Capítulo 1

Tabla de horarios

Hora	Lunes	Martes	Miércoles	Jueves	Viernes
9:40-10:00		17.6	17.14		17.26
10:00-10:20	Inauguración	17.7	17.15	17.20	17.27
10:20-10:40		17.8	17.16	17.21	17.28
10:40-11:00	PLENARIA	17.9	17.17	17.22	17.29
11:00-11:30	1	Café			
11:40-12:00	Traslado	17.10	17.18	17.23	17.30
12:00-12:50	17.1	17.11	17.19	17.24	17.31
12:50-13:00	Traslado				
13:00-13:30	17.2	PLENARIA	PLENARIA	PLENARIA	PLENARIA
13:30-13:50	17.3	2	3	4	5
14:00-16:30	COMIDA				COMIDA
16:40-17:40	17.4	17.12		17.25	
17:40-18:10	Café		Tarde Libre	Café	
18:10-18:30	17.5	17.13		PLENARIA	PLENARIA
18:30-18:50				8	9
18:50-19:00	Traslado			HOMENAJE	Traslado
19:00-19:50	PLENARIA 6	PLENARIA 7		JORGE	Asamblea
19:50-20:50	HOMENAJE	HOMENAJE		IZE	General
20:50-21:00	ERNESTO	FRANCISCO			Traslado
21:00-21:50	LACOMBA	RAGGI			Clausura

17.1 Un índice de comportamiento asintótico de sucesiones ajustadas

Erick Treviño Aguilar (Invitado) (CI, Pos)

17.2 Financial competition and the management of banking risks

Antonio Ruiz Porras (Invitado) (CI, Inv)

17.3 **Modelo SABR de la volatilidad** *Guillermo Sierra Juárez* (CI, Pos)

17.4 El reto de matematizar las nuevas teorías económicas

Gilberto Calvillo (Invitado) (CDV, 1Lic)

17.5 Valuación de Opciones Barrera con Monitoreo Dis-

creto mediante Caminos de Integración Numérica Fiorella Aguilar Saavedra (RT, 2Lic)

17.6 La función de utilidad bajo incertidumbre Julio Herrera Gatica (RT, Pos)

17.7 Memoria de largo plazo en el índice S&P 500: Un enfoque fractal aplicando el coeficiente de Hurst con el método R/S

Arturo Morales Castro (CI, Inv)

17.8 Peores casos de portafolio para medidas de riesgo Oscar Hernán Madrid Padilla (RT, 2Lic)

17.9 Convergencia del precio de una opción con doble barrera al precio de una opción estándar si las barreras

tienden al infinito y cero

Carlos Palomino (RI, 2Lic)

17.10 Ejemplo de una Opción Binaria con dos barreras: Cash or Nothing

Estefanía Ramos Espinosa (RT, 1Lic)

17.11 Medidas de Riesgo: Un sistema axiomático en pleno tránsito

Leonel Ramón Pérez Hernández (Invitado) (CPI, 2Lic)

17.12 Seguros de vida. Un enfoque de mercado

Gerardo Rubio (Invitado) (CPI, 2Lic)

17.13 Asignación óptima y el consumidor estocástico en mercados α -estables

José Antonio Climent Hernández (CPI, Pos)

17.14 Disparidades intra-regionales en eficiencia y productividad del sistema financiero y de seguros mexicano Osvaldo U. Becerril-Torres (RI, Inv)

17.15 "Venture Capital Method" una solución al problema de la evaluación financiera a proyectos de innovación Juan Manuel López Rivera (RT, Pos)

17.16 La ecuación de Euler para problemas de control optimo y juegos estocásticos en tiempo discreto David González Sánchez (CI, 2Lic)

17.17 Equilibrio General en Dimensiones Infinitas Enrique Covarrubias (CPI, 2Lic)

17.18 Evolution and General equilibrium

Elvio Accinelli (RI, Inv)

17.19 Interés, viabilidad financiera y empleo

Fernando Antonio Noriega Ureña (Invitado) (CPI, Inv)

17.20 Sobre la fundamentación estratégica del equilibrio Walrasiano

Paloma Zapata Lillo (CDV, 2Lic)

17.21 Una introducción a la Teoría de Juegos

Alma Jiménez Sánchez (CDV, 2Lic)

17.22 Solución de problemas de división justa por medio de programación lineal

Francisco Sánchez Sánchez (RI, Inv)

17.23 Dinámica de un modelo de consumidor postkeynesiano basado en agentes

Gustavo Carreón Vázquez (RI, 2Lic)

17.24 Sobre la función de producción agregada neoclásica de la teoría macroeconómica

Sergio Hernández Castañeda (Invitado) (CDV, Lic)

17.25 Midiendo la contribución de las variables de un índice en los cambios del mismo

Leobardo Pedro Plata Pérez (Invitado) (CI, Inv)

17.26 Modelo IS-LM: Políticas Fiscales y Económicas

Karmín Carrasco Chávez (RI,2Lic)

17.27 Estudio de la estructura fractal de la distribución de la riqueza en México

Guillermo Romero Meléndez (CI, 2Lic)

17.28 El efecto de la gobernanza en el crecimiento económico en América Latina: Aplicación de un Modelo Multinivel

José Carlos González Núñez (RI, Inv)

17.29 Comparativo de escenarios ante crisis económicas y el desarrollo de la industria mexicana y el comercio exterior. Periodo 2004-2011

Héctor López-Gama (RI, Inv)

17.30 Sector informal en México, un análisis econométrico

Oscar Fernández García (RI, Inv)

17.31 Una introducción a los métodos y usos de la econometría de panel

Antonio Ruiz Porras (Invitado) (CPI, Pos)

Capítulo 2

Resúmenes

17. Matemáticas Financieras y Economía Matemática

17.1. Un índice de comportamiento asintótico de sucesiones ajustadas (CI, Pos)

Erick Treviño Aguilar, erick.trevino@ugto.org (Departamento de Economía y Finanzas Universidad de Guanajuato (UG))

Definimos un índice para una sucesión de sumas acumulativas ajustadas basado en la descomposición de Doob. Demostramos que el índice caracteriza el comportamiento asintótico de la sucesión sin ningún requerimiento en la forma de la distribución. Basado en este índice, obtenemos estimaciones para sucesiones i.i.d. del tiempo esperado para caer (rebasar) un nivel. Se discutirá la motivación de este índice en el contexto de medición de riesgo y requerimientos de capital.

