Bayesian multimodeling: Variational inference-2

2024

Local variational optimization, idea

Consider a problem of approximation of $f(x) = \exp(-x)$ by linear function. Any linear function will be a lower bound on f(x) if it corresponds to a tangent. Use Taylor series:

$$y(x) = f(x_0) + f'(x_0)(x - x_0)$$

or, using $\lambda = -f(x_0)$

$$y(x) = \lambda x - \lambda + \lambda \log(-\lambda).$$

Where is the variational optimization here?

Local variational optimization, idea

Consider a problem of approximation of $f(x) = \exp(-x)$ by linear function.

Any linear function will be a lower bound on f(x) if it corresponds to a tangent. Use Taylor series:

$$y(x) = f(x_0) + f'(x_0)(x - x_0)$$

or, using $\lambda = -f(x_0)$

$$y(x) = \lambda x - \lambda + \lambda \log(-\lambda).$$

We must find the tightest bound:

$$\max_{\lambda} \lambda x - \lambda + \lambda \log(-\lambda)$$

Local variational optimization and Evidence

Using similar approach we can approximate more interesting functions, for example sigmoid:

$$\log \sigma(x) = -\frac{x}{2} - \log(e^{\frac{x}{2}} + e^{\frac{-x}{2}}).$$

Note that $f(x) = -\log(e^{\frac{x}{2}} + e^{\frac{-x}{2}})$ is convex by x^2 . Optimal value gives:

$$\sigma(x) \ge \sigma(x_0) \exp((x - x_0)/2 - \lambda(x_0)(x_0^2 - x^2))$$
.

The evidence integral becomes quadratic => we can use an approximation by Gaussian, similar to Laplace approximation.

Model selection: coherent Bayesian inference

First level: find optimal parameters:

$$\mathbf{w} = \arg\max \frac{p(\mathfrak{D}|\mathbf{w})p(\mathbf{w}|\mathbf{h})}{p(\mathfrak{D}|\mathbf{h})},$$

Second level: find optimal model:

Evidence:

$$p(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} p(\mathfrak{D}|\mathbf{w}) p(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$

Model selection scheme

Polynomial regression example

Evidence lower bound, ELBO

Evidence lower bound is a method of approximation of intractable distribution $p(\mathbf{w}|\mathfrak{D}, \mathbf{h})$ with a distribution $q(\mathbf{w}) \in \mathfrak{Q}$.

Evidence lower bound estimation often reduces to optimization problem

$$\log p(\mathfrak{D}|\mathbf{h}) \geq$$

$$\geq -\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{w}|\mathfrak{D})}{q(\mathbf{w})} d\mathbf{w} = \mathsf{E}_{\mathbf{w}} \log p(\mathfrak{D}|\mathbf{w}) - \mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})).$$

Variational inference vs. expectation propogation (Bishop)

Laplace Approximation vs
Variational inference 5 / 2

ELBO estimation

ELBO maximization

$$\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w}$$

is equivalent to KL-divergence minimization between $q(\mathbf{w}) \in \mathfrak{Q}$ and posteriod distribution $p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})$:

$$\hat{q} = \underset{q \in \mathfrak{Q}}{\arg \max} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w} \Leftrightarrow$$

$$\hat{q} = \underset{q \in \mathfrak{Q}}{\arg \min} D_{\mathsf{KL}} (q(\mathbf{w}) || p(\mathbf{w} | \mathbf{y}, \mathbf{X}, \mathbf{h})),$$

$$\mathsf{D}_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})\big) = \int_{\mathbf{w}} q(\mathbf{w}) \log \left(\frac{q(\mathbf{w})}{p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})}\right) d\mathbf{w}.$$

Outline, global variational methods

- Can we use something except Gaussian distribution?
 - ► Yes, we can
- Does it need to have an analytical form?
 - ► No
- Does it need to have some specific properties except continuity?
 - ► No
- Do we need a parametric distribution to approximate posterior?
 - ► No
- Is it always about Evidence approximation?
 - ► In general, no. We can use other probability distances.

Reparametrization trick

Reparamterization idea:

$$arepsilon = S_{m{ heta}}(\mathbf{w}), \quad \mathbf{w} = S_{m{ heta}}^{-1}(arepsilon).$$

Then:

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_q f(\mathbf{w}) = \mathsf{E}_q \nabla_{\boldsymbol{\theta}} f(S_{\boldsymbol{\theta}}^{-1}(\varepsilon)).$$

Example:

$$w \sim \mathcal{N}(\mu, \sigma^2) \rightarrow S(w) = \frac{w - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Challenge: calculation of S^{-1} is an expensive operation.

Source: wikipedia

Normalizing Flows

Given an invertible smooth mapping \mathbf{g} (flow) and a distribution $\mathbf{z} \sim q$. Then $q(\mathbf{g}(\mathbf{z}))$ is a distribution:

$$\mathbf{g}(g(\mathbf{z})) = q(\mathbf{z}) \left(\det \frac{\partial g}{\partial \mathbf{z}} \right)^{-1}.$$

Example: planar flow:

$$\mathbf{g}(\mathbf{z}) = \mathbf{z} + \mathbf{w}_1 \boldsymbol{\sigma}(\mathbf{w}_2^\mathsf{T} \mathbf{x}).$$

Reparametrization trick

Reparamterization idea:

$$arepsilon = S_{m{ heta}}(\mathbf{w}), \quad \mathbf{w} = S_{m{ heta}}^{-1}(arepsilon).$$

Then:

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_q f(\mathbf{w}) = \mathsf{E}_q \nabla_{\boldsymbol{\theta}} f(S_{\boldsymbol{\theta}}^{-1}(\varepsilon)).$$

Example:

$$w \sim \mathcal{N}(\mu, \sigma^2) \rightarrow S(w) = \frac{w - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Challenge: calculation of S^{-1} is an expensive operation.

Source: wikipedia

Implicit reparametrization trick

$$\nabla_{\boldsymbol{\theta}} E_q f(\mathbf{w}) = \mathsf{E}_q \nabla_{\mathbf{w}} f(\mathbf{w}) \nabla_{\boldsymbol{\theta}} \mathbf{w}.$$

Use a total gradient formula for $\varepsilon = S_{\theta}(\mathbf{w})$:

$$abla_{\mathbf{w}}S_{m{ heta}}(\mathbf{w})
abla_{m{ heta}}\mathbf{w} +
abla_{m{ heta}}S_{m{ heta}}(\mathbf{w}) = 0
ightarrow$$

$$egin{aligned} igtarrow
abla_{oldsymbol{ heta}} \mathbf{w} &= - (
abla_{oldsymbol{ heta}} S_{oldsymbol{ heta}}(\mathbf{w}))^{-1}
abla_{oldsymbol{ heta}} S_{oldsymbol{ heta}}. \end{aligned}$$

Obtain an expression without inverse function for S.

For 1d samples we can use, for example:

$$S(\mathbf{w}) = F(\mathbf{w}|\boldsymbol{\theta}) \sim \mathcal{U}(0,1).$$

Table 4: Test negative log-likelihood (lower is better) for VAE on MNIST. Mean \pm standard deviation over 5 runs. The von Mises-Fisher results are from [9].

