Yakeen NEET 2.0 2026

Physics by Saleem Sir

Laws of Motion

DPP: 4

Q1 With what acceleration a should the box in the figure moving up so that the block of mass M exerts a force $7 \mathrm{Mg}/4$ on the floor of the box?

- (A) g/4
- (B) g/2
- (C) 3g/4
- (D) 4g
- Q2 Three identical masses each of mass $4~{\rm kg}$ are connected by massless inextensible strings. The string joining A and B passes over a massless frictionless pulley as shown in figure. The tension in the string connecting mass B and C is

- (A) 40 N
- (B) 20 N
- (C) 26.67 N
- (D) 13.33 N

Q3 In the given figure a boy of mass $40~\rm kg$ is just pulling a mass of $5~\rm kg$ at an angle of 30° with the horizontal. While the boy is standing on a weighing machine, what would be its reading?

- (A) 37.5 kg
- (B) 40 kg
- (C) $42.5~\mathrm{kg}$
- (D) 38.5 kg
- Q4 In the system shown, pulley is massless and string is light and inextensible. Acceleration with which $4~{
 m kg}$ mass starts moving up is [Take $g=10~{
 m m/s^2}$]

- (A) 1 m/s^2
- (B) 2 m/s^2
- (C) 5 m/s^2
- (D) 4 m/s^2
- **Q5** A dynamometer D is attached to two blocks of masses $6~{
 m kg}$ and $4~{
 m kg}$ as shown in the figure. The reading of the dynamometer is

- (A) 18 N
- (B) 28 N
- (c) 38 N
- (D) 48 N
- **Q6** In the figure given below, with what acceleration does the block of mass m will move? (Pulley and strings are massless and frictionless)

- (A) $\frac{g}{3}$
- (B) $\frac{2g}{5}$
- (C) $\frac{2g}{3}$

- (D) $\frac{g}{2}$
- **Q7** In the arrangement shown, the mass m will ascend with an acceleration (Pulley and rope are massless)

- (A) Zero
- (B) $\frac{g}{2}$
- (C) g
- (D) 2g
- Q8 In the figure given below masses m and m' are tied with a thread passing over a pulley, m is on a frictionless horizontal surface. If acceleration due to gravity is g, the acceleration of m in this arrangement will be

- (A) g
- (B) m'g/(m+m')
- (C) mg/m'
- (D) $mg/\left(m-m'
 ight)$
- Q9 Two bodies of masses 5 kg and 4 kg are arranged in two different ways as shown in fig.(A) and (B). If the pulleys and the table are

perfectly smooth, the acceleration of the $5\ \mathrm{kg}$ body in case (A) and (B) are respectively:

(A)

(B)

- (A) g and (5/9)g
- (B) (4/9)g and (1/9)g
- (C) $\mathrm{g}/\mathrm{5}$ and $\mathrm{g}/\mathrm{5}$
- (D) (5/9)g and (1/9)g

Q10 In the fig. mass $M=10~{
m g}$ is placed on an inclined plane. In order to keep it at rest, the value of mass m will be:

- (A) 5 g
- (B) $10\sqrt{3}g$
- (C) 0.10 g
- (D) $\sqrt{3}g$

Q11 If $m_1=m_2=1~{
m kg}$ then find out distance travelled by m_1 in first $1/2{
m sec}$.

- (A) $0.650~\mathrm{m}$
- (B) $0.625~\mathrm{m}$

- (C) $0.725 \mathrm{m}$
- (D) 0.525 m

Answer Ke	y
------------------	---

Q1	(C)	Q 7	(B)
Q2	(C)	Q8	(B)
Q3	(A)	Q9	(B)
Q4	(C)	Q7 Q8 Q9 Q10	(A)
Q5	(C)	Q11	(B)
Q6	(c)		

Master NCERT with PW Books APP