1 A Use the Gauss-Jordan technique to solve the system. $3 x_1 - 0.1 x_2 - 0.2 x_3 = 7.85$

$$3 x_1 - 0.1 x_2 - 0.2 x_3 = 7.85$$

$$0.1 x_1 + 7 x_2 - 0.3 x_3 = -19.3$$

$$0.3 x_1 - 0.2 x_2 + 10x_3 = 71.4$$

В

i. Drive the formula of false position method with proper figure.

ii. Differentiate between Gauss-Jordan and Gauss elimination method.

Dept. of Computer and Communication Engineering

Faculty of Computer Science and Engineering Patuakhali Science and Technology University

Dumki, Patuakhali-8602, Bangladesh

Final Examination of B. Sc. Engineering in CSE Level: 3 Semester: I Session: 2019-2020

Course Code CCE-311

Course Title

January-June-2022

Credit: 03 Time: 03 Hr

Numerical Methods Answer any 05 out of 06 Questions (Split answers are highly discouraged)

Marks: 70

A A total of 8,600 taka was invested in two accounts. One account earned 4 3/4 % annual 7 interest and the other earned 6 1/2 % annual interest. If the total interest for one year was

431.25 taka, how much was invested in each account? Use Gauss-elimination Method to calculate the investment in each account.

B The cost of 4 kg onion, 3 kg wheat and 2 kg rice is 60 taka. The cost of 2 kg onion, 4 kg 7 wheat and 6 kg rice is 90 taka. The cost of 6 kg onion 2 kg wheat, and 3 kg rice is 70 taka. Find the cost of each item per kg by Cramer's rule.

A Apply Cholesky decomposition to the symmetric matrix.

7

7.

 $[A] = \begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix}$

Use the Newton-Raphson method to estimate the root of $f(x) = e^{-x}$, employing an initial guess of $x_0 = 0$. Iterate until ε_t less than 10^{-8} %.

A Implement the point-slope strategy to numerically integrate $dy/dx = -2X^3 + 12X^2 - 20X +$ 8.5 from X=0 to X=3.0 with a step size 0.5. The initial condition at X=0 is Y=1.

7

Use the secant method to estimate the root of $f(x) = e^{-x}$. Start with initial estimates of X_{-1}

=0 and X_0 =1.0. The true root is 0.56714329. Iterate until ε_t = 0.0048%.

7

A Use bisection method to solve the following problem up to approximate percent relative error $\varepsilon_0 \le 0.422$.

 $f(c) = \frac{667.38}{c} \left(1 - e^{-0.146843c} \right) - 40$

Demonstrate the concepts of convergence and divergence through an appropriate example using the iteration method.

7

5 Α

Derive the formula of false position method with proper figure. i.

Differentiate between Gauss-Jordan and Gauss elimination method.

Fit a second-order polynomial to the data of the following table. Also find out standard

error Sy/x

Xi	y _i
1	7.7
2	13.6
3	27.2

A Show a case where bisection is preferable to false position with a suitable example.

Given $dy/dx = \frac{1}{2}(x+y)$, y(0)=2, y(0.5)=2.636, y(1.0)=3.595, y(1.5)=4.968. Find y(2) by Milne's method.

	The state of the s
Answer any 02 out of 03 Questions	
Resolve the following system using the Cramer's Rule.	7.5
$0.14 X_1 - 0.1X_2 - 0.2X_3 = 7.85$	
$0.10X_1 + 7X_2 - 0.3X_3 = -19.3$	
$0.30X_1 - 0.2X_2 + 10X_3 = 71.4$	
2 Use the Gauss-Elimination technique to resolve the following system.	7.5
$3X_1-0.1X_2-0.2X_3=7.85$	
$0.10X_1 + 7X_2 - 0.3X_3 = -19.3$	
$X_1-0.2X_2+10X_3=71.4$	
3/ Apply the Factorization process to locate the root of the following system	7.5
$X_{1+}X_2-X_3=2$	
$2X_1 + 3X_2 + 5X_3 = -3$	
$3X_1+2X_2-3X_3=6$	

• Wellds method (Just equat

Dept. of Computer and Communication Engineering

Faculty of Computer Science and Engineering

Patuakhali Science and Technology University

Dumki, Patuakhali-8602, Bangladesh Final Examination of B. Sc. Engineering in CSE Level: 3 Semester: I Session: 2018-2019 Course Code Credit: 03 Course Title January-June 2021 CCE 311 Time: 03 Hr Numerical Methods Marks: 70 Answer any 05 out of 06 Questions (Split answers are highly discouraged) Resolve the following system using the Cramer Rule. $0.40X_{1}-0.1X_{2}-0.2X_{3}=7.85$ $0.10X_1+7X_2-0.3X_1=-19.3$ $0.30X_1-0.2X_1+10X_3=71.4$ Use the Gauss-Elimination technique to resolve the following system.

 $X_1 \cdot 0.2X_1 + 10X_3 = 71.4$ Apply the Choleski's process to locate the root of the following system $\begin{array}{c}
X_1 \cdot 0.2X_1 + 10X_3 = 71.4 \\
X_1 \cdot X_2 \cdot X_3 = 2 \\
2X_1 + 3X_2 + 5X_3 = -3
\end{array}$

 $0.3X_1-0.1X_2-0.2X_3 = 7.85$ $0.10X_1+7X_2-0.3X_3 = -19.3$

3X₁+2X₂-3X₃= 6

Now can we eliminate the error in the Trapezoidal rule by applying the Simpson's rule?

Integrate using Simpson's 3/8 rule.

f(x)=0.2+25x-200x³+675x³-900x⁴+400x³ from a=0 to b=0.8 Solve the following system using the Gauss-Jordan method. 0.7X₁-0.1X₂-0.2X₃=7.85 0.10X₁+7X₂-0.3X₃=-19.3

Show two scenarios. In the case of an iteration process, there is convergence and divergence.

Write down the algorithm of Bisection Method.

Fit a second-order polynomial to the data of the following table. Also find out standard error $S_{y/x}$

0 2.1 1 7.7 2 13.6

B) Derive equation for linear regression and find out as and a₁.

[A.] (i.) State Weddle's Rule.

Show that $x_r = x_u - f(x_u)(x_1 - x_u)/(f(x_1) - f(x_u))$ in case of false position method.

[B.] Given $dy/dx = \frac{1}{2} (x_x + y)$, y(0) = 2, y(0.5) = 2.636, y(1.0) = 3.595, y(1.5) = 4.968. Find y(2) by Milne's 7

6 (A.) Given dy/dx=1+xy and y(0)=1. Calculate y(0.1), y(0.2) using Picard's method.

Use the Euler's method to numerically integrate dy/dx = -2X² + 12 X² - 20X + 8.5 from X=0 to X=4.0 with a step size 0.5. The initial condition at X=0 is Y=1.

-2.498 -2.68 5.834

0.1868303

24.23 4.278

2.7.70.8 21.354

7

Dept. of Computer and Communication Engineering Faculty of Computer Science and Engineering

Patuakhali Science and Technology University

January-June 2020

Credit: 93

Dunki, Patuakhali-8602, Bangladesh Final Examination of B. Sc. Engineering in CSE Level: 3 Semester: 1 Session: 2017-2018

