Operator Algebra Seminar Note II

Ikhan Choi

January 11, 2024

Contents

1	October 18		2
	1.1	Countably decomposable von Neumann algebras	2
		Semi-cyclic representations	
	1.3	σ -weak lower semi-continuity \ldots	6
	1.4	Supremum of normal positive linear functionals	8
2	November 10		
	2.1	Hilbert algebras	10
	2.2	Faithful semi-finite normal weights	12
	2.3	Examples	15
3	December 20		
	3.1	Review on Pettis integral	17
	3.2	One-parameter group of isometries	18
	3.3	Tomita-Takesaki commutation theorem	20
4	January 17		25
	4.1	Connes cocyle	25
	4.2	Standard form	25
5	Mar	rch 8	26

Acknowledgement

This note has been written based on the first-year graduate seminar presented at the University of Tokyo in the 2023 Autumn semester. Each seminar was delivered for 105 minutes. I gratefully acknowledge advice of Prof. Yasuyuki Kawahigashi and support of my colleagues Futaba Sato, Yusuke Suzuki.

1 October 18

1.1 Countably decomposable von Neumann algebras

Definition 1.1 (Countably decomposable von Neumann algebras). Let M be a von Neumann algebra. A projection $p \in M$ is called *countably decomposable* if mutually orthogonal non-zero projections majorized by p are at most countable, and we say M is *countably decomposable* if the identity is.

Proposition 1.2. For a von Neumann algebra M, the followings are all equivalent.

- (a) M is countably decomposable.
- (b) *M* admits a faithful normal state.
- (c) M admits a faithful normal non-degenerate representation with a cyclic and separating vector.
- (d) The unit ball of M is metrizable in one of the following topologies: σ -strong*, σ -strong, strong*, strong.

Proof. (a) \Leftrightarrow (b) Suppose M is countably decomposable. Let $\{\xi_i\} \subset H$ be a maximal family of unit vectors such that $\overline{M'\xi_i}$ are mutually orthogonal subspaces, taken by Zorn's lemma. If we let p_i be the projection on $\overline{M'\xi_i}$, then $p_izp_i=zp_i$ for $z\in M'$ implies $p_i\in M''=M$. By the assumption, the family $\{\xi_i\}$ is countable. Define a state ω of M such that

$$\omega(x) := \sum_{i=1}^{\infty} \omega_{2^{-i}\xi_i}(x), \qquad x \in M.$$

It converges due to $\|\omega_{2^{-i}\xi_i}\| = 2^{-i+1}$. It is normal since the sequence $(2^{-i}\xi_i)$ belongs to $\ell(\mathbb{N}, H)$, and it is faithful because $\omega(x^*x) = 0$ implies $x\xi_i = 0$ for all i, which deduces that $x = \sum_i xp_i = 0$.

Conversely, if ω is a faithful normal state, then for a mutually orthogonal family of non-zero projections $\{p_i\} \subset M$, we have

$$\{p_i\} = \bigcup_{n=1}^{\infty} \{p_i : \varphi(p_i) > n^{-1}\}$$

the countable union of finite sets. Thus *M* is countable decomposable.

(b) \Leftrightarrow (c) Let ω be a faithful normal state of M. Consider any faithful normal nondegenerate representation in which ω is a vector state so that the corresponding vector is a separating vector by the faithfullness of ω . Examples include the GNS representation of ω , and the composition with the diagonal map $B(H) \to B(\ell^2(\mathbb{N}, H))$. Then, $\overline{M\Omega}$ admits a cyclic and separating vector Ω of M. The converse is immediate, i.e. the vector state ω_{Ω} is a faithful normal state of M.

(a) \Leftrightarrow (d) Suppose M is countably decomposable and take $\{\xi_i\}_{i=1}^{\infty}$ and $\{p_i\}_{i=1}^{\infty}$ as we did. Define

$$d(x,y) := \sum_{i=1}^{\infty} 2^{-i} \|(x-y)\xi_i\|.$$

Clearly it generates a topology coarser than strong topology. It is also finer because if a bounded net x_{α} in M converges to zero in the metric d so that $x\xi_i \to 0$ for all i, then $H = \bigoplus_i M'\xi_i$ implies that for every $\xi \in H$ and $\varepsilon > 0$ we have $\|\xi - \sum_{k=1}^n z_k \xi_{i_k}\| < \varepsilon$ for some $z_k \in M'$ so that

$$||x_{\alpha}\xi|| \leq ||x_{\alpha}(\xi - \sum_{k=1}^{n} z_{k}\xi_{i_{k}})|| + \sum_{k=1}^{n} ||x_{\alpha}z_{k}\xi_{i_{k}}|| < \varepsilon + \sum_{k=1}^{n} ||z_{k}|| ||x_{\alpha}\xi_{i_{k}}|| \to \varepsilon.$$

Since on the bounded part the strong and σ -strong topologies coincide, the two topologies on the unit ball are metrizable. We can do similar for the strong* and the σ -strong* topologies.

Conversely, for a mutually orthogonal family of non-zero projections $\{p_i\}_{i\in I}\subset M$, since the net of finite partial sums $p_F:=\sum_{i\in F}p_i$ is an non-decreasing net in the closed unit ball whose supremum is the identity of M, there is a convergent subsequence $p_{F_n}\uparrow 1$ by the metrizability, which implies $I=\bigcup_{n=1}^\infty F_n$, the countable union of finite sets.

Proposition 1.3. For a von Neumann algebra M, the followings are all equivalent.

- (a) M has the separable predual.
- (b) M admits a faithful normal non-degenerate representation on a separable Hilbert space.
- (c) *M* is countably decomposable and countably generated.
- (d) The unit ball of M is metrizable in one of the following topologies: σ -weak, weak.

1.2 Semi-cyclic representations

Definition 1.4 (Weights). Let M be a von Neumann algebra. A *weight* is a function $\varphi: M^+ \to [0, \infty]$ such that

$$\varphi(x+y) = \varphi(x) + \varphi(y), \qquad \varphi(\lambda x) = \lambda \varphi(x), \qquad x, y \in M^+, \ \lambda \ge 0,$$

where we use the convention $0 \cdot \infty = 0$.

For a weight, we will show that the following properties are all equivalent:

- (i) completely additive,
- (ii) order continuous,
- (iii) σ -weakly lower semi-continuous,
- (iv) supremum of normal positive linear functionals.

A weight satisfying one of them is called *normal*. Note that $(iv) \rightarrow (ii) \rightarrow (i) \rightarrow (i)$ is clear.

Definition 1.5. Let φ be a weight on a von Neumann algebra M. Define a left ideal of M

$$\mathfrak{n} := \{ x \in M : \varphi(x^*x) < \infty \},$$

and a hereditary *-subalgebra of M

$$\mathfrak{m} := \mathfrak{n}^* \mathfrak{n} = \{ \sum_{i=1}^n y_i^* x_i : (x_i), (y_i) \in \mathfrak{n}^n \}.$$

Lemma 1.6. If $x, y \in M$ satisfies $y^*y \le x^*x$, then there is a unique $s \in B(H)$ such that y = sx and s = sp, where p is the range projection of x, and $s \in M$.

Proof. Suppose $\mathrm{id}_H \in M \subset B(H)$. The operator $s_0 : \overline{xH} \to \overline{yH} : x\xi \mapsto y\xi$ is well defined because

$$||y\xi||^2 = \langle y^*y\xi, \xi \rangle \le \langle x^*x\xi, \xi \rangle = ||x\xi||^2.$$

Let p be the range projection of x and let $s := s_0 p$. Then, $y\xi = sx\xi$ for all $\xi \in H$. If y = s'x and s' = s'p, then

$$x^*(s-s')^*(s-s')x = (y-y)^*(y-y) = 0$$

implies

$$0 = p(s-s')^*(s-s')p = (s-s')^*(s-s').$$

Therefore, s is unique in B(H). If $u \in M'$ is unitary, then usu^* satisfies the same property $y = usu^*x$ and $usu^* = usu^*p$, so us = su. Since the unitary span the whole C^* -algebra, we have $s \in M'' = M$. \square

Proposition 1.7. Let φ be a weight on a von Neumann algebra M.

- (a) Every element of \mathfrak{m}^+ can be written to be x^*x for some $x \in \mathfrak{n}$.
- (b) Every element of \mathfrak{m} can be written to be y^*x for some $x, y \in \mathfrak{n}$.

Proof. (a) Let $a := \sum_{i=1}^n y_i^* x_i \in \mathfrak{m}^+$ for some $x_i, y_i \in \mathfrak{n}$. The polarization writes

$$a = \frac{1}{4} \sum_{i=1}^{n} \sum_{k=0}^{3} i^{k} |x_{i} + i^{k} y_{i}|^{2}$$

and $a^* = a$ implies

$$a = \frac{1}{2} \sum_{i=1}^{n} (|x_i + y_i|^2 - |x_i - y_i|^2) \le \frac{1}{2} \sum_{i=1}^{n} |x_i + y_i|^2$$

implies

$$\varphi(a) \leq \frac{1}{2} \sum_{i=1}^{n} \varphi(|x_i + y_i|^2) < \infty.$$

Therefore, if $x := a^{\frac{1}{2}} \in \mathfrak{n}$, then $a = x^*x$.

(b) Let $a:=\sum_{i=1}^n y_i^*x_i\in \mathfrak{m}$ for some $x_i,y_i\in \mathfrak{n}$. Let $x:=(\sum_{i=1}^n x_i^*x_i)^{\frac{1}{2}}\in \mathfrak{n}$. Since $x_i^*x_i\leq x^2$, we have $s_i\in M$ such that $x_i=s_ix$. If we let $y:=\sum_{i=1}^n s_i^*y_i\in \mathfrak{n}$, then

$$a = \sum_{i=1}^{n} y_i^* x_i = \sum_{i=1}^{n} y_i^* s_i x = (\sum_{i=1}^{n} s_i^* y_i) x = y^* x.$$

Definition 1.8 (Semi-cyclic representations). Let φ be a weight on a von Neumann algebra. Let H be the Hilbert space defined by the separation and completion of a sesquilinear form

$$\mathfrak{n} \times \mathfrak{n} \to \mathbb{C} : (x, y) \mapsto \varphi(y^*x)$$

and let $\Lambda : \mathfrak{n} \to H$ be the canonical image map. The pair (π, Λ) is called the *semi-cyclic representation* associated to φ .

Proposition 1.9 (Bounded Radon-Nikodym). Let φ be a weight on a von Neumann algebra and (π, Λ) be the associated semi-cyclic representation to φ . Consider a map

$$\Theta: \mathfrak{m} \times \pi(M)' \to \mathbb{C}: (y^*x, z) \mapsto \langle z\Lambda(x), \Lambda(y) \rangle$$

and define

$$\theta: \mathfrak{m} \to \pi(M)'_*, \qquad \theta^*: \pi(M)' \to \mathfrak{m}^\#$$

such that $\Theta(y^*x,z) = \theta(y^*x)(z) = \theta^*(z)(y^*x)$ for $x, y \in \mathfrak{n}$ and $z \in \pi(M)'$.

- (a) Θ is a well-defined bilinear form.
- (b) θ^* is bijective onto the space of linear functionals on \mathfrak{m} whose absolute value is majorized by φ . In particular, if $l \in \mathfrak{m}^\#$ satisfies $|l| \leq C \varphi$ for some C > 0, then there is $z \in \pi(M)'$ such that $||z|| \leq C$ and $l(y^*x) = \langle z\Lambda(x), \Lambda(y) \rangle$ for $x, y \in \mathfrak{n}$.

