

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/53, 15/82, A01H 5/00	A2	(11) International Publication Number: WO 96/21022 (43) International Publication Date: 11 July 1996 (11.07.96)
(21) International Application Number: PCT/IB95/01167		(81) Designated States: AU, BR, CA, CN, JP, RO, RU, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 28 December 1995 (28.12.95)		
(30) Priority Data: 08/366,779 30 December 1994 (30.12.94) US		Published <i>Without international search report and to be republished upon receipt of that report.</i>
(71) Applicant: RHONE-POULENC AGROCHIMIE [FR/FR]; 14-20, rue Pierre-Baizet, F-69263 Lyon (FR).		
(72) Inventors: THOMAS, Terry, L.; 3004 Normand, College Station, TX 77845 (US). REDDY, Avutu, S.; 3902 E. 29th Street #G11, Bryan, TX 77802 (US). NUCCIO, Michael; P.O. Box 553, College Station, TX 77841 (US). NUNBERG, Andrew, N.; 2804 B. Sprucewood Street, Bryan, TX 77801 (US). FREYSSINET, Georges, L.; 21, rue de Nerville, F-69450 Saint-Cyr-au-Mont-d'Or (FR).		
(74) Agent: MITSCHERLICH & PARTNER; Sonnenstrasse 33, D-80331 München (DE).		

(54) Title: PRODUCTION OF GAMMA LINOLENIC ACID BY A Δ 6-DESATURASE

(57) Abstract

Linoleic acid is converted into γ -linolenic acid by the enzyme Δ 6-desaturase. The present invention is directed to isolated nucleic acids comprising the Δ 6-desaturase gene. More particularly, the isolated nucleic acid comprises the promoter, coding region and termination regions of the Δ 6-desaturase gene. The present invention provides recombinant constructions comprising the Δ 6-desaturase coding region in functional combination with heterologous regulatory sequences. The nucleic acids and recombinant constructions of the instant invention are useful in the production of GLA in transgenic organisms.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LJ	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

1 PRODUCTION OF GAMMA LINOLENIC ACID BY A Δ 6-DESATURASE

Linoleic acid (18:2) (LA) is transformed into gamma linolenic acid (18:3) (GLA) by the enzyme 5 Δ 6-desaturase. When this enzyme, or the nucleic acid encoding it, is transferred into LA-producing cells, GLA is produced. The present invention provides nucleic acids comprising the Δ 6-desaturase gene. More specifically, the nucleic acids comprise the 10 promoters, coding regions and termination regions of the Δ 6-desaturase genes. The present invention is further directed to recombinant constructions comprising a Δ 6-desaturase coding region in functional combination with heterologous regulatory sequences. 15 The nucleic acids and recombinant constructions of the instant invention are useful in the production of GLA in transgenic organisms.

Unsaturated fatty acids such as linoleic (C₁₈ Δ ^{9,12}) and α -linolenic (C₁₈ Δ ^{9,12,15}) acids are essential 20 dietary constituents that cannot be synthesized by vertebrates since vertebrate cells can introduce double bonds at the Δ ⁹ position of fatty acids but cannot introduce additional double bonds between the Δ ⁹ double bond and the methyl-terminus of the fatty 25 acid chain. Because they are precursors of other products, linoleic and α -linolenic acids are essential fatty acids, and are usually obtained from plant sources. Linoleic acid can be converted by mammals 30 into γ -linolenic acid (GLA, C₁₈ Δ ^{6,9,12}) which can in turn be converted to arachidonic acid (20:4), a critically

1 important fatty acid since it is an essential
precursor of most prostaglandins.

2 The dietary provision of linoleic acid, by
3 virtue of its resulting conversion to GLA and
4 arachidonic acid, satisfies the dietary need for GLA
5 and arachidonic acid. However, a relationship has
6 been demonstrated between consumption of saturated
7 fats and health risks such as hypercholesterolemia,
8 atherosclerosis and other clinical disorders which
9 correlate with susceptibility to coronary disease,
10 while the consumption of unsaturated fats has been
11 associated with decreased blood cholesterol
12 concentration and reduced risk of atherosclerosis.
13 The therapeutic benefits of dietary GLA may result
14 from GLA being a precursor to arachidonic acid and
15 thus subsequently contributing to prostaglandin
16 synthesis. Accordingly, consumption of the more
17 unsaturated GLA, rather than linoleic acid, has
18 potential health benefits. However, GLA is not
19 present in virtually any commercially grown crop
20 plant.

21 Linoleic acid is converted into GLA by the
22 enzyme $\Delta 6$ -desaturase. $\Delta 6$ -desaturase, an enzyme of
23 more than 350 amino acids, has a membrane-bound domain
24 and an active site for desaturation of fatty acids.
25 When this enzyme is transferred into cells which
26 endogenously produce linoleic acid but not GLA, GLA is
27 produced. The present invention, by providing the
28 gene encoding $\Delta 6$ -desaturase, allows the production of
29 transgenic organisms which contain functional $\Delta 6$ -
30 desaturase and which produce GLA. In addition to

1 allowing production of large amounts of GLA, the present invention provides new dietary sources of GLA.

The present invention is directed to isolated $\Delta 6$ -desaturase genes. Specifically, the 5 isolated genes comprises the $\Delta 6$ -desaturase promoters, coding regions, and termination regions.

The present invention is further directed to expression vectors comprising the $\Delta 6$ -desaturase promoter, coding region and termination region.

10 Yet another aspect of this invention is directed to expression vectors comprising a $\Delta 6$ -desaturase coding region in functional combination with heterologous regulatory regions, i.e. elements not derived from the $\Delta 6$ -desaturase gene.

15 Cells and organisms comprising the vectors of the present invention, and progeny of such organisms, are also provided by the present invention.

20 A further aspect of the present invention provides isolated bacterial $\Delta 6$ -desaturase. An isolated plant $\Delta 6$ -desaturase is also provided.

Yet another aspect of this invention provides a method for producing plants with increased gamma linolenic acid content.

25 A method for producing chilling tolerant plants is also provided by the present invention.

Fig. 1 depicts the hydropathy profiles of the deduced amino acid sequences of Synechocystis $\Delta 6$ -desaturase (Panel A) and $\Delta 12$ -desaturase (Panel B).

30 Putative membrane spanning regions are indicated by solid bars. Hydrophobic index was calculated for a

1 window size of 19 amino acid residues [Kyte, et al.
(1982) J. Molec. Biol. 157].

Fig. 2 provides gas liquid chromatography profiles of wild type (Panel A) and transgenic (Panel 5 B) Anabaena.

Fig. 3 is a diagram of maps of cosmid cSy75, cSy13 and CsY7 with overlapping regions and subclones. The origins of subclones of CsY75, CsY75-3.5 and CsY7 are indicated by the dashed diagonal lines.

10 Restriction sites that have been inactivated are in parentheses.

Fig. 4 provides gas liquid chromatography profiles of wild type (Panel A) and transgenic (Panel B) tobacco.

15 Fig. 5A depicts the DNA sequence of a Δ -6 desaturase cDNA isolated from borage.

Fig. 5B depicts the protein sequence of the open reading frame in the isolated borage Δ -6 desaturase cDNA. Three amino acid motifs 20 characteristic of desaturases are indicated and are, in order, lipid box, metal box 1, and metal box 2.

25 Fig. 6 is a dendrogram showing similarity of the borage Δ 6-desaturase to other membrane-bound desaturases. The amino acid sequence of the borage Δ 6-desaturase was compared to other known desaturases using Gene Works (IntelliGenetics). Numerical values correlate to relative phylogenetic distances between subgroups compared.

30 Fig. 7 is a restriction map of 221. Δ 6.NOS and 121. Δ 6.NOS. In 221. Δ 6.NOS, the remaining portion

1 of the plasmid is pBI221 and in 121. Δ 6.NOS, the remaining portion of the plasmid is pBI121.

5 Fig. 8 provides gas liquid chromatography profiles of mock transfected (Panel A) and 221. Δ 6.NOS transfected (Panel B) carrot cells. The positions of 18:2, 18:3 α , and 18:3 γ (GLA) are indicated.

10 Fig. 9 provides gas liquid chromatography profiles of an untransformed tobacco leaf (Panel A) and a tobacco leaf transformed with 121. Δ 6.NOS. The positions of 18:2, 18:3 α , 18:3 γ (GLA), and 18:4 are indicated.

15 Fig. 10 provides gas liquid chromatography profiles for untransformed tobacco seeds (Panel A) and seeds of tobacco transformed with 121. Δ 6.NOS. The positions of 18:2, 18:3 α and 18:3 γ (GLA) are indicated.

The present invention provides isolated nucleic acids encoding Δ 6-desaturase. To identify a nucleic acid encoding Δ 6-desaturase, DNA is isolated from an organism which produces GLA. Said organism 20 can be, for example, an animal cell, certain fungi (e.g. Mortierella), certain bacteria (e.g. Synechocystis) or certain plants (borage, Oenothera, currants). The isolation of genomic DNA can be accomplished by a variety of methods well-known to one 25 of ordinary skill in the art, as exemplified by Sambrook et al. (1989) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY. The isolated DNA is fragmented by physical methods or enzymatic digestion and cloned into an appropriate 30 vector, e.g. a bacteriophage or cosmid vector, by any of a variety of well-known methods which can be found

1 in references such as Sambrook *et al.* (1989). Expression vectors containing the DNA of the present invention are specifically contemplated herein. DNA encoding $\Delta 6$ -desaturase can be identified by gain of
5 function analysis. The vector containing fragmented DNA is transferred, for example by infection, transconjugation, transfection, into a host organism that produces linoleic acid but not GLA. As used herein, "transformation" refers generally to the
10 incorporation of foreign DNA into a host cell. Methods for introducing recombinant DNA into a host organism are known to one of ordinary skill in the art and can be found, for example, in Sambrook *et al.* (1989). Production of GLA by these organisms (i.e.,
15 gain of function) is assayed, for example by gas chromatography or other methods known to the ordinarily skilled artisan. Organisms which are induced to produce GLA, i.e. have gained function by the introduction of the vector, are identified as
20 expressing DNA encoding $\Delta 6$ -desaturase, and said DNA is recovered from the organisms. The recovered DNA can again be fragmented, cloned with expression vectors, and functionally assessed by the above procedures to define with more particularity the DNA encoding $\Delta 6$ -
25 desaturase.

As an example of the present invention, random DNA is isolated from the cyanobacteria Synechocystis Pasteur Culture Collection (PCC) 6803, American Type Culture Collection (ATCC) 27184, cloned
30 into a cosmid vector, and introduced by transconjugation into the GLA-deficient cyanobacterium

1 Anabaena strain PCC 7120, ATCC 27893. Production of GLA from Anabaena linoleic acid is monitored by gas chromatography and the corresponding DNA fragment is isolated.

5 The isolated DNA is sequenced by methods well-known to one of ordinary skill in the art as found, for example, in Sambrook *et al.* (1989).

In accordance with the present invention, DNA molecules comprising $\Delta 6$ -desaturase genes have been 10 isolated. More particularly, a 3.588 kilobase (kb) DNA comprising a $\Delta 6$ -desaturase gene has been isolated from the cyanobacteria Synechocystis. The nucleotide sequence of the 3.588 kb DNA was determined and is shown in SEQ ID NO:1. Open reading frames defining 15 potential coding regions are present from nucleotide 317 to 1507 and from nucleotide 2002 to 3081. To define the nucleotides responsible for encoding $\Delta 6$ -desaturase, the 3.588 kb fragment that confers $\Delta 6$ -desaturase activity is cleaved into two subfragments, 20 each of which contains only one open reading frame. Fragment ORF1 contains nucleotides 1 through 1704, while fragment ORF2 contains nucleotides 1705 through 3588. Each fragment is subcloned in both forward and reverse orientations into a conjugal expression vector 25 (AM542, Wolk *et al.* [1984] Proc. Natl. Acad. Sci. USA 81, 1561) that contains a cyanobacterial carboxylase promoter. The resulting constructs (i.e. ORF1(F), ORF1(R), ORF2(F) and ORF2(R)] are conjugated to wild-type Anabaena PCC 7120 by standard methods (see, for 30 example, Wolk *et al.* (1984) Proc. Natl. Acad. Sci. USA 81, 1561). Conjugated cells of Anabaena are

1 identified as Neo^R green colonies on a brown
background of dying non-conjugated cells after two
weeks of growth on selective media (standard mineral
media BG11N + containing 30 μ g/ml of neomycin according
5 to Rippka et al., (1979) J. Gen Microbiol. 111, 1).
The green colonies are selected and grown in selective
liquid media (BG11N + with 15 μ g/ml neomycin). Lipids
are extracted by standard methods (e.g. Dahmer et al.,
(1989) Journal of American Oil Chemical Society 66,
10 543) from the resulting transconjugants containing the
forward and reverse oriented ORF1 and ORF2 constructs.
For comparison, lipids are also extracted from wild-
type cultures of Anabaena and Synechocystis. The
fatty acid methyl esters are analyzed by gas liquid
15 chromatography (GLC), for example with a Tracor-560
gas liquid chromatograph equipped with a hydrogen
flame ionization detector and a capillary column. The
results of GLC analysis are shown in Table 1.

20

25

30

35

1 Table 1: Occurrence of C18 fatty acids in wild-type
 and
 transgenic cyanobacteria

	SOURCE	18:0	18:1	18:2	γ 18:3	α 18:3	18:4
5	Anabaena (wild type)	+	+	+	-	+	-
	Anabaena + ORF1 (F)	+	+	+	-	+	-
	Anabaena + ORF1 (R)	+	+	+	-	+	-
10	Anabaena + ORF2 (F)	+	+	+	+	+	+
	Anabaena + ORF2 (R)	+	+	+	-	+	-
	Synechocystis (wild type)	+	+	+	+	-	-

As assessed by GLC analysis, GLA deficient
 15 Anabaena gain the function of GLA production when the
 construct containing ORF2 in forward orientation is
 introduced by transconjugation. Transconjugants
 containing constructs with ORF2 in reverse orientation
 to the carboxylase promoter, or ORF1 in either
 20 orientation, show no GLA production. This analysis
 demonstrates that the single open reading frame (ORF2)
 within the 1884 bp fragment encodes Δ 6-desaturase.
 The 1884 bp fragment is shown as SEQ ID NO:3. This is
 substantiated by the overall similarity of the
 25 hydrophathy profiles between Δ 6-desaturase and Δ 12-
 desaturase [Wada *et al.* (1990) Nature 347] as shown in
 Fig. 1 as (A) and (B), respectively.

Also in accordance with the present
 invention, a cDNA comprising a Δ 6-desaturase gene from
 30 borage (Borago officinalis) has been isolated. The
 nucleotide sequence of the 1.685 kilobase (kb) cDNA

1 was determined and is shown in Fig. 5A (SEQ ID NO: 4).
The ATG start codon and stop codon are underlined.
The amino acid sequence corresponding to the open
reading frame in the borage delta 6-desaturase is
5 shown in Fig. 5B (SEQ ID NO: 5).

Isolated nucleic acids encoding $\Delta 6$ -desaturase can be identified from other GLA-producing organisms by the gain of function analysis described above, or by nucleic acid hybridization techniques
10 using the isolated nucleic acid which encodes Synechocystis or borage $\Delta 6$ -desaturase as a hybridization probe. Both genomic and cDNA cloning methods are known to the skilled artisan and are contemplated by the present invention. The
15 hybridization probe can comprise the entire DNA sequence disclosed as SEQ. ID NO:1 or SEQ. ID NO:4, or a restriction fragment or other DNA fragment thereof, including an oligonucleotide probe. Methods for cloning homologous genes by cross-hybridization are
20 known to the ordinarily skilled artisan and can be found, for example, in Sambrook (1989) and Beltz *et al.* (1983) Methods in Enzymology 100, 266.

In another method of identifying a delta 6-desaturase gene from an organism producing GLA, a cDNA library is made from poly-A' RNA isolated from polysomal RNA. In order to eliminate hyper-abundant expressed genes from the cDNA population, cDNAs or fragments thereof corresponding to hyper-abundant cDNAs genes are used as hybridization probes to the
25 cDNA library. Non hybridizing plaques are excised and the resulting bacterial colonies are used to inoculate
30

1 liquid cultures and sequenced. For example, as a
means of eliminating other seed storage protein cDNAs
from a cDNA library made from borage polysomal RNA,
cDNAs corresponding to abundantly expressed seed
5 storage proteins are first hybridized to the cDNA
library. The "subtracted" DNA library is then used to
generate expressed sequence tags (ESTs) and such tags
are used to scan a data base such as GenBank to
identify potential desaturates.

10 Transgenic organisms which gain the function
of GLA production by introduction of DNA encoding Δ -
desaturase also gain the function of
octadecatetraenoic acid (18:4 6,9,12,15) production.
Octadecatetraenoic acid is present normally in fish
15 oils and in some plant species of the Boraginaceae
family (Craig et al. [1964] J. Amer. Oil Chem. Soc.
41, 209-211; Gross et al. [1976] Can. J. Plant Sci.
56, 659-664). In the transgenic organisms of the
present invention, octadecatetraenoic acid results
20 from further desaturation of α -linolenic acid by $\Delta 6$ -
desaturase or desaturation of GLA by $\Delta 15$ -desaturase.

The 359 amino acids encoded by ORF2, i.e.
the open reading frame encoding Synechocystis $\Delta 6$ -
desaturase, are shown as SEQ. ID NO:2. The open
25 reading frame encoding the borage $\Delta 6$ -desaturase is
shown in SEQ ID NO: 5. The present invention further
contemplates other nucleotide sequences which encode
the amino acids of SEQ ID NO:2 and SEQ ID NO: 5. It
is within the ken of the ordinarily skilled artisan to
30 identify such sequences which result, for example,
from the degeneracy of the genetic code. Furthermore,

1 one of ordinary skill in the art can determine, by the
gain of function analysis described hereinabove,
smaller subfragments of the fragments containing the
open reading frames which encode $\Delta 6$ -desaturases.

5 The present invention contemplates any such
polypeptide fragment of $\Delta 6$ -desaturase and the nucleic
acids therefor which retain activity for converting LA
to GLA.

In another aspect of the present invention,
10 a vector containing a nucleic acid of the present
invention or a smaller fragment containing the
promoter, coding sequence and termination region of a
 $\Delta 6$ -desaturase gene is transferred into an organism,
for example, cyanobacteria, in which the $\Delta 6$ -desaturase
15 promoter and termination regions are functional.
Accordingly, organisms producing recombinant $\Delta 6$ -
desaturase are provided by this invention. Yet
another aspect of this invention provides isolated $\Delta 6$ -
desaturase, which can be purified from the recombinant
20 organisms by standard methods of protein purification.
(For example, see Ausubel *et al.* [1987] Current
Protocols in Molecular Biology, Green Publishing
Associates, New York).

Vectors containing DNA encoding $\Delta 6$ -
25 desaturase are also provided by the present invention.
It will be apparent to one of ordinary skill in the
art that appropriate vectors can be constructed to
direct the expression of the $\Delta 6$ -desaturase coding
sequence in a variety of organisms. Replicable
30 expression vectors are particularly preferred.
Replicable expression vectors as described herein are

1 DNA or RNA molecules engineered for controlled
expression of a desired gene, i.e. the $\Delta 6$ -desaturase
gene. Preferably the vectors are plasmids,
bacteriophages, cosmids or viruses. Shuttle vectors,
5 e.g. as described by Wolk *et al.* (1984) Proc. Natl.
Acad. Sci. USA, 1561-1565 and Bustos *et al.* (1991) J.
Bacteriol. 174, 7525-7533, are also contemplated in
accordance with the present invention. Sambrook *et*
al. (1989), Goeddel, ed. (1990) Methods in Enzymology
10 185 Academic Press, and Perbal (1988) A Practical
Guide to Molecular Cloning, John Wiley and Sons, Inc.,
provide detailed reviews of vectors into which a
nucleic acid encoding the present $\Delta 6$ -desaturase can be
inserted and expressed. Such vectors also contain
15 nucleic acid sequences which can effect expression of
nucleic acids encoding $\Delta 6$ -desaturase. Sequence
elements capable of effecting expression of a gene
product include promoters, enhancer elements, upstream
activating sequences, transcription termination
signals and polyadenylation sites. Both constitutive
20 and tissue specific promoters are contemplated. For
transformation of plant cells, the cauliflower mosaic
virus (CaMV) 35S promoter and promoters which are
regulated during plant seed maturation are of
particular interest. All such promoter and
25 transcriptional regulatory elements, singly or in
combination, are contemplated for use in the present
replicable expression vectors and are known to one of
ordinary skill in the art. The CaMV 355 promoter is
described, for example, by Restrepo *et al.* (1990)
30

1 Plant Cell 2, 987. Genetically engineered and mutated
regulatory sequences are also contemplated.

The ordinarily skilled artisan can determine
vectors and regulatory elements suitable for
5 expression in a particular host cell. For example, a
vector comprising the promoter from the gene encoding
the carboxylase of Anabaena operably linked to the
coding region of $\Delta 6$ -desaturase and further operably
linked to a termination signal from Synechocystis is
10 appropriate for expression of $\Delta 6$ -desaturase in
cyanobacteria. "Operably linked" in this context
means that the promoter and terminator sequences
effectively function to regulate transcription. As a
further example, a vector appropriate for expression
15 of $\Delta 6$ -desaturase in transgenic plants can comprise a
seed-specific promoter sequence derived from
helianthinin, napin, or glycinin operably linked to
the $\Delta 6$ -desaturase coding region and further operably
linked to a seed termination signal or the nopaline
20 synthase termination signal. As a still further
example, a vector for use in expression of $\Delta 6$ -
desaturase in plants can comprise a constitutive
promoter or a tissue specific promoter operably linked
to the $\Delta 6$ -desaturase coding region and further
25 operably linked to a constitutive or tissue specific
terminator or the nopaline synthase termination
signal.

In particular, the helianthinin regulatory
elements disclosed in applicant's copending U.S.
30 Application Serial No. 682,354, filed April 8, 1991
and incorporated herein by reference, are contemplated

1 as promoter elements to direct the expression of the
Δ6-desaturase of the present invention.

5 Modifications of the nucleotide sequences or
regulatory elements disclosed herein which maintain
the functions contemplated herein are within the scope
of this invention. Such modifications include
insertions, substitutions and deletions, and
specifically substitutions which reflect the
degeneracy of the genetic code.

