(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

JI JEC 2004

(43) Internationales Veröffentlichungsdatum 22. Januar 2004 (22.01.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/008143 A1

- (51) Internationale Patentklassifikation⁷: G01N 33/543. 33/566, 33/551, 33/542, 33/58, C12Q 1/68, G01N 33/53
- PCT/EP2003/006948 (21) Internationales Aktenzeichen:
- (22) Internationales Anmeldedatum:

30. Juni 2003 (30.06,2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 31 684.8

12. Juli 2002 (12.07.2002)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MICRONAS HOLDING GMBH [DE/DE]; Hans-Bunte-Strasse 19, 79108 Freiburg (DE).
- (71) Anmelder und
- (72) Erfinder: KLAPPROTH, Holger [DE/DE]; Kehlerstrasse 12, 79108 Freiburg (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SIEBEN, Ulrich [DE/DE]; Kronengasse 7, 79276 Reute (DE).

- (74) Anwalt: BICKEL, Michael; Westphal, Mussgnug & Partner, Mozartstrasse 8, 80336 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR DETERMINING THE NUMBER OF RECEPTORS ON A CARRIER
- (54) Bezeichnung: VERFAHREN ZUR BESTIMMUNG DER ZAHL VON REZEPTOREN AUF EINEM TRÄGER
- (57) Abstract: The invention relates to a method for determining the number of receptors on a carrier, in addition to a biosensor, especially a protein sensor, which can be produced with the aid of said method.
- (57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Bestimmung der Zahl von Rezeptoren auf einem Träger sowie einen Biosensor, insbesondere einen Proteinsensor, der mit Hilfe des Verfahrens herstellbar ist.

1

VERFAHREN ZUR BESTIMMUNG DER ZAHL VON REZEPTOREN AUF EINEM TRÄGER

5

10

15

20

25

30

35

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung der Zahl von Rezeptoren auf einem Träger sowie einen Biosensor, insbesondere einen Proteinsensor, der mit Hilfe des Verfahrens herstellbar ist.

Biologische Systeme beruhen auf der Interaktion von biologisch aktiven Makromolekülen, die andere Moleküle über ihre dreidimensionale Oberflächenstruktur sowie eine spezifische elektronische Ladungsverteilung in der Regel reversibel binden. Neben reversiblen Bindungen sind kovalente Bindungen zwischen Molekülen bekannt, die genutzt werden, um Moleküle mittels chemischer Methoden an Oberflächen zu binden. küle, die Bindungsaffinitäten für andere Molekülen besitzen, werden zusammenfassend als Rezeptoren bezeichnet, die eine entscheidende Rolle bei der Wechselwirkung und dem Zusammenspiel biologischer Systeme spielen. Beispiele für in der Natur vorkommende Rezeptoren sind Enzyme, welche die Umsetzung eines bestimmten Substrates katalysieren, Proteine, die den Transport von geladenen Molekülen über eine Biomembran ermöglichen, durch Zucker modifizierte Proteine (= Glykoproteine), die den Kontakt zu anderen Zellen erlauben, Antikörper, die im Blut zirkulieren und Bestandteile von Krankheitserregern wie Bakterien oder Viren erkennen, binden und inaktivieren. Im Rahmen biologisch aktiver Systeme wird auch DNA, der Träger der Erbinformation als Rezeptor verstanden. DNA besteht grundsätzlich aus zwei zueinander komplementären Strängen, die über Basenpaarungen und Wasserstoffbrückenbindungen eine Doppelhelix bilden. Jeder einzelne DNA Strang wirkt dabei als Rezeptor für seinen komplementären DNA Strang, der seinerseits die Funktion des Liganden wahrnimmt.

Alle Moleküle, die von einem Rezeptor spezifisch gebunden werden, werden zusammenfassend als Liganden bezeichnet, wobei von vielen biologisch aktiven Molekülen bekannt ist, dass sie einerseits selbst andere Moleküle binden, anderseits aber auch von Molekülen gebunden werden. Sie sind daher, abhängig von ihrem jeweiligen Bindungspartner, sowohl Liganden als auch Rezeptoren.

Zur Untersuchung von Interaktionen zwischen Rezeptoren und Liganden wurden eine Vielzahl von Testsystemen (Assays) entwickelt, mit deren Hilfe die Konzentration des Liganden in einer Probenlösung qualitativ und/oder quantitativ bestimmt wird. Solche Testsysteme werden aufgrund der großen Spezifität von Rezeptor-Liganden-Komplexen in der Kriminalistik bei der Überprüfung Tatverdächtiger, beim Vaterschaftstest, in der Krebsvorsorge, in der pränatalen Diagnostik, bei der Erstellung von Stammbäumen in der Wissenschaft und Forschung sowie für die Überprüfung von erfolgreichen Schutzimpfungen verwendet.

20

30

Nachdem die vollständigen genomischen DNA-Sequenzen wichtiger Modell- und Forschungsorganismen wie Bakterien (Bacillus subtilis, Escherichia coli) und Hefen (Saccharomyces cerevisiae) bereits seit Jahren in Datenbanken vorliegen, wurde zwischenzeitlich auch die Sequenzierung des menschlichen Genoms im Rahmen des Humangenomprojektes abgeschlossen. Da die Zahl der identifizierten menschlichen Gene sehr viel geringer als vermutet ist, gewinnt die Erforschung der Funktion der einzelnen Gene, die in verschiedenen Geweben und Organen unterschiedlich aktiv sind, seither zunehmend an Bedeutung.

Neben der detaillierten Erforschung der DNA ist in der jüngeren Vergangenheit die Untersuchung des Proteinanteils der Zelle, die auch als Proteomanalyse bezeichnet wird, immer wichtiger geworden. Die meisten pharmazeutisch aktiven Stoffe, die als Arzneimittel eingesetzt werden, wirken über die Beeinflussung von Proteinen. Solche Interaktionen können

5

10

20

25

30

35

durch DNA Analysen nicht oder nur unzureichend analysiert werden.

Die Aufklärung der differentiellen Genexpression gilt als entscheidend für das Verständnis der Entwicklung vieler Krankheiten. Seit vielen Jahren werden daher vielfältige Versuche unternommen, eine möglichst große Zahl von biologisch aktiven Molekülen auf kleinstem Raum künstlich zu synthetisieren und anzuordnen, um sie bezüglich ihrer Interaktion mit anderen Molekülen untersuchen zu können. Für den quantitativen und qualitativen Nachweis von Interaktionspartnern bzw. Liganden in einer zu analysierenden Probe, beispielsweise einer Speichel- oder Blutprobe, werden planare Systeme verwendet, die als Biochips bzw. Biosensoren bezeichnet werden. Die Biosensoren bilden einen Träger, auf dessen Oberfläche eine Vielzahl von rasterartig angeordneten Nachweisbereichen ausgebildet ist. Bei der Herstellung solcher Biosensoren wurden zunächst die einzelnen Monomere über Mikrodosierung auf die Vielzahl der Einzelbereiche des Rasters aufgetragen, an denen ein Polymer gebildet werden sollte. Dieses Verfahren ist für breit angelegte Screening-Studien nicht geeignet, so dass Systeme zur lichtgesteuerten Polymersynthese unter Verwendung individueller Maskensätze wie aus der Halbleiterindustrie bekannt, zur Herstellung von Biosensoren verwendet wurden (Pease et al.(1994), PNAS, USA, Vol. 91, S. 5022 - 5026).

Bei den bekannten Testsystemen, die zum Nachweis von Liganden in zu analysierenden Proben verwendet werden, spielt der Nachweis eines auf der Oberfläche eines Biosensors gebildeten Rezeptor-Liganden-Komplexes die entscheidende Rolle. Bei herkömmlichen Systemen muss für die Konzentrationsberechnung des Liganden eine Kalibrierungskurve erstellt werden, aus der sich indirekt die Zahl der Ligandenmoleküle bzw. deren Konzentration bestimmen lässt.

Besonders häufig werden auch Systeme verwendet, bei denen versucht wird, die Liganden in der zu analysierenden Probe

selbst zu markieren. Daran ist insbesondere nachteilig, dass die Reaktion des Liganden mit einem Marker, beispielsweise einem Farbstoff zu einer Konfigurations- oder Konformations- änderung des Liganden und somit zu einer Veränderung seiner Oberflächenstruktur führen kann. Da aber gerade die dreidimensionale Oberfläche für die Bindung des Liganden an den auf der Oberfläche des Biosensors fixierten Rezeptor von entscheidender Bedeutung ist, liefert die direkte Markierung von Liganden in der Regel keine zufriedenstellenden Ergebnisse.

