• For the circuit depicted in Fig. below, plot I_X and I_{R1} as a function of V_X for two cases: $V_B = -1V$ and $V_B = +1V$.

Problem 1: solution

.
$$D_1$$
 is off $\Rightarrow I_x = I_R = \frac{V_x - V_B}{R_1}$

$$D_1 \text{ is on } \Rightarrow I_x = \frac{V_x - V_B}{R_1 / / R_2} = \frac{R_1 + R_2}{R_1 R_2} (V_x - V_B) \quad \textbf{V_X} \rightarrow \text{R1} \quad \textbf{R1} \quad \textbf{R1} \quad \textbf{R1} \quad \textbf{R1} \quad \textbf{R2} \quad \textbf{Ideal}$$

and
$$I_R = \frac{I_{\scriptscriptstyle X} \times R_2}{R_1 + R_2} = \frac{V_{\scriptscriptstyle X} - V_B}{R_1}$$

• Intersection of both equations occurs at $V_{\rm x} = V_{\rm B}$

• For
$$V_B = -1V$$

Problem 1: solution

.
$$D_1$$
 is off $\Rightarrow I_x = I_R = \frac{V_x - V_B}{R_1}$
. D_1 is on $\Rightarrow I_x = \frac{V_x - V_B}{R_1//R_2} = \frac{R_1 + R_2}{R_1R_2}(V_x - V_B)$
. and $I_R = \frac{V_x - V_B}{R_1}$

- Intersection of both equations occurs at $V_x = V_B$
- $I_{R} \uparrow \qquad \vdots \\ I_{R_1} \downarrow \qquad \vdots$

 Plot the input/output characteristics of the circuits shown in Fig. below using an ideal model for the diodes.

Problem 2:solution

- D_1 is off $\Rightarrow V_{out} = V_{in}$
- D_1 is on $\Rightarrow V_{out} = V_B$
- intersection of both equations $@V_{in} = V_B$

.
$$V_{out} = \begin{cases} V_{in} & \text{if } V_{in} < V_B \\ V_B & \text{if } V_{in} > V_B \end{cases}$$

 Plot the input/output characteristics of the circuits shown in Fig. below using constant-voltage model for the diodes.

Problem 3:solution

- D_1 is off $\Rightarrow V_{out} = V_{in}$
- D_1 is on $\Rightarrow V_{out} = V_B V_{D,on}$

• intersection of both equations $@V_{in} = V_B - V_{D,on}$

$$V_{out} = \begin{cases} V_{in} & \text{if } V_{in} > V_B - V_{D,on} \\ V_B - V_{D,on} & \text{if } V_{in} < V_B - V_{D,on} \end{cases}$$

• Plot V_{out} as a function of I_{in} for the circuit shown in figure below. Assume constant-voltage model. $I_{in} = I_0 cos(\omega t)$.

Problem 4:solution

•
$$D_1$$
 is off $\Rightarrow V_{out} = R_1 I_{in} = R_1 I_0 cos(\omega t)$

•
$$D_1$$
 is on $\Rightarrow V_{out} = V_{D,on}$

. Intersection @
$$I_{in} = \frac{V_{D,on}}{R_1}$$

$$V_{out} = \begin{cases} R_1 I_{in} & \text{if } I_{in} < \frac{V_{D,on}}{R_1} \\ V_{D,on} & \text{if } I_{in} > \frac{V_{D,on}}{R_1} \end{cases}$$

problem 5

• A full-wave rectifier is driven by a sinusoidal input $V_{in} = V_0$ cos ωt , where $V_0 = 3V$ and $\omega = 2\pi$ (60 Hz). Assuming $V_{D,on} = 800$ mV, determine the ripple amplitude with a 1000- μ F smoothing capacitor and a load resistance of 30 Ω .

.

problem 5: solution

• A full-wave rectifier is driven by a sinusoidal input $V_{in} = V_0$ cos ωt , where $V_0 = 3V$ and $\omega = 2\pi$ (60 Hz). Assuming $V_{D,on} = 800$ mV, determine the ripple amplitude with a 1000- μ F smoothing capacitor and a load resistance of 30.

$$V_R = \frac{1}{2} \frac{V_0 - 2V_{D,on}}{R_L C f_{in}} = 0.389V$$

If half-wave rectifier is used:

$$V_{R} = \frac{V_{0} - V_{D,on}}{R_{L}Cf_{in}} = 2.55V$$

