

Matematikk 1, (Analyse) Vår 2019

Oppgavetekst øving 1

Denne øvingen har siste frist for godkjenning fredag 25. januar. Godkjenning skjer i øvingstimene ved hjelp av QS. Inntil tre studenter kan godkjennes samtidig, forutsatt at alle tre er tilstede og aktive under godkjenningen.

Repetisjons oppgaver

R1 Vi har følgende regneregler for potenser av reelle tall $(a, b, r, s \in \mathbb{R}$ slik at potensene er definert):

$$(1) \ a^r \cdot a^s = a^{r+s}$$

$$(2) \ a^r \cdot b^r = (ab)^r$$

(3)
$$(a^r)^s = a^{rs} = (a^s)^r$$

1. Bruk disse regnereglene til å begrunne at

(a)
$$8^8 = 4^{12} = 64^4$$

(b)
$$2^{x+1} = 2^x + 2^x$$

2. Bruk regnereglene samt sammenhengene $\sqrt[n]{a} = a^{1/n}$ og $1/a = a^{-1}$ til å bevise følgende regneregler for røtter av reelle tall:

(a)
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

(b)
$$\sqrt[n]{a/b} = \sqrt[n]{a}/\sqrt[n]{b}$$

(c)
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

3. Vis at for
$$(y \neq 0)$$
 så er

$$\frac{\sqrt[6]{27}\sqrt{8x^4}}{\sqrt[4]{36y}} = 2x^2y^{-1/4}.$$

4. Under er gitt tre funksjoner. Forklar hvorfor ingen av disse er parvis like som funksjoner, ved å finne x-verdier der de ikke tar samme verdi. Husk at vi alltid antar at vi har størst mulig definisjonsmengde i \mathbb{R} med mindre noe annet er oppgitt.

$$f(x) = \sqrt{9x^2} \qquad \qquad g(x) = \frac{6x^2}{2x} \qquad \qquad h(x) = 3x$$

R2 Bruk logaritmereglene til å vise at

1.
$$\log 200 - \log 25 = 3 \log 2$$

2.
$$\log_2 \frac{2a}{b} + \log_2 \frac{1}{a^2} - \frac{\log_2 4}{2} = -\log_2(ab)$$

3.
$$\log_2 24 + \log_3 24 = 4 + \frac{\ln^2 3 + 3\ln^2 2}{\ln 2 \cdot \ln 3}$$

$$(\operatorname{Merk} \ln^2 a = (\ln a)^2)$$

R3 Denne oppgaven handler om trigonometri.

- 1. Vis at den eksakte verdien for $\tan(\pi/3)$ er $\sqrt{3}$, og for $\sin(7\pi/6)$ er -0.5. Du kan bruke "kjente" eksakte verdier (sinus og cosinus til vinklene i diagrammet i M2/formelsamlingen). Tips til sistnevnte: Uttrykk $7\pi/6$ som en sum av to "kjente" vinkler.
- 2. Bruk de trigonometriske identitetene fra forelesningen til å vise at

$$\frac{2\tan x}{1+\tan^2 x} = \sin 2x.$$

Fra Stewart 7E, avsnitt 1.2

8 Finn uttrykk for annengradspolynomene med følgende grafer:

Tips: Et annengradspolynom er generelt på formen $ax^2 + bx + c$ der a, b og c er relle tall. Kan vi sette opp ligninger for å bestemme a, b og c ut fra informasjonen på bildene?

Fra Stewart 7E, avsnitt 1.3

Bruk grafene til f og g til å finne verdien til hvert av utrykkene eller forklar hvorfor det ikke er definert.

$$\begin{array}{lll} \text{(a)} \ f(g(2)) & \text{(b)} \ g(f(0)) & \text{(c)} \ (f\circ g)(0) \\ \text{(d)} \ (g\circ f)(6) & \text{(e)} \ (g\circ g)(-2) & \text{(f)} \ (f\circ f)(4) \end{array}$$

Fra Stewart 7E, avsnitt 1.5

19 Finn definisjonsmengden til hever av funksjonene

a)
$$f(x) = \frac{1 - e^{x^2}}{1 - e^{1 - x^2}}$$

$$f(x) = \frac{1+x}{e^{\cos x}}$$

21 Finn funksjonen $f(x) = Ca^x$ som har grafen

Fra Stewart 7E, avsnitt 1.6

51a Løs likningen $2 \ln x = 1$ for x.

62 Batteriene til en blits begynner lade blitsens kondensator umiddelbart etter at den fyres av. Ladningen pÅ kondensatoren er gitt ved

$$Q(t) = Q_0(1 - e^{-t/a})$$

(Den maksimale ladekapasiteten er gitt ved Q_0 og t er målt i sekunder)

- a) Finn den inverse av denne funksjonen og forklar dens mening.
- b) Hvor lang tid tar det å lade opp kondensatoren til 90% av full kapasitet hvis a = 2?
- 67 Finn den eksakte verdien av hvert uttrykk

(a)
$$\tan(\arctan 10)$$

(PS: $\arctan x = \tan^{-1} x$)

(b)
$$\sin^{-1}(\sin(7\pi/3))$$

Andre oppgaver

A1 For hver av funksjonene a)-d), svar på spørsmål i)-v).

a)
$$f(x) = \ln x^2 \ (= \ln(x^2))$$

b)
$$g(x) = e^{\cos x}$$

c)
$$h(x) = x^5 + 5x^4 + 5x^3 - 5x^2 - 6x$$

d)
$$k(x) = 0$$

- i) Finn definisjonsmengden og verdimengden til funksjonen.
- ii) Skisser grafen til funksjonen for hånd.
- iii) Er funksjonen injektiv? Eventuelt hvorfor ikke?
- iv) Er funksjonen periodisk? Hvis den er det, hva er perioden?
- v) Er funksjonen jevn og/eller odde eller ingen av delene?