

# 廣東工業大學

# 《计算网络 A》实验报告

| 学   | 院         | _计算机学院      |
|-----|-----------|-------------|
| 专   | <u> 业</u> | _计算机科学与技术   |
| 年级班 | 王别        | 19(1)班      |
| 学   | 号         | _3119004760 |
| 学生姓 | 生名        | _叶嘉轩        |
| 指导教 | 如师        | _彭重嘉        |
| 成   | 绩         |             |

# 广东工业大学

| 计算机_学院_       | <u> 计算机科学与技术 业 19 (1)</u> 班、学号 <u>3119004760</u> |
|---------------|--------------------------------------------------|
| 姓名 <u>叶嘉轩</u> | 教师评定                                             |
| 实验题目          | 一. Windows 下常用的网络命令                              |

# 一、 实验目的

学习在 Windows 系统中进行网络配置、用 ping ipconfig/winipcfg 命令工具来进行网络测试、使用 tracert 路由跟踪命令、使用 netstat、arp、nslookup 命令查看网络状态。

本实验在于使学生更好地理解计算机网络设置的基本操作,掌握计算机网络配置的基本监测技术。

# 二、 实验内容和要求

- 1、使用 Ping 工具测试本机 TCP/IP 协议的工作情况,记录下相关信息。
- 2、使用 IPconfig 工具测试本机 TCP/IP 网络配置,记录下相关信息。
- 3、使用 netsh 工具测试本机 TCP/IP 网络配置,记录下相关信息。
- 4、使用 Tracert 工具测试本机到 www.sohu.com 所经过的路由数,记录下相关信息。
- 5、使用 Netstat 工具, 记录下相关信息。
- 6、使用 Arp 工具, 记录下相关信息。
- 7、使用 Nslookup 工具, 记录下相关信息。

#### 三、 实验结果

1.使用 ping 工具

```
C:\Users\Administrator>ping
用法: ping [-t] [-a] [-n count] [-1 size] [-f] [-i TTL] [-v TOS]
                     [-r count] [-s count] [[-j host-list] | [-k host-list]]
                     [-w timeout] [-R] [-S srcaddr] [-4] [-6] target_name
                                   Ping 指定的主机,直到停止。
若要查看统计信息并继续操作 - 请键入 Control-Break;
若要停止 - 请键入 Control-C。
将地址解析成主机名。
要发送的回显请求数。
发送缓冲区大置 "不分段"标志〈仅适用于 IPv4〉。
在数据包中设置 "不分段"标志〈仅适用于 IPv4〉。
生存时间。
服务类型〈仅适用于 IPv4。该设置已不赞成使用,且
对 IP 标头中的服务字段类型没有任何影响〉。
记录跃点的时间戳〈仅适用于 IPv4〉。
计数跃点的时间戳〈仅适用于 IPv4〉。
与主机列表一起的松散源路由〈仅适用于 IPv4〉。
与主机列表一起的严格源路由〈仅适用于 IPv4〉。
等待每次回复的超时时间〈毫秒〉。
同样使用路由标头测试反向路由〈仅适用于 IPv6〉。
要使用的源地址。
强制使用 IPv4。
强制使用 IPv6。
选项:
       -t
       -n count
       -1 size
       -\mathbf{f}
       -i TTL
       -v TOS
       -r count
       -s count
       -j host-list
       -k host-list
       -w timeout
       -\mathbf{R}
       -S srcaddr
       -4
       -6
C: Wsers Administrator>
```

