Методологическая школа-конференция
"Математическая физика и нанатехнологии"
посвященная 40-летию возрождения
Самарского государственного университета
(Самара, 4-9 октября 2009 года)

ТЕОРИЯ И ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДРОБНОГО ПОРЯДКА

(КУРС ЛЕКЦИЙ)

Анатолий Александрович Килбас

Механико-математический факультет, Белорусский государственный университет, 220030 Минск, Беларусь

E-mail: anatolykilbas@gmail.com

Лекция 1. Дробные интегралы и дробные производные

§1. Введение

В последние годы возрос интерес к исследованию так назывемых дифференциальных уравнений дробного порядка, в которых неизвестная функция содержится под знаком производной дробного порядка. Это обусловлено как развитием самой теории дробного интегрирования и дифференцирования, так и приложениями таких конструкций в различных областях науки. В связи с этим мы приведем список монографий и обзорных статей по этой тематике:

- 1. Oldham K.B., Spanier, J. The Fractional Calculus. New York-London: Academic Press. 1974.
- 2. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и поизводные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987.
- Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives. Theory and Applications. New York: Gordon and Breach. 1993. (Расширенное и дополненное русское издание).
- 3. Miller K.S., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons. 1993.
- 4. Carpintery A., Mainardi F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics. CIAM Cources and Lectures. Vol. 376. Wien: Springer. 1997.

- **5. Gorenflo R., Mainardi F.** Fractional calculus: integral and differential equations of fractional order, *Fractal and Fractional Calculus in Continuum Mechanics (Udine, 1996)*. CISM Courses and Lectures. 1997. Vol. 378. P. 223-276.
- **6. Podlubny I.** Fractional Differential Equations. San-Diego: Academic Press. 1999.
- 7. Hilfer R. (Ed.) Applications of Fractional Calculus in Physics. Singapore: WSPC. 2000.
- 8. Metzler R., Klafter J. The random walkr's guide to anomalous diffusion: a fractional dynamics approach. *Phys. Reports.* 2000. Vol. 339. P. 1-77.
- **9. Нахушев А.М.** Элементы дробного исчисления и их приложения. Нальчик: НИИ ПМА КБНЦ РАН. 2000.
- 10. Le Mehaute A., Tenreiro Machado J.A., Trigeassou J.C., Sabatier J. (Eds.) Fractional Differentiation and its Applications. Bordeaux: Bordeaux Univ. 2005.
- **11.** Псху А.В. Уравнения в частных производных дробного порядка. М.: Наука. 2005.
- 12. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Vol. 204. Amsterdam, etc.: Elsevier. 2006.

В вышеуказанных монографиях и статьях можно найти различные приложения дифференциальных уравнений дробного порядка в физике, механике, химии, инженерии и других областях науки и естествознания с библиографией работ в этих отраслях.

Дифференциальные уравнения дробного порядка имеют следующий общий вид

 $F\left[x,y(x),D^{\alpha_1}y(x),D^{\alpha_2}y(x),\cdots,D^{\alpha_m}y(x)\right]=f(x).$ (1.1) Здесь $x=(x_1,\cdots,x_l)$ - точка l-мерного Евклидова пространства $\mathbf{R}^l\ (l\in\mathbf{N}=\{1,2,\cdots\}), F\left[x,y_1,y_2,\cdots,y_l\right]$ и f(x) - заданные функции, а D^{α_k} - операторы дробного дифференцировния действительного порядка $\alpha_k>0$ или комплексного порядка $\alpha_k\in\mathbf{C}\ (\mathrm{Re}(\alpha_k)\geq 0)\ (k=1,2,\cdots,m).$ Соответствующие линейные уравнения с заданными функциями $A_k(x)\ (k=0,1,\cdots,m)$ и f(x) даются формулой

$$A_0 y(x) + \sum_{k=1}^{m} A_k(x) (D^{\alpha_k} y) (x) = f(x).$$
 (1.2)

Дифференциальные операторы дробного порядка в (1.1)-(1.2) могут иметь различные формы. Обзор методов и результатов в теории дифференциальных уравнений дробного порядка был дан в двух обзорных статьях

13. Kilbas A.A., Trujillo J.J. Differential equations of fractional order: methods, results and problems - I. *Appl. Anal.* 2001. Vol. 78. P. 153-192; II. *Appl. Anal.* 2002. Vol. 81. P.435-494.

и его расширенный вариант представлен в монографии [12].

Среди одномерных линейных дифференциальных уравнений (1.2) уравнения наиболее изучены уравнения, содержащие дробные производные Римана-Лиувилля $D^{\alpha}y = D^{\alpha}_{a+}y$, $a \in \mathbf{R}$. Такие дробные производные положительного порядка $\alpha > 0$ определяются формулой

$$(D_{a+}^{\alpha}y)(x) = \left(\frac{d}{dx}\right)^n (I_{a+}^{n-\alpha}y)(x) \quad (x > a; \ n = [\alpha]+1), \ (1.3)$$

где $I_{a+}^{\alpha}y$ - дробный интеграл Римана-Лиувилля порядка $\alpha>0$:

$$(I_{a+}^{\alpha}y)(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{y(t)dt}{(x-t)^{1-\alpha}} \ (x>a),$$
 (1.4)

 $\Gamma(\alpha)$ - гамма-функция Эйлера.

Отметим, что подход Римана-Лиувилля (1.4) к определению дробного интегрирования есть обобщение интегрирования с переменным верхним пределом \int_{a+}^{x} , взятого n раз:

$$\int_{a}^{x} dt \int_{a}^{t} dt_{1} \cdots \int_{a}^{t_{n-2}} y(t_{n-1}) dt_{n-1} =$$

$$= \frac{1}{(n-1)!} \int_{a}^{x} (x-t)^{n-1} y(t) dt$$
(1.5)

Действительно, если мы используем формулу $(n-1)! = \Gamma(n)$ и заменим натуральное n на $\alpha > 0$, то (1.5) дает (1.4).

Оператор дробного дифференцирования D_{a+}^{α} обратен оператору дробного интегрирования (1.4) слева:

$$(D_{a+}^{\alpha} I_{a+}^{\alpha} y)(x) = y(x) \quad (\alpha > 0)$$
 (1.6)

для "достаточно хороших "функций y(x). В частности, если $0<\alpha<1,$ то

$$(D_{a+}^{\alpha}y)(x) = \frac{d}{dx}\frac{1}{\Gamma(1-\alpha)}\int_{a}^{x} \frac{y(t)dt}{(x-t)^{\alpha}},$$
 (1.7)

а при $\alpha = n \in \mathbf{N}$

$$(D_{a+}^n y)(x) \equiv (D^n y)(x) \quad (D = d/dx)$$
 (1.7')

есть обычная производная порядка n.

С 80-х годов XX-го века началось исследование одномерных дифференциальных уравнений (1.2) с модифицированными дробными производными Римана-Лиувилля (1.3) $D^{\alpha_k}y = {}^{C}D_{0+}^{\alpha_k}y$ положительного порядка $\alpha>0$. Такие прозводные определяются равенством

$$(^{C}D_{a+}^{\alpha}y)(x) = \left(D_{a+}^{\alpha} \left[y(t) - \sum_{k=0}^{n-1} \frac{y^{(k)}(0)}{k!} (t-a)^{k}\right]\right)(x),$$
(1.8)

где $n = [\alpha] + 1$ при $\alpha \not\in \mathbf{N}$ и $n = \alpha$ при $\alpha \in \mathbf{N}$.

Если $\alpha \not\in \mathbf{N}_0$, то для дифференцируемых функций y справедлива формула

$$(^{C}D_{0+}^{\alpha}y)(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{y^{(n)}(t)dt}{(x-t)^{\alpha-n+1}} \ n = [\alpha]+1. \ (1.9)$$

При $0<\alpha<1$ и a=0 производная $^{C}D_{0+}^{\alpha}y$ принимает вид

$$(^{C}D_{0+}^{\alpha}y)(x) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{x} \frac{y'(t)dt}{(x-t)^{\alpha}} \quad (x > 0, \ 0 < \alpha < 1).$$
(1.9')

Эта конструкция была введена итальянским механиком М.Капуто в 1967 году в работе

14. Caputo M. Lineal model of dissipation whose Q is almost frequency independent - II. *Geophys. J. Astronom. Soc.* 1967. Vol. 13. P.529-539.

и представлена в его монографии

15. Caputo M. Elasticita e Dissipazione. Bologna: Zanichelli. 1969.

Поэтому за границей (1.8)-(1.9) называют дробной производной Капуто.

На наш взгляд, это не совсем верно. Правильнее их называть дробными производными Герасимова-Капуто, так как в 1948 году советский механик А.Н. Герасимов ввел частную производную вида (1.9') относительно t на всей оси:

$$({}^{C}D^{\alpha}_{-,t}u)(x,t) = \frac{1}{\Gamma(\alpha)} \int_{-\infty}^{t} \frac{u_{y}(x,y)dy}{(t-y)^{\alpha}}$$
 (1.9"),

$$(t > 0, \ x \in \mathbf{R}; \ 0 < \alpha < 1).$$

в своей работе

16. Герасимов А.Н. Обобщение линейных законов деформации и их приложение к задачам внутреннего трения. *АН СССР. Прикладная математика и механика.* 1948. Т. 12. С.529-539.

В этой же работе А.Н.Герасимов изучил две новые задачи теории пластичности и свел их решение к двум дифференциальны уравнениям с частной дробной призводной (1.9"):

$$\begin{split} \rho \frac{\partial^2 u}{\partial t^2} &= k \left(^C D^{\alpha}_{-,t} \left[\frac{\partial^2 u}{\partial x^2} \right] \right) (x,t) \quad (0 < \alpha < 1) \\ \rho x^3 \frac{\partial^2 u}{\partial t^2} &= k \frac{\partial}{\partial x} \left(x^3 \frac{\partial}{\partial x} (C D^{\alpha}_{-,t} u)(x,t) \right) (x,t) \quad (0 < \alpha < 1). \end{split}$$

Отметим, что А.Н.Герасимов был первым ученым, рассмотревш дифференциальные уравнения с частными дробными производны

В нынешнем стлетии началось исследование одномерных дифференциальных уравнений (1.2) с дробными производными Адамара $D^{\alpha_k}y = D^{\alpha_k}_{0+}y$ порядка $\alpha > 0$. Такие конструкции определяются на полуоси $\mathbf{R}_+ = (0, \infty)$ формулой

$$({}^{H}D^{\alpha}_{0+}y)(x) = \delta^{n} \left(\mathcal{J}^{n-\alpha}_{0+}y\right)(x) \quad (x > a; \ n = [\alpha] + 1). \quad (1.10)$$

Здесь $\delta=xD, D=d/dx$ - так называемая дельта производная, а $\mathcal{J}_{0+}^{\alpha}y$ - дробный интерал Адамара порядка $\alpha>0$:

$$(\mathcal{J}_{0+}^{\alpha}y)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \left(\log\frac{x}{t}\right)^{\alpha-1} \frac{y(t)dt}{t} \ (x > 0). \tag{1.11}$$

Заметим, что дробное интегрирование Адамара есть обобщениии операции интегрирования с переменным верхним пределом вида $\int_{a+}^{x} \frac{1}{x}$, примененного n раз:

$$\int_{a}^{x} \frac{dt}{t} \int_{a}^{t} \frac{dt_{1}}{t_{1}} \cdots \int_{a}^{t_{n-2}} y(t_{n-1}) \frac{dt_{n-1}}{t_{n-1}}
= \frac{1}{(n-1)!} \int_{a}^{x} \left(\log \frac{x}{t}\right)^{n-1} \frac{y(t)dt}{t};$$
(1.12)

сравните с (1.5).

Если $\alpha = n \in \mathbb{N}$, то

$$({}^{H}D_{a+}^{n}y)(x) \equiv (\delta^{n}y)(x)$$

есть δ производная порядка n.

В ряде работ рассмативались многомерные дифференциальные уравнения (1.2) с дробными производными Рисса $D^{\alpha_k}y = \mathbf{D}^{\alpha_k}y$ положительного порядка $\alpha > 0$. Такие производные определяются как положительные степени $(-\Delta)^{\alpha/2}$ оператора Лапласа

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_l^2},\tag{1.13}$$

и могут быть представлены в терминах прямого \mathcal{F} и обратного \mathcal{F}^{-1} преобразований Фурье:

$$(\mathbf{D}^{\alpha}y)(x) \equiv \left((-\Delta)^{\alpha/2}y\right)(x) =$$

$$= \left(\mathcal{F}^{-1}|x|^{\alpha}\mathcal{F}y\right)x),$$

$$x = (x_1, \dots, x_l) \in \mathbf{R}^l.$$
(1.14)

Начиная с 80-х годов XX-го столетия началось изучение дифференциальых уравнений с частными дробными производным Такие частные производные Римана-Лиувилля и Капуто-Герасимова положительного порядка $\alpha>0$ относительно t>0 и фиксированного $x\in\mathbf{R}^l, (l\in\mathbf{N})$ имеют соответственно вид:

$$(D_{0+,t}^{\alpha}u)(x,t) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{\partial}{\partial t}\right)^n \int_0^t \frac{u(x,\tau)}{(t-\tau)^{\alpha-n+1}} d\tau,$$
(1.15)

И

$$({}^{C}D_{0+,t}^{\alpha}u)(x,t) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{\partial^{n}u(x,\tau)}{\partial \tau^{n}} \frac{\partial \tau}{(t-\tau)^{\alpha-n+1}}$$

$$(1.16)$$

где $n=[\alpha]+1$. Среди них наиболее употребляются производные порядка $0<\alpha<1$:

$$(D_{0+,t}^{\alpha}u)(x,t) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_{0}^{t} \frac{u(x,\tau)}{(t-\tau)^{\alpha}} d\tau, \qquad (1.15'),$$

$$({}^{C}D^{\alpha}_{0+,t}u)(x,t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{\partial u(x,\tau)}{\partial \tau} \frac{\partial \tau}{(t-\tau)^{\alpha}}.$$
 (1.16')

Отметим, что приведенные выше производные положительного порядка $\alpha > 0$ могут быть распространены на комплексные $\alpha \in \mathbf{C}$. Например, дробная производная Римана-Лиувилля порядка $\alpha \in \mathbf{C}$, $\mathrm{Re}(\alpha) \geq 0$, $\alpha \neq 0$, определяется следующей формулой:

$$(D_{a+}^{\alpha}y)(x) = \left(\frac{d}{dx}\right)^n (I_{a+}^{n-\alpha}y)(x) \quad (x > a; \ n = [\text{Re}(\alpha)] + 1),$$
(1.17)

где $I_{a+}^{\alpha}y$ - дробный интеграл Римана-Лиувилля порядка $\alpha \in \mathbf{C}, \operatorname{Re}(\alpha) > 0$:

$$(I_{a+}^{\alpha}y)(x) \equiv (D_{a+}^{-\alpha}y)(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{y(t)dt}{(x-t)^{1-\alpha}} \ (x > a).$$
(1.18)

§2. Дробные интегралы и производные Римана-Лиувилля

Приведем некоторые сведения из теории дробных интегралов и производных Римана-Лиувилля I_{a+}^{α} и $D_{a+}^{\alpha}y$, определенных соответственно в (1.4) и (1.3).

Непосредственно проверяется, что дробное интегрирование и дифференцирование степенной функции $(x-a)^{\beta-1}$ дает степенную функцию того же вида.

Свойство 2.1. Если $\alpha \in \mathbb{C}$ и $\beta \in \mathbb{C}$ (Re(β) > 0), то

$$\left(I_{a+}^{\alpha}(t-a)^{\beta-1}\right)(x) = \frac{\Gamma(\beta)}{\Gamma(\beta+\alpha)}(x-a)^{\beta+\alpha-1} \quad (\operatorname{Re}(\alpha) > 0),$$
(2.1)

$$\left(D_{a+}^{\alpha}(t-a)^{\beta-1}\right)(x) = \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}(x-a)^{\beta-\alpha-1} \quad (\operatorname{Re}(\alpha) \ge 0).$$
(2.2)

B частности, если $\beta = 1$ и $\mathrm{Re}(\alpha) \geq 0$, то дробная производная Римана-Лиувилля постоянной, вообще говоря, не равна нулю:

$$(D_{a+}^{\alpha}1)(x) = \frac{1}{\Gamma(1-\alpha)}(x-a)^{-\alpha} \quad (\text{Re}(\alpha) \ge 0, \ \alpha \ne 0).$$
 (2.3)

С другой стороны, для $j=1,2,\cdots,[{\rm Re}(\alpha)]+1$ из (2.2) вытекает формула

$$\left(D_{a+}^{\alpha}(t-a)^{\alpha-j}\right)(x) = 0. \tag{2.4}$$

Отсюда получаем следующий результат.

Следствие 2.1. Пусть $\alpha \in \mathbf{C} \ (\mathrm{Re}(\alpha) > 0) \ u \ n = [\mathrm{Re}(\alpha)] + 1$. Равенство

$$(D_{a+}^{\alpha}y)(x) = 0 \tag{2.5}$$

выполняется тогда и только тогда, когда

$$y(x) = \sum_{j=1}^{n} c_j (x - a)^{\alpha - j}, \qquad (2.6)$$

где $c_j \in \mathbf{R} \ (j=1,\cdots,n)$ - произвольные действительные постоянные.

Формула (2.6) дает все решения простейшего дифференциально уравнения дробного порядка (2.5). В частности, если $0 < \text{Re}(\alpha) \le 1$, равенство (2.5) справедливо тогда и только тогда, когда

$$y(x) = c(x - a)^{\alpha - 1} \tag{2.6'}$$

с произвольной постоянной $c \in \mathbf{R}$.

Дробный интеграл (1.4) существует на измеримых по Лебегу функциях $y \in L_p(a,b) \ (1 \le p < \infty)$:

$$L_p(a,b) = \left\{ y : \|y\|_p = \left(\int_a^b |y(x)|^p dx \right)^{1/p} \right\}, \qquad (2.7)$$

и на функциях y из весового пространства непрерывных функций $C_{\gamma}[a,b]$ $(0 \le \gamma < 1)$:

$$C_{\gamma}[a,b] = \{y(x) : (x-a)^{\gamma}y(x) \in C[a,b]\}.$$
 (2.8)

Имеют место следующие утверждения.

Свойство 2.2.1. Оператор дробного интерирования I_{a+}^{α} порядка $\alpha > 0$ ограничен в пространстве $L_p(a,b)$ $(1 \le p < \infty)$:

$$||I_{a+}^{\alpha}f||_{p} \le K||f||_{p}, \quad K = \frac{(b-a)^{\alpha}}{\Gamma(\alpha+1)}.$$
 (2.9)

Если $0 < \alpha < 1$ и $1 , то оператор <math>I_{a+}^{\alpha}$ ограничен из $L_p(a,b)$ в $L_q(a,b)$, где $q = p/(1-\alpha p)$.

Свойство 2.2.2. Пусть $\alpha > 0$ and $0 \le \gamma < 1$.

(a) Если $\gamma>\alpha$, то оператор I_{a+}^{α} ограничен из $C_{\gamma}[a,b]$ в $C_{\gamma-\alpha}[a,b]$:

$$||I_{a+}^{\alpha} f||_{C_{\gamma-\alpha}} \le k_1 ||f||_{C_{\gamma}}, \qquad (2.10)$$

$$k_1 = \frac{\Gamma(1-\gamma)}{\Gamma[1+\alpha-\gamma)}.$$

B частности, оператор I_{a+}^{α} ограничен в $C_{\gamma}[a,b]$.

(б) Если $\gamma \leq \alpha$, то оператор I_{a+}^{α} ограничен из $C_{\gamma}[a,b]$ в C[a,b]:

$$||I_{a+}^{\alpha}f||_{C} \le k_{2}||f||_{C_{\gamma}},$$

$$(2.11)$$

$$k_{2} = (b-a)^{\alpha-\gamma} \frac{\Gamma(1-\gamma)}{\Gamma(1+\alpha-\gamma)}.$$

B частности, оператор I_{a+}^{α} ограничен в C[a,b].

Дробная производная (1.3) существует для функций y(x) из пространств $AC^n[a,b]$ и $C^n_{\gamma}[a,b]$ непрерывно дифференциру на [a,b] функций g(x) до порядка n-1, таких что соответственно $g^{(n-1)}(x)$ есть абсолютно непрерывная функция на [a,b] (для функций из $AC^n[a,b]$) и производная порядка n $g^{(n)}(x)$ принадлежит классу $C_{\gamma}[a,b]$: $g^{(n)}(x) \in C_{\gamma}[a,b]$ ($0 \le \gamma < 1$) (для функций из $C^n_{\gamma}[a,b]$).

Имеют место следующие утверждения.

Свойство 2.3.1. Пусть $\alpha>0,\ n=[\alpha]+1$. Если $y(x)\in AC^n[a,b],\ mo\ дробная\ производная\ <math>D^\alpha_{a+}y$ существует почти всюду на [a,b] и представима в виде

$$(D_{a+}^{\alpha}y)(x) = \sum_{k=0}^{n-1} \frac{y^{(k)}(a)}{\Gamma(1+k-\alpha)} (x-a)^{k-\alpha} + \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{y^{(n)}(t)dt}{(x-t)^{\alpha-n+1}}.$$
 (2.12)

B частности, если $0 < \alpha < 1$ и $y(x) \in AC[a,b]$, то

$$(D_{a+}^{\alpha}y)(x) = \frac{1}{\Gamma(1-\alpha)} \left[\frac{y(a)}{(x-a)^{\alpha}} + \int_{a}^{x} \frac{y'(t)dt}{(x-t)^{\alpha}} \right]. \quad (2.13)$$

Свойство 2.3.2. Если $\alpha > 0$, $n = [\alpha] + 1$ и $y(x) \in C^n_{\gamma}[a,b] \ (0 \le \gamma < 1)$, то дробная производная $D^{\alpha}_{a+}y$ существует на (a,b] и представима в виде (2.12).

В частности, если $0 < \alpha < 1$ и $y(x) \in C_{\gamma}[a,b]$, то $D_{a+}^{\alpha} y$ представима в виде (2.13).

Для операторов дробного интегрирования справедливо так называемое полугрупповое свойство:

$$(I_{a+}^{\alpha}I_{a+}^{\beta}y)(x) = (I_{a+}^{\alpha+\beta}y)(x) \quad (\alpha > 0, \ \beta > 0). \tag{2.14}$$

Свойство 2.4. (а) Если $y(x) \in L_p(a,b)$ $(1 \le p < \infty)$, то равенство (2.14) выполняется для почти всех точек $x \in [a,b]$. Если $\alpha+\beta > 1$, то (2.14) справедливо для любой точки отрезка [a,b].

(б) Если $y(x) \in C_{\gamma}[a,b]$ ($0 \le \gamma < 1$), то формула (2.14) верна для любой точки $x \in (a,b]$. Если $y(x) \in C[a,b]$, то (2.14) выполняется в любой точке x отрезка [a,b].

Как уже указывалось в формуле (1.6), оператор дробного дифференцирования D_{a+}^{α} обратен оператору дробного интегриров I_{a+}^{α} слева:

$$(D_{a+}^{\alpha} I_{a+}^{\alpha} y)(x) = y(x) \quad (\alpha > 0)$$
 (2.15)

Свойство 2.5. (а) Если $y(x) \in L_p(a,b) \ (1 \le p < \infty),$ то равенство (2.15) справедливо почти всюду на [a,b].

(б) Если $y(x) \in C_{\gamma}[a,b]$ ($0 \le \gamma < 1$), то формула (2.15) выполняется для любых $x \in (a,b]$. В частности, при $y(x) \in C[a,b]$ она справедлива для любой точки x отрезка [a,b].

Имеют место следующая формула композиции оператора дробного диффренцирования D_{a+}^{β} и оператора дробного интегрирования I_{a+}^{α} большего порядка $\beta > \alpha > 0$:

$$(D_{a+}^{\beta} I_{a+}^{\alpha} y)(x) = I_{a+}^{\alpha-\beta} y(x) \ (0 < \beta < \alpha), \tag{2.16}$$

и в частности при $\beta = k \in \mathbb{N}$ и $\alpha > k$,

$$(D^k I_{a+}^{\alpha} y)(x) = I_{a+}^{\alpha - k} y(x)$$
 (2.17)

$$\left(D = \frac{d}{dx}; \ k \in \mathbf{N}, \ k < \alpha\right).$$

Свойство 2.6. (a) Если $\alpha > \beta > 0$ и $f(x) \in L_p(a,b)$ $(1 \le p < \infty)$, то равенства (2.16) и (2.17) выполняются для почти всех точек $x \in [a,b]$.

(б) Если $y(x) \in C_{\gamma}[a,b]$ ($0 \le \gamma < 1$), то формулы (2.16) и (2.17) выполняются для любых $x \in (a,b]$. В частности, при $y(x) \in C[a,b]$ они справедливы для любой точки x отрезка [a,b].

Следующее равенство дает формулу композиции оператора дробного интегрирования I_{a+}^{α} и оператора дробного дифференцирования D_{a+}^{α} :

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}y)(x) = y(x) - \sum_{j=1}^{n} \frac{y_{n-\alpha}^{(n-j)}(a)}{\Gamma(\alpha-j+1)}(x-a)^{\alpha-j}, (2.18)$$

где

$$y_{n-\alpha}(x) = \left(I_{a+}^{n-\alpha}y\right)(x) \tag{2.19}$$

есть дробный интеграл (1.4) порядка $n-\alpha$.

Эта формула имеет важное значение при исследовании дифференциальных уравнений с дробными производными Римана-Лиувилля.

Свойство 2.7. Пусть $\alpha > 0$ и $n = [\alpha] + 1$.

- (a) Если $y(x) \in L_1(a,b)$ and $y_{n-\alpha}(x) \in AC^n[a,b]$, то формула (2.18) выполняется для почти всех точек $x \in [a,b]$.
- (б) Если $y(x) \in C_{\gamma}[a,b] \ (0 \le \gamma < 1) \ u \ y_{n-\alpha}(x) \in C_{\gamma}^{n}[a,b],$ то соотношение (2.18) справедливо для любых $x \in (a,b]$.

При $0 < \alpha < 1$ формула (2.18) принимает вид

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}f)(x) = f(x) - \frac{f_{1-\alpha}(a)}{\Gamma(\alpha)}(x-a)^{\alpha-1}, \qquad (2.20)$$

где $y_{1-\alpha}(x) = (I_{a+}^{1-\alpha}y)(x),$

Следствие 2.2. Пусть $0 < \alpha < 1$.

- (a) Если $y(x) \in L_1(a,b)$ и $y_{1-\alpha}(x) \in AC[a,b]$, то (2.20) выполняется для почти всех точек $x \in [a,b]$.
- (б) Если $y(x) \in C_{\gamma}[a,b] \ (0 \le \gamma < 1) \ u \ y_{1-\alpha}(x) \in C_{\gamma}^{1}[a,b],$ то соотношение (2.20) справедливо для любых $x \in (a,b]$.

Заметим, что при $\alpha = n \in \mathbf{N}$ формула (2.18) принимает вид

$$(I_{a+}^n D_{a+}^n f)(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k, \qquad (2.21)$$

Последнее выражение есть известная формула из анализа, представляющая разложение функции y(x) по формуле Тейлора, правая часть которой дает представление для ее остаточного члена.

Лекция 2. Обыкновенные дифференциальные уравнения дробного порядка, теоремы существованимя и единственности

§3. Задача типа Коши для нелинейного "модельного"уравнения с дробной производной Римана-Лиувилля

Большинство исследований в этой области были посвящены теоремам существованиля и единственности решений дифференци уравнений с дробными производными Римана-Лиувилля $(D_{a+}^{\alpha}y)(x)$, оперделенными для $\alpha>0$ формулой (1.3). "Модельное"нелинейное дифференциальное уравнение порядка $\alpha>0$ на конечном отрезке [a,b] действительной оси $\mathbf{R}=(-\infty,\infty)$ имет вид

$$(D_{a+}^{\alpha}y)(x) = f[x, y(x)] \quad (\alpha > 0; \ x > a), \tag{3.1}$$

с начальными условиями

$$(D_{a+}^{\alpha-k}y)(a+) = b_k, \ b_k \in \mathbf{R} \ (k=1,2,\cdots,n=-[-\alpha]).$$
(3.2)

Условие $n=-[-\alpha]$ означает, что $n=[\alpha]+1$ для $\alpha\not\in \mathbf{N}$ и $\alpha=n$ для $\alpha\in \mathbf{N}$.

Обозначение $(D_{a+}^{\alpha-k}y)(a+)$ означает, что предел берется в точках правосторонней окрестности $(a,a+\epsilon)$ $(\epsilon>0)$ точки a

$$(D_{a+}^{\alpha-k}y)(a+) = \lim_{x \to a+0} (D_{a+}^{\alpha-k}y)(x) \quad (1 \le k \le n-1), \quad (3.3)$$
$$(D_{a+}^{\alpha-n}y)(a+) = \lim_{x \to a+0} (I_{a+}^{n-\alpha}y)(x) \quad (\alpha \ne n);$$
$$(D_{a+}^{0}y)(a+) = y(a) \quad (\alpha = n), \quad (3.4)$$

где $I_{a+}^{n-\alpha}$ - дробный интеграл Римана-Лиувилля порядка $n-\alpha,$ определенный в (1.4).

В частности, если $\alpha = n \in \mathbb{N}$, тогда согласно (1.7'), задача (3.1)-(3.2) сводится к обычной задаче Коши для обыкновенного дифференциального уравнения порядка $n \in \mathbb{N}$:

$$y^{(n)}(x) = f[x, y(x)],$$

$$y^{(n-k)}(a) = b_k, \ b_k \in \mathbf{R} \ (k = 1, 2, \dots, n).$$
 (3.5)

Поэтому по аналогии задачу (3.1)-(3.2) называют $\it sadaчe \ iii$ $\it muna\ Komu$; см., например, книгу Самко, Килбас, Маричев [2, § 42].

При $0 < \text{Re}(\alpha) < 1$ задача (3.1)-(3.2) имеет вид

$$(D_{a+}^{\alpha}y)(x) = f[x, y(x)], \quad (I_{a+}^{1-\alpha}y)(a+) = b, \quad b \in \mathbf{R} \quad (3.6)$$

и эта проблема может быть переписана также как весовая задача типа Коши:

$$(D_{a+}^{\alpha}y)(x) = f[x, y(x)],$$

$$\lim_{x \to a+0} (x-a)^{1-\alpha}y(x) = c, \quad c \in \mathbf{R}.$$
(3.7)

Работы многих ученых были посвящены изучению задачи типа Коши (3.1)-(3.2). Они базировалисть на сведении этой задачи интегральному уравнению Вольтерра второго рода

$$y(x) = \sum_{j=1}^{n} \frac{b_j}{\Gamma(\alpha - j + 1)} (x - a)^{\alpha - j} + \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{f[t, y(t)]dt}{(x - t)^{1 - \alpha}} \quad (x > a),$$
(3.8)

с последующим применением известных методов для исследования этого уравнения: теорема Банаха (принцип неподвижной точки), метод последовательных приближений и др.

При этом основную роль при сведении задачи (3.1)- (3.2) к уравнению Вольтерра (3.8) играла формула (2.18) композиции дробного интеграла I_{a+}^{α} и дробной производной D_{a+}^{α} :

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}y)(x) =$$

$$= y(x) - \sum_{j=1}^{n} \frac{[(I_{a+}^{n-\alpha}y)(x)]^{(n-j)}|_{x=a}}{\Gamma(\alpha-j+1)} (x-a)^{\alpha-j}.$$
(3.9)

В силу непосредственно проверяемого равенства

$$[(I_{a+}^{n-\alpha}y)(x)]^{(n-j)} = (D_{a+}^{\alpha-j}y)(x) \quad (j=1,\dots,n), \quad (3.10)$$

(3.9) равносильна следующей формуле:

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}y)(x) =$$

$$= y(x) - \sum_{j=1}^{n} \frac{(D_{a+}^{\alpha-j}y)(a+)}{\Gamma(\alpha-j+1)} (x-a)^{\alpha-j}.$$
(3.11)

В частности, если $0 < \operatorname{Re}(\alpha) < 1$, то

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}y)(x) =$$

$$= y(x) - \frac{D_{a+}^{\alpha-1}(a+)}{\Gamma(\alpha)}(x-a)^{\alpha-1},$$

ИЛИ

$$(I_{a+}^{\alpha}D_{a+}^{\alpha}y)(x) =$$

$$= y(x) - \frac{I_{a+}^{1-\alpha}(a+)}{\Gamma(\alpha)}(x-a)^{\alpha-1}.$$
(3.12)

Тем не менее многие авторы формально сводили задачу (3.1)- (3.2) к уравнению Вольтерра второго рода (3.8), не доказывая их равносильность. Равносильность этих конструкций в пространствах интегрируемых и непрерывных функций была доказана в серии совместных работ лектора с отечественными и зарубежными математиками и представлена в главе 3 монографии [12].

Приведем здесь одно из утверждений, дающих равносильность задачи типа Коши (3.1)-(3.2) и уравнения Вольтерра (3.8) в весовом пространстве $C_{\gamma}[a,b]$ (0 $\leq \gamma <$ 1):

$$C_{\gamma}[a,b] = \{y(x) : (x-a)^{\gamma}y(x) \in C[a,b]\}.$$
 (3.13)

Теорема 3.1. Пусть $\alpha > 0$, $n = -[-\alpha]$ и пусть f(x,y): $(a,b] \times \mathbf{R} \to \mathbf{R}$ - такая функция, что $f[x,y] \in C_{n-\alpha}[a,b]$ для любого $y \in \mathbf{R}$.

Схема доказательства. Для доказательства необходимости применяется оператор дробного интегрирования I_{a+}^{α} к обеим частям уравнения (3.1), используется свойство 2.7 и на основании формулы (3.11) получается соотношение

$$y(x) = \sum_{j=1}^{n} \frac{(D_{a+}^{\alpha-j}y)(a+)}{\Gamma(\alpha-j+1)} (x-a)^{\alpha-j} +$$

$$+\frac{1}{\Gamma(\alpha)} \int_a^x \frac{f[t, y(t)]dt}{(x-t)^{1-\alpha}} \quad (x > a),$$

что в силу начальных условий (3.2) приводит к уравнению (3.8).

Доказательство достаточности основывается на свойствах 2.1-2.6 дробных интегралов и производных Римана-Лиувилля.

Для доказательства существования единственного решения задачи (3.1)-(3.2) к условиям теоремы 3.1 добавляется условие Липшица: для любых $y_1, y_2 \in \mathbf{R}$

$$| f(x, y_1) - f(x, y_2) | \le A | y_1 - y_2 |,$$
 (3.14)

где A > 0 не зависит от $x \in [a, b]$.

Теорема 3.2. Пусть $\alpha > 0$, $n = -[-\alpha]$ и пусть f[x, y]: $[a, b] \times \mathbf{R} \to \mathbf{R}$ - такая функция, что $f[x, y] \in C_{n-\alpha}[a, b]$ для любого $y \in \mathbf{R}$ и выполняется условие Липшица (3.14).

Тогда существует единственное решение y(x) задачи типа Коши (3.2.4)-(3.2.5) в пространстве $\mathbf{C}_{n-\alpha}^{\alpha}[a,b]$:

$$\mathbf{C}_{n-\alpha}^{\alpha}[a,b] =$$

$$= \{ y(x) \in C_{n-\alpha}[a,b] : (D_{a+}^{\alpha}y)(x) \in C_{n-\alpha}[a,b] \}. \quad (3.15)$$

Доказательство. На основании теоремы 3.1 решение задачи (3.1)-(3.2) в пространстве $C_{n-\alpha}[a,b]$ равносильно решению уравнения Вольтерра (3.8). Это уравнение имеет смысл на любом интервале $[a,x_1] \in [a,b]$ ($a < x_1 < b$). Выберем x_1 таким образом, чтобы выполнялось неравенство

$$A(x_1 - a)^{\alpha} \frac{\Gamma(\alpha - n + 1)}{\Gamma(2\alpha - n + 1)} < 1, \tag{3.16}$$

где A- постоянная Липшица в (3.14), и докажем существование единственного решения $y(x) \in C_{n-\alpha}[a,x_1]$ уравнения (3.8) на отрезке $[a,x_1]$. Для этого мы используем теорему Банаха о неподвижной точке в пространстве $C_{n-\alpha}[a,x_1]$, которое является полным метрическим пространством с расстоянием

$$d(y_1, y_2) = ||y_1 - y_2||_{C_{n-\alpha}[a, x_1]} \equiv$$

$$\equiv \max_{x \in [a, x_1]} |(x - a)^{n-\alpha}[y_1(x) - y_2(x)]|. \tag{3.17}$$

Перепишем уравнение (3.8) в виде

$$y(x) = (Ty)(x), \tag{3.18}$$

где

$$y_0(x) = \sum_{j=1}^{n} \frac{b_j}{\Gamma(\alpha - j + 1)} (x - a)^{\alpha - j}$$
 (3.19)

$$(Ty)(x) = y_0(x) + \frac{1}{\Gamma(\alpha)} \int_a^x \frac{f[t, y(t)]dt}{(x-t)^{1-\alpha}} \quad (x > a). \quad (3.20)$$

Используя свойство 2.2.2 и условие Липшица (3.14), доказывается следующее: 1) если $y(x) \in C_{n-\alpha}[a,x_1]$, то $(Ty)(x) \in C_{n-\alpha}[a,x_1]$, 2) для любых $y_1,y_2 \in C_{n-\alpha}[a,x_1]$ выполняется оценка

$$||Ty_1 - Ty_2||_{C_{n-\alpha}[a,x_1]} \le \omega ||y_1 - y_2||_{C_{n-\alpha}[a,x_1]},$$

$$\omega = A(x_1 - a)^{\alpha} \frac{\Gamma(\alpha - n + 1)}{\Gamma(2\alpha - n + 1)}.$$

Тогда, в силу условия (3.16), по теореме Банаха о неподвижной точке в пространстве $C_{n-\alpha}[a,x_1]$ существует единственное решение $y^*(x)=y_0^*(x)\in C_{n-\alpha}[a,x_1]$ уравнения (3.8) на отрезке $[a,x_1]$. Это решение $y_0^*(x)$ есть предел последовательности $y_m(x)\equiv (T^my_0)(x)$:

$$\lim_{m \to \infty} \|y_m(x) - y_0^*(x)\|_{C_{n-\alpha}[a,x_1]} = 0, \tag{3.21}$$

где $y_0(x)$ дается (3.19),

$$y_m(x) \equiv (T^m y_0)(x) =$$

$$= y_0(x) + \frac{1}{\Gamma(\alpha)} \int_a^x \frac{f[t, y_{m-1}(t)]dt}{(x-t)^{1-\alpha}} \quad (m = 1, 2, \dots). \quad (3.22)$$

Далее расмотрим отрезок $[x_1,x_2]$, где $x_2=x_1+h_1$ и $h_1>0$ - такие, что $x_2< b$. Перепишем уравнение (3.8) в виде

$$y(x) = y_{01}(x) + \frac{1}{\Gamma(\alpha)} \int_{x_1}^{x} \frac{f[t, y(t)]dt}{(x-t)^{1-\alpha}},$$
 (3.23)

$$y_{01}(x) = y_0(x) + \frac{1}{\Gamma(\alpha)} \int_a^{x_1} \frac{f[t, y(t)]dt}{(x-t)^{1-\alpha}},$$
 (3.24)

где $y_{01}(x)$ - известная функция.

Проводя такие же рассуждения, как и выше, мы докажем существование единтсвенного решения $y_1^*(x) \in C_{n-\alpha}[x_1, x_2]$ уравнения (3.8) на отрезке $[x_1, x_2]$. Выбирая следующий отрезок $[x_2, x_3]$, где $x_3 = x_2 + h_2$ и $h_2 > 0$ такие что $x_3 < b$, и повторяя этот процесс, получим единственное решение y(x) уравнения (3.8) такое что $y(x) = y_k^*(x) \in C_{n-\alpha}[x_{k-1}, x_k]$ ($k = 1, 2, \dots, L$), where $a = x_1 < x_2 < \dots < x_L = b$. Отсюда вытекает существование единственного решения $y(x) \in C_{n-\alpha}[a, b]$ уравнения (3.8) на всем отрезке [a, b] на основании следующей леммы.

Лемма 3.1. Пусть $\gamma \in \mathbf{R}$, a < c < b, $g \in C_{\gamma}[a, c]$ и $g \in C_{\gamma}[c, b]$. Тогда $g \in C_{\gamma}[a, b]$ и имеет место неравенство

$$||g||_{C_{\gamma}[a,b]} \le \max [||g||_{C_{\gamma}[a,c]}, ||g||_{C_{\gamma}[c,b]}].$$

Таким образом, доказано существование единственного решения $y(x) = y^*(x) \in C_{n-\alpha}[a,b]$ интегрального уравнения Вольтерра (3.8) и следовательно задачи типа Коши (3.2)-(3.3).

Для завершения доказательства теоремы нужно показать, что такое единственное решение $y(x) \in C_{n-\alpha}[a,b]$ принадлежит пространству $\mathbf{C}_{n-\alpha}^{\alpha}[a,b]$. Согласно определения (3.15), для этого достаточно доказать, что $(D_{a+}^{\alpha}y)(x) \in C_{n-\alpha}[a,b]$. В силу вышеприведенных рассуждений, решение $y(x) \in C_{n-\alpha}[a,b]$ есть предел последовательности $y_m(x) \equiv (T^m y_0)(x) \in C_{n-\alpha}[a,b]$:

$$\lim_{n \to \infty} ||y_m - y||_{C_{n-\alpha}[a,b]} = 0, \tag{3.25}$$

с выбором определенных y_m на отрезках $[a, x_1], \dots, [x_{L-1}, b]$. На основании (3.1) и (3.25) доказывается, что

$$\lim_{n \to \infty} \|D_{a+}^{\alpha} y_m - D_{a+}^{\alpha} y\|_{C_{n-\alpha}[a,b]} = 0.$$

Следовательно $(D_{a+}^{\alpha}y)(x)\in C_{n-\alpha}[a,b]$, и теорема 3.2 доказана.

Следствие 3.1. Пусть $0 < \alpha \le 1$, b пусть f[x,y]: $[a,b] \times \mathbf{R} \to \mathbf{R}$ - такая функция, что $f[x,y] \in C_{1-\alpha}[a,b]$ для любого $y \in \mathbf{R}$ и выполняется условие Липшица (3.14).

Tогда существует единственное решение y(x) задачи $muna\ Komu$

$$(D_{a+}^{\alpha}y)(x) = f[x, y(x)] \quad (0 < \alpha \le 1; \ x > a), \tag{3.1}$$

$$(D_{a+}^{\alpha-1}y)(a+) \equiv (I_{a+}^{1-\alpha}y)(a+) = b \in \mathbf{R}$$
 (3.26)

в пространстве $\mathbf{C}_{1-\alpha}^{\alpha}[a,b]$:

$$\mathbf{C}_{n-\alpha}^{\alpha}[a,b] = \{y(x) \in C_{1-\alpha}[a,b] : (D_{a+}^{\alpha}y)(x) \in C_{1-\alpha}[a,b]\}.$$

§4. Задача типа Коши для линейного "модельного" уравнения с дробной производной Римана-Лиувилля

Рассмотрим задачу типа Коши для линейного "модельного" дифференциального уравнения

$$(D_{a+}^{\alpha}y)(x) - \lambda y(x) = f(x) \quad (a < x \le b; \ \alpha > 0; \ \lambda \in \mathbf{R}),$$
(4.1)

с дробной производной Римана-Лиувилля $(D_{a+}^{\alpha}y)(x)$ порядка $\alpha>0$ с начальным условием (3.2):

$$(D_{a+}^{\alpha-k}y)(a+) = b_k, (4.2)$$

$$b_k \in \mathbf{R} \ (k = 1, 2, \cdots, n = -[-\alpha])$$

в пространстве $\mathbf{C}_{n-\alpha}^{\alpha}[a,b]$ $(n=-[-\alpha],\ 0\leq\gamma<1),$ определенном в (3.15).

Дадим явное решение этой задачи в предположении, что $f(x) \in C_{\gamma}[a,b] \ (0 \le \gamma < 1).$

Согласно теореме 3.1, решение задачи типа Коши (4.1)- (4.2) равносильно решению в пространстве $C_{n-\alpha}[a,b]$ интегральног уравнения Вольтерра второго рода

$$y(x) = \sum_{j=1}^{n} \frac{b_j}{\Gamma(\alpha - j + 1)} (x - a)^{\alpha - j} + \frac{\lambda}{\Gamma(\alpha)} \int_a^x \frac{y(t)dt}{(x - t)^{1 - \alpha}} + \frac{1}{\Gamma(\alpha)} \int_a^x \frac{f(t)dt}{(x - t)^{1 - \alpha}}.$$
 (4.3)

Мы применим метод последовательных приближений для решения уравнения (4.3). Согласно (3.22), положим

$$y_0(x) = \sum_{j=1}^n \frac{b_j}{\Gamma(\alpha - j + 1)} (x - a)^{\alpha - j},$$
 (4.4)

$$y_{m}(x) = y_{0}(x) + \frac{\lambda}{\Gamma(\alpha)} \int_{a}^{x} \frac{y_{m-1}(t)dt}{(x-t)^{1-\alpha}} + \frac{1}{\Gamma(\alpha)} \int_{a}^{x} \frac{f(t)dt}{(x-t)^{1-\alpha}} \quad (m \in \mathbf{N}).$$

$$(4.5)$$

Используя (1.4), (4.4) и учитывая (2.1), мы выводим выражение для $y_1(x)$

$$\begin{split} y_{1}(x) &= y_{0}(x) + \lambda \left(I_{a+}^{\alpha}y_{0}\right)(x) + \left(I_{a+}^{\alpha}f\right)(x) = \\ &= \sum_{j=1}^{n} \frac{b_{j}}{\Gamma(\alpha - j + 1)}(x - a)^{\alpha - j} + \\ + \lambda \sum_{j=1}^{n} \frac{b_{j}}{\Gamma(\alpha - j + 1)} \left(I_{a+}^{\alpha}(t - a)^{\alpha - j}\right)(x) + \left(I_{a+}^{\alpha}f\right)(x) = \\ &= \sum_{j=1}^{n} \frac{b_{j}}{\Gamma(\alpha - j + 1)}(x - a)^{\alpha - j} + \\ + \lambda \sum_{j=1}^{n} \frac{b_{j}}{\Gamma(2\alpha - j + 1)}(x - a)^{2\alpha - j} + \left(I_{a+}^{\alpha}f\right)(x), \end{split}$$

и следовательно

$$y_1(x) = \sum_{j=1}^{n} b_j \sum_{i=1}^{2} \frac{\lambda^{i-1}(x-a)^{\alpha i-j}}{\Gamma(\alpha i-j+1)} + \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt.$$
(4.6)

Аналогично, применяя (2.1) и (4.4)-(4.6), находим выражение для $y_2(x)$:

$$\begin{split} y_{2}(x) &= y_{0}(x) + \lambda \left(I_{a+}^{\alpha} y_{1}\right)(x) + \left(I_{a+}^{\alpha} f\right)(x) = \\ &= \sum_{j=1}^{n} \frac{b_{j}}{\Gamma(\alpha - j + 1)} (x - a)^{\alpha - j} + \\ &+ \lambda \sum_{j=1}^{n} b_{j} \sum_{i=1}^{2} \frac{\lambda^{i-1}}{\Gamma(\alpha i - j + 1)} \left(I_{a+}^{\alpha} (t - a)^{\alpha i - j}\right)(x) + \\ &+ \left(I_{a+}^{\alpha} f\right)(x) + \left(I_{a+}^{\alpha} I_{a+}^{\alpha} f\right)(x). \end{split}$$

