Ethan Choi Anderson CSC 487-01 12 April 2023

1. magnitude(w) =
$$sqrt(a^2 + b^2)$$

= $sqrt((0.5)^2 + (0.5)^2)$
= $sqrt(0.25 + 0.25)$
= $sqrt(0.5)$
~= **0.7071**

2.
$$\mathbf{x} * \mathbf{w}^{\mathsf{T}} = [0.5, 0.5] * [0.75, 1.25]^{\mathsf{T}}$$

= $(0.5 * 0.75) + (0.5 * 1.25)$
= $0.375 + .625$
= **1**

3.
$$x^T * w = [0.5, 0.5]^T * [0.75, 1.25]$$

= $[(0.5 * 0.75) (0.5 * 1.25)$
 $(0.5 * 0.75) (0.5 * 1.25)]$
= $[0.375 0.625$
 $0.375 0.625]$

6. resultant vector =
$$[0.5 + 0.75, 0.5 + 1.25]$$

= $[1.25, 1.75]$

7. Prediction is for a model to predict a continuous numeric value or range of values. This is like float numbers or a numeric value that can be desired. Classification is used for classifying inputs into various discrete categories.

8.
$$w0 = w0 + v^*(t-y)x0 = 0 + 0.25(1-1)1 = 0$$

 $w1 = w1 + v(t-y)x1 = 0.5 + 0.25(1-1)0 = 0.5$
 $w2 = w2 + v(t-y)x2 = -0.5 + 0.25(1-1)^*1 = -0.5$
 $w0 = w0 + v^*(t-y)x0 = 0 + 0.25(0-1)1 = -0.25$

$$w1 = w1 + v(t-y)x1 = 0.5 + 0.25(0-1)0 = 0.5$$

 $w2 = w2 + v(t-y)x2 = -0.5 + 0.25(0-1)*0 = -0.5$