Theoretical modeling of the collective tunneling of a Wigner necklace

Dominik szombathy

October 31, 2022

Abstract

Contents

1	Pat	h Integral Formalism (introduction)	3
2	Wig	gner Crystals	4
3	Inst	tanton Formalism	5
	3.1	Free Particle	5
	3.2	Harmonic Oscillator	5
	3.3	One particle tunneling	5
		3.3.1 One Particle Hamiltonian	5
		3.3.2 Action Integral Calculation	5
		3.3.3 Tunneling calculation in quartic potentials	5
4	Exp	perimental Considerations	6
	4.1	Modeling the Potential and Fitting	6
	4.2	Polarization data	6
	4.3	Scaling	6
5	Ma	ny Body Tunneling Calculations - Instanton	7
	5.1	Quartic Hamiltonian model	7
		5.1.1 Rescaling and Dimensionless Hamiltonian	7
	5.2	Milnikov method	7
	5.3	Classical Equilibrium Positions	7
	5.4	Harmonic Oscillator Eigenfrequencies adn Eigenmodes	7
	5.5	Trajectory Calculation	7
	5.6	Arc Lengt Paramterization	7
	5.7	Egzact Diagonalization (ED)	7

6	Polarization			
	6.1	Classical Polarization Calculation	8	
	6.2	Polarization using ED	8	
7	Open	Questions	9	
\mathbf{A}	Mathematics			
	A.1 (Gaussian Integrals	10	
	A.2 1	Besel Problem	10	
В	Algo	rithms and Methods	12	
	B.1 I	Monte Carlo and Simulated Annealing	12	
	B.2 I	Minimalization by Nelder-Mead algorithm	12	
\mathbf{C}	Links	s, Data and other stuff	13	

1 Path Integral Formalism (introduction)

2 Wigner Crystals

3 Instanton Formalism

- 3.1 Free Particle
- 3.2 Harmonic Oscillator
- 3.3 One particle tunneling
- 3.3.1 One Particle Hamiltonian
- 3.3.2 Action Integral Calculation
- 3.3.3 Tunneling calculation in quartic potentials

- 4 Experimental Considerations
- 4.1 Modeling the Potential and Fitting
- 4.2 Polarization data
- 4.3 Scaling

5 Many Body Tunneling Calculations - Instanton

- 5.1 Quartic Hamiltonian model
- 5.1.1 Rescaling and Dimensionless Hamiltonian
- 5.2 Milnikov method
- 5.3 Classical Equilibrium Positions
- 5.4 Harmonic Oscillator Eigenfrequencies adn Eigenmodes
- 5.5 Trajectory Calculation
- 5.6 Arc Lengt Paramterization
- 5.7 Egzact Diagonalization (ED)

- 6 Polarization
- 6.1 Classical Polarization Calculation
- 6.2 Polarization using ED

7 Open Questions

\mathbf{A} Mathematics

In this appendix I will write down some useful mathematical expressions, proofs or identities that are used in the discussion above

A.1Gaussian Integrals

Besel Problem

Fourier Way Let's consider first an arbitrary function f(x). The fourier series of this function is:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos\left(\frac{n\pi l}{L}\right) + b_n \sin\left(\frac{n\pi l}{L}\right) \right\}$$
 (A.1)

where $l \in [l_i, l_f]$ and $L = l_f - l_i$ let $f(x) = x^2$ and $l_i = -l_f = -\pi$ so that $L = 2\pi$

Now the coefficients can be calculated:

$$a_0 = \frac{2}{L} \int_{-\pi}^{\pi} f(x)dx$$
 (A.2)

$$= \frac{2}{\pi} \int_0^{\pi} dx \, x^2 \tag{A.3}$$

$$=\frac{2}{3}\pi^2\tag{A.4}$$

$$a_n = \frac{2}{L} \int_{-\pi}^{\pi} dx \, f(x) \cos\left(\frac{n\pi 2x}{L}\right) \tag{A.5}$$

$$= \frac{2}{\pi} \left(\frac{x^2 \sin(nx)}{n} \right) \Big|_0^{\pi} - \frac{2}{\pi} \int_0^{\pi} dx \, \frac{2x \sin(nx)}{n}$$
 (A.6)

$$=$$
 another partial integration later (A.7)

$$=\frac{4(-1)^n}{n^2} \tag{A.8}$$

 $b_n = 0$ because x^2 is even. So the function now looks like this:

$$x^{2} = \frac{2\pi^{2}}{3 \cdot 2} + \sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos\left(\frac{2n\pi x}{L}\right)$$
 (A.9)

$$= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} (-1)^n \tag{A.10}$$

now choose x^2 tob e equal to 0:

$$\pi^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \tag{A.11}$$

subtract the a_0 term and devide by 4:

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} \tag{A.12}$$

Complex Integral Way consider the following integral:

$$I = \int_C \frac{1}{z^2} f(z) dz \tag{A.13}$$

let f(z) be the Fermi function:

$$f(z) = \frac{1}{1 + e^{i\pi z}} \tag{A.14}$$

we have several first order poles at $z = \pm (2n + 1) = p_n$ and a second order pole at z = 0.

The residue from the 1st order poles:

$$Res(f(z), p_n) = \lim_{z \to p_n} (z - p_n) f(z) = \frac{i}{\pi p_n^2}$$
 (A.15)

rom the 2nd order pole:

$$Res(f(z), 0) = \lim_{z \to 0} \frac{d}{dz}(z^2 f(z)) = \frac{-\pi i}{4}$$
 (A.16)

$$\int_{C} g(z)dz = 2\pi i \sum Res(g(z))$$
 (A.17)

$$\int_{C} f(z)dz = 2\pi i \left(\frac{-\pi i}{4}\right) + 2\pi i \sum_{n=0}^{\infty} \frac{2i}{\pi (2n+1)^{2}} = 0$$
 (A.18)

$$\frac{\pi i}{4} = \sum_{n=0}^{\infty} \frac{2i}{\pi (2n+1)^2} \tag{A.19}$$

$$\frac{\pi^2}{8} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \tag{A.20}$$

$$= \frac{3}{4} \sum_{n=1}^{\infty} \frac{1}{n^2} \tag{A.21}$$

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} \tag{A.22}$$

- B Algorithms and Methods
- **B.1** Monte Carlo and Simulated Annealing
- B.2 Minimalization by Nelder-Mead algorithm

C Links, Data and other stuff

[1], [2]

References

- $[1]\,$ Anna Anderegg, 2022, Example 1.
- $[2]\,$ Brenda Bradshaw, 2021, Example 2.