Применяя формулу (2.14) и учитывая (1.4), получаем

$$y_{2}(x) = \sum_{j=1}^{n} b_{j} \sum_{i=1}^{3} \frac{\lambda^{i-1}(x-a)^{\alpha i-j}}{\Gamma(\alpha i - j + 1)} + \int_{a}^{x} \left[\sum_{i=1}^{2} \frac{\lambda^{i-1}}{\Gamma(\alpha i)} (x-t)^{\alpha i-1} \right] f(t) dt.$$
 (4.7)

Продолжая этот процесс, выводим формулу для $y_m(x)$ $(m \in \mathbf{N})$:

$$y_{m}(x) = \sum_{j=1}^{n} b_{j} \sum_{i=1}^{m+1} \frac{\lambda^{i-1} (x-a)^{\alpha i-j}}{\Gamma(\alpha i - j + 1)} + \int_{a}^{x} \left[\sum_{i=1}^{m} \frac{\lambda^{i-1}}{\Gamma(\alpha i)} (x-t)^{\alpha i-1} \right] f(t) dt.$$
 (4.8)

Переходя к пределу при $m \to \infty$, получаем явное решение y(x) интегрального уравнения Вольтерра (4.3)

$$y(x) = \sum_{j=1}^{n} b_j \sum_{i=1}^{\infty} \frac{\lambda^{i-1} (x-a)^{\alpha i-j}}{\Gamma(\alpha i - j + 1)} +$$

$$+ \int_{a}^{x} \left[\sum_{i=1}^{\infty} \frac{\lambda^{i-1}}{\Gamma(\alpha i)} (x-t)^{\alpha i-1} \right] f(t) dt,$$

или, заменяя индекс суммирования i на i-1,

$$y(x) = \sum_{j=1}^{n} b_j \sum_{i=0}^{\infty} \frac{\lambda^i (x-a)^{\alpha i + \alpha - j}}{\Gamma(\alpha i + \alpha - j + 1)} + \int_a^x \left[\sum_{i=0}^{\infty} \frac{\lambda^i}{\Gamma(\alpha i + \alpha)} (x-t)^{\alpha i + \alpha - 1} \right] f(t) dt.$$
(4.9)

Это решение можно выразить в терминах специальной функции $E_{\alpha,\beta}(z)$, определяемой для комплексных параметров $\alpha,\ \beta\in\mathbf{C};\ \mathrm{Re}(\alpha)>0$ формулой

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} \quad (z \in \mathbf{C}). \tag{4.10}$$

Эта специальная функция, известная как функция Миттаг-Леффлера, является целой функцией от z. Показательная функци, а также тригонометрические и гиперболические косинус и синус через нее выражаются:

$$e^z = E_{1,1}(z), \quad ch(z) = E_{2,1}(z), \quad cos(z) = E_{2,1}(iz), \quad (4.11)$$

$$sh(z) = zE_{2,2}(z^2), \quad sin(z) = -zE_{2,2}(iz^2).$$
 (4.12)

Свойства функции Миттаг-Леффлера $E_{\alpha,\beta}(z)$ можно найти в справочнике [17, § 18.1] и монографиях [18]-[19]

- **17. Бейтмен Г, Эрдейи А.** Высшие трансцендентные функции. Том 3. Эллиптические и автоморфные функции. Функции Ламе и Матье . М.: Наука. 1967.
- **18.** Джрбашян М.М. Интегральные преобразования и представления функций в комплексной области. М.: Наука. 1968.
- 19. Dzhrbashyan M.M. Harmonic Analysis and Boundary Value Problems in the Complex Domain. Operator theory: Advances and Applications, Vol. 65. Dfsel: Birkhäuser Verlag. 1993.

Согласно (4.10), решение (4.9) перепишется в терминах функции $E_{\alpha,\beta}(z)$ в виде:

$$y(x) = \sum_{j=1}^{n} b_j (x - a)^{\alpha - j} E_{\alpha, \alpha - j + 1} \left[\lambda (x - a)^{\alpha} \right] + \int_a^x (x - t)^{\alpha - 1} E_{\alpha, \alpha} \left[\lambda (x - t)^{\alpha} \right] f(t) dt.$$
 (4.13)

Эта формула дает явное решение интегрального уравнения Вольтерра (4.3) и следовательно задачи типа Коши (4.1)-(4.2).

Ясно, что $f[x,y] = \lambda y + f(x)$ удовлетворяет условию Липшица (3.14), и поэтому в силу свойства 2.2.2 и теоремы 3.2 существует единственное решение задачи типа Коши (4.1)-(4.2) в пространстве $\mathbf{C}_{n-\alpha}^{\alpha}[a,b]$, и формула (4.13) дает это решение. Отсюда получаем следующее утверждение.

Теорема 4.1. Пусть $\alpha > 0$, $n = -[-\alpha]$ $u \gamma$ $(0 \le \gamma < 1)$ - такие, что $\gamma \ge n - \alpha$, u пусть $\lambda \in \mathbf{R}$. Если $f \in C_{\gamma}[a,b]$, то задача типа Коши (4.1)-(4.2) имеет единственное решение $y(x) \in \mathbf{C}_{n-\alpha}^{\alpha}[a,b]$ u это решение дается формулой (4.13).

В частности, если f(x) = 0, то задача типа Коши для однородного уравнения (4.1):

$$(D_{a+}^{\alpha}y)(x) - \lambda y(x) = 0 \ (a < x \le b; \ \alpha > 0; \ \lambda \in \mathbf{R}), \ (4.14)$$

с начальными условиями (4.2) имеет единственное решение y(x) в пространстве $\mathbf{C}_{n-\alpha}^{\alpha}[a,b]$ вида

$$y(x) = \sum_{j=1}^{n} b_j(x-a)^{\alpha-j} E_{\alpha,\alpha-j+1} \left[\lambda(x-a)^{\alpha} \right].$$
 (4.15)

Пример 4.1. Решение задачи типа Коши

$$(D_{a+}^{\alpha}y)(x) - \lambda y(x) = f(x), \quad (D_{a+}^{\alpha-1}y)(a+) = b \in \mathbf{R} \quad (4.16)$$

с $0<\alpha<1$ и $\lambda\in\mathbf{R}$ дается формулой

$$y(x) = b(x-a)^{\alpha-1} E_{\alpha,\alpha} \left[\lambda (x-a)^{\alpha} \right] +$$

$$+ \int_{x}^{x} (x-t)^{\alpha-1} E_{\alpha,\alpha} \left[\lambda (x-t)^{\alpha} \right] f(t) dt, \qquad (4.17)$$

а решение задачи

$$(D_{a+}^{\alpha}y)(x) - \lambda y(x) = 0, \quad (D_{a+}^{\alpha-1}y)(a+) = b \in \mathbf{R}$$
 (4.18)

имеет вид

$$y(x) = b(x-a)^{\alpha-1} E_{\alpha,\alpha} \left[\lambda (x-a)^{\alpha} \right]. \tag{4.19}$$

В частности, задача типа Коши

$$(D_{a+}^{1/2}y)(x) - \lambda y(x) = f(x), \quad (D_{a+}^{-1/2}y)(a+) = b \in \mathbf{R}$$
 (4.20)

имеет решение

$$y(x) = b(x-a)^{-1/2} E_{1/2,1/2} \left[\lambda (x-a)^{1/2} \right] + \int_{a}^{x} (x-t)^{-1/2} E_{1/2,1/2} \left[\lambda (x-t)^{1/2} \right] f(t) dt, \qquad (4.21)$$

а решение задачи

$$(D_{a+}^{1/2}y)(x) - \lambda y(x) = 0, \quad (D_{a+}^{-1/2}y)(a+) = b \in \mathbf{R}$$
 (4.22)

дается формулой

$$y(x) = b(x-a)^{-1/2} E_{1/2,1/2} \left[\lambda (x-a)^{1/2} \right]. \tag{4.23}$$

Пример 4.2. Решение задачи типа Коши

$$(D_{a+}^{\alpha}y)(x) - \lambda y(x) = f(x),$$

$$(D_{a+}^{\alpha-1}y)(a+) = b \in \mathbf{R}, \quad (D_{a+}^{\alpha-2}y)(a+) = d \in \mathbf{R} \qquad (4.24)$$
с $1 < \alpha < 2$ и $\lambda \in \mathbf{R}$ имеет вид
$$y(x) = b(x-a)^{\alpha-1} E_{\alpha,\alpha} \left[\lambda (x-a)^{\alpha} \right] +$$

$$+ d(x-a)^{\alpha-2} E_{\alpha,\alpha-1} \left[\lambda (x-a)^{\alpha} \right] +$$

$$+ \int_{a}^{x} (x-t)^{\alpha-1} E_{\alpha,\alpha} \left[\lambda (x-t)^{\alpha} \right] f(t) dt. \qquad (4.25)$$

В частности, решение задачи

$$(D_{a+}^\alpha y)(x)-\lambda y(x)=0\ (1<\alpha<2),$$

$$(D_{a+}^{\alpha-1}y)(a+)=b\in\mathbf{R},\ \ (D_{a+}^{\alpha-2}y)(a+)=d\in\mathbf{R}\qquad (4.26)$$
 дается формулой

$$y(x) = b(x - a)^{\alpha - 1} E_{\alpha, \alpha} \left[\lambda (x - a)^{\alpha} \right] + d(x - a)^{\alpha - 2} E_{\alpha, \alpha - 1} \left[\lambda (x - a)^{\alpha} \right].$$
 (4.27)

Лекция 3. Методы точного решения дифференциальных уравнений дробного порядка

§5. Уравнения с дробными производными Римана-Лиувилля и постоянными коэффициентами: Метод интегральных преобразований Лапласа

Для решения обыкновенных дифференциальных уравнений и краевых задач для них известны следующие методы: метод сведения к интегральным уравнениям, метод интегральных преобразований и операционный метод. Такие же методы могут быть примененены для получения явных решений дифференциальных уравнений с дробными производными, а также так называемый композиционный метод. В связи с этим см. главы 4 и 5 монографии [12].

В §4 мы представили метод явного решения краевой задачи типа Коши (4.1)-(4.2), основанный на сведении рассматриваемой задачи к равносильному интегральному уравнению Вольтерра (4.3).

Здесь мы представим метод для нахождения явных решений уравнений (1.2) с постоянными коэффициентами с дробными производными Римана-Лиувилля на положительной полуоси \mathbf{R}_+ , основаный на прямом и обратном преобразованиях Лапласа \mathcal{L} и \mathcal{L}^{-1} :

$$(\mathcal{L}\varphi)(p) = \int_0^\infty \varphi(t)e^{-pt}dt, \qquad (5.1)$$

$$(\mathcal{L}^{-1}g)(x) = \frac{1}{2\pi i} \int_{\gamma - \infty}^{\gamma + \infty} e^{px} g(p) dp \quad (\gamma = \text{Re}(p) > \sigma, \ \sigma \in \mathbf{R}).$$
(5.2)

Теорию таких пребразований можно, например, найти в следующих монографиях:

- **20.** Титчмарш Е.С. Введение в теорию интегралов Фурье. М.-Л.: Гостехиздат. 1948. Перевод из Introduction to the Theory of Fourier Transforms. New York: Chelsea. 1986; первое издание: Oxford: Oxford Univ. Press. 1937.
- **21.** Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: Наука. 1974.

В частности, преобразования \mathcal{L} и \mathcal{L}^{-1} взаимно обратны для "достаточно хороших" функций φ,g :

$$\mathcal{L}^{-1}\mathcal{L}\varphi = \varphi, \quad \mathcal{L}\mathcal{L}^{-1}g = g. \tag{5.3}$$

Рассмотрим неоднородное уравнение (1.2) с дробными производными Римана-Лиувилля $D^{\alpha_k}y = D_{0+}^{\alpha_k}y$ и постоянными коэффициентами $A_k \in \mathbf{R}$:

$$\sum_{k=1}^{m} A_k \left(D_{0+}^{\alpha_k} y \right) (x) + A_0 y(x) = f(x) \quad (x > 0). \tag{5.4}$$

Известно, что для "достаточно хороших" функций y преобразовани Лапласа $D_{0+}^{\alpha}y$ дается формулой

$$(\mathcal{L}D_{0+}^{\alpha}y)(p) = p^{\alpha}(\mathcal{L}y)(p). \tag{5.5}$$

Применяя преобразование Лапласа (5.1) к обеим сторонам уравнения (5.4) и учитывая (5.5), имеем

$$\left[\sum_{k=1}^{m} A_k p^{\alpha_k} + A_0\right] (\mathcal{L}y)(p) = (\mathcal{L}f)(p). \tag{5.6}$$

Применяя обратное преобразование Лапласа (5.2), мы получим частное решение уравнения (5.4):

$$y(x) = \left(\mathcal{L}^{-1} \left[\frac{(\mathcal{L}f)(p)}{\sum_{k=1}^{m} A_k p^{\alpha_k} + A_0} \right] \right) (x). \tag{5.7}$$

Заметим, что Э.Хилле (Hille) и Я. Тамаркин (Tamarkin) в 1930 году

22. Hille E., Tamarkin J.D. On the theory of linear integral equations. *Ann. Math.*. 1930. Vol. 31. P. 479-528.

впервые применили метод преобразования Лапласа для решения интегрального уравнения Абеля второго рода

$$\varphi(x) - \frac{\lambda}{\Gamma(\alpha)} \int_0^x \frac{\varphi(t)dt}{(x-t)^{1-\alpha}} = f(x) \quad (x > 0, \ \alpha > 0) \quad (5.8)$$

и получили явное решение в виде

$$\varphi(x) = \frac{d}{dx} \int_0^x E_\alpha \left[\lambda (x - t)^\alpha \right] f(t) dt.$$
 (5.9)

Здесь $E_{\alpha}(z) \equiv E_{\alpha,1}(z)$ - частный случай функции Миттаг-Леффлера (4.10), известный также как функция Миттаг-Леффлера:

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)} \quad (\alpha > 0, \ z \in \mathbf{C}).$$
 (5.10)

Испанский математик Д. Маравалл (Maravall) в работе **23. Maravall D.** Linear differential equations of non-integer order and fractional oscilations (Spanish). *Rev. Ac. Ci. Madrid.* 1971. Vol. 65. P.245-258.

возможно первым применил формальный подход, основанный на преобразовании Лапласа, для получения явных решений проостейших уравнений вида (5.4). Однако его работа, опубликованная на испанском языке, было пратически неизвестна до появления обзора [13].

Многие авторы применяли преобразование Лапласа для получения явных решений специальных случаев уравнения (5.4); в связи с этим см. Kilbas, Srivastava and Trujillo [12, Section 5.1].

К.Миллер (Miller) и Б.Росс (Ross) [3] применили преобразование Лапласа для решения задачи Коши для частного случая уравнения (5.4) с производными порядка $\alpha_k = k\alpha$ и $1/\alpha = q = 1, 2, \cdots$:

$$\sum_{k=1}^{m} A_k(D_{0+}^{k\alpha}y)(x) + A_0y(x) = f(x), \qquad (5.11)$$

$$y(0) = y'(0) = \cdots y^{(m-1)}(0) = 0.$$
 (5.12)

Они ввели дробный аналог фунции Грина $G_{\alpha}(x)$ определяемый в терминах обратного преобразования Лапласа (5.2):

$$G_{\alpha}(x) = \left(\mathcal{L}^{-1}\left[\frac{1}{P(t^{\alpha})}\right]\right)(x), \quad P(x) = \sum_{k=1}^{m} A_k x^k + A_0,$$
(5.13)

и доказали, что единственое решение y(x) задачи (5.11)- (5.12) предствляется в виде свертки Лапласа $G_{\alpha}(x)$ и f(x):

$$y(x) = \int_0^x G_\alpha(x - t)f(t)dt. \tag{5.14}$$

Эти исследования продолжил И.Подлюбный (Podlubny) [6, Chapter 5]. Он определил дробный аналог функции Грина $G_{\alpha}(x,t)$ для более общего, чем (5.4), дифференциального уравнения дробного порядка и показал, что частное решение задачи типа Коши для рассматриваемого уравнения выражается через $G_{\alpha}(x,t)$. В частности, для уравнения (5.4) И.Подлюбный [6, Section 5.6] построил явную форму $G_{\alpha}(x,t)$ в виде кратного ряда, содержащего обобщенную функцию Миттаг-Леффлера $E_{\alpha,\beta}(z)$, определенную в (4.10):

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} \quad (z \in \mathbf{C}). \tag{4.10}$$

В книгах К.Миллера (Miller) и Б.Росса (Ross) [3, Chapters V and VI] и И.Подлюбного (Podlubny) [6, Sections 4.1.1 and 4.2.1] можно найти примеры уравнений дробного порядка вида (5.4) и (5.11), решенных применением преобразования Лапласа и дробного аналога функции Грина.

