Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start Users

Yongchun Zhu^{1, 2, 3}, Kaikai Ge³, Fuzhen Zhuang^{4, 5}, Ruobing Xie³, Dongbo Xi^{1, 2}, Xu Zhang³, Leyu Lin³, Qing He^{1, 2}

- 1. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) , Institute of Computing Technology, CAS, Beijing, China
 - 2. University of Chinese Academy of Sciences, Beijing, China
 - 3. WeChat Search Application Department, Tencent, China
 - 4. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
 - 5. Xiamen Data Intelligence Academy of ICT, CAS, China

Motivation

Cold-start Problem

How to recommend to these new(cold-start) users?

Motivation

Motivation

Unsatisfying generalization ability:

EMCDR-based methods explicitly learn the mapping function by minimizing the distance between the target embedding and the mapped embedding of the overlapping users, which could be overfitting on these users.

EMCDR

Transfer-Meta Framework for CDR

Two stages

- □ Transfer Stage:
 - □ A source model
 - □ A target model
- Meta Stage:
 - □ Training a mapping function from a meta-learning perspective
 - □ Task-oriented loss

Algorithm 1 Transfer-Meta framework for CDR (TMCDR)

Input: Given user and item sets of source and target domains, U^s, U^t, V^s, V^t . The overlapping user set U^o . The rating matrix R^s, R^t .

Input: Task-oriented meta network f_{θ} .

Input: The step size (learning rate) λ , α .

Transfer Stage:

- A pre-trained source model contains u^s, v^s.
- A pre-trained target model contains u^t, v^t.

Meta Stage: utilize the source embedding of overlapping users u^s and the target item embedding v^t to optimize the task-oriented meta network f_{θ} .

- (1) randomly initialize θ .
- (2) while not converge do:
- sample batch of user groups $\{U_1, ..., U_n\}$ from U^o .
- for $U_i \in \{U_1, ..., U_n\}$ do:
- divide U_i into two disjoint sets U_a , U_b
- define two training sets D_a , D_b with U_a , U_b
- evaluate loss \mathcal{L}_{θ} with D_a
- compute updated parameter $\theta' = \theta \lambda \frac{\partial \mathcal{L}_{\theta}}{\partial \theta}$
- evaluate loss $\mathcal{L}_{\theta_i'}$ with D_b
- update $\theta = \theta \alpha \sum_{U_i \in \{U_1, ..., U_n\}} \frac{\partial \mathcal{L}_{\theta_i'}}{\partial \theta}$
- (11) end while

Test Stage: for a cold-start user u, we use $f_{\theta}(\mathbf{u}^s)$ as the user embedding for prediction.

Experiments

Dataset

Dataset	CDR Tasks			Item		User			Rating	
	Scenarios	Source	Target	Source	Target	Overlap	Source	Target	Source	Target
Amazon	Scenario 1(S1)	apps	video	13,209	10,672	894	87,271	24,303	752,937	231,779
	Scenario 2(S2)	home	tools	16,638	6,038	6,038	66,519	16,638	551,682	134,475
	Scenario 3(S3)	movies	cds	50,052	64,443	18,031	123,960	75,258	1,697,533	1,097,591
	Scenario 4(S4)	books	movies	98,700	17,798	37,388	603,668	123,960	6,466,068	1,420,441
Douban	Scenario 5(S5)							33,173	8,113,064	2,912,666
	Scenario 6(S6)	music	book	19,921	16,999	27,779	33,281	34,166	3,064,996	1,603,329

Metrics: AUC, NDCG

Baselines: CMF, BPR, ListRank-MF, CML, CST, EMCDR, SSCDR

Experiments

Overall Performance

	AUC	NDCG@10	AUC	NDCG@10	
Method	Sce	nario1	Scenario2		
CMF	0.6490	0.1696	0.6996	0.2076	
BPR	0.7226	0.2182	0.7160	0.2379	
ListRank-MF	0.6648	0.1709	0.7232	0.2204	
CML	0.6470	0.1408	0.6986	0.2147	
CST	0.7240	0.2137	0.7124	0.2324	
SSCDR	0.7245	0.0089	0.6745	0.0013	
EMCDR_MFori	0.6942	0.1978	0.6511	0.1747	
EMCDR_MF	0.7271	0.2103	0.6923	0.1985	
TMCDR_MF	0.7501*	0.2246^{*}	0.7253*	0.2427^{*}	
	Sce	nario3	Scenario4		
CMF	0.7769	0.3066	0.7295	0.2349	
BPR	0.7737	0.3065	0.7199	0.2150	
ListRank-MF	0.7640	0.2902	0.7409	0.2277	
CML	0.8191	0.3548	0.7857	0.2647	
CST	0.7995	0.2960	0.7842	0.2563	
SSCDR	0.7956	0.3080	0.6545	0.1628	
EMCDR_MFori	0.7273	0.2284	0.7307	0.1990	
EMCDR_MF	0.8011	0.3055	0.7936	0.2670	
TMCDR_MF	0.8282*	0.3334	0.8056*	0.2775*	
	Sce	nario5	Scenario6		
CMF	0.8465	0.3420	0.8339	0.3764	
BPR	0.8108	0.3283	0.8138	0.3659	
ListRank-MF	0.8136	0.3106	0.8191	0.3281	
CML	0.8466	0.3409	0.8405	0.3707	
CST	0.8524	0.3405	0.8406	0.3742	
SSCDR	0.8144	0.2925	0.8317	0.3644	
EMCDR_MFori	0.7307	0.1990	0.7627	0.2703	
EMCDR_MF	0.8438	0.3322	0.8297	0.3702	
TMCDR MF	0.8589*	0.3483*	0.8442*	0.3778*	

Generalization Experiments

Name: Yongchun Zhu | Email: zhuyongchun18s@ict.ac.cn

