Status Report: Project 2, Malware Classification

Rajeswari Sivakumar • Vyom Srivastava • Nicholas Klepp

Overview

Progress

- Preprocessing
- Algorithms
 - Naive Bayes
 - RandomForest

Biggest issue

Computational limitations

Progress - Preprocessing

Accomplishment 1

- Using "Golden Features" recommended by Carl Liu https://www.youtube.com/ watch?v=VLQTRILGz5Y&a mp=&t=908s
- 1-4 grams Opcodes
- 1&2 grams Bytes
- Segment Counts

Progress - Model Training

Random Forest

- Trained Random Forest on:
 - 1 to 4 grams opcodes
 - + segments
 - 1 & 2 grams opcodes
 - 1 & 2 grams bytecode
 - Unigram bytecodes
- Trees: 10/100, Depth: 4/10

Max Accuracy: 27.6%

Naive Bayes

- Attempted to train Naive
 Bayes on just the byte code
 data (1 & 2 Grams)
- Never achieved scalable results.

Attention areas

Pyspark SQL DataFrames

- DataFrames convenient when they work
- DataFrame → RDD
 + → DataFrame
 REALLY SLOW
- UDFs improve on this, but can be tricky to understand

Too Many Features

- 1, 2, 3, and 4 grams ==
 - Explosive Feature Space
- Intelligent feature selection is key

Attention areas

3-4 Hour Training Times

- 2-3 runs in a day, max
- Sometimes less, if there are bugs in the code

Panic

 When the time runs low, coding / software dev best practices get ignored

Work Flow

Chi Square Selector and limit vocab from Count Vectorizer

Improve memory management, parameter selection

Parse opcodes in asm files, 1-4 grams for byte files

RandomForest Classifier, Naive Bayes

Goals for improvement

- 1. Improve feature selection
- 2. Memory management
- 3. Debug lack of replicability