Association rule mining

- Association rule induction: Originally designed for market basket analysis.
- Aims at finding patterns in the shopping behavior of customers of supermarkets, mail-order companies, on-line shops etc.
- More specifically:
 Find sets of products that are frequently bought together.
- Example of an association rule:

If a customer buys bread and wine, then she/he will probably also buy cheese.

Association rule mining

- Possible applications of found association rules:
 - o Improve arrangement of products in shelves, on a catalog's pages.
 - Support of cross-selling (suggestion of other products), product bundling.
 - Fraud detection, technical dependence analysis.
 - o Finding business rules and detection of data quality problems.
 - o ...

Association rules

- Assessing the quality of association rules:
 - Support of an item set:

Fraction of transactions (shopping baskets/carts) that contain the item set.

∘ Support of an association rule $X \rightarrow Y$:

Either: Support of $X \cup Y$

(more common: rule is correct)

Or: Support of X

(more plausible: rule is applicable)

 \circ Confidence of an association rule $X \to Y$:

Support of $X \cup Y$ divided by support of X (estimate of $P(Y \mid X)$).

Association rules

- Two step implementation of the search for association rules:
 - Find the frequent item sets (also called <u>large item sets</u>),
 i.e., the item sets that have at least a user-defined minimum support.
 - Form rules using the frequent item sets found and select those that have at least a user-defined minimum confidence.

Finding frequent item sets

Subset lattice and a prefix tree for five items:

- It is not possible to determine the support of all possible item sets, because their number grows exponentially with the number of items.
- Efficient methods to search the subset lattice are needed.

Item set trees

A (full) item set tree for the five items a,b,c,d, and e.

- Based on a global order of the items.
- The item sets counted in a node consist of
 - o all items labeling the edges to the node (common prefix) and
 - o one item following the last edge label.

Item set tree pruning

In applications item set trees tend to get very large, so pruning is needed.

Structural Pruning:

- o Make sure that there is only one counter for each possible item set.
- Explains the unbalanced structure of the full item set tree.

Size Based Pruning:

- Prune the tree if a certain depth (a certain size of the item sets) is reached.
- Idea: Rules with too many items are difficult to interpret.

Support Based Pruning:

- No superset of an infrequent item set can be frequent.
- No counters for item sets having an infrequent subset are needed.

Searching the subset lattice

Boundary between frequent (blue) and infrequent (white) item sets:

- **Apriori**: Breadth-first search (item sets of same size).
- Eclat: Depth-first search (item sets with same prefix).

- 1: $\{a, d, e\}$
- 2: $\{b, c, d\}$
- 3: $\{a, c, e\}$
- 4: $\{a, c, d, e\}$
- 5: $\{a, e\}$
- 6: $\{a, c, d\}$
- 7: $\{b, c\}$
- 8: $\{a, c, d, e\}$
- 9: $\{c, b, e\}$
- 10: $\{a, d, e\}$
 - Example transaction database with 5 items and 10 transactions.
 - Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

a: 7 | b: 3 | c: 7 | d: 6 | e: 7

• All one item sets are frequent \rightarrow full second level is needed.

2: $\{b, c, d\}$ 3: $\{a, c, e\}$ 4: $\{a, c, d, e\}$ 5: $\{a, e\}$

1: $\{a, d, e\}$

- 6: $\{a, c, d\}$ 7: $\{b, c\}$
- 8: $\{a, c, d, e\}$ 9: $\{c, b, e\}$
- 10: $\{a, d, e\}$
 - database and count the transactions that contain it (highly inefficient). Better: Traverse the tree for each transaction and find the item sets it

Determining the support of item sets: For each item set traverse the

contains (efficient: can be implemented as a simple double recursive procedure).

d: 6

c:

b

- 1: $\{a, d, e\}$ 2: $\{b, c, d\}$ 3: $\{a, c, e\}$ 4: $\{a, c, d, e\}$ b c c: 3 a 1 e 1 a5: $\{a, e\}$ 6: $\{a, c, d\}$
- 8: {a, c, d, e} 9: {c, b, e} 10: {a, d, e}

7: $\{b, c\}$

- Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
- Infrequent item sets: $\{a,b\}$, $\{b,d\}$, $\{b,e\}$.
- The subtrees starting at these item sets can be pruned.

10: $\{a, d, e\}$

• Generate candidate item sets with 3 items (parents must be frequent).

9: $\{c, b, e\}$ 10: $\{a, d, e\}$

- Before counting, check whether the candidates contain an infrequent item set.
 - \circ An item set with k items has k subsets of size k-1.
 - The parent is only one of these subsets.

9: $\{c, b, e\}$ 10: $\{a, d, e\}$

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
6: {a, e}
6: {a, c, d}
7: {b: 3 c: 7 d: 6 e: 7
d
c: 3 d e: 7
d
d: 4 e: 4
e: 4
for all contains a co

- The item sets $\{b,c,d\}$ and $\{b,c,e\}$ can be pruned, because
 - $\circ~\{b,c,d\}$ contains the infrequent item set $\{b,d\}$ and
 - \circ $\{b,c,e\}$ contains the infrequent item set $\{b,e\}$.
- Only the remaining four item sets of size 3 are evaluated.

- Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
- Infrequent item set: $\{c, d, e\}$.

10: $\{a, d, e\}$

- Generate candidate item sets with 4 items (parents must be frequent).
- Before counting, check whether the candidates contain an infrequent item set.

infrequent item set $\{c,d,e\}$.

• The item set $\{a, c, d, e\}$ can be pruned, because it contains the

- Consequence: No candidate item sets with four items.
- Fourth access to the transaction database is not necessary.

- 1: $\{a, d, e\}$
- 2: $\{b, c, d\}$
- 3: $\{a, c, e\}$
- 4: $\{a, c, d, e\}$
- 5: $\{a, e\}$
- 6: $\{a, c, d\}$
- 7: $\{b, c\}$
- 8: $\{a, c, d, e\}$
- 9: $\{c, b, e\}$
- 10: $\{a, d, e\}$
 - Form a transaction list for each item. Here: bit vector representation.

a: $7 \mid b$: $3 \mid c$: $7 \mid d$: $6 \mid$

- o grey: item is contained in transaction
- o white: item is not contained in transaction
- Transaction database is needed only once (for the single item transaction lists).

10: $\{a, d, e\}$

- 1: {a, d, e} 2: {b, c, d} 3: {a, c, e} 4: {a, c, d, e} 5: {a, e} 6: {a, c, d} 7: {b, c} 8: {a, c, d, e} 9: {c, b, e}
 - ullet Intersect the transaction list for item a with the transaction lists of all other items.
 - Count the number of set bits (containing transactions).
 - The item set $\{a, b\}$ is infrequent and can be pruned.

- Intersect the transaction list for $\{a,c\}$ with the transaction lists of $\{a,x\}$, $x \in \{d,e\}$.
- Result: Transaction lists for the item sets $\{a, c, d\}$ and $\{a, c, e\}$.

- Intersect the transaction list for $\{a, c, d\}$ and $\{a, c, e\}$.
- Result: Transaction list for the item set $\{a, c, d, e\}$.
- With Apriori this item set could be pruned before counting, because it was known that $\{c, d, e\}$ is infrequent.

- Backtrack to the second level of the search tree and intersect the transaction list for $\{a, d\}$ and $\{a, e\}$.
- Result: Transaction list for $\{a, d, e\}$.

- Backtrack to the first level of the search tree and intersect the transaction list for b with the transaction lists for c, d, and e.
- Result: Transaction lists for the item sets $\{b,c\}$, $\{b,d\}$, and $\{b,e\}$.
- ullet Only one item set with sufficient support o prune all subtrees.

- ullet Backtrack to the first level of the search tree and intersect the transaction list for c with the transaction lists for d and e.
- Result: Transaction lists for the item sets $\{c, d\}$ and $\{c, e\}$.

- Intersect the transaction list for $\{c, d\}$ and $\{c, e\}$.
- Result: Transaction list for $\{c, d, e\}$.
- Infrequent item set: $\{c, d, e\}$.

