AD-787 632

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PARTY

A PLVIEW OF GROUND TARGET MASKING EFFECTS

Carol J. Burge, et al

Falcon Research and Development Company

Prepared for:

Naval Weapons Center

June 1974

DISTRIBUTED BY:

Best Available Copy

Naval Weapons Center

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

FOREWORD

This report documents the work conducted from September 1972 to May 1974 by Navy personnel and under Naval Weapons Center Contract N00123-72-C-0422. The work is part of a joint services program on air-to-ground target acquisition.

The Joint Technical Coordinating Group for Munitions Effectiveness has established a Target Acquisition Working Group (TAWG) under the Joint Munitions Effectiveness Manual/Air-to-Surface Division. Current TAWG tasks include documenting the use of target markers in airborne forward air controller operations, the classification of terrain as to its effect on target acquisition difficulty, research on target acquisition by flarelight, summary and synthesis of existing target acquisition field test data by direct vision and electro-optical sensors, and the description and evaluation of mathematical models of the visual and sensor-aided target acquisition process.

This report has been reviewed for technical accuracy by R. A. Erickson. It is released at the working level for informational purpose only.

UNCLASSIFIED

ECURITY	CLASSIFICATION	OF THIS	PAGE	(When Data Entered)	

AD787 632

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NWC TP 5668		
4. TITLE (and Subtitle)	!	5. TYPE OF REPORT & PERIOD COVERED
A REVIEW OF GROUND TARGET		Literature Survey
MASKING EFFECTS		Sept. 1972-May 1974
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		E. CONTRACT OR GRANT NUMBER(*)
Carol J. Burge		
Robert L. Stohler		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORI, UNIT NUMBERS
Naval Weapons Center		
China Leke, Calif. 93555		NWC Contract N00123-72-C-0422
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Weapons Center		June 1974
China Lake, Calif. 93555		13. HUMBER OF PAGES 109
14. MONITORING AGENCY NAME & ADDRESS(If different	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDUCE
16 DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution	on unlimited.	
17. DISTRIBUTION STATEMENT (of the abetract entered	in Slock 20, If different fra	n Report)
18. SUPPLEMENTARY NOTES	- 	
10. SUPPLEMENTARY NOTES		
19. KEY WORDS (Cantinue on reverse elde if necessary and	d identify by block number)	
Terrain-masking Target masking		
latervisibility		
Target screening		
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)	
See back of form.		
Rep oduce NIATIO	d by	

MATIONAL TECHNICAL INFORMATION SERVICE U.S. Department of Commerce Springfield VA 22151

LCUMITY CLASSIFICATION OF THIS PAGE(When Date Entered

(U) A Review of Ground Target Masking Effects by Carol J. Burge, Naval Weapons Center, and Robert L. Stohler, Falcon Research and Development Company. China Lake, Calif., Naval Weapons Center, June 1974, 108 pp. (NWC TP 5668, publication UNCLASSIFIED.)

(U) This report documents a literature survey of terrain-masking of ground targets. Target masking is defined and several definitions are given of the probability of unmask as a function of observer altitude and of the range from the observer to the target. Efforts to determine the probability of unmask are divided into three categories: (1) measurement of line of sight made directly on the terrain, (2) measurements of line of sight made on profiles constructed from topographic maps, and (3) prediction based on roughness characteristics of the terrain, such as average slope of standard deviation of altitudes.

(U) Available data are compared and evaluated. It is concluded that field measurement is the best way of determining target masking and that there is not nearly enough data accumulated to meet the need of users.

The second contract of the con

NWC TP 5668

CONTENTS

Introduction								-						•						
Masking of Targets																 				
Definition																				
Definitions of Probability of Unmask .																				
Measurement of Probabilities of Unmask																				
Map and Field Study Data																				
Discussion of the Data																				
Application of Data	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	 •	•	•	•	4
Terrain and Vegetation Classification																				5(
Average Slope Angle																				
Gradient (Average Slope)																				
Number of Slope Direction Changes																				
Relief																				
Grain																				
Elevation Relief Ratio																				
Vegetation	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	 	•	•	•	5:
Recommendations for Future Work									•											5:
Appendix: JTF-2 Tabulated Masking Data .																				5

A THE CONTRACT OF THE PROPERTY OF THE PROPERTY

NWC TP 5668

INTRODUCTION

This study examines and summarizes the available knowledge concerning ground target masking due to terrain irregularities and vegetation concealment. It includes reviews of those published documents that could be obtained within the time period of this work.

Of basic concern are the range and altitude required of an aircraft in order to have a clear line of sight to a target. In this report the probability of having an unobstructed view is the major measure of masking. It is recognized that many other factors must be considered before a probability of actually detecting a target can be established. Throughout this report, probability refers only to having an unobstructed view of the specific point or area. However, the masking parameter considered here is a predominant factor in many air-to-ground operations and establishes a maximum limit on the ability to optically detect a ground target.

This report also contains masking data measured during the course of the Joint Task Force Two (JTF-2) tests. The data represent measurements of masking angle from target center for 16 Test 4.4 targets and 8 Test 4.1 targets. Results are presented as probability curves, and also as tabular data in the Appendix.

MASKING OF TARGETS

DEFINITION

Most target masking studies attempt to solve the problem: given an area of terrain, what is the probability of there being an unobstructed line of sight to a target located somewhere in the area? If there is an unobstructed line of sight to an object, we say the object is unmasked. This report is concerned only with masking by the ground and things on the ground; not by such objects as clouds. Figure 1 illustrates terrain-masking of a target. The probability of unmask depends on:

Altitude of the observer Distance to the target. Height of target Roughness of terrain Type of foliage Type of cultural features.

Preceding page blank

DEFINITION: MASKING IS THE OBSTRUCTION OF A DIRECT,
OPTICAL LINE OF-SIGHT FROM THE OBSERVER
TO THE TARGET

FIGURE 1. Illustration of Terrain-Masking of Target.

DEFINITIONS OF PROBABILITY OF UNMASK

The probability of unmask has been defined as various functions of range. These are listed below and illustrated in Figure 2.

- 1. The probability that a target is exposed at a ground range, r, from the observer. This is the most commonly computed probability of unmask.
- 2. The probability that the target is exposed throughout the entire range from the observer to r.
- 3. The probability that a target, randomly located between r_1 and r_2 , is visible to an observer.
- 4. The probability that there is no distance greater than r at which a target will be exposed.
- 5. The probability that a fixed target will be visible throughout 360 deg of azimuth and at range, r, from it.

The probability of unmask has also been defined as the average percent of an area in view.

(a) Illustrates definitions 1 through 4: Probability that a target is exposed at r, from 0 to r, between r_1 and r_2 , not beyond r_2 .

(b) Illustrates definition 5: Probability that a fixed target will be visible throughout 360 deg of azimuth and at range, r, from it.

FIGURE 2. Illustration of Probabilities of Unmask as Functions of Range.

MEASUREMENT OF PROBABILITIES OF UNMASK

the rebabilities are found by defining a rational fraction based on the reber of successful attempts to have a clear line of sight to the target within a defined area. Sightings have been in a 'n the field, on scale models of the terrain, and on profiles drawn om topographic maps. Most studies have assumed that target location is equally likely anywhere in the area. Several approaches to obtaining a representative sample of sightings and calculating probabilities of unmask have been used. For field and map measurements, there are basically two techniques.

Method 1. Observer-Based Measurements. Obtaining sightings from observation point to a target or points on the ground from one end of straight line as the target is moved along the line (Figure 3). This is to for several lines on the same type of terrain so that, for each from the observer to target, there are several sightings from the compute the probability of unmask. This technique can be used in the field, on scale models, or on profiles of terrain reconstructed from topographic maps.

Method 2. Target-Based Measurements. Taking sightings from a target outward to determine the elevation of the lines of sight necessary to clear the masking objects around the target (Figure 4): The probability of the target being unmasked at a given range and altitude can be computed by comparing points on a circle around the target (having a radius equal to the given range and at the given altitude) with the lines necessary to clear the masking features around the target. If a point falls below the mask line, no clear line of sight will exist from it. The ratio of points with a clear line of sight to all those tested is the probability of that target being in view at the giver range and altitude from any direction. To obtain a probability for any target randomly located in an area, the probability defined above would have to be computed and combined for many targets in the area.

THE PROPERTY OF THE PROPERTY O

FIGURE 3. Observer-Based Measurements.

INDEPORT BENEFIT BENEFIT BENEFIT BENEFIT GARDEN GARDEN GOVERNEN STELLEN STELLE

FIGURE 4. Target-Based Measurements.

MAP AND FIELD STUDY DATA

Nine references dealing directly with masking were reviewed for this report. They are summarized in Table 1.

Ballistic Research Laboratories (BRL), ¹ Erickson, ² and Gill³ (see references, Table 1, p. 8) used method 1 for obtaining sightings of the target. BRL constructed scale models of terrain from field measurements made by conventional surveyor's techniques. The measurements were made with and without foliage. In each area studied, they chose two representative rays 7,000 ft long and oriented perpendicular to each other. Scale models of the rods used for targets were moved along the ray. A string was stretched from the observation point at one end of the ray to the target. They observed whether the string was intersected by either an opaque object on the model or the model itself. If there was an intersection, a clear line of sight to the target did not exist at that point.

BRL also constructed profiles and computed unmask probabilities of the same areas using topographical maps with 20-ft contour intervals. They computed probability types 1, 2, 3, and 4 (see definitions given earlier). Their curves for the probability that a target is exposed at \mathbf{r}_1 are shown in Figure 5. The probability that the target is exposed throughout the entire range from 0 to \mathbf{r} is shown in Figure 6.

Erickson and Gill divided 12,000-ft squares of terrain into 8 x 8 grids, then constructed profiles of each grid line from topographic maps. They took solutions at thousand-foot intervals along the grid line from both ends of each grid line. The percent of each line visible from each end was used to compute the average percent of the total m as m view (shown in Figure 7). The 32 data points at each range were m to compute the probability for that range as shown in Figures 8 and 9.

JTF-2 used the second method for measuring probabilities. They measured the angle necessary to clear the highest object and the ground range to that object every 10 deg for 360 deg around their targets.

studies.
Masking .
Summary of
- :
TABLE

Reference	Source of data	Measurement	Product	Type of	Range,	Altitude,
	Scale model made from field survey and pro-files drawn from tupo-graphic maps with 20-ft contour lines	Visibility of 3.5- and 7.0-ft rods from points above the origin of a 7,000-ft ray. Field survey done with and without fo.iage.	Probability of target expusure at r, throughout the interval from 0 to r, between r, and r, and of nonexposure beyond r.	Rolling fields fairly free of vegetatium, within 25 mi of Baltimore.	0-7,000	6.5-324
	Profiles drawn from topographic maps, 20-ft contour i.tervals.	Visitility of points on the ground from points above the end of a 12,000-ft strip of terrain. Average slope and number of slope changes for each type of terrain.	Probability of terrain exposure vs. range and average number of slope direction changes and average percent of terrain in view for each type of terrain.	Smooth, moder- ately rough, very rough.	0-12,000	0-3,000
	Profiles drawn from topographic maps, 20- ft contour intervals	Same as Ref. 2.	Comparison with BRL's prob- ability curves for the same region. Results not the same.	Same as Ref. 1 0-12,000	0-12,000	0-324
	JTF-2 field survey	Computer program compared lines of sight of interest with measured lines of sight necessary to clear the masking features, around a target.	Probability that target unmasked at range r for 360 deg around it.	Gently rolling with low moun- tain ranges (ArkOkla.)	0-15,000	0-3,000
	Unknown	Unknown .	Probability of acquiring a tank from an aircraft. Includes other factors baside terrain-maskiv	Hodestly roll- ing midwestern type, estimat- ed slope 0.5 deg:	0-24,000	300-3,000
	Unknown	÷	Probability of target in view vs. range, derived from average terrain height, standard deviation of altitudes and frequency distributions and autocorrelation functions.	Various land types in Korea and Germany.	0-14,764	0-380.6 One o of the local terrain altitudes
	Topographic maps, photos, JTF-2 field survey data	a target outward, elevation angle to clear masking and ground range to masking feature for each 10 deg in azimuth about the target. Slivinsky estimated mask angles for the same targets from maps and photos.	Comparison between measured and estimated masking angles.	Gently rolling with low moun- tains, (Ark Okla.)	5.000	:

3 Theore	Theoretical statis-			- restain		***************************************
rical	Alees this one		Suggests that, for a valley,	Valleys of		
Longh	1010101111		if hw/Rd remains constant,	various shapes	:	
•	contour maps		the percent of the valley			
324-ft	contour		visible is a constant; where			
interv			h - height above top of			
			valley, w = width of variey.			
			r = range from closest lip			
_			of valley, and d * denth of			
			valled below surrounding			
				-		
~						
9 Theory		•	Equations for hypothetical			;
			triangular waveform terrain.		:	<u>.</u>
			Bertannilar blocks for wene			
_			שליים וליים			
			tation. Lompares masking	-		
			data on this theoretical			
			terrain with BRL measured			
-			. 6160			

¹Ballistic Research Laboratories. An Analysis of Results of a Ground Roughnoss Survey, III. Aberdeen Proving Ground, Md. 1959. (Report No. 42, publication UNCLASSIFIED.)
²U. S. Naval Ordnance Test Station. Empirically Determined Effects of Gross Torrain Features Upon Ground Visibility From Low-Flying Aircraft. by Ronald A. Erickson. China Lake, Calif., NOTS, 13 September 1961. (NAVWEPS Report 7779, NOTS TP 2760, publication UNCLASSIFIED.)

Ju. S. Naval Ordnance Test Station. Terrain Effects Upon Air-to-Ground Target Visibility, by Carol Gill. China Lake, Calif., NOTS. (10P 1487, publication UNCLASSIFIED.)

"The Olkewood Corporation. User's Amanual for VISTRAC Hodel, by June G. Brenton and Patricia R. Howard. Albuquerque, N.H., December 1968. (OC-TR-Test 4.4-18, publication UNCLASSIFIED.)

"General Dynamics/Convair. Visual Extraction From Aircraft, by Asbjorn Linge, San Diego, Calif., December 1961. (ERR-SD-150, publication UNCLASSIFIED.)

"Feat, Harwick, Caywood, Schiller & Company. A Study of the Effects of Terrain on the Detection of Low Flying Aircraft. Chicago. 111., I Hay 1964. (DA Project No. 503-05-005, publication UNCLASSIFIED.)

The Dikewood Corporation. Target Massing Methodology in the Mathematical Model for JIF-2 Test 4.4, by Sandar H. Slivinsky. Albuquerque, N.H., 14 August 1967. (DC-TN-2047-11, publication UNCLASSIFIED.)

"University of Michigan. Institute of Science and Technology. An Approach to Line-of-Sight Problems in SurveillanceEquipment Specification and Evaluation, by James H. Wolf. Ann Arbor, Hich., November 1961. (Report No. 2900-254-T, AD 266961, publication UNCLASSIFIED.)

"Cornell Aeronautical Laboratory, Inc. Acrial Observer Effectiveness and Nap of the Earth, by Ewald Ryll. Buffalo, N.Y., February 1962. (Project TAGE Final Repert, VE-1591-6-1, publication UNCLASSIFIED.)

a some the supplementation of a management of the supplement of th

(a) Field study; foliage included; rod height = 3.5 ft

FIGURE 5. Average Probability That a Rod at a Fixed Distance Is Exposed.

Same in the same of the same o

THE PROPERTY OF THE PROPERTY O

(b) Field study; foliage included; rod height = 7.0 ft.

and the state of t

FIGURE 5. (Contd.)

AND THE PROPERTY OF THE PROPER

BELLEVIEW PRESENTATION OF THE PROPERTY OF THE

A STATE OF THE STA

(d) Field study; foliage excluded; rod height = 7.0 ft.

FIGURE 5 (Contd.)

A STATE OF THE PROPERTY OF THE

(e) Map study; rod height = 3.5 ft.

and the state of t

FIGURE 5. (Contd.)

المؤيث مراجعة مريب والدور والموجودة والأراء المدر يدمن ويدراهم وأكاؤون ويؤكون مراكا والورود وليارفون أولوروك والإراقة

Activities a constitution of the transmission of the constitution of the constitution

であることでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年のでは、19年ので

(f) Map study; rod height = 7.0 ft.

FIGURE 5. (Contd.)

THE PROPERTY OF A WINDOW STATE OF THE PARTY OF THE PARTY

(a) Field study; foliage included; rod height = 3.5 ft.

- entransperimental de la company de la comp

(b) Field study; foliage included; rod height = 7.0 ft.

