auto_mob

March 29, 2023

1 Describing Automobile Data && Finding Missing Values

1.1 By: Stevemats

```
[2]: import pandas as pd
[]:
[]:
    Source data => https://www.kaggle.com/datasets/a165079/automobilecsv
[3]: df = pd.read_csv("./Automobile_data.csv")
[]:
    printing data types of each column
[4]: print(df.dtypes)
    symboling
                            int64
    normalized-losses
                           object
    make
                           object
    fuel-type
                           object
    aspiration
                           object
    num-of-doors
                           object
    body-style
                           object
    drive-wheels
                           object
    engine-location
                           object
    wheel-base
                          float64
    length
                          float64
    width
                          float64
                          float64
    height
    curb-weight
                            int64
    engine-type
                           object
    num-of-cylinders
                           object
    engine-size
                            int64
    fuel-system
                           object
                           object
    bore
    stroke
                           object
```

compression-ratio float64
horsepower object
peak-rpm object
city-mpg int64
highway-mpg int64
price object

dtype: object

[]:

now describing data & finding missing values

[5]: print(df.describe())

	symboling	wheel-base	length	wid	th heig	ht \
count	205.000000	205.000000	205.000000	205.0000	_	
mean	0.834146	98.756585	174.049268	65.9078	05 53.7248	78
std	1.245307	6.021776	12.337289	2.1452	04 2.4435	22
min	-2.000000	86.600000	141.100000	60.3000	00 47.8000	00
25%	0.000000	94.500000	166.300000	64.1000	00 52.0000	00
50%	1.000000	97.000000	173.200000	65.5000	00 54.1000	00
75%	2.000000	102.400000	183.100000	66.9000	00 55.5000	00
max	3.000000	120.900000	208.100000	72.3000	00 59.8000	00
	curb-weight	engine-size	e compressi	on-ratio	city-mpg	highway-mpg
count	205.000000	205.00000	0 20	5.000000	205.000000	205.000000
mean	2555.565854	126.90731	7 1	0.142537	25.219512	30.751220
std	520.680204	41.64269	3	3.972040	6.542142	6.886443
min	1488.000000	61.00000	0	7.000000	13.000000	16.000000
25%	2145.000000	97.00000	0	8.600000	19.000000	25.000000
50%	2414.000000	120.00000	0	9.000000	24.000000	30.000000
75%	2935.000000	141.00000	0	9.400000	30.000000	34.000000
max	4066.000000	326.00000	0 2	3.000000	49.000000	54.000000

[6]: print(df.isnull().sum())

0
0
0
0
0
0
0
0
0
0
0
0
0

```
curb-weight
                     0
engine-type
                     0
num-of-cylinders
                     0
engine-size
                     0
fuel-system
                     0
bore
                     0
stroke
                     0
compression-ratio
                     0
horsepower
                     0
peak-rpm
                     0
city-mpg
                     0
highway-mpg
                     0
price
                     0
dtype: int64
```

[]: