Matemáticas Discretas I Lógica de predicados - Sintaxis y Semántica¹

Juan Francisco Díaz Frias

Profesor Titular (1993-hoy) juanfco.diaz@correounivalle.edu.co Edif. 331 - 2111

Universidad del Valle

Septiembre 2018

¹Basado en http://www.logininaction.org ←□→←□→←≧→←≧→ ≥ → へへ

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados . . .

Enunciado Traducción con predicados

Juan lee

Juan Camina

Alguien lee y camina a la vez

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados

Enunciado Traducción con predicados
Juan lee
Juan Camina
Alguien lee y camina a la vez

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	q

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados

Enunciado	

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	q

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados ...

Enunciado	Traducción con predicados
Juan lee	Lee(j)
Juan Camina	
Alguien lee y camina a la vez	

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	q

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados ...

Enunciado	Traducción con predicados
Juan lee	Lee(j)
Juan Camina	
Alguien lee y camina a la vez	

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	q

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados ...

Enunciado	Traducción con predicados
Juan lee	Lee(j)
Juan Camina	Camina(j)
Alguien lee y camina a la vez	$\exists x Camina(x) \land Lee(x)$

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	q

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados . . .

Enunciado	Traducción con predicados
Juan lee	Lee(j)
Juan Camina	Camina(j)
Alguien lee y camina a la vez	$\exists x Camina(x) \land Lee(x)$

La lógica proposicional no es suficientemente expresiva

Considere las siguientes frases en lenguaje natural y su traducción en lógica proposicional:

Enunciado	Traducción proposicional
Juan lee	p
Juan Camina	q

Los dos enunciados hablan acerca de Juan, pero esto se pierde en la traducción

Con un lenguaje que incluye predicados . . .

Enunciado	Traducción con predicados
Juan lee	Lee(j)
Juan Camina	Camina(j)
Alguien lee y camina a la vez	$\exists x Camina(x) \land Lee(x)$

Según el diccionario:

- Predicado(GRAM): Parte de la oración cuyo núcleo es el verbo
- Predicado(LOG):Lo que se afirma o niega del sujeto en una proposición

Según el diccionario:

- Predicado(GRAM): Parte de la oración cuyo núcleo es el verbo
- Predicado(LOG):Lo que se afirma o niega del sujeto en una proposición

Según el diccionario:

- Predicado(GRAM): Parte de la oración cuyo núcleo es el verbo
- Predicado(LOG):Lo que se afirma o niega del sujeto en una proposición

Según el diccionario:

- Predicado(GRAM): Parte de la oración cuyo núcleo es el verbo
- Predicado(LOG):Lo que se afirma o niega del sujeto en una proposición

- hablar acerca de objetos, sus propiedades, y sus relaciones, y
- usar cuantificación universal y existencial.

Según el diccionario:

- Predicado(GRAM): Parte de la oración cuyo núcleo es el verbo
- Predicado(LOG):Lo que se afirma o niega del sujeto en una proposición

- hablar acerca de objetos, sus propiedades, y sus relaciones, y
- usar cuantificación universal y existencial.

Según el diccionario:

- Predicado(GRAM): Parte de la oración cuyo núcleo es el verbo
- Predicado(LOG):Lo que se afirma o niega del sujeto en una proposición

- hablar acerca de objetos, sus propiedades, y sus relaciones, y
- usar cuantificación universal y existencial.

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, \ldots
- Símbolos que representan variables: $x, y, z \dots$
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: $A, B, C, \ldots, P, Q, R, \ldots$
- Símbolos que representan operadores lógicos: ¬, ∨, ∧, ⇒ , ≡
- Símbolos que representan cuantificadores: ∃, ∀

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, . . .
- Símbolos que representan variables: $x, y, z \dots$
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: $A, B, C, \ldots, P, Q, R, \ldots$
- ullet Simbolos que representan operadores logicos: $\neg, \lor, \land, \Longrightarrow, \equiv$
- Símbolos que representan cuantificadores: ∃, ∀

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, . . .
- Símbolos que representan variables: $x, y, z \dots$
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: $A, B, C, \ldots, P, Q, R, \ldots$
- Símbolos que representan operadores lógicos: \neg , \lor , \land , \Longrightarrow , \equiv
- Símbolos que representan cuantificadores: ∃, ∀

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, \ldots
- Símbolos que representan variables: $x, y, z \dots$
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: A, B, C, ..., P, Q, R, ...
- Símbolos que representan operadores lógicos: \neg , \lor , \land , \Longrightarrow , \equiv
- Símbolos que representan cuantificadores: ∃, ∀

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, ...
- Símbolos que representan variables: $x, y, z \dots$
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: A, B, C, ..., P, Q, R, ...
- Símbolos que representan operadores lógicos: $\neg, \lor, \land, \Longrightarrow, \equiv$
- Símbolos que representan cuantificadores: ∃, ∀

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, \ldots
- Símbolos que representan variables: $x, y, z \dots$
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: A, B, C, ..., P, Q, R, ...
- Símbolos que representan operadores lógicos: $\neg, \lor, \land, \Longrightarrow, \equiv$
- Símbolos que representan cuantificadores: ∃, ∀

- Constantes de verdad: true, false
- Símbolos que representan constantes: a, b, c, \dots
- Símbolos que representan variables: x, y, z ...
- Símbolos que representan funciones: f, g, h, \ldots ,
- Símbolos que representan predicados: A, B, C, ..., P, Q, R, ...
- Símbolos que representan operadores lógicos: $\neg, \lor, \land, \Longrightarrow, \equiv$
- Símbolos que representan cuantificadores: ∃, ∀

La Gramática para construir fórmulas de la lógica de predicados es:

```
 \langle Predicado \rangle \rightarrow \langle SimPred \rangle (\{\langle Termino \rangle\}^+)| \\ \neg \langle Predicado \rangle | \\ \langle (Predicado) | \\ \langle (Predicado
```

La Gramática para construir fórmulas de la lógica de predicados es:

- $\langle opBinBooleano
 angle
 ightarrow A$
- Termino\
- $\langle SimVariable \rangle \mid \langle SimConstante \rangle \mid \langle SimFun \rangle (\{\langle Termino \rangle\}^{+})$

La Gramática para construir fórmulas de la lógica de predicados es:

```
raket{\operatorname{opBinBooleano}} 	o \equiv | \Longrightarrow | \setminus \ raket{\operatorname{Cuantificador}} 	o \exists, orall
```

 $(\{lermino\}) \rightarrow (\{lermino\})^{+}$

```
La Gramática para construir fórmulas de la lógica de predicados es: \langle Predicado \rangle \rightarrow \langle SimPred \rangle (\{\langle Termino \rangle\}^+)| 
\neg \langle Predicado \rangle |
(\langle Predicado \rangle \langle OpBinBooleano \rangle \langle Predicado \rangle)|
```

```
¬ (Predicado) |
((Predicado) ⟨opBinBooleano⟩ ⟨Predicado⟩)|
⟨Cuantificador⟩ ⟨SimVariable⟩ | ⟨Predicado⟩ : ⟨Predicado⟩ |
true|false
≡ | → | V | A
```

 $\langle Termino \rangle \rightarrow \langle SimVariable \rangle | \langle SimConstante \rangle | \langle SimFun \rangle (\{\langle Termino \rangle\}^+)$

```
La Gramática para construir fórmulas de la lógica de predicados es: \langle Predicado \rangle \rightarrow \langle SimPred \rangle (\{\langle Termino \rangle\}^+)| \neg \langle Predicado \rangle | (\langle Predicado \rangle | (\langle Predicado \rangle | \langle Cuantificador \rangle \langle SimVariable \rangle | \langle Predicado \rangle | \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \land \langle Cuantificador \rangle \rightarrow \Rightarrow | \forall | \langle Cuantificador \rangle \rightarrow | \langle
```

La Gramática para construir fórmulas de la lógica de predicados es:

```
(Predicado)
                             \rightarrow \langle SimPred \rangle (\{\langle Termino \rangle\}^+)|
                                     ¬ (Predicado) |
                                     ((Predicado) (opBinBooleano) (Predicado))
                                     ⟨Cuantificador⟩ ⟨SimVariable⟩ | ⟨Predicado⟩ : ⟨Predicado⟩ |
                                     true false
                            \rightarrow \equiv | \implies | \lor | \land
⟨opBinBooleano⟩
                             \rightarrow \exists. \forall
 Cuantificador \
⟨ Termino ⟩
                            \rightarrow \langle SimVariable \rangle | \langle SimConstante \rangle | \langle SimFun \rangle (\{\langle Termino \rangle\}^+)
```

