IFP style proofs in the Coq proof assistant

Holger Thies Kyoto University Joint work with Sewon Park and Hideki Tsuiki

Continuity, Computability, Constructivity 2021 September 19-24, Online

IFP and Coq

IFP

- Intutionistic first-order logic
- Can add (nc) axioms
- Program Extraction
- Well-suited for proofs over abstract mathematical spaces (real numbers,...)
- Partiality

Coq

- Constructive Type Theory
- Can add axioms
- Program Extraction,
 Computation
- General purpose, many libraries
- Only total functions

IFP has been developed by U. Berger and collaborators (M. Seisenberger, O. Petrovska, H. Tsuiki) since 2009.

IFP is a schema for a proof system over different abstract mathematical spaces.

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

- 1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces
- 2. Terms *s*, *t* consisting of variables, constants and function symbols

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

- 1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces
- 2. Terms s, t consisting of variables, constants and function symbols
- 3. Predicate constants of fixed arity

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

- 1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces
- 2. Terms s, t consisting of variables, constants and function symbols
- 3. Predicate constants of fixed arity

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

- 1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces
- 2. Terms s, t consisting of variables, constants and function symbols
- 3. Predicate constants of fixed arity

Relative to \mathcal{L} we define

• Formulas: s = t, P(t), $A \wedge B$, $A \vee B$, $A \rightarrow B$, $\forall x A$, $\exists x A$.

3

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

- 1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces
- 2. Terms s, t consisting of variables, constants and function symbols
- 3. Predicate constants of fixed arity

Relative to \mathcal{L} we define

- Formulas: s = t, P(t), $A \wedge B$, $A \vee B$, $A \rightarrow B$, $\forall x A$, $\exists x A$.
- Predicates: Variables, constants, $\lambda x A$, $\mu(\Phi)$, $\nu(\Phi)$.

IFP is a schema for a proof system over different abstract mathematical spaces.

An instance of IFP consists of a language $\mathcal L$ and a set of axioms $\mathcal A.$ The Language $\mathcal L$ consists of

- 1. Sorts ι, ι_1, \ldots as names for abstract mathematical spaces
- 2. Terms s, t consisting of variables, constants and function symbols
- 3. Predicate constants of fixed arity

Relative to \mathcal{L} we define

- Formulas: s = t, P(t), $A \wedge B$, $A \vee B$, $A \rightarrow B$, $\forall x A$, $\exists x A$.
- Predicates: Variables, constants, $\lambda x A$, $\mu(\Phi)$, $\nu(\Phi)$.
- Operators: $\lambda X P$ (P strictly positive in X)

Axioms

A formula is called <u>non-computational</u> if it is disjunction-free and contains no free predicate variables.

Axioms

A formula is called <u>non-computational</u> if it is disjunction-free and contains no free predicate variables.

Axioms in IFP are closed non-computational (disjunction-free) formulas.

Example:

$$\forall x \forall y \neg (x < y) \rightarrow y \le x$$

is OK but

$$\forall x \, \forall y \, x < y \, \lor \, y \leq x$$

is not.

4

Induction rules

IFP contains the following rules for strictly positive induction and coinduction:

$$\frac{\Phi(P) \subseteq P}{\Phi(\mu(\Phi)) \subseteq \mu(\Phi)} \operatorname{CL}(\Phi) \qquad \frac{\Phi(P) \subseteq P}{\mu(\Phi) \subseteq P} \operatorname{IND}(\Phi, P)$$

$$\frac{P \subseteq \Phi(P)}{P \subseteq \nu(\Phi)} \operatorname{COIND}(\Phi, P)$$

 $A \subseteq B$ is short for $\forall x A x \rightarrow B x$.

• IFP's primary goal is program extraction

- IFP's primary goal is program extraction
- Careful distinction between computational and non-computational (Harrop) formulas

- IFP's primary goal is program extraction
- Careful distinction between computational and non-computational (Harrop) formulas
- Harrop expressions are realized by Nil

- IFP's primary goal is program extraction
- Careful distinction between computational and non-computational (Harrop) formulas
- Harrop expressions are realized by Nil
- Uniform interpretation of quantifiers:

$$a R \lozenge x A = \lozenge x (a R A) \text{ for } \lozenge \in \{\exists, \forall\}$$

- IFP's primary goal is program extraction
- Careful distinction between computational and non-computational (Harrop) formulas
- Harrop expressions are realized by Nil
- Uniform interpretation of quantifiers:

$$a R \lozenge x A = \lozenge x (a R A) \text{ for } \lozenge \in \{\exists, \forall\}$$

Implemented in the Prawf proof assistant (U. Berger, O. Petrovska, H. Tsuiki)

Example: The language of real numbers

Language:

- Sorts: one sort *R*
- Constants: -1, 0, 1
- Functions: $+, -, *, /, \dots$
- Predicate constants: <, ≤

Axioms:

• Disjunction-free formulation of axioms of real closed field etc.

Example: Natural numbers

We can define natural numbers inductively by

$$N(x) = \mu(\lambda X \lambda x (x = 0 \lor X(x - 1)))$$

Induction and Closure rules:

$$\frac{\forall x ((x = 0 \lor N(x - 1)) \to N(x))}{\forall x (x = 0 \lor P(x - 1)) \to P(x)} \text{ IND}(N, P)$$

$$\frac{\forall x (x = 0 \lor P(x - 1)) \to P(x)}{\forall x N(x) \to P(x)} \text{ IND}(N, P)$$

For each language $\mathcal L$ and set of axioms $\mathcal A$, we define a set of Coq axioms by

1. For each sort ι in \mathcal{L} , define ι as a term constant (axiom) of Prop.

9

For each language $\mathcal L$ and set of axioms $\mathcal A$, we define a set of Coq axioms by

- 1. For each sort ι in \mathcal{L} , define ι as a term constant (axiom) of Prop.
- 2. For each constant c of sort ι , define c as a term constant (axiom) of type ι .

For each language $\mathcal L$ and set of axioms $\mathcal A$, we define a set of Coq axioms by

- 1. For each sort ι in \mathcal{L} , define ι as a term constant (axiom) of Prop.
- 2. For each constant c of sort ι , define c as a term constant (axiom) of type ι .
- 3. For each function symbol f of arity $\iota_1 \times \cdots \times \iota_n \to \iota$, define f as a term constant (axiom) of type $\iota_1 \to \cdots \to \iota_n \to \iota$.

9

For each language $\mathcal L$ and set of axioms $\mathcal A$, we define a set of Coq axioms by

- 1. For each sort ι in \mathcal{L} , define ι as a term constant (axiom) of Prop.
- 2. For each constant c of sort ι , define c as a term constant (axiom) of type ι .
- 3. For each function symbol f of arity $\iota_1 \times \cdots \times \iota_n \to \iota$, define f as a term constant (axiom) of type $\iota_1 \to \cdots \to \iota_n \to \iota$.
- 4. For each predicate symbol P of arity $(\iota_1, \dots \iota_n)$, define P as a term constant (axiom) of type $\iota_1 \to \dots \to \iota_n \to \text{Prop}$.

9

For each language $\mathcal L$ and set of axioms $\mathcal A$, we define a set of Coq axioms by

- 1. For each sort ι in \mathcal{L} , define ι as a term constant (axiom) of Prop.
- 2. For each constant c of sort ι , define c as a term constant (axiom) of type ι .
- 3. For each function symbol f of arity $\iota_1 \times \cdots \times \iota_n \to \iota$, define f as a term constant (axiom) of type $\iota_1 \to \cdots \to \iota_n \to \iota$.
- 4. For each predicate symbol P of arity $(\iota_1, \dots \iota_n)$, define P as a term constant (axiom) of type $\iota_1 \to \dots \to \iota_n \to \text{Prop}$.
- 5. For each operator symbol Q of arity $(\iota_1, \dots \iota_n)$, define Q as a term constant (axiom) of type $(\iota_1 \to \dots \to \iota_n \to \operatorname{Prop}) \to (\iota_1 \to \dots \to \iota_n \to \operatorname{Prop})$.

Translating Formulas i

- 1. $H(c:\iota) = \vdash c:\iota$,
- 2. $H(f: \iota_1 \times \cdots \times \iota_n \to \iota) = \vdash f: \iota_1 \to \cdots \to \iota_n \to \iota$,
- 3. $H(x:\iota) = x:\iota \vdash x:\iota$,
- 4. $H(C: predicate(\iota_1, \ldots, \iota_d)) = \vdash C: \iota_1 \to \cdots \to \iota_n \to Prop,$
- 5. $H(X : predicate(\iota_1, ..., \iota_d)) = X : \iota_1 \to \cdots \to \iota_d \to Prop \vdash X : \iota_1 \to \cdots \to \iota_d \to Prop,$
- 6. $H(f(t_1, \dots, t_n) : \iota) = \Gamma \vdash f \ t'_1 \cdots t'_n : \iota \text{ when } H(t_i : \iota_i) = \Gamma_i \vdash t'_i : \iota_i \text{ and } \Gamma = \bigcup_i \Gamma_i,$
- 7. $H(t_1 = t_2) = \Gamma \vdash t_1' = t_2'$: Prop when $H(t_1) = \Gamma_1 \vdash t_1' : \iota$, $H(t_2) = \Gamma_2 \vdash t_2' : \iota$, and $\Gamma = \Gamma_1 \cup \Gamma_2$,

