Лабораторная работа №3.4.1 Диа- и парамагнетики

Рожков А. В.

19 октября 2024 г.

Цель работы: измерение магнитной восприимчивости диа- и парамагнитных образцов.

В работе используются: электромагнит, аналитические весы, милливеберметр, регулируемый источник постоянного тока, образцы.

1 Теоретическая справка

Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. Одним из классических методов таких измерений является т.н. метод Гюи. В нём используется длинный тонкий стержень, один из концов которого помещают в зазор электромагнита (обычно в область однородного поля), а другой конец — вне зазора, где величиной магнитного поля можно пренебречь. В этом случае закон изменения поля — от максимального до нулевого — будет несущественен.

Найдём выражение для силы, действующей со стороны магнитного поля на помещённый в зазор электромагнита цилиндрический стержень. Пусть площадь его сечения равна S, его магнитная проницаемость – μ , поле в зазоре – B_0 , а глубина, на которую стержень помещён в зазор, – x. Так как ток I через электромагнит остаётся постоянным, то сила, действующая на стержень со стороны магнитного поля, равна производной магнитной энергии системы по координате, взятой с противоположным знаком:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_I,$$

где $W_M(x)$ – магнитная энергия системы при I = const (то есть при $B_0 = \text{const}$) в зависимости от глубины погружения стержня x.

Объёмную плотность магнитной энергии можно найти по формуле:

$$W_M = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV,$$

где интеграл берётся по всему пространству.

Найдём теперь распределение магнитного поля в цилиндре. Рассмотрим сначала бесконечный стержень с проницаемостью μ , помещённый в перпендикулярное ему однородное поле $B_0 = \mu_0 H_0$, и найдём поле $B_{\rm cr}$ внутри него. В силу малости магнитной восприимчивости исследуемых образцов можно воспользоваться непрерывностью касательной компоненты H и считать, что внутри стержня $H_{\rm cr} = H_0$, потому $B_{\rm cr} = \mu B_0$. Тогда систему из стержня в зазоре электромагнита можно условно разбить на три части – вне электромагнита (I), в погружённой части стержня (II) и в электромагните вдали от стержня (III). В области I поле мало ($B_1 \approx 0$), поэтому его вкладом в энергию можно пренебречь. В области II поле приближённо равно $B_2 \approx \mu B_0$, а в области III – $B_3 \approx B_0$.

При смещении цилиндра вглубь электромагнита на dx область II увеличивается в объёме на $dV_2 = Sdx$, а область III уменьшается на $dV_3 = -Sdx$. Распределение поля в пограничных участках между областями при этом почти не меняется. Тогда изменение магнитной энергии при таком смещении равно:

$$dW_M(dx) \approx \frac{B_2^2}{2\mu\mu_0} S dx - \frac{B_2^2}{2\mu_0} S dx = (\mu - 1) \frac{B_0^2}{2\mu_0} S dx.$$

Следовательно, искомая сила равна:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_{B_0} \approx \chi \frac{B_0^2}{2\mu_0} S.$$

Знак силы зависит от знака восприимчивости $\chi = \mu - 1$: парамагнетики ($\chi > 0$) втягиваются в зазор электромагнита, а диамагнетики ($\chi < 0$) выталкиваются из него. Таким образом, измерив силу, действующую на образец в магнитном поле B_0 , можно рассчитать его магнитную восприимчивость.

2 Экспериментальная установка

Схема установки показана на рисунке 1. Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр его полюсов существенно превосходит ширину зазора, поэтому поле в его средней части достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного тока.

Рис. 1: Схема экспериментальной установки

Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре и силой тока I в обмотках) производится при помощи милливеберметра. При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца оказывается в зазоре электромагнита, а другой — вне его, где индукцией магнитного поля можно пренебречь. При помощи аналитических весов определяется перегрузка $\Delta P = F$ — сила, действующая на образец со стороны магнитного поля.

Погрешности приборов: милливеберметра – половина цены деления шкалы, т.е. $\Delta\Phi=0.05$ мВб, электрических приборов – амперметра и весов – 0,5%+2 ед. мл. разряда.

3 Ход работы

3.1 Градуировка электромагнита

При помощи милливеберметра построим градуировочную кривую B(I).

3.2 Измерения для меди и алюминия

Построим графики $\Delta P = f(B^2)$. По наклонам определим магнитную восприимчивость χ .

4 Вывод

С помощью метода Гюи мы измерили магнитную восприимчивость меди и алюминия и поняли, что медь диамагнетик, а алюминий парамагнетик. Значения магнитной восприимчивости достаточно

Рис. 2: градуировочная кривая B(I)

Материал	$\chi, 10^{-5}$	$\chi_{\text{табл}}, 10^{-5}$
Cu	-1.02 ± 0.02	-0.92
Al	2.008 ± 0.010	2.3

Таблица 1: Результаты

близки к табличным.

Рис. 3: График $\Delta P = f(B^2)$ для меди

Рис. 4: График $\Delta P = f(B^2)$ для алюминия