

第十讲 特征值与特征向量

- 2.20 特征值与特征向量的概念
- 2.21 特征值与特征向量的计算
- 2.22 特征值的性质
- 2.23 特征向量的性质

一、特征值与特征向量的概念

定义2.20.1 设 A 为 n 阶方阵,如果存在数 λ 和 n 维非零列向量 X,使得

$$AX = \lambda X$$

成立,则 λ 和非零向量X分别称为方阵A的特征值和特征向量.

由定义知,特征向量必为非零向量.

- 例1 求单位矩阵I的特征值与特征向量.
- 例2 求零矩阵O的特征值与特征向量.

例
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & 0 & 2 \\ 3 & -2 & 4 \end{pmatrix}$$
 $\xi_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ $\xi_2 = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}$

试确定 ξ_1 , ξ_2 是否为A的特征向量。

$$\frac{\mathbf{A}\boldsymbol{\xi}_{1}}{\mathbf{A}} = \begin{pmatrix} 2 & 1 & -1 \\ 4 & 0 & 2 \\ 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 3\boldsymbol{\xi}_{1}$$

$$A\xi_2 = \begin{pmatrix} 2 & 1 & -1 \\ 4 & 0 & 2 \\ 3 & -2 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -6 \\ -2 \\ 4 \end{pmatrix}$$

 ξ_1 是, ξ_2 不是。

二、特征值的计算

定义2.21.1 设A为n阶方阵,含有未知量 λ 的矩阵 $\lambda I - A$ 称为A的特征矩阵,其行列式 $|\lambda I - A|$ 称为A的特征多项式,等式 $|\lambda I - A| = 0$ 称为A的特征方程.

λ为矩阵A的特征值

- \Leftrightarrow 存在非零向量X满足 $AX=\lambda X$
- \Leftrightarrow 齐次线性方程组 $(\lambda I A)X = 0$ 有非零解
- ⇔ 系数行列式|AI-A|等于零
- ⇔ λ 为特征方程| λI -A|=0的根.

- λ为矩阵A的特征值
- $\Leftrightarrow \lambda$ 为特征方程 $|\lambda I A| = 0$ 的根.

特征值的计算:解特征方程 $|\lambda I-A|=0$,其根为全部特征值.

n阶方阵A的特征方程为n次方程,它在复数范围内有n个根,即n阶方阵A在复数范围内有n个特征值.

例3 求方阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 2 & 1 & 3 \end{pmatrix}$$
的特征值.

解 该方阵的特征方程为

$$\begin{vmatrix} \lambda \mathbf{I} - \mathbf{A} \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 1 & \lambda - 2 & 0 \\ -2 & -1 & \lambda - 3 \end{vmatrix} = 0$$

即 $(\lambda-1)(\lambda-2)(\lambda-3)=0$

从而A的特征值为 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

总结: 三角矩阵的对角线元素为该方阵的全部特征值.

P77 第2题 P78例题2.21.1

三、特征向量的计算

(观看P78特征值与特征向量)

非零向量X为方阵A对应于特征值λ的特征向量

- \Leftrightarrow 非零向量X满足 $AX=\lambda X$
- \Leftrightarrow 非零向量X为齐次线性方程组 $(\lambda I A)X = 0$ 的解.

特征向量的计算:解齐次线性方程组(λI -A)X=0,从全部解中去掉零向量,就得到特征值 λ 对应的全部特征向量。

例4 求方阵
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
的特征值3对应的特征向量.

解 解齐次线性方程组 (3I - A)X = 0

即
$$\begin{cases} x_1 - x_2 - x_3 = 0 \\ -x_1 + x_2 + x_3 = 0 \\ -x_1 + x_2 + x_3 = 0 \end{cases}$$
 解得
$$\begin{cases} x_1 = x_2 + x_3 \\ x_2 = x_2 \\ x_3 = x_3 \end{cases}$$

从而齐次线性方程组的解可表示为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

故3对应的特征向量为
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 其中 k_1 , k_2 不全为零

四、特征值的性质

性质2.22.1 设 λ 为n阶方阵A的特征值,X为其对应的特征向量,则

- (1) $k\lambda$ 为kA的特征值,X为对应的特征向量
- (2) 当A可逆时, λ^{-1} 为 A^{-1} 的特征值,X为对应的特征向量
- (3) λ^m 为 A^m 的特征值,X为对应的特征向量
- (4) 为 A^T 的特征值.

