Nonlinear Asset Pricing Model

UdeM

October, 2021

Outline

Introduction

Related literature

Data

Reproducing Kozak et al. results

Nonlinear principal component

Computation of the NLPCs

Application of Kozak et al. methodology to the NLPCs 50-k linear PCs + k nonlinear MPs/PCs

Conclusion

▶ In modern finance, the price of any asset is obtained by the expected discounted payoffs :

$$p_t^i = \mathbb{E}_t(SDF_{t+1}CF_{t+1}^i)$$

▶ The stochastic discount factor SDF_{t+1} is equal to the growth in the marginal value of wealth :

$$SDF_{t+1} = \frac{VW_{t+1}}{VW_t}$$

- ► The traditional theories of finance, CAPM, ICAPM, and APT, measure the marginal utility of wealth by the behavior of large portfolios of assets.
 - 1. **CAPM**: return on the market portfolio.
 - 2. **Multifactor models**: returns on multiple portfolios.

- In this paper, we rely on the multi-factor model framework.
- ▶ The SDF_{t+1} is specified as follows :

$$SDF_t = 1 - \lambda'(F_t - \mu)$$

where $\mu = E(F_t)$ and λ is a vector of factor loadings.

- ▶ IDEA of this paper : Use the nonlinear PCs as factors to estimate the SDF instead of the linear PCs as it is usually done. (See Kozak et al. (2020))
- Advantages :
 - Factors are truly independent as opposed to linear PCs which are merely uncorrelated. As a consequence, we capture truly different risk measure.
 - We likely need less factors when using nonlinear PCs than when using linear counterpart. As a consequence, we have parsimonious model.
 - 3. The increasing number of anomalies is **likely** not a problem anymore.

- ▶ Nonlinear factors : Chen et al. (2009), Lawrence (2012), Gunsilius and Schennach (2019), Damianou et al. (2021)
- ► Machine learning asset pricing models: Feng et al. (2018), Nakagawa et al. (2019), Chen et al. (2020), and Fang and Taylor (2021).
- ▶ Stochastic discount factor estimation: Fama and Kenneth (1993), Hou et al. (2015), Fama and French (2015), Barillas and Shanken (2018) and Kozak et al. (2018).

- ► Anomalies considered : 50 anomaly characteristics (same as Kozak et al.(2020));
- Daily returns data from November 1973 to December 2019 (2017 for Kozak et al.(2020));
- ► Follow the same anomalies definition as Kozak et al.(2020) to construct the anomalies.

Optimization problems

- Let $r_t = (r_{1,t}, ..., r_{N,t})'$ be the vector of excess returns of N portfolios, t=1,...,T
- Let Z_t be a N-by-k matrix of asset anomaly characteristics;
- Let $F_t = Z'_{t-1}r_t$ be a k-by-1 vector of factors (raw characteristic returns or linear PCs or nonlinear PCs);
- Let $\Sigma = Cov(F)$ be a k-by-k variance-covariance matrix of the factors:
- Let $\mu = \mathbb{E}(F)$ be a k-by-1 vector of expected factor returns;
- \triangleright $SDF_t = 1 \lambda'(F_t \mathbb{E}F_t)$

Optimization problems

We impose two kind of penalties to estimate the SDF coefficients :

L2pen:
$$\hat{\lambda} = \arg\min_{\lambda} (\mu - \Sigma \lambda)' \Sigma^{-1} (\mu - \Sigma \lambda) + \gamma \lambda' \lambda$$
 (1)

L1L2pen:
$$\hat{\lambda} = \arg\min_{\lambda} (\mu - \Sigma \lambda)' \Sigma^{-1} (\mu - \Sigma \lambda) + \gamma_1 \sum_{i=1}^{k} |\lambda_i| + \gamma_2 \lambda' \lambda$$
(2)

- Estimate the parameter $\hat{\lambda}$ via Ridge or Elastic net using LAR-EN;
- ▶ choose optimally the tuning parameters γ or (γ_1 and γ_2). Σ is a k-by-k matrix, μ is a k-by-1 vector and λ is a k-by-1 vector.

LARS-EN(1/2)

- For each γ_2 , the problem (2) is equivalent to a lasso problem (3);
- So, for each γ_2 we use the modified LARS algorithm to solve the problem (3) equivalently the problem (2).

$$\hat{\lambda} = \arg\min_{\lambda} (\mu^* - \Sigma^* \lambda)' (\mu^* - \Sigma^* \lambda) + \gamma_1 \sum_{i=1}^{\kappa} |\lambda_i|$$
 (3)

where
$$\mu^* = (\Sigma^{-\frac{1}{2}}\mu, 0)'$$
 and $\Sigma^* = (\Sigma^{\frac{1}{2}}, \sqrt{\gamma_2}I)'$

For each γ_2 , we execute the algorithm described in the next slide to estimate $\hat{\lambda}$.

