Complexidade Assintótica

ACH2002 - Introdução à Ciência da Computação II

Delano M. Beder

Escola de Artes, Ciências e Humanidades (EACH) Universidade de São Paulo

dbeder@usp.br

08/2008

Material baseado em slides dos professores Marcos Chaim, Cid de Souza e Cândida da Silva

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

1 / 23

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

ACH2002

2/2

Comportamento Assintótico

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
n log n	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$pprox 10^{20}$
2 ⁿ	$\approx 1,26\cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Crescimento Assintótico de Funções

- Custo da solução aumenta com o tamanho n do problema
 - O tamanho n fornece uma medida da dificuldade para resolver o problema
 - Tempo necessário para resolver o problema aumenta quando n cresce
 - Exemplo: número de comparações para achar o maior elemento de um vetor(array) ou para ordená-lo aumenta com o tamanho da entrada n.
- Escolha do algoritmo não é um problema crítico quando n é pequeno.
 - O problema é quando *n* cresce.
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande.

Comportamente Assintótico

1 milhão (106) de operações por segundo

Função de custo	10	20	30	40	50	60
n	0,00001s	0,00002 s	0,00003s	0,00004s	0,00005s	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s 0,0025s		0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias 35,7 anos		366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

Delano M. Beder (EACH - USP) Complexidade Assintótica ACH2002 3 / 23 Delano M. Beder (EACH - USP)

Comportamente Assintótico

Comportamento Assintótico

Influência do aumento de velocidade dos computadores no tamanho t do problema

Função de custo	Computador Atual (C)	Computador 100C	Computador 1000C	
n	t	100 <i>t</i>	1000 <i>t</i>	
n ²	t	10 <i>t</i>	31.6 <i>t</i>	
n ³	t	4, 6 <i>t</i>	10 <i>t</i>	
2 ⁿ	t	t+6,6	t + 10	

(Tabela 1.4 Página 18) Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004.

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f(n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

Delano M. Beder (EACH - USP)

Complexidade Assintótica

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

Relacionamento assintótico

Definição

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, tem-se $|f(n)| \leq c|g(n)|$.

Relacionamento assintótico

Exemplo:

$$g(n) = n$$
 e $f(n) = n^2$
 $|n| \le |n^2|$ para todo $n \in N$.
Para $c = 1$ e $m = 0 \Rightarrow |g(n)| \le |f(n)|$.
Portanto, $f(n)$ domina assintoticamente $g(n)$.

7 / 23

Notação O

- Knuth criou a notação O (O grande) para expressar que g(n)domina assintoticamente f(n), escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o bacharel em Sistemas de Informação?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo A é complicado.
 - É mais fácil determinar que f(n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

Notação O

Definição

 $O(g(n)) = \{ f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que} \}$ 0 < f(n) < cg(n), para todo $n > n_0$ }.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Delano M. Beder (EACH - USP)

Complexidade Assintótica

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

Notação O

Definicão

 $O(g(n)) = \{ f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que} \}$ 0 < f(n) < cq(n), para todo $n > n_0$ }.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Notação Ω

Definição

 $\Omega(g(n)) = \{ f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que } \}$ 0 < cg(n) < f(n), para todo $n > n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\tfrac{3}{2}n^2-2n\in O(n^2)$$

Valores de c e n₀ que satisfazem a definição são

$$c = \frac{3}{2} e n_0 = 2$$

Notação Ω

Notação ⊖

Definição

 $\Omega(g(n)) = \{ f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais que } \}$ 0 < cq(n) < f(n), para todo $n > n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\tfrac{3}{2}n^2-2n\in\Omega(n^2)$$

Valores de c e n₀ que satisfazem a definição são

$$c = \frac{1}{2} e n_0 = 2$$

Definição

 $\Theta(g(n)) = \{ f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } \}$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

Notação ⊝

Notação o

Definicão

 $\Theta(g(n)) = \{ f(n) : \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \text{ tais que } \}$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto q(n).

Definicão

 $o(g(n)) = \{ f(n) : para toda constante positiva c, existe uma constante \}$ $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$ }.

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que q(n).

Exemplo:

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2)$$

Valores de c₁, c₂ e n₀ que satisfazem a definição são

$$c_1=\frac{1}{2}, c_2=\frac{3}{2} e n_0=2$$

Exemplo:

$$1000n^2 \in o(n^3)$$

Para todo valor de c, um n₀ que satisfaz a definição é:

$$n_o = \lceil \frac{1000}{c} \rceil + 1$$

Definições equivalentes

Definição

 $\omega(g(n)) = \{ f(n): para toda constante positiva c, existe uma constante n_0 > 0 tal que 0 \le cg(n) < f(n), para todo n \ge n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para todo valor de c, um n_0 que satisfaz a definição é:

$$n_o = [1000c] + 1$$

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$f(n) \in O(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

$$f(n) \in \Theta(g(n))$$
 se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

$$f(n) \in \Omega(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$

$$f(n) \in \omega(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

23

Delano M. Beder (EACH - USP)

Complexidade Assintótica

0110000

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

$$f(n) \in \Omega(f(n)).$$

$$f(n) \in \Theta(f(n)).$$

Simetria:

$$f(n) \in \Theta(g(n))$$
 se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se, e somente se, $g(n) \in \Omega(f(n))$.

$$f(n) \in o(g(n))$$
 se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

Se
$$f(n) \in O(g(n))$$
 e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.

Se
$$f(n) \in \Omega(g(n))$$
 e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.

Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.

Se
$$f(n) \in o(g(n))$$
 e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.

Se
$$f(n) \in \omega(g(n))$$
 e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

Operações com a notação O

Exercícios

```
f(n) = O(f(n))
c \times f(n) = O(f(n)), c \text{ \'e uma constante}
O(f(n)) + O(f(n)) = O(f(n))
O(O(f(n))) = O(f(n))
O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
O(f(n))O(g(n)) = O(f(n)g(n)))
f(n)O(g(n)) = O(f(n)g(n)))
```

Quais as relações de comparação assintótica (O, Ω, Θ) das funções:

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	<i>f</i> ₁	f_2	f ₃	f_4	<i>f</i> ₅	f ₆	f ₇	f ₈
f_1	Θ							
f_2		Θ						
<i>f</i> ₃			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

21 / 23

Delano M. Beder (EACH - USP)

Complexidade Assintótica

ACH2002

9 99 /

Referências

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. *Algoritmos - Tradução da 2a. Edição Americana*. Editora Campus, 2002 (Capítulo 3).

[2] Michael T. Goodrich & Roberto Tamassia. *Estruturas de Dados e Algoritmos em Java*. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).

[3] Nívio Ziviani. *Projeto de Algoritmos com implementações em C e Pascal*. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).