线性代数课程 补充定理及证明

王晨*

2021年12月2日

^{*2021} 线性代数课程补充定理及证明

Chapter 2

2.3 可逆矩阵的特征

定理. 设 A 为 $n \times n$ 矩阵,则下列命题是等价的,即对某一特定的 A,它们同时为真或同时为假.

- a. A 是可连矩阵.
- b. A 等价于 $n \times n$ 单位矩阵.
- c. A有n个主元位置.
- d. 方程 Ax = 0 仅有平凡解.
- e. A 的各列线性无关.
- f. 线性变换 $x \mapsto Ax$ 是一对一的.
- q. 对 R^n 中任意 b, 方程 Ax = b 至少有一个解.
- h. A 的各列生成 R^n .
- i. 线性变换 $x \mapsto Ax$ 把 R^n 映上到 R^n 上.
- i. 存在 $n \times n$ 矩阵 C 使 CA = I.
- k. 存在 $n \times n$ 矩阵 D 使 AD = I.
- $1. A^{\mathsf{T}}$ 是可逆矩阵.
- m. A 的列构成 R'' 的一个基.
- $n. \text{ ColA} = \mathbb{R}^n.$
- o. dimColA = n.
- p. rankA = n.
- $q. \text{ NulA} = \{0\}.$
- $r. \ dim Nul A = 0.$

证明. 若 (a) 为真,则 A^{-1} 可作为 (j) 中的 C, 故 (a) \Rightarrow (j). 其次,由 2.1 节 23 题可知 (j) \Rightarrow (d),又由 2.2 节 23 题可知 (d) \Rightarrow (c). 若 A 是方阵且有 n 个主元位值,则主元必定在主对角线上,在这种情兄下,A 的简化阶梯形是 I_n ,因此 (c) \Rightarrow (b). 同时由 2.2 节定理 7 知 (b) \Rightarrow (a). 至此完成图 2-7 中的证明循环. 其次. 由于 A^{-1} 可作为 D, (a) \Rightarrow (k).又由 2.1 节习题 24 知 (k) \Rightarrow (g),而由 2.2 节习题 24 有 (g) \Rightarrow (a),因此 (g) 和 (k) 被链接进这个循环. 再根据 1.4 节定理 4 和 1.9 节定理 12 (a),得到对任一矩阵来说,(g),(h) 和 (i) 是等价的。因此,通过 (g) 使 (h) 和 (i) 被链接进这个循环。因 (d),(e),(f) 对任一矩阵 A 是等价的(参见 1.7 节及 1.9 节定理 12b,而 (d) 在这个循环之中,所以 (e) 和 (f) 也在这个循环中.最后,由 2.2 节定理 6 (c) 有 (a) \Rightarrow (1),再根据同一个定理,将 A 和 A^T 互换后得到 (1) \Rightarrow (a). 命题 (m) 从线性无关和生成的角度看,与命题 (e) 和 (h) 是逻辑上等价的,至于上面其他五个命题,可由下列常见的关系将它们与这个定理早

期的一个命题链接起来:

$$(g) \Rightarrow (n) \Rightarrow (o) \Rightarrow (p) \Rightarrow (r) \Rightarrow (q) \Rightarrow (d)$$

命題 (g) 称对 R^n 中的每个 b, 方程 Ax = b 至少有一个解, 由此可以推出 (n), 因为 ColA 实际上就是使方程 Ax = b 相容的所有 b 的集合. 式 $(n) \Rightarrow (o) \Rightarrow (p)$ 由维数和秩的定义可以推出. 如果 A 的秩等于 n, 即 A 的列的个数, 则由秩定理有 $dim\{NulA = 0\}$, 也就是 $NulA = \{0\}$. 于是 $(p) \Rightarrow (r) \Rightarrow (q)$. 而且由 (q) 可以推出方程 Ax = 0 只有平凡解,即价题 (d). 因为已经知道价题 (d) 和 (g) 与 A 是可逆的命题是等价的,于是定理证毕。

Chapter 4

4.6 秩

性质 (5).
$$\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$$

证明. 先证

$$\max\{R(A), R(B)\} \le R(A, B)$$

.

再证

$$R(A, B) \le R(A) + R(B)$$

由分块矩阵的性质可知,

$$(A,B) = (E \quad E) \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right)$$

那么,

$$R(A,B) \le R \left(\begin{array}{cc} A & 0 \\ 0 & B \end{array} \right) = R(A) + R(B)$$

由此可知命题成立。

性质 (7). $R(AB) \le \min\{R(A), R(B)\}$

方法一. 设 $A=(a_{ij})_{m\times n}, B=(b_{ij})_{n\times n},$ 由

$$AB = (\alpha_1, \alpha_2, \dots, \alpha_p) \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{p1} & b_{p2} & \dots & b_{pn} \end{pmatrix}$$

可知, AB 的列向量组可由 A 的列向量组线性表示, 因此 $R(AB) \le R(A)$. 同理, 由

$$AB = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}.$$

可知,AB 的列向量组可由 B 的列向量组线性表示,因此 $R(AB) \le R(B)$. 综上, $R(AB) \le \min\{R(A), R(B)\}$.

方法二. 设 R(A) = r, 则存在可逆矩阵 P,Q, 使得

$$A = P \begin{pmatrix} E_r & O \\ O & O \end{pmatrix} Q$$

$$AB = P \begin{pmatrix} E_r & O \\ O & O \end{pmatrix} QB,$$

$$QB = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$

 $B_{11}, B_{12}, B_{21}, B_{22}$ 依次为 $r \times r, r \times (s-r), (n-r) \times r, (n-r) \times (s-r),$

$$\begin{pmatrix} E_r & O \\ O & O \end{pmatrix} QB = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ O & O \end{pmatrix}$$

$$R(AB) = R\left(P\left(\begin{array}{cc} B_{11} & B_{12} \\ O & O \end{array}\right)\right) = R\left(\begin{array}{cc} B_{11} & B_{12} \\ O & O \end{array}\right) \le r = R(A)$$

同理有 $R(AB) \le R(B)$, 因此, $R(AB) \le \min\{R(A), R(B)\}$.

性质 (8). $A_{m \times n} B_{n \times 1} = 0_{m \times 1}$, 则 $R(A) + R(B) \leq n$

证明. 对
$$\begin{bmatrix} A & O \\ E_n & B \end{bmatrix}$$
 作初等变换,

$$\begin{bmatrix} A & O \\ E_n & B \end{bmatrix} \longrightarrow \begin{bmatrix} O & -AB \\ E_n & B \end{bmatrix} \longrightarrow \begin{bmatrix} O & -AB \\ E_n & O \end{bmatrix} \longrightarrow \begin{bmatrix} E_n & O \\ O & AB \end{bmatrix}$$

又显然
$$R(A) + R(B) = R\left(\begin{bmatrix} A & O \\ O & B \end{bmatrix}\right) \le R\left(\begin{bmatrix} A & O \\ E_n & B \end{bmatrix}\right)$$
 (局部 \le 整体)

则

$$R(A) + R(B) \le R \left(\begin{bmatrix} E_n & O \\ O & AB \end{bmatrix} \right) = R(E_n) + R(AB) = n + R(AB)$$

所以
$$R(AB) \ge R(A) + R(B) - n$$
. 由于 $AB = 0$, 则 $R(AB) = R(0) = 0$, 因此 $R(A) + R(B) \le n$.