

 $\frac{4.(b)f_i = \left(\frac{x_i}{ki}\right)^n}{1 + \left(\frac{x_i}{ki}\right)^n}, \quad \text{for} \quad \mathcal{V} = \frac{N_1 + N_2 f_2}{1 + N_1 + N_2 f_2}$ Look at excel for calculations and plots: f=rv(...) Using solver, k = 6.657 mM, and n = 2.49 if you fit for W, Wz, K, and n, WI= D.0187 W2=14,76 , K= 8,286 and h = 2.794. (c) Plotted on excel and attached. The proposed model describes the data to an extent. There is a large margin of error in the measured rate, so it is difficult for that to be captured in a model. If the parameters were recalculated with the max and min values in the 95% interval, it would provide a better understanding about the fit of the model and the range in which fitted parameters and constants would fill. It deviates and overestimates the rate from 0.2 - 1 um and fits well in the 0.05 - 0.20 year region, It also recetimates the 0-0.05, M rate a bit.

(b)

Estimating the binding constants and order parameters from the data resulted in K = 0.657 mM and N = 2.48 for the data when W1 and W1 were set at the values from (a). I also tried fitting the W1 and W2 parameters to see if it would generate a better fit. Both plots have error bars, the original data, and the model.

(c)

The proposed model could describe the data, but the error margins for the measured data get larger as the overall rate increases.

