Funciones de Variable Compleja

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

Círculos y rectas

El círculo

Ecuación

$$|z - z_0| = r$$

Concepto

- Todos los puntos en $\mathbb C$ que se encuentran a una distancia r del punto z_0
- z: variable, cualquier punto de C que cumple condición
- z₀: centro
- *r*: radio

Im(z) $z - z_0 = re^{j\theta}$ $\operatorname{Re}(z)$

Círculo

Generalizando círculos

¿Cómo se representa el exterior o el interior del círculo?

$$|z-z_0| \ge r$$

$$|z-z_0| \leq r$$

La recta

Ecuación

$$|z - a| = |z - b|$$

Concepto

- Todos los puntos en € que se encuentran a una misma distancia de los puntos a y b.
- z: variable, cualquier punto de C que cumple condición
- a, b: puntos en el plano

Recta: mediatriz de segmento entre *a* y *b*.

Im(z) $\sum |z - a| = |z - b|$ $\operatorname{Re}(z)$

Generalizando rectas

¿Cómo se representan semi-planos?

$$|z-a| \ge |z-b|$$

$$|z-a| \le |z-b|$$

Funciones de variable compleja

Funciones de variable compleja

Función

• Una función f es un concepto matemático que involucra dos conjuntos X y Y y una regla o relación que asocia a cada elemento $x \in X$ uno y solo un elemento de $y \in Y$.

Se dice entonces que f mapea el elemento x en el elemento y.

$$f: X \to Y$$

$$y = f(x)$$

Diagrama de relación funcional entre $x \in X$ y $y \in Y$

Dominio y Codominio

El conjunto X es el dominio de la función f

 El conjunto de todas las imágenes es el conjunto imagen, rango o codominio de f

$${y|y=f(x),x\in X}\subseteq Y$$

Funciones complejas en términos de funciones reales

Funciones para parte real e imaginaria

$$w = f(x, y) = u(x, y) + jv(x, y)$$

Funciones para módulo y argumento

$$w = f(x, y) = r(x, y)e^{j\theta(x, y)}$$

Representación de funciones complejas

Funciones reales bidimensionales

Mapeo

Concepto de mapeo

- Representaciones por componentes (real, imaginaria, magnitud o fase) que permiten visualizar el comportamiento de la función de variable compleja para todo el plano complejo.
- Con un mapeo se estudia cómo es transformada una región específica del plano z en otra región del plano w = f(z).

Mapeo inverso y punto fijo

Mapeo inverso

$$w = f(z) \Rightarrow z = f^{-1}(w) = f^{-1}(f(z))$$

Punto fijo

$$z = f(z)$$

Mapeos lineales

Ejemplo: Mapeo de una línea recta

• Encuentre la imagen en el plano w de la región lineal y = 2x + 4 del plano z = x + jy bajo el mapeo w = 2z + 6. Encuentre los puntos fijos de este mapeo, y su mapeo inverso.

Ejemplo: Mapeo de una línea recta

Solución

$$w = u + jv = f(z) = 2z + 6 = 2(x + jy) + 6$$

$$= (2x+6) + j2y$$

de donde se puede despejar

$$x = \frac{u - 6}{2}$$

Y sustituyendo en v se obtiene

$$v = 2y = 2(2x + 4) = 4x + 8 = 2u - 12 + 8 = 2u - 4$$

Lo que corresponde también a una línea recta

Ejemplo: Mapeo de una línea recta

- Mapeo de y = 2x + 4 por medio de w = 2z + 6
- El único punto fijo del mapeo w=2z+6 es z=-6 y se encuentra fácilmente resolviendo la ecuación lineal z=2z+6. El mapeo inverso es $z=\frac{w-6}{2}$

Mapeo lineal

$$w = \alpha z + \beta$$

$$\alpha, \beta \in \mathbb{C}$$

Mapeo de todo el plazo z a β con $w = \beta$

Mapeos lineales Caso1

$$\alpha = 0$$

$$\Rightarrow w = \beta$$

Rotación y escalado por el mapeo $w = \alpha z$.

Mapeos lineales Caso2

$$\beta = 0, \alpha \neq 0$$

$$w = \alpha z$$

$$w = |\alpha| e^{j \angle \alpha} r e^{j\theta}$$

$$w = |\alpha| r e^{j(\theta + \angle \alpha)}$$

$$w = \alpha z + \beta$$

 \boldsymbol{Z}

→ escalamiento →
$$|\alpha|z$$

→ rotación → $|\alpha|e^{j \angle \alpha_z}$
→ traslacion → $|\alpha|e^{j \angle \alpha_z} + \beta$

El mapeo lineal escala, rota y traslada los puntos de z en w.

