

โครงงานวิทยาศาสตร์ ประเภทการทดลอง

้เรื่อง การยึดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่านหางจระเข้

The ripening delay of cultivated banana by mucliage from basil seeds and Aloe vera

จัดทำโดย

นางสาวชัญวรัตม์ เรื่องบุญ

นางสาวชนกนันท์ คำแสน

นางสาวชนัญชิดา วงษ์ราช

ครูที่ปรึกษา

คุณครู สุทธิวรรณ เมืองนสุวรรณ

รายงานฉบับนี้เป็นส่วนประกอบของโครงงานวิทยาศาสตร์ ระดับชั้นมัธยมศึกษาตอนปลาย ในงานเวทีวิชาการนวัตกรรมสะเต็มศึกษาขั้นพื้นฐานแห่งชาติ ครั้งที่ 1 (ออนไลน์)

> The 1 st National Basic STEM Innovation E - Forum 2021 วันที่ 18 – 19 กันยายน พ.ศ. 2564

เรื่อง การยึดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่านหางจระเข้

The ripening delay of cultivated banana by mucliage from basil seeds and Aloe vera

จัดทำโดย

นางสาวธัญวรัตม์ เรื่องบุญ

นางสาวชนกนันท์ คำแสน

นางสาวชนัญชิดา วงษ์ราช

ครูที่ปรึกษา คุณครู สุทธีวรรณ เมืองนสุวรรณ **ชื่อโครงงาน** การยึดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่านหางจระเข้

ชื่อผู้ทำโครงงาน 1. นางสาวธัญวรัตม์ เรื่องบุญ

2. นางสาวชนกนันท์ คำแสน

3. นางสาวชนัญชิดา วงษ์ราช

คุณครูที่ปรึกษา คุณครูสุทธิวรรณ เมืองนสุวรรณ

โรงเรียน ยุพราชวิทยาลัย

ที่อยู่ 238 ถนนพระปกเกล้า ตำบลศรีภูมิ อำเภอเมืองเชียงใหม่ จังหวัดเชียงใหม่ 50200

โทรศัพท์ 053-418673-5โทรสาร 053-241213

ระยะเวลาทำโครงงาน ตั้งแต่ 1 พฤศจิกายน 2563 – 6 พฤษภาคม 2564

บทคัดย่อ

การเสื่อมคุณภาพและการมีอายุวางจำหน่ายได้สั้น เป็นปัญหาสำคัญของกล้วยน้ำว้า (Musa sapientum L.) หลังการเก็บเกี่ยว เนื่องจากกระบวนการแมแทบอลิซึมมีการปล่อยแก๊สเอทิลีนออกมาจึงทำให้ผลกล้วยสุกเร็ว และเกิดการเน่าเสีย ดังนั้นการศึกษาในครั้งนี้จึงมีวัตถุประสงค์เพื่อยืดอายุการสุกของกล้วยน้ำว้า โดยศึกษาและ เปรียบเทียบการยืดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่านหางจระเข้ ซึ่งสกัดสาร มิวซิเลจจากพืช 2 ชนิด ได้แก่ เมล็ดแมงลัก 25 กรัม และว่านหางจระเข้ 25 กรัม โดยปริมาณดังกล่าวค่าความ หนืดของสารมิวซิเลจจากเมล็ดแมงลัก คือ $2.45\mathrm{x}10^{-4}\,\mathrm{Ns/m}^2\,$ ซึ่งมากกว่าค่าความหนืดของสารมิวซิเลจที่ได้ จากว่านหางจระเข้ คือ $1.76 \mathrm{x} 10^{-4} \, \mathrm{Ns/m}^2 \,$ ในการทดลองนี้ใช้กล้วยน้ำว้าคิบจำนวน 9 ลูก ที่มีค่าความหวาน (%Brix) ที่ใกล้เคียงกัน ทำการทดลองโดยชุดการทดลองแรกเป็นชุดที่ไม่เคลือบสารมิวซิเลจบนกล้วย น้ำว้าจำนวน 3 ลูก ชุดการทดลองที่ 2 เคลือบกล้วยน้ำว้าด้วยสารมิวซิเลจจากเมล็ดแมงลักจำนวน 3 ลูก และชุดการทดลองที่ 3 เคลือบกล้วยน้ำว้าด้วยสารมิวซิเลจจากว่านหางจระเข้จำนวน 3 ลูก จากนั้นนำ กล้วยน้ำว้าทั้ง 3 ชุดการทดลองใส่ถาดสแตนเลสเพื่อสังเกตผลเป็นระยะเวลา 7 วัน พบว่ากล้วยน้ำว้าที่ไม่ได้ เคลือบด้วยสารมิวซิเลจมีค่าความหวาน 9.4 %Brix และมีเปอร์เซ็นต์การสูญเสียน้ำหนัก ร้อยละ 9.30 กล้วยน้ำว้า ์ ที่เคลือบด้วยสารมิวซิเลจจากเมล็ดแมงลักมีค่าความหวาน 8.6 %Brix และมีเปอร์เซ็นต์การสูญน้ำหนัก ร้อยละ 8.94 และกล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้มีค่าความหวาน 10.5 %Brix และมีเปอร์เซ็นต์ การสูญเสียน้ำหนัก ร้อยละ 12.34 เนื่องจากค่าความหวาน (%Brix) ของกล้วยน้ำว้าที่มากกว่าและเปอร์เซ็นต์การ สูญเสียน้ำหนักที่มากกว่าแสดงถึงน้ำหนักของกล้วยน้ำว้าที่เปลี่ยนไปมากจากวันที่เริ่มต้นจนถึงวันสุดท้ายของ การทดลอง จึงสรุปได้ว่ากล้วยน้ำว้ามีการสุกมากกว่าดังนั้นสารมิวซิเลจที่ได้จากเมล็ดแมงลักมีประสิทธิภาพใน การยืดอายุการสุกมากกว่าสารมิวซิเลจที่ได้จากว่านหางจระเข้

กิตติกรรมประกาศ

โครงงานเรื่องการยึดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่านหางจระเข้ ประกอบด้วยกระบวนการดำเนินงานหลายขั้นตอน นับตั้งแต่การคิดปัญหาในการทำโครงงาน การศึกษาหา ข้อมูล และการเก็บรวบรวมข้อมูล การทำการทดลอง การวิเคราะห์ผลการทดลอง การสรุปผลการศึกษา ตลอดจนการทำรูปเล่มรายงานจนกระทั่งการทำโครงงานเรื่องนี้สำเร็จลุล่วงไปด้วยดี ตลอดระยะเวลา ระหว่างการทำโครงงานคณะผู้จัดทำได้รับความช่วยเหลือ คำแนะนำและคำปรึกษาต่างๆ รวมถึงกำลังใจจาก บุคคลหลายท่าน คณะผู้จัดทำตระหนักและซาบซึ้งในความกรุณาจากทุกๆท่านเป็นอย่างยิ่ง ณ โอกาสนี้ จึง ขอขอบพระคุณทุกๆท่านดังต่อไปนี้

กราบขอบพระคุณ ท่านผู้อำนวยการ ที่ปชัย วงษ์วรศรีโรจน์ ที่ให้ความอนุเคราะห์และในการช่วย สนับสนุนในการศึกษาและการจัดทำโครงงาน และคุณครูในหมวดวิทยาศาสตร์โรงเรียนยุพราชวิทยาลัยทุกคนที่ กอยดูแลเอาใจใส่และให้คำปรึกษาเป็นอย่างดี

