

Big Data Analytics & Applications

Bin Li

School of Computer Science Fudan University

Collaborative Filtering

Memory-based CF

- 1st Step: Collect preference data
 - ☐ Represented as a Preference Matrix (bipartite graph)
 - ☐ An entry denotes a user's preference on an item
- 2nd Step: Find neighboring users/items
 - □ Compute Similarity between users/items
 - □ Determine neighboring users/items for the target user
- 3rd Step: Recommend unrated items
 - ☐ Predict unrated ratings based on neighbors' ratings
 - ☐ Recommend highly ranked items to the target user

1st Step: Data

a

3

3

3 4

5 D 2 5 E

3rd Step: Prediction

- Given Preference Matrix **X** and the target user
- Each user is represented as an M-dim vector \mathbf{x}_u
 - $\blacksquare \mathbf{x}_{u} = [x_{u,1}, x_{u,2}, \dots, x_{u,M}]$ corresponds to the *u*th row in **X**
 - \square $x_{u,m}$ denotes the rating user u provides to item m
- User similarity
 - ☐ Only calculate on the overlapped items between two users
 - ☐ Pearson correlation coefficient and cosine

$$\sin(u,v) = \frac{\sum_{m \in I_u \cap I_v} (x_{u,m} - \overline{x}_u)(x_{v,m} - \overline{x}_v)}{\sqrt{\sum_{m \in I_u \cap I_v} (x_{u,m} - \overline{x}_u)^2} \sqrt{\sum_{m \in I_u \cap I_v} (x_{v,m} - \overline{x}_v)^2}}$$

User-User Similarity Computation

$$sim(u,v) = \frac{\sum_{m \in I_u \cap I_v} (x_{u,m} - \overline{x}_u)(x_{v,m} - \overline{x}_v)}{\sqrt{\sum_{m \in I_u \cap I_v} (x_{u,m} - \overline{x}_u)^2} \sqrt{\sum_{m \in I_u \cap I_v} (x_{v,m} - \overline{x}_v)^2}}$$

$$sim(C, A) = 0$$

$$\sin(C,B) = \frac{(3-3.5)(2-3) + (4-3.5)(3-3)}{\sqrt{(3-3.5)^2 + (4-3.5)^2} \sqrt{(2-3)^2 + (3-3)^2}} = 0.7$$

$$sim(C, D) = 0$$

$$\sin(C, E) = \frac{(4-3.5)(5-3.5)}{\sqrt{(4-3.5)^2}\sqrt{(5-3.5)^2}} = 1$$

	a	b	C	d	е	f
A	4					3
В		2	4		3	
C		3	77		4	
D	4	X	5			4
Ε				2	5	

- *K*-Nearest Neighbors
 - \square Top-K similar users to the target user

■ Rating Prediction

$$\widehat{x}_{u,m} = \overline{x}_u + \frac{\sum_{v \in N_u} \operatorname{sim}(u, v) (x_{v,m} - \overline{x}_v)}{\sum_{v \in N_u} |\operatorname{sim}(u, v)|}$$

$$\widehat{x}_{C,c} = 3.5 + \frac{0.7(4-3)}{|0.7|} = 4.5$$

$$\widehat{x}_{C,d} = 3.5 + \frac{1(2-3.5)}{|1|} = 2$$

	а	b _	c	d	_e /	f
١	4					3
		2	4		3	
		B	4.5	2	4	
)	4		5			4
				2	5	

E

1st Step: Data

a <mark>b c d e</mark> f

A 4 3

B 3 4 3

C 3 4

D 4 5 4

E 2 5

- Given Preference Matrix **X** and the target item
- Each item is represented as an *N*-dim vector \mathbf{x}_m
 - $\blacksquare \mathbf{x}_m = [x_{m,1}, x_{m,2}, \dots, x_{m,N}]^T$ corresponds to the *m*th column in **X**
 - \square $x_{m,u}$ denotes the rating user u provides to item m
- Item similarity
 - ☐ Only calculate on the overlapped users between two items
 - ☐ Cosine and Pearson correlation coefficient

$$sim(m, m') = \frac{\sum_{u \in U_m \cap U_{m'}} x_{m,u} x_{m',u}}{\sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m,u}^2} \sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m',u}^2}}$$

