See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51411942

Cucurbitane-Type Triterpenoids from the Stems of Momordica charantia

	E in JOURNAL OF NATURAL PRODUCTS · AUGUST 200 tor: 3.8 · DOI: 10.1021/np070532u · Source: PubMed	8
CITATION	S READS	5
36	76	
6 AUTH	ORS, INCLUDING:	
0	Chi-I Chang National Pingtung University of Science an	Hsueh-Ling Cheng National Pingtung University of Science an
	92 PUBLICATIONS 869 CITATIONS	32 PUBLICATIONS 428 CITATIONS
	SEE PROFILE	SEE PROFILE
0	Yo-Chia Chen	
	National Pingtung University of Science an	
	25 PUBLICATIONS 293 CITATIONS	
	SEE PROFILE	

Cucurbitane-Type Triterpenoids from the Stems of Momordica charantia

Chi-I Chang,^{†,⊥} Chiy-Rong Chen,^{‡,⊥} Yun-Wen Liao,[†] Hsueh-Ling Cheng,[†] Yo-Chia Chen,[†] and Chang-Hung Chou*.§

Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, Republic of China, Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 91201, Taiwan, Republic of China, and Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan, Republic of China

Received September 28, 2007

Four new cucurbitane-type triterpenes, cucurbita-5,23(E)-diene-3 β ,7 β ,25-triol (1), 3 β -acetoxy-7 β -methoxycucurbita-5,23(E)-dien-25-ol (2), cucurbita-5(10),6,23(E)-triene-3 β ,25-diol (5), and cucurbita-5,24-diene-3,7,23-trione (6), together with four known triterpenes, 3 β ,25-dihydroxy-7 β -methoxycucurbita-5,23(E)-diene (3), 3 β -hydroxy-7 β ,25-dimethoxycucurbita-5,23(E)-diene (4), 3 β ,7 β ,25-trihydroxycucurbita-5,23(E)-dien-19-al (7), and 25-methoxy-3 β ,7 β -dihydroxycucurbita-5,23(E)-dien-19-al (8), were isolated from the methyl alcohol extract of the stems of *Momordica charantia*. The structures of the new compounds were elucidated by spectroscopic methods.

Momordica charantia L. (Cucurbitaceae), a slender-stemmed tendril climbing vegetable crop, has extensively been used in folk medicine as a remedy for diabetes in Asia. Previous investigations have shown that crude extracts of the fruit of M. charantia possess antidiabetic activity, ^{1,2} and many cucurbitane-type triterpenoids have been isolated from the fruits, ^{3–13} seeds, ^{14–16} and leaves and vines ¹⁷ of M. charantia. Recently we reported the isolation and structural elucidation of six cucurbitane-type triterpenoids from the methanolic extract of the stems of this plant. 18 We continued the study on the cucurbitane-type triterpenoid constituents from Taiwanese M. charantia and describe here the isolation and structural elucidation of four new cucurbitane-type triterpenes. These are cucurbita-5,23(E)-diene- $3\beta,7\beta,25$ -triol (1), 3β -acetoxy- 7β -methoxycucurbita-5,23(E)-dien-25-ol (2), cucurbita-5(10), 6,23(E)-triene- 3β , 25-diol (5), and cucurbita-5,24-diene-3,7,23- trione (6). Four known triterpenes, 3β ,25-dihydroxy- 7β -methoxycucurbita-5,23(E)-diene (3),¹⁰ 3β hydroxy- 7β ,25-dimethoxycucurbita-5,23(*E*)-diene (**4**), 10 3 β ,7 β ,25trihydroxycucurbita-5,23(E)-dien-19-al (7), 5 and 25-methoxy- 3β ,7 β dihydroxycucurbita-5,23(E)-dien-19-al ($\mathbf{8}$), ¹⁹ come from the same part of the plant.

Results and Discussion

Compound 1 gave a positive Liebermann-Burchard test, and its HREIMS spectrum showed an $[M - H_2O]^+$ ion at m/z 440.3649, indicating a dehydrated molecular formula of C₃₀H₄₈O₂. The IR spectrum indicated the presence of hydroxy (3550 cm⁻¹) and double-bond (3020, 1654 cm⁻¹) functionalities. The ¹H and ¹³C NMR spectra of 1 (Table 1 and 2) displayed signals characteristic of the presence of seven methyl singlets [$\delta_{\rm H}$ 0.66, 0.88, 1.01, 1.04, 1.18 (3H each, s), 1.28 (3H \times 2, s)], one methyl doublet [$\delta_{\rm H}$ 0.85 (3H, d, J = 6.4 Hz)], and two oxymethines [$\delta_{\rm H}$ 3.53 (1 H, br s), 3.92 (1H, d, J = 6.4 Hz)]. In addition, olefinic protons of a trisubstituted double bond [$\delta_{\rm H}$ 5.80 (1H, d, J=6.4 Hz); $\delta_{\rm C}$ 122.5 (d), 146.8 (s)] and a trans-oriented disubstituted double bond [$\delta_{\rm H}$ 5.56 (2H, m); $\delta_{\rm C}$ 125.3 (d), 139.4 (d)] coupling to a neighboring methylene [$\delta_{\rm H}$ 1.70 (1H, m), 2.14 (1H, m); $\delta_{\rm C}$ 39.1 (t)] were also found. 18 The 13C NMR spectrum of 1 revealed 30 carbon signals, which were assigned by DEPT experiments as eight methyl, seven methylene, four methine, four quaternary, four olefinic, and two tertiary and one quaternary oxygenated carbons. The EIMS spectrum of 1 showed a base peak at m/z 389 [M - 3H₂O - CH₃]⁺

