03. Kosterní sval

Svalstvo obstarává veškerý pohyb a změny napětí orgánů uvnitř těla i pohyb organicjmu v prostředí. Pohyb je jedním ze základních projevů života.

Kosterní sval

Jednotlivé svaly jsou tvořeny svalovými snopci, které jsou složeny ze svalových vláken. Svalová vlákna obsahují velký počet myofibril, jež jsou tvořeny kontraktilními proteiny - aktinem a myosinem.

Myofibrily jsou členěny na pravidelné úseky - sarkomery, což jsou základní strukturní a funkční jednotky. Sarkomera je vzdálenost mezi dvěma Z-liniemi (Z-destičkami). Do Z-linií jsou zakotvena tenká filamenta aktinu, mezi nimi jsou tlustá filamenta myosinu. Aktinová a myosinová vlákna se částečně překrývají, tím vzniká typický mikroskopický obraz příčného pruhování, ve kterém se střídají Anizotropní a Izotropní části.

T-tubuly

= zprostředkovávají rychlý přenos akčního potenciálu z buněčné membrány k myofibrilám

Tubuly tvoří síť kolem myofibril. Na rozhraní **A** a **I**proužku myofibrily končí vústěním do široké terminální cisterny (obruč obepínající celou myofibrilu). Cisterna naléhá stranou odvrácenou od vústění tubulů retikula ke kolmo probíhajícímu T-tubulu sarkolemy. Ke každému T-tubulu naléhají 2 cisterny (z každé strany jedna) = komplexní struktura tvoří **triádu**.

Sarkoplazmatické retikulum

= představuje rezervoár kalciových iontů, které jsou klíčové pro spuštění a průbeh kontrakce myofibril

závisí na vápníku -> kontrakce nastává při obsahu vápníku (Ca) 10^{-5} , relaxace nastává při 10^{-7}

Triáda

= komplexní struktura složená z: terminální cisterna - T-tubulus - terminální cisterna

DHP – dihydropyridinový receptor RyR – ryanodinový receptor

Sarkomera

= vzdálenost mezi dvěma Z-liniemi

Z-destička = Z-linie

Aktinová a myozinová filamenta

Aktin - tenké filamentum

- dvoušroubovice fláknitého F-aktinu, tvořená kulovitými jednotkami G-aktinu
- po obou stranách jsou připojeny molekuly tropomyosinu a troponinu
 - tropomyosin za klidových podmínek kryje aktivní místa
 - troponin je bílkovina v určitých vzdálenostech umístěná na aktinu a má 3 podjednotky (pro nás nezajímavé snad)

Myosin - tlusté filamentum

- každé vlákno tvoří dvě molekuly myosinu, které se kolem sebe obtáčejí (ocas) a na konci se rozšiřují (hlavička)
- část mezi hlavičkou a ocasem má schopnost ohybu (krček)
- hlavička má ATP-ázovou aktivitu a váže se na aktivní místa aktinu
- je tvořeno mnoha molekulamy myosinu
- ocasi vytváří osu filamenta, hlavičky ční do prostoru

Popis kontrakce kosterního svalu

V zakončení motoneuronu se nachází velké množství vezikul s neurotransmiterem acetycholinem. Při průchodu akčního potenciálu nervovým vláknem se váčky otevřou do synaptické štěrbiny. Acetylcholin se vyplaví a naváže se na postsynaptické receptory. Toto navázání mediátoru na receptor způsobí v postsynaptické membráně otevření kanálů pro sodíkové ionty, a vyvolá tak vznik akčního potenciálu na svalové buňce. Tento potenciál se následně šíří po celé svalové buňce. T-tubuly jej odvádějí k hlubším strukturám svalové buňky tak, že cisterny sarkoplazmatického retikula jsou aktivovány v podstatě najednou.

Po aktivaci sarkoplazmatického retikula se do sarkoplazmy uvolní ionty Ca2+, které se poté navážou na troponin, a tím zahájí proces svalové kontrakce. Pro posun filament ve svalovém vlákně, a tedy ke vzniku svalové kontrakce, je zapotřebí energie. Tato energie je ve svalech ukryta v podobě adenosintrifosfátu, neboli ATP. Molekuly ATP se vážou na hlavy myozinu, které mají ATPázovou aktivitu. V okamžiku napojení myozinové hlavice na aktinové vlákno se ATP rozštěpí na ADP + Pi a myozinové hlavice se připojí k aktinovému vláknu a sklopí o 40 °, což má za následek, že aktinová a myozinová vlákna se vůči sobě posunou. S vazbou a rozpadem další molekuly ATP se hlavice myozinu uvolní od aktinu a vrátí do původní polohy. Zhruba po jedné minutě se vápenaté ionty aktivně pumpují zpět do sarkoplazmatického retikula, zde jsou uskladněny do příchodu dalšího akčního potenciálu.

