ERRATA

Sobre Misturas Refrigerantes Uma nova versão da Seção III em Rev. Bras. Ens. Fis. 21, 238 (1999)

G.F. Leal Ferreira Instituto de Física de São Carlos, USP

May 11, 2000

III. Misturando gelo e sal

Vamos procurar responder à pergunta: qual a massa mínima de sal, m_s , que deve ser misturada a m_g , gramas de gelo a 0° C para se atingir o ponto x_E , t_E da Fig.1? Como dito na Introdução, vemos o processo como provocado pela necessidade do sal se dissolver na água. Ora, 1 g de NaCl se dissolve em de 2,5 g de água, que tomaremos como independente da temperatura. A dissolução vai exigir então de $2,5 \times 80$ cal para a fusão e mais $20m_s$ por ser ela endotérmica, ou seja, da quantidade de calor $q_1 = (2,5 \times 80 + 20)m_s$. De onde tirar toda esta energia? Da energia térmica armazenada no gelo, que se comportará como reservatório de calor para a realização do trabalho interno necessário à fusão e dissolução. Tendo imaginado no cálculo de q_1 a solução formada a 0° C, a energia q_2 disponível no resfriamento

a $-t_E$ é, aproximadamente:

$$q_2 = m_s t_E \tag{1}$$

admitindo desprezível a contribuição do sal na solução para sua capacidade calorífica. Da igualdade de q_1 e q_2 resulta

$$m_s \approx \frac{t_E}{220} m_g \tag{2}$$

Com $t_E \approx 20^{\circ} \mathrm{C}$ temos $m_s \approx 0, 1 m_g$. Se quantidade maior de sal for usada, ele ficará em excesso junto à solução eutética (na verdade quase eutética porque o reservatório de calor seria um pouco maior devido ao excesso de sal). Na prática usa-se a proporção $m_s = m_g/3$ para obtenção de misturas refrigerantes mais duradouras.