Lab 2

Daniel Molenhuis

Jan 2016

1 Non-Uniform Random Number Generation

Accept-reject method

Generate uniformly distributed random numbers, while rejecting those lying outside of the distribution. Suppose random numbers are to be generated such that f(x) = 2x for $x \in [0,6)$

Inverse Transform Method

Find and apply an algebraic expression to uniformly distributed random numbers to convert them to produce random numbers distributed following a desired distribution. You will need the probability distribution function you want the random numbers to follow and a uniform random number u $\epsilon[0,1]$.

Example:

Determine the cdf from the pdf:

$$f(x) = \lambda e^{-\lambda x} \tag{1}$$

2 QUESTIONS

1/ Generate points on a sphere of radius 1 using the accept/reject method contrasting distributions uniformly between ϕ . ϵ [0, 2π] and θ ϵ [0, π] for the following probability density function:

$$f(\theta) = Asin(\theta)$$

Contrast the result to when θ and ϕ are $[0,\pi]$.

$Contrasted\ data\ should\ look\ like\ this:$

2 Use Accept/Reject method according to the following function: $f(x) = \frac{10x^2}{32} + 17/(2) \text{ for x } \epsilon \text{ [-6, 10]}$ using random numbers uniformly generated on the interval [0,1].