Course Title

Course Code

		CCE 311	Numerical Methods	January-June 2020	Time: 03 Hr Marks: 70	
	Α	nswer any 05 our	of 06 Questions (Split answe	ers are highly discouraged)		
1	[A.]	Resolve the follow	0.10X ₁	ulc. $1X_{7} - 0.2X_{3} = 7.85$ $7X_{2} - 0.3X_{3} = -19.3$ $0.2X_{2} + 10X_{3} = 71.4$		7
<u>.</u>	[B.]	Use the Gauss-Lli	numation technique to resolve the $0.3X_1$ - $0.1X_2$ $0.10X_3$ + $7X_2$ -	ne following system.		7
2	[A.]	Apply the Choles	ki's process to locate the root of X ₁ , X ₂ - X ₃ = 2X ₁ + 3X ₂ + 3X ₁ + 2X ₂ - 3	= 2 +5X ₁ =-3		7
	[B.]	ii. Integrate t $f(x)=0.2$	we eliminate the error in the Transing Simpson's 3/8 rule25x-200x ² +675x ³ -900x ⁻⁴ 400.	pezoidal rule by applying the	Simpson's rule?	7
3	[A.]	Solve the following	g system using the Gauss-Jorda 0.7X ₁ -0.1X ₂ 0.10X ₁ +7X ₂ - X ₁ -0.2X ₂ +10	-0.2X ₃ = 7.85 -0.3X ₃ = -19.3		7
	IB.I	divergence	scenarios in the case of an itera	tion process, which are converg	gence and	7.
	[4] n	How to fit a creen. Sys. from this table The system of t	data.	of the following table. Also fine Vi	d our staudard error	7
	[B.]		ession? Derive an equation for	linear regression. How to esti	mate the parar.	7
5	[E.]	ii. Show that Given dy/dx= ½ (method.	$x_i = x_{i-1}(x_{i-1})(x_{i-1}x_{i-1})/(f(x_{i-1})-f(x_{i-1}))$ if	cuse of false position method. (1.0) =3.595, $y(1.5)$ =4.968. Fi	nd y(2) by Milae's	7
6.	[A.] [B.]	Use the Euler's me	and y(0)=1. Calculate y(0.1). 3 thod to name: felilly integrate d	y/dx = -2X' + 12X' - 20X + 8	.54rom X=010	1

Faculty of Computer Science and Engineering Patuakhali Science and Technology University

Final Examination of B.Sc. Engineering in CSE Level: 3 Semester: I Session: 2015-16

Course Code CCE 311

Course Title Numerical Methods January-June 2018 Credit: 03 Time: 03 Hr Marks: 70

Answer any 05 out of 06 Questions (Split answers are highly discouraged)

Put appropriate figure/enample if necessary

1	٨	Determine the real raots of $f(x) = -0.4 \times 2 + 2.2 \times + 4.7$	2-4
		 Using the quadratic formula Using three iterations of the bisection method to determine the highest root. Employ initial guesses of lower x₁ = 5 and x₂ = 10. Compute the estimated error e, and true error e, after each iteration. 	21
ł	В	Explain accuracy and precision with example. Write down different types of found in numerical analysis with the formula to calculate them	
i	C	Derive the formula of false position method with proper figure.	3 .
2	×	How do you use Taylor series in the derivation of Newton-Raphson method? Explain the pitfells of Netwan-Raphson method with example.	3-3
2	B	$\frac{1}{2}$ = 1. Tender to locate the root of $f(x) = -0.9 \times ^2 2 \pm 1.7x \pm 2.5$	5
2	X.	State the differences between secant and false-position method,	3
.3	A	Use Mullar's method with guesses of $x0$, $x1$ and $x2 = 4.5$, 3.5 and 5.5 respectively, to determine a root of the equation	6
		$f(x) = x^3 - 13x - 12$ Note that the rocts of this equation are -3, -1, and 4	5
3	J	Apply Cholesky decomposition to the symmetric matrix $[A] = \begin{cases} 6 & 15 & 35 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{cases}$ $\begin{bmatrix} -0 & 11 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	
3		Write short notes on i. LU decomposition ii. Lower and Upper triangular matrix	1.5+1 5
4	A	Fit a second-order polynomial to the data of the following table. Also find out standard error	7
		5 ₉₄	7
4	لار	i. Use Simpson's 3/8 rate to integrate (x)=0.2+25x-200x'+675x'-900x'+600x' from a=0 to b=0.8 ii. Use it in conjunction with Simpson's 1'3 rate to integrate the same function for five segments Find out E. for both cases, free vid = 1. (40533	
5	13	Derive equation for linear regression and show collectin for a "Best" fit. Given $dy/dx = \frac{1}{2}(x-y)$, $y(0)=2xy(0.5)=2.636$, $y(1.0)=3.595$, $y(1.5)=4.968$. Find $y(2)$ by Milno's mathed	7
6		Here the point slope method to numerically integral, while $= (2X^4 + 12X^2 + 20X + 8.5) from X at to X = 4.0$ with a step size 0.5. The maint configuration at X = 0.5 Y = 1. Given the step, and $y(0) = 1$. Calculate $y(0) = 1$, $y(0) \ge 0$ using Productions of	

Patuakhali Science and Technology University 5" temester (L-3, S-1) Final Examination of B.Sc. in Engg. (CSE), Jan-June-2016 Session: 2013-14, Course Code: CCE-111, Course Title: Numerical Methods Marks-70, Time: I hours, Credit: 3.00 Figure in the right margin indicates full marks. Split suswering of any question is not recommended.] Answer any I of the following questions. 6 Determine the normal equations for polynomial of the nth degree b) Find the values of a, b and a to that Y = a + bx + cx is best fit to the data Fit a function of the form y = ax' to the following data 75 40 60 10 20 a) Derive the LU decomposition method for solving a system of a linear equations b) Solve the following system 5x-2y+x=4 7x+y-5z=8 3x + 7y + 4x = 0 By the unit lower triangular and upper triangular (LU) method. c) Write down the difference between Cause elimination method and Gauss-Jordan method 2) Haplein the term 'interpolation' b) Deduce Gauss's interpolation formula e. Using Guers's forward formula, first the value of f (32) given that f(25) 0.2707, f(35) 0.3027, f(35) 0.3386, f(40) 0.3701 x_i^* - Discuss the method of Bisaction is and an approximate most of an equation $f(x_i) = 0$ b) Find a real root of the equation x1-x-2 = 0 by using his color Method and False 4+4-8 position method. a) Describe the Taylor Series Method for the solution of ordinary differential equation. Gives $\frac{dy}{dt} = 1 + xy$ when y(0) = 2 and y(0,0) by Taylor Series Method and Rungs 444-8 Kura 2" onler method. Derive general integration formula to conjure $\int f(x)dx$ and Simpson's 10 rule for the minerical integration 311-7 . Compote the integral/ up to 6 decimal piece by using Terpezoidal relatend Superco 4 1/3

Patuakha!i Science and Technol Sth semester (L-3, S-I) Final Examination of B.Sc. Session: 2012-13, Course Code: CCE-311, C Marks-70, Time: 3 hours, [Figure in the right margin indicates full marks. Split answerin Answer any 5 of the following	ourse Title: Jumerical Methods Credit: 3.00 g of any question is not recommended 1
1. a) Define interpolation of a polynomial.	2
b) Deduce Newton's interpolation formula for a polynomial	
c) Values of x (in degrees) and $\sin x$ are given in the fol	
x (in degrees)	sin x
The second of 152 and 152 are	0.2588190
20	0.3420201
25	0.4226183
30	0.50
35 The state of th	0.5735764
40	0.6427876
Determine the values of sin 180 and sin 380	
 2. a) Determine the normal equations if the cubic polynomial fitted to the data points (x_i, y_i), i = 1,2,, m b) Use the method of least squares to fit the straight line 	
	y
0	2
뭐 서, 말이 모인 그렇게 말했다면 하게 되나? 하는 말	
2	8
3	u
Find the values of a and b.	
c) The curve $y = ce^{bx}$ is fitted to the data	
- "이 하는 것이 되는 이 아니라 보는 것이 되었다"는 것이 되었다. 그런	ÿ
	1.5
2	4.6
1 - Jan 1 - 1 - 1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 -	13.9
	40.1
	125.1
6	299,5
Find the best values of c and b.	

- 3. 2
- Derive the Gauss climination method for a system of n linear equations and hence write the difference between Gauss method and Gauss-Jordan method.
- Solve the following system

$$5x - 2y + z = 4$$

$$7x + y - 5z = 8$$

$$3x + 7y + 4z = 10$$

- by (i) Gauss elimination method and (ii) Gauss-Jordan method.
- 4. Derive the Bisection Method and False position method.

- 8
- b) Find a real root of the equation $(x^1 + x^2 1) = 0$ by using False position Method.
- .

6

5. a) Derive the Trapezoidal rule and simpson's 1/3 rule.

