Universidade Estadual de Maringá/DMA

Prof^a Patrícia Hernandes Baptistelli

Álgebra Linear - 4ª Lista de Exercícios Espaços Vetoriais

- 1. Em cada item abaixo, verifique se V é um espaço vetorial sobre \mathbb{R} .
 - (a) $V = \{(a,b); a,b \in \mathbb{R}\}$ com as seguintes operações de adição e multiplicação por escalar:

$$(a,b) + (c,d) = (a+c,b+d)$$
 e $k(a,b) = (ka,0)$.

- (b) $V = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ com as operações usuais de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- 2. Verifique se os subconjuntos W abaixo são subespaços vetoriais de V:

(a)
$$W = \{(x, y, z) \in \mathbb{R}^3; \ ax + by + cz = 0, \ \text{com } a, b, c \in \mathbb{R}\}, \ V = \mathbb{R}^3;$$

(b)
$$W = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y + z = 0\}, \ V = \mathbb{R}^3;$$

(c)
$$W = \{ p \in \mathcal{P}_n : p(0) = p(1) \}, \ V = \mathcal{P}_n;$$

(d)
$$W = \{(x, y, z, t) \in \mathbb{R}^4; x + y = 0 \text{ e } z - t = 0\}, V = \mathbb{R}^4;$$

(e)
$$W = \{ A \in \mathcal{M}_{3\times 3}(\mathbb{R}) : A^2 = 0 \}, \ V = \mathcal{M}_{3\times 3}(\mathbb{R});$$

(f)
$$W = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}) : AB = BA\}, \text{ para } B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, V = \mathcal{M}_{2\times 2}(\mathbb{R});$$

- (g) $W = \{f : \mathbb{R} \to \mathbb{R}; \ f(x) + f'(x) = 0\}, \ V = \text{espaço das funções a valores reais.}$
- 3. Seja U o seguinte subconjunto de $\mathcal{M}_{2\times 2}(\mathbb{R})$ definido por $U = \left\{ \begin{bmatrix} 2a & a+2b \\ 0 & a-b \end{bmatrix} : a,b \in \mathbb{R} \right\}$.
 - (a) U é subespaço vetorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$?

(b)
$$\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \in U$?

4. Seja W o subespaço vetorial de $\mathcal{M}_{3\times 2}(\mathbb{R})$ gerado por $\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix}$ e $\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. O vetor

$$\left[\begin{array}{cc} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{array}\right] \text{ pertence a } W?$$

- 5. O espaço vetorial \mathbb{R}^2 é um subespaço vetorial de \mathbb{R}^3 ?
- 6. Mostre que os polinômios $1-t^3$, $(1-t)^2$, 1-t e 1 geram o espaço \mathcal{P}_3 dos polinômios de grau ≤ 3 .

1

7. Considere o subespaço vetorial $W = \{p(x) \in \mathcal{P}_3 : p''(1) = 0\}$ e obtenha os seus geradores.

- 8. Expresse o polinômio $p(t)=t^2+4t-3$ sobre $\mathbb R$ como combinação linear dos polinômios $p_1(t)=t^2-2t+5,\ p_2(t)=2t^2-3t$ e $p_3(t)=t+3.$
- 9. Mostre que $A=\left(\begin{array}{cc} 4 & -4 \\ -6 & 16 \end{array}\right)$ pode ser escrita como combinação linear das matrizes

$$\left(\begin{array}{cc}1&2\\3&4\end{array}\right),\;\left(\begin{array}{cc}-1&2\\3&-4\end{array}\right)\;\mathrm{e}\;\left(\begin{array}{cc}1&-2\\-3&4\end{array}\right).$$

- 10. Determinar m e n para que os conjuntos de vetores de \mathbb{R}^3 dados abaixo sejam L.I.
 - (a) $\{(3,5m,1), (2,0,4), (1,m,3)\}$
 - (b) $\{ (6,2,n), (3,m+n,m-1) \}.$
- 11. (a) Mostre que $v=(1-i,i)\in\mathbb{C}^2$ e $w=(2,-1+i)\in\mathbb{C}^2$ são L.D. sobre \mathbb{C} , mas são L.I. sobre \mathbb{R} .
 - (b) Mostre que $(3+\sqrt{2},\ 1+\sqrt{2})\in\mathbb{R}^2$ e $(7,\ 1+2\sqrt{2})\in\mathbb{R}^2$ são L.D. sobre \mathbb{R} , mas são L.I. sobre o corpo dos números racionais \mathbb{Q} .
- 12. No espaço \mathcal{P}_3 dos polinômios de grau ≤ 3 , os polinômios $p(x) = x^3 3x^2 + 5x + 1$, $q(x) = x^3 x^2 + 6x + 2$ e $r(x) = x^3 7x^2 + 4x$ são L.D. ou L.I.?
- 13. Seja $V = \mathcal{M}_{2\times 2}(\mathbb{R})$. Determine se os vetores abaixo formam uma base de V:

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad C = \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right), \quad D = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

- 14. Mostre que \mathbb{C} é um espaço vetorial de dimensão 2 sobre \mathbb{R} . E qual é a dimensão de \mathbb{C} visto como espaço vetorial sobre \mathbb{C} ? Qual é a dimensão de \mathbb{C}^2 visto como espaço vetorial \mathbb{R} ? E sobre \mathbb{C} ?
- 15. Exiba uma base e determine a dimensão do espaço vetorial real das matrizes diagonais $n \times n$.
- 16. Ache uma base e a dimensão do subespaço W de \mathbb{R}^3 , onde

(a)
$$W = \{(a, b, c); a+b+c=0\}$$
 (b) $W = \{(a, b, c); a=b=c\}$ (c) $W = \{(a, b, c); c=3a\}$.

