Benefits of Siting a Borehole Repository on Non-Operating Nuclear Facility Quantitative Siting Criteria

Jin Whan Bae, Kathryn Huff, William Roy Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

April 07, 2017

ILLINOIS

- 1 Background
- 2 Case Specification
- Metric Evaluations Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access
- 4 Results

Background - Problems

- Overflowing Spent Nuclear Fuel (SNF) in Reactor Pools Solution now: Expensive Dry Casks
- Most Plants are built in the 70s and 80s, facing license renewal or shutdown
 Decommissioning costs

Motivation

Why not reuse the existing licensed land? Solve two issues with one solution:

- Save on decommissioning costs
- Permanent Repository so dry casks are no longer needed

Terminology

Borehole Repository

Figure 1: Deep Borehole Schematic [2].

Non-Operating Nuclear Facility

A nuclear power plant facility that is no longer of commercial usage, or no longer produces spent fuel.

Outline

- Background
- 2 Case Specification
- Metric Evaluations Transportation E

Workforce Utilization

Consent Basis

Site Access

Expediency

4 Results

Non-operating Reactor Site + Borehole Repository

- Save cost on decommissioning (some parts)
- Earn Revenue from hosting repository
- Save cost on repository facility construction with already existing infrastructure
- Communities that benefit from power plants are more likely to be friendly

Why Boreholes?

- Less rigorous geological standard (flexible siting)
- modularity
- Area(30km² for 70,000MTHM)

Figure 2: Map of Areas in US with crystalline basement rock at less than 2,000m in depth. Pink areas are suitable for a borehole repository. [9].

Method of Comparison: Case Study

Two cases:

- Reference/Base Case: Yucca Mountain
- Proposed Case: Borehole Repository at Clinton Power Station (Clinton, IL)

- Clinton is under risk of shutting down, despite the recent bill that saved it from shutting down. (Inherent economic disadvantage of single - unit reactor site)
- Geological study done for Decatur Carbon Sequestration Project
- Socio-Economic research done in impacts of its shutdown
- Central Location (low MTHM*km value)

6 Quantitative Metrics

- Transportation Burden [MTHM · km]: Less SNF to be transported
- Workforce Utilization [—]: Pre existing skilled workforce
- Expediency [y]: Faster the removal of SNF, more cost savings
- Consent Basis [nuclearMW/capita]: More familiarity and dependency to nuclear = more likely to be consenting
- Site Access [-]: Rail access to the site is essential for beginning operations.
- Site Appropriateness [-]: Must be geologically viable.

- the federal government,
- the state government,
- the local government / community,
- and the owner of the non-operating plant.

For Each Metric:

$$NV = \frac{x - W}{B - W} \tag{1}$$

$$NV =$$
normalized value for the metric (2)

$$x =$$
considered case value for the metric (3)

$$B = \text{best case value for the metric}$$
 (4)

$$W =$$
worst case value for the metric (5)

(6)

Some are Boolean - either yes or no.

Stakeholder Weights

Weight of metric for each Stakeholder is up to the discretion of evaluator's interpretation. For this paper, the following weight is used:

Table 1: Metrics and Weight for Each Stakeholder

Metric	Federal	State	Local	Utility
Transportation Burden	3	2	1	1
Site Appropriateness	3	2	1	1
Workforce Utilization	3	2	2	2
Consenting Locals	3	2	3	2
Site Access	3	2	1	1
Expediency	3	2	1	3

- Background
- 2 Case Specification
- Metric Evaluations
 Transportation Burden
 Site Appropriateness
 Workforce Utilization
 Consent Basis
 Site Access
 Expediency
- 4 Results

