Fonction Limite sur les Suites de Fonctions

Convergence simple, uniforme et dans L^p

1. Contexte:

Soit $E \subseteq \mathbb{R}$. Une suite de fonctions (f_n) définies sur E a pour fonction limite f si

- 2. Types de convergence et topologies associées :
- Convergence simple :
 - Définition : $\forall x \in E, f_n(x) \rightarrow f(x)$
 - Topologie : topologie produit sur R^E
 - Propriétés :
 - Ne préserve pas la continuité
 - La fonction limite n'est pas continue
- Convergence uniforme :
 - Définition : $\forall \epsilon > 0$, $\exists N$, $\forall n \geq N$, $\forall x \in E$, $|f_n(x) f(x)| < \epsilon$
 - Topologie : norme []·[] ∞ sur C(E)
 - Espace : $(C(E), \Box \cdot \Box \infty)$ est un espace de Banach
 - Propriétés :
 - La fonction limite est continue
 - La continuité des f_n est transmise à la limite
- Convergence dans L^p :
 - Définition : $\Box f_n$ $f\Box_p$ \rightarrow 0 avec $\Box f\Box_p = (\int |f|^p)^{1/p}$
 - Espace : Lp([a,b]), espace de Banach
 - Propriétés :
 - Pas nécessairement convergence simple
 - La continuité n'est pas préservée

Résumé des propriétés topologiques

Ty	/pe de convergenc	Topologie	EspaceFonct	on limite ₽oés	erve la continu	ité ?
	Simple	Produit	\mathbb{R}^{E}			
	Uniforme	Norme · ∞	C(E)			
	L ^p	Norme <i>L^p</i>	L ^p ([a, b])			

