

BIOMECATRÓNICA

Error en estado estacionario

Sistema en lazo abierto

Sistema en lazo cerrado

EIA Error en estado estacionario

Es la diferencia entre la entrada y la salida para una señal de prueba establecida cuando $t \to \infty$

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$oldsymbol{\mathsf{EIA}}\,e_{ss}$ para un control proporcional

Considerando el caso en el que:

- Referencia es un escalón unitario
- La planta tiene polos con parte real estrictamente negativa y ganancia unitaria
- El controlador es solo un bloque de ganancia

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + KG(s)}$$
$$= \lim_{s \to 0} \frac{s\frac{1}{s}}{1 + K}$$
$$= \frac{1}{1 + K}$$

EIA e_{ss} para un control integral

Considerando el caso en el que:

- Referencia es un escalón unitario
- La planta tiene polos con parte real estrictamente negativa y ganancia unitaria
- El controlador es un bloque integrador

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + \frac{KG(s)}{s}}$$

$$= \lim_{s \to 0} \frac{s \frac{1}{s}}{1 + \frac{K}{s}}$$

$$=0$$

$oldsymbol{\mathsf{EIA}}\,e_{ss}$ para un control integral

Considerando el caso en el que:

- Referencia es una rampa de pendiente unitaria
- La planta tiene polos con parte real estrictamente negativa y ganancia unitaria
- El controlador es un bloque integrador

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + \frac{KG(s)}{s}}$$

$$= \lim_{s \to 0} \frac{s \frac{1}{s^2}}{1 + \frac{K}{s}}$$

$$=rac{1}{K}$$

Tipo de sistema

Es el número de integradores (polos en el origen) del sistema en lazo abierto y sus errores son:

- Tipo 0: error finito y no nulo en respuesta a una entrada de escalón
- Tipo 1: error finito y no nulo en respuesta a una entrada de rampa
- Tipo 2: error finito y no nulo en respuesta a una entrada parabólica

EIA Tipo de sistema

Figure 2000 e_{ss} para entrada escalón $e_{ss} = \frac{1}{1 + \lim_{s \to 0} G(s)}$

$$e_{ss} = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

Sistema tipo 0

Sistema tipo k $(k \geq 1)$

$$G(s) = \frac{K(s+z_1)(s+z_2)\cdots}{(s+p_1)(s+p_2)\cdots}$$

$$G(s) = \frac{K(s + z_1)(s + z_2) \cdots}{s^k(s + p_1)(s + p_2) \cdots}$$

$$\lim_{s \to 0} G(s) = \frac{K z_1 z_2 \cdots}{p_1 p_2 \cdots} \neq \infty$$

$$\lim_{s \to 0} G(s) \to \infty$$

Constantes de error estático

$$K_p = \lim_{s \to 0} G(s)$$

$$K_v = \lim_{s \to 0} sG(s)$$

$$K_a = \lim_{s \to 0} s^2 G(s)$$

Tipo de	Entrada		
sistema	Escalón	Rampa	Parábola
0	$\frac{1}{1+K_p}$	∞	∞
1	0	$rac{1}{K_v}$	∞
2	0	0	$\frac{1}{K_a}$

e_{ss} para realimentación no unitaria

EIA Ejemplo 1

¿Cuál es el error en estado estacionario del sistema mostrado en la figura ante una entrada escalón de amplitud 3?

EIA Ejemplo 2

Diseñe un controlador, D(s), tal que el sistema de la figura exponga un error de 0.05 ante una entrada tipo rampa

EIA Ejemplo 3

Determine la ganancia del controlador, K, para que el sistema de la figura exhiba un error en estado estacionario del 2% ante una entrada de referencia constante

