

Continuous Integration and Testing for Networks

Steven Carter, Principal Architect Chris Hocker, Solutions Architect

BRKDEV-3326

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- Find this session in the Cisco Events Mobile App
- Click "Join the Discussion"
- Install Webex Teams or go directly to the team space
- Enter messages/questions in the team space

Agenda

- Introduction
- Automation
- Simulation
- Testing
- DevOps
- Conclusion

Before We Begin

This is an advanced-level session:

- We make some assumptions:
 - Basic understanding of IaC and source control (i.e. git)
 - Basic understanding of Ansible
 - Working knowledge of SD-WAN
- You are open to a new way of operating your infrastructure
 - This is not something that is implemented in a week
 - You'll have/need help
 - Requires an evolution in skill sets

Ask Questions (although we will have to move ahead at times)

Introduction

Business Transformation

Time to Value Configuration & Change Automation

Faster
Customer
Service
On-boarding

Faster
Execution of
Change
Requests

Time to Remediation Automated Fault Remediation

Faster Execution of Maintenance Faster
Troubleshooting
and Remediation

The Goal

Infrastructure Lifecycle through Code Lifecycle

CI: Continuous Integration of Features and Fixes

CD: Continuous Deployment of Features and Fixes

Goal: Accelerate Value to Customers

CI vs. CI/CD

Challenges

- It's hard
- Requires a changes in mindset, organization, and skillset
- Examples never work
- Too many moving parts
- How do you test?
- Where do you test?

SDWAN-DevOps Repo

https://github.com/CiscoDevNet/sdwan-devops

- Architecture Detailed architecture with customer-relevant use cases
- Simulation Dynamic VIRL topology in which to simulate architecture
- Automation Automate deployment in simulated and production environments
- Testing Automated validation or deployments
- Cisco DevNet Learning Labs and Sandboxes to teach and experience the components of the DevOps Bundle

Architecture

Simplified SD-WAN architecture

Real-Life SD-WAN Architectures

Automation

"If it does not have an API, it does not exist"

Mitchell Hashimoto

Ansible Uses: Overview

- Orchestrate Configuration and Testing
- Generate Day 0 Configuration
- Deliver Data Models:
 - to controllers when able
 - to devices when necessary
- Avoid CLI at all costs
- Test/Prod same where possible

Ansible Uses: Roles

- ansible-viptela
 - Infrastructure agnostic deployment of SD-WAN control plane
 - Provision and configure SD-WAN edge
 - Full template lifecycle (import, export, add, delete, modify, attach, detach)
 - Full policy lifecycle (import, export, add, delete, modify, activate, deactivate)
- ansible-virl
 - Topology lifecycle (Dynamically generate, launch, clean)
 - Dynamic inventory

Inventory-Driven Deployment

BRKDEV-3326

Inventory-Driven Configuration

```
interfaces:
 GigabitEthernet1:
                                                                                                            Playbooks define
   vrf: Mamt-intf
   enabled: true
                                                                                                        architecture, services
     primary: dhcp
 GiaabitEthernet2:
   enabled: true
                                                                                                     and enforce compliance
     primary: 172.16.21.2/24
 GiaabitEthernet3:
   enabled: true
     primary: 172.21.0.2/24
     standby:
      address: 172.21.0.1
      aroup: 0
      priority: 120
      delav: 300
static routes:
 global:
   - network: 172.21.0.0/16
     fwd_list:
       - fwd: Null0
router:
                                                                                                                                      wert vector i
 bqp:
   id: 65021
                                                                                                                                    west spel etcl (X)
   log_neighbor_changes: true
   router_id: 172.16.21.2
   neighbors:
                                                                                                                                                                                             East VPC
     - id: 172.16.21.1
                                                                                                                                                               172.17.0.10
SP 1
      remote_as: 65016
     - id: 172.21.0.4
       remote_as: 65020
   address_family:
                                       Key/value pairs in inventory
     global:
      ipv4:
        neighbors:
                                       yield specific implementation
          - id: 172.16.21.1
           activate: true
          - id: 172.21.0.4
           activate: true
```

cisco Live!

next_hop_self: yes networks: - network: 172.21.0.0/16 aggregate_address: - network: 172.21.0.0/16 summary_only: yes

Flexibility of Data-Driven Automation

```
interfaces:
 GigabitEthernet1:
    vrf: Mamt-intf
    enabled: true
     primary: dhcp
 GiaabitEthernet2:
    enabled: true
     primary: 172.16.21.2/24
 GiaabitEthernet3:
    enabled: true
     primary: 172.21.0.2/24
      standby:
        address: 172.21.0.1
       aroup: 0
       priority: 120
       delav: 300
static routes:
 global:
    - network: 172.21.0.0/16
      fwd_list:
        - fwd: Null0
router:
 bqp:
    id: 65021
    log_neighbor_changes: true
    router_id: 172.16.21.2
    neighbors:
     - id: 172.16.21.1
       remote_as: 65016
      - id: 172.21.0.4
        remote_as: 65020
    address_family:
     global:
       ipv4:
          neighbors:
           - id: 172.16.21.1
             activate: true
            - id: 172.21.0.4
             activate: true
             next hop self: ves
            - network: 172.21.0.0/16
          aggregate_address:
           - network: 172.21.0.0/16
              summary_only: yes
```


