Base case: P(1) holds $IS: P(n) \rightarrow P(n+1)$ P(1): [$\forall n \in \mathbb{N}, n \ge 1 \land P(n) \Rightarrow P(n+1)$] $\Rightarrow \forall n \in \mathbb{N}, n \ge 1$. P(n) IH: We assume for a general notwal $\# n \rightarrow P(n)$ | $P_{odd}(S)$ |= 2^{n-1} , |S|=n CSC236 tutorial exercise #1want $|P_{odd}(S_{n+1})|=2^n$, $|S_{n+1}|=n+1$ Winter 2015 15 January 2015 1. Use a variation of simple induction to prove that for most natural numbers n, any set of n elements has 2^{n-1} subsets with an odd number of elements. $\begin{aligned} &|P_{odd}(S)| = \frac{1}{2} |P(S)| = \frac{1}{2} \cdot 2^n = 2^{n-1} = |P_{even}(S)|, S_{n+1} = S_n \cup \{\alpha_{n+1}\} \\ &P(S_{n+1}) = P(S_n) \cup |X \cup \{\alpha_{n+1}\}| |X \in P(S_n)| \} \\ &P(S_n) = P_{odd}(S_n) \cup P_{even}(S_n), P_{odd}(S_n) \cap P_{even}(S_n) = \emptyset \\ &P_{odd}(S_{n+1}) = P_{odd}(S_n) \cup |X \cup \{\alpha_{n+1}\}| |X \in P_{even}(S_n)| \end{aligned}$ [Podd(Sn+1) = Podd(Sn) + | * | 2. We proved in class that for all natural numbers n, $3^n \ge n^3$. Your task is to complete the following alternative proof. Define $P(n) := "3^n \ge n^3$ ". As before, we prove $\forall n. P(n)$ by a variation of simple induction. Base case: you decide what base cases you need. We used 0, 1, 2, 3 in class, but this is a different proof, so perhaps you will need a smaller or larger number of base cases. Let n be an arbitrary natural number that is at least as large as your largest base case. Assume Goal: $3^{n+1} \ge (n+1)^3$, or equivalently $(n+1)^3 \le 3^{n+1}$. Expanding $(n+1)^3$ gives $n^3 + 3n^2 + 3n + 1$. Hence, the Goal is equivalent to: NewGoal: $n^3 + 3n^2 + 3n + 1 \le 3^{n+1}$. Prove NewGoal! 2 $P(n): \forall n \in \mathbb{N}, 3^n > n^3$ Base cases: n=0, 1≥0 n=1,3≥1 n=2,9≥8 $n=3, 27 \ge 27$ IH: Assume for general $n \in \mathbb{N}$, $n \ge 3$, $P(n) \rightarrow P(n+1)$ $P(n):3^n \ge n^3$ P(n+1): $3^{n+1} \ge (n+1)^3 = n^3 + 3n^2 + 3n + 1$ $3^{n+1} = 3 \cdot 3^{n} = 3^{n} + 3^{n} + 3^{n} \ge n^{3} + n^{3} + n^{3} \ge n^{3} + n(n^{3}) + n^{3} \cdot n \ge n^{3} + 3n^{2} + 9n$ $\geq n^3 + 3n^2 + 3n + 1$

1) Predicate: IneN, each set with n elements has 2n-1 subsets with odd size.

P(n): \(\forall S. |S|=n, n \ge |=> |Pou(s)|=>^{-1}

CSC236 tutorial exercise #2 Winter 2015

22 January 2015

1. Finish any lingering questions about last tutorial's exercises.

2. Prove by induction that, for any natural number n, the sum of the naturals from 0 to n (i.e. 0+1+ $2+\ldots+n$) is $\frac{n(n+1)}{2}$. Clearly and explicitly structure your inductive proof:

- Define a predicate P whose domain is the natural numbers such that you are proving P holds for every natural number. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
- Label your base case or base cases. n=0, $o=\frac{0\cdot 1}{2} \rightarrow P(0)$
- Label your inductive hypothesis (IH) and every place where you use it.
- Label your inductive step.

IS:
$$P(n) \rightarrow P(n+1)$$

 $\sum_{i=1}^{n} i = \frac{n(n+2)}{2}$
 $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{n(n+2)}{2} \longrightarrow P(n+1)$

3. Quiz will be closely related to one of the tutorial exercises from last week or this week.