Problem 1. (10pt) Let $A=\{2,6,8,10\}$, B be the set of nonnegative even numbers that are at most 10, and C be the set of perfect squares less than 10. Define $f:A\to\mathbb{Z}$ and $g:B\setminus C\to\mathbb{Z}$ via $x\to \frac{15(x+8)}{x}$ and $x\mapsto \frac{5(x^2-16x+88)}{4}$, respectfully. Fully justifying your answer, determine whether $f\equiv g$.

Problem 2. (10pt) Define the following real-valued functions:

$$f(x) = 2x - 1$$
 $j(x) = \frac{x - 1}{x + 2}$
 $g(x) = x^2 + x + 1$ $k(x) = \sin(\pi x)$
 $h(x) = x2^x$ $\ell(x) = 1 - x^2$

Showing all your work, for each of the following, either compute the function at the specified value or find a general rule for the given function operation:

- (a) (f+g)(0)
- (b) $(j \ell)(2)$
- (c) (gk)(5)
- (d) $\left(\frac{f}{j}\right)$ (3)
- (e) $(h \circ k)(1)$
- (f) $(2f + \ell)(x)$
- (g) (fg)(x)
- (h) $\left(\frac{h}{f}\right)(x)$
- (i) $(k \circ \ell)(x)$
- (j) $(\ell \circ g \circ f)(x)$

Problem 3. (10pt) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $x \mapsto x^2 + 4x - 5$.

- (a) Determine f(-5).
- (b) Compute f([0,1]).
- (c) Is $16 \in \operatorname{im} f$? Explain.
- (d) Determine $f^{-1}(0)$.
- (e) Find the domain, codomain, and range for f(x).

Problem 4. (10pt) Being sure to justify your answer, complete the following:

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = 5 x^2$. Is f an increasing function? Explain. Is f a decreasing function? Explain.
- (b) Let $g: \mathbb{R} \to \mathbb{R}$ be given by g(x) = 5x 8. Is g a positive function? Explain. Is g a negative function? Explain.
- (c) Let g be as in (b) and define $A=[2,\infty)$ and $B=(-\infty,0)$. Is $g\big|_A$ a positive function? Explain. Is $g\big|_B$ a negative function? Explain.
- (d) Let $h: \mathbb{R} \to \mathbb{R}$ be given by...

$$h(x) = \begin{cases} 1 - x, & x < 2\\ 3x + 5, & x \ge 2 \end{cases}$$

Find the largest possible interval $S\subseteq\mathbb{R}$ such that $h|_S$ is a nondecreasing function. Is h monotone on S? Is h strictly monotone on S?