Случайные события

Событие можно назвать достоверным (p(A) = 1), если в результате испытания оно обязательно произойдет. Невозможное событие не произойдет никогда (p(A) = 0).

Операции над случайными событиями:

- A+B наступило либо A либо B (p(A v B))
- А*В наступило и А и В
- \overline{A} событие А не наступило

Для случайного события есть понятие относительной частоты — это отношение количества состоявшихся событий к общему числу испытаний:

$$W(A) = m/n$$

- W(A) это относительная частота события A;
- т число состоявшихся событий А;
- n общее число испытаний.

При достаточно большом количестве испытаний п величина относительной частоты W будет стремиться к конкретному числу. Оно называется статистической вероятностью и обозначается как P(A):

$$P(A) = m/n$$

 $p(A) \in [0;1]$

Совместные события - могут произойти вместе, **несовместные** - не могут. Совместные и несовместные события

Вероятности несовместных событий можно складывать:

$$P(A+B) = P(A) + P(B)$$

В случае совместных событий формула суммы событий другая: из суммы вероятностей отдельных событий вычитается вероятность их совместного появления.

$$P(A+B) = P(A) + P(B) - P(AB)$$

Независимыми события называют, когда появление одного из них не влияет на появление другого. С зависимыми - наоборот.

Вероятность одновременного появления двух независимых событий вычисляется по формуле:

$$P(A*B)=P(A)*P(B)$$

Вероятность появления двух зависимых событий:

$$P(A*B)=P(A)*P(B|A)=P(B)*P(A|B)$$

Если событие A может наступить только при появлении событий B1,B2,...,Bn, образующих полную группу несовместных событий, то вероятность A вычисляется по формуле:

$$P(A)=P(B1) \cdot P(A|B1)+P(B2) \cdot P(A|B2)+...+P(Bn) \cdot P(A|Bn)$$

Формула Байеса: чтобы определить вероятность события В при условии, что событие А уже произошло, используют формулу Байеса:

$$P(B|A)=P(B) \cdot P(A|B) / P(A)$$

Комбинаторика

Число сочетаний из n элементов по k элементов в каждом (в сочетаниях порядок не важен):

$$C(kn)=n! / (k!(n-k)!)$$

Определим **число размещений** из n элементов по k элементов в каждом. При размещениях порядок важен, поэтому вариантов размещения может быть больше, чем сочетаний при заданных k и n.

$$A(kn)=n! / (n-k)!$$

Число перестановок из n элементов — при перестановках важен порядок, но отличие от размещений в том, что применяются все имеющиеся n элементов:

$$P(n)=n!$$

Случайная величина

Случайная величина — та, что в результате испытания принимает только одно возможное значение. Дискретные и непрерывные.

Закон распределения вероятностей — соответствие между возможными значениями и их вероятностями.

Биномиальное распределение

$$P_n(X=k) = C_n^k p^k q^{n-k}$$

где p — это вероятность наступления события A в n независимых испытаниях, а q = 1 – p.

Матожидание:

$$M(X) = np$$

Дисперсия:

$$D(X) = npq$$

Распределение Пуассона

Вероятность того, что событие произойдет \mathbf{m} раз в \mathbf{n} испытаниях:

$$P_m pprox rac{\lambda^m}{m!} e^{-\lambda}$$
 где $\lambda = np$.

Описательная статистика

Генеральная совокупность — это множество, которое содержит данные обо всех объектах, соответствующих определённым характеристикам. **Выборка** — это случайным образом выбранная часть генеральной совокупности.

Мат ожидание

Это - среднее значение случайной величины (распределение вероятностей стационарной случайной величины), при стремлении количества выборок/измерений к бесконечности.

Оценка мат ожидания

$$M(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Квадратичное отклонение

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

Дисперсия

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

Несмещенная оценка дисперсии

$$\sigma_{\text{несмещ.}}^2 = \frac{\sum\limits_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Интерквартильное расстояние — отрезок, равный разности третьей и первой квартили.

Непрерывная случайная величина

Непрерывная случайная величина - принимает все возможные значения, содержащиеся на промежутке, который может быть как конечным (ограниченным), так и бесконечным.

