

Московский государственный технический университет имени Н.Э. Баумана

Учебное пособие

В.П. СТРОГАЛЕВ, И.О. ТОЛКАЧЕВА, В.С. ВЛАДИМИРОВ

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ ПРИ ПРОЕКТИРОВАНИИ ИМПУЛЬСНЫХ ТЕПЛОВЫХ МАШИН

Издательство МГТУ имени Н.Э. Баумана

В.П. СТРОГАЛЕВ, И.О. ТОЛКАЧЕВА, В.С. ВЛАДИМИРОВ

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ ПРИ ПРОЕКТИРОВАНИИ ИМПУЛЬСНЫХ ТЕПЛОВЫХ МАШИН

Рекомендовано редсоветом МГТУ им. Н.Э. Баумана в качестве учебного пособия

М о с к в а Издательство МГТУ им. Н.Э. Баумана $2\ 0\ 0\ 3$

Рецензенты: В.Т. Волков, А.И. Максимов, В.Е. Смирнов

Строгалев В.П., Толкачева И.О., Владимиров В.С.

С86 Исследование операций при проектировании импульсных тепловых машин: Учебное пособие. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. – 20 с.: ил.

ISBN 5-7038-2372-2

Рассмотрены вопросы сравнительной оценки образцов вооружения на основе математического аппарата моделирования боевых действий. Приведен числовой пример.

Для студентов старших курсов. Табл. 2. Ил. 5. Библиогр. 2 назв.

УДК 623.97(075.8) ББК 68.8

Валерий Петрович Строгалев Ирина Олеговна Толкачева Владимир Сергеевич Владимиров

Исследование операций при проектировании импульсных тепловых машин

Редактор О.М. Королева Корректор И.Е. Мелентьева

Подписано в печать 26.07.02. Формат 60×84/16. Бумага офсетная. Печ. л. 1,25. Усл. печ. л. 1,16. Уч.-изд. л. 0,96. Тираж 100 экз. Изд. № 80. Заказ № 124/

Издательство МГТУ им. Н.Э. Баумана. 105005, Москва, 2-я Бауманская, 5.

ISBN 5-7038-2372-4

© МГТУ им. Н.Э. Баумана, 2003

ВВЕДЕНИЕ

Противодействие противника — один из основных факторов, существенно влияющих на эффективность выполнения боевой задачи различными типами вооружения. Нельзя планировать операцию и расчет наряда средств, необходимых для ее осуществления, без учета противодействия противника.

Рассмотрим классификацию типов противодействия (рис. 1).

Рис. 1

Если такие виды противодействия, как огневое и помехи, обладают одинаковой эффективностью, то предпочтение нужно отдать огневому, как наносящему невосстановимый ущерб. Упреждающее противодействие применяется до боевых действий, а встречное (сопровождающее) – во время огневых действий.

Учет огневого противодействия представляет собой двухстороннюю задачу оценки эффективности стрельбы и используется для сравнительной оценки образцов вооружения.

Учет противодействия осуществляется с помощью математического аппарата моделирования боевых действий.

Аппарат моделирования боевых действий — основной источник информации о значениях показателей эффективности образцов вооружения, поскольку на ранних этапах разработки получение этой информации невозможно, а на последующих — крайне ограничено [1].

Модели боевых действий бывают аналитическими и статистическими, причем каждый тип моделей обладает своими достоинствами и недостатками.

При рассмотрении боя многочисленных группировок характерно, что случайности, связанные с состоянием каждой отдельной единицы, мало сказываются на состоянии всей группировки в целом, что значительно упрощает аналитическую модель, позволяя перейти к детерминированному процессу.

1. МОДЕЛИ БОЕВЫХ ДЕЙСТВИЙ

1.1. Модели динамики средних (уравнения Ланчестера)

Рассмотрим бой двух многочисленных группировок (I и II), первая из которых имеет N_1 однородных боевых единиц, а вторая $-N_2$.

Введем следующие допущения:

каждая боевая единица производит пуассоновский поток выстрелов;

огонь ведется прицельно, т. е. при каждом выстреле пораженная единица выбывает, а огонь мгновенно переносится на другую;

время полета снаряда пренебрежимо мало;

суммарная мощь группировки пропорциональна числу сохранившихся боевых единиц.

Тогда текущие значения сохранившихся боевых единиц m_1 и m_2 могут быть описаны уравнениями Ланчестера

$$\frac{dm_1}{dt} = -\Lambda_2 m_2; \ \frac{dm_2}{dt} = -\Lambda_1 m_1,$$

где
$$\Lambda_2 = \lambda_2 p_2$$
, $\Lambda_1 = \lambda_1 p_1$.

Решение этих уравнений для относительной доли сохранив-шихся боевых единиц имеет следующий вид:

$$\mu_1 = \operatorname{ch}\tilde{t} - \frac{1}{\kappa}\operatorname{sh}\tilde{t}, \ \mu_2 = \operatorname{ch}\tilde{t} - \kappa\operatorname{sh}\tilde{t}.$$

Здесь
$$\mu_1 = \frac{m_1}{N_1}$$
; $\mu_2 = \frac{m_2}{N_2}$;

$$\kappa = \frac{N_1}{N_2} \cdot \sqrt{\frac{p_1 \lambda_1}{p_2 \lambda_2}}, \quad \tilde{t} = \sqrt{u_1 u_2} \cdot t,$$

где
$$u_1 = \frac{\Lambda_1 N_1}{N_2}$$
, $u_2 = \frac{\Lambda_2 N_2}{N_1}$.

Параметр к называют параметром превосходства; если $\kappa > 1$ – победит группировка I, и наоборот.

Аналитически можно определить время окончания боя

$$t_{\rm ok} = \frac{1}{\sqrt{\Lambda_1 \Lambda_2}} \ln \left[\sqrt{\frac{N_1 \sqrt{\Lambda_1} + N_2 \sqrt{\Lambda_2}}{N_1 \sqrt{\Lambda_1} - N_2 \sqrt{\Lambda_2}}} \right],$$

а также количество сохранившихся боевых единиц победившей стороны

$$m_k = N_1 \sqrt{1 - \frac{\Lambda_2 N_2^2}{\Lambda_1 N_1^2}}.$$

При рассмотрении уравнений Ланчестера возможен учет различных факторов, в частности фактора пополнения резервов,

$$\frac{d\mu_1}{dt} = -u_2\mu_2 + v_1, \quad \frac{d\mu_2}{dt} = -u_1\mu_1 + v_2.$$

Здесь

$$v_1 = \frac{n_1}{N_1}; \quad v_2 = \frac{n_2}{N_2},$$

где n_1 , n_2 – число пополнения в единицу времени.

1.2. Вероятностные модели боевых действий (марковские модели)

Вероятностными называются модели, когда реальный случайный процесс боя заменяется модельным.

Различают модели с непрерывным временем (непрерывные модели) и модели с дискретным временем (дискретные модели).

Непрерывные модели используют допущение о последовательности выстрелов, образующей пуассоновский поток (марковская модель), что зачастую представляется весьма проблематичным. Однако этот недостаток в известной мере компенсируется изящным математическим аппаратом.

Дискретные модели более точно отражают реальную ситуацию на поле боя, но более громоздки и неудобны для использования.

Непрерывные модели. Математической основой непрерывных моделей являются уравнения Колмогорова

$$\frac{dp_k(t)}{dt} = \sum \lambda_{ik} p_i(t) - p_k(t) \sum \lambda_{ki},$$

где $p_k(t)$, $p_i(t)$ — вероятности нахождения системы в состояниях S_k , S_i соответственно; λ_{ik} , λ_{ki} — интенсивность перехода системы в соответствующие состояния.

Рассмотрим запись этих уравнений применительно к дуэльному бою двух единиц «1:1». Обозначим $u=\lambda_x p_x$ и $v=\lambda_y p_y$. Здесь λ_x , λ_y — скорострельности сторон; P_x , P_y — вероятности поражения сторон. Система (противоборствующие стороны) может находиться в состояниях «1:1», «1:0» и «0:1». Тогда система уравнений Колмогорова примет вид

$$\begin{cases} \frac{dp_{11}}{dt} = -(u - v) p_{11}; \\ \frac{dp_{10}}{dt} = up_{11}; \\ \frac{dp_{01}}{dt} = vp_{11} \end{cases}$$

при начальном условии $p_{11}(0) = 1$. Знак «—» ставится в случае стрелок на графе, выходящих из данного состояния, и «+» — для входящих в данное состояние.

