实验报告

实验名称: 甲苯仿生催化氧化动力学与反应器模拟仿真

课程名称: 化学反应工程

专业班级:

学生姓名:

学号:

实验成绩:

(一) 实验目的及要求

- 1.构建复杂反应动力学模型。
- 2.对模型参数进行数值求解并进行优化。
- 3.建立反应器模型并对反应器模型进行优化。
- 4.掌握仿真平台在已知动力学反应中的仿真模拟与运用。

(二)实验仪器用具

可以访问网络的电脑

一台

(三) 实验原理

1.甲苯仿生催化氧化动力学

甲苯氧化是典型的芳烃空气氧化反应,氧化产物含有苯甲醛、苯甲醇与苯甲酸。传统钴锰溴催化甲苯空气氧化体系反应的主要氧化产物为苯甲酸,伴随苯甲酸需求市场的日益饱和以及苯甲酸制备苯酚的高成本,选择性甲苯空气氧化制备高附加值的苯甲醛与苯甲醇受到科学研究者日益重视。

采用甲苯选择性空气氧化制备的苯甲醛与苯甲醇,可以解决目前通过氯化水解方法生产苯甲醛苯甲醇所带来环境不友好和产品含氯素等问题。其是一种典型的碳氢化合物氧化过程。采用清洁且来源广泛的分子氧取代过去曾被广泛应用于有机化合物氧化的化学计量氧化剂如硝酸、高锰酸钾、重络酸钾等,更符合绿色化学和可持续发展的需要。

甲苯仿生催化氧化过程中的生物循环-化学循环双循环耦合过

程反应历程可用如下反应方程式表示:

PFe^{III}-O-Fe^{III}P
$$\xrightarrow{k_1}$$
 PFe^{IV}=O+PFe^{III}

PFe^{IV}=O+ArCH₃ $\xrightarrow{k_2}$ ArCH₂·PFe^{III}OH

PFe^{III}-O-Fe^{III}P+PFe^{IV}=O $\xrightarrow{k_3}$ Self-Oxidation

ArCH₂·PFe^{III}OH $\xrightarrow{k_4}$ ArCH₂·+PFe^{III}OH

ArCH₂·PFe^{III}OH $\xrightarrow{k_5}$ ArCH₂OH+PFe^{III}

ArCH₂·+O₂ $\xrightarrow{k_6}$ ArCH₂OO·

ArCH₂OO·+ArCH₃ $\xrightarrow{k_7}$ ArCH₂·+ArCH₂OOH

ArCH₂OOH $\xrightarrow{k_8}$ ArCHO+H₂O

ArCH₂OOH $\xrightarrow{k_9}$ ArCH₂OH+1/2O₂

ArCH₂OOH+ArCHO+1/2O₂ $\xrightarrow{k_{10}}$ 2ArCOOH+H₂O

ArCH₂OOH+ArCHO+1/2O₂ $\xrightarrow{k_{11}}$ 2ArCHO+2H₂O

ArCH₂OOH+ArCHOOH $\xrightarrow{k_{12}}$ ArCOOCH₂Ar+H₂O

由于该动力学方程组含有 10 个物种浓度,24 个模型参数,而 在实验中只有苯甲醛、苯甲醇、苯甲酸、过氧化物苯甲酸苄酯被准确 定量,在上面动力学模型关系式中含有一些自由基和活性中间体浓度 项,这些自由基和活性中间体由于存在时间极短浓度很低很难通过实 验手段测量其浓度,故通过稳态假设、过氧自由基浓度与过氧化物的 浓度关系、控制步骤的确定对甲苯仿生催化氧化动力学进行简化如下:

$$\begin{split} r_{ArCH_3} &= -(r_2 + r_7) = -k_1[PFe^{\text{III}}OFe^{\text{III}}P] - k_7[ArCH_2OOH][ArCH_3] \\ r_{ArCHO} &= \mathbf{r}_8 + \mathbf{r}_{11} - r_{10} = k_8[ArCH_2OOH] + \mathbf{k}_{11}[ArCH_2OOH][ArCH_2OH] \\ -\mathbf{k}_{10}[ArCH_2OOH][ArCHO] \\ r_{ArCH_2OH} &= r_5 + r_9 - r_{11} - r_{12} = k_1k_{54}[PFe^{\text{III}}OFe^{\text{III}}P] + k_9[ArCH_2OOH] \\ -k_{11}[ArCH_2OOH][ArCH_2OH] - k_{12}[ArCOOH][ArCH_2OH] \\ \mathbf{r}_{ArCH_2OOH} &= r_7 - r_8 - r_9 - r_{10} - r_{11} = k_7[ArCH_2OOH][ArCH_3] - k_8[ArCH_2OOH] \\ -k_9[ArCH_2OOH] - k_{10}[ArCH_2OOH][ArCHO] - k_{11}[ArCH_2OOH][ArCH_2OH] \\ r_{ArCOOH} &= r_{10} - r_{12} = k_{10}[ArCH_2OOH][ArCHO] - k_{12}[ArCOOH][ArCH_2OH] \\ r_{ArCOOCH_2Ar} &= r_{12} = k_{12}[ArCOOH][ArCH_2OH] \end{split}$$

2.构建稳态模型

根据物料守恒的基本原则,对间歇釜反应器和平推流反应器做出如下假设:

- (1) 在流动方向垂直的截面上没有流速分布。
- (2) 在流体流动的方向由在流体质点间的混和,即无返混现象。
- (3) 连续定态操作。

由以上假设,可以建立反应器稳态模型如下:

$$\frac{d[ArCH_3]}{dt} = r_{ArCH_3}$$

$$\frac{d[ArCHO]}{dt} = r_{ArCHO}$$

$$\frac{d[ArCH_2OH]}{dt} = r_{ArCH_2OH}$$

$$\frac{d[ArCH_2OOH]}{dt} = r_{ArCH_2OOH}$$

$$\frac{d[ArCOOH]}{dt} = r_{ArCOOH}$$

$$\frac{d[ArCOOCH_2Ar]}{dt} = r_{ArCOOCH_2Ar}$$

同理对全混流模型,做出假设如下:

- (1) 物料连续以恒定的流速流入、流出反应器。
- (2) 反应器内各空间位置温度一,浓度均一。
- (3) 反应器内浓度、温度与 出口处浓度、温度相同。
- (4) 定常态操作。

由以上假设,可以建立反应器稳态模型如下:

$$\begin{split} \frac{1-c_{ArcH_3}^1+r_{ArcH_3}^1=0}{\tau_1} + r_{ArcH_3}^1=0 \\ \frac{1-c_{ArcH0}^1}{\tau_1} + r_{ArcH0}^1=0 \\ \frac{1-c_{ArcH_2OH}^1}{\tau_1} + r_{ArcH_2OH}^1=0 \\ \frac{1-c_{ArcH_2OOH}^1}{\tau_1} + r_{ArcH_2OOH}^1=0 \\ \frac{1-c_{ArcOOCH_2Ar}^1}{\tau_1} + r_{ArcOOCH_2Ar}^1=0 \end{split}$$

而对多釜串联模型,也有假设如下:

- (1) 各个反应器内由在温度和浓度的分布。
- (2) 反应液依次流入各个反应釜。

(3) 多釜反应器采用 n 个相同的反应器串联组合。

因此,建立出多釜串联模型的稳态方程:

$$\begin{split} \frac{c_{ArCH_3}^{(n-1)} - c_{ArCH_3}^n}{\tau_n} + r_{ArCH_3}^n &= 0 \\ \frac{c_{ArCH_0}^{(n-1)} - c_{ArCH_0}^n}{\tau_n} + r_{ArCH_0}^n &= 0 \\ \frac{c_{ArCH_2OH}^{(n-1)} - c_{ArCH_2OH}^n}{\tau_n} + r_{ArCH_2OH}^n &= 0 \\ \frac{c_{ArCH_2OH}^{(n-1)} - c_{ArCH_2OOH}^n}{\tau_n} + r_{ArCH_2OOH}^n &= 0 \\ \frac{c_{ArCH_2OOH}^{(n-1)} - c_{ArCOOH}^n}{\tau_n} + r_{ArCOOH}^n &= 0 \\ \frac{c_{ArCOOCH_2Ar}^{(n-1)} - c_{ArCOOCH_2Ar}^n}{\tau_n} + r_{ArCOOCH_2Ar}^n &= 0 \end{split}$$

3.甲苯仿生催化氧化反应中温度的影响

各步反应的速率常数与反应绝对温度能很好的用阿累尼乌斯关系式描述,故各反应速率常数自然对数值与相应反应温度倒数关系,可经非线性最小二乘优化后得到各步反应动力学常数和活化能。

