

Numerical Methods for Engineering Applications S8 - EN1800KA – 2015/2016

Ronan Vicquelin

Maître de conférences at CentraleSupelec Laboratoire EM2C, CNRS UPR 288 ronan.vicquelin@centralesupelec.fr

Aymeric Vié

Maître de conférences at CentraleSupelec Laboratoire EM2C, CNRS UPR 288 aymeric.vie@centralesupelec.fr

Contents

- A. Course team
- **B.** Objectives
- C. Organization
- D. Detailed program
- E. Examination
- F. Online documentation

A. COURSE TEAM

Name	Organization	Position
Léo Cunha Caldeira	CentraleSupélec,	PhD student
Mesquita	Laboratoire EM2C, CNRS	
Nicolas Dumont	CentraleSupélec,	PhD student
	Laboratoire EM2C, CNRS	
Ronan Vicquelin	CentraleSupélec,	Maître de Conférence
	Laboratoire EM2C, CNRS	
Aymeric Vié	CentraleSupélec,	Maître de Conférence
_	Laboratoire EM2C, CNRS	

B. OBJECTIVES

Numerical simulations of physical phenomena have become inevitable. Indeed, on the one hand, benefiting from computational resources in the 21st century is common practice. On the other hand, due to the increasing complexity and transdisciplinary of practical engineering systems, no analytical solutions are available and the cost of experimental investigations becomes prohibitive. Therefore, engineers in charge of the design of such systems have no choice but to rely on numerical simulations.

The course objectives are:

- . Understanding of standard numerical methods
- . Applications of these methods in problem-solving workshop
- . Critical analysis of simulations results

Combining their skills in computer science, heat transfer, fluid mechanics, mathematical analysis and numerical methods, the students will write their own programs from a blank page and answer a couple of practical engineering problems such as:

- Find the optimal residence time in a BioReactor.
- Identify the value and location of the maximum temperature of a heated structure.
- Risk of pollutant dispersion or flame flash-back.
- Prediction of recirculation length backwards a facing step
- ...

On completion of the course, the students should spontaneously solve a simple problem with a small script to implement a numerical resolution; Formalize a physical problem into equations and identify their mathematical nature; Discretize a set of differential equations; Analyze the accuracy and stability of a numerical method; Derive an adapted numerical method in terms of accuracy and efficiency to solve the problem; Ensure the validity of the results though hypotheses checking and numerical errors characterization; Have a critical interpretation of the physical results; Solve problems found in engineering applications.

C. ORGANISATION

For students following the course as a S8 elective, it is organized the following way:

- 8 lectures.
- 14 problem-solving workshop.
- 4 projects to be realized during the course period

For students following the ECP+R program, the course is organized as follows:

- 5 lectures.
- 6 problem-solving workshop.
- 3 projects to be realized during the course period

Lectures will give the fundamental notions of the course while workshop sessions will aim at a direct application of the course contents.

The mandatory tool for the course is a personal computer with a working installation of Python.

The program is detailed in the following pages, including the time line, course contents, and problems of interest during workshops. Homework is required to acquire and understand all the necessary skill as well as to finalize the projects.

D. DETAILED PROGRAM

Lecture 1: Finite Differences

A1	Wednesday, 30 th March, 2016	11h30
Introduction	Importance of numerical methods in today's engineering and research. Program, objectives, organization, course team and work methodology.	
Lecture	Introduction to numerical methods. Hierarchical methodology to numerically solve engineering problems. Examples of PDE. Classification of PDE. Numerical approximation with finite differences.	90 mn
Pause		15 mn
B1-1		14h00
	 Introduction to Python Syntax, program execution and use of modules Plotting results in 1D/2D/3D Test of quadrature formula and root-finding algorithms 	90 mn
Pause		15 min
B1-2		15h45
	 Problems Derivation of arbitrary order finite difference approximations Verification the approximations' order using Python code Explicit Euler method applied to an Ordinary Differential Equation 	
End of the lecture		17h15

Key elements	•	Writing python's code and using appropriate libraries
	•	Being able to derive arbitrary order finite difference formulae
	•	Quantifying errors and validating a finite difference method

Lecture 2: Ordinary Differential Equations (ODEs)

A2	Wednesday, 6 th April, 2016	14h00
Lecture	Notion of modified wave number for finite difference schemes. Time-	
	marching method to solve Ordinary Differential Equations. Forward	90 mn
	Euler method. Local and Global convergence order. Numerical	
	stability analysis. Explicit vs Implicit methods. Backward Euler	
	method. Trapezoidal method. Linearization of implicit methods.	
	Stiffness	
Pause		15 mn
B2		15h45
	Problems	
	Harmonic oscillator	90 mn
	Non-linear ODEs	
	Characterization of errors	
End of the lecture		17h15
Homework	Project #1 to be finalized within one week	
Key elements	 Applying classical methods to solve ODEs 	

Characterizing the accuracy and stability of a specific method

Evaluating the global and local errors

Handling the stiffness of a system

Lecture 3: Elliptic PDE (1)

Key elements

A3	Wednesday, 13 th April, 2016	11h30
Lecture	Runge-Kutta (RK2, RK3, RK4) and multi-step methods (Adams,	
	BDF) for ODEs.	90 mn
	Examples of elliptic PDE. Direct vs iterative methods. Jacobi and	
	Gauss-Seidel methods. Ghost cells for boundary conditions.	
Pause		15 mn
B3-1		14h00
	Problems	
	• Jacobi and Gauss-Seidel methods applied to a Poisson equation	90 mn
	Laplace equation with different boundary conditions	
Pause		15 min
B3-2		15h45
	Project #2	
End of the lecture		17h15
		•
Homework	Project #2 to be finalized within 3 weeks	

Using direct and iterative solvers for elliptic problems Choosing the appropriate methods for boundary conditions

Using high order methods for ODEs

Lecture 4: Elliptic PDE (2)

A4	Wednesday, 4 th May, 2016 (ECP+R: Monday, 2 nd May, 2016)	14h00 (8H00)
Lecture	Effect over over-relaxation with the SOR method. Conjugate gradient method. Notions on preconditioning, multi-grid and Krylov methods.	60 mn
Pause	1 5/ 5	15 mn
B4		15h15
	ECP+R: Wednesday, 4 th may, 2016	11H30
	 Problems Application of SOR and conjugate gradients Multi-block structured meshes and block iterations Project #2 	120 mn
End of the lecture		17h15
Homework	Project #2 to be finalized for the next lecture	

Homework	•	Project #2 to be finalized for the next lecture	
----------	---	---	--

Key elements	Using efficient iterative methods (SOR, conjugate gradient)	
	Being able to handle different boundary conditions	
	Building a multi-block algorithm	

Specific planning for ECP+R students

A4	Monday, 2 nd may, 2016	8h00
B4	Wednesday, 4 th may, 2016	11h30

Lecture 5: Explicit methods for Parabolic and Hyperbolic PDEs

A5	Wednesday, 11 th May, 2016	14h00
Lecture	Examples of Parabolic/Hyperbolic PDEs. Stability analysis with semi- discrete form, Von Neumann analysis, modified wavenumber. CFL criterion in convection problems. Fourier criterion in diffusion	
	problems.	
Pause		15 mn
B5		15h45
	 Problems Unsteady heat equation Advection equation	90 mn
End of the lecture		17h15

Homework • Project #3 to be finalized for lecture 7

Key elements	•	Using finite differences to solve parabolic and hyperbolic problems
	•	Analyzing the stability of a finite difference scheme for hyperbolic and
		parabolic equations

Lecture 6 : Characterization of numerical errors

A6	Friday, 13 th May, 2016	14h00
Lecture	Notions of dispersion and dissipation of numerical schemes. Modified PDE and interlink with the behavior of the numerical solution. Centered schemes, Lax-Wendroff and Lax-Friedrich schemes. Order of convergence, Lax theorem.	90 mn
Pause		15 mn
B6		15h45
	 Problems Analysis of different numerical schemes (order, stability, consistency) Impact of the CFL number on dispersion and dissipation Use of Fast Fourier Transform 	90 mn
End of the lecture		17h15

Key elements	•	Analyzing the consistency, stability and convergence of different numerical
		methods
	•	Implications of the dispersive and dissipative nature of numerical schemes.
	•	Using adapted tools to properly quantify dispersion and dissipation errors.

