A Short Overview On Sentiment Analysis

Minlie Huang (黄民烈)
Tsinghua University
aihuang@tsinghua.edu.cn

What is Sentiment Analysis?

- Sentiment analysis (SA) or opinion mining
 - computational study of opinion, sentiment, appraisal, evaluation, and emotion.
- Why is it important?
 - Opinions are key influencers of our behaviors.
 - Rise of Al and chatbots
 - Emotion and sentiment are key to human communication

Roadmap of Sentiment Analysis

'Your brand is not what **you** say but what **they** say'!

Phases for Sentiment Analysis

Supervised: SVM, LR, NB, DT...

Unsuper.: Graph-based

2006~2010

Lexicons, Rules, Unsupervised

2002~2008

Topic models

2007~2012

Deep learning models

2011~~

Trends Revealed by Major NLP Conferences

Statistics from ACL 2015

Statistics from ACL 2016

- 82 long submissions, accepted 8, <10%
- Among the 82 submissions:
 - Deep Learning: 15
 - Stance: 7
 - Sarcasm: 6

More statistics can be seen:
https://www.aclweb.org/aclwiki/index.php?title=Areas,_chairs,_and_area_submissions

What Were Accepted?

ACL long papers: 2014/2015/2016: 8/12/10

• EMNLP long papers: 2014/2015/2016: 11/11/14

What Were Accepted?

 The percent of DL papers among what were accepted by ACL/EMNLP rises from 10%→30%→42%

Ohh, Deep Learning in Sentiment Analysis...

Sentiment Classification on SST

Model	Fine-g	grained	Positive	Positive/Negative		
1110401	All	Root	All	Root		
NB	67.2	41.0	82.6	81.8		
SVM	64.3	40.7	84.6	79.4		
BiNB	71.0	41.9	82.7	83.1		
VecAvg	73.3	32.7	85.1	80.1		
RNN	79.0	43.2	86.1	82.4		
MV-RNN	78.7	44.4	86.8	82.9		
RNTN	80.7	45.7	87.6	85.4		

From Socher et al. 2013

N			
Method	Fine-grained		
SVM [Pang and Lee 2008]	40.7		
MNB [Wang and Manning 2012]	41.0		
bi-MNB [Wang and Manning 2012]	41.9		
RNN [Socher et al. 2011]	43.2		
RNTN [Socher et al. 2013]	45.7		
MV-RNN [Socher et al. 2012]	44.4		
AdaMC-RNN [Dong et al. 2014]	45.8		
AdaMC-RNTN [Dong et al. 2014]	46.7		
DRNN [Irsoy and Cardie 2014]	49.8		
TG-RNN (ours)	46.1(0.3)		
TE-RNN (ours)	47.8(0.3)		
TE-RNTN (ours)	48.8(0.4)		
CNN [Kim 2014]	48.0		
DCNN [Kalchbrenner et al. 2014]	48.5		
LSTM [Tai et al. 2015]	46.4(1.1)		
Bi-directional LSTM [Tai et al. 2015]	49.1(1.0)		
Tree-LSTM [Tai et al. 2015]	51.0(0.5)		
TW-LSTM (ours)	49.9(0.4)		
TW-LSTM+p (ours)	50.6(0.4)		
TE-LSTM (ours)	50.3(0.2)		
TE-LSTM+p (ours)	51.3(0.4)		
TW-LSTM+c (ours)	52.0(0.4)		
TW-LSTM+c,p (ours)	52.1(0.4)		
TE-LSTM+c (ours)	52.3(0.4)		
TE-LSTM+c,p (ours)	52.6(0.6)		

