

From real neurons to computational units.

PRIMARY VISUAL CORTEX

CONVOLUTIONAL NEURAL NETWORK

Invariant visual representation by single neurons in the human brain

R. Quian Quiroga^{1,2}†, L. Reddy¹, G. Kreiman³, C. Koch¹ & I. Fried^{2,}

It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear¹⁻⁶. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show some degree of invariance to metric properties such as the stimulus size, position and viewing angle^{2,4,7-12}. We have previously shown that neurons in the human medial temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes^{13,14}. Here we report on a remarkable

Figure 1 | A single unit in the left posterior hippocampus activated exclusively by different views of the actress Jennifer Aniston.

Kreiman, G. (2021) Biological and Computer Vision. Cambridge University Press.

 $\label{lem:computer} \mbox{Kreiman, G. (2021) Biological and Computer Vision. Cambridge University Press.}$

 $\begin{array}{c|cccc}
 & 1/4 & 0 & -1/4 \\
1/4 & 0 & -1/4 \\
1/4 & 0 & -1/4
\end{array}$

Kernel 2

Imagen

Feature map 1

Feature map 2

0	0	0	0	0	0	•••
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

$$-498$$

Kernel Channel #3

Output						
-25						
				550.5		

Output

Parámetros a aprender en la capa

Parámetros a aprender en la capa

Parámetros a aprender en la capa

Hiperparámetros de una capa convolucional

Relación entrada/salida

Crédito: Enzo Ferrante, Curso de Aprendizaje Profundo Exactas-UBA

Estructura de una CNN

12	20	30	0	
8	12	2	0	Max pooling 2 x 2
34	70	37	4	
112	100	25	12	

Max pooling

Arquitectura de VGG-16

Kreiman, G. (2021) Biological and Computer Vision. Cambridge University Press.

980: volcano

837: sunglasses

344: hippopotamus

340: zebra

538: dome

372: baboon

380: African elephant

483: castle

positive (excitation)negative (inhibition)

Car Body (4b:491) excites the car detector, especially at the bottom.

Wheels (4b:373) excite the car detector at the bottom and inhibit at the top.

A car detector (4c:447) is assembled from earlier units.

```
1 import torch
   2 import torch.nn as nn
   3 import torch.nn.functional as F
   4 from torchvision import datasets, transforms
   5 from torch.utils.data import DataLoader
   7 class CNN(nn.Module):
         def __init__(self):
             super().__init__()
             self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
 11
             self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
  12
             self.pool = nn.MaxPool2d(2)
 13
             self.fc1 = nn.Linear(64 * 8 * 8, 128)
             self.fc2 = nn.Linear(128, 10)
         def forward(self, x):
             x = self.pool(F.relu(self.conv1(x)))
 17
             x = self.pool(F.relu(self.conv2(x)))
             x = x.view(x.size(0), -1)
             x = F.relu(self.fc1(x))
 19
             return self.fc2(x)
NORMAL test.py [+]
                                               utf-8 | unix | python 11%
                                                                              6:1
```


Menor nivel de detalle

Alto nivel de detalle