举例 ping -t 的使用:

```
C:\Users\Administrator>ping 10.21.9.54 -t
正在 Ping 10.21.9.54 具有 32 字节的数据:
       10.21.9.54 的回复:字节=32 时间<1ms TTL=64
  天自 10.21.9.54 的回复:
                                               字节=32 时间<1ms TTL=64
字节=32 时间<1ms TTL=64
        10.21.9.54 的回复:
    自 10.21.9.54 的回复: 字节=32 时间<1ms TTL=64
       自 10.21.9.54 的回复:
        10.21.9.54 的回复: 字节=32 时间<1ms TTL=64
10.21.9.54 的回复: 字节=32 时间<1ms TTL=64
来自 10.21.9.54 的回复: 字节=32 时间<1ms TTL=64
10.21.9.54 的 Ping 统计信息:
数据包: 已发送 = 24, 已接收 = 24, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
        最短 = 0ms, 最长 = 0ms, 平均 = 0ms
Control-C
```

出现上面这些就显示可以正常访问 Internet。

2.使用 ipconfig/all 检测查看网络参数情况

```
Windows IP 配置
以太网适配器 本地连接:
  连接特定的 DNS 后缀 . . . . . :
本地链接 IPv6 地址 . . . . . : fe80::1906:8d4b:76bf:1ca5%12
IPv4 地址 . . . . . . : 10.21.9.54
  隧道适配器 isatap.{AEAEDB7A-8D9B-449E-A6D0-64A62B8DF6D2}:
  隧道适配器 本地连接* 3:
  连接特定的 DNS 后缀 . . . . . :
IPv6 地址 . . . . . . . : 2001:0:78f0:5f23:4d7:f1f:f5ea:f6c9
本地链接 IPv6 地址 . . . . : fe80::4d7:f1f:f5ea:f6c9%11
默认网关 . . . . . . . : ::
C: Wsers Administrator>ipconfig/all
Windows IP 配置
 以太网适配器 本地连接:
 : 10.21.9.1
```

3. Netsh 是命令行<u>脚本</u>实用工具,它允许从本地或远程显示或修改当前正在运行的计算机的网络配置。

```
C: Wsers Administrator>netsh ?
用法: netsh [-a AliasFile] [-c Context] [-r RemoteMachine] [-u [DomainName\]User
Namel [-p Password | *]
                   [Command ! -f ScriptFile]
 下列指令有效:
此上下文中的命令:
                         显示命令列表。
在项目列表上添加一个配置项目。
更改到 `netsh adufirewall' 上
更改到 `netsh branchcache' 上
更改到 `netsh bridge' 上下文。
add
                                  `netsh advfirewall' 上下文。

`netsh branchcache' 上下文。

`netsh bridge' 上下文。

列表上删除一个配置项目。

`netsh dhcpclient' 上下文。
advfirewall
branchcache
bridge
                         在场目
更改到
更改到
delete
dhcpclient
                                    'netsh dnsclient' 上下文。
dnsclient
                                   个配置脚本。
个脚本文件。
`netsh firewall' 上下文。
                         <u></u>
宣宗
运行
dump
exec
firewall
                                  nets;
令列表。
`netsh http'上下文。
`netsh interface'上下文。
'ab ipsec',上下文。
                         立
京
で
東
改
到
東
改
到
東
改
到
help
http
interface
ipsec
                                    'netsh lan'
lan
```

#### 4.使用 Tracert 工具测试本机到 www.baidu.com 所经过的路由数

```
C:\Users\Administrator>tracert www.baidu.com
通过最多 30 个跃点跟踪
到 www.baidu.com [14.215.177.39] 的路由:
        6 ms
                  2 ms
                            1 ms 10.21.9.1
        3 ms
                            1 ms 172.16.255.5
 2
                  1 ms
                             <1 毫秒 222.200.126.241
<1 毫秒 10.0.7.1
                  <1 毫秒</td><1 毫秒</td>
       <1 臺秒</td><1 臺秒</td>
 3
 4
 5
                           <1 毫秒 61.144.42.29
       30 ms
                  1 ms
                  2 ms
                            2 ms 58.61.243.241
 6
        2 ms
        2 ms
                  2 ms
                                  117.176.37.59.broad.dg.gd.dynamic.163data.com.c
                            *
 [59.37.176.117]
 8
        5 ms
                  5 ms
                            5 ms 245.32.63.58.broad.gz.gd.dynamic.163data.com.cn
[58.63.32.245]
 9
                  5 ms
                                  113.96.5.94
        *
                            *
        6 ms
                                  113.96.11.78
10
                 23 ms
                            6 ms
                                  14.215.32.130
11
        6 ms
                  6 ms
                            6 ms
                                  请求超时。
请求超时。
12
        *
                  *
                            *
13
        *
                            *
        5 ms
                  5 ms
                            5 ms
                                  14.215.177.39
14
跟踪完成。
```

#### 5.netstat 的使用

用 netstat -a 测试本机:

```
C: Wsers Administrator>netstat -a
活动连接
  协议
       本地地址
                           外部地址
                                           状态
         0.0.0.0:135
                                 A54:0
  TCP
                                                         LISTENING
  TCP
         0.0.0.0:445
                                 A54:0
                                                         LISTENING
  TCP
         0.0.0.0:1025
                                 A54:0
                                                         LISTENING
         0.0.0.0:1026
                                 A54:0
                                                         LISTENING
  TCP
  TCP
         0.0.0.0:1027
                                 A54:0
                                                         LISTENING
         0.0.0.0:1028
                                 A54:0
  TCP
                                                         LISTENING
         0.0.0.0:1029
  TCP
                                 A54:0
                                                         LISTENING
  TCP
         0.0.0.0:1031
                                 A54:0
                                                         LISTENING
  TCP
         10.21.9.54:139
                                 A54:0
                                                         LISTENING
  TCP
         10.21.9.54:1088
                                 a184-31-170-80:https
                                                         CLOSE_WAIT
         10.21.9.54:1090
                                 a23-55-248-23:https
                                                         ESTABLISHED
  TCP
         [::1:135
                                 A54:0
  TCP
                                                         LISTENING
  TCP
         [::]:445
                                 A54:0
                                                         LISTENING
         [::]:1025
                                 A54:0
                                                         LISTENING
  TCP
  TCP
         [::]:1026
                                 A54:0
                                                         LISTENING
  TCP
         [::]:1027
                                 A54:0
                                                         LISTENING
                                                         LISTENING
  TCP
         [::]:1028
                                 A54:0
  TCP
         [::1:1029
                                 A54:0
                                                         LISTENING
         [::]:1031
                                 A54:0
                                                         LISTENING
  TCP
  TCP
         [::1]:1055
                                 A54:0
                                                         LISTENING
         0.0.0.0:500
  UDP
                                 *: *
  UDP
         0.0.0.0:4500
                                 *: *
  UDP
         0.0.0.0:4703
                                 *:*
  UDP
         0.0.0.0:4704
                                 *:*
  UDP
         0.0.0.0:4705
                                 *:*
         0.0.0.0:4706
  UDP
                                 *:*
         0.0.0.0:5355
  HDP
                                 *:*
  UDP
         10.21.9.54:137
                                 *:*
  UDP
         10.21.9.54:138
                                 *:*
  UDP
         10.21.9.54:1900
                                 *:*
         10.21.9.54:6660
  UDP
                                 *:*
  UDP
         10.21.9.54:9101
                                 *:*
  UDP
         10.21.9.54:59043
                                 *:*
UDP
         127.0.0.1:1900
UDP
        127.0.0.1:57771
                                    *:*
UDP
        127.0.0.1:59044
                                    *:*
UDP
         [::1:500
UDP
         [::1:4500
                                    *: *
UDP
         [::1:5355
                                    *: *
UDP
         [::1]:1900
                                    *:*
UDP
         [::1]:59042
UDP
         [fe80::1906:8d4b:76bf:1ca5%12]:1900
                                                    *:*
```

[fe80::1906:8d4b:76bf:1ca5%12]:59041

\*: \*

Netstat -e 的使用:

UDP

```
      C: Wsers \Administrator > netstat -e

      接口统计
      接收的
      发送的

      字节
      56611896
      2790064

      单播数据包
      16524
      7613

      非单播数据包
      400713
      8868

      丢弃
      0
      0

      错误
      0
      0

      未知协议
      0
```

## 6.使用 Arp 工具, 记录下相关信息。

```
[macbookpro@MacBookdeMacBook-Pro ~ % arp
    usage: arp [-n] [-i interface] hostname
        arp [-n] [-i interface] [-1] -a
        arp -d hostname [pub] [ifscope interface]
        arp -d [-i interface] -a
        arp -s hostname ether_addr [temp] [reject] [blackhole] [pub [only]] [ifscope interface]
        arp -S hostname ether_addr [temp] [reject] [blackhole] [pub [only]] [ifscope interface]
```

#### Arp –a 的测试:

```
[macbookpro@MacBookdeMacBook-Pro ~ % arp -a
? (10.33.80.1) at 34:a2:a2:89:bd:f on en0 ifscope [ethernet]
? (10.33.81.74) at 40:98:ad:4d:56:2f on en0 ifscope [ethernet]
? (10.33.82.196) at 14:4f:8a:96:a3:57 on en0 ifscope [ethernet]
? (10.33.82.219) at 8:5b:d6:60:ed:a7 on en0 ifscope [ethernet]
? (10.33.85.210) at d8:f2:ca:c:49:9b on en0 ifscope [ethernet]
? (10.33.86.60) at a:ca:e1:fd:83:99 on en0 ifscope [ethernet]
? (10.33.88.117) at d0:d7:83:1c:ce:e8 on en0 ifscope [ethernet]
? (10.33.89.46) at a4:c3:f0:90:ee:80 on en0 ifscope [ethernet]
? (10.33.89.66) at f8:ff:c2:4b:c2:d on en0 ifscope [ethernet]
? (10.33.91.96) at 9c:b6:d0:4:5f:79 on en0 ifscope [ethernet]
? (10.33.91.205) at 94:d9:b3:d6:c4:28 on en0 ifscope [ethernet]
? (10.33.93.5) at 2c:6e:85:68:84:4 on en0 ifscope [ethernet]
? (10.33.94.105) at 34:42:62:10:10:0 on en0 ifscope [ethernet]
? (10.33.94.181) at 60:8b:e:97:4:64 on en0 ifscope [ethernet]
? (10.33.95.195) at 2c:d9:74:7:15:46 on en0 ifscope [ethernet]
  (10.33.95.223) at c0:3c:59:ab:87:ea on en0 ifscope [ethernet]
  (10.33.95.255) at ff:ff:ff:ff:ff on en0 ifscope [ethernet]
  (224.0.0.251) at 1:0:5e:0:0:fb on en0 ifscope permanent [ethernet]
  (239.255.255.250) at 1:0:5e:7f:ff:fa on en0 ifscope permanent [ethernet]
```

# 7.使用 Nslookup 工具,记录下相关信息。

Nslookup 必须要安装了 TCP/IP 协议的网络环境之后才能使用。 Ns.lookup 必须要安装了 TCP/IP 协议的网络环境之后才能使用。

```
C: Documents and Settings Administrator>nslookup www.baidu.com
Server: cache-a.guangzhou.gd.cn
Address: 202.96.128.86

Non-authoritative answer:
Name: www.a.shifen.com
Addresses: 115.239.210.27, 115.239.210.26
Aliases: www.baidu.com
```

