Comments on Blair and Sambanis, 2020, "Forecasting Civil Wars: Theory and Structure in an Age of 'Big Data' and Machine Learning", JCR

Richard K. Morgan and Andreas Beger and Michael D. Ward

03 June 2020

Review of Blair and Sambanis 2020

Blair and Sambanis (2020) (BS for the sake of brevity hereafter) aim to examine whether theory adds value to a forecasting model when compared to non-parametric machine learning models, and specifically random forests, whose specifications are not theory-informed. They find that it does. They arrive at this conclusion by examining the problem of predicting civil war onset, and find that a parsimonious model using a small number of covariates derived from escalation theories of conflict can forecast civil war onset better than alternative specifications based on generic covariates not specifically informed by theory and a kitchen sink model with more than 1,000 covariates.

BS specifically examine three questions:

- (1) how does the theoretically-driven Escalation model compare in forecast performance to alternative models not informed specifically by civil war onset theories,
- (2) does annual, structural information from the PITF instability forecasting model add to the Escalation model's monthly and 6-month predictions,
- and (3) how accurate were predictions for the first half of 2016 derived from the Escalation model?

To assess the first two questions BS use global datasets covering all major countries from 2001 to 2015. Two versions of the dataset are used, one at the country-month level, the other aggregated to 6-month half-years. The main outcome is civil war onset, measured using Sambanis' civil war dataset.

Both the first and second questions above rely on comparing the Escalation model to various alternative models. The same procedure is used in both cases:

- 1. Split the training data into training (2001 2007) and test (2008 2015) sets.
- 2. Estimate the Escalation and other competing models.
- 3. Create out-of-sample (OOS) predictions from each model using the test set.
- 4. Calculate AUC-ROC measures for each set of OOS predictions.

The corresponding results for each question are shown in BS Tables 1 and 2, which we will replicate further below.

To examine the first question, BS compare the test set of the Escalation model to four alternative models. The independent variables for the first set of analysis reported in Table 1 in the paper are all derived from the ICEWS event data, using domestic events between actors within a country. The models are:

- Escalation: a set of 10 theoretically-informed indicators.
- Quad: ICEWS quad counts, i.e. material conflict, material cooperation, verbal conflict, verbal cooperation.

- Goldstein: -10 (conflictual) to 10 (cooperative) scores derived from the ICEWS data for interactions between the government one one side and opposition or rebel actors on the other. These are directed, thus making for 4 total covariates.
- CAMEO: counts for all CAMEO event codes, thus a total of 1,159 covariates.
- Average: unweighted average of the predictions from the 4 models above.

The results in Table 1, aside from the core base specification results, include 8 additional robustness tests for both the 1-month and 6-month versions. These robustness checks vary either (1) random forecast hyperparameter values, or (2) the year used to split the train/test data, or (3) alternative codings of the civil war onset dependent variable.

The second question, whether structural variables add to the Escalation model, is assessed by comparing the original escalation model to four alternatives that incorporate annual, structural variables that are used in the PITF instability forecasting model:

- Escalation Only: the original basic escalation model with only ICEWS predictors
- With PITF Predictors: a random forest that as predictors has the escalation model indicators but also the PITF annual, structural variables
- Weighted by PITF: escalation model predictions weighted using the PITF instability model predictions
- PITF Split Population: the training data are split into high and low risk portions based on the PITF instability model predictions, two separate escalation random forests are trained on the splits, then re-combined into a single random forest that is used to create the test set predictions
- PITF Only: a random forest model based only on the annual, structural PITF model predictors

The corresponding results are shown in BS Table 2.

Finally, BS used the Escalation model to create forcasts for the first half of 2016, and in their third and final analysis, they score the forecasts accuracy using civil war onset data later observed. This is summarized in BS Table 3.

Replication problems

While attempting to replicate BS's results, we found several issues.

Smoothed ROC curves

The most consequential issue that we found is that all AUC-ROC values reported in BS Tables 1 and 2 are calculated using smoothed ROC curves, not the original, actual ROC curves. A reference to smoothing is made in a single sentence in the paper (p. 12):

Figure 1 displays the corresponding ROC curves, smoothed for ease of interpretation.

This implies that the ROC curves were only smoothed in the references Figure 1, but actually all AUC-ROC calculations throughout the replication code use an option to smooth the ROC curves prior to AUC calculation.

Figure 1 shows our replication of both the smoothed ROC curves BS report, and the actual ROC curves on the right.

ROC curves typically appear step-like in response to the distribution of positive and negative cases in the data. In this case there are also groups of cases with identical predicted probabilities, which accounts for the unusual diagonal lines. In any case, with a sparse outcome like civil war onsets, the true positive rate on the y-axis only changes when the prediction for a observed positive case is reached. For these ROC curves, and for that matter in the basic train/test split used for 12 of the 18 rows/models in BS Table 1, there are only 11 civil war onset cases in the test set. Thus the ROC curves here are very step-like, with only 12 (11 positive cases plus 1 for TPR = 0) distinct y coordinates. We can only speculate, but maybe the very "step"-like nature of the ROC curves plus the presence of unusual diagonal lines accounts for the decision to use smoothed ROC curves.

Figure 1: Replication of BS Figure 1 with both smooth and non-smoothed ROC curves.

As it turns out, this decision has a dramatic impact on the AUC-ROC calculations. As we will show in the results further below, the difference between the smoothed and original ROC AUC values is up to 0.12–a huge difference given that row-wise, the models being compared typically differ by only 0.05 or less–and differentially impacts the models that are being compared. In fact, BS's original results and interpretation are entirely conditional on the use of smoothed AUC-ROC.

To our knowledge, the norm is to calculate AUC-ROC values using original, not smoothed ROC curves. We are in fact not aware of other work that uses smoothed ROC curves for AUC calculations. It might be that there are theoretical reasons justifying the use of smoothed ROC curves over the original ROC curves; but given that this decision dramatically impacts the interpretation of the BS results, it minimally would have warranted an explicit discussion in the paper. This is not the case, and it is only mentioned in the sentence we quote above.

The next three issues we encountered all concern information in Table 2.

Incorrect "Weighted by PITF" implementation

The "Weighted by PITF" model is described as follows in BS, page 19:

The [Weighted by PITF model] uses PITF predicted probabilities to weight the results of the escalation model, ensuring that high-risk and low-risk countries that happen to take similar values on ICEWS-based predictors are nonetheless assigned different predicted probabilities in most months.

We infer that the intent is that the Escalation model's predictions for the test set are weighted by the PITF model predictions for the test set. The implementation actually weighs the test set predictions using the PITF model predictions for the training set.¹ This appears to be a coding error.

Incorrect "PITF Split Population" implementation

Similarly, the "PITF Split Population" model appears to be incorrectly implemented. BS describe it as, on page 20:

The final approach is a random forest analog to split-population modeling. first compute the average PITF predicted probability for each country across all years in our training set. We define those that fall in the bottom quartile as "low risk" and the rest as "high risk." We then run our escalation model on the high-risk and low-risk subsets separately, combining the results into a single random forest (column 4).

The intention clearly was to run two separate random forest models, one each on the low- and high-risk training data splits. The replication code does indeed run two separate random forecasts, but they are both run on the exact same training data, which consists of the full training data all other models are run on. The models are also identical otherwise, i.e. they use the same x variables and the same random forest hyper-parameter settings. The *only* difference in the models as they are implemented in the BS replication code is due to the non-deterministic nature of the random forest model itself. If we ran both with the same RNG seed, they would be identical in every respect, producing identical predictions.²

The implementation error aside, this split-population analog model is actually quite odd and does not actually replicate an analogue of the idea behind split-population modeling. Although the two RFs are trained on separate data (in our updated, fixed replication), the process of combining them actually just creates a

¹See 1mo_run_escalation_weighted_PITF.R line 4, where the PITF predictions are taken from the training data set (train\$pred_prob_plus1). The next line is a hack extending the shorter weight vector with missing values to avoid a R warning when it is multiplied with the longer vector of escalation model test set predictions. Similarly in the 6 month version of this file.

