LQ Optimal Control

- Stability and the Lyapunov equation
- Linear Quadratic Optimal Control
- Solution with completion of squares
- The algebraic Riccati equation
- Robustness properties
- Cheap control and asymptotic properties

Related Reading

[AM]: Chapters 4.4, 6.4 and [F]: Chapters 9.1-9.5

Lyapunov Functions for Linear Systems

We have analyzed asymptotic stability of the linear system

$$\dot{x} = Ax = f(x)$$

by a direct consideration of e^{At} . It sheds a new light on linear stability analysis and prepares for later if we use Lyapunov theory.

Since the system is linear, let us try to use a (homogenous) **quadratic** Lyapunov function $V:\mathbb{R}^n\to\mathbb{R}$. Such functions are described by

$$V(x) = x^T P x$$
 with a symmetric matrix $P \in \mathbb{R}^{n \times n}$.

For applying the Lyapunov theorem (Lecture 2) we need to consider

$$\partial_x V(x) f(x) = 2x^T P A x = x^T [A^T P + P A] x.$$

Remark. Although some formulas for derivatives might not be familiar to you, they can all be verified by the usual rules for scalar functions.

Recap: Some Facts from Linear Algebra

Let $Q \in \mathbb{R}^{n \times n}$ be symmetric $(Q = Q^T)$. Then

- ullet Q has n real eigenvalues, counting multiplicities.
- The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- The eigenspaces are mutually orthogonal.
- All Jordan blocks of Q have dimension 1.
- ullet Q is orthogonally diagonalizable, i.e. $S^{-1}QS=\Lambda$ with $S^{-1}=S^T$.

Recap: Some Facts from Linear Algebra

Let $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{m \times m}$ be symmetric $(Q = Q^T \text{ and } R = R^T)$.

- 1. Q is positive semi-definite iff either one of these conditions hold:
 - $x^T Q x > 0$ for all $x \in \mathbb{R}^n$
 - all its eigenvalues are non-negative
 - it can be written as C^TC (with C of full row rank)
- 2. R is positive definite iff either one of these conditions hold:
 - $u^T R u > 0$ for all $u \in \mathbb{R}^m$ that are not zero
 - all its eigenvalues are positive
 - it can be written as U^TU with a square and invertible U
- 3. The Euclidean norm ||x|| of a vector $x \in \mathbb{R}^n$ is defined by

$$||x||^2 = x^T x = x_1^2 + \dots + x_n^2$$

Clearly $||x|| \ge 0$ and equality holds iff x = 0.

- The matrix $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ is not symmetric.
- The matrix $\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ is positive definite. It can be written as

$$\begin{pmatrix} 1.34 & -0.45 \\ -0.45 & 0.89 \end{pmatrix}^2 \quad \text{or} \quad \begin{pmatrix} 1.41 & -0.71 \\ 0 & 0.71 \end{pmatrix}^T \begin{pmatrix} 1.41 & -0.71 \\ 0 & 0.71 \end{pmatrix}.$$

Hence ${\cal U}$ as on the previous slide can even be chosen upper-triangular.

- The diagonal elements of positive definite matrices must be positive.
- If a positive semi-definite matrix has a zero on the diagonal, then the corresponding row and column must be zero.
- The matrix $\begin{pmatrix} 2 & -1 \\ -1 & \frac{1}{2} \end{pmatrix}$ is positive semi-definite. It equals $\begin{pmatrix} 1.41 \\ -0.71 \end{pmatrix} \begin{pmatrix} 1.41 & -0.71 \end{pmatrix}.$

Lyapunov Conditions for Asymptotic Stability

The Lyapunov theorem (Lecture 2) requires to make sure that

$$x^T P x > 0$$
 and $x^T [A^T P + P A] x < 0$ for all $x \neq 0$.

We hence arrive at the following result.

If there exists a positive definite P such that A^TP+PA is negative definite then $\dot{x}=Ax$ is (globally) asymptotically stable.

This result follows from general Lyapunov theory. On the next slide we actually provide a direct proof.

In **practice** we choose and fix any negative definite Q (such as for example Q=-I) and solve the linear equation

$$A^T P + PA = Q$$

for P. If P turns out to be positive definite then A is Hurwitz.