กราบขอบพระคุณ คุณครูสุทธีวรรณ เมืองนสุวรรณ อาจารย์ที่ปรึกษาจากกลุ่มสาระการเรียนรู้ วิทยาศาสตร์ โรงเรียนยุพราชวิทยาลัย ผู้ให้คำแนะนำและให้ความช่วยเหลืออย่างเมตตาในทุกๆ ด้านไม่ว่าจะ เป็นการให้คำแนะนำทางด้านระเบียบการการจัดทำโครงงานตั้งแต่การสืบค้นเริ่มแรกในการทำโครงงาน จนกระทั่งการจัดทำรูปเล่มโครงงาน ทำให้โครงงานนี้ประสบความสำเร็จ

ขอขอบพระคุณ โครงการห้องเรียนพิเศษวิทยาศาสตร์ คณิตศาสตร์ เทคโนโลยี และสิ่งแวคล้อม ที่ได้ ให้ความช่วยเหลือ และการสนับสนุนในการทำโครงงานครั้งนี้

ขอขอบพระคุณโรงเรียนยุพราชวิทยาลัย สถาบันการศึกษาที่สนับสนุนการศึกษาหาความรู้ในการทำ โครงงาน รวมไปถึงทางด้านอุปกรณ์ และเครื่องมือต่างๆ จนโครงงานสำเร็จไปได้ดี

ท้ายที่สุด ขอกราบขอบพระคุณ คุณพ่อ และคุณแม่ผู้เป็นที่รัก ผู้ให้กำลังใจและให้การสนับสนุน โอกาสการศึกษาอันมีค่ายิ่ง และคณะผู้จัดทำหวังเป็นอย่างยิ่งว่า โครงงานเหล่านี้จะเป็นประโยชน์แก่ผู้ที่ สนใจศึกษาทางค้านการยึดอายุการสุกเพื่อเก็บรักษากล้วยน้ำว้า

สารบัญ

	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ค
สารบัญรูปภาพ	ข
สารบัญตาราง	ฉ
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญ	
1.2 วัตถุประสงค์ของโครงงาน	
1.3 ขอบเขตของโครงงาน	
1.4 สมมติฐาน	
1.5 ตัวแปรที่ศึกษา	
1.6 นิยามศัพท์เฉพาะ	
บทที่ 2 เอกสารที่เกี่ยวข้อง	4
2.1 ความรู้ทั่วไปเกี่ยวกับกล้วยน้ำว้า	
2.2 ความรู้ทั่วไปเกี่ยวกับสารมิวซิเลจ	
2.3 การวัดค่าความหวาน	
2.4 การวัดการสูญเสียน้ำหนัก	
2.5 ความหนีดของของเหลว	
2.6 ความรู้ทั่วไปเกี่ยวกับเมล็ดแมงลัก	
2.7 ความรู้ทั่วไปเกี่ยวกับว่านหางจระเข้	
2.8 การวัดความแตกต่างของสี	
2.9 งานวิจัยที่เกี่ยวข้อง	
บทที่ 3 วิธีการดำเนินการทดลอง	8
3.1 วิธีสกัดสารมิวซิเลจจากเมล็ดแมงลัก	
3.2 วิธีสกัดสารมิวซิเลจจากว่านหางจะเข้	
3.3 วิธีทำการทดลอง	
3.4 วิธีตรวจสอบค่าความหนื่คของสารมิวซิเลจ	

	หน้า
บทที่ 4 ผลการทดลอง	10
4.1 การเปรียบเทียบประสิทธิภาพของสารมิวซิเลจ	
บทที่ 5 สรุปผล อภิปรายผลและข้อเสนอแนะ	12
บรรณานุกรม	13
ภาคผนวก	14

สารบัญตาราง

ตารางที่	หน้า
ตารางที่1.1 ตารางเปรียบเทียบค่าความเข้มสี ค่าความหวาน และน้ำหนักของกล้วยน้ำว้า	10
ตารางที่1.2 ตารางแสดงค่าความหนืดของสารมิวซิเลจ	11
ตารางที่1.3 ตารางการเปลี่ยนสีเปลือกของผลกลัวยน้ำว้า	17

สารบัญรูปภาพ

ภาพที่	หน้า
ภาพที่ 1 กล้วยน้ำว้า <i>Musa saientum</i> Linn	4
ภาพที่ 2 เมล็คแมงลัก Ocimum citriodourum	6
ภาพที่ 3 ว่านหางจระเข้ Aloe vera	7

บทนำ

1.1 ความเป็นมาและที่มาของปัญหา

กล้วยเป็นผลใม้ของไทยที่ออกผลให้รับประทานได้ทุกฤดูกาลตลอดทั้งปี มีวิตามินและสารอาหารที่มี ประโยชน์สูง รสชาติอร่อย จึงเป็นที่นิยมของผู้บริโภคทุกเพสทุกวัย เกษตรกรผู้ปลูกกล้วย จึงมีรายได้ค่อนข้างดี เพราะความต้องการของตลาดที่มากขึ้นโดยเฉพาะกล้วยน้ำว้าซึ่งเป็นกล้วยที่ปลูกง่ายและราคาไม่แพง แต่ปัญหา หนึ่งที่มักเกิดกับเกษตรกรผู้ปลูกกล้วยคือการที่กล้วยน้ำว้าสุกงอมก่อนถึงมือผู้บริโภค ทำให้สูญเสียรายได้ ในส่วนนี้ไป ดังนั้นคณะผู้จัดทำจึงคิดโครงงานเรื่องการชะลอการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจที่สกัดจาก เมล็ดแมงลักและว่านหางจระเข้ซึ่งเป็นวัตถุดิบที่หาได้ง่าย เพื่อยืดระยะเวลาการวางขายกล้วยให้นานขึ้นได้

โดยกระบวนการการสุกของกล้วยน้ำว้าคือการหายใจและการสร้างเอทิลินซึ่งเป็นฮอร์โมนที่เร่งให้เกิด การสุกของกล้วยน้ำว้า การสร้างเอทิลินในเนื้อเยื่อพืชต้องอาศัยพลังงานจากการหายใจและมีแก๊สออกซิเจน ที่เพียงพอ นอกจากนี้ประสิทธิภาพในการทำงานของเอทิลินขึ้นอยู่กับความเข้มข้นการ์บอนไดออกไซด์ใน เนื้อเยื่อพืช ถ้าปริมาณการ์บอนไดออกไซด์ในพืชสูงประสิทธิภาพ เอทิลินก็จะลดลง ดังนั้นการชะลอการสุกของ กล้วยน้ำว้าให้ได้ผลดีคือการลดอัตราการหายใจและลดการสร้างเอทิลินของกล้วย ดังนั้นคณะผู้จัดทำจึงเคลือบ ผิวกล้วยน้ำว้าด้วยสารมิวซิเลจซึ่งจะเป็นการเป็นการลดการแลกเปลี่ยนแก็สออกซิเจนไม่ให้เข้าสู่เนื้อเยื่อกล้วยทั้ง ภายในและภายนอก และป้องกันไม่ให้คายแก๊สคาร์บอนไดออกไซด์ออกมา ทำให้เกิดการหายใจและสร้างเอทิลีนลดลงได้ ซึ่งเมล็ดแมงลักและว่านหางจระเข้จะมีส่วนที่เป็นสารมิวซิเลจหรือสารเมือกที่มีคุณสมบัติช่วยลด หรือชะลอการแลกเปลี่ยนก๊าซออกซิเจนนอกจากนี้ยังสามารถเกาะติดเปลือกกล้วยน้ำว้าได้ดีซึ่งวิธีดังกล่าวทำได้ ง่ายและ ไม่เป็นอันตรายแก่ผู้บริโภค

การชะลอการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจจากธรรมชาตินอกจากจะเป็นประโยชน์ต่อผู้บริโภค แล้วยังเป็นการลดการสูญเสียรายได้ของเกษตรกรจาการสุกงอมเกินไปของผลผลิต และเพื่อให้การชะลอการสุก ของกล้วยน้ำว้าที่ได้ผลดีที่สุดจึงทำการศึกษาเปรียบเทียบการเคลือบกล้วยน้ำว้าด้วยสารมิวซิเลจที่สกัดจากพืช 2 ชนิดคือ เมล็ดแมงลักและว่านหางจระเข้

1.2 วัตถุประสงค์

- 1.2.1. เพื่อศึกษาการสกัดสารมิวซิเลจจากเมล็ดแมงลักและว่านหางจระเข้
- 1.2.2. เพื่อศึกษาเปรียบเทียบการยืดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่าน หางจระเข้
- 1.2.3. เพื่อศึกษาค่าความหนืดของสารมิวซิเลจจากเมล็ดแมงลักและว่างหางจระข้

1.3 สมมติฐาน

สารมิวซิเลจในเมล็ดแมงลักมีประสิทธิภาพในการชะลอการสุกของกล้วยน้ำว้าได้ดีกว่าสารมิวซิเลจใน ว่าบหางจระเข้

1.4 ขอบเขตการศึกษา

ในการศึกษาครั้งนี้กลุ่มข้าพเจ้าได้วางขอบเขตการศึกษาดังนี้

- 1.4.1. กล้วยน้ำว้าจากสวนกล้วยของผู้จัดทำในอำเภอเมืองจังหวัดเชียงใหม่
- 1.4.2. สารสกัดมิวซิเลจจากเมล็ดแมงลัก
- 1.4.3. สารสกัดมิวซิเลจจากว่านหางน้ำจระเข้

1.5 ตัวแปรที่เกี่ยวข้อง

ตัวแปรต้น : สารมิวซิเลจจากเมล็ดแมงลักและสารมิวซิเลจจากว่านหางจระเข้

ตัวแปรตาม : ระยะเวลาการสุกของกล้วยน้ำว้าโดยวัดจากค่าความหวานของกล้วยน้ำว้า

ค่าเข้มสีของกล้วยน้ำว้าและเปอร์เซ็นต์การสูญเสียน้ำหนักของกล้วยน้ำว้า

ตัวแปรควบคุม: ชนิดของกล้วย สถานที่ กล้วยน้ำว้าที่มาจากหวีเดียวกัน อุณหภูมิ

1.6 ประโยชน์ที่คาดว่าจะได้รับ

- 1.6.1 สามารถสกัดสารมิวซิเลจจากเมล็ดแมงลักและว่านหางจระเช้ได้
- 1.6.2. สามารถเปรียบเทียบการยืดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่าน หางจระเข้

1.7 นิยามศัพท์เฉพาะ

- **1.7.1 กล้วยน้ำว้า** กล้วยน้ำว้ามณีอ่อง ชื่อวิทยาศาสตร์ $Musa\ sapientum\ Lin\ จากสวนกล้วยของผู้จัดทำ$
- 1.7.2 เวลาการสุก จำนวนวันจากที่เก็บกล้วยน้ำว้าออกจากต้นจนกล้วยน้ำว้าสุกมีลักษณะเปลือกเป็นสี เหลืองหมดทั้งลูกไม่มีรอยดำ
- 1.7.3 สารมิวซิเลจ สารเมือกที่ได้จากเมล็ดแมงลักและว่านหางจระเข้
- **1.7.4 เมล็ดแมงลัก** เมล็ดแมงลักตราไร่ทิพย์
- 1.7.5 ว่านหางจระเข้ ว่านหางจระเข้ ชื่อวิทยาศาสตร์ Aloe vera จากสวนของผู้จัดทำ
- 1.7.6 ค่าความหวาน หมายถึง หน่วยที่ใช้บอกความเข้มข้มของของแข็งที่ละลายอยู่ในสารละลายเป็น เปอร์เซ็นต์น้ำหนักต่อน้ำหนัก
- 1.7.7 การสูญน้ำหนัก หมายถึง น้ำหนักของผลไม้ในวันที่เริ่มต้นก่อนการทดลองและในวันสุดท้ายของการ ทดลองจากนั้นนำค่าที่ได้มาคำนวณเป็นเปอร์เซ็นต์การสูญเสียน้ำหนัก
- 1.7.8 ระบบสี CIELAB หมายถึง ระบบการวัดสีของเปลือกกล้วยน้ำว้า

L หมายถึง ค่าความสว่างของเปลือกกล้วยน้ำว้า

 $\mathbf{L} = \mathbf{0}$ สีที่ได้จะมืดเป็นสีดำ $\mathbf{L} = \mathbf{100}$ สีที่ได้จะสว่างเป็นสีขาว

a หมายถึง ค่าสีแดง หรือสีเขียว

a เป็น + วัตถุมีสื่ออกแดง a เป็น - วัตถุมีสื่ออกเขียว

b หมายถึง ค่าสีเหลือง หรือสีน้ำเงิน

b เป็น + วัตถุมีสื่ออกเหลือง b เป็น - วัตถุมีสื่ออกน้ำเงิน

1.7.9 ค่าความหนืด หมายถึง ค่าที่ได้จากการคำนวณการทดลองใช้ท่อและหย่อนลูกเหล็ก

บทที่ 2 เอกสารที่เกี่ยวข้อง

ในการศึกษาโครงงานเรื่องการศึกษาการชะลอการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ด แมงลักและว่านหางจระเข้ ผู้ศึกษาได้ค้นคว้ารวบรวมจากเอกสารและงานวิจัย ดังนี้

2.1 ความรู้ทั่วไปเกี่ยวกับกล้วยน้ำว้า

ภาพที่ 1.กล้วยน้ำว้า Musa saientum Linn ที่มา https://www.technologychaoban.com

ชื่อสมุนใพร กล้วยน้ำว้า

ชื่อวิทยาศาสตร์ Musa sapientum Linn

กล้วยน้ำว้า เป็นพืชใบเลี้ยงเคี่ยว ลำต้นสูง 3.0- 4.5 เมตร ลำต้นแท้จะเป็นส่วนหัว ที่อยู่เหนือ คินเล็กน้อย หรือ ฝังอยู่ใต้คิน ส่วนลำต้นเหนือคินที่เป็นลำต้นเทียมประกอบด้วยกาบใบและใบ โคย กาบใบจะแทงออกจากเหง้าเรียงซ้อนกันแน่นเป็นวงกลม แผ่นกาบด้านนอกที่มองเห็นจะมีสีเขียว และมีสีดำประเล็กน้อย กาบใบเป็นแผ่น โค้งรูปครึ่งวงกลม โดยมีแกนกลางเป็นกาบอ่อนเรียงซ้อน กันแต่เมื่อกล้วยออกปลี (ดอก) แกนกลางจะกลายเป็นแก่นกล้วยแทนขนาดของลำต้นเทียมประมาณ 15-25 เซนติเมตรรากล้วยจะมีเพียงระบบรากแขนงแตกออกจากเหง้ากล้วย รากแขนงนี้มีขนาดของ รากประมาณ 0.5-1 เซนติเมตร