Решение этой системы в случае постоянных и и у:

$$p_{11}(t) = e^{-(u+v)t};$$

$$p_{01}(t) = \frac{u}{u+v} \left[1 - e^{-(u+v)t} \right];$$

$$p_{10}(t) = \frac{v}{u+v} \left[1 - e^{-(u+v)t} \right].$$

При
$$t \to \infty$$
 $p_{10}(\infty) = \frac{u}{u+v}, p_{01}(\infty) = \frac{v}{u+v}, p_{11}(\infty) = 0.$

Математические ожидания сохранившихся боевых единиц к моменту t:

$$M[x(t)] = p_{11}(t) + p_{10}(t); \quad M[x(\infty)] = p_{10}(\infty);$$

 $M[y(t)] = p_{11}(t) + p_{01}(t); \quad M[y(\infty)] = p_{01}(\infty).$

Средняя продолжительность боя

$$T_{6} = \int_{0}^{\infty} \left[1 - p_{6}(t) \right] dt = \int_{0}^{\infty} e^{-\int_{0}^{t} (u + v) dt} dt = \frac{1}{u + v},$$

где $p_{6}(t) = p_{10}(t) + p_{01}(t)$ — вероятность окончания боя к моменту t. Расход боеприпасов к моменту времени t

$$G_{x}(t) = \int_{0}^{t} \lambda_{x} \left[1 - p_{6}(t) \right] dt;$$

$$G_{y}(t) = \int_{0}^{t} \lambda_{y} \left[1 - p_{6}(t) \right] dt.$$

Полный расход боеприпасов

$$G_x(\infty) = \mathbf{E}_x = \frac{\lambda_x}{u+v}; \ G_y(\infty) = \mathbf{E}_y = \frac{\lambda_y}{u+v}.$$

Аналогично может быть построена математическая модель для любого числа противоборствующих боевых единиц.

Лискретные модели (встречное противодействие в схеме последовательных ударов). Рассмотрим парный бой (дуэль) двух объектов: A и B. Пусть в момент времени t=0 объект A первым наносит удар по объекту B и выводит его из строя с вероятностью W_1 . Если произошло событие непоражения объекта B, вероятность которого равна $1-W_1$, то в следующий момент времени $t=t_1$ объект B воздействует на объект A и поражает его с вероятностью V_1 или не поражает его с вероятностью $1-V_1$. Если объект A остается непораженным, то в следующий момент времени $t = t_2$ объект Aвоздействует на объект B и поражает его с вероятностью W_2 или объект B остается невредимым с вероятностью $1-W_2$. Далее в момент времени $t = t_3$ объект B, оставшись непораженным, воздействует на объект A и т. д. Таким образом, процесс последовательного взаимного воздействия мы можем представить как цепь последовательных событий A_i (объект A воздействует на объект B) и B_i (объект B воздействует на объект A), заданных во времени.

Описанная таким образом схема последовательных воздействий практически представляется в виде «дерева боя» (рис. 2, где соб. – событие).

Рис. 2

Предположим, что воздействия ведутся в разных условиях, т. е. вероятности поражения объекта B и A при разных ударах различны: $W_1 \neq W_2 \neq \ldots \neq W_k$ и $V_1 \neq V_2 \neq \ldots \neq V_n$.

Определим вероятность поражения объекта B объектом A по результатам нескольких последовательных воздействий при учете противодействия со стороны объекта B.

Объект B может быть поражен объектом A или при первом воздействии с вероятностью W_1 , или в результате второго воздей-

ствия при условии, что он не был поражен первым воздействием, а потом сам поразил объект A с вероятностью $(1-W_1)(1-V_1)W_2$. Здесь W_2 рассматривается как вероятность поражения объекта B объектом A вторым выстрелом без учета первого выстрела и противодействия. Соответственно вероятность поражения объекта B третьим выстрелом определяется как $(1-W_1)(1-V_1)(1-W_2)(1-V_2)W_3$ и т. л.

Таким образом, вероятность поражения объекта *А* за несколько последовательных воздействий при учете противодействия

$$\widetilde{W}(A) = W_1 + (1 - W_1)(1 - V_1)W_2 + (1 - W_1)(1 - V_1)(1 - W_2)(1 - V_2)W_3 + \dots$$

Аналогично вероятность поражения объектом B объекта A с учетом противодействия и при условии, что дуэль начинает объект A,

$$\tilde{V}(B) = (1 - W_1)V_1 + (1 - W_1)(1 - V_1)(1 - W_2)V_2 + (1 - W_1)(1 - V_1) \times (1 - W_2)(1 - V_2)(1 - W_3)V_3 + \dots$$

Расчет ведется до тех пор, пока $\tilde{W}(A) + \tilde{V}(B) = 1$. Дуэль выиграет сторона A, если к концу дуэли $\tilde{W}(A) > \tilde{V}(B)$, и наоборот, победит сторона B, если $\tilde{V}(B) > \tilde{W}(A)$.

При ведении воздействий в одинаковых условиях $W_1=W_2=W_3=\ldots=P$ и $V_1=V_2=V_3=\ldots P'$. Тогда $\tilde{W}(A)=P+$ + $(1-P)(1+P')P+(1-P)^2(1+P)^2P+\ldots=P[1+(1-P)(1+P')+$ + $(1-P)^2(1+P)^2+\ldots]$. Выражение в квадратных скобках представляет собой сумму членов бесконечной геометрической прогрессии, у которой первый член равен единице, а знаменатель (1-P)(1+P'). Поэтому

$$\tilde{W}(A) = \frac{P}{1 - (1 - P)(1 - P')}.$$

Если число воздействий ограничено и равно n, на том же основании

$$\tilde{W}(A) = \frac{P[1 - (1 - P)^n (1 - P')^n]}{1 - (1 - P)(1 - P')}.$$

Рассмотренная модель, как правило, используется для анализа ограниченного количества (1×1) противоборствующих объектов и их группировок.

1.3. Модель статистических испытаний

В основе данной модели лежит метод Монте – Карло, с помощью которого все возможные события определяются в результате случайного розыгрыша.

При рассмотрении конкретной боевой ситуации (в частности, дуэльной) разыгрывается единичный жребий для различных факторов: погодных условий, вероятностей обнаружения каждой из противоборствующих сторон, моментов производства выстрелов каждой из сторон, вероятностей попадания и поражения. Один прогон такой статистической модели на ЭВМ дает единственный результат: какая из сторон поражена, а какая осталась целой. Число таких прогонов должно быть достаточно большим для обеспечения заданной точности результата с фиксированным уровнем доверия и определяется на основе формул теории вероятностей [2].

Вероятности поражения сторон могут быть найдены из зависимостей $p_x = \frac{N_x}{N}, \quad p_y = \frac{N_y}{N}, \quad \text{где } N_x, \, N_y \, - \, \text{число исходов, благоприятствующих сторонам } x$ и y соответственно; N- общее число прогонов модели.

Статистические модели, которые практически не имеют серьезных допущений, искажающих протекание реального дискретного процесса, позволяют описать реальную боевую ситуацию с любой степенью точности и полноты. Однако модель не должна быть слишком усложнена, так как это приводит к большим затратам машинного времени, а зачастую и к ошибкам.

Статистическая модель применяется для уточняющих расчетов, а также для проведения факторного машинного эксперимента, позволяющего в конечном итоге получить регрессионные зависимости, связывающие вероятность поражения цели с основными тактико-техническими характеристиками используемого комплекса вооружения.

2. РЕШЕНИЕ ЗАДАЧИ ВЫБОРА ОПТИМАЛЬНОГО ОСНАЩЕНИЯ МАШИН ПРИ УЧЕТЕ ВСТРЕЧНОГО ПРОТИВОДЕЙСТВИЯ В СХЕМЕ ПОСЛЕДОВАТЕЛЬНЫХ УДАРОВ

Пусть требуется определить оптимальный вариант оснащения самоходной артиллерийской установки (САУ), предназначенной для воздействия на машины типа Т, оборудованные 100-мм ТП. В качестве возможных вариантов оснащения САУ рассматривается оборудование 100-мм ПТП, 152-мм ПТП и ПТУР.

