DM DEPARTAMENTO DE MATEMÁTICA TÉCNICO LISBOA

Probabilidade e Estatística

LEAN/LEM/LEAmb/LEGM LEIC-A LEIC-T LERC-LEE LEAer LEBiol LEBiom LEEC LEMec LEQ

2º Semestre – 2021/2022 22/07/2022

13:00-15:00

Duração: **120** minutos

Exame Época Recurso - (b)

Justifique convenientemente todas as respostas

Pergunta 1 2 valores

Um teste para identificação de patógenos humanos em amostras de água conduz a resultado correto com probabilidade 0.99 em amostras com presença de patógenos humanos e 0.95 em amostras sem presença de patógenos humanos.

Considerando que o teste é aplicado a uma amostra de água escolhida ao acaso de uma população em que 1% das amostras exibem presença de patógenos humanos e o teste indica a presença de patógenos humanos na amostra, calcule a probabilidade de essa amostra conter efetivamente patógenos humanos.

· Acontecimentos e probabilidades para uma amostra de água escolhida ao acaso

Acontecimento	Probabilidade
A = "a amostra de água contém patógenos humanos"	P(A) = 0.01
$\it I$ = "o teste indica a presença de patógenos humanos na amostra de água"	P(I) = ?
	$P(I \mid A) = 0.99$
	$P(\overline{I} \mid \overline{A}) = 0.95$

· Cálculo da probabilidade pedida

$$P(A \mid I) = \frac{P(A) \times P(I \mid A)}{P(A) \times P(I \mid A) + P(\overline{A}) \times P(I \mid \overline{A})}$$
(teorema de Bayes)

$$= \frac{P(A) \times P(I \mid A)}{P(A) \times P(I \mid A) + [1 - P(\overline{A})] \times [1 - P(\overline{I} \mid \overline{A})]}$$

$$= \frac{0.01 \times 0.99}{0.01 \times 0.99 + [1 - 0.01] \times [1 - 0.95]}$$

$$= \frac{1}{6} = 0.1(6).$$

Pergunta 2 2 valores

Numa determinada população, após contacto com um vírus, cada indivíduo fica infetado com probabilidade 0.7. Suponha que as infeções ocorrem de forma independente.

(a) Qual é a probabilidade de se observarem mais de 7 infeções num total de 15 contactos, quando ocorre pelo menos uma infeção?

• V.a. de interesse

X = "número de infeções num total de 15 contactos".

$$X \sim \text{binomial}(n = 15, p = 0.7).$$

· Probabilidade pedida

$$\begin{split} P(X > 7 | X \ge 1) &= \frac{1 - F_X(7)}{1 - 0.3^{15}} \\ &= \frac{F_{Bin(15,0.3)}(7)}{1 - 0.3^{15}} \\ &= \frac{0.95}{1 - 0.3^{15}} \\ &= 0.95. \end{split}$$

- (b) Logo após ter ocorrido a primeira infeção, qual a probabilidade de serem necessários mais de 3 contactos para a segunda infeção?
 - Probabilidade pedida

O número de contactos até infecção é uma variável aleatória geométrica(0.7).

Dada a independência, a probabilidade de serem necessários mais de 3 contactos para a segunda infeção logo após ter ocorrido a primeira infeção é igual a

$$P(\text{serem nec. mais de 3 contactos para a } 1^{\text{a}} \text{ infecção}) = P(\text{geométrica}(0.7) > 3)$$

$$= 1 - 0.7(1 + 0.3 + 0.3^{2})$$

$$= 0.027.$$

Pergunta 3 2 valores

A proporção de impurezas num produto químico é uma variável Y com função de densidade

$$f(y) = \begin{cases} 12y^2(1-y), & 0 \le y \le 1, \\ 0, & \text{outros casos.} \end{cases}$$

Determine a probabilidade de a proporção de impurezas ser superior a três vezes o seu desvio padrão.

• V.a. de interesse

Y = "proporção impurezas em um produto químico"

• Variância de Y

$$V(Y) = E(Y^{2}) - E^{2}(Y)$$

$$= \int_{0}^{1} y^{2} 12y^{2}(1-y) dy - \left(\int_{0}^{1} y 12y^{2}(1-y) dy\right)^{2}$$

$$= 12 \int_{0}^{1} (y^{4} - y^{5}) dy - \left(12 \int_{0}^{1} (y^{3} - y^{4}) dy\right)^{2}$$

$$= \frac{12}{30} - \left(\frac{12}{20}\right)^{2}$$

$$= \frac{1}{25}$$

$$= 0.04.$$

Desvio padrão: $\sqrt{V(Y)} = \sqrt{\frac{1}{25}} = \frac{1}{5}$.

· Probabilidade pedida

$$P\left(Y > 3 \times \frac{1}{5}\right) = \int_{\frac{3}{5}}^{1} 12y^{2}(1-y) \, dy$$
$$= 0.5248$$

Pergunta 4 2 valores

Os números de falhas em duas máquinas (A e B) a trabalhar em simultâneo distribuem-se uniformemente no conjunto: $\{(x,y) \in \{0,1,2\} \times \{0,1,2\} : x \le y\}$ (recorde que $A \times B = \{(x,y) : x \in A \text{ e } y \in B\}$).

- (a) Calcule a correlação entre o número de falhas que ocorrem nas duas máquinas e comente o seu valor.
 - **Distribuição conjunta** $P(X = x, Y = y) = 1/6, (x, y) \in D$, com $D = \{(x, y) \in \{0, 1, 2\} \times \{0, 1, 2\} : x \le y\}$ e 0 outros casos.
 - Distribuições marginais de X e Y

$$P(X = x) = \begin{cases} 1/2, & x = 0, \\ 1/3, & x = 1, \\ 1/6, & x = 2, \\ 0, & \text{outros casos.} \end{cases}$$

$$P(Y = y) = \begin{cases} 1/6, & y = 0, \\ 1/3, & y = 1, \\ 1/2, & y = 2, \\ 0, & \text{outros casos.} \end{cases}$$

• Valor médio e variância de X

$$E(X) = 0 * \frac{1}{2} + 1 * \frac{1}{3} + 2 * \frac{1}{6}$$
$$= \frac{2}{3}.$$

$$E(X^{2}) = 0 * \frac{1}{2} + 1 * \frac{1}{3} + 2^{2} * \frac{1}{6}$$
$$= 1.$$

$$V(X) = 1 - (2/3)^2$$

= 5/9.

• Valor médio e variância de Y

$$E(Y) = 0 * \frac{1}{6} + 1 * \frac{1}{3} + 2 * \frac{1}{2}$$
$$= \frac{4}{3}$$

$$E(Y^{2}) = 0 * \frac{1}{6} + 1 * \frac{1}{3} + 2^{2} * \frac{1}{2}$$
$$= \frac{7}{3}.$$

$$V(Y) = \frac{7}{3} - (4/3)^2$$
$$= \frac{5}{9}.$$

• Cálculo do valor esperado de XY

$$E(XY) = \frac{1+2+4}{6}$$
$$= \frac{7}{6}.$$

• Cálculo da correlação ente X e Y

$$Cov(X, Y) = 7/6 - (4/3) \times (2/3)$$

= 15/54
= 5/18.

$$Corr(X,Y) = \frac{5/18}{\sqrt{5/9}\sqrt{5/9}}$$
$$= \frac{1}{2}.$$

Correlação moderada positiva indicando a existência de alguma dependência linear entre o número de falhas das duas máquinas.

(b) Obtenha o número médio de falhas de *A* quando em *B* ocorre uma falha, e o número médio total de falhas quando em *B* ocorre uma falha.

Sendo
$$P(X = x | Y = 1) =$$

$$\begin{cases}
1/2, & x = 0, \\
1/2, & x = 1, \\
0, & \text{outros casos,}
\end{cases}$$

logo

$$E[X|Y=1] = 1 * \frac{1}{2}$$

= 0.5.

$$E(X + Y | Y = 1)$$
 = $E(X | Y = 1) + E(Y | Y = 1)$
 = $0.5 + 1$
 = 1.5 .

(c) São as variáveis aleatórias independentes?

Não, por exemplo $P(X = 0, Y = 0) = 1/6 \neq P(X = 0) \times P(Y = 0) = 1/2 \times 1/6$.

Pergunta 5 2 valores

Um jogador lança um dado equilibrado, este ganha um ponto se sair um número par e perde um ponto se sair um número ímpar. Ao fim de 50 jogadas qual é a probabilidade aproximada do número total de pontos obtidos pelo jogador ser superior a 2.

• V.a. X_i

Seja X_i uma va que assume o valor 1 se sair face par e -1 se sair face ímpar no i-ésimo lançamento do dado equilibrado, i = 1, ..., n com n = 50.

• Valor esperado de X_i

$$E(X_i) = 0.$$

• Variância de X_i

Var(
$$X_i$$
) = E(X_i)² = (-1)²/2 + 1²/2 = 1.

• V.a. de interesse

 $S_n = \sum_{i=1}^n X_i$, número total de pontos em *n* jogadas.

• Valor esperado e variância de S_n

 $E(S_n) = E(\sum_{i=1}^n X_i) = \sum_{i=1}^n E(X_i) = n \times 0 = 0$, porque as va são identicamente distribuídas.

$$\operatorname{Var}(S_n) = \operatorname{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \operatorname{Var}(X_i) = n \times 1 = 50$$
, porque as variáveis aleatórias iid.

• Distribuição aproximada de S_n

$$\frac{S_n - \mathrm{E}(S_n)}{\sqrt{\mathrm{Var}(S_n)}} = \frac{S_n}{\sqrt{n}} \stackrel{a}{\sim} \mathrm{normal}(0,1).$$

· Valor aproximado da probabilidade pedida

De acordo com o teorema do limite central, temos

$$P\left(\sum_{i=1}^{50} X_i \ge 2\right) = 1 - P\left(\sum_{i=1}^{50} X_i \le 1\right)$$

$$\stackrel{TLC}{\simeq} 1 - \Phi\left(\frac{1}{\sqrt{50}}\right)$$

$$\simeq 1 - \Phi(0.14)$$

$$= 1 - 0.5557$$

$$= 0.4443.$$

Pergunta 6 2 valores

Admita que X é uma variável aleatória com função densidade de probabilidade

$$f_X(x;\theta) = \begin{cases} \frac{3}{\theta} x^2 e^{-x^3/\theta}, & x > 0\\ 0, & \text{outros casos} \end{cases}$$

com $\theta > 0$ desconhecido. A concretização de uma amostra aleatória de dimensão 4 proveniente de X, conduziu a $x_1 = 1.5$, $x_2 = 3.5$, $x_3 = 2.9$, $x_4 = 4.7$. Obtenha a estimativa de máxima verosimilhança do parâmetro θ .

- Seja $\underline{x} = (x_1, x_2, x_3, x_4)$ uma amostra aleatória de dimensão 3 proveniente da população X.
- Obtenção do estimador da máxima verosimilhança de θ

Passo 1 - Função de verosimilhança

$$L(\theta|\underline{x}) = f_{\underline{X}}(\underline{x})$$

$$X_{i} \stackrel{indep}{=} \prod_{i=1}^{4} f_{X_{i}}(x_{i})$$

$$X_{i} \stackrel{\sim}{=} X \prod_{i=1}^{4} f_{X}(x_{i})$$

$$= \prod_{i=1}^{4} \frac{3}{\theta} x_{i}^{2} e^{-x_{i}^{3}/\theta}$$

$$= \frac{3^{4}}{\theta^{4}} \left(\prod_{i=1}^{4} x_{i}^{2}\right) e^{-\frac{1}{\theta} \sum_{i=1}^{4} x_{i}^{3}}$$

Passo 2 - Função de log-verosimilhança

$$\ln L(\theta | \underline{x}) = 4 \ln 3 - 4 \ln \theta + \ln \left(\prod_{i=1}^{4} x_i^2 \right) - \frac{1}{\theta} \sum_{i=1}^{4} x_i^3$$

Passo 3 - Maximização

A estimativa de MV de θ é doravante representada por $\hat{\theta}$ e

$$\hat{\theta}: \left\{ \begin{array}{c|c} \left. \frac{d \ln L(\theta|\underline{x})}{d \theta} \right|_{\theta = \hat{\theta}} = 0 & \text{(ponto de estacionariedade)} \\ \\ \left. \frac{d^2 \ln L(\theta|\underline{x})}{d \theta^2} \right|_{\theta = \hat{\theta}} < 0 & \text{(ponto de máximo)} \end{array} \right.$$

$$\frac{d\ln L(\theta|\underline{x})}{d\theta} = 0 \Leftrightarrow -\frac{4}{\theta} + \frac{\sum_{i=1}^{4} x_i^3}{\theta^2} = 0 \Leftrightarrow \frac{\sum_{i=1}^{4} x_i^3}{\theta^2} = \frac{4}{\theta} \Rightarrow \hat{\theta} = \frac{\sum_{i=1}^{4} x_i^3}{4}$$

$$\frac{d^2 \ln L(\theta | \underline{x})}{d\theta^2} \bigg|_{\theta = \hat{\theta}} = -0.0021 < 0$$
, (proposição verdadeira)

