Trig Cheat Sheet

Definition of the Trig Functions

Right triangle definition

For this definition we assume that

$$0 < \theta < \frac{\pi}{2}$$
 or $0^{\circ} < \theta < 90^{\circ}$.

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \qquad \csc \theta = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \qquad \sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} \qquad \cot \theta = \frac{\text{adjacent}}{\text{opposite}}$$

Unit circle definition

For this definition θ is any angle.

$$\sin \theta = \frac{y}{1} = y \qquad \csc \theta = \frac{1}{y}$$

$$\cos \theta = \frac{x}{1} = x \qquad \sec \theta = \frac{1}{x}$$

$$\tan \theta = \frac{y}{x} \qquad \cot \theta = \frac{x}{y}$$

Facts and Properties

Domain

The domain is all the values of θ that can be plugged into the function.

$$\sin \theta$$
 , θ can be any angle

$$\cos \theta$$
, θ can be any angle

$$\tan \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \dots$

$$\csc\theta$$
, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2,...$

$$\sec \theta$$
, $\theta \neq \left(n + \frac{1}{2}\right)\pi$, $n = 0, \pm 1, \pm 2, \dots$

$$\cot \theta$$
, $\theta \neq n\pi$, $n = 0, \pm 1, \pm 2, \dots$

Range

The range is all possible values to get out of the function.

$$-1 \le \sin \theta \le 1$$
 $\csc \theta \ge 1$ and $\csc \theta \le -1$
 $-1 \le \cos \theta \le 1$ $\sec \theta \ge 1$ and $\sec \theta \le -1$
 $-\infty < \tan \theta < \infty$ $-\infty < \cot \theta < \infty$

Period

The period of a function is the number, T, such that $f(\theta+T)=f(\theta)$. So, if ω is a fixed number and θ is any angle we have the following periods.

$$\sin(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cos(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\tan(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

$$\csc(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\sec(\omega\theta) \rightarrow T = \frac{2\pi}{\omega}$$

$$\cot(\omega\theta) \rightarrow T = \frac{\pi}{\omega}$$

Formulas and Identities

Tangent and Cotangent Identities

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Reciprocal Identities

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sin\theta = \frac{1}{\csc\theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\cos\theta = \frac{1}{\sec\theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Even/Odd Formulas

$$\sin(-\theta) = -\sin\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\cot(-\theta) = -\cot\theta$$

Periodic Formulas

If *n* is an integer.

$$\sin(\theta + 2\pi n) = \sin\theta$$

$$\sin(\theta + 2\pi n) = \sin\theta \quad \csc(\theta + 2\pi n) = \csc\theta$$

$$\cos(\theta + 2\pi n) = \cos\theta \quad \sec(\theta + 2\pi n) = \sec\theta$$

$$sec(\theta + 2\pi n) = sec$$

$$\tan(\theta + \pi n) = \tan\theta$$

$$\cot(\theta + \pi n) = \cot\theta$$

Double Angle Formulas

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$=2\cos^2\theta-1$$

$$=1-2\sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then

$$\frac{\pi}{180} = \frac{t}{x}$$
 \Rightarrow $t = \frac{\pi x}{180}$ and $x = \frac{180t}{\pi}$

Half Angle Formulas (alternate form)

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$
 $\sin^2\theta = \frac{1}{2}(1-\cos(2\theta))$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$
 $\cos^2\theta = \frac{1}{2}(1+\cos(2\theta))$

$$\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$
 $\tan^2 \theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$

Sum and Difference Formulas

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

Product to Sum Formulas

$$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha - \beta) + \cos (\alpha + \beta) \right]$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$$

Sum to Product Formulas

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\sin \alpha - \sin \beta = 2\cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$\cos \alpha - \cos \beta = -2\sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Cofunction Formulas

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
 $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$

$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$
 $\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Unit Circle

For any ordered pair on the unit circle (x, y): $\cos \theta = x$ and $\sin \theta = y$

Example

$$\cos\left(\frac{5\pi}{3}\right) = \frac{1}{2} \qquad \sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

Inverse Trig Functions

Definition

$$y = \sin^{-1} x$$
 is equivalent to $x = \sin y$
 $y = \cos^{-1} x$ is equivalent to $x = \cos y$
 $y = \tan^{-1} x$ is equivalent to $x = \tan y$

Domain and Range

Function	Domain	Range
$y = \sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \cos^{-1} x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \tan^{-1} x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

Inverse Properties

$$\cos(\cos^{-1}(x)) = x \qquad \cos^{-1}(\cos(\theta)) = \theta$$
$$\sin(\sin^{-1}(x)) = x \qquad \sin^{-1}(\sin(\theta)) = \theta$$
$$\tan(\tan^{-1}(x)) = x \qquad \tan^{-1}(\tan(\theta)) = \theta$$

Alternate Notation

$$\sin^{-1} x = \arcsin x$$

$$\cos^{-1} x = \arccos x$$

$$\tan^{-1} x = \arctan x$$

Law of Sines, Cosines and Tangents

b

Law of Sines

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$

Law of Cosines

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Mollweide's Formula

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(\alpha-\beta)}{\sin\frac{1}{2}\gamma}$$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)}$$
$$\frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta-\gamma)}{\tan\frac{1}{2}(\beta+\gamma)}$$
$$\frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(\alpha-\gamma)}{\tan\frac{1}{2}(\alpha+\gamma)}$$

