Основи системного аналізу

Методи багатокритеріального оцінювання альтернатив. ELECTRE, TOPSIS

> Савченко Ілля Олександрович ННК "ІПСА" НТУУ "КПІ ім. Ігоря Сікорського"

Mетоди PROMETHEE i ELECTRE

- PROMETHEE: Preference Ranking Organization METHod for Enrichment Evaluation
- ELECTRE: фр. ELimination Et Choix Traduisant la Realite виключення і вибір, що відображають реальність

Розв'язання задач:

- вибору
- ранжування

Постановка задачі

Дано:

- $A = \{a_i \mid i = 1,...,n\}$ множина альтернатив рішень
- $C = \{c_j \mid j = 1,...,m\}$ множина критеріїв
- $V = (v_j(a_i))$ оцінки альтернатив за критеріями
- w_j^C вага j-го критерію $\sum_{j=1}^m w_j^C = 1$

Знайти:

- ранжування альтернатив
- множину "найкращих" альтернатив

Метод ELECTRE I: індекс згоди

Гіпотеза: a_k переважає a_l за всіма критеріями.

$$c(a_{k}, a_{l}) = \frac{\sum_{j \in C^{+} \cup C^{0}} w_{j}}{\sum_{j} w_{j}} C^{+} : a_{k} \succ a_{l}$$

$$C^{0} : a_{k} \sim a_{l}$$

$$C^{-} : a_{k} \prec a_{l}$$

$$\sum_{j} w_{j} = 1 \qquad \Rightarrow \qquad c(a_{k}, a_{l}) = \sum_{j \in C^{+} \cup C^{0}} w_{j}$$

Метод ELECTRE I: індекс незгоди

$$d(a_k, a_l) = \max_{j \in C^-} \frac{v_j(a_l) - v_j(a_k)}{L_j} \qquad d(a_k, a_l) \in [0; 1]$$

 L_{j} – довжина шкали j-го критерію

Індекс незгоди з гіпотезою про строгу перевагу визначається на основі найбільш «суперечливого» критерію — за яким альтернатива a_l в найбільшій степені переважає a_k .

Метод ELECTRE I: пороги згоди і незгоди

Задається пара значень c_1 , d_1 .

Якщо
$$(c(a_k,a_l) \ge c_1) \land (d(a_k,a_l) \le d_1)$$
 то $a_k \succeq a_l$ В іншому випадку — альтернативи непорівнювані.

Якщо немає можливості визначити найкращу альтернативу, значення порогів послаблюються, поки така можливість не з'явиться.

5 альтернатив, 7 критеріїв у шкалі [1; 5]

	c_1	c_2	c_3	C_4	c_5	c_6	c_7
a_1	1	2	1	5	2	2	4
a_2	3	5	3	5	3	3	3
a_3	3	5	3	5	3	2	2
a_4	1	2	2	5	1	1	1
a_5	1	1	3	5	4	1	5

Ваги критеріїв:

	c_1	c_2	c_3	C_4	c_5	c_6	c_7
w_j	0,078	0,118	0,157	0,314	0,235	0,039	0,059

Індекси згоди:

	a_1	a_2	a_3	a_4	a_5
a_1	1	0,373	0,412	0,843	0,549
a_2	0,941	1	1	1	0,706
a_3	0,941	0,902	1	1	0,706
a_4	0,667	0,314	0,314	1	0,549
a_5	0,843	0,765	0,765	0,882	1

Індекси незгоди (довжина шкали $L_j=4$):

	a_1	a_2	a_3	a_4	a_5
a_1	0	0,75	0,75	0,25	0,5
a_2	0,25	0	0	0	0,5
a_3	0,5	0,25	0	0	0,75
a_4	0,75	0,75	0,75	0	1
a_5	0,25	1	1	0,25	0

Задаємо значення порогів $c_1 = 0.8$, $d_1 = 0.25$.

	a_1	a_2	a_3	a_4	a_5
a_{I}	1	0,373	0,412	0,843	0,549
a_2	0,941	1	1	1	0,706
a_3	0,941	0,902	1	1	0,706
a_4	0,667	0,314	0,314	1	0,549
a_5	0,843	0,765	0,765	0,882	1

	a_{I}	a_2	a_3	a_4	a_5
a_I	0	0,75	0,75	0,25	0,5
a_2	0,25	0	0	0	0,5
a_3	0,5	0,25	0	0	0,75
a_4	0,75	0,75	0,75	0	1
a_5	0,25	1	1	0,25	0

	a_1	a_2	a_3	a_4	a_5
a_1	ı			Р	
a_2	Р	_	Р	Р	
a_3		Р	_	Р	
a_4				_	
a_5	Р			Р	_

Домінованою є альтернатива a_4 . Інші складають перше ядро найкращих альтернатив.

Задаємо більш слабкі значення порогів c_1 =0,75, d_1 =0,5.

	a_{I}	a_2	a_3	a_4	a_5
a_I	1	0,373	0,412	0,843	0,549
a_2	0,941	1	1	1	0,706
a_3	0,941	0,902	1	1	0,706
a_4	0,667	0,314	0,314	1	0,549
a_5	0,843	0,765	0,765	0,882	1

	a_1	a_2	a_3	a_4	a_5
a_1	0	0,75	0,75	0,25	0,5
a_2	0,25	0	0	0	0,5
a_3	0,5	0,25	0	0	0,75
a_4	0,75	0,75	0,75	0	1
a_5	0,25	1	1	0,25	0

	a_{I}	a_2	a_3	a_4	a_5
a_1	1			Р	
a_2	Р	-	Р	Р	
a_3	Р	Р	_	Р	
a_4				_	
a_5	Р			Р	_

Домінованими є альтернатива $a_{\it l}, \, a_{\it 4}$. Інші складають друге ядро найкращих альтернатив.

Щоб розрізнити альтернативи a_2 , a_3 , a_5 , значення порогів c_1 =0,75, d_1 =1.

	a_1	a_2	a_3	a_4	a_5
a_I	1	0,373	0,412	0,843	0,549
a_2	0,941	1	1	1	0,706
a_3	0,941	0,902	1	1	0,706
a_4	0,667	0,314	0,314	1	0,549
a_5	0,843	0,765	0,765	0,882	1

	a_{I}	a_2	a_3	a_4	a_5
a_{I}	0	0,75	0,75	0,25	0,5
a_2	0,25	0	0	0	0,5
a_3	0,5	0,25	0	0	0,75
a_4	0,75	0,75	0,75	0	1
a_5	0,25	1	1	0,25	0

	a_{I}	a_2	a_3	a_4	a_5
a_1	1			Р	
a_2	Р	_	Р	Р	
a_3	Р	Р	_	Р	
a_4				_	
a_5	Р	Р	Р	Р	_

Найкращою є альтернатива a_5 .

Mетод ELECTRE III

Відношення: a_k не гірше за a_l за критерієм c_j $a_k \mathbf{S}_j a_l$

 c_j знаходиться в згоді з відношенням $a_k \mathbf{S}_j a_l$,

ЯКЩО: $v_j(a_l) - v_j(a_k) \le q_j$

 c_j знаходиться в незгоді з відношенням $a_k \mathbf{S}_j a_l$, якщо: $v_j(a_l) - v_j(a_k) \ge p_j$

Метод ELECTRE III: індекс згоди

• a_k не гірше за a_l за критерієм c_i

$$t_j(a_k,\ a_l)$$
 – індекс згоди

Пороги p_{j} , q_{j} в загальному вигляді є лінійними функціями від оцінок $v_i(a_k)$

$$t_{j}(a_{k}, a_{l}) = \begin{cases} 0, & v_{j}(a_{l}) \geq v_{j}(a_{k}) + p_{j}(v_{j}(a_{k})) \\ 1, & v_{j}(a_{l}) \leq v_{j}(a_{k}) + q_{j}(v_{j}(a_{k})) \\ \frac{p_{j}(v_{j}(a_{k})) - (v_{j}(a_{l}) - v_{j}(a_{k}))}{p_{j}(v_{j}(a_{k})) - q_{j}(v_{j}(a_{k}))}, & \text{ihakiie} \end{cases}$$

Для порогів – констант:

Для порогів — констант:
$$t_{j}(a_{k}, a_{l}) \uparrow$$

$$t_{j}(a_{k}, a_{l}) = \begin{cases} 0, & v_{j}(a_{l}) - v_{j}(a_{k}) \geq p_{j} & 1 \\ 1, & v_{j}(a_{l}) - v_{j}(a_{k}) \leq q_{j} \\ \frac{p_{j} - (v_{j}(a_{l}) - v_{j}(a_{k}))}{p_{j} - q_{j}}, & \text{інакше} \end{cases}$$

Метод ELECTRE III: індекс незгоди

• a_k <u>гірше</u> за a_l за критерієм c_j

$$d_j(a_k, \, a_l) - \text{iндекс незгоди} \qquad \qquad d_j(a_k, \, a_l) = \begin{cases} 0, & v_j(a_l) \leq v_j(a_k) + p_j(v_j(a_k)) \\ 1, & v_j(a_l) \geq v_j(a_k) + r_j(v_j(a_k)) \end{cases}$$

$$r_j(v_j(a_k)) - \text{поріг вето} \qquad \qquad \frac{(v_j(a_l) - v_j(a_k)) - p_j(v_j(a_k))}{r_j(v_j(a_k)) - p_j(v_j(a_k))}, \quad \text{iнакше}$$

$$d_{j}(a_{k}, a_{l}) = \begin{cases} 0, & v_{j}(a_{l}) - v_{j}(a_{k}) \leq p_{j} & 1 \\ 1, & v_{j}(a_{l}) - v_{j}(a_{k}) \geq r_{j} \\ \frac{(v_{j}(a_{l}) - v_{j}(a_{k})) - p_{j}}{r_{j} - p_{j}}, & ihakwe \end{cases}$$

Метод ELECTRE III: поріг вето

• Відношення $a_k S_j a_l$ не справджується, якщо

$$v_j(a_l) - v_j(a_k) \ge r_j$$

$$r_i \ge p_i$$
 — поріг вето

<u>Призначення:</u> вилучити з розгляду альтернативу з низькою оцінкою хоча б за одним з критеріїв, незалежно від її оцінок за іншими критеріями.

Показники важливості критерію:

- 1. Bara w_i^C
- 2. Близькість r_j до p_j

Метод ELECTRE III: агрегований індекс згоди

• a_k не гірше за a_l за всіма критеріями

$$T(a_k, a_l) = \sum_{j=1}^{m} w_j^c t_j(a_k, a_l)$$

Розраховується для всіх пар альтернатив.

Метод ELECTRE III: рівень переваги

- Шукається множина $J(a_k, a_l)$ критеріїв, для яких індекс незгоди більший за агрегований індекс згоди: $d_j(a_k, a_l) > T(a_k, a_l)$
- Розраховуються ступені переваги a_k над a_l

$$S(a_k, a_l) = \begin{cases} T(a_k, a_l), & \text{якщо } J(a_k, a_l) = \emptyset \\ T(a_k, a_l) \prod_{j \in J(a_k, a_l)} \frac{1 - d_j(a_k, a_l)}{1 - T(a_k, a_l)}, & \text{інакше} \end{cases}$$

Метод ELECTRE III: ранжування

Ранжування альтернатив здійснюється за величинами вхідного і вихідного, або чистого потоків, як в методі PROMETHEE.

• Вихідний потік
$$\Phi^+(a_k) = \frac{1}{n-1} \sum_{l \neq k} S(a_k, a_l)$$

• Вхідний потік
$$\Phi^{-}(a_k) = \frac{1}{n-1} \sum_{l \neq k} S(a_l, a_k)$$

• Чистий потік
$$\Phi(a_k) = \Phi^+(a_k) - \Phi^-(a_k)$$

	c_1	c_2	c_3 (min)	c_4
a_{I}	11200	870	12,3	0
a_2	8790	888	10,4	1
a_3	5700	912	9	1,5
a_4	6200	840	9,3	1
a_5	8300	930	10,6	0,5
a_6	10000	850	10,7	0

	c_1	c_2	c_3	c_4
W	0,2	0,3	0,1	0,4
Q	1000	3%	10%	0
P	2000	6%	20%	1

Порогу вето не введено.

Індекси згоди за першим критерієм для пар альтернатив:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	I	1	1	1	1	1
a_2	0	1	1	1	1	0,79
a_3	0	0	_	1	0	0
a_4	0	0	1	1	0	0
a_5	0	1	1	1	_	0,3
a_6	0,8	1	1	1	1	_

Оскільки порогу вето немає, індекси незгоди дорівнюють нулю.

Індекси згоди за другим критерієм для пар альтернатив:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	-	1	0,391	1	0	1
a_2	1	1	1	1	0,423	1
a_3	1	1	_	1	1	1
a_4	0,81	0,095	0	I	0	1
a_5	1	1	1	1	_	1
a_6	1	0,51	0	1	0	_

$$t_{j}(a_{k}, a_{l}) = \begin{cases} 0, & v_{j}(a_{l}) \geq v_{j}(a_{k}) + p_{j} \cdot v_{j}(a_{k}) \\ 1, & v_{j}(a_{l}) \leq v_{j}(a_{k}) + q_{j} \cdot v_{j}(a_{k}) \\ \frac{p_{j} \cdot v_{j}(a_{k}) - (v_{j}(a_{l}) - v_{j}(a_{k}))}{p_{j} \cdot v_{j}(a_{k}) - q_{j} \cdot v_{j}(a_{k})}, & \text{ihakine} \end{cases}$$

Індекси згоди за третім критерієм для пар альтернатив:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	I	0,455	0	0	0,618	0,699
a_2	1	1	0,654	0,942	1	1
a_3	1	1	ı	1	1	1
a_4	1	1	1	1	1	1
a_5	1	1	0,491	0,774	_	1
a_6	1	1	0,411	0,692	1	_

$$t_{j}(a_{k}, a_{l}) = \begin{cases} 0, & v_{j}(a_{l}) \leq v_{j}(a_{k}) - p_{j} \cdot v_{j}(a_{k}) \\ 1, & v_{j}(a_{l}) \geq v_{j}(a_{k}) - q_{j} \cdot v_{j}(a_{k}) \\ \frac{p_{j} \cdot v_{j}(a_{k}) + (v_{j}(a_{l}) - v_{j}(a_{k}))}{p_{j} \cdot v_{j}(a_{k}) - q_{j} \cdot v_{j}(a_{k})}, & \text{ihakme} \end{cases}$$

Індекси згоди за четвертим критерієм для пар альтернатив:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	1	0	0	0	0,5	1
a_2	1	1	0,5	1	1	1
a_3	1	1	1	1	1	1
a_4	1	1	0,5	1	1	1
a_5	1	0,5	0	0,5	-	1
a_6	1	0	0	0	0,5	_

Агреговані індекси згоди для пар альтернатив:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	1	0,546	0,317	0,5	0,462	0,97
a_2	0,8	I	0,765	0,994	0,827	0,958
a_3	0,8	0,8	I	1	0,8	0,8
a_4	0,743	0,529	0,5	-	0,5	0,8
a_5	0,8	0,8	0,549	0,777	-	0,86
a_6	0,96	0,453	0,241	0,569	0,5	_

Без порогу вето значення ступенів переваги співпадають з агрегованими індексами згоди

Ранг	Альтерна- тива	Вихідний потік $arPhi^+$	Вхідний потік Φ^-	Чистий потік Φ
1	a_3	0,84	0,475	0,365
2	a_2	0,869	0,625	0,244
3	a_5	0,757	0,618	0,14
4	a_4	0,614	0,768	-0,154
5	a_1	0,559	0,821	-0,262
6	a_6	0,545	0,878	-0,333

Введемо для першого критерію поріг вето, рівний 4000.

	c_1	c_2	c ₃ (min)	c_4
a_1	11200	870	12,3	0
a_2	8790	888	10,4	1
a_3	5700	912	9	1,5
a_4	6200	840	9,3	1
a_5	8300	930	10,6	0,5
a_6	10000	850	10,7	0

Індекси незгоди за першим критерієм для пар альтернатив:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	-	0	0	0	0	0
a_2	0,205 (0,8)	ı	0	0	0	0
a_3	1 (0,8)	0,545 (0,8)	1	0	0,3 (0,8)	1 (0,8)
a_4	1 (0,743)	0,295 (0,529)	0	1	0,05 (0,5)	0,9 (0,8)
a_5	0,45 (0,8)	0	0	0	_	0
a_6	0	0	0	0	0	_

Індекси незгоди порівнюємо з агрегованими індексами згоди (наведені в дужках для ненульових значень)