Используя формулу для преобразования Лапласа свертки

$$\left(\mathcal{L}\left(\int_0^x k(x-t)f(t)dt\right)\right)(p) = (\mathcal{L}k)(p)(\mathcal{L}f)(p), \quad (5.15)$$

по аналогии с (5.13) введем более общий *дробный аналог* функции Грина:

$$G_{\alpha_1,\dots,\alpha_m}(x) = \left(\mathcal{L}^{-1}\left[\frac{1}{P_{\alpha}(x)}\right]\right)(x),$$

$$P_{\alpha}(x) = \sum_{k=1}^{m} A_k x^{\alpha_k} + A_0. \tag{5.16}$$

Тогда решение (5.7) дифференциального уравнения (5.4) имеет форму свертки Лапласа $G_{\alpha_1, \dots, \alpha_m}(x)$ и f(x):

$$y(x) = \int_0^x G_{\alpha_1, \dots, \alpha_m}(x - t) f(t) dt.$$
 (5.17)

Вышеприведенные исследования были в основном посвящены построению частных решений (5.7), (5.17) неоднородного уравнения (5.4). Рассмотрим соответствующее (5.4) однородное уравнение

$$\sum_{k=1}^{m} A_k(D_{0+}^{\alpha_k} y)(x) + A_0 y(x) = 0 \quad (x > 0)$$
 (5.18)

$$(m \ge 1; \ 0 < \alpha_1 < \dots < \alpha_m; \ A_0, A_1, \dots, A_m \in \mathbf{R}).$$
 (5.19)

По аналогии с обыкновенными дифференциальными уравнениями это уравнение имеет нетривиальные решения. В связи с этим мы отметим, что К.Миллер (Miller) и Б.Росс (Ross) [3, Section V.6] фактически нашли линейно независимые решения соответствующего (5.11) однородного уравнения (f(x) = 0):

$$\sum_{k=1}^{m} A_k(D_{0+}^{k\alpha}y)(x) + A_0y(x) = 0.$$
 (5.20)

А.А.Килбас (Kilbas), Г.Сривастава (Srivastava), Х.Трухилло (Trujillo) [12, Sections 5.21-5.2.2] применили преобразовние Лапласа для получения общих решений однородного уравнения (5.18) и соответствующего неоднородного уравнения (5.4). Примененный метод основывался на более общей, чем (5.5), формуле преобразования Лапласа дробной производной Римана-Лиувилля на полуоси:

$$\left(\mathcal{L}D_{0+}^{\alpha}y\right)(s) =$$

$$= s^{\alpha}\left(\mathcal{L}y\right)(s) - \sum_{j=1}^{l} d_{j}s^{j-1} \quad (l-1<\alpha\leq l, \quad l\in\mathbf{N}), \quad (5.21)$$
где
$$d_{j} = \left(D_{0+}^{\alpha-j}y\right)(0+) :=$$

$$= \lim_{x\to 0+} \left(D_{0+}^{\alpha-j}y\right)(x) \quad (j=1,\cdots,l). \quad (5.22)$$

Сначала построим явные решения простейшего уравнения (5.18) с m=1

$$(D_{0+}^{\alpha}y)(x)-\lambda y(x)=0 \ (x>0; \ l-1<\alpha \le l; \ l\in \mathbf{N}; \ \lambda \in \mathbf{R}).$$
 (5.23)

в терминах фунции Миттаг-Леффлера (4.10).

Предварительно введем понятие дробного Вронскиана $W_{\alpha}(x)$:

$$W_{\alpha}(x) = \det\left(\left(D_{0+}^{\alpha-k}y_{j}\right)(x)\right)_{k,j=1}^{l}.$$
 (5.24)

По аналогии с обыкновенными уравнениями доказывается, что решения $y_j(x)$ ($j=1,\cdots,l$) уравнения (5.23) образуют фундаментальную систему решений, если $W_{\alpha}(x_0) \neq 0$ в некоторой точке $x_0 \geq 0$.

Имеет место следующее утверждение.

Теорема 5.1. Пусть $l-1 < \alpha \leq l \ (l \in \mathbb{N}) \ u \ \lambda \in \mathbb{R}$. Тогда функции

$$y_j(x) = x^{\alpha - j} E_{\alpha, \alpha + 1 - j} \left(\lambda x^{\alpha} \right) \quad (j = 1, \dots, l)$$
 (5.25)

где $E_{\alpha,\alpha+1-j}(z)$ -функции Миттаг-Леффлера (4.10), образуют фундаментальную систему решений уравнения (5.23).

Доказательство. Применяя преобразование Лапласа (5.1) к уравнению (5.23) и учитывая (5.21), имеем

$$(\mathcal{L}y)(s) = \sum_{j=1}^{l} d_j \frac{s^{j-1}}{s^{\alpha} - \lambda}, \qquad (5.26)$$

где d_j $(j=1,\cdots,l)$ даются (5.22). Справедлива следующая формула

$$\left(\mathcal{L}\left[t^{\beta-1}E_{\alpha,\beta}(\lambda t^{\alpha}\right]\right)(s) = \frac{s^{\alpha-\beta}}{s^{\alpha}-\lambda} \quad (|\lambda s^{-\alpha}| < 1. \quad (5.27)$$

Эта формула с $\beta = \alpha + 1 - j$ принимает вид

$$\mathcal{L}\left[t^{\alpha-j}E_{\alpha,\alpha+1-j}\left(\lambda t^{\alpha}\right)\right](s) = \frac{s^{j-1}}{s^{\alpha}-\lambda} \quad \left(|s^{-\alpha}\lambda| < 1\right). \quad (5.28)$$

Поэтому из (5.26) мы выводим следующее решение уравнения (5.23):

$$y(x) = \sum_{j=1}^{l} d_j y_j(x), \quad y_j(x) = x^{\alpha - j} E_{\alpha, \alpha + 1 - j}(\lambda x^{\alpha}). \quad (5.29)$$

Непосредственно проверяется, что $y_j(x)$ являются решениями уравнения (5.23):

$$\left(D_{0+}^{\alpha}\left[t^{\alpha-j}E_{\alpha,\alpha+1-j}\left(\lambda t^{\alpha}\right)\right]\right)(x) = \lambda x^{\alpha-j}E_{\alpha,\alpha+1-j}\left(\lambda x^{\alpha}\right)$$
(5.30)

при $j=1,\cdots,l$ и справедливы равенства

$$\left(D_{0+}^{\alpha-k}y_j\right)(x) = \sum_{n=0}^{\infty} \frac{\lambda^n}{\Gamma(\alpha n + k + 1 - j)} x^{\alpha n + k - j} \qquad (5.31)$$

при $k=1,\cdots,l$.

Из (5.31) получаем сотношения

$$(D_{0+}^{\alpha-k}y_j)(0+) = 0 \quad (k, j = 1, \dots, l; \ k > j),$$

$$(D_{0+}^{\alpha-k}y_k)(0+) = 1 \quad (k = 1, \dots, l).$$

$$(5.32)$$

Далее, если k < j, то

$$\left(D_{0+}^{\alpha-k}y_j\right)(x)=\sum_{n=1}^\infty\frac{\lambda^n}{\Gamma(\alpha n+k+1-j)}x^{\alpha n+k-j}=$$

$$= \sum_{n=0}^{\infty} \frac{\lambda^{n+1}}{\Gamma(\alpha n + \alpha + k + 1 - j)} x^{\alpha n + \alpha + k - j}.$$
 (5.33)

Следовательно, так как $\alpha+k-j \geq \alpha+1-l>0$ для $k,j=1,\cdots,l$, верны следующие равенства:

$$(D_{0+}^{\alpha-k}y_j)(0+) = 0 \quad (k, j = 1, \dots, l; \ k < j).$$
 (5.34)

Из (5.32) и (5.34) получаем значение дробного вронскиана $W_{\alpha}(x)$, определенного (5.24), в точке x=0: $W_{\alpha}(0)=1$. Поэтому решения $y_j(x)$ в (5.25) образуют фундаментальную систему решений уравнения (5.23). Это завершает доказательство теоремы 5.1.

Явные решения дифференциальных уравнений (5.18) и (5.4) в случае $m \geq 2$ выражаются в терминах специальных случаев обобщенной гипергеометрической функции Райта $p\Psi_q(z)$, определенной для $z \in \mathbf{C}$, комплексных $a_i, b_j \in \mathbf{C}$, и действительных $\alpha_i, \beta_j \in \mathbf{R}$ $(i = 1, 2, \cdots p; j = 1, 2, \cdots, q)$ рядом

$${}_{p}\Psi_{q}(z) \equiv_{p} \Psi_{q} \begin{bmatrix} (a_{i}, \alpha_{i})_{1,p} \\ (b_{i}, \beta_{i})_{1,q} \end{bmatrix} = \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma(a_{i} + \alpha_{i}k)}{\prod_{j=1}^{q} \Gamma(b_{j} + \beta_{j}k)} \frac{z^{k}}{k!}.$$
(5.35)

Она является целой функцей от z при выполнении условия

$$\sum_{j=1}^{q} \beta_j - \sum_{i=1}^{p} \alpha_i > -1.$$

В связи с этой функцией см. справочник [24, Глава 1.4]

24. Бейтмен Г, Эрдейи А. Высшие трансцендентные функции. Том 1. Гипергеометрическая функция. Функции Лежандра. М.: Наука. 1966.

и статью

25. Kilbas A.A., Saigo M., Trujillo, J.J. On the generalized Wright function. *Fract. Calc. Appl. Anal.* 2002. Vol. 5, no. 4. P. 437-460.

Именно, решения уравнений (5.18) и (5.4) выражаются в терминах обобщенной функции Райта (5.35) с p = q = 1:

$${}_{1}\Psi_{1}\begin{bmatrix} (n+1,1) \\ (\alpha n+\beta,\alpha) \end{bmatrix} := \sum_{i=0}^{\infty} \frac{\Gamma(n+i+1)}{\Gamma(\alpha n+\beta+\alpha i)} \frac{z^{i}}{i!}$$
$$= \left(\frac{\partial}{\partial z}\right)^{n} E_{\alpha,\beta}(z) \quad (n \in \mathbf{N}). \tag{5.36}$$

Результаты, полученные в [12, Sections 5.2.1-5.2.2] применены для получения явных решений задачи типа Коши для уравнений (5.18) и (5.4) с положительными $\alpha_k > 0$ (порядка $\alpha = \max_{1 \le i \le m} (-[-\alpha_i]))$ и с начальными условиями

$$(D_{0+}^{\alpha-k}y)(0+) = b_k \in \mathbf{R} \ (k=1,\cdots,l;\ l-1 < \alpha \le l,\ l \in \mathbf{N}).$$
(5.37)

В частности, при $\alpha_k = k \ (k = 1, \cdots, m)$, в [12, Section 5.2.4] соответствующие утверждения были установлены для обыкновенных дифференциальных уравнений вида (5.18) и (5.4) с $D_{0+}^{\alpha_k} y = y^{(k)}$:

$$\sum_{k=1}^{m} A_k y^{(k)}(x) + A_0 y(x) = 0 \quad (x > 0), \tag{5.38}$$

$$\sum_{k=1}^{m} A_k y^{(k)}(x) + A_0 y(x) = f(x) \quad (x > 0), \tag{5.39}$$

с приложениями к нахождению явных решений задачи Коши для уравнений (5.38) и (5.39) с начальными условиями

$$y^{(m-k)}(0) = b_k \in \mathbf{R} \ (k = 1, \dots, m).$$
 (5.40)

Мы представим два результата из [12, Sections 5.2.1-5.2.2] дающих общие решения уравнений (5.18) и (5.4) с m=2 вида:

$$(D_{0+}^{\alpha}y)(x) - \lambda \left(D_{0+}^{\beta}y\right)(x) - \mu y(x) = 0 \quad (0 < \beta < \alpha) \quad (5.41)$$

$$(x > 0; \quad 0 < \beta < \alpha),$$

$$(D_{0+}^{\alpha}y)(x) - \lambda \left(D_{0+}^{\beta}y\right)(x) - \mu y(x) = f(x) \quad (5.42)$$

$$(x > 0; \quad 0 < \beta < \alpha),$$

с $\lambda, \mu \in \mathbf{R}$, в терминах обобщенной функции Райта (5.36).

Теорема 5.2. Пусть $l-1 < \alpha \leq l \ (l \in \mathbf{N}), \ 0 < \beta < \alpha$ и $\lambda, \mu \in \mathbf{R}$. Тогда функции

$$y_{j}(x) = \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} x^{\alpha n + \alpha - j} {}_{1} \Psi_{1} \begin{bmatrix} (n+1,1) \\ (\alpha n + \alpha + 1 - j, \alpha - \beta) \end{bmatrix} \lambda x^{\alpha - \beta}$$

$$(j = 1, \dots, l)$$

$$(5.43)$$

являются решениями уравнения (5.41), при условии, что ряды в (5.43) сходятся.

Если $\alpha - l + 1 \ge \beta$, то $y_j(x)$ - линейно независимые решения уравнения (5.41).

B частности, $npu\ \alpha l + 1 > \beta$ они образуют фундаментальную систему решений:

$$(D_{0+}^{\alpha-k}y_j)(0+) = 0 \quad (k, j = 1, \dots, l; \ k \neq j),$$
$$(D_{0+}^{\alpha-k}y_k)(0+) = 1 \quad (k = 1, \dots, l). \tag{5.44}$$

Теорема 5.3. Пусть $l-1 < \alpha \leq l \ (l \in \mathbf{N}), \ 0 < \beta < \alpha$ - такие, что $\alpha - l + 1 \geq \beta$, let $\lambda, \mu \in \mathbf{R}$ и пусть f(x) - заданная действительная функция на \mathbf{R}_+ . Тогда уравнение (5.42):

$$(D_{0+}^{\alpha}y)(x) - \lambda \left(D_{0+}^{\beta}y\right)(x) - \mu y(x) = f(x)$$
 (5.42)

$$(x > 0; \quad 0 < \beta < \alpha)$$

разрешимо и его общее решение дается формулой

$$y(x) = \int_0^x (x-t)^{\alpha-1} G_{\alpha,\beta;\lambda,\mu}(x-t) f(t) dt +$$

$$+\sum_{j=1}^{l} c_{j} \sum_{n=0}^{\infty} \frac{\mu^{n}}{n!} x^{\alpha n + \alpha - j} {}_{1} \Psi_{1} \left[(\alpha n + \alpha + 1 - j, \alpha - \beta) \middle| \lambda x^{\alpha - \beta} \right],$$
(5.45)

e

$$G_{\alpha,\beta;\lambda,\mu}(z) = \sum_{n=0}^{\infty} \frac{\mu^n}{n!} z^{\alpha n} \, _1 \Psi_1 \left[\begin{array}{c} (n+1,1) \\ (\alpha n + \alpha, \alpha - \beta) \end{array} \middle| \lambda z^{\alpha - \beta} \right],$$

$$(5.46)$$

 $c_i\ (j=1,\cdots,l)$ - произвольные действительные постоянные.

