Exercices de khôlle de Mathématiques

Regroupés par Amar Ahmane

MPI*, 2022/2023

J'ai, tout au long de mon année en MPI*, noté la majorité des exercices de khôlle et de préparation aux oraux qui m'ont été posés, ainsi que quelques-uns qui ont été posés à mes camarades.

Table des matières

1	Énoi	ncés
	1.1	Structures algébriques
	1.2	Algèbre linéaire
	1.3	Espaces vectoriels normés
	1.4	Suites et séries de fonctions
	1.5	Séries entières
	1.6	Réduction des endomorphismes
	1.7	Intégrales généralisées
	1.8	Espaces euclidiens
	1.9	Calcul différentiel
	1.10	Équations différentielles
	1.11	Probabilités, dénombrement
		Miscellaneous

§1 Énoncés

§1.1 Structures algébriques

Exercice 1.1.1 (Axiomes superflus?). Soit E un magma fini associatif. Montrer que si tout élément de E est régulier alors E est un groupe. Que dire si E est infini?

§1.2 Algèbre linéaire

Exercice 1.2.1 (Formes linéaires sur $\mathcal{M}_n(\mathbb{R})$ annulées par des crochets de lie de matrices.). Soit $\varphi:\mathcal{M}_n(\mathbb{R})\to\mathbb{R}$ une forme linéaire vérifiant

$$\forall M,M'\in\mathcal{M}_n(\mathbb{R}),\ \varphi(MM')=\varphi(M'M)\quad\text{et}\quad \varphi(I_n)=n$$
 On pose $A=\{MM'-M'M,\ M,M'\in\mathcal{M}_n(\mathbb{R})\}.$

- 1. Montrer que $\operatorname{Vect}(A) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0 \}.$
- 2. En déduire que $\varphi = \text{tr.}$

Exercice 1.2.2 (Familles libres de matrices de rang 1 de $\mathcal{M}_n(\mathbb{R})$). Soit $(X_1,\ldots,X_p)\in\mathbb{R}^n$ une famille libre de vecteurs de \mathbb{R}^n . Montrer que la famille $(X_1{}^tX_1,\ldots,X_p{}^tX_p)$ est une famille libre de vecteurs de $\mathcal{M}_n(\mathbb{R})$. Étudier la réciproque.

Exercice 1.2.3 (Combinaison linéaire d'exponetielles). Soient $n \geq 0$ et $x_0, \dots, x_n \in \mathbb{R}^*$ tels que

$$\forall i \neq j, \ (x_i - x_j)(x_i + x_j) \neq 0$$

On suppose qu'il existe des complexes $\lambda_0,\dots,\lambda_n$ et $\varepsilon>0$ tels que

$$\forall t \in (-\varepsilon, \varepsilon), \ \sum_{k=0}^{n} \lambda_k e^{itx_k} \in \mathbb{R}$$

Montrer que pour tout k = 0, ..., n, on a $\lambda_k \in \mathbb{R}$.

Exercice 1.2.4 (Fonctions multiplicatives de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K}). Soit $f:\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ telle que

$$\forall A,B\in \mathcal{M}_n(\mathbb{K}),\ f(AB)=f(A)f(B)$$

Montrer que $f(A) \neq 0 \iff A \in GL_n(\mathbb{K})$.

§1.3 Espaces vectoriels normés

Exercice 1.3.1 (CNS pour qu'un sous-groupe de \mathbb{C}^* soit fermé). Donner des conditions nécessaires et suffisantes sur $z \in \mathbb{C}$ pour que $G_z = \{e^{itz}, \ t \in \mathbb{Z}\}$ soit un sous-groupe fermé de \mathbb{C}^* .

Exercice 1.3.2 (Parties de $\mathrm{GL}_n(\mathbb{R})$ compactes, non vides et stables par produit). Soit X une partie de $\mathrm{GL}_n(\mathbb{R})$ non vide, compacte et stable par produit. Montrer que X est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

Exercice 1.3.3 (L'ensemble des polynômes unitaires scindés est un fermé). On munit $\mathbb{R}[X]$ de la norme $\|\cdot\|_{\infty}$ définie par $\|\sum_{k=0}^{+\infty} a_k X^k\| = \max\{|a_k|, \ k \in \mathbb{N}\}.$

- 1. Montrer que $\mathcal U$ l'ensemble des polynômes unitaires de $\mathbb R[X]$ est fermé.
- 2. Soit $Q \in \mathcal{U}$ non constant, on note $p = \deg Q$. Montrer que Q est scindé sur $\mathbb{R} \iff \forall z \in \mathbb{C}, \ |Q(z)| \ge |\Im(z)|^p$
- 3. Montrer que \mathcal{S} , l'ensemble des polynômes unitaires et scindés de $\mathbb{R}[X]$ est un fermé.

