Examen final

Aucun document autorisé

A/ Questions courtes (6 points)

Pour chaque question répondez en 2 phrases maximum.

- 1/ L'Etat doit-il jouer un rôle dans les campagnes de vaccination? (1 point)
- 2/ Une obligation peut-elle être risquée? (1 point)
- 3/ Quel est l'impact d'une hausse de la masse monétaire sur le PIB? Décrivez le mécanisme. (1 point)
 - 4/ Rappeler la définition de l'élasticité-prix ρ de la demande. (1 point)
- 5/ Lorsque l'élasticité-prix de la demande est supérieure à 1, comment le budget alloué au bien varie-t-il avec le prix de ce bien ? Justifier par un calcul rapide. (1 point)
 - 6/Rappeler la définition de l'efficience de Pareto. (1 point)

B/ Réchauffement climatique (8 points)

Le monde est composé de deux pays, N et S. Soit Q_i la quantité d'émissions en tonne de CO2 que choisit d'émettre le pays $i \in \{N, S\}$ et \bar{Q}_i la quantité correspondante en cas de laissez-faire. L'effort de réduction d'émissions du pays i s'élève donc à $\bar{Q}_i - Q_i$, ce qui engendre un coût pour ses citoyens de:

$$\alpha_i \frac{\left(\bar{Q}_i - Q_i\right)^2}{2}.$$

On suppose $\alpha_N > \alpha_S$.

- 1/ Donnez un exemple de différence géographique entre les deux pays aboutissant à $\alpha_N > \alpha_S$. (0.5 point)
- 2/ Pour préserver le climat, les scientifiques estiment que les émissions mondiales doivent diminuer d'une quantité 2E. Un accord international oblige donc chaque pays à réduire ses propres émissions de E. Cette politique est-elle Pareto efficace? Expliquez. (1.5 points)
- 3/ Supposons que les deux pays s'accordent pour instaurer une taxe carbone au taux de τ par tonne de CO2 émise. Les citoyens du pays i doivent donc payer τQ_i à leur gouvernment afin d'émettre Q_i tonnes de CO2.
- (i) Montrez que pour réduire les émissions mondiales de 2E, la taxe carbonne doit être fixée à:

$$\tau = 2E \frac{\alpha_N \alpha_S}{\alpha_N + \alpha_S}.$$

Interprétez cette formule. (1.5 points)

- (ii) Pour chaque pays i, calculez la réduction d'émissions ainsi que le coût total de cette politique. Interprétez. (1 point)
 - (iii) Cette politique est-elle efficace? Cette politique est-elle équitable? (0.5 point)
- 4/ Chaque pays i dispose désormais d'un quota d'émissions C_i échangeable internationalement, tel que $C_S + C_N = \bar{Q}_S + \bar{Q}_N 2E$.
- (i) Déterminez l'équilibre du marché d'émissions, où p désigne le prix d'une tonne de CO2. Comparez les niveaux d'émissions engendrés par ces deux politiques. (1,5 points)
- (ii) Supposons que les quotas sont répartis tel que, en l'absence d'échange, chaque pays doit réduire ses propres émissions de E, ce qui implique $C_i = \bar{Q}_i E$. Calculez le coût de cette politique pour chaque pays (avec la possibilité d'échanger les quotas). Comparez ce coût à celui de la taxe carbone. Interprétez. (1,5 points)

C/ Compétition spatiale et en prix (8 points)

On considère un continuum de consommateurs répartis sur une route représentée par l'intervalle [0,1], et qui sont uniformément distribuées dans l'intervalle [0,1]. On normalise à 1 la masse totale des consommateurs.

Deux producteurs $i \in \{1,2\}$ ont un coût unitaire de production c et aucun coût fixe et décident :

- 1. D'une localisation $x_1 \in [0, \frac{1}{2}]$ pour le producteur 1 et $x_2 \in [\frac{1}{2}, 1]$ pour le producteur 2,
- 2. Une fois que ces localisations sont choisies et connues, chaque producteur décide d'un prix de vente p_i pour sa production.

Un consommateur placé en $x \in [0,1]$ subit un coût de transport à choisir un producteur placé en x_i égal à $t(x-x_i)^2$, où t>0 est un paramètre fixe. Chaque consommateur achète une unité de bien, et le fait auprès du producteur i pour lequel la somme du prix p_i et du coût de transport $(x-x_i)^2$ est la plus faible.

- 1/ Supposons les placements des producteurs x_1, x_2 et les prix p_1, p_2 fixés. Quel est, s'il existe, le consommateur \overline{x} indifférent entre les producteur 1 et 2 ? (1 point)
- 2/ Ecrire, en fonction des prix p_1, p_2 , les fonctions de profit $U_1(p_1, p_2)$ et $U_2(p_1, p_2)$ des producteurs 1 et 2. (1 point)
- 3/ Pour p_1 donné, montrer que la meilleure réponse $P_2(p_1)$ du producteur 2 est donnée par :

$$P_2(p_1) = \frac{1}{2} \left(p_1 + c + t(x_2 - x_1)(2 - x_2 - x_1) \right)$$

(1 point)

On admettra qu'à p_2 fixé, la meilleure réponse $P_1(p_2)$ du producteur 1 est donné par l'expression :

$$P_1(p_2) = \frac{1}{2} (p_2 + c + t(x_2 - x_1)(x_2 + x_1))$$

4/ Dériver les équations qui caractérisent un équilibre de Nash p_1^*, p_2^* en prix une fois que les positionnements sont choisis. (1 point)

On admettra que ces équations ont une solution unique donnée par :

$$p_1^* = c + \frac{2}{3}t(x_2 - x_1)(1 + \frac{x_1 + x_2}{2})$$

$$p_2^* = c + \frac{2}{3}t(x_2 - x_1)(2 - \frac{x_1 + x_2}{2})$$

mais vous pouvez aussi le démontrer pour des points supplémentaires.

5/ Monter qu'en fonction de x_1 et de x_2 les profits de l'équilibre de Nash de la question 4 sont donnés par : (1 point)

$$N_1(x_1, x_2) = \frac{2}{9}t(x_2 - x_1)\left(1 + \frac{x_1 + x_2}{2}\right)^2$$

$$N_2(x_1, x_2) = \frac{2}{9}t(x_2 - x_1)\left(2 - \frac{x_1 + x_2}{2}\right)^2$$

6/ On considère maintenant le jeu dans lequel chaque producteur choisit x_i , et les profits sont donnés par $N_1(x_1, x_2)$ et $N_2(x_1, x_2)$. Montrer que pour le producteur $1, x_1 = 0$

est une stratégie dominante, et pour le joueur 2, $x_2=1$ est une stratégie dominante. (1 point)

- 7/ Quels sont les équilibres de Nash du jeu de la question 6 ? (1 point)
- 8/ Commenter. (1 point)