■ Item-Item Similarity Computation

$$sim(m, m') = \frac{\sum_{u \in U_m \cap U_{m'}} x_{m,u} x_{m',u}}{\sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m,u}^2} \sqrt{\sum_{u \in U_m \cap U_{m'}} x_{m',u}^2}}$$

$$sim(b, a) = 0$$

$$sim(b,c) = \frac{3 \times 4}{\sqrt{3^2} \sqrt{4^2}} = 1$$

$$sim(b,d) = 0$$

$$sim(b,e) = \frac{3 \times 3 + 3 \times 4}{\sqrt{3^2 + 3^2} \sqrt{3^2 + 4^2}} \approx 1$$

$$sim(b, f) = 0$$

	а	_ b /	C	d	e	f
A	4					3
В		ന	4		ത	
C		3			4	
D	4		5			4
F			100	/2	5 /	

Rating Prediction

$$\widehat{x}_{m,u} = \frac{\sum_{m' \in I_m} \operatorname{sim}(m, m') x_{m',u}}{\sum_{m' \in I_m} |\operatorname{sim}(m, m')|}$$

$$\widehat{x}_{b,D} = \frac{1 \times 5}{|1|} = 5$$

$$\widehat{x}_{b,E} = \frac{1 \times 5}{|1|} = 5$$

$$\mathbf{B}$$

$$\mathbf{C}$$

$$\mathbf{D}$$

	a	b	9)	d	<u>e</u> /	T
Α	4					3
В		3	4		3	
С		3			4	
D	4	5	5			4
E		5		2/	5	

■ Latent variable view - matrix factorization approach

Matrix Factorizationrealist/ young/escapist mature

-2.1	-0.4
	ł .

-1.9 | -0.6

-2.0 | -0.1

-2.1 -0.1

-2.0 1.2

\	/	
	\	

-1.9	-1.7	-2.0	-1.7	-1.9	-1.8
-0.1	0.2	-0.3	-1.0	1.0	0.1

realist/ escapist young/ mature

Assume two latent variables (features)

Rank - 2 matrix factorization : $\hat{\mathbf{X}} = \mathbf{F}\mathbf{G}^{\mathrm{T}} \in R^{5\times 6}$

User feature matrix : $\mathbf{F} \in \mathbb{R}^{5 \times 2}$

Item feature matrix : $\mathbf{G} \in \mathbb{R}^{6 \times 2}$

- Preference (Rating) Matrix Reconstruction
 - ☐ Predict missing ratings in the rating matrix

4		5			3
	3	4		3	
3.8	3			4	
4			3.7		4
			2	5	

	_
-2.1	-0.4
-1.9	-0.6
-2.0	-0.1
-2.1	-0.1
-2.0	1.2

-1.9	-1.7	-2.0	-1.7	-1.9	-1.8
-0.1	0.2	-0.3	-1.0	1.0	0.1

- Remaining problems
 - \square Why we can assume rank-K matrices (K latent variables)?
 - \blacksquare How to compute rank-K matrices (user/item feature matrices)?

- Why K latent variables?
 - We don't know exact number of features in advance
 - \square We can assume there are indeed L (>> K) features, so

User feature matrix : $\mathbf{F}_0 \in \mathbb{R}^{N \times L}$

Item feature matrix : $\mathbf{G}_0 \in \mathbb{R}^{M \times L}$

 \blacksquare We do a linear projection to \mathbf{F}_0 and \mathbf{G}_0 (feature reduction)

Projection matrix : $\mathbf{A} \in R^{L \times L}$, $\mathbf{A}^{T} \mathbf{A} = \mathbf{I}$

User feature matrix : $\mathbf{F} = \mathbf{F}_0 \mathbf{A}_{1:K} \in \mathbb{R}^{N \times K}$

Item feature matrix : $\mathbf{G} = \mathbf{G}_0 \mathbf{A}_{1:K} \in \mathbb{R}^{M \times K}$

□ Now we can directly compute **F** and **G** (without noisy features)

- \blacksquare How to get rank-K feature matrices
 - □ Low-rank matrix factorization problem
 - Minimize the reconstruction and the observed preference matrix
- Regularized risk minimization
 - ☐ Many ML methods can be applied

Given the preference matrix $X \in \mathbb{R}^{N \times M}$ and rank K

$$\min_{\left\{\mathbf{F}\in R^{N\times K},\mathbf{G}\in R^{M\times K}\right\}} \left\| \left(\mathbf{X} - \mathbf{F}\mathbf{G}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left(\left\|\mathbf{F}\right\|_{F}^{2} + \left\|\mathbf{G}\right\|_{F}^{2} \right)$$

where $\mathbf{W} \in \{0,1\}^{N \times M}$ indicates observed entries in \mathbf{X}

- Probabilistic Matrix Factorization (PMF)
 - □ Assume user/item features and ratings are generated from Gaussians

$$p(\mathbf{X} | \mathbf{F}, \mathbf{G}) = \prod_{w_{u,m}=1} p(\mathbf{x}_{u,m} | \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m}, \sigma_{R}^{2})$$

$$p(\mathbf{F} | \mathbf{0}) = \prod_{u=1}^{N} p(\mathbf{f}_{u} | \mathbf{0}, \sigma_{F}^{2})$$

$$p(\mathbf{G} | \mathbf{0}) = \prod_{m=1}^{M} p(\mathbf{g}_{m} | \mathbf{0}, \sigma_{G}^{2})$$

■ Probabilistic interpretation of the optimization problem

$$\max_{\{\mathbf{F},\mathbf{G}\}} \ln[p(\mathbf{X} \mid \mathbf{F}, \mathbf{G})p(\mathbf{F} \mid \mathbf{0})p(\mathbf{G} \mid \mathbf{0})]$$

$$\Rightarrow \min_{\{\mathbf{F},\mathbf{G}\}} \sum_{w_{u,m}=1} (x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m})^{2} + c_{1} \sum_{u=1}^{N} \|\mathbf{f}_{u}\|^{2} + c_{2} \sum_{m=1}^{M} \|\mathbf{g}_{m}\|^{2}$$

$$\Rightarrow \min_{\{\mathbf{F},\mathbf{G}\}} \|(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathrm{T}}) \circ \mathbf{W}\|_{F}^{2} + c_{1} \|\mathbf{F}\|_{F}^{2} + c_{2} \|\mathbf{G}\|_{F}^{2}$$

- Singular Value Decomposition (SVD)
 - Most straightforward way to matrix factorization
 - But SVD is not defined for missing entries
 - ☐ Use average rating to stuff missing entries
 - ☐ Inaccurate for sparse matrices (tries to fit too many stuff entries)

4		3.7	5	3.7	3.7	3
3.7	7	3	4	3.7	3	3.7
3.7	7	3	3.7	3.7	4	3.7
4		3.7	3.7	3.7	3.7	4
3.7	7	3.7	3.7	2	5	3.7

Filled matrix : $\widetilde{\mathbf{X}} \in \mathbb{R}^{N \times M}$

User feature matrix : $\mathbf{F} \in \mathbb{R}^{N \times K}$

Item feature matrix : $\mathbf{G} \in \mathbb{R}^{M \times K}$

$$SVD : \widetilde{\mathbf{X}} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}} = \left(\mathbf{U}\sqrt{\mathbf{S}}\right)\left(\sqrt{\mathbf{S}}\mathbf{V}\right)^{\mathrm{T}} = \mathbf{F}\mathbf{G}^{\mathrm{T}}$$