§6. Уравнения с дробными производными Римана-Лиувилля и переменными коэффициентами: Метод интегральных преобразований Лапласа и Меллина

Представим метод для нахождения явных решений уравнений (1.2) с переменными коэффициентами с дробными производными Римана-Лиувилля на положительной полуоси \mathbf{R}_+ , основаный на прямом и обратном преобразованиях Лапласа (5.1) и (5.2) и прямом и обратном преобразованиях Меллина \mathfrak{M} and \mathfrak{M}^{-1} :

$$(\mathcal{M}\varphi)(s) = \int_0^\infty t^{s-1}\varphi(t)dt \quad (s \in \mathbf{C}), \tag{6.1}$$

$$(\mathcal{M}^{-1}g)(x) = \frac{1}{2\pi i} \int_{\gamma - \infty}^{\gamma + \infty} x^{-s} g(s) ds \quad (\gamma = \text{Re}(p)). \tag{6.2}$$

Теорию таких пребразований можно, например, найти в монографии [21]. В частности, преобразования \mathcal{M} и \mathcal{M}^{-1} взаимно обратны для "достаточно хороших" функций φ, g :

$$\mathcal{M}^{-1}\mathcal{M}\varphi = \varphi, \quad \mathcal{M}\mathcal{M}^{-1}g = g.$$
 (6.3)

Мы дадим приложения преобразований Лапласа и Меллина к построению явных решений двух классов линейных дифференци уравнений (1.3), содержащих дробные производные Лиувилля $D_{0+}^{\alpha_k}y$ и $D_{-}^{\alpha_k}y$, определенные для x>0 соответственно формулой (1.3) с a=0:

$$(D_{0+}^{\alpha}y)(x) = \left(\frac{d}{dx}\right)^{n} (I_{0+}^{n-\alpha}y)(x) \quad (x > 0; \ n = [\alpha] + 1),$$

$$(1.3')$$

$$(I_{0+}^{\alpha}y)(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{y(t)dt}{(x-t)^{1-\alpha}} (x > 0; \ \alpha > 0), \quad (1.4')$$

И

$$(D_{-}^{\alpha}y)(x) = \left(-\frac{d}{dx}\right)^{n} (I_{-}^{n-\alpha}y)(x) \quad (n = [\alpha] + 1); \qquad (6.4)$$

$$(I_{-}^{\alpha}y)(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} \frac{y(t)dt}{(t-x)^{1-\alpha}} (\alpha > 0).$$
 (6.5)

В монографии К.Миллера (Miller) и Б.Росса (Ross) [3, Глава VI.3] было указано, что преобразование Лапласа (5.1) может быть применено для решения однородного дифференциального уравнения (1.2) вида

$$\sum_{k=1}^{m} A_k(x) (D_{0+}^{k\alpha} y)(x) + A_0 y(x) = 0 \quad \left(\frac{1}{\alpha} = 1, 2, \dots\right), (6.6)$$

с полиномиальным коэффициентом $A_k(x)$, и такой подход был проиллюстрирован для получения явного решения уравнения

 $(D_{0+}^{1/2}y)(x) = \frac{y}{x} \quad (x > 0). \tag{6.7}$

Следует отметить, что уравнение (6.7) было первым дифферециальным уравнением дробного порядка, рассмотренным в работах

- **26.** O'Shaughnessy L. Problem # 433, *Amer. Math. Month.*, **25** (1918), 172-173.
- **27. Post E.L.** Discussion of the solution of $(d/dx)^{1/2}y = y/x$ (\sharp problem 433), *Amer. Math. Month.*, **26** (1919), 37-39. В связи с этим см. [2, §42.1] and [12, глава 5.1].

Вышеуказанная идея К.Миллера (Miller) и Б.Росса (Ross) была развита в монографии А.А.Килбаса (Kilbas), Г.Сривастава (Srivastava) и Х.Трухилло (Trujillo) [12, Глава 5.2.3]. Используя преобразование Лапласа (5.1) и соотношение (5.21), было получено явное решение диференциального уравнения, обобщающуравнение (6.7):

$$(D_{0+}^{\alpha}y)(x) = \frac{\lambda y(x)}{x} \quad (x > 0; \quad \alpha > 0, \quad \lambda \in \mathbf{R})$$
 (6.8)

где $l-1 < \alpha \le l \ (l \in \mathbb{N}, \ l \ne 2)$ в терминах обобщенной гипергеометрической функции Райта (5.35) с p=0, q=1:

$$_{0}\Psi_{1}(z(\equiv {}_{0}\Psi_{1}\begin{bmatrix} ---\\ (b,\beta) \end{bmatrix} | z] \quad (b \in \mathbf{C}; \beta \in \mathbf{R}), \quad (6.9)$$

и с p = 1, q = 2:

$$_{1}\Psi_{2} \equiv_{1} \Psi_{2} \begin{bmatrix} (a, \alpha) \\ (b_{1}, \beta_{1}), (b_{2}, \beta_{2}) \end{bmatrix}$$
 (6.10)

$$(a, b_1, b_2 \in \mathbf{C}; \quad \alpha, \beta_1, \beta_2 \in \mathbf{R}).$$

Приведем утверждение для уравнения (6.8) с 0 < α < 1.

Теорема 6.1. Дифференциальное уравнение (6.8) с $0 < \alpha < 1$ и $\lambda \in \mathbf{R}$ разрешимо, и его решение дается формулой

$$y(x) = cy_1(x) =$$

$$= cx^{\alpha-1} {}_{0}\Psi_{1} \left[\left(\alpha, \alpha - 1 \right) \right] \left[-\frac{\lambda}{1-\alpha} x^{\alpha-1} \right], \qquad (6.11)$$

 $\it rde\ c$ - $\it npous вольная\ de \it \'ucm вительная\ nocmoянная.$

B частности, решение уравнения (6.7) имеет вид

$$y(x) = \frac{c}{\sqrt{x}}e^{-1/x}. (6.12)$$

В монографии [6, Глава 6.1] было указано, что преобразование Меллина (6.1) может быть применено для решения задачи типа Коши для дифференциального уравнения

$$x^{\alpha+1} (D^{\alpha+1}y)(x) + x^{\alpha} (D^{\alpha}y)(x) = f(x) (x > 0)$$
 (6.13)

с дробной производной Лиувилля $D^{\alpha+k}y=D_{0+}^{\alpha+k}y$ или с производной Герасимова-Капуто $D^{\alpha+k}y={}^CD_{0+}^{\alpha+k}y$ (k=0,1) с $0<\alpha<1$, определяемыми соответственно (1.3') и (1.9').

Метод, основанный на преобразованиях Меллина, был применен в [12, глава 5.4] для получения частных решенеий дифференциальных уравнений дробного порядка с переменными коэффициентами, обобщающих уравнение (6.13), в виде

$$\sum_{k=0}^{m} A_k x^{\alpha+k} \left(D_{0+}^{\alpha+k} y \right) (x) = f(x) \quad (x > 0; \quad \alpha > 0) \quad (6.14)$$

И

$$\sum_{k=0}^{m} B_k x^{\alpha+k} \left(D_{-}^{\alpha+k} y \right) (x) = f(x) \quad (x > 0; \quad \alpha > 0). \quad (6.15)$$

Здесь $D_{0+}^{\alpha+k}y$ и $D_{-}^{\alpha+k}y$ - левосторонние и правосторонние дробные производные Лиувилля порядка $\alpha+k$ $(k=1,2,\cdots,m)$, определяемые соответственно (1.3') и (6.4).

Если $\alpha=0$, то $D_{0+}^{\alpha+k}y=y^{(k)},\ D_{-}^{\alpha+k}y=(-1)^ky^{(k)},$ и уравнения (6.9) и (6.10) принимают соответственно вид

$$\sum_{k=0}^{m} A_k x^k y^{(k)}(x) = f(x) \quad (x > 0)$$
 (6.9')

И

$$\sum_{k=0}^{m} B_k(-1)^k x^k y^{(k)}(x) = f(x) \quad (x > 0), \tag{6.10'}.$$

Такие обыкновенные дифференциальные уравнения известны как уравнения Эйлера, и поэтому мы называем (6.14) и (6.15) уравнениями эйлерова типа.

Представим результаты для уравнения (6.14) с m=1:

$$x^{\alpha+1} \left(D_{0+}^{\alpha+1} y \right) (x) + \lambda x^{\alpha} \left(D_{0+}^{\alpha} y \right) (x) = f(x)$$

$$(x > 0; \quad \alpha > 0; \quad \lambda \in \mathbf{R}).$$
(6.16)

Частные решения этого уравнения различны в случаях $\lambda \neq n+1$ и $\lambda=n+1$ with $n\in \mathbf{N}_0$. В первом случае частное решение уравнения (6.16) выражается в терминах обобщенной гипергеометрической функции Райта (5.35) с p=1 и q=2 вида

$${}_{1}\Psi_{2} \begin{bmatrix} (a,1) \\ (b,-1),(c,1) \end{bmatrix} | z$$
 $(a,b,c,z \in \mathbf{C}).$ (6.17)

Теорема 6.2. Если $\alpha > 0$ и $\lambda \in \mathbf{R}$ ($\lambda \neq n+1$; $n \in \mathbf{N}_0$), то уравнение (6.16) разрешимо и его частное решение дается формулой

$$y(x) = \int_0^1 G_{\alpha,\lambda}^1(t)f(xt)dt, \qquad (6.18)$$

e

$$G_{\alpha,\lambda}^{1}(x) = x^{-\alpha} \left\{ \frac{\Gamma(1-\lambda)}{\Gamma(\alpha+1-\lambda)} x^{\lambda-1} - {}_{1}\Psi_{2} \begin{bmatrix} (1-\lambda,1) \\ (\alpha,-1),(2-\lambda,1) \end{bmatrix} - x \right\}.$$

$$(6.19)$$

Далее мы представим частное решение уравнения (6.16) в случае $\lambda = n+1 \ (n \in \mathbf{N}_0)$:

$$x^{\alpha+1} \left(D_{0+}^{\alpha+1} y \right) (x) + (n+1) x^{\alpha} \left(D_{0+}^{\alpha} y \right) (x) = f(x) \quad (6.20)$$
$$(x > 0; \quad \alpha > 0; \quad n \in \mathbf{N}_0),$$

в терминах пси-функции $\psi(z)=\frac{\Gamma'(z)}{\Gamma(z)}$ и постоянной Эйлера $\gamma=-\psi(1)=-\Gamma'(1).$ Результат оказывается различным в случаях $n\in {\bf N}$ и n=0.

Теорема 6.3. (а) Если $\alpha > 0$ и $n \in \mathbb{N}$ такие, что $\alpha \neq 1, \dots, n$, то дифференциальное уравнение (6.20) разрешимо и его частное решение имеет вид:

$$y(x) = \int_0^1 G_{\alpha,n+1}^1(t)f(xt)dt,$$
 (6.21)

где

$$G_{\alpha,n+1}^{1}(x) = \frac{(-1)^{n-1}x^{n-\alpha}}{n!\Gamma(\alpha - n)} \left[\log(x) + \sum_{j=0}^{n-1} \frac{1}{j-n} + \psi(\alpha - n) + \gamma \right] + \sum_{k=0}^{\infty} \frac{(-1)^{k}x^{k-\alpha}}{k!(n-k)\Gamma(\alpha - k)}.$$
 (6.22)

(b) Если n = 0, то дифференциальное уравнение

$$x^{\alpha+1} \left(D_{0+}^{\alpha+1} y \right) (x) + x^{\alpha} \left(D_{0+}^{\alpha} y \right) (x) = f(x) \quad (x > 0; \quad \alpha > 0)$$
(6.23)

разрешимо и его частное решение дается формулой

$$y(x) = \int_0^1 G_{\alpha,1}^1(t)f(xt)dt,$$
 (6.24)

$$G_{\alpha,1}^{1}(x) = -\frac{x^{-\alpha}}{\Gamma(\alpha)} \left[\log(x) + \psi(\alpha) + \gamma \right] - \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k-\alpha}}{k! k \Gamma(\alpha - k)}.$$
(6.25)

Соответствующий результат для уравнения (6.14) с n=2 доказан в статье

28. Kilbas A.A., Zhukovskaya N.V. Solution of Euler type nonhomogeneous differential equations with three fractional derivatives, in *Analytic Methods f Analysis and Differential Equations* (Editors A.A.Kilibas and S.V.Rogosin), Cambridge Scientific Publishers 2008, 11-137.

Прямое и обратное преобразования Меллина (6.1) и (6.2) могут быть также применены для нахождения явного решения соответствующего (6.14) однородного дифференциальног уравнения дробного порядка

$$\sum_{k=0}^{m} A_k x^{\alpha+k} \left(D_{0+}^{\alpha+k} y \right) (x) = 0 \quad (x > 0; \quad \alpha > 0). \tag{6.26}$$

Представим простейший случай для уравнения (6.26), установленный в статье

29. Килбас А.А., Жуковская Н.В. Однородные дифференц уравнения эйлерова типа с дробными производными, *Труды Института Математики*, *Минск* 2010, No 1.

Теорема 6.4. Пусть $n, m \in \mathbf{N} = \{1, 2, \dots\}$ $u \alpha > 0$ такие, что $n-1 < \alpha \leq n$, let $A_0, A_1, \dots, A_m \in \mathbf{R}$ $(A_m \neq 0)$, u пусть s_1, \dots, s_m - корни многочлена

$$P_m(s) = \sum_{k=0}^m A_k(s - \alpha - k) \cdots (s - \alpha - 1) = A_m(s - s_1) \cdots (s - s_m),$$

такие, что $s_i \neq s_j$ $(i, j = 1, \cdots, m; i \neq j), <math>s_j > 0$ u, кроме того, $s_j \neq \alpha - k$ для $j = 1, \cdots m$ u любого $k \in \mathbf{N}_0 = \mathbf{N} \bigcup \{0\}$ ю Тогда уравнение (6.26) имеет m + n решений

$$y_j(x) = x^{s_j-1} \ (j = 1, \dots, m), \ y_i(x) = x^{\alpha-i} \ (i = 1, \dots, n).$$
(6.27)

Лекция 4. Приложения теории дробного дифференцирования и и интегрирования в естественных науках

§7. Задача типа Коши для двумерного диффузионно-волнового уравнения дробного порядка. Метод интегральных преобразований

Для получения явных решений уравнений с частным дробными производными может быть также применен метод основанный на интегральных преобразованиях Лапласа (5.1)-(5.2) и Меллина (6.1)-(6.2), а также на многомерных интегральных преобразованиях Фурье: прямом

$$(\mathcal{F}\varphi)(x) = \int_{\mathbf{R}^l} e^{ix \cdot t} \varphi(t) dt \quad (x \in \mathbf{R}^l), \qquad (7.1)$$

и обратном

$$(\mathcal{F}^{-1}g)(x) = \frac{1}{(2\pi)^n} \int_{\mathbf{R}^l} e^{-ix \cdot t} g(t) dt \quad \left(x \in \mathbf{R}^l\right), \qquad (7.2)$$

где $x \cdot t = \sum_{k=1}^{l} x_k t_k$. Теорию таких пребразований можно, например, найти в монографиях

- **30. Stein E.M.; Weiss G.** Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32. Princeton: Princeton Univ. Press, N.J. 1971.
- **31. Никольский С.М.** *Аппроксимация функций нескольких переменных и теоремы вложения.* Москва: Наука. 1977.

В частности, преобразования \mathcal{F} и \mathcal{F}^{-1} взаимно обратны для "достаточно хороших" функций φ, g :

$$\mathcal{F}^{-1}\mathcal{F}\varphi = \varphi, \quad \mathcal{F}\mathcal{F}^{-1}g = g. \tag{7.3}$$

Исторические сведения и обзор результатов в области применения интегральных преобразований Лапласа, Фурье и Меллина для решения уравнений с частными дробными производными представлен в монографии [12, главы 6.1.1-6.1.2]. Мы покажем применение метода интегральных преобразова для решения уравнения

$$(D_{0+,t}^{\alpha}u)(x,t) = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad (x \in \mathbf{R}; \ t > 0; \ \lambda > 0), \ (7.3)$$

с частной дробной производной Римана-Лиувилля $(D_{0+,t}^{\alpha}u)(x,t)$ порядка $\alpha>0$ относительно t>0, определенной при любом $\alpha>0$ формулой (1.15):

$$(D_{0+,t}^{\alpha}u)(x,t) = \frac{1}{\Gamma(l-\alpha)} \left(\frac{\partial}{\partial t}\right)^n \int_0^t \frac{u(x,\tau)}{(t-\tau)^{\alpha-l+1}} d\tau, \quad (7.4)$$

где $l = -[-\alpha]$.

Приведенные ниже результаты получены в статье

32. Ворошилов А.А., Килбас А.А. Задача типа Коши для диффузтонно-волнового уравнения с частной производной Римана-Лиувилля. Доклады академии наук, Российская академия наук **406** (2006), по. 1, 12-16.

и представлены в монографии А.А.Килбаса (Kilbas), Г.Сривастава (Srivastava) и Х.Трухилло (Trujillo) [12, Глава 6.2.1].

Если $\alpha=1,$ то уравнение (7.3) является уравнением тепплопроводности

$$\frac{\partial u(x,t)}{\partial t} = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad (\lambda > 0), \tag{7.5}$$

которое также называют уравнением диффузии, а при $\alpha=2$ уравнение (7.3) является волновым уравнением

$$\frac{\partial^2 u(x,t)}{\partial t^2} = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad (\lambda > 0). \tag{7.6}$$

Поэтому (7.3) называют диффузионно-волновым уравнением.

Рассмотрим уравнение (7.3) порядка $0 < \alpha < 2$

$$(D_{0+,t}^{\alpha}u)(x,t) = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad (x \in \mathbf{R}; \ t > 0; \ \lambda > 0), \ (7.7)$$

с начальными условиями типа Коши

$$(D_{0+,t}^{\alpha-k}u)(x,0+) = f_k(x) \quad (x \in \mathbf{R}),$$
 (7.8)

где

$$k = 1 \ (0 < \alpha \le 1); \ k = 2 \ (1 < \alpha < 2).$$
 (7.9)

Для решения задачи типа Коши (7.7)-(7.8) применим преобразование Лапласа относительно t:

$$(\mathcal{L}_t u)(x,s) = \int_0^\infty u(x,t)e^{-st}dt \quad (x \in \mathbf{R}; \ s > 0)$$
 (7.10)

и преобразовпание Фурье относительно $x \in \mathbf{R}$:

$$(\mathfrak{F}_x u)(\sigma, t) = \int_{-\infty}^{\infty} u(x, t) e^{ix\sigma} dx \quad (\sigma \in \mathbf{R}; \ t > 0). \quad (7.11)$$

Применяя преобразование Лапласа (7.10) к обеим частям равенства (7.7) и учитывая формулу преобразования Лапласа дробной производной (1.15):

$$\left(\mathcal{L}_{t} D_{0+,t}^{\alpha} u\right)(x,s) =$$

$$= s^{\alpha} \left(\mathcal{L} u\right)(x,s) - \sum_{j=1}^{l} s^{j-1} \left(D_{0+,t}^{\alpha-j} u\right)(x,0+) \qquad (7.12)$$

$$(x \in \mathbf{R}; \ l-1 < \alpha \leq l; \ l \in \mathbf{N})$$

с l=1 и l=2 в соответствующих случаях $0<\alpha\leq 1$ и $1<\alpha<2$, и учитывая начальные условия в (7.8), имеем

$$s^{\alpha} \left(\mathcal{L}_{t} u \right) (x, s) =$$

$$= \sum_{k=1}^{l} s^{k-1} f_{k}(x) + \lambda^{2} \left(\frac{\partial^{2}}{\partial x^{2}} \mathcal{L}_{t} u \right) (x, s) \quad (l = 1, 2).$$

Применяя преобразование Фурье (7.11) к этому равенству и используя формулу

$$\left(\mathfrak{F}_{x}\left[\frac{\partial^{2}u(x,t)}{\partial x^{2}}\right]\right)(\sigma,t) = -|\sigma|^{2}\left(\mathfrak{F}_{x}u\right)(\sigma,t),$$

получим следующее равенство:

$$(\mathfrak{F}_{x}\mathcal{L}_{t}u)(\sigma,s) =$$

$$= \sum_{k=1}^{l} \frac{s^{k-1}}{s^{\alpha} + \lambda^{2}|\sigma|^{2}} (\mathfrak{F}_{x}f_{k})(\sigma) \quad (\sigma \in \mathbf{R}; \ t > 0; \ l = 1, 2).$$

$$(7.13)$$

Отсюда найдем решение u(x,t) посредством применения обратного преобразования Фурье относительно σ :

$$\left(\mathfrak{F}_{\sigma}^{-1}u\right)(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u(\sigma,t)e^{-i\sigma x} d\sigma \quad (\sigma \in \mathbf{R}; \ t > 0)$$
(7.14)

и обратного преобразования Лапласа относительно s:

$$\left(\mathcal{L}_{s}^{-1}u\right)(x,t) = \frac{1}{2\pi} \int_{\gamma-i\infty}^{\gamma+i\infty} e^{st}u(x,s)ds \quad (x \in \mathbf{R} \qquad (7.15))$$

$$\gamma = \Re(s) > \sigma_{\varphi}.$$

Известны следующие формулы из таблиц интегральных преобразований Фурье и Лапласа

$$\left(\mathfrak{F}_x e^{-c|x|}\right)(\sigma) = \frac{2c}{c^2 + |\sigma|^2} \quad (c > 0; \quad \sigma \in \mathbf{R}), \tag{7.16}$$

$$\left(\mathfrak{F}e^{-\frac{|x|}{\lambda}s^{\frac{\alpha}{2}}}\right)(\sigma) = \frac{2\lambda s^{\frac{\alpha}{2}}}{s^{\alpha} + \lambda^{2}|\sigma|^{2}}.$$
 (7.17)

Согласно (7.16)-(7.17) соотношение (7.13) принимает следующий вид:

$$(\mathfrak{F}_{x}\mathfrak{L}_{t}u)(\sigma,s) =$$

$$=: \left(\mathfrak{F}_{x}\left[\frac{1}{2\lambda}\sum_{k=1}^{l}s^{k-1-\frac{\alpha}{2}}e^{-\frac{|x|}{\lambda}s^{\frac{\alpha}{2}}}\right]\right)(\sigma)(\mathfrak{F}_{x}f_{k})(\sigma) \quad (l=1,2).$$

$$(7.18)$$

Учитывая формулу свертки

$$(\mathfrak{F}(h*\varphi))(x) = (\mathfrak{F}h)(x)(\mathfrak{F}\varphi)(x),$$

$$(h * \varphi)(x) = \int_{-\infty}^{+\infty} h(x - t)\varphi(t)dt,$$

перепишем (7.18) в виде

$$(\mathfrak{F}_x \mathfrak{L}_t u) (\sigma, s) =$$

$$= \left(\mathcal{F}_x \left[\sum_{k=1}^l \frac{1}{2\lambda} s^{k-1-\frac{\alpha}{2}} e^{-\frac{|x|}{\lambda} s^{\frac{\alpha}{2}}} *_x f_k(x) \right] \right) (\sigma) \quad (l = 1, 2).$$

Применяя обратное преобразование Фурье (7.14), выводим отсюда следующее равенство:

$$(\mathcal{L}_{t}u)(x,s) = \sum_{k=1}^{l} \frac{1}{2\lambda} s^{k-1-\frac{\alpha}{2}} e^{-\frac{|x|}{\lambda}s^{\frac{\alpha}{2}}} *_{x} f_{k}(x)$$
 (7.19)
$$(x \in \mathbf{R}; \ s > 0; \ l = 1, 2).$$

Применяя к (7.19) обратное преобразование Лапласа (7.15), из (7.19) мы можем получить явное решение задачи типа Коши (7.7)-(7.8). Для этого нам нужно знать обратное преобразование Лапласа от функций $s^{k-1-\frac{\alpha}{2}}e^{-\frac{|x|}{\lambda}s^{\frac{\alpha}{2}}}$ (k=1,2).

Эти функции выражаются через преобразование Лапласа функции Райта $\phi(\alpha,\beta;z)$ определенной для $z,\alpha,\beta\in\mathbf{C}$ рядом

$$\phi(\alpha, \beta; z) = \sum_{k=0}^{\infty} \frac{1}{\Gamma(\alpha k + \beta)} \frac{z^k}{k!}.$$
 (7.20)

Отметим, что при $\alpha > -1$, $\phi(\alpha, \beta; z)$ - целая функция от $z \in \mathbf{C}$.

Именно, функции $s^{k-1-\frac{\alpha}{2}}e^{-\frac{|x|}{\lambda}s^{\frac{\alpha}{2}}}$ (k=1,2) выражаются через преобразованіе Лапласа функции Райта $\phi(-\alpha/2,b;-z)$. Если $0<\alpha<2$, то $\phi(-\alpha/2,b;-z)$ есть целая функция от z. Непосредственно доказывается формула

$$\left(\mathcal{L}_t \left[t^{\frac{\alpha}{2} - k} \phi \left(-\frac{\alpha}{2}, \frac{\alpha}{2} - k + 1; -\frac{|x|}{\lambda} t^{-\frac{\alpha}{2}} \right) \right] \right) (s) =$$

$$= s^{k-1 - \frac{\alpha}{2}} e^{-\frac{|x|}{\lambda} s^{\frac{\alpha}{2}}} \quad (k = 1, 2). \tag{7.21}$$

Применяя обратное преобразование Лапласа к (7.19) и используя формулу (7.21), получим решение задачи типа Коши (7.7)-(7.8):

$$u(x,t) = \sum_{k=1}^{l} \int_{-\infty}^{\infty} G_k^{\alpha}(x-\tau,t) f_k(\tau) d\tau$$
 (7.22)

$$(l = 1 \ for \ 0 < \alpha \le 1; \ l = 2 \ for \ 1 < \alpha < 2),$$

где

$$G_k^{\alpha}(x,t) = \frac{1}{2\lambda} t^{\frac{\alpha}{2} - k} \phi\left(-\frac{\alpha}{2}, \frac{\alpha}{2} - k + 1; -\frac{|x|}{\lambda} t^{-\frac{\alpha}{2}}\right) \quad (k = 1, 2).$$
(7.23)

Теорема 7.1. Если $0 < \alpha < 2$ и $\lambda > 0$, то задача типа Коши (7.7)-(7.8) разрешима и ее решение u(x,t) дается формулами (7.22)-(7.23) при условии, что интегралы в правой части (7.23) сходятся.

Следствие 7.1. $Ecлu\ 0 < \alpha \le 1 \ u \ \lambda > 0, \ mo \ задача \ muna \ Kowu$

$$(D_{0+,t}^{\alpha}u)(x,t) = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2},$$

$$\left(D_{0+,t}^{\alpha-1}u\right)(x,0+) = f(x) \quad (x \in \mathbf{R}; \ t > 0)$$

$$(7.24)$$

разрешима и е решение имеет вид

$$u(x,t) = \int_{-\infty}^{\infty} G_1^{\alpha}(x-\tau,t)f(\tau)d\tau, \qquad (7.25)$$

$$G_1^{\alpha}(x,t) = \frac{1}{2\lambda} t^{\frac{\alpha}{2} - 1} \phi\left(-\frac{\alpha}{2}, \frac{\alpha}{2}; -\frac{|x|}{\lambda} t^{-\frac{\alpha}{2}}\right), \tag{7.26}$$

при условии, что интеграл в правой части (7.26) сходится.

Следствие 7.2. $Ecлu\ 1 < \alpha < 2\ u\ \lambda > 0,\ mo\ задача$ $muna\ Kowu$

$$(D_{0+,t}^{\alpha}u)(x,t) = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad (x \in \mathbf{R}; \ t > 0)$$
 (7.27)

$$(D_{0+,t}^{\alpha-1}u)(x,0+) = f_1(x), (D_{0+,t}^{\alpha-2}u)(x,0+) = f_2(x) (x \in \mathbf{R})$$
(7.28)

разрешима и ее решение дается формулой

$$u(x,t) = \int_{-\infty}^{\infty} G_1^{\alpha}(x-\tau,t)f_1(\tau)d\tau +$$

$$+ \int_{-\infty}^{\infty} G_2^{\alpha}(x-\tau,t)f_2(\tau)d\tau, \qquad (7.29)$$

где $G_1^{\alpha}(x,t)$ дается (7.26) и

$$G_2^{\alpha}(x,t) = \frac{1}{2\lambda} t^{\frac{\alpha}{2} - 2} \phi\left(-\frac{\alpha}{2}, \frac{\alpha}{2} - 1; -\frac{|x|}{\lambda} t^{-\frac{\alpha}{2}}\right)$$
(7.30)

при условии, что интегралы в правой части (7.29) сходятся.

Пример 7.1. Задача типа Коши (7.24) с $\alpha = \frac{1}{2}$:

$$(D_{0+,t}^{1/2}u)(x,t) = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2},$$

$$\left(I_{0+,t}^{1/2}u\right)(x,0+) = f(x) \quad (x \in \mathbf{R}; \ t > 0)$$
(7.31)

имеет решение

$$u(x,t) = \int_{-\infty}^{\infty} G_1^{1/2}(x-\tau,t)f(\tau)d\tau, \qquad (7.32)$$

где $G_1^{1/2}(x,t)$ дается формулой (7.26) с $\alpha=1/2$.

Пример 7.2. Задача типа Коши (7.27)-(7.28) с $\alpha = \frac{3}{2}$:

$$(D_{0+,t}^{3/2}u)(x,t) = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad (x \in \mathbf{R}; \ t > 0)$$
 (7.33)

$$\left(D_{0+,t}^{1/2}u\right)(x,0+) = f_1(x) \quad (x \in \mathbf{R}),
\left(I_{0+,t}^{1/2}u\right)(x,0+) = f_2(x) \quad (x \in \mathbf{R})$$
(7.34)

имеет решение

$$u(x,t) = \int_{-\infty}^{\infty} G_1^{3/2}(x-\tau,t)f_1(\tau)d\tau + \int_{-\infty}^{\infty} G_2^{3/2}(x-\tau,t)f_2(\tau)d\tau,$$
 (7.35)

где $G_1^{3/2}(x,t)$ и $G_2^{3/2}(x,t)$ даются равенствами (7.26) и (7.30) с $\alpha=\frac{3}{2}$.

Пример 7.3. Решение задачи Коши для уравнения теплопроводности (7.5)

$$\frac{\partial u(x,t)}{\partial t} = \lambda^2 \frac{\partial^2 u(x,t)}{\partial x^2},$$

$$u(x,0) = f(x) \quad (x \in \mathbf{R}; \ t > 0)$$
(7.36)

дается формулой

$$u(x,t) = \int_{-\infty}^{\infty} G(x-\tau,t)f(\tau)d\tau,$$

$$G(x,t) = \frac{1}{2\lambda\sqrt{\pi}}t^{-1/2}e^{-\frac{|x|^2}{4\lambda^2t}}.$$
(7.37)

Этот хорошо известный результат следует из следствия 7.1 в силу следующего соотношения:

$$\phi\left(-\frac{1}{2}, \frac{1}{2}; z\right) = \frac{1}{\sqrt{\pi}} e^{-\frac{z^2}{4}},\tag{7.38}$$

которое непосредственно проверяется на основании определения функции Райта (7.20).

§8. Приложения теории дробного дифференцирования и интегрирования в естественных науках. Дробная модель супердиффузионных процессов

Начиная с середины 1980-х годов начались исследования, посвященныме представлению вычислительных моделей дробного порядка для кинетики аномальных процессов естествознания в комплексных системах, характеризуемых долгой памятью и нелокальными свойствами соответствующих динамик. Особое внимание было уделено аномальным диффузион процессам, описывающим так называемые сверх-медленные (sub-) и сверх-быстрые (super-) диффузионные процессы.

- Р.Р. Нигматуллин впервые в работах
- **33. Nigmatullin R.R.** To the theoretical explanation of the "universal" response. *Phys. Sta. Sol.* (b). **123** (1984), *no.* 2, 739-745.
- **34.** Nigmatullin, R.R. On the theory relaxation with "remnant" memory. *Phys. Status Solidi* (b). **124** (1984), no. 1, 389-393.

