Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.05.2015

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note:
							-
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	11,5	8,5	10	10	40	
	erreichte Punkte						
${\bf Bitte}\;$							
tragen Sie	Name, Vorname und	Matrik	elnumr	ner auf	dem I	eckbla [*]	tt ein,
rechnen S	ie die Aufgaben auf se	eparater	n Blätte	ern, ni c	c ht auf	dem A	ingabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	lie Mat	rikelnu	mmer a	an,
begründer	n Sie Ihre Antworten a	ausführl	ich und	d			
	ie hier an, an welchem könnten (<i>unverbindlich</i>		genden	Termin	ne Sie z	zur mür	ndlichen Prüfung
	Fr., 15.05.2015	□ Mo.,	18.05.2	2015		Di., 19	0.05.2015

1. Bearbeiten Sie folgende Teilaufgaben:

11,5 P.

a) Gegeben ist das nichtlineare System

4 P.|

$$\dot{x}(t) = x(t)\cos(ax(t)) - x(t)u(t), \qquad x(t_0) = x_0,
y(t) = x(t)^2 + u(t).$$
(1)

- i. Bestimmen Sie sämtliche Ruhelagen x_R des Systems für einen konstanten 1 P.| Eingang $u=u_R$. Geben Sie auch den zulässigen Wertebereich von u_R für die jeweiligen Ruhelagen an.
- ii. Linearisieren Sie das System um eine allgemeine Ruhelage x_R für $u(t)=1\,\mathrm{P.}|u_R.$
- iii. Geben Sie für a=0 das Abtastsystem zum nichtlinearen System (1) für 2 P.| die Abtastzeit T_a unter Verwendung des bekannten Haltegliedes nullter Ordnung an.
- b) Beurteilen Sie die Übertragungsfunktionen

2 P.I

$$G(s) = \frac{s^2}{s^2 - 2s + 4}, \qquad G(z) = \frac{z - 2}{(z + \frac{1}{2})(z + 2)}, \qquad G^{\#}(q) = \frac{10 - \frac{1}{2}q}{10 + q}$$

hinsichtlich BIBO-Stabilität und Sprungfähigkeit. Für die Abtastsysteme gilt eine Abtastzeit $T_a = 0.1$. Begründen Sie ihre Antwort hinreichend!

c) In Abbildung 1 sind die Impulsantworten (für $u(t) = \delta(t)$) von zwei Varianten 5,5 P.| von Haltegliedern erster Ordnung dargestellt.

- Abbildung 1: Impulsantworten der Halteglieder.
- i. Stellen die beiden Halteglieder kausale Systeme dar? Begründen Sie Ihre $\,$ 1 P.| Antwort hinreichend!
- ii. Berechnen Sie die Übertragungsfunktion $G_2(s)$ von Halteglied 2. 2 P.
- iii. Bestimmen Sie für die in Abbildung 2 dargestellte Impulsfolge $(u_k) = 2.5 \,\mathrm{P.}|$ $2\delta(t) + 3\delta(t T_a)$ das zugehörige Ausgangssignal $y_2(t)$ von Halteglied 2 und skizzieren Sie es in Abbildung 2.

Abbildung 2: Systemantwort auf Impulsfolge.

2. Bearbeiten Sie folgende Teilaufgaben:

8,5 P.|

a) Gegeben ist das lineare, zeitkontinuierliche System

4 P.

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & \alpha \\ 0 & \beta \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \qquad \mathbf{x}(0) = \mathbf{x}_0$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}.$$
(2)

- i. Überprüfen Sie mit Hilfe der Erreichbarkeitsmatrix in welchem Wertebereich α und β liegen müssen, damit das System (2) vollständig erreichbar ist.
- ii. Für welchen Wertebereich von α und β ist für u=0 die Ruhelage $\mathbf{x}_R=\mathbf{0}$ 1 P. des Systems (2) global asymptotisch stabil?
- iii. Leiten Sie für $\alpha = 1$ und $\beta = 0$ die Transitionsmatrix 2 P.

$$\mathbf{\Phi}(t) = \begin{bmatrix} e^{-t} & 1 - e^{-t} \\ 0 & 1 \end{bmatrix}.$$

zum System (2) her.

b) Für das vollständig beobachtbare lineare, zeitkontinuierliche System

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \qquad \mathbf{x}(0) = \mathbf{x}_0$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

sind die Zeitverläufe der Transitionsmatrix Φ , der Stellgröße u und der Ausgangsgröße y für $t \geq 0$ bekannt

$$\Phi = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, \quad u = t, \quad y = 1 + 2t + \frac{t^3}{6}.$$

Ermitteln Sie hieraus den Anfangszustand \mathbf{x}_0 des Systems.

2 P.

c) Entwerfen Sie für das vollständig beobachtbare lineare, zeitdiskrete System

 $2,5 \, P.$

$$\mathbf{x}_{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 5 \\ 2 \\ 7 \end{bmatrix} u_k,$$
$$y_k = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}_k$$

einen Zustandsbeobachter, welcher jeden Anfangsfehler $\mathbf{e}_0 = \hat{\mathbf{x}}_0 - \mathbf{x}_0$ in höchstens 3 Schritten in $\mathbf{0}$ überführt.

3. Für die folgenden Teilaufgaben liegt ein einfacher offener Regelkreis mit Ausgangsstörung zugrunde, siehe Abbildung 3.

Abbildung 3: Strukturschaltbild des offenen Regelkreises.

- a) Es wird angenommen, dass die Störung d(t) messbar ist.
 - i. Entwerfen Sie allgemein eine exakte Störgrößenkompensation für den of- 2 P.|
 fenen Kreis in Abbildung 3, indem Sie am Ausgang des Reglers R(s) die
 Größe $R_d(s)d(s)$ subtrahieren. Legen Sie die Übertragungsfunktion $R_d(s)$ so aus, dass der Einfluss der Störung d(t) am Ausgang y(t) exakt kompen-

4 P.

- ii. Welche Voraussetzungen müssen die Zähler- und Nennerpolynome von 2 P. G(s) und $G_d(s)$ hinsichtlich Grad und Lage der Nullstellen erfüllen, damit $R_d(s)$ stabil und realisierbar ist?
- b) Die Übertragungsfunktionen der Strecke und des Reglers in Abbildung 3 lauten 6 P.

$$G(s) = \frac{60000}{(s+3)(s+2000)}$$
 bzw. $R(s) = K_P + \frac{K_I}{s}$,

mit $K_P = 1/20$ und $K_I = 1$.

siert wird.

- i. Zeichnen Sie approximativ das Bode-Diagramm des offenen Kreises L(s)=3 R(s)G(s) in die angehängte Vorlage. Geben Sie charakteristische Frequenzen an und zeichnen Sie die jeweiligen Asymptoten.
- ii. Skizzieren Sie die Sprungantwort h(t) des **geschlossenen Regelkreises** 2 P.| für einen Führungssprung $r(t) = \sigma(t)$ und d(t) = 0. Bestimmen Sie dazu mit Hilfe des Bode-Diagramms der offenen Strecke L(s) näherungsweise die Anstiegszeit t_r und das prozentuale Überschwingen \ddot{u} . Hinweis: Sollten Sie die Parameter nicht aus dem Bode-Diagramm ablesen können, verwenden Sie ersatzweise die Parameter $\omega_c = 5 \, \mathrm{rad} \, \mathrm{s}^{-1}$ und arg $L(\mathrm{I}\omega_c) = -135^\circ$.
- iii. Der geschlossene Kreis wird mit einer Führungsrampe r(t) = t beauf- 1 P.| schlagt. Bestimmen Sie den zu erwartenden Regelfehler $e_{\infty|r(t)=t}$ für $t \to \infty$.

4. Bearbeiten Sie die folgenden Teilaufgaben. Begründen Sie Ihre Ergebnisse.

a) Gegeben ist die Regelstrecke

7,5 P.|

$$G(s) = \frac{s-1}{s^3 + 2s^2 + s + 4}.$$

Die Strecke soll in einem Standard-Regelkreis mit einem P-Regler $R(s) = K_P$ geregelt werden.

- i. Prüfen Sie mit dem Routh-Hurwitz Verfahren die Stabilität der Strecke $2\,\mathrm{P.}|$ G(s).
- ii. Die folgende Abbildung zeigt das Bild der imaginären Achse $s=\mathrm{I}\omega$ von L(s)=R(s)G(s) in der $L(\mathrm{I}\omega)$ -Ebene für $K_P=1$. Der so geschlossene Regelkreis ist stabil.

- A. Die Strecke G(s) besitzt eine Polstelle mit negativem Realteil und zwei 1,5 P.| Polstellen mit positivem Realteil. Welche stetige Winkeländerung muss demnach $1 + L(I\omega)$ haben, wenn der geschlossene Kreis stabil ist?
- B. Markieren Sie den Bildpunkt von s=10 und den Punkt -1. 1,5 P.|
- C. Kennzeichnen Sie qualitativ, was für $\omega \to \pm \infty$ geschieht. 1,5 P.|
- D. Markieren Sie durch Pfeile die Laufrichtung von $L(I\omega)$ für wachsende $1 P. | \omega$. Hinweis: Nehmen Sie das Ergebnis aus A. zu Hilfe.
- b) Gegeben sind die folgenden Differentialgleichungen zur Beschreibung eines Systems bestehend aus einer Strecke und einem Stellglied,

$$\ddot{w} = \left(ae^w - \frac{b\ddot{w}}{\sqrt{w}}\right)\sin v + c\dot{v}^2, \quad \dot{p} = \arctan(wv), \quad w^2z = gv.$$

Dabei können die Größen w und p sowie ihre Ableitungen der Strecke und die Größe v und ihre Ableitung dem Stellglied zugeordnet werden. Die Größe z ist messbar und a, b, c und g sind konstante Parameter.

Bringen Sie die Differentialgleichungen auf die Form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u), \ y = h(\mathbf{x}, u).$ 2,5 P.| Führen Sie dazu einen geeigneten Zustandsvektor \mathbf{x} , eine Eingangsgröße u und eine Ausgangsgröße y ein.

