

Lecture 5

Functional Dependencies

The structure of a dabatase contains all the relations (tables with relationships) and their integrity constraints

Example 1: **Discussion** table with the following constraints

- Each student has a profesor
- Each professor has an e-mail
- Each discussion has a day, a start and an end hour for the student and for the professor

StudentName	SAge	ProfessorName	PEmail	Day	StartHour	EndHour
Rus	19	Mihai	d@sd.com	Monday	12:00	12:50
Irimie	20	Cristea	cp@nk.ro	Tuesday	15:30	16:20
Dan	21	Mihai	d@sd.com	Monday	12:00	12:50
Pavel	19	Mihai	d@sd.com	Monday	13:00	13:30
Irimie	20	Cristea	cp@nk.ro	Friday	15:30	16:20

The data model is NOT GOOD!

Anomalies on INSERT

Anomalies on UPDATE

Anomalies on DELETE

StudentName	SAge	ProfessorName	PEmail	Day	StartHour	EndHour
Rus	19	Mihai	d@sd.com	Monday	12:00	12:50
Irimie	20	Cristea	cp@nk.ro	Tuesday	15:30	16:20
Dan	21	Mihai	d@sd.com	Monday	12:00	12:50
Pavel	19	Mihai	d@sd.com	Monday	13:00	13:30
Irimie	20	Cristea	cp@nk.ro	Friday	15:30	16:20

So, the data model, should be **split** in multiple and **good** structures

Student

StudentName	Age
Rus	19
Irimie	20
Dan	21
Pavel	19

Now:

No insert anomalies No update anomalies No delete anomalies

Professor

ProfessorName	PEmail
Dan	d@sd.com
Cristea	cp@nk.ro

Interaction

StudentName	ProfessorName	Day	StartHour	EndHour
Rus	Mihai	Monday	12:00	12:50
Irimie	Cristea	Tuesday	15:30	16:20
Dan	Mihai	Monday	12:00	12:50
Pavel	Mihai	Monday	13:00	13:30
Irimie	Cristea	Friday	15:30	16:20

Is it a structure good or it is bad? How can it be changed / transformed (from a bad one to a good one)?

- by using functional dependencies
- The theory of functional dependencies was introduced by Edgar Frank Codd, in 1970

$$\alpha \rightarrow \beta$$

 α , β are subsets of attributes of a relation R " α functionally determines β "

or

" β functional dependent on α "

Definition:

Let $R[A_1, A_2, ..., A_n]$ be a relation and α , β two subsets of attributes of the relation R. **The** attribute α (simple or composite) **functionally determines attribute** β (simple or composite), notation

$$\alpha \rightarrow \beta$$

if and only if every value of α in R is associated with a precise and unique value for β (association that holds through the entire existence of relation R)

 \circ If an α values appears in multiple rows, each of these rows will contain the same value for β

$$\prod_{\alpha}(t_1) = \prod_{\alpha}(t_2) \text{ implies } \prod_{\beta}(t_1) = \prod_{\beta}(t_2)$$

where $\prod_{\alpha} t$ is the projection of the α atributes for the tuple t

 \circ In the dependency $\alpha \to \beta$, α is the determinant and β is the dependent

Definition (alternative):

The dependency $\alpha \to \beta$ is fulfilled in R if and only if for each instance of R, any two tuples t_1 and t_2 for which the α values are identical, will have also identical values for β

- The functional dependency can be seen as a restriction (property) that has to be satisfied by the database on it's entire existence (values can be added, modified in the relation only if the functional dependency is satisfied)
- \circ A functional dependency $\alpha \to \beta$ is **trivial** if $\alpha \supseteq \beta$
- If a relation contains a functional dependency, some of the associations among values will be store multiple times (this cause data redundancy)

Example: For the relation *Discussion*, the functional dependencies are:

StudentName	SAge	ProfessorName	PEmail	Day	StartHour	EndHour	StudentName → Age
Rus	19	Mihai	d@sd.com	Monday	12:00	12:50	(StudentName functionally determines Age or
Mus	13	IVIIIIai	u@3u.com	ivioriday	12.00	12.50	
Irimie	20	Cristea	cp@nk.ro	Tuesday	15:30	16:20	(Age functional dependent on StudentName)
Dan	21	Mihai	d@sd.com	Monday	12:00	12:50	ProfesssorName → PEmail
Pavel	19	Mihai	d@sd.com	Monday	13:00	13:30	
Irimie	20	Cristea	cp@nk.ro	Friday	15:30	16:20	ProfesorName, Day, StartHour, EndHour → StudentName