- 7. 7
- Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Trapezoidal rule and Simpson's 1/3.
- 6. a) Describe the Runge Kutta 2nd order method for the solution of first order ordinary differential equation.
 - Solve $\frac{dy}{dx} = x + y$, y(0) = 1 and find y(0.2) by Runge Kutta 4th order method.

o Maria Patuakhali Science and Technology University Sc. Engg. (CSE) Level: 3 Semester: I Final Examination of Sersion 2011-12, Jan-Jone 2014 Course Code: CCE 311 Course Title: Numerical Methods Credit Hour; 03 Full Marks: 70 Duration 05 Hours [Figures in the right margin indicate full marks. Split answering of any question is highly discouraged. Write the full question number e.g. 1(B)(i) before the answer paragraph) Answer any 5 of the following grestions Use Gauss-Elimination technique to solve the following system $0.2x_1 - 0.7x_2 - 0.2x_1 = 7.85$ $0.10x_1 + 7x_2 - 0.3x_3 = -19.3$ $0.30x_1 - 0.2x_2 + x_3 = 71.4$ How can we remove the error of Trapezoidal rule by applying Simpson's rule? Sketch and state graphical depiction of singular and ill-conditioned systems. A Show a case where Bisection is preferable to False Position. State Weddle's Rule. Solve the following system using Cramer's rule $0.3x_1 - 0.1x_2 - 0.2x_3 = 7.85$ $0.7x_1 + 0.7x_2 - 0.3x_3 = -19.3$ $0.30x_1 - 0.2x_2 + 10x_3 = 71.4$ Apply Factorization process to find out the root of the following system $x_1 \cdot x_2 \cdot x_3 = 2$ $2x_1+3x_2+5x_3=-3$ $3x_1 + 2x_2 - 3x_3 = 6$ Write down the algorithm of Boleano's Method 3 / B Use Simpson's 3/8 rule to integrate $f(x)=0.2+25x-200x^2+675x^3-900x^4+400x^5$ from a=0 to b=0.8 Show the effect of reduced step size on Euler's method. Show two cases of Heration process. What is Lagrange's interpolation formula? In which case we use it? Secant method can be classified as a bracketing method" -- is it true or false? Explain your answer clearly. i. Develop equation for linear regression. Show that $x_i = x_a - f(x_a)(x_i - x_b)/(f(x_i) - f(x_b))$ in case of false position method. Use N-R method to estimate the root of I(x) =ex-x, employing an initial guess of xe=0 (True value=0.55714329) until ε₁(%)<10⁻². Use Gauss Jordan technique to solve the following system $3x_1 - x_2 - 0.2x_1 = 7.85$ $0.10x_1 + 7x_2 - 0.3x = -193$ 0.30x,-0.2x, 1xj=71.4

Dept. of Computer and Communication Engineering

Mid: I

Semester: 5th

Batch: 16th Marks 15 Session 2018-2019

Course Code: CCE 312

Time: 1 hour Course Title: Numerical Method Sessional

In a market survey three commodities A, B and C were considered. In finding out the index number some fixed weights were assigned to the three varieties in each of the commodities. The table below provides the information regarding the consumption of three commodities according to the three varieties and also the total weight received by the commodity

•		~,	•	
Commission	13 113	With the	1000	TEGENGEN I
Capar	T		IL MILL	1 2 3 3 3 3
Α.	- 1	7	1003 000	11
В	2	4	5	21,
С	•			and the same

Find the weights assigned to the three varieties by using Cramer's Rule with python code.

2. Use Gauss-Jordan elimination to solve the system:

x+3y+2z=2

2x+7y+7z=-1

ofve the system of linear equations using the Gauss-Jordan elimination method.

2x+4y-6z=38

X+2y+3z=7

3x-4y+4z=-19

Three masses are suspended vertically by a series of identical springs where mass 1 is at the top and mass 3 is at the bottom.

If $g = 9.81 \text{ m/s}^2$, m1 = 2 kg, m2 = 3 kg, m3 = 2.5 kg, and the k's = 10 kg/s, solve for the displacements x.

5. Solve the following systems of linear equations by 2x - 2y + 3z = 2, x + 2y - z = 3, 3x - y + 2z = 1

Gaussian

elimination method

in a partial model is not detected by your algorithm.