2.1.1 กระบวนการสุกของกล้วยน้ำว้า

ผลของกล้วยมีการหายใจสูงขึ้นควบคู่กับฮอร์โมนเอทิลินที่เพิ่มขึ้นจากการที่เมธิโอนีน เปลี่ยนเป็นเอทิลินทำให้เกิดการเปลี่ยนแปลงในผลกล้วยคือ มีการเปลี่ยนแป้งในผลเป็นน้ำตาล เกิด การสังเคราะห์สารระเหยให้ได้กลิ่นเฉพาะตัวการสลายของคลอโรฟิลล์และการสังเคราะห์เม็ดสี อื่นๆการสลายตัวของแทนนินซึ่งลดความฝาดและการเปลี่ยนรูปของเพกตินจากรูปไม่ละลายน้ำเป็น รูปละลายน้ำทำให้ผลอ่อนนุ่มขึ้น

2.2 ความรู้ทั่วไปเกี่ยวกับสารมิวซิเลจ

มิวซิเลจ เป็นโพลีแซคคาไรค์ที่จัดอยู่ในกลุ่มไฮโครคอลลอยค์ มีโครงสร้างประกอบค้วยโพลิเมอร์ ของน้ำตาลโมเลกุลเคี่ยวชนิคเดียวหรือหลายชนิคจับกับส่วนของกรคยูโรนิก

2.2.1 ประโยชน์ของสารมิวซิเลจ

ในอุตสาหกรรมยาและเภสัชกรรมพบว่ามีการใช้มิวซิเลจเป็นสารช่วยในการยึดเกาะของ เม็ดยาสารช่วยการแตกกระจายตัวสารอิมัลซิไฟเออร์ช่วยด้านการควบคุมและการปลดปล่อยยาใน อุตสาหกรรมอาหารมีการใช้มิวซิเลจเป็นสารช่วยเพิ่มความคงตัวสารช่วยเพิ่มความหนืดและสาร ช่วยทำให้เกิดเจลในผลิตภัณฑ์ในอุตสาหกรรมด้านอื่นๆ

2.2.2 แหล่งของของมิวซิเลจ

มิวซิเลจพบได้จากหลากหลายแหล่งทั้ง พืช สัตว์ สาหร่าย เชื้อราและจุลินทรีย์บางชนิด พืชเป็นแหล่งของมิวซิเลจที่ใหญ่ที่สุด สามารถพบในพืชเกือบทุกประเภทพืช

2.3 การวัดค่าความหวาน

การวัดค่าความหวานด้วยเครื่อง Brix Refractometer เป็นการวัดค่าปริมาณของแข็งที่ละลายได้ ทั้งหมดมีหน่วยคือองศาบริกซ์ (%brix) เป็นเปอร์เซ็นต์น้ำหนักต่อปริมาตรซึ่งค่าที่วัดเป็นค่ารวมของความ เข้มข้นน้ำตาลและกรดอินทรีย์ที่ละลายได้โดยใช้ปริมาณของน้ำตาลซูโครสเป็นค่าอ้างอิงมาตรฐานของ ความหวาน

2.4 การวัดการสูญเสียน้ำหนัก

สามารถวัด ได้ โดยชั่งน้ำหนักกล้วยน้ำว้าในวันแรกของการทดลองและวันสุดท้ายของการทำการ ทดลองจากนั้นนาค่าที่ ได้มาคำนวณเปอร์เซ็นต์การสูญเสียน้ำหนักตามสูตร

2.5 ความหนืดของของเหลว

ความหนืด คือค่าบ่งชี้คุณสมบัติความต้านทานการใหลในตัวของใหล และอาจจะถูกพิจารณาให้ เป็นตัวชี้วัดความเสียดทานของใหลได้

2.5.1 สมการที่เกี่ยวข้อง

ความหนาแน่นของสารเป็นสมบัติเฉพาะของสารแต่ละชนิดและเป็นปริมาณที่บอกค่ามวล ของสารในหนึ่งหน่วยปริมาตร ถ้าให้ m เป็นมวลของสารที่มีปริมาตร V และ r เป็นความหนาแน่น ของสารแล้วสามารถเขียนเป็นความสัมพันธ์ ได้ว่า

$$\rho = \frac{m}{v}$$

ค่าความถ่วงจำเพาะของสาร เป็นปริมาณที่บอกค่าเปรียบเทียบค่าความหนาแน่นของสารใด ๆ กับ ค่าความหนาแน่นของน้ำเขียนเป็นความสัมพัทธ์ได้ว่า

$$ho_{lpha$$
inné $=rac{
ho_{lpha$ inné $=rac{
ho_{lpha}}{
ho_{lpha}}$

กฎของสโตกส์กล่าวว่า ของเหลวชนิดหนึ่ง ๆ แรงหนืดแปรผันตรงกับความเร็วของวัตถุ

$$F = -6\pi \eta r v$$

โดยที่ F คือ แรงหนืดของของเหลว (N)

v คือ ความเร็วของวัตถุ(m/s)

 η คือ สัมประสิทธิ์ของความหนืด เป็นค่ากงตัวของของเหลวแต่ละชนิด (Ns/m^2)

r คือ ของวัตถุทรงกลม

ความเร็วของวัตถุจะเพิ่มขึ้นจนถึงขั้นสูงสุดซึ่งจะทำให้แรงลัพธ์เป็นวัตถุเท่ากับ 0 ขณะนั้นความเร่งเท่ากับ ศูนย์และความเร็วจะมีค่าสูงสุดเรียกว่าความเร็วปลายเขียนเป็นความสัมพันธ์ได้ว่า

$$\eta = \frac{2}{9} \frac{r^2 g(\rho - \rho)}{v}$$

โดยที่ F คือ แรงหนืดของของเหลว (N)

v คือ ความเร็วของวัตถุ(m/s)

 η คือ สัมประสิทธิ์ของความหนืด เป็นค่าคงตัวของของเหลวแต่ละชนิด (Ns/m^2)

r คือ รัศมีของวัตถุทรงกลม

W คือ น้ำหนักของของเหลวที่ถูกวัตถุแทนที่(kg)

g คือ ค่าแรงโน้มถ่วงของโลก $(\frac{m}{s^2})$

ho คือ ค่าความหนาแน่นของวัตถุ (kg/m^3)

2.6 ความรู้ทั่วไปเกี่ยวกับเมล็ดแมงลัก

ภาพที่ 2. เมล็ดแมงลัก Ocimum citriodourum

ที่มา http://www.kitodetoxthailand.co

ชื่อสมุนใพร เมล็ดแมงลัก

ชื่อวิทยาศาสตร์ Ocimum citriodourum

เมล็ดแมงลัก มีใบเล็ก สีอ่อน บอบบาง ช้ำง่ายและเหี่ยวง่าย แมงลักนำไปใช้ได้ทั้งใบและเมล็ด ใบมีกลิ่นฉุน ใช้ประกอบอาหาร ส่วนเมล็ดแมงลักใช้ประกอบอาหารได้เช่นกันใบมีฤทธิ์ขับลมในลำไส้ สามารถสกัดน้ำมันหอมระเหยจากใบไปใช้ในอุตสาหกรรมสบู่และเครื่องสำอาง แก้ท้องอืด และเมล็ดช่วย ย่อยอาหาร เป็นยาระบาย

2.7 ความรู้ทั่วไปเกี่ยวกับว่านหางจระเข้

ภาพที่3. ว่านหางจระเข้ *Aloe vera* ที่มา https://sites.google.com

ชื่อสมุนใพร ว่านหางจระเข้

ชื่อวิทยาศาสตร์ Aloe vera (L.) Burm.f.