1:
$$R_1 = H$$
, $R_2 = H$, $R_3 = H$
2: $R_1 = AC$, $R_2 = Me$, $R_3 = H$
3: $R_1 = H$, $R_2 = Me$, $R_3 = H$
4: $R_1 = H$, $R_2 = Me$, $R_3 = H$
4: $R_1 = H$, $R_2 = Me$, $R_3 = Me$

8: R = CH3

and some fragment ions at m/z 440 [M - H₂O]⁺, 422 [M - 2H₂O]⁺, $407 [M - 2H_2O - CH_3]^+$, $404 [M - 3H_2O]^+$, and 109 [side chain - H₂O]⁺, which closely resemble those of (23*E*)-cucurbita-5,23,25triene- 3β , 7β -diol, with the molecular mass of 440. ¹⁸ Compound 1 had an 18 mass unit difference from (23E)-cucurbita-5,23,25-triene- 3β , 7β -diol and was proposed to be a hydrated derivative of (23E)cucurbita-5,23,25-triene- 3β , 7β -diol. The downfield proton signals of two geminal methyl groups $[\delta_H 1.28 (3H \times 2, s, H-26, 27)]$ suggested that the hydroxy group was attached to C-25 [$\delta_{\rm C}$ 70.7 (s)]. Comparing the data of the ¹H and ¹³C NMR of **1** and those of 3β ,25-dihydroxy- 7β -methoxycucurbita-5,23(*E*)-diene (3),¹⁰ the data for the side chain were similar. Thus, compound 1 was assigned as cucurbita-5,23(E)-diene-3 β ,7 β ,25-triol. The structure of the side chain was confirmed by the HMBC correlations between H-27 ($\delta_{\rm H}$ 1.28)/C-24 ($\delta_{\rm C}$ 139.4) and H-22 ($\delta_{\rm H}$ 1.70, 2.14)/C-24. The HMBC spectrum of 1 also showed long-range correlations between H-3 $(\delta_{\rm H}\ 3.53)$ /C-1 $(\delta_{\rm C}\ 20.9)$, C-5 $(\delta_{\rm C}\ 146.8)$; H-7 $(\delta_{\rm H}\ 3.92)$ /C-5, C-6 $(\delta_{\rm C}\ 122.5)$, C-8 $(\delta_{\rm C}\ 53.1)$, C-9 $(\delta_{\rm C}\ 33.9)$; and H-6 $(\delta_{\rm H}\ 5.80)$ /C-4 $(\delta_{\rm C} 41.5)$, C-7 $(\delta_{\rm C} 68.2)$, C-8 $(\delta_{\rm C} 53.1)$, C-10 $(\delta_{\rm C} 38.5)$, indicating that two hydroxy groups were attached to C-3 and C-7 (Figure 1). The relative configurations of stereogenic carbon atoms in the tetracyclic rings were determined by significant NOE correlations between H-3 ($\delta_{\rm H}$ 3.53)/H-2 ($\delta_{\rm H}$ 1.74, 1.94), H-3/H-28 ($\delta_{\rm H}$ 1.01), H-3/H-29 ($\delta_{\rm H}$ 1.18), H-7 ($\delta_{\rm H}$ 3.92)/H-30 ($\delta_{\rm H}$ 0.66), H-8 ($\delta_{\rm H}$ 1.98)/ H-18 ($\delta_{\rm H}$ 0.88), H-8/H-19 ($\delta_{\rm H}$ 1.04), H-10 ($\delta_{\rm H}$ 2.28)/H-28, and

^{*} To whom correspondence should be addressed. Tel: 886-4-2205-3366, ext. 1633. Fax: 886-4-2207-1500. E-mail: choumasa@mail.cmu.edu.tw.

National Pingtung University of Science and Technology.

¹ C.-I.C. and C.-R.C. share equal contribution.

^{*} Meiho Institute of Technology.

[§] China Medical University.