²Disentangling this coding error is not straightforward as it occurs over several R scripts and requires (or at least is easier to verify by) running partway through the actual replication until the objects holding the training data for the models are instantiated and can be examined. We have documented details at https://github.com/rickmorgan2/Blair-Sambanis-replication/issues/5.

new, larger RF using both component model's underlying decision (regression³) trees. Thus while all RF models throughout (except for one of the robustness checks) are trained with 100,000 decision trees (ntree), the new RF model after combination does indeed have 200,000 decision trees. Furthermore, the PITF model predictions do not impact the way the combined RF model predicts at all, not even through a binary low-/high-risk split. The split-population PITF RF model is practically speaking just another Escalation model trained with N=200,000 instead of N=100,000 trees and an extra odd randomization step added to the already existing RF randomization facilities (row and column sampling for each decision tree).

Inconsistent test set N for the models in Table 2

Lastly, the AUC-ROC values reported in the original BS Table 2 are calculated on the basis of slightly different numbers of underlying test set cases (see Table ??). ROC calculations for a set of predictions can only be done on the set of cases for which both non-missing predictions and non-missing outcomes are available. Those sets differ across models (columns) for each row in Table 2. Thus a difference in AUC-ROC values for two models could be due to the fact that they were calculated on different sets of underlying cases, not because the models are systemically performing at a different level. In other words, the results for different models in BS Table 2 are actually not comparable to the other, and any conclusions drawn from such comparison are potentially incorrect.

We fix this issue by only using predictions for common joint subset of cases that all models have non-missing predictions for. The original BS Table 2 1-month have N=11,806-12,495 versus a common joint subset of 9,811, and for the 6-month row N=2,070-2,233 versus N=1,915 for the common joint subset.

Incorrect scoring of the 2016 forecasts

BS show a confusion matrix to score their 2016-H1 forecasts in Table 4. Although the forecasts are for the probability of civil war onset, in the replication code they are actually scored using the much more common incidence of civil war, i.e. including ongoing civil wars as "1"'s.

The relevant variables in the data are "incidence_civil_ns" and "incidence_civil_ns_plus1", which appears to be a 1-period lead version of the DV that is used in the actual prediction models. The incidence DV contains both 0/1 and missing values. By examining the pattern of missing values, it seems clear that this was originally an incidence variable indicating whether a country was at civil war in a given year or not, and which was converted to an onset version so that onsets retain the value of 1 but continuing civil war years are coded as missing. This reflects common practice in how these are coded.

By examining the code used to generated Table 4, we were able to confirm that the onset forecasts are assessed using incidence, not onset. In the file <code>6mo_make_confusion_matrix.do</code> on line 52, missing values in "incidence_civil_ns" are recoded to 1, thus reverting the onset coding of this variable back to incidence.

Results of the updated replication

Basic interpretation of Table 1

Table ?? is our replication of BS Table 1 with smoothed AUC-ROC. The results differ slightly from the original BS Table 1, typically by no more than 0.01, due to the non-deterministic nature of the RF models. It is the case that BS set the RNG seed in their replication code, which should theoretically allow exact reproduction, but (1) there was a change in more recent versions of R that affected the RNG seeding process, and (2) we refactored the replication script to allow one to run the models in parallel. In any case, the interpretation of results should not be sensitive to random variation, i.e. it should not depend on using a specific RNG seed. On the basis of these results, BS conclude that the Escalation model is generally superior to the alternatives, and we can replicate that interpretation when using smoothed ROC curves.

³See further below. Although the RF models are used for a binary decision problem, the actual implementation uses regression RFs for continuous outcomes.

