```
In [2]: # import Section
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import cv2
        from os import listdir
        from os.path import isfile, join
        import re
        from matplotlib import pyplot as plt
In [3]: def isjpg(filepath):
            return re.search(".jpg$", filepath)
In [4]: | # Function Section
        def calculate_pad(brightness, saturation):
             p = 0.69*brightness + 0.22*saturation
            a = -0.31*brightness + 0.6*saturation
            d = 0.76*brightness + 0.32*saturation
            return [p,d,a]
        def calculate blur(img):
             return cv2.Laplacian(img, cv2.CV_64F).var()
        def mean brightness(img):
            hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #convert it to hsv
             return np.mean(hsv[:,:,2])
        def mean saturation(img):
            hsv = cv2.cvtColor(img, cv2.COLOR BGR2HSV) #convert it to hsv
             return np.mean(hsv[:,:,1])
        def calculate_opticalFlow(img1, img2):
            f, axarr = plt.subplots(2,1)
             axarr[0].imshow(img1)
             axarr[1].imshow(img2)
             plt.show()
            prev = cv2.cvtColor(testEld[0], cv2.COLOR_BGR2GRAY)
            forward = cv2.cvtColor(testEld[1], cv2.COLOR_BGR2GRAY)
            mask = np.zeros like(prev)
            mask[..., 1] = 255
            flow = cv2.calcOpticalFlowFarneback(prev, forward, flow=None, pyr_scale=0.5,)
            magnitude, angle = cv2.cartToPolar(flow[..., 0], flow[..., 1])
             return cv2.normalize(magnitude, None, 0, 255, cv2.NORM MINMAX)[0]
```

```
In [5]:
        import glob
        import re
        from scipy.interpolate import interp1d
        mypath = "data/scenes/big_hero_6"
        files = [f for f in listdir(mypath) if isjpg(join(mypath, f))]
        pad data = []
        for fname in files:
             src = cv2.imread(join(mypath, fname),1)
            if(src is None):
                 continue
            gx = '^{-1} - ([^{-1}*).*'
             p = re.compile(gx)
            scene = int(p.search(fname.replace('big_hero_6-','')).group(1))
             pad data.append(calculate pad(mean brightness(src),mean saturation(src)) + [
        df = pd.DataFrame(pad data,columns=['pleasure','dominance','arousal', 'scene'] )
        df = df.sort_values(by=['scene'],ascending=True)
        df = df.groupby(['scene']).mean()
        normalized df=(df-df.min())/(df.max()-df.min())
        normalized df
        ax2 = normalized df.plot.line()
        ax2.set_title('After interpolation')
        ax2.set_xlabel("scene")
        ax2.set ylabel("valence")
        normalized_df = normalized_df.reset_index()
```



```
In [9]: import seaborn as sns
sns.regplot(normalized_df['pleasure'],normalized_df['arousal'])
```

Out[9]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fe71d58d160>



```
In [10]: sns.regplot(normalized_df['pleasure'],normalized_df['dominance'])
```