Why, DL to TEXT is not that useful as to IMAGE?							
Method	Fine-grained	-					
SVM [Pang and Lee 2008] MNB [Wang and Manning 2012] bi-MNB [Wang and Manning 2012]	40.7 41.0 41.9	1000-way image	classifica	ation on	ImageNet		
RNN [Socher et al. 2011]	43.2	Team	Time	Place	Top-5 error		
RNTN [Socher et al. 2013] MV-RNN [Socher et al. 2012]	45.7 44.4	SuperVision	2012	1	16.42%		
AdaMC-RNN [Dong et al. 2014]	45.8	ISI	2012	2	26.17%		
AdaMC-RNTN [Dong et al. 2014] DRNN [Irsoy and Cardie 2014]	45.7 49.8	VGG	2012	3	26.98%		
TG-RNN (ours)	46. (0.3)	Clarifai	2013	1	11.74%		
TE-RNN (ours)	47.8(0.3)	NUS	2013	2	12.95%		
TE-RNTN (ours)	48.8(0.4)	ZF	2013	3	13.51%		
CNN [Kim 2014] DCNN [Kalchbrenner et al. 2014]	48.0 48.5	GoogLeNet	2014	1	6.66%		
LSTM [Tai et al. 2015]	46.4(11)	VGG	2014	2	7.32%		
Bi-directional LSTM [Tai et al. 2015] Tree-LSTM [Tai et al. 2015]	49.1(1,0) 51.0(0.5)	MSRA	2014	3	8.06%		
TW-LSTM (ours)	49,9(0.4)	Andrew Howard	2014	4	8.11%		
TW-LSTM+p (ours)	50.6(0.4)	DeeperVision	2014	5	9.51%		
TE-LSTM (ours)	50.3(0.2)	Human	2014		5.1%		
TE-LSTM+p (ours)	51.3(0.4)		4/10/1	Sm-			
TW-LSTM+c (ours)	52.0(0.4)	MSRA PReLU-nets	2015.2	7	4.94%		
TW-LSTM+c,p (ours)	52.1(0 4) 52.3(0 4)	BN-Inception	2015.2	-	4.82%		
	1 1 7 7 3 (1 1 4 1						

Deep Image

52.3(0.4) 52.6(0.6)

TE-LSTM+c (ours)

TE-LSTM+c,p (ours)

2015.5

4.58%

Deep Learning Models for Sentiment Analysis

- Bag-of-words representation
 - Denoising autoencoders
 - Restricted boltzmann machine
- Sequence-based representation
 - CNN
 - Recurrent NN
 - LSTM
- Tree-based representation
 - Recursive NN
 - Tree-LSTM

Bag-of-words Represent. Models

Document-/sentence-level classification

Glorot et al. ICML 2011 Chen et al. 2012

Liu et al. IJCAI 2015

Bag-of-words Represent. Models

Sentiment Extraction

Restricted Boltzmann Machine

Figure 2: Sentiment-Aspect Extraction Model

Wang et al. ACL2015

Sequence Represent. Models

Convolutional Neural Network

Kim 2014; Kalchbrenner et al. 2014; Wang et al., 2014; Johnson and Zhang, 2014/2015; Tang et al, 2014

Sequence Represent. Models

Recurrent Neural Network and Long Short-term Memory

Tang et al. 2015

Tang et al. 2016 Wang et al. 2016 Liu et al., 2016 Chen et al., 2015

Tree Represent. Models

Recursive autoencoders

Deep recursive autoencoders

Socher et al. 2011/2012/2013 Dong et al. AAAI2014 Qian et al. ACL2015 Irsoy and Cardie ACL2014

Tree Represent. Models

Tree-structured LSTM

Tai et al. arXiv 2015 Zhu et al. ICML2015

Other Models-Attention and Memory

Attention-based Aspect level SC

Memory-based Aspect level SC

Wang et al. EMNLP 2016

Tang et al. EMNLP 2016

Are We Overly End-to-End?