Example 2: Meeting [StudentName, Course, MeetingDate, Professor]

- o key: {StudentName, Course}
- a course is associated with one professor
- a professor can be associated with multiple courses → follows the functional dependency:
 {Course} → {Professor}

Meeting	StudentName	Course	MeetingDate	Professor
1	Rus Maria	Databases	01/10/2021	Mihai Horatiu
2	Irimie Dan	Fundamental Algorithms	11/10/2021	Cristea Paul
3	Dan Mihai	Fundamental Algorithms	10/11/2021	Cristea Paul
4	Pavel Traian	Databases	08/10/2021	Mihai Horatiu
5	Irimie Dan	Databases	12/10/2021	Mihai Horatiu

If the relation constains a functional dependency, some problems can arise (some of them has to be solved through programming, not only by executing SQL commands):

• wasting space: the same associations are stored multiple times (e.g. Course *Databases* with Professor *Mihai Horatiu* is stored *3 times*)

Meeting	StudentName	Course	MeetingDate	Professor
1	Rus Maria	<mark>Databases</mark>	01/10/2021	<mark>Mihai Horatiu</mark>
2	Irimie Dan	Fundamental Algorithms	11/10/2021	Cristea Paul
3	Dan Mihai	Fundamental Algorithms	10/11/2021	Cristea Paul
4	Pavel Traian	Databases	08/10/2021	<mark>Mihai Horatiu</mark>
5	Irimie Dan	<mark>Databases</mark>	12/10/2021	<mark>Mihai Horatiu</mark>

• **insertion anomalies**: cannot be specified a *Professor* for a course *X*, unless there is at least one student having a meeting date to the course *X*

- **update anomalies**: if the *Professor* will be changed for the course X, also, should be performed changes in all the associations with the course X (it is not known how many associations exist), otherwise the database will have errors (it will be inconsistent) (e.g. if the *Professor* is changed in the 1^{st} record, but not changed in the 4^{th} and 5^{th} records, the operation will finish with an error in the relation (incorrect data)
- **deletion anomalies**: when some of the records are deleted, also, can be deleted data that is not intended to be removed (e.g. if records 1, 4 and 5 are deleted, the association between the *Course* and the *Professor* is also removed from the database)

Meeting	StudentName	Course	MeetingDate	Professor
1	Rus Maria	Databases	01/10/2021	Mihai Horatiu
2	Irimie Dan	Fundamental Algorithms	11/10/2021	Cristea Paul
3	Dan Mihai	Fundamental Algorithms	10/11/2021	Cristea Paul
4	Pavel Traian	Databases	08/10/2021	Mihai Horatiu
<mark>5</mark>	Irimie Dan	Databases	12/10/2021	Mihai Horatiu

- wasting space, insert anomalies, update anomalies, deletion anomalies are caused by the functional dependencies among the sets of attributes
- To avoid these problems, the dependencies among values should be kept in separate relations; the previous relation should be decomposed in a good way, such that the data should not be lost or added
- A good decomposition should be done in the database design phase, when the functional dependencies can be identified.

Stι	ıde	ent
-----	-----	-----

StudentName Rus Maria Irimie Dan Dan Mihai Pavel Traian

Course

Course
Databases
Fundamental Algorithms

Professor

Professor Mihai Horatiu Cristea Paul

Meeting

Meeting	StudentName	udentName Course		Professor
1	Rus Maria	Databases	01/10/2021	Mihai Horatiu
2	Irimie Dan	Fundamental Algorithms	11/10/2021	Cristea Paul
3	Dan Mihai	Fundamental Algorithms	10/11/2021	Cristea Paul
4	Pavel Traian	Databases	08/10/2021	Mihai Horatiu
5	Irimie Dan	Databases	12/10/2021	Mihai Horatiu