Out[10]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fe65c07ae80>



```
In [11]:
         import seaborn as sns, numpy as np, pandas as pd, random
         import matplotlib.pyplot as plt
         from mpl toolkits.mplot3d import Axes3D
         sns.set_style("whitegrid", {'axes.grid' : False})
         fig = plt.figure(figsize=(6,6))
         ax = Axes3D(fig)
         x = normalized_df['pleasure'].tolist()
         y = normalized df['dominance'].tolist()
         z = normalized_df['arousal'].tolist()
         cm = sns.palplot(sns.color_palette("BrBG", 7))
         g = ax.scatter(x, y, z, c=x, marker='o', depthshade=False, cmap=cm)
         ax.set_xlabel('Pleasure')
         ax.set_ylabel('Dominance')
         ax.set_zlabel('Arousal')
         # produce a legend with the unique colors from the scatter
         legend = ax.legend(*g.legend_elements(), loc="lower center", title="X Values", both
         ax.add_artist(legend)
         plt.show()
```



```
In [12]: new_df = normalized_df.copy()
         new_df['pleasure_diff'] = new_df['pleasure'].diff(-1)
         new_df['pleasure_inflection'] = np.where(new_df['pleasure_diff'] > 0, 1, 0)
         new_df[new_df['pleasure_inflection'].diff() != 0]['scene']
Out[12]: 0
                 0
                 2
                 3
         3
         4
                 4
         5
                 5
         6
                 6
                 7
         7
         8
                 8
         9
                 9
                11
         11
         12
                12
         14
                14
         16
                16
         17
                17
         19
                19
         21
                21
         22
                22
         24
                24
                26
         26
         27
                27
         29
                29
         Name: scene, dtype: int64
```

```
In [13]:
         ANGER POINT = [-0.43, 0.67, 0.34]
         JOY POINT = [0.76, 0.48, 0.35]
         SURPRISE POINT = [0.4, 0.67, -0.13]
         DISGUST POINT = [-0.6, 0.35, 0.11]
         FEAR_POINT = [-0.64, 0.6, -0.43]
         SADNESS POINT = [-0.63, 0.27, -0.33]
         from scipy import spatial
         kdtree = spatial.cKDTree(np.array([ANGER_POINT, JOY_POINT, SURPRISE_POINT, DISGUST_I
         mu = normalized df.sample(1)
         print(mu)
         print(kdtree.data)
         dist, ix = kdtree.query([mu['pleasure'].iloc[0],mu['arousal'].iloc[0],mu['dominal
         print(dist)
         kdtree.data[ix]
             scene pleasure dominance
                                           arousal
```

```
scene pleasure dominance arousal
10 10 0.823251 0.797904 0.659519
[[-0.43 0.67 0.34]
        [ 0.76 0.48 0.35]
        [ 0.4 0.67 -0.13]
        [-0.6 0.35 0.11]
        [-0.64 0.6 -0.43]
        [-0.63 0.27 -0.33]]
        [0.48666823 1.01993017]

Out[13]: array([[ 0.76,  0.48,  0.35],
        [ 0.4 ,  0.67, -0.13]])
```

```
In [56]: | df = pd.read csv('clean df.csv')
         df = df[['scene_avg_p','scene_avg_a','scene_avg_d']]
         normalized df=(df-df.min())/(df.max()-df.min())
         normalized df
         ANGER POINT = [-0.43, 0.67, 0.34]
         JOY POINT = [0.76, 0.48, 0.35]
         SURPRISE POINT = [0.4, 0.67, -0.13]
         DISGUST POINT = [-0.6, 0.35, 0.11]
         FEAR_POINT = [-0.64, 0.6, -0.43]
         SADNESS POINT = [-0.63, 0.27, -0.33]
         from scipy import spatial
         kdtree = spatial.cKDTree(np.array([ANGER POINT, JOY POINT, SURPRISE POINT, DISGUST |
         mu = normalized_df.sample(1)
         print(mu)
         print(kdtree.data)
         dist, ix = kdtree.query([mu['scene_avg_p'].iloc[0],mu['scene_avg_a'].iloc[0],mu[
         print(dist)
         kdtree.data[ix]
         def identify(row):
             dist, ix = kdtree.query([row['scene avg p'],row['scene avg a'],row['scene avg
              arr = kdtree.data[ix]
              emotions = []
             for a in arr:
                  if(([-0.43, 0.67, 0.34] == a).all()):
                      emotions.append('Anger')
                  elif(([0.76, 0.48, 0.35] == a).all()):
                      emotions.append('Joy')
                  elif(([0.4, 0.67, -0.13] == a).all()):
                      emotions.append('Surprise')
                  elif(([-0.6, 0.35, 0.11] == a).all()):
                      emotions.append('Disgust')
                  elif(([-0.64, 0.6, -0.43] == a).all()):
                      emotions.append('Fear')
                  elif(([-0.63, 0.27, -0.33] == a).all()):
                      emotions.append('Sadness')
              return emotions
         normalized_df['Emotion'] = normalized_df.apply(identify, axis=1)
         df = pd.read csv('clean df.csv')
         df['Emotion'] = normalized df['Emotion']
         df
              scene_avg_p scene_avg_a scene_avg_d
         116
                 0.228381
                               0.441212
                                            0.224525
         [[-0.43 0.67 0.34]
          [ 0.76 0.48 0.35]
          [ 0.4 0.67 -0.13]
```

```
[-0.6
        0.35 0.11]
[-0.64 0.6 -0.43]
[-0.63 0.27 -0.33]]
[0.45550563 0.54760164 0.70650067]
```

