DNN Accelerators

Outlines

- ♦ GPU cudnn
- ♦ ASIC
- ♦ Xilinx xfdnn

Ingredients in Deep Learning

- Algorithm (Model) + Training Data + Computation
 - CNN models + Big Data + Accelerators

Computation Complexity

Inference vs. Training

Training takes much more time than inference

Training/Inference for Computer Vision

- training dataset: ImageNet
- ♦ ResNet-50

Inference			Training	
Smartphone AP	Hardware	M40 GPU	nVidia DGX	nVidia DGX x 32
		M40 GPU x 1	P100 GPU x 8	P100 GPU x 256
7.5 G ops x 30 frame = 210 G op/s	Performance	7 T flop/s	170 T flop/s	5,440 T flop/s
1/30 sec	Time	336 hr (14 Days)	21 hr	1 hr
\$500	Hardware Cost	\$3,000	\$129,000	\$ 4.1M

Training/Inference for GO Gaming

DeepMind AlphaZero

Inference		Training								
Inference for Go		Self-play games	NN Training							
TPU1	Config.	TPU1	TPU2							
92 Top/s		92 Top/s	45TFlop/s							
4	Comp. Resource	5000	64							
368 Top/s	(estimated)	460,000 Top/s	2,880 Tflop/s							
0.2 sec	Time (estimated)		2,400 sec 0 steps							
268 T op	Computation (estimated)	56,304,000,000 Tops =56,304 Exa op	352,512,000 Tflops = 352 Exa flop							

GFLOP/Dollars in CPU, GPU, TPU

- ◆ CPU: multi-core (~8) with 128-bit floating-point operations(FLOPs)/core
- ♦ GPU: many-core (~5,000) with 32-bit FLOPs / core
- ◆ TPU: ultra-many-core (~100,000) with 8/16-bit fixed-point operations / core

CPU vs. GPU vs. TPU

	Cores	Clock Speed	Speed (TFLOPs)	Power
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.2 GHz	~540 FP32	91 W
GPU (NVIDIA GTX 1080 Ti)	3584 CUDA	1.6 GHz	~11.4 FP32	250 W
GPU (NVIDIA GTX 2080 Ti)	4352 CUDA, 544 Tensor	1.55 GHz	~12 FP32	250 W
GPU (NVIDIA TITAN V)	5120 CUDA, 640 Tensor	1.5 GHz	~14 FP32 ~112 FP16	250 W
GPU (NVIDIA V100)	5120 CUDA, 640 Tensor	1.53 GHz	~16 FP32 ~125 for ML	300 W
TPU (Google Cloud TPU v3)	8 Tensor cores (8 x 128 x 128 x 2 = 262,144 FP16 MAC)	0.7 GHz	~91.8 for FP8 ~180 for ML	75 W

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and "dumber"; great for parallel tasks

TPU: Specialized hardware for deep learning

fastest supercomputers: 1. IBM Summit: 125,000 TFLOPs(10¹²), 15,000,000 W!!!

2. 神威·太湖之光: 92,000 TFLOPs, 15,371,000 W

TensorFlow: Tensor Processing Units

NVIDIA Tesla P100 = 11 TFLOPs NVIDIA GTX 580 = 0.2 TFLOPs

But Power in mobile devices: <1 W!!!

TPU in Google Cloud

Google Cloud TPU = 180 TFLOPs of compute!

Google Cloud TPU Pod

= 64 Cloud TPUs

= 11.5 PFLOPs of compute!

Rmax

Power

Rpeak Rank Site System (TFlop/s) (TFlop/s) (kW) Cores DOE/SC/Oak Ridge National Summit - IBM Power System 2.397.824 143,500.0 200,794.9 9,783 the fastest supercomputer AC922, IBM POWER9 22C 3.07GHz. Laboratory of the world in 2018/11 United States NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM

Nvidia Tesla GPU

Scalable unified architecture based on GeForce 8-series

NVIDIA Telsa, A Unified Graphics and Computing Architecture, *IEEE Micro*, Mar./Apr. 2008.

Patterson and Hennessy, *Computer Organization and Design, The Hardware/Software Interface*, 4th ed., Appendix A, 2009.