Haversine Formula

Calculates the 'great-circle' distance between two coordinate points

* Coordinate data from Wikidata

$$\Phi_1, \Phi_2 = \text{latitude in radians} \tag{7}$$

$$\lambda_1, \lambda_2 = \text{longitude in radians}$$
 (8)

$$\Delta \lambda = |\lambda_1 - \lambda_2| \tag{9}$$

$$\Delta \Phi = |\Phi_1 - \Phi_2| \tag{10}$$

$$a = \sin^2(\Delta \Phi) + \cos(\Phi_1)\cos(\Phi_2)\sin^2\left(\frac{\Delta \lambda}{2}\right) \tag{11}$$

$$c = 2 \cdot arctan2(\sqrt{a}, \sqrt{1-a}) \tag{12}$$

$$d = (6,371km) \cdot c \tag{13}$$

$$b_i = m_i d (14)$$

$$B = \sum_{i}^{N} b_{i} \tag{15}$$

where

$b_i = \text{spent fue}$	l transport burden	from facility i [km]]	(16)
_			(>

$$m_i = \text{mass of spent fuel at facility i [MTHM]}$$
 (17)

$$B = \text{total spent fuel transport burden [MTHM*km]}$$
 (18)

$$N = \text{total number of facilities with spent fuel on site.}$$
 (19)

Transportation Burden

MTHM of waste in each reactor (data from EIA 2011 Survey - GC859 [7])

Figure 3: ORNL CURIE map of nuclear waste. This map is based off of the EIA survey data.[14].

MTHM*km For Different Reactors

Table 2: Reactors with relatively small spent fuel transportation burden [MTHM \cdot km].

Reactor	State	MTHM * km	License Area [km²]
Clinton	Illinois	77,352,339	57.87
Dresden	Illinois	77,663,969	3.856
Peach Bottom	Pennsylvania	85,563,135	2.509
Indian Point	New York	84,097,374	.967
Yucca Mountain	Nevada	209,575,157	N/A

Table 3: Transportation Burden for Each Case

Case	Transportation Burden [MTHM · km]	NV
Yucca	209,575,157	0
Clinton	77,352,339	1

Site Appropriateness

Figure 4: From [15], a map of areas in the US with crystalline basement rock at less than 2000 meters depth. Pink areas suitable for borehole repositories.

Site Appropriateness

Figure 5: Stratigraphy of the Decatur Region, D is depth in feet. [12].

Table 4: Site Appropriateness for Each Case

Case	Site Appropriateness
Yucca	1
Clinton	1

Workforce Utilization

- Local Talent (nuclear experts)
- Transport, Catering and Lodging services
- 700 employees for Clinton [8]
- Yucca Mountain = 2,000 5,000 jobs [17]
- The experts are no longer in Yucca after defunding of project.

Table 5: Workforce Utilization for Each Case

Case	Workforce Utilization
Yucca	0
Clinton	1

- Consent-Basis approach to siting is crucial [1, 6, 11, 9]
- Communities near nuclear facilities are more likely to volunteer [13]
- Clinton Pays \$15 million in property taxes [3]
- \$54 million payroll to workers [5]
- Shutdown of Clinton would cause 13,000 job losses in 5 years [16]
- Yucca was known as "Screw Nevada Bill" strong opposition

Consent Basis Metric: NMWPC

Nuclear MW Per Capita (NMWPC)

Table 6: NMWPC values for different states

State	Net Nuclear Capacity (MW)	Census Population	NMWPC (10 ⁻³)
South Carolina	6,486	4,625,401	1.4
Alabama	5,043	4,780,127	1.05
Vermont	620	625,745	.99
Illinois	11,441	12,831,549	.89
Nevada	0	2,705,000	0
Average Nuclear States	101,167	265,386,569	.38
Average National	101,167	309,300,000	.33

Table 7: NMWPC values for Each Case

Case	NMWPC	NV
Yucca	0	0
Clinton	.89	.635

Site Access

- Railway Access
- Proximity to other power plants
- Illinois Division of Nuclear Safety
- Traversal of Land:

Yucca: 955 counties, 177 million people [10]

Figure 6: From [4], a map of Clinton Power Station in Clinton, IL with the Canadian National rail passing through.

Figure 7: Yucca Mountain Project Estimated Route [10].

