

Devoir surveillé 11 - 10/06/25

Exercice 1: On cherche à déterminer les fonctions $y \in C^2(\mathbb{R}, \mathbb{R})$ telles que pour tout $x \in \mathbb{R}$, xy''(x) + y'(x) - 4xy(x) = 0 (*) On pose $F : \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{2\pi} \int_0^{2\pi} e^{2x \cos(t)} dt$

- 1. Déterminer les fonctions développables en séries entières solutions de (*) et valant 1 en 0.
- 2. (a) Démontrer que F est de classe \mathcal{C}^{∞} sur \mathbb{R} et donner une expression de $F^{(k)}$ pour tout $k \in \mathbb{N}$.
 - (b) Démontrer que F est solution de (*).
- 3. (a) Démontrer que pour tout $x \in \mathbb{R}$, $F(x) = \sum_{n=0}^{+\infty} I_n x^n$ avec $I_n = \frac{2^n}{2\pi n!} J_n$ et $J_n = \int_0^{2\pi} (\cos(t))^n dt$
 - (b) Démontrer que pour tout $n \in \mathbb{N}$, $J_{2n} = \frac{(2n)!2\pi}{2^{2n}(n!)^2}$ et $J_{2n+1} = 0$
 - (c) En déduire une relation entre F et les solutions de la question 1.

Exercice 2 : Soit \mathbb{R}^n muni du produit scalaire canonique et de la norme euclidienne associée.

- 1. Soit $f \in \mathcal{C}^2(U, \mathbb{R})$ avec U un ouvert de \mathbb{R}^n . On suppose que f atteint un maximum local en $a \in U$. On note $H_f(a)$ la matrice Hessienne de f en a. On définit le laplacien de f par $\Delta f = \partial_1^2 f + \partial_2^2 f$.
 - (a) Montrer que pour tout $h \in \mathbb{R}^n$, $t \mapsto f(a+th)$ est bien définie et de classe \mathcal{C}^2 sur un voisinage de 0 et que sa dérivée seconde en 0 est négative.
 - (b) En déduire que $H_f(a)$ est négative, c'est-à-dire pour tout $X \in \mathbb{R}^n, X^T H_f(a) X \leq 0$.
 - (c) En déduire que $\Delta f(a) \leq 0$
- 2. Soient U un ouvert borné non vide de \mathbb{R}^n et $f:\overline{U}\to\mathbb{R}$ telle que f est continue sur \overline{U} , de classe C^2 sur U et $\Delta f(x)=0$ pour tout $x\in U$.
 - (a) Soit $p \in \mathbb{N}^*$, on note $f_p : \overline{U} \to \mathbb{R}, x \mapsto f(x) + \frac{1}{p} ||x||^2$
 - i. Déterminer $\Delta f_p(x)$ pour tout $x \in U$.
 - ii. Démontrer que f_p admet un maximum atteint en $a_p \in Fr(U)$.
 - (b) En admettant que $(a_p)_{p\in\mathbb{N}^*}$ admet une sous suite convergente vers $a\in Fr(A)$, démontrer que $\max_{Fr(U)}f=\max_{\overline{U}}f$.