

Guía de trabajo N.º 04: Función inversa

| Nombre y apellidos:      |             |                  |
|--------------------------|-------------|------------------|
| Grado: 4.° de secundaria | Sección: "" | Fecha: / 06 / 21 |

«En verdad les digo, Si el grano de trigo no cae en tierra y muere, queda solo; pero si muere, da mucho fruto» (Jn 12, 24).

COMPETENCIA: Resuelve problemas de Regularidad, equivalencia y cambio.

**Desempeño:** Combina y adapta estrategias heurísticas, recursos, métodos gráficos, procedimientos y propiedades algebraicas más óptimas para determinar la función inversa a partir de la regla de correspondencia y de su gráfica, usando expresiones algebraicas y propiedades.

**<u>Definición</u>**: Se llama función identidad a la función que le hace corresponder a cada número real el propio número. Se representa por  $I: x \mapsto x \ o \ I(x) = x$ 

# Definición

Una función f se dice inyectiva o función uno a uno si verifica que dos puntos distintos no pueden tener la misma imagen. De otra forma:

$$f$$
 es inyectiva  $\Leftrightarrow \forall x_1; x_2 / f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ 

#### AHORA:

$$f^{-1} = \{(1;4),(3;6),(5;8),(7;10),(9;12)\}$$

Si intercambiamos las componentes de los pares ordenados, en este ejemplo, se obtiene la función inversa de f, que se representa por  $f^{-1}$ :

$$f^{-1} = \{(4;1), (6;3), (8;5), (10;7), (12;9)\}$$

Si componemos estas funciones se tiene:  $f \Box f^{-1} = \{(4;4),(6;6),(8;8),(10;10),(12;12)\}$ 

que es la función identidad para el dominio de  $\,f^{^{-1}}\,$ 

**<u>Definición:</u>** Sea y = f(x) una función. Llamamos función inversa (en caso de que exista) a una función notada  $y = f^{-1}(x)$  que verifica que  $(f \Box f^{-1})(x) = (f^{-1} \Box f) = I(x)$  la función identidad. Para que exista la función inversa de f es necesario que la función f sea inyectiva.

Si (x,y) se encuentra en f , entonces (y,x) se encuentra en  $f^{-1}$  .

Sea la función

$$f = \{(-2, 8), (-1, 2), (0, 0), (1, 2), (2, 8)\}$$

Si intercambiamos las componentes de los pares ordenados, en este ejemplo, no se obtiene una función, sino solo una relación, y por lo tanto la función no tiene función inversa.

$$\{(8;-2),(2;-1),(0;0),(2;1),(8;2)\}$$

No es función. Es decir, no toda función tiene función inversa.

### **Ejemplos**

1. Halle la inversa de la función f(x) = 5x + 2

Sol:

Probamos que f es inyectiva, es decir,  $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ 

$$f(x_1) = 5x_1 + 2$$
$$f(x_2) = 5x_2 + 2$$

de donde igualando tenemos:

$$5x_1 + 2 = 5x_2 + 2$$
$$5x_1 = 5x_2$$
$$x_1 = x_2$$

 $\therefore f$  es inyectiva

Con esto queda probado que la función  $^f$  es inyectiva y por tanto existe  $^{f^{-1}}$  . Calculémosla:

Hacemos: y = 5x + 2

Despejamos "x" en función de "y", entonces tenemos:

$$y-2=5x$$

$$\frac{y-2}{5} = x$$
. Finalmente cambiamos las "x" por "y"

$$\frac{x-2}{5} = y$$

$$\therefore f^{-1}(x) = \frac{x-2}{5}$$

2. Calcule si es posible la función inversa de:  $f(x) = \frac{x-2}{x+1}$ 

Sol:

$$f(x_1) = f(x_2) \Rightarrow \frac{x_1 - 2}{x_1 + 1} = \frac{x_2 - 2}{x_2 + 1} \Rightarrow (x_1 - 2)(x_2 + 1) = (x_2 - 2)(x_1 + 1)$$

luego:

$$x_1x_2 + x_1 - 2x_2 - 2 = x_1x_2 - 2x_1 + x_2 - 2 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2$$

En primer lugar debemos estudiar si la función en cuestión es inyectiva o no:

Con esto queda probado que la función f es inyectiva y por tanto existe  $f^{-1}$  . Calculémosla:

$$y = \frac{x-2}{x+1} \Rightarrow y(x+1) = x-2$$
$$\Rightarrow yx + y = x-2 \Rightarrow x(y-1) = -y-2$$
$$\Rightarrow x = \frac{-y-2}{y-1} \Rightarrow f^{-1}(x) = \frac{-x-2}{x-1}$$

# **PRACTICAMOS**

- 01. La "**Prueba de la línea horizontal**" dice: "para una función que tiene una función inversa, ninguna línea horizontal puede cortarla más de una vez"
  - a) Explique porque esta prueba es válida para la existencia de la función inversa.
  - b) ¿Cuáles de las siguientes funciones tienen una función inversa?







- 02. Considere:
  - a) En un mismo diagrama cartesiano grafique  $\,^f\,$  y su función inversa  $\,^{f^{-1}}\,$
  - b) Halle  $f^{-1}$  de dos formas diferentes
- 03. Considere f(x) = 3x + 6

En un mismo diagrama cartesiano grafique  $\,^f\,$  y su función inversa  $\,^{f^{-1}}$ 

Halle  $f^{-1}$  de dos formas diferentes

Considere f(x) = 2x - 2

En un mismo diagrama cartesiano grafique  $\,f\,$  y su función inversa  $\,f^{-1}$ 

Halle  $f^{-1}$  de dos formas diferentes

04. Para la función 
$$f(x) = \frac{7x+1}{x-7}$$
, halla el dominio de la función  $f^{-1}$ 

05. Para cada una de las siguientes funciones f

$$a. \quad f(x) = 3x + 1$$

$$f(x) = \frac{x}{x+2}$$

- i. En un sistema de coordenadas grafique y = x , f y  $f^{-1}$
- ii. Halle  $f^{-1}$

06. Para cada una de las siguiente funciones  $\,f\,$ 

$$a. \quad f(x) = 2x + 5$$

$$f(x) = \frac{3-2x}{4}$$

$$f(x) = x + 3$$

- i. En un sistema de coordenadas grafíque y = x , f y  $f^{-1}$
- ii. Halle  $f^{-1}$
- iii. Pruebe que  $\ f \ o \ f^{-1} = f^{-1} \ o \ f = I$  , la función identidad.

07. Dado 
$$f(x) = (x+1)^2 + 3$$
; donde  $x \ge -1$ 

- a) Halle la ecuación definiendo  $f^{-1}$
- b) Grafique usando la tecnología y=f(x) , y=x y  $y=f^{-1}(x)$
- c) Determine el dominio y rango de  $^f\,$  y  $^{f^{-1}}$

08. Considere las funciones:

$$f(x) = 2x + 5$$
 y  $g(x) = \frac{8 - x}{2}$  Calcule:

$$a. g^{-1}(-1)$$
  $b. (f \circ g^{-1})(x) = 9$ 

09. Dadas 
$$f(x) = 5^{x}$$
 y  $g(x) = \sqrt{x}$ 

- a) Halle  $i. f(2) ii. g^{-1}(4)$
- b) Calcule el valor de "x" para que la ecuación se cumpla:  $(g^{-1} \circ f)(x) = 25$

10. Dadas 
$$f(x) = 2x$$
 y  $g(x) = 4x - 3$ , pruebe que:  $(f^{-1} \circ g^{-1})(x) = (g \circ f)^{-1}(x)$ 

11. Cuál de estas funciones es una función inversa de sí mismo, que es  $f^{-1}(x) = f(x)$ 

a) 
$$f(x) = 2x$$
 b)  $f(x) = x$  c)  $f(x) = -x$  b)  $f(x) = \frac{2}{x}$  b)  $f(x) = -\frac{6}{x}$ 

12. Determine las  $f^{-1}$  funciones f y g

$$a. f(g(x)) = \sqrt{1 - x^2}$$

$$b. g(f(x)) = \left(\frac{x-2}{x+1}\right)^2$$

13. Determine el dominio de las siguientes funciones:

$$a. \quad f(x) = x^2 - 2x$$

$$f(x) = \frac{3x}{x^2 - 2x + 1}$$
b.

$$f(x) = \frac{2 + \sqrt{x - 2}}{x^2 - 16}$$

14. Determine si la función es creciente o decreciente y encuentre su dominio

$$f(x) = \log\left(\frac{x^2 - 3x + 2}{x + 3}\right)$$

$$g(x) = \log \left( \frac{x^2 - 8x + 15}{x^3 - 8} \right)$$
b.

# Referencias:

- i. Urban P., Martin R., Haese R., Haese M. & Humphries M. (Segunda edición). (2008). Mathematics HL. Australia: Haese & Harris publications.
- ii. Zill, D. & Dewar, J. (2012). Álgebra, trigonometría y geometría analítica. (3ª ed). México: McGraw-Hill Educación.
- iii. Mathemathics standard level (2012) IBO

