

CONSTRUÇÃO DE MODELOS LINEARES GENERALIZADOS PARA ANÁLISES DE SEGURANÇA VIÁRIA UTILIZANDO O APLICATIVO ESTATÍSTICO R

Davi Sales Barreira⁽¹⁾; Flávio José Craveiro Cunto, PhD.⁽²⁾ Departamento de Engenharia de Transportes – Universidade Federal do Ceará (1)Bolsista de Iniciação Científica (2) Orientador

INTRODUÇÃO

O número observado de acidentes de trânsito em um intervalo de tempo é a variável mais utilizada na avaliação do nível de segurança de um sistema viário. Como os acidentes de trânsito são eventos raros de elevada dispersão, o uso de modelos multivariados pode ajudar na identificação e compreensão dos fatores que mais influenciam na ocorrência desses eventos (Figura 01).

Há duas décadas, diversas pesquisas vêm sendo feitas visando à estimação da segurança viária através do uso de modelos estatísticos de regressão que relacionam o número observado de acidentes de trânsito com atributos geométricos e de operação da via, conhecidos como Modelos de Previsão de Acidentes (MPA) (Hauer et al., 1988). Nestes casos, as técnicas de modelagem linear generalizada são consideradas plataformas adequadas para o desenvolvimento de modelos mais robustos, uma vez que é possível o relaxamento da suposição a respeito da normalidade dos erros necessária nos modelos de regressão linear (Cardoso e Goldner, 2007). Assim, o *software* estatístico R se mostra como uma possível ferramenta a ser utilizada para desenvolver tais modelos.

OBJETIVOS

Objetivo Geral:

O objetivo deste trabalho é apresentar uma metodologia para desenvolver modelos de previsão de acidentes com estrutura linear generalizada utilizando o software estatístico R.

Objetivos Específicos:

- Definir um procedimento de preparação dos dados em planilhas eletrônicas e sua importação para o ambiente do R;
- Identificar rotinas pré-definidas do aplicativo R para o desenvolvimento dos MPA e avaliação de sua qualidade;
- Aplicar e verificar a metodologia proposta no desenvolvimento de MPA para uma amostra de 101 interseções semaforizadas da cidade de Fortaleza.

METODOLOGIA

- Revisão bibliográfica sobre os MPA e utilizações do aplicativo R em modelos lineares generalizados;
- Definição de um estudo de caso: desenvolvimento de MPA para interseções semaforizadas em Fortaleza. Período: 2009
- Coleta de dados e escolha das variáveis preditoras: volume médio diário anual, número de faixas, número de aproximações e separador central (Tabela 01);
- Definição da estrutura matemática do modelo. A expressão geral mais genérica para os MPA encontrada na literatura pode ser expressa por (Hauer et al., 1988):

Variável	Descrição	Média(*)	Desv. pad.	Mínimo	Máximo
v1_vdma09	VDMA de 2009- via principal	23.583	7.850	8.047	44.312
v2_vdma09	VDMA de 2009 - via secundária	11.735	5.267	641	28.563
vdma09	VDMA de 2009 - interseção	35.319	10.438	15.887	65.618
ta09	Total de acidentes - interseção	7,5	7,7	0	48
taff09	Total de acidentes com feridos e fatais	1,5	1,6	0	7
nfx	Número total de faixas - interseção	5,8	1,4	4	12
nap	Número total de aproximações	2,7	0,6	2	4
CC	Canteiro central; 0=ausência, 1=em uma via, 2=em duas vias	0,7	0,6	0	2

Tabela 01: Estatística descritiva da amostra coletada

 $Y=\alpha \left[\prod_i (A_i)^{\beta_i}\right] \cdot e^{\sum_j (\gamma_j B_j)}$ em que Y é número esperado de acidentes em um intervalo de tempo, A e B são vetores de variáveis preditoras e α , β , γ são vetores de coeficientes do modelo;

- Preparo dos dados, colocando em formato .xls para importação no software R;
- Uso do pacote RODBC para importar os dados da planilha formatada;
- Uso das funções glm() e glm.nb(), Poisson e Binomial Negativa respectivamente;
- Uso da função summary() para obter os parâmetros do modelos e alguns indicadores da adequação do mesmo como o gráfico de dispersão, desvio residual e o coeficiente de informação de Akaike (AIC) (Figuras 02 e 03);
- Plotagem do gráfico de resíduos acumulados;
- Análise dos indicadores e gráficos, escolha do melhor modelo;

Figura 02:Tela do software R

Figura 03: Gráfico de dispersão fornecido pelo R

ANÁLISE DOS RESULTADOS E CONCLUSÕES

Variável		Modelos (*)					
		01	02	03	04		
α	ln(α)	-12,09	-5,13	-7,49	-7,49 -7,23		
	Coef.	5,61E-06	5,91E-03	5,61E-04	7,22E-04		
	$\hat{\sigma}_{\!eta}^{(**)}$	2,59	2,52	2,68	2,61		
vdma_09	Coef.	1,34	0,52	0,70	0,55		
	$\widehat{\sigma}_{\!\beta}$	0,23	0,26	0,26	0,26		
nfx	Coef.	-	0,28	0,41	0,34		
	$\widehat{\sigma}_{\!\beta}$	-	0,05	0,08	0,08		
cc	Coef.	-	-	-0,39	-0,90		
	$\widehat{\sigma}_{\!\beta}$	-	-	0,27	0,28		
nap	Coef.	-	-	-	0,74		
	$\widehat{\sigma}_{\!\beta}$	-	-	-	0,31		
AIC	/ * \	581	556	559	549		
(*)parâmetros estatisticamente significante (α=0,05) (**)erro-padrão							

Tabela 02: Resumo dos MPA desenvolvidos

65.000 5.000 45.000 **VDMA**

Figura 04: Gráfico de resíduos acumulados para modelo 2

- A premissa da distribuição dos erros Binomial Negativa (σ_d=1,04) se mostrou mais adequada do que Poisson (σ_d =3,92);
- Todas as variáveis (fluxo veicular, número de faixas, número de aproximações e presença de canteiro central) se mostraram significativas (α=0,05) (Tabela 02);
- Dentre os modelos propostos para estimar o número total de acidentes em interseções, a expressão com o fluxo médio diário e número de faixas (modelo 02) foi escolhida por seu baixo AIC, gráfico de resíduos acumulados e por sua simplicidade (Figura 04);
- O aplicativo R se mostrou adequado na estimação de modelos de previsão de acidentes que utilizam a estrutura compatível com a dos modelos lineares generalizados.

REFERÊNCIAS BIBLIOGRÁFICAS

AGRADECIMENTOS

•R. (2001). An Introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics.