

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К ДОМАШНЕЙ РАБОТЕ ПО КУРСУ:*

"Методы численного решения задача линейной алгебры"

Студент		
Φ H2-31M		Д.И. Богданов
	(Подпись, дата)	(И.О. Фамилия)
(Группа)		A CL D
		А.С. Родин
	(Подпись, дата)	(И.О. Фамилия)

Содержание

1.	Постановка задачи	3
	1.1. Задание 1	4
	1.2. Задание 2	4
2.	Решение линейной задачи наименьших квадратов в с помо-	
	щью QR-разложения методом отражений Хаусхолдера	5
3.	Получение собственных значений матрицы с помощью QR-	
	алгоритма со сдвигами	6
4.	Листинг расчетной программы на $\mathrm{C}{++}$	10
5.	Листинг проверочного скрипта на Wolfram Mathematica	21
6.	Приложение. Пример сводки результатов расчетной про-	
	граммы	22

1. Постановка задачи

Нужно сформировать матрицу размером 10×10 по следующему принципу. В качестве базовой матрицы, берется известная матрица, которая получается после дискретизации одномерного оператора Лапласа методом конечных разностей или методом конечных элементов. На равномерной сетке:

$$A_0 = \{a_{ij}\}_{i,j=\overline{1,n}}$$

где

$$a_{ij} = \begin{cases} 2, & i = j, \\ -1, & |i - j| = 1, \\ 0, & \text{else.} \end{cases}$$

Для данной матрицы известны аналитические формулы для собственных значений (n=10)

$$\lambda_j^0 = 2(1 - \cos \frac{\pi j}{n+1}), \quad j = \overline{1, n}.$$

и компонент собственных векторов (вектора имеют 2-норму равную 1):

$$z_j^0(k) = \sqrt{\frac{2}{n+1}} \sin \frac{\pi j k}{n+1}, \quad k = \overline{1, n}.$$

Итоговая матрица получается по формулам:

$$A = A_0 + \delta A,$$

$$\delta A_{ij} = \begin{cases} \frac{c}{i+1}, & i \neq j, \\ 0, & i = j, \end{cases}$$

$$c = \frac{N_{var}}{N_{var} + 1} \varepsilon.$$

где N_{var} — номер варианта (совпадает с номером студента в списке в журнале группы), ε - параметр, значение которого задается далее.

Нужно выполнить следующие задания:

1.1. Задание 1

Взять матрицу для значения $\varepsilon=0.1$, убрать последний столбец и сформировать из первых 9 столбцов матрицу \hat{A} размера 10×9 . Решить линейную задачу наименьших квадратов для вектора невязки

$$r = \hat{A}x - b,$$

где вектор b размерности 10×1 нужно получить по следующему алгоритму: выбрать вектор x_0 , размерности 9×1 и для него вычислить $b = \hat{0}$.

Для решения поставленной задачи использовать QR разложение: для вариантов с четным номером использовать соответствующий алгоритм, основанный на методе вращений Гивенса, для вариантов с нечетным номером - алгоритм, основанный на методе отражений Хаусхолдера.

После получения решения сделать оценку величины $||x-x_0||_2/||x_0||_2$.

1.2. Задание 2

Для матрицы найти все ее собственные значения $(\lambda_j, j = \overline{1,10})$ и собственные вектора $(z_j, j = \overline{1,10}, c$ 2-нормой равной 1) с помощью неявного QR-алгоритма со сдвигом (с предварительным приведением матрицы к форме Хессенберга) для трех вариантов: $\varepsilon = 10^{-1}, 10^{-3}, 10^{-6}$.

По итогам расчетов нужно сделать сводную таблицу, в которой указать следующие величины: $\lambda_j - \lambda_j^0$ и $||z_j - z_j^0||_2$ для $j = \overline{1,10}$.

2. Решение линейной задачи наименьших квадратов в с помощью QR-разложения методом отражений Хаусхолдера

В рамках данной задачи реализованы следующие алгоритмы:

- Отражение Хаусхолдера;
- Обычное QR-разложение;
- QR-разложение для метода LLS;
- Обратный ход метода Гаусса;
- Linear Least Squares с помощью QR-разложения.

Расчетная реализация всех алгоритмов выполнена на языке C++ с использованием библиотеки Eigen для базовых матричных операций. Для отладки программы и проверки корректности результатов реализован вспомогательный скрипт на Wolfram Mathematica, использующий встроенные методы для получения необходимых разложений.

Изначальная форма алгоритма QR-разложения имеет следующий вид:

```
Q_{wave} = I;
R_{wave} = A;
for i = 1, min(M-1, N) {
                       = House(R_wave[i:M, i]) // O(N)
   pi_wave
                       = I - 2 ui ui^T
                                                       // O(N^2)
   рi
                       = I
                                                        //
   pi[i:M, i:M] = pi_wave
                                                        //
   R_{\text{wave}[i:M, i:N]} = pi_{\text{wave}} * R_{\text{wave}[i:M, i:N]} // O(N^3)
   Q_{\text{wave}}[0:M, i:M] = Q_{\text{wave}}[0:M, i:M] * pi_wave // O(N^3)
}
return { Q[0:M, 0:N], R[0:N, 0:N] }
```

В явном виде алгоритм имеет сложность $O(N^4)$, это решается если под-

ставить матрицу p_i явно и расписать матричное умножение как 2 умножения матрицы на вектор. Приходим к следующему алгоритму:

Произведено тестовое QR-разложение матрицы \hat{A} , проверена ортогональность матрицы Q и приблизительное совпадение $QR \approx A$. Результаты сходятся с разложением с помощью встроенного метода QRDecomposition[] в пакете Wolfram Mathematica.

Модификация QR-разложени для метода LLS также позволяет вычислять правую часть $Q^T b$ сразу по ходу разложения с целью экономии вычислительных ресурсов. Алгоритм описан в листинге программы

В качестве тестового вектора выбран $x_0: x_i=i^2$. Для него решена задача наименьших квадратов относительно невязки, получен вектор x_{LLS} имеющий следующую норму ошибки:

lls_error_estimate -> 3.990082657206211e-16

return { Q[0:M, 0:N], R[0:N, 0:N] }

Результаты LLS также сверены с помощью скрипта.

3. Получение собственных значений матрицы с помощью QR-алгоритма со сдвигами

В рамках данной задачи реализованы следующие алгоритмы:

- Приведение матрицы к Хессенберговой форма;
- QR-алгоритм без сдвигов (для отладочных целей);
- $O(N^2)$ QR-разложение для верхне-хессенберговых матриц с вычислением RQ;
- QR-алгоритм со сдвигами и приведением изначальной матрицы к Xecсенберговой форме;

В качестве значений сдвига в QR-алгоритме берется H_{nn} , итерации производятся до тех пор пока значение $|H_{n,n-1}|$ не станет меньше некоторого ε , после чего n-е значение на диагонали считаем найденым и редуцируем задачу к работе с блоком $(n-1) \times (n-1)$. Процедура повторяется до достижения максимального числа итераций или редукции n к 2-м (при нормальном ходе программы ожидается второй исход). Приходим к следующему алгоритму:

Таким образом, метод редуцируется к сложности $O(N^3)$, без учета хессенберговой структуры имели бы $O(N^4)$. Матрицы Q, R в данной реализации не нужны в явном виде, однако программно также определяются для отладочных целей.

В результате работы алгоритма получаем матрицу T из разложения Шура, значения на главной диагонали соответствуют собственным значениям изначальной матрицы.

Получены собственные значения матрицы A, результаты сравнения с аналитическими результатами приведены ниже для $\varepsilon = 10^{-1}, 10^{-3}, 10^{-6}$:

j	$ \lambda_j^0 - \lambda_j $	$ z_j^0 - z_j _2$
1	0.0383792	X
2	0.00164998	X
3	0.00198987	X
4	0.00445514	X
5	0.00474202	X
6	0.00674079	X
7	0.00682261	X
8	0.00718661	X
9	0.00664725	X
10	0.00542461	X

Таблица 1. Ошибки при $\varepsilon=10^{-1}$

j	$ \lambda_j^0 - \lambda_j $	$ z_j^0 - z_j _2$
1	0.000395515	X
2	1.15997e-05	X
3	1.46055e-05	x
4	4.50412e-05	X
5	4.80620e-05	X
6	6.73953e-05	X
7	6.82741e-05	X
8	7.18550e-05	X
9	6.65622e-05	X
10	5.45308e-05	x

Таблица 2. Ошибки при $\varepsilon=10^{-1}$

j	$ \lambda_j^0 - \lambda_j $	$ z_j^0 - z_j _2$
1	3.95623e-07	X
2	1.15569e-08	X
3	1.45556e-08	X
4	4.50458e-08	X
5	4.80682e-08	X
6	6.73952e-08	X
7	6.82745e-08	X
8	7.18549e-08	X
9	6.65631e-08	X
10	5.45337e-08	X

Таблица 3. Ошибки при $\varepsilon=10^{-1}$

Пример сводки результатов расчета для малого n (в силу вербозности результата при n=10) приведен в приложении.

4. Листинг расчетной программы на ${ m C}++$

source/utils.hpp

```
1 #pragma once
 3 #include "firstparty/proto utils.hpp"
 4 #include "thirdparty/Eigen/Dense"
   #include "thirdparty/Eigen/src/Core/Matrix.h"
   #include "thirdparty/Eigen/src/Core/util/Meta.h"
   #include <limits>
 8
 9
10
11 using Matrix
                    = Eigen::MatrixXd;
                    = Eigen::VectorXd;
12 using Vector
   using RowVector = Eigen::RowVectorXd;
   using Idx
                     = Eigen::Index; // Eigen uses signed (!) indeces
16
   constexpr bool collapse_small_values = false;
17
18
   // Eigen has formatting options built-in, but I prefer the style of my own
    package.
   \ensuremath{//} Eigen stores matrices as col-major so we do a matrix view into the CR memory layout.
19
20
   inline std::string stringify_matrix(const Matrix& eigen_matrix) {
21
        using namespace utl;
22
23
        if constexpr (collapse_small_values) {
24
            utl::mvl::Matrix<double> mvl matrix(
25
                eigen_matrix.rows(), eigen_matrix.cols(),
   [&](std::size_t i, std::size_t j) { return (std::abs(eigen_matrix(i,
j)) < 1e-12) ? 0. : eigen_matrix(i, j); });</pre>
26
27
            return utl::mvl::format::as_matrix(mvl_matrix);
28
29
            mvl::ConstMatrixView<double, mvl::Checking::BOUNDS, mvl::Layout::CR> view(
30
                 eigen_matrix.rows(), eigen_matrix.cols(), eigen_matrix.data());
31
            return mvl::format::as_matrix(view);
32
        }
33 }
```

