Indicator Variable

변수의 종류

- 양적변수 (Quantitative Variable)
 - ▶ 어떤 구간에 속하는 모든 값을 관측값으로 취할 수 있는 변수
 - ▶ 온도, 압력, 습도, 무게, 거리 등
 - ▶ 양적으로 비교 가능
- 질적 (Qualitative) 변수 또는 범주형 (Categorical) 변수
 - ▷ 양적으로 비교 불가능
 - ▷ 성별(남여), 신용상태(좋음, 나쁨), 보험의 종류(생명,손해 보험)

Indicator Variable

- 가변수(Dummy variable) 또는 이진형 변수 (Binary Variable)
 - ▷ 질적변수가 두 개의 범주로 이루어진 경우 "0" 또는 "1"로 설정
 - ▶ 설명변수 또는 반응변수로 사용 가능

■ 데이터

번호	y	x_1	x_2	번호	y	x_1	x_2
1	17	151	남자	11	28	164	여자
2	26	92	남자	12	15	272	여자
3	21	175	남자	13	11	295	여자
4	30	31	남자	14	38	68	여자
5	22	104	남자	15	31	85	여자
6	1	277	남자	16	21	224	여자
7	12	210	남자	17	20	166	여자
8	19	120	남자	18	13	305	여자
9	4	290	남자	19	30	124	여자
10	16	238	남자	20	14	246	여자

Model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2), \ i = 1, 2, \dots, n$$

- y: 새로운 프로그램을 익히는 데 소요된 시간
- x1: 교육 시작 전 실시한 적성검사 시험의 점수 (500점 만점)
- x₂: 성별

$$x_{i2} = \begin{cases} 0, & \mathsf{Male} \\ 1, & \mathsf{Female} \end{cases}$$

• 남자인 경우 : $y = \beta_0 + \beta_1 x_1 + \epsilon$

$$E(y|M) = \beta_0 + \beta_1 x_1$$

• 여자인 경우 : $y = \beta_0 + \beta_1 x_1 + \beta_2 + \epsilon$

$$E(y|F) = \beta_0 + \beta_1 x_1 + \beta_2 = (\beta_0 + \beta_2) + \beta_1 x_1$$

• 기울기는 성별로 차이가 없지만, 평균시간은 β_2 만큼 차이가 남

EXample

■ 회귀계수의 추정 (최소제곱추정량)

$$\mathbf{y} = \begin{pmatrix} 17 \\ 26 \\ \vdots \\ 14 \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & 151 & 0 \\ 1 & 92 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 246 & 1 \end{pmatrix} \Rightarrow \hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} = \begin{pmatrix} 33.8349 \\ -0.1009 \\ 7.9340 \end{pmatrix}$$

• 회귀직선

$$\hat{y} = 33.8349 - 0.1009x_1 + 7.9340x_2$$

EXample

- 회귀계수의 추정 (최소제곱추정량)
 - 남자인 경우

$$\widehat{E(y|M)} = \hat{y} = 33.8349 - 0.1009x_1$$

• 여자인 경우

$$\widehat{E(y|F)} = \hat{y} = 33.8349 - 0.1009x_1 + 7.9340$$

= 41.7689 - 0.1009x₁

■ 분산분석표

요인	제곱합	자유도(df)	평균제곱(MS)	F_0	$F_{0.05}(2,17)$
회귀	SSR = 1477.14	2	MSR = 738.57	75.75	3.59
잔차	SSE = 165.81	17	MSE = 9.75		
계	SST	19			

- 유의성검정
 - $H_0: \beta_2 = 0$
 - ▶ t-test
 - Extra sum of squared method (partial F-test

교호작용

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$

- 평균반응 : $E(y|x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$
- 남자인 경우 : $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$

$$E(y|M) = \beta_0 + \beta_1 x_1$$

• 여자인 경우 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 + \beta_3 x_{i1} + \epsilon_i$

$$E(y|F) = \beta_0 + \beta_1 x_1 + \beta_2 + \beta_3 x_1 = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) x_1$$

교호작용 - EXample

■ 회귀계수의 추정 (최소제곱추정량)

$$\boldsymbol{X} = \begin{pmatrix} 1 & 151 & 0 & 0 \\ 1 & 92 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 246 & 1 & 246 \end{pmatrix} \Rightarrow \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} = \begin{pmatrix} 33.6561 \\ -0.0999 \\ 8.3135 \\ -0.0021 \end{pmatrix}$$

• 회귀직선

$$\hat{y} = 33.6561 - 0.0999x_1 + 8.3135x_2 - 0.0021x_1x_2$$

교호작용 - Example

교호작용 - EXample

- \blacksquare 가설검정 : $H_0: \beta_3 = 0$
 - 검정통계량 : $t=\frac{\hat{eta}_3}{\widehat{s.e.}(\hat{eta}_3)}\sim_{H_0}t(n-p-1)=t(16)$
 - 검정통계량의 관측값 : $t_0 = \frac{-0.0021}{0.017766} = -0.118$
 - 기각역 : $|t_0| \ge t_{\alpha/2}(n-p-1) = t_{0.025}(16) = 2.120$
 - 결론 ; 기각역에 속하지 않으므로 귀무가설을 기각할 수 없다. 즉
 교호작용의 효과가 거의 없다고 할 수 있다.

