Red sa prioritetom, heap, adaptivni RSP

© Goodrich, Tamassia, Goldwasser

Katedra za informatiku, Fakultet tehničkih nauka, Univerzitet u Novom Sadu

2023.

Red sa prioritetom

- red sa prioritetom čuva kolekciju elemenata
- svaki element je par (ključ, vrednost)
- osnovne operacije:
 - add(k, x): dodaje element sa ključem k i vrednošču x
 - remove_min(): uklanja element sa najmanjim ključem
- dodatne operacije:
 - min(): vraća, ali ne uklanja, element sa najmanjim ključem
 - len(), is_empty()

Primer operacija nad redom sa prioritetom

operacija	rezultat	sadržaj reda
P.add(5, A)	_	[(5,A)]
P.add(9, C)	_	[(5,A), (9,C)]
P.add(3, B)	_	[(3,B), (5,A), (9,C)]
P.add(7, D)	-	[(3,B), (5,A), (7,D), (9,C)]
P.min()	(3,B)	[(3,B), (5,A), (7,D), (9,C)]
P.remove_min()	(3,B)	[(5,A), (7,D), (9,C)]
P.remove_min()	(5,A)	[(7,D), (9,C)]
len(P)	2	[(7,D), (9,C)]
P.remove_min()	(7,D)	[(9,C)]
P.remove_min()	(9,C)	[]
P.is_empty()	True	[]
P.remove_min()	greška	[]

Ključevi i relacija poretka

- ključevi mogu biti bilo kog tipa za koga je definisana relacija poretka
- elementi u redu mogu imati jednake ključeve u tom slučaju se primenjuje FIFO princip
- relacija poretka
 - refleksivna: $x \leq x$
 - antisimetrična: $x \le y \land y \le x \Rightarrow x = y$
 - tranzitivna: $x \le y \land y \le z \Rightarrow x \le z$

Element RSP

```
class PriorityQueueItem:
 def init (self, k, v):
   self.key = k
   self.value = v
 def lt (self, other):
   return self.key < other.key
 def le (self, other):
   return self.key <= other.key
```

Implementacija RSP

- implementacija sa
 nesortiranom listom
- add je O(1) jer dodavanje možemo raditi na bilo kom kraju liste
- remove_min i min su O(n)
 jer moramo tražiti najmanji
 ključ u listi

- implementacija sa sortiranom listom
- add je O(n) jer moramo da nađemo pravo mesto za ubacivanje novog elementa
- remove_min i min su O(1)
 jer je najmanji ključ uvek na
 početku

RSP sa nesortiranom listom

```
class UnsortedPriorityQueue:
 def __init__(self):
    self._data = SingleList()
 def add(self, key, value):
    newest = PriorityQueueItem(key, value)
    self. data.add last(newest)
 def find min(self)
    if self.is empty():
      raise Empty('Queue is empty')
    smallest = self._data.first()
    current = smallest.next
    while current is not None:
      if current.element < smallest.element:</pre>
        smallest = curr
      current = current next
    return smallest
 def remove min(self):
    p = self. find min()
    item = self. data.delete(p)
    return (item.kev. item.value)
```

RSP sa sortiranom listom

```
class SortedPriorityQueue:
 def init (self):
    self. data = SingleList()
 def add(self, key, value):
    newest = PriorityQueueItem(key, value)
    current = self. data.first()
    while current is not None and newest < current.element:
      current = current.next
    if current is None:
      self. data.add first(newest)
    else:
      self. data.add after(current, newest)
 def remove_min(self):
    if self.is empty():
      raise Empty('Queue is empty')
    item = self._data.delete(self._data.first())
    return (item.key, item.value)
```

Heap

- heap je binarno stablo...
- ...čiji elementi su uređeni parovi (ključ, vrednost)
- ...i koje zadovoljava još 2 uslova:
 - ullet redosled: za svaki čvor n osim korena ključ od n je veći ili jednak ključu roditelja od n
 - **kompletnost**: heap visine h ima nivoe $0,1,2,\dots h-1$ sa maksimalnim brojem čvorova (i-ti nivo ima 2^i čvorova za $0 \le i \le h-1$)

Heap

• poslednji čvor je poslednji čvor sa desne strane na najnižem nivou stabla

Dubina heapa

- ullet teorema: heap koji čuva n ključeva ima dubinu $O(\log n)$
 - h: visina heapa sa n ključeva
 - ullet ima 2^i ključeva na dubini $i=0,\dots h-1$ i bar jedan ključ na dubini h
 - prema tome, $n \ge 1 + 2 + 4 + \dots 2^{h-1} + 1$
 - $n \ge 2^h$
 - $h \leq \log n$

Heap i red sa prioritetom

- red sa prioritetom možemo implementirati pomoću heapa
- u svakom čvoru stabla čuvamo par (ključ, vrednost)
- pamtimo položaj poslednjeg čvora

Dodavanje u heap

- add u redu sa prioritetom se implementira kao dodavanje u heap
- dodavanje se vrši u tri koraka
 - 1 nađi novi poslednji čvor z
 - 2 sačuvaj (k, v) u z
 - 3 restauriraj pravilan redosled

Dodavanje u heap: restauracija redosleda

- nakon dodavanja novog ključa k redosled čvorova može biti narušen
- ullet algoritam upheap uspostavlja korektan redosled zamenom k duž putanje od novog čvora prema korenu
- ullet upheap se završava kada k dođe u koren ili njegov roditelj ima ključ manji ili jednak k
- ullet pošto heap ima visinu $O(\log n)$, upheap radi u $O(\log n)$ vremenu

Uklanjanje iz heapa

- remove_min se implementira kao uklanjanje korena iz heapa
- uklanjanje se vrši u tri koraka
 - ${f 1}$ na mesto korena stavi poslednji čvor w
 - $\mathbf{2}$ ukloni w
 - 3 restauriraj pravilan redosled

Uklanjanje iz heapa: restauracija redosleda

- ullet nakon smeštanja ključa k poslednjeg čvora u koren redosled čvorova može biti narušen
- ullet algoritam downheap uspostavlja korektan redosled zamenom k duž putanje od korena
- ullet downheap se završava kada k dođe u list ili njegova deca imaju ključeve veće ili jednake k
- ullet pošto heap ima visinu $O(\log n)$, downheap radi u $O(\log n)$ vremenu

Nađi mesto za novi poslednji prilikom dodavanja

- \bullet mesto za novi poslednji čvor se može naći prolaskom kroz putanju od $O(\log n)$ čvorova
 - idi prema gore dok ne dođeš do korena ili nečijeg levog deteta
 - ako si došao do nečijeg levog deteta, idi na desno dete
 - idi prema dole levo dok ne dođeš do lista
- sličan je i algoritam prilikom uklanjanja

Implementacija heapa pomoću niza

- heap sa n ključeva se može smestiti u niz dužine n
- ullet za čvor ranga i
 - levo dete ima rang 2i+1
 - ullet desno dete ima rang 2i+2
- veze između čvorova se ne čuvaju
- dodavanje se svodi na upis čvora ranga n+1
- uklanjanje se svodi na uklanjanje čvora ranga n

2	5	6	9	7
0	1	2	3	4

Heap u Pythonu $_1$

```
class HeapPriorityQueue:
 def init (self):
   self. data = []
 def _parent(self, j):
   return (j-1)//2
 def left(self, j):
   return 2*j+1
 def _right(self, j):
   return 2*j+2
 def has left(self, j):
   return self. left(j) < len(self. data)</pre>
 def has right(self, j):
   return self._right(j) < len(self._data)</pre>
 def _swap(self, i, j):
   self. data[i], self. data[j] = self. data[j], self. data[i]
```

Heap u Pythonu $_2$

```
def upheap(self, j):
  parent = self._parent(j)
  if j > 0 and self. data[j] < self. data[parent]:</pre>
    self. swap(j, parent)
    self. upheap(parent)
def downheap(self, j):
  if self. has left(j):
    left = self. left(j)
    small child = left
    if self. has right(i):
      right = self. right(j)
      if self. data[right] < self. data[left]:</pre>
        small child = right
    if self. data[small child] < self. data[j]:</pre>
      self. swap(j, small child)
      self. downheap(small child)
```