Proof

For some small positive α the matrix $A^TP+PA+\alpha P$ is still negative definite. Therefore $x^T[A^TP+PA+\alpha P]x\leq 0$ for all $x\in\mathbb{R}^n$ and hence

$$x^{T}[A^{T}P + PA]x \le -\alpha x^{T}Px. \tag{(*)}$$

For any x_0 we need to show that $x(t) = e^{At}x_0 \to 0$ for $t \to \infty$. Define

$$v(t) = x(t)^T P x(t) \ge 0.$$

We then infer with the help of (*) that

$$\dot{v}(t) = \frac{d}{dt}x(t)^T P x(t) = x(t)^T [A^T P + P A] x(t) \le -\alpha x(t)^T P x(t) = -\alpha v(t).$$

Hence $r(t)=\dot{v}(t)+\alpha v(t)\leq 0$. By the variation-of-constants formula $0\leq v(t)=v(0)e^{-\alpha t}+\int_0^t e^{-\alpha(t-\tau)}r(\tau)\,d\tau\leq v(0)e^{-\alpha t}\to 0$ for $t\to\infty$.

Therefore $\lim_{t\to\infty} v(t)=0$. Since P is positive definite, it can be written as U^TU , U invertible. Then $v(t)=x(t)^TU^TUx(t)=\|Ux(t)\|^2\to 0$; hence $Ux(t)\to 0$ and thus $U^{-1}Ux(t)=x(t)\to 0$ for $t\to\infty$.

Lyapunov Equation

Let $A \in \mathbb{R}^{n \times n}$ be Hurwitz.

ullet For every symmetric matrix $Q \in \mathbb{R}^{n \times n}$ the **Lyapunov equation**

$$A^T P + PA = Q$$

does have a unique symmetric solution $P \in \mathbb{R}^{n \times n}$.

- ullet If Q is negative semi-definite then P is positive semi-definite.
- If Q is negative definite then P is positive definite.

The equation is well-studied also in the case that A is **not** Hurwitz. Then, for any symmetric and negative definite Q:

- either the Lyapunov equation has no solution;
- or there exists a solution but it is not unique;
- or there exists a unique solution but it is not positive definite.

Proof

Since e^{At} decays exponentially to zero for $t \to \infty$ the matrix

$$P = -\int_0^\infty e^{A^T t} Q e^{At} \, dt$$

is well-defined. Moreover we have

$$A^{T}P + PA = -\int_{0}^{\infty} A^{T} \left[e^{A^{T}t} Q e^{At} \right] + \left[e^{A^{T}t} Q e^{At} \right] A dt =$$

$$= -\int_{0}^{\infty} \frac{d}{dt} \left[e^{A^{T}t} Q e^{At} \right] dt = -\left. e^{A^{T}t} Q e^{At} \right|_{t=0}^{t=\infty} = Q.$$

Hence P solves the Lyapunov equation & "P has opposite sign of Q".

If \tilde{P} is another solution we infer for $\Delta = \tilde{P} - P$ that $A^T \Delta + \Delta A = 0$. If we define $M(t) = e^{A^T t} \Delta e^{At}$ we have $M(\infty) = 0$ and

$$\dot{M}(t) = e^{A^T t} A^T \Delta e^{At} + e^{A^T t} \Delta A e^{At} = e^{A^T t} [A^T \Delta + \Delta A] e^{At} = 0.$$

Hence $M(\cdot)$ is constant; thus $\Delta = M(0) = M(\infty) = 0$; hence $P = \tilde{P}$.

```
The command lyap(A,R) solves the equation AX + XA^T + R = 0:
A=[-2 \ 3;1 \ 1]; P=lyap(A', eye(2)); eig(P)=[-0.8090; 0.3090]
%%
As=[-2 \ 3;1 \ 1]-1.8*eye(2); P=lyap(As',eye(2))
eig(P) = [0.1089; 68.2607]
%%
ev=eig(A);
As=A-ev(1)*eve(2);
P=lyap(As',eye(2))
??? Error using ==> lyapslv
Solution does not exist or is not unique.
```

LQ Optimal Control

We have seen that there are many ways to stabilize the linear system

$$\dot{x} = Ax + Bu$$
.

