

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

Jc872 U.S.P.T.O.
09/910862
07/24/01

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application:

2000年 7月28日

CERTIFIED COPY OF
PRIORITY DOCUMENT

出願番号
Application Number:

特願2000-228976

出願人
Applicant(s):

株式会社日立製作所
日立エレクトロニックデバイシズ株式会社

2001年 3月23日

特許庁長官
Commissioner,
Patent Office

及川耕造

出証番号 出証特2001-3021688

【書類名】 特許願

【整理番号】 330000336

【提出日】 平成12年 7月28日

【あて先】 特許庁長官殿

【国際特許分類】 G02F 1/336

【発明者】

【住所又は居所】 千葉県茂原市早野3350番地 日立エレクトロニック
デバイシズ株式会社内

【氏名】 川田 友朗

【発明者】

【住所又は居所】 千葉県茂原市早野3350番地 日立エレクトロニック
デバイシズ株式会社内

【氏名】 手塚 晶夫

【発明者】

【住所又は居所】 千葉県茂原市早野3350番地 日立エレクトロニック
デバイシズ株式会社内

【氏名】 平山 壽男

【発明者】

【住所又は居所】 千葉県茂原市早野3350番地 日立エレクトロニック
デバイシズ株式会社内

【氏名】 宮脇 壽嗣

【発明者】

【住所又は居所】 千葉県茂原市早野3300番地 株式会社日立製作所
ディスプレイグループ内

【氏名】 名取 正高

【特許出願人】

【識別番号】 000005108

【氏名又は名称】 株式会社 日立製作所

【特許出願人】

【識別番号】 000233561

【氏名又は名称】 日立エレクトロニックデバイシズ株式会社

【代理人】

【識別番号】 100093506

【弁理士】

【氏名又は名称】 小野寺 洋二

【電話番号】 03-5541-8100

【手数料の表示】

【予納台帳番号】 014889

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 液晶表示装置

【特許請求の範囲】

【請求項1】

2枚の基板の間に液晶層を挟持した液晶パネルと、前記液晶パネルの背面に拡散シートとプリズムシートを介して設置したバックライトを具備した液晶表示装置であって、

前記バックライトは、透明板からなる略矩形形状の導光板と、この導光板の少なくとも一辺に形成した入光面に沿って設置した線状ランプを備え、

前記導光板の前記線状ランプを設置する辺のコーナー部表面に、延長方向が前記線状ランプを設置する辺に対して傾斜をもつ複数本の溝からなる出光制御パターンを設けたことを特徴とする液晶表示装置。

【請求項2】

前記導光板は前記入光面から離れるに従って厚みが減少する楔形断面を有し、前記液晶パネルに対向する出光面と反対側の面に、前記出光面における光強度分布を制御するためのドット印刷または凹凸処理を施したことを特徴とする請求項1記載の液晶表示装置。

【請求項3】

前記出光制御パターンを構成する前記溝の配置密度を前記コーナー部の隅側で大としたことを特徴とする請求項1または2記載の液晶表示装置。

【請求項4】

前記溝を前記コーナー部の隅側から放射状に形成したことを特徴とする請求項3記載の液晶表示装置。

【請求項5】

前記溝を互いに平行に形成すると共に、個々の溝の延在長さで前記配置密度を制御したことを特徴とする請求項3または4記載の液晶表示装置。

【請求項6】

前記溝を互いに平行に形成すると共に、個々の溝の配列ピッチまたはその深さもしくはその両者を異ならせて前記配置密度を制御したことを特徴とする請求項

3または4記載の液晶表示装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、液晶表示装置に係り、特に、液晶パネルの背面にバックライトを備えた軽量かつ狭額縁化に対応した液晶表示装置に関する。

【0002】

【従来の技術】

ノート型コンピュータやコンピュータモニター用の高精細かつカラー表示が可能な液晶表示装置では、液晶パネルを背面から照明する光源（所謂、バックライト）を備えている。

【0003】

この種の液晶表示装置は、基本的には少なくとも一方がガラス板等の透明基板からなる2枚の基板の間に液晶層を挟持した所謂液晶パネルで構成し、上記液晶パネルの基板に形成した画素形成用の各種電極に選択的に電圧を印加して所定画素の点灯と消灯を行う形式（単純マトリクス）、上記各種電極と画素選択用のアクティブ素子を形成してこのアクティブ素子を選択することにより所定画素の点灯と消灯を行う形式（アクティブマトリクス）とに大きく分類される。

