# Chemistry 1A03 Introductory Chemistry I

Chemistry in the context of health, energy and the environment

Fundamental Skills Review Highlights of selected
topics from Ch 1-4, 6



#### Chemistry – It's Elemental! (2-6)

| 1<br>1A                         |                     |                     |                     |                     |                     |                     |                    |                     |                     |                          |                     |                     |                     |                            |                    |                     | 18<br>8A            |
|---------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|---------------------|--------------------------|---------------------|---------------------|---------------------|----------------------------|--------------------|---------------------|---------------------|
| 1<br>H<br>1.00794               | 2<br>2A             |                     |                     |                     |                     |                     |                    |                     |                     |                          |                     | 13<br>3A            | 14<br>4A            | 15<br>5A                   | 16<br>6A           | 17<br>7A            | 2<br>He<br>4.00260  |
| 3<br>Li<br>6.941                | 4<br>Be<br>9.01218  |                     |                     |                     |                     |                     |                    |                     |                     |                          |                     | 5<br>B<br>10.811    | 6<br>C<br>12.0107   | 7<br>N<br>14.0067          | 8<br>O<br>15.9994  | 9<br>F<br>18.9984   | 10<br>Ne<br>20.1797 |
| 11<br>Na<br>22.9898             | 12<br>Mg<br>24.3050 | 3<br>3B             | 4<br>4B             | 5<br>5B             | 6<br>6B             | 7<br>7B             | 8                  | 9<br>-8B-           | 10                  | 11<br>1B                 | 12<br>2B            | 13<br>Al<br>26.9815 | 14<br>Si<br>28.0855 | 15<br>P<br>30.9738         | 16<br>S<br>32.065  | 17<br>Cl<br>35.453  | 18<br>Ar<br>39.948  |
| 19<br>K<br>39.0983              | 20<br>Ca<br>40.078  | 21<br>Sc<br>44.9559 | 22<br>Ti<br>47.867  | 23<br>V<br>50.9415  | 24<br>Cr<br>51.9961 | 25<br>Mn<br>54.9380 | 26<br>Fe<br>55.845 | 27<br>Co<br>58.9332 | 28<br>Ni<br>58.6934 | 29<br>Cu<br>63.546       | 30<br>Zn<br>65.409  | 31<br>Ga<br>69.723  | 32<br>Ge<br>72.64   | 33<br><b>As</b><br>74.9216 | 34<br>Se<br>78.96  | 35<br>Br<br>79.904  | 36<br>Kr<br>83.798  |
| 37<br><b>Rb</b><br>85.4678      | 38<br>Sr<br>87.62   | 39<br>Y<br>88.9059  | 40<br>Zr<br>91.224  | 41<br>Nb<br>92.9064 | 42<br>Mo<br>95.94   | 43<br>Tc<br>(98)    | 44<br>Ru<br>101.07 | 45<br>Rh<br>102.906 | 46<br>Pd<br>106.42  | 47<br>Ag<br>107.868      | 48<br>Cd<br>112.411 | 49<br>In<br>114.818 | 50<br>Sn<br>118.710 | 51<br>Sb<br>121.760        | 52<br>Te<br>127.60 | 53<br>I<br>126.904  | 54<br>Xe<br>131.293 |
| 55<br>Cs<br>132.905             | 56<br>Ba<br>137.327 | 57–71<br>La–Lu      | 72<br>Hf<br>178.49  | 73<br>Ta<br>180.948 | 74<br>W<br>183.84   | 75<br>Re<br>186.207 | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217 | 78<br>Pt<br>195.084 | 79<br>Au<br>196.967      | 80<br>Hg<br>200.59  | 81<br>T1<br>204.383 | 82<br>Pb<br>207.2   | 83<br>Bi<br>208.980        | 84<br>Po<br>(209)  | 85<br>At<br>(210)   | 86<br>Rn<br>(222)   |
| 87<br>Fr<br>(223)               | 88<br>Ra<br>(226)   | 89–103<br>Ac–Lr     | 104<br>Rf<br>(261)  | 105<br>Db<br>(262)  | 106<br>Sg<br>(266)  | 107<br>Bh<br>(264)  | 108<br>Hs<br>(277) | 109<br>Mt<br>(268)  | 110<br>Ds<br>(271)  | 111<br>Rg<br>(272)       |                     |                     |                     |                            |                    |                     |                     |
| *Lanthanide<br>series           |                     | 57<br>La<br>138.905 | 58<br>Ce<br>140.116 | 59<br>Pr<br>140.908 | 60<br>Nd<br>144.242 | 61<br>Pm<br>(145)   | 62<br>Sm<br>150.36 | 63<br>Eu<br>151.964 | 64<br>Gd<br>157.25  | 65<br>Tb<br>158.925      | 66<br>Dy<br>162.500 | 67<br>Ho<br>164.930 | 68<br>Er<br>167.259 | 69<br>Tm<br>168.934        | 70<br>Yb<br>173.04 | 71<br>Lu<br>174.967 |                     |
| <sup>†</sup> Actinide<br>series |                     | 89<br>Ac<br>(227)   | 90<br>Th<br>232.038 | 91<br>Pa<br>231.036 | 92<br>U<br>238.029  | 93<br>Np<br>(237)   | 94<br>Pu<br>(244)  | 95<br>Am<br>(243)   | 96<br>Cm<br>(247)   | 97<br><b>Bk</b><br>(247) | 98<br>Cf<br>(251)   | 99<br>Es<br>(252)   | 100<br>Fm<br>(257)  | 101<br>Md<br>(258)         | 102<br>No<br>(259) | 103<br>Lr<br>(262)  |                     |

