ARM Architecture Overview

- 1. RISC and CISC
- 2. ARM Architectures/Micro-architecture

History of ARM

- ARM (Acorn RISC Machine) started as a new, powerful, CPU design for the replacement of the 8-bit 6502 in Acorn Computers (Cambridge, UK, 1985)
- First models had only a 26-bit program counter, limiting the memory space to 64 MB (not too much by today standards, but a lot at that time).
- 1990 spin-off: ARM renamed Advanced RISC Machines
- ARM now focuses on Embedded CPU cores
 - IP licensing: Almost every silicon manufacturer sells some microcontroller with an ARM core. Some even compete with their own designs.
 - Processing power with low current consumption
 - Good MIPS/Watt figure
 - Ideal for portable devices
 - Compact memories: 16-bit opcodes (Thumb)
- New cores with added features
 - Harvard architecture (ARM9, ARM11, Cortex)
 - Floating point arithmetic
 - Vector computing (VFP, NEON)
 - Java language (Jazelle)

What is the Harvard architecture?

Facts

- 32-bit CPU
- 3-operand instructions (typical): ADD Rd,Rn,Operand2
- RISC design...
 - Few, simple, instructions
 - Load/store architecture (instructions operate on registers, not memory)
 - Large register set
 - Pipelined execution, Hardwired Control Units
- Although with some CISC touches...
 - Multiplication and Load/Store Multiple are complex instructions (many cycles longer than regular, RISC, instructions)
- And some very specific details
 - Not stack, Link register instead, is used to keep return address.
 - PC as a regular register
 - Conditional execution of all instructions
 - Flags altered or not by data processing instructions (selectable)
 - Concurrent shifts/rotations (at the same time of other processing)

• ...

Development of ARM Architectures

CISC (Complex Instruction Set Computer)

- Example: i386, i486,
- Compiler simplification?
 - Disputed...
 - Complex machine instructions harder to exploit
 - Optimization more difficult
- Smaller programs?
 - Program takes up less memory but...
 - Memory is now cheap
 - May not occupy less bits, just look shorter in symbolic form
 - More instructions require longer op-codes
 - Register references require fewer bits
- Faster programs?
 - More complex control unit
 - Microprogram control store larger thus simple instructions take longer to execute

Reduced Instruction Set Computer (RISC)

- Key features
 - Limited and simple instruction set
 - Fixed Instruction Formats and Fixed Instruction Execution Time
 - Hardwired Control Units
 - Arithmetic Logic Operations: register-to-register
 - Specific load/store instructions
 - Large number of general purpose registers
 - or use of compiler technology to optimize register use
 - Improve the performance of procedure calls
 - Emphasis on optimising the instruction pipeline
 - Increasing the processor clock frequency

Use of RISC architectures

- Use of RISC architectures
 - Mobile systems and Entertainment systems
 - ARM → Android, iOS devices; Industrial Microcontrollers;
 - dominates the market for low power and low cost embedded systems
 - MIPS
 - Used in the PlayStation, PlayStation 2, Nintendo 64, PlayStation Portable game consoles, and residential gateways like Linksys WRT54G series.
 - Hitachi's SuperH, Atmel AVR
 - High end RISC and supercomputing
 - MIPS, by Silicon Graphics (ceased making MIPS-based systems in 2006).
 - SPARC, by Oracle (previously Sun Microsystems), and Fujitsu. -> K computer, 日本神戶
 - IBM's Power Architecture, used in many of IBM's supercomputers, midrange servers and workstations. → IBM Sequoia: top1 supercomputer 2015
 - Hewlett-Packard's PA-RISC, also known as HP-PA (discontinued at the end of 2008).
 - Alpha, used in single-board computers, workstations, servers and supercomputers from Digital Equipment Corporation, Compaq and HP (discontinued as of 2007).
 - RISC-V, the open source fifth Berkeley RISC ISA

For 2020 top 10 supercomputer:

ARM Architecture and Microarchitecture

ARM Architecture

- The Arm architecture is one of the most popular processor architectures in the world today, with several billion Arm-based devices shipped every year.
- There are three architecture profiles: A, R and M.

A-profile (Applications)	R-profile (Real-time)	M-profile (Microcontroller)
High performance	 Targeted at systems with real-time requirements. 	 Smallest/lowest power. Small, highly power- efficient devices.
 Designed to run a complex operating system, such as Linux or Windows. 	 Commonly found in networking equipment, and embedded control systems. 	 Found at the heart of many loT devices.

Processors used in a cell phone

What do we mean by architecture?

• An architecture specifies what a processor will behave, such as what instructions it has and what the instructions do.

Instruction set	The function of each instruction
	 How that instruction is represented in memory (its encoding).
Register set	How many registers there are.
	The size of the registers.
	The function of the registers.
	Their initial state.
Exception model	The different levels of privilege.
	The types of exceptions.
	What happens on taking or returning from an exception.
Memory model	How memory accesses are ordered.
	 How the caches behave, when and how software must perform explicit maintenance.
Debug, trace, and profiling	 How breakpoints are set and triggered. What information can be captured by trace tools and in what format.

Architecture and micro-architecture

- Architecture does not tell you how a processor is built and works. The build and design of a processor is referred to as micro-architecture.
 Micro-architecture tells you how a processor works.
- Micro-architecture includes things like:
 - Pipeline length and layout.
 - Number and sizes of caches.
 - Cycle counts for individual instructions.
 - Which optional features are implemented.
- For example, Cortex-A53 and Cortex-A72 are both implementations of the Armv8-A architecture.
 - This means that they have the same architecture, but they have very different micro-architectures, as shown in the following image:

Cortex-A53 and Cortex-A72 (are both based on the Armv8-A architecture)

Architecture specifies functionality and instruction sets

 Software that is architecturally-compliant can run on either the Cortex-A53 or Cortex-A72 without modification, because they both implement the same architecture.

Target	Optimized for power efficiency	Optimized for performance
Pipeline	8 stages	15+ stages
	In-order	Out-of-order
Caches	L1 I cache: 8KB - 64KB	L1 I cache: 48KB fixed
	L1 D cache: 8KB - 64KB	L1 D cache: 48KB fixed
	L2 cache: optional, up to 2MB	L2 cache: mandatory, up to 2MB

Development of ARM Architectures

Conclusions

- ARM is a 32/64-bit reduced instruction set computer (RISC) instruction set architecture (ISA) developed by ARM Holdings.
 - The ARM architecture is the most widely used 32-bit ISA in terms of numbers produced. The simplicity of ARM processors makes them suitable for low power applications.

Competitor

- RISC-V is an open standard instruction set architecture (ISA) based on established reduced instruction set computer(RISC) principles.
- 晶心科技

https://www.andestech.com/en/homepage/