THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial for Week 6

MATH1903: Integral Calculus and Modelling (Advanced)

Semester 2, 2012

Lecturers: Daniel Daners and James Parkinson

Topics covered

In lectures last week:

- \square Sequences a_1, a_2, \ldots Squeeze law, ratio test for sequences.
- \square Asymptotic equivalence of sequences $(a_n \sim b_n)$.
- \square Series $a_1 + a_2 + \cdots$. The geometric series, harmonic series, and p-series.
- □ Comparison test, ratio test and asymptotic comparison test for series.

Objectives

After completing this tutorial sheet you will be able to:

- ☐ Use the ratio test, squeeze law, and limit laws to compute limits of sequences.
- ☐ Use comparison tests to determine the convergence/divergence of a series.
- ☐ Use Riemann sums to decide convergence/divergence of series.
- \square Compute the value of some series by computing the limit of partial sums.

Preparation questions to do before class

1. Calculate the limit of the following sequences, or show that they diverge.

(a)
$$a_n = \frac{n^4 + 3n^3 \cos n - 2}{3n^4 - n}$$

(b)
$$a_n = \frac{n!(2n)!}{(3n)!}$$
 (ratio test!)

2. Determine if the following series converge or diverge. (Don't forget the ratio test!)

(a)
$$\sum_{n=1}^{\infty} (-1)^n n 3^{-n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(n!)^2 5^n}{(2n)!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{5\cos(3n) + 2}{n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3n - 2}{n^3 + 1}$$

Questions to attempt in class

1

3. Calculate the limit of the following sequences, or show that they diverge.

(a)
$$a_n = \frac{3 + \cos n^2}{\sqrt{n}}$$

(c)
$$a_n = \frac{n^2}{3n^2 + 2n - 1}$$

(b)
$$a_n = \sqrt[n]{n}$$

(d)
$$a_n = \binom{2n}{n}$$

4. Decide if the following series converge.

(a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2 + 1}$$
 (g) $\sum_{n=1}^{\infty} \frac{5^n}{n!}$

(g)
$$\sum_{n=1}^{\infty} \frac{5^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$$

(e)
$$\sum_{n=1}^{\infty} \frac{2 - \sin \sqrt{n}}{n^3}$$
 (h) $\sum_{n=1}^{\infty} \sin(n^2)$

(h)
$$\sum_{n=1}^{\infty} \sin(n^2)$$

(c)
$$\sum_{n=1}^{\infty} \frac{e^{-n}}{\sqrt{n}}$$

(f)
$$\sum_{n=1}^{\infty} \frac{n^2 - 2n + 5}{n^3 + 4}$$
 (i) $\sum_{n=1}^{\infty} \frac{\cosh n}{e^{2n} + n^2}$

(i)
$$\sum_{n=1}^{\infty} \frac{\cosh n}{e^{2n} + n^2}$$

- 5. Let $r \in \mathbb{R}$, and let $s_n(r) = 1 r^2 + r^4 \dots + (-1)^{n-1} r^{2n-2}$.
 - (a) Find a closed formula for $s_n(r)$, and deduce that

$$1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n-1}}{2n-1} = \frac{\pi}{4} + (-1)^{n+1} \int_0^1 \frac{r^{2n}}{1+r^2} dr.$$

- (b) Hence prove Leibnitz' Formula $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots$
- (c) Adapt this proof to show that $\ln 2 = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \cdots$

Discussion question

The Prime Number Theorem implies that the nth prime satisfies $p_n \sim n \ln n$. Given this information, discuss the convergence/divergence of the series

$$\sum_{\text{primes } p} \frac{1}{p}.$$

Questions for extra practice

7. Decide if the following sequences converge. If they converge find the limit.

(a)
$$a_n = \frac{1 + 2 + \dots + n}{n^2}$$

(c)
$$a_n = \left(1 + \frac{1}{n}\right)^n$$

(b)
$$a_n = e^{-n} \cosh n$$

(d)
$$a_n = \frac{\ln n}{n^{\epsilon}}, \quad (\epsilon > 0)$$

8. Decide if the following series converge.

(a)
$$\sum_{n=1}^{\infty} \frac{\cosh n}{n^4 + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
 (e)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\ln n}}$$

(b)
$$\sum_{n=1}^{\infty} n^2 e^{-n}$$

(d)
$$\sum_{n=2}^{\infty} \left[\frac{1}{n-1} - \frac{1}{n+1} \right]$$
 (f) $\sum_{n=1}^{\infty} \frac{2n}{\sqrt{n^5 + 3}}$

$$(f) \sum_{n=1}^{\infty} \frac{2n}{\sqrt{n^5 + 3}}$$

9. For which values of x does the series $\sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{2^{2n}} \frac{x^{2n+1}}{2n+1}$ converge/diverge?

2

Challenging problems

- 10. In this question you derive Stirling's Asymptotic Formula for n!
 - (a) Show that $\int_1^n \frac{\{x\}}{x} dx = \sum_{k=1}^{n-1} \int_k^{k+1} \frac{x-k}{x} dx$, and conclude that

$$\ln n! = n \ln n - n + 1 + \int_{1}^{n} \frac{\{x\}}{x} dx,$$

where $\{x\} \in [0,1)$ is the fractional part of $x \ge 0$.

(b) Integrate by parts (see the relevant question of Tutorial 4) to show that

$$\ln n! = n \ln n - n + 1 + \frac{1}{2} \ln n - \frac{1}{2} \int_{1}^{n} \frac{\{x\} - \{x\}^{2}}{x^{2}} dx.$$

- (c) Deduce that $\lim_{n\to\infty} \frac{n!}{\sqrt{n}n^ne^{-n}} = e^C$ for some constant C.
- (d) Use the Wallis formula (Tutorial 5) to evaluate C, and deduce that

$$n! \sim \sqrt{2\pi n} \, n^n e^{-n}$$

- **11.** The Fibonacci sequence is $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.
 - (a) Prove that $F_{2n} = F_n^2 + 2F_nF_{n-1}$ and $F_{2n-1} = F_n^2 + F_{n-1}^2$ for $n \ge 1$, and hence deduce that $F_{2n}F_{n-1} F_{2n-1}F_n = (-1)^nF_n$ for $n \ge 1$.
 - (b) Show that $\sum_{k=1}^{n} \frac{1}{F_{2^k}} = 2 \frac{F_{2^n-1}}{F_{2^n}}$ for all $n \ge 1$.
 - (c) Hence deduce that $\sum_{k=1}^{\infty} \frac{1}{F_{2^k}} = \frac{5 \sqrt{5}}{2}.$
- 12. (a) The Riemann-Lebesgue Lemma says that if f(x) is well behaved, then

$$\lim_{n \to \infty} \int_a^b f(x) \sin(nx) \, dx = \lim_{n \to \infty} \int_a^b f(x) \cos(nx) \, dx = 0.$$

Use integration by parts to prove the Riemann-Lebesgue Lemma under the assumption that f(x) has continuous derivative.

(b) Use the Riemann-Lebesgue Lemma to show that

$$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \left(\frac{1}{\sin x} - \frac{1}{x} \right) \sin(2nx) \, dx = 0.$$

Hence deduce that

$$\int_0^\infty \frac{\sin x}{x} \, dx = \lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{\sin(2nx)}{\sin x} \, dx.$$

(c) Show that $\frac{\sin(2nx)}{\sin x} = 2\sum_{k=1}^{n} \cos[(2k-1)x]$ for $n \ge 2$, $\sin x \ne 0$, and hence

3

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$