Fundamentos de Ingeniería del Software

Capítulo 3. Análisis de Requisitos Análisis Estructurado

Situación en el programa de teoría

- Actividades iniciales.
- Técnicas de recogida de la información.
- Requisitos y análisis de requisitos.
- Actividades generales de análisis de requisitos.
- Documentos de especificación de requisitos.
- Análisis estructurado.
- 7. Introducción a los casos de uso.
- Prototipado.

6.1. Introducción – Visión panorámica del AE

ANÁLISIS ESTRUCTURADO

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

Introducción

- Análisis Estructurado
 - Método clave en el "desarrollo estructurado" o "convencional"
 - Aparece a finales de los 70
 - Facilita la comunicación en el proceso de desarrollo de un sistema de información
 - análisis y diseño
 - usuarios y analistas
 - Sencillo, fácil de entender y fácil de aprender

Características principales

- Amplia difusión
- Descomposición funcional
 - Originariamente) Orientada a procesos
 - Originariamente) Top/down
- Presente en numerosas metodologías
 - p.ej. Métrica, SSADM, information engineering, Merise
- Herramientas CASE disponibles

Bibliografía

- Texto de referencia
 - Yourdon, E., Análisis estructurado moderno. 1993: Prentice-Hall Hispanoamericana
 - Introducción
 - Capítulo 4. Herramientas del análisis estructurado
 - Capítulo 7. Cambios en el análisis de sistemas
 - Técnicas
 - Capítulo 9. Diagramas de flujo de datos.
 - Capítulo 10. El diccionario de datos.
 - Capítulo 11. Especificaciones de proceso.
 - Capítulo 14. Balanceo de modelos.
 - El proceso de análisis
 - Capítulo 17. El modelo esencial.
 - Capítulo 18. El modelo ambiental.
 - Capítulo 19. Construcción de un primer modelo de comportamiento.
 - Capítulo 20. Completando el modelo de comportamiento.

Bibliografía (II)

Entre la bibliografía básica...

- Piattini, M., et al., *Análisis y diseño detallado de Aplicaciones Informáticas de Gestión*. 2004: Ra-ma.
- MAP, MÉTRICA versión 2.1. Guía de Técnicas. 1995, Madrid: Ministerio de Administraciones Públicas. Secretaría de Estado para la Administración Pública. Consejo Superior de Informática.

En castellano y en la biblioteca...

- Barranco de Aruba, J., Metodología del Análisis Estructurado de Sistemas (2ª edición). 2001, Madrid: Publicaciones de la Universidad Pontificia de Comillas.
- Hawryszkiewycz, I. T. Introducción al análisis y diseño de sistemas con ejemplos prácticos. 1ª ed., Madrid : Anaya Multimedia, 1990.

Referencias clásicas...

- DeMarco, T., Structured analysis and system specification. 1979, Englewood Cliffs, New Jersey: Yourdon Press.
- Gane, C. and T. Sarson, Análisis estructurado de sistemas. 1990, Buenos Aires: El Ateneo (traducción de Gane, C. and T. Sarson, Structured systems analysis, tools and techniques. Software series. 1979, New Jersey: Prentice-Hall.)

AE utiliza...

- Modelado funcional
 - DFD (Diagrama de Flujo de Datos, Dataflow diagram)
- Modelado de datos
 - Diagrama E-R (Entidad-Relación), o alternativamente,
 DED (Diagrama de Estructura de Datos)
- Modelado del comportamiento
 - Diagramas HVE (Historia de Vida de las Entidades)
 - Diagramas de Transición de Estados (STD, State Transition Diagram)

AE utiliza...

- Lógica de procesos
 - Lenguaje estructurado
 - Pre y post-condiciones
 - Tablas de decisión
 - Árboles de decisión
- Diccionario de Datos (DD)

Visión panorámica AE DFDs

- Visión general de las funciones y transformaciones de datos en una organización
- Modelo <u>lógico</u> y gráfico del sistema
 - también como modelo físico
- Identifica entradas, salidas, procesos y relaciones con el exterior
 - ...a nivel general
 - ...por refinamiento, a nivel detallado

Visión panorámica AE DFDs (II)

Tipos de símbolos en los DFDs

(notación de Yourdon/De Marco)

ENTIDAD EXTERNA P1 Proceso

flujo de datos

D ALMACÉN DE DATOS

Visión panorámica AE DFDs (III)

Ejemplo

Sistema de distribución sin inventario

"Se trata de un sistema que sirve pedidos de libros a unos clientes, con la particularidad de que no mantiene un *stock* o inventario interno. El sistema puede agrupar los pedidos que clientes distintos hacen a un mismo editor, de manera que se puedan conseguir descuentos."

Adaptado del capítulo 2 de Gane, C. and T. Sarson, *Análisis estructurado de sistemas*. 1990, Buenos Aires: El Ateneo.

Visión panorámica AE DFDs (IV)

Análisis de los procesos del sistema

⇒ Aplicamos la *visión sistémica*

Diagrama de contexto

Visión panorámica AE DFDs (V)

0. Sistema de pedidos

Visión panorámica AE DFDs (V)

0. Sistema de pedidos

Visión panorámica AE DFDs (VI)

- El DFD del ejemplo pertenece al nivel lógico
 - un FD puede estar contenido en una nota, una factura, una llamada telefónica, etc.
 - un almacén de datos puede ser una BD o un fichero en papel
 - no se dice qué deberá ser automático o manual.
 - ... en el nivel lógico
 - se evita caer en decisiones físicas prematuras
 - se maneja la complejidad
- En un DFD 0 real, se haría una auténtica división en subsistemas
- Se obvian los FD de error
- En el ej. no se muestran las funciones de creación, mantenimiento y consulta de almacenes de datos

Visión panorámica AE Diccionario de Datos

- "Es un conjunto de metadatos, es decir, de información (datos) sobre datos"
- Contiene las definiciones de todos los elementos de los diagramas
- Implementación
 - Manual
 - Procesador de textos
 - Base de datos
 - Automático e integrado ←

Visión panorámica AE Diccionario de Datos (II)

```
Flujo de datos: entrega
Descripción: Conjunto de libros enviados por un
  proveedor a la biblioteca, basado en la relación
  que previamente había recibido.
Sinónimos: *** none ***
Componente de: *** none ***
Composición:
  Libros
   + { Albarán }
Información de entrada y salida
Origen
                               Destino
*** Off the diagram ***
                               Compra libros
                               Biblioteca
PROVEEDORES
```

Visión panorámica AE Diccionario de Datos (III)

```
Fichero o base de datos: Facturas
Descripción: Información, por número de factura, sobre
   facturas en el sistema actual.
Sinónimos: *** none ***
Composición:
   @Número-factura
    + Fecha-factura
    + Dirección-cliente
   + { Número-producto
   + Cantidad-producto
   + Costo-unidad-producto }
   + Costo-envío
   + Tasa-de-descuento
   + Neto-factura
    + Estado-factura
Procesos asociados: Según DFD general
       Proc cancelación
                               Proc pago
                               Adjuntar albarán
       Proc consultas
```

Visión panorámica AE Diccionario de Datos (IV)

```
Proceso: Verificar estado del socio
```

Número: 1.1.1

Descripción: Se examina si el socio no está sancionado

Miniespecificación:

Recibir "Socio ID" del socio

Leer "SOCIOS" para

Leer "Flag-de-precaución"

Si OK, enviar "Socio ID válido"

Complejidad: Prioridad:

Ratio de transacciones: Memoria requerida (Kb):

Tiempo de proceso:

Visión panorámica AE Modelado de datos

- Diagramas E-R y DED (*Diagrama de Estructura de Datos*)
- DED es, básicamente, un E-R limitado:
 - no relaciones ternarias
 - sólo cardinalidades 1:N
 - no atributos multivaluados ni compuestos
- Por defecto, usaremos diagramas E-R

DED. Ejemplo

Visión panorámica AE Lógica de procesos

- Técnicas para describir la lógica de los procesos primitivos
 - Lenguaje estructurado
 - Pre y post-condiciones
 - Tablas de decisión
 - Árboles de decisión

Visión panorámica AE Lógica de procesos (II)

Lenguaje estructurado

- SI la factura excede de 300€
 - SI la cuenta del cliente tiene alguna factura sin pagar más de 60 días, dejar la confirmación pendiente de este pago.
 - SI NO (la cuenta está en buen estado) hacer confirmación y factura
- SI NO (la factura es de 300€ o menos)
 - SI la cuenta del cliente tiene alguna factura sin pagar más de 60 días hacer la confirmación, la factura y escribir un mensaje sobre informe de crédito
 - SI NO (la cuenta está en buen estado) hacer confirmación y factura
- FIN-SI.

Visión panorámica AE Lógica de procesos (III)

Pre y post-condiciones

Pre1 (la factura excede de 300€) Y (la cuenta del cliente tiene alguna factura sin pagar más de 60 días)

Pos1 (confirmación pendiente de este pago)

Pre2 (la factura excede de 300€) o (la cuenta del cliente no tiene ninguna factura sin pagar más de 60 días)

Pos2 (confirmación y factura realizadas)

Pre3 (la factura no excede de 300€) Y (la cuenta del cliente tiene alguna factura sin pagar más de 60 días)

Pos3 (confirmación y factura realizadas) Y (mensaje impreso sobre informe de crédito)

Pre4 (la factura no excede de 300€) Y (la cuenta del cliente no tiene ninguna factura sin pagar más de 60 días)

Pos4 (confirmación y factura realizadas)

Visión panorámica AE Lógica de procesos (IV)

Tablas de decisión

ESTADO DE LA CUENTA	CORRECTO	IMPAGADO	CORRECTO	IMPAGADO
NETO-FACTURA	>300€	>300€	<=300€	<=300€
CONFIRMACIÓN PENDIENTE		Х		
HACER CONFIRMACIÓN	Х		Х	Х
HACER FACTURA	Х		Х	Х
ESCRIBIR MENSAJE				Х

Visión panorámica AE Lógica de procesos (V)

Árboles de decisión

¿Y después del AE?

- DISEÑO ESTRUCTURADO (DE)
 - El diseño lógico de los requisitos del nuevo sistema de información se convierte en un modelo de la aplicación, plasmado en un DIAGRAMA DE ESTRUCTURA.
 - ightharpoonup En el paso AE ⇒ DE,
 - Análisis de transacciones
 - Análisis de transformaciones

Ejemplo de diagrama de estructuras

Visión panorámica AE Esquema resumen

Visión panorámica AE Proceso de aplicación

- Aproximación "clásica"
 - 1. Análisis del sistema actual
 - Modelo físico, modelo lógico
 - 2. Análisis de requisitos del nuevo sistema
 - 3. Diseño de soluciones alternativas
 - 4. Evaluación de las soluciones
 - 5. Selección y documentación de una solución
 - Diseño estructurado
 - 7. Codificación y pruebas

6.2 Diagramas de Flujo de Datos (DFDs)

- 6.1. Introducción Visión panorámica del AE
- 6.2. Diagramas de flujo de datos
- 6.3. Diccionario de datos
- 6.4. Modelado de la lógica de los procesos
- 6.5. Modelado de datos
- 6.6. Historia de vida de las entidades
- 6.7. El proceso de Yourdon

Símbolos del DFD

(notación Yourdon/De Marco)

Transformaciones o procesos (funciones, cálculo, selección)

Terminadores (Fuentes o Destinos) (personas, entidades)

Flujos de información (inputs-outputs)

Flujos de control (Ward & Mellor 85)

D ALMACÉN DE DATOS Ficheros o depósitos temporales de información (base de datos, armario, clasificador, etc.)

Símbolos del DFD

(notación Métrica/SSADM)

Transformaciones o procesos

Terminadores (Fuentes o Destinos)

Flujos de información

Ficheros o depósitos temporales de información

Procesos

- TRANSFORMACIÓN (cálculo, operación)
- FILTRO (verificación fecha, validación transacción)
- DISTRIBUCIÓN (menú, selección transacción)

Un consejo: Keep it simple!

Procesos (II)

- Nombres únicos, significativos y concisos
- Preferiblemente expresados en función de las entradas y salidas
- Recomendación: verbo (no ambiguo) + objeto
 - Evitar verbos ambiguos procesar, gestionar, manejar...
 - "objeto" está definido en el DD
- Los procesos se descomponen en "subprocesos", hasta llegar a los procesos primitivos

Diagrama de contexto

- Es el DFD más general de todos
- Está formado por un solo macroproceso (el sistema), las entidades externas (fuentes y destinos) y sus relaciones con el macroproceso
- Delimita el sistema y su entorno

Entidades externas

Señalan los límites del sistema y establecen sus relaciones con el entorno

Los identificadores (nombres) de las entidades externas serán únicos, significativos y concisos

Límites del sistema

Actividad crítica y difícil

Puede haber problemas, tanto por ser demasiado ambicioso, como poco ambicioso

Flujos de datos

- Los nombres de los FD deben ser únicos, significativos y concisos
- Son datos, así que nómbralos como datos.
- Pueden estar indistintamente en singular o en plural, ya que en los DFDs no se representan cantidades (Barranco 95)
- Los nombres no sirven sólo para identificar los datos, sino también la información que se tiene sobre ellos
 - P.ej. Información (fecha-válida) > Información (fecha)

Flujos de datos (II)

- Flujos de datos interactivos (dialog flows)
 - Cuando dos FD establecen un diálogo o comparten una acción de estímulo-respuesta, pueden dibujarse como un único FD de doble flecha, donde ambos extremos deben llevar el nombre del FD que representan.

Flujos de datos (III)

Las flechas dobles con sentidos opuestos que transportan los mismos datos pueden sustituirse por flechas doblemente encabezadas

¡Pero sólo si transportan los mismos datos!

Flujos de datos (IV)

Se puede representar, si se desea, el FLUJO DE MATERIAL, usando flechas de trazo grueso

Flujos de datos (V)

Se pueden considerar flechas convergentes o divergentes, con un mismo nombre

Observaciones:

Sólo los procesos pueden separar FD (Piattini et al. 04) No poner FD como señales de activación (Yourdon 93)

Flujos de datos (VI)

Notación System Architect. Ejemplos

FD divergentes (conectores XOR y AND)

Flujos de datos (VII)

Notación System Architect. Ejemplos

FD convergentes (conectores XOR y AND)

Flujos de datos (VIII)

¿El proceso "pide" el FD "pedido"?

¿El proceso "necesita" ambos FD?

- No lo sabemos, no importa:
 - Los aspectos procedurales no se manifiestan en los DFDs
 - Si tales aspectos son relevantes, se deben incluir en las miniespecificaciones

Flujos de control

- En los DFDs no se muestra el control ni el orden de ejecución
- No se puede mostrar:
 - Procesos que se realizan antes que otros
 - Sincronización
 - Periodificación
- Extensiones al AE para sistemas en tiempo real:
 - (Ward & Mellor 85)
 - (Hatley & Pirbhai 87)

Flujos de control (II)

- Señales de activación "ON/OFF"
- Sirven para "Habilitar/Deshabilitar" procesos
- También hay:
 - Procesos de control
 - Coordinan el resto de procesos
 - Usualmente uno por DFD
 - Se describen mediante Diagramas de transición de estados
 - Almacenes de control
 - Almacenes de eventos
 - FD discretos
 - FD continuos

Flujos de control (III)

Flujos de control (IV)

Almacenes de datos

- Nombre único, significativo y conciso
- Convenciones de nombres en los FD a/desde un almacén:
 - No lleva etiqueta
 - El FD se refiere a un paquete (instancia) completo de la información contenida en el almacén
 - La etiqueta es la misma que la del almacén
 - El FD se refiere a uno o más paquetes completos (instancias) de la información contenida en el almacén
 - La etiqueta es distinta de la del almacén
 - El FD se refiere a uno o más componentes (atributos) de una o más instancias del almacén

Consistencia DFD / E-R (MAP 95)

- Para facilitar validaciones cruzadas entre DFDs y E-R (o DED)...
- Correspondencia entre los almacenes de datos "principales" (permanentes) del DFD y las entidades del E-R
 - Cada almacén de un DFD representa una o varias entidades del E-R
 - Cada entidad del E-R pertenece a un único almacén principal de un DFD

Consistencia DFD / E-R (II)

ETIQUETA DE LOS ALMACENES

- Según explosione a
 - Entidad de datos ⇒ Plural nombre entidad
 - Diagrama E-R (o DED) ⇒ Nombre diagrama

DEFINICIÓN DE LOS ALMACENES

- 1. Pocos almacenes
 - Para cada uno, diagrama E-R (o DED)
- Tantos almacenes como entidades se hayan identificado
 - Preferible (si no hay muchas entidades)

Descomposición funcional

- Cada proceso se puede explotar, refinar o descomponer en un DFD más detallado
- El DFD de un sistema es realmente un conjunto de DFDs dispuestos jerárquicamente
- Los niveles de la jerarquía están determinados por la descomposición funcional de los procesos
- La raíz de la jerarquía es el "diagrama de contexto", que es el más general de todos

Descomposición funcional (II)

Descomposición funcional (II)

Consistencia en el DFD

- Cada proceso en un diagrama "padre" es una consolidación del DFD "hijo"
- Balanceo de DFDs
 - Las E/S de un proceso "padre" deben corresponderse con las E/S del DFD "hijo" que lo explica
 - Excepciones: errores y salidas triviales

Descomposición paralela

- Descomposiciones de funciones
 - Proceso en subprocesos (DFD)
- Descomposición de flujos de datos
- La regla de balanceo se aplica teniendo en cuenta la descomposición paralela

Descomposición paralela (II)

Ejemplo: pedido = autorización + cupón de pedido + pago

Jerarquía de DFDs

- En un DFD completo cada proceso tiene un número único que lo identifica en función de su situación en la jerarquía
- Cada DFD tiene también un número único que coincide con el proceso que describe
- Las hojas o nodos terminales corresponden a "procesos primitivos" o indescomponibles
- Para cada proceso primitivo existirá una miniespecificación.