Функция распределения вероятностей - для каждого значения х показывает, какова вероятность того, что случайная величина меньше X. Плотность распределения вероятностей - равна производной функции распределения вероятностей:

$$f(x) = F'(x)$$

Равномерное распределение

$$f(x) = \begin{cases} 0, \text{ если } x \le a; \\ \frac{1}{b-a}, \text{ если } a < x \le b; \\ 0, \text{ если } x > b. \end{cases}$$

Плотность равномерного распределения:

Функция равномерного распределения:

Нормальное распределение

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}},$$
 где $a = M(X), \ \sigma^2 = D(X).$

На отрезке от $-\sigma$ до $+\sigma$ расположено около 68% наблюдений, от -2σ до $+2\sigma$ — 95.4%, и от -3σ до $+3\sigma$ — 99.72%. Одним из свойств нормального распределения считается то, что **значения среднего, медианы и моды совпадают**.

Центральная предельная теорема

Сумма достаточно большого числа слабо зависимых случайных величин, у которых примерно одинаковые масштабы, имеет распределение, близкое к нормальному.

Если у нас есть несколько выборок из генеральной совокупности, то среднее по этим выборкам также будет иметь нормальное распределение. Среднее достаточно большого числа независимых и нормально распределенных случайных величин также считается приблизительно нормально распределенным.

Таблица производных

Функция	Производная	Функция	Производная		
f(x)	f'(x)	f(g(x))	f'(g(x))		
a^x	$a^x \ln a$	$a^{g(x)}$	$a^{g(x)} \ln a \cdot g'(x)$		
$\log_a x$	$\frac{1}{x \ln a}$	$\log_a g(x)$	$\frac{1}{g(x)\ln a} \cdot g'(x)$		
$\ln x$	$\frac{1}{x}$	ln g(x)	$\frac{1}{g(x)} \cdot g'(x)$		
$\sin x$	$\cos x$	$\sin g(x)$	$\cos g(x) \cdot g'(x)$		
cosx	$-\sin x$	$\cos g(x)$	$-\sin g(x)\cdot g'(x)$		
tg x	$\frac{1}{\cos^2 x}$	tgg(x)	$\frac{1}{\cos^2 g(x)} \cdot g'(x)$		
ctg x	$-\frac{1}{\sin^2 x}$	$\operatorname{ctg} g(x)$	$-\frac{1}{\sin^2 g(x)} \cdot g'(x)$		
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin g(x)$	$\frac{1}{\sqrt{1-g^2(x)}} \cdot g'(x)$		
arccos x	$-\frac{1}{\sqrt{1-x^2}}$	$\arccos g(x)$	$-\frac{1}{\sqrt{1-g^2(x)}} \cdot g'(x)$		
arctg x	$\frac{1}{1+x^2}$	arctg g(x)	$\frac{1}{1+g^2(x)} \cdot g'(x)$		
arcctg x	$-\frac{1}{1+x^2}$	arcctg g(x)	$-\frac{1}{1+g^2(x)}\cdot g'(x)$		

Таблица накопленного нормального распределения \mathbf{N} (x) при $\mathbf{x} < \mathbf{0}$.

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0.8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
-1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-3,0	0,0014	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003
-3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002

Таблица накопленного нормального распределения N (x) при x>0.

х	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9986	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

Статистическая гипотеза

Это предположение о неизвестном распределении случайных величин, соответствующих представлениям о явлении, которое изучается.

Нулевая гипотеза — это утверждение о свойствах генеральной совокупности, которое кажется правдоподобным, но требует проверки. **Альтернативная гипотеза** — любая действительная гипотеза, отличная от нулевой.

Уровень значимости α — это вероятность ошибки первого рода. Его значение обычно выбирает специалист, проверяющий гипотезу. Чаще всего для α выбирают значения 0.01 (1%), 0.05 (5%), 0.1 (10%). Ошибка 1-го рода — это отказ от нулевой гипотезы, несмотря на то, что она верна. Ошибка 2-го рода — это принятие нулевой гипотезы, хотя она не верна.

Вероятность принятия правильной гипотезы равна:

$$p=1-\alpha$$

Статистическая гипотеза вероятности распределения:

$$P_{\theta}\{T_1(X) < \theta < T_2(X)\} \leqslant \gamma$$

$$T_{1,2} = \overline{X} \pm rac{s_0}{\sqrt{n}} \cdot c_\gamma$$

где T_1 , T_2 — нижняя и верхняя границы доверительного интервала,

 \overline{X} — выборочное среднее арифметическое, s_0 — среднее квадратичное отклонение по выборке (несмещенное), n — размер выборки,

 γ — доверительная вероятность.