Table 1. ¹H NMR Data for **1–6** (400 MHz in CDCl₃)

position	1	2	3	4	5	6
1	1.52 m, 1.56 m	1.46 m, 1.60 m	1.46 m, 1.56 m	1.44 m, 1.56 m	2.10 m, 2.22 m	1.62 m, 2.10 m
2	1.74 m, 1.94 m	1.75 m, 1.84 m	1.70 m, 1.86 m	1.60 m, 1.84 m	1.90 m	2.50 m, 2.64 m
3	3.53 br s	4.73 br s	3.47 br s	3.48 t (3.2)	3.42 dd (10.0, 3.2)	
6	5.80 d (6.4)	5.75 d (5.2)	5.80 d (5.2)	5.81 d (5.2)	6.02 d (9.6)	6.15 d (2.0)
7	3.92 d (6.4)	3.40 d (5.2)	3.39 d (5.2)	3.39 d (4.4)	5.54 m	
8	1.98 s	2.04 s	2.08 s	2.02 s	2.17 m	2.41 s
10	2.28 dd (10.0, 6.0)	2.25 dd (9.2, 5.2)	2.23 dd (12.0, 4.8)	2.24 dd (12.0, 4.8)		2.88 ddd (11.2, 4.8, 2.0)
11	1.44 m, 1.62 m	1.48 m, 1.60 m	1.40 m, 1.60 m	1.40 m, 1.60 m	1.38 m, 1.76 m	1.60 m, 1.78 m
12	1.48 m, 1.62 m	1.48 m, 1.58 m	1.47 m, 1.64 m	1.45 m, 1.60 m	1.36 m, 1.48 m	1.62 m, 1.72 m
15	1.30 m, 1.34 m	1.32 m	1.30 m	1.28 m, 1.32 m	1.16 m, 1.24 m	1.12 m, 1.58 m
16	1.32 m, 1.88 m	1.30 m, 1.88 m	1.36 m, 1.88 m	1.36 m, 1.90 m	1.28 m, 1.86 m	1.32 m, 1.82 m
17	1.48 m	1.48 m	1.45 m	1.45 m	1.45 m	1.50 m
18	0.88 s	0.91 s	0.89 s	0.90 s	0.85 s	0.92 s
19	1.04 s	0.96 s	0.95 s	0.96 s	0.92 s	0.93 s
20	1.48 m	1.50 m	1.50 m	1.52 s	1.48 m	2.08 s
21	0.85 d (6.4)	0.87 d (6.0)	0.85 d (6.0)	0.87 d (6.0)	0.84 d (7.2)	0.90 d (5.6)
22	1.70 m, 2.14 m	1.73 m, 2.11 m	1.70 m, 2.12 m	1.76 m, 2.16 m	1.73 m, 2.13 m	2.10 m, 2.50 m
23	5.56 m	5.57 m	5.55 m	5.48 m	5.55 m	
24	5.56 m	5.57 m	5.55 m	5.36 d (16.0)	5.59 m	6.02 br s
26	1.28 s	1.29 s	1.26 s	1.22 s	1.28 s	1.86 s
27	1.28 s	1.29 s	1.26 s	1.22 s	1.28 s	1.86 s
28	1.01 s	1.04 s	1.00 s	1.00 s	1.02 s	1.31 s
29	1.18 s	1.09 s	1.17 s	1.18 s	0.95 s	1.33 s
30	0.66 s	0.69 s	0.66 s	1.00 s	0.70 s	0.87 s
7 -OCH $_3$		3.34 s	3.31 s	3.31 s		
25-OCH ₃				3.12 s		
$OCOCH_3$		1.98 s				

Table 2. ¹³C NMR Data for 1-6 (100 MHz in CDCl₃)

Tubic 21	C TANK Batta for T V (100 MHz in CBC13)					
position	1	2	3	4	5	6
1	20.9	21.6	21.0	21.2	23.5	23.5
2	28.7	26.4	28.6	28.6	29.5	38.1
3	76.7	78.6	76.7	76.9	75.7	211.5
4	41.5	39.9	41.7	41.7	37.9	51.4
5	146.8	146.8	146.8	146.8	131.8	167.7
6	122.5	119.2	120.8	120.8	125.4	125.4
7	68.2	77.3	77.3	77.2	125.7	202.6
8	53.1	47.7	47.8	47.9	45.9	59.1
9	33.9	33.9	33.9	33.9	36.4	36.7
10	38.5	38.6	38.6	38.6	135.7	41.2
11	32.5	32.3	32.6	32.6	27.1	31.2
12	30.0	30.0	30.0	34.6	32.0	29.7
13	45.8	46.0	46.0	46.0	48.7	48.6
14	48.2	47.8	47.8	47.8	45.5	45.9
15	34.6	34.6	34.6	34.6	32.1	34.5
16	27.7	27.6	27.6	27.6	27.9	27.7
17	49.9	49.9	49.9	49.9	50.4	50.0
18	15.4	15.4	15.4	15.4	14.9	15.4
19	29.5	28.5	28.7	28.7	29.8	27.2
20	36.2	36.2	36.2	36.1	36.3	33.2
21	18.7	18.6	18.7	18.7	18.6	19.8
22	39.1	39.0	39.1	39.4	39.1	51.6
23	125.3	125.2	125.2	128.5	125.4	201.2
24	139.4	139.4	139.5	136.7	139.4	124.2
25	70.7	70.6	70.7	74.9	70.7	155.0
26	29.8	29.8	29.9	25.7	29.9	20.7
27	29.9	29.9	29.8	26.1	29.8	27.7
28	27.8	27.9	27.7	27.7	25.6	28.4
29	25.4	24.8	25.4	25.3	21.2	23.1
30	17.8	17.9	17.9	17.9	16.1	18.0
7-OCH ₃		56.3	56.2	56.2		
25-OCH ₃				50.2		
$OCOCH_3$		170.9				
OCOCH ₃		21.2				