- Backtrack to the first level of the search tree and intersect the transaction list for d with the transaction list for e.
- Result: Transaction list for the item set $\{d, e\}$.
- With this step the search is finished.

Frequent item sets

1 item	2 items		3 items
$\{a\}^+$: 70%	$\{a,c\}^+$: 40%	$\{c,e\}^+$: 40%	$\{a,c,d\}^{+*}$: 30%
{ <i>b</i> }: 30%	$\{a,d\}^+$: 50%	$\{d, e\}$: 40%	$ \{a, c, e\}^{+*}$: 30%
$\{c\}^+$: 70%	$\{a,e\}^+$: 60%		$ \{a,d,e\}^{+*}$: 40%
${d}^{+}$: 60%	$\{b,c\}^{+*}$: 30%		
$\{e\}^+$: 70%	$\{c,d\}^+$: 40%		

Types of frequent item sets

- Free Item Set: Any frequent item set (support is higher than the minimal support).
- Closed Item Set (marked with +): A frequent item set is called <u>closed</u> if no superset has the same support.
- Maximal Item Set (marked with *): A frequent item set is called maximal if no superset is frequent.

Generating association rules

For each frequent item set S:

- Consider all pairs of sets $X,Y\in S$ with $X\cup Y=S$ and $X\cap Y=\emptyset$. Common restriction: |Y|=1, i.e. only one item in consequent (then-part).
- ullet Form the association rule $X \to Y$ and compute its confidence.

$$\operatorname{conf}(X \to Y) = \frac{\operatorname{supp}(X \cup Y)}{\operatorname{supp}(X)} = \frac{\operatorname{supp}(S)}{\operatorname{supp}(X)}$$

• Report rules with a confidence higher than the minimum confidence.

Generating association rules

Further rule filtering can rely on:

- Require a minimum difference between rule confidence and consequent support.
- \bullet Compute information gain or χ^2 for antecedent (if-part) and consequent.

Generating association rules

Example:
$$S = \{a, c, e\}, X = \{c, e\}, Y = \{a\}.$$

$${\rm conf}(c,e\to a) = \frac{{\rm supp}(\{a,c,e\})}{{\rm supp}(\{c,e\})} = \frac{30\%}{40\%} = 75\%$$

Minimum confidence: 80%

association rule	support of all items	support of antecedent	confidence
$b \rightarrow c$:	30%	30%	100%
$d \rightarrow a$:	50%	60%	83.3%
$e \rightarrow a$:	60%	70%	85.7%
$a \rightarrow e$:	60%	70%	85.7%
$d, e \rightarrow a$:	40%	40%	100%
$a, d \rightarrow e$:	40%	50%	80%

Summary association rules

Association Rule Induction is a Two Step Process

- Find the frequent item sets (minimum support).
- Form the relevant association rules (minimum confidence).

Finding the Frequent Item Sets

- Top-down search in the subset lattice / item set tree.
- Apriori: Breadth first search; Eclat: Depth first search.
- Other algorithms: FP-growth, H-Mine, LCM, Mafia, Relim etc.
- Search Tree Pruning:
 No superset of an infrequent item set can be frequent.
 (other possible

Generating the Association Rules

- Form all possible association rules from the frequent item sets.
- Filter "interesting" association rules.

Structured itemsets

Sometimes, an additional structure is imposed on the "item sets".

- The "item sets" are sequences of events.
 - For instance: Customer contact (buying, complaint, questionnaire,...)
 - \bullet Association rules have the form: If a and then b happens, then probably c happens next.
- Items sets are molecules: Find frequent substructures.

The additional structure leads to different tree structure, but the principal algorithm remains the same.

Finding frequent molecule structures

Other applications

- Finding business rules and detection of data quality problems.
 - Association rules with confidence close to 100% could be business rules.
 - Exceptions might be caused by data quality problems.
- Construction of partial classifiers.
 - Search for association rules with a given conclusion part.
 - If ..., then the customer probably buys the product.