(1)	±2	(2)	$\pm\sqrt{11}$	(3)	±0.4
(4)	$\pm rac{5}{7}$	(5)	$\pm\sqrt{5}$		

2	(1)	6	(2)	-7	(3)	11	

	(1)	$2\sqrt{3}$	(2)	$18\sqrt{10}$
	(3)	$\sqrt{3}$	(4)	$\sqrt{3}$
$\begin{vmatrix} 3 \end{vmatrix}$	(5)	0	(6)	$4\sqrt{2}$
	(7)	$7\sqrt{2} - 2\sqrt{3}$		

(1)	$x = \pm \sqrt{6}$	(2) $x = 0, -11$
	x = 7, -8	(4) x = -3
(5)	$x = \frac{2 \pm \sqrt{13}}{9}$	(6) $x = -1, -\frac{7}{6}$
(7)	$x = -\frac{10}{3}, \frac{11}{3}$	

5	(1)	×	(2)	0	(3)	0	(4)	×	(5)	×
---	-----	---	-----	---	-----	---	-----	---	-----	---

6	(1)	25	(2)	31
U	(3)	2, 3, 5, 7, 11, 13, 17, 19		

	(1)	n = 5, 6
7	(2)	n = 2, 7, 10, 11
	(3)	n = 2

8	a = -9	他の解:	x = 7
---	--------	------	-------

[証明]

道の面積は, 道の外側の円の面積から道の内側の円の 面積を引いたものであるから,

$$S = \pi (r + a)^{2} - \pi r^{2}$$

$$= \pi \{ (r^{2} + 2ar + a^{2}) - r^{2} \}$$

$$= \pi (2ar + a^{2})$$

$$= \pi a (2r + a)$$

である。

11

また,道の真ん中を通る円の半径は $\left(r+\frac{a}{2}\right)$ m であるから,

$$l = 2\pi \left(r + \frac{a}{2}\right)$$
$$= \pi(2r + a)$$

であり,

$$al = \pi a(2r + a)$$

となる。これは道の面積S に等しい。 したがって、S=al である。

[証明]

12

連続する 3 つの整数は、中央の数を n と表すと、n-1、n, n+1 と表せる。

最小の数の平方と最大の数の平方の和から 2 を引いた 数は、

$$(n-1)^{2} + (n+1)^{2} - 2$$

$$= (n^{2} - 2n + 1) + (n^{2} + 2n + 1) - 2$$

$$= n^{2} - 2n + 1 + n^{2} + 2n + 1 - 2$$

$$= 2n^{2}$$

である。これは中央の数の平方の2倍に等しい。

したがって、3 つの連続する整数のうち、最小の数の 平方と最大の数の平方の和から2を引いた数は、中央の 数の平方の2倍に等しい。 配点

	(1)	2	
	(2)	2	
1.	(3)	2	
	(4)	2	
	(5)	2	

	(1)	1	
	(2)	1	
5.	(3)	1	
	(4)	1	
	(5)	1	

	(1)	2	
2.	(2)	2	
	(3)	2	

	(1)	3	
6.	(2)	3	
	(3)	2	完答

	(1)	3	
	(2)	3	
	(3)	3	
3.	(4)	3	
	(5)	3	
	(6)	3	
	(7)	3	

	(1)	2	完答
7.	(2)	2	完答
	(3)	2	

8.	7	2	

	(1)	3	
	(1)	J	
	(2)	3	
	(3)	3	
4.	(4)	3	
	(5)	3	
	(6)	3	

(7) 3

10.

3

9.

- 11. 6
- 12. 6