以上结果显示, 正在工作的 DNS 服务器的主机名为 cache-a.guangzhou.gd.cn,它的 IP 地址是 202.96.128.86。

#### 四、问题与讨论

- 1. 如何测试你的主机到特定网址的连接是否有故障,如果有故障如何进一步故障的原因?
  - 答: 使用 Ping dns, 检查是否正常。
- 2. 记录结果: Tracert www.baidu.com

```
C:\Users\Administrator>tracert www.baidu.com
通过最多 30 个跃点跟踪
到 www.baidu.com [14.215.177.39] 的路由:
                  2 ms
                           1 ms
                                 10.21.9.1
        6 ms
                            l ms 172.16.255.5
<1 毫秒 222.200.126.241
<1 毫秒 10.0.7.1
 2
       3
                  1 ms
                           1 ms
          ms
 3
                  <1 臺秒
       1
       <1
                  <1
       30 ms
                  1 ms
                          <1 毫秒 61.144.42.29
        2 ms
                  2 ms
                           2 ms
                                  58.61.243.241
                  2 ms
 7
        2 ms
                                  117.176.37.59.broad.dg.gd.dynamic.163data.com.c
[59.37.176.117]
        5 ms
 8
                  5 ms
                           5 ms
                                  245.32.63.58.broad.gz.gd.dynamic.163data.com.cn
[58.63.32.245]
 9
                 5 ms
                                  113.96.5.94
        *
                23 ms
                           6 ms
10
        6 ms
                                  113.96.11.78
11
                                  14.215.32.130
        6 ms
                  6
                           6 ms
                   ms
                                  请求超时。请求超时。
12
13
14
        5
                  5 ms
                           5 ms
                                  14.215.177.39
         ms
跟踪完成。
```

3. 你的主机的 48 位以太网地址(MAC 地址)是多少?

答: C0-3F-D5-4E-85-74

# 广东工业大学

| <u>计算机_</u> 学院_ | <u>计算机科学与技术</u> 业 19(1) 班、学 | 号 <u>3119004760</u> |
|-----------------|-----------------------------|---------------------|
| 姓名 <u>叶嘉轩</u>   | 教师评定                        |                     |
| 实验题目            | 二. 协议分析软件基础                 | _                   |

## 一、实验目的

1. 掌握如何利用协议分析工具分析 IP 数据报报文格式,体会数据报发送、转发的过程。在学习的过程中可以直观地看到数据的具体传输过程。

通过分析截获TCP报文首部信息,理解首部中的序号、确认号等字段是TCP可靠连接的基础。通过分析Wireshark连接的三次握手建立和释放过程,理解TCP连接建立和释放机制。. 进一步熟悉IRIS软件的使用方法;

- 2. 利用Wireshark (Ethereal) 抓包;
- 3. 对抓取到的包进行分析,通过分析巩固对Ethernet II 封包、ARP 分组及IP、ICMP 数据包的认识。

# 二、实验内容和要求

- 1) 学习协议分析工具 Wireshark 的基本使用方法;
- 2) 利用 Wireshark 进行 IP 数据报报文的抓取;
- 3) 对抓取到的数据报文进行分析,体会数据报发送、转发的过程。
- 4) 对抓取到的包进行分析,通过分析 TCP 连接的三次握手建立和释放过程, 理解 TCP 连接建立和释放机制。

# 三、 实验结果

1. 使用方法: 选择第一个为本地连接, 双击开始抓包





界面主要分为3部分,上部分是各个包,中部是包中的组成部件,下部是各部件的二进制码!中部可进行查看包的组成结构。

2. 菜单栏的最左边点击可以选择过滤的内容,或者直接在搜索栏搜索



#### 3. 下图为抓包 (arp)

根据 arp 包的组成结构, 可以看出是 arp 请求还是应答如下图中 opcode 若是 0001 则是请求, 0002 则是应答



#### 四、 思考题

1. 利用 Wireshark 监听 HTTP 的访问过程, 找出 TCP 建立连接的三次握手的相关 IP 数据报文, 并解析 TCP 建立连接的三次握手的过程, 及 IP 数据报文的变化情况。

从下图的红框中可以看到, 本机的 IP 地址是 10.33.85.181, 访问的网站的 IP 地址是 39.106.226.142.

#### 三次握手过程:

- 1.第一次: 本主机向 IP 地址 39.106.226.142 发送了一个 SYN 连接请求
- 2.第二次: IP 地址 39.106.226.142 向本主机发送了一个 SYN 确认请求以及一个 ACK 确认报
- 3.第三次: 本主机向 IP 地址 39.106.226.142 发送一个 ACK 确认报, 表明自己知道已经确认好连接



# 广东工业大学

<u>计算机</u> 学院 <u>计算机科学与技术</u> 业 19 (1) 班、学号 <u>3119004760</u>

姓名\_\_叶嘉轩\_\_ 教师评定

实验题目\_\_\_\_\_**三**. **交换机的基本配置** 

### 一、实验目的

了解交换机网络硬件设备, 初步掌握交换机的常用配置。

# 二、实验要求

熟悉 Cisco IOS 命令,理解交换机的工作原理,通过 Packet Tracer 软件能对交换机进行仿真配置,完成 Vlan。可根据情况进一步完成 VTP, STP 等配置并测试。

## 三、实验结果

实验图如图所示:



其中 PC0, PC1, PC4, PC5 属于同 VLAN2, PC2, PC3, PC6, PC7 属于同 VLAN3。用 PC0 可以 ping 到 PC4:

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.2.3 with 32 bytes of data:

Reply from 192.168.2.3: bytes=32 time=41ms TTL=128
Reply from 192.168.2.3: bytes=32 time=14ms TTL=128
Reply from 192.168.2.3: bytes=32 time=10ms TTL=128
Reply from 192.168.2.3: bytes=32 time=13ms TTL=128
Ping statistics for 192.168.2.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 10ms, Maximum = 41ms, Average = 19ms
PC>
PC>
PC>
```

而 PC0 不能 ping 到不同 VLAN3 的 PC2:

```
PC>ping 192.168.3.1

Pinging 192.168.3.1 with 32 bytes of data:

Request timed out.

Request timed out.
```

#### 四、实验思考题

1. 简述实验过程中出现的问题及解决方法。

答:问题:如何建立两个 vlan,和如何将不同的计算机分配于不同的 vlan 之中。方法:点击交换机,然后在 Config 里设置 switch,将 Vlan2 和 Vlan3 添加进去,两个交换机添加完之后,对连接在交换下的 pc 端设置所属于的 VLan。

2. 交换机的配置可以通过哪几种方式?

答:一种为在命令输入行中输入相关命令,一种是根据软件特点使用其中的便捷按键!

3. 课后练习,单台交换机上配置VLAN,实现交换机端口隔离。实验用到的拓扑图如图3.1所示,交换机的端口分配及IP地址分配如表3.1所示。



图 3.1 vlan 基础配置拓扑图

表 3.1 IP 地址分配表

| 设备名称 | 接口     | IP 地址       | 子网掩码 | 默认网关 |  |  |
|------|--------|-------------|------|------|--|--|
| F0/1 | VLAN 2 |             |      | 无    |  |  |
| F0/2 | VLAN 2 |             |      | 无    |  |  |
| F0/3 | VLAN 3 |             |      | 无    |  |  |
| F0/4 | VLAN 3 |             |      | 无    |  |  |
| PC0  | NIC    | 192.168.2.1 |      |      |  |  |
| PC1  | NIC    | 192.168.2.2 |      |      |  |  |
| PC2  | NIC    | 192.168.3.1 |      |      |  |  |
| PC3  | NIC    | 192.168.3.2 |      |      |  |  |

做到交换机端口隔离验证,PC0和PC1、PC2和PC3能互相ping通,其余则不行。

PC0 和 PC1 可以ping通

```
PC>ping 192.168.2.2

Pinging 192.168.2.2 with 32 bytes of data:

Reply from 192.168.2.2: bytes=32 time=18ms TTL=128

Reply from 192.168.2.2: bytes=32 time=6ms TTL=128

Reply from 192.168.2.2: bytes=32 time=9ms TTL=128

Reply from 192.168.2.2: bytes=32 time=8ms TTL=128

Ping statistics for 192.168.2.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 6ms, Maximum = 18ms, Average = 10ms

PC>
PC>
```

# PC0 和 PC2ping 不通

```
PC>ping 192.168.3.1

Pinging 192.168.3.1 with 32 bytes of data:

Request timed out.