Passo 4 - Estimativa de MV de θ .

$$\hat{\theta} = \frac{\sum_{i=1}^{4} x_i^3}{4}$$

$$= \frac{174.462}{4}$$

$$= 43.61.$$

Pergunta 7 2 valores

Numa investigação sobre um novo processo de refinação de um certo minério está-se a analisar o teor de lítio no produto refinado, em percentagem. Numa amostra aleatória de tamanho 12 observou-se $\sum_{i=1}^{12} x_i = 1140$ e $\sum_{i=1}^{12} x_i^2 = 108900$.

Admitindo que o teor de lítio após refinação tem distribuição normal, determine um intervalo de confiança para a variância do teor de lítio a um nível de confiança de 95%.

• V.a. de interesse

X = "teor de lítio no produto refinado, em percentagem".

- Situação $X \sim \text{normal}(\mu, \sigma^2)$.
- Seleção da variável aleatória fulc
ral para σ^2

$$Z = \frac{11S^2}{\sigma^2} \sim \chi^2_{(11)}$$

• Obtenção dos quantis de probabilidade

$$a_{\alpha} = F_{\chi^{2}_{(11)}}^{-1}(0.025) = 3.816;$$

 $b_{\alpha} = F_{\chi^{2}_{(11)}}^{-1}(0.975) = 21.92.$

• Inversão da desigualdade $a_{\alpha} \le Z \le b_{\alpha}$

$$P(a_{\alpha} \le Z \le b_{\alpha}) = 1 - \alpha$$

$$\Leftrightarrow$$

$$P\left(3.816 \le \frac{11S^{2}}{\sigma^{2}} \le 21.92\right) = 0.95$$

$$\Leftrightarrow$$

$$P\left(\frac{11S^{2}}{21.92} \le \sigma^{2} \le \frac{11S^{2}}{3.816}\right) = 0.95$$

Concretização

$$IC_{95\%}(\sigma^2) = \left[\frac{11s^2}{21.92}, \frac{11s^2}{3.816}\right]$$

= $\left[\frac{11 \times 54.55}{21.92}, \frac{11 \times 54.55}{3.816}\right]$
= $[27.37, 157.24].$

Pergunta 8 2 valores

A verminose (doença causada por vermes) tem impacto na produção de leite dos rebanhos. O veterinário de uma exploração agrícola afirma que a proporção de animais afetados é de 10%. Um exame a 100 cabeças do rebanho desta exploração agrícola, retiradas ao acaso, indicou 12 delas com verminose. Verifique se a afirmação do veterinário pode ser considerada válida ou se, pelo contrário, a proporção de animais afetados é superior a esse valor.

• V.a. de interesse

X= "indicador relativo à presença da verminose" = $\begin{cases} 1 & \text{com verminose} \\ 0 & \text{outros casos} \end{cases}$

- **Situação** $X \sim \text{bernoulli}(p)$.
- Hipóteses

$$H_0: p = p_0 = 0.10$$

 $H_1: p = p_0 > 0.10$

• Estatística de teste

$$T = \frac{\bar{X} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim_a \text{normal}(0, 1).$$

• Região de rejeição de H_0 (para valores da estatística de teste)

O teste é unilateral, logo a região de rejeição de H_0 é do tipo $W=(c,\infty)$.

• Decisão (com base no valor-p) Atendendo a que o valor observado da estatística de teste:

$$t = \frac{0.12 - 0.1}{\sqrt{0.1 \times (1 - 0.1)/100}} = 0.66666$$
 valor-p $\approx 1 - \Phi(0.67) = (1 - 0.7486) = 0.2514$

pelo que H_0 não é rejeitada para níveis de significância usuais.

Pergunta 9 2 valores

Num estudo para avaliar as preferências entre os utilizadores de cinco tipos de passadeiras motorizadas, foram inquiridos 410 utilizadores, tendo sido obtidos os resultados seguintes: 30 mostraram preferência pela passadeira do tipo A; 21 pela de tipo B; 110 pela de tipo C; 35 pela de tipo D; e 214 pela de tipo E. Vários treinadores desportivos sustentam que, entre os utilizadores de passadeiras motorizadas, a probabilidade de escolha de uma passadeira do tipo A é metade da probabilidade de escolha de uma passadeira do tipo C; o triplo da de tipo B; o dobro da do tipo D; e um terço da do tipo *E*. Averigue se a opinião dos treinadores desportivos é consistente com os resultados do estudo ao nível de significância de 1%.