The choice of suitable feedback gains by pole-placement is not simple since it is somewhat unclear, in general, how to balance the speed of the state-response and the size of the corresponding control action.

This motivates to **quantify** the average distance of the state-trajectory from 0 and the effort involved in the control action as

$$\int_0^\infty x(t)^T Q x(t) \, dt \quad \text{and} \quad \int_0^\infty u(t)^T R u(t) \, dt$$

respectively, where Q and R are symmetric **weighting matrices** that are positive semi-definite and positive definite respectively.

The weighting matrices allow to put individual emphasis on the different components of the state- and control-trajectories.

LQ Optimal Control

Achieving fast state-convergence to zero with the least possible effort then amounts to minimizing the **cost function**

$$\int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt$$

over all trajectories satisfying

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \quad \text{and} \quad \lim_{t \to \infty} x(t) = 0.$$
 (S)

This is the so-called **linear quadratic** (LQ) optimal control problem.

Let us stress at the outset that other cost criteria might, in practice, better reflect the desired objectives. Actually, general optimal control theory is a very rich field in itself (and developing since the 1960's).

The choice for a quadratic cost and linear systems is motivated by a beautiful mathematical problem solution and fast solution algorithms.

Choice of Weighting Matrices

Often $Q = \operatorname{diag}(q_1, \dots, q_n)$ and $R = \operatorname{diag}(r_1, \dots, r_m)$ are taken to be diagonal and the cost then reads as

$$\sum_{k=1}^{n} \int_{0}^{\infty} q_{k} x_{k}(t)^{2} dt + \sum_{k=1}^{m} \int_{0}^{\infty} r_{k} u_{k}(t)^{2} dt.$$

The scalars $q_k \geq 0$ and $r_k > 0$ allow us to balance the emphasis put on the state- and input-components:

- Large values of q_k or r_k penalize the component $x_k(t)$ or $u_k(t)$ heavier. Therefore these components are expected to be pushed to smaller values by optimal controllers.
- Small values of q_k or r_k allow for larger deviations of $x_k(t)$ from zero or for larger action of $u_k(t)$.
- With $q_k = 0$ no emphasis is put on $x_k(t)$. For technical reasons $r_k = 0$ is not allowed: All control components have to be penalized.

Completion of Squares

For any symmetric matrix P and any state-trajectory of (S) we have

$$\frac{d}{dt}x(t)^{T}Px(t) = \dot{x}(t)^{T}Px(t) + x(t)^{T}P\dot{x}(t) =
= (Ax(t) + Bu(t))^{T}Px(t) + x(t)^{T}P(Ax(t) + Bu(t)) =
= x(t)^{T}(A^{T}P + PA)x(t) + x(t)^{T}PBu(t) + u(t)^{T}B^{T}Px(t).$$

Let us analyze the last two terms, by adding the term $u(t)^T R u(t)$, and by exploiting $R = U^T U$. We infer

$$x(t)^{T}PBu(t) + u(t)^{T}B^{T}Px(t) + u(t)^{T}Ru(t) = -x(t)^{T}PBR^{-1}B^{T}Px(t) + x(t)^{T}PBR^{-1}B^{T}Px(t) + x(t)^{T}PBu(t) + u(t)^{T}B^{T}Px(t) + u(t)^{T}Ru(t) =$$

$$= -x(t)^{T}PBR^{-1}B^{T}Px(t) + ||Uu(t) + U^{-T}B^{T}Px(t)||^{2}.$$

This latter step is called **completion of the squares**. Purpose?

Completion of Squares

We now add also $x(t)^T Q x(t)$ and arrive at the following key relation:

$$\begin{split} \frac{d}{dt}x(t)^T P x(t) + x(t)^T Q x(t) + u(t)^T R u(t) &= \\ &= x(t)^T [A^T P + P A - P B R^{-1} B^T P + Q] x(t) + \\ &+ \|U u(t) + U^{-T} B^T P x(t)\|^2. \end{split}$$

