Machine Learning as a tool to predict the severity of an accident: Case Study from Seattle (WA) 2004-2020 record

Dr. Daniel Rodelli 22th November, 2020

Introduction

- Car accidents are the leading cause of death among 5-29 year old people
- Huge direct and indirect economic impact
- Numerous quantificable factors affect the gravity of accidents
- Machine Learning is suited as this is a scientific approach for modelling and predicting the severity of an accident
- Apply a machine learning to predict the severity of the accident using car collision data for the city of Seattle, USA.

Business Plan

- A scenario where a witness gives information through an emergency call
- Which information is fundamental?
- How this information can be translated into a severity description of the accident

The final goal:

 How emergency service can use this information to better manage assets (vehicles, personnel, hospitals)

Methods

- Dataset exploration
- Dataset cleaning
- Algorithms: K-Nearest Neighbors
 - Logistic Regression
 - Decision Tree
 - Random Forest

Algorithms comparison

FEATURES:

- Injuries fundamental
- Vehicle Count
- Collision Code
- Collision Type
- X –Y coordinates fundamental
- Weather
- Road Condition
- Light Condition
- Address Type
- Hour

TARGET:

Severity Code

CLASS	DESCRIPTION
1	Accident with only property damage
2	Accident with injuries
3	Accident with severe injuries
4	Accident with fatalities

Correlation Matrix

Very strong correlation between Severity Code and Injuries

K-Nearest Neighbors

The best accuracy (0.9774) was reached with a K=5

Logistic Regression

Best accuracy: 0.981

C=**5**Max iter**=1000**

Decision Tree

Accuracy= **0.987**

Depth = 5

Random Forest

Accuracy = **0.679**

Accuracy too low **DISCARDED**

MODELS COMPARISON

The model selected is Decision Tree

	Algorithm	Accuracy_Score
3	Random Forest	0.678525
0	K-Nearest Neighbors	0.976242
1	Logistic Regression	0.981449
2	Decision Tree	0.987934

FEATURE IMPORTANCE

The model selected is Decision Tree

The presence of **injuries** and the number of **vehicles** are the dominant features of the model

	FEATURE	IMPORTANCE
1	TOTALINJURIES	0.982
2	VEHCOUNT	0.015
3	ST_COLCODE	0.02
4	COLLISIONTYPE	0.01
5	X	0.00
6	Υ	0.00
7	WEATHER	0.00
8	ROADCOND	0.00
9	LIGHTCOND	0.00
10	ADDRTYPE	0.00
11	HOUR	0.00

Discussing the results

- presence of injuries and the number of vehicles are the dominant features
- Location of an accident is also fundamental in a real case scenario
- 100% accuracy on Severity Code 1
- Slight underestimating the severty of the injuries
- Toom to improvement with more features?
- Low number of variables to inform → quicker call → quicker response → more lifes saved

Conclusions

- Decision Tree model best predicts the severity of accidents. Accuracy: 98.7%
- Limiting by design the number of features affected the accuracy for injury severity
- Only 2 features are really necessary for the model (plus location, of course...)
- LOW NUMBER OF VARIABLES MEANS QUICKER CALLS, QUICKER RESPONSE, MORE TIME TO SAVE LIVES.