	1				
Kurs: Fys3220	Gruppe: 3		Utført dato: 13.11.19		
Lineær kretselektronikk	Gruppe-dag:				
Oppgave:					
Laboratorie@velse C					
Omhandler:					
1 Tilbakekobling av et 2-ordens	s system		2		
2 Konturanalyse og Nyquist dia					
3 PI Regulatorer					
4 Filtere	•••••	• • • • • • • • • • • • • • • • • • • •	13		
		-			
Utført av:		Utført av:			
Navn: Klaudia M. Pawlak		Navn: Heven Yosef Alemseged			
Email: klaudiap@student.matn	at.uio.no	Email: hevenya@student.matnat.uio.no			
Godkjent dato:		Godkjent av:			
Kommentar fra veileder:					
Kommentai ira veneder.					

1 Tilbakekobling av et 2-ordens system

Oppgave 1.a-1

Vi har at:

$$H(s) = \frac{V_{ut}}{V_{inn}} = \frac{A \cdot C}{1 - AB} = \frac{A \cdot C}{1 - F}$$

Blokkene for A, B og C:

$$A = G \frac{sRC}{(sRC)^2 + s3RC + 1}$$
$$B = 1$$
$$C = 1$$

Vi får:

$$H_{2}(s) = \frac{A \cdot C}{1 - AB}$$

$$= \frac{\left(\frac{GsRC}{(sRC)^{2} + s3RC + 1}\right) \cdot 1}{1 - \left(\frac{GsRC}{(sRC)^{2} + s3RC + 1}\right) \cdot 1}$$

$$= \frac{GsRC}{(sRC)^{2} + s3RC + 1 - GsRC}$$

$$= G\frac{sRC}{(sRC)^{2} + sRC(3 - G) + 1}$$
|Multipliserer med $(sRC)^{2} + s3RC + 1$
|Faktoriserer $3RC - GsRC$

Oppgave 1.b-1

G	ω_0	Q	Re(pol1)	Im(pol1)	Re(pol2)	Im(pol2)	Stabilitet	Oscillasjon
0	10 <i>k</i>	0.33	-3.81k	0	-26.2k	0	Stabilt	Nei
0.25	10 <i>k</i>	0.36	-4.31k	0	-23.2k	0	Stabilt	Nei
0.5	10 <i>k</i>	0.40	-5.00k	0	-20.0k	0	Stabilt	Nei
0.75	10 <i>k</i>	0.44	-6.10k	0	-16.4k	0	Stabilt	Nei
1	10 <i>k</i>	0.50	-10.0k	0	-10.0k	0	Stabilt	Nei
1.25	10 <i>k</i>	0.57	-8.7k	4.8kj	-8.7k	-4.8kj	Stabilt	Voksende
1.5	10 <i>k</i>	0.67	-7.5k	6.6kj	-7.5k	-6.6kj	Stabilt	Voksende
1.75	10 <i>k</i>	0.80	-6.2k	7.8kj	-6.2k	-7.8kj	Stabilt	Voksende
2	10 <i>k</i>	1.00	-5k	8.7kj	-5k	-8.7kj	Stabil	Voksende

2.25	10 <i>k</i>	1.33	-3.8k	9.3kj	-3.8k	-9.3kj	Stabil	Voksende
2.5	10 <i>k</i>	2.00	-2.5k	9.7kj	-2.5k	-9.7kj	Stabil	Voksende
2.75	10 <i>k</i>	4.00	-1.3k	9.9kj	-1.3k	-9.9kj	Stabil	Voksende
3	10 <i>k</i>	Udef-	0	10kj	0	-10kj	Marginal	Konstant
		inert						
3.25	10 <i>k</i>	4.00	1.3k	9,9kj	1.3k	-9.9kj	Ustabil	Dempet
3.5	10 <i>k</i>	2.00	2.5k	9.7kj	2.5k	-9.7kj	Ustabil	Dempet
3.75	10 <i>k</i>	1.33	3.8k	9.3kj	3.8k	-9.3kj	Ustabil	Dempet
4	10 <i>k</i>	1.00	5k	8.7kj	5k	-8.7kj	Ustabil	Dempet
4.5	10 <i>k</i>	0.80	6.3k	7.8kj	6.3k	-7.8kj	Ustabil	Dempet
4.5	10 <i>k</i>	0.67	7.5k	6.7kj	7.5k	-6.7kj	Ustabil	Dempet
4.75	10 <i>k</i>	0.57	8.8k	4.8kj	8.8k	-4.8kj	Ustabil	Dempet
5	10 <i>k</i>	0.50	10k	0	10.0k	0	Ustabil	Nei
5.25	10 <i>k</i>	0.44	16.4k	0	6.1k	0	Ustabil	Nei
5.5	10 <i>k</i>	0.40	20k	0	5k	0	Ustabil	Nei
5.75	10 <i>k</i>	0.36	23.2k	0	4.3k	0	Ustabil	Nei
6	10 <i>k</i>	0.33	26.2k	0	3.8k	0	Ustabil	Nei
6.25	10 <i>k</i>	0.31	29.1k	0	3.4k	0	Ustabil	Nei
6.5	10 <i>k</i>	0.29	31.9k	0	3.1k	0	Ustabil	Nei
6.75	10 <i>k</i>	0.27	34.6k	0	2.9k	0	Ustabil	Nei
7	10 <i>k</i>	0.25	37.3k	0	2.7k	0	Ustabil	Nei