 $c_{\gamma} = \Phi^{-1} rac{(1+\gamma)}{2}$ — обратное значение функции стандартного нормального распределения.

Взаимосвязь величин

Корреляция — математический показатель, по которому можно судить, есть ли статистическая взаимосвязь между двумя и более случайными величинами (обозначается символами R или r, принимает значения от -1 до 1 включительно):

- 1 прямая связь
- -1 обратная связь
- 0 нет связи

Ковариация

$$cov_{XY} = M(XY) - M(X)M(Y)$$

где М - математическое ожидание

Коэффициент корреляции Пирсона

$$r_{XY} = \frac{cov_{XY}}{\sigma_X \sigma_Y}$$

Многомерный статистический анализ

Линейная регрессия описывает связь признаков (причина) с результатом (следствие). Если признак один, то такая линейная регрессия называется **парной**. Она описывает связь признака x с результирующим признаком y:

$$y = a + bx$$

где a и b - коэффициенты линейной регрессии.

$$b=rac{\overline{y}\overline{x}-\overline{y}\cdot\overline{x}}{\overline{x^2}-(\overline{x})^2}; \quad a=\overline{y}-b\cdot\overline{x}.$$

Коэффициент корреляции:

$$r_{xy} = rac{\sum\limits_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^n (x_i - \overline{x})^2 \cdot \sum\limits_{i=1}^n (y_i - \overline{y})^2}} = b \cdot rac{\sigma_x}{\sigma_y}$$

где n — объем выборки;

$$\overline{x}=rac{1}{n}\sum_{i=1}^n x_i$$
 и $\overline{y}=rac{1}{n}\sum_{i=1}^n y_i$ — выборочные средние.

Коэффициент детерминации показывает, насколько сильна связь между х и у:

$$R^2 = r_{xy}^2$$

Средняя ошибка аппроксимации:

$$\overline{A} = rac{1}{n} \sum_{i=1}^{n} \left| rac{y_i - \hat{y}_i}{y_i} \right| \cdot 100\%$$

где k_1 и k_2 — это степени свободы, k_1 — количество факторных признаков (для парной линейной регрессии оно равно 1). k_2 = n-k-1, где n — это число наблюдений и k — число факторных признаков (для парной линейной регрессии $k_2=n-2$, то есть числу наблюдений, уменьшенному на 2).

F-критерий Фишера позволяет оценить значимость модели линейной регрессии. Если фактическое значение F-критерия Фишера больше, чем табличное значение для данных двух степеней свобод и уровня значимости α, то уравнение регрессии признается статистически значимым.

$$F_{\scriptscriptstyle{\mathrm{oldsymbol{f dakt}}}} = rac{r_{xy}^2}{(1-r_{xy}^2)} \cdot rac{k_2}{k_1}$$

Стандартная ошибка

$$S_{ ext{oct}} = \sqrt{rac{\sum\limits_{i=1}^{n}(y_i - \hat{y}_i)^2}{n-2}}$$

t-статистика Стьюдента позволяет оценить значимость параметров линейной регрессии. Для нахождения табличного значения t-статистики Стьюдента надо знать число степеней свободы и уровень значимости α.

Значение уровня значимости lpha выбирается статистиком произвольно (например, это может быть значение 0.05). Число степеней свободы равно df=n-m-1, где n — число наблюдений и m — число признаков (факторов). Например, для парной регрессии число степеней свободы будет равно n-2.

Наблюдаемые значения критерия $t_a=rac{a}{m_a}$ и $t_b=rac{b}{m_b}$ сравниваются с табличными (при двухсторонней критической области):

$$t_{ ext{ iny kp}} = \mp T \Big(1 - rac{lpha}{2}; \; n-2 \Big)$$

Случайные ошибки ma, mb находятся по формулам:

$$m_a = S_{ ext{ iny oct}} \cdot rac{\sqrt{\sum x^2}}{n \cdot \sigma_x}$$

$$m_b = rac{S_{ ext{ iny oct}}}{\sigma_x \cdot \sqrt{n}}$$

Рассчитываем предельную ошибку для каждого показателя:

$$\Delta_a = t_{\scriptscriptstyle{\mathrm{KP}}} \cdot m_a; \; \Delta_b = t_{\scriptscriptstyle{\mathrm{KP}}} \cdot m_b.$$

Доверительные интервалы:

$$\gamma_a = a \pm \Delta_a; \; \gamma_b = b \pm \Delta_b.$$