FIGURE 6. (Contd.)

والمواقع والمراع ووالواقية والمواقية والمراعة والمراعة والمراعة والمراجة وا

And the second the second of t

The second secon

The state of the s

(c) Field study; foliage excluded; rod height = 3.5 ft.

FIGURE 6. (Contd.)

THE PROPERTY OF THE PROPERTY O

the second of the second control of the control of

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY

(d) Field study; foliage excluded; rod height = 7.0 ft.

المعالي و المعالم المعالم المعالم المعامدة والمعامدة والمعاملة والمعاملة والمعامدة وال

and were the control of the state of the sta

THE PROPERTY OF THE PROPERTY O

FIGURE 6. (Contd.)

The con-

(f) Map study; rod height = 7.0 ft.

FIGURE 6. (Contd.)

HE CAN THE STATE OF THE STATE OF THE STATE OF THE PERSONNEL STATE OF THE STATE OF T

NWC TP 5668

The majorithm of the second of

FIGURE 7. Percentage of Terrain Seen From Aircraft. These curves are based upon terrain profiles 12,000 ft in length.

FIGURE 8. Probability of the Terrain Being in View. Aircraft altitude above the terrain is shown on the curves.

NWC TP 5668

(b) Moderately rough terrain.

FIGURE 8. (Contd.)

THE PROPERTY OF THE PROPERTY O

FIGURE 8. (Contd.)

THE STATE OF THE PERSON OF THE

NWC TP 5668

(d) Very rough terrain.

FIGURE 8. (Contd.)

FIGURE 9. Probability That the Ground Is Within View Versus Ground Range to Target.

an somethe sentemperatures and the sentemperatures of the sentemperatures of the sentemperatures and the sentemperatures of the sentemperature of the sentemperatures of the sentemperature of the s

FIGURE 9. (Contd.)

FIGURE 9. (Contd.)

FIGURE 9. (Contd.)

FIGURE 9. (Contd.)

NWC TP 5668

This gave them the minimum elevation angle for a clear line of sight to the target for each 10 deg of azimuth around the target. The probability of the target being unmasked at a given range and altitude was then computed by comparing points at 10-deg intervals on a circle around the target, at the given range and altitude, with the line necessary to clear the highest masking feature. From the measured JTF-2 data, Brenton's (see reference 4, Table 1) computed probability type 5, that a fixed target will be visible throughout 360 deg of azimuth and at range r from it. Brenton's curves for these probabilities are shown in Figures 10 and 11.

Linge⁵ and Peat, Marwick, Caywood, Schiller, and Company (PMCS & Co.)⁶ (see references 5 and 6, Table 1, p. 8) also compute curves for probability type 1. Linge implies that his are measured from the terrain in some manner, but does not explain how. PMCS & Co. derived the probability that a target would be in view from average terrain height, standard deviation of altitudes, and other statistical measures of the terrain. Linge's curves are shown in Figure 12 and PMCS & Co.'s in Figure 13.

DISCUSSION OF THE DATA

The shapes of the probability curves are all roughly similar and unsurprising, the probability of unmask is 1.0 at the target and decreases as the observer moves farther away. Higher probabilities are associated with higher observer altitudes.

In order to compare the JTF-2 data with the other data in this report, the probability curves for six of the JTF-2 targets (Figures 10a-10f) were combined and plotted in Figure 14. Each point on these curves represents 216 data points. The six targets were chosen because they were judged to all be located in fairly similar terrain—which, on Erickson's scale, would probably be called "quite smooth." The distribution of targets and the number of different sections of terrain is unknown. The average slope of the terrain is 0.9 and the average number of slope direction changes is 1.7. These roughness characteristics were measured on 40-ft-contour-interval topographic maps. Figure 15 was drawn to compare the appropriate data from different studies. It shows the probability of target exposure at r from an observation height of 100 or 84 ft as computed by BRL, Brenton (JTF-2), Erickson, and Gill. These curves all represent fairly smooth terrain, those in (a) with foliage and those in (b) without foliage.

(a) Target E3; slope = 0.5 deg; slope change = 0.9.

or other contractions of the second of the s

(c) Target E2; $slo_1 = 0.9$ deg; slope change = 1.6.

(d) Target W2; slope = 1.0 deg; slope change = 2.2.

FIGURE 10. (Contd.)

(e) Target W3; slope = 1.1 deg; slope change = 1.7.

on on the contract of the cont

(f) Target W4; slope = 1.2 deg; slope change = 2.6.

FIGURE 10. (Contd.)

THE PARTY OF THE PROPERTY OF T

A CONTRACTOR OF THE PROPERTY O

(g) Target W4; slope = 1.8 deg; slope change = 2.6.

(h) Target E4; slope = 2.7 deg; slope change = 4.9.

FIGURE 10. (Contd.)

(a) Target 15; slope = 0.5 deg; slope change = 0.1.

(b) Target 1; slope = 0.7 deg; slope change = 0.

FIGURE 11. Probability of Target Center in View, JTF-2 Test 4.4. Observation height in feet shown on curves.

(c) Target 12; slope = 0.8 deg; slope change = 0.2.

(d) Target 20; slope = 1.3 deg; slope change = 0.3.

FIGURE 11. (Conta.)

(e) Target 18; slope = 1.4 deg; slope change = 1.1.

kee eerstere eerstere oorstere oorstere oorstere kan de state oorstere oorst

(f) Target 23; slope = 1.5 deg; slope change = 1.4.

FIGURE 11. (Contd.)

production of the second secon

(g) Target 4; slope = 1.6 deg; slope change = 0.8.

(h) Tazget 11; slope = 2.1 deg; slope change = 0.9.

FIGURE 11. (Contd.)

(i) Target 10; slope = 2.2 deg; slope change = 1.0.

(j) Target 5; slope = 1 4 deg; slope change = 1.0.

I GURE 11. (Contd.)

- to the supplemental than the sandard and the sandard

(1.) Target 6; slope = 1.6 deg; slope change = 1.9.

(1) Target 16; slope = 2.7 deg; slope change = 2.1.

FIGURE 11. (Contd.)

(m) Target 19; slope = 2.8 deg; slope change = 1.5.

energy which is the contract of the contract o

(n) Target 2; slope = 3.1 deg; slope change = 1.2.

FIGURE 11. (Contd.)

(o) Target 7; slope = 3.8 deg; slope change = 2.0.

A SECTION OF THE SECT

(p) Target 8; slope = 5.3 deg; slope change = 2.2.

FIGURE 11. (Contd.)

FIGURE 12. Probability of Target in View, Linge, Mid-Western Terrain.

FIGURE 13. Probability of Target in View in Three Terrain Types. Sigma is the standard deviation of each type of terrain.

The supplication of the su

FIGURE 14. Combined Data for Six JTF-2 Targets.

STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD

and the second sections are the second secon

(a) Field measurements with foliage.

(b) Map and field measurements; no foliage.

FIGURE 15. Probability of Target Exposure at Range r.

- Color was to propose the commence of the

One of the problems with the masking data available is that it has not been validated. One expects field measurements to be better than map measurements, but no one has determined how many points must be measured to generate a valid probability curve for a given type of terrain. The closeness of the JTF-2 and BRL curves in Figure 15(a) are somewhat encouraging. They used very different techniques, in different, but similar, terrain to arrive at a quite similar result. This increases confidence in both sets of data.

In Figure 15(b) we see that the BRL map study closely agrees with the BRL field study, but Gill's attempt to reproduce the BRL results using Erickson's map technique was not successful. It is not surprising that the BRL map and field study results agree, since they measured exactly the same terrain profiles. The question raised by the discrepancy with Gill's work is whether the Gill-Erickson map technique is invalid or whether the two rays per section used by BRL fail to adequately represent the terrain type. The closeness of the BRL and JTF-2 data tend to favor BRL in this question.

Besides lack of validation, the main difficulty with map measurements has been how to include the effect of foliage. Slivinsky (see reference 7, Table 1, p. 8) attempted to solve this problem by considering the green areas on contour maps to be covered with vegetation and by estimating tree heights from photographs. In Figure 16 the elevation angles to clear the highest masking feature, estimated by Slivinsky from maps and photos, are compared with the actual angles, as measured in the field, for the JTF-2 tests. The Slivinsky technique does not appear to be the ultimate solution. She felt that most of the discrepancies between the estimated and measured masking angles were due to isolated trees, which are not shown on maps, and to the fact that the most recent maps of the area were 20 years old.

The effect of target height should also be noted. The BRL study used rods 3.5 and 7 ft tall. The probability of the taller rod being unmasked was greater, even out to the maximum range of 7,000 ft, and for the maximum observation height of 324 ft. This was the only study specifically concerned with target height, but its results should be kept in mind when interpreting other data. Linge's target was a tank-height roughly equivalent to a 7-ft rod. Erickson and Gill presumed the target to be a point on the ground with no height. The JTF-2 lines of sight were measured from a surveyor's transit which is about 5 ft tall.

Presuming that one of the methods used does generate valid probability curves, not nearly enough work has been done to provide data for the variety of terrain types in which targets are likely to be found. Erickson is the only source that gives data for any terrain rougher than "gently rolling, mid-western type" terrain.

FIGURE 16. Histogram of the Frequency of Occurrence of Mask Angles as Estimated by Slivinsky and Measured by JTF-2.

APPLICATION OF DATA

是是是一个,我们就是一个,我们也是一个,我们也是一个,我们是一个,我们是是一个,我们也是一个,我们也是一个,我们也是一个,我们也是一个,我们也是一个,我们们也是

Given that the data are rather sparse and unproven, they can still be useful. The combined JTF-2 data and the BRL data can be used with some confidence. Since these data are for fairly smooth terrain, they represent an upper bound on target exposure probability for rougher terrain. That is, if the JTF-2 curve shows that the probability of a target being exposed at a given altitude and range is 0.5, the probability of a target being exposed for those conditions is less than 0.5 for nearly all other terrain.

TERRAIN AND VEGETATION CLASSIFICATION

There have been several attempts to correlate terrain and vegetation characteristics with masking properties of the terrain. If such correlation could be made, probability of unmask could be predicted without actually measuring the line of sight. Some of the terrain characteristics are listed in order of expected usefulness.

AVERAGE SLOPE ANGLE

Average slope is the average of the absolute slope angle measured over some finite area in the vicinity of the target in question. Slope angle varies from 0 to 90 deg.

GRADIENT (AVERAGE SLOPE)

Gradient is the average of the absolute slope.

Slope = tangent (slope angle). In fairly flat terrain, slope and slope angle are nearly equal, since an angle and its tangent are equal for small angles. For more rugged terrain, slope increases faster than slope angle and varies from 0 to infinity.

omenine ominine and ancharache beingedespisable distinction of the cold of the

NUMBER OF SLOPE DIRECTION CHANGES

The number of slope changes is the average number of times the slope changes direction in a given length. Figure 17 illustrates slope angle, gradient, and slope direction changes. When slope direction changes and slope are measured from topological maps, their values are quite dependent on the contour interval shown on the maps. Figure 18 shows the relationship between the values measured on 20-ft-interval maps and those measured on 40-ft-interval maps.

Erickson, Gill, and Stohler have attempted to relate probability of unmask to average slope or slope angle and number of slope direction changes. In Erickson's study, both slope angle and slope direction changes correlated with unmask probability up to the very rough terrain. For very rough terrain, slope direction change followed probability, where slope angle did not. Erickson made his slope measurements on 40-ft-interval maps. Gill used Erickson's technique on the BRL study areas near Baltimore. Her work did not confirm the slope direction change relationship to masking. Gill used 20-ft-interval maps. Slope angle and average number of slope direction changes are shown on the probability versus range curves plotted by Erickson and Gill in Figures 8 and 9, already cited.

AVERAGE SLOPE =
$$\frac{ \left| \frac{Y_1}{D_1} \right| \left| \frac{D_1}{D_1} \right| \left| \frac{Y_2}{D_2} \right| \left| \frac{D_2}{D_1} \right| \left| \frac{Y_3}{D_3} \right| \left| \frac{V_4}{D_4} \right| \left| \frac{V_4}{D_4} \right| \left| \frac{Y_5}{D_5} \right| \left| \frac{D_5}{D_5} \right| }{ \left| \frac{D_1}{D_2} \right| \left| \frac{D_2}{D_3} \right| \left| \frac{D_3}{D_4} \right| \left| \frac{D_4}{D_5} \right| \left| \frac{D_5}{D_5} \right| }{ \left| \frac{D_5}{D_5} \right| \left| \frac{D_5}{D_5} \right| \left| \frac{D_5}{D_5} \right| }$$

SLOPE DIRECTION CHANGES = 3

FIGURE 17. Illustration of Average Slope Angle, Average Slope, and Number of Slope Direction Changes.

In work leading to this report, author Stohler tried to relate slope angle and slope direction change to masking probabilities using the JTF-2 data. Average slope and average number of slope direction changes are noted on all the previously cited JTF-2 probability curves (Figures 10 and 11). Average slope and slope direction changes versus probability for the JTF-2 4.4 targets are shown in Figures 19 and 20. No relationship between them is obvious. Maps with 100-ft contour intervals were used for those measurements. Average slope versus probability for the JTF-2 4.1 targets is plotted in Figure 21 and again no obvious relationship exists. Forty-foot contours were used in the Figure 21 measurements.

RELIEF

Relief is the difference in elevation between the highest ground and the lowest ground in a representative area.

GRAIN

If relief is measured in a circular area whose radius is r, it is noted that when r is small relief increases rapidly as r increases up to a well-defined point, after which it increases very slowly. This point, described as a knick point, occurs at R' which is defined as the grain of the area. Grain describes the coarse texture of the surface and defines the minimum size of a sample area which represents the whole.

in the substitution of the substitution of

and intermediate the second of the second se

FIGURE 18. Effect of Map Contour Interval Sir on Slope and Slope Direction Change Measurements.

FIGURE 19. Probability Versus Average Slope Angle, JTF-2 Test 4.4 Targets.

FIGURE 20. Probability Versus Slope Direction Changes, JTF-2 Test 4.4 Targets.

CALLES THE SECTION OF THE SECTION OF SECTION

FIGURE 21. Probability Versus Average Slope Angle, JTF-2 Test 4.1 Targets.

ELEVATION RELIEF RATIO

The ratio is defined by the formula

$$ER = \frac{E^{\dagger} - L^{\dagger}}{R^{\dagger}}$$

where

ER = elevation relief ratio

E' = average elevation

R' = relief

L' = lowest elevation

This ratio, with a range from 0 to 1, indicates whether most of the terrain is predominantly below mean height with some high peaks (ER near 0), or above, with some ravines (ER near 1).

Other measures have been used to describe terrain such as the standard deviation of the altitudes and Poisson distributions. They do not offer much promise for making realistic predictions of unmask probability.

VEGETATION

Vegetation characteristics most likely to affect target masking are:

- 1. Foliage height
- 2. Foliage density
- 3. Cluster density (stands per unit area)
- 4. Height of lowest tree branches
- 5. Mean free path of open area
- 6. Direction of mean free path.

There has been very little work in the area of classifying vegetation by its target-masking characteristics. Vegetation effects cannot be separated from the target that is under consideration. If personnel are the object of the search, even grasses and bushes can provide a very high order of concealment. However, if a SAM site is considered, the vegetation concealment can never be very successful, since the operational requirements for the SAM site dictate an open area. Other military vehicles, such as a truck or tank, can successfully hide in the edge of a wooded area, and emerge when the aircraft has passed.

RECOMMENDATIONS FOR FUTURE WORK

To better define the role masking plays in air-to-ground visual detection, the following areas are suggested for additional study:

- 1. Examine the various types of air-to-ground missions that are conducted and define the appropriate probabilities that would apply.
- 2. Examine the requirements for cleared areas by ground target classification, such as light antiaircraft guns, SAM sites, and supply dumps. This examination should be able to define minimum masking probabilities likely for these types of targets.
- 3. Conduct an extensive search for any measured masking data that might exist. Because of the wide variation caused by local effects, very large sample sizes will be required before smooth curves can be verified. Determine the terrain types surrounding each JTF-2 target. Combine data for all the targets in each terrain type.

- 4. Map studies appear to offer promise in providing masking data for specific areas. Work should be conducted to confirm these data by conducting map studies in the JTF-2 target areas and any other regions where measured information is available.
- 5. Continue the work begun in relating terrain ruggedness measures to general masking probability. Examine the effects of map contour interval step size so that data from various maps can be compared.
- 6. Examine the classifications for vegetation and the possibility of applying them to the general terrain-masking results. One possible approach may be to consider that vegetation causes a change in masking angle, before the results are converted to probabilities.
- 7. Consider a program of measuring extensive varieties of terrain using the JTF-2 technique and generating probability curves for each kind of terrain. Combine these into a handbook together with photos, topographic maps, and descriptions of the areas measured, so users can find curves to match terrain they are interested in.

