A SYMPLECTIC VERSION OF NASH C^1 -ISOMETRIC EMBEDDING THEOREM

joint work with: Giusi D'Ambra

Problem:

Let (V, ω) e (W, Ω) be two symplectic manifolds endowed with Riemannian metrics g and G respectively.

We look for a map $f:V\to W$ such that:

$$f^*(\Omega) = \omega, \tag{1}$$

$$f^*(G) = g. (2)$$

ABOUT THE EQUATION $f^*(\Omega) = \omega$

Theorem 1 (Gromov, 1986) Let (V, ω) and (W, Ω) be two symplectic manifolds. Let $f_0 : V \to W$ be an embedding satisfying the following two conditions:

- (i) the forms ω and $f_0^*(\Omega)$ are cohomologous;
- (ii) the differential $Df_0: T(V) \to T(W)$ is homotopic to a symplectic homomorphism between bundle $F: T(V) \to T(W)$ (i.e. $F^*(\Omega) = \omega$ on the fibers) throughout a family of monomorphisms.

Then in the following two cases f_0 is isotopic to a symplectic embedding, $f: V \to W$, arbitrarly C^0 -close to f_0 :

- (a) $\dim W \ge \dim V + 4$;
- (b) dim W > dim V and V is open.

Corollary 1 Let (V, ω) be a symplectic manifold with V contractible and $\dim V < 2N$. Then every embedding $f_0: V \to \mathbb{R}^{2N}$ is isotopic to a symplectic embedding $f: (V, \omega) \to (\mathbb{R}^{2N}, \Omega_{can})$. In particular, if V is diffeomorphic to \mathbb{R}^{2n-2} then there exists a symplectic embedding

$$(V,\omega) \to (\mathbb{R}^{2n},\Omega_{can}).$$

Corollary 2 (Tischler, 1977) Let (V, ω) a compact symplectic embedding with ω integral. Then for N sufficiently large there exists a symplectic embedding $f: (V, \omega) \to (\mathbb{C}P^N, \Omega_{FS})$.

ABOUT THE EQUATION $f^*(G) = g$

Theorem 2 (Nash, 1954) Let (V, g) be a compact Riemannian manifold which admits a smooth immersion (resp. embedding) $f_0: V \to \mathbb{R}^q$ and $\dim V \leq q-2$, then there exists a C^1 isometric immersion (resp. embedding) $f: (V, g) \to (\mathbb{R}^q, G_{can})$. Moreover if f_0 is g-short, i.e. $g-f_0^*(G_{can}) > 0$ then f can be chosen arbitrarly C^0 -close to f_0 .

Corollary 3 Every Riemannian manifold (V, g) can be isometrically C^1 -embedded in (\mathbb{R}^q, G_{can}) for $q = 2 \dim V$.

Remark

The equation $g = f^*(G_{can})$ is equivalent to the system of PDE

$$\sum_{\alpha=1}^{q} \frac{\partial f_{\alpha}}{\partial x_{i}} \frac{\partial f_{\alpha}}{\partial x_{j}} = g_{ij}, \quad i, j = 1, \dots n,$$

where $f = (f_1, f_2, ..., f_q)$.

IDEAS OF THE PROOF OF NASH'S THEOREM

• The decomposition Lemma Let $V = \bigcup_j B_j$, B_j contractible. Any metric g on V can be written as:

$$g = \sum_{j} d\phi_{j}^{2}$$

where $\phi_i: V \to \mathbb{R}$ and supp $\phi_i \subset B_j, j = j(i)$.

- The normal extension Lemma Let $B \subset V$ be contractible and $q \geq \dim V + 2$. For every embedding $f_0: V \to \mathbb{R}^q$ there exists a normal extension f_0 on B, namely a smooth map $\tilde{f}_0: B \times \mathbb{R}^2 \to \mathbb{R}^q$ such that:
 - 1. $\tilde{f}_0|_{B\times\{(0,0)\}} = f_0|_B;$
 - **2.** the vector fields $\partial_1 = \frac{\partial \tilde{f}_0}{\partial x}|_{B \times \{(0,0)\}}$ and $\partial_2 = \frac{\partial \tilde{f}_0}{\partial y}|_{B \times \{(0,0)\}}$ are *G*-ortogonal to *B* and mutually *G*-orthonormal.

Proof of Nash's theorem

- Let $f_0: V \to \mathbb{R}^q$ be a g-short map, i.e. $g f_0^*(G) > 0$.
- It follows by the decomposition Lemma that:

$$g_1 = g - f_0^*(G) = \sum_j d\phi_j^2$$

where $\phi_i: V \to \mathbb{R}$ and supp $\phi_i \subset B_j, j = j(i)$.

• Fix $\epsilon_1 > 0$ and consider the <u>perturbation</u> (called the "twisting perturbation") $f_{\epsilon_1} : V \to \mathbb{R}^q$ of f_0 on $B_{i(1)}$:

$$f_{\epsilon_1} = \tilde{f}_0 \circ s_{1|_{B_{i(1)}}} \tag{3}$$

and $f_{\epsilon_1} = f_0$ outside $B_{j(1)}$, where $s_1 : V \to V \times \mathbb{R}^2$ is a section of the trivial bundle $V \times \mathbb{R}^2 \to V$ (constructed by ϕ_1) such that supp $s_1 \subset B_{j(1)}$.

[More precisely, $s_1: V \to V \times \mathbb{R}^2$ is defined by the composition:

$$s_1: V \xrightarrow{\Gamma_{\phi_1}} V \times \mathbb{R} \xrightarrow{\alpha_{\epsilon_1}} V \times \mathbb{R}^2,$$
 (4)

where $\Gamma_{\phi_1}: V \to V \times \mathbb{R}: v \mapsto (v, \phi_1(v)) \text{ and } \alpha_{\epsilon_1}(v, t) = (v, \frac{\epsilon_1}{2\pi} \sin \frac{t}{\epsilon_1}, \frac{\epsilon_1}{2\pi} \cos \frac{t}{\epsilon_1}).$

- One does the same woth the map f_{ϵ_1} , namely, given $\epsilon_2 > 0$ one perturbs f_{ϵ_1} on $B_{j(2)}$ using ϕ_2 instead of ϕ_1 and one obtains $f_{\epsilon_2} : V \to \mathbb{R}^q$.
- The sequence of maps $f_{\epsilon_1}, f_{\epsilon_2}, \ldots$ converges to an immersion $f_1: V \to \mathbb{R}^q$ g-short which satisfies the following inequalities:

$$\|g - f_1^*(G)\|_0 < \frac{2}{3} \|g - f_0^*(G)\|_0,$$

 $\|f_1 - f_0\|_1 < c(n) \|g - f_0^*(G)\|_0^{\frac{1}{2}}.$

• Starting from f_1 one builds f_2 in a similar way. One then gets a sequence of g-shorts maps f_j : $V \to \mathbb{R}^q$ satisfying:

$$|| g - f_j^*(G) ||_0 < \frac{2}{3} || g - f_{j-1}^*(G) ||_0,$$

$$|| f_j - f_{j-1} ||_1 < c(n) || g - f_{j-1}^*(G) ||_0^{\frac{1}{2}}.$$

- It follows that $\{f_j\}$ C^1 -converges to a map $f: V \to \mathbb{R}^q$ such that $f^*(G) = g$.
- By choosing the ϵ_j small enough the map f can be taken C^0 -close to f_0 .

Theorem 3 (D'Ambra and Loi, DGA 2002)

Let (V, ω) and (W, Ω) be two symplectic manifolds endowed with Riemannian metrics g and G respectively and let $f_0: V \to W$ be a C^{∞} symplectic embedding, i.e. $f_0^*(\Omega) = \omega$.

Let us suppose that the following three conditions are satisfied:

(i) (W, Ω, G) is almost Kähler namely there exists an almost complex structure J such that:

$$\Omega(X,Y) = G(X,JY), \quad G(JX,JY) = G(X,Y);$$

- (ii) $dim W \ge max(2 dim V + 4, 3 dim V);$
- (iii) the map f_0 is g-short, namely

$$g - f_0^*(G) > 0.$$

Then there exists a C^1 -symplectic and isometric embedding, $f:(V,\omega,g)\to (W,\Omega,G)$, arbitrarly C^0 -close to f_0 .

Remarks

- 1. If also the manifold (V, ω, g, j) is almost Kähler then it cannot exist and embedding $f_0: V \to W$ g-short (i.e. $g f_0^*G > 0$) and symplectic (i.e. $f_0^*(\Omega) = \omega$).
- **2.** If (V, ω, g, j) and (W, Ω, G, J) are Kähler then a map $f: V \to W$ which satisfies:

$$f^*(\Omega) = \omega, \quad f^*(G) = g$$

is necessarily holomorphic.