Heap u Pythonu 3

```
def add(self, key, value):
  self._data.append(PriorityQueueItem(key, value))
  self. upheap(len(self. data)-1)
def min(self):
  if self.is empty():
    raise Empty('Queue is empty')
  item = self. data[0]
  return (item.key, item.value)
def remove_min(self):
  if self.is_empty():
    raise Empty('Queue is empty')
  self._swap(0, len(self._data)-1)
  item = self._data.pop()
  self. downheap(0)
  return (item.key, item.value)
```

Spajanje dva heapa

- imamo dva heapa i ključ k
- kreiramo novi heap sa korenom
 k i dva heapa kao podstabla
- pokrenemo downheap da restauriramo redosled

Konstrukcija heapa od dole (bottom-up)

- možemo da napravimo heap sa n ključeva pomoću bottom-up spajanja u $O(\log n)$ koraka
- u i-tom koraku, par heapova sa 2^i-1 ključeva se spajaju u heap sa $2^{i+1}-1$ ključeva

Analiza konstrukcije heapa 1

- listovi ne narušavaju osobinu heap-a, ne moraju se proveravati: preskočimo kontrolu polovine svih čvorova u stablu
- ullet čvor na nivou h će morati da se pomera najviše h puta O(h)
- \bullet ukupan broj čvorova na nivou h je $\left\lceil \frac{n}{2^{h+1}} \right\rceil$
- ullet ukupan broj čvorova za sve nivoe je $\sum_{h=0}^{\lfloor \log n
 floor}$
- ullet n je konstanta može ispred sume, h može u razlomak, O može ispred:

$$O(n \cdot \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^{h+1}})$$

ullet $O(2^{h+1})$ je $O(2^h \cdot 2)$ je $O(2^h)$

Analiza konstrukcije heapa 2

ullet kada $n o \infty$ suma $\sum_{h=2h}^{\infty} rac{h}{2^h}$ teži 2

$$O(n \cdot \sum_{h}^{\infty} \frac{h}{2^h}) = O(n \cdot 2) = O(n)$$

ullet složenost algoritma je O(n) !!!

Adaptivni red sa prioritetom

- **primer**: sistem za kupoprodaju akcija koristi dva reda sa prioritetom, jedan za prodaju i drugi za kupovinu sa elementima (p,s)
 - ključ p je cena
 - ullet vrednost s je broj akcija
 - nalog za kupovinu (p,s) se izvršava kada se pojavi nalog za prodaju (p',s') sa cenom $p' \leq p$ (postupak je završen ako $s' \geq s$)
 - nalog za prodaju (p, s) se izvršava kada se pojavi nalog za kupovinu (p', s') sa cenom $p' \leq p$ (postupak je završen ako $s' \geq s$)
- šta ako neko hoće da otkaže nalog pre nego što se izvrši?
- šta ako neko hoće da izmeni cenu ili broj akcija?

Adaptivni red sa prioritetom: operacije

- remove(loc): ukloni i vrati element e iz reda za lokator loc
- ullet update(loc, k, v): zameni ključ/vrednost par (k,v) za lokator loc

Lokatori

- ullet element sa lokatorom identifikuje i prati poziciju (k,v) unutar strukture podataka
- primeri:
 - broj kaputa u garderobi
 - broj rezervacije
- osnovna ideja:
 - pošto elemente kreira i vraća sama struktura podataka, oni mogu biti takvi da pamte svoju lokaciju, što pojednostavljuje kasnije ažuriranje

Lokatori i liste

- element liste čuva
 - ključ
 - vrednost
 - poziciju
- reference se ažuriraju u swap operaciji

Lokatori i heap

- element heapa čuva
 - ključ
 - vrednost
 - poziciju
- reference se ažuriraju u swap operaciji

Performanse

• dobici u brzini usled korišćenja lokatora su označeni crveno

metoda	nesortirana lista	sortirana lista	heap
len, is_empty	O(1)	O(1)	O(1)
add	O(1)	O(n)	$O(\log n)$
min	O(n)	O(1)	O(1)
remove_min	O(n)	O(1)	$O(\log n)$
remove	O(1)	O(1)	$O(\log n)$
update	O(1)	O(n)	$O(\log n)$
upaate	O(1)	0(10)	$O(\log n)$

