Exercice 1: (5 points)

Lors d'une saison footballistique comprenant 38 matchs, deux équipes ont encaissé des buts selon les répartitions suivantes :

Equipe A :	Nombres de buts	0	1	3	6	Equipe B :	Nombres de buts	0	1	3	4	5
	Nombre de matchs	16	14	7	1		Nombre de matchs	22	7	5	1	3

Soit $(a_i, n_i)_{1 \le i \le 4}$ (resp $(b_i, m_i)_{1 \le i \le 5}$) la série statistique associée à l'équipe 1 (resp. 2).

- 1. Ecrire une formule littérale pour calculer le nombre moyen de buts encaissés par match pour chacune de ces deux équipes (Bonus utiliser un symbole de somme).
- 2. Donner une valeur exacte (à l'aide d'une fraction) pour ces deux moyennes.
- 3. Ecrire une formule littérale pour calculer l'écart-type de la série des nombres de buts encaissés par match pour chacune des deux équipes (Bonus utiliser un symbole de somme).
- 4. Donner une valeur approchées au dixième de but près pour ces deux écart-types.
- 5. Au vu de ces résultats, quelle équipe possède des performances défensives les plus irrégulières?

Exercice 2: (4 points) Soit $f(x) = -x^2 + 2x + 3$

- 1. Calculer le discriminant et les racines du trinôme f(x).
- 2. Réaliser le tabeau de signe de f(x).
- 3. Résoudre l'inéquation $2x + 8 > x^2 + 5$ (vous pouvez utiliser l'étude précédente).

Exercice 3: (6 points)

Un sac contient 150 jetons dont 120 sont gris et les autres sont marron.

On tire au hasard, successivement et avec remise 10 jetons de ce sac.

- 1. Identifier et justifier la loi que suit la variable aléatoire comptant le nombre de jetons gris obtenus.
- 2. Calculer la probabilité d'obtenir au moins deux jetons gris (à 10^{-6} près).
- 3. Si on répète un grand nombre de fois cette expérience, combien de jetons gris obtient-on en moyenne?

Exercice 4: (5 points)

Algorithme 1	Algorithme 2				
S prend la valeur 0	N prend la valeur 0				
Pour <i>I</i> allant de 1 à 10	R prend la valeur				
S prend la valeur $S + \frac{1}{I}$ (*)	Tant que <i>R</i> ≤				
Fin Pour	N prend la valeur				
Afficher S	R prend la valeur				
	Fin Tant que				
	Afficher R				

- 1. Donner les valeurs successives des variables *I* et *S* à la fin de l'exécution de l'instruction (*) lors des quatre premières itérations de la boucle de l'algorithme 1.
- 2. Que permet de calculer puis afficher l'algorithme 1?
- 3. L'algorithme incomplet 2 permet de calculer puis afficher la plus petite puissance de 7 dépassant 1000. Recopier-le sur votre feuille en le complétant.