Prior	Variational posterior	D=2	D=5	D = 10	D = 20	D = 40
$\mathcal{N}(0,1)$	$\mathcal{N}(\mu, \sigma^2)$	131.1 ± 0.6	107.9 ± 0.4	92.5 ± 0.2	88.1 ± 0.2	88.1 ± 0.0
Gamma(0.3, 0.3)	$Gamma(\alpha, \beta)$	132.4 ± 0.3	108.0 ± 0.3	94.0 ± 0.3	90.3 ± 0.2	90.6 ± 0.2
Gamma(10, 10)	$\operatorname{Gamma}(\alpha,\beta)$	135.0 ± 0.2	107.0 ± 0.2	92.3 ± 0.2	88.3 ± 0.2	88.3 ± 0.1
Uniform(0,1)	$\mathrm{Beta}(lpha,eta)$	128.3 ± 0.2	107.4 ± 0.2	94.1 ± 0.1	88.9 ± 0.1	88.6 ± 0.1
Beta(10, 10)	$\mathrm{Beta}(lpha,eta)$	131.1 ± 0.4	106.7 ± 0.1	92.1 ± 0.2	87.8 ± 0.1	${f 87.7} \pm 0.1$
$\operatorname{Uniform}(-\pi,\pi)$	$vonMises(\mu, \kappa)$	127.6 ± 0.4	107.5 ± 0.4	94.4 ± 0.5	90.9 ± 0.1	91.5 ± 0.4
vonMises(0, 10)	$vonMises(\mu,\kappa)$	130.7 ± 0.8	107.5 ± 0.5	92.3 ± 0.2	87.8 ± 0.2	87.9 ± 0.3
$\operatorname{Uniform}(S^D)$	von Mises Fisher($\boldsymbol{\mu}, \kappa$)	132.5 ± 0.7	108.4 ± 0.1	93.2 ± 0.1	89.0 ± 0.3	90.9 ± 0.3

MCMC and variational inference

MCMC idea: Sample from the simple distribution and accept them, if the ratio is greater than some threshold:

$$\min\left(1, rac{p(\mathbf{w}^{ au}|\mathbf{y}, \mathbf{X}, \mathbf{h})}{p(\mathbf{w}^{ au-1}|\mathbf{y}, \mathbf{X}, \mathbf{h})}
ight),$$

where \mathbf{w}^{τ} is set based on the previous sample:

$$\mathbf{w}^{ au} = T(\mathbf{w}^{ au-1}).$$

Salimans et al., 2014: let's interperete the sequence of some operator T application as a variational optimization:

$$\mathcal{T}^1 \circ \dots \mathcal{T}^\eta(\mathsf{w}) o p(\mathsf{w}^ au|\mathsf{y},\mathsf{X},\mathsf{h}).$$

Maclaurin et. al, 2015: use gradient descent as such operator. Do not reject samples at all.

Optimization operator, Maclaurin et. al, 2015

Definition

Let T be an algorithm of changing model parameters \mathbf{w}' using previous parameter values \mathbf{w} :

$$\mathbf{w}' = T(\mathbf{w}).$$

Definition

Let L be a continuos loss function.

Define a gradient descent operator in the following way:

$$T(\mathbf{w}) = \mathbf{w} - \beta \nabla L(\mathbf{w}, \mathbf{y}, \mathfrak{D}).$$

Gradient descent for evidence estimation

Consider posterior probability maximization:

$$L = -\log p(\mathfrak{D}, \mathbf{w}|\mathbf{h}) = -\sum_{\mathfrak{D} \in \mathfrak{D}} \log p(\mathfrak{D}|\mathbf{w}, \mathbf{h}) p(\mathbf{w}|\mathbf{h})$$

Optimize neural network in a multi-start regime with r initial parameter values $\mathbf{w}_1, \dots, \mathbf{w}_r$ using (stochastic) gradient descent:

$$\mathbf{w}' = T(\mathbf{w}).$$

The parameter vectors $\mathbf{w}_1, \dots, \mathbf{w}_r$ are from some latent distribution $q(\mathbf{w})$.

Entropy

We can rewrite variational inference using differential entropy term:

$$egin{aligned} \log p(\mathfrak{D}|\mathbf{f}) &\geq \int_{\mathbf{w}} q(\mathbf{w}) \log rac{p(\mathfrak{D},\mathbf{w}|\mathbf{h})}{q(\mathbf{w})} d\mathbf{w} = \ & \mathsf{E}_{q(\mathbf{w})}[\log p(\mathfrak{D},\mathbf{w}|\mathbf{h})] + \mathsf{S}(q(\mathbf{w})), \end{aligned}$$

where $S(q(\mathbf{w}))$ is a differential entropy:

$$S(q(\mathbf{w})) = -\int_{\mathbf{w}} q(\mathbf{w}) \log q(\mathbf{w}) d\mathbf{w}.$$

Gradient descent for evidence estimation

Statement

Let L be a Lipschitz function, and optimization operator be a bijection. Then entropy difference for two steps is:

$$\mathsf{S}(q'(\mathbf{w})) - \mathsf{S}(q(\mathbf{w})) \simeq \frac{1}{r} \sum_{r=1}^{r} \left(-\beta \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g)] - \beta^2 \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g)] \right).$$

Final estimation for the τ optimization step:

$$\log \hat{p}(\mathbf{Y}|\mathfrak{D},\mathbf{h}) \sim rac{1}{r} \sum_{g=1}^{r} L(\mathbf{w}_{ au}^{g},\mathfrak{D},\mathbf{Y}) + \mathsf{S}(q^{0}(\mathbf{w})) +$$

$$+\frac{1}{r}\sum_{b=1}^{\tau}\sum_{c=1}^{r}\left(-\beta \text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})]-\beta^{2}\text{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})\mathbf{H}(\mathbf{w}_{b}^{g})]\right),$$

 \mathbf{w}_b^g is a parameter vector for optimization g on the step b, $S(q^0(\mathbf{w}))$ is an initial entropy.

How to calculate Hessian trace?

Problem

$$\mathsf{Tr}[\mathbf{H}(\mathbf{w}_b^g)]$$

Statement

Let **U** be a symmetric matrix and **v** be the random vector with the following properties:

- ① $Ev_i = 0$;
- ② $Var(v_i) = 1$.

Then

$$\mathbf{E}\mathbf{v}^{\mathsf{T}}\mathbf{U}\mathbf{v} = \mathit{Tr}[\mathbf{U}].$$

Overfitting, Maclaurin et. al, 2015

Gradient descent does not optimize KL-divergence $\mathrm{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathfrak{D},\mathbf{h}))$. Evidence estimation gets worse while optimization tends to the optimal parameter values. This can be considered as a overfitting start.

Stochastic gradient Langevin dynamics

A modification of SGD:

$$T = \mathbf{w} - \beta \nabla L + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \frac{\beta}{2})$$

where β changes with a number of iterations:

$$\sum_{\tau=1}^{\infty} \beta_{\tau} = \infty, \quad \sum_{\tau=1}^{\infty} \beta_{\tau}^{2} < \infty.$$

Statement [Welling, 2011]. Distribution $q^{\tau}(\mathbf{w})$ converges to posterior distribution $p(\mathbf{w}|\mathbf{X},\mathbf{f})$. Entropy adjustment:

$$\hat{\mathsf{S}}\big(q^{\tau}(\mathbf{w})\big) \geq \frac{1}{2}|\mathbf{w}|\mathsf{log}\big(\mathsf{exp}\big(\frac{2\mathsf{S}(q^{\tau}(\mathbf{w}))}{|\mathbf{w}|}\big) + \mathsf{exp}\big(\frac{2\mathsf{S}(\epsilon)}{|\mathbf{w}|}\big)\big).$$

Stochastic gradient Langevin dynamics for generative models

Altieri et al., 2015: sample latent variable z and use SGLD as a normalizing flow.

SGLD vs SGD

Parameter distribution after 2000 iterations:

Stein operator

Given a smooth probability function p and a smooth vector function ϕ . Define a Stein operator as the following:

$$\mathcal{A}_p \phi(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) \phi^{\mathsf{T}} + \nabla_{\phi} \phi(\mathbf{x}).$$

Stein's identity:

$$\mathsf{E}_{\mathsf{x}\sim p}\mathcal{A}_p\phi(\mathsf{x})=0.$$

If we use q instead of p in the A_p we get a non-zero result, but close to zero as soon as p is close to q.