End-to-End: simple, elegant

- How about linguistics?
 - Part-of-speech tags
 - Negation words (not, never, scarcely)
 - Intensity words (very, extremely)
 - Sentiment lexicons

Encoding More Linguistic Knowledge in Neural Networks

Encode POS in Recursive autoencoders

Qian et al. ACL 2015

Encoding More Linguistic Knowledge in Neural Networks

Encode POS in Tree-Structured LSTM

Huang et al. ACM TOIS subm.

Encoding More Linguistic Knowledge in Neural Networks

Method	Fine-grained	5-way Classification Results on SST		
SVM [Pang and Lee 2008]	40.7			
MNB [Wang and Manning 2012]	41.0			
bi-MNB [Wang and Manning 2012]	41.9			
RNN [Socher et al. 2011]	43.2	Method	# of parameters	
RNTN [Socher et al. 2013]	45.7	RNN [Socher et al. 2011]	$\approx 1.8K$	
MV-RNN [Socher et al. 2012]	44.4	RNTN [Socher et al. 2013]	$\approx 108K$	
AdaMC-RNN [Dong et al. 2014]	45.8	AdaMC-RNN [Dong et al. 2014]	$\approx 18.7K$	
AdaMC-RNTN [Dong et al. 2014]	46.7	AdaMC-RNTN [Dong et al. 2014]	$\approx 202K$	
DRNN [Irsoy and Cardie 2014]	49.8	DRNN [Irsoy and Cardie 2014]	$\approx 451K$	
TG-RNN (ours)	46.1(0.3)	TG-RNN (ours)	$\approx 8.8K$	
TE-RNN (ours)	47.8(0.3)	TE-RNN (ours)	$\approx 1.7K$	
TE-RNTN (ours)	48.8(0.4)	TE-RNTN (ours)	$\approx 54K$	
CNN [Kim 2014]	48.0			
DCNN [Kalchbrenner et al. 2014]	48.5	Model complexity		
LSTM [Tai et al. 2015]	46.4(1.1)			
Bi-directional LSTM [Tai et al. 2015]	49.1(1.0)	Method	# of parameters	
Tree-LSTM [Tai et al. 2015]	51.0(0.5)	CNN [Kim 2014]	$\approx 360K$	
TW-LSTM (ours)	49.9(0.4)	DCNN [Kalchbrenner et al. 2014]	$\approx 360K$	
TW-LSTM+p (ours)	50.6(0.4)	LSTM [Tai et al. 2015]	$\approx 720K$	
TE-LSTM (ours)	50.3(0.2)	Bi-directional LSTM [Tai et al. 2015	$\approx 720K$	
TE-LSTM+p (ours)	51.3(0.4)	Tree-LSTM [Tai et al. 2015]	$\approx 900K$	
TW-LSTM+c (ours)	52.0(0.4)	TW-LSTM (ours)	$\approx 225K$	
TW-LSTM+c,p (ours)	52.1(0.4)	TW-LSTM+c (ours)	$\approx 945K$	
TE-LSTM+c (ours)	52.3(0.4)	TE-LSTM (ours)	$\approx 199K$	
TE-LSTM+c,p (ours)	52.6(0.6)	TE-LSTM+c (ours)	$\approx 919K$	

Dilemma in Sentiment Analysis

- Everyone can do SA easily
 - Easy to succeed in a limited domain
- - You cannot cross the line easily!
- Hard to make money (because everybody can do)
- To deal with the most essential generic NLP problems!

What is the Next?

- Domain adaptation
 - Work in one domain but does not in another
- Context-aware sentiment analysis
 - Context could be aspect, topic, sentence, etc.
 - Could be word-level, aspect-level, sentence-level, etc.
- Open-domain, social event topics, not just easy domains
 - Movie, digital products, hotel, automobile, etc.
 - General social topics
- New branches: experiences, explanations, causes, emotion, complains, stance, sarcasm, etc.
- End-to-end is good, but don't forget Linguistics

Thanks for your attention

Why, DL to TEXT is not that useful as to IMAGE?

Minlie Huang
Tsinghua University
aihuang@tsinghua.edu.cn