Project Anti-Drone system

Final report gold level RedADS 15/01/2024

General specifications

Specification/functions:

Bronze

- 1. The System shall move 180° on Z axe and 90° on X axe.
- 2. The System shall detect a target located at minimum 5cm in front and up to 1,5m.
- 3. The System shall measure the distance of the target (assuming that it's size is known).

Silver

- 1. The object shall compute the angle and align the turrent to prepare to shoot at the target.
- 2. The System shall shoot down (hit) the target up to 1,5m radius from the turrent.

Gold

1. The system shall communicate with the PC of the user to report status and outcome of the mission

Design:

Motion (3 motors, 1 pressure launcher)

Sensor (1 camera)

Calculator (1 Lego Mindstorm Brick)

Team

Project Manager Ismael Padiolleau

Hardware Chief Engineer Sacha Bleicher

Test chief engineerBanhui Ren

Software Chief Engineer Antoine Wilson

Hardware design: First design

Principal design choices:

- A **solid base** for reduced vibration and robustness and rotation support for torque
- A design with very **few pieces** for scalable design
- A **compact shooting system** and on the **same axis** with the camera for the balistics

A solid base

A few pieces

A **shooting system compact** and on the **same axis** with the camera for the balistic

Impact of the hardware on the balistic

- The shooter as a left biased shoot angle
- The laucher need to move to shoot, the camera won't be align then

A design that changed with 3 iterations

Software solution

Sequence Diagram

Initialization

Search the target Scan the all environment

Align with the target

Compute distance and balistic angle and then shoot/reload

Mission report

Software solution : How to align ?

Software solution: Code architecture

from ev3dev2.motor **₽** python mindst@rms **GitHub** from pixycamev3.pixy2 class robot() Reboot() Config.json Initialisation() Main() scanning sequence() loose_target_verification() class robot() Align camera on target() order to shoot Compute_distance_target() Shooting_sequence()

Problem encountered and limitations

The system shall	Pass/Fail	Limitation	Problem encountered
scan 180° on Z axe and 90° on X axe	Pass	Not continuous but step by step	Multi-threading difficult to make work
detect a target located at minimum 5cm in front and up to 1,5m	Pass	Losing the target in light	Camera disconnection, Camera response to light uncertain
measure the distance of the target (+-10%)	Fail	Need same light exposition constently	Camera response to light uncertainly and the object is detected smaller
compute the angle and align the turrent to prepare to shoot	Pass		
shoot down (hit) the target up to 1,5m radius from the turret (30% of the time)	Pass		
communicate throught all step on status and actions	Pass	No audio cue	Slow speaking features → slow reaction time
communicate with the PC of the user to report outcome of the mission	Pass	Coordinates difficult to read	

Robot Testing Scheme Comprehensive Overview

Condition of tests:

- No obstacles in a 1.5m semicircle environment at ISEP.
- The robot is located in the center of the circle.
- A target (yellow card) within 1.5m range.
- The entire robot's software and hardware components are in place.

Actions:

- Power on the robot.
- Select your mode and parameters in config file.
- Upload the code to the robot and start.
- Present one target (vertical to the ground) to the robot.
- If the target is shot, press H(hit), if not press M(miss)
- move the target to 6 different distances and elevation.

Robot Testing Scheme Comprehensive Overview

Verification:

- ✓ Robot can continuously change direction to **scan the entire area** if the target is not detected within its current field of view.
- ✓ If the camera **detects the target**, robot can be rotated to face the target at the **right angle and be static**.
- ✓ Within 3 seconds of detecting the target, the robot can fire the ball at the right angle and hit the target.
- ✓ Shooting **accuracy of 30%** or more.
- ✓ Robot **emits cue** when it is switched on, finds a target, is ready to fire.
- ✓ Computer can get the information about the robot and the target. (Enable HMI)
- ✓ Mission report is sent

Gold Level

DEMO

Thank you for your attention

redADS team