Část I

Definice

Definice 0.1 (Množinová funkce)

Buď X množina a $\mathcal{P}(X)$ její potenční množina, tj. $\mathcal{P}(X) := \{A | A \subset X\}$. Nechť $\mathcal{A} \subset \mathcal{P}(X)$. Pak zobrazení $\tau : \mathcal{A} \to \mathbb{R}^*$ se nazývá množinová funkce.

Definice 0.2 (σ -algebra a algebra)

Systém $\mathcal{A} \subset \mathcal{P}(X)$ nazveme σ -algebra na X, jestliže

- $\emptyset \in \mathcal{A}$;
- $A \in \mathcal{A} \implies A^c := X \setminus A \in \mathcal{A}$;
- $A_i \in \mathcal{A} \ \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$.

Jestliže nahradíme třetí podmínku za $A,B\in\mathcal{A}\implies A\cup B\in\mathbb{A}$, pak se systém \mathcal{A} nazývá algebra.

Definice 0.3 (σS)

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ libovolný množinový systém, pak nejmenší σ-algebru obsahující systém \mathcal{S} označíme $\sigma \mathcal{S}$. (Existence vyplývá z věty o průniku σ-algeber.)

Definice 0.4 (Generátor σ -algebry)

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ a $\mathcal{A} = \sigma \mathcal{S}$, pak \mathcal{S} nazveme generátor σ -algebry \mathcal{A} (také říkáme, že \mathcal{A} je generováno systémem \mathcal{S}).

Definice 0.5 (Borelovská σ -algebra)

Je-li (X, ϱ) metrický prostor a \mathcal{G} systém všech otevřených podmnožin X, pak $\mathcal{B}(X) := \sigma \mathcal{G}$ se nazývá borelovská σ -algebra na X.

Definice 0.6 (Měřitelný prostor a měřitelná množina)

Je-li \mathcal{A} σ-algebra na X, pak dvojice (X, \mathcal{A}) se nazývá měřitelný prostor. Množiny $A \in \mathcal{A}$ se nazývají \mathcal{A} -měřitelné (krátce měřitelné, pokud nehrozí nedorozumění).

Definice 0.7 (Míra, prostor s mírou)

Buď (X,\mathcal{A}) měřitelný prostor. Zobrazení $\mu:\mathcal{A}\to [0,+\infty]$ splňující

$$(M1) \ \mu(\emptyset) = 0;$$

(M2) jestliže $A_i \in \mathcal{A}, i \in \mathbb{N}$, jsou po dvou disjunktní, pak $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$,

se nazývá míra. (M2 se také nazývá spočetná/sigma aditivita)

Trojice (X, \mathcal{A}, μ) se nazývá prostor s mírou.

Definice 0.8 (Nulová množina, úplný prostor, zúplnění)

Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že množina $N \subset X$ je nulová množina, jestliže existuje $A \in \mathcal{A}$ tak, že $N \subset \mathcal{A}$ a $\mu(A) = 0$. Symbolem \mathcal{N} označíme systém všech nulových množin.

Řekneme, že prostor (X, \mathcal{A}, μ) je úplný, pokud $\mathcal{N} \subset \mathcal{A}$. σ -algebru $\mathcal{A}_0 := \sigma(\mathcal{A} \cup \mathcal{N})$ nazveme zúplněním σ -algebry \mathcal{A} vzhledem k míře μ .

Definice 0.9 (Borelovská, konečná, pravděpodobnostní a σ -konečná míra)

Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že míra μ je:

- borelovská, je-li X metrický prostor a $\mathcal{A} = \mathcal{B}(X)$;
- konečná, je-li $\mu(X) < +\infty$;
- pravděpodobnostní, je-li $\mu(X) = 1$;
- σ -konečná, existují-li množiny $X_i \in \mathcal{A}, i \in \mathbb{N},$ tak, že $\mu(X_i) < +\infty, \forall i \in \mathbb{N},$ a $X = \bigcup_{i \in \mathbb{N}} X_i$.

Definice 0.10 (Lebesgueova míra)

Zúplněné míry $\lambda^n_{\mathcal{B}}$ nazveme Lebesgueovou mírou v \mathbb{R}^n a označíme $\lambda^n.$

 $(\lambda_{\mathcal{B}}^n$ je borelovská míra na \mathbb{R}^n taková, že $\lambda_{\mathcal{B}}^n([a_1,b_1]\times\ldots\times[a_n,b_n])=(b_1-a_1)\cdot\ldots\cdot(b_n-a_n).)$

Definice 0.11 (Vzor systému)

At X, Y jsou množiny, $f: X \to Y$ zobrazení a $\mathcal{S} \subset \mathcal{P}(Y)$. Pak $f^{-1}(\mathcal{S}) := \{f^{-1}(S) | S \in \mathcal{S}\}.$

Definice 0.12 (Měřitelné zobrazení, borelovsky měřitelné zobrazení)

Nechť (X, \mathcal{A}) a (Y, \mathcal{M}) jsou měřitelné prostory. Zobrazení $f: X \to Y$ nazýváme měřitelné (vzhledem k \mathcal{A} a \mathcal{M}), jestliže $f^{-1}(\mathcal{M}) \subset \mathcal{A}$. Pak píšeme $f: (X, \mathcal{A}) \to (Y, \mathcal{M})$.

Je-li některý z prostorů X,Y metrický prostor, pak za příslušnou σ -algebru bereme borelovskou σ -algebru (pokud není řečeno jinak). Měřitelné zobrazení mezi dvěma metrickými prostory se nazývá borelovsky měřitelné (stručně borelovské).

Definice 0.13 (Jednoduchá funkce)

Funkce $s: X \to [0, +\infty)$ se nazývá jednoduchá, jestliže s(X) je konečná množina.

Pak platí $s = \sum_{\alpha \in s(x)} \alpha \cdot \chi_{\{s=\alpha\}}$. Součet na pravé straně této rovnosti nazýváme kanonickým tvarem jednoduché funkce s.

Definice 0.14 (Lebesgueův integrál)

Buď (X, \mathcal{A}, μ) prostor s mírou.

• Je-li $s:(X,\mathcal{A})\to [0,+\infty)$ jednoduchá měřitelná funkce, zapíšeme ji v kanonickém tvaru $s=\sum_{j=1}^k\alpha_j\chi_{E_j}$, pro $E_j:=\{x\in X|s(x)=\alpha_j\}$, a definujeme

$$\int_X s d\mu = \int_X s(x) d\mu(x) := \sum_{j=1}^k \alpha_j \mu(E_j).$$

• Je-li $f:(X,\mathcal{A})\to [0,+\infty]$ měřitelná funkce, pak definujeme

$$\int_X f d\mu := \sup \left\{ \int_X s d\mu \middle| 0 \le s \le f, s \text{ jednoduchá, měřitelná} \right\}.$$

• Je-li $f:(X,\mathcal{A})\to\mathbb{R}^*$, pak definujeme

$$\int_{X} f d\mu := \int_{X} f^{+} d\mu - \int_{X} f^{-} d\mu,$$

má-li rozdíl smysl.

Definice 0.15 (Skoro všude)

Buď (X, \mathcal{A}, μ) prostor s mírou a V(x) vlastnost, kterou bod x může, ale nemusí mít. Je-li $E \in \mathcal{A}$, pak výrok V(x) platí μ -s. v. na E znamená:

$$\exists N \in \mathcal{A} \cap \mathcal{N}, N \subset E \ \forall x \in E \setminus N : V(x).$$

Je-li E=X, pak místo μ -s. v. na E píšeme pouze μ -s. v. Pokud nehrozí nedorozumění, o jakou míru se jedná, tak píšeme pouze s. v. místo μ -s. v.

Definice 0.16 (Měřitelná funkce)

Buď (X, \mathcal{A}, μ) prostor s mírou. Řekneme, že funkce f definovaná na množině $D \in \mathcal{A}$ s hodnotami v \mathbb{R}^* je měřitelná na X, jestliže $\mu(D^c) = 0$ a \forall otevřenou množinu $G \subset \mathbb{R}^*$ platí $f^{-1}(G) \cap D \in \mathcal{A}$.

Pro měřitelnou funkci f pak definujeme

$$\int_X f d\mu := \int_X \tilde{f} d\mu, \qquad \tilde{f}(x) := \begin{cases} f(x), & \forall x \in D, \\ 0, & \forall x \in D^c. \end{cases}$$

Definice 0.17 (\mathcal{L}^* a \mathcal{L}^1)

Je-li (X, \mathcal{A}, μ) prostor s mírou, pak označujeme

$$\mathcal{L}^*(\mu) := \left\{ f \middle| (X, \mathcal{A}) \to \mathbb{R}^*, f \text{ je měřitelná na } X, \exists \int_X f d\mu \right\},$$
$$\mathcal{L}^1(\mu) := \left\{ f \in \mathcal{L}^*(\mu) \middle| \int_Y |f| d\mu < +\infty \right\}.$$

Definice 0.18 (Dynkinův systém (d-systém))

Systém $\mathcal{D} \subset \mathcal{P}(X)$ se nazývá d-systém (nebo Dynkinův systém) na X, jestliže

- $\emptyset \in \mathcal{D}$;
- $D \in \mathcal{D} \implies D^c \in \mathcal{D}$:
- $D_n \in \mathcal{D}, \forall n \in \mathbb{N}, D_n \cap D_m = \emptyset \text{ pro } n \neq m \implies \bigcup_{n \in \mathbb{N}} D_n \in \mathcal{D}.$

Definice 0.19 (π -systém)

Je-li systém $\mathcal{S} \subset \mathcal{P}(X)$ uzavřen na konečné průniky (neboli $\forall S, T \in \mathcal{S} : S \cap T \in \mathcal{S}$), pak systém \mathcal{S} nazveme π -systém.

Definice 0.20 (Měřitelný obdélník, součinová σ -algebra, řezy)

Je-li $A \in \mathcal{A}$, $B \in \mathcal{B}$, pak množinu $A \times B \subset X \times Y$ nazveme měřitelným obdélníkem. Systém všech měřitelných obdélníků označíme symbolem \mathcal{O} .

Součinová σ -algebra $\mathcal{A}\otimes\mathcal{B}$ na prostoru $X\times Y$ je dána předpisem

$$\mathcal{A} \otimes B := \sigma \mathcal{O}.$$

Pro $E \in \mathcal{A} \otimes \mathcal{B}$ a $x \in X$, $y \in Y$ definujeme řezy E_x , E^y množiny E předpisy

$$E_x := \{ y \in Y | [x, y] \in E \}, \qquad E^y := \{ x \in X | [x, y] \in E \}.$$

Definice 0.21 (C^1 -difeomorfismus)

Buď $G\subset\mathbb{R}^n$ otevřená množina. Zobrazení $\varphi:G\to\mathbb{R}^m$ se nazývá difeomorfismus, je-li prosté, třídy C^1 na G a $\forall x\in G:J\varphi(x)\neq 0$.

Definice 0.22 (Absolutní spojitost měr)

Necht μ , ν jsou míry na (X, \mathcal{A}) . Řekneme, že míra ν je absolutně spojitá vzhledem k míře μ (a značíme $\nu \ll \mu$), jestliže

$$\forall A \in \mathcal{A} : \mu(A) = 0 \implies \nu(A) = 0.$$

Definice 0.23 ((Radonova-Nikodymova) hustota / derivace míry)

Funkce fz Radonovy-Nikodymovy věty se nazývá (Radonova-Nikodymova) hustota nebo derivace míry ν vzhledem k míře μ a vztah

$$\nu(A) = \int_{A} f d\mu \qquad \forall A \in \mathcal{A}$$

se někdy zapisuje ve tvaru $d\nu = f d\mu$ nebo také $f = \frac{d\nu}{d\mu}$.

Definice 0.24 ((Vzájemně) singulární míry)

Řekneme, že míry μ , ν na měřitelném prostoru (X, \mathcal{A}) jsou vzájemně singulární (a píšeme $\mu \perp \nu$), jestliže

$$\exists S \in \mathcal{A} : \mu(S) = 0 \land \nu(X \setminus S) = 0.$$

Definice 0.25 (Distribuční funkce)

Buď μ konečná borelovská míra na $\mathbb R.$ Pak funkci

$$F_{\mu}(x) := \mu((-\infty, x)), \qquad x \in \mathbb{R},$$

nazýváme distribuční funkcí míry μ .

Definice 0.26 (Lebesgueův-Stieltjesův integrál)

Je-li Fdistribuční funkce konečné borelovské míry μ a $A\subset \mathbb{R}$ borelovská množina, pak

$$\int_A f dF := \int_A f d\mu, \qquad \text{(má-li pravá strana smysl)}.$$

Definice 0.27 (Konvergence podle míry)

Buď (X, \mathcal{A}, μ) prostor s mírou a $f, f_n, n \in \mathbb{N}$, měřitelné funkce na X. Řekneme, že funkce f_n konvergují k funkci f podle míry μ (značení $f_n \stackrel{\mu}{\to} f$), jestliže

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mu(\{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Část II

Tvrzení

Věta 0.1 (O průniku σ -algeber)

Nechť A_{α} , $\alpha \in I$, jsou σ -algebry na X (kde I je libovolná indexová množina). Pak $\bigcap_{\alpha \in I} A_{\alpha}$ je σ -algebra na X.

 $D\mathring{u}kaz$

Triviální, přenechán čtenáři.

Důsledek

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ libovolný množinový systém, pak existuje nejmenší σ -algebra $\sigma \mathcal{S}$ obsahující systém \mathcal{S} .

Důkaz

$$\sigma \mathcal{S} := \bigcap \left\{ \mathcal{A} \subset \mathcal{P}(X) \middle| \mathcal{S} \subset \mathcal{A} \land \mathcal{A} \text{ je } \sigma\text{-algebra} \right\}.$$

Věta 0.2 (Vlastnosti míry)

 $Bud'(X, A, \mu)$ prostor s mírou. Pak

1.
$$A, B \in \mathcal{A}, A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B);$$

2.
$$A, B \in \mathcal{A}, A \subset B \implies \mu(A) \leq \mu(B);$$

3.
$$A_i \in \mathcal{A}, i \in \mathbb{N} \implies \mu(\bigcup_i A_i) \leq \sum_i \mu(A_i), \text{ (subaditivita miry)};$$

4.
$$A_1 \subset A_2 \subset \ldots \implies \mu(A_i) \nearrow \mu(\bigcup A_i);$$

5.
$$A_1 \supset A_2 \supset \dots, \mu(A_1) < +\infty \implies \mu(A_i) \searrow \mu(\bigcap_i A_i)$$
.