Mapeos lineales Caso3

Caso3: si $\alpha \neq 0$ y $\beta \neq 0$

Ejemplo: Mapeo lineal de rectas (1)

• Demuestre que el mapeo lineal $w = \alpha z + \beta$ transforma una recta en z en otra recta en w.

Ejemplo: Mapeo lineal de rectas (2)

Solución:

 Dada la recta mediatriz del segmento de recta entre a y b descrita por

$$|z - a| = |z - b| \tag{1}$$

Con $a, b \in \mathbb{C}$

Puesto que $w = \alpha z + \beta$

$$z = \frac{w - \beta}{\alpha} \tag{2}$$

Ejemplo: Mapeo lineal de rectas (3)

Sustituyendo (2) en (1) se obtiene:

$$\left| \frac{w - \beta}{\alpha} - a \right| = \left| \frac{w - \beta}{\alpha} - b \right|$$

$$\frac{1}{|\alpha|}|w - (\alpha a + \beta)| = \frac{1}{|\alpha|}|w - (\alpha b + \beta)|$$

Ejemplo: Mapeo lineal de rectas (4)

$$|w - \bar{a}| = |w - \bar{b}|$$

Donde $\bar{a} = \alpha a + \beta$ y $\bar{b} = \alpha b + \beta$ que son las transformaciones de los dos puntos generadores de la recta.

Con esto queda claro que una recta es mapeada a otra recta en un mapeo lineal.

Ejemplo: Mapeo lineal de círculos (1)

• Demuestre que el mapeo lineal $w = \alpha z + \beta$ transforma un círculo en z en otro círculo en w.

Ejemplo: Mapeo lineal de círculos (2)

Solución:

- La ecuación de un círculo en z es $|z-z_0|=r$, donde el círculo tiene radio r y está centrado en z_0 .
- El mapeo lineal $w = \alpha z + \beta$. Esto quiere decir:

$$z = \frac{w - \beta}{\alpha}$$

Ejemplo: Mapeo lineal de círculos (3)

Si se resta z_0 a ambos lados se obtiene

$$z - z_0 = \frac{w - \beta}{\alpha} - z_0$$

$$\frac{w}{\alpha} - \frac{\beta}{\alpha} - z_0 = \frac{w}{\alpha} - \frac{\beta + \alpha z_0}{\alpha} = \frac{1}{\alpha} (w - w_0)$$

$$con w_0 = \alpha z_0 + \beta$$

Ejemplo: Mapeo lineal de círculos (4)

Puesto que el círculo en z es $|z - z_0| = r$

$$\left|\frac{1}{\alpha}(w-w_0)\right| = |z-z_0| = r$$

$$|w - w_0| = r|\alpha|$$

- El radio del círculo en el plano w ha sido escalado con un factor de $|\alpha|$
- El círculo está centrado en $w_0 = \alpha z_0 + \beta$, que corresponde a la aplicación del mapeo lineal al centro del círculo z_0 .

Ejemplo: Mapeo lineal de una región (1)

Considere el mapeo lineal $w = f(z) = \alpha z + \beta$. Si 1 + j = f(1+j) y 0 = f(j)

- Determine los valores de α y β .
- Encuentre la región del plano w a la que es mapeado el semiplano izquierdo del plano z.
- Encuentre la región en el plano w correspondiente a |z| <
 2.
- Encuentre los puntos fijos del mapeo.

Ejemplo: Mapeo lineal de una región (2)

Solución: Con los pares de puntos dados se plantea un sistema de dos ecuaciones lineales

$$\alpha(1+j) + \beta = 1+j \tag{1}$$

$$\alpha j + \beta = 0 \tag{2}$$

De (4) se despeja $\beta = -j\alpha$ lo que se introduce en (1) para despejar α :

$$\alpha(1+j) - j\alpha = 1+j$$

$$\alpha = 1 + j$$

Con lo que se deriva además $\beta = 1 - j$

Ejemplo: Mapeo lineal de una región (3)

Como el mapeo es lineal, el eje imaginario del plano z es transformado a otra recta del plano w = u + jv. Puesto que el eje imaginario es la recta z = jy, se sustituye esto en el mapeo, lo que resulta en:

$$w = (1+j)jy + (1-j)$$

$$= jy - y + 1 - j$$

$$= (1-y) + j(y-1)$$

Despejando y en términos de u e insertando en v se obtiene v = -u.

