

Disciplina :	Inteligência Artificial	2º Trabalho	Data: 08/11/24
Professors :	Edjard Mota	Turma: E500 & CB01	Entrega Individual
Aluno(a):	Aline Silva da Cunha	Turma: CB01	Matrícula: 22250558

Um sistema de diagnóstico deve ser feito para um farol de bicicleta movido a dínamo usando uma rede bayesiana. As variáveis na tabela a seguir são fornecidas

Variáve l	Significado	Valores
Li	Luz ligada (Light is on)	t/f
Str	Condição da rua (Street condition)	dry, wet, snow_covered
Flw	Volante do Dínamo desgastado (Dynamo flywheel worn out)	t/f
R	Dínamo deslizante (Dynamo sliding)	t/f
V	Dínamos mostra a tensão (Voltagem) (Dynamo shows voltage)	t/f
В	Lâmpada ok (<i>Light bulb ok</i>)	t/f
K	Cabo ok (<i>Cable ok</i>)	t/f

As seguintes variáveis são independentes aos pares: Str, Flw, B, K. Além disso: (R, B), (R, K), (V, B), (V, K) são independentes e a seguinte equação é válida:

$$P(Li \mid V, R) = P(Li \mid V)$$

$$P(V \mid R, Str) = P(V \mid R)$$

$$P(V \mid R, Flw) = P(V \mid R)$$

1ª Questão

(a) Desenhe a rede causalidade entre as variáveis *Str*, *Flw*, *R*, *V*, *B*, *K* e *Li*

V	B	K	P(Li)
t	t	t	0.99
t	t	f	0.01
t	f	t	0.01
t	f	f	0.001
f	t	t	0.3
f	t	f	0.005
f	f	t	0.005
f	f	f	0

Flw(Dynamo flywheel worn out)

(b) Insira todos os CPTs faltantes no gráfico (tabela de probabilidades condicionais).

Tabela para P(Str)

Str	Probabilidade
dry	0.5
wet	0.3
snow_covered	0.2

Tabela para P(Flw)

Flw	Probabilidade
t	0.7
f	0.3

Tabela para P(R | Flw)

R	Flw = t	Flw = f
t	0.9	0.2
f	0.1	0.8

Tabela para P(V | R,Str)

V	R = t, $Str = any$	R = f, $Str = any$
t	0.8	0.1
f	0.2	0.9

Tabela para $P(B \mid V)$

В	V = t	V = f
t	0.95	0.1
f	0.05	0.9

Tabela para P(K | V)

K	V = t	V = f
t	0.9	0.2
f	0.1	0.8

Tabela para $P(Li \,|\, V)$

Li	V = t	V = f
t	0.99	0.1

(c) Insira livremente valores plausíveis para as probabilidades.

P(Str)

(Permanece inalterado)

Str	Probabilidade
dry	0.5
wet	0.3
snow_covered	0.2

P(Flw)

Flw	Probabilidade
t	0.7
f	0.3

P(R | Flw)

R	Flw = t	Flw = f
t	0.85	0.3
f	0.15	0.7

P(V | R,Str)

V	$\mathbf{R} = \mathbf{t}$	R = f
t	0.85	0.05

5. P(B | V)

В	V = t	V = f
t	0.95	0.1
f	0.05	0.9

P(K | V)

K	V = t	V = f
t	0.9	0.2
f	0.1	0.8

$P(Li \mid V)$

(Permanece inalterado)

Li	V = t	V = f
t	0.99	0.1
f	0.01	0.9

(d) Mostre que a rede não contém uma aresta (Str, Li).

Flw(Dynamo flywheel worn out)

Str (*Street condition*): condição da estrada (ex: seca, molhada, coberta de neve).

Li(Light is on): estado do indicador de luz (ex: aceso ou apagado).

A aresta entre duas variáveis em uma rede bayesiana indica uma dependência direta. Para que uma aresta (Str,Li) exista, Li deve depender diretamente de Str. Li depende apenas da variável V (indicador de falha), que por sua vez depende de R (estado do dínamo) e da condição da estrada Str, como mostra na rede de causalidade acima, então Li está condicionado a V.

Se Li não tem uma dependência direta com Str e é influenciado apenas por V (que tem dependência de R e Str), podemos afirmar que Li é condicionalmente independente de Str dado V:

$$P(Li \mid Str, V) = P(Li \mid V).$$

(e) Calcule P ($V \mid Str = snow_covered$)

V(*Dynamo shows voltage*): estado do veículo (verdadeiro ou falso). Str(*Street condition*) = snow_covered: condição da estrada (coberta de neve).

Probabilidades Condicionais:

Precisamos da distribuição de P(R | Flw). E considerar os estados de Flw (cabo) e como isso se

relaciona com R.

Fórmula:

$$P(V | Str = snow_covered) = P(V | R = t, Str = snow_covered) \times P(R = t | Flw) \times P(Flw) + P(V | R = t, Str = snow_covered) \times P(R = t | Flw) \times P(Flw)$$

Para Flw = t:

$$P(R = t | Flw = t) = 0.85$$

$$P(R = f | Flw = t) = 0.15$$

$$P(V = t \mid R = t, Str = snow_covered) = 0.85$$

$$P(V = f \mid R = t, Str = snow_covered) = 0.15$$

Para Flw = f:

$$P(R = t | Flw = f) = 0.3$$

$$P(R = f | Flw = f) = 0.7$$

$$P(V = t \mid R = f, Str = snow_covered) = 0.05$$

$$P(V = f \mid R = f, Str = snow_covered) = 0.95$$

$$P(V | Str = snow_covered) = (0.85x0.85x0.7) + (0.15x0.15x0.7) + (0.05x0.3x0.3) + (0.95x0.7x0.3)$$

$$P(V | Str = snow_covered) = 0.425625 + 0.01575 + 0.0045 + 0.1995 = 0.645375$$

2ª Questão Implemente em ProbLog o problema da questão anterior e mostre a solução para 1ª(e). Se baseie no exemplo em

(https://dtai.cs.kuleuven.be/problog/tutorial/basic/02 baves.html)