```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

About the Data

- · UTC: Time Stamp
- Temperature: Air Temperature
- · Humidity%: Air Humidity
- TVOC[ppb]: Total Volatile Organic Compounds; measured in parts per billion
- eCO2[ppm]: co2 equivalent concentration; calculated from different values like TVCO
- Raw H2: raw molecular hydrogen; not compensated (Bias, temperature, etc.)
- · Raw Ethanol: raw ethanol gas
- Pressure[hPa]: Air Pressure
- PM1.0: particulate matter size < 1.0 μm (PM1.0). 1.0 μm < 2.5 μm (PM2.5)
- PM2.5: particulate matter size < 1.0 μ m (PM1.0). 1.0 μ m < 2.5 μ m (PM2.5)
- NC0.5: Number concentration of particulate matter. This differs from PM because NC gives the actual number of particles in the air
- NC1.0: Number concentration of particulate matter. This differs from PM because NC gives the actual number of particles in the air
- · Number concentration of particulate matter. This differs from PM because NC gives the actual number of particles in the air
- · CNT: Sample counter.
- Fire Alarm: Ground truth is "1" if a fire is there.

```
df = pd.read_csv('/content/sample_data/smoke_detection_iot.csv', index_col= 0)
df.head()
```

→		итс	Temperature[C]	Humidity[%]	TVOC[ppb]	eCO2[ppm]	Raw H2	Raw Ethanol	Pressure[hPa]	PM1.0	PM2.5	NC0.5	NC1.0	NC2.5	c
	0	1654733331	20.000	57.36	0	400	12306	18520	939.735	0.0	0.0	0.0	0.0	0.0	
	1	1654733332	20.015	56.67	0	400	12345	18651	939.744	0.0	0.0	0.0	0.0	0.0	
	2	1654733333	20.029	55.96	0	400	12374	18764	939.738	0.0	0.0	0.0	0.0	0.0	
	3	1654733334	20.044	55.28	0	400	12390	18849	939.736	0.0	0.0	0.0	0.0	0.0	
	4	1654733335	20.059	54.69	0	400	12403	18921	939.744	0.0	0.0	0.0	0.0	0.0	
	4														>

Next steps: Generate code with df View recommended plots

New interactive sheet

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 62630 entries, 0 to 62629
Data columns (total 15 columns):
                     Non-Null Count Dtype
 # Column
     UTC
                     62630 non-null
                                     int64
      Temperature[C] 62630 non-null
                                     float64
     .
Humidity[%]
                     62630 non-null
                                     float64
     TVOC[ppb]
                     62630 non-null
                                     int64
     eCO2[ppm]
                     62630 non-null
                                     int64
     Raw H2
                     62630 non-null
                                     int64
     Raw Ethanol
                     62630 non-null
                                     int64
     Pressure[hPa]
                     62630 non-null
                                     float64
 8
     PM1.0
                     62630 non-null
                                     float64
     PM2.5
                     62630 non-null
  10
     NC0.5
                     62630 non-null
                                     float64
 11 NC1.0
                     62630 non-null
                                     float64
                                     float64
 12 NC2.5
                     62630 non-null
 13 CNT
                     62630 non-null int64
                     62630 non-null int64
 14 Fire Alarm
dtypes: float64(8), int64(7)
memory usage: 7.6 MB
```

df.describe()

 $\overline{\Rightarrow}$

•	UTC	Temperature[C]	Humidity[%]	TVOC[ppb]	eCO2[ppm]	Raw H2	Raw Ethanol	Pressure[hPa]	PM1.0
count	6.263000e+04	62630.000000	62630.000000	62630.000000	62630.000000	62630.000000	62630.000000	62630.000000	62630.000000
mean	1.654792e+09	15.970424	48.539499	1942.057528	670.021044	12942.453936	19754.257912	938.627649	100.594309
std	1.100025e+05	14.359576	8.865367	7811.589055	1905.885439	272.464305	609.513156	1.331344	922.524245
min	1.654712e+09	-22.010000	10.740000	0.000000	400.000000	10668.000000	15317.000000	930.852000	0.000000
25%	1.654743e+09	10.994250	47.530000	130.000000	400.000000	12830.000000	19435.000000	938.700000	1.280000
50%	1.654762e+09	20.130000	50.150000	981.000000	400.000000	12924.000000	19501.000000	938.816000	1.810000
75%	1.654778e+09	25.409500	53.240000	1189.000000	438.000000	13109.000000	20078.000000	939.418000	2.090000
max	1.655130e+09	59.930000	75.200000	60000.000000	60000.000000	13803.000000	21410.000000	939.861000	14333.690000
4									>

df['UTC'] = pd.to_datetime(df['UTC'])
df.info()

#	COTUIIII	MOLL-ING	III Count	Drype
0	UTC	62630	non-null	<pre>datetime64[ns]</pre>
1	Temperature[C]	62630	non-null	float64
2	Humidity[%]	62630	non-null	float64
3	TVOC[ppb]	62630	non-null	int64
4	eCO2[ppm]	62630	non-null	int64
5	Raw H2	62630	non-null	int64
6	Raw Ethanol	62630	non-null	int64
7	Pressure[hPa]	62630	non-null	float64
8	PM1.0	62630	non-null	float64
9	PM2.5	62630	non-null	float64
10	NC0.5	62630	non-null	float64
11	NC1.0	62630	non-null	float64
12	NC2.5	62630	non-null	float64
13	CNT	62630	non-null	int64
14	Fire Alarm	62630	non-null	int64
dtyp	es: datetime64[n	s](1),	float64(8), int64(6)
	7 C MD			

memory usage: 7.6 MB

df.head()

	итс	Temperature[C]	Humidity[%]	TVOC[ppb]	eCO2[ppm]	Raw H2	Raw Ethanol	Pressure[hPa]	PM1.0	PM2.5	NC0.5	NC1.0	N
0	1970-01-01 00:00:01.654733331	20.000	57.36	0	400	12306	18520	939.735	0.0	0.0	0.0	0.0	
1	1970-01-01 00:00:01.654733332	20.015	56.67	0	400	12345	18651	939.744	0.0	0.0	0.0	0.0	
2	1970-01-01 00:00:01.654733333	20.029	55.96	0	400	12374	18764	939.738	0.0	0.0	0.0	0.0	
3	1970-01-01 00:00:01.654733334	20.044	55.28	0	400	12390	18849	939.736	0.0	0.0	0.0	0.0	
4	1970-01-01 00:00:01.654733335	20.059	54.69	0	400	12403	18921	939.744	0.0	0.0	0.0	0.0	
4													•

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df.tail()


```
Raw
                                                                                           Raw
                     UTC Temperature[C] Humidity[%] TVOC[ppb] eCO2[ppm]
                                                                                               Pressure[hPa] PM1.0 PM2.5 NC0.5 NC1.
                                                                                  Н2
                                                                                     Ethanol
               1970-01-01
62625
                                   18.438
                                                  15.79
                                                               625
                                                                          400 13723
                                                                                         20569
                                                                                                      936.670
                                                                                                                 0.63
                                                                                                                        0.65
                                                                                                                               4.32 0.67
      00:00:01.655130047
              1970-01-01
62626
                                   18.653
                                                  15.87
                                                              612
                                                                          400
                                                                              13731
                                                                                         20588
                                                                                                      936.678
                                                                                                                 0.61
                                                                                                                        0.63
                                                                                                                               4.18
                                                                                                                                    0.65
      00:00:01.655130048
              1970-01-01
62627
                                   18.867
                                                  15.84
                                                               627
                                                                          400 13725
                                                                                         20582
                                                                                                      936.687
                                                                                                                 0.57
                                                                                                                        0.60
                                                                                                                               3.95 0.61
      00:00:01.655130049
               1970-01-01
                                   19.083
                                                  16.04
                                                                          400 13712
                                                                                         20566
                                                                                                      936.680
62628
                                                              638
                                                                                                                 0.57
                                                                                                                        0.59
                                                                                                                               3.92 0.61
      00:00:01.655130050
               1970-01-01
62629
                                   19.299
                                                  16.52
                                                              643
                                                                          400 13696
                                                                                         20543
                                                                                                      936.676
                                                                                                                 0.57
                                                                                                                        0.59
                                                                                                                               3.90
                                                                                                                                     0.60
      00:00:01.655130051
```

```
# sns.histplot(df['Fire Alarm'])
plt.hist(df['Fire Alarm'])
plt.xlabel('Fire Alarm', color= 'white', fontsize = 18, weight = 'bold')
plt.ylabel('Count', color= 'white', fontsize = 18, weight = 'bold')
plt.xticks(color = 'white', fontsize = 14)

| (array([ 0., 10000., 20000., 30000., 40000., 50000.]),
| [Text(0, 0.0, '0'),
| Text(0, 10000.0, '10000'),
| Text(0, 20000.0, '20000'),
| Text(0, 30000.0, '30000'),
| Text(0, 40000.0, '40000'),
| Text(0, 50000.0, '50000')])
```

```
x = df['Fire Alarm'].value_counts()
plt.pie(x, labels=['Yes', 'No'])
```

 $\overline{\Rightarrow}$

→ Temperature affect on Fire

 $temperature_fire = df.groupby('Temperature[C]')[['Fire Alarm']].count().sort_values(by='Fire Alarm', ascending = False).head(20) \\ temperature_fire$

	Fire Alarm	
Temperature[C]		11.
24.48	222	+/
24.51	206	
24.47	193	
26.95	191	
26.98	189	
27.02	187	
24.45	186	
24.52	183	
24.55	182	
26.92	180	
27.01	179	
24.49	178	
26.99	175	
26.96	174	
26.94	173	
27.04	171	
24.44	170	
26.90	169	
24.58	167	
24.57	159	

```
plt.figure(figsize=[25,8])
sns.barplot(x=temperature_fire.index,y=temperature_fire['Fire Alarm'])
plt.title('Temperature affect on Fire')
```


This graph shows that high temperatures don't have a direct affect on fires

Humidity affect on fires

humidity_fire = df.groupby('Humidity[%]')[['Fire Alarm']].count().sort_values(by='Fire Alarm',ascending = False).head(20)
humidity_fire

₹		Fire Alarm	
	Humidity[%]		11.
	47.45	130	+/
	47.50	130	0
	47.86	126	
	53.12	126	
	47.76	126	
	47.66	124	
	53.35	124	
	47.62	123	
	47.70	122	
	47.43	122	
	47.56	120	
	47.72	120	
	47.83	120	
	47.61	120	
	53.41	120	
	53.28	118	
	47.77	118	
	53.03	116	
	47.38	116	
	53.63	114	

Next steps: Generate code with humidity_fire View recommended plots New interactive sheet

plt.figure(figsize=[25,8])
sns.barplot(x=humidity_fire.index, y=humidity_fire['Fire Alarm']) # Added x= and y=
plt.title('Humidity affect on Fire')

This graph shows that high humidity doesn't have a direct affect on fires

Pressure affect on fires

pressure_fire = df.groupby('Pressure[hPa]')[['Fire Alarm']].count().sort_values(by='Fire Alarm',ascending = False).head(20)
pressure_fire

₹		Fire Alarm	
	Pressure[hPa]		•
	938.709	304	+/
	938.706	284	0
	938.716	278	
	938.711	266	
	938.710	266	
	938.713	262	
	938.703	260	
	938.720	256	
	938.717	252	
	938.705	252	
	938.702	244	
	938.714	244	
	938.699	242	
	938.718	240	
	938.704	240	
	938.708	240	
	938.712	234	
	938.701	226	
	938.700	226	
	938.722	226	

Next steps: Generate code with pressure_fire View recommended plots New interactive sheet

plt.figure(figsize=[25,8])

sns.barplot(x=pressure_fire.index, y=pressure_fire['Fire Alarm']) # Added x= and y=
plt.title('Pressure affect on Fire')

Raw Ethanol affect on fires

ethanol_fire = df.groupby('Raw Ethanol')[['Fire Alarm']].count().sort_values(by='Fire Alarm',ascending = False).head(20)
ethanol_fire

Next steps: Generate code with ethanol_fire View recommended plots New interactive sheet

plt.figure(figsize=[25,8])
sns.barplot(x=ethanol_fire.index, y=ethanol_fire['Fire Alarm']) # Use x and y parameters to specify columns
plt.title('Raw Ethanol affect on Fire')

It seems that fires are higher when the Raw Ethanol value is 19438

Correlation between the Parameters

plt.figure(figsize=[15,8])
sns.heatmap(df.corr(),annot = True)

