G54SOD (Spring 2018)

Workshop 02 (reduced to 1 hour)
Introduction to Conceptual Modelling

Peer-Olaf Siebers

pos@cs.nott.ac.uk

Introduction

2

- Importance of conceptual modelling (or model design)
 - The modeller along with the clients determines the appropriate scope and level of detail to model, a process known as conceptual modelling
 - Model design impacts all aspects of the study
 - A high proportion of the benefits of a simulation study is obtained just from the development of the conceptual model
 - Effective conceptual modelling may even lead to the identification of a suitable solution without the need for any further simulation work

Introduction

- What about the following argument:
 - The emergence of modern simulation software has reduced or even removed the need for conceptual modelling?
 - The software allows rapid model development and prototyping but it does not reduce the level of decision making about the model design
- What about the following argument:
 - Power and memory of modern hardware and the potential of distributed software has increased the need for conceptual modelling?
 - Models are being developed that are far more complex than they need to be; careful model design is increasing in importance

What is a conceptual model?

- Definition (Robinson 2008a):
 - The conceptual model is a *non-software specific description* of the computer simulation model (that will be, is or has been developed), describing the objectives, inputs, outputs, content, assumptions and simplifications of the model.
- Conceptual modelling is more an art than a science
 - Therefore it is difficult to define methods and procedures

G54SOD

4

What is a conceptual model?

- Key components of a conceptual model:
 - Objectives: The purpose of the model
 - Inputs: Elements of the model that can be altered
 - Outputs: Measures to report the results from the simulation runs
 - Content: Components represented in the model and their interconnections
 - Assumptions: Uncertainties and believes about the real world to be incorporated into the model
 - Assumptions are a facet of limited knowledge or presumptions
 - Simplifications: Reduction of the complexity of the model
 - Simplifications are a facet of the desire to create simple models

Hands-On Example [Pidd 1998]

Booking clerk at theatre:

 A theatre booking clerk is employed to sell tickets and answer enquiries. Enquiries can come from someone at the box office or someone phoning the theatre.

Constraints

- The clerk is instructed to give priority to the personal customers
- Customer and phone calls queue on a FIFO basis
- Phone callers never hang up

Hands-On Example [Pidd 1998]

- Key components of a conceptual model:
 - Objectives: The purpose of the model
 - Inputs: Elements of the model that can be altered
 - Outputs: Measures to report the results from the simulation runs
 - Content: Components represented in the model and their interconnections
 - Assumptions: Uncertainties and believes about the real world to be incorporated into the model
 - Assumptions are a facet of limited knowledge or presumptions
 - Simplifications: Reduction of the complexity of the model
 - Simplifications are a facet of the desire to create simple models

Hands-On Example [Pidd 1998]

- Basic conceptual model for booking clerk @ theatre:
 - Objectives: Serve 95% of customers in less than 10 minutes
 - Inputs: Arrival rates, service rates, number of clerks
 - Outputs: % of customers queuing for less than 10 minutes; histogram of waiting time for each customer in the queue; clerk utilisation
 - Content: Personal enquirers; phone callers; inter arrival time distribution; service time distribution; queuing priority
 - Assumption: Unlimited queues (we do not know space availability)
 - Simplifications: Queuing discipline (no jockeying, balking, leaving)

- Prerequisite: You need to understand the problem situation
 - Clients might not have a good understanding of the cause and effect relationships within the problem situation
 - Clients have different world views; while learning from clients the modeller needs to play an active role; modeller needs to confirm his/her understanding by providing a description of the problem situation for the client

Problem and understanding of it will both be changing during the simulation study

1. Determine the modelling objectives

- Modelling objectives are used ...
 - to determine the nature of the model
 - to determine level of abstraction and simplification
 - as a reference point for model validation
 - to guide experimentation

 The purpose of the modelling exercise is not the development of the model itself but to develop a tool to aid decision making

Bad practice: Developing models that do not serve any useful purpose, i.e. models that are looking for a problem to solve

- 1. Determine the modelling objectives (cont.)
 - Forming the objectives:
 - By the end of the study what do we hope to achieve?
 - What does the client want to achieve?
 - What level of performance is required?
 - What constraints must the client (modeller) work within?
 - Modeller should be willing to suggest additional objectives and to redefine or eliminate objectives suggested by the clients
 - It is important that the clients understands what a simulation model can and cannot do for them; managing the expectations of the client

2. Determine simulation inputs and outputs

- Experimental factors (inputs):
 - Often, they are the means by which it is proposed that the modelling objectives are to be achieved
 - They can be either qualitative or quantitative
 - They are often under control of the clients; however, also factors that are not under control of the client should be considered as this improves the understanding of the real system

Remember: If possible, the range over which experimental factors are to be varied as well as the method of data entry should be defined

- Determine simulation inputs and outputs (cont.)
 - Responses (outputs):
 - Measures used to identify whether the objectives have been achieves
 - Measures used to identify reasons for failure to meet objectives (e.g. bottlenecks)

During the course of the simulation study review the experimental factors and responses when objectives are changing!

Decide about the model content

- Model must be able to accept the experimental factors and to provide the required responses
- Scope of the model must be sufficient to provide link between the experimental factors and responses
- Scope of the model must also include any other processes that have a significant impact on the response
- Level of detail must be such that it represents the components defined within the scope and their interconnections with sufficient accuracy

- 3. Decide about the model content (cont.)
 - Use rapid prototyping throw away models to decide about scope and level of detail

Keep a record of all assumptions and simplifications that are made during the design of the model content!!!

