What is Amazon VPC?

Amazon Virtual Private Cloud (VPC) is a **logically isolated** section of the AWS cloud where you can launch AWS resources in a **custom-defined virtual network**.

It gives you full control over:

- IP address ranges
- Subnets
- Routing
- Network access
- Internet connectivity

Think of a VPC as your **own private data center** in the cloud.

Key Components of VPC

Component	Description	
VPC	Isolated virtual network	
Subnet	A range of IPs in a VPC (public or private)	
Route Table	Controls traffic routing in/out of subnets	
Internet Gateway (IGW) Enables internet access for the VPC		
NAT Gateway/Instance	Enables private subnets to access the internet	
Elastic IP (EIP)	Static public IP for AWS resources	
Security Groups	Virtual firewalls for EC2	
Network ACLs (NACLs)	Optional stateless firewall for subnets	
DHCP Options Set	Define custom DNS/DHCP behavior	
VPC Peering	Connect VPCs to share resources	
Transit Gateway	Central hub for connecting VPCs and on-premises networks	

CIDR and IP Addressing

• CIDR: Classless Inter-Domain Routing (e.g., 10.0.0.0/16)

- A VPC supports IP ranges from /16 to /28
- Subnets are created from this CIDR block
- 5 IP addresses in each subnet are **reserved**:
 - o .0 (network ID)
 - o .1 (VPC router)
 - o .2 (DNS)
 - o .3 (future use)
 - o .255 (broadcast)

Subnets

- Public Subnet: Has a route to the Internet Gateway
- **Private Subnet**: No direct access to the internet
- **Subnets are AZ-specific** you must create one per Availability Zone (AZ)

Best practice: Have multiple subnets across multiple AZs for high availability.

Internet Gateway (IGW)

- Provides outbound and inbound internet access to public subnets
- Must be attached to the VPC
- Requires **route table entry** like $0.0.0.0/0 \rightarrow IGW$

NAT Gateway vs NAT Instance

Feature	NAT Gateway	NAT Instance
Managed	✓ Yes	X No (manual setup)
Availability	Highly available (in AZ)	EC2 instance (failover needed)
Performance	Scales automatically	Limited by instance type
Cost	Higher	Lower (for light use)
Use Case	Production	Dev/test/small workloads

Route Tables

• Each subnet must be associated with one route table

- The main route table is used by default unless overridden
- Route targets include:
 - Internet Gateway (IGW)
 - NAT Gateway
 - o VPC Peering
 - Transit Gateway
 - Virtual Private Gateway (for VPNs)

Security Groups vs NACLs

Feature	Security Group	NACL		
Operates at	Instance level	Subnet level		
Stateful	✓ Yes	× No		
Rules	Allow only	Allow and deny		
Default behavior Deny all inbound, allow all outbound Allow all				

VPC Peering

Use case

• Connects two VPCs privately using AWS backbone

Per-resource firewall

• No transitive peering: VPC A \leftrightarrow VPC B \leftrightarrow VPC C does not mean A \leftrightarrow C

Optional subnet firewall

- Works within or across regions
- Must update route tables and security groups manually

AWS Transit Gateway

- Connects multiple VPCs and on-prem networks
- Acts as a central hub (hub-and-spoke model)
- Scalable, efficient, and transitive
- Recommended for large-scale networks

VPC Endpoints

Type Description

Interface Endpoint Private link to AWS services over ENI (Elastic Network Interface)

Gateway Endpoint For S3 and DynamoDB, routes traffic via the gateway inside the VPC

Benefits:

- No public IP needed
- Avoids internet exposure
- Reduces data transfer costs

VPC Flow Logs

- Capture **network traffic logs** at the **VPC**, **subnet**, **or ENI** level
- Sent to CloudWatch Logs or S3
- Useful for:
 - Security audits
 - Troubleshooting
 - o Compliance

VPN and Direct Connect

Feature	Description
---------	-------------

Site-to-Site VPN Encrypted tunnel over public internet to on-prem

Direct Connect Dedicated fiber connection to AWS (lower latency, more reliable)

Customer Gateway (CGW) On-prem device or software that connects to AWS

Virtual Private Gateway (VGW) AWS side of the VPN connection

Default VPC vs Custom VPC

Feature Default VPC Custom VPC

Created automatically <a>Yes <a>X No (user-defined)

Public Subnet Yes X No (must define)

CIDR Range 172.31.0.0/16 Customizable

Feature Default VPC Custom VPC

Best for Quick tests Production workloads

Monitoring & Logging

- Use **VPC Flow Logs** for network traffic
- Monitor NAT Gateway metrics via CloudWatch
- Audit route table changes via AWS Config
- Use CloudTrail for all VPC-level API actions

Best Practices for VPC

- ✓ Always use **Custom VPCs** for production
- Split into **Public and Private Subnets**
- Deploy across multiple AZs
- Use **NAT Gateway** for private subnets
- Apply least privilege to security groups
- Use VPC Flow Logs to monitor traffic
- ✓ Use **Network ACLs** for stateless rules
- Prefer Transit Gateway for multi-VPC networks
- ▼ Tag resources for visibility and automation
- Protect against misconfiguration with AWS Config rules

Common Use Cases

Use Case VPC Feature Used

Host a public web app Public subnet + IGW

Secure backend services Private subnet + NAT Gateway

Connect office to AWS Site-to-site VPN / Direct Connect

Connect multiple environments VPC Peering or Transit Gateway

Private access to AWS services VPC Endpoints