Maulana Azad National Institute of Technology Bhopal-462003 End-Term Examination (Session: March-June 2021)

Course: B.Tech. Semester-II Section: All Subject: Mathematics-II Subject Code: MTH-121 Max. Marks: 50

Time: 3 Hours

Note: All questions are compulsory.

S.No	Question	Marks
1 (a)	Find the series solution of the following differential equation about x=0	5
	$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + x^2 y = 0$	
1(b)	Solve the following differential equation using Laplace transform	5
	$t\frac{d^2y}{dt^2} + (1-2t)\frac{dy}{dt} - 2y = 0, \text{if } y(0) = 1 \& \frac{dy(0)}{dt} = 2$	
2(a)	Solve the equation $\frac{dy}{dt} + 2y + \int_{0}^{t} y(t-u) du = \sin t$, $y(0) = 1$ by using the Laplace transform.	5
2(b)	If $v(x, y) = y + 3x^2y - y^3$, then show that $v(x, y)$ is a harmonic function. Also, find the	5
	corresponding conjugate harmonic function $u(x,y)$ and construct the analytic function $f(z) = u + iv$	
3(a)	Evaluate $\oint_C \frac{e^{z^2} dz}{z^2 (z-i)^2}$,	4
	where C: the square with vertices at $\pm 3\pm 3i$	
3(b)	Use Charpit's method to find the complete integral of $p = (qy + z)^2$	4
4(a)	Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 2\frac{\partial^2 z}{\partial y^2} + 2\frac{\partial z}{\partial x} + 2\frac{\partial z}{\partial y} = e^{2x+3y} + \sin(2x+y)$	4
4(b)	Solve the heat equation $u_t = u_{xx}$ in the range $0 \le x \le 2\pi$, subject to the boundary conditions	5
	$u(x,0) = \sin^3 x \text{ for } 0 \le x \le 2\pi \text{ and } u(0,t) = u(2\pi,t) = 0 \text{ for } t \ge 0$	
5	$\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}$	5
	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$. Also, show that eigenvalues of	
	A^3 are cube of those of A.	
6(a)	Find the Fourier transform of e^{-at^2} , where a >0.	4
6(b)	Find the Fourier cosine series of the function $f(x) = \begin{cases} kx, & 0 \le x \le 1 \\ k(2-x), & 1 \le x \le 2 \end{cases}$	4