Math 3500 Assignment #3 Solutions University of Lethbridge, Fall 2014

Sean Fitzpatrick

October 8, 2014

1. Determine whether or not each of the following sequences (x_n) converge. For those that do, find $\lim x_n$, and prove that $x_n \to x$ using the **definition** of convergence (i.e. no limit theorems allowed). For those that do not converge, explain why there is no limit.

(a)
$$x_n = \frac{(-1)^n}{n}$$

Solution: The sequence converges to zero. To see this, let $\epsilon > 0$ be given, and choose $N \in \mathbb{N}$ such that $1/n < \epsilon$ for all $n \geq N$. (We know this is possible since \mathbb{R} is Archimedean.) Then whenever $n \geq N$ we have

$$\left| \frac{(-1)^n}{n} \right| = \frac{1}{n} < \epsilon.$$

(b)
$$x_n = (-1)^n (1 - 1/n)$$

Solution: Let $\epsilon = 1$, and note that for any n > 2, $\frac{1}{n} + \frac{1}{n+1} < \frac{1}{2} + \frac{1}{2} = 1$. Thus, for n > 2 we have

$$|x_{n+1} - x_n| = \left|1 - \frac{1}{n} + 1 - \frac{1}{n+1}\right| = \left|2 - \frac{1}{n} - \frac{1}{n+1}\right| > 2 - 1 = 1 = \epsilon.$$

It follows that (x_n) is not a Cauchy sequence, and thus cannot converge.

Note: Another acceptable solution is to note that $\{x_n : n \in \mathbb{N}\}$ has both 1 and -1 as limit points, and explain why it follows that the sequence cannot converge.

(c)
$$x_n = \frac{3n+1}{2n+5}$$

Solution: Let $\epsilon > 0$ be given, and choose $N \in \mathbb{N}$ sufficiently large that $\frac{1}{n} < \frac{4\epsilon}{13}$ for all $n \geq N$. Then we have that

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| = \left|\frac{(6n+2) - (6n+15)}{2(2n+5)}\right| = \left|\frac{-13}{4n+10}\right| < \frac{13}{4n} < \epsilon.$$

(d)
$$x_n = \frac{n^2 - n}{n^3 + 1}$$

Solution: Let $\epsilon > 0$ be given and choose $N \in \mathbb{N}$ such that $1/n < \epsilon$ for all $n \ge N$. Then

$$\left| \frac{n^2 - n}{n^3 + 1} \right| < \left| \frac{n^2}{n^3} \right| = \frac{1}{n} < \epsilon.$$

2. Prove that the Squeeze Theorem holds for sequences: if $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$, and $a_n \to L$ and $c_n \to L$, then $b_n \to L$.

Solution: Let $\epsilon > 0$ be given. Since $a_n \to L$, there exists $N_1 \in \mathbb{N}$ such that $n \geq N_1 \Rightarrow |a_n - L| < \epsilon$, and since $c_n \to L$ there exists $N_2 \in \mathbb{N}$ such that $n \geq N_2 \Rightarrow |c_n - L| < \epsilon$. Let $N = \max N_1, N_2$ and suppose that $n \geq N$. Then we have

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon,$$

and thus that $L - \epsilon < b_n < L + \epsilon$, or equivalently, $|b_n - L| < \epsilon$. Thus, $b_n \to L$ as well.

Note: You might be tempted to argue that since $a_n \leq b_n$ for all n, then $\lim a_n \leq \lim b_n$, and similarly that $\lim b_n \leq \lim c_n$. But this only works if you know in advance that $\lim b_n$ exists!

3. Prove that the convergence of (a_n) implies the convergence of $(|a_n|)$. Is the converse true? Why or why not?

Solution: Suppose that $a_n \to a$. We claim that $|a_n| \to |a|$. To see this, let $\epsilon > 0$ be given, and choose $N \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for all $n \geq N$. Then (using an inequality from the first assignment) we have

$$||a_n| - |a|| \le |a_n - a| < \epsilon.$$

The converse is not true, however. For example, if $a_n = (-1)^n$, then $|a_n| = 1$, and the sequence is constant and therefore converges. However, we know that (a_n) does not converge.

4. (a) Let (s_n) be a sequence such that $|s_{n+1} - s_n| < 2^{-n}$ for all $n \ge 1$. Prove that (s_n) is a Cauchy sequence and hence convergent.

Solution: Let (s_n) be such a sequence, and let $\epsilon > 0$ be given. Since $2^n > n$ for all $n \in \mathbb{N}$ we know that there exists some $N \in \mathbb{N}$ such that $2^{-n+1} < \epsilon$ for all $n \geq N$. Suppose that $m, n \geq N$, and without loss of generality, suppose that m > n. Then we can write m = n + k for some $k \geq 1$, and

$$|a_{m} - a_{n}| = |a_{n+k} - a_{n}|$$

$$= |a_{n+k} - a_{n+k-1} + a_{n+k-1} - a_{n+k-2} + \dots + a_{n+1} - a_{n}|$$

$$\leq |a_{n+k} - a_{n+k-1}| + |a_{n+k-1} - a_{n+k-2}| + \dots + |a_{n+1} - a_{n}|$$

$$< 2^{-(n+k-1)} + 2^{-(n+k-2)} + \dots + 2^{-n}$$

$$= 2^{-n} (1 + 2^{-1} + \dots + 2^{-k+1})$$

$$< 2^{-n} (2) = 2^{-n+1} < \epsilon.$$

(b) Is the result in part (a) true if we only assume that $|s_{n+1} - s_n| < 1/n$ for all $n \ge 1$? (If not, can you find a counterexample?)

