# **CS323 Compilers**

# Homework #2

Site Fan fanst2021@mail.sustech.edu.cn

You are required to complete three exercises related to the following two regular languages. The alphabet contains three symbols: a, b, c.

- 1.  $L(((\epsilon|ab)*c)*)$
- 2. L((a|b)\*a(b|c)(a|b|c))

#### Exercise 1

Design NFAs to recognize each of the above two regular languages. Is each of the NFAs designed by you also a DFA?

#### **Solution**

1.  $L(((\epsilon|ab)*c)*)$ 



2. L((a|b)\*a(b|c)(a|b|c))



Both are DFAs.

#### Exercise 2

Convert the above two regular expressions to NFAs using the Thompson's Construction Algorithm (Algorithm 3.23 in the dragon book). Please put down the detailed steps and  $\underline{\mathbf{DO\ NOT}}$  optimize the NFAs.

## Solution (1)

#### 1. Basic rules for $a, b, c, \varepsilon$ .



#### 2. Concatenate ab, then union with $\varepsilon$ .



## 3. Kleene closure for $(\varepsilon|ab)$ , then concatenate c.



# 4. Kleene closure for $((\varepsilon|ab)^*c)$ .



Now we get an NFA for regex #1.

# Solution (2)

1. Basic rules for a, b, c.



2. Union: (a|b), (b|c) and (a|b|c).



3. Kleene closure for (a|b).



4. Concatenate the 4 parts.



Now we get an NFA for regex #2.

#### Exercise 3

Convert the NFAs in Exercise 2 to DFAs using the Subset Construction Algorithm (Algorithm 3.20 in the dragon book). Please put down the detailed steps.

#### Solution (1)



- 1. Calculate the  $\varepsilon$ -closure for state 1 in NFA, iteratively add new DFA states.
  - \*Closures that equal to empty set are omitted.
  - $\varepsilon$ -closure(1)={1,2,3,4,5,6,7,9,10}=A
  - $\varepsilon$ -closure(Move(A, a))={11}=B
  - $\varepsilon$ -closure(Move(A, c))={2,3,4,5,6,7,8,9,10}=C
  - $\varepsilon$ -closure(Move(B, b))={3,4,5,6,7,10,12}=D
  - $\varepsilon$ -closure(Move(C, a))={11}=B
  - $\varepsilon$ -closure(Move(C, c))={2,3,4,5,6,7,8,9,10}=C
  - $\varepsilon$ -closure(Move(D, a))={11}=B
  - $\varepsilon$ -closure(Move(D, c))={2,3,4,5,6,7,8,9,10}=C

2. Calculate DFA transition table.

| State $S$ | $\varepsilon$ -closure(Move( $S, a$ )) | $\varepsilon$ -closure(Move( $S, b$ )) | $\varepsilon$ -closure(Move( $S, c$ )) |
|-----------|----------------------------------------|----------------------------------------|----------------------------------------|
| A         | В                                      | /                                      | С                                      |
| В         | /                                      | D                                      | /                                      |
| С         | В                                      | /                                      | С                                      |
| D         | В                                      | /                                      | С                                      |

3. Draw the DFA diagram.



4. (Extra) Here A,C are both accepting states since they contain state 9 of NFA, and they are equivalent therefore can be merged.



Solution(2)



#### 1. Calculate the $\varepsilon$ -closure for state 1 in NFA, iteratively add new DFA states.

\*Closures that equal to empty set are omitted.

- $\varepsilon$ -closure(1)={1,2,3,6,20}=A
- $\varepsilon$ -closure(Move(A,a))={2,3,4,5,6,7,8,18,20}=B
- $\varepsilon$ -closure(Move(A,b))={2,3,5,6,20,21}=C
- $\varepsilon$ -closure(Move(B,a))={2,3,4,5,6,7,8,18,20}=B
- $\varepsilon$ -closure(Move(B,b))={2,3,5,6,9,10,11,14,16,20,21}=D
- $\varepsilon$ -closure(Move(B,c))={10,11,14,16,19}=E
- $\varepsilon$ -closure(Move(C,a))={2,3,4,5,6,7,8,18,20}=B
- $\varepsilon$ -closure(Move(C,b))={2,3,5,6,20,21}=C
- $\varepsilon$ -closure(Move(D,a))={2,3,4,5,6,7,8,12,13,18,20}=F
- $\varepsilon$ -closure(Move(D,b))={2,3,5,6,13,15,20,21}=G
- $\varepsilon$ -closure(Move(D,c))={13,17}=H
- $\varepsilon$ -closure(Move(E,a))={12,13}=I
- $\varepsilon$ -closure(Move(E,b))={13,15}=J
- $\varepsilon$ -closure(Move(E,c))={13,17}=H
- $\varepsilon$ -closure(Move(F,a))={2,3,4,5,6,7,8,18,20}=B
- $\varepsilon$ -closure(Move(F,b))={2,3,5,6,9,10,11,14,16,20,21}=D
- $\varepsilon$ -closure(Move(F,c))={10,11,14,16,19}=E
- $\varepsilon$ -closure(Move(G,a))={2,3,4,5,6,7,8,18,20}=B
- $\varepsilon$ -closure(Move(G,b))={2,3,5,6,20,21}=C
- 2. Calculate DFA transition table.

| State $S$ | $\varepsilon$ -closure(Move( $S, a$ )) | $\varepsilon$ -closure(Move( $S, b$ )) | $\varepsilon$ -closure(Move( $S, c$ )) |
|-----------|----------------------------------------|----------------------------------------|----------------------------------------|
| A         | В                                      | С                                      | /                                      |
| В         | В                                      | D                                      | E                                      |
| С         | В                                      | С                                      | /                                      |
| D         | F                                      | G                                      | Н                                      |
| Е         | I                                      | J                                      | Н                                      |
| F         | В                                      | D                                      | E                                      |
| G         | В                                      | С                                      | /                                      |
| Н         | /                                      | /                                      | /                                      |
| I         | /                                      | /                                      | /                                      |
| J         | /                                      | /                                      | /                                      |

## 3. Draw the DFA Diagram.

Here F, G, H, I, J are both accepting states since they contain state 13 of NFA  $\,$ 