• Ejemplos de expresiones:

 $\bullet \neg P(x)$

$$Q(x,h(y,b))$$

$$\bullet$$
 $\forall x | true : \phi$ se abreviará: $\forall x \phi$

$$\blacksquare$$
 $\exists x | true : \phi$ se abreviará: $\exists x \phi$

$$\exists x | P(x) : Q(g(a), x)$$

$$\exists x | P(x) : Q(a, x)$$

•
$$\forall x | R(x) : (H(x) \implies \exists y (M(y) \land Q(x, y)))$$

$$\exists y \forall x Q(y,x)$$

• $(P(f(a)) \wedge Q(x, h(y, b)))$

 \bullet $(\neg(Q(a,b)) \lor P(a))$

 $Q(x,y) \Longrightarrow Q(a,b)$

 $\neg ((Q(a, a) \equiv Q(a, b)))$

Ejemplos de expresiones:

•
$$Q(x, h(y, b))$$

$$\bullet \neg P(x)$$

•
$$(P(f(a)) \wedge Q(x, h(y, b)))$$

•
$$(\neg(Q(a,b)) \lor P(a))$$

•
$$(Q(x,y) \implies Q(a,b))$$

$$\blacksquare$$
 $\exists x | true : \phi$ se abreviará: $\exists x \phi$

$$\exists x | P(x) : Q(g(a), x)$$

$$\exists x | P(x) : Q(a, x)$$

•
$$\forall x | R(x) : (H(x) \implies \exists y (M(y) \land Q(x, y)))$$

Ejemplos de expresiones:

 $\bullet \neg P(x)$

$$Q(x,h(y,b))$$

- $\forall x | true : \phi \text{ se abreviará: } \forall x \phi$
- $\exists x | true : \phi \text{ se abreviará: } \exists x \phi$

$$\exists x | P(x) : Q(g(a), x)$$

$$\bullet$$
 $\exists x | P(x) : Q(a, x)$

• $(P(f(a)) \wedge Q(x, h(y, b)))$

 \bullet $(\neg(Q(a,b)) \lor P(a))$

 \bullet $(Q(x,y) \Longrightarrow Q(a,b))$

 $\neg ((Q(a,a) \equiv Q(a,b)))$

Sintaxis: construcción de predicados

Ejemplos de expresiones:

 $\bullet \neg P(x)$

•
$$Q(x, h(y, b))$$

•
$$\forall x | true : \phi$$
 se abreviará: $\forall x \phi$

•
$$\exists x | true : \phi$$
 se abreviará: $\exists x \phi$

$$\exists x | P(x) : Q(g(a), x)$$

$$\exists x | P(x) : Q(a, x)$$

•
$$\forall x | R(x) : (H(x) \implies \exists y (M(y) \land Q(x, y)))$$

• $(P(f(a)) \wedge Q(x, h(y, b)))$

 \bullet $(\neg(Q(a,b)) \lor P(a))$

 \bullet $(Q(x,y) \Longrightarrow Q(a,b))$

 $\neg ((Q(a,a) \equiv Q(a,b)))$

Sintaxis: construcción de predicados

Ejemplos de expresiones:

$$P(f(a))$$

$$\bullet \ (P(f(a)) \land Q(x, h(y, b)))$$

$$Q(x,h(y,b))$$

$$\bullet \ (\neg(Q(a,b)) \vee P(a))$$

$$(Q(x,y) \implies Q(a,b))$$

$$Q(x,b)$$

$$\neg ((Q(a,a) \equiv Q(a,b)))$$

•
$$\forall x | true : \phi$$
 se abreviará: $\forall x \phi$

•
$$\exists x | true : \phi$$
 se abreviará: $\exists x \phi$

$$\exists x | P(x) : Q(g(a), x)$$

$$\exists x | P(x) : Q(a, x)$$

•
$$\forall x | R(x) : (H(x) \implies \exists y (M(y) \land Q(x, y)))$$

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador $\forall (\exists, \text{ resp.})$ siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula φ una aparición de x está ligada si existe un cuantificador en φ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x,y)$

```
    x y y son:
```

x y x son:

- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador \forall (\exists , resp.) siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula φ una aparición de x está ligada si existe un cuantificador en φ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x,y)$
 - x y y son:
 - x y x son

- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador \forall (\exists , resp.) siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula ϕ una aparición de x está ligada si existe un cuantificador en ϕ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x,y)$
 - x y y son:
 - x y x son

- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador \forall (\exists , resp.) siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula ϕ una aparición de x está ligada si existe un cuantificador en ϕ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x,y)$
 - x y y son: libres
 - x y x son:

- En una fórmula de la forma $\forall x | \psi : \phi \ (\exists x | \psi : \phi, \text{ resp.})$, las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador \forall (\exists , resp.) siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula ϕ una aparición de x está ligada si existe un cuantificador en ϕ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x, y)$
 - x y y son: libres
 - x y x son: ligadas

- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador \forall (\exists , resp.) siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula ϕ una aparición de x está ligada si existe un cuantificador en ϕ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x, y)$
 - x y y son: libres
 - x y x son: ligadas

- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), las subfórmulas ψ y ϕ se conocen como el alcance del cuantificador \forall (\exists , resp.).
- En una fórmula de la forma $\forall x | \psi : \phi$ ($\exists x | \psi : \phi$, resp.), se dice que x está ligada al cuantificador \forall (\exists , resp.) siempre y cuando x no esté ligada a otro cuantificador en ψ y ϕ .
- En una fórmula ϕ una aparición de x está ligada si existe un cuantificador en ϕ al que x esté ligada.
- En una fórmula ϕ una aparición de x está libre si no está ligada a ningún cuantificador en ϕ .
- Considere la fórmula: $P(x) \land \forall x \ Q(x) : R(x, y)$
 - x y y son: libres
 - x y x son: ligadas

Fórmulas cerradas y abiertas

• Una fórmula ϕ es cerrada si ninguna variable aparece libre en ella.

$$\exists y P(y) \land \forall x \forall y | Q(x) : R(x, y)$$

• Una fórmula ϕ es abierta si al menos una variable aparece libre en ella.

$$P(x) \wedge \forall x | Q(x) : R(x, y)$$

Fórmulas cerradas y abiertas

• Una fórmula ϕ es cerrada si ninguna variable aparece libre en ella.

$$\exists y P(y) \land \forall x \forall y | Q(x) : R(x, y)$$

• Una fórmula ϕ es abierta si al menos una variable aparece libre en ella.

$$P(x) \wedge \forall x | Q(x) : R(x, y)$$

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente,

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$
Dado un término compuesto $f(t_1, \dots, t_k)$:

$$f(t_1,\ldots,t_k)_t^y = f((t_1)_t^y,\ldots,(t_k)_t^y)$$

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente,

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$
Dado un término compuesto $f(t_1, \dots, t_k)$:

$$f(t_1,\ldots,t_k)_t^y = f((t_1)_t^y,\ldots,(t_k)_t^y)$$

$$(a)_c^z = a$$
$$(x)_c^z = x$$
$$(z)_c^z = c$$

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente,

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$
Dado un término compuesto $f(t_1, \dots, t_k)$:

$$f(t_1,...,t_k)_t^y = f((t_1)_t^y,...,(t_k)_t^y)$$

$$(a)_c^z = a$$
$$(x)_c^z = x$$
$$(z)_c^z = c$$

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente,

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$
Dado un término compuesto $f(t_1, \dots, t_k)$:

$$f(t_1,\ldots,t_k)_t^y = f((t_1)_t^y,\ldots,(t_k)_t^y)$$

$$(a)_c^z = a$$
$$(x)_c^z = x$$

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente,

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$
Dado un término compuesto $f(t_1, \dots, t_k)$:

$$f(t_1,\ldots,t_k)_t^y = f((t_1)_t^y,\ldots,(t_k)_t^y)$$

$$(a)_c^z = a$$
$$(x)_c^z = x$$
$$(z)_c^z = c$$

 El término que resulta de reemplazar las apariciones de la variable y por el término t dentro del término s se denota como

$$(s)_t^y$$

Formalmente,

Dada una constante
$$c: (c)_t^y = c$$

Dada una variable $x: \begin{cases} (x)_t^y = x & x \neq y \\ (y)_t^y = t \end{cases}$
Dado un término compuesto $f(t_1, \dots, t_k)$:

$$f(t_1,\ldots,t_k)_t^y = f((t_1)_t^y,\ldots,(t_k)_t^y)$$

$$(a)_c^z = a$$
$$(x)_c^z = x$$
$$(z)_c^z = c$$

• La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula ϕ se denota como

$$(\phi)_t^y$$

Formalmente,

 $P(t_1,\ldots,t_k)_t^Y = P((t_1)_t^Y,\ldots,(t_k)_t^Y)$

• La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula ϕ se denota como

$$(\phi)_t^y$$

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\phi \land \psi)_t^y = (\phi)_t^y \land (\psi)_t^y$$

$$\begin{cases} (\forall x | \psi : \phi)_t^y = \forall x | (\psi)_t^y : (\phi)_t^y \\ (\forall y | \psi : \phi)_t^y = \forall y | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists x | \psi : \phi)_t^y = \exists x | (\psi)_t^y : (\phi)_t^y \\ (\exists y | \psi : \phi)_t^y = \exists y | \psi : \phi \end{cases}$$