- 4. Capture information/decisions about model content
 - S+LOD table to capture information in a structured way
 - Rapid prototype drawing to support understanding of S+LOD table

Model Scope	Detail	Decision	Justification
Customers			
Staff	Service		
	Food preparation		
	Cleaning		
Queue at service counter			
Tables			
Kitchen			

Model Level of Detail	Detail	Decision	Comments (Details)
Customers	Inter-arrival time		
	Size of order		
Service staff	Service time		
	Staff rosters		
	Absenteeism		
Queues	Queuing		
	Capacity		
	Queue behaviour	-	-
	- jockey, balk, leave		
	- join shortest queue		

What do people expect from a conceptual model?

- Requirements of a conceptual model (Robinson 2004):
 - Validity
 - Credibility
 - Utility
 - Feasibility
- What do these terms mean?

What do people expect from a conceptual model?

- Requirements of a conceptual model (Robinson 2004):
 - Validity: A perception, on behalf of the modeller, that the conceptual model will lead to a simulation model that is sufficiently accurate for the purpose at hand
 - Credibility: A perception, on behalf of the clients, that the conceptual model will lead to a simulation model that is sufficiently accurate for the purpose at hand
 - Utility: A perception, on behalf of modeller and clients, that the conceptual model will lead to a simulation model that is useful as an aid to decision making within the specified context
 - Feasibility: A perception, on behalf of modeller and clients, that the conceptual model will lead to a simulation model

Model complexity and accuracy

- Aim: Keep the model as simple as possible to meet the objectives of the simulation study
- Advantages of simpler models:
 - They can be developed faster
 - They are more flexible
 - They require less data
 - They run faster
 - Results are easier to be interpreted

Model complexity and accuracy

80/20 Rule

- 80 percent of accuracy is gained from only 20% of complexity; beyond this there is diminishing returns from increasing levels of complexity
- Increasing the complexity (scope and level of detail) too far might even lead to a less accurate model since the data and information are not available to support the detail being modelled

Methods of model simplification

- Simplification entails reducing the scope and the level of detail in a conceptual model
 - Scope reduction: Removing components and interconnections that have little effect on model accuracy
 - Detail reduction: Representing more simple components and interconnections while maintaining a satisfactory level of model accuracy

The most effective approach to simplification is to start with the simplest model possible and gradually add to its scope and level of detail; once a point is reached in which the study objectives can be addressed no further details should be added

Methods of model simplification

22

- Methods: (scope or level of detail reduction?)
 - Aggregation of model components [detail reduction]
 - Black box modelling
 - Grouping entities
 - Excluding components and details [scope reduction]
 - Replacing components with random variables [detail reduction]
 - Excluding infrequent events [scope reduction]
 - Reducing the rule set [detail reduction]
 - Splitting models [workload sharing (individual models run faster)]

Over-simplification can make a model less transparent and thereby reducing its credibility

- Representing the conceptual model graphically (examples):
 - System Dynamics (SD)
 - Causal loop diagram; stock and flow diagram
 - Discrete Event Simulation (DES)
 - Component list; process flow diagram; logic flow diagram; activity cycle diagram (deprecated); class diagram (to support OO DES)
 - Agent Based Simulation (ABS)
 - Use case diagram; class diagram; sequence diagram; state machine diagram; activity diagram

- Representing the conceptual model graphically (examples):
 - System Dynamics (SD)
 - Causal loop diagram; stock and flow diagram
 - Discrete Event Simulation (DES)
 - Component list; process flow diagram; logic flow diagram; activity cycle diagram (deprecated); classes or class diagram (to support OO DES)
 - Agent Based Simulation (ABS)
 - Use case diagram; classes or class diagram; sequence diagram; state machine diagram; activity diagram

- DES Example: M/M/1/n Queue
 - A single server system with ...
 - A queue capacity of n
 - An infinite calling population
 - Poisson (random) arrival process (inter-arrival times are exponentially distributed) and service times are also exponentially distributed

- DES Example: M/M/1/n Queue
 - A single server system with ...
 - A queue capacity of n
 - An infinite calling population
 - Poisson (random) arrival process (inter-arrival times are exponentially distributed) and service times are also exponentially distributed

Component	Detail		
Customers	Inter-arrival time (exponentially distributed)		
Queue	Capacity		
Service	Service time (exponentially distributed)		

Component list

26

DES Example: M/M/1/n Queue

Logic flow diagram

The role of data in conceptual modelling

- Data for model realisation are not required for conceptual modelling, but are identified by the conceptual model
- Sometimes it is difficult or even impossible to obtain adequate data making the proposed conceptual model problematic!
- What can you do in these cases?
 - Redesign the conceptual model and leave out the troublesome data
 - Estimate the data
 - Treat data as an experimental factor rather than a fixed parameter

Further Reading

Further Reading

- Robinson (2008a; 2008b)
- Bommel and Müller (2008)
- Robinson et al. (2010)

29

Acknowledgement

The content of this presentation is a summary of Robinson (2004)
 chapter 5 and 6

Questions / Comments

G54SOD

30

References

- Bommel P and Müller JP (2008). An Introduction to UML for Modelling in the Human and Social Sciences. In: Phan D and Amblard F (Eds.) Agent-based Modelling and Simulation in the Social and Human Sciences. The Bardwell Press. pp. 273-294
- Pidd M (1998). Computer Simulation in Management Science. Wiley.
- Robinson S (2004). Simulation: The practice of model development and use. Wiley.
- Robinson S (2008a). Conceptual modelling for simulation Part I: Definition and requirements, JORS, 59(3):278-290
- Robinson S (2008b). Conceptual modelling for simulation Part II: A framework for conceptual modelling, JORS, 59(3):291-304
- Robinson S, Brooks R, Kotiadis K, and Van Der Zee D-J (Eds.) (2010). Conceptual Modeling for Discrete-Event Simulation, CRC-Press.