▲ FIGURE 2-15

Periodic table of the elements

Period = ? Group = ? Colours = ?



#### Elements at work...



Chemistry - materials

Chemistry - molecules



Chemical biology



Chemistry... Biochemistry





Biology...and more





# Elements at work and play...



 $\mathsf{C}$ 



Ne







He











#### Oxidation State or Ox. Number (3-4)

- actual charge of a monatomic ion Cl<sup>-</sup> (-1), Mg<sup>2+</sup> (+2)
- hypothetical charge of an atom in a molecule or polyatomic ion

$$CO_2$$
 (C = +4, O = -2)  
 $SO_4^{2-}$  (S = +6, O = -2)

Rules for assigning O.S. (O.N):
 Table 3.2 (p. 85, 10<sup>th</sup> ed.)



#### Oxidation Numbers - Exercise

Assign an oxidation number (O.N.) to each atom:

 $Cl_2$  0

Na<sub>2</sub>O +1, -2

CIO<sub>4</sub>- +7, -2

O.N. element = 0

Grp 1, 2 metals = O. N. +1, +2

O is usually -2

sum of O.N. = overall charge

PF<sub>3</sub> +3, -1

H<sub>2</sub>S +1, -2

NaH +1, -1

 $H_2O_2$  +1, -1

F is -1

H is usually +1

except in metal hydrides

O = -1 in peroxides

# Nomenclature (3-6)

- Simple ions recognizing O.N. Fe(II),  $Fe^{2+}$  vs. Fe(III),  $Fe^{3+}$
- Ionic compounds Table 3-3 **NaCl** sodium chloride
- Binary molecular compounds Table 3-4  $N_2O_3$ dinitrogen trioxide
- Polyatomic ions Table 3-5 CrO<sub>4</sub>2chromate ion
- Oxoacids & Their Salts Table 3-6; binary acids HCIO, CIO hypochlorous acid, hypochlorite ion

# *Mole/mass* (2-7)

 $6.022_{14199} \times 10^{23} \text{ mol}^{-1}$ 

mass 1 H atom =

mass 1 **mol** H atoms =  $1.0079 \text{ g mol}^{-1}$ 

Avogadro's number

1.0079 amu



 $m = M \times n$ 

M = m / n

n = m / M

molar Mass (M) = mass (m) / mole (n)

# Mole/mass – Exercise (2-8)

Calculate the number of Cu atoms present in a copper penny weighing 2.4149 g.

