Lecture: Heaps-1

Agenda

- Connect n ropes

- Heaps with inflementation

- Build min heap

- Merge n sorted arrays.

Ou Given n ropes with their length

cost of connecting 2 ropes = sum of length of both.
find min cost of connecting all ropes.

Overall cost = 43

Observation

Lets ory x < y < z

claim >> Always connect min length rope first.

Bruto force:

Time complexity: $n * n log n = O(n^2 log n)$

Improved idea

 $insert \longrightarrow$ $getMin() \longrightarrow$ $removeMin() \longrightarrow$

2 5	2	6	3
-----	---	---	---

Heap pata structure [Min or max value in optimal time

<u>structure</u>: complete binary tree.

Heap order property Parent has higher priority than its children.

Min heap \Rightarrow Parent must be smaller than its children.

Max heap \Rightarrow 11 11 larger 11 "

Implementation and visualisation

		~			_	-				10
3	5	10	6	8	12	13	10	12	15	11

Oth idx
$$\Rightarrow$$
 $lc = 2*0+1=1$
 $rc = 2*0+2=2$.

| let idx
$$\Rightarrow$$
 | lc = 2*|+1 = 3
 $yc = 2*1+2 = 4$

ith
$$idx \Rightarrow lc = 2i+1$$

$$xc = 2i+2.$$

 $parent = \frac{i-1}{2}$

Insertion [Up-heapity]

0	1	2	3	4	5	6	7	8
3	4	10	6	8	12	3	10	12

insert(2)

A[9] = 2
$$\Rightarrow 4$$

A[4] = 8
 $\Rightarrow 4$
 $\Rightarrow 4$
A(4) = 8
 $\Rightarrow 4$
 $\Rightarrow 4$

A[4] = 2
$$farent = \frac{4-1}{2} = 1$$

A[1] = 4

Swap (4 th idx, 1 st idx)

A[1] = 2
$$farent = \frac{1-1}{2} = 0$$

A[0] = 3
 $swap(1 st idn, 0 th idn)$

Pseudo corde

```
heap[];

heap·insert(val); // Insert val at last.

i = heap·size(i-1);

while ( i > 0) {

pi = \frac{i-1}{2};

if (heap [pi] > heap[i]) {

swap (heap·pi, i);

i = pi;

} else {

break;
```

Deleto minimum - Down heapify

Juap Othiax & last ide Delete last ide

A[0]
$$\begin{cases} 1c = 2 * b + 1 = 1 \\ 12 \end{cases}$$
 A[1] = 5
 $\begin{cases} 1c = 2 * b + 1 = 1 \\ 12 \end{cases}$ A[2] = 10
 $\begin{cases} 1c = 2 * b + 1 = 1 \\ 12 \end{cases}$ A[2] = 10

A[1]
$$\begin{cases}
1c = 2 * 1 + 1 = 3 \\
12
\end{cases}
A(3) = 6$$

$$xc = 2 * 1 + 2 = 4$$

$$xwap(A, 1, 3);$$

$$A(3) = \begin{cases} 2*3+1=7 \\ x(-2*3+2=8) \end{cases}$$

$$A(3) = \begin{cases} x(-2*3+2=8) \\ x(-2*3+2=8) \end{cases}$$

$$A(3) = \begin{cases} x(-2*3+2=8) \\ x(-2*3+2=8) \end{cases}$$

TC: O(logn)

 Qu
 Given arr(n) in any order. Create min heap. [Medium - hand]

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 7
 3
 5
 1
 6
 8
 10
 2
 13
 4
 -2

Bruteforce: Sort the array.

0	1	2	3	4	5	6	7	8	9	10
-2	1	2	3	4	5	6	7	8	10	13

TC: O(nlogn)

<u>Dry run</u>: Non-leaf nocles \Rightarrow $\begin{bmatrix} 4th - 0th \end{bmatrix}$

1) 4th idx
$$A[4] = 6$$
 2
 $1c = 2 * 4 + 1 = 9$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 = 10$
 $1c = 2 * 4 + 2 =$

2.)
$$3rd idx A(3) = 1$$

 $4c = 2*3+1=7 A(7) = 2$
 $rc = 2*3+2=8 A(8) = 13$
 $d0 \text{ not swap}$

3) 2nd idx
$$A[2]=5$$

 $\{c=2*2+1=5 \quad A[5]=8$
 $rc=2*2+2=6 \quad A[6]=10$
do not swap

Logic for
$$(i = \frac{n-1}{2}; i \ge 0; i - -)$$
 {

downheapify (i);

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} -2$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2$$

$$\begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 10 \end{bmatrix}$$

5) Oth idx
$$A[0] = 7$$

 $2c = 2 \times 0 + 1 = 1$ $A(1) = -2$
 $3c = 2 \times 0 + 2 = 2$ $A[2] = 5$
 $3c = 2 \times 0 + 2 = 2$

1 st idx
$$A(1) = 7$$

 $1c = 2 * 1 + 1 = 3$ $A(3) = 1$
 $5c = 2 * 1 + 2 = 4$ $A(4) = 3$
 $5w ap(1,3)$

$$3rdidx$$
. $A[3] = 7$
 $lc = 2*3+1 = 7$ $A[7] = 2$
 $rc = 2*3+2 = 8$ $A[8] = 13$
 $sup (3, 7)$

 $TC: O(n) \longrightarrow Amazon.$

Total ewaps
$$\Rightarrow \frac{n}{2} * 0 + \frac{n}{4} * 1 + \frac{n}{8} * 2 + \frac{n}{16} * 3 - \cdots$$

$$\frac{n}{2} \left[0 + \frac{1}{2} + \frac{2}{4} + \frac{3}{8} - \dots \right] = \frac{n}{2} * 2 = n$$

$$8 = 2$$

$$8 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \frac{5}{52} - \dots \qquad \bigcirc$$

$$\frac{1}{2}s = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \cdots$$

$$\frac{1}{1-x}$$

$$\frac{\$}{2} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}}$$

$$\frac{8}{2} = 1 \implies 8 = 2$$

Break: 8:46-8:56

Qu Merge n sorted arrays

$$\beta = \boxed{1 \quad 5 \quad 7 \quad 9}$$

$$C = \begin{bmatrix} 0 & 2 & 4 \end{bmatrix}$$

$$e = \begin{bmatrix} -2 & 5 & 10 & 20 \end{bmatrix}$$

output.	- 2	0	1	2	2	3	3	4	5	

Ida:	# of pointer
Merge 2 sorted arrays	2
Merge 3 sorted arrays	3
Merge 4 sorted arrays	4
Merge n sorted arrays	n

```
Approach
                                           min - heap
                                           2, 1 st. 0
              []
                    20
                 15
                                          1, 2nd, 0
                                          0,3×d.0
                                           3, 4th,0
                                         -2, oth,0
                                           5, 5th, 1.
                                           2 3 rd. 1
                                           5, 2nd-1
                                           3,1st,1
 output! -2,0,1,2,2
                                          4,3rd,2
                      TC: K * log(n) (Total el in all array)
                                             > = new Priority Queue(7();
                    _ priority avene (
Min heaf Java -
                                  heaf aad (); — Ollogn)
                                 heap peekl); ______O(1)
                                 theap policy; Octogn)
                            > = new prio rity Queue(> (Collection reverseorder));
     Priority Queue (
   Mar heap
```

Thankyou (i)

Doubts

Spotify

challeya — IB

*yz — IOM

abc — 2M

colc — 1.2B

name rollro

Student[] =

Ayuchil	(8,2)	(K1100)	U(3).