I- Transformation physique

-QCM-

1. A; 2. B et C; 3. A; 4. B; 5. B et C; 6. A et C; 7. C; 8. B; 9. B et C; 10. B et C; 11. A; 12. C; 13. B.

Exercice

- **1.** Les énergies transférées Q_1 et Q_3 sont positives : le glaçon et l'eau fondue reçoivent de l'énergie lorsque leur température augmente. Les énergies transférées Q_4 et Q_5 sont négatives : l'eau et le calorimètre libèrent de l'énergie lorsqu'ils se refroidissent.
- 2. La somme des énergies transférées par les différentes parties du système est nulle :

$$Q_1 + Q_2 + Q_3 + Q_4 + Q_5 = 0$$

$$Q_1 + m \times L_f + Q_3 + Q_4 + Q_5 = 0$$

$$L_f = \frac{-Q_1 - Q_3 - Q_4 - Q_5}{m}$$

$$L_f = \frac{-371 \text{ J} - 836 \text{ J} + 397 \text{ J} + 4,18 \times 10^3 \text{ J}}{10,0 \text{ g}} = 337 \text{ J} \cdot \text{g}^{-1}$$

Exercice

- **1. a.** À 25 °C, on observe la fusion du cyclohexanol qui passe de l'état solide à l'état liquide ; il y a coexistence de cyclohexanol solide et liquide.
- À 160 °C, on observe l'ébullition du cyclohexanol qui passe de l'état liquide à l'état gazeux ; il y a coexistence de cyclohexanol liquide et gazeux.
- **b.** Le cyclohexanol passe, dans les deux cas, d'un état plus condensé à un état moins condensé : le cyclohexanol reçoit de l'énergie transférée par le milieu extérieur qui se refroidit.

La transformation est endothermique.

- **2. a.** Cette affirmation est exacte, car les changements d'état du cyclohexanol se font à température constante.
- **b.** Cette affirmation est exacte, car l'agitation des molécules augmente quand la température augmente.

Calculer une énergie massique de fusion
$$L_c = 1,26 \times 500 = 630 \text{ J} \cdot \text{g}^{-1} = 630 \text{ kJ} \cdot \text{kg}^{-1}$$
.

12 Calculer une variation d'énergie

1. II reçoit de l'énergie. **2.** $Q = m \times L_{\nu}(NH_{\nu}) = 2.5 \times 1.37 \times 10^{3} = 3.4 \times 10^{3} \text{ kJ}.$

(13) Côté math
$$Q = Q_1 + Q_2 + Q_3 = -(41.8 + 166.5 + 5.150) \times 10^3 = -213.5 \times 10^3 \text{ kJ}.$$

-QCM-

1. B et C; 2. A et C; 3. C; 4. B; 5. A et B; 6. C; 7. B; 8. A; 9. A et B; 10. C; 11. B et C; 12. A, B et C.

1 Exercice

1. Le glucose $C_6H_{12}O_6$ (s) **réagit** avec le dioxygène O_2 (g) : ce sont **les réactifs**.

Le dioxyde de carbone CO_2 (g) et l'eau H_2O (g) sont **formés** : ce sont **les produits**. Équation de réaction :

...
$$C_6H_{12}O_6(s) + ... O_2(g) \rightarrow ... CO_2(g) + ... H_2O(g)$$

Conservation de l'élément carbone C:

$$C_6H_{12}O_6(s) + ... O_2(g) \rightarrow 6 CO_2(g) + ... H_2O(g)$$

Conservation de l'élément hydrogène H:

$$C_6H_{12}O_6(s) + ... O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(g)$$

Conservation de l'élément oxygène O:

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g)$$

La charge électrique est conservée. L'équation de la réaction est :

$$C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(g)$$

2. On calcule les quotients :

$$\frac{n_0(C_6H_{12}O_6)}{1} = \frac{2,0}{1} = 2,0 \text{ mol}$$

et

$$\frac{n_0(O_2)}{6} = \frac{6.0}{6} = 1.0 \text{ mol.}$$

 $\frac{n_0(C_6H_{12}O_6)}{1} > \frac{n_0(O_2)}{6} \text{ donc le dioxygène est le réactif limitant.}$

3 Schématiser une transformation chimique

1. Dans l'état initial, le système contient du dioxygène $O_2(g)$ et du carbone C(s). Dans l'état final, le système contient du dioxyde de carbone $CO_2(g)$ et du carbone C(s).

2.

