UNIDAD I

INTRODUCCIÓN A LA LÓGICA MATEMATICA

Las proposiciones moleculares están clasificadas de acuerdo a sus conectivos lógicos que se usan en matemática:

La negación : ~; ¬

La conjugación: A

La disyunción débil: V

La disyunción fuerte : Δ

La condicional: \rightarrow

La bicondicional : ↔

Resumen de las Tablas de Verdad:

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \Delta q$
V	V	V	V	V	V	F
V	F	V	F	F	F	V
F	V	V	F	V	F	V
F	F	F	F	V	V	F

TAUTOLOGIAS, CONTRADICCIONES Y CONTINGENCIAS

Dada una proposición compuesta, está puede ser:

1. TAUTOLOGIA: Es toda proposición cuyo valor de verdad en el operador principal siempre son verdaderos para cualquier combinación de los valores de verdad. Su tabla de verdad se escribe:

p	q	p -	\rightarrow	$(p \lor q)$
V	V	V	$\sqrt{\mathbf{V}}$	V
V	F	V	V	V
F	V	F	\mathbf{V}	V
F	F	F	v	F

Entonces: $p \rightarrow (p \lor q) = V$

2. CONTRADICCION: Es toda proposición lógica cuyo valor de verdad son todos falsos del operador principal.

Ejemplo: La proposición : $(p \land q) \land \sim q$ es una contradicción, tal como se demuestra en la tabla:

p	q	(p	∧ q)	٨	$\sim q$
V	V	V	V	/F	F
V	F	V	F	F	V
F	V	F	V	F	F
F	F	F	F	$\backslash \mathbf{F}$	V

Entonces: $(p \land q) \land \sim q = F$

3. CONTINGENCIA : Es toda proposición lógica cuyo valor de verdad tiene al menos un verdadero (V) y un falso (F).

Ejemplo: la proposición: $(p \lor q) \rightarrow \sim p$ es una contingencia tal como se puede comprobar:

p q	$(p \lor q)$	$\rightarrow \sim p$
V V	V	F F
V F	V	F F
F V	V	V
F F	F	V V

EQUIVALENCIA E IMPLICANCIA

Aplicable a proposiciones compuestas, debe distinguirse los conceptos de equivalencia e implicación de los conceptos bicondicionales y condicionales respectivamente.

La equivalencia y la implicación son **relaciones entre fórmulas proposicionales** mientras que la bicondicional y la condicional son relaciones entre proposiciones.

Equivalencia, dos fórmulas son equivalentes cuando están unidas por la bicondicional (\leftrightarrow) y el resultado es una tautología.

Implicancia, cuando dos fórmulas están unidas por condicional (→) y el resultado es una tautología.

EQUIVALENCIA E IMPLICANCIA

Ejemplo 1: $[\sim (p \land q) \lor \sim r] \leftrightarrow \sim (p \land q \land r)$; es equivalencia?

Ejemplo 2: $[\sim p \ \Delta \sim r] \rightarrow [\sim (p \ \Delta \ q) \ \lor \sim r]$; es implicación?

Ejemplo 3: $(\neg p \lor q) \rightarrow (\neg q \rightarrow \neg p)$; es implicación?

Ejemplo 4: $(p \rightarrow q) \rightarrow \neg (p \land \neg q)$; es implicancia?

Ejemplo 5: $(p \land q) \rightarrow [\neg(\neg p \lor q)]$; es implicancia?

Ejemplo 6: $[(p \rightarrow q) \land \neg r] \leftrightarrow [\neg r \land \neg (p \lor \neg q)]$; es equivalencia?