NVIDIA Fermi GPU

- ♦16 Streaming Multiprocessors (SM)
- ◆32 CUDA cores in each SM

Fermi Streaming Multiprocessor

- 32 CUDA processor cores
- ♦16 load/store units
- 4 special function units
- 64KB shared memory/L1 cache
- ♦128KB register file
- Up to 1536 concurrent threads

SIMD (Single Instruction Multiple Data)

Nvidia Cudnn INT8

64b										
32b					32b					
16b	16b 16b				16b 16b					
8b	8k)	8b	8b	8b	8b	8b	8b		

- Very short vectors added to existing ISAs for microprocessors
- ♦ Use existing 64-bit registers split into 2x32-b or 4x16-b or 8x8-b
 - ◆ Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b
 - Newer designs have wider registers
 - 128b for PowerPC Altivec, Intel SSE2/3/4
 - 256b for Intel AVX
- ♦ Single instruction operates on all elements within register

Nvidia Int8

- Low-bit accuracy (<16-b) in most deep learning applications</p>
 - sometimes, even binary (1-b) is enough, e.g., BWN
- one Nvidia CUDA core has hardware of 32-b x 32-b MAC hardware
 - one 32-b x 32-b MAC (Multiply-ACcumulate)
 - ◆two 16-b x 16-b MAC
 - ♦ four 8-b x 8-b MAC

NVidia Deep Learning Architecture (NVDLA)

- >configurable fixed function inference HW as a co-processor for the management processor
 - convolution, deconvolution, fully connected, activation, pooling, LRN
- >every block has a double buffer for its configuration register
- >two operations modes
 - independent mode
 - memory-to-memory operations
 - fused mode
 - some blocks assembled as a pipeline
 - bypassing round-trip through memory
 - block communication via smaller FIFOs

SDP: Single Data Point Processor (activation)

PDP: Planar Data Processor (pooling)

CDP: Cross-channel Data Processor (LRN), multi-plane operations

Rubik (俄羅斯方塊): splitting or slicing, merging, contraction,

reshape-transpose in deconvolution

CPU vs. GPU in practice

(CPU performance not well-optimized, a little unfair)

Software Frameworks

- quick to develop and test new ideas
- automatically compute gradients
- efficiently run on GPU (wrap cuDNN, cuBLAS, etc.)

Computational Graphs in PyTorch

Numpy

import numpy as np np.random.seed(0)

```
N, D = 3, 4
```

x = np.random.randn(N, D)

y = np.random.randn(N, D)

z = np.random.randn(N, D)

```
a = x * y
```

b = a + z

c = np.sum(b)

 $grad_c = 1.0$

 $grad_b = grad_c * np.ones((N, D))$

grad_a = grad_b.copy()

 $grad_z = grad_b.copy()$

 $grad_x = grad_a * y$

 $grad_y = grad_a * x$

PyTorch

import torch

device = 'cuda:0'

N, D = 3, 4

x = torch.randn(N, D, requires_grad=True,

device=device)

y = torch.randn(N, D, device=device)

z = torch.randn(N, D, device=device)

a = x * y

b = a + z

c = torch.sum(b)

c.backward()

print(x.grad)

Trivial to run on GPU – just construct arrays on a different device!

TensorFlow Neural Net

Train the network:

Run the graph over and over, use gradient to update weights

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(N, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))
h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])
with tf.Session() as sess:
           values = \{x: np.random.randn(N, D),
                      wl: np.random.randn(D, H),
                      w2: np.random.randn(H, D),
                      y: np.random.randn(N, D),}
           learning rate = le-5
           for t in range(50):
                      out = sess.run([loss, grad_wl, grad_w2], feed dict=values)
                      loss val, grad_wl_val, grad_w2_val = out
                      values[wl] -= learning_rate * grad_wl_val
                      values[w2] -= learning_rate * grad_w2_val
```

Keras: High-Level Wrapper

Keras is a layer on top of TensorFlow, makes common things easy to do .

(Used to be third-party, now merged into TensorFlow)

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,), activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
y_pred = model(x)
loss = tf.losses.mean_squared_error(y_pred, y)
optimizer = tf.train.GradientDescentOptimizer(le0)
updates = optimizer.minimize(loss)
with tf.Session() as sess:
          sess.run(tf.global_variables_initializer())
         values = \{x: np.random.randn(N, D),
                   y: np.random.randn(N, D)}
         for t in range(50):
                   loss_val, _ = sess.run([loss, updates], feed dict=values)
```

ASIC (Application Specific IC) DNN HW Accelerators

- Acceleration methods
 - **♦** GPU
 - **♦** DSP
 - **◆** ASIC
- **♦**Evaluation metrics
 - ◆ speed performance (GOPs, TOPs), power (mW), power efficiency (GOPs/W=GOP/J)
- Deep learning hardware accelerator for "edge" devices
 - ◆ power < 1W
- Several benchmarks
 - ◆ DianNao series (CAS中國科學院, 2014~2016)
 - ◆ Angel-Eye (Tsinghua 北京清大, 2016~2018)
 - ◆ DNA, GNA, RNA, Thinker (Tsinghua 北京清大, 2017~2019)
 - ◆ Eyeriss v1, v2 (MIT 麻省理工學院, 2017~2019)
 - ◆ EIE, ESE (Stanford史丹福大學, 2016~2017)
 - ◆ TPU (Google谷歌, 2017~2018)
 - ◆ DNPU, UNPU (KAIST南韓科大, 2017~2019)
 - **•** ...

Outlines

- Evaluation Metrics
- DianNao, 2014 ASPLOS, 2015 ACM TOCS, China CAS
- DaDianNao, 2014 MICRO, China CAS
- ShiDianNao, 2015 ISCA, China CAS
- Cambricon-X, 2016 MICRO, China CAS
- AngleEye, 2016 FPGA, 2018/1 TCAD, China Tsing-Hua Univ.
- EIE (Efficient Inference Engine), 2016 ISCA, Stanford Univ.
- ESE (Efficient Speech Recognition Engine), 2017 FPGA, Stanford Univ., DeePhi, Tsing-Hua Univ.
- Eyeriss, 2016 ISCA, 2017 JSSC, MIT
- Precision-Scalable (PS) ConvNet, 2017 JSSC, KU Leuven, Belgium
- ENVISION, 2017 ISSCC, KU Leuven, Belgium
- Origami, 2017 TCSVT, ETH Zurich, Switzerland
- Tensor Processing Unit (TPU), 2017 ISCA, Google
- ZeNA, 2018 IEEE Design & Test, Seoul National Univ., Korea
- DNPU (Deep Neural Processing Unit), 2017 ISSCC, 2017 ASSCC, H.-J. Yoo, KAIST
- UNPU (Unified Neural Processing Unit), 2018 ISSCC, H.-J. Yoo, KAIST
- DSIP (Deep learning Specific Instruction-set Processor), 2018/2, I.-C. Park, KAIST
- Binary CNN (BCNN), 2018/2 TVLSI, Zhongfeng Wang, Nanjing Univ., China
- Efficient Hardware Architecture for Deep CNN, 2018 TCAS-I, Zhongfeng Wang. Nanjing Univ., China
- DNA (Seep Neural Architecture), 2017/8 TVLSI, Shaojun Wei, Tsing-Hua Univ.

Comparison of DNN ASIC (1/2)

	Tech. (nm)	bits	f(MHz)	Power(mW)	speed (GOP/s)	pwr.eff. (GOP/s/W)	SRAM (KB)	Multi.	layer types	Parallelism Types(註一)	features
DianNao (2014)	65	16	1,000	0.485	452	932	44	256	CNN	OCP (no data reuse)	MAT
DaDianNao (2014)	28	16	606	16	5,580	349	36,000	4,096	CNN	OCP (no data reuse)	NoC, MAT
ShiDianNao (2015)	65	16	1,000	0.32	606	1,893	288	-	CNN	OCP (input data transfer inter PE)	2D, MAT
CambriconX (2016)	65	16	1,000	0.95	544	573	56	-	CNN FC	OCP (no data reuse)	1D, MAT
EIE (2016)	45	16	800	0.6	102	170	10,368	64	FC	ОСР	1D, MAC
Eyeriss (2016, 2017)	65	16	200	0.28	60	23.1	83	336	CNN FC	WP 其餘平行不明	2D, MAC
Origami (2017)	65	12	500	0.5	196	437	43	196	CNN	WP · OCP	1D, MAT
TPU (2017)	28	8	700	40,000	92,000	2,300	28,000	65,536	CNN FC LSTM	平行不明	2D, MAC
DNPU (2017)	65	4~16	50~200	0.063	300@16-b	4,200	280	768@16-b	CNN FC LSTM	ICP、WP、OCP	2D, MAT
PS-ConvNet (2017)	40	4,8,12,16	204	0.287@16-b	74	270@16-b	148	256	CNN	WP · OCP	2D, MAC
DNA (2017)	65	16	200	0.48	194	406	280	1,024	CNN FC	ICP、WP、OCP	2D, MAC

Comparison of DNN ASIC (2/2)

Intel Xeon

FPGA XC7Z045

FPGA XC7Z020

16

150

214

9.6

3.5

137

84.3

Companison of Divid ASIC (2/2)											
	Tech. (nm)	bits	f(MHz)	Power(mW)	speed (GOP/s)	pwr.eff. (GOP/s/W)	SRAM (KB)	Multi.	layer types	Parallelism Types(註一)	features
FlexFlow (2017)	65	16	1,000	-	420	-	64	256	CNN	ICP · WP · OCP	2D, MAC, MAT
DSIP (2018)	65	16	250	0.153	16	105	140	64	CNN	ICP · WP · OCP	2D, MAC
UNPU (2018)	65	1~16	200	297	345.6@16-b	3,080	256	1,152	CNN FC LSTM	ICP · WP · OCP	2D, MAC, NoC
Think1 (2018)	65	8, 16	10~200	4~386	410	1,060~5,090	348	512	CNN FC LSTM	ICP · WP · OCP	2D, MAC
Think2 (2018)	28	1, 2, 4, 8, 16	20~400	3.4~20.8	410@(16, 1)-b	95,800@(16, 1)-b	224	32	CNN	ICP · OCP	MAT
GNA (2018)	28	8, 16	200	142	409.6	2,880	404	256	CNN DeCNN	ICP、WP、OCP、 cross layer	2D, MAT
GPU Titan X	28	32f	1,075	210	5,991	29					
GPU K40	28	32f	560	250	1,783	7		註一	: OCP(or	utput channel pa	arallel) 、
mGPU Tegra K1	28	32f	852	9	68	8	ICP(input channel parallel) \ WP (window parallel) \ PP(betch parallel)				
CPU	22	32f	2,900	130	97	1					

14

24

BP(batch parallel)

List of Some DNN ASIC

- Evaluation Metrics
- DianNao, 2014 ASPLOS, 2015 ACM TOCS, China CAS
- DaDianNao, 2014 MICRO, China CAS
- ShiDianNao, 2015 ISCA, China CAS
- Cambricon-X, 2016 MICRO, China CAS
- AngleEye, 2016 FPGA, 2018/1 TCAD, China Tsing-Hua Univ.
- EIE (Efficient Inference Engine), 2016 ISCA, Stanford Univ.
- ESE (Efficient Speech Recognition Engine), 2017 FPGA, Stanford Univ., DeePhi, Tsing-Hua Univ.
- Eyeriss, 2016 ISCA, 2017 JSSC, MIT
- Precision-Scalable (PS) ConvNet, 2017 JSSC, KU Leuven, Belgium
- ENVISION, 2017 ISSCC, KU Leuven, Belgium
- Origami, 2017 TCSVT, ETH Zurich, Switzerland
- Tensor Processing Unit (TPU), 2017 ISCA, Google
- ZeNA, 2018 IEEE Design & Test, Seoul National Univ., Korea
- DNPU (Deep Neural Processing Unit), 2017 ISSCC, 2017 ASSCC, H.-J. Yoo, KAIST
- UNPU (Unified Neural Processing Unit), 2018 ISSCC, H.-J. Yoo, KAIST
- DSIP (Deep learning Specific Instruction-set Processor), 2018/2, I.-C. Park, KAIST
- Binary CNN (BCNN), 2018/2 TVLSI, Zhongfeng Wang, Nanjing Univ., China
- Efficient Hardware Architecture for Deep CNN, 2018 TCAS-I, Zhongfeng Wang. Nanjing Univ., China
- DNA (Seep Neural Architecture), 2017/8 TVLSI, Shaojun Wei, Tsing-Hua Univ.