Cogmaster Computational Neuroscience Methods

February 14th 2020

Rescorla-Wagner rule

Manuel Beiran manuel.beiran@ens.fr

- your model (1):

$$p_n = (\alpha + 1)p_{n-1}$$

a **map**: discrete-time evolution in the form: $x_n = A(x_{n-1})$

linear map

behavior determined by the value of $\alpha + 1$

- exponential positive growth $\alpha > 0$
- decay to 0 $-1 < \alpha < 0$
- oscillations $\alpha < -1$

- your model (2):
- the **logistic map**:

$$p_{n} = p_{n-1} + 0.001p_{n-1}(200 - p_{n-1})$$

$$x_{n} = rx_{n-1}(1 - x_{n-1})$$

 $r = 1 + \beta \alpha$

$$p_n = p_{n-1} + 0.001p_{n-1}(200 - p_{n-1})$$

$$x_n = rx_{n-1}(1 - x_{n-1})$$

Fixed point of the map: no time evolution, dynamics converges

$$x_n = A(x_{n-1}) = x_{n-1}$$

$$p_n = p_{n-1} + 0.001p_{n-1}(200 - p_{n-1})$$

$$x_n = rx_{n-1}(1 - x_{n-1})$$

Fixed point of the map: no time evolution, dynamics converges

$$x_n = A(x_{n-1}) = x_{n-1}$$

[Strogatz, Non-linear dynamics and chaos]

[May, RM (1976) Simple mathematical models with very complicated dynamics]

$$x_n = rx_{n-1}(1 - x_{n-1})$$

$$x_n = rx_{n-1}(1 - x_{n-1})$$

$$x_n = rx_{n-1}(1 - x_{n-1})$$

period-doubling bifurcation to chaos

$$x_n = rx_{n-1}(1 - x_{n-1})$$

period-doubling bifurcation to chaos

bifurcation diagram:

Ex. 2: Computational models of behaviour

see:

Dayan and Abbott, *Theoretical Neuroscience*, 9.1 - 9.2 C06 course

Study the ability of animals of taking actions according only to the received **reward** and **punishment**:

REINFORCEMENT LEARNING

Experiments of: - classical (Pavlovian) conditioning;

- instrumental conditioning

Ex. 2.1: Classical conditioning Pavlovian experiment:

Ex. 2.1: Classical conditioning Pavlovian experiment:

Extinction:

Computational model: Rescorla-Wagner rule

 u_i stimulus (Ψ) in trial i: $u_i = 0$ or $u_i = 1$

 r_i reward () in trial i: $r_i = 0$ or $r_i = 1$

 v_i reward that the dog expects (\P) in trial i

Allan R Wagner

- the reward prediction is **linear** with the stimulus: v = wu

free parameter

- the animal wants to learn to **predict** the reward.

Measure the ability of the dog to predict the reward! Prediction error in the i-th trial:

$$\delta_i = r_i - v_i$$
 \uparrow

actual predicted reward reward

 $\delta_i > 0$: more reward than predicted

 $\delta_i < 0$: less reward than predicted

"Loss" in the i-th trial:

$$L_i = \delta_i^2 = (r_i - v_i)^2$$

Minimize this loss function to maximize the ability to predict the reward !!

Gradient descent minimization:

"Loss" in the i-th trial:

$$L_i = (r_i - wu_i)^2$$

Update parameter w to decrease loss!

$$w \to w - \epsilon \frac{d}{dw} L_i$$

$$\frac{d}{dw}L_i = -2u_i\delta_i$$

Rescorla-Wagner-rule $w
ightarrow w + \epsilon \delta_i u_i$

$$w \to w + \epsilon \delta_i u_i$$

learning rate

"delta-rule"

Learning converges to w=1:

Rescorla-Wagner rule can explain other phenomena:

partial reinforcement:

the reward is delivered with a certain probability *p*

Rescorla-Wagner rule can explain other phenomena:

partial reinforcement:
 the reward is delivered with a certain probability p

- With many stimuli and a single reward:

$$\vec{u} = (u_1, u_2)$$
 $\vec{w} = (w_1, w_2)$
 $v = \vec{u}\vec{w} = u_1w_1 + u_2w_2$

$$\vec{w} \to \vec{w} + \epsilon \delta \vec{u}$$
$$\delta = r - v$$

- blocking:

the animal cannot learn the association between the second stimulus and the reward if the reward is already predicted by the first one:

1.
$$u_1 \rightarrow r$$

1.
$$u_1 \to r$$

2. $u_1 + u_2 \to r$

blocking:

the animal cannot learn the association between the second stimulus and the reward if the reward is already predicted by the first one:

1.
$$u_1 \rightarrow r$$

1.
$$u_1 \to r$$

2. $u_1 + u_2 \to r$

It cannot explain:

secondary conditioning:

animals predict reward if the stimulus is associated to a second stimulus which already predict reward:

1.
$$u_1 \rightarrow r$$

2.
$$u_1 + u_2 \to 0$$

you need a prediction error to learn!

Programming: some more tricks

- Python built-in functions: enumerate
- Random numbers: numpy.random
- Plotting (scatter plot, remove box)

Tips for analysis and scientific writing

- Always send a PDF file
- Be careful with the units (and indicate them in your report)
- Instead of writing "I changed the initial conditions in Fig 1 ...", write: "Different initial conditions lead to ... (see Fig 1)