(P93填空题第20小题)

例2.22.2

设 $A_{n\times n}$ 满足 $A^T = -A$,且 λ_0 为A 的特征值,证明: $-\lambda_0$ 也是A 的特征值。

设 A 是 n 阶方阵, $\varphi(A) = a_0 I + a_1 A + \cdots + a_m A^m$,性质**2.22.2**

若 λ 为 A 的特征值,则

$$\varphi(\lambda) = a_0 + a_1 \lambda + \dots + a_m \lambda^m$$
 是 $\varphi(A)$ 的特征值

若要得到问题的结论,就要证明下式成立 证明思路:

$$\varphi(A)X = \varphi(\lambda)X$$

即

$$(a_0 I + a_1 A + a_2 A^2 + \dots + a_m A^m) X$$

= $(a_0 + a_1 \lambda + a_2 \lambda^2 + \dots + a_m \lambda^m) X$

P80 问题2.22.2 类似作业第1题

设 2 是方阵 A 对应于特征向量 X 的特征值,那么矩阵

 $3A^2$, $A^4-2A+2I$ 的特征值分别是? 对应的特征向量是什么?

例5 设n阶方阵A满足 A^2 -3A+2I=O,证明:A的特征值只能是1或2 (P81作业第3题,例题2.22.1类似).

证 设 λ 为A的特征值 , 则 λ^2 -3 λ +2为 A^2 -3A+2I的特征值

因此

$$\lambda^2$$
-3 λ +2=0

从而礼只能是1或2.

P80 问题2.22.1

若 $\lambda(\lambda \neq 0)$ 是 可逆 $A_{n\times n}$ 的特征值,

X 为对应的特征向量,

则 A^* 的特征值和特征向量?

$$\frac{|A|}{\lambda}$$

(P93填空题第18小题)

例2.22.3

 P85定理 2.24.1 设n阶方阵A的全部特征值是 λ_1 , λ_2 ,..., λ_n ,则

(1)
$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^n a_{ii}$$

$$(2) \quad \lambda_1 \lambda_2 \cdots \lambda_n = |A|$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

P86 2: 方阵 A 不可逆的充要条件是A至少有一个特征值为零.

何」

设A是一个三阶矩阵,1,2,3是它的三个特征值,试求

(1) A对角线元素之和

$$(2) |A|$$

$$(3) \quad \left| A^2 + A + I \right|$$

解

$$a_{11} + a_{22} + a_{33} = \lambda_1 + \lambda_2 + \lambda_3 = 1 + 2 + 3 = 6$$

$$|A| = \lambda_1 \lambda_2 \lambda_3 = 1 \times 2 \times 3 = 6$$

$$A^2 + A + I$$
 的特征值依次为

$$1+1+1=3$$
, $2^2+2+1=7$, $3^2+3+1=13$

$$|A^2 + A + I| = 3 \times 7 \times 13 = 273$$

例6 已知3阶方阵A的特征值为1,2,-1, 求

 $B=(2A^*)^{-1}$ 的特征值. (P91选择题第8小题)

由于
$$A^* = |A|A^{-1} = -2A^{-1}$$

因此
$$\mathbf{B} = (2\mathbf{A}^*)^{-1} = (-4\mathbf{A}^{-1})^{-1} = -\frac{1}{4}\mathbf{A}$$

从而B的特征值为

$$-\frac{1}{4} \cdot 1 = -\frac{1}{4} \qquad -\frac{1}{4} \cdot 2 = -\frac{1}{2} \qquad -\frac{1}{4} \cdot (-1) = \frac{1}{4}$$

例 已知
$$B = A^5 - 3A^4 + 2A - I$$
 , 其中 $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, 试求 B 的特征值和 行列式。 (P94 第11题)

 $|\mathbf{R}|$ 求解矩阵 \mathbf{A} 的特征方程 $|2-\lambda|=0$ |1|

得特征值 $\lambda_1 = 1, \lambda_2 = 3$

所以*B* 的特征值为 $\lambda_{B1} = 1^5 - 3 \times 1^4 + 2 \times 1 - 1 = -1$

$$\lambda_{B2} = 3^5 - 3 \times 3^4 + 2 \times 3 - 1 = 5$$

所以 |B| = -5。

P93填空题第23小题

五、特征向量的性质

性质2.23.1 若 α_1 , α_2 是方阵A的同一特征值 λ 的特征向量,

则非零向量 $k_1\alpha_1+k_2\alpha_2$ 也是方阵A的特征向量.