10

15

20

30

Als Marker wurden darüber hinaus molekulare Beacons entwickelt, die von Schonfield et al., (1997), Applied and Environmental Microbiology, Vol. 63, S. 1143 - 1147 sowie von Tyagi und Kramer (1996), Nature Biotech., Vol. 14, S. 303 - 308 beschrieben wurden. Molekulare Beacons sind DNA-Sonden, die eine kurze komplementäre Sequenz von Nukleotiden aufweisen, die an den 5'- und 3'-Enden der Probensequenz angeordnet sind, so dass sich eine Stammstruktur ("Stem-Loop-Struktur") in Lösung bildet. Ein Farbstoff, insbesondere ein Fluorochrom und ein geeigneter Dämpfer ("Quencher") sind über Linker an den Enden des Stem-Loops angeordnet. Diese Stem-Loop-Struktur bildet den Rezeptor, in dem in Abwesenheit eines Liganden das Fluorochrom und der Quencher über die Stammstruktur nahe beieinander gehalten werden, so dass die Fluoreszenz unterdrückt ist. Wenn jedoch der einzelsträngige Loop mit einer komplementären Zielsequenz (= Ligand) interagiert und stabil hybridisiert, denaturiert die Stem-Loop-Struktur. Dadurch tritt Fluoreszenz auf, weil sich ein stabilerer Hybrid aus Loop und Zielsequenz (= Rezeptor-Liganden-Komplex) nicht mit der weniger stabilen internen Basenpaarung des Stammhybriden koexistieren kann. Da diese Sonden nur in Anwesenheit einer Zielsequenz (eines spezifischen Liganden) stark fluoreszieren, können sie in Lösung verwendet werden, ohne dass nicht-hybridisierte Sonde entfernt werden muss. Molekulare Beacons sind hochspezifisch, so dass Fluoreszenz vollständig unterdrückt wird, wenn die Zielsequenz eine einzige falsche Base in der Oligonukleotidkette aufweist. Nachteilig

an der Verwendung molekularer Beacons ist jedoch, dass sie aufgrund ihres Wirkmechanismus auf den Nachweis von Nukleinsäuren beschränkt sind. Sie können nicht für den Nachweis von anderen Rezeptor-Liganden-Komplexen eingesetzt werden.

5

10

15

20

25

Zur Bestimmung anderer Rezeptor-Liganden-Komplexe, insbesondere zum Nachweis von Antigen-Antikörperreaktionen werden bisher Biosensoren verwendet, auf denen Rezeptoren immobilisiert sind. Die Menge an gebundenem Rezeptor kann bisher nur unzureichend bestimmt werden. Die Mengenbestimmung beruht in der Regel auf der Messung, wie viel Flüssigkeit beim Druckprozess des Sensors abgegeben wird. Außerdem kann mit Hilfe verschiedener bekannter Färbetechniken bei einzelnen gedruckten Sensoren stichprobenhaft die Rezeptordichte ermittelt werden. Als besonders nachteilig wird dabei empfunden, dass zum Zeitpunkt der Messung der Interaktion zwischen Rezeptor und Ligand keine Aussage über die Menge des immobilisierten Rezeptors auf der Oberfläche des Biosensors möglich ist. Außerdem erlauben herkömmliche Biosensoren keine Messung der Rezeptordichte auf jedem individuellen Sensor und an jedem Messpunkt.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren zur Bestimmung der Zahl von Rezeptoren auf einer Trägeroberfläche vorzuschlagen, bei dem die Menge des tatsächlich immobilisierten Rezeptors exakt bestimmt werden kann. Darüber hinaus soll der Nachweis eines gebildeten Rezeptor-Liganden-Komplexes spezifisch erfolgen und nicht durch die Wahl des Markers beeinflusst werden.

30

35

Diese Aufgabe wird durch ein Verfahren zur Bestimmung der Zahl von Rezeptoren auf einem Träger gelöst, bei dem die Rezeptor-Marker-Komplexe unabhängig von den Rezeptor-Liganden-Komplexen nachgewiesen werden. In dem Verfahren wird zunächst ein Träger bereitgestellt. Auf dem Träger wird wenigstens ein Rezeptor immobilisiert, wobei der Rezeptor die Fähigkeit be-

10

15

20

25

30

sitzt mit einem Liganden zu interagieren und einen spezifi-

schen Rezeptor-Liganden-Komplex zu bilden.

Unter "Immobilisieren" wird jede dauerhafte Verbindung des 5 Rezeptors mit der Oberfläche bzw. der Struktur des Trägers verstanden. Diese Interaktion kann beispielsweise auf wenigstens einer kovalenten Bindung oder wenigstens einer Disulfidbrücke beruhen. Darüber hinaus sind auch lösbare Verbindungen zwischen Rezeptor und Trägeroberfläche denkbar und geeignet, wobei ionische Wechselwirkungen vorteilhaft sind, die einfach durch pH-Wert Veränderungen gelöst werden können. Unter "Rezeptor-Liganden-Komplex" wird jede Art von Verbindung bzw. Interaktion von Rezeptor und Ligand verstanden. Somit ist der Begriff "Rezeptor-Liganden-Komplex" nicht auf die chemische Definition des Begriffs "Komplex" beschränkt.

