MATH 327 Homework 7

Jaiden Atterbury

2024-05-15

Note: When I say something like Theorem/Definition 1.1.1, I mean, lecture 1 page 1 part 1 of the given definition or theorem. Furthermore, when I say something like Homework 1.1.1, I mean, homework 1, exercise 1, problem 1.

Exercise 1. Let f be a continuous function on \mathbb{R} such that $\lim_{x\to\infty} f(x) = L^+$ and $\lim_{x\to-\infty} f(x) = L^-$. Prove that for any real c between L^+ and L^- , there exists $x\in\mathbb{R}$ such that f(x)=c.

Proof: Let f be a continuous function on \mathbb{R} such that $\lim_{x\to\infty} f(x) = L^+$ and $\lim_{x\to-\infty} f(x) = L^-$. Since $\lim_{x\to\infty} f(x) = L^+$, for all $\epsilon^+ > 0$, there exists an N^+ , such that, if $x > N^+$, then $|f(x) - L^+| < \epsilon^+$, which implies that $L^+ - \epsilon^+ < f(x) < L^+ + \epsilon^+$. Similarly, since $\lim_{x\to-\infty} f(x) = L^-$, for all $\epsilon^- > 0$, there exists an N^- , such that, if $x < N^-$, then $|f(x) - L^-| < \epsilon^-$, which implies that $L^- - \epsilon^- < f(x) < L^- + \epsilon^-$.

Now, consider the three cases: $L^- < L^+$, $L^- = L^+$, and $L^- > L^+$. When $L^- = L^+$, the theorem doesn't hold (take the function $f(x) = e^{-x^2}$ for example), thus we only have the cases $L^- < L^+$ and $L^- > L^+$. However, as noted in office hours, when $L^- > L^+$, we can work with -f(x) and then we will be in the setting where $L^- < L^+$ (we can do this because the x that makes -f(x) = -c is the same x that makes f(x) = c). Therefore, without loss of generality, we can assume that $L^- < L^+$.

Since we are assuming without loss of generality that $L^- < L^+$, then we must now pick a $c \in \mathbb{R}$, such that, c is between L^- and L^+ . More concretely, we pick a $c \in \mathbb{R}$, such that, $L^- < c < L^+$. Since $L^+ > c$, this implies that $L^+ - c > 0$. Now, since $\lim_{x \to \infty} f(x) = L^+$, for $\epsilon^+ = L^+ - c > 0$, there exists an N^+ , such that, if $x > N^+$, then $|f(x) - L^+| < L^+ - c$, which implies that $L^+ - L^+ + c < f(x) < L^+ + L^+ - c$, and hence we can see that c < f(x). Similarly, since $L^- < c$, this implies that $0 < c - L^-$. Now, since $\lim_{x \to -\infty} f(x) = L^-$, for all $\epsilon^- = c - L^- > 0$, there exists an N^- , such that, if $x < N^-$, then $|f(x) - L^-| < \epsilon^-$, which implies that $L^- - c + L^- < f(x) < L^- + c - L^-$, and hence we can see that f(x) < c.

Now, pick $a \in \mathbb{R}$, such that, $a < N^-$, then from the above derivations $f(a) < L^- + \epsilon^- = c$. Similarly, pick $b \in \mathbb{R}$, such that, $b > N^+$, then from the above derivations $f(b) > L^+ - \epsilon^+ = c$. Furthermore, since f is continuous on \mathbb{R} , it is continuous on the closed and bounded interval [a,b]. Therefore, by the Intermediate Value Theorem, there exists an $x \in [a,b]$, such that, f(x) = c. Thus, since we assumed without loss of generality that $L^- < L^+$, it follows that, for all $c \in \mathbb{R}$ between L^- and L^+ , there exists an $x \in \mathbb{R}$ such that f(x) = c. \square

Exercise 2. Prove that if f is a continuous and positive function on [0,1], then there exists $\delta > 0$ such that $f(x) > \delta$ for any $x \in [0,1]$.