(P91选择题第12小题)

五、特征向量的性质

性质2.23.2 若 α_1 , α_2 是方阵A的不同特征值的特征向量,则 α_1 , α_2 线性无关.

性质2.23.3 若 α_1 , α_2 , ..., α_m 是方阵A的不同特征值对应的的特征向量,则 α_1 , α_2 , ..., α_m 线性无关.

P82 问题2.23.1

性质2.23.4 若 λ_1 , λ_2 , …, λ_m 是方阵A的不同特征值, α_{k1} , α_{k2} , …, α_{kr_k} 为特征值 λ_k 的特征向量且线性无关,则 α_{11} , α_{12} , …, α_{1r_i} ; … ; α_{m1} , α_{m2} , …, α_{mr_m} 线性无关.

P83 例2.23.1

设 λ_1 , λ_2 , λ_3 为三阶方阵A 的三个不同的特征值,对应的特征向量分别为 α_1 , α_2 , α_3 , 证明 $P = (\alpha_1, \alpha_2, \alpha_3)$ 可逆,并求 $P^{-1}AP$.

问题2.23.3 $P^{-1}A^2P$

作业P84 第1题

例8 设 α_1 , α_2 是方阵A的不同特征值对应的特征向量,证

明: $2\alpha_1 + 3\alpha_2$ 不是A的特征向量.

 $m{\omega}$ 设 $m{\alpha}_1$, $m{\alpha}_2$ 对应的特征值分别为 $m{\lambda}_1$, $m{\lambda}_2(m{\lambda}_1 \neq m{\lambda}_2)$, 则 $m{A}m{\alpha}_1 = m{\lambda}_1 m{\alpha}_1$, $m{A}m{\alpha}_2 = m{\lambda}_2 m{\alpha}_2$

假设2 α_1 +3 α_2 是A的特征向量,对应的特征值为 λ_3 ,则 $A(2\alpha_1 + 3\alpha_2) = \lambda_3(2\alpha_1 + 3\alpha_2)$

 $\overline{\mathbb{M}} \ \mathbf{A}(2\boldsymbol{\alpha}_1 + 3\boldsymbol{\alpha}_2) = 2\mathbf{A}\boldsymbol{\alpha}_1 + 3\mathbf{A}\boldsymbol{\alpha}_2 = 2\lambda_1\boldsymbol{\alpha}_1 + 3\lambda_2\boldsymbol{\alpha}_2$

因此 $\lambda_3(2\boldsymbol{\alpha}_1 + 3\boldsymbol{\alpha}_2) = 2\lambda_1\boldsymbol{\alpha}_1 + 3\lambda_2\boldsymbol{\alpha}_2$ 即 $2(\lambda_3 - \lambda_1)\boldsymbol{\alpha}_1 + 3(\lambda_3 - \lambda_2)\boldsymbol{\alpha}_2 = \mathbf{0}$

由 α_1 , α_2 线性无关得 $\lambda_3 - \lambda_1 = 0$, $\lambda_3 - \lambda_2 = 0$

于是 $\lambda_3 = \lambda_1 = \lambda_2$, 矛盾!

因此 $2\alpha_1 + 3\alpha_2$ 不是A的特征向量.

例9 若 λ_1 , λ_2 , …, λ_m 是方阵A的全部不同特征值,特征值 λ_k 的特征向量的极大无关组为 α_{k1} , α_{k2} , …, α_{kr_k} , 则

 $lpha_{11}$, $lpha_{12}$, ..., $lpha_{1r_1}$; ...; $lpha_{m1}$, $lpha_{m2}$, ..., $lpha_{mr_m}$ 为方阵A的全部特征向量的极大无关组.

六、作业

P81作业2.22 2

P84 作业2.23 2 求特征值

预习2.19, 2.24, 2.25

观看视频2.19, 2.24, 2.25