- Alternative Least Squares (ALS)
 - □ Optimize **F** assuming **G** is known
 - □ Optimize **G** assuming **F** is known
 - ☐ Each step is a standard least square problem
 - ☐ Converge to a local minimum over alternative iterations

$$\min_{\left\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\right\}} \left\| \left(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathsf{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2} + \left\| \mathbf{G} \right\|_{F}^{2} \right)$$

$$\Rightarrow \begin{cases} \min_{\mathbf{F} \in R^{N \times K}} \left\| \left(\mathbf{X} - \mathbf{F} \hat{\mathbf{G}}^{\mathsf{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2} \\ \min_{\mathbf{G} \in R^{M \times K}} \left\| \left(\mathbf{X} - \hat{\mathbf{F}} \mathbf{G}^{\mathsf{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{G} \right\|_{F}^{2} \end{cases}$$

Alternative Least Squares (ALS)

$$\min_{\mathbf{F} \in R^{N \times K}} \left\| \left(\mathbf{X} - \mathbf{F} \hat{\mathbf{G}}^{\mathrm{T}} \right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{F} \right\|_{F}^{2}$$

$$\Rightarrow \min_{\mathbf{f}_{u} \in R^{K}} \sum_{w_{u,m}=1} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \hat{\mathbf{g}}_{m} \right)^{2} + \lambda \left\| \mathbf{f}_{u} \right\|^{2}, \text{ for } u \in U$$

$$\Rightarrow \mathbf{f}_{u} \leftarrow \left(\lambda + \sum_{w_{u,m}=1} \hat{\mathbf{g}}_{m} \hat{\mathbf{g}}_{m}^{\mathrm{T}} \right)^{-1} \sum_{w_{u,m}=1} \hat{\mathbf{g}}_{m} x_{u,m}$$

$$\min_{\mathbf{G} \in R^{M \times K}} \left\| \left(\mathbf{X} - \hat{\mathbf{F}} \mathbf{G}^{\mathrm{T}} \right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left\| \mathbf{G} \right\|_{F}^{2}$$

$$\Rightarrow \min_{\mathbf{g}_{m} \in R^{K}} \sum_{w_{u,m}=1} \left(x_{u,m} - \hat{\mathbf{f}}_{u}^{\mathrm{T}} \mathbf{g}_{m} \right)^{2} + \lambda \left\| \mathbf{g}_{m} \right\|^{2}, \text{ for } m \in I$$

$$\Rightarrow \mathbf{g}_{m} \leftarrow \left(\lambda + \sum_{w_{u,m}=1} \hat{\mathbf{f}}_{u} \hat{\mathbf{f}}_{u}^{\mathrm{T}} \right)^{-1} \sum_{w_{u,m}=1} \hat{\mathbf{f}}_{u} x_{u,m}$$

- Stochastic Gradient Descent (SGD)
 - ☐ Minimize an objective in the form of a sum of differentiable functions
 - ☐ All ratings in the rating matrix are shuffled and fed in sequentially
 - Each time a user/item feature vector is optimized on a single rating

$$\min_{\left\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\right\}} \left\| \left(\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathrm{T}}\right) \circ \mathbf{W} \right\|_{F}^{2} + \lambda \left(\left\|\mathbf{F}\right\|_{F}^{2} + \left\|\mathbf{G}\right\|_{F}^{2} \right)$$

$$\Rightarrow \min_{\left\{\mathbf{F}, \mathbf{G}\right\}} \sum_{w_{u,m}=1} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m} \right)^{2} + \lambda \left(\sum_{u=1}^{N} \left\|\mathbf{f}_{u}\right\|^{2} + \sum_{m=1}^{M} \left\|\mathbf{g}_{m}\right\|^{2} \right)$$

$$\Rightarrow \begin{cases} \mathbf{f}_{u} \leftarrow (1 - \alpha \lambda) \mathbf{f}_{u} - \alpha \mathbf{g}_{m} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m} \right) \\ \mathbf{g}_{m} \leftarrow (1 - \alpha \lambda) \mathbf{g}_{m} - \alpha \mathbf{f}_{u} \left(x_{u,m} - \mathbf{f}_{u}^{\mathrm{T}} \mathbf{g}_{m} \right) \end{cases}, \text{ for all } \left\{ x_{u,m} \right\}$$

- SVD++^[1]: Netflix Winner's Method
 - ☐ An improvement of SVD
 - \square Consider user bias b_u and item bias b_m

$$\min_{\{\mathbf{F} \in R^{N \times K}, \mathbf{G} \in R^{M \times K}\}} \| (\mathbf{X} - \mathbf{F} \mathbf{G}^{\mathsf{T}}) \circ \mathbf{W} \|_{F}^{2} + \lambda (\|\mathbf{F}\|_{F}^{2} + \|\mathbf{G}\|_{F}^{2})$$

$$\Rightarrow \min_{\{\mathbf{F}, \mathbf{G}\}} \sum_{w_{u,m}=1} (x_{u,m} - (\mu + b_{u} + b_{m} + \mathbf{f}_{u}^{\mathsf{T}} \mathbf{g}_{m}))^{2}$$

$$+ \lambda (\sum_{u=1}^{N} \|\mathbf{f}_{u}\|^{2} + \sum_{m=1}^{M} \|\mathbf{g}_{m}\|^{2} + \sum_{u=1}^{N} \|b_{u}\|^{2} + \sum_{m=1}^{M} \|b_{m}\|^{2})$$

- SVD++: Netflix Winner's Method
 - Stochastic Gradient Descent solution

$$\min_{\{\mathbf{F},\mathbf{G}\}} \sum_{w_{u,m}=1} \left(x_{u,m} - \left(\mu + b_{u} + b_{m} + \mathbf{f}_{u}^{\mathsf{T}} \mathbf{g}_{m} \right) \right)^{2}$$

$$+ \lambda \left(\sum_{u=1}^{N} \left\| \mathbf{f}_{u} \right\|^{2} + \sum_{m=1}^{M} \left\| \mathbf{g}_{m} \right\|^{2} + \sum_{u=1}^{N} \left\| b_{u} \right\|^{2} + \sum_{m=1}^{M} \left\| b_{m} \right\|^{2} \right)$$

$$\Rightarrow \begin{cases} \mathbf{f}_{u} \leftarrow (1 - \alpha \lambda) \mathbf{f}_{u} - \alpha \mathbf{g}_{m} \delta_{u,m} \\ \mathbf{g}_{m} \leftarrow (1 - \alpha \lambda) \mathbf{g}_{m} - \alpha \mathbf{f}_{u} \delta_{u,m} \\ b_{u} \leftarrow (1 - \alpha \lambda) b_{u} - \alpha \delta_{u,m} \end{cases}, \text{ for all } \{x_{u,m}\}$$

$$b_{u} \leftarrow (1 - \alpha \lambda) b_{m} - \alpha \delta_{u,m}$$

$$b_{m} \leftarrow (1 - \alpha \lambda) b_{m} - \alpha \delta_{u,m}$$

$$\text{where } \delta_{u,m} = x_{u,m} - \left(\mu + b_{u} + b_{m} + \mathbf{f}_{u}^{\mathsf{T}} \mathbf{g}_{m} \right)$$

Project: Collaborative Filtering

- Dataset:
 - Public available datasets for collaborative filtering (e.g., https://movielens.org/)
 - Or user rating data collected by yourself
- Method:
 - Use User-based CF or Probabilistic Matrix Factorization for collaborative filtering
- Experiments:
 - ☐ Obtain the rating prediction results for evaluate the performance
 - ☐ And discuss the limitations of the method you used based on the observations from the results

Thanks

Email: libin@fudan.edu.cn