This motivates to choose $P = P^T$ as a solution of the following so-called algebraic Riccati equation (ARE)

$$A^T P + PA - PBR^{-1}B^T P + Q = 0.$$

If that was possible we could infer

$$\frac{d}{dt}x(t)^{T}Px(t) + x(t)^{T}Qx(t) + u(t)^{T}Ru(t) =$$

$$= ||Uu(t) + U^{-T}B^{T}Px(t)||^{2}.$$

Completion of Squares

If we integrate over [0,T] for T>0 we finally arrive at

$$x(T)^{T}Px(T) + \int_{0}^{T} x(t)^{T}Qx(t) + u(t)^{T}Ru(t) dt =$$

$$= x_{0}^{T}Px_{0} + \underbrace{\int_{0}^{T} ||Uu(t) + U^{-T}B^{T}Px(t)||^{2} dt}_{\geq 0}.$$

• For any trajectory of (S) we have $x(T) \to 0$ for $T \to \infty$ and thus

$$\int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt \ge x_0^T P x_0.$$

The cost is **not smaller** than $x_0^T P x_0$, no matter which stabilizing control function is chosen.

 \bullet Equality is achieved exactly when $Uu(t) + U^{-T}B^TPx(t) = 0$ or

$$u(t) = -R^{-1}B^T P x(t) \text{ for all } t \ge 0.$$

Insights

- Any solution P of the ARE gives us a **lower bound** $x_0^T P x_0$ on the cost function for all admissible control functions.
- The lower bound is attained if we can choose the control function to satisfy $u(t) = -R^{-1}B^TPx(t)$. This could be assured as follows:
 - 1. Solve $\dot{x}(t) = [A BR^{-1}B^TP]x(t)$ with $x(0) = x_0$.
 - 2. Then define the control function by $u_*(t) = -R^{-1}B^TPx(t)$.

But we need to make sure that $\lim_{t\to\infty} x(t) = 0$ which requires that

$$A - BR^{-1}B^TP$$
 is Hurwitz.

If there exists a P as indicated then the constructed input $u_*(\cdot)$ is indeed a unique optimal open-loop control function.

• Moreover, the optimal control function can actually be implemented by a **feedback strategy** u = -Fx with gain $F = R^{-1}B^TP$.

(a) Harrier "jump jet"

Consider Harrier at vertical take-off ([AM] pp.53,141,191) modeled as

$$m\ddot{x} = F_1 \cos(\theta) - F_2 \sin(\theta) - c\dot{x},$$

$$m\ddot{y} = F_1 \sin(\theta) + F_2 \cos(\theta) - mg - c\dot{y},$$

$$J\ddot{\theta} = rF_1.$$

With state $z=(x,y,\theta,\dot{x},\dot{y},\dot{\theta})$ and input $u=(F_1,F_2)$ put the system into a first-order description and linearize at the equilibrium $u_e=(0,mg)$ and $z_e=(x_e,y_e,0,0,0,0)$. This leads to

$$(A | B) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -g & -c/m & 0 & 0 & 1/m & 0 \\ 0 & 0 & 0 & 0 & -c/m & 0 & 0 & 1/m \\ 0 & 0 & 0 & 0 & 0 & 0 & r/J & 0 \end{pmatrix}.$$

For a scale model choose the parameters

$$m = 4$$
; $J = 0.0475$; $r = 0.25$; $q = 9.81$; $c = 0.05$.

For Q and R we compute with

$$[F, P, E] =$$
lgr (A, B, Q, R)

the LQ-gain F, the stabilizing ARE solution P and the closed-loop eigenvalues $E=\operatorname{eig}(A-BF)$.

For Q = I, R = I, $x_0 = (1, -1, 0.35, 0, 0, 0)$ get closed-loop responses

The second state is very slow. Also the first should be somewhat faster. This motivates to increase the penalty (weight) on these states e.g. to Q = diag(10, 100, 1, 1, 1, 1).

The responses are faster, at the expense of a larger control action:

Let's now allow for an even larger control action by reducing the input weight to $R=0.1I. \label{eq:R}$

This speeds up the responses further, but again at the expense of larger control actions:

By reducing $\rho>0$ in $R=\rho I$ we put less weight on the control input. This typically comes along with high gains in the state-feedback matrix.

Riccati Theory

How does lqr work? We need to answer the following question:

Does there exist a solution $P = P^T$ of the algebraic Riccati equation

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

such that $A - BR^{-1}B^TP$ is Hurwitz?

Any such P is called a **stabilizing** solution of the ARE.

- The ARE is a **quadratic** matrix equation in the unknown symmetric matrix P. Just to get some feeling think about the case n=m=1.
- Recall that Q is positive semi-definite and R is positive definite. In the sequel we will make use of $Q = C^T C$ and $R = U^T U$, U invertible.
- Clearly, a stabilizing solution can only exist if (A,B) is stabilizable. It is less obvious that (A^T,Q) cannot have uncontrollable modes on the imaginary axis. These two properties also imply existence of P.

The Hamiltonian

A key role in solving the ARE is played by the **Hamiltonian** matrix

$$H = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \in \mathbb{R}^{2n \times 2n}.$$

Indeed if P solves the ARE we can rearrange it as

$$-Q - A^T P = P[A - BR^{-1}B^T P]$$

in order to infer the following relation:

$$\begin{split} H\left(\begin{array}{cc} I & 0 \\ P & I \end{array}\right) &= \left(\begin{array}{cc} A - BR^{-1}B^TP & -BR^{-1}B^T \\ -Q - A^TP & -A^T \end{array}\right) = \\ &= \left(\begin{array}{cc} I & 0 \\ P & I \end{array}\right) \left(\begin{array}{cc} A - BR^{-1}B^TP & -BR^{-1}B^T \\ 0 & -[A - BR^{-1}B^TP]^T \end{array}\right). \end{split}$$

A solution P of the ARE allows, hence, to transform H by similarity into a block-triangular form. Many insights can be extracted from here.

The Hamiltonian

Suppose that the ARE has the stabilizing solution P. Then

Since H is similar to the matrix on the right they have the same eigenvalues. Since $A-BR^{-1}B^TP$ is Hurwitz, $-[A-BR^{-1}B^TP]^T$ has all its eigenvalues in the open right half-plane. Therefore

H has no eigenvalues on the imaginary axis.

By the lemma below (and proved on the next slide) we conclude that (A^T,Q) has no uncontrollable modes on the imaginary axis.

Lemma. The set of eigenvalues of H on the imaginary axis is equal to the union of the set of uncontrollable modes of (A,B) and of (A^T,Q) on the imaginary axis.

Proof (Somewhat Technical)

If H has the eigenvalue λ on the imaginary axis we infer

$$\left(\begin{array}{cc} A & -BR^{-1}B^T \\ -Q & -A^T \end{array}\right) \left(\begin{array}{c} e_1 \\ e_2 \end{array}\right) = \bar{\lambda} \left(\begin{array}{c} e_1 \\ e_2 \end{array}\right) \quad \text{for some} \quad \left(\begin{array}{c} e_1 \\ e_2 \end{array}\right) \neq 0.$$

With $R = U^T U$ and $Q = C^T C$ we get

$$Ae_1 - BU^{-1}[BU^{-1}]^T e_2 = \bar{\lambda}e_1$$
 and $-C^T Ce_1 - A^T e_2 = \bar{\lambda}e_2$. (*)

By left-multiplying e_2^{st} and e_1^{st} we infer

$$e_2^*Ae_1 - \|e_2^*BU^{-1}\|^2 = \bar{\lambda}e_2^*e_1 \ \ \text{and} \ \ - \|Ce_1\|^2 - e_1^*A^Te_2 = \bar{\lambda}e_1^*e_2.$$

The conjugate of the latter is $-\|Ce_1\|^2 - e_2^*Ae_1 = \lambda e_2^*e_1$. Adding to the first and exploiting $\bar{\lambda} + \lambda = 0$ (λ is on imaginary axis) implies $\|e_2^*BU^{-1}\|^2 + \|Ce_1\|^2 = 0$ and thus $e_2^*B = 0$ and $Ce_1 = 0$; therefore $e_1^*Q = 0$. By (*) hence $e_1^*(A^T - \lambda I) = 0$ and $e_2^*(A - \lambda I) = 0$. Since either $e_1 \neq 0$ or $e_2 \neq 0$, λ is either an uncontrollable mode of (A^T, Q) or one of (A, B). The **converse** is shown by reversing arguments.

