Documentação do Trabalho Prático 2 da disciplina Estrutura de Dados

Ariel Augusto dos Santos

¹Departamento de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)

Belo Horizonte – MG – Brasil

ariel.santos@dcc.ufmg.br

- 1. Introdução
- 2. Compilação e execução
- 3. Implementação
- 4. Algoritmos
 - 4.1. Insertion
 - 4.2. Merge
 - 4.3. Quicksort
 - 4.3.1. Quicksort "CRLS"
 - 4.3.2. Quicksort utilizando pivot adaptativo
 - 4.4. <u>Cycle</u>
- 5. Benchmarks
 - 5.1. Algoritmos principais vs dados aleatórios
 - 5.2. <u>Algoritmos principais vs dados crescentes</u>
 - 5.3. Algoritmos principais vs dados decrescentes
 - 5.4. Análise
 - 5.5. Quicksort "CLRS" vs QuicksortMed3
 - 5.6. <u>Cycle</u>
- 6. Aproximação de coeficientes big-o
- 7. Referências

INTRODUÇÃO

Esta documentação tem como objetivo descrever e analisar os algoritmos de ordenação implementados para este Trabalho Prático, nomeadamente:

- InsertionSort;
- MergeSort;
- QuickSort;
- e CycleSort.

Na seção 3 cada implementação será apresentada, explicitando sua base teórica, custos e complexidade.

COMPILAÇÃO E EXECUÇÃO

O projeto segue o arquivo projeto com makefile.zip padrão provido, com a adição de uma pasta /test e um arquivo CMakeLists.txt que contém pontos de entrada para targets do CMake para o benchmark e teste das funções. O projeto CMake depende da biblioteca Google Benchmark [1] estar localizada na pasta /benchmark para compilação. Como não são estritamente necessários ou especificados por este Trabalho, o projeto CMake e seus executáveis são entregues sem nenhuma garantia.

O programa principal, compilado por **make** (make all), deve ser executado conforme especificado na definição do trabalho: ./bin/run.out [arquivo] [nº de linhas].

O executável de testes, gerado pelo CMake, pode ser invocado por ./cmake-build-debug/TP2Test

[arquivo] [nº de linhas] e não retorna nenhum output, apenas um *status* de retorno indicando se alguma assertion de teste foi violada.

O executável de benchmark ./cmake-build-debug/TP2Benchmark deve ser utilizado de acordo com a documentação do projeto *Google Benchmark*.

IMPLEMENTAÇÃO

Para facilitar o desenvolvimento dos algoritmos de ordenação e a manipulação das listas de tuplas (Nome da base, Distância), foram criadas as estruturas Array e BaseDistância, onde Array pode conter N BaseDistancias e acessá-las em ordem arbitrária através de índices (através de um operador [] sobrecarregado). Outro método muito utilizado no projeto é Array::view(inicio, fim), que retorna um novo Array que compartilha uma região da memória de BaseDistancia do Array original a partir de inicio até fim com o objetivo de simplificar a passagem de argumentos entre funções. A classe BaseDistância é convertida implicitamente para o seu valor de distância, permitindo que o código das funções de ordenação tome proveito dos operadores já existentes para tipos triviais numéricos, e possui o operador << definido para impressão dos resultados da ordenação, assim como Array.

Após encontrar alguns problemas envolvendo *underflow* do tipo utilizado para indexação dos **Array**s, também é utilizado **std::ptrdiff_t**. Como não é deixado claro na definição do Trabalho a faixa de valores que a distância das bases pode tomar, o tipo utilizado para armazenament é **long long**.

ALGORITMOS

Nesta seção analisamos teoricamente os algoritmos de ordenação implementados para o Trabalho.

INSERTION

O mais simples dos algoritmos implementados, simplesmente *insere* cada elemento em sua posição correta, ordenando a lista de 0 a N de maneira crescente. Para isso são necessários dois laços e O(1) memória auxiliar.

Apesar de possuir complexidade de tempo $O(N^2)$ nos piores e médios casos, ele performa bem em listas já ordenadas, com o melhor caso O(N). É uma ordenação estável.