BRKDEV-3326

Encoding

- CLI
- XML
- JSON

- SSH
- NETCONF
- API

Simulation

CML² /VIRL² - Modern Network Simulation

- Solid REST API Foundation
- Modern Ul
- Layered Architecture
- Scalability and Performance
- Persistent labs
- Easy to install and use
- Lightweight
- Rich Ecosystem

BRKDEV-3326

Inventory-Driven Topology

network.yml

```
vpn_instances:
    vpn_id: 0
    interfaces:
        - if_name: eth1
        ip:
            address: 192.133.179.21/24
        tunnel_interface:
        enabled: true
    routes:
        - prefix: 0.0.0.0/0
next_hop:
address: 192.133.179.1
```

vmware.yml

vpn0_portgroup: cpn-rtp-colab1
vpn512_portgroup: cpn-rtp-colab1
servicevpn_portgroup: cpn-rtp-colab1

virl.yml

virl_config_template: sdwan/vedge.j2
virl_image_definition: "viptela-edge-19.2.1"

- Generate Day0 Config
- Create topology

Builds topology

Dynamic Inventory

```
interfaces:
 GigabitEthernet1:
    vrf: Mamt-intf
    enabled: true
     primary: dhcp
 GiaabitEthernet2:
    enabled: true
     primary: 172.16.21.2/24
 GiaabitEthernet3:
    enabled: true
     primary: 172.21.0.2/24
      standby:
        address: 172.21.0.1
       aroup: 0
       priority: 120
       delay: 300
static_routes:
 global:
    - network: 172.21.0.0/16
      fwd_list:
        - fwd: Null0
router:
 bqp:
    id: 65021
    log_neighbor_changes: true
    router_id: 172.16.21.2
    neighbors:
     - id: 172.16.21.1
        remote_as: 65016
      - id: 172.21.0.4
        remote_as: 65020
    address_family:
     global:
       ipv4:
          neighbors:
           - id: 172.16.21.1
             activate: true
            - id: 172.21.0.4
             activate: true
             next_hop_self: yes
            - network: 172.21.0.0/16
          aggregate_address:
           - network: 172.21.0.0/16
              summary_only: yes
```


Overrides production addressing

BRKDEV-3326

Test Workflow

Start Simulation

Configure SD-WAN Control Plane

Bootstrap and Start Edges

Wait for Devices to Sync

Check for Proper Connectivity

Testing

What can we test?

AUTOMATION CODE

CONFIGURATION

SOFTWARE/ FIRMWARE

CONNECTIVITY

THROUGHPUT

Inventory-Driven Configuration

summary_only: yes

- Jenkinsfile defines (most) everything about the tests
- Launches tests in a docker container for consistent environment
 - Loads OS dependencies and Python dependencies (requirements.txt)
- Different Jenkinsfiles for different type of tests (e.g, full, partial, use-case specific)
- VIRL environment with static session ID per environment
- Resource locking
- Speed Kills Lot's of retries

Validation

- · check-sdwan.yml
 - Performs tests of SD-WAN to verify both connectivity and policy
 - Uses vmanage_nping for testing
- check-network.yml
 - Performs connectivity tests of the underlay
 - Uses pyATS to perform automated "stare-and-compare" of routing protocols

Test Strategies

"Just because you cannot test everything, it does not mean that you should not test anything!" -- Me

- Test the baseline policy, e.g.:
 - Site to HQ
 - Site to Site
- Test access to critical business functions, e.g.:
 - Site to app server in DC
 - Site to SaaS providers
- Test thing critical to security and/or compliance, e.g.:
 - AAA, Banners
 - Tenancy
 - Guest

DevOps

Network CI Workflow

BRKDEV-3326

Branching Strategies

Demo

cisco live!

Demo Topology

Common Inventory

network.yml

```
vpn_instances:
    - vpn_id: 0
    interfaces:
        - if_name: eth1
        ip:
            address: 192.133.179.21/24
        tunnel_interface:
        enabled: true
    routes:
        - prefix: 0.0.0.0/0
next_hop:
address: 192.133.179.1
```

vmware.yml

vpn0_portgroup: cpn-rtp-colab1
vpn512_portgroup: cpn-rtp-colab1
servicevpn_portgroup: cpn-rtp-colab1

virl.yml

virl_config_template: sdwan/vedge.j2
virl_image_definition: "viptela-edge-19.2.1"

Manual

Deployment

Demo Workflow

BRKDEV-3326

Branching Workflow

Conclusion

Not Ready for full CI/CD?

- Use simulated environment to test changes
- Use automation to provision/configure simulated environment
- Automate testing and validation of manual changes
- Use the Cisco DevNet resource to learn the different components

Summary

- It's hard
- There is no one-size fits all
- Complete CI/CD solutions are needed
- No need to do it all at once

Try it out!

Github Repos:

- https://github.com/CiscoDevNet/sdwan-devops
- https://github.com/CiscoDevNet/ansible-(viptela, virl)
- https://github.com/CiscoDevNet/python-viptela

cisco Live!

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

illilli CISCO

Thank you

cisco live!

You make possible