LARS-EN(2/2)

- 1. Initialize $\hat{\lambda}^{(0)} = 0$, $\mathcal{A} = argmax_j |\Sigma'_j \mu|$, $\nabla \hat{\lambda}^{(0)}_{\mathcal{A}} = -sign(\Sigma'_{\mathcal{A}}\mu), \nabla \hat{\lambda}^{(0)}_{I} = 0$, n = 0.
- 2. While $\mathcal{I} \neq \emptyset$ do; 3. $\delta := \min^+ \cdot -\frac{\hat{\lambda}^{(n)}}{2}$
- 3. $\delta_j = \min_{j \in \mathcal{A}}^+ \frac{\hat{\lambda}^{(n)}}{\nabla \hat{\lambda}_j^{(n)}}$
- 4. $\delta_i = \min_{i \in \mathcal{I}}^+ \left\{ \frac{(\Sigma_i + \Sigma_j)'(\mu X\hat{\lambda}^{(n)})}{(\Sigma_i + \Sigma_j)'(\Sigma \nabla \hat{\lambda}^{(n)})}, \frac{(\Sigma_i \Sigma_j)'(\mu \Sigma\hat{\lambda}^{(n)})}{(\Sigma_i \Sigma_j)'(\Sigma \nabla \hat{\lambda}^{(n)})} \right\}$ where j is any index in \mathcal{A} .
- 5. $\delta = \min(\delta_j, \delta_i)$
- 6. if $\delta = \delta_j$ then move j from \mathcal{A} to \mathcal{I} else move i from \mathcal{I} to \mathcal{A} .
- 7. $\hat{\lambda}^{(n+1)} = \hat{\lambda}^{(n)} + \delta \nabla \hat{\lambda}^{(n)}$
- 8. $\nabla \hat{\lambda}_{A}^{(n+1)} = -\frac{1}{2} (\Sigma_{A} + \gamma_{2} I)^{-1} . sign(\hat{\lambda}_{A}^{(n+1)})$
- 9. Update the value of n=n+1
- 10. end while
- 11. Output the series of coefficients $\Lambda = (\hat{\lambda}^{(0)}, \hat{\lambda}^{(1)}, \dots, \hat{\lambda}^{(k)})$

L2pen: Raw characteristics and linear PCs

FIGURE – 50 raw characteristics

FIGURE - 50 linear PCs

Sparsity

L1L2pen: Raw characteristics and linear PCs

FIGURE – 50 raw characteristics

FIGURE - 50 linear PCs

L2pen: With interaction terms

FIGURE – 2600 raw char.

FIGURE - 2600 linear PCs

L1L2pen: With interaction terms

FIGURE – 2600 raw char.

FIGURE - 2600 linear PCs

Takeaway 1

- ► From the previous slides, the results are quite similar to the one of Kozak et al. (2020) (replication);
- Let us turn to the second part of our analysis, which consist of integrating nonlinear factors.

Computation of the NLPCs

- Let $r_t = (r_{1,t}, ..., r_{N,t})$ be the vector of excess returns of N portfolios, t=1,...,T
- r_t is orthogonalized with respect to the market and rescaled to have the same standard deviations as the market;
- Nonlinear PCs construction : Follows Gunsilius and Schennach (2019)

- Computation of the NLPCs
 - ▶ Extract N linear PCs from r denoted by $f_t = (f_t^1, ..., f_t^N)$;
 - Extract the nonlinear PCs from the first k linear PCs : $y_t = (f_t^1, ..., f_t^k)$;
 - y has a density function g.
 - Find a map T transforming g(y) into a target density $\Phi(x)$ where x = T(y)
 - Change of variable formula gives :

$$g(y) = \Phi(T(y))det(\frac{\partial T(y)}{\partial y'}) \tag{4}$$

- ► T minimizes $\int ||T(y) y||^2 g(y) dy$
- ► $T(y) = \frac{\partial C(y)}{\partial y}$, where C is a convex function.
- \triangleright C is determined by Gradient descent using equation (4)

Computation of the NLPCs

Compute

$$\tilde{J} = -\int g(y) ln \frac{\partial T(y)}{\partial y'} dy$$
 (5)

- Extract k eigenvectors $e = (e_1, e_2, ..., e_k)$ corresponding to the k largest eigenvalues of \tilde{J}
- Therefore, the i^{th} nonlinear principal component is defined by : $\tilde{f}_i = T(y)e_i, i = 1, 2, ..., k$.

