

Music of the Spheres: the gravitational wave signal from exoplanets

William Gabella¹, Katelyn Breivik², Yilen Gomez Maqueo Chew³, Kelly Holley-Bockelmann^{1,4}, Brittany Kamai⁵

Caltech

- 1-Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 USA
- 2-Department of Physics and Astronomy, Northwestern University, Evanston, IL 60202 USA, also Center Interdisciplinary Exploration and Research in Astrophysics (CIERA), Evanston, IL 60202 USA

3-Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México

4-Department of Physics, Fisk University, Nashville, TN 37208 USA

5-Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, CA 91125 USA

Motivating Question

With more than 3700 exoplanets discovered to date, could any individual planetary system or population of planetary systems be detected by LISA?

Overview

- •We consider exoplanets as a source of gravitational waves (GW) for the LISA space-based gravitational wave detector
- •LISA is the Laser Interferometer Space Antenna, a joint ESA/NASA project expected to launch in 2034
- •The rich variety of exoplanets include many with high eccentricity which moves their GW spectrum to the LISA band.

Theory - GWs from Binaries

Masses in orbit exhibit a time-changing mass quadrupole moment and therefore emit GWs [1,2]. Averaged over a full orbit, the dimensionless strain can be written[3]

$$h_n = \left(\frac{G^{5/3}}{c^4}\right) 2\sqrt{\frac{32}{5}} \frac{\mathcal{M}^{5/3} \left(2\pi f_0\right)^{2/3}}{r} \frac{\sqrt{g(n,e)}}{n}$$

where the mass is the "chirp mass" and is $m_1^{3/5}m_2^{3/5}/(m_1+m_2)^{1/5}$, and h_n is at a multiple of the orbital frequency f_0 , hn=[1,2,3...], and **eccentric orbits** emit more GW power than similar circular orbits,

 $g(n,e) = (GW Power at f=n f_0 Elliptical orbit) / (GW Power Equiv.)$ Circ. orbit at $f=2 f_{\lambda}$

LISA Constellation

(credit NASA)

Observed Exoplanets

https://exoplanetarchive.ipac.caltech.edu/

3711 Confirmed Planets as of 12 April 2018

For GW strain calculation we need the following physical attributes of the planetary system: m_1 stellar mass, m_2 planetary mass, r distance to system, e orbital eccentricity, P orbital period. Which leaves 910 exoplanets that we can use for GW calculations.

Exoplanets and LISA

We compare the current exoplanet population GW strains to the most up-to-date LISA noise curve[5] with the following caveats: •exoplanet GW frequencies are much less than laser round trip time (16.7s, equiv 60mHz) or f star (19mHz), so in the "LIGO Limit"

•no frequency evolution assumed over the four year integration time

•using the R function, so nominally sky position and polarization averaged

Exoplanet GW Modes and LISA Sensitivity Curve

	nost star	eccentricity	orbital period(d)	SNR
Signal-to-Noise for top few planets	PSR J1719-1438	0.06	0.09071	0.001331
	PSR J2322-2650	0.0017	0.323	4.899E-05
	WASP-18	0.0092	0.9415	2.654E-05
$\left(\frac{S}{N}\right)^2 = 2T \sum_{n=1}^{n_{\star}} \frac{ h_n(n f_0) ^2}{S_n(n f_0)}$	KELT-1	0.0099	1.218	1.106E-05
	WASP-43	0	0.8135	6.012E-06
	WASP-19	0.002	0.7888	1.734E-06
	HATS-18	0.166	0.8378	1.649E-06

Future Work

- •Consider collections of planetary systems on GW signal
- •Refine the noise/sensitivity curve analysis
- •Consider errors in exoplanet parameters for the SNR and noise/sensitivity analysis
- •Consider what parameters would make a planetary system detectable for LISA
- •Work our way up the mass scale: brown dwarf binaries, etc.

Eccentricity Increases GW Frequency g(n,e) Ratio GW Power elliptical to circular

GW Strain

$$h_n \propto \sqrt{g(n,e)}/n$$

Strain modes for one planet and its star

References

- 1. P. C. Peters and J. Mathews, "Gravitational Radiation from Point Masses in Keplerian Orbit," Phys. Rev. **131** (1963) 435
- 2. M. Maggiore, "Gravitational Waves: Volume 1: Theory and Experiment," Oxford Univ. Press, 2008
- 3. Amaro-Seoane et al., "Triplets of supermassive black holes: astrophysics, gravitational waves and detection," Mon. Not. Royal Astro. Soc. 402 (2010) 2308 4. NASA Exoplanet Archive, This research has made use of the archive, which is
- operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program
- **5. N. Cornish and T. Robson**, "The construction and use of LISA sensitivity curves," 2018, arXiv:1802.01944
- 6. A. Ain, S. Kastha, and S. Mitra, "Stochastic Gravitational Wave Background from Exoplanets," Phys. Rev. D, **91** (2015) 124023, arXiv:1504.01715v2