Data needed?  $M = 63.546 \text{ g mol}^{-1} \text{ for Cu}$ 

1mol Cu =  $6.022 \times 10^{23}$  Cu atoms

Estimate: Less than 1 mol (approx. 1/30 of a mole)

Solution: 
$$2.4149 \text{ g Cu} \times \frac{1 \text{ mol Cu}}{63.546 \text{ g Cu}} \times \frac{6.0221 \times 10^{23} \text{ atoms Cu}}{1 \text{ mol Cu}}$$

 $= 2.2885 \times 10^{22}$  Cu atoms

Dimensional analysis (use the units to help you)

### Representations of Structure (3-1)

Ionic compounds:
 cations (M<sup>+</sup>) + anions (X<sup>-</sup>) → formula unit (MX)

Exercise: write the formula unit for:

Groups

| sodium chloride    | 1, 17 | NaCl               |
|--------------------|-------|--------------------|
| potassium sulfide  | 1, 16 | $K_2S$             |
| magnesium fluoride | 2, 17 | $\overline{MgF}_2$ |

#### Representations of Structure

Molecules:

**Empirical formula** 

CH<sub>2</sub>O simplest atom ratio

Molecular formula

 $C_2H_4O_2$  actual atom ratio

Structural formula (connectivity)

#### Representations of Structure

Condensed structural formula CH<sub>3</sub>COOH

Line-angle stick formula

 "Ball and stick" molecular model



Space filling



#### Representations of Structure - Exercise

For benzene, write:

Empirical formula: CH

Molecular formula: C<sub>6</sub>H<sub>6</sub>

Structural formula:

$$\begin{array}{c|c} H & H \\ \downarrow & \downarrow \\ H-C & C-H \\ \downarrow & \parallel & \downarrow \\ C-H & H-C & C-H \\ \downarrow & \parallel & \downarrow \\ C-H & H \end{array}$$

Condensed structural formula: (CH)<sub>6</sub>

Line-angle stick formula:



### Isotopes (2-3, 2-4)

$$_{Z}^{A}E$$

Z = atomic # (# p) - What element is it?

A = mass # (# n + p) - What isotope is it?

e.g. <sup>16</sup><sub>8</sub>O, <sup>17</sup><sub>8</sub>O, <sup>18</sup><sub>8</sub>O stable isotopes of O <sup>1</sup><sub>1</sub>H, <sup>2</sup><sub>1</sub>H stable isotopes of H

# electrons = # protons neutral atom # electrons ≠ # protons charged ion

#### Isotopes

- Isotopes have natural abundance e.g. <sup>16</sup>O = 99.76%, <sup>18</sup>O = 0.2%
- Samples that show variations from natural isotope abundance can provide key information



Antarctic ice sheet core – contains trapped gases, trace elements, water...

#### Isotopes: Application - Global Warming

 "H<sub>2</sub>O" exists in many forms because of multiple stable H and O isotopes

- H<sub>2</sub>O(I) (rain!) is richer in heavier forms which condense more readily, especially at lower T
- Measuring <sup>18</sup>O/<sup>16</sup>O ratios in ice cores lets us 'measure' past world T (with data calibrated against the recent past) – evidence for global warming
- It's a "climate proxy" (preserved physical characteristic of the past)

#### Isotopes: Application - Global Warming

 Depletion of heavy water from snow at earth poles = greater when Earth cooler



http://earthobservatory.nasa.gov/Features/Paleoclimatology\_Oxygen\_Balance/ (illustration by Robert Simmon, NASA GSFC)



