МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

КУРСОВАЯ РАБОТА

по теме
«Нечёткие множества и системы нечёткого вывода»
по дисциплине
«Дискретная математика»

Выполнил: Митя XX **Преподаватель:** П. В. И

Содержание

1. Задача

Часто студентам хочется дружить с девушками, и, как известно, такая дружба требует определённых финансовых затрат. В связи с ограниченностью денежных ресурсов студента, в месяц на дружбу ему рекомендуется выделять столько средств, сколько, по его ощущениям, достойна подруга.

Студент, как эксперт в вопросах, связанных с девушками, может безошибочно и точно определить у любой подруги 2 характеристики: **интеллект** (измеряемый в IQ) и **красоту** (измеряемую в условных единицах красоты [у.е.к.] в диапазоне [1, 100], где 100 - эталон красоты, а 1 - «**He** в моём вкусе»).

Задача состоит в нахождении оптимальной суммы месячных трат на дружбу с девушкой по её характеристике.

2. Построение системы нечёткого вывода

Для решения поставленной задачи построим систему нечёткого вывода типа Мамдани.

2.1. Построение базы нечётких лингвистических правил

Предварительно определим входные и выходные лингвистические переменные для системы. В качестве **входных лингвистических переменных** имеем:

- Интеллект девушки (IQ) с термом-множеством: $T_{\rm интеллект} = \{ \Gamma \rm лупая, \ Hедалёкая, \ Обыкновенного \ ума, \ Умная, \ \Gamma \rm ениальная \}$
- Красота девушки ([у.е.к.]) с термом-множеством $T_{\rm красота} = \{ {\rm Некрасивая,\ Немилая,\ Типичной\ красоты,\ Симпатичная,\ Красивая} \}$

Выходные лингвистические переменные:

• Сумма месячных трат на дружбу (руб.) с термом-множеством $T_{\rm сумма} = \{ {\rm Мизерная, \ Mалая, \ Подъёмная, \ Существенная, \ Огромная} \}$

На основе **субъективных** представлений о связи ума и красоты девушек с пределом месячных трат на дружбу с ними составим матрицу правил нечёткой продукции для системы:

И	Глупая	Недалёкая	Обыкн. ума	Умная	Гениальная
Некрасивая	Мизерная	Мизерная	Малая	Подъёмная	Существенная
Немилая	Мизерная	Малая	Подъёмная	Подъёмная	Существенная
Типич. красоты	Мизерная	Малая	Подъёмная	Существенная	Существенная
Симпатичная	Малая	Малая	Подъёмная	Существенная	Огромная
Красивая	Малая	Подъёмная	Существенная	Огромная	Огромная

Таблица 1: Правила нечёткой продукции.

2.2. Функции принадлежности нечётких термов

Сопоставим множества значений входных переменных функциям принадлежности $M(x_1)$, то есть установим правила определения степени истинности для предпосылок лингвистических правил.

1. Интеллект девушки (IQ):

$$x_1 - \text{Интеллект девушки}$$

$$M_{\text{глуп.}}(x_1) = \frac{1}{1 + \exp\left(0.2 * (x_1 - 30)\right)}, x_1 \in (-\infty, 60)$$

$$M_{\text{недалёк.}}(x_1) = \exp\left(-\frac{(x_1 - 60)^2}{2 * (8)^2}\right), x_1 \in [30, 85)$$

$$M_{\text{обык.ум.}}(x_1) = \exp\left(-\frac{(x_1 - 90)^2}{2 * (8)^2}\right), x_1 \in [60, 120)$$

$$M_{\text{умн.}}(x_1) = \exp\left(-\frac{(x_1 - 110)^2}{2 * (8)^2}\right), x_1 \in [85, 135]$$

$$M_{\text{гениал.}}(x_1) = \frac{1}{1 + \exp\left(-0.3 * (x_1 - 140)\right)}, x_1 \in [120, +\infty)$$

Рис. 1: Графики функций $M(x_2)$ для лингв. переменной - интеллект.

2. Красота девушки ([у.е.к]):

$$x_2 - \text{Красота девушки}$$

$$M_{\text{некрас.}}(x_2) = \frac{1}{1 + \exp\left(0.3 * (x_2 - 15)\right)}, x_2 \in [0, 30)$$

$$M_{\text{немил.}}(x_2) = \exp\left(-\frac{(x_2 - 30)^2}{2 * (6)^2}\right), x_2 \in [10, 50]$$

$$M_{\text{типич.крас.}}(x_2) = \exp\left(-\frac{(x_2 - 50)^2}{2 * (6)^2}\right), x_2 \in [30, 70]$$

$$M_{\text{симпат.}}(x_2) = \exp\left(-\frac{(x_2 - 80)^2}{2 * (6)^2}\right), x_2 \in [60, 100]$$

$$M_{\text{красив.}}(x_2) = \frac{1}{1 + \exp\left(-0.3 * (x_2 - 90)\right)}, x_2 \in [75, 100]$$

Рис. 2: Графики функций $M(x_2)$ для лингв. переменной - красота.

3. Сумма месячынх трат (руб.):

$$y-\text{Сумма месячных трат}$$

$$M_{\text{мизерн.}}(y)=\frac{1}{1+\exp\left(0.002*(y-2000)\right)},y\in[0,5000)$$

$$M_{\text{мал.}}(y)=\exp\left(-\frac{(y-5000)^2}{2*(900)^2}\right),y\in[500,10000]$$

$$M_{\text{подъёмн.}}(y)=\exp\left(-\frac{(y-15000)^2}{3*(2400)^2}\right),y\in[5000,25000)$$

$$M_{\text{существ.}}(y)=\exp\left(-\frac{(y-25000)^2}{3*(2400)^2}\right),y\in[15000,35000]$$

$$M_{\text{огромн.}}(y)=\frac{1}{1+\exp\left(-0.002*(y-32000)\right)},y\in[25000,+\infty)$$

Рис. 3: Графики функций M(y) для лингв. переменной - сумма месячных трат.

3. Получение вывода

Используем построенную систему нечёткого вывода для получения заключения по алгоримту Мамдани.

Допустим, что студенту N повезло, и он расмматривет дружбу с подругой, обладающей следующими характеристиками:

- *Интеллект* **100** IQ
- *Kpacoma* **80** [y.e.k]

Определим оптимальную месячную сумму трат на дружбу с такой подругой.

3.1. Фаззификация

Переведём точные значения входных переменных в нечёткий формат, определив значения функций принадлежности и активные правила продукции.

На рисунке ?? видно, что значение входной переменной Интеллект x=100 попадает в область определения только функций $M_{\text{обыкн.ум}(x)}$ и $M_{\text{умн.}(x)}$. Найдём значения этих функций при данном аргументе:

$$M_{\text{обык.ум.}}(100) = \exp\left(-\frac{(100 - 90)^2}{2*(8)^2}\right) \approx 0.458$$

 $M_{\text{умн.}}(100) = \exp\left(-\frac{(100 - 110)^2}{2*(8)^2}\right) \approx 0.458$

Аналогично на рисунке $\ref{eq:community}$ легко видеть, что значение входной переменной Kpacoma~x=80 попадает в область определения функций $M_{\text{симпатич.}(x)}$ и $M_{\text{крас.}(x)}$. Также найдём значения этих функций при данном аргументе:

$$M_{\text{симпат.}}(80) = \exp\left(-\frac{(80 - 80)^2}{2*(6)^2}\right) = 1$$

$$M_{\text{красив.}}(80) = \frac{1}{1 + \exp\left(-0.3*(80 - 90)\right)} \approx 0.047$$

Таким образом, для данного случая активными правилами нечёткой продукции являются:

- 1. Если подруга **симпатичная** и **обыкновенного ума**, то в месяц на дружбу можно потратить **подъёмную** сумму.
- 2. Если подруга **симпатичная** и **умная**, то в месяц на дружбу можно потратить **суще- ственную** сумму.
- 3. Если подруга **красивая** и **обыкновенного ума**, то в месяц на дружбу можно потратить **существенную** сумму.
- 4. Если подруга **красивая** и **уманя**, то в месяц на дружбу можно потратить **огромную** сумму.

3.2. Блок выработки решения

3.2.1. Агрегирование

Агрегируем степени истинности для предпосылок α_i по каждому из активных правил (i - номер правила):

$$\begin{array}{ll} \alpha_1 = \min(M_{\text{обык.ум.}}(100), M_{\text{симпат.}}(80)) &= 0.458 \\ \alpha_2 = \min(M_{\text{обык.ум.}}(100), M_{\text{крас.}}(80)) &= 0.047 \\ \alpha_3 = \min(M_{\text{умн.}}(100), M_{\text{симпат.}}(80)) &= 0.458 \\ \alpha_4 = \min(M_{\text{умн.}}(100), M_{\text{красив.}}(80)) &= 0.047 \end{array}$$

3.2.2. Активация

Определим степени истинности μ_i по каждому из активных правил (*i* - номер правила):

$$\begin{aligned} \mu_1 &= \min(\alpha_1, M_{\text{подъёмн.}}(y)) &= \min(0.458, M_{\text{подъёмн.}}(y)) \\ \mu_2 &= \min(\alpha_2, M_{\text{существ.}}(y)) &= \min(0.047, M_{\text{существ.}}(y)) \\ \mu_3 &= \min(\alpha_3, M_{\text{существ.}}(y)) &= \min(0.458, M_{\text{существ.}}(y)) \\ \mu_4 &= \min(\alpha_4, M_{\text{оргомн.}}(y)) &= \min(0.047, M_{\text{оргомн.}}(y)) \end{aligned}$$

3.2.3. Аккумулирование

Объединим найденные нечёткие множества и сформируем нечёткое множество для выходной переменной с функцией принадлежности:

$$\mu_B = \max(\mu_1, \mu_2, \mu_3, \mu_4)$$

Рис. 4: График функции $\mu_B(y)$ - результата аккумулирования.

3.3. Дефаззификация

Определим чёткое значение выходной переменной y' как значение центра тяжести для функции $\mu_B(y)$ (на интервале-носителе $y \in [5000, 40000])^1$:

$$y' = \frac{\int_{5000}^{40000} y * \mu_B(y) dy}{\int_{5000}^{40000} \mu_B(y) dy} \approx \frac{1.83782 * 10^8}{9187.14} \approx 20004$$

На самом деле центр тяжести функции $\mu_B(y)$ можно было установить из рисунка ??, так как график функции симметричен относительно y=20,000.

3.4. Заключение

Таким образом, после выполнения алгоритма Мамдани в построенной системе нечёткого вывода для входных данных: Интеллект девушки - 100 IQ; Красота девушки - 80 [у.е.к], значение выходной переменной составляет около 20 тыс. руб. Именно столько студенту N рекомендовано тратить в месяц на дружбу с подругой.

¹Подынтегральные функции не расписаны, потому что они слишком громоздки для отображения в обыкновенной дроби. Сами интегралы высчитаны с помощью Wolfram Alpha.