WERKSTOFFE DER ELEKTROTECHNIK (FÜR KE)

Grundlagen der Werkstofftechnik: Feste Körper

WERKSTOFFE (Definition nach Ondracek): Ein Material wird zum Werkstoff, wenn es

- in mindestens einem Aggregatzustand anwendungsrelevante (z.B. technisch verwertbare) Eigenschaften besitzt
- technologisch und wirtschaftlich machbar und umweltverträglich ist.

(Umweltverträglich heißt: keine Abgabe von Schadstoffen während des Gebrauchs, Einfügen in den Ökokreislauf)

WERKSTOFFE - entscheidende Innovationsträger in der Geschichte der Menschheit

Steinzeit: ca. 100.000 v.d.Z. | Bronzezeit: ca. 5.000 v.d.Z. | Eisenzeit: ca. 1.000 v.d.Z.

EINTEILUNG DER WERKSTOFFE: meist nach Anwendung (Hauptfunktion) oder Herkunft (Stoff)

Nach ANWENDUNG (Hauptfunktion):

Truch Trivial Delve (Thoughtenkilon).	T
WERKSTOFFE für	Bezeichnung
Kraftaufnahme (Tragkonstruktionen, Grundplatten), Kraft- und Bewegungsübertragung	
(Maschinenelemente, z.B. Zahnräder, Wellen, Kupplungen), Bewahren und Weiterleiten	KONSTRUKTIONS
von Stoffen (Behälter, Rohrleitungen, Tanks, Container, Reaktionsgefäße), Umhüllen und	-WERKSTOFFE
Abgrenzen (Verkleidungen, Wandelemente, Gehäuse), Formung von Stoffen (Werkzeuge)	
- Erzeugung, Übertragung und Speicherung von elektrischer Energie	
(energieorientierte Elektrotechnik)	FUNKTIONS-
- Gewinnung, Übertragung, Verarbeitung und Speicherung von	WERKSTOFFE
Informationen (Elektronik, Nachrichtentechnik, Informatik,	WERKSTOFFE
Gerätetechnik, physikalische Technik, u.a.)	
Sonstige Werkstoffe (Verpackung, Bekleidung)	

EINTEILUNG DER WERKSTOFFE NACH WERKSTOFFGRUPPEN: (d.h. nach stofflichen Kriterien)

METALLISCHE WERKSTOFFE	KERAMISCHE WERKST.	KUNSTSTOFFE				
hohe plastische Verformbarkeit	kristallin oder amorph	amorph oder teilkristallin				
hohe elektrische Leitfähigkeit	(anorganische Gläser)	 kleines spezif. Gewicht 				
• positiver TKR	hohe Schmelz-Temperatur	• niedrige Verarbeitungs-T.				
 kristalliner Aufbau 	Sprödigkeit	• niedrige Verwendungs-T.				
hohe thermische Leitfähigkeit	verschwindende elektrische	 verschwindende 				
• Reflexion des Lichts ("metallischer Glanz")	Leitfähigkeit	elektrische Leitfähigkeit				
• u.U. besondere magnetische Eigenschaften	häufig Transparenz	häufig Transparenz				
 meist mäßig chemisch beständig (außer 	gute chem. Beständigkeit	meist gute chemische				
Edelmetalle)		Beständigkeit				
Stahl, Gusseisen, Al, Cu, Zn, Mg, Legierungen	Kunststoffe	Gläser, Keramik				
VERBUNDWERKSTOFFI	VERBUNDWERKSTOFFE - Kombination von mindestens 2 Werkstoffen					
NATÜRLICHE WERKSTOFFE z.B. Holz, Gesteine						

EINTEILUNG DER FUNKTIONSWERKSTOFFE

- Leiterwerkstoffe, darunter Supraleiter
- Halbleiterwerkstoffe
- Widerstandswerkstoffe
- Kontaktwerkstoffe
- Isolierstoffe Dielektrika
- Magnetwerkstoffe

Weitere spezielle Werkstoffgruppen:

- Para- und Ferroelektrika
- Werkstoffe der Optoelektronik, darunter LWL
- Kryowerkstoffe
- Bio- und Medizin-Werkstoffe
- Sensorwerkstoffe
- "Smart Materials" (andere Einteilungen möglich)

Atombau: **BOHRsches Atommodell**

RUTHERFORD:

Elektronen kreisen um Kern / Anziehungskraft: COULOMB-Kraft.

Aber: beschleunigte Ladung muss Energie abgeben \rightarrow Elektron stürzt in 10⁻ 6 s in den Kern → instabil, Widerspruch zur Praxis!

BOHR: behält mechanisches Atommodell bei, 2 Postulate:

1. BOHRsches Postulat: Klassische Bewegungsgleichung ist gültig. Es sind nur diskrete Bahnen erlaubt. Festlegung der diskreten Bahnen erfolgt durch Quantelung des Bahndrehimpulses.

Strahlungslose diskrete Bahnen sind erlaubt, wenn der Bahndrehimpuls L ein ganzzahliges Vielfaches von h beträgt:

$$\begin{split} 2\pi \cdot L_n &= 2\pi \cdot m_e \cdot r_n \cdot v_n = n \cdot h \\ L_n &= m_e \cdot r_n \cdot v_n = n \cdot \hbar \end{split} \qquad \begin{aligned} n &= 1,2,3,... \\ \hbar &= h/2\pi \end{split}$$

Für jede Bahn kann man die entsprechende Energie W berechnen. Diese Bahnen sind stationär, d.h. dort erfolgt keine Abstrahlung. Damit entspricht jeder stationären Bahn ein erlaubtes, diskretes Energieniveau.

2. BOHRsches Postulat: Bewegung auf den erlaubten Bahnen erfolgt strahlungslos. Emission und Absorption von Energie (Licht) erfolgt durch Übergänge zwischen den Bahnen.

Energie des Übergangs von einer Bahn zur anderen:

$$\Delta W = \{Z^2 \cdot e_0^4 \cdot m_e / 8 \epsilon_0^2 \cdot h^2 \} \{ (1/n^2) - (1/n^2) \}$$

SOMMERFELDsche Erweiterung des BOHRschen Atommodells

BOHR - zu ungenau, SOMMERFELD - außer Kreisbahnen auch Ellipsen

Hauptquantenzahl n: bestimmt Elektronenschale: K-, L-, M-, N-Schale:

Nebenquantenzahl l: Unterniveau der Schale, beschreibt Orbitale, d.h. Ellipsenform: Energiezustände sind "entartet" l = 0, 1, 2,..., n-1

Magnetquantenzahl m₁: beschreibt magnetisches Bahnmoment (entsteht bei Bewegung auf der Kreis- oder Ellipsenbahn) - Orientierung der Bahn im Raum $m_1 = -1,...-2, -1, 0, 1, 2,..., I$

Spinquantenzahl m_s: beschreibt Eigendrehimpuls des Elektrons

 $m_s = +1/2, -1/2$ (um seine eigene Achse)

- Besetzung der Energieniveaus im PSE (Periodensystem der Elemente)
- 1. Alle Z Elektronen eines Atoms befinden sich auf erlaubten Bahnen, auf denen sie eine möglichst niedrige Energie haben.
- 2. Es gilt das PAULI-Prinzip: In einem gegebenen Quantensystem von Fermionen kann sich nicht mehr als ein Fermion in einem bestimmten Energiezustand befinden, d.h. 2 Elektronen (eines Systems von Elektronen) können nicht in allen 4 Quantenzahlen übereinstimmen!

d.h. auf jeder Schale max. 2n² Elektronen

Schale	n	1	m	je 2 Elektronen	Bezeichnung	Anzahl e
K-Schale	n= 1	l= 0	m=0	1 Kreisbahn	1s	2
L-Schale	n= 2	l= 0	m= 0	1 Ellipse	2s	2
		l= 1	m=-1, m=0, m=+1	3 Kreisbahnen	2p	6
M-Schale	n= 3	1=0	m=0	1 starke Ellipse	3s	2
		l= 1	m=-1, m=0, m=+1	3 schwache Ellipsen	3p	6
		1= 2	$m=0, m=\pm 1, m=\pm 2$	5 Kreisbahnen	3d	10

Nebengruppen: 3d-Niveaus liegen über 4s-Niveaus - werden danach besetzt

ATOMDATI

-	ATUMDAU	
	KERN: Protonen und Neutronen	HÜLLE: Elektronen: (Elektronenzahl= Protonenzahl)
	• Z-fach positiv geladen, Z =	• Masse des e = 1/2000 der Protonenmasse
	• Zahl der Protonen = Ordnungszahl	• Atomdurchmesser: ca. 10 ⁻¹⁰ m
	• klein (Kerndurchmesser: 10 ⁻¹⁵ m)	• Quantenmechanik: System erlaubter (und verbotener) Energieniveaus :
	• massereich	d.h., 4 Quantenzahlen bestimmen die erlaubten Energieniveaus

Energieniveaus der Atomhülle

 $H: 1s^{1}$ He: $1s^2$ Li: $1s^2 2s^1$ Be: $1s^2 2s^2$ $2p^{1}$ B: $1s^2 2s^2$ C: $1s^2 2s^2$ $2p^2$ $N: \ 1s^2 \ 2s^2$ $2p^3$ $O: 1s^2 2s^2$ $2p^4$ $2p^5$ $F: 1s^2 2s^2$ Ne: $1s^2 2s^2$ 2p6 Na: $1s^2 2s^2$ $2p^6$ Mg: $1s^2 2s^2$ $3s^2$ 2p⁶ Al: $1s^2 2s^2$ $2p^6$ $3s^23p^1$

Si: $1s^2 2s^2$

 $2p^6$

 $3s^23p^2$

Dazu gilt die <u>HUNDsche Regel</u>: (wichtig für magnetische Eigenschaften!)

In einem Unterniveau werden alle Orbitale zunächst mit je einem Elektron mit parallelem Spin besetzt, bevor sie mit einem zweiten Elektron mit antiparallelem Spin besetzt werden.

