

TECHNOLOGIE PRO BIG DATA CVIČENÍ VII. APACHE SPARK III

Lukáš Matějů 07.11.2024 | TPB

PŘÍPRAVA CVIČENÍ

- pro práci s MLLIB je vyžadován balíček numpy
 - bohužel není v kontejneru defaultně dostupný
 - zároveň je kontejner non-root, takže ho není možné doinstalovat
- potřeba poupravit docker-compose.yml
 - u mastera přidat řádek user: root
 - potřeba znovu zavolat docker-compose up -d --build
 - v kontejneru jsou nyní k dispozici root práva
 - možnost nainstalovat numpy
 - pip install numpy

root@a42213733e4a:/files#

services:

environment:

image: docker.io/bitnami/spark:3

root@a42213733e4a:/files# pip install numpy_

- poznámka: Spark bude opět ukecaný
 - pro ztišení je potřeba znovu vytvořit soubor log4j2.properties

ROZHODOVACÍ STROMY

- staví klasifikační nebo regresní modely ve formě stromů
 - dělí dataset na menší a menší části, zatímco budují přiřazený strom
 - finální strom má rozhodovací a koncové uzly
 - rozhodovací uzly mají dvě nebo více větví s jednotlivými možnostmi
 - koncové uzly reprezentují číselné hodnoty

https://www.youtube.com/watch?v=g9c66TUylZ4

DNEŠNÍ CVIČENÍ

- 1. predikujte hodnotu nemovitostí s využitím rozhodovacích stromů
 - k dispozici máte data o reálném prodeji nemovitostí na Tajvanu (<u>realestate.csv</u>)
 - datum transakce, stáří domu, vzdálenost k veřejné dopravě, počet obchodů, souřadnice a cena

Transactio	onDate	HouseAge	DistanceToMRT	NumberConvienienceStores	Latitude	Longitude	PriceOfUnitArea
	2012.917	32	84.87882	10	24.98298	121.54024	37.9
	2012.917	19.5	306.5947	9	24.98034	121.53951	42.2
	2013.583	13.3	561.9845	5	24.98746	121.54391	47.3

- jako příznaky použijte stáří domu, vzdálenost k veřejné dopravě a počet obchodů
- cílem je predikovat cenu (za jednotku)
- k implementaci
 - datový soubor má hlavičku pro snadné načtení do DataFramu
 - pro použití více vstupních příznaků můžete použit VectorAssembler

assembler = VectorAssembler().setInputCols(["col1", "col2", ...])
df = assembler.transform(data).select("labelColumnName",
 "features")

https://www.udemy.com/course/taming-big-data-with-apache-spark-hands-on/

DNEŠNÍ CVIČENÍ

- 1. predikujte hodnotu nemovitostí s využitím <u>rozhodovacích stromů</u>
 - k implementaci
 - data rozdělte v poměru 90:10 na trénovací a testovací
 - pro odhad použijte rozhodovací stromy
 - k dispozice je DecisionTreeRegressor
 - není potřeba nastavovat hyper-parametry
 - setLabelCol slouží pro upřesnění sloupce se značkami
 - výsledky vypište ve formě predikovaná hodnota reálná hodnota

```
(52.640625, 58.1)
(52.640625, 59.0)
(44.9900000000001, 59.6)
(67.7, 60.7)
(39.08484848484849, 61.5)
(52.640625, 62.1)
```

- jak kvalitní jsou výsledky?
- jak by je bylo možné vylepšit?

BONUSOVÁ ÚLOHA

- predikujte zpoždění leteckých spojů
 - data si stáhněte z <u>kaggle</u> budete potřebovat alespoň 3 ročníky
 - data si načtěte, spojte a pozorně prohlédněte
 - jako vstupní vektor využijte 11 příznaků
 - Year, Month, DayofMonth, DayofWeek, CRSDepTime, CRSArrTime, UniqueCarrier, CRSElapsedTime, Origin, Dest, Distance
 - příznaky vhodně předpřipravte
 - dejte si také pozor na datové typy (žádný string)
 - odfiltrujte zrušené lety (cancelled) a neúplné hodnoty
 - jako label si připravte informaci o zpoždění
 - vychází z pole ArrDelay
 - v případě jakéhokoliv zpoždění nastavte na 1, jinak na 0
 - pozor na datový typ musí být double

BONUSOVÁ ÚLOHA

- predikujte zpoždění leteckých spojů
 - data rozdělte na trénovací a testovací sadu v poměru 9:1
 - nastavte seed na 42 pro snadné srovnání
 - na trénovacích datech natrénujte model logistické regrese
 - zkuste navrhnout a případně odladit hyperparametry
 - natrénovaný model vyhodnoťte pomocí testovací sady
 - pro vyhodnocení použijte metriku accuracy (podíl správně klasifikovaných vůči všem)
 - můžete využít MulticlassClassificationEvaluator s metricName accuracy
 - úlohu splníte při dosažení accuracy > 55 %
 - logistickou regresi nahraďte jiným klasifikátorem a skóre srovnejte
 - máte problémy s nedostatkem paměti?
 - rozdělte trénovací data na části pomocí repartition(n)
 - zvyšte limity pro driver a executor memory