【0004】

アクティブマトリクス型液晶表示装置には、一方の基板に形成した画素電極と他方の基板に形成した共通電極との間に液晶層の配向方向を変えるための電界を印加する、所謂縦電界方式（例えば、特開昭63-309921号公報参照）と、液晶層に印加する電界の方向を基板面とほぼ平行な方向とする、所謂横電界方式（IPS方式とも言う）が知られている。

【0005】

なお、横電界方式の液晶表示装置としては、2枚の基板の一方に櫛歯電極を用いて非常に広い視野角を得るようにしたものがある（特公昭63-21907号公報、米国特許第4345249号明細書参照）。

【0006】

上記何れの形式の液晶表示装置においても、その液晶パネルの照明光源として導光板と線状ランプとから構成したサイドエッジ型バックライト、あるいは複数の線状光源を直接液晶パネルの背面に設置した直下型バックライトとがある。

【0007】

特に、サイドエッジ型のバックライトはアクリル板等の透明板の少なくとも1つの側縁に沿って線状ランプ（通常は、冷陰極蛍光管CFL）を配置し、この線状ランプからの光を導光板に導入し、導光板の内部を光が伝播する途上で経路変更させて上方に配置した液晶パネルを裏面から照明するように構成されている。

また、近年、マルチメディアやモバイルコンピューティングの普及と共に、デスクトップ機と比べて遜色のない性能を有するノートパソコン、あるいはハンディ端末等の普及が進んでいる。その表示装置として、ノートパソコンでは14～15インチ級の大画面サイズのものが実用されていく状況にある。また、デスクトップ型のパソコンなどでも液晶パネルを用いた17～20インチ、あるいはそれ以上の大画面のモニターが要望され、現に製品化がなされている。さらに、ハンディ端末では、反射型の液晶表示装置も多用されるようになっている。

【0008】

【発明が解決しようとする課題】

例えば、ノートパソコン等では、その上側筐体（蓋の部分）に14～15インチ級のパネルサイズを持つ液晶表示装置を搭載するためには、蓋が持つ面積のほとんど全てが有効表示領域となるように、狭額縁化を極限まで押し進める必要がある。

【0009】

液晶表示装置の額縁を狭くするためには線状ランプの長さを略々導光板の辺と同サイズにする必要がある。線状ランプは、その両端に電極があり、この電極からは光放射がないため、電極の付近では導光板から液晶パネルに出射する光量が減少し、輝度が低下する。

【0010】

図13は従来のサイドエッジ型バックライトの概略構造を説明する模式平面図

である。このサイドエッジ型バックライト（以下、単にバックライトと称する）は、通常は線状ランプL Pを設置（配置）する辺（入光面）側から離れるにつれて厚みが減少する楔状断面の透明アクリル板からなる導光板G L Bを用いている。

【0011】

この種の導光板には、線状ランプL Pから入光して導光板G L B内を伝播する光を液晶パネル方向に出光させるために、所謂印刷ドット、または凹凸のシボパターンが形成されている。

【0012】

しかし、狭額縁化に伴う線状ランプの短縮で図13にCで示した導光板G L Bの入光面の辺のコーナー部は線状ランプL Pの電極E L Dの部分の無発光域の存在により、図中に斜線を付したように液晶パネル方向への出光量が少なくなり、液晶パネルの表示面内での輝度むらをもたらす。

【0013】

従来は、このような輝度むらの発生を解消するために、上記コーナー部における印刷ドット、または凹凸のシボパターンの被覆面積を増加させたり、コーナー部に導光板の辺と平行に多数のV溝を形成したもの（特開2000-98383号公報参照）や、コーナー部に導光板の辺と平行または直交する縦横の溝による多数の角錐突起を形成して液晶パネル方向への光反射量を増加させたものが知られている（特開平7-151924号公報参照）。