17.2. Financial competition and the management of banking risks (CI, Inv)

Antonio Ruiz Porras, starp2000@yahoo.com (Universidad de Guadalajara, CUCEA Departamento de Métodos Cuantitativos)

We analyse the effects of financial competition on the management of banking risks when monopolistically competitive intermediaries exist in the deposit market. Banking decisions refer to deposits and reserves. These decisions are constrained by liquidity and solvency risks. These risks occur because loans may not be repaid and because unexpected deposit withdrawals may occur. Our results suggest that increases in the number of banks increase liquidity ratios (reserves/deposits) and reduce banking expected profitability. The results also show that increases in deposit-supply elasticity have the opposite effects. Thus the model suggests that the effects of competition are not univocal neither straightforward.

17.3. Modelo SABR de la volatilidad (CI, Pos)

Guillermo Sierra Juárez, gsierraj@yahoo.com.mx (Universidad de Guadalajara (UDG) CUCEA Departamento de Métodos Cuantitativos)

El principal objetivo del presente trabajo es revisar la deducción del modelo SABR utilizando geometría diferencial de acuerdo a la versión propuesta por Henry-Labordere, que es una deducción alternativa a la teoría de perturbaciones de la deducción original de Hagan. Un objetivo secundario es la calibración de la volatilidad del tipo de cambio peso dólar utilizando el SABR y determinar su interpretación geométrica.

17.4. El reto de matematizar las nuevas teorías económicas (CDV, 1Lic)

Gilberto Calvillo, calvillovg@gmail.com (IMATE - UNAM)

La situación económica de México y del mundo es deplorable: la pobreza endémica, la inestabilidad financiera, el dominio de las grandes empresas transnacionales, y la explotación irracional de los recursos naturales son muestra de ello. Las teorías acerca de porque estamos en esta situación son muy diversas: Sin embargo, hay dos grandes corrientes de opinión divergentes. Una, la llamada corriente principal (main stream) sostiene que la teoría económica actual es esencialmente correcta y que lo que pasa es que los actores económicos no se comportan como debieran. La otra, conformada por muchas formas de pensar diferentes, sostiene que el paradigma predominante ya no es sostenible y que se necesita una o varias teorías alternativas. El primer grupo obtiene sustento entre otras cosas de la matematización de su teoría. La otra corriente no ha podido desarrollar una teoría matemática sólida que sustente sus diversos enfoques. En esta plática se revisará la situación actual, se argumentará porque el paradigma vigente esta en crisis, se comentará brevemente acerca de algunas posiciones alternativas y se ilustrará el reto de matematizar estas alternativas con un ejemplo.

17.5. Valuación de Opciones Barrera con Monitoreo Discreto mediante Caminos de Integración Numérica (RT, 2Lic)

Fiorella Aguilar Saavedra, coquisfas@hotmail.com (Facultad de Ciencias Físico Matemáticas de la Benemérita Universidad Autónoma de Puebla (FCFM-BUAP))

Las opciones barreras son contratos de derivados financieros que se activan o desactivan cuando el precio de un activo subyacente rebasa un nivel del precio dado. La mayoría de los modelos para valuar opciones barreras dobles suponen un seguimiento continuo en la dinámica del subyacente, sin embargo, casi siempre asumen las observaciones menos frecuentes. En este trabajo se presenta un nuevo enfoque para valuar opciones barrera controladas de manera discreta basado en una aproximación numérica de la función de densidad de transición asociada a la ecuación diferencial estocástica que describe la dinámica del precio del subyacente, particularmente se toman en cuenta las opciones Europeas de tipo up-and-out en su versión call. La ventaja más importante es la implementación fácil del método debido a su flexibilidad.

17.6. La función de utilidad bajo incertidumbre (RT, Pos)

Julio Herrera Gatica, herreragj@hotmail.com (Universidad Autónoma Metropolitana Unidad Iztapalapa (UAM). Departamento de Economía)

Coautor: Loth Aguilar Legaría

La función de utilidad bajo incertidumbre, incorpora en su estructura elementos que modelan la trayectoria de funciones bajo un proceso estocástica, basado en el Movimiento Geométrico Browniano, que permite modelar la varianza y preservar el capital de las empresas y el de las familias.

