AIM

Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm.

Programming code:

Dataset used: iris

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data=load_iris()
X=data.data
y=data.target
print(X.shape,y.shape)
```

OUTPUT:

(150, 4) (150,)

Programming code:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier#for checking testin
g results
from sklearn.metrics import classification_report, confusion_matrix
#for visualizing tree
from sklearn.tree import plot_tree
X_train, X_test, y_train, y_test = train_test_split(X , y, test_siz
e = 25, random_state = 10)
clf=DecisionTreeClassifier()
clf.fit(X_train,y_train)
```

OUTPUT:

DecisionTreeClassifier()

Programming code:

```
y_pred =clf.predict(X_test)
print("Classification report - \n", classification_report(y_test,y_
pred))
```

OUTPUT:

Classification	report -			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

Programming code:

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
from sklearn import tree
fig,axes = plt.subplots(nrows=1,ncols=1,figsize =(3,3),dpi=200)
tree.plot_tree(clf,feature_names=data.feature_names,class_names=dat
a.target_names,filled=True)
plt.show()
fig.savefig("/content/iris_tree.png")
```

OUTPUT:

```
[[9 0 0]
[0 9 1]
[0 0 6]]
```

