

US012384464B2

(12) United States Patent Schleif et al.

(10) Patent No.: US 12,384,464 B2

(45) **Date of Patent:** Aug. 12, 2025

(54) OFF-ROAD VEHICLE

(71) Applicant: **Polaris Industries Inc.**, Medina, MN

(US)

(72) Inventors: Andrew C. Schleif, Stacy, MN (US);

Paul W. Barton, Warwickshire (GB); Ralph W. Lauzze, III, Hugo, MN (US)

(73) Assignee: POLARIS INDUSTRIES INC.,

Medina, MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 44 days.

(21) Appl. No.: 18/209,294

(22) Filed: Jun. 13, 2023

(65) Prior Publication Data

US 2023/0322305 A1 Oct. 12, 2023

Related U.S. Application Data

(63) Continuation of application No. 16/875,494, filed on May 15, 2020, now Pat. No. 11,691,674.

(51) **Int. Cl.**

B62D 21/18 (2006.01) **B60K 5/00** (2006.01) **F02B 5/00** (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC .. B62D 21/183; B60K 5/00; B60K 2005/003; F02B 5/00; F01M 1/02; F01M 11/0004; F01M 11/08; F01M 2011/007; F16N 7/40

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

1,521,976 A 1,989,585 A 1/1925 Swain 1/1935 Bigelow (Continued)

FOREIGN PATENT DOCUMENTS

CA 1163510 A 3/1984 CA 1232167 A * 2/1988 F01M 3/00 (Continued)

OTHER PUBLICATIONS

JP—3769675-B2 English Translation (Year: 2006).* (Continued)

Primary Examiner — James A Shriver, II Assistant Examiner — Michael T. Walsh (74) Attorney, Agent, or Firm — SCHWEGMAN LUNDBERG & WOESSNER, P.A.

(57) ABSTRACT

A utility vehicle comprising a frame, a body supported by the frame, a seating area supported by the frame, front and rear ground engaging members supporting the frame and the body, and a powertrain drivingly coupled to the front and rear ground engaging members, the powertrain including an engine having a cylinder block having a plurality of cylinders, a cylinder head removably coupled to the cylinder block, a crankcase having a first portion and a second portion, the first portion of the crankcase being removably coupled to the cylinder block, and at least one gasket positioned between the cylinder block and the first portion of the crankcase, the at least one gasket configured to individually seal each of the plurality of cylinders relative to the first portion of the crankcase.

15 Claims, 23 Drawing Sheets

(56)			Referen	ces Cited		4,867,474		9/1989		
		U.S.	PATENT	DOCUMENTS		4,890,586 4,898,261		2/1990	Fujii et al. Winberg et al.	
						4,907,552		3/1990		
	D119,377			Cadwallader	E04D 47/04	4,924,959 4,927,170		5/1990	Handa et al. Wada	
	2,481,623	A	9/1949	Rued	60/372	4,934,737			Nakatsuka	
	2,525,131	A	10/1950	Hallett	00/372	4,941,784			Flament	
	2,553,795		5/1951			D312,441 D312,989			Guelfi et al. Murata et al.	
	2,623,612 2,624,592			Scheiterlein MacPherson		5,010,970		4/1991	Yamamoto	
	2,660,449			MacPherson		5,015,009			Ohyama et al.	
	2,672,103			Hohmes		5,016,903 5,018,490			Kijima et al. Kroener	
	2,839,038 2,986,130			Middlebrooks, Jr. McMillan		5,020,616			Yagi et al.	
	3,048,233			Crain et al.		5,021,721			Oshita et al.	
	3,400,607	A	9/1968			5,024,460 5,027,915			Hanson et al. Suzuki et al.	
	3,422,918 3,426,799			Musser et al. Kintner	E16K 3/2//3	5,036,939			Johnson et al.	
	3,420,799	A	2/1909	Killulei	137/625.48	5,038,582	A		Takamatsu	
	3,508,764			Dobson et al.		5,044,614 5,062,654		9/1991	Rau Kakimoto et al.	
	3,523,592		8/1970			5,062,657		11/1991		
	3,560,022 3,694,661		2/1971 9/1972	Minowa		5,063,811	A	11/1991	Smith et al.	
	3,734,219		5/1973	Christensen et al.		5,076,383 5,078,223			Inoue et al. Ishiwatari et al.	
	3,858,902			Howells et al.		5,078,225			Ohmura et al.	
	3,861,229 4,010,725		3/1977	Domaas White		5,080,392	A	1/1992	Bazergui	
	4,010,975	A	3/1977			5,086,858 D327,237			Mizuta et al. Miyamoto et al.	
	4,022,272		5/1977			5,129,700			Trevisan et al.	
	4,027,892 4,046,403		6/1977 9/1977	Parks Yoshida		5,163,538	\mathbf{A}	11/1992	Derr et al.	
	4,061,187			Rajasekaran et al.		5,181,696		1/1993	Abe Rubel et al.	
	4,098,414		7/1978			5,189,615 5,195,607			Shimada et al.	
	4,150,655 4,159,835			Forlai et al. Leja et al.		5,205,371	Α	4/1993	Karnopp	
	4,217,970		8/1980			5,212,431			Origuchi et al.	
	4,236,492	A	12/1980			5,251,588 5,251,713			Tsujii et al. Enokimoto	
	4,284,158 4,294,073		8/1981 10/1981	Schield Neff		5,253,730		10/1993	Hayashi et al.	
	4,337,406		6/1982			5,255,733		10/1993	King	
	4,344,718		8/1982			5,264,764 5,327,989		11/1993 7/1994	Kuang Furuhashi et al.	
	4,366,878 4,404,936		1/1983	Warf Tatebe et al.		5,342,023		8/1994	Kuriki et al.	
	4,427,087			Inoue et al.		5,359,247			Baldwin et al.	
	4,434,755			Kazuta et al.		D354,264 5,382,833			McCoy Wirges	
	4,434,934 4,458,491			Moser et al. Deutschmann		5,390,121		2/1995	Wolfe	
	4,470,389			Mitadera et al.		5,401,056			Eastman	
	4,474,162		10/1984			5,407,130 5,408,965			Uyeki et al. Fulton et al.	
	4,515,221 4,529,244		5/1985 7/1985	Van Der Lely Zavdel		5,473,990	\mathbf{A}	12/1995	Anderson et al.	
	4,561,323			Stromberg		5,475,596	A	12/1995	Henry et al.	
	4,577,716			Norton		5,483,448 5,528,148			Liubakka et al. Rogers	
	4,598,687 D286,760			Hayashi Ooba et al.		D373,099	\mathbf{S}	8/1996	Molzon et al.	
	4,630,446			Iwai et al.		5,546,901			Acker et al.	
	4,638,172			Williams		5,549,153 5,549,428		8/1996	Baruschke et al. Yeatts	
	4,650,210 4,671,521			Hirose et al. Talbot et al.		5,550,445	A	8/1996	Nii	
	4,685,430		8/1987			5,550,739			Hoffmann et al.	
	4,686,433		8/1987	Shimizu		5,558,057 5,614,809		9/1996 3/1997	Everts Kiuchi et al.	
	4,688,529 4,699,234		8/1987 10/1987	Mitadera et al. Shinozaki et al.		5,618,335	A *		Pink	B04B 5/12
	4,708,105			Leydorf et al.					***	96/216
	4,712,629		12/1987	Takahashi et al.		5,621,304 5,647,534			Kiuchi et al. Kelz et al.	
	4,714,126 4,722,548			Shinozaki et al. Hamilton et al.		5,653,304			Renfroe	
	4,732,244			Verkuylen		5,676,292	Α	10/1997	Miller	
	4,733,639	A	3/1988	Kohyama et al.		5,678,847 D391,911			Izawa et al. Lagaay et al.	
	4,779,895 4,779,905		10/1988	Rubel Ito et al.		5,738,062			Everts et al.	
	4,779,303			Cameron		5,738,471		4/1998	Zentner et al.	
	4,817,985	A	4/1989	Enokimoto et al.		5,752,791			Ehrlich	
	4,821,825 4,826,205		4/1989 5/1989	Somerton-Rayner Kouda et al.		5,776,568 5,788,597			Andress et al. Boll et al.	
	4,820,203		5/1989	Kawagoe et al.		5,816,650			Lucas, Jr.	
	4,828,017	A	5/1989	Watanabe et al.		5,820,114	A	10/1998	Tsai	
	4,848,294	A	7/1989	Yamamoto		5,820,150	A	10/1998	Archer et al.	

(56)		Referen	ces Cited	6,523,634			Gagnon et al.
	U.S.	PATENT	DOCUMENTS	D472,193 6,528,918		3/2003 3/2003	Sinkwitz Paulus-Neues et al.
				6,530,730			Swensen
	5,855,386 A	1/1999		6,543,523 6,547,224			Hasumi Jensen et al.
	5,860,403 A		Hirano et al.	6,553,761		4/2003	
	5,863,277 A 5,867,009 A		Melbourne Kiuchi et al.	6,557,515			Furuya et al.
	5,883,496 A		Esaki et al.	6,561,315		5/2003	Furuya et al.
	5,887,671 A		Yuki et al.	6,582,002 6,582,004		6/2003	Hogan et al.
	5,895,063 A 5,921,343 A		Hasshi et al. Yamakaji	D476,935		7/2003	
	5,947,075 A	9/1999	Ryu et al.	6,591,896	B1	7/2003	Hansen
	5,950,590 A	9/1999	Everts et al.	6,604,034			Speck et al.
	5,950,750 A 5,957,252 A		Dong et al. Berthold	6,622,804 6,622,968			Schmitz et al. St. Clair et al.
	D414,735 S		Gerisch et al.	6,626,260	B2	9/2003	Gagnon et al.
	5,960,764 A	10/1999	Araki	6,640,766			Furuya et al.
	5,961,106 A	10/1999		6,648,569 6,661,108			Douglass et al. Yamada et al.
	5,971,290 A 5,975,573 A	11/1999	Echigoya et al. Belleau	6,675,562	B2		Lawrence
	5,976,044 A	11/1999	Kuyama	6,685,174			Behmenburg et al.
	6,000,702 A	12/1999		6,691,767 6,695,566			Southwick et al. Rodriguez Navio
	D421,934 S 6.032,752 A		Hunter et al. Karpik et al.	6,702,052			Wakashiro et al.
	6,041,744 A		Oota et al.	6,725,905			Hirano et al.
	6,047,678 A		Kurihara et al.	6,725,962 D490,018		4/2004	Fukuda Berg et al.
	6,062,024 A 6,067,078 A		Zander et al. Hartman	6,732,830			Gagnon et al.
	6,070,681 A		Catanzarite et al.	6,752,235	B1	6/2004	Bell et al.
	6,078,252 A	6/2000	Kulczycki et al.	6,752,401			Burdock
	6,092,877 A	7/2000 8/2000	Rasidescu et al.	6,761,748 6,767,022			Schenk et al. Chevalier
	6,095,275 A 6,098,739 A		Anderson et al.	D493,749			Duncan
	6,112,866 A		Boichot et al.	6,769,391			Lee et al.
	6,113,328 A		Claucherty	6,772,824 6,777,846			Tsuruta Feldner et al.
	6,114,784 A 6,119,636 A	9/2000	Nakano Fan	6,786,187			Nagai et al.
	6,120,399 A		Okeson et al.	6,786,526			Blalock
	6,149,540 A		Johnson et al.	D497,324 D497,327		10/2004 10/2004	Chestnut et al.
	6,152,098 A 6,176,796 B1		Becker et al. Lislegard	6,799,779			Shibayama
	6,184,603 B1		Hamai et al.	6,799,781	B2	10/2004	Rasidescu et al.
	6,186,547 B1		Skabrond et al.	6,809,429 D498,435		10/2004 11/2004	
	6,196,168 B1 6,196,634 B1		Eckerskorn et al. Jurinek	6,810,667			Jung et al.
	6,198,183 B1		Baeumel et al.	6,810,977	B2	11/2004	Suzuki
	6,199,894 B1		Anderson	6,820,583 6,820,708		11/2004	Maier Nakamura
	6,202,993 B1 6,203,043 B1		Wilms et al. Lehman	6,822,353			Koga et al.
	6,213,079 B1		Watanabe	6,825,573	B2	11/2004	Suzuki et al.
	6,213,081 B1	4/2001	Ryu et al.	6,827,184		12/2004	
	6,216,660 B1	4/2001 4/2001	Ryu et al.	6,834,736 D500,707		1/2004	Kramer et al.
	6,217,758 B1 6,227,160 B1		Kurihara et al.	D501,570	S	2/2005	Tandrup et al.
	6,249,728 B1	6/2001	Streiter	6,851,679			Downey et al. Vitale et al.
	6,260,609 B1		Takahashi	6,857,498 6,860,826			Johnson
	6,293,617 B1 6,301,993 B1		Sukegawa Orr et al.	D503,657	S	4/2005	Katoh
	6,311,676 B1	11/2001	Berg et al.	D503,658		4/2005	
	6,328,004 B1	12/2001		D503,905 D504.638			Saito et al. Tanaka et al.
	6,333,620 B1 6,334,269 B1	1/2001	Schmitz et al. Dilks	6,892,842			Bouffard et al.
	6,338,688 B1		Minami et al.	6,895,318			Barton et al.
	6,352,142 B1	3/2002		6,901,992 6,907,916			Kent et al. Koyama
	6,353,786 B1 6,359,344 B1		Yamada et al. Klein et al.	6,908,108		6/2005	
	6,362,602 B1		Kozarekar	6,909,200			Bouchon
	6,370,458 B1		Shal et al.	D507,766 6,915,770		7/2005 7/2005	McMahan et al.
	6,394,061 B2 6,397,795 B2	5/2002 6/2002	Ryu et al. Hare	6,915,770			Hansen et al.
	D461,151 S	8/2002		D508,224	S		Mays et al.
	6,467,787 B1	10/2002	Marsh	6,923,507			Billberg et al.
	D467,200 S		Luo et al.	6,935,297 6,938,508			Honda et al.
	6,504,259 B1 6,507,778 B2	1/2003	Kuroda et al. Koh	6,938,308		9/2005 9/2005	Saagge Honkala et al.
	6,510,829 B2		Ito et al.	6,945,541	B2	9/2005	Brown
	6,510,891 B2		Anderson et al.	6,951,240		10/2005	
	6,520,133 B1	2/2003	Wenger et al.	RE38,895	Е	11/2005	McLemore

(56) Refer	ences Cited	7,401,794 B2		Laurent et al.
U.S. PATEN	IT DOCUMENTS	7,407,190 B2 7,412,310 B2	8/2008	Berg et al. Brigham et al. Bequette
D511,317 S 11/200	5 Tanaka et al.	7,416,234 B2 7,421,954 B2	9/2008	
	5 Schuehmacher et al.	7,427,072 B2	9/2008	
	5 Tanigaki et al.	7,427,248 B2 D578,433 S		Chonan Kawaguchi et al.
	15 Bequette 15 Korenjak	D578,934 S	10/2008	Tanaka et al.
	6 Fin et al.	7,431,024 B2	10/2008	Buchwitz et al.
	6 Kato	7,438,147 B2 7,438,153 B2		Kato et al. Kalsnes et al.
	6 Chevalier 6 Higuchi	7,441,789 B2		Geiger et al.
	6 Kunugi et al.	7,449,793 B2	11/2008	
7,011,174 B1 3/200	6 James	7,451,808 B2 7,455,134 B2	11/2008	Busse et al. Severinsky et al.
	6 Toyota et al. 6 Wilton et al.	7,458,593 B2	12/2008	Saito et al.
	6 Dahl et al.	7,481,287 B2	1/2009	
	6 Folchert	7,481,293 B2 7,483,775 B2	1/2009	Ogawa et al. Karaba et al.
	6 Caponetto et al. 6 Katoh	D586,694 S		Huang et al.
7,040,260 B2 5/200	6 Yoshimatsu et al.	7,490,694 B1		Berg et al.
	6 Fredrickson et al.	7,497,299 B2 7,497,471 B2		Kobayashi Kobayashi
	6 Yagi et al. 6 Jones et al.	7,497,472 B2	3/2009	Cymbal et al.
7,055,454 B1 6/200	6 Whiting et al.	7,506,712 B2		Kato et al.
	6 Kirchberger	7,506,714 B2 7,510,060 B2		Davis et al. Izawa et al.
	6 Hamilton et al. 6 Hasegawa	7,510,199 B2	3/2009	Nash et al.
7,089,737 B2 8/200	6 Claus	D592,998 S 7,530,420 B2		Woodard et al.
	6 Moriyama 6 Folchert	7,530,420 B2 7,537,070 B2	5/2009	Davis et al. Maslov et al.
	6 Terada et al.	7,540,511 B2	6/2009	Saito et al.
	6 Nishi et al.	7,546,892 B2 D595,613 S		Lan et al. Lai et al.
	16 Man et al. 16 Kent et al.	7,559,308 B2		Matsuda et al.
	6 Kole, Jr.	7,565,944 B2	7/2009	
	6 Hedlund et al.	7,565,945 B2 7,571,039 B2		Okada et al. Chen et al.
	6 Salman et al. 6 Johnson	7,575,211 B2	8/2009	Andritter
7,140,619 B2 11/200	6 Hrovat et al.	7,597,385 B2	10/2009	Shibata et al.
	6 Tanaka et al. 6 Pichler et al.	7,600,603 B2 7,600,762 B2	10/2009 10/2009	
	7 Yasuda et al.	7,604,084 B2	10/2009	Okada et al.
	7 Malek et al.	7,607,368 B2 7,610,132 B2	10/2009 10/2009	
7,168,709 B2 1/200 7,182,169 B2 2/200	7 Niwa et al. 7 Suzuki	D604,201 S		Kawaguchi et al.
7,185,732 B2 3/200	7 Saito et al.	7,611,154 B2		Delaney
7,204,219 B2 4/200 7,208,847 B2 4/200		7,621,262 B2 7,623,327 B2	11/2009 11/2009	
	7 Taniguchi 7 Fecteau et al.	D605,555 S	12/2009	Tanaka et al.
7,216,733 B2 5/200	7 Iwami et al.	D606,900 S 7,630,807 B2	12/2009	Flores Yoshimura et al.
	7 Cho et al. 7 Green et al.	D607,377 S		Shimomura et al.
7,237,789 B1 7/200	7 Herman	7,641,208 B1		Barron et al.
	7 Wilson et al. 7 Chonan et al.	7,644,934 B2 7,650,959 B2		Mizuta Kato et al.
- , ,	7 Hu	D610,514 S	2/2010	Eck
D548,662 S 8/200	7 Markefka	7,658,258 B2 7,677,646 B2		Denney Nakamura
	7 LePage 7 Hio et al.	7,677,040 B2 7,682,115 B1		Jay et al.
	7 Curtis et al.	7,684,911 B2		Seifert et al.
	7 Nordgren et al.	7,703,566 B2 7,703,730 B2		Wilson et al. Best et al.
	7 Kurihara 7 Tanaka et al.	7,703,826 B1		German
D555,036 S 11/200	7 Eck	7,712,562 B2		Nozaki Leonard et al.
	8 Kawamoto 8 Nakamura et al.	7,717,495 B2 7,740,092 B2		Bender
	8 Ono et al.	7,740,103 B2	6/2010	Sasajima
7,363,961 B2 4/200	8 Mori et al.	7,740,256 B2	6/2010	
	8 Horiuchi et al. 8 Inui et al.	7,742,851 B2 7,751,959 B2		Hisada et al. Boon et al.
	8 Saito et al.	7,753,427 B2	7/2010	Yamamura et al.
	8 Inui et al.	D621,423 S		Nakanishi et al.
7,377,351 B2 5/200 7,380,622 B2 6/200	8 Smith et al. 8 Shimizu	D622,631 S 7,769,505 B2		Lai et al. Rask et al.
	8 Lauwerys et al.	7,778,741 B2	8/2010	Rao et al.
7,387,180 B2 6/200	8 Konno et al.	7,786,886 B2		Maruyama et al.
7,395,804 B2 7/200	8 Takemoto et al.	7,795,602 B2	9/2010	Leonard et al.

(56)		Referen	ces Cited	8,170,749 B2		Mizuta
	U.S.	PATENT	DOCUMENTS	8,176,957 B2 8,186,333 B2		Manesh et al. Sakuyama
	0.00			8,191,930 B2		Davis et al.
	7,802,816 B2	9/2010	McGuire	8,205,910 B2		Leonard et al.
	D625,662 S	10/2010		8,209,087 B2 8,214,106 B2		Haegglund et al. Ghoneim et al.
	7,810,818 B2 7,819,220 B2	10/2010	Bushko Sunsdahl et al.	8,215,427 B2		Rouaud et al.
	7,819,220 B2 7,828,098 B2		Yamamoto et al.	8,219,262 B2	7/2012	
	7,845,452 B2		Bennett et al.	8,229,642 B2		Post et al.
	7,857,334 B2	12/2010		8,235,155 B2 8,260,496 B2		Seegert et al. Gagliano
	D631,395 S 7,862,061 B2	1/2011	Tandrup et al.	8,271,175 B2		Takenaka et al.
	7,874,391 B2		Dahl et al.	8,272,685 B2		Lucas et al.
	D631,792 S	2/2011		8,281,891 B2	10/2012	Sugiura
	D633,006 S		Sanschagrin et al.	8,296,010 B2 D670,198 S	10/2012	Hirao et al.
	7,884,574 B2 7,885,750 B2	2/2011 2/2011	Fukumura et al.	8,308,170 B2		Van et al.
	7,899,594 B2		Messih et al.	8,315,764 B2		Chen et al.
	7,912,610 B2		Saito et al.	8,321,088 B2		Brown et al.
	7,913,505 B2		Nakamura	8,322,497 B2 8,328,235 B2		Marjoram et al. Schneider et al.
	7,913,782 B1 D636,295 S		Foss et al.	8,352,143 B2		Lu et al.
	D636,704 S		Eck et al. Yoo et al.	8,353,265 B2		Pursifull
	D636,787 S		Luxon et al.	8,355,840 B2		Ammon et al.
	D636,788 S		Luxon et al.	8,356,472 B2		Hiranuma et al.
	7,926,822 B2		Ohletz et al.	8,374,748 B2 8,376,373 B2	2/2013	Conradie
	7,931,106 B1 D637,623 S		Suzuki et al. Luxon et al.	8,376,441 B2	2/2013	Nakamura et al.
	D638,446 S		Luxon et al.	8,381,855 B2	2/2013	
	7,942,427 B2	5/2011		8,382,125 B2		Sunsdahl et al.
	7,942,447 B2		Davis et al.	8,386,109 B2 8,396,627 B2		Nicholls Jung et al.
	7,950,486 B2 D640,598 S	5/2011 6/2011	Van et al.	D679,627 S		Li et al.
	7,954,853 B2		Davis et al.	8,417,417 B2		Chen et al.
	7,959,163 B2		Beno et al.	8,424,832 B2		Robbins et al.
	7,962,261 B2		Bushko et al.	D682,737 S D682,739 S		Li et al. Patterson et al.
	7,963,529 B2 7,967,100 B2		Oteman et al. Cover et al.	8,434,774 B2		Leclerc et al.
	7,970,512 B2		Lu et al.	8,439,019 B1		Carlson et al.
	D641,288 S	7/2011		8,442,720 B2		Lu et al.
	7,984,780 B2		Hirukawa	8,444,161 B2 8,447,489 B2		Leclerc et al. Murata et al.
	7,984,915 B2 D642,493 S		Post et al. Goebert et al.	8,457,841 B2		Knoll et al.
	8,002,061 B2		Yamamura et al.	8,473,157 B2	6/2013	Savaresi et al.
	8,005,596 B2		Lu et al.	8,479,854 B1 8,485,303 B2	7/2013 7/2013	Gagnon
	8,011,342 B2 8,011,420 B2	9/2011	Bluhm Mazzocco et al.	8,496,079 B2	7/2013	
	8,027,775 B2		Takenaka et al.	8,517,395 B2		Knox et al.
	8,029,021 B2		Leonard et al.	D689,396 S	9/2013	
	8,032,281 B2		Bujak et al.	8,538,628 B2 D691,924 S	9/2013	Backman Smith
	8,037,959 B2 D648,745 S		Yamamura et al. Luxon et al.	8,548,678 B2		Ummethala et al.
	D649,162 S		Luxon et al.	8,550,221 B2	10/2013	Paulides et al.
	8,047,324 B2		Yao et al.	8,561,403 B2		Vandyne et al.
	8,047,451 B2		McNaughton	8,567,847 B1 D693,370 S		King et al. Randhawa
	8,050,818 B2 8,050,851 B2	11/2011 11/2011	Mızuta Aoki et al.	8,573,348 B2		Cantemir et al.
	8,050,851 B2 8,050,857 B2		Lu et al.	8,573,605 B2	11/2013	Di Maria
	8,051,842 B2	11/2011	Hagelstein et al.	8,579,060 B2		George et al.
	8,052,202 B2		Nakamura	8,590,651 B2 D694,668 S	11/2013 12/2013	Shigematsu et al.
	8,056,392 B2 8,056,912 B2		Ryan et al. Kawabe et al.	8,596,405 B2	12/2013	
	8,065,054 B2		Tarasinski et al.	8,613,335 B2		Deckard et al.
	D650,311 S	12/2011		8,613,337 B2		Kinsman et al.
	8,074,753 B2		Tahara et al.	8,626,388 B2 8,626,389 B2	1/2014	Oikawa Sidlosky
	8,075,002 B1 8,086,371 B2		Pionke et al. Furuichi et al.	D699,627 S	2/2014	Tang
	8,087,676 B2		McIntyre	8,640,814 B2		Deckard et al.
	8,095,268 B2		Parison et al.	8,641,052 B2		Kondo et al.
	8,104,524 B2 8,108,104 B2		Manesh et al. Hrovat et al.	8,645,024 B2 8,646,555 B2	2/2014	Daniels Reed
	8,108,104 B2 8,116,938 B2		Itagaki et al.	8,651,557 B2	2/2014	
	8,121,757 B2		Song et al.	8,657,050 B2		Yamaguchi
	8,122,988 B2	2/2012	Obayashi et al.	D700,869 S	3/2014	Sato et al.
	8,152,880 B2		Matschl et al.	D701,469 S		Lai et al.
	8,157,039 B2 8,162,086 B2		Melvin et al. Robinson	8,671,919 B2 8,672,106 B2		Nakasugi et al. Laird et al.
	D660,746 S	5/2012		8,672,337 B2		Van et al.
	2000,770 B	J1 2012	21403	.,o.2,557 D2	5/2017	. mir ve tili

(56)			Referen	ces Cited	10,124,709	В2	11/2018	Bohnsack et al.	
` /				5.0.07.19.007.000	D835,545			Hanten et al.	
		U.S. I	PATENT	DOCUMENTS	10,183,605 10,189,524			Weber et al. Schafer et al.	
	D702 102	C	4/2014	E-14 -1	10,207,555			Mailhot et al.	
	D703,102 8,700,260			Eck et al. Jolly et al.	10,221,727			Walter et al.	
	8,708,359		4/2014		10,239,571	B2		Kennedy et al.	
	8,712,599	B1		Westpfahl	10,246,153			Deckard et al.	
	8,712,639			Lu et al.	10,300,786 10,323,568			Nugteren et al. Kaeser et al.	
	D705,127			Patterson et al. Hirao et al.	D852,674			Wilcox et al.	
	8,718,872 8,725,351			Selden et al.	10,369,861			Deckard et al.	
	8,731,774		5/2014		10,371,249			Bluhm et al.	
	8,746,719			Safranski et al.	10,399,401			Schlangen et al.	
	8,763,739			Belzile et al.	10,479,422 10,486,748			Hollman et al. Deckard et al.	
	8,783,396 8,783,400			Bowman Hirukawa				Fisher	F16H 61/0025
	D711,778			Chun et al.	10,589,621			McKoskey et al.	
	D712,311	S		Morgan et al.	10,655,536			Mueller et al.	
	8,827,019			Deckard et al.	10,718,238 10,723,190			Wenger et al. Hu et al.	
	8,834,307			Itoo et al. Zuber et al.	D896,125			Hashimoto et al.	
	8,840,076 8,869,525			Lingenauber et al.	D896,702			Dunshee et al.	
	D717,695			Matsumura	D896,703			Dunshee et al.	
	D719,061			Tandrup et al.	10,766,533			Houkom et al.	
	D722,538			Song et al.	10,800,250	B2 *	11/2020	Nugteren et al. Parrish	F01M 11/0004
	8,960,348 8,973,693			Shomura et al. Kinsman et al.	10,876,462			Draisey et al.	101141 11/0004
	D727,794			Tandrup et al.	10,926,799			Houkom et al.	
	8,997,908	B2		Kinsman et al.	D913,847			Hashimoto et al.	
	9,016,760			Kuroda et al.	10,933,932 10,946,736			Spindler et al. Fischer et al.	
	9,027,937			Ryan et al.	11,104,194		8/2021	Schlangen et al.	
	D735,077 9,091,468			Sato et al. Colpan et al.	11,173,808			Swain et al.	
	D737,724			Schroeder et al.	11,220,147			Hu et al.	
	D739,304	S	9/2015		11,235,814			Schlangen et al.	
	9,133,730			Joergl et al.	11,285,807 11,293,540			Galsworthy et al. Leclair et al.	
	9,146,061 9,162,561			Farlow et al. Marois et al.	11,370,266			Borud et al.	
	9,186,952		11/2015		11,607,920			Schlangen et al.	
	9,194,278			Fronk et al.	11,691,674			Schleif et al.	
	9,194,282			Serres et al.	11,780,326			Schlangen et al.	
	9,221,508			De Haan	11,787,251 11,884,148			Schlangen et al. Nelson et al.	
	9,266,417 D756,845		5/2016	Nadeau et al. Flores	11,926,190		3/2024	Schlangen et al.	
	9,327,587			Spindler et al.	2001/0005803		6/2001	Cochofel et al.	
	9,328,652	B2	5/2016	Bruss et al.	2001/0007396		7/2001	Mizuta	
	9,381,803			Galsworthy et al.	2001/0013433 2001/0020554			Szymkowiak Yanase et al.	
	9,382,832 D762,522			Bowers Kinoshita	2001/0020334			Obradovich et al.	
	9,421,860			Schuhmacher et al.	2001/0031185		10/2001	Swensen	
	9,428,031		8/2016	Kuwabara et al.	2001/0035642		11/2001	Gotz et al.	
	9,440,671			Schlangen et al.	2001/0043808 2002/0023792		2/2001	Matsunaga et al. Bouffard et al.	
	9,469,329 D772,755	BI	10/2016	Leanza Tandrup et al.	2002/0023792			Korenjak et al.	
	9,499,044		11/2016		2002/0056969		5/2002	Sawai et al.	
	9,512,809			Tsumiyama et al.	2002/0063440			Spurr et al.	
	9,566,858			Hicke et al.	2002/0074760 2002/0082752			Eshelman Obradovich	
	9,592,713 D784,199			Kinsman et al.	2002/0082732			Gagnon et al.	
	D784,199 D785,502			Dunshee et al. Dunshee et al.	2002/0147072			Goodell et al.	
	9,638,070		5/2017		2002/0178968			Christensen	
	9,650,078			Kinsman et al.	2002/0179354		12/2002		
	9,713,976			Miller et al.	2003/0001409 2003/0029413			Semple et al. Sachdev et al.	
	9,718,351 9,719,463			Ripley et al. Oltmans et al.	2003/0034187			Hisada et al.	
	9,725,023			Miller et al.	2003/0066696	A1	4/2003	Nakamura	
	9,752,489	B2	9/2017	Chu	2003/0070849			Whittaker	
	9,776,481			Deckard et al.	2003/0104900			Takahashi et al. Madau et al.	
	D804,993 D805,009			Eck et al. Eck et al.	2003/0125857 2003/0132075			Drivers	
	D805,009 D805,015			Eck et al. Eck et al.	2003/0132073			Borroni-Bird et al.	
	9,856,817			Nicosia et al.	2003/0173754		9/2003		
	9,884,647			Peterson et al.	2003/0200016			Spillane et al.	
	9,895,946			Schlangen et al.	2003/0205867			Coelingh et al.	
1	9,908,577			Novak et al.	2003/0213628			Rioux et al. Lu et al.	
	10,017,090 10,036,311			Franker et al. Kaeser et al.	2004/0010383 2004/0031451			Atschreiter et al.	
	10,030,511			Bessho et al.	2004/0041358			Hrovat et al.	

(56)		Referen	ces Cited	2006/0191739		8/2006	
1	II C	DATENT	DOCUMENTS	2006/0196721 2006/0196722			Saito et al. Makabe et al.
	U.S.	PATENT	DOCUMENTS	2006/0197331			Davis et al.
2004/0063535	A1	4/2004	Ibaraki	2006/0201270			Kobayashi
2004/0079561			Ozawa et al.	2006/0207823			Okada et al. Saito et al.
2004/0083730			Wizgall et al.	2006/0207824 2006/0207825			Okada et al.
2004/0090020 2004/0094912			Braswell Niwa et al.	2006/0208564			Yuda et al.
2004/0107591		6/2004		2006/0212200			Yanai et al.
2004/0108159			Rondeau et al.	2006/0219452			Okada et al.
2004/0129489			Brasseal et al.	2006/0219469 2006/0219470			Okada et al. Imagawa et al.
2004/0130224 2004/0153782			Mogi et al. Fukui et al.	2006/0220330			Urquidi et al.
2004/0168455			Nakamura	2006/0220341			Seki et al.
2004/0169347		9/2004		2006/0270503			Suzuki et al.
2004/0177827			Hoyte et al.	2006/0278197 2006/0278451			Takamatsu et al. Takahashi et al.
2004/0188159 2004/0195018			Yatagai et al. Inui et al.	2006/0288800			Mukai et al.
2004/0195019			Kato et al.	2007/0000715			Denney
2004/0195034			Kato et al.	2007/0013181		1/2007	
2004/0195797			Nash et al.	2007/0018419 2007/0023566			Kinouchi et al. Howard
2004/0206567 2004/0207190			Kato et al. Nakagawa et al.	2007/0068726		3/2007	Shimizu
2004/0221669			Shimizu et al.	2007/0073461		3/2007	
2004/0224806		11/2004		2007/0074588			Harata et al.
2004/0226384			Shimizu et al.	2007/0074589 2007/0074927			Harata et al. Okada et al.
2004/0226761 2004/0231630		11/2004 11/2004		2007/0074928			Okada et al.
2004/0231900			Tanaka et al.	2007/0080006			Yamaguchi
2005/0012421			Fukuda et al.	2007/0095601			Okada et al.
2005/0045414			Takagi et al.	2007/0096449 2007/0120332			Okada et al. Bushko et al.
2005/0052080 2005/0055140			Maslov et al. Brigham et al.	2007/0120332		6/2007	
2005/0033140			Takayanagi et al.	2007/0158920			Delaney
2005/0098964		5/2005		2007/0169989			Eavenson et al.
2005/0103558			Davis et al.	2007/0175696 2007/0209613		8/2007	Saito et al. Pantow
2005/0131604		6/2005 8/2005	Lu Smith et al.	2007/0209013			Nakamura
2005/0173177 2005/0173180			Hypes et al.	2007/0215404			Lan et al.
2005/0205319			Yatagai et al.	2007/0227793			Nozaki et al.
2005/0231145			Mukai et al.	2007/0242398 2007/0251744		10/2007	Ogawa Matsuzawa
2005/0235767 2005/0235768		10/2005 10/2005	Shimizu et al. Shimizu et al.	2007/0251744		11/2007	
2005/0233708			Akutsu et al.	2007/0257479		11/2007	Davis et al.
2005/0246052			Coleman et al.	2007/0261904			Fecteau et al.
2005/0248116		11/2005		2008/0022981 2008/0023240		1/2008	Keyaki et al. Sunsdahl et al.
2005/0257989 2005/0257990			Iwami et al. Shimizu	2008/0023240		1/2008	Sunsdahl et al.
2005/0267660			Fujiwara et al.	2008/0028603	A1		Takegawa et al.
2005/0269141			Davis et al.	2008/0041335			Buchwitz et al.
2005/0279244		12/2005		2008/0048423 2008/0053738		2/2008	Eriksson et al. Kosuge et al.
2005/0279330 2005/0280219			Okazaki et al. Brown	2008/0053743			Tomita
2006/0006010			Nakamura et al.	2008/0059034	A1	3/2008	Lu
2006/0006623		1/2006	Leclair	2008/0083392			Kurihara et al.
2006/0006696			Umemoto et al.	2008/0084091 2008/0093883			Nakamura et al. Shibata et al.
2006/0017240 2006/0022619			Laurent et al. Koike et al.	2008/0143505			Maruyama et al.
2006/0042862			Saito et al.	2008/0157592			Bax et al.
2006/0055139			Furumi et al.	2008/0172155			Takamatsu et al.
2006/0065472			Ogawa et al.	2008/0178830 2008/0183353			Sposato Post et al.
2006/0075840 2006/0076180			Saito et al. Saito et al.	2008/0199253			Okada et al.
2006/0108174			Saito et al.	2008/0202483			Procknow
2006/0112695			Neubauer et al.	2008/0240847		10/2008	
2006/0130888			Yamaguchi et al.	2008/0243336 2008/0256738		10/2008	Fitzgibbons Malone
2006/0131088 2006/0151970			Pawusch et al. Kaminski et al.	2008/0257625		10/2008	Stranges
2006/0162990			Saito et al.	2008/0257630	A1	10/2008	Takeshima et al.
2006/0169525	A1	8/2006	Saito et al.	2008/0271937			King et al.
2006/0175124			Saito et al.	2008/0275606		11/2008	Tarasinski et al.
2006/0180383 2006/0180385			Bataille et al. Yanai et al.	2008/0284124 2008/0289796		11/2008	Brady et al. Sasano et al.
2006/0185741			McKee	2008/0289896			Kosuge et al.
2006/0185927			Sakamoto et al.	2008/0299448		12/2008	Buck et al.
2006/0191734			Kobayashi	2008/0303234			McCann
2006/0191735		8/2006	Kobayashi	2008/0308334			Leonard et al.
2006/0191737	Al	8/2006	Kobayashi	2008/0308337	ΑI	12/2008	18filda

(56) Refere	ences Cited	2012/0055728 A1		Bessho et al.
U.S. PATEN	T DOCUMENTS	2012/0055729 A1 2012/0073527 A1 2012/0073537 A1*	3/2012	Bessho et al. Oltmans et al. Oltmans F01M 9/102
	9 Leonard et al.	2012/0078470 A1		123/195 R Hirao et al.
	9 Lin 9 Molenaar	2012/00/84/0 A1 2012/0085588 A1		Kinsman et al.
	9 Fleckner	2012/0119454 A1		Di Maria
	9 Shimizu et al.	2012/0125022 A1	5/2012	Maybury et al.
	9 Sato et al.	2012/0152632 A1		Azuma
	9 Maeda et al.	2012/0161468 A1		Tsumiyama et al.
	9 Leonard et al.	2012/0168268 A1		Bruno et al.
	9 Leonard et al.	2012/0193163 A1 2012/0212013 A1		Wimpfheimer et al. Ripley et al.
	9 Poskie et al. 9 Tsutsumikoshi et al.	2012/0212013 A1 2012/0217078 A1		Kinsman et al.
	9 Leonard et al.	2012/0217116 A1		Nishimoto
	9 Nishida et al.	2012/0223500 A1		Kinsman et al.
	9 Getman et al.	2012/0247888 A1		Chikuma et al.
	Ohletz et al.	2012/0265402 A1		Post et al.
	9 Songwe, Jr.	2012/0277953 A1 2012/0283930 A1		Savaresi et al. Venton-Walters et al.
	9 Leonard et al. 9 Bailey et al.	2012/0283336 A1 2012/0297765 A1		Vigild et al.
	9 Okada et al.	2013/0009350 A1		Wolf-Monheim
	9 Okada et al.	2013/0018559 A1	1/2013	Epple et al.
2009/0177345 A1 7/2009	9 Severinsky et al.	2013/0030650 A1		Norris et al.
	Gerundt et al.	2013/0033070 A1		Kinsman et al.
	9 Smith et al.	2013/0041545 A1 2013/0060423 A1	3/2013	Baer et al.
	9 Schramm et al. 9 Siereveld et al.	2013/0060444 A1		Matsunaga et al.
	9 McIntyre	2013/0074487 A1		Herold et al.
	9 Brown	2013/0075183 A1	3/2013	Kochidomari et al.
2009/0301830 A1 12/2009	9 Kinsman et al.	2013/0079988 A1		Hirao et al.
	9 Van et al.	2013/0087396 A1		Itoo et al.
	9 Yahia et al.	2013/0103259 A1 2013/0158799 A1		Eng et al. Kamimura
	Deckard et al. Lu et al.	2013/0161921 A1		Cheng et al.
	Nakamura et al.	2013/0190980 A1		Ramirez Ruiz
	O Sanchez	2013/0197732 A1		Pearlman et al.
	0 Kaita et al.	2013/0197756 A1		Ramirez Ruiz
	Vandyne et al.	2013/0218414 A1 2013/0226405 A1		Meitinger et al. Koumura et al.
	0 Tagaki et al. 0 Kochidomari et al.	2013/0261893 A1	10/2013	
	7 Takahashi et al.	2013/0304319 A1		Daniels
	O Savaresi et al.	2013/0307243 A1	11/2013	
	0 Li et al.	2013/0319784 A1		Kennedy et al.
	0 Melvin et al. 0 Aamand et al.	2013/0319785 A1 2013/0328277 A1		Spindler et al. Ryan et al.
	O Jyoutaki et al.	2013/0334394 A1		Parison et al.
	O Sugiura	2013/0338869 A1	12/2013	
2010/0187032 A1 7/201	9 Yamamura et al.	2013/0341143 A1	12/2013	
	Yamamura et al.	2013/0345933 A1		Norton et al. Giovanardi et al.
	0 Kelty et al. 0 Sasaki et al.	2014/0001717 A1 2014/0005888 A1		Bose et al.
	Inoue et al.	2014/0008136 A1		Bennett
	O Cox et al.	2014/0012467 A1		Knox et al.
2010/0253018 A1 10/201	O Peterson	2014/0046539 A1		Wijffels et al.
	Van et al.	2014/0058606 A1		Hilton Smith et al.
	O Stenberg et al.	2014/0060954 A1 2014/0062048 A1		Schlangen et al.
	l Malmberg l Hirao et al.	2014/0065936 A1		Smith et al.
	1 Jolly	2014/0067215 A1		Wetterlund et al.
	1 Kaita et al.	2014/0090935 A1		Pongo et al.
	1 Fought et al.	2014/0095022 A1		Cashman et al.
	1 Kistner et al.	2014/0102820 A1 2014/0103627 A1		Deckard et al. Deckard et al.
	l Suzuki et al. l Suzuki et al.	2014/0109627 A1		Lee et al.
	1 Wenger et al.	2014/0113766 A1		Yagyu et al.
	1 Acocella	2014/0124279 A1		Schlangen et al.
2011/0155082 A1 6/201	l Takano	2014/0125018 A1		Brady et al.
	1 Wenger et al.	2014/0129083 A1		O'Connor et al.
	l Fujikawa l Hurd et al.	2014/0131971 A1 2014/0136048 A1	5/2014	Hou Ummethala et al.
	1 Flurd et al. 1 Schneider et al.	2014/0156143 A1		Evangelou et al.
	2 Hirao et al.	2014/0167372 A1		Kim et al.
	2 Safranski et al.	2014/0203533 A1		Safranski et al.
	2 Deckard et al.	2014/0217774 A1		Peterson et al.
	2 Deckard et al.	2014/0224561 A1		Shinbori et al.
	2 Oikawa	2014/0230797 A1		Meshenky et al.
2012/0053791 A1 3/201	2 Harada	2014/0288763 A1	9/2014	Bennett et al.

(56)	References Cited	CN	2255379 Y	6/1997
U.S	S. PATENT DOCUMENTS	CN CN	1268997 2544987 Y	10/2000 4/2003
		CN	1660615 A	8/2005
2014/0311143 A1 2014/0353956 A1	10/2014 Speidel et al. 12/2014 Bierketvedt et al.	CN CN	1746803 A 1749048 A	3/2006 3/2006
2014/0358373 A1	12/2014 Bjerketvedt et al. 12/2014 Kikuchi et al.	CN	1792661 A	6/2006
2014/0360794 A1	12/2014 Tallman	CN CN	1810530 A 1982110 A	8/2006 6/2007
2015/0002404 A1 2015/0029018 A1	1/2015 Hooton 1/2015 Bowden et al.	CN	101424200 A	5/2009
2015/0039199 A1	2/2015 Kikuchi	CN	101511664 A	8/2009
2015/0041237 A1 2015/0047917 A1	2/2015 Nadeau et al. 2/2015 Burt et al.	CN CN	101549626 A 101701547 A	10/2009 5/2010
2015/0057885 A1	2/2015 Built et al. 2/2015 Brady et al.	CN	101708694 A	5/2010
2015/0061275 A1	3/2015 Deckard et al.	CN CN	201723635 U 102069813 A	1/2011 5/2011
2015/0071759 A1 2015/0210137 A1	3/2015 Bidner et al. 7/2015 Kinsman et al.	CN	102121415 A	7/2011
2015/0210319 A1	7/2015 Tiramani	CN	102168732 A	8/2011
2015/0259011 A1 2015/0260123 A1	9/2015 Deckard et al. 9/2015 Knollmayr	CN CN	201914049 U 102226464 A	8/2011 10/2011
2015/0275742 A1	10/2015 Chekaiban et al.	CN	202040257 U	11/2011
2015/0375614 A1	12/2015 Osaki	CN CN	102616104 A 102627063 A	8/2012 8/2012
2015/0377341 A1 2016/0059660 A1	12/2015 Renner et al. 3/2016 Brady et al.	ČN	102678808 A	9/2012
2016/0061314 A1	3/2016 Kuhl et al.	CN	102729760 A	10/2012
2016/0108866 A1 2016/0167715 A1	4/2016 Dewit et al. 6/2016 Kosuge et al.	CN CN	202468817 U 102840265 A	10/2012 12/2012
2016/017/13 A1 2016/0176283 A1	6/2016 Hicke et al.	CN	103075278 A	5/2013
2016/0176284 A1	6/2016 Nugteren et al.	CN CN	202986930 U 203702310 U	6/2013 7/2014
2016/0341148 A1 2017/0029036 A1	11/2016 Maki et al. 2/2017 Proulx et al.	CN	212690200 U	3/2021
2017/0120946 A1	5/2017 Gong et al.	CN	215292711 U	12/2021
2017/0131095 A1	5/2017 Kim 6/2017 Wieles	DE DE	0037435 0116605	10/1886 2/1900
2017/0152810 A1 2017/0166255 A1	6/2017 Wicks 6/2017 Peterson et al.	DE	1755101	4/1971
2017/0175621 A1	6/2017 Schenkel	DE DE	2210070 2701939 A1 *	9/1973 7/1978
2017/0199094 A1 2017/0233022 A1	7/2017 Duff et al. 8/2017 Marko	DE	3033707	4/1982
2017/0248087 A1	8/2017 Reisenberger et al.	DE	3825349 A1	2/1989
2017/0268200 A1 2018/0065465 A1	9/2017 Todokoro 3/2018 Ward et al.	DE DE	4427322 A1 19508302 A1	2/1996 9/1996
2018/0003403 A1 2018/0118053 A1	5/2018 Ward et al. 5/2018 Sunsdahl et al.	DE	4447138	12/1997
2018/0142609 A1	5/2018 Seo et al.	DE DE	19735021 A1 19949787 A1	2/1999 4/2000
2018/0178677 A1 2018/0312025 A1	6/2018 Swain et al. 11/2018 Danielson et al.	DE	19922745 A1	12/2000
2018/0326843 A1	11/2018 Danielson et al.	DE	202005017990 U1	3/2006
2019/0078679 A1 2019/0118883 A1	3/2019 Leclair et al. 4/2019 Spindler et al.	DE DE	102005003077 A1 202005005999 U1	8/2006 8/2006
2019/0118884 A1	4/2019 Spindler et al.	DE	102007024126	12/2008
2019/0143871 A1	5/2019 Weber et al.	DE DE	102010020544 A1 102014000450 A1	1/2011 8/2014
2019/0210457 A1 2019/0210668 A1	7/2019 Galsworthy et al. 7/2019 Endrizzi et al.	DE	102014000430 A1 102016012781 A1	4/2017
2019/0248227 A1	8/2019 Nugteren et al.	EP	0047128	3/1982
2019/0264635 A1 2020/0010125 A1	8/2019 Oltmans et al. 1/2020 Peterson et al.	EP EP	0237085 0238077 A2	9/1987 9/1987
2020/0070709 A1	3/2020 Veber et al.	EP	0398804 A1	11/1990
2020/0346542 A1		EP EP	0403803 A1 0471128 A1	12/1990 2/1992
2021/0023936 A1 2021/0024007 A1	1/2021 Marietta 1/2021 Fredrickson et al.	EP	0511654 A2	11/1992
2021/0088138 A1	3/2021 Yoshino	EP EP	0544108 A1 0546295 A1	6/1993 6/1993
2021/0206219 A1 2021/0213822 A1	7/2021 Stieglitz et al. 7/2021 Ripley et al.	EP	0405123	10/1993
2021/0300472 A1	9/2021 Thomas et al.	EP	0568251 A1	11/1993
2021/0331543 A1	10/2021 Zock et al.	EP EP	0575962 A1 0473766	12/1993 2/1994
2021/0354542 A1 2021/0354760 A1	11/2021 Schleif et al. 11/2021 Schleif et al.	EP	0691226 A1	1/1996
2021/0370737 A1	12/2021 Zock et al.	EP EP	0709247 A2 0794096 A2	5/1996 9/1997
2022/0105795 A1 2022/0120340 A1	4/2022 Nelson et al. 4/2022 Nichols et al.	EP	0856427 A1	8/1998
2022/0266645 A1	8/2022 Badino et al.	EP	0893618 A2	1/1999
2022/0339984 A1 2023/0399975 A1	10/2022 Starik et al. 12/2023 Tittl et al.	EP EP	0898352 A1 1013310 A1	2/1999 6/2000
2023/0399973 A1 2023/0415558 A1		EP	1172239 A2	1/2002
		EP	1215107 A1	6/2002
FORE	IGN PATENT DOCUMENTS	EP EP	1219475 A1 1382475 A1	7/2002 1/2004
CA 12	283836 C * 5/1991 B60K 17/3	ED	1433645 A2	6/2004
CA 27	746655 A1 7/2010	\mathbf{EP}	1449688 A2	8/2004
CH 3	317335 11/1956	EP	1481834 A2	12/2004

(56)	References Cited	JP 2010-064744 A 3/2010 JP 2010-095106 A 4/2010
	FOREIGN PATENT DOCUMENTS	JP 2011-126405 A 6/2011
EP	1493624 A1 1/2005	JP 2016161028 A * 9/2016 JP 2017-043130 A 3/2017
EP	1164897 2/2005	KR 10-2008-0028174 A 3/2008
EP	1557345 A2 7/2005	SU 646076 A1 * 2/1979 WO 92/10693 A1 6/1992
EP EP	1564123 A2 8/2005 1697646 9/2006	WO 92/10693 A1 6/1992 WO 98/30430 A1 7/1998
EP	2033878 A1 3/2009	WO 00/53057 A1 9/2000
EP	2055520 A2 5/2009	WO 2004/085194 A1 10/2004
EP	2057060 A2 5/2009	WO 2005/059382 A1 6/2005 WO 2007/103197 A2 9/2007
EP EP	2123933 A2 11/2009 2145808 A1 1/2010	WO 2008/013564 A1 1/2008
EP	1520978 B1 4/2010	WO 2008/016377 A2 2/2008
EP	2236395 A1 10/2010	WO 2008/115459 A1 9/2008 WO 2009/059407 A1 5/2009
EP EP	1980741 B1 9/2011 2517904 A1 10/2012	WO 2009/096998 A1 8/2009
EP	2589785 A1 5/2013	WO 2010/081979 A1 7/2010
EP	2923926 A2 9/2015	WO 2010/148014 A1 12/2010 WO 2012/018896 A2 2/2012
FR FR	2460797 A1 1/1981 2914597 A1 10/2008	WO 2012/018890 A2 2/2012 WO 2012/040553 A2 3/2012
FR	2935642 3/2010	WO 2012/109546 A1 8/2012
FR	2936028 A1 3/2010	WO 2012/174793 A1 12/2012
FR GB	2941424 A1 7/2010 2036659 A 7/1980	WO 2013/166310 A1 11/2013 WO 2013/174662 A1 11/2013
GB GB	2030039 A 7/1980 2081191 A 2/1982	WO 2014/039432 A2 3/2014
GB	2316923 A 3/1998	WO 2014/039433 A2 3/2014
GB	2349483 A 11/2000	WO 2014/047488 A1 3/2014 WO 2014/059258 A1 4/2014
GB GB	2423066 A 8/2006 2431704 A 5/2007	WO 2014/143953 A2 9/2014
GB	2454349 A 5/2009	WO 2014/193975 A1 12/2014
JР	58-126434 7/1983	WO 2015/036984 A1 3/2015 WO 2015/036985 A1 3/2015
JP JP	59-039933 3/1984 60-209616 A 10/1985	WO 2015/159571 A1 10/2015
JР	61-135910 6/1986	WO 2016/038591 A1 3/2016
JР	62-007925 A 1/1987	WO 2016/099770 A2 6/2016 WO 2016/186942 A1 11/2016
JP JP	02-155815 A 6/1990 04-368211 A 12/1992	WO 2018/118176 A1 6/2018
JP	05-149443 A 6/1993	WO 2018/118508 A2 6/2018
JP	05-178055 A 7/1993	WO 2019/140026 A1 7/2019
JP JP	06-156036 A 6/1994 06-325977 A 11/1994	WO 2020/223379 A1 11/2020
JР	07-040783 2/1995	OTHER REDUCATIONS
JР	07-117433 5/1995	OTHER PUBLICATIONS
JP JP	2898949 B2 6/1999 11-334447 A 12/1999	CA—1232167-A English Translation (Year: 1988).*
JР	2000-177434 A 6/2000	CA-1283836-C English Translation (Year: 1991).*
JP	2001-018623 A 1/2001	JP—3928436-B2 English Translation (Year: 2007).*
JP JP	3137209 B2 2/2001 2001-121939 A 5/2001	JP—2016161028-A English Translation (Year: 2016).* SU—646076-A1 English Translation (Year: 1979).*
JР	2001-121939 A 5/2001 2001-130304 A 5/2001	Polaris Ranger Brochure 2009, copyright 2008; 32 pages.
JР	2002-219921 A 8/2002	Polaris Ranger Brochure ATVs and Side times. Sides Brochure
JP JP	2003-237530 A 8/2003 2004-243992 A 9/2004	2010, .Copyrgt. 2009, 26 pages.
JР	2004-243332 A 3/2004 2004-308453 A 11/2004	Polaris Ranger Off-Road Utility Vehicles Brochure 2004, .Copyrgt.
JP	2005-130629 A 5/2005	2003; 20 pages. Polaris Ranger RZR Brochure 2011, .Copyrgt. 2010; 16 pages.
JP JP	2005-186911 A 7/2005 2005-193788 A 7/2005	Polaris Ranger Welcome to Ranger Country Brochure 2006, .Copyrgt.
JР	2005-193788 A 7/2003 2005-299469 A 10/2005	2005, 24 pages.
JP	3769675 B2 * 4/2006	Polaris Ranger Work/Play Only Brochure 2008, .Copyrgt. 2007, 28
JP JP	2006-232058 A 9/2006 2006-232061 A 9/2006	pages. Polaris RZR XP 1000 Radiator Relocation Kit, https:/abffabrication.
JP	2006-256579 A 9/2006	com/shop/polaris-rzr-xp-1000-radiator-relocation-kit/.
JP	2006-256580 A 9/2006	Polaris RZR XP 900 Review, retrieved from www.world-of-atvs.
JP ID	2006-281839 A 10/2006	com/polaris-rzr-xp-900.html on Jan. 10, 2019, Internet Wayback
JP JP	2007-064080 A 3/2007 2007-083864 A 4/2007	Machine capture dated Mar. 12, 2012 (Year: 2012).
JP	2007-106319 A 4/2007	Radiator Relocation Kit for Polaris Scrambler, High Lifter, http://
JP	3928436 B2 * 6/2007	www.highlifter.com/p-4598-radiator-relocation-kit-for-polaris- scra- mbler-8501000-see-apps.aspx, last accessed Nov. 4, 2015, 1
JP JP	2007-278228 A 10/2007 2007-532814 11/2007	page.
JP	2008-013149 A 1/2008	Radiator Relocation Kit-Polaris Sportsman 550/850, High Lifter,
JP	2009-035220 A 2/2009	http://www.highlifter.com/p-2686-radiator-relocation-kit-polaris-
JР	2009-160964 A 7/2009	sportsma- n-550850-see-apps.aspx, last accessed Nov. 4, 2015, 2
JP JP	2009-173147 A 8/2009 2009-220765 A 10/2009	pages. Ranger XP900 High Lifter Ground Clearance Demo-Polaris Ranger,
JP	2009-241872 A 10/2009	Youtube.com, https://www.youtube.com/watch?v=jfGho4ESvyY, pub-
JP	2009-281330 A 12/2009	lished Jul. 27, 2015; 1 page.

(56) References Cited

OTHER PUBLICATIONS

Ray Sedorchuk, New for 2004, Yamaha Rhino 660 4 × 4, ATV Connection Magazine, (Copyrights) 2006; 3 pages.

Redline Specs, copyright 2008, available at www.RedlinePerforms. com., 2 pages.

Renegade X MR 1000R, Can-Am, http://can-am.brp.com/off-road/atv/renegade/renegade-x-mr-1000R.html, copyright 2003-2015, 12 pages.

Response to Office Action filed with the U.S. Patent and Trademark Office, filed Dec. 19, 2018, for U.S. Appl. No. 15/751,403; 9 pages. Ridenow Powersports. 2017 Can-Am Maverick X3 Walk Around. YouTube. Sep. 14, 2016 (Sep. 14, 2016). [retrieved on Jul. 6, 2021]. Retrieved from internet: <URL: https://www.youtube.com/watch? v=5lOslScF-y4> entire video. See pp. 6-8 of the ISA/237.

RZR Pro XP Sport, Published date unavailable [online], [retrieved on Jul. 25, 2021], Retrieved from the Internet: https://rzr.polaris.com/en-us/rzr-pro-xp-sport-rockford-fosgate-le/build-color/ (Year: 2021), 1 page.

RZR XP (Registered) 1000 High Lifter Edition Stealth Black, https://rzr.polaris.com/en-us/2015/high-performance/rzr-xp-1000-eps-high-lifter-edition-stealth-black-2015-rzr/; 4 pages.

RZR XP 100 EPS, High Lifter Velocity Blue, http://www.polaris.com/en-us/rzr-side-by-side/rzr-xp-1000-eps-high-lifter-edition.

RZR XP 1000 High Lifter Edition—Polaris RZR Sport Side by Side ATV, Youtube.com, https://www.youtube.com/watch?-RKRVulGlzuo, published Jul. 27, 2014; 1 page.

Sal & Barbara at S&B's, Particle Separator for 2014-16 Polaris RZR 100, http://www.sbfilters.com/particle-separator-2014-17-polaris-rzr-1000.

Second Office Action issued by the China National Intellectual Property Administration, dated Jul. 3, 2020, for Chinese Patent Application No. 201680028024.5; 7 pages.

Select Increments 2007-2018 Compatible With Jeep Wrangler JK and Unlimited With Infinity or Alpine Premium Factory Systems Pillar Pods with Kicker speakers PP0718-IA-K (Select), Dec. 14, 2018; 6 pages.

Shock Owner's Manual: Float ATV Front Applications—Fox Racing Shox, 2004, 21 pgs.

Shock Owner's Manual: Float ATV+Snowmobile—Fox Racing Shox, 2006, 18 pgs.

Shock Owner's Manual: Float MXR—Fox Racing Shox, 2006, 16 pgs.

Shock Owner's Manual: Float X Evol—Snowmobile Applications, 2006. 32 pgs.

Suzuki, 1991 Suzuki GSX1100G Cylinder OEM Parts Diagram; retrieved Mar. 17, 2022; https://www.revzilla.com/oem/suzuki/1991-suzuki-gsx1100g/cylinder?submodel=gsx1100gp (Year: 2017).

The International Bureau of WIPO, International Preliminary Report on Patentability for PCT/US2009/042985, Nov. 9, 2010, 11 pgs.

Troy Merrifield, Redline's Rockin' Riot, UTV Off-Road Magazine, published in vol. 4, Issue 1, Feb./Mar. 2009, available at http://www.1redline.com/news.sub.-events/PDF/Redline.sub.-Riot.sub.-Ar-ticle.sub.-01.sub.-2009.pdf., last accessed on Feb. 15, 2012, pp. 16-19.

Welcome to Ranger Country brochure, .Copyrgt. 2005, Polaris Industries Inc., 24 pgs.

Wild Boar ATV Parts, Airaid Intake XP 900 Polaris, Snorkel Kit, https://www.wildboaratvparts.com/airaid-intake-xp-900-polaris-snorkel-kit-free-shipping-529-00/.

Work/Play Only Ranger brochure, .Copyrgt. 2007, Polaris Industries Inc., 28 pgs.

Written Opinion of the International Searching Authority, dated Feb. 3, 2013, for related International Patent Application No. PCT/US2011/046395; 7 pages.

XR Bull Spaider 500 MOD 2011, anuncios ya, https://mexicali.anunciosya.com.mx/xr-bull-spaider-500-mod-2011-en-mexicali-SWqi, May 24, 2011; 4 pages.

XR Bull Spider 500CC 4×4 360° .AVI, youtube.com, https://www.youtube.com/watch?v=-jSzDvute8Q, posted Feb. 8, 2010; 1 page.

Yamaha, Company Website, 2006 Rhino 450 Auto 4 .times. 4, .Copyrgt. 2005, 3 pages.

Yamaha, Company Website, 2006 Rhino 660 Auto 4 × 4, (Copyrights) 2006; 4 pages.

Yamaha, company website, 2006 Rhino 660 Auto 4.times.4 Special Edition, Copyright 2006, 4 pgs.

 $http://revistamoto.com/inicio/rm/prueba-xrbull-xr500-spider.html. \\ https://drive.google.com/file/d/0B851Fdu_$

42hLaE5MdDBLWHFReU9zQjhlWIB1bkU1QQ/view (service manual).

Photobucket "https://photobucket.com/p/error?type=404&path=/gallery/er/ben8225/media/cGF0aDovRFNDRjE0ODkuanBn/", Retrived on Apr. 1, 2024, 2 pages.

2017 Can-Am Maverick X3 Walk Around https://youtu.be/5l0slScF-y4?si=xBV9LzjGUNORi9A9 (Year: 2016).

"2012 Arctic Cat Wildcat 1000i H.O. Preview," ATV.Com, https://www.atv.com/manufacturers/arctic-cat/2012-arctic-cat-wildcat-1000i-ho-preview-2014.html, dated Jul. 26, 2011; 10 pages.

"Arctic Cat Unleashes a Wild Cat at Recent Dealer Show", UTV Guide. net, https://www.utvguide.net/arctic-cat-unleashes-a-wild-cat-at-recent-dealer-show/, posted Mar. 29, 2011; 5 pages.

"Arctic Cat Unleashes a Wildcat at Recent Dealer Show", Dirt Toys, https://www.dirttoysmag.com/2011/05/arctic-cat-unleashes-a-wildcat, May 2011 Issue; 4 pages.

"Artie Cat Breaks Silence on New Side-by-Side," Lucas Cooney, https://www.atv.com/blogi2011/03/arctic-cat-breaks-silence-on-new-side-by-side.html, dated Mar. 24, 2011; 5 pages.

"Commander Performance Modifications: Radiator Relocate for Mud", commanderforums.org, https://www.commanderforums.org/forums/commander-performance-modifications/7059-radiator-relocate-mud-3.html, Aug. 28, 2012; 7 pages.

"Custom Weber Intercooler Bed Mount with Dual 5.2" Spal Fans", RZRForums.net, https://www.rzrforums.net/forced-induction/19182-custom-weber-intercooler-bed-mount-w-dual-5-2-spal-fans.html, Oct. 30, 2009; 10 pages.

"Engine firing change '13 850", PolarisATVForums.com internet forum discussion thread dated Nov. 21, 2012.

"Honda develps a powerful, fuel-efficient 700cc engine for midsize motorcycle", Honda news release from www.world.honda.com; dated Sep. 26, 2011.

"Modified RedLine Revolt," RDC Race-deZert.com, https://www.race-dezert.com/forum/threads/modified-redline-revolt.92038/, dated Mar. 10, 2011; 5 pages.

"National Guard/Coastal Racing Polaris RZR XP 900 UTV Race Test," JeffM. Vanasdal, ATVriders.com, http://www.atvriders.com/atvreviews/polaris-2012-coastal-racing-rzr-xp-900-sxs-utv-worcs-race-review-p4.html; Feb. 25, 2012; 8 pages.

"Rad Relocation Kit", RZRFarums.net, https://www.rzrforums.net/engine-drivetrain/93153-rad-relocation-kit.html, Nov. 9, 2012; 8 pages.

"Radiator in the back", RZRForums.net, https://www.rzrforums.net/rzr-xp-900/63047-radiator-back.html, Nov. 14, 2011; 4 pages.

"Radiator Relocate", RZRForums.net, https://www.rzrforums.net/muddin/14716-radiator-relocate.html, Jul. 23, 2009; 7 pages.

"Radiator relocation", RZRForums.net, https://www.rzrforums.net/general-rzr-discussion/8440-radiator-relocation.html, Feb. 4, 2009; 7 pages.

"Relocated Radiator?", RZRForums.net, https://www.rzrforums.net/muddin/75562-relocated-radiator.html, Apr. 6, 2012; 7 pages.

"Rhino Radiator Relocation", HighLifter Forum, http://forum.highlifter.com/Rhino-Radiator-Relocation-m2180231.aspx, Aug. 30, 2007; 5 pages.

"RZR Radiator Relocation?", RZRForums.net, https://www.rzrforums.net/general-rzr-discussion/13963-rzr-radiator-relocation.html, Jul. 3, 2009; 5 pages.

"Sporty New Artie Cat Side-by-Side," Lucas Cooney, https://www.atv.com/blog/2011/03/sporty-new-arctic-cat-side-by-side-video. html, dated Mar. 10, 2011; 4 pages.

"Straight-twin engine", Wikipedia.org internet encyclopedia entry. "Who makes the best turbo kit for the Polarsis RZR??", RZRforums. net internet forum discussion thread dated Jun. 25, 2010.

(56) References Cited

OTHER PUBLICATIONS

1989 Honda Pilot f1400, Powersports Log, http://powersportslog.com/asp/Item.asp?soldid=29871&makeHonda&theday=4%2F16%2F2011, posted Apr. 16, 2011; 2 page.

2009 Honda Big Red, ATV Illustrated at http://www.atvillustrated.com/?q=node/6615/20/2008, 6 pgs.

2012 Arctic Cat Wildcat with 95-hp & 16-in. Travel, ArcticInsider.com, http://www.arcticinsider.com/Article/2012-Arctic-Cat-Wildcat-with-95-hp-16-in-Travel; 4 pages.

2012 Coastal Racing Polaris XP 900 UTV, photograph, http://www.atvriders.com/images/polaris/2012-coastal-racing-polaris-xp-900-utv-race-review/2012-polaris-rzr-xp-900-utv-sxs-jeff-vanasdal.jpg; 1 page.

2015 Polaris Owner's Manual for Maintenance and Safety, RZR (Registered) XP 1000 EPS High Lifter Edition, (Copyright) 2015; 151 pages.

2016 Mudpro 700 Limited, Artic Cat, http://www.articcat.com/dirt/atvs/model/2016-en-mudpro700-limited/, copyright 2015, 23 pages. 53 Series Aerocharger RZR XP 900 Turbocharger kit, retrieved from www.sidebysidesports.com/53seaerzxp9.html on Jan. 10, 2019, Internet Wayback Machine capture dated Apr. 26, 2011 (Year: 2011).

Arctic Cat, company website, Prowler XT 650 H1, undated, 9 pgs. Boss Plow System for Ranger, at http://www.purepolaris.com/Detail.aspx?ItemID=2876870(PolarisPGACatalog), May 14, 2008, 2 pgs. Boss Smarthitch 2 at http://www.bossplow.com/smarthitch.html, May 14, 2008, 13 pgs.

BRP Can-Am Commander photo, undated; 1 page.

Buyer's Guide Supplement, 2006 Kart Guide, Powersports Business Magazine; 6 pages.

Can-Am Maverick Sport 60 (front deflector panel for hot radiator air, 2019.

Club Car, Company Website, product pages for XRT 1500 SE, undated; 2 pages.

Diver Down Snorkel for Polaris Scrambler 850/1000, High Lifter, last accessed Nov. 4, 2015, http://www.highlifter.com/p-4687-diverdown-snorkel-for-polaris-scrambler--8501000-see-apps.aspx; 1 page. DuneGuide.com, "Product Review 2009 Honda Big Red MUV," retrieved from http://www.duneguide.com/ProductReview.sub.--Honda. sub.--BigRed.htm, May 20, 2008, 3 pgs.

Eulenbach, Dr.Ing. Dieter, Nivomat: The Automatic Level Control System with Spring Function and Damping Function, Lecture given as part of the course "Springing and damping systems for road and rail vehicles" at the Technical Academy of Esslingen, Oct. 11, 2000, 18 pgs.

Excerpts from Honda Service Manual 89 FL400R Pilot, Honda Motor Co., Ltd., copyright 1988; 24 pages.

Fang et al., Research on Generator Set Control of Ranger Extender Pure Electric Vehicles, Power and Energy Conference (APPEEC), 2010 Asia-Pacific, Mar. 31, 2010.

Heitner, Range extender hybrid vehicle, Intersociety Energy Conversion Engineering Conference Proceedings, vol. 4, pp. 323-338, 1991.

High-Performance "Truck Steering" Automotive Engineering, Society of Automotive Engineers. Warrendale, Us, vol. 98. No. 4, Apr. 1, 1990, pp. 56-60.

Honda Hippo 1800 New Competition for Yamaha's Rhino, Dirt Wheels Magazine, Apr. 2006, pp. 91-92.

Images for rear radiator, https://www.google.com/search?q=rear+radiator+site%3Arzrforums.net&lr=&hl=en&as_qdr=all&source_Int&tbs=cdr%3A1%2Ccd_min%3A%2Ccd_max%3A2012&tbm; available before Dec. 31, 2012; 2 page.

Improved Fox Shox, Motocross Action, Mar. 1977 issue, 1 pg. International Preliminary Report on Patentability issued by the European Patent Office, dated Aug. 31, 2010, for International Patent Application No. PCT/US2009/042986; 14 pages.

International Preliminary Report on Patentability issued by the European Patent Office, dated Mar. 8, 2013, for International PCT Application No. PCT/US2012/024664; 24 pages.

International Preliminary Report on Patentability issued by the European Patent Office, dated May 11, 2009, in related International Patent Application No. PCT/US2008/003483; 21 pages.

International Preliminary Report on Patentability issued by The International Bureau of WIPO, dated Apr. 14, 2015, for International Patent Application No. PCT/US2013/064516; 18 pages.

International Preliminary Report on Patentability issued by The International Bureau of WIPO, dated Jul. 14, 2020, for International Patent Application No. PCT/US2019/012958; 19 pages.

International Preliminary Report on Patentability issued by the International Bureau of WIPO, dated May 12, 2015, for International Application No. PCT/US2013/068937; 7 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/031804, mailed on Nov. 24, 2022, 6 pages.

Office Action issued by the Canadian Intellectual Property Office, dated May 2, 2023, for Canadian Patent Application No. 3152773; 5 pages.

International Preliminary Report on Patentability issued by The International Bureau of WIPO, dated Nov. 9, 2010, for International Patent Application No. PCT/US2009/042985; 13 pages.

International Preliminary Report on Patentability issued by the International Searching Authority, dated May 6, 2021, for International Patent Application No. PCT/US2020/030518; 27 pages.

International Preliminary Report on Patentability issued by the International Searching Authority, dated Nov. 15, 2022, for International Patent Application No. PCT/US2021/031782; 9 pages. International Preliminary Report on Patentability received for PCT

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US10/49167, mailed on Oct. 18, 2012, 30 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/061272, mailed on May 12, 2017, 22 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/031992, mailed on Nov. 30, 2017, 15 pages.

International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/065724, mailed on Jan. 7, 2019, 16 pages.

International Preliminary Report on Patentability, dated May 28, 2013, for related International Patent Application No. PCT/US2011/046395, 31 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Aug. 27, 2008, in related International Patent Application No. PCT/US2008/003485; 15 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Feb. 18, 2014, for International Application No. PCT/US2013/068937; 11 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jan. 14, 2014, for International Patent Application No. PCT/US2013/064516; 24 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 31, 2013, for International Patent Application No. PCT/US2013/039304; 11 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jun. 28, 2012, for International PCT Application No. PCT/US2012/024664; 19 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Oct. 2, 2008, in related International Patent Application No. PCT/US2008/003483; 18 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Oct. 9, 2014, for International Patent Application No. PCT/US2014/028152; 20 pages.

International Search Report and Written Opinion issued by the European Patent Office, mailed Dec. 18, 2009, for International Patent Application No. PCT/US2009/042986; 15 pages.

International Search Report and Written Opinion issued by the European Patent Office, mailed Sep. 4, 2009, for International Patent Application No. PCT/US2009/042985; 18 pages.

International Search Report and Written Opinion issued by the International Searching Authority, dated Oct. 21, 2020, for International Patent Application No. PCT/US2020/42787; 18 pages.

(56) References Cited

OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US10/49167, mailed on Jul. 6, 2011, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US14/39824, mailed on Sep. 19, 2014, 9 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/061272, mailed on Aug. 12, 2016, 13 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/031992, mailed on Sep. 19, 2016, 20 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/065724, mailed on Jun. 18, 2018, 14 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/012958, mailed on Jul. 3, 2019, 27 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/030518, mailed on Sep. 11, 2020, 14 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US21/31782, mailed on Aug. 5, 2021, 11 pages.

International Search Report and Written Opinion received for PCT Patent Application No. PCT/US21/31804, mailed on Aug. 9, 2021, 6 pages

International Search Report issued by the European Patent Office, dated Jun. 3, 2008, in related International Patent Application No. PCT/US2008/003480; 5 pages.

International Search Report issued by the International Searching Authority, dated Jun. 18, 2018, for related International Patent Application No. PCT/US2017/065724; 7 pages.

International Search Report of the International Searching Authority, dated Sep. 4, 2012, for related International Patent Application No. PCT/US2011/046395; 6 pages.

Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2017/065724, mailed on Apr. 10, 2018, 10 pages.

Kawasaki Mule The Off-Road Capable 610 4 .times. 4 XC Brochure 2011, .Copyrgt. 2010, 6 pages.

Kawasaki Mule Utility Vehicle Brochure 2009, .Copyrgt. 2008; 10 pages.

Kawasaki Teryx 750 F1 4 × 4 Sport Brochure 2011, (Copyrights) 2010; 6 pages.

Kawasaki Teryx Recreation Utility Vehicle Brochure 2009, .Copyrgt. 2008; 8 pages.

Letter Exam Report issued by the State Intellectual Property Office (SIPO), dated Mar. 18, 2015, for related Chinese Application No. 201080046628.5; 20 pages.

MTX (IMTX Audio Thunder Sports RZRPod65-owners-manual, 2016); 8 pages.

New Arctic Cat Side by Side, youtube.com, https://www.youtube.com/watch?-gQGAYSz1bME&fs=1&hl=en_US, posted Mar. 9, 2011; 1 page.

Office Action issued by the Canadian Intellectual Property Office, dated Apr. 1, 2021, for Canadian Patent Application to. 2,985,632; 4 pages.

Office Action issued by the Canadian Intellectual Property Office, dated Oct. 27, 2020, for Canadian Patent Application No. 3,044,002; 4 pages.

Office Action issued by the U.S. Patent and Trademark Office, dated Oct. 1, 2018, for U.S. Appl. No. 15/751,403; 7 pages.

Outlander X mr 850, available at https://can-am.brp.com/off-road/atv/outlander/outlander-x-mr-850.html; .Copyrgt. 2003-2017; 3 pages. Patent Examination Report issued by the Australian Government IP Australia, dated Apr. 7, 2016, for Australian Patent Application No. 2013329090; 3 pages.

Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412473845198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010;1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412473865198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010;1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412474325198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412474575198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412474695198&set=pb.512920198.-2207520000. 1541691407.&type=3&theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412474765198&set=pb.512920198.-2207520000. 1541691407. Lype=3 & theater, post dated Mar. 30, 2010; 1 page. Photo, Facebook.com, Jake Brattain, https://www.facebook.com/ photo.php?fbid=412475960198&set=pb.512920198.-2207520000. 1541691407.&tye=3&theater, post dated Mar. 30, 2010; 1 page.

* cited by examiner

Aug. 12, 2025

Fig. 8

Fig. 9

Fig. 10

Fig. 12

Fig. 21

OFF-ROAD VEHICLE

CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 16/875,494, filed May 15, 2020, the enclosure of which is disclosed herein by reference.

FIELD OF THE INVENTION

The present invention relates to off-road vehicles including all-terrain vehicles ("ATVs") or utility vehicles ("UTVs").

BACKGROUND OF THE INVENTION

Generally, UTVs or ATVs are used to carry one or more passengers and a small amount of cargo over a variety of terrains. Current ATVs and UTVs are typically provided 20 with engines having a unitary engine block housing a plurality of cylinders and a portion of a crankcase. However, for engine modularity purposes, a need exists for an engine in a UTV or ATV that has a cylinder block separate from but sealingly engaged with the portion of the crankcase.

SUMMARY OF THE INVENTION

In one embodiment of the disclosure, a utility vehicle comprises a frame, a body supported by the frame, a seating 30 area supported by the frame, front and rear ground engaging members supporting the frame and the body, and a powertrain drivingly coupled to the front and rear ground engaging members. The powertrain includes an engine having a cylinder block having a plurality of cylinders, a 35 cylinder head removably coupled to the cylinder block, and a crankcase having a first portion and a second portion. The first portion of the crankcase is removably coupled to the cylinder block, and at least one gasket is positioned between the cylinder block and the first portion of the crankcase. The 40 at least one gasket is configured to individually seal each of the plurality of cylinders relative to the first portion of the crankcase.

In another embodiment of the disclosure, an engine for a utility vehicle comprises a cylinder block having a plurality 45 invention will be described. As shown, the vehicle is genof cylinders, a cylinder head removably coupled to the cylinder block, and a crankcase having a first portion and a second portion. The first portion of the crankcase is removably coupled to the cylinder block. Each of the plurality of cylinders is individually sealed with the first portion of the 50 crankcase via at least one sealing member.

BRIEF DESCRIPTION OF THE DRAWINGS

- the present disclosure;
- FIG. 2 shows a right rear perspective view of the vehicle
- FIG. 3 shows a left elevational side view of the vehicle of FIG. 1;
- FIG. 4 shows a right elevational side view of the vehicle of FIG. 1;
- FIG. 5 shows a top plan view of the vehicle of FIG. 1;
- FIG. 6 shows a front elevational view of the vehicle of
- FIG. 7 shows a rear elevational view of the vehicle of FIG. 1;

2

- FIG. 8 shows a schematic view of a powertrain of the vehicle of FIG. 1:
- FIG. 9 shows a first perspective view of an engine of the vehicle of FIG. 1;
- FIG. 10 shows a second perspective view of the engine of FIG. 9:
- FIG. 11 shows a side plan view of a fuel injection assembly of the vehicle of FIG. 1 coupled to an air intake and an engine of a powertrain of the vehicle of FIG. 1;
- FIG. 12 shows a cross-sectional view of the fuel injection assembly, air intake, and engine of FIG. 11 taken along line 12-12 of FIG. 11;
- FIG. 13 shows a perspective view of the engine of FIG. 9 with a cam cover, a cylinder head, and a coolant assembly 15 of the engine removed;
 - FIG. 14 shows an exploded view of a portion of the engine of FIG. 13;
 - FIG. 15 shows a cross-sectional view of a portion of the engine of FIG. 13 taken along line 15-15 of FIG. 13;
 - FIG. 16 shows a perspective view of a starter motor, a balance shaft, an oil pump, a water pump, a crankshaft and an oil pan of the engine of FIG. 9;
 - FIG. 17 shows a side plan view of the starter motor, the balance shaft, and the crankshaft of FIG. 16;
 - FIG. 18 shows an exploded view of the starter motor, the balance shaft, and the crankshaft of FIG. 17;
 - FIG. 19 shows an exploded view of the water pump and the oil pump of FIG. 16;
 - FIG. 20 shows a perspective view of a lubrication system of the engine of FIG. 9;
 - FIG. 21 shows an exploded view of the lubrication system of FIG. 20:
 - FIG. 22 shows a cross-sectional view of lubrication system of FIG. 20 taken along line 22-22 of FIG. 20;
 - FIG. 23A is a detailed cross-sectional view of a scavenge pump of the lubrication system of FIG. 22 when the vehicle of FIG. 1 is tilted in a first direction; and
 - FIG. 23B shows a detailed cross-sectional view of the scavenge pump of the lubrication system of FIG. 22 when the vehicle of FIG. 1 is tilted in a second direction.

DETAILED DESCRIPTION OF THE DRAWINGS

With reference to FIGS. 1-7, the vehicle of the present erally depicted as reference number 2 which includes front ground engaging members 4 and rear ground engaging members 6. Front ground engaging members 4 are comprised of wheels 8 and tires 10, and rear ground engaging members 6 are comprised of wheels 12 and tires 14. Ground engaging members 4 and 6 support a vehicle frame, which is shown generally at 20, through front and rear suspension assemblies 16 and 18.

Vehicle frame 20 supports a seating area 22 comprised of FIG. 1 shows a front left perspective view of a vehicle of 55 a driver's seat 24 and a passenger seat 26. Vehicle 2 further includes a steering assembly for steering front ground engaging members 4 whereby the steering assembly includes a steering wheel 28. Frame 20 of vehicle 2 is comprised of a cab frame 30 that generally extends over the 60 seating area 22, and a lower frame portion 32 positioned below and supporting cab frame 30. Frame 20 is configured to support a plurality of body panels 34 and/or doors 36.

> With reference now to FIG. 8, vehicle 2 further includes a powertrain assembly 70 for providing power to ground engaging members 4 and 6 of vehicle 2. Powertrain assembly 70 generally comprises an engine 72, an air intake assembly 74 providing air to engine 72, an exhaust assembly

76 routing exhaust from engine 72 out of vehicle 2, a transmission 78 coupled to engine 72, and a drivetrain (not shown) coupled to transmission 78. Additional details relating to vehicle 2 including powertrain 70 may be found in U.S. patent application Ser. No. 16/875,448 (now U.S. Pat. 5 No.12,187,127) the subject matter of which is incorporated herein by reference.

Still referring to FIG. 8, in various embodiments, powertrain assembly 70 may further include a starter clutch 80 removably coupled between engine 72 and transmission 78 10 to allow a starter motor, which may be in constant meshed engagement with starter clutch 80, to crank or start engine 72. Starter clutch 80 is generally sealingly coupled to engine 72 such that starter clutch 80 may receive lubricant from engine 72. Decoupling starter clutch 80 from engine 72 and 15 transmission 78 allows for a more modular engine in that various components of powertrain assembly 70 may be used in different embodiments and orientations due to ability to couple and decouple components from each other, depending on the application on vehicle 2 and the requirements of 20 powertrain assembly 70. Furthermore, in various embodiments, powertrain assembly 70 may include a turbocharger 82 at least fluidly coupled with exhaust assembly 76.

Referring now to FIGS. 9-15, engine 72 of powertrain assembly 70 generally includes a cylinder block 90, a 25 cylinder head which includes an intake port 92 and is coupled to cylinder block 90, a first crankcase portion 94 coupled to cylinder block 90, a second crankcase portion 96 coupled to first crankcase portion 94, an oil pan 98 coupled to second crankcase portion 96, a valve or cam cover 100 30 depending on the location of valves and cams within engine 72 coupled over intake port 92, and a coolant assembly 102. Coolant assembly 102 may be configured to extend along a side of engine 72 from intake port 92 to second crankcase portion 94. In various embodiments, intake port 92 is 35 positioned above cylinder block 90 and cylinder block 90 itself is positioned above first crankcase portion 94. First crankcase portion 94 is positioned above second crankcase portion 96 and second crankcase portion 96 is positioned above oil pan 98.

With reference to FIGS. 9 and 10, coolant assembly 102 generally includes a coolant manifold 104, a water pump 106 (FIG. 10), a water pump inlet conduit 108 coupling coolant manifold 104 to water pump 106, a water pump outlet conduit 110 (FIG. 10) coupling water pump 106 to 45 engine 72, an oil cooler 112, an oil cooler outlet conduit 114 coupling oil cooler 112 to coolant manifold 104, and an oil cooler inlet conduit 116 coupling engine 72 to oil cooler 112. Coolant manifold 104 generally includes a first inlet 120 configured to receive coolant from a radiator (not shown), a 50 first outlet 122 configured to provide heated coolant to the radiator, a second inlet 124 configured to receive heated coolant from oil cooler 112, a second outlet 126 configured to provide coolant to water pump 106, and a bleed outlet 128. In various embodiments, a thermostat (not shown) may 55 be controlled with return, heated coolant from the radiator.

Referring now to FIGS. 11 and 12, powertrain assembly 70 further includes a fuel injection assembly 120. Fuel injection assembly 120 generally includes a fuel rail 122 and at least one fuel injector 124. In general, fuel injector 60 assembly 120 includes one fuel injector 124 for each cylinder 130 (FIG. 13) of engine 72. Fuel injector(s) 124 are positioned along intake assembly 74 to direct a fuel stream 126 downward such that fuel stream 126 contacts an opposing interior wall 128 of intake assembly 74 and bounces at 65 an angle α into intake port 92. More particularly, opposing interior wall 128 is generally opposite the location of fuel

4

injector 124 such that fuel injector 124 is positioned at one portion of an intake manifold 75 of intake assembly 74 and opposing interior wall 128 is positioned approximately 180° from the location of fuel injector 124. In various embodiments, angle α may be between 30 degrees and 70 degrees. In the illustrative embodiment, angle α is approximately 45 degrees. By hitting wall 128 substantially straight on such that fuel stream 126 defines a linear stream that first contacts wall 128 before contacting any other portion of intake manifold 75, fuel stream 126 hits wall 128 and increases the atomization of fuel stream 126. Fuel stream 126 atomizes better since the entire fuel stream 126 hits wall 128 ensuring full stream 126. In general, fuel injector assembly 120 is positioned below a top of engine 72 for protection.

With reference now to FIGS. 13-15, engine 72 generally includes a plurality of cylinders 130, illustratively three but any number of cylinders 130 may be provided, a piston 132 positioned within each cylinder 130, and a connecting rod 134 coupling each piston 132 to a crankshaft 136. Cylinders 130 are generally positioned within cylinder block 90 which is sealingly coupled to and positioned above first crankcase portion 94 with a gasket 138. In various embodiments, gasket 138 is configured such that each cylinder 130 is individually sealed with first crankcase portion 94 at a lowermost end of cylinder block 90. In various embodiments, cylinder block 90 may be sealingly coupled above first crankcase portion 94 with an additional gasket 137 positioned above gasket 138 and between an uppermost end of first crankcase portion 94 and a lip 139 of cylinder block 90. In this way, each cylinder 130 is sealed from each other such that fluid does not flow between cylinders 130.

Crankshaft 136 is generally positioned within first and second crankcase portions 94 and 96, and connecting rods 134 reciprocate within crank bays 140 within first and second crankcase portions 94 and 96 and cylinders 130. Gasket 138 seals individual crank bays 140 to prevent windage created by the reciprocation of connecting rods 134 within crank bays 140 from passing between crank bays 140.

Referring now to FIGS. 16-19, engine 72 may further include a balance shaft 150 and a starter motor 152 for cranking or starting engine 72. In various embodiments, starter motor 152 and balance shaft 150 are coupled to crankshaft 136 such that crankshaft 136 is started by balance shaft 150. For example, and as shown in FIGS. 16-19, crankshaft 136 may be started by balance shaft 150 via a gear assembly 153. Gear assembly 153 generally includes a starter gear 156 coupled to a first end 151 of starter motor 152 which is meshed with a first transfer gear 158 coupled to a shaft 157, which extends between first crankcase portion 94 and a cover 159 (FIG. 13) coupled to first crankcase portion 94. First transfer gear 158 in turn is fixedly coupled to a second transfer gear 160 (FIGS. 18 and 19) which may also be coupled to shaft 157 and positioned between first crankcase portion 94 and cover 159. In this way, gears 158, 160 may rotate together on shaft 157 such that when starter motor 152 drives gear 158, gear 160 drives rotation of a gear 162, as disclosed further herein. In various embodiments, first transfer gear 150 is a torque limiting gear that limits any backfire torque engine 72 sees. Second transfer gear 160 in turn is meshed with an outer gear 162 of balance shaft 150 which is coupled to an inner gear 164 of balance shaft 150 via a one-way or sprag clutch such that outer gear 162 is fixedly coupled to inner gear 164 in a first direction and rotatably coupled to inner gear 164 in a second direction. Inner gear 164 of balance shaft 150, which is fixedly coupled to balance shaft 150, in turn is meshed with a gear 166 of

crankshaft 136. In this way, crankshaft 136 may be started by balance shaft 150 via gear assembly 153.

With reference to FIGS. 16 and 19, engine 72 generally further includes a lubrication assembly 154 coupled to balance shaft 150 such that balance shaft 150 drives an oil 5 pump 170 of lubrication assembly 154. For example, and as shown in FIG. 16, a second end 155 of balance shaft 150 may be coupled to a gear 172 of oil pump 170 via a chain 174 such that rotation of balance shaft 150 drives oil pump 170. In various embodiments, oil pump 170 is coupled 10 directly to water pump 106 such that rotation of gear 172 of oil pump 170 drives water pump 106. For example, and as shown in FIG. 19, oil pump 170 may include a protrusion or key 176 fixedly coupled to gear 172 which is received within an indentation or opening 178 in water pump 106 such that 15 rotation of protrusion 176 is transferred to water pump 106 through indentation 178.

Referring to FIGS. 19-23B, lubrication system 154 generally further includes a pressure pick-up 180 fluidly coupled to oil pump 170 via a transfer conduit 182, and a 20 scavenge pump 184 fluidly coupled to oil pump 170 via a pickup conduit 186, where pressure pick-up 180 and scavenge pump 184 are positioned within oil pan 98. Oil pan 98 generally includes a pressure pick-up volume 188 (FIG. 21) within which pressure pick-up 180 is positioned and into 25 which oil from oil pump 170 may be released through oil pump outlet conduit 183, a scavenge pump volume 190 within which scavenge pump 184 is positioned, and an outlet 192 through which oil within oil pan 98 may be drained. In various embodiments, outlet 192 may be positioned such 30 that oil from pressure pick-up volume 188 and scavenge pump volume 190 may be drained simultaneously. For example, outlet 192 may be positioned below a wall 194 of pressure pick-up volume 188 such that a portion of outlet **192** is in fluid communication with pressure pick-up volume 35 188 and a portion of outlet 192 is in fluid communication with scavenge pump volume 190.

Referring to FIGS. 22, 23A, and 23B, in various embodiments, scavenge pump 184 is a shuttle valve scavenge pump **184**. Shuttle valve scavenge pump **184** generally includes a 40 housing 196, a shuttle valve assembly 198 positioned with housing 196, and a strainer assembly 200 coupled to housing 196. Housing 196 includes an outlet 202 fluidly coupled to oil pump 170 via pick up conduit 186, a first inlet 204 fluidly coupled to strainer assembly 200, a second inlet 206 fluidly 45 coupled to strainer assembly 200, a first shoulder 208, and a second shoulder 210. Shuttle valve assembly 198 generally includes at least one ball 212 and/or 214 positioned within housing 196. In various embodiments, and as shown in the illustrative embodiments, shuttle valve assembly 198 may 50 include a first ball 212, a second ball 214, and a spring 216 positioned between first ball 212 and second ball 214. Strainer assembly 200 generally includes a first inlet 215 in fluid communication with first inlet 204 of housing 196 and a second inlet 217 in fluid communication with second inlet 55 206 of housing 196.

Shuttle valve assembly 198 is configured to shift within housing 196 such that when vehicle 2 is tilted in a first direction (e.g., to one side), gravity causes the at least one ball 212 and/or 214 to prevent first inlet 215 of strainer 60 assembly 200 and first inlet 204 of housing 196 from fluidly communicating with outlet 202 and/or oil pump 170 such that oil is received through second inlet 206 of housing 196 and second inlet 217 of strainer assembly 200. Additionally, when vehicle 2 is tilted in a second direction opposite to the 65 first direction (e.g., to the other side), gravity causes the at least one ball 212 and/or 214 to prevent second inlet 206 of

6

housing 196 and second inlet 217 of strainer assembly 200 from fluidly communication with outlet 202 and/or oil pump 170 such that oil is received through first inlet 215 of strainer assembly 200 and first inlet 204 of housing 196. With reference to the illustrative embodiments, when vehicle 2 is tilted in the first direction, gravity causes first ball 212 to abut first shoulder 208 such that first inlet 204 of housing 196 and first inlet 215 of strainer assembly 200 are no longer in fluid communication with outlet 202 and oil pump 170 and oil is received through second inlet 206 of housing 196 and second inlet 217 of strainer assembly 200 (FIG. 23A), while when vehicle 2 is tilted in the second direction opposite to the first direction, gravity causes second ball 214 to abut second shoulder 210 such that second inlet 206 of housing 196 and second inlet 217 of strainer assembly 200 are no longer in fluid communication with outlet 170 and oil pump 170 and oil is received through first inlet 204 of housing 196 and first inlet 215 of strainer assembly 200 (FIG. 23B). When vehicle 2 is not tilted in either direction, the at least one ball, illustratively first ball 212 and second ball 214, may be spaced apart from first and second shoulders 208 and 210 such that oil may be received through both first and second inlets 204 and 206 of housing 196 and first and second inlets 215 and 217 of strainer assembly 200 simultaneously. However, spring 216 prevents first ball 212 and second ball 214 from being simultaneously engaged with first and second shoulder 208 and 210, respectively, such that oil is being received through one of inlets 204 and 215 or inlets 206 and 217 at any given time. As such, shuttle valve assembly 198 prevents air from being received within scavenge pump 184 when vehicle 2 is tilted.

While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

The invention claimed is:

- 1. A vehicle, comprising:
- a plurality of ground engaging members;
- a frame supported by the plurality of ground engaging members;
- an engine supported by the frame, the engine operably coupled to at least one ground engaging member of the plurality of ground engaging members, the engine includes:
 - an oil pan; and
 - a lubrication system positioned within the oil pan, the lubrication system includes:
 - an oil pump;
 - a housing statically positioned in the oil pan;
 - a shuttle valve having first and second movable shuttles positioned within the housing, wherein the first and second movable shuttles are configured to move interconnectedly relative to the housing according to vehicle tilting; and
 - a conduit coupled between the oil pump and the housing.
- **2**. The vehicle of claim **1**, wherein the first movable shuttle is coupled with the second movable shuttle.
- 3. The vehicle of claim 2, wherein the housing comprises a first inlet and a second inlet.
- 4. The vehicle of claim 3, wherein when the engine is positioned in a first titled orientation, the first movable

7

shuttle is configured to close the first inlet, and when the engine is positioned in a second titled orientation, the second movable shuttle is configured to close the second inlet.

- **5**. The vehicle of claim **4**, wherein the first movable shuttle is a first ball and the second movable shuttle is a 5 second ball.
- **6**. The vehicle of claim **5**, wherein a spring is positioned between the first ball and the second ball.
 - 7. An engine, comprising:
 - a cylinder head;
 - a crankcase coupled to the cylinder head;
 - a crankshaft positioned within the crankcase;
 - an oil pan coupled to the crankcase; and
 - a lubrication system includes:
 - an oil pump positioned within the oil pan, the oil pump 15 operably coupled to the crankcase;
 - a shuttle valve scavenge pump fluidly coupled with the oil pan, the shuttle valve scavenge pump including:
 - a housing having a first inlet and a second inlet,
 - a strainer coupled to the housing,
 - a first movable shuttle positioned within the housing and a second movable shuttle positioned within the housing, each of the first and second movable shuttles are interconnected and interdependently movable relative to the housing;
 - a conduit coupled between the oil pump and the housing; and
 - wherein the oil pan includes a first tilted configuration and a second tilted configuration:
 - in the first tilted configuration the second movable 30 shuttle is moved within the housing to open the second inlet to the conduit and the first movable shuttle is moved within the housing to close the first inlet to the conduit according to tilting of the oil pan in a first direction; and
 - in the second tilted configuration the first movable shuttle is moved within the housing to open the first inlet to the conduit and the second movable

8

shuttle is moved within the housing to close the second inlet to the conduit according to tilting of the oil pan in a second direction.

- **8**. The engine of claim **7**, wherein the strainer includes a first strainer inlet fluidly coupled to the first inlet and a second strainer inlet fluidly coupled to the second inlet.
- **9**. The engine of claim **8**, wherein the strainer is positioned vertically lower than the housing.
- 10. The engine of claim 7, wherein when the engine is in a first orientation, the first movable shuttle is configured to close the first inlet, and when the engine is in a second orientation, the second movable shuttle is configured to close the second inlet.
- 11. The engine of claim 10, wherein the first orientation is angled relative to a ground level and the second orientation is angled relative to the second orientation.
- 12. The engine of claim 11, wherein in a third orientation, each of the first movable shuttle and second movable shuttle are separated from each other to allow access to each of the first inlet and the second inlet.
- 13. The engine of claim 12, wherein the third orientation is generally parallel to the ground level.
 - 14. The engine of claim $\overline{7}$, wherein the housing includes: a first shoulder;
 - a second shoulder, the first and second shoulders between the first and second movable shuttles; wherein
 - in the first tilted configuration the second movable shuttle is spaced from the second shoulder and the first movable shuttle is seated against the first shoulder; and
 - in the second tilted configuration the first movable shuttle is spaced from the first shoulder and the second movable shuttle is seated against the second shoulder.
- 15. The engine of claim 7, wherein the housing of the shuttle valve scavenge pump is static relative to the oil pan.

* * * * *