10 Standard techniques for the construction of
such hybrid vectors are well-known to those of
ordinary skill in the art and can be found in
references such as Sambrook *et al.* (1989), or any of
the myriad of laboratory manuals on recombinant DNA
15 technology that are widely available. A variety of
strategies are available for ligating fragments of
DNA, the choice of which depends on the nature of the
termini of the DNA fragments. It is further
contemplated in accordance with the present invention
20 to include in the hybrid vectors other nucleotide
sequence elements which facilitate cloning, expression
or processing, for example sequences encoding signal
peptides, a sequence encoding KDEL, which is required
for retention of proteins in the endoplasmic reticulum
25 or sequences encoding transit peptides which direct
Δ6-desaturase to the chloroplast. Such sequences are
known to one of ordinary skill in the art. An
optimized transit peptide is described, for example,
by Van den Broeck *et al.* (1985) Nature 313, 358.
30 Prokaryotic and eukaryotic signal sequences are

1 disclosed, for example, by Michaelis et al. (1982)
5 Ann. Rev. Microbiol. 36, 425.

A further aspect of the instant invention provides organisms other than cyanobacteria or plants 5 which contain the DNA encoding the $\Delta 6$ -desaturase of the present invention. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, and plants and animals. The isolated DNA of the present invention 10 can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in 15 references such as Sambrook et al. (1989).

A variety of plant transformation methods are known. The $\Delta 6$ -desaturase gene can be introduced into plants by a leaf disk transformation-regeneration procedure as described by Horsch et al. (1985) Science 20 227, 1229. Other methods of transformation, such as protoplast culture (Horsch et al. (1984) Science 223, 496; DeBlock et al. (1984) EMBO J. 2, 2143; Barton et 25 al. (1983) Cell 32, 1033) can also be used and are within the scope of this invention. In a preferred embodiment plants are transformed with Agrobacterium-derived vectors. However, other methods are available to insert the $\Delta 6$ -desaturase genes of the present invention into plant cells. Such alternative methods include biostatic approaches (Klein et al. (1987) 30 Nature 327, 70), electroporation, chemically-induced DNA uptake, and use of viruses or pollen as vectors.

1 When necessary for the transformation
method, the $\Delta 6$ -desaturase genes of the present
invention can be inserted into a plant transformation
vector, e.g. the binary vector described by Bevan
5 (1984) Nucleic Acids Res. 12, 8111. Plant
transformation vectors can be derived by modifying the
natural gene transfer system of Agrobacterium
tumefaciens. The natural system comprises large Ti
(tumor-inducing)-plasmids containing a large segment,
10 known as T-DNA, which is transferred to transformed
plants. Another segment of the Ti plasmid, the vir
region, is responsible for T-DNA transfer. The T-DNA
region is bordered by terminal repeats. In the
modified binary vectors the tumor-inducing genes have
15 been deleted and the functions of the vir region are
utilized to transfer foreign DNA bordered by the T-DNA
border sequences. The T-region also contains a
selectable marker for antibiotic resistance, and a
multiple cloning site for inserting sequences for
20 transfer. Such engineered strains are known as
"disarmed" A. tumefaciens strains, and allow the
efficient transformation of sequences bordered by the
T-region into the nuclear genomes of plants.

25 Surface-sterilized leaf disks are inoculated
with the "disarmed" foreign DNA-containing A.
tumefaciens, cultured for two days, and then
transferred to antibiotic-containing medium.
Transformed shoots are selected after rooting in
medium containing the appropriate antibiotic,
30 transferred to soil and regenerated.

1 Another aspect of the present invention
provides transgenic plants or progeny of these plants
containing the isolated DNA of the invention. Both
monocotyledenous and dicotyledenous plants are
5 contemplated. Plant cells are transformed with the
isolated DNA encoding $\Delta 6$ -desaturase by any of the
plant transformation methods described above. The
transformed plant cell, usually in a callus culture or
leaf disk, is regenerated into a complete transgenic
10 plant by methods well-known to one of ordinary skill
in the art (e.g. Horsch *et al.* (1985) Science 227,
1129). In a preferred embodiment, the transgenic
plant is sunflower, oil seed rape, maize, tobacco,
peanut or soybean. Since progeny of transformed
15 plants inherit the DNA encoding $\Delta 6$ -desaturase, seeds
or cuttings from transformed plants are used to
maintain the transgenic plant line.

 The present invention further provides a
method for providing transgenic plants with an
20 increased content of GLA. This method includes
introducing DNA encoding $\Delta 6$ -desaturase into plant
cells which lack or have low levels of GLA but contain
LA, and regenerating plants with increased GLA content
from the transgenic cells. In particular,
25 commercially grown crop plants are contemplated as the
transgenic organism, including, but not limited to,
sunflower, soybean, oil seed rape, maize, peanut and
tobacco.

 The present invention further provides a
30 method for providing transgenic organisms which
contain GLA. This method comprises introducing DNA

1 encoding $\Delta 6$ -desaturase into an organism which lacks or
has low levels of GLA, but contains LA. In another
embodiment, the method comprises introducing one or
more expression vectors which comprise DNA encoding
5 $\Delta 12$ -desaturase and $\Delta 6$ -desaturase into organisms which
are deficient in both GLA and LA. Accordingly,
organisms deficient in both LA and GLA are induced to
produce LA by the expression of $\Delta 12$ -desaturase, and
GLA is then generated due to the expression of $\Delta 6$ -
10 desaturase. Expression vectors comprising DNA
encoding $\Delta 12$ -desaturase, or $\Delta 12$ -desaturase and $\Delta 6$ -
desaturase, can be constructed by methods of
recombinant technology known to one of ordinary skill
in the art (Sambrook *et al.*, 1989) and the published
15 sequence of $\Delta 12$ -desaturase (Wada *et al* [1990] Nature
(London) 347, 200-203. In addition, it has been
discovered in accordance with the present invention
that nucleotides 2002-3081 of SEQ. ID NO:1 encode
cyanobacterial $\Delta 12$ -desaturase. Accordingly, this
20 sequence can be used to construct the subject
expression vectors. In particular, commercially grown
crop plants are contemplated as the transgenic
organism, including, but not limited to, sunflower,
soybean, oil seed rape, maize, peanut and tobacco.

25 The present invention is further directed to
a method of inducing chilling tolerance in plants.
Chilling sensitivity may be due to phase transition of
lipids in cell membranes. Phase transition
temperature depends upon the degree of unsaturation of
30 fatty acids in membrane lipids, and thus increasing
the degree of unsaturation, for example by introducing

-20-

1 $\Delta 6$ -desaturase to convert LA to GLA, can induce or
improve chilling resistance. Accordingly, the present
method comprises introducing DNA encoding $\Delta 6$ -
desaturase into a plant cell, and regenerating a plant
5 with improved chilling resistance from said
transformed plant cell. In a preferred embodiment,
the plant is a sunflower, soybean, oil seed rape,
maize, peanut or tobacco plant.

The following examples further illustrate
10 the present invention.

15

20

25

30

35

SUBSTITUTE SHEET (RULE 26)

1

EXAMPLE 1
Strains and Culture Conditions

5 Synechocystis (PCC 6803, ATCC 27184),
5 Anabaena (PCC 7120, ATCC 27893) and Synechococcus (PCC
7942, ATCC 33912) were grown photoautotrophically at
30°C in BG11N+ medium (Rippka et al. [1979] J. Gen.
Microbiol. 111, 1-61) under illumination of
incandescent lamps
10 (60 μ E.m $^{-2}$.S $^{-1}$). Cosmids and plasmids were selected and
propagated in Escherichia coli strain DH5 α on LB
medium supplemented with antibiotics at standard
concentrations as described by Maniatis et al. (1982)
Molecular Cloning: A Laboratory Manual, Cold Spring
15 Harbor Laboratory, Cold Spring, New York.

20

25

30

35

SUBSTITUTE SHEET (RULE 26)

1

EXAMPLE 2

Construction of Synechocystis Cosmid Genomic Library

5 Total genomic DNA from Synechocystis (PCC
6803) was partially digested with Sau3A and
fractionated on a sucrose gradient (Ausubel et al.
[1987] Current Protocols in Molecular Biology, Greene
Publishing Associates and Wiley Interscience, New
York). Fractions containing 30 to 40 kb DNA fragments
10 were selected and ligated into the dephosphorylated
BamHI site of the cosmid vector, pDUCA7 (Buikema et
al. [1991] J. Bacteriol. 173, 1879-1885). The ligated
DNA was packaged in vitro as described by Ausubel et
al. (1987), and packaged phage were propagated in E.
15 coli DH5 α containing the AvaI and Eco4711 methylase
helper plasmid, pRL528 as described by Buikema et al.
(1991). A total of 1152 colonies were isolated
randomly and maintained individually in twelve 96-well
microtiter plates.

20

25

30

35

1

EXAMPLE 3

Gain-of-Function Expression of GLA in Anabaena

5 Anabaena (PCC 7120), a filamentous cyanobacterium, is deficient in GLA but contains significant amounts of linoleic acid, the precursor for GLA (Figure 2; Table 2). The Synechocystis cosmid library described in Example 2 was conjugated into Anabaena (PCC 7120) to identify transconjugants that

10 produce GLA. Anabaena cells were grown to mid-log phase in BG11N+ liquid medium and resuspended in the same medium to a final concentration of approximately 2×10^8 cells per ml. A mid-log phase culture of E. coli RP4 (Burkardt *et al.* [1979] J. Gen. Microbiol.

15 114, 341-348) grown in LB containing ampicillin was washed and resuspended in fresh LB medium. Anabaena and RP4 were then mixed and spread evenly on BG11N+ plates containing 5% LB. The cosmid genomic library was replica plated onto LB plates containing 50 μ g/ml kanamycin and 17.5 μ g/ml chloramphenicol and was subsequently patched onto BG11N+ plates containing Anabaena and RP4. After 24 hours of incubation at 30°C, 30 μ g/ml of neomycin was underlaid; and incubation at 30°C was continued until transconjugants

20 appeared.

25

30 Individual transconjugants were isolated after conjugation and grown in 2 ml BG11N+ liquid medium with 15 μ g/ml neomycin. Fatty acid methyl esters were prepared from wild type cultures and cultures containing pools of ten transconjugants as follows. Wild type and transgenic cyanobacterial

1 cultures were harvested by centrifugation and washed
twice with distilled water. Fatty acid methyl esters
were extracted from these cultures as described by
Dahmer *et al.* (1989) *J. Amer. Oil. Chem. Soc.* **66**, 543-
5 548 and were analyzed by Gas Liquid Chromatography
(GLC) using a Tracor-560 equipped with a hydrogen
flame ionization detector and capillary column (30 m x
0.25 mm bonded FSOT Superox II, Alltech Associates
Inc., IL). Retention times and co-chromatography of
10 standards (obtained from Sigma Chemical Co.) were used
for identification of fatty acids. The average fatty
acid composition was determined as the ratio of peak
area of each C18 fatty acid normalized to an internal
standard.

15 Representative GLC profiles are shown in
Fig. 2. C18 fatty acid methyl esters are shown.
Peaks were identified by comparing the elution times
with known standards of fatty acid methyl esters and
were confirmed by gas chromatography-mass
20 spectrometry. Panel A depicts GLC analysis of fatty
acids of wild type Anabaena. The arrow indicates the
migration time of GLA. Panel B is a GLC profile of
fatty acids of transconjugants of Anabaena with
pAM542+1.8F. Two GLA producing pools (of 25 pools
25 representing 250 transconjugants) were identified that
produced GLA. Individual transconjugants of each GLA
positive pool were analyzed for GLA production; two
independent transconjugants, AS13 and AS75, one from
each pool, were identified which expressed significant
30 levels of GLA and which contained cosmids, cSy13 and
cSy75, respectively (Figure 3). The cosmids overlap

1 in a region approximately 7.5 kb in length. A 3.5 kb
NheI fragment of cSy75 was recloned in the vector
pDUC47 and transferred to Anabaena resulting in gain-
of-function expression of GLA (Table 2).

5 Two NheI/Hind III subfragments (1.8 and 1.7
kb) of the 3.5 kb Nhe I fragment of cSy75-3.5 were
subcloned into "pBLUESCRIPT" (Stratagene) (Figure 3)
for sequencing. Standard molecular biology techniques
were performed as described by Maniatis et al. (1982)
10 and Ausubel et al. (1987). Dideoxy sequencing (Sanger
et al. [1977] Proc. Natl. Acad. Sci. USA 74, 5463-
5467) of pBS1.8 was performed with "SEQUENASE" (United
States Biochemical) on both strands by using specific
oligonucleotide primers synthesized by the Advanced
15 DNA Technologies Laboratory (Biology Department, Texas
A & M University). DNA sequence analysis was done
with the GCG (Madison, WI) software as described by
Devereux et al. (1984) Nucleic Acids Res. 12, 387-395.

Both NheI/Hind III subfragments were
20 transferred into a conjugal expression vector, AM542,
in both forward and reverse orientations with respect
to a cyanobacterial carboxylase promoter and were
introduced into Anabaena by conjugation.

Transconjugants containing the 1.8 kb fragment in the
25 forward orientation (AM542-1.8F) produced significant
quantities of GLA and octadecatetraenoic acid (Figure
2; Table 2). Transconjugants containing other
constructs, either reverse oriented 1.8 kb fragment or
forward and reverse oriented 1.7 kb fragment, did not
30 produce detectable levels of GLA (Table 2).

1 Figure 2 compares the C18 fatty acid profile
of an extract from wild type Anabaena (Figure 2A) with
that of transgenic Anabaena containing the 1.8 kb
fragment of cSy75-3.5 in the forward orientation
5 (Figure 2B). GLC analysis of fatty acid methyl esters
from AM542-1.8F revealed a peak with a retention time
identical to that of authentic GLA standard. Analysis
of this peak by gas chromatography-mass spectrometry
(GC-MS) confirmed that it had the same mass
10 fragmentation pattern as a GLA reference sample.
Transgenic Anabaena with altered levels of
polyunsaturated fatty acids were similar to wild type
in growth rate and morphology.

15

20

25

30

35

1 Table 2 Composition of C18 Fatty Acids in Wild Type
and Transgenic Cyanobacteria

5	Strain	Fatty Acid (%)					
		18:0	18:1	18:2	18:3(α)	18:3(γ)	18:4
Wild Type							
10	<i>Synechocystis</i> (sp. PCC6803)	13.6	4.5	54.5	-	27.3	-
	<i>Anabaena</i> (sp. PCC7120)	2.9	24.8	37.1	35.2	-	-
15	<i>Synechococcus</i> (sp. PCC7942)	20.6	79.4	-	-	-	-
Anabaena Transconjugants							
20	cSy75	3.8	24.4	22.3	9.1	27.9	12.5
	cSy75-3.5	4.3	27.6	18.1	3.2	40.4	6.4
	pAM542 - 1.8F	4.2	13.9	12.1	19.1	25.4	25.4
	pAM542 - 1.8R	7.7	23.1	38.4	30.8	-	-
	pAM542 - 1.7F	2.8	27.8	36.1	33.3	-	-
	pAM542 - 1.7R	2.8	25.4	42.3	29.6	-	-
Synechococcus Transformants							
25	pAM854	27.8	72.2	-	-	-	-
	pAM854 -Δ ¹²	4.0	43.2	46.0	-	-	-
	pAM854 -Δ ⁶	18.2	81.8	-	-	-	-
	pAM854 -Δ ⁶ &Δ ¹²	42.7	25.3	19.5	-	16.5	-

30 18:0, stearic acid; 18:1, oleic acid; 18:2, linoleic acid;
18:3(α), linolenic acid; 18:3(γ), γ-linolenic acid; 18:4,
octadecatetraenoic acid

1

EXAMPLE 4

Transformation of Synechococcus
with $\Delta 6$ and $\Delta 12$ Desaturase Genes

5 A third cosmid, cSy7, which contains a $\Delta 12$ -
desaturase gene, was isolated by screening the
Synechocystis genomic library with a oligonucleotide
synthesized from the published Synechocystis $\Delta 12$ -
desaturase gene sequence (Wada et al. [1990] Nature
10 (London) 347, 200-203). A 1.7 kb AvaI fragment from
this cosmid containing the $\Delta 12$ -desaturase gene was
identified and used as a probe to demonstrate that
cSy13 not only contains a $\Delta 6$ -desaturase gene but also
a $\Delta 12$ -desaturase gene (Figure 3). Genomic Southern
15 blot analysis further showed that both the $\Delta 6$ -and $\Delta 12$ -
desaturase genes are unique in the Synechocystis
genome so that both functional genes involved in C18
fatty acid desaturation are linked closely in the
Synechocystis genome.

20 The unicellular cyanobacterium Synechococcus
(PCC 7942) is deficient in both linoleic acid and
GLA(3). The $\Delta 12$ and $\Delta 6$ -desaturase genes were cloned
individually and together into pAM854 (Bustos et al.
[1991] J. Bacteriol. 174, 7525-7533), a shuttle vector
25 that contains sequences necessary for the integration
of foreign DNA into the genome of Synechococcus
(Golden et al. [1987] Methods in Enzymol. 153, 215-
231). Synechococcus was transformed with these gene
constructs and colonies were selected. Fatty acid
methyl esters were extracted from transgenic
30 Synechococcus and analyzed by GLC.

1 Table 2 shows that the principal fatty acids
of wild type Synechococcus are stearic acid (18:0) and
oleic acid (18:1). Synechococcus transformed with
pAM854- Δ 12 expressed linoleic acid (18:2) in addition
5 to the principal fatty acids. Transformants with
pAM854- Δ 6 and Δ 12 produced both linoleate and GLA
(Table 1). These results indicated that Synechococcus
containing both Δ 12- and Δ 6-desaturase genes has
gained the capability of introducing a second double
10 bond at the Δ 12 position and a third double bond at
the Δ 6 position of C18 fatty acids. However, no
changes in fatty acid composition was observed in the
transformant containing pAM854- Δ 6, indicating that in
the absence of substrate synthesized by the Δ 12
15 desaturase, the Δ 6-desaturase is inactive. This
experiment further confirms that the 1.8 kb
NheI/HindIII fragment (Figure 3) contains both coding
and promoter regions of the Synechocystis Δ 6-
desaturase gene. Transgenic Synechococcus with
20 altered levels of polyunsaturated fatty acids were
similar to wild type in growth rate and morphology.

25

30

35

-30-

1

EXAMPLE 5

Nucleotide Sequence of $\Delta 6$ -Desaturase

The nucleotide sequence of the 1.8 kb
5 fragment of cSy75-3.5 including the functional $\Delta 6$ -
desaturase gene was determined. An open reading frame
encoding a polypeptide of 359 amino acids was
identified (Figure 4). A Kyte-Doolittle hydropathy
analysis (Kyte *et al.* [1982] *J. Mol. Biol.* **157**, 105-
10 132) identified two regions of hydrophobic amino acids
that could represent transmembrane domains (Figure
1A); furthermore, the hydropathic profile of the $\Delta 6$ -
desaturase is similar to that of the $\Delta 12$ -desaturase
gene (Figure 1B; Wada *et al.*) and $\Delta 9$ -desaturases
15 (Thiede *et al.* [1986] *J. Biol. Chem.* **261**, 13230-
13235). However, the sequence similarity between the
Synechocystis $\Delta 6$ - and $\Delta 12$ -desaturases is less than 40%
at the nucleotide level and approximately 18% at the
amino acid level.

20

25

30

35

1

EXAMPLE 6

Transfer of Cyanobacterial Δ^6 -Desaturase into Tobacco

The cyanobacterial Δ^6 -desaturase gene was
5 mobilized into a plant expression vector and
transferred to tobacco using Agrobacterium mediated
gene transfer techniques. To ensure that the
transferred desaturase is appropriately expressed in
leaves and developing seeds and that the desaturase
10 gene product is targeted to the endoplasmic reticulum
or the chloroplast, various expression cassettes with
Synechocystis Δ -desaturase open reading frame (ORF)
were constructed. Components of these cassettes
include: (i) a 35S promoter or seed specific promoter
15 derived from the sunflower helianthinin gene to drive
 Δ^6 -desaturase gene expression in all plant tissues or
only in developing seeds respectively, (ii) a putative
signal peptide either from carrot extensin gene or
sunflower helianthinin gene to target newly
20 synthesized Δ^6 -desaturase into the ER, (iii) an ER
lumen retention signal sequence (KDEL) at the COOH-
terminal of the Δ^6 -desaturase ORF, and (iv) an
optimized transit peptide to target Δ^6 desaturase into
the chloroplast. The 35S promoter is a derivative of
25 pRTL2 described by Restrepo et al. (1990). The
optimized transit peptide sequence is described by Van
de Broeck et al. (1985). The carrot extensin signal
peptide is described by Chen et al (1985) EMBO J. 9,
2145.

30 Transgenic tobacco plants were produced
containing a chimeric cyanobacterial desaturase gene,

1 comprised of the *Synechocystis* Δ^6 desaturase gene fused
to an endoplasmic reticulum retention sequence (KDEL)
and extensin signal peptide driven by the CaMV 35S
promoter. PCR amplifications of transgenic tobacco
5 genomic DNA indicate that the Δ^6 desaturase gene was
incorporated into the tobacco genome. Fatty acid
methyl esters of leaves of these transgenic tobacco
plants were extracted and analyzed by Gas Liquid
Chromatography (GLC). These transgenic tobacco
10 accumulated significant amounts of GLA (Figure 4).
Figure 4 shows fatty acid methyl esters as determined
by GLC. Peaks were identified by comparing the
elution times with known standards of fatty acid
methyl ester. Accordingly, cyanobacterial genes
15 involved in fatty acid metabolism can be used to
generate transgenic plants with altered fatty acid
compositions.

20

25

30

35

1

EXAMPLE 7

Construction of Borage cDNA library

Membrane bound polysomes were isolated from
5 borage seeds 12 days post pollination (12 DPP) using
the protocol established for peas by Larkins and
Davies (1975 Plant Phys. 55:749-756). RNA was
extracted from the polysomes as described by Mechler
(1987 Methods in Enzymology 152:241-248, Academic
10 Press).

Poly-A+ RNA was isolated from the membrane
bound polysomal RNA by use of Oligotex-dT beads
(Qiagen). Corresponding cDNA was made using
Stratagene's ZAP cDNA synthesis kit. The cDNA library
15 was constructed in the lambda ZAP II vector
(Stratagene) using the lambda ZAP II vector kit. The
primary library was packaged in Gigapack II Gold
packaging extract (Stratagene). The library was used
to generate expressed sequence tags (ESTs), and
20 sequences corresponding to the tags were used to scan
the GenBank database.

25

30

35

1

EXAMPLE 8

Hybridization Protocol

Hybridization probes for screening the 5 borage cDNA library were generated by using random primed DNA synthesis as described by Ausubel *et al* (1994 Current Protocols in Molecular Biology, Wiley Interscience, N.Y.) and corresponded to previously identified abundantly expressed seed storage protein 10 cDNAs. Unincorporated nucleotides were removed by use of a G-50 spin column (Boehringer Manheim). Probe was denatured for hybridization by boiling in a water bath for 5 minutes, then quickly cooled on ice. Filters for hybridization were prehybridized at 60°C for 2-4 15 hours in prehybridization solution (6XSSC [Maniatis *et al* 1984 Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory], 1X Denharts Solution, 0.05% sodium pyrophosphate, 100 µg/ml denatured salmon sperm DNA). Denatured probe was added to the hybridization 20 solution (6X SSC, 1X Denharts solution, 0.05% sodium pyrophosphate, 100 µg/ml denatured salmon sperm DNA) and incubated at 60°C with agitation overnight. Filters were washed in 4x, 2x, and 1x SET washes for 25 15 minutes each at 60°C. A 20X SET stock solution is 3M NaCl, 0.4 M Tris base, 20 mM Na₂EDTA-2H₂O. The 4X SET wash was 4X SET, 12.5 mM PO₄, pH 6.8 and 0.2% SDS. The 2X SET wash was 2X SET, 12.5 mM PO₄, pH 6.8 and 0.2% SDS. The 1X SET wash was 1X SET, 12.5 mM PO₄, pH 30 6.8 and 0.2% SDS. Filters were allowed to air dry and were then exposed to X-ray film for 24 hours with intensifying screens at -80°C.

1

EXAMPLE 9

Random sequencing of cDNAs from a borage seed
(12 DPP) membrane-bound polysomal library

5 The borage cDNA library was plated at low density (500 pfu on 150 mm petri dishes). Highly prevalent seed storage protein cDNAs were "subtracted" by screening with the previously identified corresponding cDNAs. Non-hybridizing plaques were 10 excised using Stratagene's excision protocol and reagents. Resulting bacterial colonies were used to inoculate liquid cultures and were either sequenced manually or by an ABI automated sequencer. Each cDNA was sequenced once and a sequence tag generated from 15 200-300 base pairs. All sequencing was performed by cycle sequencing (Epicentre). Over 300 ESTs were generated. Each sequence tag was compared to GenBank database by BLASTX computer program and a number of lipid metabolism genes, including the $\Delta 6$ -desaturase 20 were identified.

20 Database searches with a cDNA clone designated mbp-65 using BLASTX with the GenBank database resulted in a significant match to the Synechocystis $\Delta 6$ -desaturase. It was determined however, that this clone was not a full length cDNA. 25 A full length cDNA was isolated using mbp-65 to screen the borage membrane-bound polysomal library. The sequence of the isolated cDNA was determined (Fig. 5A, SEQ ID NO:4) and the protein sequence of the open 30 reading frame (Fig. 5B, SEQ ID NO:5) was compared to other known desaturases using Geneworks

1 (IntelliGenetics) protein alignment program (Fig. 2).
This alignment indicated that the cDNA was the borage
Δ6-desaturase gene.

2 Although similar to other known plant
5 desaturases, the borage delta 6-desaturase is distinct
as indicated in the dendrogram shown in Fig. 6.
Furthermore, comparison of the amino acid sequences
characteristic of desaturases, particularly those
proposed to be involved in metal binding (metal box 1
10 and metal box 2), illustrates the differences between
the borage delta 6-desaturase and other plant
desaturases (Table 3).

15 The borage delta 6-desaturase is
distinguished from the cyanobacterial form not only in
over all sequence (Fig. 6) but also in the lipid box,
metal box 1 and metal box 2 amino acid motifs (Table
3). As Table 3 indicates, all three motifs are novel
in sequence. Only the borage delta 6-desaturase metal
box 2 shown some relationship to the Synechocystis
20 delta-6 desaturase metal box 2.

25 In addition, the borage delta 6-desaturase
is also distinct from another borage desaturase gene,
the delta-12 desaturase. P1-81 is a full length cDNA
that was identified by EST analysis and shows high
similarity to the Arabidopsis delta-12 desaturase (Fad
2). A comparison of the lipid box, metal box 1 and
30 metal box 2 amino acid motifs (Table 3) in borage
delta 6 and delta-12 desaturases indicates that little
homology exists in these regions. The placement of
the two sequences in the dendrogram in Fig. 6
indicates how distantly related these two genes are.

1
5
10
15
20
25
30

Table 3. Comparison of common amino acid motifs in membrane-bound desaturases

Desaturase	Lipid Box	Amino Acid Motif	Metal Box 1	Metal Box 2
Borage Δ^6	WIGHDAGH (SEQ. ID. NO: 6)	HNAHHH (SEQ. ID. NO: 12)	QIEHHH (SEQ. ID. NO: 20)	
Synechocystis Δ^6	NVGHDAH (SEQ. ID. NO: 7)	HNYLHH (SEQ. ID. NO: 13)	HQVTHH (SEQ. ID. NO: 21)	
Arab. chloroplast Δ^{15}	VLGHDCGH (SEQ. ID. NO: 8)	HRTHH (SEQ. ID. NO: 14)	HVIHH (SEQ. ID. NO: 22)	
Rice Δ^{15}	VLGHDCGH (SEQ. ID. NO: 8)	HRTHH (SEQ. ID. NO: 14)	HVIHH (SEQ. ID. NO: 22)	
Glycine chloroplast Δ^{15}	VLGHDCGH (SEQ. ID. NO: 8)	HRTHH (SEQ. ID. NO: 14)	HVIHH (SEQ. ID. NO: 22)	
Arab. fad3 (Δ^{15})	VLGHDCGH (SEQ. ID. NO: 8)	HRTHH (SEQ. ID. NO: 14)	HVIHH (SEQ. ID. NO: 22)	
Brassica fad3 (Δ^{15})	VLGHDCGH (SEQ. ID. NO: 8)	HRTHH (SEQ. ID. NO: 14)	HVIHH (SEQ. ID. NO: 22)	
Borage Δ^{12} (P1-81)*	VIAHECGH (SEQ. ID. NO: 9)	HRRHH (SEQ. ID. NO: 15)	HVAHH (SEQ. ID. NO: 23)	
Arab. fad2 (Δ^{12})	VIAHECGH (SEQ. ID. NO: 9)	HRRHH (SEQ. ID. NO: 15)	HVAHH (SEQ. ID. NO: 23)	
Arab. chloroplast Δ^{12}	VIGHDCAH (SEQ. ID. NO: 10)	HDRHH (SEQ. ID. NO: 16)	HIPHH (SEQ. ID. NO: 24)	
Glycine plastid Δ^{12}	VIGHDCAH (SEQ. ID. NO: 10)	HDRHH (SEQ. ID. NO: 16)	HIPHH (SEQ. ID. NO: 24)	
Spinach plastidial n-6	VIGHDCAH (SEQ. ID. NO: 10)	HDQHH (SEQ. ID. NO: 17)	HIPHH (SEQ. ID. NO: 24)	
Synechocystis Δ^{12}	VVGHDAGH (SEQ. ID. NO: 11)	HDHHH (SEQ. ID. NO: 18)	HIPHH (SEQ. ID. NO: 24)	
Anabaena Δ^{12}	VLGHDCGH (SEQ. ID. NO: 8)	HNHHHH (SEQ. ID. NO: 19)	HVPHH (SEQ. ID. NO: 25)	

*P1-81 is a full length cDNA which was identified by EST analysis and shows high similarity to the *Arabidopsis* Δ^{12} desaturase (fad2)

- 38 -

1

EXAMPLE 10

Construction of 222.1 Δ ⁶NOS for transient
and expression

5 The vector pBI221 (Jefferson et al. 1987
EMBO J. 6:3901-3907) was prepared for ligation by
digestion with BamHI and EcoICR I (Promega) which
excises the GUS coding region leaving the 35S promoter
and NOS terminator intact. The borage Δ 6-desaturase
10 cDNA was excised from the Bluescript plasmid
(Stratagene) by digestion with BamHI and XhoI. The
XhoI end was made blunt by use of the Klenow fragment.
This fragment was then cloned into the BamHI/EcoICR I
sites of pBI221, yielding 221. Δ ⁶NOS (Fig. 7). In
15 221. Δ ⁶.NOS, the remaining portion (backbone) of the
restriction map depicted in Fig. 7 is pBI221.

20

25

30

35

- 39 -

1

EXAMPLE 11

Construction of 121. Δ^6 .NOS for stable transformation

5 The vector pBI121 (Jefferson et al. 1987
5 EMBO J. 6:3901-3907) was prepared for ligation by
digestion with BamHI and EcoICR I (Promega) which
excises the GUS coding region leaving the 35S promoter
and NOS terminator intact. The borage Δ 6-desaturase
10 cDNA was excised from the Bluescript plasmid
(Stratagene) by digestion with BamHI and XhoI. The
XhoI end was made blunt by use of the Klenow fragment.
This fragment was then cloned into the BamHI/EcoICR I
sites of pBI121, yielding 121.1 Δ^6 NOS (Fig. 7). In
15 121. Δ^6 .NOS, the remaining portion (backbone) of the
restriction map depicted in Fig. 7 is pBI121.

20

25

30

35

SUBSTITUTE SHEET (RULE 26)

-40-

1

EXAMPLE 12
Transient Expression

All work involving protoplasts was performed
5 in a sterile hood. One ml of packed carrot suspension
cells were digested in 30 mls plasmolyzing solution
(25 g/l KC1, 3.5 g/l CaCl₂-H₂O, 10mM MES, pH 5.6 and
0.2 M mannitol) with 1% cellulase, 0.1% pectolyase,
and 0.1% dreisalase overnight, in the dark, at room
10 temperature. Released protoplasts were filtered
through a 150 µm mesh and pelleted by centrifugation
(100x g, 5 min.) then washed twice in plasmolyzing
solution. Protoplasts were counted using a double
chambered hemocytometer. DNA was transfected into the
15 protoplasts by PEG treatment as described by Nunberg
and Thomas (1993 Methods in Plant Molecular Biology
and Biotechnology, B.R. Glick and J.E. Thompson, eds.
pp. 241-248) using 10⁶ protoplasts and 50-70 ug of
plasmid DNA (221.Δ6.NOS). Protoplasts were cultured
20 in 5 mls of MS media supplemented with 0.2M mannitol
and 3 µm 2,4-D for 48 hours in the dark with shaking.

25

30

35

-41-

1

EXAMPLE 13

Stable transformation of tobacco

121.Δ⁶.NOS plasmid construction was used to
5 transform tobacco (*Nicotiana tabacum* cv. *xanthi*) via
Agrobacterium according to standard procedures (Horsh
et al., 1985 *Science* 227: 1229-1231; Bogue et al.,
1990 *Mol. Gen. Genet.* 221:49-57), except that initial
transformants were selected on 100 ug/ml kanamycin.

10

15

20

25

30

35

SUBSTITUTE SHEET (RULE 26)

1

EXAMPLE 14

Preparation and analysis of
fatty acid methyl esters (FAMEs)

5 Tissue from transfected protoplasts and transformed tobacco plants was frozen in liquid nitrogen and lyophilized overnight. FAMEs were prepared as described by Dahmer et al (1989 J. Amer. Oil Chem. Soc. 66:543-548). In some cases, the solvent was evaporated again, and the FAMEs were 10 resuspended in ethyl acetate and extracted once with deionized water to remove any water soluble contaminants. The FAMEs were analyzed by gas chromatography (GC) on a J&W Scientific DB-wax column (30 m length, 0.25 mm ID, 0.25 um film).

15 An example of a transient assay is shown in Fig. 8 which represents three independent transfections pooled together. The addition of the borage $\Delta 6$ -desaturase cDNA corresponds with the appearance of gamma linolenic acid (GLA) which is one 20 of the possible products of $\Delta 6$ -desaturase.

Figures 9 and 10 depict GC profiles of the FAMES derived from leaf and seed tissue, respectively, of control and transformed tobacco plants. Figure 9A provides the profile of leaf tissue of wild-type 25 tobacco (xanthi); Figure 9B provides the profile of leaf tissue from a tobacco plant transformed with the borage Δ -6 desaturase under the transcriptional control of the 35S CaMV promoter (pBI 121 Δ 'NOS). Peaks correspond to 18:2, 18:3 γ (GLA), 18:3 α and 18:4 30 (octadecanonic acid). Figure 10A shows the GC profile of seeds of a wild-type tobacco; Figure 10B shows the

1 profile of seed tissue of a tobacco plant transformed
with pBI 121 Δ ⁶NOS. Peaks correspond to 18:2,
18:3 γ (GLA) and 18:3 α .

5 The relative distribution of the C₁₈ fatty
acids in control and transgenic tobacco seeds is shown
in Table 4.

TABLE 4

	Fatty Acid	Xanthi	pBI121 Δ ⁶ NOS
10	18:0	4.0%	2.5%
	18:1	13%	13%
	18:2	82%	82%
	18:3 γ (GLA)	-	2.7%
15	18:3 α	0.82%	1.4%

20 The foregoing results demonstrate that GLA
is incorporated into the triacylglycerides of
transgenic tobacco leaves and seeds containing the
borage Δ 6-desaturase.

25

30

35

- 44 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Rhone-Poulenc Agrochimie
- (ii) TITLE OF INVENTION: PRODUCTION OF GAMMA LINOLENIC ACID BY A DELTA 6-DESATURASE

(iii) NUMBER OF SEQUENCES: 25

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Scully, Scott, Murphy & Presser
- (B) STREET: 400 Garden City Plaza
- (C) CITY: Garden City
- (D) STATE: New York
- (E) COUNTRY: United States
- (F) ZIP: 11530

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE: 30-DEC-1994
- (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Presser, Leopold
- (B) REGISTRATION NUMBER: 19,827
- (C) REFERENCE/DOCKET NUMBER: 8383ZYXW

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (516) 742-4343
- (B) TELEFAX: (516) 742-4366
- (C) TELEX: 230 901 SANS UR

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3588 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- 45 -

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2002..3081

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GCTAGCCACC	AGTGACGATG	CCTTGAATTT	GGCCATTCTG	ACCCAGGCC	GTATTCTGAA	60
TCCCCGCATT	CGCATTGTTA	ATCGTTGTT	CAACCATGCC	CTGGGTAAAC	GTTTAGACAC	120
CACCTTGCCA	GACCACGTTA	GTGGAGTGT	TTCCGCCCTG	GCGGCCCGA	TTTTTTCCTT	180
TGCGGTTTG	GGCAATCAGG	CGATCGGGCA	ATTGCGTTG	TTTGACCAGA	CTTGGCCCAT	240
TCAGGAAATT	GTCATTCAAC	AAGACCATCC	CTGGCTCAAT	TTACCCCTGG	CGGATTATG	300
GGATGATCCG	AGCCGAATGT	TGATCTATTA	CCTACCGGCC	CACAGTGAAA	CGGATTAGT	360
AGGCGCAGTG	GTGAATAATT	TAACGTTGCA	ATCTGGGAC	CATTAAATAG	TGGGACAAAA	420
ACCCCAACCC	AAGACCAAAC	GGCGATCGCC	TTGGCGAAA	TTTCCAAAC	TGATTACCAA	480
CCTGCGGGAG	TATCAGCGGT	ATGTCCAACA	GGTGATATGG	GTGGTGTGT	TTTTATTGTT	540
GATGATTTTT	CTGGCCACCT	TCATCTACGT	TTCCATTGAT	CAACATATTG	CCCCAGTGG	600
CGCGTTGTAT	TTTCCGTGG	GCATGATTAC	CGGGGCCGGT	GGCAAGGAAG	AGGTGGCCGA	660
AAAGTCCCCC	GATATCATCA	AAGTATTAC	AGTGGTGATG	ATGATCGCCG	GGCGGGGGT	720
GATTGGTATT	TGTTATGCC	TACTGAATGA	TTTCATCCTT	GGCAGTCGCT	TTAGTCAGTT	780
TTTGGATGCG	GCCAAGTTAC	CCGATCGCCA	TCACATCATC	ATTGTTGGC	TGGGGGGAGT	840
GAGCATGGCC	ATTATTGAAG	AGTTAATTCA	CCAGGGCCAT	GAAATTGTGG	TAATCGAAAA	900
GGATACAGAT	AATCGTTCT	TGCATACGGC	CCGCTCCCTG	GGGGTGCCCG	TAATTGTGG	960
GGATGCCCGC	CTAGAAAGAA	CGTTGGCCTG	CGCCAATATC	AACCGAGCCG	AAGCCATTGT	1020
GGTGGCCACC	AGCGACGACA	CCGTTAACCTT	GGAAATTGGC	CTAACTGCCA	AGGCGATCGC	1080
CCCTAGCCTG	CCAGTGGTGT	TGCGTTGCCA	GGATGCCAG	TTTAGCCTGT	CCCTGCAGGA	1140
AGTATTGAA	TTTGAACGG	TGCTTGTCC	GGCGGAATTG	GCCACCTATT	CCTTGCGGC	1200
GGCGGCCCTG	GGGGGCAAAA	TTTTGGCAA	CGGCATGACC	GATGATTG	TGTGGGTAGC	1260
CCTAGCCACC	TTAATCACTC	CTAACCATCC	TTTGCCGAC	CAATTGGTTA	AAATTGCAGC	1320
CCAAAAGTCT	GATTCGTTTC	CCCTCTATCT	AGAACGGGT	GGCAAAACCA	TCCATAGCTG	1380
GGAATTATTG	GGTACCCATC	TCGACTCTGG	AGACGTGTTG	TATTTAACCA	TGCCCGCCAC	1440
TGCCCTAGAG	CAACTTGGC	GATCGCCCCG	TGCCACTGCT	GATCCTCTGG	ACTCTTTTT	1500

GGTTTACCAT	GGGGGGATGG	AACTCTTGAC	TCGGCCCAAT	GGTGATCAAG	AAAGAACGCT	1560
TTGTCTATGT	TTAGTATTTT	TAAGTTAAC	AACAGCAGAG	GATAACTTCC	AAAAGAAATT	1620
AAGCTCAAAA	AGTAGCAAAA	TAAGTTAAT	TCATAACTGA	GTTTTACTGC	TAAACAGCGG	1680
TGCAAAAAAG	TCAGATAAAA	AAAAAGCTTC	ACTTCGGTTT	TATATTGTGA	CCATGGTTCC	1740
CAGGCATCTG	CTCTAGGGAG	TTTTTCCGCT	GCCTTAGAG	AGTATTTCT	CCAAGTCGGC	1800
TAACCTCCCC	ATTTTTAGGC	AAAATCATAT	ACAGACTATC	CCAATATTGC	CAGAGCTTTG	1860
ATGACTCACT	GTAGAAGGCA	GACTAAAATT	CTAGCAATGG	ACTCCCAGTT	GGAATAAATT	1920
TTTAGTCTCC	CCCGCGCTG	GAGTTTTTTT	GTAGTTAATG	GCGGTATAAT	GTGAAAGTTT	1980
TTTATCTATT	TAAATTTATA	A ATG CTA ACA GCG GAA AGA ATT AAA TTT ACC				2031
		Met Leu Thr Ala Glu Arg Ile Lys Phe Thr				
		1 5 10				
CAG AAA CGG GGG TTT CGT CCG GTA CTA AAC CAA CGG GTG GAT GCC TAC						2079
Gln Lys Arg Gly Phe Arg Arg Val Leu Asn Gln Arg Val Asp Ala Tyr						
15 20 25						
TTT GCC GAG CAT GGC CTG ACC CAA AGG GAT AAT CCC TCC ATG TAT CTG						2127
Phe Ala Glu His Gly Leu Thr Gln Arg Asp Asn Pro Ser Met Tyr Leu						
30 35 40						
AAA ACC CTG ATT ATT GTG CTC TGG TTG TTT TCC GCT TGG GCC TTT GTG						2175
Lys Thr Leu Ile Ile Val Leu Trp Leu Phe Ser Ala Trp Ala Phe Val						
45 50 55						
CTT TTT GCT CCA GTT ATT TTT CCG GTG CGC CTA CTG GGT TGT ATG GTT						2223
Leu Phe Ala Pro Val Ile Phe Pro Val Arg Leu Leu Gly Cys Met Val						
60 65 70						
TTG GCG ATC GCC TTG GCG GCC TTT TCC TTC AAT GTC GGC CAC GAT GCC						2271
Leu Ala Ile Ala Leu Ala Ala Phe Ser Phe Asn Val Gly His Asp Ala						
75 80 85 90						
AAC CAC AAT GCC TAT TCC TCC AAT CCC CAC ATC AAC CGG GTT CTG GGC						2319
Asn His Asn Ala Tyr Ser Ser Asn Pro His Ile Asn Arg Val Leu Gly						
95 100 105						
ATG ACC TAC GAT TTT GTC GGG TTA TCT AGT TTT CTT TGG CGC TAT CGC						2367
Met Thr Tyr Asp Phe Val Gly Leu Ser Ser Phe Leu Trp Arg Tyr Arg						
110 115 120						
CAC AAC TAT TTG CAC CAC ACC TAC ACC AAT ATT CTT GGC CAT GAC GTG						2415
His Asn Tyr Leu His His Thr Tyr Thr Asn Ile Leu Gly His Asp Val						
125 130 135						
GAA ATC CAT GGA GAT GGC GCA GTA CGT ATG AGT CCT GAA CAA GAA CAT						2463
Glu Ile His Gly Asp Gly Ala Val Arg Met Ser Pro Glu Gln Glu His						
140 145 150						

GTT GGT ATT TAT CGT TTC CAG CAA TTT TAT ATT TGG GGT TTA TAT CTT	2511
Val Gly Ile Tyr Arg Phe Gln Gln Phe Tyr Ile Trp Gly Leu Tyr Leu	
155 160 165 170	
TTC ATT CCC TTT TAT TGG TTT CTC TAC GAT GTC TAC CTA GTG CTT AAT	2559
Phe Ile Pro Phe Tyr Trp Phe Leu Tyr Asp Val Tyr Leu Val Leu Asn	
175 180 185	
AAA GGC AAA TAT CAC GAC CAT AAA ATT CCT CCT TTC CAG CCC CTA GAA	2607
Lys Gly Lys Tyr His Asp His Lys Ile Pro Pro Phe Gln Pro Leu Glu	
190 195 200	
TTA GCT AGT TTG CTA GGG ATT AAG CTA TTA TGG CTC GGC TAC GTT TTC	2655
Leu Ala Ser Leu Leu Gly Ile Lys Leu Leu Trp Leu Gly Tyr Val Phe	
205 210 215	
GGC TTA CCT CTG GCT CTG GGC TTT TCC ATT CCT GAA GTA TTA ATT GGT	2703
Gly Leu Pro Leu Ala Leu Gly Phe Ser Ile Pro Glu Val Leu Ile Gly	
220 225 230	
GCT TCG GTA ACC TAT ATG ACC TAT GGC ATC GTG GTT TGC ACC ATC TTT	2751
Ala Ser Val Thr Tyr Met Thr Tyr Gly Ile Val Val Cys Thr Ile Phe	
235 240 245 250	
ATG CTG GCC CAT GTG TTG GAA TCA ACT GAA TTT CTC ACC CCC GAT GGT	2799
Met Leu Ala His Val Leu Glu Ser Thr Glu Phe Leu Thr Pro Asp Gly	
255 260 265	
GAA TCC GGT GCC ATT GAT GAC GAG TGG GCT ATT TGC CAA ATT CGT ACC	2847
Glu Ser Gly Ala Ile Asp Asp Glu Trp Ala Ile Cys Gln Ile Arg Thr	
270 275 280	
ACG GCC AAT TTT GCC ACC AAT AAT CCC TTT TGG AAC TGG TTT TGT GGC	2895
Thr Ala Asn Phe Ala Thr Asn Asn Pro Phe Trp Asn Trp Phe Cys Gly	
285 290 295	
GGT TTA AAT CAC CAA GTT ACC CAC CAT CTT TTC CCC AAT ATT TGT CAT	2943
Gly Leu Asn His Gln Val Thr His His Leu Phe Pro Asn Ile Cys His	
300 305 310	
ATT CAC TAT CCC CAA TTG GAA AAT ATT ATT AAG GAT GTT TGC CAA GAG	2991
Ile His Tyr Pro Gln Leu Glu Asn Ile Ile Lys Asp Val Cys Gln Glu	
315 320 325 330	
TTT GGT GTG GAA TAT AAA GTT TAT CCC ACC TTC AAA GCG GCG ATC GCC	3039
Phe Gly Val Glu Tyr Lys Val Tyr Pro Thr Phe Lys Ala Ala Ile Ala	
335 340 345	
TCT AAC TAT CGC TGG CTA GAG GCC ATG GGC AAA GCA TCG TGACATTGCC	3088
Ser Asn Tyr Arg Trp Leu Glu Ala Met Gly Lys Ala Ser	
350 355 360	
TTGGGATTGA AGCAAAATGG CAAAATCCCT CGTAAATCTA TGATCGAAC CTTTCTGTTG	3148
CCCGCCGACC AAATCCCCGA TGCTGACCAA AGGTTGATGT TGGCATTGCT CCAAACCCAC	3208

TTTGAGGGGG TTCATTGGCC GCAGTTCAA GCTGACCTAG GAGGCAAAGA TTGGGTGATT 3268
 TTGCTCAAAT CCGCTGGGAT ATTGAAAGGC TTCACCACCT TTGGTTCTA CCCTGCTCAA 3328
 TGGGAAGGAC AAACCGTCAG AATTGTTAT TCTGGTGACA CCATCACCGA CCCATCCATG 3388
 TGGTCTAACCC CAGCCCTGGC CAAGGCTTGG ACCAAGGCCA TGCAAATTCT CCACGAGGCT 3448
 AGGCCAGAAA AATTATATTG GCTCCTGATT TCTTCCGGCT ATCGCACCTA CCGATTTTG 3508
 AGCATTTTG CCAAGGAATT CTATCCCCAC TATCTCCATC CCACTCCCCC GCCTGTACAA 3568
 AATTTTATCC ATCAGCTAGC 3588

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 359 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met	Leu	Thr	Ala	Glu	Arg	Ile	Lys	Phe	Thr	Gln	Lys	Arg	Gly	Phe	Arg
1				5					10					15	
Arg	Val	Leu	Asn	Gln	Arg	Val	Asp	Ala	Tyr	Phe	Ala	Glu	His	Gly	Leu
				20					25				30		
Thr	Gln	Arg	Asp	Asn	Pro	Ser	Met	Tyr	Leu	Lys	Thr	Leu	Ile	Ile	Val
	35					40					45				
Leu	Trp	Leu	Phe	Ser	Ala	Trp	Ala	Phe	Val	Leu	Phe	Ala	Pro	Val	Ile
					50		55			60					
Phe	Pro	Val	Arg	Leu	Leu	Gly	Cys	Met	Val	Leu	Ala	Ile	Ala	Leu	Ala
					65		70			75			80		
Ala	Phe	Ser	Phe	Asn	Val	Gly	His	Asp	Ala	Asn	His	Asn	Ala	Tyr	Ser
					85				90			95			
Ser	Asn	Pro	His	Ile	Asn	Arg	Val	Leu	Gly	Met	Thr	Tyr	Asp	Phe	Val
					100			105			110				
Gly	Leu	Ser	Ser	Phe	Leu	Trp	Arg	Tyr	Arg	His	Asn	Tyr	Leu	His	His
					115		120			125					
Thr	Tyr	Thr	Asn	Ile	Leu	Gly	His	Asp	Val	Glu	Ile	His	Gly	Asp	Gly
					130		135			140					
Ala	Val	Arg	Met	Ser	Pro	Glu	Gln	Glu	His	Val	Gly	Ile	Tyr	Arg	Phe
					145		150			155			160		

-49-

Gln Gln Phe Tyr Ile Trp Gly Leu Tyr Leu Phe Ile Pro Phe Tyr Trp
 165 170 175
 Phe Leu Tyr Asp Val Tyr Leu Val Leu Asn Lys Gly Lys Tyr His Asp
 180 185 190
 His Lys Ile Pro Pro Phe Gln Pro Leu Glu Leu Ala Ser Leu Leu Gly
 195 200 205
 Ile Lys Leu Leu Trp Leu Gly Tyr Val Phe Gly Leu Pro Leu Ala Leu
 210 215 220
 Gly Phe Ser Ile Pro Glu Val Leu Ile Gly Ala Ser Val Thr Tyr Met
 225 230 235 240
 Thr Tyr Gly Ile Val Val Cys Thr Ile Phe Met Leu Ala His Val Leu
 245 250 255
 Glu Ser Thr Glu Phe Leu Thr Pro Asp Gly Glu Ser Gly Ala Ile Asp
 260 265 270
 Asp Glu Trp Ala Ile Cys Gln Ile Arg Thr Thr Ala Asn Phe Ala Thr
 275 280 285
 Asn Asn Pro Phe Trp Asn Trp Phe Cys Gly Gly Leu Asn His Gln Val
 290 295 300
 Thr His His Leu Phe Pro Asn Ile Cys His Ile His Tyr Pro Gln Leu
 305 310 315 320
 Glu Asn Ile Ile Lys Asp Val Cys Gln Glu Phe Gly Val Glu Tyr Lys
 325 330 335
 Val Tyr Pro Thr Phe Lys Ala Ala Ile Ala Ser Asn Tyr Arg Trp Leu
 340 345 350
 Glu Ala Met Gly Lys Ala Ser
 355

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1884 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AGCTTCACTT CGGTTTTATA TTGTGACCAT GGTTCCCAGG CATCTGCTCT AGGGAGTTTT	60
TCCGCTGCCT TTAGAGAGTA TTTTCTCCAA GTCGGCTAAC TCCCCCATT TTAGGCAAAA	120

TCATATACAG ACTATCCAA TATTGCCAGA GCTTTGATGA CTCACTGTAG AAGGCAGACT	180
AAAATTCTAG CAATGGACTC CCAGTTGGAA TAAATTTTTA GTCTCCCCCG GCGCTGGAGT	240
TTTTTTGTAG TTAATGGCGG TATAATGTGA AAGTTTTTTA TCTATTAAA TTTATAAATG	300
CTAACAGCGG AAAGAATTAA ATTTACCCAG AAACGGGGT TTCGTCGGGT ACTAAACCAA	360
CGGGTGGATG CCTACTTTGC CGAGCATGGC CTGACCCAAA GGGATAATCC CTCCATGTAT	420
CTGAAAACCC TGATTATTGT GCTCTGGTTG TTTCCGCTT GGGCCTTTGT GCTTTTGCT	480
CCAGTTATTT TTCCGGTGC GCTACTGGGT TGTATGGTTT TGGCGATCGC CTTGGCGGCC	540
TTTCCTTCA ATGTCGGCCA CGATGCCAAC CACAATGCCT ATTCCCTCAA TCCCCACATC	600
AACCGGGTTC TGGGCATGAC CTACGATTT GTCGGGTTAT CTAGTTTCT TTGGCGCTAT	660
CGCCACAACT ATTTGCACCA CACCTACACC AATATTCTTG GCCATGACGT GGAAATCCAT	720
GGAGATGGCG CAGTACGTAT GAGTCCTGAA CAAGAACATG TTGGTATTTA TCGTTTCCAG	780
CAATTTATA TTTGGGGTTT ATATCTTTC ATTCCCTTT ATTGGTTTCT CTACGATGTC	840
TACCTAGTGC TTAATAAAGG CAAATATCAC GACCATAAAA TTCCTCCTT CCAGCCCCTA	900
GAATTAGCTA GTTGCTAGG GATTAAGCTA TTATGGCTCG GCTACGTTT CGGCTTACCT	960
CTGGCTCTGG GCTTTCCAT TCCTGAAGTA TTAATTGGTG CTTCGGTAAAC CTATATGACC	1020
TATGGCATCG TGGTTTGCAC CATCTTTATG CTGGCCCATG TGTTGGAATC AACTGAATT	1080
CTCACCCCCG ATGGTGAATC CGGTGCCATT GATGACGAGT GGGCTATTTG CCAAATTCGT	1140
ACACACGGCCA ATTTGCCAC CAATAATCCC TTTTGGAACT GGTTTGTGG CGGTTAAAT	1200
CACCAAGTTA CCCACCACATCT TTTCCCCAAT ATTTGTCATA TTCACTATCC CCAATTGGAA	1260
AATATTATTA AGGATGTTTGC CCAAGAGTTT GGTGTGGAAT ATAAAGTTA TCCCACCTTC	1320
AAAGCGGCGA TCGCCTCTAA CTATCGCTGG CTAGAGGCCA TGGGCAAAGC ATCGTGACAT	1380
TGCCTTGGGA TTGAAGCAAAT ATGGCAAAT CCCTCGTAAA TCTATGATCG AAGCCTTCT	1440
GTTGCCGCC GACCAAATCC CCGATGCTGA CCAAAGGTTG ATGTTGGCAT TGCTCCAAAC	1500
CCACTTTGAG GGGGTTTCATT GGCGCAGTT TCAAGCTGAC CTAGGAGGCCA AAGATTGGGT	1560
GATTTTGCTC AAATCCGCTG GGATATTGAA AGGCTTCACC ACCTTTGGTT TCTACCCCTGC	1620
TCAATGGGAA GGACAAACCG TCAGAATTGT TTATTCTGGT GACACCATCA CCGACCCATC	1680
CATGTGGTCT AACCCAGCCC TGGCCAAGGC TTGGACCAAG GCCATGCAAAT TTCTCCACGA	1740
GGCTAGGCCA GAAAAATTAT ATTGGCTCCT GATTCTTCC GGCTATCGCA CCTACCGATT	1800

