Curriculum Vitae

John D. Jasper
Department of Mathematics & Statistics
South Dakota State University

CONTACT INFORMATION

• Home: 1315 5th St., Brookings, SD 57006

• **Phone:** (360) 224-7070

• Email: john.jasper@sdstate.edu

• Web: sites.google.com/view/john-jasper-math/

ACADEMIC POSITIONS

• South Dakota State University

Assistant Professor, Fall 2017-present

• University of Cincinnati

Visiting Assistant Professor, Fall 2015–Spring 2017

• University of Oregon

Courtesy Instructor, Fall 2014–Spring 2015

• University of Missouri

Postdoctoral Fellow, Fall 2011–Spring 2014.

• University of Oregon

Graduate Teaching Fellow, Fall 2005–Spring 2011.

• Western Washington University

Teaching Assistant, Fall 2003-Spring 2005.

EDUCATION

- University of Oregon, Eugene, OR.
 - Ph.D. in Mathematics, June 2011.
 Dissertation Topic: Infinite Dimensional Generalizations of the Schur-Horn Theorem Advisor: Marcin Bownik.
 - M.S. in Mathematics, March 2007.
- Western Washington University, Bellingham, WA.

B.S. in Mathematics, June 2003. Magna cum laude

Publications and Preprints

Journal Articles

- Characterization of Sequences of Frame Norms (with M. Bownik), J. Reine Angew. Math. 654 (2011), 219–244.
- Dilations of Non-tight Frames, (with M. Bownik and D. Speegle), Proc. Amer. Math. Soc. 139 (2011), 3247–3256.
- The Schur-Horn Theorem for Operators with Three Point Spectrum, J. Funct. Anal. 265 (2013), 1494–1521.
- Tight projections of frames on infinite dimensional Hilbert spaces, Oper. Matrices 8 (2014), no. 4, 1053–1063.
- Constructive proof of the Carpenter's Theorem (with M. Bownik), Canad. Math. Bull. **57** (2014), no. 3, 463–476.
- Kirkman equiangular tight frames and codes (with M. Fickus and D. G. Mixon), IEEE Trans. Inform. Theory **60** (2014), no. 1, 170–181.
- The Schur-Horn Theorem for operators with finite spectrum (with M. Bownik), Trans. Amer. Math. Soc. **367** (2015), no. 7, 5099–5140.
- Group-theoretic constructions of erasure-robust frames (with M. Fickus, D. G. Mixon, and J. Peterson), Linear Algebra Appl. 479 (2015), 131–154.
- Diagonals of self-adjoint operators with finite spectrum (with M. Bownik), Bull. Pol. Acad. Sci. Math 63 (2015), 249–260.
- Equiangular Tight Frames from Hyperovals (with M. Fickus and D. G. Mixon), IEEE Trans. Inform. Theory **62** (2016), no. 9, 5225–5236.
- Thompson's theorem for compact operators and diagonals of unitary operators (with J. Loreaux and G. Weiss), Indiana Univ. Math. J. 67 (2018), no. 1, 1–27.
- Equiangular tight frames with centroidal symmetry (with M. Fickus, D. G. Mixon, J. Peterson, and C. E. Watson), Appl. Comput. Harmon. Anal. 44 (2018), no. 2, 476–496.
- The Schur-Horn theorem for unbounded operators with discrete spectrum (with M. Bownik and B. Siudeja), Bull. London Math. Soc. 49 (2017), no. 1, 148–164.
- Tremain equiangular tight frames (with M. Fickus, D. G. Mixon, and J. Peterson), J. Combin. Theory Ser. A. 153 (2018), 54–66.
- Packings in real projective spaces (M. Fickus, D. G. Mixon) SIAM J. Appl. Algebra Geometry. 2 (2018) No. 3, 377–409.
- Equiangular tight frames that contain regular simplices (with M. Fickus, E. J. King, and D. G. Mixon), Linear Algebra Appl. **555** (2018), 98–138.
- Equiangular tight frames from group divisible designs (with M. Fickus), Des. Codes Cryptogr. 87 (2019), no. 7, 1673–1697.
- Polyphase equiangular tight frames and abelian generalized quadrangles (with M. Fickus, D. G. Mixon, J. Peterson, and C. E. Watson), Appl. Comput. Harmon. Anal. 47 (2019), no. 3, 628–661.
- Hadamard equiangular tight frames (with M. Fickus, D. G. Mixon, and J. D. Peterson), Appl. Comput. Harmon. Anal. (to appear)

- Optimal line packings from nonabelian groups (with J. W. Iverson and D. G. Mixon), Discrete Comput. Geom. (to appear)
- Optimal line packings from finite group actions (with J. W. Iverson and D. G. Mixon), preprint. (submitted)

Book Chapters

- Spectra of frame operators with prescribed frame norms, (with M. Bownik), Harmonic Analysis and Partial Differential Equations, Contemp. Math., 612 (2014), 65–80.
- Existence of frames with prescribed norms and frame operator (with M. Bownik) Excursions in harmonic analysis. Vol. 4 (2015), 103–117
- Phase retrieval and norm retrieval, (with Saeid Bahmanpour, J. Cahill, P. G. Casazza, and L. M. Woodland) Trends in harmonic analysis and its applications, Contemp. Math., **650** (2015), 3–14.

Conference Proceedings

- A construction of unimodular equiangular tight frames from resolvable Steiner systems, Proc. SPIE, 8858 (2013), 88581Q-1.
- Steiner equiangular tight frames redux (with M. Fickus, D. G. Mixon and J. Peterson), Proc. Sampl. Theory Appl. (2015) 347-351.
- Quasi-symmetric designs and equiangular tight frames (with M. Fickus, D. G. Mixon and J. Peterson), Proc. SPIE, 9597 (2015), 95970F.
- Game of Sloanes: best known packings in complex projective space (with E. J. King and D. G. Mixon), Proc. SPIE 11138 (2019), 111381F
- An infinite family of two-distance tight frames (with N. P. Brown), Proc. SPIE 11138 (2019), 111381D

FUNDING

• (2018-2021) National Science Foundation, Division of Mathematical Sciences Grant 1830066, Program on Algorithms for Threat Detection, ATD: Collaborative Research: Theory and Algorithms for Real-Time Threat Detection from Massive Data Streams, \$98,222. I am the Co-PI. The PI is Dr. Dustin G. Mixon of the Ohio State University.

AWARDS

- Outstanding Graduating Senior in Mathematics for 2003. Awarded by Western Washington University to the most outstanding senior graduating with a degree in mathematics each year.
- Johnson Research Fellowship. Awarded by the University of Oregon Mathematics Department to support study at the Polish Academy of Sciences.
- Borsting Graduate Student Award for 2010. Awarded by the University of Oregon Mathematics Department to the graduate student who demonstrates exceptional scholastic achievement.
- D. K. Harrison Memorial Award for 2011. Awarded by the University of Oregon Mathematics Department to the graduate student who demonstrates exceptional achievement in research.

TEACHING EXPERIENCE

Western Washington University:

For each of the following courses, I was the instructor under the supervision of a faculty course coordinator at Western Washington University. I was in charge of preparing and presenting the material, as well as writing quizzes with the other instructors under the same coordinator.

• Math 102: Functions and Algebraic Methods,

Linear and quadratic equations, polynomials, rational functions, radicals. Winter 2004, Spring 2004, Fall 2004, Winter 2005, Spring 2005.

• Math 114: Precalculus I,

Functions, graphs of functions, data analysis. Fall 2003.

University of Oregon:

For each of the following courses, I was the sole instructor as a Graduate Teaching Fellow at the University of Oregon. I was in charge of planning the course, preparing and presenting the material, as well as writing and grading all quizzes and exams.

• Math 111: College Algebra,

Functions, polynomials, exponential functions, logarithms. Fall 2005, Winter 2006, Fall 2006, Winter 2007, Spring 2007, Summer 2007, Winter 2008 and Fall 2009.

• Math 107: University Math III,

Concepts of calculus for non-science majors. Summer 2006.

Math 242: Calculus for Business and Social Sciences II,

Integral calculus for business and social science majors. Summer 2008 and Summer 2010.

• Math 251: Calculus I,

Differential calculus; Summer 2008, Fall 2011, and Winter 2011.

• Math 252: Calculus II,

Integral Calculus. Winter 2009.

• Math 253: Calculus III,

Sequences, series, Taylor series. Summer 2009 and Spring 2010.

• Math 256: Differential Equations,

Introduction to differential equations. Summer 2011.

• Math 342: Linear Algebra II,

Second quarter course in linear algebra. Spring 2011.

University of Cincinnati:

• Math 1061: Calculus I,

First semester course in calculus. Fall 2015, Fall 2016.

• Math 1062: Calculus II,

Second semester course in calculus. Spring 2016, Spring 2017.

South Dakota State University:

• Math 250: Math for Computer Science,

An introduction to logic, proofs, and linear algebra for computer science majors. Fall 2017, Fall 2018.

• Math 751: Applied Functional Analysis,

Introduction to functional analysis and applications for graduate students. Fall 2017.

• Math 425: Real Analysis,

Introduction to real analysis for undergraduates. Fall 2018, Fall 2019.

• Math 515: Advanced Linear Algebra,

Graduate course in linear algebra with applications to data science. Fall 2019.

Conferences organized

- Special Session on Frame Theory at the AMS Spring Southeastern Sectional Meeting, College of Charleston. March 10-12, 2017. (co-organized with D. G. Mixon and J. Solazzo)
- Special Session on Recent Advances in Packing at the AMS Spring Central Sectional Meeting. Ohio State University, March 16-18, 2018. (co-organized with D. G. Mixon and J. W. Iverson)
- Special session on frame theory at the 13th International Conference on Sampling Theory and Applications (SampTA 2019). University of Bordeaux. July 8, 2019 (co-organized with D. G. Mixon)

Invited Presentations

- "The Schur–Horn Theorem for Operators with Three Point Spectrum," Louisiana State University Workshop in Analysis and Geometry, January 2011.
- "Existence of frames with prescribed norms and frame operator," Texas A&M University Operator Algebras, Frames, and Undergraduate Research: A Conference in Honor of the 70th Birthday of David R. Larson, July 2012.
- "Spectra of frame operators with prescribed frame norms," University of Colorado AMS Sectional Meeting, April 2013.
- "The Schur–Horn theorem for operators with finite spectrum," University of California, Berkeley Great Plains Operator Theory Symposium, May 2013.
- "Unimodular equiangular tight frames from resolvable Steiner systems," San Diego, CA SPIE Optics + Photonics, August 2013.

- "Kirkman equiangular tight frames," Washington University AMS Special Session on Wavelets, Frames, and Related Expansions, October 2013.
- "Two new constructions of equiangular tight frames," Michigan State University AMS Special Session on Frames, Wavelets and Their Applications, March 2015.
- "Infinite dimensional Schur–Horn theorems," Oregon State University Analysis Seminar, April 2015.
- "Infinite dimensional Schur–Horn type theorems," University of Cincinnati Functional Analysis Semiar, April 2015.
- "Complex equiangular tight frames," Universität Bremen Workshop on Frames and Algebraic & Combinatorial Geometry, July 2015.
- "Tremain equiangular tight frames," San Diego, CA SPIE Optics + Photonics, August 2015.
- "Thompson's theorem," University of Cincinnati Functional Analysis Seminar, September 2015.
- "Tremain equiangular tight frames and strongly regular graphs", University of North Dakota AMS Special Session on Frames, Wavelets and Gabor Systems, April 2016.
- "Equiangular tight frames from association schemes," Vanderbilt University Computational Analysis Seminar, October 2016.
- "Equiangular tight frames from association schemes," Georgia Institute of Technology Analysis Seminar, November 2016.
- "Equiangular tight frames from association schemes," Joint Mathematics Meetings AMS Special Session on Lie Group Representations, Discretization, and Gelfand Pairs, January 2017.
- "Equiangular tight frames from association schemes," Portland State University AMS Special Session on Wavelets, Frames, and Related Expansions, April 2018.
- "Equiangular tight frames from group divisible designs," Vanderbilt University 7th International Conference on Computational Harmonic Analysis, May 2018.
- "Equiangular tight frames from group divisible designs," Vanderbilt University Sixteenth International Conference on Approximation Theory, May 2019
- "Equiangular tight frames from nonabeilan groups," Bern, Switzerland SIAM Conference on Applied Algebraic Geometry, July 2019.
- "Equiangular tight frames from association schemes," University of Wisconsin-Madison AMS Special Session on Association Schemes and Related Topics in Celebration of J.D.H. Smith's 70th Birthday, September 2019.
- "Diagonals of opreators in finite and infinite dimensions," University of Nebraska-Lincoln Math Department Colloquium, October 2019
- "Harmonic equiangular tight frames and their combinatorial generalizations," Joint Math Meetings AMS Special Session on Group Actions in Harmonic Analysis, January 2020.

REFERENCES

Marcin Bownik (Ph.D. Advisor) Department of Mathematics University of Oregon Eugene OR 97403 (541) 346-5622 mbownik@uoregon.edu

Matthew Fickus
Dept of Mathematics and Statistics
Air Force Institute of Technology
Wright Ptrsn AFB, OH 45433
(937) 255-3636 x4513
matthew.fickus@gmail.com

Dustin Mixon Dept of Mathematics Ohio State University Columbus, OH 43210 (614) 292-0836 mixon.23@osu.edu Peter G. Casazza Department of Mathematics University of Missouri Columbia, MO 65211 (573) 882-8285 casazzap@missouri.edu

Gary Weiss Department of Mathematics University of Cincinnati Cincinnati, OH 45221 (513) 556-4073 gary.weiss@uc.edu

Matthew Biesecker Dept of Mathematics & Statistics South Dakota State University Brookings, SD 57007 (605) 688-6196 Matt.Biesecker@sdstate.edu