The Midterm of Calculus 0409

(題目卷)

- 1. (20 %) Find the limit, if it exists. If the limit does not exist, carefully explain at each step which limit law you have used.
 - (a) $\lim_{x \to 0} \frac{\left(\frac{1}{x+4}\right) \frac{1}{4}}{x}$ (b) $\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}$ (c) $\lim_{x \to 1} \frac{x^3 1}{x^2 + x + 1}$

- (d) $\lim_{x\to\infty} \frac{\sin x}{x}$
- 2. (20 %) Find $\frac{dy}{dx}$.
 - (a) $y = x^3 e^{4x} \cos 2x + \ln x$ (b) $y = \frac{\tan x}{\sqrt{x + x}}$ (c) $y = \frac{\sec x}{x}$

- (d) $y^3 + y^2 5y x^2 = 4$
- 3. (10 %) Let $f(x) = \begin{cases} ax^3 & \text{if } x \le 2 \\ x^2 + b & \text{if } x > 2 \end{cases}$, find the values of a and b

that make f differentiable everywhere.

4. (10%) Let $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{, if } x \neq 0 \\ 0 & \text{, if } x = 0 \end{cases}$.

Determine whether f'(0) exists, justify your answer.

5. (10%) Let $f(x) = \frac{x^3}{4} + x - 1$, find the value of $(f^{-1})'(3)$

背面尚有題目

6. (20%) Sketch the graph of $f(x) = x^4 - 4x^3$ and find the critical numbers, the points of inflections, and the relative extrema.

7. (10%)
$$\frac{d}{dx} \left(\int_{e^x}^{x^2+2} \ln(t) dt \right)$$

8. (20 %) Find the following integrals.

(a)
$$\int \frac{e^x}{1+e^x} dx$$

(b)
$$\int xe^x dx$$

(a)
$$\int \frac{e^x}{1+e^x} dx$$
 (b) $\int xe^x dx$ (d) $\int \sin^3 x \cos^2 x dx$

(e)
$$\int \frac{x+2}{\sqrt{4-x^2}} dx$$

公式表:

$$1. \left(x^n\right)' = nx^{n-1}$$

$$2. \left(e^x\right)' = e^x$$

$$3.\left(\ln x\right)' = \frac{1}{x}$$

$$4.\left(\sin x\right)' = \cos x$$

$$5.(\cos x)' = -\sin x$$

$$6. \left(\tan x\right)' = \sec^2 x$$

7.
$$(\cot x)' = -\csc^2 x$$

8.
$$(\sec x)' = \sec x \tan x$$

9.
$$(\csc x)' = -\csc x \cot x$$

10.
$$\left(\sin^{-1} x\right)' = \frac{1}{\sqrt{1-x^2}}$$

1.
$$(x^n)' = nx^{n-1}$$
 2. $(e^x)' = e^x$ 3. $(\ln x)' = \frac{1}{x}$ 4. $(\sin x)' = \cos x$

5. $(\cos x)' = -\sin x$ 6. $(\tan x)' = \sec^2 x$ 7. $(\cot x)' = -\csc^2 x$

8. $(\sec x)' = \sec x \tan x$ 9. $(\csc x)' = -\csc x \cot x$ 10. $(\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}}$

11. $(\cos^{-1} x)' = \frac{-1}{\sqrt{1 - x^2}}$ 12. $(\tan^{-1} x)' = \frac{1}{1 + x^2}$

13. $(uv)' = u'v + uv'$ 14. $(\frac{v}{u})' = \frac{u'v - uv'}{u^2}$

12.
$$\left(\tan^{-1} x\right)' = \frac{1}{1+x^2}$$

$$13. \ \left(uv\right)' = u'v + uv'$$

$$14. \left(\frac{v}{u}\right)' = \frac{u'v - uv'}{u^2}$$

GOOD LUCK