TWAS Analysis of Diversity Outbred Strain RNAseq Data

Dave Bridges

July 7, 2020

Contents

1	Purpose	1
2	Experimental Details	1
3	Raw Data	1
4	Analysis 4.1 Cholesterol Levels	2 2
5	TWAS with Cholesterol Levels for NCD	4
6	TWAS with Cholesterol Levels for HFD 6.1 TWAS Modification by Sex	6 10
7	Comparason with mouse GWAS	11
8	Integrated TWAS Analysis 8.1 Strongest Associations	11 27
9	Session Information	31

1 Purpose

2 Experimental Details

The RNA expression data was downloaded from GSE72759 as a matrix file, and compared with genotypes from the Svenson-183 dataset.

3 Raw Data

```
library(readr) #loads the readr package
expression.filename <- "GSE72759_D0192_RNAseq_UpperQuartileNormalized_n21454genes_forGEOSubmission.txt"
expression.data <- read_tsv(expression.filename, show_col_types = F) %>%
    dplyr::rename(ENSEMBL.ID=1)

genotype.filename <- 'Svenson-183_Svenson_DO-MegaMUGA-calls.csv'
genotype.data <- read_csv(genotype.filename,</pre>
```

```
col_types = cols(
    .default = col_character(),
    chr = col_factor(levels=NULL),
    pos = col_double()
))

phenotype.filename <- 'Svenson-183_Svenson_DO-phenotypes.csv'
phenotype.data <- read_csv(phenotype.filename, na='-999999')

phenotype.data[phenotype.data=='-999999'] <- NA

mean.expression <-
    expression.data %>%
    dplyr::select(contains(phenotype.data$sample))%>%
    rowMeans()

expression.data <-
    expression.data %>%
    filter(mean.expression>10)
```

4 Analysis

Only evaluated gene expression for genes with >10 TPM

4.1 Cholesterol Levels

Regressed cholesterol levels by diet and sex

Table 1: Summary statistics for cholesterol levels at 8 weeks

sex	diet	mean	se	sd	n
F	chow	NA	1.16	NA	225
\mathbf{F}	hf	108	1.79	25.3	200
\mathbf{M}	chow	NA	1.47	NA	224
${\bf M}$	hf	NA	2.06	NA	197

```
library(broom)
lm(chol1~sex*diet, data=phenotype.data) %>%
  tidy %>%
```

Table 2: Global interactions between sex and diet

term	estimate	std.error	statistic	p.value
(Intercept)	80.0	1.68	47.63	0.000
sexM	16.4	2.38	6.91	0.000
diethf	28.0	2.38	11.81	0.000
sexM:diethf	3.9	3.37	1.16	0.248

Table 3: Summary statistics for cholesterol levels at 8 weeks

sex	diet	mean	se	sd	n
F	chow	NA	1.16	NA	225
\mathbf{F}	\mathbf{hf}	108	1.79	25.3	200
\mathbf{M}	chow	NA	1.47	NA	224
\mathbf{M}	hf	NA	2.06	NA	197

```
library(broom)
lm(chol1~sex*diet, data=phenotype.data) %>%
  tidy %>%
  kable(caption="Global interactions between sex and diet")
```

Table 4: Global interactions between sex and diet

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	80.0	1.68	47.63	0.000
sexM	16.4	2.38	6.91	0.000
diethf	28.0	2.38	11.81	0.000
sexM:diethf	3.9	3.37	1.16	0.248

```
chol.lm <- lm(chol1~sex+diet, data=phenotype.data)
chol.lm.hf <- lm(chol1~sex, data=filter(phenotype.data, diet=='hf'))

cholesterol.data.hfd <-
   phenotype.data %>%
     filter(!is.na(chol1)) %>%
   filter(diet=='hf') %>%
   mutate(adj.chol.hf=residuals(chol.lm.hf)+coefficients(chol.lm.hf)['(Intercept)'])
```

5 TWAS with Cholesterol Levels for NCD

```
library("org.Mm.eg.db")
library(purrr)
possible.lm <- possibly(.f = lm, otherwise=NULL) # to catch errors when we only have one sex and a cont
twas.data.ncd <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$sample))%>%
  pivot longer(cols=one of(cholesterol.data.ncd$sample),
              names_to='sample',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='sample') %>%
  dplyr::select(chol1,sex,sample,ENSEMBL.ID,expression) %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol1+sex, data = .x))) %>%
  filter(term=='chol1') %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd.all <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$sample))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$sample),
               names_to='sample',
               values to='expression') %>%
  full_join(cholesterol.data.ncd,by='sample') %>%
  dplyr::select(chol1,sex,sample,ENSEMBL.ID,expression) %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol1+sex, data = .x))) %>%
  filter(term %in% c('chol1', '(Intercept)')) %>%
  dplyr::select(ENSEMBL.ID,term,estimate,std.error) %>%
  pivot_wider(id_cols=ENSEMBL.ID,
              names_from = 'term',
              values_from = c(estimate,std.error)) %>%
  mutate(estimate.rel = estimate_chol1/`estimate_(Intercept)`,
         std.error.rel = std.error_chol1/`estimate_(Intercept)`)
twas.data.ncd.r2 <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$sample))%>%
```

```
pivot_longer(cols=one_of(cholesterol.data.ncd$sample),
               names_to='sample',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='sample') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::glance(possible.lm(expression ~ chol1+sex, data = .x))) %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd.int <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$sample))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$sample),
               names_to='sample',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='sample') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol1*sex, data = .x))) %>%
  filter(term=='chol1:sexM') %>%
  arrange(p.value) %>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd.int$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd.int$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd.all$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd.all$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd %>%
  head(10) %>%
  kable(caption="Top 10 liver TWAS assocations with cholesterol levels")
```