Exploiter une transformation chimique

- 1. Les produits formés sont : Zn2+ (aq) et H, (g).
- 2. Les réactifs sont : Zn(s) et H+(aq).
- 3. a. Le réactif totalement consommé est Zn(s).
- b. Il est nommé réactif limitant.
- **4.** Les espèces chimiques spectatrices sont l'ion chlorure $CI^-(aq)$ et l'eau $H_2O(\ell)$.

(5) Écrire et ajuster une équation de réaction

- **1.** Les espèces chimiques présentes dans l'état initial sont le cuivre métallique Cu(s), l'ion argent $Ag^+(aq)$, l'ion nitrate $NO_3^-(aq)$ et l'eau $H_3O(\ell)$.
- **2.** Les réactifs sont le cuivre Cu(s) et l'ion argent $Ag^+(aq)$. Les produits sont l'ion cuivre (II) $Cu^{2+}(aq)$ et l'argent Ag(s).
- 3. $Cu(s) + 2 Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2 Ag(s)$
- **4.** Les espèces spectatrices sont l'ion nitrate $NO_3^-(aq)$ et l'eau $H_3O(\ell)$.

6 Identifier une équation de réaction

- 1. Les réactifs sont l'ion fer (III) Fe³⁺ (aq) et l'ion hydroxyde HO⁻ (aq). Le produit est l'hydroxyde de fer (III) Fe(OH)₂(s).
- **2.** L'équation correcte est la **d.** car c'est la seule pour laquelle les charges et les éléments chimiques sont conservés.
- **3.** Pour l'équation **a.** : les ions spectateurs $Na^+(aq)$ et $C\ell^-(aq)$ n'ont pas à apparaître dans l'équation, les éléments oxygène O et hydrogène H ne sont pas ajustés.

Pour les équations **b.** et **c.** : les éléments oxygène O, hydrogène H ou fer Fe ne sont pas ajustés, de même que les charges.

4. Les espèces spectatrices sont l'ion chlorure $Cl^-(aq)$, l'ion sodium $Na^+(aq)$ et l'eau $H_2O(\ell)$.

8 Vérifier et corriger des équations

- **a.** $C_2H_6O(g) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$
- **b.** $C_7H_8(g) + 9O_7(g) \rightarrow 7CO_7(g) + 4H_7O(g)$
- **c.** 2 Fe³⁺(aq) + 2 I⁻(aq) \rightarrow 2 Fe²⁺(aq) + I₂(aq)
- **d.** $Sn^{2+}(aq) + 2 Fe^{3+}(aq) \rightarrow Sn^{4+}(aq) + 2 Fe^{2+}(aq)$

10 Étude graphique de mélanges

1. Le mélange stœchiométrique est celui du graphe (b) car

 $\frac{n(C_6H_8O_7)}{1} = \frac{n(HO^-)}{3}.$ 2. Pour l'autre mélange, $\frac{n(C_6H_8O_7)}{1} > \frac{n(HO^-)}{3}$, le réactif limitant est donc $HO^-(aq)$.

(11) Identifier une relation de stœchiométrie

La relation correspond à un mélange initial stœchiométrique.

15 Côté maths

$$\frac{n(Fe)}{3} = \frac{0.12}{2}$$
. Donc: $n(Fe) = 0.18$ mol.

ז Identifier un montage de chauffage à reflux

1. Schéma d correct.

2. Schéma (a): pas de réfrigérant à eau d'où pertes de matière lors de l'ébullition et ballon non fixé d'où risque de renversement. Schéma (b): mauvais sens de circulation de l'eau donc le réfrigérant ne peut pas liquéfier efficacement les vapeurs formées. Schéma c: pas de support élévateur donc le chauffe-ballon est difficile à retirer.

(18) Exploiter une densité

1. a. La masse volumique du produit obtenu est $\rho = \frac{10,38}{11.8} =$ 0,880 g · cm⁻³.

b. La densité est $d = \frac{0,880}{1.00} = 0,880$.

2. Le produit obtenu n'est pas de l'acétate de linalyle pur car il n'a pas la même densité que l'acétate de linalyle pur.

19 Mesurer une température de fusion

La température lue est 170 °C, c'est donc du paracétamol.

III- Transformation nucléaire

-OCM-

1. B; 2. A et C; 3. C; 4. A et B; 5. A; 6. A; 7. A; 8. A; 9. B; 10. A et B; 11. B; 12. C.

1 Exercice

Un atome de nickel 64 possède 64 nucléons et, d'après les données, 28 protons. L'écriture conventionnelle de son noyau est : 64 Ni.

Un atome de zinc 68 possède 68 nucléons, et d'après les données, 30 protons. L'écriture conventionnelle de son noyau est : ${}^{68}_{30}$ Zn.

L'atome X a 29 protons, il s'agit d'un atome de cuivre. Comme A = 64, l'écriture conventionnelle du noyau de l'atome X est : 64 Cu.

