MATEMATIK 1

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2020

4.3.3. Trigonometrik Fonksiyonlar ve Tersleri

Tanım 4.3.3.1. Yarıçapı 1 birim olan ve üzerinde bir yön seçilen çembere birim çember ya da trigonometrik çember denir.

Şekil 4.3.3.2.

 $[0,2\pi]$ aralığındaki sayılarla birim çember üzerindeki noktaları Şekil 4.3.3.2. deki gibi birebir eşlediğimiz zaman A noktası ile 0, B noktası ile $\frac{\pi}{2}$, C noktası ile π , D noktası ile $\frac{3\pi}{2}$ ve 2π ile tekrar A noktası ile eşlenmiş olur. Benzer eşleşmeyi $[2\pi, 4\pi]$, $[4\pi, 6\pi]$ ve $[-4\pi, -2\pi]$ aralıkları için de yapabiliriz. Çember üzerindeki herhangi bir T noktası ile sonsuz tane sayı eşlenir. $0 \le \theta \le 2\pi$ olmak üzere P noktası ile eşlenen sayılar $\theta + k2\pi$ şeklindedir.

Tanım 4.3.3.2. Başlangıç noktası OA olan açının bitim kolunun trigonometrik çemberi kestiği P noktası ile eşlenen θ sayısına $A\hat{O}P$ açısının ölçüsü denir. θ ° dereceye de açının esas ölçüsü adı verilir.

4.3.3.1. Kosinüs ve Sinüs Fonksiyonları

Tanım 4.3.3.1.1. Başlangıç kolu OA, ölçüsü θ olan açının bitim kolunun trigonometrik çemberi kestiği P noktasının ordinatına θ açısının sinüsü, apsisine de kosinüsü denir. Sıra ile $\sin \theta$ ve $\cos \theta$ şeklinde gösterilir.

 $\sin : \mathbb{R} \to [-1,1]$ birebir olmayan ve örten bir fonksiyondur. $\sin(\theta + k2\pi) = \sin(\theta)$ olduğundan Sinüs fonksiyonu 2π periyotludur. Ayrıca $\sin(-\theta) = -\sin(\theta)$ olduğundan Sinüs fonksiyonu bir tek fonksiyondur.

 $\cos: \mathbb{R} \to [-1,1]$ birebir olmayan ve örten bir fonksiyondur. $\cos(\theta + k2\pi) = \cos(\theta)$ olduğundan Kosinüs fonksiyonu 2π periyotludur. Ayrıca $\cos(-\theta) = \cos(\theta)$ olduğundan Kosinüs fonksiyonu bir çift fonksiyondur.

4.3.3.2. Tanjant Fonksiyonu

Tanım 4.3.3.2.1. Başlangıç kolu OA, ölçüsü θ olan açının bitim kolunun çembere A noktasından çizilen teğeti kestiği noktanın ordinatına θ açısının tanjantı denir. $\tan \theta$ veya $\tan \theta$ şeklinde gösterilir.

Şekil 4.3.3.2.1.

 $\tan: \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\} \to \mathbb{R}$ birebir olmayan ve örten bir fonksiyondur. Tanjant fonksiyonu π periyotlu ve tek bir fonksiyondur.

4.3.3.3. Kotanjant Fonksiyonu

Tanım 4.3.3.3.1. Başlangıç kolu OA, ölçüsü θ olan açının bitim kolunun çembere B noktasından çizilen teğeti kestiği noktanın apsisine θ açısının kotanjantı denir. $\cot \theta$ veya $\cot \theta$ şeklinde gösterilir.

Şekil 4.3.3.3.1.

 $\cot: R - \{k\pi\} \to \mathbb{R}$ birebir olmayan ve örten bir fonksiyondur. Kotanjant fonksiyonu π periyotlu ve tek bir fonksiyondur

4.3.3.4. Trigonometrik Fonksiyonlar Arasındaki Bağıntılar

(1) *ONP* üçgeninde
$$|ON|^2 + |NP|^2 = |OP|^2$$
 dir. Yani
$$\sin^2 \theta + \cos^2 \theta = 1$$

dir.

