Public Housing Market Design

Daniel Waldinger, NYU

August 18, 2022

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- 4 Application: Cambridge, MA

Place-Based Affordable Housing

- Housing is a basic need, and a large expense
 - Low-income households spend highest shares of income on rent
 - Concerns about high rent burdens, homelessness, low housing quality
- Interactions with many important markets
 - Access to schools; jobs; health care
 - Neighborhood environment, crime, social network
- Many countries provide subsidized housing to lower-income households
 - "Public housing" or "social housing": subsidy tied to a specific unit
 - Waitlists ration overdemanded slots

Goals for this Talk

- Study public housing allocation as a market design problem
 - How to ration a heterogeneous in-kind transfer
 - Planner may value redistribution as well as efficiency
- Agenda for today:
 - 1. Dynamic assignment mechanisms
 - Design trade-offs depend crucially on empirical quantities
 - 2. Public housing institutions
 - U.S. program and design problem; comparison to other countries
 - 3. Revealed preference analysis of waitlist mechanisms
 - Preferences over both final assignments, and waiting times
 - Not covered: estimating treatment effects (Van Dijk '19)
 - 4. Empirical application to Cambridge, MA

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- 4 Application: Cambridge, MA

Departure from Static Framework

- Thus far: all agents on both sides of the market are present at the same time
 - Preferences can be elicited before any matches formed
 - Strong theoretical results: stability, strategy-proofness, Pareto efficiency
 - Strategic incentives determined by distributions of final assignments
- Now: timing is an essential aspect of the allocation problem
 - Public housing, organs, child adoption, medical care, hunting licenses
- Key features:
 - 1. Stochastic arrivals on both sides of the market
 - 2. Time-sensitive allocation: one side must be allocated quickly
 - 3. Assignments are permanent limited future trading opportunities
 - 4. Extreme scarcity. Not all agents can be matched

Some agents on one side of the market have to wait \Longrightarrow waiting lists

Dynamic Assignment Model

- Arrivals: objects j and agents i, Poisson rates λ , μ , with $\lambda < \mu$
 - Objects: public housing units vacated by previous tenants
 - Agents: households apply for benefits
 - Objects must be allocated immediately; agents can wait
- ullet **Departures:** waiting agents depart exogenously at Poisson rate δ
 - Public housing applicants become unresponsive
 - Plays "market clearing" role
- **Agent values** $v_{ij} \sim F_{ij}(.)$. Private information
 - Common discount rate ρ : future assignments valued at $e^{-\rho t}v_{ij}$
 - No direct waiting cost
 - Objects do not have preferences

Design Considerations

Design Considerations

Utilitarian welfare criterion

$$W(\mu) = E_{\mu}[v_{ij} \mid j \text{ allocated to i}]$$

where $v_{ij} \equiv 0$ if object unassigned

- Planner wants to find highest-value agent for each object
- Waiting times do not enter SWF (why?)
- Less focus on axiomatic properties in one-sided dynamic assignment
 - Stability less of a concern. Strategy-proofness unlikely to be satisfied
- Dynamic incentives for agents on the side of the market that can wait
 - Reports to mechanism determine not only what you get, but when
- Stochastic arrivals of agents and objects
 - Time-sensitivity limits planner's ability to hold out for a good match

Mechanisms

- Examples of priority rules for offering an object when it arrives
 - First Come, First Served (FCFS): earliest arrival first
 - Last Come, First Served (LCFS): most recent arrival first
 - Service in Random Order (SIRO): randomly generated order
 - Order applicants by observed characteristics (e.g. veterans, homeless)
- Examples of choice rules for agents
 - Sequential Offers: May decline offered items without penalty
 - May wait for a more preferred item
 - Ex-Ante Choice: Removed from waitlist after declining an item
 - Choose One: only receive offers from chosen development
 - No Choice: offered whichever unit is available
 - Generally: a subset of developments from which to receive offers

Design Trade-Offs and Role of Empirics

- The relative performance of mechanisms depends on agent preferences
- Horizontal: $v_{ij} \stackrel{iid}{\sim} F(.)$
 - FCFS w/o rejection penalty preferred by all agents (Bloch & Cantala '17)
 - Encourages agents to only accept offers with high match values
- Persistent Agent Heterogeneity: $v_{ij} = \eta_i + \epsilon_{ij}$, $\epsilon_{ij} \stackrel{iid}{\sim} F(.)$, $\eta_i \sim G(.)$
 - Trade-off between finding good matches and matching high-need agents
 - LCFS or rejection penalties may "screen out" low-need agents
 - Depends on shape and support of F(.), G(.) (Arnosti & Shi '20)
- Limited guidance from theory on optimal waitlist design for general preference distributions

