Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

# **VITMO**

#### ЛАБОРАТОРНАЯ РАБОТА №2 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ»

Вариант №5

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

### Содержание

| 1 | Цель работы |                                                                    | 2  |  |  |
|---|-------------|--------------------------------------------------------------------|----|--|--|
| 2 | Исх         | кодные данные                                                      | 2  |  |  |
| 3 | Исс         | еледование параметрического стабилизатора                          | 2  |  |  |
|   | 3.1         | Выбор стабилитрона                                                 | 2  |  |  |
|   | 3.2         | Расчет параметров схемы                                            | 2  |  |  |
|   | 3.3         | Коэффициент стабилизации                                           | 2  |  |  |
|   | 3.4         | Коэффициент полезного действия                                     | 3  |  |  |
|   | 3.5         | Схема параметрического стабилизатора постоянного напряжения        | 3  |  |  |
|   | 3.6         | Влияние сопротивления нагрузки на работу стабилизатора             | 3  |  |  |
|   | 3.7         | Скачкообразное изменение нагрузки                                  | 4  |  |  |
|   | 3.8         | Нагрузки разного вида при скачкообразном изменении входного напря- |    |  |  |
|   |             | жения                                                              | 5  |  |  |
| 4 | Исс         | Исследование однотранзисторного последовательного линейного ста-   |    |  |  |
|   | бил         | изатора                                                            | 8  |  |  |
|   | 4.1         | Выбор стабилитрона                                                 | 8  |  |  |
|   | 4.2         | Расчет параметров схемы                                            | 8  |  |  |
|   | 4.3         | Коэффициент стабилизации                                           | 9  |  |  |
|   | 4.4         | Схема однотранзисторного последовательного линейного стабилизато-  |    |  |  |
|   |             | ра постоянного напряжения                                          | 9  |  |  |
|   | 4.5         | Влияние сопротивления нагрузки на работу стабилизатора             | 9  |  |  |
|   | 4.6         | Скачкообразное изменение нагрузки                                  | 11 |  |  |
|   | 4.7         | Нагрузки разного вида при скачкообразном изменении входного напря- |    |  |  |
|   |             | жения                                                              | 11 |  |  |

#### Цель работы

Цель работы – исследование и сравнение характеристик различных схемных решений стабилизаторов на дискретных элементах и стабилизатора в интегральном исполнении.

#### Исходные данные

В таблице ниже представлены исходные данные для варианта №5

| $U_{\text{вых.}}$ , В                             | 8    |
|---------------------------------------------------|------|
| $R_{\scriptscriptstyle \mathrm{H.}},~\mathrm{Om}$ | 3500 |
| $U_{\rm Bx.},{ m B}$                              | 16   |

#### Исследование параметрического стабилизатора

#### Выбор стабилитрона

Выходное напряжение (напряжение стабилизации) составляет 8 В, тогда возьмем стабилитрон типа EDZV8.2В  $\Rightarrow U_{\rm cr.}=8.2$  В. При подаче 8.2 В он начнет проводить ток (при < 8.2 В ничего не будет делать, при > 8.2 В «сбросит» лишнее напряжение через себя, удерживая на нагрузке примерно 8.2 В; теперь  $U_{\rm вых.}=8.2$  В). Этот стабилитрон имеет рассеиваемую мощность  $P_{\rm cr.}=0.15$  Вт, дифференциальное сопротивление  $r_{\rm cr.}=30$  Ом

#### Расчет параметров схемы

Рассчитаем максимальный ток, текущий через стабилитрон

$$I_{\text{ct. Makc.}} = \frac{P_{\text{ct.}}}{U_{\text{ct.}}} = \frac{0.15}{8.2} = 0.0182926829 \text{ A}$$

Рассчитаем ток нагрузки

$$I_{\text{\tiny H.}} = I_{\text{\tiny CT.}} = \frac{U_{\text{\tiny BMX}}}{R_{\text{\tiny H.}}} = \frac{8.2}{3500} = 0.0023428571 \text{ A}$$

Рассчитаем номинальное значение тока на стабилитроне

$$I_{\text{ct. hom.}} = \frac{I_{\text{ct. Makc.}} - I_{\text{ct.}}}{2} = \frac{0.018 - 0.002}{2} = 0.0079749129 \text{ A}$$

Определим балластное сопротивление резистора

$$R_{6.} = \frac{U_{\text{BX.}} - U_{\text{BMX.}}}{I_{\text{CT. HOM.}} + I_{\text{H.}}} = \frac{16 - 8.2}{0.008 + 0.002} = 755.9773090503 \text{ Om}$$

#### Коэффициент стабилизации

Определим коэффициент стабилизации

$$k_{\text{ct.}} = \left(1 - \frac{R_{\text{6.}} \left(I_{\text{ct. Hom.}} + I_{\text{H.}}\right)}{U_{\text{bx.}}}\right) \cdot \frac{R_{\text{6.}} + r_{\text{ct.}}}{r_{\text{ct.}}},$$

$$k_{\text{\tiny CT.}} = \left(1 - \frac{755.977 \left(0.008 + 0.002\right)}{16}\right) \cdot \frac{755.977 + 30}{30} = 13.4271123629;$$

Посчитаем оценку  $k_{\text{ст.}}$  (приближенно коэффициент стабилизации)

$$\hat{k}_{\text{ct.}} = \frac{R_{6.}U_{\text{вых.}}}{r_{\text{ct.}}U_{\text{Bx.}}} = 12.9146123629$$

#### Коэффициент полезного действия

Определим коэффициент полезного действия

$$\eta = \frac{I_{\text{CT. HOM.}}U_{\text{CT.}}}{U_{\text{BX.}}\left(I_{\text{CT. HOM.}} + I_{\text{H.}}\right)} = \frac{0.008 \cdot 8.2}{16\left(0.008 + 0.002\right)} = 0.3961265720 \approx 40\%$$

#### Схема параметрического стабилизатора постоянного напряжения

Соберем схему параметрического стабилизатора постоянного напряжения с учетом наших расчетов. Конденсатор в расчетах не участвовал (со временем перестанет проводить ток) – он нужен для сглаживания пульсаций (фильтр шумов)



Рис. 1: Схема параметрического стабилизатора постоянного напряжения

#### Влияние сопротивления нагрузки на работу стабилизатора

Проверим выходное напряжение цепи и ток на стабилизаторе при постоянном входном напряжении 16 В и различных сопротивлениях нагрузки.  $V(n001) \equiv U_{\text{вх.}}$ ,  $V(n002) \equiv U_{\text{вых.}}$ ,  $I(D2) \equiv I_{\text{ст.}}$ . Результаты представлены на рис. 2–5



Рис. 2: Выходное напряжение при  $R_{\rm H.}=1000~{
m OM};~U_{
m вых.~cp.}=8.1884~{
m B}$ 



Рис. 3: Выходное напряжение при  $R_{\scriptscriptstyle 
m H.}=3500$  Ом;  $U_{\scriptscriptstyle 
m BЫХ.\ cp.}=8.1933$  В



Рис. 4: Выходное напряжение при  $R_{\text{н.}} = 10000 \text{ Ом}; U_{\text{вых. ср.}} = 8.1941 \text{ В}$ 



Рис. 5: Выходное напряжение при  $R_{\text{н.}} = 100000 \text{ Ом}; U_{\text{вых. ср.}} = 8.1945 \text{ В}$ 

Выходное напряжение с увеличением сопротивления нагрузки немного увеличивается, при этом стабилитрон потребляет больше тока. Максимальное значение тока на стабилитроне в 18 мА не было достигнуто (при  $R_{\rm H.}=100000$  Ом получили  $I_{\rm ct.}\approx 10.243$  мА).

#### Скачкообразное изменение нагрузки

Подадим скачкообразную нагрузку PULSE(16 18 5m 1u 1u 10m 10m). Входное напряжение представлено на рис. 6



Рис. 6: Скачкообразная нагрузка с 16 В до 18 В

#### При таком входном напряжении на выходе получаем



Рис. 7: Выходное напряжение при скачкообразной нагрузке

Скачок напряжения на выходе значительно меньше скачка на входе. Стабилизатор удержал напряжение в районе 8.2 В.

