CMPS 2200 Recitation 09

Today we'll learn more about dynamic programming using the classic problem of computing **Fibonacci Numbers**. As you know, for the *n*th Fibonacci number $F_n = F_{n-1} + F_{n-2}$. Here are the first 11 values:

0	1	2	3	4	5	6	7	8	9	10
0	1	1	2	3	5	8	13	21	34	55

1	$\operatorname{Implemen}$	ıt a rec	ursive s	olution	by co	$_{ m mpleting}$	gfib_	recurs	ive a	and test	it wit	h test	_fib_	_recu	ırsive	. In
ad	dition to	n, we a	also use	an arr	ay calle	ed count	s tha	t keeps	track	of how	v many	times	each	F_i is	compu	ited
wh	nen compu	uting F	n ·													

.

2 Write a recurrence for the **work** of this algorithm and solve it. Assume the input is n to compute F_n .

put answer in answers.md

.

3 Write a recurrence for the span of this algorithm and solve it.

put answer in answers.md

.

4 Inspecting the counts list, what interesting pattern emerges?

put answer in answers.md

.

Clearly, this implementation does a ridiculous amount of duplicate work. We should really only have to compute each F_i one time, for $i \leq n$. We'll next write two more efficient ways of computing F_n .

5 For the first efficient way, we'll implement it recursively as before except that we will also keep an additional list called fibs, where fibs[i] = F_i , to store each value we generate during the recursive solution. When the function is called for input i, we first check if F_i is in fibs. If so, we simply return it. Otherwise, we proceed with the recursive calls. Note that we initialize fibs with -1's so we can tell if F_i has been computed or not. Complete fib_top_down and test with test_fib_top_down.

.

6 When computing F_n , what is the maximum number of times that fib_top_down(i) will be called for any value i? Based on this, what is the **work** and **span** of this algorithm?

put answer in answers.md

.

7 Finally, we will compute a bottom-up implementation. This is a non-recursive solution that starts at F_0 and iteratively computes subsequent values of F_i until F_n is reached. To do so, store a list of n+1 values, initialized to 0's, which will store the Fibonacci sequence up from F_0 to F_n . Write a for loop to fill it in, then return the last value. Complete fib_bottom_up and test with test_fib_bottom_up.

.

8 When computing F_n , what is the maximum number of times that F_i will be read from the list for any value i? Based on this, what is the **work** and **span** of fib_bottom_up?

put answer in answers.md

.

fib_top_down and fib_bottom_up are two simple forms of dynamic programming. Both improve over the recursive solution by **sharing** solutions to smaller problem instances in order to reduce duplicate work. fib_top_down does this by starting with the original problem and caching solutions to smaller problems encountered in a recursive solution. In contrast, fib_bottom_up creates a table of solutions to smaller problem instances, and solves them from smallest to largest. In class and in the next assignment, we will see more complicated dynamic programming solutions where the relationship between smaller and larger problem instances is more interesting.