется мнимной частью комплексного числа $z \in \mathbb{C}$ и обозначается $\operatorname{Im}(z) = y$.

Утв. 6. $\forall z \in \mathbb{C}, \exists ! x, y \in \mathbb{R} \colon z = x + iy.$

(Существование): Рассмотрим множество $K = \{z = x + iy \mid x, y \in \mathbb{R}\}.$

- 1) $\mathbb{R} \subseteq K$, поскольку это так при y = 0;
- 2) $i \in K$ при x = 0, y = 1;
- 3) Пусть z = x + iy, $z' = x' + iy' \in K$, докажем что их сумма, произведение также лежат в K:

$$z \pm z' = x + iy \pm x \pm iy' = (x \pm x') + i(y \pm y') \in K$$
$$z \cdot z' = (x + iy) \cdot (x' + iy') = x \cdot x' + iy' \cdot x + iy \cdot x' + i^2 y \cdot y' = (x \cdot x' - y \cdot y') + i(y \cdot x' + y \cdot x')$$

Таким образом, множество замкнуто относительно операций сложения, вычитания и умножения. В частности:

$$(x+iy)(x-iy) = x^2 + y^2 \in \mathbb{R}, \ x > 0 \lor y > 0 \Rightarrow (x+iy)(x-iy) > 0$$

Следовательно, если $z = x + iy \neq 0$, то есть $x \neq 0$ или $y \neq 0$, то z^{-1} будет иметь вид (это число всегда существует в поле для $z \neq 0$):

$$z^{-1} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2} \Rightarrow z^{-1} \in K$$

Следовательно, K - это подполе. По свойству минимальности $K = \mathbb{C}$;

(**Единственность**): Пусть $z = x + iy = x' + iy' \in \mathbb{C}$, тогда:

$$x - x' = i(y' - y) \Rightarrow (x - x')^2 = i^2(y' - y)^2 = -1 \cdot (y' - y)^2 = -(y' - y)^2$$
$$0 \le (x - x')^2 = -(y' - y)^2 \le 0 \Rightarrow (x - x')^2 = (y' - y)^2 = 0 \Rightarrow x - x' = y' - y = 0 \Rightarrow x = x', y = y'$$

Rm: 3. Единственность записи комплексного числа в алгебраической форме означает, что комплексное число взаимнооднозначно задается парой действительных чисел. Далее это поможет нам доказать существование поля комплексных чисел.