Previously in Molecularity...

Formal charge: which is "right"?

- Compare number of electrons around an atom relative to the valence electrons
 - Add up number of lone pair electrons
 - Only count one e

 from a bond
- Electron deficient: positive formal charge Electron rich: negative formal charge
- Choose dot structure with formal charges closest to zero!

$$: O \equiv C - \ddot{O}:$$

$$\begin{array}{c} VS \\ \hline \vdots O = C = O \\ \hline VS \\ \end{array}$$

$$\ddot{\circ}$$
 – C \equiv 0:

Nitrate anion, [NO₃]-

$$\begin{bmatrix} \vdots \vdots - \mathbb{N} - \vdots \\ - \mathbb{N} - \vdots \\ \vdots - \mathbb{N} - \vdots \\ \vdots - \mathbb{N} - \vdots \\ - \mathbb{N} - \vdots \\ \vdots - \mathbb{N} - \vdots \\ - \mathbb{N} - \mathbb{N} - \vdots \\ - \mathbb{N} - \mathbb{N} \\ - \mathbb{N} \\ - \mathbb{N} \\ - \mathbb{N} - \mathbb{N} \\ - \mathbb{N} \\ - \mathbb{N} \\ - \mathbb{N} - \mathbb{N} \\ - \mathbb{N}$$

What are the charges on each atom in each structure?

What might the "average" charge look like in reality?

Notable s- and p-block exceptions

- Hydrogen 1s¹ and helium 1s² follow a *duet* rule (n = 1 can only hold two electrons)
- Alkaline earths and the boron family sometimes do their own thing Example: magnesium hydride (MgH₂)
 Example: boron trifluoride (BF₃)
- Molecules with an odd total of valence electrons (one atom will end up with an odd count, duh!)
 Example: nitrogen monoxide
- Hypervalent molecules or expanded octets:
 large atoms in the 3p, 4p, ... block

- Sum valence e⁻ including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e⁻ including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e- including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e- including overall charge. (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e- including overall charge. (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e- including overall charge. (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e- including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

- Sum valence e⁻ including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

Hypervalency or Expanded Octets

Both should only be able to bond to three other atoms...

Hypervalency or Expanded Octets

...but phosphorous can form five bonds!

Tro Fig. 8.5

Conditions for expanded octets

- Requires d orbitals, therefore, it only occurs for $n \ge 3$!
- Only occurs for group 15–18 elements (pnictides, chalcogenides, halogens, noble gases)
- This is **not** hybridization, but rather this **enables** d-orbitals to participate in hybridization (more detail in chapter 5).

Example: Phosphate anion, PO₄³⁻

- Sum valence e- including overall charge. (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

Example: Phosphate anion, PO₄³⁻

- Sum valence e⁻ including overall charge.
 (This determines total # of bonds and lone pairs)
- Arrange around a central atom...
 - 1. Greatest bonding capacity
 - 2. Lowest electronegativity
- Draw single bonds to central atom
- Complete octets around periphery
- Fix central atom octet by converting peripheral lone pairs to bonds as needed
- Determine resonance / formal charge

. . .

How many bonds could chalcogenides and halides form?

Great example molecules

- Determining "best" Lewis dot structure
 Formyl azide CHN₃O (connected OCNNN, H bonded to C)
- Incomplete octets:
 Boron trichloride, magnesium hydride
 AICI₃ and AIF₃ do something different...
- Odd-electron molecules:
 Chlorine monoxide, chlorine dioxide
 (unstable species in the atmosphere)
- Hypervalent / expanded octets
 Sulfuryl chloride SO₂Cl₂, Chlorate anion, Perchlorate anion

