clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

Suprosanna Shit^{1*} and Johannes C. Paetzold^{1,2*}, Anjany Sekuboyina¹, Ivan Ezhov¹, Alexander Unger¹, Andrey Zhylka³, Josien P. W. Pluim³, Ulrich Bauer¹, Bjoern H. Menze¹

* Shared first authors

suprosanna.shit@tum.de & johannes.paetzold@tum.de

¹ Technical University of Munich, Germany, ² Helmholtz Zentrum München, Germany, ³ Eindhoven University of Technology

CVPR'21-2257

Motivation

Out of two segmentations of tubular data (similar dice score) we prefer the one with better connectivity - red is superior to purple.

Problem & Research Question

Q1. What is a good pixelwise measure to benchmark segmentation algorithms for tubular, linear and curvilinear structure segmentation while guaranteeing the preservation of the network-topology?

Q2. Can we use this improved measure as a loss function for neural networks?

clDice Formulation

A computationally efficient overlap-based loss for curvilinear structure segmentation with theoretical topology guarantee.

Theory

- 1. Optimal clDice for foreground and background guarantees a predicted segmentation to be homotopy equivalent to the ground truth label.
- 2. clDice as a loss achieves homotopy equivalence via a minimum error correction between prediction and ground truth label.

Loss Function

Algorithm 2: soft-clDice
Input: V_P, V_L
$S_P \leftarrow soft\text{-}skeleton(V_P)$
$S_L \leftarrow soft\text{-}skeleton(V_L)$
$Tprec(S_P, V_L) \leftarrow \frac{ S_P \circ V_L + \epsilon}{ S_P + \epsilon}$
$Tsens(S_L, V_P) \leftarrow \frac{ S_L \circ V_P + \epsilon}{ S_L + \epsilon}$
$clDice \leftarrow$
$2 \times \frac{\mathit{Tprec}(S_P, V_L) \times \mathit{Tsens}(S_L, V_P)}{\mathit{Tprec}(S_P, V_L) + \mathit{Tsens}(S_L, V_P)}$

In practice, volumetric segmentation is desired, over pure skeletons, therefore we combine soft-clDice with soft-Dice.

$$\mathcal{L}_c = (1 - \alpha)(1 - soft Dice) + \alpha(1 - soft clDice)$$

lpha is a tunable parameter.

Results

- → clDice improves connectivity and volumetric metrics
- → On par with state-of-the-art with less computation cost

Qualitative Results

Output: clDice

Acknowledgement & code

We thank Ali Ertürk, Mihail I. Todorov, Nils Börner and Giles Tetteh.

github.com/jocpae/clDice

See the full paper