

University of Liverpool Department of Computer Science Autumn 2021

Maths and Stats for AI and Data Science COMP533

Theory Assignment 1 (study problems) 50/100

(Q1) Let θ be an angle defined on a unit circle, and P is the point on this circle defined by θ , see the picture to the right. Recall also that the angle determining the full circle is 360° (360 degrees).

What are the cardinalities (sizes) of the followings 3 sets of points?

$$A = \{ P : P \text{ is defined on all } \theta = 5i \cdot 1^{\circ}, \text{ for all integer } i \}$$

10 points

B= {
$$P: P$$
 is defined on all $\theta = \frac{1}{5}i \cdot 1^o$, for all integer i }

10 points

C= {
$$P: P$$
 is defined on all $\theta = (5 + \frac{1}{5}) i \cdot 1^o$, for all integer i }

5* points

Provide short justification to your answers.

(Q2) Identify the first 4 (four) values in each of the following sequences, decide whether they have limits when $n \to \infty$, and determine the relevant limits if they exist.

Sequence A(n) such that

$$A(n) = \frac{2n}{1^n} \cdot \frac{(-1)^n}{n}$$
, for any integer $n \ge 0$.

10 points

Sequence B(n) such that

$$B(n) = \frac{(-1)^n}{n} \cdot \frac{(-1)^{3n}}{n}$$
, for any integer $n > 0$.

10 points

Sequence C(n) such that

$$C(0) = \frac{1}{2}$$
 and $C(n) = C(n-1) + \frac{1}{2^{n+1}}$, for any integer $n > 0$.

5* points

Hint: Use the fact that for any integer $k \ge 1$, and x < 1, we get

$$(1-x)\cdot (x+x^2+\cdots +x^k) = x-x^{k+1}.$$

Provide short justification to your answers.

Please note that questions with * require an extra effort and understanding of the problem.

University of Liverpool Department of Computer Science Autumn 2020

Maths and Stats for AI and Data Science COMP533

Theory Assignment 1 (coursework) 50/100

In each group of questions Q1, Q2, Q3, Q4 and Q5 provide short answers to only one block (1) or (2) of 5 questions. Each individual question is worth 2 points, which gives the total of 50 points.

- **Q1** (1) Given two sets: $A = \{a, c, e\}$, and $B = \{b, d, e\}$. Compute:
 - (a) $A \cup B =$
 - (b) $A \cap B =$
 - (c) A B =
 - (d) B A =
 - (e) Do pairs (e, c) and (c, e) belong to $A \times B$?
- **Q1** (2) Given two finite **non-empty** sets A and B. Compare the cardinalities of the two sets when
 - (a) $A \subseteq B$
 - (b) $B \subset A$
 - (c) $|A \cup B| = 5$
 - (d) $A \cap B \neq \emptyset$
 - (e) $|A \times B| = 2$
- **Q2** (1) Given three sets A (green circular region), B (red oval region), and C (orange circular region) by the Venn diagram shown on the right. Using set operators express in terms of A, B, and C the content of the 5 (five) sets represented by regions U, V, X, Y and Z.

- (b) V =
- (c) X =
- (d) Y =
- (e) Z =

- **Q2** (2) Answer the following questions about function $f: A \rightarrow B$,
 - (a) What are the names/roles of sets A and B?
 - (b) If \forall (for every) $b \in B \exists$ (there is) $a \in A$ such that f(a) = b, function f is
 - (c) If $\forall a, a' \in A$ such that $a \neq a'$ then also $f(a) \neq f(a')$, function f is
- (d) Let $f(x) = \frac{x+3}{3}$, and $A = \{6,9,12\}$. Compute the content of B. What is the inverse of the function f from (d) defined as f^{-1} : $B \rightarrow A$?

- Q3 (1) What are the natural domains of the following functions defined on real numbers?
 - (a) f(x) = x + 5
 - (b) $g(x) = \frac{1}{x-5}$
 - (c) g(f(x))
 - (d) $f(x) \cdot g(x)$
 - (e) f(x)/g(x)

- Q3 (2) Answer the following questions.
 - (a) Which angle is greater, $\alpha = 3$ radians or $\beta = 180^{\circ}$ (degrees)?
 - (b) For α and β defined in (a) which value is greater: $\sin \alpha$ or $\sin \beta$?
 - (c) We know that $sin(x \pm 360^{\circ}) = sin(x)$. How do we call this phenomenon?
 - (d) What does letter S stand for in the CAST rule?
 - (e) If $sin^2(x) = \frac{1}{4}$, what is the value of $cos^2(x)$?
- **Q4** (1) Compute the limits of the following sequences when $n \to \infty$.
 - (a) $A(n) = 2 \frac{1}{n}$
 - (b) $B(n) = 3 + \frac{n}{n}$
 - (c) C(n) = A(n) + B(n)
 - (d) $D(n) = A(n) \cdot B(n)$
 - (e) $E(n) = n \cdot (A(n) + B(n))$
- **Q4** (2) We say that function $f: R \to R$ has the limit L in infinity (when argument $x \to \infty$), if for any (as small as you want) proximity $\varepsilon > 0$ there is $x_{\varepsilon} \in R$, such that, for any $x > x_{\varepsilon}$ we have $|L - f(x)| < \varepsilon$.

 - (a) What is the limit of function $f(x) = \frac{1-x}{3x}$, when $x \to \infty$? (b) What is the limit of function $g(x) = \frac{x+1}{3x}$, when $x \to \infty$? (c) Propose x_{ε} for function f(x), for $\varepsilon = \frac{1}{5}$.

 - (d) Propose x_{ε} for function g(x), for $\varepsilon = \frac{1}{3}$.
 - (e) What is the limit of g(x) f(x), when $x \to \infty$?
- Q5 (1) Answer the following questions about limits in points.

 - (a) Compute $\lim_{x\to 1+} \frac{x-1}{2x}$. (b) Compute $\lim_{x\to 1-} \frac{2x+1}{2x}$. (c) Compute $\lim_{x\to 0+} \frac{x-1}{2x}$. (d) Compute $\lim_{x\to 0-} \frac{2x+1}{2x}$. (e) Does the (two-sided) limit $\lim_{x\to 0} (\frac{x+1}{2x} \frac{4x-1}{4x})$ exist?
- Q5 (2) Answer the following questions about continuity of the given functions.

 - (a) Is function $f(x) = \frac{x-1}{x}$ continuous in point x = 1? (b) Is function $g(x) = \frac{2x+1}{-x}$ continuous in point x = 0?
 - (c) Is function f(x)/g(x) continuous in point x = 0?
 - (d) Is function f(x) g(x) continuous in the interval $(-1,2) \in R$?
 - (e) Is function $h(x) = \frac{1-x^2}{(x-1)}$ continuous (in its whole natural domain *R*)?

Make sure the solutions to the study problems and the coursework are submitted in Canvas by

Friday October 22nd 2021.