Transitive closure of graphs and allpairs shortest paths

Transitive closure (accessibility)

Problem:

G = (V, E) (unweighted) directed graph Compute H = (V, B) where B is the reflexive and transitive closure of E

Remark: $(s,t) \in B$ iff there exists a path from s to t in G

Matrix representation

Matrix $n \times n$ where n = |V|

- A adjacency matrix of G (= matrix of paths of length 1)
- B adjacency matrix of H (= matrix of paths of H)

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$1 \xrightarrow{2} \begin{array}{c} 3 \\ 4 \end{array}$$

$$B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Boolean matrix multiplication

- $A = (a_{ij}) \in \{0,1\}^{n \times k}, B = (b_{ij}) \in \{0,1\}^{k \times m}$
- $AB = C, C = \{0,1\}^{n \times m}$
- $c_{ij} = (a_{i1} \land b_{1j}) \lor \cdots \lor (a_{ik} \land b_{kj}) = \bigvee_{l=1}^{k} (a_{il} \land b_{lj})$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

$$AB = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Closure by matrix multiplication

Notation

 A_k = matrix of paths of length k in G

 $A_0 = I$ (identity matrix)

 $A_1 = A$ (matrix of paths of length 1)

Lemma

For all $k \ge 0$, $A_k = A^k$ (boolean matrix multiplication)

Proof:

 $A_k[i,j]=1$ iff there exists $s\in V$: $A_{k-1}[i,s]=1$ and A[s,j]=1 that is, $A_k[i,j]=\bigvee_s(A_{k-1}[i,s]\wedge A[s,j])$ that is, $A_k=A_{k-1}\cdot A$ and $A_0=I$ then $A_k=A^k$

Closure by matrix multiplication

there exists path from i to j in $G \Leftrightarrow$ there exists a path from i to j without cycle (simple path) \Leftrightarrow there exists a path from i to j of length $\leq n-1$

$$B[i,j] = 1$$
 iff $\exists k, \ 0 \le k \le n-1, A^{k}[i,j] = 1$

therefore
$$B = I + A + A^2 + \cdots + A^{n-1}$$
 where + is V

Computation of *B* using Horner's rule:

$$B_0 = I$$
, $B_i = I + B_{i-1}A$ for $i = 1..n - 1$. Then $B = B_{n-1}$

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$B_{1} = I + A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$B_{3} = I + A + A^{2} + A^{3} + A^{4}$$

$$= I + B_{2} \cdot A = B$$

Time complexity

```
n-1 additions and n-1 products of boolean matrices n \times n
\Rightarrow O(n \cdot M(n))
```

each product is done in $O(n^3)$ operations $\Rightarrow O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2.8})$ (now improved to $O(n^{2.37})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/\log^2 n)$ (now improved to $O(n^3/\log^4 n)$)

Time complexity

```
n-1 additions and n-1 products of boolean matrices n \times n
\Rightarrow O(n \cdot M(n))
```

each product is done in $O(n^3)$ operations $\Rightarrow O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2.8})$ (now improved to $O(n^{2.37})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/\log^2 n)$ (now improved to $O(n^3/\log^4 n)$)

 $O(n^4)$ is too much! can be done better with BFS/DFS:

For each node i, run BFS with source node i B[i,j]=1 iff j is reachable from i Running time $O(n\cdot(n+m))=O(n^3)$

Speeding up

Notation

$$B_k$$
 = matrix of paths of length $\leq k$ in G
 $(B_k = A_0 + \dots + A_k)$
 B_0 = I (identity matrix)
 B_1 = matrix of paths of length ≤ 1 = $I + A$
 B_{n-1} = matrix of simple paths = B

Lemma: $B_k = B_{k-1} \cdot (I + A)$

 \Rightarrow For all $k \ge 1$, $B_k = (I + A)^k$ and then $B_{2k} = B_k \cdot B_k$

Compute B as an n-1 power in time $O(\log(n) \cdot M(n)) = O(\log(n) \cdot n^3)$

2 matrix products

Warshall's (Roy-Warshall) algorithm (~1962)

$$G = (V, E) \text{ with } V = \{1, 2, ..., n\}$$

Paths in $G: i \rightarrow s_1 \rightarrow s_2 \cdots \rightarrow s_l \rightarrow j$

Intermediate nodes: s_1, s_2, \dots, s_l

Notation:

 C_k = matrix of paths in G with intermediate nodes $\leq k$

$$C_0 = I + A$$

 C_n = matrix of paths in G = B

Recurrence

Simple path

Lemma For all $k \ge 1$,

$$C_k[i,j] = 1$$
 iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1 \text{ and } C_{k-1}[k,j] = 1)$

Computation

```
of C_k from C_{k-1} in time O(n^2)
of B = C_n in time O(n^3)
```

Computing C_k from C_{k-1}

$$C_{k} = i \left(\begin{array}{c} i \\ \\ \\ \end{array} \right) \qquad C_{k-1} = i \left(\begin{array}{c} k \\ \\ \\ \end{array} \right)$$

$$C_k[i,j] = C_{k-1}[i,j] \lor (C_{k-1}[i,k] \land C_{k-1}[k,j])$$

 $C_0 = I + A$, $C_k[i,j] = 1$ iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1$ and $C_{k-1}[k,j] = 1)$

 $C_0 = I + A$, $C_k[i,j] = 1$ iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1$ and $C_{k-1}[k,j] = 1)$

 $C_0 = I + A$, $C_k[i,j] = 1$ iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1$ and $C_{k-1}[k,j] = 1)$

Warshall's algorithm: code

```
WARSHALL(G = (V, E))
n = |V|
for i = 1 to n do
    for j = 1 to n do
      if i = j or A[i, j] = 1 then
             C_0[i,j]=1
      else
             C_0[i,j] = 0
for k = 1 to n do
    for i = 1 to n do
      for j = 1 to n do
             C_k[i,j] = C_{k-1}[i,j] \lor (C_{k-1}[i,k] \land C_{k-1}[k,j])
return C_n
      running time O(n^3)
```

Quiz 3.1.2

Compute the transitive closure of the following graph using Warshall's algorithm

What we have so far

Three algorithms to compute the transitive closure:

- matrix polynomial: $O(n \cdot M(n)) = O(n^4)$
- matrix power: $O(\log n \cdot M(n)) = O(\log n \cdot n^3)$
- Roy-Warshall algorithm : $O(n^3)$

We now generalize these ideas to compute all-pairs shortest paths in a *weighted* graph

What about weighted graphs?

$$G = (V, E, w)$$
 weighted graph $V = \{1, 2, ..., n\}, w: E \to \mathbb{R}$

We assume that there is no negative-cost cycle, but negative-cost edges may be present.

Weight matrix W defined by

$$W[i,j] = \begin{cases} 0 & \text{if } i = j \\ w(i,j) & \text{if } (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

First method: matrix product

Let $d^{(m)}[i,j]$ be the minimum value of a path from i to j provided that this path contains **at most** m edges

We have to compute $d[i,j] = d^{(n-1)}[i,j]$

Idea: proceed by induction on m

$$d^{(0)}[i,j] = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{otherwise} \end{cases}$$

For $m \geq 1$,

$$\begin{split} d^{(m)}[i,j] &= \min \left(d^{(m-1)}[i,j], \min_{1 \leq t \leq n} \left\{ d^{(m-1)}[i,t] + W[t,j] \right\} \right) = \\ & \min_{1 \leq t \leq n} \left\{ d^{(m-1)}[i,t] + W[t,j] \right\} \end{split}$$

In terms of matrices, we have $D^{(m)} = D^{(m-1)} \cdot W$, where min plays the role of addition and

plays the role of multiplication

Computing $D = W^{n-1}$ by repeated squaring leads to the time complexity $O(n^3 \cdot \log n)$

Algorithm based on intermediate nodes: Floyd(-Warshall) algorithm

Notation

$$D_k = (D_k[i,j] | 1 \le i,j \le n)$$
 with $D_k[i,j] = \min\{w(c) | c \text{ path from } i \text{ to } j \text{ with all intermediate nodes } \le k\}$
 $D_0 = W$
 $D_n = \text{distance matrix of } G = D$

Lemma For all $k \ge 1$,

$$D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}$$

Computation

of
$$D_k$$
 from D_{k-1} in time $O(n^2)$
of $D = D_n$ in time $O(n^3)$

FLOYD(G,w)
$$D_0 = W$$
 for $k = 1$ to n do for $i = 1$ to n do for $j = 1$ to n do $D_k[i,j] = \min \{ D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j] \}$

$$D_k[i,j] = \min \{ D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j] \}$$

$$D_0 = W = \begin{pmatrix} 0 & 1 & \infty & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 2 & \infty & 0 \end{pmatrix}$$

$$D_1 = \begin{pmatrix} 0 & 1 & \infty & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 1 & \infty & 0 \end{pmatrix}$$

$$D_2 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & \infty \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

$$D_3 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & 13 \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

$$D_4 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ 13 & 0 & 4 & 13 \\ 9 & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

Quiz 3.1.3

Run Floyd's algorithm to compute all-pairs shortest distances. Output the sum of the shortest distances between all pairs of vertices.

