STA 447/2006S, Spring 2002: Test #2 SOLUTIONS

1. (10 points) Let s(p,c,a) be the gambler's ruin probability, i.e. the probability that simple random walk with parameter p, started at $X_0 = a$, will hit c before it hits 0. Compute (with explanation) the limit $\lim_{n\to\infty} s(p,2n,n)$, for 0 .

Solution. We recall from class that s(1/2,c,a) = a/c, and $s(p,c,a) = \frac{((1-p)/p)^a - 1}{((1-p)/p)^c - 1}$ for $p \neq 1/2$. Hence, $\lim_{n \to \infty} s(1/2, 2n, n) = \lim_{n \to \infty} n/2n = \lim_{n \to \infty} 1/2 = 1/2$. For $p \neq 1/2$, $s(p, 2n, n) = \frac{((1-p)/p)^n - 1}{((1-p)/p)^2 - 1} = 1/[((1-p)/p)^n + 1]$. If p > 1/2 then $\lim_{n \to \infty} ((1-p)/p)^n = 0$, so $\lim_{n \to \infty} s(p, 2n, n) = 1/(0+1) = 1$. If p < 1/2 then $\lim_{n \to \infty} ((1-p)/p)^n = \infty$, so $\lim_{n \to \infty} s(p, 2n, n) = 1/(\infty+1) = 0$.

2. (10 points) Let $\{\hat{X}_n\}_{n=0}^{\infty}$ be a discrete-time Markov chain on the state space $S = \{1, 2, 3\}$, with $\hat{X}_0 = 1$, and with transition probabilities given by

$$(p_{ij}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1/3 & 1/6 & 1/2 \end{pmatrix}.$$

Let $\{X(t)\}_{t\geq 0}$ be the Exponential(λ) holding time modification of $\{\hat{X}_n\}$. Let $T_3=\min\{t\geq 0: X(t)=3\}$. Compute (with explanation) the expected value of T_3 .

Solution. From the matrix (p_{ij}) , we see that with probability 1 we will have $\hat{X}_1 = 2$ and $\hat{X}_2 = 3$. Hence, T_3 will be equal to the sum of two holding times of $\{X(t)\}$. But the holding times of $\{X(t)\}$ have distribution Exponential(λ), and hence mean $1/\lambda$. So, $E[T_3] = \frac{1}{\lambda} + \frac{1}{\lambda} = 2/\lambda$.

3. (10 points) Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with parameter $\lambda=3$. Let X=N(8)-N(5), and let Y=N(7)-N(2). Compute (with explanation) the value of E[XY].

Solution. Let A = N(8) - N(7), B = N(7) - N(5), and C = N(5) - N(2). Then A, B, and C are independent (since they are based on non-overlapping intervals). Also X = A + B and Y = B + C. Hence, $E[XY] = E[(A + B)(B + C)] = E[AB + AC + B^2 + BC] = E[A]E[B] + E[A]E[C] + E[B^2] + E[B]E[C]$. Now, $A \sim Poisson(3)$, $B \sim Poisson(6)$, and $C \sim Poisson(9)$. Furthermore, we recall* that if $Z \sim Poisson(\mu)$, then $E[Z] = \mu$ and $E[Z^2] = \mu + \mu^2$. Hence, E[XY] = (3)(6) + (3)(9) + (6 + 36) + (6)(9) = 141.

^{*} $\overline{\text{Or compute: } E[Z] = \sum_{j=0}^{\infty} j e^{-\mu} \mu^j / j!} = \sum_{j=1}^{\infty} e^{-\mu} \mu \, \mu^{j-1} / (j-1)! = \mu; \text{ and } E[Z^2] = E[Z] + E[Z(Z-1)] = \mu + \sum_{j=0}^{\infty} j (j-1) e^{-\mu} \mu^j / j! = \mu + \sum_{j=2}^{\infty} e^{-\mu} \mu^2 \mu^{j-2} / (j-2)! = \mu + \mu^2.$

4. (10 points) Let $\{X(t)\}_{t\geq 0}$ be a continuous-time Markov process on the state space $S = \{1, 2, 3, 4, 5\}$. Suppose it is known that for $0 \leq t \leq 0.03$,

$$P(X(t) = 2 | X(0) = 1) = 5t + 4t^2 + e^{3t} - 1.$$

Let $G = (g_{ij})$ be the generator for this process. Compute g_{12} .

Solution. By definition,

$$g_{12} = \lim_{t \searrow 0} \frac{p_{12}(t)}{t} = \lim_{t \searrow 0} \frac{5t + 4t^2 + e^{3t} - 1}{t} = \frac{d}{dt} (5t + 4t^2 + e^{3t} - 1) \Big|_{t=0}$$
$$= (5 + 8t + 3e^{3t} - 0) \Big|_{t=0} = 5 + 0 + 3 - 0 = 8.$$

5. (10 points) Let $\{Y_n\}_{n=0}^{\infty}$ be i.i.d. \sim **Uniform**[0, 10]. Let $T_0 = 0$, and let $T_n = Y_1 + Y_2 + \ldots + Y_n$ for $n \geq 1$. Let $p = P[\exists n \geq 1 : 1234.5 < T_n < 1234.6]$. Find (with explanation) a good approximation to p.

Solution. Let $Z_t = N(t+0.1) - N(t)$ be the number of events between times t and t+0.1. Then $p = P[Z_{1234.5} \geq 1]$. Now, Blackwell's Renewal Theorem says that $\lim_{t\to\infty} E[Z_t] = 0.1/\mu$, so $E[Z_{1234.5}] \approx 0.1/\mu$. Since $Y_n \sim \mathbf{Uniform}[0,10]$, we have $\mu = E[Y_n] = 5$, so $E[Z_{1234.5}] \approx 0.1/5 = 0.02$. Finally, since $P[Z_{1234.5} \geq 2]$ is extremely small, we see that $Z_{1234.5}$ is approximately an indicator function, so that $p = P[Z_{1234.5} \geq 1] \approx E[Z_{1234.5}] \approx 0.02$.