МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФГБОУ ВО «Удмуртский государственный университет»

Молекулярный дизайн углеродных структур

студент группы ОАБ-03.03.02-41 МАТВЕЕВ ГЕННАДИЙ АЛЕКСЕЕВИЧ

geno.matveev@gmail.com

научный руководитель: к.ф.-м.н., доцент, САВИНСКИЙ С.С.

Задачи:

- 1. ПОСТРОЕНИЕ РАЗЛИЧНЫХ УГЛЕРОДНЫХ СТРУКТУР В МОЛЕКУЛЯРНОМ КОНСТРУКТОРЕ.
- 2. ИЗУЧЕНИЕ ВЛИЯНИЯ ДЕФЕКТОВ НА ФОРМИРОВАНИЕ НОВЫХ УГЛЕРОДНЫХ НАНОСТРУКТУР.
- 3. ОБСУЖДЕНИЕ АНАЛИТИЧЕСКОГО МЕТОДА РАСЧЕТА ЭЛЕКТРОННОГО СПЕКТРА ДЕФОРМИРОВАННЫХ И ДЕФЕКТНЫХ ДВУМЕРНЫХ УГЛЕРОДНЫХ НАНОСТРУКТУР, ОСНОВАННЫЙ НА ИСПОЛЬЗОВАНИИ ДВУМЕРНОГО УРАВНЕНИЯ ДИРАКА В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ.
- 4. ИЗУЧЕНИЕ КВАЗИДВУМЕРНЫХ СТРУКТУР, ПОЛУЧАЕМЫХ ПРИ ВНЕДРЕНИИ ДЕФЕКТОВ СТОУНА-УЭЛЬСА В ГРАФЕН.

Обзор углеродных структур

Графен - первый известный истинно двумерный кристалл.

Двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединенных посредством sp² связей в гексагональную двумерную кристаллическую решётку. Получена в 2004 году русскими учёными Андреем Геймом и Константином Новоселовым из Манчестерского университета, на подложке окисленного кремния.

Обзор углеродных структур

Электронный спектр графена.

У идеального свободного графена точки Дирака расположены точно на уровне Ферми. Таким образом, графен является полупроводником с нулевой щелью или полуметаллом.

$$E_k = \gamma \sqrt{1 + 4\cos(\frac{1}{2}\sqrt{3}ak_y)\cos(\frac{1}{2}ak_x) + 4\cos(\frac{1}{2}ak_x)^2}$$

Обзор углеродных структур

<u>Фаграфен</u> – «родственник» графена

Структура получена при помощи разработанного Огановым алгоритма USPEX. В фаграфене, как и в графене, возникают конусы Дирака, а электроны ведут себя как безмассовые частицы. Из-за разного числа атомов в кольцах конусы Дирака «наклонены», поэтому скорость электронов в нем зависит от направления. Именно этим свойством фаграфен отличается от графена. Такие свойства позволяют рассматривать их как перспективные материалы для гибких электронных устройств, транзисторов, солнечных батарей, дисплеев.

радикалом ОН

Структурные дефекты

Такие дефекты изменяют электронный и фононный спектр графена, являясь центрами рассеяния для фононов и электронов, так что их наличие сказывается на транспортных характеристиках графена.

Вакансионный дефект

Дефект Стоуна - Уэльса

Структурные дефекты

Электронный спектр структуры с вакансионным дефектом, который существенно отличается от спектра графена

<u> Линейные дефекты</u>

Они вызывают деформацию графенового слоя вдоль линии. Представителями этого класса дефектов являются комбинированные дефекты 5-7 и 4-8. При наличии в грефеновом листе такого типа дефекта, искаженной оказывается структура всего слоя – слой перестает быть плоским даже вдали от дефекта.

Изображения с помощью «просвечивающего (трансмиссионного) электронного микроскопа»

Гексагональный нитрид бора (белый графен)

Кристаллический нитрид бора (рис. 1) изоэлектронен углероду и, подобно ему, существует в нескольких полиморфных модификациях. Нитрид бора формально считается полупроводником, однако запрещённая энергетическая зона в этом веществе настолько велика, что во всех практических ситуациях он ведёт себя как изолятор. На изображении, полученном с помощью ПЭМ (рис. 2), представлена межзеренная граница монослоя ВN [1], подразумевает наличие связей между отдельными атомами бора или азота.

