2425-MA140 Engineering Calculus

Week 08, Lecture 3 (L24) Improper Integrals

Dr Niall Madden School of Maths, University of Galway

Thursday, 07 November, 2024

Today, we'll take areas to the limit:

1 Areas Between Curves (again)

- 2 Improper Integrals
 - Last example

3 Exercises

For more reading, see Section 7.7 (Improper Integrals) in Calculus by Strang & Herman: math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)

Areas Between Curves (again)

Yesterday, we riffed on the idea that $\int_a^b f(x) dx$ evaluates as the area of the region between y = f(x) and y = 0, and between x = a and x = b.

Areas Between Curves (again)

But what if we wanted the area of the region between y = f(x) and y = 0, and between (say) $x = -\infty$ and $x = \infty$?

So far we have dealt with the definite integral $\int_a^b f(x) dx$ for a continuous function f on a finite interval [a, b], i.e. where a and b are both real numbers.

But sometimes the region in which we are interested is over an **infinite** interval, i.e. an interval of the form $[a, \infty)$, $(-\infty, b]$ or $(-\infty, \infty)$.

Let's consider how we might try to define an **improper integral** such as

 $\int_{-\infty}^{\infty} f(x) dx.$

MA140 — Improper Integrals

Definition (Improper Integral)

Let f(x) be a continuous function on $[a, \infty)$. Then the **improper** integral of f over $[a, \infty)$ is defined by

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx,$$

provided that the limit exists. In this case, we say that the integral $\int_{a}^{\infty} f(x) dx$ is **convergent**. If the limit does not exist, we say that $\int_{a}^{\infty} f(x) dx$ is **divergent**.

Similarly, if g(x) is a continuous function on $(-\infty, b]$, we say that the improper integral $\int_{-\infty}^{b} g(x) dx$ is **convergent** and given by

$$\int_{-\infty}^{b} g(x) dx = \lim_{t \to -\infty} \int_{t}^{b} g(x) dx$$

provided that the limit exists, and it is divergent otherwise.

Furthermore:

If f is a continuous function on $\mathbb{R}=(-\infty,\infty)$ and the improper integrals

$$\int_{-\infty}^{0} f(x) dx \quad \text{and} \quad \int_{0}^{\infty} f(x) dx$$

are both convergent, then the improper integral

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx.$$

is also convergent. If not, we say it is divergent.

Example

Evaluate $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Idea: Use the definition:

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx,$$

That is: set $g(t) = \int_{1}^{t} f(x) dx$ and then evaluate $\lim_{t \to \infty} g(t)$

Many improper integrals are divergent. Example: $\int_{1}^{\infty} x \, dx.$

If f(x) is a positive function, for $\int_a^\infty f(x) dx$ to exist, at the very least we need f(x) to be a decreasing function. But often that alone is not enough!

- ► We know that $\int_{1}^{\infty} x^{-2} dx$ is convergent.
- From that we can deduce that $\int_1^\infty x^{-n} dx$ is convergent for any $n \ge 2$. (Why?)
- ► And we know $\int_{1}^{\infty} x^{0} dx$ is divergent.
- ▶ But what about $\int_{1}^{\infty} x^{-1} dx$?

Example

Determine whether the improper integral $\int_{1}^{\infty} \frac{1}{x} dx$ is convergent or divergent.

For $t \ge 1$, we have

$$\int_1^t \frac{1}{x} dx = \ln(x) \Big|_1^t = \ln(t).$$

Since $\lim_{t\to\infty}\ln(t)$ does not exist, it follows that $\int_1^\infty \frac{1}{x}\,dx$ is divergent.

[This slide, and the next one, were vadded after the lecture] In our next, and final example, we'll try to integrate $f(x) = \frac{1}{1+x^2}$. To follow the solution, you might find it useful to revise the fundamentals of **inverse trigonometric functions**. You can find that in Section 1.4 of the textbook: math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)

In the figure opposite, we see the graph of tan(x). Notice that it has vertical asymptotes at $x = -\pi/2$ and $x = \pi/2$.

And now we show the **inverse** of the tan(x) function, which is often written as either $tan^{-1}(x)$ or arctan(x). Notice that it has **horizontal** asymptotes at $y=-\pi/2$ and $y=\pi/2$. This means that

$$\lim_{x \to -\infty} \tan^{-1}(x) = -\frac{\pi}{2},$$

and

$$\lim_{x\to\infty} \tan^{-1}(x) = \frac{\pi}{2}.$$

Example

Evaluate the improper integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx.$

Exercises

Exer 8.3.1 (From 23/24 exam)

Evaluate $\int_0^\infty \frac{x}{1+x^4} dx$ (*Hint: try substitution with* $u=x^2$).