

GEOMETRÍA

TOMO 7

3th SECONDARY

RETROALIMENTACIÓN

1. En un triángulo rectángulo ABC, recto en B, se traza la altura \overline{BH} , tal que AH = 4 u y HC = 9 u. Calcule el área de la región triangular ABH.

· Piden: S.

$$S = \frac{(4)(BH)}{2}$$

 $S = 2(BH)$... (1)

ABC : Relaciones métricas

$$(BH)^2 = (4)(9)$$

 $(BH)^2 = 36$
 $BH = 6$... (2)

Reemplazando 2 en 1.

$$S = 2(6)$$

2. Calcule el área de la región triangular AMN, si la \overrightarrow{MN} es mediatriz del \overrightarrow{AB} .

Resolución

- Piden: S.
- Se traza: BN
- Por teorema:

Del gráfico:

$$S_{ABN} = \frac{(9)(8)}{2}$$

$$2S = 36$$

$$S = 18 u^2$$

3. En la figura, calcule el valor de x.

Resolución

Piden: x.

Del gráfico.

$$S_{(ABC)} = \frac{10.12}{2}$$
 $4x = 60$
 $x = 15 u^2$

4. Calcule el área de la región trapecial ABCD mostrada.

Resolución

- Piden: S_{ABCD} $S_{ABCD} = \left(\frac{AD+2}{2}\right). 12$ $S_{ABCD} = (AD+2).6 \dots (1)$
- Se traza la altura CH.
- CHD :T. Pitágoras

$$15^2 = (HD)^2 + 12^2$$

 $81 = (HD)^2$
 $9 = HD \land AD = 11 ... (2)$

Reemplazando 2 en 1.

$$S_{ABCD} = (11 + 2)6$$

$$S_{ABCD} = 78 u^2$$

5. Calcule el área de una región rombal ABCD, si AB = 10 y BD = 12.

Resolución

• Piden: S_{ABCD} $S_{ABCD} = \frac{(AC)(BD)}{2}$

• Se traza la diagonal \overline{AC} .

$$BO = OD = 6$$

• AOB : Notable de 37° y 53° AO = OC = 8

Reemplazando al teorema:

$$S_{ABCD} = \frac{(16)(12)}{2}$$

6. En el gráfico, O es centro del sector circular POQ. Calcule el área de la región rectangular OABC.

Resolución

- Piden: S_{OABC}
- Se traza \overline{OB} .

$$OB = OQ = 13$$

OBC : T. Pitágoras

$$13^2 = (BC)^2 + 5^2$$

$$12 = BC$$

Por teorema

$$S_{OABC} = (5)(12)$$

$$S_{OABC} = 60 u^2$$

7. Un círculo cuyo radio mide 6 cm es dividido en dos regiones equivalentes por otro círculo interior de radio r. Halle el valor de r.

Resolución

- Piden: r
- Dato: $S_1 = S_2$
- Del gráfico:

$$S_{TOTAL} = S_1 + S_2$$
 $\pi(6)^2 = S_1 + S_1$
 $36\pi = 2S_1$
 $36\pi = 2\pi r^2$
 $18 = r^2$

8. En el gráfico, halle el área de la región sombreada.

Resolución

- Piden: S
- ABC : T. Pitágoras

$$(AC)^2 = 8^2 + 15^2$$

AC = 17

Teorema Poncelet

$$8 + 15 = 17 + 2r$$

 $6 = 2r$
 $3 = r$

Calculando S

$$S = \frac{{}^{1}_{36} \circ \pi. 3^{2}}{{}^{3}_{12}} = \frac{{}^{3}_{9} \pi}{{}^{12}_{4}}$$

9. Calcule el área de la región sombreada, si AT = 2 cm, TB = 6 cm y T es punto de tangencia.

Resolución

Piden: S.

$$S = \frac{1}{4} . \pi r^2$$
 ... (1)

- Se traza OT.
- AOB : Relaciones métricas

$$r^2 = 2.6$$

 $r^2 = 12 \dots (2)$

Reemplazando 2 en 1.

$$S = \frac{\pi \cdot 12}{4}$$

 $S = 3\pi u^2$

10. Calcule el área del círculo, si A y B son puntos de tangencia.

Resolución

Piden: S.

$$S = \pi r^2$$

Se traza \overline{OP} .

- Se traza \overline{OB} .
- PBO : Notable de 37° y 53°
 r = 6
- Reemplazando al teorema:

$$S = \pi.6^{2}$$

 $S = 36\pi u^{2}$