MNT 2019/20: Reto 1

1 Una función MATLAB

Construir una función MATLAB

$$U = \operatorname{amprespfrec}(p, ki, kd, ks, \omega, F)$$

cuyas entradas son

- Un vector $p \in \mathbb{C}^J$,
- dos vectores $qi, qs \in \mathbb{C}^{J-1}$ y un vector $qd \in \mathbb{C}^{J}$.
- un parámetro $\omega \in \mathbb{R}$.
- un vector $F \in \mathbb{C}^J$

y cuya salida es la amplitud $U \in \mathbb{C}^J$ que corresponde a la respuesta en frecuencia $u(t) = \exp(j\omega t)U$ del sistema lineal de EDOs

$$Pu'(t) + Qu(t) = \exp(j\omega t)F$$

con matrices de coeficientes

$$P = \operatorname{diag}(p), \qquad Q = \operatorname{diag}(qd) + \operatorname{diag}(qi, -1) + \operatorname{diag}(qs, 1).$$

El sistema lineal subvacente se debe implementar mediante el algoritmo de Thomas.

2 Una aplicación

Se consideran J=10000 compartimentos unidos de izquierda a derecha, según el modelo explicado en clase. Trabajando en cierto sistema de unidades, disponemos de los siguientes datos:

- Las capacidades de los compatimentos son todas ellas iguales a $c = 10^{-7}$.
- Los coeficientes de transmisión de todas las ramas son iguales a k = 100.

Por otros lado, hay dos reservorios externos de gran capacidad con niveles dados por

$$u_{izq}(t) = H_{izq} + V_{izq}\cos(\omega_{izq}t), \qquad u_{der}(t) = H_{der} + V_{der}\sin(\omega_{der}t),$$

con

$$H_{izq} = 18$$
, $V_{izq} = 23$, $\omega_{izq} = 12$; $H_{der} = 25$, $V_{der} = 14$, $\omega_{izq} = 12\sqrt{3}$.

El reservorio de nivel $u_{izq}(t)$ se une al primer compartimento mediante una rama de conductividad $\nu_{izq}=11$ y el reservorio de nivel $u_{der}(t)$ se une al último compartimento por otra rama con conductividad $\nu_{der}=20$.

Se pide determinar el comportamiento asintótico del sistema.

Entrega: hasta el 29 de octubre, en palencia.math@gmail.com