Package 'HypergeoMat'

July 28, 2024		
Type Package		
Title Hypergeometric Function of a Matrix Argument		
Version 4.0.3		
Author Stéphane Laurent		
Maintainer Stéphane Laurent <laurent_step@outlook.fr></laurent_step@outlook.fr>		
Description Evaluates the hypergeometric functions of a matrix argument, which appear in random matrix theory. This is an implementation of Koev & Edelman's algorithm (2006) <doi:10.1090 s0025-5718-06-01824-2="">.</doi:10.1090>		
License GPL-3		
<pre>URL https://github.com/stla/HypergeoMat</pre>		
<pre>BugReports https://github.com/stla/HypergeoMat/issues</pre>		
Imports EigenR, gsl, JuliaConnectoR, Rcpp (>= 1.0.2)		
Suggests Bessel, jack, knitr, rmarkdown, testthat		
LinkingTo Rcpp, RcppEigen		
VignetteBuilder knitr		
Encoding UTF-8		
RoxygenNote 7.2.3		
SystemRequirements C++17		
NeedsCompilation yes		
Repository CRAN		
Date/Publication 2024-07-28 05:30:01 UTC		
Contents		
BesselA		
hypergeomPFQ		
hypergeomPFQ_julia		
IncBeta		
mvbeta		
mvgamma		

BesselA

Index 9

BesselA

Type one Bessel function of Herz

Description

Evaluates the type one Bessel function of Herz.

Usage

```
BesselA(m, x, nu)
```

Arguments

m truncation weight of the summation, a positive integer

x either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix

nu the order parameter, real or complex number with Re(nu)>-1

Value

A real or complex number.

Note

This function is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman and Hall, 1999.

```
# for a scalar x, the relation with the Bessel J-function:
t <- 2
nu <- 3
besselJ(t, nu)
BesselA(m=15, t^2/4, nu) * (t/2)^nu
# it also holds for a complex variable:
if(require("Bessel")) {
   t <- 1 + 2i
   Bessel::BesselJ(t, nu)
   BesselA(m=15, t^2/4, nu) * (t/2)^nu
}</pre>
```

hypergeomPFQ 3

hypergeomPFQ	Hypergeometric function of a matrix argument	

Description

Evaluates a truncated hypergeometric function of a matrix argument.

Usage

```
hypergeomPFQ(m, a, b, x, alpha = 2)
```

Arguments

m	truncation weight of the summation, a positive integer
a	the "upper" parameters, a numeric or complex vector, possibly empty (or NULL)
b	the "lower" parameters, a numeric or complex vector, possibly empty (or NULL)
x	either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix
alpha	the alpha parameter, a positive number

Details

This is an implementation of Koev & Edelman's algorithm (see the reference). This algorithm is split into two parts: the case of a scalar matrix (multiple of an identity matrix) and the general case. The case of a scalar matrix is much faster (try e.g. x = c(1,1,1) vs x = c(1,1,0.999)).

Value

A real or a complex number.

Note

The hypergeometric function of a matrix argument is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

Plamen Koev and Alan Edelman. *The Efficient Evaluation of the Hypergeometric Function of a Matrix Argument*. Mathematics of Computation, 75, 833-846, 2006.

Examples

```
# a scalar x example, the Gauss hypergeometric function
hypergeomPFQ(m = 10, a = c(1,2), b = c(3), x = 0.2)
gsl::hyperg_2F1(1, 2, 3, 0.2)
# 0F0 is the exponential of the trace
X < - toeplitz(c(3,2,1))/10
hypergeomPFQ(m = 10, a = NULL, b = NULL, x = X)
exp(sum(diag(X)))
# 1F0 is det(I-X)^{-a}
X < - toeplitz(c(3,2,1))/100
hypergeomPFQ(m = 10, a = 3, b = NULL, x = X)
det(diag(3)-X)^{(-3)}
# Herz's relation for 1F1
hypergeomPFQ(m = 10, a = 2, b = 3, x = X)
\exp(\text{sum}(\text{diag}(X))) * hypergeomPFQ(m = 10, a = 3-2, b = 3, x = -X)
# Herz's relation for 2F1
hypergeomPFQ(10, a = c(1,2), b = 3, x = X)
det(diag(3)-X)^{(-2)} *
  hypergeomPFQ(10, a = c(3-1,2), b = 3, -X \%\% solve(diag(3)-X))
```

hypergeomPFQ_julia

Evaluation with Julia

Description

Evaluate the hypergeometric function of a matrix argument with Julia. This is highly faster.

Usage

```
hypergeomPFQ_julia()
```

Value

A function with the same arguments as hypergeomPFQ.

Note

See JuliaConnectoR-package for information about setting up Julia. If you want to directly use Julia, you can use my package.

```
library(HypergeoMat)
if(JuliaConnectoR::juliaSetupOk()){
  jhpq <- hypergeomPFQ_julia()
  jhpq(30, c(1+1i, 2, 3), c(4, 5), c(0.1, 0.2, 0.3+0.3i))
  JuliaConnectoR::stopJulia()
}</pre>
```

IncBeta 5

Incomplete Beta function of a matrix argument

Description

Evaluates the incomplete Beta function of a matrix argument.

Usage

```
IncBeta(m, a, b, x)
```

Arguments

m	truncation weight of the summation, a positive integer
a, b	real or complex parameters with $Re(a)>(p-1)/2$ and $Re(b)>(p-1)/2$, where p is the dimension (the order of the matrix)
x	either a real positive symmetric matrix or a complex positive Hermitian matrix "smaller" than the identity matrix (i.e. I-x is positive), or a numeric or complex vector, the eigenvalues of the matrix

Value

A real or a complex number.

Note

The eigenvalues of a real symmetric matrix or a complex Hermitian matrix are always real numbers, and moreover they are positive under the constraints on x. However we allow to input a numeric or complex vector x because the definition of the function makes sense for such a x.

References

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman and Hall, 1999.

```
# for a scalar x, this is the incomplete Beta function: a <- 2; b <- 3  
x <- 0.75  
IncBeta(m = 15, a, b, x)  
gsl::beta_inc(a, b, x)  
pbeta(x, a, b)
```

6 IncGamma

IncGamma

Incomplete Gamma function of a matrix argument

Description

Evaluates the incomplete Gamma function of a matrix argument.

Usage

```
IncGamma(m, a, x)
```

Arguments

m	truncation weight of the summation, a positive integer
a	real or complex parameter with $Re(a)>(p-1)/2$, where p is the dimension (the order of the matrix)
X	either a real or complex square matrix, or a numeric or complex vector, the eigenvalues of the matrix

Value

A real or complex number.

Note

This function is usually defined for a symmetric real matrix or a Hermitian complex matrix.

References

A. K. Gupta and D. K. Nagar. Matrix variate distributions. Chapman and Hall, 1999.

```
# for a scalar x, this is the incomplete Gamma function:
a <- 2
x <- 1.5
IncGamma(m = 15, a, x)
gsl::gamma_inc_P(a, x)
pgamma(x, shape = a, rate = 1)</pre>
```

mvbeta 7

mvbeta

Multivariate Beta function (of complex variable)

Description

The multivariate Beta function (mvbeta) and its logarithm (lmvbeta).

Usage

```
lmvbeta(a, b, p)
mvbeta(a, b, p)
```

Arguments

```
a, b real or complex numbers with Re(a)>0 and Re(b)>0 p a positive integer, the dimension
```

Value

A real or a complex number.

Examples

```
a <- 5; b <- 4; p <- 3
mvbeta(a, b, p)
mvgamma(a, p) * mvgamma(b, p) / mvgamma(a+b, p)</pre>
```

mvgamma

Multivariate Gamma function (of complex variable)

Description

The multivariate Gamma function (mvgamma) and its logarithm (lmvgamma).

Usage

```
lmvgamma(x, p)
mvgamma(x, p)
```

Arguments

a real or a complex number; Re(x)>0 for lmvgamma and x must not be a negative integer for mvgamma
 a positive integer, the dimension

8 mvgamma

Value

A real or a complex number.

```
x <- 5
mvgamma(x, p = 2)
sqrt(pi)*gamma(x)*gamma(x-1/2)</pre>
```

Index

```
BesselA, 2
hypergeomPFQ, 3, 4
hypergeomPFQ_julia, 4
IncBeta, 5
IncGamma, 6
Imvbeta (mvbeta), 7
lmvgamma (mvgamma), 7
mvbeta, 7
mvgamma, 7
```