ASSIGNMENT 1 AE639:CONTINUUM MECHANICS

- 1. Verify the following:
 - (a) $\vec{u}.\vec{v} = u_i v_i$
 - (b) $\vec{u} \times \vec{v} = \epsilon_{ijk} e_i u_j v_k$
 - (c) $(\vec{u} \times \vec{v}).\vec{w} = \vec{u}.(\vec{v} \times \vec{w})$
 - (d) $(\vec{u} \times \vec{v}) \times \vec{w} = (\vec{u}.\vec{w})\vec{v} (\vec{v}.\vec{w})\vec{u}$
 - (e) $(\vec{u} \times \vec{v})^2 = u^2 v^2 (\vec{u}.\vec{v})^2$ where $u^2 = |\vec{u}|^2 and v^2 = |\vec{v}|^2$
- 2. Let A be 3×3 matrix with enteries A_{ij} . Verify
 - (a) $Det[A] = \epsilon_{ijk} A_{1i} A_{2j} A_{3k} = \epsilon_{ijk} A_{i1} A_{j2} A_{k3}$
 - (b) $\epsilon_{lmn} Det[A] = \epsilon_{ijk} A_{il} A_{jm} A_{kn}$
 - (c) $Det[A] = \frac{1}{6} \epsilon_{ijk} \epsilon_{lmn} A_{il} A_{jm} A_{kn}$
- 3. Write in expanded form:
 - $A_{ii}, B_{ijj}, R_{ij}, a_i T_{ij}, a_i b_j S_{ij}$
- 4. Suppose B is skew-symmetric Matrix for which the vector $b_i = \frac{1}{2} \epsilon_{ijk} B_{jk}$, show that $B_{pq} = \epsilon_{pqi} b_i$.
- 5. If B is skew symmetric and A is symmetric, show that $A_{ij}B_{ij}=0$.
- 6. Suppose that $T_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$, where μ and λ are positive constants. Solve for ε in terms of T_{ij} . Note that no term involving ε_{ij} should appear on the right hand side of the equation $\varepsilon_{ij} = \dots$
- 7. Express in indicial notation:
 - (a) A

(c) AB

(e) A^TB

(b) A^2

(d) BA

- (f) A^TBA
- 8. Prove that δ_{ij} and ϵ_{ijk} are isotropic tensors.
- 9. Evaluate:
 - (a) $\delta_{ij}\delta_{jk}\delta_{kl}\delta_{il}$
- (c) $\epsilon_{jk2}\epsilon_{k2j}$
- (b) $\epsilon_{ijk}\delta_{jk}$
- (d) $\epsilon_{23i}\epsilon_{2i3}$