Нормальные алгоритмы.

Числовая функция $f(x_1, x_2, ..., x_n)$ называется вычислимой по Маркову, если существует нормальный алгоритм, который каждое изображение набора аргументов преобразует в значение функции $f(x_1, x_2, ..., x_n)$ на этом наборе.

Другими словами, числовая функция $f(x_1, x_2, ..., x_n)$ называется вычислимой по Маркову, если существует нормальный алгоритм, применимый ко всем словам вида $1^{x_1+1} * 1^{x_2+1} * ... * 1^{x_n+1}$, преобразующий их в слово $1^{f(x_1, x_2,, x_n)+1}$.

Примеры.

1) Доказать вычислимость по Маркову функции f(x, y) = 3x + y.

Вначале мы имеем запись изображения набора аргументов $1^{x+1} * 1^{y+1}$.

С помощью подстановки $1* \rightarrow *111$ утроим количество единиц в изображении первого аргумента. Применив эту формулу подстановки x+1 раз, получим слово $*1^{3x+y+4}$. Сотрём звёздочку и лишние 3 единицы с помощью заключительной формулы подстановки

*111
$$\rightarrow$$
. Запишем нормальную схему подстановок: $\begin{cases} 1* \rightarrow *111 \\ *111 \rightarrow . \end{cases}$

Проверим работу алгоритма над изображением набора переменных (0,1), т.е. над словом 1*11:

Так, осталось две единицы, которые являются изображением числа 1, что и ожидалось, т.к. $f(0,1)=3\cdot 0+1=1$.

2) Какую функцию f(x, y, z) вычисляет нормальный алгоритм, за-

данный схемой подстановок
$$\begin{cases} 1*1 \to 1* \\ 1** \to \alpha \\ \alpha 1 \to 11 \alpha \end{cases}$$
?
$$\alpha \to 0$$

Вначале мы имеем запись изображения набора аргументов $1^{x+1}*1^{y+1}*1^{z+1}$

Применяя, пока возможно, первую формулу подстановки $1*1 \rightarrow 1*$, сотрём изображение второго аргумента, получим слово $1^{x+1}**1^{z+1}$

Далее применится формула подстановки $1^{**} \rightarrow \alpha$, получим слово $1^x \alpha 1^{z+1}$.

Далее будет применяться формула подстановки $\alpha 1 \to 11\alpha$, в результате чего перейдём к слову $1^{x+2z+2}\alpha$.

И, наконец, применяя заключительную формулу подстановки $\alpha \rightarrow \infty$ получаем слово 1^{x+2z+2} , которое является изображением числа x+2z+1. Значит, данный нормальный алгоритм вычисляет функцию f(x,y,z)=x+2z+1.

Проверим работу нормального алгоритма над изображением набора аргументов (0;2;1).

 $1*111*11,1*11*11,1*1*11,1**11,\alpha11,11\alpha1,1111\alpha,11111.$

Получено изображение числа 3. И действительно, f(0,2,1)=3. Проверка закончена.

Вопросы для самопроверки.

- 1) Является ли словом в алфавите $\{1,a,b\}$ запись $\begin{pmatrix} bbb1a \\ b \end{pmatrix}$
- 2) Единственным ли образом в общем случае слово P входит в слово Q ?

- 3) Применим ли нормальный алгоритм, заданный в алфавите $\{a,b\}$, схемой подстановок $\{a \to a \text{ к слову } abba$?
- 4) Что является результатом работы нормального алгоритма, задаваемого в алфавите $\{a,b\}$ схемой подстановок $\begin{cases} a \to b \\ b \to d \end{cases}$ над произвольным словом в алфавите $\{a,b\}$?
- 5) Является ли вычислимой по Маркову функция f(x, y, z) = 3?
- 6) Какую функцию $f(x_1, x_2, x_3, x_4)$ вычисляет нормальный алгоритм, заданный схемой подстановок $\{*1 \rightarrow ?$

Ответы:

Рекурсивные функции.

Как и в случае машин Тьюринга, а также функций, вычислимых по Маркову, будем рассматривать *числовые* функции, то есть функции

вида $f:N_0^n \to N_0$, функции многих переменных, где каждая переменная может принимать значения во множестве целых неотрицательных чисел, и своей областью прибытия функция также имеет множество неотрицательных целых чисел.

В дальнейшем будем рассматривать числовые функции, не обязательно всюду определённые. Рассмотрим несколько операций над ними.

Операция суперпозиции.

Пусть заданы n — местная частичная функция g и частичные функции $f_1, f_2, ..., f_n$. Будем считать, что функции $f_1, f_2, ..., f_n$ зависят от одних и тех же аргументов $x_1, x_2, ..., x_m$ (этого можно достигнуть, добавив при необходимости к аргументам некоторых функций фиктивные аргументы).

Суперпозицией функций g и $f_1, f_2, ..., f_n$ назовём частичную функцию $h(x_1, x_2, ..., x_m) = g(f_1(x_1, x_2, ..., x_m), ..., f_n(x_1, x_2, ..., x_m))$, значения которой на наборе $(a_1, a_2, ..., a_m)$ задаются указанной формулой, если определены значения $z_1 = f_1(a_1, a_2, ..., a_m), ..., z_n = f_n(a_1, a_2, ..., a_m)$ и значение $g(z_1, z_2, ..., z_n)$. В противном случае величина $h(a_1, a_2, ..., a_m)$ считается не-

Пример. Пусть, например, $f_1(x, y) = x - y$, $f_2(x, z) = x^2 + z$, $g(x, y) = \frac{x}{y}$.

Рассмотрим суперпозицию $h(x, y, z) = g(f_1(x, y), f_2(x, z)) = \frac{x - y}{x^2 + z}$.

Вычисление некоторых значений можно проиллюстрировать таблицей:

х	У	Z	x-y	x^2+z	$\frac{x-y}{x^2+z}$	
1	2	5	-	6	-	
4	1	0	3	16	-	
2	2	1	0	5	0	

определённой.

Операция примитивной рекурсии.

Пусть даны функции $g(x_1, x_2, ..., x_{n-1})$, $f(x_1, x_2, ..., x_n)$ и $h(x_1, x_2, ..., x_{n+1})$.

Будем говорить, что функция $f(x_1, x_2, ..., x_n)$ получена из функций $g(x_1, x_2, ..., x_{n-1})$ и $h(x_1, x_2, ..., x_{n+1})$ по *схеме примитивной рекурсии*, если выполнены следующие соотношения:

$$\begin{cases}
f(x_1, x_2, ..., x_{n-1}, 0) = g(x_1, x_2, ..., x_{n-1}); \\
f(x_1, x_2, ..., x_{n-1}, y+1) = h(x_1, x_2, ..., x_{n-1}, y, f(x_1, x_2, ..., x_n, y))
\end{cases} . (1)$$

Если n = 1, то соотношения примут вид:

$$\begin{cases}
f(0) = C; \\
f(y+1) = h(y, f(y))
\end{cases}$$
(2)

Примеры.

1) Пусть, например, C=1, $h(x_1, x_2) = (x_1 + 1) \cdot x_2$.

$$f(1)=h(0,f(0))=1\cdot 1=1;$$

Tогда f(0) = 1;

$$f(2)=h(1,f(1))=2\cdot 1;$$

$$f(3)=h(2,f(2))=3\cdot 2;$$

 $f(4) = h(3, f(3)) = 4 \cdot 3 \cdot 2$;

Нетрудно доказать, что $f(x_1) = x_1!$

2) Найти функцию $f(x_1, x_2)$, полученную из функций $g(x_1) = 0$ и $h(x_1, x_2, x_3) = x_2 + x_3$ по схеме примитивной рекурсии

