Curso Introdutório em Tecnologia de Satélites

Subsistema de Controle de Atitude

Petrônio Noronha de Souza

Coordenação Geral de Engenharia e Tecnologia Espacial – ETE Instituto Nacional de Pesquisas Espaciais – INPE São José dos Campos, SP Novembro de 2002

Unidade 2/Parte 2.2/Versão 1.0

2.2 – Subsistema de Controle de Atitude (ACS) (*)

- O que é a **Atitude** de um satélite?
 - A Atitude de um satélite é a sua orientação no espaço.
- O movimento de um satélite rígido possui 6 graus de liberdade (3 translações e três rotações) e é normalmente modelado por meio de 12 variáveis de estado. São elas:
 - Movimento de translação do centro de massa: 3 Posições + 3 Velocidades lineares.
 - Movimento de rotação em torno do centro de massa: 3 Ângulos + 3 Velocidades angulares.
- Função do Subsistema de Controle de Atitude (Attitude Control System ACS): Apontar e conservar o apontamento do satélite com uma precisão e deriva ("drift") previamente estabelecidos, tendo em vista sua missão. Seqüência de ações de controle:
 - 1. Determinação da atitude do satélite por meio de sensores.
 - Processamento dos dados por computador.
 - 3. Correção de atitude e órbita por meio de atuadores.
- Tipos principais de estabilização de satélites e precisões usualmente atingidas:
 - Gradiente de gravidade (> 5°)
 - Spin (1° a 5°)
 - Dual-spin (0,1° a 1°)
 - 3-eixos (< 0,1°)
- Os ACS frequentemente incorporam também a função de controle de órbita. Nestes casos são conhecidos como Subsistemas de Controle de Atitude e Órbita (AOCS em inglês ou SCAO em português).

2.2 – Subsistema de Controle de Atitude: Descrição (*)

A grande maioria dos satélites em órbita utiliza um sistema de controle dito embarcado, pelo qual a determinação e o controle da atitude são realizados de forma autônoma e independente por uma eletrônica (geralmente baseada em micro-computadores) a bordo da espaçonave. Manobras de atitude e órbita, quando necessárias, são realizadas através de comandos provindos de Terra, e interpretados e supervisionados pelo computador de controle. O controle de atitude é entretanto realizado automaticamente a bordo, em malha fechada, conforme mostrado na figura abaixo. As informações provindas dos sensores de atitude são processadas e filtradas por um estimador de estado, que as compara, a seguir, com uma referência previamente comandada (por exemplo, um apontamento geocêntrico). Os erros entre o estado estimado e a referência serão então usados pelo algoritmo do controlador, e este deverá acionar os atuadores de forma adequada, no sentido de reduzir ou eliminar estes erros.

Os componentes embarcados são usualmente classificados em: sensores, atuadores, software e

eletrônica.

0. Gravity Gradient

A. Spin

B. Dual-Spin

C. Zero Momentum Spin **Thrusters** Momentum Despin wheel reference sensors field-of-view Spinning body Orbit Reference direction despin axis D. Pitch Momentum Bias Earth Momentum wheel ► Roll axis Pitch axis Yaw sensor Nutation field-of-view damper

Pitch and roll

field-of-view

Yaw axis

Earth

sensor

(Thrusters, array

and appendages

not shown)

Orbit

2.2 – Subsistema de Controle de Atitude: Diagrama de Blocos, [3]

Modular ACS Generic Block Diagram

2.2 – Subsistema de Controle de Atitude, [3]

Fig.: Spacecraft Attitude Control

SC				Maneuvering		
Tipos	Technique	Typical Missions	Typical Attitude Pointing Accuracy* (Deg)	Rates	Propellant Usage	Spacecraft Examples
0	Gravity Gradient	Experimental Only	10.0 - 5.0	NA	NA	
Α	Spin	Scientific, Scanning	1.0 - 0.1	Low	High	Pioneers, Explorer 5
	, - -	Sensors				
В	Dual Spin	Communication Satellites	0.15 - 0.05	Low	High	DSCS-II, Tiros, Intelsat, Galileo,
	·				_	HS376
С	Zero Momentum Spin	Scanning Sensors	0.15 - 0.05	High	Low	Vela, DSP
D	Pitch Momentum Bias	Earth Pointing	0.15 - 0.05	Low	Low	FLTSATCOM, TDRS, Satcom,
		Sensors/Antennas			1	Eurostar
E	Mass Expulsion Reaction	Interplanetary Earth	0.5 0.1	Only High	Moderate	Shuttle, Apollo, LEM, Ranger,
	Control System (RCS)	Orbiting				Mariner, Voyager, MMS
F	Zero Momentum Bias-	Scientific, Astronomical	0.5 – 0.001	Low	Low	OGO, HEAO, GRO, Nimbus
_	Reaction Wheel Assembly					
	(RWA)				! .	
G	Zero Momentum Bias-	Orbiting Platforms	0.5 – 0.001	High	Low	Skylab
J	Control Moment Gyro					
	(CMG)				<u> </u>	

^{*}Also a function of the attitude sensors used.

2.2 – Subsistema de Controle de Atitude: Descrição de seus componentes (*)

Sensores

- Sensores solares: Utilizam-se os sensores solares para determinar a direção do sol relativa ao satélite. Existem diversos tipos de sensores solares, com diferentes formas de atuação e diferentes precisões, normalmente diferenciados em sensores digitais e analógicos.
- Magnetômetros: Estes sensores medem a projeção do campo magnético da Terra na direção do eixo sensor. É comum, portanto, que se utilizem em satélites magnetômetros de três eixos, de forma a determinar a direção do campo magnético de forma unívoca.
- Sensores de horizonte (ou de Terra): Este tipo de sensor utiliza um detector de radiação infra-vermelha, e com isso consegue detectar a zona de transição entre a temperatura do espaço e a temperatura da Terra (daí o nome de horizonte).
- Sensores de estrelas: São dispositivos capazes de identificar determinadas estrelas (dentro de um conjunto previamente selecionado) no campo visual do sensor, e com isso, determinar suas coordenadas com relação ao satélite.
- Giroscópios ou Girômetros: Os giroscópios são aparelhos dotados de um rotor que gira em velocidades elevadas, e com isso seus mancais sentem deslocamentos angulares da base. Dois tipos principais de giros se destacam: giros de velocidade ("rate gyros") e giros de velocidade integrada ("rate integrated gyros").
- Sensores de navegação: Receptores GPS que fornecem dados que permitem o cálculo de posicionamento e medidas brutas para processamento refinado.

Atuadores

- Bobinas magnéticas: Por serem leves, de custo reduzido e por consumirem energia renovável (energia elétrica provinda dos painéis solares), são largamente utilizadas em satélites artificiais. As bobinas, devido à interação do campo magnético gerado por elas com o campo magnético da Terra, geram um torque.
- Propulsores a jato de gás: Jatos de gás são motores capazes de gerar impulsos elevados no satélite, tanto em termos de forças quanto em torques. São utilizados, com freqüência, em manobras de órbita e atitude, porém tem emprego reduzido na estabilização e controle da atitude, pois neste caso deve-se contar com dispositivos capazes de gerar torques da ordem de grandeza dos torques de perturbação (da ordem de 10-4 Nm).
- Rodas de reação e volantes de inércia: Estes dispositivos consistem de rotores que trocam momento angular com o satélite sempre que são acelerados ou freados através de um motor comandado pela eletrônica de controle.

Eletrônica de controle

O computador utilizado em controle de atitude consiste de uma ou mais CPUs, banco de memória, sistemas de chaveamento de equipamentos e interfaces de entrada e saída. A interligação do computador com os diversos equipamentos que constituem o SCAO é geralmente realizada individualmente, o que resulta numa configuração radial. Há uma tendência atual, todavia, de utilizar-se um barramento principal, ao qual todos os equipamentos se conectam. Os computadores possuem interfaces de aquisição de dados digitais e analógicos, bem como saídas digitais para comandar os equipamentos.

2.2 – Componentes embarcados: Sensores, [8]

Sensores de posição

Sensor Solar

- Tipo: digital gray code
- Faixa de precisão: 0,005 a 1°
- Fabricantes: Barnes, Adcole, Ithaco, TRW
- Tipo: analógico piramidal com faixa de precisão de 0,5 a 5°

2.2 - Componentes embarcados: Sensores (cont.), [8]

Magnetômetro

- Tipo: fluxgate
- Faixa de precisão: 0,1 a 5° (depende da contaminação)
- Fabricantes: Ithaco, Crouzet, Schonstedt

2.2 - Componentes embarcados: Sensores (cont.), [8]

· Sensor de Terra

- Tipo: de varredura
- Faixa de precisão: 0,15 a 1°
- Fabricantes: Ithaco, Sodern
- Tipo: digital
- Faixa de precisão; 0,15 a 1°
- Fabricantes: Barnes, Elop