#### Ice core - Vostok station, Antarctica



http://en.wikipedia.org/wiki/File:Vostok\_Petit\_data.svg

CO<sub>2</sub> levels increased 600 (±400) y <u>after</u> T increases during deglaciation periods (slight time lag); currently 360 ppmv

### Temperature scales (1-4)

- Kelvin, Celsius scales
- 0 K = absolute zero
- $0^{\circ}C = ? K = 273 K$  relative scales

$$14^{\circ}C = 287 \text{ K}$$

$$15^{\circ}C = 288 \text{ K}$$

For Celsius,  $\Delta T = 1$   $\Delta T$  has the same value, regardless

For Kelvin,  $\Delta T = 1$  of T scale

Be careful with T conversions!

# Extensive/Intensive Quantities (1-5)

- Extensive properties: depend on the amount of substance involved
  - e.g. m, V, heat capacity
    heat (q) heat scales with amount of substance
    however, heat characterizes a process undergone by a
    substance it is not a property of a substance
- Intensive properties: independent of the amount of substance involved
  - e.g. T, d, specific heat capacity, P

P is an intensive, not extensive, property (e.g. consider atmospheric pressure – a reading independent of how much outside air we "measure"; this is a similar idea to temperature)

# Significant Figures (1-7)

Which figures are significant? Why?

| 10.02                    | All                             |
|--------------------------|---------------------------------|
| 1.00                     | All                             |
| 0.054                    | 5, 4 (0, 0 = placeholders)      |
| $3400 = 3.4 \times 10^2$ | 3, 4 (can't assume zeroes are)  |
| 3400.                    | 3, 4, 0, 0 (because of decimal) |
| pH = 10.02               | The decimals only*              |
|                          |                                 |

http://www.chemistry.mcmaster.ca/undergraduate-/podcasts



<sup>\*</sup>see podcast on handling logs and sig figs!

#### Sig. Figs. Guidelines - Exercise

 Determine the number of significant figures in each answer (no calculation required!)

```
10.01 \times 12.3 = 123 3 (lowest # of s.f. for multiplication)

9.52 / 1.614 = 5.90 3 (lowest # of s.f. for division)

1.1 + 12.11 = 13.2 3 (smallest # of decimals for add/subtract)
```

Round to 2 decimals:

```
1.065 = 1.07 (5-9 = round up)

1.044 = 1.04 (0-4 = round down)
```

### iClicker question – Sig. Figs.

Which of the following has 4 significant figures?

```
(A) 0.123
```

- (B) 0.056
- (C) 3560
- (D) 21.18
- (E) Both (C) and (D)

# Concentration & Density (4-3)

- concentration, C = mol (n) / volume (V)
- density, d = mass (m) / volume (V)



$$n = C \times V$$

$$C = n / V$$

$$V = n / C$$



$$m = d \times V$$

$$d = m / V$$

$$V = m / d$$

#### Solution, % mass, % volume

% by mass = mass of solute / mass of solution × 100 % by volume = volume of solute / volume of solution × 100

Exercise: An HCl solution is 28.0% by mass, and has density of 1.14 g/mL. What is the concentration of the solution?

Answer: Require C = n/V. Assume 100.g solution, thus 28.0 g HCl.

mol HCl =  $28.0 \text{ g HCl} \times (1 \text{ mol HCl} / 36.46064 \text{ g HCl}) = 0.76795$ 

Volume solution = 100 g solution  $\times$  (1 mL solution / 1.14 g solution) = 87.72 mL or 0.08772 L

C = n/V = 0.76795 mol / 0.08772 L = 8.7546 M = 8.75M

Note: 'M' here is molarity (mol/L) and not molar mass.



# Stoichiometry & Yield (4-1, 4-2, 4-4)

Balance the following reaction:

$$NO(g) + O_2(g) \rightarrow NO_2(g)$$

Balanced reaction:

2 NO(g) + O<sub>2</sub>(g) 
$$\rightarrow$$
 2 NO<sub>2</sub>(g) or  
NO(g) + ½ O<sub>2</sub>(g)  $\rightarrow$  NO<sub>2</sub>(g)

 If we react 1.8 mol NO(g) and 1 mol O<sub>2</sub>(g), what is the limiting reagent?

