jack.kelly@postgrad.plymouth.ac.uk

Jack Kelly,

Camille Carroll, Rana Moyeed,

Shouqing Luo and Xinzhong Li

Integrated systems approach to identify genetic networks and hubs in Alzheimer's disease

Background

- Network analysis allows for a greater understanding of the interactions of genes in the biological processes that underlie the pathophysiological state of disease
- Allows for identification of sub-networks that are formed of clusters of highly interconnected genes, also known as modules
- Can then identify hub genes which are highly connected within modules and play an important role in preservation of the module.

Objective

 Use network analysis to gain molecular insight into Alzheimer's disease using gene expression data in blood

Methods

- Datasets GSE63060 and GSE63061 from GEO database merged:
 - Microarray dataset
 - Whole blood
 - 245 AD, 142 MCI and 182 HC
- Weighted Gene Correlation Network Analysis (WGCNA) is used to build networks

Modules of highly connected genes are found using hierarchical clustering and an additional *k*-means correction based step

- Preservation of modules between
 Alzheimer's, MCI and healthy control were identified using NetRep [1]
- Intra modular hubs of high biological relevance are identified using betweenness centrality (BC), closeness centrality, module membership and PageRank.
- The R code used for the novel hub detection test is available at http://tiny.cc/ltbtlz

Modules

We highlight these significant modules:

AD network modules not present in control and

MCI networks (1/29)

Regulation of lipolysis in adipocytes,
 Neuroactive ligand-receptor interaction,
 detection of chemical stimulus involved in
 sensory perception of smell (1076 genes)

Processes associated with healthy control modules not present in PD network (3/58)

- sensory perception, regulation of potassium ion transmembrane transport (584 genes)
- Peroxisome, amide transport (248 genes)
- Establishment of epithelial cell polarity (187 genes)

Hub genes and Transcription factors

- A permutation test was created to identify the highly connected hub genes:
 - Within the AD module not preserved in MCI associated with olfactory systems, we identified *OR5AS1* which encodes a member of the olfactory receptor family and plays a role in triggering response to smells
- *REST* was identified as a regulator in AD module associated with olfactory systems not preserved in MCI networks.
- A full list of hubs can be found at bit.ly/NetworkAD

Regulation of lipolysis in adipocytes in Alzheimer's disease

- Modules are visualised using Gephi
- Hub genes are shown in the centre of the network
- We highlight the following hub genes:
 - TRPC5 helps form non-selective
 Ca2+-permeable channels
 - BRAP has been associated with obesity and other metabolic traits, which can play a role in effecting insulin signaling and aging

Conclusion

- We have identified many important processes that are altered in Alzheimer's disease patients or are present in Alzheimer's patients but not in healthy controls
- We show multiple novel genes that play an important role in key processes that are dysregulated in Alzheimer's disease and could present new therapeutic targets
- A full list of significant modules and hub genes can be found at: bit.ly/NetworkAD

Plymouth.ac.uk/peninsula

