

CLAIMS

1

- 2 1. A microelectromechanical apparatus comprising:
3 a base;
4 a flap having a portion coupled to the base so that the
5 flap is movable out of the plane of the base from a first
6 angular orientation to a second angular orientation;
7 wherein the base has an opening that receives the flap
8 when the flap is in the second angular orientation, the
9 opening having one or more sidewalls, wherein at least one
10 of the sidewalls contacts a portion of the flap such that
11 the flap assumes an orientation substantially parallel to
12 that of the sidewall when the flap is in the second
13 angular orientation; and
14 a sidewall electrode disposed in one or more of the
15 sidewalls.

- 1 2. The microelectromechanical apparatus of claim 1 wherein
2 the flap further comprises a magnetically active element.

- 1 3. The microelectromechanical apparatus of claim 2 wherein
2 the magnetically active element is a magnetic material.

- 1 4. The microelectromechanical apparatus of claim 2 wherein
2 the magnetically active element is a coil.

- 1 5. The microelectromechanical apparatus of claim 2 further
2 comprising an external magnet.

- 1 6. The apparatus of claim 1 wherein the flap is connected to
2 the base by one or more flexures.

- 1 7. The apparatus of claim 7 wherein at least one flexure is
2 electrically conductive.

- 1 8. The microelectromechanical apparatus of claim 1 further
2 comprising a light-deflecting element disposed on the
3 flap.
- 1 9. The microelectromechanical apparatus of claim 1, wherein
2 the sidewall electrode is electrically isolated from the
3 base.
- 1 10. The microelectromechanical apparatus of claim 1 further
2 comprising:
3 a voltage source coupled between the flap and the sidewall
4 electrode to apply an electrostatic force between the
5 sidewall electrode and the flap.
- 1 11. The apparatus of claim 10 wherein the flap contains a
2 magnetically active material and the electrostatic force
3 between the sidewall electrode and the flap is sufficient
4 to prevent the flap from changing position in the presence
5 of an applied magnetic field.
- 1 12. The apparatus of claim 1 further comprising:
2 an electrode disposed on the base; and
3 a voltage source coupled between the electrode in the base
4 and the flap to apply an electrostatic force between the
5 electrode in the base and the flap.
- 1 13. The apparatus of claims 1 where the base is made from a
2 substrate portion of an SOI (silicon-on-insulator) wafer
3 and the flap is defined from a device layer portion of the
4 SOI wafer.
- 1 14. The apparatus of claim 1 wherein the one or more
2 flexures include one or more torsional beams.

- 1 15. The apparatus of claim 1, further comprising one or
2 more conductive landing pads disposed on an underside of
3 the flap wherein the one or more conductive landing pads
4 are electrically isolated from the flap.
- 1 16. The apparatus of claim 15, wherein one or more of the
2 conductive landing pads are electrically coupled to a
3 sidewall electrode.
- 1 17. The apparatus of claim 15 wherein one or more of the
2 conductive landing pads is electrically coupled to the
3 base.
- 1 18. The apparatus of claim 1 wherein the sidewall includes
2 a sidewall electrode and one or more conductive landing
3 pads that are electrically isolated from the sidewall
4 electrode.
- 1 19. The apparatus of claim 18 wherein one or more of the
2 landing pads are electrically coupled to the flap.
- 1 20. The apparatus of claim 18 wherein the sidewall
2 electrode is electrically isolated from the base.
- 1 21. An array of one or more structures, wherein each structure
2 comprises:
3 a base;
4 a flap having a portion coupled to the base so that the
5 flap is movable out of the plane of the base from a first
6 angular orientation to a second angular orientation, the
7 flap containing a reflecting element;
8 wherein the base has an opening with largely vertical
9 sidewalls, at least one of the sidewalls containing an
10 electrode, wherein the sidewalls contact a portion of the

11 flap such that the flap assumes an orientation
12 substantially parallel to that of the sidewall when the
13 flap is in the second angular orientation.

1 22. An array of claim 21 wherein one or more of the
2 structures includes a sidewall electrode disposed in
3 one or more of the sidewalls.

1 23. The array of claim 21, wherein the sidewall electrode
2 is electrically isolated from the base.

1 24. An array of claim 21 wherein the array forms an optical
2 switch.

1 25. An apparatus comprising:

2 a flap that is movable from a first angular orientation to
3 a second angular orientation; and
4 a magnetic material disposed on the flap, the magnetic
5 material having a stepped pattern.

1 26. A method for reducing stiction in a MEMS device having a
2 flap that is movable with respect to a base, the method
3 comprising:
4 applying a fixed force to the flap to move the flap at
5 least partially out of contact with an underlying base.
1