Complex Analysis Qualifying Exam Fall 1992

In the following \mathbb{C} denotes the set of all complex numbers, \mathbb{D} the set $\{z \in \mathbb{C} : |z| < 1\}$ and $H(\mathbb{D})$ the set of all holomorphic functions on \mathbb{D} .

- **1.** Show that if $g: \Omega$ open $\subset \mathbb{C} \to \mathbb{C}$ is continuous and e^g is holomorphic, then g is holomorphic. (That is, a **continuous** logarithm of a holomorphic function is necessarily holomorphic.)
- **2.** Show directly (without reference to the concept of simple-connectivity) that every zero-free function $f \in H(\mathbb{D})$ has a holomorphic logarithm; that is, $\exists g \in H(\mathbb{D})$ such that $f = e^g$.
- **3.** Show directly (without reference to the concept of simple-connectivity) that the identity function, I(z) = z, in $\mathbb{C}\setminus\{0\}$ has no continuous logarithm. **HINT:** Problem 1 may be useful.
- **4.** (a) f is continuous on $\overline{\mathbb{D}}$, holomorphic in \mathbb{D} . Show that f is uniformly approximable on $\overline{\mathbb{D}}$ by polynomials. **HINT:** First approximate f uniformly on $\overline{\mathbb{D}}$ by a function f_r which is holomorphic in D(0,1/r), 0 < r < 1.
 - (b) State and prove the converse of (a).
- 5. State
 - (a) the Maximum Modulus Principle for holomorphic functions,
 - (b) the Open Map Theorem for holomorphic functions.
 - (c) Show that (a) can be deduced from (b).
- **6.** Show that $\int_{\partial \mathbb{D}} \frac{e^{\pi z}}{4z^2+1} dz = \pi i$.
- 7. f is holomorphic in $A := \mathbb{D}\setminus\{0\}$ and satisfies $|f(z)| < |z|^{3/2}$ for all $z \in A$. Show that $|f(1/2)| \le 1/4$. HINT: First see if the function g(z) := f(z)/z can be holomorphically extended into \mathbb{D} . What will its value at 0 have to be?
- 8. f is holomorphic and one-to-one in the region Ω . Let $G = f(\Omega)$ and $g : G \to \Omega$ be the inverse of f. Prove that g is holomorphic. **HINT:** You will need to prove **en route** that f' is zero-free in Ω .
- **9.** (a) Define (don't just name) the three kinds of isolated singularity which holomorphic functions can have and give an example of each.
 - (b) What does the Casorati-Weierstrass Theorem say about one of these kinds of singularities?
 - (c) What does the Great Picard Theorem say about one of these kinds of singularities?
 - (d) State Mittag-Leffler's Theorem regarding the principal parts of a meromorphic function.