H-10/H-30 in the NOESY spectrum (Figure 2). ¹H and ¹³C NMR chemical shifts were established by ¹H-¹H COSY, HMQC, HMBC, and NOESY spectra.

The HREIMS of **2** showed a molecular ion at m/z 514.4028, corresponding to the molecular formula $C_{33}H_{54}O_4$, which indicated seven degrees of unsaturation. The IR spectrum displayed absorptions for hydroxy (3461 cm⁻¹), ester (1732 cm⁻¹), and a double

bond (3052, 1659, 890 cm⁻¹). The ¹H and ¹³C NMR spectra of 2 (Tables 1 and 2) showed resonances for seven methyl singlets [$\delta_{\rm H}$ 0.69, 0.91, 0.96, 1.04, 1.09 (3H each, s), 1.29 (3H × 2, s)], a methyl doublet [$\delta_{\rm H}$ 0.87 (3H, d, J=6.0 Hz)], an acetyl methyl [$\delta_{\rm H}$ 1.98 (3H, s)], a methoxy [δ_H 3.34 (3H, s)], two oxygenated methines [$\delta_{\rm H}$ 3.40 (1H, d, J=5.2 Hz), 4.73 (1H, br s)], and three olefinic protons [$\delta_{\rm H}$ 5.75 (1H, d, J = 5.2 Hz); $\delta_{\rm H}$ 5.57 (2H, m)]. Altogether, 33 carbon signals were observed in the ¹³C NMR spectrum of 2 and were sorted into eight methyl, one acetyl methyl, one methoxy, seven methylene, four methine, four quaternary, four olefinic, one carbonyl, and two tertiary and one quaternary oxygenated carbons. The ¹H and ¹³C NMR data were similar to those of 3, ¹⁰ except for the signals of the A-ring part of the tetracyclic skeleton. The downfield shift of H-3 [$\delta_{\rm H}$ 4.73 (1H, br s)] and the HMBC correlations between H-3 and C-5 ($\delta_{\rm C}$ 146.8) and the acetyl carbon $(\delta_{\rm C} 170.9)$ confirmed that the acetyloxy group was located at C-3.⁴ Moreover, H-7 ($\delta_{\rm H}$ 3.40) showed HMBC correlation with the methoxy carbon ($\delta_{\rm C}$ 56.3), suggesting that the methoxy group was attached to C-7. The EIMS fragment ions at m/z 436 [M - H₂O -AcOH]⁺, 422 [M - CH₃OH - AcOH]⁺, 404 [M - H₂O - CH₃OH $- \text{AcOH}]^+$, 389 [M $- \text{H}_2\text{O} - \text{CH}_3\text{OH} - \text{AcOH} - \text{CH}_3]^+$, and 109 [side chain $- H_2O$]⁺ were similar to those of **3** and further confirmed that 2 was an acetylated derivative of 3.10 Thus,

Figure 1. Main HMBC correlations of 1.

Figure 2. Main NOESY correlations of 1.

compound 2 was elucidated as 3β -acetoxy- 7β -methoxycucurbita-5,23(E)-dien-25-ol.