3. The hypothesis that f_0 is g-short is <u>necessary</u>.

Corollary 4 Let g be a metric on \mathbb{R}^{2n} such that $g > g_{can}$. If $N \ge max(2n+2,3n)$, then there exists a C^1 -embedding, $f: \mathbb{R}^{2n} \to \mathbb{R}^{2N}$, which satisfies:

$$f^*(G_{can}) = g, \quad f^*(\Omega_{can}) = \omega_{can}.$$

Corollary 5 Let (V, ω, g) be a compact symplectic manifold with ω integral. Then there exist N, λ sufficiently large and a C^1 -embedding, $f: V \to \mathbb{C}P^N$, such that:

$$f^*(G_{FS}) = \lambda g, \quad f^*(\Omega_{FS}) = \omega.$$

MAIN INGREDIENTS OF THE PROOF OF THEOREM 3

Let us consider the perturbation $f_{\text{pert}}: V \to W$ of f_0 on B defined by

$$f_{ ext{pert}} = ilde{f_0} \circ s_{|_B}$$

and $f_{\text{pert}} = f_0$ outside B, where $s: V \to V \times \mathbb{R}^2$ is a section of the trivial bundle $V \times \mathbb{R}^2 \to V$ with supp $s \subset B$.

Key question: Under which conditions

$$f_{\text{pert}}^*(\Omega) = \omega? \tag{5}$$

Answer: If the normal extension \tilde{f}_0 di f_0 is "symplectic", manely

$$\tilde{f}_0^*(\Omega) = p^*(\omega) \tag{6}$$

(where $p: B \times \mathbb{R}^2 \to B$ is the projection on the first factor) then the equation (5) is satisfied.

We then have to look for maps $f_0: V \to W$ admitting a normal symplectic extension namely a smooth map $\tilde{f}_0: B \times \mathbb{R}^2 \to W$ such that:

- \tilde{f}_0 is a normal extension of f_0 on B;
- $\tilde{f}_0^*(\Omega) = p^*(\omega)$, where $p: B \times \mathbb{R}^2 \to B$ is the projection in the first factor.

An embedding $f: V \to (W, J)$ is totally real if $(J \circ df(TV)) \cap df(TV) = 0$.

Normal symplectic extension Lemma

Let $f_0: V \to W$ be a totally real and symplectic embedding, $B \subset V$ a contractible subset of V. If $\dim W \geq 2 \dim V + 4$ then there exists a normal symplectic extension of f_0 on B.

Proof: Assume $B \subset W$.

• Since $B \subset W$ is totally real in W then

$$\Theta = TB^{\Omega} \cap TB^G$$

is a vector bundle on B and rank $\Theta = dimW - 2 \dim V \ge 4$.

- There exists two vector fields ∂_1 and ∂_2 on W along B which are G-ortogonali to B, G-orthonormal, Ω -ortogonali to B and mutually Ω -orthogonal.
- Extend ∂_1 to an Hamiltonian vector field $\tilde{\partial}_1$ on W and consider the one parametergroup of diffeomorphism generated by $\tilde{\partial}_1$ which we denote by $\varphi_{1,x}, x \in [-\epsilon, \epsilon]$.
- The vector field $(\bar{\partial}_2)_{\varphi_{1,x}(b)} = (D\varphi_{1,x})_b(\partial_2)_b$. is Ω orthogonal to $\varphi_{1,x}(B)$.
- Extend $\bar{\partial}_2$ to an Hamiltonian vector field $\tilde{\partial}_2$ on W.
- Let $\varphi_{2,y}$, $y \in [-\epsilon, \epsilon]$, the corresponding one parameter group of diffeomorphisms.

Then the map

$$\tilde{f}_0: B \times (-\epsilon, \epsilon)^2 \cong B \times \mathbb{R}^2 \to W:$$

$$(b, x, y) \mapsto \varphi_{2,y}(\varphi_{1,x}(b)).$$

is a normal symplectic extension of f_0 on B.

