1. Global Earthquakes

```
In [3]: import numpy as np
   import pandas as pd
   import xarray as xr
   import matplotlib.pyplot as plt
   import matplotlib.ticker as mticker
%matplotlib inline
   from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator)
   import cartopy.crs as ccrs
   import cartopy.feature as cfeature
   import warnings
   warnings.filterwarnings("ignore")

equs = pd.read_csv(r"C:\\Users\\yuanwenting\\Documents\\ESE5023\\assignment\\uses_earthquakes.csv")
   equs
```

Out[3]:		time	latitude	longitude	depth	mag	magType	nst	gap	dmin	rms	net	id	updated	place	type
	0	2014-01-31 23:53:37.000	60.252000	-152.708100	90.20	1.10	ml	NaN	NaN	NaN	0.2900	ak	ak11155107	2014-02- 05T19:34:41.515Z	26km S of Redoubt Volcano, Alaska	earthquake
	1	2014-01-31 23:48:35.452	37.070300	-115.130900	0.00	1.33	ml	4.0	171.43	0.342000	0.0247	nn	nn00436847	2014-02- 01T01:35:09.000Z	32km S of Alamo, Nevada	earthquake
	2	2014-01-31 23:47:24.000	64.671700	-149.252800	7.10	1.30	ml	NaN	NaN	NaN	1.0000	ak	ak11151142	2014-02- 01T00:03:53.010Z	12km NNW of North Nenana, Alaska	earthquake
	3	2014-01-31 23:30:54.000	63.188700	-148.957500	96.50	0.80	ml	NaN	NaN	NaN	1.0700	ak	ak11151135	2014-01- 31T23:41:25.007Z	22km S of Cantwell, Alaska	·
	4	2014-01-31 23:30:52.210	32.616833	-115.692500	10.59	1.34	ml	6.0	285.00	0.043210	0.2000	ci	ci37171541	2014-02- 01T00:13:20.107Z	10km WNW of Progreso, Mexico	earthquake
	•••	•••	•••	***			•••						•••			
	120103	2014-12-01 00:10:16.000	60.963900	-146.762900	14.80	3.80	ml	NaN	NaN	NaN	0.6900	ak	ak11453391	2015-03- 24T18:25:07.628Z	29km SW of Valdez, Alaska	earthquake
	120104	2014-12-01 00:09:39.000	58.869100	-154.415900	108.40	2.40	ml	NaN	NaN	NaN	0.6700	ak	ak11453395	2014-12- 10T01:04:25.209Z	102km SSE of Old Iliamna, Alaska	earthquake
	120105	2014-12-01 00:09:25.350	38.843498	-122.825836	2.37	0.43	md	8.0	107.00	0.008991	0.0300	nc	nc72358451	2014-12- 01T01:15:02.814Z	9km WNW of Cobb, California	earthquake
	120106	2014-12-01 00:05:54.000	65.152100	-148.992000	9.50	0.40	ml	NaN	NaN	NaN	0.6900	ak	ak11453390	2014-12- 10T01:03:01.225Z	57km NW of Ester, Alaska	earthquake
	120107	2014-12-01 00:04:05.000	60.227200	-147.024500	2.50	1.60	ml	NaN	NaN	NaN	0.7300	ak	ak11453389	2014-12- 09T02:04:46.894Z	78km WSW of Cordova, Alaska	earthquake

120108 rows × 15 columns

```
In [4]: plt. figure (figsize= (8, 5), dpi=150)
        #中央经线设置参照: https://blog.csdn.net/qq 44955314/article/details/119933373
        proj=ccrs. Robinson(central_longitude=180, globe=None)
        ax = plt. axes(projection=proj)
        #绘制地球阴影浮雕图参照: https://www.cnblogs.com/youxiaogang/p/14262751.html
        ax. stock_img()
        #筛选mag前50次地震
        equs 50=equs. sort values ("mag", ascending=False). head (50)
        #画散点图。x、y、c分别为equs_50中'longitude'、'latitude'和'mag'列
        plt.scatter('longitude', 'latitude', c='mag', data=equs_50,
                    cmap='Reds', edgecolors='black', linewidths=0.5,
                    transform=ccrs. PlateCarree())
        #colorbar刻度设置参照: https://blog.csdn.net/x_and_y/article/details/107370761
        plt. colorbar(shrink=0.4, label='magnitude'). ax. yaxis. set_major_locator(MultipleLocator(0.2))
        plt. title('Top 50 earthquakes of 2014', fontsize=8)
```

Out[4]: Text(0.5, 1.0, 'Top 50 earthquakes of 2014')

Top 50 earthquakes of 2014

2.Explore a netCDF dataset

```
In [5]: #2.1
        ds= xr.open_dataset("CESM2_200001-201412.nc", engine="netcdf4")
```

```
surface_T= ds. tas. isel(time=1)
surface_T
```

Out[5]: xarray.DataArray 'tas' (lat: 192, lon: 288)

```
array([[236.51689, 236.51689, 236.51689, ..., 236.51689, 236.51689, 236.51689],
        [236.9432 , 236.89592, 236.73224, ..., 236.99376, 236.97823, 236.96432],
        [237.28722, 237.2335 , 237.1985 , ..., 237.55449, 237.49416, 237.40793],
        ...,
        [241.329 , 241.3181 , 241.30516, ..., 241.35661, 241.34663, 241.33691],
        [241.3106 , 241.30481, 241.29861, ..., 241.32701, 241.32219, 241.31647],
        [241.32259, 241.32254, 241.32248, ..., 241.32278, 241.32271, 241.32265]],
        dtype=float32)
```

