7.22. The signal y(t) is generated by convolving a band-limited signal $x_1(t)$ with another band-limited signal $x_2(t)$, that is,

$$y(t) = x_1(t) \cdot x_2(t)$$

where

$$X_1(j\omega) = 0$$
 for $|\omega| > 1000\pi$
 $X_2(j\omega) = 0$ for $|\omega| > 2000\pi$.

Impulse-train sampling is performed on y(t) to obtain

$$y_p(t) = \sum_{n=-\infty}^{\infty} y(nT)\delta(t-nT).$$

Specify the range of values for the sampling period T which ensures that y(t) is recoverable from $y_p(t)$.

7.22. Using the properties of the Fourier transform, we obtain

$$Y(j\omega) = X_1(j\omega)X_2(j\omega).$$

Therefore, $Y(j\omega) = 0$ for $|\omega| > 1000\pi$. This implies that the Nyquist rate for g(t) is $2 \times 1000\pi = 2000\pi$. Therefore, the sampling period T can at most be $2\pi/(2000\pi) = 10^{-3}$ sec. Therefore we have to use $T < 10^{-3}$ sec in order to be able to recover y(t) from $y_p(t)$.

- **7.24.** Shown in Figure P7.24 is a system in which the input signal is multiplied by a periodic square wave. The period of s(t) is T. The input signal is band limited with $|X(j\omega)| = 0$ for $|\omega| \ge \omega_M$.
 - (a) For $\Delta = T/3$, determine, in terms of ω_M , the maximum value of T for which there is no aliasing among the replicas of $X(j\omega)$ in $W(j\omega)$.
 - (b) For $\Delta = T/4$, determine, in terms of ω_M , the maximum value of T for which there is no aliasing among the replicas of $X(j\omega)$ in $W(j\omega)$.

Figure P7.24

7.24. We may express s(t) as $s(t) = \tilde{s}(t) - 1$, where $\tilde{s}(t)$ is as shown in Figure S7.24. We may easily show that

$$\hat{S}(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k\Delta/T)}{k} \delta(\omega - k2\pi/T).$$

From this, we obtain

$$S(j\omega) = \dot{S}(j\omega) - 2\pi\delta(\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k\Delta/T)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega).$$

Clearly, $S(j\omega)$ consists of impulses spaced every $2\pi/T$.

(a) If $\Delta = T/3$, then

$$S(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/3)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega).$$

Now, since w(t) = s(t)x(t),

$$W(j\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/3)}{k} X(j(\omega - k2\pi/T)) - 2\pi X(j\omega).$$

Therefore, $W(j\omega)$ consists of replicas of $X(j\omega)$ which are spaced $2\pi/T$ apart. In order to avoid aliasing, ω_M should be less that π/T . Therefore, $T_{max} = \pi/\omega_M$.

(b) If $\Delta = T/3$, then

$$S(j\omega) = \sum_{k=-\infty}^{\infty} \frac{4\sin(2\pi k/4)}{k} \delta(\omega - k2\pi/T) - 2\pi\delta(\omega).$$

We note that $S(j\omega)=0$ for $k=0,\pm 2,\pm 4,\cdots$. This is as sketched in Figure S7.24 Therefore, the replicas of $X(j\omega)$ in $W(j\omega)$ are now spaced $4\pi/T$ apart. In order to avoid aliasing, ω_M should be less that $2\pi/T$. Therefore, $T_{max}=2\pi/\omega_M$.

7.25. In Figure P7.25 is a sampler, followed by an idea) lowpass filter, for reconstruction of x(t) from its samples $x_p(t)$. From the sampling theorem, we know that if $\omega_s = 2\pi t/T$ is greater than twice the highest frequency present in x(t) and $\omega_c = \omega_s/2$, then the reconstructed signal $x_r(t)$ will exactly equal x(t). If this condition on the bandwidth of x(t) is violated, then $x_r(t)$ will not equal x(t). We seek to show in this problem that if $\omega_c = \omega_s/2$, then for any choice of T, $x_r(t)$ and x(t) will always be equal at the sampling instants; that is,

$$x_c(kT) = x(kT), k = 0, \pm 1, \pm 2, ...$$

Figure P7.25

To obtain this result, consider eq. (7.11), which expresses $x_r(t)$ in terms of the samples of x(t):

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT)T \frac{\omega_c}{\pi} \frac{\sin[\omega_c(t-nT)]}{\omega_c(t-nT)}.$$

With $\omega_c = \omega_s/2$, this becomes

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin\left[\frac{\pi}{T}(t-nT)\right]}{\frac{\pi}{T}(t-nT)}.$$
 (P7.25–I)

By considering the values of α for which $[\sin(\alpha)]/\alpha = 0$, show from eq. (P7.25-1) that, without any restrictions on x(t), $x_t(kT) = x(kT)$ for any integer value of k.

7.25. Here, $x_r(kT)$ can be written as

$$x_r(kT) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin[\pi(k-n)]}{\pi(k-n)}.$$

Note that when $n \neq k$,

$$\frac{\sin[\pi(k-n)]}{\pi(k-n)}=0$$

and when n = k.

$$\frac{\sin[\pi(k-n)]}{\pi(k-n)}=1.$$

Therefore.

$$x_r(kT) = x(kT).$$

7.35. Consider a discrete-time sequence x[n] from which we form two new sequences, $x_n[n]$ and $x_d[n]$, where $x_n[n]$ corresponds to sampling x[n] with a sampling period of 2 and $x_d[n]$ corresponds to decimating x[n] by a factor of 2, so that

$$x_{\rho}[n] = \begin{cases} x[n], & n = 0, \pm 2, \pm 4, \dots \\ 0, & n = \pm 1, \pm 3, \dots \end{cases}$$

and

$$x_{ii}[n] = x(2n).$$

- (a) If x[n] is as illustrated in Figure P7.35(a), sketch the sequences $x_p[n]$ and $x_d[n]$. (b) If $X(e^{j\omega})$ is as shown in Figure P7.35(b), sketch $X_p(e^{j\omega})$ and $X_d(e^{j\omega})$.

Figure P7.35

7.35. (a) The signals $x_p[n]$ and $x_d[n]$ are sketched in Figure S7.35.

