Handi Utter Parale 19253510

4)
$$k \cdot \frac{1}{3^{\circ}} + k \cdot \frac{1}{3!} + k \cdot \frac{1}{3!} + k \cdot \frac{1}{3!} = 1$$

$$5) \quad \hat{S} f(x) dx = 1$$

$$\int_{0}^{3} f_{x}(x) dx + \int_{0}^{1} k_{x} (1-x) dx + \int_{0}^{3} f_{x}(x) dx = 1$$

$$k \cdot \int_{0}^{3} (x-x^{2}) dx = 1$$

$$k \cdot (\frac{x^{2}}{2} - \frac{x^{2}}{2}) \Big|_{0}^{1} = 1$$

$$k \cdot \int_{0}^{1} (x - x^{2}) dx = 1$$
 $k \cdot (\frac{x^{2}}{2} - \frac{x^{3}}{3}) \Big|_{0}^{1} = 1$

6)
$$P(0,54 \times 60,9) = \int_{95}^{97} 6(x-x^2)$$

Handi Utho Parali 19253510 to

7)
$$E(x) = (4/9) \cdot 1 + (2/9) \cdot 2 + (2/9) \cdot 3 + (1/9) \cdot 4$$

 $E(x) = 4/9 + 4/9 + 6/9 + 4/9 = 18/9 = 2/9$

8)
$$E(y-\mu)^2 = \frac{4}{9} \cdot (1-0)^2 + \frac{2}{9} (2-0)^2 + \frac{2}{9} \cdot (3-0)^2 + \frac{1}{9} (4-0)^2$$

 $= \frac{4}{9} \cdot 4 + \frac{2}{9} \cdot 9 + \frac{1}{9} \cdot 16$
 $= \frac{4}{9} + \frac{8}{9} + 2 + \frac{16}{9} = \frac{46}{9}$

b)
$$\times$$
 3 6 9 12
 $P_{x}(x)$ $\frac{2}{12}$ $\frac{5}{12}$ $\frac{4}{12}$ $\frac{1}{12}$

$$E(x)=3$$
, $\frac{2}{12}+6$, $\frac{5}{12}+9$, $\frac{4}{12}+12$, $\frac{1}{12}=7$