Appendix

JTF-2 TABULATED MASKING DATA

This appendix provides the JTF-2 masking data in tabular form, as read from angle plots provided to JTF-2 by the Corps of Engineers. Included are the data from 16 targets used in Test 4.4 (airborne reconnaissance). Elevation masking angles (in deg) are measured from target center over a full 360 deg in azimuth, and arranged so that linear interpolation may be used for intermediate azimuth values. The masking element is identified from the code, where 1 is terrain mask, 2 is tree line, and 3 is the mask angle caused by a single tree, usually at close range. Range is that distance (in ft) measured from target center to the highest masking feature, to the nearest 100 feet.

Masking angles for the eight JTF-2 Test 4.1 targets are also listed, using the same format as for the Test 4.4 targets. The angles are measured from -90 to +90 deg about the approach angle to the target; and are translated here to 0 to 180 deg in azimuth, to eliminate the negative angles.

Slope and slope change data were averaged over a map square 12,000 ft on a side, with the target at the center. The 4.4 data were averaged from a contour map drawn of the Mena, Ark. area for JTF-2 by the Corps of Engineers. Contour intervals of 100 ft were used.

THE PROPERTY OF THE PROPERTY O

Test 4.1 slope and slope change data were derived from topographic maps published by the U. S. Geological Survey. Contour intervals of 40 and 20 ft were provided. These maps provided the source that allowed comparison of slope and slope change data, discussed in the text.

The following tables show the results of the slope information derived for the JTF-2 targets in the Mena, Ark. area.

TABLE A-1. Selected Test 4.4 Targets.

Target	Average slope, deg, 100-ft contour	Average number of slope changes, 12,000-ft sq	Number of mea- sured elevation masking angle points
1	0.7	0.0	156
2	3.1	1.2	138
2 4	1.6	0.8	148
5	2.4	1.3	206
6	2.6	1.9	121
7 8 10 11 12	3.8 5.3 2.2 2.1 0.8	2.0 2.2 1.0 0.9 0.2	83 197 193 194 193
15	0.5	0.1	203
16	2.7	2.1	199
18	1.4	1.1	201
19	2.8	1.5	136
20	1.3	0.3	133
23	1.5	1.4	194

TABLE A-2. Test 4.1 Targets.

	Average sl	ope angle,	Average slope	Number of measured	
Target	20-ft contour	40-ft contour	20-ft contour	40-ft	elevation masking
	interval	interval		interval	points
E1	2.9	1.8	8.9	4.0	42
E2	a	0.9	a	1.6	50
E3	a	0.5	a	0.9	85
E4	3.8	2.7	9.3	4.9	66
W1	0.9	0.6	3.8	1.1	61
W2	1.6	1.0	5.3	2.2	52
W3	1.5	1,1	2.1	1.7	40
W4	1.8	1.2	6.8	2.6	36

a 20-ft interval maps not available for Targets E2 and E3.

NWC TP 5668

	-	344/2/22	75.00 T	- 72000000000000000000000000000000000000	************	200200 E		Mante (2)	
			NWC	TP 5668					
	JFF-2	TEST	4.1	TARGE' E1	MASK	DATA			
AZ	RANGE		CODE	AZ	RANGE	EL	CODE	•	!
~•			••••						
0.0	100	13.3	2	7.0	20 (8	.9 8		
34.0	200	14.3	2	36.0	401) 6	• 3 2		
45.7	200	12.5	2	54.0	201			2	
59.2	300	6.0	2	61.0	48 () 5	.2 2		
64.8	8000	1.4	1	65.2	1401	1	•0 2	2	
66.2	1460	1.4	2	67.5	461	2		2	
69.1	6000	1.6	1	83.0	60 (2	
83.5	900	1.0	2	84.3	401	1		2	
92.1	1000	2.0	2	102.2	30) 1	•9 2	2	
102.6	900	1.4	3	102.9	2370	1	.2 1	1	
103.8	960	1.2	3	105.0	1990			1	
105.8	300	2.7	' 3	106.7	2260			1	
109.8	300	1.9	3	109.8	22101	û 1	•	1	
110.4	800	. 8	3	111.8	2160	0 1	.3	1	
111.8	2500	1.0		113.6	2190			1	
115.9	22500	1.5	1	116.3	250	9 1		2	
120.5	4100	1.8		127.9	250	0 1		2	
131.4	2300	1.7	2	134.5	20	-		2	
137.2	21000	1.5	1	138.4	2100			1	
139.1	200	7.5		154 • ū	20	13		2	
171.5	100	32.2	2 2	186.0	10	0 18	.0	2	

NWC TP 5668

	JTF-2	TEST	4.1	TARGET E2	MASK	DATA
A Z	RANGE	EL	CODE	AZ	RANGE	
		_				
0.0	15000	1.8	1	• 8	900	1.6 2
2 • 2	7800	1.3	1	2.5	11700	1.4 1
5.4	900	1.7		7.8	300	2.3 2
8.6	1300	2.0	2	10.9	90)	1.3 2
	7900	1.0	1	28.8	2460	3.9 2
37.2	2200	4.1	2	45.8	400	4.4 2
	600	3.0	2	60.6	600	3.1 2
66.9	29700	1.4	1	67.0	2100	1.2 1
	300	1.4	2	69.0	44200	1.5 1
69.6	29700	1.6	1	76.9	35100	1.4 1
74•0	34000	1.8	. 1	78.4	300	1.6 2
78.5	28800	1.6	1	78.6		•6 1
82.5	28800	1.7	1	82.7	11800	•6 1
85.2	13100	• 6	1	86.4	26700	2.0 1
	1200	1.0	2	90.0	1200	•6 2
91.3	19500	• 8	1	92.0		2.2 1
92.9	19500	9	. 1	. 94.4		1.9 1
97.0	24900	2.1	1	99.8	12100	.8 1
101.9	300	1.3	3	102.1	24600	2.1 1
103.0	12100	8	1	104.7	100	1.6 2
105.9	1400	1.0	2	106.5	47760	1.6 1
109.7	1400	2.0	2	112.6	24400	2.4 1
119.9	38460	. 4.7	1	129.2	18300	7.0 1
139.2	16100	3.1	1	142.2	11400	8.4 1
153.9	200	10.9	2	180.0	100	15.0 42

NWC TP 5668

	JTF-2	TEST 4.1	TARGET E3	MASK DA	TA
AZ		EL CODE	AZ		EL CODE
0.0	600	3.4 2	3.7	600	4.4 2
6.3		4.4 2	8.2	2500	1.5 2
11.5	5600	•8 2	12.3	2700	1.2 2
15.5	2800	1.4 2	16.0	3500	1.1 2
. 29.0		1.3 2	31.5	2900	1.4 2
36.3	2100 .	1.5 2	38.8	400	6.9 3
46.0	600		48.0	36000	1.6 1
48.0	2600	1.3 2	49.7	600	4.2 3
50.8	26200	1.2 1	50.8	2600	1.1 2
51.6	32000	1.7 1	52.7	26200	1.2 1
52.8.	2600	1.3 2	53.1	30900.	1.5 1
56.2	600	4.3 3	59.2	66 0	4.3 3
62.3	30300	1.8 1	62.7	4600	•9 2
65.1		1.1 1	65.7		1.1 1
66.3	500	•9 2	67.6	1000	1.6 2
68 • 4	4900	1.0 2	68.7		2.5 1
70.3		1.0 2	71.5	700	2.3 2
73.4		2.6 1	73.6	1100	1.8 3
74.7		1.3 3		7200	•9 2
76.9	700	3.2 3	78.1	1860	1.4 2
. 80.3		2.4 1	86.3	1800	.8 2
82.0	6600	•9 2	82.5		2.3 1
		1.6 2	87.2	2000	1.6 2 .9 2
88.2		2.6 1	89.3		.9 2
91.0	2000	1.5 2	91.1	21000	3.1 1
92.4		.9 2	96.0	4300	.8 2
96.5		2.8 1	97.5	1100 2002	2.5 3
99.0	6300	.8 2	99.5		1.0 2
.131.7		2.1 1	101.7		2.1 1
103.7		2.2 1	107.7		2.8 1 2.9 1
107.7		1.2 ? 2.7 1	114.2		
121.4 128.0			122.6		2.8 1 1.0 2
139.0		2.5 1 1.5 2	129.9	3200 26200	2.2 1
130.3		1.1 2	131.9		2.2 1
134.5	29100	2.4 1	138.6	30110	2.4 1
139.5	2100	1.6 2	144.8	32100	2.1 1
148.7	34500	1.6 1	148.7	2000	1.6 2
152.5	600	4.3 3	154.7	37500	1.6 1
155.0	1500	1.7 2	157.3	38700	1.6 1
	1800	2.2 2	163.0	41860	1.7 1
163.0	1700	1.2 2	164.7	2260	1.7 2
164.7	100	1.2 2	169.9	4660C	1.4 1
173.5	1800	2.5 3	176.0	100	1.4 2
180.0	1500	1.8 2			_

ASSESSED TO THE TOTAL OF THE TWO THE THE THE THE THE THE TOTAL STATES OF THE TOTAL STA

NWC TP 5668

	JTF-2	TEST 4.1	TARGET E4	MASK D	AT4
AZ	RANGE	EL CODE	. AZ	RANGE	EL CODE
0.0	3900	3.2 2	9.6	8860	1.9 1
10.1	9800	1.4 1	13.6	11800	2.5 1
15.3	13200	2.5 1	18.3	14460	1.5 1
20.8	2600	2.2 2	27.9	2900	3.0 2
28.3	600	3.1 ?	30.8	3100	2.9 2
46.2	200	6.8 3	59.6	4500	2.0 2
64.2	4600		66.0	4800	1.4 2
73.7	5700	1.8 2 1.0 2	75.1	13200	1.0 1
75.2	5700	.7 2	77.8	6660	1.2 2
78.8	36500	1.0 1	78.8	6900	1.1 2
79.5		.9 1	79.5	6900	1.0 2
81.5	26100	1.2 1	81.5	6900	1.0 2 1.0 2
83.1	25200	1.3 1	83.2	7200	•9 2
84.5		1.5 1	85.8		1.4 1
86.8		1.4 1	88.2		1.3 1
88.7	27200	1.2 1	90.0	6600	1.6 1
90.2	27800	1.4 1	90.7		1.3 1
91.3	27100	1.2 1	91.9	27100	1.3 1
95.8	31800	1.6 1	96.5	· 28200	1.5 1
97.7	28400	1.6 1	102.3	9800	1.0 1
103.1	8500	1.5 1	103.2	28700	1.0 1
106.8	27100	2.1 1	108.0	27908	1.8 1
108.0	8100	1.8 2	109.3	8160	2.6 1
112.1	2800	2.3 1	115.5	7560	1.9 1
121.4	4400	1.9 1	136.5	5200	1.2 1
139.1	9800	1.6 1	142.5	7300	1.3 1
144.1	730 û	.9 1	145.5	7900	.8 1
149.6	10600	.4 1	151.3	13200	•6 1
152.7	13100	.7 1	153.8	14100	•4 1
155.5	14100	.6 1	158.7	10200	•6 1
159.0	9800	1.0 1	164.4	11500	1.7 1
171.4	12000	1.7 1	173.8	11800	•9 1
176.2	11800	•8 1	180.0	10309	2.7 1

NWC TP 5668

	JTF-2	TEST 4.1	TARGET W1	MASK DA	TA .
ΑZ	RANGE	EL CODE	AZ	RANGE	EL CODE
1.0	1000	3.0 2	2.2	1160	
4.2	1000	3.2 2	28.5	1300	
37.8	1300	1.6 2	48.i	2400	1.2 2
49.2	600	2.2 2	54.5	600	2.2 2
55.2	8300	3 1	58.0	7960	•4 1
59.0	1100	1.3 2	62.0	700	2.0 2
63.5	3090C	.8 1	63.5		
64.2	30900	•6 1	65.5	30700	.8 1
65.5	1500	.7 2	66.2	400	1.3 2
69.7	1800	1.1 2	72.0	26200	•6 1
72.0	5200	•6 2	74.2	2000	8.0 2
		.8 2			
81.7	4500 0 1300 8300	0.0 2	84.2		
87.8	1300	1.6 2	89.0	42500	•6 1
89.0	8300	•5 2	90.0	2400	.8 2
91.8	41400	•4 1	93.5	27300	.8 1
. 93.8	2760	•6 2	95.0	21300	•6 1
95.4	38300	•6 1	96.0		
96.8	40700	•6 1	99.0		
101.7	30400		102.2		
104.1	30400	.9 1	105.2	0	0.0 1
105.2	ŋ	0.0 2	197.7	700	2.6 2
110.1	760	2.2 2	112.3	39900	2.4 1
140.3	500	2.5 2	_	44400	1.1 1
143.8		1.2 1	145.4		
148.0	700	2.1 2	148.8		•9 1
150.5		•9 1		2100	1.2 2 .7 2
152.0		1.0 1	152.3		
153.2	46500	.8 1		46500	.8 1
175.7		1.2 1	176.3	1360	2.7 2
180.0	1300	3.2 2			

NWC TP 5668

	JTF-2	TEST	4.1	TARGET W2	MASK	DATA	
AZ	RANGE		CODE	AZ	RANGE	EL CO	0E
	-						
0.0	200	20.7	3	23.3	100	46.5	3
31.5	40000	. 8	1	31.8	26300	• 3	1
34.6	3870C	• 7	1	35.1	24900	• 3	1
47.5	-34500	• 6	1	50.3	3300	• 9	2
51.0	2900	• 3	2	51.5	460	4.3	2
52.8	9500	.4	2	59.2	32700	• 6	1
59.6	45100	• 8	1	61.5	43300	•6	1
64.0	2500	. 1	2	64.5	41000	• 5	1
68.5	8900	0.0	1	68.6	43300	• 6	1
71.2	42500	• 6	1	74.0	400	4.4	2
75.8	43500	• 9	1	80.5	21960	•4	1
80.7	10C	27.1	3	82.2	12200	.7	1
85.0	400	4.8	2	96.5	300	6 • û	2
98.6	3600	. 8	2	100.2	19800	• 3	1
184.7	100	22.1	3	195.7	19260	• 2	1
106.0	300C	• 8	2	106.3	47460	• 6	1
108.6	500	2.8	2	117.3	700		2
117.5	3100	• 3	2	118.3	24900	•2	1
124.0	200	20.8	3	128.1	48600	• 4	1
129.5	500	5.1	2	129.8	30060	•6	1
131.0	3600	•6	2	134.5	30 U	13.4	3
137.8	4300	. 5	2	138.4	38500	•2	1
141.0	300	9.0	3	146.5	100		3
155.2	200	21.3	3	155.5	460		3
158.3	29400	1.2	1	163.5	100	44.4	3
169.7	200	25.9	30	180.0	100	14.4	3

separate of the designation of the contract of

NWC TP 5668

	JTF-2	TEST	4 . 1	TARGET W3	MASK	DATA	
				AZ		EL C	DDE
0.0	1300	2.5	2	17.7	1260	2.0	2
18.0			1	18.8	5900	• 8	2
19.6			1	21.2	37800	1.3	1
22.5			1	22.0	2800	. 8	2
22.8		1.3		24.5	3966	1.5	1
24.7		1.0	2	26.0	44400	1.8	1
_ 26.3				27.3	1200	1.7	2
28.8				30.5		1.4	1
35 • 4				39.0	3100	1.2	2
_ 40.6				42.8	600	2.4	2
_ 68.3				84.5	300	6.2	
84.6				98.4	100	22.2	3
106.8				109:8	3500	3.4	1
	400			119.5	3000	3.7	1
	600			122.9	400	4.0	2
	3000		-	125.7		5.6	2
134.2				136.5		4.2	2
136.5				139.6		6.9	2
	2700				2800	4.4	
161.2				180.0			_