【0014】

また、他の手段として、導光板の金型または金型に取付けたスタンバのコーナー部にサンドブラスト加工で粗面処理を施すものもある。

【0015】

本発明の目的は、液晶表示装置の狭額縁化に伴う表示むらの発生を改善して高画質の画像表示を可能とした液晶表示装置を提供することにある。

【0016】

【課題を解決するための手段】

上記目的を達成するため、本発明は、導光板の線状ランプを設置する辺（入光

面)のコーナー部表面に、延長方向が線状ランプを設置する辺に対して傾斜をもつ複数本の溝からなる出光制御パターンを設けた。

【0017】

この出光制御パターンは面内の均整を取ったスタンパーの入光面側のコーナー部に、切削などの手段で上記の溝を加工しておくことにより形成できる。

【0018】

この溝はV溝とするのが好適であるが、この他にコ字状あるいは半円状の樋形溝、その他の光反射機能を有する適宜の形状とすることができます。

【0019】

上記の出光制御パターンは、従来からのドット印刷(印刷ドットパターン)または凹凸(シボパターン)処理を施した導光板と共に用いる。特に、シボパターンの場合は、スタンパーに上記シボパターンと出光制御パターンとを形成しておき、シボパターンの凹凸形成と同時に出光制御パターンの溝を形成することができる。

【0020】

そして、出光制御パターンを構成する上記溝の配置密度を前記コーナー部の隅側で大とすることで、当該コーナー部の隅の光反射量を大きくする。

【0021】

あるいは、上記溝はコーナー部の隅側から放射状に形成して当該コーナー部の隅の光反射量を大きくする。

【0022】

また、上記溝を互いに平行に形成すると共に、個々の溝の延在長さで出光制御パターンの配置密度を制御する。

【0023】

さらには、上記溝を互いに平行に形成すると共に、個々の溝の配列ピッチまたはその深さもしくはその両者を異ならせて出光制御パターンの配置密度を制御する。

【0024】

このような構成とすることにより、導光板から出射する光量分布を均一化して

液晶パネルの面内輝度ムラ（表示ムラ）の発生を抑制できる。

【0025】

なお、本発明は上記構成および後述する実施例の構成に限定されるものではなく、本発明の技術思想を逸脱することなく、種々の変更が可能である。

【0026】

【発明の実施の形態】

以下、本発明の実施の形態について、実施例を参照して詳細に説明する。

【0027】

図1は本発明による液晶表示装置の第1実施例を模式的に説明するバックライトの平面図である。このバックライトは導光板G L Bと、この導光板G L Bの一边に形成した入光面に沿って設置した線状ランプを備えている。導光板G L Bの両側辺には液晶表示装置をモジュールとして組み立てる場合に図示しないモールドケースに係止して移動を抑制するためのタブS S Tが形成されている。

【0028】

すなわち、導光板G L Bは略々矩形形状のアクリル板からなり、図1の下方の辺すなわち入光面に沿って線状ランプL Pが配置される。導光板G L Bは、線状ランプが配置される辺（線状ランプ配置辺）と平行な対辺に向かって厚さが漸減する楔形断面を有する。

【0029】

図示したように、タブS S T Pはランプ係止辺側に斜面を有し、図示しないモールドケースの対応位置に形成されている凹部に係止することにより、導光板G L Bが線状ランプ側に移動するのを阻止している。このような係止突起が無いと、外部から衝撃が印加された場合に、導光板G L Bが線状ランプに衝突して、これを破壊する恐れがあるからである。

【0030】

また、タブS S T Pの線状ランプL P側は導光板本体から直角に立ち上がった形状としてもよいが、衝撃により導光板にクラックが入るのを防止するため、線状ランプL Pの係止側も斜面にすることにより、耐衝撃性を高めることができる。

【0031】

輝度補正領域H Rである線状ランプL Pの配置辺の両隅すなわちコーナー部表面には、延長方向が線状ランプL Pを配置する辺に対して当該導光板の中央部方向に向けて傾斜をもつ複数本の溝からなる出光制御パターンT H Rが形成されている。この溝はV溝、平底溝、曲面溝、その他の適宜の形状であよい。

【0032】

上記出光制御パターンT H Rは長さの異なる多数の溝の組合せであり、当該コーナー部の隅部で輝度補正領域H Rの密度が大きくなるようにしてある。組合せる溝は一種類に限らない。

【0033】

図2は図1における導光板のコーナー部の拡大図である。図中、線状ランプL Pは狭額縁化のために導光板G L Bの当該線状ランプL P辺のサイズと同等または若干長い程度のものが用いられる。なお、A Rは液晶パネルの表示領域（有効領域）である。

【0034】

この線状ランプL Pの両端には電極E L Dを有し、この電極E L Dの端部にゴムブッシュG Bを被せてある。この部分から給電ケーブルが引き出されるが、図示は省略した。

