## Quicksort

|       | 64   | 128  | 256  | 512  |
|-------|------|------|------|------|
| 128   | 2232 | 2088 | 2153 | 2153 |
| 256   | 1116 | 1044 | 1077 | 1077 |
| 512   | 558  | 522  | 539  | 539  |
| 1024  | 279  | 261  | 270  | 270  |
| 2048  | 140  | 131  | 135  | 135  |
| 4096  | 70   | 66   | 68   | 68   |
| 8192  | 35   | 33   | 34   | 34   |
| 16384 | 18   | 17   | 17   | 17   |



## Heapsort

|       | 64   | 128  | 256  | 512  |
|-------|------|------|------|------|
| 128   | 2528 | 2973 | 3507 | 3507 |
| 256   | 1264 | 1487 | 1754 | 1754 |
| 512   | 632  | 744  | 877  | 877  |
| 1024  | 316  | 372  | 439  | 439  |
| 2048  | 158  | 186  | 220  | 220  |
| 4096  | 79   | 93   | 110  | 110  |
| 8192  | 40   | 47   | 55   | 55   |
| 16384 | 20   | 24   | 28   | 28   |



The similarities between the two sorting algorithms is every time the working size double, the number of working set size will be half.

The different between the two is.

In quicksort, we first move all the element less than pivot to the left and move all the element greater than than pivot to the right. Thus, we are referencing near-by elements, so the number of page reference per working set is quite small.

In heapsort, every time we sort, we replace the biggest element and the smallest element. Thus, we are referencing elements at the end. Thus number of page reference per working set is larger than quick sort.