ICCS310: Assignment 2

Possawat Sanorkam possawat2017@hotmail.com January 25, 2021

1: Regex to NFA/DFA

(1) $a(abb)^* + b$

(2) $(a+b)^*aa(a+b)^*$

(3) $a^+ + (ab)^+$

2: Finite-State Machines to Regex

- (1) Ø* (Rejecting any input)
- (2) $a^* + a^*b^+a^+b$ (Contains only as or any pattern of as to bs to as to bs.)

3: Binary Addition

 $A = \{w \in \Sigma^* \mid \text{ the bottom row of w is the sum of the top two rows } xy \in L_1\}$

Prove that A is regular.

Proof:

4: Division Operation?

$$\frac{L_1}{L_2} = \{ x \mid \exists \in L_2 \text{ s.t. } xy \in L_1 \}$$

Prove that if L_1 and L_2 are regular, then $\frac{L_1}{L_2}$ is also regular.

Proof: From a lemma, for every regular expression R, there is a DFA that recognizes the language L(R). Suppose L_1 and L_2 are regular, then there exist DFA $M_1=(Q,\Sigma,\delta,q_0,F_1)$ which accepts L_1 and DFA $M_2=(Q,\Sigma,\delta,q_0,F_2)$ which accepts L_2 . We want to show that $L_3=\frac{L_1}{L_2}$ where $L_1,L_2,L_3\in\mathbb{I}$.

We have that Q, Σ, δ , and q_0 in M_1 and M_2 can be shared, just that the accepting states are different. L_3 then can be recognized by some DFA $M_3 = (Q, \Sigma, \delta, q_0, F_3)$. We know that Σ is a number digit alphabet (0-9). Then, each state is just an integer. So, $\forall x \in F_1, \exists y \in F_2$, and $\exists z \in F_3, zy = x$.

From the observation, L_1 , which is regular, contains accepting states that made of zy from F_2 and F_3 . Also, L_2 , which is regular, recognized by M_2 and we can choose any number to be an accepting state in F_2 (As long as we accept at least a number). Since F_3 can be any state (number) also, there always exist z that will satisfied zy = x. Thus, M_3 exists since we can design F_3 .

Therefore, if L_1 and L_2 are regular, then $\frac{L_1}{L_2}$ is also regular. \square

5: Does It Accept Everything?

Let $M = (Q, \Sigma, \delta, q_0, F)$.

(1) DFS could be a solution

6: All The Same?

- **(1)**
- **(2)**
- **(3)**