4 Divide-and-Conquer

In Section 2.3.1, we saw how merge sort serves as an example of the divide-and-conquer paradigm. Recall that in divide-and-conquer, we solve a problem recursively, applying three steps at each level of the recursion:

Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original problem.

When the subproblems are large enough to solve recursively, we call that the *recursive case*. Once the subproblems become small enough that we no longer recurse, we say that the recursion "bottoms out" and that we have gotten down to the *base case*. Sometimes, in addition to subproblems that are smaller instances of the same problem, we have to solve subproblems that are not quite the same as the original problem. We consider solving such subproblems as part of the combine step.

In this chapter, we shall see more algorithms based on divide-and-conquer. The first one solves the maximum-subarray problem: it takes as input an array of numbers, and it determines the contiguous subarray whose values have the greatest sum. Then we shall see two divide-and-conquer algorithms for multiplying $n \times n$ matrices. One runs in $\Theta(n^3)$ time, which is no better than the straightforward method of multiplying square matrices. But the other, Strassen's algorithm, runs in $O(n^{2.81})$ time, which beats the straightforward method asymptotically.

Recurrences

Recurrences go hand in hand with the divide-and-conquer paradigm, because they give us a natural way to characterize the running times of divide-and-conquer algorithms. A *recurrence* is an equation or inequality that describes a function in terms

of its value on smaller inputs. For example, in Section 2.3.2 we described the worst-case running time T(n) of the MERGE-SORT procedure by the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1, \end{cases}$$
 (4.1)

whose solution we claimed to be $T(n) = \Theta(n \lg n)$.

Recurrences can take many forms. For example, a recursive algorithm might divide subproblems into unequal sizes, such as a 2/3-to-1/3 split. If the divide and combine steps take linear time, such an algorithm would give rise to the recurrence $T(n) = T(2n/3) + T(n/3) + \Theta(n)$.

Subproblems are not necessarily constrained to being a constant fraction of the original problem size. For example, a recursive version of linear search (see Exercise 2.1-3) would create just one subproblem containing only one element fewer than the original problem. Each recursive call would take constant time plus the time for the recursive calls it makes, yielding the recurrence $T(n) = T(n-1) + \Theta(1)$.

This chapter offers three methods for solving recurrences—that is, for obtaining asymptotic " Θ " or "O" bounds on the solution:

- In the *substitution method*, we guess a bound and then use mathematical induction to prove our guess correct.
- The recursion-tree method converts the recurrence into a tree whose nodes
 represent the costs incurred at various levels of the recursion. We use techniques
 for bounding summations to solve the recurrence.
- The *master method* provides bounds for recurrences of the form

$$T(n) = aT(n/b) + f(n),$$
 (4.2)

where $a \ge 1$, b > 1, and f(n) is a given function. Such recurrences arise frequently. A recurrence of the form in equation (4.2) characterizes a divide-and-conquer algorithm that creates a subproblems, each of which is 1/b the size of the original problem, and in which the divide and combine steps together take f(n) time.

To use the master method, you will need to memorize three cases, but once you do that, you will easily be able to determine asymptotic bounds for many simple recurrences. We will use the master method to determine the running times of the divide-and-conquer algorithms for the maximum-subarray problem and for matrix multiplication, as well as for other algorithms based on divide-and-conquer elsewhere in this book.

Occasionally, we shall see recurrences that are not equalities but rather inequalities, such as $T(n) \leq 2T(n/2) + \Theta(n)$. Because such a recurrence states only an upper bound on T(n), we will couch its solution using O-notation rather than Θ -notation. Similarly, if the inequality were reversed to $T(n) \geq 2T(n/2) + \Theta(n)$, then because the recurrence gives only a lower bound on T(n), we would use Ω -notation in its solution.

Technicalities in recurrences

In practice, we neglect certain technical details when we state and solve recurrences. For example, if we call MERGE-SORT on n elements when n is odd, we end up with subproblems of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$. Neither size is actually n/2, because n/2 is not an integer when n is odd. Technically, the recurrence describing the worst-case running time of MERGE-SORT is really

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1. \end{cases}$$
(4.3)

Boundary conditions represent another class of details that we typically ignore. Since the running time of an algorithm on a constant-sized input is a constant, the recurrences that arise from the running times of algorithms generally have $T(n) = \Theta(1)$ for sufficiently small n. Consequently, for convenience, we shall generally omit statements of the boundary conditions of recurrences and assume that T(n) is constant for small n. For example, we normally state recurrence (4.1) as

$$T(n) = 2T(n/2) + \Theta(n)$$
, (4.4)

without explicitly giving values for small n. The reason is that although changing the value of T(1) changes the exact solution to the recurrence, the solution typically doesn't change by more than a constant factor, and so the order of growth is unchanged.

When we state and solve recurrences, we often omit floors, ceilings, and boundary conditions. We forge ahead without these details and later determine whether or not they matter. They usually do not, but you should know when they do. Experience helps, and so do some theorems stating that these details do not affect the asymptotic bounds of many recurrences characterizing divide-and-conquer algorithms (see Theorem 4.1). In this chapter, however, we shall address some of these details and illustrate the fine points of recurrence solution methods.

4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical Corporation. Like the chemicals the company produces, the stock price of the Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit of stock only one time and then sell it at a later date, buying and selling after the close of trading for the day. To compensate for this restriction, you are allowed to learn what the price of the stock will be in the future. Your goal is to maximize your profit. Figure 4.1 shows the price of the stock over a 17-day period. You may buy the stock at any one time, starting after day 0, when the price is \$100 per share. Of course, you would want to "buy low, sell high"—buy at the lowest possible price and later on sell at the highest possible price—to maximize your profit. Unfortunately, you might not be able to buy at the lowest price and then sell at the highest price within a given period. In Figure 4.1, the lowest price occurs after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the lowest price or selling at the highest price. For example, in Figure 4.1, we would maximize profit by buying at the lowest price, after day 7. If this strategy always worked, then it would be easy to determine how to maximize profit: find the highest and lowest prices, and then work left from the highest price to find the lowest prior price, work right from the lowest price to find the highest later price, and take the pair with the greater difference. Figure 4.2 shows a simple counterexample,

Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical axis shows the price. The bottom row of the table gives the change in price from the previous day.

Day	0	1	2	3	4
Price	10	11	7	10	6
Change		1	-4	3	-4

Figure 4.2 An example showing that the maximum profit does not always start at the lowest price or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows the price. Here, the maximum profit of \$3 per share would be earned by buying after day 2 and selling after day 3. The price of \$7 after day 2 is not the lowest price overall, and the price of \$10 after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the lowest price nor by selling at the highest price.

A brute-force solution

We can easily devise a brute-force solution to this problem: just try every possible pair of buy and sell dates in which the buy date precedes the sell date. A period of n days has $\binom{n}{2}$ such pairs of dates. Since $\binom{n}{2}$ is $\Theta(n^2)$, and the best we can hope for is to evaluate each pair of dates in constant time, this approach would take $\Omega(n^2)$ time. Can we do better?

A transformation

In order to design an algorithm with an $o(n^2)$ running time, we will look at the input in a slightly different way. We want to find a sequence of days over which the net change from the first day to the last is maximum. Instead of looking at the daily prices, let us instead consider the daily change in price, where the change on day i is the difference between the prices after day i - 1 and after day i. The table in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous subarray of A whose values have the largest sum. We call this contiguous subarray the **maximum subarray**. For example, in the array of Figure 4.3, the maximum subarray of A[1..16] is A[8..11], with the sum 43. Thus, you would want to buy the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a profit of \$43 per share.

At first glance, this transformation does not help. We still need to check $\binom{n-1}{2} = \Theta(n^2)$ subarrays for a period of n days. Exercise 4.1-2 asks you to show

Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subarray A[8..11], with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to the length of the subarray, when computing all $\Theta(n^2)$ subarray sums, we can organize the computation so that each subarray sum takes O(1) time, given the values of previously computed subarray sums, so that the brute-force solution takes $\Theta(n^2)$ time.

So let us seek a more efficient solution to the maximum-subarray problem. When doing so, we will usually speak of "a" maximum subarray rather than "the" maximum subarray, since there could be more than one subarray that achieves the maximum sum.

The maximum-subarray problem is interesting only when the array contains some negative numbers. If all the array entries were nonnegative, then the maximum-subarray problem would present no challenge, since the entire array would give the greatest sum.

A solution using divide-and-conquer

Let's think about how we might solve the maximum-subarray problem using the divide-and-conquer technique. Suppose we want to find a maximum subarray of the subarray A[low..high]. Divide-and-conquer suggests that we divide the subarray into two subarrays of as equal size as possible. That is, we find the midpoint, say mid, of the subarray, and consider the subarrays A[low..mid] and A[mid+1..high]. As Figure 4.4(a) shows, any contiguous subarray A[i..j] of A[low..high] must lie in exactly one of the following places:

- entirely in the subarray A[low..mid], so that $low \le i \le j \le mid$,
- entirely in the subarray A[mid + 1..high], so that $mid < i \le j \le high$, or
- crossing the midpoint, so that $low \le i \le mid < j \le high$.

Therefore, a maximum subarray of A[low..high] must lie in exactly one of these places. In fact, a maximum subarray of A[low..high] must have the greatest sum over all subarrays entirely in A[low..mid], entirely in A[mid + 1..high], or crossing the midpoint. We can find maximum subarrays of A[low..mid] and A[mid+1..high] recursively, because these two subproblems are smaller instances of the problem of finding a maximum subarray. Thus, all that is left to do is find a

Figure 4.4 (a) Possible locations of subarrays of A[low..high]: entirely in A[low..mid], entirely in A[mid+1..high], or crossing the midpoint mid. (b) Any subarray of A[low..high] crossing the midpoint comprises two subarrays A[i..mid] and A[mid+1..j], where $low \le i \le mid$ and $mid < j \le high$.

maximum subarray that crosses the midpoint, and take a subarray with the largest sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear in the size of the subarray $A[low\mathinner{.}\mathinner{.}high]$. This problem is not a smaller instance of our original problem, because it has the added restriction that the subarray it chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing the midpoint is itself made of two subarrays $A[i\mathinner{.}\mathinner{.}mid]$ and $A[mid+1\mathinner{.}\mathinner{.}j]$, where $low \leq i \leq mid$ and $mid < j \leq high$. Therefore, we just need to find maximum subarrays of the form $A[i\mathinner{.}\mathinner{.}mid]$ and $A[mid+1\mathinner{.}\mathinner{.}j]$ and then combine them. The procedure FIND-MAX-CROSSING-SUBARRAY takes as input the array A and the indices low, mid, and high, and it returns a tuple containing the indices demarcating a maximum subarray that crosses the midpoint, along with the sum of the values in a maximum subarray.

