

Experiment No.2
Convert an Infix expression to Postfix expression using stack
ADT.
Name: Rithesh Shetty
Roll No:54
Date of Performance:
Date of Submission:
Marks:
Sign:

Experiment No. 2: Conversion of Infix to postfix expression using stack ADT Aim: To convert infix expression to postfix expression using stack ADT.

Objective:

- 1) Understand the use of Stack.
- 2) Understand how to import an ADT in an application program.
- 3) Understand the instantiation of Stack ADT in an application program.
- 4) Understand how the member functions of an ADT are accessed in an application program.

Theory:

Postfix notation is a way of representing algebraic expressions without parentheses or operator precedence rules. In this notation, expressions are evaluated by scanning them from left to right and using a stack to perform the calculations. When an operand is encountered, it is pushed

onto the stack, and when an operator is encountered, the last two operands from the stack are popped and used in the operation, with the result then pushed back onto the stack. This process continues until the entire postfix expression is parsed, and the result remains in the stack. Conversion of infix to postfix expression

Expression	Stack	Output
2	Empty	2
*	*	2
3	*	23
/	/	23*
(/(23*
2	/(23*2
-	/(-	23*2
1	/(-	23*21
)	/	23*21-
+	+	23*21-/
5	+	23*21-/5
*	+*	23*21-/53
3	+*	23*21-/53
	Empty	23*21-/53*+

Algorithm:

Conversion of infix to postfix

Step 1: Add ")" to the end of the infix expression

Step 2: Push "(" on to the stack

Step 3: Repeat until each character in the infix notation is scanned

IF a "(" is encountered, push it on the stack

IF an operand (whether a digit or a character) is encountered, add it to the postfix expression. IF a ")" is encountered, then

a. Repeatedly pop from stack and add it to the postfix expression until a "(" is encountered.

b.Discard the "(". That is, remove the "(" from stack and do not add it to the postfix expression IF an operator 0 is encountered, then

a. Repeatedly pop from stack and add each operator (popped from the stack) to t postfix expression which has the same precedence or a higher precedence than o b. Push the operator o to the stack

[END OF IF]

Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty Step 5: EXIT

Code:

```
#include<stdio.h>
#include<ctype.h>
char stack[100]; int
top = -1; void
push(char x) {
stack[++top] = x; 
char pop() { if(top
== -1); return -1;
else
                return
stack[top--]; } int
priority(char x) {
if(x == '(') return 0;
if(x == '+' || x == '-')
return 1; if(x == '*' ||
x == '/') return 2;
return 0; } int main()
{
char exp[100]; char *e, x; printf("Enter the expression:");
\operatorname{scanf}("\%s", \exp); \operatorname{printf}("\n"); e = \exp; \text{ while}(*e != '\0') \{ \operatorname{if}(\operatorname{isalnum}(*e)) \}
printf("\%c",*e); else if(*e == '(') push(*e); else if(*e == ')') { while((x
= pop()) != '(') printf("%c", x); } else { while(priority(stack[top]) >= }
```

```
priority(*e)) printf("%c ",pop()); push(*e); } e++; } while(top != -1) {
printf("%c ",pop()); } return 0;
}
```

Output:

```
/tmp/Uux1dFb17F.o
Enter the expression : 123-+76*
1 2 3 - 7 6 * +
```

Conclusion:

Convert the following infix expression to postfix (A+(C/D))*B

```
scanned stack
                   pe
(
         (
                 empty
A
        (
                   A
         +
                   A
+
(
         +(
                   A
\mathbf{C}
                    AC
          +(
/
          +(/
                   AC
D
                    ACD
          +(/
          +
                    ACD/
)
                    ACD/+
)
                    ACD/+
```


В		*	ACD/+B		
			ACD/+B*		
How many push and pop operations were required for the above conversion?					
In 1	the given	conversion	of the infix expression "A+(C/D)*B" to postfix notation		
Pus	sh Operat	tions: 9			
Poj	p Operati	ons: 9			
	ere were a		oush operations and 9 pop operations during the conversion from infix		
			stfix conversion used or applied? on is applied in:		
1.	Calculat	or software.			
2.	Program	nming langu	age compilers.		
3.	Express	ion evaluation	on.		
4.	Mathem	atical softw	are.		
5.	Spreads	heet prograr	ns.		
6.	Comput	er algebra sy	ystems.		
7.	Calculat	or hardware	s.		
8.	Query languages.				

- 9. Expression parsing.
- 10. Scientific and engineering simulations.