Solving Models with Heterogeneous Agents - KS algorithm

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

Overview

- Krusell-Smith algorithm to solve our benchmark heterogeneous-agent model
- Approximate aggregation
- Simulating economies with heterogeneous agents (separate slides)
- Importance of imposing equilibrium (separate slides)

What matters for agents decisions?

- individual wealth, $k_{i,t}$
- employment status
- \bullet z_t :

- affects z_{t+1} and future employment-status transition probabilities
- affects current and future values of r_t and w_t
- current and expected future values of r_t and w_t

What matters for agents decisions?

!!!

- But state variables cannot be endogenous variables like prices; values of state variables should be known to us when we are trying to solve the period-t system of equations.
- Also, not clear how many lags of r_t and w_t we should include. since we don't know what kind of Markov process these variables are.

What are sensible state variables?

- We need pre-determined info that determines r_t and w_t AND is sufficient in terms of predicting future values of r_t and w_t .
- **Answer:** z_t and the cross-sectional joint distribution of individual capital holdings and employment status.
- Why does the distribution matter when only the aggregate capital stock, K_t , matters for r_t and w_t ?
- **Answer:** Distribution of $k_{i,t}$ matters for K_{t+1} unless the MPC for all agents are equal.

What do we have to approximate?

- Individual policy rules.
- A transition law for the cross-sectional distribution of capital, that is consistent with the investment policy function.

$$f_{t+1} = Y(z_{t+1}, z_t, f_t)$$

- f_t = beginning-of-period cross-sectional distribution of capital and the employment status after the employment status has been realized.
- z_{t+1} does not affect the cross-sectional distribution of capital but does affect the joint cross-sectional distribution of capital and employment status.

- Functional form of $Y(\cdot)$ is not known and functions are infinite-dimensional objects
 - Solution: Standard solution, namely use a finite-order element from class of functions like polynomials that can approximate any function arbitrarity well.
- One of the arguments of the unknown function, namely f_t , is itself infinite-dimensional.
 - **Solution:** Dimension of f_t has to be reduced as well.

KRUSELL-SMITH ALGORITHM

Key approximating steps

- $oldsymbol{\bullet}$ Approximate cross-sectional distribution with limited set of "characteristics," m_t
 - Proposed in Den Haan (1996), Krusell & Smith (1997,1998), Rios-Rull (1997).
- 2 Solve for aggregate policy rule.
- 3 Solve individual policy rule for a given aggregate law of motion.
- Make the two consistent

Krusell-Smith (1997,1998) algorithm

Assume the following approximating aggregate law of motion

$$m_{t+1} = \Gamma(z_{t+1}, z_t, m_t; \eta_{\Gamma}).$$

• Start with an initial guess for its coefficients, η_{Γ}^0 .

Krusell-Smith (1997,1998) algorithm

- Use following iteration until η_{Γ}^{iter} has converged:
 - Given η_{Γ}^{iter} solve for the individual policy rule
 - ullet Given individual policy rule simulate economy and generate a time series for m_t
 - ullet Run a standard projection step $\Longrightarrow \hat{\eta}_{\Gamma}$
 - Possibly apply some dampening

$$\eta_{\Gamma}^{iter+1} = \lambda \hat{\eta}_{\Gamma} + (1-\lambda) \eta_{\Gamma}^{iter}$$
, with $0 < \lambda \le 1$

• Continue until convergence, i.e., until the $\Gamma(\cdot;\eta_\Gamma)$ used when solving for individual policy rule is close to $\Gamma(\cdot;\eta_\Gamma)$ implied by individual policy rule

Law of motion Γ

Solving for policy rules individualr

- Given aggregate law of motion ⇒ you can solve for policy rules individual with your favourite algorithm
- But number of state variables has increased:
 - State variables for agent: $s_{i,t} = \{\varepsilon_{i,t}, k_{i,t}, S_t\}$
 - with $S_t = \{z_t, m_t\} = \{z_t, K_t, \widetilde{m}_t\}.$

Solving for policy rules individual

- S_t must "reveal" K_t
 - $S_t \Longrightarrow K_t \Longrightarrow r_t$ and r_t
- Let $K_{t+1} = \Gamma_K(z_{t+1}, z_t, S_t; \eta_{\Gamma_{\nu}}), \ \widetilde{m}_{t+1} = \Gamma_{\widetilde{m}}(z_{t+1}, z_t, S_t; \eta_{\Gamma_{\infty}})$
- If S_t includes many characteristics of the cross-sectional distribution \Longrightarrow high dimensional individual policy rule