### Нагрузки разного вида при скачкообразном изменении входного напряжения

Снимем осциллограммы выходных напряжений стабилизатора при скачкообразном изменении входного напряжения для нагрузок разного вида. На схеме на рис. 1 представлена активно-емкостная нагрузка. Для начала построим схему только лишь активной нагрузки



Рис. 8: Схема параметрического стабилизатора: активная нагрузка

Подадим на вход скачкообразный сигнал  $PULSE(16\ 18\ 5m\ 1u\ 1u\ 1m\ 10m)$ , который представлен на рис. 9



Рис. 9: Повторяющаяся скачкообразная нагрузка с 16 В до 18 В

Посмотрим выходное напряжение при активной скачкообразной нагрузке



Рис. 10: Выходное напряжение при активной скачкообразной нагрузке

Посмотрим выходное напряжение при **активно-емкостной** нагрузке. Схема была представлена на рис. 1



Рис. 11: Выходное напряжение при активно-емкостной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивной** нагрузки. Зададим значение индуктивности в 1  $\Gamma$ н



Рис. 12: Схема параметрического стабилизатора: активно-индуктивная нагрузка

Посмотрим выходное напряжение при активно-индуктивной нагрузке



Рис. 13: Выходное напряжение при активно-индуктивной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивно-емкостной** нагрузки. Зададим значение индуктивности в 1 Гн



Рис. 14: Схема параметрического стабилизатора: активно-индуктивно-емкостная нагрузка

Посмотрим выходное напряжение при активно-индуктивно-емкостной нагрузке



Рис. 15: Выходное напряжение при активно-индуктивно-емкостной скачкообразной нагрузке

Результат лучше всего получился на рис. 15. При увеличении емкости конденсатора пульсации будут сглаживаться еще больше.

#### Исследование однотранзисторного последовательного линейного стабилизатора

#### Выбор стабилитрона

Определимся со стабилизатором

$$U_{\text{CT.}} = U_{\text{BMX.}} + 0.6 = 8 + 0.6 = 8.6 \text{ B}$$

Самые близкие доступные стабилизаторы – EDZV8.2B на 8.2 В и EDZV9.1B на 9.1 В. Сравним по разнице между возможным и желаемым напряжениями на стабилизаторе и возьмем напряжение  $U_{\rm ct.}$ , при котором разница наименьшая

$$9.1 - 8.6 = 0.5$$
,  $8.2 - 8.6 = -0.4$ ,

$$|-0.4| < |0.5| \Rightarrow$$
 берем EDZV8.2B

Пересчитаем выходное напряжение

$$U_{\text{BMX}} = U_{\text{CT}} - 0.6 = 8.2 - 0.6 = 7.6 \text{ B}$$

В теории теряем 5% от желаемых 8 В.

#### Расчет параметров схемы

Далее рассчитаем сопротивление на резисторе. Для транзистора 2N3055 выберем коэффициент передачи тока базы  $h_{\rm FE\ Muh.}$ 

$$20 \le h_{\rm FE} \le 70 \Rightarrow h_{\rm FE\ \tiny MUH.} = 20$$

Определим минимальное входное напряжение

$$U_{\text{BX, MHH.}} > U_{\text{BMX.}} + 2.5 = 7.6 + 2.5 = 10.1 \Rightarrow U_{\text{BX, MHH.}} = 11 \text{ B},$$

Рассчитаем максимальный выходной ток стабилизатора

$$I_{\text{вых. макс.}} = h_{\text{FE}} \cdot I_{\text{б.}},$$

$$I_{6.~\mathrm{Makc.}} pprox I_{\mathrm{ct.~Makc.}} = rac{P_{\mathrm{ct.}}}{U_{\mathrm{ct.}}} = rac{0.15}{7.6} = 0.0197368421~\mathrm{A},$$
 
$$I_{\mathrm{bix.~Makc.}} = 20 \cdot 0.02 = 0.394736842~\mathrm{A}$$

Теперь посчитаем R

$$R pprox rac{U_{ ext{BX. MИН.}} h_{ ext{FE MИН.}}}{1.2 I_{ ext{BIX. MAKC.}}} = rac{11 \cdot 20}{1.2 \cdot 0.395} = 464.444445683 \; ext{Om}$$

