Обыкновенные производящие функции

 $f(t)=\sum_{n=0}^{\infty}x_nt^n\leftrightarrow (x_0,\ldots,x_n,\ldots)$. С помощью них можем суммировать какие-то простые ряды и прочее.

Кстати, $\lim_{n\to\infty} x_n = \lim_{t\to 1} (1-t)f(t)$.

Тривиальная производящая функция: $1,1,1,\ldots \sim \frac{1}{1-t}.$

Факториалы: $1,1,\frac{1}{2},\frac{1}{6},\ldots\sim e^t$. Дельта-функция: $1,0,0,\ldots\sim 1$.

Биномиальные коэффиенты: $C_n^k \sim (1+t)^k$

Упражнение 1. Производящая функция $C_n^{k_0}$ (k_0 фиксированно).

Соображение: В 90% случаев можно искать решение в виде: $f(t) = \frac{\mu}{1-t} +$ $\psi(t)$, где ψ — регулярная.

Рассмотрим: $x_{n+1} = \frac{nx_n + x_{n-1}}{n+1}$.

$$\begin{array}{|c|c|c|}\hline f(t) & f'(t) \\\hline \sum x_n t^n & \sum n x_n t^{n-1} \\ \sum x_{n+1} t^{n+1} & \sum (n+1) x_{n+1} t^n \\ \sum x_{n-1} t^{n-1} & \sum (n-1) x_{n-1} t^{n-2} \\ \hline \end{array}$$

$$(n+1)x_{n+1} = nx_n + x_{n-1}$$

$$f' = tf' + tf$$

$$(1-t)f' = tf + x_1$$

$$\frac{df}{f} = \frac{tdt}{1-t}$$

$$f = -t + \int \frac{dt}{1-t} = -t - \ln(1-t) + c$$

$$c\frac{e^{-t}}{1-t}(1-t) = x_1 = \int x_1 e^t dt = x_1 e^t + c_0$$

$$f(t) = \frac{x_1 + (x_0 - x_1)e^{-t}}{1-t}$$

Упражнение 2. Какое отношение эта задача имеет к числу беспорядков на n элементах?