Suggested Solutions to Homework Assignment #1 [Compiled on July 7, 2009]

Problems

1. (20 Points) Prove the following tautological implication in sentential logic. P, Q, and R are sentence symbols.

•
$$\{P \to (Q \land R)\} \vDash (P \to Q) \land (P \to R)$$

Solution.

The following truth table shows that every truth assignment satisfying $P \to (Q \land R)$ also satisfies $(P \to Q) \land (P \to R)$.

P	Q	R	$Q \wedge R$	$P \rightarrow Q$	$P \to R$	$P \to (Q \land R)$	$(P \to Q) \land (P \to R)$
Т	Т	Т	Т	Т	Т	Т	Т
T	Т	F	F	T	F	F	F
Т	F	Т	F	F	Т	F	F
Т	F	F	F	F	F	F	F
F	Т	Т	T	T	Т	T	T
F	Т	F	F	Т	Т	T	T
F	F	Т	F	T	Т	Т	Т
F	F	F	F	T	T	Т	Т

•
$$\{(P \land Q) \to R\} \vDash (P \to R) \lor (Q \to R)$$
Solution

The following truth table shows that every truth assignment satisfying $(P \land Q) \to R$ also satisfies $(P \to R) \lor (Q \to R)$.

P	Q	R	$P \wedge Q$	$P \rightarrow R$	$Q \to R$	$(P \land Q) \to R$	$(P \to R) \lor (Q \to R)$
Т	Т	Т	Т	Т	Т	Т	Т
Τ	Т	F	T	F	F	F	F
Τ	F	Т	F	T	Т	T	Т
Т	F	F	F	F	Т	T	T
F	Т	Т	F	T	Т	Т	T
F	Т	F	F	T	F	Т	Т
F	F	Т	F	T	Т	Т	Т
F	F	F	F	T	Т	T	T

2. (20 Points) Assume that a set Σ of wffs is finitely satisfiable and α is a wff. Show that either $\Sigma \cup \{\alpha\}$ or $\Sigma \cup \{\neg \alpha\}$ is finitely satisfiable.

Solution.

We prove this by contradiction. Assume both $\Sigma \cup \{\alpha\}$ and $\Sigma \cup \{\neg \alpha\}$ are not finitely

satisfiable. Since Σ is finitely satisfiable, there are finite sets $\Sigma_1 \subseteq \Sigma$ and $\Sigma_2 \subseteq \Sigma$ such that (1) both $\Sigma_1 \cup \{\alpha\}$ and $\Sigma_1 \cup \{\neg \alpha\}$ are not satisfiable and (2) $\Sigma_1 \cup \Sigma_2$ is satisfiable. Since $\Sigma_1 \cup \{\alpha\}$ is not satisfiable, we have $\Sigma_1 \vDash \neg \alpha$. Similarly, $\Sigma_2 \vDash \alpha$. Thus $\Sigma_1 \cup \Sigma_2 \vDash \alpha$ and $\Sigma_1 \cup \Sigma_2 \vDash \neg \alpha$. By Lemma 0.1 below, $\Sigma_1 \cup \Sigma_2$ is not satisfiable, which is a contradiction.

Lemma 0.1. Given a set Σ of wffs and a wff α , if $\Sigma \vDash \alpha$ and $\Sigma \vDash \neg \alpha$, then Σ is not satisfiable.

Proof. If Σ is satisfiable, then there is a truth assignment v such that v satisfies every member of Σ . Since $\Sigma \vDash \alpha$ and $\Sigma \vDash \neg \alpha$, we have $\bar{v}(\alpha) = \mathsf{T}$ and $\bar{v}(\neg \alpha) = \mathsf{T}$. By definition, $\bar{v}(\neg \alpha) = \mathsf{T}$ implies that $\bar{v}(\alpha) = \mathsf{F}$, which is a contradiction.

3. (20 Points) Consider the structure $\mathfrak{N} = (\mathbb{N}, S, 0, +, *)$. Write a first-order logic formula to define the set of odd numbers.

Solution.

$$\exists v_2(v_1 \approx SS0 * v_2 + 1)$$

4. (20 Points) Show that $(\mathbb{N}, +_{\mathbb{N}})$ and $(\mathbb{Z}, +_{\mathbb{Z}})$ are not elementarily equivalent by giving a sentence true in one but false in the other.

Solution.

The sentence $\forall x \forall y \exists z (x = y + z)$ is valid in $(\mathbb{Z}, +_{\mathbb{Z}})$ but not valid in $(\mathbb{N}, +_{\mathbb{N}})$.

