ПРЕДЕЛ ФУНКЦИИ

Определение. Число *А*называется пределом функции f(x) при x, стремящемся к x_0 , если функция f(x) определена в некоторой окрестности точки $x=x_0$, за исключением, может быть точки x_0 , и для любого числа $\varepsilon>0$ существует такое число $\delta(\varepsilon)>0$, что для всехx, удовлетворяющих неравенству $0<|x-x_0|<\delta$ справедливо неравенство

$$|f(x)-A|<\varepsilon$$
.

Обозначают $\lim_{x \to x_0} f(x) = A$.

На рисунке график функции f(x) дает геометрическую иллюстрацию равенства $\lim_{x\to x_0} f(x) = A$

Для $x \in (x_0 - \delta, x_0 + \delta)$ график размещается внутри полосы, ограниченной прямыми $y = A + \varepsilon$ и $y = A - \varepsilon$.

Функцию f(x) называют <u>бесконечно большой</u> при $x \to x_0$, если для произвольного сколь угодно большого M>0 существует $\delta>0$ такое, что для всехx, для которых $0<|x-x_0|<\delta$, имеет место неравенство|f(x)|>M.

Обозначение: $\lim_{x \to x_0} f(x) = \infty$

Если $f(x) \to \infty$ при $x \to x_0$ и при этом f(x) принимает только положительные значения или только отрицательные значения, то соответственно пишут:

$$\lim_{x \to x_0} f(x) = +\infty, \lim_{x \to x_0} f(x) = -\infty$$
 (см. рисунки).

Функцию $\alpha(x)$ называют <u>бесконечно малой</u> при $x \to x_0$, если ее предел равен нулю при $x \to x_0$, т.е.

$$\lim_{x\to x_0}\alpha(x)=0$$

Например, функции $y=(x-2)^2$ при $x\to 2$ и $y=\frac{5}{2x+1}$ при $x\to \infty$ суть бесконечно малые величины, ибо их пределы равны нулю: $\lim_{x\to 2}(x-2)^2=0, \quad \lim_{x\to \infty}\frac{5}{2x+1}=0$. Функция $y=3^x$ является бесконечно малой при $x\to -\infty$, а функция $y=\left(\frac{1}{4}\right)^x$ — при $x\to +\infty$. Символически равенства $\lim_{x\to -\infty}3^x=0$ и $\lim_{x\to +\infty}\left(\frac{1}{4}\right)^x=0$ будем записывать так: $[3^{-\infty}]=0$ и $\left[\left(\frac{1}{4}\right)^{+\infty}\right]=0$.

Свойства бесконечно малых величин:

- Алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая.
- Произведение бесконечно малой величины на ограниченную функцию (в том числе на постоянную или на другую бесконечно малую) есть величина бесконечно малая.
- Частное от деления бесконечно малой величины на функцию, предел которой отличен от нуля, есть величина бесконечно малая.

Укажем основные свойства пределов функций

Если функции f(x) и g(x) имеют конечные пределы при $x \to x_0$, тогда имеют место соотношения.

1)
$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

2)
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

3)
$$\lim_{x \to x_0} c = c$$
, $(c = const)$.

4)
$$\lim_{x \to x_0} (cf(x)) = c \lim_{x \to x_0} f(x)$$
, $c = const$.

5)
$$\lim_{x \to x_0} [f(x)]^n = \left[\lim_{x \to x_0} f(x)\right]^n, \quad n \in \mathbb{N}.$$

6)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \quad \lim_{x \to x_0} g(x) \neq 0.$$

Заметим, что данные свойства справедливы и в тех случаях, когда x_0 является ∞ ($+\infty$, $-\infty$).

Данные свойства позволяют сформулировать правило нахождения предела функции при $x \to x_0$.

В выражение, стоящее под знаком предела, вместо аргумента x следует подставить предельное значение x_0 . Если в результате вычислений получается конечное число (или ∞), то это число (или ∞) и является искомым пределом. Если в результате подстановки получаем выражения вида: $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 1^{\infty}, 0^{0}, \infty^{0}$, то для раскрытия этих неопределенностей применяют специальные приемы.

