

Principal Component Analysis Machine Learning and Pattern Recognition

(Largely based on slides from Victor Lavrenko)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886/MO444, October 6, 2017

Why is Dimensionality Reduction useful?

Data Compression

- Reduce time complexity: less computation required
- Reduce space complexity: less number of features
- More interpretable: it removes noise
- Data Visualization
- To mitigate "the curse of dimensionality"

Even a basic 4D hypercube is incredibly hard to picture in our mind.

As the dimensionality of data grows, the density of observations becomes lower and lower and lower.

10 images 1 dimension: 5 regions

As the dimensionality of data grows, the density of observations becomes lower and lower and lower.

10 images2 dimensions: 25 regions

As the dimensionality of data grows, the density of observations becomes lower and lower and lower.

10 images 3 dimensions: 125 regions

- 1 dimension: the sample density is
 10/5 = 2 samples/interval
- 2 dimensions: the sample density is 10/25 = 0.4 samples/interval
- 3 dimensions: the sample density is
 10/125 = 0.08 samples/interval

The Curse of Dimensionality: Solution?

 Increase the size of the training set to reach a sufficient density of training instances.

 Unfortunately, the number of training instances required to reach a given density grows exponentially with the number of dimensions.

How to reduce dimensionality?

• Feature Extraction: create a subset of new features by combining the existing ones.

$$\circ \quad z = f(x_1, x_2, x_3, x_4, x_5)$$

• Feature Selection: choosing a subset of all the features (the ones more informative).

$$\circ$$
 x_1, x_2, x_3, x_4, x_5

PCA: Principal Component Analysis

Principal Component Analysis (PCA)

- The most popular dimensionality reduction algorithm.
- PCA have two steps:
 - It identifies the hyperplane that lies closest to the data.
 - It projects the data onto it.

Preserving the Variance

PCA Algorithm By Eigen Decomposition

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, ..., x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)}$$

Replace each $x_i^{(i)}$ with $x_i - \mu_i$.

Center the data

Data Preprocessing

Training set: $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

Center the data

If different features on different scales, scale features to have comparable range of values.

Data Preprocessing

Credit: http://cs231n.github.io/neural-networks-2/

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Covariance of dimensions x_1 and x_2 :

- Do x_1 and x_2 tend to increase together?
- or does x_2 decrease as x_1 increases?

$$\begin{array}{c}
 x_1 & x_2 \\
 x_1 & 2.0 & 0.8 \\
 x_2 & 0.8 & 0.6
 \end{array}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$x_1 \quad \begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

Multiple a vector by Σ :

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ x \end{bmatrix} \times \begin{bmatrix} 2.00.8 \\ 0.80.6 \end{bmatrix} \times \begin{bmatrix} 2.00.8 \\ 0.80.6 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -2.5 \\ -1.0 \end{bmatrix} = \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix}$$

$$x_1 \quad \begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \times \begin{bmatrix} -6.0 \\ -2.7 \end{bmatrix} = \begin{bmatrix} -14.1 \\ -6.4 \end{bmatrix}$$

Turns towards direction of variation

Want vectors u which aren't turned: $\Sigma u = \lambda u$

 $u = eigenvectors of \Sigma$

 λ = eigenvalues

Finding Principal Components

1. Find eigenvalues by solving: $det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} =$$

Finding Principal Components

1. Find eigenvalues by solving: $\det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} = (2.0 - \lambda)(0.6 - \lambda) - (0.8)(0.8)$$

1. Find eigenvalues by solving: $\det(\Sigma - \lambda I) = 0$

$$\det\begin{bmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{bmatrix} = (2.0 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = \lambda^2 - 2.6\lambda + 0.56 = 0$$
$$\{\lambda_1, \lambda_2\} = \{2.36, 0.23\}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$u_{1} \sim \begin{bmatrix} 2.2 \\ 1 \end{bmatrix}$$

2. Find i^{th} eigenvector by solving: $\sum u_i = \lambda_i u_i$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = 0.23 \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} \quad \mathbf{u}_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$$

