

BUFFALO FAN SYSTEM

OF

Heating, Ventilating and Humidifying

CATALOG No. 700

Buffalo Forge Company

BUFFALO, N. Y., U. S. A.

New York

Cleveland

New Orleans

Boston

Detroit

Atlanta

Philadelphia

Chicago

Minneapolis Denver

Pittsburgh Los Angeles St. Louis

Cincinnati

CANADIAN BLOWER & FORGE CO., Ltd.

Kitchener, Ont., Canada

Toronto

Montreal

Calgary

Vancouver

St. John

FOREWORD

HE Buffalo Forge Company has always taken the stand that engineering data and developments should not be hoarded as hidden treasures but should be made available for the use and edification of the engineering profession in general.

In this volume we have laid stress on the principles underlying all the various steps in the determination of suitable apparatus to meet all conditions of heating, ventilating and humidifying. These principles have been proven by actual practice and are the ones used by our own engineers in the solution of problems of a similar nature.

To the host of friends who gave our previous Catalogs Nos. 197 and 198 on Heating and Ventilating such a hearty reception we respectfully dedicate this volume.

Renew our acquaintance by letting our engineers help you with any problems you may have in Heating, Ventilating and Humidifying.

BUFFALO FORGE COMPANY

ID 89- 1988916

Canadian Blower & Forgo Co. Kitchener, Ontario

Buffalo Forge Company Buffalo, New York

Buffalo Steam Pump Works North Tonawanda, New York

THE BUFFALO FAN SYSTEM OF Heating, Ventilating and Humidifying

PART ONE

Public Buildings

I has been within the last decade that the heating and ventilating art has come into its own. Many articles had been written on the subject and its importance insisted upon in theory, but unfortunately theory and practice had taken diverging paths. Through the earnest endeavors of the leading engineers, architects and physicians practice has now been made to accord with theory.

The following pages will serve not only to emphasize the importance of proper heating and ventilating but will describe such methods and apparatus as our engineers have used with great success in its attainment.

Years ago when our methods of living and working followed the natural lines and modes, usually those of least resistance, no need for ventilation other than by natural means was required. As our methods have become more artificial it has been found necessary to introduce artificial means to provide not only ventilation, but heating as well.

The progress of heating can be followed step by step from the rude fire of twigs down through the open fire place, the wood stove, and finally to the present day heating with steam, hot water and hot air. The development of methods of ventilation has been somewhat slower. The day when the opening of a window was ample ventilation has long since passed, and today we have grown accustomed to artificial means, such as fans, to supply positive ventilation.

Natural vs. Mechanical Ventilation

However there are very often times when some city official will fly up in arms and declare that the old style ventilation, that of the open window, is by far the best. It might be well at this point to give briefly the results obtained in a recent test. Taking a modern school, one half was ventilated by purely natural means, whereas the other half depended upon mechanical ventilation. Classes were conducted in the rooms under these conditions and observations taken at frequent regular intervals.

It was intended that these tests should cover the greater portion of one school year in order that all weather conditions might be experienced. The attitude of the teachers and pupils toward these tests was most favorable at the start and in

many instances certain teachers and pupils made their own choice as to whether they should be in naturally or mechanically ventilated rooms. Before the end of two months it was found necessary to discontinue the tests, this being due to the fact that teachers and pupils could not work to advantage in the naturally ventilated rooms and such stern objection developed that the tests could not be continued. The chief objections to natural ventilation were summed up by the impartial observers as follows:

- "It was found impossible to keep the temperature and air motion conditions in the naturally ventilated rooms within the bounds of comfort.
- The absence, because of illness of both pupils and teachers, in naturally ventilated rooms increased to an alarming extent.
- 3. The air in the naturally ventilated rooms was for the most part stagnant and heavy which caused depression and headaches."

Although these tests are not conclusive due to the short time over which they extended it is very plain to see that no logical arguments can be advanced for any comparison of natural with mechanical ventilation.

The more crowded a building is, the more complex becomes the problem of ventilation, for the exit and entrance of air must be complete and uniform throughout and at the same time all objectionable drafts must be avoided. With mechanical ventilation we are able to place the air just where it is needed and in just the right quantities and to remove all foul air as fast as it becomes objectionable.

Let us now consider what constitutes good ventilation and how it may best be attained.

Ventilation

In the human body, as well as in other animal organisms, life is sustained by a process of combustion in which the oxygen of the air is combined with the hydrogen and carbon of the food and carbon dioxide is formed as a result of this combustion. Therefore, a continuous supply of air with the proper amount of oxygen is just as essential to the sustaining of life as it is to the combustion of fuel under a boiler. We cannot, however, solve the proper amount of air to sustain life by any chemical formula, inasmuch as the "Livable" limit is reached long before the chemical limit.

The percentage of carbon dioxide in the air is a good indication of its state of purity but the exceedingly harmful effects of impure air are not entirely governed by an excess of carbon dioxide. Physicians have shown that the poisonous effect of respired air is due almost entirely to the organic matter exhaled from the lungs. The following table gives the comparison of pure air and respired air.

	Pure Air	Respired Air
Oxygen	20.35%	16.2%
Nitrogen	78.10	75.4
Carbon Dioxide	0.03 to 0.04	3.4
Water Vapor	1.5 Variable	5

The respired air is immediately diffused in the air of the room and cannot be directly removed, therefore the air must be continually diluted till it ceases to be harmful. There is no definite standard of purity and any line drawn between good and poor ventilation is purely arbitrary. Pure air contains from three to four parts of carbon dioxide in 10,000. With an increase to 11 parts in 10,000 the air becomes noticeably opressive whereas an increase of three or four parts to a total

of six or seven parts is scarcely noticeable. Modern practice has been to consider good ventilation to exist when the air supply is so maintained that the total quantity of carbon dioxide does not exceed more than six to eight parts in 10,000.

It is estimated that the average adult at rest breaths 500 cu. in. of air per minute and exhales 17 cu. in. of carbon dioxide. From these figures we can determine the air supply necessary to maintain any standard of purity according to the following table.

Cu. ft. of air to be supplied per person for various standards of purity of air

Parts Carbon Dioxide in 10,000	Cu. Ft. air per min. per Adult	Per cent, of Respired Air
5	100	0.29
6	50	0.58
7	33.3	0.87
8	2.5	1.15
9	20	1.45
10	16.7	1.74
11	14.3	2.03
12	12.5	2.32

There are certain applications where more than the normal amount of air is necessary due to unusual conditions. The following table gives the air supply per person under various conditions.

Specifications of usual air supplied per person

Hospitals (Ordinary)	35 to 40
Hospitals (Epidemic)	80
Workshops	
Prisons	30
Theaters	
Meeting Halls.	20
Schools (per child)	30
Schools (per adult)	. 40

Dr. E. Vernon Hill has devised a very good method for determining the effectiveness or efficiency of ventilation.

This is done by using the Synthetic Air Chart shown on page 8 and we will quote Dr. Hill's explanation of its use.

The Synthetic Air Chart

"This chart is designed as a convenient method of recording data and arriving at a final percentage of perfect ventilation. It serves as a standard, or measuring "stick" as it were, for determining the efficiency of a ventilating equipment, and eliminates personal opinion and guess work. The chart includes all of the known factors that influence the ventilation of a room. They are as follows: Temperature and humidity, which are recorded as the wet bulb difference; dust, bacteria, odors; air supply and distribution as measured by the CO₂ content. These factors, furthermore, are each given their appropriate weight or value as a part of the whole. If all the factors are ideal the percentage as shown by the chart will be 100. If all or any one of the factors represent conditions that are not ideal the final percentage will be reduced in a corresponding amount.

After the results of a test are plotted on the chart we can see at a glance the final percentage of perfect, and if the results are not what they should be

E FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

					TE ST				AT.	Δ		MARC 9 AM		
TATION	DRY BULL	WET BOLD		AIR	DUST	BAC- TERIA	ODORS	coz	-		STERS	EXHAL	UST REG	15 TERS
7 3 4 5 6 7 8 9	696	54 0 53.5 54.0	334	35	5730 3680	5	90	8.1 7.2 G.1	1.4	-	840	1,25	170 140 130 140	725
PHY AIR YOY AIR	WYSICAL STATE WE SHACE PER OCCUPANT OTAL BUR SUPPLY BY CO. MENN IS SUPPLY PER ILLUMINS IN CO. 1			34 26.5 110.0 32.3 46.0 90.1	WYNE TYPE AREA LEAK RATIG	OW5.74	N TENT	DH.S. 1080 SUGHT. 1:83	RADIA TYPE	ATORS SQ FT	WIND DIS CHOOSE OF THE RE-		C / To Pro /	

the factors that reduce the final percentage are at once determined. The longer the test line in any column the less favorable are the conditions represented. When the test line disappears conditions are perfect.

Under each factor there are three columns, a plus percentage column; the factor column proper, and the minus percentage column. The factor column proper is divided into appropriate units of measurement, as degrees for temperature, particles per cubic foot for dust, colonies for bacteria counts, etc.

The plus percentage is the percentage of perfect for the specific factor in the column; for example, in the chart shown in the illustration the dust count is 5,000 particles per cubic foot. This gives a plus percentage of 98, meaning that so far as dust is concerned the air is 98% free.

Reading the minus dust column we find the percentage as a part of the whole chart is only one-half of one per cent. This one-half of one per cent., together with the other minus percentages from the various columns, is deducted from 100 in arriving at the final percentage for the entire test.

The curves at the bottom of the chart headed 'Temperature, Humidity and Air Motion' are for determining the wet bulb difference. To do this proceed as follows:

Mark a point on the curve indicating the wet bulb temperature determined by test. This point should be located at the intersection of the wet and dry bulb lines. This is done as a matter of convenience, as the point will then give the wet bulb, the dry bulb and relative humidity.

Next mark by a point on the line denoting the physical state of the occupants, the air motion from the test. This point will be at the intersection of the appropriate physical state curve designated by 'At Rest,' 'Light Work,' 'Moderate Work' and 'Hard Work' with the vertical line of air motion. The vertical distance between the two points is the wet bulb difference, that is, it is the variation in degrees between what the wet bulb should be and what it actually was by test. This wet bulb difference is plotted in the first column of the chart.

The distribution factor is the percentage of distribution in the room. It is determined by an analysis of the air samples at various points for CO₂ and the average of all samples taken is the average distribution for the room.

The percentage of distribution is the percentage of variation of the different samples from the average.

The reverse side of the chart, illustration No. 2, is arranged for recording test data."

HEATING

Closely associated with the problem of proper ventilation is that of satisfactory heating, in fact it is very hard to draw the line of separation between the two problems.

Room Temperature

The physical principles involved in heating buildings are more complex than usually supposed, and exhibit an admirable nicety in the balancing of forces.

The first factor to be considered is the heat generated by the human body and the methods for its disposal. These are important conditions which determine the most desirable room temperatures and in densely peopled buildings, largely determine the result of vital processes dependent in part upon the activity of the individual. This amount of heat extends over considerable limits as shown by the following table.

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Child six years old.	240	В.	T.	U.	per	hour.
Adult at rest.	380		XX			
Adult at work	500		4.6		116	31.
Man 30 years old in an atmosphere with a temper	-		14		-12	44
ature of 68° F	600		14		17	71
Woman 32 years old	480		44		4%	4.0
Adult in old age	360		**		-10	3.6

We have found that a good average value for the amount of heat in B. t. u.'s given off per person per hour in an atmosphere of 70°F, is 400 for adults and 200 for children, these figures being generally used when the heating of densely peopled buildings such as schools and auditoriums, is considered. The average normal temperature of an adult in health is 98° F, and since heat is continually being generated, it must be disposed of as fast as generated. This disposal may be accomplished in three ways:

First: By direct transmission or radiation to the surrounding air.
Second: By the absorption of heat in the evaporation of perspiration.

Third: By the evaporation of moisture through the lungs.

Radiation depends upon the difference in temperature between the body and the surrounding air, but it is also affected by the amount of clothing and the humidity of the air. It is evident that the temperature of the room should not be so low that the body will radiate more heat than produced under normal conditions. In fact, from a hygienic standpoint, less heat should be absorbed than is generated, thus allowing part of the heat to be absorbed by perspiration. The following room temperatures have been found to give the best results.

Public buildings	68 to 72° F.
Machine shops	60 to 65° F.
Foundries, boiler shops and all pla	ces where physical labor is done. 50 to 65° F.

Heat Losses

In order to maintain a fixed temperature within a building, it is necessary to supply heat in sufficient quantities to compensate for the heat loss through the walls and roof of the building, and also to heat up the outside air brought in for ventilation. The subject of heat transmission in buildings has been thoroughly investigated so that the laws governing it and the factors for heat transmission of various building materials and building constructions are now quite accurately known. It has been found that the loss of heat by transmission is proportional to the difference of the temperature on the two sides of the material. The table on page 169 shows the accepted factors of heat transmission.

Humidity

The amount of moisture that a given quantity of air can hold increases very rapidly with the temperature. The amount per cubic foot of air is the measure of its humidity and this humidity has a great bearing upon livable conditions in schools and public buildings. It may be to advantage to explain at this point how the relative humidity of air may be determined. If a thermometer bulb is covered with a damp cloth a drop in apparent temperature of the surrounding air will ordinarily result. This temperature is called the sensible or wet bulb temperature. The less the humidity the greater the difference between the actual and the sensible temperatures, while at 100% saturation they are the same.

To determine the wet bulb and dry bulb temperature a sling psychrometer is used. This is clearly shown in the cut and consists of two thermometers, one having the bulb covered with a thin gauze. In taking the readings the gauze is moistened and the psychrometer is then rapidly whirled around until the mercury readings in the two thermometers stay constant. It is essential that the instrument be moved rapidly or held in a current of air for an air movement across the wet bulb is necessary to obtain a true reading.

From the hygienic standpoint it is evident that the means for regulating the humidity is just as important as the problem of proper ventilation and proper heating in every school and public building.

Psychrometric Charts

The relation between the temperature as measured by the wet and dry bulb of air and the moisture content is clearly shown in the psychrometric chart on page 13. It will be seen that a cu. ft. of air at 70° will hold eight grains of moisture while at 32° it will

hold only two grains and at zero only five-tenths of a grain. The normal limits of humidity vary from 50% to 75% of saturation. It has been found that when the humidity goes above or below these points the condition becomes very uncomfortable and in fact injurious to health. Hence, it will be seen that air at 70° should contain from four to five and one-half grains of moisture per cu. ft. to be in the best condition for ventilating purposes. In the ordinary methods of heating with the air temperature 32° outside, the humidity of this air when heated to 70° without the addition of any moisture would be only 15.5% which is far less than the humidity of the driest climate known. It is this extreme dryness of the air in a heated room which produces the commonly noticed discomforts, such as extreme thirst, a parched feeling in the nose and throat, lassitude and headache. This extreme dryness has been a contributing source to many throat and pulmonary diseases.

The Psychrometric Charts on pages 16A and 16B are taken from the catalogue of the Carrier Air Conditioning Company of America, one of our associates in business. These two charts should be used when calculations are made in terms of pounds of air, while the chart on page 13 should be used when the pound cubic foot is a unit. For most purposes of calculations it will be found preferable to use the pound as a unit.

The various curves shown on these charts will be found especially valuable in making air calculations. The grains of moisture per pound of dry air are read by passing directly from the dew-point, or intersection of the wet- and dry-bulb temperatures, to the scale on the left edge of the chart. The B. t. u. required to raise one pound of dry air one degree when saturated with moisture, as also the vapor pressure, may be determined by passing vertically from the dew-point to the proper curve, and then to the corresponding scale on the left edge of the chart. The total heat, in B. t. u., above zero degrees contained in one pound of dry air saturated with moisture may be found by passing vertically from the wet-bulb temperature to the total heat curve and then to the left edge of the chart. The volume of air in cubic feet per pound may be found by passing vertically from the dry-bulb

temperature to either of the two volume curves and then to the left edge of the chart. One curve gives the volume of dry and the other of saturated air.

Example. As an example of the use of this chart we will assume air at 75° dry-bulb temperature and 60 per cent. relative humidity. From the chart we find that the wet-bulb temperature will be 65.25°, the dew-point 60°, the grains of moisture per pound of dry air 77; the heat required to raise one pound of dry air saturated at 60° through one degree is 0.24664 B. t. u.; and the vapor pressure of air saturated at 60° is 0.523 inches of mercury. Passing vertically from the wet bulb temperature of 65.25° to the total heat curve and thence to the scale on the left, we find the total heat above zero in one pound of dry air when saturated at 65.25° to be 29.75 B. t. u. This, then, is also the measure of the heat in a pound of air at 75° and 60 per cent. relative humidity, since the wet-bulb temperature is the same.

The cubic feet per pound of air may be found by passing vertically from the dry-bulb temperature to either of the two volume curves, depending on whether the volume of dry or of saturated air is desired. To determine the volume of one pound of partly saturated air as here assumed, we will have from the chart.

As an example of the use of the chart on page 13 we will assume a case where the dry-bulb temperature is 80° and the wet-bulb thermometer reads 70°, or a 10° depression. From the intersection of the corresponding lines through these two temperatures we find the relative humidity to be 62 per cent. Passing horizontally to the left from this point of intersection to the wet-bulb temperature line (called the saturation curve) we find the dew-point temperature to be 64.5°. If the temperature of the air should be reduced both the dry- and wet-bulb readings will be lowered until they both read 64.5°, when the air will be saturated. The grains of moisture contained in each cubic foot of this air will be found by continuing to the left on the horizontal line through the 64.5° dew-point to the left edge of the chart, where we have a reading of 6.65 grains. If the temperature of the air be further reduced, part of the moisture content will be condensed, the dew-point or saturation temperature will be lowered, and the grains of moisture per cubic foot will be correspondingly less.

Methods of Heating, Ventilating and Humidifying

The draft produced by the large chimney gave ample ventilation, but the heat loss along with this ventilation was very large and hence, as a heating system, the open fire place was most uneconomical. The next step, the old stove, afforded practically no ventilation, although its economy from a heating standpoint was fairly high. The modification of the old stove, namely, the hot air furnace afforded a certain measure of ventilation but this measure was far too limited and unreliable to make its use permissable in large or crowded buildings. A serious objection to the hot air heater is the liability of coal gas leaking into the air. The hot air furnace is the chief offender in heating with extreme dry conditions of air as described in the paragraph on humidity on page 11.

The next step is marked by the introduction of direct radiation with steam or hot water furnaces. Owing to its cheapness this method has been extensively introduced but it provides for no ventilation other than by windows and doors, and the resulting close, stuffy, heated rooms in office and other public buildings have

doubtless increased materially the world's death rate.

The use of indirect radiation permits a certain amount of ventilation and elaborate systems have been devised on this basis. Aspirating shafts for removing foul air in connection with indirect systems have given positive results. In the latter system radiators are placed in the ventilating shafts to produce a draft by increasing the temperature of the foul air. The cost of ventilation by this method is expensive and the use of aspiration flues as substitutes for fans is indefensible.

The Buffalo Fan System

It is today universally acknowledged that the fan system has solved the problem of the successful heating and ventilating of public buildings. In recognition of this the legislatures of practically all states have passed statutory laws, requiring the use of the fan system of ventilation in school buildings. The question no longer is "Shall the fan system be used?" but "How may it best be applied?"

For the past 35 years the Buffalo Forge Company has been engaged in designing heating and ventilating systems and in the construction of such equipment. This company has its systems in successful operation in thousands of buildings in this country. Europe and Japan, in fact in all parts of the civilized world. The improvements put forth by this company have brought the art of heating and ventilating to a degree of perfection not previously known. One of the most important of these improvements is the Carrier Air Washer and Humidifier, which removes all impurities from the air and imparts to it the proper humidity.

Public Buildings

There are two arrangements of the Buffalo Fan System as applied to public buildings.

The first, in which the fan system handles both the heating and ventilating requirements and the second, sometimes called the split system, in which the heating requirements are taken care of by direct radiation in the room and the fan system handles the air required for ventilation only.

The apparatus used in the two applications differs only in the amount of heater surface required. The equipment consists of a boiler for the generation of

steam, a centrifugal fan, driven by an engine or motor, for the propulsion of air, an air washer for purifying and humidifying, a steam radiator for heating and a system of ducts for distributing the heated air and for removing the foul air.

The boiler may be of any customary type and may be operated at any pressure between one-half and 100 pounds per square inch, however, a pressure of 20 pounds is most desirable when a steam engine is used as the prime mover for the installation.

The fan is of the centrifugal type and is usually constructed as an exhauster, i.e., with only one inlet. The use of a steam engine as the prime mover allows for great economy since the exhaust steam can be utilized in the heater, this greatly reducing the cost of power used. The Buffalo heater described in detail on pages 52 and 53 consists of vertical coils of one inch full weight steel pipe screwed in cast iron manifold bases. Steam is supplied to the coils on one side of the manifold and exhausted from the other side, both the inlet and exhaust connections being on the same end of the base. Separate steam and exhaust connections are provided for each of the several sections into which the heater unit is divided, each connection being supplied with valves allowing as many or as few heater sections to be in operation as are needed.

The fan may be placed so that the fresh air is either forced through or drawn through the stacks of heater coils. In public buildings it is the general practice to separate the heater into two parts, one part known as the tempering coils, containing from six to ten rows of pipe, the amount being just enough to heat the incoming air to a temperature of from 60° to 70° before it reaches the washer or fan; the other part known as the heater proper is placed at the fan outlet. The size of the heater is governed by the amount of air to be handled and the temperature required on leaving the fan. Between the tempering coils and the fan is placed the Carrier Air Washer and Humidifier. The air, after being tempered, cleaned and humidified is discharged under pressure into two chambers known as the hot and tempered air plenums, respectively. In the hot air plenum chamber are placed the heater coils, while the supply to the tempered air plenum is carried by a by-pass either above or underneath the heater. In the split system no by-pass around the heater is necessary. After leaving the heater the air is distributed by means of ducts leading to the room to be heated and ventilated.

It is customary to place the outlet registers so that the heated air enters the room about eight feet above the floor, this height being sufficient to prevent drafts and still allow for the proper air velocities through the registers. The cold or foul air is removed by vent registers placed at the floor line usually on the same side of the room as the hot air flue. The heated air enters above at a higher temperature than that of the room, and a complete and practically uniform diffusion to all parts of the room occurs. The cooling effect of the outer walls and windows produces a downward circulation at these points with a consequent flow from the hot air registers toward the outer wall in the upper stratum, and a flow from the outer walls to the vent registers in the lower or breathing stratum. This flow occurs over such large areas that the velocity is most imperceptible.

Inasmuch as the heated air is positively supplied to the room, the foul air must be positively forced out through the only channels available, namely, the vent register, flues, and leakage cracks around the windows and doors in the outer walls.

Exit by the latter means is necessarily restricted in properly constructed buildings, but it serves the purpose of preventing the undesirable infiltration of cold air which would otherwise occur. The above method is often spoken of as the plenum system.

It is just as important to positively remove the foul air as it is to positively introduce the fresh air but the same progress has not been made in this end of ventilation. The usual method is to have vertical flues with roof ventilators and depending entirely upon the stack effect to remove the foul air.

Many of the best installations provide a supplementary fan system for exhausting the foul air.

Advantages of the Buffalo Fan System

The contrast between the methods and effects of the old system of direct radiation depending upon windows and doors for ventilation on one hand, and the Buffalo Fan System of Heating and Ventilating on the other is very striking. With direct radiation all air for ventilation must be admitted at the windows through the lower sash. This is made necessary because any opening of the upper sash will allow the escape of the stratum of heated air in the upper parts of the room. This method is both unsanitary and uneconomical. It is unsanitary, first, because it is impossible to admit sufficient fresh air by means of windows without objectionable drafts; second, the ventilation is not uniform, and depends entirely upon atmospheric conditions outside the room, being mostly affected by the direction and velocity of the prevailing winds; and third, an undesirable layer of cold air tends to settle along the floor, which does more harm than an entire lack of ventilation. It is uneconomical because the coldest air remains along the floor, and the heated air rises and flows out of the window openings. The heated and cold air do not get an opportunity to intermingle and most of the heat produced is not used to advantage. Further the heat is not equally distributed, the better ventilated parts of the room are too cold, and poorly ventilated parts are too hot; the room temperature cannot be kept uniform or regulated to any extent and the loss due to overheating is great.

The Buffalo Fan System, on the other hand, is sanitary and economical and overcomes all the objections voiced against natural ventilation, because it maintains a uniform temperature, prevents all drafts and secures a warm floor. It is economical, because the temperature is readily and absolutely controlled either automatically or by hand, and any overheating is prevented. This latter advantage is very much greater than is generally supposed.

Carrier Air Washers

One objection that is frequently raised to the use of the fan system is that dust is drawn in with the air and blown into the room. This objection can be very easily overcome by the Carrier Air Washer which positively removes all traces of dust, soot and smoke, and the foulest germ-laden air of the city is thus made as clean and pure as that of the country. The advantage of this process wherever cleanliness and sanitary conditions are desired is easily appreciated and renders this system particularly valuable in libraries, hospitals, schools, in fact in all buildings where clean air is a requisite.

2.604 860 AMI 200 8193 160 1000 ·ms] 600 90 wit (---

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

These pails contain dirt, mud, soot, bacteria of various sorts, and disease-breeding filth of all kinds which was washed from the air used for ventilation of Public School No. 6, Brooklyn, New York, and shows the result of one week's run of the Buffalo Fan System.

This mud was shoveled from the bottom of the Carrier Air Washer settling tank after the water had been drained off. Of course all the finest dirt floating in the water had been carried off.

Had it been possible to strain the water as it was drained, no doubt five more pails would have been filled. These pails each contained approximately twenty-five pounds of dry dust so this washer was collecting approximately one hundred and twenty-five pounds of dirt-carrying disease every five days.

Another big advantage of the air washer is that the humidity of the air used for ventilation can be positively controlled. The advantage of this has been described under the subject of humidity on pages 10 and 11.

Humidity Control

The Carrier Air Washer and Humidifier described on page 50 effectively overcomes the dryness of ordinary heated air and places the humidity of the air under accurate and automatic control. In this system the humidity of the air entering the building is regulated to the finest nicety through the control of the temperature of the spray water.

This method of regulation is the only simple and direct form of humidity control. By means of the spray water temperature regulation every demand for variation is immediately taken care of and there is no delay between the demand and response as is evident in all other methods of regulation. The temperature of the spray water is raised by the introduction of steam through a device similar to an injector, or by a closed water heater.

It has been proven by numerous tests that the temperature of the spray water is a greater factor in the amount of moisture which the air will absorb than the temperature of the air itself.

Regulation of the temperature of air entering the ventilating system as a means of controlling the amount of vapor absorbed is inadequate, and attempts to secure a constant relative humidity by regulating the temperature of the body of water in the settling tank of the air washer fail on account of the time element before this water is sprayed into the air. In these and other systems two thermostats jointly aim to give the control desired, bringing in a double error, and a considerable lag of regulating effect behind the outside atmospheric changes which cause it.

The Carrier Dew-point System of humidity control uses one thermostat of very simple and accurate design exposed to the temperature of the washed air, controlling directly the temperature of the water as it is sprayed, not of the whole

volume of the settling tank. There is no lag, cause brings instant effect, and literally any relative humidity may be maintained automatically.

Reduction of the humidity is not desirable except for special processes in the industries, but may be accomplished by the use of refrigeration for cooling the spray water. The average winter temperatures in our Northern States set a practical upper limit for humidity at 40% to 45% above which the coldest weather will cause condensation on windows. See discussion on page 30.

The Dew-point System indicates by its name that the air must be saturated, thus fixing absolutely the number of grains of moisture per cubic foot at a given temperature which leaves only the temperature of the saturated air to be controlled. No air washer that will not give saturation can be used with the Dewpoint System, but Carrier Air Washers have spray systems which make saturation possible when using heated spray water.

Buffalo Ventilating Unit in Bowery Branch Y. M. C. A., New York City

Hospitals

The necessity of ample ventilation in hospitals is not receiving the proper attention by those most concerned. Although absolute cleanliness is paramount in the mind of the physician it is really surprising that this question is so frequently lost sight of when hospital ventilation is considered. This matter is being brought forward by the leading engineers and is gradually coming into its own.

The extreme importance of maintaining the proper humidity in the treatment of certain diseases is just being realized by physicians. In diseases of the heart and the respiratory organs, in fevers and especially in all nervous disorders, patients are extremely sensitive to changes in humidity and adversely affected by the dryness of the air ordinarily existing in heated buildings.

When used for cooling the hospital rooms in the heat of summer the Carrier Air Washer in connection with the Buffalo Fan System proves efficacious and convenient.

Libraries

The Buffalo Fan System in connection with the system of air purifying is applied to the heating and ventilation of library buildings with most satisfactory results. Not only does it afford positive ventilation, but it frees the air from all traces of smoke and dust so objectionable in libraries; besides, outward pressure of air in the building prevents the entrance of dust from without.

In one instance tests were made of the temperature of the water in circulation and of the air at various points with the results shown in the following table:

Carnegie Branch Library, St. Louis, Mo.

Room	2:30	Time P. M. 2:50	3:15
Auditorium, basement	75	75	74
Stall room, basement.	79	80	7736
Stall room, basement	77	77	76
South reading room, main floor	78	78	78
North reading room, main floor	78	78	7814
Stock room	79	80	7919
Average	77 . 7	78	77.7
External air		100	86
Air entering rooms.			7.3
Circulating water			69

It is interesting to note the effect of this apparatus in cooling the building. Although the temperature of the external air was 86° F., it entered the rooms at 73, and kept their temperature down to between 77 and 78, a cooling of about 8½°.

During the first two series of readings the windows in the three basement rooms were open. Before taking the 3:15 P. M. reading they were closed. The result shows that the temperature of these rooms was noticeably lowered by excluding the external air and supplying only the washed air from the fan.

Application to Schools

The modern school building offers the most exacting requirements in heating and ventilating. The large number of pupils seated in one room require a very rapid air change, and this must be accomplished without causing any drafts. A uniform temperature must be maintained throughout the room and the ventilation must be adequate.

The Buffalo Fan system adapts itself very readily to the accomplishment of the former but the latter is somewhat more difficult to attain. Even elaborate system cannot secure an entirely perfect distribution of air and the only practical and successful method has been to supply air considerably in excess of the theoretical requirements. The necessity of this extra requirement or factor of safety as it might be called, is often overlooked in writing specifications for school ventilation.

Thirty cubic feet of air per pupil, which is the amount usually specified, will keep the CO₂ content down to from six to seven parts in 10,000. This supply would be ample if the air distribution were perfect but it has been found advisable that 40 cu. ft. per minute per pupil be introduced to insure the best results.

The Buffalo System has been installed in schools throughout the world with marked success.

The West Philadelphia High School in Buffalo Equipped

Theaters and Churches

Audience halls, such as theaters, churches and lecture rooms though in use but for a short time are as a rule notorious for their poor ventilation. The introduction of the Buffalo Fan System has effectively relieved this disagreeable and unsanitary condition. Owing to the large dimensions of such buildings, and to the density to which they are peopled the problems of air distribution and avoidance of drafts are greatly increased.

Two plans have been found to give the best success in the ventilation of audience halls, these are usually distinguished as the upward and downward systems. In the downward system the air is admitted through registers in the walls at a height of several feet above the floor, and removed through vent registers in the walls at the floor line in the same manner as in school buildings or the air may be exhausted by means of separate disc fans placed in the walls of the building. In the upward method the air is admitted through duct outlets in the floor underneath the seats and is exhausted by means of disc fans in the walls or ventilators in the roof.

The upward method is to be desired wherever the architectural design makes it permissable. A perfect distribution of air can be secured, and the air flow is upward in accord with the natural air currents induced by the heat of the body and the breath. The products of respiration, and eliminations of the body are immediately carried away, and the incoming air is uncontaminated. This method of ventilation is exceedingly efficient, as a high standard of purity can be maintained at the breathing line with a comparatively small air supply. One objection to this system is that the air being introduced at the floor tends to carry up with it all loose dirt which may be raised from the floor by the action of people walking or moving their feet while seated.

With ordinary precautions as to the cleanliness of the floors this objection is for the most part overcome.

The moving picture theater has offered the largest field for theater ventilation in the last few years. The system most in vogue for these installations is the downward system. The air is introduced through registers in the side wall and exhausted by means of disc fans or ventilators. The ventilation requirements for audience halls and theaters are now very fully covered by legislation in most of the states.

Upward ventilation, to be successful, requires a very careful arrangement of the supply openings on account of the greater liability of drafts. The velocities are necessarily low, and the registers are so small that a very large number is needed to convey the necessary air.

The plenum chamber for supply is sometimes out of the question, and on this account the downward system, which is in almost universal use in schools, is extended to churches, theaters and halls with high ceilings. With a proper arrangement of fresh air and vent registers, and ample air supply excellent results are obtained. To insure such results exhaust systems are frequently relied upon, the vent registers being connected with suction fans which maintain a steady draft.

The design of theaters and churches often prevents the location of vent flues except in outside walls, the cooling effect of which seriously impairs the efficiency of the natural draft. It is always advisable to connect flues so located with suction fans.

In theaters which are in use during the summer, the air washer provides the means of securing freedom from distressing heat. In order to maintain the best cooling effect, refrigerating apparatus for lowering the temperature of the water sprays is sometimes necessary, and may be economically installed and operated, but even without the use of refrigerated water, the cooling effect is considerable and of decided practical value.

The air washer and cooling apparatus enables the temperature to be lowered about 10°, converting the theater from the most uncomfortable to the most comfortable place in warm weather, while in winter it gives a cleanliness and an increased freshness to the air supplied.

St. Paul's Cathedral St. Paul, Minn.

Department Stores

Department stores offer an especially useful field for the application of the fan system. In cold weather there exist disagreeable cold drafts along the floors. Although on account of the crowded condition ventilation is most urgently needed, no provision as a rule is made for supplying it. The fan system fills both of these needs, first, by furnishing warmer air in large volumes without the production of drafts, and second, by creating an outward pressure which effectually prevents the entrance of cold air at the doors. The objection to the fan system previously existing on account of the dust carried into the building by the fan is entirely overcome in the Buffalo Fan System by the use of the air purifying apparatus, while at the same time the store is made very attractive in the hot days of summer by the effect which may be obtained when using this system of cooling.

The department stores shown below reap the benefits of Buffalo heating and ventilating systems. The Lord & Taylor installation admirably meets the varied weather conditions of New York City while, on the other hand, the delightful climate of Los Angeles is further enhanced by the Buffalo system in the Broadway Department Store.

Fan System of Heating, Ventilating and Humidifying

Page 26

THE BUFFALO FAN SYSTEM OF Heating, Ventilating and Humidifying

PART TWO

Industrial Plants

THE apparatus used in industrial building application is similar to that used in public buildings. The heating system ordinarily consists of three elements, namely; the heater, the fan and the system of air distributing ducts. In such installations where pure air and humidity control is required, an air washer is installed in addition to the equipment mentioned above. The draw through system is most commonly used in industrial work inasmuch as higher velocities are used than in public building application, and also due to the economy effected by the fan discharging directly into the duct system.

Heat Losses

In industrial buildings the heat losses are due to two causes; first, by the direct transmission of heat through the walls and exterior surfaces of the building, and second, by the infiltration of cold air from the outside. The loss due to the first cause may be calculated very closely in accordance with the method described on page 74, but the heat loss due to infiltration differs so greatly in various sizes and construction of buildings that no definite rule can be laid down. The allowance to be made for this is necessarily the result of experience and of careful tests of previous installations. The most effective remedy to reduce this loss to a minimum is to maintain a slight pressure or plenum within the building by means of a fan.

Fan System vs. Direct Radiation

In all heating systems difficulty is experienced due to the rise of heated air before its heat has been utilized to the fullest extent. This heated air forms a stratum just beneath the roof. In the modern type of factory construction with its height and great amount of skylight surface, the loss due to this action of the heated air may be considerable and its prevention is a serious problem. In direct radiation where the air current is entirely due to the difference in temperature, the attendant loss, which is relatively great, is unavoidable. Practically, the only way in which this heated air can be made use of is by placing the coils next to the wall near the floor, and allowing the heated current of air to pass upward along the walls, but this method is extremely wasteful, due to the fact that part of the heat is applied directly to the walls, causing a loss estimated as great as 25% of the total heat supplied.

With the fan system on the other hand, the method of distributing the air is entirely mechanical, and thus an opportunity is afforded for utilizing its heating effect to the very best advantage. The method of distribution may be so devised that the effect of a rising current of heated air is almost entirely avoided, this being secured by diffusion of the heated air along or near the floor line.

The Buffalo Fan System possesses a great advantage over direct radiation systems in its flexibility of operation. With direct radiation a building heats up very slowly, and it is usually necessary to maintain a normal temperature all night in order to have it sufficiently warm in the morning. On the other hand the fan system with the proper amount of reserve can heat a building up in a short time. This allows the building to be cooled down during the night to just above freezing point, say an average temperature of 35° or 40° where the manufacturing process will permit.

Another important point of economy in the Buffalo Fan System is the utilization of waste sources of heat. The most common form of waste heat in an industrial building is from steam engines and other steam driven machinery.

The ordinary simple steam engine running non-condensing has a water rate of about 32 pounds per horse power. Of the total heat supplied by the steam only about 20% is utilized in work leaving 80% of the heat unused. A great portion of this remaining 80% is available for use in heating apparatus, a small part being lost due to radiation.

Since the mean effective pressure in an ordinary engine cylinder may be placed at 40 pounds per square inch it will be seen that an increase of one pound per square inch in back pressure will reduce the effective horse power of the engine two and one-half per cent, and correspondingly increase the cost of the power produced.

In a compound engine the effect of back pressure is still more noticeable since the mean effective pressure, referred to the low pressure cylinder, may be placed at 30 pounds per square inch; each pound of back pressure therefore reducing the power of the engine three and one-third per cent. It is therefore unprofitable to introduce any system that will greatly increase the back pressure on the engines.

The ordinary system of direct radiation places a back pressure on the engines which is prohibitive. On the other hand the Buffalo Fan System Heater is designed for use of steam at low pressure and can be operated successfully with one-half pound back pressure on the engine.

Heating with Exhaust Steam

The question is frequently brought up whether it is cheaper to run an engine non-condensing and use exhaust steam for heating or to run the engines condensing and use live steam for heating purposes. With the average compound Corliss engine the water rate at full load is about 20 pounds per horse power when running non-condensing and about 14 pounds condensing, so that a saving of 30% in the water rate is effected when running condensing.

The amount of heat available in the exhaust steam is about 80% of the total. Hence it will be seen that the saving of steam when running condensing is only six pounds per horse power, while the heat available in the exhaust steam is equivalent to 16 pounds of steam per horse power and therefore a saving of the equivalent ten pounds of steam per horse power could be saved by running the engine non-condensing and using the exhaust steam in the heater. In this manner a saving is

effected as long as 38% of the steam is utilized in the heater. With engines whose economy is less than that assumed above, the saving effected by running non-condensing and using the exhaust steam in the heaters is even greater.

With the steam turbine the water rate increases much more rapidly with a decrease in vacuum than in the case of the steam engine. A steam turbine having a water rate of 20 pounds of steam per horse power with 28 inches of vacuum will require 50 pounds of steam per horse power when running non-condensing. From this it is readily seen that the use of exhaust steam from a turbine running non-condensing is economical when the heating requirements are more than $60^{\circ}c$ of the steam consumption of the turbine when running non-condensing.

Besides these distinct advantages in economy over direct radiation there is usually a considerable advantage in first cost in favor of the Buffalo Fan System. This is due in part to the compactness of the system, requiring fewer connections and shorter lengths of steam mains, but more particularly to the great saving in amount of radiating surface required owing to its greater effectiveness in the fan system. A determining factor in the rate of heat transmission of any heating surface is the velocity of air over the surface. This is shown by the curve on page 72, exhibiting the relation between air velocities and heat transmission as determined by accurate tests on the Buffalo Fan System heater. In direct radiation the heat is transmitted by convection currents and radiation only, while with the fan system an air velocity over the coils of from 1,000 to 1,200 feet per minute is usual; the former transmits only from 2 to 2.6 British Thermal Units per square foot per hour, per degree difference in temperature, while the fan system heater as shown by the curve on page 73, transmits from 10.4 to 11.5 B. t. u. per square foot per hour, per degree difference in temperature or about five times as much as direct radiation. Hence a correspondingly smaller amount of radiating surface may be used, which more than offsets the additional cost of fan, engine, and hot air piping.

The question often arises as to the relative cost of heating, ventilating, and humidifying. As an example, assume a fan system of heating in a schoolroom, where outside temperature is 0° and room temperature is to be kept at 70°. Air must be raised to 70° before any heating will be done by it, therefore consider this amount of heat added for ventilation purposes.

The temperature of the air has to be raised still further for heating the room, and it is ordinarily assumed that air entering a room at 120° with outside temperature 0°, will probably take care of heating requirements, and also furnish a sufficiently rapid air change.

Accordingly 70° of 120° total or 58%, is used for ventilation and 42% for heating; and approximately the cost of ventilation is 60% and the cost of heating 40%, where humidifying is not considered.

Assuming that this same proportion holds for other temperatures, when the outside air is 40° and the room is to be kept at 70°, 30° or 58° is the amount of heating required for ventilation, and 22° or 42% for heating; and temperature of air entering the room should be 92°.

The amount of moisture which air will contain depends on its temperature. The amount of moisture actually contained at any temperature is called the absolute humidity; and the ratio of moisture which air actually contains at any temperature compared to what it could hold at that same temperature, is called the relative humidity. Thus, if a cubic foot of air contains 0.5 gr. of moisture at 0°,

this being its absolute humidity, the absolute humidity will be 0.5 gr. when the air is heated to 70°. But a cubic foot of air at 70° would be capable of containing 8.0 gr. of moisture, therefore its relative humidity at 70° would be only about six per cent.

When outside air is about 30°, it is well to have about 4 to 5.5 gr. of moisture per cubic foot of air, when temperature is raised to 70°; but with outside temperature 0° it is ordinarily considered that relative humidity should be about one-half the difference between outside and indoor temperatures, or where outside air is 0° and room temperature 70°, the relative humidity should be about 35°. This is the practical value which will not cause steaming of windows.

Assume in the above example that 35% relative humidity at 70° is to be maintained. The air then would leave the humidifier completely saturated at 41°, containing 2.85 gr. of moisture per cubic foot, and then could be raised to any desired temperature by passing over hearing coils. As air entered at 0° containing 0.5 gr. of moisture per cubic foot, 2.35 gr. of moisture should be added to each cubic foot of air. Through the ordinary range of temperatures the absorption of one grain of moisture per cubic foot lowers the dry bulb temperature 8.5°, or 8.5° are necessary to raise moisture in a cubic foot of air one grain or 20° will be necessary to raise moisture per cubic foot 2.35 grains.

This will be in addition to the 120° for heating and ventilating, or 140° will be required for heating, ventilating, and humidifying. Therefore 70° of 140° total, or 50%, is required for ventilating, 36% for heating, and 14% for humidifying, and it can be stated approximately that cost of ventilating will be 50%, cost of heating 35%, and the rost of humidifying 15%.

Systems of Air Supply

The method of distributing the air in an industrial building is a consideration of chief importance. The methods usually applied are as follows:

First, the air is taken entirely from without and after being heated is forced directly into the building through the distributing ducts, this method being generally known as the Plenum System. The pressure produced within the building causes continuous exit of the air from the building, either through the natural openings, as is usually the case in factories and other large buildings, or through special vent openings provided for the purpose as described under Public Building Application. This method effectually prevents the entrance of cold air from without.

A second and by far the most common method used in industrial plants is to draw the supply of air entirely from within the building, raise it to the proper temperature and force it through the distributing due to thus causing a continuous circulation within the building itself. This method can be used in industrial applications since the question of ventilation is not of as great importance as in public buildings, inasmuch as the relative amount of air per occupant is very much greater in industrial plants.

The ideal arrangement is a combination of the two mentioned above and should be used wherever possible. In this method, the greater portion of the air is returned to the apparatus, but sufficient fresh air is taken from the outside to create a plenum within the building and thus prevent the inward leakage of endd air. In this manner the amount of air loss by leakage is made up—not by the inhiltration of cold air through the crevious around the doors and windows—but by air that has passed through the apparatus and has been heated to an effective

degree. This combination has been found to be more economical than where all returned air is used. The proper amount of air to be taken from outside is determined by securing a condition within the building so that the noticeably inward flow of air around the doors or windows ceases. If the plenum is carried beyond this point, there will be a loss due to the heating of an excess amount of outside air drawn through the apparatus.

Systems of Air Distribution

The vertical duct system such as usually used in public and office buildings is frequently employed in factory buildings. In this system the air is admitted through vertical ducts or flues built in the walls and opening into the room at a point about eight feet above the floor line; suitable openings being supplied at the floor line connecting either with vents opening to the roof, or an exhaust duct system through which the air is drawn out. By this method the heated air is continuously forced downward as it cools, and the cool air is removed at the floor line.

This system may be modified by placing the ducts in the room along the walls and either blowing the air out at a height of about eight feet or very close to the floor and blowing directly downward along the floor. The latter method secures a perfect diffusion of the heated air at the floor line and avoids any draft which would be objectionable. In buildings having a large open area a system of overhead piping is installed to the best advantage. Excellent results are obtained by this method providing the pipes are not placed at too great a distance from the floor. The chief advantage of the overhead system is a saving of initial cost, since on account of the high temperature and velocity of air in the distributing pipes, a great amount of heat can be transferred with a very small amount of material necessary, thus the cost of the galvanized iron distributing system air ducts is relatively small. The best results are secured with outlets at from 12 to 18 feet above the floor line. When running the ducts at this height the air may be blown out directly by means of short connections. Above this height it is preferable to use drop pipes extending downward along the structural columns so that they will not interfere with any moving mechanism.

Another system which has proven very satisfactory is that in which a distributing air return duct is employed. This approaches in principle very close to the plenum system as used in public buildings and is a combination of both the plenum and exhaust systems. In this system no distributing ducts or piping for the heated air are used but small fan units are placed at intervals throughout the building. The air is blown directly into the building at about eight or ten feet above the floor through an outlet coming directly from the fan and having short outlets branching in several directions. Return vent ducts are placed at frequent intervals along the wall, these leading into large return air tunnels or ducts through which the air is drawn by the heating fans. In this method the circulation is effected entirely by the return vent ducts rather than by the hot air ducts. This method is to be recommended where an elaborate duct distributing system is impracticable or undesirable.

This system has marked advantage over all other systems in that piping cost is cut to a minimum due to the high velocities and high temperature of air handled by the fan and that a positive circulation of air is produced.

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Page 32

Industrial Applications

The world is progressing and working conditions of years ago are no longer tolerated. The progress in machine tool design and increased production has bettered the class of workmen. The former artisan is now a specialist.

It is a recognized fact that atmospheric conditions have a marked effect upon the comfort and efficiency of a workman. Thus the maintenance of proper atmospheric conditions within a plant pays big returns in comfort and contentment of the workmen themselves and in increased and better production.

The Buffalo Fan System of Heating and Ventilating is in successful operation in every type of factory building and in connection with every form of industry. A mere list would take up more space than advisable in this volume so we will content ourselves with the recital of just a few applications as given below.

Machine Shops

The requirements of the modern machine shop are most admirably met by the Buffalo Fan System of Heating and Ventilating. The modern construction with its large areas of glass roof and large single room volumes presents a very perplexing problem in both air distribution and pressure balancing. How successful our engineers have been can best be shown by describing the system as in operation at the National Acme plant at Cleveland, Ohio.

This plant consists of a one story building of saw tooth construction and covers seven and three-fourths acres. This ranks as one of the largest machine shops in the world. The whole floor is covered very compactly with automatic machines for making bolts and nuts.

The heat losses from the side walls of brick and glass are taken care of by direct radiation and the Buffalo System takes care of the other heat losses which are by far the greater portion.

There are four sets of apparatus each consisting of an exhaust fan returning air from the floor line and discharging it either into the inlet of the air washer for supply or into the atmosphere through ducts through the roof, a supply fan taking air from the exhaust fan or from outdoors as the conditions require, an air washer and the heater units. Both fans are driven by silent chains from a 12"x14" engine. The exhaust fans are provided with an auxiliary motor drive so they can be driven independently when the supply fans are not in operation. Each unit handles 28,000 cubic feet of air per minute and has 6,720 square feet of heater surface.

The fresh air inlet dampers and the exhaust fan discharge dampers are automatically controlled by a thermostat located in the discharge of each air washer.

A considerable quantity of oil vapor and fumes are given off by the automatic machines and the apparatus when in operation keeps the building remarkably free from any traces of these.

Dye Houses

The dye house presents a problem in ventilation that is peculiar and distinctive. The large amount of steam present has always caused trouble by condensation of all cool surfaces throughout the building, making a most undesirable atmosphere to work in and also causing excessive deterioration of the building itself.

Our engineers have made a successful study of this problem and the introduction of the Buffalo Fan System has made the dye house so equipped just as livable as any other part of the factory and removed all traces of condensation on the interior of the building. The entire secret of successful dye house installation is to apply the correct amount of air at the right place.

This is accomplished by blowing heated air into the room just above the dye vats and machines and blowing a current of heated air along the surface upon which the vapor has a tendency to condense.

The air blown across the vats and machines dissipates the steam and the other forms a current or film of heated air along the cool surface so that the moisture-laden air is insulated from these cool surfaces. The air is removed by means of ventilators in the roof or disc fans placed at various points in the walls or by a combination of both ventilators and fans. By this method a rapid absorption and removal of all moisture is effected.

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Page 34

The dye house of the Pacific Mills at Lawrence, Massachusetts is Buffalo equipped. This dye house ranks with the largest in the country and is absolutely free from steam and condensation due to the efficiency of the Buffalo System.

The apparatus consists of one No. 12 double width Turbo Conoidal fan, two No. 16 Niagara fans and one No. 19 Niagara fan, sixteen 48" propellor fans and 11,000 square feet of Heaters.

Paper Mills

Paper Mills present one of the most fertile fields for air heating, ventilating and humidifying.

In the machine room we have the cold damp portion around the wet end of the machine, the hot humid portion around the driers and the cool portion around the calendar end. The center of the room is over-heated while the ends require additional heat to make them livable. Along with these we have the constant dripping of condensed moisture from the roof. This condensate drops down upon the paper and causes great loss by injuring the finished product in addition to the rapid depreciation of the roof construction. The grinder rooms are extremely cold and damp and the roof condensation is also quite a problem.

The problem met in paper mills is similar to that in dye houses. Warm air must be introduced into the room without conflicting with the natural air current tendencies and ample provision must be made for exhausting the moisture-laden air without allowing it to come in contact with the cool surfaces of the building.

The S. D. Warren Co., Cumberland Mills, Maine, and the Eastern Manufacturing Co., at Brewer, Maine, head the list of paper mills reaping the benefits from Buffalo Heating and Ventilating.

Food Product Plants

In plants where food products are handled, the chief requisite of the heating and ventilating apparatus is that the air delivered to the workrooms be absolutely clean. In addition to this a uniform atmospheric condition must be maintained, for it has been found that the quality of the product changes with variations in the atmospheric conditions under which they are prepared. Both of these requirements are admirably met with the Buffalo system of heating and ventilating equipped with a Carrier air washer. The effectiveness of the Carrier air washer is shown by the picture on page 17.

The well known products of the Beech Nut Packing Company at Canajoharie, New York, are all prepared and packed in the presence of pure, clean air delivered by Buffalo Apparatus. Not only is the air washed and heated but is also delivered to each room at the exact humidity required for the process taking place in the room.

Campbell Soups are also benefited by Buffalo heating and ventilating.

Railroad Round Houses

Round houses present a very difficult heating problem due to the large volume of warm air carried off through the open smoke jacks which act as ventilators. A great amount of heat is absorbed, too, in the melting of the snow and ice on the locomotives and in the evaporation of the moisture thus produced. Ample ventilation is required to carry off the smoke and gases and considerable heat is required due to the excessive ventilation requirements.

The usual method employed is to draw the air direct from outside and after passing through the coils of the heaters to distribute the air by means of underground ducts discharging into the pits directly under the engines. The outlets are often fitted with volume regulating dampers.

This is very clearly shown in the drawing on the opposite page. In addition to the outlets in the pits the cold outside walls are taken care of by outlets along some of the columns and blowing toward the cold walls.

The cut below shows the Buffalo Fan used for heating and ventilating the N. Y. C. R. R. round house at Gardenville, N. Y.

Advantages of the Fan System

The chief points of superiority of the Buffalo Fan System may be summarized as follows:

- 1. Perfect ventilation regardless of exterior conditions.
- 2. Uniform and proper distribution of heat.
- 3. High efficiency of heating surface (three to five times that of direct radiation).
- 4. Greatest economy in operation.
- 5. Utilization of exhaust steam.
- 6. Prevention of cold drafts from without by production of a plenum.
- 7. Independent regulation of heating and ventilating effects.
- 8. Great flexibility in operation to suit varying conditions, affording a maximum economy.
- 9. Ease of control, which prevents over-heating.
- Great compactness, affording an economy of space and reducing the cost of steam connections.
- 11. Perfect drainage, making less repairs necessary and giving a lower rate of deterioration than with direct radiation.
- 12. Low cost of installation.
- 13. The entire apparatus is easily portable and is, therefore, a permanent asset.

THE BUFFALO FAN SYSTEM

OF

Heating, Ventilating and Humidifying

PART THREE

Buffalo Apparatus

THE Buffalo Fan System Apparatus consists of a fan, an engine or motor, some form of indirect heating coil, and a Carrier Air Washer and Humidifier. The general arrangement may be either the EXHAUST or DRAW THROUGH system in which the air passes through the heater before reaching the fan, or the BLOW THROUGH in which the fan is in front of the heater and blows the air through the heater coils. The selection of the arrangement to be used depends upon the individual requirements of the location, each arrangement having its own peculiar advantages. The exhaust through apparatus possesses the advantage of greater compactness and a more convenient arrangement. On the other hand, the blow through apparatus is larger but occupies a more narrow space. The former requires the use of an exhaust fan, one having only one inlet, which is slightly less effective than a blower having two inlets such as is used in the blow through type; however, the exhauster discharges directly into the duct system without any reduction in the velocities of the heated air so that all the energy of velocity of discharge is utilized. The blow through system on the other hand requires a change from the relatively high velocity at the fan outlet to a low velocity through the heater and back again to a high velocity upon entering the air ducts which causes an unavoidable loss in pressure.

Due to its compactness the exhaust through apparatus is customarily employed in factory buildings. The blow through apparatus is necessarily used in public buildings and elsewhere wherever independent temperature regulation is demanded as the use of a by-pass around the heater permits the independent distribution of hot air and tempered air in any desired proportions.

Fans

Fans and blowers are designated by the position of the discharge opening and are class fied as follows:

Top or bottom horizontal discharge, up or down blast, and special, the latter being described by giving the angle of discharge from the horizontal. The hand of a fan or blower is determined by the side on which the pulley or engine is located. When facing the discharge outlet, the fan is either left or right hand according to whether the pulley is on the left or right side as seen from this position.

A brief description of the various types of fans manufactured by the Buffalo Forge Company follows.

Buffalo Cone Fan

Buffalo Planoidal Fan Wheel

Cone Fans

For the introducing of cooled or tempered air into rooms where no distributing system is required or for exhaust ventilation where the resistance to be overcome is moderate a type of fan known as the conc wheel is suitable. This special form of fan wheel is used without a housing and is shown in the cut above. This fan wheel must not, however, be compared with the disk or propeller fan, since it is purely of the centrifugal type. Tables of performance are found on page 76.

Planoidal (Type L)

Ruffalo Planoidal Fan-Type L Full Housing Buttum Horizontal Discharge

One of the first developments of the centrifugal type of fan wheel was the steel plate fan. In this fan the blades consist of flat radial plates and are few in number. As the result of extensive experimenting and testing by our engineers the Planoidal (Type L) steel plate fan was developed which was a distinct improvement over the old style steel plate fan. This fan is provided with an inlet cone on the housing and the proportions of the wheel, housing, inlets and outlets were so designed as to materially increase the capacity and efficiency, at the same time reducing the power consumption. Tables giving the ratings are found on pages 78 and 106.

Buffalo

Niagara Conoidal (Type N) Fans

With the increase in the speed of prime movers it was found necessary to design fans to operate at a higher speed and one of the marked developments in this line was the Buffalo Niagara Conoidal Multiblade fan. This fan derives its name from the prevalence of conical shapes in its design. The blades are made to conform to the tapering surface of a cone, the inlet is conical and the blast wheel forms the frustrum of a cone.

These characteristics are very clearly shown in the adjacent cut.

Fans from No. 3 to No. 6 in size are made with cast iron inlet bearing stand and cone as shown below. All sizes over No. 6 are made with sheet iron inlet cone and flat steel bearing standards as shown in cut below.

Performance data will be found on pages 79 and 107.

Turbo Conoidal Fans

The increasing demand for air at high pressure was forseen by the Buffalo Forge Company, and a new type of Multiblade fan known as the Turbo Conoidal was developed. This fan differs from the Niagara Conoidal, only in that its blades are of double curvature instead of single curvature. This

fan is particularly suited for op-

No. 3 to No. 6 Ningara Considal Fan. Right-Hand Up Discharge

cration where both high speeds and high pressures are essential. The various points considered in the design of the Niagara Conoidal fan were also taken into account by our engineers in the design of the Turbo Conoidal, and all parts are co-ordinated with the view of obtaining the highest efficiency with the lowest power consumption. Performance tables are found on pages 80 and 108.

All parts of the Niagara and Turbo Conoidal fans have been designed with the view of obtaining the best efficiency under practical operating conditions.

Three-Quarter Housing Ningara Conoidal Fan. Left-Hand Top Horizantal Discharge

The wheels, blades and hub are designed so that the air shall have a smooth easy flow from inlet to outlet without any abrupt change of direction at any point; also, the width of the blade is so proportioned that the back part cannot take up any greater part of the air, this prevents uneven pressure and eddy currents, and effects an even distribution of the air over the entire surface of the blade. Our success in this design has been proven by practical tests, and our standard guarantee is that the velocity of air issuing from any part of the fan outlet as measured by a Pitot tube is not more than 15% above or below the average velocity across the entire opening.

Turbo Considal Fan Wheel Partiv Assembled.
Showing Double Curvature of Blades

Diagram Showing Advantages of Niagara and Turbo Consolul over other types of Multiblade Fass to Handling Li-

Buffalo Spherical Type Fan Bearing

One of the prominent features of Buffalo Fan construction is the type of bearing used. It was proven early in the history of fan construction that the reliability of operation of a fan was in a large measure determined by serviceability of the bearing used.

The type of bearing described below is by far the best fan bearing on the market today.

This dust proof and oil tight bearing consists of a split sleeve lined with babbitt and completely encased in the bearing housing. The sleeve is mounted between spherical surfaces which allows the bearing to adjust itself in every direction, and the housing provides a large oil reservoir in which two oil rings dip; overfilling is

prevented by the position of the opening through which the oil is supplied and which also indicates the oil level.

In the interest of safety the thrust collar is placed inside the housing, running against a babbitted shoulder; grooves on the outside surface of the thrust collar throw off all oil and absolutely prevent it from creeping along the shaft and being drawn into the fan.

Selection of a Fan

It has been proven both in theory and practice that the length of blade in a straight blade fan wheel is the deciding factor in the pressure obtained at a fixed rotative speed and that a curvature of the blade in the direction of rotation tends to increase the pressure. Whereas the curvature against the direction of rotation tends to decrease the pressure. It is often stated that the forward curvature of fan blades will increase the efficiency over that obtained with radial blades or backward curvature blades, this however is not true. Each type is admirably suited for a certain purpose; It has been found that short curved blades require a greater number for good efficiency than blades of the radial type, similar to the steel plate and Type L fans. With the steel plate or planoidal fan having a small number of radial blades usually from five to twelve depending upon the size, the pressure tends to build up as the capacity falls off, that is, at a constant speed the pressure is greater at half capacity than at normal rating. With the multiblade type, such as the Niagara Conoidal having single curvature blades, the pressure is developed more by change of direction and impact of the blades against the air, rather than by centrifugal force, the pressure is greatest at the normal load for which the fan was designed and decreased for any load, either above or below this normal capacity. This feature has been overcome in the fans having double curvature blades, e. g., the Turbo Conoidal in which the pressure builds up as the capacity falls off, in this respect being very similar to the steel plate fans. These points are very clearly brought out in the characteristic curves of these various types of fans as shown on pages 81 to 83.

From this it will be seen that in systems where a uniform air quantity is desired, whether for heating, ventilating, forced drafts or drying processes the steel plate fan and turbo conoidal fan will come nearer giving this uniform quantity in spite of variations in resistance brought about by throttling of dampers or similar conditions. On the other hand, it is sometimes very desirable to be able to cut down the capacity of a fan without increasing the pressure and velocity, as for instance, if one part of a building should be shut off; in a case such as this, the steel plate fan would deliver an increased amount of air into the remaining part of the system on account of the increased pressure, whereas the multi-blade fan of the Niagara type would be more sensitive to the increased resistance and would fall off in capacity due to this. In general multi-blade fans of equal capacity and efficiency require less space than steel plate fans and have the advantage of operating at higher speeds.

When specifying a multi-blade fan with single curvature blades extreme precaution must be taken in designing the duct system, in determining the frictional resistances of the entire system, and selecting the proper speed for the size of fan to be used.

Buffalo Baby Conoidal Fans

The Baby Conoidal fan is of the high efficiency multiblade type with blast wheel of the same design as the Niagara Conoidal (Type N) which has met with such marked success. Housing is cast iron and can be swung around to discharge in any desired direction. This fan furnishes a large volume of air at a relatively low pressure with moderate speed. The wheel is accurately balanced, assuring a smooth-running, noiseless machine.

It is unexcelled for all kinds of drying and cooling purposes, for supplying fresh, cool air to offices, homes, staterooms, telephone booths, etc., and for exhausting smoke, fumes and foul air from kitchens, restaurants, lavatories, etc.

Cord and plug are furnished with No. 3 and smaller; no expense for installing, simply attach to an electric light socket. Outfits are furnished with 110 or 220 Volt D. C. motors and 110 or 220 Volt single phase, 60 cycle, A. C. motors. Nos. 4, 5 and 6 are also furnished with 110 or 220 Volt, two or three phase, 60 cycle motors.

Tables of dimensions and performance on page 76.

No. 6. Baby Conoidal Fan

Motor Driven (Type D)

Pulley Driven (Type D)

Disc Fans (Type D)

The ordinary disk or propeller fans are designed for use where low pressure heads are operated against. This type of fan should never be used in connection with a pipe system but should discharge directly into a room, or exhaust from it without obstruction. The characteristics of the Type D fan are very clearly shown in the above cuts.

Performance tables are given on page 77.

Disc Fan (Type CM)

Where a disc fan is used to overcome a moderate resistance, the Type CM with overlapping blades is recommended. This type of fan is used as a booster in mine ventilation, or for producing air flow in cooling towers for condensing plants. The casing and bearings are self-contained.

Type CM

The Carrier Air Washer and Humidifier

The Carrier Air Washer consists of a spray chamber, a series of spray nozzles and eliminator plates. The air is drawn through the spray chamber where it comes in intimate contact with an atomized spray of water.

The number of nozzles is ample

Spray Nozzles in Operation

to insure a uniform distribution of the mist as shown in the cut to the left. The water is so finely divided that the

Interior of Carrier Air Washer

air mixes thoroughly with it and all dirt and dust particles are saturated. The air and water then pass through the eliminator plates.

The eliminators consist of a series of zig-zag plates, a portion of which are flooded with a continuous film of water. The air impinges on these flooded plates, leaving the dust and dirt which are caught in the film of water and washed into the

settling tank in the lower part of the washer.

The clean air passes through entrained water is removed by the lips crimped into the plates and leaves the washer with the exact amount of moisture as predetermined by conditions of temperature and humidity.

Turn back to page 17 and see the five pails of dirt removed by the Carrier Air Washer in Public School No. 6, Brooklyn, New York.

Data relative to the sizes and capacities of the Carrier Air Washer and Humidifier will be found on pages 84 to 95.

The clean air passes through the dry part of the eliminators where all ained water is removed by the

Fineding Nordes and Eliminators

Feed Pumps and Receivers

The Buffalo Feed Pump and Receiver consists of a suitably constructed castiron receiving tank, mounted in combination with a Boiler Feed Pump on a common bed plate. The tank is mounted slightly above the pump, giving a sufficient head of water above the suction valves to insure the pump always receiving a full supply of water.

Within the tank is provided a float connected to a chronometer valve controling the steam supply to the pump. Inflowing water causes float to rise, thereby opening the steam supply and starting the pump. When the water level has been lowered, the float automatically cuts off the steam. In this way the condensation water is returned to the boiler as fast as it accumulates.

A Buffalo Vertical Centrifugal Condensation return pump in its scheme of operation is similar in every way to the ordinary horizontal shaft outfit except, that the pump is vertical and submerged within the receiver. The motor is controlled by means of a ten-inch seamless copper float, operating a float switch. This style of design is more convenient in many installations as it avoids providing large pit to carry the pump in order to get it sufficiently low to admit gravity drainage.

The Buffalo Standard Heater

The Buffalo Fan System Pipe Coil Heater has been designed to meet the peculiar requirements found in forced ventilation and also to secure the maximum effectiveness in connection with such work.

First: A perfect circulation of the steam is obtained which removes all air from the coils, carrying it to a single chamber in the base from which it is easily removed through the exhaust connections. Air binding, the greatest enemy of radiation efficiency, is thus prevented.