17.7. Memoria de largo plazo en el índice S & P 500: Un enfoque fractal aplicando el coeficiente de Hurst con el método R/S (CI, Inv)

Arturo Morales Castro, amorales@fca.unam.mx (Facultad de Contaduría y Administración de la Universidad Nacional Autónoma de México (UNAM))

Coautor: Stephanie Rendón de la Torre

El coeficiente de Hurst tiene diversas aplicaciones, y una de ellas sin duda es para el pronóstico de tendencias en mercados financieros. Esta investigación se trata del análisis del coeficiente de Hurst obtenido mediante la metodología R/S (o de rango escalado) aplicada al índice S & P 500 utilizando series de datos de precios diarios publicados de la base de datos de Bloomberg, por los años de 1928-2012, con la finalidad evaluar las características no lineales, fractales y de comportamiento persistente (si lo hay) de las series de tiempo estudiadas, evaluar los efectos del ruido blanco, determinar si es posible pronosticar tendencias con la ayuda de este tipo de análisis, delinear las posibilidades que existen para el estudio del análisis fractal, y encontrar las alternativas a seguir en este planteamiento de investigación. El presente trabajo es novedoso en el sentido de que al día de hoy no hay análisis actuales (encontrados) al índice S & P 500, así como tampoco se ha realizado un estudio formal del análisis R/S considerando series de datos a partir del primer dato disponible a la actualidad y precisamente, éste es el objeto de estudio de esta investigación. El índice de precios y cotizaciones S & P 500 se considera el índice más representativo de los mercados financieros y uno de los más importantes índices mundiales. Finalmente, se busca proponer una alternativa viable de investigación que sea más concordante con la crítica al comportamiento aleatorio de precios y rendimientos, reconociendo que la distribución gaussiana debe ser sustituida por alguna de la familia de distribuciones estables de Pareto (distribuciones leptocúrticas y colas gordas), y es precisamente la naturaleza fractal de las cosas la que obliga a replantear este sendero como una alternativa de investigación y a continuar la búsqueda en la experimentación y modelización que verdaderamente se apegue a los hechos reales y no únicamente a las verdades empíricas.

17.8. Peores casos de portafolio para medidas de riesgo (RT, 2Lic)

Oscar Hernán Madrid Padilla, hernanmp@cimat.mx (Departamento de Matemáticas, Universidad de Guanajuato (UG)) En el presente trabajo se pretende dar una descripción de los que son las medidas dinámicas de riesgo monetario para procesos acotados discretos en el tiempo. Comenzamos definiendo lo que son medidas de riesgo monetario y por razones técnicas optamos por trabajar con las funciones de utilidad monetaria y las versiones de seguros, las cuales están íntimamente ligadas con las primeras. Se procede a mostrar los principales teoremas de representación de medidas de riesgo monetario. Se continua introduciendo los conceptos de relevancia y de consistencia con el tiempo para procesos de utilidad monetaria. En este puntos se muestra un resultado que garantiza que bajo ciertas condiciones un peor caso de portafolio para la versión de seguros correspondiente al tiempo t, también es un peor caso de portafolio para la del tiempo t+1. Se incluye además

una proposición que transforma el problema de encontrar peores casos de portafolio para versiones de seguros en buscar peores casos de procesos y luego portafolios que son en cierto sentido comonotonos a dichos procesos.

17.9. Convergencia del precio de una opción con doble barrera al precio de una opción estándar si las barreras tienden al infinito y cero (RI, 2Lic)

Carlos Palomino, carlos_cpj@hotmail.com (Facultad de Ciencias de la Computación y Facultad de Ciencias Físico Matemáticas (BUAP))

Coautor: Sergei Grudsky

En esta plática utilizamos la Transformada de Fourier y el Método Punto Silla para obtener algunas expansiones asintóticas. Estas expansiones muestran la convergencia del precio de la opción con doble barrera al precio de una opción europea estándar si el valor de la barrera superior va a infinito y el valor de la barrera inferior va a cero. Las formulas obtenidas dan una buena aproximación para el precio de una opción con doble barrera si el valor de la barrera lo suficientemente grande (pequeño). Más aún, damos una sugerencia para cambiar una opción supershare por una opción supershare con doble barrera.

17.10. Ejemplo de una Opción Binaria con dos barreras: Cash or Nothing (RT, 1Lic)

Estefanía Ramos Espinosa, fany_sidi14@hotmail.com (Benemérita Universidad Autónoma de Puebla, BUAP) Coautores: Carlos Palomino Jiménez, Francisco Solano Tajonar Sanabria, Héctor David Ramírez

La principal razón de la creciente popularidad de las opciones binarias, es la sencillez con que pueden operarse. El comercio binario se está convirtiendo en una tendencia muy popular entre los corredores de acciones tradicionales y los comerciantes de divisas. Hay varias razones para esto, pero la atracción principal del comercio binario es su simplicidad. El comercio de opciones binarias no podría ser más simple. Es por eso que en este trabajo se expone de manera breve la valuación de una opción cash or nothing con doble barrera. Además analizaremos el caso en que las barreras tienden a cero o a infinito.

17.11. Medidas de Riesgo: Un sistema axiomático en pleno tránsito (CPI, 2Lic)

Leonel Ramón Pérez Hernández, lperezhernandez@yahoo.com (Departamento de Economía y Finanzas División de Ciencias Económico Administrativas Campus Guanajuato Universidad de Guanajuato (UG))

Recapitularemos las transformaciones por las que ha transitado el sistema axiomático de las medidas de riesgo y exploraremos su vínculo con el problema de optimización de portafolios financieros.