50 anomaly characteristcis

- Let $r_t = (r_{1,t}, ..., r_{50,t})$ be the raw characteristic excess returns;
- Let y be the first k linear principal components;
- Set a squared grid y with a size MxMx...xM from -4 to 4 each variable;
- Estimate the Brenier map T for the grid T(y);
- ► Calculate \tilde{J} over the grid points, then the eigenvectors $e = (e_1, e_2, ..., e_k)$;
- Interpolate the Brenier map to have the full nonlinear transformation of the data : $T(f_1, f_2, ..., f_k)$;
- Let $\tilde{f}_t = (\tilde{f}_{1,t},...,\tilde{f}_{k,t})$ be the time series of the k nonlinear PCs;
- Since the nonlinear factors are not tradable, we construct the corresponding mimicking portfolios.

Approximation of the NLPCs using a piecewise linear function :

$$\tilde{f}_{j,t} = \beta_{0,j} + \beta_{1,j} r_{mkt,t} + \beta'_{c,j} r_t + \delta_j \max(r_{mkt,t} - k_j, 0) + \epsilon_{j,t} \quad t = 1, ..., T$$
(6)

If δ is not significant, then a linear mimicking portfolio is sufficient;

$$MP_{j,t}^1 = \hat{\beta}_{0,j} + \hat{\beta}_{1,j} r_{mkt,t} + \hat{\beta}'_{c,j} r_t \quad t = 1, ..., T$$
 (7)

Else, we need a nonlinear mimicking portfolio.

$$MP_{j,t}^{2} = \hat{\beta}_{0,j} + \hat{\beta}_{1,j} r_{mkt,t} + \hat{\beta}'_{c,j} r_{t} + \hat{\delta}_{j} \max(r_{mkt,t} - k_{j}, 0) \quad t = 1, ..., T$$
(8)

▶ The third mimicking portfolios we considered :

$$MP_{i,t}^3 = \hat{\beta}_{0,j} + \hat{\beta}'_{c,j}r_t \quad t = 1,...,T$$
 (9)

Application of Kozak et al. methodology to the NLPCs

Terminologies

Let f_{-k} be a set of 50-k linear PCs, excluding the first k linear PCs and NMP_k / NPC_k be a set of k nonlinear MPs/PCs. k = 2, 3, ..., 6.

- ▶ Base case : Price $[f_{-k}, NMP_k]$ using risk factors derived from $[f_{-k}, NMP_k]$. In formula : $\mu = \mathbb{E}([f_{-k}, NMP_k]), \Sigma = Cov([f_{-k}, NMP_k])$
- ▶ **Robustness check** : Price $[f_{-k}, NMP_k]$ using risk factors derived from $[f_{-k}, NPC_k]$. In formula : $\mu = \mathbb{E}([f_{-k}, NMP_k]), \Sigma = Cov([f_{-k}, NPC_k])$

Application of Kozak et al. methodology to the NLPCs

Terminologies

- ▶ Base case : Let the LARS-EN algorithm adds the factors starting by the model with all the mimicking portfolios of the NLPCs.
- ► Robustness check : Let the LARS-EN algorithm adds the factors starting by the model with no risk factors;

Results do not depend on the mimicking portfolios (MPs), so we present the figures only for MP^2

Application of Kozak et al. methodology to the NLPCs

Base case : 48 PCs + 2 NMPs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Robustness check: 48 PCs + 2NPCs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Base case : 47 PCs + 3NMPs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Robustness check: 47 PCs + 3NPCs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Base case : 46 PCs + 4 NMPs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Robustness check: 46 PCs + 4NPCs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Base case : 45 PCs + 5 NMPs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Robustness check: 45 PCs + 5NPCs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Base case : 44 PCs + 6NMPs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Robustness check: 44 PCs + 6NPCs

FIGURE - L1L2pen

FIGURE - L2pen

Application of Kozak et al. methodology to the NLPCs

Takeaway 2

- Results do not depend on whether one use the NLPCs or the NMPs;
 - There is a difference but it is not that much as one can see from previous slides;
 - One explanation is the quality of the NMPs which perfectly mimic the NLPCs;
- Our results suggest that one should do supervised Elastic net instead of doing unsupervised Elastic net :
 - ▶ Benchmark analysis is much better than no benchmark analysis.

Application of Kozak et al. methodology to the NLPCs

LF vs NLF

FIGURE - LF1 versus MP1

FIGURE - LF2 versus MP2

Conclusion

- ► The hybrid model requires less risk factors to achieve the highest out-of-sample performance
- Weight shifting on some anomalies. The mimicking portfolios (MPs) and the linear factors disagree on the anomalies that are marginal in terms of weights
- We believe that the nonlinear principal components have good prediction power.
- ▶ Thus, they should be taken into account for the development of future factor model.