Automata Theory CS411-2015F-11 Turing Machines

David Galles

Department of Computer Science University of San Francisco

11-0: Turing Machines

- Machines so far (DFA, PDA) read input only once
- Next: Turing Machines
 - Can back up over the input
 - Can overwrite the input

11-1: Turing Machines

Input string is written on a tape:

- At each step, machine reads a symbol, and then either
 - Writes a new symbol
 - Moves read/write head to right
 - Moves read/write head to left

11-2: Turing Machines

- A Turing Machine $M = (K, \Sigma, \delta, s, H)$
 - K is a set of states
 - Σ is the tape alphabet
 - $s \in K$ is the start state
 - $H \subset K$ are "Halting states" y for accept, and n for reject
 - $\delta: (K-H) \times \Sigma \mapsto K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$

11-3: Turing Machines

- TM for $L = \{0^n 1^n : n > 0\}$
- Idea:
 - Mark off first 0, go to end of string and mark off last one (ensuring that the string starts with 0 and ends with 1
 - Repeat until all characters have been morked off
 - Make sure # of 0s match the # if 1s.

11-4: Turing Machines

TM for $L = \{0^n 1^n : n > 0\}$

	0	1	Ш	X	$oxed{Z}$
q_0	(q_1, X)	(n,1)	(n,\sqcup)	(n,X)	(y,Z)
q_1	(q_1, \rightarrow)	(q_1, \rightarrow)	(q_2, \leftarrow)	(q_1, \rightarrow)	(q_2, \leftarrow)
q_2	(n,0)	(q_3, Z)	(n,\sqcup)	(n,X)	(n,Z)
q_3	(q_3, \leftarrow)	(q_3, \leftarrow)	(n,\sqcup)	(q_0, \rightarrow)	(q_3, \leftarrow)

11-5: Turing Machines

TM for $L = \{0^n 1^n : n > 0\}$

	0	1	Ш	X	$oxed{Z}$
q_0	(q_1, X)	no	no	no	yes
q_1	(q_1, \rightarrow)	(q_1, \rightarrow)	(q_2, \leftarrow)	(q_1, \rightarrow)	(q_2, \leftarrow)
q_2	no	(q_3, Z)	no	no	no
q_3	(q_3, \leftarrow)	(q_3, \leftarrow)	no	(q_0, \rightarrow)	(q_3, \leftarrow)

11-6: Turing Machines

TM for
$$L = \{0^n 1^n 2^n : n > 0\}$$

11-7: Turing Machines

TM for $L = \{0^n 1^n 2^n : n > 0\}$

	0	1	2	Ш	X	Y	Z
q_0	(q_1, X)	no	no	no	no	(q_4, \rightarrow)	no
q_1	(q_1, \rightarrow)	(q_2, Y)	no	no	(q_1, \rightarrow)	(q_1, \rightarrow)	no
q_2	no	(q_2, \rightarrow)	(q_3, Z)	no	no	(q_2, \rightarrow)	(q_2, \rightarrow)
q_3	(q_3, \leftarrow)	(q_3, \leftarrow)	(q_3, \leftarrow)	no	(q_0, \rightarrow)	(q_3, \leftarrow)	(q_3, \leftarrow)
q_4	no	no	no	yes	(q_4, \rightarrow)	(q_4, \rightarrow)	(q_4, \rightarrow)

11-8: Turing Machines

TM for $L = \{ww^R : w \in \{a, b\}^*\}$

11-9: Turing Machines

TM for $L = \{ww^R : w \in \{a, b\}^*\}$ XZa b $\| (q_1, X) | (q_4, X)$ yes q_0 yes no $(q_1, \rightarrow) \mid (q_2, \leftarrow)$ $(q_1, \xrightarrow{})$ (q_2, \leftarrow) q_1 (q_1, \rightarrow) (q_3, Z) q_2 no no no no $(q_3, \overline{\leftarrow})$ (q_3,\leftarrow) (q_0, \rightarrow) q_3 (q_3, \leftarrow) no (q_4, \rightarrow) (q_5, \leftarrow) $|(q_5,\leftarrow)$ (q_4, \rightarrow) (q_4, \rightarrow) q_4 (q_3, Z) q_2 no no no no

11-10: Turing Machine Diagrams

- "Table Notation" for Turing Machines can be difficult to read
- Define small machines, use them to build larger machines
 - Not changing the definition of a TM, just using a more convenient notation

11-11: Turing Machine Diagrams

- Writing machines: $M_a = (K, \Sigma, \delta, s, H)$
 - $K = \{s, h\}$
 - \bullet s=s
 - $H = \{h\}$
 - $\delta = \{((s,b),(h,a)) : \forall b \in \Sigma$
- Writes an 'a' on the tape, and then halts.

11-12: Turing Machine Diagrams

- Moving Machines: $M_{\leftarrow} = (K, \Sigma, \delta, s, H)$
 - $K = \{s, h\}$
 - \bullet s=s
 - $H = \{h\}$
 - $\delta = \{((s,b),(\overline{h,\leftarrow})) : \forall b \in \Sigma\}$
- Moves the head to the left, and then halts.