Trigonometric Identities & Formulas

Tutorial Services – Mission del Paso Campus

Reciprocal Identities

$$\sin x = \frac{1}{\csc x}$$

$$\csc x = \frac{1}{\sin x}$$

$$\cos x = \frac{1}{\sec x} \qquad \qquad \sec x = \frac{1}{\cos x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\tan x = \frac{1}{\cot x}$$

$$\cot x = \frac{1}{\tan x}$$

Ratio or Quotient Identities

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\sin x = \cos x \tan x$$

$$\cos x = \sin x \cot x$$

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

Note: there are only three, basic Pythagorean identities, the other forms are the same three identities, just arranged in a different order.

Confunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$
 $\cot\left(\frac{\pi}{2} - x\right) = \tan x$

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x$$
 $\csc\left(\frac{\pi}{2} - x\right) = \sec x$

$$\csc\left(\frac{\pi}{2} - x\right) = \sec x$$

Pythagorean Identities in Radical Form

$$\sin x = \pm \sqrt{1 - \cos^2 x}$$

$$\tan x = \pm \sqrt{\sec^2 x - 1}$$

$$\cos x = \pm \sqrt{1 - \sin^2 x}$$

Odd-Even Identities

Also called negative angle identities

$$Sin(-x) = -sin x$$

$$Csc(-x) = -csc x$$

$$\cos(-x) = \cos x$$

$$Cos(-x) = cos x$$
 $Sec(-x) = sec x$

$$Tan (-x) = -tan x$$

$$Tan(-x) = -tan x$$
 $Cot(-x) = -cot x$

Phase Shift =
$$\frac{-c}{h}$$

Period =
$$\frac{2\pi}{h}$$

Sum and Difference Formulas/Identities

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$

$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$

$$cos(u+v) = cosucosv - sinusinv$$

$$\cos(u-v) = \cos u \cos v + \sin u \sin v$$

$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$$

$$\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$$

How to Find Reference Angles

Step 1: Determine which quadrant the angle is in

Step 2: Use the appropriate formula

Quad I = is the angle itself

Quad II = $180 - \theta$

 $\pi - \theta$ or

Ouad III = $\theta - 180$

θ - π or

Quad IV = $360 - \theta$

 $2\pi - \theta$

Reciprocal Identities

$$\sin x = \frac{1}{\csc x}$$

$$\csc x = \frac{1}{\sin x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\cos x = \frac{1}{\sec x}$$

$$\cos x = \frac{1}{\sec x} \qquad \qquad \sec x = \frac{1}{\cos x}$$

$$\sin x = \cos x \tan x$$

$$\cos x = \sin x \cot x$$

$$\tan x = \frac{1}{\cot x}$$

$$\tan x = \frac{1}{\cot x} \qquad \cot x = \frac{1}{\tan x}$$

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

Note: there are only three, basic Pythagorean identities, the other forms are the same three identities, just arranged in a different order.

Pythagorean Identities in Radical Form

$$\sin x = \pm \sqrt{1 - \cos^2 x}$$

$$\tan x = \pm \sqrt{\sec^2 x - 1}$$

Confunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x$$
 $\cot\left(\frac{\pi}{2} - x\right) = \tan x$

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x$$
 $\csc\left(\frac{\pi}{2} - x\right) = \sec x$

$$(\pi)$$

Odd-Even Identities

Also called negative angle identities

$$Sin(-x) = -sin x$$
 $Csc(-x) = -csc x$

$$Csc(-x) = -csc x$$

$$Cos(-x) = cos x$$
 $Sec(-x) = sec x$

$$Sec(-x) = sec x$$

$$\Gamma$$
an $(-x) = -t$ an x

$$Tan (-x) = -tan x \qquad Cot (-x) = -cot x$$

Sum and Difference Formulas - Identities

$$\sin(u+v) = \sin u \cos v + \cos u \sin v$$

$$\sin(u-v) = \sin u \cos v - \cos u \sin v$$

$$cos(u+v) = cosucosv - sinusinv$$

$$cos(u-v) = cosu cosv + sin u sin v$$

$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$$

$$\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$$

Right Triangle Definitions of Trigonometric Functions

Note: sin & cos are complementary angles, so are tan & cot and sec & cos, and the sum of complementary angles is 90 degrees.

$$\sin \theta = \frac{opp}{hyp} = \frac{y}{r}$$

$$\csc \theta = \frac{hyp}{opp} = \frac{r}{y}$$

$$\cos \theta = \frac{adj}{hyp} = \frac{x}{r}$$

$$\sec \theta = \frac{hyp}{adj} = \frac{r}{x}$$

$$\tan \theta = \frac{opp}{adi} = \frac{y}{x}$$

$$\cot \theta = \frac{adj}{opp} = \frac{x}{y}$$

Adjacent = is the side adjacent to the angle in consideration. So if we are considering Angle A, then the adjacent side is CB