ไม้ล้มลุกลำต้นสั้น ใบเรียงซ้อนเป็นกอ ข้อและปล้องสั้น สูงประมาณ 0.5-1 เมตร ต้นแก่จะมีหน่อ ของต้นอ่อนแตกออกมา ใบเดี่ยวเรียงเวียนถี่รอบต้น กว้าง 5-12 เซนติเมตร ยาว 30-80 เซนติเมตร ปลายใบ เรียวแหลม โคนใบกว้าง สีเขียวอ่อนหรือเข้ม ด้านหน้าแบน ด้านหลังโค้งนูน สรรพคุณของวุ้นว่านหางจระเข้ เป็นยาฆ่าเชื้อ ฝาดสมานแผล ห้ามเลือด และเป็นตัวกระตุ้นเซลล์เนื้อเยื่อให้เจริญเติบโต ทำให้แผลหายเร็วขึ้น

2.8 การวัดความแตกต่างของสี

การวัดความแตกต่างของสีตัวอย่างกับตัวอย่างมาตรฐานที่นิยมใช้ในปัจจุบันคือ ระบบ CIE หาได้ จากค่าความแตกต่างระหว่างค่าความสว่าง ความเป็นสีแดง-เขียว และความเป็นสีเหลือง-น้ำเงิน สามารถบอก เป็นค่าความแตกต่างของสีโดยรวมระหว่างตัวอย่างกับตัวอย่างมาตรฐาน

ตามสูตร Δ E= $\sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$

2.9 งานวิจัยที่เกี่ยวข้อง

ชนทรัพย์ วรดา และนรินธเดช (2554) ได้ทำการศึกษาผลของฟิล์มมิวซิเลจจากเมล็ดแมงลักต่อการ ยืดอายุการเก็บรักษาชมพู่ โดยการแยกมิวซิเลจออกจากเมล็ดและทำให้แห้งซึ่งจะมีลักษณะเป็นแผ่นฟิล์มเพื่อ นำไปเป็นสารเคลือบเพื่อยืดอายุการเก็บรักษาผลไม้ได้ โดยการทดลองจะใช้มิวซิเลจเคลือบผิว 3 ส่วนผสม คือมิวซิเลจไม่ผสมพลาสติไซเซอร์ (treatment1) และมิวซิเลจผสมพลาสติไซเซอร์ 1%w/v glycerol (treatment 2) และมิวซิเลจเข้มข้น 50%v/v (treatment 3) เปรียบเทียบกับชมพู่ที่เคลือบผิวด้วย wax และไม่ได้ เคลือบผิว พบว่า treatment 1 และ 2 สามารถชะลอการสูญเสียน้ำหนักลดและอัตราการหายใจ ได้อย่างมี นัยสำคัญทางสถิติ

พฐ และคณะ(2561) ได้ทำการศึกษาการเปรียบเทียบประสิทธิภาพการยืดอายุมะนาวด้วยสารมิว-ซิเลจ จากพืช โดยการนำเนื้อผลของพืชชนิดต่างๆปริมาณ 500 กรัมมาสกัดสารมิวซิเลจ ได้แก่แก้วมังกร ว่าน หางจระเข้ เมล็คแมงลัก และกระเจี๊ยบเขียวนำมาต้มกับน้ำที่อุณหภูมิ 100 องศาจากนั้นเคลือบมะนาวด้วยสาร สกัดมิวซิเลจ โดย โดยแบ่งระยะเวลาสังเกตเป็น 3 วัน 5 วัน 7 วัน 10 วันและ 15 วันพบว่าสารมิวซิเลจจากว่าน หางจระเข้สามารถเพิ่มประสิทธิภาพการยืดอายุของมะนาวดีที่สุด

บทที่ 3

วิธีการดำเนินงาน

ในการจัดทำโครงงานชีววิทยา เปรียบเทียบการยึดอายุการสุกของกล้วยน้ำว้าหลังการเก็บเกี่ยวที่ เคลือบด้วยสารมิวซิเลจจากเมล็ดแมงลักและว่านหางจระเข้นี้ ผู้จัดทำโครงงานมีวิธีดำเนินงานโครงงานตาม ขั้นตอนดังต่อไปนี้

3.1 เครื่องมือที่ใช้ในการศึกษา

3.1.1.วัสดุอุปกรณ์

1.ผ้ากรองหรือผ้าขาวบาง	1	ฝืน
2.ปีกเกอร์10 mL	2	อัน
3.ปีกเกอร์250 mL	2	อัน
4.เครื่องปั่น	1	เครื่อง
5.เครื่องชั่งสาร	1	เครื่อง
6.เครื่องวัดความหวานแบบพกพา	1	เครื่อง
7.โกร่งบคสาร	3	ถ้วย
8.หลอดหยอด	3	อัน
9.ถาคสแตนเลส	3	ถาค
10.แท่งแก้วคนสาร	2	อัน
11.ใฮโครมิเตอร์	1	แท่ง
12.กระบอกตวง 30 mL	1	อัน

3.2 วิธีดำเนินการทดลอง

วิธีสกัดสารมิวซิเลจจากเมล็ดแมงลัก

- 1.นำเมล็ดแมงลักมาล่อนแยกฝุ่นปริมาณ 25 กรัมแล้วนำไปแช่น้ำสะอาคปริมาตร 400 มิลลิลิตร
- 2.ปั่นเมล็ดแมงลักที่พองตัวด้วยเครื่องปั่นโดยใช้เวลาปั่นนาน 1 นาที
- 3.ปีบแยกเนื้อออกจากเมือกด้วยผ้ากรองแล้วนำใส่ภาชนะรองเพื่อให้ได้สารสกัดมิวซิเลจจากเมล็ด แมงลัก

วิธีสกัดสารมิวซิเลจจากว่านหางจระเข้

- 1.นำว่านหางจระเข้มาล้างค้วยน้ำสะอาค และปอกเปลือกออกทั้งหมด
- 2.นำเนื้อว่านหางจระเข้ที่ปลอกเปลือกปริมาณ 25 กรัมมาผสมในน้ำสะอาคปริมาตร 400 มิลลิลิตร และปั่นเนื้อว่านหางจระเข้โดยใช้เวลาปั่นนาน 1 นาที
- 4.ปีบแยกเนื้อออกจากเมือกด้วยผ้ากรองแล้วนำมาใส่ในภาชนะรองเพื่อให้ได้สารสกัดมิวซิเลจจาก ว่านหางจระเข้

วิธีทำการทดลอง

- 1.นำกล้วยน้ำว้าจำนวน 3 ลูกมาชั่งน้ำหนักและวัดค่าความหวาน (%Brix) โดยใช้เครื่องวัดความ หวานแบบพกพาเพื่อเก็บค่าความหวานก่อนทำการทดลอง
- 2.ทำการทดสอบ โดยการนำกล้วยน้ำว้าจำนวน 3 ลูกมาทาที่ผิวของเปลือกด้วยสารมิวซิเลจที่สกัดได้ จากเมล็ดแมงลัก สังเกตและบันทึกผล โดยควบคุมสถานที่และอุณหภูมิของการทำการทดลอง
- 3.ทำทดสอบโดยการนำกล้วยน้ำว้าจำนวน 3 ลูกมาทาที่ผิวของเปลือกด้วยสารมิวซิเลจที่สกัดได้จาก ว่านหางจระเข้ สังเกตและบันทึกผลโดยควบคุมสถานที่และอุณหภูมิของการทำการทดลอง
- 4.สังเกตและบันทึกผลกล้วยน้ำว้าจำนวน 3 ลูกที่ไม่ได้เคลือบด้วยสารมิวซิเลจ
- 5.สังเกตและบันทึกผลทุกวันเป็นเวลา 1 สัปดาห์
- 6.เมื่อทำการทดลองครบตามที่กำหนดนำกล้วยน้ำว้าทั้ง 3 ชุดการทดลองมาชั่งน้ำหนักและวัดค่า ความหวาน (%Brix) โดยใช้เครื่องวัดความหวานแบบพกพาและบันทึกผล