Table 5: Top 10 liver TWAS assocations with cholesterol levels

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000069805	chol1	-0.600	0.150	-3.99	0.000	0.000	Fbp1
ENSMUSG00000026895	chol1	-0.026	0.007	-3.89	0.000	0.000	Ndufa8
ENSMUSG00000026814	chol1	-0.045	0.012	-3.71	0.000	0.000	Eng
ENSMUSG00000000088	chol1	-0.058	0.016	-3.71	0.000	0.000	Cox5a
ENSMUSG00000040048	chol1	-0.041	0.011	-3.70	0.000	0.000	Ndufb10

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000049422	chol1	-0.207	0.057	-3.63	0.000	0.000	Chchd10
ENSMUSG00000038462	chol1	-0.074	0.020	-3.60	0.001	0.001	Uqcrfs1
ENSMUSG00000083863	chol1	2.112	0.591	3.58	0.001	0.001	NA
ENSMUSG00000026238	chol1	-0.086	0.025	-3.41	0.001	0.001	Ptma
ENSMUSG00000025481	chol1	-0.071	0.021	-3.37	0.001	0.001	Urah

```
twas.data.ncd.int %>%
head(10) %>%
kable(caption="Top 10 liver TWAS assocations with cholesterol levels that are modified by sex")
```

Table 6: Top 10 liver TWAS assocations with cholesterol levels that are modified by sex

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG000000	71644chol1:sexM	-0.123	0.032	-3.90	0.000	0.000	Eef1g
ENSMUSG000000	63001chol $1:$ sexM	-0.098	0.028	-3.44	0.001	0.001	Gm9701
ENSMUSG000000	028798chol1:sexM	-0.039	0.012	-3.38	0.001	0.001	Eif3i
ENSMUSG000000	25794chol $1:$ sexM	-0.099	0.029	-3.37	0.001	0.001	Rpl14
ENSMUSG000000	003546chol1:sexM	-0.065	0.019	-3.33	0.001	0.001	Klc4
ENSMUSG000000	74227chol $1:$ sexM	-0.062	0.019	-3.23	0.002	0.002	Spint2
ENSMUSG000000	40715chol $1:$ sexM	0.187	0.059	3.18	0.002	0.002	Rsc1a1
ENSMUSG000000	024038chol1:sexM	-0.053	0.017	-3.15	0.002	0.002	Ndufv3
ENSMUSG000000	61477chol1:sexM	-0.240	0.076	-3.13	0.002	0.002	Rps7
ENSMUSG000000	940048chol1:sexM	-0.068	0.022	-3.13	0.002	0.002	Ndufb10

6 TWAS with Cholesterol Levels for HFD

```
group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol1+sex, data = .x))) %>%
  filter(term=='chol1') %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.hf.all<-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$sample))%>%
  pivot longer(cols=one of(cholesterol.data.hfd$sample),
               names_to='sample',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='sample') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol1+sex, data = .x))) %%
  filter(term %in% c('chol1', '(Intercept)')) %>%
  dplyr::select(ENSEMBL.ID,term,estimate,std.error) %>%
  pivot_wider(id_cols=ENSEMBL.ID,
              names_from = 'term',
              values_from = c(estimate,std.error)) %>%
  mutate(estimate.rel = estimate_chol1/`estimate_(Intercept)`*100,
         std.error.rel = std.error_chol1/`estimate_(Intercept)`*100)
twas.data.hf.r2 <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$sample))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$sample),
               names_to='sample',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='sample') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::glance(possible.lm(expression ~ chol1+sex, data = .x))) %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.int.hf <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$sample))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$sample),
               names_to='sample',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='sample') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol1*sex, data = .x))) %>%
  filter(term=='chol1:sexM') %>%
  arrange(p.value) %>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.hf$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.hf$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
```

Table 7: Top 10 liver TWAS a ssocations with cholesterol levels for HFD

ENSEMBL.ID	term	estimate	$\operatorname{std.error}$	statistic	p.value	p.adj	symbol
ENSMUSG00000022615	chol1	-0.073	0.022	-3.29	0.001	0.001	Tymp
ENSMUSG00000052914	chol1	0.043	0.015	2.92	0.004	0.004	Cyp2j6
ENSMUSG00000028760	chol1	-0.028	0.010	-2.84	0.006	0.006	Eif4g3
ENSMUSG00000024913	chol1	-0.032	0.012	-2.76	0.007	0.007	Lrp5
ENSMUSG00000028656	chol1	0.014	0.005	2.71	0.008	0.008	Cap1
ENSMUSG00000025003	chol1	0.319	0.118	2.70	0.008	0.008	Cyp2c39
ENSMUSG00000052520	chol1	0.352	0.131	2.69	0.009	0.009	Cyp2j5
ENSMUSG00000057530	chol1	-0.106	0.040	-2.68	0.009	0.009	Ece1
ENSMUSG00000074063	chol1	-0.140	0.052	-2.68	0.009	0.009	Osgin1
ENSMUSG00000024456	chol1	-0.018	0.007	-2.68	0.009	0.009	Diaph1

```
twas.data.int.hf %>%
head(10) %>%
kable(caption="Top 10 liver TWAS assocations with cholesterol levels that are modified by sex for HFD
```

Table 8: Top 10 liver TWAS assocations with cholesterol levels that are modified by sex for HFD $\,$

ENSEMBL.ID	term	estimate	$\operatorname{std.error}$	statistic	p.value	p.adj	symbol
ENSMUSG000000	90231chol1:sexM	-1.177	0.316	-3.72	0.000	0.000	Cfb
ENSMUSG000000	40855chol1:sexM	-0.044	0.012	-3.57	0.001	0.001	Reps2
ENSMUSG000000	52520chol $1:$ sexM	-0.886	0.249	-3.56	0.001	0.001	Cyp2j5
ENSMUSG000000	3113chol $1:$ sexM	-0.214	0.065	-3.28	0.001	0.001	F9
ENSMUSG000000	16534 hol1:sexM	-0.345	0.105	-3.27	0.002	0.002	Lamp2
ENSMUSG000000	2109khol $1:sexM$	-0.802	0.246	-3.26	0.002	0.002	Serpina3n
ENSMUSG000000	39197chol1:sexM	-0.380	0.119	-3.19	0.002	0.002	Adk
ENSMUSG000000	23175chol $1:$ sexM	-0.198	0.063	-3.15	0.002	0.002	Bsg
ENSMUSG000000	68036chol1:sexM	-0.042	0.013	-3.12	0.002	0.002	Afdn
ENSMUSG000000	21794 hol1:sexM	-0.739	0.238	-3.11	0.003	0.003	Glud1

```
write_csv(twas.data.hf,
          file="HFD TWAS Results.csv")
write_csv(twas.data.int.hf,
          file="HFD TWAS Interaction Results.csv")
twas.data.combined.hf <-
  left_join(twas.data.hf,
            filter(twas.data.int.hf, p.value<0.05), #only append interaction values when significant
             by=c('ENSEMBL.ID','symbol'),
             suffix = c('_main','_int'))
write_csv(twas.data.combined.hf,
          file="HFD TWAS Results - Combined.csv")
sig.twas.data.hf <-</pre>
    twas.data.hf %>%
  filter(p.adj<0.05)
sig.twas.data.ncd <-</pre>
  twas.data.ncd %>%
  filter(p.adj<0.05)
sig.twas.data.ncd$symbol %in% sig.twas.data.hf$symbol %>% table
## .
## FALSE TRUE
##
   208
sig.twas.data.ncd$genes %in% sig.twas.data.hf$genes %>% table
## 
library(venneuler)
vd.down.up <- venneuler(c("NCD"=170, "HFHS"=27, "NCD&HFHS"=0))</pre>
vd.down.down <- venneuler(c("NCD"=43, "HFHS"=69, "NCD&HFHS"=0))
vd.all <- venneuler(c("NCD"=dim(sig.twas.data.ncd)[1],</pre>
                      "HFHS"=dim(sig.twas.data.hf)[1],
                      "NCD&HFHS"=intersect(sig.twas.data.hf$symbol,sig.twas.data.ncd$symbol) %>% length
plot(vd.down.up)
```


plot(vd.all, main="Transcripts Associating with Cholesterol")

Transcripts Associating with Cholesterol

Our analysis identified **216** nominally significant associations between expression of genes and adjusted cholesterol levels on a normal chow diet. Among those, 44 were positively correlated and 44 were negatively correlated with cholesterol levels.

6.1 TWAS Modification by Sex

By modeling the interactions between sex and expression on cholesterol levels, we identified **205** genes where the cholesterol/expression relationship was modified by sex in a nominally significant manner. This included 19 genes where the relationship was stronger in males, and 186 where it was stronger in females.