Пусть также известны значения средних необходимых чисел попаданий для поражения: для машины типа T при использовании 100-мм $\Pi T\Pi - \omega_{100}$, 152-мм $\Pi T\Pi - \omega_{152}$, $\Pi T YP - \omega_{\Pi}$, для машины типа CAY при использовании 100-мм $T\Pi - \omega_{100T}$.

Пусть производительности ПТП и ТП будут соответственно равны n_{100} , n_{152} , $n_{100\mathrm{T}}$, а производительность ПТУР определяется по наблюдению результатов воздействия.

Известны размеры машин: тип Т $-a_{\rm T} \times b_{\rm T}$, тип САУ - где $a,\ a_{\rm T}$ – ширина, м; $b,\ b_{\rm T}$ – высота, м.

Начальное удаление машины T от машины CAY равно X_0 метров.

Рассеивание воздействующих элементов принимается круговым, т. е. $E_x = E_y$, а характеристика рассеивания задана кучностями в виде

$$\left(\frac{E_x}{x}\right)_{100}; \left(\frac{E_x}{x}\right)_{152}; \left(\frac{E_x}{x}\right)_{\Pi}; \left(\frac{E_x}{x}\right)_{\Gamma}.$$

Скорость полета ПТУР соответственно равна V_{Π} метров в секунду.

Машина T движется фронтально со скоростью $V_{\rm T}$ на неподвижную САУ. Дуэль начинает САУ, а спустя t_0 секунд, в работу

включается машина Т. Время полета снаряда до цели не учитывается. Время полета ПТУР до цели учитывается.

Пусть ω_{100} = 1, 2, ω_{152} = 1, 1, ω_{II} = 1, 0, ω_{100T} = 1, 3 попаданий;

$$n_{100} = 12, \ n_{152} = 12, \ n_{100T} = 14 \frac{1}{\text{MUH}}; \ X_0 = 900 \text{ M}; \ \left(\frac{E_x}{x}\right)_{100} = \frac{1}{800};$$

$$\left(\frac{E_x}{x}\right)_{152} = \frac{1}{900}; \quad \left(\frac{E_x}{x}\right)_{\Pi} = \frac{1}{800}; \quad \left(\frac{E_x}{x}\right)_{T} = \frac{1}{1200}; \quad V_T = 14 \text{ m/c},$$

$$V_{\Pi} = 120 \text{ m/c}; \quad b = 2,0 \text{ m}, \quad a = 1,5 \text{ m} \quad b_T = 3,0 \text{ m}, \quad a_T = 2,2 \text{ m}, \quad t_0 = 4 \text{ c}.$$

Для каждой пары машин Т и САУ (с соответствующим оборудованием 100-мм ПТП, 152-мм ПТП и ПТУР) определим вероятность выхода из строя машин в результате одного удара в зависимости от дальности:

$$X = X_0 - V_{\mathrm{T}}t.$$

Вероятность выхода из строя машины в результате одного выстрела может быть записана как

$$W = P_1 P_2 = P_1 \frac{1}{\omega} = \frac{P}{\omega},$$

где $P_1 = P -$ вероятность попадания снаряда в машину при одном выстреле; $P_2 = \frac{1}{\omega} -$ вероятность поражения машины при условии попадания в нее снаряда.

Если машина представляет собой прямоугольник со сторонами a и b, параллельными главным осям рассеивания, и точка прицеливания совпадает с центром цели, то, используя функцию Лапласа, можем представить вероятность попадания при одном выстреле в виде

$$P = 4\Phi^* \left(\frac{b/2}{\sigma_x}\right) \Phi^* \left(\frac{a/2}{\sigma_y}\right),$$

где
$$\Phi^*(x) = \frac{1}{\sqrt{2 \cdot \pi}} \int_0^x e^{\frac{-t^2}{2}} dt$$
 — функция Лапласа [1, 2]; σ_x , σ_y — сред-

ние квадратические отклонения точек попадания.

Указанную вероятность можно определить и через приведенную функцию Лапласа [1, 2];

$$P = \hat{\Phi}\left(\frac{a/2}{B_y}\right)\hat{\Phi}\left(\frac{b/2}{B_x}\right),\,$$

где $\hat{\Phi}(x) = \Phi(\rho x) = \frac{2\rho}{\sqrt{\pi}} \int_{0}^{x} e^{-\rho^2 \cdot t^2} dt$ — приведенная функция Лапла-

са; B_x , $B_e(E_x, E_y)$ — вероятные отклонения точек попадания.