Riccati Theory: Main Result

The algebraic Riccati equation $A^TP+PA-PBR^{-1}B^TP+Q=0$ has a stabilizing solution if and only if (A,B) is stabilizable and (A^T,Q) has no uncontrollable modes on the imaginary axis.

- Although the Riccati equation might have infinitely many solutions, the stabilizing solution is unique. It is also positive semi-definite.
- Note that the uncontrollable modes of (A^T, Q) and of (A^T, C^T) are identical in case that $Q = C^T C$. In practice one often just verifies whether any of these pairs is stabilizable.
- We already proved "only if". We provide a proof of "if" that is constructive and forms the basis for the algorithm that is used in Matlab and which is accessible by are.
- There is a large body of literature on the algebraic Riccati equation, in particular related to the case that Q is not positive semi-definite.

Proof

By hypothesis (A,B) and (A^T,Q) have no uncontrollable modes on the imaginary axis. Hence H has no eigenvalue on the imaginary axis.

Due to its structure the eigenvalues of H are located symmetrically with respect to the real (obvious) and imaginary (unusual) axis.

If we combine the last two facts, we conclude that H has n eigenvalues in the open left- and in the open right half-plane. This makes it possible to construct an invertible matrix T such that

$$T^{-1}HT=\left(egin{array}{cc} M_{11} & M_{12} \\ \mathbf{0} & M_{22} \end{array}
ight), \quad M_{11} \ {
m has \ size} \ n imes n \ {
m and \ is \ Hurwitz}.$$

There are many ways to do this (see remarks below). For example one can choose T such that $T^{-1}HT$ is in Jordan canonical form. Since the ordering of the blocks is free, one can actually achieve the structure by placing the Jordan blocks for all eigenvalues in the open left half-plane first. However, this procedure is numerically not reliable.

Proof (Continued)

This triangularization is motivated by the relation on slide 25. This also leads to the idea of partitioning T into four $n \times n$ -blocks as

$$T = \left(\begin{array}{cc} T_{11} & T_{12} \\ T_{21} & T_{22} \end{array} \right) \quad \text{which implies} \quad H \left(\begin{array}{c} T_{11} \\ T_{21} \end{array} \right) = \left(\begin{array}{c} T_{11} \\ T_{21} \end{array} \right) M_{11}.$$

One can show that T_{11} is invertible and that $T_{21}T_{11}^{-1}$ is real symmetric (no matter how T was computed and even if T is complex).

Again motivated by slide 25 let us hence right-multiply by T_{11}^{-1} to get

$$H\left(\begin{array}{c} T_{11} \\ T_{21} \end{array}\right) T_{11}^{-1} = \left(\begin{array}{c} T_{11} \\ T_{21} \end{array}\right) M_{11} T_{11}^{-1}$$

and hence

$$H\begin{pmatrix} I \\ T_{21}T_{11}^{-1} \end{pmatrix} = \begin{pmatrix} I \\ T_{21}T_{11}^{-1} \end{pmatrix} (T_{11}M_{11}T_{11}^{-1}).$$

Let's now hope that the symmetric $P = T_{21}T_{11}^{-1}$ is the desired solution.

Proof (Continued)

Yes it is! Since M_{11} is Hurwitz, the same holds for $M=T_{11}M_{11}T_{11}^{-1}$. The above equation reads as

$$\left(\begin{array}{c} A-BR^{-1}B^TP\\ -Q-A^TP \end{array}\right)=H\left(\begin{array}{c} I\\ P \end{array}\right) \ {\color{red} =}\ \left(\begin{array}{c} I\\ P \end{array}\right)M=\left(\begin{array}{c} M\\ PM \end{array}\right).$$

- By the first equation $A BR^{-1}B^TP$ equals M and is hence Hurwitz.
- The second relation can hence be written as

$$-Q - A^T P = P(A - BR^{-1}B^T P)$$

which can clearly be rearranged into

$$0 = A^T P + PA - PBR^{-1}B^T P + Q.$$

This says that P satisfies the ARE.

How to Block-Triangularize the Hamiltonian?

Let us mention three possibilities to block-triangularize the Hamiltonian:

ullet Choose T which block-diagonalizes H.

We have mentioned that one can transform H into the (suitably ordered) Jordan canonical form and extract the first n columns of T.

