Definition 1. Maximum Likelihood Estimator (MLE) For $X_i \stackrel{iid}{\sim} f(x|\theta)$, the MLE is

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} f(x^n | \theta) \qquad \text{for } \theta \in \Omega \subset \mathbb{R}^k$$

1 Consistency of the MLE

This is a summary of Wald [1949] which shows that $\hat{\theta}$ is consistent. It consists of a set of assumptions, some introductory lemmas, and the proof of the main theorem.

Consider the following 8 assumptions

- 1. The distribution function $F_{\theta}(x)$ is either discrete for all θ or absolutely continuous for all θ .
- 2. Let

$$f(x|\theta, p) = \sup_{|\theta - \theta'| \le p} f(x|\theta')$$
$$\phi(x|r) = \sup_{|\theta| > r|} f(x|\theta)$$
$$f^*(x|\theta, p) = \max(1, f(x|\theta, p))$$
$$\phi^*(x|\theta, p) = \max(1, \phi(x|r))$$

Assume that for sufficiently small p and sufficiently large r the expected values

$$\int_{-\infty}^{\infty} \ln f^*(x|\theta, p) \ dF_{\theta_0}(x) \quad \text{and} \quad \int_{-\infty}^{\infty} \ln \phi^*(x|r) \ dF_{\theta_0}(x)$$

are finite, $\theta_0 = \theta_{\text{true}}$.

- 3. If $\lim_{i \to \infty} \theta_i = \theta$ then $\lim_{i \to \infty} f(x|\theta_i) = f(x|\theta)$ for all x, except a set which may depend on θ (but not $\langle \theta_i \rangle$) and has P_{θ_0} probability 0.
- 4. If $\theta_0 \neq \theta_1$, there exists x such that $F_{\theta_0}(x) \neq F_{\theta_1}(x)$
- 5. If $\lim_{i\to\infty} |\theta_i| = \infty$ then $\lim_{i\to\infty} f(x|\theta_i) = 0$ except for a set of P_{θ_0} with probability 0 (and independent of $\langle \theta_i \rangle$)
- 6. $\int_{-\infty}^{\infty} |\log f(x|\theta_0)| dF_{\theta_0}(x) < \infty$
- 7. Ω is a closed subset of \mathbb{R}^k
- 8. $f(x|\theta,p)$ is measurable in x for any θ,p (not necessary for discrete θ)

Summary Wald's hypotheses can be succinctly stated as:

1.
$$\forall \theta \exists p = p(\theta) E_{\theta} \sup_{|\psi - \theta| > p} \ln \frac{f(X|\psi)}{f(X|\theta)} < 0$$

2.
$$\forall \theta, \delta > 0$$
 small enough, $E_{\theta} \ln \frac{f(X|\theta)}{\sup_{(\theta'-\theta) < \delta} f(X|\theta)} < \infty$

3.
$$p(x|\theta) \to 0$$
 as $||\theta|| \to \infty$

Lemma 2. For any $\theta \neq \theta_0$, we have $E \log f(X|\theta) < E \log f(X|\theta_0)$, where X is a chance variable with the distribution $F(X, \theta_0)$

Proof:

Assumption 2 means that the expected values exist.

Assumption 6 means $E|\log f(X,\theta_0)| < \infty$.

If $E \log f(X, \theta) = -\infty$, the lemma obviously holds.

If $E \log f(X, \theta) > -\infty$, then $E |\log f(X, \theta)| < \infty$.

Let $u = \log f(X, \theta) - \log f(X, \theta_0)$. $E[u] < \infty$. We know that for any RV u that is nonconstant with probability 1 with finite expectation, $Eu < \log Ee^u$.

Since $Ee^u \le 1$, $Eu < \log Ee^u \le 0$ and thus Eu < 0.

Lemma 3. $\lim_{n \to 0} E \log f(X, \theta, p) = E \log f(X, \theta)$

Proof:

$$\frac{1}{Let \ f^*(x,\theta,p)} = \begin{cases}
f(x,\theta,p) & f(x,\theta,p) \ge 1 \\
1 & otherwise
\end{cases} \quad and \ f^*(x,\theta) = \begin{cases}
f(x,\theta) & f(x,\theta) \ge 1 \\
1 & otherwise
\end{cases}$$

$$f^{**}(x,\theta,p) = \begin{cases}
f(x,\theta,p) & f(x,\theta,p) \le 1 \\
1 & otherwise
\end{cases} \quad and \ f^{**}(x,\theta) = \begin{cases}
f(x,\theta) & f(x,\theta) \ge 1 \\
1 & otherwise
\end{cases}$$

 $\lim_{p \to 0} \log f^*(x, \theta, p) = \log f^*(x, \theta) \ a.e.$

Assumption 3

 $\lim_{x \to 0} E \log f^*(X, \theta, p) = E \log f^*(X, \theta) \qquad \text{since } \log f^*(X, \theta, p) \text{ is incr in } p + Assumption 2$

 $|\log f^{**}(x,\theta,p)| \le |\log f^{**}(x,\theta)|$ $\lim_{x \to 0} \log f^{**}(x, \theta, p) = \log f^{**}(x, \theta)$

for x a.e.

 $\lim_{x \to 0} E \log f^{**}(X, \theta, p) = E \log f^{**}(X, \theta)$

follows from the two previous lines.

Since $\lim_{p\to 0} E \log f^*(X,\theta,p) = E \log f^*(X,\theta)$ and $\lim_{p\to 0} E \log f^{**}(X,\theta,p) = E \log f^{**}(X,\theta)$, we are done.

Lemma 4.

$$\lim_{r \to \infty} E \log \psi(X|r) = -\infty$$

Proof:

Assumption 5 implies $\lim_{r \to \infty} \log \psi(X|r) = -\infty$ a.e.

Assumption 2 says $E \log \psi^*(X, r) < \infty$.

 $\log \psi(x,r) - \log \psi^*(x,r)$ and $\log \psi^*(x,r)$ are decreasing functions of r, so the lemma follows by the monotone convergence theorem.

References

A. Wald. Note on the Consistency of the Maximum Likelihood Estimate. The Annals of Mathematical Statistics, 20(4):595-601, 1949. ISSN 0003-4851. URL https://www.jstor.org/stable/ 2236315. Publisher: Institute of Mathematical Statistics.