source/qr_factorization.hpp

```
1 #pragma once
 3 #include "utils.hpp"
 4
 5
 6
 7
   // Householder reflection operation. O(N) complexity.
   // Template so we can take vectors/blocks/views as an argument and not force a
   copy.
10
   //
   template <class VectorType>
11
12 | Vector householder_reflect(const VectorType& x) {
13
14
       // u = \{ x[0] + sign(x[0]) * ||x||_2, x[1], x[2], ..., x[K] \}
15
       Vector u = x;
16
       u(0) += utl::math::sign(u(0)) * u.norm();
17
18
       return u.normalized();
19 }
20
21
   // QR factorization. O(N^3) complexity.
22
   //
  // Original alg would be:
23
   // -----
24
25 // -
        Q wave = I;
26 // -
        R_{wave} = A;
27 // - for i = 1, min(M-1, N) {
Q_{\text{wave}}[0:M, i:M] = Q_{\text{wave}}[0:M, i:M] * pi_wave // O(N^3)
33 // -
34 // - }
35 // - return { Q[0:M, 0:N], R[0:N, 0:N] }
36 // -----
37
   //
38 // After the algorithm we end up with a following decomposition:
39 // A = p1 * ... * pN * rcat[ R 0 ]
40 //
41 //
        Q_wave
                       R_wave
   // where Q wave and R wave are "extended" matrices Q and R, to get proper QR we
   need to trim a few rows/cols at the end
43 //
44
   // This alg also results in O(N^4). We can rewrite it by substituting 'pi wave'
   directly and doing
   // 2 matrix*vector products instead of 1 matrix*matix, which brings complexity
45
   down to O(N^3).
46
   //
47
   // -----
48 // - Q_{wave} = I;
49 // - R wave = A;
50 // -
        for i = 1, min(M-1,N) {
51 // - ui = House(R_wave[i:M, i]) // O(N) -
52 // - R_wave[i:M, i:N] -= 2 ui (ui^T * R_wave[i:M, i:N]) // O(N^2) -
53 // - Q_wave[0:M, i:M] -= Q_wave[0:M, i:M] * 2 ui ui^T // O(N^2) -
```

```
54 // - }
55 // - return { Q[0:M, 0:N], R[0:N, 0:N] }
56 // -----
57
58 inline std::pair<Matrix, Matrix> qr_factorize(const Matrix& A) {
59
       const auto M = A.rows();
60
       const auto N = A.cols();
61
62
       Matrix Q wave = Matrix::Identity(M, M);
63
       Matrix R wave = A;
64
65
       for (Idx i = 0; i < std::min(M - 1, N); ++i) {
           const Vector ui = householder_reflect(R_wave.block(i, i, M - i, 1));
66
    // O(N)
    67
           68
    ui.transpose();
69
       }
70
71
       return {Q_wave.block(0, 0, M, N), R_wave.block(0, 0, N, N)};
72
    }
73
74
    // A variant of QR-decomposition used for linear least squares. O(N^3)
    complexity.
75
    //
   // Is is more efficient since in LSQ we don't need 'Q' explicitly,
    // we can directly compute 'Q^T b'.
77
78
    //
79
    inline std::pair<Matrix, Matrix> qr_factorize_lls(const Matrix& A, const Vector&
80
       const auto M = A.rows();
81
       const auto N = A.cols();
82
83
       Matrix R_wave = A;
       Vector QTb = b;
84
85
86
       for (Idx i = 0; i < std::min(M - 1, N); ++i) {
87
                             = House(R wave[i:M, i])
88
           // R wave[i:M, i:N] -= 2 ui ui^T * R wave[i:M, i:N]
           const Vector ui = householder reflect(R wave.block(i, i, M - i, 1));
89
    // O(N)
    90
91
92
           // gamma
                     = - 2 ui^T QTb[i:M]
93
           // QTb[i:M] += gamma * ui
           const Matrix gamma = -2. * ui * QTb.segment(i, M - i).transpose(); //
94
    0(N)
95
           QTb.segment(i, M - i) += gamma * ui;
                                                                       //
    0(N^2)
96
       }
97
98
       return {QTb.segment(0, N), R_wave.block(0, 0, N, N)};
99
100
     / A variant of QR-decomposition used decomposing upper-hessenberg matrices in
    QR-iteration. O(N^2) complexity.
102
103
    // Returns { Q, R, RQ }. Technically we only need RQ for for the QR-algorithm,
    but for testing purposes { Q, R}
```

```
104 // are left the same.
105 //
^{106} // Same algorithm as regular QR factorization, except instead of blocks of 'M _{\rm i'} rows/cols we
    // have blocks of '2' rows/cols, which reduces O(N^2) operations to O(N).
107
108
109
    inline std::tuple<Matrix, Matrix, Matrix> qr_factorize_hessenberg(const Matrix&
110
        assert(A.rows() == A.cols());
111
112
        const auto M = A.rows();
113
114
        Matrix Q = Matrix::Identity(M, M);
115
        Matrix R = A;
116
        Matrix V = Matrix::Zero(M, M);
117
118
        // Compute \{ Q, R \} in O(N^2)
119
        for (Idx i = 0; i < M - 1; ++i) {
120
             const Vector ui = householder_reflect(R.block(i, i, 2, 1));
    // O(N)
121
            R.block(i, 0, 2, M) = 2. * ui * (ui.transpose() * R.block(i, 0, 2, M));
    // O(N)
122
            Q.block(0, i, M, 2) = Q.block(0, i, M, 2) * 2. * ui * ui.transpose();
    // O(N)
            V.block(i, i, 2, 1) = ui;
123
    // O(N)
124
        }
125
126
        // Compute { RQ } in O(N^2)
127
        Matrix RQ = R;
128
        for (Idx i = 0; i < M - 1; ++i) {
             Vector v = V.block(i, i, 2, 1);
129
             RQ.block(0, i, M, 2) = RQ.block(0, i, M, 2) * 2. * v * v.transpose(); //
130
    0(N)
131
132
133
        return {Q, R, RQ};
134
    }
135
136
    // Hessenberg QHQ^T-factorization using householder reflections. O(N^3)
    complexity.
137
    // Algorithm:
138
139
    // -----
140
   // - H = A;
          for i = 1, M - 2 {
141
    // -
142
    // -
             ui = House(H[i+1:M, i])
                                                            // O(N)
              H[i+1:M, i:M] -= 2 ui (ui^T * H[i+1:M, i:M]) // O(N^2) -
143 // -
144 // -
              H[1:M, i+1:M] = 2 (H[1:M, i+1:M] * ui) ui^T // O(N^2) -
145 // - }
146 //
147
148 inline Matrix hessenberg_reduce(const Matrix& A) {
149
        assert(A.rows() == A.cols());
150
151
        const Idx M = A.rows();
152
153
        Matrix H = A;
154
155
        for (Idx i = 0; i < M - 2; ++i) {
156
             const Vector ui = householder_reflect(H.block(i + 1, i, M - i - 1, 1));
```