4.仿真原理

- (1) 用户将初始数据转为 json 格式的文件, 然后通过前端导入后端程序;
- (2) 后端打开 json 文件获取各化学物质浓度初始值、时间 t 初始值、k 和 e 的初始值; 然后把这些初值赋给使用 matlab 创建的 mainPXKinetics 函数:
- (3)mainPXKinetics 函数启动后,调用 fminsearch 函数得到使 PXKinetics 多元函数(梯度函数)值局部最小的 k,e 值;调用 ode45 求微分方程组 tolkin 的值,得到各化学物质在各温度条件下的浓度值;

函数运行结束后,将 k,e 结果值和在该值下计算出的各化学物质浓度值进行输出;

(4) 后端根据浓度值和对应的温度条件进行画图,并将生成的图和 k,e 值上传到前端,前端经过处理后展示给用户。

(四) 实验步骤

1. 入口界面

如图所示为用户入口界面,界面由三个部分构成:侧边栏、标题以及上传数据模块。在侧边栏用户可以选择访问具体内容,我们提供了实验背景、实验目的、实验试剂、操作过程、反应机理、实验报告的内容,用户点击侧边栏相应位置就可以跳转到对应的页面;我们还提供了甲苯仿生催化氧化动力学与反应器模拟仿真页面,让用户进行虚拟仿真和查看仿真结果。

2. 实验背景等界面

用户点击侧边栏的实验背景位置,网页会跳转到实验背景界面,用户可以从中获得实验背景相关内容:

五朵金花化学虚拟仿真平台

实验背景

苯甲醇与苯甲酸。传统钴锰溴催化甲苯空气氧化体系反应的主要氧化苯甲醇受到科学研究者日益重视。尤为重要的是采用甲苯选择性空程和苯选择性空气氧化被认为是一种制备不含氯素的苯甲醛与苯甲醇的用户点击侧边栏的实验目的位置,网页会跳转到实验目的界面,用户可以从中获得实验目的相关内容:

五朵金花化学虚拟仿真平台

实验目的

1.构建复杂反应动力学模型

2.对模型参数进行数值求解并进行优化。

3.建立反应器模型并对反应器模型进行优化。

4.掌握仿真平台在已知动力学反应中的仿真模拟与运用。

用户点击侧边栏的实验试剂位置,网页会跳转到实验试剂界面,用户可以从中获得该实验过程中用到的相关试剂:

	五朵金花化学虚拟仿真平台					
'n	姓名	分子式	分子量	熔点	密度	纯度
	71-43-2	C6H6	78.112	5.5	0.9±0.1	分析纯
	108-88-3	C7H8	92.14	-94.9	0.872	分析纯; 工业级
章 子	100-51-6	C7H8O	108.138	-15.3	1.04	分析纯
iĝ.	65-85-0	C7H6O2	122.1214	122.13	N/A	分析纯
ice E	100-52-7	C7H6O	106.122		1.0±0.1	分析纯; 工业
	8P - 02	71-43-2 108-88-3 100-51-6 8 65-85-0	対名 分子式 71-43-2 C6H6 71-43-2 C7H8 71-43-2 C	対名 分子式 分子量 71-43-2 C6H6 78.112 108-88-3 C7H8 92.14 100-51-6 C7H8O 108.138 を 65-85-0 C7H6O2 122.1214	対子式 分子量 類点 71-43-2 C6H6 78.112 5.5 108-88-3 C7H8 92.14 -94.9 100-51-6 C7H8O 108.138 -15.3 8 65-85-0 C7H6O2 122.1214 122.13	姓名 分子式 分子量 類点 数度 数度 数度 数度 数度 数度 数度 数

用户点击侧边栏的操作说明位置,网页会跳转到操作说明界面,用户可以从中得知该实验的操作过程:

五朵金花化学虚拟仿真平台

金属卟啉仿生催化甲苯液相氧化连续实验

图 1甲苯仿生催化氧化三釜串联反应装置示意图

用户点击侧边栏的反应机理位置, 网页会跳转到反应机理界面, 用户

可以从中得知该与实验相关的反应机理:

五朵金花化学虚拟仿真平台

反应机理

图 6.5 甲苯仿生催化氧化过程中的生物循环-化学循环双循环耦合

图 1甲苯仿生催化氧化过程中的生物循环-化学循环耦合

用户点击侧边栏的实验报告位置,便可下载本次实验的实验报告。

3. 上传数据界面

用户点击侧边栏的"甲苯仿生催化氧化动力学与反应器模拟仿真"。便进入上传数据界面。上传数据模块由三个部分构成:选取文件、预览文件、提交。用户可以点击"选取文件",选择需要上传的文件(以 json格式),待文件上传后,在选取文件下方显示上传文件的列表,上传后点击"提交"将跳转至运行界面。我们已提供数据文件,若用户选择不上传文件,则默认提交该文件。用户可以点击预览按钮预览该数据文件。

4. 结果界面

五朵金花化学虚拟仿真平台

开始运行(虚拟仿真需要10-15分钟,请耐心等待)

К	Ea	对应方程(K为方程的反应速率常数 Ea为方程的反应活化能)
3292256062.3319407	95763.31699725651	$\frac{d[ArCH_3]}{dt} = r_{ArCH_3}$
17026448145390.867	88422.77344932838	$\frac{d[ArCHO]}{dt} = r_{ArCHO}$
1623957393.1163824	87383.9443650537	$\frac{d[ArCH_2OH]}{dt} = r_{ArCH_2OH}$
7516179236.089911	94015.96441164656	$\frac{d[ArCOOH]}{dt} = r_{ArCOOH}$
236649.77956834293	46086.35089734953	$\frac{d[ArCH_2OOH]}{dt} = r_{ArCH_2OOH}$
21.031099109026435	33951.366251236715	$\frac{d[ArCOOCH_2Ar]}{dt} = r_{ArCOOCH_2Ar}$
45450.37377298935	42824.11059165022	$\frac{d[PFe^{IV}=O]}{dt}=r_{PFe^{IV}=O}=\frac{d[ArCH_{2}PFe^{III}OH]}{dt}=r_{ArCH_{2}PFe^{III}OH}$

如图所示为展示结果界面,界面由四个部分构成:侧边栏、标题、运行按钮、轮播图以及表格。点击运行按钮,后端程序开始运行,待计算出 k,e 值后,轮播图中会展示 7 张在不同反应条件下使用 k,e 值计算得到的各化学物质的浓度-时间和原本各化学物质的浓度-时间对比图。表格分为三列,分别展示 k 计算值和 e 计算值,以及对这两个值的说明。

(五) 结果与讨论

K	Ea	对应方程(K为方程的反应速率常数 Ea为方程的反应活化能)
3292256062.3319407	95763.31699725651	$\frac{d[ArCH_3]}{dt} = r_{ArCH_3}$
17026448145390.867	88422.77344932838	$\frac{d[ArCHO]}{dt} = r_{ArCHO}$
1623957393.1163824	87383.9443650537	$\frac{d[ArCH_2OH]}{dt} = r_{ArCH_2OH}$
7516179236.089911	94015.96441164656	$\frac{d[ArCOOH]}{dt} = r_{ArCOOH}$
236649.77956834293	46086.35089734953	$\frac{d[ArCH_2OOH]}{dt} = r_{ArCH_2OOH}$
21.031099109026435	33951.366251236715	$\frac{d[ArCOOCH_2Ar]}{dt} = r_{ArCOOCH_2Ar}$
45450,37377298935	42824.11059165022	$\frac{d[PFe^{IV}=O]}{dt} = r_{PFe^{IV}=O} = \frac{d[ArCH_2PFe^{III}OH]}{dt} = r_{ArCH_2PFe^{III}OH}$

通过虚拟仿真实验,我们得到了七个主要反应方程的反应速率常数和对应的活化能,为后一步的反应器选型与优化提供反应动力学参数。

(六) 实验心得

- 1.通过仿真实验的学习,使同学们加深了对甲苯催化氧化反应的反应 过程和动力学原理的了解,让同学们接触了解到了工业中实际多组分 混联反应的具体形式。
- 2.通过仿真实验,使同学们学习了解工业上实际的多组分混联反应体 系的反应器选型和反应条件优化的方法。
- 3.通过实验原理的学习,让同学们掌握 MATLAB 软件在已知动力学反应中的仿真模拟与运用。学会使用五朵金花虚拟仿真平台。
- **4**.让同学们采用基础实验解决复杂化工生产问题,加深同学们对课本中知识的运用,有助于课堂教学的成功。