【0035】

図示したように、このような構成の線状ランプL Pの有効発光領域E Lは導光板G L Bのコーナー部よりも内側となり、有効発光領域E Lの外側（有効発光領域E Lと導光板G L Bの端縁の間）は無発光領域N Lとなる。

【0036】

このため、導光板G L Bのコーナー部に入光する光量は少なくなり、液晶パネルの当該コーナー部に対応する部分の輝度が低下し、輝度ムラとなる。

【0037】

導光板G L Bのコーナー部に形成する出光制御パターンT H Rは、線状ランプL P配置辺（入光面の辺側）に長さx、入光面と直交する隣接辺側に長さyを有する略三角形の領域（輝度補正領域）に形成される。

【0038】

ここで、長さ x は線状ランプ LP の無発光領域 NL から有効発光領域 EL に d だけ重なる位置まで形成される。輝度補正領域 HR は長い溝を形成した第1出光制御パターン THR1 と短い溝を形成した第2出光制御パターン THR2 を当該コーナー部の隅部で重なるように形成してある。これらの溝と線状ランプ LP 配置辺のなす角度（以下、延伸角度とも言う）を θ で示す。したがって、輝度補正領域 HR は当該コーナー部の隅部で輝度補正領域のパターン密度が大である。

【0039】

バックライトの画面に向かって左右のコーナー部における上記の x 、 y 、 θ 、および無発光領域 NL のサイズの一例は次のとおりである。すなわち、

画面左では、

$$x : 14 \text{ mm}, y : 28 \text{ mm}, \theta : 25^\circ, NL : 5.3 \text{ mm}$$

画面右では、

$$x : 8 \text{ mm}, y : 23 \text{ mm}, \theta : 20^\circ, NL : 5.4 \text{ mm}$$

上記したように、輝度補正領域 HR のサイズ x は導光板 GLB に対する線状ランプ LP の無発光領域 NL より大きい。サイズ y は導光板 GLB の形状（厚み、楔形断面の傾斜角、抜き勾配）と入光面に対する線状ランプ LP の位置関係で変動する。最終的には、輝度補正領域 HR の全体サイズ、配置密度とその分布とも、液晶パネルの画面上での見た目の均整が取れればよい。

【0040】

図3は本発明の第1実施例のバックライトの側面図であり、図2の矢印A方向からみた図である。本実施例のバックライトを構成する導光板 GLB は楔形の断面を有し、楔形断面の傾斜角を α で示してある。背面（液晶パネルの対向と反対面）には印刷ドット DOT を有し、この導光板 GLB のコーナー部に形成する輝度補正領域は図2で説明した溝からなる出光制御パターン THR で構成されている。この出光制御パターン THR を構成する溝は導光板 GLB の背面から突出して形成してある。

【0041】

本実施例により、導光板から出射する光量分布を均一化して狭額縁化に伴う液

晶パネルの面内輝度ムラ（表示ムラ）の発生を抑制できる。

【0042】

図4は本発明の第2実施例のバックライトの側面図であり、図3と同様に図2の矢印A方向からみた図に相当する。本実施例のバックライトを構成する導光板GLBも傾斜角 α をもつ楔形の断面を有している。

【0043】

本実施例では、導光板GLBの背面にスタンパーで形成したシボSBDを有している。この導光板GLBのコーナー部に形成する輝度補正領域HRの平面形状は図2で説明した溝で構成した出光制御パターンTHRであるが、この出光制御パターンTHRを構成する溝は導光板GLBの背面から陥没して形成しており、シボSBDと出光制御パターンTHRを構成する溝は同時に形成できる。

【0044】

本実施例によっても、導光板から出射する光量分布を均一化して狭額縁化に伴う液晶パネルの面内輝度ムラ（表示ムラ）の発生を抑制できる。

【0045】

図5は本発明の第3実施例を説明するためのバックライトを構成する導光板のコーナー部の平面図である。本実施例では、導光板GLBのコーナー部に形成する輝度補正領域HRを形成する溝で構成した出光制御パターンTHRをコーナー部の隅部から導光板GLBの中央領域に向けて放射状に形成してある。

【0046】

この構成としたことで、輝度補正領域HRはコーナー部の隅部で配置密度が大で、導光板GLBの中央領域に向けて配置密度が小となる。このとき、出光制御パターンTHRを構成する放射状の溝の長さを変えて組み合わせることで、例えば1または複数本の長い溝の間に1または複数本の短い溝を配置することで、配置密度を任意に調整できる。