Lecture 7 : Implicit methods for multi-dimensional parabolic PDEs

A7	Wednesday, 25 th May, 2016	14h00
Lecture	Highlight role of Fourier number in stiffness of parabolic PDEs. Implicit methods for stiff and/or multi-dimensional problems. Thomas algorithm. Crank-Nicolson method. Matrix factoring and ADI methods.	90 mn
Pause		15 mn
B7		15h45
	 Problems 1D unsteady heat equation with implicit method 2D unsteady heat equation: Comparison between explicit and implicit methods. Crank-Nicolson vs ADI. Steady solutions: comparison between unsteady parabolic solver and elliptic solver. 	90 mn
End of the lecture		17h15

Key elements	•	Using implicit methods to avoid time step limitation of explicit methods
	•	Applying it to multi-dimensional stiff problems
	•	Computing a steady solution through an accelerated transient solution.

Lecture 8: Methodology in numerical computations

B8-1	Friday, 27 th May, 2016	14h00
	 Problems Finalize ADI implementation to 2D unsteady heat equation Application of hierarchical solving methodology to a study case 	90 mn
Pause		15 mn
B8-2		15h45
		90 mn
End of the lecture		17h15

Key elements	Controlling the different interacting elements leading to the numerical
	resolution of an engineering problem: Problem setup, mathematical model,
	numerical resolution, mesh convergence, post-processing, hypotheses
	verification, validation, physical analysis.
	Critical analysis of numerical results

Lecture 9: Incompressible Flow equations

A9	Wednesday, 1st June, 2016	14h00
Lecture	Unsteady incompressible Navier-Stokes equations for the velocity and pressure fields. Role of pressure in the incompressible limit. Pressure/velocity coupling. Explicit formulation.	
Pause		15 mn
B9		15h45
	Problems	
	• Flow in a driven cavity with explicit method	90 mn
End of the lecture		17h15

Key elements	•	Identifying the structure of the NS equations
	•	Understanding the role of the pressure which fulfils a Poisson equation to
		enhance the continuity equation.
	•	Implement an explicit collocated method for NS in a cavity flow

Lecture 10: Semi-implicit method for incompressible flows

B10 -1	Friday, 3 rd June, 2016	14h00
	Semi-implicit for diffusion operator, predictor-corrector.	
	Problems	90 mn
	 Flow in a driven cavity with semi-implicit method 	
Pause		15 mn
B10-2		15h45
	Problems	
	Flow in a driven cavity with semi-implicit method	90 mn
End of the lecture		17h15

Key elements	•	Being able to implement a semi-implicit method for cavity flow
	•	Using previously presented algorithms (ADI, Conjugate gradient,)

Lecture 11: Final project

B10 -1	Wednesday, 8 th June, 2016	14h00
	Final project on incompressible flows	90 mn
Pause		15 mn
B10-2		15h45
	Methodology rules applied to the final project	90 mn
End of the lecture		17h15

Key elements	Synthetizing all the numerical methods presented in the course	
	• Using them appropriately to solve a full CFD problem with incompressible	
	Navier-Stokes equations	

E. EXAMINATION

The course examination is done through 4 projects to realize during the course:

- 2 small projects to be handed out within a week
- 2 comprehensive projects as mid-term and final examinations.

All deliverables are to be handed out as slides.

F. Online resources

Claroline

Prerequisite

The prerequisites of the courses correspond to the common core of the 1st year at CentraleSupelec:

- Differential and integral calculus;
- Vector and matrix analysis;
- Programming in Python
- Heat and mass transfer

Notions in fluid mechanics are not required but are appreciated.