Solar Position

Thursday, February 1, 2024

3:59 PM

Can we use information from previous lecture to find a good tilt angle for solar collector?

Vancouver: L= 49.3°

· Good rule of thumb: tilt toward the equator by an angle L

L South in Northern Hemisphere

L north in Southern Hemisphere

e.g. Washing ton D.C. L= 38.9° tilt angle \cong 38.9°

increase tilt angle to optimize for winter decrease tilt angle to optimize for summer

Solar Noun

· When the sun is directly over the local meridian, i.e. line of longitude

· Recall altitude angle B

· Altitude Angle at Solar Noon (BN)

· angle between the sun and the local horizon directly beneath the sun

· Zenith

- · axis drawn directly overhead at a site
- perpendicular to local horizon

E.g. Gable Home From 2009 Solar Decathlon Challenge, Washington D.C.
Competition takes place on October 15 -> day number n= 288

But we have not considered Earth's rotation

Now, we describe the location of the sun at any time \rightarrow altitude angle β azimuth angle ϕ_s survise β , ϕ_s depend on

- Hour angle (H)

· # of degrees the Earth must rotate to have the Sun directly over the local meridian

$$H = \frac{15^{\circ}}{\text{hour}} \times \text{hours before solar noon}$$

'Without going through details of derivation,

$$\sin \beta = \cos L \cos \beta \cos H + \sin L \sin \delta$$

 $\sin \phi = \frac{\cos \delta \sin H}{\cos \beta}$

· But: in spring and summer, it is possible to have $\phi_s > 90^\circ$ or $\phi_s < -90^\circ$ but sinx= sin(180°-x)

► We need a test to determine if |\$\psi_s| < 90° or |\$\psi_s| > 90°

If
$$\cos H \ge \frac{\tan \delta}{\tan L}$$
, then $|\phi_{\delta}| \le 90^{\circ}$. Otherwise $|\phi_{\delta}| > 90^{\circ}$

Find the altitude angle β and azimuth angle ϕ_s for the sun at 3pm solar time in Boulder, C.O. (L=40°) on summer solstice.

$$\sin \beta = \cos (40^\circ) \cos (23.45^\circ) \cos (-45^\circ) + \sin (40^\circ) \sin (23.45^\circ)$$

iv)
$$\sin \phi_s = \frac{\cos(23.45^\circ) \sin(-45^\circ)}{\cos(48.83^\circ)} = -0.9854$$

V) The test:
$$\cos H = \cos (-45^{\circ}) = 0.707$$

$$\frac{\tan \delta}{\tan L} = \frac{\tan (23.45^{\circ})}{\tan (45^{\circ})} = 0.517$$

$$\cos H > \frac{\tan \delta}{\tan \delta} \rightarrow |\phi_{\delta}| \leq 90^{\circ} \rightarrow \phi_{\delta} = -80.19^{\circ}$$

Summary.

$$\delta = 23.45^{\circ} \sin \left(\frac{360}{365} (n-81) \right)$$

$$\phi_s = solar azimuth angle$$