0.91

$$\begin{bmatrix} 2.0 \ 0.8 \\ 0.8 \ 0.6 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} = 2.36 \begin{bmatrix} u_{11} \\ u_{12} \end{bmatrix} \Rightarrow \begin{cases} 2.0u_{11} + 0.8u_{12} = 2.36u_{11} \\ 0.8u_{11} + 0.6u_{12} = 2.36u_{12} \end{cases} \Rightarrow u_{11} = 2.2u_{12}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} = 0.23 \begin{bmatrix} u_{21} \\ u_{22} \end{bmatrix} \quad u_2 = \begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix} \qquad u_1 \sim \begin{bmatrix} 2.2 \\ 1 \end{bmatrix}$$

3.
$$1^{st}$$
 PC: $\begin{bmatrix} 0.91 \\ 0.41 \end{bmatrix}$ and 2^{nd} PC: $\begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue λ_i = variance along u_i

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue λ_i = variance along u_i
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue $\lambda_i = \text{variance along } u_i$
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance

- Have eigenvectors $u_1, u_2, ..., u_n$, want k < n
- eigenvalue $\lambda_i = \text{variance along } u_i$
- Pick u_i that explain the most variance:
 - Sort eigenvectors s.t. $\lambda_1 > \lambda_2 > \lambda_3 > \dots > \lambda_n$
 - \circ Pick first k eigenvectors which explain 95% of total variance
 - Typical threshold: 90%, 95%, 99%

0.95

PCA in a Nutshell (Eigen Decomposition)

- 1. Center the data (and normalize)
- 2. Compute covariance matrix Σ
- 3. Find eigenvectors u and eigenvalues λ
- 4. Sort eigenvectors and pick first *k* eigenvectors
- 5. Project data to k eigenvectors

PCA Algorithm By Singular Value Decomposition

Data Preprocessing

Training set: $x^{(1)}, x^{(2)}, ..., x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

Center the data

If different features on different scales, scale features to have comparable range of values.

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

$$[U, S, V] = svd(sigma)$$
 Singular Value Decomposition

Reduce data from n-dimensions to k-dimensions

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}} \longrightarrow n \times n \text{ matrix}$$

Compute "eigenvectors" of matrix Σ :

$$[U, S, V] = svd(sigma)$$
 Singular Value Decomposition

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n} \qquad x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

From [U, S, V] = svd(sigma), we get:

$$U = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} \cdots u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$x \in \mathbb{R}^n \to z \in \mathbb{R}^k$$

$$z = \begin{bmatrix} 1 & 1 & 1 \\ u^{(1)} & \cdots & u^{(k)} \\ 1 & 1 & 1 \end{bmatrix}^T x$$

$$k \times n \qquad n \times 1$$

After mean normalization and optionally feature scaling:

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{\mathrm{T}}$$

[U, S, V] = svd(sigma)

$$z = (\mathbf{U}_{\text{reduce}})^{\mathrm{T}} \times x$$

Choosing the Number of Principal Components

Choosing k (#Principal Components)

[U, S, V] = svd(sigma)

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}$$

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^{2}$$

$$1 - \frac{\sum_{i=1}^{m} S_{ii}}{\sum_{i=1}^{m} ||x^{(i)}||^{2}}$$

Choosing k (#Principal Components)

[U, S, V] = svd(sigma)
$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - x_{approx}^{(i)}||^{2}}{1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} ||x^{(i)}||^{2}}}$$

$$1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} ||x^{(i)}||^{2}}$$

Practical Issues

PCA: Practical Issues

- PCA assumes underlying subspace is linear
 - PCA cannot find a curve

PCA: Practical Issues

- PCA assumes underlying subspace is linear
 - PCA cannot find a curve

- PCA and Classification
 - PCA is unsupervised
 - PCA can pick direction that makes hard to separate classes

Linear Discriminant Analysis (LDA)

- LDA pick a new dimension that gives:
 - Maximum separation between means of projected classes
 - Minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrix

Linear Discriminant Analysis (LDA)

https://www.youtube.com/playlist?list=PLBv09BD7ez_5_yapAg86Od6JeeypkS4YM

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 8
 "Dimensionality Reduction"
- Pattern Recognition and Machine Learning, Chap. 12 "Continuous Latent Variables"
- Pattern Classification, Chap. 10 "Unsupervised Learning and Clustering"

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 8