Análise de Expansão do Sistema de Transmissão Sul Brasileiro de 32 Barras

Leonardo Jonas Piotrowski, Diogo Franchi, Mauricio Sperandio, Felix Alberto Farret Universidade Federal de Santa Maria – UFSM Santa Maria, Brasil

leonardoljp@gmail.com, diogofranchi@gmail.com, mauricio.sperandio@ufsm.br, fafarret@gmail.com

Resumo— A rede de transmissão de energia elétrica está em constante processo de mudanças para suprir o aumento de demanda e da confiabilidade do sistema. Para a expansão do sistema de transmissão é fundamental realizar um planejamento e uma análise correta das alternativas disponíveis. Este artigo apresenta uma proposta para a expansão da rede de transmissão sul brasileiro de 32 barras com a inserção de duas novas linhas visando aumentar a sua robustez e disponibilidade. Considerou-se dois cenários, um com hidrologia regular e outro com baixa hidrologia das hidroelétricas. As linhas de transmissão foram dimensionadas e inseridas nas simulações do software ANAREDE para as análises de fluxo de potência, de contingências, de acréscimo de carga e das perdas de potência ativa. Entre os principais resultados apresentados neste artigo estão a diminuição tanto das perdas de potência ativa como do índice total de severidade das contingências.

Palavras-chave— Contingências, Expansão de sistemas, Linhas de transmissão, Nível de carregamento, Perdas de potência.

I. INTRODUÇÃO

O sistema elétrico brasileiro é constituído fundamentalmente por usinas hidroelétricas de grande porte [1]. Esta característica impõe grandes desafios para as linhas de transmissão (LTs) tanto para distribuir a energia elétrica às diversas cargas localizadas nos mais variados lugares, quanto para possibilitar a troca de energia elétrica entre as regiões que possuem diferentes demandas e níveis de geração.

O forte incentivo em mini e microgeração, como a eólica e a fotovoltaica, tem convenientemente postergado grandes investimentos nas linhas de transmissão por diminuir o nível de carregamento e melhorar a regulação da tensão local. Entretanto, estas fontes de geração distribuídas também agregam alguns aspectos negativos em decorrência da intermitência das fontes de energias renováveis e da maior complexidade ao operar o sistema interligado nacional. Portanto, mesmo com o incentivo na geração distribuída, as LTs mantêm-se indispensáveis para absorver as oscilações da geração renovável e transmitir energia elétrica com qualidade e confiabilidade. A maioria dessas fontes de energias renováveis dependem da velocidade do vento ou da irradiação solar, necessitando que o gerenciamento e a operação do sistema de potência se tornem mais flexíveis para manter a operação normal e estável [2].

Ao planejar uma obra de expansão no sistema de energia elétrico deve-se ater aos diversos fatores como a confiabilidade e a disponibilidade no atendimento da demanda, bem como a segurança e o baixo custo [3]. A inserção de uma nova LT, segundo [4], justifica-se pela possibilidade de conectar uma geração mais barata e distribuída para atender à uma crescente demanda por energia e aumentar a confiabilidade do sistema.

Mundialmente a geração de energia elétrica é composta, predominantemente por fontes não-renováveis como carvão, petróleo e gás natural [5]. Em contrapartida, grande parcela da geração de energia elétrica no Brasil provém de fontes de energias renováveis, principalmente das hidroelétricas [1]. A geração hídrica depende dos níveis de água dos reservatórios. Estes, por sua vez, dependem das precipitações pluviométricas. Portanto, a expansão do sistema precisa de uma metodologia capaz de analisar a influência das variações desses níveis de água dos reservatórios na transmissão de energia elétrica.

O planejamento do sistema de transmissão brasileiro é complexo devido à grande extensão territorial e, por consequência disso, possui grandes distâncias entre as unidades de geração de energia elétrica e os centros de consumo [6]. Portanto, as diversas LTs estão distribuídas por todo o país, constituindo o Sistema Interligado Nacional – SIN. Assim, o papel das LTs é fundamental no panorama brasileiro e o planejamento do SIN necessita ser tratado de forma minuciosa.