3개 이상의 범주를 갖는 질적변수

• 예) 시험성적 (x_1) , 학력 : 고졸 (E_1) , 대졸 (E_2) , 대학원이상 (E_3)

$$x_2 = \begin{cases} 1, & E_1 \\ 0, & o.w. \end{cases}$$
, $x_3 = \begin{cases} 1, & E_2 \\ 0, & o.w. \end{cases}$, $x_4 = \begin{cases} 1, & E_3 \\ 0, & o.w. \end{cases}$

model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \epsilon_i$$

• $rank(X) < 5 \Rightarrow (\mathbf{X}^{\top} \mathbf{X})^{-1}$ 가 존재하지 않는다. $\Rightarrow x_4$ 제외

3개 이상의 범주를 갖는 질적변수

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i$$

• 평균반응

$$\begin{cases}
E_1 : E(y|E_1) = \beta_0 + \beta_1 x_1 + \beta_2 = (\beta_0 + \beta_2) + \beta_1 x_1 \\
E_2 : E(y|E_2) = \beta_0 + \beta_1 x_1 + \beta_3 = (\beta_0 + \beta_3) + \beta_1 x_1 \\
E_3 : E(y|E_3) = \beta_0 + \beta_1 x_1
\end{cases}$$

3개 이상의 범주를 갖는 질적변수

■ 교호작용포함

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i1} x_{i2} + \beta_5 x_{i1} x_{i3} + \epsilon_i$$

• 평균반응

$$\begin{cases}
E_1 : E(y|E_1) &= \beta_0 + \beta_1 x_1 + \beta_2 + \beta_4 x_1 \\
&= (\beta_0 + \beta_2) + (\beta_1 + \beta_4) x_1 \\
E_2 : E(y|E_2) &= \beta_0 + \beta_1 x_1 + \beta_3 + \beta_5 x_1 \\
&= (\beta_0 + \beta_3) + (\beta_1 + \beta_5) x_1 \\
E_3 : E(y|E_3) &= \beta_0 + \beta_1 x_1
\end{cases}$$

- 예) 단가(y), 주문량 (x) : 주문량이 기준값 (x_w) 보다 커지면 단가가 갑자기 작아짐
- model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 (x_{i1} - x_w) x_{i2} + \epsilon_i$$

$$x_{i1}$$
 : 주문량

$$x_{i2} = \begin{cases} 0, & x_{i1} < x_w \\ 1, & x_{i1} \ge x_w \end{cases}$$

- Example
 - 평균반응

$$E(y|x) = \beta_0 + \beta_1 x_1 + \beta_2 (x_1 - x_w) x_2$$

• 주문량별 평균반응

$$E(y|x_1 < x_w) = \beta_0 + \beta_1 x_1$$

$$E(y|x_1 \ge x_w) = \beta_0 + \beta_1 x_1 + \beta_2 (x_1 - x_w)$$

$$= (\beta_0 - x_w \beta_2) + (\beta_1 + \beta_2) x_1$$

 β_2 : 기울기의 차이

Table: 태블릿 주문량 데이터

기업체번호	주문량(x1)	단가(y)	
1	480	377	
2	720	249	
3	570	355	
4	300	475	
5	800	139	
6	400	452	
7	340	440	
8	650	257	

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 (x_{i1} - 500) x_{i2} + \epsilon_i, \ i = 1, \dots, 8$$
$$x_{i2} = \begin{cases} 0, & x_{i1} < 500\\ 1, & x_{i1} \ge 500 \end{cases}$$

$$\boldsymbol{y} = \begin{pmatrix} 377 \\ 249 \\ \vdots \\ 257 \end{pmatrix}, \ \boldsymbol{X} = \begin{pmatrix} 1 & 480 & 0 \\ 1 & 720 & 220 \\ \vdots & \vdots & \vdots \\ 1 & 650 & 150 \end{pmatrix} \Rightarrow \ \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y} = \begin{pmatrix} 589.5447 \\ -0.3954 \\ -0.3893 \end{pmatrix}$$

- Example
 - 추정된 회귀직선

$$\hat{y} = 589.5447 - 0.3954x_1 - 0.3893(x_1 - 500)x_2$$

- $> x_1 < 500 : 주문량 1증가 <math> \Rightarrow$ 단가 0.3954 감소
- $>x_1 \ge 500$: 주문량 1증가 \Rightarrow 단가 0.3954+0.3894=0.7848감소

- 구간이 3개인 경우
 - 예) $x_w = 500,700$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 (x_{i1} - 500) x_{i2} + \beta_3 (x_{i1} - 700) x_{i3} + \epsilon_i$$

▶ x₁ : 주문량

$$x_2 = \begin{cases} 0, & x_1 < 500 \\ 1, & x_1 \ge 500 \end{cases}, \quad x_3 = \begin{cases} 0, & x_1 < 700 \\ 1, & x_1 \ge 700 \end{cases}$$