Cálculo Diferencial e Integral (2025.1)

Exercícios — Regras de Derivação

Resumo sobre Regras de Derivação (extra)

Conforme visto na Lista anterior, calcular derivadas usando a definição por limite pode ser bem trabalhoso. Por isso, usamos fórmulas específicas para diferentes tipos de funções. Já revisamos as regras elementares e nesta lista focamos nas regras listadas a seguir:

a)
$$f(x) = u(x) \cdot v(x) \Rightarrow f'(x) = u'(x) \cdot v(x) + v'(x) \cdot u(x)$$
(Regra do Produto)

$$|f(x)| = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)} \text{ onde}$$

$$|v(x)| \neq 0 \text{ (Regra do Quociente)}$$

$$(c) \begin{array}{c} f(x) = u(v(x)) \Rightarrow f'(x) = u'(v(x)) \cdot v'(x) \text{ (Regra da Cadeia)} \end{array}$$

1 Calcular as derivadas das expressões abaixo, usando as fórmulas de derivação:

a)
$$y = x^2 + 4x$$

e)
$$y = \frac{2x^4}{12}$$

b)
$$y = \frac{2}{x^2}$$

$$b^2 - x$$
f) $u = \frac{a - x}{a - x}$

c)
$$y = \frac{x^3}{2} + \frac{3x}{2}$$

e)
$$y = \frac{2x^4}{b^2 - x^2}$$
f)
$$y = \frac{a - x}{a + x}$$
g)
$$y = \left(\frac{a - x}{a + x}\right)^3$$

d)
$$f(x) = \left(3x + \frac{1}{x}\right)(6x - 1)$$

h)
$$y = (x^2 - a^2)^{\frac{1}{2}}$$

Determine a derivada das funções dadas:

a)
$$f(x) = (2x+1)^2$$

f)
$$f(x) = \cos(6x)$$

b)
$$f(x) = (x^2 + 4x - 5)^4$$

g)
$$f(x) = \operatorname{sen}(x^2)$$

b)
$$f(x) = (x^2 + 4x - 5)^2$$

c) $f(x) = (2x^4 - 7x^3)^e$

$$f(x) = \cos(x^2)$$

d)
$$f(x) = (x^2 + 4)^{-2}$$

$$i) f(x) = \cos(3x^2 + 1)$$

e)
$$f(x) = \sin(3x)$$

j)
$$h(x) = \frac{x^2 + 1}{x^{-x} + 1}$$

3 Encontre a derivada da função com as devidas regras.

a)
$$f(r) = r^2$$

e)
$$f(t) = \frac{3t^2 + 5t - 1}{t - 1}$$

b)
$$f(z) = 14 - \frac{1}{2}z^{-3}$$

f)
$$f(s) = \frac{1}{2s^4} + \frac{2}{s^6}$$

c)
$$f(x) = (3x^5 - 1)(2 - x^4)$$

g)
$$f(x) = 4x^{\frac{1}{2}} + 5x^{-\frac{1}{2}}$$

d)
$$f(x) = 7(ax^2 + bx + c)$$

$$f(x) = \operatorname{sen}(3x^2)$$

4 Calcule em cada item a derivada de ordem superior indicada.

a)
$$f(x) = x^5 - 2x^3 + x$$
, f''

d)
$$f(x) = \operatorname{sen}(x)$$
, f''

b)
$$f(x) = 2x^4 + 3$$
, f'''

e)
$$f(x) = \cos(x)$$
, f'''

c)
$$f(x) = \left(\frac{1}{x}\right)^2$$
, f'''

f)
$$f(x) = 3x^4 - 2x$$
, $f^{(5)}$

g)
$$f(x) = \frac{1}{e^x}$$
, $f^{(4)}$

(Desafio) Sabendo que $\left| \frac{d}{dx}(a^x) = a^x \cdot \ln a \right|$, para todo a > 0,

determine a derivada de $5^{-\frac{1}{x}}$ e 10^{1-x^2} usando a Regra da Cadeia.