## Out[56]:

|    | scene_name   | scene_avg_p | scene_avg_a | scene_avg_d | scene_avg_blur | scene_avg_optical_flo |
|----|--------------|-------------|-------------|-------------|----------------|-----------------------|
| 0  | big_hero_60  | 64.405538   | 72.981351   | 82.268261   | 204.102944     | 4.284929e-C           |
| 1  | big_hero_61  | 76.658546   | 45.019868   | 93.268124   | 2058.214860    | 4.400276e-C           |
| 2  | big_hero_610 | 93.844222   | 48.897762   | 113.486587  | 319.563208     | 7.499705e-C           |
| 3  | big_hero_611 | 104.689522  | 68.900088   | 128.197153  | 344.318350     | 3.311605e-C           |
| 4  | big_hero_612 | 52.825514   | 48.692155   | 66.235224   | 302.668920     | 1.479887e-C           |
| 5  | big_hero_613 | 54.635902   | 56.085796   | 69.141541   | 373.148184     | 1.438304e-C           |
| 6  | big_hero_614 | 60.207244   | 39.892563   | 73.756332   | 187.768550     | 1.667552e-C           |
| 7  | big_hero_615 | 51.286053   | 48.994812   | 64.496347   | 81.434549      | 3.594452e-C           |
| 8  | big_hero_616 | 45.333909   | 38.411284   | 56.466676   | 110.447071     | Na                    |
| 9  | big_hero_617 | 66.545265   | 37.953094   | 80.838276   | 609.955143     | 9.923468e-C           |
| 10 | big_hero_618 | 62.003990   | 58.110423   | 77.850133   | 297.200018     | 2.421011e-(           |
| 11 | big_hero_619 | 51.165063   | 48.256860   | 64.275012   | 475.489556     | 1.182504e-C           |
| 12 | big_hero_62  | 86.242043   | 28.622364   | 102.479761  | 595.473182     | Na                    |
| 13 | big_hero_620 | 65.270362   | 51.280798   | 80.851837   | 300.750671     | 3.396905e-C           |
| 14 | big_hero_621 | 70.021676   | 55.197043   | 86.757769   | 88.788430      | 6.182749e-C           |
| 15 | big_hero_622 | 43.435414   | 49.524243   | 55.516054   | 294.189997     | Na                    |
| 16 | big_hero_623 | 77.214954   | 2.256519    | 89.155313   | 955.737272     | 5.426965e-(           |

|     | scene_name   | scene_avg_p | scene_avg_a | scene_avg_d | scene_avg_blur | scene_avg_optical_flo |
|-----|--------------|-------------|-------------|-------------|----------------|-----------------------|
| 17  | big_hero_624 | 81.177807   | 16.607942   | 95.313364   | 284.872718     | Na                    |
| 18  | big_hero_625 | 68.463573   | 8.830594    | 79.809820   | 665.750441     | 3.053085e-C           |
| 19  | big_hero_626 | 67.269475   | 11.599033   | 78.742681   | 217.413732     | 0.000000e+C           |
| 20  | big_hero_627 | 83.639257   | 16.274483   | 98.110386   | 538.016546     | 4.099428e-C           |
| 21  | big_hero_628 | 71.779220   | 11.691101   | 83.945388   | 919.960924     | Na                    |
| 22  | big_hero_629 | 64.282734   | 12.975916   | 75.456829   | 567.952159     | 1.916449e-C           |
| 23  | big_hero_63  | 70.187601   | 46.987297   | 86.036241   | 179.866359     | 1.927167e-C           |
| 24  | big_hero_64  | 99.817869   | 21.813134   | 117.353930  | 1389.173305    | 4.507038e-C           |
| 25  | big_hero_65  | 45.452348   | 51.155879   | 58.019698   | 193.407722     | 0.000000e+(           |
| 26  | big_hero_66  | 63.912107   | 49.535743   | 79.093980   | 316.498497     | 7.894590e-C           |
| 27  | big_hero_67  | 63.395578   | 49.004431   | 78.440196   | 477.430012     | 4.630649e-C           |
| 28  | big_hero_68  | 99.640553   | 52.682391   | 120.581110  | 216.598992     | 2.113893e-(           |
| 29  | big_hero_69  | 72.928324   | 50.305583   | 89.560732   | 260.376936     | 0.000000e+C           |
|     |              |             |             |             |                |                       |
| 150 | wall_e_0     | 109.964774  | 5.142499    | 127.183908  | 210.344503     | 6.092495e-C           |
| 151 | wall_e_1     | 134.725784  | 12.771496   | 156.541492  | 1063.675243    | 2.006255e-C           |
| 152 | wall_e_10    | 83.493319   | 43.639831   | 100.984209  | 273.996571     | 4.786396e-C           |
| 153 | wall_e_11    | 101.908041  | 2.083827    | 117.567477  | 311.330457     | 3.494784e-C           |

