

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	_Системы обработки информации и управления (ИУ5)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ: Прогнозирование цен акций S&P 500

СтудентИУ5-65Б (Группа)	(Подпись, дата)	(И.О.Фамилия)
Руководитель	(Подпись, дата)	(И.О.Фамилия)
Консультант	(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕ	РЖДАЮ
	Заведующий	і кафедрой
		(Индекс)
	~	(И.О.Фамилия) >>> 2022 г.
	АНИЕ	
на выполнение научно-и	исследовательской	і работы
по теме Прогнозирование цен акций S&P 500)	
Студент группыИУ5-65Б		
	ерия Вячеславовна имя, отчество)	
Направленность НИР (учебная, исследователь	ьская, практическая, прои	зводственная, др.)
учебная		
Источник тематики (кафедра, предприятие, Н	ПИР) кафедра	-
График выполнения НИР: 25% к нед., 5	50% к нед., 75% к г	нед., 100% к нед.
Техническое задание Прогнозирование цен а за 2020 год, прогноз сделать на 2021 год о результаты с помощью метрик и сравнить с Оформление научно-исследовательской ра б	с помощью скользящего другой моделью	
Расчетно-пояснительная записка на лис	стах формата А4.	
Дата выдачи задания « » 2022 г.		
Руководитель НИР		
Студент	(Подпись, дата)	(И.О.Фамилия)
~ · · / / / / / / / / / / / / / / / / /	(Подпись, дата)	(И.О.Фамилия)

 $\underline{\Pi}$ римечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Оглавление

1. Введение	4
2. Основная часть	4
3. Заключение	9
4. Список использованных источников информации	9

1. Введение

Данная программа, выполненная в рамках научно-исследовательской работы по предмету "Технологии машинного обучения", предназначена для прогнозирования цен акций на данных S&P 500

2. Основная часть

Сначала необходимо получить данные, сделать это можно с помощью web.DataReader, указав нужные даты.

Оказалось, что в полученных данных есть пропуски. Их можно заполнить с помощью bfill (according to the last observed value)

```
sp500_data = sp500_data.bfill()
test data = test data.bfill()
```


В pandas есть встроенная функция rolling, в которой можно указать окно. Выведем результаты для малых значений окна, они довльно хорошо повторяют данные, но слишком сильно переобучаются на них. На графике видно, что слишком маленькое окно переподгоняется к данным, а не к тенденции, а большое имеет некоторое смещение относительно реальных значений и общей тенденции.

```
rolling_mean2 = sp500_data.sp500.rolling(window=2).mean()
rolling_mean5 = sp500_data.sp500.rolling(window=5).mean()
rolling_mean8 = sp500_data.sp500.rolling(window=8).mean()
```

Попробуем для разных размеров окон подсчитать такие метрики качества прогноза, как тае и таре. Для этого используем "кросс валидацию" для временного ряда – TimeSeriesSplit.

```
tscv = TimeSeriesSplit()
for train_index, test_index in tscv.split(sp500_data):
   X train, X test = sp500 data.sp500.values[train index],
sp500 data.sp500.values[test index]
   for window in range(1,10):
       predictions = list()
       for t in range(len(X test)):
          length = len(X train)
          yhat = np.mean([X train[i] for i in range(length-window,length)])
          predictions.append(yhat)
          X train = np.append(X train, X test[t])
       error mae = mean absolute error(X test, predictions)
       error mape = mean absolute percentage error(X test, predictions)
       mae_scores[window].append(error mae)
       mape scores[window].append(error mape)
for window, scores in enumerate(mae scores):
   if window == 0:
       continue
```

Получаем результаты:

```
Window = 1 , mae = 40.77372093023255 , mape = 0.014 % Window = 2 , mae = 46.42106976744185 , mape = 0.015 % Window = 3 , mae = 52.01931782945735 , mape = 0.017 % Window = 4 , mae = 57.803651162790686 , mape = 0.019 % Window = 5 , mae = 62.853990697674384 , mape = 0.021 % Window = 6 , mae = 67.20640310077518 , mape = 0.022 % Window = 7 , mae = 70.09994684385381 , mape = 0.023 % Window = 8 , mae = 73.23298837209299 , mape = 0.024 % Window = 9 , mae = 76.12607751937983 , mape = 0.025 %
```

