Let $f = \mathbf{1}_A$

- For any $\delta>0$, consider the point $a=\left(u,\frac{u^2}{2}\right)$ where u>0 is selected such that $\delta=2\sqrt{u^2+\frac{u^4}{4}}$ so that $|a|<\delta$. f(a)=1, thus, for $\epsilon=1$, there does not exist any $\delta>0$ where $|(x,y)|<\delta \implies |f(x,y)-f(0,0)|<\epsilon$. Hence, f is not continuous at (0,0).
- If the domain was restricted to any line $D=\{(\alpha t,\beta t):\alpha,\beta,t\in\mathbb{R}\}$. WLOG, assume $\alpha^2+\beta^2=1$. If $\alpha\neq 0$, choose $\delta=\frac{\beta}{\alpha^2}$. Then, $|(\alpha t,\beta t)|<\delta \implies |t|<\delta=\frac{\beta}{\alpha^2}\implies \beta t>(\alpha t)^2\implies f(\alpha t,\beta t)=0=f(0,0)$. If $\alpha=0$, $f(0,\beta t)=0$, and it is known that a constant function is continuous.

Thus, the restriction of f to any line $x = \alpha t, y = \beta t$ [which crosses (0,0)] is continuous at (0,0).