Model

December 3, 2023

[1]: from sklearn.model_selection import train_test_split

```
from sklearn.linear_model import LogisticRegression
     from sklearn.preprocessing import OneHotEncoder
     from sklearn.compose import ColumnTransformer
     from sklearn.pipeline import Pipeline
     from sklearn.metrics import accuracy_score
     import pandas as pd
[2]: # Read data from Excel file into a Pandas DataFrame
     file_path = 'dm_mimic_pathways.csv'
     df = pd.read_csv(file_path)
[3]: column_name_mapping = {'person_id': 'Person',
                             'race_concept_id': 'Race',
                             'gender_concept_id':'Gender',
                             'age_group':'Age Group',
                             'pathways':'Treatment Regimen'}
     race_mapping = {8527: 'White/ Hispanic',
                     8516: 'Black',
                     8515: 'Asian',
                     0: 'Unknown',
                     38003592: 'Asian',
                     4077359: 'Other',
                     4218674: 'Unknown',
                     4188159: 'White/ Hispanic',
                     38003599: 'Black',
                     38003574: 'Asian',
                     4212311: 'Asian',
                     38003600: 'Black',
                     8557: 'Other',
                     38003584: 'Asian',
                     38003578: 'Asian',
                     4087921: 'Other',
                     38003615: 'Other',
                     38003581: 'Asian',
                     8657: 'Other',
                     38003579: 'Asian',
```

```
38003605: 'Black',
                     38003614: 'White',
                     4213463: 'White'}
     gender_mapping = {8507: 'Male',
                       8532: 'Female'}
     age_mapping = {'10 - 19': 'Teens',
                    '20 - 29': 'Twenties',
                    '30 - 39': 'Thirties',
                    '40 - 49': 'Forties'.
                    '50 - 59': 'Fifties',
                    '60 - 69': 'Sixties',
                    '70 - 79': 'Seventies',
                    '80 - 89': 'Eighties',
                   '> 90': 'Nineties'}
[4]: df = df.rename(columns=column_name_mapping)
     df['Race'] = df['Race'].replace(race_mapping)
     df['Gender'] = df['Gender'].replace(gender_mapping)
     df['Age Group'] = df['Age Group'].replace(age_mapping)
     df['Age Group'].fillna('Unknown', inplace=True)
[5]: df = df[(df['Age Group'] != 'Unknown') & (df['Race'] != 'Unknown')]
[6]: print(len(df))
    n = 7
     values_to_preserve = df['Treatment Regimen'].value_counts().head(n)
     print(values_to_preserve)
    1746
    Treatment Regimen
    19071700
                          463
    19071700,40166274
                          197
    40164929
                          73
    40164930
                           62
    40166274
                           61
    19071700,40164929
                           47
    19077638
                           45
    Name: count, dtype: int64
[7]: def preserve_or_change(value, value_set, replacement_value):
         return value if value in value_set else replacement_value
[8]: df['Treatment Regimen'] = df['Treatment Regimen'].apply(lambda x:__
      →preserve_or_change(x, values_to_preserve, 'Other'))
     df.head(5)
     len(df['Treatment Regimen'].unique())
```

```
[8]: 8
[9]: X = df[['Age Group', 'Race', 'Gender']]
     y = df['Treatment Regimen']
[10]: preprocessor = ColumnTransformer(
         transformers=[
                 ('cat', OneHotEncoder(), ['Age Group', 'Race', 'Gender'])
             remainder='passthrough'
     pipeline = Pipeline([
         ('preprocessor', preprocessor),
         ('classifier', LogisticRegression(multi_class='multinomial', class_weight = __
      ⇔'balanced'))
     ])
[11]: # Split the data into training and testing sets
     →random state=42)
[12]: # Train the model
     pipeline.fit(X_train, y_train)
[12]: Pipeline(steps=[('preprocessor',
                     ColumnTransformer(remainder='passthrough',
                                      transformers=[('cat', OneHotEncoder(),
                                                     ['Age Group', 'Race',
                                                      'Gender'])])),
                     ('classifier',
                     LogisticRegression(class_weight='balanced',
                                       multi class='multinomial'))])
[13]: # Make predictions on the test set
     y_pred = pipeline.predict(X_test)
     # Evaluate the accuracy
     accuracy = accuracy_score(y_test, y_pred)
     print(f'Accuracy: {accuracy:.2f}')
     # Create a DataFrame with actual and predicted values
     df_predictions = pd.DataFrame({
         'Actual': y_test,
         'Predicted': y_pred
     })
```

```
print("Actual vs Predicted:")
      print(df_predictions)
     Accuracy: 0.09
     Actual vs Predicted:
                      Actual
                                      Predicted
     408
                    19071700
                                           Other
     387
                    19071700
                                       40164929
     803
                    19071700
                                       19077638
                                       40164929
     81
                       Other
     942
                    19071700 19071700,40164929
     596
           19071700,40166274
                                       40166274
     1710
                       Other
                                           Other
     894
           19071700,40164929
                                        19077638
     1226
                       Other 19071700,40164929
     1466
                       Other
                                       40166274
     [350 rows x 2 columns]
[14]: # Access the one-hot encoder from the pipeline
      encoder = pipeline.named steps['preprocessor'].named transformers ['cat']
      # Get feature names after one-hot encoding
      feature_names_after_encoding = list(encoder.get_feature_names_out(X.
       ⇒select_dtypes(include=['object']).columns))
      # Concatenate feature names with numeric features
      all_feature_names = X.select_dtypes(include=['number']).columns.tolist() +__
       →feature_names_after_encoding
      # Access the model from the pipeline
      model = pipeline.named_steps['classifier']
      # Get coefficients
      coefficients = model.coef_
      # Display coefficients in a DataFrame
      df coefficients = pd.DataFrame(coefficients, columns=all feature names)
      df_coefficients['Intercept'] = model.intercept_
      df_coefficients['Class'] = model.classes_
      df_coefficients.set_index('Class', inplace=True)
      print("Coefficients:")
      print(df_coefficients)
```

Coefficients:

Age Group_< 90 Age Group_Eighties Age Group_Fifties \

01						
Class	0.0004.04		0 007700	0.00	11644	
19071700	-0.923121		-0.297700		0.291644	
19071700,40164929	-0.693981		0.328933		-0.918028	
19071700,40166274	-0.879620		-0.782580		-0.239998 0.453565	
19077638	0.846458		1.062979			
40164929	0.096192		0.288539	-0.06		
40164930	0.435910		0.352024		55013	
40166274	0.682233		-1.080034		-0.064814	
Other	0.435	929	0.127837	0.18	34338	
	Age Group_F	orties Age	Group_Seventi	es Age Group	Sixties \	
Class	8F-				,	
19071700	0.332617		-0.3685	35 -	-0.219304	
19071700,40164929	0.556370		0.8334	173	1.035745	
19071700,40166274	0.465447		-0.5673	364 -	-0.466278	
19077638	-0.399485		0.1198	319 -	-0.476138	
40164929	0.	0.120876		.37	0.290142	
40164930	-0.721667		-0.0617		0.198423	
40166274	-0.	-0.536977			-0.430184	
Other	0.182819		0.4564		0.067594	
0 02202			0.100.			
	Age Group_T	eens Age G	roup_Thirties	Age Group_Tw	enties \	
Class						
19071700	-0.135106		0.446760	0.	872011	
19071700,40164929	-0.026349		-0.698460	-0.	-0.418011	
19071700,40166274	0.663650		0.800669	1.	1.006034	
19077638	-0.032600		-0.960568	-0.	-0.613838	
40164929	-0.123574		0.011407	-0.	-0.724769	
40164930	-0.043835		0.154622	-0.	-0.667522	
40166274	-0.229986		0.967006	1.207459		
Other	-0.072199		-0.721436	-0.661365		
	Race_Asian	Race_Black	Race_Other	Race_White \		
Class						
19071700	0.405875	0.106935		-0.184802		
19071700,40164929	-0.756849	0.271881		0.906109		
19071700,40166274	-0.550874	0.416034	0.400314	-0.241887		
19077638	-1.108334	-0.767492	0.670938	1.137412		
40164929	0.225987	-0.016686	0.257748	0.050522		
40164930	0.160124	-0.584842	1.083477	-0.752746		
40166274	1.344776	0.605128	-1.313211	-0.684583		
Other	0.279294	-0.030958	-0.047497	-0.230024		
	Race_White/	Hispanic	Gender_Female	Gender_Male	Intercept	
Class		1			r	
19071700		-0.230289	0.034532	-0.035267	0.403213	
19071700,40164929		0.531867	-0.310261	0.309954	-1.168825	
19071700,40166274		-0.023625	0.011889	-0.011929	0.422937	

19077638	0.067668	-0.072397	0.072590	-0.142634
40164929	-0.518340	0.080162	-0.080931	0.379521
40164930	0.095165	0.025614	-0.024435	-0.117992
40166274	0.048376	0.240431	-0.239945	0.333377
Other	0.029178	-0.009970	0.009964	-0.109598