Machine Learning Study Week 4

Neural Networks: Representation

Machine Learning

Neural Networks: Representation

Non-linear hypotheses

Non-linear Classification

$$g(\theta)$$

$$egin{array}{l} x_1 = ext{size} \ \overline{x}_2 = ext{\# bedrooms} \ \overline{x}_3 = ext{\# floors} \end{array}$$

 $x_4 = age$

 x_{100} -

Computer Vision: Car detection

label example

Testing:

What is this?

Cars "Non"-Cars Quadratic features ($x_i \times x_j$): \approx 3 million features

Machine Learning

Neural Networks: Representation

Neurons and the brain

Neural Networks

Origins: Algorithms that try to mimic the brain. Was very widely used in 80s and early 90s; popularity diminished in late 90s.

Recent resurgence: State-of-the-art technique for many applications

The "one learning algorithm" hypothesis

Somatosensory cortex learns to see

Sensor representations in the brain

Seeing with your tongue

Haptic belt: Direction sense

Human echolocation (sonar)

Implanting a 3rd eye

Machine Learning

Neural Networks: Representation

Model representation I

B

Neuron in the brain

Neuron model: Logistic unit

Sigmoid (logistic) activation function.

 \Rightarrow If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_{j}+1)$. $S_{j+1} \times (s_{j}+1)$

Machine Learning

Neural Networks: Representation

Model representation II

Forward propagation: Vectorized implementation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \frac{z^{(2)}}{\wedge} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)} \times \alpha^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

$$a^{(2)} = g(z^{(2)})$$

Add
$$a_0^{(2)} = 1$$
. $\longrightarrow a^{(2)} \in \mathbb{R}^+$

$$\Rightarrow z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$\Rightarrow h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

Neural Network learning its own features

Other network architectures

Machine Learning

Neural Networks: Representation

Examples and intuitions I

Non-linear classification example: XOR/XNOR

 \rightarrow x_1 , x_2 are binary (0 or 1).

$$y = \underline{x_1 \text{ XOR } x_2}$$

$$x_1 \text{ XNOR } x_2$$

$$\text{NOT } (x_1 \text{ XOR } x_2)$$

Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$

 x_2

4.6

 $h_{\Theta}(x)$

g(z)

Example: OR function

Machine Learning

Neural Networks: Representation

Examples and intuitions II

 $\rightarrow x_1 \text{ OR } x_2$

Negation:

$$h_{\Theta}(x) = g(10 - 20x_1)$$

 $\longrightarrow (\text{NOT } x_1) \text{ AND } (\text{NOT } x_2)$ = (if and only if) $\times_1 = \times_2 = 0$

Neural Network intuition

Handwritten digit classification

Handwritten digit classification

Machine Learning

Neural Networks: Representation

Multi-class classification

Multiple output units: One-vs-all.

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc. when pedestrian when car when motorcycle

Multiple output units: One-vs-all.

 $h_{\Theta}(x) \in \mathbb{R}^4$

Want
$$h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)} \text{ one of } \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

$$pedestrian car motorcycle truck$$