Translating Formulas ii

- 8. $H(P \lor Q) = \Gamma \vdash P' \lor Q'$ when $H(P) = \Gamma_1 \vdash P'$: Prop, $H(Q) = \Gamma_2 \vdash Q'$: Prop, and $\Gamma = \Gamma_1 \cup \Gamma_2$,
- 9. $H(P \wedge Q) = \Gamma \vdash P' \wedge Q'$ when $H(P) = \Gamma_1 \vdash P'$: Prop, $H(Q) = \Gamma_2 \vdash Q'$: Prop, and $\Gamma = \Gamma_1 \cup \Gamma_2$,
- 10. $H(P \to Q) = \Gamma \vdash P' \to Q'$ when $H(P) = \Gamma_1 \vdash P'$: Prop, $H(Q) = \Gamma_2 \vdash Q'$: Prop, and $\Gamma = \Gamma_1 \cup \Gamma_2$,
- 11. $H(\exists x \ P) = \Gamma \setminus (x : \iota) \vdash \exists (x : \iota). \ P' \text{ when } H(x) = x : \iota \text{ and } H(P) = \Gamma \vdash P' : \text{Prop},$
- 12. $H(\forall x \ P) = \Gamma \setminus (x : \iota) \vdash \forall (x : \iota). \ P'$ when $H(x) = x : \iota$ and $H(P) = \Gamma \vdash P'$: Prop,
- 13. $H(\lambda x P) = \Gamma \setminus (x : \iota) \vdash \lambda(x : \iota)$. P' when $H(x) = x : \iota$ and $H(P) = \Gamma \vdash P'$: Prop,

Translating Formulas iii

14.
$$H(\lambda X \ P) = \Gamma \setminus (X : (\iota_1 \to \cdots \to \iota_n \to Prop)) \vdash \lambda(X : (\iota_1 \cdots \to \iota_n \to Prop)). P'$$
 when $H(X) = X : \iota_1 \to \cdots \to \iota_n \to Prop$ and $H(P) = \Gamma \vdash P' : Prop$,

Inductive Types

For each expression $\mu(\Phi)$ in IFP we define an inductive type in Coq:

```
Inductive MPhi : (\iota -> Prop) := MPhic: forall x, (Phi Mphi x) -> Mphi x.
```

where Phi is the translation of Φ .

Inductive Types

For each expression $\mu(\Phi)$ in IFP we define an inductive type in Coq:

```
Inductive MPhi : (\iota -> Prop) := MPhic: forall x, (Phi Mphi x) -> Mphi x.
```

where Phi is the translation of Φ .

The right induction principle will in general not be generated by Coq but

```
Lemma ind_Phi: forall (P : \iota -> Prop),
forall x, ((Phi P x) -> P x) -> Mphi x -> P x.
```

can be proven.

Example

We formalized the real number examples from

Ulrich Berger, Hideki Tsuiki: Intutionistic Fixed Point Logic.

Annals of Pure and Applied Logic 172.3 (2021): 102903.

Example

We formalized the real number examples from

Ulrich Berger, Hideki Tsuiki: Intutionistic Fixed Point Logic.

Annals of Pure and Applied Logic 172.3 (2021): 102903.

Recall the definition of natural numbers in IFP:

$$N(x) = \mu(\lambda X \lambda x (x = 0 \lor X(x - 1)))$$

 \Rightarrow Demo in Coq.

Gray Code and Signed Digit Representation

The signed-digit representation for a real number $x \in [-1,1]$ can be defined by $\nu(\Phi_{\mathrm{SD}})$ with

$$\Phi_{\mathrm{SD}} := \lambda X \lambda x \, \exists d \in \mathrm{SD} \, |2x - d| \leq 1 \wedge X(2x - d)$$

The infinite gray-code representation can be defined by $\nu(\Phi_{\rm G})$ with

$$\Phi_{G} := \lambda X \lambda x \ |x| \le 1 \land (x \ne 0 \rightarrow x \le 0 \lor x \ge 0) \land X(1-2|x|)$$

Mixed Induction/Coinduction

Nested inductive/coinductive definitions are used in IFP e.g. to define uniformly continuous functions.

For
$$d \in \mathbb{R}$$
, let $av_d(x) := \frac{d+x}{2}$ and

$$C_1 := \nu F \,\mu G \,\lambda h \,\exists i \in \operatorname{SD} \exists f \in F \big(h = a v_e \circ f \big) \vee \forall d \in \operatorname{SD} h \circ a v_d \in G.$$

Mixed Induction/Coinduction

Nested inductive/coinductive definitions are used in IFP e.g. to define uniformly continuous functions.

For
$$d \in \mathbb{R}$$
, let $av_d(x) := \frac{d+x}{2}$ and

$$C_1 := \nu F \,\mu G \,\lambda h \,\exists i \in \operatorname{SD} \exists f \in F \big(h = a v_e \circ f \big) \vee \forall d \in \operatorname{SD} h \circ a v_d \in G.$$

Coq does not accept the coinductive proof because it is not formally guarded.

Future work

- Formalization of RIFP in Coq
- Program extraction
- Translation from Coq proofs to IFP proofs
- Extension to CFP

Happy Birthday, Ulrich!