Значення ступенів переваги:

	a_1	a_2	a_3	a_4	a_5	a_6
a_1	-	0,546	0,317	0,5	0,462	0,97
a_2	0,8	1	0,765	0,994	0,827	0,958
a_3	0	0,8	_	1	0,8	0
a_4	0	0,529	0,5	_	0,5	0,4
a_5	0,8	0,8	0,549	0,777	_	0,86
a_6	0,96	0,453	0,241	0,569	0,5	_

$$S(a_3, a_1) = 0.8 \cdot \frac{1 - 1}{1 - 0.8} = 0$$
 $S(a_4, a_6) = 0.8 \cdot \frac{1 - 0.9}{1 - 0.8} = 0.4$

Ранг	Альтерна- тива	Вихідний потік $arPhi^+$	Вхідний потік Φ^-	Чистий потік Φ	
1	a_2	0,869	0,626	0,243	
2	a_5	0,757	0,618	0,139	
3	a_1	0,559	0,512	0,047	
4	a_3	0,52	0,474	0,046	
5	a_6	0,545	0,638	-0,093	
6	a_4	0,386	0,768	-0,382	

Meтoд TOPSIS

Technique for Preference by Similarity to the Ideal Solution

Метод ґрунтується на тому, що найкраща альтернатива повинна мати найменшу відстань до максимальних значень критерію і найбільшу — до мінімальних.

Meтод TOPSIS

1. Значення альтернатив за критеріями нормалізуються:

$$R = \left\{ r_{ij} = \frac{v_j(a_i)}{\max_i v_j(a_i)} \middle| i \in [1; n], j \in [1; m] \right\}$$

2. Формується зважена нормалізована матриця:

$$T = \left\{ t_{ij} = w_j r_{ij} \mid i \in [1; n], j \in [1; m] \right\}$$

Meтод TOPSIS

3. Обчислюються відстані альтернатив до найкращих і найгірших значень критеріїв

$$d_i^+ = \sqrt{\sum_{j=1}^m (t_{ij} - t_j^+)^2} \qquad d_i^- = \sqrt{\sum_{j=1}^m (t_{ij} - t_j^-)^2}$$

4. Розраховується схожість до ідеальної альтернативи. Чим менше s_i^+ тим краще

$$s_i^+ = \frac{d_i^+}{d_i^+ + d_i^-}$$
 $s_i^+ \in [0; 1]$

Mетод TOPSIS

Значення критеріїв для альтернатив:

	c_{I}	c_2	c_3 (min)	c_4
a_1	11200	870	12,3	0
a_2	8790	888	10,4	1
a_3	5700	912	9	1,5
a_4	6200	840	9,3	1
a_5	8300	930	10,6	0,5
a_6	10000	850	10,7	0

	c_{I}	c_2	c_3	c_4
W	0,2	0,3	0,1	0,4

Meтод TOPSIS

Нормована матриця

	c_{I}	c_2	c_3 (min)	c_4
a_1	1	0,935	1	0
a_2	0,785	0,955	0,846	0,667
a_3	0,509	0,981	0,732	1
a_4	0,554	0,903	0,756	0,667
a_5	0,741	1	0,862	0,333
a_6	0,893	0,914	0,87	0

Mетод TOPSIS

Нормована зважена матриця

	c_1	c_2	c ₃ (min)	c_4	
a_1	0,2	0,281	0,1	0	
a_2	0,157	0,286	0,085	0,267	
a_3	0,102	0,294	0,073	0,4	
a_4	0,111	0,271	0,076	0,267	
a_5	0,148	0,3	0,086	0,133	
a_6	0,179	0,274	0,087	0	

	c_{I}	c_2	c_3	c_4
W	0,2	0,3	0,1	0,4

Meтод TOPSIS

Відстані до максимумів і мінімумів:

	c_1	c_2	c_3 (min)	c_4	d_i^+	d_i^-	S_i^+
a_{I}	0,2	0,281	0,1	0	0,401	0,01	0,976
a_2	0,157	0,286	0,085	0,267	0,141	0,075	0,653
a_3	0,102	0,294	0,073	0,4	0,098	0,161	0,378
a_4	0,111	0,271	0,076	0,267	0,163	0,072	0,693
a_5	0,148	0,3	0,086	0,133	0,272	0,021	0,929
a_6	0,179	0,274	0,087	0	0,402	0,006	0,985