|     | scene_name | scene_avg_p | scene_avg_a | scene_avg_d | scene_avg_blur | scene_avg_optical_flo |
|-----|------------|-------------|-------------|-------------|----------------|-----------------------|
| 154 | wall_e_12  | 131.064092  | 11.625181   | 152.198037  | 93.243649      | 4.197913e-C           |
| 155 | wall_e_13  | 112.984234  | 47.287686   | 135.345223  | 294.037656     | 1.148069e-C           |
| 156 | wall_e_14  | 61.531400   | 83.089274   | 80.082577   | 80.645540      | 6.233876e-C           |
| 157 | wall_e_15  | 38.170475   | 84.614697   | 53.354615   | 15.859611      | 0.000000e+C           |
| 158 | wall_e_16  | 44.637933   | 46.802282   | 56.598056   | 334.076365     | 8.892996e-C           |
| 159 | wall_e_17  | 48.400827   | 50.942584   | 61.390837   | 126.981297     | 1.211704e-(           |
| 160 | wall_e_18  | 50.750553   | 84.304011   | 67.804649   | 144.422954     | 6.765132e-C           |
| 161 | wall_e_19  | 71.001583   | 47.836532   | 87.067850   | 123.795181     | 8.102640e-C           |
| 162 | wall_e_2   | 128.117325  | 28.841856   | 150.718919  | 117.431503     | 8.716548e-C           |
| 163 | wall_e_20  | 43.134190   | 67.908255   | 57.212743   | 8.326760       | 0.000000e+C           |
| 164 | wall_e_21  | 49.672483   | 80.516533   | 66.142365   | 54.562706      | 1.492986e-C           |
| 165 | wall_e_22  | 59.196900   | 68.921784   | 75.819839   | 63.352845      | Na                    |
| 166 | wall_e_23  | 24.881874   | 40.567980   | 33.158151   | 63.020314      | 0.000000e+C           |
| 167 | wall_e_24  | 24.359481   | 40.373340   | 32.535037   | 104.740910     | 2.522675e-C           |
| 168 | wall_e_25  | 30.307500   | 52.689583   | 40.752563   | 21.010125      | 3.058683e-C           |
| 169 | wall_e_26  | 154.245262  | -4.729488   | 177.070653  | 1099.736528    | 2.331251e-C           |
| 170 | wall_e_27  | 115.650440  | 11.310007   | 134.415886  | 1437.663826    | 5.197763e-C           |

|     | scene_name | scene_avg_p | scene_avg_a | scene_avg_d | scene_avg_blur | scene_avg_optical_flo |
|-----|------------|-------------|-------------|-------------|----------------|-----------------------|
| 171 | wall_e_28  | 151.523748  | -7.375126   | 173.643049  | 1265.153561    | 2.421919e-C           |
| 172 | wall_e_29  | 147.637915  | -5.319448   | 169.397445  | 482.955341     | 1.130321e-C           |
| 173 | wall_e_3   | 123.088365  | 43.757472   | 146.586604  | 1225.754507    | 3.982940e-C           |
| 174 | wall_e_4   | 103.614057  | 65.383745   | 126.568007  | 1193.302027    | 5.728310e-C           |
| 175 | wall_e_5   | 126.631087  | 40.035603   | 150.251945  | 336.179835     | 1.608080e-C           |
| 176 | wall_e_6   | 112.835680  | 33.719842   | 133.666016  | 406.848319     | 1.465010e-C           |
| 177 | wall_e_7   | 91.598655   | 68.489974   | 113.078880  | 272.351328     | 1.661491e-C           |
| 178 | wall_e_8   | 84.844116   | 78.086689   | 106.368519  | 537.730281     | 8.394284e-C           |
| 179 | wall_e_9   | 109.652572  | 41.289332   | 130.842422  | 230.100643     | 1.518874e-C           |
|     |            |             |             |             |                |                       |

180 rows × 8 columns