Definicja 1 (charakterystyka Eulera). $\chi(X) = \sum_{i} (-1)^{i} \dim_{\mathbb{R}} C_{i}(X)$

Definicja 2 (liczby Bettiego). $b_i(X) = \dim_{\mathbb{R}} \mathcal{H}_i(X)$

Wniosek 3. $\chi(X) = \sum_{i} (-1)^{i} b_{i}(X)$

Wniosek 4 (nierówność Morse'a). X skończony Δ -kompleks mający α_i *i*-wymiarowych sympleksów. Wtedy $\forall_{k\geqslant 0} \alpha_k - \alpha_{k-1} + \alpha_{k-2} + \ldots + (-1)^k \alpha_0 \geqslant b_k - b_{k-1} + b_{k-2} + \ldots + (-1)^k b_0$

Zmiana notacji: $C_i(X) = \Delta_i(X)$

Stwierdzenie 5. Rzut ortogonalny $Z_i(X) \to \mathcal{H}_i(X)$ indukuje izomorfizm przestrzeni liniowych $H_i(X,\mathbb{R}) = Z_i(X) / B_i(X) \to \mathcal{H}_i(X)$.

Wniosek 6. $b_i(X) = \dim_{\mathbb{R}} H_i(X, \mathbb{R})$

Definicja 7 (funktor kowariantny \mathcal{H}_i). $f: X \to Y$ ciągłe, definiujemy $f_!: \mathcal{H}_i(X) \to \mathcal{H}_i(Y)$ jako $f_*: \mathcal{H}_i(X, \mathbb{R}) \to \mathcal{H}_i(Y, \mathbb{R})$ złożone z odpowiednimi izomorfizmami $\mathcal{H}_i(X) \simeq \mathcal{H}_i(X, \mathbb{R})$.

Stwierdzenie 8. Rzut ortogonalny $Z^i(X) \to \mathcal{H}_i(X)$ indukuje izomorfizm przestrzeni liniowych $H^i(X,\mathbb{R}) = \frac{Z^i(X)}{B^i(X)} \to \mathcal{H}_i(X)$.

Definicja 9 (funktor kontrawariantny H^i). Definiujemy $f^!: \mathcal{H}_i(Y) \to \mathcal{H}_i(X)$ jako złożenie $f^*: H^i(Y, \mathbb{R}) \to H^i(X, \mathbb{R})$ z odpowiednimi izomorfizmami $\mathcal{H}_i(X) \simeq H^i(X, \mathbb{R})$.

Wniosek 10. $(f_!)^* = f^!$

Transfer

 $\bar{X} \xrightarrow{\pi} X$ nakrycie regularne, $X = \bar{X}/G$, \bar{X} , X skończone Δ -kompleksy (G działa w sposób wolny przez permutację sympleksów).

 $Uwaga\ 11.\ \pi\ \text{indukuje}\ \pi_i: C_i(\bar{X}) \to C_i(X): \text{dla } \sigma, \tau\ \text{komórek}\ X,\ \bar{\sigma}, \bar{\tau}\ \text{komórek}\ \bar{X}\ \text{takich, że} \ \pi(\bar{\sigma}) = \sigma, \pi(\bar{\tau}) = \tau\ \text{mamy}\ \langle \pi_i \bar{\sigma}, \tau \rangle = \langle \bar{\sigma}, \sum_{q \in G} g\bar{\tau} \rangle.$

Wobec tego $\pi_i^*: C_i(X) \to C_i(\bar{X})$ spełnia $\pi_i^* \tau = \sum_{g \in G} g\bar{\tau}$.

Definicja 12 (notacja). $N\bar{c} = \sum_{g \in G} g\bar{c}$

Wniosek 13. $\pi_i^* \circ \pi_i = N_i$ $\pi_i \circ \pi_i^* = |G|$

Wniosek 14. $\pi_i^*: C_i(X) \to C_i(\bar{X})$ jest włożeniem.

