

Luis Ubieda Lead Firmware Engineer

700 N Wickham Rd. Suite 105 Melbourne, FL 32935

croxel.com

Real-Time Sensor Performance with Zephyr

CogniPilot Conference 2025

Agenda

- 1. Introduction
- 2. Basics of RTIO
- 3. The Async Paradigm
- 4. Sensor RTIO-based API
- 5. RTIO and Real-Time
- 6. Sensor Performance Benchmarks
- 7. Real-Time Sensors in CogniPilot
- 8. Q&A

Introduction

RTIO (Real-Time I/O)

Basics of RTIO

Elements of an RTIO

- RTIO Client
- RTIO I/O Device
- RTIO Executor
- Optional: a Memory Pool.
- A Submission Queue
- A Completion Queue

Types of Operations:

- Write
- Read
- Callback
- Delay

Examples of I/O Devices:

- Sensors
- I/O Buses (e.g: SPI, I2C, I3C, etc)

Example Applications:

- Control Systems(e.g: Robotics)
- High-Bandwidth
 Data-Acquisition Systems

Basics of RTIO

Design Goals of RTIO

- Minimize thread context switching
- Minimize data copying
- Optimize batch gathering and processing of multiple data-streams
- Compatible with Userspace-based applications
- Side-effect: serves as a IODEV abstraction (e.g: Bus-driver)

The Async Paradigm

RTIO: the Async paradigm

Thread-based paradigm

Sensor RTIO-based API

Sensor RTIO-based API

RTIO and Real Time

Real-Time Constraints

Perform actions with guaranteed minimum constraints

- Maximum Allowed Latency
 - Reaction Time
 - Bus Latency
 - Jitter
- CPU Cycles to perform all the required actions
 - Data Collection
 - Data Processing/Transport
- Conditions validated under worst case scenario(s)

RTIO in Real-Time

- Minimize Overhead
 - Memory Copying
 - Data conversions
 - Context Swapping
- Designed for Real Time
 - Take advantage of Hardware features (e.g: FIFO, DMA)
 - Ease to set up simultaneous streams of data (Async paradigm)
 - Guarantees decoupling of data-acquisition and processing
- Optimized Results
 - Latency
 - Jitter
 - CPU Load

Sensor Performance Benchmarks

Setup: Device Under Test

Setup: Device Under Test

Setup: Measuring CPU Load


```
# Overlay Configuration
CONFIG_CPU_LOAD=y
CONFIG_CPU_LOAD_LOG_PERIODICALLY=5000
```

```
[00:16:10.015.000] <inf> cpu load: Load:47.003%
[00:16:15.015,000] <inf> cpu load: Load:47.003%
[00:16:20.015,000] <inf> cpu load: Load:47.003%
[00:16:25.015.000] <inf> cpu load: Load:47.003%
[00:16:30.015,000] <inf> cpu load: Load:47.002%
[00:16:35.015,000] <inf> cpu load: Load:47.003%
[00:16:40.015.000] <inf> cpu load: Load:47.003%
[00:16:45.015,000] <inf> cpu load: Load:47.003%
[00:16:50.015,000] <inf> cpu load: Load:47.003%
[00:16:55.015.000] <inf> cpu load: Load:47.003%
[00:17:00.015,000] <inf> cpu load: Load:47.003%
[00:17:05.015,000] <inf> cpu load: Load:47.003%
[00:17:10.016,000] <inf> cpu load: Load:47.003%
[00:17:15.016,000] <inf> cpu load: Load:47.003%
[00:17:20.016,000] <inf> cpu load: Load:47.003%
uart:~$
 bypass
                      clear
                                          date
  demo
                      device
                                           devmem
 dynamic
                      help
                                          history
  kernel
                      loa
                                          log test
                                          retval
                      resize
 section cmd
                                          shell
                      sensor
 shell wart release stats
                                          version
uart:~$
```


Setup: Measuring Jitter

Setup: Measuring Bus Latency

Performance Benchmarks

		CPU Load (%)		Latency (us)		Jitter (us)	
Settings		Thread-based	RTIO-based	Thread-based	RTIO-based	Thread-based	RTIO-based
IMU at 3200Hz ODR	No Simultaneous Stream	42	35	92	90.6	37.2	11.6
	Simult. 1 Accel at 100Hz ODR	43	36	93	89.7	92	32
	Simult. 2 Accels at 100Hz ODR	45	38	92	89.7	116	41.6
	Simult. 1 Accel at 400Hz ODR	48	41	93	91	175	44
	Simult. 2 Accels at 400Hz ODR	55	47	92	90	155	44
IMU at 6400Hz ODR	No Simultaneous Stream	83	72	90	92	63	12.8
	Simult. 1 Accel at 100Hz ODR	Missing events	72	Missing events	93	Missing events	34.4
	Simult. 2 Accels at 100Hz ODR	Missing events	74	Missing events	89	Missing events	44.4
	Simult. 1 Accel at 400Hz ODR	Missing events	76	Missing events	90	Missing events	37.2
	Simult. 2 Accels at 400Hz ODR	Missing events	80	Missing events	91	Missing events	48

NXP Flight Controller (VMU-RT1170)

NXP Optical Flow Module (MR-MCXN-T1)

Zephyr Project

Let's talk about Zephyr!