Let r be the instance of a relation R

o *r satisfies the functional dependency* $\alpha \to \beta$ if for each pair of tuples t_1 and t_2 from r such that $\prod_{\alpha} t_1 = \prod_{\alpha} t_2$ is also satisfied $\prod_{\beta} t_1 = \prod_{\beta} t_2$

or

$$\forall t_1, t_2 \in r: \prod_{\alpha} t_1 = \prod_{\alpha} t_2 \Longrightarrow \prod_{\beta} t_1 = \prod_{\beta} t_2$$

where $\prod_{\alpha} t$ is the projection of the α atributes for the tuple t

- o A functional dependency f is satisfied on R if and only if any r instance of R satisfies f
- or **does not respect** a functional dependency f, if r does not satisfies f
- or is a legal instance of R if r satisfies all the functional dependencies defined on R

Example 3: Student[Hobby, StudentName, StudentSurname]

Hobby	StudentName	StudentSurname
Singing Rus M		<mark>Maria</mark>
Playing games	<mark>Irimie</mark>	<mark>Dan</mark>
Swiming	Mihai	<mark>Maria</mark>
Running	Rus	<mark>Maria</mark>
Taking pictures	<mark>Irimie</mark>	<mark>Dan</mark>

- The functional dependency StudentSurname → StudentName is not fulfill by the relation
 Student
- r satisfies the functional dependency StudentName → StudentSurname
 This last one, does not means that StudentSurname → StudentName is fulfilled in the relation
 Student

Is a functional dependency **f** fulfilled on R based on a set of functional dependencies **F**? Example 1: In **Discussion** table there is

- F={ StudentName → Age
 ProfesssorName → PEmail

 ProfesorName, Day, StartHour, EndHour → StudentName }
- Day, StartHour, EndHour → Age is fulfilled?
- ProfesorName, Day, StartHour, EndHour → Age is fulfilled?

F logical implies f (denoted $F \Rightarrow f$) if each r instance of the relation R that satisfies F also satisfies f

F and G are sets of functional dependencies and f is a functional dependency. **F logical implies G** (denoted $F \Rightarrow G$) if $F \Rightarrow g$ for each $g \in G$

Closure of F (denoted F⁺) is the set of all functional dependencies implied by F

$$F^+ = \{f \mid F \Rightarrow f\}$$

F and G are *equivalent* (denoted $F \equiv G$) if $F^+ = G^+$ (i.e. $F \Rightarrow G$ and $G \Rightarrow F$)

Armstrong Axioma's

```
Let \alpha, \beta, \gamma \subseteq R
```

- o *Reflexivity*: if $\beta \subseteq \alpha$ then $\alpha \to \beta$
- o **Augmentation**: if $\alpha \rightarrow \beta$ then $\alpha \gamma \rightarrow \beta \gamma$
- o **Transitivity**: if $\alpha \to \beta$ and $\beta \to \gamma$ then $\alpha \to \gamma$

The Armstrong Axioma's system is

- Correct (any derivative functional dependency is implied by F)
- Complete (all functional dependencies from F⁺ can be derived)

Example: Let consider the relation R[A, B, C, D, E] with the set $F=\{A\rightarrow C; B\rightarrow C; CD\rightarrow E\}$.

Prove that $F \Rightarrow AD \rightarrow E$.

Solution: $A \rightarrow C$ (given) becomes $AD \rightarrow CD$ (from augmentation).

 $CD \rightarrow E$ (given) becomes $AD \rightarrow E$ (from transitivity with the upper implication)

Properties for functional dependencies:

- If C is a key of R[A₁, A₂, ..., A_n] then C $\rightarrow \beta$, $\forall \beta$ a subset of {A₁, A₂, ..., A_n}.
 - o such a dependency is always true, hence it will not be eliminated through decomposition
- \circ If $\beta \subseteq \alpha$ then $\alpha \to \beta$ trivial functional dependency (reflexivity)

$$\prod_{\alpha}(t_1) = \prod_{\alpha}(t_2) \underset{\beta \subseteq \alpha}{\Longrightarrow} \prod_{\beta}(t_1) = \prod_{\beta}(t_2) \Rightarrow \alpha \to \beta$$

where $\prod_{\alpha} t$ is the projection of the α atributes for the tuple t

- \circ The **projection of the set F on** α , denoted F_{α} , is the set of those dependencies from F^+ that implies only attributes from α , i.e.

$$F_{\alpha} = \{ \beta \to \gamma \in F^+ \mid \beta \gamma \subseteq \alpha \}$$

