HW10

Shane Drafahl

16 October ,2017

1. For union for L_1 and L_2 I have machines M_1 and M_2 . Given an input $x \in L_1 \cup L_2$ I give x to M_1 and M_2 and if its accepted by either machine that means they are accepted. Similar to intersection but both machines must be accepted. I would build this turring machine by getting two tape and with input x and then dove tailing the two tape into each relative turring machine. For example below is a representation of the tape where $b_1 = a_1$ and so on and so forth.

So for union

input x in Sigma*
Run M1 on x and then run M2 on x
Accept if M1 or M2 both accept

intersection

input x in Sigma*
Run M1 on x and then run M2 on x
Accept if M1 and M2 both accept

Reversal

```
input x in Sigma*
Assign y:= reverse(x)
Run M1 on x and then run M2 on y
Accept if M1 and M2 both accept
```

For reversal I would simply copy the input from one side of the tape to the other in reverse order. I would then have the same turring machine dove tail both peices of tape and if both are accepted then the whole thing is accepted.

Reversal

```
input x in Sigma*
Assign y:= reverse(x)
Run M1 on x and then run M2 on y
Accept if M1 and M2 both accept
```

2. Given a string that z = xy and you have M_1 , M_2 . You create every possible combination of ways to divided up z onto multiple peices of tape. For example if x = ab and y = cd then you have

```
T[a]_1...T[bcd]^2

T[ab]_3...T[cd]_4

T[abc]_5...T[d]_6
```

Where $T[]_n$ is a peice of tape. M_1 dove tails for every odd indexed tape and M_2 does every even. If both of the machines have at least one accepting string then the whole thing is accepted.

concatination

```
input x in Sigma* Assign t1[], t2[]:= sub(x) // returns every possible sub string of x to arrays of Run M1 for all t1 and run M2 for all t2 Accept if M1 and M2 have at least Accept one string each.
```

3. a

For this turring machine it would depend on if it goes left, right, or does nothing

```
\delta(a_n,a_n)=(a_{n+1},R) and push (GO RIGHT) \delta(a_n,a_n)=(a_{n-1},L) (GO LEFT) \delta(a_n,a_n)=(a_n,a_n) (Do Nothing) b.
```

To prove that all languages accepted by PA's can be accepted by M we will prove that the accepted languages of $PA \subset M$. We can prove this because we can simulate a PA with M by starting the head on the left most data on the read only tape and only using Γ_1 and reading from left to right.

We can prove that it is equivalant to a turring machine because $M \subset T$ and $T \subset M$. In this case we can prove $M \subset T$ because a Turring machine can use two peices of tape to simulate the two stacks and a third as the read only tape. We can also prove $T \subset M$. We can simulate a turring machine because we can put all the contents left of the head in Γ_1 . and to

the right Γ_2 . If we want to move right we pop Γ_2 and left Γ_1 . Therfore they are equal. We also know that all languages accepted by any type of PA including NPDA or determinsitic ones can also be accepted by a turring machine so that is another reason M can accept the same languages as a class of automata.