Uwaga 15. Mamy też $\pi_!$ indukowane przez π_i oraz $\pi^!$ indukowane przez π_i^* i zachodzi $\pi^! = (\pi_!)^*$ oraz $\pi_! \circ \pi^! = |G|$.

Stwierdzenie 16. $\pi_!: \mathcal{H}_i(\bar{X})^G \to \mathcal{H}_i(X), \ \pi^!: \mathcal{H}_i(X) \to \mathcal{H}_i(\bar{X})^G \ sq\ izomorfizmami.$

Pierścienie grupowe

Definicja 17 (pierścień grupowy). R to pierścień z 1 (nas interesują: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$), pierścień grupowy RG, R[G] to zbiór $\{f: G \to R: f(g) \neq 0 \text{ dla sk. wielu g}\}$ z działaniami $(f+f')(g) = f(g) + f'(g), (f*f')(g) = \sum_{h \in G} f(h)f'(h^{-1}g)$.

Uwaga18 (konwencja). $f = \sum_g f(g) 1_g = \sum_g f(g) g$

Fakt 19. $\mathbb{1} = 1_e$ to jedynka w RG.

Fakt 20. Jeśli R, G przemienne, to RG przemienny.

Definicja 21.
$$\ell_2(G) = \left\{ f: G \to \mathbb{R} \left| \sum_{x \in G} |f(x)|^2 < \infty \right. \right\}$$

Jest to przestrzeń Hilberta z normą $||f|| = \sqrt{\sum_{g \in G} |f(x)|^2}$ pochodzącej od iloczynu skalarnego $\langle f, f' \rangle = \sum_{g \in G} f(x) f'(x)$.

Fakt 22. Istnieje włożenie przestrzeni liniowych $\mathbb{R}G \hookrightarrow \ell_2(G)$.

Co więcej, $\mathbb{R}G$ jest gęstym podzbiorem $\ell_2(G)$.

Reprezentacja (lewa) regularna

Definicja 23 (działanie G na $\ell_2(G)$). $(gf)(x) = (\lambda_g f)(x) = f(g^{-1}x)$

Fakt 24. • $\lambda_{gh} = \lambda_g \lambda_h$

- $\lambda_e = \mathrm{Id}$
- $\bullet \ \lambda_{g^{-1}} = \lambda_g^{-1}$

Lemat 25. λ_g sq unitarne na $\ell_2(G)$.

Fakt 26. Reprezentacja λ rozszerza się liniowo do lewego działania $\mathbb{R}G$ na $\ell_2(G)$.

Uwaga 27.
$$\alpha = \sum r(g)g$$
, $f \in \ell_2(G)$, wtedy $\|\alpha f\| \leq \|f\| \sum_g |r(g)|$.

Uwaga 28. Podobnie możemy zdefiniować prawą reprezentację regularną ρ : $(fg)(x) = (\rho_g f)(x) = f(xg)$ i rozszerzyć do prawego działania $\mathbb{R}G$ na $\ell_2(G)$.

Niech Y – nieskończony Δ -kompleks, na którym G działa wolno przez permutację sympleksów.

Niech działanie G na Y będzie kozwarte, tj. X = Y/G jest skończonym Δ -kompleksem.

Przykład 29.
$$Y = \mathbb{R}, G = \mathbb{Z}, X = Y/G = S^1$$

Przykład 30.
$$Y = \mathbb{R}^2, G = \mathbb{Z}^2, X = Y/G = T^2$$

$$Przykład$$
 31. $Y = drzewo, G = \mathbb{F}_2, X = Y/G =$ ósemka

Definicja 32 $(C_i(Y,G))$. $K_i(Y,\mathbb{R})$ grupa symplicjalnych *i*-łańcuchów Y,

 Σ_i zbiór *i*-wymiarowych sympleksów w Y,

$$K_i(Y, \mathbb{R}) = \{ f : \Sigma_i \to \mathbb{R} \}.$$

Niech
$$C_i(Y) = C_i(Y, G) = \ell_2(G) \otimes_G K_i(Y, \mathbb{R}) = \{ f : \Sigma_i \to \ell_2(G) | f(g\sigma) = \lambda_g f(\sigma) \}.$$

Definicja 33 (C_i jako przestrzeń Hilberta). Niech $\bar{\tau}_i^{\mu}$ ($\mu \in \{1, \dots, \alpha_i\}$, α_i to liczba *i*-sympleksów w X) będą reprezentantami orbit *i*-sympleksów przy działaniu G na Y. Bazą ortonormalną $C_i(Y)$ jest

$$\{x \otimes \bar{\tau}_i^{\mu} | x \in G, \mu \in \{1, \dots, \alpha_i\}\}$$
.