Second: The heater is so arranged to insure perfect drainage. The design of the base allows no opportunity for pocketing of water, and the pipes are immediately relieved of all condensation, thus avoiding any chance of damage by freezing. The drain ports are made large to allow for an unusually rapid condensation without choking and filling. This feature allows the coil to be used over a great range of radiation.

Third: The proportion of the air passages between the coils is so designed as to secure the highest efficiency of radiating surface and the lowest resistance to air flow. In this respect the air is brought in intimate contact with all parts of the heating surface and a uniform and maximum velocity of air is maintained throughout the coil. The velocity of the air is a determining factor in the rate of heat transmission, this being conclusively shown in the curve on page 73, this curve being derived from data obtained from actual tests made on Buffalo Coil Heater. By maintaining uniform velocity through the heater any unnecessary loss of pressure due to changes in velocity is prevented.

Fourth: Each section is independently connected to the steam main and the steam supply controlled by valves so that as few or as many sections as desired may be in operation giving the operator a convenient and absolute control of air temperature and heater effect. By this method of connection any section may be removed for repairs without interfering with the operation of those remaining. This construction also enables the use of live steam in a number of sections and exhaust steam in the remaining, or live and exhaust steam may be introduced in any one section at the same time.

The condensation and heating capacity from a given amount of properly designed radiation, is from three to five times greater with a forced circulation of air than in ordinary radiation. It can readily be seen that a heater designed for a fan system must provide for positive and rapid condensation in order that the coils may be invariably bot. This condition is admirably met with the Buffalo Heater.

The Buffalo Heater is made in two styles known as the Open Area and Return Bend patterns, the difference being very clearly shown in the cuts on next page.

On pages 96 to 108 are given the tables which show the characteristics of Buffalo Heaters and also various combinations of heaters and fans. This

Return Bend Heater

information will be found very useful for use in industrial heating and ventilating work. All Buffalo Heater Sections are made with four rows of pipes. From the table on page 96 it will be seen that the size and number of pipes vary over wide limits so that it is readily possible to obtain a size of heater to meet practically any requirements. When an apparatus is required having a clear area through the coils greater than the largest heater shown in this table, two smaller coils may be chosen and placed back to back, this arrangement can be further extended, and a triplex arrangement of three groups used.

Open Area Heater

Vento Heater

Vento Heaters

The Vento low pressure cast iron heater, which is very clearly illustrated in the cuts, is designed especially for use in the fan and blower work. These heaters are made in sections of various heights and widths which may be assembled so as to make a heater of any desired size and depth. Ratings are found on page 104.

Indirect Heaters

It is sometimes desirable to locate the fan outside of the building to be heated, either in the power house or a specially built apparatus room. If the distance is considerable it will be found more economical to place the heater unit in the building itself, carrying the unheated air over the intervening space rather than heating it before.

For special indirect heating work where the fan and heater are placed some distance apart a larger base is used for the heater than when used in close proximity to the fan. The table following will give the details of the various sizes of indirect heaters built by this company. Under the heading of "Size" the first row of figures gives the numbers of pipes across the steam supply and drip ends, and the second column the number of pipes in the length of the coil. Cast iron manifold bases are used as in the regular fan system heater, however the steam and exhaust connections are on opposite ends of the manifold instead of on the fan and as in the fan system heater, this enables the heater to be used in either an upright or horizontal position according to the requirements. These heaters are known as the solid base type, the base being divided into two chambers by means of a diaphragm which compels the steam to flow evenly through all pipes. These coils are designed for the use of either live or exhaust steam, being effectively applicable for low pressures.

Actual lineal feet one-inch pipe in each section

Size	4015	4635"	5214"	5819"			
6 x 8	133	154	-		6439*	W	L
8 x 8 8 x 10 10 x 10 10 x 12 10 x 14 12 x 12 12 x 14 12 x 16 14 x 14 16 x 16	177 221 276 340 387 398 464 532 542 708	206 258 323 387 451 464 542 618 632 827	177 236 295 369 443 517 532 618 709 723 945	198 265 332 415 408 581 598 697 798 814 1061	221 205 369 462 553 645 663 774 886 906 1181	1234 1634 1634 20 20 20 20 2334 2334 2334 2334 2334	22 22 27 27 32 37 32 37 42 37 49

Class "A"

Class "O"

Buffalo Steam Engines

During many years of constant service in the building of engines it has been possible to bring the Buffalo Engine to a high state of perfection. Those who have directed its growth have aimed at the development of a simple, economical and, above all, a substantial engine, built in several types, each suited to its individual work. The limitations of floor spaces and heights, together with different engineering practice in mills and power plants, have been met with appropriate designs which evince a careful consideration of all the requirements.

The design of a steam engine calls for a series of compromises. To make these compromises in favor of the most beneficial results is the evolution of the best engine design, and to carry out these plans in a shop is the evolution of the best engine. Thus it is that the Buffalo Engine has a piston valve and bored guides, that the connecting rod has a small angularity, that the eccentric strap and simple transmission of its motion are used.

The very great extent of the use of the high-speed automatic steam engine makes it applicable to almost any service; and appreciating the fact that there is

and appreciating the fact that there is a demand for these engines of very compact design, giving great power in small space, the construction of the Buffalo Engine, which has been on the market for years, has been constantly improved, and now represents a perfected engine. They are designed to operate with the highest degree of economy. These engines will furnish under the most exacting conditions satisfactory and reliable power.

Tables of horsepowers and dimensions are given on page 105.

Gas and Coal Heaters

This company has been very successful in the installation of several large heating plants where the heat generated by the combustion of coal or natural gas is transferred direct to the air used for heating and ventilating without the use of an intermediate medium such as water. The heater used in this connection resembles a horizontal water tube boiler, each heater consisting of a bank of iron boiler tubes expanded into a heavy tube sheet at each end. These tubes are set in a brick housing similar to a boiler and the products of combustion passed through the tubes while the air to be heated is passed around the tubes. The furnace and combustion chamber in the housing is so designed that complete combustion will occur before the gases reach the tubes, and thus the greatest possible amount of heat is available for transmission to the air to be heated.

Heaters of this type are in successful operation at the American Rolling Mills, Middletown, Ohio. In these heaters the hot gases at the back of the combustion chamber at a temperature of 3000° F. are mixed with two-thirds of the exhaust gases taken from the front breeching and this resulting mixture is forced through the tubes by means of a fan. This has been found to be the most economical procedure. The gases coming directly from the combustion chamber are too hot to be introduced into the tubes without some cooling and in the method above described no loss of heat is entailed. The pure air for distribution through the building is drawn through the clear area around the outside of the tubes and then forced

Buffulo Gas Heater at American Rolling Mills, Middletown, Ohio

through the duct system by means of another fan. The heaters mentioned above have been tested and show an average operating efficiency of 85% without considering radiation losses. In many places the heating efficiency obtained by this method makes it advisable to use gas or coal heaters instead of steam boilers. Stokers have been used with great success in heaters of this type.

Overhung Fan

Fan Bearing on Inlet Side

Motor Driven Fans

We have found it advisable in most cases to install engine driven fans, preferably direct connected, this method being most economical and permits of a wide speed variation. There are however, innumerable cases where the steam pressure necessary to operate the engine is not available, or the location desired for the fan apparatus is such that as little attention as possible shall be required for its operation; in cases such as these motor drive affords the solution and special fan designs have been made for use in connection with motors. A motor base is constructed in connection with the fan housing, either of a heavy cast iron one-piece box construction or built up of heavy sheet iron and reinforced with angles. The base is stiffened across the interior by ribs if made of cast iron, or heavy angle braces in the built up construction and made with rounded corners thus combining the necessary strength with a pleasing appearance. In the case of the smaller size of fans with one inlet the fan wheel may be overhung on the motor shaft,

which is extended for this purpose; however, it is preferable to use a coupling and place a bearing on the side of the fan farthest from the motor. Wherever alternating current is used, the high speeds at which the regular motors run, make it impossible to use a direct connected unit for heating and ventilating work, except in very rare cases. For direct current, motors may be obtained for any desired speed, and although a slow speed motor is more expensive than a high speed motor of the same power, the advantage gained is sufficient to warrant the adoption of the slow speed motor except in the largest sizes of ventilating fans which operate to best advantage at slow speeds.

Fan Overhung on Motor Shaft

Schooley High School, Pittsburgh, Pa-

Bullalo Equipped

THE BUFFALO FAN SYSTEM OF Heating, Ventilating and Humidifying

PART FOUR

THE Buffalo Forge Company takes great pride in its hand book "Fan Engineering" which is, without exception, the authority in its field. The following subject-matter and data has been condensed from the text of this hand book and the reader is referred to it for a complete discussion of the various principles involved.

Relation of Velocity to Pressure

The laws governing the flow of air are less understood than any other branch of engineering. The flow of air under high pressure must be investigated thermodynamically and the formulae are therefore complicated.

For low pressures such as are met with in ordinary fan work very little error is introduced by applying the same formulae to the flow of air as to the flow of water.

The basic formula for such calculations is

$$V_s = \sqrt{2 \text{ gh}}$$
 or $V \approx 60 \sqrt{2 \text{ gh}}$

where

V. = velocity in ft. per second.

V = velocity in ft. per minute.
g = acceleration due to gravity in feet per second.

h = Head in feet causing the flow

We also have

$$U = h' \frac{d}{12W}$$

where

h' = head expressed in inches of water.

d = density of water.

W = weight of air in pounds per enbic foot.

Then with dry air at 70° F and 29.92" Barometer, weighing 0.07495 lbs. per cu. foot.

$$\frac{d}{12 W} = \frac{62.31}{12 \times 0.07495} = 69.28$$

and we have

$$V = 60 \sqrt{2 gh'} \frac{d}{12 W} = 4005 \sqrt{h'}$$

From this we see that the velocity due to one inch of water at standard conditions for air will be 4005 feet per minute and for a pressure of one ounce per square inch will be

The following tables give the pressure and velocity for air first, at constant temperature of 70° and second, at various temperatures.

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Corresponding pressures and velocities of dry air at 70° and 29.92 inches barometer

INCHES	OUNCES	VELOCITY	Tanamas	0	1
OF WATER	PER SQ. IN.	FT. PER MIN.	OF WATER	OUNCES PER SQ. IN.	VELOCITY FT. PER MIN
.05 .10 .20	.0289 .0577 .1154	896 1266 1791	4.77 5.00	2.750 2.884	8745 8943
. 25			5.20	3.000	9134
.30	. 1443 . 1730 . 2308	2003 2193 2533	5.50 6.00 6.07	3.172 3.460 3.500	9392 9810 9864
.43 .50 .60	.2500 .2884 .3460	2637 2832 3102	6.50 6.94 7.00	3.749 4.000 4.037	10210 10545 10595
.70 .75 .80	.4037 .4326 .4614	3351 3468 3582	7.50 7.80 8.00	4 326 4 500 4 614	10968 11187
. 87 . 90 1.00	.5000 .5190 .5768	3729 3800 4005	8.67 9.00 9.54	5.000 5.190 5.500	11328 11792 12015
1.25 1.30 1.50	.7209 .7500 .8650	4478 4566 4905	10.00 10.40 11.00	5.768 6.000	12367 12665 12915
1.73 1.75 2.00	1.0000 1.0092 1.1535	5273 5298 5664	11 27 12 00 12 14	6.344 6.500 6.921	13282 13445 13875
2 17 2 25 2 50	1.2500 1.2975 1.4418	5895 6007 6332	13.00 13.87 14.00	7.000 7.497 8.000	13950 14440 14913
2.60 2.75 3.00	1.5000 1.5860 1.7300	6457 6641	15.00 15.61	8.074 8.650 9.000	14985 15510 15820
3 03 3 25	1 7500 1 8740	6937 6976 7220	16.00	9 227 9 805	16020 16513
3 47	2.0000	7457	17.34 18.00	10.000 10.380	16675
3.50 3.75 3.90	2.0185 2.1630 2.2500	7492 7756 7910	19.00 19.07	10 960 11 000	16990 17456 17488
4.00 4.25	2 3070 2 4510	8010 8256	20.00	11 535 12 000	17910 18265
4.34	2.5000	8337	22 54 24 28	13.000 14.000	19012
4.50 4.75	2 5950 2 7395	8496 8729	26 01 27 74	15.000 16.000	19730 20420 21090

Corresponding velocity for dry air at various pressures and temperatures and 29.92 inches barometer

Phessynn		200			aromete	_			
Incues	OUNCES	50"	50"	70"	100°	150°	300°	500°	550
25	1443	1965	1986	2003	2050		-		UA.
75 1.0 1.25 1.50 1.75 2.00 2.25	-2884 -4326 5708 -7209 8650 1 0002 1 1535 1 2975	2778 3402 3929 4303 4812 5197 5556 5892	2808 3439 3971 4440 4861 5254 5616 5956	2832 3468 4005 4478 4905 5298 5664 6007	2059 2911 3565 4117 4602 5042 5446 5822 6174	2149 3038 3720 4296 4804 5262 5683 6076 6443	2399 3391 4153 4796 5362 5874 6344 6783 7190	2696 3812 4068 5390 6027 6602 7131 7624 8085	2895 4092 5020 5795 6470 7100 7655 8195 8690

Some writers have endeavored to correct for the effect of compression by introducing certain constants in the above formulae but the results ulstained by the use of these formulae are more in error than when the equations given above are used.

To obtain a more correct formula which will apply to higher pressures up to one-half of an atmosphere, we may assume the air is discharged under isothermal expansion, when we obtain the formula

where

P_n = the largemetric pressure in pounds per sq. in.

P = the pressure of the air above atmospheric pressure expressed in leader

and marginality. if we the dematty in pounds per cu. It.

If a more exact expression is required, which allows for the adiabatic expansion, the thermodynamic equation is used which gives

$$V_{ij} = 109.2 \sqrt{T_1} \frac{1}{1 - (p_{ij} - p_{ij})^{-1}}$$

This latter formula is inconvenient in application, and varies so little from formula (a) with pressures under one pound per square inchthat formula (a) is always preferable

Measurement of Air Flow

The quantity, velocity and presoure of an discharged by a fan or flowing through a pape may be determined by various methods.

The anemometer is used where extreme accuracy is not required or whose the vehicley of the air is low as in the duct or register enterting a resum.

Friction of Piping

A subject of great practical importance in fan work is the loss of pressure by frution in conveying air through piping. The expression for the flow of air in smooth circular metal pipes may be taken as approximately

where

If you then have not prepared to include all waters.

V -c the velocity in feet per music

. - the length of the pipe in her

of a the dissinctor of the pipe in her, he go - beight of the pipe in Someters.

From this formula it will be seen that 50 diameters of amounts pipe profess a loss which curresponds to the velocity head. This termula is of the ones general

form developed by Weisbach but recent experiments have shown his coefficient to be considerably too high for smooth pipe and in this formula it has been corrected accordingly. For pipes with rough or uneven surfaces the coefficients must be decreased accordingly. For tile and brick ducts we recommend that the coefficient be decreased 25%.

The tables of pipe friction below will be found very useful in estimating friction losses.

Velocity of air to feet per minute				LOS	S OF PI	RESSURE	PER 10	00 FT. 12	N INCHE	S OF WA	TER				
		DIAMETER OF PIPE IN INCHES													
	3 in.	d in.	5 in	tin.	7 in:	S in.	9 in.	10 in.	12 in.	14 in.	16 in.	18 în.	20 in.	22 in.	
200	.026	.019	.016	.012	.010	.009	.008	.007	.007	.005	005	000	WO.	non	
300	.057	.043	.035		.024	.023	.019	.017	.014	.012		.003	.003	.003	
400	.102	.076	.062		.043	.038	.033	.031	.026	.022		.010	.009	.009	
500	.161	.120	.097	.080	.069	.061	.054	.049	.040		.019	.017	.016	.014	
600	.231	.173			.099	.087	.076	.069	.057	.035	.029	.027	.024	.022	
700	.314	,239		.158	.135	.118	.104	.094	.078	.050	.043	.038	.035	.031	
800	.411	.309			.177	154	.137	.123		.068	.059	-052	.047	.043	
900	.520			.260	.224	.194	.173	.156	.102	.088	.076	.069	.062	.056	
1000	.642	.482		.321	.276	.241	.213	.192	.130	.111	.097	.087	.078	.071	
1500	1.444		.867	.723	.619	.541	.482	.434	.160	.137	.120	.108	.097	.088	
2000	2.568	1.927	1.542	1.285	1.101	.964	.855	.770	.361	.312	.277	.243	.225	.198	
2500	4.013		2.409	2.006	1.748	1.505	1.337	1.205	.642	.550	.482	.428	.385	.350	
3000	5.774	4.335	3.468	2.890	2.478	2.168	1.927		1.004	.860	.753	.669	.603	548	
3500	7.872	5.902	4.722	3.820	3.373	2.956	2.624	1.734	1.444	1.238	1.084	.964	.867	.789	
4000	10.276		6.166	5.138	4.405	3.853	3.425	2.360	1,966	1.685	1.476	1.311	1.179	1.073	
4500	13.005		7.803	6.560	5.573	4.878		3.083	2.568	2,202	1.926	1.713	1.542	1.401	
5000		12.051	9.634	8.084	6.880	5.934	4.335	3.728	3.251	2.787	2.438	2.168	1.951	1.774	
5500		14.577	11.656	9.713	8.340	7.288	5.351	4.852	4.014	3.440	3.010	2.676	2.409	2.190	
6000	23.120	17.310	13.871	11.561	9.908	8.670	6.477	5.827	4.857	4.162	3.642	3.237	2.913	2.648	
					2.0000	Sant July	7.706	6.936	5.780	4.985	4.335	3.853	3.468	3.152	

sty of pert per rate				oss or p	UESSURE	rer 100	FT. IN IN	CHES OF	WATER					
Velosity air in heet minister	DIAMETER OF PIPE IN INCHES													
	24 m:	26 to.	28 in.	30 km.	34 in.	38 in.	42 (a.	46 in.	50 in.	51 in.	58 in.	62 in		
200 300 400 500 600 700 800 900 1000 1500 2000 2500 3500 4500 5500 5000 5500 6000	.00322 .00711 .01281 .02005 .02890 .03929 .05134 .06503 .08021 .18064 .32105 .50129 .72250 .98330 1.2841 1.6257 2.0068 2.4284 2.8900	.00296 .00668 .01183 .01850 .02667 .03628 .04741 .06003 .07404 .16677 .29638 .46300 .06695 .90761 1.1853 1.5051 1.8525 2.2411 2.6611	.00274 00619 .01099 .01719 .02476 .03388 .04401 .05571 .06876 .15482 .27271 .42905 .61930 .84282 1.1006 1.3934 1.7201 2.0814 2.4771	.00257 .00577 .01025 .01604 .02311 .03144 .04108 .05202 .06417 .14450 .25451 .40129 .57800 .78661 1.0274 1.3050 1.5086 1.9426 2.3121	.00225 .00510 .00905 .01415 .02039 .02773 .03624 .04590 .05661 .12750 .22460 .35402 .51000 .69415 .90650 1.1476 1.4166 1.7140 2.0302	.00205 .00456 .00810 .01266 .01826 .02481 .03243 .04106 .05067 .11409 .20092 .31678 .45631 .02102 .81111 1 .0267 1 .2309 1 .5318 1 .8252	.00184 .00413 .00732 .01146 .01651 .02245 .02934 .03716 .04583 .10320 .18182 .28660 .41270 .56190 .73381 .92899 1.1467 1.3873 1.6473	.00166 .00376 .00668 .01046 .01491 .02046 .02670 .03399 .04214 .09427 .16732 .26167 .37680 .51295 .66985 .84809 1.0462 1.2667 1.5078	.00156 .00347 .00607 .00954 .01387 .01873 .02462 .03121 .03850 .08653 .15417 .24069 .34681 .47181 .61575 .78032 .96337 1.1654 1.3872	.00139 .00329 .00329 .00572 .00884 .01283 .01751 .02289 .02878 .03555 .08010 .14270 .22281 .32096 .43700 .57066 .72135 .89178 1.0791	.00139 .00295 .00538 .00815 .01179 .01630 .02133 .02688 .03312 .07473 .13282 .20740 .29895 -40680 .53131 .67106 .83022 1.0046	.0012 .0027 .0048 .0076 .0112 .0152 .0199 .0251 .0310 .06988 .12418 .19408 .27970 .38051 .49696 .62925 .77666 .93980		

Sizes of Main and Branch Pipes

Most published rules involve arbitrary constants and tables without giving the basic formula or reasons in determining flue, register and pipe sizes. The most efficient arrangements can be made only when the hypothesis of calculation is understood. The essential data is here given and while its application requires more than merely taking sizes from tables, the whys and wherefores are known, and in this knowledge there is considerable satisfaction.

The piping systems for industrial buildings and those for public buildings are figured according to two distinct methods. In industrial buildings the problem is chiefly to convey the heat units with as great an economy of power, material and space as possible, while in public buildings there are the additional requirements of freedom from noise and prevention of drafts. In industrial buildings the air is usually conveyed through one or two main lines extending lengthwise of the building, the areas of such pipes decreasing as they extend, to give a uniform distribution of air throughout. On the other hand in public buildings, individual ducts are carried from the apparatus to each room, so that it is evident the same method is not applicable to both systems.

Proportioning Pipes in Industrial Buildings

In proportioning the main and branch pipes in industrial buildings, the primary aim is to secure as uniform a distribution as possible without the necessity of damping; secondly, to secure economy of power and economy of material. It has been found good practice in proportioning piping systems to decrease the velocity in the main pipes as the air quantity decreases. This principle of proportioning has three advantages.

First: It utilizes the velocity of the air in producing static pressure in the system.

Second: By this means a nearly uniform static pressure may be secured in all parts of the pipe line, giving a very uniform distribution of air throughout.

Third: It reduces the friction in the smaller pipes, which would otherwise be excessive.

In carrying out this idea in the proportioning of the piping this company employs an original and accurate method. This method has been carefully tested and has been found to give an almost ideal distribution; the principle involved is to so proportion the velocities in the various pipe sizes as to give equal friction in all air pipes per running foot regardless of their size. It may easily be shown that the equation which relates the carrying capacity of pipe to its size to suit this condition is

$$\frac{d_2}{d_1} = \left(\frac{C_2}{C_1}\right)^{z_5}$$

Where d₁ and d₂ are the relative diameters of two pipes and C₁ and C₂ are the relative carrying capacities. As an equation in this form would be difficult of computation, the chart on page 64 is conveniently employed. In using this chart we start with the main pipe equal in area to the fan outlet, or 10 to 20% larger as circumstances may require. All sizes are proportioned directly from this main pipe

size. It will be noted that the curve is plotted for per cent, capacity and for per cent, diameter according to the formula for constant friction per foot of length. For instance if we have a branch pipe which is required to carry 50% of the capacity of the main pipe, we find the point on the curve which corresponds to 50% capacity and which gives a corresponding point of 76% diameter; that is, a pipe to carry 50% of the capacity with the same friction per foot must have 76% of the diameter, which may be easily calculated or be read directly from the tables for various pipe sizes on page 113. It will be seen that straight lines are drawn for pipe sizes from 20" up to 80" in diameter. Supposing the size of the main pipe is 60" in diameter, then following from left to right along the line of 76% diameter to the line of 60" pipe we find from the scale above a diameter of 46", which is the size of pipe which has half the capacity of 60" pipe with the same friction per foot. By this method the sizes may be read off rapidly without any intermediate figuring whatever.

Proportioning Piping to Allow for Friction

Application

Take the following example which shows the method: Let the main pipe from the fan be 48" in diameter and suppose a straight duct having ten equal outlets. The first section of piping is 48", the second section has a capacity of 90%, the third section 80%, the fourth 70%, and so on; corresponding to 90% we find a diameter of 96% which for a 48" pipe gives us 46" for the second section. For the third section we have 80% capacity corresponding to 91% diameter or again following from left to right to the 48" line, we find a diameter of approximately 44". For the fourth section we have 70% capacity with a corresponding pipe size of 86½% of the main pipe and a diameter of between 41" and 42", determined as before. For the last section we have 10% capacity or 40% diameter which gives a diameter of between 19" and 20". The outlets may of course be proportioned independently; the same is true of exceptionally long branches which after having been figured in the ordinary way should be increased by a certain percentage throughout as judgment may determine, to decrease the friction.

Determination of Friction

For perfectly smooth, straight galvanized iron pipe it has been found as stated above that the loss of pressure in a length equivalent to 50 diameters is approximately equal to the pressure corresponding to the velocity, i. e., to the velocity head. This holds true for all gases under usual velocities and also for water. In brick and concrete ducts, however, it is advisable to figure 25% more friction or in other words a loss in pressure corresponding to the velocity head for every 40 diameters, i. e., in a 12" brick duct 40 feet long or 24" brick duct 80 feet long, the loss in pressure will correspond to the velocity. For instance, 2000 velocity under those conditions will cause a loss in pressure of one-fourth inch. In addition to the above it is necessary to figure the loss in elbows. The factor for elbows is difficult to determine exactly, but from the best information obtainable it appears that one elbow with usual radius is equivalent to a length of pipe of approximately ten diameters.

Now by the foregoing method of proportioning piping, it becomes unnecessary to figure the resistance of each section of pipe independently as the friction is constant per foot of length. It is simply necessary to know the length of the longest run of piping in feet, the number and sizes of elbows and the diameter and velocity in the largest pipe, as the loss is exactly the same as though the entire amount of air was carried through the largest pipe the entire distance. It is usual to figure the area of the main duct approximately equal to the area of the fan outlet. It should be noted that the velocity at the outlet of a Buffalo fan at the rated capacity is equal to one-half of the peripheral velocity, so that the velocity head in the main pipe will be (3/2)2=3/4 the total fan pressure. For convenience we may assume the fan to operate at one inch, that the loss in piping thus proportioned is one-fourth inch for every length equal to 40 diameters of the main pipe. As an example of this method of figuring suppose our main outlet is 48" in diameter and that there are ten sections proportioned as in the previous example. We will also say that the main section contains one elbow, and that there is also an elbow in the section 39" in diameter, one elbow in the section 30" in diameter and another elbow in the section 20" in diameter. Let the length of the pipe to the farthest outlet be 120 feet. We compute the friction in the following way.

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

One 48" elbow is equivalent to One 39" elbow is equivalent to One 39" elbow is equivalent to One 39" elbow is equivalent to One 20" elbow is equivalent to

Total equivalent length 58.55 diameters of 48" pipe The equivalent loss in velocity head will then be

$$\frac{58.55}{40} = 1.46$$

times the velocity head in the 48" main. Further there is the velocity remaining in the 20" pipe which gives an additional loss evidently of 204s of one velocity head or .42 times the velocity head in the 48" main. This gives a total loss in the piping system of

$$1.46 + 0.42 = 1.88$$

times the velocity head in the 48" main. Assuming that the velocity in the 48" main is 2000 feet per minute corresponding to a velocity head of one-fourth inch, the loss of pressure in the piping system is then

$$0.25 \times 1.88 = .47$$
 in.

This amount is to be deducted from the total pressure of the fan instead of from the static pressure when the piping is connected directly with the fan outlet, as by the reduction of velocity in the piping we have utilized practically all the velocity pressure at the fan outlet. In a "blow through" apparatus, however, this loss in pressure must be deducted from the static pressure; allowance must likewise be made for the loss in entrance to the piping which may be estimated at 45% of the velocity head. It will thus be seen that a "blow through" system requires larger piping than the "draw through" system for the same results.

In ordinary "draw through" heating system apparatus it is usually advisable to limit the pressure loss in piping to 50% of the total pressure. In the above example it has been shown that 0.47" out of the total pressure of 1" is lost if we make the pipe the same size as the fan outlet, and therefore this is safe. However if pressure loss had been 0.65" and we wished to reduce to 0.5" we could use the following formula as a loss in pressure varies approximately as the square of the velocity

$$C_2 = C_1 \sqrt{\frac{P_2}{P_1}} = C_1 \sqrt{\frac{0.50}{0.65}} = 0.88C_1$$

Thus we get the same capacity with .5" loss as with .65" loss it would be necessary to increase the area of the piping throughout nearly 13%, or the diameters of all the pipes approximately 6%. Then instead of a 48" pipe it would be necessary to use a 51" pipe, inside of a 46" pipe a 49" pipe, etc.

Proportioning Ducts for Public Buildings

In public buildings the sizes of air-conveying ducts from fans or heaters to vertical induction flues, and the sizes of these flues, depend upon the velocities of the air flowing in such ducts and flues. The essential factors in determining these velocities are: the limitations of economical rotative speed of fans from the

standpoint of power, the limitations of air velocities on account of noise or by reason of increasing friction as velocities increase; limitation of velocity of inflowing air through registers into rooms; the desirability of as high a velocity of air as is permissible under the limitations referred to in order to get as quick a conveyance of heat units from the heater to the rooms to be heated as possible and to keep down the size of ducts required; and the necessary initial and intermediate velocities to overcome the resistance existing in each particular system.

The size of vertical flues to the registers in the rooms is determined by the maximum velocities allowable in avoiding drafts and noise in the rooms. Practice has shown that the best velocities for the wall registers should be from 200 to 400 feet per minute over the face of the register depending upon the size and location; and for floor registers should be from 125 to 175 feet. The velocity in the vertical flues leading to the registers should be from 400 to 750. The size of these vertical flues is determined largely by the size of register desirable. In general, the velocity in these risers should be low, in order to obtain as uniform a velocity as possible over the register area.

The velocity in the horizontal ducts leading from the apparatus to the vertical risers is determined chiefly by the resistance of the duct. In practice these velocities will vary anywhere from 700 feet to 1200 feet depending upon the size, length of the duct, number of elbows, etc. A designer with considerable experience may proportion these ducts so as to give very uniform distribution without going into any extended calculation. However, it is desirable to have a correct method as a basis. For the benefit of engineers and architects we give here the method employed by this company in the determination of duct velocities and sizes.

The principal losses in piping systems for public buildings are in the horizontal ducts where the velocity is the highest. The losses in these ducts depend upon the velocity, the size and length of duct and upon the number of elbows. There is also considerable loss in pressure as the air enters the duct. An ideal system should take all these factors into consideration, and so proportion the velocities that the resistance would be practically equal in all ducts regardless of the length.

The system which we employ accomplishes this in a practical manner and at the same time avoids any laborious calculation. For each duct a factor may be obtained by inspection in accordance with the following formula:

$$E = 255 + \frac{L}{4W} + \frac{N}{5}$$

This factor represents the loss by friction in terms of velocity head. The first term, two and one-half, is approximately the number of times the velocity head lost by entrance to the pipe, entrance to the vertical flue, and loss in riser and register. The second factor represents the loss due to length and size of pipe; L is the length in feet and W is the approximate width in inches. The third term represents that proportion of the pressure lost in elbows, and N is the number of long radius elbows. One square elbow is figured equal to two long radius elbows. In checking over the piping layout the factors for the various duets are first found as above and from these factors the velocity in the respective duets are ascertained directly. In determining these velocities it is usual to allow a loss not exceeding one-fourth of the total fan pressure. This in practice usually amounts to about one-fourth of an inch. The velocity corresponding to a pressure of one-fourth of an inch is 2000,

and since the velocities vary as the square root of the pressure, the factor F and the velocity V will give a loss of one-fourth of an inch since

$$V = \frac{2000}{v \text{ F}}$$

In this manner the velocities are accurately and conveniently proportioned.

The Following Table from an Actual Case Illustrates the Variation in Velocities which occur in a Correctly Proportioned System

No. of Rooms	Contents Cubic Feet	B. T. U. Loss	A. P. M. Required for Heating	A. P. M. Required for Vent.	A. P. M. Allowed	Min. Air Change	A. P. M. for Each Duct	Factor	Velocity in Duct	Area of Duct Sq. Fee
1 2 3 4 5 6 7 8 9	5290 25700 6070 3530 1860 3400 6070 1860 55400	$\begin{array}{c} 13020 \\ 50380 \\ 36240 \\ 14015 \\ 7985 \\ 13255 \\ 30370 \\ 7960 \\ 167000 \end{array}$	260 1008 725 280 159 265 726 159 3340	352 2570 405 235 93 227 405 93 4440	352 2570 760 280 159 265 726 159 4440	15 10 8 13 12 13 9 12 12 12 ¹ / ₂	352 1285 760 280 160 265 726 150 2220	3 5 6 3 3 3 5 7 4 7	950 730 670 950 880 730 630 820 670	3.71 1.75 1.14 .3 .19 .37 1.16 .19 3.6

Heating Requirements of Buildings

Before deciding on the heating capacity required, the engineer must make an estimate of the heat losses from the building under the severest conditions of cold weather. The principal loss is by radiation, and as the result of exhaustive tests we have accurate data on the factors for various building materials and types of construction.

The values given on page 109 cover the various types and constructions most frequently met with in ordinary practice. These factors are subject to modification to allow for exposure to winds, unequal distribution of heat, and any extraordinary condition.

