Ime in priimek Osnove matematične analize: prvi kolokvij	Vpisna številka	1 2	
26. november 2020		3	
Čas pisanja je 100 minut. Dovoljena je uporaba 1 lista A4 formata s		4	
formulami. Uporaba elektronskih pripomočkov ni dovoljena. Vse odgovore dobro utemelji!		Σ	

- 1. naloga (25 točk)
- a) (12 točk) Poišči vsa kompleksna števila z, ki rešijo enačbo

$$(2+i)z + 2\overline{z} = 1+i.$$

Pišemo z = x + yi. Ko to vstavimo v enačbo, dobimo

$$(2+i)(x+yi) + 2(x-yi) = 1+i,$$

$$2x + 2yi + xi - y + 2x - 2yi = 1+i,$$

$$(4x-y) + xi = 1+i.$$

Če ločimo realni in imaginarni del, dobimo sistem dveh enačb

$$4x - y = 1,
 x = 1,$$

ki ima edino rešitev x = 1, y = 3. Torej je z = 1 + 3i.

- Za zapis z = x + yi dobite 2 točki.
- Za pravilno izpeljavo sistema dveh linearnih enačb (4x-y=1, x=1) dobite **5 točk** (3 točke od 5, če ste do sistema prišli ampak ste naredili kakšno računsko napako in je dobljeni sistem napačen).
- Za rešitev x = 1, y = 3 dobite **3 točke** (1 točka od 3, če je rešitev zapisana ampak napačna).
- \bullet Za zapis z=1+3i dobite **2 točki** (1 točka od 2, če je rešitev zapisana, ampak napačna zaradi prejšnjih napak).

b) (13 točk) Poišči vsa kompleksna števila w, ki rešijo enačbo

$$w^3 = z - 2i$$

in jih nariši v kompleksni ravnini.

Če upoštevamo, da je z = 1 + 3i, se enačba glasi

$$w^3 = 1 + i$$
.

Desno stran enačbe zapišemo v polarni obliki. V ta namen izračunamo

$$|1+i| = \sqrt{2}$$
 in $\arg(1+i) = \operatorname{atan2}(1,1) = \arctan(1) = \frac{\pi}{4}$.

Če je $w=re^{i\varphi}$, potem je $w^3=r^3e^{i\cdot 3\varphi}$. Ko primerjamo absolutno vrednost in polarni kot na levi in desni strani enačbe, dobimo

$$r^3 = \sqrt{2}$$
 in $3\varphi = \frac{\pi}{4} + 2\pi k$,

kjer je $k \in \mathbb{Z}$. Iz prve enakosti izrazimo $r = \sqrt[6]{2}$, iz druge pa dobimo tri različne rešitve,

$$\varphi_k = \frac{\pi}{12} + \frac{2\pi k}{3}, \quad k \in \{0, 1, 2\}.$$

Dobimo torej $\varphi_0 = \frac{\pi}{12} = 15^\circ$, $\varphi_1 = \frac{9\pi}{12} = 135^\circ$ in $\varphi_2 = \frac{17\pi}{12} = 255^\circ$. Rešitve so $z_0 = \sqrt[6]{2}e^{i\frac{\pi}{12}}$, $z_1 = \sqrt[6]{2}e^{i\frac{9\pi}{12}}$ in $z_2 = \sqrt[6]{2}e^{i\frac{17\pi}{12}}$. V kompleksni ravnini jih narišemo na krožnici z radijem $\sqrt[6]{2}$, in sicer tako, da so pripadajoči polarni koti enaki 15°, 135° in 255°.

- Za zapis enačbe $w^3 = 1 + i$ dobite **1 točko**.
- Za izračun polarnega zapisa desne strani $(\sqrt{2} \text{ in } \frac{\pi}{4})$ dobite **4 točke** (-1 točko za vsak napačen rezultat).
- Za izračun $r = \sqrt[6]{2}$ in φ_k , k = 0, 1, 2 dobite **4 točke** (2 točki, če je vse izračunano ampak narobe, 0 točk sicer).
- Za pravilno skico dobite **4 točke** (2 točki, če so narisani koti ali radij napačni, ampak narisane tri točke še vedno tvorijo enakostranični trikotnik s težiščem v izhodišču koordinatnega sistema; če narisane tri točke niso oglišča enakostraničnega trikotnika, dobite 0 točk).

2. naloga (25 točk)

Podano imamo zaporedje $(a_n)_{n\in\mathbb{N}}$ s predpisom

$$a_n = \left(\frac{n^2 - n + 1}{n^2 + 1}\right)^n.$$

a) (12 točk) Izračunaj limito zaporedja a_n .

Če upoštevamo, da je

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e},$$

dobimo

$$\lim_{n \to \infty} \left(\frac{n^2 - n + 1}{n^2 + 1} \right)^n = \lim_{n \to \infty} \left(\frac{n^2 + 1 - n}{n^2 + 1} \right)^n = \lim_{n \to \infty} \left(1 - \frac{n}{n^2 + 1} \right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n^2 + 1} \right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e}.$$

- Za pravilno izračunano limito dobite 12 točk.
- Če ste se pri računanju zmotili, ste pa opazili, da boste potrebovali $\lim_{n\to\infty} \left(1\pm\frac{1}{n}\right)^n = e^{\pm 1}$, dobite 6 točk.

b) (13 točk) Ali je katera izmed vrst $\sum_{n=1}^{\infty} a_n^{-1}$ ali $\sum_{n=1}^{\infty} a_n^n$ konvergentna? Ker je $\lim_{n\to\infty} a_n = \frac{1}{e}$, je

$$\lim_{n \to \infty} a_n^{-1} = \left(\lim_{n \to \infty} a_n\right)^{-1} = e.$$

Ker členi ne konvergirajo k0,vrsta $\sum_{n=1}^\infty a_n^{-1}$ ni konvergentna. Za drugo vrsto uporabimo korenski kriterij. Ker je $\sqrt[n]{|a_n^n|}=a_n,$ je

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} a_n = \frac{1}{e} < 1,$$

zato je vrsta $\sum_{n=1}^{\infty} a_n^n$ po korenskem kriteriju konvergentna.

- Če opazite, da členi prve vrste ne konvergirajo k 0 in zato vrsta ne konvergira, dobite 6 točk.
- Če za drugo vrsto pravilno uporabite korenski kriterij, dobite 7 točk.
- Če se v drugem primeru zmotite tako, da dobite ravno nasprotno razlago in odgovor od pravilnega (ne konvergira, ker je limita po korenskem kriteriju večja od 1), potem dobite 3 točke od 7 za postopek.
- Če niste rešili točke a), ste pa tu pri obeh predlaganih primerih $(e \text{ in } \frac{1}{e})$ opazili, da prva vrsta ne konvergira, dobite vseh 6 točk, če ste rešili samo enega od teh dveh primerov pa 3 točke. Če ste pri drugi vrsti pravilno uporabili korenski kriterij za $e \text{ in } \frac{1}{e}$, dobite vseh 7 točk, če ste se pri katerem zmotili, dobite 3 točke, če ste se zmotili pri obeh, pa 0 točk.

3. naloga (25 točk)

Naj bo funkcija $f: \mathbb{R} \to \mathbb{R}$ dana s predpisom

$$f(x) = \begin{cases} \frac{\sin(ax)}{x} & ; & x > 0\\ ax + b & ; & -4 < x \le 0\\ \sqrt{-x} - 5 & ; & x \le -4 \end{cases}$$

a) (10 točk) Kakšni naj bosta konstanti a in b, da bo funkcija f zvezna na vsej realni osi?

Iz pogojev $\lim_{x\searrow 0} f(x) = f(0)$ in $\lim_{x\searrow -4} f(x) = f(-4)$ dobimo

$$b = f(0) = \lim_{x \to 0} \frac{\sin(ax)}{x} = a \lim_{ax \to 0} \frac{\sin(ax)}{ax} = a \cdot 1 = a$$

in

$$-3 = \sqrt{4} - 5 = f(-4) = \lim_{x \to -4} (ax + b) = -4a + b.$$

Sistem

$$b = a,$$

$$-3 = -4a + b,$$

ima rešitev a = b = 1. Pri teh vrednostih a in b bo funkcija f zvezna.

- Za zapis vsakega od obeh pogojev o levih limitah dobite po 2 točki, skupaj 4 točke.
- Za izpeljavo vsake od enačb (b = a, -3 = -4a + b), tj. za izračun obeh limit in obeh funkcijskih vrednosti, dobite po 2 točki, skupaj **4 točke**. Če zaradi računske napake dobite napačno enačbo, dobite zanjo 1 točko od 2.
- Če pravilno izračunate a in b, dobite še **2 točki** (če ste ju izračunali ampak je vsaj eden narobe, ker ste se zmotili tu ali pa pri izpeljavi enačbe, potem dobite tu 1 točko).
- b) (5 točk) Izračunaj $\lim_{x\to\infty} f(x)$.

Dobimo

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \left(\sin x \cdot \frac{1}{x} \right) = 0,$$

ker je $\sin x$ omejena funkcija, $\frac{1}{x}$ pa gre proti 0.

- Za pravilen rezultat dobite 2 točki.
- Če omenite, da je sin x omejena funkcija, dobite še 3 točke.

- c) (5 točk) Ali je funkcija f injektivna? Odgovor utemelji! Opazimo, da je sin x periodična funkcija, ki v večkratnikih π zavzame vrednost 0. Funkcija f zato ni injektivna, ker je, na primer, $f(\pi) = f(2\pi) = 0$.
 - Za pravilen odgovor (ni injektivna) brez utemeljitve dobite 1 točko.
 - Če je poleg tega naveden še konkreten primer dveh različnih števil, pri katerih ima funkcija enako vrednost, dobite še 4 točke.
 - Če ste pravilno uganili, da ni injektivna (recimo z grafa) in razložili, zakaj ni (ker obstajajo vodoravne premice, ki sekajo graf več kot enkrat), niste pa poiskali konkretnih primerov števil, vseeno dobite 5 točk.
- d) (5 točk) Skiciraj graf funkcije f.

- Za pravilno skiciran graf dobite 5 točk.
- Če je narobe narisan eden od treh delov, dobite 3 točke, če sta narobe narisana dva od treh, dobite 1 točko, sicer pa 0 točk.

4. naloga (25 točk)

Primer naloge za teoretični del izpita

a) (7 točk) Napišite ϵ - δ definicijo zveznosti funkcije v točki x=a.

Rešitev. Funkcija f je zvezna v točki x=a, če za vsak $\epsilon>0$ obstaja $\delta>0$, tako da za vsak x, ki zadošča $0 \le |x-a| < \delta$, velja $|f(x)-f(a)| < \epsilon$.

- Če zamenjate vrstni red za vsak $\epsilon>0$ in obstaja $\delta>0$, izgubite **3 točke**, saj se pomen bistveno spremeni.
- Če zamenjate implikacijo $0 \le |x-a| < \delta \implies |f(x)-f(a)| < \epsilon$ z implikacijo $|f(x)-f(a)| < \epsilon \implies 0 \le |x-a| < \delta$, izgubite **3 točke**, saj se pomen bistveno spremeni.
- Posebej:
 - Če ste v odgovoru naredili obe napaki zgoraj, dobite **2 točki**.
 - Če narišete primer zvezne funkcije v točki a, dobite 1 točko.
 - Za odgovor: Funkcija f je zvezna v točki x=a, če velja $\lim_{x\to a} f(x)=f(a)$, dobite **2 točki**.
 - Za odgovor: Funkcija f je zvezna v točki x = a, če za vsako zaporedje $(a_n)_n$ z $\lim_{n \to \infty} a_n = a$ velja $\lim_{n \to \infty} f(a_n) = f(a)$, dobite **2 točki**.
 - Točke iz zadnjih 4 možnosti se ne seštevajo. Šteje maksimalno število točk pri kateri od možnosti.

- **b)** Naj bo $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ funkcija s predpisom $f(x) = \frac{1}{x}e^{-x}$. Odgovori na naslednja vprašanja, pri čemer vsak odgovor dobro utemelji.
 - 1. (3 točke) Ali obstaja zvezna funkcija $g: \mathbb{R} \to \mathbb{R}$, tako da velja $\lim_{x \to 1} (f \circ g)(x) = 0$. Taka funkcija ne obstaja, saj bi veljalo

$$\lim_{x \to 1} (f \circ g)(x) = \lim_{x \to 1} (f(g(x))) = f\left(\lim_{x \to 1} g(x)\right) = f(g(1)) = 0. \tag{1}$$

Ker funkcija f nima ničel, je to protislovje.

- Za izračun (1) dobite **2 točki**.
- Za sklep, da f(g(1)) = 0 ni možno, dobite še **1 točko**.
- 2. (3 točke) Ali obstaja zvezna funkcija $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, tako da velja $\lim_{x \to 1} (f \circ g)(x) = 0$?

Taka funkcija obstaja, npr. $g(x) = \frac{1}{(x-1)^2}$.

- Za primer pravilne funkcije dobite 3 točke.
- Posebej:
 - Če primera niste našli, ste pa opazili $\lim_{x\to\infty} f(x) = 0$, dobite **1 točko**.
 - Če primera niste našli, ste pa prišli do sklepa $\lim_{x\to 1} g(x) = \infty$, dobite **2** točki.
 - Točke iz zadnjih 2 možnosti se ne seštevajo. Šteje maksimalno število točk pri kateri od možnosti.
- 3. Naj bo dano zaporedje $(a_n)_{n\geq 1}$ s predpisom $a_n=\frac{\sin(f(n))}{2f(n)}, n\geq 1$. Za vsako od vrst utemelji, ali so konvergentne:

• (4 točke)
$$\sum_{n=1}^{\infty} a_n$$
.

Naj bo $g(x) = \frac{\sin x}{x}.$ Vrsta ne konvergira, saj je

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sin(f(n))}{2f(n)} = \frac{1}{2} \lim_{n \to \infty} \frac{\sin(f(n))}{f(n)} = \frac{1}{2} \lim_{n \to \infty} g(f(n))$$
$$= \frac{1}{2} g\left(\lim_{n \to \infty} f(n)\right) = \frac{1}{2} \lim_{n \to \infty} g(x) = \frac{1}{2}.$$

- Če ste poskusili pokazati $\lim_{n\to\infty} a_n \neq 0$, dobite **1 točko**.
- Če ste pravilno izračunali $\lim_{n\to\infty} a_n$, dobite **3 točke**.
- Točke iz zadnjih 2 možnosti se ne seštevajo. Šteje maksimalno število točk pri kateri od možnosti.
- (4 točke) $\sum_{n=1}^{\infty} b_n$, kjer je $b_1 > 0$ in $a_n = \frac{b_{n+1}}{b_n}$ za vsak $n \ge 1$.

Ker kot v prejšnji točki za $D_n:=\frac{b_{n+1}}{b_n}$ velja $\lim_{n\to\infty}D_n=\lim_{n\to\infty}a_n=\frac{1}{2}<1$, po kvocientnem kriteriju sledi, da vrsta konvergira.

- Če ste na pravilen način poskusili uporabiti kvocientni kriterij, dobite 2 točki.
- Če ste narobe izračunali $\lim_{n\to\infty} a_n$ in na podlagi napačnega izračuna pravilno uporabili kvocientni kriterij, dobite **3 točke**.
- Točke iz zadnjih 2 možnosti se ne seštevajo. Šteje maksimalno število točk pri kateri od možnosti.

• (4 točke)
$$\sum_{n=1}^{\infty} (f(2na_n))^n$$
.

Ker je

$$\lim_{n \to \infty} \sqrt[n]{f(2na_n)^n} = \lim_{n \to \infty} f(2na_n) = f\left(\lim_{n \to \infty} 2na_n\right) = f\left(\lim_{n \to \infty} n \cdot \frac{\sin(f(n))}{f(n)}\right)$$
$$= \lim_{x \to \infty} f(x) = 0,$$

je posebej $C_n := \lim_{n \to \infty} \sqrt[n]{f(2na_n)^n} < 1$ in po korenskem kriteriju vrsta konvergira.

- Če ste na pravilen način poskusili uporabiti korenski kriterij, dobite 1 točko.
- Če ste pravilno prenesli limito znotraj argumenta, dobite 2 točki.
- Če ste poleg zgornjega opazili še, da nas zanima $\lim_{x \to \infty} f(x)$, dobite **3 točke**.
- Točke iz zadnjih 3 možnosti se ne seštevajo. Šteje maksimalno število točk pri kateri od možnosti.