AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound comprising the formula:

(I)

 $R_1 = \left\{ \begin{array}{c} R_2 \\ C \\ R_3 \end{array} \right\}_{\mathbf{m}} \left(\mathbf{M} \right)_{\mathbf{a}} \left(\mathbf{C} - \mathbf{N} - \mathbf{C} - \mathbf{E}_2 \right)$

wherein:

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

 E_1 is

 $\begin{array}{c|c}
 & Y_2 \\
 & \parallel^2 \\
 & C \\
 & R_6
\end{array}$

E₂₋₄ are independently H, E₁ or

- (a) is zero or one;
- (m) is zero or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and $\frac{NR_{14}}{NR_{17}}$;

 R_{11-17} R₁₁₋₁₄ are independently selected from the group consisting of hydrogen, C_{1-6} alkyls,

 C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

provided that E2-4 are not all H and

D₁ and D₂ are both not OH

2. (Original) The compound of claim 1, wherein R₁ further comprises a capping group A, selected from the group consisting of hydrogen, NH₂, OH, CO₂H, C₁₋₆ moieties and

$$E_{2} \xrightarrow{E_{1}} V_{1} \qquad V_{1} \qquad \begin{cases} R_{2} \\ C \\ R_{3} \end{cases}$$

$$E_{4} \qquad C \xrightarrow{K_{1}} M \qquad R_{3} \qquad m$$

3. (Original) A compound of claim 2, comprising the formula:

4. (Currently Amended) The compound of claim 1, wherein said terminal branching group comprises the formula:

$$E_{35}$$
 $-N$
 C
 E_{36}
 E_{38}
 E_{37}

wherein

E₃₅ is

$$\begin{array}{c|c}
 & Y_2 \\
 & \parallel^2 \\
 & C \\
 & R_6
\end{array}$$

E₃₆₋₃₈ are independently H, E₃₅ or

(n) and (p) are independently 0 or a positive integer;

 Y_{2-3} are independently O, S or NR_{10} ;

 R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D', and D'2 are independently OH,

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

 Y_{4-7} are independently selected from the group consisting of O, S and $\frac{NR_{14}}{NR_{17}}$;

 R_{11-17} R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

 E_{45} is

$$\begin{array}{c|c}
 & Y_2 \\
 & \parallel^2 \\
 & C \\
 & R_6
\end{array}$$

E₄₆₋₄₈ are independently H, E₄₅ or

wherein

D", and D", are independently OH,

or

wherein at least one of D'₁, D'₂, D''₁ and D''₂ is not OH.

5. (Previously amended) The compound of claim 3, wherein Y₁ is O.

6. (Original) The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.

7. (Original) The compound of claim 6, wherein R₁ comprises a polyethylene glycol residue.

8. (Original) The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.

9. (Original) The compound of claim 6, wherein R₁ is selected from the group consisting of

 $-C(=Y_6)-(CH_2)_fO-(CH_2CH_2O)_x-A$

 $-C(=Y_6)-Y_7-(CH_2)_CO-(CH_2CH_2O)_x-A$,

 $-C(=Y_6)-NR_{23}-(CH_2)_{f}-O-(CH_2CH_2O)_{x}-A_{r}$

-(CR₂₄R₂₅)_c-O-(CH₂)_f-O-(CH₂CH₂O)_x-A,

-NR₂₃-(CH₂)₁-O-(CH₂CH₂O)_x-A_x

 $-C(=Y_6)-(CH_2)_{\Gamma}O-(CH_2CH_2O)_{x}-(CH_2)_{\Gamma}C(=Y_6)-$

 $-C(=Y_6)-Y_7-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-Y_7-C(=Y_6)-$

-C(=Y₆)-NR₂₃-(CH₂)₁-O-(CH₂CH₂O)_x-(CH₂)₁-NR₂₃-C(=Y₆)-,

 $-(CR_{24}R_{25})_e-O-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-O-(CR_{24}R_{25})_e$, and

-NR₂₃-(CH₂)_r-O-(CH₂CH₂O)_x-(CH₂)_r-NR₂₃-

wherein: Y₆ and Y₇ are independently O, S or NR₂₃;

x is the degree of polymerization;

 R_{23} , R_{24} and R_{25} are independently selected from among H, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

- 10. (Original) The compound of claim 9, wherein R_1 comprises -O-(CH_2CH_2O)_x and x is a positive integer so that the weight average molecular weight is at least about 20,000.
- 11. (Original) The compound of claim 3, wherein R₁ has a weight average molecular weight of from about 20,000 to about 100,000.
- 12. (Original) The compound of claim 3, wherein R₁ has a weight average molecular weight of from about 25,000 to about 60,000.
- 13. (Original) A compound of claim 3, comprising the formula

14. (Original) The compound of claim 13, wherein D_1 is

15. (Original) The compound of claim 13, wherein D₁ is

$$E_{35}$$
 $-N$
 C
 E_{36}
 E_{38}
 E_{37}

16. (Original) The compound of claim 1, wherein L₁ is (CH₂CH₂O)₂.

17. (Original) The compound of claim 1, wherein L₂ is selected from the group consisting of -CH₂-, - CH(CH₃)-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.

18. (Original) A compound of claim 1, selected from the group consisting of:

$$R_1 \longrightarrow \begin{pmatrix} 0 \\ N \\ H \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, $R_1 \longrightarrow \begin{pmatrix} 0 \\ N \\ H \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

wherein R₁ is a PEG residue and D is selected from the group consisting of:

where B is a residue of an amine or a hydroxyl- containing drug.

- 19. (Original) A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; p-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine
- 20. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D₁ is a residue of a biologically active moiety.

- 21. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.
- 22. (Original) The compound of claim 1, wherein Ar comprises the formula:

wherein R_{11} and R_{18-20} are individually selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroakoxy.

- 23. (Original) The compound of claim 22, wherein R₁₁ and R₁₈₋₂₀ are each H or CH₃.
- 24. (Previously amended) A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

J is NR₁₂ or

L₁ and L₂ are independently selected bifunctional linkers;

Y_{4.5} are independently selected from the group consisting of O, S and NR₁₇;

 R_{11-17} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} hetero-alkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'₁ is a residue of a hydroxyl- or an amine-containing moiety; with a compound of the formula (IX):

$$R_{1} = \left\{ \begin{array}{c} R_{2} \\ C \\ R_{3} \end{array} \right\} \begin{array}{c} Y_{1} \\ M \\ a \end{array} \begin{array}{c} E_{5} \\ N \\ E_{8} \end{array} \begin{array}{c} E_{6} \\ E_{7} \end{array}$$

wherein

$$E_{5} \text{ is } \qquad \frac{\begin{pmatrix} R_{7} \\ C \end{pmatrix} \prod_{1}^{Y_{2}}}{\begin{pmatrix} R_{7} \\ R_{6} \end{pmatrix} n} D_{3}$$

E₆₋₈ are independently H, E₅ or

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

- (a) is zero or one;
- (m) is 0 or a positive integer;
- (n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀; and

 R_{2-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

provided that E₆₋₈ are not all H;

under conditions sufficient to cause a polymeric conjugate to be formed.