17.12. Seguros de vida. Un enfoque de mercado (CPI, 2Lic)

Gerardo Rubio, grubio@cnsf.gob.mx (Comisión Nacional de Seguros y Fianzas)

En cuanto a la vigencia de los seguros, los podemos clasificar en corto plazo (anuales) y largo plazo (multianuales). Dentro de los seguros de largo plazo, uno de los ramos más desarrollados es el de Vida. Las tasas de supervivencia van decayendo conforme la edad del individuo avanza. Esta característica hace que un seguro de Vida que se contratara por un sólo año fuera incosteabla para edades más avanzadas. Es por esta razón que los seguros de Vida son naturalmente de largo plazo, permitiendo así que mediante el pago de una prima nivelada, el gasto excesivo para las edades avanzadas se pueda repartir a lo largo de toda la vigencia de la póliza. Tradicionalmente, los seguros de vida suponen que el excedente de pago en los primeros años (llamado comúnmente reserva) es invertido en una "cuenta de banco" la cual da un rendimiento fijo. Este tipo de supuestos tienen la gran ventaja de obtener expresiones explícitas y simples de calcular para la reserva del contrato. La inversión de ese dinero es sumamente importante ya que permite reducir el costo del seguro y por lo tanto obtener primas más bajas. El principal problema de esta forma de valuación es que no existen dichos instrumentos (cuentas de banco) en un mercado financiero. En esta plática presentaremos una metodología que nos permite dar precios para la reserva de un seguro de Vida que sean consistentes con el mercado financiero. Veremos que esta plataforma es similar a la utilizada tradicionalmente para valuar instrumentos financieros. Revisaremos cómo es que todo esto nos permite valuar seguros cuyos beneficios y obligaciones dependan de algún factor económico. Finalmente, revisaremos brevemente el caso en que las tasas de supervivencia sigan un proceso estocástico.

17.13. Asignación óptima y el consumidor estocástico en mercados α -estables (CPI, Pos)

José Antonio Climent Hernández, antoniocliment@ciencias.unam.mx (Universidad Nacional Autónoma de México (UNAM) Departamento de Matemáticas (Actuaría))

En este trabajo de investigación se analizan los portafolios α -estables ya que las crisis bursátiles ocurren con mayor frecuencia de lo que se predice con la distribución gaussiana, lo que proporciona evidencia empírica de que el rendimiento subyacente es leptocúrtico. La motivación es estudiar los efectos de la distribución leptocúrtica del rendimiento subyacente. La distribución leptocúrtica que se propone utilizar para modelar el rendimiento subyacente es una distribución α -estable y estudiar el problema de asignación óptima de activos y el consumidor estocástico en mercados α -estable y gaussianos. Es suficiente realizar el análisis de sensibilidad de la leptocurtosis para observar cómo la asignación óptima cambia cuando el coeficiente de estabilidad cambia. Con el fin de resolver ambos problemas, se utiliza una medida de riesgo media-dispersión. El análisis se realiza a través de un portafolio α -estable con dos activos, el portafolio esta integrado por un activo libre de riesgo y por un activo con riesgo.

17.14. Disparidades intra-regionales en eficiencia y productividad del sistema financiero y de seguros mexicano (RI, Inv)

Osvaldo U. Becerril-Torres, obecerrilt@uaemex.mx (Universidad Autónoma del Estado de México (UAEMex))
Esta investigación tiene como objetivo determinar la eficiencia técnica, la productividad de los factores y sus componentes: cambios técnico y en eficiencia del sector de servicios financieros y de seguros de las regiones y entidades federativas de México. Las metodologías empleadas son DEA e Índice de Malmquist. Los resultados muestran la existencia de disparidades inter e intra regionales en el sector. La productividad de éste se ha reducido, lo cual ha sido motivado de manera importante por la caída del cambio técnico, en tanto que no ha habido importantes cambios en la eficiencia y solamente en algunas Entidades Federativas ha mejorado.

17.15. "Venture Capital Method" una solución al problema de la evaluación financiera a proyectos de innovación (RT, Pos)

Juan Manuel López Rivera, mastermanueluam@yahoo.com.mx (Universidad Autónoma Metropolitana (UAM)) El término "innovar" etimológicamente proviene del latín innovare, que significa cambiar o alterar las cosas introduciendo novedades. La innovación en el marco empresarial surge como consecuencia de la necesidad de adaptarse a un entorno en constante evolución y cambio[1]. Desde una perspectiva estratégica, la innovación permite que los actores económicos incrementen sus capacidades competitivas lo que a su vez se traduce en un aumento en su capacidad de generación de flujos de efectivo y, por ende, en el valor de mercado de las empresas. El principal desafío de los empresarios emprendedores consiste en la obtención de fondos para financiar el crecimiento de su empresa. Una alternativa de financiamiento para estos empresarios son los fondos de capital de riesgo. Estos se integran por intermediarios financieros especializados en el financiamiento de empresas con altas tasas de retorno que necesitan un turnaround [2] gerencial. Los fondos de capital de riesgo pueden clasificarse en fondos de Venture Capital que financian nuevos emprendimientos y los fondos de Private Equity que se dirigen a empresas ya establecidas; es importante entender que el capital de riesgo no es un financiamiento tradicional como lo sería el financiamiento bancario. Al invertir el fondo asume riesgos que ningún banco tomaría. Por esta razón, el costo de esta fuente de financiamiento no debe ser comparado con la tasa de interés de un préstamo bancario; El capital de riesgo no es una deuda es una inversión en una participación minoritaria del capital de la empresa, realizada en un horizonte de mediano a largo plazo entre 3 y 10 años con la intención de incrementar el valor de la empresa. Al invertir en acciones, el fondo asume el mismo riesgo de los accionistas. El horizonte definido de inversión significa que el fondo necesita una estrategia de salida de la misma al final del plazo establecido; por tanto, el empresario emprendedor debe estar dispuesto a recomprar al fondo su participación; permitirle venderle a un tercero; o acceder a que se venda la totalidad de la compañía a un tercero. Los proyectos innovadores presentan tres características fundamentales: altas tasas internas de retorno asociadas a un alto riesgo debido a la incertidumbre asociada a la innovación; información asimétrica entre emprendedores e inversionistas y la posibilidad de riesgo moral. Los métodos tradicionales de evaluación económica son incapaces de realizar una correcta medición de proyectos de inversión innovadores. Estos métodos consideran un único "escenario esperado" de flujos de efectivo, asumiendo una gestión estática en el desarrollo del mismo, apegados a una única estrategia operativa; sin embargo, los proyectos innovadores deben justificar su inversión en diferentes etapas del mismo (nacimiento, consolidación, desarrollo, salida) bajo el supuesto de múltiples escenarios en el que los flujos de efectivo obtenidos en la práctica diferirán de los pronosticados; así, al contar con instrumentos de valuación aleatorios es posible incorporar nueva información permitiendo continuar a la siguiente etapa del proyecto o abandonarlo, logrando que la incertidumbre se disipe sobre las condiciones del mercado, de esta manera el "Venture Capital Method" resuelve los problemas en la valoración de proyectos innovadores, la lógica de éste tipo de financiamiento elimina de manera sistemática la información asimétrica y el riesgo moral. [1] Freeman 1982, Comisión Europea 1995 y OCDE 2005 señalan diversas definiciones del término "innovación" en contextos productivos. [2] Se refiere específicamente a las empresas que cambian totalmente. Representa recrear y reinventar la empresa

