

#### ENGENHARIA DE SOFTWAREI

### Como Construir Algo?

- Método Empírico;
- Método Científico;

### Método Empírico

O produto gerado tem o problema de não estar padronizado e dificilmente poderá ser medido e ser aferido o grau de qualidade;

Você faz algo que utiliza como base seu conhecimento e corrige erros e faz aprimoramentos através de tentativa e erros;

Como exemplo temos casas construídas sem planejamento, programas de software que dão muitas manutenções.

Obseve a qualidade da construção abaixo, como também a escada que "termina" em uma parede.





### Método Empírico

No método empírico, problemas aparecem quando precisamos dar uma manutenção no produto. Ou mesmo adicionar novas funcionalidades



Método Científico

Faz um planejamento e elabora um projeto do que será construído.

Constrói o produto e verifica através de experimentos/estudos de caso se ele esta de acordo com os critérios de qualidade.



Estuda trabalhos relacionados e verifica o que poderá ser aproveitado.

Estuda trabalhos que poderão auxiliar na construção do novo produto;

Verifica padronizações e leis existentes no âmbito do projeto.

# Qual o Melhor Método para Construir um Produto?

O método científico é burocrático, mas se quisermos construir algo de qualidade com certeza escolheríamos este.

Foi assim que começaram a pensar os primeiros estudiosos do assunto e começaram a se especializar em produtos específicos.

Assim surge a Engenharia e suas diversas sub- áreas.

### Introdução



### Introdução

# E a engenharia de Software?

- Disciplina de engenharia relacionada com os aspectos da produção de Software.
- Possui uma abordagem sistemática e organizada.
- O principal objetivo é produzir um produto de maneira eficaz e de alta qualidade.

### E o Software?

• Você conhece algum exemplo de software que seja bem sucedido ?

• Será que o Software acompanha a evolução do Hardware?

### Engenharia x Software

Podemos construir um software da mesma maneira que construímos uma casa?

### Características do Software

Não se desgasta com o tempo, mas pode se deteriorar;

Pode ser desenvolvido ou projetado pela engenharia, não manufaturado no sentido clássico;

Principal destaque na melhoria da performance de uma Empresa.

### Hardware Curva de desgaste



### Software Curva de Desgaste



### Características - Software

A maioria é feita sob medida em vez de ser montada a partir de componentes existentes;





Grande parte dos softwares produzidos no passado não possuem documentação e nem planejamento.

### Como é o Hardware?





#### Arduino Pin Mapping

(RESET) PC6 1 28 PC5 (ADC5/SCL) analog input 5 digital pin 0 (RX) (RXD) PD0 2 27 PC4 (ADC4/SDA) analog input 4 digital pin 1 (TX) (TXD) PD1 3 26 PC3 (ADC3) analog input 3 digital pin 2 (INT0) PD2 4 25 PC2 (ADC2) analog input 2 digital pin 3 (INT1) PD3 5 24 PC1 (ADC1) analog input 1 23 PC0 (ADC0) digital pin 4 (XCK/T0) PD4 ☐ 6 analog input 0 VCC ☐ 7 22 🗀 GND 21 AREF GND ☐ 8 20 D AVCC (XTAL1/TOSC1) PB6 4 9 (XTAL2/TOSC2) PB7 10 19 PB5 (SCK) digital pin 13 (LED) (T1) PD5 411 18 PB4 (MISO) digital pin 5 digital pin 12 (AIN0) PD6 12 17 PB3 (MOSI/OC2) digital pin 6 digital pin 11 (PWM) (AIN1) PD7 13 16 PB2 (SS/OC1B) digital pin 7 digital pin 10 (PWM) (ICP1) PB0 14 15 PB1 (OC1A) digital pin 8 digital pin 9 (PWM) ATmega8

www.arduino.cc

### História

Os primeiros softwares surgiram na década de 50.

O foco dos pesquisadores era o hardware.

Software era algo inviável.



