Unadjusted ATE Estimation

Amos Okutse

23 December, 2022

Contents

0.1 UNADJUSTED RESULTS	1
0.2 EXTRACT THE RESULTS	2
0.0.1 LOAD DATA	
<pre>rm(list = ls()) ## load the saved single data files load("C:\\Users\\aokutse\\OneDrive - Brown</pre>	
<pre>## load the saved list data files load("C:\\Users\\aokutse\\OneDrive - Brown</pre>	

0.1 UNADJUSTED RESULTS

```
## function to return the estimated treatment effects across n = 1000 data sets ## - full data
```

Table 1: Unadjusted estimates of the average treatment effect across n = 1000 datasets under full and observed data analysis

Data generating values	n	ate	sd	bias
n = 500, SD = 1	500	50.10317	3.299761	0.1031665
n = 500, SD = 1	244	50.03152	4.349138	0.0315233
n = 500, SD = 45	500	50.17186	4.981188	0.1718594
n = 500, SD = 45	258	49.99792	7.325424	-0.0020821
n = 2000, SD = 1	2000	49.97075	1.660128	-0.0292450
n = 2000, SD = 1	997	50.00518	2.169228	0.0051760
n = 2000, SD = 45	2000	50.02245	2.662620	0.0224526
n = 2000, SD = 45	1003	50.17771	3.695738	0.1777148

```
## - observed modified
unadj <- function(df = NULL){</pre>
  ## since this is based on the full data set, then use the full data set
  full\_unadjusted = mean(df$y[df$A == 1]) - mean(df$y[df$A == 0])
  full_bias_unadjusted = full_unadjusted - 50
  ## subset the data to only subjects with R == 1
  df2 <- dplyr::filter(df, R == 1)</pre>
  observed_unadjusted = mean(df2\$y[df2\$A == 1]) - mean(df2\$y[df2\$A == 0])
  observed_bias = observed_unadjusted - 50
  return(data.frame(full_unadjusted, full_bias_unadjusted, observed_unadjusted,

→ observed_bias))
}
## analyze the results into a table
df_{onea} \leftarrow onea \%\% map_dfr(data.frame) # n = 500; sd = 1
df_oneb <- oneb %>% map_dfr(data.frame) # n = 500; sd = 45
df_{onec} \leftarrow onec \% \% map_dfr(data.frame) # n = 2000; sd = 1
df_oned \leftarrow oned \%>\% map_dfr(data.frame) # n = 2000; sd = 1
```

0.2 EXTRACT THE RESULTS

##- observed data

```
## the order of the rows starts with n = 500
write.csv(unadjusted, file = "C:\\Users\\aokutse\\OneDrive - Brown
Good University\\ThesisResults\\[1]_unadjusted\\unadjusted_results.csv", row.names =
Good FALSE)
```