Individual policy rules & projection methods

First choice to make:

- Which function to approximate?
- Here we approximate $k_{i}\left(\cdot\right)$

$$k_{i,t+1} = P_n(s_{i,t}; \eta_{P_n})$$

• N_{η} : dimension η_{P_n}

Individual policy rules & projection methods

Next: Design grid

- s_{κ} the κ^{th} grid point
- $\{s_{\kappa}\}_{\kappa=1}^{\chi}$ the set with χ nodes
- $s_{\kappa} = \{\varepsilon_{\kappa}, k_{\kappa}, S_{\kappa}\}, \text{ and } S_{\kappa} = \{z_{\kappa}, K_{\kappa}, \widetilde{m}_{\kappa}\}$

Individual policy rules & projection methods

Next: Implement projection idea

- Substitute approximation into model equations until you get equations of only
 - current-period state variables
 - 2 coefficients of approximation, η_{P_n}
- **2** Evaluate at χ grid points $\Longrightarrow \chi$ equations to find η_{P_n}
 - $\chi = N_{\eta} \Longrightarrow$ use equation solver
 - $\chi > N_{\eta} \Longrightarrow$ use minimization routine

Individual policy rules & projection methods

First-order condition

$$\begin{array}{rcl} c_t^{-\nu} &=& \mathsf{E}\left[\begin{array}{cc} \beta(r(z',K')+(1-\delta))\times\\ c_{t+1}^{-\nu} \end{array}\right] \\ \left(\begin{array}{cc} \mathsf{income}_{i,t}-k_{i,t+1} \end{array}\right)^{-\nu} &=& \mathsf{E}\left[\begin{array}{cc} \beta(r(z',K')+(1-\delta))\times\\ \left(\begin{array}{cc} \mathsf{income}_{i,t+1}-k_{i,t+2} \end{array}\right)^{-\nu} \end{array}\right] \end{array}$$

Individual policy rules & projection methods

First-order condition

$$\begin{pmatrix} (r(z_{\kappa}, K_{\kappa}) + 1 - \delta)k_{\kappa} \\ + (1 - \tau(z_{\kappa}))w(z_{\kappa}, K_{\kappa})\bar{l}\varepsilon_{\kappa} + \mu w(z_{\kappa}, K_{\kappa})(1 - \varepsilon_{\kappa}) \\ -P_{n}(s_{\kappa}; \eta_{P_{n}}) \end{pmatrix}^{-\nu}$$

$$= \mathsf{E} \left[\begin{array}{c} \beta(r(z',K') + (1-\delta)) \times \\ (r(z',K') + 1 - \delta) P_n(s_\kappa;\eta_{P_n}) \\ + (1-\tau(z')) w(z',K') \bar{l} \varepsilon' + \mu w(z',K') (1-\varepsilon') \\ - P_n(s';\eta_{P_n}) \end{array} \right]^{-\nu}$$

Individual policy rules &projection methods

Euler equation errors:

$$u_{\kappa} = \left(\begin{array}{c} (r(z_{\kappa}, K_{\kappa}) + 1 - \delta)k_{\kappa} \\ + (1 - \tau(z_{\kappa}))w(z_{\kappa}, K_{\kappa})\bar{l}\varepsilon_{\kappa} + \mu w(z_{\kappa}, K_{\kappa})(1 - \varepsilon_{\kappa}) \\ - P_{n}(s_{\kappa}; \eta_{P_{n}}) \end{array}\right)^{-\nu} -$$

$$\sum_{z' \in \{z^b, z^g\}} \sum_{\varepsilon' \in \{0,1\}} \left[\begin{pmatrix} \beta(r(z', K') + (1-\delta)) \times \\ (r(z', K') + 1 - \delta) P_n(s_{\kappa}; \eta_{P_n}) \\ + (1 - \tau(z')) w(z', K') \bar{l}\varepsilon' \\ + \mu w(z', K') (1 - \varepsilon') \\ - P_n(s'; \eta_{P_n}) \\ \pi(\varepsilon', z' | z_{\kappa}, \varepsilon_{\kappa}) \end{pmatrix}^{-\nu} \times \right]$$

Error depends on known "stuff" and η_{P_n} when using

$$r(z_{\kappa}, K_{\kappa}) = \alpha z_{\kappa} (K_{\kappa} / L(z_{\kappa}))^{\alpha - 1}$$

$$w(z_{\kappa}, K_{\kappa}) = (1 - \alpha) z_{\kappa} (K_{\kappa} / L(z_{\kappa}))^{\alpha}$$

Approximate Aggregation

$$r(z',K') = \alpha z' (K'/L(z'))^{\alpha-1}$$

$$= \alpha z' (\Gamma_K(z',z_\kappa,S_\kappa;\eta_\Gamma)/L(z'))^{\alpha-1}$$

$$w(z',K') = (1-\alpha)z' (K'/L(z'))^{\alpha}$$

$$= (1-\alpha)z' (\Gamma_K(z',z_\kappa,S_\kappa;\eta_\Gamma)/L(z'))^{\alpha}$$

$$\tau(z) = \mu(1-L(z))/\bar{l}L(z)$$

$$s' = \left\{ \begin{array}{c} P_n(s_\kappa;\eta_{P_n}), \varepsilon', z', \\ \Gamma_K(z',z_\kappa,S_\kappa;\eta_\Gamma), \Gamma_{\widetilde{m}}(z',z_\kappa,S_\kappa;\eta_{\Gamma}) \end{array} \right\}$$

Again standard projection problem

• Find η_{P_n} by minimizing $\sum_{\kappa=1}^{\chi} u_{\kappa}^2$

Law of motion Γ

Update coefficients $\Gamma(z',z,S;\eta_{\Gamma})$

- Policy rules individual imply law of motion S_t
- Update η_{Γ} as follows
 - **1** Simulate timeseries for S_t using an economy with a cross-section of individual agents. That is,
 - Apply policy rules for each individual
 - Explicitly aggregate to get K_t and the other elements of S_t

Approximate Aggregation

- **2** Run a standard projection step $\Longrightarrow \hat{\eta}_{\Gamma}$
- 3 Possibly apply some dampening

$$\eta_{\Gamma}^{iter+1} = \lambda \hat{\eta}_{\Gamma} + (1-\lambda)\eta_{\Gamma}^{iter}$$
, with $0 < \lambda \le 1$

Continue until convergence

How to simulate

Two possibilities:

KS

- A cross-section with a large but finite number of agents
- A histogram

In the "simulation" slides, we show that using a histogram is (i) faster and (ii) much preferred, because it avoids sampling variation for cross-sectional distribution which can be substantial for some of its characteristics

Law of motion Γ

Approximate aggregation

- The mean is often sufficient ⇒close to complete markets
- Why does only the mean matter?

Approximate aggregation

- Approximate aggregation ≡
 - Next period's prices can be described quite well using
 - exogenous driving processes
 - means of current-period distribution
- Approximate aggregation
 - \neq aggregates behave as in RA economy
 - with *same* preferences
 - with any preferences
 - ≠ individual consumption behaves as aggregate consumption

Why approximate aggregation

- If policy function *exactly* linear in levels (so also not loglinear)
 - ⇒ redistributions of wealth don't matter at all
 - ⇒ Only mean needed for calculating next period's mean
- Approximate aggregation still possible with non-linear policy functions
 - but policy functions must be sufficiently linear where it matters

KS algorithm: Advantages & Disadvantages

simple

- MC integration to calculate cross-sectional means
 - can easily be avoided (see simulation slides)
- Points used in projection step are clustered around the mean
 - Theory suggests this would be bad (recall that even equidistant nodes does not ensure uniform convergence; Chebyshev nodes do)
 - At least for the model in KS (1998) this is a non-issue; in JEDC comparison project the aggregate law of motion for K obtained this way is the most accurate

References

- Algan, Y., O. Allais, W.J. Den Haan, P. Rendahl, 2010, Solving and simulating models with heterogeneous agents and aggregate uncertainty
 - survey article available online
- Den Haan, W. J., 1996, Heterogeneity, Aggregate uncertainty and the short-term interest rate, Journal of Business and Economic Statistics.
 - one of the first articles to solve models with heterogeneous agents and aggregate risk
- Krusell, P. and A.A. Smith Jr., 1998, Income and wealth heterogeneity in the macroeconomy, Journal of Political Economy.
 - develops the most popular algorithm to solve models with heterogeneous agents and has some key insights into these models

Approximate Aggregation

- Krusell, P. and A.A. Smith Jr., 2006, Quantitative macroeconomic models with heterogeneous agents, in Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Econometric Society Monographs, ed. by R. Blundell, W. Newey, and T. Persson
 - has useful hints on how to approach models with heterogeneous agents
- Ríos-Rull, J. V., 1997, Computation of equilibria in heterogeneous agent models, Federal Reserve Bank of Minneapolis Staff Report.
 - one of the first articles to solve models with heterogeneous agents and aggregate risk