Assignment - Regression

Identify your problem statement

The objective is to develop a **machine learning** model that predicts insurance charges based on various input features such as age, sex, smoking status, number of children, and other relevant attributes. This is a **supervised learning regression problem**, and the project can be titled **"Insurance Charge Prediction."**

Tell basic info about the dataset (Total number of rows, columns)

The dataset consists of **1,338 rows** and **6 columns**. The input features include: **age, BMI, children, sex, and smoker**, while the target variable is **charges**, which represents the insurance cost.

Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

The columns 'sex' and 'smoker' are categorical variables without any sequential order, so I applied a nominal encoding method. Specifically, I used one-hot encoding with the get_dummies() function to convert these categories into numerical format.

Hyperparameter tuning for the models

Multiple Linear Regression: (insurance_pre.csv - Dataset)

Using Multiple Linear Regression the model achieved an R2 Score: 0.7894

SVM: (insurance_pre.csv - Dataset)

SNO.	C Value	LINEAR (R	RBF (R	POLY (R	SIGMOID
		value)	value)	value)	(R value)
1	10	0.4624	-0.0322	0.0387	0.0393
2	100	0.6288	0.3200	0.6179	0.5276
3	1000	0.7649	0.8102	0.8566	0.2874
4	2000	0.7440	0.8547	0.8605	-0.5939
5	<mark>3000</mark>	0.7414	<mark>0.8663</mark>	0.8598	-2.1244

Using Support Vector Machine (SVM) with parameters **C** = **3000** and **kernel** = **'rbf'**, the model achieved an **R**² **score of 0.8663**.

Decision Tree: (insurance_pre.csv - Dataset)

SNO	CRITERION	MAX_FEATURES	SPLITTER	R Value
1	squared_error	sqrt	best	0.6944
2	squared_error	sqrt	random	0.6209
3	squared_error	log2	best	0.6263
4	squared_error	log2	random	0.5291
5	squared_error	None	best	0.6972
6	squared_error	None	random	0.6543
7	friedman_mse	sqrt	best	0.7472
8	friedman_mse	sqrt	random	0.7441
9	friedman_mse	log2	best	0.7506
10	friedman_mse	log2	random	0.7358
11	friedman_mse	None	best	0.6891
12	friedman_mse	None	random	0.6932
13	absolute_error	sqrt	best	0.6668
14	absolute_error	sqrt	random	0.6429
15	absolute_error	log2	best	0.6703
16	absolute_error	log2	random	0.6909
17	absolute_error	None	best	0.6890
18	absolute_error	None	random	0.7571
19	poisson	sqrt	best	0.7281
20	poisson	sqrt	random	0.5762
21	poisson	log2	best	0.7398
22	poisson	log2	random	0.6667
23	poisson	None	best	0.7210
24	<mark>poisson</mark>	None None	<mark>random</mark>	<mark>0.8152</mark>

Using Decision Tree model with parameters **criterion = 'poisson'**, **max_features = None**, and **splitter = 'random'**, achieved an **R² score of 0.8152**.

Random Forest: (insurance_pre.csv - Dataset)

SNO	CRITERION	MAX_FEATURES	n_estimators	R Value
1	squared_error	sqrt	10	0.8520
2	squared_error	sqrt	50	0.8695
3	squared_error	<mark>sqrt</mark>	<mark>100</mark>	<mark>0.8710</mark>
4	squared_error	log2	10	0.8520
5	squared_error	log2	50	0.8695
6	squared_error	log2	100	0.8710
7	squared_error	None	10	0.8330
8	squared_error	None	50	0.8498
9	squared_error	None	100	0.8538
10	friedman_mse	sqrt	10	0.8502
11	friedman_mse	sqrt	50	0.8702
12	<mark>friedman_mse</mark>	<mark>sqrt</mark>	<mark>100</mark>	<mark>0.8710</mark>

13	friedman_mse	log2	10	0.8502
14			50	0.8702
	friedman_mse	log2		
15	friedman_mse	log2	<mark>100</mark>	<mark>0.8710</mark>
16	friedman_mse	None	10	0.8331
17	friedman_mse	None	50	0.8500
18	friedman_mse	None	100	0.8540
19	absolute_error	sqrt	10	0.8574
20	absolute_error	sqrt	50	0.8708
21	<mark>absolute_error</mark>	<mark>sqrt</mark>	<mark>100</mark>	<mark>0.8710</mark>
22	absolute_error	log2	10	0.8574
23	absolute_error	log2	50	0.8708
24	absolute_error	log2	<mark>100</mark>	<mark>0.8710</mark>
25	absolute_error	None	10	0.8350
26	absolute_error	None	50	0.8526
27	absolute_error	None	100	0.8520
28	poisson	sqrt	10	0.8544
29	poisson	sqrt	50	0.8632
30	poisson	sqrt	100	0.8680
31	poisson	log2	10	0.8544
32	poisson	log2	50	0.8632
33	poisson	log2	100	0.8680
34	poisson	None	10	0.8313
35	poisson	None	50	0.8491
36	poisson	None	100	0.8526

The best model performance, with an R² score of 0.8710, was achieved using multiple parameter combinations. These include the criteria 'squared_error', 'friedman_mse', and 'absolute_error', each paired with max_features set to either 'sqrt' or 'log2', and n_estimators fixed at 100.

Conclusion:

Although multiple parameter combinations yielded the same highest R² score of 0.8710, the configuration with criterion = 'squared_error', max_features = 'sqrt', and n_estimators = 100 is a commonly preferred choice due to its balance of performance and model simplicity.