Trees

6B

Heaps & Other Trees

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Heap

- A min-heap is a binary tree such that
 - the data contained in each node is less than (or equal to) the data in that node's children.
 - the binary tree is complete
 - A max-heap is a binary tree such that
 - the data contained in each node is greater than (or equal to) the data in that node's children.
 - the binary tree is complete

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Is it a min-heap?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

3

Is it a min-heap?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Is it a min-heap?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

5

Using heaps

What are min-heaps good for? (What operation is extremely fast when using a min-heap?)

The difference in level between any two leaves in a heap is at most what?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Storage of a heap

- Use an array to hold the data.
- Store the root in position 1.
 - We won't use index 0 for this implementation.
- For any node in position i,
 - its left child (if any) is in position 2i
 - its right child (if any) is in position 2i + 1
 - its parent (if any) is in position i/2 (use integer division)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

7

Storage of a heap

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Inserting into a min-heap

- Place the new element in the next available position in the array.
- Compare the new element with its parent. If the new element is smaller, than swap it with its parent.
- Continue this process until either
 - the new element's parent is smaller than or equal to the new element, or
 - the new element reaches the root (index 0 of the array)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Inserting into a min-heap Insert 43

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Inserting into a min-heapInsert 18

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

11

Inserting into a min-heapInsert 2

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

- Place the root element in a variable to return later.
- Remove the last element in the deepest level and move it to the root.
- While the moved element has a value greater than at least one of its children, swap this value with the smaller-valued child.
- Return the original root that was saved.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

13

Removing from a min-heap

returnValue 5

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

Removing from a min-heap

Remove min

32 64 50 41 87 90 53 64

returnValue 14

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

15

Efficiency of heaps

Assume the heap has N nodes.

Then the heap has $[\log_2(N+1)]$ levels.

- Insert
 - Since the insert swaps at most once per level, the order of complexity of insert is O(log N)
- Remove

Since the remove swaps at most once per level, the order of complexity of remove is also O(log N)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA