

Fakultät Wirtschaft Studiengang Wirtschaftsinformatik

Smart City Hamburg - Eine Betrachtung der Konzepte mit ihren Stärken und Schwächen

Seminararbeit Im Rahmen der Prüfung zum Bachelor of Science (B. Sc.)

Verfasser: David Scheid, Maximilian Stefanac, Jonas Strube

Kurs: WWI17B1

Vorlesung: Neue Konzepte - Smart Cities

Wissenschaftliche Betreuer: Andreas T. Fütterer

Abgabedatum: 19.06.2020

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich meine Seminararbeit mit dem Thema: "Smart City Hamburg - Eine Betrachtung der Konzepte mit ihren Stärken und Schwächen" selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Karlsruhe, den 19. Juni 2020

David Scheid

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich meine Seminararbeit mit dem Thema: "Smart City Hamburg - Eine Betrachtung der Konzepte mit ihren Stärken und Schwächen" selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Karlsruhe, den 19. Juni 2020

Maximilian Stefanac

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich meine Seminararbeit mit dem Thema: "Smart City Hamburg - Eine Betrachtung der Konzepte mit ihren Stärken und Schwächen" selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Karlsruhe, den 19. Juni 2020

Jonas Strube

Inhaltsverzeichnis

Αŀ	Abbildungsverzeichnis					
1	Einl	eitung	1			
	1.1	Motivation und Problemstellung	1			
	1.2	Aufbau der Arbeit, Ziel und Methodik	1			
	1.3	Abgrenzung der Arbeit				
2	Sma	Smart Mobility				
	2.1	Motivation und Aufbau	2			
	2.2	HEAT	2			
	2.3	Park and Joy	3			
	2.4	Port Monitor Hafen	3			
	2.5	Fazit	4			
3	Sma	art Governance	5			
4	Smart Environment					
	4.1	Motivation und Grundlagen	8			
	4.2	Smart Buildings	9			
	4.3	Smart Grids und Green Energy				
	4.4	Green Urban Planning	10			
	4.5	kritische Betrachtung	10			
5	SWOT Analyse 1					
	5.1	Stärken	11			
	5.2	Schwächen	11			
	5.3	Chancen	12			
	5.4	Risiken				
6	Fazit und Ausblick 1					
	6.1	Fazit	13			
	6.2	Ausblick	13			
Α	Beig	gabenverzeichnis	15			
Be	igab	enverzeichnis	15			
В	Bea	rbeitungsaufteilung	16			
Lit	Literatur					

Abbildungsverzeichnis

1	Suchergebnisse im Transparenzportal Hamburg	6
2	SWOT-Matrix zur Entwicklung Hamburgs auf dem Weg zur Smart	
	City	11

1 Einleitung

1.1 Motivation und Problemstellung

Laut dem Smart City Kompass hat Hamburg stand Juni 2020 die meisten Smart City Projekte in Deutschland (vgl. Smart City Kompass, 2020e). Außerdem is Hamburg Teilnehmer an dem europäischen Projekt mySMARTLife, welchem Smart City Konzepte implementiert und evaluiert werden sollen (vgl. Stadt Hamburg, 2020c, S. 1ff.). Damit bewegt sich Hamburg in die Richtung einer Smart City.

"everybody is talking about the smart city concept. However, the ultimate smart city is an utopia and does not exist"

(Respondent 2 — Umfrage aus (Spil u.a., 2017, S. 126))

Wie das Zitat zeigt, wird das Konzept von Smart Cities nicht ohne Kritik aufgenommen. Es spiegelt auch wieder, dass sich die Stadt Hamburg auch kritisch und reflektiert mit der Thematik auseinandersetzt. Daher stellt sich die Frage: Ist Hamburg auf einem guten Weg zu einer Smart City?

1.2 Aufbau der Arbeit, Ziel und Methodik

Ziel der Arbeit ist es den aktuellen Stand der Implementierung von Smart City Konzepten unter der Vision einer Smart City zu beurteilen.

Die vorliegende Arbeit behandelt dazu drei Themenfelder aus dem Smart City Wheel nach Boyd Cohen. Diese Themenfelder sind: Smart Mobility in Abschnitt 2, Smart Governance in Abschnitt 3 und Smart Environment in Abschnitt 4.

