

Arquitecturas de Base de Datos y su Aplicabilidad Tecnológica

Espejo Quispe Luis Enrique | Tapia Espíritu Cristopher Valentino

Contenidos

Tipos de Arquitecturas

Exploraremos las principales arquitecturas de bases de datos y sus características distintivas

03

01

Modelo Conceptual y Lógico

Diseñaremos estructuras de datos efectivas mediante diagramas entidadrelación

02

Criterios de Selección

Analizaremos los factores clave para elegir la arquitectura adecuada según el contexto

04

Normalización y Optimización

Aplicaremos técnicas para mejorar el rendimiento y la integridad de los datos

Tipos de Arquitecturas de Base de Datos

Cliente - Servidor

Ventajas

Control Total

La empresa tiene control completo sobre los servidores, datos y la infraestructura

Personalización

Se puede configurar el hardware y software según necesidades específicas

Costos Fijos

Inversión inicial en hardware y licencias, con menos costos variables a largo plazo

Desventajas

Alta Inversión Inicial

Comprar servidores, licencias y configurar la infraestructura puede ser caro

Escalabilidad Limitada

Para aumentar capacidad, se necesitan comprar más hardware, lo que puede tardar y ser costoso

Mantenimiento

Requiere personal técnico para mantener y actualizar la infraestructura

Arquitectura en la Nube (Cloud Computing)

La computación en la nube ofrece flexibilidad y escalabilidad sin necesidad de infraestructura física propia. Los proveedores gestionan los servidores mientras las empresas se enfocan en su negocio.

Mantenimiento Externalizado

No necesitas equipo técnico para servidores físicos, el proveedor se encarga

Escalabilidad Dinámica

Se puede aumentar o disminuir recursos fácilmente según demanda (picos de tráfico en ventas)

Menor Inversión Inicial

Se paga por uso (modelo SaaS o laaS), reduciendo gastos en hardware

Alta Disponibilidad

Los proveedores en la nube suelen garantizar alta disponibilidad y redundancia

Acceso Global

Fácil acceso desde cualquier lugar con internet, ideal para eCommerce globales

Integración Rápida

Facilita usar servicios adicionales (pagos, analytics, marketing)

Desventajas de la Arquitectura en la Nube

Dependencia del Proveedor

Dependencia del proveedor para datos, seguridad y configuración

Costos Variables

Puede ser difícil predecir costos mensuales, especialmente con picos altos

Seguridad y Privacidad

Aunque suele ser segura, hay riesgos de vulnerabilidad y cumplimiento legal (GDPR, etc.)

Conectividad

Requiere conexión constante y estable a internet para operar

Criterios de Selección de una Arquitectura

Los criterios de selección de startups permitirán la delimitación de aquellos proyectos que cumplen con las características esenciales para su viabilidad, impacto y crecimiento, facilitando la identificación de iniciativas con mayor potencial de éxito en el sector del software educativo.

Criterios de Selección de Startup de Software Educativo

Innovación y Diferenciación

¿El producto ofrece una solución nueva o significativamente mejorada para un problema educativo? ¿Tiene características únicas que lo distinguen de la competencia?

Validación y Resultados

¿Cuenta con pruebas piloto, estudios o testimonios que demuestren efectividad? ¿Tiene métricas claras de impacto en el aprendizaje o en la mejora de habilidades?

Experiencia del Usuario (UX/UI)

¿Es intuitivo, accesible y atractivo para estudiantes y profesores? ¿Cumple con estándares de accesibilidad para personas con discapacidades?

Potencial de Mercado

¿Existe una demanda clara y creciente para este tipo de software educativo? ¿Se dirige a un nicho específico o mercado amplio? ¿El modelo de negocio es viable y sostenible?

Integración con Ecosistemas

¿Puede integrarse con otras plataformas educativas o sistemas LMS? ¿Ofrece API o compatibilidad con otros recursos digitales?

Calidad Pedagógica

¿Está basado en teorías educativas sólidas y buenas prácticas pedagógicas? ¿Facilita el aprendizaje efectivo y medible? ¿Incluye adaptaciones para diferentes estilos o ritmos de aprendizaje?

Escalabilidad y Tecnología

¿La plataforma es escalable y puede adaptarse a un número creciente de usuarios? ¿Usa tecnología robusta y actualizada (cloud, AI, etc.)? ¿Es multiplataforma (web, móvil)?

Equipo Fundador

¿El equipo tiene experiencia en educación, tecnología y/o emprendimiento? ¿Demuestran compromiso y capacidad para ejecutar el proyecto?

Cumplimiento Legal y Ético

¿Cumple con normativas de protección de datos y privacidad (ej. GDPR)? ¿Promueve contenido inclusivo y ético?

Retroalimentación y Mejora Continua

¿Tiene un mecanismo para recibir y aplicar feedback de usuarios? ¿Demuestra evolución continua del producto?

Modelo Conceptual y Lógico de Datos Diagrama E-R de un Sistema Bancario

El modelo entidad-relación permite visualizar las estructuras de datos y sus relaciones de manera clara y efectiva.

Cliente

- cliente_id (Clave Primaria)
- nombre
- apellido
- dirección
- teléfono
- fecha_nacimiento

Cuenta

- numero_cuenta (Clave Primaria)
- tipo_cuenta (Ahorros, Corriente)
- saldo
- fecha_apertura

Banco

- Banco_id (Clave Primaria)
- nombre_sucursal
- ciudad
- dirección

Normalización y Optimización del Diseño

Conceptos Clave

La normalización es un proceso mediante el cual se organizan los datos en tablas siguiendo reglas conocidas como formas normales. Su objetivo es eliminar redundancia, asegurar integridad y facilitar el mantenimiento.

Índice de Base de Datos

Un índice es una estructura que mejora la velocidad de las consultas en una tabla, similar al índice de un libro que te ayuda a encontrar información rápidamente sin tener que revisar todo el contenido.

¿Por qué crear índices?

- Para acelerar consultas frecuentes
- Para optimizar búsquedas por columnas específicas
- Para mejorar el rendimiento en operaciones JOIN, WHERE, ORDER BY

Tipos de Índices

idx_fecha_venta

Acelera las consultas que filtran o buscan ventas por una fecha específica

idx_id_cliente

Optimiza las búsquedas de ventas relacionadas con un cliente específico, útil para historial de compras

idx_id_producto

Mejora el rendimiento de consultas que filtran por producto, acelerando búsquedas específicas

Gracias!