Question number	Scheme	Marks
9 (a)	$(2x+3)^{\frac{1}{2}} = \frac{x}{2} + \frac{3}{2} \Rightarrow 4(2x+3) = (x+3)^2, \Rightarrow 0 = x^2 - 2x - 3$ oe	M1,A1
	$x^{2}-2x-3=(x-3)(x+1)=0 \Rightarrow x=3,-1$	W11,A1
		M1A1
	y = 1,3 so coordinates are $(-1,1)$ and $(3,3)$	A1 (5)
(b)	Vol = $\pi \int_{-1}^{3} (2x+3) dx - \pi \int_{-1}^{3} \left(\frac{x}{2} + \frac{3}{2}\right)^{2} dx$	M1
	$\pi \int_{-1}^{3} (2x+3) dx - \pi \int_{-1}^{3} \left(\frac{x}{2} + \frac{3}{2} \right)^{2} dx = \frac{\pi}{4} \int_{-1}^{3} 3 + 2x - x^{2} dx = \frac{\pi}{4} \left[3x + x^{2} - \frac{x^{3}}{3} \right]_{-1}^{3}$	M1A1
	$\Rightarrow \frac{\pi}{4} \left[(9+9-9) - \left(-3+1+\frac{1}{3} \right) \right] = \frac{8}{3}\pi$	dM1A1 cao (5)
	For separate integrals:	[10]
	$\pi \int_{-1}^{3} (2x+3) dx - \pi \int_{-1}^{3} \left(\frac{x}{2} + \frac{3}{2} \right)^{2} dx = \pi \left[x^{2} + 3x \right]_{-1}^{3} - \pi \left[\frac{x^{3}}{12} + \frac{3x^{2}}{4} + \frac{9x}{4} \right]_{-1}^{3}$	
	=	
	ALT:	
	Vol = $\pi \int_{-1}^{3} (2x+3) dx$ – vol of truncated cone	M1
	Vol = $\pi \left[x^2 + 3x \right]_{-1}^3 - \left(\frac{1}{3} \pi 3^2 \times 6 - \frac{1}{3} \pi 1^2 \times 2 \right)$	M1A1
	$= \pi \left(9 + 9 - (1 - 3)\right) - \frac{52\pi}{3} = \frac{8}{3}\pi$	dM1A1
(2)		
(a) M1	Eliminate y and obtain a quadratic in x. Need not be simplified. Allow if $(x+3)^2 \rightarrow x^2 + 9$	
A1	Correct 3TQ, as shown or equivalent.	
M1	Solve their 3TQ by factorising, formula or completing the square (see genera	l guidance)
A1 A1	Two correct values for <i>x</i> Corresponding <i>y</i> coordinates. No need to write in coordinate brackets but pair	ring must
711	be clear.	
	If one <i>x</i> and its corresponding <i>y</i> are correct, award A1A0, provided M mark begained	nas been
ALT:	Elimination of x gives $y^2 = 2(2y-3)+3 \Rightarrow y^2-4y+3=0 \Rightarrow (y-1)(y-3)=0$	= 0 etc

(b)		
M1	Correct expression for volume. If the integrals are evaluated separately or π omitted here award only when the correct difference has been obtained (and π included). Limits not needed.	
M1	Attempt all the required integration (ie volume for the curve and volume for the line or a combination of these as on the mark scheme), π and limits not needed – ignore any shown	
A1	Correct integration (can be one or 2 integrals); ignore limits, π may be missing	
dM1	Substitute their <i>x</i> coordinates in their integrated expression(s). Depends on the second M mark. Substitution must be shown for both limits.	
A1cao	Correct final answer. All 3 M marks needed	
ALT		
M1	Correct expression for the volume including some attempt at the truncated cone. π needed for the cone but may appear later for the integral/	
M1	Attempt the integration - π and limits not needed – ignore any shown – and attempt the vol of the truncated cone.	
A1	Correct integration and correct difference of 2 cones	
dM1	Substitute their <i>x</i> coordinates in their integrated expression. Depends on the second M mark. Substitution must be shown for both limits.	
Alcao	Correct final answer. All 3 M marks needed	