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- 4 Application: Cambridge, MA

Common Features of Public Housing Systems

- 6% of OECD housing stock (28 million units)
- Place-based assistance: rent subsidy tied to living in a specific unit
- National programs, local administration and allocation rules
- Demand from eligible households exceeds supply

U.S. Public Housing Program

- ullet Federal government spends pprox\$50 billion/year on affordable housing
 - \$10 billion goes to public housing, serving 1.1 million households
 - Half of tenants elderly/disabled. Average income \$15,000/year
 - Federally funded but administered by local housing authorities (PHAs)
 - Estimated 1.6 million households on public housing waitlists in 2013
- Reasons for scarcity (hence rationing):
 - 1. Broad eligibility: below 80% Area Median Income (AMI)
 - 2. Generous benefits: tenants pay 30% pre-tax income toward rent
 - Entitled to continued assistance only once admitted
 - 3. Fixed supply: new public housing not built
 - Vouchers, section 8, and LIHTC also rationed due to limited funding
- Local public housing authorities (PHAs) do not control these rules

Application Process

- Application process (applicant's perspective)
 - Submit household information to housing authority
 - Determines priority, eligible units (# bedrooms, developments)
 - Choices usually made at initial application
 - Subset of (unranked) developments from which to receive offers
 - Wait. Lists ordered by priority group, FCFS tiebreaking
 - Screening: eligibility and priority verified near top of waitlist
 - Unit offer: rejections penalized
 - Limited ability to transfer after accepting an offer
 - ⇒ Static, forward-looking decisions
- Contrast with sequential offer mechanisms used elsewhere
 - NYC LIHTC; Amsterdam public housing; UK council housing
 - ⇒ Dynamic discrete choice problem

Examples of Mechanisms

- Major differences along two dimensions
 - Choice: whether applicants can select which units to be offered
 - Priority: economic vulnerability, SES
- Seattle Housing Authority
 - Choice: List up to 3 developments ex-ante. Must accept first offer
 - Priority: Homeless and below 30% AMI
- Los Angeles Housing Authority
 - Choice: Must accept first or second offer from any development
 - Priority: Working/studying or economically "self-sufficient" households
- Boston Housing Authority
 - Choice: May wait for any subset of developments
 - Priority: Detailed scoring rule

Trade-Off Between Efficiency and Redistribution

- Scarcity motivates directing public housing to those most in "need"
- Compare two choice systems common in U.S. cities
 - Choose One: applicants choose one development to wait for
 - New York City, Seattle, New Haven, Cambridge
 - Good match quality: can wait for preferred option
 - No Choice: applicants offered first apartment. Rejection penalty
 - Los Angeles, Miami, Minneapolis
 - Lower match quality: applicants accept mismatched offers
 - Better targeting: applicants with good outside options reject
- Related idea in public economics: ordeals can improve targeting (Nichols & Zeckhauser, '82)
 - Heterogeneity + rationing creates analogous trade-off

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- 4 Application: Cambridge, MA

Model of Public Housing Preferences

- Approach: model of flow payoffs from public housing developments
 - Applicant i could be housed in developments j = 1, ..., J
 - v_{ij} indirect flow utility from living in development j
 - v_{i0} indirect flow utility from not living in public housing
 - $oldsymbol{
 ho}$ continuous discount factor
- If housed in development j in t years, net present value is

$$\int_{0}^{t} e^{-\rho x} v_{i0} dx + \int_{t}^{\infty} e^{-\rho x} v_{ij} dx$$
$$= e^{-\rho t} \frac{1}{\rho} (v_{ij} - v_{i0}) + \frac{1}{\rho} v_{i0}$$

Model of Public Housing Preferences

- Approach: model of flow payoffs from public housing developments
 - Applicant i could be housed in developments j = 1, ..., J
 - v_{ij} indirect flow utility from living in development j
 - v_{i0} indirect flow utility from not living in public housing
 - \bullet ρ continuous discount factor
- If housed in development j in t years, net present value is

$$\int_{0}^{t} e^{-\rho x} v_{i0} dx + \int_{t}^{\infty} e^{-\rho x} v_{ij} dx$$

$$= \underbrace{\frac{1}{\rho} e^{-\rho t} (v_{ij} - v_{i0})}_{\text{Decision-relevant}} + \underbrace{\frac{1}{\rho} v_{i0}}_{\text{Decision-relevant}}$$

Model of Ex-Ante Development Choice

- Let's begin with one-stage choice mechanisms and removal after a rejection
 - A choice rule can be formalized as a set of subsets of developments:

$$\mathcal{C} \subseteq 2^{\{1,\ldots,J\}}$$

Choose One:
$$C = \{\{1\}, \{2\}, ..., \{J\}\}$$

No Choice:
$$C = \{\{1, ..., J\}\}$$

Any Subset:
$$C = 2^{\{1,\dots,J\}}$$

Applicant i solves

$$\max_{C \in \mathcal{C}} \mathbb{E} \left[e^{-\rho t} (v_{ij} - v_{i0}) \mid C, \mathcal{I} \right] ,$$

where the expectation is over (i, t) given i's information \mathcal{I} .

- Similar to choice over lotteries in Agarwal-Somaini '18
- Now relevant distribution is over assignments and waiting times
- Note: optimal to reject an offer if $v_{ij} < v_{i0}$
 - Substitute $\tilde{v}_{ij} \equiv \max\{v_{ij}, v_{i0}\}$ for v_{ij} in objective function

Empirical Predictions

• Preference model of Arnosti & Shi:

$$v_{ij} - v_{i0} = \eta_i + \epsilon_{ij}$$
 $\epsilon_{ij} \stackrel{iid}{\sim} F(\cdot)$

Choose one, deterministic wait times T_i:

$$\max_{j} e^{-\rho T_{j}} (\eta_{i} + \epsilon_{ij})$$

- A household with higher η_i is more likely to
 - ullet Submit an application. Occurs if $\max_j ig(v_{ij} v_{i0} ig) > 0 \Longrightarrow \max_j \epsilon_{ij} > -\eta_i$

$$Pr(\text{apply} \mid \eta_i) = 1 - F(-\eta_i)^J$$

• Choose a development with a shorter waiting time $(T_j < T_k)$:

$$e^{-\rho T_j}(\eta_i + \epsilon_{ij}) > e^{-\rho T_k}(\eta_i + \epsilon_{ik}) \implies e^{-\rho (T_j - T_k)} > \frac{\eta_i + \epsilon_{ik}}{\eta_i + \epsilon_{ii}}$$

Also more likely to accept a random offer under No Choice:

$$Pr(\text{accept} \mid \eta_i) = 1 - F(-\eta_i)$$

Outline

- Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- 4 Application: Cambridge, MA
 - Institutional Background and Data
 - Econometric Model and Estimator
 - Counterfactual Allocations

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- Application: Cambridge, MA
 - Institutional Background and Data
 - Econometric Model and Estimator
 - Counterfactual Allocations

The Cambridge Housing Authority (CHA)

- Manages public housing and voucher programs in Cambridge, MA
 - Analysis focuses on "Family" public housing
 - Voucher waitlist closed during study period
- Data: CHA waiting lists between 2010 and 2014
 - Applicant Choices: initial and final choices, timing of events
 - Applicant Characteristics: income, demographics, city + zip code

2010-2014 ACS microdata used to estimate eligible population

Family Public Housing Developments in Cambridge

The Cambridge Mechanism

- Two stages of development choice
 - 1. **Initial Choice** of up to 3 developments
 - Forms choice set in the next stage
 - 2. Final Choice of one development in initial set
 - New information: position on each list
- Rejection penalty: removed from list, cannot reapply for one year
- Equal priority for applicants living/working in Cambridge
 - Other applicants have no chance to be housed

Key Descriptive Facts

- Developments differ in waiting time, size, and location
 - 20-300 apartments per development
 - Avg. waiting times 2-4 years

Who Applies

- 6,800 eligible households, 1,726 applicants
- Lower-income, non-white households apply at higher rates

Initial Choices

- Cambridge residents prefer to remain in their neighborhoods
- Higher-income applicants more selective