source/linear_least_squares.hpp

```
1 #pragma once
3 #include "qr_factorization.hpp"
5 // Backwards gaussian elimination. O(N^2) complexity.
6 //
7
   // Assumes 'R' to be upper-triangular matrix.
8
9
  inline Vector backwards_gaussian_elimination(const Matrix& R, Vector rhs) {
10
       for (Idx i = R.rows() - 1; i >= 0; --i) {
           for (Idx j = i + 1; j < R.cols(); ++j) rhs(i) -= R(i, j) * rhs(j);
11
12
           rhs(i) /= R(i, i);
13
       }
14
15
       return rhs;
16 }
17
18 // Linear Least Squares problem. O(N^3) complexity.
19 //
20 // LLS has a following solusion:
21 // x = A^+ b
         where A^+ = R^-1 * 0^T
22 //
23 //
24 // We can rewrite it as a SLAE:
25 // R x = Q^t b
26 //
27 // since 'R' is upper-triangular, we only need to do the backwards gaussian
   elimination, which is O(N^2).
28 //
29 Vector linear_least_squares(const Matrix& A, const Matrix& b) {
30
       // Computing QR the usual way
31
       // const auto [Q, R] = qr factorize(A);
32
       // const auto x
                          = backwards_gaussian_elimination(R, Q.transpose() * b);
33
34
       // Computing QR with (Q^T * b) directly
       const auto [QTb, R] = qr_factorize_lls(A, b);
35
36
       const auto x
                          = backwards_gaussian_elimination(R, QTb);
37
38
       return x;
39 }
```

source/eigenvalues.hpp

```
1 #pragma once
 3 #include "gr factorization.hpp"
 4 #include "thirdparty/Eigen/src/Core/util/Constants.h"
 5 #include "utils.hpp"
 6 #include <cassert>
  #include <cstddef>
 8 #include <cstdio>
 9
  #include <limits>
10
#include "thirdparty/Eigen/Core"
12
13 // QR-method for eigenvalues with NO shift and NO Hessenberg form optimization.
14 //
15 // Used as a reference. O(N^3) single iteration complexity.
16 //
17 | Matrix eigenvalues_prototype(const Matrix& A) {
       assert(A.rows() == A.cols());
18
19
20
       Matrix T shur = A;
21
22
       for (Idx i = 0; i < A.rows() * 100; ++i) {
23
          const auto [Q, R] = qr_factorize(T_shur); // O(N^3)
          T_{shur} = R * Q;
24
25
          // no stop condition, just do a ton of iterations
26
27
28
       return T_shur;
29 }
30
31\ //\ QR-method for eigenvalues with shifts and Hessenberg form optimization.
33 // Requires 'A' to be in upper-Hessenber form (!).
34 // Using Hessenberg form brings complexity down to O(N^2) per iteration.
35 //
36 // Algorithm:
37 // -----
38 // - while (N >= 2 && iteration++ < max_iterations) {
39 // - sigma = T_shur[N, N]
40 // -
           [ Q, R, RQ ] = qr factorize hessenberg(T shur[1:N, 1:N]) // O(N^2) -
41 // -
                                                               // O(N^2) -
           T_shur[0:N, 0:N] = RQ + sigma I
42 // -
           if (|T_shur[N, N-1]| < eps) --N
                                                                // 0(1) -
43 // - }
44 // -----
                  ______
   //
45
46 // Note that matrix multiplication here is O(N^2) because 'R' is tridiagonal.
47 //
48 // As a stop-condition for deflating the block we use last row element under the
49 // as soon as it becomes "small enough" the block can deflate.
51 // 'Q' and 'R' matrices aren't directly used anywhere, but still computed for
   debugging purposes.
52 //
53 Matrix eigenvalues(const Matrix& A) {
       assert(A.rows() == A.cols());
54
55
```

```
56
        const std::size_t max_iterations = 500 * A.rows();
                             iteration
57
        std::size_t
                                              = 0;
58
        Idx
                                              = A.rows(); // mutable here since we shrink
    the working block (!)
59
60
        Matrix T_schur = A;
61
62
        while (N >= 2 && iteration++ < max iterations) {</pre>
             const double sigma = T_schur(N - 1, N - 1); // O(1)
63
             [[maybe unused]] const auto [Q, R, RQ] =
64
    65
    T_schur.block(0, 0, N, N) = RQ + sigma * Matrix::Identity(N, N); // (N^2)
66
    \label{eq:if_schur} \textbf{if} \ (\texttt{std::abs}(\texttt{T\_schur}(\texttt{N - 1, N - 2})) < \texttt{std::numeric\_limits} < \\ \textbf{double} > ::\texttt{epsilon}()) \ -- \\ \textbf{N}; \ // \ 0 \\ \hline (1)
67
68
        }
69
70
        return T_schur;
71
72
```