【0047】

本実施例によっても、導光板から出射する光量分布を均一化して狭額縁化に伴う液晶パネルの面内輝度ムラ（表示ムラ）の発生を抑制できる。

【0048】

図6は本発明の第4実施例を説明するためのバックライトを構成する導光板のコーナー部の平面図である。本実施例では、導光板G L Bのコーナー部に形成する輝度補正領域H Rを形成する出光制御パターンT H Rを構成する溝をコーナー部の隅部から導光板G L Bの中央領域に向けて放射状に、かつ扇形に形成してある。

【0049】

この構成としたことで、当該コーナー部の隅部で輝度補正領域の配置密度が大で、導光板G L Bの中央領域に向けて配置密度が小となると共に、扇形の形状を変更することで配置密度の調整が可能である。

【0050】

またこのとき、出光制御パターンT H Rを構成する放射状の溝の長さを変えて組み合わせ、全体として扇形の輝度補正領域とすることで、例えば1または複数本の長い溝の間に1または複数本の短い溝を配置することで、配置密度を任意に調整できる。

【0051】

本実施例によっても、導光板から出射する光量分布を均一化して狭額縁化に伴う液晶パネルの面内輝度ムラ（表示ムラ）の発生を抑制できる。

【0052】

次に、本発明の液晶表示装置の他の構成例について図7と図8を参照して説明する。

【0053】

図7は本発明の第3実施例または第4実施例に基づく一つの変形例としての導光板のコーナー部の平面図である。図7の(a)は図6に示した導光板G L Bの上面の輝度補正領域H Rの変形例で、図6と同様に輝度補正領域H Rを導光板G L Bの上面のコーナー部の隅部から放射状に延びるように形成した複数の溝からなる扇形の出光制御パターンT H Rで構成してある。

【0054】

しかし、図7の(a)では、複数の溝からなる出光制御パターンT H Rの扇形の中心（収束点または交差点）C E Nは導光板G L Bのコーナー部の隅部より

も外側に位置いている。

【0055】

上記の扇形の中心C E Nは、この扇形を構成する複数の溝を導光板G L Bのコーナー部外側に延ばした仮想的な延長線E X - T H R（図中に点線で示す）の少なくとも2本の交点として定める。

【0056】

扇形の中心C E Nが導光板G L Bの隅部に位置する図6の構成に比べて、図7の(a)の構成によれば、複数の溝を互いに干渉させることなく、その間隔を導光板G L Bの隅部にて詰めることができる。

【0057】

導光板G L Bの上面のコーナー部の隅部における溝の間隔を詰める他の手段として、深さが異なる溝からなる出光制御パターンT H Rを導光板G L Bのコーナー部の隅部近傍に形成してもよい。

【0058】

図7の(b)は、輝度制御領域を第1の深さを有する複数の溝を導光板G L Bのコーナー部の隅部を中心として扇形に配置した第1の出光制御パターンT H R 1と、この第1の深さより浅い第2の深さを有する複数の溝を導光板G L Bのコーナー部の隅部を中心として扇形に配置した第2の出光制御パターンT H R 2とを併せて設けたものである。

【0059】

本発明の目的を達成する上では、輝度補正領域を構成する出光制御パターンT H Rの溝を深くすることが望ましいが、深い溝を扇形に設ける場合には、溝と溝との間に干渉を招き易く、特に導光板G L Bのコーナー部の隅部の近傍に形成可能な溝の数は制限される。

【0060】

したがって、深い溝と浅い溝とを併せて形成した出光制御パターンとすることは、複数の深い溝を形成し難い領域での補完的な輝度補正機能を与える手段として好ましい。

【0061】

図7の(b)に示した構成は、図5や図6で説明した輝度補正領域の出光制御パターンの形状に応用することでより効果的な輝度補正を行うことができる。また、図7の(b)には、第2の出光制御パターンTHR2を構成する溝を破線で示してあるが、実際の溝は連続的に形成しても、あるいは断続的に形成してもよい。さらに、第1の出光制御パターンTHR1を構成する複数の溝の形状も第2の出光制御パターンTHR2と同様に形成することができる。

