Compiling Contingent Planning into Classical Planning: New Translations and Results

H. Palacios¹ A. Albore² H. Geffner^{1,3}

¹Universitat Pompeu Fabra Barcelona, Spain

> ²ONERA & INRA Toulouse, France

³ICREA Catalonia, Spain

MMPU WS, ICAPS, June 2014 presented by Filippos Kominis

Planning problems

- Classical planning assumes deterministic actions; solutions are action sequences
- Conformant planning: incomplete information and no sensing; solutions are action sequences
- Contingent planning: incomplete information and sensing; solutions are trees/policies
- Conformant and Contingent planning commonly addressed as search problems in belief space
- Challenging: # of belief states is doubly exponential in # of vars.

Translation-based approaches

- Family of translations $K_{T,M}$ from **conformant to classical** [Palacios & Geffner, 2007]
 - In the worst case, complete translation is exponential in # of vars
 - Translation instance K_i is poly and complete if $width(P) \le i$
 - K₁ translation underlies T₀ conformant planner
- Similar family of translations $X_{T,M}$ from **contingent to FOND** [Albore et al., 2009]
 - In the worst case, complete translation is exponential in # of vars
 - Translation instance X_i is poly and complete if width(P) ≤ i
 - X₁ translations underlies CLG contingent planner

Translation-based approaches

- Family of translations $K_{T,M}$ from **conformant to classical** [Palacios & Geffner, 2007]
 - In the worst case, complete translation is exponential in # of vars
 - Translation instance K_i is poly and complete if $width(P) \le i$
 - K_1 translation underlies T_0 conformant planner
- Similar family of translations $X_{T,M}$ from **contingent to FOND** [Albore et al., 2009]
 - In the worst case, complete translation is exponential in # of vars
 - Translation instance X_i is poly and complete if $width(P) \le i$
 - X₁ translations underlies CLG contingent planner
- More recently, translations from contingent to classical [Brafman & Shani 2012]
 - Translation is exponential in # of possible initial states
 - hence doubly exponential in # of vars
 - Used for selecting actions in online MSPR planner by considering relaxation where set of initial states replaced by 4 random samples

Translation-based approaches

- Family of translations $K_{T,M}$ from **conformant to classical** [Palacios & Geffner, 2007]
 - In the worst case, complete translation is exponential in # of vars
 - Translation instance K_i is poly and complete if $width(P) \le i$
 - K₁ translation underlies T₀ conformant planner
- Similar family of translations $X_{T,M}$ from **contingent to FOND** [Albore et al., 2009]
 - In the worst case, complete translation is exponential in # of vars
 - Translation instance X_i is poly and complete if $width(P) \le i$
 - X₁ translations underlies CLG contingent planner
- More recently, translations from contingent to classical [Brafman & Shani 2012]
 - Translation is exponential in # of possible initial states
 - hence doubly exponential in # of vars
 - Used for selecting actions in online MSPR planner by considering relaxation where set of initial states replaced by 4 random samples

Aim of this work

- More effective translations from contingent to classical, that can be used to solve contingent problems off-line
 - Obtain the solution directly from a classical planner

Two translations:

- C₁: quadratic in number of initial states
- C_2 : linear in number of initial states
- Ongoing work: more compact translations that are linear or quadratic in number of variables
 - Like those underlying CLG, K-replanner, LW1

Syntax and semantics of contingent planning

Given a Contingent problem P:

Contingent problem $P = \langle F, O, A, I, G \rangle$

- F fluents in P
- O sensing actions
- 3 A actions, including conditional effects $C \rightarrow L$
- 4 / initial situation, CNF clauses over F-literals
- \odot G goal situation, **conjunction** of F-literals

P defines a **state model** S(P):

Contingent state model $S(P) = \langle S, S_0, S_G, A, f, o \rangle$

- \bigcirc S set of valuations s over fluents in F
- 2 S_0 set of initial states, S_G set of goal states
- \bigcirc A(s) actions applicable in s
- (a, s) state transition function
- o(a, s) sensing function

Contingent State Model

- Solution marked in red, represented as a tree or a graph.
- Translation to classical
 - Classical plan is sequence of actions representing tree solution.

Idea of Brafman's & Shani's Translation [2012]

- Use fluents:
 - L/s: L true if s was hidden initial state.
 - KW L/s: **knows value of L** if s was hidden initial state
 - KW ¬s'/s: s' cannot be the current state if s was hidden initial state
- For each action a in original problem P and subset b of S₀, create action a(b)
 - Precondition: b is a belief distinguished by obs;
 know and verify precondition p of a, for all states s in b
 - **Effect**: carry on effects L/s, for effect L of a, and all states s in b
 - Observation of p: split belief b; know p, for all states s in b
 - (also, keep track of KW L/s through actions and merge action)

Idea of Brafman's & Shani's Translation [2012]

- Use fluents:
 - L/s: L true if s was hidden initial state.
 - KW L/s: **knows value of L** if s was hidden initial state
 - KW ¬s'/s: s' cannot be the current state if s was hidden initial state
- For each action a in original problem P and subset b of S₀, create action a(b)
 - Precondition: b is a belief distinguished by obs;
 know and verify precondition p of a, for all states s in b
 - **Effect**: carry on effects L/s, for effect L of a, and all states s in b
 - Observation of p: split belief b; know p, for all states s in b
 - (also, keep track of KW L/s through actions and merge action)
- Problem: exponential in # of initial states
- Planner MPSR uses heuristic based on multi-path translation using only a small subset b of S_0 , s.t. $|b| \le 4$

Idea of Brafman's & Shani's Translation [2012]

- Use fluents:
 - L/s: L true if s was hidden initial state.
 - KW L/s: knows value of L if s was hidden initial state
 - KW ¬s'/s: s' cannot be the current state if s was hidden initial state
- For each action a in original problem P and subset b of S₀, create action a(b)
 - Precondition: b is a belief distinguished by obs;
 know and verify precondition p of a, for all states s in b
 - **Effect**: carry on effects L/s, for effect L of a, and all states s in b
 - Observation of p: split belief b; know p, for all states s in b
 - (also, keep track of KW L/s through actions and merge action)
- Problem: exponential in # of initial states
- Planner MPSR uses heuristic based on multi-path translation using only a small subset b of S_0 , s.t. $|b| \le 4$

- Fluents
 - L/s: L true if s was hidden initial state
 - XL/s: L known true in execution associated with the hidden state s.
 - i.e. L true in **belief** b **where** s **belongs to**.
 - s is a witness of b.
 - D(s, s'): s and s' in **different** belief states
- For each action a in original problem P, create action a(s) for each s in S₀
 - Let b belief where s belongs to
 - Precondition: precondition p of a holds in all states s' in b
 - **Effect**: carry on effects L/s' for all states s' in b
 - Observation of p: split belief b
 - Keep XL/s in sync using axioms

- Fluents
 - L/s: L true if s was hidden initial state
 - XL/s: L known true in execution associated with the hidden state s.
 - i.e. L true in **belief** b **where** s **belongs to**.
 - s is a witness of b.
 - D(s, s'): s and s' in **different** belief states
- For each action a in original problem P, create action a(s) for each s in S₀
 - Let b belief where s belongs to
 - **Precondition**: precondition *p* of *a* holds in all states *s'* in *b*
 - **Effect**: carry on effects L/s' for all states s' in b
 - Observation of p: split belief b
 - Keep XL/s in sync using axioms
- Advantages:
 - Quadratic in # of initial states (vs exponential)
 - Contingent plans obtained directly from classical planner

Classical state represents **all** current belief states.

- Fluents
 - L/s: L true if s was hidden initial state
 - XL/s: L known true in execution associated with the hidden state s.
 - i.e. L true in **belief** b **where** s **belongs to**.
 - s is a witness of b.
 - D(s, s'): s and s' in **different** belief states
- For each action a in original problem P, create action a(s) for each s in S₀
 - Let b belief where s belongs to
 - **Precondition**: precondition *p* of *a* holds in all states *s'* in *b*
 - **Effect**: carry on effects L/s' for all states s' in b
 - Observation of p: split belief b
 - Keep XL/s in sync using axioms

Advantages:

- Quadratic in # of initial states (vs exponential)
- Contingent plans obtained directly from classical planner

Outline

- Translation C_1 and C_2
 - Intuitions
 - Formal Translation
 - Properties
- Experimental Results and Challenges
- Conclusion and Future Work

Examples: States of C_1

Two states, One belief state

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\},$
- Initial belief state: $\{s_1, s_2\}$
- Initial classical state of C_1 : $\{p/s_1, q/s_1, q/s_2, Xq/s_1, Xq/s_2\}$

Three states, Two belief states

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\}, s_3 = \{p\}$
- Initial belief state: $\{s_1, s_2, s_3\}$
- Observe q
- Two belief states: $\{s_1, s_2\}$ and $\{s_3\}$
- Classical state: $\{p/s_1, q/s_1, \ q/s_2, \ D(s_1, s_3), D(s_2, s_3), \ p/s_3, \ Xq/s_1, Xq/s_2, \ Xp/s_3\}$

Examples: States of C_1

Two states, One belief state

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\},$
- Initial belief state: $\{s_1, s_2\}$
- Initial classical state of C_1 : $\{p/s_1, q/s_1, q/s_2, Xq/s_1, Xq/s_2\}$

Three states, Two belief states

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\}, s_3 = \{p\}$
- Initial belief state: $\{s_1, s_2, s_3\}$
- Observe q
- Two belief states: $\{s_1, s_2\}$ and $\{s_3\}$
- Classical state: $\{p/s_1, q/s_1, \ q/s_2, \ D(s_1, s_3), D(s_2, s_3), \ p/s_3, \ Xq/s_1, Xq/s_2, \ Xp/s_3\}$

Classical problem $C_1(P) = \langle F', I', G', A' \rangle$

- G' = G
- **4** $A' = \{a(s) \mid a \in O \cup A, s \in S_0\}$ s.t.
 - XL/s in prec. for $L \in Pre(a)$
 - If a is **physical action** in A, with cond effect $a: C \rightarrow E$,
 - $a(s): C/s', \neg D(s,s') \rightarrow E/s'$ for all states s' in S_0
 - If a is sensing action in O observing p,
 - $a(s): \neg D(s,s'), \neg D(s,s''), p/s', \neg p/s'' \rightarrow D(s',s''), D(s'',s')$ for s',s'' in S_0
- **5** Axioms: $\bigwedge_{s' \in S_0} [L/s' \lor D(s,s')] \to XL/s$ $\bigwedge_{s \in S_0} L/s \to L$

Classical problem $C_1(P) = \langle F', I', G', A' \rangle$

- G' = G
- - XL/s in prec. for $L \in Pre(a)$
 - If a is **physical action** in A, with cond effect $a: C \rightarrow E$,
 - $a(s): C/s', \neg D(s,s') \rightarrow E/s'$ for all states s' in S_0
 - If a is sensing action in O observing p,
 - $a(s): \neg D(s,s'), \neg D(s,s''), p/s', \neg p/s'' \rightarrow D(s',s''), D(s'',s')$ for s',s'' in S_0

Properties of translation C_1

Theorem

Translations $C_1(P)$ is **sound** and **complete**.

- **Soundness**: classical plans for $C_1(P)$ are contingent plans for P.
- **Completeness**: all plans for P are classical plans for $C_1(P)$.
- Translation size
 - Number of actions linear in # of initial states (vs exponential)
 - Number of fluents remains quadratic in # of initial states
- Possible problems with C₁
 - Quadratic in # of initial states is still big
 - Branching factor: in any moment the classical planner can apply actions to any leaf.

Properties of translation C_1

Theorem

Translations $C_1(P)$ is **sound** and **complete**.

- **Soundness**: classical plans for $C_1(P)$ are contingent plans for P.
- **Completeness**: all plans for P are classical plans for $C_1(P)$.
- Translation size
 - Number of actions linear in # of initial states (vs exponential)
 - Number of fluents remains quadratic in # of initial states
- Possible problems with C₁
 - Quadratic in # of initial states is still big
 - Branching factor: in any moment the classical planner can apply actions to any leaf.

Translation $C_2(P, M)$

- Parameter M for the maximum number of observations in a branch.
- Use **stack** of size *M* for storing pending belief states
- Size: linear in # of initial states and M

Fluents of $C_2(P, M)$:

- L/s: L true **if** s was hidden initial state, as before.
- XL: L is known to be true in current belief
- m(s): state s is part of the current belief
 - Instead of D(s, s') used in C_1
- stack(s, l): state s in belief state stacked at level l
- lev(I): top of stack

Translation $C_2(P, M)$

- Parameter M for the maximum number of observations in a branch.
- Use stack of size M for storing pending belief states
- Size: linear in # of initial states and M

Fluents of $C_2(P, M)$:

- L/s: L true **if** s was hidden initial state, as before.
- XL: L is known to be true in current belief
- m(s): state s is part of the current belief
 - Instead of D(s, s') used in C_1
- stack(s, l): state s in belief state stacked at level l
- lev(I): top of stack

Examples: States of C_2

Two states, One belief state

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\},$
- Initial belief state: $\{s_1, s_2\}$
- Initial classical state of C_2 : $\{m(s_1), p/s_1, q/s_1, m(s_2), q/s_2, Xq, lev(0)\}$

Three states, Two belief states

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\}, s_3 = \{p\}$
- Initial belief state: $\{s_1, s_2, s_3\}$
- Observe q
- Two belief states: $\{s_1, s_2\}$ and $\{s_3\}$
- Classical state: $\{m(s_1), p/s_1, q/s_1, m(s_2), q/s_2, Xq, lev(1), stack(s_3, 1), p/s_3\}$

Examples: States of C_2

Two states, One belief state

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\},$
- Initial belief state: $\{s_1, s_2\}$
- Initial classical state of C_2 : $\{m(s_1), p/s_1, q/s_1, m(s_2), q/s_2, Xq, lev(0)\}$

Three states, Two belief states

- Initial states: $s_1 = \{p, q\}, s_2 = \{q\}, s_3 = \{p\}$
- Initial belief state: $\{s_1, s_2, s_3\}$
- Observe q
- Two belief states: $\{s_1, s_2\}$ and $\{s_3\}$
- Classical state: $\{m(s_1), p/s_1, q/s_1, m(s_2), q/s_2, Xq, lev(1), stack(s_3, 1), p/s_3\}$

- ① $F' = \{L/s, m(s), lev(l), stack(l, s) \mid L \in F, s \in S_0, l \in [0, M]\}$
- ② G' = G $I' = \{L/s, m(s), lev(0) \mid L \in F, s \in S_0, s \models L\}$
- **3** $A' = A \cup \{a(p, l), pop(l + 1) \mid a \in O, l \in [0, M]\}$ s.t.
 - If a is physical action in A, action a
 - Prec: XL for $L \in Pre(a)$, $\neg XG$
 - $a: C/s, m(s) \rightarrow E/s$ for all states s in S_0 , for cond effect $a: C \rightarrow E$,

- ② G' = G $I' = \{L/s, m(s), lev(0) \mid L \in F, s \in S_0, s \models L\}$
- 3 $A' = A \cup \{a(p, l), pop(l + 1) \mid a \in O, l \in [0, M]\}$ s.t.
 - If a is physical action in A, action a
 - Prec: XL for $L \in Pre(a)$, $\neg XG$
 - $a: C/s, m(s) \to E/s$ for all states s in S_0 , for cond effect $a: C \to E$,
 - If a is sensing action in O observing p, action a(p, l)
 - Prec: XL for $L \in Pre(a)$, $\neg XG$, $\neg Xp$, $\neg X\neg p$, lev(l)
 - Effect: $\neg lev(I)$, lev(I+1)
 - $a(p, l) : m(s), \neg p/s \rightarrow stack(s, l+1), \neg m(s)$ for s in S_0

- 2 G' = G $I' = \{L/s, m(s), lev(0) \mid L \in F, s \in S_0, s \models L\}$
- 3 $A' = A \cup \{a(p, l), pop(l + 1) \mid a \in O, l \in [0, M]\}$ s.t.
 - If a is physical action in A, action a
 - Prec: XL for $L \in Pre(a)$, $\neg XG$
 - $a: C/s, m(s) \rightarrow E/s$ for all states s in S_0 , for cond effect $a: C \rightarrow E$,
 - If a is sensing action in O observing p, action a(p, l)
 - Prec: XL for $L \in Pre(a)$, $\neg XG$, $\neg Xp$, $\neg X\neg p$, lev(l)
 - Effect: ¬lev(I), lev(I + 1)
 - $a(p, l) : m(s), \neg p/s \rightarrow stack(s, l+1), \neg m(s)$ for s in S_0
 - Action pop(I):
 - Prec: XG, lev(I). Effect: $\neg lev(I)$, lev(I-1)
 - $pop(I): m(s) \rightarrow \neg m(s)$ for s in S_0
 - pop(I): $stack(s, I) \rightarrow m(s)$, $\neg stack(s, I)$ for s in S_0