Ad 1.:
$$A, B \in \mathcal{A}, A \cap B = \emptyset, A, B \in \mathcal{A} \implies$$

$$\implies A \cup B = A \cup B \cup \emptyset \cup \emptyset \cup \ldots \implies$$

$$\implies \mu(A \cup B) = \mu(A) + \mu(B) + \mu(\emptyset) + \mu(\emptyset) + \dots = \mu(A) + \mu(B)$$

Ad 2.: $A, B \in \mathcal{A}, A \subset B \implies$

$$\implies B = A \cup B \setminus A \implies \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

Ad 3.: $A_i \in \mathcal{A} \forall i \in \mathbb{N}$:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus (A_1 \cup A_2)) \cup \dots \Longrightarrow$$

$$\implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu(A_1) + \mu(A_2 \setminus A_1) + \ldots \leq \mu(A_1) + \mu(A_2) + \ldots$$

Ad 4.: $A_1 \subset A_2 \subset ..., A_i \in \mathcal{A} \forall i \in \mathbb{N}$

$$\implies A_k = \bigcup_{i=1}^k A_i = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus A_2) \cup \ldots \cup (A_k \setminus A_{k-1}) \forall k \in \mathbb{N}, k \ge 2,$$

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup (A_2 \setminus A_1) \cup \dots \implies$$

$$\implies \mu(A_k) = \mu(A_1) + \sum_{i=2}^k \mu(A_i \setminus A_{i-1}) \forall k \in \mathbb{N}, k \ge 2,$$

$$\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \mu(A_{1}) + \sum_{i=2}^{\infty} \mu(A_{i} \setminus A_{i-1}).$$

Z toho plyne $\mu(A_k) \nearrow \mu(\bigcup_{i=1}^{\infty} A_i)$.

Ad 5.: $A_1 \supset A_2 \supset \ldots$, $A_i \in \mathcal{A} \forall i \in \mathbb{N}$, $\mu(A_1) < +\infty$. Položíme $B_i = A_1 \setminus A_i \forall i \in \mathbb{N}$. Pak na posloupnost B_i aplikujeme 4.:

$$\mu(A_1) - \mu(A_i) \nearrow \mu(A_1) - \mu\left(\bigcup_{i=1}^{\infty} A_i\right) \implies -\mu(A_i) \nearrow \mu\left(\bigcap_{i=1}^{\infty} A_i\right) \implies \mu(A_i) \searrow \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

Věta 0.3 (Zúplnění míry)

 $Bud'(X, A, \mu)$ prostor s mírou. Pak platí

- 1. $A_0 = \{ E \subset X | \exists A, B \in A \land A \subset E \subset B \land \mu(B \setminus A) = 0 \}.$
- 2. Míru μ lze jednoznačně rozšířit na \mathcal{A}_0 (rozšířenou míru označíme μ_0).
- 3. Prostor $(X, \mathcal{A}_0, \mu_0)$ je úplný.

Důkaz (1.)

Označme

$$\tilde{\mathcal{A}}_0 := \{ E \subset X | \exists A, B \in \mathcal{A} \land A \subset E \subset B \land \mu(B \setminus A) = 0 \}.$$

Ukážeme, že $\tilde{\mathcal{A}}_0$ je σ -algebra:

- $E = \emptyset \in \tilde{\mathcal{A}}$, neboť volba $A = \emptyset = B$ dává $A \subset E \subset B$, $\mu(B \backslash A) = \mu(\emptyset \backslash \emptyset) = \mu(\emptyset) = 0$. Tedy $\emptyset \in \tilde{\mathcal{A}}_0$.
- Je-li $E \in \tilde{\mathcal{A}}_0 \implies \exists A, B \in \mathcal{A} : A \subset E \subset B \land \mu(B \setminus A) = 0$. Tedy $A^c, B^c \in \mathcal{A}$ a $B^c \subset E^c \subset A^c$. Protože $A^c \setminus B^c = B \setminus A$, tak $\mu(A^c \setminus B^c) = \mu(B \setminus A) = 0$, a tedy $E^c \in \tilde{\mathcal{A}}_0$.
- Nechť $E_i \in \tilde{\mathcal{A}}_0 \ \forall i \in \mathbb{N}. \implies \exists A_i, B_i \in \mathcal{A} : A_i \subset E_i \subset B_i, \ \mu(B_i \setminus A_i) = 0.$ $\Longrightarrow \bigcup_i A_i \subset \bigcup_i E_i \subset \bigcup_i B_i \ a$

$$\mu\left(\bigcup_{i} B_{i} \setminus \bigcup_{i} A_{i}\right) \leq \mu\left(\bigcup_{i} (B_{i} \setminus A_{i})\right) \leq \sum_{i} \mu(B_{i} \setminus A_{i}) = 0.$$

Tedy $\bigcup_i E_i \in \tilde{\mathcal{A}}_0$.

Tudíž $\tilde{\mathcal{A}}_0$ je σ -algebra.

Platí $\mathcal{A} \cup \mathcal{N} \subset \tilde{\mathcal{A}}_0$, neboť

- Je-li $N \in \mathcal{N} \implies \exists A \in \mathcal{A} : N \subset A, \ \mu(A) = 0 \implies N \in \tilde{\mathcal{A}}_0, \text{ tedy } \mathcal{N} \subset \tilde{\mathcal{A}}_0.$
- Je-li $A \in \mathcal{A}$, pak $A \subset A \subset A \land \mu(A \setminus A) = \mu(\emptyset) = 0 \implies A \in \tilde{\mathcal{A}}_0$, tedy $\mathcal{A} \subset \tilde{\mathcal{A}}_0$.

 $Z \mathcal{A} \cup \mathcal{N} \subset \tilde{\mathcal{A}}_0$ plyne $\sigma(\mathcal{A} \cup \mathcal{N}) \subset \sigma(\tilde{\mathcal{A}}_0) = \tilde{\mathcal{A}}_0$, tj. $\mathcal{A}_0 \subset \tilde{\mathcal{A}}_0$.

Opačnou inkluzi získáme snadno: Je-li $E \subset \tilde{\mathcal{A}}_0$, pak

$$\exists A, B \in \mathcal{A} : A \subset E \subset B \land \mu(B \setminus A) = 0 \implies E = A \cup (E \setminus A) \implies E \in \sigma(\mathcal{A} \cup \mathcal{N}) = \mathcal{A}_0.$$

 $D\mathring{u}kaz$ (2.)

Buď $E \in \mathcal{A}_0$. Tedy $\exists A, B \in \mathcal{A} : A \subset E \subset B$, $\mu(B \setminus A) = 0$. Definujeme $\mu_0(E) := \mu(A)$. Tato definice je korektní, neboť: Je-li $A_i, B_i \in \mathcal{A}$, $A_i \subset E \subset B_i$, $\mu(B_i \setminus A_i) = 0$, $i \in \{1, 2\}$, pak $A_1 = (A_1 \cap A_2) \cup (A_1 \setminus A_2)$, a tedy

$$\mu(A_1) = \mu(A_1) = \mu(A_1 \cap A_2) + \mu(A_1 \setminus A_2) = \mu(A_1 \cap A_2).$$

Analogicky dostaneme $\mu(A_2) = \mu(A_1 \cap A_2)$. Tudíž $\mu(A_1) = \mu(A_2)$, což dokazuje korektnost definice.

Dále ověříme, že μ_0 je míra: Je jasné, že $\mu_0 \geq 0$. Taktéž zřejmě $\mu_0(\emptyset) = 0$, nebot $\emptyset \subset \emptyset \subset \emptyset$, $\mu(\emptyset \setminus \emptyset) = \mu(\emptyset) = 0 \implies \mu_0(\emptyset) = \mu(\emptyset) = 0$.

Je-li $E_i \in \mathcal{A}_0 \forall i \in \mathbb{N}, E_i \cap E_j = \emptyset$ pro $i \neq j$, pak

$$\exists A_i, B_i \in \mathcal{A} : A_i \subset E_i \subset B_i, \mu(B_i \setminus A_i) = 0 \qquad \forall i \in \mathbb{N} \implies$$

$$\Longrightarrow \bigcup_{i} A_{i} \subset \bigcup_{i} E_{i} \subset \bigcup_{i} B_{i}, \qquad \bigcup_{i} B_{i} \setminus \bigcup_{i} A_{i} \subset \bigcup(B_{i} \subset A_{i}) \implies$$

$$\mu(\bigcup_{i} B_i \setminus \bigcup_{i} A_i) \le \mu\left(\bigcup_{i} (B_i \setminus A_i)\right) \le \sum_{i} \mu(B_i \setminus A_i) = 0.$$

Proto $\mu_0(\bigcup_i E_i) = \mu(\bigcup_i A_i) = \sum_i \mu(A_i) = \sum_i \mu_0(E_i)$, tj. $\mu_0(\bigcup_i E_i) = \sum_i \mu_0(E_i)$. Takže μ_0 je míra na \mathcal{A}_0 .

Dále platí, že μ_0 je rozšířením μ , nebot je-li $A \in \mathcal{A}$, pak $A \subset A \subset A$, $\mu(A \setminus A) = \mu(\emptyset) = 0$, tudíž $\mu_0(A) = \mu(A)$.

Nakonec jednoznačnost: Buď $E \in \mathcal{A}_0$. Pak $\exists A, B \in \mathcal{A} : A \subset E \subset B, \ \mu(B \setminus A) = 0$. Proto $\mu_0(A) \leq \mu_0(E) \leq \mu_0(B)$. Ovšem $\mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A) = \mu(A)$. Tedy $\mu_0(E) = \mu(A)$.

Důkaz (3.)

Je-li $M \subset X$ nulová množina v $(X, \mathcal{A}_0, \mu_0)$, pak

$$\exists N \in \mathcal{A}_0 : M \subset N \land \mu_0(N) = 0 \implies$$

$$\implies \exists A, B \in \mathcal{A} : A \subset N \subset B \land \mu(B \setminus A) = 0 \implies \mu(A) = 0,$$

a proto $\mu(B) = \mu(A) + \mu(B \setminus A) = 0 + 0 = 0$. Tudíž $\emptyset \subset M \subset N \subset B$, tj. $\emptyset \subset M \subset B$ a přitom $\mu(B \setminus \emptyset) = \mu(B) = 0$. Tedy $M \in \mathcal{A}_0$ a $\mu_0(M) = 0$.

Věta 0.4 (O míře $\lambda_{\mathcal{B}}^n$)

Existuje právě jedna borelovská míra $\lambda_{\mathcal{B}}^n$ na \mathbb{R}^n taková, že

$$\lambda_{\mathcal{B}}^{n}([a_1,b_1]\times\ldots\times[a_n,b_n])=(b_1-a_1)\times\ldots\times(b_n-a_n),$$

 $jestli\check{z}e - \infty < a_i < b_i < +\infty, \ \forall i \in [n].$

 $D\mathring{u}kaz$ V TMI2.

Věta 0.5 (O zobrazení $f: X \to Y$)

Nechť X, Y jsou množiny a $f: X \to Y$ zobrazení. Pak platí:

- 1. Je-li \mathcal{M} σ -algebra na Y, pak $f^{-1}(\mathcal{M})$ je σ -algebra na X.
- 2. Je-li $S \subset \mathcal{P}(Y)$, pak $\sigma(f^{-1}(S)) = f^{-1}(\sigma S)$.

 $D\mathring{u}kaz$

Bez důkazu?

Důsledek

Jsou-li (X, \mathcal{A}) , (Y, \mathcal{M}) měřitelné prostory a $\mathcal{S} \subset \mathcal{M}$ generátor \mathcal{M} , pak $f: X \to Y$ je měřitelné $\Leftrightarrow f^{-1}(\mathcal{S}) \subset \mathcal{A}$.

Důsledek

Je-li X, \mathcal{A} měřitelný prostor a Y metrický prostor, pak $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}(G) \in \mathcal{A}$ pro všechny otevřené množiny $G \subset Y$.

Důsledek

Každé spojité zobrazení f mezi metrickými prostory je borelovsky měřitelné.

Věta 0.6 (Generátory $\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$)

Borelovská σ -algebra B^n je generována:

- otevřenými intervaly $(a_1, b_1) \times \ldots \times (a_n, b_n)$, $kde -\infty < a_i < b_i < +\infty$, $i \in [n]$;
- systémem $S := \{(-\infty, a_1) \times \ldots \times (-\infty, a_n) | a_i \in \mathbb{R} \ \forall i \in [n] \}.$

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.7 (O měřitelných zobrazeních)

1. Jsou-li $f:(X,\mathcal{A})\to\mathbb{R}^n$ a $g:(X,\mathcal{A})\to\mathbb{R}^m$ měřitelné zobrazení, pak $(f,g):(X,\mathcal{A})\to\mathbb{R}^{n+m}$ je měřitelné zobrazení.

- 2. Jsou-li $f, g: (X, A) \to \mathbb{R}^n$ měřitelná zobrazení, pak $f \pm g$ je měřitelné zobrazení.
- 3. Jsou-li $f, g: (X, A) \to \mathbb{R}$ měřitelné funkce, pak také funkce $f \cdot g$, $\max \{f, g\}$, $\min \{f, g\}$ jsou měřitelné.

Důkaz Bez důkazu?

Věta 0.8 (O měřitelných funkcích)

Bud'(X, A) měřitelný prostor. Pak platí:

- 1. $f:(X,\mathcal{A})\to\mathbb{R}$ je měřitelná funkce $\Leftrightarrow f^{-1}((-\infty,a))\in\mathcal{A}$ $\forall ain\mathbb{R}$.
- 2. $f:(X,\mathcal{A})\to\mathbb{R}^*$ je měřitelná funkce $\Leftrightarrow f^{-1}(\langle -\infty,a\rangle)\in\mathcal{A} \ \forall ain\mathbb{R}$.

 \Box $D\mathring{u}kaz$

Bez důkazu.

Důsledek

Necht $f, g: (X, A) \to \mathbb{R}^*$ jsou měřitelné funkce. Pak:

- 1. Množiny $\{x \in X | f(x) < g(x)\}, \{x \in X | f(x) \le g(x)\}, \{x \in X | f(x) = g(x)\}$ jsou měřitelné.
- 2. $\max\{f,g\}$, $\min\{f,g\}$ jsou měřitelné funkce. (Speciálně funkce $f^+=\max\{f,0\}$ a $f^-=\min\{f,0\}$ jsou měřitelné.)

Věta 0.9 (O měřitelných funkcích podruhé)

Jsou-li funkce $f_n:(X,\mathcal{A})\to\mathbb{R}^*$, $n\in\mathbb{N}$, měřitelné, pak i funkce $\sup_{n\in\mathbb{N}}f_n$, $\inf_{n\in\mathbb{N}}f_n$, $\lim\sup_{n\to\infty}f_n$ a $\liminf_{n\to\infty}f_n$ měřitelné.

Speciálně bodová limita posloupnosti měřitelných funkcí je měřitelná funkce.

 $D\mathring{u}kaz$

Bez důkazu? □

Věta 0.10 (O nezáporné měřitelné funkci)

Nechť $f:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ je měřitelná funkce. Pak existují jednoduché nezáporné měřitelné funkce s_n na $X, n\in\mathbb{N}$, tak, že

$$\forall x \in X : s_n(x) \nearrow f(x).$$

Je-li navíc funkce f omezená, pak $s_n \rightrightarrows f$ na X.

Pro $n \in \mathbb{N}$ a $i \in [n \cdot 2^n]$ definujeme

$$E_{n,i} := f^{-1}\left(\left\langle \frac{i-1}{2^n}, \frac{i}{2^n} \right\rangle\right), \qquad F_n := f^{-1}\left(\left\langle n, +\infty \right\rangle\right),$$
$$s_n := \sum_{i=1}^{n \cdot 2^n} \frac{i-1}{2^n} \chi_{E_{n,i}} + n\chi_{F_n}.$$

Množiny $E_{n,i}$ a F_n jsou měřitelné, tedy s_n jsou měřitelné. Je jasné, že s_n je jednoduchá nezáporná funkce a platí $s_n \leq s_{n+1}$.

Je-li $x\in X$ takové, že $f(x)<+\infty$, pak pro dostatečně velká $n\in\mathbb{N}$ platí $f(x)-\frac{1}{2^n}\leq s_n(x)\leq f(x)$. Je-li $x\in X$ takové že $f(x)=+\infty$, pak $s_n(x)=n\to+\infty$. Tedy $s_n(x)\to f(x)$ $\forall x\in X$.

Je také jasné, že $s_n \rightrightarrows f$, pokud je funkce f omezená (neboť pak $|s_n(x) - f(x)| \leq \frac{1}{2^n} \ \forall x \in X \ \forall n \in \mathbb{N}$).

Lemma 0.11 (K důkazu Leviho věty)

 $Bud(X, A, \mu)$ prostor s mírou a s jednoduchá, nezáporná, měřitelná funkce na X. Definujeme-li

$$\varphi(A) := \int_A s d\mu \qquad \forall A \in \mathcal{A},$$

 $pak \varphi je mira na A.$

Důkaz

Je jasné, že $\varphi \geq 0$. Nechť $s = \sum_{j=1}^k \alpha_j \chi_{E_j}$ je kanonický tvar funkce s. Je-li $A \in \mathcal{A}$, pak

$$\varphi(A) = \int_{A} s d\mu = \int_{X} \chi_{A} s d\mu = \int_{X} \tilde{s} d\mu = \sum_{j=1}^{k} \alpha_{j} \mu(E_{j} \cap A),$$

kde $\tilde{s} := \sum_{j=1}^k \alpha_j \cdot \chi_{E_j \cap A}$ je jednoduchá nezáporná měřitelná funkce, tudíž můžeme použít definici integrálu. Z této rovnosti už vyplývá $\varphi(\emptyset) = \sum_{j=1}^k \alpha_j \mu(E_j \cap \emptyset) = 0$.

Necht $A_i \in A \ \forall i \in \mathbb{N}, \ A_i \cap A_j = \emptyset$ pro $i \neq j$. Buď $A = \bigcup_{i=1}^{\infty} A_i$. Pak

$$\varphi(A) = \sum_{j=1}^{k} \alpha_j \mu(E_j \cap A) = \sum_{j=1}^{k} \alpha_j \sum_{i=1}^{\infty} \mu(E_j \cap A_i) =$$

$$= \lim_{n \to \infty} \sum_{j=1}^k \sum_{i=1}^n \alpha_j \mu(E_j \cap A_i) = \lim_{n \to \infty} \sum_{i=1}^n \varphi(A_i) = \sum_{i=1}^\infty \varphi(A_i).$$

Věta 0.12 (Levi)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$ jsou nezáporné měřitelné funkce na X splňující $f_n \nearrow f$, pak $\int_X f_n d\mu \nearrow \int_X f d\mu$.

 $D\mathring{u}kaz$

Protože $f_n \leq f_{n+1}$ tak $\int_X f_n d\mu \leq \int_X f_{n+1} d\mu \implies$

$$\exists \alpha \in \langle 0, +\infty \rangle : \int_X f_n d\mu \to \alpha.$$

Podle věty o měřitelných zobrazeních podruhé je funkce f měřitelná na X. Protože $f_n \leq f$, tak $\int_X f_n d\mu \leq \int_X f d\mu$. Odtud plyne $\alpha \leq \int_X f d\mu$.

Nyní dokážeme opačnou nerovnost: Buď s libovolná jednoduchá měřitelná funkce splňující $0 \le s \le f$ a nechť $C \in (0,1)$. Definujeme $\forall n \in \mathbb{N}$

$$E_n := \{x \in X | f_n(x) \ge Cs(x)\}.$$

Množiny E_n jsou měřitelné

$$E_1 \subset E_2 \subset \dots \qquad \wedge \qquad X = \bigcup_{n=1}^{\infty} E_n.$$

Dále platí

$$\int_X f_n d\mu \ge \int_{E_n} f_n d\mu \ge C \int_{E_n} s d\mu.$$

Protože funkce $\varphi(A) := \int_A s d\mu$ je z předchozího lemmatu míra na \mathcal{A} , tak pravá strana konverguje k $C \int_X s d\mu$. Levá strana konverguje k α , tedy $\alpha \geq C \int_X d\mu$, a limitním přechodem pro $C \nearrow 1$ máme $\alpha \geq \int_X s d\mu$. Odtud dostaneme

$$\alpha \ge \sup_{0 \le s \le f} \int_X s d\mu = \int_X f d\mu.$$

Tedy $\int_X f_n d\mu \to \int_X f d\mu$.

Věta 0.13 (Fatouovo lemma)

Je- $li(X, A, \mu)$ prostor s mírou a f_n , $n \in \mathbb{N}$, jsou nezáporné měřitelné funkce na X, pak

$$\int_X (\liminf_{n \to \infty} f_n) d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

 $D\mathring{u}kaz$

Buď

$$g_n(x) := \inf \{ f_k(x) | k \ge n \}, x \in X, n \in \mathbb{N}.$$

Pak g_n jsou měřitelné a platí

$$g_n \nearrow g := \lim_{n \to \infty} g_n := \liminf_{n \to \infty} f_n.$$

Podle Leviho věty $\int_X g_n d\mu \nearrow \int_X g d\mu$. Protože $g_n \le f_n \ \forall n \in \mathbb{N}$, tak $\int_X g_n d\mu \le \int_X f_n d\mu \ \forall n \in \mathbb{N}$. Z uvedeného limitním přechodem dostaneme

$$\liminf_{n \to \infty} \int_X g_n d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

Levá strana je rovna

$$\lim_{n \to \infty} \int_X g_n d\mu = \int_X g d\mu = \int_X \liminf_{n \to \infty} f_n d\mu.$$

Lemma 0.14

Je-li (X, \mathcal{A}, μ) prostor s mírou a f, g jsou měřitelné funkce na X splňující f = g skoro všude, pak $\int_X f d\mu = \int_X g d\mu$, má-li jedna strana rovnosti smysl.

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.15 (Linearita integrálu)

Jestliže $f, g \in \mathcal{L}^*(\mu)$ a $\lambda \in \mathbb{R}$, pak

$$\int_X (\lambda f) d\mu = \lambda \int_X f d\mu,$$

$$\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu, \qquad \text{m\'a-li prav\'a strana smysl.}$$

 $D\mathring{u}kaz$

Bez důkazu?

Důsledek (Linearity a Leviho)

Je-li (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, jsou nezáporné měřitelné funkce na X, pak

$$\int_X \left(\sum_{n=1}^\infty f_n\right) d\mu = \sum_{n=1}^\infty \int_X f_n d\mu.$$

 $D\mathring{u}kaz$

Z předchozí věty máme

$$\int_{X} \left(\sum_{n=1}^{k} f_n \right) d\mu = \sum_{n=1}^{k} \int_{X} f_n d\mu \qquad \forall k \in \mathbb{N}$$

Odtud limitním přechodem pro $k \to +\infty$ pomocí Leviho věty dostaneme dané tvrzení.

Věta 0.16 (Zobecněná Leviho věta)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, měřitelné funkce na X splňující $f_n \nearrow f$ a $\int_X f_1 d\mu > -\infty$, pak

$$\int_X f_n d\mu \nearrow \int_X f d\mu.$$

Důkaz

BÚNO $\int_X f_1 < +\infty$, jinak vztah plyne z monotonie integrálu. Buď $g_n := f_n - f_1$, $n \in \mathbb{N}$, $g := f - f_1$. Pak $g_n \geq 0$, $g_n \nearrow g$ a z Leviho věty dostaneme $\int_X g_n d\mu \nearrow \int_X g d\mu$. Odtud pak, s využitím aditivity integrálu z předpředchozí věty, plyne $\int_X f_n d\mu = \int_X f d\mu$.

Důsledek

Totéž platí pro obrácená znamínka.

Věta 0.17 (Lebesgueova)

Necht (X, \mathcal{A}, μ) je prostor s mírou a f, $f_n, n \in \mathbb{N}$, jsou měřitelné funkce na X splňující $f_n \to f$ skoro všude. Jestliže existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $|f_n| \leq g$ skoro všude $\forall n \in \mathbb{N}$, pak $f \in \mathcal{L}^1(\mu)$ a $\int_X f_n d\mu \to \int_X f d\mu$.

Důkaz

Předefinujme funkce f_n , f na množině $\{x|f_n(x) \nrightarrow f(x)\} \cup \bigcup_{n=1}^{\infty} \{x \mid |f_n(x)| > g(x)\}$ nulové míry tak, aby předpoklady platily $\forall x \in X$. Je-li

$$g_n := \inf\{f_n, f_{n+1}, \ldots\}, h_n := \sup\{f_n, f_{n+1}, \ldots\}, n \in \mathbb{N}, \text{ pak } \forall n \in \mathbb{N}:$$

$$-g \le g_n \le f_n \le h_n \le g \implies g_n, f_n \in \mathcal{L}^1(\mu), -g \le \lim_{n \to \infty} f_n = f \le g \implies f \in \mathcal{L}^1(\mu).$$

Protože $g_n \nearrow f$, $h_n \searrow f$ pro $n \to \infty$, tak podle zobecněné Leviho věty a jejího důsledku platí $\int_X g_n d\mu \to \int_X f d\mu$ a $\int_X h_n d\mu \to \int_X f d\mu$. Protože

$$\int_{X} g_n d\mu \le \int_{X} f_n d\mu \le \int_{X} h_n d\mu \implies \int_{X} f_n d\mu \to \int_{X} f d\mu.$$

Důsledek

Necht (X, \mathcal{A}, μ) je prostor s mírou a $f_n, n \in \mathbb{N}$, jsou měřitelné funkce na X takové, že $\sum_{n=1}^{\infty} f_n$ konverguje skoro všude. Jestliže existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $\left|\sum_{n=1}^k f_n\right| \leq g$ skoro všude $\forall k \in \mathbb{N}$, pak $\sum_{n=1}^{\infty} f_n \in \mathcal{L}^1(\mu)$ a $\int_X \left(\sum_{n=1}^{\infty} f_n\right) d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.

 $D\mathring{u}kaz$

Aplikujeme předchozí větu na posloupnost částečných součtů $\sum_{n=1}^{\infty} f_n$.

Věta 0.18 (Další vlastnosti integrálů a měřitelných funkcí)

 $Bud'(X, A, \mu)$ prostor s mírou.

- Jestliže f je nezáporná měřitelná funkce na X a $\int_X f d\mu = 0$, pak f = 0 skoro všude.
- Je-li $f \in \mathcal{L}^1(\mu)$ a $\int_E f d\mu = 0 \ \forall E \in \mathcal{A}$, pak f = 0 skoro všude.
- Je-li f měřitelná funkce na X, pak

$$\int_X f d\mu \in \mathbb{R} \Leftrightarrow \int_X |f| d\mu \in \mathbb{R}.$$

- Je-li $f \in \mathcal{L}^1(\mu)$, pak $\left| \int_X f d\mu \right| \le \int_X |f| d\mu$.
- Je-li $f \in \mathcal{L}^1(\mu)$, pak f je konečná skoro všude.

 $D\mathring{u}kaz$

Bez důkazu?

Věta 0.19 (Vztah Riemannova a Lebesgueova integrálu)

Necht $-\infty < a < b < +\infty$ a $f: \langle a, b \rangle \to \mathbb{R}$. Jestliže $(R) \int_a^b f$ existuje, pak $\int_a^b f d\lambda^1 \in \mathbb{R}$ a platí

 $(R)\int_{a}^{b} f = \int_{a}^{b} f d\lambda^{1}.$

Důkaz

Bez důkazu?

Věta 0.20 (Vztah Newtonova a Lebesgueova integrálu)

Nechť $-\infty \le a < b \le +\infty$ a $f:(a,b) \to \mathbb{R}$ je spojitá a nezáporná funkce. Pak $(N) \int_a^b f$ existuje právě tehdy, $když \int_a^b f d\lambda^1 \in \mathbb{R}$.

 $V \ takov\'em \ p\'r\'ipad\'e \ nav\'ic \ (N) \int_a^b = \int_a^b f d\lambda^1.$

Věta 0.21 (O limitě integrálu závislém na parametru)

Buď (X, \mathcal{A}, μ) prostor s mírou, (T, ϱ) metrický prostor, $M \subset T$, $t_0 \in M'$ a $f: X \times T \to \mathbb{R}$. Nechť platí:

• Pro μ -skoro všechna $x \in X$ existuje

$$\lim_{t \to t_0, t \in M} f(x, t) =: \varphi(x).$$

- $\forall t \in M \setminus \{t_0\}$ je funkce $f(\cdot, t)$ μ -měřitelná.
- Existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $|f(x,t)| \leq g(x)$ pro μ -skoro všechna $x \in X$ a $\forall t \in M \setminus \{t_0\}$.

 $Pak \varphi \in \mathcal{L}^1(\mu) \ a \lim_{t \to t_0, t \in M} \int_X f(x, t) d\mu = \int_X \varphi(x) d\mu.$

□ Důkaz

K ověření rovnosti integrálů dle Heineho věty stačí dokázat: Je-li $t_n \in M \setminus \{t_0\}, n \in \mathbb{N}, t_n \to t_0$, pak $\int_X f(x,t_n) d\mu \to \int_X \varphi(x) d\mu$:

Z první podmínky máme $f(x,t_n) \to \varphi(x)$ pro μ -skoro všechna $x \in X$. Dále platí (z druhé podmínky) $|f(x,t_n)| \le g(x)$ pro μ -skoro všechna $x \in X$ a $\forall n \in \mathbb{N}$.

Tedy rovnost integrálů (a také existence integrálu) plyne z Lebesgueovy věty, položíme-li v ní $f_n(x) := f(x, t_n) \ \forall n \in \mathbb{N}$.

Věta 0.22 (O spojitosti integrálu závislém na parametru)

Buď (X, \mathcal{A}, μ) prostor s mírou, (T, ϱ) metrický prostor, $M \subset T$ a $f: X \times T \to \mathbb{R}$. Nechť platí:

- Pro μ -skoro všechna $x \in X$ je funkce $f(x, \cdot)$ spojitá na M.
- $\forall t \in M$ je funkce $f(\cdot,t)$ μ -měřitelná.
- Existuje funkce $g \in \mathcal{L}^1(\mu)$ tak, že $|f(x,t)| \leq g(x)$ pro μ -skoro všechna $x \in X$ a $\forall t \in M$.

Pak funkce $F(t) := \int_X f(x,t) d\mu, \ t \in M$, je spojitá na M.

Dle Heineho věty stačí dokázat: Je-li $t_0 \in M \cap M'$, pak $\lim_{t \to t_0, t \in M} F(t) = F(t_0)$, tj. $\lim_{t \to t_0, t \in M} \int_X f(x, t) d\mu = \int_X f(x, t_0) d\mu$. To ale plyne z předchozí věty.