Na década de 60 surgiram os computadores baseados em CI (circuitos integrados). Seu poder fez surgir o interesse no desenvolviment o de aplicações, até então consideradas não realizáveis.

Os pesquisadores começaram a mudar o foco para os softwares.

As aplicações se tornaram muito complexas.

Desenvolvimento de software informal.

Resultava em sistemas caros, difíceis de manter e de desempenho insatisfatório

O Software estava em crise.

### História



O que fazer para reverter a situação?

### História

A **Engenharia de Software (ES)** surgiu para tentar solucionar o problema da "crise do software".

Este conceito foi inicialmente proposto em 1968.

Foram criadas novas técnicas e métodos para controlar a complexidade dos grandes sistemas e organizar o processo de desenvolvimento de Software.



### Quais os desafios da ES?

- □ Diminuir custos;
- Melhorar qualidade;
- □ Atender às expectativas do cliente.



### Fundamentos da ES

# A Engenharia de Software utiliza conceitos de várias áreas, como:

- <u>Ciências da computação:</u> abrange arquitetura de computadores, lógica de programação, estrutura de dados algoritmos, etc.
- Administração: o engenheiro de software atua como gestor de um projeto, administrando prazos, equipe, custos, resultados etc.
- <u>Comunicação</u>: habilidade para saber se expressar com clientes ou usuários;

### Camadas da ES

 A base da Engenharia de Software é o foco na qualidade.



11

**Processo:** define uma metodologia que deve ser utilizada no desenvolvimento do software. O processo é a base para o controle do gerenciamento do projeto.

**Métodos**: fornecem informações técnicas para o desenvolvimento do projeto. Eles podem envolver diversas tarefas como: comunicação, análise de requisitos, etc.

**Ferramentas**: responsáveis por fornecer suporte automatizado para o processo e os métodos.

### Identificando a qualidade

Como identificar a qualidade de um software?

Existem alguns atributos que indicam qualidade em um software:

- Facilidade de manutenção: o software deve evoluir para atender às necessidades de mudança do cliente.
- Confiança: o software deve ser confiável.
- Eficiência: o sistema deve realizar suas atividades utilizando a menor quantidade de recursos possíveis.
- **Usabilidade:** o sistema deve ser compreensível, usável e compatível com outros sistemas.

### Processo de Software



Abrange um conjunto de três elementos fundamentais: Métodos, Ferramentas e **Procedimentos** para projetar, construir e manter grandes sistemas de software de forma profissional

### Processo de Software



Segundo SOMERVILLE, <u>Processo de Software</u> é um conjunto de atividades que leva à produção de um produto de Software.



Processos complexos.



Podemos contar com ferramentas de apoio com o objetivo de automatizar esses processos, conhecidas como ferramentas CASE (*Computer-Aided Software Engineering*).



Por se tratar de um objeto subjetivo e da imensa diversidade de processos de software, as tentativas de automatização têm tido sucesso limitado.

### Processo de Software

Existem diversos processos de software.

Não existe um processo ideal.

Existem atividades comuns aos processos de software, são elas:

- <u>Especificação de software</u>: Definição das funcionalidades e das restrições sobre suas operações.
- <u>Projeto e implementação de software:</u> produção do software que atenda às especificações solicitadas.
- <u>Validação de software</u>: O software deve ser validado para garantir que ele faça o que o cliente deseja.
- <u>Evolução de software</u>: o software deve evoluir para atender às necessidades mutáveis do cliente.

### Modelos de Processo de Software

É uma representação abstrata de um processo de software.



Representa um processo sob uma determinada perspectiva.



# Os principais modelos de processos são:

- Modelo cascata
- Desenvolvimento evolucionário
- Engenharia de software baseada em componentes
- Iterativo:
  - Iterativoincremental
  - Espiral

### Modelos de Processo de Software

#### Por quê utilizar um modelo de processo de software?

- Padroniza o desenvolvimento de software.
- Padronização dos artefatos de software.
- Melhora a comunicação da equipe.
- Consequentemente, agrega qualidade ao software.

### Modelo Cascata

Foi o primeiro modelo de processo de software proposto.

É um modelo sequencial.

Devido ao encadeamento de suas fases, o modelo ficou conhecido como modelo cascata.

Uma nova fase só pode ser iniciada com a finalização da anterior.

#### Possui 5 fases definidas:

• Requisitos, projeto, implementação, integração e manutenção.

Ao final de cada fase, umou mais documentos são aprovados.

### Modelo Cascata



### Modelo Cascata

- Documentação rígida em cada fase do processo.
- Aderência a outros modelos de processo
- Pode ser combinado com outros modelos.

Vantagens

- Projetos reais raramente seguem um fluxo sequencial.
- É difícil para o cliente definir todos os requisitos no início do processo.
- Difícil adequação à mudanças de requisitos.
- Uma versão executável somente ficará pronta no final do processo.

Desvantagens

### Desenvolvimento evolucionário

Tem como base uma implementação inicial e realiza aprimoramentos por meio de várias versões.

Rápido retorno (feedback) para o cliente.

Todo o trabalho é realizado concorrentemente.

### Desenvolvimento evolucionário

#### Existem 2 tipos de desenvolvimento evolucionário:

# Desenvolvimento exploratório:

- Trabalha diretamente com o cliente a fim de explorar seus requisitos e entregar um sistema final.
- Possui início com os requisitos compreendidos.
- O sistema evolui com o acréscimo de características, à medida que são propostas pelo cliente.

## Prototipação throwaway:

• O objetivo deste tipo de desenvolvimento é utilizar um protótipo (experimentos) para compreender melhor requisitos mal entendidos.

## Desenvolvimento evolucionário

#### Atividades Simultâneas



## Desenvolvimento evolucionário

#### Vantagens

Rápido feedback para o cliente.

Desenvolvimento de forma incremental.

#### Desvantagens

Dificulta a gerência da documentação do projeto.

Tendência de corromper a estrutura do software.

#### Apoiada pela orientação a objetos:

- Base na reusabilidade de códigos ou componentes adequadamente projetadas e implementadas.
- São reutilizáveis em diferentes aplicações e arquiteturas.

Compõe a aplicação de software a partir de componentes previamente preparados.

Resumindo, é o processo de definição, implementação, integração ou composição de componentes independentes.

## O que são componentes?

- É uma entidade executável e independente
- Possui serviços que estão disponíveis por meio de uma interface, por onde suas interações acontecem.

# Principais características de um componente:

- Padronizado
- Independente
- Passível de composição
- Implantável
- Documentado

#### Interfaces do componente:

- <u>Requires:</u> serviços que devem ser fornecidos ao componente.
- **Provides:** serviço fornecido pelo componente.



Processo de desenvolvimento de software baseado em componentes



## Modelos Iterativos

Esse tipo de modelo repete partes do processo à medida que os requisitos do sistema evoluem.

Mistura conceitos dos modelos vistos anteriormente.

Os principais modelos iterativos são:

- Espiral
- Iterativo-incremental

## Modelo Espiral

Em vez de representar o processo de software como uma sequência de atividades, o processo é representado como uma espiral.

Cada volta da espiral apresenta uma fase do processo de software.

Ex: a volta mais interna pode estar relacionado à viabilidade do sistema; a volta seguinte pode estar relacionada à definição de requisitos e assim por diante.

## Modelo Espiral

#### Cada volta da espiral é dividida em 4 setores:

- <u>Definição dos objetivos</u>: definição dos objetivos específicos para essa fase do processo.
- Avaliação e redução de riscos: identificar os riscos, analisar detalhadamente cada um e tomar providências para reduzir sua probabilidade.
- <u>Desenvolvimento e validação</u>: aplicar as fases do desenvolvimento.
- <u>Planejamento</u>: revisão do projeto e planejamento da próxima volta da espiral, se for o caso.