source/main.cpp

```
1 #include "eigenvalues.hpp"
 2 #include "linear_least_squares.hpp"
3 #include "utils.hpp"
4 #include <cmath>
5
6
7
8
   int main() {
9
       using namespace utl;
10
11
       // ========
12
       // --- Problem ---
13
       // ========
14
15
       constexpr double
                           Nvar = 1:
16
       constexpr double
                            epsilon = 1e-6; // 0.1
                         c = Nvar / (Nvar + 1.) * epsilon;
17
       constexpr double
18
       constexpr std::size_t N
                                     = 4;
19
       // A0 = { 2, if (j == j)
20
       // { -1, if (i == j - 1 \mid | i == j + 1) } { 0, else
21
22
23
       Matrix AO(N, N);
24
       for (Idx i = 0; i < A0.rows(); ++i)
   for (Idx j = 0; j < A0.cols(); ++j) A0(i, j) = (i == j) ? 2. : (std::abs(i - j) == 1) ? -1. : 0.;
25
26
27
       // deltaA = \{ c / (i + j), if (i != j) \}
28
                               0, else
       //
                  {
29
       Matrix deltaA(N, N);
30
       for (Idx i = 0; i < deltaA.rows(); ++i)
           for (Idx j = 0; j < deltaA.cols(); ++j) deltaA(i, j) = (i != j) ? c / (i)
31
   + j + 2) : 0;
32
33
       // A = A0 + deltaA
34
       const Matrix A = A0 + deltaA;
35
36
       // A hat = <A without the last column>
37
       const Matrix A_{hat} = A.block(0, 0, A.rows(), A.cols() - 1);
38
39
       log::println("----");
       log::println("--- Problem ---");
40
41
       log::println("----");
42
       log::println();
       log::println("epsilon -> ", epsilon);
43
                         -> ", N);
44
       log::println("N
                            -> ", stringify_matrix(A0));
45
       log::println("A0
       log::println("deltaA -> ", stringify_matrix(deltaA));
46
                            -> ", stringify_matrix(A));
47
       log::println("A
       log::println("A_hat -> ", stringify_matrix(A_hat));
48
49
50
       // ========
51
       // --- Task 1 ---
       // =======
52
53
       //
54
       // Solving LLS (Linear Least Squares) with QR factorization method.
55
       //
```

```
56
57
        // Try QR decomposition to verify that it works
58
        const auto [Q, R] = qr_factorize(A_hat);
59
60
        log::println("-----");
        log::println("--- OR factorization ---");
61
        log::println("-----"):
62
63
        log::println();
       64
65
66
       log::println("Verification:");
67
       log::println();
        log::println("Q^T * Q -> ", stringify_matrix(Q.transpose() * Q));
68
        log::println("Q * R - A_hat -> ", stringify_matrix(Q * R - A_hat));
69
70
71
       // Generate some 'x0',
72
       // set b = A_hat * x0
73
74
       Vector \mathbf{x0}(N - 1);
75
        for (Idx i = 0; i < x0.rows(); ++i) x0(i) = math::sqr(i + 1);
76
        const Vector b = A hat * x0;
77
78
        // Solve LLS
79
        const Vector x_lls = linear_least_squares(A_hat, b);
80
        // Relative error estimate ||x_lls - x0||_2 / ||x0||_2
81
82
        const double lls_error_estimate = (x_lls - x0).norm() / x0.norm();
83
        log::println("-----");
84
        log::println("--- Linear Least Squares solution ---");
85
        log::println("-----"):
86
87
        log::println();
       88
89
90
       log::println("lls_error_estimate -> ", lls_error_estimate);
91
92
       log::println();
93
94
       // ========
95
       // --- Task 2 ---
96
       // =======
       //
97
98
       // Computing eigenvalues of the matrix using QR method with a shift.
99
100
101
       // Compute analythical eigenvalues
102
       Vector lambda0(N);
    for (Idx j = 0; j < lambda0.size(); ++j) lambda0(j) = 2. * (1. -std::cos(math::PI * (j + 1) / (N + 1)));
103
104
        std::sort(lambda0.begin(), lambda0.end());
105
106
       // Compute analythical eigenvectors (columns of the matrix store vectors)
107
       Matrix z0(N, N);
108
        for (Idx k = 0; k < z0.cols(); ++k)
109
           for (Idx i = 0; i < z0.rows(); ++i)
               z0(i, k) = std::sqrt(2. / (N + 1)) * std::sin(math::PI * (i + 1) * (k))
110
    + 1) / (N + 1);
111
       // Compute 'H' from Hessenberg decomposition 'A = P H P^*'
112
```

```
113
        Matrix H_hessenberg = hessenberg_reduce(A);
114
115
        // Compute numeric eigenvalues
        const auto T shur = eigenvalues(H hessenberg);
116
117
118
        // Extract numeric eigenvalues as a sorted vector for comparison
        Vector lambda = T shur.diagonal();
119
120
        std::sort(lambda.begin(), lambda.end());
121
        log::println("----");
122
        log::println("--- Eigenvalue solution ---");
123
        log::println("-----"):
124
125
        log::println();
    log::println("H_hessenberg
stringify_matrix(H_hessenberg));
                                                     -> ",
126
        log::println("T_shur
127
                                                     -> ", stringify_matrix(T_shur));
        log::println("lambda0 (analythic eigenvals) -> ", stringify_matrix(lambda0));
128
        log::println("lambda (numeric eigenvals) -> ", stringify_matrix(lambda));
129
                              (analythic eigenvecs) -> ", stringify_matrix(z0));
130
        log::println("z0
131
132
        table::create({4, 25, 25});
133
        table::hline();
134
        table::cell(" j ", " |lambda_j^0 - lambda_j| ", " ||z0_j - z-j||_2 ");
135
        table::hline():
136
        for (std::size_t j = 0; j < N; ++j) {</pre>
137
            table::cell(j + 1, std::abs(lambda0(j) - lambda(j)), "x");
138
139
140
141
        return 0;
142 }
```