• La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula ϕ se denota como

$$(\phi)_t^y$$

Formalmente,

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\phi \land \phi)_t^y = (\phi)_t^y \land (\phi)_t^y$$

 $(\phi \Rightarrow \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$ $(\phi \Rightarrow \psi)_t^y = (\phi)_t^y \Rightarrow (\psi)_t^y$ $(\phi \equiv \psi)_t^y = (\phi)_t^y \equiv (\psi)_t^y$

• La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula ϕ se denota como

$$(\phi)_t^y$$

Formalmente,

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\neg \phi)_t^y = (\phi)_t^y \land (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

 $\begin{cases} (\forall \mathbf{x} | \psi : \phi)_t^{\mathbf{y}} = \forall \mathbf{x} | (\psi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} \\ (\forall \mathbf{y} | \psi : \phi)_t^{\mathbf{y}} = \forall \mathbf{y} | \psi : \phi \end{cases}$ $\begin{cases} (\exists \mathbf{x} | \psi : \phi)_t^{\mathbf{y}} = \exists \mathbf{x} | (\psi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} \\ (\exists \mathbf{y} | \psi : \phi)_t^{\mathbf{y}} = \exists \mathbf{y} | \psi : \phi \end{cases}$

• La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula ϕ se denota como

$$(\phi)_t^y$$

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\phi \land \psi)_t^y = (\phi)_t^y \land (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y \Longrightarrow (\psi)_t^y$$

$$\begin{cases} (\forall \mathbf{x} | \psi : \phi)_t^{\mathbf{y}} = \forall \mathbf{x} | (\psi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} \\ (\forall \mathbf{y} | \psi : \phi)_t^{\mathbf{y}} = \forall \mathbf{y} | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists \mathbf{x} | \psi : \phi)_t^{\mathbf{y}} = \exists \mathbf{x} | (\psi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} \\ (\exists \mathbf{y} | \psi : \phi)_t^{\mathbf{y}} = \exists \mathbf{y} | \psi : \phi \end{cases}$$

• La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula ϕ se denota como

$$(\phi)_t^y$$

$$(P(t_1, \dots, t_k))_t^Y = P((t_1)_t^Y, \dots, (t_k)_t^Y)$$

$$(\neg \phi)_t^Y = \neg (\phi)_t^Y$$

$$(\phi \land \psi)_t^Y = (\phi)_t^Y \land (\psi)_t^Y$$

$$(\phi \lor \psi)_t^Y = (\phi)_t^Y \lor (\psi)_t^Y$$

$$(\phi \Longrightarrow \psi)_t^Y = (\phi)_t^Y \Longrightarrow (\psi)_t^Y$$

$$\begin{cases} (\forall \mathbf{x} | \psi : \phi)_t^{\mathbf{y}} = \forall \mathbf{x} | (\psi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} \\ (\forall \mathbf{y} | \psi : \phi)_t^{\mathbf{y}} = \forall \mathbf{y} | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists \mathbf{x} | \psi : \phi)_t^{\mathbf{y}} = \exists \mathbf{x} | (\psi)_t^{\mathbf{y}} : (\phi)_t^{\mathbf{y}} \\ (\exists \mathbf{y} | \psi : \phi)_t^{\mathbf{y}} = \exists \mathbf{y} | \psi : \phi \end{cases}$$

 La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula φ se denota como

 $(\phi)_t^y$

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\phi \land \psi)_t^y = (\phi)_t^y \land (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y \Longrightarrow (\psi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y \Longrightarrow (\psi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y \Longrightarrow (\psi)_t^y$$

$$\begin{cases} (\forall x | \psi : \phi)_t^y = \forall x | (\psi)_t^y : (\phi)_t^y \\ (\forall y | \psi : \phi)_t^y = \forall y | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists x | \psi : \phi)_t^y = \exists x | (\psi)_t^y : (\phi)_t^y \\ (\exists y | \psi : \phi)_t^y = \exists y | \psi : \phi \end{cases}$$

 La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula φ se denota como

 $(\phi)_t^y$

$$(P(t_1, \dots, t_k))_t^Y = P((t_1)_t^Y, \dots, (t_k)_t^Y)$$

$$(\neg \phi)_t^Y = \neg (\phi)_t^Y$$

$$(\phi \land \psi)_t^Y = (\phi)_t^Y \land (\psi)_t^Y$$

$$(\phi \lor \psi)_t^Y = (\phi)_t^Y \lor (\psi)_t^Y$$

$$(\phi \Longrightarrow \psi)_t^Y = (\phi)_t^Y \Longrightarrow (\psi)_t^Y$$

$$(\phi \Longrightarrow \psi)_t^Y = (\phi)_t^Y \Longrightarrow (\psi)_t^Y$$

$$(\phi \equiv \psi)_t^Y = (\phi)_t^Y \equiv (\psi)_t^Y$$

$$\begin{cases} (\forall x | \psi : \phi)_t^y = \forall x | (\psi)_t^y : (\phi)_t^y \\ (\forall y | \psi : \phi)_t^y = \forall y | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists x | \psi : \phi)_t^y = \exists x | (\psi)_t^y : (\phi)_t^y \\ (\exists y | \psi : \phi)_t^y = \exists y | \psi : \phi \end{cases}$$

 La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula φ se denota como

 $(\phi)_t^y$

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\phi \land \psi)_t^y = (\phi)_t^y \land (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y = (\phi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y \equiv (\psi)_t^y$$

$$(\phi \equiv \psi)_t^y = (\phi)_t^y \equiv (\psi)_t^y$$

$$\begin{cases} (\forall x | \psi : \phi)_t^y = \forall x | (\psi)_t^y : (\phi)_t^y \\ (\forall y | \psi : \phi)_t^y = \forall y | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists x | \psi : \phi)_t^y = \exists x | (\psi)_t^y : (\phi)_t^y \\ (\exists y | \psi : \phi)_t^y = \exists y | \psi : \phi \end{cases}$$

 La fórmula que resulta de reemplazar las apariciones libres de la variable y por el término t dentro de la fórmula φ se denota como

 $(\phi)_t^y$

$$(P(t_1, \dots, t_k))_t^y = P((t_1)_t^y, \dots, (t_k)_t^y)$$

$$(\neg \phi)_t^y = \neg (\phi)_t^y$$

$$(\phi \land \psi)_t^y = (\phi)_t^y \land (\psi)_t^y$$

$$(\phi \lor \psi)_t^y = (\phi)_t^y \lor (\psi)_t^y$$

$$(\phi \Longrightarrow \psi)_t^y = (\phi)_t^y \Longrightarrow (\psi)_t^y$$

$$(\phi \equiv \psi)_t^y = (\phi)_t^y \equiv (\psi)_t^y$$

$$(\phi \equiv \psi)_t^y = (\phi)_t^y \equiv (\psi)_t^y$$

$$\begin{cases} (\forall x | \psi : \phi)_t^y = \forall x | (\psi)_t^y : (\phi)_t^y \\ (\forall y | \psi : \phi)_t^y = \forall y | \psi : \phi \end{cases}$$

$$\begin{cases} (\exists x | \psi : \phi)_t^y = \exists x | (\psi)_t^y : (\phi)_t^y \\ (\exists y | \psi : \phi)_t^y = \exists y | \psi : \phi \end{cases}$$

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

Enunciar silogismos

- Todo A es E
- Existe un A que es E
- Todo A es no B (Ningún A es B
- Existe un A que no es B (No todo A es B)

 $\forall x | A(x) : B(x)$

 $\exists x | A(x) : B(x)$

 $\forall x | A(x) : \neg B(x) \ (\neg \exists x | A : B)$

 $\exists x | A(x) : \neg B(x) (\neg \forall x | A : b)$

Juan ve a María María ve a Juan Juan le da el libro a María

Todos ven a alguien Alguien ve a todos odos son vistos por alguien Alguien es visto por todos

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- Todo A es no B (Ningún A es B
- Existe un A que no es B (No todo A es B

 $\forall x | A(x) : B(x)$

 $\exists x | A(x) : B(x)$

 $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$

 $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Juan ve a María María ve a Juan Juan le da el libro a María

Todos ven a alguien Alguien ve a todos odos son vistos por alguien Alguien es visto por todos

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- Todo A es no B (Ningún A es B
- Existe un A que no es B (No todo A es B

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- $\exists x | A(x) : \neg B(x) \ (\neg \forall x | A : B$

entre dos o más objetc

Juan ve a María María ve a Juan Juan le da el libro a María

Todos ven a alguien
Alguien ve a todos
dos son vistos por alguien

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- Todo A es no B (Ningún A es B)
- Existe un A que no es B (No todo A es B)

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

=xpresar relaciones entre dos o más objetos

Juan ve a María María ve a Juan Juan le da el libro a María

> odos ven a alguien Alguien ve a todos

Alguien es vistos por alguien

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- Todo A es no B (Ningún A es B)
- Existe un A que no es B (No todo A es B)

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- $\exists x | A(x) : \neg B(x) \ (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María María ve a Juan Juan le da el libro a María

Todos ven a alguien
Alguien ve a todos

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- Todo A es no B (Ningún A es B)
- Existe un A que no es B (No todo A es B)

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
 - $\exists x | A(x) : \neg B(x) \ (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j,m)María ve a Juan Ve(m,j)Juan le da el libro a María

Todos ven a alguien

Todos son vistos por alguier

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- a T I A D (NI)
- Todo A es no B (Ningún A es B)
- Existe un A que no es B (No todo A es B)

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan

Juan le da el libro a María Ve(m, j) Ve(m, j)

Expresar

Todos ven a alguien Alguien ve a todos Todos son vistos por alguien Alguien es visto por todos

Enunciar silogismos

- Todo A es B
 - $\forall x | A(x) : B(x)$ $\exists x | A(x) : B(x)$
- Existe un A que es B
- Todo A es no B (Ningún A es B) $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- Existe un A que no es B (No todo A es B)

 $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María

Enunciar silogismos

- Todo A es B
 - $\forall x | A(x) : B(x)$
- Existe un A que es B
- Todo A es no B (Ningún A es B) $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- Existe un A que no es B (No todo A es B)

 $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

 $\exists x | A(x) : B(x)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María Dar(j, l, m)

Enunciar silogismos

- Todo A es B
 - $\forall x | A(x) : B(x)$ $\exists x | A(x) : B(x)$
- Existe un A que es B
- Todo A es no B (Ningún A es B) $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- Existe un A que no es B (No todo A es B)

 $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María Dar(j, l, m)

Expresar cuantificaciones

Todos ven a alguien Alguien ve a todos Todos son vistos por alguien Alguien es visto por todos

Enunciar silogismos

- Todo A es B
- $\forall x | A(x) : B(x)$ $\exists x | A(x) : B(x)$
- Existe un A que es B
- Todo A es no B (Ningún A es B) $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- Existe un A que no es B (No todo A es B)

$\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María Dar(j, l, m)

Expresar cuantificaciones

Todos ven a alguien $\forall x \exists y Ve(x, y)$ Alguien ve a todos Todos son vistos por alguien Alguien es visto por todos

Enunciar silogismos

- Todo A es B
- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$ Existe un A que es B
- Todo A es no B (Ningún A es B) $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- Existe un A que no es B (No todo A es B) $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María Dar(j, l, m)

Expresar cuantificaciones

Todos ven a alguien $\forall x \exists y Ve(x, y)$ Alguien ve a todos $\exists x \forall y Ve(x, y)$ Todos son vistos por alguien Alguien es visto por todos

Enunciar silogismos

- Todo A es B
- Todo // cs D
- Existe un A que es B
- Todo A es no B (Ningún A es B)
- Existe un A que no es B (No todo A es B)

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María Dar(j, l, m)

Expresar cuantificaciones

Enunciar silogismos

- Todo A es B
- Existe un A que es B
- Todo A es no B (Ningún A es B)
- Existe un A que no es B (No todo A es B)

- $\forall x | A(x) : B(x)$
- $\exists x | A(x) : B(x)$
- $\forall x | A(x) : \neg B(x) (\neg \exists x | A : B)$
- $\exists x | A(x) : \neg B(x) (\neg \forall x | A : B)$

Expresar relaciones entre dos o más objetos

Juan ve a María Ve(j, m)María ve a Juan Ve(m, j)Juan le da el libro a María Dar(j, l, m)

Expresar cuantificaciones

Todos ven a alguien	$\forall x \exists y Ve(x, y)$
Alguien ve a todos	$\exists x \forall y Ve(x, y)$
Todos son vistos por alguien	$\forall x \exists y Ve(y, x)$
Alguien es visto por todos	$\exists x \forall y Ve(y, x)$

x es hincha de y X es aficionado X X es un equipo de fútbol X

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \exists y | E(y) : H(x, y)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: ∀x|A(x): (∀y|E(y): H(x,y)) ⇒ ¬∃y|E(y): H(x,y)

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \exists y | E(y) : H(x, y)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: $\forall x | A(x) : (\forall y | E(y) : H(x, y)) \implies \exists y | E(y) : H(x, y)$


```
x es hincha de y H(x, y)

x es aficionado A(x)

y es un equipo de fútbol E(y)
```

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \exists y | E(y) : H(x, y)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: $\forall x | A(x) : (\forall y | E(y) : H(x,y)) \implies \neg \exists y | E(y) : H(x,y)$

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \phi(x)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: $\forall x | A(x) : (\forall y | E(y) : H(x,y)) \implies \neg \exists y | E(y) : H(x,y)$


```
x es hincha de y H(x, y)

x es aficionado A(x)

y es un equipo de fútbol E(y)
```

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \exists y | E(y) : H(x, y)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: $\forall x | A(x) : (\forall y | E(y) : H(x,y)) \implies \neg \exists y | E(y) : H(x,y)$


```
x es hincha de y H(x, y)

x es aficionado A(x)

y es un equipo de fútbol E(y)
```

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \exists y | E(y) : H(x, y)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: $\forall x | A(x) : \phi(x)$

•

```
x es hincha de y H(x, y)

x es aficionado A(x)

y es un equipo de fútbol E(y)
```

- Todo aficionado es hincha de un equipo de fútbol: $\forall x | A(x) : \exists y | E(y) : H(x, y)$
- Todo aficionado que sea hincha de todos los equipos no es hincha de ningún equipo: $\forall x | A(x) : (\forall y | E(y) : H(x,y)) \implies \neg \exists y | E(y) : H(x,y)$

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - P(t₁,...,t_k): Es un predicado. Su valor de verdad puede ser verdadero(V)
 o falso(F). Depende de lo que significa P.
- Los predicados complejos son
 - $\neg \phi$: Igual que en la lógica proposicional
 - generates ϕ compiler tambiés el predicado ϕ i common generativado $|\phi| = \phi$. Su valor de verdad depende de que exista un se que compile el predicado de servicio de servi
- Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario:
 - Interpretar los símbolos de constante, de función y de predicado: modelo

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - P(t₁,...,t_k): Es un predicado. Su valor de verdad puede ser verdadero(V)
 o falso(F). Depende de lo que significa P.
- Los predicados complejos son:
 - $\neg \phi$: Igual que en la lógica proposicional.

Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario:
 Interpretar los símbolos de constante de función y de predicado, modelo
 Interpretar los símbolos de constante de función y de predicado.

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - P(t₁,...,t_k): Es un predicado. Su valor de verdad puede ser verdadero(V)
 o falso(F). Depende de lo que significa P.
- Los predicados complejos son:
 - $\neg \phi$: Igual que en la lógica proposicional.
 - ϕ_1 ϕ_2 : Igual que en la lógica proposicional.
 - $\forall x | \psi : \phi$: Su valor de verdad depende de que todos los x que cumplan el predicado ψ cumplan también el predicado ϕ . Conjunción generalizada
 - $\exists x | \psi : \phi$: Su valor de verdad depende de que exista un x que cumpla el predicado ψ y cumpla también el predicado ϕ .Disyunción generalizada
- Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario:
 Interpretar los símbolos de constante, de función y de predicado: modelo

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - P(t₁,...,t_k): Es un predicado. Su valor de verdad puede ser verdadero(V)
 o falso(F). Depende de lo que significa P.
- Los predicados complejos son:
 - $\neg \phi$: Igual que en la lógica proposicional.
 - ϕ_1 ϕ_2 : Igual que en la lógica proposicional.
 - $\forall x | \psi : \phi$: Su valor de verdad depende de que todos los x que cumplan el predicado ψ cumplan también el predicado ϕ . Conjunción generalizada
 - $\exists x | \psi : \phi$: Su valor de verdad depende de que exista un x que cumpla el predicado ψ v cumpla también el predicado ϕ . Disvunción generalizada
- Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario
 - Interpretar los símbolos de constante, de función y de predicado: modelo

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - P(t₁,...,t_k): Es un predicado. Su valor de verdad puede ser verdadero(V)
 o falso(F). Depende de lo que significa P.
- Los predicados complejos son:
 - $\neg \phi$: Igual que en la lógica proposicional.
 - ϕ_1 ϕ_2 : Igual que en la lógica proposicional.
 - $\forall x | \psi : \phi$: Su valor de verdad depende de que todos los x que cumplan el predicado ψ cumplan también el predicado ϕ . Conjunción generalizada
 - ∃x|ψ: φ: Su valor de verdad depende de que exista un x que cumpla el predicado ψ y cumpla también el predicado φ.Disyunción generalizada
- Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario
 - Interpretar los símbolos de constante, de función y de predicado: modelo

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - P(t₁,...,t_k): Es un predicado. Su valor de verdad puede ser verdadero(V)
 o falso(F). Depende de lo que significa P.
- Los predicados complejos son:
 - $\neg \phi$: Igual que en la lógica proposicional.
 - ϕ_1 ϕ_2 : Igual que en la lógica proposicional.
 - $\forall x | \psi : \phi$: Su valor de verdad depende de que todos los x que cumplan el predicado ψ cumplan también el predicado ϕ . Conjunción generalizada
 - $\exists x | \psi : \phi$: Su valor de verdad depende de que exista un x que cumpla el predicado ψ y cumpla también el predicado ϕ . Disyunción generalizada
- Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario
 - Interpretar los símbolos de constante, de función y de predicado: modelo
 - Calcular la verdad o falsedad de la proposición con respecto a ese modelo.

- La semántica de una fórmula tiene que ver con valorar la verdad o falsedad del predicado.
- Los predicados simples son:
 - true: este predicado siempre significará verdadero(V)
 - false: este predicado siempre significará falso(F)
 - $P(t_1, ..., t_k)$: Es un predicado. Su valor de verdad puede ser verdadero(V) o falso(F). Depende de lo que significa P.
- Los predicados complejos son:
 - $\neg \phi$: Igual que en la lógica proposicional.
 - φ₁ φ₂: Igual que en la lógica proposicional.
 - $\forall x | \psi : \phi$: Su valor de verdad depende de que todos los x que cumplan el predicado ψ cumplan también el predicado ϕ . Conjunción generalizada
 - $\exists x | \psi : \phi$: Su valor de verdad depende de que exista un x que cumpla el predicado ψ y cumpla también el predicado ϕ .Disyunción generalizada
- Para pronunciarse sobre la verdad o falsedad de un predicado, es necesario:
 - Interpretar los símbolos de constante, de función y de predicado: modelo
 - Calcular la verdad o falsedad de la proposición con respecto a ese modelo.

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

Considere un universo con \mathbf{C} írculos y c \mathbf{U} adrados que pueden tomar colores \mathbf{R} ojo,

Verde y Azul como el siguiente: ([Socrative])

- A(a)
- \bullet $\exists x | R(x) : U(x) \lor C(b)$
- $R(a) \Longrightarrow U(b)$

- $A(a) \wedge V(b)$
- $\bullet \neg U(a)$
- $0 R(a) \Longrightarrow \exists x | R(x) : U(x)$

Verde y Azul como el siguiente: ([Socrative])

Considere un universo con \mathbf{C} írculos y c \mathbf{U} adrados que pueden tomar colores \mathbf{R} ojo,

- A(a)
- \bullet $\exists x | R(x) : U(x) \lor C(b)$
- $R(a) \Longrightarrow U(b)$

Considere un universo con Círculos y cUadrados que pueden tomar colores Rojo,

Verde y Azul como el siguiente: ([Socrative])

- A(a)
- \bullet $\exists x | R(x) : U(x) \lor C(b)$
- \bullet $R(a) \Longrightarrow U(b)$

•
$$A(a) \wedge V(b)$$

$$\neg U(a)$$

$$R(a) \Longrightarrow \exists x | K(x) : U(x)$$

Considere un universo con Círculos y cUadrados que pueden tomar colores Rojo,

Verde y Azul como el siguiente: ([Socrative])

- A(a)
- $\bullet \ \exists x | R(x) : U(x) \lor C(b)$
- $R(a) \implies U(b)$

- $A(a) \wedge V(b)$
- $\neg U(a)$

Considere un universo con Círculos y cUadrados que pueden tomar colores Rojo,

Verde y Azul como el siguiente: ([Socrative])

- A(a)
- $\bullet \exists x | R(x) : U(x) \lor C(b)$
- $R(a) \implies U(b)$

•
$$A(a) \wedge V(b)$$

$$\neg U(a)$$

Considere un universo con Círculos y cUadrados que pueden tomar colores Rojo,

Verde y Azul como el siguiente: ([Socrative])

- A(a)
- \bullet $\exists x | R(x) : U(x) \lor C(b)$
- $R(a) \implies U(b)$

•
$$A(a) \wedge V(b)$$

- $\neg U(a)$

Considere un universo con Círculos y cUadrados que pueden tomar colores Rojo, Verde y Azul como el siguiente: ([Socrative])

- \bullet $\exists x R(x)$
- \bullet $\forall x | R(x) : C(x)$
- $= \exists x | V(x) : C(x)$

Considere un universo con **C**írculos y c**U**adrados que pueden tomar colores **R**ojo, Verde y Azul como el siguiente: ([Socrative])

- $\exists x R(x)$
- $\forall x | R(x) : C(x)$
- $\bullet \exists x | V(x) : C(x)$

Considere un universo con Círculos y c ${f U}$ adrados que pueden tomar colores ${f R}$ ojo,

Verde y Azul como el siguiente: ([Socrative])

- $\exists x R(x)$
- $\forall x | R(x) : C(x)$

Considere un universo con Círculos y c ${f U}$ adrados que pueden tomar colores ${f R}$ ojo,

Verde y Azul como el siguiente: ([Socrative])

- $\exists x R(x)$
- $\forall x | R(x) : C(x)$
- $\exists x | V(x) : C(x)$

- $\neg \forall x \neg R(x)$
- $\exists x (V(x) \Longrightarrow_{\bullet} C(x))$

Considere un universo con ${f C}$ írculos y c ${f U}$ adrados que pueden tomar colores ${f R}$ ojo,

Verde y Azul como el siguiente: ([Socrative])

- $\bullet \exists x R(x)$
- $\forall x | R(x) : C(x)$
- $\exists x | V(x) : C(x)$

- $\neg \forall x \neg R(x)$
- $\forall x (R(x) \land C(x))$
- $\exists x (V(x) \Longrightarrow C(x))$

Considere un universo con Círculos y c ${f U}$ adrados que pueden tomar colores ${f R}$ ojo,

Verde y Azul como el siguiente: ([Socrative])

- \bullet $\exists x R(x)$
- $\forall x | R(x) : C(x)$
- $\bullet \ \exists x | V(x) : C(x)$

- $\neg \forall x \neg R(x)$
- $\forall x (R(x) \land C(x))$
- $\bullet \ \exists x (V(x) \Longrightarrow C(x))$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- $\bullet \ A(j,k) \implies A(k,j)$
- $\neg (A(j,k) \land A(k,j))$
- $\forall x | H(x) : A(x, k)$
- $\bullet \ \forall x | (H(x) \lor M(x)) : \neg A(x,p)$

- $(A(j,k) \land A(p,k)) \Longrightarrow ((\neg A(p,j) \land (\neg A(k,j)))$ $\neg \forall x | M(x) : A(x,x)$
- $\bullet \neg \exists x | M(x) \cdot A(p \times) \land A(x \mid i)$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- $\bullet \ A(j,k) \implies A(k,j)$

- $\bullet \ \forall x | (H(x) \lor M(x)) : \neg A(x, p)$

- $(A(j,k) \land A(p,k)) \Longrightarrow$ $((\neg A(p,j) \land (\neg A(k,j)))$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- $\bullet \ A(j,k) \implies A(k,j)$
- $\bullet \neg (A(j,k) \land A(k,j))$

- $(A(j,k) \wedge A(p,k)) = ((\neg A(p,j) \wedge (\neg A(k,j)))$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- $\bullet \ A(j,k) \implies A(k,j)$
- $\bullet \neg (A(j,k) \land A(k,j))$

$$(A(j,k) \land A(p,k)) \Longrightarrow ((\neg A(p,j) \land (\neg A(k,j)))$$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- \bullet $A(j,k) \implies A(k,j)$
- $\bullet \neg (A(j,k) \land A(k,j))$

$$(A(j,k) \land A(p,k)) \Longrightarrow ((\neg A(p,j) \land (\neg A(k,j)))$$

$$\bullet \neg \exists x | M(x) : A(p, x) \land A(x, j)$$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- \bullet $A(j,k) \implies A(k,j)$
- $\bullet \neg (A(j,k) \land A(k,j))$

$$(A(j,k) \land A(p,k)) \Longrightarrow ((\neg A(p,j) \land (\neg A(k,j)))$$

Considere un universo con Hombres y Mujeres que pueden relacionarse por medio de la relación Ama a

- \bullet $A(j,k) \implies A(k,j)$
- $\bullet \neg (A(j,k) \land A(k,j))$
- \bullet $\forall x | (H(x) \lor M(x)) : \neg A(x, p)$

$$(A(j,k) \land A(p,k)) \Longrightarrow ((\neg A(p,j) \land (\neg A(k,j)))$$

- $\bullet \neg \exists x | M(x) : A(p,x) \land A(x,j)$

Un modelo para una fórmula ϕ es una tripleta $\mathcal{M} = \langle D, I, g \rangle$ en la cual:

- D es el dominio: una colección no vacía de objetos;
- I es la función de interpretación que asigna a
 - cada símbolo de constante de ϕ un objeto en D;
 - cada símbolo de predicado de ϕ una relación sobre D;
 - ullet cada símbolo de función de ϕ una función sobre D
- g es la asignación de variables, que asigna a cada variable libre de ϕ un objeto en D.

Una fórmula ϕ es satisfactible si existe un modelo $\mathcal M$ que satisfaga ϕ , y se denotará

$$\mathcal{M} \models \phi$$

Una fórmula ϕ es válida si todo modelo ${\cal M}$ satisface ϕ

Un modelo para una fórmula ϕ es una tripleta $\mathcal{M} = \langle D, I, g \rangle$ en la cual:

- D es el dominio: una colección no vacía de objetos;
- I es la función de interpretación que asigna a
 - cada símbolo de constante de ϕ un objeto en D;
 - cada símbolo de predicado de ϕ una relación sobre D;
 - ullet cada símbolo de función de ϕ una función sobre D
- g es la asignación de variables, que asigna a cada variable libre de ϕ un objeto en D.

Una fórmula ϕ es satisfactible si existe un modelo $\mathcal M$ que satisfaga ϕ , y se denotará

$$\mathcal{M} \models \phi$$

Una fórmula ϕ es válida si todo modelo ${\mathcal M}$ satisface ϕ

Un modelo para una fórmula ϕ es una tripleta $\mathcal{M} = \langle D, I, g \rangle$ en la cual:

- D es el dominio: una colección no vacía de objetos;
- I es la función de interpretación que asigna a
 - cada símbolo de constante de ϕ un objeto en D;
 - cada símbolo de predicado de ϕ una relación sobre D;
 - ullet cada símbolo de función de ϕ una función sobre D
- g es la asignación de variables, que asigna a cada variable libre de ϕ un objeto en D.

Una fórmula ϕ es satisfactible si existe un modelo $\mathcal M$ que satisfaga ϕ , y se denotará

$$\mathcal{M} \models \phi$$

Una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ

Un modelo para una fórmula ϕ es una tripleta $\mathcal{M} = \langle D, I, g \rangle$ en la cual:

- D es el dominio: una colección no vacía de objetos;
- I es la función de interpretación que asigna a
 - cada símbolo de constante de ϕ un objeto en D;
 - cada símbolo de predicado de ϕ una relación sobre D;
 - ullet cada símbolo de función de ϕ una función sobre D
- g es la asignación de variables, que asigna a cada variable libre de ϕ un objeto en D.

Una fórmula ϕ es satisfactible si existe un modelo $\mathcal M$ que satisfaga ϕ , y se denotará

$$\mathcal{M} \models \phi$$

Una fórmula ϕ es válida si todo modelo ${\mathcal M}$ satisface ϕ

Un modelo para una fórmula ϕ es una tripleta $\mathcal{M} = \langle D, I, g \rangle$ en la cual:

- D es el dominio: una colección no vacía de objetos;
- I es la función de interpretación que asigna a
 - cada símbolo de constante de ϕ un objeto en D;
 - cada símbolo de predicado de ϕ una relación sobre D;
 - ullet cada símbolo de función de ϕ una función sobre D
- g es la asignación de variables, que asigna a cada variable libre de ϕ un objeto en D.

Una fórmula ϕ es satisfactible si existe un modelo $\mathcal M$ que satisfaga ϕ , y se denotará

$$\mathcal{M} \models \phi$$

Una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ

Plan

- Motivación
- 2 Sintaxis
 - Gramática
 - Alcance, variables libres y ligadas
 - Substitución
 - Traducción del LN
- Semántica
 - El concepto de modelo
 - Satisfactibilidad y modelos

Semántica: el valor de un término en un modelo

Calculando valores de términos

Dado un modelo $\mathcal{M} = \langle D, I, g \rangle$, el valor de un término t se denota

$$||t||_g^I$$

y se define así:

- Si el término es una constante a: $\|a\|_g^I = I(a)$
- Si el término es una variable $x: \|x\|_g^I = g(x)$
- Si el término es compuesto $f(t_1, ..., t_k)$: $\|f(t_1, ..., t_k)\|_g^l = I(f)(\|t_1\|_g^l, ..., \|t_k\|_g^l)$

Dado un modelo $\mathcal{M}=\langle D,I,g\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

y se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

- Si $\phi = \neg \varphi$, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$
- Si $\phi = \varphi \wedge \psi$, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$
- Si $\phi = \varphi \vee \psi$, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \vee \|\psi\|^{\mathcal{M}}$
- Si $\phi = \varphi \implies \psi$, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{M}}$
- Si $\phi = \varphi \equiv \psi$, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$
- ullet $\phi=orall x|arphi:\psi$ o $\phi=\exists x|arphi:\psi$ necesitamos un concepto más: la extensión de g

Dado un modelo $\mathcal{M}=\langle D,I,\mathbf{g}\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

y se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

• Si
$$\phi = \neg \varphi$$
, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$

• Si
$$\phi = \varphi \wedge \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \vee \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \vee \|\psi\|^{\mathcal{N}}$

• Si
$$\phi = \varphi \implies \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{N}}$

• Si $\phi = \varphi \equiv \psi$, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$

Dado un modelo $\mathcal{M}=\langle D,I,\mathbf{g}\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

v se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

• Si
$$\phi = \neg \varphi$$
, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$

• Si
$$\phi = \varphi \wedge \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \vee \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \vee \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \implies \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{N}}$

• Si
$$\phi = \varphi \equiv \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$

Dado un modelo $\mathcal{M}=\langle D,I,g\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

y se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

• Si
$$\phi = \neg \varphi$$
, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$

• Si
$$\phi = \varphi \wedge \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \lor \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \lor \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \implies \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \equiv \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$

Dado un modelo $\mathcal{M}=\langle D,I,g\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

y se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

• Si
$$\phi = \neg \varphi$$
, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$

• Si
$$\phi = \varphi \wedge \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \vee \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \vee \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \implies \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \equiv \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$

Dado un modelo $\mathcal{M}=\langle D,I,\mathbf{g}\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

y se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

• Si
$$\phi = \neg \varphi$$
, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$

• Si
$$\phi = \varphi \wedge \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \vee \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \vee \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \implies \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \equiv \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$

Dado un modelo $\mathcal{M}=\langle D,I,\mathbf{g}\rangle$, y una fórmula ϕ , el valor de verdad de ϕ en \mathcal{M} se denota

$$\|\phi\|^{\mathcal{M}}$$

y se define así:

• Si
$$\phi = P(t_1, \dots, t_k)$$
, $\|\phi\|^{\mathcal{M}} = \begin{cases} V & Si(\|t_1\|_g^l, \dots, \|t_k\|_g^l) \in I(P) \\ F & Sino \end{cases}$

• Si
$$\phi = \neg \varphi$$
, $\|\phi\|^{\mathcal{M}} = \neg(\|\varphi\|^{\mathcal{M}})$

• Si
$$\phi = \varphi \wedge \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \wedge \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \vee \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \vee \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \implies \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \implies \|\psi\|^{\mathcal{M}}$

• Si
$$\phi = \varphi \equiv \psi$$
, $\|\phi\|^{\mathcal{M}} = \|\varphi\|^{\mathcal{M}} \equiv \|\psi\|^{\mathcal{M}}$

Extensión de g

Dada una asignación de variables g, una variable x y un objeto d en D, se define $g_{[x:=d]}$ como la extensión de g, tal que:

•
$$g_{[x:=d]}(y) = g(y)$$
 si x differente de y

•
$$g_{[x:=d]}(x) = d$$

 $g_{[x:=d]}$ es idéntica a g salvo en el objeto asignado a x que ahora es d.

El valor de una fórmula con cuantificadores

Dado un modelo $\mathcal{M}=\langle D,I,g
angle$, y una fórmula ϕ con conectivo principal un cuantificador, $\|\phi\|^{\mathcal{M}}$ se define así:

Extensión de g

Dada una asignación de variables g, una variable x y un objeto d en D, se define $g_{[x:=d]}$ como la extensión de g, tal que:

•
$$g_{[x:=d]}(y) = g(y)$$
 si x differente de y

 $g_{[x:=d]}$ es idéntica a g salvo en el objeto asignado a x que ahora es d.

El valor de una fórmula con cuantificadores

Dado un modelo $\mathcal{M} = \langle D, I, g \rangle$, y una fórmula ϕ con conectivo principal un cuantificador, $\|\phi\|^{\mathcal{M}}$ se define así:

Extensión de g

Dada una asignación de variables g, una variable x y un objeto d en D, se define $g_{[x:=d]}$ como la extensión de g, tal que:

- $g_{[x:=d]}(y) = g(y)$ si x diferente de y
- $g_{[x:=d]}(x) = d$

 $g_{[x:=d]}$ es idéntica a g salvo en el objeto asignado a x que ahora es d.

El valor de una fórmula con cuantificadores

Dado un modelo $\mathcal{M}=\langle D,I,g\rangle$, y una fórmula ϕ con conectivo principal un cuantificador, $\|\phi\|^{\mathcal{M}}$ se define así:

Extensión de g

Dada una asignación de variables g, una variable x y un objeto d en D, se define $g_{[x:=d]}$ como la extensión de g, tal que:

- $g_{[x:=d]}(y) = g(y)$ si x differente de y
- $g_{[x:=d]}(x) = d$

 $g_{|x|=d|}$ es idéntica a g salvo en el objeto asignado a x que ahora es d.

El valor de una fórmula con cuantificadores

Dado un modelo $\mathcal{M}=\langle D,I,g\rangle$, y una fórmula ϕ con conectivo principal un cuantificador, $\|\phi\|^{\mathcal{M}}$ se define así:

• Si
$$\phi = \forall x | \varphi : \psi$$

$$\|\phi\|^{\mathcal{M}} = \bigwedge_{d \in D} \|\varphi \implies \psi\|^{\langle D, I, g_{[x:=d]}\rangle}$$

$$\|\phi\|^{\mathcal{M}} = \bigvee_{d \in D} \|\varphi \wedge \psi\|^{\langle D, I, g_{[x:=d]} \rangle}$$

Extensión de g

Dada una asignación de variables g, una variable x y un objeto d en D, se define $g_{[x:=d]}$ como la extensión de g, tal que:

- $g_{[x:=d]}(y) = g(y)$ si x diferente de y
- $g_{[x:=d]}(x) = d$

 $g_{|x|=d|}$ es idéntica a g salvo en el objeto asignado a x que ahora es d.

El valor de una fórmula con cuantificadores

Dado un modelo $\mathcal{M} = \langle D, I, g \rangle$, y una fórmula ϕ con conectivo principal un cuantificador, $\|\phi\|^{\mathcal{M}}$ se define así:

• Si $\phi = \forall x | \varphi : \psi$

$$\|\phi\|^{\mathcal{M}} = \bigwedge_{d \in D} \|\varphi \implies \psi\|^{\langle D, I, g_{[x:=d]} \rangle}$$

$$\|\phi\|^{\mathcal{M}} = \bigvee_{d \in D} \|\varphi \wedge \psi\|^{\langle D, l, g_{[x:=d]}\rangle}$$

Extensión de g

Dada una asignación de variables g, una variable x y un objeto d en D, se define $g_{[x:=d]}$ como la extensión de g, tal que:

- $g_{[x:=d]}(y) = g(y)$ si x differente de y
- $g_{[x:=d]}(x) = d$

 $g_{|x|=d|}$ es idéntica a g salvo en el objeto asignado a x que ahora es d.

El valor de una fórmula con cuantificadores

Dado un modelo $\mathcal{M} = \langle D, I, g \rangle$, y una fórmula ϕ con conectivo principal un cuantificador, $\|\phi\|^{\mathcal{M}}$ se define así:

• Si $\phi = \forall x | \varphi : \psi$

$$\|\phi\|^{\mathcal{M}} = \bigwedge_{d \in D} \|\varphi \implies \psi\|^{\langle D, I, g_{[x:=d]}\rangle}$$

$$\|\phi\|^{\mathcal{M}} = \bigvee_{d \in D} \|\varphi \wedge \psi\|^{\langle D, I, g_{[x:=d]}\rangle}$$

Considere el siguiente modelo $\mathcal{M} = \langle D, I, g \rangle$,:

$$D := \{ (a), (b), (c), (d) \}$$
 $I(a) := (a)$
 $I(U) := \{ (d) \}$
 $I(b) := (b)$
 $I(C) := \{ (a), (b), (c) \}$

$$I(c) := \bigcirc$$
 $g(x) := \bigcirc$ $I(\frac{d}{d}) := \boxed{d}$ $g(y) := \bigcirc$

•
$$\mathcal{M} \models C(a)$$
? si

• $\mathcal{M} \models U(x)$? no

• $\mathcal{M} \models \exists x | true : U(x)$ si

Considere el siguiente modelo $\mathcal{M} = \langle D, I, g \rangle$,:

$$D := \{ (a), (b), (c), (d) \}$$
 $I(a) := (a)$
 $I(U) := \{ (d) \}$
 $I(b) := (b)$
 $I(C) := \{ (a), (b), (c) \}$

•
$$\mathcal{M} \models C(a)$$
? si

•
$$\mathcal{M} \models U(x)$$
? no

• $\mathcal{M} \models \exists x | true : U(x)$? si

Considere el siguiente modelo $\mathcal{M} = \langle D, I, g \rangle$,:

$$\begin{split} &D := \{ \textcircled{a}, \ \textcircled{b}, \ \textcircled{c}, \ \overrightarrow{d} \} \\ &I(\boldsymbol{a}) := \ \textcircled{a} \qquad \qquad I(\boldsymbol{U}) := \{ \overrightarrow{d} \} \\ &I(\boldsymbol{b}) := \ \textcircled{b} \qquad \qquad I(\boldsymbol{C}) := \{ \textcircled{a}, \ \textcircled{b}, \ \textcircled{c} \} \\ &I(\boldsymbol{c}) := \ \textcircled{c} \qquad \qquad g(\boldsymbol{x}) := \ \textcircled{b} \\ &I(\boldsymbol{d}) := \ \overrightarrow{d} \qquad \qquad g(\boldsymbol{y}) := \ \textcircled{a} \end{split}$$

- $\mathcal{M} \models C(a)$? si
- $\mathcal{M} \models U(x)$? no
- $\mathcal{M} \models \exists x | true : U(x)$? si

Considere el siguiente modelo $\mathcal{M} = \langle D, I, g \rangle$,:

$$\begin{split} &D := \{ \texttt{\^a}, \, \texttt{\^b}, \, \texttt{\^c}, \, \boxed{\texttt{\^d}} \} \\ &I(\pmb{a}) := \, \texttt{\^a} \qquad I(\pmb{U}) := \{ \boxed{\texttt{\^d}} \} \\ &I(\pmb{b}) := \, \texttt{\^b} \qquad I(\pmb{C}) := \{ \texttt{\^a}, \, \texttt{\^b}, \, \texttt{\^c} \} \\ &I(\pmb{c}) := \, \texttt{\^c} \qquad g(\pmb{x}) := \, \texttt{\^b} \\ &I(\pmb{d}) := \, \boxed{\texttt{\^d}} \qquad g(\pmb{y}) := \, \texttt{\^a} \end{split}$$

- $\mathcal{M} \models C(a)$? si
- $\mathcal{M} \models U(x)$? no
- $\mathcal{M} \models \exists x | true : U(x)$? si

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

•
$$\phi_3 = \forall x R(f(x, a), x)$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g
angle$ donde

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

•
$$\phi_3 = \forall x R(f(x, a), x)$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

⇒ I(R) == ⇒ I(F) = +

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

•
$$\phi_3 = \forall x R(f(x, a), x)$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g
angle$ donde

○ I(R) ==

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g angle$ donde

•
$$I(a) = 0$$

$$I(R) ==$$

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g angle$ donde

- I(a) = 0
- I(R) ==

 $1 \vdash \varphi_1 \land \varphi_2 \land \varphi_3$:

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g angle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

 $\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$?