Anschließend wird ein Signalmolekül bzw. ein Marker mit dem Rezeptor in Kontakt gebracht, wodurch sich ein Rezeptor-Marker-Komplex bildet. Danach wird die Zahl der Rezeptoren auf dem Träger ermittelt, indem die Rezeptor-Marker-Komplexe nachgewiesen werden.

Dadurch, dass die Rezeptor-Marker-Komplexe unabhängig von den Rezeptor-Liganden-Komplexen nachgewiesen werden, kann die Konzentration des Rezeptors direkt bestimmt werden. Da für gewöhnlich die Bindungskonstante, d.h. die Affinität des Liganden zu seinem Rezeptor bekannt ist, kann über die Rezeptorkonzentration und die Bindungskonstante die Konzentration des Liganden in einer zu analysierenden Probe berechnet werden. Darüber hinaus kann mit Hilfe dieses Verfahrens der Herstellungsprozess von Biosensoren überwacht werden, weil fehlerhaft gedruckte oder immobilisierte Sensoren einfach erkannt und aussortiert werden können.

35 Das Immobilisieren des Rezeptors auf dem Träger und das in Kontakt bringen des Markers mit dem Rezeptor kann auch gleichzeitig in einem einzigen Schritt erfolgen. So kann das

Verfahren besonders einfach und schnell durchgeführt werden, was insbesondere bei diagnostischen Routineuntersuchungen und sogenannten Schnelltests, die innerhalb kürzester Zeit ein zuverlässiges Ergebnis liefern müssen, von besonderer Bedeutung ist.

Außerdem kann der Marker zunächst mit dem Rezeptor zur Ausbildung des Rezeptor-Marker-Komplexes in Kontakt gebracht werden. Diese bereits gebildeten Rezeptor-Marker-Komplexe werden anschließend über den Rezeptor auf dem Träger immobilisiert. Eine solche Vorgehensweise ist dann vorteilhaft, wenn der Rezeptor-Marker-Komplex besonders stabil ist und durch eine nachträgliche Bindung des Rezeptors an die Träger-oberfläche nicht behindert wird.

15

20

25

10

5

Zusätzlich zu den oben genannten Verfahrensschritten kann der Rezeptor mit einer Testprobe in Kontakt gebracht werden, die auf ihren Gehalt an Liganden untersucht werden soll. Die Inkubation des Rezeptors mit der Testprobe kann nach dem Immobilisieren des Rezeptors auf dem Träger, aber auch nach dem in Kontakt bringen des Markers mit dem Rezeptor oder nach der Ermittlung der Zahl der Rezeptoren auf dem Träger erfolgen.

Falls der Rezeptor mit einer Testprobe in Kontakt gebracht wird, die auf ihren Gehalt an Liganden untersucht werden soll, ist es vorteilhaft, die gebildeten Rezeptor-Liganden-Komplexe direkt und unabhängig von den gebildeten Rezeptor-Marker-Komplexen nachzuweisen.

30 Der Träger kann ein Halbleiter sein. Seine Oberfläche kann aus Silizium bzw. Halbmetalloxiden bestehen. Besonders vorteilhaft sind dabei SiO_x oder Aluminiumoxid.

Der im Rahmen der Erfindung verwendete Rezeptor kann jedes Molekül mit einer Bindungsaffinität für einen bestimmten Liganden sein. Rezeptoren können natürlich vorkommend oder künstlich erzeugt sein. Sie können ebenso in ihrem natürli-

chen Zustand oder als Aggregate mit anderen Molekülen vorliegen. Rezeptoren binden direkt oder indirekt über spezifische Bindungssubstanzen oder Bindungsmoleküle kovalent oder nicht kovalent an den Liganden. Beispiele für Rezeptoren sind Enzyme, Antikörper, insbesondere monoklonale oder polyklonale Antikörper sowie funktionellen Fragmenten davon, Antiseren, Proteine, Oligo- und Polypeptide, Zellmembranrezeptoren, Nukleinsäuren, insbesondere DNA, RNA, cDNA, PNA, Oligo- und Polynukleotide, Zuckerbestandteile wie Saccharide, insbesondere Mono-, Di-, Tri-, Oligo- und Polysaccharide sowie Lecithin, Kofaktoren, zelluläre Membrane, Organelle, sowie Lipide und deren Derivate.

Wesentlich ist, dass Rezeptoren mit den korrespondierenden Liganden durch ihre molekulare Erkennung einen Rezeptor-Liganden-Komplex bilden. Demzufolge sind Liganden Moleküle, die durch einen bestimmten Rezeptor erkannt werden. Auch sie können natürlich vorkommen oder künstlich erzeugt sein. Beispiele für bekannte Liganden sind Agonisten und Antagonisten zelluläre Membranrezeptoren, Toxine, virale und bakterielle Epitope, insbesondere Antigene, Hormone (Opiate, Steroide, etc.), Peptide, Enzyme, Enzymsubstrate und Kofaktoren.

Obwohl die Bindung zwischen Rezeptor und Ligand im Rezeptor-Liganden-Komplex hochspezifisch ist, kann sie dennoch beispielsweise durch die Änderung der Temperatur, des pH-Wertes, der Ionenkonzentration, des Salzgehaltes des umgebenden Milieus oder der Anwesenheit von konkurrierenden Molekülen, lösbar sein.

30

35

10

15

20

25

Falls das Fluorochrom des Liganden eine größere Fluoreszenzlebensdauer als das Fluorochrom des Markers besitzt, können die Marker hochselektiv voneinander unterschieden werden. Eine ähnliche Wirkung kann durch Verwendung von Farbstoffen mit unterschiedlichen Anregungs- und Emissionsspektren erzielt werden. Falls der Ligand und der Marker an dieselbe Stelle des Rezeptors binden und somit um diese Bindung miteinander

konkurrieren (sogenannter kompetitiver Antagonismus), ist es vorteilhaft wenn der Marker eine geringere Bindungsaffinität zu dem Rezeptor aufweist.

Die Bindung zwischen Rezeptor und Marker in dem Rezeptor-Marker-Komplex kann lösbar ausbildet sein, so dass der Marker durch geeignete kompetitive Substanzen von seiner Bindung an den Rezeptor verdrängt und durch andere Marker ersetzt werden kann.

10

15

Die Markierung der Rezeptoren mit Markern erfolgt statistisch, d.h. dass nicht jeder einzelne Rezeptor individuell markiert sein muss. Dennoch befinden sich durchschnittlich auf n-Rezeptoren n-Marker. Darüber hinaus kann die Markierung auch ein Vielfaches von n betragen. Wesentlich dabei ist, dass die Marker nicht mit dem Prinzip der Messung interferieren.

Die Marker können reaktive Gruppe aufweisen, wobei insbeson20 dere chemisch reaktive Gruppen mit hoher Spezifität wie z.B.
Thiolgruppen als reaktive Gruppen geeignet sind. Durch solche chemisch reaktive Gruppen des Markers wird das Bindungsverhalten des Liganden an den Rezeptor nicht nennenswert beeinträchtigt.

25

Der Marker kann ein Farbstoff, insbesondere ein Lumineszenz-Farbstoff, vor allem ein Chemolumineszenz-, Photolumineszenzoder Biolumineszenz-Farbstoff sein.

Wenn der Marker ein Fluoreszenz-Farbstoff ist, dann kann er ein Fluorochrom aufweisen. Hier sind insbesondere Rhodamin, vor allem Tetramethylrhodaminisothiocyanat (= TRITC) besonders geeignet. Solche Fluorochrome können als Maleinimide zur Konjugation verwendet werden. Wenn der Rezeptor ein Antikörper ist, kann dieser mit reaktiven Farbstoffen konjugiert werden. Eine Reihe von Beispielen können hierzu aus der Pub-

10

25

30

35

likation von G. T. Herrmannson "Bioconjugate techniques", A-cademic Press 1996, entnommen werden.

Darüber hinaus können als Rezeptoren sogenannte chimäre Proteine, die künstlich aus Proteinbestandteilen unterschiedlichen, z.B. biologischen und künstlichen Ursprungs zusammengesetzt sind, verwendet werden. So kann beispielsweise ein Antikörper, bei dem die konstante Region (Fab-Region) durch ein fluoreszierendes Protein ersetzt wurde, so dass nur die variablen Regionen zur Antigenerkennung erhalten bleiben, als Rezeptor verwendet werden. Das fluoreszierende Protein kann insbesondere ein green fluorescent protein (GFP) oder ein blue fluorescent protein (BFP) sein.

Der Rezeptor kann darüber hinaus eine Eigenfluoreszenz aufweisen. Eine solche Eigenfluoreszenz ist insbesondere von der natürlich vorkommenden Aminosäure Tryptophan bekannt, die in nahezu allen größeren Proteinen vorkommt. Wenn demnach der Rezeptor ein Antikörper, Protein oder Oligopeptid ist, in dem 20 mindestens ein Tryptophan vorkommt, kann die Eigenfluoreszenz dieser Aminosäure für den Nachweis verwendet werden.