Final Choice

• Responsiveness to new waiting time information

Response to Waiting Time Information

- Applicants receive new waiting time information at the final choice stage
 - A letter with their position on each list
 - Just a number no waiting time prediction
- Applicants with same choice set told different positions
 - Randomness in apartment vacancies, choices of earlier applicants

	No Controls		Development Controls		Choice Set Controls	
	(1)	(2)	(3)	(4)	(5)	(6)
Position on Waiting List	-0.0186		-0.0206		-0.0299	
	(0.0032)		(0.0037)		(0.0065)	
Expected Waiting Time (Years)		-0.265		-4.031		-5.411
		(0.289)		(0.755)		(1.335)
Development FE's			X	X		
Development - Choice Set FE's					X	X
Implied Own-Price Elasticity	-0.707	-0.121	-0.817	-3.270	-1.332	-4.136
	(0.149)	(0.145)	(0.182)	(0.637)	(6.486)	(1.946)
Observations	573	573	573	573	343	343

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- Application: Cambridge, MA
 - Institutional Background and Data
 - Econometric Model and Estimator
 - Counterfactual Allocations

Two-Stage Choice Model

- Decisions: whether to apply, initial and final choices
- Estimate preferences given model of strategic behavior
- Rational choice: applicants strategize correctly given beliefs
 - Rational expectations benchmark
 - Robustness to alternative beliefs, choice heuristics
- Portfolio choice problem (Chade & Smith '06)
 - Limited information in first stage, new info in second stage
 - First-stage decision affects second-stage timing and information

Decision Problem

• **Final Choice** - given choice set C, list positions $p \equiv \{p_j\}_{j \in C}$:

$$V_{i,C}^{\mathrm{final}}(p) = \max_{j \in C} E\left[e^{-\rho T_j} \mid p\right] \frac{1}{\rho}(v_{ij} - v_{i0})$$

• Initial Choice - maximize expected discounted value of final choice

$$C^* \equiv \arg \max_{C:|C| < 3} E_C \left[e^{-\rho S} V_{i,C}^{\text{final}}(P) \right]$$

Outer expectation over final choice date (S) and information (P)

- **Decision to Apply** apply if $\max_j v_{ij} > v_{i0}$
 - No application cost
 - Changing the mechanism doesn't affect who applies

Microfoundation and Interpersonal Comparisons

- In discrete choice models, only differences in payoffs are identified
 - Choices reveal distribution of $v_{ij} v_{i0}$
 - Sufficient to predict counterfactual behavior, not for normative analysis
- Paper provides a microfoundation of utility to
 - 1. Interpret distributional consequences of allocation policy: recover v_{i0}
 - 2. Provide a basis for interpersonal comparisons based on willingness-to-pay
- Private Market: household solves

$$\max_{c,h} u_1(c) + u_2(h) \quad s.t. \quad c + h \le y_i + \eta_i$$
$$\implies v_{i0} = v_0(y_i + \eta_i)$$

• Public Housing: pays $\tau \cdot y_i$ in rent, enjoys housing quality d_{ij} :

$$v_{ij} = u_1((1-\tau)y_i) + u_2(d_{ij})$$

Model Implications

The difference in values is given by

$$v_{ij} - v_{i0} = \underbrace{u_1((1- au)y_i) - \underbrace{v_0(y_i + \eta_i)}_{ ext{value of assistance}} + \underbrace{u_2(d_{ij})}_{ ext{match value}}$$

- Applicants with higher values of assistance have higher marginal utilities of income, conditional on observables
- Upper bound on targeting gains from choice restrictions
- Utility gains from assignments converted to equivalent variation

$$v_{iA} - v_{i0} = v_0(y_i + \eta_i + EV) - v_0(y_i + \eta_i)$$

Parameterization of Values

Standard parameterization of flow payoffs:

$$v_{ij} - v_{i0} = \underbrace{\delta_j + \underbrace{g(Z_i) + \phi_1 \log y_i - \phi_2 \log(y_i + \eta_i)}_{\text{value of assistance}} + \underbrace{\sum_k X_{ijk} \beta_k^o + \sum_m X_{jm} \nu_{im} \beta_m^u + \epsilon_{ij}}_{\text{match value}}$$

$$\eta_i \overset{iid}{\sim} egin{dcases} TN(0, \sigma_{\eta}^2, c - y_i, \infty) & \textit{w.p.} & 1 - \Phi\left(\frac{c - y_i}{\sigma_{\eta}}\right) \\ c - y_i & \textit{w.p.} & \Phi\left(\frac{c - y_i}{\sigma_{\eta}}\right) \end{cases}$$
 $u_i \overset{iid}{\sim} N(0, I) \qquad \epsilon_{ij} \overset{iid}{\sim} N(0, 1)$

- Microfounded by Cobb-Douglas preferences: $u(c,h) = \gamma \log c + (1-\gamma) \log h$
- Model parameters: $\{\rho, \delta, \beta, g(.), \phi, \sigma_{\eta}\}$

Estimation Approach

- Given competitors' strategies, each agent solves a single-agent problem
 - Competitors affect an applicant's payoffs through waiting times
 - Applicants play against distributions generated by equilibrium behavior
 - FCFS queue ⇒ limited scope for strategic interactions
 - Many applicants with limited information about choices of competitors
- Estimation steps
 - 1. Construct "rational expectations" beliefs via simulation
 - 2. Estimate preferences using the method of simulated moments
 - Moments based on optimal initial and final choices
 - Avoids solving for equilibrium of the game
 - Consistency between beliefs and preferences only imposed in counterfactuals

Constructing Beliefs

- Beliefs are high-dimensional objects:
 - $\{G_C(S, \mathbf{P})\}_{C \in \mathcal{C}}$: how initial choice affects final choice date and info
 - $\{\{F_{j,C}(T_j \mid \mathbf{p})\}_{j,\mathbf{p}}\}_{C \in C}$: continued waiting time given positions
 - Choice structure → correlated waiting times across lists
 - ullet "Small" lists \longrightarrow uncertainty in waiting times and assignments
- ullet Sparse data on waiting times: pprox325 applicants housed during sample period
- Approach: approximate beliefs via simulation
 - Beliefs governed by mechanism's stationary distribution
 - · Queue lengths only observed at final choice
 - Determinants of stationary distribution are lower-dimensional
 - Rates of applicant arrival μ ; vacancy λ ; and exogenous departures δ
 - Choice probabilities at initial and final choices
 - Simulate Cambridge Mechanism given these estimates
 - Belief distributions constructed from simulation outputs

Method of Simulated Moments

- Challenges of a likelihood-based approach:
 - Complex regions of v for which each choice is optimal
 - Numerical integration or Bayesian approaches (MCMC) intractable
 - Many possible choices; concerns of bias from simulated MLE
- MSM procedure:
 - 1. Take simulation draws of preference components and final choice states
 - 2. For a candidate parameter value θ
 - 2.1 Calculate indirect utilities given (fixed) simulation draws
 - 2.2 Solve for optimal sequence of choices
 - 2.3 Calculate simulated moments from choices: $\hat{m}_i(\boldsymbol{\theta}) \equiv \hat{E}[m_i^{(q)} \mid \mathbf{Z}_i, \boldsymbol{\theta}]$
 - 3. Minimize objective function with respect to θ :

$$\min_{\boldsymbol{\theta}} \ \hat{\mathbf{g}}(\boldsymbol{\theta})' \mathbf{A} \ \hat{\mathbf{g}}(\boldsymbol{\theta}) \qquad \qquad \hat{g}^{(q)}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left(m_i^{(q)} - \hat{m}_i^{(q)}(\boldsymbol{\theta}) \right) Z_i^{(q)}$$

Intuition for Identification

- Match values
 - Portfolio choice is like having "second choice" data (Berry et al., 2004)
- Values of assistance
 - Observed: applying reveals some development preferred to outside option
 - Unobserved: initial and final choices
 - Differences in selectivity that cannot be explained by observables or match value heterogeneity
- Willingness to wait for preferred development
 - Governed by time preference and value distribution
 - Variation in waiting times at final choice separates discount rate from flow payoffs

Moments

- Decision to apply
 - Application rates by income, demographics
- Initial choices
 - Development shares
 - Covariances between applicant, development characteristics
 - Variances of development characteristics
 - Variances of chosen waiting times, by income
 - Number of developments chosen
- Final choices
 - Development shares
 - Responsiveness to waiting time information

Household Income Below

Summary of Preference Estimates

- ullet Applicants are patient: estimated annual discount factor of pprox 0.97
- UH in value of assistance equivalent to \$9,000 S.D. unobserved income
- UH in match values also substantial
- Moderate differences in developments' overall desirability

All Applicants

 Qualitative features robust to specific alternative assumptions about beliefs, applicant sophistication, assumed utility function

			Household Head		\$15,000	
Panel A: Value of Assignment	to Preferred Deve	elopment				
	Median (\$)	Mean (\$)	Median (\$)	Mean (\$)	Median (\$)	Mean (\$)
1st Choice Instead of 2nd	891	2,028	1,136	2,465	526	1,082
1st Choice Instead of 3rd	1,894	3,344	2,493	4,111	1,047	1,807
Panel B: Number of Acceptabl	e Developments					
	% of	Outside	% of	Outside	% of	Outside
	Applicants	Option (\$)	Applicants	Option (\$)	Applicants	Option (\$)
1-3 Acceptable	16.2	30,547	12.0	45,150	4.9	21,091
4-10 Acceptable	23.2	24,888	22.1	34,431	11.9	17,525
11-12 Acceptable	36.5	13,327	35.8	18,825	42.8	11,001
13 Acceptable	24.1	4,710	30.1	5,230	40.4	4,510 38 / 45

African American

Outline

- 1 Theory: Dynamic Assignment Mechanisms
- 2 Institutions
- Model
- Application: Cambridge, MA
 - Institutional Background and Data
 - Econometric Model and Estimator
 - Counterfactual Allocations

Choice of Counterfactuals

- Trade-off between efficiency and redistribution in waitlist design
 - Efficiency: maximize equivalent variation of those housed
 - Redistribution: house applicants with worst outside options
- Combinations of choice and priority systems:
 - Choice: Choose One or No Choice
 - Paper considers intermediate systems (e.g. Any Subset)
 - Priority: Low- or High-Income applicants (\$15,000/year cutoff)
 - Compared to Equal Priority CHA system during study period
- Choice of mechanisms motivated by
 - Practice: systems used by PHAs
 - Theory: "extremes" of match quality and targeting
 - Convenience: one stage of choice is computationally tractable

Equilibrium Computation

- Stationary equilibrium concept, similar to one used for estimation
 - Applicants form beliefs based on stationary equilibrium of mechanism
 - No information about current state of queue when making decision
 - Applicants need only track joint distr. of waiting times, assignments
- Choice problem can be written as

$$\max_{C \in \mathcal{C}} \sum_{j \in C} w_j(C)(v_{ij} - v_{i0})$$

$$w_j(C) = \frac{1}{\rho} \mathbb{E}\left[e^{-\rho T_j} \mid T_j = \min_{k \in C} T_k\right] Pr\left[T_j = \min_{k \in C} T_k\right]$$

- Equilibrium computation finds a fixed point between choices and beliefs
 - Long simulation of the queue. Iterate between
 - 1. Optimal decisions C^* given beliefs $\{w(C)\}_{C \in C}$
 - 2. Update weights $\{w(C)\}_{C \in \mathcal{C}}$ implied by decisions

Efficiency vs Redistribution

- Removing choice reduces efficiency by 33 percent; targets applicants with 16 percent worse outside options
- Income-based priorities mostly affect redistribution

Normative Analysis

- Need a framework for balancing efficiency and distributional objectives
- ullet Assignments \longrightarrow utility gains \longrightarrow equivalent cash transfers (EV)
 - Aggregate EV using a social welfare function that places greater value on transfers to households with worse outside options
- Constant Relative Inequality-Aversion (Atkinson, 1970):

$$f(\tilde{y}_i, EV; \lambda) = \frac{1}{1-\lambda} \left[(\tilde{y}_i + EV)^{1-\lambda} - \tilde{y}_i^{1-\lambda} \right]$$

- \bullet Social marginal utility of income is $\lambda\%$ greater for a 1% lower-income household
 - $\lambda = 0$: no value of redistribution. $\lambda = \infty$: Rawlsian

Preferred Choice System under Equal Priority

Preferred Combinations of Choice and Priority

Future Directions

- Many questions remain in public housing waitlist design
 - Applicant information and sophistication
 - Endogenous responses to priorities
 - "Frontier" mechanisms
 - Interactions with other markets
 - Choices and outcomes (Van Dijk '19)
- What about re-designing the public housing program itself?
 - · Rematching within public housing
 - Type and quality of housing provided
 - Public provision vs private market subsidy (vouchers, tax credits)
 - Why subsidize housing at all?