Let $T(\mathbf{x}) = \mathbf{x} + \varepsilon \phi(\mathbf{x})$. Then:

$$abla_{arepsilon} \mathsf{KL}(q||p)|_{arepsilon=0} = \mathsf{E}_{\mathsf{x}\sim q}\mathsf{trace}\mathcal{A}_p\phi.$$

Given a kernel **K**, the optimal ϕ for minimizing KL is:

$$\phi^*(\mathbf{x}') = \mathsf{E}_{\mathbf{x} \sim q} \nabla_{\mathbf{x}} \log \ p(\mathbf{x}) \mathsf{K}(\mathbf{x}, \mathbf{x}') + \nabla_{\mathbf{x}} \mathsf{K}(\mathbf{x}, \mathbf{x}').$$

Stein operator: algorithm

Algorithm 1 Bayesian Inference via Variational Gradient Descent

Input: A target distribution with density function p(x) and a set of initial particles $\{x_i^0\}_{i=1}^n$. **Output:** A set of particles $\{x_i\}_{i=1}^n$ that approximates the target distribution p(x). **for** iteration ℓ **do**

$$x_i^{\ell+1} \leftarrow x_i^{\ell} + \epsilon_{\ell} \hat{\boldsymbol{\phi}}^*(x_i^{\ell}) \quad \text{where} \quad \hat{\boldsymbol{\phi}}^*(x) = \frac{1}{n} \sum_{j=1}^n \left[k(x_j^{\ell}, x) \nabla_{x_j^{\ell}} \log p(x_j^{\ell}) + \nabla_{x_j^{\ell}} k(x_j^{\ell}, x) \right], \tag{8}$$

where ϵ_{ℓ} is the step size at the ℓ -th iteration.

end for

Stein operator: results

	Avg. Test RMSE		Avg. 7	Avg. Time (Secs)		
Dataset	PBP	Our Method	PBP	Our Method	PBP	Ours
Boston	2.977 ± 0.093	2.957 ± 0.099	-2.579 ± 0.052	-2.504 ± 0.029	18	16
Concrete	5.506 ± 0.103	5.324 ± 0.104	-3.137 ± 0.021	-3.082 ± 0.018	33	24
Energy	1.734 ± 0.051	1.374 ± 0.045	-1.981 ± 0.028	-1.767 ± 0.024	25	21
Kin8nm	0.098 ± 0.001	0.090 ± 0.001	0.901 ± 0.010	0.984 ± 0.008	118	41
Naval	0.006 ± 0.000	0.004 ± 0.000	3.735 ± 0.004	4.089 ± 0.012	173	49
Combined	4.052 ± 0.031	4.033 ± 0.033	-2.819 ± 0.008	-2.815 ± 0.008	136	51
Protein	4.623 ± 0.009	4.606 ± 0.013	-2.950 ± 0.002	-2.947 ± 0.003	682	68
Wine	0.614 ± 0.008	0.609 ± 0.010	-0.931 ± 0.014	-0.925 ± 0.014	26	22
Yacht	0.778 ± 0.042	0.864 ± 0.052	-1.211 ± 0.044	-1.225 ± 0.042	25	25
Year	$8.733 \pm NA$	$8.684 \pm NA$	$-3.586 \pm NA$	$-3.580 \pm NA$	7777	684

Rényi Divergence Variational Inference

Rényi's α -divergence

$$D_{\alpha}[p||q] = \frac{1}{\alpha - 1} \log \int p(\theta)^{\alpha} q(\theta)^{1 - \alpha} d\theta \tag{1}$$

- ① continuous and non-decreasing on $\alpha \in \{\alpha : |D_{\alpha}| < +\infty\}$
- ② for $\alpha \notin \{0,1\}$, $D_{\alpha}[p||q] = \frac{\alpha}{1-\alpha}D_{1-\alpha}[p||q] \rightarrow D_{\alpha}[p||q] \leq 0, \alpha < 0$

