

Grundlagen der Robotik

Übung 6

Abgabe am Donnerstag, 30. November, vor der Vorlesung.

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INFORMATIK VI **AUTONOMOME** INTELLIGENTE SYSTEME

Prof. Dr. Sven Behnke Friedrich-Hirzebruch-Allee 8

6.1) Gegeben sei ein planarer Arm (Bewegung in der xy-Ebene) mit einem Lineargelenk entlang der x-Achse und zwei Rotationsgelenken:

Basis: $x_0=0$, $y_0=0$, $\theta_0=0$

Die Längen seien: $L_2 = 4$ m, $L_3 = 3$ m, $L_4 = 2$ m.

Bestimmen Sie eine mögliche Gelenkposition (d_1 , θ_2 , θ_3 , θ_4) für einen Startpunkt A, a) sodass der Endeffektor in der Pose ($x_A = -1 \text{ m}$, $y_A = 1,5 \text{ m}$, $\theta_A = 45^\circ$) ist!

2 Punkte

Bestimmen Sie eine mögliche Gelenkpositionen (d_1 , θ_2 , θ_3 , θ_4) für einen Endpunkt B, b) sodass der Endeffektor in der Pose ($x_B = 2 \text{ m}$, $y_B = -0.5 \text{ m}$, $\theta_B = -60^\circ$) ist!

2 Punkte

c) Bestimmen Sie die Trajektorie des Endeffektors wenn Sie die Gelenkpositionen linear von Startpose A (bei t = 0 s) zu Endpose B (bei t = 8 s) interpolieren! Zeichnen Sie die Kurven der resultierenden Endeffektor-Koordinaten (x_e , y_e , θ_e) in Abhängigkeit von der Zeit t und im Kartesischen xy-System!

3 Punkte

d) Bestimmen Sie die Trajektorie der Gelenkparameter wenn Sie den Endeffektor linear von Startpose A (bei t = 0 s) zu Endpose B (bei t = 8 s) interpolieren! Zeichnen Sie die Kurven der Endeffektor-Koordinaten (x_e , y_e , θ_e) und der resultierenden Gelenkparameter (d_1 , θ_2 , θ_3 , θ_4) in Abhängigkeit von der Zeit!

5 Punkte

6.2) Ein zeitdiskretes System ist wie folgt spezifiziert:

$$y[n] = u[n] - 1/2 \cdot y[n-1]$$

Ist das System stabil?

Beweisen Sie Ihre Antwort!

4 Punkte

6.3) Zeigen Sie, dass das System aus 6.2) ein lineares zeitinvariantes System (LTI-System) ist!

4 Punkte