The heat required for ventilation is easily computed when the air supplied per hour is known. Since the specified heat of air at constant pressure is 0.238 and the weight of one cubic foot of air at 70° F. is 0.07495 pounds, one British Thermal Unit of heat will raise the temperature of one cubic foot of air

$$\frac{1}{0.238 \times 0.07495} = 56^{\circ} \text{ F}$$

Infiltration

Loss of heat through infiltration may properly be classed with ventilation losses. It varies greatly with the construction of the building and ranges from one air change in half an hour in a small and poorly constructed building, to one air change in two to three hours in a large well constructed building. This infiltration is caused in part by winds, but chiefly by the chimney-like effect of the column of air in a building at a higher temperature than that outside. The difference in pressure produced is proportional to the difference in temperature and the

$$H = C (t_2 - t_1)^{3/2}$$

Heater Performance

In modern methods of determining the size of apparatus, whether for heating or drying, the heat losses are first calculated in the manner just described. In public buildings the amount of air is usually specified and the required temperature of air for heating may be determined from the equation

$$t_2 = \frac{k \, 1}{0.238 \times 60 \times wa} + t_r$$

in which t_2 = the temperature of the air leaving the heater.

1 = the B. T. U. per hour hour lost by transmission through walls, glass surfaces, roofs, etc.

a = the cu. ft. of air required for ventilation.

t, = the temperature of the room.

w = weight of one cu. ft. of air (which taken at a temperature of 70° F. and 29.92" Bar., is 0.07495 lbs.)

k = is an assumed factor of safety chosen with reference to the particular conditions.

This formula may also be used in determining the volume of air required when the temperature of the air is specified.

Where "return air" is used, that is, air is recirculated from within the building instead of from without, the formula is modified as follows to give the total heat units required with a view of choosing a standard size of apparatus to meet the conditions.

$$H = 0.238 \text{ w n C } (t_r - t_1) \text{ k l}$$

in which n = number of air changes per hour due to the infiltration of cold air from without. This is dependent upon the size and construction of the building and must be chosen as a result of experiments and tests upon various types of buildings.

C = the cu. ft. contents of the room.

t₁ = the outside temperature.

Heating Surface

The next step is to determine the total amount of heating surface in lineal feet of one-inch pipe.

Having previously determined the amount of air to be handled, we determine the size of heater by the free area required to allow the passage of the desired quantity of air at the velocity chosen, according to the following table.

Maximum Velocity Advisable Through Heater for Different Installations

Depth of Heater in Sections	In Public Buildings	In Industrial Plants
4	1140	1500
5	1020	1350
6	930	1230
7	860	1140
8	810	1070

The proper velocity for the air through the clear area of the heater will vary with the different conditions such as pressure carried and character of the installation. The table of velocities given above is based on the assumption that the pressure loss through the heater should not exceed 50% of the total pressure on the fan.

The velocities here given are intended merely to indicate the practical limit, and except where the ducts are very short it will be found advisable to keep below this. This is especially true in the case of public buildings, where the limit should not exceed 90% of the above.

Having determined the velocity through the heater the size of heater required can be readily chosen from the table of sizes and dimensions of Buffalo Standard heaters given on page 96. The same method can be used in connection with the Vento Cast Iron Heater tables given on page 104.

Friction of Heaters

It is even more essential to take account of the friction of the air passing through the heaters than through the piping. The loss of pressure here is much greater than ordinarily imagined and consequently many designers make the mistake of assuming higher velocities than are possible. The following table is compiled from careful tests on Buffalo Heaters.

Friction of Air Through Buffalo Standard Heaters

LOSS OF AIR PRESSURE IN INCHES OF WATER PER SQUARE INCH-AIR AT 70° F.

Velocity Through Clear				NUMBER O	F SECTIONS			
Arek	1	2	3	4	5	-	_	_
300	0.009	0.017	n noe		-0	6	7	8
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	0 015 0 024 0 035 0 047 0 061 0 078 0 096 0 116 0 138 0 162 0 187 0 215 0 245 0 277 0 310	0.031 0.049 0.069 0.094 0.123 0.155 0.191 0.232 0.276 0.324 0.375 0.431 0.490 0.555 0.620	0 026 0 046 0 073 0 104 0 141 0 184 0 233 0 287 0 347 0 414 0 486 0 562 0 646 0 735 0 831 0 930	0.035 0.062 0.095 0.138 0.188 0.245 0.311 0.382 0.463 0.551 0.648 0.750 0.861 0.980 1.110 1.240	0.043 0.077 0.104 0.173 0.235 0.306 0.388 0.479 0.579 0.689 0.810 0.936 1.077 1.226 1.387 1.550	0.052 0.092 0.144 0.207 0.282 0.368 0.466 0.574 0.695 0.827 0.972 1.124 1.293 1.471 1.664 1.860	0.060 0.108 0.168 0.242 0.329 0.429 0.544 0.670 0.810 0.965 1.133 1.311 1.508 1.716 1.940 2.167	0.069 0.123 0.192 0.276 0.376 0.490 0.621 0.765 0.926 1.103 1.296 1.500 1.722 1.961 2.218 2.480

The losses are figured for air volumes at 70° . For accurate estimating, correction should be made for the increase in volume due to rise in temperature. The preceding table enables us to read very readily the loss of pressure through the heaters. It is usually advisable to keep the loss in pressure in passing through the heaters down to 50% of the total pressure or less. Therefore for various pressures and various numbers of sections, the figures given in the previous table and based on 50% pressure loss should not be exceeded.

Heater Connection

Care should be taken to have the connection between the fan and the heater case of such a character that it will not restrict the flow of air or offer unnecessary resistance. This precaution is frequently overlooked, either throwing excessive pressure on the fan, or cutting down the quantity of air handled.

The following table gives the approximate lengths of connections advised for draw through installations.

Length of Heater Connection-For Draw Through Equipment

Size Fan Planoidal	Size Fan Nia, and Turbo Conoidal	Distance from Fan
Up to 70"	Up to No. 7	18" to 24"
70" 100"	No. 7 No. 10	24" to 30"
100" 130"	No. 10 No. 13	36"
130" 170"	No. 13 No. 17	48" to 54"
170" 200"	No. 17 No. 20	49 10 24

Rate of Condensation

The effect of air velocity and temperature upon the rate of condensation is shown very nicely by the graphical representation of an actual test, on page 72. It will be noted that the rate of transmission decreases with the increase in the temperature of the air in passing through successive sections of the heater but increases very rapidly with the increase in air velocity.

Heater Size

The next step is the determination of the amount of heating surface or the number of heater sections required.\square

A most convenient method has been devised by our engineers. By means of the curves on page 73 the size of Buffalo Heater can be very readily determined. The use of these curves may best be illustrated by an actual application.

Assume:—Steam pressure on the coils to be 40 pounds, the air to enter at 20° F. and leave at 130° F. and pass through the heater with a velocity of 1000 feet per minute.

From the small curve we see that steam at 40 pound gauge pressure has a temperature of 287° F.

The difference between the temperature of the air entering and the steam will then be 267° and the difference between the air leaving and the steam will be 157°.

Taking the first difference, 267°, and following the line over to the 1000 vel. curve and then down we find 2.55 heater sections. Following the same procedure for the second difference, 157°, we obtain 7.57 sections. The difference between these two results will give the number of sections required which in the case in hand is five.

Condensation in Heater Coils

Having determined the amount of air passing through the heaters and the temperature use of this air the amount of steam condensed per hour can be readily calculated by raising the following formula:

$$C = \frac{a \times (t_2 - t_1) \times 60}{55.2 \times 1}$$

When

a = cubic feet or air per minute.

t₁ = temperature of air entering coils.

t₂ = temperature of air leaving coils.

1 = latent heat of steam,

55.2 = cubic feet of air raised 1° F. by 1 B.t.u.

Determination of Guarantees

The case often arises that a guarantee to heat a building to a certain specified temperature must be demonstrated at a much higher outside temperature than called for in the guarantee. It then becomes important to know the exact relation between increase in inside temperature when apparatus is operated to its full capacity. This relation has been published for heating with direct radiation, but

it varies considerably from the results obtained with the fan system. Naturally the rise in the indoor temperature will be less than the rise in outdoor temperature owing to the fact that the condensing capacity of the apparatus decreases with the temperature. With a fan system heater the condensing capacity has been shown to be directly proportional to the difference in temperature between steam and air, while with direct radiation it is not directly proportional owing to the variation in convection currents. The same relation between indoor and outdoor temperature may be shown to hold true whether the system was designed to take the air from outdoors entirely or to recirculate air within the building. The formula expressing the relation between indoor and outdoor temperature in either case is,

$$T_r = \frac{T_r' (T_s - T_l) + T_s (T_l - T_l')}{T_s - T_l'}$$

 $T_r = Temperature of building obtained with outside temperature <math>T_1$.

T₁ = Any outside temperature at which test is made.

T' = Temperature of building guaranteed.
 T' = Specified outside temperature.
 T = Temperature of steam at pressure specified.

The table following shows corresponding indoor temperatures for various outdoor temperatures with guarantees at 60° to 95° in zero weather.

Table of Average Indoor Temperatures

AINED AT VARIOUS OUTDOOR TEMPERATURES WITH 5 LBS. STEAM PRESSURE

Outdoor Temp.		Average Indoor Temperatures												
-20	45.2	50.8	56.1	61.6	67.1	72.5	77.9	83.4						
-15	48.9	54.3	59.7	64.9	70.3	75.6	80.9	87.3						
-10	52.9	57.9	63.1	68.3	73.5	78.7	86.0	89.2						
-5	56.3	61.4	66.5	71.6	76.8	81.9	87.0	92.1						
0	60°	65°	70°	75°	80°	85°	90°	95°						
5	63.7	68.6	73.5	78.4	83,2	88.1	93.0	97.9						
10	67.4	72.1	76.9	81.7	86.5	91.3	96.0	100.8						
15	71.0	75.7	80.3	85.1	89.7	94.4	99.1	103.7						
20	74.7	79.3	83.9	88.4	92.9	97.5	102.1	106.6						
25	78.4	82.9	87.3	91.8	96.2	100.7	105.1	109.5						
30	82.1	86.4	90.8	94.1	99.4	103.8	108.1	112.4						
35	85.8	90.0	94.3	97.5	102.6	106.9	111.2	115.3						
40	89.4	93.6	97.7	101.8	105.9	110.0	114.2	118.2						
45	93.1	97.1	101.2	105.4	109.1	113.2	117.2	121.1						
50	96.8	100.7	104.7	108.5	112.4	116.3	120.2	124.0						
55	100.5	104.3	108.1	111.9	115.6	119.4	123.3	126.9						
60	104.2	107.8	111.6	115.2	118.8	122.6	126.3	129.8						
65	107.8	111.4	115.0	118.6	122.1	125.7	129.3	132.7						
70	111.5	115.0	118.5	121.9	125.3	128.8	132.4	135.6						

Specimen Problem

To heat a machine shop to 60° F. when 0° outside using all return air from the building. One complete air change every 30 minutes, 20 pound steam pressure at the heaters.

Data

The building consists of three bays 35 feet wide, 245 feet long and 35 feet high, each bay having a saw tooth roof with a pitch of eight feet in the width of the

Solution

Sarlice	Area	B. T. U. per 1º per Hour	B. T. U. per 12 per Hour
Floor	25,720	0.10	2,572
Walls	24,300	0.25	6,075
Glass	6,080	1.09	6,030
Roof	24,460	0.26	6,880

Total cubic contents = Infiltration, one air change per hour =	1,003,275 cu. ft. 1,003,275 cu. ft.
B.T.U. per $1^{\circ} = \frac{1.003,275}{55.2} =$	18,200
Total B.T.U. per 1° difference = Total B.T.U. loss per hour = 40,357 x 60 Add 15% margin =	40,375 = 2,421,420 2,784,633
B.T.U. per minute = $\frac{2.784,633}{60}$ =	46,411
Air required per minute = $\frac{1,003,275}{30}$ =	33,442
Final temperature of air leaving heaters =	60 + 46,411 x 55.2 = 137° F

Assume a velocity of 1200 ft. per minute through the clear area of the heater, this will require a heater having

From the table on page 96 we find we can use either the 7'-0"x8'-4" section having 27.2 sq. ft. clear area or the 7'-0"x8'-10" section having 29.0 sq. ft. clear area.

The first section will give a velocity of

$$\frac{33,442}{27.2}$$
 = 1,230 ft. per minute,

which is close enough to the original assumption of 1200 ft. per minute.

Turning to the table on page 99 we find that with air entering at 60° F, and a velocity of 1200 ft, per minute through the free area of the heater 5 sections of heater will raise the temperature of the air to 143° F. This will decrease slightly due to the actual velocity through the heater being 1230 ft, instead of 1200 ft, per minute.

Let us assume the static resistance of the entire system as two inches and choose a fan to meet our requirments.

From the table on page 78 we find we can use a 120° planoidal fan which will give 37,050 A.P.M. at 351 R.P.M. by running slightly under rating or a 110° planoidal fan which gives 31,000 A.P.M. at 382 R.P.M. by running over rating.

From table on page 79 we can use No. 9 N.C. rated at 35,050 A.P.M. at 364 R.P.M. running under rating.

From table on page 80 we can use No. 9 T.C. rated at 31,800 A.P.M. at 621 R.P.M. running over rating

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Buffalo "Baby Conoidal" Fans

	I	DIMENSION	S		Air	PRES	SURE		FREE DE	LIVERY
Number of Fan	Diameter of Wheel Inches	Diameter of Inlet (Outside) Inches	Diameter of Outlet (Outside) Inches	Revolutions per Minute	per Minute Cubic Feet	Static Inches Water	Total Inches Water	Horse Power	Air per Minute Cubic Feet	Horse Power
1	4	4	3	1740	80	0.17	0.43	0.012	135	0.030
2	43/4	51/2	4	1140 1740	88 135	0.17 0.40	0.25 0.60	0.009	150 230	0.025 0.073
3	67/8	734	534	1140 1740	260 400	0.38 0.88	$\begin{array}{c} 0.54 \\ 1.25 \end{array}$	0.050 0.180	450 690	0.120 0.440
4	101/4	113/8	834	870 1140 1440 1740	700 915 1155 1400	0.50 0.86 1.37 2.00	0.72 1.23 1.96 2.86	0.14 0.31 0.63 1.10	1200 1575 2000 2400	$\begin{array}{c} 0.34 \\ 0.75 \\ 1.50 \\ 2.65 \end{array}$
5	$13\frac{1}{16}$	141/4	107/8	690 870 1140 1440	1080 1360 1785 2255	0.49 0.78 1.35 2.15	0.71 1.13 1.94 3.08	0.22 0.41 0.90 1.81	1870 2350 3050 3880	0.53 1.00 2.16 4.35
6	155/8	171/2	Rectangle 115% x 123%	690 870 1140 1440	1855 2340 3065 3875	0.71 1.13 1.94 3.10	0.98 1.56 2.67 4.25	0.51 1.00 2.26 4.55	3260 4075 5335 6740	1.21 2.36 5.43 11.00

Capacities of Buffalo Steel Plate Cone Wheels

Under Average Working Conditions at 70° F. and 29.92" Barometer.

ozi Sise	A per M. at ree Ivery	34	"Static Pre	sc	1	" Static Pre	8.	3	ç" Static Pres	9.	34" Static Pres.			
īñ	APN R.P. Dell	R.P.M.	Vol.	н. Р.	R.P.M.	Vol.	H. P.	R.P.M.	Vol.	н. Р.	R.P.M.	Vol.	H. P.	
30	10	393	2,300	0.43	480	2,810	0.79	555	3,250	1.21	680	3,990	2.23	
36	17	328	3,330	0.62	400	4,060	1.13	463	4,700	1.75	568	5,760	3.22	
42	27	282	4,530	0.85	343	5,530	1.55	396	6,390	2.39	486	7,840	4.39	
48	40	246	5,900	1.10	300	7,210	2.02	347	8,350	3.11	425	10,220	5.72	
54	57	219	7,480	1.39	266	9,150	2.54	308	10,550	3.92	378	12,950	7.22	
60	78	197	9,200	1.71	240	11,250	3.14	278	13,000	4.84	340	15,950	8.90	
66	105	178	11,150	2.10	218	13,600	3.83	252	15,750	5.90	309	19,300	10.9	
72	136	164	13,300	2.48	200	16,250	4.54	232	18,800	7.00	284	23,050	12.9	
84	214	141	18,100	3,38	172	22,100	6.19	199	25,500	9.55	244	31,350	17.6	
96	322	123	23,600	4.40	150	28,800	8.07	174	33,350	12.4	213	40,900	22.9	
108	4.59	109	29,950	5.58	133	36,600	10.2	154	42,250	15.8	189	51,900	29.0	
120	631	98	36,800	6.85	120	45,000	12.6	138	52,000	19.4	170	63,800	35.6	
144	1085	82	53,000	9.90	100	64,850	18.1	116	75,000	28.0	142	91,850	51.5	
168	1730	71	72,400	13.5	86	88,450	24.8	100	102,000	38.2	122	125,200	70.2	
180	2100	66	83,250	15.5	80	101,800	28.4	93	117,500	43.9	114	144,200	80.6	

Buffalo Disc Wheels (Type D)

Size	Velocity	Cubic Feet	0.1"	S.P.	0.2"	S.P.	0.3*	S.P.	0.4	S.P.	0.5"	S.P.	0.75	S.P
of Fan	Through Wheel	of Air per Minute	R.P.M	H.P	R.P.M.	н. Р.	R.P.M.	H.P.	R.P.M.	B P	R.P.M	H. P	B, P, M,	H. P.
15"	500 1000 1400 2000 2600	882 1,762 2,470 3,530 4,590	739 1100 1875	0.051 0.142 0.281	871 1207 1535 1960	0.104 0.23 0.40 0.80	978 1385 1670 2080 2507	0.163 0.32 0.52 1.00 1.73	1000 1477 1772 2200 2600	0.227 0.41 0.04 1.15 1.92	1558 1870 1290 2603	0.30 0.51 0.76 1.32 2.29	1297 1730 2045 2484 2908	0.50 0.77 1.08 1.08 2.07
21"	500 1000 1400 2000 2600	1,570 3,140 4,400 6,280 8,170	554 825 1030	0.094 0.25 0.50	655 950 1150 1475	0.185 0.11 0.71 1.43	734 1040 1255 1560 1880	0.29 0.57 0.92 1.77 3.08	790 1 108 1 830 1 650 1 950	0.41 0.73 1.14 2.04 1.42	550 1168 1402 1718 2020	0.53 0.91 1.30 2.34 4.08	1208 1534 1564 2180	0.85 1.02 2.00 4.76
30*	500 1000 1400 2000 2500	2,450 4,910 6,880 9,810 12,767	560 822	0.142 0.39 0.78	524 760 920 1180	0.20 0.64 1.11 2.21	588 800 1000 1217 1505	0.45 0.89 1.43 2.76 4.81	100.2 100.2 100.2 100.2	0.63 1.14 1.78 9.19 9.35	0.00 0.44 1121 1573 1615	0.83 1.42 2.12 3.05 6.38	1777 1009 1327 1401 1745	1.37 2.15 3.00 4.67 7.43
364	500 10 00 1400 2000 2600	3,535 7,000 9,900 14,130 18,340	369 550 687	0.21 0.57 1.13	436 632 765 981	0.42 0.02 1.60 3.23	488 692 837 1040 1250	0.65 1.28 2.06 0.98 6.92	740 558 1100 1300	0.92 1.61 2.56 4.60 7.70	560 778 935 1145 1345	1.20 2.04 3.05 5.27 0.20	048 865 1024 1248 1454	1.0% 3.09 4.32 6.73 10.71
(2°	500 1000 1400 2000 2000	4,808- 9,610 13,475 19,232 25,025	316 472 588	0.28 0.77 1.53	374 544 650 844	0.47 1.23 2.17 4.37	\$20 504 718 802 1074	1.78 2.80 5.43 0.43	456 932 700 944 1114	2.24 3.48 6.25 10.45	655 802 982 1154	1.0,1 2.75 1.15 7.17 (2.50	556 742 876 1006 1246	2 00 4 21 5 88 0 15 14.58
482	500 1000 1400 2000 2600	0,280 12,560 17,600 25,120 32,680	277 112 515	0.36 1.01 2.00	327 475 575 737	0.74 1.63 2.64 5.72	520 627 780 940	1.10 2.27 1.67 7.08 12.32	554 665 825 975	1.02 2.02 4.56 8.16 13.65	125 584 701 550 1010	2.13 8.63 5.42 9.35 16.33	649 649 767 632 1090	0.50 0.58 (1.00 (0.00
51"	500 1000 1400 2000 2600	7,948 15,890 22,275 B1,795 41,360	240 366 457	0.46 1.28 2.54	201 422 510 655	0.94 2.07 3.60 7.22	320 401 557 994 836	1.47 2.88 1.66 8.05 15.60	100 590 784 806	3.72 3.77 10.30 37.50	117 518 024 703 808	2.70 4.60 6.86 11.53 20.65	677 682 838 968	0.06 9.72 15.14 21 III
60*	300 1000 1400 2000 2600	9,812 19,625 27,500 39,250 51,061	221 230 412	11.57 1.58 3.13	262 380 460 590	1.36 2.55 4.44 8.94	293 416 302 624 753	3.54 5.74 11.10 19.30	443 532 660 780	2.52 4.57 7.13 12.80 21.4	140 467 501 688 805	5.67 8.58 14.62 25.5	519 614 740 872	5.86 2.06 12.06 18.76 39.8
72*	500 1000 1400 2000 2600	14,130 28,260 39,600 56,520 73,530	275 243	0.82 2.28 4.50	317	1.66 3.67 0.40 (2.00	520	5.12 6.12 8.26 15.90 27.7	370 370 142 550 650	3.84 6.58 10.20 18.30 30.8	380 368 373 674	4 50 4 16 12 20 21 1 30 5	493 512 623 727	7.91 12.35 17.25 20.0 42.4
SH*	500 1000 1400 2000 2600	19,232 38,460 53,900 76,930 100,100	158 230 204			2.27 5.00 8.08 17.50	(8.50)	3.55 0.95 11.20 21.70 37.7	(190)	8.05 15.90 23.00 31.9	24.0 0.54 001 491 577	11.11 16.81 28.7 54.0	278- 371 435- 533 1133	10.79 16.40 21.5 50.6 59.8

Capacities of Buffalo Planoidal Steel Plate Blowers (Type L) Under Average Working Conditions

70° F. 29.92" Barometer

Size	Diameter of Blast	Area	16.	Static Pro 0.288 Ou	nces	34"	Static Pr 0.433 Ou	essure nces	1"	Static Pr = 0.577 O	essure inces		" Static Pr = 0.865 Ou	
SHIC	Wheel	Square Ft.	R.P.M	Volume Cubic F per Min	H.P.	R.P.M	Volume Cubic F per Mir	L. H.P.	R.P.M	Volum Cubic F per Mi	H.P.	R.P.M	Volume Cubic F per Min	t. H.I
35 40	1934 2234 2534	0.77 1.04 1.36	678 580 508	1,160 1,570 2,065	0.31	830 710 623	1,420 1,925 2,530	0.58	820	1,646 2,226 2,926	0.87	1005	2,010 2,720 3,580	1.6
45 50 55	2936 3216 3516	1.75 2.16 2.01	451 407 369	2,600 3,220 3,890	0.64	553 498 452	3,185 3,940 4,765	1.18	575	3,686 4,550 5,500	1.47	783 705	4,510 5,580 6,740	2.70
60 70 80	3836 45 5134	3.13 4.26 5.54	339 290 254	4,630 6,320 8,230	1.25	415 355 315	5,675 7,730 10,080	2.31	479 410 359	6,550 8,930 11,630	2.61 3.55	587 502 440	8,030 10,920 14,250	4.80
90 100 110	5734 6414 7034	7.10 8.75 10.57	226 203 185	10,410 12,880 15,550		276 248 226	12,750 15,750 19,100	4.71	319 287 261	14,730 18,200 22,000	5.88 7.25	391 352 320	18,050 22,300 26,950	10.80 13.32 16.12
120 130 140	77% 831/2 90	13.00 14.85 17.20	169 156 145	18,530 21,600 25,200	3.69 4.31 5.02	207 192 177	22,700 26,450 30,850	7.93	239 221 205	26,200 30,550 35,650	10.44 12.20	293 271 251	32,080 37,410 43,700	19.18 22.40 26.10
150 160 170	9635 103 10934	19.70 22.40 25.40	135 127 120	28,950 32,800 37,150	5.76 6.57 7.42	165 154 146	35,400 40,200 45,500	10.60 12.10 13.65	191 179 169	40,900 46,450 52,550	16.30 18.60	234 219 207	50,150 56,900 64,400	
180 190 200	11534 12214 12814	28.50 31.70 35.30	112 107 102	41,700 46,300 51,500	8.31 9.26 10.25	138 131 125	51,100 56,700 63,100	15.25 17.05 18.85	159 151 144	59,000 65,500 72,850	1	195 185 176	72,250 80,250 89,200	43.15 48.10 53.30
Size	Diameter of Blast	Area of Outlet	2" 8	Static Pres 1.154 Our	sure	214"	Static Pro 1.442 Our	essure		Static Pre 1.734 Our	ssure	315"	Static Pre 2.019 Oun	ssure
	Wheel	Square Ft.	R.P. M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft per Min.		R.P.M.	Volume Cubic Ft per Min.	H. P.	R.P.M.	Volume Cubic Ft.	H.P.
30 35 40	$\begin{array}{c} 1944 \\ 2242 \\ 2534 \end{array}$	0.77 1.04 1.36	1355 1160 1018	2,320 3,140 4,135	1.84 2.52 3.28	1515 1205 1135	2,595 3,510 4,620	2.57 3.48 4.58	1660 1420 1245	2,840 3,845	3.38 4.63	1792 1534	3,070 4,155	4.26 5.83
45 50 55	2936 3236 3536	1.75 2.16 2.61	904 814 738	5,210 6,440 7,780	4.15 5.15 6.19	1010 910 826	5,825 7,200 8,700	5.81 7.20 8.66	1108 996 904	5,060 6,375 7,880 9,530	7.63 9.45 11.38	1345 1195 1076	5,460 6,890 8,510	7.60 9.63 11.91
60 70 80	3836 45 5136	3.13 4.26 5.54	678 580 508	9,260 12,630 16,450	7.38 10.02 13.12	758 648 568	10,370 14,120 18,400	10.31 14.03 18.40	830 710 621	11,340 15,460 20,150	13.55 18.45 24.20	976 896 767	10,290 12,250 16,700	14.34 17.10 23.25
90 100 110	0734 6434 7034	7.10 8.75 10.57	451 406 369	20,850 25,750 31,100	16.60 20.48 24.80	505 454 413	23,300 28,800 34,800	23,30 28.70 34.70	553 497 452	25,500 31,530 38,100	30.55 37.70 45.60	597 537 488	21,750 27,550 34,050	30.50 38.50 47.50
120 130 140	7714 8334 00 9614	13.00 14.85 17.20	338 313 290	37,050 43,250 50,400	29.50 34.50 40.15	378 350 324	41,400 48,350 56,400	41.30 48.25 56.15	414 383 355	45,400 52,900 61,750	54.25 63.40 73.80	447 413 384	41,200 49,000 57,200	57.50 68.40 80.00
60 70 80	103 1090 1134	19.70 22.40 25.40 28.50	270 253 239	57,900 65,700 74,300	46.10 52.60 59.40	302 283 267	64,750 73,500 83,200	64.50 73.50 83.00	331 310 293	70,900 80,400	84.70 96.60 109.00	358 335 316	76,600 1 86,900 1	93.00 06.80 21.80
90	12214 1281 ₂	31.70 35.30	225 214 204	83,500 92,650 103,000	66.40 74.20 82.00	251 239 228		93,00 103 60 114.70	277 202 250	102,200 113,300	122.20 136.00 150.80	298 282 269	110,400 1 122,500 1	37.50 54.00 71.50 90.00

Total Pressure is 120% of the Rated Static Pressure.

Capacities of Buffalo Niagara Conoidal Fans—(Type N) Under Average Working Conditions

70° F and 29.92" Barometer

	Diameter	Area		Static Press 0.288 Ounce			Static Pres 0.433 Ound			static Press 0.577 Oun			Static Pre 0.865 Oun	
Size	Blast Wheel Inches	Outlet Square Ft.	R.P.M	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.
3	1558	1.31	544	1,945	0.28	668	2,380	0.51	770	2,750	0.78	943	3,365	1.4.
3½	1838	1.79	465	2,642	0.38	572	3,240	0.69	660	3,740	1.06	809	4,580	1.97
4	2032	2.33	408	3,459	0.50	500	4,230	0.90	577	4,895	1.39	709	5,980	2.58
432	23 ½	2.95	362	4,375	$0.63 \\ 0.77 \\ 0.94$	445	5,350	1.14	514	6,195	1.75	630	7,575	3.20
5	26 ¾	3.64	326	5,400		400	6,610	1.41	462	7,645	2.16	566	9,350	4.00
532	28 ¾	4.41	296	6,540		364	8,000	1.71	420	9,250	2.62	515	11,320	4.87
6 7 8	313/8	5.25	272	7,780	1.11	334	9,525	2.03	386	11,000	3.12	472	13,450	5.8
	363/2	7.14	233	10,590	1.52	286	12,950	2.77	330	14,980	4.24	405	18,330	7.9
	42	9.33	204	13,820	1.98	250	16,910	3.61	289	19,550	5.54	354	23,950	10.3
9	47	11.81	181	17,500	2.51	222	21,400	4.57	256	24,750	7.01	314	30,300	13.03
10	52	14.58	103	21,600	3.09	200	26,450	5.65	231	30,550	8.65	283	37,400	16.10
11	58	17.64	148	26,150	3.74	182	32,000	6.85	210	37,000	10.48	257	45,250	19.48
12	63	21.00	136	31,100	$4.45 \\ 5.22 \\ 6.06$	167	38,100	8.15	193	44,050	12.48	236	53,900	23.2
13	68	24.65	125	36,500		154	44,700	9.56	178	51,650	14.62	217	63,200	27.2
14	73	28.68	116	42,350		143	51,900	11.08	165	60,000	16.96	202	73,200	31.5
15	78	32,80	109	48,550	6.95	133	59,500	12.70	154	68,850	19.49	189	84,100	36.2
16	84	37,32	102	55,300	7.91	125	67,750	14.46	144	78,300	22.15	177	95,750	41.2
17	89	42,14	96	62,500	8.95	118	76,500	16.32	136	88,400	25.00	167	108,000	46.5
18	94	42.24	91	70,000	10.01	111	85,600	18.30	128	99,100	28.05	157	121,200	52.1
19	99	52.63	86	78,000	11.15	105	95,500	20.40	122	110,200	31.25	149	135,000	58.0
20	105	58.32	82	86,450	12.36	100	105,850	22.60	116	122,200	34.65	142	149,500	64.4
-	Diameter of	Area		Static Pres 1.154 Oun		21/2"	Static Pres	ssure es		Static Pres 1.734 Oun			Static Pre 2-019 Our	
Size	Blast Wheel Inches	Outlet Square Ft	R.P.M	Volume Cubic Ft. per Min.	н.Р.	R,P,M	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.
3 31/2	1558 1818 2012	1.31 1.79 2.33	1088 934 817	3,890 5,300 6,920	2.21 3.01 3.93	1215 1010 912	4,350 5,930 7,730	3.08 4.19 5.47		4,770 6,495 8,480	4.05 5.53 7.22	1443 1238 1082	5,150 7,010 9,160	5.12 6.9 9.12
4½ 5 5½	23½ 26½	2.95 3.64 4.41	726 655 595	8,750 10,820 13,100	4.97 6.15 7.43	810 730 664	9,795 12,070 14,600	6.93 8.55 10.35	890 800 728	10,740 13,250 16,030	9.14 11.26 13.62	964 868 789	11,590 14,300 17,300	11.5. 14.2. 17.2
6	3136	5.25	545	15,550	8.85	609	17,390	12.30	572	19,090	16,22	723	20,600	20.5
7	3636	7.14	468	21,200	12.02	522	23,650	16.75		26,000	22,10	620	28,050	27.9
8	42	9.33	409	27,650	15.70	456	30,900	21.90		33,950	28,85	542	36,600	36.5
9	47	11.81	364	35,050	19.90	405	39,100	27.70	400	42,950	36.55	482	46,350	46.2
10	52	14.58	327	43,250	24.55	365	48,300	34.20		53,000	45.15	433	57,206	57.0
11	58	17.64	297	52,300	29.70	332	58,450	41.45		64,100	54.60	394	69,300	69.0
12	63	21.00	272	62,300	35,50	304	69,550	49.25	308	76,400	65.00	361	82,500	82.1
13	68	24.65	252	73,050	41,50	280	81,600	57.80		89,550	76.30	334	96,750	96.4
14	73	28.68	234	84,900	48,15	261	94,600	67.05		103,900	88.70	310	112,050	111.9
15	78	32.80	218	97,250	55,25	243	108,700	77.00	250	119,200	101,50	289	128,800	128.26
16	84	37.32	204	110,750	62.85	228	123,600	87.50		135,800	115.50	271	146,400	146.06
17	89	42.14	192	125,000	71.00	214	139,500	99.00		153,100	130.30	255	165,300	164.86
18	94	47.24	182	140,000	79.50	203	156,500	110.80	211	171,800	146.00	241	185,300	184.00
19	99	52.63	172	156,000	88.55	192	174,200	123.40		191,200	162.80	228	206,200	206.00
20	105	58.32	164	173,000	98.25	183	193,000	136.80		212,000	180,30	217	229,000	228.00

Total Pressure is 127.4 % of the Rated Static Pressure.

Capacities of Buffalo Turbo Conoidal Fans (Type T) Under Average Working Conditions

70° F. and 29.92" Barometer

Size	Diameter of Blast	Area of	3½ = 0	" Static Pr 288 Ounc	ressure	142	Static Pre 0.433 Our	ssure	1"	Static Pre 0.577 Oc	essure inces	136	Static Pro 0.865 Out	essure ares
Cial	Wheel	Outlet Square Ft.	R.P. M	Volume Cubic Ft per Min.		R P.M	Volume Cubic Ft. per Min.	H.P.	R.P.M	Volume Cubic Fi per Min	H.P.	R.P.M	Volume Cubic Ft. per Min.	
21/2 31/2 31/2 41/2 51/2 10 11/2 13/14 15/10	1434 1734 20 2234 2534 2534 2815 3115 3434 3634 3944 4215 45 5134 5634 6235 68 7335 79 8434 9034	0.91 1.31 1.79 2.33 2.95 3.64 4.41 5.25 6.16 7.14 8.19 9.33 10.53 11.81 14.58 17.64 21.00 24.65 28.68 32.80 37.32	1,115 930 797 697 620 558 507 465 430 398 372 349 328 310 279 254 232 214 198 186 174	1,230 1,770 2,410 3,140 3,980 4,910 5,950 7,070 8,300 9,630 11,050 12,590 14,200 15,900 19,650 23,800 28,300 38,500 44,200 50,300	0.28	1,368 1,140 976 855 760 684 621 570 526 488 456 428 402 380 342 311 286 263 244 228 214	1,500 $2,160$ $2,940$ $3,850$ $4,860$ $6,000$ $7,270$ $8,650$ $10,200$ $11,780$ $13,500$ $15,370$ $17,380$ $17,380$ $19,450$ $24,050$ $29,100$ $34,600$ $40,600$ $47,100$ $54,050$ $61,500$	0.36 0.52 0.71 0.93 1.18 1.45 1.76 2.09 2.46 2.85 3.27 3.72 4.21 4.71 5.82 7.05 8.40 9.85 11.40 15.08 14.90	1,315 1,130 987 879 790 719 658	1,740 2,500 3,410 4,450 5,640 6,950 8,400 10,000 11,750 13,610 15,610 17,800 20,100 22,500 27,800 33,700 40,100 47,000 54,500 62,600 71,200	0.81 1.10 1.44 1.82 2.25 2.72 3.24 3.80	1,610 1,380 1,208 1,075 966 880 806 743 690 645 604 569 536 483 439 402 372 345 322	2,120 3,060 4,160 5,440 6,890 8,500 10,300 12,230 14,350 16,650 19,100 21,750 24,600 27,500 34,000 41,100 49,000 57,500 66,700 76,500 87,100	1.0 1.4 2.0 2.6 3.3 4.1 5.0 5.7 6.9 8.0 9.2 10.5 11.9 13.3 16.5 19.9 23.8 27.9 32.3 5 37.1 5 42.2 5
STEM:	Diameter of Blast Wheel	Area of Outler	2" :	Static Pres 1.154 Our Volume	sure eva	24% Static Pressure = 1 442 Ounces			3" S	tatic Pres 1.734 Oun	sure	314"	Static Pres 2.019 Ounc	sure es
	Inches	Square Ft.	R.P.M.	Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min	H.P.		Volume Cubic Ft per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.
23344556677889012345K	1414 1714 20 2214 2514 2514 2816 3116 3116 3116 4216 4516 4516 5114 6216 68 7316 9014	0.91 1.31 1.79 2.33 2.95 3.64 4.41 5.25 6.16 7.14 8.19 9.33 10.53 11.81 14.58 17.64 21.00 24.65 25.65 32.80 37.32	2,225 1,860 1,595 1,395 1,240 1,117 1,015 932 860 799 745 700 657 621 559 507 465 430 399 373 349	2,455 3,540 4,800 6,270 7,950 9,800 11,880 14,120 16,600 19,250 22,100 25,100 25,100 28,400 31,800 39,300 47,450 56,500 66,200 76,800 88,500 100,500	1.59 2.29 3.12 4.08 5.16 6.37 7.72 9.18 10.76 12.50 14.32 16.30 18.40 20.65 25.50 30.85 36.75 43.05 50.00 57.40 65.30	2,490 2,075 1,780 1,559 1,385 1,249 1,133 1,040 960 891 831 780 736 693 625 567 520 480 445 415 390	2,750 3,960 5,390 7,050 8,920 11,000 13,300 15,800 18,600 21,550 24,750 28,150 31,800 35,600 44,000 53,250 63,500 74,400 86,300 99,000 112,500	2.22 3.19 4.35 5.68 7.19 8.87 10.75 12.78 15.00 17.40 19.95 22.70 25.60 28.75 35.50 42.95 51.10 60.00 69.55 80.00 90.90	2,740 2,282 1,958 1,713 1,522 1,370 1,245 1,141 1,054 978 914 856 807 761 685 623 570 527 489 456 428	3,010 4,330 5,890 7,700 9,740 12,000 14,550 17,300 20,300 23,550 27,050 30,800 34,750 38,950 48,100 58,150 69,250 81,300 94,300 108,000 123,000	4.23 5.75 7.52 9.52 11.75 14.23 16.92 19.85		3,250 4,680 6,360 8,320 10,550 13,000 15,750 18,700 22,950 25,450 29,200 33,300 37,550 41,050 52,000 62,900 74,950 87,900	3.69 5.30 7.22 9.45 11.95 14.75 17.85 21.25 24.90 33.20 37.75 42.25 47.80 59.00 71.45 85.00 99.60 15.60 33.00

Total Pressure is 122.7 % of the Rated Static Pressure,

Buffalo

Page 81

Page 53

Carrier Type "A" Air Washer

Dimension and Capacitor

No.			-			R		n					
The A	Nystery P.	No.											
第2日 日本大学 日本日本 日本日本 日本日本 日本日本	00.4 00.4 00.4 150 150 161 010 010 010 010 010 010	300,000	FREE STREET,	STREET,	2012/08/25 23/25								
4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1 110 120 171 214 214 210 210 210 401 401 401		HER SES SEE SEE	(日本 本工 日本 日本 日本	RESERVED THE								
THE REST LESS LAND LAND IN COLUMN TWO IS NOT THE OWNER, THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE PERSON NAMED IN COLUMN TWO IS NAM	STREET, RESERVED BENEFIT	10.00	THE REAL PROPERTY AND PERSONS NAMED IN		THE RESIDENCE WHEN SERVICE AND RESIDENCE	一年 一年 一年 一年 一日 一日 一日 日本					PARTY STREET,		

Buffalo

Page 11

Carrier Type "A" Air Washer

	90		1	Gallons r Mini	s tto		nter pes		Pn	mp		Stea	m Pipe		1	I	-	T
Feet	Feet	300	Die	SALIN	100	1/1	You		1	H	Р.		1	2	1 3	-	ty t Air	1 3
Square Feet Free Area	Square I Washing S	Size Door	Spray	Flooding	Both	To Pump	Fresh	Size	R. P. M.	Brake	Size Motor	0 Pounds	5 Founds	Height	Width	Length	Cabic Feet	V
8.9 18.7 28.5	86 181 276		24 47 70	5 10 15	29 57 85	$\begin{array}{c} 1 \\ 2 \\ 2^1 \\ 2^{1} \end{array}$	84 11	1 to 2	1700	1.2 1.8 2.5	2 3 11	2 2) ≤ 3	$\frac{1}{2}\frac{1}{2}\frac{1}{2}$		1'-514 2'-9" 4'-034		4400 9400 14300	1 2 3
38.4 48.2 58.0	373 468 563		94 117 140	20 25 31	114 142 171	3	64 64	212	10	3.0 3.6 1.2	7,16	316 416	314		5'-435 6'-8" 7'-1134		19200 24100 29000	5 6
67.8 77.6 87.4	658 754 847		164 187 210	36 41 46	200 228 256	# 0	1"	3	H	4.9 5.5 6.1	10	5	436		9'-3½ 10'-7¼ 11'-11"		33900 38800 43700	7 8 9
97.2 107 117	940 1040 1140	.x36"	234 258 281	52 57 62	286 315 343	5.	2	4	1120	6.7 7.2 7.8	11	15 11 21	6	-135"	$13'-23\frac{1}{2}$ $14'-63\frac{1}{4}$ $15'-10''$	246	48600 53500 59000	10 11 12
127 137 146	1230 1330 1420	10	304 328 352	67 73 78	371 401 430	6	44	5		8.3 8.7 0.2	15	7	-0	.6	17'-134 18'-519 19'-914	14	64000 69000 73000	13 14 15
156 166 176 186	1520 1610 1710 1800		375 398 422 445	83 88 93 99	458 486 515 544	**	116	18 18 18 96	11 11 11	9.7 10.1 10.6 11.0	11 11 11	8 8	7.		21'—1" 22'—155 23'—854 25'—0"		78000 83000 88000 93000	16 17 18 19
195 205 215 225	1900 1990 2090 2190		408 492 515 538	104 109 114 120	672 601 629 658	11	0) 11	11	11	11.5 11.9 12.4 12.9	44 44 48 24	17 17 18	8.		26'-334 27'-712 28'-11" 30'-244		98000 103000 108000 113000	20 21 22 23
11.2 23.6 36.1	109 220 350		29 58 87	5 10 15	34 68 102	119 219 3	i i	11/2	1700	1.3	3	2 3	2/6		1'-5% 2'-9%		5600 11800	1 2
45.6 61.0 73.4	479 592 712		115 144 173	20 25 31	135 160 204	11	11 11	214	35 35 16	2.8 3.5 4.2 5.0	5	31g 4 41g	31.2		4'-134 5'-5" 6'-816		18100 24300 31000	41 51
\$5.8 98.2 110	833 953 1070		202 230 250	41 41 46	238 271 305	4 5	10	3.	1120	5.7 6.4 7.1	715	6	5		8'-014 9'-4" 10'-734		36700 42900 49100	71 81
123 135 148	1100 1310 1430	"x36"	288 317 346	57 62	345 374 408	0 0	11	11	14	7.8 8.3 8.9	0	7	6	3.75	11'-113 ₂ 13'-3" 14'-63 ₄	14	55000 62000 68000	10I 11I
160 173 185	1550 1680 1800	10,	375 404 432	67 73 78	442 477 510))))))	91 31 21	44	**	9.4 10.0 10.5	15	8	7	11,-1	$\begin{array}{c} 15' - 10^{\frac{1}{2}} \\ 17' - 2^{\frac{1}{4}} \\ 18' - 6'' \end{array}$	12-2	74000 80000 87000	12F 13F 14F 15F
198 210 222 235	1920 2040 2160 2280		462 490 518 547	83 88 93 99	545 578 011 646	6	114	3	11 11 11	11.0 11.5 12.1	41 11	41	8		19'-9¾ 21'-1½ 22'-5' 23'-8¾		93000 99000 105000	16E
241 260 273 285	2400 2520 2650 2770		576 605 634 663	104 109 114 120	080 714 748 783	# # # # # # # # # # # # # # # # # # #	77	41 41 13 16	11	12.6 13.2 13.7 14.2 14.7	0 11 11 120	10	10		25'-015 26'-116 27'-8' 28'-1116		111000 118000 124000 130000 137000	18I 19I 20I 21I 22I

Carrier Type "A" Air Washer

	007			allons Minu			ter		Pun	p		Steam	a Pipe				Air	
Feet	Feet	JO.	- Inc	21111111	-		10.5		1.3	H.	P.			-	2 1	J.	S S S S S S S S S S S S S S S S S S S	117
Square Feet Free Area	Square 1 Washing S	Size Door	Spray	Flooding	Both	To Pump	Fresh	Size	R. P. M.	Brake	Size Mortor	0 Pounds	5 Pounds	Height	Width	Length	Cubic Feet /	Number
13.5 28.6 43.7	131 278 424		36 72 108	5 10 15	41 82 123	2 219 3	3/4 +1	13-2 2	1700	1.5 2.3 3.2	23.5	2 3 316	2 3 3 14		1°-534 2'-949 4'-114		6800 14300 21900	2F 3F
58.8 73.9 59.0	570 716 864		144 180 216	20 25 31	164 205 247	4	44	2 ½ 3	16	4.1 5.0 5.9	716	419 5	4 4 15 5		5'-5" 6'-842 8'-014		29400 37000 44500	41 51 61
104 119 134	1010 1160 1300		252 288 324	36 41 46	288 329 370	5	1"	4	1120	6.8 7.6 8.2	10	7	6		$\frac{9'-4'}{10'-7}$		52000 60000 67000	71 81 91
149 164 179	1440 1590 1740	× 36"	360 396 432	52 57 62	412 453 494	6		5	34.	8.9 9.6 10.3	15	8	3	.761	$13'-3'$ $14'-614$ $15'-10^{1}$	236"	75000 82000 90000	10E 11E 12E
194 209 224	1880 2130 2270	167	468 504 540	67 73 78	535 577 618	11	14	14 34	34	10.9 11.5 12.2	10	7	S	13,	17°-214 18'-6" 19'-014	1	97000 105000 112000	13F 14F 15F
239 254 269 284	2320 2470 2610 2760		576 612 648 684	83 88 93 99	659 700 741 783		114	14 14 14 14	14 14 14	12.9 13.5 14.1 14.7	20	70	3		21'-115 $22'-5''$ $23'-84$ $25'-015$		120000 127000 135000 142000	16F 17F 18F 19F
299 314 329 344	2900 3050 3190 3340		720 756 792 828	104 109 114 120	824 865 906 948	8	4.6. 4.6.	6	11	15.2 15.7 16.2 16.6)+)+))	15 15 16	17 10 10		26' - 414 $27' - 8''$ $28' - 1114$ $30' - 314$		150000 157000 165000 172000	20F 21F 22F 23F
									1700	1.6	0	915	- 5		1'-614		8000	10
15.9 33.6 51.3	154 326 498		42 83 125	10 15	93 140	3	2.K	23 2 23 2	1700	2.6 3.6	3 5	312	2 3 31 ₂		2'-10' 4'-1'4		16800 25700	30
69.0 86.7 104	670 842 1010		186 207 249	20 25 31	196 232 280	4	17	3	21 22 24	4.6 5.6 6.6	719	4 1 2 5 6	4 12		5'-512 6'-9" 8'-054		34500 43400 52000	46 50 60
122 140 157	1180 1360 1520		290 332 373	36 41 46	326 373 419	(i)		11	1120	7.5 8.3 9.0	10	1	6 7		10'-433 10'-834 12'-0"		61000 70000 79000	70 80 90
175 193 211	1700 1870 2050	x 36"	414 456 497	52 57 62	466 513 559	6	19	 5	14 45 45	$\frac{9.8}{10.6}$	15	5	8	24	$13' - 31_2$ $14' - 714$ $15' - 11'$	250	\$8000 97000 106000	100 110 120
228 246 263	2210 2390 2550	167	539 580 622	67 73 78	606 653 700	11 11		11 11 11	14	12.0 12.8 13.5	10	10	**	15	17'-2% $18'-6%$ $19'-10%$	1-	114000 123000 132000	130 140 150
281 298 316	2730 2890 3070		663 704 745	83 88 93	746 792 838	8	1/4	6	9 7 3 8 4 8 4 8	14.2 14.8 15.4 15.9	20	10	10		21'-2' 22'-512 23'-014 25'-1"		141000 149000 158000 167000	160 170 180 190
334 351 369 388 405	3240 3410 3580 3770 3930		787 828 870 912 953	104 109 114 120	932 979 1026 1073	., ., .,	64 64 64	10 10	11	16.6 17.2 17.8 18.5	25	12	16.		$\begin{array}{c} 26'-434\\ 27'-815\\ 29'-9'\\ 30'-334 \end{array}$		176000 185000 194000 203000	200 210 220 230

Carrier Type "B" Air Washer

	28		G	allons		Wa Pir	ter		Pur	np		Steam	Pine				-	
eet	Feet	or	per	Minu	te	Pij)CS			H	P.	Stenn	ripe	4			ty talir	15
Square Feet Free Area	Square F Washing St	Size Door	Spray	Flooding	Both	To Pump	Fresh	Sixe	R. P. M.	Brake	Size Motor	0 Pounds	5 Pounds	Height	Width	Length	Cubic Feet A	Number
2.95 6.23 9.50	28.6 60.5 92.5	8	18 36 54	5 10 15	23 46 69	$\begin{smallmatrix}11_2\\2\\2\\a\end{smallmatrix}$	24	132	1700	1.1 1.6 2.1	3	1 136 2	1 134 134		$\begin{array}{c} 1'-514 \\ 2'-9'' \\ 4'-014 \end{array}$		1500 3100 4800	1 2 3
12.8 16.0 19.3 22.6	124 155 187 219	" x 26	72 90 108 126	20 25 31 36	92 115 139 162	3	1	2" 21/2	:	2.6 3.0 3.6 4.1	5.	216	2 2 2 5 6	1,-135"	5'-416 6'-8" 7'-1154 9'-315	.760-	6400 8000 9700 11300	4 5 6 7
25.9 29.1 32.4 35.7	251 282 315 346	1514	144 162 180 198	41 46 52 57	185 208 232 245	4	114	3,0	# # #	4.5 5.1 5.6 5.8	709	315	3	-	$10'-7\frac{1}{4}$ $11'-11''$ $13'-2\frac{1}{4}$ $14'-6\frac{1}{4}$	6	13000 14600 16200 17800	8 9 10 11
4.13 8.71 13.3	39,2 84.5 129		22 44 66	5 10 15	27 54 81	135 2 235	11	11/2	1700	1.2 1.7 2.3	3	134	11/2		1'-514 2'-9" 4'-034		2100 4400 6700	1
17.9 22.5 27.1	174 218 263	x 26"	86 108 130	20 25 31	106 133 161	3	1	212	4.5	2.9 3.4 4.0	8	21/2	21/2 3	511	5'-116 6'-8" 7'-1184	*860	9000 11300 13600	1
31.7 36.2 40.8	308 351 396	15,5%	152 174 194	36 41 46	188 215 240	4	11	3	**	4.6 5.2 5.7	756	31/2	314	20	$ \begin{array}{c} 9'-352\\ 10'-714\\ 11'-11' \end{array} $	-,6	15800 18100 20100	1
45.4 50.0 54.6	440 485 530		216 238 260	52 57 62	268 295 322	5	1%	4.0	1120	6.3 6.9 7.4	10	4	4		$13'-215$ $14'-614$ $15'-10^3$		22700 25000 27300	11
6.40 13.7 20.9	62.0 133 203		36 72 108	5 10 15	41 82 123	2 2 3 3	14	11/2	1700	1.5 2.3 3.2	23 5	115 216	134 2 234		1'-5\4 2'-9" 4'-0\4		3200 6900 10500	
28.1 35.3 42.5	273 343 413		144 180 216	20 25 31	164 205 247	4	1"	2½ 3	**	4.1 5.0 5.9	716	31/2	334		5'-412 0'-8" 7'-1134		14100 17700 21300	1
49.7 56.9 64.1	483 553 623		252 288 324	36 41 46	288 329 370	5	11	4	1120	6.7 7.6 8.2	10	4.64	4		9'-312 10'-711 11'-11"		24900 28500 32100	2
71.3 78.5 85.7	693 763 852	,38°,	360 396 432	52 57 62	412 453 494	14 14	114	H H	10	8.8 9.6 10.2	15	5	439	1961	13'-212 14'-614 15'-10"	-510	35700 39300 42800	11
92.9 100 107	902 970 1040	16"3	478 504 540	67 73 78	545 577 618	6 44	41 41	å 	6.6	11.1 11.6 12.2	14	6	ă H	17.	17'-1% $18'-5%$ $19'-9%$	6	46500 50000 53500	13
114 122 129 136	1110 1180 1250 1320		576 612 648 684	83 88 93 99	659 700 741 783	11	114	**	64 64 84	12.9 13.5 14.0 14.7	20	7	0		21'-1" 22'-414 23'-814 25'-0"		57000 61000 65000 68000	12
143 150 158 165	1390 1460 1530 1600		720 756 792 828	104 109 114 120	824 865 906 1008	8	н к	0 11 11 11	41 41 41	15.2 15.7 16.2 17.6	0 H	# # **	3		$26' - 3\frac{1}{4}$ $27' - 7\frac{1}{4}$ $28' - 11^{8}$ $30' - 2\frac{1}{4}$		72000 75000 79000 83000	20 20 20 20

Carrier Type "B" Air Washer

	h				Pipe	Steam		np	Pur			Wa Pit		allons			9	
	ity et Air	4	4	4			P.	H.			ies	1.11	te	Minu	per	400	Feet	Free
	Cubic Feet A per Minute	Length	Width	Height	5 Pounds	0 Pounds	Size Motor	Bruke	R. P. M.	Size	Fresh	To Pump	Both	Flooding	Spray	Size Door	Square F Washing St	Square Fee Free Area
	9400 9400 14300		$^{1'-514}_{2'-9'}_{4'-034}$		139 239 3	$\frac{2}{2}\frac{1}{4}$	3 5	1.7 2.8 3.9	1700	$\frac{132}{2}$ $\frac{234}{2}$	34	3	53 104 155	5 10 15	48 94 140		86.0 181 276	8.85 18.7 28.5
3	19200 24100 29000		5'-412 6"-8' 7'-115a		314	439	73/2 10	5.0 6.1 7.3	1120	3 4	1	4 5	208 359 311	20 25 31	188 234 280		373 468 563	38,4 48,2 58.0
1	33900 38800 43700		9'-319 10'-714 11'-11"		412	ă	15	8.2 9.0 9.8	2.0	***	17 15 15 15	18 18	364 415 466	36 41 46	325 374 420		658 754 847	67.8 77.6 87.4
11	48600 58500 59000	"840-	$^{13!}_{14'-6} \begin{array}{c} 13! - 2!_2 \\ 14' - 6!_4 \\ 15' - 10'' \end{array}$	-115	6.	6	14	10.7 11.5 12.3	14	j.	134	6	520 573 624	52 57 62	468 516 562	x 307	940 1040 1140	97.2 107 117
13 13 13	64000 69000 73000	9,	17'-184 18'-512 19'-914	,6		7	20	13.1 13.9 14.6	2	- 10 - 10 - 10	0 0 0	n n	675 720 782	67 73 78	608 656 701	16"	1230 1330 1420	127 137 146
16 15 16	78000 83000 88000 93000		21'-1" 22'-4\2 23'-8\4 25'-0"		7	8	15	15.8 15.9 16.6 17.8		0	169	8 2 2 2	833 884 937 989	83 88 93 99	750 796 844 890		1520 1610 1710 1800	156 106 176 186
20 21 21 22 23	98000 103000 108000 113000		26'-344 27'-7\5 28'-11" 30'-2"		8	44 44 44	25	18.0 18.7 19.3 20.2	10 10 10 11	96 96 96 97	2	17 17 19 18	1040 1093 1131 1196	104 109 114 120	984 1020 1076		1900 1990 2090 2180	105 205 215 225
1 3	5600 11800 18100		1'-344 2'-914 4'-114		21 ₂	2 3 31 ₆	5	1.9 3.3 4.0	1700	112 212	26	3 3	63 126 189	5 10 15	58 116 171		100 220 350	11.2 23.6 36.1
4	24800 31000 36700		5'-5" 0'-819 8'-014		359 4 416	412	71g 10	5.9 7.2 8.1	1200	4	1	4.5	250 313 377	20 25 31	230 288 346		172 502 712	48.0 61.0 73.4
78.0	42900 49100 55000		9'-4' 10'-7% 11'-11%		5 6	K.	15	9.3 10.3 11.4	14	0	11	6	501 501	36 41 46	404 460 518		\$33 953 1070	85.8 98.2 110
10	62000 68000 74000	.510	13'-3' 14'-684 15'-1035	.757-	2	7.	41	12.3 13.3 14.3		1	134	14.	028 09.1 754	52 57 62	070 034 002	x 315"	1190 1310 1430	1.03 130 148
13 14 15	80000 87000 93000	0,0	17'-2'4 18'-6" 19'-9'4	11,	7.	8	20	15.2 15.0 16.8	11	6	11	80	817 881 942	07 78 78	750 808 804	100	1550 1680 1800	160 173 185
16 17 18 19	99000 105000 111000 118000		21'-1' 22'-5' 23'-8'4 25'-0'9		8	10	25	17.0 18.4 19.2 20.2	70 -4 10 10 10	14 14 10 10	134		1007 1068 1120 1103	88 93 99	1030 1030 1094		2040 2100 2200 2200	210 222 235
20 21 22 23	124000 130000 137000 143000		20'-114 27'-8' 28'-114 30'-314		10	24 24 44 44	30	21 2 22 1 21 3 21 4	74 13 13	7.	2	-14 +1 -41	1250 1319 1382 1440	101 109 114 120	1152 1216 1208 1826		2400 2520 2650 2770	241 200 273 285

Carrier Type "B" Air Washer

	900		Dog.	Gallon r Min	15		ter		Pu	mpi		Stewar	n Pipe					
Area Area	Feet	nor	pe	c Min	UE:	13	pes			H	P	C-100-W1	e x apr				A Air	
Square Feet Free Area	Square I Washing S	Size Door	Spray	Flooding	Both	To Pump	Fresh	Size	R. P. M.	Braker	Size Motor	O Pounds	5 Pounds	Hoight	Waleh	Longth	Cable Feet As	Namber
13.5 28.6 43.7	131 278 424		72 144 216	.5 10 15	77 154 231	21g 3	26	21 215 3	1700	2.2 3.9 8.5	3 5 704	2 3 315	2 % 815		1'-5% 2'-0% 1'-1%		6800 14300 21900	11 21 31
58.8. 73.9 89.0	570 716 864		288 360 432	20 25 31	305 355 463	ά σ	1	# FC FC	1120	7.857	10	415 2	415		5'-5' 6'-814 8'-014		37000 44500	51 68
104 119 134	1010 1160 1300		504 576 648	36 41 46	540 617 694	0.	14	15 11	14 14	11.0 12.2 18.4	22 24 24	7	6		9'-1' 10'-7'4 11'-11'4		52000 60000 67000	73 81 93
149 164 179	1440 1590 1740	x 30°	720 792 864	57 62	772 840 926	7.	this	6	17	14.5 15.5 18.5	20	8	3	W)	13'-3' 14'-6% 15'-10'-1	-0960-	75000 52000 90000	10F 11F 12F
194 209 22‡	1880 2130 2170	10,	934 1008 1080	67 73 78	1003 1081 1158	-0.		0. 0.	12	17.5 18.5 19.6	75		8	185	17'-2\4 18'-6' 19'-9\4	0.0	97000 105000 112000	14F 14F 15F
270 254 269 284	2320 2470 2610 2760		1152 1221 1296 1368	83 88 93 99	1235 1312 1389 1467	8 11	135	70.00	77	20.8 22.1 23.4 24.7	30	10	10		$21'-1)_2$ 22'-5' 23'-85i 25'-00		120000 127000 135000 142000	161 17F 18F 19F
299 314 329 344	2900 3050 3190 3340		1440 1512 1584 1656	104 100 114 120	1514 1621 1698 1776	10"	2	8 0	11	26.1 27.1 28.7 30.0	10	14	27 -11 -21 		25'-4'4 27'-8' 28'-11'9 30'-3'4		1.50090 1.57000 105000 172000	203 213 221 231 231
15.9 33.6 51.3	154 326 498		84 166 250	5 10 15	89 170 265	215 3	34 12 12	2° 214	1700)	2.5 4.4 6.3	A 5 716	$\begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}_2^2$	2 1 319		1'-0'1 2'-10' 1'-11'		8000 16800 25700	16 20 30
69.0 86.7 104	842 1010		332 414 498	20 25 31	352 439 529	2 6	1	5.5	1120	8.0 0.4 10.8	10	47-2 5 6	414		0'-511 0'-0" 8'-04g		114500 13400 52000	8G 8G
122 140 157	1180 1360 1520		580 666 746	36 41 46	616 707 792	11	0	00 00 10	95	12.2 13.0 14.8	20	7	7		9'-415 10'-514 12'-0'		20000 20000 41(000	70 90 90
175 193 211	1700 1870 2050	x 36*	825 912 994	52 57 62	880 960 1056	8	134		1	15.8 17.1 18.2	11. H	8	8.	10	$\begin{array}{c} 10^{\prime\prime} - 1/2 \\ 10^{\prime\prime} - 7/4 \\ 15^{\prime\prime} - 11^{\prime\prime} \end{array}$	*560	97000 100000	100 110 120
228 246 263	2210 2390 2550	10.	1078 1160 1244	67 73 78	1145 1233 1322	41 41 14	44	7	24	19.5 20.8 22.3	25	10	44	15	17'-2% 18'-619 19'-10%	96	114000 123000 132000	18G 18G
281 298 316 334	2730 2890 3070 3240		1326 1408 1400 1574	53 58 93 99	1400 1496 1583 1673	10	175	6	34. 34. 34.	23.8 25.3 26.7 28.3	30	13	10		21 -5 22 -54 23 -94 25 -1		141000 140000 158000 167000	16G 17G 18G 18G
351 369 388 405	3410 3580 3770 3930		1656 1740 1824 1906	104 109 114 130	1760 1849 1938 2036	10 44 44 45	11	0.0	11 11 11	29.8 31.3 32.8 34.4	40 20	12	0		207 1% 277 8% 297 07 307 3%		176000 1×5000 194000 200000	200 210 220 230 230

Carrier Type "C" Air Washer

	ee.		Wa	ter		Po	imp		Steam	n Pipe				Nie S	
Seet.	Feet Surface	20	- 4	1110			H. I	P.,	-		92		4	253	- 1
Square Feet Free Area	Square F	Size Door	To Pamp	Fresh	Skao	R. P. M.	Brake	Sige Morton	0 Pounds	5 Pounds	Height	Width	Length	Capacity Cabic Feet Ay per Minute	
3.34 7.05 10.8	11.0 23.0 35.2	T	1/2	10	116	1700	.775 .95 1.15	200	11/2	119		1'-5'4 2'-0" 1'-0"4		1700 3500 5400	
14.5 18.2 21.9 25.6	47.2 50.4 71.4 83.4	15/9" x 20"	2	16 16 16	14 14 14	H	1.35 1.35 1.72 1.92	3	215	214	-115*	5'-419 6':-5" 7'-1114 0'-312	401-04	7300 0400 11000 12800	
29.3 33.0 36.7 40.5	95.4 107.6 119.6 132.0	- 12	2/9	11	2000	0 14 14	2.10 2.30 2.50 2.70	11 10	315	365 31 365		10' - 7/q $11' - 11'$ $13 - 2/q$ $14' - 6/q$		14600 16500 18300 20300	3
4.52 9.54 14.5	14.8 31.0 47.2		1)2	34	1)9	1700	1.05 1.30	2	1 14 2 214	114		1 - 5 la 2 - 9' 4 - 0 la		2300 4800 7300	
19.6 24.6 29.6	63.8 80.0 90.4	x 20"	2	14 34 17	97	1	1.50 1.72 1.97	B	3	2),2	55	5'-4'2 6'-8' 7'-11'4	-10-	9800 12300 14800	
34.6 39.6 44.6	112.8 129.0 145.2	15/5	2/9	11	10 10 11	10	2.20 2.42 2.65	0	3)4	3/4	20.	10, -11, 7	4	17300 19500 22300	
49.6 54.6 59.6	162.0 178.0 194.0		3	11	219	10 10 10	3.12 3.35		414	Ä	Ш	$\frac{13^{\prime} - 2}{15^{\prime} - 10^{\prime}}$		24500 27300 29800	Ì
6.88 14.5 22.1	22.4 47.2 72.		11/2	30 at	11/2	1700	.95 1.35 1.72	3	1 to 2 to 2 to 3	11g 2 21g		1'-5\4 2'-0' 1'-0'4		3400 7300 11000	
29.8 37.4 45.1	97.2 122 147		212	11	2))))	2 10 2 50 2 87	8	10.5	310		5'-11's 6'-8' 7'-11's		18700 18700 22500	
52.7 60.4 68.0	172 107 222		46 46 48	10	2)4	27 10 11	3.27 3.65 4.05		1,5	4		0'-3 1 10'-7 4 11-11		20300 30700 34000	
75.5 83.2 91.0	246 272 200	x36*	4	25	3	**	4.43 4.82 5.20	714	8	5	1100	14' -4' 5 14' -4' 6 16' -10	10,	17800 41600 45500	No. of Street,
98.3 106 114	320 346 372	16,	14	90 99 18	#F	17 10- 11	5.58 5.97 0.35	2.0 2.0 -7.0	100	10	4	17 - 114 18'-6/3 10'-014	4	52000 57000	1 2 2
121 129 136	394 420 444			10	1	1120	7.10 7.50 7.50	10	1 7	100		21'-1' 22'-1)4 23'-5)4 23'-0'		03500 04500 08690 72000	N Selection in
144 153 150 167 173	470 492 518 544 570		# 	14	19 30 30	10	8.10 8.37 8.65 8.95	10 M	18 28 20 10	7		20'-114 27'-713 28'-11 30'-214		76000 80000 84000 A8000	Note No. 14

Carrier Type "C" Air Washer

	100		Pi	pes		F	mmb.		Steam	m Pipe				L.	1
Poe P	Fret	Door					R	P.	-			-	2	sity vet Asi noto	5
Square Foot	Washing	Size D	To Pump	Frosti	Sino	R. P. M	Bruke	Size Motor	O Pounds	5 Pounds	Hoight	Width	Length	Cubic Feet J	Number
9.24 19.6 20.8	70.2 63.6 97.2		1) 1 2 215	3	136	1700	1.10 1.57 2.07	3	216 316	114 214 3		1'-514 2'-9" 4'-014		4600 9800 14900	11. 21. 31.
40. 50.8 00.0	163 163 198		3	11	216	44 0.8	2.57 3.07 3.57	5	415	4		5'-429 6'-8' 7'-114		20000 25200 30300	4D 5D 6D
70.8 61.0 91.0	240 264 294			7.	17	91 81	4.07 4.57 5.07	719	5 6	4),9		0'-312 10'-711 11'-11		35400 40500 45700	7D 8D 9D
101 112 122	366 368	x 401	4	77.	0	1	5.57 5.07 6.57	11	23	0.0	36	13'-212 14'-612 15'-10	10.	50500 56000 61000	10D 11D 12D
182 142 153	430 364 560	B	4	-		7120	7.07 7.57 7.95	100	Ī	 7	-,0	17'-14 18'-512 19'-917	-	66000 71000	1310
193 173 183 194	552 564 566 682			 		-	8.30 8.70 9.10 9.45	in in	2.00 2.2	11		21'-1' 22'-115 23'-514 25'-0'		76000 81000 86000 91000 97000	16D 17D 17D 18D 10D
204 214 225 245	784 766		0		- - - -	9.4 41 91	9.80 10.20 10.55 10.90	-0 -0 -0	10	8		26^{2} -384 27^{2} -719 28^{2} -11^{2} 30^{2} -234		102000 107000 113000 118000	20D 21D 22D 23D
24-5 24-5 87-4 90-8	97.8 80 122		1 by 254	74	Aja a	(700	1.42 1.42 2.42	3	2 3 314	214		1'-5% 2'-9% 4'-1%	1 1	5800 12300 18700	1E 2E 3E
53.1 76 90	164 200 245			100	755	11	4.02 1.65 4.27	0	114	315 415		0'-5'- 0'-8'-6 8'-6'-5		25200 31600 88000	SE SE
102 115	990 931 976		A		3		5.50 5.12	7.55	6	10 10		0'-4" 10'-7h4 11'-1115		44500 51000 57500	7E 8E 9E
150	41.4 4.50 500	, and	1	10	Ä	1130	6.72 7.32 7.85	10	7	1 1	17	13'-3' 14'-61' 15'-101's	- A	63500 70000 76500	10E
170	384 836	20				-	5.10 5.50 9.70	-	5	2	1	17'-2'4 18'-0' 10'-9'4	7	9,00000 9,00000	12E 13E 14E
217 210 210 210 210	704 706 700 702		4	-	* 5		9.70 10.30 10.60 11.10	1.5	100	5 0		21'-119 22'-5' 23'-5'4 25'-019		102000 108000 115000	16E 17E 18E
250 250 250 250	47 s 9 gry 6 m 2						(1.50 12.00 12.50 12.50	-		100		20' -414 27' -8' 20' -1114 20' -814		122000 128000 134000 141000	200 201 201 221 201

Carrier Type "C" Air Washer

	กล		Wa	ter		P	imp		Steam	Pipe				Air	
Fresh	top	Door	Pi	pes			H.	P.			9		3	fy orte	13
Square Feet Free Area	Square Feet Washing Surface	Size De	To Pump	Fresh	Size	R. P. M.	Brake	Size Motor	0 Pounds	5 Pounds	Height	Width	Length	Capacity Cubic Feet A per Minute	Number
14. 29.5 45	45.6 96 146		11/2 21/2 3	%4 ;;	146	1700	1.35 2.12 2.90	2 3 5	$\frac{2}{3}$ 31_2	2 3 31/2		$1'-5\frac{1}{4}$ $2'-9\frac{1}{2}$ $4'-1\frac{1}{4}$		7000 14800 22500	1 2 3
60.5 76 91.5	198 248 298		4	11.	256	48	3.67 4.42 5.20	739	415 5 6	$4\frac{4}{5}$		5'-5" 6'-814 8'-014		30300 38000 45500	4 5 6
107 122 138	350 398 450		5	- 11	4	1120	5.97 6.72 7.47	10	7	6		9'-4'' $10'-734$ $12'-1132$		53500 61000 69000	7 8 9
154 169 185	502 550 606	x 36"	24. 14.	- 6	46	44	8.10 8.65 9.20	11	8	# (1)	137.	13'-3" 14'-6½ 15'-10½	01	77000 85000 93000	11 11 12
200 216 232	652 704 756	16"	6	2,6	5	**	9.80 10.40 10.95	15	11	8	135	17'-2)4 $18'-6''$ $19'-934$	4.	100000 108000 116000	13 14 15
246 262 278 294	804 854 908 960		22 22 23	44	14	10 14 14	11.50 12.10 12.70 13.20	44 44 44	10	10		21'-1½ 22'-5" 23'-8¾ 25'-1"		123000 131000 139000 147000	16 17 18
308 324 340 356	1004 1056 1108 1160		8	44	6	11	13.75 14.25 14.75 15.25	20	**	47		26'—434 27'—8" 28'—11" 30'—334		154000 162000 170000 178000	20 21 22 23
16.4 34.5 52.6	53.4 112 172	1	2 2 3	34	11/2	1700	1.47 2.35 3.25	2 3 5	$\frac{21_{2}}{31_{2}}$	$\frac{2}{3}$ $\frac{3}{3}$ $\frac{1}{2}$		$1'-6^{1}4$ $2'-10''$ $4'-1^{3}4$		8200 17300 26300	
70.7 89 107	230 290 350		4	11	2½ 3	34 43	4.12 5.00 5.90	71/2	414 5 6	432		5'-51 ₂ 6'-9" 8'-0%		35400 44500 53500	
125 144 162	408 470 528		5	11	4	1120	6.77 7.60 8.30	10	7	6. 7		9'—432 10'—834 12'—0"		62500 72000 81000	
180 198 216	586 646 700	x 36"	14 14	# #	1	11	8.95 9.60 10.25	15	8	8	5a	13'-3½ 14'-7¼ 15'-11	-10.	90000 99000 108000	11
234 252 270	764 820 880	16"	6	14 28 33	0.0	14.	10.95 11.60 12.25	## ##	10	17 23 41	157	17'-234 18'-632 19'-1034	4	117000 126000 135000	1
288 306 324 342	940 1000 1060 1120		**	14 14 16 16	# # # #	14	12.90 13.50 14.10 14.70	20	18 19 14 14	10		21'-2 22'-514 23'-914 25'-1"		144000 153000 162000 171000	1 1 1
360 378 398 416	1180 1240 1300 1360		8	94. 24 14	.0 .11 .14	10 14 14	15.25 15.70 16.20 16.85	24 13 25	12	14		26'-4% 27'-8\2 20'-0" 30'-3%		180000 189000 199000 208000	2 2 2 2

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Sizes and Dimensions of Buffalo Standard Heaters

Number of Pipes	Length of Section	Section Number	Extreme Height of Section	Width of Section	Linear Feet of 1" Pipe per Section	Total Effective Square Feet of Heating Surface	Equivalent in Linear Feet of 1" Pipe per Section	Clear Area for Air Passage Sq. Ft.	Weight
56	3' 4 Row	1A 2A 3A 4A 5A 6A	3'-4" 3'-10" 4'-4" 4'-10" 5'-4" 5'-10"	81/2"	140 168 196 224 252 280	54.7 64.2 74.0 83.7 93.3 102.5	159 186 215 243 271 298	4.4 5.2 6.0 6.8 7.6 8.4	473 515 565 616 656 708
72	4' 4 Row	1B 2B 3B 4B	5'-4" 5'-10" 6'-4" 6'-10"	81/2"	320 356 392 428	119.0 131.5 143.9 156.5	346 382 418 455	9.7 10.7 11.2 12.6	819 877 938 1003
80	4'-6" 4 Row	1C 2C 3C 4C	5'-10" 6'-4" 6'-10" 7'-4"	81/2"	396 436 476 516	148.2 162.0 174.8 188.6	431 480 507 548	12.1 13.1 14.2 15.3	997 1055 1127 1174
88	5' 4 Row	1D 2D 3D 4D	6'-4" 6'-10" 7'-4" 7'-10"	81/2"	476 520 564 608	174.3 189.3 204.8 219.8	507 550 595 638	14.1 15.4 16.6 17.7	1182 1262 1325 1407
104	6' 4 Row	1E 2E 3E 4E	7'-4" 7'-10" 8'-4" 8'-10"	812"	674 726 778 830	245.0 262.9 280.8 298.7	712 763 816 868	19.8 21.3 22.7 24.2	1505 1600 1695 1770
128	7' 4 Row	1G 2G 3G 4G 5G 6G	7'-4" 7'-10" 8'-4" 8'-10" 9'-4" 9'-10"	812"	796 860 924 988 1052 1116	291.0 313.2 335.2 357.2 379.2 401.2	845 910 974 1037 1101 1163	23.6 25.4 27.2 29.0 30.7 32.5	1845 1950 2055 2160 2280 2380

All Buffalo Standard Heaters are regularly furnished in the return bend pattern. The open area pattern is furnished on special order only.

Note-All heaters furnished in return bend pattern unless otherwise specified.

Friction of Air Through Buffalo Heaters

Air Measured at 70° F. and 29.92" Barometer.

Loss of Air Pressure in Inches of Water per Square Inch.

Velocity Through				Number	of Sections			
Clear Area	1	2	3	4	5	6	7	8
300	0.009	0.017	0.026	0.035	0.043	0.052	0.060	0.069
400	0.015	0.031	0.046	0.062	0.077	0.092	0.108	0.123
500	0.024	0.049	0.073	0.095	0.104	0.144	0.168	0.192
600	0.035	0.069	0.104	0.138	0.173	0.207	0.242	0.270
700	0.047	0.094	0.141	0.188	0.235	0.282	0.329	0.370
800	0.061	0.123	0.184	0.245	0.306	0.368	0.429	0.49
900	0.078	0.155	0.233	0.311	0.388	0.466	0.544	0.62
1000	0.096	0.191	0.287	0.382	0.479	0.574	0.670	0.76
1100	0.116	0.232	0.347	0.463	0.579	0.695	0.810	0.92
1200	0.138	0.276	0.414	0.551	0.689	0.827	0.965	1.10
1300	0.162	0.324	0.486	0.648	0.810	0.972	1.133	1.29
1400	0.187	0.375	0.562	0.750	0.936	1.124	1.311	1.50
1500	0.215	0.431	0.646	0.861	1.077	1.293	1.508	1.72
1600	0.245	0.490	0.735	0.980	1.226	1.471	1.716	1.96
1700	0.277	0.555	0.831	1.110	1.387	1.664	1.940	2.21
1800	0.310	0.620	0.930	1.240	1.550	1.860	2.167	2.48

Buffalo Standard Heater

0 LBS.

0 lbs. Steam Pressure

212.0° F

TO 14	980		300	80	0	100	00	120	00	140	oio	16	00	186	90
Temperature of Air Entering	Number of Heater Sections	Final	Condensation per Lineal Foot per Hour	F. T.	C.	F. T.	C.	F. T.	C.	F.T.	C.	F. T.	е	F. T.	C.
°F 20°	1 2 3 4 5 6 7 8	46 69 . 88 105 120 133 143 152	Pounds 487 459 426 400 375 351 330 310	44 65 83 99 113 125 136 145	.600 .562 .525 .494 .405 .438 .413 .300	42 61 79 94 107 119 129 139	687 040 -014 -572 -544 -515 -480 -464	40 59 75 90 102 113 124 188	752 730 685 636 616 583 555 531	39 56 72 86 98 109 119 128	.831 780 750 723 .684 .648 .618 .500	38 54 68 82 94 404 114 123	.001 .840 .707 .776 .742 .701 .070 .645	37 52 65 78 90 101 110 110	.95 .90 .84 .81 .78 .70 .72
300	1 2 3 4 5 6 7 8	55 77 95 111 125 137 147 155	409 440 406 380 357 334 313 293	52 72 90 105 118 130 140 149	550 525 500 469 440 417 302 372	51 69 86 100 112 123 133 142	050 -600 583 -540 -513 -484 -459 -438	49 66 82 96 108 118 128 136	714 650 650 620 580 550 525 499	48 65 79 92 104 114 123 132	788 -765 -715 -080 -050 -013 -581 -508	47 62 73 88 99 109 119 127	851 709 748 726 602 650 635 600	46 60 73 85 96 106 115 123	.90 .81 .81 .71 .71 .71 .62 .63
40°	1 2 3 4 5 0 7 8	64 84 102 116 129 140 150 158	450 412 387 356 334 312 294 276	61 80 96 110 123 134 144 152	525 500 466 438 415 392 371 350	60 78 93 106 118 128 138 146	593 551 551 510 488 458 437 414	38 74 80 102 114 123 102 141	676 636 612 552 565 519 492 475	57 73 87 99 110 119 128 136	.745 .721 .695 .646 .015 .576 .350 .525	50 70 83 95 105 145 124 132	.801 .749 .715 680 652 626 .600 575	55 68 81 92 103 112 120 128	8.77.76 7.76.00 6.60
50°	1 2 3 4 3 6 7 8	72 91 108 122 134 145 154 162	412 384 362 338 316 297 278 262	70 88 104 116 128 139 148 150	.500 475 450 413 .391 .371 .349 .331	69 85 99 112 123 133 142 150	.504 546 .510 .479 .457 .432 .410 .391	67 82 96 108 119 129 137 145	538 599 575 545 519 404 466 447	66 80 93 105 115 124 132 140	.700 8.55 .627 .603 .570 .540 .513 .403	65 78 91 102 112 121 129 136	751 699 682 662 622 592 594 508	64 76 88 90 109 117 125 132	77.766666666666666666666666666666666666
00°	1 2 3 4 5 0 7 8	81 99 114 128 139 149 157 165	.389 .363 .330 .316 .297 .278 .260 .245	79 95 110 122 133 143 151 150	474 438 415 388 366 346 325 309	77 93 106 118 129 138 146 153	531 515 479 449 432 406 384 364	76 91 103 114 124 133 141 149	.600 .580 .538 .508 .481 .434 .434	75 89 100 111 121 130 187 144	.656 .634 585 559 534 510 482 .462	74 87 98 109 118 127 135 141	.701 874 -692 -614 -582 -560 -535 -506	73 85 96 106 115 123 130 130	77.6000000
70°	1 2 3 4 5 6 7 8	90 106 120 133 144 153 161 168	295 278 259 243	88 103 116 128 139 148 155 162	450 412 383 363 345 325 303 287	\$6 100 113 124 134 143 150 157	500 468 447 417 400 380 356 340	85 98 110 120 130 138 146 153	562 525 500 490 451 428 407 390	84 90 108 117 126 134 142 148	.613 .569 .554 .515 491 .466 .480 .480	83 95 105 115 124 132 130 144	551 524 582 564 511 518 492 463	82 93 104 113 121 129 135 139	2000000

Buffalo Standard Heater

5 Lbs.

5 lbs. Steam Pressure

227.0° F

				Velocity	of Air	in Feet per Minu		ite Measure		d at 70° F. and 2		29.92° Barometer			
ring.	fions		500	800		1000		15	200	1	100	18	100	1	800
Temperature of Air Entering	Number of Heater Sections	Final	Condensation per Lineal Foot per Hour	F. T.	C.	F. T.	C.	F. T.	C.	F. T	Č,	F. T.	C.	F. T.	C.
≥F 20°	1 2 3 4 5 6 7 8	48 73 94 112 127 141 152 162	Pounds .536 .499 .467 .434 .407 .381 .358 .337	46 68 88 105 120 133 144 155	.652 .610 .573 .536 .505 .476 .449 .425	44 64 83 99 113 126 137 147	.759 .695 .661 .625 .589 .538 .526 .502	42 62 79 94 108 121 131 141	.835 .795 .745 .702 .667 .637 .600 .578	40 59 75 90 103 115 126 135	.907 .862 .812 .774 .737 .702 .668 .635	39 57 72 87 100 111 121 131	.961 .935 .875 .847 .810 .766 .726 .700	38 54 69 83 95 107 117 126	1.02 .96 .92 .89 .85 .82 .78
30°	1 2 3 4 5 6 7 8	57 80 100 117 132 145 156 165	.512 .475 .441 .412 .387 .363 .340 .319	55 76 94 110 124 137 147 157	.632 .581 .539 .506 .476 .450 .421 400	52 72 89 104 118 130 141 150	728 664 620 587 556 526 500 473	51 69 86 100 113 125 135 144	.796 .739 .706 .665 .631 .600 .568	50 67 83 96 109 120 130 139	.885 .819 .780 .730 .700 .664 .630	48 65 80 93 105 116 126 135	.910 .885 .840 .796 .760 .724 .691 .663	47 63 77 90 102 112 122 131	.96 .93 .88 .85 .82 .77 .74 .71
40%	1 2 3 4 5 6 7 8	66 88 106 123 137 149 159 168	.494 .455 .416 .393 .368 .342 .321 .303	64 83 100 115 129 141 151 160	.606 .544 .505 .474 .450 .425 .400 .378	62 80 96 111 124 135 145 154	696 631 589 560 532 500 473 450	60 77 92 106 119 130 139 148	.759 .700 .656 .626 .601 .569 .536	59 75 90 103 115 125 134 143	.840 .775 .735 .696 .664 .626 .593 .568	57 73 87 100 111 121 131 140	.860 ,834 .790 .758 ,719 .682 .655 .630	56 71 85 97 108 118 127 135	.910 .886 .85 .810 .774 .736 .704 .673
50°	1 2 3 4 5 6 7 8	74 95 112 129 142 153 163 171	.455 427 .391 .374 .349 .325 .305 .286	72 90 107 121 134 145 155 164	.556 .505 .479 .450 .425 .308 .378 .359	70 87 103 117 129 140 140 157	633 585 556 529 500 473 145	69 85 100 113 124 134 144 152	720 -664 -631 -598 -563 -531 -509 -483	67 83 96 109 120 130 139 147	.752 .730 .676 .652 .620 .590 .561	66 81 94 106 117 127 136 144	.809 .784 .740 .708 .679 .648 .619 .593	65 79 92 104 114 123 132 140	.85 .82 .79 .76 .72 .69 .66 .63
60°	1 2 3 4 5 6 7 8	83 102 119 134 146 157 167 175	434 ,401 373 ,349 ,326 ,306 ,288 ,272	81 90 114 128 140 151 160 168	.530 493 455 .431 405 .381 .361 .340	79 96 110 123 135 145 154 162	568 525 496 473 448 425 403	78 93 107 119 130 140 149 157	.682 .625 .593 .562 .533 .506 .482 .460	76 91 104 116 126 136 145 153	.710 .685 .647 .618 .587 .559 .534 .512	75 89 101 113 123 132 140 148	.759 .733 689 .670 .638 .606 576 .555	74 87 109 110 120 129 137 144	.796 -767 -756 -716 -684 -653 -624 -595
700	1 2 3 4 5 0 7 8	91 109 126 140 151 161 169 177	398 370 353 381 307 287 267 253	89 105 120 133 144 154 163 171	.506 .442 .420 .398 .375 .358 .358 .318	87 102 116 129 140 149 157 165	538 505 484 465 444 415 892 374	86 101 113 125 135 144 152 160	606 .586 .543 .522 .495 .468 .445 .426	85 98 110 122 131 140 148 156	.665 .620 .509 .575 .540 .515 .492 .474	\$4 97 109 119 129 137 145 152	.708 683 656 620 598 564 540 516	83 95 107 117 126 135 142 149	.746 .716 .706 .608 .639 .615 .584

Buffalo Standard Heater

20 LBS.

20 lbs. Steam Pressure

258.8° F

				Velocit	y of Air	in Feet p	er Minu	te	Measure	ed at 70° F. and 29.92° Barometer					
riog	ber of Sections		500	80	800 1000			1200			100	1600		1800	
Temperature of Air Entering	Number of Heater Section	Final	Condensation per Lineal Foot per Hour	F. T.	C.	F. T.	C.	F. T.	C						
°F 20°	1 2 3 4 5 6 7 8	52 80 104 125 143 158 171 183	Pounds .620 .584 .542 .506 .478 .445 .418 .394	50 75 97 117 134 149 162 174	.775 .710 .663 .630 .591 .556 .522 .496	47 71 92 110 127 141 154 166	.874 .823 .774 .726 .694 .652 .617	45 68 87 105 120 134 147 158	.970 .930 .866 .824 .778 .736 .701 .669	43 65 83 100 115 128 141 152	1.052 1.002 948 .904 .864 .816 .781 .747	42 62 80 96 110 124 136 146	1 .138 1 .085 1 .031 .983 .932 .896 .854 .815	41 59 76 91 105 118 130 141	1. 22 1. 13 1. 08 1. 03 .99 .94 .92 .88
30°	1 2 3 4 5 6 7 8	60 87 111 131 147 162 174 186	.580 .552 .522 .488 .455 .426 .398 .378	58 82 104 123 139 153 166 177	724 .671 .636 .605 .566 .530 .500 475	56 78 99 116 132 146 158 169	.840 .776 .742 .694 .661 .625 .589	54 75 94 110 125 138 151 162	.933 .825 .775 .740 .697 .668 .640	53 72 91 107 121 134 145 156	1.040 .949 .918 .870 .827 .785 .742 .713	51 70 87 102 116 129 140 151	1 084 1 032 982 930 891 853 810 782	50 67 83 98 112 124 136 145	1.10 1.07 1.65 98 98 98 98 87 88
40°	1 2 3 4 5 6 7 8	69 95 117 136 152 166 178 188	.561 .534 .496 .464 .435 .406 .381 .358	66 90 111 129 144 158 169 180	672 645 610 579 540 508 475 452	64 86 105 122 137 150 162 172	.775 .744 .699 .662 .630 .593 .561 .584	63 83 100 117 131 144 155 166	894 -834 -775 -746 -708 -672 -635 -610	62 81 98 113 127 139 150 160	995 926 873 825 .791 .746 .710 .680	60 78 95 109 122 134 145 155	1 .034 981 947 892 850 810 773 743	59 76 91 105 118 130 141 150	1.10 1.0 .99 .96 .90 .83 .83
50°	1 2 3 4 5 6 7 8	78 102 124 142 157 170 182 192	.542 504 .477 .444 .415 .387 .365 .344	75 98 118 135 149 162 174 184	.646 .620 .585 .553 .514 .482 .456 .432	73 91 112 129 142 155 166 176	.743 .711 .667 .638 .597 .565 .534 .509	72 91 108 123 137 149 160 170	855 795 749 708 677 640 607 581	70 89 105 119 132 144 154 164	905 881 828 780 745 709 671 645	69 87 102 116 129 140 150 159	982 955 896 854 818 776 736 705	68 84 99 112 125 136 146 155	1.0 .91 .9 .90 .81 .81 .71
60°	1 2 3 4 5 6 7 8	87 110 129 147 162 175 186 195	.522 .485 .445 .425 .398 .371 .348 .327	84 105 124 140 155 107 178 187	620 -582 -551 -520 -493 -460 -435 -410	82 102 119 134 148 160 171 180	.711 .678 .635 .597 .570 .538 .511 _485	80 99 115 130 143 154 165 174	.778 .756 .710 .679 .645 .607 .580	79 96 111 125 138 149 159 168	860 813 767 734 710 671 637 611	78 95 109 122 135 145 155 164	930 904 844 801 776 733 609 672	77 93 106 119 131 142 151 159	98 96 88 82 75 73
70°	1 2 3 4 5 6 7 8	95 117 136 152 166 178 189 198	.485 .456 .425 .396 .373 .348 .329 .310	93 113 131 146 159 171 181 191	.595 .555 .525 .495 .462 .435 .408 .391	91 110 126 141 153 165 175 184	.679 .646 .603 .573 .538 .512 .483 .460	89 106 122 135 148 159 169 178	.739 .698 .671 .630 .607 .575 .545 .523	88 105 119 132 144 154 164 172	.814 .791 .737 .700 .673 .634 .605	87 102 116 129 140 151 160 168	.878 .827 .793 .763 .725 .698 .662 .634	86 101 114 125 137 147 156 164	.93 .90 .85 .81 .78 .74 .71 .68

Buffalo Standard Heater

40 LBS.

40 lbs. Steam Pressure

286.7° F

				Veloc	ity of Ai	r in Feet	per Min	nute	Measur	red at 70	0° and £9	92" Bar	ometer		
ire of ring	for strong		600	8	00	16	100	1	200	1	400	1	600	1	800
Temperature of Air Entering	Numb r of Heater Sections	Final	Condensation per Lineal Foot per Hour	F. T.	C,	F. T.	C.	F. T.	G.	F. T.	C	F. T.	C.	F. T.	C
°F 20°	1 2 3 4 5 6 7 8	55 87 113 136 155 173 188 200	Pounds .695 .655 .615 .574 .537 .505 .475 .446	52 81 106 127 146 163 177 109	.845 .806 .758 .707 .668 .630 .592 .562	50 76 99 120 138 154 168 181	.995 .926 .874 .827 .784 .735 .699 .666	47 72 94 113 131 146 160 172	1.073 1.032 .980 .924 .884 .831 .792 .756	46 69 89 108 125 139 153 165	1.205 1.138 1.065 1.018 .975 .916 .877 .839	44 66 86 104 120 134 148 160	1 272 1 218 1 168 1 110 1 060 1 005 967 927	43 63 83 99 115 129 142 153	1.370 1.282 1.250 1.179 1.133 1.080 1.037
30°	1 2 3 4 5 6 7 8	64 93 120 141 160 177 191 203	.675 .625 .595 .550 .517 485 .456 429	61 88 112 133 151 168 182 194	.819 .767 .724 .681 .642 .608 .574 .542	59 84 106 126 143 159 173 185	.961 .894 .840 .794 .750 .708 .676 .642	56 80 102 120 137 152 165 176	1.032 991 .954 .894 .851 .805 .765 .727	55 76 97 115 132 146 158 169	1.160 1.068 1.035 .984 .947 .893 .843 .804	53 74 93 110 126 140 152 164	1.220 1.165 1.113 1.058 1.019 .968 .922 .888	52 72 90 106 121 135 147 158	1.310 1.252 1.190 1.132 1.085 1.040 .994 .955
402	1 2 3 4 5 6 7 8	73 101 126 147 165 181 195 207	.655 .605 .569 .530 .498 .465 .439	70 96 119 139 156 172 186 197	.793 .740 .697 .654 .615 .581 .561	67 91 113 132 149 164 177 189	.895 .834 .806 .760 .724 .680 .648	65 88 109 127 143 157 169 180	.994 .952 .915 .854 .820 .772 .731 .697	64 85 105 122 138 151 163 174	1.111 1.043 1.003 .949 .909 .855 .811 .775	62 82 101 117 132 145 157 168	1.167 1.111 1.078 1.019 .976 .924 .885 .847	61 80 97 113 127 140 152 162	1.251 1.192 1.131 1.088 1.039 .990 .952 .910
500	1 2 3 4 5 6 7 8	82 108 133 153 170 185 108 210	635 575 549 510 478 445 419 397	79 104 126 145 162 177 189 201	.766 .714 .671 .628 .594 .559 .525 .500	76 100 120 138 154 168 181 192	.861 .826 .774 .726 .690 .648 .619 .588	74 96 116 133 148 162 173 184	.955 .913 .875 .824 .780 .739 .697 .667	73 93 112 129 143 156 167 178	1.065 .998 .957 .915 .864 .815 .771 .740	71 91 108 124 138 151 162 172	1,113 1,085 1,026 .979 .934 .889 .846 .807	70 89 105 120 134 146 157 167	1,191 1,163 1,091 1,042 1,000 ,950 ,909 ,873
60°	1 2 3 4 5 6 7 8	90 116 138 157 175 189 202 213	.596 556 516 480 458 .425 -402 .380	88 111 132 150 167 180 193 204	.740 .674 .625 .596 .568 .530 .506 .476	85 108 127 144 159 173 186 196	.829 .795 .740 .693 -656 .620 .595 _564	83 104 122 138 153 166 178 189	.916 .873 .821 .774 .740 .699 .669	82 101 118 134 148 160 172 181	I 019 -950 -896 -856 -816 -769 -739 -700	80 99 116 130 144 156 167 177	1.060 1.032 .990 .925 .891 .845 .809	79 96 112 127 140 151 161 171	1.131 1.072 1.031 .997 .954 .902 .858 .828
707	1 2 3 4 5 6 7 8	98 124 145 163 180 194 206 216	,556 ,536 ,496 ,400 ,438 ,409 ,385 ,363	96 119 139 157 172 186 197 208	.686 .648 .609 .575 .541 .511 .480 .456	94 115 134 150 165 178 190 201	-795 -745 -707 -661 -630 -592 -567 -542	92 113 120 146 159 171 182 193	.875 .853 .795 .754 .709 .666 .635	91 110 127 142 155 166 177 187	.975 927 .880 .834 .789 .747 .705 .676	89 107 123 137 150 161 172 182	1.008 .980 .937 .886 .849 .800 .771 .741	88 105 120 133 146 157 167 177	1.074 1.042 -992 -939 -900 -861 -824 -798

Buffalo Standard Heater

60 LBS.

60 lbs. Steam Pressure

307.3° F.

