832002117 Hanlin CAI 20122161. No. P1/P5 Date EE304FZ
min 78 -12-10
Mij3/red Shae 3 green $Pi = \begin{pmatrix} \frac{1}{3} & \frac{1}{8} & \frac{1}{4} \end{pmatrix} \times \frac{1}{8} \times \frac{1}{4} \times 1$
$P_{ii} = \frac{3}{4} \times \frac{3}{8} \times \frac{3}{7} = 1$ $P_{ij} = \frac{3}{4} \times \frac{3}{8} \times \frac{3}{7} = 1$
(b) Three balls 10 cups $N = (10 \times 9 \times 8) A_3^2 = 2160 \text{ (ways)}$
$N = (10 \times 9 \times 8) A_3^2 = 2160$ (ways) (c) Undisovered typos: U
$U = T - (A + B - C) = \frac{ABO}{C} - (A+B+C) = \frac{(A-C)(B-C)}{C}$
(d) $M = 58$ $\sigma = 12$ Let $Z = \frac{x-M}{T}$ $P = \Phi(Z) = 0.45$
Referring to the normal distribution table, we know $Z = 1.645 = \frac{x - 58}{12} \text{Hence } x = 77.74 \approx 17.8$ Therefore, the minimum would be 77.8 .
(e) As the question shown, $\Delta = \frac{1}{4}$ Hence $T \cap E(\frac{1}{4})$: $P = e^{\frac{1}{4} \times 1}$. If the new on customer can be served, then the total number of customer must be lower than $\frac{1}{3}$.
Hence we obtain = $P_{N(2)}(0) = e^{-\frac{1}{4}X^{2}} = 0.606 [-P = 0.393]$ $P = (0.393)^{\frac{3}{2}} 0.606 = 0.367$
KOKUYO

Date P2/P5
(f) Sol. Scale $S = 12$ $\beta = 2$ $\beta = 2$ $\beta = 12$ $\beta = 1$ Hence the weiball distribution would be $\beta = 1$ $\beta =$
Therefore, the part need to be changed 13 month. (or 13.1)
(9) (i) As the question shown, the sample is large, and the mean lies within a range centred at the sample mean, $1-0.96=0.09$ Hence $\frac{Z}{Z}=\frac{Z}{2}$
(ii) The sample is small (less than 20) Hence $t_{H,\frac{d}{2}} = t_{14,0.025} = 2.145$
(h) sol. $y = \beta_1 \times + \beta_2 \cdot (y_i, x_i)$
(i) To obtain the estimates of β_0 and β_1 , we know that $ \beta_0 = y - y \cdot \beta_1 \\ \beta_1 = x_1 y_1 + x_2 y_2 + \dots + x_n y_n - n \cdot x_n y_1 \\ \beta_1 = x_1 y_1 + x_2 y_2 + \dots + x_n y_n - n \cdot x_n y_n = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = x_n y_n y_n + x_n y_n y_n y_n y_n y_n y_n y_n y_n y_n y$
Lxx
If we have got the best straight line, the β_0 is the value of γ when $\chi = 0$, and β_1 can be obtained by $\beta_1 = \frac{\chi_1 - \beta_0}{\gamma_2}$.
(ii) $S_{xx} = \frac{\hat{S}}{i} (x_i - \hat{x})^2$ $S_{xy} = \frac{\hat{S}}{i} (x_i - \hat{x}) (y_i - \hat{y})$
$SSE = \frac{2}{14} \left(y_i - \hat{\beta}_o - \hat{\beta}_i x_i \right)^2$
$\frac{1}{n-2} = \frac{SSE}{n-2} + 0 \text{ estimate } $

Campus

Hanlin CAI.

(a)
$$P = 10^{-3}$$
 $1 - P = \frac{799}{1000}$

$$P_a = \left(\frac{999}{1000}\right)^{100} = 0.9048$$

$$P_b = C_{100} \left(\frac{999}{1000} \right)^{99} \left(\frac{1}{1000} \right) = 0.09057$$

(c)
$$P_c = 1 - P_a = 0.095208$$

(d) Since single bit errors in a block can be corrected, hence $P_d = P_c - P_b = 4.6379 \times 10^3$

(a) The sample is 100, which is large.

x = 99.5 S = 1.5

Ho: The bottles contain 100 ml.

(b) $Z_0 = \frac{99.5 - 100}{1.5 / \sqrt{500}} = -3.333$

(<) Since, the problem is a two-side case

Hence, Z= = 2.326

di The critical region is X1=98.5 X2=101-5

: X7101.5 and X698.5,

(e) Since $Z_0 = -3.33 = -24 = -2.326$, -3.3 = -2.326Hence it is appropriate to reject H_0 , so the bottles do not contain los ml generally.

No.	0	1	2	3	4	74
. Oi	18	35	26	15	6	0
Ez	18-34	33.90	28-20	13.90	05.66	
(Ei-0i) Ei	0.742	33-90	28-2	13.90	0-1156	
	No. 0; E; (Ei-0;) E;	02 18 Ez 18.34	02 18 35 E= 18.34 33.90 (E=-0+) 0.74 1.21	0-2 18 35 26 E-2 18-34 33-90 28-20 (E2-01) 0-74" 1-21 4-84	02 18 35 26 15 Ez 18.34 33.90 28.20 13.90 (Ez-02) 0.342 1.21 4.84 1.21	02 18 35 26 15 6 E7 18.34 33.90 28.20 13.90 05.66 (E2-02) 034 1.21 4.84 1.21 0.1156

(a)
$$N = 18 + 35 + 26 + 15 + 6 = 100$$

$$\chi_{o}^{2} = \xi_{i+1}^{4} \frac{(E_{i} - O_{i})^{2}}{E_{i}}$$

$$N = 1 \times 35 + 2 \times 16 + 3 \times 15 + 4 \times 6 = 156$$

 $P = 17 = 0.156$

(c) Since we estimate the frequencies of the number above so
$$D.F = V = 5 - 1 - 1 = 3$$

(d) test statistic =
$$X_0^2 = \frac{(\overline{bi} - 2i)^2}{iii}$$
 $p = 0.156$

$$P(X=0) = (0.844)^0 = 0.1834$$
 As the table (above) show, $P(X=1) = \binom{10}{1}(0.156)(0.844)^2 = 0.3390$ $P(X=2) = 0.28197 = 0.2820 $\longrightarrow X^2 = 0.311$$

(e) Since
$$\chi^2 = 0.3211 < \chi^2_{3.0.01} = 11.345$$

So we cannot reject the null hypothesis, which means that obesity is a trait of people independent of community they (ive in.