Compound 5 was deduced to be a triterpenoid due to a positive Liebermann-Burchard test, and the molecular formula was assigned as $C_{30}H_{48}O_2$ on the basis of the molecular ion at m/z 440.3649 in the HREIMS. The IR spectrum of 5 showed bands that were attributable to hydroxy (3383 cm⁻¹) and double-bond (1643 cm⁻¹) functionalities. The ¹H and ¹³C NMR spectra of 5 (Tables 1 and 2) indicated the presence of seven methyl singlets [$\delta_{\rm H}$ 0.70, 0.85, 0.92, 0.95, 1.02 (3H each, s), 1.28 (3H \times 2, s)], a methyl doublet [$\delta_{\rm H}$ 0.84 (3H, d, J = 7.2 Hz)], a trans-oriented disubstituted double bond $[\delta_H 5.55 (1H, m), 5.59 (1H, m)]$, a cis-olefin of a sixmembered ring [$\delta_{\rm H}$ 6.02 (1H, d, J = 9.6 Hz), 5.54 (1H, m); $\delta_{\rm C}$ 125.4 (d), 139.4 (d)], and an axial oxymethine proton [$\delta_{\rm H}$ 3.42 (1H, dd, J = 3.2, 10.0 Hz, H-3)]. ^{18,20} Comparison of ¹H and ¹³C NMR data of 1 and 5 (Tables 1 and 2) showed that the signals of the side-chain portion of 5 were almost the same as those of 1. The tetracyclic skeleton of 5 exhibited a diene structure, which was proposed from the UV absorption band at 262 nm and the ¹³C NMR signals [δ_C 131.8 (s), 125.4 (d), 125.7 (d), 135.7 (s)]. The HMBC correlations between H-1 (δ_{H} 2.10, 2.22)/C-5 (δ_{C} 131.8) and C-10 $(\delta_{\rm C} 135.7)$; between H-6 $(\delta_{\rm H} 6.02)$ /C-5, C-7 $(\delta_{\rm C} 125.7)$, and C-10; and between H-7 ($\delta_{\rm H}$ 5.54)/C-5, C-8 ($\delta_{\rm C}$ 45.9), C-9 ($\delta_{\rm C}$ 36.4), and C-14 ($\delta_{\rm C}$ 45.5) suggested that the diene system was located at C-5, C-6, C-7, and C-10. Therefore, compound 5 was determined as cucurbita-5(10),6,23(*E*)-triene-3 β],25-diol.

By HREIMS, compound 6 revealed a molecular formula of $C_{30}H_{44}O_3$ from the determination of the molecular ion at m/z [M]⁺ 452.3297, indicating the presence of nine degrees of unsaturation. The IR spectrum showed absorption bands at 1718 cm⁻¹ due to an isolated ketone moiety and at 1684 cm⁻¹, indicating a conjugated ketone unit. A significant UV absorption maximum at 249 nm also suggested the presence of an α,β -unsaturated ketone. The ¹H and ¹³C NMR spectra of **6** (Tables 1 and 2) exhibited seven methyl singlets [$\delta_{\rm H}$ 0.87, 0.92, 0.93, 1.31, 1.33 (3H each, s) and 1.86 (3H \times 2, s)], a methyl doublet [$\delta_{\rm H}$ 0.90 (3H, d, J = 5.6 Hz)], and two sets of α,β -unsaturated carbonyl systems [$\delta_{\rm H}$ 6.15 (1H, d, J=2.0Hz); $\delta_{\rm C}$ 125.4 (d), 167.7 (s), 202.6 (s) and $\delta_{\rm H}$ 6.02 (1H, br s); $\delta_{\rm C}$ 124.2 (d), 155.0 (s), 201.2 (s)]. These spectroscopic characteristics were similar to the known compound (23E)-25-hydroxycucurbita-5,23-diene-3,7-dione, 18 except for the signals of C-20-C-27. Thus, compound 6 was presumed to exhibit a cucurbit-5-ene-3,7-dione skeleton. Two geminal olefinic methyls $[\delta_{\rm H} 1.86 (3{\rm H} \times 2, {\rm H-26},$ H-27)] on the side chain supported that the remaining double bond was located at C-24 ($\delta_{\rm C}$ 124.2) and C-25 ($\delta_{\rm C}$ 155.0). The α,β unsaturated carbonyl carbon should be assigned at C-23 ($\delta_{\rm C}$ 201.2). The proposed structure of the side chain was confirmed by the HMBC correlations between H-22 ($\delta_{\rm H}$ 2.10, 2.50)/C-20 ($\delta_{\rm C}$ 33.2), C-23 ($\delta_{\rm C}$ 201.2) and between H-24 ($\delta_{\rm H}$ 6.02)/C-23, C-26 ($\delta_{\rm C}$ 20.7), C-27 ($\delta_{\rm C}$ 27.7), together with the fragment ions at m/z 125 [side chain] $^+$ and 327 [M - side chain] $^+$. The base peak in the EIMS spectrum was at m/z 355 [M - CH₂COCHC(CH₃)₂]^{+.19} Accordingly, compound 6 was determined to be cucurbita-5,24-diene-3,7,23-trione.

Compounds 3 and 4, which were first isolated from the stem of M. charantia, were also reported in the fruit. 10,11 In this paper, the complete ¹H and ¹³C NMR assignments of **3** and **4** are presented.

These cucurbitane-type triterpenes were evaluated for their cytotoxic activity against human hepatoma SK-Hep 1 cells with etoposide as a positive control (IC₅₀ = 49.6 μ M). Forty-eight hours after culture, compounds 7 and 8 exhibited slight growth inhibitory activity against the SK-Hep 1 cell line with IC₅₀ values of 98.3 and 91.6 μ M, respectively. The other compounds showed no significant effect, with IC₅₀ values of more than 100 μ M.