Поскольку рассеивание снарядов задано круговым, то $\sigma_x = \sigma_y = \sigma$ и среднее квадратическое отклонение в зависимости от дальности X

$$\sigma = 1,48 \left(\frac{B}{x}\right) x = 1,48 \left(\frac{E}{x}\right) x.$$

Вероятность выхода из строя машины

$$W = \frac{4}{\omega} \Phi^* \left(\frac{b/2}{1,48 \left(\frac{E}{x} \right) x} \right) \Phi^* \left(\frac{a/2}{1,48 \left(\frac{E}{x} \right) x} \right).$$

Результаты расчетов W = f(x) для машин типа T и CAУ с соответствующим вооружением представлены в табл. 1, 2 и на рис 3.

Поскольку известны вероятности выхода машин из строя в функции дальности, а также скорость сближения машин и моменты воздействий друг на друга, то представляется возможной оценка исходов дуэльных ситуаций. Рассмотрим последовательно протекание дуэли между Т и САУ при трех вариантах вооружения.

Вариант 1. Дуэль Т и САУ с 100-мм ПТП. Строим «дерево» боя (рис. 4), используя для определения вероятности поражения график на рис. 3:

$$\begin{split} \tilde{W_1} &= W = 0,258; \\ \tilde{V_1} &= (1 - W_1)V_1 = 0,742 \cdot 0,14 = 0,104; \\ \tilde{W_2} &= \tilde{W_1} + (1 - \tilde{W_1})(1 - V_1)W_2 = 0,443; \\ \tilde{V_2} &= \tilde{V_1} + (1 - W_1)(1 - V_1)(1 - W_2)V_2 = 0,172; \\ \tilde{W_3} &= \tilde{W_2} + (1 - W_1)(1 - V_1)(1 - W_2)(1 - V_2)W_3 = 0,570; \\ \tilde{W_4} &= 0,651; \ \tilde{W_5} &= 0,697; \ \tilde{W_6} &= 0,719; \ \tilde{W_7} &= 0,725; \ \tilde{W} &= 0,73; \\ \tilde{V_3} &= 0,216; \ \tilde{V_4} &= 0,244; \ \tilde{V_5} &= 0,258; \ \tilde{V_6} &= 0,264; \ \tilde{V_7} &= 0,269; \\ \tilde{V} &= 0,27; \ \tilde{W} + \tilde{V} \approx 1. \end{split}$$

Рис. 3

Рис. 4

Вариант 2. Дуэль Т и САУ с 152-мм ПТП. Строим «дерево боя», для этого определяем:

$$\tilde{W_1} = 0,341;$$
 $\tilde{V_2} = 0,562;$
 $\tilde{V_2} = 0,144;$
 $\tilde{W_3} = 0,691;$
 $\tilde{V_4} = 0,759;$
 $\tilde{V_5} = 0,790;$
 $\tilde{V_6} = 0,802;$
 $\tilde{V_6} = 0,805;$
 $\tilde{V_1} = 0,092;$
 $\tilde{V_2} = 0,144;$
 $\tilde{V_3} = 0,172;$
 $\tilde{V_4} = 0,187;$
 $\tilde{V_6} = 0,194;$
 $\tilde{V}_6 = 0,194;$

Вариант 3. Дуэль Т и САУ предполагает выпуск двух ПТУР и

наблюдение за их действием. Через время $\frac{x_0}{V_{\Pi} + V_{T}} =$

 $=\frac{900}{120+14}=6,7$ с произойдет встреча машины T, которая до этого

сумеет выстрелить один раз. Второй ПТУР будет находиться в по-

лете $\frac{x}{V_{\Pi} + V_{T}} = \frac{805}{134} = 6,0$ с. До его встречи с машиной T последняя

успеет сделать еще два выстрела. Строим «дерево боя» (рис. 5), для этого находим:

Рис. 5

Анализ дуэльных ситуаций показывает следующее:

1) с точки зрения эффективности предпочтение можно отдать вооружению САУ 152-мм противотанковой пушкой (W = 0.805) по сравнению с 100-мм пушкой (W = 0.73) и ПТУР (W = 0.704);

- 2) по времени протекания дуэли преимущество имеет ПТУР;
- 3) по расходу боеприпасов $N_{100} = 7 > N_{152} = 6 > N_{\Pi} = 2$;
- 4) по стоимости затраченных боеприпасов предпочтение стоит отдать 100-мм пушке.