【0062】

図7の(c)は、図7の(a)および(b)でそれぞれ説明した出光制御パターンの特徴を組み合わせたものである。図7の(c)における第1の出光制御パターンTHR1を構成する複数の溝は、導光板GLBのコーナー部外側に仮想的に延びる各延長線EX-THR1の交差点CEN1で交差し、第2の出光制御パターンTHR2を構成する複数の溝は、導光板GLBのコーナー部外側に仮想的に延びる各延長線EX-THR2の交差点CEN2で交差するように形成される。

【0063】

図7の(c)では、第1の出光制御パターンTHR1の溝の交差点CEN1および第2の出光制御パターンTHR2の溝の交差点CEN2が、それぞれ導光板GLBの外側に位置するようにそれぞれの溝を形成したが、これら輝度補正領域を形成する第1の出光制御パターンTHR1と第2の出光制御パターンTHR2の溝の何れか一方の交差点が導光板GLBのコーナー部の隅部または導光板GLBの上面（当該隅部から導光板のコーナー部面内）に形成してもよい。

【0064】

図7の(c)では、交差点が異なる2種類の溝を導光板GLBの上面に形成してあるため、これら2種類の溝は導光板GLBのコーナー部の隅部で交差する。しかしながら、導光板GLBの上面のコーナー部に高い密度で溝を形成できるため、当該コーナー部の隅部で配置密度が大で、導光板GLBの中央領域に向けて配置密度が小となる分布の輝度補正領域を形成でき、導光板から出射する光量分布を均一化して狭額縁化に伴う液晶パネルの面内輝度ムラ（表示ムラ）の発生を抑制できる。

【0065】

図8は本発明の第3実施例または第4実施例に基づく他の変形例としての導光板のコーナー部の平面図である。本構成では、溝の種類が異なる出光制御パターンを設ける他の変形例として、導光板G L Bの一辺に対して第1の延伸角度 α を有する複数の溝を並べた第1の出光制御パターンT H R 1と、この第1の延伸角度 α とは異なる第2の延伸角度 β を有する複数の溝を並べた第2の出光制御パターンT H R 2とを併設して輝度制御領域としたものである。

【0066】

図8の(a)は、線状ランプL P配置辺と交差する角度である第1の延伸角度 α をもつ第1の出光制御パターンT H R 1を構成する溝と、線状ランプL P配置辺と交差する角度である第2の延伸角度 β をもつ第2の出光制御パターンT H R 2を構成する溝とで構成される。この延伸角度 β は線状ランプL P配置辺に対して、時計回りに $0^\circ \leq \beta \leq 90^\circ$ 、好ましくは銳角($0^\circ < \beta < 90^\circ$)であり、第1の出光制御パターンT H R 1の溝と交差する角度である。

【0067】

図8の(b)は、線状ランプL P配置辺と交差する角度である第1の延伸角度 α をもつ第1の出光制御パターンT H R 1を構成する溝と、線状ランプL P配置辺と交差する角度である第2の延伸角度 β' をもつ第2の出光制御パターンT H R 2を構成する溝とで構成される。この延伸角度 β' は線状ランプL P配置辺に対して、時計回りに $90^\circ \leq \beta' \leq 180^\circ$ 、好ましくは鈍角($90^\circ < \beta' < 180^\circ$)であり、第1の出光制御パターンT H R 1の溝と交差する角度である。

【0068】

なお、上記図8の(a)(b)における第1の延伸角度 α は線状ランプL P配置辺に対して、時計回りに $0^\circ \leq \beta' \leq 90^\circ$ 、好ましくは $0^\circ < \beta' < 90^\circ$ であり、第2の出光制御パターンT H R 2の溝と交差する角度である。

【0069】

上記した図8の(a)(b)の構成では、第1の延伸角度 α と第2の延伸角度 β または β' は、その一方を銳角とし他方を鈍角とすることで導光板G L Bのコ

ーナー部の隅部近傍で高い密度の凹凸パターンを形成できる。

【0070】

上記第1の出光制御パターンTHR1を構成する溝と第2の出光制御パターンTHR2とは、導光板GLBのコーナー部の隅部側で互いに交差して重なる領域を形成する。その結果、導光板GLBのコーナー部の上面に、所謂ローレット掛け(Knurling)を施したような凹凸のパターンが形成される。

