Dérivées partielles

1. Soit f définie sur \mathbb{R}^2 par $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.

On a vu dans la feuille précédente que cette fonction n'est pas continue au point (0,0).

- Montrer qu'elle admet pourtant des dérivées partielles au point (0,0).
- Est-elle dérivable au point (0,0) suivant le vecteur (1,1)?
- Est-elle C^1 sur \mathbb{R}^2 ?
- 2. On définit sur \mathbb{R}^2 la fonction $g(x,y)=\sqrt{x^2+y^2}$. Calculer ses dérivées partielles aux points où elles existent.
- 3. Etudier l'existence et calculer les dérivées partielles de la fonction définie sur \mathbb{R}^2 par h(x,y) = |xy|.
- 4. Calculer les dérivees partielles des fonctions suivantes là où elles sont définies :

$$f_1(x,y) = x^3 + y^3 - 2xy$$
 $f_2(x,y) = \arctan \frac{x}{y}$ $f_3(x,y) = e^{-\frac{x}{y}}$ $f_4(x,y) = \ln(x + \ln y)$

- **5.** Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \frac{x^3 y^3}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0.
- Montrer que f admet des dérivées partielles sur \mathbb{R}^2 . f est-elle de classe C^1 sur \mathbb{R}^2 ?
- f admet-elle des dérivées partielles secondes?
- **6.** Soit h définie sur \mathbb{R}^2 par $h(x,y) = \frac{4xy(x^2 y^2)}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et h(0,0) = 0. Montrer que h admet des dérivées partielles sur \mathbb{R}^2 et que h est de classe C^1 sur \mathbb{R}^2 .
- Calculer $\frac{\partial^2 h}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 h}{\partial y \partial x}(0,0)$. h est-elle de classe C^2 sur \mathbb{R}^2 ?
- 7. Soit f une fonction dérivable sur \mathbb{R} et h la fonction définie sur $A = \{(x,y) \in \mathbb{R}^2 / x \neq 0\}$ par $h(x,y) = f\left(\frac{y}{x}\right)$.

Calculer les dérivées partielles de h à l'aide de la fonction f'.

- **8.** Soit g une fonction dérivable sur \mathbb{R} . On définit $f(x,y) = g(\sqrt{x^2 + y^2})$.
- Calculer les dérivées partielles de f aux points $(x,y) \neq (0,0)$ à l'aide de la fonction g'.
- A quelle condition sur g, f admet-elle des dérivées partielles au point (0,0)?
- 9. La fonction $h(x,y) = \frac{e^{xy}-1}{x}$ se prolonge par continuité à \mathbb{R}^2 tout entier. (Voir la feuille précédente).

Etudier l'existence des dérivées partielles de la fonction ainsi prolongée et leur continuité.

10. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une application de classe C^2 et a, b, h, k des réels. Pour tout t dans \mathbb{R} on pose g(t) = f(a + th, b + tk).

Calculer g'(0) et g''(0) en fonction des dérivées partielles de f au point (a,b).

11. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^2 - y^2, \cos(xy))$ et soit $g: \mathbb{R}^2 \to \mathbb{R}$ une application de classe C^1 .

Déterminer la différentielle de $g \circ f$ en fonction des dérivées partielles de g.

12.

- 1. Soit $(x,y) \mapsto f(x,y)$ une fonction de classe C^1 de \mathbb{R}^2 dans \mathbb{R} . On definit $F(r,t) = f(r\cos t, r\sin t)$ sur \mathbb{R}^2 . Calculer $\frac{\partial F}{\partial r}$ et $\frac{\partial F}{\partial t}$ en fonction de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.
- 2. En déduire les solutions de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ de l'équation

$$x \frac{\partial f}{\partial y}(x,y) = y \frac{\partial f}{\partial x}(x,y)$$

13. On recherche toutes les fonctions de classe C^1 sur $D=\{(x,y)\in\mathbb{R}^2/x>0\}$ vérifiant l'équation

$$(E) x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = 0$$

- 1. Vérifier que $\varphi:(x,y)\longmapsto \frac{y}{x}$ est solution de (E).
- 2. Montrer que pour toute fonction $g: \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^1 , $g \circ \varphi$ est solution de (E).
- 3. Montrer que pour toute solution f de (E) la fonction $(u,v) \longmapsto f(u,uv)$ ne dépend que de v.
- 4. Conclure.