TTTGAGCATT TTTGCCAAGG AATTCTATCC CCACTATCTC CATCCCACTC CCCCCGCTGT 1860
 ACAAAAATTTT ATCCATCAGC TAGC 1884

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1685 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AATATCTGCC TACCCCTCCCA AAGAGAGTAG TCATTTTTCA TCAATGGCTG CTCAAATCAA 60
 GAAATACATT ACCTCAGATG AACTCAAGAA CCACGATAAA CCCGGAGATC TATGGATCTC 120
 GATTCAAGGG AAAGCCTATG ATGTTTCGGA TTGGGTGAAA GACCATCCAG GTGGCAGCTT 180
 TCCCTTGAAG AGTCTTGCTG GTCAAGAGGT AACTGATGCA TTTGTTGCAT TCCATCCTGC 240
 CTCTACATGG AAGAATCTTG ATAAGTTTT CACTGGGTAT TATCTTAAAG ATTACTCTGT 300
 TTCTGAGGGT TCTAAAGATT ATAGGAAGCT TGTGTTTGAG TTTCTAAAA TGGGTTTGTA 360
 TGACAAAAAA GGTCAATTAA TGTTTGCAAC TTTGTGCTTT ATAGCAATGC TGTTTGCTAT 420
 GAGTGTGTTAT GGGGTTTTGT TTTGTGAGGG TGTTTTGGTA CATTGTTTT CTGGGTGTTT 480
 GATGGGGTTT CTTTGGATTG AGAGTGGTTG GATTGGACAT GATGCTGGC ATTATATGGT 540
 AGTGTCTGAT TCAAGGCTTA ATAAGTTTAT GGGTATTTT GCTGCAAATT GTCTTTCAGG 600
 AATAAGTATT GGTGGTGGA AATGGAACCA TAATGCACAT CACATTGCCT GTAATAGCCT 660
 TGAATATGAC CCTGATTTAC AATATATACC ATTCTTGTT GTGTCTTCCA AGTTTTTGG 720
 TTCACTCACC TCTCATTCT ATGAGAAAAG GTTGACTTTT GACTCTTAT CAAGATTCTT 780
 TGTAAGTTAT CAACATTGGA CATTTCACCC TATTATGTGT GCTGCTAGGC TCAATATGTA 840
 TGTACAATCT CTCATAATGT TGTTGACCAA GAGAAATGTG TCCTATCGAG CTCAGGAAC 900
 CTTGGGATGC CTAGTGTCT CGATTTGGTA CCCGTTGCTT GTTTCTTGGTT TGCCTAATTG 960
 GGGTGAAAGA ATTATGTTG TTATTGCAAG TTATCAGTG ACTGGAATGC AACAAAGTTCA 1020
 GTTCTCCTTG AACCACTTCT CTTCAAGTGT TTATGTTGGA AAGCCTAAAG GGAATAATTG 1080
 GTTTGAGAAA CAAACGGATG GGACACTTGA CATTCTTGT CCTCCTTGGA TGGATTGGTT 1140
 TCATGGTGGA TTGCAATTCC AAATTGAGCA TCATTTGTTT CCCAAGATGC CTAGATGCAA 1200

CCTTAGGAAA ATCTCGCCCT ACGTGATCGA GTTATGCAAG AAACATAATT TGCCTTACAA	1260
TTATGCATCT TTCTCCAAGG CCAATGAAAT GACACTCAGA ACATTGAGGA ACACAGCATT	1320
GCAGGGCTAGG GATATAACCA AGCCGCTCCC GAAGAATTG GTATGGGAAG CTCTTCACAC	1380
TCATGGTTAA AATTACCCCT AGTTCATGTA ATAATTGAG ATTATGTATC TCCTATGTTT	1440
GTGTCTTGTCTAC TTGGTTGGAGT CATTGCAACT TGTCTTTAT GGTTTATTAG	1500
ATGTTTTTA ATATATTTA GAGGTTTGC TTTCATCTCC ATTATTGATG AATAAGGAGT	1560
TGCATATTGT CAATTGTTGT GCTCAATATC TGATATTTG GAATGTACTT TGTACCACTG	1620
TGTTTCAGT TGAAGCTCAT GTGTACTTCT ATAGACTTTG TTTAAATGGT TATGTCATGT	1680
TATTT	1685

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 448 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn	
1 5 10 15	
His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr	
20 25 30	
Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu	
35 40 45	
Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His	
50 55 60	
Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr	
65 70 75 80	
Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu	
85 90 95	
Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile	
100 105 110	
Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val	
115 120 125	
Tyr Gly Val Leu Phe Cys Glu Gly Val Leu Val His Leu Phe Ser Gly	
130 135 140	

- 53 -

Cys Leu Met Gly Phe Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp
145 150 155 160

Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met
165 170 175

Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp
180 185 190

Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr
195 200 205

Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe
210 215 220

Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp
225 230 235 240

Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro
245 250 255

Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met
260 265 270

Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Gly
275 280 285

Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro
290 295 300

Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr
305 310 315 320

Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Ser Val
325 330 335

Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp
340 345 350

Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly
355 360 365

Gly Ser Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg
370 375 380

Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys Lys
385 390 395 400

His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met
405 410 415

Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr
420 425 430

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly
435 440 445

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Trp Ile Gly His Asp Ala Gly His
1 5

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Asn Val Gly His Asp Ala Asn His
1 5

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val Leu Gly His Asp Cys Gly His
1 5

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Val Ile Ala His Glu Cys Gly His
1 5

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Val Ile Gly His Asp Cys Ala His
1 5

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Val Val Gly His Asp Cys Gly His
1 5

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

His Asn Ala His His
1 5

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- 56 -

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

His Asn Tyr Leu His His
1 5

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

His Arg Thr His His
1 5

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

His Arg Arg His His
1 5

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

His Asp Arg His His
1 5

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

His Asp Gln His His
1 5

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

His Asp His His His
1 5

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

His Asn His His His
1 5

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Phe Gln Ile Glu His His
1 5

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

His Gln Val Thr His His
1 5

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

His Val Ile His His
1 5

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid

- 59 -

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

His Val Ala His His
1 5

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

His Ile Pro His His
1 5

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

His Val Pro His His
1 5

1 WHAT IS CLAIMED:

1. An isolated nucleic acid encoding a borage
Δ6-desaturase.

5

2. The isolated nucleic acid of Claim 1
comprising the nucleotide sequence of SEQ ID NO: 4.

10 3. An isolated nucleic acid that codes for the
amino acid sequence of SEQ ID NO: 5.

15 4. A vector comprising the nucleic acid of any
one Claims 1-3.

15

5. An expression vector comprising the
isolated nucleic acid of any one of Claims 1-3 operably
linked to a promoter and optionally a termination signal
capable of effecting expression of the gene product of
said isolated nucleic acid.

20

6. The expression vector of Claim 5 wherein
said promoter is a Δ-6 desaturase promoter, an Anabaena
carboxylase promoter, a helianthinin promoter, a glycinin
promoter, a napin promoter, the 35S promoter from CaMV, or
25 a helianthinin tissue-specific promoter.

25

7. The expression vector of Claim 5 wherein
said promoter is constitutive or tissue-specific.

30

8. The expression vector of Claim 5 wherein
said termination signal is a Synechocystis termination

35

1 signal, a nopaline synthase termination signal, or a seed
termination signal.

9. A cell comprising the vector of any one of
5 Claims 4-8.

10. The cell of Claim 9 wherein said cell is an
animal cell, a bacterial cell, a plant cell or a fungal
cell.

10

11. A transgenic organism comprising the
isolated nucleic acid of any one of Claims 1-3.

12. A transgenic organism comprising the vector
15 of any one of Claims 4-8.

13. The transgenic organism of Claim 11 or 12
wherein said organism is a bacterium, a fungus, a plant or
an animal.

20

14. A plant or progeny of said plant which has
been regenerated from the plant cell of Claim 10.

15. The plant of Claim 14 wherein said plant is
25 a sunflower, soybean, maize, tobacco, peanut, carrot or
oil seed rape plant.

16. A method of producing a plant with
increased gamma linolenic acid (GLA) content which
30 comprises:

35

5 17. A method of producing a plant with
increased gamma linolenic acid (GLA) content which
comprises:

10 (a) transforming a plant cell with the vector of
any one of Claims 4-8; and
(b) regenerating a plant with increased GLA
content from said plant cell.

18. The method of Claim 16 or 17 wherein said
15 plant is a sunflower, soybean, maize, tobacco, peanut,
carrot or oil seed rape plant.

19. A method of inducing production of gamma
linolenic acid (GLA) in an organism deficient or lacking
20 in GLA which comprises transforming said organism with the
isolated nucleic acid of any one of Claims 1-3.

20. A method of inducing production of gamma
linolenic acid (GLA) in an organism deficient or lacking
25 in GLA which comprises transforming said organism with the
vector of any one of Claims 4-8.

21. A method of inducing production of gamma
linolenic acid (GLA) in an organism deficient or lacking
in GLA and linoleic acid (LA) which comprises transforming
said organism with an isolated nucleic acid encoding

- 63 -

1 borage $\Delta 6$ -desaturase and an isolated nucleic acid encoding
 $\Delta 12$ -desaturase.

22. The method of Claim 21 wherein said
5 isolated nucleic acid encoding $\Delta 6$ -desaturase comprises
nucleotides 44 to 1390 of SEQ. ID NO: 4.

23. A method of inducing production of
octadecatetraenoic acid in an organism deficient or
10 lacking in gamma linolenic acid which comprises
transforming said organism with the isolated nucleic acid
of any one of Claims 1-3.

24. A method of inducing production of
15 octadecatetraenoic acid in an organism deficient or
lacking in gamma linolenic acid which comprises
transforming said organism with the vector of any one of
Claims 4-8.

20 25. The method of Claim 23 or 24 wherein said
organism is a bacterium, a fungus, a plant or an animal.

26. A method of producing a plant with improved
chilling resistance which comprises:

25 (a) transforming a plant cell with the isolated
nucleic acid of any one of Claims 1-3; and
(b) regenerating said plant with improved
chilling resistance from said transformed plant cell.

30 27. A method of producing a plant with improved
chilling resistance which comprises:

1 (a) transforming a plant cell with the vector of
any one of Claims 4-8; and

(b) regenerating said plant with improved chilling resistance from said transformed plant cell.

5

28. The method of Claim 26 or 27 wherein said plant is a sunflower, soybean, maize, tobacco, peanut, carrot or oil seed rape plant.

10

15

20

25

30

35

1 / 9

FIG. IA

FIG. IB

2 / 9

FIG. 2A

FIG. 2B

FIG. 3

3 / 9

FIG. 4A

FIG. 4B

FIG. 5A

SUBSTITUTE SHEET (RULE 26)

FIG. 5B

1	MAAQIKKYIT	SDELKNHDKP GDLWISIQGK AYDVS DWVKD	HPGGSFPLKS LAGQEVTDAF VAFHPASTWK NLDKFFTGYY 80
81	LKDYSVSEVS	KDYRKLVFEF SKMGLYDKKG HIMFATLCFI	AMLFAMS VYVG VLFCEGVLVH LFGSCLM GFL WIOSGWIGHD 160
161	AGH YMVSDS	RLNKFMCIFA ANC LSGISIG <u>WWKWNHNAHH</u>	IACNSLEYDP DLQYIPFLVVV SSKFFGSLTS HFYEKR LRTFD 240
241	SLSRFFVSYQ	HWTFYPIIMCA ARLNMVYQSL IMLLT KRNVS	YRAQELLGCL VFSIWIYPLL V SCLPNWGERI MFVIASLSVT 320
321	GMQQQFSLN	HFSSSVYVGK PKGNNWFEKQ TDGTL DISCP	PWMDWFHGGL QFQIENHULFP KMPRCNLRKI SPYVIECLKK 400
401	HNLPNYYASF	SKANEMTRLT LRVNTALQARD ITKPLPKNLV	WEALHHTHG 448

5 / 9

FIG. 6

6 / 9

FIG. 7

FIG. 8A

FIG. 8B

8 / 9

FIG. 9B

FIG. 9A

SUBSTITUTE SHEET (RULE 26)

9 / 9

FIG. IOA

FIG. IOB