Este artigo aborda uma proposta para a expansão do sistema de transmissão sul brasileiro de 32 barras com a inserção de duas novas LTs. Para esta análise, consideram-se dois cenários, um com nível hidrológico regular (cenário base) e outro com baixa hidrologia. Além disso, após a inserção das duas linhas de transmissão foi realizado um aumento de carga de 5% com o intuito de verificar a robustez do sistema proposto quanto às contingências e ao fluxo de potência. Os padrões e limites das amplitudes de tensão, estabelecidos em [7] pela Agência Nacional de Energia Elétrica (ANEEL) foram utilizados como referências para realizar as análises e simulações.

A proposta de expansão deste trabalho visa o aumento da confiabilidade do sistema como um todo, a redução dos níveis de carregamento nas LTs, bem como a diminuição das perdas de potência ativa, do índice total de severidade e da quantidade de contingências na rede. Todos esses objetivos foram analisados através das simulações no ANAREDE, principalmente por ser um *software* robusto e utilizado vastamente para o planejamento seguro do SIN.

Este artigo está organizado da seguinte forma. A Seção 2 apresenta uma breve revisão da literatura sobre o planejamento da expansão de sistemas de transmissão. A Seção 3 explana a modelagem e as simulações realizadas com os dois cenários propostos. Os resultados são discutidos na Seção 4. Por fim, a Seção 5 apresenta as conclusões e as contribuições deste estudo.

II. REVISÃO DA LITERATURA

A importância do planejamento para a expansão dos sistemas de transmissão está relacionada a diversos fatores que buscam assegurar a confiabilidade e a segurança do sistema. Nesse sentido, se torna fundamental o planejamento e a quantificação das ocorrências de falhas e de eventos adversos nas redes de transmissão, uma vez que as incertezas operacional e ambiental podem gerar impactos catastróficos, tanto na economia como na segurança de regiões inteiras [8]. Uma das soluções propostas neste estudo é a criação de novas LTs para interligar barras em diferentes localidades. Assim, pretende-se tornar a operação do sistema mais seguro, equilibrado e reduzir as perdas na transmissão de energia.

No planejamento da rede de transmissão e da sua expansão utilizam-se alternativas que tornem a operação do sistema mais flexível, como o gerenciamento pelo lado da demanda, a reposta rápida no fornecimento e o armazenamento de energia [9]. Além disso, a previsão de possíveis adversidades na operação do sistema elétrico é essencial para o planejamento da rede, pois permite identificar as possíveis áreas que mais necessitam de investimentos, ampliações e reforços. Geralmente, essas áreas sofrem com as contingências que podem ser, por exemplo, as quedas de LTs e falhas em transformadores. Nesse contexto, estudos podem contribuir para o planejamento dos sistemas de transmissão que utilizam a Internet-of-Things (IoT), a energia peer-to-peer, contratos inteligentes, monitoramento e controle em tempo real [10]. Além desses estudos são usadas análises de regressão, econometria, lógica fuzzy, redes neurais artificiais e modelo cinza que são as técnicas de previsão mais utilizadas mundialmente [11, 12].

Diversos estudos na literatura tratam do projeto de expansão da rede com a inserção de linhas de transmissão, como em [13] que aborda especificamente o projeto, [14] a modelagem e [15] aborda o dimensionamento com um viés financeiro. Em [16] foi implementado um algoritmo envolvendo uma modelagem com fluxo de potência ótimo para determinar a melhor estratégia de investimento no planejamento de expansão do sistema de transmissão. Os resultados da utilização da lógica *fuzzy* para a tomada de decisão no planejamento do sistema elétrico brasileiro mostraram-se satisfatórios em [17]. Uma revisão abrangente sobre o planejamento da expansão no sistema elétrico foi desenvolvida por [18], destacando a resolução dos problemas de expansão nas aplicações em tempo real, uma vez que foram considerados diversos sistemas interconectados.

III. MODELAGEM E SIMULAÇÕES

Nesta Seção apresentam-se as características do sistema de transmissão sul brasileiro com 32 barras simulado no *software* ANAREDE para o cenário base e de baixa hidrologia. Na sequência são apresentadas algumas características da rede escolhida para as simulações e o dimensionamento das novas linhas de transmissão utilizadas para a expansão do sistema.

A. Sistema de transmissão sul brasileiro

O sistema de transmissão sul brasileiro utilizado para as simulações deste trabalho possui 32 barras com predominância de geração hidroelétrica. Os níveis de tensão são de 230 kV, na cor verde e 525 kV, na cor vermelha, conforme mostra a Fig. 1 com

destaque em azul para o local onde serão inseridas as duas novas LTs. Basicamente, esse sistema é dividido em três áreas. A área número 1 é a parte classificada em 525 kV, a área 2 é a parte do sistema em 230 kV e a área 3 é a área de importação de energia da região sudeste do Brasil.

Fig. 1. Diagrama do sistema de transmissão sul brasileiro de 32 barras.

Uma análise inicial do fluxo de potência e das contingências deste sistema foi realizada no ANAREDE tomado como base de comparação às análises de expansão e acréscimo de carga das próximas simulações. A Tabela I resume o fluxo de potência para o cenário base e a Tabela II para o cenário de baixa hidrologia, cujas perdas de potência ativa registraram 315,6 MW e 328,9 MW, respectivamente. No cenário de baixa hidrologia houve um aumento de carga na área 3, pela maior importação de energia, uma vez que a geração total diminuiu devido ao baixo nível dos reservatórios de 7936,4 MW para 5088,0 MW.

TABELA I. FLUXO DE POTÊNCIA DO CENÁRIO BASE

Área	Geração (MW/MVAr)	Carga (MW/MVAr)	Perdas (MW/MVAr)		
1	6347,4	3119,0	211,2		
1	-213,8	428,0	-1958,9		
2	1589,0	8328,0	91,5		
2	5,6	2044,0	209,6		
2	0,0	-3826,2	12,9		
3	0,0	945,0	-931,6		
Total	7936,4	7620,8	315,6		
rotai	-208,2	3417,0	-2680,9		

TABELA II. FLUXO DE POTÊNCIA DO CENÁRIO DE BAIXA HIDROLOGIA

Área	Geração (MW/MVAr)	Carga (MW/MVAr)	Perdas (MW/MVAr)
1	3800,3	3119,0	189,0
1	670,4	428,0	-2258,7
2	1287,8	8088,0	110,3
2	134,0	2044,0	332,0
2	0,0	-6447,9	29,7
3	0,0	1813,7	-615,9
Total	5088,0	4759,1	328,9
Total	804,4	4285,7	-2542,5

As contingências do cenário base e de baixa hidrologia estão representadas na Tabela III e na Tabela IV, respectivamente. O número de violações, o índice de severidade de cada contingência e a sua identificação podem ser vistos nessas tabelas. As contingências correspondem a queda de uma determinada LT, justamente para verificar quais são os trechos que precisam de reforços. A Tabela IV apresentou um índice de severidade total das contingências de tensão maior em relação àquele da Tabela III, bem como houve mais um trecho com violação de fluxo. A contingência 13 está presente nos dois cenários e ocorre devido a perda da LT que interliga as barras 938 e 959, ocasionando a violação de tensão na barra 938 e a sobrecarga das LTs que interligam as barras 939 e 1015.

TABELA III.	CONTINGÊNCIAS DO	CENÁRIO BASE
-------------	------------------	--------------

	Contingência	N°. de violações	Índice de severidade			icação ngênci	
	15	2	39,8	de	955	para	946
	13	3	27,7	de	938	para	959
	12	2	18,3	de	938	para	955
ão	24	2	9,9	de	995	para	979
Tensão	20	2	9,0	de	964	para	976
Ĭ	16	3	8,7	de	955	para	964
	23	3	8,6	de	995	para	964
	5	1	1,9	de	896	para	897
	17	1	1,1	de	955	para	979
Fluxo	13	3	3,1	de	938	para	959
Flu	38	1	1,0	de	963	para	965