(2)
$$ONP \sim OAT$$
 olduğundan $\frac{|AT|}{|NP|} = \frac{|OA|}{|ON|}$ dir. Yani

$$\frac{\tan \theta}{\sin \theta} = \frac{1}{\cos \theta} \implies \tan \theta = \frac{\sin \theta}{\cos \theta}$$

dır. Benzer şekilde $\cot \theta = \frac{\cos \theta}{\sin \theta}$ elde edilir. Bu durumda

$$\tan \theta . \cot \theta = 1$$

dir.

Örnek 4.3.3.4.1. $\sin \theta = \frac{1}{3}$ ise $\tan \theta = ?$

Çözüm. $\sin^2 \theta + \cos^2 \theta = 1$ olduğundan $\left(\frac{1}{3}\right)^2 + \cos^2 \theta = 1$ dir. Buradan

 $\cos^2 \theta = \frac{8}{9}$ elde edilir. Bu durumda $\cos \theta = \mp \frac{2\sqrt{2}}{3}$ dir. Dolayısıyla

$$\tan \theta = \mp \frac{\sqrt{2}}{4}$$

dür.

4.3.3.5. Toplam ve Fark Formülleri

Şekil 4.3.3.5.1.

 $p \colon \ensuremath{\widehat{AOP}}$ yayının ölçüsü

 $q \colon \hat{AOQ}$ yayının ölçüsü

p+q: $A\widehat{OR}$ yayının ölçüsü

Koordinat ekseni pozitif yönde p kadar döndürüldüğünde x, x' ve y de y' şekline dönüşür. Bu durumda

$$|AR|^{2} = (\cos(p+q)-1)^{2} + (\sin(p+q)-0)^{2}$$

$$= \cos^{2}(p+q) - 2\cos(p+q) + 1 + \sin^{2}(p+q)$$

$$= 2 - 2\cos(p+q)$$

elde edilir. Elde edilen x'oy' sisteminde $A(\cos p, -\sin p)$ ve $R(\cos q, \sin q)$ olur. Dolayısıyla

$$|AR|^2 = (\cos p - \cos q)^2 + (\sin p - \sin q)^2$$
$$= 2 - 2\cos p\cos q - 2\sin p\sin q$$

elde edilir. Bu iki eşitlikten

 $\cos(p+q) = \cos p \cdot \cos q - \sin p \cdot \sin q$

formülü elde edilir.

Benzer şekilde

$$\cos(p-q) = \cos p \cdot \cos q + \sin p \cdot \sin q$$

$$\sin(p+q) = \sin p \cdot \cos q + \cos p \cdot \sin q$$

$$\sin(p-q) = \sin p \cdot \cos q - \cos p \cdot \sin q$$

$$\tan(p+q) = \frac{\tan p + \tan q}{1 \pm \tan p \cdot \tan q}$$

$$\cot(p+q) = \frac{\cot p \cdot \cot q \pm 1}{\cot p + \cot q}$$

formülleri de elde edilir.

6. Yarım Açı Formülleri

(1)
$$\sin 2x = \sin(x+x) = 2\sin x \cos x$$

(2)
$$\sin x = \sin\left(\frac{x}{2} + \frac{x}{2}\right) = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

(3)
$$\cos 2x = \cos(x+x) = \cos^2 x - \sin^2 x$$

$$\cos 2x = \cos^2 x - \sin^2 x = (1 - \sin^2 x) - \sin^2 x = 1 - 2\sin^2 x$$

$$\cos 2x = \cos^2 x - \sin^2 x = \cos^2 x - (1 - \cos^2 x) = 2\cos^2 x - 1$$

(4)
$$\cos x = 2\cos^2\frac{x}{2} - 1$$

(5)
$$\tan 2x = \tan(x+x) = \frac{2\tan x}{1-\tan^2 x}$$

(6)
$$\cot 2x = \frac{\cos 2x}{\sin 2x} = \frac{\cos^2 x - \sin^2 x}{2\sin x \cos x}$$

Örnek 4.3.3.6.1. $\cos 3x = 4\cos^3 x - 3\cos x$ olduğunu gösteriniz.

