Graph Mining SD212 7. Graph Embedding

Thomas Bonald

2019 - 2020

Motivation

- ▶ Representation of a graph in a vector space
- ▶ Dimensionality reduction

Outline

- 1. Spectral embedding
- 2. Laplacian eigenmaps
- 3. Extensions

An optimization problem

$$\min_{X:X^T = 0, X^T X = I} \sum_{i,j \in V} A_{ij} ||X_i - X_j||^2$$

Laplacian matrix

Lemma

$$\operatorname{tr}(X^T L X) = \frac{1}{2} \sum_{i,j \in V} A_{ij} ||X_i - X_j||^2$$

Spectral decomposition

Proposition

By the spectral theorem,

$$LV = V\Lambda$$

where

- $V^TV = I$
- \land $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_1 = 0 \le \lambda_2 \le \dots \le \lambda_n$

Example

Spectral embedding

Definition

Embedding X given by the first K eigenvectors of the Laplacian (except the first)

Theorem

The spectral embedding is optimal:

$$X = \arg\min_{X:X^T = 0, X^T X = I_K} \operatorname{tr}(X^T L X)$$

Example

0.4

Outline

- 1. Spectral embedding
- 2. Laplacian eigenmaps
- 3. Extensions

Back to the optimization problem

$$\min_{X:X^T\underset{\mathbf{d}}{=}0,X^T\underset{D}{D}X=I}\sum_{i,j\in V}A_{ij}||X_i-X_j||^2$$

Generalized eigenvalue problem

Proposition

$$LV = DV\Lambda$$

where

- $V^TDV = I$
- ▶ $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_1 = 0 \le \lambda_2 \le \dots \le \lambda_n$

Transition matrix

Proposition

$$PV = V(I - \Lambda)$$

where

- $V^TDV = I$
- \wedge $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ with $\lambda_1 = 0 \le \lambda_2 \le \ldots \le \lambda_n$

Laplacian eigenmap

Definition

Embedding X given by the K leading eigenvectors of the **transition matrix** (except the first)

Theorem

The Laplacian eigenmap is optimal:

$$X = \arg\min_{X: X^T d = 0, X^T D X = I_K} \operatorname{tr}(X^T L X)$$

Example

Outline

- 1. Spectral embedding
- 2. Laplacian eigenmaps
- 3. Extensions

Bipartite graphs

Co-embedding

Directed graphs as bipartite graphs