u organización. Consiste en transformar una situación determinada, introduciendo cambios profundos y radicales que mejoran la empresa.

17.16. La ecuación de Euler para problemas de control optimo y juegos estocásticos en tiempo discreto (CI, 2Lic)

David González Sánchez, david.glzsnz@gmail.com (Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN))

Esta plática se enfoca en problemas de control óptimo y juegos estocásticos a tiempo discreto con horizonte infinito. Usando diferenciales de Gâteaux, se muestra que la Ecuación de Euler y una condición de transversalidad son necesarias para óptimos de problemas de control no estacionarios. En particular, la condición de transversalidad es obtenida en una forma más general y bajo hipótesis menos restrictivas que en trabajos previos. Se prueba también que estas dos condiciones son suficientes, bajo ciertas hipótesis de convexidad. Además, se muestra como usar este tipo de condiciones para caracterizar equilibrios de Nash en juegos dinámicos. Algunas aplicaciones de control óptimo y juegos dinámicos son usadas para ejemplificar los resultados principales.

17.17. Equilibrio General en Dimensiones Infinitas (CPI, 2Lic)

Enrique Covarrubias, enriquecovarr@gmail.com (Dirección General de Investigación Económica, Banco de México) En esta presentación discutiremos el enfoque diferencial de la teoría de equilibrio general (TEG) en dimensiones infinitas. TEG es el modelo canónico con el cual se modelan mercados en una economía y sus precursores son los resultados obtenidos, en la primera mitad del siglo XX, por los premios Nobel Allais, Arrow, Debreu, Hicks, Kantorovich y Stigler, entre otros. En aquellos trabajos, un equilibrio fue definido como un precio con el cual la oferta es igual a demanda. Así, en equilibrio, los diferentes agentes de una economía maximizan sus objetivos y los recursos no se desperdician. Durante las siguientes décadas, la literatura se dedicó a estudiar las propiedades de los equilibrios lo que dio lugar a tres enfoques matemáticos equivalentes para su modelación: teoría de catástrofes, haces vectoriales y sistemas dinámicos. Recientemente las aplicaciones de TEG utilizadas por los bancos centrales, bancos de inversión y organismos internacionales, requiere la introducción de tiempo continuo e incertidumbre en los modelos, conocidos como "modelos de Equilibrio General Dinámico Estocástico (DSGE)". Esto ha llevado a extensiones de los modelos clásicos utilizando variables que viven en espacios de dimensiones infinitas. En la plática discutiremos el enfoque diferencial de dichas extensiones, incluyendo los resultados más recientes obtenidos en la última década. Nos concentraremos sólo en el enfoque de teoría de catástrofes y, si el tiempo lo permite, brevemente mencionaremos las extensiones con haces vectoriales y sistemas dinámicos.

17.18. Evolution and General equilibrium (RI, Inv)

Elvio Accinelli, elvio.accinelli@eco.uaslp.mx (Facultad de Economía de la Universidad Autónoma de San Luis Potosí (UASLP))

We consider a competitive private ownership economy, with two types of consumers (according with their respective utilities and endowments) and two types of firms (depending on the technology used). In time t_0 the distribution of firms and consumer is given, and determine the main characteristics of the equilibria set. Even under equilibrium, the profits are no necessarily the same for different types of firms. Profits depend on the technology used by the firm and on the characteristics of the markets. We consider that the manager of each firm, looking for obtain the higher profit, can choose after that equilibrium prices are known, to change the technological characteristics of the firm. So the equilibria set is modified by a process of imitation of the most successful technology. Only stable equilibria can be observed, and these correspond to situations where firms are obtaining the same level of profits independently of the technology used or, all firms are using the same kind of technology.

17.19. Interés, viabilidad financiera y empleo (CPI, Inv)

Fernando Antonio Noriega Ureña, noriega@correo.azc.uam.mx (Universidad Autónoma Metropolitana Unidad Azcapotzalco (UAM-A) Departamento de Economía)

El objetivo de esta plática es poner en evidencia que la tasa real propia de interés, la tasa real bancaria y la tasa real de bonos públicos establecen entre sí relaciones sistemáticas que permiten precisar las condiciones de viabilidad financiera de una economía de mercado cuyo sistema general de pagos gravita en torno a un sistema bancario consolidado. A partir de las mismas es posible inferir las causas y trayectorias críticas del sistema general de pagos, así como sus impactos en términos

de producción, empleo y distribución. Las implicaciones de este análisis para explicar la inestabilidad financiera actual son metodológicamente robustas y divergentes de las habituales.