We have then proved our Theorem 3 for the totally real map without the assumption $\dim W \geq 3\dim V$:

Theorem 4 Let (V, ω) and (W, Ω) two symplectic manifolds equipped with Riemannian metrics g and G respectively and let $f_0: V \to W$ be a C^{∞} symplectic and totally real. embedding. Let us suppose that the following three conditions are satisfied:

- (i) (W, Ω, G) is almost Kähler namely there exists an almost complex structure J such that: $\Omega(X, Y) = G(X, JY), \quad G(JX, JY) = G(X, Y);$
- (ii) $\dim W \ge 2 \dim V + 4$ (without the assumption $\dim W \ge 3 \dim V$);
- (iii) the map f_0 is g-short, namely

$$g - f_0^*(G) > 0.$$

Then there exists a C^1 -symplectic and isometric embedding, $f:(V,\omega,g)\to (W,\Omega,G)$, arbitrarly C^0 -close to f_0 .

The next step is to show that if dim $W \geq 3 \dim V$ then there are a "lot" of totally rela maps.

Proposition 1 If $dim W \ge 3 dim V$. Then the generic map $f: V \to W$ is totally real.

Proof:

- The idea of the proof is to interpret the fact that a map $f: V \to W$ is not totally real as a singularity of the space $J^1(V, W)$ of 1-jets.
- The space $J^1(V, W)$ is a bundle over $V \times W$ and the fibers $J^1_{v,w}$ are the linear maps L: $T_vV \to T_wW$. The 1-jet J^1_f of a map $f:V \to W$ in a point $v \in V$ is given by the differential in v of f, i.e. $J^1_f(v) = df_v: T_vV \to T_{f(v)}W \in J^1_{v,f(v)}$.
- The set $\Sigma_{v,w} \subset J_{v,w}^1$ given by the 1-jets of non totally real maps is a stratified manifold of codimension dim $W-2\dim V+2$.

Indeed $\Sigma_{v,w}$ can be identified with the set of homomorphisms in $\operatorname{Hom}(\mathbb{R}^m,\mathbb{C}^n)$ which take (e_1,\ldots,e_m) to

m \mathbb{C} -dependent vectors. Moreover $\Sigma_{v,w} = \bigcup_{i=0}^{m-1} \Sigma_i$, where $\Sigma_i \subset \operatorname{Hom}(\mathbb{R}^m, \mathbb{C}^n)$ is the set of linear maps which takes (e_1, \ldots, e_i) to i \mathbb{C} -independent vectors and (e_1, \ldots, e_{i+1}) to i+1 \mathbb{C} -dependent vectors. Σ_i is a complex submanifold of $M_{\mathbb{C}}(n,m)$ of complex codimension (n-i)(m-i). Therefore $\Sigma_{u,v} \subset M_{\mathbb{C}}(n,m)$ is a stratified manifold of complex codimension (n-(m-1))(m-(m-1)) = n-m+1.

- The set $\Sigma = \bigcup_{(v,w)\in V\times W} \Sigma_{v,w} \subset J^1(V,W)$ fibers on $V\times W$ and so it is a stratified manifold in $J^1(V,W)$ of codimension dim $W-2\dim V+2$.
- By Thom's transversality theorem a generic map $f: V \to W$ satisfies $J_f^1(V) \cap \Sigma = \emptyset$ (i.e. is totally real) iff dim $W 2\dim V + 2 \ge \dim V + 1$ which is equivalent to dim $W \ge 3\dim V$ being V and W even dimensional.

Conclusion of the proof

In order to proof Theorem 3 we must get rid of the hypothesis that f_0 is totally real by using the inequality dim $W \geq 3 \dim V$.

The idea is to sobstitute to the map $f_0: V \to W$ (which is g-short and such that $f_0^*(\Omega) = \omega$) a map $f_0^{tot}: V \to W$ totally real, g-short and such that $f_0^{tot*}(\Omega) = \omega$.

The main steps are the following:

- By Proposition 1 there exists an homotopy φ_t : $V \to W$ between $\varphi_0 = f_0$ and a totally real map $\varphi_1 = f_1 : V \to W$ such that all the $\varphi_t : V \to W$ are C^{∞} -close to f_0 .
- By applying Moser's theorem to the forms $\omega_t = \varphi_t^*(\Omega)$, $t \in [0, 1]$, we find a diffeomorphism $\delta: V \to V$, C^{∞} -close to Id_V and such that $\delta^*(\omega_1) = \omega$.
- The map $f_0^{tot} = f_1 \circ \delta : V \to W$ is an embedding totally real, C^{∞} -close to f_0 (and so g-short) such that $f_0^{tot*}(\Omega) = \omega$.