Example 3: Aspirin bottles are filled by weight, so if the pills are larger than they should be, fewer pills will be put in a bottle. The production process is designed so that pills should have an average weight of 5 grams. Say 100 pills are randomly selected and we find that the average weight in this group is 5.13 g and the standard deviation is 0.35 g. Does this give us enough evidence to say that the production process is creating pills that weigh more than they should? Test at a significance level of $\alpha = 0.01$.

n=100 is large => & is normally distributed

1. Define the parameter of interest using the correct notation. Then state the null and alternative hypotheses for this study.

testing m - true mean weight of the pills

one-tailed Hi: M > 5

test Hi: M > 5

2. Calculate the observed value of the test statistic. State the distribution (and degrees of freedom if needed) it follows.

 $Z_{obs} = \frac{x - M^{c} from Ho}{x - M^{c} from Ho} = 3.71$

3. Compute the p-value or provide a range of appropriate values for the p-value.

3.71

p-value = P(773.71)= 1 - P(753.71) $\approx 1 - 1$ The end of our 2 table = 0

4. Using the significance level $\alpha = 0.01$, state your conclusions about the pills created by the production process.

p-value $\approx 0 \leq k = 0.01 \Rightarrow p$ -value is small \Rightarrow reject to. We conclude that there is enough evidence to say the mean is greater than 5g, so the process creates pills that weigh more than they should.