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

```
left-sum = -\infty
 2
    sum = 0
 3
    for i = mid downto low
 4
         sum = sum + A[i]
 5
         if sum > left-sum
 6
             left-sum = sum
 7
             max-left = i
 8
    right-sum = -\infty
    sum = 0
 9
10
    for j = mid + 1 to high
         sum = sum + A[j]
11
12
         if sum > right-sum
13
             right-sum = sum
14
             max-right = i
15
    return (max-left, max-right, left-sum + right-sum)
```

This procedure works as follows. Lines 1–7 find a maximum subarray of the left half, A[low..mid]. Since this subarray must contain A[mid], the **for** loop of lines 3–7 starts the index i at mid and works down to low, so that every subarray it considers is of the form A[i..mid]. Lines 1–2 initialize the variables left-sum, which holds the greatest sum found so far, and sum, holding the sum of the entries in A[i..mid]. Whenever we find, in line 5, a subarray A[i..mid] with a sum of values greater than left-sum, we update left-sum to this subarray's sum in line 6, and in line 7 we update the variable max-left to record this index i. Lines 8–14 work analogously for the right half, A[mid+1..high]. Here, the **for** loop of lines 10–14 starts the index j at mid+1 and works up to high, so that every subarray it considers is of the form A[mid+1..j]. Finally, line 15 returns the indices max-left and max-right that demarcate a maximum subarray crossing the midpoint, along with the sum left-sum + right-sum of the values in the subarray A[max-left... max-right].

If the subarray A[low..high] contains n entries (so that n = high - low + 1), we claim that the call FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high) takes $\Theta(n)$ time. Since each iteration of each of the two **for** loops takes $\Theta(1)$ time, we just need to count up how many iterations there are altogether. The **for** loop of lines 3–7 makes mid - low + 1 iterations, and the **for** loop of lines 10–14 makes high - mid iterations, and so the total number of iterations is

```
(mid - low + 1) + (high - mid) = high - low + 1
= n.
```

With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in hand, we can write pseudocode for a divide-and-conquer algorithm to solve the maximum-subarray problem:

FIND-MAXIMUM-SUBARRAY (A, low, high)

```
1
    if high == low
 2
         return (low, high, A[low])
                                              // base case: only one element
 3
    else mid = \lfloor (low + high)/2 \rfloor
 4
         (left-low, left-high, left-sum) =
             FIND-MAXIMUM-SUBARRAY (A, low, mid)
 5
         (right-low, right-high, right-sum) =
             FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
 6
         (cross-low, cross-high, cross-sum) =
             FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
 7
         if left-sum > right-sum and left-sum > cross-sum
 8
             return (left-low, left-high, left-sum)
 9
         elseif right-sum > left-sum and right-sum > cross-sum
10
             return (right-low, right-high, right-sum)
11
         else return (cross-low, cross-high, cross-sum)
```

The initial call FIND-MAXIMUM-SUBARRAY (A, 1, A.length) will find a maximum subarray of A[1..n].

Similar to FIND-MAX-CROSSING-SUBARRAY, the recursive procedure FIND-MAXIMUM-SUBARRAY returns a tuple containing the indices that demarcate a maximum subarray, along with the sum of the values in a maximum subarray. Line 1 tests for the base case, where the subarray has just one element. A subarray with just one element has only one subarray—itself—and so line 2 returns a tuple with the starting and ending indices of just the one element, along with its value. Lines 3-11 handle the recursive case. Line 3 does the divide part, computing the index mid of the midpoint. Let's refer to the subarray A[low..mid] as the *left subarray* and to A[mid + 1..high] as the *right subarray*. Because we know that the subarray A[low..high] contains at least two elements, each of the left and right subarrays must have at least one element. Lines 4 and 5 conquer by recursively finding maximum subarrays within the left and right subarrays, respectively. Lines 6–11 form the combine part. Line 6 finds a maximum subarray that crosses the midpoint. (Recall that because line 6 solves a subproblem that is not a smaller instance of the original problem, we consider it to be in the combine part.) Line 7 tests whether the left subarray contains a subarray with the maximum sum, and line 8 returns that maximum subarray. Otherwise, line 9 tests whether the right subarray contains a subarray with the maximum sum, and line 10 returns that maximum subarray. If neither the left nor right subarrays contain a subarray achieving the maximum sum, then a maximum subarray must cross the midpoint, and line 11 returns it.

Analyzing the divide-and-conquer algorithm

Next we set up a recurrence that describes the running time of the recursive FIND-MAXIMUM-SUBARRAY procedure. As we did when we analyzed merge sort in Section 2.3.2, we make the simplifying assumption that the original problem size is a power of 2, so that all subproblem sizes are integers. We denote by T(n) the running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements. For starters, line 1 takes constant time. The base case, when n=1, is easy: line 2 takes constant time, and so

$$T(1) = \Theta(1). \tag{4.5}$$

The recursive case occurs when n > 1. Lines 1 and 3 take constant time. Each of the subproblems solved in lines 4 and 5 is on a subarray of n/2 elements (our assumption that the original problem size is a power of 2 ensures that n/2 is an integer), and so we spend T(n/2) time solving each of them. Because we have to solve two subproblems—for the left subarray and for the right subarray—the contribution to the running time from lines 4 and 5 comes to 2T(n/2). As we have

already seen, the call to FIND-MAX-CROSSING-SUBARRAY in line 6 takes $\Theta(n)$ time. Lines 7–11 take only $\Theta(1)$ time. For the recursive case, therefore, we have

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1)$$

= $2T(n/2) + \Theta(n)$. (4.6)

Combining equations (4.5) and (4.6) gives us a recurrence for the running time T(n) of FIND-MAXIMUM-SUBARRAY:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$
 (4.7)

This recurrence is the same as recurrence (4.1) for merge sort. As we shall see from the master method in Section 4.5, this recurrence has the solution $T(n) = \Theta(n \lg n)$. You might also revisit the recursion tree in Figure 2.5 to understand why the solution should be $T(n) = \Theta(n \lg n)$.

Thus, we see that the divide-and-conquer method yields an algorithm that is asymptotically faster than the brute-force method. With merge sort and now the maximum-subarray problem, we begin to get an idea of how powerful the divide-and-conquer method can be. Sometimes it will yield the asymptotically fastest algorithm for a problem, and other times we can do even better. As Exercise 4.1-5 shows, there is in fact a linear-time algorithm for the maximum-subarray problem, and it does not use divide-and-conquer.

Exercises

4.1-1

What does FIND-MAXIMUM-SUBARRAY return when all elements of *A* are negative?

4.1-2

Write pseudocode for the brute-force method of solving the maximum-subarray problem. Your procedure should run in $\Theta(n^2)$ time.

4.1-3

Implement both the brute-force and recursive algorithms for the maximumsubarray problem on your own computer. What problem size n_0 gives the crossover point at which the recursive algorithm beats the brute-force algorithm? Then, change the base case of the recursive algorithm to use the brute-force algorithm whenever the problem size is less than n_0 . Does that change the crossover point?

4.1-4

Suppose we change the definition of the maximum-subarray problem to allow the result to be an empty subarray, where the sum of the values of an empty subar-

ray is 0. How would you change any of the algorithms that do not allow empty subarrays to permit an empty subarray to be the result?

4.1-5

Use the following ideas to develop a nonrecursive, linear-time algorithm for the maximum-subarray problem. Start at the left end of the array, and progress toward the right, keeping track of the maximum subarray seen so far. Knowing a maximum subarray of A[1 ... j], extend the answer to find a maximum subarray ending at index j+1 by using the following observation: a maximum subarray of A[1 ... j+1] is either a maximum subarray of A[1 ... j] or a subarray A[i ... j+1], for some $1 \le i \le j+1$. Determine a maximum subarray of the form A[i ... j+1] in constant time based on knowing a maximum subarray ending at index j.

4.2 Strassen's algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them. (Otherwise, you should read Section D.1 in Appendix D.) If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then in the product $C = A \cdot B$, we define the entry c_{ij} , for i, j = 1, 2, ..., n, by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} . (4.8)$$

We must compute n^2 matrix entries, and each is the sum of n values. The following procedure takes $n \times n$ matrices A and B and multiplies them, returning their $n \times n$ product C. We assume that each matrix has an attribute rows, giving the number of rows in the matrix.

```
SQUARE-MATRIX-MULTIPLY (A, B)
```

```
1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The **for** loop of lines 3-7 computes the entries of each row i, and within a given row i, the

for loop of lines 4–7 computes each of the entries c_{ij} , for each column j. Line 5 initializes c_{ij} to 0 as we start computing the sum given in equation (4.8), and each iteration of the for loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested **for** loops runs exactly n iterations, and each execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY procedure takes $\Theta(n^3)$ time.

You might at first think that any matrix multiplication algorithm must take $\Omega(n^3)$ time, since the natural definition of matrix multiplication requires that many multiplications. You would be incorrect, however: we have a way to multiply matrices in $o(n^3)$ time. In this section, we shall see Strassen's remarkable recursive algorithm for multiplying $n \times n$ matrices. It runs in $\Theta(n^{\lg 7})$ time, which we shall show in Section 4.5. Since $\lg 7$ lies between 2.80 and 2.81, Strassen's algorithm runs in $O(n^{2.81})$ time, which is asymptotically better than the simple SQUARE-MATRIX-MULTIPLY procedure.

A simple divide-and-conquer algorithm

To keep things simple, when we use a divide-and-conquer algorithm to compute the matrix product $C = A \cdot B$, we assume that n is an exact power of 2 in each of the $n \times n$ matrices. We make this assumption because in each divide step, we will divide $n \times n$ matrices into four $n/2 \times n/2$ matrices, and by assuming that n is an exact power of 2, we are guaranteed that as long as $n \ge 2$, the dimension n/2 is an integer.

Suppose that we partition each of A, B, and C into four $n/2 \times n/2$ matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \tag{4.9}$$

so that we rewrite the equation $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}. \tag{4.10}$$

Equation (4.10) corresponds to the four equations

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} , (4.11)$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} , (4.12)$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} , (4.13)$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} . (4.14)$$

Each of these four equations specifies two multiplications of $n/2 \times n/2$ matrices and the addition of their $n/2 \times n/2$ products. We can use these equations to create a straightforward, recursive, divide-and-conquer algorithm:

```
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

1 \quad n = A.rows
```

```
let C be a new n \times n matrix
 3
    if n == 1
 4
         c_{11} = a_{11} \cdot b_{11}
 5
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
 7
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
 8
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
 9
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
10 return C
```

This pseudocode glosses over one subtle but important implementation detail. How do we partition the matrices in line 5? If we were to create $12 \text{ new } n/2 \times n/2$ matrices, we would spend $\Theta(n^2)$ time copying entries. In fact, we can partition the matrices without copying entries. The trick is to use index calculations. We identify a submatrix by a range of row indices and a range of column indices of the original matrix. We end up representing a submatrix a little differently from how we represent the original matrix, which is the subtlety we are glossing over. The advantage is that, since we can specify submatrices by index calculations, executing line 5 takes only $\Theta(1)$ time (although we shall see that it makes no difference asymptotically to the overall running time whether we copy or partition in place).

Now, we derive a recurrence to characterize the running time of SQUARE-MATRIX-MULTIPLY-RECURSIVE. Let T(n) be the time to multiply two $n \times n$ matrices using this procedure. In the base case, when n=1, we perform just the one scalar multiplication in line 4, and so

$$T(1) = \Theta(1). \tag{4.15}$$

The recursive case occurs when n > 1. As discussed, partitioning the matrices in line 5 takes $\Theta(1)$ time, using index calculations. In lines 6–9, we recursively call SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each recursive call multiplies two $n/2 \times n/2$ matrices, thereby contributing T(n/2) to the overall running time, the time taken by all eight recursive calls is 8T(n/2). We also must account for the four matrix additions in lines 6–9. Each of these matrices contains $n^2/4$ entries, and so each of the four matrix additions takes $\Theta(n^2)$ time. Since the number of matrix additions is a constant, the total time spent adding ma-

trices in lines 6–9 is $\Theta(n^2)$. (Again, we use index calculations to place the results of the matrix additions into the correct positions of matrix C, with an overhead of $\Theta(1)$ time per entry.) The total time for the recursive case, therefore, is the sum of the partitioning time, the time for all the recursive calls, and the time to add the matrices resulting from the recursive calls:

$$T(n) = \Theta(1) + 8T(n/2) + \Theta(n^2)$$

= $8T(n/2) + \Theta(n^2)$. (4.16)

Notice that if we implemented partitioning by copying matrices, which would cost $\Theta(n^2)$ time, the recurrence would not change, and hence the overall running time would increase by only a constant factor.

Combining equations (4.15) and (4.16) gives us the recurrence for the running time of SQUARE-MATRIX-MULTIPLY-RECURSIVE:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$
 (4.17)

As we shall see from the master method in Section 4.5, recurrence (4.17) has the solution $T(n) = \Theta(n^3)$. Thus, this simple divide-and-conquer approach is no faster than the straightforward SQUARE-MATRIX-MULTIPLY procedure.

Before we continue on to examining Strassen's algorithm, let us review where the components of equation (4.16) came from. Partitioning each $n \times n$ matrix by index calculation takes $\Theta(1)$ time, but we have two matrices to partition. Although you could say that partitioning the two matrices takes $\Theta(2)$ time, the constant of 2 is subsumed by the Θ -notation. Adding two matrices, each with, say, k entries, takes $\Theta(k)$ time. Since the matrices we add each have $n^2/4$ entries, you could say that adding each pair takes $\Theta(n^2/4)$ time. Again, however, the Θ -notation subsumes the constant factor of 1/4, and we say that adding two $n^2/4 \times n^2/4$ matrices takes $\Theta(n^2)$ time. We have four such matrix additions, and once again, instead of saying that they take $\Theta(4n^2)$ time, we say that they take $\Theta(n^2)$ time. (Of course, you might observe that we could say that the four matrix additions take $\Theta(4n^2/4)$ time, and that $4n^2/4 = n^2$, but the point here is that Θ -notation subsumes constant factors, whatever they are.) Thus, we end up with two terms of $\Theta(n^2)$, which we can combine into one.

When we account for the eight recursive calls, however, we cannot just subsume the constant factor of 8. In other words, we must say that together they take 8T(n/2) time, rather than just T(n/2) time. You can get a feel for why by looking back at the recursion tree in Figure 2.5, for recurrence (2.1) (which is identical to recurrence (4.7)), with the recursive case $T(n) = 2T(n/2) + \Theta(n)$. The factor of 2 determined how many children each tree node had, which in turn determined how many terms contributed to the sum at each level of the tree. If we were to ignore

the factor of 8 in equation (4.16) or the factor of 2 in recurrence (4.1), the recursion tree would just be linear, rather than "bushy," and each level would contribute only one term to the sum.

Bear in mind, therefore, that although asymptotic notation subsumes constant multiplicative factors, recursive notation such as T(n/2) does not.

Strassen's method

The key to Strassen's method is to make the recursion tree slightly less bushy. That is, instead of performing eight recursive multiplications of $n/2 \times n/2$ matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of $n/2 \times n/2$ matrices, but still only a constant number of additions. As before, the constant number of matrix additions will be subsumed by Θ -notation when we set up the recurrence equation to characterize the running time.

Strassen's method is not at all obvious. (This might be the biggest understatement in this book.) It has four steps:

- 1. Divide the input matrices A and B and output matrix C into $n/2 \times n/2$ submatrices, as in equation (4.9). This step takes $\Theta(1)$ time by index calculation, just as in SQUARE-MATRIX-MULTIPLY-RECURSIVE.
- 2. Create 10 matrices S_1, S_2, \ldots, S_{10} , each of which is $n/2 \times n/2$ and is the sum or difference of two matrices created in step 1. We can create all 10 matrices in $\Theta(n^2)$ time.
- 3. Using the submatrices created in step 1 and the 10 matrices created in step 2, recursively compute seven matrix products P_1, P_2, \ldots, P_7 . Each matrix P_i is $n/2 \times n/2$.
- 4. Compute the desired submatrices C_{11} , C_{12} , C_{21} , C_{22} of the result matrix C by adding and subtracting various combinations of the P_i matrices. We can compute all four submatrices in $\Theta(n^2)$ time.

We shall see the details of steps 2–4 in a moment, but we already have enough information to set up a recurrence for the running time of Strassen's method. Let us assume that once the matrix size n gets down to 1, we perform a simple scalar multiplication, just as in line 4 of SQUARE-MATRIX-MULTIPLY-RECURSIVE. When n>1, steps 1, 2, and 4 take a total of $\Theta(n^2)$ time, and step 3 requires us to perform seven multiplications of $n/2 \times n/2$ matrices. Hence, we obtain the following recurrence for the running time T(n) of Strassen's algorithm:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$
 (4.18)

We have traded off one matrix multiplication for a constant number of matrix additions. Once we understand recurrences and their solutions, we shall see that this tradeoff actually leads to a lower asymptotic running time. By the master method in Section 4.5, recurrence (4.18) has the solution $T(n) = \Theta(n^{\lg 7})$.

We now proceed to describe the details. In step 2, we create the following 10 matrices:

$$\begin{array}{rcl} S_1 & = & B_{12} - B_{22} \; , \\ S_2 & = & A_{11} + A_{12} \; , \\ S_3 & = & A_{21} + A_{22} \; , \\ S_4 & = & B_{21} - B_{11} \; , \\ S_5 & = & A_{11} + A_{22} \; , \\ S_6 & = & B_{11} + B_{22} \; , \\ S_7 & = & A_{12} - A_{22} \; , \\ S_8 & = & B_{21} + B_{22} \; , \\ S_9 & = & A_{11} - A_{21} \; , \\ S_{10} & = & B_{11} + B_{12} \; . \end{array}$$

Since we must add or subtract $n/2 \times n/2$ matrices 10 times, this step does indeed take $\Theta(n^2)$ time.

In step 3, we recursively multiply $n/2 \times n/2$ matrices seven times to compute the following $n/2 \times n/2$ matrices, each of which is the sum or difference of products of A and B submatrices:

Note that the only multiplications we need to perform are those in the middle column of the above equations. The right-hand column just shows what these products equal in terms of the original submatrices created in step 1.

Step 4 adds and subtracts the P_i matrices created in step 3 to construct the four $n/2 \times n/2$ submatrices of the product C. We start with

$$C_{11} = P_5 + P_4 - P_2 + P_6$$
.

Expanding out the right-hand side, with the expansion of each P_i on its own line and vertically aligning terms that cancel out, we see that C_{11} equals

$$\begin{array}{c} A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ \qquad \qquad - A_{22} \cdot B_{11} \qquad \qquad + A_{22} \cdot B_{21} \\ \qquad \qquad - A_{11} \cdot B_{22} \qquad \qquad \qquad - A_{12} \cdot B_{22} \\ \qquad \qquad \qquad - A_{22} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} + A_{12} \cdot B_{21} \end{array}$$

$$A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$
,

which corresponds to equation (4.11).

Similarly, we set

$$C_{12} = P_1 + P_2$$
,

and so C_{12} equals

$$\begin{array}{c} A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \\ + A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \\ \hline A_{11} \cdot B_{12} + A_{12} \cdot B_{22} , \end{array}$$

corresponding to equation (4.12).

Setting

$$C_{21} = P_3 + P_4$$

makes C_{21} equal

$$\begin{array}{c}
A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \\
- A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\
\hline
A_{21} \cdot B_{11} + A_{22} \cdot B_{21},
\end{array}$$

corresponding to equation (4.13).

Finally, we set

$$C_{22} = P_5 + P_1 - P_3 - P_7 ,$$

so that C_{22} equals

$$A_{22} \cdot B_{22} + A_{21} \cdot B_{12} ,$$

which corresponds to equation (4.14). Altogether, we add or subtract $n/2 \times n/2$ matrices eight times in step 4, and so this step indeed takes $\Theta(n^2)$ time.

Thus, we see that Strassen's algorithm, comprising steps 1–4, produces the correct matrix product and that recurrence (4.18) characterizes its running time. Since we shall see in Section 4.5 that this recurrence has the solution $T(n) = \Theta(n^{\lg 7})$, Strassen's method is asymptotically faster than the straightforward SQUARE-MATRIX-MULTIPLY procedure. The notes at the end of this chapter discuss some of the practical aspects of Strassen's algorithm.

Exercises

Note: Although Exercises 4.2-3, 4.2-4, and 4.2-5 are about variants on Strassen's algorithm, you should read Section 4.5 before trying to solve them.

4.2-1

Use Strassen's algorithm to compute the matrix product

$$\left(\begin{array}{cc} 1 & 3 \\ 7 & 5 \end{array}\right) \left(\begin{array}{cc} 6 & 8 \\ 4 & 2 \end{array}\right).$$

Show your work.

4.2-2

Write pseudocode for Strassen's algorithm.

4.2-3

How would you modify Strassen's algorithm to multiply $n \times n$ matrices in which n is not an exact power of 2? Show that the resulting algorithm runs in time $\Theta(n^{\lg 7})$.

4.2-4

What is the largest k such that if you can multiply 3×3 matrices using k multiplications (not assuming commutativity of multiplication), then you can multiply $n \times n$ matrices in time $o(n^{\lg 7})$? What would the running time of this algorithm be?

4.2-5

V. Pan has discovered a way of multiplying 68×68 matrices using 132,464 multiplications, a way of multiplying 70×70 matrices using 143,640 multiplications, and a way of multiplying 72×72 matrices using 155,424 multiplications. Which method yields the best asymptotic running time when used in a divide-and-conquer matrix-multiplication algorithm? How does it compare to Strassen's algorithm?

4.2-6

How quickly can you multiply a $kn \times n$ matrix by an $n \times kn$ matrix, using Strassen's algorithm as a subroutine? Answer the same question with the order of the input matrices reversed.