TABELA IV. CONTINGÊNCIAS DO CENÁRIO DE BAIXA HIDROLOGIA

	Contingência	N°. de violações	Índice de severidade	Id	dentific contin		la
	5	4	98,7	de	896	para	897
	15	2	43,7	de	955	para	946
_	13	3	39,9	de	938	para	959
Tensão	12	2	27,4	de	938	para	955
Геп	28	1	4,0	de	999	para	933
	29	1	3,1	de	999	para	1060
	11	1	2,4	de	938	para	946
	24	1	1,3	de	995	para	979
0	13	3	3,9	de	938	para	959
Fluxo	21	2	2,5	de	965	para	1057
Ŧ	30	1	2,0	de	1010	para	947

B. Dimensionamento das linhas de transmissão

A modelagem das duas novas LTs é realizada para a implantação no ANAREDE da barra CURITI-PR525 para JOINOR-SC230 e da barra BLUMEN-SC525 para JOINOR-SC230. Essas barras foram as escolhidas para a conexão das novas LTs, pois é nelas que acontecem os maiores números de violações de tensão e fluxo (contingência 13). Sendo assim, entre os principais objetivos da inserção dessas novas LTs estão a diminuição das perdas de potência ativa, a diminuição do índice total de severidade e das contingências do sistema de transmissão.

Os dados para o dimensionamento das LTs podem ser vistos na Tabela V. Primeiramente, a impedância base foi calculada para encontrar a impedância da linha de transmissão de acordo com o seu comprimento. Após isso, foi identificado o valor da susceptância para o cálculo da energia reativa da linha. A associação em paralelo de dois transformadores foi suficiente para o fluxo de potência das duas novas LTs. Além disso, os dois

transformadores permitirão acréscimos futuros de carga no sistema e garantirão maior confiabilidade na transmissão em caso de alguma das linhas apresentar falhas de operação ou precisar de manutenção.

TABELA V. PARÂMETROS DAS NOVAS LTS E DOS TRANSFORMADORES

		CURITI-PR525	BLUMEN-SC525	
	Parâmetros	para JOINOR-	para JOINOR-	
		SC230	SC230	
	Comprimento (km)	106	50	
são	Capacidade (MVA)	2700	2700	
nis	Tensão (kV)	500	500	
ınsı	Tipo de condutor	4 Rail	4 Rail	
Linhas de transmissão	Impedância (Ω/km)	0,01697 + 0,3188i	0,01697 + 0,3188i	
s de	Capacitância (nF/km)	13,55	13,55	
ıha	Resistência (%)	0,065	0,031	
Ľ	Reatância (%)	1,226	0,578	
	Susceptância (MVAr)	149,24	70,4	
ı	Capacidade (MVA)	60	00	
adc	Impedância nominal (%)	1,92 +	7,5708i	
m	Tensão (kV)	525/230		
ıstc	Taps (%)	±8 x 1,875		
Transformador	Resistência (%)	0,32		
	Reatância (%)	1,	26	

As duas novas LTs projetadas no ANAREDE para o sistema de transmissão sul brasileiro podem ser vistas na Fig. 2 na cor azul. Uma barra chamada "BARRATRAFO" foi acrescentada para realizar a conexão entre os novos transformadores e as linhas de transmissão. Na barra JOINOR-SC230 foram realizadas as conexões entre os dois transformadores das LTs que chegam de CURITI-PR525 e de BLUMEN-SC525. Com essas especificações dos equipamentos foram realizadas simulações no ANAREDE.

As duas novas LTs foram inseridas tanto para as simulações do cenário base como para o de baixa hidrologia. Uma análise comparativa do fluxo de potência e das contingências foi realizada em relação as simulações anteriores a implantação das duas LTs e os seus resultados podem ser vistos na próxima Seção deste trabalho. Além disso, foi aplicado um acréscimo de 5% de carga em todo o sistema de transmissão sul para reavaliar o carregamento e as contingências em ambos os cenários simulados.

Fig. 2. Detalhe do diagrama do sistema sul brasileiro de 32 barras com as duas novas linhas de transmissão.

IV. RESULTADOS

Os resultados obtidos para este artigo permitem constatar os impactos que a implantação das novas LTs e o acréscimo de carga podem causar no sistema de transmissão sul brasileiro. Diversas análises podem ser realizadas com os resultados das simulações no *software* ANAREDE. Entretanto, nesta Seção são destacadas as perdas de potência ativa, as violações de carregamento da rede e as análises das suas contingências para os cenários base e de baixa hidrologia.

A. Fluxo de potência com a inserção de duas novas LTs

A Tabela VI apresenta o fluxo de potência do cenário base com a inserção das duas novas LTs propostas para este estudo. As perdas de potência ativa atingiram 287,3 MW, ou seja, 28,3 MW a menos em relação ao cenário base. Este montante representa uma diminuição de 8,97% das perdas de potência da rede.

TABELA VI. FLUXO DE POTÊNCIA DO CENÁRIO BASE COM DUAS NOVAS LTS

Área	Geração (MW/MVAr)	Carga (MW/MVAr)	Perdas (MW/MVAr)
	(IVI VV/IVI V AI)	(IVI VV/IVI V AI)	(IVI W/IVI V AI)
1	6300,1	3111,2	203,1
1	-738,4	426,9	-2335,9
2	1589,0	8307,2	70,9
	-8,4	2038,9	48,8
3	0,0	-3816,6	13,3
3	0,0	942,6	-927,8
T-4-1	7889,1	7601,8	287,3
Total	-746,8	3408,5	-3214,9

A Tabela VII apresenta o fluxo de potência do cenário de baixa hidrologia com as duas novas LTs. As perdas de potência ativa contabilizadas foram de 294,6 MW. Salienta-se que as duas LTs adicionadas ao sistema aqui discutido contribuíram para diminuir cerca de 34,3 MW, ou seja, 10,43% a menos das perdas iniciais.

TABELA VII. FLUXO DE POTÊNCIA DO CENÁRIO DE BAIXA HIDROLOGIA COM DUAS NOVAS LTS

Área	Geração (MW/MVAr)	Carga (MW/MVAr)	Perdas (MW/MVAr)
1	3765,9	3119,0	176,6
1	83,1	428,0	-2680,7
2	1287,8	8088,0	87,7
2	135,6	2044,0	160,8
3	0,0	-6447,9	30,2
3	0,0	1813,7	-611,1
Total	5053,7	4759,1	294,6
Total	218,8	4285,7	-3131,0

B. Contingências com a inserção de duas novas LTs

Nas Tabelas VIII e IX estão representadas as contingências dos cenários base e de baixa hidrologia, respectivamente, com a inserção das duas novas LTs. Para o cenário base foi obtido uma redução de 5 contingências de tensão e 2 contingências de fluxo que possuíam altos índices de severidade na rede. A contingência de número 13, por exemplo, possuía um dos maiores índices de severidade entre os observados nas Tabelas III e IV, tanto para os níveis de tensão, como para o carregamento das linhas. Com a inserção das novas LTs, essa contingência foi completamente eliminada no cenário base. A contingência de número 15 teve o índice de severidade reduzido em 48,84% para o cenário base e o número de violações caiu pela metade em ambos os cenários.

Entretanto, apesar de um índice menor na severidade, a contingência de fluxo de número 13 permaneceu antes e depois da inserção das duas LTs para o cenário de baixa hidrologia.

