Relatório de atividades - Híbrida óptica

Caio R. Correia de Oliveira

December 7, 2022

Atividades (04/11)

Montagem do MMI

Como primeira etapa para o dimensionamento da híbrida óptica, realiza-se a montagem do dispositivo MMI que será utilizado.

Figure 1: Montagem do MMI no FDTD

Para a montagem inicial, após alguns testes, utilizou-se os seguintes parâmetros:

- Utilização das exatas dimensões determinadas pelo trabalho de referência
- Utilização de três portas para medição (1 entrada e 2 saídas)
- SOI (Silicon on Insulator) com 220nm de espessura
- Utilização de um monitor de frequency-domain field and power (DFT)
- O tempo de simulação foi definido inicialmente em 1000 fs (femto-segundos)
- FDTD mesh accuracy: 5

Simulação

Com a primeira versão de montagem, obteve-se os seguintes resultados:

Figure 2: Perfil de campo elétrico (1550nm)

Figure 3: Transmissão das saídas

Como visto, são resultados bastante indesejáveis para a aplicação, principalmente quando se considera a utilização de vários para o projeto final.

Utilizando um FDTD Accuracy = 4 e incrementando suavemente o número de mesh cells em Y, retirando em em z e em x, gerou-se os seguintes resultados:

Figure 4: Transmissão e fase da simulação focada em numéro de mesh cells em Y

Atividades (05/11 - 07/11)

Aplicação de mesh

Nesse período, realizou-se simulações de alta precisão para averiguar se havia pouca influência da interpolação aplicada no corpo do MMI devido às baixas quantidade de mesh cells.

Com isso, aplicou-se 4 meshs: 1 no corpo do MMI, e 3 nas portas (1 entrada e 2 saídas, sobrando uma porta sem mesh). O melhor resultado encontrado até então segue na Figura 6

Figure 5: Modelo com Mesh

Como se pode observar na Figura 6, a transmissão das portas foi consiveravelmente melhorada, porém ainda não compatível com o trabalho de referência.

Figure 6: Transmissão e fase do modelo com Mesh

Atividades (09/11 - 10/11)

Nesse período, houve a realização de sweeps de convergência no mesh no FDTD, apresentando uma característica insatisfatória em relação à transmissão das portas.

Desse modo, algumas alterações de topologia e simulação foram realizadas:

- Retirada do mesh
- FDTD Accurracy: $4 \rightarrow 5$
- \bullet Aumento das regiões de injeção de campo das portas em z: 0.4 um \rightarrow 4.0 um

Os resultados obtidos são mostrados a seguir na Figura 7

Em seguida, realiza-se um sweep de convergência, utilizando como parâmetro o FDTD Accurracy. Os resultados encotram-se na Figura 8.

Com isso, observou-se que o problema de transmissão estava voltado no tamanho da porta em z, o que pode ser explicado teoricamente pela teoria de propagação de modos.

Figure 7: Transmissão e distribuição de campo elétrico e de potência depois do ajuste de portas em z

Figure 8: Sweep de convergência utilizando como parâmetro y o primeiro ponto do gráfico de transmissão (em 1500um) e parâmetro x o FDTD Accurracy

Figure 9: Diferença de fase

Por fim, a diferença de fase entre as portas de saída obtidas foram (Figura 9):

Comparando os resultados do trabalho de referência (Figura 10) percebe-se que há uma diferença de cerca de 0.3dB na porta direta (Through port), o que ainda é considerável, validando um estudo de sua amenização.

Figure 10: Resultados do trabalho de referência

Atividades (11/11 - 13/11)

Nesse período houve a implementação de S-bends e Bends de 90° nas portas de saída para a obtenção de resultados mais próximos do trabalho de referência.

A motivação para a utilização dessas topologias tem base na possibilidade de aumentar o tamanho das portas de injeção de campo, assim melhorando a uniformidade do sinal injetado.

Topologia S-bend

Para a topologia S-bend utilizou-se as seguintes dimensões:

• X span: 5um

• Y span: 2.5um

Os resultados são mostrados nas Figuras 11 e 12

Topologia Bend90°

Para a topologia Bend de 90°, utilizou-se as seguintes dimensões

• Raio do Bend 90°: 5um

Os resultados são mostrados nas Figuras 13 e 16

Comparações

Para comparar com os resultados do trabalho de referência, utiliza-se da seguinte relação:

$$Loss = 10 * log(P_{input}) - \sum_{i} 10 * log(P_{i})$$

$$\tag{1}$$

Como a potência de entrada se aproxima da unidade, tem-se que os insertion loss individuais das portas through e cross são:

$$Loss_i = -10 * log_{\ell} P_i) \tag{2}$$

Conclui-se que os resultados para a Bends, em comparação com os resultados anteriores à aplicação da toplogia, visando aproximação dos resultados do trabalho de referência, observa-se uma considerável melhoria e coerência nos resultados.

