Options Part 4

Pritam Dalal

Calculating PNL (Part 1 of)

- \triangleright Suppose you trade an option $\mathcal O$ at a price P on trade-date T_1 .
- Suppose you hold the option until expiration, which is trade-date T_n .
- The letter i will sever as an index over the trade-dates, so i = 1, ..., n.

Calculating PNL (Part 2 of)

- Let B_i and A_i be the end-of-day bid/ask prices of the option for trade-date T_i .
- Note that $B_n = A_n = \text{option-payoff}$.
- $\triangleright D_i$ daily pnl for the trade as of end-of-day T_i .
- $ightharpoonup C_i$ trade-to-date (cummulative) pnl for the trade as of end-of-day T_i .

Calculating PNL (Part 3 of)

Cummulative as Sum of Daily: BUY

$$D_{i} = \begin{cases} B_{i} - P & i = 1 \\ B_{i} - B_{i-1} & i > 1 \end{cases}$$

$$C_{i} = \sum_{k=1}^{i} D_{k}$$

Exercise: Show that $C_j = B_j - P$.

Calculating PNL (Part 4 of)

Cummulative as Sum of Daily: SELL

$$D_{i} = \begin{cases} P - A_{i} & i = 1 \\ A_{i-1} - A_{i} & i > 1 \end{cases}$$

$$C_{i} = \sum_{k=1}^{i} D_{k}$$

Exercise: Show that $C_i = P - A_i$.

Calculating PNL (Part 5 of)

Daily as Change in Cummulative: **BUY**

$$C_i = B_i - P$$

$$D_i = \begin{cases} C_i & i = 1 \\ C_i - C_{i-1} & i > 1 \end{cases}$$

Exercise: Show that both formulations of D_i are equivalent.

Calculating PNL (Part 6 of)

Daily as Change in Cummulative: **SELL**

$$C_i = P - A_i$$

$$D_i = \begin{cases} C_i & i = 1 \\ C_i - C_{i-1} & i > 1 \end{cases}$$

Exercise: Show that both formulations of D_i are equivalent.

Calculating PNL (Part 7 of)

SHOW A SIMPLE data analysis example here.

Black-Scholes-Merton Fuctions

Black-Scholes-Merton Formula (1 of)

$$m = \mathsf{BSM}(\mathsf{p/c}, K, \mathsf{T}, S_t, \sigma, \delta, r)$$

Contract Features

- ▶ p/c put or call
- K strike price
- T expiration date (time to expiration)

Market Values

- $\gt S_t$ current underlying price
- σ estimate of the standard deviation log-return of the price of underlying between now and expiration
- ho estimate of dividends paid over the life of the option
- r risk-free interest rate