TABELA VIII. CONTINGÊNCIAS DO CENÁRIO BASE COM DUAS NOVAS LTS

	Contingência	N°. de violações	Indice de severidade			icação ngênci:	
	17	1	20,3	de	955	para	979
Tamaão	15	1	20,3	de	955	para	946
Tensão	34	3	8,1	de	1057	para	1010
	11	1	1,7	de	938	para	946

TABELA IX. CONTINGÊNCIAS DO CENÁRIO DE BAIXA HIDROLOGIA COM DUAS NOVAS LTS

	Contingência	N°. de violações	Índice de severidade			icação ngência	
	11	4	98,8	de	938	para	946
Tanaão	17	1	8,4	de	955	para	979
Tensão	15	1	8,4	de	955	para	946
	16	1	3,8	de	955	para	964
Fluxo	13	2	2,5	de	938	para	959
Fluxo	32	1	2,0	de	1030	para	955

C. Fluxo de potência com o acréscimo de carga

Os resultados obtidos para o fluxo de potência com o acréscimo de duas LTs na rede e de 5% no valor total da carga do sistema de transmissão sul brasileiro podem ser vistos nas Tabelas X e XI para os cenários base e de baixa hidrologia, respectivamente. Apesar do aumento da carga no sistema, as perdas de potência ativa continuaram abaixo dos valores iniciais observados nas Tabelas I e II. O valor das perdas ativas para o cenário base foram de 295,2 MW e para o cenário de baixa hidrologia foram de 298,4 MW, ou seja, o acréscimo de carga gerou 7,9 MW e 3,8 MW de perdas a mais em cada cenário, respectivamente.

TABELA X. FLUXO DE POTÊNCIA DO CENÁRIO BASE COM DUAS NOVAS LTS E ACRÉSCIMO DE 5% DE CARGA

Área	Geração (MW/MVAr)	Carga (MW/MVAr)	Perdas (MW/MVAr)
1	6899,4	3275,0	210,8
1	-441,4	449,4	-2181,8
2	1589,0	8744,4	71,7
	14,3	2146,2	89,0
3	0,0	-3826,2	12,7
3	0,0	945,0	-934,6
T-4-1	8488,4	8193,2	295,2
Total	-427,1	3540,6	-3027,4

TABELA XI. FLUXO DE POTÊNCIA DO CENÁRIO DE BAIXA HIDROLOGIA COM DUAS NOVAS LTS E ACRÉSCIMO DE 5% DE CARGA

Área	Geração (MW/MVAr)	Carga (MW/MVAr)	Perdas (MW/MVAr)
1	4330,2	3275,0	179,7
1	322,1	449,4	-2593,7
2	1287,8	8492,4	89,2
	137,1	2146,2	202,1
3	0,0	-6447,9	29,5
3	0,0	1813,7	-620,6
Total	5617,9	5319,5	298,4
Total	459,3	4409,3	-3012,2

D. Contingências com o acréscimo de carga

Nas Tabelas XII e XIII apresentam-se as contingências dos cenários base e de baixa hidrologia, respectivamente, com a inserção das duas LTs e do acréscimo de 5% de carga em todo o sistema. O cenário base se manteve com as mesmas contingências de tensão, porém com um maior índice total de severidade e com duas novas contingências de fluxo. Por outro lado, no cenário de baixa hidrologia houve um aumento de violações e do índice total de severidade. As contingências de tensão foram um total de 4 para 5 e as contingências de fluxo de 2 para 4.

TABELA XII. CONTINGÊNCIAS DO CENÁRIO BASE COM DUAS NOVAS LTS E ACRÉSCIMO DE 5% DE CARGA

	Contingência	N°. de violações	Índice de severidade	Identificação da contingência			
Tensão	17	1	28,7	de	955	para	979
	15	1	28,7	de	955	para	946
	34	3	11,0	de	1057	para	1010
	11	1	4,3	de	938	para	946
Fluxo	21	2	2,3	de	965	para	1057
	20	2	2,3	de	964	para	976

TABELA XIII. CONTINGÊNCIAS DO CENÁRIO DE BAIXA HIDROLOGIA COM DUAS NOVAS LTS E ACRÉSCIMO DE 5% DE CARGA

	Contingência	N°. de violações	Índice de severidade		Identif conti	icação ngênci:	
Tensão	11	4	107,9	de	938	para	946
	17	1	13,2	de	955	para	979
	15	1	13,2	de	955	para	946
	34	3	8,7	de	1057	para	1010
	16	1	3,6	de	955	para	964
Fluxo	13	2	2,7	de	938	para	959
	21	2	2,3	de	965	para	1057
	20	2	2,3	de	964	para	976
	32	1	2,0	de	1030	para	955

E. Comparação entre os cenários

A Fig. 3 reúne o montante das perdas de potência ativa e a redução percentual das perdas em relação ao sistema base de cada cenário simulado neste artigo. Nota-se que as perdas de energia representam valores superiores para o cenário de baixa hidrologia em relação ao cenário base. Os maiores percentuais de redução de perdas de potência ativa ocorrem com a inserção das duas novas LTs e sem o acréscimo de carga, sendo 8,97% e 10,43% para os cenários base e de baixa hidrologia, respectivamente.

Fig. 3. Comparação entre as perdas de potência ativa de cada cenário.

Ao se adicionar 5% no carregamento do sistema de transmissão houve um aumento nas perdas, mas o valor total permaneceu inferior aquele registrado inicialmente no sistema com 32 barras (Fig. 3). A redução das perdas no cenário base com a inserção de duas LTs e de 5% de carga ficou em torno de 6,46% e para o cenário de baixa hidrologia foi de 9,27%. A implantação das novas LTs possibilitou uma redução geral das perdas no sistema de transmissão além de permitir um aumento de 5% de carga.

F. Viabilidade econômica da obra de duas novas LTs

Os custos associados à obra de implantação das duas novas LTs e as especificações dos equipamentos podem ser vistos na Tabela XIV. As duas LTs possuem juntas uma extensão total de 156 km, capacidade de 2700 MVA cada uma e condutores do tipo 4 *Rail*. São usados dois transformadores no total associados em paralelo para comportar com folga o fluxo de potência simulado nos cenários estudados neste trabalho. O montante da obra totalizou R\$ 141.039.076,40.

A previsão de retorno financeiro considerando as reduções médias de perdas entre os dois cenários analisados neste estudo (base e de baixa hidrologia) foi de 10 anos. O custo estimado em perdas de energia no valor presente para um cenário de 30 anos é de R\$ 248.816.054,05 adotando o valor de expansão em 187,46 R\$/MWh com uma taxa de desconto de 8% ao ano.

TABELA XIV. CUSTOS DA OBRA DAS DUAS NOVAS LINHAS DE TRANSMISSÃO E TRANSFORMADORES

	Trechos	Especificação		Total (R\$)	
Linhas de transmissão	CURITI-PR525 para JOINOR-SC230	106 (km)	LT 500 kV 4 Rail	83.682.392,18	
	BLUMEN-SC525 para JOINOR-SC230	50 (km)	LT 500 kV 4 Rail	39.472.826,50	
Transformadores 525/230 kV	CURITI-PR525 para JOINOR-SC230	2.	600 MVA (cada)	17.883.857,72	
	BLUMEN-SC525 para JOINOR-SC230	(un.)			
	Custo total da obra (R\$)			141.039.076,4	

V. CONCLUSÃO

Este trabalho apresenta a análise de uma proposta de expansão do sistema de transmissão sul brasileiro de 32 barras. Consideraram-se dois cenários para as simulações no *software* ANAREDE, destacando os resultados de fluxo de potência e de contingências da rede. Tanto no cenário base de hidrologia regular quanto no de baixa hidrologia foram adicionados duas linhas de transmissão, uma barra, dois transformadores e 5% de carga. Por último, foram relacionados os custos da obra e a previsão do retorno financeiro.

O dimensionamento e a implantação das duas LTs proporcionaram resultados positivos para a expansão do sistema sul brasileiro. As perdas de potência ativa foram reduzidas assim como as contingências da rede. O acréscimo de 5% de carga no sistema gerou menores perdas de potência do que no sistema sem

as duas novas LTs. Além disso, a implantação das duas LTs proporcionou uma significativa diminuição na severidade total das principais contingências da rede, tanto no cenário base, como no cenário de baixa hidrologia.

