Name:			
Place number:			
Permanent code:			

Directives:

- Write you name, place number and permanent code.
- Put your student card in view.
- Read all questions and answer directly on the questionnaire.
- You can only use a pen or pencil, no documentation, calculator, phone, computer or object.
- This exam contains 25 questions of 4 points each, for a total of 100 points.
- This exam contains 17 pages, including 4 detachable pages at the end for drafting.
- For developing questions, write clearly and detail your answers.
- You have 165 minutes to complete this exam.

GOOD LUCK AND HAVE A GOOD SUMMER!

1	/ 4	11	/ 4	01	/ 4
1	/ 4	11	/ 4	21	/ 4
2	/ 4	12	/ 4	22	/ 4
3	/ 4	13	/ 4	23	/ 4
4	/ 4	14	/ 4	24	/ 4
5	/ 4	15	/ 4	25	/ 4
6	/ 4	16	/ 4		
7	/ 4	17	/ 4		
8	/ 4	18	/ 4		
9	/ 4	19	/ 4		
10	/ 4	20	/ 4		
Total	/ 40	Total	/ 40	Total	/ 20
				Total	/100

Question 1 What will be displayed when executing the following Python code?:

```
x = [2*i for i in range(-32, 32, 2)]
print(x[-1])
```

Question 2 What will be displayed when executing the following Python code?:

```
def scale1(data, factor):
    for j in range(len(data)):
        data[j] *= factor
data = [i for i in range (4)]
scale1(data, 3)
print(data)
```

Question 3 What will be displayed when executing the following Python code?:

```
def scale2(data, factor):
    for val in data:
       val *= factor
data = [i for i in range (4)]
scale2(data, 3)
print(data)
```

Question 4 What will be displayed when executing the following Python code?:

```
def B(data):
    x = float('-inf')
    y = float('-inf')
    for i in data:
        if i > y:
            x, y = y, i
        elif i > x:
            x = i
    return (x, y)
data = [4, -8, 0, 3000, -1234, 45, 3, -6, -100]
print(str(B(data)))
```

Some reminders in Python:

- 1) in a sum of booleans, these are converted to integers (False = 0 and True = 1)
- 2) bool(i) = False if i = 0 and True otherwise
- 3) the evaluation of a clause like (A and B) or (A or B) is lazy : if the 1^{st} boolean is sufficient, the 2^{nd} one is not evaluated

When asked for a number of comparaisons, it has to be in function of n.

Question 5 Given the following recursive function:

```
def present_1(data, i, element):
    if i == len(data):
        return False
    else:
        return ( (data[i] == element) or present_2(data, i+1, element) )
```

When initially called with a 1st argument of length n > 0 and a 2nd argument equals to 0:

What does this function do?

How many comparaisons (==) does it perform in the **worst** case?

How many comparaisons (==) does it perform in the **best** case?

Question 6 Given the following recursive function:

```
def present_2(data, i, element):
    if i == len(data):
        return False
    else:
        return bool( (data[i] == element) + present_1(data, i+1, element) )
```

When initially called with a 1st argument of length n>0 and a 2nd argument equals to 0:

Does the function present_2 return the same result as the function present_1?

How many comparaisons (==) does it perform in the worst case?

How many comparaisons (==) does it perform in the **best** case?

Important

- (1) Unless specified otherwise, all questions refer to data structures containing n elements.
- (2) When asked for a complexity, we imply in the worst case.
- (3) When asked for a complexity, you must give the set. For example, if the answer is $\mathcal{O}(n)$, you will get no point for n.
- (4) When asked for a \mathcal{O} complexity, you must give the **lowest upper bound**. Similarly, when you are asked an Ω complexity, you must give the **greatest lower bound**. **No points will be given for a larger set.** For example, if the answer is $\mathcal{O}(n)$, you will get no point for $\mathcal{O}(n!)$.
- (5) When asked for a complexity, you must give the most reduced expression describing it. For example, if the answer is $\mathcal{O}(n^2)$, you will get no point for $\mathcal{O}(6n^2 + 7n + 42)$.

Question 7 Let L be a **Dynamic** array-based **List**.

What is its \mathcal{O} space complexity?

What is its Ω space complexity?

What is the \mathcal{O} time complexity of accessing an element through an index?

What is the \mathcal{O} time complexity of inserting an element at some index?

What is the \mathcal{O} time complexity (amortized) of adding an element at end of the list (append)?

Question 8 Let S be a **Dynamic** array-based **Stack**.

What is its \mathcal{O} space complexity?

What is the \mathcal{O} time complexity (amortized) of pushing an element on a stack?

What is the \mathcal{O} time complexity (amortized) of pushing n elements on an initially empty stack?

Question 9 Let L be a **Doubly Linked List**.

What is the \mathcal{O} time complexity of accessing the element at the tail?

What is the \mathcal{O} time complexity of deleting an element on which a pointer is given?

Question 10 In what order would be visited the nodes of the tree

- a pre-order traversal?
- an in-order traversal?
- a post-order traversal?
- a breadth-first traversal?

Question 11 Let T be a binary tree of which the following traversals would visit the keys in these orders:

in-order: HTURADRNET post-order: HUTRDNTERA

In what order would be visited the nodes during:

- a breadth-first traversal?
- a pre-order traversal?