Proof. (a) The linearity in the second argument is obvious. Fix $z \in \pi(M)'$. We first check the well-definedness on \mathfrak{m}^+ . Let $x^*x = y^*y \in \mathfrak{m}^+$ for $x, y \in \mathfrak{n}$. Then, there is $s \in M$ such that y = sx and s = sp, where p is the range projection of x, so

$$x^*(1-s^*s)x = x^*x - y^*y = 0$$

implies

$$0 = p(1 - s^*s)p = p - s^*s$$

and $x = px = s^*sx = s^*y$. The well-definedness follows from

$$\Theta(x^*x,z) = \langle z\Lambda(x), \Lambda(x) \rangle = \langle \pi(s)z\pi(s^*)\Lambda(y), \Lambda(y) \rangle = \langle z\Lambda(ss^*y), \Lambda(y) \rangle = \Theta(y^*y,z).$$

The homogeneity is clear, so now we prove the addivitiy. Let x^*x , $y^*y \in \mathfrak{m}^+$ for some $x, y \in \mathfrak{n}$. Let $a := (x^*x + y^*y)^{\frac{1}{2}}$ and take $s, t \in M$ such that x = sa, y = ta, s = sa, and t = ta, where p is the range projection of a. Then,

$$a(1-s^*s-t^*t)a = a^*a-x^*x-y^*y = 0$$

implies

$$p(1-s^*s-t^*t)p = p-s^*s-t^*t.$$

It follows that

$$\Theta(x^*x + y^*y, z) = \langle z\Lambda(a), \Lambda(a) \rangle = \langle z\pi(p)\Lambda(a), \Lambda(a) \rangle$$

$$= \langle z\pi(s^*s)\Lambda(a), \Lambda(a) \rangle + \langle z\pi(t^*t)\Lambda(a), \Lambda(a) \rangle$$

$$= \langle z\Lambda(x), \Lambda(x) \rangle + \langle z\Lambda(y), \Lambda(y) \rangle$$

$$= \Theta(x^*x, z) + \Theta(y^*y, z).$$

Now the $\Theta(\cdot, z)$ is linearly extendable to \mathfrak{m} .

(b) The linear map θ^* is injective since Λ has dense range. Take $z \in \pi(M)'$ and consider $\theta^*(z)$, which maps x^*x to $\langle z\Lambda(x), \Lambda(x) \rangle$ for $x \in \mathfrak{n}$. The image is majorized by φ as

$$|\langle z\Lambda(x), \Lambda(x)\rangle| \le ||z|| ||\Lambda(x)||^2 = ||z|| \varphi(x^*x).$$

Conversely, let $l \in \mathfrak{m}^{\#}$ is a linear functional majorized by φ , i.e. there is a constant C > 0 such that

$$|l(x^*x)| \le C\varphi(x^*x), \qquad x \in \mathfrak{n}.$$

Define a sesquilinear form $\sigma: \mathfrak{n} \times \mathfrak{n} \to \mathbb{C}$ such that $\sigma(x,y) := l(y^*x)$. It is well-defined after separation of \mathfrak{n} and is bounded by the Cauhy-Schwartz inequality

$$|\sigma(x,y)|^2 = |l(y^*x)|^2 \le ||l(x^*x)|| ||l(y^*y)|| \le \varphi(x^*x)\varphi(y^*y) = ||\Lambda(x)||^2 ||\Lambda(y)||^2.$$

Therefore, σ defines a bounded linear operator $z \in \pi(M)'$ such that

$$\sigma(x, y) = \langle z\Lambda(x), \Lambda(y) \rangle,$$

exactly meaning $\theta^*(z)(y^*x) = l(y^*x)$ for $x, y \in \mathfrak{n}$.

Note that we have a commutative diagram

$$\mathfrak{n} \xrightarrow{\Lambda} H$$

$$\downarrow \omega$$

$$B(H)_* \qquad \qquad \downarrow \operatorname{res}$$

$$\mathfrak{m}^+ \xrightarrow{\theta} \pi(M)'_*.$$

In particular, for $x \in \mathfrak{n}^+$ we have

$$\|\theta(x^2)\| = \|\omega_{\Lambda(x)}\| = \|\Lambda(x)\|^2 = \varphi(x^2).$$

Lemma 1.10. Let For $z \in \mathfrak{m}^{sa}$, we have

$$\inf\{\varphi(a):z\leq a\in\mathfrak{m}^+\}\leq \|\theta(z)\|.$$

In particular, for $x, y \in \mathfrak{n}^+$ and for any $\varepsilon > 0$ there is $a \in \mathfrak{m}^+$ such that $x^2 - y^2 \le a$ and

$$\varphi(a) \le \|\theta(x^2 - y^2)\| + \varepsilon = \|\omega_{\Lambda(x)} - \omega_{\Lambda(y)}\| + \varepsilon.$$

Proof. Denote by p(z) the left-hand side of the inequality. Then, we can check $p:\mathfrak{m}^{s\alpha}\to\mathbb{R}_{\geq 0}$ is a semi-norm such that $p(z)=\varphi(z)$ for $z\geq 0$. (If we take $p(z):=\varphi(z^+)$, then it seems to be dangerous when checking the sublinearity. I could not find the counterexample.)

Fix any non-zero $z_0 \in \mathfrak{m}^{sa}$. By the Hahn-Banach extension, there is an algebraic real linear functional $l:\mathfrak{m}^{sa}\to\mathbb{R}$ such that

$$l(z_0) = p(z_0),$$
 $|l(z)| \le p(z),$ $z \in \mathfrak{m}^{sa}.$

Extend linearly l to be $l: \mathfrak{m} \to \mathbb{C}$. Since $|l(z)| \le \varphi(z)$ for $z \in \mathfrak{m}^+$, by the bounded Radon-Nikodym theorem, we have a corresponding operator $a \in \pi(M)'_1$ such that $\theta^*(a) = l$, hence

$$p(z_0) = l(z_0) = \theta^*(a)(z_0) = \theta(z_0)(a) \le ||\theta(z_0)||.$$

Since $z_0 \in \mathfrak{m}^{sa}$ is aribtrary, we are done.

1.3 σ -weak lower semi-continuity

Theorem 1.11. Let M be a countably decomposable von Neumann algebra. Then, a completely additive weight on M is σ -weakly lower semi-continuous.

Proof. We first prove a completely additive weight φ on M is normal if M is countably decomposable. Let x_{α} be a bounded increasing net in M^+ with $x := \sup_{\alpha} x_{\alpha}$. Take any faithful normal state ω of M and extract inductively an increasing subsequence x_n of x_{α} such that $\omega(x_n) \to \omega(x)$. Then, $\omega(x_n) \le \omega(\sup_n x_n) \le \omega(x)$ implies $\omega(\sup_n x_n) = \omega(x)$, and since ω is faithful we have $\sup_n x_n = x$. By the complete additivity, we have

$$\varphi(x) = \sum_{n=1}^{\infty} \varphi(x_{n+1} - x_n) \le \sup_{n} \varphi(x_n) \le \sup_{\alpha} \varphi(x_{\alpha}) \le \varphi(x),$$

hence φ is order continuous.

Now, let φ be an order continuous weight on M and let (π, Λ) be the associated semi-cyclic representation. In the spirit of the Krein-Šmulian theorem, the σ -weak lower semi-continuity is equivalent to the σ -weak closedness of the intersection with the ball

$$\varphi^{-1}([0,1])_1 = \{ x \in M^+ : \varphi(x) \le 1, \ \|x\| \le 1 \}$$
$$= \{ x \in \mathfrak{m}^+ : \|\Lambda(x^{\frac{1}{2}})\| \le 1, \ \|x^{\frac{1}{2}}\| \le 1 \}.$$

Since that the σ -weak and σ -strong closedness of a convex set are equivalent and that the square root operation on M_1^+ is σ -strongly continuous, we are enough to show the set

$$(\varphi^{-1}([0,1])_1)^{\frac{1}{2}} = \{x \in \mathfrak{n}^+ : ||\Lambda(x)|| \le 1, \ ||x|| \le 1\}$$

is σ -weakly closed. This set, if we denote the graph of $\Lambda : \mathfrak{n} \to H$ by Γ_{Λ} , is exactly the image of the positive part of the unit ball

$$(\Gamma_{\Lambda})_{1}^{+} = \{(x, \Lambda(x)) \in \mathfrak{n}^{+} \oplus_{\infty} H : ||\Lambda(x)|| \le 1, ||x|| \le 1\}$$

under the projection $M \oplus_{\infty} H \to M$. Observing $M \oplus_{\infty} H \cong (M_* \oplus_1 H)^*$, if we prove $(\Gamma_{\Lambda})_1^+$ is weakly* closed, then we are done by its compactness.

Consider a linear functional $l: M \oplus_{\infty} H \to \mathbb{C}$ that is continuous with respect to $(\sigma s, \|\cdot\|)$. If we define $l_1: M \to \mathbb{C}$ and $l_2: H \to \mathbb{C}$ such that $l_1(x) := l(x,0)$ and $l_2(\xi) = (0,\xi)$, then they satisfy $l(x,\xi) = l_1(x) + l_2(\xi)$, and are continuous in σ -strong and norm topologies, hence to σ -weak and weak topologies, respectively. Since a net (x_a, ξ_a) converges to (x,ξ) weakly* if and only if $x_a \to x$ σ -weakly and $\xi_a \to \xi$ weakly, l is weakly* continuous. Because $(\Gamma_{\Lambda})_1^+$ is convex, we will now show that $(\Gamma_{\Lambda})_1^+$ is closed with respect to $(M, \sigma s) \times (H, \|\cdot\|)$.

Note that the unit ball M_1 is metrizable in σ -strong topology since M is countably decomposable. Suppose a sequence $x_n \in \mathfrak{n}_1^+$ satisfies $x_n \to x$ σ -strongly and $\Lambda(x_n) \to \xi$ in H. Then, it suffices to show the following two statements: $x \in \mathfrak{n}_1^+$ and $\Lambda(x) = \xi$. We first observe that since $\Lambda(x_n)$ is Cauchy, so is $\omega_{\Lambda(x_n)}$ in $\pi(M)'_*$.

Consider for a while, a family of functions

$$f_a(t) := \frac{t}{1 + at}, \quad t \in (-a^{-1}, \infty),$$

parametrized by a > 0. They have several properties. At first, they are operator monotone. Next, they are σ -strongly continuous on a closed subset of its domain due to the boundedness of f_a , as we can see in the proof of the Kaplansky density theorem. Finally, for each $x \in M_+$, the increasing limit $f_a(x) \uparrow x$ in norm as $a \to 0$ implies that $\sup_a f_a(x) = x$.

First we show $x \in \mathfrak{n}_1^+$. It is clear that $x \in M_1^+$, so it is enough to show $\varphi(x^2) < \infty$. By taking a subsequence, we may assume $\|\omega_{\Lambda(x_{n+1})} - \omega_{\Lambda(x_n)}\| < \frac{1}{2^n}$. In order to dominate x_n with an monotone sequence, find $a_n \in \mathfrak{m}^+$ such that

$$x_{n+1}^2 - x_n^2 \le a_n, \qquad \varphi(a_n) < \frac{1}{2^n},$$

using the previous lemma. Then, we can write

$$x_{n+1}^2 \le x_1^2 + \sum_{k=1}^n (x_{k+1}^2 - x_k^2) \le x_1 + \sum_{k=1}^n a_k.$$

Here the right-hand side is non-decreasing but not a bounded sequence so we take f_a to get the σ -strong limit

$$f_a(x^2) \le \sup_n f_a(x_1^2 + \sum_{k=1}^n a_k).$$

Then, by the normality of φ , we have

$$\varphi(f_a(x^2)) \le \sup_n \varphi(f_a(x_1^2 + \sum_{k=1}^n a_k))$$

$$\le \sup_n \varphi(x_1^2 + \sum_{k=1}^n a_k)$$

$$= \varphi(x_1^2) + \sum_{k=1}^\infty \varphi(a_k)$$

$$< \varphi(x_1^2) + 1 < \infty$$

which implies by sending $a \to 0$ that $\varphi(x^2) < \infty$, whence $x \in \mathfrak{n}$.

