Digital Integrated Circuit Lecture 23 Combinational Circuit Design

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 22

- Static CMOS
 - Any logical function can be implemented with NAND/NOR/NOT gates.
 - Compound gates
 - By sizing transistors, t_{pdf} and t_{pdr} can be affected. (But, a benefit always comes with a cost.)

9.2 Circuit Families

9.2. Circuit families (10)

Pseudo-NMOS

-The static load is built from a single PMOS that has its gate grounded.

GIST Lecture

(It is always ON.)

– Voltage transfer curve affected by P.

-Static DC current...

9.2. Circuit families (11)

- Compare the inverter design. (PMOS is 4 times weaker tha NMOS.)
 - In the (output) falling transition, the following inverter drives the same current with the unit inverter. (Why?)
 - Certainly, it is faster for the falling transition.
 - On the other hand, it is slower for the rising transition.

9.2. Circuit families (12)

- Comments on ratioed circuits
 - They reduce the input capacitance by replacing the PMOS transistors connected to the input with a single resistive pullup.
 - Drawbacks:
 - Slow rising transitions
 - Contention on the falling transitions
 - Static power dissipation
 - Nonzero V_{OL}

9.2. Circuit families (13)

- Dynamic gates use a clocked PMOS pullup.
- Two modes: precharge and evaluate

GIST Lecture

9.2. Circuit families (14)

What if pulldown network is ON during precharge?

 An extra clocked evaluation transistor can be added to avoid contention.

Fig. 9.23

GIST Lecture Fig. 9.24

9.2. Circuit families (15)

Catalog of dynamic gates

Inverter

NAND2

NOR2

unfooted

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{1}$$

$$g_d = 1/3$$

$$p_d = 2/3$$

$$\phi \rightarrow \boxed{1}$$

$$A \rightarrow \boxed{2}$$

$$B \rightarrow \boxed{2}$$

$$g_d = 2/3$$

$$p_d = 3/3$$

9.2. Circuit families (16)

 Dynamic gates require monotonically rising inputs during evaluation.

9.2. Circuit families (17)

- But, dynamic gates produce monotonically falling outputs during evaluation.
 - Dynamic gates sharing the same clock cannot be directly connected.

9.2. Circuit families (18)

- Place a static CMOS inverter between dynamic gates.
 - The dynamic-static pair is called a *domino* gate.
 - The dynamic output is monotonically falling during evaluation.

9.2. Circuit families (19)

- Each domino gate triggers next one, like a string of dominos toppling over.
 - Precharge occurs in parallel, but evaluation occurs sequentially.
 - -Thus, evaluation is more critical than precharge.
 - HI-skewed static stages can perform logic.

9.2. Circuit families (20)

- Compound domino
 - More complex inverting static CMOS gates such as NANDs or NORs in placed of the inverter

9.2. Circuit families (21)

- Dynamic node floats high during evaluation.
 - -Transistors are leaky. (We have non-negligible I_{OFF} .)
 - Dynamic value will leak away over time.
- Use keeper to hold dynamic node.
 - Must be weak enough not to fight evaluation

9.2. Circuit families (22)

- Pass transistor circuits
 - Use pass transistors like switches to do logic
 - Example) 2-input multiplexer

Thank you!