Věta 0.23 (O derivaci integrálu podle parametru)

Buď (X, \mathcal{A}, μ) prostor s mírou, $I \subset \mathbb{R}$ otevřený interval a $f: X \times I \to \mathbb{R}$. Nechť platí:

- $\forall t \in I \text{ je funkce } f(\cdot, t) \text{ μ-měřitelná}.$
- $\exists N \in \mathcal{A}, \ \mu(N) = 0, \ tak, \ \check{z}e \ \forall x \in X \setminus N \ a \ \forall t \in I \ existuje \ konečná \ derivace \ \frac{\partial f}{\partial t}(x,t).$
- Integrál $F(t) := \int_X f(x,t) d\mu$ konverguje alespoň pro jednu hodnotu $t \in I$.
- $\exists g \in \mathcal{L}^1(\mu) \ tak, \ \check{z}e \ \forall x \in X \setminus N \ a \ \forall t \in I \ plati \left| \frac{\partial f}{\partial t}(x,t) \right| \leq g(x).$

 $Pak \ \forall t \in I \ integrál \ F(t) \ konverguje \ a \ platí$

$$F'(t) = \int_X \frac{\partial f}{\partial t}(x, t) d\mu \qquad \forall t \in I.$$

 $D\mathring{u}kaz$

Je-li $t, t+h \in I$, pak $\forall x \in X \setminus N$ dle Lagrangeovy věty dle druhé a čtvrté podmínky platí

$$|f(x,t+h) - f(x,t)| = \left| h \cdot \frac{\partial f}{\partial t}(x,t+\Theta h) \right| \le |h| \cdot g(x),$$

kde $\Theta \in (0,1).$ Speciálně, je-li $t \in I$ a t_0 onen bod, pro který integrál F(t) konverguje, pak

$$|f(x,t)| \le |f(x,t_0)| + |t - t_0| \cdot g(x) \ \forall x \in X \setminus N,$$

odkud plyne, že integrál F(t) konverguje $\forall t \in I$.

Dále, je-li $t, t + h \in I, h \neq 0$, pak

$$\frac{1}{h}(F(t+h) - F(t)) = \int_{Y} \frac{f(x,t+h) - f(x,t)}{h} d\mu.$$

Protože z nerovnosti výše je

$$\left| \frac{f(x,t+h) - f(x,t)}{h} \right| = \left| \frac{\partial f}{\partial t}(x,t+\Theta h) \right| \le g(x) \ \forall x \in X \setminus N, \forall t,t+h \in I, h \ne 0,$$

tedy

$$\lim_{h\to 0} \int_X \frac{f(x,t+h)-f(x,t)}{h} d\mu = \int_X \left(\lim_{h\to 0} \frac{f(x,t+h)-f(x,t)}{h}\right) d\mu = \int_X \frac{\partial f}{\partial t}(x,t) d\mu.$$

Věta 0.24 (O průniku d-systémů)

Nechť \mathcal{D}_{α} , $\alpha \in I$, jsou d-systémy na X (I je libovolná indexová množina). Pak $\bigcap_{\alpha \in I} \mathcal{D}_{\alpha}$ je d-systém na X.

 $D\mathring{u}kaz$

Je triviální a přenechán čtenáři.

Důsledek

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ libovolný množinový systém, pak existuje nejmenší d-systém $d\mathcal{S}$ na X obsahující systém \mathcal{S} .

Důkaz

$$d\mathcal{S} := \bigcap \left\{ \mathcal{D} \subset \mathcal{P}(X) \middle| \mathcal{S} \subset \mathcal{D} \land \mathcal{D} \text{ je d-systém} \right\}.$$

Věta 0.25 (O rovnosti $dS = \sigma S$)

Je-li $S \subset \mathcal{P}(X)$ π -systém, pak $dS = \sigma S$.

 $D\mathring{u}kaz$

Z následujících dvou tvrzení. Protože $\mathcal{S} \subset \mathcal{P}(X)$ je π -systém, tak je $d\mathcal{S}$ π -systém. Protože $d\mathcal{S}$ je také d-systém, tak $d\mathcal{S}$ je σ -algebra na X, která obsahuje \mathcal{S} . Proto $\sigma\mathcal{S} \subset d\mathcal{S}$, nebot $\sigma\mathcal{S}$ je nejmenší σ -algebra obsahující \mathcal{S} . Opačná implikace tj. $d\mathcal{S} \subset \sigma\mathcal{S}$ platí triviálně. Tedy $d\mathcal{S} = \sigma\mathcal{S}$.

Tvrzení 0.26

Je-li d-systém $\mathcal D$ na X π -systém, pak $\mathcal D$ je σ -algebra na X.

 $D\mathring{u}kaz$

Je třeba ověřit, že platí $A_k \in \mathcal{D} \ \forall k \in \mathbb{N} \implies \bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$. To provedeme v několika krocích:

Platí $A \setminus B \in \mathcal{D}$, je-li $A, B \in \mathcal{D}$, neboť $A \setminus B = A \setminus (A \cap B)$ a přitom $A \cap B \subset A$, tedy $A \setminus B \in \mathcal{D}$.

Platí $A \cup B \in \mathcal{D}$, je-li $A, B \in \mathcal{D}$, neboť $A \cup B = (A \setminus B) \cup B$ a přitom $(A \setminus B) \cap B = \emptyset$, tedy $A \cup B \in \mathcal{D}$.

Je-li $n \in \mathbb{N}$ a $A_1, \ldots, A_n \in \mathcal{D}$, pak $\bigcup_{i=1}^n A_i \in \mathcal{D}$ (indukcí s využitím předchozího odstavce).

Nechť tedy $A_k \in \mathcal{D} \forall k \in \mathbb{N}$. Položíme-li $A_0 := \emptyset \in \mathcal{D}$, pak

$$\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} \left(\left(\bigcup_{i=0}^k A_i \right) \setminus \left(\bigcup_{i=1}^{k-1} A_i \right) \right) = \bigcup_{k=1}^{\infty} \tilde{A}_k,$$

kde $\tilde{A}_k := \left(\bigcup_{i=0}^k A_i\right) \setminus \left(\bigcup_{i=0}^{k-1} A_i\right) \forall k \in \mathbb{N}$. Protože $\bigcup_{i=0}^k A_i \in \mathcal{D} \forall k \in \mathbb{N}_0$, tak $\tilde{A}_k \in \mathcal{D} \forall k \in \mathbb{N}$. Navíc $\tilde{A}_k \cap \tilde{A}_m = \emptyset$ pro $k \neq m, k, m \in \mathbb{N}$. Tedy $\bigcup_{k=1}^{\infty} \tilde{A}_k \in \mathcal{D}$, tj. $\bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$.

Tvrzení 0.27

Je-li $S \subset \mathcal{P}(X)$ π -systém, pak dS je také π -systém.

 $D\mathring{u}kaz$

Je-li $\mathcal{D} := \{ D \in d\mathcal{S} | D \cap S \in d\mathcal{S} \ \forall S \in \mathcal{S} \}$, pak \mathcal{D} je d-systém, neboť:

- $\emptyset \in \mathcal{D}$, protože $\emptyset \in d\mathcal{S}$ a $\emptyset \cap S = \emptyset \in d\mathcal{S} \ \forall S \in \mathcal{S}$;
- $D \in \mathcal{D} \implies D \cap S \in d\mathcal{S} \ \forall S \in \mathcal{S} \implies$ $\implies (X \setminus D) \cap S = (X \cap S) \setminus (D \cap S) = S \setminus (D \cap S) \in d\mathcal{S} \ \forall S \in \mathcal{S} \implies X \setminus D \in \mathcal{D};$
- $D_n \in \mathcal{D} \ \forall n \in \mathbb{N}, D_n \cap D_m = \emptyset \text{ pro } n \neq m \implies$

$$\implies D_n \cap S \in d\mathcal{S} \ \forall S \in \mathcal{S} \qquad \forall n \in \mathbb{N}.$$

a
$$(D_n \cap S) \cap (D_m \cap S) \subset D_n \cap D_m = \emptyset$$
 pro $n \neq m \ \forall S \in \mathcal{S}$.

Pak
$$(\bigcup_n D_n) \cap S = \bigcup_n (D_n \cap S) \in d\mathcal{S}$$
. Tj. $\bigcup_n D_n \in \mathcal{D}$.

Dále platí $S \subset \mathcal{D}$, neboť $\forall D \in S$ máme $D \in dS$ a přitom $D \cap S \in S$ $\forall S \in S$. Odtud máme $D \cap S \in dS$ $\forall S \in S$ (neboť $S \subset dS$), a tedy $D \in \mathcal{D}$.

Z inkluze $\mathcal{S} \subset \mathcal{D}$ plyne $d\mathcal{S} \subset d\mathcal{D} = \mathcal{D}$. Navíc (dle definice systému \mathcal{D}) platí $\mathcal{D} \subset d\mathcal{S}$. Celkem tedy platí $\mathcal{D} = d\mathcal{S}$, což znamená

$$\forall D \in d\mathcal{S} : D \cap S \in d\mathcal{S} \qquad \forall S \in \mathcal{S}.$$

Je-li $D \in d\mathcal{S}$ pevné a $\mathcal{D}_D := \{E \in \mathcal{P}(X) | E \cap D \in d\mathcal{S}\}$, pak \mathcal{D}_D je d-systém, neboť:

- $\emptyset \in \mathcal{D}_D$, protože $\emptyset \in \mathcal{P}(X)$ a $\emptyset \cap D = \emptyset \in d\mathcal{S}$;
- $E \in \mathcal{D}_D \implies E \cap D \in d\mathcal{S}$, a tedy $(X \setminus E) \cap D = (X \cap D) \setminus (E \cap D) = D \setminus (E \cap D) \in d\mathcal{S} \implies X \setminus E \in \mathcal{D}_D;$
- $E_n \in \mathcal{D}_D \ \forall n \in \mathbb{N}, E_n \cap E_m = \emptyset \text{ pro } n \neq m \implies E_n \cap D \in d\mathcal{S} \forall n \in \mathbb{N} \text{ a } (E_n \cap D) \cap (E_m \cap D) = \emptyset \text{ pro } n \neq m. \text{ Pak } (\bigcup_n E_n) \cap D = \bigcup_n (E_n \cap D) \in d\mathcal{S}, \text{ tj. } \subset_n E_n \in \mathcal{D}_D.$

 $Z \mathcal{D} = d\mathcal{S}$ plyne $\mathcal{S} \subset \mathcal{D}_D \ \forall D \in d\mathcal{S}$, tj. $d\mathcal{S} \subset \mathcal{D}_D \ \forall D \in d\mathcal{S}$, což znamená

$$\forall E \in d\mathcal{S} : E \cap D \in d\mathcal{S} \ \forall D \in d\mathcal{S},$$

a tedy $d\mathcal{S}$ je uzavřený na průniky dvou množin $\implies d\mathcal{S}$ je uzavřený i na průniky konečného počtu množin $\implies d\mathcal{S}$ je π -systém.

Věta 0.28 (O jednoznačnosti míry)

Nechť $S \subset \mathcal{P}(X)$ je π -systém a μ , ν jsou dvě míry na σS splňující $\mu(S) = \nu(S) \ \forall S \in S$.

Jestliže existují množiny $X_n \in \mathcal{S}, n \in \mathbb{N}$, tak, že $X_n \nearrow X$ a $\mu(X_n) < +\infty \ \forall n \in \mathbb{N}$, pak $\mu = \nu$ na $\sigma \mathcal{S}$.

 $D\mathring{u}kaz$

Předpokládejme nejprve, že $\mu(X) < +\infty$. Systém

$$\mathcal{D} := \{ A \in \sigma \mathcal{S} | \mu(A) = \nu(A) \}$$

je d-systém. Dle předpokladu $\mathcal{S} \subset \mathcal{D}$, odtud plyne

$$d\mathcal{S} \subset d\mathcal{D} = \mathcal{D}.$$

Podle věty o rovnosti $dS = \sigma S$

$$\sigma \mathcal{S} = d\mathcal{S} \subset \mathcal{D} \subset \sigma \mathcal{S}$$

odkud dostáváme $d\mathcal{S} = \sigma \mathcal{S} = \mathcal{D} \implies \mu(A) = \nu(A)$ na $\sigma \mathcal{S}$.

Je-li $\mu(X) = +\infty$, pak definujeme

$$\mathcal{D}_n := \{ A \in \sigma \mathcal{S} | \mu(A \cap X_n) = \nu(A \cap X_n) \} \qquad \forall n \in \mathbb{N}.$$

Analogicky jako v první části důkazu lze ověřit, že \mathcal{D}_n je d-systém ($\forall n \in \mathbb{N}$), který obsahuje \mathcal{S} (neboť $S \cap X_n \in \mathcal{S} \ \forall n \in \mathbb{N}, \forall S \in \mathcal{S}$, protože \mathcal{S} je π -systém). Tedy

$$d\mathcal{S} \subset d\mathcal{D}_n \subset \sigma\mathcal{S} \qquad \forall n \in \mathbb{N} \implies$$

$$\implies d\mathcal{S} = \sigma \mathcal{S} = \mathcal{D}_n \qquad \forall n \in \mathbb{N}.$$

Z vlastnosti míry pak $\forall A \in \sigma \mathcal{S}$ dostaneme

$$\mu(A) = \lim_{n \to \infty} \mu(A \cap X_n) = \lim_{n \to \infty} \nu(A \cap X_n) = \nu(A).$$

Věta 0.29 (O součinové σ -algebře $\mathcal{A} \otimes \mathcal{B}$)

Je-li $E \in \mathcal{A} \otimes \mathcal{B}$, pak

- $\forall x \in X : E_x \in \mathcal{B}, \forall y \in Y : E^y \in \mathcal{A};$
- Funkce $x \mapsto \nu(E_x)$ je měřitelná na (X, \mathcal{A}) , funkce $y \mapsto \mu(E^y)$ je měřitelná na (Y, B).

Je-li funkce $f: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \to \mathbb{R}^*$ měřitelná, pak $\forall x \in X$ je funkce $f_x: y \mapsto f(x, y)$ měřitelná na (Y, B) a $\forall y \in Y$ je funkce $f^y: x \mapsto f(x, y)$ měřitelná na (X, \mathcal{A}) .

 $D\mathring{u}kaz$

L

Provedem pouze pro E_x , funkci $x \mapsto \nu(E_x)$ a funkci f_x (pro E^y , funkci $y \mapsto \mu(E^y)$ a funkci f^y je důkaz analogický).

Důkaz (Řez)

 $\forall x \in X$ je množina $\mathcal{E} := \{ E \in \mathcal{A} \otimes \mathcal{B} | E_x \in \mathcal{B} \}$ σ -algebra, nebot:

- $\emptyset \in \mathcal{E}$, protože $\emptyset_x = \emptyset \in \mathcal{B}$;
- $E \in \mathcal{E} \implies E_x \in \mathcal{B} \implies (E^c)_x = (X \times Y \setminus E)_x = Y \setminus E_x \in \mathcal{B}$, a tedy $E^c \in \mathcal{E}$;
- $E_n \in \mathcal{E} \ \forall n \in \mathbb{N} \implies (E_n)_x \in \mathcal{B} \ \forall n \in \mathbb{N} \implies$

$$\implies (\bigcup_n E_n)_x = \bigcup_n (E_n)_x \in \mathcal{B},$$

a tedy $\bigcup_n E_n \in \mathcal{E}$.

