Computational Physics HW2

Emily Biermann

9/4/2020

1 EX1

I calculated the machine precision using the equation

$$\epsilon = 2^{-b},\tag{1}$$

where b is the number of bits (52 for a double and 23 for a float). I calculated a precision of 1.19209e-07 for a float and 2.22045e-16 using both equation 1 and the program.

2 EX2

β	γ	ϵ	γ	
0.9	2.29416	0.1	2.29416	
0.99	7.08881	0.01	7.08881	
0.999	22.3663	0.001	22.3663	
0.9999	70.7124	0.0001	70.7124	
0.99999	223.607	1e-05	223.607	
0.999999	707.107	1e-06	707.107	

3 EX7

We have a kronecker delta potential which yields the Schrodinger Equation

$$\frac{-\hbar^2}{2m}\frac{d^2\psi}{dx^2} - V\delta(x)\psi = E\psi \tag{2}$$

Following Griffiths, the solution is

$$\psi = \begin{cases} e^{ikx} + \left(\frac{1}{1-i\beta} - 1\right)e^{-ikx}, & x \ge 0\\ \frac{1}{1-i\beta}e^{ikx}, & x < 0 \end{cases}$$
 (3)

where,

$$k = \frac{\sqrt{2mE}}{\hbar} \tag{4}$$

and

$$\beta = \frac{mV}{\hbar^2 k}.\tag{5}$$

The reflection coefficient is

$$R = \frac{1}{1 + (2\hbar^2 E/mV^2)}. (6)$$

The transmission coefficient is

$$T = \frac{1}{1 + (mV^2/2\hbar^2 E)} \tag{7}$$

4 EX8

X	$\sin(ix)$	$i \sinh(x)$	$\cos(ix)$	$\cosh(x)$
-5	(-0,-74.2032)	(-0, -74.2032)	(74.2099,-0)	(0,74.2099)
-3	(-0,-10.0179)	(-0,-10.0179)	(10.0677,-0)	(0,10.0677)
0	(0,0)	(0,0)	(1,0)	(0,1)
2	(0,3.62686)	(0,3.62686)	(3.7622,-0)	(0,3.7622)
4	(0,27.2899)	(0,27.2899)	(27.3082,-0)	(0,27.3082)

5 EX9

a	b	c	x_1	x_2
(1,0)	(4,0)	(0,0)	(0,0)	(-4,0)
(1,0)	(4,0)	(2,0)	(-0.585786,0)	(-3.41421,0)
(1,0)	(4,0)	(6,0)	(-2,1.41421)	(-2,-1.41421)
(1,0)	(4,0)	(-6,0)	(1.16228,0)	(-5.16228,0)
(1,0)	(4,0)	(-4,0)	(0.828427,0)	(-4.82843,0)
(1,0)	(4,0)	(0,0)	(0,0)	(-4,0)
(1,0)	(4,0)	(-6,0)	(1.16228,0)	(-5.16228,0)
(1,0)	(2,0)	(0,0)	(0,0)	(-2,0)
(1,0)	(2,0)	(6,0)	(-1,2.23607)	(-1, -2.23607)

6 EX10

I cannot download eign on my current (borrowed) machine so I will try this problem again once I fix my laptop.

Eigenvalue 0 = (0,0)

Eigenvalue 1 = (0,0)

Eigenvalue 2 = (0.6.95314e-310)