5. Листинг проверочного скрипта на Wolfram Mathematica

```
In[1234]:=
       Nvar = 1;
       \varepsilon = 0.1;
       c = Nvar / (Nvar + 1) \varepsilon;
       N = 4;
       A0 = Table[Piecewise[\{(2, i == j), \{-1, (i == j-1) || (i == j+1)\}\}, 0], \{i, 1, N\}, \{j, 1, N\}\};
       \delta A = Table[Piecewise[\{(c/(i+j), i \neq j)\}, 0], \{i, 1, N\}, \{j, 1, N\}];
       A = A0 + \delta A;
       Ahat = A[All, 1;; -2];
       {Q, R} = QRDecomposition[Ahat];
       Q = Transpose@Q; (* for some reason Mathematica returns Q as transposed *)
       x0 = Table[i * i, {i, 1, N - 1}];
       b = Ahat.x0;
       LLSx = Inverse[R].Transpose[Q].b;
       LLSx2 = LeastSquares[Ahat, b]; (* Should give the same result as formula above *)
       eigenvals = Reverse@Eigenvalues[A];
       {ShurQ, ShurT} = SchurDecomposition[A];
       (* Should give the same eigenvalues as method above *)
       (* Eigenvalues will be stored on the main diagonal of 'T' *)
       {HessP, HessH} = HessenbergDecomposition[A];
       Framed@"Problem"
       Row@{"A_0 = ", A0 // MatrixForm}
       Row@{"\delta A = ", \delta A /\!\!/ MatrixForm}
       Row@{"A = ", A // MatrixForm}
       Row@{"Â = ", Ahat // MatrixForm}
       Framed@"QR decomposition"
       Row@{"Q = ", Q /| N /| MatrixForm}
       Row@{"R = ", R // N // MatrixForm}
       Row@{"QTQ = ", Transpose[Q].Q // MatrixForm}
       Row@{"QR = ", Q.R // MatrixForm}
       Framed@"LLS"
       Row@{"x_0 = ", x0 // MatrixForm}
       Row@{"b = ", b // MatrixForm}
       Row@{"x<sub>LLS</sub> (formula) = ", LLSx // MatrixForm}
       Row@{"x<sub>LLS</sub> (built-in) = ", LLSx2 // MatrixForm}
       Framed@"Eigenvalue problem"
       Row@\{"\{\lambda_i\}_{i=1}^N = ", eigenvals # MatrixForm\}
```

