- (1) Give an example of a smooth manifold. (Verify all the details in the definition.)
- (2) Let X be a point set equipped with the following:
 - a collection of subsets $\{U_{\alpha}\}_{{\alpha}\in I}$ covering X: that is, $U_{\alpha}\subset X$ and $\bigcup_{{\alpha}\in I}U_{\alpha}=X$ (where I is simply an index set)
 - for each α , a bijection $\varphi_{\alpha}: U_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \subset \mathbb{R}^n$ onto an open set $\varphi_{\alpha}(U_{\alpha})$ in \mathbb{R}^n
 - for each $\alpha, \beta \in I$, $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open in \mathbb{R}^n
 - for each $\alpha, \beta \in I$, $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is C^{∞} with C^{∞} inverse.

Give X a topology (i.e., say which subset of X is open) so that X is a smooth manifold, ignoring Hausdorff and second countability.

- (3) Let \mathbb{R} be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}, \varphi = id : \mathbb{R} \to \mathbb{R})$, where id is the identity map, and let \mathbb{R}' be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}, \psi : \mathbb{R} \to \mathbb{R})$, where $\psi(x) = x^{1/3}$.
 - (a) Show that these two differentiable structures are distinct.
 - (b) Show that there is a diffeomorphism between \mathbb{R} and \mathbb{R}' . (Hint: The identity map $\mathbb{R} \to \mathbb{R}$ is not the desired diffeomorphism.)