Next we show $\Lambda(x) = \xi$. If we prove $\varphi((x_n - x)^2) \to 0$, then

$$\|\xi - \Lambda(x)\| \le \|\xi - \Lambda(x_n)\| + \|\Lambda(x_n) - \Lambda(x)\| = \|\xi - \Lambda(x_n)\| + \varphi((x_n - x)^2)^{\frac{1}{2}} \to 0$$

deduces the desired result. By taking a subsequence, since $\Lambda(x_n - x)$ is Cauchy, we may assume

$$\|\omega_{\Lambda(x_n-x)}-\omega_{\Lambda(x_{n+1}-x)}\|<\frac{1}{2^n}.$$

Let $b_n \in \mathfrak{m}^+$ such that

$$(x_n - x)^2 - (x_{n+1} - x)^2 \le b_n, \qquad \varphi(b_n) < \frac{1}{2^n}$$

As we did previously, we have

$$f_a((x_n - x)^2) \le f_a((x_{m+1} - x)^2) + f_a(\sum_{k=n}^m b_k) \to \sup_m f_a(\sum_{k=n}^m b_k)$$

as $m \to \infty$ and

$$\varphi(f_a((x_n-x)^2)) \le \sup_m \varphi(f_a(\sum_{k=n}^m b_k)) \le \sup_m \varphi(\sum_{k=n}^m b_k) < \frac{1}{2^{n-1}}.$$

Therefore,

$$\varphi((x_n-x)^2) \le \frac{1}{2^{n-1}} \to 0.$$

Theorem 1.12. Let M be an arbitrary von Neumann algebra. Then, a completely additive weight on M is σ -weakly lower semi-continuous.

Proof. Let φ be a completely additive weight of M. Let Σ be the set of all countably decomposable projections of M and let $M_0 := \bigcup_{p \in \Sigma} pMp$. The equivalent condition for $x \in M$ to belong to M_0 is that the left and right support projections of x are countably decomposable. Since then the left support projection p and the right support projection q of x are Murray-von Neumann equivalent so that there is a *-isomorphism between pMp and qMq, the countable decomposability is equivalent for p and q. It implies that M_0 is an algebraic ideal of M. (Moreover, M_0 is σ -weakly sequentially closed in M since if a sequence $x_n \in M_0$ converges to $x \in M$ σ -weakly, then for $p_n \in \Sigma$ such that $x_n = p_n x_n p_n$, we have $p \in \Sigma$ with $p_n \leq p$ so that $x_n = px_n p$ converges to x = pxp σ -weakly. This fact is not needed in the proof.)

We first claim that $\varphi^{-1}([0,1])_1$ is relatively σ -weakly closed in M_0 . Let $y \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w} \cap M_0$ so that there is a net $y_\alpha \in \varphi^{-1}([0,1])_1$ converges σ -weakly to y, and there is $p \in \Sigma$ such that pyp = y. Note that the previous theorem states that $\varphi^{-1}([0,1]) \cap pMp$ is σ -weakly closed. Since $py_\alpha p$ is a net in $\varphi^{-1}([0,1])_1 \cap pMp$ that also converges σ -weakly to pyp = y, we have $y \in \varphi^{-1}([0,1])$. The claim proved.

We now claim that $\varphi^{-1}([0,1])_1$ is σ -weakly closed in M. Suppose a net $x_\alpha \in \varphi^{-1}([0,1])_1$ converges to $x \in M$ σ -weakly. Clearly $x \in M_1^+$. Let $\{p_i\}_{i \in I}$ be a maximal mutually orthogonal projections in Σ , and let $p_J := \sum_{i \in J} p_i$ for finite sets $J \subset I$ so that $\sup_J p_J = 1$. It clearly follows that for each α we have

$$x_{\alpha}^{\frac{1}{2}}p_{J}x_{\alpha}^{\frac{1}{2}} \in \varphi^{-1}([0,1])_{1}.$$

Then, we can show easily with boundedness of x_{α} that

$$x^{\frac{1}{2}}p_Jx^{\frac{1}{2}}\in \overline{\varphi^{-1}([0,1])_1}^{\sigma w}.$$

Because $p_J \in M_0$ and M_0 is an ideal,

$$x^{\frac{1}{2}}p_Jx^{\frac{1}{2}} \in \overline{\varphi^{-1}([0,1])_1}^{\sigma w} \cap M_0.$$

By the above claim,

$$x^{\frac{1}{2}}p_Jx^{\frac{1}{2}} \in \varphi^{-1}([0,1])_1.$$

By the complete additivity of φ , we finally obtain

$$x \in \varphi^{-1}([0,1])_1.$$

Therefore, $\varphi^{-1}([0,1])_1$ is σ -weakly closed.

1.4 Supremum of normal positive linear functionals

Endow a partial order on the set of all weights. Then, every set of monotonically increasing subadditive homogeneous functions $\varphi: M^+ \to [0, \infty]$ always have its supremum given by its pointwise supremum. Since if φ is the supremum of σ -weakly lower semi-continuous φ_i , then

$$\varphi^{-1}([0,1]) = \bigcap_{i} \varphi_{i}^{-1}([0,1])$$

implies the σ -weak lower semi-continuity of φ . Conversly, the following theorem holds.

Theorem 1.13. Let M be a von Neumann algebra. Then, a σ -weakly lower semi-continuous monotonically increasing additivie homogeneous function $\varphi: M^+ \to [0, \infty]$ is given by the supremum of a set of normal positive linear functionals.

Proof. Let $F := \varphi^{-1}([0,1])$. It is a hereditary closed convex subset of the real locally convex space $(M^{sa}, \sigma w)$. Denote by the superscript circle the real polar set. Since

$$F^{\circ+} = \{\omega \in M_*^+ : \omega \le \varphi\}, \qquad F^{\circ+\circ+} = \{x \in M^+ : \sup_{\omega \le \varphi, \ \omega \in M_*^+} \omega(x) \le 1\},$$

it is enough to show $F^{\circ+\circ+}=F$. The positive part of the real polar of F is generally written as

$$F^{\circ +} = F^{\circ} \cap M_{\downarrow}^{+} = F^{\circ} \cap (-M^{+})^{\circ} = (F \cup -M^{+})^{\circ} = (F - M^{+})^{\circ}.$$

Consider a sequence of inclusions

$$F \subset \overline{F} \subset \overline{(F-M^+)^+} \subset \overline{(F-M^+)^+} \subset (F-M^+)^{\circ \circ +} = F^{\circ + \circ +}.$$

The first, second, and forth inclusions are in fact full because F is closed, hereditary, and convex. So we claim that the reverse of the third inclusion $\overline{(F-M^+)^+} \subset \overline{(F-M^+)^+}$.

Let $x \in \overline{(F-M^+)}^+$. For arbitrary a>0, it is enough to show $f_a(x) \in F-M^+$ because $x \ge 0$ implies $f_a(x) \ge 0$ and $f_a(x) \uparrow x$ as $a \to 0$. Let x_a be a net in $F-M^+$ that converges to x σ -strongly, which can be done by the convexity of $F-M^+$. Let y_a be a net in F such that $f_{a/2}(x_a) \le y_a$. Since $f_{a/2}(y_a)$ is a bounded net, we may assume it is σ -weakly convergent. By the σ -strong continuity of f_a , the net $f_a(x_a)$ converges to $f_a(x)$ σ -strongly, hence σ -weakly. Therefore, by the closedness of F,

$$f_a(x) = \lim_{\alpha} f_a(x_{\alpha}) \le \lim_{\alpha} f_{a/2}(y_{\alpha}) \in F,$$

so we conclude $f_a(x) \in F - M^+$.

2 November 10

2.1 Hilbert algebras

Definition 2.1 (Left Hilbert algebra). A *left Hilbert algebra* is a *-algebra A together with an inner product such that the involution is closable on H and the square A^2 is dense in H, where $H := \overline{A}$. A left Hilbert algebra A has the following additional devices:

- (i) a closable densely defined anti-linear operator $S: A \to H$, defined by the involution,
- (ii) a faithful non-degenerate *-homomorphism $\lambda : A \to B(H)$, defined by the left multiplication.

The associated von Neumann algebra of a left Hilbert algebra A is defined as $M := \lambda(A)''$.

Definition 2.2 (Right Hilbert algebra). Let *A* be a left Hilbert algebra. For $\eta \in H$, define:

- (i) a linear functional $F\eta: A \to \mathbb{C}$ such that $F\eta(\xi) := \langle \eta, S\xi \rangle$ for $\xi \in A$,
- (ii) a linear operator $\rho(\eta): A \to H$ such that $\rho(\eta)\xi := \lambda(\xi)\eta$ for $\xi \in A$.

Define also:

$$D' := \{ \eta \in H \mid F \eta \text{ is bounded} \}, \qquad B' := \{ \eta \in H \mid \rho(\eta) \text{ is bounded} \}, \qquad A' := B' \cap D'.$$

Then, for $\eta \in D'$, we can identify $F\eta$ with a vector in H by the Riesz representation theorem, and for $\eta \in B'$, we can identify $\rho(\eta)$ with an element of B(H).

Proposition 2.3. Let A be a left Hilbert algebra.

- (a) A' is a *-algebra such that $\eta^* := F \eta$ and $\eta \zeta := \rho(\zeta) \eta$.
- (b) $\rho(A')A'$ is dense in H.
- (c) A' is a right Hilbert algebra such that $\overline{A'} = H$.

Proof. (a) Combining from (i) to (iv) in the below, the claim follows clearly:

(i) For $\eta \in D'$, we have $FF\eta = \eta$ in H by

$$FF\eta(\xi) = \langle F\eta, S\xi \rangle = \langle SS\xi, \eta \rangle = \langle \xi, \eta \rangle, \quad \xi \in A.$$

Therefore, if $\eta \in D'$, then $F \eta \in D'$.

(ii) For $\eta \in D'$, we have $\rho(F\eta) = \rho(\eta)^*$ on A by

$$\begin{split} \langle \rho(F\eta)\xi,\xi\rangle &= \langle \lambda(\xi)F\eta,\xi\rangle = \langle F\eta,\lambda(\xi)^*\xi\rangle = \langle S\lambda(\xi)^*\xi,\eta\rangle \\ &= \langle \lambda(\xi)^*\xi,\eta\rangle = \langle \xi,\lambda(\xi)\eta\rangle = \langle \xi,\rho(\eta)\xi\rangle = \langle \rho(\eta)^*\xi,\xi\rangle, \qquad \xi \in A. \end{split}$$

Therefore, if $\eta \in A'$, then $F \eta \in B'$.

(iii) For $\eta, \zeta \in B'$, we have $F(\rho(\eta)^*\zeta) = \rho(\zeta)^*\eta$ in H by

$$\langle F(\rho(\eta)^*\zeta), \xi \rangle = \langle S\xi, \rho(\eta)^*\zeta \rangle = \langle \rho(\eta)S\xi, \zeta \rangle = \langle \lambda(\xi)^*\eta, \zeta \rangle$$
$$= \langle \eta, \lambda(\xi)\zeta \rangle = \langle \eta, \rho(\zeta)\xi \rangle = \langle \rho(\zeta)^*\eta, \xi \rangle, \qquad \xi \in A.$$

Therefore, if $\eta, \zeta \in B'$, then $\rho(\eta)^* \zeta \in D'$.

(iv) For $\eta \in B'$ and $\zeta \in H$, we have $\rho(\rho(\eta)^*\zeta) = \rho(\eta)^*\rho(\zeta)$ on *A* by

$$\begin{split} \langle \rho(\rho(\eta)^*\zeta)\xi,\xi\rangle &= \langle \lambda(\xi)\rho(\eta)^*\zeta,\xi\rangle = \langle \zeta,\rho(\eta)\lambda(\xi)^*\xi\rangle = \langle \zeta,\lambda(\lambda(\xi)^*\xi)\eta\rangle \\ &= \langle \zeta,\lambda((S\xi)\xi)\eta\rangle = \langle \zeta,\lambda(\xi)^*\lambda(\xi)\eta\rangle = \langle \lambda(\xi)\zeta,\lambda(\xi)\eta\rangle \\ &= \langle \rho(\zeta)\xi,\rho(\eta)\xi\rangle = \langle \rho(\eta)^*\rho(\zeta)\xi,\xi\rangle, \qquad \xi \in A. \end{split}$$

Therefore, if $\eta, \zeta \in B'$, then $\rho(\eta)\zeta \in B'$.

(b) Since D' is dense in H by the closability of S, it suffices to verify the inclusion $D' \subset \overline{\rho(A')A'}$. Let $\eta \in D'$. Since $\rho(\eta)$ has densely defined adjoint $\rho(F\eta)$, we may assume $\rho(\eta)$ to be closed and densely defined by taking closure, so we can write down the polar decomposition

$$\rho(\eta) = vh = kv, \qquad h := |\rho(\eta)|, \quad k := |\rho(\eta)^*|.$$

To control the unboundedness of $\rho(\eta)$, we introduce $f \in C_c((0, \infty))^+$ to cutoff $\rho(\eta)$. Let f(t) := tf(t) and $\dot{f}(t) := t^{-1}f(t)$. Now we have $f(k) \in \rho(B')$ since f(k) is bounded and

$$f(k) = f(\nu h \nu^*) = \nu f(h) \nu^* = \nu \dot{f}(h) \rho(\eta)^* = \rho \left(\nu \dot{f}(h) F \eta\right).$$

We also have $f(k)\eta \in B'$ since

$$\rho(f(k)\eta) = f(k)\rho(\eta) = f(k)v$$

is bounded. Applying the above arguments for $f^{\frac{1}{3}} \in C_c((0, \infty))$,

$$f(k)\eta = (f(k)^{\frac{1}{3}})^3 \eta \in \rho(B')^* \rho(B') \rho(B')^* B'.$$

Because $\rho(B')^*B' \subset A'$ and $\rho(B')^*\rho(B) \subset \rho(A')$ by (iii) and (iv) in the part (a), we have $f(k)\eta \in \rho(A')A'$. If we construct a non-decreasing net $f_\alpha \in C_c((0,\infty))$ such that $\sup_\alpha f_\alpha = 1_{(0,\infty)}$, then the strong limit implies

$$\lim_{\alpha} f_{\alpha}(k)\eta = 1_{(0,\infty)}(k)\eta = s(k)\eta = s_{l}(\rho(\eta))\eta.$$

Here we use the non-degeneracy of λ to verify η belongs to the closure of the range of $\rho(\eta)$, i.e. since M contains the identity operator on H, we have a net $\xi_a \in A$ such that $\lambda(\xi_a)$ converges to the identity strongly so that $\lambda(\xi_a)\eta \to \eta$. It implies that $\eta \in \overline{\lambda(A)\eta} = \overline{\rho(\eta)A}$ and $s_l(\rho(\eta))\eta = \eta$. Therefore, $\eta = s_l(\rho(\eta))\eta \in \overline{\rho(A')A'}$.

(c) The involution $F:A'\to H$ is a closable densely defined anti-linear operator because A' is dense in H by (b) and the closability follows from the dense domain of its adjoint S. The right multiplication $\rho:A'^{\mathrm{op}}\to B(H)$ is a faithful non-degenerate *-homomorphism because $\rho(A')H$ is dense in H by (b) and the faithfulness follows from the non-degeneracy of λ . Therefore, A' is a right Hilbert algebra with $\overline{A'}=H$.

Corollary 2.4. $\rho(A')' = M$.

Proof. One direction is clear, i.e. $\rho(A') \subset M'$ implies $\rho(A')'' \subset M'$. Conversely, let $y \in M'^+$. Since $\rho: A'^{\mathrm{op}} \to B(H)$ is non-degenerate, there is a net $\eta_\alpha \in A'$ such that $\rho(\eta_\alpha)$ converges to the identity σ -weakly. Then,

$$\rho(\eta_{\alpha})^{*}y\rho(\eta_{\alpha}) = \rho(y^{\frac{1}{2}}\eta_{\alpha})^{*}\rho(y^{\frac{1}{2}}\eta_{\alpha}) \in \rho(B')^{*}\rho(B') \subset \rho(A')$$

converges to $y \sigma$ -weakly, hence $y \in \rho(A')''$.

Definition 2.5 (Full Hilbert algebra). Let A be a left Hilbert algebra. Symmetrically as above, starting from the right Hilbert algebra A', we can construct a left Hilbert algebra A''. We say A is full if A = A''.

Definition 2.6 (Modular operator and conjugation). Let A be a left Hilbert algebra. Denote the polar decomposition of S by $S = J\Delta^{\frac{1}{2}}$. The unbounded operators Δ and J are called the *modular operator* and the *modular conjugation*.

Corollary 2.7. From the polar decomposition theorem for unbounded (anti-)linear operators, we have

- (a) S is injective with $S = S^{-1}$ and $D = \text{dom } S = \text{dom } \Delta^{\frac{1}{2}}$.
- (b) *F* is injective with $F = F^{-1}$ and $D' = \text{dom } F = \text{dom } \Delta^{-\frac{1}{2}}$.
- (c) Δ is an injective positive self-adjoint operator.
- (d) *J* is a conjugation, i.e. an anti-linear isometric involution.
- (e) $S = J\Delta^{\frac{1}{2}} = \Delta^{-\frac{1}{2}}J$, $F = J\Delta^{-\frac{1}{2}} = \Delta^{\frac{1}{2}}J$, and $J\Delta J = \Delta^{-1}$.

2.2 Faithful semi-finite normal weights

Definition 2.8. Let φ be a weight on a von Neumann algebra M. We say φ is *faithful* if $\varphi(x^*x) = 0$ implies x = 0 for $x \in \mathfrak{n}$. We say φ is *semi-finite* if \mathfrak{m} is σ -weakly dense in M. Recall that a weight φ on a von Neumann algebra M is normal if and only if it is obtained by the pointwise supremum of a set of normal positive linear functionals.

In the proofs of theorems of this section, the following diagram might be helpful:

$$\mathfrak{m} := \mathfrak{n}^* \mathfrak{n} \quad \subset \quad \mathfrak{a} := \mathfrak{n} \cap \mathfrak{n}^* \quad \subset \quad \mathfrak{n} \quad \subset \quad \pi(M) \quad \subset \quad B(H)$$

$$\downarrow \lambda \uparrow \downarrow \Lambda \qquad \qquad \downarrow \lambda \uparrow \downarrow \Lambda \qquad \qquad \downarrow \Lambda \qquad$$

Recall that for a weight φ on a von Neumann algebra M and its semi-cyclic representation (π, Λ) of M we have $\varphi(x^*x) = ||\Lambda(x)||^2$ for $x \in \mathfrak{n}$.

Theorem 2.9. Let M be a von Neumann algebra. If A is a full left Hilbert algebra together with a faithful normal non-degenerate representation $\pi: M \to B(H)$ such that $\lambda(A)'' = \pi(M)$, then

$$\varphi(x^*x) := \begin{cases} \|\xi\|^2 & \text{if } \pi(x) = \lambda(\xi) \in \lambda(B), \\ \infty & \text{otherwise,} \end{cases}$$

is a faithful semi-finite normal weight on M.

Proof. We use the notation $x = \pi(x)$. We first check that the weight φ is well-defined. Let $x_1 = \lambda(\xi_1), x_2 = \lambda(\xi_2) \in \lambda(B)$ such that $x_1^*x_1 = x_2^*x_2$. Since $x_1, x_2 \in M$, we have a partial isometry $v \in M$ such that $x_2 = vx_1$ and $v^*v = s_l(x_1)$, and it is not difficult to see $\xi_2 = v\xi_1$. As we know $s_l(x)\xi_1 = \xi_1$,

$$\|\xi_2\|^2 = \langle \xi_2, \xi_2 \rangle = \langle \nu \xi_1, \nu \xi_1 \rangle = \langle \nu^* \nu \xi_1, \xi_1 \rangle = \langle \xi_1, \xi_1 \rangle = \|\xi_1\|^2$$

which proves the well-definedness.

With this weight φ , we can see

$$\mathfrak{n} = \lambda(B), \qquad \mathfrak{a} = \lambda(A), \qquad \mathfrak{m} = \lambda(B)^* \lambda(B).$$

The first one is by definition of φ , and the third one is by definition of \mathfrak{m} . Since A is full so that $A = B \cap D$, λ is injective, $\lambda(A)^* = \lambda(A)$, and $\lambda(D)^* = \lambda(D)$, we have $\lambda(A) = \lambda(B) \cap \lambda(D) = \lambda(B)^* \cap \lambda(D)$, which implies $\lambda(A) = \lambda(B) \cap \lambda(B)^* \cap \lambda(D)$. If $\xi_1, \xi_2 \in B$ satisfy $\lambda(\xi_1) = \lambda(\xi_2)^*$, then

$$S\xi_{1}(\rho(\eta)^{*}\zeta) = \langle F\rho(\eta)^{*}\zeta, \xi_{1} \rangle = \langle \rho(\zeta)^{*}\eta, \xi_{1} \rangle = \langle \eta, \rho(\zeta)\xi_{1} \rangle = \langle \eta, \lambda(\xi_{1})\zeta \rangle$$
$$= \langle \lambda(\xi_{2})\eta, \zeta \rangle = \langle \rho(\eta)\xi_{2}, \zeta \rangle = \langle \xi_{2}, \rho(\eta)^{*}\zeta \rangle, \qquad \eta, \zeta \in A'.$$

We have $\xi_1 \in D$ by the density of A'^2 in H, so $\lambda(B) \cap \lambda(B)^* \subset \lambda(D)$, hence the second equality follows. From now in the rest of proof, we will always denote $y = \rho(\eta)$ and $z = \rho(\zeta)$ for $y, z \in \mathfrak{n}'$. The weight φ is clearly faithful, and semi-finiteness is because $x \in M$ is approximated by a net $\lambda(\xi_\alpha)x\lambda(\xi_\alpha) \in \lambda(B)^*\lambda(B) = \mathfrak{m}$, where $\lambda(\xi_\alpha) \in \lambda(B)$ converges σ -weakly to id_H . To verify the normality of φ , we will show

$$\varphi(x^*x) = \sup_{y \in \mathfrak{n}_1'} \omega_{\eta}(x^*x), \qquad x \in \mathfrak{n},$$

where $\mathfrak{n}' := \rho(B')$.

(≥) We may assume $x = \lambda(\xi) \in \mathfrak{n} = \lambda(B)$ so that $\varphi(x^*x) < \infty$. Since the unit ball \mathfrak{n}'_1 has a net y_α that converges to id_H strongly by the Kaplansky density theorem, we have an inequality

$$\omega_{\eta_{\alpha}}(x^*x) = \|x\eta_{\alpha}\|^2 = \|\lambda(\xi)\eta_{\alpha}\|^2 = \|\rho(\eta_{\alpha})\xi\|^2 = \|y_{\alpha}\xi\|^2 \le \|\xi\|^2 = \varphi(x^*x),$$

in which the equality condition is attained at its limit.

(\leq) Suppose $x \in M$ is taken such that the right-hand side $\sup_{y \in \mathfrak{n}_1'} \omega_{\eta}(x^*x)$ is finite. If we show $x \in \mathfrak{n}$, then we are done from $\varphi(x^*x) < \infty$ by the previous argument. To motivate the strategy, consider the opposite weight

$$\varphi'(y^*y) := \begin{cases} \|\eta\|^2 & \text{if } y \in \rho(B'), \\ \infty & \text{otherwise,} \end{cases}$$

and the associated linear map

$$\theta'^*: M \to \mathfrak{m}'^{\#}: x^*x \mapsto (z^*y \mapsto \langle x^*x\eta, \zeta \rangle), \quad y, z \in \mathfrak{n}',$$

where we can check $\mathfrak{m}' = \rho(B')^*\rho(B')$. The idea is to show a well-designed linear functional $l \in \mathfrak{m}'^{\#}$ such that $l = \theta'^*(x^*x)$ is contained in the image $\theta'^*(\mathfrak{m})$ using the assumption that the right-hand side is finite to verify $x \in \mathfrak{n}$.

Define a linear functional

$$l: \mathfrak{m}' \to \mathbb{C}: z^*y \mapsto \langle x^*x\eta, \zeta \rangle.$$

Then, by the assumption we have

$$||l|| = \sup_{y \in \mathfrak{n}'_1} \langle x^* x \eta, \eta \rangle = \sup_{y \in \mathfrak{n}'_1} \omega_{\eta}(x^* x) < \infty,$$

and

$$|l(y)| \le ||l||l(y^*y)^{\frac{1}{2}} = ||l|||x\eta||, \quad y \in \mathfrak{n}'$$

implies the well-definedness as well as boundedness of the linear functional $\overline{xH} \to \mathbb{C} : x\eta \mapsto l(y)$ for any $\eta \in H$, and it follows the existence of $\xi \in \overline{xH}$ such that

$$l(y) = \langle x\eta, \xi \rangle, \quad y \in \mathfrak{n}'$$

by the Riesz representation theorem on \overline{xH} . We have $\lambda(\xi)\zeta \in \overline{xH}$ and

$$\begin{split} \langle x\eta, x\zeta \rangle &= l(z^*y) = \langle x\rho^{-1}(z^*y), \xi \rangle = \langle xz^*\eta, \xi \rangle \\ &= \langle z^*x\eta, \xi \rangle = \langle x\eta, z\xi \rangle = \langle x\eta, \rho(\zeta)\xi \rangle = \langle x\eta, \lambda(\xi)\zeta \rangle, \qquad y, z \in \mathfrak{n}', \end{split}$$

hence $x = \lambda(\xi)$. The vector ξ is left bounded by definition and $x = \lambda(\xi) \in \lambda(B) = \mathfrak{n}$.