Additional inference rules

- \circ **Reunion**: if $\alpha \to \beta$ and $\alpha \to \gamma$ then $\alpha \to \beta \gamma$
- **Decomposition**: if $\alpha \to \beta$ then $\alpha \to \beta'$ for any $\beta' \subseteq \beta$

```
Example: Show that \{A \rightarrow BCD\} \equiv \{A \rightarrow B; A \rightarrow C; A \rightarrow D\}.
```

Solution: Let $F = \{A \rightarrow BCD\}$ and $G = \{A \rightarrow B; A \rightarrow C; A \rightarrow D\}$

From the decomposition rule follows: $F \Rightarrow A \rightarrow B$, $F \Rightarrow A \rightarrow C$ and $F \Rightarrow A \rightarrow D$. So, $F \Rightarrow G$.

From the reunion follows

$$\{A \rightarrow B; A \rightarrow C\} \Rightarrow A \rightarrow BC$$
 and $\{A \rightarrow BC; A \rightarrow D\} \Rightarrow A \rightarrow BCD$

So, $G \Rightarrow F$ and consequently, $F \equiv G$

Definition:

Let $R[A_1, A_2, ..., A_n]$ be a relation and let α , β be two subsets of attributes of R. Attribute β is *fully functionally dependent on* α *if*

- \circ β is functionally dependent on α (i.e. (that is) $\alpha \to \beta$)) and
- \circ **β** is not functionally dependent on any proper subset of **α** (i.e. (that is) ∀ γ \subset α , γ \rightarrow β is not true) Definition:

A set of α attributes is a *super-key* of a relation R (having the set of functional dependencies F) if $F \Rightarrow \alpha \rightarrow R$ Definition:

A set of α attributes is a **key** of a relation R if

- $\circ \alpha$ is a super-key
- o no subset of α is a super-key (i.e. $\beta \subset \alpha, \beta \to R \notin F^+$)

Definition:

An attribute $A \in R$ (simple or composite) is called **prime** if there is a key C (simple or composite) and $A \subseteq C$ (A can itself be a key). If an attribute in not included in any key, it is called **non-prime**

Example 1: In the relation *Discussion*[StudentName, Age, ProfessorName, PEmail, Day, StartHour, EndHour] with the functional dependencies

- StudentName → Age
- ProfessorName → PEmail
- ProfessorName, Day, StartHour, EndHour → StudentName
- {ProfessorName, Day, StartHour, EndHour} is the only key of the relation Discussion
- ProfessorName, Day, StartHour and EndHour are the only prime attributes of the relation Discussion
- Any set that include {ProfessorName, Day, StartHour, EndHour} is super-key of the relation Discussion

The closing of the attributes

Let $\alpha \subseteq R$ and F a set of (fulfilled) functional dependencies on R

The **closing of** α (with respect to a set F of functional dependencies), denoted α^+ , is the set of attributes that are functional dependent from α on the base of the functional dependencies from F, i.e.

$$\alpha^+ = \{ A \in R \mid F \Rightarrow \alpha \to A \}$$

It can be seen like $F \Rightarrow \alpha \rightarrow \beta$ if and only if $\beta \subseteq \alpha^+$ (by respecting the functional dependencies from F)

Functional Dependencies Decomposition of the relations

The **decomposition of a relation R** is a set of (sub)relations $\{R_1, R_2, ..., R_n\}$ such that each $R_i \subseteq R$ and $R = \cup R_i$ If r is an instance from R then r can be decomposed in $\{r_1, r_2, ..., r_n\}$, where each $r_i = \prod_{R_i} (r)$

Example 1: The relation *Discussion* [StudentName, Age, ProfessorName, PEmail, Day, StartHour, EndHour] can be decomposed

```
\{ R_1 = (StudentName, Age), \}
R_2= (ProfessorName, PEmail)
 R<sub>3</sub>= (ProfessorName, Day, StartHour, EndHour)
 R_{4}= (Day, StartHour, EndHour, StudentName) }
```

Decomposition of the relations - Properties

- The decomposition must keep *the information*
 - The data from the initial relation = The data from all decomposed relations
 - Mandatory for keeping the consistency of the data
- The decomposition must respect all the functional dependencies
 - The functional dependencies from the initial relation = The reunion of the functional dependencies from the decomposed relations
 - Facilitate the check of violations of the functional dependencies