Experimental Section

General Experimental Procedures. Optical rotations were measured by using a JASCO DIP-180 digital spectropolarimeter. UV spectra were measured in MeOH using a Shimadzu UV-1601PC spectrophotometer. IR spectra were recorded on a Nicolet 510P FT-IR spectrometer. NMR spectra were recorded in CDCl3 at room temperature on a Varian Mercury plus 400 NMR spectrometer, and the solvent resonance was used as internal shift reference (TMS as standard). The 2D NMR spectra were recorded by using standard pulse sequences. EIMS and HREIMS were recorded on Finnigan TSQ-700 and JEOL SX-102A mass spectrometers, respectively. TLC was performed by using Si gel 60 F₂₅₄ plates (Merck). Column chromatography was performed on Si gel (230-400 mesh ASTM, Merck). HPLC was performed by using a Lichrosorb Si gel 60 (5 μ m) column (250 × 10 mm).

Plant Material. The mature stems of Momordica charantia were collected in Pingtung County, Taiwan, in July 2003. The plant material was identified by Prof. Sheng-Zehn Yang, Curator of Herbarium, National Pingtung University of Science and Technology, where a voucher specimen (no. 2013) was deposited.

Extraction and Isolation. Air-dried pieces of the stems (18 kg) of M. charantia were extracted with MeOH (3 × 30 L) at room temperature (7 days each). The MeOH extract was evaporated in vacuo to afford a black residue, which was suspended in H₂O (3 L) and then partitioned sequentially, using EtOAc and n-BuOH (3 \times 2 L) as solvent. The EtOAc fraction (386 g) was passed through a Si gel column (120 × 10 cm), using solvent mixtures of n-hexane and EtOAc with increasing polarity as eluents. Eleven fractions were collected as follows: 1 [5000 mL, n-hexane], 2 [4000 mL, n-hexane-EtOAc (49: 1)], 3 [4000 mL, n-hexane-EtOAc (19:1)], 4 [4000 mL, n-hexane-EtOAc (9:1)], 5 [4000 mL, n-hexane-EtOAc (17:3)], 6 [4000 mL, n-hexane-EtOAc (8:2)], 7 [4000 mL, n-hexane-EtOAc (7:3)], 8 [3000 mL, n-hexane-EtOAc (5:5)], 9 [3000 mL, n-hexane-EtOAc (4:6)], 10 [3000 mL, n-hexane-EtOAc (2:8)], and 11 (6000 mL, EtOAc). Fraction 6 was further chromatographed on a Si gel column (5 \times 45 cm), eluted with CH₂Cl₂-EtOAc (8:1), to obtain seven fractions (each about 700 mL), 6A-6G. HPLC of fraction 6C eluted with *n*-hexane-EtOAc (8:2) at 2 mL/min to yield 4 (10 mg, t_R = 17.4 min) and 3 (6 mg, t_R = 22.5 min), respectively. Fraction 7 was further purified through a Si gel column (5 × 45 cm), eluted with CH₂Cl₂-EtOAc (8:1), to obtain seven fractions (each about 600 mL), 7A-7G. HPLC fractionation of fraction 7E by elution with *n*-hexane–EtOAc (6:1) at 2 mL/min yielded **6** (8 mg, t_R = 19.6 min) and 5 (15 mg, $t_R = 23.4$ min), respectively. Fraction 8 was separated using a column packed with Si gel (5 \times 45 cm) and eluted with CH₂Cl₂-EtOAc (7:1), to generate six fractions (each 500 mL), 8A-8F. HPLC of fraction 8D with n-hexane-acetone (7:3) as eluent, 2 mL/ min, yielded **2** (3 mg, $t_R = 15.7$ min) and **1** (7 mg, $t_R = 25.4$ min). HPLC of fraction 8F eluted with *n*-hexane—acetone (7:3) at 2 mL/min yielded **8** (7 mg, $t_R = 22.8$ min) and **7** (52 mg, $t_R = 29.2$ min), respectively.

Cucurbita-5,23(E)-diene-3 β ,7 β ,25-triol (1): amorphous, white powder; $[\alpha]^{25}_D$ +13.5 (c 0.4, CHCl₃); ¹H and ¹³C NMR data, see Tables 1 and 2; IR (KBr) $\nu_{\rm max}$ 3550, 3020, 2945, 2872, 1703, 1654, 1455, 1377, 1270, 1036, 973, 734 cm⁻¹; EIMS m/z 458 [M]⁺ (1), 440 (14), 422 (35), 407 (18), 404 (21), 389 (100), 187 (30), 171 (36), 157 (29), 133 (37), 109 (50), 81 (35); HREIMS m/z 440.3649 (calcd for C₃₀H₄₈O₂

 3β -Acetoxy- 7β -methoxycucurbita-5,23(E)-dien-25-ol (2): amorphous, white powder; $[\alpha]^{25}_D$ +71.6 (c 0.1, CHCl₃); ¹H and ¹³C NMR data, see Tables 1 and 2; IR (KBr) ν_{max} 3461, 3052, 2936, 2872, 2809, 1732, 1659, 1455, 1377, 1250, 1192, 1085, 977, 934, 890, 734 cm⁻¹; EIMS m/z 514 [M]⁺ (2), 496 (3), 464 (20), 436 (18), 422 (8), 404 (31), 389 (93), 355 (15), 307 (14), 279 (17), 185 (46), 171 (56), 149 (100), 121 (47), 109 (75), 95 (72), 81 (70), 69 (66); HREIMS m/z 514.4028 (calcd for C₃₃H₅₄O₄ 514.4024).

 3β ,25-Dihydroxy- 7β -methoxycucurbita-5,23(*E*)-diene (3): amorphous, white powder; ¹H and ¹³C NMR data, see Tables 1 and 2; IR (KBr) ν_{max} 3360, 3055, 2945, 2814, 1660, 1455, 1380, 1265, 1149, 1083, 1029, 977, 935, 736 cm⁻¹; EIMS m/z 472 [M]⁺ (5), 454 (18), 439 (8), 422 (35), 404 (15), 389 (100), 351 (3), 171 (7), 109 (15), 81 (8); HREIMS m/z [M]⁺ 472.3921 (calcd for $C_{31}H_{52}O_3$ 472.3923).

 3β -Hydroxy- 7β ,25-dimethoxycucurbita-5,23(*E*)-diene (4): amorphous, white powder; ¹H and ¹³C NMR data, see Tables 1 and 2; IR (KBr) ν_{max} 3416, 2951, 2850, 1655, 1416, 1393, 1290, 1156, 1130, 1083, 976, 883 cm⁻¹; EIMS *m/z* 486 [M]⁺ (7), 468 (20), 453 (16), 422 (26), 404 (21), 389 (100), 187 (20), 171 (24), 109 (25), 81 (18); HREIMS m/z [M]⁺ 486.4077 (calcd for $C_{32}H_{54}O_3$ 486.4080).

Cucurbita-5(10),6,23(E)-triene-3 β **,25-diol (5):** amorphous, white powder; [α]²⁵_D =97.3 (c 0.5, CHCl₃); ¹H and ¹³C NMR data, see Tables 1 and 2; IR (KBr) ν _{max} 3383, 2936, 2872, 1643, 1592, 1490, 1372, 1041, 937, 788, 734 cm⁻¹; UV (MeOH) λ _{max} (log ε) 204 (4.31), 262 (3.74) nm; EIMS m/z 440 (M⁺, 1), 422 (9), 407 (12), 404 (13), 389 (100), 185 (25), 171 (43), 109 (54), 95 (40), 81 (49), 55 (34); HREIMS m/z [M]⁺ 440.3649 (calcd for C₃₀H₄₈O₂ 440.3656).

Cucurbita-5,24-diene-3,7,23-trione (6): amorphous, white powder; $[\alpha]^{25}_D$ +38.2 (c 0.4, CHCl₃); 1 H and 13 C NMR data, see Tables 1 and 2; IR (KBr) ν_{max} 2950, 2870, 1718, 1684, 1645, 1611, 1455, 1377, 1266, 1041, 886 cm⁻¹; UV (MeOH) λ_{max} (log ε) 204 (4.21), 249 (3.50) nm; EIMS m/z 452 (M⁺, 15), 412 (9), 397 (6), 379 (5), 355 (100), 327 (7), 328 (10), 205 (10), 187 (5), 175 (7), 125 (6), 121 (7), 98 (5), 83 (8); HREIMS m/z [M]⁺ 452.3297 (calcd for $C_{30}H_{44}O_{3}$ 452.3292).

Cytotoxicity Assay. The cytotoxicity of compounds 1-8 was measured by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric method based on the described procedures.²² SK-Hep 1 cell lines were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum, L-glutamine 2 mM, 1% penicillin/streptomycin (penicillin 10000 U/mL, and streptomycin 10 mg/mL) in a humidified atmosphere of 5% CO₂ at 37 °C. A 100 μL volume of SK-Hep 1 cells at a density of 1×10^5 cells/mL was incubated under the same conditions for 24 h in a 96-well flat-bottomed microplate. Test samples dissolved in DMSO were added to the medium and incubated for 48 h. Subsequently, the wells were incubated with the MTT (100 μ L/well concentrated at 5 mg/mL) at 37 °C for 4 h. After removing the supernatant, 200 μ L of DMSO was added to redissolve the formazan crystals. The absorbance of the resulting formazan was measured by an enzyme-linked immunosorbent assay plate reader at 550 nm. The results were assayed in triplicate. The ratio of cell viability (%) was calculated by using the following formula: [(experimental absorbance - background absorbance)/(control absorbance - background absorbance)] × 100. The IC₅₀ values of each compound were obtained from 50% inhibition of cell growth and were compared with that of the control.

