2do Congreso Internacional en Innovación y Desarrollo Tecnológico CIINDET'04

Introducción a la Transformada Wavelet para Ingenieros: un enfoque didáctico

R. de Castro, M. López, J. Martínez U. Politécnica de Madrid **ESPAÑA**

H. Díaz CHILE

M. Martínez U. de Tarapacá U. Simón Bolívar **VENEZUELA**

Objetivos

- Describir los fundamentos de la Transformada Wavelet
- Implementar de forma didáctica la Transformada Wavelet discreta mediante análisis multiresolución
- Realizar un análisis comparativo entre la Transformada de Fourier y la Transformada Wavelet
- Crear una plataforma web para divulgar información sobre la Transformada Wavelet y sus aplicaciones en el área de Ingeniería Eléctrica

Evolución Histórica

1807

Fourier

1909

Haar

1946

Gabor

1984

Morlet

Descomposición de señales periódicas en senos y cosenos

Concepto de ondas bases de corta duración

Concepto de dominio tiempo-frecuencia (STFT)

Introducción por primera del Concepto de wavelet

Evolución Histórica

1985

Meyer

Origen de las wavelets ortogonales

1988

Daubechies

Teoría convertida en herramienta (Aplicaciones)

1989

Mallat

Análisis Wavelet Multiresolución (MRA)

1990 -

Aplicaciones prácticas FBI, JPEG, Toy Story

¿Qué son las wavelets?

Fundamentos

T. Wavelet continua

$$C(\tau,s) = \int_{-\infty}^{+\infty} f(t) \cdot \psi_{\tau,s}^{*}(t) dt$$

Señal f(t)

Discretización: T. Wavelet discreta

Descomposición

DWT(j,k) =
$$\frac{1}{\sqrt{a_o^j}} \sum_{n=-\infty}^{\infty} f(n) \cdot \psi \left[\frac{n - s_o^j \cdot k \cdot \tau_o}{s_o^j} \right]$$

Reconstrucción

$$f(t) = \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} DWT(j,k) \cdot \psi_{j,k}(t)$$

Teoría de filtros

k) : aproximación k) : detalle

MRA

$$f(t) = \sum_{k} a_{j}(k) \cdot \varphi_{j,k}(t) + \sum_{k} \sum_{j=0}^{J-1} d_{j}(k) \cdot \psi_{j,k}(t)$$

Fundamentos

Análisis Wavelet Multiresolución

Aplicación Práctica

Aplicaciones de la Transformada Wavelet

General

- > Compresión de archivos
- > Procesamiento de señales e imágenes
- > Solución de ecuaciones diferenciales

Ingeniería Eléctrica

Fuente: IEEE, IEE, Power System Research

Página web de apoyo http://www.uta.cl/hdiaz

Conclusiones

- La transformada Wavelet es una herramienta moderna para el análisis de señales y otras aplicaciones de ingeniería
- La Transformada Wavelet tiene ventajas comparativas frente al análisis clásico (Fourier) para el análisis de señales no estacionarias

 La Transformada Wavelet resulta útil para la detección de singularidades originadas por transitorios

Fin de la Presentación