วิธีตรวจสอบค่าความหนืดของสารมิวซิเลจ

- 1.หาความถ่วงจำเพาะของมิวซิเลจแต่ละชนิคโคยใช้ใฮโครมิเตอร์จุ่มลงในสาร
- 2.นำผลที่ได้ไปหาความหนาแน่นของของเหลว
- 3.นำสารมิวซิเลจจากเมล็ดแมงลักเทลงในกระบอกตวงปริมาตร 30 ml
- 4.หย่อนลูกเหล็กที่มีเส้นผ่านศูนย์กลาง 0.5 cm 5 ลูกลงในสารมิวซิเลจ
- 5.บันทึกภาพขณะทำการทดลอง เพื่อนำไป tracking ในโปรแกรม tracker เพื่อหาค่าความเร็วปลาย 6.นำความเร็วสุดท้ายของหยดน้ำทั้ง 5 ครั้งมาหาค่าเฉลี่ยและนำความเร็วสุดท้ายเฉลี่ยมาคำนวณหา
- 6.นำความเร็วสุดท้ายของหยดน้ำทั้ง 5 ครึ่งมาหาคาเฉลียและนำความเร็วสุดท้ายเฉลียมาคำนวณหาค่าสัมประสิทธิ์ความหนืด
- 7.หาค่าความหนืดของสารมิวซิเลจจากว่านหางจระเข้จากวิธีดังที่กล่าวไปข้างต้น

บทที่ 4

ผลการทดลอง

จากการศึกษาการยืดอายุการสุกของกล้วยน้ำว้าด้วยสารมิวซิเลจในเมล็ดแมงลักและว่านห่างจระเข้ ได้ผลการทดลองดังนี้

4.1 การเปรียบเทียบประสิทธิภาพของสารมิวซิเลจจากเมล็ดแมงลักและว่านหางจระเข้

เมื่อทดลองการยืดอายุการสุกของกล้วยน้ำว้า โดยการใช้สารมิวซิเลจจากเมล็ดแมงลักเปรียบเทียบ กับสารมิวซิเลจจากว่านหางจระเข้ 25 กรัม โดยทดลองเป็นระยะเวลา 7 วัน

4.2 แสดงผลการเปรียบเทียบประสิทธิภาพของสารมิวซิเลจจากเมล็ดแมงลักและว่านหางจระเข้ ตอนที่1.1 ตารางเปรียบเทียบค่าความเข้มสี ค่าความหวาน และน้ำหนักของกล้วยน้ำว้า

		ความแตกต่างของสี							ค่าความหวาน		น้ำหนัก		การ
กล้วยน้ำว้า	วันที่เ	วันที่2	วันที่3	วันที่4	วันที่ร	วันที่6	วันที่7	วันที่เ	วันที่7	วันที่เ	วันที่7	สูญเสีย น้ำหนัก	
	ลูกที่เ	52.6	76.7	70.6	69.1	78.7	70.0	60.9	3.20	8.9	61.21	55.40	9.49
	ลูกที่2	64.2	65.5	75.0	72.7	74.4	71.1	72.8	2.60	12.2	84.50	75.74	10.37
ควบคุม	ลูกที่3	69.5	74.6	70.9	71.9	68.1	63.4	71.4	1.30	7.1	80.33	73.87	8.04
	เฉลี่ย	62.1	72.3	72.2	71.3	73.4	68.2	68.4	2.37	9.4		-	9.30
	ลูกที่เ	67.0	64.0	54.0	73.4	51.0	63.4	56.5	3.20	10.8	60.56	54.66	9.74
สารมิวซิเลจ	ลูกที่2	50.1	70.9	64.0	59.1	63.6	60.8	67.8	2.60	9.8	79.81	72.11	9.65
จากเมล็ดแมงลัก	ลูกที่3	61.8	69.9	73.4	61.2	62.6	66.1	67.2	1.30	5.2	78.73	71.31	7.42
	เฉลี่ย	59.6	68.3	63.8	64.6	59.1	63.4	63.8	2.37	8.6		-	8.94
	ลูกที่เ	70.9	72.8	58.0	73.5	51.5	71.7	74.8	3.20	4.5	67.50	59.37	12.04
สารมิวซิเลจ	ลูกที่2	68.0	78.1	67.3	67.9	69.4	72.7	74.7	2.60	13.1	75.99	66.14	12.96
จากว่านหาง จระเข้	ลูกที่3	64.1	70.9	62.9	67.1	63.6	77.9	76.2	1.30	14.0	80.25	70.60	12.02
บงอะเบ	เฉลี่ย	67.7	73.9	62.7	69.5	61.5	74.1	75.2	2.37	10.5		-	12.34

ตารางที่ 1.1 เปรียบเทียบค่าความเข้มสีค่าความหวานและน้ำหนักของกล้วยน้ำว้า

จากตารางที่ 1.1 พบว่าเมื่อระยะเวลาผ่าน ไป 7 วัน ค่าเฉลี่ยความแตกต่างสีของเปลือกกล้วยน้ำว้าของ ชุดควบคุม ชุดกล้วยน้ำว้าที่เคลือบด้วยสารมิว ซิเลจจากเมล็ดแมงลัก และชุดกล้วยน้ำว้าที่เคลือบด้วยสารมิว ซิเลจจากว่านหางจระเข้เท่ากับ 68.4, 63.8 และ 75.2 ตามลำดับ การเปลี่ยนแปลงปริมาณน้ำตาลซึ่งเป็นค่า ความหวาน พบว่าชุดควบคุม ชุดกล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากเมล็ดแมงลักและชุดกล้วยน้ำว้าที่ เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้มีค่าความหวานเท่ากับ 9.4 %brix ,8.6%brix และ 10.5%brix ตามลำดับ และมีเปอร์เซ็นต์การสูญเสียน้ำหนักของชุดควบคุม ชุดกล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจาก เมล็ดแมงลัก และชุดกล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้ เท่ากับ 9.30, 8.94 และ 12.34 ตามลำดับ ซึ่งจะเห็น ได้ว่ากล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้สุกเร็วที่สุด เพราะ มีค่า ความต่างของสี ค่าความหวาน และเปอร์เซ็นต์การสูญเสียน้ำหนักมากที่สุด และกล้วยน้ำว้าที่เคลือบด้วยสาร มิวซิเลจจากเมล็ดแมงลักสารมารถยืดระยะเวลาการสุกได้ดีที่สุด เพราะมีค่าความต่างของสี ค่าความหวาน และเปอร์เซ็นต์การสูญเสียน้ำหนักมองก็สุด

4.3 ตารางแสดงค่าแรงหนืดของสารมิวซิเลจจากเมล็ดแมงลักและว่านหางจระเข้ จากการทดลองลูกเหล็กมีมวล $0.025~{
m kg}$ ลูกเหล็กมีรัศมี $2.5{
m x}10^{-3}~{
m m}$

สารมิวซิเลจ								
ตามแหล่ง			แรงหนืด	ค่า				
ของสาร							(N)	ความ
	1	2	3	4	5	เฉลี่ย		หนืด
เมล็ด แมงลัก	41.814746	34.123400	45.941694	41.918953	36.718012	40.103369	3.46x10 ⁻⁴	2.45x10 ⁻⁴
ว่านหาง จระเข้	52.780669	60.175967	53.935954	55.789947	56.771255	55.890759	2.49x10 ⁻⁴	1.76x10 ⁻⁴

