2022-2023 MP2I

13. Structures algébriques usuelles

Exercice 1. (m) Soit E = [0,1]. On définit la loi * sur E par $\forall x, y \in E, x * y = x + y - xy$.

- 1) Montrer que * est une lci commutative et associative.
- 2) Montrer que * possède un élément neutre. Quels sont les éléments de E inversibles pour *?

Exercice 2. (m) Soit * une lei associative sur E. Un élément $x \in E$ est dit idempotent si x * x = x.

- 1) Montrer que si x et y sont idempotents et commutent, alors x * y est idempotent.
- 2) Montrer que si x est idempotent et inversible, alors x^{-1} est idempotent.

Exercice 3. © Soit (G, *) est un groupe. On pose $Z(G) = \{x \in G \mid \forall y \in G, \ x * y = y * x\}$. On dit que Z(G) est le centre de G. Montrer que Z(G) est un sous-groupe de G.

Exercice 4.
$$(\underline{\mathbf{m}})/(\underline{\mathbf{i}})$$
 Montrer que $(\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n,\times)$ est un groupe. A-t-on $\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n=\mathbb{U}$?

Exercice 5. (m) Soit (G,*) un groupe et H un sous-groupe de G. On fixe $a \in G$.

- 1) Montrer que $aHa^{-1} = \{a * x * a^{-1}, x \in H\}$ est un sous-groupe de (G, *).
- 2) Montrer que $aH = \{a * x, x \in H\}$ est un sous-groupe de G si et seulement si $a \in H$.

Exercice 6. (m) Soit (G,*) un groupe de neutre e tel que $\forall x \in G, x^2 = e$. Montrer que G est commutatif.

Exercice 7. (m) Soit $G = \mathbb{R}^* \times \mathbb{R}$ muni de la loi $\forall (x,y), (x',y') \in G, (x,y) * (x',y') = (xx',xy'+y).$

- 1) Montrer que (G, *) est un groupe non commutatif.
- 2) Montrer que $\mathbb{R}_+^* \times \mathbb{R}$ est un sous-groupe de (G,*).

Exercice 8. (m) Soit G =]-1,1[muni de la loi $\forall x,y \in G, \ x*y = \frac{x+y}{1+xy}$. Montrer que (G,*) est un groupe commutatif.

Exercice 9. (i) Union de groupes. Soit (G,*) un groupe et G_1 et G_2 deux sous-groupes de G. Montrer que $G_1 \cup G_2$ et un sous-groupe de G si et seulement si $G_1 \subset G_2$ ou $G_2 \subset G_1$.

Exercice 10. (i) Soit (G,*) un groupe (à priori non commutatif) dont l'élément neutre est noté e. On considère $a,b \in G$ tels qu'il existe $n \in \mathbb{N}^*$ tel que $(a*b)^n = e$. Montrer que $(b*a)^n = e$.

Exercice 11. (m) Vérifier que $\varphi : \begin{cases} (\mathbb{R}^*, \times) & \to & (\mathbb{R}^*, \times) \\ x & \mapsto & x^2 \end{cases}$ est un morphisme de groupe et déterminer $\ker(\varphi)$ et $\operatorname{Im}(\varphi)$.

Exercice 12. (i) Soit φ un morphisme de groupe de $(\mathbb{R}, +)$ dans (\mathbb{R}_+^*, \times) dérivable. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, \ \varphi(x) = e^{\alpha x}$.

Exercice 13. (i) Soit $n \in \mathbb{N}^*$. Vérifier que $n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}$ est un groupe pour la loi + et qu'il est isomorphe à $(\mathbb{Z}, +)$.

Exercice 14. (i) Montrer que $(\mathbb{Z}, +)$ et $(\mathbb{Z}^2, +)$ ne sont pas isomorphes.

Exercice 15. (m) On dit qu'un groupe (G, *) vérifie la propriété (D) si $\forall y \in G, \exists x \in G / y = x * x$.

- 1) Vérifier que $(\mathbb{Z}, +)$ ne vérifie pas (D) alors que $(\mathbb{Q}, +)$ la vérifie.
- 2) Montrer que si $(G_1, *_1)$ et $(G_2, *_2)$ sont isomorphes et que G_1 vérifie la propriété (D), alors G_2 la vérifie également. En déduire que $(\mathbb{Z}, +)$ et $(\mathbb{Q}, +)$ ne sont pas isomorphes.
- 3) Applications.
 - a) Montrer que (\mathbb{R}^*, \times) et (\mathbb{R}^*_+, \times) ne sont pas isomorphes.
 - b) Montrer que (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) ne sont pas isomorphes.

Exercice 16. (i) Montrer que (\mathbb{C}^*, \times) est isomorphe au groupe produit $(\mathbb{R}_+^* \times \mathbb{U})$ (muni des lois produits sur chacun des groupes).

Exercice 17. (m) Soit (G,*) un groupe et $f: \begin{cases} G \to G \\ x \mapsto x^{-1} \end{cases}$.

- 1) Montrer que f est bien définie et bijective.
- 2) Montrer que f est un automorphisme si et seulement si (G, *) est un groupe commutatif.

Exercice 18. (m) On rappelle que pour $n \in \mathbb{N}^*$, (\mathbb{U}_n, \times) est un groupe.

- 1) Montrer que $\mathbb{U}_2 \times \mathbb{U}_3$ et \mathbb{U}_6 sont isomorphes.
- 2) Montrer que $\mathbb{U}_2 \times \mathbb{U}_2$ et \mathbb{U}_4 ne sont pas isomorphes.

Exercice 19. (m)/ (*) Soit $\varphi : \mathbb{R} \to \mathbb{R}$ un automorphisme d'anneau.

- 1) Montrer que $\forall x \geq 0, \ \varphi(x) \geq 0$ et en déduire que φ est croissante.
- 2) Montrer que $\forall x \in \mathbb{Q}, \ \varphi(x) = x$.
- 3) Déterminer φ .

Exercice 20. (i) Soit $(A, +, \times)$ un anneau tel que $\forall x \in A, x^2 = x$. Montrer que $\forall x \in A, 2x = 0_A$ puis que \times est commutative.

Exercice 21. (i) Éléments nilpotents. Soit A un anneau non nécessairement commutatif. On dit que x est nilpotent si on peut trouver un entier $n \in \mathbb{N}^*$ tel que $x^n = 0_A$.

- 1) Montrer que si xy est nilpotent, alors yx l'est aussi.
- 2) Montrer que si x et y sont nilpotents et commutent, alors x + y et xy sont nilpotents.
- 3) Montrer que si x est nilpotent, alors x n'est pas inversible mais $1_A x$ l'est.

Exercice 22. (m) Soit $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$

- 1) Montrer que $\mathbb{Z}[i]$ est un anneau commutatif pour les lois usuelles sur \mathbb{C} .
- 2) Déterminer les inversibles de $\mathbb{Z}[i]$. On pourra étudier le module d'un élément inversible.

Exercice 23. (m) Montrer que $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, (a,b) \in \mathbb{Q}^2\}$ est un sous-corps de \mathbb{R} .

Exercice 24. (m) Soit K un sous-corps de $(\mathbb{Q}, +, \times)$. Montrer que $K = \mathbb{Q}$.