

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ

Ciência da Computação

Disciplina: Pesquisa e ordenação de dados Trabalho: Comparação de métodos de ordenação linearítmicos

Alisson Luan de Lima Peloso

1. Tabelas:

Merge sort

	Ordenada	Inversamente Ordenada	Aleatório
	Merge sort		
		Tempo (ms)	
10.000	1,641	3,138	5,403
50.000	7,288	8,180	11,482
100.000	14,285	13,260	23,998

Quick sort

	Ordenada	Inversamente Ordenada	Aleatório	
	Quick sort			
	Tempo (ms)			
10.000	342,334	221,062	4,533	
50.000	8.144,809	5.151,932	10,781	
100.000	31.703,258	21.952,376	19,094	

Heap sort

	Ordenada	Inversamente Ordenada	Aleatório
	Heap sort		
		Tempo (ms)	
10.000	5,963	3,885	13,804
50.000	12,648	12,568	17,340
100.000	27,543	25,226	32,653

2. Gráficos Comparativos:

3. Conclusão:

Ao realizar a comparação com os gráficos é possível notar que os tempos de execução se mantém na mesma proporção ao alterarmos a quantidade de itens a serem ordenados.

Observando os gráficos, notamos que o Merge e o Quick sort não possuem uma diferença tão gritante nos tempos de execução em relação ao estado inicial da lista (ordenada, inversamente ordenada, aleatória) quanto o Quick sort.

No Merge sort, a lista ordenada teve menor tempo de execução, na lista aleatória teve o maior tempo e a mediana ficou para a lista inversamente ordenada. Isso predominou nos três casos: ordenada, inversa e aleatória.

Já no Heap sort, a lista inversa teve o menor tempo de execução, seguida da lista ordenada. A aleatória ficou com o maior tempo.

O caso mais peculiar foi o do Quick sort. A listas ordenada e inversa executaram em um tempo muito superior em comparação com os outros métodos. Porém, no caso em que a lista inicial está em ordem aleatória, o Quick sort ordenou a lista em menos tempo que os outros métodos linearítmicos.

Por fim, entendemos que o desempenho dos algoritmos de ordenação dependem da forma inicial da lista, e para cada caso há um algoritmo que terá melhor desempenho. Em comparação com os métodos de ordenação simples, o tempo de execução nos diferentes tamanhos de lista não gera uma diferença exponencial. Isso torna os métodos de ordenação linearítmicos mais eficientes para listas maiores.

Hardware Utilizado

Processador: Intel© Core™ i5-7200U CPU @ 2.50GHz × 2 with Turbo Boost up to 3.1Ghz **Memória RAM**: 8 GB DDR4 Memory