ตารางที่ 1.2 แสดงค่าความหนืดของสารมิวซิเลจ

จากตารางที่ 1.1 กล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลลจากเมล็ดแมงลักมีประสิทธิภาพในการยืด ระยะเวลาการสุกได้ดีกว่ากล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้ มีผลสอดคล้องกับตาราง ที่ 1.2 ซึ่งแสดงค่าความหนืดของสารมิวซิเลจจากเมล็ดแมงลักและสารมิวซิเลจจากว่านหางจระเข้ พบว่าความ หนืดของสารมิวซิเลจจากเมล็ดแมงลักมากกว่าสารมิวซิเลจจากว่านหางจระเข้ จึงยืดระยะเวลาการสุกของ กล้วยน้ำว้า ได้ดีกว่า โดยค่าความหนืดของสารมิวซิเลจจากเมล็ดแมงลัก เท่ากับ $2.45 \times 10^{-4} \, \mathrm{Ns/m}^2$ ซึ่งมีค่า มากกว่าค่าความหนืดของสารมิวซิเลจจากว่านหางจระเข้ เท่ากับ $1.76 \times 10^{-4} \, \mathrm{Ns/m}^2$

บทที่ 5

สรุป อภิปรายและข้อเสนอแนะ

จากการเปรียบเทียบประสิทธิภาพของสารมิวซิเลจในเมล็คแมงลักและว่านหางจระเข้อภิปรายผลได้ดังนี้ 5.1 อภิปรายผล

จากการทดลองพบว่าสารมิวซิเลจจากเมล็ดแมงลักสามารถเพิ่มประสิทธิภาพการยึดอายุการสุกของ กล้วยน้ำว้าได้ เนื่องจากสารมิวซิเลจมืองค์ประกอบที่เป็นสารเมือกให้ความคงตัวซึ่งเป็นส่วนช่วยในการยึด ระยะเวลาการสุกของกล้วยน้ำว้า และเมื่อเปรียบเทียบกับค่าที่วัดได้ พบว่าชุดกล้วยน้ำว้าที่เคลือบสารมิวซิเลจ จากเมล็ดแมงลักมีประสิทธิภาพในการยึดอายุการสุกในระยะเวลา 1 สัปดาห์ได้มากที่สุด รองลงมาคือชุด ควบคุมและชุดกล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้มีประสิทธิภาพในการยึดอายุการสุก กล้วยน้ำว้าได้น้อยที่สุด สอดคล้องกับธนทรัพย์ และคณะ(2554) ที่ใช้สารมิวซิเลจจากเมล็ดแมงลักในการชะ ลอการสูญเสียน้ำหนักและลดอัตราการหายใจในชมพู่ได้อย่างมีนัยสำคัญ ทั้งนี้จากการทดลองสารมิวซิเลจ จากว่านหางจระเข้ามีสามารถยึดอายุการสุกของกล้วยน้ำว้าได้เมื่อเทียบกับชุดควบคุม เพราะอาจมีสารออก ๆทธิ์ตัวอื่นๆในว่านหางจะเข้ที่มีคุณสมบัติสมานแผล ซ่อมแซมเซลล์ผิว กระคุ้นการแบ่งตัวของเซลล์ จึงอาจ ทำให้กล้วยน้ำว้าสุกเร็วกว่าชุดควบคุม ซึ่งต่างจากผลของพฐ และคณะ(2561)ที่ได้ใช้สารมิวซิเลจจากเมล็ด แมงลักมายึดอายุของผลมะนาวได้อย่างมีประสิทธิภาพเพราะนำไปผ่านการต้มที่อุณหภูมิ 100 องสาเซลเซียส ก่อนนำมาเคลือบ ในขณะที่การศึกษานี้ไม่ได้นำสารมิวซิเลจไปต้มก่อนทำการทดลอง อาจทำให้ผลที่ได้ใน การชืดอายุผลไม้แตกต่างกัน

5.2 สรุปผล

การสกัดสารมิวซิเลจจากเมล็ดแมงลักสามารถเพิ่มประสิทธิภาพในการยืดอายุการสุกของกล้วย น้ำว้าได้ ซึ่งสารสกัดมิวซิเลจจากเมล็ดแมงลักมีประสิทธิภาพในการยืดอายุการสุกกล้วยน้ำว้าได้ดีที่สุด โดยมี ค่าความหวาน 8.6%brix และมีเปอร์เซ็นต์การสูญเสียน้ำหนัก ร้อยละ 8.94 รองลงมาคือ กล้วยน้ำว้าที่ไม่ได้ เคลือบด้วยสารมิวซิเลจมีค่าความหวาน 9.4 %brix และมีเปอร์เซ็นต์การสูญเสียน้ำหนักร้อยละ 9.30 และสาร สกัดมิวซิเลจจากว่านหางจระเข้มีประสิทธิภาพในการยืดอายุการสุกกล้วยน้ำว้าได้น้อยที่สุด โดยมีค่าความ หวาน 10.5 %brix และมีเปอร์เซ็นต์การสูญเสียน้ำหนัก ร้อยละ12.34

5.3 ข้อเสนอแนะ

5.3.1 การสกัดสารมิวซิเลจจากพืชชนิดอื่น ๆ เพื่อศึกษาและเปรียบเทียบยึดอายุการสุกของกล้วยน้ำว้าเพิ่มขึ้น5.3.2 ศึกษาปัจจัยอื่น ๆ ที่ส่งผลต่อประสิทธิภาพในการยึดอายุการสุกของกล้วยน้ำว้าร่วมด้วย

บรรณานุกรม

- สรัล ยิ้มมงคล.(2561).การเตรียมและตรวจวัควัสคุดูคซับเอทิลีนจากซีโอไลต์/โพแทสเซียมเปอร์แมงกาเนต สำหรับกระบวนการขนส่งกล้วยหอมทอง(Musa acuminata)หลังการเก็บเกี่ยว. วิทยานิพนธ์ศาสตร์ มหาบัณฑิต, มหาวิทยาลัยเทคโนโลยีสุรนารี, นครราชสีมา.
- ปิยนุสร์ น้องด้วง และระวิวรรณ วงศ์วรรณ. (2555). การพัฒนาสูตรไอศกรีมจากน้อยหน่าโดยใช้ผงเมื่อกจาก เมล็ดแมงลักเป็นสารให้ความคงตัว.มหาวิทยาลัยสยาม, กรุงเทพฯ
- ปิยนุสร์ น้อยด้วง.(2554).กัมและมิวซิเลจจากพืชGum and Musilage from Plants.มหาวิทยาลัยสยาม, กรุงเทพฯ
- ปิยนุสร์ น้องด้วง และวชิรพันธ์ จันทร์พงศ์. (2548). การใช้มิวซิเลจแห้งจากเมล็ดแมงลักเป็นสารให้ความคง ตัวในผลิตภัณฑ์ใอศกรีมกล้วยหอม.มหาวิทยาลัยสยาม, กรุงเทพฯ
- สุภเวท มานิยม วรางคนา เตมียะ นพพล เล็กสวัสดิ์ และพัชรีย์ พัฒนากูล.(2563).ผลของปริมาณสารไฮครอก ซีโพรพิลเมทิลเซลลูโลสและระยะเวลาในการอบแห้งต่อคุณภาพของว่านหางจระเข้ผงด้วยวิธีทำ แห้งโฟม-เมท.มหาวิทยาลัยเชียงใหม่,เชียงใหม่
- ปริยานุช สิทธิ โชคธรรม.(2557).คุณค่าอาหารของเมล็ดแมงลักที่อายุต่างๆ.มหาวิทยาลัยเกษตรศาสตร์
 ,กรุงเทพฯ
- ใบแมงลักสรรพคุณและการปลูกแมงลัก. (ออนไลน์).(ม.ป.ป.).สืบค้นจาก: https://puechkaset.com/
- ว่านหางจระเข้ สรรพคุณและประโยชน์ของว่านหางจระเข้ 40 ข้อ.(ออนไลน์). (ม.ป.ป.). สืบค้นจาก :https://medthai.com/[18 มกราคม2564]
- ฐานข้อมูลสมุนไพร คณะเภสัชศาสตร์ มหาวิทยาลัยอุบราชธานี. (ออนไลน์). (ม.ป.ป.). สืบค้นจาก : http://www.phargarden.com/[18 มกราคม 2564]
- กล้วยน้ำว้า ประโยชน์ดีๆ สรรพคุณเค่นๆ และข้อมูลงานวิจัย.(ออนไลน์). (ม.ป.ป.). สืบค้นจาก :https://www.disthai.com/[18 มกราคม2564]
- คุณประโยชน์ของกล้วยน้ำว้า "คิบ ห่ามสุก งอม ". (ออนไลน์). (ม.ป.ป.). สืบค้นจาก :https://board.postjung.com/[19 มกราคม 2564]
- ประโยชน์ของว่านหางจระเข้. (ออนไลน์). (ม.ป.ป.). สืบค้นจาก:
- https://www.rama.mahidol.ac.th/patient care/th/health issue/[19 มกราคม 2564]