Tabell 1: Beregning av pol-plasseringer

Figur 1: Plassering av polene i s-plane

Figur 2: Transient analyse av modifisert Wienbrofilter for G=0.5

Figur 3: Transient analyse av modifisert Wienbrofilter for G=2.9

Figur 4: Transient analyse av modifisert Wienbrofilter for G=3

Figur 5: Transient analyse av modifisert Wienbrofilter for G=3.1

- 1. Simularingene viser at kretsen er stabil for de første tre G-ene. Vi ser at kretsen er stabil for G = 0.5 og G = 2.9. Kretsen er marginal for G = 3, og kretsen er ustabil for G = 3.1.
- 2. Ut fra tabellen ser vi at kretsen vil være ustabil for alle verdier av G-en som er større enn 3, altså når real-delene blir negative, og dette stemmer med simuleringene overfør.

Oppgave 1.d-1

Bruker standardlikningen og setter $R = Rfilt = 10k\Omega$, C = Cfilt = 10nF

$$og G = 2.5$$
, og får:

$$H(s) = G \frac{RCs}{(RCs)^2 + sRC(3 - G) + 1} = G \frac{\tau s}{\frac{s^2}{\omega_0^2} + \frac{s}{Q\omega_0} + 1}$$

$$\tau s = RCs \rightarrow \tau = RC = 0.0001$$

$$\frac{s^2}{\omega_0^2} = (RCs)^2 \to \frac{1}{\omega_0^2} = (RC)^2 \to \omega_0 = \frac{1}{RC} = 10k \frac{rad}{sec}$$

$$sRC(3-G) = \frac{s}{Q\omega_0} \to RC(3-G) = \frac{1}{Q\omega_0} \to Q = \frac{1}{3-G} = 2$$

Figur 6: Bodeplot for amplitude

Figur 7: Bodeplot for fase

Oppgave 1.e-1

Vi ser på nevneren for å studere polene og får:

$$H(s) = \frac{A}{1 - AB} = A$$

$$H(s) = A(s) = G \frac{sRC}{(sRC)^2 + 3sRC + 1} = -\frac{3RC \pm \sqrt{(3RC)^2 - 4(RC)^2 \cdot 1}}{2(RC)^2}$$

Vi ser at verdien vi får inn i kvadratroten er positiv og vi har ingen komplekse tall, men vi kommer til ha negativ verdi på grunn av alpha-verdien. Dette vil si at systemet er stabil men vil ikke ha noe oscillasjon.

- a) Nei, systemet er stabil uten tilbakekobling
- b)
- 1. Forsterkningen øker når G øker
- 2. Båndbredden vil holde seg konstant
- 3. Resonansfrekvensen er konstant
- 4. Q er også konstant siden den ikke er avhengig av G lenger

2 Konturanalyse og Nyquist diagrammer

Oppgave 2.a-1

Vi har at:

$$H(s) = \frac{V_{ut}}{V_{inn}} = \frac{A \cdot C}{1 - AB}$$

Blokkene for A, B og C:

$$A = -\frac{G}{RCs + 1}$$
$$B = 1$$
$$C = 1$$

Vi får:

$$H_{2}(s) = \frac{A \cdot C}{1 - AB}$$

$$= -\frac{\frac{G}{RCs + 1}}{1 + \frac{G}{RCs + 1}}$$

$$= -\frac{\frac{G}{RCs + 1 + G}}{\frac{G}{RCs + 1 + G}}$$
| Multipliserer med $RCs + 1$

$$= -\frac{\frac{G}{RCs + 1}}{\frac{G}{RCs + 1}}$$
| Dividerer med $1 + G$

Oppgave 2.a-2

 $H_1(s)$ er overføringsfunksjonen før tilbakekobling, og $H_2(s)$ er overføringsfunksjonen etter tilbakekobling. Tilbakekoblingen vil føre til at vi får mindre forsterkning. Vi vil også få en høyere knekkfrekvens. Filterets dempning vil forbli den samme.

Oppgave 2.a-3

En økning i G vil gjøre slik at forsterkningen for $H_2(s)$ vil minke, og vil føre til en høyere knekkfrekvens. Dette kan vi se på nevneren, der vi beregner polene i 2.a-4.

Vi tegner inn plotet for verifisering av svarene overfør:

Figur 8: Plot av dB(V(ut1)) og dB(V(ut2))

Oppgave 2.a-4

Vi har at:

$$H_2(s) = -\frac{\frac{G}{1+G}}{\frac{RC}{1+G}s+1}$$

Og vi får:

$$\frac{RC}{1+G}s+1=0$$
 |Setter nevner lik 0

$$\frac{RC}{1+G}s=-1$$
 |Rydder ligningen

$$RCs=-1-G$$
 |Multipliserer med 1+G

$$s=-\frac{1-G}{RC}$$
 |Dividerer med RC

Siden vi for negativ reelltall vet vi at poler ligger på venstrehalvdel av s-planet, dermed det er alltid stabil.