11-13: Turing Machine Diagrams

Connecting Diagrams:

- Run M_1 until it halts, and then examine the symbol under the read/write head
 - If the symbol is an 'a', execute M_2 until it halts
 - If the symbol is a 'b', execute M_3 until it halts

11-14: Turing Machine Diagrams

Connecting Diagrams:

$$M_1 \xrightarrow{a,b,c} M_2$$

$$M_1 \longrightarrow M_2 = M_1 \longrightarrow M_2$$

11-15: Turing Machine Diagrams

- Shorthand:
 - $M_a = a$
 - ullet $M_{\leftarrow}=L$
 - $M_{\rightarrow} = R$
 - $R \to R \to a \to = RRa = R^2a$

=

$$\mathbf{R}$$
 $\mathbf{x} = \mathbf{I}$

 R_{L}

$$\mathbf{R}$$
 $\mathbf{X} = \mathbf{R}$

=

 $m R_{\square}$

11-16: Turing Machine Diagrams

- Shift-right machine
 - Convert $\triangleright \underline{\sqcup} w$ to $\triangleright \underline{\sqcup} \underline{w}$

11-17: Turing Machine Diagrams

- Shift-right machine
 - Convert $\triangleright \sqcup w$ to $\triangleright \sqcup \sqcup w$

11-18: Turing Machine Diagrams

- Copy machine
 - Convert $\triangleright \underline{\sqcup} w$ to $\triangleright \underline{\sqcup} w \sqcup w$

11-19: Turing Machine Diagrams

- Copy machine
 - Convert $\triangleright \sqcup w$ to $\triangleright \sqcup w \sqcup w$

11-20: Turing Machine Diagrams

- Shift-left machine
 - Convert $\underline{\sqcup} w$ to $w\underline{\sqcup}$

11-21: Turing Machine Diagrams

- Shift-left machine
 - Convert $\underline{\sqcup}w$ to $w\underline{\sqcup}$

11-22: Turing Machine Diagrams

- Copy machine (part II)
 - Convert $\triangleright \sqcup w$ to $\triangleright \sqcup ww$
 - (Using other machines)

11-23: Turing Machine Diagrams

- Copy machine (part II)
 - Convert ⊳<u>□</u>w to ⊳<u>□</u>ww

$$M_{COPY} \longrightarrow R_{\square} \longrightarrow M_{LEFT-SHIFT} \longrightarrow L_{\square}$$

11-24: Turing Machine Diagrams

- Successor
 - Convert $\triangleright \underline{\sqcup} w$ (where w is the binary representation of an integer) to $\triangleright \underline{\sqcup} v$ (where v is the binary representation of (w+1)

```
\triangleright \underline{\sqcup} 11011 \Rightarrow \triangleright \underline{\sqcup} 11100\triangleright \underline{\sqcup} 1111 \Rightarrow \triangleright \underline{\sqcup} 10000
```

11-25: Turing Machine Diagrams

- Successor
 - Convert $\triangleright \underline{\sqcup} w$ (where w is the binary representation of an integer) to $\triangleright \underline{\sqcup} v$ (where v is the binary representation of (w+1)

11-26: Turing Machine Diagrams

- Predecessor
 - Convert $\triangleright \underline{\sqcup} w$ (where w is the binary representation of an integer) to $\triangleright \underline{\sqcup} v$ (where v is the binary representation of (w-1)

```
\triangleright \underline{\sqcup} 11100 \Rightarrow \triangleright \underline{\sqcup} 11011\triangleright \underline{\sqcup} 1111 \Rightarrow \triangleright \underline{\sqcup} 10000
```

11-27: Turing Machine Diagrams

- Predecessor
 - Convert $\triangleright \underline{\sqcup} w$ (where w is the binary representation of an integer) to $\triangleright \underline{\sqcup} v$ (where v is the binary representation of (w-1)

11-28: Turing Machine Diagrams

- Add
 - Convert $\triangleright \underline{\sqcup} w$; v to $\triangleright \underline{\sqcup} w + v$
 - (first, convert to $\triangleright \underline{\sqcup} 0 \dots 0; \overline{w+v}$)

11-29: Turing Machine Diagrams

- Add
 - Convert $\triangleright \sqcup w$; v to $\triangleright \sqcup w + v$
 - (first, convert to $\triangleright \underline{\sqcup} 0 \dots 0; w + v$)

(note – need to change M_{SUCC} so that it expects a ; instead of a \square at the beginning of the string)

11-30: Turing Machine Diagrams

- Add
 - Convert $\triangleright \underline{\sqcup} w$; v to $\triangleright \underline{\sqcup} w + v$
 - (first, convert to $\triangleright \underline{\sqcup} 0 \dots 0; w + v$)

11-31: Turing Machine Diagrams

• Covert $\triangleright \underline{\sqcup} 0 \dots 0; w$ to $\triangleright \underline{\sqcup} w$, where $w \in \{0, 1\}$