Die Bindung zwischen Rezeptor und Marker in dem Rezeptor-Marker-Komplex weist eine Fluoreszenzhalbwertszeit im Bereich von Nanosekunden auf.

Der Rezeptor-Marker-Komplex kann einen "fluorescence resonance energy transfer" (= FRET) aufweisen. Bei diesem System kommt es zu einem Energietransfer zwischen einem Donor, der die Energie abgibt und einem Akzeptor, der die Energie aufnimmt.

Die Fluoreszenz des FRET kann durch die Interaktion des Liganden mit dem Rezeptor verändert werden. Der Donor und der Akzeptor des FRET können auf dem Rezeptor immobilisiert sein. Durch Bindung des Liganden an den Rezeptor werden der Donor und der Akzeptor räumlich voneinander getrennt, so dass eine

Fluoreszenzauslöschung beim Akzeptor erfolgt, wobei der Akzeptor ein Fluorochrom ist. Andererseits kann auch eine Fluoreszenzentstehung beim Donor erfolgen, wobei der Akzeptor als Fluoreszenzquencher bezeichnet wird. Darüber hinaus kann der Ligand selbst als Donor wirken, so dass er entweder fluoresziert oder quencht. Außerdem ist denkbar, dass der Ligand durch seine Bindung an den Rezeptor unter Ausbildung des Rezeptor-Liganden-Komplexes den FRET-Donor und -Akzeptor in unmittelbaren direkten Kontakt zueinander bringt.

10

15

20

25

Darüber hinaus kann FRET sowohl mit einem Quencher als auch einem Fluorochrom als Akzeptor funktionieren. Ist der Akzeptor ein Quencher, so wird die Fluoreszenz ausgelöscht. Ist der Akzeptor ein Fluorochrom, so wird die Energie des Donors von dem Akzeptor als Fluoreszenzlicht wieder abgegeben.

Ebenso können Liganden verwendet werden, die selbst fluoreszenzmarkiert sind. Auf diese Weise wird unter Verwendung eines ebenfalls markierten Kompetitors, der beispielsweise ein fluoreszenzmarkierter Ligand sein kann, ein kompetitiver Assay möglich. Der Kompetitor erzeugt (oder löscht) ein Fluoreszenzsignal auf dem Rezeptor. Dabei ist vor allem das Erzeugen eines Signals vorteilhaft, weil eine unspezifische Bindung des Liganden/des Kompetitors an Bereiche der Oberfläche außerhalb des Rezeptors nicht signalbildend ist.

Der Marker kann jede beliebige nachweisbare Form annehmen, wobei der Marker insbesondere ein Mikropartikel sein kann.

30 Darüber hinaus betrifft die vorliegende Erfindung einen Biosensor, insbesondere einen Proteinsensor, der nach dem erfindungsgemäßen Verfahren herstellbar ist.

Patentansprüche

5

- Verfahren zur Bestimmung der Zahl von Rezeptoren auf einem Träger, wobei das Verfahren die Schritte umfasst:
- (a) Bereitstellen eines Trägers;
- (b) Immobilisieren wenigstens eines Rezeptors auf dem Träger, wobei der Rezeptor die Fähigkeit besitzt mit einem Liganden zu interagieren und einen Rezeptor-Liganden-Komplex zu bilden;
 - (c) In Kontakt bringen eines Markers mit dem Rezeptor, wodurch ein Rezeptor-Marker-Komplex gebildet wird;
- (d) Ermitteln der Zahl der Rezeptoren auf dem Träger indem die Rezeptor-Marker-Komplexe nachgewiesen werden;
- wobei die Rezeptor-Marker-Komplexe unabhängig von Rezeptor-Liganden-Komplexen nachgewiesen werden.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schritte b) und c) gleichzeitig erfolgen.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Schritt c) vor Schritt b) erfolgt.
- Verfahren nach einem der vorhergehenden Ansprüche, da durch gekennzeichnet, dass nach Schritt b) oder c) oder
 zusätzlich der Schritt (i) durchgeführt wird:
- (i) In Kontakt bringen des Rezeptors mit einer Testprobe, die auf ihren Gehalt an Liganden untersucht wird.

