Learning Wireshark through CTF

Chad Rikansrud @zhroom_42

Why Wireshark?

- GUI Application (simple initial learning curve)
- Intuitive for novice, fullfeatured for expert
- Essential for forensics, securing networks, pentesters
- CTF swiss army knife for network challenges
- Watching real-time captures

What is it great for?

- Statistical analysis (big picture) overview of network traffic
- Deep inspection of packet bytes
- Script-able and inherent search / filter functions
- Reduction of large PCAPs into more manageable chunks
- Decryption of SSL/TLS & WPA (wireless) traffic

When to use a different tool?

- Mass carving (or carving outside simple TCP stream)
- Carving via bash / python scripts (use tshark / tcpdump)
- Real time captures over days or on headless systems

```
tshark -r ${soldir}/rubicon.pcap -Y \
    "frame.number==1497 && (frame.len==85) && (tcp.flags.syn==0)" \
    -C ftp_disabled \
    -e data -Tfields!\
    cut -b 7- > ${soldir}/208_key

tshark -r ${soldir}/rubicon.pcap -Y \
    "(tcp.dstport==43516) && (frame.number!=1497) && (frame.len>70) && (tcp.flags.syn==0)" \
    -e data -Tfields -C ftp_disabled|tr -d '\n'|xxd -r -p > ${soldir}/f1
```

Not so much wireshark

Better tools for the job

Steps to solve

- Analysis
- Carving
- Review / Repeat / Rework
- Automate (optional? no!)
- Win!

Analysis Phase

- Use a repeatable process every time you encounter a new PCAP, something like:
 - Check statistics (Protocols?)
 - Check endpoints (Noisy endpoints?)
 - Check conversations (Who is talking to each other?)
 - Download objects (What is out there?)
 - Filter, tweak, rule out easy protocols -> carve

Statistics (Heavy protocols?)

Statistics -> Protocol Hierarchy

Endpoints (Where is the noise?)

Statistics -> Endpoints

Conversations - Who's talking to each other?

Statistics -> Conversations

Download objects - Easy win!

File -> Export Objects -> HTTP or DICOM or SMB

Tweak, filter and eliminate

Know your display filter syntax! (note* **not** the same as libpcap syntax)

Carving Phase

- Easy
 - wireshark export object
 - wireshark save as binary
- Harder
 - tshark / tcpdump extract
- Hardest
 - Combination of multiple tools
 - Custom coding (know scripting lang + CLI utils!)

TCP Stream saving binary

Simple extract of files from known protocols (or protocols used correctly)

Demos

Test / RRR Phase

- Did we get an obvious win?
- Does it match the spirit/letter of what was asked?
- Possible red herrings (they'd NEVER do that!)
- Penalty for checking?

Automate Phase

- Why go through the extra work to automate?
 - After the party, when the CTF is over you will not remember.
 - Reuse Reuse Ruse
 - Demo to your friends and local DC group!

Script example

This file carves out a bz2 binary from the pcap, which uses a home-rolled protocol

```
tshark \
  -r ${soldir}/cloudfs.pcapng \
  -Y "icmp.type==8 && (icmp.ident == 1)
  -s0 \
  -e frame.number \
  -e data ∖
  -T fields \
  -E separator=, 2>/dev/null|\
sort -t "," -k 2 -ul\
sort -t "," -k 1 -gl\
cut \
  -d "," \
  -f21\
grep \
  -e "^0030.*425a\|^699b\|6790\|81a7.*
tr \
  -d '\n' |\
cut \
  -b 41-I\
xxd \
  -r \
  -p \
  > ${soldir}/file.tar.bz2
```