Darauf folgend wird in Abschnitt 5 der Stand der Implementierung anhand einer SWOT-Analyse bewertet. Zum Schluss wird in Abschnitt 6 das Ergebnis der Arbeit kritisch betrachtet und ein Ausblick gegeben.

1.3 Abgrenzung der Arbeit

Es werden lediglich Smart Mobility, Smart Governance und Smart Environment als Aspekte des Smart City Wheel in der Arbeit betrachtet. Weitere Aspekte würden den Umfang der Arbeit übersteigen ohne die gewollte Tiefe der Themen zu reduzieren. Die Autoren präferieren eine qualitative Auseinandersetzung statt einer quantitativen.

2 Smart Mobility

2.1 Motivation und Aufbau

2021 soll Hamburg den ITS Weltkongress austragen. Dies ist ein internationaler Kongress für intelligente Transportsysteme. Ins Leben gerufen wurde er von ERTICO, einer europäischen Organisation die für die Einführung von Telematik bei Transportsystemen in Europa verantwortlich ist. Hauptziel des Kongresses soll es sein, Politiker, Experten und generell die Öffentlichkeit auf Smart Mobility aufmerksam zu machen. Um eine solche Veranstaltung austragen zu können, sollten innovative Ansätze und Ideen vorgestellt werden können (vgl. ITS World Congress, 2020). Doch ist Hamburg auf dem richtigen Weg eine solche smarte Mobilität anzubieten?

Im folgenden Kapitel sollen drei verschiedene Projekte vorgestellt werden, die charakteristisch für die Smart Mobility in Hamburg sind. Zwei davon sind sogar extra für den ITS Weltkongress ins Leben gerufen worden. Im Fazit wird dann kurz erörtert, ob Hamburg in Sachen Smart Mobility überzeugen kann und vielleicht sogar als Vorreiter für andere Städte agiert.

2.2 HEAT

HEAT steht für "Hamburg Electronic Autonomous Transportation" und ist ein Projekt der Hamburger Hochbahn. Es geht dabei um vollautomatisierte, autonome Kleinbusse, die elektrisch betrieben werden. In der Hafencity von Hamburg soll eine Teststrecke und ein Testbetrieb aufgestellt werden. HEAT zählt zu den Projekten, die für den ITS Weltkongress 2021 ins Leben gerufen wurden (vgl. Smart City Kompass, 2020c).

In einer vierjährigen Testphase, die von 2017 bis 2021 andauert, sollen etappenweise die Anforderungen an das System erhöht werden. Dieser Zeitraum ist in drei Phasen unterteilt, bei denen nach und nach die Teststrecke erweitert wird, die Funktionen des autonomen Systems erhöht und die Sicherheitsstufen höher geschraubt werden. Im Endeffekt soll in diesem Testzeitraum die Technologie genauer erforscht werden und geklärt werden, inwiefern es möglich ist ein solches, autonomes System in den öffentlichen Nahverkehr einzubinden (vgl. HOCHBAHN, 2020).

Schon 2019 wurden mit HEAT erfolgreiche Tests mit Fahrgästen gemacht. Da es weltweit eines der ersten Projekte dieser Art ist, ist HEAT ein absoluter Vorreiter im Bereich des autonomen Personennahverkehrs. Es zeigt, dass Hamburg auch mit sehr innovativen, zukunftsträchtigen Technologien auftrumpfen kann.

2.3 Park and Joy

Park and Joy ist ein Projekt der Deutschen Telekom, welches den Parkverkehr in Großstädten deutlich verringern soll. Dieser macht laut Studien nämlich 30% des gesamten Stadtverkehrs aus. Das Programm wird in verschiedenen deutschen Städten angeboten, wobei das Projekt erstmalig in Hamburg erprobt wurde. Auch park and Joy ist eines von 30 Vorhaben, welches für den ITS Weltkongress initiiert wurde (vgl. Smart City Kompass, 2020a).

