Particle spectrograph

Wave operator and propagator

	Multiplicities	$0^{*1} \phi \dagger$	#2 0 ⁺ h†	#1 0 ⁺ h†		${\stackrel{{}_{\!$	${\overset{{}_{}^{2}}{0^{+}}}{\mathcal{T}}$	${\overset{{}_{}^{}}{0}}^{+}\mathcal{J}$
$ \begin{array}{c} ^{\#2} \\ 0^+ \mathcal{T} == 0 \\ \end{array} \qquad \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} == 0 $	1	$-\frac{1}{2}\sqrt{3}$		1.	0 [#] 1 0 ⁺ T†	24 α-4 β α β k	0	$-\frac{4\sqrt{3}}{\beta k}$
$\frac{{}^{\#1}}{1}\mathcal{T}^{\alpha} = 0 \qquad \qquad \partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3	3 a R	0	4 4	\$ #2 0+T†	0	0	0
Total expected gauge generators: 4		0	0	0	0 # #1 * 0 + 7 †	$-\frac{4\sqrt{3}}{\beta \not k}$	0	$\frac{2}{\beta \ \cancel{k}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{1}{2} \left(-6 \alpha + \beta \right) k^2$	0	$-\frac{1}{2}\sqrt{3} \alpha R$	0 # #1 #1 \$\frac{2}{7}\tau^{1}	$ \begin{array}{c c} & \sharp 1 \\ & 2^{+} \mathcal{T} \\ & \underline{\alpha} & \check{k} \end{array} $	αβ	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$

Massive and massless spectra

Unitarity conditions