Uniform Turán densities of 3-uniform hypergraphs

Filip Kučerák

F. Garbe, D. Iľkovič, D. Kráľ, A. Lamaison

Faculty of Informatics, Masaryk University

July 12, 2024

Turán Problems

Question

How many edges can a graph have if we forbid a fixed subgraph?

Question

How many edges can a graph have if it is triangle-free?

Theorem (Mantel 1907)

Suppose that for given $n \in \mathbb{N}$, graph G of order n is triangle-free. Then, the number of edges in G is at most $\lfloor n^2/4 \rfloor$.

Theorem (Mantel 1907)

Suppose that for given $n \in \mathbb{N}$, graph G of order n is triangle-free. Then, the number of edges in G is at most $\lfloor n^2/4 \rfloor$.

Theorem (Turán 1941)

Suppose that for given $n, k \in \mathbb{N}$, graph G of order n is K_k -free. Then, the number of edges in G is at most

$$\left(\frac{k-2}{k-1}+o(1)\right)\binom{n}{2}.$$

Theorem (Erdős-Stone-Simonovits 1946)

Suppose that graph H has chromatic number $\chi > 2$. Then, the number of edges in any graph G which is H-free is at most

$$\left(\frac{\chi-2}{\chi-1}+o(1)\right)\binom{n}{2}.$$

Question

How dense can a 3-uniform hypergraph be if it does not contain a tetrahedron $(K_4^{(3)})$?

Question (Turán)

How dense can a 3-uniform hypergraph be if it does not contain a tetrahedron $(K_4^{(3)})$?

Known

 $rac{5}{9} \leq \pi(K_4^{(3)}) \leq 0.5615$ (Razborov; Baber, Talbot)

Turán's construction with density $\frac{5}{9}$

Question (Turán)

How dense can a 3-uniform hypergraph be if it does not contain a tetrahedron $(K_4^{(3)})$?

Question (Erdős and Sós)

How dense can a 3-uniform hypergraph be if it does not contain a tetrahedron $(K_4^{(3)})$ and we require the edges to be uniformly distributed?

Definition

For $d \in [0,1]$ and $\eta > 0$ we say that hypergraph F is (d,η) -dense if for all $U \subseteq V$ the following inequality holds:

$$\left| \binom{U}{3} \cap E \right| \ge d \binom{|U|}{3} - \eta |V|^3.$$

Definition

For $d \in [0,1]$ and $\eta > 0$ we say that hypergraph F is (d,η) -dense if for all $U \subseteq V$ the following inequality holds:

$$\left| \begin{pmatrix} U \\ 3 \end{pmatrix} \cap E \right| \ge d \binom{|U|}{3} - \eta |V|^3.$$

Definition

Let F be a hypergraph; its uniform Turán density is the following:

$$\pi_u(F)=\sup\Big\{\ d\in[0,1]: {
m for\ every\ }\eta>0\ {
m and\ }n\in\mathbb{N}, {
m\ there\ exists}$$
 an F -free (d,η) -dense hypergraph H of order at least n $\Big\}.$

Proposition (Reiher, Rödl, Schacht 2018)

The uniform Turán density of any graph F is zero or at least 1/27.

Theorem (Garbe, Kráľ, Lamaison 2022)

There exists a hypergraph F whose uniform Turán density is 1/27.

Theorem (Bucić, Cooper, Kráľ, Mohr, Munhá-Correia 2023) For integer $l \ge 5$, the uniform Turán density of a tight cycle C_l is

- 1. zero if I is divisible by three and
- 2. 4/27 otherwise.

Theorem (Glebov, Kráľ, Volec 2016; Reiher, Rödl, Schacht 2017)

The uniform Turán density of $K_4^{(3)-}$ (tetrahedron without one edge) is 1/4.

Theorem (Garbe, Iľkovič, Kráľ, K., Lamaison 2023+)
There exists a hypergraph F whose uniform Turán density is 8/27.

Theorem (Garbe, Iľkovič, Kráľ, K., Lamaison 2023+)
There exists a hypergraph F whose uniform Turán density is 8/27.

Theorem (Kráľ, K., Tardos 2024++)

There exists a hypergraph F whose uniform Turán density is 4/81.

Definition

Let Φ be a finite set of colors. We call a subset $\mathcal{P}\subseteq\Phi^3$ a coloring palette.

Example

Let $\Phi = \{ \text{ red}, \text{green}, \text{blue} \}$ and $\mathcal{P} = \{ \text{ (red}, \text{green}, \text{blue}) \}$

Definition

We say that hypergraph F is \mathcal{P} -colorable if there exists an ordering \prec of the vertex set of F and assignment $\varphi:\partial F\to \Phi$ with the property that for all $uvw\in E(F)$ where $u\prec v\prec w$ we have

$$(\varphi(uv), \varphi(uw), \varphi(vw)) \in \mathcal{P}.$$

 $C_6^{(3)}$

 $\Phi = \{ \text{ red}, \text{green}, \text{blue} \} \text{ and } \mathcal{P} = \{ \text{ (red}, \text{green}, \text{blue)} \}$

$$\Phi = \{ \text{ red}, \text{green}, \text{blue} \} \text{ and } \mathcal{P} = \{ \text{ (red}, \text{green}, \text{blue}) \}$$

Theorem (Reiher, Rödl, Schacht 2018)

Let the set of colors be $\Phi = \{ \text{ red}, \text{ green}, \text{ blue} \}$ and let the Φ -palette $\mathcal P$ contain only the pattern (red, green, blue). Let F be a 3-uniform hypergraph, then $\pi_u(F) = 0$ if and only if it is

Corollary

 \mathcal{P} -colorable.

Let F be a hypergraph, then either $\pi_u(F) = 0$ or $\pi_u(F) \ge 1/27$.

Theorem (Garbe, Il'kovič, Kráľ, K., Lamaison 2023+) There exists a hypergraph F with uniform Turán density

 $\pi_{\mu}(F) = 8/27.$

Definition

- 1. Let $\Psi = \{ \zeta, \alpha_1, \alpha_2, \beta_1, \beta_3, \gamma_2, \gamma_3 \}$, and let \mathcal{R} be a Ψ -palette containing patterns $\{ (\alpha_1, \beta_1, \zeta), (\alpha_2, \zeta, \gamma_2), (\zeta, \beta_3, \gamma_3) \}$. We will call this palette the *required palette*.
- 2. Let $\Phi = \{ \alpha, \beta, \gamma \}$ and let \mathcal{F} be a Φ -palette which we define as $\mathcal{F} = \{ \alpha, \beta \} \times \{ \beta, \gamma \} \times \{ \alpha, \gamma \}$. We will call palette \mathcal{F} the forbidden palette.

Proposition

Any hypergraph F which is \mathcal{R} -colorable but is not \mathcal{F} -colorable has uniform Turán density 8/27.

Proposition

There exists a hypergraph F such that it is \mathbb{R} -colorable but is not \mathcal{F} -colorable.

Proving upper bound

Construction

Open Problems

Question

Determine for which $d \in [0,1]$ there exists an F such that $\pi_u(F) = d$.

Question

Determine uniform Turán density of graph

$$F=\big([5],\{123,124,125,145,234\}\big).$$

$$\pi_u(F) \geq \sup_{\mathcal{P}: \ F \ not \ \mathcal{P}\text{-colorable}} d(\mathcal{P})$$