Рассмотрим некоторые приемы раскрытия неопределенностей на **примерах**:
1)

$$\lim_{x \to 2} \frac{x^2 + 2x - 8}{x^3 - 8} = \left[\frac{0}{0} \right] = \lim_{x \to 2} \frac{(x - 2)(x + 4)}{(x - 2)(x^2 + 2x + 4)} = \lim_{x \to 2} \frac{x + 4}{x^2 + 2x + 4} = \frac{6}{12} = \frac{1}{2}$$

$$\lim_{x \to 1} \frac{\sqrt{5-x}-2}{\sqrt{2-x}-1} = \left[\frac{0}{0}\right] = \lim_{x \to 1} \frac{\left(\sqrt{5-x}-2\right)\left(\sqrt{5-x}+2\right)\left(\sqrt{2-x}+1\right)}{\left(\sqrt{2-x}-1\right)\left(\sqrt{2-x}+1\right)\left(\sqrt{5-x}+2\right)} = \lim_{x \to 1} \frac{\left(5-x-4\right)\left(\sqrt{2-x}+1\right)}{\left(2-x-1\right)\left(\sqrt{5-x}+2\right)} = \lim_{x \to 1} \frac{\left(1-x\right)\left(\sqrt{2-x}+1\right)}{\left(1-x\right)\left(\sqrt{5-x}+2\right)} = \lim_{x \to 1} \frac{\sqrt{2-x}+1}{\sqrt{5-x}+2} = \frac{1}{2}.$$

3)

$$\lim_{x \to \infty} \frac{2x^2 + 7}{3x^2 - 10} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to \infty} \frac{2 + \frac{7}{x^2}}{3 - \frac{10}{x^2}} = \frac{2 + 0}{3 - 0} = \frac{2}{3}$$

Предел функции

 $R(x) = \frac{a_0 x^n + a_1 x^{n-1} + ... + a_n}{b_0 x^m + b_1 x^{m-1} + ... + b_m}$ при $x \to \infty$ (неопределенность типа $\frac{\infty}{\infty}$) в общем случае

$$\lim_{x \to \infty} R(x) = \begin{cases} 0, & ec\pi u & n < m \\ \frac{a_0}{b_0}, & ec\pi u & n = m \\ \infty, & ec\pi u & n > m. \end{cases}$$

Первый замечательный предел

Рассмотрим предел функции

$$\lim_{x \to 0} \frac{\sin x}{x} = \left[\frac{0}{0} \right]$$

Данный предел содержит неопределенность, которую невозможно раскрыть при помощи описанных выше элементарных приемов. Для вычисления данного предела используем следующую **теорему**:

Если $\lim_{x\to a} f_1(x) = A$ и $\lim_{x\to a} f_2(x) = A$ а в окрестности точки a выполняется

$$f_1(x) \le f(x) \le f_2(x),$$

тогда $\lim_{x\to a} f(x) = A$. Это теорема о «зажатой» функции. Эту теорему еще называют

«теорема о двух милиционерах».

Итак, рассмотрим функцию

$$f(x) = \frac{\sin x}{x}.$$

Функция определена, всюду, кроме 0. Для того, чтобы вычислить предел, рассмотрим рис., где x — дуга BC (или угол BOC). Обозначим S_c — площадь сектора OBC. Тогда

$$S_{O\!A\!B} < S_c < S_{O\!D\!C}$$
 или $\frac{1}{2}\sin x \cdot \cos x < \frac{1}{2}x < \frac{1}{2} \operatorname{tg} x$.

Умножая это неравенство на $\frac{2}{\sin x}$ $(\sin x > 0)$ имеем $\cos x < \frac{x}{\sin x} < \frac{1}{\cos x}$.