Dále platí $\mathcal{O} \subset \mathcal{E} \implies \mathcal{A} \otimes B = \sigma \mathcal{O} \subset \sigma \mathcal{E} = \mathcal{E}$. Ovšem z definice \mathcal{E} máme $\mathcal{E} \subset \mathcal{A} \otimes \mathcal{B}$. Tedy $\mathcal{E} = \sigma \mathcal{O} = \mathcal{A} \otimes \mathcal{B}$, což znamená, že

$$\forall x \in X \ \forall E \in \mathcal{A} \otimes \mathcal{B} : E_x \in \mathcal{B}.$$

 $D\mathring{u}kaz$ (Míry řezů) Buď $Y_0 \in \mathcal{B}, \ \nu(Y_0) < +\infty$ a

$$\mathcal{D} := \{ E \in \mathcal{A} \otimes \mathcal{B} | x \mapsto \nu(E_x \cap Y_0) \text{ je měřitelná na } (X, \mathcal{A}) \}.$$

Dokážeme-li, že a) $\mathcal{O} \subset \mathcal{D}$, b) \mathcal{D} je d-systém, c) \mathcal{O} je π -systém, pak $d\mathcal{O} \subset d\mathcal{D} = \mathcal{D} \subset \mathcal{A} \otimes \mathcal{B}$ $\Longrightarrow \mathcal{D} = \mathcal{A} \otimes \mathcal{B}$.

- a) Je-li $E \subset \mathcal{O}$, pak $E = A \times B$, kde $A \in \mathcal{A}$, $B \in \mathcal{B} \implies E_x = B$ pro $x \in A$ a \emptyset pro $x \notin A \implies E_x \cap Y_0 = B \cap Y_0$ pro $x \in A$ a \emptyset pro $x \notin A \implies \nu(E_x \cap Y_0) = \nu(B \cap Y_0) \cdot \chi_A(x)$ \implies funkce $x \mapsto \nu(E_x \cap Y_0)$ je (X, \mathcal{A}) měřitelná (nebot $A \in \mathcal{A}$). Tedy $\mathcal{O} \subset \mathcal{D}$.
- b) $\emptyset \in \mathcal{D}$, neboť $\emptyset \in \mathcal{A} \otimes \mathcal{B}$ a funkce $x \mapsto \nu(\emptyset_x \cap Y_0) = \nu(\emptyset) = 0 \ \forall x \in X \implies$ funkce $x \mapsto \nu(\emptyset_k \cap Y_0)$ je (X, \mathcal{A}) měřitelná.

$$E \in \mathcal{D} \implies E \in \mathcal{A} \otimes \mathcal{B}$$
 a funkce $x \mapsto \nu(E_x \cap Y_0)$ je (X, \mathcal{A}) měřitelná. Protože

$$(E^c)_x \cap Y_0 = (X \times Y \setminus E)_x \cap Y_0 = (Y \setminus E_x) \cap Y_0 = Y_0 \setminus E_x \cap Y_0,$$

tak $\nu((E^c)_x \cap Y_0) = \nu(Y_0) \setminus \nu(E_x \cap Y_0) \implies \text{funkce } x \mapsto \nu((E^c)_x \cap Y_0) \text{ je rozdílem dvou}$ měřitelných funkcí $x \mapsto \nu(Y_0)$ a $x \mapsto \nu(E_x \cap Y_0)$, tedy je to měřitelná funkce (na (X, A)).

Buď $E_n \in \mathcal{D} \ \forall n \in \mathbb{N} \ \text{a} \ E_n \cap E_m = \emptyset \ \text{pro} \ n \neq m$. Tedy $E_n \in \mathcal{A} \otimes \mathcal{B} \ \forall n \in \mathbb{N} \ \text{a funkce} \ x \mapsto \nu((E_n)_x \cap Y_0)$ jsou měřitelné na $(X, \mathcal{A}) \ \forall n \in \mathbb{N}$

Protože
$$(\bigcup_n E_n)_x \cap Y_0 = (\bigcup_n (E_n)_x) \cap Y_0 = \bigcup_n ((E_n)_x \cap Y_0)$$
, tak

$$\nu((\bigcup_n E_n)_x \cap Y_0) = \nu(\bigcup_n ((E_n)_x \cap Y_0)) = \sum_n \nu((E_n)_x \cap Y_0) = \lim_{k \to \infty} \sum_{n=1}^k \nu((E_n)_x \cap Y_0) \implies$$

Funkce $x \mapsto \nu((\bigcup_n E_n)_x \cap Y_0)$ je limita $(k \to +\infty)$ měřitelných funkcí $x \mapsto \sum_{n=1}^k \nu((E_n)_x \cap Y_0)$ \Longrightarrow funkce $x \mapsto \nu((\bigcup_n E_n)_x \cap Y_0)$ je měřitelná funkce (na $(X, \mathcal{A}))$ \Longrightarrow $\bigcup_n E_n \in \mathcal{D}$.

c) To je jasné, neboť je-li $E_i \in \mathcal{O}$, pak $E_i = A_i \times B_i$, kde $A_i \in \mathcal{A}$, $B_i \in \mathcal{B} \implies$

$$\implies E_1 \cap E_2 = (A_1 \cap A_2) \times (B_1 \cap B_2) \in \mathcal{O}.$$

Tedy platí $d\mathcal{O} \subset d\mathcal{D} = \mathcal{D} \subset \mathcal{A} \otimes \mathcal{B} \implies \mathcal{D} = \mathcal{A} \otimes \mathcal{B}$.

Protože ν je σ -konečná míra, tak existují množiny $Y_n \subset Y \ (\forall n \in \mathbb{N})$ takové, že $\nu(Y_n) < +\infty$ a $\nu(Y_n) \nearrow \nu(Y)$. Pak $\forall E \in \mathcal{A} \otimes \mathcal{B}$ platí $\nu(E_x) = \lim_{n \to \infty} \nu(E_x \cap Y_n)$, a tedy funkce $x \mapsto \nu(E_x)$ je měřitelná na (X, \mathcal{A}) , neboť limitou funkcí $x \mapsto \nu(E_x \cap Y_n)$, které jsou dle předchozí části důkazu měřitelné na (X, \mathcal{A}) .

Důkaz (Zúžení funkcí na řezy)

Buď $a \in \mathbb{R}^*$ a $E := \{[x,y] \in X \times Y | f(x,y) < a\}$. Protože f je měřitelná, tak $E \in \mathcal{A} \otimes \mathcal{B}$. Dále $\forall x \in X$ platí

$$\{y \in Y | f_x(y) < a\} = E_x \in \mathcal{B}.$$

Tudíž $\forall x \in X$ je funkce f_x měřitelná na (Y, \mathcal{B}) .

Věta 0.30 (Existence a jednoznačnost součinové míry)

Existuje právě jedna míra $\mu \otimes \nu$ na $\mathcal{A} \otimes \mathcal{B}$ (tzv. součinová míra) splňující

$$(\mu \otimes \nu)(A \times B) = \mu(A) \cdot \nu(B) \qquad \forall A \in \mathcal{A} \ \forall B \in \mathcal{B}.$$

Pro tuto míru platí

$$E \in \mathcal{A} \otimes \mathcal{B} \implies (\mu \otimes \nu)(E) = \int_X \nu(E_x) d\mu(x).$$

1. Existence: $\forall E \in \mathcal{A} \otimes \mathcal{B}$ definujeme

$$(\mu \otimes \nu)(E) := \int_X \nu(E_x) d\mu(x).$$

Pak $\mu \otimes \nu$ je míra na $(X \times Y, \mathcal{A} \otimes \mathcal{B})$, neboť:

$$(\mu \otimes \nu)(\emptyset) = \int_X \nu(\emptyset_x) d\mu(x) = \int_X 0 d\mu(x) = 0;$$

Je-li $E_n \in \mathcal{A} \otimes \mathcal{B}, n \in \mathbb{N}, E_n \cap E_m = \emptyset$ pro $n \neq m$, pak

$$(\mu \otimes \nu) \left(\bigcup_n E_n \right) = \int_X \nu \left(\left(\bigcup_n E_n \right)_x \right) d\mu(x) = \int_X \nu \left(\bigcup_n (E_n)_x \right) =$$

$$= \int_X \sum_n \nu \left((E_n)_x \right) d\mu(x) = \sum_n \int_X \nu \left((E_n)_x \right) d\mu(x) = \sum_n (\mu \otimes \nu) (E_n).$$

Z definice $\mu \otimes \nu$ na $\mathcal{A} \otimes \mathcal{B} \ \forall A \in \mathcal{A} \ \forall B \in \mathcal{B}$ dostáváme

$$(\mu \otimes \nu)(A \times B) = \int_X \nu \left((A \times B)_x \right) d\mu(x) = \int_X \nu(B) \cdot \chi_A(x) d\mu(x) =$$
$$= \nu(B) \int_A d\mu(x) = \nu(B) \cdot \mu(A).$$

2. Jednoznačnost: Předpokládejme, že τ je míra na $\mathcal{A} \otimes \mathcal{B}$ splňující $\tau(A \times B) = \mu(A) \cdot \nu(B) \ \forall A \in \mathcal{A} \ \forall B \in \mathcal{B}$, tj. $\tau = \mu \otimes \nu$ na \mathcal{O} . Systém \mathcal{O} je π -systém. Protože μ a ν jsou σ -konečné, tak existují množiny $X_n \in \mathcal{A}$, $\mu(X_n) < +\infty \ \forall n \in \mathbb{N}$, $X_n \nearrow X$ a množiny $Y_n \in \mathcal{B}$, $\nu(Y_n) < +\infty \ \forall n \in \mathbb{N}$, $Y_n \nearrow Y$. Pak pro množiny $X_n \times Y_n$ platí $X_n \times Y_n \in \mathcal{O}$, $(\mu \otimes \nu)(X_n \times Y_n) < +\infty \ \forall n \in \mathbb{N}$, $X_n \times Y_n \nearrow X \times Y$. Z věty o jednoznačnosti míry pak plyne $\tau = \mu \otimes \nu$ na $\sigma \mathcal{O}$, tj. na $\mathcal{A} \otimes \mathcal{B}$.

Věta 0.31 (Fubini)

Pro každou funkci $f \in \mathcal{L}^*(\mu \otimes \nu)$ platí

- Funkce $x\mapsto \int_Y f(x,y)d\nu(y)$ je měřitelná na X;
- Funkce $y \mapsto \int_X f(x,y) d\mu(x)$ je měřitelná na Y;
- $\int_{X\times Y} f(x,y)d(\mu\otimes\nu) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y)\right)d\mu(x) = \int_{Y} \left(\int_{X} f(x,y)d\mu(x)\right)d\nu(y).$

 $D\mathring{u}kaz$

Je-li $f = \chi_E$, kde $E \in \mathcal{A} \otimes \mathcal{B}$, pak 3. plyne z věty o existenci a jednoznačnost součinové míry, neboť

$$\int_{X\times Y} \chi_E(x,y) d(\mu\otimes\nu) = (\mu\otimes\nu)(E) = \int_X \nu(E_x) d\mu(x) = \int_X \left(\int_Y \chi_E(x,y) d\nu(y)\right) d\mu(x),$$

nebot
$$\nu(E_x) = \int_Y \chi_{E_x}(y) d\nu(y) = \int_Y \chi_E(x,y) d\nu(y) \ \forall x \in X.$$

Podobně dostaneme

$$\int_{X\times Y} \chi_E(x,y) d(\mu\otimes\nu) = (\mu\otimes\nu)(E) = \int_Y \mu(E_y) d\nu(y) = \int_Y \left(\int_X \chi_E(x,y) d\mu(x)\right) d\nu(y),$$

neboť $\nu(E^y) = \int_X \chi_{E^y}(x) d\mu(x) = \int_X \chi_E(x,y) d\mu(x) \ \forall y \in Y$. Tedy 3. platí pro $f = \chi_E$, kde $E \in \mathcal{A} \otimes \mathcal{B}$.

Pro jednoduchou nezápornou měřitelnou funkci $s = \sum_{i=1}^k \alpha_i \chi_{E_i}$ na $(X \times Y, \mathcal{A} \otimes \mathcal{B})$ máme

$$\int_{X\times Y} s(x,y)d(\mu\otimes\nu) = \sum_{i=1}^k \alpha_i(\mu\otimes\nu)(E_i) = \sum_{i=1}^k \alpha_i \int_X \left(\int_Y \chi_{E_i}(x,y)d\nu(y)\right)d\mu(x) =$$

$$= \int_X \left(\int_Y s(x,y)d\nu(y)\right)d\mu(x),$$

tj. pro funkci s platí první rovnost v 3.

Z uvedeného také plyne, že funkce $x\mapsto \int_Y s(c,y)d\nu(y)$ je měřitelná na X. Druhá rovnost v 3. pro funkci s se dokáže analogicky.

Buď $f \geq 0$ měřitelná na $(X \times Y, \mathcal{A} \otimes \mathcal{B})$. Dle věty o nezáporné měřitelné funkci existuje posloupnost nezáporných jednoduchých měřitelných funkcí $\{s_n\}$ tak, že $s_n \nearrow f$. Pak podle Leviho věty platí

$$\int_{Y} s_n(x,y) d\nu(y) \nearrow \int_{Y} f(x,y) d\nu(y) \qquad \forall x \in X.$$

Protože integrály na levé straně této nerovnosti jsou měřitelnými funkcemi, tak i integrál na pravé je měřitelná funkce na X a další aplikací Leviho věty dostaneme

$$\int_X \left(\int_Y s_n(x,y) d\nu(y) \right) d\mu(x) \nearrow \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x).$$

Druhá nerovnost v 3. se zase dokáže analogicky.

Pro $f = f^+ - f^- \in \mathcal{L}^*(\mu \otimes \nu)$ dané tvrzení plyne z příslušných tvrzení pro f^+ a f^- (a z linearity integrálu).

Věta 0.32 (Fubiniova věta pro zúplněnou součinovou míru)

Nechť (X, \mathcal{A}, μ) a (Y, B, ν) jsou prostory s úplnými σ -konečnými mírami. Je-li $f \in \mathcal{L}^*(\mu \overset{\circ}{\times} \nu)$, pak

- Funkce $f_y: x \mapsto f(x,y)$ je měřitelná na X pro ν -skoro všechna $y \in Y$ a funkce $f_x: y \mapsto f(x,y)$ je měřitelná na Y pro μ -skoro všechna $y \in Y$;
- Funkce $x \mapsto \int_Y f(x,y) d\nu(y)$ je měřitelná na X a funkce $y \mapsto \int_X f(x,y) d\mu(x)$ je měřitelná na Y;
- $\int_{X\times Y} f(x,y)d(\mu \overset{0}{\otimes} \nu) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y) \right) d\mu(x) = \int_{Y} \left(\int_{X} f(x,y)d\mu(x) \right) d\nu(y).$

 $D\mathring{u}kaz$

Důkaz se nestíhal, pouze bylo zmíněno, že se použije předchozí věta a následující 2 Lemmata. $\hfill\Box$

Lemma 0.33

Nechť $(Z, \mathcal{C}, \varrho)$ je prostor s mírou a $(Z, \mathcal{C}_0, \varrho_0)$ jeho zúplnění. Je-li funkce $f: (Z, \mathcal{C}_0) \to \mathbb{R}^*$ ϱ_0 měřitelná, pak existuje ϱ -měřitelná funkce $g: (Z, \mathcal{C}) \to \mathbb{R}^*$ tak, že f = g ϱ -skoro všude na Z.

