

Converting CFG into PDA.

• If we are given a CFG in CNF as follows:

$$X_{1} \rightarrow X_{2}X_{3}$$

$$X_{2} \rightarrow X_{4}X_{5}$$

$$X_{3} \rightarrow a$$

$$X_{4} \rightarrow a$$

$$X_{5} \rightarrow b$$

- Where the start symbol $S = X_1$ and other nonterminals are $X_2, X_3, ----$.
- We can use the following algorithm to construct PDA.

• If X_i is the start symbol then convert in to the following PDA.

For each production of the form

$$X_i \rightarrow X_k X_1$$

we include the circuit from the POP back to itself.

For all production of the form

 $X_j \rightarrow b$

we include this circuit.

• When the stack is empty, which means that we have converted our last nonterminal to a terminal and the terminals have matched the INPUT TAPE, we should include the following circuit.

- By using this algorithm, we can assure that all words generated by the CFG will be accepted by the resultant PDA machine.
- That is all for a grammar that is in CNF. But there are context-free languages that cannot be put into CNF.
- In this case we can convert all productions into one of the two forms acceptable by CNF, while the word Λ must still be included.
- To include this word, we need to add another circuit to the PDA, a simple loop at the POP.

• Consider the following grammar which is in CNF.

$$S \rightarrow SB$$

$$S \rightarrow AB$$

$$A \rightarrow CC$$

$$B \rightarrow b$$

$$C \rightarrow a$$

convert this grammar into equivalent PDA.

Resulting PDA. **START** a ACCEPT $(READ_2)$ READ₁ В PUSH S POP $(READ_3)$ PUSH B PUSH C PUSH B PUSH S PUSH A PUSH C

Left-most derivation.

• Lets consider an example aab and derive it by using left-most derivation using the grammar.

Working st	ring generation.	Productions	used.
	00		

S	==>	AB	S	\rightarrow	AB	Step 1
	==>	CCB	A	\rightarrow	CC	Step 2
	==>	aCB	C	\rightarrow	a	Step 3
	==>	aaB	C	\rightarrow	a	Step 4
	==>	aab	В	\rightarrow	b	Step 5

Left-most derivation.

- Now if we simulate the same string aab by using the resultant PDA, we will see this derivation is also left-most.
- At each step we will nonterminals on the STACK as that we have in working string generation in the left-most derivation.
- It means that if we construct PDA for a CFG by using the above algorithm, the derivation will be left most derivation.

• Consider the the following CFG, which is in CNF.

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$B \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow a$$

$$B \rightarrow b$$

Construct PDA for this grammar.

Resulting PDA. **START** a ACCEPT READ₂ READ₃ READ В PUSH S $(READ_4)$ POP PUSH B PUSH B PUSH B PUSH A PUSH B PUSH A

Exercise.

• Try deriving the string baaab by using both leftmost derivation and simulating by using the resultant PDA.

• Consider the following CFG.

S AR_1 SA R_1 S BR_2 SB S AA S BB S a

 R_2 Construct PDA.

B

a

b

Let us convert the CFG

 $S \rightarrow bA \mid aB$

 $A \rightarrow bAA \mid aS \mid a$

 $B \rightarrow aBB | bS | b$

Construct PDA for this grammar.

- As this grammar is not in CNF, therefore:
 - 1. Convert this grammar into CNF.
 - 2. Construct PDA for the CNF.

Step 1: Convert grammar into CNF.

- As this grammar has only two terminal symbols a and b. Therefore we consider two new nonterminals X and Y.
- First convert the production rules in to the standard production forms. The grammar becomes

$$S \rightarrow YA$$
 $B \rightarrow XBB$
 $S \rightarrow XB$ $B \rightarrow YS$
 $A \rightarrow YAA$ $B \rightarrow b$
 $A \rightarrow XS$ $X \rightarrow a$
 $A \rightarrow a$ $Y \rightarrow b$

Step 1: Convert grammar into CNF.

- Now convert these productions into the CNF.
- If a production rule has exactly two nonterminals or a terminal symbol on the RHS, ignore them and consider all the others.
- After conversion the grammar in CNF becomes.

$$S \rightarrow YA \mid XB$$

$$A \rightarrow YR_1 | XS | a$$

$$R_1 \rightarrow AA$$

$$B \rightarrow XR_2 | YS | b$$

$$R_2 \rightarrow BB$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

Step 2: Convert CNF into PDA.

• Convert into PDA in class room.

Convert the following into PDA.

1. (i) $S \rightarrow aSbb \mid abb$ (ii) $S \rightarrow SS \mid a \mid b$

2. (i) $S \rightarrow XaaX$ (ii) $X \rightarrow aX \mid bX \mid \Lambda$

3. (i) $S \rightarrow XY$ (ii) $X \rightarrow aX \mid bX \mid a$ (iii) $Y \rightarrow Ya \mid Yb \mid a$

- A PDA is in conversion form, if it meets all the following conditions.
 - There is only one ACCEPT state.
 - There are no REJECT state.
 - Every READ state is followed immediately by a POP, that is, every edge leading out of any READ state goes directly into a POP state.
 - No two POP exist in a row on the same path without a READ or HERE states between them whether or not there are any intervening PUSH states. (POPs must be separated by READ states).
 - Every edge has only one label (no multiple labels).

- Even before we get to START, a "bottom of STACK" symbol \$, is placed on the STACK. The STACK is never popped beneath this symbol. Right before entering ACCEPT this symbol is popped and left out.
- The PDA must begin with the sequence.

 The entire input string must be read before the machine can accept the word.

• Condition 1:

 Condition 1 is easy to accommodate. If we have a PDA with several ACCEPT states. Let us simplify erase all but one of them and have all the edges that formerly went into the others feed into the one remaining.

• Condition 2:

- Condition 2 is easy because we are dealing with nondeterministic machines.
- If we are at a state with no edge labeled with the character we have just read or popped, we simply crash.
- For an input string to be accepted, there must be a safe path to ACCEPT, the absence of such a path is termed as REJECT.
- Therefore, we can erase all REJECT states and the edges leading to them without effecting the language accepted by the PDA.

• Condition 3:

• Condition 4:

• Condition 6:

• PDA in the conversion form. The PDA we use is one that accepts the language.

$$[a^{2n}b^n] = [aab, aaaabb, aaaaaabbb,---]$$

