

THÈSE DE DOCTORAT DE

L'ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE
PAYS DE LA LOIRE – IMT ATLANTIQUE

ÉCOLE DOCTORALE Nº 648

Sciences pour l'Ingénieur et le Numérique

Spécialité : Mathématiques et Sciences et Technologies de l'Information et de la Communica-

tion

Par

Léo LAVAUR

L'Apprentissage Fédéré comme Outil pour la Détection Collaborative d'Intrusions

Thèse présentée et soutenue à Rennes, le XX septembre 2024

Unité de recherche: IRISA (UMR 6074), SOTERN

Rapporteurs avant soutenance:

Anne-Marie Kermarrec Professeure à l'Université Polytechnique Fédérales de Lausanne (EPFL)

Éric Totel Professeur à Télécom SudParis

Composition du Jury :

Attention, en cas d'absence d'un des membres du Jury le jour de la soutenance, la composition du jury doit être revue pour s'assurer quelle est conforme et devra être répercutée sur la couverture de thèse

Président : À compléter après la soutenance.

Examinateurs : Sonia Ben Mokhtar Directrice de Recherche CNRS au laboratoire LIRIS

Pierre-François Gimenez Maître de Conférence à CentraleSupelec

Vincent Nicomette Professeur à l'INSA de Toulouse

Fabien AUTREL Ingénieur de Recherche à IMT Atlantique

Marc-Oliver PAHL Directeur d'Étude à IMT Atlantique

Dir. de thèse : Yann BUSNEL Directeur de la Recherche et de l'Innovation (DRI) à IMT Nord Europe

Invité(s):

Prénom NOM Fonction et établissement d'exercice

ABSTRACTS

Résumé

La collaboration entre les différents acteurs de la cybersécurité est essentielle pour lutter contre des attaques de plus en plus sophistiquées et nombreuses. Pourtant, les organisations sont souvent réticentes à partager leurs données, par peur de compromettre leur confidentialité, et ce même si cela pourrait d'améliorer leurs modèles de détection d'intrusions. L'apprentissage fédéré est un paradigme récent en apprentissage automatique qui permet à des clients distribués d'entraîner un modèle commun sans partager leurs données. Ces propriétés de collaboration et de confidentialité en font un candidat idéal pour des applications sensibles comme la détection d'intrusions. Si un certain nombre d'applications ont montré qu'il est, en effet, possible d'entraîner un modèle unique sur des données distribuées de détection d'intrusions, peu se sont intéressées à l'aspect collaboratif de ce paradigme. En plus de l'aspect collaboratif, d'autres problématiques apparaissent dans ce contexte, telles que l'hétérogénéité des données des différents participants ou la gestion de participants non fiables. Dans ce manuscrit, nous explorons l'utilisation de l'apprentissage fédéré pour construire des systèmes collaboratifs de détection d'intrusions. En particulier, nous explorons l'impact de la qualité des données dans des contextes hétérogènes, certains types d'attaques par empoisonnement, et proposons des outils et des méthodologies pour améliorer l'évaluation de ce type d'algorithmes distribués.

Abstract

Collaboration between different cybersecurity actors is essential to fight against increasingly sophisticated and numerous attacks. However, stakeholders are often reluctant to share their data, fearing confidentiality and privacy issues, although it would improve their intrusion detection models. Federated learning is a recent paradigm in machine learning that allows distributed clients to train a common model without sharing their data. These properties of collaboration and confidentiality make it an ideal candidate for sensitive applications such as intrusion detection. While several applications have shown that it is indeed possible to train a single model on distributed intrusion detection data, few have focused on the collaborative aspect of this paradigm. In addition to the collaborative aspect, other challenges arise in this context, such as the heterogeneity of the data between different participants or the management of untrusted contributions. In this manuscript, we explore the use of federated learning to build collaborative intrusion detection systems. In particular, we explore the impact of data quality in heterogeneous contexts, some types of poisoning attacks, and propose tools and methodologies to improve the evaluation of these types of distributed algorithms.

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

A۱	bstra	acts	iii
A	ckno	wledgements	\mathbf{v}
Ta	ıble (of Contents	1
1	Intr	roduction	3
	1.1	Context and Motivation	3
	1.2	Contributions	5
	1.3	Outline	6
	1.4	Publications	7
Ι	Fe	derated Learning to build CIDSs	9
2	Pre	liminaries	11
	2.1	Machine Learning for Intrusion Detection	11
	2.2	Fundamentals of Federated Learning	11
	2.3	Threats against Federated Learning	11
3	Sta	te of the Art	13
	3.1	Introduction and Motivation	13
	3.2	Methodology	14
	3.3	Quantitative Analysis	18
	3.4	Qualitative Analysis	23
	3.5	Related Work	38
	3.6	Discussion	41
	3.7	Conclusion and takeaways	44
4	App	plication – FIDSs Performance and Limitations	47
II	Q	Quantifying the Limitations of FIDSs	49
5	Stu	dying Heterogeneity in Distributed Intrusion Detection with Topol-	
	OCT	Concretion	51