NWC TP 5668

	JTF-2	TEST	4 . 1	TARGET W4	MASK	DATA	
AZ .	RANGE	EL (CODE	AZ	RANGE	EL CO	300
0.0	1100	1.2	2	•5	300	5.9	3
22.6	900	2.2	2	24.8	661		3
26.0	2500	. 5	2	33.5	25500		1
35.2	2000	.5	2	40.0	2000	• 2	2
40.5	8200	. 4	1	44.6	7900	• 3	1
44.8	15400	• 3	1	49.0	13800	•5	1
49.5	3400	• 1	1	56.6	10900	• 4	1
58.9	4800	• 6	1	66.6	3000	• 4	1
71.7	8200	.7	1	84.5	6600	. 8	2
103.5	5900	1.2	2	127.8	3700	1.0	2
136.3	3900	• 9	2	147.0	4300	• 6	2
149.0	4800	• 6	2	151.5	4860	•5	2
152.5	800	2.2	3	153.5	16400	• 4	1
153.5	4900	5 ء	2	160.8	13800	• 3	1
163.0	480C	• 2	2	164.0	1500	• 8	2
164.3	1500	• 5	2	166.5	20700	•4	1
168.7	1209	1.7	2	169.8	400	2.6	2
173.9	500	5.8	2	180.0	400	5.8	2

	175-2	TEST 4.4	TARGET 1	MASK DA	TA	
AZ	RANGE				EL COD	Ε
	KANOC					
0.0	32800	1.0 1	0.0	16400	•6	1
0.0	3400	•3 2	1.7	200	1.9	2
11.9	200	9.5 2	16.1	200	7.3	2
18.9	200	5.1 2	21.0	1500	•4	2
	1566	.8 2	23.9	200	1.2	2
22·1 25·6	200	8.3 2	32.1	200	9.3	5
37.6	200	8.9 2	40.1	1600	2.0	2
41.1	900	2.1 2	45.9	200	7.4	2
i soni	30¢	8.2 2	54.7	300	7.5	2
59.3	300	7.5 2	61.6	260	8.5	2
64.1	700	3.5 2	65.9	460	5.1	2
67.0	200	9.1 2	71.8	200	9.1	2
72.8	480	6.6 2	75.1	400	6.6	2
77.3	200	6.1 2	79.3	360	7.2	2
80.9	300	7.2 2	86.0	400	8.1	2
88.1	200	9.9 2	96.7	200	10.3	2
190.3	3û0	8.4 2	103.9	300	9.3	2
109.1	300	7.6 2	111.5	300	8.3	2
114.2	300	7.4 2	119.2	. 200	11.7	2
121.3	300	7.9 2	124.2	300	9.5	2
128.3	300	8.5 2	133.7	300	9.8	2
137.1	200	12.4 2	146.1	500	6.3	2
145.7	•	10.2 2	149.9	200	9.9	2
150.8	4700	5.3 2	154.1	4900	5.6	2
156.1	300	7.6 3	158.1	500	6.2	2
159.5	500	6.3 2	161.5	5500	6.0	2
166.2	5200	6.0 2	169.7	5400	5.2	2
173.3	4900	4.3 2	176.7	5100	4.3	2
136.9	5200	3.9 2	189.9	5900	3.7	2
190.4	5900	3.6 2	191.0	6400	3.6	2
194.1	5900	3.2 2	196.1	610 V	2.9	2
196.5	2500	2.5 2	199.6	2600	2.8	2
200.3	260ù	2.8 2	200.8	2660	2.6	2
201.8	2500	2.6 2	262.5	3800	2.5	2
	3600	2.5 2	293.8		2.5	2
203.2 204.2	13100	2.4 2	204.3	13160	2.5	2
206.9	11800	2.5 2	207.0	400	2.4	2
20/.9	11300	2.5 2	209.2	3100	2.7	2
211.5	400	5.0 3	213.3	3200	2.7	2
215.3	3100	2.7 2	228.1	100	19.8	3
234.0	100	19.1 3	234.1	3060	2.7	2
237.7	3000	2.7 2	239.6	3700	2.6	2
241.2	3500	2.5 2	241.9	8200	2.4	2
244.5	7200	2.6 2	247.1	7500	2.5	2
249.3	7200	2.2 2	251.1	7260	2.4	2
L7713						

NWC TP 5668

	JTF-2	TEST 4.4	TARGET 1	MASK DA	ATA
AZ	RANGE	EL CODE	AZ	RANGE	EL CODE
253.9	6900	1.8 2	254.1	3760	2.1 2
256.9	3500	1.9 2	257.1	3500	1.6 2
258.1	3700	1.4 2	256.6	3500	1.4 2
259.1	3500	1.2 2	260.1	2400	1.1 2
261.4	2500	1.4 2	262.2	2600	1.4 2
262.6	2800	1.2 2	263.1	2500	1.5 2
264.7	2600	1.6 2	265.1	2800	1.3 2
265.9	700	1.7 3	257.1	76 G	1.7 3
267.7	27GC	1.4 2	270.7	2760	1.1 2
272.6	2900	1.4 2	273.6	200	6•û 3
277.9	200	6.0 3	283.3	306 û	1.2 2
285.1	700	1.8 2	286.5	1000	•9 2
288.9	800	1.6 2	292.1	1200	1.0 2
296.1	1260	1.5 2	300.3	1100	2.0 2
306.4	1000	1.4 2	308.3	1650	1.6 2
309.9	500	2.5 2	311.1	900	2.ù 2
313.4	600	3.0 2	315.9	1200	1.4 2
319.3	1200	1.2 2	323.9	1100	1.2 2 1.1 2 3.7 3 2.7 3 3.1 3
325.6	1500	1.3 2	329.5	1500	1.1 2
330.2	500	3.6 3	332.8	50 û	3.7 3
333.0	500	2.7 3	335.6	5[]	2.7 3
338.0	80C	2.5 3	346.7	560	
342.7	19700	.9 1	342.8	13100	•8 1
342.9	1500	•6 2	347.5	1970 J	•5 1
347.6	16400	.8 1	347.7	3300	1.0 2
349.1	200	5.5 3	353.2	200	5.5 3
354.7	23000	•7 1	354.8	18000	.7 1
354.9	330C	•5 2	355.0	23000	•5 1
355.1	18006	.7 1	355.2	3300	.7 2 1.8 2 2.6 2
356.0	800	1.2 2	356.9	900	1.8 2
357.4	500	2.6 2	358.6	660	
360.0	32800	1.0 1	36 0. 0	16400	•6 1
360.0	3400	•3 2	361.7	200	4.9 2

	JTF-2	TEST	4.4	TARGET	2	MASK	DATA		
AZ .	RANGE .	EL C	CODE	AZ		RANGE	EL	CO	DE
			_	_	_			_	_
. 0.0	200	8.2	2	3.		300		•6	2
10.0	200	16.0	2	13.		36 (• 6	2
17.0	400	9.4	2	20.		466		.8	2
22.5	. 200 <u></u> 400	9.0	2	24. 29.		40 (30 1		• B	2
_ 27.7 _ 33.6 _		6.6 10.5	2	35.		40 (• 0	2
37.7	400	8.4	2	+0.		60 (• 6	2
43.4	400	10.2	2	46.		46 (.7	2
49.2	500	7.2	2	51.		46		.8	2
	500	9.4	2	56.		400		•4	2
58.3		7.G	2	60.		500		. 8	2
63.2		9.0	2	66.		500		.0	2
67.5_		5.1	2	69.		66 () 6	•1	2
70 • 4		5.0	2	72.	5	600) 5	• 2	2
. 74.5 .	500	6.2	2	77.		500		• 0	2
	600	7.4	2	82.		50 (• C	2
	500		2	86.		50 (•2	2 2 2 2 2 3 2 2
88.9	_ 500	7.1	2	91.		5ú t		• 0	2
92.0	. 600 .	6.8	2	93.		. 600		•6	2
96.5.		7.6	2	98.		661		. 8	S
100.8		8.3	2	132.		566		•5	2
104.5	. 500	7.6	2	106.		500		. 8	2
.108.5		7.4	2	109.		10 (236 (• 0 • 8	ა ი
123.8. 128.8		15.0 7.6	3 2	124. 132.		2501		• 0	2
136.0	2200	8.2	2	139.		220		. 8	2
142.6	1800	9.2	5	146.		2601		. 8	2
150.3		10.3	2	154.		160		.8	2
	1800		2	161.		176		• 7	
165.2	1800	10.6	2	168.		180		• 4	2 2 2
172.2		10.0	2	177.	2	190	9	•5	2
180.3	1900	9.1	2	184.	2	196		• 3	2
187.7	1900	7.5	2	191.		200		•6	2
195.3	2600	5.4	2	200.		250		· U	2
201.5	2600	6.0	2	202.		20		. • 4	2
8.805	200	11.4	2	208.		260		. 6	S
212.2	3100	6.6	2	216.		310		• 0	2
220.2	3700	5.0	2	223.		360		9 0	2
227.5	3900	4.7	2	231.		430		.7	2
231.6	500	6.1	2	235.		50		• 1	2
235.9	1300	3.2	2	235. 237.		496		.6	J. 1
237.5	1300	3.2	2	237 • 239 •		490 570		. Ú	1
239.4	1200	2.8 2.4	2	241.		596		. 8	1
241.5	1600		2	245.		1120		.6	1
245 • 2	1500	2.2	۲	6454	-	TICO	, ,		•

NWC TP 5668

The contraction of the second second

	JTF-2	TEST	4.4	TARGET	2 MASK	DATA	
AZ	RANGE	EL	CODE	ΑZ	RANGL	EL CO	DDE
245.9	1460	3.0	2	248.2	1360	3.6	2
250.0	1300	3.0	2	251.8	1200	3.6	2
254.8	1200	3.1	. 2	256.5	1600	2.2	2
258.4	100	24.6		269.4	100	24.7	2
270.5	1100	2.8		273.6	1200	2.8	2
274.4	500	6.6		280.0	500	6.6	2
280.5	2600	3.1		280.5	9800	3.4	1
281.5	2500	2.9	2	281.5	9800	3.4	1
282.5	4600	2.9		282.9	986	3.6	1
283.3	1000	4.2		285.9	600	4.3	2
288.0	900	3.0		288.0	6600	4.8	1
298.1	900	3.8		290.1	7500	4.2	1
291.9	900	4.2	2	291.9	7500	4.2	1
293.6	600	4.8	2	295.7	600	6.8	2
301.8	500	7.8	2 ′	302.1	500	4.4	2
302.1	7200	4.9	1	304.2	90 0	4.2	2
394.2	6600	5.2	1	305.5	800	4.8	2
305.5	6900	5.1	. 1	309.4	20 0	9.7	2
311.6	300	11.8		318.9	460	6.7	2
322.3	400	7.8		326.6	50 t	7.6	2
330.5	300	10.8		335.5	300	12.1	2
340.7	300	15.0	2	348.9	300	13.2	2
354.0	30 G	10.5		357.4	300	10.4	2
360.0	280	8.2	2	363.0	300	8.6	2

NWC TP 5668

	JTF-2	TEST 4.4	TARGET 4	MASK DA	TA
AZ		EL CODE			EL CODE
0.0		4.0 1	9.0	9500	4.0 1
12.1	8200		15.0	7900	3.8 1
18.1		3.7 1	21.0	82¢0	3.6 1
	8900		25.2		3.5 1
	400		27.G	460	5.2 2 3.5 2 6.5 2
31.5		3.7 2	34.5	400	3.5 2
	300		44.5	300	6.5 2
	300 .		52.1	200	6.1 2
57.2	300	5.8 2	. 61.0	300	5.6 2
63.9	200	. 8.4 2	68.6	300	5.3 2
	300		73.1	300	6.8 2
75.2		6.8 2	76.8	50 O	4.4 2
86.9			90.0	300 300	7.0 2
93.5	300	7.4 2	99.1	200	7.8 2
102.0	200	6.4 2	106.0	200	7.6 2
108.0	200	6.7 2	111.5	200 700	7.2 2
116.5	200 .	7 • 6 2	119.6	700 700	5.0 2 7.4 2
122.1.	. 300	7.4 2 4.9 2	125.8	300 · 460	
128.0	409	4.9 2	130.3		
132.3	400	4.9 2	135.0	300 1100	
	300		141.0 143.9		
143.1		3.9 2 5.4 2	149.3		
	500	4.5 2	153.9		
151.0	600 6600		157.5		
154.6 159.2	. 5200		161.1	590 0	
163.2		3.3 1	165.1	5600	
166.8			166.8		
167.2			167.2		3.0 2
167.7.		2.9 2	169.1	4300	3.0 1
171.5		3.2 1	173.9		3.3 1
176.1			178.2		3.4 1
	4400	•	182.2		3.3 1
183.0			183.0		3.2 2
184.6		1. 9 2	186.8	6 0 	4.7 2
189.8	500	4.6 2	194.1	560	6.4 2
199.1	600	5.0 2	202.2	560	6.4 2
206.9	500	7.G 2	212.2	50 O	6.6 2
214.5	500	3.6 2	217.5	800	3.3 2
220.1	500	5.9 2	224.6	400	6.0 2
229.3	500	4.2 2	232.0	500	3.4 2
233.1	500	1.8 2	234.7	500	4.0 2
239.5	500	4.9 2	242.3	500	3.8 2
244.8	500	3.4 2	246.8	500	1.9 2
246.8	560 0	1.9 2	249.0	2500	1.9 2

NWC TP 5668

	JTF-2	TEST	4.4	TARGET	4	MASK	DATA	
AZ	RANGE		CODE	AZ	7	RANGE	EL	CODE
200 0				, , , , , , , , , , , , , , , , , , ,		MANUE	CL	CODE
250.9	2400	1.9	2	253.1		2400	1.	9 2
255.3	2300	2.0	2	257.1		2300		1 2
258.9	2300	2.0	2	261.0		2200		
264.0	1800	1.9		265.9		1900	_	5 2
266.1	1900	1.7	2	268.4		2100		
268.9	1800	1.5	Ž	270.5		1900		
271.9	1700	1.8	2	274.5		1900		
276.1	1700	1.5	2	278.0		1600		3 2
280.2	1500	1.8	2	282.1		1600	1.	
284.2	1600	1.5	2	285.7		1600		7. 2
286.6	1700	1.2	2	288.9			1.	
289.6	1600	1.1	S	291.8		1600 1600	1.	
292.8	800	2.3	3	293.6		900	1.	
294.7	2100	1.2	2	295.1		1900	1.	
295.1	13100	1.3	1	297.1		16100		
298.2	13100	2.0	1	302.2		11200	1.	
304.2	13100	2.4	1	306.2		11200	2.	
308.2	9866	2.6	ī	310.1		9800	2.	
312.1	9800	3.0	1	314.9		10100	2. 3.	
316.9	9800	3.2	1	318.9		9200	3.	
320.9	9800	3.3	ī	324.0		8900	3.	
326.1	790C	3.5	1	328.2		9500	3.	
330.1	8900	3.5	1	332.1		10100	3.	
334.1	8900	3.4	1	336.0		8500		
338.1	8200	3.3	1	340.2		9800	3.	
342.2	8900	3.6	1	344.2		9500.	3.	
345.2	9560	3.9	1	348.2		8900	3.	
350.2	8500	4.1	1	352.2		8200	4.	
358.0	8200	4.0	1	360.0		7900	4 . 4 .	

