CS 120: Intro to Algorithms and their Limitations

Lecture 5: — Tuesday September 19, 2023

Pset Due: September 20, 2023 Denny Cao

§1 Announcements

- SRE next Thursday
- Wednesday morning OH on Zoom
- Late Policy: 3 days max for each assignment. Late days $\in \mathbb{N}$

§2 Dynamic Predecessor Data Structure

For a sorted array:

- Insert(k, v) = O(n)
- Delete(k) = O(n)
- Search $(k) = O(\log n)$
- Next-smaller $(k) = O(\log n)$

§3 Binary Search Tree

Our goal is to solve Dynamic Predecessors more easily.

Definition 3.1 (Binary Search Tree (BST)). Data structure defined **recursively**. Base case: \emptyset or has a root R and every vertex has:

- Key K
- \bullet Value V
- Left and Right Children V_{left} and V_{right} , each a BST (Could be a \emptyset)
- Satisfies the **BST Property**

Property 3.2 (BST Property) $\forall v$: if v has left child v_l : the keys of v_l and all its descendants are $\leq k_v$. If v has a right child, similar definition.

```
Algorithm 3.3 — If $T = \emptyset$ [Insert] Insert(T(k, v)): if T = \emptyset: Return new BST w/key K, value V, no children Let v = \operatorname{root}(T) if k \leq K_V:

T.Left = Insert(T_L(K, V)) else T.right = Insert(T_R(K, v)) return T
```

Definition 3.4 (Height h). Length of the longest path from v to a leaf.

• height(\emptyset) = -1

Proof that Insert Maintains BST Property. By induction on height h "Insert(T(K, V)) maintains BST if height(T) \leq h"

Base Case: h = -1: No vertices \rightarrow no vertices to check.

If true for < h : Insert(T(K, V)): T has a root v, so v = root(T) is well defined.

If
$$k \leq k_v$$
: $Insert(T_L(K, V))$: T_L has height $\leq h - 1$

- Insert(k, v) = O(h)
- Delete(k) = O(h)
- Search(k) = O(h)
- Next Smaller(k) = O(h)

Property 3.5 (AVL Property) • Every vertex is augmented with height

- Every pair of siblings have heights differing by ≤ 1
- Maintain balance by rotations: Left rotation, right rotation,