MERGE

O mergesort é um algoritmo mais eficiente de ordenação, baseado em comparações e o método dividir-econquistar e inventado em 1945 por John von Neumann. O método consiste de duas partes: subdividir recursivamente a lista de elementos em duas partes e então reagrupar as listas já ordenadas. Como listas de tamanho 1 são trivialmente ordenadas, a complexidade do algoritmo reside no método para mesclar (portanto o nome, merge em inglês) duas listas ordenadas. A implementação do algoritmo neste Trabalho foi baseada em uma aproximação top-down e requer O(n) memória auxiliar para armazenar o novo Array resultante de cada mescla.

É possível analisar o algoritmo a partir da relação de recorrência:

$$T(n)=1,$$
 para $n=1$
$$T(n)=T(\lfloor \frac{n}{2} \rfloor)+T(\lceil \frac{n}{2} \rceil)+ heta(n),$$
 se $n>1$

que nos dá um limite assintótico $T(n) = \Theta(n \log(n))$ para o pior e médio caso. Como o algoritmo não tira proveito de listas já ordenadas, seu melhor caso tem o mesmo limite inferior, $T(n) = \Omega(n \log(n))$.

QUICKSORT

QUICKSORT "CRLS"

O quicksort é outro algoritmo baseado em dividir-e-conquistar, porém difere do mergesort pois utiliza o particionamento para subdividir a lista de elementos de acordo com um valor pivô. Após a escolha do pivô entrada é dividida em duas partições com os elementos menores e maiores que ele, e então cada partição é ordenada recursivamente. Como o particionamento pode ser feito in-place e cada recursão necessita apenas armazenar um pointeiro e o tamanho da sua partição do Array sob a qual está operando ele requer $O(\log(n))$ memória adicional no caso médio e O(n) no pior caso, porém em ambos os casos as constantes envolvidas são relativamente pequenas já que armazenamos apenas ponteiros e índices.

Apesar de existirem implementações específicas do quicksort que são estáveis, nenhuma das duas neste Trabalho é. Para garantir a estabilidade do algoritmo seria necessário a utilização de memória auxiliar O(n) em todos os casos, ele não iria operar *in-place*, e seria necessário a implementação de uma lista encadeada.

O quicksort é sensível à ordenação inicial das entradas, além do algoritmo para escolha dos pivôs. Podemos representar o pior caso, onde criamos repetidamente partições de tamanho n-1, através da seguinte relação de recorrência:

$$T(n) = T(n-1) + n,$$
 que possui forma fechada $T(n) = \frac{1}{2}n(n-1) = O(n^2)$

No melhor caso, nossas partições são perfeitamente balanceadas em todas as recursões:

-

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + n$$

e portanto, pelo teorema mestre: $T(n) \sim n \log(n)$ correspondendo também à performance média sob entradas aleatórias, já que aí podemos considerar que *em média* cada partição também terá em torno de $\frac{n}{2}$ elementos.

A implementação do quicksort simples neste trabalho segue à primeira dada no livro "Introduction to Algorithms" [2] de Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, e Clifford Stein para o algoritmo, escolhendo simplesmente o último elemento como pivô e realizando duas chamadas recursivas no final da função.

QUICKSORT UTILIZANDO PIVOT ADAPTATIVO

Como a escolha do pivô tem grande impacto sobre a performance do quicksort, definindo o tamanho da partição atual e subsequentes e determinando as constantes em $O(n\log(n))$, a alteração realizada para o trabalho foca na escolha deste valor.

A função <code>sorting::quick_med3(Array&)</code> faz uma chamada a <code>prepare(Array&)</code> antes de selecionar o pivô a partir do último elemento como o quicksort anterior. Esta função é baseada no *paper "Engineering a Sort Function"* que utiliza a mediana de amostras aleatórias como a mediana de regra três e a nona de John W. Tukey para estimar a mediana dos elementos da entrada e então deposita o elemento escolhido na última posição da lista, além de ordenar relativamente o restante das amostras.

Os valores de n para os quais vale a pena (isto é, onde o custo é proporcionalmente menor que a % de aceleração no tempo) calcular a mediana de regra três e a nona de John W. Tukey foram retirados diretamente do paper, que determinou os valores experimentalmente. Os efeitos mensurados no tempo de execução do quicksort modificado serão discutidos na seção 5.2.

CYCLE

O algoritmo extra avulso escolhido para implementação foi o cyclesort, descrito em 1990 no paper "Cycle-Sort: A Linear Sorting Method" [4]. Em específico, foi implementada uma versão recursiva modificada do algoritmo $special_cycle_sort$, que opera in-place porém ao invés da complexidade O(n) reivindicada no paper, é $\Theta(n^2)$ em todos os casos. Isso se dá porque, na pesquisa original, os dados aderem certas restrições como a cardinalidade das chaves dos elementos e não-ocorrência de repetições.