Potentialtopfmodell = energetisches Modell (des Atoms) – nur andere Darstellung als mechanisches Modell

Bindung im Festkörper:

Potentialtopf-Modell: einheitliches quantenmechanisches Modell gibt Energieniveaus der Elektronen an

IONENBINDUNG Beispiel: MgO, Salze

- COULOMBsche Anziehungskraft
- Elektronenkonfiguration des Neons (Edelgas-Konfiguration)
- heteropolare (= ungerichtete) Bindung
- schlecht verformbar
- keine freien Elektronen, d.h. schlechte Leiter für Wärme und Elektrizität

• KOVALENTE BINDUNG (ATOMBINDUNG)

- Beispiel: H₂, Diamant
- homöopolare (= gerichtete) Bindung
- Durchdringung der beiden Orbitale
- hart, schwer verformbar
- Isolatoren oder Halbleiter
- zwei benachbarte Atome teilen sich ein Elektronenpaar

METALLBINDUNG

- Atome geben Valenzelektronen ab
- quasifreie Elektronen = Elektronengas
- metallische Bindungskraft: Wechselwirkung Elektronengas positive Atomrümpfe
- gute elektrische und thermische Leiter
- gut verformbar
- streben nach dichter Raumpackung (Raumerfüllung)

VAN-DER-WAALS'SCHE **BINDUNG**

- kein Elektronenaustausch, Nebenvalenzbindung
- Bindung zwischen Makromolekülen der Kunststoffe
- es werden Dipole influenziert
- relativ schwache Bindungsart
- VAN-DER-WAALS-Kräfte treten immer auf!
- Mischbindung tritt in der Natur sehr häufig auf

Struktur des festen Zustandes

Flüssige Phase	Amorphe Festkörper	Kristalline Festkörper
nicht formbeständig	formbeständig	formbeständig
Nahordnung,	Nahordnung.	Fernordnung: dreidimensional-periodisch,
zeitlich veränderlich	zeitlich unverändert	ca. 10^{23} Atome / cm ³ , energieärmster und stabilster Zustand
		Gitterfehler, Oberflächen, Wärmeschwingungen
Wasser,	Gläser, Kunststoffe (meist)	Metalle, Legierungen
Metallschmelzen	amorphe Metalle =	
	metallische Gläser	

Metalle und Legierungen – kristalline Werkstoffe

Einteilung der KONSTRUKTIONSWERKSTOFFE

Metallische	Organische	Nichtmetallisch- anorganische Konstruktions-WS
Stahl, Gusseisen, Al, Cu, Legierungen	Kunststoffe	technische Gläser, keramische Werkstoffe

Anforderungen	Eigenschaften			
mechanische	statische Festigkeit, Härte, Formstabilität (E-Modul), Bruchdehnung, Zähigkeit,			
	Dauerschwingfestigkeit, Dauerstandfestigkeit, Verschleißbeständigkeit			
thermische	Formbeständigkeit, max. Anwendungstemperatur, Dauergebrauchstemperatur,			
	Wärmeleitfähigkeit, Temperaturkoeffizient der Länge			
chemische	Beständigkeit gegenüber Feuchtigkeit, Säuren, Laugen, gegen atmosphärische			
	Einwirkungen, Korrosionsabtrag und -geschwindigkeit			
elektrische	spez. elektrischer Widerstand, Oberflächenwiderstand, Durchschlagfestigkeit,			
	Kriechstromfestigkeit, Dielektrizitätszahl			
fertigungstechnische	che Gießbarkeit, Umformbarkeit, Zerspanbarkeit, Schweißbarkeit, Härtbarkeit, Beschichten			
wirtschaftliche	Preis, Lieferbedingungen, Fertigungskosten, Wartungskosten, Wiederverwertbarkeit			

METALLISCHE KONSTRUKTIONSWERKSTOFFE

- 1. Eisenwerkstoffe als Eisenknetwerkstoffe (Stahl) oder Eisengusswerkstoffe (Stahlguss, Gusseisen)
- 2. NE-Metalle: Al, Cu, Ti, Zn, Sn, Mg usw. und deren Legierungen

STAHLGRUPPEN (nach Anwendung) und Vertreter

TAIL OROTTEN (hach Anwending) und Vertreter	
unlegierte Baustähle	S 235 (alt: St 37), S 355 (St 52),
wetterfeste Baustähle (etwa 0,6% Cr, 0.4% Cu, 0,3% Ni)	alt: WTSt 37-2, WTSt 52-3
hochfeste schweißbare Baustähle (<0,22% C)	S 275N, S 355N (alt: StE 70, St 70-2)
Einsatzstähle (0,1 bis 0,2% C)	C 10, 16 MnCr 5, 21 CrNiMo 2
Vergütungsstähle (0,3 bis 0,6% C)	C 35, 41 Cr 4, 42 CrMo 4, 50 CrV 4, 36 NiCrMo 4
Nitrierstähle	31 CrMo 12, 34 CrAlMo 5
Nichtrostende Stähle - ferritisch (>12% Cr, wenig C)	X 20 Cr 13, X 10 CrAl 7
Nichtrostende Stähle - austenitisch (> 18% Cr, wenig C)	X 10 CrNiMoTi 18-10, X 15 CrNiSi 25-20
hitzebeständige Stähle	X 10 CrSi 18
Stähle für hohe T = warmfeste und hochwarmfeste Stähle	X 10 CrAl 13, 13 CrMo 4-4, X 22 CrMoV 12-1
Stähle für niedrige Temperaturen = kaltzähe Stähle	TTSt 35 V, 14 Ni 6, X 8 Ni 9
Stähle für Werkzeuge	21 MNCr 5, 45 WCrV 7, 100 Cr 6
unlegierte Kaltarbeitsstähle (0,551,3% C)	C 100 W 1, C 75 W 3, C 55 WS
legierte Kaltarbeitsstähle	X 210 Cr 12
Warmarbeitsstähle	40 CrMnMo 7, 56 NiCrMoV 7-4
Schnellarbeitsstähle (0,71,4% C, 4% Cr)	HS 6-5-2-5, HS 18-1-2-5
Wälzlagerstähle	105 Cr 4, 100 CrMn 6, X 40 Cr 13

Nichteisenmetalle und deren Legierungen als Konstruktionswerkstoffe

Einteilung nach Dichte, Schmelzpunkt und Häufigkeit des Vorkommens

Emiteriang nach Brente, Bennier	Spanne and Haarighter acc + o.		
NE-Metalle	niedrigschmelzende	hochschmelzende	höchstschmelzende
Leichtmetalle: $\rho < 4.5 \text{ g/cm}^2$	Mg, Al	Be, Ti	
Schwermetalle:	Sn, Pb, Bi, Zn, Sb	Cu, Ni, Co, Cr. Mn, Si, Ag,	W, Mo, Ta, Nb
$\rho > 4.5 \text{ g/cm}^2$ (Dichte)		Au, Pt, Ru, Rh, Pd, Os, Ir	
Seltene Metalle	Cd, Re, Ga, Th, Zr, Ce, Hg		

IDEALKRISTALL

- regelmäßige, räumlich periodische Anordnung kleinster Teile (Atome, Moleküle) zu einem festen Körper
- Elementarzelle: kleinste, periodisch im Kristall wiederkehrende Einheit, die bereits Kristallstruktur aufweist
- isotrope und anisotrope Eigenschaften

Gitterkonstanten: a, b, c und Winkel α , β und γ ergeben: 7 Kristallsysteme:

	SYSTEM	Gitterkonstanten	Winkel
1.	triklin	a≠b≠c	α≠β≠γ (≠90°)
2.	monoklin	a≠b≠c	α=γ=90°
3.	orthorhombisch (rhombisch)	a≠b≠c	α=β=γ=90°
4.	rhomboedrisch (trigonal)	a=b=c	α=β=γ≠90°
5.	hexagonal	$a_1 = a_2 = a_3 \neq c$	α=β=90°, γ=120°
6.	tetragonal	a=b≠c	α=β=γ=90°
7.	kubisch	a=b=c	α=β=γ=90°

14 Elementarzellen nach BRAVAIS, darunter häufig auftretende Gittertypen wie

krz: kubisch-raumzentriert kfz: kubisch-flächenzentriert hdP: hexagonal dichteste Packung

nar : nexagonar dienteste r dekung				
Gittertyp	krz	kfz	hdP	
Beispiele	Cr, Mo, Ta,	Ag, Al, Cu,	Ti, Mg, Be, Cd,	
	V, α-Fe	Au, Ni, γ-Fe	Co, Zn	
Zahl der Atome/EZ	2	4	6 (2)	
Raumerfüllung	68 %	74 %	74 %	
dichtest gepackte Ebene	(110)	(111)	(0001)	
dichtest gepackte Richtung	[111]	[110]	[1120]	

Begriffe:

- Idealkristall Realkristall, Gitter = Raumgitter, Elementarzelle, Netzebene
- Einkristall (= Monokristall) Polykristall (= Vielkristall)
- Isotropie Anisotropie Quasiisotropie Textur
- Polymorphie: polymorphe (allotrope) Umwandlung von einem Gittertyp in anderen
- Komponenten = unabhängige Ausgangsstoffe
- Phasen Gefügebestandteile
- Phasen: mechanisch trennbare, gleichartige und einheitliche Bestandteile eines Systems
- Mischkristall oder feste Lösung: homogene Verteilung einer Fremdsubstanz in der Grundsubstanz
- Substitutions-Mischkristall: Fremdatome auf Gitterplätzen, Cr, Ni, Mn im Stahl oder Si im Al, Be im Cu
- Einlagerungs-Mischkristall: Fremdatome auf Zwischengitterplätzen, C, N, H, O im Stahl oder im Cu
- Zustandsdiagramm oder Phasendiagramm Phasenumwandlung
- Diffusion: ohne äußere Einwirkung stattfindender Ausgleich bei unterschiedlicher Konzentration

Phasenumwandlung im festen Zustand bei polymorphen Metallen:

- Bildung der Keime der zweiten festen Phase an Störstellen (Korngrenzenzwickel der Kristallite)
- Wachstum der neuen festen Phase bis zur kompletten Neubildung der Kristallstruktur es entstehen neue Körner (neue Kornstruktur)

Beispiele für Polymorphie: Be, Ca, Ce, Co, Fe, Gd, Hf, La, Li, Mn, Se, Sm, Sr, Ti, U, Zr

Kristallisation: Phasenübergang flüssig – fest

Struktur und Richtungsabhängigkeit der Eigenschaften

Amorph	Monokristall	Polykristall	Texturierte Werkstoffe
Isotrop	Anisotrop	Quasi-Isotrop	Anisotrop

Eigenschaften der (kristallinen) Werkstoffe werden bestimmt durch:

Eigenschaften der (kristammen) werkstone werden bestimmt duren.				
EIGENSCHAFTEN	hängen ab von:			
ATOMBAU	Zahl der Valenzelektronen, Elektronen der inneren Schalen			
MOLEKÜLBAU	Art und Zahl der Atome im Molekül, Räumliche Anordnung der Atome			
BINDUNGSART	Atom-, Metall-, Ionen-, Nebenvalenz-, Mischbindung			
GITTERBAU	Gittertyp, Gitterkonstante			
GITTERDEFEKTE	Versetzungen, Leerstellen usw. (siehe dort)			
GEFÜGEAUFBAU	Kornform und -größe, Korngrenzen, Textur, Art/Anteil der Gefügebestandteile			
ELEKTRONENSTRUKTUR	Energiespektrum der Elektronen, Elektronenkonzentration, Energiebändermodell			
OBERFLÄCHE	Beschaffenheit, Rauhigkeit, Wechselwirkung mit dem Umgebungs-Medium			

REALKRISTALL: REALSTRUKTUR DER KRISTALLE -

Einteilung der Gitterfehler

- Nulldimensionale oder punktförmige Gitterfehler
- Leerstellen (SCHOTTKY-Fehlordnung) = fehlendes Atom (vacancy), Konzentration: $c_V = 10^{-4}$ bei T_S
- $c_{ZG} = 10^{-15}$ - Zwischengitteratom
- Fremdatome (in Legierungen)
- **Eindimensionale oder linienförmige Gitterfehler = Versetzungen (dislocation)** entstehen bei Kristallisation/Verformung, Versetzungsdichte: 10⁴ - 10⁸ /cm² (geglüht) - 10¹²/cm² (verformt)
- Zweidimensionale oder flächenhafte Gitterfehler
- Stapelfehler
- Grenzflächen: Oberflächen, Phasengrenzen, Korngrenzen, Zwillingsgrenzen, Ordnungsbereiche
- Dreidimensionale oder räumliche Gitterfehler