Table 1: Replication of BS Table 1 with smoothed ROC curves; test set AUC-ROC for various models

Model	Escalation	Quad	Goldstein	CAMEO	Average
One-month forecasts	3				
Base specification	0.85	0.80	0.79	0.83	0.82
Terminal nodes	0.86	0.79	0.78	0.83	0.82
Sample size	0.85	0.81	0.70	0.86	0.84
Trees per forest	0.84	0.80	0.78	0.83	0.82
Training/test sets 1	0.86	0.78	0.75	0.81	0.80
Training/test sets 2	0.81	0.79	0.72	0.78	0.78
Training/test sets 3	0.79	0.80	0.69	0.75	0.75
Coding of DV 1	0.86	0.81	0.80	0.84	0.83
Coding of DV 2	0.92	0.81	0.81	0.82	0.81
Six-month forecasts					
Base specification	0.82	0.78	0.82	0.77	0.79
Terminal nodes	0.80	0.75	0.81	0.75	0.77
Sample size	0.83	0.78	0.78	0.78	0.79
Trees per forest	0.82	0.78	0.82	0.77	0.79
Training/test sets 1	0.79	0.77	0.81	0.75	0.78
Training/test sets 2	0.72	0.73	0.77	0.74	0.75
Training/test sets 3	0.88	0.70	0.81	0.68	0.79
Coding of DV 1	0.83	0.77	0.82	0.79	0.80
Coding of DV 2	0.83	0.77	0.82	0.79	0.79

Table ?? shows a version of BS Table 1 with the conventional non-smoothed ROC curves. The Average model outperforms the Escalation model in 17 out of 18 cases, and the CAMEO model outperforms in 16 of 18 cases, with one tie. The Goldstein model generally outperforms the Escalation model in the 6-month version. The Quad model appears to be roughly on par with the Escalation model. Thus the original BS conclusion that the Escalation model is superior to the alternative models is completely conditional on the non-standard use of smoothed ROC curves, and overturns when using traditional AUC-ROC calculations.

Do structural variables add to the Escalation model?

Table ?? shows our replication of BS Table 2 with (1) regular, not smoothed, AUC-ROC, (2) fixed "Weighted by PITF" and "PITF Split-Population" models, and (3) AUC-ROC values computed on the common joint subset of tests cases that all models have non-missing predictions for. Table ?? further below shows AUC-ROC values for both smoothed and non-smoothed versions, and both the original, model-varying test cases sets and our common joint subset.

BS interpret the results as follows, on page 20:4

Of the approaches we test, the split-population analog is most promising

This is no the case anymore. It outperforms in the 1-month version and underperforms the Escalation model in the 6-month version.

Adding PITF predictors improves the performance of the escalation model over six-month windows but diminishes it over one-month windows.

Adding PITF predictors actually improves performance in both cases; the "With PITF Predictions" model strictly dominates the "Escalation Only" model.

The weighted model performs very poorly regardless.

⁴We list the "Overall, ..." interpretation out of order, last, for clarity.

Table 2: Replication of BS Table 1 without smoothed ROC curves; test set AUC-ROC for various models

Model	Escalation	Quad	Goldstein	CAMEO	Average
One-month forecasts	3				
Base specification	0.78	0.78	0.79	0.80	0.82
Terminal nodes	0.79	0.78	0.78	0.81	0.82
Sample size	0.79	0.80	0.74	0.82	0.84
Trees per forest	0.78	0.78	0.79	0.81	0.82
Training/test sets 1	0.78	0.76	0.76	0.79	0.80
Training/test sets 2	0.75	0.77	0.73	0.76	0.78
Training/test sets 3	0.70	0.79	0.69	0.73	0.74
Coding of DV 1	0.80	0.79	0.80	0.82	0.83
Coding of DV 2	0.80	0.82	0.78	0.83	0.81
Six-month forecasts					
Base specification	0.77	0.78	0.83	0.79	0.81
Terminal nodes	0.77	0.78	0.82	0.78	0.79
Sample size	0.78	0.77	0.80	0.80	0.82
Trees per forest	0.77	0.79	0.83	0.78	0.81
Training/test sets 1	0.75	0.79	0.82	0.78	0.80
Training/test sets 2	0.70	0.75	0.78	0.75	0.77
Training/test sets 3	0.85	0.72	0.84	0.71	0.81
Coding of DV 1	0.77	0.80	0.83	0.79	0.82
Coding of DV 2	0.80	0.78	0.84	0.80	0.81

Table 3: Replication of BS Table 2: Test set AUC-ROC for Escalation model with and without structural PITF contribution

Escalation Only	With PITF Predictors	Weighted by PITF	PITF Split Population	PITF Only
One-month fore	casts 0.71	0.69	0.81	0.67
Six-month forec	asts 0.87	0.80	0.69	0.71

Note: Differences from the original BS Table 2: (1) AUC-ROC values are computed on the common subset of cases, meaning that N is equal in each row; (2) AUC-ROC values are computed using original, non-smoothed ROC curves.

Table 4: Smoothing advantage for BS Table 1: the gain in AUC-ROC when calculated using smoothed ROC curves

Model	Escalation	Quad	Goldstein	CAMEO	Average
One-month forecasts	3				
Base specification	0.07	0.02	0.00	0.02	0.00
Terminal nodes	0.06	0.01	-0.01	0.02	0.00
Sample size	0.06	0.01	-0.03	0.04	0.00
Trees per forest	0.06	0.02	-0.01	0.02	0.00
Training/test sets 1	0.09	0.02	-0.01	0.02	0.00
Training/test sets 2	0.07	0.00	-0.01	0.02	0.00
Training/test sets 3	0.09	0.01	-0.01	0.02	0.01
Coding of DV 1	0.06	0.02	0.00	0.03	0.00
Coding of DV 2	0.12	-0.01	0.04	-0.01	0.01
Six-month forecasts					
Base specification	0.05	-0.01	-0.01	-0.02	-0.02
Terminal nodes	0.02	-0.02	-0.01	-0.02	-0.02
Sample size	0.05	0.00	-0.02	-0.01	-0.03
Trees per forest	0.05	-0.01	-0.01	-0.01	-0.02
Training/test sets 1	0.04	-0.01	-0.01	-0.02	-0.02
Training/test sets 2	0.03	-0.01	-0.02	-0.01	-0.02
Training/test sets 3	0.03	-0.02	-0.03	-0.02	-0.02
Coding of DV 1	0.05	-0.03	-0.01	-0.01	-0.02
Coding of DV 2	0.03	-0.01	-0.01	-0.01	-0.02

It performs roughly on par with the Escalation Only model.

One finding that remains is that the "PITF Only" model is outperformed by the "Escalation Only" model. As the former only uses annual inputs, but the data at hand are the 1-month or 6-months level, this is not surprising.

Overall, our results suggest that while measures of structural risk may improve predictive performance, the value they add is marginal and inconsistent. [...] Incorporating PITF thus significantly reduces or only slightly improves the performance of the escalation model, regardless of the approach we take.

The most straightforward method of incorporating the annual, structural PITF variables—adding them to the predictors of the Escalation RF model—strictly outperforms the Escalation Only model. Note that the two other combination models considered are both non-standard, and that the "PITF Split Population" model does not in fact actually incorporate structural information at all. We thus conclude that adding structural variables actually clearly improves predictive performance.

The effect of using smoothed ROC curves

What impact did the ROC smoothing have overall on the results reported in BS Tables 1 and 2? Tables ?? and ?? show the increase in AUC-ROC when using smoothed ROC curves, compared to the standard non-smoothed AUC-ROC. Positive values indicate that smoothing increased a model's apparent performance. The Escalation model is the only model that consistently had a benefit from smoothing. For all 8 other models, smoothing sometimes gave a benefit, sometimes not.

A more dramatic difference stands out when we consider the overall average impact of smoothing across all flavors of a model reported in the columns of the tables. The Average, Goldstein, Quad, PITF Split Population, and Weighted by PITF models are slightly hurt by smoothing, but on the order of less than 0.01 in absolute magnitude. The "With PITF Predictors" model is hurt on the order of 0.02, i.e. it appears

Table 5: Smoothing advantage for BS Table 2: the gain in AUC-ROC when calculated using smoothed ROC curves

Model	Escalation Only	With PITF Predictors	Weighted by PITF	PITF Split Population	PITF Only
One-month forecasts Base specification	0.05	-0.03	0	-0.02	0.02
Six-month forecasts Base specification	0.06	-0.01	0	0.01	0.00

substantially worse with smoothing. The CAMEO and PITF Only models benefit slightly, on the order of 0.01 or less. The Escalation Only model on the other hand has an average boost of 0.058 to it's AUC-ROC from smoothing. Considering the spread of AUC-ROC values if we compare across rows in BS Tables 1 and 2, that boost is substantial.