Ejemplo: Mapeo lineal de una región (4)

Para encontrar qué parte del plano w dividido por v=-u corresponde al semiplano izquierdo de z se puede proceder tomando un punto de ese semiplano y encontrando su mapeo en w. Por ejemplo, el punto z=-1 es mapeado en w=-(1+j)+(1-j)=-2j, lo que quiere decir que $Re\{z\}<0$ es mapeado en el semiplano inferior izquierdo v<-u.

A la misma conclusión se puede llegar utilizando la interpretación geométrica del mapeo: puesto que $\alpha=1+j=\sqrt{2}e^{j\frac{\pi}{4}}$ el semiplano se escala por $\sqrt{2}$ y luego se rota 45^o en contra de las manecillas del reloj, para ser luego trasladado en $\beta=1-j=\sqrt{2}e^{-j\frac{\pi}{4}}$, que deja al semiplano izquierdo de z del lado inferior izquierdo de w.

Ejemplo: Mapeo lineal de una región (5)

Ejemplo: Mapeo lineal de una región (6)

Como el mapeo es lineal, el círculo es transformado en otro círculo. Siguiendo la interpretación geométrica del nuevo círculo tendrá un radio de $2\sqrt{2}$ centrado en $w_0 = 1 - j$, es decir, el círculo |z| < 2 es transformado en $|w - w_0| < 2\sqrt{2}$.

Como punto fijo se tiene que $z = \alpha z + \beta$ que tiene una sola solución z = w = 1 + j (ver el enunciado).

Mapeo de Inversión

Mapeo de inversión

$$w=\frac{1}{Z}$$

Mapeo inverso del mapeo de inversión:

$$z=\frac{1}{w}$$

Ejemplo: Mapeo de inversión de un círculo (1)

$$|z-z_0|=r$$
, $\alpha=r^2-|z_0|^2$

Caso 1: $\alpha \neq 0$, se tiene:

$$|w - w_0| = r_w$$

Con
$$w_0 = -\frac{z_0^*}{\alpha} y r_w = \left| \frac{r}{\alpha} \right| = \left| \frac{r}{r^2 - |z_0|^2} \right|$$

Ejemplo: Mapeo de inversión de un círculo (2)

En otras palabras, cualquier círculo en el plano z que no pasa por el origen es transformado por $w=\frac{1}{z}$ en otro círculo que tampoco pasa por el origen, pues si $r_w \neq |z_0|$ entonces:

$$r_w = \frac{|r|}{|\alpha|} \neq \left| -\frac{z_0^*}{\alpha} \right| = \frac{|z_0|}{|\alpha|}$$

Entonces, si $\alpha \neq 0$, un círculo en el plano z es transformado por inversión en otro círculo en el plano w.

Ejemplo: Mapeo de inversión de un círculo (3)

Caso 2: $\alpha = 0$, nótese que lo anterior equivale a $r = |z_0|$, es decir, un círculo que pasa por el origen.

Así, se tiene:

$$v = \frac{x_0}{y_0}u - \frac{1}{2y_0}$$

Lo que equivale a una recta en el plano w que corta el eje imaginario en $v=-\frac{1}{2y_0}$ y tiene pendiente $\frac{x_0}{y_0}$.

En otras palabras: un círculo que pasa por el origen es transformado en una recta que no pasa por el origen.

Ejemplo: Mapeo de inversión de una recta (1)

$$|z-a| = |z-b|, \qquad \beta = |a|^2 - |b|^2$$

Caso 1: $\beta = |a|^2 - |b|^2$. es igual a cero si y solo si los dos puntos a y b tienen la misma magnitud, en cuyo caso la mediatriz es una recta que pasa por el origen.

Así, una recta que pasa por el origen en z será proyectada (mapeada) en otra recta que pasa por el origen en w

$$v = \frac{Re\{a - b\}}{Im\{a - b\}}u$$

Ejemplo: Mapeo de inversión de una recta (2)

Caso 2: Si $\beta = |a|^2 - |b|^2 \neq 0$ entonces la recta no pasa por el origen y la ecuación

$$\left|w - \frac{(a-b)^*}{\beta}\right| = \frac{|a-b|}{|\beta|}$$

$$|w - w_0| = r_w$$

corresponde a un círculo centrado en $w_0 = \frac{(a-b)^*}{\beta}$ de radio $r_w = \left| \frac{a-b}{\beta} \right|$. Puesto que $r_w = |w_0|$ entonces la recta es transformada en un círculo que pasa por el origen del plano w.