Es handelt sich hierbei um eine App, die es dem Nutzer vereinfachen soll einen Parkplatz in der Stadt zu finden. Hierzu ist angedacht bis zu 11.000 Parkplätze mit Sensorik auszustatten, sodass die Anwendung freie Parkplätze identifizieren und den Fahrer dort hin navigieren kann. Es soll dann zusätzlich möglich sein direkt einen Parkschein in der App zu lösen, sodass der lästige Gang zum Parkautomaten eingespart werden kann (vgl. Park and Joy, 2020).

Allgemein kann man sagen, dass Park and Joy sehr gut dem erhöhten Parkverkehr in Großstädten entgegenwirkt. Es handelt sich hierbei aber nur um eine sehr kurzfristig gedachte Lösung. Ziel sollte es in Zukunft sein, Autos komplett aus dem Stadtverkehr zu verdrängen, da diese die Wohnqualität erheblich verringern. Park and Joy ist also ein Beispiel dafür, wie in Hamburg teilweise bei der Umsetzung einer Smart City nicht auf lange Sicht gedacht wird.

2.4 Port Monitor Hafen

Beim Port Monitor Hafen handelt es sich um ein Projekt der HPA (Hamburg Port Authority). Eine Leitstandsoftware in der Nautischen Zentrale soll den gesamten Schiffsverkehr im Hamburger Hafen überwachen. Hauptziel ist es hierbei einen vollständigen Überblick über das aktuelle Verkehrsgeschehen zu Wasser zu geben. Es werden hierzu diverse Informationen wie z. B. Liegeplätze, Brückenhöhen oder auch aktuelle Tauchgänge gesammelt und aufbereitet dargestellt. Ebenfalls ist die Applikation mobil verfügbar, sodass brandaktuelle Geschehnisse in Echtzeit in der Nautischen Zentrale zur Kenntnis genommen werden können (vgl. Smart City Kompass, 2020b).

Der Port Monitor Hafen wirkt auf den ersten Blick wie eine ganz normale Monitoringanwendung. Im Kontext des Hamburger Hafens, mit einem enormen Verkehrsaufkommen, ist es aber eine hochkomplexe Anwendung, die zu Recht als Innovation beschrieben werden kann. Leider ist die Anwendung nicht mit anderen Projekten mit Landverkehr verbunden, was eine Chance in der Zukunft wäre.

2.5 Fazit

Die Mobilität in Hamburg ist allgemein gesprochen sehr fortschrittlich. Aufgrund des ITS Weltkongresses 2021, wurden sehr viele innovative Projekte ins Leben gerufen. Wegen des geringen Umfangs konnten in dieser Arbeit aber nur zwei von insgesamt 30 Vorhaben vorgestellt werden, die aber sehr gut zeigen in welche Richtung sich Hamburg zur Zeit entwickelt.

Schaut man sich die einzelnen Projekte im Smart City Kompass an, fällt auf, dass vor allem die Projekte, die im Bereich des Personennahverkehrs angesiedelt sind, sehr gut miteinander harmonieren (vgl. Smart City Kompass, 2020d). Man kann hier von einer gelungenen Umsetzung von intermodalem Verkehr sprechen. Park and Joy zeigt einen anderen Vorteil von Smart Mobility in Hamburg auf: Aufgrund der hohen Bürgerakzeptant und der bereits fortschrittlichen Infrastruktur siedeln große Unternehmen (Deutsche Telekom) ihre Innovationsprojekte in Hamburg an.

Beim Port Monitor Hafen muss man sagen, dass es eine sehr sinnvolle Lösung für die Organisation des Hafens darstellt. Leider wird sich bei dieser Lösung auf den Schiffsverkehr beschränkt. Eine Anbindung an Innovationsprojekte zu Land fehlt leider. Hier könnte Hamburg an Ideen arbeiten, die das Zusammenspiel zwischen Land- und Wasserverkehr optimieren.

3 Smart Governance

Um das Ziel der Smart Governance in einer Stadt zu erreichen, sollte sie mit Fokus auf vier grundlegende Dimensionen umgestaltet werden.

- 1. Smarte Regierung
- 2. Offene & verknüpfte Daten
- 3. Digitaler Service & kooperative Regierung
- 4. Stadtinfrastruktur

(Fuetterer, 2020, S. 14)

Quantitativ werden diese Dimensionen bereits durch verschiedene Projekte vorangetrieben. Im Portal "Smart City Kompass" werden in ganz Hamburg mehr Smart-Governance-Projekte durchgeführt als in jeder anderen deutschen Stadt (Smart City Kompass, 2020g). Um die Qualität dieser Projekte herauszufinden, wird ein Projekt exemplarisch detailliert untersucht und bewertet.