Proof: Let f be a continuous and positive function on [0,1]. Since f is continuous on a closed and bounded interval, that interval being [0,1], it follows from the proof of the extreme value theorem that f is bounded. However, the above fact isn't entirely needed, since we already know that f(x) is positive on [0,1], and this implies that f(x) > 0 for all $x \in [0,1]$. Since f(x) > 0 for all $x \in [0,1]$, it follows that 0 is a lower bound for the set of images $\{f(x):x\in[0,1]\}$. Therefore, by the extreme value theorem, since $\{f(x):x\in[0,1]\}$ is bounded below, if the greatest lower bound of this set is m>0, then there exists an $x_m\in[0,1]$ such that $f(x_m)=m$. Furthermore, the extreme value theorem also states that m is the minimum of f on the interval [0,1], which implies that, for all x, $f(x) \ge m$. Since for all $x \in [0,1]$, we have that $f(x) \ge m > 0$, if we take $\delta = \frac{m}{2} > 0$, then since $1 > \frac{1}{2} > 0$, this implies that $m > \frac{m}{2} > 0$, and hence, for all $x \in [0,1]$, $f(x) > \delta = \frac{m}{2} > 0$. Therefore, in conclusion, if f is a continuous and positive function on [0,1], then taking $\delta = \frac{m}{2}$, where m is the greatest lower bound of f on [0,1], then for all $x \in [0,1]$, we have that $f(x) > \delta$. \square

Exercise 3

1. Let a > 0 be a positive real number. Is the function f(x) = 1/x uniformly continuous on $[a, \infty)$? Justify your answer.

If we let a > 0 be a positive real number, then the function f(x) = 1/x is uniformly continuous on $[a, \infty)$. We will prove this claim below.

Proof: Let $\epsilon > 0$. Choose $\delta = a^2 \epsilon$, where a > 0. Then $\forall x,y \in [a,\infty)$ with $|x-y| < \delta$, we must show that $|f(x) - f(y)| < \epsilon$, where $f(x) = \frac{1}{x}$. Consider f(x) - f(y), since $f(x) = \frac{1}{x}$, this implies that $f(y) = \frac{1}{y}$. Thus we can see that $f(x) - f(y) = \frac{1}{x} - \frac{1}{y} = \frac{y-x}{xy}$. Since $x \geq a > 0$ and $y \geq a > 0$, it follows that $|f(x) - f(y)| = \frac{|y-x|}{xy} = \frac{|x-y|}{xy}$. Again, since $x \geq a > 0$ and $y \geq a > 0$, it follows that $0 < \frac{1}{x} \leq \frac{1}{a}$ and $0 < \frac{1}{y} \leq \frac{1}{a}$, and hence $0 < \frac{1}{xy} \leq \frac{1}{a^2}$. Since we supposed that $|x-y| < \delta$ and found that $0 < \frac{1}{xy} \leq \frac{1}{a^2}$, we can see that $|f(x) - f(y)| = \frac{|x-y|}{xy} \leq \frac{|x-y|}{a^2} < \frac{\delta}{a^2} = \frac{a^2\epsilon}{a^2} = \epsilon$. Thus, we can see that $|f(x) - f(y)| < \epsilon$. Hence, in conclusion, for all $\epsilon > 0$, there exists a $\delta = a^2\epsilon$, such that, $\forall x, y \in [a, \infty)$ with $|x-y| < \delta$, then $|1/x - 1/y| < \epsilon$. Thus we have shown that f(x) = 1/x is uniformly continuous on $[a, \infty)$. \square

2. Is f(x) = 1/x uniformly continuous on $(0, \infty)$?

The function f(x) = 1/x is not uniformly continuous on $(0, \infty)$. We will prove this claim below. Furthermore, since I found proofs using two different methods, I will showcase both of them.

Proof 1: Since the claim is that the function f(x)=1/x is not uniformly continuous on $(0,\infty)$, then by the negation of the definition of uniform continuity, we must show that there exists an $\epsilon>0$, such that, for all $\delta>0$, there exists $x,y\in(0,\infty)$ that satisfy $|x-y|<\delta$, but $|f(x)-f(y)|\geq\epsilon$. Since we only have to show that there exists a single $\epsilon>0$ such that the above result holds, we will choose $\epsilon=1$. Now, for all $\delta>0$, we must show that there exists $x,y\in(0,\infty)$ that satisfies $|x-y|<\delta$, but has that $|f(x)-f(y)|\geq\epsilon$. Choose $x=\min(\delta,1)$, and $y=\frac{x}{2}$. Hence, since $\delta>0$ and 1>0, we can see that x>0 and y>0, and thus $x,y\in(0,\infty)$. Furthermore, since $x=\min(\delta,1)$, this implies that $x\leq\delta$, which means that $|x-y|=|x-\frac{x}{2}|=|\frac{x}{2}|\leq\frac{\delta}{2}<\delta$. Therefore, we can see that $|x-y|<\delta$. Lastly, since $f(x)=\frac{1}{x}$ and $f(y)=\frac{1}{y}$, we can see that $|f(x)-f(y)|=|\frac{1}{x}-\frac{1}{y}|=|\frac{1}{x}-\frac{2}{x}|=|\frac{-1}{x}|=\frac{1}{x}$. However, since $x=\min(\delta,1)$, this implies that $x\leq1$, which means that $\frac{1}{x}\geq\frac{1}{1}=1$. Therefore, we can see that $|f(x)-f(y)|=\frac{1}{x}\geq1$. In conclusion, we have found for $\epsilon=1>0$ that, for all $\delta>0$, there exists an $x=\min(\delta,1)$ and $y=\frac{x}{2}$ in $(0,\infty)$, such that $|x-y|<\delta$, but $|f(x)-f(y)|\geq\epsilon=1$. The preceding line is exactly the definition that shows that the function f(x)=1/x is not uniformly continuous on $(0,\infty)$. \square

