K-nearest-neighbor: an introduction to machine learning

Xiaojin Zhu

jerryzhu@cs.wisc.edu

Computer Sciences Department University of Wisconsin, Madison

Outline

- Types of learning
- Classification: features, classes, classifier
- K-nearest-neighbor, instance-based learning
- Distance metric
- Training error, test error
- Overfitting
- Held-out set, k-fold cross validation, leave-one-out

machine learning

- Learn: to improve automatically with experience
 - speech recognition
 - autonomous vehicles
 - classify astronomical objects
 - play backgammon
 - predict heart attack
 - predict stock prices
 - filter spam

there are 3 types of learning

1. supervised learning

- classification: You're given images of scanned handwritten digits (x) and their corresponding labels (y discrete). Design a ZIP-code reader for the post office to label new scanned digit images.
- **2. regression**: Given the infrared absorption spectrum (x) of diabetic people's blood, and the amount of glucose (y continuous) in the blood. Estimate glucose amount from a new spectrum.

"supervised" because y was given during training.

x are called [instances | examples | points]. Each instance is represented by a [feature | attribute] vector.

there are 3 types of learning

- 1. unsupervised learning
 - clustering: 'cut out' in digital photo: how can we group pixels (x) into meaningful regions (clusters)?

[Shi & Malik 2000]

outlier detection: Are some of x abnormal?

[Weinberger et al. 2005]

dimensionality reduction, and more...

"unsupervised" because we only have (x1...xn)

there are 3 types of learning

1. reinforcement learning

world: you're in observable world state x1

robot: i'll take action a1

world: you receive reward r1. now you're in state x2

robot: i'll take action a2

world: you receive reward r2. now you're in state x3

. . .

What's the optimal action **a** when in state **x**, in order to maximize life-long reward?

"reinforcement" because learning is via action - reward

there are more than 3 types of learning

- 1. supervised learning: (x,y)
 - classification
 - regression
- 2. unsupervised learning: x
 - clustering, outlier detection, dimensionality reduction
- 3. reinforcement learning: (x,a,r)
- 5. semi-supervised learning: (x,y),x
- 6. multi-agent reinforcement learning as game playing: the world is full of other robots (recall the tragedy of the Commons)

. . .

the design cycle of classification

- 1. collect data and labels (the real effort)
- 2. choose features (the real ingenuity)
- 3. pick a classifier (some ingenuity)
- 4. train the classifier (some knobs, fairly mechanical)
- 5. evaluate the classifier (needs care)

If classifier no good, goto 1 — 4

1-nearest-neighbor (1NN) classifier

- Training set: (x₁,y₁), (x₂,y₂), ..., (x_n,y_n)
- Assume x_i=(x_i⁽¹⁾, x_i⁽²⁾, ..., x_i^(d)) is a d-dimensional feature vector of real numbers, for all i
- y_i is a class label in {1...C}, for all i
- Your task: determine y_{new} for x_{new}

1NN algorithm:

- 8. Find the closest point x_j to x_{new} w.r.t. Euclidean distance $[(x_j^{(1)} x_{new}^{(1)})^2 + ... + (x_j^{(d)} x_{new}^{(d)})^2]^{1/2}$
- 9. Classify by $y^{1nn} = y_i$

Instance-based learning

- 1NN is a special case of instance-based learning
 - Find similar instances to x_{new} in training data
 - Fit the label within the similar instances
 - 100-year old idea
- Variations in instance-based learning
 - How many neighbors to consider? (1 for 1NN)
 - What distance to use? (Euclidean for 1NN)
 - How to combine neighbors' labels? (the same)
- Instance-based learning methods which you should know the name, but we won't cover today:
 - Nearest-neighbor regression
 - Kernel regression, locally weighted regression

K-nearest-neighbor (kNN)

Obvious extension to 1NN: consider k neighbors

kNN algorithm:

- 5. Find k closest training points to x_{new} w.r.t. Euclidean distance
- 6. Classify by yknn = majority vote among the k points
 - How many neighbors to consider? (k)
 - What distance to use? (Euclidean)
 - How to combine neighbors' labels? (majority vote)

kNN demo

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Weighted kNN

- Near neighbors should count more than far neighbors
- Each neighbor cast vote with weight w_i, depending on the distance d. Many choices...
 - How many neighbors to consider? (k)
 - What distance to use?(Euclidean)
 - How to combine neighbors' labels? (weighted majority vote)

Copied from Andrew Moore

The distance metric

- The answer shouldn't change if one uses metric or English units for the features
- An Euclidean distance with different scaling factors (a₁...a_d) for different dimensions:

$$[a_1(x_j^{(1)} - x_{new}^{(1)})^2 + ... + a_d (x_j^{(d)} - x_{new}^{(d)})^2]^{1/2}$$

$$Dist^2(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2$$

$$Dist^2(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^2 + (3x_{i2} - 3x_{j2})^2$$

Some notable distance metrics

Scaled Euclidean (diagonal covariance)

Mahalanobis (full covariance)

 $L_{\infty}(max)$ norm

Copied from Andrew Moore

Distance metric

 However choosing an appropriate distance metric is a hard problem

Mars climate orbiter, lost in 1999 due to a mix-up of metric and English units within NASA.

Important questions:

- 2. How to choose the scaling factors $(a_1...a_d)$?
- 3. What if some feature dimensions are simply noise??
- 4. How to choose K?

These are the parameters of the classifier.

Evaluate classifiers

- During training
 - You're given training set (x₁,y₁), (x₂,y₂), ..., (x_n,y_n).
 You write kNN code. You now have a classifier, a black box which generates y^{knn} for any x_{new}
- During testing
 - For new test data $x_{n+1}...x_{n+m}$, your classifier generates labels $y_{n+1}^{knn}...y_{n+m}^{knn}$
- Test set accuracy: the correct performance measure
 - You need to know the true test labels y_{n+1}... y_{n+m}
 - acc = $(\sum y_i^{knn} = = y_i) / m$, where i=n+1, ..., n+m
 - Test set error = 1 acc

Parameter selection

- During training
 - You're given training set (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) .

Good idea: pick the parameters (e.g. K) that maximize test set accuracy

ou now hay

s y_{new} for

(_{n+m}, your

generates labels $y_{n+1}^{knn}...y_{n+m}^{knn}$

But most of the time we only have the training set, when we design a classifier.

- Test set accuracy: the correct performar
 - You need to know the true test labels v v
 - acc = $(\sum y_i^{knn} = = y_i) / m$, wher
 - Test set error = 1 acc

Can we use training set accuracy instead?

Parameter selection by training set accuracy?

- You're given training set (x_1,y_1) , (x_2,y_2) , ..., (x_n,y_n) .
- You build a kNN classifier on them.
- You compute the training set accuracy

$$acc_{train} = (\sum y_i^{knn} = = y_i) / n, where i=1, ..., n$$

You use acc_{train} to select K

There is something very wrong, can you see why?

Hint: consider K=1

Overfitting

 Overfitting is when a learning algorithm performs too good on the training set, compared to its true performance on unseen test data.

Never use training accuracy to select parameters, you'll overfit.

- Overfitting fits [noise | idiosyncrasy] in training data, not the general underlying regularity.
- Ideas?

Leave-one-out cross validation (LOOCV)

- 1. For each training example (x_i, y_i)
 - Train a classifier with all training data except (x_i, y_i)
 - Test the classifier's accuracy on (x_i, y_i)
- 2. LOOCV accuracy = average of all n accuracies

- Selected parameters based on LOOCV accuracy
- Easy to compute for kNN, but (as we'll see later) expensive for many other classifiers.

The holdout set method

- 1. Randomly choose, say 30%, of the training data, set it aside
- 2. Train a classifier with the remaining 70%
- 3. Test the classifier's accuracy on the 30%

- Selected parameters based on holdout set accuracy
- Easy to compute, but has higher variance (not as good an estimator of future performance). Waste data.

K-fold cross validation (CV)

- 1. Randomly divide training data into k chunks (folds)
- 2. For each fold:
 - Train a classifier with all training data except the fold
 - Test the classifier's accuracy on the fold
- 3. K-fold CV accuracy = average of all k accuracies

- Selected parameters based on k-fold CV accuracy
- Between LOOCV and holdout set. Often used. People tend to select k=10 or 5

These methods will not completely prevent overfitting.

What you should know

- Types of learning
- K-nearest-neighbor, instance-based learning
- Distance metric
- Training error, test error
- Overfitting
- Held-out set, k-fold cross validation, leave-one-out