Ejemplo: Mapeo de inversión de una recta (7)

Círculo No pasa por 0 ↔ Círculo No pasa por 0

Línea No pasa por 0 ↔ Círculo Pasa por 0

Si círculo incluye a 0, se invierte sentido de trayectoria

Ejemplo: Mapeo de inversión de una recta (8)

Ejemplo: mapeo de inversión

Encuentre el mapeo de la siguiente figura con el mapeo de inversión

Ejemplo: mapeo de inversión

Solución

Polinomio bilineal

$$\alpha_1 z w + \alpha_2 z + \alpha_3 w + \alpha_4 = 0$$

Se puede reescribir como

$$w(\alpha_1 z + \alpha_3) = -\alpha_2 z - \alpha_4$$

$$w = \frac{-\alpha_2 z - \alpha_4}{\alpha_1 z + \alpha_3}$$

O en su forma tradicional:

$$w = \frac{az + b}{cz + d}$$

Descomposición en mapeos elementales

$$w = \frac{az + b}{cz + d} = \frac{a}{c} + \frac{bc - ad}{c(cz + d)}$$

Determinante del mapeo es (bc - ad)

Si el determinante no es cero, el mapeo inverso existe:

$$z = \frac{-dw + b}{cw - a}$$

Mapeo

$$w = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{bc-ad}{c(cz+d)}$$

Se puede reescribir con $\lambda = \frac{a}{c}$, $\mu = bc - ad$, $\alpha = c^2$ y $\beta = cd$ como:

$$w = \lambda + \frac{\mu}{\alpha z + \beta}$$

Pasos involucrados

$$w = \lambda + \frac{\mu}{\alpha z + \beta}$$

- $z_1 = \alpha z + \beta$ (mapeo lineal)
- $z_2 = \frac{1}{z_1}$ (mapeo de inversión)
- $w = \mu z_2 + \lambda$ (mapeo lineal)

Ejemplo: Mapeo bilineal (Carta Smith)

En el estudio de líneas de transmisión se utiliza a menudo la llamada carta de Smith que relaciona el coeficiente complejo de reflexión Γ con la impedancia compleja normalizada z por medio del mapeo bilineal:

$$\Gamma = \frac{z - 1}{z + 1}$$

 Verifique a qué equivalen las proyecciones de resistencia o reactancias constantes en z en el plano Γ del coeficiente complejo de reflexión.

Ejemplo: Mapeo bilineal

Carta de Smith

Ejemplo: Carta de Smith (1)

Solución:

Una primera solución conceptual puede obtenerse observando que los dos mapeos lineales involucrados son:

$$\Gamma = \frac{z - 1}{z + 1} = 1 - \frac{2}{z + 1}$$

- El primer mapeo $z_1 = z + 1$ en el denominador del término racional corresponde a trasladar al plano z una unidad hacia la derecha.
- Luego se aplica el mapeo de inversión $z_2 = 1/z_1$ y,
- puesto que $-2 = 2e^{j180^o}$, se hace un escalado por el factor de 2 seguido por una rotación en 180^o .
- Al resultado z₂ solo resta desplazarlo una unidad hacia la derecha para obtener Γ.

Ejemplo: Carta de Smith (2)

Solución:

- Nótese que en $z = \infty$, $\Gamma = 1$, esto quiere decir que toda la recta en z tendrá un mapeo que pasa por el punto $\Gamma = 1$ pues toda recta contiene a ∞ .
- Además, en z=-1, $\Gamma=\infty$, por lo que, considerando todo el análisis anterior para el mapeo de inversión, cualquier círculo o recta que pase por z=-1 será transformado en una recta en el plano Γ .
- Consecuencia de lo anterior es que toda recta que no pasa por z=-1 tiene como equivalente un círculo que pasa por $\Gamma=1$.

Ejemplo: Carta de Smith (3)

Ejemplo: Carta de Smith (4)

Ejemplo: Carta de Smith (5)

Ejemplo: Carta de Smith (6)

Ejemplo: Carta de Smith (7)

Solución:

La Carta de Smith comúnmente representa solo lo que se encuentra dentro del círculo unitario del plano Γ, puesto que componentes resistivos negativos de la impedancia normalizada z no tienen sentido en la aplicación práctica².

²Para un análisis más algebraico del caso ver [1], pag 37.

Mapeos racionales

$$w = \frac{P(z)}{Q(z)}$$

Mapeo trigonométricos y logarítmicos

Ejemplo: Mapeo exponencial

(1)

$$w = e^z$$

Ejemplo: Mapeo exponencial

(2)

Solución:

- Puesto que $e^z = e^x e^{jy}$ entonces la magnitud de e^z se hace cero solo si $x \to -\infty$.
- Las líneas horizontales, que poseen y constante, equivalen a líneas radiales partiendo del origen del plano w.
- Las líneas verticales que tiene a x constante, representan círculos centradas en el origen de w.

Ejemplo: Mapeo exponencial

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