Different divergence functions

α	Definition	Notes
$\alpha \to 1$	$\int p(\boldsymbol{\theta}) \log \frac{p(\boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta}$	Kullback-Leibler (KL) divergence, used in VI (KL[$q p $) and EP (KL[$p q $)
$\alpha = 0.5$	$-2\log(1-\mathrm{Hel}^2[p q])$	function of the square Hellinger distance
$\alpha \to 0$	$-\log \int_{p(\boldsymbol{\theta})>0} q(\boldsymbol{\theta}) d\boldsymbol{\theta}$	zero when $supp(q) \subseteq supp(p)$ (not a divergence)
$\alpha = 2$	$-\log(1-\chi^2[p q])$	proportional to the χ^2 -divergence
$\alpha \to +\infty$	$\log \max_{\boldsymbol{\theta} \in \Theta} \frac{p(\boldsymbol{\theta})}{q(\boldsymbol{\theta})}$	worst-case regret in minimum description length principle [24]

- When $\alpha = 0$, we get an approximate Evidence (like in IWAE).
- When $\alpha =$ 0.5, we get ELBO.
- When $\alpha \to \infty$ we get mode-seeking (also called zero-forcing) optimization.
- ullet When $lpha o -\infty$ we get mass-preserving optimization.

Gaussian example

Figure 1: Mean-Field approximation for Bayesian linear regression. In this case $\varphi = \sigma$ the observation noise variance. The bound is tight as $\sigma \to +\infty$, biasing the VI solution to large σ values.

Note, $\alpha \to \infty$ works similar to MAP, but still can give some non-degenerate probabilistic estimations.

Regression example

Figure 4: Test LL and RMSE results for Bayesian neural network regression. The lower the better.

References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- MacKay D. J. C., Mac Kay D. J. C. Information theory, inference and learning algorithms. Cambridge university press, 2003.
- Salimans, Tim, Diederik Kingma, and Max Welling, 2015. Markov chain monte carlo and variational inference: Bridging the gap
- Altieri: http://approximateinference.org/accepted/AltieriDuvenaud2015.pdf
- Stephan Mandt, Matthew D. Hoffman, David M. Blei, 2017. Stochastic Gradient Descent as Approximate Bayesian Inference
- Бахтеев О. Ю., Стрижов В. В. Выбор моделей глубокого обучения субоптимальной сложности //Автоматика и телемеханика. 2018. – №, 8. – С. 129-147.
- Figurnov M., Mohamed S., Mnih A. Implicit reparameterization gradients //arXiv preprint arXiv:1805.08498. 2018.
- Jang E., Gu S., Poole B. Categorical reparameterization with gumbel-softmax //arXiv preprint arXiv:1611.01144. 2016.
- Potapczynski A., Loaiza-Ganem G., Cunningham J. P. Invertible gaussian reparameterization: Revisiting the gumbel-softmax //arXiv preprint arXiv:1912.09588. 2019.
- Maddison C. J., Mnih A., Teh Y. W. The concrete distribution: A continuous relaxation of discrete random variables //arXiv preprint arXiv:1611.00712. - 2016.
- Shayer O., Levi D., Fetaya E. Learning discrete weights using the local reparameterization trick //arXiv preprint arXiv:1710.07739. 2017.
- Li Y., Turner R. E. Rényi Divergence Variational Inference //arXiv preprint arXiv:1602.02311. 2016.
- Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics - Simulation and Computation, 19(2), 433-450.
- Rezende, D., Mohamed, S. (2015, June). Variational inference with normalizing flows. In International conference on machine learning (pp. 1530-1538). PMLR.
- Liu, Q., Wang, D. (2016). Stein variational gradient descent: A general purpose bayesian inference algorithm. Advances in neural information processing systems, 29.

Organizational issues

- 29th of October: no classes, moving to the 31st?
- Technical meeting: On 5th of November?
- Format: each team shows the version of basic code, the draft version of blog-post and draft version of the documentation (deployed on the server or in stand-alone mode).
- All the presented materials must be stored at the github
 - ► for blog-post, you can put read-only link for the overleaf if you write the post here.
- Talks: please make them.