Name of Student: Aniket Patil	Class: TE MECH 2
Sem/Year: 6 th / 3 rd	Roll no: 29
Date of Performance:	Date of Submission:
Examined by: Prof. B.R Pujari	Expt No:3

Experiment 3: Plate/Shell Element – Structural Linear and Non-Linear Analysis

Aim: To perform analysis of Plate/Shell Element

Objectives: Perform the simulation using Ansys 2022 R1

Package: Ansys 2022 R1

Problem:

Step 1: Run Ansys Mechanical APDL 2022 R1:

Step 2: Selecting Preference, Preferences \rightarrow Structural

Preprocessor

Step 3: Defining the Element Type

Pre-processor \rightarrow Element Type \rightarrow Add/Delete Element \rightarrow Add \rightarrow Shell \rightarrow 3D 4 Node 181 \rightarrow OK

Step 4: Defining Material Properties

 $\label{eq:Material Props of Material Models of Material Models Available of Structural of Linear of Elastic of Isotropic$

Step 5: Defining Section Of our Shell

 $Section \to Shell \to Lay \ up \to Add/edit \to Thickness \to Material \ ID \ if \ present \ \to OK$

Modelling the problem

 $\mbox{Modeling} \rightarrow \mbox{Create} \rightarrow \mbox{Areas} \rightarrow \mbox{Rectangle} \rightarrow \mbox{By Two Corners} \rightarrow \mbox{OK} \rightarrow \mbox{WPX, WPY,} \\ \mbox{Width, Height.}$

Modeling→create→Areas→Circle→solid circle→ WPX, WPY, radius. Repeat this step 2 times for getting the result below.

Operate:

Operate

 \rightarrow Booleans \rightarrow Add \rightarrow Areas \rightarrow add the two new circles to the existing rectangle to make one continuous shape.

Create→Areas→Circle→solid circle→ WPX, WPY, radius

Operate → Booleans → Subtract → Areas

 $\label{eq:modeling} \begin{tabular}{ll} \beg$

Step 7: Generating Mesh | Meshing \rightarrow Mesh tool \rightarrow Areas \rightarrow Set \rightarrow Select the shape \rightarrow OK \rightarrow element edge length 6 \rightarrow OK \rightarrow Mesh tool \rightarrow Mesh \rightarrow select shape \rightarrow Mesh

Step 8: Applying constraints and Loads | Loads → Define loads → Apply → Structural → on Line → Select the squares → All DOF| Loads → Define loads → Apply → Pressure → Select the end-semicircles and enter -700 | Pressure → On line →

select the quadrants of the inner circle \rightarrow 1500 \rightarrow OK

Step 9: Solution \rightarrow Solve \rightarrow Current LS \rightarrow OK \rightarrow Close

General Postproc

Step 10 : Plotting Results | General PostProc \rightarrow Plot Results \rightarrow Contour plot \rightarrow Nodal Solution \rightarrow DOF Solution \rightarrow Displacement Vector Sum.

Step 11: For Stress Intensity go to General PostPro \rightarrow Plot Results \rightarrow Contour plot \rightarrow Nodal Solution \rightarrow Stress \rightarrow Von Mises Stress \rightarrow Apply \rightarrow OK