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass nach Schritt (i) zusätzlich der Schritt (ii) durchgeführt wird:
- 5 (ii) Nachweisen der Rezeptor-Liganden-Komplexe.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Träger ein Halbleiter mit einer Oberfläche aus Silizium, Halbmetalloxiden, insbesondere SiO_x oder Aluminiumoxid ist.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rezeptor ausgewählt ist aus der Gruppe bestehend aus Antikörpern, insbesondere monoklonalen oder polyklonalen Antikörpern sowie funktionellen Fragmenten davon; Proteinen, Oligo- und Polypeptiden, Nukleinsäuren, insbesondere DNA, RNA, cDNA, PNA, Oligo- und Polynukleotiden; sowie Sacchariden, insbesondere Mono-, Di-, Tri-, Oligo- und Polysacchariden.

- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bindung zwischen Rezeptor und Ligand in dem Rezeptor-Liganden-Komplex lösbar ist.
- 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bindung zwischen Rezeptor und Ligand eine Halbwertzeit im Bereich von Mikrosekunden (= μ s) oder größer aufweist.
- 30 10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bindung zwischen Rezeptor und Marker in dem Rezeptor-Marker-Komplex lösbar ist.
- 11. Verfahren nach einem der vorhergehenden Ansprüche, da-35 durch gekennzeichnet, dass n-Rezeptoren n-Marker oder ein Vielfaches von n an Markern zugeordnet sind.

10

- 5 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Marker ein Farbstoff, insbesondere ein Lumineszenz-Farbstoff, vor allem ein Chemolumineszenz-, Photolumineszenz- oder Biolumineszenz-Farbstoff ist.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Marker ein Fluoreszenz-Farbstoff, vorzugsweise ein Fluorochrom, weiter bevorzugt ein Rhodamin, vor allem Tetramethylrhodaminisothiocyanat (= TRITC) ist.
 - 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rezeptor eine Eigenfluoreszenz aufweist.
 - 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Aminosäure Tryptophan die Eigenfluoreszenz liefert.
- 17. Verfahren nach einem der vorhergehenden Ansprüche, da25 durch gekennzeichnet, dass die Bindung zwischen Rezeptor
 und Marker eine Fluoreszenzhalbwertszeit im Bereich von
 Nanosekunden (= ns) aufweist.
- 18. Verfahren nach einem der vorhergehenden Ansprüche, da30 durch gekennzeichnet, dass der Rezeptor-Marker-Komplex
 einen "fluorescence resonance energy transfer" (= FRET)
 aufweist.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass
 35 die Fluoreszenz des FRET durch die Interaktion des Liganden mit dem Rezeptor verändert wird.

20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass der Rezeptor den Donor und den Akzeptor des FRET aufweist.

15

- 5 21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass die Fluoreszenz beim Donor entsteht oder die Fluoreszenz beim Akzeptor ausgelöscht wird.
- Verfahren nach einem der Ansprüche 18 bis 21, dadurch
 gekennzeichnet, dass der Ligand als Donor des FRET wirkt.
- 23. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass der Ligand den Donor und den Akzeptor des FRET direkt in Kontakt bringt.
 - 24. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass fluoreszenzmarkierte Liganden verwendet werden.
 - 25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Marker ein Mikropartikel ist.
- 25 26. Biosensor, insbesondere Proteinsensor, herstellbar nach einem Verfahren gemäß den Ansprüchen 1 bis 25.

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP 03/06948

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01N33/543 G01N33/566

C12Q1/68

G01N33/551 G01N33/53

G01N33/542

G01N33/58

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $\ 7 \ \ GO1N \ \ C12Q$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, MEDLINE, WPI Data, PAJ, BIOSIS, EMBASE

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	PETER C ET AL: "OPTICAL DNA-SENSOR CHIP FOR REAL-TIME DETECTION OF HYBRIDIZATION EVENTS" FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, SPRINGER, BERLIN, DE, vol. 371, no. 2, September 2001 (2001-09), pages 120-127, XP009016890 ISSN: 0937-0633 abstract page 121, left-hand column, paragraph 2 page 122, right-hand column, paragraph 3 page 121; table 1	1-26
X	US 6 197 503 B1 (VO-DINH TUAN ET AL) 6 March 2001 (2001-03-06) column 7, paragraph 2; example 15/	1-26

X Further documents are listed in the continuation of box C.	Patent family members are fisted in annex.
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filing date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filing date but later than the priority date claimed	 '1' tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 12 December 2003	Date of mailing of the International search report 29/12/2003
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rāswijk 1el. (+31-70) 340-2040, Tx, 31 651 epo nt, Fax: (+31-70) 340-3016	Authorized officer Zellner, E

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/06948

		PCT/EP 03/06948				
C.(Continu	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
X	WO 00 68692 A (DANIELS R HUGH ;WONG EDITH Y (US); BRUCHEZ MARCEL P (US); EMPEDOCL) 16 November 2000 (2000-11-16) figure 1C	1-26				
ī		1-26				