The use of smoothed ROC curves to calculate AUC-ROC values only clearly benefits the Escalation model, it does so consistently, and by a considerable margin. All 8 alternative models reported in Tables 1 and 2 do not on average gain when using smoothed ROC curves to calculate AUC.

How accurate were the 2016 forecasts?

Additional concerns

Random forest hyperparameters

AUC-ROC sensitivity

RNG and variation

Pre-registration

- The escalation model specification, prior to looking at data!
- The hyper-parameter tuning strategy.

Conclusion

We encountered several issues in the code underlying the BS analysis.

The issues we encountered are not subjective modeling choices.

When we fix these issue and perform an updated analysis, the conclusions BS draw all essentially overturn. In other words, BS findings are based on a faulty analysis, and invalid.

Using the same analysis BS intend to use, we in fact find that:

- the theory-driven Escalation model is outperformed both by the low-effort 1,160 predictor all CAMEO model and the Average ensemble model
- structural variables substantially improve the Escalation model's performance when added to the pool of predictors the underlying random forest model draws on

AB: add a table comparing BS original claims and updated results.

Table 6: 2016 Confusion Matrices for Six-month Escalation Model.

header	Observed	0	1
	0	134	30
Assuming Persistence	1	0	0
	0	134	28
Assuming Change	1	0	2

Table 7: Number of valid test predictions for each cell in BS Table 2

	Horizon	Escalation Only	With PITF Predictors	Weighted by PITF	PITF Split Population	PITF Only
Ori	ginal mode	l-specific cases				
	1 month	13748	13155	13461	13748	13510
	6 months	2366	2264	2317	2366	2265
Cas	ses adjusted	l to common s	ubset			
	1 month	9811	9811	9811	9811	9811
	6 months	1915	1915	1915	1915	1915

Table 4. 2016 Confusion Matrices for Six-month Escalation Model.

Assuming Persistence							
		Predicted					
		0	1				
Oha	erved .	132	17				
Obse	erved	2	13				
Assuming Change							
		Predi	cted				
		0	1				
Oha	erved .	132	16				
Obse	ervea	2	14				

Note: Confusion matrices based on predicted probabilities from the six-month escalation model. We code as I the top 30 countries at highest risk of civil war in the first half of 2016. The top panel assumes that all ongoing civil wars as of December 31, 2015, continued in the first half of 2016 and that no new civil wars began. The bottom panel codes the ongoing civil war in Colombia ending in the first half of 2016 and codes new civil wars beginning in Turkey and Burundi.

Table 8: Replication of BS Table 2 with smoothed/original ROC and with original varying N cases or adjusting for common case set with constant N $\,$

	Smoothed ROC	Escalation Only	With PITF Predictors	Weighted by PITF	PITF Split Population	PITF Only
Origina	al model-spe	cific cases				
1 month	i					
	Yes	0.85	0.76	0.80	0.81	0.77
	No	0.78	0.77	0.80	0.80	0.75
6 month	is					
	Yes	0.82	0.86	0.81	0.79	0.74
	No	0.77	0.86	0.81	0.82	0.74
Cases a	adjusted to c	ommon subse	et			
1 month	i					
	Yes	0.74	0.68	0.69	0.80	0.69
_	No	0.69	0.71	0.69	0.81	0.67
6 month						
	Yes	0.85	0.86	0.79	0.70	0.71
	No	0.79	0.87	0.80	0.69	0.71

References

Blair, Robert A., and Nicholas Sambanis. 2020. "Forecasting Civil Wars: Theory and Structure in an Age of 'Big Data' and Machine Learning." *Journal of Conflict Resolution*.