Заметим, что такое же двойное неравенство получается при отрицательных x,

точнее, при $-\frac{\pi}{2} < x < 0$, что легко проверить. Так как $\cos x \to 1$, $\frac{1}{\cos x} \to 1$, то в

силу приведенной теоремы также получаем

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Это утверждение называют часто *первым замечательным пределом* из-за его важных применений, с которыми мы еще познакомимся.

Примеры:

1)

$$\lim_{x \to 0} \frac{\sin 5x}{x} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{5\sin 5x}{5x} = 5\lim_{x \to 0} \frac{\sin 5x}{5x} = 5 \cdot 1 = 5$$

2)

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4\left(\frac{x}{2}\right)^2} = \frac{1}{2}\lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}$$

3)

$$\lim_{x \to 0} \frac{\lg x}{x} = \left[\frac{0}{0} \right] = \lim_{x \to 0} \frac{\sin x}{\cos x \cdot x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1.$$

4)

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \arcsin x = t & x = \sin t \\ \sin(\arcsin x) = \sin t & x \to 0, t \to 0 \end{bmatrix} = \lim_{t \to 0} \frac{t}{\sin t} = 1.$$

5)

$$\lim_{x \to 2} (2 - x) \operatorname{tg} \frac{\pi x}{4} = \left[0 \cdot \infty \right] = \begin{bmatrix} x - 2 = t, & x = t + 2, \\ x \to 2, & t \to 0. \end{bmatrix} = \lim_{t \to 0} t \operatorname{ctg} \frac{\pi t}{4} = \lim_{t \to 0} \frac{t}{\sin \frac{\pi t}{4}} \cdot \cos \frac{\pi t}{4} = \lim_{t \to 0} \frac{1}{\sin \frac{\pi t}{4}} \cdot 1 = \frac{1}{\frac{\pi}{4}} = \frac{4}{\pi}$$

Второй замечательный предел

Теорема. Предел функции $f(x) = \left(1 + \frac{1}{x}\right)^x$ при $x \to \infty$ существует и равен числу e , m.e.

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e.$$

Число e является иррациональным, его приближенное значение:

$$e \approx 2,718281$$
.

Показательная функция с основанием e, т.е. $y = e^x$

играет исключительно важную роль в математике. Часто ее называют экспонентой. Также широко используются логарифмы по основанию e, называемые натуральными. Обозначаются натуральные логарифмы символом $\ln : \log_e x = \ln x$.

Чтобы получить еще одну запись числа e в формуле сделаем замену $x=\frac{1}{y}$ и учтем, что $y\to 0$, если $x\to \infty$. В результате получим

$$\lim_{y \to 0} (1 + y)^{\frac{1}{y}} = e.$$

Примеры:

1)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{7x} = \left[1^{\infty} \right] = \lim_{x \to \infty} \left[\left(1 + \frac{1}{x} \right)^{x} \right]^{7} = e^{7}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \left[\frac{0}{0}\right] = \lim_{x \to 0} \frac{1}{x} \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \ln e = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \left[\frac{0}{0} \right] = \left[y = e^x - 1, \ x = \ln(1 + y) \\ x \to 0 \Rightarrow y \to 0 \right] = \lim_{x \to 0} \frac{y}{\ln(1 + y)} = \frac{1}{\lim_{x \to 0} \frac{\ln(1 + y)}{y}} = 1$$

$$\lim_{x \to \infty} \left(\frac{2x - 3}{2x + 1} \right)^{3x} = \left[1^{\infty} \right] = \lim_{x \to \infty} \left(1 + \frac{2x - 3}{2x + 1} - 1 \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{-4}{2x + 1} \right)^{3x} = \lim_{x \to \infty} \left($$

$$= \lim_{x \to \infty} \left(1 + \frac{-4}{2x+1} \right)^{\frac{2x+1}{-4} \cdot \frac{-4}{2x+1}} = \lim_{x \to \infty} \left[\left(1 + \frac{-4}{2x+1} \right)^{\frac{2x+1}{-4}} \right]^{\frac{-12x}{2x+1}} = e^{\frac{-12x}{2x+1}} = e^{-6}.$$