VLSI Design (2019 Fall) Final Project

106010006 黃詩瑜 106061229 劉家蓁

Block Diagram

1. design of circuit

圖(一)top view of system design

我們參考了《FREQUENCY DIVIDERS DESIGN FOR MULTI-GHz PLL SYSTEMS》這篇 paper 做出如圖(一)的設計,paper 中提到如果使用 n-2 個 half-transparent register(htreg) + 1 個 D flip-flop(dff)即可得到 divide by n 的 clock divider,如圖(二) 所示。

圖(二) Divide by n divider block diagram

這個架構的原理是基於依照 output logic value(clk_out)的不同,half-transparent register 會產生不同的 delay,當 output logic value = 1 時,half-transparent register 會有 1 個 clock cycle 的 delay;當 output logic value = 0 時,half-transparent register 則會有 n-1 個 clock cycle 的 delay,進而達到除頻的目的。

因為題目要求最高是到除以 7,所以這裡用了 7-2=5 個 half-transparent register 和一個 D flip-flop,我們另外在 half-transparent register 間加入 mux,當 sel = 0 時,mux 會選擇前一 half-transparent register 的 output;sel = 1 時,mux 則選擇 clk,以此達到除以 2~7,那 sel 即是由 3 to 8 decoder 來控制。

另外還有 output stays HIGH 以及除以 1 的部分則是在 D flip-flop 後再加上兩個 mux 來達成,當 decoder output 選擇除以 1 時(d1(sel) = 1),mux 會選擇 clock 作為 output;當 sel = 0 時,mux 則選擇 D flip-flop 的 output。那當 decoder 選擇 stays HIGH(d0 = 1)時,則是讓 mux 選擇 d0,這樣即可維持 output at HIGH;和前面一樣,當 sel=0 時,mux 選擇的是前一 mux 的 output。

最後,因為 output 還有掛上 1pF 的電容,經過計算後我們再加了 4 級的 inverter,每一級推 4 倍的下一級。

Calculation:

考慮到 layout 的面積擺設 inverter 由原本的 PMOS:1.5u/0.18u NMOS:0.5u/0.18u 改為 PMOS:3u/0.18u NMOS:1u/0.18u,1~4 級分別並聯 1/2/4/32 個。

input capacitance 透過將 Vin 設為 0.5VDD,進行 hspice 模擬而得(取 cgtot) \Rightarrow Cin = 2.85f + 0.93f = 3.78f

再帶入公式
$$F = GBH$$
 (assume $G = 1$, $B = 1$)
得到 $F = 264.55 \Rightarrow \log_4 F = 4.02$

If N = 4:

$$f = F^{\frac{1}{4}} = 4.02$$
$$D = P + Nf = 20.09$$

- 2. sub-block of circuit
- (1) 3 to 7 decoder:

圖(三) 3 to 7 decoder gate level hierarchy

因為只會用到 7 個 output,所以去掉了 3-8 decorder 的一個 and,and 是由一個 nand3 再加一個 inverter 組成的。

圖(四) Nand3 transistor level hierarchy

NAND3

	Size(W/L)	
PMOS	2u / 0.18u	
NMOS	2u / 0.18u	

圖(五) inverter transistor level hierarchy

Inverter

	Size(W/L)	
PMOS	1.5u / 0.18u	
NMOS	0.5u / 0.18u	

(2) half-transparent register

圖(六) half-transparent register gate level hierarchy

圖(七) half-transparent register transistor level hierarchy

	Size(W/L)	
PMOS	1.5u / 0.18u	
NMOS	0.5u / 0.18u	

(3) D flip-flop

圖(八) D flip-flop gate level hierarchy

圖(九) D flip-flop transistor level hierarchy

	Size(W/L)	
PMOS	1.5u / 0.18u	
NMOS	0.5u / 0.18u	

配合 half-transparent register 的 D flip-flop 設計,D flip-flop 的 out (QB) 會傳回 half-transparent register 的 in

(4) mux

圖(十) mux gate level hierarchy

圖(十一) mux transistor level hierarchy

mux 我們是配合 transmission gate 來完成設計,利用 sel 控制 transmission gate 的 on/off,當 sel=0 時,mux 會選擇上方 in1;sel=1 時,mux 則會選擇下方 in2。

	Size(W/L)
PMOS_inverter	1.5u / 0.18u
PMOS_transmission gate	0.5u / 0.18u
NMOS	0.5u / 0.18u

Layout

1.

