Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica

26 gennaio 2017

1) Del circuito seguente, considerando in ingresso l'impulso di tensione riportato in figura, e considerando l'op-amp ideale, calcolare e graficare (indicando i valori di tensione e gli istanti di tempo corretti) l'andamento nel tempo della tensione di uscita V_{OUT} .

(Considerare il condensatore inizialmente scarico: $V_C(0)=0$ V)

Amplificatori Operazionali ideali con $L^+ = -L^- = 12V$ \mathbf{Q}_I : [$V_T = 1 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$] $R_D = 6 \text{ k}\Omega$; $R_S = 2 \text{ k}\Omega$; $R_I = 10 \text{ k}\Omega$; C = 100 nF

 $V_{DD} = 10 \text{ V};$

10 aprile 2017

1) Del circuito seguente,

- Determinare il punto di polarizzazione del transistor Q_I (V_{GS} , V_{DS} , I_D)
- Calcolare l'amplificazione di transresistenza per piccoli segnali $R_m = v_{out}/i_{in}$

$$Q_I = \{V_t = 2 \text{ V}; K = 2 \text{ mA/V}^2; \lambda = 0\}$$

 $V_I = 5 \text{V}; V_{DD} = 12 \text{V}; C = \infty$
 $R_I = 10 \text{k}\Omega; R_L = 10 \text{k}\Omega; R_D = 2 \text{k}\Omega; R_S = 1 \text{k}\Omega$.

Considerare l'amplificatore operazionale ideale, con tensione di alimentazione pari a $\pm V_{DD}$.

19 giugno 2017

- 1) Del circuito seguente,
 - a) determinare il valore della resistenza di Drain R_D per avere una amplificazione di tensione per piccoli segnali $Av = v_{out}/v_{sig} = -4$
 - b) con il valore di R_D calcolato in a), determinare il guadagno di tensione $Av = v_{out}/v_{sig}$ in assenza del condensatore di bypass C_S .

 Q_I : [$V_T = 2 \text{ V}$; $K = 0.5 \text{ mA/V}^2$; $\lambda = 0$]

 $R_{sig} = 50 \ \Omega;$ $R_I = 200 \ \mathrm{k}\Omega;$ $R_2 = 300 \ \mathrm{k}\Omega;$ $R_S = 1 \ \mathrm{k}\Omega;$ $R_L = 10 \ \mathrm{k}\Omega;$

 $V_{DD} = 10 \text{ V}; \quad C_{C1} \rightarrow +\infty; \quad C_{C2} \rightarrow +\infty; \quad C_{S} \rightarrow +\infty;$

21 luglio 2017

1) Del circuito seguente, considerando in ingresso la tensione V_{IN} con l'andamento nel tempo riportato in figura, e considerando gli op-amp ideali, determinare l'evoluzione temporale e disegnare i grafici relativi dei potenziali ai nodi A e B (V_A e V_B) e della corrente I_L nella resistenza R_L .

(Considerare il condensatore inizialmente scarico: $V_C(0)=0$ V)

Amplificatori Operazionali ideali con $L^+ = -L^- = 12$ V $R_{IN} = 10 \text{ k}\Omega; \quad R_I = 2 \text{ k}\Omega; \quad R_2 = R_3 = 4 \text{ k}\Omega; \quad R_L = 5 \text{ k}\Omega; \quad C = 10 \text{ nF}$

15 settembre 2017

- 1) Dato il circuito di figura, in cui v_{in} è un generatore di piccolo segnale determinare:
 - a) il punto di lavoro dei MOSFET;
 - b) il valore di V_{OUT} in continua;
 - c) il guadagno di tensione v_{out}/v_{in} a centro banda;

$$M_{I}=\{k_{I}=1 \text{ mA/V}^{2}, V_{tI}=2\text{V}, \lambda=0\},\ M_{2}=\{k_{2}=0,25 \text{ mA/V}^{2}, V_{t2}=-2\text{V}, \lambda=0\}\ V_{DD}=10\text{V}, R_{S}=2\text{k}\Omega, R_{D}=5\text{k}\Omega, R_{L}=5\text{k}\Omega, C_{I}=C_{2}\rightarrow\infty$$

Esame del 16 ottobre 2017

- 1) Dato il circuito di figura, determinare:
 - la tensione di uscita V_{OUT} in continua;
 - il guadagno di tensione per piccoli segnali $A_v = v_{out}/v_{sig}$.

$$R_G = 10\text{k}\Omega, R_D = 3\text{k}\Omega, R_I = 2\text{k}\Omega,$$

 $V_{DD} = 5\text{V}, I = 2\text{m}A$
 $C_I = C_2 = \infty$

$$Q_1$$
: { $V_T = 2V, K = 0.5 \text{mA/V}^2, \lambda = 0$ }

Op Amp ideale
$$L^{+} = |L^{-}| = 12 \text{ V}$$