【0071】

上記の各実施例における導光板GLBの横寸法(線状ランプ配置辺の長さ)は、例えば288.1mm、縦寸法は217.3mmである。また、線状ランプ配置辺である入光面の厚さは例えば2.2mm、対辺の厚さは0.6mmである。なお、導光板GLBの側辺(タブSSTを形成する辺)には厚さが例えば0.15mm程度の端面テープを貼付することで導光板GLB内を伝播する光を有效地に利用することができる。

【0072】

次に、本発明による液晶表示装置の他の構成例について図9～図12を参照して説明する。

【0073】

図9は本発明による液晶表示装置の全体構成例を説明する展開斜視図である。液晶パネルPNLとバックライトを構成する導光板GLBは金属フレーム(金属製シールドケース)SHDとモールドケース(下側ケース)MCAとでサンドイッチされ、一体化してモジュール:MDLとした具体的構造を説明するものである。この液晶パネルは薄膜トランジスタ型である。

【0074】

WDは表示窓、INS1～3は絶縁シート、PCB1～3は回路基板(PCB1はドレイン側回路基板:画像信号配線の駆動回路基板、PCB2はゲート側回路基板:走査電極配線の駆動回路基板、PCB3はインターフェース回路基板)、JN1～3は回路基板PCB1～3同士を電気的に接続するジョイナ、CH11は薄膜トランジスタ基板上に直接搭載された画像信号電極駆動回路、CH12は同様に直接搭載された走査電極駆動回路、PNLは液晶パネル、GCはゴムク

ッシュン、ILSは遮光スペーサ、PRSはプリズムシート、SPSは拡散シート、GLBは導光板、RFSは反射シート、MCAは一体化成形により形成された下側ケース（モールドフレーム）、MOはMCAの開口、LPは線状ランプ（冷陰極蛍光管）、LPCはランプケーブル、GBは線状ランプLPを支持するゴムブッシュ、BATは両面粘着テープ、BLは導光板や線状ランプ等からなるバックライトBLを示し、図示の配置関係で拡散板部材を積み重ねて液晶表示モジュールMDLが組立てられる。

【0075】

液晶表示モジュールMDLは、下側ケースMCAとシールドケースSHDの2種の収納・保持部材を有し、絶縁シートINS1～3、回路基板PCB1～3、液晶パネルPNLを収納固定した金属製のシールドケースSHDと、線状ランプLP、導光板GLB、プリズムシートPRS等からなるバックライトBLを収納した下側ケースMCAとを合体させてなる。

【0076】

インターフェース回路基板PCB3には外部ホストからの映像信号の受入れ、タイミング信号等の制御信号を受け入れる集積回路チップ、およびタイミングを加工してクロック信号を生成するタイミングコンバータTCON等が搭載される。

【0077】

図9では、その液晶パネルの駆動回路（集積回路CH1, CH2）を薄膜トランジスタ基板上に直接実装した、所謂COG方式で説明したが、本発明はこのような実装方式の液晶パネルに限定されるものではなく、従来からのTCP（テープキャリアパッケージ）を用いて実装する方式にも同様に適用できる。

【0078】

図10は本発明による液晶表示装置のバックライト設置構造を説明する要部断面図である。液晶表示装置は液晶パネルPNL、導光板GLB、金属フレームSHD、モールドケースMCAを積層し固定して構成される。

【0079】

液晶パネルPNLは、その両面に偏光板が貼付されており、導光板GLBとの

間に拡散シートとプリズムシートからなる光学シートS P S／P R Sが介挿されている。導光板G L BはモールドケースM C Aの保持されており、その背面には反射シートR F Sが設置されている。

【0080】

前記した図9ではランプ反射シートL Sは反射シートR F Sとは別部品であるが、図10の構造では、反射シートR F Sは線状ランプL Pの下面および導光板G L Bとは反対側の側面まで折り曲げられており、線状ランプL Pのランプ反射板としての機能も有する。なお、線状ランプL Pの上方には別体の反射シートR F S Sが設置されている。

【0081】

ランプケーブルL P CはモールドケースM C Aに形成した溝を引回して高圧側のランプケーブルと共に外部に引き出される。

【0082】

フレキシブルプリント基板F P C 2は液晶パネルP N Lに搭載した駆動I CからモールドケースM C Aの背面に折り曲げられて前記した構造で固定される。そして、そのグランドパッドは導体箔G N D Pを介して金属フレームS H Dに接地される。

【0083】

図11は本発明による液晶表示装置を実装したノートパソコンの一例を示す外観図である。このノートパソコンの表示部に実装する液晶表示装置を構成する液晶パネルは、その下辺に線状ランプL Pを設置してある。