▼ Coordinates:

lat	(lat) float64 -90.0 -89.06 -88.12 89.06 90.0	
lon	(lon) float64 0.0 1.25 2.5 356.2 357.5 358.8	
time	() object 2000-02-14 00:00:00	

► Attributes: (19)

```
In [6]: #2.1 (续)
        from cartopy.mpl.gridliner import LONGITUDE FORMATTER, LATITUDE FORMATTER
        plt. figure (figsize= (10, 5), dpi=150)
        proj = ccrs. PlateCarree()
        ax = plt. axes(projection=proj)
        #画温度图,设置colorbar
        surface_T.plot(ax=ax, transform=ccrs.PlateCarree(),cbar_kwargs={'shrink': 0.4})
        #画国界线features
        ax. add feature (cfeature. NaturalEarthFeature (category='cultural',
                                                  name='admin 0 countries',
                                                  scale='110m',
                                                  facecolor='none',
                                                  edgecolor='black',
                                                  linewidth=0.5))
        #设置网格线gridlines
        gl=ax.gridlines(draw_labels=True, crs=ccrs.PlateCarree(), linestyle=":", linewidth=0.3, color='k', alpha=0.5)
        #Cartopy经纬度添加参照: https://cloud.tencent.com/developer/article/1790266
        gl. top labels=False #关闭上部/右侧经纬度标签
        gl. right labels=False
        gl. xformatter = LONGITUDE_FORMATTER #使横纵坐标转化为经纬度格式
        gl. yformatter = LATITUDE FORMATTER
        gl. xlocator=mticker. FixedLocator(np. arange(-180, 181, 30)) #设置横纵坐标范围及刻度
        gl. ylocator=mticker. FixedLocator (np. arange (-90, 91, 30))
        gl. xlabel_style={'size':5} #修改经纬度字体大小
        gl.ylabel_style={'size':5}
```

```
#设置图像标题title
ax. set_title('Global near surface temperature on 14 February 2000', fontsize=8)
ax. spines['geo']. set_linewidth(1) #调节边框粗细
#设置注释annotate
ax. annotate ('Shenzhen', xy=(114.06, 22.54), xytext=(130, 20), # 深圳
           bbox=dict(boxstyle='square', fc='grey', linewidth=0.1),
           arrowprops=dict(facecolor='black', width=0.01, headwidth=5, headlength=5, shrink=0.005),
            fontsize=7, color='white', horizontalalignment='left',
            transform=ccrs. PlateCarree())
#设置点标签text
plt. text(0, 0, 'Temperatures are hottest along the equator', size = 10,
        horizontalalignment='center', color='red',
         bbox=dict(facecolor="grey", alpha=0.2),
         transform=ccrs. PlateCarree())
#设置图列legend
plt. legend(['Near surface temperature'], loc='best', fontsize=6)
```

Out[6]: <matplotlib.legend.Legend at 0x24d01202880>

Global near surface temperature on 14 February 2000


```
In [16]: #2.2
         plt. figure (figsize= (10, 4), dpi=150)
         #设置正投影样式
         central_lon, central_lat = 114.06, 22.54 #深圳
         proj = ccrs. Orthographic(central_lon, central_lat)
         ax = plt.axes(projection=proj)
         #设置显示范围(114.06-40~114.06+30, 22.54-10, 22.54+30)
         extent = [central_lon-40, central_lon+30, central_lat-10, central_lat+30]
         ax. set extent(extent)
         #画温度图,设置colorbar
         surface_T. plot(ax=ax, transform=ccrs. PlateCarree(), cbar_kwargs={'shrink': 0.5})
         #画国界线features
         ax. add_feature(cfeature. NaturalEarthFeature(category='cultural',
                                                   name='admin_0_countries',
                                                   scale='110m',
                                                   facecolor='none',
                                                   edgecolor='black',
```

```
linewidth=0.5))
#设置注释annotate
ax. annotate ('Shenzhen', xy=(114.06, 22.54), xytext=(120, 20), # 深圳
           bbox=dict(boxstyle='square', fc='grey',linewidth=0.1),
           arrowprops=dict(facecolor='black', width=0.01, headwidth=5, headlength=5, shrink=0.005),
           fontsize=7, color='white', horizontalalignment='left',
            transform=ccrs. PlateCarree())
#设置点标签text
ax. text(108.47, 24.38, 'hunan', size = 10,
        horizontalalignment='center', color='k',
        bbox=dict(facecolor="red", alpha=0.01),
        transform=ccrs. PlateCarree())
#加河流、湖泊的features
rivers 10m = cfeature. NaturalEarthFeature('physical', 'rivers lake centerlines', '10m')
ax. add_feature(cfeature. LAKES, edgecolor='c', facecolor='c', zorder=2)
ax. add feature (rivers 10m, facecolor='None', edgecolor='b', linewidth=0.5)
#设置网格线gridlines
gl=ax.gridlines(draw labels=True, crs=ccrs. PlateCarree(), linestyle=":", linewidth=0.3, color='k', alpha=1)
#设置Cartopy经纬度(x、y轴)
gl. top_labels=False #关闭上部/右侧经纬度标签
gl.right labels=False
gl. xformatter = LONGITUDE_FORMATTER #使横纵坐标转化为经纬度格式
gl. vformatter = LATITUDE FORMATTER
gl. xlocator=mticker. FixedLocator(np. arange(-180, 181, 10)) #设置横纵坐标范围及刻度
gl. ylocator=mticker. FixedLocator (np. arange (-90, 91, 30))
gl. xlabel style={'size':6} #修改经纬度字体大小
gl. ylabel_style={'size':6}
#设置图像标题title
ax. set title ('China near surface temperature on 14 February 2000', fontsize=8)
ax. spines['geo']. set linewidth(1) #调节边框粗细
```