4.2-7

Show how to multiply the complex numbers a+bi and c+di using only three multiplications of real numbers. The algorithm should take a,b,c, and d as input and produce the real component ac-bd and the imaginary component ad+bc separately.

4.3 The substitution method for solving recurrences

Now that we have seen how recurrences characterize the running times of divideand-conquer algorithms, we will learn how to solve recurrences. We start in this section with the "substitution" method.

The *substitution method* for solving recurrences comprises two steps:

- 1. Guess the form of the solution.
- 2. Use mathematical induction to find the constants and show that the solution works.

We substitute the guessed solution for the function when applying the inductive hypothesis to smaller values; hence the name "substitution method." This method is powerful, but we must be able to guess the form of the answer in order to apply it.

We can use the substitution method to establish either upper or lower bounds on a recurrence. As an example, let us determine an upper bound on the recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$
, (4.19)

which is similar to recurrences (4.3) and (4.4). We guess that the solution is $T(n) = O(n \lg n)$. The substitution method requires us to prove that $T(n) \le cn \lg n$ for an appropriate choice of the constant c > 0. We start by assuming that this bound holds for all positive m < n, in particular for $m = \lfloor n/2 \rfloor$, yielding $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$. Substituting into the recurrence yields

$$T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

$$\leq cn \lg(n/2) + n$$

$$= cn \lg n - cn \lg 2 + n$$

$$= cn \lg n - cn + n$$

$$\leq cn \lg n,$$

where the last step holds as long as c > 1.

Mathematical induction now requires us to show that our solution holds for the boundary conditions. Typically, we do so by showing that the boundary conditions are suitable as base cases for the inductive proof. For the recurrence (4.19), we must show that we can choose the constant c large enough so that the bound $T(n) \le cn \lg n$ works for the boundary conditions as well. This requirement can sometimes lead to problems. Let us assume, for the sake of argument, that T(1) = 1 is the sole boundary condition of the recurrence. Then for n = 1, the bound $T(n) \le cn \lg n$ yields $T(1) \le c1 \lg 1 = 0$, which is at odds with T(1) = 1. Consequently, the base case of our inductive proof fails to hold.

We can overcome this obstacle in proving an inductive hypothesis for a specific boundary condition with only a little more effort. In the recurrence (4.19), for example, we take advantage of asymptotic notation requiring us only to prove $T(n) \le cn \lg n$ for $n \ge n_0$, where n_0 is a constant that we get to choose. We keep the troublesome boundary condition T(1) = 1, but remove it from consideration in the inductive proof. We do so by first observing that for n > 3, the recurrence does not depend directly on T(1). Thus, we can replace T(1) by T(2)and T(3) as the base cases in the inductive proof, letting $n_0 = 2$. Note that we make a distinction between the base case of the recurrence (n = 1) and the base cases of the inductive proof (n = 2 and n = 3). With T(1) = 1, we derive from the recurrence that T(2) = 4 and T(3) = 5. Now we can complete the inductive proof that $T(n) < cn \lg n$ for some constant c > 1 by choosing c large enough so that $T(2) \le c2 \lg 2$ and $T(3) \le c3 \lg 3$. As it turns out, any choice of $c \ge 2$ suffices for the base cases of n=2 and n=3 to hold. For most of the recurrences we shall examine, it is straightforward to extend boundary conditions to make the inductive assumption work for small n, and we shall not always explicitly work out the details.

Making a good guess

Unfortunately, there is no general way to guess the correct solutions to recurrences. Guessing a solution takes experience and, occasionally, creativity. Fortunately, though, you can use some heuristics to help you become a good guesser. You can also use recursion trees, which we shall see in Section 4.4, to generate good guesses.

If a recurrence is similar to one you have seen before, then guessing a similar solution is reasonable. As an example, consider the recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor + 17) + n ,$$

which looks difficult because of the added "17" in the argument to T on the right-hand side. Intuitively, however, this additional term cannot substantially affect the

solution to the recurrence. When n is large, the difference between $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor + 17$ is not that large: both cut n nearly evenly in half. Consequently, we make the guess that $T(n) = O(n \lg n)$, which you can verify as correct by using the substitution method (see Exercise 4.3-6).

Another way to make a good guess is to prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty. For example, we might start with a lower bound of $T(n) = \Omega(n)$ for the recurrence (4.19), since we have the term n in the recurrence, and we can prove an initial upper bound of $T(n) = O(n^2)$. Then, we can gradually lower the upper bound and raise the lower bound until we converge on the correct, asymptotically tight solution of $T(n) = \Theta(n \lg n)$.

Subtleties

Sometimes you might correctly guess an asymptotic bound on the solution of a recurrence, but somehow the math fails to work out in the induction. The problem frequently turns out to be that the inductive assumption is not strong enough to prove the detailed bound. If you revise the guess by subtracting a lower-order term when you hit such a snag, the math often goes through.

Consider the recurrence

$$T(n) = T(|n/2|) + T(\lceil n/2 \rceil) + 1$$
.

We guess that the solution is T(n) = O(n), and we try to show that $T(n) \le cn$ for an appropriate choice of the constant c. Substituting our guess in the recurrence, we obtain

$$T(n) \leq c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

= $cn + 1$,

which does not imply $T(n) \le cn$ for any choice of c. We might be tempted to try a larger guess, say $T(n) = O(n^2)$. Although we can make this larger guess work, our original guess of T(n) = O(n) is correct. In order to show that it is correct, however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we are off only by the constant 1, a lower-order term. Nevertheless, mathematical induction does not work unless we prove the exact form of the inductive hypothesis. We overcome our difficulty by *subtracting* a lower-order term from our previous guess. Our new guess is $T(n) \le cn - d$, where $d \ge 0$ is a constant. We now have

$$T(n) \leq (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$$

= $cn - 2d + 1$
< $cn - d$,

as long as $d \ge 1$. As before, we must choose the constant c large enough to handle the boundary conditions.

You might find the idea of subtracting a lower-order term counterintuitive. After all, if the math does not work out, we should increase our guess, right? Not necessarily! When proving an upper bound by induction, it may actually be more difficult to prove that a weaker upper bound holds, because in order to prove the weaker bound, we must use the same weaker bound inductively in the proof. In our current example, when the recurrence has more than one recursive term, we get to subtract out the lower-order term of the proposed bound once per recursive term. In the above example, we subtracted out the constant d twice, once for the $T(\lfloor n/2 \rfloor)$ term and once for the $T(\lceil n/2 \rceil)$ term. We ended up with the inequality $T(n) \le cn - 2d + 1$, and it was easy to find values of d to make cn - 2d + 1 be less than or equal to cn - d.

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the recurrence (4.19) we can falsely "prove" T(n) = O(n) by guessing $T(n) \le cn$ and then arguing

$$T(n) \le 2(c \lfloor n/2 \rfloor) + n$$

 $\le cn + n$
 $= O(n), \iff wrong!!$

since c is a constant. The error is that we have not proved the *exact form* of the inductive hypothesis, that is, that $T(n) \le cn$. We therefore will explicitly prove that $T(n) \le cn$ when we want to show that T(n) = O(n).

Changing variables

Sometimes, a little algebraic manipulation can make an unknown recurrence similar to one you have seen before. As an example, consider the recurrence

$$T(n) = 2T\left(\left|\sqrt{n}\right|\right) + \lg n ,$$

which looks difficult. We can simplify this recurrence, though, with a change of variables. For convenience, we shall not worry about rounding off values, such as \sqrt{n} , to be integers. Renaming $m = \lg n$ yields

$$T(2^m) = 2T(2^{m/2}) + m$$
.

We can now rename $S(m) = T(2^m)$ to produce the new recurrence

$$S(m) = 2S(m/2) + m ,$$

which is very much like recurrence (4.19). Indeed, this new recurrence has the same solution: $S(m) = O(m \lg m)$. Changing back from S(m) to T(n), we obtain

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n).$$

Exercises

4.3-1

Show that the solution of T(n) = T(n-1) + n is $O(n^2)$.

4.3-2

Show that the solution of $T(n) = T(\lceil n/2 \rceil) + 1$ is $O(\lg n)$.

4.3-3

We saw that the solution of $T(n) = 2T(\lfloor n/2 \rfloor) + n$ is $O(n \lg n)$. Show that the solution of this recurrence is also $\Omega(n \lg n)$. Conclude that the solution is $\Theta(n \lg n)$.

4.3-4

Show that by making a different inductive hypothesis, we can overcome the difficulty with the boundary condition T(1) = 1 for recurrence (4.19) without adjusting the boundary conditions for the inductive proof.

4.3-5

Show that $\Theta(n \lg n)$ is the solution to the "exact" recurrence (4.3) for merge sort.

4.3-6

Show that the solution to $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ is $O(n \lg n)$.

4.3-7

Using the master method in Section 4.5, you can show that the solution to the recurrence T(n) = 4T(n/3) + n is $T(n) = \Theta(n^{\log_3 4})$. Show that a substitution proof with the assumption $T(n) \le c n^{\log_3 4}$ fails. Then show how to subtract off a lower-order term to make a substitution proof work.

4.3-8

Using the master method in Section 4.5, you can show that the solution to the recurrence $T(n) = 4T(n/2) + n^2$ is $T(n) = \Theta(n^2)$. Show that a substitution proof with the assumption $T(n) \le cn^2$ fails. Then show how to subtract off a lower-order term to make a substitution proof work.

4.3-9

Solve the recurrence $T(n) = 3T(\sqrt{n}) + \log n$ by making a change of variables. Your solution should be asymptotically tight. Do not worry about whether values are integral.

4.4 The recursion-tree method for solving recurrences

Although you can use the substitution method to provide a succinct proof that a solution to a recurrence is correct, you might have trouble coming up with a good guess. Drawing out a recursion tree, as we did in our analysis of the merge sort recurrence in Section 2.3.2, serves as a straightforward way to devise a good guess. In a *recursion tree*, each node represents the cost of a single subproblem somewhere in the set of recursive function invocations. We sum the costs within each level of the tree to obtain a set of per-level costs, and then we sum all the per-level costs to determine the total cost of all levels of the recursion.

A recursion tree is best used to generate a good guess, which you can then verify by the substitution method. When using a recursion tree to generate a good guess, you can often tolerate a small amount of "sloppiness," since you will be verifying your guess later on. If you are very careful when drawing out a recursion tree and summing the costs, however, you can use a recursion tree as a direct proof of a solution to a recurrence. In this section, we will use recursion trees to generate good guesses, and in Section 4.6, we will use recursion trees directly to prove the theorem that forms the basis of the master method.

For example, let us see how a recursion tree would provide a good guess for the recurrence $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$. We start by focusing on finding an upper bound for the solution. Because we know that floors and ceilings usually do not matter when solving recurrences (here's an example of sloppiness that we can tolerate), we create a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$, having written out the implied constant coefficient c > 0.

Figure 4.5 shows how we derive the recursion tree for $T(n) = 3T(n/4) + cn^2$. For convenience, we assume that n is an exact power of 4 (another example of tolerable sloppiness) so that all subproblem sizes are integers. Part (a) of the figure shows T(n), which we expand in part (b) into an equivalent tree representing the recurrence. The cn^2 term at the root represents the cost at the top level of recursion, and the three subtrees of the root represent the costs incurred by the subproblems of size n/4. Part (c) shows this process carried one step further by expanding each node with cost T(n/4) from part (b). The cost for each of the three children of the root is $c(n/4)^2$. We continue expanding each node in the tree by breaking it into its constituent parts as determined by the recurrence.

Figure 4.5 Constructing a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Because subproblem sizes decrease by a factor of 4 each time we go down one level, we eventually must reach a boundary condition. How far from the root do we reach one? The subproblem size for a node at depth i is $n/4^i$. Thus, the subproblem size hits n = 1 when $n/4^i = 1$ or, equivalently, when $i = \log_4 n$. Thus, the tree has $\log_4 n + 1$ levels (at depths $0, 1, 2, \ldots, \log_4 n$).

Next we determine the cost at each level of the tree. Each level has three times more nodes than the level above, and so the number of nodes at depth i is 3^i . Because subproblem sizes reduce by a factor of 4 for each level we go down from the root, each node at depth i, for $i = 0, 1, 2, \ldots, \log_4 n - 1$, has a cost of $c(n/4^i)^2$. Multiplying, we see that the total cost over all nodes at depth i, for $i = 0, 1, 2, \ldots, \log_4 n - 1$, is $3^i c(n/4^i)^2 = (3/16)^i cn^2$. The bottom level, at depth $\log_4 n$, has $3^{\log_4 n} = n^{\log_4 3}$ nodes, each contributing cost T(1), for a total cost of $n^{\log_4 3} T(1)$, which is $\Theta(n^{\log_4 3})$, since we assume that T(1) is a constant.

Now we add up the costs over all levels to determine the cost for the entire tree:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4}3}) \qquad \text{(by equation (A.5))}.$$

This last formula looks somewhat messy until we realize that we can again take advantage of small amounts of sloppiness and use an infinite decreasing geometric series as an upper bound. Backing up one step and applying equation (A.6), we have

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2).$$

Thus, we have derived a guess of $T(n) = O(n^2)$ for our original recurrence $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$. In this example, the coefficients of cn^2 form a decreasing geometric series and, by equation (A.6), the sum of these coefficients

Figure 4.6 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

is bounded from above by the constant 16/13. Since the root's contribution to the total cost is cn^2 , the root contributes a constant fraction of the total cost. In other words, the cost of the root dominates the total cost of the tree.

In fact, if $O(n^2)$ is indeed an upper bound for the recurrence (as we shall verify in a moment), then it must be a tight bound. Why? The first recursive call contributes a cost of $\Theta(n^2)$, and so $\Omega(n^2)$ must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was correct, that is, $T(n) = O(n^2)$ is an upper bound for the recurrence $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$. We want to show that $T(n) \le dn^2$ for some constant d > 0. Using the same constant c > 0 as before, we have

$$T(n) \leq 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\leq 3d \lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16} dn^{2} + cn^{2}$$

$$\leq dn^{2},$$

where the last step holds as long as $d \ge (16/13)c$.

In another, more intricate, example, Figure 4.6 shows the recursion tree for

$$T(n) = T(n/3) + T(2n/3) + O(n)$$
.

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c represent the constant factor in the O(n) term. When we add the values across the levels of the recursion tree shown in the figure, we get a value of cn for every level.

The longest simple path from the root to a leaf is $n \to (2/3)n \to (2/3)^2n \to \cdots \to 1$. Since $(2/3)^k n = 1$ when $k = \log_{3/2} n$, the height of the tree is $\log_{3/2} n$.

Intuitively, we expect the solution to the recurrence to be at most the number of levels times the cost of each level, or $O(cn\log_{3/2}n) = O(n\lg n)$. Figure 4.6 shows only the top levels of the recursion tree, however, and not every level in the tree contributes a cost of cn. Consider the cost of the leaves. If this recursion tree were a complete binary tree of height $\log_{3/2} n$, there would be $2^{\log_{3/2} n} = n^{\log_{3/2} 2}$ leaves. Since the cost of each leaf is a constant, the total cost of all leaves would then be $\Theta(n^{\log_{3/2} 2})$ which, since $\log_{3/2} 2$ is a constant strictly greater than 1, is $\omega(n\lg n)$. This recursion tree is not a complete binary tree, however, and so it has fewer than $n^{\log_{3/2} 2}$ leaves. Moreover, as we go down from the root, more and more internal nodes are absent. Consequently, levels toward the bottom of the recursion tree contribute less than cn to the total cost. We could work out an accurate accounting of all costs, but remember that we are just trying to come up with a guess to use in the substitution method. Let us tolerate the sloppiness and attempt to show that a guess of $O(n\lg n)$ for the upper bound is correct.

Indeed, we can use the substitution method to verify that $O(n \lg n)$ is an upper bound for the solution to the recurrence. We show that $T(n) \le dn \lg n$, where d is a suitable positive constant. We have

$$T(n) \leq T(n/3) + T(2n/3) + cn$$

$$\leq d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$$

$$= (d(n/3) \lg n - d(n/3) \lg 3) + (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$$

$$= dn \lg n - dn(\lg 3 - 2/3) + cn$$

$$\leq dn \lg n.$$

as long as $d \ge c/(\lg 3 - (2/3))$. Thus, we did not need to perform a more accurate accounting of costs in the recursion tree.

Exercises

4.4-1

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = 3T(\lfloor n/2 \rfloor) + n$. Use the substitution method to verify your answer.

4.4-2

Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer.

4.4-3

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 4T(n/2 + 2) + n. Use the substitution method to verify your answer.

4.4-4

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.

4.4-5

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n-1) + T(n/2) + n. Use the substitution method to verify your answer.

4.4-6

Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn, where c is a constant, is $\Omega(n \lg n)$ by appealing to a recursion tree.

4.4-7

Draw the recursion tree for $T(n) = 4T(\lfloor n/2 \rfloor) + cn$, where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

4.4-8

Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n-a) + T(a) + cn, where $a \ge 1$ and c > 0 are constants.

4.4-9

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n) = T(\alpha n) + T((1-\alpha)n) + cn$, where α is a constant in the range $0 < \alpha < 1$ and c > 0 is also a constant.

4.5 The master method for solving recurrences

The master method provides a "cookbook" method for solving recurrences of the form

$$T(n) = aT(n/b) + f(n),$$
 (4.20)

where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function. To use the master method, you will need to memorize three cases, but then you will be able to solve many recurrences quite easily, often without pencil and paper.

The recurrence (4.20) describes the running time of an algorithm that divides a problem of size n into a subproblems, each of size n/b, where a and b are positive constants. The a subproblems are solved recursively, each in time T(n/b). The function f(n) encompasses the cost of dividing the problem and combining the results of the subproblems. For example, the recurrence arising from Strassen's algorithm has a = 7, b = 2, and $f(n) = \Theta(n^2)$.

As a matter of technical correctness, the recurrence is not actually well defined, because n/b might not be an integer. Replacing each of the a terms T(n/b) with either $T(\lfloor n/b \rfloor)$ or $T(\lceil n/b \rceil)$ will not affect the asymptotic behavior of the recurrence, however. (We will prove this assertion in the next section.) We normally find it convenient, therefore, to omit the floor and ceiling functions when writing divide-and-conquer recurrences of this form.

The master theorem

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Before applying the master theorem to some examples, let's spend a moment trying to understand what it says. In each of the three cases, we compare the function f(n) with the function $n^{\log_b a}$. Intuitively, the larger of the two functions determines the solution to the recurrence. If, as in case 1, the function $n^{\log_b a}$ is the larger, then the solution is $T(n) = \Theta(n^{\log_b a})$. If, as in case 3, the function f(n) is the larger, then the solution is $T(n) = \Theta(f(n))$. If, as in case 2, the two functions are the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \log_b a) = \Theta(f(n) \log_b a)$.

Beyond this intuition, you need to be aware of some technicalities. In the first case, not only must f(n) be smaller than $n^{\log_b a}$, it must be *polynomially* smaller.

That is, f(n) must be asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ϵ} for some constant $\epsilon > 0$. In the third case, not only must f(n) be larger than $n^{\log_b a}$, it also must be polynomially larger and in addition satisfy the "regularity" condition that $af(n/b) \leq cf(n)$. This condition is satisfied by most of the polynomially bounded functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f(n). There is a gap between cases 1 and 2 when f(n) is smaller than $n^{\log_b a}$ but not polynomially smaller. Similarly, there is a gap between cases 2 and 3 when f(n) is larger than $n^{\log_b a}$ but not polynomially larger. If the function f(n) falls into one of these gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master method to solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the master theorem applies and write down the answer.

As a first example, consider

$$T(n) = 9T(n/3) + n.$$

For this recurrence, we have a=9, b=3, f(n)=n, and thus we have that $n^{\log_b a}=n^{\log_3 9}=\Theta(n^2)$. Since $f(n)=O(n^{\log_3 9-\epsilon})$, where $\epsilon=1$, we can apply case 1 of the master theorem and conclude that the solution is $T(n)=\Theta(n^2)$.

Now consider

$$T(n) = T(2n/3) + 1,$$

in which a=1, b=3/2, f(n)=1, and $n^{\log_b a}=n^{\log_{3/2} 1}=n^0=1$. Case 2 applies, since $f(n)=\Theta(n^{\log_b a})=\Theta(1)$, and thus the solution to the recurrence is $T(n)=\Theta(\lg n)$.

For the recurrence

$$T(n) = 3T(n/4) + n \lg n ,$$

we have a=3, b=4, $f(n)=n\lg n$, and $n^{\log_b a}=n^{\log_4 3}=O(n^{0.793})$. Since $f(n)=\Omega(n^{\log_4 3+\epsilon})$, where $\epsilon\approx 0.2$, case 3 applies if we can show that the regularity condition holds for f(n). For sufficiently large n, we have that $af(n/b)=3(n/4)\lg(n/4)\leq (3/4)n\lg n=cf(n)$ for c=3/4. Consequently, by case 3, the solution to the recurrence is $T(n)=\Theta(n\lg n)$.

The master method does not apply to the recurrence

$$T(n) = 2T(n/2) + n \lg n ,$$

even though it appears to have the proper form: a = 2, b = 2, $f(n) = n \lg n$, and $n^{\log_b a} = n$. You might mistakenly think that case 3 should apply, since

 $f(n) = n \lg n$ is asymptotically larger than $n^{\log_b a} = n$. The problem is that it is not *polynomially* larger. The ratio $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ . Consequently, the recurrence falls into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let's use the master method to solve the recurrences we saw in Sections 4.1 and 4.2. Recurrence (4.7),

$$T(n) = 2T(n/2) + \Theta(n) ,$$

characterizes the running times of the divide-and-conquer algorithm for both the maximum-subarray problem and merge sort. (As is our practice, we omit stating the base case in the recurrence.) Here, we have a=2, b=2, $f(n)=\Theta(n)$, and thus we have that $n^{\log_b a}=n^{\log_2 2}=n$. Case 2 applies, since $f(n)=\Theta(n)$, and so we have the solution $T(n)=\Theta(n \lg n)$.

Recurrence (4.17),

$$T(n) = 8T(n/2) + \Theta(n^2),$$

describes the running time of the first divide-and-conquer algorithm that we saw for matrix multiplication. Now we have a=8, b=2, and $f(n)=\Theta(n^2)$, and so $n^{\log_b a}=n^{\log_2 8}=n^3$. Since n^3 is polynomially larger than f(n) (that is, $f(n)=O(n^{3-\epsilon})$ for $\epsilon=1$), case 1 applies, and $T(n)=\Theta(n^3)$. Finally, consider recurrence (4.18),

$$T(n) = 7T(n/2) + \Theta(n^2) ,$$

which describes the running time of Strassen's algorithm. Here, we have a=7, b=2, $f(n)=\Theta(n^2)$, and thus $n^{\log_b a}=n^{\log_2 7}$. Rewriting $\log_2 7$ as $\lg 7$ and recalling that $2.80 < \lg 7 < 2.81$, we see that $f(n)=O(n^{\lg 7-\epsilon})$ for $\epsilon=0.8$. Again, case 1 applies, and we have the solution $T(n)=\Theta(n^{\lg 7})$.

Exercises

4.5-1

Use the master method to give tight asymptotic bounds for the following recurrences.

a.
$$T(n) = 2T(n/4) + 1$$
.

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

c.
$$T(n) = 2T(n/4) + n$$
.

d.
$$T(n) = 2T(n/4) + n^2$$
.

4.5-2

Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically faster than Strassen's algorithm. His algorithm will use the divide-and-conquer method, dividing each matrix into pieces of size $n/4 \times n/4$, and the divide and combine steps together will take $\Theta(n^2)$ time. He needs to determine how many subproblems his algorithm has to create in order to beat Strassen's algorithm. If his algorithm creates a subproblems, then the recurrence for the running time T(n) becomes $T(n) = aT(n/4) + \Theta(n^2)$. What is the largest integer value of a for which Professor Caesar's algorithm would be asymptotically faster than Strassen's algorithm?

4.5-3

Use the master method to show that the solution to the binary-search recurrence $T(n) = T(n/2) + \Theta(1)$ is $T(n) = \Theta(\lg n)$. (See Exercise 2.3-5 for a description of binary search.)

4.5-4

Can the master method be applied to the recurrence $T(n) = 4T(n/2) + n^2 \lg n$? Why or why not? Give an asymptotic upper bound for this recurrence.

4.5-5 *

Consider the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1, which is part of case 3 of the master theorem. Give an example of constants $a \ge 1$ and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the master theorem except the regularity condition.

★ 4.6 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). You do not need to understand the proof in order to apply the master theorem.

The proof appears in two parts. The first part analyzes the master recurrence (4.20), under the simplifying assumption that T(n) is defined only on exact powers of b > 1, that is, for $n = 1, b, b^2, \ldots$. This part gives all the intuition needed to understand why the master theorem is true. The second part shows how to extend the analysis to all positive integers n; it applies mathematical technique to the problem of handling floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly by using it to describe the behavior of functions that are defined only over exact powers of b. Recall that the definitions of asymptotic notations require that

bounds be proved for all sufficiently large numbers, not just those that are powers of b. Since we could make new asymptotic notations that apply only to the set $\{b^i: i=0,1,2,\ldots\}$, instead of to the nonnegative numbers, this abuse is minor.

Nevertheless, we must always be on guard when we use asymptotic notation over a limited domain lest we draw improper conclusions. For example, proving that T(n) = O(n) when n is an exact power of 2 does not guarantee that T(n) = O(n). The function T(n) could be defined as

$$T(n) = \begin{cases} n & \text{if } n = 1, 2, 4, 8, \dots, \\ n^2 & \text{otherwise} \end{cases}$$

in which case the best upper bound that applies to all values of n is $T(n) = O(n^2)$. Because of this sort of drastic consequence, we shall never use asymptotic notation over a limited domain without making it absolutely clear from the context that we are doing so.

4.6.1 The proof for exact powers

The first part of the proof of the master theorem analyzes the recurrence (4.20)

$$T(n) = aT(n/b) + f(n),$$

for the master method, under the assumption that n is an exact power of b > 1, where b need not be an integer. We break the analysis into three lemmas. The first reduces the problem of solving the master recurrence to the problem of evaluating an expression that contains a summation. The second determines bounds on this summation. The third lemma puts the first two together to prove a version of the master theorem for the case in which n is an exact power of b.

Lemma 4.2

Let $a \ge 1$ and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. Define T(n) on exact powers of b by the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ aT(n/b) + f(n) & \text{if } n = b^i, \end{cases}$$

where i is a positive integer. Then

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j).$$
 (4.21)

Proof We use the recursion tree in Figure 4.7. The root of the tree has cost f(n), and it has a children, each with cost f(n/b). (It is convenient to think of a as being

Figure 4.7 The recursion tree generated by T(n) = aT(n/b) + f(n). The tree is a complete a-ary tree with $n^{\log_b a}$ leaves and height $\log_b n$. The cost of the nodes at each depth is shown at the right, and their sum is given in equation (4.21).

an integer, especially when visualizing the recursion tree, but the mathematics does not require it.) Each of these children has a children, making a^2 nodes at depth 2, and each of the a children has cost $f(n/b^2)$. In general, there are a^j nodes at depth j, and each has cost $f(n/b^j)$. The cost of each leaf is $T(1) = \Theta(1)$, and each leaf is at depth $\log_b n$, since $n/b^{\log_b n} = 1$. There are $a^{\log_b n} = n^{\log_b a}$ leaves in the tree.

We can obtain equation (4.21) by summing the costs of the nodes at each depth in the tree, as shown in the figure. The cost for all internal nodes at depth j is $a^{j} f(n/b^{j})$, and so the total cost of all internal nodes is

$$\sum_{j=0}^{\log_b n-1} a^j f(n/b^j) .$$

In the underlying divide-and-conquer algorithm, this sum represents the costs of dividing problems into subproblems and then recombining the subproblems. The

cost of all the leaves, which is the cost of doing all $n^{\log_b a}$ subproblems of size 1, is $\Theta(n^{\log_b a})$.

In terms of the recursion tree, the three cases of the master theorem correspond to cases in which the total cost of the tree is (1) dominated by the costs in the leaves, (2) evenly distributed among the levels of the tree, or (3) dominated by the cost of the root.

The summation in equation (4.21) describes the cost of the dividing and combining steps in the underlying divide-and-conquer algorithm. The next lemma provides asymptotic bounds on the summation's growth.

Lemma 4.3

Let $a \ge 1$ and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. A function g(n) defined over exact powers of b by

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$
 (4.22)

has the following asymptotic bounds for exact powers of b:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $af(n/b) \le cf(n)$ for some constant c < 1 and for all sufficiently large n, then $g(n) = \Theta(f(n))$.

Proof For case 1, we have $f(n) = O(n^{\log_b a - \epsilon})$, which implies that $f(n/b^j) = O((n/b^j)^{\log_b a - \epsilon})$. Substituting into equation (4.22) yields

$$g(n) = O\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon}\right). \tag{4.23}$$

We bound the summation within the *O*-notation by factoring out terms and simplifying, which leaves an increasing geometric series:

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon} = n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n-1} \left(\frac{ab^{\epsilon}}{b^{\log_b a}}\right)^j$$
$$= n^{\log_b a - \epsilon} \sum_{j=0}^{\log_b n-1} (b^{\epsilon})^j$$
$$= n^{\log_b a - \epsilon} \left(\frac{b^{\epsilon \log_b n} - 1}{b^{\epsilon} - 1}\right)$$

$$= n^{\log_b a - \epsilon} \left(\frac{n^{\epsilon} - 1}{b^{\epsilon} - 1} \right) .$$

Since b and ϵ are constants, we can rewrite the last expression as $n^{\log_b a - \epsilon} O(n^{\epsilon}) = O(n^{\log_b a})$. Substituting this expression for the summation in equation (4.23) yields

$$g(n) = O(n^{\log_b a}),$$

thereby proving case 1.

Because case 2 assumes that $f(n) = \Theta(n^{\log_b a})$, we have that $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$. Substituting into equation (4.22) yields

$$g(n) = \Theta\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a}\right). \tag{4.24}$$

We bound the summation within the Θ -notation as in case 1, but this time we do not obtain a geometric series. Instead, we discover that every term of the summation is the same:

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j$$
$$= n^{\log_b a} \sum_{j=0}^{\log_b n-1} 1$$
$$= n^{\log_b a} \log_b n.$$

Substituting this expression for the summation in equation (4.24) yields

$$g(n) = \Theta(n^{\log_b a} \log_b n)$$

= $\Theta(n^{\log_b a} \log_b n)$,

proving case 2.

We prove case 3 similarly. Since f(n) appears in the definition (4.22) of g(n) and all terms of g(n) are nonnegative, we can conclude that $g(n) = \Omega(f(n))$ for exact powers of b. We assume in the statement of the lemma that $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n. We rewrite this assumption as $f(n/b) \le (c/a) f(n)$ and iterate j times, yielding $f(n/b^j) \le (c/a)^j f(n)$ or, equivalently, $a^j f(n/b^j) \le c^j f(n)$, where we assume that the values we iterate on are sufficiently large. Since the last, and smallest, such value is n/b^{j-1} , it is enough to assume that n/b^{j-1} is sufficiently large.

Substituting into equation (4.22) and simplifying yields a geometric series, but unlike the series in case 1, this one has decreasing terms. We use an O(1) term to

capture the terms that are not covered by our assumption that *n* is sufficiently large:

$$g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

$$\leq \sum_{j=0}^{\log_b n-1} c^j f(n) + O(1)$$

$$\leq f(n) \sum_{j=0}^{\infty} c^j + O(1)$$

$$= f(n) \left(\frac{1}{1-c}\right) + O(1)$$

$$= O(f(n)),$$

since c is a constant. Thus, we can conclude that $g(n) = \Theta(f(n))$ for exact powers of b. With case 3 proved, the proof of the lemma is complete.

We can now prove a version of the master theorem for the case in which n is an exact power of b.

Lemma 4.4

Let $a \ge 1$ and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. Define T(n) on exact powers of b by the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ aT(n/b) + f(n) & \text{if } n = b^i, \end{cases}$$

where i is a positive integer. Then T(n) has the following asymptotic bounds for exact powers of b:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Proof We use the bounds in Lemma 4.3 to evaluate the summation (4.21) from Lemma 4.2. For case 1, we have

$$T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a})$$

= $\Theta(n^{\log_b a})$,

and for case 2,

$$T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n)$$

= $\Theta(n^{\log_b a} \lg n)$.

For case 3,

$$T(n) = \Theta(n^{\log_b a}) + \Theta(f(n))$$

= $\Theta(f(n))$,

because
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
.

4.6.2 Floors and ceilings

To complete the proof of the master theorem, we must now extend our analysis to the situation in which floors and ceilings appear in the master recurrence, so that the recurrence is defined for all integers, not for just exact powers of b. Obtaining a lower bound on

$$T(n) = aT(\lceil n/b \rceil) + f(n) \tag{4.25}$$

and an upper bound on

$$T(n) = aT(\lfloor n/b \rfloor) + f(n) \tag{4.26}$$

is routine, since we can push through the bound $\lceil n/b \rceil \ge n/b$ in the first case to yield the desired result, and we can push through the bound $\lfloor n/b \rfloor \le n/b$ in the second case. We use much the same technique to lower-bound the recurrence (4.26) as to upper-bound the recurrence (4.25), and so we shall present only this latter bound.

We modify the recursion tree of Figure 4.7 to produce the recursion tree in Figure 4.8. As we go down in the recursion tree, we obtain a sequence of recursive invocations on the arguments

```
n, \lceil n/b \rceil, \lceil \lceil n/b \rceil / b \rceil, \lceil \lceil \lceil n/b \rceil / b \rceil / b \rceil, \vdots
```

Let us denote the j th element in the sequence by n_j , where

$$n_j = \begin{cases} n & \text{if } j = 0, \\ \lceil n_{j-1}/b \rceil & \text{if } j > 0. \end{cases}$$

$$(4.27)$$

Figure 4.8 The recursion tree generated by $T(n) = aT(\lceil n/b \rceil) + f(n)$. The recursive argument n_j is given by equation (4.27).

Our first goal is to determine the depth k such that n_k is a constant. Using the inequality $\lceil x \rceil \leq x+1$, we obtain

$$n_0 \le n$$
,
 $n_1 \le \frac{n}{b} + 1$,
 $n_2 \le \frac{n}{b^2} + \frac{1}{b} + 1$,
 $n_3 \le \frac{n}{b^3} + \frac{1}{b^2} + \frac{1}{b} + 1$,
 \vdots

In general, we have

$$n_{j} \leq \frac{n}{b^{j}} + \sum_{i=0}^{j-1} \frac{1}{b^{i}}$$

$$< \frac{n}{b^{j}} + \sum_{i=0}^{\infty} \frac{1}{b^{i}}$$

$$= \frac{n}{b^{j}} + \frac{b}{b-1}.$$

Letting $j = \lfloor \log_b n \rfloor$, we obtain

$$n_{\lfloor \log_b n \rfloor} < \frac{n}{b^{\lfloor \log_b n \rfloor}} + \frac{b}{b-1}$$

$$< \frac{n}{b^{\log_b n - 1}} + \frac{b}{b-1}$$

$$= \frac{n}{n/b} + \frac{b}{b-1}$$

$$= b + \frac{b}{b-1}$$

$$= O(1),$$

and thus we see that at depth $\lfloor \log_b n \rfloor$, the problem size is at most a constant. From Figure 4.8, we see that

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} a^j f(n_j),$$
(4.28)

which is much the same as equation (4.21), except that n is an arbitrary integer and not restricted to be an exact power of b.

We can now evaluate the summation

$$g(n) = \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} a^j f(n_j)$$
 (4.29)

from equation (4.28) in a manner analogous to the proof of Lemma 4.3. Beginning with case 3, if $af(\lceil n/b \rceil) \leq cf(n)$ for n > b+b/(b-1), where c < 1 is a constant, then it follows that $a^j f(n_j) \leq c^j f(n)$. Therefore, we can evaluate the sum in equation (4.29) just as in Lemma 4.3. For case 2, we have $f(n) = \Theta(n^{\log_b a})$. If we can show that $f(n_j) = O(n^{\log_b a}/a^j) = O((n/b^j)^{\log_b a})$, then the proof for case 2 of Lemma 4.3 will go through. Observe that $j \leq \lfloor \log_b n \rfloor$ implies $b^j/n \leq 1$. The bound $f(n) = O(n^{\log_b a})$ implies that there exists a constant c > 0 such that for all sufficiently large n_j ,

$$f(n_{j}) \leq c \left(\frac{n}{b^{j}} + \frac{b}{b-1}\right)^{\log_{b} a}$$

$$= c \left(\frac{n}{b^{j}} \left(1 + \frac{b^{j}}{n} \cdot \frac{b}{b-1}\right)\right)^{\log_{b} a}$$

$$= c \left(\frac{n^{\log_{b} a}}{a^{j}}\right) \left(1 + \left(\frac{b^{j}}{n} \cdot \frac{b}{b-1}\right)\right)^{\log_{b} a}$$

$$\leq c \left(\frac{n^{\log_{b} a}}{a^{j}}\right) \left(1 + \frac{b}{b-1}\right)^{\log_{b} a}$$

$$= O\left(\frac{n^{\log_{b} a}}{a^{j}}\right),$$

since $c(1+b/(b-1))^{\log_b a}$ is a constant. Thus, we have proved case 2. The proof of case 1 is almost identical. The key is to prove the bound $f(n_j) = O(n^{\log_b a - \epsilon})$, which is similar to the corresponding proof of case 2, though the algebra is more intricate.

We have now proved the upper bounds in the master theorem for all integers n. The proof of the lower bounds is similar.

Exercises

4.6-1 *

Give a simple and exact expression for n_j in equation (4.27) for the case in which b is a positive integer instead of an arbitrary real number.

4.6-2 *

Show that if $f(n) = \Theta(n^{\log_b a} \lg^k n)$, where $k \ge 0$, then the master recurrence has solution $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$. For simplicity, confine your analysis to exact powers of b.

4.6-3 *

Show that case 3 of the master theorem is overstated, in the sense that the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1 implies that there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$.

Problems

4-1 Recurrence examples

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \le 2$. Make your bounds as tight as possible, and justify your answers.

- a. $T(n) = 2T(n/2) + n^4$.
- **b.** T(n) = T(7n/10) + n.
- c. $T(n) = 16T(n/4) + n^2$.
- **d.** $T(n) = 7T(n/3) + n^2$.
- e. $T(n) = 7T(n/2) + n^2$.
- f. $T(n) = 2T(n/4) + \sqrt{n}$.
- g. $T(n) = T(n-2) + n^2$.

4-2 Parameter-passing costs

Throughout this book, we assume that parameter passing during procedure calls takes constant time, even if an N-element array is being passed. This assumption is valid in most systems because a pointer to the array is passed, not the array itself. This problem examines the implications of three parameter-passing strategies:

- 1. An array is passed by pointer. Time = $\Theta(1)$.
- 2. An array is passed by copying. Time $= \Theta(N)$, where N is the size of the array.
- 3. An array is passed by copying only the subrange that might be accessed by the called procedure. Time = $\Theta(q p + 1)$ if the subarray A[p ...q] is passed.
- a. Consider the recursive binary search algorithm for finding a number in a sorted array (see Exercise 2.3-5). Give recurrences for the worst-case running times of binary search when arrays are passed using each of the three methods above, and give good upper bounds on the solutions of the recurrences. Let N be the size of the original problem and n be the size of a subproblem.
- b. Redo part (a) for the MERGE-SORT algorithm from Section 2.3.1.

4-3 More recurrence examples

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for sufficiently small n. Make your bounds as tight as possible, and justify your answers.

a.
$$T(n) = 4T(n/3) + n \lg n$$
.

b.
$$T(n) = 3T(n/3) + n/\lg n$$
.

c.
$$T(n) = 4T(n/2) + n^2 \sqrt{n}$$
.

d.
$$T(n) = 3T(n/3 - 2) + n/2$$
.

e.
$$T(n) = 2T(n/2) + n/\lg n$$
.

f.
$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$
.

g.
$$T(n) = T(n-1) + 1/n$$
.

h.
$$T(n) = T(n-1) + \lg n$$
.

i.
$$T(n) = T(n-2) + 1/\lg n$$
.

$$j$$
. $T(n) = \sqrt{n}T(\sqrt{n}) + n$.

4-4 Fibonacci numbers

This problem develops properties of the Fibonacci numbers, which are defined by recurrence (3.22). We shall use the technique of generating functions to solve the Fibonacci recurrence. Define the *generating function* (or *formal power series*) \mathcal{F} as

$$\mathcal{F}(z) = \sum_{i=0}^{\infty} F_i z^i$$

= 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + 13z^7 + 21z^8 + \cdots,

where F_i is the *i*th Fibonacci number.

a. Show that
$$\mathcal{F}(z) = z + z\mathcal{F}(z) + z^2\mathcal{F}(z)$$
.

b. Show that

$$\mathcal{F}(z) = \frac{z}{1-z-z^2}$$

$$= \frac{z}{(1-\phi z)(1-\hat{\phi}z)}$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1-\phi z} - \frac{1}{1-\hat{\phi}z} \right) ,$$

where

$$\phi = \frac{1 + \sqrt{5}}{2} = 1.61803\dots$$

and

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} = -0.61803\dots$$

c. Show that

$$\mathcal{F}(z) = \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) z^i .$$

d. Use part (c) to prove that $F_i = \phi^i / \sqrt{5}$ for i > 0, rounded to the nearest integer. (*Hint:* Observe that $|\hat{\phi}| < 1$.)

4-5 Chip testing

Professor Diogenes has n supposedly identical integrated-circuit chips that in principle are capable of testing each other. The professor's test jig accommodates two chips at a time. When the jig is loaded, each chip tests the other and reports whether it is good or bad. A good chip always reports accurately whether the other chip is good or bad, but the professor cannot trust the answer of a bad chip. Thus, the four possible outcomes of a test are as follows:

Chip A says	Chip <i>B</i> says	Conclusion
B is good	A is good	both are good, or both are bad
B is good	A is bad	at least one is bad
B is bad	A is good	at least one is bad
B is bad	A is bad	at least one is bad

a. Show that if more than n/2 chips are bad, the professor cannot necessarily determine which chips are good using any strategy based on this kind of pairwise test. Assume that the bad chips can conspire to fool the professor.

- **b.** Consider the problem of finding a single good chip from among n chips, assuming that more than n/2 of the chips are good. Show that $\lfloor n/2 \rfloor$ pairwise tests are sufficient to reduce the problem to one of nearly half the size.
- c. Show that the good chips can be identified with $\Theta(n)$ pairwise tests, assuming that more than n/2 of the chips are good. Give and solve the recurrence that describes the number of tests.

4-6 Monge arrays

An $m \times n$ array A of real numbers is a **Monge array** if for all i, j, k, and l such that $1 \le i < k \le m$ and $1 \le j < l \le n$, we have

$$A[i, j] + A[k, l] \le A[i, l] + A[k, j]$$
.

In other words, whenever we pick two rows and two columns of a Monge array and consider the four elements at the intersections of the rows and the columns, the sum of the upper-left and lower-right elements is less than or equal to the sum of the lower-left and upper-right elements. For example, the following array is Monge:

```
    10
    17
    13
    28
    23

    17
    22
    16
    29
    23

    24
    28
    22
    34
    24

    11
    13
    6
    17
    7

    45
    44
    32
    37
    23

    36
    33
    19
    21
    6
```

66 51 53 34

75

a. Prove that an array is Monge if and only if for all i = 1, 2, ..., m - 1 and j = 1, 2, ..., n - 1, we have

$$A[i,j] + A[i+1,j+1] \le A[i,j+1] + A[i+1,j]$$
.

(Hint: For the "if" part, use induction separately on rows and columns.)

b. The following array is not Monge. Change one element in order to make it Monge. (*Hint:* Use part (a).)

c. Let f(i) be the index of the column containing the leftmost minimum element of row i. Prove that $f(1) \le f(2) \le \cdots \le f(m)$ for any $m \times n$ Monge array.

d. Here is a description of a divide-and-conquer algorithm that computes the left-most minimum element in each row of an $m \times n$ Monge array A:

Construct a submatrix A' of A consisting of the even-numbered rows of A. Recursively determine the leftmost minimum for each row of A'. Then compute the leftmost minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A (given that the leftmost minimum of the even-numbered rows is known) in O(m+n) time.

e. Write the recurrence describing the running time of the algorithm described in part (d). Show that its solution is $O(m + n \log m)$.

Chapter notes

Divide-and-conquer as a technique for designing algorithms dates back to at least 1962 in an article by Karatsuba and Ofman [194]. It might have been used well before then, however; according to Heideman, Johnson, and Burrus [163], C. F. Gauss devised the first fast Fourier transform algorithm in 1805, and Gauss's formulation breaks the problem into smaller subproblems whose solutions are combined.

The maximum-subarray problem in Section 4.1 is a minor variation on a problem studied by Bentley [43, Chapter 7].

Strassen's algorithm [325] caused much excitement when it was published in 1969. Before then, few imagined the possibility of an algorithm asymptotically faster than the basic SQUARE-MATRIX-MULTIPLY procedure. The asymptotic upper bound for matrix multiplication has been improved since then. The most asymptotically efficient algorithm for multiplying $n \times n$ matrices to date, due to Coppersmith and Winograd [78], has a running time of $O(n^{2.376})$. The best lower bound known is just the obvious $\Omega(n^2)$ bound (obvious because we must fill in n^2 elements of the product matrix).

From a practical point of view, Strassen's algorithm is often not the method of choice for matrix multiplication, for four reasons:

- 1. The constant factor hidden in the $\Theta(n^{\lg 7})$ running time of Strassen's algorithm is larger than the constant factor in the $\Theta(n^3)$ -time SQUARE-MATRIX-MULTIPLY procedure.
- 2. When the matrices are sparse, methods tailored for sparse matrices are faster.

- Strassen's algorithm is not quite as numerically stable as SQUARE-MATRIX-MULTIPLY. In other words, because of the limited precision of computer arithmetic on noninteger values, larger errors accumulate in Strassen's algorithm than in SQUARE-MATRIX-MULTIPLY.
- 4. The submatrices formed at the levels of recursion consume space.

The latter two reasons were mitigated around 1990. Higham [167] demonstrated that the difference in numerical stability had been overemphasized; although Strassen's algorithm is too numerically unstable for some applications, it is within acceptable limits for others. Bailey, Lee, and Simon [32] discuss techniques for reducing the memory requirements for Strassen's algorithm.

In practice, fast matrix-multiplication implementations for dense matrices use Strassen's algorithm for matrix sizes above a "crossover point," and they switch to a simpler method once the subproblem size reduces to below the crossover point. The exact value of the crossover point is highly system dependent. Analyses that count operations but ignore effects from caches and pipelining have produced crossover points as low as n = 8 (by Higham [167]) or n = 12 (by Huss-Lederman et al. [186]). D'Alberto and Nicolau [81] developed an adaptive scheme, which determines the crossover point by benchmarking when their software package is installed. They found crossover points on various systems ranging from n = 400 to n = 2150, and they could not find a crossover point on a couple of systems.

Recurrences were studied as early as 1202 by L. Fibonacci, for whom the Fibonacci numbers are named. A. De Moivre introduced the method of generating functions (see Problem 4-4) for solving recurrences. The master method is adapted from Bentley, Haken, and Saxe [44], which provides the extended method justified by Exercise 4.6-2. Knuth [209] and Liu [237] show how to solve linear recurrences using the method of generating functions. Purdom and Brown [287] and Graham, Knuth, and Patashnik [152] contain extended discussions of recurrence solving.

Several researchers, including Akra and Bazzi [13], Roura [299], Verma [346], and Yap [360], have given methods for solving more general divide-and-conquer recurrences than are solved by the master method. We describe the result of Akra and Bazzi here, as modified by Leighton [228]. The Akra-Bazzi method works for recurrences of the form

$$T(x) = \begin{cases} \Theta(1) & \text{if } 1 \le x \le x_0, \\ \sum_{i=1}^k a_i T(b_i x) + f(x) & \text{if } x > x_0, \end{cases}$$
(4.30)

where

- x > 1 is a real number,
- x_0 is a constant such that $x_0 \ge 1/b_i$ and $x_0 \ge 1/(1-b_i)$ for i = 1, 2, ..., k,
- a_i is a positive constant for i = 1, 2, ..., k,

113

- b_i is a constant in the range $0 < b_i < 1$ for i = 1, 2, ..., k,
- $k \ge 1$ is an integer constant, and
- f(x) is a nonnegative function that satisfies the *polynomial-growth condition*: there exist positive constants c_1 and c_2 such that for all $x \ge 1$, for i = 1, 2, ..., k, and for all u such that $b_i x \le u \le x$, we have $c_1 f(x) \le f(u) \le c_2 f(x)$. (If |f'(x)| is upper-bounded by some polynomial in x, then f(x) satisfies the polynomial-growth condition. For example, $f(x) = x^{\alpha} \lg^{\beta} x$ satisfies this condition for any real constants α and β .)

Although the master method does not apply to a recurrence such as $T(n) = T(\lfloor n/3 \rfloor) + T(\lfloor 2n/3 \rfloor) + O(n)$, the Akra-Bazzi method does. To solve the recurrence (4.30), we first find the unique real number p such that $\sum_{i=1}^k a_i b_i^p = 1$. (Such a p always exists.) The solution to the recurrence is then

$$T(n) = \Theta\left(x^{p}\left(1 + \int_{1}^{x} \frac{f(u)}{u^{p+1}} du\right)\right).$$

The Akra-Bazzi method can be somewhat difficult to use, but it serves in solving recurrences that model division of the problem into substantially unequally sized subproblems. The master method is simpler to use, but it applies only when subproblem sizes are equal.