

Machine Learning (21CSC305P)

Clustering

Clustering is an unsupervised Machine Learning-based Algorithm that comprises a group of data points into clusters so that the objects belong to the same group. The process of making a group of abstract objects into classes of similar objects is known as clustering.

Clustering Methods:

- 1. Partitioning Method
- 2. Hierarchical Method

Hierarchical Clustering

Hierarchical clustering is a popular method for grouping objects. It create groups so that objects within a group are similar to each other and different from objects in other groups.

- Why Hierarchical Clustering?
- What is Dendrogram?

Hierarchical Clustering Types

Agglomerative: (Bottom-up method)

Initially consider every data point as an individual cluster and at every step, merge the nearest pairs of the cluster.

Divisive: (Top-down method)

In Divisive Hierarchical clustering, we take into account all of the data points as a single cluster and in every iteration, we separate the data points from the clusters which aren't comparable.

Agglomerative Hierarchical Clustering

Step-1: Create each data point as a single cluster. Let's say there are N data points, so the number of clusters will also be N.

Step-2: Take two closest data points or clusters and merge them to form one cluster. So, there will now be N-1 clusters.

Step-3: Again, take the two closest clusters and merge them together to form one cluster. There will be N-2 clusters.

Step-4: Repeat Step 3 until only one cluster left. So, we will get the following clusters.

Step-5: Once all the clusters are combined into one big cluster, develop the dendrogram to divide the clusters as per the problem.

Implementation

Data Set:

Data Points	X	Y
P1	0.40	0.53
P2	0.22	0.38
P3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.30

Calculate Euclidean distance, create distance matrix

Distance
$$((x,y), (a,b) = (x-a)^2 + (x-b)^2$$

Distance $((1,(2)) = (0.40 - 0.22)^2 + (0.53 - 0.38)^2$
 $(0.40,0.53), (0.22,0.38) = \sqrt{(0.18)^2 + (0.15)^2}$
 $= \sqrt{0.0549} = 0.23$

The distance matrix is:

	P1	P2	P3	P4	P5	P6
P 1	0					
P2	0.23	0				
P3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

```
materix MIN[dist (13, 16), PI)]
   To update the distance
   Min (dist (P3, P1), (P6, P1))
       min [ (0.22, 0.23)]
                                       MIN [ dist (13, 16), 12]
To, update the distance matrix
Min (dist (13, 12), (16, 12))
         min [(0.15), (0.25)]
           = 0.15
```

```
materix MIN[dist (P3, P6), P4)]
To, update the distance
  MIN (dist (P3, P4), (P6, P4))
      min [(0.15,0.22)] [(1)], (1) si) List Min
      =0.15
                                 MIN [dist (13, 16), 15)7
To, update the distance materix
    MIN (dist (13, P5), (P6, P5))
                              to uplate the distance
        min [0.28, 0.39]
                             J (21, 21), 51) 43 k (44, 16) C
```

The updated distance matrix for clusters (P3, P6):

	P1	P2	P3, P6	P4	P5
P1	0				
P2	0.23	0			
P3, P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

```
To, update the dist ance materix MIN [dist(P2, P5), P1)
    MIN[dist(12,11),(15,11)]
        = min [0.23, 0.34]
   1. (1 = 10.23) nm
To, update the distance materix MIN[dist (P2, P5), (P3, P6)]
    MIN[dist(P2,(P3,P6),(P5,(P3,P6))]
          = min [(0.15,0.28)]
          = 0.15. 15 where invalid beleft all
To, update the distance materix MIN[dist(P2, P5), P4)]
    MIN [dist (P2, P4), (P5, P4)]
           = min [0.20,0.29]
```

Updated distance matrix for cluster (P2, P5):

	P1	P2, P5	P3, P6	P4
P1	0			
P2, P5	0.23	0		
P3, P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

```
MIN [dist(12, 15), (13,16),1
 update the distance materix
MIN[dist(12, P5), P1), ((13, P6), P1)
    = min [(0.23, 0.22)]
     = 0.22
update the distance matrix MIN[dist (P2, P5), (P3, P6),
MIN[dist(12, P5), P4), (P3, P6), P4]
     = min [0.20, 0.15]
```

Updated Matrix for cluster (P2, P5, P3, P6):

	P1	P2, P5, P3, P6	P4
P1	0		
P2, P5, P3, P6	0.22	0	
P4	0.37	0.15	0

Updated Matrix for cluster (P2, P5, P3, P6, P4):

	P1	P2, P5, P3, P6, P4
P1	0	
P2, P5, P3, P6, P4	0.22	0