Al Essentials

Machine Learning Operations (MLOps)

Introduction

- The Machine Learning community had focused extensively on the building of ML models,
- but not on building production-ready ML products
- and providing the necessary coordination of the resulting often complex ML system components and infrastructure

Introduction

- In many industrial applications, data scientists still manage ML workflows manually
- Resulting in many issues during the operations of the respective ML solutions
- How can manual ML processes be automated and operationalized so that more ML POC's can be brought into production

DevOps

Development Operations

- DevOps represents a paradigm addressing social and technical issues in organization engaged in software development.
- Ensure automation with continuous integration, continuous delivery and continuous deployment (CI/CD)

DevOps

Tools

- Differentiated into 6 groups
 - Collaboration and knowledge sharing (Slack, Trello, GitLab wiki)
 - Source code management (GitHub, GitLab)
 - Build process (Maven)
 - Continuous integration (Jenkins, GitLab CI)
 - deployment automation (Kubernetes, Docker)
 - Monitoring and logging (Prometheus, Logstash)

MLOps 9 principles

P4 P5 Source Code Repository

P1 P6 P9 CI/CD Component

Model Training Infrastructure

Feature

Stores

P3 P4

Workflow
P3 Orchestration
Component

Component

P4 P7 ML Metadata

(P3) (P4)

(P8) (P9) Monitoring Component

Stores

Model

Registry

Model Serving Component

PRINCIPLES

P1 CI/CD automation

P2 Workflow orchestration

P3 Reproducibility

P4 Versioning of data, code, model

P5 Collaboration

P6 Continuous ML training & evaluation

P7 ML metadata tracking

P8 Continuous monitoring

P9 Feedback loops

COMPONENT

P1 CI/CD automation

- Continuous integration
- Continuous delivery
- Continuous delivery
- Build, test, delivery and deploy steps
- Fast feedback on success or failure of steps

P2 Workflow orchestration

Coordinates tasks of an ML workflow pipeline according to DAGs

P3 Reproducibility

- Ability reproduce an ML experiment
- Obtain same results

P4 Versioning

- Versioning of data, model and code
- Reproductively and traceability

P5 Collaboration

- Work collaboratively on data, model and code
- Reduce domain silos between different roles

P6 Continuous ML training & evaluation

- Periodic retraining of the ML model based on new feature data
- An evaluation run to assess the change in model quality

P7 ML metadata tracking/logging

- Metadata is tracked and logged for each orchestrated ML workflow task
- Training data and time, duration, ...
- Used parameters and the resulting performance metrics
- Ensure full traceability of experiment runs

P8 Continuous monitoring

- Periodic assessment of data, model, code, infrastructure resources and model serving performance
- To detect potential errors or changes

P9 Feedback loops

- Integrate insights for the quality assessment step into the dev or engineering precess
- Feedback from the monitoring component to the schedular

Techinal Components

- Incorporated the principles into MLOps
- Which components do we need?
- How do we implement them in the ML systems design

Technical Components C1 CI/CD Component (P1, P6, P9)

- Ensures continuous integration, continuous delivery and continuous deployment
- Build, test, delivery and deploy steps
- Feedback to developers regarding success or failure of steps

• Jenkins, GitHub actions, TeamCity

Technical Components C2 Source Code Repository (P4, P5)

- Code storing and versioning
- Mulitple developers commit and merge their code

• Bitbucket, GitLab, GitHub, Gitea

Technical ComponentsC3 Workflow Orchestration Component (P2, P3, P6)

Task orchestration of an ML workflow

 Apache Airflow, Kubeflow pipelines, Luigi, AWS SageMake Pipelines, Azure Pipelines, Dagster

Files

Technical ComponentsC4 Feature Store System (P3, P4)

- Central storage of commonly used features
- Offline feature store, normal latency
- Online feature store, low latency for predictions in production

Google Feast, Amazon AWS Feature Store, Section.ai

Technical Components

C5 Model Training Infrastructure (P6)

- Providing the foundational computation resources: CPUs, RAM and GPUs
- Distributed or non-distributed
- Scalable and distributed infrastructure

Kubernetes, Red Hat OpenShift

Technical Components C6 Model Registry

• Stores the trained machine learning models together with their metadata

- Advanced storage: MLflow, AWS SageMaker, Model Registry, Microsoft Azure ML Model Registry, Neptune.ai
- Simple storage: Microsoft Azure Storage, Google Cloud Storage, Amazon AWS S3

Technical Components C7 ML Metadata Stores

- Tracking of various kinds of metadata
- Can be configured in the model registry
- Training job information (training date, time, duration, ...)
- Used parameters, resulting performance metrics, used data and code

 Orchestrators with built-in metadata stores: Kubeflow Pipelines, AWS SageMaker Pipelines, Azure ML, IBM Watson Studio

Technical Components C8 Model Serving Component (P1)

- Online inference for real-time predictions
- Batch inference for predications using large volumes of input data
- Scalable and distributed model serving infrastructure is recommended

- Kubernetes or Docker to containerize the ML model
- Flask for REST API

Technical Components C9 Monitoring Component (P8, P9)

- Continuous monitoring of the model serving performance
- Monitoring ML infrastructure, CI/CD and orchestration

- Prometheus with Grafan, ELK stock (Elasticseach, Logstash and Kibana), TensorBoard
- Built-in monitoring capabilities: Kubeflow, MLflow, AWS SageMaker

- MLOps is an interdisciplinary group process
- Interplay of different roles is crucial to design, manage, automate and operate an ML system

- R1 Business Stakeholder
 - Define the business goal to be achieved with ML
- R2 Solution Architect
 - Deines technologies to be used
- R3 Data Scientist
 - Translates business problem into ML problem
 - Model engineering: selection of algorithm and hyperparameters

- R4 Data Engineer
 - Builds and manages data and feature engineering pipelines
 - Ensures data ingestion to the database
- R5 Software Engineer
 - Applies software design patterns, coding guidelines and best practices
 - Turn a raw ML problem into a well-engineered product

- R6 DevOps Engineer
 - Bridges the gap between development and operations
 - CI/CD automation, ML workflow orchestration, model deployment and monitoring
- R7 ML Engineer/MLOps Engineer
 - Incorporates knowledge from data scientists, data engineers, software engineers, DevOps engineers and backend engineers

Architecture and Workflow

- And end-to-end process from MLOps project initiation to the model serving.
- (A) The MLOps project initiation steps
- (B) The feature engineering pipeline, including the data ingestions to the feature store
- (C) The experimentation
- (D) The automated ML workflow pipeline up to the model serving