Im Jahr 2012 verabschiedete die hamburger Regierung ein neuartiges Gesetz, das zu einem Grundpfeiler für die Weiterentwicklung von Open-Government-Initiativen nicht nur in Hamburg sondern auch in vielen anderen Städten Deutschlands werden sollte. Das Ziel des Gesetzes war es, Informationen aus der Senatsarbeit der Allgemeinheit unmittelbar zugänglich zu machen (Senat Hamburg, 2012). Die Regelungen in diesem Gesetz wurden umgesetzt mithilfe einer neu entwickelten Online-Plattform, dem "Transparenzportal" (Spil u. a., 2017, S. 127).

Diese frei zugängliche Website ermöglicht es jedem Bürger frei über das Internet Daten aus der hamburger Senatsarbeit einzusehen. Abbildung 1 zeigt beispielhaft die verfügbaren Datensätze, wenn Bürger nach Daten zum Bauprojekt der Elbphilharmonie suchen. Als Ergebnis werden Mitteilungen und Verträge angezeigt, insgesamt sind allein für diesen Suchbegriff über 250 Einträge verfügbar. Interessierte Bürger können so Einsicht in dieses Projekt erhalten um die Arbeit der gewählten Volksvertreter zu kontrollieren und sich transparent eine Meinung zu bilden. Das Portal stellt darüber hinaus auch Verträge, interne Berichte, Haushaltspläne und Weitere Dokumente für die Bürger frei zur Verfügung.

Dieses Projekt bildet für die Stadt Hamburg einen großen Fortschritt im Bereich der digitalen Services sowie der offenen Daten. Die Regierungsdaten sind seitdem offen verfügbar und bilden deswegen, wie in Fuetterer, S. 15 beschrieben, einen großen Schritt auf dem Weg zum Open Government. Unterstrichen wird diese Entwicklung durch das Portal transparenzranking.de. Im Vergleich von verschiedenen

Abbildung 1: Suchergebnisse im Transparenzportal Hamburg

Transparenzregelungen nimmt Hamburg dort den ersten Platz unter allen deutschen Bundesländern ein.

Das hamburger Transparenzgesetz bringt Fortschritte hauptsächlich in Dimension 2 und 3 der Smart Governance. Die Offenheit der Daten aus Dimension 2 ist komplett erfüllt, fast alle Bürger können Daten der hamburger Regierung schnell, kostenfrei und mit wenig Aufwand einsehen. Außen vor sind nur Bürger ohne Zugang zum Internet, diese Bürger stellen aber nur einen kleinen Anteil der Bevölkerung dar (Fuetterer, 2020, S. 10). Aus Dimension 3 ist die Digitalisierung der Services ebenfalls stark verbessert, wobei andere Services des täglichen Lebens in diesem Projekt nicht digitalisiert wurden.

4 Smart Environment

4.1 Motivation und Grundlagen

Smart Environment ist der Bereich im Smart City Wheel nach Cohen, welches sich mit Aspekten der Stadtplanung beschäftigt. Diese Bereiche sind:

- Smart Buildings energieeffiziente Häuser,
- Smart Grids bzw Green Energy nachhaltige und dezentrale Energieversorgung und
- Green Urban Planning Stadtplanung mit Fokus auf grünen Flächen in den Städten.

Ziel von den Bereich Smart Environment im Smart City Wheel Konzept ist es die Stadtplanung und Stadtentwicklung nachhaltig zu gestalten. In Folge daraus soll dann eine Smart City ihren Bürgern eine lebenswerte Umgebung bieten. Der Fokus liegt dabei die jeweilige Stadt der Natur anzunähern. Das umfasst auch den CO2 Ausstoß bzw. Schadstoffe in der Luft zu reduzieren (vgl. Monzon, 2015, S. 4). Smart Environment ist jedoch nur ein Teil um das Ziel einer Smart City zu erreichen - eine hohe Lebensqualität auf Basis nachhaltiger und robuster Stadtentwicklung (vgl. Monzon, 2015, S. 3).

