Models with radiative neutrino masses and viable dark matter candidates JHEP 1311 (2013) 011

Diego Restrepo

August 15, 2017

Instituto de Física
Universidad de Antioquia
Phenomenology Group

http://gfif.udea.edu.co

In collaboration with

Carlos Yaguna (UPTC) & Oscar Zapata (UdeA)

Table of Contents

- 1. Review of SM
- 2. Dark matter
- 3. Neutrino masses
- 4. Mixed dark matter

Review of SM

Only fields

Lorentz

$$\mathcal{L} = -\frac{1}{4} \left(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) . \tag{1}$$

$$\begin{split} A^{\mu}(x) &\to A'^{\mu}(x) = \Lambda^{\mu}{}_{\nu}A^{\nu}(\Lambda^{-1}x) & \text{Vector field} \\ \phi(x) &\to \phi'(x) = \phi(\Lambda^{-1}x) & \text{Scalar field} \\ \psi_{\alpha}(x) &\to \psi'_{\alpha}(x) = [S(\Lambda)]_{\alpha}{}^{\beta}\psi_{\beta}(\Lambda^{-1}x) \,, & \text{Left Weyl spinor} \\ (\psi_{\alpha}(x))^{\dagger} &= \psi^{\dagger}_{\dot{\alpha}}(x) \to \psi'^{\dagger}_{\dot{\alpha}}(x) = [S^{*}(\Lambda)]_{\dot{\alpha}}{}^{\dot{\beta}}\psi^{\dagger}_{\dot{\beta}}(\Lambda^{-1}x) \,, & \text{Right anti-Weyl spinor} \end{split}$$

With

$$S(\Lambda) = \exp\left(\xi \cdot \frac{\sigma}{2} + i\theta \cdot \frac{\sigma}{2}\right)$$
,

where $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are the Pauli matrices. $\overline{\sigma} \equiv -\sigma$.

Only fields

Lorentz+U(1):

$$\mathcal{L} = \partial_{\mu} \phi^* \partial^{\mu} \phi - \mathbf{m}^2 \phi^* \phi - \lambda \left(\phi^* \phi \right)^2. \tag{1}$$

$$\begin{split} A^{\mu}(x) &\to A'^{\mu}(x) = \Lambda^{\mu}{}_{\nu}A^{\nu}(\Lambda^{-1}x) & \text{Vector field} \\ \phi(x) &\to \phi'(x) = \phi(\Lambda^{-1}x) & \text{Scalar field} \\ \psi_{\alpha}(x) &\to \psi'_{\alpha}(x) = [S(\Lambda)]_{\alpha}{}^{\beta}\psi_{\beta}(\Lambda^{-1}x) \,, & \text{Left Weyl spinor} \\ (\psi_{\alpha}(x))^{\dagger} &= \psi^{\dagger}_{\dot{\alpha}}(x) \to \psi'^{\dagger}_{\dot{\alpha}}(x) = [S^{*}(\Lambda)]_{\dot{\alpha}}{}^{\dot{\beta}}\psi^{\dagger}_{\dot{\beta}}(\Lambda^{-1}x) \,, & \text{Right anti-Weyl spinor} \end{split}$$

With

$$S(\Lambda) = \exp\left(\xi \cdot \frac{\sigma}{2} + i\theta \cdot \frac{\sigma}{2}\right)$$
,

where $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are the Pauli matrices. $\overline{\sigma} \equiv -\sigma$.

Weyl spinor

$$\mathcal{L} = i\psi_{\dot{\alpha}}^{\dagger} \overline{\sigma}^{\mu \dot{\alpha} \alpha} \partial_{\mu} \psi_{\alpha} - m \left(\psi^{\alpha} \psi_{\alpha} + \psi_{\dot{\alpha}}^{\dagger} \psi^{\dagger \dot{\alpha}} \right)$$
$$= i\psi^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \psi - m \left(\psi \psi + \psi^{\dagger} \psi^{\dagger} \right) . \tag{2}$$

Electron field: one in four: Dreiner,... arXiv:0812.1594 (PR)

Scalar product: α_{α}	and $\dot{\alpha}^{\alpha}$.
-----------------------------------	-------------------------------

Name	Symbol Name	Lorentz Name	<i>U</i> (1)
e _L : left electron	ξ_{lpha}	$[S]_{\alpha}^{\ \beta}$	$e^{i\theta}$
$(e_L)^{\dagger} = e_R^{\dagger}$: right positron	$(\xi_lpha)^\dagger=\xi^\dagger_{\dotlpha}$	$[S^*]_{\dot{lpha}}^{\dot{eta}}$	$e^{-i\theta}$
e _R : right electron	$(\eta^\alpha)^\dagger = \eta^{\dagger\;\dot{\alpha}}$	$\left[\left(S^{-1}\right)^{\dagger}\right]^{\dot{\alpha}}_{\dot{\beta}}$	$e^{i\theta}$
$(e_R)^{\dagger} = e_L^{\dagger}$: left positron	η^{lpha}	$\left[\left(S^{-1}\right)^{T}\right]_{\beta}^{\alpha'}$	$e^{-i\theta}$