• Sea $\phi_4 = \forall x R(f(x,x),x)$. Se imagina un modelo para $\phi_1 \land \phi_2 \land \phi_3 \land \phi_4$

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

 $\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$?

Sea
$$\mathcal{M}_2 = \langle \mathbb{N}, I, g
angle$$
 donde

 $\phi: A(\pi) :=$ $\phi: A(\pi) :=$ $\phi: A(\pi) := \pi$ $M_0 := m \land m \land m$?

• Sea $\phi_4 = \forall x R(f(x,x),x)$. Se imagina un modelo para $\phi_1 \land \phi_2 \land \phi_3 \land \phi_4$

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

$$\mathcal{L}\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g angle$ donde

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

$$\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g angle$ donde

•
$$I(a) = 1$$

•
$$I(R) ==$$

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_3 = \forall x R(f(x, a), x)$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 1$$

$$I(R) ==$$

 $\mathcal{M}_2 \models \phi_1 \wedge \phi_2 \wedge \phi_3$?

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

•
$$\phi_3 = \forall x R(f(x, a), x)$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 1$$

$$i\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3$$
?

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 0
- *I*(*R*) ==
- I(f) = +

$$i\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 1
- *I*(*R*) ==
- *I*(*f*) = *

 $i\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3$?

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 0
- I(R) ==
- I(f) = +

$$i\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 1
- I(R) ==
- I(f) = *

$$\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3$$
?

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 0
- I(R) ==
- I(f) = +

$$i\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 1
- I(R) ==
- I(f) = *

$$\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_3 = \langle \mathbb{N}, I, g angle$ donde

•
$$I(a) = 0$$

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 1$$

$$\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_3 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(R) ==$$

•
$$I(f) = -$$

 $\mathcal{M}_3 \models \phi_1 \wedge \phi_2 \wedge \phi_3$?

[Socrative]

Considere las siguientes fórmulas:

•
$$\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$$

•
$$\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$$

•
$$\phi_3 = \forall x R(f(x, a), x)$$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

$$i\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 1$$

•
$$I(f) = *$$

$$\mathcal{L}\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3?$$

Sea $\mathcal{M}_3 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

$$I(f) = -$$

 $\mathcal{M}_3 \models \phi_1 \land \phi_2 \land \phi_3$?

• Sea $\phi_4 = \forall x R(f(x,x),x)$. Se imagina un modelo para $\phi_1 \land \phi_2 \land \phi_3 \land \phi_4$

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

$$\mathcal{L}\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 1$$

$$I(R) ==$$

•
$$I(f) = *$$

$$\mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3?$$

Sea $\mathcal{M}_3 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = -$$

 $\mathcal{L}\mathcal{M}_3 \models \phi_1 \wedge \phi_2 \wedge \phi_3$?

Sea $\phi_4 = \forall x R(f(x,x),x)$. Se imagina un modelo para $\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

•
$$I(f) = +$$

$$\mathcal{L}\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 1$$

$$I(R) ==$$

$$\mathcal{M}_2 \models \phi_1 \wedge \phi_2 \wedge \phi_3$$
?

Sea $\mathcal{M}_3 = \langle \mathbb{N}, I, g \rangle$ donde

•
$$I(a) = 0$$

$$I(R) ==$$

•
$$I(f) = -$$

• Sea $\phi_4 = \forall x R(f(x,x),x)$. Se imagina un modelo para $\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$?

[Socrative]

Considere las siguientes fórmulas:

- $\phi_1 = \forall x \forall y R(f(x, y), f(y, x))$
- $\phi_2 = \forall x \forall y \forall z R(f(x, f(y, z)), f(f(x, y), z))$
- $\phi_3 = \forall x R(f(x, a), x)$

Sea $\mathcal{M}_1 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 0
- *I(R)* ==
- I(f) = +

$$\mathcal{M}_1 \models \phi_1 \land \phi_2 \land \phi_3$$
?

Sea $\mathcal{M}_2 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 1
- *I*(*R*) ==
- *I*(*f*) = *

$$\downarrow \mathcal{M}_2 \models \phi_1 \land \phi_2 \land \phi_3?$$

Sea $\mathcal{M}_3 = \langle \mathbb{N}, I, g \rangle$ donde

- I(a) = 0
- I(R) ==
- I(f) = -

$$\mathcal{L}\mathcal{M}_3 \models \phi_1 \wedge \phi_2 \wedge \phi_3?$$

• Sea $\phi_4 = \forall x R(f(x,x),x)$. Se imagina un modelo para $\phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$?

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
 - $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

 - $\neg \exists x | \psi : \phi \equiv \forall x | \psi : \cdot \cdot$
- $\exists x | \psi : \phi \equiv \neg \forall x | \psi : \neg c$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\exists x | \psi : \phi \equiv \neg \forall x | \psi : \neg$
- $\forall \mathsf{x} | \psi : (\phi \land \varphi) \equiv (\forall \mathsf{x} | \psi : \phi \land \forall \mathsf{x} | \psi : \varphi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$
- $\quad \quad \neg \forall x | \psi : \phi \equiv \exists x | \psi : \neg \phi$
- $\exists \mathbf{x} | \psi : \phi \equiv \neg \forall \mathbf{x} | \psi : \neg \phi$
- $\forall \mathsf{X} | \psi : (\phi \land \varphi) \equiv (\forall \mathsf{X} | \psi : \phi \land \forall \mathsf{X} | \psi : \varphi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\exists x | \psi : \phi \equiv \neg \forall x | \psi : \neg \phi$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\forall x | \psi : \phi \equiv \neg \exists x | \psi : \neg \phi$
- $\exists x | \psi : \phi \equiv \neg \forall x | \psi : \neg \phi$
- $\forall \mathsf{x} | \psi : (\phi \land \varphi) \equiv (\forall \mathsf{x} | \psi : \phi \land \forall \mathsf{x} | \psi : \varphi)$ $\exists \mathsf{x} | \psi : (\phi \land \varphi) \equiv (\exists \mathsf{x} | \psi : \phi \land \forall \exists \mathsf{x} | \psi : \varphi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\exists x | \psi : \phi \equiv \neg \forall x | \psi : \neg \phi$
- $\forall x | \psi : (\phi \land \varphi) \equiv (\forall x | \psi : \phi \land \forall x | \psi : \varphi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\forall x | \psi : (\phi \land \varphi) \equiv (\forall x | \psi : \phi \land \forall x | \psi : \varphi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\exists x | \psi : (\phi \lor \varphi) \equiv (\exists x | \psi : \phi \lor \exists x | \psi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\exists x | \psi : (\phi \lor \varphi) \equiv (\exists x | \psi : \phi \lor \exists x | \psi : \varphi)$

Recordemos que una fórmula ϕ es válida si todo modelo $\mathcal M$ satisface ϕ .

Al igual que en la lógica proposicional, ¿podemos saber el número de modelos posibles? ¿Es finito? ¿Podemos generarlos automáticamente?

- $\forall x | \psi : \phi \equiv \forall x | true(\psi \implies \phi)$
- $\exists x | \psi : \phi \equiv \exists x | true(\psi \land \phi)$

- $\forall x | \psi : (\phi \land \varphi) \equiv (\forall x | \psi : \phi \land \forall x | \psi : \varphi)$
- $\exists x | \psi : (\phi \lor \varphi) \equiv (\exists x | \psi : \phi \lor \exists x | \psi : \varphi)$