MNIST Classification with Softmax and MLP

计86 2018011438 周恩贤

Softmax for MNIST Classification

本次作业我们需要利用 Softmax classifier 处理手写数字识别的任務。相关代码已补全

问题与解决

其中在实现时遇到了两个问题。解决方式如下:

• Tensor shape不匹配问题 $\text{依照 Softmax 函数的定义}: h_k(x) = \frac{exp(\theta^{(k)T}x)}{\sum_{i=1}^K exp(\theta^{(j)T}x)} \text{, 自然可以写出以下代码}:$

然而编译器报错: operands could not be broadcast together with shapes (100,10) (100,) 代表着两个矩阵维数不同无法运算。此时改写并增维,即可通过编译。

(参考资料 https://www.cnblogs.com/edhg/p/7685402.html)

• 符号问题: 一开始代码 写错了, 发现 loss 训练出来是负数, 且与accuracy为正相关:

考虑到误差不可能为负,检查代码后发现遗漏了交叉熵前面的负号,已改正。

训练结果

一开始使用 $\eta = 0.05$, $\lambda = 0.5$, 发现准确率仅达 **0.8**, 并不是很鲁棒, 我们从两个方式调整超参数

• 固定 $batch_size = 100, \ max_epoch = 20, \ \eta = 0.05$ 时, 改变 λ

λ	0.5	0.3	0.1	0.01	0.001	0.0001	0.00001	0
accuracy	0.7999	0.8429	0.8674	0.9047	0.9182	0.9211	0.9203	0.9201

• 固定 $batch_size = 100, max_epoch = 20, \lambda = 10^{-4}$ 时, 改变 η

η	1.0	0.5	0.3	0.2	0.1	0.05	0.01	0.001
accuracy	0.8974	0.9222	0.9221	0.9224	0.9225	0.9211	0.9101	0.8749

综上 , 考虑 $\lambda=10^{-4},~\eta=0.15$ 时 , softmax classifier 达到一个较优秀的测试结果 : accuracy=92.33% 。

训练过程如下图:

MLP for MNIST Clssification

本次作业我们需要利用 MLP 处理手写数字识别。相关代码已补全。

问题与解决

在实现时遇到的问题:一开始在训练时,写出了以下代码,发现 loss 固定,随机梯度下降法失效

后来才发现此写法 diff_W 为函数中的临时变量,没有被储存下来,故不会进行权值更新将 diff_w 修正为 layer.diff_w

模型架构 -- 单隐藏层模型

在单隐藏层模型中,我们分别使用 sigmoid、ReLU 两种不同的激活函数搭配 EuclideanLoss、SoftmaxCrossEntropyLoss 两种不同损失函数对模型的影响。模型的架构以及相关超参数如下:

Layer Type	Input dim.	Output dim.
FCLayer	784	128
SigmoidLayer / ReLULayer	128	128
FCLayer	128	10

• Learning rate : $\eta = 0.15$ • Weight decay : $\lambda = 10^{-4}$

训练结果 -- 单隐藏层模型

(备注: 取最后一个 epoch 的平均值作为训练结果)

Types of Model	Training Loss	Training accuracy	Validation Loss	Validation Accuracy	Testing Accuracy
1.1 Sigmoid + Euclidean	0.0915	0.9074	0.0761	0.9284	0.9112
1.2 ReLU + Euclidean	0.0547	0.9635	0.0534	0.9674	0.9563
2.1Sigmoid+SoftmaxCrossEntropy	0.1376	0.9615	0.1218	0.9682	0.9599
2.2 ReLU + SoftmaxCrossEntropy	0.0242	0.9954	0.0735	0.9806	0.9779

Training by Euclidean Loss

Training by SoftmaxCrossEntropy Loss

*优化: momentum method

参考讲义公式: $v=\gamma v-\eta \nabla_{\theta}J(\theta;x^{(i)},t^{(i)})$, 我们可在 diff 中加入动量修正项: momentum * diff

训练结果 (使用动量法优化后)

使用 $\gamma=0.5$ 进行训练

Types of Model	Training Loss	Training accuracy	Validation Loss	Validation Accuracy	Testing Accuracy
1.1 Sigmoid + Euclidean	0.0971	0.8992	0.0790	0.9248	0.9061
1.2 ReLU + Euclidean	0.0584	0.9573	0.0580	0.9612	0.9533
2.1Sigmoid+SoftmaxCrossEntropy	0.0810	0.9783	0.0881	0.9768	0.9693
2.2 ReLU+SoftmaxCrossEntropy	0.0083	0.9995	0.0742	0.9818	0.9788

Training with momentum by Euclidean Loss

Training with momentum by SoftmaxCrossEntropy Loss

模型架构 -- 双隐藏层模型

在双隐藏层模型中,我们使用 ReLU 激活函数 搭配 SoftmaxCrossEntropyLoss。

模型的架构以及相关超参数如下:

Layer Type	Input dim.	Output dim.		
FCLayer	784	256		
ReLULayer	256	256		
FCLayer	256	128		
ReLULayer	128	128		
FCLayer	128	10		

• Learning rate : $\eta=0.15$ • Weight decay : $\lambda=10^{-4}$

训练结果 -- 双隐藏层模型 (对比单层)

(备注:同样以 ReLU 激活函数 + Softmax Cross Entropy 损失函数 模型进行比对)

Types of Model	Training Loss	Training accuracy	Validation Loss	Validation Accuracy	Testing Accuracy
One Layer	0.0242	0.9954	0.0735	0.9806	0.9779
Two Layer	0.0028	1.0000	0.0779	0.9818	0.9799

总结

- 超参数:依照 Softmax Classifier的经验, 我选定 $\eta=0.15,~\lambda=10^{-4}$, 效果不错
- 激活函数: ReLU 比 Sigmoid 效果更好。收敛得更快、训练结果更准确。
- 损失函数 : Softmax Cross Entropy Loss 比 Euclidean Loss 训练稍慢,但效果更好
- 最佳搭配: ReLU + Softmax Cross Entropy Loss
- 动量法: 搭配 Softmax Cross Entropy 时表现稍好, 但搭配 Euclidean Loss 时反而表现较差
- 双层隐藏层比单层隐藏层:收敛稍快,效果好一点点 (无明显区别)