Solution: The result does not necessarily hold. For example, take

$$s_n = 1 + 1/2 + 1/3 + \dots + 1/n.$$

Then $|s_{n+1} - s_n| = \frac{1}{n+1} < \frac{1}{n}$, but (s_n) does not converge, and therefore cannot be Cauchy.

- 5. Consider the following two definitions:
 - (i) A sequence (a_n) is eventually in a set $A \subseteq \mathbb{R}$ if there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \in A$.
 - (ii) A sequence (a_n) is frequently in a set $A \subseteq \mathbb{R}$ if for every $N \in \mathbb{N}$ there exists an $n \geq N$ such that $a_n \in A$.
 - (a) Is the sequence $(-1)^n$ eventually or frequently in the set $A = \{1\}$?

Solution: The sequence is frequently in $\{1\}$, since for any $N \in \mathbb{N}$, either N or N+1 is even, so either $(-1)^N = 1$ or $(-1)^{N+1}$ is even. It is not eventually in $\{1\}$ since there are also infinitely many n for which $(-1)^n = -1$.

(b) Which definition is stronger? Does eventually imply frequently? Does frequently imply eventually?

Solution: The first definition is stronger. If $a_n \in A$ for all $n \geq N$, then there certainly exists some $n \geq N$ for which $a_n \in A$.

(c) Given $a \in \mathbb{R}$ and $A = N_{\epsilon}(a) = (a - \epsilon, a + \epsilon)$, which of the above two definitions could we use to give an alternative definition of convergence? Explain your answer.

Solution: The first definition could be used: if we say that (a_n) converges if for every $\epsilon > 0$, (a_n) is eventually in $N_{\epsilon}(a)$, then we are claiming that there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - a| < \epsilon$, which is the usual definition of convergence.

(d) Suppose an infinite number of terms in a sequence (x_n) are equal to 3. Can we conclude that (x_n) is eventually in the set A = (2.9, 3.1)? Is it frequently in A?

Solution: We can only conclude that the sequence is frequently in A: For any $N \in \mathbb{N}$ there must exist an $n \geq N$ such that $x_n = 3 \in A$, or else x_n would equal 3 only a finite number (at most N) of times. But as the example $x_n = 3(-1)^n$ shows, it's possible to have $x_n = 3$ an infinite number of times without it being true that (x_n) is eventually in A.

(e) Let (x_n) be a sequence and let $X = \{x_n \mid n \in \mathbb{N}\}$. Suppose that x is a limit (accumulation) point of X. Can we conclude that $\lim x_n = x$? (If $A = N_{\epsilon}(x)$, is (x_n) frequently in A, or eventually in A?)

Solution: If x is a limit point of X, then we can conclude that any neighbourhood of x contains infinitely many points of X, so we can conclude that (x_n) is frequently in A, as in the previous part. However, this does not guarantee that (x_n) is eventually in A: it could be the case that $x_n \in A$ only when n is even, for example.

- 6. Consider the sequence (a_n) defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$ for all $n \ge 1$. (Thus, (a_n) is the sequence $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots$)
 - (a) Prove that (a_n) is an increasing sequence. (This is most easily done by induction.)

Solution: We wish to show that $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$. Since $a_2 = \sqrt{2\sqrt{2}} > \sqrt{2}$, the result is true when n = 1. Now, suppose that for some $k \ge 1$ we have $a_{k+1} \ge a_k$. Then

$$a_{k+2} = \sqrt{2a_{k+1}} \ge \sqrt{2a_k} = a_{k+1},$$

and thus (a_n) is increasing by induction.

(b) Prove that (a_n) converges.

Solution: We first show that $a_n \leq 2$ for all $n \in \mathbb{N}$. Certainly $a_1 = \sqrt{2} < 2$, and if $a_k \leq 2$ for some $k \geq 1$, then

$$a_{k+1} = \sqrt{2a_k} < \sqrt{2 \cdot 2} = 2.$$

Thus, it follows that $a_n \leq 2$, by induction. We now note that since (a_n) is bounded above by 2, and is increasing (by part (a)), it follows that (a_n) converges, by the Monotone Convergence Theorem.

(c) Prove that if (a_n) converges, then $\lim a_n^2 = (\lim a_n)^2$. (Use known limit theorems.)

Solution: This follows from the rule for products, with $b_n = a_n$: we have $\lim(a_n \cdot a_n) = a \cdot a = a^2$.

(d) Explain why, if (a_n) converges, then $\lim a_{n+1} = \lim a_n$.

Solution: In the definition of convergence we have that $|a_n - a| < \epsilon$ for all $n \ge N$. If (a_n) converges, then for any $\epsilon > 0$, since n + 1 > n, we have in particular that $|a_{n+1} - a| < \epsilon$ whenever $N \in \mathbb{N}$ is such that $n \ge N$ implies $|a_n - a|\epsilon$.

(e) Find the limit of the sequence (a_n) .

Solution: From part (b) we know that $a = \lim a_n$ exists. Combining parts (c) and (d), it follows that

$$a^{2} = \lim a_{n}^{2} = \lim (a_{n+1})^{2} = \lim (\sqrt{2a_{n}})^{2} = \lim 2a_{n} = 2a.$$

This shows that $a^2 = 2a$, so either a = 0 or a = 2. Since $a_n > 0$ for all n (this follows easily by induction) we must have a > 0, and thus a = 2.

Note: your solutions for parts (c) and (d) should work for an arbitrary convergent sequence. Part (e) refers to the sequence defined at the start of the problem.