Floating-point

Van Duc NGUYEN

Viettel IC Design

Over View

- 1. Introduction
- 2. Floating-point Representation
- 3. IEEE 754 floating-point standard for binary
- 4. Floating-point Arithmetic
- 5. Implementation in FPGA

1.Introduction

Why Floating-point?

- 1. Advantages
 - Dynamic range with fixed-point $DR_{fxpt} = r^n 1$. with floating-point $DR_{flpt} = \frac{M_{max}*b^{E_{max}}}{M_{min}*b^{E_{min}}}$
- 2. Disadvantages
 - Precision
 - Roundoff error
 - Complex implementation

2. Floating-point Representation

Form represent a floating-point number:

With three fields:

- Sign bit:S (0 is positive and 1 is negative)
- Fraction:F (Significand or mantissa)
- Exponent:E

Value of floating-point number: $(-1)^S * F * B^{\pm E}$ with B ¹

¹The base B is implicit.(base is 2,10..)

Normalized and Denormalized representation

- Normalized: $\pm 1.mmm...m * B^{\pm E}$
- Denormalized: $\pm 0.mmm...m * B^{E_{min}}$

3.IEEE 754 Standard for Binary Floating-point

The three basic format have bit lengts of 32,64 and 128 bits:

For a normalized floating-point number:

S F =
$$f_1 f_2 f_3 f_4 ...$$

Value of floating-point: $\pm 1.f_1f_2f_3f_4...f_l*2^{\pm E}$

IEEE 754 Format Paremeter

Parameter	Format						
Parameter	Binary32	Binary64	Binary128				
Storage width (bits)	32	64	128				
Exponent width (bits)	8	11	15				
Exponent bias	127	1023	16383				
Maximum exponent	127	1023	16383				
Minimum exponent	-126	-1022	-16382				
Approx normal number range (base 10)	$10^{-38}, 10^{+38}$	$10^{-308}, 10^{+308}$	10 ⁻⁴⁹³² , 10 ⁺⁴⁹³²				
Trailing significand width (bits)*	23	52	112				
Number of exponents	254	2046	32766				
Number of fractions	2 ²³	2 ⁵²	2 ¹¹²				
Number of values	1.98×2^{31}	1.99×2^{63}	1.99×2^{128}				
Smallest positive normal number	2-126	2-1022	2-16362				
Largest positive normal number	$2^{128} - 2^{104}$	$2^{1024} - 2^{971}$	$2^{16384} - 2^{16271}$				
Smallest subnormal magnitude	2-149	2-1074	2-16494				

Biased Exponent Representation

IEEE 754 use biased representation for the exponent:

- Value of exponet= val(E)=E Bias(Bias is a constant)
- Bias is computed base on $bias = 2^{k-1} 1$ (with k is lengths of bit)
- For signle precision,k=8 and bias=127,value of E(biased)=val(E)+127.

Special value

IEEE 754 define some special value as NaN,Infinity to represent for underflow,overflow and not a number...

Single-Precision	Exponent = 8	Fraction = 23	Value	
Normalized Number	1 to 254	Anything	$\pm (1.F)_2 \times 2^{E-127}$	
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-126}$	
Zero	0	0	± 0	
Infinity	255	0	± ∞	
NaN	N 255		NaN	

Double-Precision	Exponent = 11	Fraction = 52	Value
Normalized Number	1 to 2046	Anything	$\pm (1.F)_2 \times 2^{E-1023}$
Denormalized Number	0	nonzero	$\pm (0.F)_2 \times 2^{-1022}$
Zero	0	0 ±0	
Infinity	2047	0	± ∞
NaN	2047	nonzero	NaN

Rounding Mode

IEEE 754 standard specifies four rounding modes

- 1. Round to nearest even
- 2. Round toward plus infinity:result is rounded up
- 3. Round toward minus infinity:result is rounded down
- 4. Round toward zero:always truncate result

Round to Nearest Even(default rouding mode)

Normalized result has the form: $\mathbf{1}.f_1f_2f_3...f_l\mathbf{RS}$

- f_I:last fration bit.
- round bitR:appears after the last fraction bit f_I
- sticky bit S:is the OR of all remaining addtional bits.

Four cases for RS:

- **RS=00**:Result is exact, no need for rounding.
- RS=01:Truncate result by discarding RS
- RS=11:Increment result by add 1 to last fraction bit
- **RS=10**:Increment or Truncate depend on f_I
 - $f_I = 0$:truncate result
 - $f_l = 1$:increment result

3. Floating-point Arithmetic

Basic opreations for floating-point arithmetic:

Floating-Point Numbers	Arithmetic Operations
$X = X_S \times B^{X_E} $ $Y = Y_S \times B^{Y_E}$	$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E}$ $X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E}$ $X \times Y = (X_S \times Y_S) \times B^{X_E + Y_E}$ $\frac{X}{Y} = \left(\frac{X_S}{Y_S}\right) \times B^{X_E - Y_E}$

Addition and Subtration(1):Pseudocode

Addition and Subtraction(2): Table of result

- Input: $X(S_X, E_X, F_X)$ và $Y(S_Y, E_Y, F_Y)$
- Output: $Z(S_Z, E_Z, F_Z)$

Sz	S _x	S _y	E _x =E _y	E _x >E _y	E _x <e<sub>y</e<sub>	Ez	F _x =F _y	F _x >F _y	F _x <f<sub>y</f<sub>	Fz
S _x or S _y	0	0	1	0	0	E _x or E _y	х	х	x	$F_v + F_y$
S _x or S _y	1	1	1	0	0	E _x or E _y	x	×	×	$F_v + F_y$
S _x	0	1	1	0	0	E _x or E _y	0	1	0	F _v - F _v
Sy							0	0	1	F _y -Fx
0							1	0	0	0
S _x	1	0	1	0	0	E _x or E _y	0	1	0	F _v - F _y
Sy							0	0	1	F _v -Fx
0							1	0	0	0
S _x	0	0	0	1	0	Ex	x	х	x	$F_x + (F_y >> diff)$
Sx	1	1	0	1	0	Ex	х	Х	×	$F_x + (F_y >> diff)$
Sx	0	1	0	1	0	Ex	×	х	x	F_x -(F_y >>diff)
Sx	1	0	0	1	0	Ex	х	х	x	F_x -(F_y >>diff)
Sy	0	0	0	0	1	E _y	x	х	×	$F_y + (F_x >> diff)$
Sy	1	1	0	0	1	E _v	x	X	×	$F_y + (F_x >> diff)$
Sy	0	1	0	0	1	E _v	х	х	x	F_v -(F_x >>diff)
Sy	1	0	0	0	1	E _v	х	х	x	F_v -(F_x >>diff)

Addition and Subtraction(3):Adder Block Diagram

Multiplication(1):Pseudocode

Multiplication(2):Multiply Block Diagram

4.Implementation in FPGA

The basic operations for floating-point arithmetic performed on FPGA are of type binary32 bit format and it is implemented on the FPGA VCU118-Virtex kit

Implement Addition(1):Unpackage process

Implement Addition(2):Block and Flow-chart FSMD

Implement Addition(3):ASMD diagram

Implement Addition(4):Simulation result

Implement Addition(5):Timing analysis

With Frequency clock:100MHz,period=10ns Critical Path :5.217ns(required time-arrival time)

etup		Hold		Pulse Width		
Worst Negative Slack (WNS):	5.217 ns	Worst Hold Slack (WHS):	0.014 ns	Worst Pulse Width Slack (WPWS):	1.550 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	5610	Total Number of Endpoints:	5610	Total Number of Endpoints:	1796	

Implement Multiplication(1):Unpackage process

Implement Multiplication(2):Block and flow-chart FSMD

Implement Multiplication(3):ASMD diagram

Implement Multiplication(4):Simulation result

Implement Multiplication(5):Timing analysis

With Frequency clock:100MHz,period=10ns Critical Path :5.029ns(required time-arrival time)

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.029 ns	Worst Hold Slack (WHS):	0.011 ns	Worst Pulse Width Slack (WPWS):	1.550 n
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 n
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	5538	Total Number of Endpoints:	5538	Total Number of Endpoints:	1768

Conclusion