DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA DE ÁLGEBRA DE BOOLE (ALB)

Professor: Arthur Garcia Bartsch Data: 25₁₀/08₁₀/2017₁₀

Lista de Exercícios 1₁₀ - Bases numéricas

(lista adaptada das listas do prof. Tiago Dezuo)

1. Converta para a base decimal os seguintes números:									
a) 111010 ₂	b) 10101 ₃	c) 1221 ₄	d) 1325 ₆	e) 717 ₈	f) 2765 ₈	g) 1FB2 ₁₆	h) BE1A ₁₆		
2. Converta para a base binária os seguintes números em base decimal:									
a) 567	b) 983	c) 1020	d) 65	e) 680	f) 105	g) 294	h) 679		
3. Converta para a base decimal os seguintes números em base binária:									
a) 100001	b) 11011	c) 1100100	d) 11001011	e) 10000000	f) 10110001	g) 10110001	h) 100110000		
4. Converta para a base octal os seguintes números em base decimal:									
a) 567	b) 983	c) 1020	d) 65	e) 680	f) 105	g) 294	h) 679		
5. Converta para a base hexadecimal os seguintes números em base decimal:									
a) 567	b) 983	c) 1020	d) 65	e) 680	f) 105	g) 294	h) 679		
6. Converta para a base octal os seguintes números em base hexadecimal:									
a) F5	b) AB7	c) 98A	d) F1E2	e) E229	f) 135	g) 710	h) CEA		
7. Converta para a base binária os seguintes números em base octal:									
a) 3365	b) 752	c) 625	d) 13703	e) 67105	f) 2004	g) 321	h) 7654		
8. Converta para a base octal os seguintes números em base binária:									
a) 100001	b) 11011	c) 1100100	d) 11001011	e) 10000000	f) 10110001	g) 10110001	h) 100110000		

DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA DE ÁLGEBRA DE BOOLE (ALB)

9. Converta para a base hexadecima	al os seguintes números em	base binária:							
a) 1011000011001010	b) 10011010101111	10011011110	c) 11010000000111011010						
d) 1111101011001010	e) 10010001101000	101	f) 1100101001011010						
10. Efetue as operações binárias:									
a) 10001 + 1111	b) 1110 + 1001011		c) 1011 + 11100						
d) 110101 + 1011001 + 1111110	e) 1100 + 1001011 +	11101	f) 10101 – 1110						
g) 100000 – 11100	h) 1011001 – 11011		i) 11001 x 101						
j) 11110 × 111									
11. Represente os números em notação sinal-módulo 8bits e em complemento de 2:									
a) 97 _d b) -121 _d c) 7	79 _d d) -101 _d	e)1024							
12. Efetue as operações utilizando (complemento de 2:								
a) 111100 _b - 11101011 _b b)	101101 _b - 100111 _b	c) 758 _d - 308 _d	d) 1001 _d - 101 _d						
13. Um número particular inteiro n inferior de dígitos.	ão-sinalizado em binário ter	n 3 dígitos e não pod	e ser representado por uma quantidade						
(a) Quais são o maior e o menor números binários possíveis?									
(b) Converta estes números para a	a base 10.								
14. Um número particular inteiro n quantidade inferior de dígitos.	ão-sinalizado em hexadecim	nal tem 3 dígitos e nã	o pode ser representado por uma						
(a) Quais são o maior e o menor números hexadecimais possíveis?									
(b) Converta estes números para a base 10.									

15. Um número binário de 4 dígitos tem 2 zeros e 2 uns.

(b) Converta estes números para a base 10.

(a) Liste todos os números binários possíveis para estes dígitos.

DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA DE ÁLGEBRA DE BOOLE (ALB)

- 16. Um número binário sinalizado, em complemento de dois, tem 8 dígitos e é convertido para a base 10.
- (a) Qual é o maior número da base 10 possível?
- (b) Qual é o menor valor possível na base 10?
- 17. O número 999 na base 10 é convertido para a binário. Quantos dígitos a mais o número binário tem a mais que o número decimal? Justifique. (Resolva esse exercício sem converter o número 999 para binário).
- 18. Calcule os seguintes números binários:
- (a) 11 + 1
- (b) 11 + 11
- (c) 111 + 11

- (d) 111 + 10
- (e) 1110 + 111
- (f) 1100 + 110

- (g) 1111 + 10101
- (h) 1100 + 11001
- (i) 1011 + 1101

- (i) 1110 + 10111
- (k) 1110 + 1111 (l) 11111 + 11101
- 19. Calcule os números binários:
- (a) 11 10 (b) 110 10 (c) 1111 110
- (d) 100 10 (e) 100 11
- (f) 1000 11
- (g) 1101 110 (h) 11011 110
- 20. Resolva as seguintes equações, onde todos os números, inclusive o x, são binários:
- (a) x + 11 = 1101
- (b) x 10 = 101
- (c) x 1101 = 11011 (d) x + 1110 = 10001
- (e) x + 111 = 11110 (f) x 1001 = 11101
- 21. Calcule os números binários:
- (a) 111 x 10 (b) 1100 x 100
- (c) 101 x 1000 (d) 11101 x 1000
- (e) 11000 x 10 (f) 10100 x 1000
- (g) 10100 x 10 (h) 1100 x 100
- 22. Responda:
- (a) Multiplique cada um dos binários a seguir por ele mesmo:
 - (i) 11 (ii) 111 (iii) 1111
- (b) Baseado no padrão dos resultados, intuitivamente, o que você obterá se multiplicar 11111 por ele mesmo?