In [1]:

import numpy as np
import pandas as pd

In [2]:

import matplotlib.pyplot as pltimport seaborn as sns%matplotlib inline

In [3]:

advert = pd.read_csv(r'C:\Users\DELL\Downloads\3PythonCourse\Refactored_Py_DS_ML_Bootcamp-master\13

In [4]:

advert.head()

Out[4]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp	Click on
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11	
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02	
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42	
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19	
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18	

In [5]:

advert.describe()

Out[5]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025
min	32.600000	19.000000	13996.500000	104.780000	0.000000	0.00000
25%	51.360000	29.000000	47031.802500	138.830000	0.000000	0.00000
50%	68.215000	35.000000	57012.300000	183.130000	0.000000	0.50000
75%	78.547500	42.000000	65470.635000	218.792500	1.000000	1.00000
max	91.430000	61.000000	79484.800000	269.960000	1.000000	1.00000

In [6]:

advert.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 10 columns):

Daily Time Spent on Site 1000 non-null float64

Age 1000 non-null int64 Area Income 1000 non-null float64 Daily Internet Usage 1000 non-null float64 Ad Topic Line 1000 non-null object 1000 non-null object City Male 1000 non-null int64 Country 1000 non-null object Timestamp 1000 non-null object Clicked on Ad 1000 non-null int64

dtypes: float64(3), int64(3), object(4)

memory usage: 78.2+ KB

In [7]:

advert.isnull().sum()

Out[7]:

Daily Time Spent on Site 0 Age Area Income 0 **Daily Internet Usage** 0 Ad Topic Line 0 0 City Male 0 Country 0 **Timestamp** 0 Clicked on Ad 0 dtype: int64

EDA

Lets explore the data using seaborn

In [8]:

```
#creating histogram for the Age column
sns.set_style('whitegrid')
sns.distplot(advert['Age'], kde = False, bins = 30)
```

Out[8]:

<matplotlib.axes. subplots.AxesSubplot at 0x2ed08e80fd0>

In [9]:

```
sns.jointplot(x = 'Area Income', y = 'Age', data = advert)
plt.show()
```

C:\Users\DELL\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will r esult either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

In [10]:

sns.jointplot(x = 'Age', y ='Daily Time Spent on Site', data = advert, kind = 'kde', color = 'red') plt.show()

In [11]:

sns.jointplot(x = 'Daily Time Spent on Site', y ='Daily Internet Usage', data = advert, color = 'green') plt.show()

In [12]:

sns.pairplot(advert, hue = 'Clicked on Ad')
plt.plot()

C:\Users\DELL\Anaconda3\lib\site-packages\statsmodels\nonparametric\kde.py:488: Runtime Warning: invalid value encountered in true_divide

binned = fast linbin(X, a, b, gridsize) / (delta * nobs)

C:\Users\DELL\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py:34: Runti meWarning: invalid value encountered in double_scalars

FAC1 = 2*(np.pi*bw/RANGE)**2

C:\Users\DELL\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:83: RuntimeWarning: invalid value encountered in reduce

return ufunc.reduce(obj, axis, dtype, out, **passkwargs)

Out[12]:

Logisic Regression

Now since our data is prepared we will now split our data into training and test data

In [22]:

advert.columns

Out[22]:

In [23]:

```
X = advert[['Daily Time Spent on Site', 'Age', 'Area Income', 'Daily Internet Usage']]
```

In [24]:

```
y = advert['Clicked on Ad']
```

In [25]:

from sklearn.model selection import train test split

In [32]:

```
X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 42)
```

In [27]:

from sklearn.linear_model import LogisticRegression

In [28]:

```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning)

Out[28]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False)
```

In [36]:

prediction = logreg.predict(X_test)

In []:

In []:

In [37]:

from sklearn.metrics import classification_report

In [39]:

1

0.96

print(classification_report(y_test,prediction))

precision recall f1-score support
0 0.86 0.96 0.90 89

0.92

111

micro avg 0.91 0.91 0.91 200 macro avg 0.91 0.91 0.91 200

0.87

macro avg 0.91 0.91 0.91 200 weighted avg 0.92 0.91 0.91 200

In []: