Real Data and Vector Spaces

➤ What about data with more complex schemas?

X ₁	X ₂	Date	prod_id	comment	У
1.1	2.7	8/21/16	7	"the best glider"	3.6
4.2	3.2	8/14/16	3	"vacation for two"	7.5
9.8	9.2	9/20/16	4	"A special gift for"	17
•••	•••		•••	•••	•••

- The math wants the features to be vectors ...
- > How do we encode dates, categorical fields, and text?

Encoding Categorical Data

- ➤ How do we represent fields like "Product Category"
- **▶ Proposal 1:** Enumerate categories
 - Sports = 1, Furniture = 2, Clothing = 3, Shoes = 4, ...
 - Store field number as a feature
 - Implications:
 - **similarity:** sports is closer to Furniture than shoes
 - magnitude: larger values → ?
 - Not typically used (unless there are two categories ...)

One-hot encoding

- ➤ How do we represent fields like "Product Category"
- **▶ Proposal 1:** Enumerate categories
 - Not typically used (unless there are two categories ...)
- ➤ Proposal 2: Encode as binary vectors:
 - Very commonly used and built-in to many packages
 - Enumerate all possible product categories (m)
 - Add m additional features to the record:
 - Put a one in the feature corresponding to the product category and a zero everywhere else.

Working with Text Data

> How do we convert text to vectors?

"Learning about machine learning is fun."

- ➤ Bag-of-words model
 - Transform emails into d-dimensional vectors
 - d is the number of unique words in the language (big!)
 - Each entry is number of occurrences of that word
 - Sparse: Most words don't occur in most emails
 - Remove Stop-Words: common words that provide little information (e.g., "is", "about")

The Linear Model

Data:

X_1	X ₂	y
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17
• • •	• • •	•••

	Vector of	
	Parameters	Vector of
		Features
$f_{\theta}(x)$	$:=\theta^T$	\hat{x}

- Encode data is real valued vectors
- **Next:** find the optimal value for θ
 - How?

Finding the Best Parameters

Model:
$$f_{\theta}(x) := \theta^{T} x$$

Step 1: define a **Loss Function**:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$

Step 2: Search for best model parameters θ

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - f_{\theta}(x_i))^2$$

Minimizing the Squared Error

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

Take the gradient and set it equal to zero

Minimizing the Squared Error

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

 \triangleright Setting equal to zero and solving for θ :

$$\sum_{i=1}^{n} (\theta^T x_i) x_i = \sum_{i=1}^{n} y_i x_i \Rightarrow X^T X \theta = X^T y$$

➤ Normal Equation:

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

➤ Solved using any standard linear algebra library

Least Squares Regression using the **Statistical Query Pattern**

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

➤In database compute sums:

$$\begin{array}{c|c} \mathbf{p} \\ \hline \\ \mathbf{p} \\ \hline \end{array} \quad C = X^T X = \sum_{i=1}^n x_i x_i^T \qquad \qquad O(np^2)$$

$$\int_{-\infty}^{1} p \quad d = X^T y = \sum_{i=1}^{n} x_i y_i \qquad O(np)$$

➤On client compute:

$$\hat{\theta} = C^{-1}d \qquad O(p^3)$$

Rather than directly solving:

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^m L(y_i, \theta^T x_i)$$

Instead we compute the gradient of the loss:

$$G(\theta; X, y) = \nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(y_i, \theta^T x_i) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L(y_i, \theta^T x_i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^T x_i) x_i$$
Big Idea: Negative gradient
Function

$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y_i} - \theta^T x_i) x_i$$

➢ Big Idea: Negative gradient points in the direction of steepest descent

Gradient Descent Algorithm

```
t ← 0

\theta^{(0)} ← Vec(0)

while (not converged):

\theta^{(t+1)} ← \theta^{(t)} – Stepsize<sup>(t)</sup> * G(\theta; X,Y)

t ← t + 1
```


Gradient Descent Algorithm

```
t ← 0

\theta^{(0)} ← Vec(0)

while (not converged):

\theta^{(t+1)} ← \theta^{(t)} – Stepsize<sup>(t)</sup> * G(\theta; X,y)

t ← t + 1
```

- > Does this fit the statistical query pattern
 - Yes! Only dependence on data is:

- Can we go even faster?
 - **Stochastic Gradient Descent (SGD)**: Approximate the gradient by sampling data (typically several hundred records per query).

Stochastic Gradient Descent

➤ Update the parameters for each training case in turn, according to its own gradients

```
t ← 0
\theta^{(0)} \leftarrow \text{Vec}(0)
while (not converged):
     \theta^{(t+1)} \leftarrow \theta^{(t)} - Stepsize<sup>(t)</sup> * G(\theta; X,y)
    t \leftarrow t + 1
            G(\theta; X, y) = (\mathbf{y}_i - \theta^T x_i) x_i
                                                               Complexity?
            Stepsize^{(t)} = \frac{1}{t+1}
```

Bias-Variance Tradeoff

- So far we have minimized the **training error**: the error on the training data.
 - low training error does not guarantee good expected performance (due to over-fitting)
- We would like to reason about the test error

Theorem:

Test Error = Noise + Bias² + Variance

Noisy data has inherent error (measurement error)

Error due to models inability to fit the data. (Under Fitting)

Error due to inability to estimate model parameters. (Over-fitting)

Bias Variance Plot

Regularization to Reduce Over-fitting

- > High dimensional models tend to over-fit
 - How could we "favor" lower dimensional models?

> Solution Intuition:

Too many features → over-fitting

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_d x_d$$

• Force many of the $\theta_i \approx 0$ (e.g., i > 2) ("effectively fewer features")

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + 0x_3 + \dots + 0x_d$$

= $\theta_1 x_1 + \theta_2 x_2$

Keeping weights close to zero reduces variance

Regularization to Reduce Over-fitting

➤ We can add a regularization term:

$$\hat{ heta} = rg \min_{ heta \in \mathbb{R}^p} \quad rac{1}{n} \sum_{i=1}^n (y_i - heta^T x_i)^2 + \lambda R(heta)}{n \operatorname{Regularization}}$$

Regularization

➤ Common of Regularization Functions:

$$\begin{array}{ll} \text{Ridge (L2-Reg)} \\ \text{Regression} \end{array} R_{\text{\tiny Ridge}}(\theta) = \sum_{i=1}^d \theta_i^2 \quad \begin{array}{ll} \text{\tiny Lasso} \\ \text{\tiny (L1-Reg)} \end{array} R_{\text{\tiny Lasso}}(\theta) = \sum_{i=1}^d |\theta_i| \end{array}$$

- Encourage small parameter values
- \triangleright The parameter λ determines amount of reg.
 - Larger → more reg. → lower variance → higher bias

Regularization and Norm Balls

Regularization to Reduce Over-fitting

➤ We can add a regularization term:

$$\hat{ heta} = rg \min_{ heta \in \mathbb{R}^p} \quad rac{1}{n} \sum_{i=1}^n (y_i - heta^T x_i)^2 + \lambda R(heta)}{n \operatorname{Regularization}}$$

Regularization

- ➤ Solving the regularized problem:
 - Closed form solution for Ridge regression (L2):

$$\hat{\theta}_{\text{Ridge}} = (X^T X + \lambda I)^{-1} X^T Y$$

- Iterative methods for Lasso (L1):
 - Stochastic gradient ...
- How do we choose λ?

Picking The Regularization Parameter λ

> Proposal: Minimize training error

$$\arg\min_{\theta\in\mathbb{R}^p, \lambda\geq 0} \quad \frac{1}{n}\sum_{i=1}^n (y_i - \theta^T x_i)^2 + \lambda R(\theta)$$

- Trivial solution $\rightarrow \lambda = 0$
- ➤Intuition we want to minimize test error
 - Test error: error on unseen data
- **▶2**nd **Proposal:** Split training data into training and evaluation sets
 - For a range of λ values compute optimal θ_λ using only the reduced training set
 - Evaluate θ_{λ} on the separate evaluation set and select the λ with the lowest error

Bias Variance Plot