L'atome Y, neutre électriquement, a 29 électrons, donc 29 protons. Il s'agit d'un atome de cuivre qui possède 29 + 38 = 67 nucléons. L'écriture conventionnelle de son noyau est : 67 Cu.

Des atomes isotopes possèdent le même nombre de protons et un nombre de nucléons différent, donc les atomes de cuivre 64 et 67 sont isotopes.

2 Exercice

1. Le réactif est le noyau d'un atome d'uranium 238 de numéro atomique Z = 92. L'écriture conventionnelle de ce noyau est $^{238}_{92}$ U.

Les produits sont les noyaux suivants : ${}^{234}_{90}$ Th et ${}^{4}_{2}$ He.

L'équation de la réaction de désintégration de l'uranium 238 s'écrit :

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

Cette équation traduit la conservation du nombre de masse (238 = 234 + 4) et du nombre de charge (92 = 90 + 2).

2. Dans l'équation de la réaction de désintégration du thorium 234 :

- la conservation du nombre de masse impose : $234 = A + 2 \times 0$, soit A = 234;

- la conservation du nombre de charge impose : $90 = Z + 2 \times (-1)$, soit Z = 92.

Comme Z=92, l'élément X est de l'uranium de symbole U. L'équation de la réaction s'écrit : $^{234}_{90}$ Th $\rightarrow ^{234}_{92}$ U + 2 $^{0}_{-1}$ e.

Exercice

Dans l'équation de réaction a, les réactifs sont $C_2H_4(g)$ et $Br_2(\ell)$, le produit est $C_2H_4Br_2(\ell)$.

Les réactifs et produits diffèrent. Les éléments chimiques sont conservés. Il s'agit d'une transformation chimique.

Dans l'équation de réaction (b), le réactif $Br_2(\ell)$ et le produit $Br_2(g)$ correspondent à la même espèce chimique, mais les états physiques diffèrent. Il s'agit d'une transformation physique.

Dans l'équation de réaction \bigcirc , le réactif $^{80}_{35}$ Br et le produit $^{80}_{34}$ Se correspondent à des éléments chimiques différents. Il s'agit d'une transformation nucléaire.

Écrire une équation de réaction nucléaire

 ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{38}^{94}Sr + {}_{54}^{139}Xe + 3{}_{0}^{1}n.$

Identifier la nature d'une transformation

 Énergie E consommée en moyenne par l'habitation : $E = 20 \times 10^6 \times 3600 = 7.2 \times 10^{10} \text{ J}.$

• Cette énergie peut être libérée par une masse $m=0.7~{
m g}$ d'uranium 235, soit une énergie libérée par 1 g d'uranium :

$$\frac{E}{m} = \frac{7.2 \times 10^{10} \text{ J}}{0.7 \text{ g}} \approx 1 \times 10^{11} \text{ J}.$$

La transformation que subit l'uranium 235 est donc de type nucléaire.

La scintigraphie du myocarde

1. Les représentations conventionnelles des noyaux des différentes entités sont : ${}^{201}_{81}T\ell$, ${}^{35}_{17}C\ell$, ${}^{37}_{17}C\ell$, ${}^{23}_{11}Na$.

Les atomes de chlore 35 et chlore 37, de noyaux respectifs $^{35}_{17}$ C ℓ et $_{17}^{37}$ C ℓ , sont isotopes car ils ont même nombre de protons (Z = 17) mais un nombre de nucléons (A) différent.

2. a. $^{201}_{81}\text{T}\ell \rightarrow ^{201}_{80}\text{Hg} + ^{0}_{1}\text{e.}$

b. C'est une transformation nucléaire. Il n'y a pas conservation des éléments chimiques mais le nombre de masse A et le nombre de charge Z se conservent.

3. a. $m_{T\ell} = t \times V_{sol} = 4.8 \times 10^{-6} \times 2 \times 10^{-3} = 9.6 \times 10^{-9} \text{ g, soit 9,6 ng.}$

b. La dose maximale est de 150 ng par kg de masse corporelle donc, pour un adulte de 70 kg :

 $(m_{T\ell})_{max} = 150 \times 70 = 1050 \text{ ng donc } (m_{T\ell})_{dose} < (m_{T\ell})_{max'} \text{ il n'y a}$ donc aucun risque.

4. C'est une transformation chimique car on observe une modification des espèces chimiques avec une conservation des éléments et de la charge.

5. Il n'y a aucune différence entre les deux cœurs au repos, donc les cellules ne sont pas détruites. Il y a juste une différence à l'effort, le patient souffre d'une ischémie coronarienne.