Ejercicios de Análisis Matemático II

Relación 2

1. Probar que la serie $\sum_{n\geq 1} f_n$ converge absoluta y uniformemente en $\mathbb R$, siendo

$$f_n(x) = \frac{x}{n(1 + nx^2)} \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}$$

2. Para cada $n \in \mathbb{N}$, sea $g_n:]\, 1\,,\, +\infty\, [\, \to\, \mathbb{R}\,$ la función definida por

$$g_n(x) = \frac{1}{n^x} \quad \forall x \in]1, +\infty[$$

Probar las siguientes afirmaciones:

- a) Para cada $\rho \in]1, +\infty[$, la serie $\sum_{n\geq 1}g_n$ converge uniformemente en $[\rho, +\infty[$.
- **b)** La sucesión $\{g_n\}$ converge uniformemente a cero en $]1, +\infty[$,
- c) La serie $\sum_{n>1} g_n$ no converge uniformemente en] 1, $+\infty$ [

3. Estudiar la convergencia puntual, absoluta y uniforme de la serie de potencias

$$\sum_{n>0} \frac{n!}{(n+1)^n} x^n$$

4. Para cada $n \in \mathbb{N}$ sea $f_n:]-1, 1[\to \mathbb{R}$ la función definida por

$$f_n(x) = \frac{x^n}{1 - x^n} \quad \forall x \in]0, 1[$$

Probar que la serie $\sum_{n\geq 1} f_n$ converge absolutamente en] -1, 1[y uniformemente en todo compacto $K\subset$] -1, 1[, pero no converge uniformemente en] -1, 1[.

5. Estudiar la convergencia puntual, absoluta y uniforme de la serie de potencias

$$\sum_{n>0} \frac{x^n}{\log(n+2)}$$