Anhäufung von Punktfehlern, Ausscheidungen, Risse, Poren

Werkstoffkennzeichnung

WERKSTOFF-KENNZEICHNUNG nach DIN 17 007: Rahmenplan der WERKSTOFFNUMMERN

erfolgt für alle Werkstoffe: Kombination von Ziffern und Zifferngruppen, die durch einen Punkt getrennt sind:

Werkstoff-Hauptgruppe: 0.	Sortennummer: 0000.	Anhängezahl: 00
3.	3541.	01
3 Aluminium	35 Mg-legiert, 41 Zählnummer	0 unbehandelt, 1 Sandguß

Werkstoff-Hauptgruppe:

0	Gusseisen, Roheisen, Ferrolegierungen	2	NE-Schwermetalle	4 - 8	nichtmetallische Werkstoffe
1	Stahl, Stahlguss	3	NE-Leichtmetalle	9	frei für interne Benutzung

Sortennum	ner:	Anhängezahl: wird bei Bedarf angehängt	
. und 2. Ziffer: 3. und 4. Ziffer:		bei Eisenwerkstoffen enthält sie Angaben zu:	
nach chemischer Zusammen- Zählnummern		1. Ziffer: Erschmelzung, 2. Ziffer: Nachbehandlung	
		bei NE-Metallen: Behandlungszustand	

Nummernsystem für Stähle nach DIN EN 10 027 (vorher DIN 17 007)

1.	00	37 (xx)
1 Stahl	Stahlgruppennummer: 00 Grundstahl	37 Zählnummer: (xx) bei Bedarf erweiterbar

Eisenwerkstoff:	Metalllegie	Metalllegierung, bei der Anteil Fe > Anteil jedes anderen Elements						
Stahl:	Eisenwerks	Eisenwerkstoff mit max. 2 (Masse-) % C						
unlegierter Stahl:	Stahl mit d	Stahl mit definierten Höchstgehalten bestimmter Elemente laut DIN (<0,00 bis < 0,)						
	B Co Cr Cu La Mn Mo					Nb		
							0,06	
							Zr	
0,4 0,1 0,5 0,1 0,05					0,05	0,1	0,1	0,05
legierter Stahl:	Stahl mit höheren Gehalten mindestens eines Elements als unlegierter Stahl							
hochlegierter Stahl:	Stahl mit mehr als 5 % mindestens eines Legierungs-Elements							

BEZEICHNUNGSSYSTEM für STÄHLE nach DIN EN 10 027

Benennung erfolgt in zwei Hauptgruppen:

• Einteilung nach Hauptgüteklassen:

Kurznamen mit Hinweisen auf Verwendung und mechanische / physikalische Eigenschaften.

Hauptsymbole:

S	Stähle für den allgemeinen Stahlbau	R	Stähle für oder in Form von Schienen	В	Betonstähle
P	Stähle für den Druckbehälterbau	Н	Kaltgewalzte Flacherzeugnisse	Y	Spannstähle
L	Stähle für den Rohrleitungsbau	D	Flacherzeugnisse aus weichen Stählen	Е	Maschinenbaustähle
M	Elektroblech und -band	T	Feinst- und Weißblech		

Aufbau der Bezeichnung: Hauptsysmbol(e) Eigenschaft Zusatzsymbol(e) [Gruppe 1, Gruppe 2]

Hauptsymbol Eigenschaft		Zusatzsymbol Gruppe 1	Zusatzsymbol Gruppe 2
S	355	J2	W
Stahl für Stahlbau	Mindeststreckgrenze in N/mm ²	Kerbschlagarbeit	wetterfest

Beispiele:

- I		
	<u>Stahlmarke</u>	das bedeutet:
alt.	(St 37)	Stahl mit Zugfestigkeit min. 33 kp/mm ² (= $9.81 \times 33 = 320 \text{ N/mm}^2$)
heute:	S235	Stahl mit Streckgrenze min. 235 MPa (= früher St 37)
Fe	C 45	Fe + 0,45 % C
Fe C	17 Mn Mo V 6-4	Fe + 0,17 % C + 1,5 % Mn + 0,4 % Mo + < 1 % V
Fe C	X 5 Cr Ni Ti 18-10	Fe + 0,05 % C + 18 % Cr + 10 % Nio + <1 % Ti
	HS 2-9-1-8	Fe + 2 % W + 9 % Mo + 1 % V + 8 % Co
Aber:		
NE:	Cu Ni 12 Zn 30 Pb 1	Cu + 12 % Ni + 30 % Zn + 1 % Pb = andere Darstellung!

Einteilung nach chemischer Zusammensetzung

4 Untergruppen von Kurznamen mit Hinweis auf chem. Zusammensetzung mit Haupt- und Zusatzsymbolen

1. Untergruppe: Unlegierte Stähle mit Mn-Gehalten < 1% (außer Automatenstählen)

С	35	
Kennbuchstabe für Kohlenstoff	Kennzahl = C-Gehalt x 100	

2.: Unlegierte Stähle mit Mn > 1%, unlegierte Automatenstähle sowie (niedrig) legierte Stzähle (< 5%)

10	CrMoV	9-10
28	Mn	6
Kennzahl für C-Gehalt	Symbole für Legierungselemente	Kennzahl für Gehalt an Elementen,
$Kennzahl = %C \times 100$		Multiplikationsfaktor beachten!

Hier: Multiplikationsfaktoren beachten:

4x: Cr, Co, Mn, Ni, Si, W 10x: Al, Cu, Mo, Nb, Ta, Ti, V, Zr | 100x: C, N, P, S 1000x: B

3. Untergruppe: Legierte Stähle mit > 5% Gehalt (mind. 1 Element)

X	5	CrNi	18-10
X	6	CrNiMoTi	17-12-2
Kennbuchstabe für	Kennzahl für C	Symbole für Legierungs-	Gehalte der Legierungs-
(hoch)legierte Stähle	$Kennzahl = \%C \times 100$	elemente	elemente in %

4. Untergruppe: Schnellarbeitsstähle

HS	2-9-1-8
Kennbuchstabe	% Gehalt in der Reihenfolge: W - Mo - V - Co

NORMGERECHTE BEZEICHNUNG DER NICHTEISENMETALLE nach DIN 1700

1. Kennbuchstabe für Herstellung und Verwendung:

ĺ	G =	GD-=	GK-=	GZ- = Schleuder-	GC- = Strangguß	Gl- = Gleit-	L-=	S- = Schweiß-
	Guß	Druckguß	Kokillenguß	("Zentrifugal-") Guß	("continuous")	lagermetall	Lot	zusatzstoff

2. Chemische Zusammensetzung

unlegierte Metalle:		Legierungen:	
Pb 99,99:	Feinblei	CuCd 1	Cu mit etwa 1% Cd
Pb 98,5	Umschmelzblei	AlMg 3 Si	Al-Legierung mit 3% Mg, etwas Si
		Cu Ni 12 Zn 30 Pb 1	Cu-Legierung mit 12 % Ni + 30 % Zn + 1 % Pb
		L-Sn 60	Zinnlot mit 60 % Sn, bis 3,2 % Sb, Rest Blei

3. Kurzzeichen für Werkstoffzustände:

Ī	w = geglüht (weich=1)	00%)	hh = halbhart (=	120%)	h = hart	(=140%)	fh = fe	ederhart (=180%)	a =	= ausgehärtet
Ī	ka = kaltausgehärtet	wa = v	varmausgehärtet	wh = w	alzhart	zh = ziehl	hart	ho = homogenisier	t	p = plattiert

Bezeichnung der Kunststoffe nach DIN 7728 oder ISO 1874 Beispiel: Polyamid

Angaben: ISO 1874 = Norm für PA, danach: "PA 12" - Polyamid 12

"M"-Spritzguss, "H"-Hitzestabilisierung, "L"-licht- und witterungsstabilisiert, "R"-Entformungsmittel enthaltend "16"- Code für Viskositätszahl, "060" - Code für E-Modul, "N" - schnelle Kristallisation

"G" - Glas, "F" - Fasern, "30" - Gewichtsprozent

Codierung von Verstärkungsmitteln und Füllstoffen

1. Position		2. Position	3. Position		
 B - Bor C - Kohlenstoff G - Glas K - Kreide M - Mineralien S - Organische Stoffe T - Talkum	Code	B - Kugeln D - Pulver F - Fasern G - Mahlgut H - Whisker	Code Gehalt Gew%	5 - 0 bis <7,5 10 - 7,5 bis <12,5 15 - 12,5 bis <17,5 usw. bis: 50 - 47,5 bis <55 60 - 55 bis <65 usw. bis:	
X - nicht spezifiziert				90 - 85 und mehr	

Kunststoffe - Molekülstrukturen

(meist) organische Werkstoffe (Ausnahme: Silikone), die aus Makromolekülen (> 1000 Atome) aufgebaut sind Spezifische Zusatzstoffe stabilisieren, verstärken, modifizieren oder färben den Kunststoff nach Bedarf.

- Bindungen: Atombindung innerhalb der Makromoleküle (Hauptvalenzbindung)
 - Nebenvalenzbindung zwischen den Molekülen (sekundäre Bindungen elektrostatischer Natur)

PE-HD	Polyethylen	PS	Polystyrol, ataktisch
PP	Polypropylen, isotaktisch	POM	Polyoxymethylen
PVC	Polyvinylchlorid	PBTB	Polybutylenterephthalat
PA-6,6	Polyamid-6,6, Polyhexamethylenadipamid	PETP	Polyethylenterephthalat
PET	Polyethylenterephthalat	PTFE	Polytetrafluorethylen
PMMA	Polymethylmethacrylat, ataktisch	PES	Polyethersulfon
PC	Poly (4,4'-isopropyliden-diphenylencarbonat) Polycarbonat	PPS	Polyphenylensulfid
PEEK	Polyetheretherketon	PI	Polyimid

Kunststoffe - Begriffe:

- organische Polymere: C-Gerüst (Kette)
- anorganische Polymere: SiO-Gerüst, z.B. Silikone (mit -[-Si-O-]-Kette)

Eigenschaften der Kunststoffe:

- leicht: Dichte zwischen 0,8 und 2,2 g/cm³
- flexibel: E-Modul geringer als Metalle,
- niedrige Verarbeitungstemperatur: bis ca. 250°C, max. 400°C, ermöglicht Einsatz von Füllstoffen, Farbstoffen und Verstärkungsmitteln sowie Herstellung von Schaumstoffen
- niedrige Leitfähigkeit (Wärme und Elektrizität): Isolationswerkstoffe, aber auch leitende Kunststoffe
- häufig transparent: Verglasungen (Acrylglas, Polycarbonat)
- hohe chemische Beständigkeit
- spezifisch durchlässig für Gase oder auch Flüssigkeiten: Permeation, Diffusion
- wiederverwertbar: Recycling stofflich oder thermisch

Typen:

Thermoplaste oder Plastomere: unvernetzt, gehen beim Erwärmen reversibel in plastischen Zustand über, behalten nach dem Erkalten ihre Form bei **Amorphe** Thermoplaste: PVC, PSD, PC, PMMA

Teilkristalline Thermoplaste: PE, PP, PA, PET

- Elastomere: hohe Elastizität in breitem Temperaturbereich, partiell dreidimensional vernetzte Makromoleküle (durch Vulkanisation), bleiben elastisch, nicht aufschmelzbar, quellbar in Lösungsmitteln Natur-Kautschuk, Styrol-Butadien-Kautschuk, Polyurethan-Kautschuk
- Duroplaste, besser Duromere: hochvernetzt, nicht aufschmelzbar, thermisch nicht erweichbar, beständig gegen Wärme und Chemikalien, gute mechanische Eigenschaften, enger vernetzt, Vernetzung erfolgt bei der Formgebung: Melaminharze, Polyesterharze, Epoxidharze

Amorphe Strukturen - Gläser

Zustand unterkühlter Schmelzen – Glaszustand, metastabil - Rolle der Diffusion

Amorphe Metalle = Metallische Gläser

- DRPHS Dense Random Packing of Hard Spheres,
- hohe Abkühlungsgeschwindigkeit, komplexe Zusammensetzung
- seit kurzem: BMG Bulk Metal Glass (bis ca. 2 mm dick)

Keramische Werkstoffe

Einteilung	Gruppe	Beispiel		
Feuerfestkeramik	Ofenbaukeramik	Steine, Brennerdüsen		
Feueriestkerannk	Keramik in Luft- und Raumfahrt	Hitzeschilde		
Chemokeramik	chemisch beständige Keramik	Tiegel, Filter		
Chemokeraniik	aktive Chemokeramik	Katalysatoren, Chemosensoren		
	Konstruktionskeramik	Kugellager, Rotoren, Düsen		
Mechanokeramik	Schneidkeramik	Schneidplatten		
	Schleifkeramik	Schleifscheiben		
Elektrokeramik	passive Elektrokeramik	Isolatoren, Zündkerzen, Chipträger		
Elektrokerannk	aktive Elektrokeramik	Leiter, Varistoren		
Optokeramik	passive Optokeramik	Na-Dampflampe, opt. Fenster		
Орюкеганик	aktive Optokeramik	Laser, Wandler (el./opt.)		
Magnetokeramik		Magnete, Spulenkerne		
Reaktorkeramik		Absorber, Spaltstoffe		
Biokeramik	inaktive Biokeramik	Prothesen, Zahnimplantate		
DIORCIAIIIK	aktive Biokeramik	Ohrenknochenprothesen		

Keramische Technologie - Sintertechnik

Herstellung: pulvermetallurgisch, aus Pulver des oder der verwendeten Materialien

- 1. Prozess-Stufe: Aufbereiten und Mischen der Pulver
- 2. Stufe: Herstellen der Formteile = Verbindung der Körner durch:
- Trockenpressen
- Schlickerguss: Vergießen der Pulver mit flüssigen Bindemitteln (z.B. Wasser) Entwässerung durch poröse Formen, Vakuum, Druck, Zentrifugalkraft
- Spritzguss: Keramikteilchen-Suspension in Thermoplast wird vergossen Vorbrand zum Entfernen des Polymers (für dünnwandige Werkstücke)
- 3. Stufe: Temperaturbehandlung zur Erhöhung Dichte und Festigkeit =

Sintern: bei hoher Temperatur steigen Dichte und Festigkeit, die Teilchen wachsen zusammen (und schrumpfen dabei)

- häufig: Festphasensintern (< T_S aller Komponenten)
- Flüssigphasensintern (> T_S mindestens einer Komponente)
- Drucksintern (T und p = const.)
- HIP = heißisostatisches Pressen (T-variabel, Gasdruck-const.)

Eigenschaften von keramischen Werkstoffen:

- kristalline und amorphe (glasartige) Bestandteile sowie Poren
- heterogen, spröde, formstabil, große Härte und Verschleißfestigkeit, Warmfestigkeit, korrosionsfest
- spezielle elektrische, magnetische oder dielektrische Eigenschaften

Glaskeramik: Sonderform der Keramik = Gläser, die durch Hochtemperaturbehandlung teilkristallisiert sind (Devitrifikation); meist 95-98% feinste Kristallite in glasartiger Matrix

Eigenschaften: opak, oft brüchig; wenn keine inneren Spannungen - dann hohe mechanische Stabilität + (z. B. Substrate, Kochfelder, Kochgeschirr)) Wärmeleitfähigkeit, lineare Ausdehnung ≈ 0

Amorphe Strukturen: Gläser

- bekannteste Gläser: Silikate mit Tetraederstruktur SiO₄
- Glasbildung: unterhalb Liquidus ist Keimbildung wegen geringer Beweglichkeit erschwert (kaum Diffusion)
- Zustand unterkühlter Schmelzen: T>T_G im thermodynamischen Gleichgewicht
- Glaszustand: T<T_G, nicht im thermodynamischen Gleichgewicht

Metallische Gläser = amorphe Metalle

- hohe Abkühlungsgeschwindigkeit 10⁶...10¹⁰ K/s erforderlich
- mehrere Verfahren: Walzenmethode, rotierende Trommel, Taylorverfahren, Plasmaspritzen
- Strukturmodell: DRPHS Dense Random Packing of Hard Spheres $Ta_{55,5}Ir_{44,5}$ ($T_K>1223K$), $Ni_{60}Nb_{40}$ ($T_K=923K$), Metallische Gläser mit Kristallisationstemperatur: $(Fe_{40}Ni_{60})_{75}P_{16}B_{6}Al_{3}(T_{K}\!\!=\!\!714K),\,Pd_{82,4}Si_{17,6}(T_{K}\!\!=\!\!639K),\,Mg_{86}Cu_{14}(T_{K}\!\!=\!\!380K)$

Eigenschaften: spez. elektrischer Widerstand 2..3x höher als Kristall, können ferromagnetisch sein (obwohl nicht kristallin), geringe Wirbelstromverluste (nur 30% im Vergleich zu bestem Trafoblech)

Werkstoffe der Elektrotechnik (Funktionswerkstoffe)

Elektrische Eigenschaften

Elektrische Leitfähigkeit der Metalle: freie Elektronen - Elektronenleitung

MODELL ELEKTRONENGAS

(klassisches Modell - wie kinetische Gastheorie):

- im Leiter frei bewegliche Elektronen
- Teilchenkonzentration: ca. 10^{22} / cm³
- (MAXWELL) BOLTZMANN Statistik
- spezifische Leitfähigkeit = Teilchenkonzentration x deren Beweglichkeit μ x Elementarladung: $\mathbf{a} = \mathbf{e} \cdot \mathbf{\mu} \cdot \mathbf{n}$

• Driftgeschwindigkeit: weist in bestimmte Richtung, ist der allgemeinen Teilchenbewegung überlagert

QUANTENMECHANISCHES MODELL:

- FERMI (DIRAC) Statistik
- es gilt PAULI Prinzip
- Potential-Topf-Modell
- FERMI-Energie: $E_F = 7 \text{ eV}$ (Cu), $E_F = 3.1 \text{ eV}$ (Na)
- erlaubte Energiebänder und verbotene Zonen:

da Elektronenwellen gitterperiodisch moduliert

• LEITFÄHIGKEIT von METALLEN. HALBLEITERN und ISOLATOREN Valenzband - Leitfähigkeitsband - verbotene Zone

Energie E —	T I	Y	Y	Y	V	Y	T I	V	js-Ban	<u>d-</u>
	Ţ	•		1	I		Ţ	Ţ		
● Na-Atomkerne										

Cu, Ag, Au,	Be,Mg,Pb,	Si, Ge	Diamant
Alkali-	Sn, W, Cr	,	
m etalle, (H)			
Ein-	Zwei-	Eigen-	Isolator
Elektronen-	Elektronen-	Halbleiter	
m etall	m etall		
E F Leitungs- Band halb gefüllt	Überlappen der Bänder	< 2 eV	ca. 7 eV

Leiterwerkstoffe

ANFORDERUNGEN an Normalleiter:

- elektrische Anforderungen:
- hohe elektrische Leitfähigkeit
- niedriger Temperaturkoeffizient des Widerstandes (TKR)
- geringer Kontaktwiderstand
- mechanische Anforderungen:
- ausreichende statische Festigkeit und Härte
- ausreichende Dauerfestigkeit, gute Dehnbarkeit
- thermische Anforderungen:
- gute Wärmeleitfähigkeit
- hohe Entfestigungs- und Schmelz-Temperatur
- chemische Anforderungen:
- geringe Neigung zur Korrosion
- Verträglichkeit mit dem Isolierstoff
- fertigungstechnische Anforderungen: Umformbarkeit, Beschichtbarkeit, Lötbarkeit, Schweißbarkeit
- wirtschaftliche Anforderungen: ausreichende Verfügbarkeit, niedrige Fertigungskosten, Recycelbarkeit, niedrige Wartungskosten (hohe Zuverlässigkeit, Lebensdauer)

KUPFER

• E-Kupfer: elektrolytisch raffiniert

sauerstofffrei, desoxidiert mit Phosphor, wasserstoffbeständig SE-Kupfer:

Mindestleitwert: 57·10⁶ S/m (nach DIN), Reinheit: 99,9%

58·10⁶ S/m (nach IACS), Reinheit: 99,95% (IACS: International Annealed Copper Standard) oder

Metall	Leitfähigkeit	spezifischer
	gegenüber	Widerstand
	Silber (=100%)	10 ⁻⁶ Ωm
Ag	100	0,0163
Cu	96	0,0163
Au	73	0,025
Al	62	0,026
Zn	31	0,059
Ni	25	0,067
Fe	18	0,098
Sn	15	0,115
Pb	8	0,222

Gebräuchliche KUPFER - Legierungen:

Werkstoff	Anwendung	wesentlicher Vorteil
E-Cu	99,90 % Cu, Elektrolytkupfer für elektrische Leiter	min. $58 \text{ m/}(\Omega \text{ mm}^2)$
SE-Cu	99,90 % Cu, sauerstofffreies Kupfer für Elektronik	min. 58 m/(Ω mm ²)
E-Cu Ag	0,1 % Ag, Rest Cu	verbesserte mechanische Eigenschaften

E-Cu und SE-Cu: Sauerstoff liegt in Form von Cu₂O vor - bei Erwärmung in wasserstoffhaltiger Atmosphäre tritt "Wasserstoffkrankheit" auf: es bildet sich Wasserdampf, der im Cu verbleibt und Risse und Blasen bildet -Werkstoff wird unbrauchbar

Niedrig legiertes Leitkupfer

Cu Ag 0,2	Kollektorlamellen, Spulenwicklungen	erhöhte Erweichungs-Temperatur
Cu Te 0,5	maßhaltige Teile	bessere Spanbarkeit
Cu Cd 1	Fahrdrähte, Fernmeldeleitungen	höhere Festigkeit
Cu Cr 0,6	Schweißelektroden, stromführende Federn	aushärtbar
Cu Zr 0,2 Cu Zr Cr	Reaktoren, Raketen	hoch wärmebeanspruchbar
Cu Be 1,7	Kontaktfedern, abriebfeste Buchsen	aushärtbar

ALUMINIUM

• E-Al : Leitaluminium Mindestleitwert: 36 MS/m (nach DIN), bei: (Ti + Cr + V + Mn) < 0.03 %

AL – LEGIERUNGEN

E-Al Mg Si ("Aldrey"): Freileitungen, Stromschienen, Starkstromkabel (häufig mit Stahlverstärkung)

Al + 0.6 Si + 0.4 Mg: aushärtbar

LEITER-WS in der ELEKTRONIK

- Herstellung:
 - Schichttechnik (Dickschicht oder Dünnfilm)
 - monolithische Festkörpertechnik
 - Hybridtechnik
- ANFORDERUNGEN:
 - hohe elektrische Leitfähigkeit
 - gute Haftfestigkeit, gute Kontaktierbarkeit, geringe Übergangswiderstände, rauscharme Kontakte
 - Beständigkeit und reproduzierbares Verhalten
- Leitbahnpasten für die Dickschichttechnik:

(80% pulverförmige Metalle + 10% Glasfritten + Trägersubstanz + Lösungsmittel) auf der Basis von: Ag, Au, Pd, Pt, Ag - Pt, Ag - Pd - Pt, Au - Pd, Au - Pt oder

edelmetallfreie Pasten: Cu

- Schichtwerkstoffe für Dünnfilmtechnik: edel: Au, Cu, Al, Ag oder unedel: Fe Ni, Cr Ni/Ni, Cr Au, Cr/Ni/Pd
- Monolithische Technik Aufdampfen von Leiterbahnen auf die Oberfläche des dotierten Si-Einkristalls: Al oder Silicide (MoSi₂, WSi₂, TaSi₂, TiSi₂) - Tempern bei 570°C führt zur Legierungsbildung mit dem Si

Leiterwerkstoffe für Leiterplatten

Werkstoff	Kurzform	$\rho (\Omega mm^2/m)$	α bei 20°C /10 ⁻³ /K
Rein-Kupfer	E-Cu57	0,017	4,3
A-Kupfer	Cu 99,8	0,025	3,0
Rein-Nickel	Ni 99,6	0,09	5,0

Leiterwerkstoffe in der Dickschichttechnik

Dickschichtpasten		ρ in mΩ für 25 μm Schichtdicke
Edelmetallpasten	Silberpasten	2-3
	Ag/Pt-Pasten	10-30
	Goldpasten	2- 5
Unedle Pasten	Kupferpasten	2- 4
	Nickelpasten	40-60

ter-WS für integrierte Schaltunge				
Silizid	Sinter-T	ρ, 10 ⁻⁸ Ωm		
CoSi ₂	900	1820		
Hf Si ₂	900	4550		
Mo Si ₂	1000	100		
Ni Si ₂	900	50		
Pd ₂ Si	400	3050		
PtSi	600800	2835		
Ta Si ₂	1000	3545		
Ti Si ₂	900	1318		
W Si ₂	1000	70		
Zr Si ₂	900	3540		

•	Vergleich Cu – Al Cu : Al				
bei Freileitunge	bei Freileitungen, Kabel, Stromschienen,				
Wicklungen - l	keine eindeutige Aussage				
möglich, welch	es der bessere Werkstoff ist				
querschnitts-	Gewicht	1:0,37			
gleich	Leitwert	1:0,63			
	Stromstärke bei gleicher	1:0,8			
	Erwärmung				
leitwert-	Querschnitt	1:1,6			
gleich	Durchmesser	1:1,27			
	Gewicht	1:0,49			
	thermische Grenzstromdichte	1:1,06			
erwärmungs-	Querschnitt	1:1,37			
gleich	Durchmesser	1:1,17			
	Gewicht	1:0,42			
	thermische Grenzstromdichte	1:0,93			

Widerstandswerkstoffe

ANFORDERUNGEN: Anforderungsvielfalt entsprechend Verwendungszweck, oft:

- hoher spezifischer elektrischer Widerstand, kleiner TKR-Wert, geringe Thermospannung gegen Cu
- hohe zeitliche Konstanz, d.h. gute chemische Beständigkeit und Alterungsbeständigkeit
- hohe Absolut- und Relativgenauigkeit der R-Werte, mechanische Festigkeit, thermische Beständigkeit, usw.

Werkstoff-	Metalle,	Metalllegierungen,	Halbleiter,	Verbundwerkstoffe,
gruppen:	z.B. Tantal	z.B. Ni/Cr	v.a. Graphit	z.B. Cr/SiO, "Cermet"-Widerstände

Werkstoffe für Präzisionswiderstände				
Werkstoff	Mn	Ni	Al	Bezeichnung
Cu Mn 12 Ni	12	2	-	
Cu Ni 20 Mn 10	10	20	-	
Cu Ni 44	1	44	-	Konstantan
Cu Mn 2 Al	2	-	0,8	
Cu Ni 30 Mn	3	30	-	
Cu Mn 12 Ni Al	12	5	1,2	

Werkstoffe für Schichtwiderstände		
Bezeichnung (Werkstoff)	T _{max} , °C	
Kohleschicht (kristalline.Kohle)	155	
Kolloidschicht (Ruß in Lack)	125	
Edelmetall (Au80 Pt20)	300	
Metallschicht Nickel	150	
Metallschicht Cr Ni	175	
Metalloxid (Zinnoxid)	250	
Metallglasur (Edelmetall, Glasstaub)	250	

Schichtwiderstände:

- Dickschichtwiderstände: ca. 25 µm (Siebdruck)
- Dünnfilmwiderstände: 10 50 nm, geringeres Rauschen, kleiner TKR

Meist angegeben als

Flächenwiderstand oder Widerstand "im Quadrat"

- ANFORDERUNGEN an Schichtwiderstände:
- geeignete Verarbeitungseigenschaften
- ausreichende Haftfestigkeit und Verträglichkeit zwischen Widerstands-WS und Isolierung
- gute Kontaktierbarkeit (z.B. Lötbarkeit)

Kontaktwerkstoffe

ANFORDERUNGEN: $R \rightarrow \infty$ bei offenem Kontakt (Sperrwiderstand) / geringer Übergangswiderstand, d.h. $R \rightarrow 0$ bei geschlossenem Kontakt / Kontakt soll schnell ansprechen / hohe Zuverlässigkeit / Vermeidung des "Klebens" und "Schweißens" / Beständigkeit gegen Materialwanderung / Beständigkeit gegen "Abbrand" beim Schalten unter Last / niedrige Schaltleistung / kleines Einbauvolumen

Kontaktwiderstand

 $|\mathbf{R}_{\mathbf{K}} = \mathbf{R}_{\mathbf{E}} + \mathbf{R}_{\mathbf{H}}|$ (Engewiderstand + Hautwiderstand)

Kontakte für	Beispiele	Werkstoffe
1. Schwachstrom	Meßgeräte, Relais, elektronische Geräte	Ag, Au, AuAg, AgCu, Ag Ni
2. Niederspannung	Steuerschalter, Lichtschalter, Leistungsschalter	AgNi, AgW, AgW C,
3. Hochspannung	Hochleistungsschalter	Cu, CuW, AgNi, W, WCu
4. Gleit - Kontakt	Schleifkontakte, Drehschalter, Stromabnehmer	Au, Rh, C, CuAg, CuC, CuCd

Lote, Lotwerkstoffe

Wichtige Weichlote (häufig eutektische Legierungen)

Wieninge Weieniste (maing eatertifiene Eeglerungen)				
Art	Bezeichnung	Zusammensetzung in %	Schmelzbereich, °C	
Zinn-Blei	LSn50Pb	50Pb; 50Sn	183215	
Zinn-Antimon	LSnSb5	5Sb; 01Ag	230240	
Silber-Blei	LPbAg3	01Sn; 1,53,5Ag	305315	

Zur Beachtung (EU, Japan, USA): Blei soll ab 2006 fast völlig aus Elektronikgeräten verbannt werden.

Ablösung: Silberhaltige oder wismuthaltige Lote: erfordert Steigerung der Ag-Produktion um ca. 15 % (von ca. 10.000 t jährlich um 1.300 t) oder bei Wismut um 17 %

höhere Löttemperatur nötig (um ca. 40 K, d.h. Löten bei > 220°C)

Elektrische Eigenschaften von Halbleitern

	n in m ⁻³	Leitfähigkeit in S/m
Metalle	$10^{28}10^{29}$	10^710^8
Halbleiter	$10^{19}10^{23}$	10 ⁻⁷ 10 ⁴

- geringer Bandabstand = Aktivierungsenergie < 2 eV, FERMI-Niveau liegt in der verbotenen Zone
- 2 Arten von Ladungsträgern: a) Elektron im Leitungsband b) Elektronenlücke = Defektelektron im Valenzband, wirkt wie "positives Loch"
- Elektronen und Löcher können wandern: Bildung von Elektronen-Löcher-Paaren: Generation umgekehrter Prozess: Rekombination
- temperaturabhängig veränderte Bandbesetzung möglich:
- Halbleiter haben negativen TKR!
- thermische Anregung (z.B. bei Raum-Temperatur): Einige Elektronen können die Aktivierungsenergie aufbringen und werden ins Leitfähigkeitsband gehoben. Damit sind 2 Bänder teilweise besetzt: elektrische Leitung möglich
- Elektronenleitung ist nur in teilweise besetzten Bändern möglich!
- Dotieren: Herstellen definierter Störungen durch Fremdatome im Halbleiterkristall (der 4. Hauptgruppe)
- Bandstruktur Dotierung Zustandsdichte Intrinsicladungsträgerdichte

HERSTELLUNG DER EINKRISTALLE: Zonenschmelzen oder Kristallziehen, z.B. CZOCHRALSKI-Verfahren

- hohe Reinheit: 99,99999%, (d.h. weniger als 10⁻³ % Fremdatome)
- fehlerfreie Einkristalle: Versetzungsdichte < 10² cm⁻², keine Korngrenzen)

EIGENHALBLEITER = i-Leitung (intrinsic): Bei T= 0 K: Isolatoren, bei T: $\alpha = e n_i (\mu_a + \mu_b)$, da n = p = n_i

STÖRSTELLENHALBLEITER = häufigste Form der Halbleiter, erzeugt durch Dotieren

Dotieren des Ausgangsmaterial (Si, Ge) durch Elemente der			
V. Hauptgruppe: P, As, Sb: 1 Elektron mehr	III. Hauptgruppe: B, Al, Ga, In: 1 Elektron weniger		
d.h. es sind im Si- o	oder Ge-Gitter vorhanden		
Elektronen im Überschuss	ungesättigte Bindungen		
es erfolg	t überwiegend		
Elektronenleitung	Löcherleitung		
Man nennt die Störstellen (Fremdatome)			
Elektronenspender, Donatoren	Elektronenfänger, Akzeptoren		
und den resultierenden Halbleiter			
Überschuss-HL = n-Halbleiter (n=negativ)	Defekt-HL = p-Halbleiter (p=positiv)		
Die Leitung erfolgt vorwiegend durch			
Elektronen im Leitungsband	Löcher im Valenzband		
Die Energieniveaus der Fremdatom-Elektronen sind aufgrund ihrer geringen Anzahl nicht in Bänder			
aufgespalten, sondern lokalisiert und liegen in der verbotenen Zone.			