- 5. (20 Points) Find a deduction (from \emptyset) for each of the following formulae.
 - $\exists x(\alpha \land \beta) \rightarrow \exists x\alpha \land \exists x\beta \ Solution.$
 - (a) $\forall x (\neg \alpha \rightarrow \alpha \rightarrow \neg \beta)$ (tautology)
 - (b) $\forall x(\neg \alpha \rightarrow \alpha \rightarrow \neg \beta) \rightarrow \forall x \neg \alpha \rightarrow \forall x(\alpha \rightarrow \neg \beta)$ (axiom group 3)
 - (c) $\forall x \neg \alpha \rightarrow \forall x (\alpha \rightarrow \neg \beta)$ (5a, 5b, modus ponens)
 - (d) $\forall x((\alpha \rightarrow \neg \beta) \rightarrow \neg \neg (\alpha \rightarrow \neg \beta))$ (tautology)
 - (e) $\forall x((\alpha \rightarrow \neg \beta) \rightarrow \neg \neg(\alpha \rightarrow \neg \beta)) \rightarrow \forall x(\alpha \rightarrow \neg \beta) \rightarrow \forall x \neg \neg(\alpha \rightarrow \neg \beta)$ (axiom group 3)
 - (f) $\forall x(\alpha \rightarrow \neg \beta) \rightarrow \forall x \neg \neg (\alpha \rightarrow \neg \beta)$ (5d, 5e, modus ponens)
 - (g) $(\forall x \neg \alpha \rightarrow \forall x(\alpha \rightarrow \neg \beta)) \rightarrow (\forall x(\alpha \rightarrow \neg \beta) \rightarrow \forall x \neg \neg(\alpha \rightarrow \neg \beta)) \rightarrow (\forall x \neg \alpha \rightarrow \forall x \neg \neg(\alpha \rightarrow \neg \beta))$ (tautology)
 - (h) $(\forall x(\alpha \to \neg \beta) \to \forall x \neg \neg(\alpha \to \neg \beta)) \to (\forall x \neg \alpha \to \forall x \neg \neg(\alpha \to \neg \beta))$ (5c, 5g, modus ponens)
 - (i) $\forall x \neg \alpha \rightarrow \forall x \neg \neg (\alpha \rightarrow \neg \beta)$ (5f, 5h, modus ponens)
 - (j) $(\forall x \neg \alpha \rightarrow \forall x \neg \neg (\alpha \rightarrow \neg \beta)) \rightarrow \neg \forall \neg \neg (\alpha \rightarrow \neg \beta) \rightarrow \neg \forall x \neg \alpha \text{ (tautology)}$
 - (k) $\exists (\alpha \land \beta) \rightarrow \exists x \alpha \text{ (5i, 5j, modus ponens)}$
 - (1) $\forall x (\neg \beta \rightarrow \alpha \rightarrow \neg \beta)$ (tautology)
 - (m) $\forall x(\neg\beta \to \alpha \to \neg\beta) \to \forall x\neg\beta \to \forall x(\alpha \to \neg\beta)$ (axiom group 3)
 - (n) $\forall x \neg \beta \rightarrow \forall x (\alpha \rightarrow \neg \beta)$ (5l, 5m, modus ponens)