NO(g)

# Stoichiometry & Yield (4-5)

$$2 \text{ NO(g)} + O_2(g) \rightarrow 2 \text{ NO}_2(g)$$

 From 1.8 mol NO(g) and 1 mol O<sub>2</sub>(g) what is the theoretical yield (mol) of NO<sub>2</sub>(g)?

1.8 mol, since NO is limiting reagent, and there is a 1:1 ratio of NO:NO<sub>2</sub>

 If we actually get 1.6 mol NO<sub>2</sub>(g), what is the percent yield?

percent yield = 
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100 \% = \frac{1.6}{1.8} \times 100 \% = 89 \%$$

#### **Chemical Reactions**

 Complete/balance as many reactions as you can (1 minute):

$$Na(s) + H_2O(I) \rightarrow + H_2(g)$$

$$NaOH(aq) + HCI(aq) \rightarrow$$

$$Pb(NO_3)_2(aq) + K_2SO_4(aq) \rightarrow PbSO_4(s) +$$

$$Zn(s) + HCI(aq) \rightarrow + H_2(g)$$



#### **Chemical Reactions**

2 Na(s) + 2 H<sub>2</sub>O(l) 
$$\rightarrow$$
 2 NaOH(aq) + H<sub>2</sub>(g) Demo, redox

NaOH(aq) + HCI(aq) 
$$\rightarrow$$
 NaCI(aq) + H<sub>2</sub>O(I) base

Demo, ppt.  

$$Pb(NO_3)_2(aq) + K_2SO_4(aq) \rightarrow PbSO_4(s) + 2 KNO_3(aq)$$

$$Zn(s) + 2 HCI(aq) \rightarrow ZnCI_2(aq) + H_2(g)$$
 Lab, redox

Label as acid-base, redox, precipitation?



# **Chemistry Arrows**

Different types of arrows tell a different story:

Reaction



Resonance



Equilibrium



Dipole



Electron pair movement (curly arrow)

#### **Arrows - Exercise**

Complete with correct arrows:

$$C(s) + O2(g)$$

$$CO_2(g)$$

(combustion)

$$N_2O_4(g)$$

(smog equilibrium)





(benzene resonance)

$$H-CI$$

(polar bond)

#### Arrows - Exercise

Complete with correct arrows:

$$C(s) + O_{2}(g) \longrightarrow CO_{2}(g)$$

$$2 NO_{2}(g) \longrightarrow N_{2}O_{4}(g)$$

$$\longleftrightarrow H-CI$$

$$+ -CI$$

# Gas laws (6-3)

Ideal gas law:

PV = nRT

Comes from:

$$V \propto \frac{1}{P}$$
 Boyle

$$V \propto T$$
 Charles

$$V \propto n$$
 Avogadro

# Gas laws – rearranging (6-4)

 Starting from the ideal gas law, use d=m/V and M=m/n to produce an equation that involves P, R, T, d, M:

$$PV = nRT$$

Rearrange to isolate n and V

$$\frac{P}{RT} = \frac{n}{V}$$

Now use n = m/M

$$\frac{P}{RT} = \frac{m}{MV}$$

Now use d = m/V

$$\frac{P}{RT} = \frac{d}{M}$$

### Partial Pressure (6-6)

 The partial pressure of a gas "A" (P<sub>A</sub>) describes its contribution to the total pressure (P<sub>TOTAL</sub>)

$$P_{TOTAL} = P_A + P_B + \dots + P_N$$

 The partial pressure of a gas is derived from its fractional contribution to the total pressure

$$P_{A} = P_{TOTAL} \times x_{A}$$

### A Case Study

- A truck carrying a full load of cases of Viagra® was hijacked and stolen by thieves. The truck was later recovered, but the Viagra® was gone.
- The Insurance agent handling the case was required, in order to complete their report, to write down an estimated value of the cargo stolen.
- Imagine you are the insurance agent:
   Complete your report.