【0084】

図12は本発明による液晶表示装置を実装したディスクリップ型モニターの一例を示す外観図である。このモニターの表示部に実装する液晶表示装置を構成する液晶パネルは、その上辺に線状ランプL Pを設置してある。

【0085】

本発明による液晶表示装置は、図11や図12に示したようなノートパソコンやディスクリップ型モニター、その他の機器の表示デバイスにも使用できることは言うまでもない。

【0086】

なお、本発明は上記した液晶パネルの一方の基板に駆動ICを直接搭載したチップオングラス方式の液晶表示装置にのみ適用するものではなく、駆動IC（集積回路チップ）の実装をTCPを用いた液晶パネル、あるいは単純マトリクス方式の液晶パネルを用いた液晶表示装置にも同様に適用できる。

【0087】

【発明の効果】

以上説明したように、本発明によれば、液晶表示装置を構成する液晶パネルの狭額縁化に伴う表示むらの発生を改善して輝度むらが少なく、高画質の画像表示が可能な、かつ高信頼性の液晶表示装置を提供することができる。

【図面の簡単な説明】

【図1】

本発明による液晶表示装置の第1実施例を模式的に説明するバックライトの平面図である。

【図2】

図1における導光板のコーナー部の拡大図である。

【図3】

本発明の第1実施例のバックライトの側面図であり、図2の矢印A方向からみた図である。

【図4】

本発明の第2実施例のバックライトの側面図であり、図3と同様に図2の矢印A方向からみた図に相当する。

【図5】

本発明の第3実施例を説明するためのバックライトを構成する導光板のコーナー部の平面図である。

【図6】

本発明の第4実施例を説明するためのバックライトを構成する導光板のコーナー部の平面図である。

【図7】

本発明の第3実施例または第4実施例に基づく一つの変形例としての導光板のコーナー部の平面図である。

【図8】

本発明の第3実施例または第4実施例に基づく他の変形例としての導光板のコーナー部の平面図である。

【図9】

本発明による液晶表示装置の全体構成例を説明する展開斜視図である。

【図10】

本発明による液晶表示装置のバックライト設置構造を説明する要部断面図である。

【図11】

本発明による液晶表示装置を実装したノートパソコンの一例を示す外観図である。

【図12】

本発明による液晶表示装置を実装したディスクトップ型モニターの一例を示す外観図である。

【図13】

従来のサイドエッジ型バックライトの概略構造を説明する模式平面図である。

【符号の説明】

L P 線状ランプ（冷陰極蛍光管）

G L B 導光板

H R 輝度補正領域

T H R (T H R 1, T H R 2) 出光制御パターン

S S T P タブ

S H D 金属フレーム

P N L 液晶表示パネル

P R S プリズムシート

S P S 拡散シート

R F S 反射シート

M C A モールドケース

L P 線状ランプ

E L 有効発光領域

N L 無発光領域

E L D 電極

L P C ランプケーブル

G B ゴムブッシュ。

【書類名】 図面

【図1】

図1

【図2】

図2

【図3】

図3

【図4】

図4

【図5】

図5

【図6】

図6

【図7】

☒ 7

【図8】

図8

【図9】

【図10】

図10

【図11】

図 11

【図12】

図12

【図13】

図13

【書類名】 要約書

【要約】

【課題】

液晶表示装置の狭額縫化に伴う画面上の輝度ムラを解消し、光の利用効率を改善する。

【解決手段】

導光板G L Bの線状ランプL Pを設置する辺（入光面）のコーナー部表面に、延長方向が線状ランプL Pを設置する辺に対して傾斜をもつ複数本の溝からなる出光制御パターンT H Rを設けた。出光制御パターンT H Rは面内の均整を取ったスタンパーの入光面側のコーナー部に、切削などの手段で上記の溝を加工しておくことにより形成できる。

【選択図】 図1

出願人履歴情報

識別番号 [000005108]

1. 変更年月日 1990年 8月31日

[変更理由] 新規登録

住 所 東京都千代田区神田駿河台4丁目6番地
氏 名 株式会社日立製作所

出願人履歴情報

識別番号 [000233561]

1. 変更年月日 1994年 8月31日

[変更理由] 名称変更

住 所 千葉県茂原市早野3350番地

氏 名 日立エレクトロニックデバイシズ株式会社