17.20. Sobre la fundamentación estratégica del equilibrio Walrasiano (CDV, 2Lic)

Paloma Zapata Lillo, zapatalillo@yahoo.com.mx (Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM))

Presentaremos algunos modelos que buscan dar un enfoque estratégico (e.d. a través de la teoría de juegos no cooperativos) al equilibrio walrasiano de una economía de intercambio puro. Pensamos que el enfoque permite un contexto de discusión diferente al acostumbrado sobre este importante tema económico. Se compara el equilibrio walrasiano con los equilibrios de Nash de diversos juegos. Comenzamos con el clásico modelo rectangular de Shapley y Shubik, donde los jugadores (los consumidores) son homogéneos. Dicho modelo ha sido la fuente de desarrollo de múltiples trabajos. Seguimos con otro modelo rectangular, debido a Codognato y Gabszewicz, donde se consideran dos tipos de consumidores, unos grandes y otros pequeños. La decisión de cada uno de los consumidores grandes influye en la determinación del precio, por ello su modelación se toma prestada del famoso modelo del oligopolio de Cournot. Por su lado, los pequeños consumidores actúan realmente como tomadores de precios, pues sus decisiones individuales no los afectan. A los equilibrios en este segundo modelo se les llama Cournot-Walras para distinguirlos de los equilibrios walrasianos usuales. El modelo con jugadores de dos tipos fue introducido para trabajar economías con producción, en las que los jugadores con comportamiento cournotiano son las empresas. Sin embargo, aparecieron difíciles problemas que aún no se superan y se facilitaron las cosas limitándose a atacar economías de intercambio puro. El modelo de Codognato y Gabszewicz se clarifica expresándolo como un juego extensivo de dos etapas y encontrando los equilibrios perfectos en subjuegos. En la primera etapa, toman decisiones los jugadores grandes y con ellas quedan determinados los precios, mientras que en la segunda actúan los pequeños conociendo los precios. Es interesante, comentar, por último, el modelo de Douglas Gale basado en un complicado juego repetido, donde se desglosan los intercambios bilaterales, pues permite una discusión más completa del problema.

17.21. Una introducción a la Teoría de Juegos (CDV, 2Lic)

Alma Jiménez Sánchez, neko_aj@yahoo.com.mx (Universidad Nacional Autónoma de México (UNAM), Departamento de Matemáticas)

Con el propósito de presentar al estudiante de economía un panorama general del tipo de problemáticas que se pueden abordar en la Teoría de Juegos, el presente trabajo aborda una serie de modelos que expresan diferentes tipos de conflictos humanos: juegos de salón, económicos, políticos, sociales, entre otros. De la misma manera, mediante estos modelos, se busca que el estudiante comprenda cómo es que ha surgido esta área del conocimiento matemático. Se pretende también que, por medio de la incorporación de algunos conceptos fundamentales propios de la Teoría de Juegos, el estudiante de economía se vea motivado a profundizar en el estudio de esta herramienta matemática y, por lo tanto, en la formulación y solución de diferentes conflictos sociales, en particular, los económicos. Una vez planteado lo anterior, se expondrán las soluciones (en caso de que existan) para algunos de los modelos expuestos. Por último, cabe señalar que, el presente trabajo forma parte de los objetivos generales que se ha trazado el grupo de trabajo interdisciplinario de Teoría de Juegos y Economía Matemática de la Facultad de Ciencias de la UNAM.

17.22. Solución de problemas de división justa por medio de programación lineal (RI, Inv)

Francisco Sánchez Sánchez, sanfco@cimat.mx (Centro de Investigación en Matemáticas A.C. (CIMAT))
Supongamos que hay que dividir un conjunto de bienes, continuamente divisibles, entre un conjunto de agentes. Se desea encontrar la distribución de tal manera que el agente que obtenga el porcentaje más pequeño (en su percepción) sea lo mas grande posible. Modelamos la situación como un problema de PL y usamos su dual para resolverlo a través de una gráfica bipartita asociada a las variables duales.

17.23. Dinámica de un modelo de consumidor postkeynesiano basado en agentes (RI, 2Lic)

Gustavo Carreón Vázquez, gcarreon@unam.mx (Instituto de Investigaciones Económicas, Universidad Nacional Autónoma de México (UNAM))

Coautor: Raymundo Vite Cristóbal

El trabajo expone una propuesta metodológica para modelar el comportamiento del consumidor postkeynesiano, tomando como referencia las ideas de racionalidad de procedimiento de Herbert Simon y de razonamiento inductivo de Brian Arthur, se plantea la toma de decisión de un agente que reacciona a su entorno. La modelación del comportamiento del consumidor se

sustenta en un modelo basado en agentes, en particular, se postula un conjunto de tres agentes representativos pertenecientes a tres grupos sociales, respectivamente, a saber, grupo de ingreso bajo, grupo de ingreso medio y grupo de ingreso alto. El objetivo del trabajo es analizar la dinámica del comportamiento del consumidor postkeynesiano por moda e imitación a partir del paradigma de modelos basado en agentes. En un primer momento, se actualiza el nivel de consumo de cada agente a partir de la pertenencia a su categoría y de la información local. Después, se hace un análisis del modelo a partir de la probabilidad de transición entre una categoría a otra y de la memoria global del sistema.