7 Comparason with mouse GWAS

```
chr11.genes <- c('Znrf3', 'Xbp1', 'Ccdc117', 'Ankrd36', 'Mrps24', 'Urgcp', 'Dbnl', 'Pgam2', 'Polm', 'Ae'
genes.of.interest <- c('Cyp7a1','Fasn','Ldlr','Hmgcr')
twas.data.ncd %%
  filter(symbol %in% c(chr11.genes,genes.of.interest)) %>%
  kable(caption="Genes in the chromosome 11 interval with liver expression")
```

Table 9: Genes in the chromosome 11 interval with liver expression

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000004394	chol1	-0.015	0.006	-2.495	0.014	0.014	Tmed4
ENSMUSG00000002741	chol1	-0.012	0.008	-1.433	0.155	0.155	Ykt6
ENSMUSG00000025153	chol1	-0.903	0.657	-1.374	0.173	0.173	Fasn
ENSMUSG00000021670	chol1	0.106	0.094	1.121	0.265	0.265	Hmgcr
ENSMUSG00000028240	chol1	0.102	0.144	0.712	0.478	0.478	Cyp7a1
ENSMUSG00000032193	chol1	-0.017	0.045	-0.387	0.700	0.700	Ldlr
ENSMUSG00000020484	chol1	0.022	0.083	0.272	0.786	0.786	Xbp1
ENSMUSG00000041798	chol1	-0.015	0.056	-0.262	0.794	0.794	Gck

8 Integrated TWAS Analysis

```
combined.twas.data <-</pre>
  full_join(twas.data.ncd, twas.data.hf, by=c('ENSEMBL.ID','term','symbol'), suffix=c('_ncd','_hfd'))
combined.twas.data.all <-</pre>
  full_join(twas.data.ncd.all, twas.data.hf.all, by=c('ENSEMBL.ID','symbol'), suffix=c('_ncd','_hfd'))
library(ggplot2)
library(ggrepel)
ggplot(combined.twas.data,
       aes(y=estimate_hfd, x=estimate_ncd,
           xmin=estimate_ncd-std.error_ncd, xmax=estimate_ncd+std.error_ncd,
           ymin=estimate_hfd-std.error_hfd, ymax=estimate_hfd+std.error_hfd )) +
  geom_point() +
  #geom_errorbar() +
  #geom_errorbarh() +
  geom_hline(yintercept = 0, lty=2) +
  geom_vline(xintercept = 0, lty=2) +
  geom_label_repel(aes(label=symbol),
                   data = subset(combined.twas.data, abs(estimate_hfd) > 2|abs(estimate_ncd) > 2))
```



```
sig.genes <- filter(combined.twas.data, p.adj_ncd<0.05|p.adj_hfd<0.05) %>% pull(symbol)
ggplot(combined.twas.data.all %>% filter(symbol %in% sig.genes),
       aes(y=estimate.rel_hfd, x=estimate.rel_ncd,
           xmin=estimate.rel ncd-std.error.rel ncd,
           xmax=estimate.rel_ncd+std.error.rel_ncd,
           ymin=estimate.rel_hfd-std.error.rel_hfd,
           ymax=estimate.rel_hfd+std.error.rel_hfd )) +
  geom_point() +
  geom_errorbar() +
  geom_errorbarh() +
  geom_smooth() +
  geom_hline(yintercept = 0, lty=2) +
  geom_vline(xintercept = 0, lty=2) +
  xlim(-0.03,0.03) +
  ylim(-0.03,0.03) +
  geom_text_repel(aes(label=symbol)) +
  labs(y="On HFHS Diet (beta)",
      x="On NCD Diet (beta)",
      title="Associations of Liver Transcripts with Cholesterol",
      subtitle="Significant for at least one diet")
```

Associations of Liver Transcripts with Cholesterol Significant for at least one diet

Associations of Liver Transcripts with Cholesterol

Comparason with human GWAS

 $Downloaded\ human\ cholesterol\ associated\ alleles\ from\ https://t2d.hugeamp.org/phenotype.html?phenotype=CHOL$

library(biomaRt) human = useMart("ensembl", dataset = "hsapiens_gene_ensembl") mouse = use-Mart("ensembl", dataset = "mmusculus_gene_ensembl")

 $gwas.data <- full_join(gwas.data, mapping.data, by=c(`Symbol'=`HGNC.symbol')) \%>\% \ dplyr::filter(!(is.na(MGI.symbol))) \\$

#are gwas alleles enriched in correlation analyses

sig.twas.data <- filter(twas.data, p.value<0.05) #sig.twas.datasymbolMGI.symbol %>% table

combined.twas.data %>% filter(symbol %in% gwas.data\$MGI.symbol) %>% arrange(p.value) %>% head %>% kable(caption="Most significant TWAS association hits that are also nearby GWAS hits")

checked if a TWAS was a GWAS hit twas.data.matched <- combined.twas.data % > % mutate(hGWAS.match=symbol % in% gwas.data\$MGI.symbol)

with(twas.data.matched, table(hGWAS.match,p.value<0.05)) %>% fisher.test() %>% tidy %>% kable(caption='Fisher test for enrichment of GWAS hits in liver TWAS genes')