Table 8: Site Access for Each Case

Case	Site Access
Yucca	0
Clinton	1

- Existing Infrastructure Fuel Handling Facility Railway
- Quicker Acceptance of SNF = less dry casks built
- 5 years arbitrarily chosen for time of fuel handling facility

Table 9: Expediency in Each Case

Case	Time Saved [y]	NV
Yucca	0	0
Clinton	5	1

- Background
- 2 Case Specification
- 3 Metric Evaluations

Transportation Burden Site Appropriateness Workforce Utilization Consent Basis Site Access Expediency

4 Results

Results

Table 10: Metrics and Weight for Each Stakeholder

Metric	Federal	State	Local	Utility
Transportation Burden	3	2	1	1
Site Appropriateness	3	2	1	1
Workforce Utilization	3	2	2	2
Consenting Locals	3	2	3	2
Site Access	3	2	1	1
Expediency	3	2	1	3
Case I total	3	2	1	1
Case II total	16.9	11.2	7.9	9.2

References I

- Mark Ayers, Vicky Bailey, Albert Carnesale, Pete Domenici, Susan Eisenhower, Chuck Hagel, Jonathan Lash, Allison Macfarlane, Richard Meserve, Ernest Moniz, Per Peterson, John Rowe, and Phil Sharp.
 - Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy. Technical report, Blue Ribbon Commission on America's Nuclear Future, January 2012.
- [2] P. V. Brady, B. W. Arnold, G. A. Freeze, P. N. Swift, S. J. Bauer, J. L. Kanney, R. P. Rechard, and J. S. Stein.
 - Deep borehole disposal of high-level radioactive waste. SAND2009-4401, Sandia National Laboratories, 2009.
- [3] Edith Brady-Lunny.
 - DeWitt Co. faces tax hit in millions if nuclear plant closes \mid Local Business \mid pantagraph.com, June 2016.
- [4] Canadian National Railway Company.
 Canadian National Railway Company Network Map Clinton Station., 2016.
- [5] Don Dodson.
 - For Clinton residents, nuclear plant's 'impact is significant', March 2014.

References II

- [6] DOE.
 - Designing a Consent-Based Siting Process: Summary of Public Input Report \mid Department of Energy.

Technical report, September 2016.

- [7] Nicholas Domenico.GC-859 Spent Nuclear Fuel Database, September 2016.
- [8] Exelon.
 Clinton Power Station, 2016.
- [9] Geoff Freeze, Bill Arnold, Patrick V. Brady, David Sassani, Kristopher L. Kuhlman, and Robert McKinnon.
 - Siting Considerations for a Deep Borehole Disposal Facility.

Pheonix, Arizona, USA, March 2015. Sandia National Laboratories.

[10] R. HALSTEAD, Fred Dilger, and D. BALLARD.

Yucca Mountain Transportation Planning: Lessons Learned, 1984-2009.

In Proc. WM2011 Conf. Citeseer, 2011.

References III

[11] H. C. Jenkins-Smith, Carol L. Silva, Kerry G. Herron, K. G. Ripberger, M. Nowlin, J. Ripberger, E. Bonano, and R. P. Rechard.

Public preferences related to consent-based siting of radioactive waste management facilities for storage and disposal: analyzing variations over time, events, and program designs.

Technical Report SAND 2013-0032P, FCRD-NFST-2013-000076, Sandia National Laboratories, 2013

[12] Scott McDonald.

Illinois Industrial Carbon Capture and Storage Project.

Technical report, Department of Energy, July 2012.

[13] Olle Olsson.

Experiences From Consent Based Siting in Sweden, 2013.

[14] ORNL.

The Centralized Used Fuel Resource for Information Exchange (CURIE) MAP, 2016. https://curie.ornl.gov/map.

[15] Frank V Perry, Bill W Arnold, and Richard E. Kelly.
A GIS DATABASE TO SUPPORT SITING OF A DE EP BOREHOLE FIELD TEST.

In Proceedings of IHLRWM 2015, pages 632-637, April 12-16, 2015, April 2015.

- [16] Tony Reid.
 - Study: Nuke plant shutdown could devastate economy \mid Money \mid pantagraph.com, October 2014.
- [17] Mary Riddel, Martin Boyett, and R. Schwer.

The Economic impact of the Yucca Mountain nuclear waste repository on the economy of Nevada.

Publications (YM), September 2003.