

Numerical Representation and Codes

Exercises Digital Design

1	NUM	-	Number	systems
---	-----	---	--------	---------

	.1	Determine up te	o what value	you can count with	numbers coded	on
--	----	-----------------	--------------	--------------------	---------------	----

a) 4 bits

c) 16 bits

b) 8 bits

d) 32 bits

c) 10 bits

num/number-systems-01

1.2 Determine up to which value can be counted, with hexadecimal numbers encoded on:

a) 4 Digits

b) 8 Digits

num/number-systems-02

2 | NUM - Converting from one numbering system to another

2.1 Perform the conversion of the following pure binary numbers in decimal format:

a)
$$110_2 = ?_{10}$$

c)
$$01001010_2 = ?_{10}$$

e)
$$111111111_2 = ?_{10}$$

b)
$$1111_2 = ?_{10}$$

d)
$$1011_2 = ?_{10}$$

num/conversion-01

2.2 Perform the conversion of the following decimal numbers in binary format:

a) a)
$$125_{10} = ?_2$$

c)
$$65113_{10} = ?_2$$

e)
$$9_{10} = ?_2$$

b)
$$16_{10} = ?_2$$

d)
$$256_{10} = ?_2$$

num/conversion-02

2.3 Perform the conversion of the following hexadecimal numbers in binary format:

a)
$$E_{16} = ?_2$$

c)
$$AB3D_{16} = ?_2$$

e)
$$2346_{16} = ?_2$$

b)
$$15C_{16} = ?_2$$

d)
$$9F7_{16} = ?_2$$

num/conversion-03

2.4 Perform the conversion of the following binary numbers in hexadecimal format:

a)
$$1010_2 = ?_{16}$$

e)
$$1100_2 = ?_{16}$$

b)
$$110_2 = ?_{16}$$

num/conversion-04

2.5 Perform the conversion of the following hexadecimal numbers in decimal format:

a)
$$D_{16} = ?_{10}$$

c)
$$234_{16} = ?_{10}$$

e)
$$A6B9_{16} = ?_{10}$$

b)
$$15C_{16} = ?_{10}$$

d)
$$FE_{16} = ?_{10}$$

num/conversion-05

2.6 Perform the conversion of the following decimal numbers in hexadecimal format:

3.
$$65113_{10} = ?_{16}$$

5.
$$9_{10} = ?_{16}$$

2.
$$16_{10} = ?_{16}$$

4.
$$209_{10} = ?_{16}$$

num/conversion-06

3 | NUM - Operation on logical numbers

3.1 Perform the following additions in the binary system:

1. $0000\ 1100_2 + 0001\ 1110_2$

3. $0011\ 0100_2 + 0111\ 1111_2$

 $2.\ 0000\ 1111_2 + 0101\ 1010_2$

4. $0111\ 1111_2 + 0000\ 0001_2$

num/operation-01

3.2 Perform the following subtractions in the binary system:

1. $0100\ 0011_2 - 0000\ 1001_2$

3. $0011\ 0100_2 - 0010\ 1000_2$

2. $1010\ 0110_2 - 0110\ 1100_2$

4. $1000\ 0000_2 - 0000\ 0001_2$

num/operations-02

3.3 Perform the following multiplications in binary:

1. 1010₂ * 0110₂

3. 1000₂ * 0110₂

 $2. \ 0110_2 * 1010_2$

4. $0111_2 * 1110_2$

num/operation-03

3.4 Perform the following additions in the hexadecimal system:

1. $1234_{16} + CC_{16}$

3. $1234_{16} + FF_{16}$

2. $8888_{16} + FC_{16}$

 $4.\ 89\mathrm{AB}_{16} + \mathrm{AB89}_{16}$

num/operation-04

3.5 Determine the binary value of:

1. $(11_2)^2$

3. $(1111_2)^2$

2. $(111_2)^2$

By analogy, estimate the binary value of $(111111_2)^2$ and use it to check the formula: $(2^n-1)^2=2^{2n}-2*2^n+1$.

num/operation-05

NUM - Codes

- 4.1 Perform the following additions on BCD encoded numbers:

num/codes-01

4.2 Perform the conversion of the Gray code 1001_{Gray} using the recursion formula in the script.

num/codes-02

5 | NUM - Representation of signed numbers

5.1 Represent the following decimal and pure binary numbers encoded to 8 bits using the sign-size, one's complement, and two's complement methods:

1.
$$+18_{10}$$

4. 0001 1010₂
5. 1010₂

2. -3_{10} 3. 0_{10}

5. 1010₂

6. -100_{10}

num/representation-01

 $1. \ 0000 \ 0001_2$

3. 1111 0000₂

5. 44₁₆

 $2. \ 0111 \ 1000_2$

4. 01₁₆

6. 81₁₆

num/representation-02

5.2 Given the numbers 0001_2 and 1001_2 expressed as two's complement encoded on 4 bits. Represent the same numbers encoded as two's complement on 8 bits.

 $num/representation\hbox{-}03$