 $D\mathring{u}kaz$

Bez důkazu.

Lemma 0.34

Necht (X, \mathcal{A}, μ) a (Y, \mathcal{B}, ν) jsou prostory s úplnými σ -konečnými mírami. Necht h je $\mu \overset{0}{\otimes} \nu$ měřitelná funkce na $X \times U$ a h = 0 $\mu \overset{0}{\otimes} \nu$ -skoro všude na $X \times Y$. Potom pro μ -skoro všechna $x \in X$ platí h(x, y) = 0 pro ν -skoro všechna $y \in Y$. Speciálně, funkce h_x je měřitelná na (Y, \mathcal{B}, ν) pro μ -skoro všechna $x \in X$. (Obdobně pro h^y).

 $D\mathring{u}kaz$

Bez důkazu.

Věta 0.35 (O míře $\lambda^p \otimes \lambda^q$)

Je-li $p, q \in \mathbb{N}$, pak:

$$\mathcal{B}(\mathbb{R}^{p+q}) = \mathcal{B}(\mathbb{R}^p) \otimes \mathcal{B}(\mathbb{R}^q), \qquad (tj. \ \lambda_{\mathcal{B}}^{p+q} = \lambda_{\mathcal{B}}^p \otimes \lambda_{\mathcal{B}}^q)$$
$$\lambda^{p+q} = \lambda^p \overset{0}{\otimes} \lambda^q$$

 $D\mathring{u}kaz$

Bez důkazu.

Věta 0.36 (Fubiniova věta v \mathbb{R}^{p+q})

Je-li $p, q \in \mathbb{N}$ a $f \in \mathcal{L}^*(\lambda^{p+q})$, pak

$$\int_{\mathbb{R}^{p+q}} f d\lambda^{p+q} = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} f(x,y) d\lambda^q(y) \right) d\lambda^p(x) = \int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} f(x,y) d\lambda^p(x) \right) d\lambda^q(y).$$

Důkaz

Bez důkazu, ale lehký důsledek předchozí věty a Fubiniovy věty.

Definice 0.28 (Značení)

Je-li $p, q \in \mathbb{N}, x \in \mathbb{R}^p, y \in \mathbb{R}^q$, pak definujeme projekce předpisem

$$\pi_1(x,y) := x, \qquad \pi_2(x,y) := y.$$

Důsledek

Nechť $p, q \in \mathbb{N}$, $A \in \mathcal{B}_0^{p+q} := (\mathcal{B}(\mathbb{R}^{p+q}))_0$. Jestliže $f \in \mathcal{L}^*(\lambda^{p+q})$ a množiny $\pi_1 A, \pi_2 A$ jsou měřitelná, pak

$$\int_A f d\lambda^{p+q} = \int_{\pi_1 A} \left(\int_{A_x} f(x,y) d\lambda^q(y) \right) d\lambda^p(x) = \int_{\pi_2 A} \left(\int_{A^y} f(x,y) d\lambda^p(x) \right) d\lambda^q(y).$$

Lemma 0.37

Lebesgueova míra λ^n je translačně invariantní, tzn.

$$\lambda^n(B+r) = \lambda^n(B) \qquad \forall B \in \mathcal{B}_0^n \ \forall r \in \mathbb{R}^n.$$

 $D\mathring{u}kaz$

Dané tvrzení plyne z věty o jednoznačnosti míry, neboť míry λ^n a $\mu(B) := \lambda^n(B+z) \ \forall B \in \mathcal{B}_0^n$ a pro libovolné pevné $r \in \mathbb{R}^n$ se shodují na systému \mathcal{B}_0^n .

Věta 0.38 (O obrazu míry)

Nechť (X, \mathcal{A}, μ) je prostor s mírou a (Y, \mathcal{B}) je měřitelný prostor. Je-li $\varphi : (X, \mathcal{A}) \to (Y, \mathcal{B})$ měřitelné zobrazení, pak množinová funkce daná předpisem

$$(\varphi(\mu))(B) := \mu(\varphi^{-1}(B)) \quad \forall B \in \mathcal{B}$$

je míra na (Y,\mathcal{B}) (tzn. obraz míry μ při zobrazení φ) a pro každou měřitelnou funkci f na

Y platí

$$\int_{Y} f d\varphi(\mu) = \int_{X} (f \circ \varphi) d\mu,$$

pokud alespoň jedna strana má smysl.

Důkaz

Snadno ověříme, že množinová funkce $\varphi(\mu)$ daná prvním předpisem má všechny vlastnosti míry. Ověření druhé rovnosti je také jednoduché: Nejprve se ověří pro případ, že $f = \chi_B$, kde $B \in \mathcal{B}$.

V tomto případě je se pravá strana druhé rovnosti rovná levé:

$$\int_{X} (\chi_B \circ \psi) d\mu = \int_{X} \chi_{\psi^{-1}(B)} d\mu = \mu \left(\psi^{-1}(B) \right) =$$
$$(\psi(\mu))(B) = \int_{X} \chi_B d\psi(\mu).$$

S použitím tohoto výsledku se druhá rovnost ověří pro jednoduché funkce, pak pro nezáporné měřitelné funkce a nakonec se tento výsledek spolu s rovností $f = f^+ - f^-$ použije k ověření rovnosti pro měřitelnou funkci f na Y.

Věta 0.39

 $Bud'L: \mathbb{R}^n \to \mathbb{R}^n$ invertibilní lineární zobrazení

- $Je-li \ \nu(A) := \lambda^n(L(A)) \ \forall A \in \mathcal{B}^n := \mathcal{B}(\mathbb{R}^n), \ pak \ \nu \ je \ mira \ a \ plati \ \nu = |\det L| \cdot \lambda^n.$
- $Je-li\ \mu(A) := |\det L| \lambda_{\mathcal{B}}^n(A)\ \forall A \in \mathcal{B}^n,\ pak\ L(\mu) = \lambda_{\mathcal{B}}^n\ a\ pro\ f \in \mathcal{L}^*(\lambda_{\mathcal{B}}^n)\ plati$

$$\int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}^n} (f \circ L) |\det L| d\lambda^n.$$

 $D\mathring{u}kaz$

1. L je lineární zobrazení z \mathbb{R}^n do \mathbb{R}^n , a tedy L je spojité. L je invertibilní $\implies \exists$ inverzní zobrazení L^{-1} , které je opět lineární a spojité. Tedy L je měřitelné.

$$(L^{-1}\lambda^n)(A) = \lambda^n(L(A)) = \nu(A), \forall A \in \mathcal{B}^n$$

 $\implies nu$ je míra dle předchozí věty.

Z lineární algebry je známo, že L lze vyjádřit jako kompozici konečně mnoha "elementárních" lineárních zobrazení jednoho z následujících typů:

$$L_1(x_1, \dots, x_n) = (\alpha x_1, x_2, \dots, x_n), \qquad \forall (x_1, \dots, x_n) \in \mathbb{R}^n, \text{ kde } \alpha \in \mathbb{R} \setminus \{0\},$$

$$L_2(x_1, \dots, x_n) = (x_1, \dots, x_j, \dots, x_i, \dots, x_n), \qquad \forall (x_1, \dots, x_n) \in \mathbb{R}^n, j > i \in \mathbb{N},$$

$$L_3(x_1, \dots, x_n) = (x_1 + x_2, x_2, \dots, x_n), \qquad \forall (x_1, \dots, x_n) \in \mathbb{R}^n, \quad i, j \in \mathbb{N}.$$

Protože determinant součinu matic se rovná součinu determinantů, stačí tvrzení ověřit pro "elementární" zobrazení. Ověříme na intervalech, L_1 ho jen natáhne o α , tedy na determinant násobek, L_2 "otočí" interval, ale λ^n se otočením nezmění, L_3 posune a zdeformuje interval, ale tím se λ^n nezmění (dokážeme přes Fubiniovu větu). Všechny 3 zobrazení stejně operují na prázdné množině, takže i na π systému $I \cup \{\emptyset\}$, tedy míry se rovnají všude.

2.

$$(L(\mu))(A) \stackrel{1}{=} \mu(L^{-1}(A)) = |\det L| \lambda_{\mathcal{B}}^n(L^{-1}(A)) = |\det L| \cdot |\det L^{-1}| \lambda_{\mathcal{B}}^n(A) = \lambda_{\mathcal{B}}^n(A) \forall A \in \mathcal{B}^n,$$
tedy $L(\mu) = \lambda_{\mathcal{B}}^n$. Z předchozí věty pak plyne rovnost integrálů.

tedy $L(\mu)=\lambda_{\mathcal{B}}^{n}.$ Z předchozí věty pak plyne rovnost integrálů.

Lemma 0.40

 $BudT: \mathbb{R}^n \to \mathbb{R}^n$ Lipschitzovské zobrazení. Je-li $A \subset \mathbb{R}^n$ lebesgueovsky měřitelná množina, pak také T(A) je lebesgueovsky měřitelná množina.

Důkaz

Vynechán.

Věta 0.41

Je-li $L: \mathbb{R}^n \to \mathbb{R}^n$ invertibilní lineární zobrazení, pak

$$\int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}^n} (f \circ L) |\det L| d\lambda^n,$$

má-li jedna strana smysl.

Bez důkazu, ale jednoduše vyplývá z předchozího lemmatu a věty.

Věta 0.42 (O substituci)

Buď $G \subset \mathbb{R}^n$ otevřená množina a $\varphi: G \to \mathbb{R}^n$ difeomorfismus. Jestliže $f: \varphi(G) \to \mathbb{R}$ je lebesgueovsky měřitelná funkce, pak

$$\int_G f(\varphi(x))|J\varphi(x)|dx = \int_{\varphi(G)} f(y)dy,$$

má-li jedna strana rovnosti smysl.

 $D\mathring{u}kaz$

Bude v TMI2.

Důsledek

Je-li navíc $M\subset \varphi(G)$ lebesgue
ovsky měřitelná množina, pak

$$\int_{\varphi^{-1}(M)} f(\varphi(x)) |J\varphi(x)| dx = \int_M f(y) dy.$$

Lemma 0.43

$$\lambda^n(\mathbb{R}^{n-1}) = 0.$$

Důkaz

Množina \mathbb{R}^{n-1} je λ^n -měřitelná, neboť je uzavřená v \mathbb{R}^n . Dále platí $\mathbb{R}^{n-1}\subset\bigcup_{k=1}^\infty I_{k,\varepsilon}$, kde $\varepsilon>0$ a

$$I_{k,\varepsilon} := (-k,k)^{n-1} \times \left(\frac{-\varepsilon}{(2k)^{n-1}} \cdot \frac{1}{2^k}, \frac{\varepsilon}{(2k)^{n-1}} \cdot \frac{1}{2^k} \right) \qquad \forall k \in \mathbb{N},$$

a tedy

$$\lambda^n(\mathbb{R}^{n-1}) \le \sum_{k=1}^{\infty} \lambda^n(I_{k,\varepsilon}) = \sum_{k=1}^{\infty} (2k)^{n-1} \cdot \frac{2\varepsilon}{(2k)^{n-1}} \frac{1}{2^k} = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k-1}} = 2\varepsilon.$$

Protože $\varepsilon>0$ bylo libovolné, tak $\lambda^n(\mathbb{R}^{n-1})=0.$

Lemma 0.44 (O míře s hustotou f)

 $Bud(X, A, \mu)$ prostor s mírou a f nezáporná měřitelná funkce na X. Definujeme-li

$$\nu(A) := \int_A f d\mu \qquad \forall A \in \mathcal{A},$$

 $pak \ \nu \ je \ m\'{i}ra \ na \ \mathcal{A} \ a \ pro \ m\'{e}\check{r}itelnou \ funkci \ g: (X, \mathcal{A}) \to \langle 0, +\infty \rangle \ plat\'{i}$

$$\int_X g d\nu = \int_X g f d\mu.$$

Důkaz

Je jasné, že $\nu \geq 0$. Dále

$$\nu(\emptyset) = \int_{\emptyset} f d\mu = \int_{X} f \cdot \chi_{\emptyset} d\mu = \int_{X} 0 d\mu = 0.$$

Je-li $A := \bigcup_{j=1}^{\infty} A_j$, kde $A_j \in \mathcal{A}$, $A_j \cap A_i = \emptyset$ pro $i \neq j$, pak

$$\nu(A) = \int_A f d\mu = \int_X f \cdot \chi_A d\mu = \int_X f \left(\sum_{j=1}^\infty \chi_{A_j}\right) d\mu =$$
$$= \sum_{j=1}^\infty \int_X f \chi_{A_j} d\mu = \sum_{j=1}^\infty \int_{A_j} f d\mu = \sum_{j=1}^\infty \nu(A_j).$$

Tedy ν je míra na \mathcal{A} .

K důkazu rovnosti: Je-li $g:=\chi_E$, kde $E\in\mathcal{A}$, pak

$$\int_X g d\nu = \int_X \chi_E d\nu = \nu(E) = \int_E f d\mu = \int_X \chi_E f d\mu = \int_X g f d\mu,$$

tj. rovnost platí. Z toho a linearity integrálu plyne, že rovnost platí v případě, že g je jednoduchá nezáporná měřitelná funkce na X.

Nakonec je-li $g:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ měřitelná funkce, pak existují nezáporné jednoduché měřitelné funkce g_n splňující $g_n\nearrow g$. Odtud z předchozího a Leviho věty pak plyne rovnost i pro g.

Věta 0.45 (Charakterizace faktu $\nu \ll \mu$ pro konečné míry)

Nechť μ, ν jsou konečné míry na (X, A). Pak $\nu \ll \mu$ právě tehdy, když

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall A \in \mathcal{A} : \mu(A) < \delta \implies \nu(A) < \varepsilon.$$

"
—": Buď $A\in\mathcal{A},\,\mu(A)=0.$ Pak volbou $\varepsilon=\frac{1}{k},k\in\mathbb{N},$ ze znění dostaneme

$$\forall k \in \mathbb{N} \ \exists \delta_k > 0 \ \forall A \in \mathcal{A}, \mu(A) < \frac{1}{k} : \nu(A) < \frac{1}{k}.$$

Protože $\mu(A) = 0 < \delta_k \ \forall k \in \mathbb{N}, \text{ tak } \nu(A) < \frac{1}{k} \ \forall k \in \mathbb{N}, \text{ tj. } \nu(A) = 0.$

" \Longrightarrow ": Nechť $\nu \ll \mu$ a předpokládejme, že podmínka ze znění neplatí, tj.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists A \in \mathcal{A} : \mu(A) < \delta \wedge \nu(A) > \varepsilon.$$

Volme $\delta = \frac{1}{2^n}, n \in \mathbb{N}$. Tedy dle předchozího platí

$$\exists A_n \in \mathcal{A}, \mu(A_n) < \frac{1}{2^n} \land \nu(A_n) \ge \varepsilon \ \forall n \in \mathbb{N}.$$

Položme $B_k := \bigcup_{n=k+1}^{\infty} A_n, k \in \mathbb{N}$. Pak

$$B_1 \supset B_2 \supset \dots, \mu(B_1) \leq \mu(X) < +\infty, \nu(B_1) \leq \nu(X) < +\infty,$$

a tedy

$$\mu\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \mu(B_k),$$

$$\nu\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \nu(B_k).$$

Protože

$$\mu(B_k) = \mu\left(\bigcup_{n=k+1}^{\infty} A_n\right) \le \sum_{n=k+1}^{\infty} \frac{1}{2^n} = \frac{1}{2^{k+1}} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{1}{2^k},$$

tj. $\mu(B_k) \leq \frac{1}{2^k}$, tak $\lim_{k \to \infty} \mu(B_k) = 0$.