17.24. Sobre la función de producción agregada neoclásica de la teoría macroeconómica (CDV, Lic)

Sergio Hernández Castañeda, hercastaeda@yahoo.com.mx (Facultad de Ciencias de la Universidad Nacional Autónoma de México (UNAM))

Entre muchos de los economistas contemporáneos más distinguidos como, por ejemplo, Robert E. Lucas (Premio Nobel 1995), Joseph E. Stiglitz (Premio Nobel 2001), Paul Krugman (Premio Nobel 2008), N. Gregory Mankiw, Xavier Sala-l-Martin, David Romer y otros, es usual intentar modelar matemáticamente el proceso productivo de la economía capitalista en su conjunto, mediante la introducción de la llamada función de producción agregada neoclásica, a la cual se le imponen algunas propiedades que se suponen plausibles. A partir de esto, se construye un conocido modelo matemático sobre la distribución de la renta entre los llamados factores de la producción y diversos modelos del crecimiento y de otros fenómenos económicos que han sido considerados básicos dentro de la Teoría Macroeconómica. El propósito principal de nuestra ponencia es presentar, a grandes rasgos, algunos de los modelos enumerados y algunas dificultades que aparecen en el desarrollo de esas teorías que nos han parecido relevantes.

17.25. Midiendo la contribución de las variables de un índice en los cambios del mismo (CI,

Leobardo Pedro Plata Pérez, lplata@uaslp.mx (Universidad Autónoma de San Luis Potosí (UASLP))

Considere un índice $I(x,y,\ldots,w)$ que depende de $\mathfrak n$ variables. Observamos el valor del índice y sus variables en dos momentos distintos. ¿Es posible descomponer el cambio total del índice como una suma de las contribuciones de cada variable en el cambio total? Podemos analizar el problema por medio de cambios de valor (diferencias) o de cambios porcentuales. Proponemos una metodología que aprovecha fuertemente la forma funcional del índice y que tiene influencia de la lógica y los juegos cooperativos. Comparamos con metodologías alternativas provenientes del cálculo diferencial y la estadística. Presentamos algunas aplicaciones con índices de la economía del bienestar.

17.26. Modelo IS-LM: Políticas Fiscales y Económicas (RI,2Lic)

Karmín Carrasco Chávez, karmin_zha@hotmail.com (Universidad Autónoma de Ciudad Juárez. Instituto de Ciencias Sociales y Administración. Departamento de Ciencias Sociales)

Coautores: Rubén Germán Almanza Rodríguez, Rubén Germán Almanza Rodríguez

Las ideas de J. M. Keynes publicadas en "The General Theory of Employment, Interest, and Money", son el origen de lo que actualmente llamamos Revolución Keynesiana, en la que muchos economistas contemporáneos a Keynes estudiaron y contribuyeron al desarrollo de ésta. Uno de los economistas más influyentes de la revolución keynesiana fue Sir J. Hicks que en su articulo "Mr. Keynes and the Classics: a suggested interpretation", demuestra una conciliación entre el pensamiento de Keynes y la economía neoclásica, conocida como Modelo IS-LM o Modelo Hicks-Hansen, este modelo muestra la interacción de los mercados Bienes y Servicios (Investment-Saving) y Financiero (Liquid-Money), que determina el ingreso nacional y la tasa de interés de equilibrio; además, permite comprender los efectos de las diversas políticas macroeconómicas. En este trabajo desarrollamos el modelo bajo el supuesto de que nos encontramos ante una economía cerrada; es decir, una economía que no comercia con el resto del mundo. Este supuesto lo utilizamos para entender los efectos de las políticas monetarias y fiscales sin tocar asuntos tan delicados como el comercio internacional, el tipo de cambio y la movilidad de capitales.

17.27. Estudio de la estructura fractal de la distribución de la riqueza en México (CI, 2Lic)

Guillermo Romero Meléndez, guillermoa.romero@udlap.mx (Universidad de las Americas Puebla (UDLAP))
Coautor: Oscar Márquez Domínguez

La idea de realizar el presente trabajo nació de dos estudios realizados en los Estados Unidos. El primero es del Premio Nobel Paul Krugman, el cual en su obra: Vendiendo Prosperidad, Ariel, 1994, afirma: "los datos sobre las variaciones que experimentó la distribución de la renta de Estados Unidos durante la década de 1980 tienen la calidad de ser «fractales»:

se observa la pauta de creciente desigualdad en la población en su conjunto reproducida en un subgrupo cualquiera de la población". El segundo es de William Easterly, quien en su artículo: "Beautiful fractals and ugly inequality", Aidwatch, New York University, 2010 concluye: "La desigualdad de ingresos se comporta como un fractal: es muy desigual a grandes escalas y en pequeñas escalas". A la publicación del trabajo de Easterly le siguió la observación de Krugman en el sentido de que esos resultados ya los había encontrado él anteriormente. El objetivo del presente trabajo es analizar la estructura de la distribución de la riqueza en México, por regiones, y averiguar si, al igual que en los EEUU, tiene una estructura auto-similar. Para ello se estudió el comportamiento del coeficiente de Gini, el cual es un excelente indicador de la desigualdad en la distribución de los ingresos. Los resultados se mostrarán en nuestra ponencia.

17.28. El efecto de la gobernanza en el crecimiento económico en América Latina: Aplicación de un Modelo Multinivel (RI, Inv)

José Carlos González Núñez, josecarlos.gonzalez@anahuac.mx (Universidad Anáhuac México Sur (UAMS) Economía)
Coautor: Delfino Vargas Chanes

Con base a la aplicación de un modelo multinivel longitudinal, se mide el efecto de los indicadores que miden la estructura institucional de la gobernanza, en el crecimineto económico, para un conjunto de países relevantes de América Latina. Para tal efecto, se aplican diversos modelos, considerando el comportamiento del país en el tiempo y la naturaleza de los datos. Los resultados muestran qué indicadores de la gobernanza son relevantes y su efecto en el crecimiento económico. La ventaja del modelo, es que evita el problema de la falta de independencia entre las variables (Raudenbusch y Bryk, 2002), siendo su aplicación superior, a la metodología econométrica tradicional (e.g. mínimos cuadrados ordinarios); al tener en cuenta la estructura multinivel de los datos, obteniendo resultados más eficientes y robustos.

