

SUPPORT VECTOR MACHINES

Slides by Alberto Berni

LEARNING OUTCOMES

- The classification problem, bias & overfitting.

- Large Margin Classifiers.

- Soft Margin Classifiers.

- Support Vector machines.

- Kernels for Support Vector Machines.

KAHOOT

Dot Product

$$\vec{a} \cdot \vec{b}$$

$$\begin{pmatrix} a_{x} \\ a_{y} \\ a_{z} \end{pmatrix} \bullet \begin{pmatrix} b_{x} \\ b_{y} \\ b_{z} \end{pmatrix} = a_{x} \cdot b_{x} + a_{y} \cdot b_{y} + a_{z} \cdot b_{z}$$

$$\mathbf{u}.\mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 u_2 \cdots u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Vector Product

Pythagorean Distance

Logistic Regression

$$h(x) = g(\theta^{T} x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$
$$z = \theta^{T} x$$

$$-y\log\frac{1}{1+e^{-\theta^T x}} - (1-y)\log(1-\frac{1}{1+e^{-\theta^T x}})$$

Taylor Series Expansions

Taylor Series Expansions

$$T_n(x) \approx f(x)$$
 near $x = a$

$$T_n(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots + c_n(x - a)^n$$

$$T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f''(a)}{n!}(x - a)^n$$

LEARNING OUTCOMES

- The classification problem.
- Large Margin Classifiers.
- Support Vector machines.
- Kernels for Support Vector Machines.

THE CLASSIFICATION PROBLEM

LEARNING OUTCOMES

- The classification problem.
- Large Margin Classifiers.
- Support Vector machines.
- Kernels for Support Vector Machines.

SMALL MARGIN CLASSIFICATION

MAXIMUM MARGIN CLASSIFICATION

$$h(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$z = \theta^T x$$

Logistic Cost Function

$$-y\log\frac{1}{1+e^{-\theta^T x}} - (1-y)\log(1-\frac{1}{1+e^{-\theta^T x}})$$

when y = 1

when y = 0

If
$$y = 0$$
 (want $\theta^T x \ll 0$):

If
$$y = 1$$
 (want $\theta^T x \gg 0$):

Logistic Cost Function

$$-y\log\frac{1}{1+e^{-\theta^T x}} - (1-y)\log(1-\frac{1}{1+e^{-\theta^T x}})$$

 $cost_1$

 $cost_0$

$$\log \frac{1}{1 + e^{-\theta^T x}}$$

$$\log \frac{1}{1 + e^{-\theta^T x}}$$
 $\log (1 - \frac{1}{1 + e^{-\theta^T x}})$

when y = 1

when y = 0

$$C=\frac{1}{\lambda}$$

$$C = \frac{1}{\lambda} \qquad \min_{\theta} C \sum_{i=1}^{m} \left[\mathbf{0}^{(i)} cost_1(\theta^T x^{(i)}) + (1 - \mathbf{1}^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

LEARNING OUTCOMES

- The classification problem.
- Large Margin Classifiers.
- Support Vector machines.
- Kernels for Support Vector Machines.

$$-y\log\frac{1}{1+e^{-\theta^T x}} - (1-y)\log(1-\frac{1}{1+e^{-\theta^T x}})$$

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$
s.t. $\theta^T x^{(i)} \ge 1$ if $y^{(i)} = 1$
$$\theta^T x^{(i)} \le -1$$
 if $y^{(i)} = 0$

Kernels

a support-vector machine constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space.

LEARNING OUTCOMES

- The classification problem.
- Large Margin Classifiers.
- Support Vector machines.
- Kernels for Support Vector Machines.

SMOL BREK


```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns; sns.set()
```

```
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=100, centers=2, random_state=0, cluster_std=0.50)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer');
```



```
xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer')
plt.plot([0.6], [2.1], 'x', color='black', markeredgewidth=4, markersize=12)
for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
   plt.plot(xfit, m * xfit + b, '-k')
plt.xlim(-1, 3.5);
```



```
from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)
```

SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto_deprecated', kernel='linear', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)


```
def decision_function(model, ax=None, plot_support=True):
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
```

```
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='summer')
decision_function(model);
```

```
x = np.linspace(xlim[0], xlim[1], 30)
y = np.linspace(ylim[0], ylim[1], 30)
Y, X = np.meshgrid(y, x)
xy = np.vstack([X.ravel(), Y.ravel()]).T
P = model.decision_function(xy).reshape(X.shape)
```

```
ax.contour(X, Y, P, colors='k',
  levels=[-1, 0, 1], alpha=0.5,
  linestyles=['--', '--'])
```

```
if plot_support:
    ax.scatter(model.support_vectors_[:, 0],
        model.support_vectors_[:, 1],
        s=300, linewidth=1, facecolors='none');
ax.set_xlim(xlim)
ax.set_ylim(ylim)
```


Polynomial Kernel Math

Intro to n-dimensional approach (spiral kernel)

n-dimensional approach (spiral kernel) maths

SMOL BREK

CODE

CODE GOES HERE

Mathematical Intuition

Support Vector Machine

If y = 1, we want $\theta^T x \ge 1$ (not just ≥ 0)

If y = 0, we want $\theta^T x \le -1$ (not just < 0)

- Introduce cost function derivation from Log reg. equation

Math int 2

Alternative view of logistic regression

$$\begin{aligned} &\operatorname{Cost} \operatorname{of} \operatorname{example:}_{r} - (y \log \underline{h_{\theta}(x)} + (1 - y) \log (1 - \underline{h_{\theta}(x)})) \ \leftarrow \\ &= -y \log \frac{1}{1 + e^{-\theta^{T}x}} - (1 - y) \log (1 - \frac{1}{1 + e^{-\theta^{T}x}}) \ \leftarrow \end{aligned}$$

If y = 1 (want $\theta^T x \gg 0$):

If
$$y = 1$$
 (want $\theta^T x \gg 0$):

If
$$y = 0$$
 (want $\theta^T x \ll 0$):

Math int 3

Issues with LMI

SVM Decision Boundary: Linearly separable case

Vector Inner Product

$$\mathbf{y} \ u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad \mathbf{y} \ v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Vector Inner Product

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \Rightarrow v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$||u|| = \frac{2}{\sqrt{1 + u_2}} = \frac$$

SVM Decision Boundary

SVM Decision Boundary

$$\Rightarrow \min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\theta\|^{2} \leftarrow$$

s.t.
$$|p^{(i)} \cdot ||\theta|| \ge 1$$
 if $y^{(i)} = 1$ $p^{(i)} \cdot ||\theta|| \le -1$ if $y^{(i)} = 1$

where $p^{(i)}$ is the projection of $x^{(i)}$ onto the vector θ .

Simplification: $\theta_0 = 0$