#### Коэффициент стабилизации

Определим коэффициент стабилизации по формуле

$$k_{\text{ct.}} = \frac{\Delta U_{\text{bx.}}}{U_{\text{bx.}}} \div \frac{\Delta U_{\text{bix.}}}{U_{\text{bix.}}} \bigg|_{\text{RH=const.}}$$

Значения  $\Delta U_{\text{вых.}}$  возьмем с моделирования схемы, представленной на рис. 16, в LTspice при  $U_{\text{вх. 1}}=16$  В,  $U_{\text{вх. 2}}=17$  В

$$k_{\text{ct.}} = \frac{17 - 16}{16} \div \frac{7.9021 - 7.9013}{7.6} = 593.7499999994$$

## Схема однотранзисторного последовательного линейного стабилизатора постоянного напряжения

Построим схему однотранзисторного последовательного линейного стабилизатора постоянного напряжения, учитывая проведенные ранее расчеты



Рис. 16: Схема однотранзисторного последовательного линейного стабилизатора постоянного напряжения

#### Влияние сопротивления нагрузки на работу стабилизатора

Проверим выходное напряжение цепи и ток на стабилизаторе при постоянном входном напряжении 16 В и различных сопротивлениях нагрузки.  $V(n001) \equiv U_{\text{вх.}}$ ,  $V(n002) \equiv U_{\text{вых.}}$ ,  $I(D2) \equiv I_{\text{ст.}}$ . Результаты представлены на рис. 17–20



Рис. 17: Выходное напряжение при  $R_{\rm H.}=1000~{
m Om};~U_{
m Bых.~cp.}=7.8687~{
m B}$ 





Рис. 19: Выходное напряжение при  $R_{\scriptscriptstyle \rm H.}=10000~{
m Om};~U_{\scriptscriptstyle \rm Bых.~cp.}=7.9284~{
m B}$ 



Выходное напряжение с увеличением сопротивления нагрузки немного увеличивается, при этом стабилитрон потребляет немного больше тока (в сравнении с результатами для первого задания, представленными на рис. 2–5, увеличение потребления тока значительно меньше).

#### Скачкообразное изменение нагрузки

Выполним моделирование скачкообразного изменения нагрузки аналогично первому заданию (входное напряжение представлено на рис. 6)



Рис. 21: Выходное напряжение при скачкообразной нагрузке

Скачок напряжения на выходе значительно меньше скачка на входе. Стабилизатор удержал напряжение в районе 8 В.

#### Нагрузки разного вида при скачкообразном изменении входного напряжения

Снимем осциллограммы выходных напряжений стабилизатора при скачкообразном изменении входного напряжения для нагрузок разного вида. На схеме на рис. 16 представлена активно-емкостная нагрузка. Для начала построим схему только лишь активной нагрузки



Рис. 22: Схема параметрического стабилизатора: активная нагрузка

Подадим на вход скачкообразный сигнал аналогично первому заданию (см рис. 9). Посмотрим выходное напряжение при **активной** скачкообразной нагрузке



Рис. 23: Выходное напряжение при активной скачкообразной нагрузке

Посмотрим выходное напряжение при **активно-емкостной** нагрузке. Схема была представлена на рис. 16



Рис. 24: Выходное напряжение при активно-емкостной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивной** нагрузки. Зададим значение индуктивности в  $100~\Gamma$ н



Рис. 25: Схема параметрического стабилизатора: активно-индуктивная нагрузка

Посмотрим выходное напряжение при активно-индуктивной нагрузке



Рис. 26: Выходное напряжение при активно-индуктивной скачкообразной нагрузке

Построим схему для проверки **активно-индуктивно-емкостной** нагрузки. Зададим значение индуктивности в 100 Гн



Рис. 27: Схема параметрического стабилизатора: активно-индуктивно-емкостная нагрузка

Посмотрим выходное напряжение при активно-индуктивно-емкостной нагрузке



Рис. 28: Выходное напряжение при активно-индуктивно-емкостной скачкообразной нагрузке

Результат лучше всего получился на рис. 28 и 24. При увеличении емкости конденсатора пульсации будут сглаживаться еще больше.