Adaptive Finite Differences Method and Parameter Selection for Total Variation Minimization

Thomas Jacumin and Andreas Langer

March 2024

The Model

We model a grayscale image by a function $f:\Omega\subset\mathbb{R}^2\to[0,1]$ and we consider g:=f+n, with n a Gaussian noise.

The Model

We model a grayscale image by a function $f:\Omega\subset\mathbb{R}^2\to[0,1]$ and we consider g:=f+n, with n a Gaussian noise. We propose the following model to denoise g:

Model (denoising)

$$\inf_{u \in \mathsf{BV}(\Omega)} \frac{1}{2} \int_{\Omega} \alpha(x) (u - g)^2 \ dx + \int_{\Omega} \lambda(x) |Du|,$$

where.

- BV(Ω) is the space of functions with bounded variations,
- Du is the total variation (measure),
- $\alpha, \lambda : \Omega \to \mathbb{R}_+$ are parameters.

Goals

Goals

- solve the minimization problem,
- propose an automatic parameters (α, λ) selection.

Goals

Goals

- solve the minimization problem,
- propose an automatic parameters (α, λ) selection.
- We want to regularize more on the homogeneous parts and to be close to the data on the edges of the image.

• Iterative algorithm : Chambolle-Pock/Semi-smooth Newton.

- Iterative algorithm : Chambolle-Pock/Semi-smooth Newton.
- Discretization: Adaptive finite differences method (AFDM).

- Iterative algorithm : Chambolle-Pock/Semi-smooth Newton.
- Discretization: Adaptive finite differences method (AFDM).

Question

Why AFDM instead of FEM?

- Iterative algorithm : Chambolle-Pock/Semi-smooth Newton.
- Discretization: Adaptive finite differences method (AFDM).

Question

Why AFDM instead of FEM?

• Mesh adaptivity : error indicator

$$\eta_h := (u_h - g)^2,$$

and a *bulk criterion* (windowing technique + statistical argument) to determine the presence of noise or of edges.

Automatic Parameters Selection

• α adaptivity : when we refine an element, we increase α on the new elements.

Automatic Parameters Selection

- α adaptivity : when we refine an element, we increase α on the new elements.
- $\underline{\lambda}$ adaptivity: with AFDM, the value of the discrete TV is mesh-dependent i.e. the balance between the data-fitting term and the TV change over the iteration. We compensate this change by changing λ .

(a) Original image f

(d) Noisy image g

(b) Mesh

Future research:

- ullet add a L^1 data-fitting term to deals with impulse noise,
- add coarsening of the mesh,
- have elements smaller than 1 pixel to enforce the discontinuities,
- zooming, deblurring, computing optical flow.

Future research:

- add a L^1 data-fitting term to deals with impulse noise,
- add coarsening of the mesh,
- have elements smaller than 1 pixel to enforce the discontinuities,
- zooming, deblurring, computing optical flow.

Thanks for your attention!