Apesar da complexidade $\Theta(n^2)$, o algoritmo é interessante pela forma como trata a sequência de permutações necessárias para ordenação da entrada como uma fatorização em ciclos, que são ordenados separadamente. Dessa forma é garantido que serão realizadas ao máximo n trocas, o mínimo possível para um algoritmo de ordenação in-place.

Possíveis aplicações são: coletores de memória, compiladores, ambientes de execução em que escritas à memória são muito custosas, e o jogo *Mastermind* (Senha no Brasil).

BENCHMARKS

Observação: por razões que o autor não foi capaz de determinar, os resultados empíricos obtidos através da biblioteca *Google Benchmark* vão contra todas as expectativas baseadas na complexidade assintótica teórica dos algoritmos. Possíveis causas, consideradas mas não confirmadas, são: *bias* nas listas de entradas, otimizações do compilador, efeitos de cache (frio vs quente), erros de programação, etc. Por esta razão a função std::sort também foi inclusa nos benchmarks (como "STD"), para fornecer um baseline "profissional".

ALGORITMOS PRINCIPAIS VS DADOS ALEATÓRIOS

Em escala logarítmica:

ALGORITMOS PRINCIPAIS VS DADOS CRESCENTES

Em escala logarítmica:

ALGORITMOS PRINCIPAIS VS DADOS DECRESCENTES

Em escala logarítmica:

Como mencionado anteriormente, os resultados foram uma completa surpresa. O sorting::insertion performou melhor que todos os outros algoritmos implementados para o trabalho, por uma grande margem. Vale observar também que, apesar de mais lento em todos os casos, ele se manteve a menos de uma ordem de magnitude da performance do std::sort provido pela biblioteca-padrão <algorithm>, cuja complexidade é dada como \$O(n\log(n))^[5].

QUICKSORT "CLRS" VS QUICKSORTMED3

Ao contrário das expectativas, o <code>sorting::quick_med3</code> não se mostrou mais rápido que o <code>sorting::quick_med3</code> não se mostrou mais rápido que o <code>sorting::quick_maive</code>". Causas prováveis são: custos de manipulação das estruturas de dados, distribuição dos dados de teste e claro, erros de programação. Apesar disso, talvez em n muito grandes (isto é, > 50000) o QuicksortMed3 execute tão bem ou melhor que o Quicksort básico, como em N = 50000, 100000, 200000.

Como descrito anteriormente, o algoritmo sorting::cycle é lento.

APROXIMAÇÃO DE COEFICIENTES BIG-O

A biblioteca utilizada para benchmark, Google Benchmark, possui funcionalidades para calcular o coeficiente para o termo de maior ordem da complexidade assintótica de uma função [6], juntamente com seu <u>RMSE</u> normalizado.

Sumarizando esses resultados:

E a complexidade que foi passada para a bibliotecar estimar:

Algoritmo	Complexidade Assintótica
Insertion	n
Merge	$n\log(n)$
Quick	$n\log(n)$
QuickMed3	$n\log(n)$
Cycle	n^2

Algoritmo	Complexidade Assintótica
STD	$n\log(n)$

REFERÊNCIAS

1. "Google Benchmark"

Documentação e código-fonte: https://github.com/google/benchmark

Acessado em: 07/03/2021 ←

2. "Introduction to Algorithms, Third Edition"

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein

Cópia física, 3ª edição 亡

3. "Engineering a Sort Function"

Jon L. Bentley & M. Douglas McIlroy

Disponível em: https://cs.fit.edu/~pkc/classes/writing/papers/bentley93engineering.pdf

Acessado em: 07/03/2021 ←

4. "Cycle-Sort: A Linear Sorting Method"

Bruce K. Haddon

Disponível em: https://academic.oup.com/comjnl/article/33/4/365/377624

Acessado em: 07/03/2021 ←

5. "std::sort - cppreference.com"

Disponível em: https://en.cppreference.com/w/cpp/algorithm/sort

Acessado em: 07/03/2021 ←

6. "Calculating Asymptotic Complexity (Big O)"

Disponível em: https://github.com/google/benchmark#asymptotic-complexity

Acessado em: 07/03/2021 ←