- 17. Sejam $U = \{(a, b, c, d) \in \mathbb{R}^4; \ b 2c + d = 0\}$ e $W = \{(a, b, c, d) \in \mathbb{R}^4; \ a = d, \ b = 2c\}$. Ache uma base e a dimensão dos subespaços:
 - (a) U (b) W (c) $U \cap W$.
- 18. Sejam $W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a = d \in b = c \right\} \in W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a = c \in b = d \right\}$ subespaços de $\mathcal{M}_{2,2}(\mathbb{R})$.
 - (a) Determine $W_1 \cap W_2$ e exiba uma base.
 - (b) Determine $W_1 + W_2$. Podemos dizer que $W_1 + W_2 = \mathcal{M}_{2,2}(\mathbb{R})$? Justifique!
- 19. Considere os subespaços $W_1 = \{(x, y, z, t, w) \in \mathbb{R}^5 : z = 0, x + w = 0\}, W_2 = \{(x, y, z, t, w) \in \mathbb{R}^5 : y + z + t = 0\} \text{ e } W_3 = \{(x, y, z, t, w) \in \mathbb{R}^5 : 2x + t + 2w = 0\}.$

- (a) Determine uma base para o subespaço $W_1 \cap W_2 \cap W_3$;
- (b) Verifique se $W_1 + W_2 = \mathbb{R}^5$. Justifique.
- 20. Considere os subespaços $U = \{p \in \mathcal{P}_3 : p'(t) = 0\}$ e $W = \{p \in \mathcal{P}_3 : p''(t) = 0\}$. Determine as dimensões de U + W e $U \cap W$.
- 21. Determine se os vetores (1, 1, 1, 1), (1, 2, 3, 2), (2, 5, 6, 4) e (2, 6, 8, 5) formam uma base para \mathbb{R}^4 .
- 22. Considere o sistema linear homogêneo

$$S: \begin{cases} 2x_1 + 4x_2 - 6x_3 &= a \\ x_1 - x_2 + 4x_3 &= b \\ 6x_2 - 14x_3 &= c \end{cases}$$

e seja $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3; (x_1, x_2, x_3) \text{ é solução de } S\}.$

- (a) Que condições devemos impor sobre $a, b \in c$ para que W seja subespaço vetorial de \mathbb{R}^3 ?
- (b) Nas condições determinadas em (a), encontre uma base para W.
- (c) Que relação existe entre a dimensão de W e o grau de liberdade do sistema? Seria este resultado válido para quaisquer sistemas homogêneos?
- 23. Ache uma base e a dimensão do espaço solução W de cada sistema linear homogêneo abaixo.

(a)
$$\begin{cases} x + 2y - 2z + 2s - t = 0 \\ x + 2y - z + 3s - 2t = 0 \\ 2x + 4y - 7z + s + t = 0 \end{cases}$$
 (b)
$$\begin{cases} x + 2y - z + 3s - 4t = 0 \\ 2x + 4y - 2z - s + 5t = 0 \\ 2x + 4y - 2z + 4s - 2t = 0 \end{cases}$$

- 24. Sejam $\mathcal{B} = \{(1,0),(0,1)\}, \ \mathcal{B}_1 = \{(-1,1),(1,1)\}, \ \mathcal{B}_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\} \ e \ \mathcal{B}_3 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 .
 - (a) Ache as matrizes de mudança de base: (i) $[I]_{\mathcal{B}}^{\mathcal{B}_1}$ (ii) $[I]_{\mathcal{B}_1}^{\mathcal{B}}$ (iii) $[I]_{\mathcal{B}_2}^{\mathcal{B}}$ (iv) $[I]_{\mathcal{B}_3}^{\mathcal{B}}$.
 - (b) Quais são as coordenadas do vetor v=(3,-2) em relação à base: (i) \mathcal{B} (ii) \mathcal{B}_2 .
 - (c) As coordenadas de um vetor u com relação à base \mathcal{B}_1 são dadas por $[u]_{\mathcal{B}_1} = [4,0]^t$. Quais são as coordenadas de u com relação à base \mathcal{B} .

3

- 25. Considere as bases $\mathcal{A} = \{1, x, x^2, x^3, x^4\}$ e $\mathcal{B} = \{2, 2x, 4x^2, 8x^3, 16x^4\}$ de \mathcal{P}_4 .
 - (a) Determine $[I]_{\mathcal{B}}^{\mathcal{A}}$.
 - (b) Se $[p]_{\mathcal{A}} = [1, 2, 3, 4, 5]^t$, determine $[p]_{\mathcal{B}}$.
 - (c) Determine o polinômio p cujas coordenadas são dadas no item (b).
- 26. Considere o subespaço $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R}) : d = 0 \right\}.$
 - (a) Determine duas bases distintas \mathcal{A} e \mathcal{B} de W.
 - (b) Determine $[I]_{\mathcal{B}}^{\mathcal{A}}$.
 - (c) Seja v um vetor tal que $[v]_{\mathcal{B}} = [\pi, e, 0]^t$. Determine $[v]_{\mathcal{A}}$.