Dále platí $\nu(B_k) = \nu\left(\bigcup_{n=k+1}^{\infty} A_n\right) \ge \nu(A_{k+1}) \ge \varepsilon \ \forall k \in \mathbb{N}$, a tedy $\lim_{k\to\infty} \nu(B_k) \ge \varepsilon$. Tedy pro $B := \bigcap_{k=1}^{\infty} B_k$ dle předchozích výsledků důkazu máme $\mu(B) = 0 \land \nu(B) \ge \varepsilon$, což je spor, nebot $\nu \ll \mu$. Tedy podmínka z věty platí.

Věta 0.46 (Radonova-Nikodymova)

Jsou-li μ , ν σ -konečné míry na (X, \mathcal{A}) splňující $\nu \ll \mu$, pak existuje nezáporná měřitelná funkce f na X tak, že

$$\nu(A) = \int_A f d\mu \qquad \forall A \in \mathcal{A}.$$

Nejprve předpokládejme, že μ , ν jsou konečné míry na (X, \mathcal{A}) a $\nu \ll \mu$. Dle následujícího lemmatu aplikovaného na míry ν , $\nu + \mu$, splňující $\nu \leq \mu + \nu$, existuje měřitelná funkce h na X, $0 \leq h \leq 1$ $(\mu + \nu)$ -skoro všude tak, že

$$\nu(A) = \int_A h d(\mu + \nu) = \int_A h d\mu + \int_A h d\nu \qquad \forall A \in \mathcal{A} \implies$$

$$\implies \nu(\{h = 1\}) = \int_{\{h = 1\}} h d(\mu + \nu) = \mu(\{h = 1\}) + \nu(\{h = 1\}),$$

a tedy $\mu(\{h=1\})=0$. Protože $\nu\ll\mu$, tak také $\nu(\{h=1\})=0$. Proto h<1 $(\mu+\nu)$ -skoro všude.

Rovnost výše lze psát ve tvaru

$$\int_{X} \chi_{A} d\nu = \int_{X} \chi_{A} h d\mu + \int_{X} \chi_{A} h d\nu,$$

tj.

$$\int_{X} \chi_{A}(1-h)d\nu = \int_{X} \chi_{A}hd\mu \qquad \forall A \in \mathcal{A}.$$

Odtud a z linearity integrálu pak plyne, že platí $\int_X g(1-h)d\nu=\int_X ghd\mu$ pro všechny nezáporné jednoduché μ -měřitelné funkce g na X. Pomocí Leviho věty lze ukázat, že tato rovnost platí pro každou nezápornou μ -měřitelnou funkci g na X. Volbou $g:=\frac{1}{1-h}\chi_A$, kde $A\in\mathcal{A}$, pak dostaneme

$$\int_{X} \chi_{A} d\nu = \int_{X} \frac{h}{1 - h} \chi_{A} d\mu \implies \nu(A) = \int_{A} f d\mu \ \forall A \in \mathcal{A},$$

kde $f := \frac{h}{1-h}$ je hledaná hustota $\frac{d\nu}{d\mu}$.

Jsou-li μ, ν σ -konečné míry, pak nalezneme posloupnosti $\{E_i\}, \{F_j\} \subset \mathcal{A}$ po dvou disjunktních množin tak, aby $\mu(E_i) < +\infty \ \forall i \in \mathbb{N}, \ \nu(F_j) < +\infty \ \forall j \in \mathbb{N}, \ \bigcup_{i=1}^{\infty} E_i = X = \bigcup_{j=1}^{\infty} F_j$.

Položíme-li $D_{ij} := E_i \cap F_j, i, j \in \mathbb{N}$, pak $X = \bigcup_{i,j=1}^{\infty} D_{ij}$ a pro konečné míry $\nu|_{D_{ij}}, \mu|_{D_{ij}}$ (tj. restrikce daných měr ν , μ na D_{ij}) splňující $\nu|_{D_{ij}} \ll \mu|_{D_{ij}}$ určíme příslušnou hustotu $f_{ij} = \frac{d\nu|_{D_{ij}}}{d\mu|_{D_{ij}}}$. Hledaná hustota $f = \frac{d\nu}{d\mu}$ je pak definovaná takto:

Je-li $x \in X$, pak $\exists ! i \in \mathbb{N}$, $\exists ! j \in \mathbb{N}$ tak, že $x \in D_{ij}$ a položíme $f(x) = f_{ij}(x)$.

Lemma 0.47 (Radonova-Nikodymova věta – baby verze)

Jestliže μ , ν jsou konečné míry na (X, \mathcal{A}) takové, že $\nu(A) \leq \mu(A) \ \forall A \in \mathcal{A}$, pak existuje měřitelná funkce f na X splňující $0 \leq f \leq 1$ μ -skoro všude a

$$\nu(A) = \int_A f d\mu \qquad \forall A \in \mathcal{A}.$$

Definujeme funkcionál $Jg := \int_X g^2 d\mu - 2 \int_X g d\nu$, $\forall g \in \mathcal{L}^2(\mu)$. Definice J je korektní, protože konvergence v L^2 je silnější než konvergence v L^1 (nebo z Hölderovy nerovnosti), tedy oba integrály jsou pro $g \in L^2$ konečné. Dále definujeme $c := \inf_{g \in L^2(\mu)} Jg$.

$$Jg = \int_{X} g^{2} d\mu - 2 \int_{X} g d\nu \ge \int_{X} g^{2} d\mu - 2 \int_{X} |g| d\mu =$$

$$= \int_{X} (|g| - 1)^{2} d\mu - \mu(X) \ge -\mu(X) > -\infty, \forall g \in L^{2}(\mu).$$

Předpokládejme, že $\exists f \ c = Jf$. Buď $A \in \mathcal{A}$ pevná množina, definujeme $g(t) := J(f + t\chi_A)$, $\forall t \in \mathbb{R}$. Tedy g má minimum v bodě 0. Tudíž g'(0) = 0, pokud g' existuje. Ověříme výpočtem z definice existenci a dosadíme 0:

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{J(f + t\chi_A) - J(f)}{t} =$$

$$= \lim_{t \to 0} \frac{1}{t} \left[\int_X (f + t\chi_A)^2 d\mu - 2 \int_X (f + t\chi_A) d\nu - \int_X f^2 d\mu + 2 \int_X f d\nu \right] =$$

$$\lim_{t \to 0} \left[\int_X 2f\chi_A d\mu + t \int_X \chi_A d\mu - 2 \int_X \chi_A d\nu \right] = 2 \left[\int_X f\chi_A d\mu - \int_X \chi_A d\nu \right] = 0$$

Tedy $\forall A \in \mathcal{A} : \nu(A) = \int_A f d\mu$.

$$0 \le \int_{\{f>1\}} (f-1)^+ d\mu = \int_{\{f>1\}} (f-1) d\mu = \int_{\{f>1\}} f d\mu - \int_{\{f>1\}} 1 d\mu =$$
$$= \nu(\{f>1\}) - \mu(\{f>1\}) \le 0 \implies f \le 1 \text{ μ-skoro všude}$$
$$0 \le \int_{\{f<0\}} f^- d\mu = -\int_{\{f<0\}} f d\mu = -nu(\{f<0\}) \le 0 \implies f \ge 0 \text{ μ-skoro všude}$$

$$J(g) + J(h) - J\left(\frac{g+h}{2}\right) = \int_X \frac{g^2 - 2gh + h^2}{2} d\mu = \frac{1}{2} \int_X (g-h)^2 d\mu = \frac{1}{2} ||g-h||_{L^2(\mu)}^2.$$

 $\exists \, \{f_n\} \subset L^2(\mu). \ J(f_n) \to c \text{ pro } n \to \infty. \ g = f_n, \, h = f_m:$

$$J(f_n) + J(f_m) - 2J\left(\frac{f_n + f_m}{2}\right) = \frac{1}{2}||f_n - f_m||_{L^2(\mu)}^2, \forall n, m \in \mathbb{N}$$

$$\leq J(f_n) + J(f_n) - 2c \to 0 \implies \exists f \in L^2(\mu) : f_n \to f \in L^2(\mu).$$

$$\int_X |f_n - f| d\nu \leq \int_X |f_n - f| d\mu \leq \left(\int_X |f_n - f|^2\right)^{\frac{1}{2}} \cdot (\mu(X))^{\frac{1}{2}} \to 0 \implies$$

 $\implies ||f_n - f||_{L^2(M)} \to 0 \implies J(f_n) \to J(f).$

Věta 0.48 (Lebesgueův rozklad míry)

Buď μ míra na (X, d) a ν σ-konečná míra na (X, A). Pak existuje rozklad ν = ν_a + ν_s na σ-konečné míry ν_a a ν_s takový, že ν_a « μ, ν_s \perp μ, přičemž míry ν_a a ν_s jsou určeny jednoznačně.

Důkaz (Konečná míra, existence rozkladu)

Předpokládejme nejprve, že ν je konečná míra. Nejprve se zabývejme existencí rozkladu:

Buď
$$\mathcal{N}_{\mu} := \{B \in \mathcal{A}, \mu(B) = 0\}$$
. Pak

$$c := \sup \{ \nu(B) | B \in \mathcal{N}_{\mu} \} \le \nu(X) < +\infty.$$

Nechť $\{B_j\}_j \subset \mathcal{N}_\mu$ je taková posloupnost, že $\lim_{j\to\infty} \nu(B_j) = c$. Označíme-li $N := \bigcup_{j=1}^\infty B_j$, pak $\mu(N) \leq \sum_j \mu(B_j) = 0$, a tedy $\mu(N) = 0$, tj. $N \in \mathcal{N}_\mu$.

Dále platí

$$c \ge \nu(N) = \nu(\bigcup_{j} B_{j}) \ge \nu(B_{i}) \quad \forall i \in \mathbb{N} \implies \nu(N) = c.$$

Definujeme

$$\nu_s(A) := \nu(A \cap N) \quad \forall A \in \mathcal{A}.$$

Pak

$$\nu_s(X \setminus N) = \nu((X \setminus N) \cap N) = \nu(\emptyset) = 0.$$

Odtud a z $\mu(N) = 0$ plyne $\nu_s \perp \mu$. Následně definujeme $\nu_a := \nu - \nu_s$. Tedy

$$\nu_a(A) = \nu(A) - \nu_s(A) = \nu(A) - \nu(A \cap N) = \nu(A \setminus N) = \nu(A \cap N^c),$$

tj.

$$\nu_a(A) = \nu(A \cap N^c) \quad \forall A \in \mathcal{A}.$$

Dokažme, že $\nu_a \ll \mu$: Necht $\mu(A) = 0$. Pak

$$N \cup (A \cap N^c) \in \mathcal{N}_{\mu},$$

a kdyby $\nu(A \cap N^c) > 0$, pak by

$$\nu(N \cup (A \cap N^c)) = \nu(N) + \nu(A \cap N^c) > c,$$

což je spor s definicí čísla c. Tedy $\nu(A \cap N^c) = 0$, tj. $\nu_a(A) = 0$, tudíž $\nu_a \ll \mu$.

 $D\mathring{u}kaz$ (Konečná míra, jednoznačnost rozkladu) Nechť

$$\nu = \nu_a + \nu_s \wedge \nu = \tilde{\nu}_a + \tilde{\nu}_s,$$

$$\nu_s \perp \mu \wedge \tilde{\nu}_s \perp \mu \wedge \nu_a \ll \mu \wedge \tilde{\nu}_a \ll \mu.$$

Ze singularit měr plyne

$$\exists N \in \mathcal{A} : \mu(N) = 0 \land \nu_s(N^c) = 0,$$

$$\exists \tilde{N} \in \mathcal{A} : \mu(\tilde{N}) = 0 \land \tilde{\nu}_s(\tilde{N}^c) = 0.$$

Buď $N_0 := N \cup \tilde{N}$. Pak $\mu(N_0) \le \mu(N) + \mu(\tilde{N}) = 0$, a tedy $\mu(N_0) = 0$, odkud plyne $\nu_a(N_0) = 0 \wedge \tilde{\nu}_a(N_0) = 0$.

Dále platí

$$\nu_s(N_0^c) = \nu_s(X \setminus N_0) \le \nu_s(N^c) = 0,$$

$$\tilde{\nu}_s(N_0^c) = \tilde{\nu}_s(X \setminus N_0) \le \tilde{\nu}_s(\tilde{N}^c) = 0,$$

tj. $\nu_s(N_0^c) = 0 \wedge \tilde{\nu}_s(N_0^c) = 0$. Tedy $\forall A \in \mathcal{A}$ platí

$$\nu_s(A) = \nu_s(A \cap N_0) = \nu(A \cap N_0) - \nu_a(A \cap N_0) = \nu(A \cap N_0)$$

a analogicky

$$\tilde{\nu}_s(A) = \tilde{\nu}_s(A \cap N_0) = \nu(A \cap N_0) - \tilde{\nu}_a(A \cap N_0) = \nu(A \cap N_0),$$

odkud dostáváme $\nu_s=\tilde{\nu}_s,$ což spolu s tím, že $\nu=\nu_s+\nu_a=\tilde{\nu}_s+\tilde{\nu}_a$ dává $\nu_a=\tilde{\nu}_a.$

Důkaz (Sigma-konečná míra)

Předpokládejme nyní, že ν je σ -konečná míra. Pak existuje posloupnost $\{D_k\}_{k\in\mathbb{N}}\subset\mathcal{A}$ po dvou disjunktních množin tak, že $X=\bigcup_k D_k$. Označme $A_k:=\{A\cap D_k|A\in\mathcal{A}\}$ a aplikujeme stejný postup jako pro konečnou míru na měřitelné prostory (D_k,\mathcal{A}_k) a restrikce měr μ , ν na \mathcal{A}_k , $k\in\mathbb{N}$.

Nechť N_1, N_2, \dots jsou μ -nulové množiny zkonstruovatelné jako množina N v části I a nechť $N = \bigcup_{k=1}^{\infty} N_k$. Pak míry ν_s , ν_a definované předpisem

$$\nu_s(A) := \nu(A \cap N), \qquad \nu_a(A) = \nu(A \cap N^c) \qquad \forall A \in \mathcal{A}$$

tvoří Lebesgueův rozklad míry ν , neboť

$$\mu(N) = \mu(\bigcup_{k} N_k) = \sum_{k} \mu(N_k) = 0,$$

$$\nu_s(X \setminus N) = \nu((X \setminus N) \cap N) = \nu(\emptyset) = 0,$$

a tedy $\nu_s \perp \mu$.

