• p206 exercise 4.2.1: [24 pts.] Consider the context-free grammar:

$$G[S]: S \rightarrow SS + |SS*|a$$

and the token String: aa+a*

- [5 pts.](1) Rewrite this grammar to left factor and eliminate left recursion.
- [5 pts.](2) Compute First Set and Follow Set for the rewritten grammar.
- [2 pts.](3) Is it LL(1) grammar, why?
- [7 pts.](4) Construct the LL(1) parsing table.
- [5 pts.](5) Match the input string aa+a* based on the parsing table and LL(1) algorithm.

- (1) Rewrite this grammar to left factor and eliminate left recursion.
- 左因子和左递归
 - 含有左因子和左递归文法一定不是LL(1)文法
 - 通过提取左因子和消除左递归改写文法(rewrite)

Grammar : S→SS+|SS*|a

1) 提取左因子:

$$S \rightarrow SSO|a$$

$$0 \rightarrow +|*$$

需要进一步消除左递归

- 左因子和左递归
 - 含有左因子和左递归文法一定不是LL(1)文法
 - 通过提取左因子和消除左递归改写文法(rewrite)

$$0 \rightarrow +|*$$

$$S \rightarrow aS'$$

$$S' \rightarrow SOS' | \epsilon$$

$$0 \rightarrow +|*$$

- (2) Compute First Set and Follow Set for the rewritten grammar.
 - 计算nullable nonterminals
 - 计算所有nonterminal的First Set
 - 计算所有nonterminal的Follow Set

```
S →aS'
S' → SOS' | ε S'为Nullable
O →+|*
```


- Algorithm for computing First(A) for each grammar symbol $A(A \in V_T \cup V_N)$
 - For all $a \in V_T$, then First(a)={ a };
 - For all $A \in V_N$, if $A \Rightarrow *\epsilon$, then $First(A) = \{\epsilon\}$ else $First(A) = \{\}$;
 - For each production $A \rightarrow X1...Xj...Xn$, First(A)=First(A) \cup SectionFirst(X1...Xj...Xn);
 - Repeat step 3 until there is no change to any First set;

SectionFirst $(X_1...X_j...X_n)$

SectionFirst $(X_1...X_i...X_n)$

- $= (First(X_1) \{\epsilon\}) \cup (First(X_2) \{\epsilon\}) \cup ... \cup (First(X_j) \{\epsilon\}) \cup First(X_{j+1})$
- X_{j+1} is the first symbol that is **not nullable** in the right-hand of production
- if X_1 is not nullable, then SectionFirst $(X_1...X_j...X_n)$ =First (X_1)
- if X_1 is nullable, then SectionFirst($X_1...X_j...X_n$) =First(X_1) -{ε}, and continue to see X_2 . Stop until X_i is not nullable.
- if $X_1...X_n$ are all nullable, then SectionFirst $(X_1...X_n)$ = (First (X_1) - $\{\epsilon\}$) \cup (First (X_2) - $\{\epsilon\}$) \cup ... \cup (First (X_n) - $\{\epsilon\}$) \cup $\{\epsilon\}$

- (2) Compute First Set and Follow Set for the rewritten grammar.
 - 计算所有nonterminal的First Set

$$S \rightarrow aS'$$

 $S' \rightarrow SOS' \mid \varepsilon$
 $O \rightarrow + \mid *$

Compute FOLLOW(A) for every nonterminal A

- 1. S is the start symbol, Follow(S)={\$}; for all $A \in V_N$, and $A \neq S$, Follow(A)={};
- 2. For each production $B\rightarrow \alpha A\gamma$, for each A that is a nonterminal do

```
Follow(A)=Follow(A)\cup(First(\gamma) -{\epsilon}) if \epsilon \in \text{First}(\gamma) then add Follow(B) to Follow(A)
```

3. Repeat 2,until there is no change to any follow set

- (2) Compute First Set and Follow Set for the rewritten grammar.
 - 计算所有nonterminal的Follow Set

$$S \rightarrow aS'$$

 $S' \rightarrow SOS' \mid \epsilon$
 $O \rightarrow + \mid *$

	Origin	Pass 1	Pass 2
S	\$	\$, +, *	\$, +, *
S'		\$	\$, +, *
0		a, \$	a, \$, +, *

(3) Is it LL(1) grammar, why?