Innerer Fotoeffekt: Eigenfotoleitung - Störfotoleitung,

bei starker Dotierung: Verschiebung FERMI-Niveau ins

Dotierungsgrad $\uparrow \rightarrow n \uparrow$

Bauelement: Fotowiderstand **Verhalten bei Dotierung**:

 $(oder p \uparrow) \rightarrow \mu \downarrow (aber weniger) \rightarrow \alpha \uparrow$

Leitungsband / Valenzband = "entartete" Halbleiter"

Volumeneffektgesteuerte Halbleiterbauelemente

- Verhalten im elektrischen Strom: $\mathbf{a} = \mathbf{e} \, \mu_1 \, \mathbf{n} + \mathbf{e} \, \mu_2 \, \mathbf{p}$, i-Leitung: $\mathbf{a} = \mathbf{e} \, \mathbf{n}_i \, (\mu_1 + \mu_2)$
- **Elektrischer Durchbruch** durch Lawineneffekt (hohe E Vervielfachung Zahl Ladungsträger)
- **GUNN-Effekt**: tritt in einigen Halbleitern bei hoher Feldstärke auf es bilden sich Feldinhomogenitäten (Domänen mit hoher Elektronenzahl) → Stromoszillation., z.B. GaAs, InP, CdTe, InAs, ZnSe, GUNN-Diode
- Temperaturabhängigkeit:

Eigenhalbleiter: $T^{\uparrow} \rightarrow n_i^{\uparrow}, \mu^{\downarrow}$ (schwach) \rightarrow Leitfähigkeit æ \uparrow , d.h. bei hohen T - Eigenleitung Störstellenhalbleiter: Störstellenreserve - Störstellenreschöpfung $n=N_D$ oder $p=N_A$ - Eigenleitung Anwendung: Thermistoren, Heißleiter, Kaltleiter

• **HALL-Effekt**: Magnetfeld (senkrecht zur Stromrichtung) ruft in einem plattenförmigem Halbleiter eine HALL-Spannung (quer zur Stromrichtung) hervor. U_H= (R_H·I·B)/d mit R_H= -1/(e·n)

Sperrschichtgesteuerte Halbleiterbauelemente

- **Homoübergänge**, z.B. p-Si / n-Si **Heteroübergänge**, z.B. n-Si / p-GaAs
- S semiconductor, M metal, O oxide, I insulator
- **pn-Übergang**: Begriffe: Diffusionsstrom Feldstrom Raumladungszone (ladungsträgerarme Übergangszone) Injektion Minorität Majorität
- **Durchbrucheffekte**: Tunneleffekt, Lawineneffekt, Wärmedurchschlag
- Sperrschichtfotoeffekt: innerer Fotoeffekt in der Sperrschicht Anwendung: Fotodiode, Fototransistor, Fotoelement (=Solarzelle) (ohne äußere U)
- Elektrolumineszenzeffekt: Umkehrung des Sperrschichtfotoeffekts - Rekombination von Ladungsträgern in der Sperrschicht eines in Flußrichtung gepolten p-n-Übergangs bewirkt Emission von Licht

Anwendung: LED - light emitting diode, LD - Laserdiode (stimulierte Emission)

Halbleiter-Werkstoffe

z.B. Si, Ge, Se, Te, B, C 1. ELEMENTHALBLEITER:

2. VERBINDUNGSHALBLEITER: steuerbare Bandabstände, Wirkungen im Lichtbereich (innerer Fotoeffekt)

III-V-Verbindungen	II-VI-Verbindungen	
AlP, AlAs, GaP, AlSb, GaAs, InP, GaSb, InAs, InSb	ZnS, ZnSe, CdS, ZnTe, CdSe, HgS, CdTe, HgSe, HgTe	

Bauelement	Werkstoffbeispiel	Anwendung		
Volumeneffektgesteuerte Halbleiter-Bauelemente				
NTC (Heißleiter)	Fe ₂ O ₃ -TiO ₂	TMessung u. Regelung		
PTC (Kaltleiter)	BaTiO ₃ -SrO/PbO	TMessung u. Regelung		
Varistor	SiC, ZnO	Spannungsstabilisation, Funkenlöschung		
GUNN-Effekt	GaAs	Mikrowellenverstärker		
Fotowiderstand	CdS, CdSe	Lichtschranke, Flammwächter		
HALL-Generator	InSb, InAs	Messung an Halbleitern		
Piezowiderstand	Si, Ge	Dehnungsmessstreifen		
S	Sperrschichteffektgesteuerte Halbleiter-Bauelemente			
Diode	Si	Gleichrichter, Schalter		
Transistor	Si	Verstärker, Schalter		
Fotoelement	PbS, PbSe, Si, GaAs	Belichtungsmesser, Solarzellen		
Lumineszenzdiode	GaAs, GaP	Optische Anzeigen		
Laserdiode	GaAs	Optische Sender		

Materialien für LEUCHTDIODEN

Material	Dotierung	Strahlung	Wellenlänge
Ga As	Zn	infrarot	900 nm
Ga As	Si	infrarot	930 nm
Ga As P	-	rot	655 nm
Ga As P	N	orange	625 nm
Ga As P	N	gelb	590 nm
SrS	С	blau	
Ga P	N	grün	555 nm

HALBLEITER - WERKSTOFFE - HERSTELLUNG (Beispiel: Si)

- 1. Herstellen hochreinen Halbleitermaterials: pyrometallurgisch aus Quarzsand bzw. Ferrosilizium
 - Endprodukt: 99,9999% Si, d.h. 1 ppm Verunreinigungen
 - weitere Reinigung durch Zonenschmelzen: es entsteht polykristallines Si (Stäbe)
- 2. Züchten von Einkristallen, mehrere Kristall-Ziehverfahren mit Hilfe von Impfkristallen (Einkristall)
- Tiegel-Ziehverfahren nach CZOCHRALSKI: es können einkristalline, versetzungsfreie Stäbe l= 1 m, d= 150 mm hergestellt werden, geringer Aufwand, Nachteil: sauerstoff-haltig
- Zonenzieh-Verfahren (tiegelfrei): sauerstofffrei, aufwendiger, universeller verwendbar, höhere Reinheit
- 3. Bearbeitung der Einkristallstäbe: - Zerschneiden in Scheiben 100...200 um Dicke - Läppen mit Diamantpaste
- Ergebnis: homogene n- oder p-dotierte Einkristalle = Wafer - Polieren,

80er Jahre: 6"-Technik, 90er Jahre: 8"-Technik, Heute: 12"-Technik (Waferdurchmesser)

- 4. Herstellung aktiver Bauelemente mit Hilfe der Planartechnik:
 - Maskieren
 - Lithographie
 - Strukturätzen
 - Dotieren
 - Metallisieren

Häufig: Herstellung dünner Halbleiter-Schichten auf dem Einkristall durch Epitaxie:

- höhere Qualität und beliebige Dotierung
- 5. Herstellung der Chips aus den Wafern
- 6. Bonden, Verkapselung

p-Halbleiter n-Halbleiter

p-n-Übergang:

Magnetische Eigenschaften

- magnetische Feldstärke H (in A/m), magnet. Flussdichte B (in Tesla, 1T=1Vs/m²), Permeabilität μ (in H/m)
- $\mathbf{B} = \boldsymbol{\mu}_0 \cdot \boldsymbol{\mu}_r \cdot \mathbf{H}$ (multiplikative Darstellung) oder $\mathbf{B} = \mu_0 \cdot \mathbf{H} + \mathbf{J}$ (additive Darstellung)
- mit J Polarisation (Anteil der Flussdichte zusätzlich zum Vakuum)
- $B=\mu_0{\cdot}\mu_r\cdot H=\mu_0{\cdot} H+J$ $\boldsymbol{\mu_r} = \left(\mu_0 \cdot H + J\right) / \mu_0 \cdot H = 1 + J / \mu_0 \cdot H = \boldsymbol{1} + \boldsymbol{k}$ dann ist: und
- mit k magnetische Suszeptibilität
- relative Permeabilitätszahl μ_r: gibt das Vielfache der Flussdichte im stofferfüllten Raum gegenüber Vakuum an Magnetfelder entstehen durch bewegte elektrische Ladungen, es bilden sich magnetische. Dipole (N und S)

STOFF IM MAGNETFELD:

Art	$\mu_{\rm r}$	k	Wirkung	Beispiele	Ursache
Diamagnetismus	<1	<0	äußeres Magnetfeld	Cu, Au, Ag, Bi,	entsteht bei abgeschlossener
			wird geschwächt	H_2	Elektronenbahn
Paramagnetismus	>1	>0	äußeres Magnetfeld	Luft, Al	bei unaufgefüllten
			wird verstärkt		Elektronenschalen
Ferromagnetismus	»1	»0	äußeres Magnetfeld	Fe, Co, Ni	es entstehen spontan (unterhalb
(besser: struktureller wird stark verstärkt			Curie-T) WEISSsche Bezirke, die		
Magnetismus)					sich im Magnetfeld ausrichten

STRUKTURELLER MAGNETISMUS

- Ferromagnetismus:
- magnetische Momente parallel orientiert
- CURIE-Temp.: Übergang ferromagnetisch paramagnetisch
- Bedingungen:
- 1. unvollständige innere Elektronenschale
- 2. unkompensierte Spins in dieser Schale (HUNDsche Regel)
- 3. Atomabstand = mindestens 3 x Radius dieser Schale
- Antiferromagnetismus:
- magnetische Momente paarweise antiparallel orientiert
- NEEL-Temperatur: CURIE-T. antiferromagn. Stoffe
- Ferrimagnetismus:
- unvollständig kompensierter Antiferromagnetismus

Begriffe:

- WEISSsche Bezirke = Domänen: spontan gleich aufmagnetisierte Bereiche
- Magnetisierungskurve (Hysteresekurve):
- Remanenz(induktion) B_r: nach dem Verschwinden des erregenden Magnetfeldes verbleibende Flussdichte
- Koerzitivfeldstärke H_C: die zur Aufhebung der Remanenz notwendige (Gegen-) Feldstärke

Ferromagnetische Metalle	Fe	Ni	Co
Kristallstruktur	krz	kfz	hdP
Schmelzpunkt (°C)	1536	1453	1495
CURIE-Temp. (°C)	770	358	1130
Richtungen leicht. Magn.	[100]	[111]	[0001]

Magnetwerkstoffe

Einteilung nach	Einteilung
Art des Magnetismus	ferro- oder ferrimagnetisch
Stoffart	metallisch, oxidisch oder Pulvermagnete
Struktur	kristallin oder amorph
magnetische Eigenschaften	weichmagnetisch, (magnetisch halbhart) oder hartmagnetisch
Werkstoffzusammensetzung	Rein-Fe, Fe-Si-Legierungen

Weichmagnetische Werkstoffe:

- leichte, aber hohe Magnetisierbarkeit, d.h. geringe Koerzitivfeldstärke $H_C < 1 \text{ A} \cdot \text{cm}^{-1}$
- Gefüge: weitgehend einphasig und rein, große, homogene Körner, häufig: Textur erwünscht
- leichte Ummagnetisierbarkeit ohne große irreversible Anteile
- geringe Wirbelstromverluste
- häufig bestimmte Schleifenform erwünscht
- Verhalten frequenzabhängig
- Anisotropieerscheinungen:
 - Kristallanisotropie
 - Spannungsanisotropie: Magnetostriktion
 - Form- bzw. Gestaltanisotropie

Hartmagnetische Werkstoffe

- hohe Koerzitivfeldstärke, hohe Sättigungsinduktion bzw. Remanenzinduktion
- Entmagnetisierung soll behindert werden, d.h. Energieprodukt: $(H_C \cdot B_r) = max$.
- geringe Korngröße und heterogenes Gefüge (Behinderung von Wandverschiebungen)
- oder kleine ferromagnetische Teilchen, umgeben von nichtferromagnetischer Matrix (z.B. in Magnetbändern)

Übersicht

	Weichmagnetika	Hartmagnetika
Metalle	Fe, Ni, Co	
Legierungen	Fe-Si, Fe-Ni, Fe-Co, Fe-Al, Cu-Mn-Al	Fe-Al-Ni, Fe-Al-Ni-Co,
		Fe-Ni-Cu, Pt-Co, Fe-Co-V
Metalloxide (Ferrite)	Mn-Zn-O, Ni-Zn-O, Mg-Mn-O	Ba-O, Sr-O
Amorphe Metalle	Fe ₇₈ Si ₁₉ B ₁₃ , Co ₆₈ Fe ₄ Mo ₁ Si ₁₆ B ₁₁ ,	feinstkristalline Fe-Nd-B-Legierungen, die
	$\text{Co}_{75}\text{Mn}_4\text{Fe}_1\text{Si}_{11}\text{B}_9$	durch gesteuerte Kristallisation aus dem
		amorphen Zustand hergestellt werden

Weichmagnetika			Hartmagnetika
Werkstoff	Anwendung	Werkstoff	Anwendung
Fe 99,98	Relais, Ankerkörper	Al Ni Co	Magnete für Meßgeräte, Motoren,
Fe Si 3	Dynamo-, Trafoblech, Übertrager		Generatoren
Fe Ni 36	Relais, Übertrager, Drosseln, Filter,	Ba-Ferrite	Lautsprecher, Haftmagnete
Fe Ni 50	Abschirmungen, Meßwandler		
Fe Ni 75	_ " _	Sm ₅ Co	Kleinstmagnete für Motoren, Tasten,
FeCo50 V2	max. Flußdichte (Luft-/Raumfahrt)		Hörhilfen, Mikrofone
Ferrite	Spulen, Filter, Übertrager		

ANWENDUNG AMORPHER METALLE

- 1. Weichmagnetische, amorphe Legierungen technisch bedeutendste Gruppe
 - bestehen aus 1 oder mehr Grundkomponenten (Fe, Co, Ni) oder glasbildenden Komponenten (B, Si und C)
 - + Zusätze, die die thermische Stabilität erhöhen oder die magnetischen Eigenschaften genau einstellen (Mn)
 - Typisch: $Fe_{78}Si_{19}B_{13}$, $Co_{68}Fe_4Mo_1Si_{16}B_{11}$, $Co_{75}Mn_4Fe_1Si_{11}B_9$
 - meist als Band bis 300 mm breit und 25-30 µm dick gegossen
 - ideale weichmagnetische Eigenschaften: H_C und Wirbelstromverluste klein, ρ 3x so hoch wie vergleichbare kristalline Legierung, geringere Leerlaufverluste bzw. geringere Erwärmung in Transformatoren
 - Anwendung in Transformatoren, als Magnetköpfe, magnetoelastische Sensoren, Markierungselemente in Warensicherungssystemen (aufgrund der höheren Streckgrenze)
- 2. Amorphe Lotfolien, die bei der Anwendung kristallisieren: eingesetzt, da besser handhabbar, Foliendicke = Dicke der notwendigen Lotschicht: Aktivlote (Cu-Ti- oder Cu-Zr-Legierungen), ohne Flussmittel
- 3. Hartmagnetische, feinstkristalline Fe-Nd-B-Legierungen,
- (werden durch gesteuerte Kristallisation aus dem amorphen Zustand hergestellt)
- 4. Feinstkristalline, hochkarbidhaltige Hartmetalle, die bei der Herstellung den amorphen Zustand durchlaufen
 - in diesen beiden Gruppen dient der amorphe Zustand als Zwischenstufe zur gesteuerten Kristallisation
 - Herstellung wie Folien Zerkleinern zu Flocken pulvermetallurg. Verarbeitung durch Mahlen und Sintern
 - Korngröße 20-50 nm führt zu höherer H_C als bei üblichen Sintermagneten mit Korngröße von 5-30 μ m

Elektro- und magneto-keramische Werkstoffe

Isolatoren O, SiO ₂ , Si ₃ N ₄ , Al ₂ O ₃ , SiC, AlN	Diffusion and an Oborflich and a city				
O, SiO ₂ , Si ₃ N ₄ , Al ₂ O ₃ , SiC, AlN	Differing and all of Objective because it is				
	Diffusionsmasken, Oberflächenpassivierung				
TiO ₃	Kondensatoren				
$(Zr,Ti)O_3$ [PZT]	Generatoren, Drucker, Sensoren				
b,La)(Zr,Tio)O ₃	Unterbrecher, Farbfilter, Lichtleiter,				
	Bildspeicher				
T, PbTiO ₃ , LiTaO ₃ , SrNbO ₃	T-Sensoren, Infrarot-Detektoren				
inelle (Fe ₂ O ₃ :MeO;	Induktoren, Transformatoren,				
e=Übergangsmetall)	Aufnahmeköpfe, magn. Verstärker,				
anate $(5 \cdot \text{Fe}_2\text{O}_3: 3 \cdot \text{Me}_2\text{O}_3)$	Magnetkerne				
e=Seltenerdmetall)	(Keramiken)				
Elektrische Leiter					
Volumeneigenschaf	ften				
O ₂ , NASICON	Festelektrolyte, Gassensoren				
O ₂ , SnO ₂ , ZnO,	Gassensoren				
rowskite (BaTiO ₃ , SrTiO ₃ , SrSnO ₃)					
$Ba_2Cu_3O_{7-x}$	Magnetfeldsensoren, Antennen, Magnete,				
-Sr-Ca-Cu-Oxide	Drosseln, Leiterbahnen				
O-TiO ₂ (Halbleiter), ZrO ₂ -Y ₂ O ₃	Temperatursensoren,				
onenleiter)	Temperaturkompensation				
Korngrenzeneigenschaften					
otiertes BaTiO ₃	Heizelemente. T-Kompensation				
O	Überspannungsschutz				
Oberflächeneigenschaften					
TiO ₃	Elektronische Sensoren				
O ₂ , ZnCr ₂ O ₄	Feuchtigkeitssensoren				
	Zr,Ti)O ₃ [PZT] D,La)(Zr,Tio)O ₃ T, PbTiO ₃ , LiTaO ₃ , SrNbO ₃ nelle (Fe ₂ O ₃ :MeO; = Übergangsmetall) nate (5·Fe ₂ O ₃ :3·Me ₂ O ₃) = Seltenerdmetall) Elektrische Leite Volumeneigenschaf O ₂ , NASICON O ₂ , SnO ₂ , ZnO, owskite (BaTiO ₃ , SrTiO ₃ , SrSnO ₃) a ₂ Cu ₃ O _{7-x} Sr-Ca-Cu-Oxide O-TiO ₂ (Halbleiter), ZrO ₂ -Y ₂ O ₃ nenleiter) Korngrenzeneigensch tiertes BaTiO ₃ O Oberflächeneigensch TiO ₃				

Dielektrische Eigenschaften

- elektrische Feldstärke E (in V/m)
- elektrische Verschiebung(sdichte) (Flußdichte) D=D(E) (in As/m²) im Stoff: $\mathbf{D} = \mathbf{\varepsilon}_{\mathbf{r}} \mathbf{\varepsilon}_{\mathbf{0}} \cdot \mathbf{E}$ (multiplikative Darstellung) bzw.
- relative Dielektrizitätszahl = Permittivität $\mathbf{\epsilon_r} = \mathrm{gibt}$ Menge der im Stoff gebundenen Ladungen im Vergleich zum Vakuum an: $\mathbf{\epsilon_r} = \mathbf{\epsilon_r}$ (Werkstoff, Temperatur, Frequenz)

 $\mathbf{D} = \boldsymbol{\varepsilon_0} \cdot \mathbf{E} + \mathbf{P}$ (additive Darstellung)

• Polarisation P: beschreibt Bildung elektrischer Dipole, $P = D - \epsilon_0 \cdot E = \epsilon_0 \cdot E \ (\epsilon_r - 1) = \chi_e \cdot \epsilon_0 \cdot E$ mit $\chi_e = (\epsilon_r - 1)$ - dielektrische Suszeptibilität

Effekte in Dielektrika:

- Elektrostriktion: Effekt der Längenänderung (Verformung) beim Anlegen eines elektrischen Feldes.
- Piezoelektrizität: Piezoelektrische Kristalle laden sich bei Druck- oder Zugbeanspruchung in Richtung einer ihrer polaren Achsen elektrisch auf.
- Pyroelektrizität: polare piezoelektrische Kristalle, die ohne Druck nur durch Temperaturänderung polarisiert werden können - es entsteht Spannung
- Elektrischer Durchschlag

	_ : =_	feldfreier Raum	Polarisation im elektro- statischen Feld
spolarisation	 Elektronen- oder Atompolarisation	\bigoplus	
Verschiebungspolarisation	Ionen- polarisation		$\begin{array}{c} \bigcirc \bigcirc$
Orient polari	tierungs- sation	@ @ @ @	

Stoff im elektrischen Feld - Dielektrika				
Diaelektrika	Par(a)elektrika	Ferroelektrika		
a) Elektronenpolarisation = unpolare	Ordnungs- oder	permanente Dipole bereits ohne		
Moleküle werden im Feld zu	Orientierungspolarisation =	Feld in Domänen,		
elektrischen Dipolen	permanente Dipole werden im	Hysterese D - E, remanente		
b) Ionenpolarisation = elektrisches Feld	Feld ausgerichtet	Polarisation, CURIE-Temperatur,		
verschiebt Ionen im Gitter		große Dielektrizitätszahl bis zu 10^4		
a) + b): Deformations-Polarisation				
Luft, Al ₂ O ₃ , Papier, Kunststoffe, Lackfilme	Wasser, Glas-Keramik	BaTiO ₂ -CaSn O ₃		

Dielektrische Werkstoffe

• Einteilung:

Dielektrika	natürliche	künstliche
anorganische		Keramik,
	Quarz, Glas	Porzellan
organische	Holz, Seide,	Polystyrol,
	Papier, Baumwolle	PVC, Silicone
	Baumwolle	

Einteilung nach Anwendung:

Passive Dielektrika - dienen der Isolation		Aktive Dielektrika - nutzen Polarisation aus	
ohne tragende	Transformatorenöl,	Dielektrika zur Erhöhung der	Kondensatoren
Eigenschaften	Isolierlacke	Kapazität	
mit tragenden	Isolatoren von Freileitungen,	Ferroelektrische Werkstoffe	Informations-Speicher
Eigenschaften	Substrate	mit remanenter Polarisation	
		Piezoelektrische Werkstoffe	Phonogeräte, Filter,
		zur Signal-Wandlung	Zündgeräte

Wichtige Eigenschaften: Dielektrizitätszahl, Wasseraufnahme, Durchschlagverhalten, Durchschlagfestigkeit, Durchgangswiderstand, Oberflächenwiderstand

Polymere Dielektrika (oft bezeichnet als organische Dielektrika, aber Ausnahme: Silikone)

1.Polymerisate

Chemische Bezeichnung	Handelsname (Auswahl)	Beispiele
Polyethylen	Lupolen, Hostalen	Kabelisolierung, Folien, Korrosionsschutz
Polystyrol	Trolitul, Styroflex, Styropor	HF-Isolierungen, Spritzguss-Teile,
		Kondensatoren
Polyvinylchlorid	Igelit, Vestolit, Hostalit, Vinoflex	Platten, Rohre, Folien, Pasten, Pressmassen
Polyisobutylen	Oppanol B	Kabelisolierungen, Dichtungen
Polytetrafluorethylen	Teflon	Platten, Folien, Formteile

2.Polykondensate

Chemische Bezeichnung	Handelsname (Auswahl)	Beispiele
Phenoplaste	Bakelit, Resinol, Novotex	Hartpapier, Hartgewebe, Schichtstoffe
Aminoplaste	Ultrapas, Melopas, Maprenal	Leime, Lacke, Preßmassen
Polyamide	Nylon, Ultramid A, Supronyl	Fasern, Folien, Gehäuse, Lager, Zahnräder
Silikone	Silicone, Silastic	Silikon-Öle, -Fette, -Kautschuk, -Harze

3.Polyaddukte

Chemische Bezeichnung	Handelsname (Auswahl)	Beispiele	
Polyätherester	Devron, Epon, Epikote, Scurol, Araldit	Gießharze, Klebstoffe, Vergußmassen	

Anorganische Dielektrika:

Anorganische Dielektrika				
kr	amorph (Glas)			
einkristallin	polykristallin (Keramik)	Glaskeramik		

einkristalline Dielektrika					
SiO ₂ (Quarz) Al ₂ O ₃ Saphir Al ₂ O ₃ :Cr Rubin 3Y ₂ O ₃ ·5Al ₂ O ₃					
piezoelektr. Wandler	Substratmaterial	Festkörperlaser	Yttrium-Aluminium-Granat		

polykristalline Keramik						
BeO, Al_2O_3 :		BeO, Al ₂ O ₃ , MgO, TiO ₂		Al ₂ O ₃ , TiO ₂		
hohe Wärmeleitf	hohe Wärmeleitfähigkeit ho		ohe TempBeständigkeit		günstige elektr.Eigenschaften	
BeO	Al_2O_3		Al ₂ O ₃ , MgO, ZrO ₂	Al_2O_3	Ta_2O_5	TiO_2
Sockel für	Substrate, HF-Bauteile		Isolierstoffe für Hoch-	Elektrolyt	:-	Keramik-
Transistoren			TempÖfen	kondensat	or	kondensator

Gäser: 1. Oxidische Gläser							
a) Be ₂ O ₃ -haltig		b) SiO ₂ -haltig: Silikatglas c) P ₂ O ₅ -haltig					
Boratglas	SiO_2		$SiO_2+Me_xO_y$ Pho				
	Quarzglas	Quarzglas Kalk-Alkali-Glas Bleiglas Bor-Aluminium-Silikatglas					
	(CaO, Na ₂ O, K ₂ O) (PbO) (B ₂ O ₃ , Al ₂ O ₃)						
2. S-, Se-, As-haltige Gläser							
Anwendung:	Anwendung: Leiterplatten ("E-Glas"), Röhrentechnik, Lichttechnik, Isolatoren, Licht-Wellen-Leiter (LWL)						

Lichtwellenleiter

- optische Energie- und Informationsübertragung in dünnen Glas- oder Kunststoff-Fasern
- Kerns-Ø: 10...100 μm, Mantel-Ø: 125...200 μm
- dielektrischer Wellenleiter aus hochreinem Werkstoff
- mehrere km Länge
- Wirkungsprinzip: Totalreflexion: unterschiedliche Brechungszahl Kern/Mantel
- Wellenlänge: VIS (meist 860 nm), IR, UV
- Bandbreite: 15...40 MHz
- nicht störanfällig (Felder)
- Bauformen:

Stufenindexfaser bzw. Gradientenfaser,

Monomoden-LWL (single mode) bzw. Multimoden-LWL

 $\begin{array}{ll} \bullet & \mbox{Moden: eigenständige, voneinander unabhängige} \\ & \mbox{elektromagnetische Felder, deren Form bestimmt wird durch} \\ & \mbox{die LWL-Kennwerte: Kernradius, numerische Apertur $A_{N,}$} \\ & \mbox{Profilparameter g und Wellenlänge λ} \\ \end{array}$

Anforderungen an LWL - WERKSTOFFE

- Transparenz
- geringe Dämpfung,
- meist 3 optische Fenster 850 nm, 1300 nm, 1550 nm
- geringe Dispersion
- mechanische Eigenschaften: Zugfestigkeit, Stoßfestigkeit, Druckfestigkeit, Mikrokrümmungsstabilität (micro bending), Torsionsfestigkeit, Wasserfestigkeit
- chemische Beständigkeit
 (Rissfreiheit und Abwesenheit von OH⁻-Ionen)
- Temperaturbeständigkeit

Anwendung im Vergleich:

LWL-Kabel für Ortsnetze: 6 oder 12 LWL-Fasern, LWL-Kabel für Fernnetze: 60 oder 120 LWL-Fasern

LWL-*T*rans*at*lantik-Kabel (TAT-Kabel):

kann 40.000 Gespräche (digital) aufnehmen, braucht nur alle 50 km verstärkt werden, (TAT-Cu-Kabel: 4.200

Gespräche bei 53 mm \emptyset , Verstärkung alle 9,5 km)

Dämpfung Eindringtiefe dB/km bei 30dB in m Fensterglas 50.000 0,6 Optisches Glas 3.000 10 Dichter Nebel 500 60 Atmosphäre über Stadt 10 3.300 LWL (0,85µm) 10.000 3 LWL $\overline{(1,55\mu m)}$ 0,3 100.000

 $30 \text{ dB} = 3 \text{ Bel} \rightarrow 1/1000 = 0.1 \%$

SiO, • GeO,

LWL - WERKSTOFFE

KIESELGLAS SiO₂

(auch, aber seltener, Mehrkomponentengläser wie: Natriumcalciumsilicat- (Na₂O-CaO-SiO₂-) Glas

Natriumborsilikat- (Na₂O-B₂O-SiO₂-) Glas

c}

LWL-

Herstellung

Eigenschaften	Brechungsindex n =		Reinheit	Herstellung
- extrem niedrige thermische	1,4518	$(0,9\mu m)$	Metallionen:	meist synthetische Herstellung:
Ausdehnung	1,4496	$(1,3\mu m)$	1ppm	Tetraeder-Aufbau (Netzwerkbildner)
- hervorragende Elastizität	1,4435	(1,6µm)		Schichtaufbau durch
- hohe TWechselbeständigkeit	keit		OHIonen:	MCVD (modified chemical vapor
- hohe Transformations- und	Änderung	g von n	10 ⁻⁸ 10 ⁻⁹	deposition) oder
Erweichungs-Temperatur	durch Dotierung:			VAD (vapor phase axial deposition):
- geringe Wärmeleitfähigkeit	GeO_2 bzw. P_2O_5 - $n\uparrow$			- Preform kollabiert zu Vollstab
- niedrige dielektrische Verluste	B_2O_3 bzw. F - n \downarrow			- Ziehvorgang, Beschichtung
- gute optische Durchlässigkeit				(Primärschicht)
(VIS, IR, UV)				(auch Doppeltiegelverfahren)

KUNSTSTOFFE als LWL: weit über 100 im Einsatz, aber nur einige gut geeignet

Eigenschaften:	Vorteile:	Nachteile:			
- hohe Lichtdurchlässigkeit,	- leicht handhabbar	- hohe Dämpfung			
geringe Trübung	- große Zug- und Biegefestigkeit	(1506000 dB/km)			
- amorphe Struktur	- hohe Flexibilität (Biegeradius: 0,65 mm)	- spektrale			
- geringe n-Schwankungen über	- gute Koppelbedingungen (Kern-Ø: 100400μm)	Dämpfungsminima			
große Längen	- einfache Endflächenbearbeitung	bei geringeren			
- höchste Geometriegenauigkeit	- geeignet für VIS und IR	Wellenlängen			
(Kern- und Manteldurchmesser)	- gute Langzeitstabilität				
- gut mechanisch bearbeitbar	- einfache Herstellung, - geringer Preis				
geeignet für 10m1km, vorra	geeignet für 10m1km, vorrangig EDV, Kfz, Automatisierung, schnelle Entwicklung der LWL-Technik				

Laser

KOHÄRENZLÄNGE DES LICHTS

Lichtquelle	Frequenz-	Kohärenzlänge
	bandbreite	
weißes Licht	rd.200THz	rd.1,5µm
Spektrallampe bei RT	1,5GHz	20cm
Kr-Spektrallampe 77K	375MHz	80cm
Halbleiterlaser GaAlAs	2MHz	150m
HeNe-Laser	159kHz	2km

pn-Übergang

Laserlicht

Halbleiterlaser

Im Unterschied zum Licht herkömmlicher Lampen:

LASER = light amplification by stimulated emission of radiation

- erster Laser: T. H. MAIMAN 1960 Rubinlaser
- synchronisierte Ausstrahlung angeregter Atome
- Laserbedingungen:
 - 1) Besetzungsinversion
 - 2) Rückkopplung mit einem Resonator
 - 3) Schwellenbedingung: Verstärkung größer als Verluste
- Eigenschaften: große räumliche und zeitliche Kohärenz, hohe Monochromasie, hohe Amplitudenstabilität
- Prozeß: 3 oder 4 Energieniveaus
 - 1) Pumpen: optisch oder Stoßanregung oder chemisch oder Strom durch pn-Übergang dann strahlungsloser Übergang in metastabiles Niveau danach: induzierte Emission
- Rückkopplung: Spiegel, Halbleiterlaser: saubere Spaltflächen, meist {110}
- Halbleiterlaser:
- Injektionslaser, pn-Übergang: Epitaxieverfahren
- verschiedene Typen, z.B. AlGaAs-Einfach-Hetero-Struktur oder InGaAsP-Laserdiode

Eigenschaften:

Eigenschaften.						
Wellenlänge: VIS: meist 780 nm, 890 nm,	Impuls- oder	direkte Modulation bis GHz-				
aber auch UV, IR	Dauerstrichbetrieb	Bereich				
geringe Emissionsbreite: 24 nm	mechanisch robust	hohe Lebensdauer (10 ⁷ h)				
geringe Abmessungen (0,5 x 0,4 x 0,1 mm)	hoher Leistungswirkungsgrad	geringe Anregungsspannung				