NWC TP 5668

	JTF=2	TEST 4.4	TARGET 5	MASK DA	TA
		EL CODE.		RANGE .	EL CODE
0.0 _	200	3.8 3	•2	6600	3.2 1
3.0	6100	3.4 1	5.2	5700	3.5 1
	6100		9.0	5100	3.7 1
	_ 5100		13.0	2900	3.9 1
	5200		. 13.9	360	7.8 3
19.2	300	. 7.8 3	19.3	5100	4.2 1
	5100		23.0	5200	4.4 1
25.0	5100	4.4 1	27.0	5100	4.4 1
29 • 0	5100 .	4.3 1	31.2	4600	4.2 1
33.0	5200	4.2 1	35.1	5900	3.8 1
37.0	6400	3.7.1		. 6600	. 3.4 1
41.0	7200	3.2 1	43.0	7 200	3.0 1
44 • 0	6900	2.8 1	44.0	300	2.8 2
44.6	300	7.1 3	47.9	300	7.1 3
48.9	300 _3100	7.3 3	52.4	3(0	7.3 3
52.4 _	3100	1.2 1	52.4	3C 0	1.2 2
54.5	3 300	_1.0 2	56.2	3300	•B 1
_ 56.2 _	400 .	3.7 2	58.6	460	3.7 2
	500 .		42.42	50 0	3.1 2
	500		65.9	50 0	2.9 2
	500_		69.3	500	2.6 2
	500 .		73.8	500	2.9 2
	400		80.4	500	3.3 2
	50 0		89.6	5 C D	b • 1 2
_ 92.2	500	3.7 2	43.5	500	1.3 2
	7500		96.7	6600	2.1 1
	5700		99.5	5400	2.6 1
	.5500.		103.6	5900	2.9 1
	5200		107.3	6400	3.2 1
109.4		3.3 1	112.4	57C O	3.5 1
	. 5700		116.7	520 û	3.6
	5700		120.3	5700	3.6 1
122.3_	540ù .		124.6	5760	3.6 1
	5900		129.0	646(3.5 1
. 130 . 3		3.4 1	130.3	500 500	3.4 2
130.9	. 500	4.5 2	133.3	500	4.5 2 3.5 1
133.6	500	3.5 2	133.6	6900	
136.3	7500 .	3.6 1	138.4	790 C	3.4 1
138.4	500 500	3.4 2	139.3	500 7000	4.1 2
140.3	500	3.4 2	140.3	7900	3.4 1 3.3 2
141.0	7900	3.3 1	141.0	3360	
143.3	3300	3.4 1	143.3	56 C 50 O	3.4 2 5.1 2
143.5	500	5.1 2	146.1		3.8 1
146.4	500	3.8 2	146.4	3500	
149.5	3200	4.1 1	149.5	50 0	4.1 2

NWC TP 5668

	JTF-2	TEST 4.4	TARGET 5	MASK DA	TA
. AZ		EL CODE	AZ		EL CODE
150.9		4.7 3	151.7	500	4.1 2
151.7		4.1 1	154.3		4.3 1
154.3	500	4.3 2	156.2	5ü 0	4.9 3
157.3	500	4.3 2	157.3	3900	4.3 1
	3900	4.3 1	163.1	4400	
165.6		3.9 1	166.9	4360	3.8 1
117.0		3.7 1	172.5	4200	3.6 1
176.2		3.4 1	179.1	3900	3.G 1
181.2		2.6 i	183.2		2.5 1 3.6 2
183.2		2.5 2	183.9	1300	3.0 2
187.8	1100	2.4 2	187.8	9860	2.4 1
190.2	11860	2.7 1	190.2	1000	2.5 2 2.7 2
193.5		2.9 1	193.5	1160	2.7 2
194.7	8200	2.8 1	194.7	1400	2.7 2 2.6 2
197.5	980G	2.7 1	197.5	1000	2.6 2
198.9	9800	2.7 1	198.9	1060	2.6 2
199.9	11800	2.6 1	199.9	1600	2.3 2 3.4 2 3.1 2
200.0	1000	2.4 2	201.4	2660	3.4 2
202.0	1000	2.7 2	203.0	1250	3.1 2
203.7	1100	2.5 2	206.3	1000	3,8 2
207.3	1200	2.5 2	209.2	1200	2.3 2
210.2	1200	2.5 2	212.5	1390	3.8 2 2.3 2 2.2 2 2.5 2 3.1 2
215.1	1200	2.3 2	217.0	1200	2.5 2
219.2	1100	2.1 2	221.8	500	3.1 2
224.5	500	2.9 2	226.9	600	3.6 2
228.5	700	3.4 2	230.3	600	2.2 2
232.8	600	1.6 2	233.4	600	1.0 2 1.1 2
534.9	1600	.8 2	236.1	1600	1.1 2
238 . 2	1500	1.0 2	238.9	40 O	4.8 3
243.3	400	4.8 3	243.2	2000	.9 2 1.3 2
245.8	600	1.1 2	246.5	7C U	1.3 2
249.6	300	2.1 2	251.0	30 0	2.8 2
253.4	300	2.7 2	255.2	6£ J	3.2 2 3.5 2
256.8	600	1.8 2	259.5		3.5 2
262.0	600	2.2 2	265.5	8 C G	2.5 2
270.2	700	2.3 2	274.9	400	2.2 ?
276•6	300	4.2 2	278.2	500	2.8 2
281.9	300	4.2 2	293.2	400	4.7 2
294.9	6900	4.1 1	294.9	400	3.3 2
297.1	6900	4.1 1	297.1	400	3.8 2
299.9	400	5.4 2	300.8	5900	4.2 1
300.8	400	4.0 2	303.7	5600	4.4 1
303.7	300	3.9 2	306.9	£ 90 0	4.3 1
306.3	300	3.6 2	307.3	360	6.4 2
310.9	300	6.4 2	311.2	5200	4.4 1

NWC TP 5668

The state of the s

	JTF=2.	TEST	4.4	TARGET	5 MASK	DATA	
AZ	RANGE	LEL C	ODE.	AZ	RANGE	EL CO	DDE
311.2	400	3.6	2	314.3	5480	4.2	1
314.3.	. 300	3.9	2	319.0	5600	3.8	1
_319.0	800	3.6	2	319.7	900	4.6	2
321.0	. 900	4.3	2	322.2	960	4.5	2
	1000		2	325.7	800	3.7	2
327.0	300	6.7	2	330.0	200	5.9	2
334.8	300	6.3	2	339.0	200	5.0	2
	8260		1	343.5	8200	1.7	1
	8200			345.3	160	9.5	3
353.5	. 100	9.5	3	353.9	6600	2.7	1
356.2	6600	3.0	1.	357.8	6600	3.1	1
359.5		3.2		360.0	200	3.8	3
	6600	3.2		363.0	6100		1

NWC TP 5668

The state of the s

	JIF-2	TEST 4.	4	TARGET	6	MASK	DAT	A	
AZ	RANGE	EL COD		AZ		RANGE	E		DE
0.0	500	2.9 2)	2.	4	60	G	2.7	2
4.3	400	2.1 2		6.	7	50		3.1	2
9.5	600	1.8 2	?	12.	1	50	0	2.6	2
15.0	500	1.9 2		15.	5	416	0	1.2	2
17.5	600	2.4 2	<u>.</u>	19.	1	390		• 9	2
20.3	500	2.4 2		22.	6	60		3.1	2
24.5	400	3.1 2 4.0 2	<u>:</u>	27.	1	30		3.8	2
29.3	500	4.0 2	2	31.	5	30		4.2	2
33.5	300	4.2 2	?	36.	5	30		5 • 0	2
39.5	400	5.3 2	?	43.	3	30		5.3	2 2 2
46.5	300	6.4 2	2	52.	3	20		7.7	2
55.7	200	6.8 2	2	60•	3	20		9.0	2 2
65.8	200	8.3 2	?	70.	8	26		9.9	2
73.7	200	9.5	?	77.	4	20		8.8	2
85.2	200	7.6 2	2	89.	7	20		6 • Û	2
91.1	200	10.6	2	96.	Ó	20		10.6	2
100.4	200		2	104.		20		6.7	2
110.2	200		2	112.	5	30		6.1	2
115.8	300		2	119.		. 30		6.2	2
123.5	400		2	125.		36		4.5	2
129.9	300	5.5	2	131.	5	30		3.2	2
131.5	6600		1	134.	1	690		3.2	1
137.5	6400	3.4	1	140.	5	590		3.5	1
143.4	6100		1	146.	3	610		3.7	1
149.6	1800	3.8	1	152.	1	60		3.7	1
155.2	5400	3.8	1	158.	3	540		3.7	1
161.4	5600	3.5	1	164		520		3.5	1
167.2	5200	3.4	1	169	8	490		3.3	1
173.2	1300	3.3	1	174		239		3.4	1
176.1	200	12.4	3	185		20		12.4	3
185.1	1200	3.5	1	128		160		3.4	1
190.2	2180	3.4	1	194		230		3.5	1
197.3	1500	3.1	1	200		90		3.5	1
203.5	2400	3.2	1	206		180		2.9	1
210.3	1000	3.G	1	213		220		2.8	2
216.7	900		2	219		90		3.8	2
227.3	800	3.8	2	228		100		3.3	2
229.5	700		2	232			0	4.7	2
235.7	800	3.4	2	238			0 0	3.7	2
241.3	1000	3.3	2	243			0	4 • G	2
246.6	700	3.6	2	249			0 0	4.1	2
251.4	600	4.0	2	254			0 0	3.2	2
257.6	500		2	260			G 0	2.8	2
263.5	900		2	266				2.7	2
269.7	500	2.9	S	272	• 6	9	0 0	1.6	۲

NWC TP 5668

	. JTF-2	TEST	4.4	TARGET	6	MASK	DATA	
. AZ	RANGE	EL	CODE	AZ		RANGE	EL	CODE
.275.6.	800	2.5	2	276.	9	801	1.	4 2
.276.9 _	. 8500	1.4	1	278.	1	8500	1.	5 1
278.2	. 2600	1.2	2	278.	9	901	1.	4 2
278.9	8500	1.4	1	279.	3	961	1,	9 2
_282.3	900	. 2.1	2	285.	5	601	1.	7 2
.287.7.	900	2.0	2	290•	2	1000	2.	1 2
	2000	2:4	2	295.	2	50 (2.	8 2
297.7.	•	3.3	2	300.	1	50 (4.	5 2
303.1		3.8	2	305.	3	500	4.	7 2
308.3		3.2	2	311.	2	500	3.	1 2
	500	3.4	_	317.	5	561	2.	8 2
	500	3.4		324.	4	60 (3.	5 2
327.5		2.8	_	328.	2	100	13.	7 2
347.4		14.8	_	355.		201	3.	1 2
357.6		2.5		360.		500		9 2
362.4		2.7			-			

The state of the s

NWC TP 5668

ALCO - IN CONTRACTOR THE GROWN SHOWS IN MAY 12 IN THE CONTRACTOR I

	JTF-2	TEST	4.4	TARGET	7	MASK	DATA		
AZ R	ANGE			ΑZ		RANGE		COC	ЭE
				_			-		
0 • 0	200	8.5	Ż	8.0)	200	10	. 9	2
15.0	200	11.0	2	10.5		300		. 3	2
22.5	300	9.4	2	26.5		46 (. 7	2
31.0		4.2	Ž	35.0		40		0	2
39.2		5.4	2	43.0		400		. 2	2
45.2	400	3.4	2	48.5		50 (. 3	5
50.5	500	4.0	2	55.0		400		9	2
57.7	400	4.9	2	60.7		400		. 4	2
64.0	300	4.7	2	67,8		400		. 1	2
70.2	350	7.1	2	74.7		300		. 4	2
. 77.8	200	8.2	2	82.5		300		. 2	2
86.5	200	9.2	2	93,5		250		. 7	2
95.3	200	6.7	2	102.2		200			2
107.6	200	9.8	2	114.5		200		9	2
117.2	300	8.7	2	123.0		20 (2
127.5	200	9.7	2	132.6		200			2
136.5	200	10.2	2	142.4		200			2
147.5	200	14.4	2	156.1		200			5 5 5 5
162.0	200	8.0	2	165.7		201			2
170.0	200	15.7	2	175.4		200			2
181.5	200	9.2	2	183.5		200			2
191.5	200	12.6	2	192.5		20 (. 7	2
193.5	300	9.1	2	197.5		30 (• 1	2
199.5	200	6.3	5	202.0		30 (• 8	2
204.9	400	6.0	5	207.5		20 (• 3	2
210.7	400	5.3	Š	213.5		366		• 6	5 5
215.0	400	3.7	Ž	218.2		461		. 8	2
220.4	400	3.9	Š	222.8		401		• 2	2
226.2	400	3.2	ž	230.5		40		• 2	2
232.7	500	2.7	S	235.5		401		• G	2
239.4	500	1.4	S	242.3		40 i		. 0	2
247.9	500	2.4	Ž	250.5		4 G i		• 1	2
254.0	30G	2.9	5	255.0		361		• 7	2
257.5	200	5.9	2	260.8		26		• 5	2
268.0	200	8.8	5	271.9		20	3 8	• 3	2
277.4	200	8.0	5	284.0		20	9	• 3	2
295.0	200	12.6	S	301.0		20		• 6	2
306.5	300	4.9	5	309.5		10			2
322.7	100	14.8	5	331.7		10			2
337.7	200	8.4	2	341.0		30		. 8	2
346.0	200	11.2	2	353.8		20		• 9	2
360.0	200	8.5	S		•	-4	- •		
		- • •	_						

(The second sec

NWC TP 3668

A Comment of the Comm

A series of a seri

AZ ,	JT/F~2 RANGE			TARGET 8	MASK DA RANGE		DE
• 8		6.8	2	2.2	400	4.0	2
4 • 0		7.4	2	5.0	70 O	4.1	2
8.0	700	4.2	2	8.5	400	6.2	2
9.0		4 • 0	ć	10.0	400	6.0	2
11.2		9.6	2	12.2	400		2
14.2	300		2	16.5	300		2
18.3			2	20.0		7.4	2
		9.6	2	24.0			2
26.0		7.5	2	28.6	400		2 2 2
		5 • O	2	34.0		5.0	2
36.0.	700	4.9	2	38.0		4.9	2
40.0		4.2	2	42.0		4.2	2
-		5.6		46.0		5.3	2
		5.8		50.0		5.7	2
52.0		4.7	2	53.0	60 O		2
53.0		3.5		54.0	13800		1
54.8.	1340.0	3.1	1	54.8	7200		1
56.0	6900	3.5	1	58.0	6600		1
60.0	6100	4.6	1		· 5900		1
64.0	5800	5.5	1	66.0	5660	5.8	1
68.0	5200	6.1	1	70.0	4930	6 • 4	1
72.0		6.6	1	74.0	4960	6.8	1
76.0	4600	7 • C	1	78.0	4300	7.2	1
80.0	4100	7.5	1	82.0	3900	7.9	1
84.0	3700	8 • 4	1	84.0	300	8.4	2
86.0	300	10.8	2	88.0	360	10.8	2
90.0	300	8.7	2	90.0	3400	8.7	1
92.0	3500	8.6	1	94.0	3500	8 • 6	1
96.0	3600	8 • 4	1	98.0	3600	8 • 2	1
100.0	3600	8.2	1	101.0	3600	7.6	
101.0	5900	7.6	1	102.0	5900	7.7	1
104.0		7.8		106.0	5600	8 • 2	1
108.9		8.7		110.0	5100	9.0	1
112.0		9.0		114.0	5200	9.3	1
116.0	•			118.0		9.4	
120.0	5100	9.4	1	122.0	5000	9.3	1
124.0	4900	9.1	1	126.0	5200	9.0	1
128.0	5600	8.9	1	130.0	6160	8.9	1
132.0	5900	8.8	1	134.0	5800	9.0	1
136.0	5700	9.0	1	138.0	570 U	9.5	1
114.0	5700	9.4	1	142.0	5700	9.3	1
144.0	5700	9.1	1	146.0	5800 3403	8.9	1
148.0	5900	8.6	1	150.0	6100	8.2	1
150.8	6300	7.8	1	150.8	3900	7.8	1
152.0	4000	8.2	1	154.0	4100	8.1	1

A CONTRACTOR OF THE PROPERTY O

NWC TP 5668

	JTF-2	TEST 4	. 4	TARGET 8	MASK DA	ATA	
. AZ		EL CC		AZ	RANGE	EL COD	Ε
- ''	.,						
156.0	4100	8.9	1	158.0	410 J	8.1	1
158.0	100	8.1	2	160.0	100	21.3	2
162.0	100	21.1	2	164.0	160	21.1	2
166.0	100	21.6	2	168.0	. 160	26.9	2
170.0	_ 100	27.3	2	172.0	100	28.0	2 2 2
174.0	100	27.8	2	176.0	160	28.3	2
178.0	100	28.2	2	180.0	160	24.2	2
182.0	100	23.0	2	184.0	100	23.8	2.
186.0	100	25.0	2	188.0	100	25.2	S
190.0	100	25.8	2	192.0	100	23.4	2
194.0	100	21.9	2	196.0	165	20.3	2
198.0	100	14.0	2	260.8	100	19.2	2
202.0	100	18.1	2	204.0	100	26.8	2
206.0	100	24.0	2	268.6	160	26.5	č
210.0	100	28.3	2	212.0	100	26 • 4	2
214.0	100	26.1	2	216.0	100	29.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
218.0	100	30.4	2	223.0	100	30.6	2
222.0	100	30.7	2	224.0	100	29.0	۷
226.0	100	30.3	2	228.0	160	23.6	2
230.0	100	22.8	2	232.0	160	17.8	2
234.0	. 100	19.4	S	236.0	100	18.8	2
238.0	100	15.7	2	240.0	100		2
242.0	200	17.1	2	244.0	200	16.5	2
246.0	200	16.5	2	248.0	200 200	12.1	2 2 2
250.0	200	13.2	2	252.0	200	12.6	2
254.0	200	12.1	2	256.0	200	9.6	2
258.0	200	12.2	2	260•0 264•0	400	5.5	2
262.0	200	7.0	2	268.0	500	4.5	2
266 • Ú	400	5.4	2	272.0	500	4.6	5
270.0	50G	4 • 8 4 • 5	2	274.0	8900	4.5	1
274.0	700	4.6	1	278 1	8763	4.7	1
276.0	9130	4.8	1	282.0	8600	5.1	1
280.0	8700 8500	5.1	1	284.0	730	5.1	2
284•0 286•C	300	8.6		288.0	300	9	2
	300	18.5	2	292.0	200	12.t	2
290.0 294.0	200	13.	2	296.0	260	13.6	2
	200	14.4	2	300.0	200	14.9	2
298•0 302•0	200	13.3	Ş	304.0	200	12.1	2
306.0	200	11.1	2	308.0	2ú 0	3.7	S
310.0	200	10.9	2	312.0	200	9.7	2
314.3	300	8.6	2	316.0	300	10.5	2
318.0	300	10,2	2	320.0	400	9.8	2
322.0	486	8.2	2	324.0	40 C	8.2	2
326.0	500	8.3	2	323.0	50 O	8.2	2
		•					

	JTF-2	TEST	4.4	TARGET	8	MASK	DATA		
_ AZ	RANGE	EL C	ODE	AZ		RANGE	EL	CO	DŁ
332.0	500	8.2	2	334.	0	50 () 9	9 • G	2
336.0	500	8.6	2	338.	0	50 () (8.5	2
340.0	500	8.9	2	342.	0	500	3 (3.9	2
344.0	500	7.8	2	346.	0	500) 7	7 . 8	2
348.0	500	7.8	2	350.	0	700) !	5.9	2
352.0	400	6.5	2	354.	0	760) ' 4	+•6	2
356.0	400	6.2	2	357.	4	401) (5.4	2
358.8	409	4.4	2	36 G .	8	40 () (8.6	2
362.2	400	4.0	2						

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

THE THE PARTY OF T

NWC TP 5668

	JTF-2	TEST 4.	4 TARGET	LO MASK	DATA
AZ	RANGE	EL COD	E AZ	RANGE	EL CODE
_	-				
0.0	300	6.5 2			
8	4800	6.0 1			
5.8	4600	6.5 1			
7.9	300	6.6 2			
18.4	300	5.6 2			
21.1	5200	5.3 1			
23.7	300	5.0 2			
28.9	300	4.4 2			
32.5	6300	4.0 1			
39.3	6600	3.8 1			
42.0	400	3.4 2			
46.1	400	5.6 2			
48.2	9200	2.8 1			
49.5	500	3.3 2	50.3		
50.3	9800	2.4 1	53.0		
53.0	500	2.1 2	54.3	3 50 C	
57.5	600	3.0 2	60.5		
64.4	038	2.9 2	68∙:	L 90 (
70.7	900	1.4 2	72.7	7 · 900	
75.2	1000	•6 2	75.0	2 3 2866	
76.2	32800	.6 1		3 2360	
78.1	32800	.5 1	78.	L 220(•5 2
79.4	32800	.7 1	79.9		.6 2
82.0	32800	.8 1	82.	1300	•6 2
83.1	32800	.8 1	A3.	1200	.5 2
84.4	32800	.8 1	84.4	130 (.5 2
86.8	26200	•9 1	86.8		.6 2
83.1	32800	1.0 1	88.7	7 2766	
89.9	18000	.9 1	89.	9 280	
90.7	2530C	1.0 1	105.		
108.2	13:00	2.3 1	110.		
113.0	11200	2.6 1			
118.3	13100	2.8 1			
123.9	9200	2.9 1			
128.7	9200	3.0 1	131.		
132.6	10100	2.9 1	134.		
136.0	8500	3.1 1	139.	G 8201	
141.2	8700	3.2 1			
148.2	7900	3.6 1	150.		
153.6	8500	3.4 1	156.		
159.2	9800	3.6 1			
163.1	9500 ·	3.2 1	166.		
169.1	9866	3.1 1	172.		
175.5	10100	3.5 1			
181.7	85 Ö Ö	3.1 1	183.	8 1126	0 2.8 1

A STANDARD CONTRACTOR AND CONTRACTOR OF THE CONT

AND STATE OF THE S

	JTF-2	TEST 4.4	TARGET 10	MASK DA	TA
. AZ		.EL CODE			EL CODE
			_		
186.6	11200	2.4 1	187.3	15160	2.5 1
189.3		2.5 1	193.1	13100	2.4 1
194.9		2.6 1	197.1		2.7 1
200.0		2.7 1	201.2		2.0 1
8.505		2.5 1	205.0		2.2 1
206.9		2.2 1	209.1		2.0 1
210.1		1.8 1	210.8		1.9 1
212.8		2.1 1	214.0		2.2 1
215.3		1.7 1	216.5		1.7 1
218.4		1.5 1	218.4		1.5 2
.222.5.		1.8 2	225.5		1.8 2
226.6	800	1.2 2	227.2		1.2 1
228.0		1.0 1	228.3		1.4 2
229.0		1.5 2	230.4	1500	1.3 2
231.4		.8 2	231.4		.8 1
232.3		.8 1	232.3	1000	.5 2
.233.2		5 2	233.2		•5 1
233.9	600	1.5 2	236.4	600	2.1 2
237.7	1200	1.3 2	238.9		.9 2
241.2		1.3 2	244.7	1200	.5 2 .5 1 2.1 2 .9 2 1.6 2
247.9	1200	1.6 2	247.9		1.6 1
248.9	32863	1.8 1	248.9		1.1 2
249.2	1300	1.8 2	249.2		1.8 1
251.1	32800	1.8 1	251.1	1360	1.8 2
0.SeS	1300	1.7 2	252.0	19700	1.8 1
254.7	16400	1.8 1	254.9	1200	1.6 2
255.9	1300	1.8 2	255.9		2.2 1
258.5	16700	2.2 1	258.5	1300	1.8 2
260.9	16460	2.7 1	266.9	1360	1.8 2 2.6 2
262.5	16400	2.7 1	252.5	1300	2 · û · S
264.1	16400	2.5 1	254.1	920 û	2.5 1
268.5	6600	3.6 1	271.4		4.2 1
274.8	6600	4.7 1	278.2	6600	
281.5	5600	5.4 1	284.6		
288.3	5769	5.9 1	292.9		6.2 1
297.2	4600	6.6 1	302.5	4900	7.1 1
306.3	4300	7.3 1	310.9	4800	7.4 1
310.9	400	7.4 2	311.7	463	8.3 2
316.0	400	8.3 2	317.3	400	7.5 2
317.3	3700	7.5 t	321.3	4160	7.6 1
321.3	400	7.6 2	322.9	433	10.3 2
328.3	400	10.4 2	331.1	460	6.3 2
331.1	3700	6.3 1	333.1	4000	6.0 1
333.1	300	6.0 2	338.1	360	7.2 2
340.5	300	4.0 2	340.5	5 600	4.0 1

AZ	JTF-2 RANGE		CODE	TARGET 10 AZ	MASK RANGE		0E
342.3	6600	5.1	. 1	342.3	360	5.1	2
343.9	300	8.8	2	348.7	300	4.4	2
348.7	8200	4.4	1	351.4	9200		1
351.4	300	4.5	2	353.5	300		2
356.9	30C	8.3	2	360.0	300	6.5	Ž
360.8	300	6.0	2	360.8	4800	•	1
363.9	4600	8.4	· 	- 0000			-

THE THE PROPERTY OF THE PROPER

S. Shows recommended to the second of the second se

The state of the s

NWC TP 5668

DONE DE LE SENTINE DE LE SENTI

	JTF-2	TEST	4.4	TARGET	11	MASK	DATA		
AZ		EL				RANGE		CO	DE
$0 \cdot 0$	200	5.9	2	2.	. 0	200) 6	•6	2
4.0	200	5.9	2	8	. 0	300) 5	• 0	2
10.0	300	4.7	2	12	. 0	300) 4	. 4	2
14.0	300	4.5	2	16	. 0	30 () 5	. 8	2
18.0 .	300 _	. 5.7	2.	. 20	. 0	300) . 5	• 1	2
22.0	300	5.3	2	24	. 9	300) 6	.1	2
26.0	400	4.8	2	28	0	400) 4	• 3	2
30.0	400	5.2	2	32.	. 0	460	6	.4	2
34.0	500	4.9	2	36	. 0	500	1	•6	2
36.0	1300	1.6	2	38.	0	1300	1	• 9	2
40.0	1300 _	. 2.0	2	42	0.	1300) 1	. 8	2
44.0	1300	1.9	2	45.	. 0	1300) 1	. 5	2
. 46.0	1300	2.0	2	48.	. 0	1300) 1	•9	2
50.0	1300	1.9	2	52		1100) 2	• 0	2
54.0	1100	2.6	2	56	. 0	1160		• 3	2
58.0	800	2.6		60.	. 0	760		• 0	2
62.0	700	3.6		. 64		600		• 3	2
66.0	600	3.0	2	68		500		• 9	2
70.0	300	3.6	2	72.	ū	· 30(• 5	2
74.0	300	4.0	2	76.		300		• 2	2
78.0	300	6.2		80.	• 0	300		• 6	2
82.0	300	7.3		84	• 0	20 (•5	2
_ 86.0 .	_ 200 .	7.3		88		20(1 • E	2
90.0	200	9.5		92		200		.5	2
94.0	200	9.4		100	• 0	300		• 4	2
192.û	200	10.6	2	104	• 0	208		. 0	2
106.0	200	8.9		108		200		• 8	2
110.0	200	16.2	2	112		200		2.	2
114.0	200	15.0	2	116		20		. • B	2
118.0	200	11.2		120		20(.5	2
122.0	200	9.8		124		2û (. 3	2
126.0	200	7.9		128		201		. 4	2 2 2 2
130.0	200	7.6		132		201		.9	2
134.0	200	9.5		136		201		• 1	2
. 138.0	200	. 8.2	2	140	• 0	200		•9	2
142.0	200	7.6	2	144	• C	20 (• 6	2
146.0	300	6.1	2	148	• 0	30		• 4	2
150.0	300	6.1	2	152		301		• 8	2
154.0	300	6.0	2	156		30		• 5	2
158.0	300	3.3	2	160		36		. 4	2
162.0	30G	6.2	2	164		3ů i		. 9	2
166.0	200	8.2	2	168		201		3.0	2
170.0	200	9.3	2	172		201		.6	2
174.0	200	8.1	2	176		263		2.0	2
178.0	200	9.6	2	180	• 0	201) 8	.0	2

NWC TP 5668

	JTF-2	TEST	4.4	TARGET 11	MASK D	ATA	
AZ	RANGE .	EL C	ODE	AZ			E
182.0	300			184.0	300	5 • 8	2
186.0		6.2	2	188.0		5.8	2 2 2
190.0	300	6.2	2	194.0	300	6.1	2
196.0	400	5.1	2	198.0	400	4 3	2
200.0	500	3.8	2	202.0		3.9	2
204.0		4.5	2	206.0		4.2	2
208.0	500	3.9	2	210.0		3.9	2
212.0	600	2.7			1260	2.1	2
216.0	1400	2.1		218.0		2.1	2
220.0	1600	2.1		222.0	1600	1.5	2 2 2 2
222.0	18000	1.5		224.0	1100	1.8	2
224.5	20000	1.4		225.5	1100	2.1	2
227.0	1100	1.8		228.0	1100	1.2	2
228.0		1.2	1	228.5	1600	1.4	2
229.5	1600	1.1	2		23800	1.1	1
230.5	1400	1.3	2	231.6	1400	, ^	2
231.6	24200	• 9	1	233.9	24000	د' •	1 2
	1300	• 9	2	234.2	1300	1.2	2
	24000	1.2	í	234.6	. 1300	• 8	2
235.2		• 6	1	235.2	1600	•6	2
236.0	1600	• 6	2	238.0	600	1.1	2
240.0	600	1.5	2	246.7	600	1.9	2
242.2	600	1.4	2	244.0	600	3.3	2
245.2	600	3.3	2	245.3	600	2.6	2
246.C	600	2.6	2	248.0	460	2.8	2
250.0	400	3.0	2	252.0	400	3.0	2
253.6	400	2.2	2	254.8	800	4.4	2
256.2	800	3.0	2	258.0	800	3.0	2
260.0		2.0	2	260.7	500	3.0	2
262.0	500	3.3	2	262.2	50 C	4.7	2
264.0		5.4		266.0	500	5 • G	2
268.0	500	4.1	2	270.0	500	3.5	2
272.0	500	4.1	2	274.0	500	3.9	2
276.0		3.6		278.0		3.0	2
278.0	7700	3.0	1	282.0	7760		1
283.0	750G	3.1	1	283.0	460	3.1	2
283.6	400	4.0	2	286.0	400		2
288.0	400	5.0	2	290.0	400		2
290.0	7700	3.9	1	292.0	7560		i
294.0	7400	4.0	1	296.0	72G ü		1
298.0	7200	4.2	1	300.0	7100		1
302.0	7000	4.5	1	304.0	6800		1
306.0	6500	4.8	1	308.9	640 J		1
310.0	6200	5.0	1	314.0	5860		1
316.0	5700	5.0	1	316.0	200		2

or and the contract of the con

			TARGET 11		
318.0	200	7.4 2	324.0	2G 0	_7•4 2
326.0	200_	7.6 2	328.0	200	. 7.0 . 2
330.8	200	7.0 2	_ 332.0	200	7.6 2
336.0	200	7.6 2	338.0	200	6.6 2
340.0	200	6.72	346.0	20 0	_ 6.72_
			350.0		
			362.0		

and the contract of the contra

and the control of the property of the control of t

		COMPLETE CHAPTER VICTORIA	WWW.www.combos	Bary or a very a Mar	waste propriet and the section of th	भागमानगणित्र संग्रिक श्रेरक्ष	VOVIK SEKTE
				NWC	TP 5668		
	AZ	JTF-2		4.4 CODE	TARGET 12	MASK (DATA EL
	0.0	17700	1.0	1 .	2.5	17000	
Š	3.2 4.6	17200 21600	• 8 • 6	1 . 1	4.6 5.9	17700 160	4
	22.3	100	4.3	Ž -	30.4	2000	7
	36.1	8200	. 9	. 1	40.7	7900	2
	43.1	8200	2.6	1	. 45.2	8000	2
	48.7	7900 3700	2.9	1	48.7 50.8	7500 7500	2
	53.7	3400	3.9	1	55.7	3500 3269	3 4
	57.7	2800	4.9	1	59.2	3000	4
	61.4_	5900	4.2.	_1	63.2	5766	4
į	65.0 69.3	5900 5400	4.5	1	67.4	5900	4
	74.3	5100 3400	4.6 5.0	1	71.6 76.1	. 3300 3200	4,
	79.9	3300	4.9	1	82.1	3200	4 . 6 .
	84.1	3300	6.5	1	86.1	3000	6.
	88.4_	3200	6.9	_11	91.1	3200	7
	92.9	3200	7.2	1	94.5	3000	7
	101.5 105.8	3000 3200	7.3 7.2	1	103.5 109.2	2900 3200	7.
	112.1	3300	6.1	1	114.0	3300	6 d 5 d
	116.1	3200	4.8	1	118.1	2800	4
	120.0	2800	3.9	.1	122.0	3100	3
	123.9 125.1	3100	3.4	1	124.1	3100	3
	127.5	3100 6100	3.1 3.0	1 1	125.1 130.3	4500 6100	3 <i>.</i> 3 <i>.</i>
	132.5	5900	3.0	4	134.2	576 û	3 .
	136.4	5600	3.1	1	138.5	5200	3
	148.5_	5200	3.2	1	142.5	_ 5200	3.
	144.8 149.1	5700 6600	3.4	1	147.1	6600	3 4
	153.3	6600	3.5 3.6	1 1	151.2 158.2	58C0 66C0	3 · 3 ·
	162.1	6900	3,4	1	164.1	7900	3.
	166.1	7200	3.4	1	168.2	7400	3 .
-	170.4	6900	3.2	1	. 170.4	1100	3.
	172.5 174.5	7000 6900	3.2 3.2	1 1	172.5	860	3,
	178.5	800	3.0	2	176.5 181.3	6600 6500	3 . 3 .
	183.4	6500	2.9	1	185.5	6700	2.
	188.3	7300	2.ć	1	190.4	7500	2.
	192,6	9500	2.2	1	194.5	10800	2.
-	197.3 205.6	1100 11 0 0	2·2	2 2	203.4 206.9	1000 700	2. 2.
	210.3	700	3.3	2	213.3	700 500	4.
•	217.4	500	4.5	2	221.3	500	4.
; !							
4				Ú	8		