[1]. A.L. Gibb et al., J. Am. Chem. Soc. 135, 6758 (2013)

Если углеродный шестиугольник заменить, например, на пятиугольник, семиугольник или на два таких дефекта, нанотрубка изогнется. С разных сторон относительно изгиба ориентация углеродных шестиугольников оказывается различной. Но с изменением ориентации шестиугольников по отношению к оси нанотрубки меняется ее электронный спектр, положение уровня Ферми, ширина оптической щели и т.п. Хиральность – вектор, соединяющий две эквивалентные точки на первичном графеновом листе, образующем при сворачивании в нанотрубку. Если m=n или m-n/3 то трубка металлическая, в ином случае полупроводник.

Дефект Стоуна-Уэльса (СУ)

Простейшим дефектом в графене является точечный дефект Стоуна-Уэльса (SW) - кристаллографический дефект в углеродных нанотрубках и графене, и, как полагают, имеет важное значение для механических свойств нанотрубки. Он образуется при повороте одной из связей углерод-углерод С-С на угол 90°, в результате чего четыре шестиугольника преобразуются в два семиугольника и два пятиугольника. Длина связи С-С в графене 1.42 Å, после образования данного дефекта длина развернутой связи уменьшается ≈0.03 Å.

Дефект СУ в графене не остается плоским: существуют конфигурации с более низкой энергией, в которой атомы повернутой связи С-С смещаются перпендикулярно слою на ≈0.3 Å в противоположных направлениях, что влечет за собой смещение других атомов, и проводит к волнообразному синусоподобному искажению (рис. 2.а). Наряду с конфигурация еще имеется косинусоподобная образуется в результате поперечного смещения на ≈0.5 Å в одном направлении и соответствует седловой точке поверхности потенциальной энергии для переходов между двумя вырожденными синусоподобными конфигурациями (рис. 2.б).

Литература:

• Взаимодействие дефектов Стоуна-Уэльса в графене Л.А. Опенов 1, А.И. Подливаев 1,2

Дефект Стоуна-Уэльса (исследование)

Исследование дефектов проведено на сверхъячейке из 100 атомов. Структура без дефектов имеет энергию E0=80,0 ккал/мол. С 1 дефектом СУ имеет энергию E1=85,1 ккал/мол.

E2=90,9 ккал/мол

E2=90,0 ккал/мол

Новые структуры на основе дефектов СУ

На основе дефектов СУ, были получены ранее не упомянутые в литературах структуры. Исследование проводилось с ограниченным количеством атомов.

	Графен	Фаграфен	Структ_1	Структ_2	Структ_3
Количество атомов в сверхъячейке	125	128	125	126	126
Полная энергия, эВ	3.45	12.20	16.94	13.33	12.33

Вывод:

- 1. ПОСТРОЕНЫ РАЗЛИЧНЫЕ УГЛЕРОДНЫЕ СТРУКТУРЫ В МОЛЕКУЛЯРНОМ КОНСТРУКТОРЕ.
- 2. ИЗУЧЕНО ВЛИЯНИЕ ДЕФЕКТОВ НА ФОРМИРОВАНИЕ НОВЫХ УГЛЕРОДНЫХ НАНОСТРУКТУР.
- 3. ОБСУЖДАЕТСЯ АНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА ЭЛЕКТРОННОГО СПЕКТРА ДЕФОРМИРОВАННЫХ И ДЕФЕКТНЫХ ДВУМЕРНЫХ УГЛЕРОДНЫХ НАНОСТРУКТУР, ОСНОВАННЫЙ НА ИСПОЛЬЗОВАНИИ ДВУМЕРНОГО УРАВНЕНИЯ ДИРАКА В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ.
- 4. РЕДАКТИРОВАНЫ НОВЫЕ КВАЗИДВУМЕРНЫЕ УГЛЕРОДНЫЕ МАТЕРИАЛЫ.

Спасибо за внимание!

МАТВЕЕВ ГЕННАДИЙ АЛЕКСЕЕВИЧ

geno.matveev@gmail.com

научный руководитель: САВИНСКИЙ С.С.