In practice H is often diagonalizable. Then these first n columns of T can be taken equal to n linearly independent eigenvectors of H that correspond to eigenvalues of H in the open left half-plane.

- A numerically much more favorable way is to use the **ordered Schur decomposition**: Can always compute a **unitary** matrix T (property $T^{-1} = T^*$) which achieves the required block-triangular form of H.
- ullet Modern algorithms (for large matrices) construct T with symplectic transformations on H that preserve the Hamiltonian structure.

Here is some Matlab code that computes the stabilizing ARE solution:

```
% Check controllability of (A,B) and (A',Q)
[1,u]=lu(ctrb(A,B));u,[1,u]=lu(ctrb(A',Q));u
% Compute transformation based on eigen-decomposition of H
H=[A -B*inv(R)*B':-Q -A']:
[n,n]=size(A); [T,D]=eig(H); Z=[];
for j=1:2*n;
    if real(D(j,j))<0;Z=[Z T(:,j)];end;
end;
T11=Z(1:n,:);T21=Z(n+1:2*n,:);
myP=T21*T11^(-1);
```

Solution of the LQ-Problem: Main Result

Suppose that (A,B) is stabilizable and (A^T,Q) has no uncontrollable modes on the imaginary axis.

• Then one can compute the unique solution $P = P^T$ of the ARE

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

for which $A - BR^{-1}B^TP$ is Hurwitz.

- The LQ-optimal control problem has a unique solution.
- The optimal value is $x_0^T P x_0$ and the optimal control strategy can be implemented as a static state-feedback controller:

$$u = -R^{-1}B^T P x.$$

The closed-loop eigenvalues are equal to those eigenvalues of the Hamiltonian that are contained in the open left half-plane.

This fundamental result follows directly from the discussion on slide 17. In Matlab the solution is made available with the command lqr.

Robustness Properties

A perfect implementation of a state-feedback controller leads to

with a static gain $\Delta=I$. Classical gain- and phase-margins are obtained by disconnecting Δ and analyzing the transfer matrix $u \to y$ in

This is the so-called loop-gain and equals $L(s) = F(sI - A)^{-1}B$.

Robustness Properties

Now suppose that $F=R^{-1}B^TP$ is an LQ-optimal gain. Choose any frequency ω and abbreviate $A_\omega=(i\omega I-A)^{-1}$. With the ARE we get:

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0$$

$$(i\omega I - A)^{*}P + P(i\omega I - A) + PBR^{-1}B^{T}P = Q$$

$$PA_{\omega} + A_{\omega}^{*}P + A_{\omega}^{*}PBR^{-1}B^{T}PA_{\omega} = A_{\omega}^{*}QA_{\omega}$$

$$B^{T}PA_{\omega}B + B^{T}A_{\omega}^{*}PB + (B^{T}A_{\omega}^{*}PB)R^{-1}(B^{T}PA_{\omega}B) = B^{T}A_{\omega}^{*}QA_{\omega}B$$

$$[I + R^{-1}B^{T}PA_{\omega}B]^{*}R[I + R^{-1}B^{T}PA_{\omega}B] - R = B^{T}A_{\omega}^{*}QA_{\omega}B$$

$$[I + FA_{\omega}B]^{*}R[I + FA_{\omega}B] - R = B^{T}A_{\omega}^{*}QA_{\omega}B.$$

We hence infer for the loop-gain $L(i\omega) = FA_{\omega}B$ that

 $[I+L(i\omega)]^*R[I+L(i\omega)]-R$ is positive semi-definite for all $\omega\in\mathbb{R}$.

Robustness Properties

This can be interpreted in terms of MIMO robustness. Instead let us consider the case that the system has 1 input only. Then R>0 and $L(i\omega)$ are scalars and we infer

$$|-1-L(i\omega)|\geq 1 \ \ \text{for all} \ \ \omega\in\mathbb{R}.$$

This implies that the Nyquist-curve of L is guaranteed to stay outside a circle of radius 1 around -1.

This implies impressive **generic** stability margins for LQ-controllers:

- The gain can vary in $(\frac{1}{2}, \infty)$ without endangering stability.
- The phase-margin is at least 60° .
- The vector margin (distance of NC to -1) is at least 1.