Jerarquía de DFDs (II)

Jerarquía de DFDs DFD 0

- El primer diagrama general que sigue al de contexto es el número 0 por convenio
- En el DFD 0 se hace una descomposición en subsistemas, es decir, se indican los procesos más importantes en el sistema

⇒ Han de ser SUBSISTEMAS

Descomposición funcional y almacenes de datos

- Los almacenes aparecen lo más tarde posible
- En un nivel superior únicamente cuando son interfaz entre procesos
- Una vez que aparezca en un DFD, el almacén aparecerá otra vez en cada DFD de nivel más bajo relacionado

Descomposición funcional y almacenes de datos (II)

Tamaño de la jerarquía de DFDs

- Cada DFD debería tener alrededor de 7 procesos O menos (Miller 57) Miller, G.A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psycological Review*, vol. 63, pp.81-97.
- En general, habrá varios niveles intermedios, dependiendo del tamaño y complejidad del sistema que se está modelando
- ¿Cuántos niveles son convenientes? Yourdon: depende del problema

Diagrama de contexto / sistema

Diagrama de subsistemas

Diagrama de funciones

Diagrama de subfunciones

Diagrama de procesos (opcional)

Reglas sintácticas en DFDs

- El origen y/o el destino de un FD es siempre un proceso
 - Excepción: almacenes en el diagrama de contexto (Yourdon 93)

Reglas sintácticas en DFDs (II)

- Todo almacén y todo proceso tienen uno o más FD de E y uno o más FD de S
 - EXCEPCIÓN: un almacén puede no tener FD de salida, por simplificación (p.ej. BD Histórica)
 - RECOMENDACIÓN: si aparece un proceso fuente o sumidero, replantearse los límites del sistema

Regla de Balanceo

Localización de los procesos

Ideas útiles para construir el DFD

- Identificar todos los elementos exógenos
- Identificar sus relaciones con el sistema
- Trabajar según alguna de las siguientes filosofías:
 - De inputs a outputs
 - De outputs a inputs
 - Desde una posición intermedia hacia delante o hacia atrás

Ideas útiles para construir el DFD (II)

- Nombrar adecuadamente todos los objetos del DFD
- Numerar adecuadamente procesos y diagramas
- Realizar una correcta división en subsistemas (DFD 0)
- Utilizar la descomposición funcional jerárquica hasta alcanzar las funciones primitivas

Ideas útiles para construir el DFD (III)

La descomposición top/down adolece de problemas

SOLUCIÓN: partición de eventos

- Es importante que sea preciso y completo, pero ¡es muy importante que sea legible!
 - El convenio de nombres de FD a/desde almacenes ayuda a hacer el DFD más legible
 - Agregar FD en los niveles superiores
 - Un poco de sentido común...

DFDs - Conclusiones

- Valiosa herramienta de comunicación
 - Usuario, analista, diseñador, programador
 - Se puede combinar con el uso de prototipos
- Fácil de entender y de aprender
- Facilità las relaciones con el usuario
- Amplia difusión

DFDs - Conclusiones (II)

- Superado por las metodologías OO, pero todavía vigente:
 - educación
 - industria,
 - administración (Métrica 2.1 y 3),
 - cuerpo de conocimiento de ingeniería del software (SWEBOK, SEEK, etc.)
- El control no aparece hasta el final de la especificación estructurada
- No es inmediato el paso a la codificación y prueba ⇒ Diseño estructurado

DFDs - Conclusiones (III)

- Útil para el análisis y para el diseño del nuevo sistema
- Más adecuado para el nivel lógico, aunque también puede ser adecuado para el nivel físico (indicando personas concretas, lugares geográficos, formatos de datos, etc.)

DFDs - Conclusiones (IV)

- Según algunos autores, la aproximación top-down no es la más correcta para analizar los sistemas de información
 - Aunque no es intrínsecamente mala: se puede usar en proyectos pequeños
 - Alternativamente, se puede usar:
 - bottom-up
 - de un nivel intermedio hacia arriba o hacia abajo
 - En proyectos grandes, partición de eventos