Formale Sprachen

Definition

Eine **Grammatik** ist ein Tupel (N, T, S, P) wobei

N: Alphabet der nichtterminalen Symbole

 $T: Alphabet \ der \ \mathbf{terminalen} \ Symbole \ (mit \ T \cap N = \varnothing)$

 $S: Startsymbol \in N$

 $P: Produktionen \subset (N \cup T)^+ \times (N \cup T)^*$

Chomsky Hierarchie

Typ 0: Keine Bedingung

Typ 1: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha, \beta \in (N \cup T)^+$ und $|\alpha| \le |\beta|$

Typ 2: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha, \beta \in (N \cup T)^+$ und $\alpha \in N$

Typ 3: Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha \in N$ und $\beta = tB$, wobei $t \in T^*$ und $B \in N \cap \{\epsilon\}$ und $\beta \neq \epsilon$.

Sonderregel Leeres Wort:

Zusätlich wird die Produktion

$$S_{neu} \to \epsilon | S_{alt}$$

erlaubt um das Leere Wort zuzulassen.

Normalformen

Typ	3	2	1	0
$A \to \epsilon$				×
$A \to t$	×	×	×	×
$A \to tB$	×			×
$A \to BC$		×	×	×
$AB \rightarrow CD$			×	×

Aufgabe 1

Sei L={
$$(abc)^n d^m | k \in \mathbb{N}, m \in \mathbb{N}_0$$
}

a) Geben sie eine Typ-3 Grammatik an, die L erzeugt.

- b) Geben sie auf Basis der Grammatik von (a eine Ableitung des Wortes abcabcddd an.
- c) Normalisieren sie die Grammatik von a).
- d) Konstruieren sie den zugehörigen endlichen Automaten.

Aufgabe 2

Sei L={ $(ab)^n(cd)^m|k\in\mathbb{N}, m\in\mathbb{N}_0$ }

- a) Geben sie eine Typ-3 Grammatik an, die L erzeugt.
- b) Geben sie auf Basis der Grammatik von (a eine Ableitung des Wortes *abcdcdcd* an.
- c) Normalisieren sie die Grammatik von a).
- d) Konstruieren sie den zugehörigen endlichen Automaten.

Aufgabe 3

Sei $R = ((ba)^* \cup c)d^*$ und L die von R erzeugte Sprache.

- a) Geben sie eine Typ-3 Grammatik an, die L erzeugt.
- b) Geben sie auf Basis der Grammatik von (a eine Ableitung des Wortes abcabcddd
- c) Normalisieren sie die Grammatik von a).
- d) Konstruieren sie den zugehörigen endlichen Automaten.

Aufgabe 1

Gegeben seien die folgende Endlichen Automaten

$$A_1 = (\{a, b\}, \{S_0, S_1, S_2, S_3, S_4, S_5\}, \{S_0\}, \delta_1 \text{ siehe Graph}, \{S_2, S_3\})$$

 A_1

Minimiere A_1 und gebe den minimierten Automaten als Graph an.

Aufgabe 2

Gegeben seien die folgende Endlichen Automaten

$$A_1 = (\{a, b\}, \{S_0, S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9\}, \{S_0\}, \delta_1 \text{ siehe Graph}, \{S_3, S_7, S_8\})$$

$$A_1$$

δ_A	a	b
S_0	S_1	S_4
S_1	S_2	S_4
S_2	S_3	S_6
S_3	S_9	S_3
S_4	S_4	S_4
S_5	S_7	S_1
S_6	S_5	S_9
S_7	S_4	S_8
S_8	S_9	S_3
S_9	S_9	S_9

Minimiere A_1 und gebe den minimierten Automaten als Graph an.

Aufgabe 3 (Ähnlich wie Klausuraufgaben)

a) Gegeben sei der folgende deterministische Endliche Automat

$$A_1 = (\{a, b\}, \{n_0, n_1, n_2, n_3, n_4, n_5, n_6\}, n_0, \delta_{A_1} \text{ siehe Graph}, \{n_1, n_2, n_4, n_6\})$$

 A_1

Minimiere A_1 und gebe den entstandenen minimalen Automaten für $L(A_1)$ an.

b) Gegeben seien A_1 aus a) sowie die Automaten A_2 und A_3 :

 A_3

Welche der Automaten A_1, A_2, A_3 sind isomorph? Welche sind äquivalent?