Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0655 CALIBRATION DATE: 11-Mar-15 SBE 16 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g =	-3.97012251e+000	CPcor =	-9.5700e-008	(nominal)
h =	4.74063479e-001	CTcor =	3.2500e-006	(nominal)
2	1 01002060- 002			

i = 1.01983860e-003j = -1.68573917e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.00000	2.88539	0.00000	0.00000
1.0000	34.8451	2.97819	8.37309	2.97816	-0.00004
4.5000	34.8236	3.28534	8.74346	3.28538	0.00004
15.0000	34.7772	4.26732	9.83275	4.26736	0.00004
18.5000	34.7656	4.61237	10.18739	4.61235	-0.00002
24.0000	34.7528	5.17022	10.73567	5.17018	-0.00004
28.9999	34.7432	5.69168	11.22367	5.69171	0.00002
32.5000	34.7363	6.06362	11.55901	6.06376	0.00014

f = INST FREQ / 1000.0

Conductivity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

 $t = temperatur \; e[^{\circ}C)]; \, p = pressure[decibars]; \, \delta = CTcor; \, \epsilon = CPcor; \,$

Residual = instrument conductivity - bath conductivity

