Radon-Nikodym Theorem (lecture 17. 11. March)

Morten Tryti Berg and Isak Cecil Onsager Rukan.

Assume (X, \mathcal{B}, μ) is a measure space. Are there other measures on (X, \mathcal{B}) ?

Example 20.21. Take a measurable function $f: X \to [0, +\infty]$ and define

$$\nu(A) = \int_A f d\mu \text{ for } A \in \mathcal{B}.$$

This is a measure by the monotone convergence theorem. We write $d\nu = f d\mu$.

Proposition 20.22. Assume (X, \mathcal{B}) is a measurable space, μ and ν are σ -finite measures on (X, \mathcal{B}) . Then there exist $N \in \mathcal{B}$ and a measurable $f: X \to [0, +\infty]$ s.t. $\mu(N) = 0$ and $\nu(A) = \nu(A \cap N) + \int_A f d\mu \ \forall A \in \mathcal{B}$.

Proof. Assume first that the measure ν, μ are finite. Consider the measure $\eta = \mu + \nu$ and define a linear functional ρ on $L^2(x, d\eta)$ by

$$\rho(g) = \int_X g d\nu.$$

It is well-defined and bounded, since

$$|\rho(g)| \le \underbrace{\int_{X} |\rho| d\nu}_{||g||_{1}} \le \underbrace{\int_{X} |\rho|^{2} d\nu}_{C.S} \left(\int_{X} |\rho|^{2} d\nu \right)^{\frac{1}{2}} \nu(X)^{\frac{1}{2}}$$
$$\le \nu(x)^{\frac{1}{2}} \left(\int_{X} |\rho|^{2} d\eta \right)^{\frac{1}{2}}.$$

By Riesz' theorem there exists $h \in L^2(x, d\eta)$ s.t. $\rho(g) = \int_X ghd\eta$ for all $g \in L^2(x, d\eta)$.

For $\rho = \mathbb{1}_A$ we get

$$\nu(A) = \int_A h d\eta \ \forall A \in \mathscr{B}.$$

In particular, $h \ge 0$ $(\eta - \text{a.e.})$. As $\nu(A) \le \eta(A)$, we also have $h \le 1$ $(\eta - \text{a.e.})$. From now on we view h as a function on X and assume $0 \le h \le 1$.

For $g = \mathbb{1}_A$ $(A \in \mathcal{B})$ we have

$$\int_X g d\nu = \rho(g) = \int_X g h d\eta = \int_X g h d\mu + \int_X g h d\nu,$$

hence

$$\int_{Y} g(1-h)d\nu = \int_{Y} ghd\mu. \tag{1}$$

By extending eq. 1 to positive simple functions and then using the monotone convergence theorem, we conclude that eq. 1 holds for all measurable $g: X \to [0, +\infty]$.

We now let

$$N = \{x : h(x) = 1\}$$
 and $f = \frac{h}{1 - h} \mathbb{1}_{N^c}$.

Letting $g = \mathbb{1}_N$ in eq. 1 we get $0 = \mu(N)$. For $A \in \mathcal{B}$, letting $g = \frac{\mathbb{1}_{A \cap N^c}}{1-h}$ in eq. 1 we get

$$\nu\left(A\cap N^c\right)=\int_X\frac{\mathbb{1}_A\mathbb{1}_{N^c}}{1-h}hd\mu=\int_X\mathbb{1}_Afd\mu=\int_Afd\mu.$$

Thus

$$\nu(A) = \nu\left(A \cap N\right) + \nu\left(A \cap N^c\right) = \nu\left(A \cap N\right) + \int_A f d\mu.$$

This finishes the proof for finite μ and ν .

If μ and ν are σ -finite, we can write X as disjoint unions $X = \bigcup_{n \in \mathbb{N}} X_n = \bigcup_{m \in \mathbb{N}} Y_m$ with $X_n, Y_m \in \mathcal{B}, \mu(X_n) < \infty, \nu(Y_m) < \infty$. Applying the first part of the proof to $X_n \cap Y_m$, we find $N_{nm} \in \mathcal{B}, N_{nm} \subset X_n \cap Y_m$, and measurable $f_{nm}: X_n \cap Y_m \to [0, +\infty]$ s.t. $\mu(N_{nm}) = 0$ and

$$\nu\left(A\cap X_n\cap Y_m\right) = \nu\left(A\cap N_{nm}\right) + \int_{A\cap X_n\cap Y_m} f_{nm}d\mu.$$

We then put $N = \bigcup_{n,m \in \mathbb{N}} N_{nm}$ and define $f : X \to [0,+\infty]$ by letting $f = f_{nm}$ on $X_n \cap Y_m$.

When can we discard the term $\nu(A \cap N)$?

Definition 20.23. Given measure μ and ν on X, \mathscr{B} , we say that ν is absolutely continuous with respect to μ and write $\nu << \mu$, if $\nu(A) = 0$ whenever $A \in \mathscr{B}, \mu(A) = 0$.

Lemma 20.24. Assume μ and ν are measures on (X, \mathcal{B}) , $\nu(X) < \infty$. Then $\nu << \mu$ iff $\forall \epsilon > 0 \exists \delta > 0$ s.t. if $A \in \mathcal{B}$, $\mu(A) < \delta$, then $\nu(A) < \epsilon$.