CSC 461: Machine Learning Fall 2024

Dimensionality Reduction

Prof. Marco Alvarez, Computer Science University of Rhode Island

Dimensionality reduction

- Fundamentally ...
 - unsupervised learning algorithms for extracting latent structure (potentially **low dimensional**) from **high-dimensional** data
 - can range from simple feature selection to complex nonlinear transformations
- → Examples
 - PCA, Kernel PCA, t-SNE, autoencoders, matrix factorization
- ▶ Given $\mathcal{D} = \{\mathbf{x_1}, ..., \mathbf{x_n}\}$ with $\mathbf{x_i} \in \mathbb{R}^d$, find a representation $\mathcal{Z} = \{\mathbf{z_1}, ..., \mathbf{z_n}\}$ with $\mathbf{z_i} \in \mathbb{R}^{d'}$, with d' < d
 - certain properties should be preserved (e.g., variance, distances, neighborhood structure)

High dimensional data

- Prevalent in many areas of machine learning and data science
- Examples:
 - image data, for instance a single 1000 by 1000 RGB image has 3 million dimensions
 - text data, in natural language processing text is often represented in highdimensional spaces, transformers typically embed tokens into 768 or more dimensions
 - genomic data, gene expression data often has thousands of dimensions.
 - time series from sensor data or financial data
 - audio signals, especially when converted to spectrograms
 - network traffic data
 - ...

Dimensionality reduction

- ► Why?
 - visualization (2D or 3D)
 - preprocessing data before machine learning
 - focusing on important features/patterns
 - more efficient training
 - removing noise and redundant information
 - data compression

Different data, same variance

x-variance =
$$\frac{2^2+0^2+2^2}{3}$$
 = 8/3

y-variance =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

Figure credit: https://serrano.academy/unsupervised-learning/

Covariance

$$cov(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Figure credit: https://serrano.academy/unsupervised-learning.

Covariance matrix

Every element Σ_{ij} of the covariance matrix is the covariance between column i and column j from the data matrix

Eigenvectors and eigenvalues

- ► The decomposition of a square matrix A into eigenvalues and eigenvectors is known as eigen decomposition
 - for **real symmetric matrices** eigenvectors can be chosen real and orthonormal

$$A = V \Lambda V^T \quad A \mathbf{v} = \lambda \mathbf{v}$$

columns of V are the eigenvectors of A and Λ is a diagonal matrix whose entries are the eigenvalues of A

Principal Component Analysis (PCA)

Goal of PCA

- Find projections of the data onto directions that maximize variance
 - these directions are orthogonal to each other

https://www.dataschool.io/15-hours-of-expert-machine-learning-videos

PCA approach

- ▶ Input: data matrix $X_{d \times n}$
 - **center** the data (subtract the mean)
 - calculate the **covariance** matrix $\frac{1}{n}XX^T$
 - compute eigendecomposition $V\Lambda V^T$ of the covariance matrix
 - sort the eigenvectors by eigenvalues in decreasing order
- → Output
 - sorted orthonormal eigenvectors V and eigenvalues Λ

eigenvectors can then be used for projecting the data into lower dimensions (XV)

Remarks

- ► The <u>larger</u> the eigenvalue, the <u>more important</u> the corresponding eigenvector
 - that's why we **sort** eigenvalues (and corresponding eigenvectors) in **decreasing order**
- ► All eigenvalues of a positive semidefinite matrix are **non-negative**
 - **covariance matrix** is always symmetric and p.s.d.
- For <u>dimensionality reduction</u>, we can ignore eigenvectors associated with smaller eigenvalues

Explained variance

- Each eigenvalue corresponds to the amount of variance explained by its associated eigenvector
 - **explained variance** is often presented as a **percentage**, i.e., eigenvalues divided by the <u>total sum of eigenvalues</u>
- ➤ The <u>sum of percentages</u> of the top-k principal components is usually referred to as the "cumulative explained variance"
 - often used to select how many components to keep for a reduced dataset

Explained variance

PC	Eigenvalue	Variance (%)	Cumulative Variance
1st	23.31800	59.072%	59.072%
2nd	7.01200	17.764%	76.835%
3rd	4.61800	11.699%	88.534%
4th	1.98100	5.018%	93.553%
5th	1.00100	2.536%	96.089%
6th	0.82100	2.080%	98.168%
7th	0.64100	1.624%	99.792%
8th	0.03100	0.079%	99.871%
9th	0.02900	0.073%	99.944%
10th	0.02200	0.056%	100.000%

PCA Notebooks

https://colab.research.google.com/drive/ 1MzPdVsJi8gUxhwiXFcKA8RJsw8DY1OhE

https://colab.research.google.com/drive/ 1r7JPdmmWS11yl2WVOMi0GMhlDM9s37GI