

NEIL GOGTE INSTITUTE OF TECHNOLOGY & KESHAV MEMORIAL ENGINEERING COLLEGE

ARTIFICIAL INTELLIGENCE (PC 502CSM)

Deepika.M

Assistant Professor, CSE(AIML)

NGIT

UNIT-IV

Learning

DECISION TREES

Gini index

- The Gini index measures impurity or inequality frequently used in decision tree algorithms.
- It quantifies the probability of misclassifying a randomly chosen element if it were randomly labeled according to the distribution of labels in a particular node.
- The equation for the Gini index is as follows:

$$GiniIndex = 1 - (p_1^2 + p_2^2 + ... + p_k^2)$$

where p1, p2, ..., pk are the probabilities of each class in the node.

Gini Index visualization

- The *GiniA(D)* represents the weighted Gini index for the entire dataset *D*. It's a measure of impurity or inequality in the dataset, considering the weighted average of the impurities of two subsets, *D*1 and *D*2.
- *n*1: This is the number of instances (data points) in subset *D*1.
- n2: This is the number of instances (data points) in subset D2.
- n: The total number of instances in the entire dataset D(n=n1+n2).
- Gini(D1): This is the Gini index of subset D1, which quantifies the impurity or uncertainty of class labels in D1. A lower Gini index indicates higher purity.
- Gini(D2): This is the Gini index of subset D2, similar to Gini(D1) Gini(D1), but for the other subset.

Dataset

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	No	No
Sunny	Hot	High	Yes	No
Overcast	Hot	High	No	Yes
Rainy	Mild	High	No	Yes
Rainy	Cool	Normal	No	Yes
Rainy	Cool	Normal	Yes	No
Overcast	Cool	Normal	Yes	Yes
Sunny	Mild	High	No	No
Sunny	Cool	Normal	No	Yes
Rainy	Mild	Normal	No	Yes
Sunny	Mild	Normal	Yes	Yes
Overcast	Mild	High	Yes	Yes
Overcast	Hot	Normal	No	Yes
Rainy	Mild	High	Yes	No

 To calculate the Gini index for each attribute and construct a decision tree, we'll start by analyzing the given data and calculating the Gini index for each attribute at the first step. We have four attributes in the

above -'-----

Out Sunn Over		Tempe Hot Mild	<u>erature</u>	<u>Hum</u> High Norma	<u>idity</u>
Rainy	Win	Cool	<u>Pl</u>	<u>ay</u>	
	No Yes		No Ye:		

Attributes to calculate gini index

Steps to construct a decision tree

Step 1

Calculate Gini index for each attribute

Calculate weighted Gini index for each attribute

Calculate Gini index for Outlook

For Sunny:

- · Play=No count: 3
- · Play=Yes count: 2
- · Gini index for Sunny:

$$\circ = 1 - (2/5)^2 - (3/5)^2$$

$$\circ = 1 - 4/25 - 9/25$$

$$\circ = 1 - 13/25$$

$$0 = 12/25$$

For Overcast:

- Play=No count: 0
- · Play=Yes count: 4
- · Gini index for Overcast:

$$\circ = 1 - (0/4)^2 - (4/4)^2$$

$$\circ = 1 - 0/16 - 16/16$$

$$\circ = 0$$

For Rainy:

- Play=No count: 3
- · Play=Yes count: 2
- Gini index for Rainy:

$$\circ = 1 - (3/5)^2 - (2/5)^2$$

$$\circ = 1 - 9/25 - 4/25$$

$$\circ = 12/25$$

Calculate weighted Gini index for Outlook

$$(5/14)*(12/25)+(4/14)*0+(5/14)*(12/25)=0.342$$

Calculate Gini index for Windy

For No:

- · Play=No count: 2
- · Play=Yes count: 6

$$\circ$$
 = 1 - $(6/8)^2$ - $(2/8)^2$ = 0.375

For Yes:

- · Play=No count: 3
- Play=Yes count: 3

$$\circ = 1 - (3/6)^2 - (3/6)^2 = 0.5$$

Calculate weighted Gini index for Windy

$$(8/14)*(3/8)+(6/14)*(1/2)=0.428$$

Calculate Gini index for **Temperature**

For Hot:

· Play=No count: 2

· Play=Yes count: 2

· Gini index for Hot:

$$\circ = 1 - (2/4)^2 - (2/4)^2 = 0.5$$

For Mild:

· Play=No count: 2

· Play=Yes count: 4

Gini index for Mild:

$$\circ = 1 - (2/4)^2 - (2/4)^2 = 0.5$$
 $\circ = 1 - (2/6)^2 - (4/6)^2 = 4/9$

For Cool:

· Play=No count: 1

· Play=Yes count: 3

· Gini index for Cool:

$$\circ = 1 - (1/4)^2 - (3/4)^2 = 0.375$$

Calculate weighted Gini index for **Temperature**

$$(4/14) * 0.5 + (6/14) * (4/9) + (4/14) * (0.375) = 0.4404$$

Calculate Gini index for Humidity

For High:

- · Play=No count: 4
- · Play=Yes count: 3

$$\circ$$
 = 1 - $(3/7)^2$ - $(4/7)^2$ = 0.4898

For Normal:

- · Play=No count: 1
- · Play=Yes count: 6

$$\circ$$
 = 1 - $(6/7)^2$ - $(1/7)^2$ = 0.2449

Calculate weighted Gini index for Humidity

$$(7/14) * 0.4898 + (7/14) * 0.2449 = 0.2449 + 0.2449 = 0.4898$$

Step 2

Take decision base on calculated result for root node.

Take a decision base on the calculated result for the root node

Now we have the Gini index calculations for each attribute at the first step:

Outlook: 0.3429

• Temperature: 0.4404

Humidity: 0.4898

Windy: 0.4286

The attribute with the lowest Gini index is Outlook, so it would be selected as the root of the decision tree in the next step.

Step 3

Extract the dataset under the selected root node for each subtree.

Extract the dataset under the selected root node for each subtree.

Outlook -> Sunny

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	No	No
Sunny	Hot	High	Yes	No
Sunny	Mild	High	No	No
Sunny	Cool	Normal	No	Yes
Sunny	Mild	Normal	Yes	Yes

· Outlook -> Overcast

Outlook	Temperature	Humidity	Windy	Play
Overcast	Hot	High	No	Yes
Overcast	Cool	Normal	Yes	Yes
Overcast	Mild	High	Yes	Yes
Overcast	Hot	Normal	No	Yes

Outlook -> Rainy

Outlook	Temperature	Humidity	Windy	Play
Rainy	Mild	High	No	Yes
Rainy	Cool	Normal	No	Yes
Rainy	Cool	Normal	Yes	No
Rainy	Mild	Normal	No	Yes
Rainy	Mild	High	Yes	No

Step 4

Repeat **Step1**, **Step2** and **Step3** for each subtree until we reach the leaf node

Here we have three sub branches:

- Sunny
- Overcast
- Rainy

After repeating step1, step2 and step3, we will find these calculated results for leaf node

Outlook -> Sunny

• Temperature: 0.44

· Humidity: 0

Windy: 0.44

Outlook -> Overcast

· Temperature: 0

· Humidity: 0

· Windy: 0

Outlook -> Rainy

• Temperature: 0.464

Humidity: 0.464

· Windy: 0

Tree at this moment

Repeat the same steps for the subtrees

Extract the dataset under the selected root node for each attribute.

• Humidity -> High

Humidity	Temperature	Windy	Play
High	Hot	No	No
High	Hot	Yes	No
High	Mild	No	No

• Humidity -> Normal

Humidity	Temperature	Windy	Play
Normal	Cool	No	Yes
Normal	Mild	Yes	Yes

We can repeat step1 , step2 and step3 for above dataset of we can observe that for every case under

- Humidity -> High
 - o Play= No
- Humidity -> Normal
 - Play = Yes

Tree at this moment

Extract the dataset under the selected root node for each attribute.

Windy -> Yes

Windy	Temperature	Humidity	Play
Yes	Mild	High	No
Yes	Cool	Normal	No
Yes	Mild	Normal	No

· Windy -> No

Windy	Temperature	Humidity	Play
No	Mild	High	Yes
No	Cool	Normal	Yes
No	Mild	Normal	Yes

We can repeat step1, step2 and step3 for above dataset of we can observe that for every case under

- Windy -> Yes
 - o Play= No
- Windy -> No
 - o Play = Yes

Final Tree

- By leveraging the Gini index, which measures
 the impurity of a node, we were able to
 determine the best splitting criteria for creating
 an effective decision tree model.
- This approach allowed us to make informed decisions based on the purity and predictive power of each node in the tree.
- The Gini index offers a valuable tool for decision tree construction, enabling us to efficiently andle categorical and numerical features.