3/28/23, 8:18 PM OneNote

16: Little-o Little-Omega

Friday, 27 August 2021 22:01

Definition 1.7 [Little "oh"] The function f(n) = o(g(n)) (read as "f is little oh of q of n") iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Example 1.14 The function $3n + 2 = o(n^2)$ since $\lim_{n\to\infty} \frac{3n+2}{n^2} = 0$. $2 = o(n \log n)$ $3n + 2 = o(n \log \log n)$ $6 * 2^n + n^2 = o(3^n)$. $6 * 2^n + n^2 = o(3^n)$. $6 * 2^n + n^2 = o(3^n)$.

$$\lim_{N\to\infty} \frac{3n+2}{N^2} = \lim_{N\to\infty} \frac{3}{n} + \frac{3}{2}$$

Definition 1.8 [Little omega] The function $f(n) = \omega(g(n))$ (read as "j n is little omega of q of n") iff

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

Example 1.15 Let us reexamine the time complexity analyses of the property o vious section. For the algorithm Sum (Algorithm 1.6) we determined t $t_{\mathsf{Sum}}(n) = 2n + 3$. So, $t_{\mathsf{Sum}}(n) = \Theta(n)$. For Algorithm 1.7, $t_{\mathsf{RSum}}(n)$ $2n+2=\Theta(n)$.