Çözüm.
$$\cos 3x = \cos(2x + x) = \cos 2x \cdot \cos x - \sin 2x \cdot \sin x$$

 $= (2\cos^2 x - 1) \cdot \cos x - 2\sin x \cdot \cos x \cdot \sin x$
 $= 2\cos^3 x - \cos x - 2\sin^2 x \cdot \cos x$
 $= 2\cos^3 x - \cos x - 2(1 - \cos^2 x)\cos x$
 $= 4\cos^3 x - 3\cos x \cdot \sin x$

7. İki Sinüs ve Kosinüs Toplamının ve Farkının Çarpım Şeklinde İfadesi

x = p + q ve y = p - q olsun. Bu durumda

$$p = \frac{x+y}{2}$$
 ve $q = \frac{x-y}{2}$

dir. Dolayısıyla toplam ve fark formülleri

$$\sin x = \sin(p+q) = \sin p \cdot \cos q + \cos p \cdot \sin q$$

$$\sin y = \sin(p-q) = \sin p \cdot \cos q - \cos p \cdot \sin q$$
 şeklindedir. Bu durumda

$$\sin x + \sin y = 2\sin p \cdot \cos q = 2\sin \frac{x+y}{2}\cos \frac{x-y}{2} \quad \text{ve}$$

$$\sin x - \sin y = 2\cos p \cdot \sin q = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$$
 formülleri elde edilir. Benzer şekilde

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2} \quad \text{ve} \quad \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2} \quad \text{dir.}$$

8. Ters Dönüşümler

Yarım açı formüllerinden

$$\cos x \cdot \cos y = \frac{1}{2} \left[\cos(x+y) + \cos(x-y) \right]$$

$$\sin x.\sin y = -\frac{1}{2} \left[\cos(x+y) - \cos(x-y)\right]$$

$$\sin x.\cos y = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right]$$

$$\cos x.\sin y = \frac{1}{2} \left[\sin(x+y) - \sin(x-y) \right]$$

ters dönüşüm formülleri elde edilir. Ayrıca

$$\tan x + \tan y = \frac{\sin x}{\cos x} + \frac{\sin y}{\cos y} = \frac{\sin(x+y)}{\cos x \cdot \cos y}$$

ve

$$\tan x - \tan y = \frac{\sin x}{\cos x} - \frac{\sin y}{\cos y} = \frac{\sin(x - y)}{\cos x \cdot \cos y}$$

dir.

Örnek 4.3.3.8.1.
$$\sin 2a = \frac{2}{\tan a + \cot a}$$
 olduğunu gösteriniz.

Çözüm.

$$\sin 2a = 2\sin a \cos a = \frac{2\sin a \cos a}{\sin^2 a + \cos^2 a} = \frac{2}{\frac{\sin^2 a}{\sin a \cos a} + \frac{\cos^2 a}{\sin a \cos a}}$$
$$= \frac{2}{\frac{\sin a}{\sin a + \cos a}} = \frac{2}{\tan a + \cot a} \text{ dir.}$$

Örnek 4.3.3.8.2. $\sin(105^\circ) = ?$

cos a

 $\sin a$

Çözüm.

$$\sin(105^\circ) = \sin(60^\circ + 45^\circ) = \sin(60^\circ)\cos(45^\circ) + \sin(45^\circ)\cos(60^\circ)$$
$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} \quad \text{dür.}$$

9. Trigonometrik Fonksiyonların Eğrileri ve Tersleri

 $\sin : \mathbb{R} \to [-1,1]$ fonksiyonu periyodik bir fonksiyon olduğu için genel anlamda bire-bir ve örten değildir. Dolayısıyla tersi yoktur.

Ancak $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ aralığında bire-bir ve örten olup bu aralıkta tersi

vardır. $y = \sin x$ fonksiyonunun tersi $y = \arcsin x$ fonksiyonudur. $y = \sin x$ fonksiyonun grafiği

şeklindedir.

x	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$\sin x$	-1	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	1

ve

x	-1	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	1
arcsin x	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$

olduğundan arcsin:
$$\left[-1,1\right] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 fonksiyonun grafiği

Şekil 4.3.3.9.2.

