

Figure 1: The proof of Lemma 1.

A guillotine subdivision S is obtained by inserting a sequence s_1, \ldots, s_n of line segments. Each inserted segment s_i splits a face of the current subdivision S_{i-1} into two new faces yielding a new subdivision S_i .

Lemma 1. Let F be a face in a guillotine subdivision S. If there are 1-transmitters on every face that shares an edge with F then these 1-transmitters see all of F.

Proof. Consider the segment s_i whose insertion created the face F. Before the insertion of s_i , the subdivision S_{i-1} contained a convex face that was split by s_i into two faces F and F' (Figure 1.a). No further segments were inserted into F, but F' may have been further subdivided, so that there are now several faces F'_1, \ldots, F'_k , with $F'_i \subseteq F'$ and F'_i incident on s for all $j \in \{1, \ldots, k\}$ (Figure 1.b).

 F'_1,\ldots,F'_k , with $F'_j\subseteq F'$ and F'_j incident on s for all $j\in\{1,\ldots,k\}$ (Figure 1.b). We claim that the 1-transmitters in F'_1,\ldots,F'_k guard the interior of F. To see this, imagine removing s_i from the subdivision and instead, constructing a guillotine subdivision \tilde{S} from the sequence $s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_n$ (Figure 1.c). In this case, each face F'_j in S becomes a larger face \tilde{F}'_j in \tilde{S} and together $\bigcup_{j=1}^k \tilde{F}'_j \supseteq F$. Finally, we observe that each 1-transmitter in S in face F'_j guards at least \tilde{F}'_j , so together, the 1-transmitters in F'_1,\ldots,F'_k guard all of F (Figure 1.d).

Theorem 1. Any guillotine subdivision can be guarded with at most (n+1)/2 1-transmitters.

Proof. Consider the dual graph T of the subdivision. T is a triangulation with n+1 faces. Let M be any maximal matching in T. Consider the unmatched vertices of T. Each such vertex is adjacent only to matched vertices (otherwise

M would not be maximal). Let G be the set of 1-transmitters obtained by placing a single 1-transmitter on the primal edge associated with each edge $e \in M$. Then $|G| = |M| \le (n+1)/2$. For every face F of S, F either contains a 1-transmitter in G, or all faces that share an edge with F contain a 1-transmitter in G. In the former case, F is obviously guarded. In the latter case, Lemma 1 ensures that F is guarded. Therefore, G is a set of 1-transmitters that guards all faces of F and has size at most (n+1)/2.