Representing shortest paths

Explicitely storing shortest paths from i to j, $1 \le i, j \le n$ n^2 paths of maximum length n-1: space $O(n^3)$

Predecessor matrix: space $\Theta(n^2)$

$$\pi_k = (\pi_k[i,j] \mid 1 \le i, j \le n)$$
 where

 $\pi_k[i,j] = \text{predecessor of } j \text{ on some shortest path from } i \text{ to } j \text{ with all intermediate nodes } \leq k$

Recurrence

$$\pi_0[i,j] = \begin{cases} i, \text{ if } i \neq j \text{ and } (i,j) \in E \\ nil & \text{otherwise} \end{cases}$$

$$\pi_k[i,j] = \begin{cases} \pi_{k-1}[i,j], & \text{if } D_{k-1}[i,j] \le D_{k-1}[i,k] + D_{k-1}[k,j] \\ \pi_{k-1}[k,j] & \text{otherwise} \end{cases}$$

$$D_0 = W = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{8} \\ \infty & \mathbf{0} & \mathbf{4} & \infty \\ \infty & \mathbf{7} & \mathbf{0} & \mathbf{9} \\ \mathbf{0} & \mathbf{2} & \infty & \mathbf{0} \end{pmatrix}$$

$$D_{1} = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \infty & \mathbf{8} \\ \infty & \mathbf{0} & \mathbf{4} & \infty \\ \infty & \mathbf{7} & \mathbf{0} & \mathbf{9} \\ \mathbf{0} & \mathbf{1} & \infty & \mathbf{0} \end{pmatrix}$$

$$D_2 = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{5} & \mathbf{8} \\ \infty & \mathbf{0} & \mathbf{4} & \infty \\ \infty & \mathbf{7} & \mathbf{0} & \mathbf{9} \\ \mathbf{0} & \mathbf{1} & \mathbf{5} & \mathbf{0} \end{pmatrix}$$

$$D_3 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ \infty & 0 & 4 & 13 \\ \infty & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix}$$

$$D_4 = \begin{pmatrix} 0 & 1 & 5 & 8 \\ 13 & 0 & 4 & 13 \\ 9 & 7 & 0 & 9 \\ 0 & 1 & 5 & 0 \end{pmatrix} \qquad \pi_4 = \begin{pmatrix} - & 1 & 2 & 1 \\ 4 & - & 2 & 3 \\ 4 & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$\pi_0 = \begin{pmatrix} -1 & -1 \\ -2 & -2 \\ -3 & -3 \\ 44 & -1 \end{pmatrix}$$

$$\pi_1 = \begin{pmatrix} - & 1 & - & 1 \\ - & - & 2 & - \\ - & 3 & - & 3 \\ 4 & 1 & - & - \end{pmatrix}$$

$$\pi_2 = \begin{pmatrix} - & 1 & 2 & 1 \\ - & - & 2 & - \\ - & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$\pi_3 = \begin{pmatrix} - & 1 & 2 & 1 \\ - & - & 2 & 3 \\ - & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$\pi_4 = \begin{pmatrix} - & 1 & 2 & 1 \\ 4 & - & 2 & 3 \\ 4 & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

$$\begin{array}{c|c}
1 & \xrightarrow{1} & 2 \\
0 & & & & & \\
0 & & & & & \\
4 & & & & & \\
4 & & & & & \\
0 & & & & & \\
4 & & & & & \\
0 & & & & & \\
4 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\
0 & & & & \\$$

$$D_4 = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{5} & \mathbf{8} \\ \mathbf{13} & \mathbf{0} & \mathbf{4} & \mathbf{13} \\ \mathbf{9} & \mathbf{7} & \mathbf{0} & \mathbf{9} \\ \mathbf{0} & \mathbf{1} & \mathbf{5} & \mathbf{0} \end{pmatrix} \qquad \qquad \pi_4 = \begin{pmatrix} \mathbf{-1} & \mathbf{2} & \mathbf{1} \\ \mathbf{4} & \mathbf{-2} & \mathbf{3} \\ \mathbf{4} & \mathbf{3} & \mathbf{-3} \\ \mathbf{4} & \mathbf{12} & \mathbf{-1} \end{pmatrix}$$

$$\pi_4 = \begin{pmatrix} - & 1 & 2 & 1 \\ 4 & - & 2 & 3 \\ 4 & 3 & - & 3 \\ 4 & 1 & 2 & - \end{pmatrix}$$

Example of a path

distance from 2 to 1 =
$$D_4[2,1] = 13$$

$$\pi_4[2,1] = 4$$
; $\pi_4[2,4] = 3$; $\pi_4[2,3] = 2$;

Remarks

- For sparse graphs represented by adjacency lists there exists Johnson's algorithm that works in time $O(n^2 \cdot \log n + nm)$.
- Warshall's and Floyd-Warshall algorithms are examples of the dynamic programming technique that we will study later in more details

Shortest paths: summary

Unweighted single-source shortest paths

Breadth-first search

O(|V| + |E|)

Weighted single-source shortest paths

depending on assumptions:

Dijkstra's algorithm $O(|V|^2)$

or $O(|V| + |E| \cdot \log |V|)$

Bellman-Ford algorithm $O(|E| \cdot |V|)$

All-pairs shortest paths

Floyd-Warshall algorithm

 $O(|V|^3)$