Theorem 2.10. Let M be a von Neumann algebra. If φ is a faithful semi-finite normal weight on M and (π, Λ) is the associated semi-cyclic representation of M, then $A := \Lambda(\mathfrak{a})$ is a full left Hilbert algebra with

$$\langle \Lambda(x_1), \Lambda(x_2) \rangle := \varphi(x_2^*x_1), \qquad \Lambda(x_1)\Lambda(x_2) := \Lambda(x_1x_2), \qquad \Lambda(x)^* := \Lambda(x^*),$$

such that $\lambda(A)'' = \pi(M)$.

Proof. We use the notation $\pi(x) = x$. It does not make any confusion because the semi-cyclic representation $\pi: M \to B(H)$ is always unital and is faithful due to the assumption that φ is faithful. We clearly see that A is a *-algebra and the left multiplication provides a *-homomorphism $\lambda: A \to B(H)$. By the construction of the semi-cyclic representation associated to φ , A is dense in B. We need to show the non-degeneracy of B, the closability of the involution, and the fullness of B.

(non-degeneracy) Since φ is semi-finite, there is a net x_{α} in $(\mathfrak{n} \cap \mathfrak{n}^*)_1$ converges strongly to the identity of M by the Kaplansky density theorem. Then, it follows that λ is non-degenerate from

$$\lambda(\Lambda(x_{\alpha}))\Lambda(x) = \Lambda(x_{\alpha})\Lambda(x) = \Lambda(x_{\alpha}x) = x_{\alpha}\Lambda(x) \to \Lambda(x), \qquad x \in \mathfrak{n} \cap \mathfrak{n}^*.$$

(closability) We need to prove the domain of the adjoint

$$D' := \{ \eta \in H \mid A \to \mathbb{C} : \Lambda(x) \mapsto \langle \eta, \Lambda(x^*) \rangle \text{ is bounded} \}$$

is dense in H. Let

$$\mathcal{G} := \{ \omega \in M_{*}^{+} : (1 + \varepsilon)\omega \le \varphi \text{ for some } \varepsilon > 0 \}.$$

Note that the normality of φ says that $\varphi(x^*x) = \sup_{\omega \in \mathcal{G}} \omega(x^*x)$ for any $x \in M$. For each $\omega \in \mathcal{G}$, by the bounded Radon-Nikodym theorem, there is $h_\omega \in M'^+$ such that $||h_\omega|| < 1$ and

$$\omega(x^*x) = \langle h_{\omega}\Lambda(x), \Lambda(x) \rangle, \quad x \in \mathfrak{n}.$$

Also, if we take a net $x_{\alpha} \in \mathfrak{n}_1$ that converges σ -strongly to the identity of M using the strong density of \mathfrak{n} in M, the Kaplansky density, and the coincidence of strong and the σ -strong topologies on the bounded part, then we have a σ -weak limit $\lim_{\alpha,\beta} |x_{\alpha} - x_{\beta}|^2 = 0$ so that by the normality of ω we obtain

$$\lim_{\alpha,\beta} \|h_{\omega}^{\frac{1}{2}} \Lambda(x_{\alpha}) - h_{\omega}^{\frac{1}{2}} \Lambda(x_{\beta})\|^2 = \lim_{\alpha,\beta} \omega(|x_{\alpha} - x_{\beta}|^2) = 0.$$

Thus, the vector $\Lambda_{\omega} := \lim_{\alpha} h_{\omega}^{\frac{1}{2}} \Lambda(x_{\alpha})$ can be defined, and in particular, we have $h_{\omega}^{\frac{1}{2}} \Lambda(x) = x \Lambda_{\omega}$ for $x \in \mathfrak{n}$ and $\omega = \omega_{\Lambda_{\omega}}$.

If $\eta = h_{\omega_2}^{\frac{1}{2}} y \Lambda_{\omega_1}$ for some $y \in M'$ and $\omega_1, \omega_2 \in \mathcal{G}$, then

$$\begin{split} |\langle \eta, \Lambda(x^*) \rangle| &= |\langle h_{\omega_2}^{\frac{1}{2}} y \Lambda_{\omega_1}, \Lambda(x^*) \rangle| = |\langle y \Lambda_{\omega_1}, h_{\omega_2}^{\frac{1}{2}} \Lambda(x^*) \rangle| = |\langle y \Lambda_{\omega_1}, x^* \Lambda_{\omega_2} \rangle| \\ &= |\langle y x \Lambda_{\omega}, \Lambda_{\omega_2} \rangle| = |\langle y h_{\omega_1}^{\frac{1}{2}} \Lambda(x), \Lambda_{\omega_2} \rangle| = |\langle \Lambda(x), h_{\omega_1}^{\frac{1}{2}} y^* \Lambda_{\omega_2} \rangle| \\ &\leq ||\Lambda(x)|| ||h_{\omega_1}^{\frac{1}{2}} y^* \Lambda_{\omega_2}||, \qquad x \in \mathfrak{n} \cap \mathfrak{n}^*, \end{split}$$

which deduces that $\eta \in D'$. Therefore, it suffices to show the following space is dense in H:

$$\{h_{\omega_2}^{\frac{1}{2}}y\Lambda_{\omega_1}:\omega_1,\omega_2\in\mathcal{G},\ y\in M'\}.$$

Thanks to the normality of φ , we can write

$$\begin{split} \langle \Lambda(x), \Lambda(x) \rangle &= \|\Lambda(x)\|^2 = \varphi(x^*x) = \sup_{\omega \in \mathcal{G}} \omega(x^*x) \\ &= \sup_{\omega \in \mathcal{G}} \|x\Lambda_{\omega}\|^2 = \sup_{\omega \in \mathcal{G}} \|h_{\omega}^{\frac{1}{2}} \Lambda(x)\|^2 = \sup_{\omega \in \mathcal{G}} \langle h_{\omega} \Lambda(x), \Lambda(x) \rangle, \qquad x \in \mathfrak{n} \cap \mathfrak{n}^*. \end{split}$$

Because *A* in *H*, for any $\xi \in H$ and $\varepsilon > 0$ there is $x \in \mathfrak{n} \cap \mathfrak{n}^*$ such that $||\xi - \Lambda(x)|| < \varepsilon$, so the inequality

$$\langle (1 - h_{\omega})\xi, \xi \rangle \le \varepsilon(\|\xi\| + \|\Lambda(x)\|) + \langle (1 - h_{\omega})\Lambda(x), \Lambda(x) \rangle$$

deduces $\inf_{\omega \in \Phi} \langle (1-h_\omega)\xi, \xi \rangle = 0$ by limiting $\varepsilon \to 0$ and taking infinimum on $\omega \in \mathcal{G}$. In other words, for each $\xi \in H$ and $\varepsilon > 0$, we can find $\omega \in \mathcal{G}$ such that $\langle (1-h_\omega)\xi, \xi \rangle < \varepsilon$. At this point, we claim the set $\{h_\omega : \omega \in \mathcal{G}\}$ is upward directed. If the claim is true, then we can construct an increasing net ω_α in \mathcal{G} such that h_{ω_α} converges weakly to the identity of M, and also strongly by the nature of increasing nets. To prove the claim, take $h_1 = h_{\omega_1}$ and $h_2 = h_{\omega_2}$ with $\omega_1, \omega_2 \in \mathcal{G}$. Introduce a operator monotone function f(t) := t/(1+t) and its inverse $f^{-1}(t) = t/(1-t)$ to define

$$h_0 := f(f^{-1}(h_1) + f^{-1}(h_2)).$$

Then, we have $h_0 \ge h_1$, $h_0 \ge h_2$, and $||h_0|| < 1$. Consider a linear functional

$$\omega_0: \mathfrak{n} \to \mathbb{C}: x \mapsto \langle h_0 \Lambda(x), \Lambda(x) \rangle.$$

Write

$$\begin{split} \omega_0(x^*x) & \leq \langle f^{-1}(h_1)\Lambda(x), \Lambda(x) \rangle + \langle f^{-1}(h_2)\Lambda(x), \Lambda(x) \rangle \\ & \leq (1 - \|h_1\|)^{-1} \langle h_1\Lambda(x), \Lambda(x) \rangle + (1 - \|h_2\|)^{-1} \langle h_2\Lambda(x), \Lambda(x) \rangle \\ & = (1 - \|h_1\|)^{-1} \omega_1(x^*x) + (1 - \|h_2\|)^{-1} \omega_2(x^*x), \qquad x \in \mathfrak{n}. \end{split}$$

Then, since ω_1 and ω_2 are normal, we can define $\Lambda_0 := \lim_\alpha h_0^{\frac12} \Lambda(x_\alpha) \in H$ for a σ -strongly convergent net $x_\alpha \in \mathfrak{n}_1$ to the identity of M as we have taken above, and we have the vector functional $\omega_0 = \omega_{\Lambda_0}$. Henceforth, ω_0 is extended to a normal positive linear functional on the whole M, and finally the norm condition $\|h_0\| < 1$ tells us that $\omega_0 \in \mathcal{G}$, so the claim is true.

Now the problem is reduced to the density of $\{y\Lambda_{\omega} : \omega \in \mathcal{G}, y \in M'\}$ in H. Let $p \in B(H)$ be the projection to the closure of this space. Then, $p\Lambda_{\omega} = \Lambda_{\omega}$ for every $\omega \in \mathcal{G}$. Since the space is left invariant under the action of the self-adjoint set M', we have $p \in M$. Then,

$$\varphi(1-p) = \sup_{\omega \in \mathcal{G}} \omega(1-p) = \sup_{\omega \in \mathcal{G}} \langle (1-p)\Lambda_{\omega}, \Lambda_{\omega} \rangle = 0$$

implies p = 1, hence the density.

(fullness) We have $\lambda(\Lambda(x)) = x$ for $x \in \mathfrak{a}$ since $\Lambda(\mathfrak{a}) = A$ is dense in H and

$$x_1\Lambda(x_2) = \Lambda(x_1x_2) = \Lambda(x_1)\Lambda(x_2) = \lambda(\Lambda(x_1))\Lambda(x_2), \qquad x_1, x_2 \in \mathfrak{n} \cap \mathfrak{n}^*.$$

Also we have for $\xi = \Lambda(x) \in A$ that

$$\Lambda(\lambda(\xi)) = \Lambda(\lambda(\Lambda(\xi))) = \Lambda(x) = \xi.$$

For $\xi \in B$ so that $\lambda(\xi) \in M$, since

$$\varphi(\lambda(\xi)^*\lambda(\xi)) = \|\Lambda(\lambda(\xi))\|^2 = \|\xi\|^2 < \infty,$$

we get $\lambda(B) \subset \mathfrak{n}$. Therefore, *A* is full by

$$\lambda(A'') = \lambda(B) \cap \lambda(B)^* \subset \mathfrak{a} = \lambda(A).$$

Corollary 2.11. The operations giving a faithful semi-finite normal weight and a full left Hilbert algebra in the above two theorems are mutually inverses of each other.

Proposition 2.12. Every von Neumann algebra admits a faithful semi-finite normal weight.