Найдём несколько значений функции f:

$$f(x_1,0) = g(x_1) = 0;$$

$$f(x_1, 1) = h(x_1, 0, f(x_1, 0)) = h(x_1, 0, 0) = 0 + 0 = 0;$$

$$f(x_1, 2) = h(x_1, 1, f(x_1, 1)) = h(x_1, 1, 0) = 1 + 0 = 1;$$

 $f(x_1,3) = h(x_1,2, f(x_1,2)) = h(x_1,2,1) = 2+1.$

Возникает предположение, что $f(x_1, x_2) = 1 + 2 + ... + (x_2 - 1) = \frac{x_2 \cdot (x_2 - 1)}{2}$; (3)

Докажем формулу (3) методом математической индукции, проведя индукцию по x_2 :

1) Проверка при $x_2 = 0$.

$$f(x_1,0)=0=\frac{0\cdot (-1)}{2}$$
. Да, при $x_2=0$ формула (3) верна.

2) Допустим, что предложение (3) верно при $x_2 = n$, т.е. допустим, что верна формула $f(x_1, n) = \frac{n(n-1)}{2}$; (4)

2
3) Докажем, что предложение (3) верно при $x_2 = n+1$, т.е. докажем справедливость формулы $f(x_1, n+1) = \frac{(n+1)n}{2}$ (5)

Выразим $f(x_1, n+1)$ с помощью схемы примитивной рекурсии:

$$f(x_1, n+1) = h(x_1, n, f(x_1, n)) = h\left(x_1, n, \frac{n(n-1)}{2}\right) = n + \frac{n(n-1)}{2} = \frac{2n + n^2 - n}{2} = \frac{(n+1)n}{2}$$
MTAK. B. IIDE HIGHOWEHUM CHDARE HUMBOCTH doppwyllt. (4) HOVAZAHA dop

Итак, в предположении справедливости формулы (4) доказана формула (5). На основании метода математической индукции утверждаем, что

предложение (3) справедливо для всех $x_2 \in N_0$. Ответ: $f(x_1, x_2) = \frac{x_2 \cdot (x_2 - 1)}{2}$. *Исходными функциями* называются числовые функции следующих

видов: 1) $o(x) \equiv 0$ - *нулевая* функция;

- 2) s(x) = x + 1 функция *следования*;
- 3) $I_k^n(x_1, x_2, ..., x_n) = x_k$ функция выбора аргумента.

Числовая функция называется *примитивно-рекурсивной*, если она может быть получена из исходных за конечное число шагов с помощью операций суперпозиции и примитивной рекурсии.

Докажем примитивную рекурсивность некоторых функций.

1) Константа $f(x_1) \equiv C$.

Константа может быть получена из нулевой и функции следования только лишь с помощью суперпозиций: $\underline{s(s(...s(o(x_1)...))} \equiv C$.

2) Сложение
$$f_+(x_1,x_2) = x_1 + x_2$$
.

$$f_{+}(x_{1},0) = x_{1} + 0 = x_{1} = I_{1}^{1}(x_{1})$$
, r.e. $g(x_{1}) = I_{1}^{1}(x_{1})$.
 $f_{+}(x_{1},y+1) = x_{1} + y + 1 = f_{+}(x_{1},y) + 1$.

 $f_{x}(x_{1},0) = x_{1} \cdot 0 = 0 = o(x_{1})$ T.e. $g(x_{1}) = o(x_{1})$

В качестве $h(x_1,x_2,x_3)$ можно взять $h(x_1,x_2,x_3)=s(I_1^3(x_1,x_2,x_3))$.

Тогда

$$h(x_1, y, f_+(x_1, y)) = s(I_3^3(x_1, y, f_+(x_1, y))) = f_+(x_1, y) + 1 = f_+(x_1$$

3) Умножение $f_{\times}(x_1,x_2) = x_1 \cdot x_2$.

$$f_{\times}(x_1, y+1) = x_1(y+1) = x_1y + x_1 = f_{\times}(x_1, y) + x_1.$$
Decreasing $h(x_1, x_2, y_1) = x_1y + x_1 = f_{\times}(x_1, y_2) + x_1$

В качестве $h(x_1,x_2,x_3)$ можно взять $h(x_1,x_2,x_3)=I_3^3(x_1,x_2,x_3)+I_1^3(x_1,x_2,x_3)$.