Ping statistics for 192.168.3.1:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

C
PC>
```

# 广东工业大学

<u>计算机</u> 学院 <u>计算机科学与技术</u> 业 19(1) 班、学号 3119004760

姓名 叶嘉轩

教师评定

实验题目 四. 路由器的基本配置

## 一、实验目的

了解路由器网络硬件设备, 初步掌握路由器的常用配置。

#### 二、实验工具

交换机,路由器,PC,Packet Tracer 软件等。

## 三、实验要求

熟悉Cisco IOS命令,理解路由器的工作原理,通过Packet Tracer软件能对路由器进行基本配置,也可进一步完成RIP配置并测试。

# 四、实验结果

1:实验环境搭建



2: 路由器端口设计:

1.





3. PC 端端口设计:



4. 实现不同 Vlan 下的 PC 通信正常 PC0 ping PC7 成功, PC0 是 VLan2 下的, PC7 是 VLan3 下的。

```
Control-C

C

PC>ping 192.168.3.17

Pinging 192.168.3.17 with 32 bytes of data:

Request timed out.

Reply from 192.168.3.17: bytes=32 time=13ms TTL=127

Reply from 192.168.3.17: bytes=32 time=18ms TTL=127

Reply from 192.168.3.17: bytes=32 time=15ms TTL=127

Ping statistics for 192.168.3.17:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 13ms, Maximum = 18ms, Average = 15ms

PC>
```

#### 五、 实验思考题

- 1. 路由器的配置可以通过哪几种方式?
  - 答: 通过 console 端口输入命令配置, 使用 telnet 远程控制配置。
- 2. 怎样进入特权模式(Privileged Exec Mode)?

答: 在用户模式下输入 enable, 然后输入密码, 进入特权模式。

- 3. 怎样进入全局配置模式(Global Configuration Mode)? 答: 在特权模式下输入 configure terminal 进入全局配置模式。
- 4. 使用什么命令来显示系统的硬件配置,软件版本等信息? 答: 在特权模式下使用 show version ,show running-config
- 5. 在什么模式下哪个命令可以配置路由器某个接口(interface)的 IP 地址? 答: 在特权模式下使用 ip address 命令配置
- 6. 根据你的理解,简述 RIP 与 OSPF 的比较。

答:路由协议类型: RIP 是距离矢量协议,而 OSPF 是链路状态协议。 距离矢量协议使用跳数来确定传输路径。链路状态协议分析不同的源,如速度,成本和路径拥塞,同时识别最短路径。

路由表构造: RIP 使用周围的路由器请求路由表。然后合并该信息并构造自己的路由表。该表定期发送到相邻设备,同时更新路由器的合并表。在 OSPF 中,路由器通过仅从相邻设备获取所需信息来合并路由表。它永远不会获得设备的整个路由表,并且路由表构造非常简单。

跳数限制: RIP 最多只允许 15 跳, 而在 OSPF 中没有这样的限制。

使用的算法: RIP 使用距离向量算法, 而 OSPF 使用最短路径算法 Dijkstra 来确定传输路由。

网络分类: 在 RIP 中, 网络分为区域和表格。在 OSPF 中, 网络被分类 为区域, 子区域, 自治系统和骨干区域。

复杂性级别: RIP 相对简单, 而 OSPF 则要复杂得多。

RIP 与 OSPF 应用: RIP 适用于较小的网络, 因为它具有跳数限制。OSPF 非常适合大型网络。