线控作业1

张蔚桐 2015011493 自55

2017年3月1日

1

2

从图1中可以预计,系统的传递函数可以表示为 $G(s)=\frac{K}{s(T_1s+1)(T_2s+1)},T_1>0,T_2>0$ 可以根据相频图估计转折频率 $\omega_1=18.14\mathrm{rad/s},\omega_2=1103\mathrm{rad/s}$ 可得 $T_1=\frac{1}{\omega_1}=0.551\mathrm{s},T_2=\frac{1}{\omega_2}=0.9066\times 10^{-3}\mathrm{s}$,同时,考虑辐频在 $\omega=1\mathrm{rad/s}$ 附近的增益可得20lg(K)=-9.2;K=0.346因此系统传递函数可以表示为

 $G(s) = \frac{0.346}{s(0.551s+1)(0.9066\times 10^{-3}s+1)}$

,对应的Bode图如图2所示,可以看出和实际bode图1还是基本符合的

3

如图3显然这是一个惯性环节的图像,可以直接看出

$$G(s) = \frac{0.102}{(0.001s + 1)}$$

MATLAB仿真之后的图像如图4所示,和原图3基本一致

4

可以看出系统的传递函数为 $G(s)=\frac{K}{s(Ts+1)}, T>0$,并由图5可以得到 $20lg(K)=7.196, K=2.29, T=\frac{1}{20}=0.05$ 因此

$$G(s) = \frac{2.29}{s(0.05s+1)}$$

MATLAB作图如图6所示,和实际情况相差不多

图 1: 原图像

图 2: 理论图像

图 3: 原图像

图 4: 理论图像

图 5: 原图像

图 6: 理论图像

5

根据KCL, KVL, 可以得到

$$\begin{cases} \dot{x_3} = \frac{1}{C_3} x_4 \\ \dot{x_4} = -\frac{1}{L_1} x_1 - \frac{1}{L_1} x_3 + \frac{1}{L_1} u \\ \dot{x_2} = -\frac{1}{C_2 R} x_1 - \frac{1}{C_2 R} x_2 + \frac{1}{C_2 R} u \\ \dot{x_1} = \frac{1}{C_1} x_4 - \frac{C_2}{C_1} \dot{x_2} = \frac{1}{C_1 R} x_1 + \frac{1}{C_1 R} x_2 + \frac{1}{C_1} x_4 - \frac{1}{C_1 R} u \end{cases}$$

并进一步得到

$$y = RC_2\dot{x_2} = -x_1 - x_2 + u$$

因此得到

$$\mathbf{A} = \begin{pmatrix}
\frac{1}{RC_1} & \frac{1}{RC_1} & 0 & \frac{1}{C_1} \\
-\frac{1}{RC_2} & -\frac{1}{RC_2} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{C_3} \\
-\frac{1}{L_1} & 0 & -\frac{1}{L_1} & 0
\end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix}
-\frac{1}{RC_1} & \frac{1}{RC_2} & 0 & \frac{1}{L_1}
\end{pmatrix}^{\mathbf{T}}$$

$$\mathbf{c}^{\mathbf{T}} = \begin{pmatrix}
-1 & -1 & 0 & 0
\end{pmatrix}$$

$$\mathbf{d} = \begin{pmatrix}
1
\end{pmatrix}$$

6

由泊肃叶定律, 可以得到状态方程为

$$\begin{cases} c_1 x_1 = u_1 + \frac{\rho g}{R_2} x_2 - \frac{\rho g}{R_2} x_1 - \frac{\rho g}{R_1} x_1 \\ c_2 x_2 = u_2 - \frac{\rho g}{R_2} x_2 + \frac{\rho g}{R_2} x_1 \end{cases}$$

输出方程为

$$y = \frac{\rho g}{R_1} x_1$$

其中 ρ 是液体的密度,g是重力加速度