$$\underline{\text{proposition}} \sum_{p \text{ prime}} \frac{1}{p} = \infty$$

 $\underline{\text{proof}}$ (Erdős) suppose the sum converges. fix k so that $\sum_{n>k} \frac{1}{p_n} \leq \frac{1}{2}$. then at least half of the elements of [N] have all prime factors in $\{p_1,\ldots,p_k\}$. for such a number, its squarefree part has 2^k possibilities, and its perfect square part has at most \sqrt{N} possibilities. if N is large enough, $N/2 \leq 2^k \sqrt{N}$ cannot hold.