Instrument-centered Parameter Estimation and Sound Synthesis

Jakob Abeßer

Semantic Music Technologies Group Fraunhofer IDMT

Ilmenau, 07.04.2016

Outline

- Motivation
- Parameter Estimation / Transcription
- Sound Synthesis & Audio Coding
- Summary

Automatic Music Transcription

- Audio signal → sequence of note events
- Note parameters
 - Score-level (onset, offset, pitch & loudness)
 - Instrument-level (playing techniques, string & fret number)

- Automatic Music Transcription algorithms reach a glass ceiling
 - Analysis of polyphonic mixtures is challenging
- Analysis of musical performances requires a high level of detail
 - Playing techniques on the instrument
 - Note articulation (legato staccato)
 - Dynamics
- Instrument characteristics & sound production mechanisms must be taken into account!

- Electric bass guitar
 - 4 6 strings \rightarrow f₀ ~ 40 400 Hz
- Sound production → 2 consecutive physical gestures
 - Plucking style & Expression style

- String number & Fret number
- Ambiguity between pitch & fretboard position

- Audio examples (isolated bass guitar notes)
 - Plucking Styles
 - 1. Finger style
 - 2. Muted (damped sound)
 - 3. Picked (brighter sound)
 - 4. Slap-Thumb (metal-like sound)
 - 5. Slap-Pluck (metal-like sound)
 - Expression Styles
 - 6. Harmonics (flageolet tones, higher)
 - 7. Dead-notes (strong damping, percussive sound)
 - 8. Bending & Vibrato (pitch modulation)

- Audio Synthesis / Audio Coding
 - Physical modeling of electric bass guitar
 - Parametric audio coder

Outline

- Motivation
- Parameter Estimation / Transcription
- Sound Synthesis & Audio Coding
- Summary

© Fraunhofer IDMT

Parameter Estimation → Related Work

- Instrument-centered transcription algorithms for violin, cello, electric guitar, piano (use constraints: pitch range, magnitude templates, string number)
- Different data acquisition methods (audio, video, sensors, motion capturing)
- Estimation of playing techniques
 - String damping
 - Vibrato, bending, slides
- Estimation of fretboard positions / chord voicings

Slide 11

- Pre-processing
 - Down-sampling to 5.5 kHz, stereo → mono
- Spectral Estimation
 - Short-time Fourier Transform (STFT)
 - Linear frequency axis
 - Spectral leakage → limited frequency resolution
 - Reassigned instantaneous frequency (IF) spectrogram
 - Logarithmic frequency axis → 120 bins / octave
 - Sharper peaks → better frequency resolution!

Example (Bass guitar note with vibrato)

Slide 14

© Fraunhofer IDMT

Fraunhofer

Pitch detection

■ Harmonic spectral template $f_k \approx f_0(k+1)\sqrt{1+\beta(k+1)^2}$

- Maximize cross-correlation (monophony assumption)
- Fundamental frequency (f₀) tracking
 - Frame-wise tracking (continuity assumption)

- Envelope Modeling
 - Simple parametric model
 - Spectrum = Sum of **harmonic components** (f_0 + overtones) with **time-varying magnitudes**
 - Quasi-harmonic relationship

$$f_k \approx f_0(k+1)\sqrt{1+\beta(k+1)^2}$$

- Wideband attack transients are not modeled
- Frame-wise estimation of harmonic magnitudes using linear interpolation

- Feature extraction
 - Frame-wise
 - Note-wise
 - Envelope-wise
- Goal
- Describe sound (timbre)
- Automatic classification of playing techniques & string number

Slide 18

- Examples (features)
 - Frame-wise features
 - Magnitude & frequency relationships (overtones)
 - Noisiness & subharmonic components
 - Envelope-wise features
 - Modulation frequency
 - Number of modulation periods...
 - Modulation tendency

- Classification of Plucking Style & Expression Style & String Number
 - Machine learning approach (e.g., Support Vector Machine SVM)
- Estimation of Fret Number
 - Derived from string number & pitch & string tuning
- Context-based Error Correction
 - Most note pitches cannot be played on all strings!

