$$G(s) = \frac{50}{s(s+5)(0.1s+1)}$$
 r(t) = $t^2 + 2t + 2$.

由劳斯判据,系统稳定

在厅(t) =
$$2$$
t作用下: $e_{SSV} = \frac{Rov}{kV} = \frac{2}{10} = 0.2$.

在了比)=
$$t^2$$
作用下: $e_{ssa} = \frac{R \circ a}{k_0} = ...$

故在r出)作用下,彩流的移态误差为QQ po.

解 由劳斯判据,积的程度。
$$Cssp = \lim_{s \to 0} \frac{Rop}{HGH} = \lim_{s \to 0} \frac{2}{1 + \frac{Io(2s+1)}{s^2(s^2 + 6s + Iov)}} = 0$$

$$e_{SSV} = l_{im} \frac{R_{oV}}{s \rightarrow 0} = l_{im} \frac{2}{l_{o}(2s+1)} = 0$$
 放在几台
 $s \rightarrow 0 \quad s \rightarrow 0 \quad s \rightarrow 0$ 不及忘误

$$e_{ssa} = lim Roa s70 s2GH = lim $\frac{2}{10(2s+1)} = 20$ 差为 20.$$

故在114)作用下,初始的稳态误差为20:

2. 首先由劳斯判据,发视和抗稳定。

$$R(s) = N_1(s) = N_2(s) = \frac{1}{s}$$

对尺(s)而言,误差传递函数为 1+GF

对·N·而言,误差传递函数为 _-F· I+ GF

SHJ N2而言,误差传递的数为 二 HGF

在
$$n_1(t)$$
作用下: $e_{ss}n_1 = lim$ $\frac{1}{Js}$ $\frac{1}{Js^2}$ $\frac{1}{Js^2}$

心和流的稳态误差为0.