Object Detection Car

Controlled by

Android Application

A Group Project by -

- 1. Soumen Mishra
- 2. Nabanita Maity
- 3. Triyasa Dey
- 4. Pousali Pal
- 5. Anirudha Roy

Information Technology Engineering

[Session: 2022 - 2025]

Dasnagar Government Polytechnic

(P.O & P.S Dasnagar, Howrah, West Bengal - 711105)

Affiliated to:

West Bengal State Council of Technical & Vocational Education and Skill Development

Information Technology Engineering

[Session : **2022 - 2025**]

Guide -

Mr. Partha Sarathi Banerjee

& Mr. Achintya Gopal Mondal

Head of the Department -

Mr. Aniruddha Bhaduri

Principal in Charge -

Dr. Manas Kumar Saha

N D E X

Sl. No.	Content	
01	Introduction	
02	Earlier Problems	
03	Solutions	
04	Block Diagram	
05	Working Methodology	
06	Circuit Diagram	
07	Sensor Detection	
08	Movement Controls	
09	Key Features	
10	Applications	
11	Conclusion	
12	Future Scope	
13	References	

Introduction

The **Object Detection Car Controlled by Android Application** is a smart, Wi-Fi Enabled Vehicle can be

assumed as a type of remote-controlled car that uses Wi-Fi technology,

and sensors to prevent collision the object's in its path.

Designed for collision prevention and reliable navigation.

It allows users to control the car using a smartphone.

Equipped with a **ESP32 MCU**, that connects to **network**.

Measures distance data from Sensor's, to detect obstacle in its path.

The car takes immediate corrective actions, to **prevent accidents**, ensuring, a safer driving experience.

Sends Response back to the Application

Earlier Problems

- **Lack** of obstacle detection causes accidents in robotic autonomous system.
- ❖ Not using enough distance monitoring in Vehicles for avoidance accidents.
- Human-Controlled Systems may fall due to poor visibility.
- ❖ Autonomous Systems need to be improved.

And the Solution?

Solution is HERE!

With

- Reliable obstacle avoidance using Ultrasonic Sensors.
- Remote operating using a Smartphone.
- ➤ The car detects obstacles using an HC-SR04 ultrasonic sensor.
- **ESP32 microcontroller** processes the data.
- ➤ An Android app sends movement commands over Wi-Fi using **HTTP requests**.
- L293D motor driver controls the car's movements.
- When an obstacle is detected, the car moves backward and stops.
- Emphasize how it ensures safety and collision prevention.
- Sends Response to the Application.

But, is it Really Possible?

To Easily Understand the methodology behind the working,

Take a snap onto the **Block Diagram**

- ESP32 Creates Access Point.
- > Android App Checks the Available Connections.
- Android App Sends Commands.
- ESP32 Receives, Processes Requests & sends Responce.
- Device Executes Action.

The HC-SR04 Ultrasonic Sensor measures the distance of nearest object every second from the Environment and sends the Distance value to the ESP32 Microcontroller.

NOT that complicated To understand **more Easily**,

Here, The "Input" is **Commands/Instructions** from the user,

And the "Output" is the Wheels.

The ESP32 microcontroller utilizes the Wi-Fi protocol to establish a wireless connection,

enabling communication with a smartphone application by using -

HTTP protocol

To, briefly understand the circuit, here's the **Circuit Diagram** of the System:

Workflow

The ESP32
Microcontroller receives
command's from the
Application over Wi-Fi,
measures the nearest
object distance using,

HC-SR04 ultrasonic sensor, The Microcontroller sends HIGH and LOW voltage to the L293D Motor Driver according the functions, and sends Response back to the Application.

The Motor Driver rotates the Motors, Clock-Wise and Anti Clock-Wise accordingly.

By, Using **SOUND WAVES!**

- The Transmitter Emits a 8-cycle burst of 40 kHz ultrasonic pulses.
- The Receiver catches the reflected waves and sends time latency to the Microcontroller.

The Microcontroller calculates the distance from given time's by applying sound wave's speed.

If the distance got less than **60 cm**.

[Distance < 60 cm]

The Car moves **BACKWARDS** for **0.5 Seconds**, and Moves to **STOP**.

So Basically, the Microcontroller measures distance, receives commands from the Application, runs the **function** accordingly, and sends Voltages remotely to the Motor Driver.

But, How does the **Car** is moving **Left** and **Right?**

Command	Left Wheel's	Right Wheel's
Forward	Rotates Forward	Rotates Forward
Backward	Rotates Backward	Rotates Backward
Left Turn	Rotates Forward	Rotates Backward
Right Turn	Rotates Backward	Rotates Forward
Stop	Motor OFF	Motor OFF

Key Features

- **Obstacle detection** within **60 cm** using ultrasonic sensor.
- **Automatic** reverse and stop when obstacles are detected.
- Remote control via **Android app** using **Wi-Fi**.
- **Real-time response** with minimal delay.
- User-friendly interface on the application.
- ❖ Simple yet **effective collision avoidance** system.

Applications

Smart Robotic systems.

Automated warehouse vehicles.

Delivery robots.

Security patrolling systems.

Ensures collision-free navigation.

Easy to control using a smartphone.

Real-time movement **response** in Application.

Cost-effective and scalable.

Conclusion

The development of the Obstacle Detection Car Controlled by Android Application using ESP32 and Android Studio successfully achieved its primary objective of enabling remote car control using a smartphone app over a Wi-Fi network. By establishing a stable access point using the ESP32, the application effectively sent HTTP GET requests to control the car's movements. The integration of the HC-SR04 ultrasonic sensor allowed for real-time obstacle detection and automatic movement adjustments, enhancing the car's functionality and safety.

Throughout the project, several challenges were encountered and overcome.

The project demonstrated significant learning outcomes, including hands-on experience in embedded systems, Wi-Fi networking, Android application development, and sensor integration.

Overall, the project successfully addressed the initial problem of remote car control using Wi-Fi, providing a responsive and reliable user experience.

Future Scope's

- Obstacle Avoidance using Computer Vision
- Integretion with othert Sensor's
- ❖ Al Integration.

References

4. LM2596 data sheet: [www.ti.com]

ESP32 wroom-32 datasheet PDF: [www.espressif.com]
 (https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32 datasheet en.pdf)
 L293D Push-Pull four channel drivers with diodes: [www.st.com]
 (https://www.st.com/en/motor-drivers/l293d.html)
 HC - SR04 Ultrasonic Ranging Module PDF: [http://www.sparkfun.com]
 (https://cdn.sparkfun.com/datasheets/sensors/proximity/hcsr04.pdf)

https://www.ti.com/product/LM2596

Express gratitude to our Mentor and Guide -

Mr. Partha Sarathi Banerjee & Mr. Achintya Gopal Mondal Sir,

Teammates -

Soumen Mishra, Nabanita Maity, Triyasa Dey, Pousali Pal and Anirudha Roy and our Beloved Institution -

Dasnagar Government Polytechnic.