Decomposition of the relations

- The decomposing must *keep the information* \Leftrightarrow can be reconstruct r from linking up al it's projections $\{r_1, r_2, ..., r_n\}$
- If {R₁, R₂, ..., R_n} is a decomposing of R then for any r instance from R, there is

$$r \subseteq \prod_{R_1}(r) * \prod_{R_2}(r) * \dots * \prod_{R_n}(r)$$

Example 1: *Discussion*[StudentName, Age, ProfessorName, PEmail, Day, StartHour, EndHour] – the initial table

D	
П	1
-	Т

Rus

Pavel

StudentN	Age	ProfessorN	P
ame		ame	

19

19

Irimie	20
Dan	21

K ₂	
----------------	--

ProfessorN ame	PEmail
Mihai	d@sd.com
Cristea	cp@nk.ro

 R_3

Professor Name	Day	StartHour	EndHour
Mihai	Monday	12:00	12:50
Cristea	Tuesday	15:30	16:20
Mihai	Monday	13:00	13:30
Cristea	Friday	15:30	16:20

$$R_4$$

Day	StartHour	EndHour	StudentN ame
Monda y	12:00	12:50	Rus
Tuesda y	15:30	16:20	Irimie
Monda y	12:00	12:50	Dan
Monda y	13:00	13:30	Pavel
Friday	15:30	16:20	Irimie

Decomposition of the relations

$$R_1 * R_2 * R_3 * R_4$$

(from R_2 to R_3 and to R_4)

ProfessorName	PEmail	StudentName	SAge	Day	StartHour	EndHour
Mihai	d@sd.com	Rus	19	Monday	12:00	12:50
Mihai	d@sd.com	Dan	21	Monday	12:00	12:50
Cristea	cp@nk.ro	Irimie	20	Tuesday	15:30	16:20
Mihai	d@sd.com	Pavel	19	Monday	13:00	13:30
Cristea	cp@nk.ro	Irimie	20	Friday	15:30	16:20

When the projection is computed, may *arise new rows*, rows that have not existed in the initial relation. But here, is not the case. *So, this decomposition is good*.

The decomposition $\{R_1, R_2, ..., R_n\}$ of the relation R is with **keep the dependencies** if $(F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n}) \Rightarrow F$ and $F \Rightarrow (F_{R_1} \cup F_{R_2} \cup \cdots \cup F_{R_n})$

Decomposition of the relations: not a good example:

Example 1prime: Discussion [StudentName, Age, ProfessorName, PEmail, StartHour]

StudentName	SAge	ProfessorName	PEmail	StartHour
Rus	19	Mihai	d@sd.com	12:00
Irimie	20	Cristea	cp@nk.ro	15:30
Dan	21	Mihai	d@sd.com	16:00
Pavel	19	Mihai	d@sd.com	13:00
Irimie	20	Cristea	cp@nk.ro	12:00

Decomposed as

 $\{ R_1 = (StudentName, Age), \}$

R₂= (ProfessorName, PEmail)

R₃= (ProfessorName, StartHour)

R₄= (StartHour, StudentName) }

 R_1

ame

Rus

Irimie

Dan

Pavel

StudentN

Age	Professo ame
19	MIhai
20	Cristea

21

19

 R_2

ProfessorN ame	PEmail
MIhai	d@sd.com
Cristea	cp@nk.ro

 R_3

Professor Name	StartHour
<mark>Mihai</mark>	12:00
Cristea	15:30
Mihai	16:00
Mihai	13:00
Cristea	12:00

 R_4

StartHour	StudentN ame
12:00	Rus
15:30	Irimie
16:00	Dan
13:00	Pavel
12:00	Irimie

Decomposition of the relations: not a good example

$$R_1 * R_2 * R_3 * R_4$$

(from R_2 to R_3 and to R_4)

ProfessorName	PEmail	StudentName	SAge	StartHour
Mihai	d@sd.com	Rus	19	12:00
Mihai	d@sd.com	<mark>Irimie</mark>	<mark>20</mark>	12:00
Cristea	cp@nk.ro	Irimie	20	15:30
Mihai	d@sd.com	Dan	21	16:00
Mihai	d@sd.com	Pavel	19	13:00
Cristea	cp@nk.ro	Rus	19	12:00
Cristea	cp@nk.ro	Irimie	20	12:00

So, there are 2 records that have not been in the initial instance.

