Recovering_rf_mixture

The objective of these simulations are to examine whether mixture parameters are recoverable with spatial data. We'll start by simulating some data on a grid from two gaussian random fields. We will initially assume that the fields have the same shape/scale parameters of the gaussian covariance function, but the variances are different – this allows one field to be normal, and the other fat-tailed.

```
library(cluster)
library(mvtnorm)

grid = as.matrix(expand.grid("lon" = seq(5,15,1), "lat" = seq(5,15,1)))
nLocs = dim(grid)[1]
```

Approximating data with spatial random field

We could use RandomField, or other packages to do this. Initially we'll just simulate data using the estimation model. Use pam() to choose a number of knots on the grid. We'll specify 20 initially. We'll also jitter them slightly so knot locations don't fall exactly on stations.

Figure 1: Simulated grid (blue) and knots for random effects (red)

lon

Approximating data with spatial random field

Initially, we'll assume all data is observed in the same year, so there'll just be a single random effect field for normal years, and a single effect for catastrophic / abnormal years.

```
# distance matrix of knots
distKnots = as.matrix(dist(knots))
distKnots2 = distKnots^2 # squared distances
# note: shape parameter scaled to distance matrix
gp_scale = 0.001
sigma.norm = 0.01
sigma.fat = 0.02
corKnots = exp(-gp_scale*distKnots2)
Sigma.normal = corKnots * sigma.norm * sigma.norm
Sigma.fat = corKnots * sigma.fat * sigma.fat
```

Calculate distance matrix from stations to knots, and covariance matrices,

```
# Calculate distance from knots to grid
distAll = as.matrix(dist(rbind(grid, knots)))^2
dist21 = t(distAll[1:nKnots, -c(1:nKnots)])

Sigma21.normal = exp(-gp_scale*dist21) * sigma.norm * sigma.norm
Sigma21.fat = exp(-gp_scale*dist21) * sigma.fat * sigma.fat
```

Generate single MVN field for each of the normal and 'fat-tailed' distributions.

```
re.norm = rmvnorm(1, mean = rep(0, nKnots), Sigma.normal)
re.fat = rmvnorm(1, mean = rep(0, nKnots), Sigma.fat)
```

Project to the station / grid locations, and combine the random fields using some proportion of 'fat-tailed' events. Initially, we'll use 0.05.

```
# take inverse
invSigmaKnots.norm = solve(Sigma.normal)
invSigmaKnots.fat = solve(Sigma.fat)

# Project
proj.norm = Sigma21.normal %*% invSigmaKnots.norm %*% matrix(re.norm,ncol=1)
proj.fat = Sigma21.fat %*% invSigmaKnots.fat %*% matrix(re.fat,ncol=1)

# Combine to single RF
pfat = 0.05
proj = (1-pfat)*proj.norm + pfat*proj.fat
```

Next, we'll simulate 3 kinds of data from the spatial mixture: gaussian, binomial, and poisson counts.

```
nPoints = 100
indices = sample(seq(1,nLocs), size=nPoints, replace=T)

# assume no observation error, so observed/simulated gaussian data are same
x = grid[indices,]
y.gaussian = proj[indices,1]

y.binomial = rbinom(nPoints, size=1, prob=plogis(proj[indices,1]))

y.poisson = rpois(nPoints, exp(proj[indices,1]))
```