Notation/Terminology:

"Random Sample"

$$X_1, X_2, \ldots, X_n$$

- variables before they are sampled, observed, and "locked in"
- they are assumed to be independent and identically distributed (iid)

random iid sample

More Notation:

Suppose that $X_1, X_2, ..., X_n$ is a random sample from the gamma distribution with parameters α and β .

We write

$$X_1, X_2, ..., X_n \stackrel{iid}{\sim} \Gamma(\alpha, \beta)$$

More Notation:

0 will denote a generic parameter

For example,
$$\theta = \mu$$
 $\theta = p$ $\theta = \lambda$ $\theta = (\alpha, \beta)$

• Estimator: $\hat{\theta}$ = a random variable

Example:
$$\hat{\theta} = X$$

• Estimate: $\hat{\theta}$ = an observation/number

Example:
$$\hat{\theta} = \overline{x} = 42.8$$

- We want our estimator of μ to be correct "on average.
- X is a random variable with its own distribution and its own mean or expected value.

We would like $E[\overline{X}] = \mu$.

We would like $E[\overline{X}] = \mu$.

If this is true, we say that X is an unbiased estimator of μ .

In general, $\widehat{\theta}$ is an unbiased estimator of $\widehat{\theta}$ if:

Let $X_1, X_2, ..., X_n$ be a random sample from any distribution with mean μ .

That is, $E[X_i] = \mu$ for i = 1, 2, ..., n.

Then
$$E\left[\overline{X}\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[X_{i}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mu = \frac{1}{n}\left(E\left[X_{i}\right] + bY\right] + \mu = \mu$$

We have shown that, no matter what distribution we are working with, if the mean is μ , \overline{X} is an unbiased estimator for μ .

Example:

Suppose that

$$X_1, X_2, ..., X_n \stackrel{iid}{\sim} exp(rate = \lambda)$$

Let
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 be the sample mean.

We know, for the exponential distribution, that $E[X_i] = 1/\lambda$.

Then
$$E[\overline{X}] = 1/\lambda$$
.

Let $X_1, X_2, ..., X_n$ be a random sample from any distribution with mean μ and variance σ^2 .

- We already know that \overline{X} is an unbiased estimator for μ .
- What can we say about the variance of \overline{X} ?

$$Var\left[\overline{X}\right] = Var \left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]$$

$$= \frac{1}{n^2} \text{Var} \left[\sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var} \left[X_i \right]$$
by independence

$$Var[\overline{X}] = \frac{1}{n^2} \sum_{i=1}^{n} Var[X_i]$$

$$=\frac{1}{n^2}\sum_{i=1}^n \sigma^2$$

$$= \frac{1}{n^2} n \sigma^2$$