11-32: Turing Machine Diagrams

• Covert $\triangleright \underline{\sqcup} 0 \dots 0; w$ to $\triangleright \underline{\sqcup} w$, where $w \in \{0, 1\}$

11-33: Turing Machine Diagrams

• Add: Convert $\triangleright \underline{\sqcup} w; v \text{ to } \overline{\triangleright \underline{\sqcup} w + v}$

11-34: Turing Machine Diagrams

- We can add "yes" and "no" machines to our diagrams for machines that accept and reject strings
- Diagram for a Turing Machine that accepts the language $L = \{0^{2n} : n \ge 0\}$

11-35: Turing Machine Diagrams

- We can add "yes" and "no" machines to our diagrams for machines that accept and reject strings
- Diagram for a Turing Machine that accepts the language $L = \{0^{2n} : n \ge 0\}$

11-36: Turing Machine Diagrams

• Diagram for a Turing Machine that accepts the language $L = \{a^{2^n} : n \ge 0\}$

11-37: Turing Machine Diagrams

- Diagram for a Turing Machine that accepts the language $L = \{a^{2^n} : n \ge 0\}$
- First: Write a TM that doubles a string of A's (converts $w=A^n$ to $w'=A^{2n}$
 - (Can use other tape symbols if desired)

11-38: Turing Machine Diagrams

• Write a TM that doubles a string of A's (converts $w=A^n$ to $W=A^{2n}$

11-39: Turing Machine Diagrams

• Given a machine that converts $w = A^n$ to $w' = A^{2n}$, how can we accept the language $L = \{a^{2^n} : n \ge 0\}$?

11-40: Turing Machine Diagrams

- Given a machine that converts $w=A^n$ to $w'=A^{2n}$, how can we accept the language $L=\{a^{2^n}:n\geq 0\}$?
 - Check if the string is a. If so, accept.
 - Otherwise, overwrite the first a with an A.
 - Repeat:
 - Doulble the # of A's if a \sqcup is overwritten in this process, halt and reject
 - After doubling, check to see if the next symbol is a \sqcup . If so, halt and accept

11-41: Turing Machine Diagrams

• Diagram for a Turing Machine that accepts the language $L = \{a^{2^n} : n \ge 0\}$

11-42: Non-Halting TMs

 It is possible to create a Turing Machine that does not halt

 It is possible to create a Turing Machine that only halts on some inputs

$$ightharpoonup R_a
ightharpoonup yes$$

11-43: Deciding TM

- A Turing Machine M Decides a language L if:
 - *M* halts on all inputs
 - M accepts all strings $w \in L$
 - M rejects all strings $w \not\in L$
- We've already seen an example of Turing machines that decide languages (a^{2n}, a^{2^n})

11-44: Semi-Deciding TM

- A Turing Machine M Semi-Decides a language L if:
 - M halts on all strings $w \in L$
 - M accepts all strings $w \in L$
 - M runs forever on all strings $w \not\in L$
- TM that semi-decides L= all strings over $\{a,b\}$ that contain the substring aa

11-45: Semi-Deciding TM

- A Turing Machine M Semi-Decides a language L if:
 - M halts on all strings $w \in L$
 - M accepts all strings $w \in L$
 - M runs forever on all strings $w \not\in L$
- TM that semi-decides L= all strings over $\{a,b\}$ that contain the substring aa

11-46: Recursive Languages

- The Recursive Languages is the set of all languages that are decided by some Turing Machine
 - $L_{REC} = \{L: \exists \text{ Turing machine } M, M \text{ decides } L\}$
- Is L_{REC} closed under complementation?
 - That is, if $L \in L_{REC}$, must $\overline{L} \in L_{REC}$?

11-47: Recursive Languages

- The Recursive Languages is the set of all languages that are decided by some Turing Machine
 - $L_{REC} = \{L: \exists \text{ Turing machine } M, M \text{ decides } L\}$
- L_{REC} is closed under complementation?
 - $L \in L_{REC} \implies \overline{L} \in L_{REC}$ (flip yes/no states)

11-48: r.e. Languages

- The Recursively Enumerable (r.e.) Languages is the set of all languages that are semi-decided by some Turing Machine
 - $L_{re} = \{L : \exists \text{ Turing machine } M, M \text{ semi-decides } L\}$
- Is $L_{REC} \subseteq L_{re}$?

11-49: r.e. Languages

- The Recursively Enumerable (r.e.) Languages is the set of all languages that are semi-decided by some Turing Machine
 - $L_{re} = \{L : \exists \text{ Turing machine } M, M \text{ semi-decides } L\}$
- ullet Is $L_{REC}\subseteq L_{re}$
 - Replace "no" states with non-halting machine

11-50: r.e. Languages

- The Recursively Enumerable (r.e.) Languages is the set of all languages that are semi-decided by some Turing Machine
 - $L_{re} = \{L : \exists \text{ Turing machine } M, M \text{ semi-decides } L\}$
- ullet Is $L_{re}
 ot \subseteq L_{REC}$
 - More on this later ...