The projection of the decomposition is not generating the same tuples that have been before in the instance **So, this decomposition is not good.**

Decomposition of the relations

Definition:

The *projection operator* is used to decompose a relation

Let $[R_1, R_2, ..., R_n]$ be a relation and $\alpha = \{A_{i_1}, A_{i_2}, ..., A_{i_m}\}$ a subset of attributes, $\alpha \subset \{A_{i_1}, A_{i_2}, ..., A_{i_m}\}$.

 \circ The *projection of relation R on lpha* is

$$R'\big[A_{i_1},A_{i_2},\dots,A_{i_m}\big] = \prod_{\alpha}(R) = \prod_{\{A_{i_1},A_{i_2},\dots,A_{i_m}\}}(R) = \{r[a] \mid r \in R\}$$
 where $\forall r = (a_1,a_2,\dots,a_n) \in R \ \Rightarrow \prod_{\alpha}(R) = r[a] = \big(a_{i_1},a_{i_2},\dots,a_{i_m}\big) \in R'$ and all elements in R' are distinct

Definition:

The *natural join operator* is used to compose relations.

Let $R[\alpha, \beta]$, $S[\beta, \gamma]$ be two relations over the specified sets of attributes, $\alpha \cap \gamma = \emptyset$.

The natural join of relations R and S is the relation

$$R * S[\alpha, \beta, \gamma] = \left\{ \left(\prod_{\alpha} (r), \prod_{\beta} (r), \prod_{\gamma} (r) \right) \mid r \in R, s \in S \text{ and } \prod_{\beta} (r) = \prod_{\beta} (s) \right\}$$

A relation R can be decomposed into multiple new relations R_1, R_2, \dots, R_m

• The **decomposition is good** if $R = R_1 * R_2 * \cdots * R_m$

i.e. R' s data can be obtained from the data stored in relations R_1, R_2, \ldots, R_m (no data is added / lost through decomposition / composition

Lossless – Join Decomposition

Definition:

 \circ A decomposition of R (that have the functional dependencies F) in R₁, R₂, ..., R_n is a **lossless – join decomposition with respect to the set F** if

$$\prod_{R_1}(r) * \prod_{R_2}(r) * ... * \prod_{R_n}(r) = r$$

for any instance r from R that satisfies F

Example: Decomposition of R[A, B, C] in $\{R_1(AC), R_2(BC)\}$

 \circ Because $r \subset r_1 * r_2$ this decomposition is **not lossy - join decomposition**

Lossless – Join Decomposition

Theorem:

The decomposition of R (with the set F of functional dependencies) in $\{R_1, R_2\}$ is lossless – join decomposition with respect with the set F if and only if

$$\circ F \Rightarrow R_1 \cap R_2 \rightarrow R_1 \text{ or }$$

$$\circ F \Rightarrow R_1 \cap R_2 \rightarrow R_2$$

Corollary:

If $\alpha \to \beta$ is fulfilled on R and $\alpha \cap \beta = \emptyset$ then the decomposition of R in $\{R - \beta, \alpha\beta\}$ is a lossless – join decomposition

Theorem:

If $\{R_1, R_2\}$ is a lossless – join decomposition of R, and $\{R_{1,1}, R_{1,2}\}$ is a lossless – join decomposition of R_1 , then $\{R_{1,1}, R_{1,2}, R_2\}$ is a lossless – join decomposition of R:

Lossless – Join Decomposition example

Let R[A, B, C] with the functional dependencies $F = \{A \rightarrow B\}$

 \circ {AB, AC} is a lossless – join decomposition because AB∩AC=A and A→AB

r				r_1	r	2		r ₁ *	r_2	
Α	В	С	Α	В	Α	С		A	В	С
a_{1}	b_1	c_{1}	a_{1}	b_1	a_1	c_{1}		a_{1}	b_1	c_1
a_2	b_1	c_{2}	a_2	b_1	a_2	C_2		a_2	b_1	c_2

 (AB, BC) is NOT a lossless – join decomposition because AB∩BC=B and none of the following dependencies B→AB or B→BC are fulfilled by R

Lossless – Join Decomposition – example 1

Discussion

StudentName	SAge	ProfessorName	PEmail	Day	StartHour	EndHour
Rus	19	Mihai	d@sd.com	Monday	12:00	12:50
Irimie	20	Cristea	cp@nk.ro	Tuesday	15:30	16:20
Dan	21	Mihai	d@sd.com	Monday	12:00	12:50
Pavel	19	Mihai	d@sd.com	Monday	13:00	13:30
Irimie	20	Cristea	cp@nk.ro	Friday	15:30	16:20