glm(hGWAS.match~p.value, data=twas.data.matched, family='binomial') %>% tidy %>% kable(caption="Logistic regression of TWAS values against likilihood of a GWAS hit.")

```
```r
twas.list <- twas.data.ncd %>% arrange(-estimate) %>% pull(estimate)
names(twas.list) <- twas.data.ncd %>% arrange(-estimate) %>% pull(symbol)
twas.list <- sort(twas.list, decreasing = TRUE)</pre>
#twas.list <- twas.list[!(is.na(names(twas.list)))]</pre>
library(clusterProfiler)
go.twas.bp <- gseGO(geneList=twas.list,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.25,
 verbose=T,
 by='fgsea',
 eps=1E-25)
#enrichement
twas.data.ncd %>%
 filter(p.value<0.05) %>%
 pull(symbol) ->
 twas.sig
go.twas.bp.enrich <- enrichGO(gene=twas.sig,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.05)
go.twas.bp.enrich.simpl <- simplify(go.twas.bp.enrich,</pre>
 cutoff=0.7,
 by="p.adjust",
 select_fun=min)
library(enrichplot)
dotplot(go.twas.bp.enrich.simpl,
 showCategory=50,
 color='pvalue',
 font.size=8)
```

# Pathway Analyses for NCD



barplot(go.twas.bp.enrich.simpl,font.size=8)



cnetplot(go.twas.bp.enrich.simpl,

```
showCategory=100,
node_label="gene",
cex_label_gene=0.5)
```

#### male germ cell proliferation

mitochondrial respiratory chain complex ligasembly calcular response to xenoblotic stimulus

NADH dehydrogenase complex assembly, punne-containing compound catabolic process



Gelg weside transport

endocytic recycling Golgi organization of response to endoplasmic reticulum stress regulation of Golgi organization regulation of protein complex stability

Golgi to lysosome transport

protein insertion into ER membrane by stop-transfer membrane-anchor sequence



heatplot(go.twas.bp.enrich.simpl)



library(ggupset)
upsetplot(go.twas.bp.enrich.simpl)











as.data.frame(go.twas.bp) %>% select("Description","setSize","enrichmentScore","NES","pvalue","p.adjust kable(caption="NCD GO BP Analysis of TWAS Associations from GSEA")

Table 10: NCD GO BP Analysis of TWAS Associations from GSEA

	Description	setSize	${\bf enrichment Score}$	NES	pvalue	p.adjust
GO:0051640	organelle localization	113	-0.874	-1.83	0	0.209