şekilindedir.

 $y = \arcsin x$ fonksiyonunun eğrisi ile $y = \sin x$ fonksiyonun eğrisi y = x doğrusuna göre simetriktir.

 $\cos:\mathbb{R}\to[-1,1]$ fonksiyonu periyodik bir fonksiyon olduğu için genel anlamda bire-bir ve örten değildir. Dolayısıyla tersi yoktur. Ancak $[0,\pi]$ aralığında bire-bir ve örten olup bu aralıkta tersi vardır. $y=\cos x$ fonksiyonunun tersi $y=\arccos x$ fonksiyonudur.

şeklindedir.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1

ve

x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1
arccos x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π

olduğundan $\arccos: \left[-1,1\right] {\to} \left[0,\pi\right] \ \, \text{fonksiyonun grafiği}$

şeklindedir.

 $y = \arccos x$ fonksiyonunun eğrisi ile $y = \cos x$ fonksiyonun eğrisi y = x doğrusuna göre simetriktir.

 $\tan : \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\} \to \mathbb{R}$ fonksiyonu periyodik bir fonksiyon olduğu için genel anlamda bire-bir ve örten değildir. Dolayısıyla tersi yoktur. Ancak $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ aralığında bire-bir ve örten olup bu aralıkta tersi vardır. $y = \tan x$ fonksiyonunun tersi $y = \arctan x$ fonksiyonudur.

 $y = \tan x$ fonksiyonun grafiği

şeklindedir.

Bu durumda arctan : $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ fonksiyonunun grafiği

Şekil 4.3.3.9.6.

şeklindedir.

 $y = \tan x$ ve $y = \arctan x$ fonksiyonlarının grafikleri y = x birim fonksiyonunun grafiğine göre simetriktir.

 $\cot : \mathbb{R} - \{k\pi\} \to \mathbb{R}$ fonksiyonu periyodik bir fonksiyon olduğu için genel anlamda bire-bir ve örten değildir. Dolayısıyla tersi yoktur. Ancak $(0,\pi)$ aralığında bire-bir ve örten olup bu aralıkta tersi vardır. $y = \cot x$ fonksiyonunun tersi $y = \operatorname{arc} \cot x$ fonksiyonudur.

şeklindedir.

Bu durumda $\operatorname{arc}\operatorname{cot}: \left(0,\pi\right) \to \mathbb{R} \ \, \text{fonksiyonunun grafiği}$

şeklindedir.

Örnek 4.3.3.9.1. $\cos(\arcsin x) = \sqrt{1-x^2}$ olduğunu gösteriniz.

Çözüm. $\arcsin x = a$ ise $\sin a = x$ dir. $\cos a = \sqrt{1 - \sin^2 a}$ olduğundan $\cos a = \sqrt{1 - x^2}$ ve $\cos(\arcsin x) = \sqrt{1 - x^2}$

dir.

Örnek 4.3.3.9.2. $\sin(\arccos x) = ?$

Çözüm. $\arcsin x = y$ ise $\cos y = x$ dir. $\sin^2 y + \cos^2 y = 1$ olduğundan $\sin^2 y = 1 - x^2$ ve $\sin y = \sqrt{1 - x^2}$

dir. Bu durumda $\sin(\arccos x) = \sqrt{1-x^2}$ dir.

Kaynaklar:

- 1. G. B. Thomas ve Ark., **Thomas Calculus I**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.
- 2. Prof. Dr. C. Çinar, Prof. Dr. İ. Yalçınkaya, Prof. Dr. A. S. Kurbanlı, Prof. Dr. D. Şimşek, **Genel Matematik**, Dizgi Ofset, 2013.
- 3. Prof. Dr. İ. Yalçınkaya, **Analiz III Diziler ve Seriler,** Dizgi Ofset, 2017.
- 4. H. İ. Karakaş, **Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar,** ODTÜ yayınları, 2011.