Question 12 We want to sort the numbers contained within the following array with the in-place heapsort algorithm. Fill in the following table, which must represent the state of the array after phase I of the sort algorithm, that is, after the heap construction. You will get points only if the table is exact.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	0

Question 13 Let H be a heap encoded in an array starting with index 0.

a) At which index(ices) of the heap's array could be found the 10th smallest key?

b) If the key k can be found at any index i such that $1 \le i \le 62$, what would be the rank of k if the keys were sorted $(1^{\rm st}, 2^{\rm nd}, 3^{\rm rd}, \ldots)$?

0	1	2	3	4	5	6	7	8	9	10

Question 15 Draw the 11-entry hash table that results from using the hash function, $h(i) = (3i-5) \bmod 11$, to hash the keys, in this order, 94, 88, 44, 39, 23, 20, 16, 13, 12, 11 and 5, assuming collisions are handled by double hashing using the secondary hash function $h'(k) = 7 - (k \bmod 7)$.

0	1	2	3	4	5	6	7	8	9	10

Question 16

A function in the set $\mathcal{O}\left(n^2\right)$ is necessarily in the set $\mathcal{O}(n).$	TRUE	FALSE
Which one(s) of these two data structures is(are) usually used to accumulate recursive calls?	a queue	a stack
What is the lowest superior bound for the complexity of swapping two nodes of a doubly-linked list containing n nodes, on which two pointers are given, in the worst case?	$\mathcal{O}(1)$	$\mathcal{O}(n)$
Which one(s) of these two types of traversal guarantee(s) to traverse the nodes of a binary search tree in a sorted order?	in-order	breadth-first
A hash table allows the traversal of its n keys in a sorted order in $\mathcal{O}(n).$	TRUE	FALSE
The search of a key in an AVL tree, a Spay tree, a (2, 4) tree or a red-black tree containing n keys is guaranteed in $\mathcal{O}(n \lg n)$.	TRUE	FALSE
What is the lowest superior bound for the complexity of heap-sorting n elements, in the worst case?	$\mathcal{O}(n\lg n)$	$\mathcal{O}\left(n^2\right)$
A function in the set $\mathcal{O}\left(n\right)$ is necessarily in the set $\mathcal{O}\left(n^2\right).$	TRUE	FALSE

Question 17 Re-draw the AVL tree after the insertion of key 5:

(2. 4. 9)

Question 18 Re-draw the (2, 4)-tree after the **insertion** of **key 7**:

Question 19 Re-draw the Splay Tree after the **deletion** of **key 7**:

Question 20 Re-draw the red-black tree $1 \quad 3 \quad 5 \quad 7$ after the insertion of key 8 (\bigcirc = black, \square = red):

	4
	/
2	2
/	/
1	3

be:

Question 21 Circle the correct answer. Can the tree

A binary tree?	YES	NO
A heap?	YES	NO
A binary research tree?	YES	NO
An AVL tree?	YES	NO
A (2, 4)-tree?	YES	NO
A Splay Tree?	YES	NO

be:

Question 22 Circle the correct answer. Can the tree

A binary tree?	YES	NO
A heap?	YES	NO
A binary research tree?	YES	NO
An AVL tree?	YES	NO
A (2, 4)-tree?	YES	NO
A Splay Tree? Examen final - avril 2016	YES	NO 10 / 17

Question 23 Following is a dynamic programming table to find a longest common subsequence between two strings:

		m	У	m	m	е	С	a	С	е	С	0	i	t	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13
t	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
у	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1
m	3	0	0	1	1	1	1	1	1	1	1	1	1	1	1
m	4	0	1	1	2	2	2	2	2	2	2	2	2	2	2
е	5	0	1	1	2	3	3	3	3	3	3	3	3	3	3
p	6	0	1	1	2	3	4	4	4	4	4	4	4	4	4
f	7	0	1	1	2	3	4	4	4	4	4	4	4	4	4
С	8	0	1	1	2	3	4	4	4	4	4	4	4	4	4
u	9	0	1	1	2	3	4	5	5	5	5	5	5	5	5
р	10	0	1	1	2	3	4	5	5	5	5	5	5	5	5
i	11	0	1	1	2	3	4	5	5	5	5	5	5	5	5
t	12	0	1	1	2	3	4	5	5	5	5	5	5	6	6
	13	0	1	1	2	3	4	5	5	5	5	5	5	6	7

- a) What is the longest common subsequence?
- $\boldsymbol{b)}$ Blacken in the table the path to obtain this longest common subsequence.

Question 24 Draw the standard trie containing the following strings (conserve the alphabetic order of the childs):

{ arbre, trie, arc, tree, arete, cycle, clique }

Question 25 Let G be the following graph:

While respecting the increasing order of adjacent nodes, in what order will be visited the nodes, if starting at node 7:

a) during a depth-first search? (only one possible answer)

b) during a breadth-first search? (only one possible answer)

IFT2015 : Structures de données H16	

IFT2015 : Structures de données H16	

IFT2015 : Structures de données H16

IFT2015 : Structures de données H16	