

Incremental Learning with Repetition via Pseudo-Feature Projection

28th Computer Vision Winter Workshop 2025, Graz

Benedikt Tscheschner (<u>btscheschner@know-center.at</u>) Eduardo Veas (eveas@know-center.at) Marc Masana (mmasana@tugraz.at)

SCIENCE **PASSION**

Motivation Incremental Learning

- Goal: Learn Model over time as information can be constantly changing
- Training models from scratch is not cheap
- Restriction in:
 - Training Time / Frequent Updates
 - Computational Cost
 - Data Access (Data Privacy / Storage)

© generated by Fotor.com

Class Incremental Learning

Class Incremental Learning

Class Incremental Learning

- No access to classes of previous tasks
- Evaluated over all known classes

Low Performance

Catastrophic Forgetting

Class Prototypes

Class Prototype () represent the distribution of a class at a layer

Class Prototypes

- Two ways of rehearsal of unavailable classes:
 - 1. Sample distribution^[1]
 - 2. Feature translation^[2]

$$\widehat{F}_c = f(x_i; \theta) - \mu_{y_i} + \mu_c$$

 Requires frozen or regularized feature extractor

Figure from [2]

Why Repetition?

- 1. If we incrementally add classes to a system is the complete distribution for training known / available?
- 2. Is it reasonable that classes never repeat in a sequence of tasks?

Exemplar-free CIL with Repetition (EFCIR)

- Repetition is modelled in the scenario creation
- Complete training data unavailable in any task

Method Overview

Ensemble Modification

Goals:

- Identify beneficial incremental tasks
- Flexibility in network architecture & size
- Limit the growth of the ensemble to a predefined budget
- Two baseline heuristics:
 - 1. Class Diversity: maximize number of represented classes
 - 2. Error Rate: on the incremental data (before training)

Feature Extractor Training

Metric Learning^[1] regularizes shape of class prototypes

Pseudo-feature Projection (PFP)

Extend feature translation^[1] with standard deviation

$$\widehat{F}_c = \frac{f(x_i; \theta) - \mu_{y_i}}{\sigma_{y_i}} \cdot \sigma_c + \mu_c$$

True Distribution

Feature Translation

Pseudo Feature Projection

PFP - Prototype Estimation

Past class prototypes c_{old} incomplete
 when ensemble is modified

$$\boldsymbol{\mu_c} = (\mu_{c,f_1}, \dots, \mu_{c,f_N})$$
$$\boldsymbol{\sigma_c} = (\sigma_{c,f_1}, \dots, \sigma_{c,f_N})$$

•
$$\sigma_{c_{old}, f_{new}} = 1$$

• Artificial sample placed near x_i

Class Protototypes

Scenario (a) – Class Incremental Learning

- Classic CIL Scenario
 - No Repetition
 - 50 initial classes
 - 10 inc. tasks with 5 classes
 - CIFAR-100

	(a) CIL 50/1		
	Method	Avg. $A \uparrow$	
Regularization	FT	14.2 ± 1.0	
	FZ	52.6 ± 1.4	
	EWC	45.9 ± 2.9	
	MAS	45.9 ± 2.9	
	LwF	47.9 ± 1.8	
Sampling Prototype	PASS	62.1 ± 1.9	
	PRAKA	63.1 ± 2.5 $ullet$	
	IL2A	54.2 ± 1.4	
	SSRE	53.0 ± 2.7	
reature Translate	FeTrIL	61.4 ± 0.4	
	$Horde_m$	62.9 ± 1.2	
	$Horde_c$	62.9 ± 1.2 ●	
Sampling	MAS LwF PASS PRAKA IL2A SSRE FeTrIL Horde _m	45.9 ± 2.9 47.9 ± 1.8 62.1 ± 1.9 63.1 ± 2.5 54.2 ± 1.4 53.0 ± 2.7 61.4 ± 0.4 62.9 ± 1.2	

(a) CII = 50/10

Scenario (b) – with Repetition

- Adapted CIL with Repetition
 - 99 small incremental tasks
 - 15% random repetition chance
 - 50% of training data for initial training

_		(a) CIL 50/10	(b) EFCIR-U 50/100
	Method	Avg. $A \uparrow$	Avg. $A \uparrow$
Regularization	FT	14.2 ± 1.0	36.2 ± 2.1
	FZ	52.6 ± 1.4	40.2 ± 3.9
	EWC	45.9 ± 2.9	47.7 ± 3.2
	MAS	45.9 ± 2.9	49.3 ± 2.6 ●
	LwF	47.9 ± 1.8	45.7 ± 1.9
Sampling Prototype	PASS	62.1 ± 1.9	35.3 ± 2.1
	PRAKA	63.1 ± 2.5	43.1 ± 2.1
	IL2A	54.2 ± 1.4	26.3 ± 3.0
	SSRE	53.0 ± 2.7	29.2 ± 3.5
reature Translate	FeTrIL	61.4 ± 0.4	46.5 ± 0.7
	$Horde_m$	62.9 \pm 1.2 $lacktriangle$	54.4 \pm 0.7 $ullet$
	$Horde_c$	62.9 ± 1.2 ●	53.4 ± 0.7 ●

Scenario (b) - Class Incremental with Repetition

- In the initial 15 tasks new classes are added → test set increases
- Dotted Lines (Prototype Sampling)
 degrade over time in accuracy
- Frozen FE with feature translation stable

Scenario (b) - Class Incremental with Repetition

- FT, EWC, MAS benefit from repetition:
 - Accuracy gains over task sequence
 - Task-aware like training
 - Convergence over time?
 - "Limited" new samples for longer sequences

Summary

- Repetition has a significant impact on Incremental Learning
 - complete class distribution unavailable at any single task
 - Weight-regularized methods benefit
 - Class Prototype usage challenging
- Evaluate resiliency against repetition frequency bias → similar results

TU

Thank you!

Code available soon: https://github.com/Tsebeb/cvww_cir_horde