$$\mathcal{L} = i\xi_{\dot{\alpha}}^{\dagger} \overline{\sigma}^{\mu \dot{\alpha} \alpha} \partial_{\mu} \xi_{\alpha} + i\eta^{\alpha} \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu} \eta^{\dagger \dot{\alpha}} - m \left(\eta^{\alpha} \xi_{\alpha} + \xi_{\dot{\alpha}}^{\dagger} \eta^{\dagger \dot{\alpha}} \right)$$
$$= i\xi^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \xi + i\eta \sigma^{\mu} \partial_{\mu} \eta^{\dagger} - m \left(\eta \xi + \xi^{\dagger} \eta^{\dagger} \right) + .$$

Dark matter

Dark matter
in the light of the ACDR passedigm
lings features
instead of the ACDR passedigm
instead of the ACDR passedigm
instead of the ACDR passed in the ACDR pass

 $\frac{1}{\Lambda}L \cdot HL \cdot H$ (1-loop)

Bonnet, et al, arXiv:1204.5862 [JHEP]

 $\frac{1}{\Lambda}L \cdot HL \cdot H$ (1-loop)

This work, arXiv:1308.3655 [JHEP]

 $\frac{1}{\Lambda}L \cdot HL \cdot H$ (1-loop)

This work, arXiv:1308.3655 [JHEP]

E. Ma, hep-ph/0601225 [PRD]

Neutrino masses

Weinberg operator at one-loop

Weinberg operator at one-loop

Weinberg operator at one-loop

Scalar dark matter: Higgs portal

Name	Symbol	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L \ e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	η_1^lpha	1	1	+1	+1
$(\hat{\Psi}_R)^\dagger$	$(\eta_2^{\alpha} \ \eta_3^{\alpha})^{T}$	1	1	+1	-1
Ψ_L	$(\xi_{3\alpha} \xi_{4\alpha})^{T}$	1	1	-1	-1
N	η_{4lpha}	1	1	0	-1
S		1	1	0	-1

$$\mathcal{V} = M_S^2 S^2 + \lambda_{SH} S^2 \widetilde{H} \cdot H + \lambda_S S^4$$
 (3)

Singlet-doublet fermion dark matter: Higgs portal

Name	Symbol	$SU(3)_c$	$SU(2)_L$	U(1) _Y	Z_2
$L = (\nu_L e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	η_1^{lpha}	1	1	+1	+1
$(\psi^0_R)^\dagger$	η_2^{lpha}	1	1	+1	-1
ψ_{L}^{0}	ξ_{3lpha}	1	1	-1	-1
N	η_{4lpha}	1	1	0	-1
S		1	1	0	-1

Basis
$$\psi^0 = \left(N, \psi_L^0, \left(\psi_R^0\right)^\dagger\right)^T$$

$$\mathcal{M}_{\psi^0} = \begin{pmatrix} M_N & -yc_\beta v/\sqrt{2} & ys_\beta v/\sqrt{2} \\ -yc_\beta v/\sqrt{2} & 0 & -M_D \\ ys_\beta v/\sqrt{2} & -M_D & 0 \end{pmatrix},$$

S. Horiuchi,

O. Macias, DR, A. Rivera, O. Zapata, 1602.04788 (JCAP)

Singlet-doublet fermion dark matter: Higgs portal

Name	Symbol	$SU(3)_c$	SU(2) _L	U(1) _Y	Z_2
$L = (\nu_L e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	η_1^{lpha}	1	1	+1	+1
$(\psi^0_R)^\dagger$	η_2^{lpha}	1	1	+1	-1
ψ_{L}^{0}	$\xi_{3\alpha}$	1	1	-1	-1
N	η_{4lpha}	1	1	0	-1
S		1	1	0	-1

Basis
$$\psi^0 = \left(N, \psi_L^0, \left(\psi_R^0\right)^\dagger\right)^T$$

$$\mathcal{M}_{\psi^0} = \begin{pmatrix} M_N & -y c_\beta v/\sqrt{2} & y s_\beta v/\sqrt{2} \\ -y c_\beta v/\sqrt{2} & 0 & -M_D \\ y s_\beta v/\sqrt{2} & -M_D & 0 \end{pmatrix},$$

S. Horiuchi,

Is the glass half empty or half full?

Tree-level SM-portal could be fully excluded in the near future

- Singlet scalar dark matter
- · Inert doublet model
- Tree-level SM-portal dark matter · · ·

In this talk we explore

Is the glass half empty or half full?

Tree-level SM-portal could be fully excluded in the near future

- Singlet scalar dark matter
- · Inert doublet model
- Tree-level SM-portal dark matter · · ·

In this talk we explore

Recover SM-portals in LR models

Is the glass half empty or half full?

Tree-level SM-portal could be fully excluded in the near future

- Singlet scalar dark matter
- · Inert doublet model
- Tree-level SM-portal dark matter · · ·

In this talk we explore

- Recover SM-portals in LR models
- New portals in LR models

Scalar dark matter: vector-like portal

Name	Symbol	$SU(3)_c$	$SU(2)_L$	$U(1)_{Y}$	Z_2
$L = (\nu_L e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	+1
$(e_R)^{\dagger}$	η_1^lpha	1	1	+1	+1
$(\psi_{R}^-)^\dagger$	η_3^{lpha}	1	1	+1	-1
ψ_{L}^-	ξ_{4lpha}	1	1	-1	-1
S		1	1	0	-1

$$\mathcal{L} = M_{\psi} \left[\left(\psi_{R}^{-} \right)^{\dagger} \psi_{L}^{-} + \left(\psi_{L}^{-} \right)^{\dagger} \psi_{R}^{-} \right] + h_{S} \left[S \left(e_{R} \right)^{\dagger} \psi_{R}^{-} + S \left(\psi_{L}^{-} \right)^{\dagger} e_{L} \right]$$

$$\tag{4}$$

Mixed dark matter

leptonic U(1) symmetry: $m_{\nu}=0$

Name	Symbol	$SU(3)_c$	$SU(2)_L$	$U(1)_{Y}$	$U(1)_L$
$L = (\nu_L e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	-1
$(e_R)^{\dagger}$	η_1^{lpha}	1	1	+1	+1
$(\hat{\Psi}_R)^\dagger$	$(\eta_2^{lpha}\ \eta_3^{lpha})^{T}$	1	1	+1	0
Ψ_L	$(\xi_{3\alpha} \ \xi_{4\alpha})^{T}$	1	1	-1	0
N	η_{4lpha}	1	1	0	0
S		1	1	0	0

$$\mathcal{L} = \mathcal{L}_{SM} - M_S^2 S^* S - \lambda_{SH} S^* S \widetilde{H} \cdot H - \lambda_S (S^* S)^2$$

$$+ \left(M_N NN + M_D (\hat{\Psi}_R)^{\dagger} \Psi_L + h_L \Psi_L \cdot HN + h_R \hat{\Psi}_R \cdot HN^{\dagger} + h_{LS} L \cdot \Psi_L S + \text{h.c.} \right)$$

Anomalous leptonic U(1) symmetry: $m_{\nu}=0$

Name	Symbol	$SU(3)_c$	$SU(2)_L$	U(1) _Y	$U(1)_L$
$L = (\nu_L e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	-1
$(e_R)^{\dagger}$	η_1^{lpha}	1	1	+1	+1
$(\hat{\Psi}_R)^\dagger$	$(\eta_2^{lpha}\ \eta_3^{lpha})^{T}$	1	1	+1	0
Ψ_L	$(\xi_{3\alpha} \ \xi_{4\alpha})^{T}$	1	1	-1	0
N	η_{4lpha}	1	1	0	0
S		1	1	0	0
σ		1	1	0	-2

$$\mathcal{L} = \mathcal{L}_{SM} - M_S^2 S^* S - \lambda_{SH} S^* S \widetilde{H} \cdot H - \lambda_S (S^* S)^2 + \lambda_{S\sigma} S^* S \sigma^* \sigma + (\mu SS \sigma + \text{h.c})$$

$$+ \left(M_N NN + M_D (\hat{\Psi}_R)^{\dagger} \Psi_L + h_L \Psi_L \cdot HN + h_R \hat{\Psi}_R \cdot HN^{\dagger} + h_{LS} L \cdot \Psi_L S + \text{h.c} \right)$$

$$+ V(\sigma).$$

Anomalous leptonic U(1) symmetry: $m_{\nu} \neq 0$

Name	Symbol	$SU(3)_c$	$SU(2)_L$	$U(1)_{Y}$	Z_2
$L = (\nu_L e_L)^T$	$(\xi_{1\alpha} \ \xi_{2\alpha})^{T}$	1	2	-1/2	0
$(e_R)^{\dagger}$	η_1^{lpha}	1	1	+1	0
$(\hat{\Psi}_R)^\dagger$	$(\eta_2^{\alpha} \ \eta_3^{\alpha})^{T}$	1	1	+1	-1
Ψ_L	$(\xi_{3\alpha} \ \xi_{4\alpha})^{T}$	1	1	-1	-1
N	η_{4lpha}	1	1	0	-1
S		1	1	0	-1
$Im(\sigma)$		1	1	0	0

$$\mathcal{L} = \mathcal{L}_{SM} - M_S^2 S^* S - \lambda_{SH} S^* S \widetilde{H} \cdot H - \lambda_S (S^* S)^2 + \lambda_{S\sigma} S^* S v_{\sigma}^2 + (\mu SS v_{\sigma} + \text{h.c})$$

$$+ \left(M_N NN + M_D (\hat{\Psi}_R)^{\dagger} \Psi_L + h_L \Psi_L \cdot HN + h_R \hat{\Psi}_R \cdot HN^{\dagger} + h_{LS} L \cdot \Psi_L S + \text{h.c} \right)$$

Conclusions

We have found *at least one* model with many predictions and profund theoretical insights.