Example: Segway

With the data of [AM] p. 189 and the linearization in the upright position (zero input), we designed a static state-feedback controller by pole-placement in Lecture 3 (blue). With R=0.1, $Q=\mathrm{diag}(100,1,1,1)$ the LQ-responses (green) are improved:

Example: Segway

Robustness is substantially improved, as seen from the Nyquist curves:

Closed-Loop Poles

By slide 24, the closed-loop eigenvalues for the LQ-optimal gain are equal to the eigenvalues of the Hamiltonian in the open left half-plane.

With some fixed positive definite matrix R_0 suppose that we choose $R=\rho R_0$ for some scalar $\rho\in(0,\infty)$ to get

$$H = \begin{pmatrix} A & -\frac{1}{\rho}BR_0^{-1}B^T \\ -Q & -A^T \end{pmatrix}.$$

For large ρ we try to keep the control effort small. Since $-\frac{1}{\rho}BR_0^{-1}B^T$ approaches 0 for $\rho\to\infty$, the limiting closed-loop eigenvalues are equal to the stable eigenvalues of

$$H = \left(\begin{array}{cc} A & 0 \\ -Q & -A^T \end{array} \right).$$

Hence they equal the stable eigenvalues of A (open-loop eigenvalues) and of $-A^T$ (open-loop eigenvalues **mirrored on imaginary axis**).

Cheap Control

For small ρ we allow for a large control effort (i.e. control is "cheap"). Let us use

$$Q = C^T C, \quad R_0^{-1} = U_0 U_0^T \ (U_0 \ \text{invertible}), \quad G(s) = C(sI - A)^{-1} B U_0.$$

With the Schur-determinant formula (applied twice) we get

$$\det(sI - H) = \det(sI - A) \det(sI + A^T - Q(sI - A)^{-1}BR_0^{-1}B^T/\rho)$$

$$= \det(sI - A) \det(sI + A^T) \det(I - (sI + A^T)^{-1}C^TG(s)U_0^TB^T/\rho) =$$

$$= \det(sI - A) \det(sI + A^T) \det(I - U_0^TB^T(sI + A^T)^{-1}C^TG(s)/\rho) =$$

$$= \det(sI - A) \det(sI + A^T) \det(I - \frac{1}{\rho}G(-s)^TG(s)).$$

In general the zeros of this polynomial are not easy to analyze for $\rho \to 0$. One can show that some zeros move off to ∞ , and others move to the zeros of $\det(G(-s)^TG(s))$ if this polynomial does not vanish identically.

Cheap Control - Butterworth Pattern

If G(s) is SISO define $d(s)=\det(sI-A)$ with zeros $p_1,...,p_n$ and n(s)=d(s)G(s) with zeros $z_1,...,z_m$. We need to analyze the zeros of

$$d(-s)d(s) + \frac{1}{\rho}n(-s)n(s) = 0. \tag{*}$$

For $\rho \to 0$ the following holds (Kwakernaak, Sivan, 1972):

- 2m zeros of (\star) approach $\pm z_1, \ldots, \pm z_m$.
- 2(n-m) move to ∞ asymptotically along straight lines through the origin with the following angles to the positive real axis:

$$\frac{k\pi}{n-m}$$
, $k = 0, 1, \dots, 2n-2m-1$, $n-m$ odd

$$\frac{(k+\frac{1}{2})\pi}{n-m}$$
, $k=0,1,\ldots,2n-2m-1$, $n-m$ even.

Those in the open left half-plane are the closed-loop eigenvalues.

Segway with $Q=C^TC$ and $C=\left(\begin{array}{cccc} 1 & 1 & 0 & 0 \end{array}\right)$ as well as $R_0=1.$

Magenta: Zeros d(s). Green: Zeros n(s). Eigenvalues for $\rho \in (10^{-6}, 100)$:

Covered in Lecture 4

- Stability revisited
 Quadratic Lyapunov functions, Lyapunov equation
- LQ control optimal control, LQ structure, completion of squares algebraic Riccati equation
- Riccati theory
 Hamiltonians, stabilizing solutions
- Properties of LQ regulator Robustness, cheap control, Butterworth