第二章第二节

第八节 随机变量函数的分布 1. 填空應	2. 设随机变量 X~U(0,1), 求: 1) Y = 2X + 1 的概率密度函数;	
(1) 设雕机变量 X 的分布律为	(2) Y = - 2lnX 的概率密度函数. 解: (1)	(2)
<i>X</i> -1 0 1	FYLW ETYPE	$F_{Y(y)} = P(Y \leq y)$ = $P(-2 nx \leq y)$
1/6 1/3 1/2 则 Y = 2X - 1 的概率分布律为 P ト ナ ナ ナ	Fx(y)=P(Y <y)@< th=""><th>= P(× 3e =)</th></y)@<>	= P(× 3e =)
$Z = X^2$ 的概率分布律为 $\frac{2}{3}$ $\frac{1}{3}$	= P (zx+1sy)	= 10 1-Fx(e-1)
(2) 已知随机变量 $X_iN(0,1)$,则随机变量 $Y=2X+1$ 的概率密度函数 $X_iN(0,1)$,则随机变量 $X_iN(0,1)$,则随机变量 $X_iN(0,1)$,则	$= P(x \leq \frac{y-1}{z})$	5
(3) 设随机变量 $X \sim N(2,9)$, 则 $Z = \frac{X-2}{3} \sim N(0,1)$ 分布. (4) 设随机变量 X 的分布律为	$= F_{\times}(\frac{\sqrt{-1}}{2})$	-fr(y) = (3) of fx(e)
X -1 0 1 2	$f_{Y}(y) = \emptyset f_{x}(\frac{y-1}{2})$	- fry= (Dize yo
p 1/8 3/8 1/16 7/16	F(SF) = F(H)	0 基他
且 $Y = X^2$,记随机变量 Y 的分布函数为 $F_Y(y)$,则 $F_Y(3) = \frac{1}{10}$. (5) 若随机变量 $X \sim E(1)$,令 $Y = \begin{cases} 0, X < 2 \\ 1, X \ge 2 \end{cases}$,则 Y 的概率分布	fr(y)= (= 0 ex e3	
为 $\frac{Y}{P}$ (1) $\frac{Q}{P}$ (2) $\frac{Q}{P}$ (2) 的概率率度函数为 $f_Y(x)$, $\frac{Q}{P} = -2X$, 则 Y 的概率率	(2)77=	
度函数为 $f_V(y)$ = $\frac{1}{2} \int_{\mathbb{R}} x(-\frac{y}{z})$		

3. 设随机变量
$$X$$
 的密度函数为
$$f_X(x) = \begin{cases} \mathrm{e}^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}.$$

求 $Y = X^2$ 的概率密度函数.

$$F_{Y}(y) = P(Y \leq y) \implies f_{Y}(y) = \frac{f_{X}(y)}{f_{Y}(y)} = \frac{f_{X}(y)}{f_{X}(y)}$$

$$= P(X^{2} \leq y)$$

$$= F(X^{2} \leq y)$$

$$= F_{X}(X^{2} y) - F_{X}(X^{2} y)$$

第二章第二节

班级 姓名 - 2-	The state of the s
第二节 二维随机变量的联合分布函数 1. 填空题 (①) 设二维随机向量 (X,Y) 的联合分布函数 $F(x,y)$,其联合分布律为	3. 将一枚硬币连掷三次, <i>X</i> 表示三次中出现正面的次数, <i>Y</i> 表示三次中出现正面次数与出现反面次数之差的绝对值. 求: (1) (<i>X</i> , <i>Y</i>)的联合概率分布律; (2) <i>P</i> (<i>Y</i> > <i>X</i>); (3) <i>F</i> (1,3).
7 0 1 2 X 0 0.2 0 0.1 (2)(X) (3.1 (4.2) (X2
2. 从一只装有 3 个黑球和 2 个白球的口袋中取球两次,每次任取一个不放回,令 $X = \begin{cases} 0, 第 -$ 次取出白球, $Y = \begin{cases} 0, 第 -$ 次取出白球, $X = \begin{cases} 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	$(3) \begin{array}{c} F(1,3) = \frac{1}{2} \\ F($