SUSY-Components

Keegan Stoner Northeastern University Department of Physics 2021 Version 1

Abstract

This is the documentation associated with the Mathematica notebooks SUSY-components for doing componentwise supersymmetry calculations.

Contents

1	Using the Notebooks				
	1.1	Symbols in Mathematica	2		
	1.2	Definitions	2		
	1.3	Differential Operators	2		
	1.4	Superfields	3		
	1.5	Notebooks	3		
2	Examples				
	2.1	Differential Operator Mechanics	3		
	2.2	Verify SUSY Algebra	3		
	2.3	WZ Model	4		
	2.4	SUSY Transformations	4		
3	v2 Features				
	3.1	Soon	4		
	3.2	Someday	5		

1 Using the Notebooks

To run any of the notebooks, open and Evaluate Initialization Cells.

- Q: Why is this in the form of notebooks and not a package (.wl)?
- A: Global variables are very hard to deal with when importing through a Mathematica package. It's much simpler to initialize all variables in a single notebook rather than have the user set spacetime variables, field names, etc. every time.

1.1 Symbols in Mathematica

Symbols are typed using the escape key, denoted esc. The following are used in these notebooks:

Symbol	Mathematica Shortcut	
Φ	esc Phi esc	
θ	esc theta esc	
$ heta_1$	esc theta esc ctrl+"dash"	1

Other Greek letters can be typed similarly. For ease of use, we use $\theta_3 = \overline{\theta_1}$ and $\theta_4 = \overline{\theta_2}$.

1.2 Definitions

Field A scalar or spinor component of a superfield. All Berezinian derivatives on a field evaluate to zero.

f A placeholder argument used to hold differential operators (DD) in unevaluated form.

 ${\tt NonCommutative Multiply}$

Treated as Times for Commutative objects and anticommutative multiplication for AntiCommutative objects. Using with objects that are not specified is treated as standard NonCommutativeMultiply.

Commutative AntiCommutative

Commutative Field A bosonic field that has even parity. It commutes with all objects and NonCommutativeMultiply will act equivalently to Times. Commuting-coordinate differentials (DD) of Commutative Fields are commutative.

 ${\tt AntiCommutative}\ {\tt Field}$

A fermionic field that has odd parity. It anticommutes with all anticommuting objects using NonCommutativeMultiply. Commuting-coordinate differentials (DD) of AntiCommutative Fields are anticommutative.

1.3 Differential Operators

DD[x][f] Derivative operator with respect to coordinate x and placeholder f. Coordinate x can be commuting or anticommuting.

ActDD[a, B] Acts with differential operator a on differential operator or superfield B, outputing another differential operator (using placeholder f) or superfield.

Theta4Component $[\Phi]$ Outputs the component of the superfield Φ proportional to $\theta_1\theta_2\theta_3\theta_4$.

Theta2Component $[\Phi]$ Outputs the component of the superfield Φ proportional to $\theta_1\theta_2$.

Thetabar2Component $[\Phi]$ Outputs the component of the superfield Φ proportional to $\theta_3\theta_4$.

ComponentFields $[\Phi]$ Outputs a list of all components fields for superfield Φ .

TeXFormNice[a] Outputs a in IATEXform, fixing many small errors of TeXForm.

SimplifyDD[a] Simplifies differential operators to a readable form (is called by ActDD, AntiCommutatorDD, and CommutatorDD).

Collects and sorts expression by powers of θ terms.

And commutation by, and commutation by.

IntegrateByParts[a] Takes a differential operator and integrates by parts if possible, throwing

away boundary terms

1.4 Superfields

AddCommutativeField[a,...]

FactorThetas[a]

Adds one or more commutative fields a \dots to the active list of commutative fields

AddCommutativeField[] Displays the list of commutative fields

AddAntiCommutativeField[a,...]

Adds one or more anticommutative fields a \dots to the active list of anticommutative fields

AddAntiCommutativeField[]

Displays the list of anticommutative fields

FullSuperfield A generic superfield with all θ components (using 4 θ variables).

FieldsQ[a] Checks if a is a field

CommutativeQ[a] Checks if a is a commutative coordinate or field

AntiCommutativeQ[a] Checks if a is an anticommutative coordinate or field

CoordinatesQ[a] Checks if a coordinate

CommutativeCoordinatesQ[a]

Checks if a is a commutative coordinate

AntiCommutativeCoordinatesQ[a]

Checks if a is an anticommutative coordinate

SUSYTransformations $[\Phi]$, Acts with all 4 SUSY generators on the component component of Φ .

 $\verb|component| can be Theta 4 Component|, Theta 2 Component|, Theta bar 2 Component|,$

or a custom function.

1.5 Notebooks

There are three notebooks. They each have a different initialization setup depending on the dimension or structure of the spaces they work in.

2 Examples

2.1 Differential Operator Mechanics

2.1.1 Integrate By Parts

Input: IntegrateByParts[z DD[z][A]]

Output: -A

2.2 Verify SUSY Algebra

Verify that the SUSY generators $\{Q_i\}_i$ satisfy the anticommutation relations of the SUSY algebra.

Input:

AntiCommutatorDD[Q1, Q1dag] AntiCommutatorDD[Q2, Q1dag] AntiCommutatorDD[Q1, Q2dag] AntiCommutatorDD[Q2, Q2dag]

(In the $\mathcal{N}=2,\,d=3$ case) Output:

- i DD[t][f]
- i DD[z][f]
- i DD[zbar][f]
- i DD[t][f]

2.2.1 Verify Chiral Superfield

Verify that Φ is indeed a chiral superfield.

Input

ActDD[D1dag, Φ]

ActDD[D2dag, Φ]

Output:

0

0

2.3 WZ Model

Compute the Wess-Zumino action (with superpotential) in components. In superspace we would write this in terms of a chiral superfield Φ and its complex conjugate $\overline{\Phi}$ as

$$\mathcal{L} = \int d^4\theta \,\overline{\Phi}\Phi + \int d^2\theta \,\Phi^2 + \int d^2\overline{\theta} \,\overline{\Phi}^2 \tag{1}$$

Input:

Theta4Component[Φ bar ** Φ] +

Theta2Component[Φ ** Φ] + Thetabar2Component[Φ bar ** Φ bar] Output:

2.4 SUSY Transformations

Compute the actions of the four SUSY generators on the top (θ^2) form of the chiral superfield Φ .

Input: SUSYTransformations [Φ , Theta2Component]

3 v2 Features

3.1 Soon

- Add more examples to the documentation
- Add more examples of commonly used Lagrangians in components, e.g. obtain scalar potential in superQED from superspace Lagrangian
- Exponential form of vector superfield expression (in WZ gauge)

3.2 Someday

- Feature to solve for F-terms and D-terms
- \bullet Add a canonical ordering to ${\tt IntegrateByParts}$ for anticommutative fields, so they cancel properly
- Fin/paramterize moduli spaces, Higgs branches, etc.
- $\bullet\,$ Easily implement gauge theory? RG flow, symmetries, anomalies, etc.