Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Курсовая работа

3 курс, группа 3630102/70301

Студент Лебедев К.С.

Преподаватель Баженов А. Н.

Содержание

1.	Список таблиц	3
2.	Постановка задачи	4
3.	Реализация	4
4.	Результаты	4
	4.1. функция распределения Фишер	4
	4.2. функция распределения Рэлея	12
5 .	Выводы	19
6.	Список литературы	20
7.	Приложения	20

1 Список з	таблиц
------------	--------

-	ъ																					_
1	Результаты	 	 	 			 		 	 				 		 					1	9

2 Постановка задачи

Для трех выборок 50, 200 и 1000 элементов, сгенерированных согласно закону распределения Фишер с параметрами $\mu=4$ и $\nu=2$ и Рэлея с параметром $\sigma=0.7$ проверить гипотезы о согласии распределения смоделированной выборки с заданным законом распределения по критерию χ^2 для группирования выбирать интервалы равной длины, уровень значимости $\alpha=0.05$. Проверить гипотезы о согласии распределения смоделированной выборки с заданным законом распределения по непараметрическому критерию Мизеса-Смирнова; уровень значимости $\alpha=0.05$.

3 Реализация

Работы была выполнена на языке *Python*3.7. Для генерации выборок использовался модуль [1]. Для построения графиков использовалась библиотека matplotlib [2]. Функции распределения обрабатывались при помощи библиотеки scipy.stats [3]

4 Результаты

4.1 функция распределения Фишер

Рис. 1: Функция распределения Фишер с n = 50

Рис. 2: Функция нормального распределения с n=50

Рис. 3: Функция распределения Фишер с n = 200

-0.061

0.277

0.616

0.954

1.293

0.00

-2.093

-1.754

-1.416

-1.077

-0.738

-0.400

Интервалы

Рис. 4: Функция нормального распределения с n = 200

Рис. 5: Функция распределения Фишер с n = 1000

Рис. 6: Функция нормального распределения с n = 1000

Рис. 7: График функции распределения Фишер

Рис. 8: График функции нормального распределения

4.2 функция распределения Рэлея

Рис. 9: Функция распределения Рэлея с n=50

Интервалы

Рис. 10: Функция нормального распределения с n=50

Рис. 11: Функция распределения Рэлея с n = 200

Интервалы

Рис. 12: Функция нормального распределения с n = 200

Рис. 13: Функция распределения Рэлея с n = 1000

Рис. 14: Функция нормального распределения с n = 1000

Рис. 15: График функции распределения Рэлея

Рис. 16: График функции нормального распределения

Таблица 1: Результаты

Распределение	n	Тест по критерию ω^2	Тест по критерию ω^2 для нормального распределения
	50	True	True
Фишер	200	True	True
Фишср	1000	True	True
	50	True	True
Рэлея	200	False	True
1 3/16/1	1000	True	True

5 Выводы

По полученным результатам видно, что оба подхода дают лучший результат на выборках большого объема. Если рассматривать результаты для выборки объема n=200 элементов, то видно, что при распределении Фишер тест на критерий Крамера — Мизеса — Смирнова пройден в отличии от Рэлея.

6 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
- [5] http://www.machinelearning.ru/wiki/index.php?title=
- [6] https://ru.wikipedia.org/wiki/

7 Приложения

Kод отчёта: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab8.tex