PRINTABLE VERSION

Quiz 23

Question 1

Given that

$$\int_0^1 f(x) \, \mathrm{d} x = 4, \int_0^3 f(x) \, \mathrm{d} x = 2, \, \text{and} \, \int_3^4 f(x) \, \mathrm{d} x = 3 \, \text{find} \, \int_0^4 f(x) \, \mathrm{d} x.$$

- a) $\bigcirc -1$
- **b)** 2
- c) 05
- **d)** 03
- **e)** 09

Question 2

Given that $\, x > -1 \ {
m and} \ F(x) = \int_3^x t \sqrt{t+1} \, dx \,$ find F(3).

- a) 06
- **b)** 2
- c) $\bigcirc 0$
- **d)** 03

e)
$$0 \frac{11}{4}$$

Given that $\, x > -1 \ {
m and} \ F(x) = \int_5^x t \sqrt{t+1} \, dx$, find F'(x) .

a)
$$\bigcirc x+1$$

b)
$$0 x\sqrt{x+1}$$

c)
$$\sqrt{x+1} + 1/2 \frac{x}{\sqrt{x+1}}$$

d)
$$\sqrt{x+1}$$

e)
$$\bigcirc x$$

Question 4

Given that $\, x > -7 \ {
m and} \ F(x) = \int_2^x t \sqrt{t+7} \, dx$, find F'(4).

a)
$$\bigcirc \frac{13\sqrt{11}}{11}$$

b)
$$\sqrt{11}$$

c)
$$0.4\sqrt{11}$$

Given that $\,F(x)=\int_0^xrac{1}{t^2+25}\,\,dx$, find F'(-5).

- a) $0 \frac{1}{25}$
- **b)** 0 1
- **c)** $\bigcirc \frac{1}{50}$
- **d)** 0
- **e)** $\bigcirc \frac{1}{250}$

Given that $F(x)=\int_0^x rac{1}{t^2+4}\ dx$, find F''(x) .

- a) $0 \frac{6x^2 8}{(x^2 + 4)^3}$
- **b)** $\bigcirc \frac{1}{4}$
- c) $\bigcirc \frac{1}{x^2+4}$
- **d)** $\bigcirc \frac{-2x}{(x^2+4)^2}$
- e) $\bigcirc 0$

Question 7

Given that $\,F(x)=\int_{x}^{\,0}\sqrt{t^2+9}\,dx$, find F'(5).

- a) $\sqrt{34}$
- **b)** $0 \sqrt{34}$
- \mathbf{c}) $\mathbf{0}$
- **d)** 03
- **e)** $\bigcirc \frac{5\sqrt{34}}{34}$

Find the derivate of $\,F(x)=\int_0^{\,x^2}t\sin(t)\,dx\,$.

- **b)** $x^2 \sin(x^2)$
- c) $2x^2\sin(x)$
- $\mathbf{d)} \quad \bigcirc \, 2 \, x^3 \sin \left(x^2 \right)$
- e) $\bigcirc x \sin(x)$

Question 9

Find the derivate of $\,F(x)=\int_0^{\,x\cos(x)}\sqrt{49-t^2}\,dx$.

a)
$$(\cos(x) - x\sin(x))\sqrt{49 - x^2}$$

b)
$$(\cos(x) - x\sin(x))\sqrt{49 - x^2(\cos(x))^2}$$

c)
$$\sqrt{49-x^2(\cos(x))^2}$$

d)
$$\sqrt{49-x^2}$$

e)
$$0 - \frac{x \cos(x)}{\sqrt{49 - x^2(\cos(x))^2}}$$

Find a formula for $\ f(x)$ given that f is continuous and $-x^4+x^2-3\,x=\int_0^x \ f(t)\,dt.$

a)
$$\bigcirc f(x) = -4x^3 + 2x - 3$$

b)
$$\bigcirc f(x) = -1/5 \, x^5 + 1/3 \, x^3 - 3/2 \, x^2$$

c)
$$Of(x) = -x^4 + x^2 - 3x$$

d)
$$\bigcirc f(x) = -x^4 + x^2 - 2x$$

e)
$$\bigcirc f(x) = -1/5 \, x^5 + 1/3 \, x^3 - 3/2 \, x^2 - 3$$