11. Standardní datové typy jazyka JAVA (rozdělení, rozsahy)

Datový Typ

V programování definuje druh nebo význam hodnot, kterých smí nabývat proměnná (konstanta). Datový typ je určen oborem hodnot a zároveň výpočetními operacemi, které lze s hodnotami tohoto typu provádět

Proměnné

Místo v paměti dle typu, který říká, jakou bude mít velikost a jaké operace s proměnou se dají provádět. Vytvoření proměnné se skládá z názvu typu a jména proměnné. V proměnných se můžou uchovávat celá čísla, znaky, nebo ukazatele na objekt. Proměnná na rozdíl od konstant umožňuje měnit svojí hodnotu.

Deklarace proměnné je vytvoření místa v paměti dle určitého typu. Následně je doporučená inicializace (přiřazení) počáteční hodnoty proměnné, není nutná, ale doporučuje se provádět vždy, kdy je to možné.

Konstanty

Konstanty v jazyce Java jsou stejné jako proměnné s tím rozdílem že se před název typu napíše klíčové slovo **final**. Konstanta nemůže během svého života měnit svou hodnotu.

Deklarace konstanty je stejně jako u proměnných vytvoření místa v paměti určitého typu. Pokud je známo, jaká hodnota se bude do konstanty přiřazovat, pak se může inicializovat ihned. Jinak se konstanta nechá neinicializovaná, a hodnota se jí přiřadí, až bude známa.

Pojmenování

Názvy proměnných a konstant by měli odpovídat jejich použití.

Názvy proměnných musí začínat malým písmenem, dále pokračují také malými písmeny, pokud se název skládá z několika slov, použije se velbloudíNotace (camelCase).

Názvy konstant se udávají velkými písmeny. Pokud se skládá z více slov, používá se podtržítko.

public static final double KONSTANTA PI = 3.14159265359;

Primitivní datové typy

Java má 8 primitivních datových typů. Procesor s primitivními datovými typy může pracovat přímo \rightarrow rychlá práce s těmito typy. Každý primitivní datový typ může nabývat různých hodnot a hodí se pro jinou práci. Jedná se o čtyři celočíselné typy (**byte, short, int, long**), dva typy pro práci s plovoucí desetinou čárkou (**float, double**), znakový typ (**char**), který nabývá hodnot z ASCII tabulky. A poslední je pravdivostní typ (**boolean**).

Celočíselné primitivní datové typy

Primitivní typ	Velikost	Minimum	Maximum	Wrapper Class
Byte	1B	-2 ⁷	-2 ⁷ -1	Byte
Short	2B	-2 ¹⁵	-2 ¹⁵ -1	Short
Int	4B	-2 ³¹	-2 ³¹ -1	Integer
Long	8B	-2 ⁶³	-2 ⁶³ -1	Long

Reálné primitivní datové typy

Primitivní typ	Velikost	Minimum	Maximum	Wrapper Class
Float	4B	ANSI IEEE.754	ANSI IEEE.754	Float
Double	8B	ANSI IEEE.754	ANSI IEEE.754	Double

Pravdivostní primitivní datový typ

Primitivní typ	Velikost	Minimum	Maximum	Wrapper Class
boolean	Není přesně	false	true	Boolean
	definována			

Znakový primitivní datový typ

Primitivní typ	Velikost	Minimum	Maximum	Wrapper Class
Char	2B	Unicode 0	Unicode 2 ¹⁶ -1	Character
char znak	= 65; // ASCCI	hodnota písm	mene A	
char znak	= `A`;			
char znak	= `u00ff`;			

Datový typ void

Nelze vytvořit proměnnou datového typu void. Datový typ void pouze udává, že metoda nemá návratovou hodnotu.

Wrapper Class

Obalová třída, každý z 8 primitivních datových typů má "Wrapper Class", která určuje, co lze provádět s daným datovým typem.

Objektové datové typy

"Referenční datové typy". Jsou datové typy objektu. Hodnota referenční proměnné (proměnná s objektem) je odkaz na místo v paměti, kde je daný objekt (pole) uložen. Deklarace je téměř totožná s vytvořením normální proměnné, jen místo názvu se uvádí název třídy objektu.

```
String retezec = "Cosi";
```

```
public class cosi {
    public static void main(String[] args) {
        float a = 5;
        float b = 0;
        System.out.println(a / b); //Infinity
        float aa = 0;
        float bb = 0;
        System.out.println(aa / bb); //Not a Number (NaN)
    }
}
```