THE ASSESSED OF THE PROPERTY O

一般のできることできます。 でき、 ちゅうし こうしゅ こうしゅ

334	_326 _331		321 323	317 319	. 314		309		302			284	276 277		272		266		258	_ 256		254	_252	247 249	247	244	_242 243		234	
1.5	1.9	5.3		'•4 9•9	. 5	2•3 5•5	3.6	, 4 , 4	2.3	. 0 . 7	. 6 '•0	.6.	8 8	• 2	.2	.5	. 3	2	.2	.4	.9		.2	•5 •5	-	.5	_	•6	.2	.2
1500	1550 1550		1580 1570	1550 1550	1670		1540		1570		80 110	90	. 890 90		1120		1120		80	_ 80			_1120	50 1060	50	50	50		1310	
Ü)	0			0		10		0) C .			0		0		0	0		0	0			0			0	0
1.4	1.3 1.3	1.2	1.5 1.3	1.4 1.5	1.4	1.4	1.4	1.5	1.5	.1.5	2.1	2.5	2.2		2.6		2.8		2.5	2.4	2.0		_2.5	1.8	1.6	2.9	·	4.8	_2.2	
1	1 1	. 1	1	1 1	1	1 1	1	1	1		2	2	1 2		1		. 1	1	2.	. 2	. 2		1		2	2	2	2 _	1	
							-	-	*					,						 .										
334.5	328.9 331.4	325.3 327.3	321.4 323.5	317.4 319.9	314.5	312.3 313.5	309.6	304.4 307.4	302.3	301.3	294.3 298.7	287.7	276.8 280.1		272.2	268.5 270.4	266.3	264.2		258.2			254.3		247.0	244.5	243.2	240.4	236.5	229.9
0U!	80 (80 (701	100 i		1000	1266 1100	12(90 (100 (90 (1000	80 (116 (90 (90 (80 (12000 900	700	70 C	.: 1100		1000	_ 10500	10560	12300 10500	11200	10500	_ 10500	10500	10500	400 10500	13100	
•	1	1) .	1.	1		1 :			•		2 .			2 .		11			2.			2•		2.	. 3.			3.	
	8 3 9	2	8	ũ	2	4	2	6		8		7			0			٠	2	5			2_		-	1	_			_

A CONTRACTOR DESIGNATION OF THE PROPERTY OF TH

	JTF-2	TEST	4.4	TARGET 12	MASK DA	TA	5.5
_ AZ	RANGE	EL C	ODF"	AZ	RANGE	EL, CO	DF _
336.3	14500	1.4	1	336.3	100	1.4	2
338.5	14000	1.2	1	338.5	100	• 8	2
340.5	14500	2.7	1	344.4	15000	•7	1
350.8	16000	1.0	1	350.8	160	1.0	2
352.6		9	1	355.6	17500	_1.0	_1_
360.0		1.0	1	362.5	17000	.7	1
363.2	•	. 8	1				

	JTF-2	TEST 4.4	TARGET 15	MASK DA	TA
		EL CODE	AZ	_RANGE	EL CODE
		2 • 4 1	2.2		
4.1	8800	2.31	6.2	9000 .	
10.0	9500	2.2.1	12.3	10800	2.0 1
19.9	12500	1.5 1	22.2	14400	1.2 1
			30.1		41_
30.4	21000	4 1	31.1	25000	• 4 1
31.7	28500	6 1	32.1	28100	.4 1
			33.1		3 1
			34.9		3 1
			39.2		
			40.9		
41.4	38300	.3 1	42.4	38600	.5 1
			43.1		.4 1
			47.9		.4 1
		.3 1		24700	• 4 1.
			52.4		. 8 1
56.2	23800	.9 1	59.7	23500	
64.1	22500	.9 1	65.9	23500	.8 1
			73.1		.8 1
			75.2		
			77.1		.4 1
		. 6 1			•4 1
			82.0		41
	29000		84.2	1500	.5 1
85 • 1			85.1	1500	•2 1
	27000		85.8	1400	•3 1
86.9			87.4		•5 1
88 • 8			91.1		.9 1
92.1			93.9		
	1300		97.0		1.5 2
99.3	20700	.9 1	101.3	21200	1.2 1
101.3	1300	.4 1	103.2	19700	1.3 1
103.2	1206	.4 1	105.2	1200	•6 1
107.3	18500	1.3 1	107.3	1100	.5 1
108.5		1.2 . 1	109.4	17500.	1.4 1
111 - 4	17000	1.4 1	113.3	16300	1.5 1
114	16000	1.3 1	116.3	15700	1.4 1
118.6	15500	1.2 1	120.8	15400	1.1 1
120.8	1100	•6 1	123.1	14160	1.û 1
123.1	1100	•6 1	125.3	13560	1.3 1
. 127.3	13300	1.3 1	129.6	13100	1.5 1
131.7	13000	1.3 1	131.7	1000	.8 1
133.8	13300	1.3 1	133.8	900	
136.2	13600	1.1 1	137.8	13960	
138.7	14200	1.0 1	138.7	800	1.1 1
2007,	-7-44	- · · ·	7001	0 0 0	• 0 1

NWC TP 5668

				,		
	JTF-2	TEST 4	• • 4 TA	RGET 15	MASK DA	TA
_ AZ	_RANGE	Er C)0E	<u>"</u> AZ .	RANGE	EL CODE
140.8	·-	1.2	1	140.8		.8 1
	15400		1	143.3		.9 1
145.4		1.2		145.4		•8 1
146.9	17030	1.2	1	146.9		.8 1
149.1 _	_17000	1.3	_1	149.1	1600	•7 _1
151.1	1800	. •7	1	153.2		1.2 1
153.2	1600	• 7	1	155.3		1.2 1
155.3	1900	• 6	1	157.2		•6 1
159.1	17700	1.1	1 .	159.1		.5 1
161.4	14300	1.1	1	161.4		•5 1
_163.1	14300	1.0	1	163.1		•4 . 1
165.2	14300	1.9	1	165.2	900	•4 1
_167.1	14500	• 9	1	168.1		.8 1
168.1	100C	• 1	1	170.9		.8 1
172.1	17500	•5	1	173.3		•8 1
174.8	20500	• 9	1	177.1	21003	1.6 1
_180.0	23500	_ 1.0	1	180.9	25500	.9 1
182.3	26500	1.0	1	185.7	28000	.9 1
187.5	25500	• 9	1	189.9	31500	.7 1
189.9	23300	• 8	1	192.3	21860	1.4 1
193.2	22100	1.4	1	193.9	22400	1.3 1
196.1	22700	1.3	1	200.1	23600	1.2 1
201.8	24280	1.0	1	204.2	24700	•6 1
204:2	1100	• 6	1	207.1	400	1.1 2
210.2	400	1.2	2	213.2	400	2.4 2
216.3	400	3.1	2	219.0	300	2.5 2
221.6	500	2.4	2	222.8	39500	.9 1
	2800	• 6	1	224.3	37000	•9 1
224.3	280C	• 6		225.4		.6 1
225.4	900	•6	1	227.2		•5 1
228.2		.7		228.2		.7 1
229.1		. 9	1	229.1	2300	.7 1
231.4		• 6	ī	231.4		•6 1
235.2	19500	1.2	ī	235.7	18800	1.2 1
237.2	18100	1.1	1	238.9	17500	1.1 1
240.8	21000	9	1	242.7	24600	.8 1
242.7	1700	. 8	1	244.2	160 G	•9 1
246.1	1466	1.0	1	254.2	1200	1.1 1
256.2	1100	1.0	1	256.7	100 ù	1.0 1
256.7	14766	1.C	î	2,9.0	1+060	1.3 1
261.3	13306	1.2	1	261.3	1200	1.1 1
265.3	12000	1.6	1	265.3	1200	1.1 1
267.2	1000	1.2	1	269.2	11360	1.7 1
269.2	7 0 0	1.2	1	271.1	10800	1.9 1
273.2	10500	2.0	ī	281.1	10000	2.4 1
_ , J T L	~~~~		-			

NWC TF 5668

	JTF-2	TEST	4.4_	TARGET 15	. MASK DA	TA .
				AZ		
283.1	 8000	2.5	1	285.0	 7760	2.6 1
				289.0		
				293.0		
				305.0		
				309.0		
	9500_					3.2 1
315.0	9200	3.2	1			3.3 1
329.0	8000	2.9	1	333.3	7760	2.7 1
335.0	7500	2.7	1	345.0	7500	2.5 1
347.0	7900	. 2.6	i	35i.0	610 0	2.6 1
353.0	8200	2,5	_1	360.4	8500	2.4 1
362.2	8500	2.4	1		· 	

With the second of the second second

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

	JTF-2	TEST	4 • 4	TARGET	1.6	MASK	DATA		
AZ								CODE	
. ,			-	•					
190.5	. 200	4.7	2	190	.5 _	5000			
192.0	5200	4.7	1	193) 4.		
193.6			2	196	. 8	20 () 7	.2 2	
198.0			2.	2004				.6 2	
_201.0								•6 <u> </u>	
204.0) 4.		
204 • 8			1	_ 206	• 0	6100	3	9 .1	
208.0			1	210	•0 .	6400	3	6 1	
_212.0									
_216.0				_ 218					
_221.1									-
224.0		4.1		225				.1 2	
8 . 225	7500	3.1		228.					
_ 232.9	.7500	_ 3.0	1 .	232	, 9	30 (3.		
_234.0 _			2	. 236	. 0	300	1 5		
. 238.0			2	240.			4.		
_242.0			. 2	244	• G	300	5		_
246 • 0	300	4.1	2	248.	0	200	5	9 2	
250.0	_ 200	. 5.2	2	. 252	.0	. 260	6	.1 2	
254.0	200	6.6	2	256	.0 .	20 (5.	.7 . 2.	
. 258 • 0	200 .	4.9	2	260	. 0	200) 5	.3 2	
262.0	200	4.0	2	264.	. 0	200	5.		
_266.0	200	5.7	2	2ċ8	0	20(4.	.72	
270.0	200 .	4.8	2	272	. 0	200	4.	.8 2	
274.5	200	3.2	2	276	. 0	200	4:	2 2	
278.0	_ 200	6.D	2	280	. 0	200	7	2 2	
. 282 • 0	200 .	. 7.2	2	284	. 0	20 (9	.2 2	
286.0	100 .	9.7	2	288	. 0	16 (9.	.6 2	
290 • 0	100	10.0	2	292	. 0	10 (7	.52	
294 • 0			2	296	0	200	5	7 2	
	200.		2	300	. 0	20 (2	. 8 2	
300.0		2.8	1	302.	5	6400	2	.8 1	
302.5	200	2.8	2	304	. 0	200) 5.	.2 2	
306.0	200	6.7	2	308	. 0	200		.7 2	
.310.0	200	8.5	2	_ 312	. 0	20 0	7	.72	
314.0	200	7.0	2	316		200		.5 2	
318.0	200	6.8	2	320	. 0	260	6	.7 2	
322.0	200	7.5	2	324	. 0	260	3	.1 2	
324.0	8400	3.1	1	326		8700		.0 1	
328.0	9000	1.9	1	330		940		.7 1	
332.0	9700	1.6	1 _	. 334		19300		.5. 1	
336.0	10800	1.5	1	338		12000	1	.4 1	
339.3	12000	1.1	1	339		1400		.1 2	
339.8	1400	1.3	2	340		1400	}	. 9 2	
340.5	12000	. 8	1	341		11500		.6 1	

,我们就是一个人,我们就是我们的,我们就是一个人,我们就是我们的,我们就是我们的,我们就是我们的,我们也是我们的,我们就是我们的,我们就是我们的,我们就是我们的, 一个人,一个人,一个人,一个人,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的,

できないないというない こうしょうしょう イントライン

A CONTRACT OF A

NWC TP 5668

	JTF-2	TEST	4.4	TARGET 16	MASK	DATA	
_ AZ	RANGE	EL C	ODE	AZ	RANGE	EL CO	DE
341.6	29500	•6	1	344.0	31400	•5	1
344.0	1400	• 5	2	345.4	1400		2
346.0	1400	• 3	2	347.8	800		2
348.2	800	1.8	2	349.0	800		2
_350.0	1000	. 4	2	350.0	34700		1
352.9	_36000 [~]	.4	1	352.9	7600		· 2
354.0	600	1.5	2 .	356.0	800		2
358.0	500 Î	1.8	2	360.0	900		2
361.2	900	2.6	S	362.5	900		2
363.5	800	1.7	2				•

 .	JTF-2	TEST	4.4	TARGET 18	MASK D	ATA
AZ	RANGE	EL (CODE_	AZ	RANGE	_EL CODE_
	-					-
0.0				. 2.0		
4.0			. 2	. 6.0		3.7 2
7.9			2 _	10.0		3.2 2
12.0				14.1		4.2 2
16.0	600	_ 5•3.	_ 2	18.0_	600	5.1 2
20 • 0				22.0	5C 0	3.8 2
				26.0		3.9 2
				30.0		5.4 2
				34.0		5.8 2
				38.0		
40 • 0	400	8.0_	2	42.0		3.1 2
44.0	1400	2.4	2	46.0	1460	
48.0	_ 1 400	2.6	2	50.0	400	7.0 2
52.0	400	7.3	. 2	54.0	400	5.7 2
56 • O				58.0	300	5.4 2
. 60.0			2	62.0	300	7.8 2
				66.0_		
68.0	, 700	. 5.8		. 70.0		
72.0	_ 300	5.8		. 74.0		5.8 2 7.9 2
	. 400	. 6.9	2 ـ	78.0		7.9 2
	300	7.9	2	82.0.		8.4 2
84.C	300	8.5	2	86.0		7.8 2
88.0			. 2	90.0		6 • 0 _ 2
92.0	400	6.8	2	94.0		6.5 2
96.0	400	7.0	2	98.3	460	6.6 2
100.0		7.5	2	102.0	400	6.6 2 7.4 2 5.8 2 5.6 2
104.0	480	6.9	2	106.0	400	5.8 2
108.0	400	5.6	2	11G.0	400	5.6 2
_112.0	400			114.0	500 .	5.8 _2
116.0	500	4.4	2	118.0	600	2.8 2
120.0	5 00 _	4.3		122.0	760	4.7 2
124.0	600	4.3	2	126.0	6C 0	
128.0	500	4.8		130.0	600	4.8 2
132.0	600	4.4		134.0	500	
_136.0	500	5.5	2	138.0	500	6.5 2
140.0	500	5.8	2	142.0	500	5.8 2
144.0	600	5.5	2	146.0	500	6.1 2
148.0	500	6.8	2	150.0	50 O	6.5 2
152.0	700	4.8	2	154.0	400	6.9 2
156.0	400	7.2	2	158.0	400	7.5 2
_160.0	500	. 6.9	2	162.0	50°C.	6.2 2
164.0	500	6.2	2	166.0	500	7.9 2
168.0	500	6.3	2	176.0	460	7.4 2
172.0	400	7.8	2	174.0	400	7.0 2
176.0	400	5.6	2	178.0	400	7.5 2