Red sa prioritetom i sortiranje

- možemo upotrebiti red sa prioritetom za sortiranje niza elemenata
 - dodamo elemente jedan po jedan putem add operacije
 - uklonimo elemente jedan po jedan putem remove_min operacije
- vreme izvršavanja zavisi od načina implementacije

```
PQ_sort(S, C)
```

```
Input: sekvenca S, komparator C
Output: rastuće sortirana S u
  skladu sa C
  P \leftarrow \mathsf{RSP} sa komparatorom C
  while \neg S.is_empty() do
     e \leftarrow S.remove first()
     P.\mathsf{add}(e,\emptyset)
  while \neg P.is_empty() do
     e \leftarrow P.remove min().kev()
     S.\mathsf{add}_{\mathsf{last}}(e)
```

Selection sort

- selection sort je varijanta PQ-sorta gde je RSP implementiran pomoću nesortirane liste
- vreme izvršavanja selection sorta:
 - dodavanje n elemenata u RSP traje O(n)
 - $\bullet\,$ uklanjanje n elemenata u sortiranom redosledu traje

$$1 + 2 + \dots + n$$

ullet selection sort radi u $O(n^2)$ vremenu

Selection sort: primer

	sekvenca S	$\operatorname{red} P$
ulaz:	(7,4,8,2,5,3,9)	()
faza 1		
(a)	(4, 8, 2, 5, 3, 9)	(7)
(b)	(8, 2, 5, 3, 9)	(7, 4)
(g)	()	(7, 4, 8, 2, 5, 3, 9)
faza 2		
(a)	(2)	(7, 4, 8, 5, 3, 9)
(b)	(2, 3)	(7, 4, 8, 5, 9)
(c)	(2, 3, 4)	(7, 8, 5, 9)
(d)	(2, 3, 4, 5)	(7, 8, 9)
(e)	(2, 3, 4, 5, 7)	(8,9)
(f)	(2, 3, 4, 5, 7, 8)	(9)
(g)	(2, 3, 4, 5, 7, 8, 9)	()

Insertion sort

- insertion sort je varijanta PQ-sorta gde je RSP implementiran pomoću **sortirane** liste
- vreme izvršavanja insertion sorta:
 - dodavanje n elemenata u RSP traje

$$1 + 2 + \dots + n$$

- uklanjanje n elemenata traje O(n)
- ullet insertion sort radi u $O(n^2)$ vremenu

Insertion sort: primer

	sekvenca S	$\operatorname{red} P$
ulaz:	(7,4,8,2,5,3,9)	()
faza 1		
(a)	(4, 8, 2, 5, 3, 9)	(7)
(b)	(8, 2, 5, 3, 9)	(4,7)
(c)	(2, 5, 3, 9)	(4, 7, 8)
(d)	(5, 3, 9)	(2, 4, 7, 8)
(e)	(3, 9)	(2,4,5,7,8)
(f)	(9)	(2, 3, 4, 5, 7, 8)
(g)	()	(2, 3, 4, 5, 7, 8, 9)
faza 2		
(a)	(2)	(3,4,5,7,8,9)
(b)	(2,3)	(4, 5, 7, 8, 9)
(g)	(2, 3, 4, 5, 7, 8, 9)	()

Sortiranje unutar iste strukture podataka (in-place)

- umesto korišćenja 2 strukture možemo implementirati selection i insertion sort u okviru jedne strukture
- deo ulaznog niza će poslužiti kao RSP
- za insertion sort
 - držimo sortiran početak niza
 - elemente menjamo pomoću swap operacije

Heap sort

- posmatramo RSP sa n elemenata, implementiran pomoću heapa
 - potreban prostor je O(n)
 - add i remove_min traju $O(\log n)$
 - len, is_empty, min traju O(1)

- ovakav RSP možemo koristiti za sortiranje n elemenata za $O(n\log n)$ vreme
- rezultujući algoritam se zove heap sort
- znatno brži od kvadratnih algoritama kao što su selection i insertion sort

$$O(n\log n) < O(n^2)$$