

Field Parametrization for Bayesian Inference

POLETTE Nadège, CEA DAM DIF/Mines Paris PSL

Supervisors:

SOCHALA Pierre, CEA DAM DIF

GESRET Alexandrine, Mines Paris PSL

LE MAÎTRE Olivier, CMAP, CNRS

Table of contents

- 1. Context
- 2. Field parametrizations
- **3.** The change of measure method
- 4. Results on a seismic tomography case

1. Context: Detection and analysis of seismic events

Global scale

- International treaties (CTBT, NTP)
- Environment monitoring (IMS)

Regional scale

- Tsunami and earthquake alerts
- Risk prevention

Local scale

- Subsurface knowledge
- Exploitation

$$F(S) = d$$

F: forward model

S: source parameters

d: data

Objective: retrieve *S* from *d*

- fast
- with accuracy
- with uncertainties

1. Context: Inverse problem

Uncertainty sources: observations, physical model, model parameters, ...

[Tarantola, 2005]

1. Context: Inverse problem

Objective: improve uncertainty quantification of model parameters

[Tarantola, 2005]

■ 1. Context: Bayesian inference and Markov Chain Monte Carlo

■ 1. Context: Bayesian inference

2. Field parametrization: Spatial mesh

m(x)

$$\forall x \in [x_i, x_{i+1}], \ m(x) = m_i$$

Parameters: $\{m_i\}_{1 \le i \le N_{meshes}}$

- 'small' dimension
- **OK** fixed dimension
- **OK** allowing for various shapes

2. Field parametrization: Layered velocity model

$$\forall x \in [x_i, x_{i+1}], \ m(x) = m_i$$

Parameters: $\{m_i, z_i\}_{1 \le i \le N_{layers}}$

OK 'small' dimension

OK fixed dimension

allowing for various shapes

2. Field parametrization: Voronoi tesselation

$$\forall x \in V(z_i), \ m(x) = m_i$$

Parameters: $\{m_i, z_i\}_{1 \le i \le n_c} \cup n_c$

- **OK** 'small' dimension
- **X** fixed dimension
- **OK** allowing for various shapes

m(x)

[Bodin et al., 2012] [Piana Agostinetti et al., 2015] [Belhadj et al., 2018]

2. Field parametrization: Voronoi tesselation

$$\forall x \in V(z_i), \ m(x) = m_i$$

Parameters: $\{m_i, z_i\}_{1 \le i \le n_c} \cup n_c$

Add a layer

Change a value

- **OK** 'small' dimension
- fixed dimension
- **OK** allowing for various shapes

Change a depth

Remove a layer

m(x)

[Bodin et al., 2012] [Piana Agostinetti et al., 2015] [Belhadj et al., 2018]

2. Field parametrization: Modal representation

$$m(x) = \sum_{i=1}^{r} U_i(x) w_i$$

Parameters: $\{w_i\}_{1 \le i \le r}$

OK 'small' dimension

OK fixed dimension

allowing for various shapes

2. Field parametrization: Karhunen-Loève decomposition

Assuming m is the realization of a random process with autocovariance function k

$$m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i} u_i(x) \eta_i$$

$$(\lambda_i, u_i)_{1 \le i \le r}$$
 eigenelements of k : $\langle k(x, \cdot), u_i \rangle = \int_{\Omega} k(x, y) u_i(x) dx = \lambda_i u_i(y)$

The decomposition is bi-orthonormal:

- $E(\eta_i) = 0$, and $E(\eta_i \eta_j) = \delta_{i,j}$

In the case of a Gaussian process, we have $\eta \sim N(0,1)$

[Karhunen, 1946] [Loeve, 1977] [Marzouk, Najm, 2009]

2. Field parametrization: Karhunen-Loève decomposition

Assuming m is the realization of a random process with autocovariance function k

$$m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i} u_i(x) \eta_i$$

 $U_1(x)$

 $U_2(x)$

$$\eta \sim N(0,1)$$

^{n∞} [Karhunen, 1946] [Loeve, 1977] [Marzouk, Najm, 2009]

2. Field parametrization: Karhunen-Loève decomposition

Problem: how to choose k?

Assuming k is a Gaussian autocovariance function: $k(x, y) = A \exp\left(\frac{-\|x - y\|^2}{2l^2}\right)$

It depends on two hyperparameters : $q = \{A, l\}$

$$m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i(\mathbf{q})} u_i(x, \mathbf{q}) \eta_i$$

Large *l*

+
$$\eta_{20}$$

$$\eta \sim N(0,1)$$

Small l

Assuming k is a Gaussian autocovariance function: $k(x,y) = A \exp\left(\frac{-\|x-y\|^2}{2l^2}\right)$ It depends on two hyperparameters : $q = \{A, l\}$

$$m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i(\boldsymbol{q})} u_i(x, \boldsymbol{q}) \eta_i$$

Hyperparameters are determined a priori
→ expert judgement, MSE, LOOCV...
Overconfidence risk

[Rasmussen, Williams, 2015]

Assuming k is a Gaussian autocovariance function: $k(x,y) = A \exp\left(\frac{-\|x-y\|^2}{2l^2}\right)$

It depends on two hyperparameters :
$$q = \{A, l\}$$

 $m(x) = \sum_{i=1}^{r} \sqrt{\lambda_i(\boldsymbol{q})} u_i(x, \boldsymbol{q}) \eta_i$

- Hyperparameters are determined a priori
- → expert judgement, MSE, LOOCV...

Overconfidence risk

- Hyperparameters are inferred during the procedure
- ightarrow Bayes' rule : $P(\eta, q | d^{obs}) \propto L(d^{obs} | \eta, q) P(\eta, q)$ Expensive

[Rasmussen, Williams, 2015] [Tagade, Choi, 2014] [Sraj et al., 2016]

Assuming k is a Gaussian autocovariance function: $k(x,y) = A \exp\left(\frac{-\|x-y\|^2}{2l^2}\right)$ It depends on two hyperparameters : $q = \{A, l\}$

Hyperparameters are determined a priori
→ expert judgement, MSE, LOOCV...

Overconfidence risk

■ Hyperparameters are inferred during the procedure \rightarrow Bayes' rule : $P(\eta, q|d^{obs}) \propto L(d^{obs}|\eta, q)P(\eta, q)$

Expensive

Objective: develop a cheap method to take into account hyperparameters

[Rasmussen, Williams, 2015] [Tagade, Choi, 2014] [Sraj et al., 2016]

3. Change of measure: Reference basis

We introduce a reference kernel $\bar{k} = \int_H k(\cdot, \cdot, q) dq$.

The reference basis $\left(\overline{u_i}, \overline{\lambda_i}\right)_{1 \leq i \leq r}$ are the eigenelements of \overline{k} : $\int_{\Omega} \overline{k}(x, y) \overline{u_i}(x) dx = \overline{\lambda_i} \overline{u_i}(y)$.

The field decomposition writes

$$m(x) = \sum_{i=1}^{r} \sqrt{\overline{\lambda_i}} \overline{u_i}(x) \xi_i$$

Hierarchical Bayes formulation:

- ightarrow Bayes' rule : $Pig(\xi,qig|d^{obs}ig) arpropto Lig(d^{obs}ig|\xiig)P(\xi,q) = Lig(d^{obs}ig|\xiig)P(\xi|q)P(q)$
- \Rightarrow The q-dependency is transferred to the prior law of the coordinates ξ

3. Change of measure: Reference basis

The field decomposition writes

$$m(x) = \sum_{i=1}^{r} \sqrt{\overline{\lambda_i}} \overline{u_i}(x) \xi_i, \qquad \xi \sim P(\xi | q)$$

$$\boldsymbol{\xi} \sim P(\boldsymbol{\xi}|\boldsymbol{q})$$

Large *l*

Reference basis

$$+\xi_2$$

Small *l*

How is defined $P(\xi|q)$?

3. Change of measure: Formulation

Prior law of the reference coordinates according to the hyperparameters:

$$m(x) = \sum_{i=1}^{r} \sqrt{\overline{\lambda_i}} \overline{u_i}(x) \xi_{i,} \; \boldsymbol{\xi} \sim N(0, \Sigma(\boldsymbol{q})) \; with \; \Sigma(\boldsymbol{q})_{i,j} = (\overline{\lambda_i} \overline{\lambda_j})^{-1/2} \left\langle \langle k(\cdot, \cdot, \boldsymbol{q}), \overline{u_i} \rangle, \overline{u_j} \right\rangle$$

$\Sigma(q)$ is the double projection of the q-dependent kernel on the reference basis

Eigenvalues decay according to the basis

Variance of ξ according to the hyperparameters

3. Change of measure: Sampling

Hierarchical sampling: $\xi \sim N(0, \Sigma(q))$, the prior distribution of ξ can be highly sensitive to q

 $\Sigma(q)$ Covariance projected on (ξ_8, ξ_6) space

Introduction of an auxiliary variable $\bar{\zeta}$ whose prior law does not depend on hyperparameters

- Sample $\overline{\zeta} \sim N(0,1), q$
- Compute $\boldsymbol{\xi} \sim N(0, \boldsymbol{\Sigma}(\boldsymbol{q}))$ from $(\overline{\boldsymbol{\zeta}}, \boldsymbol{q})$ sample:

$$\boldsymbol{\xi} = \Sigma(\boldsymbol{q})^{1/2} \overline{\boldsymbol{\zeta}}$$

The proposition is not symmetric anymore, the ratio of the transition probabilities become

$$\frac{p(\boldsymbol{\xi}^{(n)}, \boldsymbol{q}^{(n)} | \boldsymbol{\xi}^{\star}, \boldsymbol{q}^{\star})}{p(\boldsymbol{\xi}^{\star}, \boldsymbol{q}^{\star} | \boldsymbol{\xi}^{(n)}, \boldsymbol{q}^{(n)})} = \left(\frac{\det(\Sigma(\boldsymbol{q}^{\star}))}{\det(\Sigma(\boldsymbol{q}^{(n)}))}\right)^{1/2}$$

[Betancourt, Girolami, 2013]

3. Change of measure: Summary

$$m(x) = \sum_{i=1}^{r} \sqrt{\overline{\lambda_i}} \overline{u_i}(x) \xi_i, \text{ with } \xi \sim N(0, \Sigma(q))$$

Proposition $\xi^{(n)}$, $q^{(n)}$

Surrogate model

Polynomial chaos $\widetilde{PC}(\xi) = \sum_{k} f_{k} \Psi_{k}(\xi) = d$

OK 'small' dimension

OK fixed dimension

OK allowing for various shapes

Bayes' rule : $P(\xi,q ig| d^{obs}) \propto L(d^{obs} ig| \xi) P(\xi ig| q) P(q)$

New iteration $n \leftarrow n + 1$

Accept/Reject criterion

4. Results: Case presentation

- 2D velocity field, varies only along depth
- $\Omega = [0,750]m$, 23 stations \times 5 events, noise level 0.002s
- Velocity field writes $v(x) = \exp(\mu + \sum_{i=1}^{r} \sqrt{\overline{\lambda_i}} \overline{u_i}(x) \xi_i)$
- $l \sim U(10,100), A \sim IG(21,1), r = 20, \mu \sim U(6.9,8.1)$

• 4. Results: with fixed hyperparameters

Small wavelength field

Large wavelength field

⇒ Using the same basis for both fields does not allow to distinguish them

4. Results: with the change of measure method

Small wavelength field

Large wavelength field

4. Results: with the change of measure method

⇒ The coupled inference allows testing various field shapes but is not intended to select a 'best' hyperparameter value

ALERT

Conclusion

- Change of measure: efficient algorithm for velocity field inference
 - Dimension reduction
 - Enlarge a priori parametrization: uncertainties are less ruled by the model selection
 - Without large computational cost increase
- Generalizable to other inverse problems
- Uncertainty propagation to other quantities (eg location)
- Development of adaptive methods

Thank you !

nadege.polette@cea.fr

Keywords: inverse problem, (hierarchical) Bayesian inference, surrogate models (polynomial chaos), Markov Chain Monte Carlo, Dimension reduction, Karhunen-Loève decomposition

Bibliography

[Polette et al, 2024] N. Polette, O. Le Maître, P. Sochala, A. Gesret.

Change of Measure for Bayesian Field Inversion with Hierarchical Hyperparameters Sampling. *Preprint*, 2024 [Tarantola, 2005] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Vol. xii, SIAM, 2005.

[Sivia, Skilling, 2006] D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial, Oxford science publications, 2006.

[Doucet et al., 2013] A. Doucet, A. Smith, N. de Freitas, N. Gordon, Sequential Monte Carlo Methods in Practice, Information Science and Statistics, Springer NY, 2013.

[Wiener, 1938] N. Wiener, The Homogeneous Chaos, Am. J. Math, 1938.

[Ghanem, Spanos, 1991] R. G. Ghanem, P. D. Spanos, Stochastic Finite Element Method: Response Statistics, Springer NY, 1991. [Xiu, Karniadakis, 2002] D. Xiu, G. E. Karniadakis, The Wiener Askey Polynomial Chaos for Stochastic Dierential Equations, SIAM JSC, 2002.

[Bodin et al., 2012] T. Bodin, M. Sambridge, N. Rawlinson, P. Arroucau, Transdimensional tomography with unknown data noise, GJI, 2012. [Piana Agostinetti et al., 2015] N. Piana Agostinetti, G. Giacomuzzi, A. Malinverno, Local three-dimensional earthquake tomography by trans-dimensional Monte Carlo sampling, GJI, 2015.

[Belhadj et al., 2018] J. Belhadj, T. Romary, A. Gesret, M. Noble, B. Figliuzzi, New parameterizations for Bayesian seismic tomography, Inverse Problems, 2018.

[Marzouk, Najm, 2009] Y. Marzouk, H. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, JCP, 2009.

[Karhunen, 1946] K. Karhunen, Zur spektraltheorie stochastischer prozesse, Ann. Acad. Sci. Fenn., 1946.

[Loeve, 1977] M. Loève, Probability Theory I, Vol. 45 of Graduate Texts in Mathematics, Springer NY, 1977.

[Tagade, Choi, 2014] P. M. Tagade, H.-L. Choi, A Generalized Polynomial Chaos-Based Method for Efficient Bayesian Calibration of Uncertain Computational Models, Inverse Problems in Science and Engineering, 2014.

[Sraj et al., 2016] I. Sraj, O. P. Le Maître, O. M. Knio, I. Hoteit, Coordinate transformation and Polynomial Chaos for the Bayesian inference of a Gaussian process with parametrized prior covariance function, CMAME, 2016

[Rasmussen, Williams, 2005] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT Press, 2005. [Betancourt, Girolami, 2013] M. J. Betancourt, M. Girolami, Hamiltonian Monte Carlo for Hierarchical Models, 2013.

Appendix: discrete field

Appendix: non stationnary field

Appendix: non stationnary field

