Teste – 15 de dezembro 2021

Nota: Justifique <u>todas</u> as tuas respostas. Pode usar esquemas ou gráficos para facilitar a explicação. Não são necessárias demonstrações, apenas que indique o ou os aspetos em que baseou a sua conclusão e os passos que deu. A ideia é que fique claro que as respostas não "caíram do céu".

Questão 1

a) Efetuam-se três medições da velocidade da luz, *c*, indicando a respetiva incerteza padrão. Determine o melhor valor para *c*, indicando a respetiva incerteza padrão:

 $c_1 = (299798 \pm 5) \text{ km/s}$

 $c_2 = (299789 \pm 4) \text{ km/s}$

 $c_3 = (299797 \pm 8) \text{ km/s}$

b) Exprima os valores medidos pelos dois instrumentos da figura indicando a incerteza padrão. Considere apenas a incerteza de leitura, desprezando outras fontes de incerteza como a incerteza de calibração ou de ajuste de zero.

Questão 2

Suponha que dispõe de 10 cilindros idênticos (considere que eles foram maquinados com uma precisão superior à dos instrumentos de medição de que dispõe e que as variações entre eles são desprezáveis) e que pretende medir o seu comprimento.

Para tal pondera duas opções:

- 1. Medir os comprimentos de cada cilindro e fazer a média dos dez comprimentos
- 2. Colocar os dez cilindros em série e fazer uma única medição do comprimento total e dividir por dez.

Qual destas duas opções permite obter o comprimento dos cilindros com maior precisão considerando,

- a) Que a incerteza padrão é a mesma para cada medida (de um cilindro ou dos dez cilindros)
- b) Que a incerteza relativa é a mesma para cada medida (de um cilindro ou dos dez cilindros)

Questão 3

Em alternativa à experiência que realizaram no laboratório para medir a densidade de um objeto, foi realizada uma outra experiência onde se mediu o Y_1 e o Y_2 , mas não o Y_0 . Em alternativa, determinou-se a constante da mola medindo o período de oscilação da massa suspensa que é dado por:

$$\frac{2\pi}{T} = \omega = \sqrt{\frac{k}{m_s + \frac{m_{mola}}{3}}}$$
(Nota: $F_{impulsão} = \rho_{água} V_s g = \frac{\rho_{água}}{\rho_s} m_s g$)

Grandeza	Valor	Incerteza padrão	FDP
Massa suspensa (m _s)	17,12 g	0,05 g	Gaussiana
Massa da mola (m _{mola})	27,38 g	0,05 g	Gaussiana
Período (T)	2,95 s	0,07 s	Gaussiana
Altura ar (<i>Y</i> ₁)	0,347 m	0,001 m	Gaussiana
Altura água (Y ₂)	0,526 m	0,002 m	Gaussiana
Densidade água (ρ _{água})	1000 kg/m ³	desprezável	
Aceleração da gravidade (g)	9,80 m/s ²	desprezável	

- a) Determine o valor da constante da mola e respetiva incerteza padrão.
- b) Determine o valor da densidade da massa suspensa.

Questão 4

Mediu-se a aceleração da gravidade a diferentes altitudes acima da superfície terrestre e obtiveram-se os resultados apresentados na tabela.

Os dados foram ajustados por uma reta (na verdade a relação entre a aceleração da gravidade e a altitude não é linear, mas será aproximadamente linear se a altitude for pequena comparada com o raio da Terra).

A partir destes dados estime o valor da aceleração da gravidade em Braga (altitude aproximada de 200 m) e respetiva incerteza.