Wie alle Teilbereiche des Smart City Konzeptes liegt der Fokus der Implementierung auf der Verwendung von moderner Informations- und Kommunikationstechnologie. Das alleine reicht aber nicht, um das maximale Mögliche in nachhaltiger und robuster Stadtentwicklung zu erreichen. Um dies zu erreichen, werden auch neue Entwicklungen von nachhaltigen Baustoffen bzw. Bautechniken benötigt. Wie bei dem Smart City Konzept auch, ist Smart Environment nur mit Vernetzung zu erreichen. Nicht nur auf technischer Ebene sondern auch auf wissenschaftlichen und gesellschaftlichen Ebenen.

Der interdisziplinäre Charakter des Teilbereichs Smart Environments wird deutlich, wenn Lösungskonzepte in diesem Bereich erarbeitet werden. Es zeigt sich, dass es ausgeprägte Schnittstellen zu den Teilbereichen Smart Mobility und auch Smart Governance gibt. Smart Mobility beispielsweise aufgrund der Energienachfrage durch Elektromobilität. Smart Governance beispielsweise durch Akzeptanz der Bürger, welche sich beispielsweise in Transparenzportalen über Bauprojekte erreichen lässt.

Auch wenn es nicht explizit im Smart City Wheel erwähnt wird, ist auch die Wasserversorgung auch ein wichtiger Aspekt, welcher sich dem Teilbereich Smart Environment zuordnen lässt (vgl. Dickey, 2018).

4.2 Smart Buildings

Beispielhaft für die Implementierung von Smart Buildings in der Stadt Hamburg ist das Projekt mySMARTLife. Hierzu wurde als Teil des Projektes ein Viertel im Stadtteil Hamburg Bergedorf mit neuen energieeffizienten Wohnungen errichtet (vgl. Stadt Hamburg, 2020c, S. 2ff.).. Insgesamt konnte die Stadt Hamburg durch neue Smart Buildings und umbauten von bestehenden Wohngebäuden den Energieverbrauch um 38% senken (vgl. mySMARTLife, 2020). Die Gebäude, welche im Rahmen des mySMARTLife Projektes entstanden sind setzen auf eine Kombination aus modernen Baumaterialien und Smart Home Geräten zur Optimierung des Energieverbrauchs (vgl. Stadt Hamburg, 2020c, S. 2ff.). Herausforderung in Hamburg ist der Umbau von denkmalgeschützten Altbauten (vgl. Stadt Hamburg, 2020a). Außerdem ist es herausfordernd oder nicht möglich alle Wohngebäude in Hamburg umzubauen, da Hamburg eine Großstadt mit 1,9 Millionen Einwohnern ist und auch dementsprechend viel Wohnraum vorhanden ist.

4.3 Smart Grids und Green Energy

Das Unternehmen Stromnetz Hamburg ist der Betreiber des Mittelspannungsnetzes der Stadt Hamburg. Ziel von Stromnetz Hamburg ist es das Stromnetz zu dezentralisieren und nur nachhaltigen Strom (Windenergie, Wasserkraft, Biomasse) einzuspeisen (vgl. Stromnetz Hamburg, 2020). Im Rahmen von mySMARTLife und der neugebauten Siedlung in Hamburg Bergedorf besitzt jedes Haus Solarpanele. Der damit erzeugte Strom kann von den Bewohnern des jeweiligen Hauses verwendet werden und überschüssiger Strom wird in das Stromnetz eingespeist (vgl. Stadt Hamburg, 2020c, S. 9). Stromnetz Hamburg hat ihr Netz mit Sensoren ausgestattet, um auf die Anforderungen eines dezentralisierten Netzes einzugehen (vgl. Stromnetz Hamburg, 2020).

Neben dem Stromnetz wird auch das Fernwärmenetz der Stadt Hamburg dezentralisiert und modernisiert werden. Das Unternehmen Hamburg Energie sieht in bisherigen Konzepten zur Fernwärme Optimierungspotenzial. Beispielsweise soll so auch Geothermie, Solartenergie und Biomasse genutzt werden. Aktuell sollen die Konzepte in dem Stadtteil Hamburg Wilhelmsburg erprobt werden (Hamburg Energie, 2020).

Neben der Versorgung von Wohngebäuden, wird mit der Landstromanlage für Kreuzfahrtschiffe versucht Kreuzfahrtschiffe emissionsfrei während ihrer Zeit in Hamburg mit Energie zu versorgen. Ohne eine Landstromanlage würden Schiffe weiter mit Ihren Motoren Energie produzieren. Das führt zu zusätzlichen CO2 Emissionen in der Stadt. Der Energiebedarf eines Kreuzfahrtschiffes entspricht der einer Kleinstadt mit ca. 75.000 Einwohnern (vgl. Smart City Kompass, 2020f). Die Landstromanlage in Hamburg steht in Kritik, da sie mit 10 Millionen Euro sehr teuer war und Kreuzfahrtschiffe den Landstrom wenig oder gar nicht nutzen, da dieser teurer ist als selbsterzeugte Energie der Kreuzfahrtschiffe.

4.4 Green Urban Planning

Hamburg ist die die grünste Stadt Deutschlands unter den Städten über 500.000 Einwohnern (vgl. Berliner Morgenpost, 2016). Diese Position beruht auf Städtebau Entscheidungen, welche seit 1919 getroffen werden, um Hamburgs Bürgern eine Lebenswerte Umgebung zu bieten. Zum Beispiel das grüne Netz, welches grüne Adern von den Wäldern aus der Umgebung in das Stadtinnere (vgl. Stadt Hamburg, 2020b). Damit dies auch bleibt gibt es Projekte um Dächer von Gebäuden in der Stadt zu bepflanzen (vgl. Stadt Hamburg, 2020d). Es wird so versucht trotz Neubauten, welche eigentlich Flächen einnehmen, Grünflächen zu schaffen. Diese entspricht der Vision des Künstlers Hundertwasser, welcher Gebäude gebaut hat, welche aus einer Symbiose aus Pflanzen und Wohnraum besteht.

4.5 kritische Betrachtung

Bei Betrachtung der verschiedenen Implementierungen der Smart City Konzepte im Bereich Smart Environment in der Stadt Hamburg stellt sich heraus, dass die Projekte nicht nur einem Bereich zugeordnet werden können. Beispielsweise muss sowohl Smart Mobility als auch Smart Environment und Smart Governance betrachtet werden, wenn es um nachhaltige Städteplanung geht, wie es im Projekt mySMARTLife geschehen ist. Natürlich auch die restlichen Dimensionen des Smart City Wheels. Dies zeigt, dass die Vernetzung auf allen Ebenen solcher Projekte ein Erfolgsfaktor ist. Genau das ist aber auch das Problem in der bei den vorgestellten Beispielen. Die verschiedenen Projekte sind unabhängig voneinander und wenig oder gar nicht vernetzt. Das birgt das Risiko der Silo Bildung.

5 SWOT Analyse

Der Überblick über die Dimensionen auf dem Weg zur Smart City hat einen Überblick geliefert. Eine Einschätzung der Stärken und Schwächen soll nun gegeben werden und daraus folgend Chancen und Risiken abgeleitet werden. Abbildung 2 fasst die folgende Analyse zusammen.

Stärken	Schwächen	
Viele Projekte	Kaum Vernetzungen	
Akzeptanz in der Bevölkerung	Nicht alle Stakeholder eingebunden	
Chancen	Risiken	
Bürgerakzeptanz	Nur Überarbeiten bestehender Prozesse	
Integration bestehender Projekte	Sinkende Akzeptanz	

Abbildung 2: SWOT-Matrix zur Entwicklung Hamburgs auf dem Weg zur Smart City

5.1 Stärken

Die größte Stärke der hamburger Entwicklungen ist die hohe Anzahl der Projekte. In diesem Bereich sind keine Städte in Deutschland ähnlich fortschrittlich. Dadurch sind Smart-City-Projekte im Alltag der Bürger allgegenwärtig und werden mehr zur Normalität, als wenn nur vereinzelt Projekte durchgeführt werden. Das, und auch sehr erfolgreiche Projekte wie das Transparenzportal, haben zur Folge, dass eine hohe Akzeptanz gegenüber Smart-City-Projekten vorherrscht. Bürger nehmen neu entstehende Projekte so schneller auf und integrieren sie eher in ihren Alltag.

