ECE380 Digital Logic

Introduction to Logic Circuits: Synthesis using AND, OR, and NOT gates

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-1

Example logic circuit design

- Assume we want to design a logic circuit with three inputs x, y, and z
- The circuit output should be 1 only when x=1 and either y or z (or both) is 1
 - Three possible combinations
 - x=1, y=0, z=1 => xy'z
 - x=1, y=1, z=0 => xyz'
 - x=1, y=1, z=1 => xyz
- The function could be written as
 - f(x,y,z)=xy'z+xyz'+xyz
 - · sum of products form

Electrical & Computer Engineering

Example logic circuit design

 Implements f correctly, f(x,y,z)=xy'z+xyz'+xyz but is not the simplest such network

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

xy'z+xyz'+xyz xy'z+xy from 14a x(y'z+y) from 12a

x(y'z+y) from 12a x(y+z) from 16a

Electrical & Computer Engineering

Example logic circuit design

- Obviously, the cost (in terms of gates and connections) of this network is much less than the initial network
- The process of generating a circuit from a stated desired functional behavior is called synthesis
- Generation of AND-OR style networks from a truth table is one of many types of synthesis techniques that we will cover

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-5

Logic synthesis

- If a function f is described in a truth table, then an expression that generates f can by obtained (synthesized) by
 - Considering all rows in the table where f=1, or
 - By considering all rows in the table where f=0
- This will be an application of the principal of duality

Electrical & Computer Engineering

Minterms

- For a function of n variables f(a,b,c,...n)
 - A minterm of f is a product of n literals (variables) in which each variable appears once in either true or complemented form, but not both
 - f(a,b,c) -- minterm examples: abc, a'bc, abc'
 - f(a,b,c) -- invalid examples: ab, c', a'c
 - An *n* variable function has 2ⁿ valid minterms

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-7

Minterms

Row	X	У	Z	Minterm
number				
0	0	0	0	$m_0 = x'y'z'$
1	0	0	1	$m_1 = x'y'z$
2	0	1	0	$m_2 = x'yz'$
3	0	1	1	$m_3 = x'yz$
4	1	0	0	m ₄ =xy'z'
5	1	0	1	m ₅ =xy'z
6	1	1	0	m ₆ =xyz'
7	1	1	1	m ₇ =xyz

- Each row of a truth row corresponds to a single minterm
- When a function is written as a sum of minterms, the form is called a standard (or canonical) sum-ofproducts

Electrical & Computer Engineering

Minterm notation

An equation may be written in terms of m-notation

$$f(a,b,c)=m_0+m_1+m_2+m_4$$

 $f(a,b,c)=a'b'c'+a'b'c+a'bc'+ab'c'$
000 001 010 100

$$f(a,b,c)=\Sigma m(0,1,2,4)$$

а	b	С	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-9

Minterm notation examples

- What is the minterm notation for the following function?
 - f(a,b,c)=abc+a'bc+abc'+a'b'c
- What is the function (in terms of variables) if the minterm notation is the following?

$$- f(a,b,c) = \Sigma m(1,5,6,7)$$

Electrical & Computer Engineering

Logic synthesis

- Duality suggests that:
 - If it is possible to synthesize a function f by considering the truth table rows where f=1, then it should also be possible to synthesize f by considering the rows for which f=0.
- This approach uses the complement of minterms, which are called maxterms

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-11

Maxterms

Row	X	У	Z	Maxterm
number				
0	0	0	0	$M_0=x+y+z$
1	0	0	1	$M_1 = x + y + z'$
2	0	1	0	$M_2=x+y'+z$
3	0	1	1	$M_3 = x + y' + z'$
4	1	0	0	$M_4=x'+y+z$
5	1	0	1	$M_5=x'+y+z'$
6	1	1	0	$M_6=x'+y'+z$
7	1	1	1	$M_7 = x' + y' + z'$

- Each row of a truth row corresponds to a single maxterm
- When a function is written as a product of maxterms, the form is called a standard (or canonical) productof-sums

Electrical & Computer Engineering

Maxterm notation

 An equation may be written in terms of M-notation

$$f(a,b,c) = M_3 \cdot M_5 \cdot M_6 \cdot M_7$$

$$f(a,b,c) = (a+b'+c')(a'+b+c')(a'+b'+c)(a'+b'+c')$$

$$0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$$

$$3 \quad 5 \quad 6 \quad 7$$

$$f(a,b,c)=\Pi M(3,5,6,7)$$

а	b	С	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-13

Maxterm notation examples

 What is the maxterm notation for the following function?

$$- f(a,b,c)=(a+b+c)(a'+b+c)(a+b+c')(a'+b'+c)$$

• What is the function (in terms of variables) if the maxterm notation is the following?

$$- f(a,b,c) = \Pi M(1,5,6,7)$$

Electrical & Computer Engineering

Sum-of-products and minimality

 A function expressed in standard sum-ofproducts (or product-of-sums) form may not be minimal

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 4-15

Form conversion

- If a function f is given in Σ m or Π M form, it is easy to find f or f' in Σ m or Π M form
- Use the following form conversion table

GIVEN	DESIRED FORM				
FORM	f=Σm	f= ΠM	f′=Σm	f′= ∏M	
f=Σm (0,2,5,7)		Use numbers not on minterm list (1,3,4,6)	Use numbers not on minterm list (1,3,4,6)	Use numbers on minterm list (0,2,5,7)	
f= ΠM (1,3,4,6)	Use numbers not on maxterm list (0,2,5,7)		Use numbers on maxterm list (1,3,4,6)	Use numbers not on maxterm list (0,2,5,7)	

Electrical & Computer Engineering