## Modelo Espiral



## Iterativo-Incremental

Foi sugerida com o objetivo de reduzir o "retrabalho" no processo de desenvolvimento.

O cliente não precisa detalhar TODOS os requisitos na fase inicial.

Priorização das funcionalidades mais importantes.

O conjunto de funcionalidades que serão desenvolvidos são conhecidos como incremento.

Uma vez que o incremento é finalizado, o produto pode ser colocado em operação.

## Iterativo-Incremental



## Iterativo-Incremental

#### Vantagens

- O cliente não precisa esperar até que todo sistema seja entregue.
- Risco menor de fracasso do sistema.
- Priorização de funcionalidades mais importantes.

#### Desvantagens

- Os incrementos devem ser relativamente pequenos.
- Dificuldade no mapeamento de funcionalidades com dependência.

1) Considere o seguinte problema encontrado em projetos de desenvolvimento de software: Projetos reais raramente seguem um fluxo sequencial. Apesar de um modelo linear poder acomodar a iteração, ele o faz indiretamente. Como resultado, as modificações podem causar confusão à medida que a equipe de projeto prossegue. Esse é um dos problemas que são algumas vezes encontrados quando é aplicado o modelo de desenvolvimento.

| $\bigcup$  | em cascata.  |
|------------|--------------|
| $\bigcirc$ | ágil.        |
| $\bigcirc$ | espiral.     |
| $\bigcirc$ | incremental. |
|            | unificado.   |

 O processo de desenvolvimento de software conhecido como modelo em espiral (Modelo espiral de Boehm), divide cada volta da espiral em quatro setores

- Correto
- Errado

- 3) O modelo em cascata inclui 5 estágios considerados fundamentais para o desenvolvimento de um software: a análise e definição de requisitos, o projeto de sistema e software, a implementação e o teste de unidade, a integração e o teste de sistema e a operação e manutenção. Apesar disso, o modelo em cascata tem como desvantagem a
- a) documentação produzida em cada estágio.
- b) aderência a outros modelos de processo de engenharia.
- c) dificuldade de reação a mudanças de requisitos do usuário.
- d) falta de estruturação para desenvolvimento de software.

#### 4) A cerca da Engenharia de Software, assinale a opção correta:

- A engenharia de software, que tem como alicerce os métodos, é formada de várias camadas, tais como ferramentas, métodos e processo.
- Apesar de importante no contexto de produtos, a qualidade não é tratada na engenharia de software e, sim, no gerenciamento de projetos.
- c) Análise e projeto são duas ações da engenharia de software. A definição de arquitetura e componentes são tarefas da análise, enquanto levantamento e especificação de requisitos são tarefas do projeto.
- d) A engenharia de software visa obter softwares econômicos que sejam confiáveis e que trabalhem eficientemente em máquinas reais.
- e) A engenharia de software aplica abordagem sistemática, disciplinada e não quantificável para desenvolvimento e manutenção de software.

Com relação aos Conceitos de Desenvolvimento de Sistemas, julgue os itens a seguir (Certo ou Errado) e justifique a sua escolha:

- Os princípios de engenharia de software definem a necessidade de formalidades para reduzir inconsistências e a decomposição para lidar com a complexidade.
- Para garantir o desenvolvimento de qualidade, é suficiente que a equipe tenha as ferramentas mais atuais de engenharia de

Com relação aos princípios de engenharia de software, julgue o item a seguir (Certo ou Errado) e justifique a sua escolha:

7 Um modelo de processo de software descreve os processos que são realizados para atingir o seu desenvolvimento. A notação para as tarefas, os artefatos, os atores e as decisões varia conforme o modelo de processo utilizado.

 Pesquise sobre a curva de desgaste do software e do hardware e explique os gráficos dos slides 14 e 15. Coloque a referência bibliográfica relacionada a essa pesquisa.