Area=21.94u*79.095u=1735.3443(um²)

2. DRC

3. LVS report

Simulation Results

1. Pre-sim results & post-sim results

看全部 corner 的話,Pre-sim 可操作的最高頻率為 250M(HZ),post-sim 可操作的最高頻率為 230M(HZ),只看 TT corner 的話,Pre-sim 可操作的最高頻率為 795M(HZ),post-sim 可操作的最高頻率為 705M(HZ)

Post-sim 中會加入許多 layout 所產生的寄生電容與電阻,像是 layout 裡,我們用到 3 層 layer,在不同層之間的 wire 會產生寄生電容,相臨的 wire 也有寄生電容,增加了 delay 和 power,且在 signal 傳遞的過程中,有可能會影響鄰近的 wire 的 signal,產生干擾的話也會造成 delay,wire 的寬度走線的連接都會影響 delay,poly 高阻值的這種也會影響 delay,在打 Vdd 和 gnd 的 pin的位置也會影響,若 Vdd pin 的位置離某個 mos 較遠,wire 的電阻會降低 Vdd 導致速度變慢造成 delay,因此 Post-sim 的 error 會比較大,可操作的最高頻率就會比較小。

2.

Waveforms:

皆操作於 230M(HZ)

用橘線隔開不同除頻的結果,由左至右: X/÷1/÷2/÷3/÷4/÷5/÷6/÷7

Pre-sim

TT 25°C

FF -40°C

SS 125°C

SF 25°C

FS 25°C

Post-sim

TT 25°C

SS 125°C

SF 25°C

FS 25°C

Tables

TT 25°C	Pre-sim	Post-sim
operating frequency	230M	230M
freq_1 error	5.481e-08	2.815e-06
freq_2 error	1.163e-05	9.114e-07
freq_3 error	9.091e-06	5.647e-07
freq_4 error	2.088e-06	6.654e-07
freq_5 error	2.113e-07	5.692e-06
freq_6 error	1.890e-06	9.993e-07

freq_7 error	1.906e-06	9.699e-07
total average power	4.616e-04	4.705e-04
FF -40°C	Pre-sim	Post-sim
operating frequency	230M	230M
freq_1 error	4.721e-05	1.644e-05
freq_2 error	2.847e-05	4.304e-06
freq_3 error	4.756e-06	7.390e-06
freq_4 error	2.676e-06	1.905e-06
freq_5 error	2.465e-07	2.457e-06
freq_6 error	9.501e-07	1.174e-06
freq_7 error	1.084e-06	1.510e-06
total average power	4.644e-04	4.756e-04
SS 125°C	Pre-sim	Post-sim
operating frequency	230M	230M
freq_1 error	2.597e-09	5.120e-05
freq_2 error	2.466e-05	1.107e-05
freq_3 error	3.187e-05	1.542e-06
freq_4 error	1.924e-05	1.599e-05
freq_5 error	4.035e-08	8.013e-07
freq_6 error	1.312e-06	4.563e-06
freq_7 error	3.091e-09	1.791e-07
total average power	4.942e-04	4.982e-04
SF 25°C	Pre-sim	Post-sim
operating frequency	230M	230M
freq_1 error	5.286e-05	6.153e-05
freq_2 error	6.166e-05	2.629e-05
freq_3 error	1.669e-06	1.339e-05
freq_4 error	2.601e-06	1.343e-07
freq_5 error	5.285e-06	2.879e-06
freq_6 error	5.238e-07	2.246e-06
freq_7 error	1.844e-06	7.558e-07
total average power	4.850e-04	4.939e-04
FS 25°C	Pre-sim	Post-sim
-		·

operating frequency	230M	230M
freq_1 error	9.539e-05	4.970e-06
freq_2 error	2.065e-05	9.675e-09
freq_3 error	1.101e-06	9.695e-06
freq_4 error	2.944e-07	1.063e-06
freq_5 error	9.360e-07	2.380e-10
freq_6 error	3.625e-09	3.079e-06
freq_7 error	4.257e-07	1.860e-06
total average power	4.605e-04	4.697e-04

但是從表格中可看出,在相同的操作頻率,每個 corner 中,Post-sim 的 power 都比 Pre-sim 的大,但是 frequency error 的部分,某些 Pre-sim 的 error 反而比較高,我們討論出可能是 wire 寬度或是許多 diffusion 共用等 layout 畫的蠻好的,所以部分 Post-sim error 才比較小。

Competition (based on TT corner results)

• Max operating frequency : 705M

• Area: 1735.3443(um²)

• FoM = Max clock frequency/(Power*Area) = $705M/(4.705e-04*1735.3443 u^2)$

=8.634632X10²⁰