CS 3320 – Numerical Software

Module 10 Homework Key

1. (10 pt) Use least-squares regression to fit a straight line to the data below.

r	0	2	4	6	9	11	12	15	17	19
v	5	6	7	6	9	8	8	10	12	12

Along with the slope and intercept, compute the coefficient of determination, R^2 .

	x	у	x*y	x*x	y-yPrection	(y-yPrection)^2	(y-yAve)	(y-yAve)^2
	0	5	0	0	0.11188251	0.012517696	-3.3	10.89
	2	6	12	4	0.39359146	0.154914234	-2.3	5.29
	4	7	28	16	0.6753004	0.456030631	-1.3	1.69
	6	6	36	36	-1.0429907	1.087829505	-2.3	5.29
	9	9	81	81	0.87957276	0.773648247	0.7	0.49
	11	8	88	121	-0.8387183	0.703448372	-0.3	0.09
	12	8	96	144	-1.1978638	1.434877727	-0.3	0.09
	15	10	150	225	-0.2753004	0.075790311	1.7	2.89
	17	12	204	289	1.00640854	1.012858159	3.7	13.69
	19	12	228	361	0.28811749	0.083011688	3.7	13.69
Sum	95	83	923	1277	SSE	5.794926569	SST	54.1
Average		8.3					R2	0.89288491
A	10	95	b	83	Regreesion	4.88811749		
	95	1277		923		0.359145527		

An excel spreadsheet was created for this problem. On the spreadsheet, I calculated $\sum x_i = 95$, $\sum y_i = 83$, $\sum x_i^2 = 1277$, and $\sum x_i y_i = 923$. Using this entries, A and b were formulated as:

$$\begin{bmatrix} 10 & 95 \\ 95 & 1277 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 83 \\ 923 \end{bmatrix}.$$

Solving this matrix equation, we have $a_0 = 4.888$, $a_1 = 0.359$. Our regression result is y = 0.359x + 4.888.

Using this model, I can calculate
$$y - \hat{y}$$
. $SS_T = \sum (y_i - \bar{y})^2 = 54.1$ and $SS_E = \sum (y_i - \hat{y}_i)^2 = 5.7949$.

$$R^2 = 1 - \frac{SS_E}{SS_T} = 0.8929$$

2. (10 pt) On average the surface area, A, of a human is related to weight, W, and height, W. Measurements for several individuals of height 180 cm and different weights (kg), give values of area (m^2) in the following table.

W (kg)	70	75	77	80	82	84	87	90
$A (m^2)$	2.10	2.12	2.15	2.20	2.22	2.23	2.26	2.30

Show that a power law, $A = aW^b$, fits these data reasonably well. Present plots of data along with the model line. Predict what the surface area is for a 95-kg person.

Linearization: $\ln(A) = \ln(aW^b)$ or $\ln(A) = \ln(a) + b \cdot \ln(W)$. Calculating $\ln(A)$ and $\ln(W)$ before we use the LSE linear regression.

W	A	In(W)	In(A)	In(W)*In(W)	In(W)*In(A)			
70	2.1	4.24849524	0.74193734	18.0497118	3.15211728			
75	2.12	4.31748811	0.75141609	18.6407036	3.24423003			
77	2.15	4.34380542	0.76546784	18.8686455	3.32504336			
80	2.2	4.38202663	0.78845736	19.2021574	3.45504115			
82	2.22	4.40671925	0.7975072	19.4191745	3.51439031			
84	2.23	4.4308168	0.80200159	19.6321375	3.5535221			
87	2.26	4.46590812	0.81536481	19.9443353	3.64134434			
90	2.3	4.49980967	0.83290912	20.2482871	3.74793253			
	sum	35.0950692	6.29506135	154.005153	27.6336211			
	Α	8	35.0950692	b	6.29506135	Linearize	-0.8797444	c0
		35.0950692	154.005153		27.6336211	Model	0.3799114	c1
	Original	a=exp(c0)	0.41488893		Weight	Prediction		
	model	b=c1	0.3799114		95	2.34040807		

Linearized model: ln(A) = -0.8797 + 0.3799 ln(W)

