Lineare Algebra 2 — Übungsblatt 5

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 04.06.2020 um 9:15 Uhr

18. Aufgabe: (1+2+2+2+2 Punkte, Das Minimalpolynom) Seien K ein Körper, $n \in \mathbb{N}$ und $A \in M_{n,n}(K)$. Sei

$$I_A := \{ f \in K[t] \mid f(A) = 0 \}.$$

Hierbei ist $f(A) = a_0 E_n + a_1 A + \cdots + a_m A^m \in M_{n,n}(K)$ mit der Einheitsmatrix $E_n \in M_{n,n}(K)$ für $f = a_0 + a_1 t + \cdots + a_m t^m \in K[t]$.

- (a) Man zeige, dass $I_A \subseteq K[t]$ ein Ideal ist und dass $\chi_A^{\text{char}} \in I_A$. **Hinweis:** Man erinnere sich an den Satz von Cayley-Hamilton.
- (b) Man zeige, dass es ein eindeutiges normiertes Polynom $\chi_A^{\min} \in K[t] \setminus \{0\}$ gibt mit $I_A = (\chi_A^{\min})$.
- (c) Sei $\lambda \in K$. Man zeige, dass dann gilt: $\chi_A^{\min}(\lambda) = 0 \Leftrightarrow \chi_A^{\operatorname{char}}(\lambda) = 0$.
- (d) Man zeige: Ist $B \in M_{n,n}(K)$ mit $B \approx A$, so gelten $I_B = I_A$ und $\chi_B^{\min} = \chi_A^{\min}$
- (e) Man gebe ein Beispiel einer Matrix $A \in M_{2,2}(\mathbb{R})$ mit $\chi_A^{\min} \neq \chi_A^{\text{char}}$.

Definition: Das Polynom χ_A^{\min} heißt das *Minimalpolynom* von A.

- 19. Aufgabe: (3+3 Punkte, Das Minimalpolynom und Invariantenteiler) Sei K ein Körper. Man zeige:
- (a) Sei $g \in K[t]$ nichtkonstant und normiert mit Begleitmatrix B_g . Dann gilt: $\chi_{B_g}^{\min} = g$. Hinweis: Man zeige zunächst, dass $\deg(\chi_{B_g}^{\min}) \ge \deg(g)$.
- (b) Seien $n \in \mathbb{N}$ und $A \in M_{n,n}(K)$ mit Invariantenteilern $c_1(A), \ldots, c_n(A)$ (mit $c_1(A) \mid \ldots \mid c_n(A)$). Dann gilt: $\chi_A^{\min} = c_n(A)$.
- **20. Aufgabe:** (2+2+2 *Punkte, Normalformen*) Sei $n \in \mathbb{N}$ und sei $A \in M_{n,n}(\mathbb{Q})$ eine Matrix mit folgenden Invariantenteilern:

$$c_1(A) = \ldots = c_5(A) = 1$$
, $c_6(A) = t + 1$, $c_7(A) = t^2 + t$, $c_8(A) = t^5 + 3t^4 + 3t^3 + t^2$.

- (a) Man bestimme n, χ_A^{char} und χ_A^{min} .
- (b) Man bestimme die Determinantenteiler und die Frobenius-Normalform von A.
- (c) Man bestimme die Weierstrassteiler und die Weierstrass-Normalform von A.
- **21. Aufgabe:** (3 Punkte, Die Weierstrass-Normalform) Man gebe ein Beipiel einer natürlichen Zahl $n \in \mathbb{N}$ und einer Matrix $A \in M_{n,n}(\mathbb{Q})$, sodass gilt: Die Weierstrass-Normalform von A aufgefasst als Element von $M_{n,n}(\mathbb{Q})$ stimmt nicht mit der Weierstrass-Normalform von A aufgefasst als Element von $M_{n,n}(\mathbb{R})$ überein.

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.