- ② G' = G $I' = \{L/s, m(s), lev(0) \mid L \in F, s \in S_0, s \models L\}$
- 3 $A' = A \cup \{a(p, l), pop(l + 1) \mid a \in O, l \in [0, M]\}$ s.t.
 - If a is physical action in A, action a
 - Prec: XL for $L \in Pre(a)$, $\neg XG$
 - $a: C/s, m(s) \rightarrow E/s$ for all states s in S_0 , for cond effect $a: C \rightarrow E$,
 - If a is sensing action in O observing p, action a(p, l)
 - Prec: XL for $L \in Pre(a)$, $\neg XG$, $\neg Xp$, $\neg X\neg p$, lev(l)
 - Effect: ¬lev(I), lev(I + 1)
 - $a(p, l) : m(s), \neg p/s \rightarrow stack(s, l+1), \neg m(s)$ for s in S_0
 - Action pop(I):
 - Prec: XG, lev(I). Effect: $\neg lev(I)$, lev(I-1)
 - $pop(I): m(s) \rightarrow \neg m(s)$ for s in S_0
 - pop(I) : $stack(s, I) \rightarrow m(s)$, $\neg stack(s, I)$ for s in S_0
- **4 Axioms**: $\bigwedge_{s \in S_0} [L/s \vee \neg m(s)] \to XL$ $\bigwedge_{s \in S_0} L/s \to L$

- **1** $F' = \{L/s, m(s), lev(l), stack(l, s) \mid L \in F, s \in S_0, l \in [0, M]\}$
- ② G' = G $I' = \{L/s, m(s), lev(0) \mid L \in F, s \in S_0, s \models L\}$
- 3 $A' = A \cup \{a(p, l), pop(l + 1) \mid a \in O, l \in [0, M]\}$ s.t.
 - If a is physical action in A, action a
 - Prec: XL for $L \in Pre(a)$, $\neg XG$
 - $a: C/s, m(s) \rightarrow E/s$ for all states s in S_0 , for cond effect $a: C \rightarrow E$,
 - If a is sensing action in O observing p, action a(p, l)
 - Prec: XL for $L \in Pre(a)$, $\neg XG$, $\neg Xp$, $\neg X\neg p$, lev(l)
 - Effect: $\neg lev(I)$, lev(I+1)
 - $a(p, l) : m(s), \neg p/s \rightarrow stack(s, l+1), \neg m(s)$ for s in S_0
 - Action pop(I):
 - Prec: XG, lev(I). Effect: $\neg lev(I)$, lev(I-1)
 - $pop(I): m(s) \rightarrow \neg m(s)$ for s in S_0
 - pop(I) : $stack(s, I) \rightarrow m(s)$, $\neg stack(s, I)$ for s in S_0
- **4** Axioms: $\bigwedge_{s \in S_0} [L/s \vee \neg m(s)] \to XL$ $\bigwedge_{s \in S_0} L/s \to L$

Properties of translation C_2

Theorem

Translation $C_2(P, M)$ is **sound** and **complete**, capturing all the contingent plans for P whose depth is bounded by M.

depth of contingent plan = max number of sensing actions in a branch

- **Soundness**: classical plans for $C_2(P)$ are contingent plans for P.
- Completeness: all plans for P are classical plans for $C_2(P)$, for some stack size M.
- Translation size is linear on number of initial states and stack size.

Empirical comparison with contingent planners

- Compiled away axioms into new actions + bookkeeping.
- **Solved** output of **translations** C_1 and C_2 with many state-of-the-art Classical Planners.
- SIW, LAMA, and FF were retained as providing the best performances.
- C₂ shows slightly better **coverage**
 - Usually smaller but more complicated classical problems than C_1 .
- Performances of translations outperform Contingent-FF, MBP, and Pond contingent planners.
- "New generation" of offline contingent planners perform better than these C_1/C_2 + classical planner, e.g. CLG, DNFct.

Empirical comparison with contingent planners

- Compiled away axioms into new actions + bookkeeping.
- **Solved** output of **translations** C_1 and C_2 with many state-of-the-art Classical Planners.
- SIW, LAMA, and FF were retained as providing the best performances.
- C₂ shows slightly better **coverage**
 - Usually smaller but more complicated classical problems than C_1 .
- Performances of translations outperform Contingent-FF, MBP, and Pond contingent planners.
- "New generation" of offline contingent planners perform better than these C_1/C_2 + classical planner, e.g. CLG, DNFct.

Performance of Classical Planners on C₁

<i>C</i> ₁		SIW			LAMA		
problem	pddl	plan	#exp/#act	nodes/s	size	#exp/#act	node/s
dispose 4 1	522	576	33.35	40	375	1310	7688
ebtcs 30	913.4	180	4.67	6	180	32.37	24459
ebtcs 50	4043	300	4.56	1	300	169.5	2338
elog 5	1081	450	25.97	3	330	2085	15812
elog 7	3621	TO			TO		
grid 3	1113	1239	57.04	26	78	326.73	564
grid 5	6432	TO			210	333.1	106
localize 5	3431	558	35.68	2	243	90.17	948
unix 2	3169	453	35.62	4	216	1.45	1116
unix 3	81058	MO			591	3.26	35

- PDDL size in kb; plan length; #exp/#act = expanded / plan length; nodes / second. TO = > 2h. MO = > 2gb.
- Expanding more costly in bigger problems.
- SIW slower as uses strong inference.

Performance of Classical Planners on C_2

<i>C</i> ₂		SIW			LAMA		
problem	pddl	plan	#exp/#act	node/s	size	#exp/#act	node/s
dispose 4 1	450	395	4.38	89	259	16	122
ebtcs 30	1317	243	2.61	28	177	4.2	83
ebtcs 50	5405	363	6.42	5	297	4.4	27
elog 5	362	301	5.99	52	287	148.4	1758
elog 7	553	481	7.23	42	401	554.5	778
grid 3	535	407	6.72	44	257	62.77	187
grid 5	1367	IW> 2			97	163.15	39
localize5	295.7	305	5.93	78	183	5.27	732
unix 2	718	137	8.39	36	117	4.21	147
unix 3	5918	MO			TO		

- In comparison with C₁
 - Faster node expansion for SIW
 - Slower node expansion for LAMA

Experimental challenges

- Translated problems are a new family of problems for classical planning, with peculiar characteristics.
- Classical planners shown very different behaviors, yet no one dominated the others on the C₁ and C₂ translations.
- Axioms are badly treated by classical planners in general: we had to compile them away, producing heavier PDDLs.
 - E.g. MSPR would be simpler and faster with axioms
- Results shown some limits of the heuristics, as it is difficult here to have a good heuristic evaluation
 - Many actions with zero cost/axioms/auxiliary actions
 - In Contingent Planning reasoning about gathered knowledge is needed but heuristics may not detect such need

Experimental challenges

- Translated problems are a new family of problems for classical planning, with peculiar characteristics.
- Classical planners shown very different behaviors, yet no one dominated the others on the C₁ and C₂ translations.
- Axioms are badly treated by classical planners in general: we had to compile them away, producing heavier PDDLs.
 - E.g. MSPR would be simpler and faster with axioms
- Results shown some limits of the heuristics, as it is difficult here to have a good heuristic evaluation
 - Many actions with zero cost/axioms/auxiliary actions
 - In Contingent Planning reasoning about gathered knowledge is needed but heuristics may not detect such need

Conclusion and Future Work

- Translations C₁ and C₂ from contingent planning P into classical planning
 - $C_1(P)$ is sound and complete
 - $C_2(P, M)$ is sound and complete,
 - for at most *M* sensing in a branch.
- Experimental results comparable with previous generation of contingent planners, but outperformed by recent ones.
- New challenge for classical planners

Future work

- Compact translation based on C₂, polynomial in num of variables.
- Use axiom support of classical planners.
- Most informed online contingent planning
 - This approach could help to deal with dead-ends

Conclusion and Future Work

- Translations C₁ and C₂ from contingent planning P into classical planning
 - C₁(P) is sound and complete
 - $C_2(P, M)$ is sound and complete,
 - for at most *M* sensing in a branch.
- Experimental results comparable with previous generation of contingent planners, but outperformed by recent ones.
- New challenge for classical planners

Future work

- Compact translation based on C₂, polynomial in num of variables.
- Use axiom support of classical planners.
- Most informed online contingent planning
 - This approach could help to deal with dead-ends

All good things come to an End

Thank you!

End of Presentation

End of Presentation