```
as.data.frame(go.twas.bp) %>%
write_csv(file="NCD TWAS GO-BP GSEA.csv")
as.data.frame(go.twas.bp.enrich.simpl) %>% select("Description", "GeneRatio", "Count", "pvalue", "p.adjust", kable(caption="NCD GO BP Analysis of TWAS Associations from Enrichment")
```

Table 11: NCD GO BP Analysis of TWAS Associations from Enrichment

	Description	GeneRatioC	ount	pvalue	p.adjust
GO:	ATP metabolic process	27/208	27	0.000	0.000
0046034 GO:	oxidative phosphorylation	20/208	20	0.000	0.000
0006119 GO:	aerobic respiration	22/208	22	0.000	0.000
0009060	•	,		0.000	
GO: 0006163	purine nucleotide metabolic process	23/208	23	0.000	0.000

	Description	GeneRati	o Count	pvalue	p.adjust
GO: 0019693	ribose phosphate metabolic process	23/208	23	0.000	0.000
GO: 0005996	monosaccharide metabolic process	13/208	13	0.000	0.000
GO: 0006898	receptor-mediated endocytosis	12/208	12	0.000	0.000
GO: 0006790	sulfur compound metabolic process	13/208	13	0.000	0.000
GO: 1902600	proton transmembrane transport	7/208	7	0.000	0.000
GO: 0010257	NADH dehydrogenase complex assembly	6/208	6	0.000	0.000
GO: 0032981	mitochondrial respiratory chain complex I assembly	6/208	6	0.000	0.000
GO: 0044282	small molecule catabolic process	12/208	12	0.000	0.000
GO: 0018208	peptidyl-proline modification	5/208	5	0.000	0.000
GO: 0050821	protein stabilization	9/208	9	0.000	0.001
GO: 0043161	proteasome-mediated ubiquitin-dependent protein catabolic process	13/208	13	0.000	0.001
GO: 0006090	pyruvate metabolic process	7/208	7	0.000	0.001
GO: 0019320	hexose catabolic process	4/208	4	0.000	0.002
GO: 0048193	Golgi vesicle transport	10/208	10	0.000	0.002
GO: 0019079	viral genome replication	7/208	7	0.000	0.002
GO: 0045807	positive regulation of endocytosis	7/208	7	0.000	0.002
GO: 0045069	regulation of viral genome replication	6/208	6	0.000	0.002
GO: 0045861	negative regulation of proteolysis	11/208	11	0.000	0.003
GO: 0045454	cell redox homeostasis	4/208	4	0.000	0.003
GO: 0048845	venous blood vessel morphogenesis	3/208	3	0.000	0.003
GO: 0050731	positive regulation of peptidyl-tyrosine phosphorylation	8/208	8	0.000	0.003
GO: 0010631	epithelial cell migration	10/208	10	0.000	0.004
GO: 0090132	epithelium migration	10/208	10	0.000	0.004
GO: 0034976	response to endoplasmic reticulum stress	9/208	9	0.000	0.004
GO: 0009154	purine ribonucleotide catabolic process	4/208	4	0.000	0.004
GO: 0046939	nucleotide phosphorylation	6/208	6	0.000	0.004

	Description	GeneRatio	Count	pvalue	p.adjust
GO: 0043462	regulation of ATP-dependent activity	5/208	5	0.000	0.005
GO: 0042326	negative regulation of phosphorylation	11/208	11	0.000	0.005
GO: 0009615	response to virus	10/208	10	0.000	0.005
GO: 1905897	regulation of response to endoplasmic reticulum stress	5/208	5	0.000	0.006
GO: 0051604	protein maturation	10/208	10	0.000	0.006
GO: 0006066	alcohol metabolic process	10/208	10	0.000	0.006
GO: 0051897	positive regulation of protein kinase B signaling	6/208	6	0.000	0.006
GO: 1903358	regulation of Golgi organization	3/208	3	0.000	0.006
GO: 0032781	positive regulation of ATP-dependent activity	4/208	4	0.000	0.007
GO: 0055001	muscle cell development	8/208	8	0.000	0.007
GO: 2001242	regulation of intrinsic apoptotic signaling pathway	7/208	7	0.000	0.008
GO: 0072523	purine-containing compound catabolic process	4/208	4	0.000	0.008
GO: 0052547	regulation of peptidase activity	11/208	11	0.000	0.010
GO: 0006631	fatty acid metabolic process	11/208	11	0.000	0.010
GO: 0072593	reactive oxygen species metabolic process	8/208	8	0.000	0.010
GO: 0007030	Golgi organization	6/208	6	0.000	0.011
GO: 0034341	response to interferon-gamma	6/208	6	0.001	0.012
GO: 0060348	bone development	8/208	8	0.001	0.013
GO: 0048732	gland development	11/208	11	0.001	0.015
GO: 0071453	cellular response to oxygen levels	6/208	6	0.001	0.015
GO: 0006979	response to oxidative stress	10/208	10	0.001	0.017
GO: 0030970	retrograde protein transport, ER to cytosol	3/208	3	0.001	0.017
GO:	endoplasmic reticulum to cytosol transport	3/208	3	0.001	0.017
1903513 GO:	positive regulation of epithelial cell migration	6/208	6	0.001	0.019
0010634 GO:	response to hypoxia	7/208	7	0.001	0.020
0001666 GO: 0001933	negative regulation of protein phosphorylation	9/208	9	0.001	0.021

	Description	GeneRati	o Count	pvalue	p.adjust
GO: 0022411	cellular component disassembly	10/208	10	0.001	0.021
GO: 0043254	regulation of protein-containing complex assembly	10/208	10	0.001	0.022
GO: 0045862	positive regulation of proteolysis		9	0.001	0.022
GO: 0021549	cerebellum development	5/208	5	0.001	0.023
GO: 0006641	triglyceride metabolic process	5/208	5	0.001	0.024
GO: 0001936	regulation of endothelial cell proliferation	6/208	6	0.001	0.024
GO: 0051346	negative regulation of hydrolase activity	9/208	9	0.001	0.025
GO: 0007565	female pregnancy	6/208	6	0.002	0.026
GO: 0006734	NADH metabolic process	3/208	3	0.002	0.027
GO: 0045446	endothelial cell differentiation	5/208	5	0.002	0.028
GO: 0002064	epithelial cell development	7/208	7	0.002	0.028
GO: 0150117	positive regulation of cell-substrate junction organization	3/208	3	0.002	0.029
GO: 0097193	intrinsic apoptotic signaling pathway	8/208	8	0.002	0.031
GO: 0035335	peptidyl-tyrosine dephosphorylation	3/208	3	0.002	0.031
GO: 0071466	cellular response to xenobiotic stimulus	6/208	6	0.002	0.033
GO: 0001935	endothelial cell proliferation	6/208	6	0.002	0.034
GO: 0006735	NADH regeneration	2/208	2	0.002	0.034
GO: 0061718	glucose catabolic process to pyruvate	2/208	2	0.002	0.034
GO: 0070862	negative regulation of protein exit from endoplasmic reticulum	2/208	2	0.002	0.034
GO: 0032456	endocytic recycling	4/208	4	0.002	0.034
GO: 0045927	positive regulation of growth	8/208	8	0.002	0.037
GO: 1901361	organic cyclic compound catabolic process	10/208	10	0.003	0.038
GO: 0009410	response to xenobiotic stimulus	8/208	8	0.003	0.038
GO:	regulation of developmental growth	9/208	9	0.003	0.038
0048638 GO:	male germ cell proliferation	2/208	2	0.003	0.038
0002176 GO: 0036302	atrioventricular canal development	2/208	2	0.003	0.038

	Description	GeneRatioCour	nt pvalue	p.adjust
GO:	protein insertion into ER membrane by stop-transfer	2/208 2	0.003	0.038
0045050	membrane-anchor sequence			
GO:	negative regulation of endothelial cell differentiation	2/208 2	0.003	0.038
0045602				
GO:	Bergmann glial cell differentiation	2/208 2	0.003	0.038
0060020		2/202	0.000	0.000
GO:	regulation of protein complex stability	2/208 2	0.003	0.038
0061635		2/200	0.000	0.000
GO:	Golgi to lysosome transport	2/208 2	0.003	0.038
0090160	1 (1 1: 1 1 )	F /000	0.000	0.020
GO:	endothelium development	5/208 5	0.003	0.038
0003158 GO:	necenter intermedication	5/208 5	0.003	0.042
0031623	receptor internalization	5/208 5	0.005	0.042
GO:	steroid metabolic process	8/208	0.003	0.043
0008202	steroid inetabolic process	6/206	0.003	0.040
GO:	protein exit from endoplasmic reticulum	3/208	0.003	0.044
0032527	protein exit from endoplastine reticularin	0/200	0.000	0.011
GO:	positive regulation of cell-substrate adhesion	5/208 5	0.004	0.045
0010811	positive regulation of con publication	0,200	0.001	0.010
GO:	multi-multicellular organism process	6/208	0.004	0.046
0044706	T	-,		
GO:	cellular modified amino acid metabolic process	6/208	0.004	0.046
0006575	•	,		
GO:	axon extension	5/208 5	0.004	0.047
0048675		,		
GO:	deoxyribonucleoside metabolic process	2/208 2	0.004	0.047
0009120				
GO:	cell adhesion mediated by integrin	4/208	0.004	0.049
0033627				
GO:	cellular nitrogen compound catabolic process	9/208	0.004	0.050
0044270				

```
as.data.frame(go.twas.bp.enrich.simpl) %>%
 write_csv(file="NCD TWAS GO-BP Enrichment.csv")

steroid.enrichment <- as.data.frame(go.twas.bp) %>% filter(ID=='GO:0016126')
```

The pathway () was enriched with significant TWAS associations (p=). The genes that were part of the core enrichment of this pathway were .

#### 8.1 Strongest Associations

```
"'{ strongest-associations} library(ggplot2) genes <- twas.data.ncd.combined %>% arrange(p.value_main) %>% filter(is.na(p.value_main)) %>% filter(!(is.na(symbol))) %>% head(6) %>% pull(symbol) p <- list()
```

```
for (i \ in \ 1:6) \{ \ gene <- \ genes[i] \ gene.ens <- \ filter (twas.data.ncd.int, \ symbol == genes[i]) \ \% > \% \ pull (ENSEMBL.ID) \}
```

 $p[[i]] <- expression.data \%>\% filter(ENSEMBL.ID == gene.ens) \%>\% pivot\_longer(cols=c(starts\_with('F'), starts\_with('M')), names\_to='sample', values\_to='expression') \%>\% full\_join(phenotype.data,by='sample') \%>\% filter(!is.na(diet)) \%>\% ggplot(aes(y=chol1,expression,col=sex)) + geom\_point(size=0.1) + geom\_point(size=0$ 

```
of', gene, sep="")) + theme(text=element_text(size=8), legend.position ="none") } library(gridExtra)
do.call(grid.arrange,p)
Strongest Interactions Between Expression and Sex
```{ strongest-interactions}
genes <- twas.data.ncd.combined %>%
  arrange(p.value_int) %>%
  filter(!(is.na(symbol))) %>%
  head(6) %>%
  pull(symbol)
p <- list()
for(i in 1:6){
  gene <- genes[i]</pre>
  gene.ens <- filter(twas.data.ncd.int, symbol==genes[i]) %% pull(ENSEMBL.ID)</pre>
p[[i]] <- expression.data %>%
  filter(ENSEMBL.ID == gene.ens) %>%
  pivot_longer(cols=c(starts_with('F'),
                      starts_with('M')),
               names to='sample',
               values to='expression') %>%
  full join(phenotype.data,by='sample') %>%
  filter(!is.na(diet)) %>%
  ggplot(aes(y=chol1,expression,col=sex)) +
  geom_point(size=0.1) +
  geom smooth(method='lm',se=F) +
  facet_grid(~diet) +
  labs(y="Cholesterol (mg/dL)",
       x=paste('Expression of ', gene, sep="")) +
  theme(text=element_text(size=8),
        legend.position = "none")
}
library(gridExtra)
do.call(grid.arrange,p)
gene <- 'Fbp1'
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
library(ggplot2)
expression.data %>%
  filter(ENSEMBL.ID == gene.ens) %>%
  pivot_longer(cols=c(starts_with('F'),
                      starts_with('M')),
               names_to='sample',
               values_to='expression') %>%
  full_join(phenotype.data,by='sample') %>%
  filter(!is.na(diet)) %>%
  ggplot(aes(y=chol1,expression,col=sex)) +
  geom_point() +
  geom_smooth(method='lm',se=F) +
  facet_grid(~diet) +
```

geom smooth(method='lm'.se=F) + facet grid(~diet) + labs(v="Cholesterol (mg/dL)", x=paste('Expression