First(S') ={ **\varepsilon**, a }

First(O)={ +, * }

- 针对同一nonterminal的多个产生式, 计算其每一个产生式右部文法符号串的First Set, 根据计算结果判定是否满足LL(1)的判定条件1
- 如果ε∈First(nonterminal),则根据该nonterminal的 Follow Set判定是否满足LL(1)的判定条件2

```
S \rightarrow aS' First(SOS')=First(S) ={a}  
S' \rightarrow SOS' \mid \epsilon First(\epsilon) ={\epsilon} First(\epsilon) = \epsilon  First(\epsilon) = \epsilon First(\epsilon) = \epsilon First(\epsilon) = \epsilon First(\epsilon) ={\epsilon} First(\epsilon) ={\epsilon</sub> First(\epsilon) ={\epsilon} First(\epsilon) ={\epsilon</sub> First(\epsilon) ={\epsilon</sub> First(\epsilon) ={\epsilon F
```


- (3) Is it LL(1) grammar, why?
 - 针对同一nonterminal的多个产生式, 计算其每一个产生式右部的First Set, 根据计算结果判定是否满足LL(1)的判定条件1
 - 如果ε ∈First(nonterminal),则根据该nonterminal的 Follow Set判定是否满足LL(1)的判定条件2

```
S \rightarrow aS'

S' \rightarrow SOS' \mid \varepsilon

O \rightarrow + \mid *
```

```
First(S) ={ a }
First(S') ={ ε, a }
First(O)={ +, * }
```

Follow(S')={\$, +, *} First(S') \cap Follow(S')={ ϵ , a} \cap {\$, +, *}= Φ

满足LL(1)的判定条件2,因此该文法是LL(1)文法!

- 4、构建LL(1)分析表
 - Repeat the following two steps for each nonterminal A and production choice $A \rightarrow \alpha$
 - For each token 'a' in $First(\alpha)$, add $A \rightarrow \alpha$ to the entry M[A,a]
 - if ε is in First(α), for each element 'a' of Follow(A) (token or \$), add $A \rightarrow \alpha$ to M[A,a]


```
S \rightarrow aS'

S' \rightarrow SOS' \mid \epsilon

First(S) ={ a }

First(SOS') = First(S) ={ a}

First(SOS') = First(S) ={ a}

First(SOS') = First(SO
```

	а	+	*	\$
S	S→aS′			
S'	s' → sos'	$S' \rightarrow \epsilon$	$S' \rightarrow \epsilon$	$S' \rightarrow \epsilon$
0		0 →+	0 →*	

	а	+	*	\$
S	S→aS′			
S'	s' → sos'	$S' \rightarrow \epsilon$	$S' \rightarrow \epsilon$	$S' \rightarrow \epsilon$
0		0 →+	0 →*	

• LL(1)分析过程模拟

step	stack	input	action
1	\$S	aa+a*\$	S→aS′
2	\$S'a	aa+a*\$	match
3	\$S'	a+a*\$	s' → sos'
4	\$S'OS	a+a*\$	S→aS′
5	\$S'OS'a	a+a*\$	match
6	\$S'OS'	+a*\$	S' → ε
7	\$S'O	+a*\$	0 →+
8	\$S'+	+a*\$	match

	а	+	*	\$
S	S→aS′			
S'	s' → sos'	$S' \rightarrow \epsilon$	$S' \rightarrow \epsilon$	$S' \rightarrow \epsilon$
0		0 →+	0 →*	

step	stack	input	action
9	\$S'	a*\$	s' → sos'
10	\$S'OS	a*\$	S→aS′
11	\$S'OS'a	a*\$	match
12	\$S'OS'	*\$	$S' \rightarrow \epsilon$
13	\$S'O	*\$	0 →*
14	\$S'*	*\$	match
15	\$S'	\$	S′ → ε
16	\$	\$	accept