Figure 11: Transmissão e diferença de fase entre as portas Through e Cross das S-bends

Figure 12: Distribuição de campo elétrico e de potência depois da inserção das S-bends

Figure 13: Transmissão e diferença de fase entre as portas Through e Cross das Bends de 90°

Figure 14: Distribuição de campo elétrico e de potência depois da inserção das Bend de 90°

Atividades (14/11 - 15/11)

Neste periodo, houve o dimensionamento de dois componentes: Bend de 90°e Y branch

Y branch

Figure 15: Modelo do Y Branch

Para a montagem, utilizou-se as seguintes dimensões:

 \bullet Raio dos Bend 90°: 4um

• Largura das portas: 0.5um

Para o dimensionamento do corpo, utilizou-se o trabalho de Yi Zhang - A compact and low loss Y-junction for submicron silicon waveguide, onde neste artigo, é mostrado um modelo interpolado do corpo do Y branch, onde as dimensões são dadas.

Figure 16: Modelo do corpo do Y Branch

w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11	w12	w13 1.2
0.5	0.5	0.6	0.7	0.9	1.26	1.4	1.4	1.4	1.4	1.31	1.2	1.2

Os resultados encontram-se na Figura 18

Figure 17: Distribuição de campo e transmissão no Y-branch (FDTD Accurracy = 6)

Bend de 90°

Figure 18: Modelo Bend de 90°

Para a montagem utilizou se um raio de bend de 4um, com duas seccções de guia de onda nas extremidades, medindo 2um de comprimento cada.

Os resultados encontram-se na Figura 19

Figure 19: Distribuição de campo e transmissão no Bend 90°(FDTD accurracy = 5)

Conclusões

Observando os resultados supracitados e os gráficos de convergência das Figuras 20 e 21, confere-se que os dimensionamentos são adequados para a construção da híbrida.

Figure 20: Convergência de mesh Y-Branch

Figure 21: Convergência de mesh Bend de 90°

Atividades (16/11 - 21/11)

Ajuste no Y-branch

Devido à incompatibilidade geométrica do Y-branch da porta LO, foi necessário um redimensionamento geral no modelo do Y-branch, as alterações feitas foram:

- Aumentar a largura da saída do corpo em 0.2um
- Aumentar o comprimento do corpo em 0.35um
- Adição de tappers de 0.7um nas saídas
- Modificar a largura e altura de certos pontos de espessura ao longo do corpo de tal forma que:

w1	w2 0.55	w3	w4	w5	w6	w7	w8	w9	w10	w11	w12	w13
0.5	0.55	0.62	0.7	0.9	1.26	1.41	1.55	1.63	1.63	1.63	1.62	1.6

Figure 22: Novo modelo do Y Branch

Os resultados são apresentados nas Figuras 23 e 24 $\,$

Tem-se a conclusão de que houve uma piora nos resultados, mas dessa forma prosseguiu-se a construção da híbrida.

Figure 23: Transmissão do novo modelo

Figure 24: Campo do novo modelo

Híbrida

A construção da híbrida utiliza os parâmetros mais recentes de cada componente anteriormente dimensionado neste relatório.

Para a simulação utilizou-se os seguintes parâmetros:

• Max step dx: 0.05um

• Max step dy: 0.05um

• Max step dz: 0.05um

• Simulation time: 3000fs

• Grid cells [x,y,z]: [861,621,31]

O modelo pode ser visualizado na Figura 25.

Os modelos de campo podem ser visualizados na Figura 26.

Resultados associados à transmissão e a fase 28.

Figure 25: Modelo da híbrida

Figure 26: Campos da híbrida

Figure 27: Transmiss $\tilde{\text{pp}}$ e fases das híbridas

Figure 28: CMRR, loss e imbalance da híbrida

Atividades (01/12 - 07/12)

Neste período, foram corrigidas falhas significativas no modelo da híbrida:

- Ajuste da região de simulação do FDTD de forma que o mesmo se inscreva dentro da região de silício, assim evitando reflexão fazendo uso adequado das fronteiras de PML
- \bullet Ajuste nas regiões de mesh e diminuição de seu step para dx = dy = 0.02um e dz = 0.04um
- Restauração do primeiro modelo do Y-branch para a porta LO
- Adição de pequenos segmentos de guias de onda para extender as bends 90° (Figura 29)

Figure 29: Extensor de Bend90°

Adicionalmente, para diminuir o tempo de simulação, reduziu-se o tamanho em z das regiões de mesh $(3\text{um} \to 0.66\text{um})$

Abaixo encontram-se os gráficos de campo (Figuras 30 e 31) e os gráficos característicos (Figuras 32 e 33)

Figure 30: Campo da híbrida: entrada em LO

Figure 31: MCampo da híbrida: entrada em Signal

Figure 32: Gráficos de transmissão e fase

Figure 33: Gráficos característicos das simulações