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/EP 03/06948

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 6197503 B1	06-03-2001	AT	234367 T	15-03-2003
		AU	1609399 A	15-06-1999
		CA	2311466 A1	03-06-1999
	•	DE	69812158 D1	17-04-2003
		EP	1236807 A2	04-09-2002
		EP	1034305 A1	13-09-2000
		WO	9927140 A1	03-06-1999
		บร	2003059820 A1	27-03-2003
		US	6448064 B1	10-09-2002
WO 0068692 A	16-11-2000	AU	4701200 A	21-11-2000
		CA	2373146 A1	16-11-2000
		ΕP	1179185 A1	13-02-2002
		JP	2002544488 T	24-12-2002
		WO	0068692 A1	16-11-2000
		US	6274323 B1	14-08-2001
		US	2001055764 A1	27-12-2001
		US	2001034034 A1	25-10-2001

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzelchen PCT/EP 03/06948

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 G01N33/543 G01N33/566

G01N33/551 GO1N33/53

G01N33/542

G01N33/58

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

C12Q1/68

Recherchierter Mindestprüfstoft (Klassifikationssystem und Klassifikationssymbole) IPK 7 GO1N C12Q

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Flecherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, MEDLINE, WPI Data, PAJ, BIOSIS, EMBASE

Kategorie*	Bezeichnung der Verölfentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X .	PETER C ET AL: "OPTICAL DNA-SENSOR CHIP FOR REAL-TIME DETECTION OF HYBRIDIZATION EVENTS" FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, SPRINGER, BERLIN, DE, Bd. 371, Nr. 2, September 2001 (2001-09), Seiten 120-127, XP009016890 ISSN: 0937-0633 Zusammenfassung Seite 121, linke Spalte, Absatz 2 Seite 122, rechte Spalte, Absatz 3 Seite 121; Tabelle 1	1-26
X	US 6 197 503 B1 (VO-DINH TUAN ET AL) 6. März 2001 (2001-03-06) Spalte 7, Absatz 2; Beispiel 15	1-26

(Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröllentlicht worden ist
- Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie
- 'O' Veröffenlichung, die sich auf eine m\u00fcndiche Offenbarung, eine Benutzung, eine Aussicllung oder andere Ma\u00dfnahmen bezieht
 'P' Ver\u00f6ffenlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Priorit\u00e4tsdatum ver\u00f6fentlicht worden ist
- Spätere Veröffentlichtung, die nach dem internationalen Anmeldedaturn oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliogenden Theorie angegeben ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Ertindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet worden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *& Veröftentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

12. Dezember 2003

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Palentamt, P.B. 5818 Palentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter Zellner, E

29/12/2003

Formblatt PCT/ISA'210 (Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen
PCT/EP 03/06948

IN	TERNATIONALER RECHERCILENDES	PCT/EP (3/06948	_
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	ton Loile	Betr: Anspruch Nr.	-
(Fortsetze (alegorie®	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	RETURN TORS		
X	WO 00 68692 A (DANIELS R HUGH ; WONG EDITH Y (US); BRUCHEZ MARCEL P (US); EMPEDOCL) 16 November 2000 (2000-11-16)		1-26	
Ţ	Abbildung 1C LEHR H-P ET AL: "REAL-TIME DETECTION OF NUCLEIC ACID INTERACTIONS BY TOTAL INTERNAL REFLECTION FLUORESCENCE" ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, Bd. 75, Nr. 10, 15. Mai 2003 (2003-05-15), Seiten 2414-2420, XP001170913 ISSN: 0003-2700		1-26	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentlamilie gehören

Internationales Aktenzeichen PCT/EP 03/06948

	echerchenbericht tes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US	6197503	B1	06-03-2001	AT	234367	T	15-03-2003
				ΑU	1609399	Α	15-06-1999
)				CA	2311466	A1	03~06~1999
				DE	69812158	D1	17-04-2003
)				EP	1236807	A2	04-09-2002
)				EΡ	1034305	A1	13-09-2000
]				WO	9927140	A1	03-06-1999
)				US	2003059820	A1	27-03-2003
				บร	6448064	B1	10-09-2002
WO	0068692	Α	16-11-2000	AU	4701200	Α	21-11-2000
)				CA	2373146		16-11-2000
}				EP	1179185		13-02-2002
				JP	2002544488	T	24-12-2002
]				WO	0068692	A1	16-11-2000
				US	6274323	B 1	14-08-2001
ļ				US	2001055764	A1	27-12-2001
l				US	2001034034	A1	25-10-2001