第八章 辅助存储器

8.1 假设写入代码为 110101001, 试画出 RZ, NRZ, NRZ1, PM, FM 和 MFM 的写电流波形, 指出哪些有自同步能力。

解:

写电流波形图

自同步能力是指从单个磁道读出的脉冲序列中提取同步时钟脉冲的难易程度。 自同步能力 R = 最小磁化翻转间隔/最大磁化翻转间隔

记录方式	RZ	NRZ	NRZ1	PM	FM	MFM
自同步能力	1	0	0	0.5	0.5	0.5

8.2 假设写入磁盘存储器的数据代码为 001101, 试用 NRZ1 制记录方式画出写入电流、记录介质磁化状态、读写信号及选通输出信号波形图。 解:

8.3 假设某磁盘存储器的平均找道时间为 ts 秒,转速为每分钟 r 转,每磁道容

量为 N 个字,每信息块为 n 个字。试推导读写一个信息块所需总时间 tB 的计算公式。

解:

转速为每分钟 r 转, 转一圈的时间=60/r s。

- tB = 平均找道时间 + 平均等待时间 + 传输 n 个字的时间
 - = ts + (1/2) (60/r) + (n/N) (60/r)
 - = ts + (1/2 + n/N) (60/r)
- 8.4 列举3个提高磁盘存储器记录密度的途径。

解:

- (1) 提高磁记录介质的质量
- (2) 改进磁头
- (3) 提高磁头定位精度
- (4) 减少浮动磁头的浮动高度
- 8.5 假设磁盘组有 11 个盘片,每片有两个记录面,存储区域内直径 2.36 英寸,外直径 5.00 英寸,道密度为 1250tpi,内层位密度为 52400bpi,转速为 2400rpm。问:
 - (1) 共有多少个存储面可用?
 - (2) 共有多少柱面?
 - (3) 每道存储多少字节? 盘组总存储容量是多少?
 - (4) 数据传输率是多少?
 - (5) 每扇区存储 2KB 数据,在寻址命令中如何表示磁盘地址?
- (6) 如果某文件长度超过了一个磁道的容量,应将它记录在同一个存储面上,还是记录在同一个柱面上?

解:

- (1) 11 个盘面, 共 22 个面, 最外面的 2 个面不用, 可用的存储面为 20 个
- (2) 外半径 2.50 英寸,内半径 1.18 英寸,柱面数=道数=(2.5-1.18) x 1250 =1650
- (3) 每道存储量=2 π r x 位密度=2 π r x 52400b=48.56KB 盘组总容量=20 x 面存储量=20 x 48.56KB x 1650=1.6GB
- (4) 数据传输率=道存储量 x 转数/秒=48.56 x 2400 / 60=1.94MB/s
- (5) 20 个盘面用 5 位表示, 1650 个道数用 11 位表示, 扇区数=48.56KB/2KB=24 个用 5 位表示。

磁盘地址如下用 21 位表示:

盘面号 5 位 道号 11 位 扇区号 5 位

- (6)应该记录在同一柱面上。与记录在同一盘面上比较,可以减少一次寻道时间。
- 8.7 一磁带机有 9 个磁道,带长 700m,带速 2m/s,每个数据块 1KB,块间间隔 14mm。若数据传输率为 128KB/s。试求:
- (1)记录位密度。
- (2) 若磁带首尾各空 2m, 求此带最大有效存储容量。

解:

- (1) 带速 2m/s,传输率为 128KB/s,位密度=128KB/2m=64B/mm,1 个磁道的记录位密度=64B/mm/8=64b/mm
- (2) 有效存储长度=700-2x2=696m 每个数据块长度=数据长度+块间间隔=1KB/(64B/mm)+14mm=30mm, 磁带最大存储容量=块数 x 每块容量=696m/30mm x 1KB=23.2MB

注意: 9个磁道中有8个磁道存储1B数据,1个磁道为该字节的奇偶校验位,9个磁道并行读出。每个数据块1KB,所以在每个磁道上存储的是1Kb。数据传输率是指整个磁带的传输率,对每一磁道而言,其传输率为128Kb/s。