Virtualization

Module 3 – Part B

Application Level Virtualization

- The application-level virtualization works where there is a desire to virtualize only one application.
- One does not require to virtualize the complete environment of the platform.
- Application virtualization delivers apps to a user's computer independently of the local desktop without having to access the apps on their physical device.
- In this scenario, applications are not installed in the expected runtime environment but are run as though they were.
- Allows applications to be run in runtime environments that do not natively support all the features required by such applications.

Application virtualization allows applications to run in environments that do not suit the native application. For example, Wine allows some Microsoft Windows applications to run on Linux.

1. Application in Native Environment

2. Application in Non-Native Environment

- In general, these techniques are mostly concerned with partial file systems, libraries, and operating system component emulation. Such emulation is performed by a thin layer—a program or an operating system component—that is in charge of executing the application.
- Application virtualization is an essential component of a complete desktop virtualization strategy and it applies to:
 - ✔ Cloud migration services
 - **✓** Both software and hardware
 - ✓ Servers
 - ✓ Storage

- Emulation can also be used to execute program binaries compiled for different hardware architectures. In this case, one of the following strategies can be implemented:
- Interpretation. In this technique, every source instruction is interpreted by an emulator for executing native ISA instructions, leading to poor performance. Interpretation has a minimal startup cost but a huge overhead, since each instruction is emulated.
- **Binary translation.** In this technique, every source instruction is converted to native instructions with equivalent functions. After a block of instructions is translated, it is cached and reused. Binary translation has a large initial overhead cost, but over time it is subject to better performance, since previously translated instruction blocks are directly executed.

- Emulation, as described, is different from hardware-level virtualization. The former simply allows the execution of a program compiled against a different hardware, whereas the latter emulates a complete hardware environment where an entire operating system can be installed.
- Application virtualization is a good solution in the case of missing libraries in the host operating system.
- In this case, a replacement library can be linked with the application, or library calls can be remapped to existing functions available in the host system.
- Another advantage is that in this case the virtual machine manager is much lighter since it provides a partial emulation of the runtime environment compared to hardware virtualization.

- Moreover, this technique allows incompatible applications to run together.
- Application-level virtualization works for a specific environment. It supports all the applications that run on top of a specific environment.
- One of the most popular solutions implementing application virtualization is **Wine**, which is a software application allowing Unix-like operating systems to execute programs written for the Microsoft Windows platform.

Storage Virtualization

Problems with Traditional Storage

Storage is Physical

- ✓ Connection and Presentation
- ✔ Power and cooling
- Access and configuration
- ✓ Results in reboots, complexity, downtime, and finally money Multiple Management System
- ✓ Inconsistent, incompatible, and incomplete
 - **Typical Storage Utilization**
- ✓ Disk utilization is low

Availability Requirement

High storage management cost

Storage Virtualization

- Storage virtualization is a system administration practice that allows decoupling the physical organization of the hardware from its logical representation.
- Using this technique, users do not have to be worried about the specific location of their data, which can be identified using a logical path.
- Storage virtualization allows us to harness a wide range of storage facilities and represent them under a single logical file system.
- There are different techniques for storage virtualization, one of the most popular being network-based virtualization by means of storage area networks (SANs).
- SANs use a network-accessible device through a large bandwidth connection to provide storage facilities.

Memory Virtualization

- Typical x86 architecture has a virtual to physical address mapping (VA □ PA)
- Virtualized x86 architecture requires a two level address translation
 - VA \square PA
 - Physical address (PA) □ Machine Address (MA)
- Guest OS has no idea about this translation
 - Guest continues to maintain page tables containing VA □
 PA mappings

Paging without Virtualization

Paging with Virtualization

Does a 2 Level Indirection Work?

- Guest is only aware of VA □ PA mapping
 - Issues only VA to hardware MMU
 - MMU supports only a single mapping
- Solution: Shadow Page Table
 - Hypervisor maintains a single shadow page table in the MMU
 - Shadow page table contains direct VA □ MA mapping
 - Trick is to maintain consistency!!!

Shadow Page Tables

Shadow page tables

Building Shadow Page Tables

- The guest can update its page tables at any time
 - Not a privileged instruction not trapped!
 - Without knowing when the guest OS updates its page table, the hypervisor cannot maintain the correct entry in the shadow page table
- Solution: Mark the guest page tables as read only
 - Writing generates an exception, which can be trapped by hypervisor

What happens during page faults?

- Two kinds of page faults can occur:
 - True Miss: The mapping does not exist in the guest page table
 - Hidden Miss: The mapping exists in the guest page table, but is absent in the shadow page table
- The hypervisor should disambiguate between the two
- On every miss, the hypervisor walks the guest page table [Tracing]
 - If a mapping exists, the hypervisor silently updates the shadow page table and retries the instruction
 - Otherwise, the hypervisor forwards the page fault to the guest OS for handling

Pros and Cons

- The good: shadow tables allow the MMU to directly translate guest VPNs to hardware pages
 - Thus, guest OS code and guest apps can execute directly on the CPU
- The bad:
 - Double the amount of memory used for page tables
 - i.e. the guest's tables and the shadow tables
 - Overhead due to VMM traps

Second Level Address Translation (SLAT)

- Hardware support for memory virtualization
 - Extended Page Tables (EPT) Intel
 - Nested Page Tables (NPT) AMD
- Walking the guest and host page tables can be combined into a single multilevel page table
 - Page table depth increases tremendously in some cases!!!
 - Extremely important to use an effective TLB to avoid expensive page table walks
- TLB modified to reduce miss rate
 - Larger TLB
 - More expensive, though!!!
 - Tagged TLB
 - Every entry in TLB now has an address space identifier

Extended Page Table

Network Virtualization

- Network virtualization combines hardware appliances and specific software for the creation and management of a virtual network.
- Network virtualization can aggregate different physical networks into a single logical network (external network virtualization) or provide network-like functionality to an operating system partition (internal network virtualization).
- The result of external network virtualization is generally a virtual LAN (VLAN).
- A VLAN is an aggregation of hosts that communicate with each other as though they were located under the same broadcasting domain.

- Internal network virtualization is generally applied together with hardware and operating system-level virtualization, in which the guests obtain a virtual network interface to communicate with.
- There are several options for implementing internal network virtualization:
- ✓ The guest can share the same network interface of the host and use Network Address Translation (NAT) to access the network;
- ✓ The virtual machine manager can emulate, and install on the host, an additional network device, together with the driver;
- ✓ The guest can have a private network only with the guest.

Desktop Virtualization

- It abstracts the desktop environment available on a personal computer in order to provide access to it using a client/server approach.
- It makes the same desktop environment accessible from everywhere.
- Strictly refers to the ability to remotely access a desktop environment.
- The desktop environment is stored in a remote server or a data center that provides a high-availability infrastructure and ensures the accessibility and persistence of the data.
- Virtual desktop infrastructure (VDI), Remote desktop services (RDS), and Desktop-as-a-Service (DaaS)

Live Migration and Server Consolidation

Live Migration

- Broad steps in any migration technique: Suppose we are migrating a VM from host A to host B
 - 1. Setup target host B, reserve resources for the VM
 - Push phase: push some memory of VM from A to B
 - 3. Stop-and-copy: stop the VM at A, copy CPU context, and some memory
 - 4. Pull phase: Start VM at host B, pull any further memory required from A
 - 5. Clean up state from host A, migration complete
- Total migration time: time for steps 2,3,4
- Service downtime: time for step 3
- Other metrics: impact on application performance, network bandwidth consumed, total pages transferred

Pre-copy

Post-copy

Xen Hypervisor

- Xen is an open-source virtualization platform based on paravirtualization.
- Initially developed by a group of researchers at the University of Cambridge in the UK.
- Xen-based technology is used for either desktop virtualization or server virtualization.
- It has also been used to provide cloud computing solutions by means of Xen Cloud Platform (XCP).

Xen Architecture and Guest OS Management

VMWare – Full Virtualization

VMware workstation architecture

VMware supports virtualization of operating system environments and single applications on end user computers.

VMware GSX server architecture

Provides Server Virtualization

- A daemon process, called serverd, controls and manages VMware application processes.
- These applications are then connected to the virtual machine instances by means of the VMware driver installed on the host operating system.
- Virtual machine instances are managed by the VMM.
- User requests for virtual machine management and provisioning are routed from the Web server through the VMM by means of serverd.

VMware ESXi server architecture

- The base of the infrastructure is the VMkernel, which is a thin Portable Operating System Interface (POSIX) compliant operating system that provides the minimal functionality for processes and thread management, file system, I/O stacks, and resource scheduling.
- The kernel is accessible through specific APIs called User world API.
- These APIs are utilized by all the agents that provide supporting activities for the management of virtual machines.
- Remote management of an ESXi server is provided by the CIM Broker, a system agent that acts as a gateway to the VMkernel for clients by using the Common Information Model (CIM) protocol.
- The ESXi installation can also be managed locally by a Direct Client User Interface (DCUI), which provides a BIOS-like interface for the management of local users.

VMware Cloud Solution stack

- vSphere provided a set of basic services.
- The management of the infrastructure is operated by VMware vCenter, which provides centralized administration and management of vSphere installations in a data center environment.
- A collection of virtualized data centers are turned into a IaaS cloud by VMware vCloud.
- VMware also provides a solution for application development in the cloud with VMware vFabric.
- VMware provides Zimbra, a solution for office automation, messaging, and collaboration that is completely hosted in the cloud and accessible from anywhere.

Microsoft Hyper-V architecture

Thank You!!!