2.2 – Componentes embarcados: Sensores (cont.), [8]

· Sensor de estrelas

- Tipo: grade de detectores
- Faixa de precisão: 0,0003 a 0,02°
- Fabricantes: Sodern, Cal, Honeywell, Hughes

2.2 - Componentes embarcados: Sensores (cont.), [8]

Sensores de velocidade

- Giroscópios ou Girômetros
 - Tipo: ring laser ou fibra ótica
 - Faixa de precisão: 0,003 a 1°/h
 - Fabricantes: Sextant, Litton

- Tipo: dry tuned
- Faixa de precisão: 0,003 a 1°/h

Atuadores

Bobinas Magnéticas

- Tipo: núcleo
- Faixa de atuação: 10 μNm a 0,04 Nm
- Fabricantes: Ithaco, Fokker, Hughes, Lockheed

2.2 – Componentes embarcados: Atuadores (cont.), [8]

Propulsores

Tipo: gás frio

Faixa de atuação: 0,1 a 5 N

• Fabricantes: Moog, Bendix, Honeywell

• Tipo: monopropelente (hidrazina)

• Faixa de atuação: 0,5 a 9.000 N

• Fabricantes: Moog, Kaiser Marquardt, SEP, Hamilton Standard, TRW

2.2 - Componentes embarcados: Atuadores (cont.), [8]

Rodas de Reação

 Tipo: momento angular nulo (roda de reação)

• Faixa de atuação: 0,001 a 1 Nm

Fabricantes: Teldix, Ithaco

Faixa de atuação: 0,001 a 1 Nm

• Fabricantes: Ithaco, Teldix, Bendix, Honeywell

2.2 – Componentes embarcados: Computadores de bordo, [8]

Eletrônica computadorizada

CPU: 8086, 80386 "radiation hardened".

 Memória: de 32K a mais de 1Mbyte de RAM e ROM.

Interfaces: digitais, analógicas, RS232, etc.

• Arquitetura: estrela ou tipo bus.

2.2 – Subsistema de Controle de Atitude: Arquiteturas

Tipo 0

Tipo A

Requisitos	Estabilização	Sensores	Atuadores
Terra-apontado	Gradiente de gravidade	 não são necessários magnetômetro e sensor solar 	mastroamortecedor de libraçãobobinas ou volante
Inercial	Rotação	 magnetômetro e sensor solar 	amortecedor de nutação e bobinas

Tipo B Tipo C Tipo D

Tipo A

Requisitos	Estabilização	Sensores	Atuadores
Terra-apontado	Dual-spin ou momento embarcado	• magnetômetro , sensor solar e sensor de Terra	 volante de inércia, amortecedor, bobinas volante de inércia, amortecedor e jatos
Inercial	Rotação	 magnetômetro e sensor solar 	 bobinas, jatos e amortecedor de nutação

2.2 – Subsistema de Controle de Atitude: Arquiteturas (cont.)

Tipo F Tipo G

Tipo F Tipo G

Requisitos	Estabilização	Sensores	Atuadores
Terra-apontado	Estabilização em 3 eixos	• Sensor de Terra, sensor solar e girômetros	 rodas de reação e bobinas rodas de reação e jatos
Inercial	Estabilização em 3 eixos	• Sensor de estrela, sensor solar e girômetros	 rodas de reação e bobinas rodas de reação e jatos

Tipo F Tipo G

Requisitos	Estabilização	Sensores	Atuadores
Menor que 0,1°	Estabilização em 3 eixos	• Sensor de estrela e girômetros mais precisos	 rodas de reação e bobinas rodas de reação e jatos

2.2 – Subsistema de Controle de Atitude: Software embarcado, [8]

- Codificação: Assembler, C++ ou ADA.
- Modos de operação: vários, em função da missão.
- Módulos: leitura dos sensores, determinação da atitude, leis de controle, comando dos atuadores, reconhecimento e recuperação de falha, reconfiguração automática e modo de emergência.

2.2 – Subsistema de Controle de Atitude: Testes, [8]

- Testes de software:
 - Simulação da atitude, testes da lei de controle.
 - Teste do software de controle e supervisão do ACS.
 - Teste do software embarcado (C++ ou ADA).
- Testes com a eletrônica de controle:
 - Teste do software embarcado.
 - Teste funcional dos equipamentos embarcados.
- Testes com "hardware in-the-loop":
 - Malha aberta.
 - Malha fechada, com estímulo elétrico.
 - Teste do sistema em malha fechada, com estímulo físico em mesa de 3 eixos.

