Семинар 7

- 1. В пространстве V выбран базис e_1, e_2, e_3 , а в пространстве V^* двойственный базис f_1, f_2, f_3 . Требуется:
- а) подвергнуть тензор $f_1 \otimes f_2 \otimes f_1$ симметризации и найти значение полученного симметрического тензора на тройке векторов $(v, v, v), v = x_1e_1 + x_2e_2 + x_3e_3$;
- б) проделать то же самое с тензором $f_1 \bigotimes f_2 \bigotimes f_3$ и тензором $f_1 \bigotimes f_1 \bigotimes f_1$. Попробовать сделать полезные выводы из наблюдаемых ответов.
 - 2. Показать, что $(a_{11}v_1 + \ldots + a_{1n}v_n) \wedge \ldots \wedge (a_{n1}v_1 + \ldots + a_{nn}v_n) = \gamma v_1 \wedge \ldots \wedge v_n$, и вычислить γ .
- 3. Доказать, что необходимое и достаточное условие линейной зависимости векторов v_1, \ldots, v_r состоит в том, что $v_1 \wedge \ldots \wedge v_r = 0$.
- 4. Каждому r-мерному подпространству $W \subset V$ сопоставим r-вектор $P_w = e_1 \wedge \ldots \wedge e_r$. Доказать, что r-вектор P_W отличен от нуля и, с точностью до пропорциональности, не зависит от выбора базиса $\{e_i\}$ в подпространстве W.
- 5. Доказать, что подпространства W_1 и W_2 совпадают тогда и только тогда, когда $P_{W_1} = \lambda P_{W_2}$ (С: использовать результат задачи 3).
- 6. Нильпотентный оператор записывается в некотором базисе четырехмерного векторного пространства жордановой клеткой. Найти жорданов базис и жорданову форму его второй внешней степени.