Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch	: ECE and EEE	Semester	:130
Title of the Course	:Electromagnetics and Quan	tum Physics Course Code	:PHL100
Time: 3 Hours Maximum			Marks: 50
Sec	ction A (10 MARKS): Attempt	all questions	
Q1. Draw a labeled ray-diagram	m of Michelson's interferometer.		(1)
Q2. Green light has a waveleng	gth of about 500 nm. Through what	t potential difference should an el	ectron
be accelerated to have this way		(1)	
Q3. Poynting vector $S = E \times H$		(1)	
(i) Watt-m (ii) Wat	tt-m ² (iii) Watt/m	(iv) Watt/m ²	
Q4. Calculate the shortest pos	sible wavelength (in nm) of X-ray	photon if the electron gun is ope	erated at
22000 Volts.			(1)
Q5. Statement: "Radio waves	can be diffracted by a point hole	slit". Provide answer (true/false	e) with a
clear justification.			(1)
Q6. Write down two postulates	s of special theory of relativity.		(1)
Q7. Polarization can't occur in:			(1)
(i) Gravitational waves	(ii) Microwaves (iii) Sound waves (iv) X-ray	S
Q8. Electron with energy 1 e	V is incident on a barrier 10 eV	high and 0.5 nm wide. (a) Find	d out its
ransmission probability. (b) H	low is this affected if the barrier is	doubled in width?	(1+1)
29. An important property of	the wavefunctions of a quantum s	ystem is that they are orthogon	al to one
mother, which means that $\int\limits_{-\infty}^{+\infty} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\psi_{n}\psi_{m}d au=0$. Verify the orthogon	<i>ality</i> of wavefunctions for a part	icle in a
one-dimensional infinite poten	tial box.		(1)
Section B	3 (20 MARKS): Attempt any fo	ur (04) questions.	
Q10. (a) Discuss double refrac	tion and corresponding crystals. D	Draw a ray diagram for extraordir	nary and
ordinary rays before and after p	passing through a quarter wave pl	ate.	(2)
(b) What is diffraction of light?	Fraunhofer diffractions.	(2)	
(c) If the angle between a pol	arizer and analyser is 60°, what	will be the intensity of light trar	smitted
hrough analyzer if the original		(1)	
Q11. (a) Write down and interp	alence.	(1)	
b) A stationary body explode	es into two fragments of rest ma	ass 1.0 Kg each that move apar	t at the
velocity of 0.6c (c is velocity of)	light) Find out the rest mass of the	a original hody	(2)

- Q12. (a) Describe Newton's rings experiment to determine the wavelength of sodium light (draw ray diagram).
- **(b)** In a Newton's rings arrangements if the diameters of the 15^{th} and 5^{th} bright ring are 0.59 and 0.336 cm, respectively, what is the wavelength of light used? (Radius of curvature = 1 m). (2)
- Q13. (a) Drawing a proper diagram, explain the concept of Photoelectric effect and its quantum explanation.
- (b) Ultraviolet light of wavelength 350 nm and intensity $1W/m^2$ is incident at metal surface (Work function = 2.2 eV). Find out the maximum KE of the photoelectrons. If only 0.5% of the incident photons produce photoelectrons, how many are emitted per second by the 1 cm² area of metal surface? (1+1)
- Q14. (a) Derive an expression for Compton shift with suitable diagram. (3)
- (b) X-rays of wavelength 1.0 Å are scattered from a carbon block. Find the wavelength (in Å) of the scattered beam in a direction making an angle of 60° with the incident beam. (2)

Section C (20 MARKS): Attempt any 02 questions.

- **Q15.** (a) A cube of 4m edge is centered at the origin, the edges being parallel to the axes. Verify the divergence theorem for a vector $\mathbf{V}(\mathbf{x},\mathbf{y},\mathbf{z}) = 2\mathbf{x}^2\mathbf{i} \ \mathbf{C}/\mathbf{m}^2$.
- (b) A thin electric shell of metal has a radius of 0.25m. Calculate the electric intensity at a point (i) inside the shell, (ii) just outside the shell, and (iii) 3m from the Centre of the shell. Charge on the shell is $0.2 \mu C$. Plot |E| as a function of radius.
- (c) Evaluate $\nabla \times \mathbf{A}$, and $\nabla \cdot (\nabla \times \mathbf{A})$, where $\mathbf{A} = (\sin\phi/r^2)a_r (\cos\phi/r^2)a_\phi$ (2)
- (d) Find the magnetic field at point 'P' for each of the steady current configurations (i and ii): (3)

2

Q16. (a) Perform a full derivation with diagram to get to the expressions for energy levels and wavefunctions of a particle (of mass m) restricted to move in a one-dimensional box (of length L) with infinitely hard walls. (5) (b) Draw and clearly interpret the probability density for first three energy states. (2) (c) Compare the case of same particle in infinite potential well and a finite potential well (U_0) . (3) Q17. Write short notes on any five of the following: (2x5)(a) Pair Production (b) Spontaneous and stimulated emissions of radiation (c) Losses in an optical fiber (d) Heisenberg's uncertainty principle (e) Tunnel Effect (f) Band theory of solids (g) Results of Davisson-Germer Experiment