LI-YIN(LILY) YOUNG

Email: email@email.com | Personal Website: https://liyo6397.github.io/react-gh-pages/ | GitHub: https://github.com/liyo6397

ENGINEERING SKILLS

• Languages: Python, MySQL, C++/C

• Deep Learning framework: tensorflow, Keras, skit-learn, numpy, pandas

Other Skill: Docker, Azure, Parallel Computing(multiprocess, MPI, OpenMP)

WORK EXPERIENCE

Full Stack Developer

Main Street Exchange tools: SQL, php, javascript Jun.2016-Aug.2018

- Maintained 5 onsite databases and increased its admin effectiveness by 20%.
- Integrated database functionality into websites for automating document and capitalization table management.

Machine Learning Engineer

TopicTechnology tools: python, nltk Jan. 2016-May. 2016

- Built topic model to identify the market and competitive landscape with up to 95% fidelity.
- Filtered and cleaned unstructured company and market information, improved the classification accuracy 30%.

Machine Learning Developer Summer Intern

Millennium Engineering & Integration

Summer 2014

- tools: python, nltk
- Apply support vector machine(svm) on time series data to forecast customers' daily purchasing temptations.
- Optimized the code and reduce the data retrieval time by 40%.

PUBLICATION

Li-Yin Young, The Effect of Moderator bots on Abusive Language Use Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence. ACM, New York, NY, USA. 2018

PROJECTS

Using Wassersein GAN to approximate stochastic process

Jan. 2020-Present

Advisor: Professor Yu-Jui Huang

tools: python, tensorflow, scipy, matplotlib

- Proposed the machine learning approach based on generative adversarial Networks(WGANs) to predict the patteren of stochastic process such as geometric brownian motion and Ornstein-Uhlenbeck(OU) process.
- Encoded the stochastic process by using deep Wasserstein generative adversarial Networks(WGANs).
- Dropped down by RSME 30% compaired to current WGAN.
- By optimized two neural networks synchronically, I sped up the algorithm by 40%.

A deep learning approach partial differential equations

July. 2018-Present

Advisor: Professor. Xiaochuan Cai and Professor. Daniel Appelo

tools: python, tensorflow, scipy, matplotlib

- Developed deep learning algorithm to leverage the governing equations by extracting patterns from high-dimensional data gen-
- Applied deep learning approach to find the solutions of partial differential equation and non-linear dynamics problems.
- · Construct data-efficient approach using machine learning algorithm for approximating the solutions of partial differential equation with up to 95%.
- By pretraining the network of 10% of training data, I sped up 20% of to reach a desired level of accuracy.

Analysis of Autoregressive hidden Markov model under asymmetric Laplace distribution

March. 2017- Nov. 2019

Advisor: Professor Yu-Jui Huang tools: python, matplotlib

- Generalized the algorithm that allowing Stochastic differential equation (SDE) to adjust parameters based on Markovian process in high dimensions.
- Formulated daily stock price as Markov process under asymmetric Laplace distribution improve the accuracy of 30%.
- Reducing 50% time to process data by using Autoregressive hidden Markov model to estimate stock price.

EDUCATION

University of Colorado Boulder, Boulder, CO, U.S.A.

Master of Science, Applied Math, August 2018- May 2020

University of Colorado Boulder, Boulder, CO, U.S.A.

Master of Science, Computer Science, Augst 2013- June 2015

Chang Gung University, Taoyuan, Taiwan

Bachelors of Science, Information Management, September 2008- June 2012