

Classe: 4^{ème} Math & 4^{ème} Sc-exp

Série physique:

Oscillations électriques forcées : série 5

Prof: Hílelí Adel

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1:

On dispose d'un générateur de basse fréquence GBF délivrant la tension $u(t) = 15\sqrt{2} \sin{(2\pi Nt + \frac{\pi}{6})}$ de fréquence N réglable, d'un oscilloscope électrique bicourbe, d'un ampèremètre à aiguille A et de trois dipôles électriques D_1 , D_2 et D_3

- + **D**₂ est un conducteur ohmique de résistance **R**=40**Ω**.
- **♣** Chacun des dipôles **D**₁, **D**₃ peut être constitué de l'un des éléments ou d'une association de deux éléments différents parmi la liste suivants :
 - ✓ Conducteur ohmique de résistance R',
 - ✓ Condensateur de capacité C
 - ✓ Bobine purement inductive d'inductance L.

A l'aide de ces différents dipôles, on réalise le circuit électrique de la figure ci-contre, sur lequel sont indiqués les branchements sur l'oscilloscope.

I/ Dans une première expérience, on fixe la fréquence du GBF à une valeur $N_1 = 250$ Hz. L'intensité du courant traversant le circuit a pour expression : i(t) =

$0,1\sqrt{2}\sin\left(2\pi N_1t\right).$

- 1°) Préciser la nature du circuit pour la fréquence N_1 .
- 2°) Sur l'oscilloscope, on obtient l'oscillogramme ci-contre.
- a- Déterminer le déphasage $\Delta \varphi = \varphi_{u_{D1}} \varphi_{u_{D2}}$ de la tension \mathbf{u}_{D1} par rapport à la tension \mathbf{u}_{D2} .
- **b-** Déterminer les expressions instantanées des tensions **u**_{D1} et **u**_{D2}.
- c- Préciser, en le justifiant, la **nature exacte** du dipôle $\mathbf{D_1}$
- 3°) a- En appliquant la loi des mailles, écrire l'expression de **u(t)** en fonction des tensions instantanées aux bornes des trois dipôles **D**₁, **D**₂ et **D**₃.
 - **b-** Représenter le construction de Fresnel relative aux valeurs maximales de ces tensions à l'échelle : $4\sqrt{2} \rightarrow 2cm$.

- c- En déduire la nature exacte du dipôle D_3 .
- **d-** En exploitant la construction de Fresnel, déterminer les valeurs des grandeurs caractéristiques des dipôles D_1 et D_3 .
- e- Ecrire l'expression de la tension instantanée aux bornes du dipôle \mathbf{D}_3 .
- f- Calculer la puissance moyenne consommée dans le circuit.

II/ Dans une deuxième expérience,

on prendra R_{Totale} =130 Ω , L=0,15H, C=4 μ F Pour une fréquence N_2 , on visualise les tensions électriques $\mathbf{u}(t)$ aux bornes du générateur et $\mathbf{u}_E(t)$ aux bornes de l'un des éléments du dipôle D_1 , ce qui a permis d'obtenir l'oscillogramme ci-contre. Dans ces conditions, la déviation de l'aiguille de l'ampèremètre indique la valeur la plus élevée.

<u>19,5√2 V</u>

- 1°) quel est l'état d'oscillation du circuit ?
- 2°) Préciser, en le justifiant, aux bornes de quel élément du dipôle D_1 , on a branché l'oscilloscope afin de visualiser $\mathbf{u}_{E}(t)$.
- 3°) Déterminer la fréquence N_2 des oscillations du circuit.
 - 4°) Calculer l'intensité du courant I2 indiquée par l'ampèremètre.
 - 5°) En comparant les amplitudes des deux tensions visualisées, que peut-on conclure .

Exercice 2:

On considère un circuit électrique comportant une bobine d'inductance L et de résistance r branchée en série avec un résistor de résistance $R=120\Omega$, un condensateur de capacité C et un générateur basse fréquence délivrant une tension sinusoïdale $u(t)=U\sqrt{2.sin(2\pi Nt)}$ de valeurs efficaces U et de pulsations oméga $\omega=950$ rad.s⁻¹. À l'aide d'un voltmètre on mesure les tensions suivantes : $U_R=6.0$ V , $U_C=10.0$ V , $U_B=5.2$ V , U=8.9 V

- 1) a- Calculer la valeur de l'intensité efficace du courant I.
 - b- Déterminer la valeur de la capacité C du condensateur.
 - c- Dire, en justifiant la réponse si ce circuit est inductif, capacitif ou résistif.
- 2) Écrire l'équation différentielle traduisant la variation de i(t).
- 3) a- Tracer à l'échelle la construction de Fresnel relative aux tensions efficace.
 - b- Déduire les valeurs de r et L.
 - **c-** Ecrire l'expression de l'intensité de courant **i(t).**
 - d- Ecrire l'expression de la tension $\mathbf{u}_{BC}(t)$ aux bornes de l'association bobine-condensateur.
- **4)** Déterminer la valeur de la puissance moyenne consommée par l'oscillateur pour cette fréquence.