Seja *X* tipo preferido de passadeira motorizada pelo utilizador inquirido

$$P(X = x) = \begin{cases} p_i, & i = 1, 2, 3, 4, 5, \\ 0, & \text{outros casos.} \end{cases}$$

Hipóteses:

 $H_0: p_i = p_i^0, i = 1,...,5$, vs $H_1: p_i \neq p_i^0$, para algum i, onde

$$\begin{cases} p_1^0 = 3 \times p_2^0 \\ p_1^0 = \frac{1}{2} \times p_3^0 \\ p_1^0 = 2 \times p_4^0 \\ p_1^0 = \frac{1}{3} \times p_5^0 \\ p_1^0 + p_2^0 + p_3^0 + p_4^0 + p_5^0 = 1 \end{cases}$$

o que implica que $p_1^0 = \frac{6}{41}$, $p_2^0 = \frac{2}{41}$, $p_3^0 = \frac{12}{41}$, $p_4^0 = \frac{3}{41}$ e $p_5^0 = \frac{18}{41}$.

Estatística de teste:

$$T = \sum_{i=1}^{5} \frac{(O_i - E_i)^2}{E_i} \stackrel{a}{\sim} \chi_4^2.$$

Nível de significância: $\alpha_0 = 1\%$

Região de rejeição de H_0

Ao efetuarmos um teste de ajustamento do qui-quadrado a região de rejeição de H_0 é um intervalo à direita $W = (c, \infty)$, onde

$$c = F_{\chi_4^2}^{-1}(1 - \alpha_0) = F_{\chi_4^2}^{-1}(0.99) = 13.28.$$

Cálculo das frequências absolutas esperadas sob H_0

As frequências absolutas esperadas sob H_0 são dadas por $E_i = 345 \times p_i^0$, i = 1, ..., 5, e iguais a

$$E_1 = 410 \times \frac{6}{41} = 60,$$

$$E_2 = 410 \times \frac{2}{41} = 20,$$

$$E_3 = 410 \times \frac{12}{41} = 120,$$

$$E_4 = 410 \times \frac{3}{41} = 30,$$

$$E_5 = 410 \times \frac{18}{41} = 180.$$

Cálculo do valor observado da estatística de teste

$$t = \frac{(30-60)^2}{60} + \frac{(21-20)^2}{20} + \frac{(110-120)^2}{120} + \frac{(35-30)^2}{30} + \frac{(214-180)^2}{180}$$

= 15.00 + 0.05 + 0.83 + 0.83 + 6.42
= 23.13.

Como $t \in (13.28, +\infty)$, rejeita-se H_0 ao nível de significância 5%.

Pergunta 10 2 valores

Considere uma experiência em que se analisa a octanagem da gasolina em função da adição de um novo aditivo. Para isso, foram realizados ensaios com diferentes % de quantidade de aditivo (x, g/L), e registado o índice de octanagem (y), tendo-se obtido os seguintes valores:

<i>x</i> (em %)	1	2	3	4	5	6
índice de octanagem <i>y</i>	80.5	81.6	82.1	83.7	83.9	85

$$\sum_{i=1}^{6} x_i = 21, \sum_{i=1}^{6} x_i^2 = 91, \sum_{i=1}^{6} y_i = 496.8, \sum_{i=1}^{6} x_i y_i = 1754.30.$$

Admita que as variáveis estão relacionadas de acordo com um modelo de regressão linear simples $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, com as hipóteses de trabalho usuais. Estime os parâmetros da reta e interprete a estimativa de β_1 .

Estimativas de MQ dos parâmetros desconhecidos β_0 e β_1

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{6} x_{i} y_{i} - 6 * \bar{x} \bar{y}}{\sum_{i=1}^{6} x_{i}^{2} - 6 * \bar{x}^{2}}$$

$$= 0.886.$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 * \bar{x}$$
$$= 80.55,$$

pelo que se estima que o índice da octanagem aumente em média 0.886 por cada g/L extra de aditivo adicionado, para valores de aditivo adicionado entre 1 e 6.