Równoważnie, dla $f, f' \in C_i(Y)$

$$\langle f, f' \rangle = \sum_{\mu \in \{1, \dots, \alpha_i\}} \langle f(\bar{\tau}_i^{\mu}), f'(\bar{\tau}_i^{\mu}) \rangle_{\ell_2(G)}$$

Uwaga 34. $f \in \ell_2(G)$, to elementy $f \otimes \bar{\tau}_i^{\mu} \in C_i(Y)$ spełniają $||f \otimes \bar{\tau}_i^{\mu}|| = ||f||$.

Wniosek 35. Przekształcenie $(f_1, \ldots, f_{\alpha_i}) \mapsto \sum_{\mu=1}^{\alpha_i} f_{\mu} \otimes \bar{\tau}_i^{\mu}$ zadaje izometryczny G-ekwiwariantny izomorfizm

$$\left(\bigoplus_{1}^{\alpha_i}\ell_2(G)\right)\to C_i(Y).$$

Różniczki

Definicja 36. d_i dane tymi wzorami, co zawsze (wcześniej: ∂_i).

Lemat 37. Neich $\varphi: (\mathbb{R}G)^n \to (\mathbb{R}G)^m$ morfizm $\mathbb{R}G$ -modulów, wtedy operator indukowany $\tilde{\varphi} = \mathrm{Id}_{\ell_2(G)} \otimes_{\mathbb{R}G} \varphi: (\ell_2(G))^n \to (\ell_2(G))^m$ jest ograniczony.

Wniosek 38. $d_i: C_i(Y) \to C_{i-1}(Y)$ operator ograniczony w sensie przestrzeni Hilberta.

Definicja 39. $\delta_{i-1} = d_i^*$

$$Z_i(Y) = \ker d_i$$
, $Z^i(Y) = \ker \delta_i$ domknięte podprzestrzenie liniowe w $C_i(Y)$.

Definicja 40. $\mathcal{H}_i(Y, H) = Z_i(Y) \cap Z^i(Y)$ – harmoniczne ℓ_2 -kołańcuchy na Y $B_i(Y) = \operatorname{im} d_{i+1}, \quad B^i(Y) = \operatorname{im} \delta_{i-1}$ (brzegi i kobrzegi)

 $\bar{B}_i(Y), \bar{B}^i(Y)$ domknięcia podprzestrzeni $B_i(Y), B^i(Y)$ w normie

Stwierdzenie 41 (ℓ_2 -rozkład H-dR). $C_i(Y) = \bar{B}^i \oplus Z_i = \bar{B}_i \oplus Z^i = \bar{B}_i \oplus \bar{B}^i \oplus \mathcal{H}_i$

Definicja 42 (laplasjan). $\Delta_i = d_{i+1}\delta_i + \delta_{i-1}d_i : C_i(Y) \to C_i(Y)$

Stwierdzenie 43. $\mathcal{H}_i(Y,G) = \ker \Delta_i$

Twierdzenie 44. $H_i^G(Y, \ell_2(G)) = Z_i(Y) / B_i(Y)$

Definicja 45 (ℓ_2 -homologie zredukowane). $\bar{H}_i(Y) = Z_i(Y) / \bar{B}_i(Y)$

Stwierdzenie 46. Rzut ortogonalny $Z_i \to \bar{H}_i(Y)$ indukuje izomorfizm $\bar{H}_i(Y) \simeq \mathcal{H}_i(Y)$.