Proof 2: Since the claim is that the function f(x)=1/x is not uniformly continuous on $(0,\infty)$, then by the negation of the definition of uniform continuity (sequence version), it follows that we must find two sequences u_n and v_n on $(0,\infty)$, such that, $\lim_{n\to\infty}(u_n-v_n)=0$, but $\lim_{n\to\infty}(f(u_n)-f(v_n))\neq 0$. Conveniently, since $I=(0,\infty)$, this implies that all of the natural numbers are in I. Thus, if we define $\forall n\in\mathbb{N},\ u_n=\frac{1}{2n}$ and $v_n=\frac{1}{n}$, then we can see from Theorem 24.1 and Theorem 26.1 that $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{2n}=0$ and $\lim_{n\to\infty}v_n=\lim_{n\to\infty}\frac{1}{n}=0$. Furthermore, since the limits are finite, we can use Theorem 24.2 and see that $\lim_{n\to\infty}(u_n-v_n)=\lim_{n\to\infty}u_n-\lim_{n\to\infty}v_n=0-0=0$. Now, since $f(x)=\frac{1}{x}$, it follows that $f(u_n)=\frac{1}{1/2n}=2n$ and $f(v_n)=\frac{1}{1/n}=n$, which implies that $f(u_n)-f(v_n)=2n-n=n$. Therefore, using Theorem 32.1, we can see that $\lim_{n\to\infty}(f(u_n)-f(v_n))=\lim_{n\to\infty}n=+\infty\neq 0$. In conclusion, we defined the sequences $u_n=\frac{1}{2n}$ and $v_n=\frac{1}{n}$ on $(0,\infty)$, such that $\lim_{n\to\infty}(u_n-v_n)=0$, but $\lim_{n\to\infty}(f(u_n)-f(v_n))\neq 0$. Therefore, by definition, the function f(x)=1/x is not uniformly continuous on $(0,\infty)$. \square

Exercise 4. Prove that the function $f(x) = \sqrt{x}$ is uniformly continuous on the interval $[3, \infty)$. Since I have found two simple proofs that each use a different δ value, I will showcase them both below.

Proof 1: Let $\epsilon>0$. Choose $\delta=2\sqrt{3}\epsilon$. Then $\forall x,y\in[3,\infty)$ with $|x-y|<\delta$, we must show that $|f(x)-f(y)|<\epsilon$, where $f(x)=\sqrt{x}$. Consider f(x)-f(y), since $f(x)=\sqrt{x}$, this implies that $f(y)=\sqrt{y}$. Thus we can see that $f(x)-f(y)=\sqrt{x}-\sqrt{y}=\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}+\sqrt{y}}=\frac{x-y}{\sqrt{x}+\sqrt{y}}$. Since $x\geq 3$ and $y\geq 3$, this implies that $\sqrt{x}\geq\sqrt{3}>0$ and $\sqrt{y}\geq\sqrt{3}>0$, and therefore it follows that $|f(x)-f(y)|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}$. Furthermore, since it was shown above that $\sqrt{x}\geq\sqrt{3}>0$ and $\sqrt{y}\geq\sqrt{3}>0$, this implies that $\sqrt{x}+\sqrt{y}\geq\sqrt{3}+\sqrt{3}=2\sqrt{3}$. Hence we can see that $\frac{1}{\sqrt{x}+\sqrt{y}}\leq\frac{1}{2\sqrt{3}}$. Since we supposed that $|x-y|<\delta$ and found that $\frac{1}{\sqrt{x}+\sqrt{y}}\leq\frac{1}{2\sqrt{3}}$, we can see that $|f(x)-f(y)|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}}\leq\frac{|x-y|}{2\sqrt{3}}<\frac{\delta}{2\sqrt{3}}=\frac{2\sqrt{3}\epsilon}{2\sqrt{3}}=\epsilon$. Thus, we can see that $|f(x)-f(y)|<\epsilon$. Hence, in conclusion, for all $\epsilon>0$, there exists a $\delta=2\sqrt{3}\epsilon$, such that, $\forall x,y\in[3,\infty)$ with $|x-y|<\delta$, then $|\sqrt{x}-\sqrt{y}|<\epsilon$. Thus we have shown that $f(x)=\sqrt{x}$ is uniformly continuous on $[3,\infty)$. \square