Acknowledgment. This research was supported by grants to C.-H.C. from the National Science Council of Taiwan (NSC 94-2317-B-020-001 and NSC 96-2317-B-020-003). We thank Ms. S.-Y. Sun for the EIMS and HREIMS measurement in the Instrumentation Center of the College of Science, National Taiwan University. We are grateful to the National Center for High-Performance Computing for computer time and facilities. We also express our gratitude to Professor G. R. Waller, Prof. Emeritus, Dept. of Biochemistry and Molecular Biology, Oklahoma State University, for critical reading of language improvement.

References and Notes

- (1) Rathi, S. S.; Grover, J. K.; Vats, V. Phytother. Res. 2002, 16, 236-243
- (2) Guevara, A. P.; Lim-Sylianco, C. Y.; Dayrit, F. M.; Finch, P. Phytochemistry 1989, 28, 1721–1724.
- (3) Okabe, H.; Miyahara, Y.; Yamauchi, T. Chem. Pharm. Bull. 1982, 30, 3977–3986.
- (4) Okabe, H.; Miyahara, Y.; Yamauchi, T. Chem. Pharm. Bull. 1982, 30, 4334–4340.
- (5) Fatope, M. O.; Takeda, Y.; Yamashita, H.; Okabe, H.; Yamauchi, T. J. Nat. Prod. 1990, 53, 1491–1497.
- (6) Murakami, T.; Emoto, A.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2001, 49, 54–63.
- (7) Begum, S.; Ahmed, M.; Siddiqui, B. S.; Khan, A.; Saify, Z. S.; Arif, M. Phytochemistry 1997, 44, 1313–1320.
- (8) El-Gengaihi, S.; Karawya, M. S.; Selim, M. A.; Motawe, H. M.; Ibrahim, N.; Faddah, L. M. *Pharmazie* 1995, 50, 361–362.
- (9) Kimura, Y.; Akihisa, T.; Yuasa, N.; Ukiya, M.; Suzuki, T.; Toriyama, M.; Motohashi, S.; Tokuda, H. J. Nat. Prod. 2005, 68, 807–809.
- (10) Harinantenaina, L.; Tanaka, M.; Takaoka, S.; Oda, M.; Mogami, O.; Uchida, M.; Asakawa, Y. Chem. Pharm. Bull. 2006, 54, 1017–1021.
- (11) Nakamura, S.; Murakami, T.; Nakamura, J.; Kobayashi, H.; Matsuda,
- H.; Yoshikawa, M. Chem. Pharm. Bull. 2006, 54, 1545–1550.
 (12) Li, Q. Y.; Chen, H. B.; Liu, Z. M.; Wang, B.; Zhao, Y. Y. Magn. Reson. Chem. 2007, 45, 451–456.
- (13) Akihisa, T.; Higo, N.; Tokuda, H.; Ukiya, M.; Akazawa, H.; Tochigi, Y.; Kimura, Y.; Suzuki, T.; Nishino, H. J. Nat. Prod. 2007, 70, 1233–1239.
- (14) Miyahara, Y.; Okabe, H.; Yamauchi, T. Chem. Pharm. Bull. 1981, 29, 1561–1566.
- (15) Dutta, P. K.; Chakravarty, A. K.; Chowdhury, U. S.; Pakrashi, S. C. Indian J. Chem., Sect. B 1981, 20, 669–671.
- (16) Okabe, H.; Miyahara, Y.; Yamauchi, T.; Miyahara, K.; Kawasaki, T. Chem. Pharm. Bull. 1980, 28, 2753–2762.
- (17) Yasuda, M.; Iwamoto, M.; Okabe, H.; Yamauchi, T. Chem. Pharm. Bull. 1984, 32, 2044–2047.
- (18) Chang, C. I.; Chen, C. R.; Liao, Y. W.; Cheng, H. L.; Chen, Y. C.; Chou, C. H. J. Nat. Prod. 2006, 69, 1168–1171.
- (19) Mulholland, D. A.; Sewram, V.; Osborne, R.; Pegel, K. H.; Connolly, J. D. *Phytochemistry* 1997, 45, 391–395.
- (20) Lee, S. S.; Kishore, P. H.; Chen, C. H. Helv. Chim. Acta 2002, 85, 2403–2408.
- (21) Moriarty, R. M.; Paaren, H. E. J. Org. Chem. 1981, 46, 970-977.
- (22) Kuo, Y. H.; Li, S. Y.; Shen, Y. C.; Huang, H. C.; Hsu, Y. W.; Tseng, R. J.; Ou, J. C.; Chen, C. F. *Chin. Pharm. J.* **2001**, *53*, 257–263.

NP070532U