Trigonometric Values of Special Angles

Degrees	0°	30°	45°	60°	90°	180°	270°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
sinθ	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos\theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
tanθ	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undefined	0	undefined

To Convert <u>Degrees to Radians</u>, Multiply by

$$\frac{\pi \operatorname{rad}}{180 \operatorname{deg}}$$

To Convert Radians to Degrees, Multiply by

$$\frac{180 \deg}{\pi \operatorname{rad}}$$

Vocabulary

- Cotangent Angles are two angles with the same terminal side
- Reference Angle is an acute angle formed by terminal side of angle(α) with x-axis

Finding the Area of non-90 degree Triangles

Area of an Oblique Triangle

$$area = \frac{1}{2}bc\sin A = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B$$

Heron's Formula

Step 1: Find "s"
$$s = \frac{(a+b+c)}{2}$$
 Step 2: Use the formula $area = \sqrt{s(s-a)(s-b)(s-c)}$

Function Ranges:

<u>i unction</u>	Tturibuo.		
sin(x)	$-1 \le y \le 1$	arcsin(x)	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
cos(x)	$-1 \le y \le 1$	arccos(x)	$0 \le y \le \pi$
tan(x)	$\infty < y < \infty$	arctan(x)	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
$\cot(x)$	$\infty < y < \infty$	arccot(x)	$0 < y < \pi$
csc(x)	$-\infty < y \le 1$ $ 0.1 \le y < \infty$	arccsc(x)	$0 \le y < \frac{\pi}{2} \cup \pi \le y < \frac{3\pi}{2}$
sec(x)	$-\infty < y \le 1 \cup 1 \le y < \infty$	arcsec(x)	$-\pi < y \le -\frac{\pi}{2} \cup 0 < y < \frac{\pi}{2}$

Function Values:

<u>Function Value</u>	<u>S:</u>			
	sin(x)	$\cos(x)$	tan(x)	cot(x)
0	0	1	0	Undefined
$\frac{\pi}{}$	1	$\sqrt{3}$	$\sqrt{3}$	$\sqrt{3}$
$\frac{\pi}{6}$	$\overline{2}$	2	$\frac{\sqrt{3}}{3}$	
$\frac{\pi}{4}$	$\frac{\frac{1}{2}}{\sqrt{2}}$	$\frac{\overline{2}}{\sqrt{2}}$	1	1
	$\frac{\overline{2}}{\sqrt{3}}$			
$\frac{\pi}{-}$	$\sqrt{3}$	$\frac{2}{\frac{1}{2}}$	$\sqrt{3}$	$\sqrt{3}$
$ \frac{\pi}{3} $ $ \frac{\pi}{2} $ $ \frac{2\pi}{3} $ $ \frac{3\pi}{4} $ $ \frac{5\pi}{6} $	2	$\frac{\overline{2}}{2}$		3
$\frac{\pi}{}$	1	0	Undefined	0
2			_	
$\frac{2\pi}{}$	$\sqrt{3}$	$-\frac{1}{-}$	$-\sqrt{3}$	$\sqrt{3}$
3	2	2		$-\frac{3}{3}$ $-\sqrt{3}$
$\frac{3\pi}{}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$	$\sqrt{3}$	$-\sqrt{3}$
4	2	<u> </u>	3	
5π	$\frac{\overline{2}}{1}$	$\sqrt{3}$	-1	-1
	2			
π	0	-1	0	Undefined
7π	_1_	$\sqrt{3}$		
6	2	$-{2}$		
5π	$-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$	$ \begin{array}{r} -1 \\ -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} \end{array} $		
4	$-{2}$	$-{2}$		
4π	$\sqrt{3}$	_ 1		
3				
3π	$-\frac{2}{2}$	0		
2				
$\frac{5\pi}{}$	$\sqrt{3}$	<u>1</u>		
3		2		
$\frac{7\pi}{}$	$-\frac{2}{2}$ $\sqrt{2}$	$\sqrt{2}$		
4		2		
$ \frac{\pi}{7\pi} $ $ \frac{7\pi}{6} $ $ \frac{5\pi}{4} $ $ \frac{4\pi}{3} $ $ \frac{3\pi}{2} $ $ \frac{5\pi}{3} $ $ \frac{7\pi}{4} $ $ \frac{11\pi}{6} $	$-\frac{2}{2}$	$ \frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}} $ $ \frac{\sqrt{3}}{2} $		
6	$-\frac{2}{2}$	2		

Triple Angle Identities

- $\sin(3x) = -\sin^3(x) + 3\cos^2(x)\sin(x)$
- $\sin(3x) = -4\sin^3(x) + 3\sin(x)$
- $\cos(3x) = \cos^3(x) 3\sin^2(x)\cos(x)$

- $\cos(3x) = \cos(x) 3\sin(x)\cos(x)$ $\cos(3x) = 4\cos^3(x) 3\cos(x)$ $\tan(3x) = \frac{3\tan(x) \tan^3(x)}{1 3\tan^2(x)}$ $\cot(3x) = \frac{3\cot(x) \cot^3(x)}{1 3\cot^2(x)}$