A tibble: 1 x 12

r.squ~1 adj.r~2 sigma stati~3 p.value

##

df logLik

AIC

BIC devia~4 df.re~5

9 Session Information

```
sessionInfo()
## R version 4.2.2 (2022-10-31)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats4
                           graphics grDevices utils
                 stats
                                                         datasets methods
## [8] base
## other attached packages:
## [1] ggupset_0.3.0
                              enrichplot_1.16.2
                                                     clusterProfiler_4.4.4
## [4] ggrepel_0.9.2
                              ggplot2_3.4.0
                                                     venneuler_1.1-3
## [7] rJava_1.0-6
                              purrr_1.0.1
                                                     org.Mm.eg.db_3.15.0
## [10] AnnotationDbi_1.58.0
                              IRanges_2.30.1
                                                    S4Vectors 0.34.0
## [13] Biobase_2.56.0
                              BiocGenerics_0.42.0
                                                    broom_1.0.2
## [16] readr_2.1.3
                              dplyr_1.0.10
                                                    tidyr_1.2.1
## [19] knitr_1.41
## loaded via a namespace (and not attached):
##
     [1] fgsea 1.22.0
                                colorspace 2.0-3
                                                        ggtree_3.4.4
                                qvalue_2.28.0
##
     [4] ellipsis_0.3.2
                                                        XVector_0.36.0
     [7] aplot_0.1.9
                                rstudioapi_0.14
                                                        farver_2.1.1
## [10] graphlayouts_0.8.4
                                bit64_4.0.5
                                                        scatterpie_0.1.8
## [13] fansi 1.0.3
                                codetools 0.2-18
                                                        splines 4.2.2
## [16] cachem_1.0.6
                                GOSemSim_2.22.0
                                                        polyclip_1.10-4
## [19] jsonlite_1.8.4
                                GO.db_3.15.0
                                                        png_0.1-8
## [22] ggforce_0.4.1
                                compiler_4.2.2
                                                        httr_1.4.4
##
  [25] backports_1.4.1
                                lazyeval_0.2.2
                                                        assertthat_0.2.1
  [28] Matrix_1.5-3
                                fastmap_1.1.0
                                                        cli_3.6.0
## [31] tweenr_2.0.2
                                htmltools_0.5.4
                                                        tools_4.2.2
## [34] igraph_1.3.5
                                gtable_0.3.1
                                                        glue_1.6.2
## [37] GenomeInfoDbData_1.2.8 reshape2_1.4.4
                                                        DO.db_2.9
## [40] fastmatch 1.1-3
                                Rcpp_1.0.9
                                                        vctrs 0.5.1
## [43] Biostrings_2.64.1
                                                        nlme_3.1-161
                                ape_5.6-2
                                                        stringr_1.5.0
## [46] ggraph_2.1.0
                                xfun_0.36
## [49] lifecycle 1.0.3
                                DOSE_3.22.1
                                                        zlibbioc 1.42.0
## [52] MASS_7.3-58.1
                                scales_1.2.1
                                                        tidygraph_1.2.2
## [55] vroom_1.6.0
                                hms_1.1.2
                                                        parallel_4.2.2
## [58] RColorBrewer_1.1-3
                                yaml_2.3.6
                                                       memoise_2.0.1
## [61] gridExtra_2.3
                                downloader_0.4
                                                        ggfun_0.0.9
```

## ## ## ## ## ##	[67] [70] [73] [76] [79] [82] [85]	yulab.utils_0.0.6 highr_0.10 GenomeInfoDb_1.32.4 bitops_1.0-7 treeio_1.20.2 shadowtext_0.1.2 plyr_1.8.8 magick_2.7.3 pillar_1.8.1	stringi_1.7.12 tidytree_0.4.2 rlang_1.0.6 evaluate_0.19 patchwork_1.1.2 bit_4.0.5 magrittr_2.0.3 generics_0.1.3 withr_2.5.0	RSQLite_2.2.20 BiocParallel_1.30.4 pkgconfig_2.0.3 lattice_0.20-45 labeling_0.4.2 tidyselect_1.2.0 R6_2.5.1 DBI_1.1.3 mgcv_1.8-41
##		KEGGREST_1.36.3	RCurl_1.98-1.9	tibble_3.1.8
##		crayon_1.5.2	utf8_1.2.2	tzdb_0.3.0
##	[97]	rmarkdown_2.19	viridis_0.6.2	grid_4.2.2
##	[100]	data.table_1.14.6	blob_1.2.3	digest_0.6.31
##	[103]	gridGraphics_0.5-1	munsell_0.5.0	viridisLite_0.4.1
##	[106]	ggplotify_0.1.0		