Fundamentals of Math I Second Partial Exam

AI Degree January 17, 2022

Full Name:

NIU:

Exercise 1. (1.5 points + 1.5 points + 1 point)

Consider the matrix

$$A = \begin{pmatrix} 0 & 2 & -2 \\ -1 & 2 & -1 \\ -1 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

- (a) Compute all the eigenvalues of A.
- (b) Find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.
- (c) Find all invariant directions of the endomorphism f_A of \mathbb{R}^3 associated to the matrix A. Find a basis of the image of f_A . Check that if v is a non-zero vector in the image of f_A , then $f_A(v)$ is also a non-zero vector in the image of f_A .

Exercise 2. (1,5 points + 1 point + 1,5 points)

Let V be the linear subspace of \mathbb{R}^4 given by:

$$V = \langle (1, 1, 1, 1), (1, 2, 1, 2) \rangle$$

- (a) Find an orthonormal basis of V. What is the dimension of V? What is the dimension of V^{\perp} ?
- (b) For a subspace W of \mathbb{R}^4 , denote by $\operatorname{proj}_W \colon \mathbb{R}^4 \to \mathbb{R}^4$ the orthogonal projection onto the subspace W. Compute $\operatorname{proj}_V(v)$ and $\operatorname{proj}_{V^{\perp}}(v)$, where $v \in \mathbb{R}^4$ is the vector v = (0,0,1,1). Compute $\|v\|$, $\|\operatorname{proj}_V(v)\|$ and $\|\operatorname{proj}_{V^{\perp}}(v)\|$, and check Pitagoras Theorem:

$$||v||^2 = ||\operatorname{proj}_V(v)||^2 + ||\operatorname{proj}_{V^{\perp}}(v)||^2.$$

(c) Find the matrix of proj_V (with respect to the canonical basis of \mathbb{R}^4). What is the matrix of $\operatorname{proj}_{V^{\perp}}$?

Theory. (0,7 points + 0,7 points + 0,6 points)

For each of the following assertions, say if the assertion is true or false. Justify your answer in each case.

(a) Not all square matrices over $\mathbb R$ are diagonalizable, but all square matrices over $\mathbb R$ have a real eigenvalue.

- (b) If a matrix $A \in M_n(\mathbb{R})$ is diagonalizable, then A^2 is also diagonalizable.
- (c) All subspaces of \mathbb{R}^n have an orthonormal basis.

All answers must be carefully explained. You must specify the theoretical results used in your arguments and procedures.