Este artigo contribui para o planejamento assertivo e para uma expansão mais coerente com a realidade atual dos sistemas de transmissão. Contabilizados os custos da obra e estimada a viabilidade econômica verificou-se uma redução significativa das despesas geradas por perdas de potência ativa, tornando a obra de expansão ainda mais atrativa. Além dos valores da confiabilidade, que também contribuem para justificar o investimento, a estimativa econômica apresentou um retorno dos investimentos da obra em 10 anos. Por fim, verificou-se que a inserção estratégica de novas linhas de transmissão permite o aumento da confiabilidade e da disponibilidade do sistema.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES/PROEX) - Código de Financiamento 001. Os autores agradecem a CAPES e ao Programa de Excelência Acadêmica (PROEX) por seu apoio decisivo.

REFERÊNCIAS

- ANEEL, "Sistema de Informações de Geração SIGA," Agência Nacional de Energia Elétrica, Brasília, 2020.
- [2] C. Eid, P. Codani, Y. Perez, J. Reneses, R. Hakvoort, "Managing electric flexibility from Distributed Energy Resources: a review of incentives for market design," Renew Sustain Energy Rev, vol. 64, pp. 237–47, 2016.
- [3] V. P. Menezes, "Linhas de transmissão de energia elétrica aspectos técnicos, orçamentários e construtivos". Monografia de Conclusão de Curso da Engenharia Elétrica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015
- [4] F. F. Wu, F. L. Zheng, F. Wen, "Transmission investment and expansion planning in a restructured electricity market". Energy 31, p. 954 – 966. Universidade de Tsinghua, Shenzhen, China, 2006.

- [5] EPE, "Matriz energética e elétrica," Empresa de Pesquisa Energética, Brasília, 2020. Disponível em: http://www.epe.gov.br/pt/abcdenergia>.
- [6] L. J. Martinez, J. H. Lambert, C. W. Karvetski, "Scenario-informed multiple criteria analysis for prioritizing investments in electricity capacity expansion," Reliab Eng Syst Saf, 2011.
- [7] ANEEL, "Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – PRODIST Módulo 8 – Qualidade da Energia Elétrica," Agência Nacional de Energia Elétrica, Brasília, 2018.
- [8] F. Cadini, G. L. Agliardi, E. Zio, "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliab Eng Syst Saf. 2017.
- [9] X. Luo, J. Wang, M. Dooner, J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Appl Energy, vol. 137, pp. 511–36, 2015.
- [10] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum, A. Peacock, "Blockchain technology in the energy sector: a systematic review of challenges and opportunities," Renew Sustain Energy Rev, vol. 100, pp. 143–74, 2019.
- [11] L. Suganthi, A. A. Samuel, "Energy models for demand forecasting a review," Renew Sustain Energy Rev, vol.16, pp. 1223-40, 2012.
- [12] Z. Shao, F. Chao, S. L. Yanga, K. L. Zhou, "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renew Sustain Energy Rev, vol. 75, pp. 123-36, 2017.
- [13] H. H. Farr, "Transmission Line Design Manual". Publicação Técnica de Energia e Água. Denver, Estados Unidos, 1980.
- [14] M. Andreev, A. Suvorov, A. Sulaymanov, "Universal mathematical model of three-phases electrical transmission lines". Instituto de Engenharia de Energia, Universidade Politécnica Nacional de Pesquisa Tomsk, Tomsk, Russia, 2016.
- [15] L. S. Matzenbacher, "Sistema de dimensionamento de condutores de linhas aéreas de transmissão e análise financeira preliminar". Monografia de Conclusão de Curso da Engenharia Elétrica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2015.
- [16] E. J. Oliveira, I. C. da Silva, J. L. Pereira, S. Carneiro, "Transmission system expansion planning using a sigmoid function to handle integer investment variables," IEEE transactions on power systems, vol. 20, pp. 1616–21, 2005.
- [17] A. S. Sousa, E. N. Asada, "Fuzzy guided constructive heuristic applied to transmission system expansion planning," International conference on intelligent system applications to power systems, pp. 1–6, 2009.
- [18] Niharika, S. Verma, V. Mukherjee, "Transmission expansion planning: a review," International Conference On Energy Efficient Technologies for Sustainability (ICEETS), pp. 350–5, 2.