Exercice 1.3.4 (Somme d'une partie fermée et d'une partie compacte). Soient E un espace vectoriel normé, F une partie fermée de E et K une partie compacte de E. Montrer que F+K est une partie fermée de E.

Exercice 1.3.5 (Topologie du groupe orthogonal). Soit $n \in \mathbb{N}^*$. On rappelle que le groupe orthogonal est défini par

$$O_n(\mathbb{R}) := \{ M \in \mathcal{M}_n(\mathbb{R}) \mid {}^t M M = I_n \}$$

Cet ensemble est-il fermé dans $\mathcal{M}_n(\mathbb{R})\,?$ Est-il connexe par arcs ?

Exercice 1.3.6 (Fonctions injectives de $[0,1]^2$ dans \mathbb{R}). Existe-t-il des fonctions continues injectives de $[0,1]^2$ dans \mathbb{R} ?

§1.4 Suites et séries de fonctions

Exercice 1.4.1 (Un exercice classique). Soit $(f_n)_n$ une suite de fonctions continues convergeant uniformément sur $\mathbb R$ vers f. Soit $(x_n)_{n\in\mathbb N}$ une suite de réels convergeant vers x.

Montrer que la suite $(f_n(x_n))_{n\in\mathbb{N}}$ converge et calculer sa limite.

Exercice 1.4.2 (Une question ouverte). Existe-t-il une suite de polynômes convergeant uniformément sur \mathbb{R} vers exp?

Exercice 1.4.3 (Un exemple simple). On considère la fonction définie par

$$f(x) := \sum_{n=0}^{+\infty} \frac{n^x}{x^n}$$

Déterminer le domaine D de définition de f et étudier la continuité de f sur D.

§1.5 Séries entières

Exercice 1.5.1 (Calcul d'équivalent 1). On considère la fonction $f: x \in (-1,1) \mapsto \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1-(x\sin t)^2}}.$

- 1. f est-elle bien définie?
- 2. f est-elle dse₀?
- 3. Donner un équivalent de f en 1.

Exercice 1.5.2 (Calcul d'équivalent 2). Trouver un équivalent lorsque x tend vers 1 de $f(x) = \sum_{n=1}^{+\infty} \ln(n) x^n$.

Exercice 1.5.3 (Produit de Cauchy). On définit la suite de réels $(u_n)_n$ par $u_0 = 1$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sum_{k=0}^{n} u_{n-k} u_k$$

Déterminer u_n pour tout $n \in \mathbb{N}$.

Exercice 1.5.4 (Développement en série entière de la fonction tangente). Soient $a \in \mathbb{R}_+^*$ et $f \in \mathcal{C}^{\infty}([0,a),\mathbb{R})$ telle que $f^{(n)} \geq 0$ pour tout entier naturel n.

1. Soit $n \in \mathbb{N}$ et $(x,y) \in \mathbb{R}_+^*$ tel que x < y < a. Montrer que

$$0 \leq \frac{R_n(x)}{x^{n+1}} \leq \frac{R_n(y)}{y^{n+1}}$$

où $R_n(z)$ est le reste intégral de la formule de Taylor en 0 à l'ordre n appliquée en z.

- 2. En déduire que pour tout $x \in [0, a)$, $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$
- 3. En utilisation la question (ii), démontrer que la fonction tangente est développable en série entière à l'origine et préciser l'intervalle de validité de ce développement.

§1.6 Réduction des endomorphismes

Exercice 1.6.1 (CNS valeur propre commune). Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrer que les propositions suivantes sont équivalentes :

- 1. A et B possèdent une valeur propre commune.
- 2. Il existe $M \in \mathcal{M}_n(\mathbb{C})$ non nulle telle que AM = MB
- 3. $\mu_A(B) \notin \mathrm{GL}_n(\mathbb{C})$

Exercice 1.6.2 (P(A) diagonalisable et P'(A) inversible $\implies A$ diagonalisable). Soit $A \in \mathcal{M}_n(\mathbb{C})$ et $P \in \mathbb{C}[X]$ tel que P(A) est diagonalisable et P'(A) est inversible. Montrer que A est diagonisable.

Exercice 1.6.3 (Diagonalisation dans $\mathcal{M}_n(\mathbb{F}_p)$). Soit p un nombre premier, $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{F}_p)$. Montrer que

$$A$$
 diagonalisable \iff $A^p = A$

Exercice 1.6.4 (Matrice semblable à son double). Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M \sim 2M$. Montrer que M est nilpotente.

Exercice 1.6.5 (Comparaison de polynômes minimaux). Soit E un K espace vectoriel, $f \in L(E)$ et $G: g \in L(E) \mapsto f \circ g$. Vérifier que $G \in L(L(E))$ et comparer (sous réserve d'existence) les polynômes minimaux de f et G.

Les deux exercices qui vont suivre n'ont jamais été posés lors de mon année scolaire, mais ont fait partie de mes réflexions lors de mon année de MPI*, j'ai alors tenu à les inclure lors de la première rédaction de ce document.

Exercice 1.6.6 (Coefficients du polynôme caractéristique). Soit $M \in \mathcal{M}_n(\mathbb{K})$. On appelle mineur principal d'ordre $k \in \{1,\dots,n\}$ le déterminant d'un $M_I = (m_{i,j})_{(i,j) \in I^2}$ avec $I \subset \{1,\dots,n\}$ tel que $\operatorname{Card}(I) = k$. Donner une expression des coefficients de χ_M en fonction des mineurs principaux.

Exercice 1.6.7 (Limite d'une suite de matrices). Soit $M \in \mathcal{M}_n(\mathbb{K})$, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Donner une condition nécessaire et suffisante pour que la suite $(M^p)_{p \in \mathbb{N}}$ converge. Que dire sur la valeur de la limite en cas de convergence?

§1.7 Intégrales généralisées

Exercice 1.7.1 (Une Intégrale de Frullani). On pose pour $x \in \mathbb{R}$, $f(x) = \int_0^{+\infty} \frac{\arctan(xt) - \arctan(t)}{t} \, \mathrm{d}t$

- 1. Déterminer \mathcal{D}_f domaine de définition de f.
- 2. Déterminer le domaine de classe \mathcal{C}^1 de f.
- 3. En déduire une expression de f(x) pour $x \in \mathcal{D}_f$.
- 4. Retrouver le résultat de la question (iii) sans utiliser le théorème de dérivation des intégrales à paramètre

Exercice 1.7.2 (Calcul d'équivalent 1). $I(x) = \int_0^1 \frac{t^x}{1+t} dt$.

- 1. Domaine de définition de I?
- 2. Calculer I(x) + I(x+1).
- 3. Équivalent de I(x) en $+\infty$?

Exercice 1.7.3 (Calcul d'équivalent 2). $F(x) = \int_0^1 \frac{\sin(tx)}{1+t} dt$. Montrer que F est définie et continue sur \mathbb{R}_+^* . Montrer que $F(x) \sim_0 \frac{\pi}{2x}$.

§1.8 Espaces euclidiens

Exercice 1.8.1 (Matrices M telles que $M+I_n$ est inversible). On pose $\mathcal{E}=\{M\in\mathcal{M}_n(\mathbb{R})\mid -1\notin\operatorname{Sp}(M)\}.$

- 1. Montrer que $\mathcal{O}_n(\mathbb{R}) \cap \mathcal{E} = \mathcal{SO}_n(\mathbb{R}) \cap \mathcal{E}$;
- 2. Montrer que si $A \in \mathcal{A}_n(\mathbb{R})$ (ensemble des matrices antisymétriques), alors $\operatorname{Sp}(A) \subset i \mathbb{R}$;
- 3. Montrer que $\theta: M \mapsto (I_n M)(I_n + M)^{-1}$ définit une involution de \mathcal{E} ;
- 4. Montrer que θ induit une bijection $\tilde{\theta}$ de $\mathcal{A}_n(\mathbb{R})$ sur $\mathcal{SO}_n(\mathbb{R}) \cap \mathcal{E}$.

Exercice 1.8.2 (Inégaltités sur les matrices orthogonales). Soit $n \ge 2$

1. Montrer que

$$\forall M \in \mathcal{O}_n(\mathbb{R}), \quad \sum_{1 \leq i,j \leq n} |m_{i,j}| \leq n^{\frac{3}{2}} \tag{*}$$

- 2. On suppose que (*) est une égalité. Que peut-on dire sur les coefficients de M? Et de la parité de n?
- 3. Déterminer une matrice, notée dans la suite M_2 , élément de $\mathcal{O}_2(\mathbb{R}) \cap \mathcal{S}_2(\mathbb{R})$ satisfaisant le cas d'égalité de (*) pour n=2.
- 4. Démontrer qu'une condition suffisante pour qu'il existe $M \in \mathcal{O}_n(\mathbb{R})$ telle que (*) soit une égalité est que n soit une puissance de 2.
- 5. Démontrer qu'une condition nécessaire pour qu'il existe $M\in\mathcal{O}_n(\mathbb{R})$ telle que (*) soit une égalité est que n=2 ou 4 divise n

Exercice 1.8.3 (Un TLM pour les matrices). Soit $n \geq 2$. On définit une relation d'ordre sur $\mathcal{M}_n(\mathbb{R})$ par

$$A \leq B \iff B - A \in \mathcal{S}_n^+(\mathbb{R})$$

Vérifier qu'il s'agit bien d'une relation d'ordre, et montrer que toute suite de matrices (A_p) croissante et majorée pour cet ordre converge.

Exercice 1.8.4 (Convexité 1). Montrer que l'application $\varphi: S \in \mathcal{S}_n(\mathbb{R}) \mapsto \operatorname{tr}(\exp(S)) \in \mathbb{R}$ est convexe.

Exercice 1.8.5 (Convexité 2). Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$, $b \in \mathbb{R}^n$. Posons $J(x) = \frac{1}{2}\langle Ax, x \rangle - \langle b, x \rangle$ pour tout $x \in \mathbb{R}^n$.

- 1. Montrer que J est strictement convexe.
- 2. Montrer que $J(x) \xrightarrow{\|x\| \to +\infty} +\infty$.
- 3. En déduire que J admet un unique minimum sur \mathbb{R}^n .

Exercice 1.8.6 (Croissance de la trace de l'exponentielle). Soit $n \in \mathbb{N}^*$.

- 1. Soient $U, V \in \mathcal{S}_n^+(\mathbb{R})$. Montrer qu'il existe $\mathbb{R} \in \mathcal{S}_n^+(\mathbb{R})$ tel que $R^2 = U$ puis que $\operatorname{tr}(UV) \geq 0$.
- 2. Soient $P \in \mathbb{R}[X]$ et $f : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivable. Montrer que $\varphi : t \in \mathbb{R} \mapsto \operatorname{tr}(P(f(t)))$ est dérivable et calculer f'.
- 3. Soient $A,B\in\mathcal{S}_n(\mathbb{R})$ tels que $B-A\in\mathcal{S}_n^+(\mathbb{R})$. Montrer $\mathrm{tr}(\exp(A))\leq\mathrm{tr}(\exp(B))$

§1.9 Calcul différentiel

Exercice 1.9.1 ($\mathcal{C}^1 \Longrightarrow \text{localement lipschitzien}$). Soit U un ouvert de \mathbb{R}^n et $f: U \to R^n$. On dit que f est localement lipschitzienne

si pour tout $y_0 \in U$, il existe $V \subseteq U$ un voisiage de y_0 et $L_{y_0} \ge 0$ tels que pour tous $x,y \in V$, $\|f(x)-f(y)\| \le L_{y_0}\|x-y\|$. Montrer que si f est de classe \mathcal{C}^1 , alors f est localement lipschitzienne.

Exercice 1.9.2 (Généralisation du théorème de Rolle). On note B (resp. B_f) la boule unité ouverte (resp. fermée) de \mathbb{R}^n et \mathbf{S}^{n-1} la sphère unité de \mathbb{R}^n . Soit $f: B_f \to \mathbb{R}$ continue sur B_f , différentiable sur B, constante sur \mathbf{S}^{n-1} . Montrer que f s'annule sur B.

§1.10 Équations différentielles

Exercice 1.10.1 (Une équation différentielle). Soit $S \in \mathcal{S}_n(\mathbb{R})$. Soit $M : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivable et telle que

$$\left\{ \begin{array}{l} M'(t) = SM(t)S \\ M(0) = I_n \end{array} \right.$$

Déterminer M(t) pour tout $t \in \mathbb{R}$.

§1.11 Probabilités, dénombrement

Exercice 1.11.1 (Calcul d'espérance et de variance 1). Soit $(X_p)_{p \in \mathbb{N}^*}$ une suite de variables aléatoires i.i.d suivant la loi uniforme sur $[\![1,n]\!]$. On pose

$$N_n=\operatorname{Card}\{X_1,\dots,X_n\}$$

Calculer $\mathbb{E}(N_n)$ et $\mathbb{V}(N_n)$ et en donner des équivalents lorsque n tend vers $+\infty.$

Exercice 1.11.2 (Calcul d'espérance et de variance 2). On note N_n le nombre de points fixes d'une permutation aléatoire suivant la loi uniforme sur \mathfrak{S}_n . Calculer l'espérance et la variance de N_n .

§1.12 Miscellaneous

Exercice 1.12.1 (Cardinal maximal d'une partie fade). Une partie A de \mathbb{N} est dite fade si pour tous $x, y \in A$, $x + y \notin A$. Calculer le cardinal maximal d'une partie fade incluse dans [1, n] pour $n \in \mathbb{N}^*$.

Exercice 1.12.2 (Dérivée seconde). Soit $f : [a, b] \to \mathbb{R}$ avec a < b. Lorsque la limite existe, on note $\Delta f(x)$ la quantité

$$\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^2}$$

- 1. Si f est de classe \mathcal{C}^2 , montrer que Δf est bien définie sur (a,b) et est continue.
- 2. Si Δf est bien définie et nulle sur (a,b), montrer que f est affine.
- 3. Si Δf est bien définie et continue sur (a,b), montrer que f y est \mathcal{C}^2 .