Music Transcription → **Evaluation**

Estimation of score-level parameters (onset & pitch) → 17 bass lines

Music Transcription → **Evaluation**

Estimation of instrument-level parameters

Parameter (# Classes)	Isolated note samples	Isolated bass lines
Plucking Style (5)	96 %	85 %
Expression Style (6)	95 %	73 %
String Number (4)	88 %	92 %

Problem

Bass lines have more variations w.r.t. playing styles & note duration

Outline

- Motivation
- Parameter Estimation / Transcription
- Sound Synthesis & Audio Coding
- Summary

Sound Synthesis → **Goals**

Audio Synthesis

- Model the sound production of the electric bass guitar
- Incorporate instrument-level parameters (string number, playing techniques)
- Incorporate knowledge about sound production mechanisms

Parametric Audio Coding

- Represent audio track as sequence of note events & parameters
- Which acoustic parameters are important for natural synthesis?
- Strong data rate reduction

Sound Synthesis → **Related Work**

- Sample-based synthesis
- Additive / subtractive / FM synthesis
- Physical modeling of vibrating systems
 - 1D → strings, 2D → plates, membranes
 - Karplus-Strong algorithm (Karplus & Strong 1983, Smith 1992)
 - Models for guitar, piano, drums, brass

Sound Synthesis → **Goals**

- Extend existing physical modeling algorithms
 - Various excitation functions (different plucking styles)
 - String damping (muted, harmonics, dead-notes)
 - String-fretboard collision (slap techniques)
 - Inharmonicity (thick bass guitar strings)

Video: Superposition of two waves

Basic Model: $y^{\dagger}(n,m)$ y(n,m)Loss Filter PU-Filter y (n,m)

Excitation function relate to plucking styles:

Slide 29

Frequeny Modulations:

Examples

- 1) Normal
- 2) Bending
- 3) Vibrato

Collision between strings & fretboard (slap styles):

Video: String Vibration & Collision with fretboard

Audio Coding - Evaluation

MUSHRA listening test

Audio Examples

- 1. Plucking Style: picked, Expression style: normal, vibrato
- 2. Plucking style: slap-pluck, slap-thumb
- 3. Plucking style: finger-style, expression style: normal, harmonics

Audio Coding → **Proposed Approach**

Parametric Instrument Coder

Parameters

- Note onset, duration, fundamental frequency, loudness
- Plucking style, expression style, string number, fret number
- Modulation frequency & extend (f₀)
- Average bit-rate = 225.4 bit/s

Audio Coding → **Proposed Approach**

Codec Parameters

Parameter	Range	Resolution	Quantization bits (steps)
Loudness \mathcal{L}	[0, 127 dB]	$0.1\mathrm{dB}$	11 (2048)
Plucking Style S_p	[1, 5]	1	3 (8)
Expression Style S_E	[1, 6]	1	3 (8)
String Number \mathcal{N}_{S}	[1, 4]	1	2 (4)
Fret Number \mathcal{N}_{F}	[0, 24]	1	5 (32)
Onset \mathcal{O}	$[0,30\mathrm{s}]$	$0.01\mathrm{s}$	12 (4096)
Duration \mathcal{D}	$[0, 20\mathrm{s}]$	$0.01\mathrm{s}$	11 (2048)
Magnitude decay α_t	$[0,127\mathrm{dB/s}]$	$1\mathrm{dB/s}$	7 (128)
Fundamental frequency f_0	$[41.2\mathrm{Hz}, 382.0\mathrm{Hz}]$	$0.1\mathrm{Hz}$	12 (4096)
Modulation frequency $\chi_{f,mod}$	$[0, 12\mathrm{Hz}]$	$0.1\mathrm{Hz}$	7 (128)
Modulation lift $\chi_{\text{mod,lift}}$	$[0, 500\mathrm{cent}]$	$1\mathrm{cent}$	9 (512)
		Σ	$82\mathrm{bit/Note}$

Audio Coding & Sound Synthesis → Evaluation

- MUSHRA listening tests
 - Perceptual quality of synthesized bass lines
 - Higher ratings for new synthesis algorithm compared to AMR-WB+, HE-AAC, Ogg Vorbis algorithms (with lowest bit rate settings)
 - Perceptual improvements by tuning the synthesis algorithm (inharmonicity, note decay parameters)
 - Only small improvements compared to un-tuned version
 - Importance of plucking & expression styles for perceptual quality
 - Higher importances for correct plucking style synthesis

Summary

- Instrument-centered parametrization & synthesis algorithms
 - Rich set of expressive parameters (playing styles, geometric position on the instrument, dynamics etc.)
 - Robust extraction require isolated instrument tracks
 - Re-synthesis allows for transmission / encoding with low bitrates
 - Future challenges
 - Adaptation to specific instrument models
 - Parameter estimation from polyphonic mixtures
 - Adaptation of approach to other instrument types

Thank you for your attention!

Jakob Abeßer

Semantic Music Technologies Group Fraunhofer IDMT

Ilmenau, 07.04.2016