Oppgave 2.a-5

Vi har at:

$$F(s) = A(s) = H_1(s) = -\frac{G}{\tau_1 s + 1}$$

Vi setter $s = j\omega$, og får:

$$\omega = 0 F(s)_{\omega=0} = -\frac{G}{\tau_1(j\omega) + 1} = -\frac{G}{1} = -4$$

$$\omega = \frac{1}{\tau_1} F(s)_{\omega = \frac{1}{\tau_1}} = -\frac{G}{\tau_1(j\omega) + 1} = -\frac{G}{j+1} = -\frac{4(j-1)}{-2} = 2j - 2$$

$$\omega = \infty F(s)_{\omega=\infty} = -\frac{G}{\tau_1(j\omega) + 1} = -\frac{G}{\tau_1(j\omega) + 1} \approx g \mathring{a} r \bmod 0$$

Ω	ImF	ReF
0	0	-4
$\frac{1}{\tau_1}$	2 <i>j</i>	-2
ι ₁		
∞	0	0

Tabell 2: Tabell for Oppgave 2.a-5

Oppgave 2.a-6

Figur 9: Nyquist diagram for F(s)

Beregningene i tabellen forteller det samme som Nyquist diagrammet. Vi kan se i plottet at $\Omega=0$, ligger ved (-4,0), $\Omega=\frac{1}{\tau_1}$ ved (-2, 2j) og $\Omega=\infty$ ved (0,0).

Oppgave 2.b-1

Figur 10: Nyquist diagram for F(s)

- 1. Kretsen er stabil ifølge Nyquist diagrammet, det samsvarer med det vi vet om pol plassering ut fra oppgave 1.e-1.
- 2. Fare grensen er grensen som Nyquist kurven må holde seg til for at systemet skal være stabil, altså at punktet F(s) = 1 ligger utenfor konturen. Nyquist kurven vandrer rundt i det komplekse planet for til slutt å treffe Nyquist midt i origo. Og siden vinkelen vi treffer origo med er større enn 0 grader, så kan ikke punktet(1,0j) ligge innenfor konturen. Dermed er kretsen et stabilt system.
- 3. I oppgave 1.c-1, så vi at for G = 2.9 vil systemet bli stabilt, og vi kan se at dette stemmer ut fra Nyquist diagram.

3 PI Regulatorer

Oppgave 3.a-1

Figur 11: Plot av Measured_Speed signalet

Den høyeste hastigheten er 90.9, og bilen brukte ca. 11.5 ms på å nå 99% av denne hastigheten.

Oppgave 3.a-2

Figur 12: Plot av Pådrag-signalet

- Pådraget er stort på begynnelsen (500mV), også synker det raskt, og stiger litt opp igjen til ca. 100mV i løpet av 5 ms. Vi forventer at for en vanlig gasspedal, vil man trykke pedalen helt i bånd, og så slippe opp når bilen nærmer seg 100km/h.
- Forskjeller mellom simulert pådrag og virkeligheten, er at i virkeligheten vil man først trykke pedalen hardt, for å så forsøke å redusere trykke slik at man ender opp med 100km/h på biltelleren, og ikke, som på simulasjonen, trykke hardt, slippe gassen, også gasse litt opp igjen.

Oppgave 3.a-3

Endelig hastighet	100km/h
Tid fram til 99%	11.5 <i>ms</i>
P	10
I	2857.14
R_{p1}	10 <i>k</i>
R _{p2}	80 <i>k</i>
R _{I1}	35 <i>k</i>
c_{11}	10 <i>nf</i>

Tabell 3: Tabell for Oppgave 3.a-3

Oppgave 3.a-4

Jo større blir P og I leddet, jo raskere forandring vil vi få av utgangssignalet.

4 Filtere

Oppgave 4.a-1

Termineringsmotstand: $1k\Omega$, Knekkfrekvens: $10k\omega$

$$L_1 = \frac{1.5 \cdot 1}{10^4} = 150mH$$

$$L_2 = \frac{0.5 \cdot 1}{10^4} = 50mH$$

$$C = \frac{1.33}{10^4 \cdot 1} = 133nF$$

Figur 13: Skjema med nye komponentverdier for LP og HP filteret

Figur 14: Bodeplot for amplituderesponsen

Butterworth filteret kjennetegnes ved at den ikke slippe gjennom uønskelige frekvenser og vi vil få en mest mulig flat frekvensrespons i pass-bandet.

Oppgave 4.b-1

Figur 15: Fasebodeplotet

Her ser vi at Butterworth filteret (rød) er litt flatere enn Chebychev filteret.

Figur 16: Amplitudebodeplotet

Her ser vi at Chebychev filteret (blå) er ikke helt flat i passbandet, og begynner å gå ned raskere enn Butterworth filteret.