рассмотрел следующее "диффузионное уравнение с памятью"

$$\frac{\partial U(x,t)}{\partial t} = \int_{a}^{t} K(t-\tau)\Delta U_{x}(x,\tau)d\tau \quad (x \in \mathbf{R}^{m}, \ t > 0),$$
(8.1)

где Δ_x есть оператор Лапласа (1.13) по переменной x:

$$(\Delta_x u)(x,t) = \frac{\partial^2 u(x,t)}{\partial x_1^2} + \dots + \frac{\partial^2 u(x,t)}{\partial x_m^2}.$$
 (1.13')

В частности, если $K(t) = \rho^2 \delta(t-a)$, где $\delta(t-a)$ - дельтафункция Дирака, равенство (8.1) представляет классическое уравнение теплопроводности (диффузии):

$$\frac{\partial U(x,t)}{\partial t} = \rho^2 \Delta U(x,t) \quad (x \in \mathbf{R}^m, \ t > 0).$$
 (8.2)

Существует много вычислительных моделей дробного порядка для сверх-медленных диффузионных (sub-diffusion) процессов без воздействия или с воздействием поля внешних сил (an external force field) такие как уравнение диффузии дробного порядка (Fractional Diffusion Equation) и адвекционно диффузионное уравнение (Advection-Diffusion Equation) или уравнение Фокка-Планка (Fokker-Planck Equation) сответственно. Все эти модели содержат дробные производные Римана-Лиувилля ($D_{0+,t}^{\alpha}u$)(x,t) или Герасимова-Капуто (${}^{C}D_{0+,t}^{\alpha}u$)(x,t) по временной переменной t>0 и дробные производные Лиувилля ($D_{\pm,x}^{\alpha}u$)(x,t) или Рисса ($\mathbf{D}_{x}^{\alpha}u$)(x,t) по пространственной переменной $x \in \mathbf{R}^{m}$ ($m \in \mathbf{N}$).

Сверх-быстрые диффузионных (super-diffusion) процессы изучены меньше. Кроме того, только в нескольких работах были рассмотрены вычислительный модели дробного порядка с дробной производной Рисса ($\mathbf{D}_x^{\alpha}u$)(x,t) по пространственной переменной, опеределяемой формулой (1.14):

$$(\mathbf{D}_{x}^{\alpha}u)(x,t) \equiv (-\Delta_{x})^{\alpha/2}u)(x,t) = (\mathcal{F}_{x}^{-1}|x|^{\alpha}(\mathcal{F}_{x}u))(x,t)$$

$$(8.3)$$

$$x = (x_{1}, \dots, x_{m}) \in \mathbf{R}^{m}, \quad t > 0.$$

в терминах прямого и обратного преобразований Фурье \mathcal{F} и \mathcal{F}^{-1} , определяемых (7.1) и (7.2).

В [12, глава 8.2] была предложена *новая* вычислительная модель сверх-быстрых диффузионных процессов с оператором обобщенного дробного дифференцирования Лиувилля $D_{-;g}^{\alpha}$ по временной переменой t>0. Для функции $g'(x)\neq 0$ (a< x< b) соответствующая одномерная дробная производная $D_{-;g}^{\alpha}f$ от функции f по функции g порядка $\alpha>0$ для $x>a\geqq-\infty$ определяется формулой [2, п. 18.2]

$$(D_{-;g}^{\alpha}f)(x) =$$

$$= \frac{1}{\Gamma(n-\alpha)} \left(-\frac{1}{g'(x)} \frac{d}{dx}\right)^n \int_x^{\infty} \frac{g'(t)f(t)dt}{[g(t)-g(x)]^{\alpha-n+1}}$$

$$(n = -[-\alpha]).$$
(8.4)

В частности, если a=0 и $g(x)=x^{\sigma}$ ($\sigma>0$), (8.4) есть обобщенная дробная производная порядка $\alpha>0$ по функции x^{σ} :

$$(D_{-;x^{\sigma}}^{\alpha}f)(x) = \frac{\sigma^{1-n}}{\Gamma(n-\alpha)} \left(-x^{1-\sigma}\frac{d}{dx}\right)^n \int_x^{\infty} \frac{t^{\sigma-1}f(t)dt}{(t^{\sigma}-x^{\sigma})^{\alpha-n+1}}$$

$$(8.5)$$

$$(x>0; n=-[-\alpha]).$$

Предложенная нами модель позволяет осуществлять строгий контроль над обоими сверх-медленными и сверх-быстрыми диффузионными процессами. Она также дает большую гибкость для свободной функции g, и имеет многие другие преимущества с чисто технической точки зрения в том смысле, что мы можем использовать те же самые методы, что и в обыкновенном случае (то есть методы, основанные на интегральных преобразованиях и разделении переменных) для решения краевых задач, связанных с моделями дробного порядка.

Сначала мы рассмотрим нашу модель дробного порядка в одномерном случае. Напомним схему решения классической задачи, связанной с одномерным уравнением теплопроводности:

$$\frac{\partial U(x,t)}{\partial t} = \rho^2 \frac{\partial^2}{\partial x^2} U(x,t) \quad (\rho > 0; \ 0 < x < l, \ t > 0), \ (8.6)$$

с краевыми условиями

$$U(0,t) = U(l,t) = 0 \quad (t > 0)$$
(8.7)

и начальным условием

$$U(x,0) = f(x) \quad (0 < x < l), \tag{8.8}$$

где f - "достаточно гладкая" функция на отрезке [0,l].

Заметим, что параметр ρ^2 может характеризовать температурні (или диффузионный) коэффициент среды.

Применяя метод разделения переменых, будем искать решение задачи (8.6)-(8.7) в виде U(t,x)=T(t)X(x). Тогда

$$\frac{X''(x)}{X(x)} = \frac{T'(t)}{\rho^2 T(t)} = -\lambda.$$
 (8.9)

Следовательно, X(x) есть решение задачи Штурма-Лиувилля

$$X''(x) + \lambda X(x) = 0, \quad X(0) = X(l) = 0, \tag{8.10}$$

для которой собственные значения и собственные функции даются формулами

$$\lambda_n = \mathbf{a}^2; \ X_n(x) = \sin(\mathbf{a}x); \ \mathbf{a} = \frac{n\pi}{l} \quad (n \in \mathbb{N}).$$
 (8.11)

С другой стороны, T(t) есть решение дифференциального уравнения

$$T'(t) + (\mathbf{a}\rho)^2 T(t) = 0,$$
 (8.12)

даваемое равенством

$$T_n(t) = \exp\left[-(\mathbf{a}\rho)^2 t\right] \quad (n \in \mathbb{N}).$$
 (8.13)

Наконец, решение задачи, моделированной уравнениями (8.6)-(8.8), получается как решение в виде ряда, чьи коэффициенти c_n находятся из разложения функции f в ряд Фурье с учетом начального условия (8.8):

$$U(x,t) = \sum_{n=1}^{\infty} c_n X_n(x) T_n(t),$$
 (8.14)

где

$$c_n = \frac{2}{l} \int_0^l \sin(\mathbf{a}x) f(x) dx \quad (n \in \mathbb{N}), \tag{8.15}$$

где $X_n(x)$ и $T_n(t)$ даются соответственно формулами (8.11) и (8.13).

Поэтому нам нужно только доказать сходимость на $[0, l] \times [0, \infty)$ двойного ряда для U(x,t) в (8.14) и рядов для $U_{xx}(x,t)$ и $U_t(x,t)$, получаемых почленным дифференцированием ряда (8.14) соответственно по x и по t.

Теперь мы видим что сверх-диффузионный процесс, связанный с рассмотренной выше проблемой (8.6)-(8.8), может быть получен заменой множителя $T_n(t)$ в решении (8.14) некоторой функцией $T_n(t,\alpha)$, зависящей от времени t и нового параметра α . Такой новый параметр дает нам возможность сонтролировать убывани е процесса по временной переменной; наприменр, мы возьмем

$$T_n(t,\alpha) = \exp\left[-(\mathbf{a}\rho)^{2/\alpha}g(t,\alpha)\right] \quad (n \in \mathbb{N}).$$
 (8.16)

В этом случае (8.14) заменяется более общим решением вида

$$U(x,t) = \sum_{n=1}^{\infty} c_n X_n(x) T_n(t,\alpha),$$
 (8.17)

где $X_n(t)$ и $T_n(t,\alpha)$ даются соответственно (8.11) и (8.16).

Таким образом сверх-медленные и сверх-быстрые диффузионны процессы могут контролироваться функцией $g(t, \alpha)$.

Например, если $g(t,\alpha)=t^{\alpha}$, то мы имеем сверх-медленную кинетику при $0<\alpha<1$ и сверх-быструю кинетику при $\alpha>1$. Это находится в согласии с так называемым методом "непрерывных случайных блужданий (continuous time random walk (CTRW))".

На этом пути посредством выбора функции $g(t,\alpha)$ мы можем получать подходящие решения нашей задачи для того, чтобы контролировать очень сильные сверх-быстрые диффузионные процессы. Например, если мы возьмем $g(t,\alpha)=\exp(t^{\alpha})$ с $\alpha>1$, то возможно (8.17) даст новую модель для динамических свойств сверх-проводимости некоторых материалов при определеных граничных условиях.

Теперь мы можем построить соответствующую дробную модель с решением (8.17). Задача заключается в нахождении некоторого "дробного" оператора \mathbf{D}^{α} (дробного порядка, особого с памятью или др.) порядка $\alpha > 0$ со следующим свойством:

$$\mathbf{D}^{\alpha}T(t,\alpha) = (\mathbf{a}\rho)^2 T(t,\alpha), \tag{8.18}$$

где

$$T(t,\alpha) \equiv T_n(t,\alpha) = \exp\left[-(\mathbf{a}\rho)^{2/\alpha}g(t,\alpha)\right] \quad (n \in \mathbb{N}).$$
(8.19)

Такая задача решается взятием $\mathbf{D}^{\alpha} = D^{\alpha}_{-,g(t,\alpha)}$, где $D^{\alpha}_{-;g(t,\alpha)}f$, как функция от t, есть дробная производная порядка $\alpha > 0$ от функции f по функции $g(t,\alpha)$, определенная для $x \in \mathbf{R}$ и t > 0 равенством

$$\left(D_{-;g(t,\alpha)}^{\alpha}U\right)(x,t) = \frac{1}{\Gamma(n-\alpha)}\left(-\frac{1}{g'(t,\alpha)}\frac{d}{dt}\right)^{n}\int_{t}^{\infty}\frac{g'(\tau,\alpha)U(x,\tau)d\tau}{[g(\tau,\alpha)-g(t,\alpha)]^{\alpha-n+1}},$$
 (8.20) c $n=-[-\alpha].$

Действительно, если мы предположим, что $g(t,\alpha)$ (для любого фиксированного $\alpha>0$) - монотонно возрастающая функция от $t\in\mathbf{R}_+=(0,\infty)$, имеющая непрерывную производную $\frac{\partial}{\partial t}g(t,\alpha)\neq 0$, тогда в соответствии со свойством

$$\left(D_{-,g}^{\alpha}e^{-\lambda g(t)}\right)(x) = \lambda^{-\alpha}e^{-\lambda g(x)},\tag{8.21}$$

(см. [12, формула (8.1.10)], мы имеем

$$\left(D_{-;g(t,\alpha)}^{\alpha} \exp\left[-(\mathbf{a}\rho)^{2/\alpha}g(\tau,\alpha)\right]\right)(t) =
= (\mathbf{a}\rho)^{2} \exp\left[-(\mathbf{a}\rho)^{2/\alpha}g(t,\alpha)\right],$$
(8.22)

и следовательно (8.18) справедливо для $\mathbf{D}^{\alpha} = D^{\alpha}_{-;g(t,\alpha)}$.

Поэтому новая диффузионная модель дробного порядка может быть представлена следующим дифференциальныи уравнением дробного порядка

$$D^{\alpha}_{-;g(t,\alpha)}U(x,t) = \rho^2 \frac{\partial^2}{\partial x^2} U(x,t) \quad (\alpha > 0; \ t > 0; \ x \in \mathbf{R})$$
(8.23)

с частной дробной производной (8.20).

Если дополнительно предположить, что $\lim_{t\to 0+} g(t,\alpha) = k(\alpha) \in \mathbf{R}$ для любого $\alpha > 0$, то явное решение задачи, моделируемой равенствами (9.23), (9.7) и (9.8), имеет вид (8.17):

$$U(x,t) = \frac{1}{k(\alpha)} \sum_{n=1}^{\infty} c_n \sin(\mathbf{a}x) \exp\left[-(\mathbf{a}\rho)^{2/\alpha} g(t,\alpha)\right], \quad (8.24)$$

при условии, что $g(t,\alpha)$ выбрана так, что $U(x,t), D^{\alpha}_{-;g(t,\alpha)}U(x,t)$, и $U_{xx}(x,t)$ - сходящиеся двойные ряды на $[0,l]\times[0,\infty)$, а c_n дается формулой (8.15).

Например, при $g(t,\alpha)=t^{\alpha}$ ($\alpha>0$) мы можем доказать сходимость указанный выше рядов так же как и в случае $\alpha=1$. В этом случае $D^{\alpha}_{-;g(t,\alpha)}=D^{\alpha}_{-;t^{\alpha}}$ есть частная производная дробного порядка вида (8.5), определенная для $x\in\mathbf{R}$ и t>0 равенством

$$\left(D_{-;t^{\alpha}}^{\alpha}U\right)(x,t) = \frac{\alpha^{1-n}}{\Gamma(n-\alpha)} \left(-t^{1-\alpha}\frac{d}{dt}\right)^{n} \int_{t}^{\infty} \frac{\tau^{\alpha-1}U(x,\tau)d\tau}{(\tau^{\alpha}-t^{\alpha})^{\alpha-n+1}} \quad (n=-[-\alpha]).$$
(8.25)

Тогда уравнение (8.23) принимает вид

$$D^{\alpha}_{-;t^{\alpha}}U(x,t) = \rho^2 \frac{\partial^2}{\partial x^2} U(x,t) \quad (\alpha > 0; \ t > 0; \ x \in \mathbf{R}),$$

$$(8.26)$$

и явное решение задачи, моделируемой равенствами (8.26), (8.7) и (8.8), представимо формулой

$$U(x,t) = \sum_{n=1}^{\infty} c_n \sin(\mathbf{a}x) \exp\left[-(\mathbf{a}\rho)^{2/\alpha} t^{\alpha}\right]. \tag{8.27}$$

Аналогичным образом можно рассмативать случай, когда $g(t,\alpha) = \exp{(t^{\alpha})}.$

Модель (8.26) может быть распространена на пространственную переменную $x \in \mathbf{R}^m$, если мы заменим частную производную $\partial^2/\partial x^2$ оператором Лапласа (1.13) относительно x:

$$D_{-;g(t,\alpha)}^{\alpha}U(x,t) = \rho^2 \Delta_x U(x,t) \quad (\alpha > 0; \ t > 0; \ x \in \mathbf{R}^m).$$
(8.28)

В частности, модель (8.26) примет вид

$$D_{-;t^{\alpha}}^{\alpha}U(x,t) = \rho^{2}\Delta_{x}U(x,t) \quad (\alpha > 0; \ t > 0; \ x \in \mathbf{R}^{m}).$$
(8.29)

Аналогично (8.24) и (8.27) явные решения этих уравнений также могут быть выведены при соответствующих граничных и начальных условиях.

Представляется, что указанный нами подход, основанный на использовании обобщенных частных производных дробного порядка (8.20), может быть также примене для построения соответствующих моделей обобщенного дробного порядка для уравнения Фоккера-Планка (Fokker-Planck) и адвекционнодиффузионного (advection-diffusion) уравнения. Мы предполагаем что такие модели будут согласованы с моделями для соответствую обобщений, включая например оператор дробного дифференциров \mathbf{D}^{α} , определенный (8.3) по пространсвенной переменной.

В заключение отметим, что существует много возможностей для контроля убывания экспоненциального типа фундаментельны решений обобщенных уравнений дробной диффузии, и на этом пути та же самая математическая техника может быть иаспользована для изучения новых моделей дробного порядка для контроля аномальных диффузионных процессов.