#### The Case: What do we need to know?

- How many cases were on the truck?
   300
- How many packages per case?
   960
- How many pills per package?
   40
- What is the price per pill?
  \$2.50/pill

#### What do we do with the data?

$$300 \text{ cases} \times 960 \frac{\text{packages}}{\text{case}} \times 40 \frac{\text{pills}}{\text{package}} \times \frac{\$2.50}{\text{pill}}$$

= \$28,800,000 or \$28.8 x 10<sup>6</sup>

The value of entire truck load of Viagra® is \$28.8 million.

Note: sig.figs are *not* limited by # of packages or number of pills; these are "exact" numbers, with infinite sig. figs.

#### Practice Problem #1

C(s) (14.30 g) is combusted with  $O_2(g)$  (37.90 g) at 298.15 K and a pressure of 1.00 atm. How many L of  $CO_2(g)$  are produced? Solution:

Reaction: 
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

Find limiting reagent: mol C = m/M = 1.191 mol C

Mol 
$$O_2 = 37.90 \text{ g} / 31.9998 \text{ g mol}^{-1} = 1.184 \text{ mol } O_2$$

Since C and  $O_2$  react in a 1:1 ratio,  $O_2$  is the limiting reagent.

Using PV = nRT, rearrange to give V = nRT/P

Volume 
$$CO_2 = mol O_2 x \frac{1 mol CO_2}{1 mol O_2} x \frac{RT}{P}$$

$$V = 1.184 \text{ mol CO}_2 \times \frac{0.08206 \text{ L atm} \text{K}^{-1} \text{mol}^{-1} \times 298.15 \text{ K}}{1.00 \text{ atm}}$$

$$V = 28.9_7 L = 29.0 L$$



#### Practice Problem #2

 $Pb(NO_3)_2(aq)$  (75.2 mL, 0.0500 M) is mixed with KI(aq) (41.6 mL, 0.0800 M), and a precipitate of  $PbI_2$  is formed. Calculate the amount (g) of  $PbI_2(s)$  produced and the amount (mol) of excess reactant that remains.

#### Solution:

Reaction:  $Pb(NO_3)_2(aq) + 2 KI(aq) \rightarrow PbI_2(s) + 2 KNO_3(aq)$  mol  $Pb(NO_3)_2 = C \times V = (0.0500 \text{ mol L}^{-1}) (0.0752 \text{ L}) = 3.76 \text{ x } 10^{-3} \text{ mol}$ , mol  $KI = C \times V = (0.0800 \text{ mol L} - 1) (0.0416 \text{ L}) = 3.32_8 \text{ x } 10^{-3} \text{ mol}$  KI is the limiting reagent. From the 1:2 ratio,  $2(3.32_8 \text{ x } 10^{-3})$  mol KI would be required to consume all the  $Pb(NO_3)_2$  present.

mol Pb(NO<sub>3</sub>)<sub>2</sub> remaining =  $3.76x10^{-3} - 3.32_8x10^{-3} = 2.096x10^{-3}$  mol, =  $2.10x10^{-3}$  mol

mol Pbl<sub>2</sub> produced =  $3.32_8 \times 10^{-3}$  mol /2 =  $1.66_4 \times 10^{-3}$  mol m = n × M =  $(1.66_4 \times 10^{-3} \text{ g})((461.00894 \text{ g/mol}) = 0.767 \text{ g})$ 





### **Learning Objectives**

For a full list of learning objectives from Ch 1-4,
 6, refer to:

Fundamental Skills Review Learning Objectives list, posted in Avenue

- For additional practice in other types of problems, complete Tutorial #1 (e.g. combustion, percent composition)
- Try a variety of end-of-chapter questions watch for list of recommended questions in Avenue