Power Law Model: $A = e^{-0.8797}e^{0.3799 \ln(W)} = 0.4149W^{0.3799}$

For W = 95, the predicted surface area is $A = 0.4149 \cdot 95^{0.3799} = 2.34 \, m^2$.

```
Python Solution 1:
```

```
import numpy as np
import numpy as np
import math

W=np.array([70, 75, 77, 80, 82, 84, 87, 90])
A=np.array([2.1, 2.12, 2.15, 2.2, 2.22, 2.23, 2.26, 2.3])

lnW = np.log(W)
lnA = np.log(A)

1Fit = np.polyfit(lnW, lnA, 1)
a=math.exp(lFit[1])
b=lFit[0]

A95 = a*math.pow(95,b)

print(a, b, A95)
a=0.41488892 b=0.37991140 A95=2.3404080703850525

Python Solution 2:
import numpy as np
import math
```

```
import math
W=np.array([70, 75, 77, 80, 82, 84, 87, 90])
A=np.array([2.1, 2.12, 2.15, 2.2, 2.22, 2.23, 2.26, 2.3])
lnW = np.log(W)
lnA = np.log(A)
```

```
matA=np.vstack((lnW, np.power(lnW,0))).transpose()
RHS=np.matmul(matA.transpose(),lnA)

lFit =
np.matmul(np.linalg.inv(np.matmul(matA.transpose(),matA)),RHS)

a=math.exp(lFit[1])
b=lFit[0]

A95 = a*math.pow(95,b)
print(a, b, A95)
a=0.4148889255 b=0.37991140 A95=2.340408070385182
```

3. (10 pt) Fit an exponential model to

λ	•	0.4	0.8	1.2	1.6	2	2.3
y	,	800	985	1490	1950	2850	3600

Exponential Fit: $y = ae^{bx}$.

Linearization: $ln(y) = ln(ae^{bx}) = ln(a) + bx$

Lincarizat	<u> 1011. 111 (y)</u>	- m(ue	f = m(u)	$+ \nu \lambda$			
	х	у	In(y)	x*x	In(W)*In(A)		
	0.4	800	6.68461173	0.16	2.67384469		
	0.8	985	6.89264164	0.64	5.51411331		
	1.2	1490	7.3065314	1.44	8.76783768		
	1.6	1950	7.57558465	2.56	12.1209354		
	2	2850	7.95507427	4	15.9101485		
	2.3	3600	8.18868912	5.29	18.833985		
sum	8.3	sum	44.6031328	14.09	63.8208647		
Α	6	8.3	b	44.6031328	Linearize	6.30958241	c0
	8.3	14.09		63.8208647	Model	0.81272751	c1
Original	a=exp(c0)	549.815304		х	Prediction		
model	b=c1	0.81272751		2	2793.46331		

The linearized model is ln(y) = 6.3096 + 0.81272x

The exponential model is

$$y = e^{6.3096 + 0.81272x} = e^{6.3096} \cdot e^{0.81272x} = 549.815e^{0.81272x}$$

Python Solution:

```
import numpy as np
import math

x=np.array([0.4, 0.8, 1.2, 1.6, 2, 2.3])
y=np.array([800, 985, 1490, 1950,2850, 3600])

lnY = np.log(y)

matA=np.vstack((x, np.power(x,0))).transpose()
```

```
RHS=np.matmul(matA.transpose(),lnY)

1Fit =
np.matmul(np.linalg.inv(np.matmul(matA.transpose(),matA)),RHS)

a=math.exp(1Fit[1])
b=1Fit[0]

y2 = a*math.exp(b*2)

print(a, b, y2)
a=549.815304 b=0.81272751 y(2)=2793.463311758146
```

4. (10 pt) Find a 3rd order polynomial to fit the following data. Plot the data with your model curve. Tabulate the residual of the predict y-value.

x	3	4	5	7	8	9	11	12
y	1.6	3.6	4.4	3.4	2.2	2.8	3.8	4.6

3rd Order Polynomial Fit: $y = a_3x^3 + a_2x^2 + a_1x + a_0$ yModel 43.2 243 729 4.8 14.4 1.83213464 -0.2321346 3.6 16 64 256 1024 4096 14.4 57.6 230.4 3.41451602 0.18548398 4.4 25 125 625 3125 15625 22 110 550 4.03470796 0.36529204 1166.2 3.4 343 2401 16807 117649 23.8 166.6 3.5087479 -0.1087479 2.2 512 17.6 140.8 1126.4 4096 32768 262144 2.92270809 -0.7227081 2041.2 2.8 81 729 6561 59049 531441 25.2 226.8 2.49470324 0.30529676 1771561 1331 161051 41.8 459.8 5057.8 3.23302278 0.56697722 1728 248832 55.2 7948.8 4.95945937 -0.3594594 59 26.4 509 4859 49397 522899 5689229 204.8 1838.4 18164 4859 b 26.4 Model -11.488707 509 59 509 4859 49397 204.8 7.14381722 509 4859 49397 522899 1838.4 -1.0412069

According to spreadsheet above: the regression model is: $y = 0.04668x^3 - 1.0412x^2 + 7.1438x - 11.4887$

The predicted the values and the residual are shown in the last two columns.

The plot:

