Finding Maxima and Minima of DiffEq Solutions

Chris Rackauckas

July 1, 2020

0.0.1 Setup

In this tutorial we will show how to use Optim.jl to find the maxima and minima of solutions. Let's take a look at the double pendulum:

```
#Constants and setup
using OrdinaryDiffEq
initial = [0.01, 0.01, 0.01, 0.01]
tspan = (0.,100.)
#Define the problem
function double_pendulum_hamiltonian(udot,u,p,t)
    \alpha = u[1]
    1\alpha = u[2]
    \beta = u[3]
    1\beta = u[4]
    udot .=
    [2(1\alpha-(1+\cos(\beta))1\beta)/(3-\cos(2\beta)),
    -2\sin(\alpha) - \sin(\alpha+\beta),
    2(-(1+\cos(\beta))1\alpha + (3+2\cos(\beta))1\beta)/(3-\cos(2\beta)),
    -\sin(\alpha+\beta) - 2\sin(\beta)*(((1\alpha-1\beta)1\beta)/(3-\cos(2\beta))) + 2\sin(2\beta)*((1\alpha^2 - 2(1+\cos(\beta))1\alpha*1\beta))
+ (3+2\cos(\beta))1\beta^2/(3-\cos(2\beta))^2
end
#Pass to solvers
poincare = ODEProblem(double_pendulum_hamiltonian, initial, tspan)
ODEProblem with uType Array{Float64,1} and tType Float64. In-place: true
timespan: (0.0, 100.0)
u0: [0.01, 0.01, 0.01, 0.01]
sol = solve(poincare, Tsit5())
retcode: Success
Interpolation: specialized 4th order "free" interpolation
t: 193-element Array{Float64,1}:
   0.0
   0.08332584852065579
   0.24175300587841853
   0.4389533535703127
   0.6797301355043014
   0.9647629621490508
   1.3179425637594349
   1.7031226016307728
   2.0678503967116617
```

```
2.4717899847517866
 95.8457309586563
 96.3577910122243
 96.92913461915474
 97.44679415429573
 97.96248479179103
 98.51183391850897
 99.0608253308051
 99.58284388126884
100.0
u: 193-element Array{Array{Float64,1},1}:
 [0.01, 0.01, 0.01, 0.01]
 [0.00917068738040534, 0.0066690004553842845, 0.012420525490765832, 0.00826
6408515192912]
 [0.007673275265972518, 0.00037461737897660346, 0.016442590227730366, 0.004
636827483318282]
 [0.0061259744192393014, -0.007305450189721184, 0.01996737108423187, -0.000]
33649798308967233]
 [0.0049661106627111465, -0.01630851653373806, 0.021440659476204688, -0.00688]
705037098400459]
 [0.004795568331019467, -0.026238103489235838, 0.018824325208837592, -0.013
913364556753717]
  \begin{bmatrix} 0.006054679825355352, & -0.037124551879080515, & 0.010055702788069582, & -0.0218263636363 \end{bmatrix} 
0381274786473551
 [0.007900784412908595, -0.04667606960847389, -0.002673581831574413, -0.025
183036272033735]
 [0.008276510489473131, -0.05278433365633968, -0.012731546444725274, -0.025]
25804037623959]
 [0.005523496816741225, -0.055252504144926044, -0.01684388188262178, -0.021]
898963191274146]
 9082291418783]
 068009081627
 [0.004124711787696242, 0.056748788205059394, -0.005154187391921515, 0.0175]
9698310394298]
 [0.013079718118471311, 0.04807704307739497, -0.013770661225089886, 0.01828
6648610391705]
 [0.01531604024144831, 0.0316309595575519, -0.008956991644883512, 0.0171184]
0404984504]
 [0.011115490017374378, 0.009929018220630217, 0.0072974814212210725, 0.0103
53371812537737]
 [0.005713878919291268, -0.011787427051187304, 0.02050806401368939, -0.0023]
104589058526802]
  \hbox{\tt [0.0042114397261269225, -0.029911199361470082, 0.01875044642290467, -0.015] }
65071229490751]
 [0.005741239607321662, -0.04165385985159511, 0.007413270184092719, -0.0233]
48978525280305]
In time, the solution looks like:
using Plots; gr()
plot(sol, vars=[(0,3),(0,4)], leg=false, plotdensity=10000)
```


while it has the well-known phase-space plot:

plot(sol, vars=(3,4), leg=false)

0.0.2 Local Optimization

Let's fine out what some of the local maxima and minima are. Optim.jl can be used to minimize functions, and the solution type has a continuous interpolation which can be used. Let's look for the local optima for the 4th variable around t=20. Thus our optimization function is:

```
f = (t) -> sol(t,idxs=4)
#1 (generic function with 1 method)
```

using Optim

first(t) is the same as t[1] which transforms the array of size 1 into a number. idxs=4 is the same as sol(first(t))[4] but does the calculation without a temporary array and thus is faster. To find a local minima, we can simply call Optim on this function. Let's find a local minimum:

```
Error: ArgumentError: Package Optim not found in current path:
- Run `import Pkg; Pkg.add("Optim")` to install the Optim package.
opt = optimize(f, 18.0, 22.0)
Error: UndefVarError: optimize not defined
From this printout we see that the minimum is at t=18.63 and the value is -2.79e-2. We
can get these in code-form via:
println(opt.minimizer)
Error: UndefVarError: opt not defined
println(opt.minimum)
Error: UndefVarError: opt not defined
To get the maximum, we just minimize the negative of the function:
f = (t) \rightarrow -sol(first(t), idxs=4)
opt2 = optimize(f, 0.0, 22.0)
Error: UndefVarError: optimize not defined
Let's add the maxima and minima to the plots:
plot(sol, vars=(0,4), plotdensity=10000)
scatter!([opt.minimizer],[opt.minimum],label="Local Min")
Error: UndefVarError: opt not defined
scatter!([opt2.minimizer],[-opt2.minimum],label="Local Max")
Error: UndefVarError: opt2 not defined
```

Brent's method will locally minimize over the full interval. If we instead want a local maxima nearest to a point, we can use BFGS(). In this case, we need to optimize a vector [t], and thus dereference it to a number using first(t).

```
f = (t) -> -sol(first(t),idxs=4)
opt = optimize(f,[20.0],BFGS())
```

Error: UndefVarError: BFGS not defined

0.0.3 Global Optimization

If we instead want to find global maxima and minima, we need to look somewhere else. For this there are many choices. A pure Julia option is BlackBoxOptim.jl, but I will use NLopt.jl. Following the NLopt.jl tutorial but replacing their function with out own:

```
import NLopt, ForwardDiff
Error: ArgumentError: Package NLopt not found in current path:
- Run `import Pkg; Pkg.add("NLopt")` to install the NLopt package.
count = 0 # keep track of # function evaluations
function g(t::Vector, grad::Vector)
  if length(grad) > 0
    #use ForwardDiff for the gradients
    grad[1] = ForwardDiff.derivative((t)->sol(first(t),idxs=4),t)
  sol(first(t),idxs=4)
opt = NLopt.Opt(:GN_ORIG_DIRECT_L, 1)
Error: UndefVarError: NLopt not defined
NLopt.lower_bounds!(opt, [0.0])
Error: UndefVarError: NLopt not defined
NLopt.upper_bounds!(opt, [40.0])
Error: UndefVarError: NLopt not defined
NLopt.xtol_rel!(opt,1e-8)
Error: UndefVarError: NLopt not defined
NLopt.min_objective!(opt, g)
Error: UndefVarError: NLopt not defined
(minf,minx,ret) = NLopt.optimize(opt,[20.0])
Error: UndefVarError: NLopt not defined
println(minf," ",minx," ",ret)
Error: UndefVarError: minf not defined
NLopt.max_objective!(opt, g)
Error: UndefVarError: NLopt not defined
(maxf,maxx,ret) = NLopt.optimize(opt,[20.0])
Error: UndefVarError: NLopt not defined
println(maxf," ",maxx," ",ret)
Error: UndefVarError: maxf not defined
```

```
plot(sol, vars=(0,4), plotdensity=10000)
scatter!([minx],[minf],label="Global Min")
Error: UndefVarError: minx not defined
scatter!([maxx],[maxf],label="Global Max")
Error: UndefVarError: maxx not defined
```

0.1 Appendix

This tutorial is part of the DiffEqTutorials.jl repository, found at: https://github.com/JuliaDiffEq/DiffEqTo locally run this tutorial, do the following commands:

```
using DiffEqTutorials
DiffEqTutorials.weave_file("ode_extras","03-ode_minmax.jmd")
Computer Information:
Julia Version 1.4.2
Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
 OS: Linux (x86 64-pc-linux-gnu)
 CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
 WORD_SIZE: 64
 LIBM: libopenlibm
 LLVM: libLLVM-8.0.1 (ORCJIT, skylake)
Environment:
  JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqTutorials.jl/.julia
 JULIA_CUDA_MEMORY_LIMIT = 536870912
  JULIA PROJECT = 0.
 JULIA_NUM_THREADS = 4
```

Package Information:

```
Status `/builds/JuliaGPU/DiffEqTutorials.jl/tutorials/ode_extras/Project.toml`
[961ee093-0014-501f-94e3-6117800e7a78] ModelingToolkit 3.11.0
[2774e3e8-f4cf-5e23-947b-6d7e65073b56] NLsolve 4.4.0
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.41.0
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 1.5.0
[37e2e46d-f89d-539d-b4ee-838fcccc9c8e] LinearAlgebra
[2f01184e-e22b-5df5-ae63-d93ebab69eaf] SparseArrays
```