	26			Velocity of	of Air in	Feet per	Minute	Measured at 7			7. and 29	92" Bar	92" Barometer		
re of ing	of tions	6	00	80	O.	10	00	12	00	1400		1600		18	800
Temperature of Air Entering	Number of Heater Sections	Final	Condensation per Lineal Foot per Hour	F. T.	c.	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.
°F.	1 2 3 4 5 6 7 8	58 91 119 144 166 184 200 214	Pounds .761 .715 .670 .625 .586 .551 .516 .489	55 85 111 134 155 173 188 202	.934 .874 .819 .768 .724 .684 .644 .611	52 80 105 127 146 164 179 192	1.070 1.007 .956 .900 .843 .806 .761 .722	50 76 99 120 139 155 170 183	1.201 1.129 1.075 1.109 958 909 .861 822	48 72 94 114 132 148 163 176	1,310 1,225 1,168 1,107 1,050 1,005 ,959 ,919	46 69 90 109 126 141 155 168	1.390 1.318 1.262 1.197 1.138 1.085 1.035 1.996	44 66 86 104 121 136 150 162	1 .440 1 .390 1 .339 1 .270 1 .218 1 .160 1 .120 1 .073
3()°	1 2 3 4 5 6 7 8	67 98 126 150 170 187 203 215	.741 .686 .650 .606 .562 .528 .496 .466	63 92 118 141 160 177 192 205	907 834 792 747 696 656 620 588	61 88 111 132 151 167 182 195	1 035 -975 -911 -858 -810 -767 -729 -693	59 84 107 126 145 161 175 187	1 .161 1 .088 1 .049 .969 .925 .881 .833 .792	57 81 102 120 138 154 167 180	1 262 1 200 1 136 1 060 1 013 975 919 883	55 78 98 115 132 147 160 173	1.336 1.290 1.226 1.143 1.094 1.049 996 962	53 75 93 111 127 142 155 167	1 386 1 366 1 279 1 222 1 170 1 13 1 070 1 03
40°	1 2 3 4 5 6 7 8	76 106 132 153 174 192 206 219	.721 .666 .622 .570 .538 .511 .476 .451	72 100 125 147 165 182 196 209	854 .806 .765 .697 .670 .634 .597 .568	70 95 118 138 157 173 187 199	1,002 925 .878 .825 .783 .745 .705 .668	68 92 114 133 150 166 179 192	1 122 1 049 1 009 939 885 847 799 766	66 89 109 127 144 159 172 184	1.218 1.153 1.089 1.025 975 934 .885 848	64 86 105 122 138 153 166 178	1.283 1.238 1.171 1.103 1.051 1.013 .966 929	62 83 101 118 134 148 160 172	1.32 1.30 1.23 1.18 1.13 1.09 1.03
50°	1 2 3 4 5 6 7 8	83 113 138 160 179 195 209 222	.681 .635 .595 .555 .518 .487 .456 .433	81 108 132 152 170 186 200 212	.826 .780 .738 .665 .643 .607 .574 .545	78 103 125 144 162 177 191 203	.935 .891 .844 .791 .750 .711 .675 .643	76 99 120 139 156 170 183 195	1 042 987 953 899 853 807 764 731	75 97 116 133 150 164 177 188	1 170 1 107 1 040 977 .937 .895 .851 .813	73 94 112 129 144 158 171 182	1 230 1 182 1 119 1 062 1 009 967 927 .889	71 91 109 125 140 153 166 177	1.26 1.24 1.19 1.13 1.08 1.00 1.00
60°	1 2 3 4 5 6 7 8	93 121 145 166 185 201 214 226	.661 .615 .575 .535 .502 .474 .442 .418	90 115 138 158 176 191 205 216	. 800 . 740 . 702 . 659 . 622 . 585 . 554 . 524	87 111 132 151 168 183 196 208	902 857 810 765 723 689 652 622	161 175 188	1.003 947 912 858 813 .773 .735 .706	83 104 123 140 155 169 182 193	1 075 1 035 994 942 890 856 817 783	82 102 119 135 150 163 175 187	1.175 1.130 1.064 1.010 .965 .923 .882 .855	80 99 116 132 146 159 171 181	1.20 1.17 1.18 1.08 1.08 1.08 99 98
70°	1 2 3 4 5 6 7 8	101 128 151 172 189 204 217 229	.548 .515 .478 .450 .421	99 124 145 164 181 195 208 219	.774 .725 .675 .632 .595 .558 .528	96 119 139 157 173 187 200 212	. 868 . 824 . 776 . 731 . 690 . 655 . 624 . 596	116 135 152 167 181 193	.963 .926 .885 .838 .780 .746 .706	113 130 147 161 174 186	1 030 1 013 946 906 852 816 777 748	110 127 142 156 169 181	1.121 1.075 1.028 .969 .924 .887 .851 .814	89 107 123 139 152 165 176 186	1 14 1 11 1 07 1 04 98 98

Buffalo Standard Heater

80 lbs. Steam Pressure

323.7° F

80 LBS.

(a)				Velocity	of Air is	Feet p	er Minut	ė 2	Measured	at 70°	F. and 2	9.92" Ba	rometer		
ure of	rof		600	8	600	1	000	1	200	1	400	1	600		1800
Temperature of Air Entering	Number of Heater Sections	Final	Condensation per Lineal Foot per Hour	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C,
°F	1 2 3 4 5 6 7 8	60 95 124 151 173 193 210 224	Pounds .815 .769 .709 .670 .623 .589 .554 .520	57 88 116 141 162 181 198 212	1,006 .925 .871 .825 .770 .730 .691 .653	54 83 109 132 153 171 187 201	1.155 1.072 1.009 956 .903 .858 .813 .769	52 79 103 125 145 162 178 192	1.306 1.205 1.130 1.072 1.019 .966 .924 .879	49 75 98 119 138 155 170 185	1.380 1.310 1.240 1.182 1.121 1.071 1.021 .984	72	1.522 1.419 1.343 1.269 1.216 1.160 1.112 1.069	46 69 90 109 126 142 156 169	1.59: 1.50: 1.43: 1.35: 1.29: 1.24: 1.19: 1.13:
30°	1 2 3 4 5 6 7 8	69 103 132 157 179 196 213 227	.795 .748 .695 .643 .606 .565 .534 .502	65 96 123 146 167 185 201 215	. 952 . 899 . 844 . 790 . 744 . 704 . 665 . 639	62 91 116 138 158 176 191 205	1.088 1.039 .975 .922 .868 .830 .783 .744	60 86 110 131 150 167 182 195	1.223 1.145 1.089 1.032 .979 .942 .889 .843	58 83 105 125 144 160 175 188	1,332 1,264 1,191 1,136 1,081 1,031 1,990 ,942	57 80 101 120 138 154 168 181	1,469 1,363 1,289 1,228 1,172 1,124 1,073 1,028	55 77 97 115 132 147 161 174	1.536 1.440 1.369 1.305 1.245 1.192 1.147 1.100
4.00	1 2 3 4 5 6 7 8	77 109 138 162 182 200 216 230	.755 .707 .667 .618 .578 .544 .513 .484	74 104 130 153 173 190 205 219	925 -874 -816 -770 -721 -680 -641 -608	71 99 123 145 164 181 195 200	1.052 1.004 .941 .896 .841 .801 .754 .719	69 94 117 137 155 172 187 200	1.182 1.104 1.049 .992 .938 .897 .860 .818	67 91 112 132 150 166 179 192	1.286 1.215 1.144 1.100 1.043 1.000 .947 .905	66 88 108 126 144 159 173 185	1.414 1.310 1.234 1.172 1.129 1.079 1.035 .986	64 86 105 123 139 153 167 179	1.470 1.410 1.329 1.275 1.206 1.153 1.111 1.062
50°	1 2 3 4 5 6 7 8	86 117 144 167 187 204 219 233	.734 .686 .640 .593 .558 .524 .493 .466	83 111 136 159 178 194 209 222	.870 .830 .781 .743 .695 .653 .618 .585	80 107 130 151 169 185 200 212	1.020 .970 .907 .862 .807 .766 .730 .689	78 102 124 144 161 177 191 204	1.141 1.062 1.008 .961 .905 .864 .825 .787	76 99 119 138 155 171 184 196	1.239 1.168 1.096 1.051 .996 .960 .914 .870	75 96 115 133 150 165 178	1.360 1.255 1.180 1.132 1.085 1.042 .996 .952	73 94 112 129 145 159 172 184	1.409 1.350 1.267 1.212 1.159 1.111 1.069 1.024
60°	1 2 3 4 5 6 7 8	95 124 150 173 192 209 224 237	.714 .655 .612 .572 .537 .507 .479	91 119 143 164 183 199 213 226	.844 .803 .753 .708 .667 .631 .595 .565	89 114 137 157 174 190 204 217	.986 .920 .873 .827 .774 .739 .701 .668	87 111 131 150 167 182 196 208	1.105 1.041 .966 .920 .873 .830 .795 .756	85 107 127 145 161 176 189 201	1. 190 1. 120 1. 065 1. 016 . 958 . 920 . 879 . 840	84 104 123 140 156 170 183 195	1.305 1.200 1.143 1.091 1.043 .996 .957 .918	82 102 120 136 151 165 177 189	1.347 1.288 1.225 1.168 1.110 1.071 1.024 .986
700	1 2 3 4 5 6 7 8	103 132 157 178 197 213 227 240	.673 .635 .591 .548 .517 .486 .450 .434	100 127 150 170 188 204 217 229	.815 .775 .726 .682 .040 .008 .571 .540	98 122 144 163 180 195 208 220	.953 .886 .840 .794 .746 .710 .672 .638	96 118 139 157 173 188 200 212	1.061 .980 .939 .890 .840 .802 .760 .725	94 115 134 151 167 181 193 205	1.144 1.072 1.018 .969 .920 .881 .838 .805	02 111 130 147 162 175 188 199	1.251 1.119 1.090 1.050 1.000 .950 .919 .878	91 110 127 143 157 170 182 193	1,286 1,228 1,165 1,121 1,000 1,020 981 940

Buffalo Standard Heater

100 LBS.

100 lbs. Steam Pressure

337.6° F

				Velocity	of Air in	Feet pe	r Minute	1	Measured	lat 70°	F. and 29).92" Ba	rometer		
re of	ber of Sections		600	S	800		1000		1200		1400		1600		00
Temperature of Air Entering	Number Heater Sec	Final	Condensation per Lineal Foot per Hour	F. T.	C.	F. T.	C.	F. T.	.C.	F. T.	C.	F. T.	C.	F. T.	Č.
∘F 20°	1 2 3 4 5 6 7 8	98 129 156 179 200 218 233	Pounds . 869 . 805 . 752 . 704 . 655 . 620 . 584 . 551	58 91 120 145 168 188 205 220	1.049 .979 .920 .861 .814 .773 .728 .690	55 86 112 137 158 177 194 209	1.209 1.139 1.060 1.009 .947 .903 .855 .815	52 81 106 129 150 168 185 199	1.319 1.260 1.190 1.129 1.072 1.106 .976 .928	50 77 101 123 143 160 176 190	1 449 1 371 1 303 1 242 1 184 1 128 1 076 1 027	48 74 96 117 136 153 169 183	1.543 1.486 1.400 1.335 1.274 1.223 1.172 1.125	47 71 92 112 130 147 162 175	1.68 1.57 1.49 1.42 1.36 1.31 1.28 1.20
30°	1 2 3 4 5 6 7 8	71 106 136 162 183 204 221 236	.847 .784 .731 .683 .638 .600 .564 .533	67 98 126 152 173 192 208 223	1.020 .937 .883 .840 .786 .745 .700 .665	63 93 119 142 164 182 198 212	1.139 1.086 1.028 .967 .920 .874 .826 .785	61 88 113 135 156 173 189 203	1.279 1.199 1.148 1.085 1.040 .989 .940 .897	59 84 107 128 148 165 181 104	1.400 1.300 1.240 1.182 1.136 1.088 1.042 991	57 82 103 124 142 158 173 187	1.489 1.430 1.345 1.294 1.231 1.177 1.126 1.082	55 78 99 118 136 152 167 180	1.55 1.48 1.43 1.36 1.31 1.26 1.21 1.16
40°	1 2 3 4 5 6 7 8	80 113 142 167 189 208 224 239	.827 .754 .704 .657 .614 .579 .542 .515	76 106 134 158 178 196 212 226	-994 -910 -865 -813 -759 -718 -676 -642	72 100 126 148 169 187 202 216	1.102 1.034 995 .932 .886 .845 .796 .760	70 96 120 141 161 178 194 207	1.234 1.157 1.105 1.044 1.000 .954 .912 .865	68 92 115 135 154 170 186 199	1.351 1.252 1.209 1.148 1.098 1.046 1.008	66 90 110 130 148 164 179 192	1.434 1.375 1.290 1.240 1.188 1.140 1.094 1.049	64 87 107 125 142 158 172 185	1.49 1.46 1.36 1.30 1.26 1.26 1.10 1.11
50*	1 2 3 4 5 6 7 8	89 120 148 173 194 213 228 242	.806 .723 .676 .636 .593 .562 .525 .497	84 113 140 163 183 201 216 229	.939 .868 .828 .779 .731 .694 .653 .618	81 108 133 155 174 191 206 220	1 070 1 000 959 906 852 810 767 734	79 104 127 148 167 184 198 211	1 194 1 115 1 053 1 013 .965 926 .873 .835	77 100 122 142 160 176 190 203	1 305 1 204 1 160 1 110 1 060 1 015 .965 .925	75 97 118 137 154 170 183 196	1.379 1.293 1.253 1.199 1.142 1.103 1.048 1.007	73 95 114 132 149 164 177 190	1.4 1.3 1.3 1.2 1.2 1.2 1.1 1.1
60°	1 2 3 4 5 6 7 8	97 128 155 179 199 217 232 246	.765 .702 .655 .615 .572 .541 .507 .481	93 122 147 169 189 206 221 234	.910 .854 .800 .751 .709 .672 .634 .600	90 117 140 161 180 196 211 224	1.035 .981 .924 .871 .826 .782 .743 .707	88 113 135 154 173 189 203 216	1.154 1.075 1.036 .973 .932 .891 .846 .809	86 109 130 149 166 181 195 208	1 255 1 180 1 127 1 075 1 021 974 931 895	84 105 125 144 160 175 188 201	1 323 1 239 1 196 1 158 1 100 1 058 1 007 975	82 103 122 139 155 170 182 194	1.3 1.3 1.2 1.2 1.1 1.1 1.0
70°	1 2 3 4 5 6 7 8	105 135 161 184 204 221 235 249	.724 .671 .628 .590 .551 .520 .486 .463	101 129 154 175 193 210 224 237	.855 .813 .772 .724 .676 .644 .616 .576	99 124 147 168 185 201 215 228	1.000 .930 .890 .845 .790 .753 .713 .682	161 178 193 207	1.071 1.033 992 941 891 .850 810 .773	94 116 136 155 172 187 200 212	1.159 1.109 1.062 1.026 -982 -942 -897 -859	93 114 133 150 166 181 193 205	1 . 269 1 . 210 1 . 160 1 . 102 1 . 055 1 . 021 . 969 . 934	91 111 129 146 161 175 187 199	1 3 1 2 1 2 1 1 1 1 1 0 1 0 1 0

■ FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING = ■ ■

Final Temperatures and Condensations

Vento Cast Iron Heater

Regular Section-Standard Spacing

5" Centers of Sections

Steam 5 lb. Gauge 227°

		1		Ve	locity T	hrough E	leater in	Feet per	Minute	. M	easured	at 70° F	1		
Temperature of Sontening Air	of	6	00	800		10	1000		1200		1400		1600		800
Temperatu Entering	Number of Stacks Deep	Final Temper- ature Air Leaving Heater	Cond. lbs. per Sq. Ft. per Hour	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.	F. T.	C.
20°	1 2 3 4 5 6 7 8	58 87 110 130 144 156 167 175	1.46 1.29 1.15 1.06 .95 .87 .81 .75	54 81 103 122 136 148 159 167	1.75 1.57 1.42 1.31 1.19 1.10 1.02	51 76 97 115 130 142 152 161	1 99 1 80 1 65 1 52 1 41 1 30 1 21 1 13	49 72 92 110 124 136 146 155	2.23 2.00 1.85 1.73 1.60 1.49 1.39 1.30	47 69 88 105 119 130 141 150	2.42 2.20 2.06 1.91 1.78 1.65 1.55 1.46	45 66 85 101 114 126 136 145	2.56 2.35 2.22 2.08 1.93 1.81 1.70 1.60	43 64 82 97 110 122 132 141	2.65 2.54 2.38 2.22 2.08 1.96 1.85 1.74
30°	1 2 3 4 5 6 7 8	66 93 115 134 148 159 169 177	1.39 1.21 1.09 1.00 91 .83 .76	62 87 108 126 140 151 161 160	1.64 1.46 1.33 1.23 1.13 1.04 .96 .89	60 83 103 120 134 145 155 163	1.92 1.70 1.56 1.44 1.33 1.23 1.15 1.07	58 79 98 115 128 139 149 158	2.17 1.89 1.75 1.63 1.51 1.40 1.31 1.23	56 76 94 110 123 134 144 153	2.33 2.06 1.91 1.80 1.67 1.56 1.46 1.38	54 73 91 106 118 130 139 148	2.46 2.21 2.08 1.95 1.80 1.71 1.60 1.51	52 71 88 102 115 126 135 144	2.54 2.37 2.23 2.08 1.96 1.85 1.78 1.64
40°	1 2 3 4 5 6 7 8	74 100 121 138 151 162 171 179	1.31 1.15 1.04 .94 .85 .78 .72 .07	70 94 114 130 144 154 164 171	1.54 1.39 1.26 1.15 1.07 .97 .91 .84	68 90 109 124 138 148 158 165	1.80 1.60 1.47 1.35 1.26 1.15 1.08 1.00	06 86 104 119 132 143 153 160	2.00 1.77 1.64 1.52 1.42 1.32 1.24 1.15	64 83 100 115 127 138 148 155	2.16 1.93 1.79 1.68 1.56 1.47 1.39 1.29	62 81 97 111 123 134 143 151	2 26 2 10 1 95 1 82 1 70 1 60 1 51 1 42	61 79 94 108 120 131 139 147	2,42 2,27 2,08 1,96 1,85 1,75 1,63 1,54
ČÚ°	1 2 3 4 5	90 112 131 146 158 167	1 15 1.00 91 -83 -75 -60	86 107 124 139 151 160	1.34 1.21 1.00 1.01 93 85	84 103 120 134 145 155	1.54 1.38 1.28 1.10 1.09 1.02	82 100 116 129 140 150	1.69 1.54 1.44 1.33 1.23 1.15	81 98 113 125 136 146	1.89 1.71 1.58 1.46 1.36 1.29	80 96 110 122 133 142	2.05 1.85 1.71 1.59 1.50 1.40	79 94 108 119 130 139	2.19 1.96 1.85 1.76 1.62 1.52

Friction of Air Through Vento Cast Iron Heaters

Friction Loss in Inches of Water.

Air Measured at 70° F.

Regular Section

Velocity Fort per	Spacing of Sections -		NUMBER OF STACKS												
Minute	Inches	1	2	3	4	5	6.	7	8						
600	5	0.021	0.040	0.058	0.076	0.094	0.112	0.130	0.149						
700	5	0.028	0.054	0.079	0.105	0.130	0.155	0.180	0.205						
800	5	0.037	0.070	0.103	0.135	0.167	0.200	0.232	0.265						
1900	.5	0.047	0.088	0.129	0.170	0.211	0.252	0.293	0.332						
1000	5	0.059	0.109	0.160	0.211	0.262	0.313	0.364	0.418						
1100	5.	0.071	0.132	0.193	0.255	0.316	0.377	0.438	0.501						
1200	5.	0.084	0.157	0.230	0.303	0.376	0.449	0.522	0.596						
1300	5	0.099	0.185	0.271	0.356	0.442	0.528	0.614	0.701						
1430	5	0.115	0.214	0.314	0.414	0.513	0.612	0.712	0.813						
1500	5	0.132	0.246	0.360	0.474	0.588	0.702	0.816	0.932						
1600	5	0.150	0.280	0.410	0.540	0.670	0.800	0.930	1.060						
1700	5	0.169	0.316	0.463	0.609	0.756	0.903	1.049	1.197						
1800	.5	0.190	0.354	0.518	0.683	0.848	1.012	L177	1.342						

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Buffalo Single Vertical Engines-Class "A"

Maximum Horsepower Allowable for Corresponding Frame

High Pressure

Maximum	Maximum	Cylinder Diameter	Floor Space			Stand Fly W		Exhau	Shipping	
Horsepower	R. P. M.	Diameter and Stroke	Length	Width	Height	Diameter	Face	Steam	Exhaust	Weigh
6	550	4 x 4	34	32	46	27	514	134	134	1260
12	475	5 x 5	37	34	55	31	6	136	2	1740
20	450	6 x 6	41	37	65	33	655	2	23-2	2400
20	425	7 x 7	41	37	65	33	619	2	233	2800
45	400	8 x 8	43	40	78	39	7	215	3	3270
45	400	10 x S	43	40	78	39	7	3	339	3420
65	350	8 x 10	52	52	96	49	1139	235	3	6070
65	350	10 x 10	52	52	96	49	1110	3	335	6240
65	350	12 x 10	52	52	96	49	1114	314	4	6460
95	300	10 x 12	62	64	118	57	13	319	4	8830
95	300	12 x 12	62	64	118	57	13.	4	5	9000

Low Pressure

18	450	8 x 6	41	37	65	-3.3	6.64	215		2450
45	400	12 x 8	43	40	78	3389	7	3	335	3780
45	400	13 x S	43	40	78	39	7	3	319	4160
45	400	15 x 8	43	40	78	30	7	339	4	(54.90)
65	350	15 x 10	.52	52	96	4.9	111/2	3	315	7150
65 95 95	300	15 x 12	62	64	118	57	131	4	- 5	10830
95	300	18 x 12	62	64	118	57	13	- 0-	10	11270

Buffalo Horizontal Engines, Center Crank-Class "A"

30	300	5 x 10	70	30	30	40	835	135	214	1980
30	300	6 x 10	70	30	30	40	839	112	210	2030
50	250	7 x 12	86	34	32	40	834	2	-3	2750
50	250	8 x 12	86	34	32	40	8.1-5	2	3	2970
50 65	225	8 x 14	102	40	37	49	1.0	234	336	3850
65	225	9 x 14	102	40	37	460	10.	21/2	374	4070

Buffalo Single Vertical Engines-Class "I"

Cylinder Below Shaft

Manhaum	Maximum	Cylinder Discourser	Steam and I	Inhane Pipes	-
Maximum Horsepower	R.P.M.	and Stroke	States	Eshaurt	Weight
5 736 11 1836 25 30	600 500 400 325 275 220	3 x 3 1 4 4 x 3 1 5 4 1 5 x 5 5 1 5 x 7 6 1 5 x 8 7 1 5 x 9	1 1 1 1 1 1 1 1 2	114 114 115 215	340 370 780 1100 1500 2000

Buffalo

Planoidal Fans

With Proper Combinations of Heaters and Engines for Public Buildings and Industrial Installations

pea	Cultiv I Air per		Bullah	Standard	Meater	En	gitting	ler	Cable Air per	Free of Minute	Buffal	o Stumbard	Busier	Em	gior
Fart Namber	Promotes Promotes	2" Static Presents	Arrange-	She	Clear Area Square Freet	Loss	Prematro	Fam Number	1* Static	2" Shalle Pressure	Arrabgo-	Stre	Cear Arm Square Feet	Premater	Present
	4,550	6,440	Single	PULLIFIC TOTAL OF	3.4 3.2 6.0	A = 0	4+4A 4x1351	120	26,200	37,050	Smyle	5"5"48"10" T"0"47"10" T"0"48"4" T"0"48"10"	24.2 25.4 27.2 20.0	15 4.8	8x8.4 7+12N
	5,000	7,780			5.2 6.0 6.8 7.6	515	4x8A 4x37gE				Hack To Duck	7.0° 90' 9' 7.0° 9' 10° 1.0° 40' 10° 4.0° 45' 10° 4.0° 46' 10°	28.1		
-800			Shall	1000	5.6 1.0 5.4	816	Aug 4. 13 p. 12.					4'0" 87' 4' 5'0" 80' 4" 5'0" 87' 10" 5'0" 87' 10"	20.6 29.2 30.8 34.2 25.4		
	8,680	12,000				10.65	AdA Optit	530	30,530	11.290	Book To	710"48"30" 710"49"30" 710"49"30" 410"40"30"	29.0 30.1 30.5 78.4 30.0 20.8 30.8	thes:	545A 7332N
		(0,410)		437 45 107 437 457 107	12.1	NVA	Osta Ostalia Select				Back	510747 107 510747 4* 510747 107	35.4 20.0 42.0		
					15.2 15.2 14.3 12.4			140	20,000	Situate	Hack To Dack	0'0"474" 0'0'474" 0'0'474" 0'0'474"	38.5 30.4 39.6 42.6 43.4	10410	1049.A Ta) 2N
			lingh	CONTRACTOR OF THE PARTY OF THE	117	111.8.5	TATA Liberts Selection					- 0, 42. 9. 0.0, 42. 00.	48.1		
				TYNT!				1.50	40.000	57.9090	Hock To Back	OFFITAL OFFITAL OFFITAL OFFITAL OFFITAL	30 8 42.6 45.4 45.4 47.8	Na12	Hallon Salth
1001	0,200			FEE	17.7	12+1	PATA Strang Sales					TOTAL A	24.4		
				PONT IN	201		Fix 1075)(60)	86,850	60,790	Dack The Back	HOPEFUP TOPEFUP TOPEFUP TOPEFUP	100 to 100 to 100 to	Design	NaytiAN Bulan
	23,000	26.19	Singer		1000	like#	SANA Diggs Salina Salina					Timester Timester	28.8 11.4 13.6		

Buffalo

Niagara Conoidal Fans

With Proper Combinations of Heaters and Engines for Public Buildings and Industrial Installations

ber	Cubic F Air per ?		Buffalo	Standard I	leater	Eng Si	tine ze	ber	Cubic I		Buffalo	Standard	Heater	Eng Si	ine
Fag Number	1" Static Pressure	9" Static Pressure	Arrange- ment	Size	Glear Area Square Feet	Low	High	Fan Number	l" Static Pressure	2" Static Pressure	Arrange- ment	Size	Clear Area Square Feet	Low	High
+	4,895	6.920	Single	3'0"x3'10"	5.2			10	30,550	13,250	Back To	4'6"x6'10" 4'6"x7'4"	28.4 30.6	15x8	8x8A 712x91
115	6,195	8,750		3'0"x4'4" 3'0"x4'10" 3'0"x5'4"	6.0 6.8 7.6		4x4A 3x33 <u>6</u> I				Back	5'0"x6'10" 5'0"x7'4" 5'0"x7'10" 6'0"x7'10"	30.8 33.2 35.4 39.6 42.6		5x10N
5	7,645	10,820	Single	3'0"x5'4" 3'0"x5'10" 4'0"x5'4"	7.6 8.4 9.7	5x5	5x5A 4x3/51	11	37,000	52,300	Back To Back	5'0"x7'10" 6'0"x7'4" 6'0"x7'10" 6'0"x8'4"	35.4 39.6 42.6 45.4	15x8	8x8A 735x91 5x10N
534	9,250	13,100	Single	3'0"x5'10" 4'0"x5'4" 4'0"x5'10"	8.4 9.7 10.7	6x6	5x5A 4x8½1					6'0"x8'10" 7'0"x7'4" 7'0"x7'10"	18.4 47.2 50.8		
				4'0"x6'4" 4'0"x6'10" 4'6"x5'10" 4'6"x6'4"	11.2 12.6			12	14,050	62,300	To-	6'0"x8'4" 6'0"x8'10" 7'0"x7'4"	42.6 45.4 48.4 47.2	15x8	828A 10x8A 7s12N
6	11,000	15,550	Single	4'0"x6'4" 4'0"x6'10" 4'6"x5'10"	11.2 12.6 12.1	8x6	5x5A 4)2x51					7'0"x7'10" 7'0"x8'4" 7'0"x8'10" 7'0"x9'4"	50.8		
				4'6"x6'4" 4'6"x6'10" 4'6"x7'4"	13.1 14.2 15.3			18	51,650	73,050	Buck To Back	7'0"x8'4"	51.0	15x10	8x8A 10x8A 7x12N
7	14,980	21,200	Single	4'6"x6'10' 4'6"x7'4" 5'0"x6'10' 5'0"x7'4" 5'0"x7'10' 6'0"x7'4" 6'0"x7'10'	15.4 15.4 15.6 17.7 19.8	10x8	5x5A 515x7I					7'0"x9'4" 7'0"x9'10' 5'0'x7'1'' 6'0"x7'4" 6'0"x7'10' 6'0"x8'4" 6'0"x8'10' 7'0"x7'4"	61.4 65.0 53.1 59.4 63.9 68.1		
8	19,550	27,65	Single	5'0x7"10" 6'0"x7'4" 6'0"x7'10 6'0"x8'4" 6'0"x8'10 7'0"x7'4" 7'0"x7'10 7'0"x8'4"	19.8 21.3 22.7 24.2 23.6 25.4	10x8	0x6A 5)gx71	14	(50),000	84,900	Back To Back Three Side By	7'0"x9'10' 7'0"x9'10' 8'0"x7'4" 6'0"x7'10' 8'0"x8'4" 6'0"x8'10'	61.4 65.0 59.4 63.9 68.1 72.6 70.8	16x10	8x10A 7x12N
9	24,750	35,05	0 Single	6'0"x8'4" 6'0"x8'10 7'0"x7'4" 7'0"x7'10 7'0"x8'4" 7'0"x8'10 7'0"x9'4" 7'0"x9'10	23.6 25.4 27.2 29.0 30.7	12x8	6x6A 6½x81				Side		\$1.6		
10	30,550	43,25	0 Single	7'0"x8'4" 7'0"x8'10 7'0"x9'4" 7'0"x9'10	29.0 30.7	15x8	7x7A 6) ≤x81								

With Proper Combinations of Heaters and Engines for Public Buildings and Industrial Installations

oper		Feet of r Minute		lo Standard	Heater	Е	ngine	ber		Feet of Minute	Buff	alo Standaro	i Heater	E	ngine
Fan Number	1" Static Pressure	2" Static Pressure	Arrange- ment	Size	Clear Area Square Feet	Low	High	Fan Number	1" Static Pressure	2" Static Pressure	Arrange- ment	Size	Clear Area Square Feet	Low	High
4	4,450	6,270	Single	3'0"x3'4" 3'0"x3'10"	4.4 5.2			81/2	20,100	28,400	Single	6'0"x7'4" 6'0"x7'10' 6'0"x8'4"	19.8	10x8	6x6A 5½x7
412	5,640	7,950	Single	3'0"x3'10" 3'0"x4'4" 3'0"x4'10" 3'0"x5'4"	5.2 6.0 6.8 7.6		4x4A 4x336I				Back To	6'0"x8'10' 7'0"x7'4" 7'0"x7'10" 7'0"x8'4"	23.6 25.4 27.2 19.4		7x7A
5	6,950	9,800	Single	3'0"x4'10" 3'0"x5'4" 3'0"x5'10" 4'0"x5'4"	6.8 7.6 8.4 9.7	5x5	5x5A 4x3½1				Back		22.4 25.2 24.2 26.2		
514	8,400	11.880	Single	3'0"x5'10" 4'0"x5'4" 4'0"x5'10" 4'0"x6'4"	8 4 9.7 10.7 11.2	tix6	5x5A 4½x5I	9	22,500	31,800	Single	6'0"x7'10" 6'0"x8'4" 6'0"x8'10" 7'0"x7'4" 7'0"x7'10"	21.3 22.7 24.2 23.6 25.4	12x8	7x7A 636x8I 6x10N
6	10,000	14,120	Single	4'0"x5'4" 4'0"x5'10" 4'0"x6'4" 4'0"x6'10" 4'6"x5'10" 4'6"x5'4"	9.7 10.7 11.2 12.6 12.1 13.1	8x6	5x5A 4½x5I				Back To Back	7'0"x8'4" 7'0"x8'10" 7'0"x9'4" 4'0"x5'10" 4'0"x6'4" 4'0"x6'10" 4'6"x5'10" 4'6"x6'4"	27.2 29.0 30.7 21.4 22.4 25.2 24.2 26.2		
619	11,750	16,600	Single	4'0"x6'10" 4'6"x5'10"	11,2 12.6 12.1	8x6	5x5A 435x5I					4'6"x6'10" 4'6"x7'4" 5'0"x6'4" 5'0"x6'10"	28.4 30.6 28.2 30.8		
				4'6"x6'4" 4'6"x6'10" 4'6"x7'4" 5'0"x6'4" 5'0"x6'10" 5'0"x7'4"	13.1 14.2 15.3 14.1 15.4 16.6			10	27,800	39,300	Single Back	7'0"x8'10" 7'0"x9'4" 4'6"x6'4" 4'6"x6'10"	25.4 29.0 30.7 26.2 28.4	15x8	7x7A 63%x8I 6x10N
7	13,610	19,250		4'6"x6'4" 4'6"x6'10" 4'6"x7'4" 5'0"x6'4"	13.1 14.2 15.3 14.1	10x8	6x6A 5½x7f				To Back	4'6"x7'4' 5'0"x6'4" 5'0"x6'10" 5'0"x7'4" 5'0"x7210"	30.6 28.2 30.8 33.2 35.4		
				5'0"x6'10" 5'0"x7'4" 5'0"x7'10"	15.4 16.6 17.7			11	33,700	47,450	To	5'0"x7'4" 5'0"x7'10"	33.2 35.4	15x8	8x8A 7½x9I
715	15,610	22,100		5'0"x6'10" 5'0"x7'4" 5'0"x7'10" 6'0"x7'4" 6'0"x7'10"	15.4 16.6 17.7 19.8 21.3	10x8	6x6A 536x7I					6'0"x7'4" 6'0"x7'10" 6'0"x8'4" 7'0"x7'4"	39.6 42.6 45.4 47.2		6x10N
8	17,800	25,100		5'0"x7'4" 5'0"x7'10" 6'0"x7'4" 6'0"x7'10" 6'0"x8'4" 6'0"x8'10" 7'0"x7'4"	16.6 17.7 19.8 21.3 22.7 24.2 23.0	10x8	6x6A 534x71								

B. T. U. Transmitted per Hour per Square Foot of	Heating Surface For Various Differences in Temper-
ature Between Inside and Outside Air	Temperature Difference

ature Between Inside and Outside Air				Temper	rature Diff	ference		
Material		10	500	60°	700	80*	850	90
THE 1 OF 1 OI THE 1 I	-	1.09	54.5	65.4	76.3	87.2	92.7	98.1
Double Full Glass, Sash Area.		0.46	23.0	27.6	32.2	36.8	39 1	41.4
705 - (2)		1.00	50.0	60.0	70.0	80.0	85.0	90.0
DI 1: 31 0: 1 CI D II D 1 4	a	1 16	58.0	69.6	81.2	92.8	98.6	104.4
Double Glass, Full Sash Area.		0.48	24.0	28.8	33.6	38.4	40.8	43.2
The state of the s		0.41	20.5	24.6	28.7	32.8	34.9	36.9
or Pine 13/2"		0.32	16.0	19.2	22.4	25.6	27.2	28.8
m (****)		0.27	13.5	16.2	18.9	21.6	23.0	24.3
Brick Wall, Plain, 81/2" Thick.		0.37	18.5	22.2	25.9	29.6	31.5	33.3
13" "		0.29	14.5	17.4	20 3	23.2	24 7	26.1
17 1/2" "	a	0.25	12.5	15:0	17.5	20.0	21.3	22.5
22" "	2	0.22	11.0	13.2	15.4	17.6	18.7	19.8
261/2" "	n	0.19	9.5	11.4	13.3	15.2	16.1	17.1
34" Plaster on one side, 81/2" Thick.		0.36	18.0	21.6	25 2	28.8	30.6	32.6
13" "		0.28	14.0	16.8	19.6	22.4	23.8	25.2
1712" "		0.24	12.0	14.4	16.8	19.2	20.4	22.6
		0.21	10.5	13.6	15 7	17.8	18.9	19.9
2072		0.18	9.0	10.8	12.6	14.4	15.3	16.2
		0.25	12.5	15.0	17.5	20.0	21.3	22.5
12/2		0.21	10.5	12.6	15.7	17.8	18.9 16.1	19.9 17.1
4.0		0.19	9.5	9.6	13 3 11 2	15.2 12.8	13.6	14.4
4172		0.14	7.0	8.4	9.8	11 2	11.9	12.6
and a district of the contract		0.28	14.0	16.8	19.6	22.4	23.8	25.2
8½"		0.23	11 5	13.8	16.1	18.4	19.6	20.7
13"		0.20	10.0	12.0	14.0	16.0	17.0	18.0
171/2" "		0.18	9.0	10.8	12 6	14.4	15.3	16.2
22"		0.16	8.0	9.6	11 2	12.8	13.6	14.4
		0.44	22.0	26.4	30 8	35.2	37.4	39.6
Clapboard, Paper, Stud and Plaster "	a	0.31	15.5	18.6	21.7	24.8	26.4	27.9
	13	0.28	14.0	16.8	19.6	22.4	23.8	25.2
Clapboard, Paper, Sheathing, Stud and Plaster.		0.23	11.5	13.8	16.1	18.4	19.6	20.7
Concrete, Solid, 2" Thick.	0.0	0.78	39.0	46.8	54.6	62.4	66.3	70.2
3" "		0.71	35.5	42.6	49.7	56.8	60.4	63.9
4" "		0.66	33.0	39.6	46 2	52.8	56.1	59.4
0		0.56	28.0	33.6	39.2 28.7	32.8	47.6 34.9	50.4 36.9
Partition, Hollow Tile 1/2" Plaster both sides 2" Thick		0.41	20.5	24.6 19.8	23.1	26.4	28.1	29.7
6" 12		0.28	14.0	16.8	19 6	22.4	23.8	25.2
Stud, Lath and Plaster on one side.	a	0.60	30.0	36.0	42.0	48.0	51.0	54.0
Lath and Plaster on both sides.		0.34	17.0	20.4	23.8	27 2	28.9	30.6
Solid Plaster 2" Thick	b	0.60	30.0	36.0	42 0	48.0	51.0	54.0
3" "		0.50	25.0	30.0	35.0	40.0	42.5	45.0
Floor, Single 34" no Plaster beneath Joists.	a	0.45	22.5	27.0	31 5	36.0	38.3	40.5
Lath and Plaster beneath Joists.		0.26	13.0	15.6	18.2	20.8	22.1	23.4
Double 1½" no Plaster beneath Joists.		0.31	15.5	18.6	21.7	24.8	26.4	27.9
Lath and Plaster beneath Joists.		0.18	9.0	10.8	12.6	14.4	15 3	16.2
Single on Brick Arch.		0 15	7.5	9.0	10.5	12.0	12 S 8.5	13.5
Fireproof construction.		0.10	5.0	12.0	7.0	8.0 16.0	17.0	18.0
Concrete on Brick Arch.	13	0.20	10.0	4.5.0	11:0	10.0	43.75	400,46
Laid on Ground Cement or Tile laid on ground no Wood above.	24	0.31	15.5	18.6	21.7	24.8	26.4	27.9
Wood Floor above	9	45 9 45	5.0	6.0	7.0	8.0	8.5	9.0
Dirt, no Floor whatever		0.20	10.0	12.0	14.0	16.0	17.0	18.0
Roof. Tile 1" Thick	3	0.80	40.0	48.0	56.0	64.0	68:0	72.0
Hollow Tile, 6" thick, Concrete 8" thick, tar and gravel	a	0.35	17.5	21.0	24.5	28.0	29.8	31.5
Slate, on 1" Planks.	2	0.43	21 5	25.8	30.1	34.4	36.6	38.7
on Wooden Framing.	а	0.85	42.5	51.0	59 5	68.0	72.3	76.5
Tar, Paper and Gravel on 2" Planks.	13	0.26	13.0	15.6	18 2	20 8	22 1	23.4
Sheet Iron.	В	1.20	60.0	72.0	84.0	96.0	102:0	108.0
Corrugated Iron.	a	1.50	75.0	90.0 48.0	105.0 56.0	120.0 64.0	127 5 68 0	135 0 72 0
Concrete with Cinder Fill. 2" Thick.	8	0.80	40.0 30.0	36.0	42.0	48.0	51.0	54.0
4	13	0.54	27 0	32.4	37.8	43 2	45.9	48.6
Asbestos Shingles on 1" Tongue and Groove Boards.	Ci.	0.30	15.0	18.0	21.0	24.0	25.5	27.0
Ajax Built up Roofing, 3 ply, on 4" Concrete with two layers	0	0.508	25.4	30.5	35 6	40.6	43.2	45.7
of Double Neptune Felt.	C	0.303	15.2	18.2	21.2	24.2	25.8	27 3
Phoenix Built up Roofing, 4 ply, on 2" Boards,	C	0.30	15.0	18.0	21.0	24.0	25.5	27.0
with two layers.		1	200	44.4		10.0	200 0	20.0
" of Double Neptune Felt.	6	0 21	10.5	12 6	14.7	16.8	17 9	18.9
was war and the state of the		Same and	Variation	ing Engin	pers o J	abas-Man	ville Coms	10.00

Authority:-a, Buffalo Forge Company. b, American Society of Heating and Ventilating Engineers. c, Johns-Manville Company.

FAN SYSTEM OF HEATING, VENTILATING AND HUMIDIFYING

Properties of Dry Air

Barometric Pressure 29.921 Inches

Temperature Degrees Fahr.	Weight per Cu Ft. Pou	Per Cent, of Volume at 70° F.	B. T. U. Absorbed by one Cu. Ft. Dry Air per Degree F.	Cu. Ft. Dry Air Warmed One degree per B. T. U.	Temperature Degrees Fahr.	Weight per Cu. Ft. Pounds	Per Cent. of Volume at 70" F.	B. T. U. Absorbed by One Cu. Ft. Dry Air per Degree F.	Cu. Ft. Dry Air Warmed One Degree per B.T.U.
0	.08636	.8680	.02080	48.08	130	.06732	1.1133	.01631	61.32
.5	.08544	.8772	.02060	48.55	135	.06675	1.1230	.01618	61.81
10	.08453	.8867	.02039	49.05	140	.06620	1.1320	.01605	62.31
15	.08363	.8962	.02018	49.56	145	.06565	1.1417	.01592	62.82
20	.08276	.9057	.01998	50.05	150	.06510	1.1512	.01578	63.37
25	.08190	.9152	.01977	50.58	160	.06406	1.1700	.01554	64,35
30	.08107	.9246	.01957	51.10	170	.06304	1.1890	.01530	65.36
35	.08025	.9340	.01938	51.60	180	.06205	1.2080	.01506	66.40
40	.07945	.9434	.01919	52.11	190	.06110	1.2270	.01484	67.40
45	.07866	.9530	.01900	52.64	200	.06018	1.2455	.01462	68.41
50	.07788	.9624	.01881	53.17	220	.05840	1.2833	.01419	70.48
55	.07713	.9718	.01863	53.68	240	.05673	1.3212	.01380	72.46
60	.07640	.9811	.01846	54.18	260	.05516	1.3590	.01343	74.46
65	.07567	.9905	.01829	54.68	280	.05367	1.3967	.01308	76.46
70	.07495	1.0000	.01812	55.19	300	.05225	1.4345	.01274	78.50
75	.07424	1.0095	.01795	55.72	350	.04903	1.5288	.01197	83.55
80	.07356	1.0190	.01779	56.21	400	.04618	1.6230	.01130	88.50
85	.07289	1.0283	.01763	56.72	450	.04364	1.7177	.01070	93.46
-90	.07222	1.0380	.01747	57.25	500	.04138	1.8113	.01018	98.24
95	.07157	1.0472	.01732	57.74	550	.03932	1.9060	.00967	103.42
100	.07093	1.0570	.01716	58.28	600	.03746	2.0010	.00923	108.35
105	.07030	1.0660	.01702	58.76	700	.03423	2.1900	.00847	118.07
110.	.06968	1.0756	.01687	59.28	800	.03151	2.3785	.00782	127.88
115	.06908	1.0850	.01673	59.78	900	.02920	2.5670	.00728	137.37
120	.06848	1.0945	.01659	60.28	1000	.02720	2.7560	,00680	147.07
125	.06790	1.1040	.01645	60.79	1200	.02392	3.1335	.00603	165.83

Properties of Saturated Steam

Temperature °F,	Approximate Gauge Pressure	Density	Specific Volume Cubic Feet Per Pound	Heat of Liquid B. T. U.	Latent Heat B. T. U.	Total Heat B. T. U.
212	0	0.03732	26.79	180.0	970.4	1150.4
215	1	0.03945	25.35	183.0	968.4	1151.5
210	2	0.04243	23.57	187.1	965.9	1152.9
222	3	0.04477	22.34	190.1	963.9	1154.0
224	4	0.04640	21.55	192.1	962.6	1154.8
227	ă	0.04892	20:44	195.2	960.7	1155.8
230	6	0.0516	19.39	198.2	958.7	1156.9
232	7	0.0534	18.72	200.2	957.4	1157.6
235	8	0.0562	17.78	203.2	955.4	1158.7
237	9	0.0582	17.17	205.3	954-1	1159.4
230	10	0.0602	16.60	207.3	952.8	1160.0
250	15	0.0724	13.82	218.5	945.3	1163.8
250	20	0.0837	11.95	227.6	939.1	1166.7
267	25	0.0949	10.54	235.8	933.5	1169.3
274	30	0.1057	9.46	242.9	928.6	1171.5
281	35	0.1174	8.51	250.1	923.5	1173.6
287	40	0.1283	7.79	256.2	919.1	1175.3
298	50	0.1504	6.65	267.5	911.0	1178.5
307	60	0.1707	5.86	276.S	904.2	1181.0
316	70	0.1930	5.19	286.1	897.3	1183.3
324	80	0.2148	4.66	294.3	891.0	1185.4
331	90	0.2353	4.250	301.6	885.5	1187.1
338	100	0.2575	3.884	308.9	879.9	1188.8
344	110	0.2778	3.600	315.1	875-1	1190.2
350	120	0.2992	3.342	321.4	870.1	1191.5
356	134	0.3221	3.105	327.7	865.2	1192.9
361	140	0.3423	2.022	332.9	861.0	1193.9

Lomisused from Marks and Davis Steam Tables.

Weight per Lineal Foot for Galvanized Iron Pipes

U. S. Standard Gauge

Diameter of	Square Feet per			NUMBER O	F GAUGE		
Pipe	Running Foot	26	24	22	20	18	16
Pipe 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 57 58 59	1.13 1.39 1.65 1.91 2.18 2.44 2.70 -2.96 3.22 3.48 3.74 4.01 4.27 4.53 4.87 5.14 5.40 5.59 5.92 6.18 6.45 6.71 6.97 7.33 7.50 7.75 8.10 8.36 8.62 8.88 9.15 9.41 9.67 9.93 10.10 10.46 10.72 10.98 11.24 11.59 11.85 12.11 12.37 12.63 12.90 13.14 11.59 13.41 13.46 13.94 14.81 15.07 15.33 15.58 15.83	1.13 1.39 1.65 1.91 2.18 2.41 2.70 2.96 3.22 3.48 3.74 4.27 4.53 4.87 5.14 5.59 5.92 6.45 6.71 6.97 7.33 7.50 8.36 8.02 8.88 9.15 10.46 10.72 10.98 11.24 11.59 11.59 11	1.47 1.80 2.14 2.48 2.83 3.17 3.51 3.85 4.18 4.52 4.86 5.21 5.55 5.85 6.33 6.68 7.02 7.26 7.70 8.04 8.38 8.72 9.05 9.40 9.75 10.07 10.54 10.87 11.20 11.56 11.90 12.23 12.57 12.91 13.25 13.60 13.95 14.27 14.60 15.40 15.75 16.10 16.40 15.75 16.10 16.40 15.75 18.12 18.46 18.80 19.28 19.60 19.95 20.30 20.55	1.69 2.08 2.47 2.86 3.27 3.66 4.05 4.44 4.83 5.22 5.61 6.01 6.40 6.79 7.30 7.71 8.39 8.39 8.38 9.27 9.67 10.06 10.45 11.27 11.63 12.17 12.54 12.93 13.34 13.73 14.10 14.50 15.29 15.60 16.47 16.85 17.78 18.17 18.55 19.20 19.67 19.60 19.	1.97 2.43 2.89 3.34 3.81 4.27 4.72 5.18 5.63 6.09 6.54 7.01 7.47 7.92 8.51 9.00 9.45 9.78 10.35 10.81 11.30 11.74 12.20 12.67 13.13 13.58 14.20 14.63 15.10 15.56 16.48 16.91 17.40 17.81 18.31 18.76 19.01 20.74 21.20 21.62 22.60 23.00 24.40 24.90 25.30 24.40 24.90 25.30 26.80 27.70	2 56 3 19 3 79 4 39 5 01 5 61 6 21 6 80 7 40 8 60 9 22 9 82 10 42 11 18 11 80 12 42 12 85 13 60 14 40 14 84 15 41 16 00 16 62 17 26 17 81 18 62 19 20 19 84 20 42 21 08 21 65 22 22 22 84 23 40 24 68 25 25 26 60 27 25 27 90 28 43 29 00 29 70 30 25 30 90 31 40 32 66 33 20 34 10 34 65 35 21 35 84 36 40	3
60 62 64 66 68 70 72 74 76 78 80	16 12 16 65 17 16 17 66 18 21 18 75 19 25 19 79 Heating and Ven Ducts to 19" Dia " 20" to 29"		Ducts to	24 .18 24 .97 25 .74 26 .49 27 .31 28 .12 29 .92 29 .68 - Mill Work 8" Dia. 24 Ga. 4" " 22 "	28 20 29 10 30 00 30 90 31 83 32 80 33 70 34 65 35 62 35 75 36 65	37.00 38.20 39.50 40.60 41.80 43.10 44.30 45.50 45.77 46.96 48.16	45.70 47.20 48.50 50.00 51.50 53.00 54.50 54.78 55.18 56.63
82 84 86	" 30" to 39" " " 40" to 49" " " 50" to 84" " Above 84" "	22 " 20 " 18 " 16 "	" 0" to 1 " 15" to 2 " 21" to 3	0" " 20 "	37,57 38,50 39,39	49.40 50.60 51.77	59 40 60 77

Weights in Lbs. (Avor.) per Running F1.

Weight of Black Steel Pipes in Pounds (Avor.) per Running Foot

Dia.	Material Sq. Ft per	NUMBER OF GAUGE, U. S. S.											
ipe	Running Ft.	No. 24	No. 22	No. 20	No. 18	No. 16	No. 14	No. 1					
4	1.13	1.30	1.58	1.86	2.43	2.99	3.62	5.0					
5	1.39	1.60	1.95	2.29	2.99	3.68	4.45	6.2					
6	1.65	1.90	2.31	2.72	3.54	4.36	5.28	7.4					
7	1.91	2.20	2.67	3.15	4.10	5.05	6.11	8.5					
8	2.18	2.50	3.05	3.60	4.68	5.77	6.97	9.8					
9	2.44	2.80	3.42	4.03	5.25	6.47	7.80	10.9					
0	2.70	3.10	3.78	4.45	5.80	7.15	8.64	12.1					
1	2.96	3.40	4.15	4.88	6.36	7.85	9.47	13.3					
2	3.22	3.70	4.50	5.31	6.91	8.52	10.30	14.4					
3	3.48	4.00	4.88	5.74	7.48	9.21	11.15	15.60					
4	3.74	4.30	5.23	6.17	8.03	9.90	11.97	16.8					
5	4.01	4.61	5.61	6.61	8.61	10.61	12.83	18.03					
6	4.27	4.91	5.97	7.04	9.16	11.29	13.65	19.17					
7	4.53	5.21	6.35	7.48	9.74	12.00	14.49	20.40					
8	4.87	5.60	6.81	8.03	10.45	12.89	15.55	21.90					
9	5.14	5.91	7.20	8.48	11.04	13.60	16.42	23.10					
0	5.40	6.21	7.56	8.90	11.60	14.30	17.26	24.30					
1	5.59	6.43	7.83	9.22	12.00	14.80	17.87	25.10					
2	5.92	6.80	8.28	9.75	12.70	15.65	18.90	26.60					
3	6.18	7 11	8.66	10.20	13.29	16.38	19.80	27.80					
1	6.45	7.41	9.04	10.63	13.85	17.08	20.65	29.00					
5	6.71	7.71	9.40	11.06	14.40	17.75	21.50	30 20					
7	6.97	8.01	9.75	11.48	14.96	18.41	22.30	31.30					
8	7.23	8.31	10.11	11.93	15.51	19.12	23.10	32.50					
9	7.50	8.62	10.50	12.38	16.10	19.87	24.00	33.75					
0.	7.75	8.91	10.85	12.78	16.67	20.50	24.80	34.90					
Ĺ	8:10 8:36	9.32	11 34	13.37	17.40	21.45	25.90	36.40					
2	8.62	9.61	11.70	13_80	18.00	22.15	26.75	37.60					
3	8.88	9.92	12.07	14.25	18.52	22.83	27.60	38.80					
1	9.15	10.21	12.45	14.66	19.10	23.50	28.40	40.00					
5	9.41	10 53	12.81	15.10	19.68	24.43	29.30	41.20					
6	9.67	10.82	13.18	15.51	20.20	24.90	30.10	42.30					
7	9.93	11.11	13.54	15.95	20.78	25 60	30.90	43.50					
8	10.19	11.71	13.90	16.40	21.38	26.30	31.80	44.70					
9	10.46	12.03	14.28	16.80	21.90	27 00	32.60	45.80					
)	10.72	12.33	14.65 15.00	17.27	22.50	27.74	33.50	47.10					
1	10.98	12.62	15.38	17.70 18.11	23.01	28.40	34.30	48.25					
2	11.24	12.93	15 75	18:55	23.60	29.10	35.10	49.40					
3:	11.59	13.32	16 21	19.10	24.20	29 80	36.00	50.60					
1	11.85	13:64	16.60	19.55	24.90	30.70	37 05	52.10					
5	12.11	13.93	16 97	20.00	25.50	31.40	37 90	53.30					
5	12.37	14.23	17.31	20.40	26 00 26 60	32.10	38.75	54.50					
7	12 63	14.52	17.70	20.85	27.20	32 80 33 45	39.60	55.70					
5.	12 90	14.83	18.07	21.30	27.75	34.20	40.40	56.80					
)	13.15	15.11	18.40	21.70	28.25	34.80	41.30	58.00					
).	13.41	15.42	18.80	22 15	28.80	35.55	42.10	59.20					
1	13 66	15.71	19.13	22.55	29_40	36 20	42.90 43.75	60.40					
2	13.94	16.01	19.50	23.00	30.00	36.90	44 60	61.50					
1	14.46	16.62	20 25	23.85	31_10	38.30	46.30	62.65 65.00					
5	15.07	17.32	21.10	24.85	32.40	39.90	48.20	67.80					
9	15 58	17 91	21.80	25.70	33.50	41.30	49.80	70.20					
2	16.12	18.53	22.60	26.65	34.70	42.75	51.60						
1	16.65	19.16	23.30	27.50	35.80	44.10	53.30	72.60 75.00					
Ġ.	17 16 17 66	19 72	24.00	28.30	36.90	45.50	54.90	77.20					
8	18.21	20.30	24.70	29 15	38.00	46.80	56.50	79.40					
0	18.75	20.95	25.50	30.00	39.15	48 25	58.30	81.80					
1	19 25	21.55	26:25	30.90	40.30	49.70	60.00	84 30					
1	19.79	22 15	27.00	31.80	41.40	51.00	61 60	86.60					
	400 4 14	22,75	27.70	32.65	42.60	52.40	63.30	89 00					

Carrying Capacity of Pipes

This table specifies the diameters of pipes required for the passage of stated volumes of air at given velocities. The column, "Cubic feet of air per minute," indicates various quantities of air to be moved per minute. The figures at top of table give the velocities in feet per minute at which the air is to be moved, and the figures in the body of the table state the required diameters of pipes for the passage of the volumes mentioned at the given velocities.

DIAMETER OF PIPE IN INCHES

ubic Feet		VELOCITIES												VELOCITIES								
of Air er Minute	200	009	800	1000	1200	1500	1800	2000	2500	3000	3500	4000	of Air per Minute	1000	1200	1500	1800	2000	2500	3000	3500	NAME .
200 400 600 1000 1200 1400 1800 2000 2400 2600 2800 3400 3400 3600 3800 4000 4200 4400 4600 4800 5000 5400 5600 5800 6000 6200 6400 6600 7000 7400 7600 7800 8200 8200 8200 8400 8600 8000 9000 9400 9400 9400 9400 9400 94	9 13 15 18 20 21 23 25 26 28 29 30 31 33 34 36 37 38 39 40 41 42 42 43 44	8 11 14 16 18 20 21 23 24 25 27 28 29 30 31 32 33 34 35 35 36 37 38 39 40 40	7 10 12 14 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 32 33 34 34 35 36 37 38 39 40 41 42 43 43	7 9 11 13 14 15 16 18 19 20 21 1 22 23 4 25 26 27 28 29 30 31 31 22 22 25 26 27 28 29 30 31 31 32 33 33 34 35 36 36 37 37 38 38 39 40 41 1 41 42 42 43 43 45 47 49 53 55 56 66 67 77 27 37 5	65 66 67	$\frac{689}{1021314} \frac{151}{151} \frac{1617}{181} \frac{1819}{192} \frac{191}{192} \frac{191}{192$	$\frac{6}{78} \frac{9}{101} \frac{11}{123} \frac$	$\frac{6}{78} \frac{9}{101} \frac{12}{13} \frac{13}{14} \frac{15}{15} \frac{16}{16} \frac{16}{17} \frac{18}{18} \frac{19}{19} \frac{20}{201} \frac{21}{22} \frac{22}{23} \frac{23}{24} \frac{24}{24} \frac{25}{22} \frac{25}{26} \frac{26}{27} \frac{27}{27} \frac{28}{28} \frac{29}{29} \frac{29}{30} \frac{30}{30} \frac{31}{31} \frac{35}{43} \frac{36}{43} \frac{38}{44} \frac{39}{44} \frac{44}{44} 44$	$\frac{6}{6} \frac{7}{8} \frac{9}{10} \frac{11}{11} \frac{12}{13} \frac{13}{14} \frac{15}{15} \frac{15}{15} \frac{16}{16} \frac{17}{18} \frac{19}{19} \frac{19}{20} \frac{21}{21} \frac{21}{22} \frac{22}{23} \frac{23}{24} \frac{24}{24} \frac{25}{25} \frac{26}{25} \frac{6}{27} \frac{6}{27} \frac{27}{28} \frac{29}{30} \frac{31}{33} \frac{34}{45} \frac{36}{45} \frac{37}{47} \frac{39}{47} \frac{41}{45} \frac$	$\frac{6}{6} \frac{6}{7} \frac{8}{8} \frac{9}{10} \frac{11}{11} \frac{12}{13} \frac{13}{14} \frac{14}{15} \frac{16}{16} \frac{16}{17} \frac{18}{18} \frac{18}{19} \frac{19}{20} \frac{20}{21} \frac{11}{21} \frac{12}{22} \frac{23}{23} \frac{23}{24} \frac{24}{24} \frac{24}{25} \frac{25}{26} \frac{29}{23} \frac{23}{33} \frac{24}{34} \frac{24}{35} \frac{25}{33} \frac{23}{33} \frac{24}{34} \frac{24}{35} \frac{25}{33} \frac{23}{33} \frac{24}{34} \frac{24}{35} \frac{25}{33} \frac{23}{33} \frac{24}{34} \frac{24}{35} \frac{25}{33} \frac$	$\frac{6}{6}, \frac{6}{7}, \frac{8}{9}, \frac{9}{10}, \frac{10}{11}, \frac{11}{12}, \frac{13}{13}, \frac{14}{14}, \frac{15}{15}, \frac{16}{16}, \frac{16}{17}, \frac{18}{18}, \frac{18}{19}, \frac{19}{19}, \frac{19}$	$\frac{6}{6} \frac{6}{6} \frac{7}{7} \frac{8}{9} \frac{9}{10} \frac{10}{11} \frac{11}{11} \frac{12}{12} \frac{13}{13} \frac{14}{14} \frac{14}{15} \frac{15}{16} \frac{16}{16} \frac{17}{17} \frac{17}{17} \frac{18}{18} \frac{18}{19} \frac{19}{19} \frac{19}{20} \frac{20}{20} \frac{21}{21} \frac{12}{22} \frac{23}{24} \frac{25}{26} \frac{27}{28} \frac{29}{29} \frac{31}{31} \frac{13}{36} \frac{36}{37} \frac{37}{38} \frac{37}{38} \frac{13}{38} \frac{14}{38} 1$	31000 32000 33000 35000 36000 37000 38000 40000 41000 42000 43000 44000 45000 46000 47000 50000 51000 52000 53000 54000 55000 56000 57000 58000 60000 61000 62000 63000 64000 65000 66000 67000 70000 71000 72000 73000 74000 75000	76 77 78 79 81 82 83 84 85 86 87 88 90 91 93 95 96 97 98 90	69 70 72 73 74 75 76 77 78 79 79 82 83 84 85 86 87 88 90 91 92 93 94 95 95 96 97 98	52 53 54 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	57 57 58 59 60 61 62 63 64 65 66 67 68 67 70 71 72 73 74 75 77 77 78 79 80	$\begin{array}{c} 54\\ 55\\ 56\\ 56\\ 57\\ 89\\ 60\\ 612\\ 63\\ 66\\ 66\\ 66\\ 66\\ 66\\ 66\\ 66\\ 66\\ 66$	$\frac{48}{49} \frac{48}{50} \frac{51}{52} \frac{23}{53} \frac{45}{55} \frac{56}{55} \frac{57}{58} \frac{59}{60} \frac{60}{61} \frac{62}{65} \frac{66}{66} \frac{67}{66} \frac{68}{66} \frac{69}{70} \frac{71}{71} \frac{123}{75} \frac{34}{75} \frac{45}{75} \frac{56}{77} \frac{77}{78} \frac{89}{79} \frac{99}{80} \frac{81}{81} \frac{22}{81} \frac{33}{81} \frac{44}{81} \frac{85}{81} \frac{56}{81} \frac{66}{81} \frac{12}{81} 1$	$\frac{44}{455} \frac{46}{457} \frac{48}{459} \frac{9}{550} \frac{5}{555} \frac{5}{555} \frac{5}{555} \frac{6}{55} $	$\frac{41}{42} \frac{43}{43} \frac{44}{44} \frac{45}{46} \frac{46}{67} \frac{71}{62} 71$	\$52554444444444444444444444444444444444

INDEX

Subject	Page
Air chart, synthetic	
Air distribution systems	. 31
Air flow, measurement of	61
Air, properties of dry	110
Air supply systems	30
Air washers	16
Air washer characteristics, Type A, 1A to 23C.	35
1D to 23E	
1F to 23G	
Type B, 1A to 23C	
1D to 23E	
1F to 23G	
Type C, 1A to 23C	
1D to 23E	
1F to 23G	
American	
Apparatus	41
N. A. C.	
Baby conoidal fans	
Baby conoidal fan capacities	- 76
Bearings, fan, spherical type	46
Curves, Condensation, rate of	
Niagara conoidal (an (Type N) characteristi	71
Planoidal fan (Type L) characterístics .	05 82
Proportioning piping	81
Proportioning piping	64
29.92° Barometer, low temperature	10.1
29.92" Barometer, high temperature	103
Synthetic air	1015
Turbo conoidal (an (Type T) characteristic	000
Carrier air washer and humidifier	es 83
Capacity of pipes	50
Churches	00
Coal and gas heater	23
Undersation in heater coils O lbs. steam	97
5 lbs. steam	
20 lbs. steam	00
40 lbs. steam	100
60 lbs. steam	101
80 lbs. steum	10/2
100 lbs. steam -	100
Vento.	103
Cone Ions.	- 43
Department stores.	25
Determination of friction	- 65
LEASTINGATION of guarantees	73
Disc fans, (Type D)	450
(Type D) capacities of	77
Dyn barren	100
Dye houses	35

	Page
Engines, Buffalo steam	. 55
Buffalo steam, horizontal center crank,	
class A	.105
Buffalo steam, vertical class I	.105
Buffalo steam, vertical class A	.105
Exhaust steam heating	. 28
Func	***
Fans,	42
disc (Type D)	. 43
disc (Type D)	. 49
(Trans CM)	. 77
(Type CM)	. 49
Niegara popoidal (Town N)	- 57
Niagara conoidal (Type N)	. 44
capacities	. 79
characteristics.	82
combinations with engine	-
Dismoids (Trans T)	107
Planoidal (Type L)	43
capacities	
characteristics	81
combinations with engines and	1
heaters	100
Turbo conoidal (Type T)	14
capacities	80
characteristics	
combinations with engines and	
Food name and	108
Feed pumps and receivers	51
Friction, determination of	05
Friction of beaters, Buffalo pipe coil	. 96
Vento east from.	104
Friction of piping.	61
Gas and coal heater	56
Guarantees, determination of	73
Heat generated by human body	30
Heat losses 10,	10.
Heat transmission 72,	20
Heat transmission factors	100
Heaters, Buffalo standard	1(0)
final temperatures and condensations 0 lbs.	02
5 lbs	
20 lbs	
60 lbs	
100 lbs	
friction through 70,	Old
size and dimensions	OW
	1000

INDEX-Continued

Subject	Page
Heaters, condensation in coils	73
connections	
gas and coal	
indirect	to be and a
maximum velocity advisable through	
performance	min .
size	ALC: NO.
Vento cast iron	200 000
final temperatures	
friction	204
Heating and ventilating methods	
problem	1000
Heating with exhaust steam	
requirements of buildings	
surface required	69
Industrial application	33
Industrial plants	
proportioning of pipes	
	10000
Infiltration	
Libraries.	19
Address of the control of the contro	
	510
Machine shops	
Measurement of air flow	
Mechanical vs. natural ventilation	
Methods of heating and ventilating	
Motor driven fans	57
	-
Natural vs. mechanical ventilation	
Niagara conoidal fans (Type N)	
capacities	no.
characteristics	
combinations with en	0.00
and heaters	107
Paper mills	. 37
Pipes, capacities of	113
proportioning in industrial buildings	63
proportioning in public buildings	
A LOUIS AND THE CONTRACT OF TH	
weight of black steel	
Planoidal fan (Type L)	
capacities	100
eombinations with es	
	Table 1
and heaters	
Pressure, relation of velocity to	75
Problem, specimen heating and ventilating	
Properties of dry air	
Properties of saturated steam	

Subject	Page
Public buildings	
Pumps and receivers	
Psychrometric chart, method of applicatio	
30" Barometer	
29.92" Barometer low temperatur	
high temperatu	
Railroad round houses	39
Rate of condensation	71
Relation of velocity to pressure	59
Room temperatures	
State and a	in.
Schools	
Selection of a fan	
Steam engines, Buffalo	
and heaters	
combinations with Niagara fans and heaters	
combinations with Turbo	
fans and heaters	
Horizontal, class A	
Vertical, class A	
Vertical, class I	
Systems of air supply	
The second second by the bootest O Heat	steers 07
Temperatures, final, Buffalo heaters 0 lbs.	steam . 98
100.20	steam . 99
	steam. 100
10.57120	steam .101
41.000	steam .102
	steam . 103
Vento east iron heaters	
Theaters	
Transmission factors	109
Turbo conoidal (Type T) fans	
capacities	
characteristic	cs 83
combinations	with
heaters and	dengines 108
Velocity, maximum advisable through hea	ters 70
relation to pressure	Sec. Co.
variations in correctly propor	rtioned
system	
Ventilation	
	440
Weights of pipe, black steel.	
galvanized	

