

ÁLGEBRA LINEAR Prof. Marién Martínez Gonçalves

LISTA DE EXERCÍCIOS 2 – MATRIZES

- 2. Determine se são Verdadeiras ou Falsas as afirmativas:
 - a) $(-A)^T = -(A^T)$
 - b) se AB = O, então A=O ou B=O.
 - c) se A e B são matrizes simétricas e de mesma ordem então AB = BA.
 - d) se podemos efetuar o produto A · A, então A é uma matriz quadrada.
 - e) se $A \cdot B = O$, então $B \cdot A = O$
- 3. Considere a função T(x) que associa a cada real x a matriz 2 x 2: $T(x) = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$
 - a) Calcule: T(a) · T(-a)
 - b) Mostre que: $T(a) \cdot T(b) = T(a+b)$
- 4. Se a matriz: $A = \begin{bmatrix} 2 & 1 & -1 \\ x^2 & 0 & 1-y \\ x & y-3 & 1 \end{bmatrix}$ é simétrica, calcule x e y.
- 5. Determine x, y e z, sabendo que A é uma matriz diagonal. $A = \begin{bmatrix} x & 0 & 0 \\ z-1 & y & x^2-6x+9 \\ 0 & y-3 & z \end{bmatrix}$
- 6. Seja $M^{-1} = \begin{bmatrix} x & y \\ 5 & 1 \end{bmatrix}$ a matriz inversa da matriz $M = \begin{bmatrix} -1/13 & 3/13 \\ 5/13 & -2/13 \end{bmatrix}$. Obtenha $x \in y$.
- 7. Se A = $\begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}$, B = $\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$, C = $\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$. Calcule a matriz \mathcal{X} , tal que: $\frac{\mathcal{X} A}{2} = \frac{B + \mathcal{X}}{3} + C$
- 8. Dadas as matrizes $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix}$, resolva o sistema: $\begin{cases} 2X + Y = 3A B \\ X 2y = 5A + 2B \end{cases}$
- 9. Seja A uma matriz quadrada de ordem n. Seja $p(x) = a_0 + a_1x + a_2x^2 + ... + a_rx^r$ um polinômio de grau r. O polinômio $p(A) = a_0 + a_1A + a_2A^2 + ... + a_rA^r$ é denominado POLINÔMIO MATRICIAL em A.

Sendo
$$B = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$$
 encontre a matriz $p(B)$ para:

(obs:
$$a_0 = a_0 I$$
)

a)
$$p(x) = x - 2$$

b)
$$p(x) = 2x^2 - x + 1$$

c)
$$p(x) = x^3 - 2x + 4$$

- 10. Sabendo que a matriz inversa $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$, simplifique: $(A \cdot B)^{-1} \cdot (A \cdot C^{-1}) \cdot (D^{-1} \cdot C^{-1})^{-1} \cdot D^{-1}$
- 11. A tabela ao lado representa as notas obtidas em um curso de espanhol pelos alunos: Carlos, Anita e Marta em cada semestre do ano letivo.

	1º bim	2º bim	3º bim	4º bim
Carlos	7	8	6	8
Anita	4	5	5	7
Marta	9	7	9	10

cada semestre do ano letivo. Para calcular a nota final do ano, o professor deve fazer uma

média ponderada usando como pesos, respectivamente, 1, 2, 3 e 4. Usando produto de matrizes, encontre a média de cada aluno, sabendo que a média será determinada pela fórmula:

$$M(a) = \frac{(1^{\circ}bim) \cdot 1 + (2^{\circ}bim) \cdot 2 + (3^{\circ}bim) \cdot 3 + (4^{\circ}bim) \cdot 4}{1 + 2 + 3 + 4} ou:$$

$$M(a) = (1^{\circ}bim) \cdot 0.1 + (2^{\circ}bim) \cdot 0.2 + (3^{\circ}bim) \cdot 0.3 + (4^{\circ}bim) \cdot 0.4$$

Usando produto de matrizes, encontre a nota de cada aluno.

LISTA DE EXERCÍCIOS 2 – MATRIZES (Cont.)

12. A tabela ao lado mostra as notas obtidas pelos alunos A, B e C nas provas de Português, Matemática e Geografia, em um exame de vestibular. Se os pesos das provas são 7 (em Português), 6 (em Matemática) e 5 (em Geografia), qual é a

	Português	Matemática	Geografia	
Aluno A	4	6	7	
Aluno B	9	3	2	
Aluno C	7	8	10	

multiplicação de matizes que permite determinar o total de pontos de cada aluno? Determine o total de cada um.

13. Uma montadora produz três modelos de veículos, A, B e C. Neles podem ser instalados dois tipos de *air bags*, D e E. A matriz [*air bag* modelo] mostra a quantidade de *air bags* instaladas:

A B C $\begin{bmatrix} D & \begin{bmatrix} 2 & 2 & 0 \\ 4 & 4 & 2 \end{bmatrix}$. Numa determinada semana, foram produzidas as seguintes quantidades de veículos, dadas

pela matriz [modelo-quantidade]: $\begin{bmatrix} A \\ B \\ C \end{bmatrix}$ [300] O produto da matriz [air bag modelo] pela matriz [modelo-

quantidade] é: ${1600 \brack 3600}$. Quantos veículos do modelo C foram montados na semana?

14. Um construtor tem contratos para construir 3 estilos de casa: moderno, clássico e colonial. A quantidade de material empregada em cada tipo de casa é dada pela matriz ao lado:

	Ferro	Madeira	Vidro	Tinta	Tijolo
Moderno	5	20	16	7	17
Clássico	7	18	12	9	21
Colonial	6	25	8	5	13

- a) Se ele vai construir 5, 7 e 12 casas dos tipos Moderno, Clássico e Colonial, quantas unidades de cada material serão empregadas?
- b) Suponha agora que os preços por unidade de cada material sejam respectivamente: 15, 8, 5, 1 e 10. Qual o custo unitário de cada casa?
- c) Qual o custo total do material empregado?

RESPOSTAS

- 1. triangular inferior e triangular superior.
- 2. V-F-F-V-F
- 3. a) I₂

- 4. x = -1 e y = 2
- 5. 3, 3 e 1.
- 6. 2 e 3

$$7. \begin{pmatrix} 28 & 1 \\ 23 & 3 \end{pmatrix}$$

8.
$$X = \begin{pmatrix} \frac{11}{5} & 0\\ 0 & \frac{22}{5} \end{pmatrix}$$
 e $Y = \begin{pmatrix} \frac{-7}{5} & -2\\ -2 & \frac{-19}{5} \end{pmatrix}$

9. a)
$$\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 20 & 7 \\ 14 & 6 \end{pmatrix}$$

c)
$$\binom{39}{26} \quad \frac{13}{13}$$

11. 7.3, 5.7 e 9.0

12. 99, 91 e 147

13. X = 200

- 14. a) 146, 526, 260, 158 e 388
- b) 492, 528 e 465
- c) R\$ 11.736,00