MATLAB - LAB3 - EXERCISE 4

4.1:
$$\lambda_1 = \frac{5+\sqrt{5}}{2}$$
, $\lambda_2 = \frac{5-\sqrt{5}}{2}$

Source Node – both eigenvalues are positive

4.2:
$$\lambda_1 = \frac{-5+\sqrt{5}}{2}$$
, $\lambda_2 = \frac{-5-\sqrt{5}}{2}$ negative

Nodal sink – asymptotically stable – both eigenvalues are

4.3: $\lambda_1=-1,\ \lambda_2=2$ Unstable Saddle Point – distinct eigenvalues with one positive and one negative

4.4: $\lambda_1=1,\ \lambda_2=-2$ Unstable Saddle Point – distinct eigenvalues one positive and one negative

4.5:
$$\lambda_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
, $\lambda_2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$ inwards (real part is negative)

Nodal sink – distinct complex eigenvalues spiralling

4.6: $\lambda_1 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$, $\lambda_2 = \frac{1}{2} - i\frac{\sqrt{3}}{2}$ – spirals outwards as real part is positive

Unstable nodal source – distinct complex eigenvalues

4.7: $\lambda_1 = 2i$, $\lambda_2 = -2i$ Stable center clockwise – no real component in the eigenvalues

4.8: $\lambda_1 = -2i$, $\lambda_2 = 2i$ Stable center counter-clockwise – no real component to eigenvalues

4.9: $v\lambda_1 = i$, $\lambda_2 = -i$ Clockwise stable center – no real component to eigenvalues

4.10: $\lambda_1 = i$, $\lambda_2 = -i$ eigenvalues

 $Counter\text{-}clockwise\ stable\ center-no\ real\ component\ to$