5.2 Schwächen

Die hohe Anzahl an Projekten wird in Hamburg jedoch noch nicht optimal ausgenutzt. Viele Projekte integrieren keine anderen Projekte der hamburger Smart-City-Initiative. Dadurch werden **Synergien nicht genutzt**, die die Effektivität der Projekte weiter steigern könnten. Zusätzlich werden teilweise **nicht alle Stakeholder mit eingebunden**, die für den Erfolg des Projektes nützlich sein könnten. Eine

weitere Schwäche ist der Fokus der Projekte. Manche Projekte fokussieren sich nur auf kurzfristige Problemlösungen ohne die Ursache der Probleme zu ermitteln und zu bekämpfen.

5.3 Chancen

Mit Blick auf zukünftige Projekte bietet vor allem die hohe Akzeptanz in der Bevölkerung Chancen in Hamburg. Neue Projekte können mit wenig Aufwand eingeführt werden und können von Bürgern potenziell stärker genutzt werden als in Städten, in denen die Akzeptanz niedriger ist. Zusätzlich bieten aktuelle Schwächen viel Potenzial für Verbesserungen. Die aktuell noch oft siloartig durchgeführten Projekte können miteinander verknüpft werden, um Synergien zu erzeugen und das volle Potenzial der hamburger Smart-City-Projekte auszuschöpfen.

5.4 Risiken

Die aktuellen Schwächen des hamburger Smart-City-Konzeptes sollten verbessert werden, sonst können Initiativen des hamburger Senats ihr Potenzial nicht entfalten. Werden die **Projekte weiterhin siloartig** durchgeführt, kann das für Bürger unübersichtlich wirken und sie eher von neuen Projekten abschrecken. Wird diese Schwäche nicht behoben, kann das die **Akzeptanz gegenüber den bestehenden und neuen Projekten senken** und die positive Entwicklung entschleunigen.

- 6 Fazit und Ausblick
- 6.1 Fazit
- 6.2 Ausblick

Anhang

A Beigabenverzeichnis

Die Verzeichnisse der beigelegten CD sind in Fettdruck dargestellt. Die Dateinamen sind auf der rechten Seite in Festbreitenschrift aufgeführt. Auf der linken Seite befindet sich eine Beschreibung der jeweiligen Datei bzw. Ordners.

Elektronische Quellen Enthält die elektronischen Quellen

Seminararbeit Enthält die Seminararbeit

PDF WWI17B1_Seminararbeit_Smart_City

_Hamburg.pdf

DOCX (konvertiert) WWI17B1_Seminararbeit_Smart_City

_Hamburg.docx

LATEX-Quelldateien latex/

B Bearbeitungsaufteilung

Aufteilung der Bearbeitung

Kapitel	Seiten	Autor
Einleitung	1	Maximilian Stefanac
Smart Mobility	2-4	David Scheid
Smart Governance	5-7	Jonas Strube
Smart Environment	8-10	Maximilian Stefanac
SWOT Analyse	11-12	Jonas Strube
Fazit und Ausblick	13	David Scheid