Proof 2: Let $\epsilon > 0$. Choose $\delta = \epsilon$. Then $\forall x,y \in [3,\infty)$ with $|x-y| < \delta$, we must show that $|f(x)-f(y)| < \epsilon$, where $f(x) = \sqrt{x}$. Consider f(x) - f(y), since $f(x) = \sqrt{x}$, this implies that $f(y) = \sqrt{y}$. Thus we can see that $f(x) - f(y) = \sqrt{x} - \sqrt{y} = \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} + \sqrt{y}} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$. Since $x \ge 3$ and $y \ge 3$, this implies that $\sqrt{x} \ge \sqrt{3} > 0$ and $\sqrt{y} \ge \sqrt{3} > 0$, and therefore it follows that $|f(x) - f(y)| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}$. Furthermore, since it was shown above that $\sqrt{x} \ge \sqrt{3} > 0$ and $\sqrt{y} \ge \sqrt{3} > 0$, this implies that $\sqrt{x} + \sqrt{y} \ge \sqrt{3} + \sqrt{3} = 2\sqrt{3} > 1$. Hence we can see that $\frac{1}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2\sqrt{3}} < 1$. Since we supposed that $|x - y| < \delta$ and found that $\frac{1}{\sqrt{x} + \sqrt{y}} < 1$, we can see that $|f(x) - f(y)| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le |x - y| < \delta = \epsilon$. Thus, we can see that $|f(x) - f(y)| < \epsilon$. Hence, in conclusion, for all $\epsilon > 0$, there exists a $\delta = \epsilon$, such that, $\forall x, y \in [3, \infty)$ with $|x - y| < \delta$, then $|\sqrt{x} - \sqrt{y}| < \epsilon$. Thus we have shown that $f(x) = \sqrt{x}$ is uniformly continuous on $[3, \infty)$. \square

Exercise 5. Let f be a uniformly continuous function on an interval I. Let g be a uniformly continuous function on an interval J. Assume that $f(I) \subset J$. Prove that the composition g(f(x)) is a uniformly continuous function on I. Remark: f(I) is the set of all the images of elements of $I: f(I) = \{f(x), x \in I\}$.

Proof: Let $\epsilon > 0$. Since g is a uniformly continuous function on J, for all $\epsilon_g > 0$, there exists a $\delta_g > 0$, such that, for all $a,b \in J$ satisfying $|a-b| < \delta_g$, then $|g(a)-g(b)| < \epsilon_g$. Since this holds for all ϵ_g , take $\epsilon_g = \epsilon > 0$. Then, there exists a $\delta_g > 0$, such that, for all $a,b \in J$ satisfying $|a-b| < \delta_g$, then $|g(a)-g(b)| < \epsilon$. Furthermore, since f is a uniformly continuous function on I, for all $\epsilon_f > 0$, there exists a $\delta_f > 0$, such that, for all $x,y \in I$ satisfying $|x-y| < \delta_f$, then $|f(x)-f(y)| < \epsilon_f$. Since this holds for all ϵ_f , take $\epsilon_f = \delta_g > 0$. Then, there exists a $\delta_f > 0$, such that, for all $x,y \in I$ satisfying $|x-y| < \delta_f$, then $|f(x)-f(y)| < \delta_g$. However, since $f(I) \subset J$, it follows that $f(x), f(y) \in J$. Therefore, f(x) and f(y) are elements in J such that $|f(x)-f(y)| < \delta_g$, and hence $|g(f(x))-g(f(y))| < \epsilon$. Therefore, for all $\epsilon > 0$, there exists a $\delta = \delta_f$, such that, for all $x,y \in I$ satisfying $|x-y| < \delta$, then $|g(f(x))-g(f(y))| < \epsilon$. Thus we have shown that g(f(x)) is a uniformly continuous function on I. \square