6	Assessing the Impact of Label-Flipping Attacks on FL-based II	OSs 53
Η	II Providing Solutions	55
7	Model Quality Assessment for Reputation-aware Collaborative ated Learning	e Feder- 57
8	Solutions for the Future of FIDSs	59
9	Conclusion	61
Bi	Bibliography	63
Li	List of Figures	63
Li	List of Tables	65
$\mathbf{A}_{\mathbf{j}}$	Appendices	87
	A Additional figures	87
	B Résumé en français de la thèse	87
\mathbf{G}	Glossary	88

Federated Learning to build CIDSs

PRELIMINARIES

Contents

2.1	Machine Learning for Intrusion Detection	11
2.2	Fundamentals of Federated Learning	11
2.3	Threats against Federated Learning	11

This chapter provides the necessary background on Machine Learning (ML) for intrusion detection, the inner of Federated Learning (FL), and the related threats.

- 2.1 Machine Learning for Intrusion Detection
- 2.2 Fundamentals of Federated Learning
- 2.3 Threats against Federated Learning

Part II

Quantifying the Limitations of FIDSs

Part III

Providing Solutions

LIST OF FIGURES

1.1	Illustration of Federated Learning (FL) in a Collaborative IDS (CIDS) use	
	case	5
3.1	Search and selection processes	15
3.2	Updated selection process	17
3.3	Evolution of the topics and number of publications	18
3.4	Distribution of the publications in the most recurring venues	19
3.5	Distribution of the publications by affiliation	20
3.6	Distribution of the publications by author and country	21
3.7	Topics of interest in the field of Federated Intrusion Detection Systems	
	(FIDSs)	22
3.8	Exploiting the topics of interest	22
3.9	The proposed reference architecture for FIDSs	24
3.10	Proposed taxonomy for FIDS	26
9.1	Topic embedding of the FIDS literature using a Non-negative Matrix Fac-	
	torization (NMF) model with 20 topics. Each point represents a paper, and	
	each are labelled with the tonic they are the most associated with	87

LIST OF TABLES

3.1	Comparative overview of selected works in the original study—approach	
	and objectives $(1/2)$	27
3.2	Comparative overview of selected works in the original study—algorithms	
	and performance $(2/2)$	32
3.3	Related literature reviews, their topics, contributions, and number of cita-	
	tions.	39

Titre: L'Apprentissage Fédéré comme Outil pour la Détection Collaborative d'Intrusions

Mot clés : apprentissage automatique, apprentissage fédéré, détection d'intrusions, collaboration, confiance

Résumé: La collaboration entre les différents acteurs de la cybersécurité est essentielle pour lutter contre des attaques de plus en plus sophistiquées et nombreuses. Pourtant, les organisations sont souvent réticentes à partager leurs données, par peur de compromettre leur confidentialité, et ce même si cela pourrait d'améliorer leurs modèles de détection d'intrusions. L'apprentissage fédéré est un paradigme récent en apprentissage automatique qui permet à des clients distribués d'entraîner un modèle commun sans partager leurs données. Ces propriétés de collaboration et de confidentialité en font un candidat idéal pour des applications sensibles comme la détection d'intrusions. Si un certain nombre d'applications ont montré qu'il est, en effet, possible d'entraîner un modèle unique sur des données distribuées de détection d'intrusions, peu se sont intéressées à l'aspect collaboratif de ce paradigme. En plus de l'aspect collaboratif, d'autres problématiques apparaissent dans ce contexte, telles que l'hétérogénéité des données des différents participants ou la gestion de participants non fiables. Dans ce manuscrit, nous explorons l'utilisation de l'apprentissage fédéré pour construire des systèmes collaboratifs de détection d'intrusions. En particulier, nous explorons l'impact de la qualité des données dans des contextes hétérogènes, certains types d'attaques par empoisonnement, et proposons des outils et des méthodologies pour améliorer l'évaluation de ce type d'algorithmes distribués.

Title: On Federated Learning as a Framework for Collaborative Intrusion Detection

Keywords: machine learning, federated learning, intrusion detection, collaboration, trust

Abstract: Collaboration between different cybersecurity actors is essential to fight against increasingly sophisticated and numerous attacks. However, stakeholders are often reluctant to share their data, fearing confidentiality and privacy issues, although it would improve their intrusion detection models. Federated learning is a recent paradigm in machine learning that allows distributed clients to train a common model without sharing their data. These properties of collaboration and confidentiality make it an ideal candidate for sensitive applications such as intrusion detection. While several applications have shown that it is indeed possible to train a single model on

distributed intrusion detection data, few have focused on the collaborative aspect of this paradigm. In addition to the collaborative aspect, other challenges arise in this context, such as the heterogeneity of the data between different participants or the management of untrusted contributions. In this manuscript, we explore the use of federated learning to build collaborative intrusion detection systems. In particular, we explore the impact of data quality in heterogeneous contexts, some types of poisoning attacks, and propose tools and methodologies to improve the evaluation of these types of distributed algorithms.