Tips, Tricks, Appendix

```
15 146 . 174 . 255 . 100
                        3/3// 10.100.35.13
                                                              80 TCP
                                                                                  56 37377→80 [ACK] Seq=56
84 10. 100. 35. 13
                                                                               2974 [TCP segment of a rea
                           80 146.174.255.100
                                                          37377 TCP
                                                                                  56 37377→80 [ACK] Seq=56
78 146 . 174 . 255 . 100
                        37377 10.100.35.13
                                                              80 TCP
                                                                               2974 [TCP segment of a rea
99 10. 100. 35. 13
                           80 146, 174, 255, 100
                                                          37377 TCP
                                                                                  56 37377→80 [ACK] Seq=56
37 146 . 174 . 255 . 100
                        37377 10.100.35.13
                                                              80 TCP
                                                                               2974 [TCP segment of a rea
09 10 . 100 . 35 . 13
                           80 146.174.255.100
                                                          37377 TCP
                                                                               2974 [TCP segment of a rea
18 10 . 100 . 35 . 13
                           80 146.174.255.100
                                                          37377 TCP
                                                                                  56 37377→80 [ACK] Seq=56
B7 146. 174. 255. 100
                        37377 10.100.35.13
                                                              80 TCP
07 10. 100. 35. 13
                                                                               2974 [TCP segment of a rea
                           80 146, 174, 255, 100
                                                          37377 TCP
                                                                                  56 37377→80 [ACK] Seq=56
90 146. 174. 255. 100
                        37377 10.100.35.13
                                                              80 TCP
                                                                               2974 [TCP segment of a rea
17 10. 100. 35. 13
                           80 146.174.255.100
                                                          37377 TCP
28 10 . 100 . 35 . 13
                                                          37377 HTTP
                                                                                216 HTTP/1.1 200 0K
                           80 146.174.255.100
12 146 . 174 . 255 . 100
                        37377 10.100.35.13
                                                              80 TCP
                                                                                  56 37377→80 [ACK] Seq=56
73 146 . 174 . 255 . 100
                                                                                 56 37377→80 [ACK] Seq=56
                        37377 10.100.35.13
                                                              80 TCP
99 fl 00 90
               0b 36 ad a5 08 00 45 10
                                             ..)>.... .6...E.
               81 e4 5d d8 cd e1 0a 64
40 00 40 06
                                             ., .@.@. ..]....d
              c5 9e 00 00 00 00 60 02
                                             #....P.. .....`.
00 50 84 04
00 00 02 04
               05 ac
                                             ..l4.... ..
                                      4. wireshark-bin
 ssh udesktop "tcpdump -i internal.v3500 -s0 -w - 'not port 22'"|wireshark -B 5 -s0 -i- -k >/dev/null 2>&1
```

Remote Capture

Dump traffic from a remote host over ssh

SSL Decrypt

Demo

Custom Configurations


```
$ vi ~/.wireshark/profil(s/ftp_disabled/o.sabled_protos

tshark -r ${soldir}/rubicon.pcap \
   -Y "frame.rumber==1497 && (frame.len==85) && (tcp.flags.syn==0)"
   -C ftp_disabled e data -Tfields|cut -b 7- > ${soldir}/208_key
```

WPA Decrypt

- Capture Raw 802.11 traffic
- Know the WPA Shared key, passphrase, or WEP keys
- Wireshark does the hard work!

WPA Capture Before

WPA Capture After!

Protocol	% Packets	Packets	% Bytes	Bytes	Mbit/s	End Packets	4
▽ IEEE 802.11 Radiotap Capture header	100.00 %	105092	100.00 %	28386351	0.738	0	1
	100.00 %	105092	100.00 %	28386351	0.738	47920	
IEEE 802.11 wireless LAN management frame	11.44 %	12018	9.42 %	2672678	0.069	12018	
→ Logical-Link Control	15.80 %	16606	19.65 %	5578407	0.145	0	ı
802.1X Authentication	0.01 %	10	0.01 %	1718	0.000	10	
Address Resolution Protocol	0.04 %	44	0.02 %	4540	0.000	44	П
	15.69 %	16489	19.56 %	5552905	0.144	0	Ш
□ User Datagram Protocol □	0.42 %	439	0.31 %	86978	0.002	0	
Domain Name Service	0.35 %	369	0.26 %	73154	0.002	369	
NetBIOS Name Service	0.02 %	24	0.01 %	3936	0.000	24	
Bootstrap Protocol	0.00 %	4	0.01 %	1612	0.000	4	
Hypertext Transfer Protocol	0.01 %	11	0.02 %	4532	0.000	11	
Data	0.02 %	22	0.01 %	2376	0.000	22	
Network Time Protocol	0.01 %	9	0.00 %	1368	0.000	9	
Internet Group Management Protocol	0.04 %	37	0.02 %	4362	0.000	37	
▼ Transmission Control Protocol	15.21 %	15988	19.23 %	5458169	0.142	9394	
Data	0.02 %	19	0.02 %	7033	0.000	19	
→ Synergy	4.76 %	5001	2.44 %	691571	0.018	4998	
Malformed Packet	0.00 %	3	0.00 %	396	0.000	3	
Internet Relay Chat	0.02 %	18	0.03 %	7647	0.000	18	
→ Hypertext Transfer Protocol	0.29 %	305	0.73 %	207456	0.005	184	
Line-based text data	0.04 %	46	0.15 %	42199	0.001	46	
Madia Tuna	0.02.9/	20	0.07.0/	10470	0.000	20	

Questions?

Thank you!