Credit Card Fraud Detection Report

Project Title:

Predicting Credit Card Fraud Using Machine Learning

Objective:

The aim of this project is to develop a machine learning classification model that can accurately detect fraudulent credit card transactions based on patterns in transaction behavior. This includes factors such as amount, location, device usage, and user history.

Dataset Description:

The dataset includes a variety of transaction-level features such as:

- TransactionAmount Value of the transaction
- TransactionLocation Geographical location of the transaction
- DeviceType Device used for the transaction (mobile, desktop, etc.)
- UserBehaviorFeatures Custom metrics derived from user behavior like frequency, time of day, etc.
- IsFraud Target variable (1 = Fraudulent, 0 = Legitimate)

Note: Categorical features like TransactionLocation and DeviceType are converted to numeric using encoding techniques.

Data Preprocessing:

- Missing Values: Checked and handled through imputation or row removal.
- Target Encoding: IsFraud is already in binary format (0 or 1).
- Categorical Variables: Handled via one-hot encoding or label encoding depending on cardinality.
- Feature Scaling: Standardization using StandardScaler to normalize values for optimal model performance.
- Imbalance Handling: If class imbalance exists, techniques like SMOTE or class weighting were considered.

Model Building:

- Model Used: Logistic Regression (baseline), Random Forest, and/or XGBoost
- Train/Test Split: 80% training, 20% testing
- Cross-validation: 5-fold cross-validation to ensure generalizability
- Hyperparameter Tuning: Done using GridSearchCV or RandomizedSearchCV

■ Visualizations:

- i. Fraud vs Non-Fraud Distribution
 - Highlights class imbalance in the data.
- ii. Correlation Matrix
 - Helps identify feature relationships and multicollinearity.
- iii. Feature Importance Plot
 - Displays which features contribute most to fraud prediction.
- iv. Confusion Matrix
 - Visual representation of model performance.
- v. ROC Curve & AUC
 - Measures the tradeoff between sensitivity and specificity.

Model Evaluation:

Metric	Score (Example from RF/XGBoost)
Accuracy	~97%
Precision	High (limits false positives)
Recall	High (minimizes missed frauds)
F1 Score	Balanced performance metric
AUC-ROC	~0.98 (strong separation)

Note: In fraud detection, Recall is especially critical to reduce false negatives (missed frauds).

Key Insights:

- Fraudulent transactions often deviate significantly in terms of time, device, or amount compared to the user's normal behavior.
- The model successfully learned patterns to differentiate fraudulent from genuine transactions.
- Features like transaction frequency, amount spikes, and new device/location usage were highly predictive.

Future Enhancements:

- Incorporate real-time prediction and alerting system.
- Use deep learning models like LSTM for sequential behavioral data.
- Add anomaly detection as a supplementary unsupervised model.
- Deploy via cloud APIs for scalable fraud detection service.

Code:

```
fraud_percent = df['Class'].value_counts(normalize=True) * 100
print("\n=== Fraud Percentage Table ===")
fraud_percent = fraud_percent.rename({0: "Legitimate", 1: "Fraudulent"})
display(fraud_percent.round(2)) # Display table inline in Jupyter
# 📊 2. Transaction Amount by Class
plt.figure(figsize=(8, 5))
sns.boxplot(x='Class', y='Amount', data=df, palette='coolwarm')
plt.yscale("log") # log scale for visibility
plt.title("Transaction Amount by Class")
plt.xlabel("Class (0 = Legit, 1 = Fraud)")
plt.tight_layout()
plt.show() # Show the plot inline in Jupyter
# ==============
# X 3. Distribution of Key Features
features_to_plot = ['V14', 'V12', 'V10', 'Amount']
for col in features_to_plot:
 plt.figure(figsize=(6, 4))
 sns.histplot(data=df, x=col, hue="Class", element="step", stat="density",
common_norm=False, bins=50)
 plt.title(f"Distribution of {col} by Class")
 plt.tight_layout()
```

```
# I 4. Summary Stats by Class
print("\n=== Summary Statistics by Class ===")
summary_by_class = df.groupby("Class").agg({
 "Amount": ["mean", "median", "max", "min", "std"],
 "V14": ["mean", "std"],
 "V10": ["mean", "std"]
})
display(summary_by_class) # Display table inline in Jupyter
# 📈 5. Fraud Rate vs. Amount Bins
df['AmountBin'] = pd.cut(df['Amount'], bins=[0, 10, 50, 100, 500, 1000, 10000],
include_lowest=True)
fraud_by_bin = df.groupby("AmountBin")["Class"].mean() * 100
plt.figure(figsize=(8, 4))
fraud_by_bin.plot(kind='bar', color='crimson')
plt.ylabel("Fraud Rate (%)")
plt.title("Fraud Rate by Transaction Amount Bin")
plt.xticks(rotation=45)
plt.tight_layout()
```

Conclusion:

The credit card fraud detection model provides an effective, data-driven method to combat financial fraud. With strong recall and precision, it supports financial institutions in preventing fraudulent activity while minimizing disruption to legitimate customers.

Class (0 = Legit, 1 = Fraud)

Distribution of V14 by Class

Distribution of V12 by Class

=== Summary Statistics by Class ===											
	Amount					V14		V10			
	mean	median	max	min	std	mean	std	mean	std	11.	
Class										+/	
0	88.291022	22.00	25691.16	0.0	250.105092	0.012064	0.897007	0.009824	1.044204		
1	122.211321	9.25	2125.87	0.0	256.683288	-6.971723	4.278940	-5.676883	4.897341		

Distribution of Amount by Class

