

Image formation

Computer Vision Crash Course

Francesca Odone francesca.odone@unige.it

DIGITAL IMAGES

Two important concepts:

- The exact relationship of a digital image to the physical world is determined by the acquisition process
- Any information contained in images (shape, measurements, objects identities) must be computed from 2D numerical arrays

Parameters involved in the acquisition process

<u>Geometric parameters</u>: type of projections, position and orientation of the camera, perspective distortion

Optical parameters: lens type, focal length, field of view, aperture

<u>Photometric paramters:</u> type, intensity, direction of illumination; reflectance properties of surfaces, sensors' structure;...

Spatial and temporal resolution

Quantization of intensity scale

THE GEOMETRY OF IMAGE FORMATION

Camera obscura

Uni**Ge**

Perspective projection does not preserve

distances: length($\Pi(A)$) \neq length(A)

And also depends on the focal length

Perspective projection does not preserve parallelism

The perspective model <u>preserves lines</u>

(and indeed it does not model distortions)

This property can be shown by drawing a line R in the space and considering the plane passing through R and the optical center

 The intersection of the obtained plane with the image plane is the line r the locus of projected points

LIMITS OF THE PIN-HOLE MODEL

The pin-hole model is an effective formalization of the geometry of image formation

It is not a practical model:

• It would require very high **exposure time:** if a photoreceptor is reached by a small amount of light it needs time (several seconds) to record the information and form the image

OPTICS

OPTICS

A single point of a scene reflects light coming from possibly many directions

many rays reflected by the same point may enter the camera

To obtain *sharp* images all rays coming from a single scene point P must converge into a single image point p (P is *in focus*)

- Reduce the aperture to a point (pin-hole)
- Introduce an optical system (lens + aperture, ..) designed to make all rays coming from the same 3D point converge into a single 2D point

OPTICS

OPTICS: THIN LENS model

A useful approximation is the thin lens model

Real acquisition systems (artificial or biological) use more complex optics composed by more than one lens

OPTICS: THIN LENS model

Rays parallel to the optical axis are reflected by the lens through a point of the optical axis called a *focus*

Rays passing through the optical center O are not altered.

PHOTOMETRY

DIGITALIZATION

The digitalization process is formed by two steps

- **♦**Measurement
- **♦**Conversion from analog to digital

In the first step the physical quantity to be represented (eg light) is measured by an appropriate device that converts it into an electrical continuous signal

In the second step the electrical signal is converted into a digital signal

DIGITALIZATION

ASPECT RATIO

CCD aspect ratio does not necessarily correspond to image aspect ratio

QUANTIZATION

Quantization of intensity scale: number of bits associated with the digital encoding

QUANTIZATION

1 bit

16 bit (2 byte)

8 bit (1 byte)

24 bit (true color)

Numer of bits (B)	Depth (2 ^B)	Max value	Memory occupacy [512x512 uncompressed image]
1	2	1	32 Kb
8 (unsigned char)	256	255	(512x512x8)bit = 256 Kb
16 (int)	65536	65535	(512x512x16)bit = 512 Kb
24 (color: 3 int)	16 10 ⁶	255 (per color)	(512x512x8)x3 bit = 768 Kb
32 (long int,float)	4 10 ⁹	2 ³² -1	(512x512x32) bit=1 Mb

Wrap up – day 1

Today we have introduced the main ingredient of computer vision: digital images

- Pixel content
- Histogram representations
- Operations on images
- The image formation process

UniGe