Literatur

- 2015. 2015 international conference on smart cities and green ICT systems (SMART-GREENS).
- BERLINER MORGENPOST, 2016. Das sind Deutschlands grünste Städte [online] [besucht am 2020-06-17]. Abgerufen unter: https://interaktiv.morgenpost.de/gruenste-staedte-deutschlands/.
- DICKEY, Thomas, 2018. Smart water solutions for smart cities. In: *Smart Cities*. Springer, S. 197–207.
- FUETTERER, Andreas T., 2020. Vorlesung Smart Cities Smart Governance.
- HAMBURG ENERGIE. Smart Heat Grid Hamburg [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.hamburgenergie.de/ueber-uns/unternehmen/forschungsprojekte/smart-heat-grid-hamburg/.
- HOCHBAHN, 2020. *Projekt HEAT* [online] [besucht am 2020-06-18]. Abgerufen unter: https://www.hochbahn.de/hochbahn/hamburg/de/Home/Naechster_Halt/Ausbau_und_Projekte/projekt_heat.
- 2017. I3E: Conference on e-Business, e-Services and e-Society.
- ITS WORLD CONGRESS, 2020. About The Congress [online] [besucht am 2020-06-18]. Abgerufen unter: https://itsworldcongress.com/about-the-congress/.
- MCCLEAN, Stan; JIMENEZ, Jesus A.; KOUTITAS, George (Hrsg.). Smart Cities.
- MONZON, Andres, 2015. Smart cities concept and challenges: Bases for the assessment of smart city projects. In: 2015 international conference on smart cities and green ICT systems (SMARTGREENS), S. 1–11.
- MYSMARTLIFE. Transition of EU cities towards a new concept of Smart Life and Economy [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.mysmartlife.eu/fileadmin/user_upload/4612_mySMARTLife_Plakat_90x100cm_technical_final.pdf.
- PARK AND JOY, 2020. Park and Joy [online] [besucht am 2020-06-18]. Abgerufen unter: https://www.parkandjoy.de/.
- SENAT HAMBURG, 2012. *Hamburgisches Transparenzgesetz* [online] [besucht am 2020-06-14]. Abgerufen unter: https://www.luewu.de/docs/gvbl/2012/29.pdf.
- SMART CITY KOMPASS, 2020a. Park and Joy [online] [besucht am 2020-06-18]. Abgerufen unter: https://www.smartcity-kompass.de/smartcity/park-and-joy/.

- SMART CITY KOMPASS, 2020b. Port Monitor Hafen Hamburg [online] [besucht am 2020-06-18]. Abgerufen unter: https://www.smartcity-kompass.de/smartcity/port-monitor-hamburg/.
- SMART CITY KOMPASS, 2020c. Projekt Heat autonome Elektrobusse [online] [besucht am 2020-06-18]. Abgerufen unter: https://www.smartcity-kompass.de/smartcity/projekt-heat-autonome-elektrobusse/.
- SMART CITY KOMPASS, 2020d. Smart Mobility [online] [besucht am 2020-06-18]. Abgerufen unter: https://www.smartcity-kompass.de/advanced-search/?filter_search_action%5B%5D=&filter_search_type%5B%5D=mobilitat-infarstruktur&advanced_city=hamburg&submit=SUCHE+SMARTCITY-PROJEKTE &wpestate_regular_search_nonce=247ba8ddab&_wp_http_referer=%2F.
- SMART CITY KOMPASS, e. Digitale Projekte in Deutschland im Überblick [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.smartcity-kompass.de/.
- SMART CITY KOMPASS, f. Landstromanlage Altona [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.smartcity-kompass.de/smartcity/landstromanlage-altona/.
- SMART CITY KOMPASS, g. Smart City Kompass [online] [besucht am 2020-06-14]. Abgerufen unter: https://www.smartcity-kompass.de/advanced-search/?filter_search_action%5B%5D=%5C&filter_search_type%5B%5D=%5C&advanced_city=hamburg%5C&submit=SUCHE+SMARTCITY-PROJEKTE%5C&wpestate_regular_search_nonce=403f8058ab%5C&_wp_http_referer=%2F.
- SPIL, Ton AM; EFFING, Robin; KWAST, Jaron, 2017. Smart city participation: Dream or Reality? A comparison of participatory strategies from Hamburg, Berlin & Enschede. In: *I3E: Conference on e-Business, e-Services and e-Society*, S. 122–134.
- STADT HAMBURG, a. Das Projekt MySMARTLife [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.hamburg.de/europawoche/8628500/mysmartlife-europwawoche/.
- STADT HAMBURG, b. *Green Network* [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.hamburg.com/residents/green/11836450/green-network/.
- STADT HAMBURG, c. Informationen zum Projekt mySMARTLife [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.mysmartlife.eu/fileadmin/user_upload/publications/mSL_Informationen_zum_Projekt_Webversion.pdf.

- STADT HAMBURG, d. St. Pauli Bunker [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.hamburg.com/architecture/11748556/st-paulibunker/.
- STROMNETZ HAMBURG. Smart Grid Unser Stromnetz wird immer intelligenter [online] [besucht am 2020-06-17]. Abgerufen unter: https://www.stromnetz-hamburg.de/ueber-uns/innovationen/intelligentes-netz/.