Student

StudentName	SAge
Rus	19
Irimie	20
Dan	21
Pavel	19

ProfessorDiscussion

StudentName	ProfessorName	PEmail	Day	StartHour	EndHour
Rus	Mihai	d@sd.com	Monday	12:00	12:50
Irimie	Cristea	cp@nk.ro	Tuesday	15:30	16:20
Dan	Mihai	d@sd.com	Monday	12:00	12:50
Pavel	Mihai	d@sd.com	Monday	13:00	13:30
Irimie	Cristea	cp@nk.ro	Friday	15:30	16:20

Lossless – Join Decomposition – example 1

Student

StudentName	SAge
Rus	19
Irimie	20
Dan	21
Pavel	19

ProfessorDiscussion

StudentName	ProfessorName	PEmail	Day	StartHour	EndHour
Rus	Mihai	d@sd.com	Monday	12:00	12:50
Irimie	Cristea	cp@nk.ro	Tuesday	15:30	16:20
Dan	Mihai	d@sd.com	Monday	12:00	12:50
Pavel	Mihai	d@sd.com	Monday	13:00	13:30
Irimie	Cristea	cp@nk.ro	Friday	15:30	16:20

Professor

ProfessorName	PEmail
Mihai	d@sd.com
Cristea	cp@nk.ro

PSDiscussion

StudentName	ProfessorName	Day	StartHour	EndHour
Rus	Mihai	Monday	12:00	12:50
Irimie	Cristea	Tuesday	15:30	16:20
Dan	Mihai	Monday	12:00	12:50
Pavel	Mihai	Monday	13:00	13:30
Irimie	Cristea	Friday	15:30	16:20

Example 4 for functional dependencies

Consider the relation **Student[StudentId, Name, ExamType]** having the **StudentId** as **key** For the following instance

StudentId	Name	ExamType
12	Popescu Dan	Written
14	Irimie Raul	Practical
23	Jurca Bogdan	Practical
45	Hora Mihaela	Written
56	Florea Paula	Practical
79	Damian Crina	Practical

- the functional dependency {Name} → {StudentId} is fulfilled (because, there are no 2 different tuples with the same value in *Name* and different values in *StudentId*)
- \circ the functional dependency {StudentId} \rightarrow {ExamType} is fulfilled (because, there are no 2 different tuples with the same value in *StudentId* and different values in *ExamType*)

Example 5 for functional dependencies

Consider the relation Exam[StudentId, ProfessorId, Grade, ExamType] having the (StudentId, ProfessorId) as

key

For the following instance

StudentId	ProfessorId	Grade	ExamType
12	<mark>13</mark>	10	<mark>Written</mark>
14	<mark>13</mark>	9.7	Practical Practical
23	<mark>14</mark>	8.6	Quiz
45	23	9.2	Combination
56	5	7.25	Written
79	<mark>14</mark>	8.75	Presentation

- \circ the functional dependency {StudentId} \rightarrow {Grade} is fulfilled (because, there are no 2 different tuples with the same value in *StudentId* and different values in *Grade*)
- \circ the functional dependency {ProfessortId} \rightarrow {ExamType} is not fulfilled (because of pair (1,2) or (3,6))
- o the functional dependency {StudentId, Grade} \rightarrow {ExamType} is fulfilled (because, there are no 2 different tuples with the same value in (*StudentId*, *Grade*) and different values in *ExamType*)

References:

- C.J. Date, An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003.
- H. Garcia-Molina, J. Ullman, J. Widom, *Database Systems: The Complete Book, Prentice Hall Press*, 2008.
- G. Hansen, J. Hansen, Database Management And Design (2nd Edition), Prentice Hall, 1996.
- R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw-Hill, 2007. http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- R. Ramakrishnan, J. Gehrke, Database Management Systems (2nd Edition), McGraw-Hill, 2000.
- A. Silberschatz, H. Korth, S. Sudarshan, *Database System Concepts*, McGraw-Hill, 2010. http://codex.cs.yale.edu/avi/db-book/
- L. Ţâmbulea, Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014.
- J. Ullman, J. Widom, A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html