THE PROPERTY OF THE PROPERTY O

	JTF-2	Z TEST	4.4	TARGET 18	MASK DA	ATA	
AZ _	RANGE	EL	CODE	AZ		EL C	0DE
180.0	400	8.0	2	400 0			
184.0	400	7.3		182.0	46 8	7.8	
188.0	500	6.7		186.0	50 O	7.1	
192.0	400	8.1		190.0	400	5.1	
196.0	500	_ 5.2		194.0	400	7.4	
200.0	600	4.9		198.0	500. <u></u>	4•9	2 2
204.0	500	5.1		202.0	500	5.3	2
208.0	500	6.8	2	206.0 210.0	50 B	5.1	2
212.0	500	6.1		214.0	5C 0	7.6	2
216.0	400	7.4		218.0	400	5.0	2
. 220.0	400	_ 6.7		222.0	400 400	7.6	2
224.0	400	8.1	2	226.0	400	6.9 1ú.0	~2·
228.0	300	8.9		230.0	400	10.5	
232.0	300	10.9	2	234.0	360	16.0	2
236.0	300	10.0	2	238.0	360	10.2	2
240.0	300	9.5	2	242.0	360	9.9	2
244.0	300	9.9	2	246.0	300	10.6	2
248.0	300	9.5	2	250.0	300	8.7	2
252.0	300	9.3	2	254.0	300	9.3	2
256.0	300	9.6	2	258.0	300	9.1	2
260.0	300	9.5	2	262.0	360	7.9	2
264.0	300	8.7	2	266.0	460	7.4	2
268.0	400	6.3	2	270.0	50 Q	5.8	2
272.0	700	1.8	2	274.0	700	2.6	2
276.0	700	2.8	2	278.0	800	2.8	2
279.0	800	2.2	2	280.0	800	2.7	2
282.0	800	2.6	2	284.0	900	3.4	Ē
286.0	900	2.3	2	287.0	960	1.7	2
_287.8	_13100	_ 1.7	1	288.0	13160	1.7	1
288.0	520C	1.7	1	288.5	5 2 C G	1.7	. 1
288.5	_ 1100	1.7	2	289.5	1100	2.3	2
290.0	1100	1.8	2	290.0	5200	1.8	1
292.0	5100	1.9	1	294.0	4900	2.0	1
296.0	4900	2.2	1	298.0	4960	2.3	1
_300.0	4900	2.4	. 1	306.0	. 1000	2.4	2
301.5	1000	2.5	2	301.5	4809	2.5	1
304.0 306.0	4300	2.6	1	306.0	5600	2.5	1
309.0	1100	2.5	2	308.0	1000	2.8	2
310.0	108	2.3	2	309.0	460 C	2.3	1
313.5	4600	2.3	1	313.5	4600	2.2	2
315.0	1000	_2.2		314.0	_ 1000	2,1	2
315.8	1000	2.1	2	315.0	4600	2.1	1
318.0	4600 1000	2.1	1	315.8	900	2.1	2
322.0		2.3	2	320.0	900	2.1	2
7221V	900	1.8	2	324.0	900	2.6	2

JTF	-2. TEST	4.4.	TARGET 18	MASK D	ATA	
AZRANGE	EL C	ODE_	AZ	RANGE .	EL CO	DE_
326.0 900	2.0	. ,	328.0	90.5	2.0	2
. 330.0 700						
. 334.0 600						2
338.0 800	. 2.8	2 _	340.0	700	3.3	2
_342.0800	2.3	2	344.7	860.	1.5,	2
.344.73100	1.5	. 1	348.0_	3360	1.8	1
_350 • 03100	2.0	1	352.0	3100	2.1	1
354.0 3000	2.2	1 .	. 354.8	. 3000	. 2.0	1
. 354.8 600	2.0	2	356.7	. 600	4.3	2
.358.0600	4.4	2	360.0	600	12.0	2
362.0 600						

NWC TP 5668

	JTF-2	TEST 4	. 4 TA	GET	19	MASK	ΠΔΤΔ		
Δ7	_RANGE							COL	ЭE
				, ~=		.,,,,,,,,			•
0.0	11200	2.5	1	0.	ß	1601) 2	. 2	2
	11200 . 11200 12500	2.4	<u> </u>		4	140) . 2		2
2.9	12500	2.8	1	2.	ģ	140) . 2		
6.0	11800	2.5	 1	6.	Ó	1461	1	.8	2
7.3	11800 13100	2.3	- 1	7.	3	1666	1	. 8	2
8.7	13100	2.3	*	8.	7	160	<u> </u>	.1	2
11.6	13100 13100 13100	2.0	1	11.	6	160	1		
13.2	13180	1.7	1	13.	2	160	ב		Ž
13.7	.1600	1.9	• · ·	14.	3	130			2
15.7	1100	1.8	2	17.	2	1101	} 2	. 4	2
19.8	2900	1.6	2	22.	1	140	1	.5	
23.6	860	2.5	2	27.	2	80		9	2
28.7	290C	1.2	2	30.	2	93 (3	. 8	
33.6	600	2.9	2	35.	7				2
37.2	5.00	3.3	2 -:	39.	4	50	3 4	. 2	2
43.4	500.	4.5	<u>.</u>	46.	2	50	a a	.7	2
49.8	400	5.7	2	55.	3	461	3	3.2	2
57.8	500	4.5	2	62.	8	40) 5	.5	2
67.2	400	5.0	2	68.	2	790) 3	.9	1
69.5	7500	4.0	1	71.	7	660	3 4	.2	1
	300		2					2.0	2
	5900	5.1	1	84.	5	590) 5	.3	1
87.5	6600	_ 5.5	1	90.	2	630	0 5	.7	1
	5200	6.0	1	96 .	5	490		.2	1
99.4	4900	6.3	1	101.	2		0 6	. 4	1
101.4	300	6.9	3	104.	5	30	0 6	.9	3
105.3	4900	6.6	1	198.	3	490	0 6	8.6	1
111.2	4900	6.9	1	114.	2	420	0 6	9	1
_117.2	4300	7.1	1	117.	2		0 _ 7	'•1 _	2.
119.2	400	8.0	2	122.		40	0 7	1.1	2
122.2	4500	7.1	1	131.		450	J /	• 2	1
	4400		1	149.		490	0 6	8.6	
152.2	4900		1	156.		510	0 6	.4	1
156.0			2	157.		₹0	0 7	• 4	
165.0		. 7.9		167.				7	
171.2	200		2	177.		20		3.4	2
183.4	200		2	191.		20		3.4	2
192.4	200	11.1	2 .	196.		20		1.1	2
200.6	300		2	205.		36		9.9	S
207.5	200		2	211.		3 t		1.3	2
_215 • 8			2	218.		20		3.3	2
221.2	200		2	223.		20		7.6	2
224.5	400		2	227.		46		6.6	2
228.9	200		2	233.		20		1.1	2
235.7	300	11.4	2	238.	5	30	u (3.5	2

NWC TP 5668

4	JTF-2	TEST	T 4.4	TARGET 19	MASK I	DATA
AZ	RANGE	EL	CODE	AZ	RANGE	EL CODE
	· • · _			•	,	
243.5	366	8.5	5 2	245.5	300	10.3 2
250.5	300	10.3	3 2	254.4	300	7.2 2
256.7		8.7	' 2	262.5	300	9.2 2
265.8	400	8.6	2	268.6	400	6.5 2
274.5	400	6.5	2	276.9	400	7.4 2
280.5	400	8.1		284.2	400	8.6 2
287.9	400	8.6		292.7	300	6.8 2
297.5		6.3		300.5	400	
304.7		5.5		306,7	600	
309.4		5.0		309.9	600	5.5 2
309.9	8200	_4.7		313.0	7500	4.7 2
316.2		4.8	****	319.2		4.7 1
322.2	8200	4.4		325,4	7500	4.7 1
328.4	7 90 0	4.2		331.0	7900	4.2 1
334.0		4.1			8980	4.2 1
340.2	8200	3.9		337.2	7900	4.0 1
346.3		_3.4	4	343.2	8900	3.7 [
351.4	9800	2.7	- 4	349.1	8500	3 • 6 :L
354.4	11200	2.7		351.4	1360	2.2 3
357.3	13100			354.4	1200	2.4 8
360.0	11200	2.7		357.3	1300	2.5 2
360.4	· -	2.5	1	360.0	1600	2.2
_362.9	11200	2.4	1	360.4	1400	2.2 2
	12500	8.5	. 1	362,•9	140,0_,	2.0 2

	JTF-2	TEST 4.4	TARGET 20	MASK D	ATA
			AZ		
_					
0.0	100	8.6 2	11.7	100	11.4 2
		3.3 2			
21.8	100	16.5 2	34.2		
35.7	180	8.5 2	39.9	160	13.7 2
42.6	1100	3.5 2	50.9	1400	2.9 2
51.0	100	13.1 2	56.2	160	13.1 2
58.2	1500	10.5 2	72.5 76.1	260	10.4 2
74.1	800	4.5 2	76.1	700	4.8 2
77.8	200	8.8 2	86.9	200	8.8 2
84.5	200	4.9 2	90.2	200	4.9 2
94.8	200	7.6 2	97.6.	200	
103.8	300_	5.5 2	106.5	460	
111.2	400	6.5 2	113.4	400	4.9 2
116.5	500	4.8 2	118.5	460	4.8 2
123.9	600	4.6 2	127.9	600	3.6 2
127.9	3400	3.6 2	132.0	3500	
136.3	3800	3.4 2	140.1	3700	-
142.3	3500	3.2 2	140.1 144.1 146.8	9200	2.9 1
144.8	9500	2.8 1	146.8	. 11268	2.8 1
146.8	6600	2.6 1	146.8	1500	2.5 2
148.4	10500	2.8 1	148.4	6500	. 2.6 1
148-4	1500	2.4 2	151.2	1500 6500 400	5.5 2
152.3	1500	_ 3.0 . 2	152.7	9800	2.9 1.
153.8	11200	2.9 1	153.8	1460	2.8 2
155.8	12500	2.9 1	155.8	1400	2.7 2
157.5	11200		157.5	1200	2.9 2
162.2	1200	3.1 2	162.8	11200	2.8 1
162.8	120C	2.8 2	164.0	11800	2.7 1
164.0	1300	2,72.	165.5	_ 13100	2.5 1
165.5	120 õ	2.1 2	160.3	13100	2.4 1
166.3	1500	2.4 2	168.2	1269	2.9 2
170.5	9800	2.5 1	170.5	1000	2.5 2
171.4	900	2.4 2	173.2	11500	2.8 1
175.5	11500	2.8 1	175.5	700	2.8 2
		5.2 2	180.2	600	_ 6.0 Z
183.7	600	5.4 2	185.8	500	5.2 2
187.5	500	3.7 2	188.5	7 Ù Û	4.4 2
191.3	600	5.3 2	193.1	700	4.3 2
197.0	500	4.5 2	199.1	600	4.2 2
200.8	500	5.1 2	206.8	5C 0	5.3 2
211.3	500		214.2	. 500	
218.2	400	4.4 ?	220.7	400	5.9 2
223.2	400	5.2 2	225.5	500	4.7 2
228.7	400	5.8 2	232.4	400	7.0 2
234.5	400	6.0 2	239.4	460	7.5 2

IWC TP 5668

	JTF-2	TEST	4.4	TARGET 20	MASK DA	ATA	
_ AZ	RANGE	_EL	CODE	AZ	RANGE	EL CODE	
•				******			••
244.3	600	3.6	2	246.1	1000	3.9 2	
249.0	800	4.0		250.5	600		
252.0	1100	3.7	2	255.0	60 G		
256.5	900	4.1	2	260.1			
262.9	700	3.6	2	265.1	700	4.1 2	
267.1	500	3.9	2	270.8		4.3 2	
273.7	700			278.2	600	3.6 2	
	600			282.3	800		
	1000			289.1			
	1000			· • •	500		
	500			302.0	400	5.8 2	
	500			309.9	460		
313.2		4.8		315.2	700		
318.2		2.2		320.4	700	2.2 2	
322.4	600			324.8	600	4.5 2	
325.4		3.2	-	327.5		3.2 2	
_ 329 • 3	400	4.6	2	332.4	400	3.5 2	
334.0	400			336.7	460	4.3 2	
337.5	400	5.9	2	341.2	. 300	8.3 2	,
347.3		8.4		349.3	200		
353.0	200	12.1	2	356.9	100	12.2 2	
360.0	100	8.6					

NWC TP 5668

	JTF-2	TEST	4.4	TARGET 23	MASK D	ΔΤΔ
AZ	RANGE	EL	CODE	AZ		EL CODE
0.0		6.5	-	1.3	400	7.6 2
2.2	500	4.0	_	2.8	300	6.5 2
4.4	700	6.8		7.5	2C 0	6.9 2
9.3	200	4.7		10.0	500	4.3 2
12.0	300	3.2	. 2 _	13.0	300	1.9 2
14.0	400	2.7	2	14.4	400	3.9 2
15.7	40 J	1.5		15.7	2300	1.5 1
	2500	1.1		20.0	2800	1.1 1
	2000	1.0		24.0	2700	.7 1
	4000	. 5		27.5	4060	0.0 1
	8200	_ 0.0	_1_	30.0	820 Ū	•1 1
32.0	8200	• 1	1	34.0	8000	0.6 1
	8200			38.3		0.0 1
42.0					18400	•2 1
48.0	16400	• 2	_		12860	•2 1
	13800	• 2	_	54.0	13100	•3 1
	_13100	•4	1	58.0	_11200	. •5 1
	10100	• 6	1	64.D	10500	.8 1
	11500	• 8	1		9200	•9 1
70.0	7500	• 9	1	72.0	10500	1.6 1
75.5		1.0	1	75.5	200	4.7 2
77.5 _ 82.9		5.3		79.2	200	3.8 2
	200		2	. 86.5	100	3.5 2
. 88.0		4.3	2	90.0	100	3.5 2 4.6 2 1.5 2
92.0 92.9	100	5.1		92.9	160	1.5 2
		1.5	1	94.0	8900	1.5 1
94.0 98.0		1.5	2	96.0	160	4.5 2
102.0		4.7		100.0	10 J	4.5 2 4.8 2
103.5	100	-	2	193.5	189	1.8 2
105.0	7200	1.8	1	105.0	7200	1.8 1
108.0	100	1.8		106.0	160	3.0 2
112.0		2.2		116.0	100	2.7 2
116.0		3.7		114.0	100	1.9 2
_120.0		2.1	2	118.0	100	2.9 2
126.0	100	_ 4 • 2	. 2	. 124.0	100	3.7 2
130.0	100 100	4.2	2	128.0	100	5.0 2
132.0		5.0	2	139.9	100	1.6 2
136.0	100 100	3.7	2	134.0	100	2.0 2
140.0		7.3	2	138.0	160	6.5 2
144.0	100 200	5.2	2	142.0	160	3.3 2
148.0	100	3.8	2	146.0	_ 200	3.3 2
1 7 . 0	100	3.5 5.6	2	150.0	160	4.9 2
156.0	300		2	154.0	300	1.5 2
158.0	7300	1.5	2	156.0	7400	1.5 1
	7300	1.4	1	460.0	7900	1.3 1

	JTF-2	TEST	4.4 . 78	RGET	23 M	A SK	DATA	
AZ								300E
			· · 					
_162.0	7900	1.2	1	165.	5	7960	1.2	2 _1
165.5	200	1.2	2	166.		200		_
_165.5 _168.0	200	2.3	2	170.		200		
_172.0	200	1.9	2	173.	-	300		
_173.6	AGOO	1.1	1					
180.0						4C 8		
	400			146.	0		2.3	
188.0	400	2.5 2.6	2	190	n	500	1.7	
192.0	700,	J.J	2	194	n .	500		
195.0							2.2	
19200	600	6+1	2	200	n			
	800						2.1	
202.0	800	2.3	2	206.			1.7	
							1.6	
210.0		2.0						
	400						2.0	
216.0	400	2.5	2	210.	บ	000	2.7	
220 • 0								
224.0		6.1					7.	
227.3			2				7.:	
		9.0					9.1	-
233.2		10.9	2		0	200		
	260			240.		200		
242.0	•				0			
248.0	200		2	250.		200		
252.0	200		2	254.		200		
256.0	20G		2	258.		200		
260.0	209	16.9	2	262.		200		
264.0	200	16.2	2	268.	8	200		
270 • 0	100		2	. 272.	0	160		
276.0	100	20.6	2	278.	ũ	200		
280.C	200	18.7	2	282.	O	166	18.	
284.0	100	18.1	2	286.	Ð .	100	18.	
288.0	100	20.6	2	290.	0	100	21.0	
292.0	100	20.3	2	294.	ũ	160		
_296.0	100	21.1	2	298.	0	100	20.	7 2
300.0	100	21.9	2	302.	0	100		2 2
304.0	100	20.1	2	306.	0	100	19.	2 2
308.0	200	18.1	2	310.		200		1 2
312.0	200	20.8	2	314.		200		2 2
316.0	100	17.1	2	318.		100		7 2
_320.0	100	14.5	2	322.		100		1 2
324.0	100	16.5	2	326.		100		
328.0	100	15.6	Ž	330.		100		
232.0	100	14.3	2	334.		160		
336.0	100	13.0	2 .	338.		200		
3336 9 .					_			

がないかん かいかいかい かいかん かいかい かれなかな

NWC TP 5668

_ AZ	JTF-2 RANGE_	TES1 EL	CODE_	TARGET 23	MASK DA		DΕ
340.0	200	14.5	2	342.0	200	15.3	2
344.0	200	13.0	2	346.0	100	13.7	_
348.0	100	13.0	_	350.0	200		2
352.0	200	9.9	_	354.0	200	13.3	2
_356.0	200	9.8	2	358.0	200	9.9	2
360.0	300	6.5	2 · ~ ·	361.3	460	7.6	2
362.2	500	4.0	2	362.8	360	6.5	2