Analysis and Differential Equations Individual

Please solve 5 out of the following 6 problems.

- **1.** Suppose f is integrable on $[-\pi, \pi]$, prove that $\sum_{n=-\infty}^{\infty} a_n r^{|n|} e^{inx}$ tends to f(x) for a.e. x, as $r \to 1, r < 1$. Here $a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$.
- **2.** Let H be a Hilbert space equipped with an inner product (.,.) and a norm $||.|| = (.,.)^{\frac{1}{2}}$. A sequence $\{f_k\}$ is converge to $f \in H$ if $||f_k f|| \to 0$. A sequence $\{f_k\} \subset H$ is said converge weakly to $f \in H$ if $(f_k, g) \to (f, g)$ for any $g \in H$. Prove the following statements:
 - a) $\{f_k\}$ converges to f if and only if $||f_k|| \to ||f||$ and $\{f_k\}$ converges weakly to f.
- b) If H is a finite dimensional Hilbert space, then the weak convergence implies convergence. Give a counter example to show that weak convergence does not necessarily imply convergence in an infinite dimensional Hilbert space.
- **3.** Let $f: \mathbb{C}/\{0\} \to \mathbb{C}$ be a holomorphic function and

$$|f(z)| \le |z|^2 + \frac{1}{|z|^{1/2}},$$

for z near 0. Determine all such functions.

- **4.** Find a conformal mapping which maps the region $\{z||z-i|<\sqrt{2},|z+i|<\sqrt{2}\}$ onto the unit disk.
- 5. If E is a compact set in a region Ω , prove that there exists a constant M > 0, depending only on E and Ω , such that every positive harmonic function u(z) in Ω satisfies $u(z_2) \leq Mu(z_1)$ for any two points $z_1, z_2 \in E$.
- **6.** 1) For any bounded domain $\Omega \subset \mathbf{R}^n$, there exists a smallest constant $C(\Omega)$, such that

$$\int_{\Omega} |u|^2 dx \le C(\Omega) \int_{\Omega} \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_i} \right|^2 dx$$

for every function $u \in H_0^1(\Omega) = \overline{C_0^{\infty}(\Omega)} \subset H^1(\Omega)$, where $C_0^{\infty}(\Omega)$ is the space of smooth functions over Ω and vanishing on boundary of Ω and $H^1(\Omega)$ is the Banach space of functions $u \in L^2(\Omega), \nabla u \in L^2(\Omega)^{\otimes n}$ with the norm:

$$||u||_{H^1(\Omega)}^2 = ||u||_{L^2(\Omega)}^2 + ||\nabla u||_{L^2(\Omega)^{\otimes n}}^2$$

$$= \int_{\Omega} (|u|^2 + \sum_{i=1}^{n} |\frac{\partial u}{\partial x_i}|^2) dx.$$

 $H_0^1(\Omega)$ is the completion of $C^{\infty}(\Omega)$ in $H^1(\Omega)$ with the above norm.

2) Let
$$\Pi = \{(x,y)|0 < x < a, 0 < y < b\}$$
, show that $C(\Pi) \ge \frac{a^2b^2}{\pi^2(a^2+b^2)}$.