Proof. Let M be a von Neumann algebra and let $\{\omega_i\}_{i\in I}$ be a maximal family of normal states on M with orthogonal support projections $p_i := s(\omega_i)$. Here, the support projection $s(\omega)$ of a normal state ω is the minimal projection p such that $\omega(px) = \omega(x) = \omega(xp)$ for all $x \in M$. Since every countably decomposable projection p is a support of a normal state, a faithful normal state on pMp, we have $\sum_i p_i = 1$. Define a weight φ by

$$\varphi(x) := \sum_{i} \omega_i(x).$$

It is faithful because $\varphi(x) = 0$ with $x \ge 0$ means $\omega_i(x) = 0$ and $p_i x s p_i = 0$ for all i, and it implies

$$x^{\frac{1}{2}} = x^{\frac{1}{2}} \sum_{i} p_{i} = \sum_{i} x^{\frac{1}{2}} p_{i} = 0.$$

It is normal because it is completely additive. It is semi-finite because $p_J \uparrow 1$ with $\varphi(p_J) < \infty$ as $J \to I$, where $p_J := \sum_{i \in I} p_i$ and J runs through finite subsets of I.

2.3 Examples

Example 2.13 (Locally compact groups). For a locally compact group G, the set $A := C_c(G)$ together with a left Haar measure on G has the following left Hilbert algebra structure

$$\langle \xi_1, \xi_2 \rangle := \int \overline{\xi_2(s)} \xi_1(s) \, ds, \qquad (\xi_1 \xi_2)(s) := \int_G \xi_1(t) \xi_2(t^{-1}s) \, dt, \qquad \xi^*(s) := \Delta(s^{-1}) \overline{\xi(s^{-1})}.$$

We have S, F, Δ , and J given by

$$S\xi(s) := \Delta(s^{-1})\overline{\xi(s^{-1})}, \qquad F\xi(s) = \overline{\xi(s^{-1})},$$

$$\Delta \xi(s) = \Delta(s)\xi(s), \qquad J\xi(s) = \Delta(s)^{-\frac{1}{2}}\overline{\xi(s^{-1})},$$

and they have the following norm formulas

$$\|S\xi\|_{2} = \|\Delta^{\frac{1}{2}}\xi\|_{2}, \quad \|F\xi\|_{2} = \|\Delta^{-\frac{1}{2}}\xi\|_{2}, \quad \|S\xi\|_{1} = \|\xi\|_{1}, \quad \|F\xi\|_{1} = \|\Delta^{-1}\xi\|_{1}.$$

The left von Neumann algebra $\lambda(A)''$ is called the *group von Neumann algebra*.

For a locally compact abelian group G, the corresponding f.n.s. weight is a suitably normalized Haar measure on the Pontryagin dual group \hat{G} , called the Plancherel measure, not the Haar measure on the original group G. For a locally compact non-abelian group G, there is no characterization of the corresponding f.n.s. weight as a measure because the left Hilbert algebra $(C_{\epsilon}(G), *)$ is not commutative.

Example 2.14 (Locally compact abelian groups). If G is a locally compact abelian group, then $A = \mathcal{F}^{-1}(L^2(\widehat{G}) \cap L^{\infty}(\widehat{G}))$ is a full Hilbert algebra, where $\mathcal{F}: L^2(G) \to L^2(\widehat{G})$ is the Fourier transform, such that B = A, $D = H = L^2(G)$.

Example 2.15 (Measure spaces). If (X, μ) is a σ -finite measure space, then $L^2(X) \cap L^{\infty}(X)$ is a full Hilbert algebra.

Example 2.16 (Cyclic separating vector). Let M be a countably decomposable von Neumann algebra and ω be a faithful normal state. If we consider the associated cyclic representation of ω , then we have an action of M on H together with a cyclic separating vector $\Omega \in H$. Then, $A := M\Omega$ has the following left Hilbert algebra structure:

$$\langle x\Omega, y\Omega \rangle$$
 is defined as it is, $(x\Omega)(y\Omega) := xy\Omega$, $(x\Omega)^* := x^*\Omega$.

There is no specific description of Δ and J in general, but it is known that B = H and

$$A'' = D = \{c\Omega : c \in C(H) \text{ affiliated with } M \text{ such that } \Omega \in \text{dom } c \cap \text{dom } c^*\}.$$

3 December 20

3.1 Review on Pettis integral

Definition 3.1 (Properties of dual pairs). Let (X, F) be a dual pair. For example, if X is a topological vector space and F is a linear subspace of X^* , then (X, F) is a dual pair if and only if F is weakly* dense in X^* . Conversely, every dual pair (X, F) can be understood as (X, X^*) by endowing with $\sigma(X, F)$ on X.

We say (X,F) has the *Krein property* if the $\sigma(X,F)$ -closed balanced convex hull of every $\sigma(X,F)$ -compact subset of X is $\sigma(X,F)$ -compact. We say (X,F) has the *Goldstine property* if X is $\beta(X,F_{\beta})$ -complete.

Remark. For a Banach space X, the choices $F = X^*$ and $F = X_*$, where X_* is a Banach predual of X if it exists, satisfy the two properties.

Proposition 3.2 (Dunford operator). Let (Ω, μ) be a finite measure space. Let X be a topological vector space and F is a weakly* dense subspace of X^* . For a $\sigma(X, F)$ -integrable map $x : \Omega \to X$, we can define a linear operator $\phi_X : L^{\infty}(\mu) \to F^{\#}$, defined such that

$$\langle \phi_x(p), x^* \rangle := \int_{\Omega} p(s) \langle x(s), x^* \rangle d\mu(s), \qquad p \in L^{\infty}(\mu), \ x^* \in F.$$

The operator ϕ_x is called the Dunford operator, and abusing the notation, we usually write as

$$\phi_x(p) = \int_{\Omega} p(s)x(s) \, d\mu(s).$$

- (a) ϕ_x is weak*- $\sigma(F^\#,F)$ -continuous and $\sigma(F^\#,F)$ -compact.
- (b) Suppose (X,F) has the Krein property. If x is $\sigma(X,F)$ -compactly valued, then $\phi_x(L^\infty(\mu)) \subset X$.
- (c) Suppose (X,F) has the Krein and Goldstine property. Suppose Ω is a topological space with tight Borel μ . If x is $\sigma(X,F)$ -bounded and $\sigma(X,F)$ -continuous, then then $\phi_x(L^\infty(\mu)) \subset X$.
- (d) Suppose we have $\phi_x(L^{\infty}(\mu)) \subset X$. Let Y be another topological vector space and G is a weakly* dense subspace of Y*. If $T: X \to Y$ is a $\sigma(X, F) \sigma(Y, G)$ -continuous linear operator, then $T \phi_x = \phi_{T \circ x}$. In other words,

$$T\int_{\Omega} p(s)x(s) d\mu(s) = \int_{\Omega} p(s)Tx(s) d\mu(s), \qquad p \in L^{\infty}(\mu).$$

Proof. (a) If $p_{\alpha} \in L^{\infty}(\mu)$ converges to zero weakly*. Then,

$$\langle \phi_x(p_\alpha), x^* \rangle = \int_{\Omega} p(s) \langle x(s), x^* \rangle d\mu(s) \to 0, \qquad x^* \in F$$

because x is $\sigma(X,F)$ -integrable so that $(s \mapsto \langle x(s), x^* \rangle) \in L^1(\mu)$, so the continuity of ϕ_x . Then, the compactness of ϕ_x easily follows the weak* compactness of the unit ball of $L^{\infty}(\mu)$.

(b) Fix $p \in L^{\infty}(\mu)$ and let C be the $\sigma(X, F)$ -closed balanced convex hull of $x(\Omega) \subset X$. Then C is $\sigma(X, F)$ -compact by the Krein property. Since for every $x^* \in F$ we have

$$|\langle \phi_x(p), x^* \rangle| = |\int_{\Omega} p(s) \langle x(s), x^* \rangle \, d\mu(s)| \le ||\mu|| ||p||_{L^{\infty}} \sup_{s \in \Omega} |\langle x(s), x^* \rangle| \lesssim \sup_{y \in C} |\langle y, x^* \rangle|,$$

the linear functional $\phi_x(p)$ on F is continuous with respect to the Mackey topology $\tau(F,X)$, which is a dual topology so that $\phi_x(p)$ can be naturally identified with a vector in $(F_\tau)^* = X$.

(c) Fix $p \in L^{\infty}(\mu)$ and let B be a $\sigma(X, F)$ -bounded set containing the image $x(\Omega) \subset X$. By the tightness of μ , there is a sequence of compact sets $K_n \subset \Omega$ such that $\mu(\Omega \setminus K_n) < n^{-1}$. Since for every $x^* \in F$ we have

$$|\langle \phi_x(p) - \phi_{x|_{K_n}}(p), x^* \rangle| = |\int_{\Omega \setminus K_n} p(s) \langle x(s), x^* \rangle d\mu(s)| \le n^{-1} ||p||_{L^{\infty}} \sup_{s \in \Omega} |\langle x(s), x^* \rangle| \lesssim n^{-1} \sup_{y \in B} |\langle y, x^* \rangle|,$$

which implies that $\phi_{x|_{K_n}}(p)$ converges to $\phi_x(p)$ in $\beta(F^\#, F_\beta)$. Since $\phi_{x|_{K_n}}(p) \in X$ by the part (b) and X is closed in $\beta(F^\#, F_\beta)$, we have $\phi_x(p) \in X$.

(d) By the continuity of T, the adjoint $T^*: G \to F$ is well-defined. The measurability of T and the existence of the adjoint T^* imply that the composition $T \circ x: \Omega \to Y$ is $\sigma(Y,G)$ -integrable, so the Dunford operator $\phi_{T \circ x}: L^{\infty}(\mu) \to G^{\#}$ is well-defined. Then,

$$\begin{split} \langle T\phi_x(p), y^* \rangle &= \langle \phi_x(p), T^*y^* \rangle = \int_{\Omega} p(s) \langle x(x), T^*y^* \rangle \, d\mu(s) \\ &= \int_{\Omega} p(s) \langle Tx(s), y^* \rangle \, d\mu(s) = \langle \phi_{T \circ x}(p), y^* \rangle, \qquad p \in L^{\infty}(\mu), \ y^* \in G. \end{split}$$

In particular, $\phi_{T \circ x} : L^{\infty}(\mu) \to Y$.

Corollary. A weakly* holomorphic function $x:\Omega\subset\mathbb{C}\to X$ for a Banach space $X=(X_*)^*$ is strongly holomorphic.

Proof. I guess it is true...
$$\Box$$

3.2 One-parameter group of isometries

Here are our settings in this section: Let X be a Banach space and F is a weakly* dense subspace of X^* such that (X,F) satisfies the Krein and Goldstine property. Let G be a locally compact group. Let $\alpha: G \to \mathrm{Isom}(X) \subset B(X)$ be a $\sigma(X,F)$ -continuous one-parameter group of $\sigma(X,F)$ -continuous linear isometries.

As a remark, we note that if we choose X = A a C*-algebra and $F = A^*$ its continuous dual, then an action $\alpha : G \to \operatorname{Aut}(A)$ which is continuous in the above sense is enhanced to the continuity with respect to the point-norm topology, because a weakly continuous semi-group on a Banach space is strongly continuous. (It can be shown by applying the uniform boundedness principle twice.)

Proposition 3.3. There is a (faithful non-degenerate?) homomorphism $\pi_{\alpha}: M(G) \to B(X)$ defined by

$$\pi_{\alpha}(\mu)x := \int \alpha_s(x) d\mu(s),$$

which is justified by the Pettis integral.

Proof. By (c) of the previous proposition, we can define

$$\pi_{\alpha}(\mu)x := \phi_{x}(1) = \int_{G} \alpha_{s}(x) d\mu(s).$$

For $\mu, \nu \in M(G)$,

$$\pi_{\alpha}(\mu * \nu)x = \iint \alpha_{st}(x) d\mu(s) d\nu(t) = \iint \alpha_{s}(\alpha_{t}(x)) d\nu(t) d\mu(s)$$

$$= \int \alpha_{s} \left(\int \alpha_{t}(x) d\nu(t) \right) d\mu(s) = \pi_{\alpha}(\mu) \pi_{\alpha}(\nu)x, \qquad x \in M.$$

Lemma 3.4. For $\mu \in M(G)$, the linear map

$$X \to X : x \mapsto \int \alpha_s(x) \, d\mu(s)$$

is $\sigma(X, F)$ - $\sigma(X, F)$ -continuous.

Proof. Consider the dual one-parameter group $\alpha^* : G \to \text{Isom}(F)$, which is $\sigma(F,X)$ -continuous group of $\sigma(F,X)$ - $\sigma(F,X)$ -continuous linear isometries. Since it satisfies the conditions in (c) of the proposition at the first with the dual pair (F,X), the Pettis integral

$$\int a_s^*(x^*) d\mu(s)$$

is well-defined in F. Therefore, if a net x_i converges to zero in $\sigma(X, F)$, then for $x^* \in F$

$$\langle \int \alpha_s(x_i) \, d\mu(s), x^* \rangle = \int \langle \alpha_s(x_i), x^* \rangle \, d\mu(s) = \int \langle x_i, \alpha_s^*(x^*) \rangle \, d\mu(s) = \langle x_i, \int \alpha_s^*(x^*) \, d\mu(s) \rangle \to 0. \quad \Box$$

Theorem 3.5 (Analytic extensions). Let $G = \mathbb{R}$. Then, there is a family of densely defined closed operators $\{\alpha_z : z \in \mathbb{C}\}$ on X which extends the original α , such that

- (i) $\alpha_z \alpha_t = \alpha_{z+s} = \alpha_s \alpha_z$ and $\alpha_z \alpha_w \subset \alpha_{z+w}$ for $s \in \mathbb{R}$ and $z, w \in \mathbb{C}$,
- (ii) $\alpha_z^{-1} = \alpha_{-z}$,
- (iii) $\operatorname{dom} \alpha_z \subset \operatorname{dom} \alpha_w$ if $\operatorname{Im} z \geq \operatorname{Im} w \geq 0$,
- (iv) $\bigcap_{z \in \mathbb{C}} \operatorname{dom} \alpha_z$ is dense in X.

Proof. Consider the set of regularized vectors

$$X_0 := \Big\{ \int_{\mathbb{R}} \frac{n}{\sqrt{\pi}} e^{-n^2 s^2} \alpha_s(x) \, ds : n \in \mathbb{N}, \ x \in X \Big\}.$$

Now we define $\alpha_z: X_0 \to X$ for $z \in \mathbb{C}$ such that

$$\alpha_z \Big(\int_{\mathbb{R}} f(s) \alpha_s(x) \, ds \Big) := \int_{\mathbb{R}} f(s-z) \alpha_s(x) \, ds.$$

It satisfies some properties:

- (a) It extends the original $\{\alpha_s : s \in \mathbb{R}\}$.
- (b) For fixed $x \in X_0$, $z \mapsto \alpha_z(x)$ is $\sigma(X, F)$ -entire.
- (c) X_0 is $\sigma(X,F)$ -dense in E, so α_z is densely defined for each $z\in\mathbb{C}$.
- (d) α_z is closable for each $z \in \mathbb{C}$.

(a) is clear by coordinate change, and (b) follows from the Fubini and the Morera after taking arbitrary elements of E^* . (c) is by an approximate identity e_n of $L^1(\mathbb{R})$ has $x = \lim_{n \to \infty} \int_{\mathbb{R}} e_n(t) \alpha_s(x) ds$. For (d), we have the adjoint $(\alpha_z)_0^* \supset (\alpha_{-\overline{z}})_0$, which is densely defined. Now we have a family of closed densely defined operators $\{\alpha_z : z \in \mathbb{C}\}$ on E such that $\alpha_z \alpha_w \subset \alpha_{z+w}$ for all $z, w \in \mathbb{C}$.

Definition 3.6 (Entire elements). entire elements from a *-subalgebra

Definition 3.7 (Tomita algebras). Let *A* be a full left Hilbert algebra.

3.3 Tomita-Takesaki commutation theorem

In this section, we let *A* be a left Hilbert algebra. We will use the following notations freely:

$$H, M, S, \lambda, F, \rho, B, D, A', B', D', \Delta, J.$$

Also note that

$$\mathfrak{m} := \mathfrak{n}^* \mathfrak{n} \quad \subset \quad \mathfrak{a} := \mathfrak{n} \cap \mathfrak{n}^* \quad \subset \quad \mathfrak{n} \quad \subset \quad M$$

$$\lambda \bigcap_{\lambda} \bigwedge_{\Lambda} \quad \lambda \cap_{\Lambda} \quad \lambda \bigcap_{\Lambda} \bigwedge_{\Lambda} \quad \cup \quad B \quad \subset \quad H.$$

The goal of this section is to prove that there exists the following commutative "cube" diagram:

Lemma. For every $t \in \mathbb{R}$, the unitary operator Δ^{it} commutes with J, S, and F.

Proof. It is enough to show $\Delta^{it}J = J\Delta^{it}$. By the relation $J\Delta J = \Delta^{-1}$, the anti-linearity of J, and the uniqueness of the bounded Borel functional calculus, we have the commutation. More precisely, if we let $f(s) := e^{it \log s}$ on $(0, \infty)$, then

$$\Delta^{-it} = f(\Delta^{-1}) = f(J\Delta J) = J\overline{f(\Delta)}J = J(\Delta^{it})^*J = J\Delta^{-it}J.$$

(Here we omit the detailed proof of $f(J\Delta J) = J\overline{f(\Delta^{-1})}J$.)

Lemma. $J: D' \to D$ and $\Delta^{it}: D \to D$.

Proof. We have $J:D'\to D$ since $\eta\in D'$ implies that $SJ\eta=JF\eta$ is well-defined in H. We have $\Delta^{it}:D\to D$ for real t since $\xi\in D$ implies that $S\Delta^{it}\xi=\Delta^{it}S\xi$ is well-defined in H because $S\xi\in D$. \square

We need two lemmas.

Lemma 3.8 (Fourier inversion of sech). *Let* $G = \mathbb{R}$ *and fix* $s \in \mathbb{R}$. *Let* H *be a Hilbert space.*

(a) We have a Pettis integral

$$\int_{\mathbb{D}} \left(e^{-\frac{s}{2}}\alpha_{-\frac{i}{2}} + e^{\frac{s}{2}}\alpha_{\frac{i}{2}}\right) \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \alpha_t(x) dt = x, \qquad x \in \operatorname{dom} \alpha_{-\frac{i}{2}} \cap \operatorname{dom} \alpha_{\frac{i}{2}}.$$

(b) If $\sigma : \mathbb{R} \to \operatorname{Aut}(B(H))$ such that $\sigma_t = \operatorname{Ad}_{\Delta^{it}}$ for a injective positive self-adjoint operator on H, then we have a σ -weak Pettis integral

$$\int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \alpha_t(x) dt = \left(e^{-\frac{s}{2}} \alpha_{-\frac{i}{2}} + e^{\frac{s}{2}} \alpha_{\frac{i}{2}}\right)^{-1} x, \qquad x \in B(H).$$

(c) If $u : \mathbb{R} \to U(H)$ such that $u_t = \Delta^{-it}$ for a injective positive self-adjoint operator on H, then we have a Pettis integral

$$\int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \alpha_t(\xi) dt = \left(e^{-\frac{s}{2}} \alpha_{-\frac{i}{2}} + e^{\frac{s}{2}} \alpha_{\frac{i}{2}}\right)^{-1} \xi, \qquad \xi \in H.$$

Remark. If we let $f(t) := (e^{\frac{t}{2}} + e^{-\frac{t}{2}})^{-1}$ and write $\alpha_t = e^{t\delta}$, then the equation in the lemma can be rewritten formally as the Fourier inversion

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{it(-i\delta-s)} \hat{f}(t) dt = f(-i\delta-s), \quad s \in \mathbb{R}.$$

However, this Fourier calculus in general setting using an unbounded holomorphic functional calculus for unbounded operators acting on Banach spaces is impossible, because even for a fairly normal example (e.g. $\sigma_t = \operatorname{Ad}_{u_t^{-1}}$, u_t is given by the translation on $L^2(\mathbb{R})$) we have a counterexample having the entire spectrum of the analytic generator $\sigma(\sigma_{-i}) = \mathbb{C}$.

Proof. (a) We use the special fact that the function $\widehat{f}(t) := \sqrt{2\pi}(e^{\pi t} + e^{-\pi t})^{-1}$ has imaginary period i. Fix $s \in \mathbb{R}$ and $x \in \text{dom } \alpha_{-\frac{i}{2}} \cap \text{dom } \alpha_{\frac{i}{2}}$. Define a weakly* meromorphic vector function $g : \mathbb{C} \setminus i\mathbb{Z} \to X$ such that

$$g(z) := -i\sqrt{2\pi} \frac{e^{-isz}}{e^{\pi z} - e^{-\pi z}} \alpha_z(x).$$

It satisfies relations

$$g(t - \frac{i}{2}) = e^{-\frac{s}{2}} \alpha_{-\frac{i}{2}}(e^{-ist} \hat{f}(t) \alpha_t(x)), \qquad g(t + \frac{i}{2}) = -e^{\frac{s}{2}} \alpha_{\frac{i}{2}}(e^{-ist} \hat{f}(t) \alpha_t(x))$$

and enjoys an estimate

$$\sup_{|r| \le \frac{1}{2}} \|g(t+ir)\| \le \sup_{|r| \le \frac{1}{2}} \sqrt{2\pi} \frac{e^{sr}}{|e^{\pi(t+ir)} - e^{-\pi(t+ir)}|} \|x\| = O(e^{-\pi|t|}), \qquad |t| \to \infty.$$

Then, by the residue theorem

$$\sqrt{2\pi}x = 2\pi \lim_{z \to 0} z g(z) = \int_{-\infty}^{\infty} g(t - \frac{i}{2}) dt - \int_{-\infty}^{\infty} g(t + \frac{i}{2}) dt$$
$$= \int_{-\infty}^{\infty} (e^{-\frac{s}{2}} \alpha_{-\frac{i}{2}} + e^{\frac{s}{2}} \alpha_{\frac{i}{2}}) e^{-ist} \hat{f}(t) \alpha_t(x) dt.$$

Extend for $x \in X$ using the boundedness.

(b) Let $p := 1_{[-r,r]}(\Delta)$ for some r > 1 and let $x \in B(H)$. Then, α_z acts on pB(H)p = B(pH) as bounded invertible operators $\alpha_z(x) = \Delta^{iz} x \Delta^{-iz}$, which is σ -weakly continuous, so

$$\begin{split} pxp &= \int_{\mathbb{R}} (e^{-\frac{s}{2}}\alpha_{-\frac{i}{2}} + e^{\frac{s}{2}}\alpha_{\frac{i}{2}}) \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \alpha_{t}(pxp) dt \\ &= \int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} (e^{-\frac{s}{2}}\alpha_{t - \frac{i}{2}} + e^{\frac{s}{2}}\alpha_{t + \frac{i}{2}})(pxp) dt \\ &= (e^{-\frac{s}{2}}\alpha_{t - \frac{i}{2}} + e^{\frac{s}{2}}\alpha_{t + \frac{i}{2}}) \int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} (pxp) dt \\ &= (e^{-\frac{s}{2}}\alpha_{-\frac{i}{2}} + e^{\frac{s}{2}}\alpha_{\frac{i}{2}}) \int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \alpha_{t}(pxp) dt. \end{split}$$

Since $pxp \to x$ as $r \to \infty$ σ -weakly, by the previous lemma, we can take the limit as sesquilinear forms on a dense subspace dom $\Delta^{\frac{1}{2}} \cap \text{dom } \Delta^{-\frac{1}{2}} \subset H$ to obtain an equation of bounded operators

$$x = \left(e^{-\frac{s}{2}}\alpha_{-\frac{i}{2}} + e^{\frac{s}{2}}\alpha_{\frac{i}{2}}\right) \int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \alpha_t(x) dt.$$

In particular, $(e^{-\frac{5}{2}}\alpha_{-\frac{1}{2}} + e^{\frac{5}{2}}\alpha_{\frac{1}{2}})$ is surjective. Since the injectivity follows from the part (a), we have

$$(e^{-\frac{s}{2}}\alpha_{-\frac{i}{2}} + e^{\frac{s}{2}}\alpha_{\frac{i}{2}})^{-1}x = \int_{\mathbb{R}} \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}}\alpha_{t}(x) dt.$$

(c) Similar to (b), but cut ξ off into $p\xi$.

Lemma 3.9. Let A be a left Hilbert algebra. For $s \in \mathbb{R}$, we have $(e^{-s} + \Delta)^{-1} : A' \to A \cap D'$. In particular, $A \cap D'$ is dense in H.

Proof. Let $\eta \in A'$ and $\xi := (e^{-s} + \Delta)^{-1}\eta$. Then, $\Delta \xi = \eta - e^{-s}\xi \in H$ implies $\xi \in \text{dom } \Delta \subset \text{dom } \Delta^{\frac{1}{2}} = D$, and $F\xi = e^{s}(F\eta - S\xi) \in H$ implies $\xi \in D'$. The only non-trivial fact is $\xi \in B$. Since $\xi \in D$, by the polar decomposition, we have

$$\lambda(\xi) = vh = kv, \qquad h := |\lambda(\xi)|, \quad k := |\lambda(\xi)^*|.$$

Let $f \in C_c((0,\infty))^+$. Since

$$\langle f(h)S\xi,\zeta\rangle = \langle S\xi,f(h)\zeta\rangle = \langle Ff(h)\zeta,\xi\rangle = \langle Fv^*\dot{f}(k)\lambda(\xi)\zeta,\xi\rangle = \langle F\lambda(v^*\dot{f}(k)\xi)\zeta,\xi\rangle$$

$$= \langle F\rho(\zeta)v^*\dot{f}(k)\xi,\xi\rangle = \langle \rho(v^*\dot{f}(k)\xi)^*F\zeta,\xi\rangle = \langle F\zeta,\rho(v^*\dot{f}(k)\xi)\xi\rangle$$

$$= \langle F\zeta,\lambda(\xi)v^*\dot{f}(k)\xi\rangle = \langle F\zeta,f(k)\xi\rangle = \langle Sf(k)\xi,\zeta\rangle, \qquad \xi \in D, \zeta \in D'$$

for every $f \in C_c((0, \infty))^+$, we have

$$||f(k)\eta||^{2} = ||f(k)(e^{-s} + \Delta)\xi||^{2}$$

$$= e^{-2s}||f(k)\xi||^{2} + ||f(k)\Delta\xi||^{2} + 2e^{-s}\operatorname{Re}\langle f(k)\xi, f(k)\Delta\xi\rangle\rangle$$

$$\geq 2e^{-s}||f(k)\xi||||f(k)\Delta\xi|| + 2e^{-s}\operatorname{Re}\langle f(k)\xi, f(k)\Delta\xi\rangle\rangle$$

$$\geq 4e^{-s}\operatorname{Re}\langle f(k)\xi, f(k)\Delta\xi\rangle\rangle$$

$$= 4e^{-s}\operatorname{Re}\langle f(k)^{2}\xi, FS\xi\rangle\rangle$$

$$= 4e^{-s}\operatorname{Re}\langle f(k)^{2}\xi, S\xi\rangle\rangle$$

$$= 4e^{-s}\operatorname{Re}\langle f(h)^{2}S\xi, S\xi\rangle\rangle$$

$$= 4e^{-s}||f(h)S\xi||^{2}.$$

and

$$||f(k)\eta||^{2} = ||\dot{f}(k)k\eta||^{2} = ||\dot{f}(k)\nu\lambda(\xi)^{*}\eta||^{2} = ||\nu\dot{f}(h)\rho(\eta)S\xi||^{2}$$
$$= ||\rho(\eta)\nu\dot{f}(h)S\xi||^{2} \le ||\rho(\eta)||^{2}||\dot{f}(h)S\xi||^{2}, \qquad \eta \in A', \ f \in C_{c}((0,\infty))^{+},$$

which imply that $c := \frac{1}{2}e^{\frac{s}{2}}\|\rho(\eta)\|$ satisfies

$$||f(h)S\xi|| \le c||\dot{f}(h)S\xi||.$$

For arbitrary $\varepsilon > 0$, by considering a net $f_{\alpha} \uparrow 1_{(c+\varepsilon,\infty)}$ and defining $p_{\varepsilon} := 1_{[0,c+\varepsilon]}(h)$, we have $\dot{f} \leq (c+\varepsilon)^{-1}f$ and that

$$\|(1-p_{\varepsilon})S\xi\| \leq \frac{c}{c+\varepsilon}\|(1-p_{\varepsilon})S\xi\|,$$

which implies $p_{\varepsilon}S\xi = S\xi$ for all $\varepsilon > 0$, so $p_0S\xi = S\xi$. Then,

$$\|\lambda(\xi)^*\zeta\| = \|p_0\lambda(\xi)^*\zeta\| = \|1_{[0,c]}(h)h\nu^*\zeta\| \le c\|\nu^*\zeta\| \le c\|\zeta\|, \qquad \zeta \in A'.$$

Therefore, $S\xi \in B$, which implies $S\xi \in A$ and $\xi \in A$.

For the density of $A \cap D'$, let $\zeta \in \text{dom } \Delta$. Define a sequence $\eta_n \in A'$ such that $\lim_{n \to \infty} \eta_n = (1 + \Delta)\zeta$. Then, since $(1 + \Delta)^{-1}$ is bounded, we have $\zeta = \lim_{n \to \infty} (1 + \Delta)^{-1} \eta_n \in \overline{A \cap D'}$. Since $\text{dom } \Delta$ is dense in H, we are done.

Theorem 3.10 (Tomita-Takesaki commutation theorem). Let A be a left Hilbert algebra. Then, for every

 $t \in \mathbb{R}$, the following diagram commutes:

Proof. Fix $\eta \in A'$ and define

$$\begin{aligned} \xi : &= (e^{-\frac{s}{2}} u_{-\frac{i}{2}} + e^{\frac{s}{2}} u_{\frac{i}{2}})^{-1} J \eta = (e^{-\frac{s}{2}} \Delta^{-\frac{1}{2}} + e^{\frac{s}{2}} \Delta^{\frac{1}{2}})^{-1} J \eta \\ &= (e^{-\frac{s}{2}} \Delta^{-\frac{1}{2}} + e^{\frac{s}{2}} \Delta^{\frac{1}{2}})^{-1} \Delta^{-\frac{1}{2}} F \eta = e^{-\frac{s}{2}} (e^{-s} + \Delta)^{-1} F \eta \in A \cap D'. \end{aligned}$$

By the computations

$$\begin{split} \langle \rho(F\xi)\zeta_1,\zeta_2\rangle &= \langle \lambda(\zeta_1)F\xi,\zeta_2\rangle = \langle F\xi,\lambda(\zeta_1)^*\zeta_2\rangle = \langle S\lambda(\zeta_1)^*\zeta_2,\xi\rangle \\ &= \langle \lambda(\zeta_2)^*\zeta_1,\xi\rangle = \langle \rho(\zeta_1)S\zeta_2,\xi\rangle = \langle S\zeta_2,\rho(\zeta_1)^*\xi\rangle \\ &= \langle S\zeta_2,\lambda(\xi)F\zeta_1\rangle = \langle F\lambda(\xi)F\zeta_1,\zeta_2\rangle, \qquad \zeta_1 \in A \cap D',\ \zeta_2 \in A, \\ \langle \rho(S\xi)\zeta_1,\zeta_2\rangle &= \langle \lambda(\zeta_1)S\xi,\zeta_2\rangle = \langle S\xi,\lambda(\zeta_1)^*\zeta_2\rangle = \langle S\xi,\rho(\zeta_2)S\zeta_1\rangle \\ &= \langle \rho(\zeta_2)^*S\xi,S\zeta_1\rangle = \langle \lambda(\xi)^*F\zeta_2,S\zeta_1\rangle = \langle F\zeta_2,\lambda(\xi)S\zeta_1\rangle \\ &= \langle S\lambda(\xi)S\zeta_1,\zeta_2\rangle, \qquad \zeta_1 \in A \cap D',\ \zeta_2 \in D', \end{split}$$

the domains of $\rho(F\xi)$ and $\rho(S\xi)$ contain $A \cap D'$ and we have

$$\rho(\eta) = \rho(J(e^{-\frac{s}{2}}\Delta^{-\frac{1}{2}} + e^{\frac{s}{2}}\Delta^{\frac{1}{2}})\xi)
= e^{-\frac{s}{2}}\rho(F\xi) + e^{\frac{s}{2}}\rho(S\xi)
= e^{-\frac{s}{2}}F\lambda(\xi)F + e^{\frac{s}{2}}S\lambda(\xi)S
= e^{-\frac{s}{2}}\Delta^{\frac{1}{2}}J\lambda(\xi)J\Delta^{-\frac{1}{2}} + e^{\frac{s}{2}}\Delta^{-\frac{1}{2}}J\lambda(\xi)J\Delta^{\frac{1}{2}}
= (e^{-\frac{s}{2}}\sigma_{-\frac{i}{2}} + e^{\frac{s}{2}}\sigma_{\frac{i}{2}})Ad_J\lambda(\xi)$$

as sesquilinear forms on $A \cap D'$. The conditions for ξ and ζ_1 to belong to $A \cap D'$ are necessary in the above computation. By the density of $A \cap D'$ in H, we have the bounded operators

$$\mathrm{Ad}_{J}(e^{-\frac{s}{2}}\sigma_{-\frac{i}{2}}+e^{\frac{s}{2}}\sigma_{\frac{i}{2}})^{-1}\rho(\eta)=\lambda((e^{-\frac{s}{2}}u_{-\frac{i}{2}}+e^{\frac{s}{2}}u_{\frac{i}{2}})^{-1}J\eta).$$

Then, we get

$$\mathrm{Ad}_J\Big(\int \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \sigma_t(\rho(\eta)) dt\Big) = \lambda\Big(\int \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} u_t(J\eta) dt\Big), \qquad s \in \mathbb{R}, \ \eta \in A',$$

as bounded linear operators on H. For every $\zeta \in B'$, since $Ad_J : B(H) \to B(H)$, $\zeta : B(H) \to H$, and

 $\rho(\zeta): H \to H$ are all continuous between weak* topologies, we have

$$\int \frac{e^{ist}}{e^{\pi t} + e^{-\pi t}} \operatorname{Ad}_{J} \sigma_{t}(\rho(\eta)) \zeta \, dt = \operatorname{Ad}_{J} \left(\int \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \sigma_{t}(\rho(\eta)) \, dt \right) \zeta$$

$$= \lambda \left(\int \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} u_{t}(J\eta) \, dt \right) \zeta$$

$$= \rho(\zeta) \int \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} u_{t}(J\eta) \, dt$$

$$= \int \frac{e^{-ist}}{e^{\pi t} + e^{-\pi t}} \rho(\zeta) u_{t}(J\eta) \, dt$$

$$= \int \frac{e^{ist}}{e^{\pi t} + e^{-\pi t}} \lambda (u_{t}^{-1}(J\eta)) \zeta \, dt.$$

Then, by taking arbitrary bounded linear functionals of H on the above integral, and by the injectivity of the Fourier transform, we finally obtain $\operatorname{Ad}_J \circ \sigma_t \circ \rho = \lambda \circ u_t^{-1} \circ J$ on A'.

Corollary 3.11. Let A be a full left Hilbert algebra. Then, for $t \in \mathbb{R}$, the following diagram is well-defined and commutes:

In particular, we have

$$JA = A'$$
, $\Delta^{it}A = A$, $JMJ = M'$, $\Delta^{it}M\Delta^{-it} = M$,

and J is an anti-homomorphism, Δ^{it} is a *-homomorphism

 \square

4 January 17

4.1 Connes cocyle

4.2 Standard form

abelian group

Chapter X: crossed product duality,

Let M be a von Neumann algebra and G be a locally compact group. An action of G on M is a σ -weakly continuous group homomorphism $\alpha:G\to \operatorname{Aut}(M)$. The triple (M,G,α) is called a W^* -dynamical system. A covariant representation of a W^* -dynamical system is a pair (π,u) of a normal representation $\pi:M\to B(H)$ and a strongly continuous unitary representation $u:G\to U(H)$ such that $\alpha_s(x)=u_sxu_s^*$.

If (H, P, J) is a standard form of M, then there is a unique covariant representation of (M, G, α) , called the *standard covariant representation*.

Let (M, G, α) be a W*-dynamical system. A α -(one)-cocycle of a strongly continuous group homomorphism $u : G \to U(M)$ such that $u_{st} = u_s \alpha_s(u_t)$, and we denote by $Z^1(M, G, \alpha)$ the set of all α -cycles.

5 March 8

Type III