6. Приложение. Пример сводки результатов расчетной программы

```
-----
--- Problem ---
_____
epsilon -> 1e-06
    -> 4
   -> Tensor [size = 16] (4 x 4):
 [ 2 -1 0 0]
 [ -1 2 -1 0 ]
 [ 0 -1 2 -1 ]
 [ 0 0 -1 2]
deltaA -> Tensor [size = 16] (4 x 4):
 [ 0 1.66667e-07 1.25e-07 1e-07 ]
 [ 1.25e-07 1e-07 0 7.14286e-08 ]
 [ 1e-07 8.33333e-08 7.14286e-08 0 ]
A -> Tensor [size = 16] (4 x 4):
     2 -1 1.25e-07 1e-07 ]
 Γ
             2 -1 8.33333e-08 ]
 [ -1
 [ 1e-07 8.33333e-08 -1 2 ]
A_hat -> Tensor [size = 12] (4 x 3):
     2 -1 1.25e-07 ]
 [ -1
             2 -1]
 [ 1.25e-07 -1 2 ]
 [ 1e-07 8.33333e-08
                 -1 ]
_____
--- QR factorization ---
Q -> Tensor [size = 12] (4 x 3):
[ -0.894427 -0.358569 -0.19518 ]
```

```
[ 0.447214 -0.717137 -0.39036 ]
 [ -4.47214e-08 -9.76103e-08 0.68313 ]
          -> Tensor [size = 9] (3 x 3):
 -2.23607 1.78885 -0.447214 ]
 [ 2.22045e-16 -1.67332 1.91237 ]
 [ -2.64698e-23 -1.11022e-16 -1.46385 ]
Verification:
Q^T * Q -> Tensor [size = 9] (3 x 3):
          1 2.77556e-16 8.32667e-17 ]
 [ 8.32667e-17 -2.22045e-16 1 ]
Q * R - A_hat -> Tensor [size = 12] (4 x 3):
 [ 2.22045e-15 -1.77636e-15 6.83606e-16 ]
 [ -8.88178e-16 -8.88178e-16 1.33227e-15 ]
 [ 1.32697e-16 3.33067e-16 -4.44089e-16 ]
 [ 3.97047e-23 -7.58428e-17 2.22045e-16 ]
--- Linear Least Squares solution ---
              -> Tensor [size = 3] (3 x 1):
[ 1 ]
 [4]
 [ 9 ]
             -> Tensor [size = 4] (4 x 1):
 [ -2 ]
 [ -2 ]
 [ 14 ]
 [ -9 ]
x_lls
              -> Tensor [size = 3] (3 x 1):
 [ 1 ]
 [4]
```

```
[ 9 ]
```

```
lls_error_estimate -> 1.8496162997539822e-16
_____
--- Eigenvalue solution ---
_____
H_hessenberg
                     -> Tensor [size = 16] (4 x 4):
 1 -2.64698e-23 1.32349e-23 ]
                              -1 -2.64698e-23 ]
                -1
 [ 2.64698e-23
                              2
                                         1 ]
                                         2 ]
 [ 1.32349e-23 -2.64698e-23
                              1
                       -> Tensor [size = 16] (4 x 4):
T_shur
 Γ
      3.61803 -1.46354e-16 -1.55722e-16 -1.88824e-16 ]
              0.381966 4.50213e-16 3.42274e-16 ]
 [ 2.56137e-27
 [ 6.03553e-17 1.73417e-16 2.61803 -4.28483e-16 ]
 lambda0 (analythic eigenvals) -> Tensor [size = 4] (4 x 1):
 [ 0.381966 ]
 [ 1.38197 ]
 [ 2.61803 ]
 [ 3.61803 ]
lambda
       (numeric eigenvals) -> Tensor [size = 4] (4 x 1):
 [ 0.381966 ]
 [ 1.38197 ]
 [ 2.61803 ]
 [ 3.61803 ]
z0
      (analythic eigenvecs) -> Tensor [size = 16] (4 x 4):
 [ 0.371748  0.601501  0.601501  0.371748 ]
 [ 0.601501  0.371748 -0.371748 -0.601501 ]
 [ 0.601501 -0.371748 -0.371748  0.601501 ]
 [ 0.371748 -0.601501  0.601501 -0.371748 ]
|----|
```

	1	2.99649e-07	x
	2	8.66901e-08	x
	3	9.96489e-08	x
1	4	1.13310e-07	x