I Théorie de la mesure

Théorème I-1 (Dynkin). — Le π -système engendré par un σ -système est égal à la tribu engendrée par ce dernier.

COROLLAIRE I-2 (Unicité des mesures). — Soient μ et ν deux mesures sur (E, A) qui coïncident sur un π -système \mathcal{C} tel que $\mathcal{A} = \sigma(\mathcal{C})$. Alors :

- 1. $Si \ \mu(E) = \nu(E) < +\infty$, alors $\mu = \nu$.
- 2. Si il existe une suite croissante $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{C} tels que $\bigcup_n A_n = E$, et pour tout $n\in\mathbb{N}$, $\mu(A_n) = \nu(A_n) < +\infty$, alors $\mu = \nu$.

Outils: