

Synthetic algebraic geometry *a case study in applied topos theory*

the phenomenon of nongeometric sequents

Ingo Blechschmidt University of Augsburg

103rd Peripatetic Seminar on Sheaves and Logic in Brno April 7th, 2018

Approaches to algebraic geometry

Usual approach to algebraic geometry: layer schemes above ordinary set theory using either

locally ringed spaces

set of prime ideals of
$$\mathbb{Z}[X,Y,Z]/(X^n+Y^n-Z^n)+$$
 Zariski topology + structure sheaf

■ or Grothendieck's functor-of-points account, where a scheme is a functor Ring → Set.

$$A \longmapsto \{(x, y, z) \in A^3 \mid x^n + y^n - z^n = 0\}$$

Synthetic approach: model schemes **directly as sets** in a certain nonclassical set theory.

$$\{(x, y, z) : (\underline{\mathbb{A}}^1)^3 \mid x^n + y^n - z^n = 0\}$$

Toposes as mathematical universes

A **topos** is a category which has finite limits, is cartesian closed and has a subobject classifier, for instance

- Set, the category of sets;
- \blacksquare Sh(X), the category of set-valued sheaves over a space X;
- **Eff**, the effective topos (roughly: a category of data types).

Any topos supports an **internal language**, which is sound with respect to **intuitionistic reasoning**.

Toposes as mathematical universes

A **topos** is a category which has finite limits, is cartesian closed and has a subobject classifier, for instance

- Set, the category of sets;
- Sh(X), the category of set-valued sheaves over a space X;
- **Eff**, the effective topos (roughly: a category of data types).

Any topos supports an **internal language**, which is sound with respect to **intuitionistic reasoning**.

no $\varphi \vee \neg \varphi$, no $\neg \neg \varphi \Rightarrow \varphi$, no axiom of choice

Curious universes

- Eff |= "There are infinitely many prime numbers." ✓ External meaning: There is a Turing machine producing arbitrarily many prime numbers.
- Eff |= "Any Turing machine halts or doesn't halt." X External meaning: There is a halting oracle which determines whether any given machine halts or doesn't halt.
- Sh(X) \models "Any cont. function with opposite signs has a zero." \nearrow External meaning: Zeros can locally be picked **continuously** in continuous families of continuous functions.

Synthetic differential geometry

The axiom of microaffinity

Let $\Delta = \{ \varepsilon \in \mathbb{R} \mid \varepsilon^2 = 0 \}$. For any function $f : \Delta \to \mathbb{R}$, there are unique numbers $a, b \in \mathbb{R}$ such that $f(\varepsilon) = a + b\varepsilon$ for all $\varepsilon \in \Delta$.

- The **derivative** of f as above at zero is b.
- Manifolds are just sets.
- A tangent vector to M is a map $\Delta \to M$.

Toposes provide models for this theory.

The big Zariski topos

Let S be a fixed base scheme.

Definition

The big Zariski topos Zar(S) is the category Sh(Sch/S). It consists of functors $(Sch/S)^{op} \rightarrow Set$ satisfying the gluing condition that

$$F(T) \to \prod_i F(U_i) \Longrightarrow \prod_{j,k} F(U_j \cap U_k)$$

is a limit diagram for any scheme $T = \bigcup_i U_i$ over S.

- For an S-scheme X, its functor of points $X = \operatorname{Hom}_{S}(\cdot, X)$ is an object of Zar(S). It feels like the set of points of X.
- In particular, there is the ring object \mathbb{A}^1 with $\mathbb{A}^1(T) = \mathcal{O}_T(T)$.
- Zar(S) classifies local \mathcal{O}_S -algebras which are local over \mathcal{O}_S .

Synthetic constructions

$$\mathbb{A}^{n} = (\underline{\mathbb{A}}^{1})^{n} = \underline{\mathbb{A}}^{1} \times \cdots \times \underline{\mathbb{A}}^{1}$$

$$\mathbb{P}^{n} = \{(x_{0}, \dots, x_{n}) : (\underline{\mathbb{A}}^{1})^{n+1} \mid x_{0} \neq 0 \vee \cdots \vee x_{n} \neq 0\}/(\underline{\mathbb{A}}^{1})^{\times}$$

$$\cong \text{ set of one-dimensional subspaces of } (\underline{\mathbb{A}}^{1})^{n+1}$$

$$(\text{with } \mathcal{O}(-1) = (\ell)_{\ell : \mathbb{P}^{n}}, \mathcal{O}(1) = (\ell^{\vee})_{\ell : \mathbb{P}^{n}})$$

$$\operatorname{Spec}(R) = \operatorname{Hom}_{\operatorname{Alg}(\underline{\mathbb{A}}^1)}(R,\underline{\mathbb{A}}^1) = \operatorname{set} \operatorname{of} \underline{\mathbb{A}}^1$$
-valued points of R

$$TX = X^{\Delta}$$
, where $\Delta = \{ \varepsilon : \underline{\mathbb{A}}^1 \mid \varepsilon^2 = 0 \}$

A subset $U \subseteq X$ is **qc-open** if and only if for any x : X there exist $f_1, \ldots, f_n : \mathbb{A}^1$ such that $x \in U \iff \exists i. f_i \neq 0$.

A **synthetic affine scheme** is a set which is in bijection with Spec(R) for some synthetically quasicoherent \mathbb{A}^1 -algebra R.

A synthetic scheme is a set which can be covered by finitely many qc-open synthetic affine schemes U_i such that the intersections $U_i \cap U_i$ can be covered by finitely many qc-open synthetic affine schemes.

Properties of the affine line

 $\underline{\mathbb{A}}^1$ is a local ring:

$$1 \neq 0$$
 $x + y$ inv. $\implies x$ inv. $\lor y$ inv.

 \blacksquare \mathbb{A}^1 is a field:

$$\neg(x = 0) \Longleftrightarrow x \text{ invertible} \quad [Kock 1976]$$
$$\neg(x \text{ invertible}) \Longleftrightarrow x \text{ nilpotent}$$

- $\underline{\mathbb{A}}^1$ satisfies the axiom of microaffinity: Any map $f: \Delta \to \underline{\mathbb{A}}^1$ is of the form $f(\varepsilon) = a + b\varepsilon$ for unique values $a, b: \underline{\mathbb{A}}^1$, where $\Delta = \{\varepsilon: \underline{\mathbb{A}}^1 \mid \varepsilon^2 = 0\}$.
- Any function $\underline{\mathbb{A}}^1 \to \underline{\mathbb{A}}^1$ is a polynomial.
- $\underline{\mathbb{A}}^1$ is anonymously algebraically closed: Any monic polynomial does *not not* have a zero.
- \blacksquare \mathbb{A}^1 is of unbounded Krull dimension.

Synthetic quasicoherence

Recall Spec(R) = Hom_{Alg(\mathbb{A}^1)}(R, $\underline{\mathbb{A}}^1$) and consider the statement

"the canonical map
$$R \longrightarrow (\underline{\mathbb{A}}^1)^{\operatorname{Spec}(R)}$$
 is bijective". $f \longmapsto (\alpha \mapsto \alpha(f))$

- True for $R = \mathbb{A}^1[X]/(X^2)$ (microaffinity).
- True for $R = \mathbb{A}^1[X]$ (every function is a polynomial).
- True for any finitely presented \mathbb{A}^1 -algebra R.

Any known property of \mathbb{A}^1 follows from this synthetic quasicoherence.

Example. Let $x: \mathbb{A}^1$ such that $x \neq 0$. Set $R = \mathbb{A}^1/(x)$. Then Spec(R) = \emptyset . Thus (\mathbb{A}^1)^{Spec(R)} is a singleton. Hence R = 0. Therefore *x* is invertible.

Nongeometric sequents

Let \mathbb{T} be a **geometric theory** (rings, intervals, ...).

For a **geometric sequent** $\forall \vec{x}$. $(\varphi \Rightarrow \psi)$, the following are equivalent:

- It is **provable** by \mathbb{T} .
- 2 It holds for all models of \mathbb{T} in all toposes.
- It holds for the generic model of \mathbb{T} in its classifying topos.
- Additional **nongeometric sequents** may hold in a classifying topos, for instance " $\underline{\mathbb{A}}^1$ is synthetically quasicoherent" in Zar(S).
- These are **T-redundant**, but the converse is false. [Bezem-Buchholtz-Coquand 2017; answering a question by Wraith possibly raised at PSSL 1.]
- Are they precisely the consequences of synthetic quasicoherence?
- Applications: synthetic algebraic geometry, generic freeness, ...

Further research

- Push synthetic algebraic geometry further: true cohomology, intersection theory, derived categories, ...
- What do the various subtoposes of Zar(S) classify (étale, fppf, ph, $\neg\neg$, ...)? What about the crystalline topos?
- Understand quasicoherence.
- Find further applications of nongeometric sequents, for instance in constructive algebra.

Expository notes: https://www.ingo-blechschmidt.eu/