Finite state automata Data Structures and Algorithms for Com (ISCL-BA-07) al Linguistics III

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

Finite-state automata (FSA)

· A finite-state machine is in one of a finite-number of states in a given time

- . The machine changes its state based on its input
 - Every regular language is generated/recognized by an FSA
 - Every PSA generates/recognizes a regular language
- . Two flavors
 - Deterministic finite automata (DFA)
 Non-deterministic finite automata (NFA)
 - Note: the NFA is a superset of DFA.

DFA as a graph

 States are represented as nodes Transitions are shown by the edg labeled with symbols from an

Why study finite-state automata?

 There are many applications - Electronic circuit design

 Workflow manageme
 Games But more importantly >) Tokenization, stemming
 Morphological analysis
 Shallow parsing/chunking

Unlike some of the abstract machines we discussed, finite-state automata are efficient models of computation

- alphabet
- . One of the states is marked as the initial state
- · Some states are accepting states

DFA: formal definition

Formally, a finite state automaton, M, is a tuple (Σ,Q,q_0,F,Δ) with

- Σ is the alphabet, a finite set of symbols
- O a finite set of states
- $q_0^{}$ is the start state, $q_0^{}\in Q$
- $F\,$ is the set of final states, $F\subseteq Q$
- $\boldsymbol{\Delta}^{}$ is a function that takes a state and a symbol in the alphabet, and returns another state $(\Delta : Q \times \Sigma \rightarrow Q)$

At any given time, for any input, a DFA has a single well-defined action t on to take

DFA: formal definition

- $\Sigma = \{a, b\}$
- $Q = \{q_0, q_1, q_2\}$
- $q_0 q_0$ F = {q₂}
- $\Delta = \{(q_0, a) \rightarrow q_2, (q_1, a) \rightarrow q_2, \}$ $(q_0, b) \rightarrow q_1$ $(q_1,b) \rightarrow q_1$

Another note on DFA error or sink state

- Is this PSA deterministic? . To make all transitions well-defi
- To make all transitions well-defir we can add a sink (or error) state
 For brevity, we skip the explicit error state
 In that case, when we reach a dead end, recognition fails

DFA: the transition table transition table

marks the start state $^{\circ}\,$ marks the accepting state(s)

DFA: the transition table

- arks the start state * marks the accepting state(s)

DFA recognition 1. Start at q₀

- 2. Process an input symbol, move
 - accordingly
- Accept if in a final state at the end of the input

b b a

DFA recognition

1. Start at qo 2. Process an input symbol, move

- accordingly
- Accept if in a final state at the end
 of the input

DFA recognition 1. Start at q₀

- 2. Process an input symbol, move
- accordingly Accept if in a final state at the end of the input

- Input: b b a

NFA recognition

1. Start at qo

- Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

NFA recognition

- 1. Start at qo Take the next input, mark all possible next states
- 3. If an accepting state is marked at the

end of the input, accept

NFA recognition

Input: a b a b

- Start at q₀ 2. Take the next input, mark all possible
 - next states
 - 3. If an accepting state is marked at the
 - end of the input, accept

NFA recognition

- 1. Start at qo 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the
- end of the input, accept

Note: the process is deterministic, and

Input: a b a b

An exercise Construct an NFA and a DFA for the language over $\Sigma=\{\alpha,b\}$ where all sen tences end with $\alpha b.$

Input: a b a b

One more complication: ε transitions

- An extension of NFA, c-NFA, allows moving without consuming an i symbol, indicated by an c-transition (sometimes called a λ-transition)
- Any c-NFA can be converted to an NFA

e-transitions need attention

- + How does the (depth-first) NFA r work on this automaton?
- Can we do without ε transitions?

- of all states
 - e-closure(q₀) = (q₀) e-closure(q₁) = (q₁, q₂) e-closure(q₂) = (q₂)

 - Replace each arc to each state with arc(s) to all states in the c-closure of

21	sition	tab	le							
		symbol						symbol		
		α	ь	e	c*			α	ь	
	⊸ 0	0	ø	1	0,1,2	→	\rightarrow 0	0,3	1,3	
ě	1	2	1,3	2	1,2		1	3	1,3	
Z	2	3	ø	ø	2		2	3	ø	
	*3	3	1	ø	3		*3	3	1	

transition table

NFA-DFA equivalence

- The language recognized by every NFA is recognized by some DFA . The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- ${\boldsymbol *}$ The same is true for ${\boldsymbol \varepsilon}\textsc{-NFA}$
- All recognize/generate regular languages
 NFA can automatically be converted to the equivalent DFA

Why do we use an NFA then?

 NEA (or c-NEA) are often easier to construct
 Intuitive for humans (cf. earlier exercise)
 Some representations are easy to convert to NEA rather than DEA, e.g., reg. expressions

* NFA may require less memory (fewer states) A quick exercise - and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma=\{\alpha,b\}$, such that 4th symbol from the end is an α

2. Construct a DFA for the same language

Summary	Acknowledgments, credits, references					
 PSA are efficient tools with many applications. PSA have the othersus DSA, NSA (or maybe three; e-NSA) DSA recognition is those, recognition with NSA may require exponential time. Reading suggestion: hopereditff*97 (and its successive editions), funcisky and Martin (2019; Ch. 2) Not: FSA deterministration, minimization. Reading suggestion: hopereditff*97 (and its successive editions), furnishy and Martin (2019; Ch. 2) 	Introduce Description Interest Intere					
Ç Çilkdin, 188 (Deissely of Tillingen Stelen formalis 2002 20 / 20	C Cilhins SS / Disensity of Stringers Water Survey of Stringers A1					
C Cilclein, 180 / Driversity of Thilangue Waster Security 200(2) A2	C-Gibbin, Mr/Decemby-d'Ellingen Their heurin-2013: A3					
C Cilifolin, 188 / Discretiy of Tillingen Water Sewerin 200202 A.E.	C Cilidan, 100 / Donounty of Sillingus Washs forested 20020 A.S.					