Team ID: PNT2022TMID32310

Customer Segmentation Analysis

Clustering the data and performing classification algorithms

Import Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from google.colab import drive
drive.mount("/content/drive",force_remount=True)
Mounted at /content/drive
```

▼ 2. Load the dataset into the tool.

ig=pd.read_csv("/content/drive/MyDrive/Mall_Customers.csv")

erID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
1	Male	19	15	39
2	Male	21	15	81
3	Female	20	16	6
4	Female	23	16	77
5	Female	31	17	40
196	Female	35	120	79
197	Female	45	126	28
198	Male	32	126	74
199	Male	32	137	18
200	Male	30	137	83
		00 Male umns		

```
ig.shape
```

(200, 5)

```
ig = ig.drop(columns=["CustomerID"],axis=1)
```

ig.head()

Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0 Male	9 19	15	39
1 Male	21	15	81
2 Female	20	16	6
3 Female	23	16	77
4 Female	31	17	40

3. Perform Below Visualizations.

Univariate Analysis

sns.histplot(x=ig.Age,color='Green')

<matplotlib.axes._subplots.AxesSubplot at 0x7f5469316990>

→ Bi-Variate Analysis

sns.barplot(x=ig.Age,y=ig['Annual Income (k\$)'])

Multi-Variate Analysis

sns.pairplot(ig)

→ 4. Perform descriptive statistics on the dataset.

ig.describe()

	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000
mean	38.850000	60.560000	50.200000
std	13.969007	26.264721	25.823522
min	18.000000	15.000000	1.000000
25%	28.750000	41.500000	34.750000
50%	36.000000	61.500000	50.000000
75%	49.000000	78.000000	73.000000
max	70.000000	137.000000	99.000000

▼ 5. Check for Missing values and deal with them.

<pre>ig.isnull().any()</pre>		
Gender Age	False False	

```
Annual Income (k$) False
Spending Score (1-100) False
dtype: bool
```

```
ig.isnull().sum()
Gender 0
```

Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0

dtype: int64

There is no missing values so we go for next step.....

6. Find the outliers and replace them outliers

```
sns.boxplot(ig.Age)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following v FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f54687453d0>


```
sns.boxplot(ig['Annual Income (k$)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following v FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f5468748690>


```
ig['Annual Income (k$)'].median()
```

```
q1=ig['Annual Income (k$)'].quantile(0.25)
q3=ig['Annual Income (k$)'].quantile(0.75)

IQR=q3-q1

upper_limit= q3 + 1.5*IQR
lower_limit= q1 - 1.5*IQR

ig['Annual Income (k$)']= np.where(ig['Annual Income (k$)']>upper_limit,61,ig['Annual Income (k$)'])
sns.boxplot(x=ig.Age,showfliers=False)
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f5468623f10>


```
sns.boxplot(ig['Spending Score (1-100)'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following v FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f54685f6250>

7. Check for Categorical columns and perform encoding

Label encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
ig.Gender=le.fit_transform(ig.Gender)
```

ig.head()

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	19	15	39
1	1	21	15	81
2	0	20	16	6
3	0	23	16	77
4	0	31	17	40

▼ 8. Scaling the data

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(ig)
data_scaled[0:5]
                       , 0.01923077, 0.
     array([[1.
                                               , 0.3877551 ],
                                               , 0.81632653],
                      , 0.05769231, 0.
            [1.
                      , 0.03846154, 0.00900901, 0.05102041],
            [0.
            [0.
                       , 0.09615385, 0.00900901, 0.7755102 ],
            [0.
                                   , 0.01801802, 0.39795918]])
```

▼ 9. Perform any of the clustering algorithms

```
target = ig[['Annual Income (k$)' , 'Spending Score (1-100)']].iloc[: , :].values
from sklearn.cluster import KMeans

error = []
for i in range(1, 11):
    km = KMeans(n_clusters = i, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
    km.fit(target)
    error.append(km.inertia_)

plt.plot(range(1, 11), error)
plt.title('Elbow Method')
plt.xlabel('No. of Clusters')
plt.ylabel('error')
plt.show()
```



```
k_means = KMeans(n_clusters = 5, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
```

```
y_means = k_means.fit_predict(target)
k means
    KMeans(n_clusters=5, random_state=0)
y_means
    array([3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4,
         3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 1,
         1, 1, 1, 1, 1,
         1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2,
         0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
         0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
         0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,
         0, 2], dtype=int32)
```

10. Add the cluster data with the primary dataset

```
ig['Outcome'] = pd.Series(y_means)
ig.head()
                                                                              1
         Gender Age Annual Income (k$) Spending Score (1-100) Outcome
      0
                  19
                                       15
                                                               39
                                                                          3
      1
                  21
                                       15
                                                               81
                                                                          4
      2
                  20
                                       16
                                                                          3
              0
                                                                6
      3
                                       16
              0
                  23
                                                               77
                                                                          4
                                                               40
              0
                  31
                                      17
                                                                          3
```

11. Split the data into dependent and independent variables.

→ (i) Independent variable

```
x=ig.drop(columns=['Outcome'],axis = 1)
x.head()
```

Spending Score (1-100)	Annual Income (k\$)	Age	Gender	
39	15	19	1	0
81	15	21	1	1
6	16	20	0	2
77	16	23	0	3
40	17	31	0	4

→ (ii) Dependent variable

```
y = ig.Outcome
y.head()

0     3
1     4
2     3
3     4
4     3
Name: Outcome, dtype: int32
```

12. Split the data into training and testing

→ 13. Build the Model

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10,criterion='entropy')

model.fit(x_train,y_train)

RandomForestClassifier(criterion='entropy', n_estimators=10)

y_predict = model.predict(x_test)

y_predict_train = model.predict(x_train)
```

→ 14. Train the Model

```
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
print('Training accuracy: ',accuracy_score(y_train,y_predict_train))
```

Training accuracy: 1.0

▼ 15. Test the Model

```
print('Testing accuracy: ',accuracy_score(y_test,y_predict))
    Testing accuracy: 0.975
```

▼ 16. Measure the performance using Metrics

pd.crosstab(y_test,y_predict)

col_0	0	1	2	3	4	1
Outcome						
0	11	1	0	0	0	
1	0	17	0	0	0	
2	0	0	5	0	0	
3	0	0	0	3	0	
4	0	0	0	0	3	

 $\verb|print(classification_report(y_test,y_predict))|\\$

	precision	recall	t1-score	support
0	1.00	0.92	0.96	12
1	0.94	1.00	0.97	17
2	1.00	1.00	1.00	5
3	1.00	1.00	1.00	3
4	1.00	1.00	1.00	3
accuracy			0.97	40
macro avg	0.99	0.98	0.99	40
weighted avg	0.98	0.97	0.97	40