Je-li $\mu(A) = 0$ a označíme-li $A_k = A \cap D_k, k \in \mathbb{N}$, pak $\mu(A_k) = 0$, a tedy

$$(\nu|_{D_k})_a(A_k) = 0 \quad \forall k \in \mathbb{N} \quad \text{(nebot } (\nu_{D_k})_a \ll \mu|_{D_k}).$$

Dále platí

$$\nu_a(A) = \nu(A \cap N^c) = \sum_k \nu(A \cap D_k \cap N^c),$$

a protože

$$D_k \cap N^c = D_k \cap (X \setminus N) = D_k \cap (X \setminus \bigcup_j N_j) = D_k \cap \bigcup_j (X \setminus N_j) \subset D_k \cap (X \setminus N_k) = D_k \setminus N_k,$$

tak

$$\nu_a(A) \le \sum_k \nu(A \cap D_k \cap (D_k \setminus N_k)) = \sum_k \nu(A_k \cap (D_k \setminus N_k)) = \sum_k (\nu|_{D_k})(A_k \cap (D_k \setminus N_k)) =$$

$$= \sum_k (\nu|_{D_k})_a(A_k) = 0,$$

a tedy $\nu_a \ll \mu$.

Jednoznačnost rozkladu $\nu = \nu_a + \nu_s$ plyne z faktů, že $\forall A \in \mathcal{A}$ platí

$$\nu(A) = \sum_{k} \nu|_{D_k}(A \cap D_k), \qquad \nu_s(A) = \sum_{k} (\nu|_{D_k})_s(A \cap D_k),$$

$$\nu_a(A) = \sum_{k} (\nu|_{D_k})_a(A \cap D_k \setminus N_k)$$

a "lokální rozklady" $\nu|_{D_k}=(\nu|_{D_k})_s+(\nu|_{D_k})_a,\,k\in N,$ jsou určeny jednoznačně.

Lemma 0.49 (O distribuční funkci)

Distribuční funkce F_{μ} splňuje:

- F_μ je neklesající;
- $F_{\mu}(-\infty) := \lim_{x \to -\infty} F_{\mu}(x) = 0, \ F_{\mu}(+\infty) := \lim_{x \to +\infty} F_{\mu}(x) < \infty;$
- F_μ je zprava spojitá.

Důkaz

První bod je jednoduchý: Je-li $x, y \in \mathbb{R}, x < y$, pak

$$F_{\mu}(x) = \mu((-\infty, x)) \le \mu((-\infty, y)) = F_{\mu}(y).$$

Druhý bod: Obě uvedené limity existují, neboť dle prvního bodu je funkce F_μ neklesající. Tedy

$$F_{\mu}(-\infty) = \lim_{n \to \infty} F_{\mu}(-n) = \lim_{n \to \infty} \mu((-\infty, -n)) = \mu\left(\bigcap_{n=1}^{\infty} (-\infty, -n)\right) = \mu(\emptyset) = 0.$$

Analogicky dostaneme

$$F_{\mu}(+\infty) = \lim_{n \to \infty} F_{\mu}(n) = \lim_{n \to \infty} \mu((-\infty, n)) =$$
$$= \mu\left(\bigcap_{n=1}^{\infty} (\infty, n)\right) = \mu(\mathbb{R}) < +\infty.$$

Třetí bod je také jednoduchý: Je-li $x \in \mathbb{R}$, pak $(-\infty, x) = \bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right)$, a tedy

$$F_{\mu}(x+) = \lim_{n \to \infty} F_{\mu}\left(x + \frac{1}{n}\right) = \lim_{n \to \infty} \mu\left(\left(-\infty, x + \frac{1}{n}\right)\right) =$$
$$= \mu\left(\bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right)\right) = \mu((-\infty, x)) = F_{\mu}(x).$$

Věta 0.50 (O Lebesgueově-Stieltjesově míře)

Je- $li\ F: \mathbb{R} \to \mathbb{R}\ funkce\ splňující$

• F je neklesající;

- $F_{\mu}(-\infty) := \lim_{x \to -\infty} F_{\mu}(x) = 0, \ F_{\mu}(+\infty) := \lim_{x \to +\infty} F_{\mu} < \infty;$
- F_μ je zprava spojitá.

pak existuje právě jedna konečná borelovská míra na \mathbb{R} (tzn. Lebesgueova-Stieltjesova míra příslušná funkci F) taková, že $F_{\mu} = F$.

 $D\mathring{u}kaz$

Bude v TMI2.

Věta 0.51 (Per partes pro L-S integrál)

Jestliže F, G jsou distribuční funkce $a - \infty < a < b < +\infty$, pak

$$F(b)G(b) - F(a)G(a) = \int_{\langle a,b\rangle} F(x)dG(x) + \int_{\langle a,b\rangle} G(x)dF(x).$$

 $D\mathring{u}kaz$

Nechť $\Omega := \{[x,y] \in \mathbb{R}^n | a < x \le y \le b\}$. Použitím Fubiniovy věty k výpočtu $(\mu_F \otimes \mu_G)(\Omega)$ obdržíme

$$(\mu_F \otimes \mu_G)(\Omega) = \int_{(a,b)} \left(\int_{\langle x,b \rangle} dG(y) \right) dF(x) = \int_{(a,b)} (G(b) - G(x-)) dF(x) =$$

$$= G(b)(F(b) - F(a)) - \int_{(a,b)} G(x-) dF(x),$$

$$(\mu_F \otimes \mu_G)(\Omega) = \int_{(a,b)} \left(\int_{(,y)} dF(x) \right) dG(y) = \int_{(a,b)} (F(y) - F(a)) dG(y) =$$

$$= \int_{(a,b)} F(y) dG(y) - F(a)(G(b) - G(a)).$$

Odečteme-li předchozí od sebe, dostaneme

$$0 = G(b)F(b) - G(b)F(a) - \int_{(a,b)} G(x-)dF(x) - \int_{(a,b)} F(y)dG(y) + F(a)G(b) - F(a)G(a).$$

Lemma 0.52 (O $\mu \ll \lambda^1$)

Nechť μ je konečná borelovská míra na \mathbb{R} . Jestliže $F_{\mu} \in C^{1}(\mathbb{R})$, pak $\mu \ll \lambda^{1}$ a $\frac{d\mu}{d\lambda^{1}} = F'_{\mu}$. (Tj. platí $\mu(A) = \int_{A} F'_{\mu} d\lambda^{1} \ \forall A \in \mathcal{B}(\mathbb{R})$.)

Nechť \mathcal{S} je systém, který se skládá z \emptyset a všech intervalů (a,b), kde $-\infty < a < b < +\infty$. Pak \mathcal{S} je π -systém. Buď ν míra daná předpisem

$$\nu(A) := \int_A F'_{\mu} d\lambda^1 \qquad \forall A \in \mathcal{B}(\mathbb{R}).$$

Pak $\mu = \nu$ na \mathcal{S} , nebot

$$\mu(\emptyset) = 0 = \nu(\emptyset),$$

$$\mu((a,b)) = F_{\mu}(b) - F_{\mu}(a) = \int_{a}^{b} F'_{\mu}(x)dx = \int_{(a,b)} F'_{\mu}d\lambda^{1} = \nu((a,b)),$$

je-li $-\infty < a < b < +\infty$.

Dále platí $X_n := (-n, n) \in \mathcal{S}, X_n \nearrow X := \mathbb{R}, \mu(X_n) < +\infty \forall n \in \mathbb{N}$. Proto, dle věty o jednoznačnosti míry platí $\mu = \nu$ na $\sigma \mathcal{S} = \mathcal{B}(\mathbb{R})$. Tedy

$$\mu(A) = \nu(A) = \int_A F'_{\mu} d\lambda^1 \ \forall A \in \mathcal{B}(\mathbb{R}),$$

tj.
$$\frac{d\mu}{d\lambda^1} = F'_{\mu}$$
.

Lemma 0.53 (Čebyševova nerovnost)

Je-li $1 \le p < +\infty$, $f \in L^p(\mu)$ a $c \in (0, +\infty)$, pak

$$\mu(\{x \in X \mid |f(x)| \ge c\}) \le \left(\frac{||f||_p}{c}\right)^p.$$

 \Box $D\mathring{u}kaz$

$$\mu(\overbrace{\{x\in X\mid |f(x)|\geq c\}}^{M:=}) = \int_{M} 1d\mu \leq \int_{M} \left(\frac{|f|}{c}\right)^{p} d\mu \leq \int_{X} \left(\frac{|f|}{c}\right)^{p} d\mu = \left(\frac{||f||_{p}}{c}\right)^{p}.$$

Věta 0.54 (Vztah mezi konvergencí v $L^p(\mu)$ a konvergencí podle míry)

Je-li $1 \le p \le +\infty$ a $f, f_n \in L^p(\mu)$ $(\forall n \in \mathbb{N}), pak$

$$f_n \stackrel{L^p(\mu)}{\to} f \implies f_n \stackrel{\mu}{\to} f.$$

 $D\mathring{u}kaz$

Je-li $p\in (1,+\infty)$, pak implikace plyne z Čebyševovy nerovnosti. Jinak předpokládejme $f_n\stackrel{L^p(\mu)}{\to} f$ a $\varepsilon>0$, pak

$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 : ||f_n - f||_{\infty} < \varepsilon,$$

a tedy
$$\mu(\lbrace x \in X \mid |f_n(x) - f(x)| \ge \varepsilon \rbrace) = 0 \ \forall n \in \mathbb{N}, \ n \ge n_0. \text{ Proto } f_n \xrightarrow{\mu} f.$$

Věta 0.55 (1. vztah mezi konvergencí podle míry a konvergencí skoro všude)

Jestliže (X, \mathcal{A}, μ) je prostor s mírou a $f_n \stackrel{\mu}{\to} f$, pak existuje vybraná podposloupnost $\{f_{n_k}\}_{k \in \mathbb{N}}$ tak, že $f_{n_k} \to f$ μ -skoro všude.

 $D\mathring{u}kaz$

Protože

$$\lim_{n \to \infty} \mu(\{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\}) = 0 \qquad \forall \varepsilon > 0,$$

tak lze konstruovat posloupnost čísel $\{n_k\}_{k\in\mathbb{N}}$ tak, že

$$\mu\left(\left\{x \in X \mid |f_{n_1}(x) - f(x)| \ge 1\right\}\right) \le \frac{1}{2}$$

a zbývající členy posloupnosti $\{n_k\}$ určit induktivně tak, aby $n_k>n_{k-1}$ a

$$\mu\left(\left\{x \in X \mid |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\right\}\right) \le \frac{1}{2^k}, \qquad k \in \mathbb{N} \setminus \{1\}.$$

Definujeme množiny $A_k, k \in \mathbb{N}$, předpisem

$$A_k := \left\{ x \in X \mid |f_{n_k}(x) - f(x)| \ge \frac{1}{k} \right\}$$

a $A:=\bigcap_{j=1}^{\infty}\bigcup_{k\geq j}A_k$. Jestliže $x\notin A$, pak $\exists j\in\mathbb{N}$ tak, že $x\notin\bigcup_{k\geq j}A_k$, tedy

$$|f_{n_k}(x) - f(x)| < \frac{1}{k} \quad \forall k \in \{j, j+1, \ldots\},$$

tudíž $\{f_{n_k}\}_k$ konverguje k f pro všechna $x \notin A$.

Protože $\forall j \in \mathbb{N}$ platí

$$\mu(A) \le \mu\left(\bigcup_{k \ge j} A_k\right) \le \sum_{k=j}^{\infty} \mu(A_k) \le \sum_{k=j}^{\infty} \frac{1}{2^k} = \frac{1}{2^j} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{1}{2^{j+1}} \implies \mu(A) = 0.$$

43

Důsledek

Je-li
$$1 \leq p \leq +\infty$$
 a $f_n \stackrel{L^p(\mu)}{\to} f$, pak

$$\exists \{f_{n_k}\}_{k\in\mathbb{N}}: f_{n_k} \to f\mu$$
-skoro všude.

 $D\mathring{u}kaz$

Přímý důsledek předchozích dvou vět.

Věta 0.56 (2. vztah mezi konvergencí podle míry a konvergencí skoro všude)

Jestliže (X, \mathcal{A}, μ) je prostor s konečnou mírou a $f_n \to f$ μ -skoro všude, pak $f_n \stackrel{\mu}{\to} f$.

 $D\mathring{u}kaz$

Máme dokázat, že $\forall \varepsilon > 0$ platí

$$\lim_{n \to \infty} \mu(\{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Buď $\varepsilon > 0$. Definujeme množiny $A_n, B_n, n \in \mathbb{N}$, předpisem

$$A_n := \{x \in X \mid |f_n(x) - f(x)| \ge \varepsilon\}, \qquad B_n := \bigcup_{k=n}^{\infty} A_k.$$

Pak $B_1 \supset B_2 \supset \dots$ a platí

$$\bigcap_{n\in\mathbb{N}} B_n \subset \left\{ x \in X | f_n(x) \nrightarrow f(x) \right\}.$$

Tedy $\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=0$ dle předpokladu, což spolu s větou o vlastnostech míry dává $\lim_{n\to\infty}\mu(B_n)=0$. Protože $A_n\subset B_n$, tak $\lim_{n\to\infty}\mu(A_n)=0$.

Věta 0.57 (Jegorov)

Jestliže (X, \mathcal{A}, μ) je prostor s konečnou mírou, $\varepsilon > 0$ a f, $f_n, n \in \mathbb{N}$, jsou měřitelné funkce splňující $f_n \to f$ μ -skoro všude, pak

$$\exists B \in \mathcal{A}, \mu(B^c) < \varepsilon : f_n \Longrightarrow f \ na \ B.$$

Buď $\varepsilon > 0$. Položme

$$g_n := \sup_{j \ge n} |f_j - f| \quad \forall n \in \mathbb{N}.$$

Pak $g_n \to 0$ μ -skoro všude (neboť $f_n \to f$ μ -skoro všude), a tedy dle předpředchozí věty $g_n \stackrel{\mu}{\to} 0$. Proto

$$\forall k \in \mathbb{N} \ \exists n_k \in \mathbb{N} : \mu(\left\{x \in X | g_{n_k}(x) \ge \frac{1}{k}\right\}) < \frac{\varepsilon}{2^k}.$$

Definujeme množiny B_1, B_2, \ldots předpisem

$$B_k := \left\{ x \in X | g_{n_k}(x) < \frac{1}{k} \right\}$$

a nechť $B:=\bigcap_{k\in\mathbb{N}}B_k$. Pak $\mu(B^c)=\mu\left(\bigcup_{k\in\mathbb{N}}B_k^c\right)\leq \sum_{k\in\mathbb{N}}\mu(B_k^c)<\sum_{k\in\mathbb{N}}\frac{\varepsilon}{2^k}=\varepsilon$. Buď $\delta>0$ a $k\in\mathbb{N}$ takové číslo, že $\delta>\frac{1}{k}$. Pak

$$\forall x \in B \ \forall n \in \mathbb{N}, n \ge n_k : |f_n(x) - f(x)| \le g_{n_k}(x) < \frac{1}{k} < \delta,$$

a tedy $f_n \rightrightarrows f$ na B.