ภาคผนวก

ขั้นตอนการดำเนินงาน

1.วิธีสกัดสารมิวซิเลจจากเมล็ดแมงลัก

1.1 นำเมล็ดแมงลักมาล่อนแยกให้ได้ 25 กรัมแล้วนำไปแช่น้ำสะอาคปริมาตร 400 มิลลิลิตร

รูปที่ 1.1การชั่งปริมาณเมล็คแมงลัก

1.2 กรองแยกน้ำส่วนที่เกินออก ปั่นเมล็ดแมงลักที่พองตัวด้วยเครื่องปั่น ปั่นนาน 1 นาที

รูปที่ 1.2การปั่นเมล็คแมงลักผสมกับน้ำ

1.3 บีบแยกเนื้อออกจากเมือกด้วยผ้ากรองแล้วนำใส่ภาชนะรองเพื่อให้ได้สารสกัดมิวซิเลจจากเมล็ดแมงลัก

รูปที่ 1.3สารสกัดมิวซิเลจจากเมล็ดแมงลัก

2.วิธีสกัดสารมิวซิเลจจากว่านหางจระเข้

2.1 นำว่านหางจระเข้ที่เลือกตัดมา และถ้างด้วยน้ำสะอาด

รูปที่ 2.1ว่านหางจระเข้ที่ถ้างด้วยน้ำสะอาด

2.2 นำเนื้อว่านหางจระเข้ที่ปลอกเปลือกแล้ว 25 กรัมในน้ำสะอาคปริมาตร 400 มิลลิลิตร ปั่นเนื้อ ว่านหางจระเข้คัวยเครื่องปั่น ปั่นนาน 1 นาที

รูปที่ 2.2 การชั่งปริมาณว่านหางจระเข้ รูปที่ 2.3. การปั่นว่านหางจระเข้ผสมกับน้ำ

2.3 บีบแยกเนื้อออกจากเมือกด้วยผ้ากรองแล้วนำใส่ภาชนะรองเพื่อให้ได้สารสกัดมิวซิเลจจากว่าน

หางจระเข้

รูปที่ 2.4. สารสกัดมิวซิเลจจากว่านหางจระเข้

3.วิธีทำการทดลอง

3.1 ชั่งน้ำหนักและวัดค่าความหวานในกล้วย 3 ลูกเพื่อเก็บค่าความหวานก่อนทำการทดลอง

รูปที่ 3.1การวัดค่าความหวานของกล้วยน้ำว้า

3.2นำกล้วยน้ำว้ามาทาที่ผิวของเปลือกด้วยสารมิวซิเลจสังเกตและบักทึกผล

(3)

รูปที่ 3.2. กล้วยน้ำว้าที่ทาด้วยสารมิวซิเลจจากเมล็ดแมงลักวันที่ 1 รูปที่ 3.3. กล้วยน้ำว้าที่ทาด้วยสารมิวซิเลจจากว่านหางจระเข้วันที่ 1

3.4 สังเกตและบันทึกผลกล้วยน้ำว้าจำนวน 3 ลูกที่ไม่ได้เคลือบสารมิวซิเลจ

รูปที่ 3.4. กล้วยน้ำว้าที่ไม่ได้ทาด้วยสารมิวซิเลจวันที่ 1

3.5 สังเกตและบันทึกผลทุกวันเป็นเวลา 1 สัปดาห์

รูปที่ 3.5. กล้วยน้ำว้าที่ใช้ในการทคลองวันที่ 1

- 3.6 วันสุดท้ายนำกล้วยทั้งสามแบบมาชั่งน้ำหนักและวัดค่าน้ำตาลโดยใช้เครื่องวัดความหวานแบบพกพา บันทึกผล
- 4. การทดสอบประสิทธิภาพของกล้วยน้ำว้า
 - 4.1การวัดความหวาน

วัดค่าความหวาน โดยใช้เครื่องวัดความหวาน(Brix Refractometer)

รูปที่ 4.1การวัดค่าความหวานของผลกล้วย

4.2 การชั่งน้ำหนัก

นำผลกล้วยน้ำว้าสุกแต่ละผลมาชั่งน้ำหนักแล้วหาค่าเฉลี่ย นำไปหาร้อยละการสูญเสียน้ำหนัก

รูปที่ 4.2การชั่งน้ำหนักของผลกล้วย

ร.การเปลี่ยนแปลงสีเปลือก

5.1. ลักษณะการเปลี่ยนสีของสีเปลือกผลกล้วยน้ำว้าในระยะเวลา 1 สัปดาห์

	จำนวนวันที่เก็บรักษา										
กล้วยน้ำว้า	1	2	3	4	5	6	7				
ควบคุม	ครบคุม	ควบคุม	ครบคุม	คงบคุม	ลงบลุ่ม	ครบคุม	คพคุม				
มิวซิเลจจาก เมล็คแมงลัก	สนให้เคากาณ์และลัก	and the second confe	ประจำรากเล็กและล้า	รณ์ที่ระบาดเลียนเล่	green-woods and	สารที่เพื่อสารทานีเรียนอย์ร	สารรับจากเกิดและล้า				
มิวซิเลจจากว่าน หางจระเข้	C 1 N 2 ST LO 4 M 7 M M M M M M M M M M M M M M M M M	(Takka teathers	SIN PLANTING THE	Cus and the second second	and relative control	P. 13-24 Lave m processions	(เป๋าที่ แจงกับพาการส์				

ตารางที่ 1.3 การเปลี่ยนสีของสีเปลือกผลกล้วยน้ำว้าในระยะเวลา 1 สัปดาห์

การเปลี่ยนสีของกล้วยน้ำว้าจากชุดการทดลองทั้ง 3 ชุดพบว่ามีการเปลี่ยนแปลงของสีตามระยะเวลา การสุกและเมื่อนำมาเปรียบเทียบพบว่ากล้วยน้ำว้าที่มีการเปลี่ยนแปลงของสีน้อยที่สุด คือกล้วยน้ำว้าที่ เคลือบด้วยสารมิวซิเลจจากเมล็ดแมงลัก รองลงมาคือชุดควบคุม และกล้วยน้ำว้าที่มีการเปลี่ยนแปลงของสี มากที่สุดคือกล้วยน้ำว้าที่เคลือบด้วยสารมิวซิเลจจากว่านหางจระเข้