Видим, что ошибка лишь увеличивается при увеличении окна, но также мы уже видели переподгонку меньшего окна к данным, поэтому попробуем изобразить разные окна на графиках.

```
window = 3
data rate = 0.7
for window in range (1,7):
    X train, X test = sp500 data.sp500.values[:int(len(sp500 data)*data rate)],
    sp500 data.sp500.values[int(len(sp500 data)*data rate):]
    predictions = list()
    for t in range(len(X test)):
     #print(X test[t])
        length = len(X train)
        yhat = np.mean([X train[i] for i in range(length-window,length)])
        #print([X train[i] for i in range(length-window,length)])
        predictions.append(yhat)
        X train = np.append(X train, X test[t])
    pyplot.plot(X test)
    pyplot.plot(predictions, color='red')
    pyplot.title("Window = "+ str(window))
    pyplot.legend(['Actual value', 'Prediction'])
    pyplot.show()
```


Но на графиках видно, что малое значение окна переподгоняется к данным и по сути мало полезно, нам нужна сама тенденция роста или спада

Ориентируясь на краткосрочные тенденции для "быстрых" продаж и покупок, возьмем размер окна = 5.

Для предсказания долгосрочной тенденции лучше подходит большое значение окна, например, 40 или 50. Посмотрим на них визуально и оценим их ошибку предсказания.

```
window = 50
for window in range(40,45):
    X train, X test = sp500 data.sp500, \
    test data.sp500
#print(X test)
    predictions = list()
    for t in range(len(X test)):
     #print(X test[t])
        length = len(X train)
        yhat = np.mean([X train[i] for i in range(length-window,length)])
        #print([X train[i] for i in range(length-window,length)])
        predictions.append(yhat)
        X train = np.append(X train, X test[t])
    pyplot.plot(X test)
    pyplot.plot(predictions, color='red')
    pyplot.title("Window = "+ str(window))
    pyplot.legend(['Actual value', 'Prediction'])
    pyplot.show()
```



```
Window =
         46 , mae = 88.5444994944388 , mape = 0.029 %
Window =
         47 , mae =
                     88.4193330034636 , mape = 0.029 %
         48 , mae =
                     87.53309302325583 , mape =
Window =
                                                0.029 %
                     86.85519886093974 , mape =
         49 , mae =
                                                0.029 %
Window =
Window =
         50 , mae =
                     86.31141767441864 , mape =
                                                0.028 %
         51 , mae = 86.03530323757414 , mape =
                                                0.028 %
```

```
Window = 52 , mae = 85.9794436493739 , mape = 0.028 % Window = 53 , mae = 86.14382799473456 , mape = 0.028 % Window = 54 , mae = 86.56512144702847 , mape = 0.029 % Window = 55 , mae = 87.1854156448203 , mape = 0.029 % Window = 56 , mae = 87.93011295681062 , mape = 0.029 % Window = 57 , mae = 88.74183761729905 , mape = 0.029 % Window = 58 , mae = 89.69120769847635 , mape = 0.03 % Window = 59 , mae = 90.60845092629093 , mape = 0.03 % Window = 60 , mae = 91.57478759689926 , mape = 0.03 % Window = 61 , mae = 92.56334578726651 , mape = 0.031 % Window = 62 , mae = 93.52175543885974 , mape = 0.031 % Window = 63 , mae = 94.50367515688446 , mape = 0.032 % Window = 64 , mae = 95.42395930232556 , mape = 0.032 %
```

Видно, что для размера окна в таком диапазоне оптимально значение 52, оно дает наименьшую ошибку

3. Заключение

В ходе исследования было выявлено, что для прогнозирования на короткий срок, например, 5 или 10 минут, лучше использовать размер окна = 5, а на более длительный срок размер окна должен быть равен 52

4. Список использованных источников информации

- 1. Курс машинного обучения 3 курса ИУ5 МГТУ им. Баумана
- 2. Статья по основам скользящего среднего https://www.machinelearningmastery.ru/implementing-moving-averages-in-python-1ad28e636f9d/