Multiplicative order $o_r(n)$ [slide 7]

 $o_r(n)$ is the order of $n \mod r$, i.e. the smallest number $o_r(n)$ such that $n^{o_r(n)} = 1 \pmod r$.

• e.g. $o_7(3) = 6$: $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1 \pmod{7}$

The inefficient primality test [slide 12]

 $X + a^n \equiv (X + a)^n$ below is an equality of **polynomials**, not numbers.

For any $a \in \mathbb{Z}$ such that gcd(a, n) = 1:

$$X + a^n \equiv (X + a)^n \pmod{n} \iff n \text{ is prime}$$

(For the \Leftarrow direction you don't need the gcd(a, n) = 1 assumption.)

AKS pseudocode [slide 18]

- 1. if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.
- 2. Find the smallest r such that $o_r(n) > \log^2 n$.
- 3. If some $a \leq r$ is not coprime with n, return COMPOSITE.
- 4. If $r \ge n$, return PRIME.
- 5. For a=1 to $\lfloor \sqrt{\varphi(r)} \log n \rfloor$ do: if $X+a^n \not\equiv (X+a)^n \pmod{X^r-1,n}$, return COMPOSITE.
- 6. Return PRIME.

Main challenge: show that if Line 6. is reached, then n must be prime.

Plan of the final attack [slide 25]

- 1. Define a group \mathcal{G} of polynomials.
- **2.** Prove that $|\mathcal{G}| > \text{LowerBound}$.
- **3.** Prove that if $n \neq p^k$, then $|\mathcal{G}| < \text{LowerBound}$.
- **4.** Deduce that $n = p^k$ for some k.

But recall Line 1. of AKS: if $(n=a^b \text{ for } a,b\in\mathbb{N} \text{ and } b\geq 2)$, return COMPOSITE.

5. Therefore k=1... and we get that $n=p^1$ is prime. \square

Introspectiveness [slide 26]

Definition. $m \in \mathbb{N}$ is introspective for $f(X) \iff$

$$f(X^m) \equiv [f(X)]^M \pmod{X^r - 1, p}$$

Corollary. n and p are introspective for X + a (for all $a \in \{0, 1, ..., l\}$).

G_1 and \mathcal{G} [slide 29]

$$G_1 := \{ n^i \cdot p^j \mid i, j \ge 0 \} \pmod{r}$$

$$\mathcal{G} := \{ \prod_{a=0}^l (X+a)^{e_a} \mid e_a \ge 0 \} \pmod{h(X), p}$$