17.29. Comparativo de escenarios ante crisis económicas y el desarrollo de la industria mexicana y el comercio exterior. Periodo 2004-2011 (RI, Inv)

Héctor López-Gama, hlopez@uaslp.mx (Universidad Autónoma de San Luis Potosí (UASLP))

Coautores: Mario Gutiérrez-Lagunés, Felipe de Jesús González-Galarza

El presente trabajo estudia el desarrollo de la industria nacional por medio del comportamiento de los sectores económicos evaluados a través de la tasa de crecimiento de variables económicas-financieras, las cuáles permitirán establecer un criterio adecuado de selección de las mejores actividades económicas nacionales con sus respectivos subsectores. Ante dos escenarios económicos, se comparan cuál es el impacto en cada una de las ramas económicas, y se analizan en conjunto de acuerdo al comercio exterior. Se aplica el modelo de Black-Scholes-Merton a empresas de diferentes actividades económicas para encontrar la probabilidad de incumplimiento, de acuerdo con su estado financiero, y se determina su ubicación en la matriz de expectativas de estas empresas con respecto a su desarrollo local y externo. La importancia de esta investigación es encontrar el vínculo que existe entre los factores económicos locales y externos con el incumplimiento financiero en que puede incurrir una empresa, y tomar decisiones de acuerdo a los diferentes escenarios que se presentan a nivel global.

17.30. Sector informal en México, un análisis econométrico (RI, Inv)

Oscar Fernández García, oscar_fer65@yahoo.com.mx (Instituto Politécnico Nacional (IPN) Escuela Superior de Economía (ESE))

Se aplica un conjunto de técnicas econométricas que permiten conocer las relaciones entre las variables que se implicadas con el sector informal. Se analizan las relaciones de la ocupación en el sector informal con el producto interno bruto y con el índice de desarrollo humano en las distintas entidades federativas de México. También se investiga si existen diferencias estadísticamente significativas en las proporciones de hombres y mujeres que laboran en el sector informal. Se analiza la relación que existe entre la edad de las personas y la tasa de participación en la economía informal, por un lado adolescentes y jóvenes de 14 a 19 años y por otro adultos mayores de 60 años; ambos extremos de edad de la pirámide laboral se relacionan con respecto a los adultos en edad laboral primaria, es decir, las personas que van de los 30 a los 39 años. Se ha mencionado por varios investigadores que el sector informal es un fenómeno típicamente urbano, con la información disponible este estudio realiza un análisis sobre que tan "urbano" es el sector informal urbano.

17.31. Una introducción a los métodos y usos de la econometría de panel (CPI, Pos)

Antonio Ruiz Porras, starp2000@yahoo.com (Universidad de Guadalajara, CUCEA Departamento de Métodos Cuantitativos)

Tradicionalmente el análisis econométrico de los datos económicos y financieros ha sido efectuado mediante técnicas de

Capítulo 2. Resúmenes

series de tiempo y para datos de sección cruzada. Estas técnicas se caracterizan por usar supuestos y métodos estadísticos específicos, más no necesariamente complementarios, para describir y predecir el comportamiento de los datos de interés. Por esta razón, la reciente disponibilidad de paneles de datos que conjuntan series de tiempo y datos de sección cruzada ha exigido el desarrollo de nuevas técnicas. En este contexto, aquí ofrecemos una panorámica de los métodos y aplicaciones de las técnicas de la econometría de panel. Particularmente, mostramos algunas aplicaciones de estas técnicas para el análisis de fenómenos económicos, financieros y sociales en el contexto mexicano. Ello con la finalidad de mostrar la relevancia y pertinencia de las técnicas econométricas para paneles de datos, así como para sugerir aplicaciones futuras de las mismas.

Índice de expositores

\mathbf{A}	López-Gama Héctor
Accinelli Elvio	17.2910
17.18	M
Aguilar Saavedra Fiorella 17.54	IVI Madrid Padilla Oscar Hernán
2.13	17.8 4
В	Morales Castro Arturo
Becerril-Torres Osvaldo U.	17.74
17.146	N T
	IN
\mathbf{C}	Noriega Ureña Fernando Antonio 17.19
Calvillo Gilberto	17.19
17.43	P
Carrasco Chávez Karmín	Palomino Carlos
17.269 Climent Hernández José Antonio	17.95
17.135	Pérez Hernández Leonel Ramón
Covarrubias Enrique	17.11
17.177	Plata Pérez Leobardo Pedro 17.25
D	
\mathbf{F}	\mathbf{R}
Fernández García Oscar	Ramos Espinosa Estefanía
17.3010	17.10
	Romero Meléndez Guillermo 17.27
G	Rubio Gerardo
González Núñez José Carlos 17.2810	17.125
González Sánchez David	Ruiz Porras Antonio
17.167	17.2
H	\mathbf{S}
Hernández Castañeda Sergio	Sánchez Francisco Sánchez
17.24	17.228
Herrera Gatica Julio 17.6 4	TT.
11.0	1
Ţ	Treviño Aguilar Erick 17.1
Jiménez Sánchez Alma	17.1
17.21	\mathbf{V}
Juárez Guillermo Sierra	Vázquez Gustavo Carreón
17.33	17.238
т	7
${f L}$	\mathbf{Z}
López Rivera Juan Manuel 17.15	Zapata Lillo Paloma 17.208
17.10	17.208