Image Classification

Prashun Chitrakar KCE074BCT030

What is Image Classification

- Classification between objects is trivial task for human but complex for computers to do
- One of the problems of computer vision
- Refers to labeling of images into one of a number of predefined classes
- Manually classifying images could be tedious task so automating it through computer vision would be prove to be more efficient
- Examples:
 - Labelling X-ray image as cancerous or not (binary classification)
 - Classifying handwritten digits (multiclass classification)
 - Assigning a name to a photograph of a face (multiclass classification)

Structure of Image Classification Task

- Image preprocessing
 - Process or improve the image data
 - Suppressing unwanted distortions and enhancing important features
- Detection of an object
 - Localization of an object
 - Segmentation on an image and identify position on object of interest
- Feature extraction and training
 - Different statistical or deep learning methods are applied in this step
- Classification on object
 - Categorize detected objects into predfied classes by using a suitable classification technique that compares the image patterns with target patterns

Image Preprocessing

- Performing various operations on image data
- Images are just matices of numbers
- Optimizing the numbers can give some performance boost
- Steps of image pre-processing
 - Read Image
 - Resize Image
 - Data Augmentation
 - Grayscaling
 - Reflection, rotation, translation
 - Gaussian Blurring
 - Histogram Equalization

Reading Image

Process of reading the image file and representing in a matrix form

Resize Image

- Images may be of various dimensions
- Resizing is done to bring consistency in the data
- Scaling large images into small form factor also reduces computational complexity

Data Augmentation

- Enlarges/Improves the dataset
- Grayscaling
 - Converting the dimension of image matrix from (X, Y, 3) to (X, Y, 1)
 - Also reduces computational complexity

• Reflection, rotation, translation

 This changes the shape, size and appearance of the same image and gives different perspective of the same image

Gaussian blurring

Used to reduce noise in the image

Histogram Equalization

o Technique to increase global contrast of an image using the image intensity histogram

Image Classification Techniques

- Traditional Techniques
 - Support Vector Machines
 - Decision Trees
 - K Nearest Neighbor
- Modern Methods
 - Artificial Neural Networks
 - Convolutional Neural Networks

Support Vector Machines(SVM)

- Supervised machine learning algorithm
- Separates classes by forming a hyperplane in a n-dimensional space
- Depends on something called kernel function
- Most commonly used kernels are
 - Linear Kernel
 - Gaussian Kernel
 - Polynomial Kernel

Support Vector

Distance Margin Hyperplane

Distance Margin

Support Vector

Decision Trees

- It is another supervised learning algorithm
- It uses tree data structure
- Contains hierarchical rule-based methods and permits acceptance and rejection of class labels in each intermediary level

K-Nearest Neighbour

 It works on the basis of euclidean distance between feature vectors and classifies data points by finding the most common class among the k-closest

examples

Artificial Neural Networks

- Inspired by biological neural networks
- Have nodes which are analogous to biological neurons
- Connections between different neurons have numerical values called weights

Artificial Neural Networks...(contd)

- Contains different layers that does individual tasks/individual feature detection
- Eg for a face detection task first layer can detect the face's shape, second layer can identify eyes, third can identify mouth, etc.

Convolutional Neural Networks(CNN)

- Special type of Artificial Neural Network
- SOTA in computer vision tasks
- Contains two parts: Convolutional Layers and Pooling Layers
- These two layers are arranged in different ways to achieve a CNN

architecture

Thank You