\rightarrow	<axes:< th=""><th>></th></axes:<>	>

<axes:></axes:>													
Temperature[C] -	1	-0.24	0.082	0.079	-0.14	-0.037	-0.25	0.037	0.032	0.039	0.032	0.026	-0.16
Humidity[%] -	-0.24	1	-0.49	-0.37	0.25	0.069	0.69	-0.24	-0.18	-0.28	-0.17	-0.12	0.4
TVOC[ppb] -	0.082	-0.49	1	0.61	-0.65	-0.67	-0.22		0.48	0.67	0.47	0.34	-0.21
eCO2[ppm] -	0.079	-0.37		1	-0.68	-0.51	-0.33	0.67		0.7		0.46	-0.097
Raw H2 -	-0.14	0.25	-0.65	-0.68	1	0.63	0.3	-0.53	-0.43	-0.59	-0.42	-0.32	0.11
Raw Ethanol -	-0.037	0.069	-0.67	-0.51	0.63	1	-0.076	-0.48	-0.39	-0.53	-0.39	-0.29	-0.34
Pressure[hPa] -	-0.25	0.69	-0.22	-0.33	0.3	-0.076	1	-0.26	-0.24	-0.25	-0.24	-0.21	0.25
PM1.0 -	0.037	-0.24	0.6	0.67	-0.53	-0.48	-0.26	1	0.96	0.94	0.95	0.85	-0.11
PM2.5 -	0.032	-0.18	0.48		-0.43	-0.39	-0.24	0.96	1	0.8	1	0.97	-0.085
NC0.5 -	0.039	-0.28	0.67	0.7	-0.59	-0.53	-0.25	0.94	0.8	1	0.79	0.63	-0.13
NC1.0 -	0.032	-0.17	0.47		-0.42	-0.39	-0.24	0.95	1	0.79	1	0.97	-0.083
NC2.5 -	0.026	-0.12	0.34	0.46	-0.32	-0.29	-0.21	0.85	0.97	0.63	0.97	1	-0.058
Fire Alarm -	-0.16	0.4	-0.21	-0.097	0.11	-0.34	0.25	-0.11	-0.085	-0.13	-0.083	-0.058	1
	Temperature[C] -	Humidity[%] -	TVOC[ppb] -	eCO2[ppm] -	Raw H2 -	Raw Ethanol -	Pressure[hPa] -	PM1.0 -	PM2.5 -	NC0.5 -	NC1.0 -	NC2.5 -	Fire Alarm -

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - -0.2 - -0.4 - -0.6

```
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
plt.figure(figsize=[15,8])
sns.boxplot(data=df)
plt.show()
```


Handle Outliers

```
from datasist.structdata import detect_outliers
index = detect_outliers(df,0,['Humidity[%]','TVOC[ppb]','eCO2[ppm]', 'Raw H2', 'Raw Ethanol', 'PM1.0', 'PM2.5', 'NC0.5', 'NC1.0', 'NC2.5'
len(index)

17492

for col in ['Humidity[%]', 'TVOC[ppb]', 'eCO2[ppm]', 'Raw H2', 'Raw Ethanol', 'PM1.0', 'PM2.5', 'NC0.5', 'NC1.0', 'NC2.5']:
    outliers_indices = detect_outliers(df, 0, [col])

    col_median = df[col].median()

    df.loc[outliers_indices, col] = col_median

plt.figure(figsize=[15,8])
sns.boxplot(data=df)
```


Split input data and output data

```
X = df.drop(columns='Fire Alarm')
y = df['Fire Alarm']
```

Split data into Train and Test

```
from sklearn.model_selection import train_test_split
x\_train, \ x\_test, \ y\_train, \ y\_test = train\_test\_split(X,y, \ test\_size= \ 0.2, \ random\_state= \ 18, \ stratify= \ y)
y_train.value_counts()
₹
                     count
       Fire Alarm
                     35806
            0
                     14298
      dtype: int64
y_test.value_counts()
\overline{\Rightarrow}
                     count
       Fire Alarm
                      3575
            0
      dtype: int64
x_train.duplicated().sum()
→ 7
```

Handle Imbalance using SMOTE Over Sampling

```
from imblearn.over_sampling import SMOTE
smote = SMOTE()
x_train_smote, y_train_smote = smote.fit_resample(x_train, y_train)
y_train_smote.value_counts()
 \rightarrow
                            count
         Fire Alarm
                0
                            35806
                            35806
        dtype: int64
x_train_smote.duplicated().sum()
 → 11
sns.histplot(y_train_smote)
plt.xlabel('Fire Alarm', color= 'white', fontsize = 18, weight = 'bold')
plt.ylabel('Count', color= 'white', fontsize = 18, weight = 'bold')
plt.xticks(color = 'white', fontsize = 14)
plt.yticks(color = 'white', fontsize = 14)
                         0., 5000., 10000., 15000., 20000., 25000., 30000., 35000.,
 → (array([
                    40000.]),
         [Text(0, 0.0, '0'),
Text(0, 5000.0, '5000'),
          Text(0, 5000.0, '5000'),
Text(0, 10000.0, '10000'),
Text(0, 15000.0, '15000'),
Text(0, 20000.0, '25000'),
Text(0, 25000.0, '25000'),
Text(0, 30000.0, '30000'),
Text(0, 35000.0, '35000'),
Text(0, 40000.0, '40000')])
```