

MANUEL DILEO

Contents

- Introduction
- Classic ML lifecycle
- Shallow encoders
- Deep learning on graph
 - Data handling of graphs, preprocessing, utilities in PyG
 - Node classification with Graph Neural Networks

One book to rule them all

https://www.cs.mcgill.ca/~wlh/grl_book/

Introduction

Many Data are Networks

Graphs are an extremely powerful and general representation of data

Images and Text as graphs

Image Pixels

Classical ML task in networks

- Node classification
- Link prediction
- Community detection
- Graph classification

How we can reason within networks?

Classical ML task in networks

NODE CLASSIFICATION

Predict a label for a given node (e.g. the behaviour of an user in a social network)

Supervised or semi-supervised task

Network-approach as a way of improving prediction performance on classification tasks:

- Predict the topic of scientific papers
- Predict the genre of songs

Classical ML task in networks LINK PREDICTION

Predict wheter two nodes are linked (e.g. follow relations in a social network)

Binary classification task with unbalanced classes

Classical ML task in networks community detection

Identify densely linked clusters of nodes

Unsupervised or self-supervised task

Classical ML task in networks GRAPH CLASSIFICATION

Predict a label for a given graph in a dataset of graphs

- Disease associated to a certain brain network structure
- Role of a protein based on its molecular structure
- **•** [...]

ML on graph methods

Classic ML lifecycle

FEATURE ENGINEERING

Feature engineering on the structural information of graph to obtain vectorial representation.

- Centrality indexes (PageRank, in/out degree, ...)
- Similarity measures (neighbor jaccard's coefficient)

Long and exhausting process.

Feature learning on graphs AUTOMATICALLY LEARN THE FEATURES

Challenges in graph computation

- Lack of consistent structure
- Node-order equivariance
 - Graphs often have no inherent ordering present amongst the nodes.
- Scalability
 - Graphs can be really large!

The Encoder-Decoder model

- Similarity function
 - measures the similarity between nodes
- Encoder function
 - generates the node embedding
- Decoder function
 - reconstructs pairwise similarity
- Loss function
 - checks the quality of the reconstruction

Shallow encoders

Encoder is just a lookup on an embedding matrix

Different approaches:

- Adjacency-based similarity
- Multi-hop similarity
- Random walk approacches
 - Node2Vec

http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part1-embeddings.pdf

Shallow encoders NODE2VEC

Graph Neural Networks

FROM «SHALLOW» TO «DEEP»

- Deep neural networks that can work directly on graphstructured data.
- They can incorporate node features.
 - Shallow» encoders can work only on the structure of the graph
- The encoder is a complex function that depends on graph structure.
 - You can use encoder on unseen nodes

Understanding convolution on graphs

Message-passing layers how convolutional GNN works

Consider a graph G = (V, E); L is the Laplacian matrix L = D - AEach node in G has a number as node feature, x is the vector of nodes feature.

What is the effect of multiplying x by the Laplacian?

Fixing a node order (indicated by the alphabets) and collecting all node features into a single vector x.

Message-passing layers 1-HOP CONVOLUTION

- Modern GNNs use 1-hop localized convolution as hidden layers.
- These convolutions can be thought of as 'messagepassing' between adjacent nodes
- Iteratively repeat the 1-hop localized convolutions K times to include all nodes upto K hops away.

$$egin{aligned} (Lx)_v &= L_v x \ &= \sum_{u \in G} L_{vu} x_u \ &= \sum_{u \in G} (D_{vu} - A_{vu}) x_u \ &= D_v \ x_v - \sum_{u \in \mathcal{N}(v)} x_u \end{aligned}$$

Message-passing layers

AGGREGATION AND COMBINATION

- We can think of 1-hop localized convolution as arising of two steps:
 - Aggregating over immediate neighbour features x_u
 - Combining with the node's own feature x_v

What if we consider different kinds of 'aggregation' and 'combination' steps?

$$egin{aligned} (Lx)_v &= L_v x \ &= \sum_{u \in G} L_{vu} x_u \ &= \sum_{u \in G} (D_{vu} - A_{vu}) x_u \ &= D_v \ x_v - \sum_{u \in \mathcal{N}(v)} x_u \end{aligned}$$

Popular message-passing layers

https://distill.pub/2021/understanding-gnns/#modern-gnns

GNN architectures

Node feature matrix X

Adjacency matrix edge_index

Jure Leskovec, Stanford University

Let's play

https://distill.pub/2021/understanding-gnns/#interactive

Stacking GNN layers

- High depth ≠ high expressiveness
- The depth influences the «receptive field»
- Oversmoothing problem: all the node embeddings converge to the same value

- Receptive field overlap for two nodes
 - The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

Complexity and expressiveness rely on the design of the single layers

GNN References

- https://distill.pub/2021/understanding-gnns/
- http://web.stanford.edu/class/cs224w/
- https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
- https://twitter.com/omarsar0/status/1490276912601653248?s=20&t=qtq0ygelleFGUwRatw5Bg
- https://arxiv.org/pdf/1901.00596.pdf
- https://towardsdatascience.com/graph-ml-in-2022-where-are-we-now-f7f8242599e0
- https://www.deeplearningbook.org/

Understanding convolution on graphs

Problem

HOW TO EXTEND CONVOLUTION ON GRAPH?

Convolutions in CNNs are inherently localized. Neighbours participating in the convolution at the center pixel are highlighted in light blue.

GNNs can perform localized convolutions mimicking CNNs. Hover over a node to see its immediate neighbourhood highlighted on the left. The structure of this neighbourhood changes from node to node.

Polynomial filters on graphs

https://distill.pub/2021/understanding-gnns/#polynomial-filters

Embedding computation

If we have K different polynomial filter layers, the k-th of which has its own learnable weights w(k), we would perform the following computation:

Start with the original features.

$$h^{(0)}=x$$

Then iterate, for $k = 1, 2, \ldots$ upto K:

$$p^{(k)}=p_{w^{(k)}}(L)$$

$$g^{(k)} = p^{(k)} \times \frac{h^{(k-1)}}{h}$$

$$oldsymbol{h^{(k)}} = \sigma\left(g^{(k)}
ight)$$

Color Codes:

Computed node embeddings.

Learnable parameters.

Compute the matrix $p^{(k)}$ as the polynomial defined by the filter weights $w^{(k)}$ evaluated at L.

Multiply $p^{(k)}$ with $h^{(k-1)}$: a standard matrix-vector multiply operation.

Apply a non-linearity σ to $g^{(k)}$ to get $h^{(k)}$.

Parameter-sharing: reuse the same filter weights across different nodes

Complex GNN architectures

IDEAS

- Add non GCN layers
 - Dense layers as pre/post processing layers
- More complex GNN layers
 - Incorporate modern DL modules (e.g. Dropout, BatchNorm)
 - 3-layer MLP as aggregation function
- Skip connection: mixture of embeddings to aggregate

Idea of skip connections:

Before adding shortcuts:

 $F(\mathbf{x})$

After adding shortcuts:

F(x) + x

Jure Leskover, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

50