MML minor #7

Нейросети: transfer learning, другие CNN задачи и автокодировщики

- Deep networks learn complex features extractor, but we need lots of data to train it from scratch!
- What if we can reuse an existing features extractor for a new task?

Trained on ImageNet

- Deep networks learn complex features extractor, but we need lots of data to train it from scratch!
- What if we can reuse an existing features extractor for a new task?

- You need less data to train (for training only final MLP)
- It works if a domain of a new task is similar to ImageNet's
- Won't work for human emotions classification,
 ImageNet doesn't have people faces in the dataset!

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

 $Honglak\ Lee,\ http://web.eecs.umich.edu/{}^{\sim}honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf$

- But what if we need to classify human emotions?
- Maybe we can partially reuse ImageNet features extractor?

 $Honglak\ Lee,\ http://web.eecs.umich.edu/{}^{\sim}honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf$

ImageNet features extractor

ImageNet 1000 classes

ImageNet features extractor

Fine-tuning

ImageNet features extractor

- You can initialize deeper layers with values from ImageNet.
- This is called **fine-tuning**, because you don't start with a random initialization.
- Propagate all gradients with smaller learning rate.

Fine-tuning

- Very frequently used thanks to wide spectrum of ImageNet classes
- Keras has the weights of pre-trained VGG, Inception, ResNet architectures
- You can fine-tune a bunch of different architectures and make an ensemble out of them!

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	
Big dataset		

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	
Big dataset	Fine-tuning of deeper layers	

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	
Big dataset	Fine-tuning of deeper layers	Train from scratch

	ImageNet domain	Not similar to ImageNet
Small dataset	Train last MLP layers	Collect more data
Big dataset	Fine-tuning of deeper layers	Train from scratch

We've examined image classification task

We've examined image classification task

Semantic segmentation:

We've examined image classification task

Semantic segmentation:

We've examined image classification task

Semantic segmentation:

Object classification + localization:

We've examined image classification task

Semantic segmentation:

water

duck

grass

Object classification + localization:

We need to classify each pixel

We need to classify each pixel

We need to classify each pixel

We need to classify each pixel

Naïve approach: stack convolutional layers and add per-pixel softmax

We need to classify each pixel

Naïve approach: stack convolutional layers and add per-pixel softmax

We go deep but don't add pooling, too expensive

Let's add pooling, which acts like down-sampling

Let's add pooling, which acts like down-sampling

Let's add pooling, which acts like down-sampling

Wait a second!
We need to classify
each pixel!

Need to do unpooling!

Let's add pooling, which acts like down-sampling

Let's add pooling, which acts like down-sampling

Nearest neighbor unpooling

Fill with nearest neighbor values

Pixelated and not crisp!

Max unpooling

Corresponding pairs of downsampling and upsampling layers

Max unpooling

Corresponding pairs of downsampling and upsampling layers

Remember which element was max during pooling, and fill that position during unpooling:

Learnable unpooling

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Learnable unpooling

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Output: 4x4

Learnable unpooling

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Learnable unpooling

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Transpose convolution

Autoencoders

- Encoder = data to hidden
- Decoder = hidden to data
- Decoder(Encoder(x)) ~ x

Linear case: "similar" to PCA or SVD

Example: matrix factorization

$$X = U \times V^T$$

Minimizing reconstruction error

$$||X - U \cdot V^T|| \rightarrow \min_{U, V}$$

Matrix decompositions

Исходная картинка, попробуем применить SVD

Применили SVD и взяли только первый главный фактор.

k = 1

Взяли 2 главных фактора.

k = 2

$$k = 10$$

k = 50

Довольно неплохо!

Исходный размер был: 475х620.

Что дальше?

Нужно учить глубокое преобразование!

Working with neural representations

• We need to understand that a NN can convert an object to a small dense vector, which encodes the semantics:

Denoising autoencoders

Поиск похожих картинок

Поиск похожих картинок

Working with neural representations

You can play around with those vectors to morph images:

Путешествуя в пространстве имбедингов плавно меняется картинка

И самое классное!

- Нам не нужны размеченные данные!
- Учим экстрактор фичей забесплатно!

Ссылки

- https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
- https://github.com/hse-aml/intro-to-dl/blob/master/week4/Autoencoders-task.ipynb