1. FICHE RÉSUMÉ SYNTHÉTIQUE – Systèmes Experts & IA

Définition de l'IA :

L'IA est la capacité des machines à imiter l'intelligence humaine : apprentissage, raisonnement, résolution de problèmes.

Sous-domaines :

- Machine Learning : apprentissage à partir des données
- **Deep Learning** : réseaux de neurones
- NLP : langage naturel
- Vision par ordinateur
- Robotique

Applications :

 Assistants vocaux, voitures autonomes, diagnostic médical, systèmes de recommandation, jeux, domotique...

Types d'IA :

- IA faible : spécialisée dans une tâche
- IA forte : (non existante) raisonnement général comme un humain

SYSTÈMES D'AIDE À LA DÉCISION (DSS)

Systèmes informatiques qui **aident** à prendre des décisions, mais ne décident pas seuls.

Fonctions:

- Analyse de données
- Reconnaissance de formes
- Analyse prédictive
- Personnalisation
- Temps réel
- Gestion de risques

MATERIAL SEXPERTS

***** Objectif :

Reproduire les décisions d'un expert humain dans un domaine précis (ex : médecine, finance...)

Composants:

- 1. Base de connaissances : faits + règles (si-alors)
- 2. Moteur d'inférence : raisonnement logique
 - Chaînage avant
 - o Chaînage arrière
- 3. Interface utilisateur
- 4. Module d'explication
- 5. Module d'acquisition

📋 Avantages :

- Disponibilité 24h/24
- Réduction des erreurs humaines
- Efficacité
- Rentabilité
- Précision
- Accessibilité de l'expertise

Limites:

- Pas de bon sens
- Domaine restreint
- Développement coûteux
- Difficulté d'adaptation

🔁 Développement d'un système expert :

- 1. Identifier le domaine
- 2. Collecter les connaissances (experts)
- 3. Représenter (faits, règles, heuristiques)
- 4. Créer le moteur d'inférence
- 5. Créer l'interface
- 6. Intégration
- 7. Tests
- 8. Déploiement
- 9. Maintenance/amélioration continue

✓ 1. FICHE RÉSUMÉ CLAIRE ET STRUCTURÉE DU COURS 2 : « Alan Turing, Probabilités, Causalité et IA »

🧠 1. Alan Turing – Père fondateur de l'IA

- Machine de Turing : modèle abstrait de calcul → base de tous les ordinateurs modernes.
- **Test de Turing** : si une machine peut dialoguer sans être détectée, elle est "intelligente".
- Enigma : a aidé à casser le code nazi grâce à des techniques bayésiennes (réduction d'incertitude, probabilité conditionnelle).

2. CAPTCHA – Un test de Turing inversé

- **Définition**: Completely Automated Public Turing Test to tell Computers and Humans Apart.
- Sert à **empêcher les robots** d'agir comme des humains (ex : inscriptions automatiques, spams).
- C'est l'humain qui doit prouver qu'il n'est pas un robot!

3. Probabilités et incertitude

Probabilité conditionnelle :

Probabilité qu'un événement se produise **étant donné** qu'un autre est déjà réalisé.

Forme de raisonnement centrale en IA.

Corrélation ≠ Causalité :

- Deux événements peuvent être liés sans que l'un cause l'autre.
- Ex : Pluie ↔ parapluies ≠ parapluie provoque la pluie.

- Biais d'échantillonnage :
 - Échantillon non représentatif → prédictions fausses.
 - Mieux vaut un petit échantillon bien choisi qu'un grand mal conçu.
- Marge d'erreur ≠ absence de biais :
 - Elle mesure l'incertitude aléatoire, pas les erreurs systématiques.

🔄 5. Diagrammes et causalité

- Variables confondantes : influencent à la fois la cause et l'effet → fausse relation.
- Variables médiatrices : intermédiaires entre la cause et l'effet.
- Variables modératrices : influencent la force de la relation.

Utilisés dans les diagrammes causaux pour clarifier les relations.

🔬 6. Expérimentation & validité

- Études contrôlées randomisées (RCT) :
 - Idéal scientifique pour prouver la relation causale.
 - Ex : Placebo vs traitement réel, double-aveugle.
- **Spurious correlation:**
 - Corrélation faussement significative juste par hasard.
 - Problème si on teste **trop d'hypothèses** sans rigueur.

🤖 7. IA & erreurs modernes

- Exemple : radiologie et IA
 - Un modèle IA a deviné le diagnostic non pas via les radios... mais via des détails sur les appareils photo utilisés.
 - 1 Il faut vérifier ce que l'IA apprend réellement, sinon elle triche inconsciemment.

11 8. Débat : Prédiction vs Compréhension

Approche	Objectif	Avantage	Risque
Prédiction (Leo Breiman)	Obtenir des résultats précis	Efficace, performant	Peu explicable ("boîte noire")
Explication (statisticiens classiques)	Comprendre la causalité	Interprétable	Moins précis

L'IA moderne est souvent entre les deux : performance + transparence.

- ✓ Turing a jeté les bases de la logique informatique et de l'IA.
- Les **probabilités** sont au cœur de l'inférence automatique.
- Il faut distinguer corrélation et causalité.
- L'IA peut **être puissante mais biaisée** si mal encadrée.
- Les méthodes rigoureuses sont indispensables pour la fiabilité des prédictions.