Long Title

Full names for author(s)

University of Wisconsin – Madison Department of [INSERT]

[INSERT DATE]

Table of Contents

- Section 1
 - Subsection 1.1
 - Subsection 1.2
- 2 Section 2
 - Subsection 2.1
 - Subsection 2.2

insert title name

insert text

- Section 1
 - Subsection 1.1
 - Subsection 1.2
- Section 2
 - Subsection 2.1
 - Subsection 2.2

Example of figure and block environments

Confinement requires toroidal magnetic fields with a poloidal twist

Tokamak configuration

- Toroidal field coils $\Rightarrow B_{\phi}$
- Plasma current $\Rightarrow B_{\theta}$
- Poloidal field coils for shaping
- Transformer ⇒ pulsed operation

Image: obtained from http://www.alternative-energy-action-now.com/tokamak-fusion-reactor.html

- Section 1
 - Subsection 1.1
 - Subsection 1.2

- Section 2
 - Subsection 2.1
 - Subsection 2.2

Example of table environment (tabular with booktabs)

	NSTX	ITER
Parameters		
Major radius R [m]	0.8 - 1.0	6.2
Minor radius a [m]	0.5 - 0.787	2
Aspect ratio R/a	1.27 - 1.6	3.1
Magnetic field B [T]	$0.8\sim1.6$	3.1
Max plasma volume [m ³]	14	700
$Max T_i, T_e [keV]$	2.5, 4.1	30, 30
Max current / [MA]	1.5	15
Max power density [MW/m ³]	1.1	0.7
Shot length [s] at B_{max}	1.5	400
PFCs	CFC/Graphite Li coating	W, C and Be

Example of itemize environment

Computer simulations are indispensible in contributing to the understanding of magnetically confined plasmas

- Numerical simulations help guide experiments by
 - simulating and fine-tuning proposed experiments
 - producing results that have not yet been explored
 - post-processing can simulate diagnostic measurements
 - numerical solutions can aid design of devices (e.g. stellarators)
- Numerical simulations can access costly ventures (e.g. the burning plasma experiment)
- As more detailed and higher fidelity computational models are developed, the utility of computation increases and the feedback cycle becomes more efficient and useful.

Example of enumerate environment

- Multiple species: electrons, multiple ions, neutrals
- **2** Time scales span 9-12 orders of magnitude
 - $\Omega_{ce}^{-1} \gtrsim 10^{-10} \; \text{s}$: RF heating time scale
 - ullet au $ag{10}^2$ s : discharge time scale
- **3 Spatial scales** span 4-6 orders of magnitude
 - $\lambda_{e,\nabla\,T}\gtrsim 10^{-5}~\text{m}$: $\nabla\,T$ length scale for electron conduction
 - L $\lesssim 40$ m : connection length
- **4 Velocity scales** span \sim 7 orders of magnitude
 - ullet v_n ~ 0 re-emitted neutrals adsorbed on wall
 - v_{Ti} ~ 36.12 m/s for H^+ thermal ions $T_i = 0.025$ eV
 - ullet $v_{Te,SOL}\sim 10^6$ m/s for e^- in edge $T_e=10-50$ eV
 - $v_{Te} \sim 7.26 \times 10^7 \text{ m/s for } e^- \text{ at max } T_e \sim 30 \text{ keV}$

Fully dimensional simulation requires 10^{11} phase space cells with 10^8 time steps over full discharge.

- Section 1
 - Subsection 1.1
 - Subsection 1.2
- 2 Section 2
 - Subsection 2.1
 - Subsection 2.2

Example of math environment

The action of each operator = convection along characteristics!

$$\frac{\partial f_{\alpha}}{\partial t} + v \frac{\partial f_{\alpha}}{\partial x} + \frac{q_{\alpha} E}{m_{\alpha}} \frac{\partial f}{\partial v} = 0$$

$$\frac{\partial f_{\alpha}}{\partial t} - \underbrace{\frac{1}{m_{\alpha}} \{H_{T}(v), f_{\alpha}\}}_{=\Lambda_{x} f_{\alpha}} - \underbrace{\frac{1}{m_{\alpha}} \{H_{V}(x), f_{\alpha}\}}_{=\Lambda_{V} f_{\alpha}} = 0$$

The Vlasov equation is equivalent to

$$\frac{\partial f_{\alpha}}{\partial t} - \Lambda_{x} f_{\alpha} - \Lambda_{v} f_{\alpha} = 0$$

And, these operators are used to solve the split problems

$$\frac{\partial f_{\alpha}}{\partial t} - v \frac{\partial f_{\alpha}}{\partial x} = 0 \qquad \Rightarrow f_{\alpha}(\tau, x, v) = e^{\tau \Lambda_{x}} f_{\alpha}(0, x, v) = f_{\alpha}(0, x - v\tau, v)$$

$$\frac{\partial f_{\alpha}}{\partial t} - \frac{q_{\alpha} E}{m_{\alpha}} \frac{\partial f}{\partial v} = 0 \qquad \Rightarrow f_{\alpha}(\tau, x, v) = e^{\tau \Lambda_{v}} f_{\alpha}(0, x, v) = f_{\alpha}(0, x, v - \frac{q_{\alpha} E}{m_{\alpha}}\tau)$$

- Section 1
 - Subsection 1.1
 - Subsection 1.2
- 2 Section 2
 - Subsection 2.1
 - Subsection 2.2

Thanks!

Thank you!