Decoders

Decoders

- Digital information represented in some binary form must be converted into some alternate binary form
- A Decoder is a combinational circuit that converts binary information from n coded inputs to a maximum 2ⁿ coded outputs
 → n-to- 2ⁿ-line decoder
- n-to-m decoder, m ≤ 2ⁿ
- Only one of the 2ⁿ output lines responds to a given input combination of values on its n-input lines

Decoders (cont.)

- Examples:
 - 2-to-4 decoder, where n=2 and m=4
 - BCD-to-7-segment decoder, where n=4 and m=10

1-to-2 Decoder

2-to-4 Decoder using AND (Active High Decoder)

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

(b)

2-to-4 Decoder using NAND (Active Low Decoder)

a	b	0	D ₁	$D_{\!2}$	D ₃
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

$$D_0 = (a'b')' = a + b = M_0$$

 $D_1 = (a'b)' = a + b' = M_1$
 $D_2 = (ab')' = a' + b = M_2$
 $D_3 = (ab)' = a' + b' = M_3$

2-to-4 Decoder using AND with Enable Input

Symbol

Logic Diagram

Inputs $E x_1 x_0$	Outputs z_0 z_1 z_2 z_3
0 × ×	0 0 0 0
1 0 0	1 0 0 0
1 0 1	0 1 0 0
1 1 0	0 0 1 0
1 1 1	0 0 0 1
	I

Truth Table

Decoders with Enable Inputs

- When disabled, all outputs of the decoder can either be at logic-0 or logic-1
- Enable input provides the decoder with additional flexibility

 $\overline{x}_0 \overline{x}_1 E$

If E = 1, $x_0 = 0$, $x_1 = 0$ then data appears on line z_0 .

 Enable inputs are useful when constructing larger decoders from smaller decoders

3-to-8 Decoder using AND (cont.)

Logic Diagram

Symbol

Inputs	Outputs
$x_2 x_1 x_0$	z ₀ z ₁ z ₂ z ₃ z ₄ z ₅ z ₆ z ₇
0 0 0	1 0 0 0 0 0 0 0
0 0 1	0 1 0 0 0 0 0 0
0 1 0	0 0 1 0 0 0 0 0
0 1 1	0 0 0 1 0 0 0 0
1 0 0	00001000
1 0 1	0 0 0 0 0 1 0 0
1 1 0	0 0 0 0 0 0 1 0
1 1 1	00000001

Truth Table

3-to-8 Decoder using NAND (cont.)

Logic Diagram

Symbol

Inputs	Outputs
$x_2 x_1 x_0$	z ₀ z ₁ z ₂ z ₃ z ₄ z ₅ z ₆ z ₇
0 0 0	0 1 1 1 1 1 1 1
0 0 1	1011111
0 1 0	1 1 0 1 1 1 1 1
0 1 1	1 1 1 0 1 1 1 1
1 0 0	1 1 1 1 0 1 1 1
1 0 1	1 1 1 1 1 0 1 1
1 1 0	1 1 1 1 1 1 0 1
1 1 1	1 1 1 1 1 1 1 0

Truth Table

Implementing Boolean Functions using Decoders

- Any combinational circuit can be constructed using decoders! Why?
 - An n-to- 2^n line decoder is a minterm/maxterm generator
 - By using or/nor/and-gates in conjunction with an n-to- 2^n line decoder, realizations of Boolean functions are possible
- Here is an example:
 - Implement a full adder circuit with a decoder
 - Recall full adder equations, and let X, Y, and Z be the inputs:
 - $S(X,Y,Z) = \Sigma m(1,2,4,7)$
 - $C(X,Y,Z) = \Sigma m(3,5,6,7)$
 - Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 decoder

Implementing a Full Adder Using a Decoder

Implementing Boolean Functions using Decoders (cont.)

Figure 5.19 Realization of the Boolean expressions $f_1(x_2,x_1,x_0) = \sum m(1,2,4,5)$ and $f_2(x_2,x_1,x_0) = \sum m(1,5,7)$ with a 3-to-8-

Implementing Boolean Functions using Decoders (cont.)

Figure 5.20 Realization of the Boolean expressions $f_1(x_2,x_1,x_0) = \Sigma m(0,1,3,4,5,6) = \overline{\Sigma m(2,7)}$ and $f_2(x_2,x_1,x_0) = \Sigma m(1,2,3,4,6) = \overline{\Sigma m(0,5,7)}$ with a 3-to-8-line decoder and two nor-gates.

$$f_1(x_2,x_1,x_0) = \sum_m (0,1,3,4,5,6)$$

 $f_1'(x_2,x_1,x_0) = \sum_m (2,7) \rightarrow f_1(x_2,x_1,x_0) = \sum_m (2,7)$

$$f_2(x_2,x_1,x_0) = \sum_m (1,2,3,4,6)$$

$$f_2'(x_2,x_1,x_0) = \sum_m (0,5,7) \rightarrow f_2(x_2,x_1,x_0) = \sum_m (0,5,7)$$

Implementing Boolean Functions using Decoders (cont.)

$$f_1 = \sum_m (0,2,6,7) = \Pi_M(1,3,4,5)$$

 $f_2 = \sum_m (3,5,6,7) = \Pi_M(0,1,2,4)$

Constructing Larger Decoders

 Enable inputs are useful when constructing larger decoders from smaller decoders

