GENOTYPING & TAXONOMY RESULTS

Team F Group 3

Genotyping

MLST

- All Listeria Monocytogenes
 - Two different sequence types (ST's)

```
1 abcZ(3) bglA(1) cat(1) dapE(1) dat(3) ldh(1) lhkA(3)
ST1(3 Samples)
F2049583, F2049584, F2052228
```

31 abcZ(7) bglA(14) cat(10) dapE(19) dat(9) ldh(8) lhkA(1) ST 31

(27 samples)

MAAST

Phylogenetic tree depicting genomic relationships of 30 bacterial strains based on SNPs

Scatter Plot depicting the distribution of alternate allele frequencies at SNP positions.

BioHansel

```
BioHansel version 2.5.1: Subtype microbial genomes using SNV targeting k-mer subtyping schemes.

Built-in schemes:

* heidelberg: Salmonella enterica spp. enterica serovar Heidelberg

* enteritidis: Salmonella enterica spp. enterica serovar Enteritidis

* typhimurium: Salmonella enterica spp. enterica serovar Typhimurium

* typhi: Salmonella enterica spp. enterica serovar Typhi

* tb_lineage: Mycobacterium tuberculosis
```

 Had genomes for only these 5 strains so did not yield any results when compared with our strain.

Tool	Time per file (sec)	Max RAM (kb)
MLST	1.16	186788
MAAST	15.08	3365516

Taxonomic Classification

Kraken2

- All samples are classified as Listeria monocytogenes
- Use Standard Kraken 2 database (Refeq archaea, bacteria, viral, plasmid, human1, UniVec_Core)
- For install database 100 GB of disk space required and ~ 4 hours 30 min with 128 threads
- Use KrakenTools and Pavian for summary and Sankey plot the results

#perc	tot_all	type	taxid	name	
0.028	1	U	0	unclassified	
99.972	3567	R	1	root	
99.9439	3566	R1	131567	cellular orga	inisms
99.9439	3566	D	2	Bacteria	
99.9159	3565	D1	1783272	Terrabacte	eria group
99.9159	3565	Р	1239	Bacillota	
99.9159	3565	С	91061	Bacilli	
97.8139	3490	0	1385	Bacillal	es
97.4215	3476	F	186820	Listeria	iceae
97.4215	3476	G	1637	Listeri	a
89.1536	3181	S	1639	Listeria monocytogenes	

Summary for all samples

Sankey plot of F0582987

LisSero & Blastn

LisSero Sample Serotype classification

LisSero: *in silico* serogrouping (presence of surface antigen) for *Listeria monocytogenes* using PCR

Detects: presence/absence of 5 genes (Imo1118, Imo0737, ORF2110, ORF2819, Prs)

- 27/30 samples Serotype 1/2a, 3a
- 3/30 samples Serotype 4b, 4d, 4e

Default min coverage: 95%

BLAST Reference

genomes: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733179/

*Most outbreaks of human disease are serotypes 1/2a, 1/2b, 4b

Blastn	Min percent Identity (%)	Average E-value
Serotype 1/2a	71.154%	1.183 e -06
Serotype 3a	69.973%	9.46 e -07
Serotype 4b	69.998%	1.345 e -08
Serotype 4d	69.057%	2.807 e -07
Serotype 4e	68.998%	1.335 e -08

Tool	Time per file (sec)	Max RAM (kb)
Kraken	88	7,852,476
LisSero	2.56	191,766
BlastN	2.13	188,365

Genome Quality Assessment

CheckM

Lowest completeness: 98.5, highest contamination: 1.27

Average Completeness	Average Contamination				
99.155	0.821				

Bin Id	Marker lineage	# genomes	# markers	# marker sets	0	1	2	3	4	5+	Completeness	Contamination	Strain heterogeneity
F1725552	Listeria monocytogenes (6)	20	1262	179	5	1247	9	1	0	0	99.34	0.93	0
F2052228	Listeria monocytogenes (6)	20	1262	179	5	1254	3	0	0	0	99.27	0.32	0
F2049584	Listeria monocytogenes (6)	20	1262	179	5	1254	3	0	0	0	99.27	0.32	0
F2049583	Listeria monocytogenes (6)	20	1262	179	5	1254	3	0	0	0	99.27	0.32	0

QUAST with reference genome

QUAST with reference genome

Tool	Time per file (sec)	Max RAM (kb)				
CheckM	7	320840				
Quast	~12	149,168				

Final Pipeline

Sample of Pipeline Script

```
conda deactivate maast
#creation of checkm environment
conda create -n checkm -c conda-forge -c bioconda checkm-genome -y
### RUN COMMANDS
#MLST COMMAND
conda activate mlst
mkdir ./mlst
#copies raw data into form suitable for MLST
cp -r "$input directory"/* ./mlst/
cd mlst
#Run mlst
mlst *.fna > MLST Summary.tsv
cd ..
conda deactivate
#MAAST COMMANDS
conda activate maast
#Copied a copy of Maast to my local computer
git clone https://github.com/zjshi/Maast.git
cd Maast # Navigating to directory where maast is present
make #This compiles the source code of maast
chmod 755 maast #to make GT-Pro ready to execute
#Maast command for genotyping
mkdir ./maast output
maast end to end --in-dir $input directory --out-dir ./maast output --min-pr
#the step generates a list of input pairs.
paste <(find ./maast output/gt results/ -name '*.tsv' | sort) <(find ./maast
 /Maast tree --input-list ./genotypes.input.tsy --out-dir ./tree results/ #F
```

Citations

- Wood, D.E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019).
 https://doi.org/10.1186/s13059-019-1891-0
- Parks, Donovan H., et al. "CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes." Genome research 25.7 (2015): 1043-1055.
- Shi, Z.J., Nayfach, S. & Pollard, K.S. Maast: genotyping thousands of microbial strains efficiently. Genome Biol 24, 186 (2023). https://doi.org/10.1186/s13059-023-03030-8
- Labbé, G., Kruczkiewicz, P., Robertson, J., Mabon, P., Schonfeld, J., Kein, D., Rankin, M. A., Gopez, M., Hole, D., Son, D., Knox, N., Laing, C. R., Bessonov, K., Taboada, E. N., Yoshida, C., Ziebell, K., Nichani, A., Johnson, R. P., Van Domselaar, G., & Nash, J. H. E. (2021). Rapid and accurate SNP genotyping of clonal bacterial pathogens with BioHansel. Microbial genomics, 7(9), 000651. https://doi.org/10.1099/mgen.0.000651
- "This publication made use of the PubMLST website (https://pubmlst.org/) developed by Keith Jolley (Jolley & Maiden 2010, BMC Bioinformatics, 11:595) and sited at the University of Oxford. The development of that website was funded by the Wellcome Trust".
- Seemann T, mlst Github https://github.com/tseemann/mlst
- Josh Zhang, LisSero Github https://github.com/MDU-PHL/LisSero
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013 May 1;29(8):1072-5. doi: 10.1093/bioinformatics/btt086. Epub 2013 Feb 21. PMID: 23426934.