Тогда
$$h(x_1, y, f_{\times}(x_1, y)) = I_3^3(x_1, y, f_{\times}(x_1, y)) + I_1^3(x_1, y, f_{\times}(x_1, y)) =$$

= $f_{\times}(x_1, y) + x_1 = x_1 y + x_1 = x_1 (y + 1) = f_{\times}(x_1, y + 1)$

4) Экспонента $f_{\text{exp}}(x_1, x_2) = x_1^{x_2}$.

$$f_{exp}(x_1,0) = x_1^0 = 1 = s(o(x_1)), \text{ r.e. } g(x_1) = s(o(x_1)).$$

 $f_{exp}(x_1,y+1) = x_1^{y+1} = x_1^y \cdot x_1 = f_{exp}(x_1,y) \cdot x_1.$

В качестве $h(x_1,x_2,x_3)$ можно взять $h(x_1,x_2,x_3)=I_3^3(x_1,x_2,x_3)\cdot I_1^3(x_1,x_2,x_3)$.

Тогда $h(x_1,y,f_{\rm exp}(x_1,y))=I_3^3(x_1,y,f_{\rm exp}(x_1,y))\cdot I_1^3(x_1,y,f_{\rm exp}(x_1,y))=I_3^3(x_1,y,f_{\rm exp}(x_1,y))$

$$= f_{\exp}(x_1, y) \cdot x_1 = x_1^{y} \cdot x_1 = x_1^{y+1} = f_{\exp}(x_1, y+1).$$

5) Усечённая разность.

а) Сначала докажем примитивную рекурсивность функции

$$f_1(x_1) = x_1 \div 1 = \begin{cases} x_1 - 1, \text{ если } x_1 \neq 0; \\ 0, \text{ если } x_1 = 0. \end{cases}$$

 $f_1(0) = 0 = C$; $f_1(y+1) = y = h(y; f_1(y))$. В качестве $h(x_1,x_2)$ можно взять $h(x_1,x_2)=I_1^2(x_1,x_2)$.

Тогда $h(y,f_1(y))=I_1^2(y,f_1(y))=y=f_1(y+1)$.

б) Докажем примитивную рекурсивность функции усечённая разность. $f_{-}(x_1,x_2) = x_1 \pm x_2 = \begin{cases} x_1 - x_2, \text{ если } x_1 > x_2, \\ 0, \text{ если } x_1 \le x_2. \end{cases}$

$$f_{-}(x_1,0) = x_1 - 0 = x_1 = I_1^1(x_1)$$
; r.e. $g(x_1) = I_1^1(x_1)$.

$$f_{-}(x_1, y+1) = x_1 \cdot (y+1) = (x_1 \cdot y) \cdot 1 = f_{-}(x_1, y) \cdot 1$$

 $h(x_1, y, f(x_1, y)) = I_2^3(x_1, y, f(x_1, y)) \cdot 1 = f(x_1, y) \cdot 1.$

В качестве $h(x_1,x_2,x_3)$ можно взять $h(x_1,x_2,x_3)=I_3(x_1,x_2,x_3) \div 1$

6) Модуль разности
$$f(x_1,x_2) = |x_1 - x_2| = (x_1 \pm x_2) + (x_2 \pm x_1)$$

Докажем последнее равенство.

a)
$$x_1 > x_2$$
. $(x_1 \pm x_2) + (x_2 \pm x_1) = (x_1 - x_2) + 0 = |x_1 - x_2|$

6)
$$x_1 \le x_2$$
. $(x_1 \pm x_2) + (x_2 \pm x_1) = 0 + (x_2 - x_1) = |x_1 - x_2|$.