В целом задача выбора оптимального вооружения САУ сводится к реализации минимального значения критерия оптимальности по типу «эффективность-стоимость»

$$\beta = \frac{C_{\text{CHap}} \cdot MO[N_{\text{p}}] + (C_{\text{CAY}} + N_{\text{6KCAY}} - MO[N_{\text{p}}]) \cdot \tilde{V}}{\tilde{W}},$$

где

 $C_{chap}-$ стоимость единицы боекомплекта САУ, $(C_{100}=100~{\rm y.\,e.},\,C_{152}=300~{\rm y.\,e.},\,C_{\Pi T Y P}=600~{\rm y.\,e.},$

 C_{CAY} – стоимость САУ (10 000 у.е.),

 $N_{6 \text{кСАУ}}$ — количество снарядов в боекомплекте САУ ($N_{6 \text{кСАУ 100}} = 40$, $N_{6 \text{кСАУ 152}} = 30$, $N_{6 \text{кТ 100}} = 40$),

 $MO[N_p]$ — математическое ожидание расхода боекомплекта САУ на выполнение задачи ($MO[N_{100}]$, $MO[N_{152}]$, $MO[N_{\Pi TYP}]$).

Таким образом, необходимо определить значения критерия оптимальности для каждого варианта вооружения САУ (Θ_{100} , Θ_{152} , $\Theta_{\Pi T Y P}$) и выбрать вариант с наименьшим значением критерия.

<i>1</i> 1∕11	х, м	σ ₁₀₀	σ ₁₅₂	σ _{100T}	Φ_{100}^{*a}	Φ_{100}^{*b}	Φ_{152}^{*a}	Φ****	$\Phi_{100\mathrm{T}}^{*a}$	Φ_{100T}^{*b}	W ₁₀₀	W ₁₅₂	W _{100T}
1	900	1,67	1,48	1,67	0,245	0,315	0,271	0,344	0,173	0,224	0,258	0,341	0,119
2	700	1,30	1,15	1,30	0,301	0,375	0,330	0,403	0,217	0,279	0,376	0,483	0,187
3	500	0,927	0,823	0,927	0,383	0,447	0,410	0,466	0,290	0,360	0,548	0,695	0,321
4	300	0,556	0,494	0,556	0,476	0,497	0,487	0,499	0,412	0,464	0,788	0,885	0,588
5	100	0,185	0,165	0,185	0,500	0,500	0,500	0,500	0,500	0,500	0,832	0,908	0,769

Таблица 2

№ п/п	х, м	х _д , м	E_{x}	σ_x	$\Phi^*\left(\frac{a/2}{\sigma_y}\right)$	$\Phi^*\left(\frac{b/2}{\sigma_x}\right)$	W = P
1	900	805	0,670	0,993	0,367	0,433	0,636
2	700	625	0,520	0,770	0,424	0,474	0,803
3	500	450	0,375	0,555	0,476	0,496	0,946
4	300	270	0,225	0,334	0,499	0,500	0,998
5	100	90	0,075	0,111	0,500	0,500	1

СПИСОК ЛИТЕРАТУРЫ

- 1. Абаулин В.И. Внешнее проектирование танкового и противотанкового вооружения. М.: Воениздат, 1967. 526 с.
 - 2. Вентцель Е.С. Исследование операций. М.: Сов. радио, 1972. 387 с.

ОГЛАВЛЕНИЕ

Введение	3
1. Модели боевых действий	
1.1. Модели динамики средних (уравнения Ланчестера)	
1.2. Вероятностные модели боевых действий	
(марковские модели)	6
1.3. Модель статистических испытаний	
2. Решение задачи выбора оптимального оснащения машин при учете	
встречного противодействия в схеме последовательных ударов 1	2
Список литературы	