- (o) $(\forall x \neg \beta \rightarrow \forall x(\alpha \rightarrow \neg \beta)) \rightarrow (\forall x(\alpha \rightarrow \neg \beta) \rightarrow \forall x \neg \neg(\alpha \rightarrow \neg \beta)) \rightarrow (\forall x \neg \beta \rightarrow \forall x \neg \neg(\alpha \rightarrow \neg \beta))$ (tautology)
- (p) $(\forall x(\alpha \to \neg \beta) \to \forall x \neg \neg(\alpha \to \neg \beta)) \to (\forall x \neg \beta \to \forall x \neg \neg(\alpha \to \neg \beta))$ (5n, 5o, modus ponens)
- (q) $\forall x \neg \beta \rightarrow \forall x \neg \neg (\alpha \rightarrow \neg \beta)$ (5f, 5p, modus ponens)
- (r) $(\forall x \neg \beta \rightarrow \forall x \neg \neg (\alpha \rightarrow \neg \beta)) \rightarrow \neg \forall \neg \neg (\alpha \rightarrow \neg \beta) \rightarrow \neg \forall x \neg \beta \text{ (tautology)}$
- (s) $\exists (\alpha \land \beta) \rightarrow \exists x \beta \text{ (5q, 5r, modus ponens)}$
- (t) $(\exists x(\alpha \land \beta) \rightarrow \exists x\alpha) \rightarrow (\exists x(\alpha \land \beta) \rightarrow \exists x\beta) \rightarrow (\exists x(\alpha \land \beta) \rightarrow \exists x\alpha \land \exists x\beta)$ (tautology)
- (u) $(\exists x(\alpha \land \beta) \to \exists x\beta) \to (\exists x(\alpha \land \beta) \to \exists x\alpha \land \exists x\beta)$ (5k, 5t, modus ponens)
- (v) $\exists x(\alpha \land \beta) \rightarrow \exists x\alpha \land \exists x\beta \text{ (5s, 5u, modus ponens)}$
- $Py \rightarrow \forall x(x \approx y \rightarrow Px)$ Solution.
 - (a) $\forall x ((x \approx y \rightarrow y \approx x) \rightarrow (y \approx x \rightarrow Py \rightarrow Px) \rightarrow x \approx y \rightarrow Py \rightarrow Px)$ (tautology)
 - (b) $\forall x((x \approx y \rightarrow y \approx x) \rightarrow (y \approx x \rightarrow Py \rightarrow Px) \rightarrow x \approx y \rightarrow Py \rightarrow Px) \rightarrow \forall x(x \approx y \rightarrow y \approx x) \rightarrow \forall x((y \approx x \rightarrow Py \rightarrow Px) \rightarrow x \approx y \rightarrow Py \rightarrow Px)$ (axiom group 3)
 - (c) $\forall x(x \approx y \rightarrow y \approx x) \rightarrow \forall x((y \approx x \rightarrow Py \rightarrow Px) \rightarrow x \approx y \rightarrow Py \rightarrow Px)$ (5a, 5b, modus ponens)
 - (d) $\forall x (x \approx y \rightarrow x \approx x \rightarrow y \approx x)$ (axiom group 6)
 - (e) $\forall x ((x \approx y \rightarrow x \approx x \rightarrow y \approx x) \rightarrow (x \approx x \rightarrow x \approx y \rightarrow y \approx x))$ (tautology)
 - (f) $\forall x((x \approx y \rightarrow x \approx x \rightarrow y \approx x) \rightarrow (x \approx x \rightarrow x \approx y \rightarrow y \approx x)) \rightarrow \forall x(x \approx y \rightarrow x \approx x \rightarrow y \approx x) \rightarrow \forall x(x \approx x \rightarrow x \approx y \rightarrow y \approx x)$ (axiom group 3)
 - (g) $\forall x(x \approx y \rightarrow x \approx x \rightarrow y \approx x) \rightarrow \forall x(x \approx x \rightarrow x \approx y \rightarrow y \approx x)$ (5e, 5f, modus ponens)
 - (h) $\forall x(x \approx x \rightarrow x \approx y \rightarrow y \approx x)$ (5d, 5g, modus ponens)
 - (i) $\forall x(x \approx x \rightarrow x \approx y \rightarrow y \approx x) \rightarrow \forall x(x \approx x) \rightarrow \forall x(x \approx y \rightarrow y \approx x)$ (axiom group 3)
 - (j) $\forall x(x \approx x) \rightarrow \forall x(x \approx y \rightarrow y \approx x)$ (5h, 5i, modus ponens)
 - (k) $\forall x(x \approx x)$ (axiom group 5)
 - (1) $\forall x(x \approx y \rightarrow y \approx x)$ (5j, 5k, modus ponens)
 - (m) $\forall x((y \approx x \rightarrow Py \rightarrow Px) \rightarrow x \approx y \rightarrow Py \rightarrow Px)$ (5c, 5l, modus ponens)
 - (n) $\forall x((y \approx x \rightarrow Py \rightarrow Px) \rightarrow x \approx y \rightarrow Py \rightarrow Px) \rightarrow \forall x(y \approx x \rightarrow Py \rightarrow Px) \rightarrow \forall x(x \approx y \rightarrow Py \rightarrow Px)$ (axiom group 3)
 - (o) $\forall x(y \approx x \rightarrow Py \rightarrow Px) \rightarrow \forall x(x \approx y \rightarrow Py \rightarrow Px)$ (5m, 5n, modus ponens)
 - (p) $\forall x(y \approx x \rightarrow Py \rightarrow Px)$ (axiom group 6)
 - (q) $\forall x(x \approx y \rightarrow Py \rightarrow Px)$ (50, 5p, modus ponens)
 - (r) $\forall x((x \approx y \rightarrow Py \rightarrow Px) \rightarrow Py \rightarrow x \approx y \rightarrow Px)$ (tautology)

- (s) $\forall x((x \approx y \rightarrow Py \rightarrow Px) \rightarrow Py \rightarrow x \approx y \rightarrow Px) \rightarrow \forall x(x \approx y \rightarrow Py \rightarrow Px) \rightarrow \forall x(Py \rightarrow x \approx y \rightarrow Px)$ (axiom group 3)
- (t) $\forall x(x \approx y \rightarrow Py \rightarrow Px) \rightarrow \forall x(Py \rightarrow x \approx y \rightarrow Px)$ (5r, 5s, modus ponens)
- (u) $\forall x (Py \rightarrow x \approx y \rightarrow Px)$ (5q, 5t, modus ponens)
- (v) $\forall x (Py \rightarrow x \approx y \rightarrow Px) \rightarrow \forall x Py \rightarrow \forall x (x \approx y \rightarrow Px)$ (axiom group 3)
- (w) $\forall x P y \rightarrow \forall x (x \approx y \rightarrow P x)$ (5u, 5v, modus ponens)
- (x) $Py \rightarrow \forall xPy$ (axiom group 4)
- (y) $(Py \to \forall xPy) \to (\forall xPy \to \forall x(x \approx y \to Px)) \to (Py \to \forall x(x \approx y \to Px))$ (tautology)
- (z) $(\forall x P y \to \forall x (x \approx y \to P x)) \to (P y \to \forall x (x \approx y \to P x))$ (5x, 5y, modus ponens)
- (aa) $Py \to \forall x (x \approx y \to Px)$ (5w, 5z, modus ponens)