CS 113 DISCRETE STRUCTURES

Chapter 1: Logic and Proof

PROPOSITIONS

- A <u>proposition</u> is a statement that is either true or false
 - "I am wearing shoes" IS a proposition
 - "It's raining" IS a proposition
 - "This sentence is false" is NOT a proposition
 - "Is it 9:00?" is NOT a proposition
- We will use p, q, r, s to represent propositions

COMBINING PROPOSITIONS

- There are three main ways we can combine propositions
- Method 1: Conjunction
 - We normally call this AND
 - We write p Λ q
 - $p \land q$ is true only if both p and q are true. Otherwise, it's false.
 - We could write out the four cases, but there's an easier way

TRUTH TABLES

- Truth tables are a simple way to express and/or determine the truth or falsity of a proposition
- We write all propositions across the top
- We fill in T (for true) and F (for false) under them
- We then build the rest of the table until we see the entire proposition
- The list of Ts and Fs at then end is called the truth value of the proposition

EVEN MORE WAYS TO COMBINE PROPOSITIONS

- We can negate a proposition
- This is its opposite and is called NOT
- Here is a truth table for NOT

р	NОТ р
T	T
F	T

MORE WAYS TO COMBINE PROPOSITIONS

- We can form the disjunction of two propositions
- <u>Disjunction</u> means OR
- Here is a truth table for OR

р	q	p OR q
T	T	T
T	F	Т
F	Т	Т
F	F	F

MORE WAYS TO COMBINE PROPOSITIONS

- We can form a conditional proposition
- A <u>conditional proposition</u> is what you mean when you say "if p then q"
- It is also read as "p implies q"
- Here is a truth table for that
- It is written as $p \rightarrow q$
- The table comes from the idea of lying:
 - $p \rightarrow q$ is true not based on either p or q taken separately, but on the truth value of the entire implication

р	q	IF p THEN q
Т	T	T
Т	F	F
F	Т	Т
F	F	Т

EXAMINING THE CONDITIONAL PROPOSITION

- To build the truth table for $p \rightarrow q$
- Let p stand for "You are good"
 - That is a proposition
- Let q stand for "You get a candy bar"
 - That is also a proposition
- Then $p \rightarrow q$ is "If you are good, then you will get a candy bar"
- To examine the truth value of $p\to q$, we check if $p\to q$ is a lie or not based on the truth value of p and q

A TRUTH TABLE FOR THE CONDITIONAL PROPOSITION-PART 1

- Someone says "If you are good, then you will get a candy bar"
- We want to build a truth table for this
- Suppose p and q are both true
 - This means you are good AND you get a candy bar
 - Is the speaker a liar? No
 - Therefore, if p is true and q is true, then $p \rightarrow q$ is true (It's not a lie.)
- Suppose p is true and q is false
 - This means you are good AND you don't get a candy bar
 - Is the speaker a liar? Definitely!
 - Therefore, if p is true and q is false, then $p \rightarrow q$ is false (It's a lie.)

A TRUTH TABLE FOR THE CONDITIONAL PROPOSITION-PART 2

- Remember, someone said "If you are good, then you will get a candy bar"
- Suppose p is false and q is true
 - This means you are not good AND you get a candy bar
 - Is the speaker a liar? No
 - Therefore, if p is false and q is true, then $p \rightarrow q$ is true (It's not is a lie.)
- Suppose p and q are both false
 - This means you are not good AND you don't get a candy bar
 - Is the speaker a liar? No
 - Therefore, if p is false and q is false, then $p \rightarrow q$ is true (It's not a lie.)

Logical Equivalence

- When the truth value of two propositions is the same, we say the propositions are <u>logically equivalent</u>
- Notice that his only looks at the end results, not the steps we take to get them
 - The steps may be different
 - One propositions may be much longer than the other

Checking Logical Equivalence

• Is $p \to q$ logically equivalent to $\overline{p} \vee q$?

Creating New Propositions from Old Propositions

- Negation, conjunction, and disjunction are three ways to create new propositions from old ones
- There are three ways to create a new proposition from a conditional proposition
 - The converse. This is $q \rightarrow p$
 - The <u>inverse</u>. This is $\overline{p} \rightarrow \overline{q}$
 - The <u>contrapositive</u>. This is $\overline{q} \rightarrow \overline{p}$
- The contrapositive is logically to the original proposition
 - Remember that this means they have the same truth value
 - Both are true or both are false

The Biconditional

- There is still another way to create a new proposition from a conditional
- This is the biconditional
- It is written p ↔ q
- It is a combination of $p \rightarrow q$ and $q \rightarrow p$
- The <u>biconditional</u> actually means both $p \rightarrow q$ and $q \rightarrow p$
- We read it as p if and only if q
 - It is sometimes abbreviated as p iff q
- Let's create a truth table for the biconditional

A Final Note about AND and OR

- Checking the truth table for OR shows that
 - p OR q
 - If p is true, p OR q = true
 - If p is false, p OR q = q
- Similarly, for AND
 - p AND q
 - If p is false, p AND q = false
 - If p is true, p AND q is q

Adding Variables to Propositions

- We will now add variables to propositions
- We are not really creating anything new
- This just allows us to put variables into propositions
 - For example, is "x is even" a proposition?
 - That, of course, depends on x
 - How about "2z is even"?
 - This is a proposition for all integers z
 - It's always true
 - What if I allow non-integers for x and z?
- There are two many issues because the variables are unclear
- We have gained a lot of flexibility, though

Propositional Functions and the Domain of Discourse

- A proposition with a variable is called a <u>propositional function</u>
- A propositional function needs to have restrictions on the variable
- For example, suppose x is an even number
 - Then the proposition "x is even" is true
- Now suppose x can be any integer
 - Then the proposition "x is even" is only true sometimes
- So, the list of possible choices is needs to be specified
 - The list of possible choices is called the <u>domain of discourse</u>
- The domain of discourse can be specified or implied
 - It it's implied, it's the largest possible set of x for which the propositional function makes sense

Back to Propositional Functions

- We would like to be able to easily say that something is true
 - for all choices of x vs.
 - for some choices of x
- We call "for all" and "for some" <u>quantifiers</u>
- The phrase "For all x" is written as $\forall x$
 - This is called the <u>universal quantifier</u>
- The phrase "For some x" is written as $\exists x$
 - This is called the <u>existential quantifier</u>

The Truth Value of the Quantifiers

- Think of this as lying or telling the truth
- The phrase "For all x, P(x)" is true if it's true for all x
 - It's false if there is at least one x that makes it false
- The phrase "For some x, P(x)" is true if it's true for at least one x
 - It's false if it's false for all x

QUESTIONS

Any questions?