График лабораторных работ

1	Генерация последовательности чисел.	
	Стандартные операции с вектором	
2	Основные операторы. Обработка вектора	Инд. задание 1
3	Использование математических функций	Инд.задание 2
4	Построение нескольких графиков в одном	
	окне и многооконный режим	
5	Функции	Инд. задание 3
6	Матрицы. Векторные вычисления apply	Инд.задание 4
7	Датасеты	Инд.задание 5
8	Контрольная работа	

Лабораторная работа №1

Генерация последовательности чисел. Стандартные операции с вектором Содержание

Запустить среду RStudio. Сформировать вектора присваиванием, функциями seq() и c().

```
c(...) — объединяет аргументы в вектор, например c(1, 2, 3)
```

seq(from, to, by =) — генерирует последовательность числел от from до to с шагом by

seq(from, to, len =) — генерирует последовательность числел от from до to длины len

Пример.

seq(10) # Apply seq function
1 2 3 4 5 6 7 8 9 10
seq(3, 10) # seq function from to
3 4 5 6 7 8 9 10
seq(3, 10, 0.5) # seq function by 0.5
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
9.5 10.0

seq(3, 10, length.out = 5) # Sequence of length 5
3.00 4.75 6.50 8.25 10.00

Для вектора вычислить следующие значения функций:

sum(x)	Сумма элементов объекта х								
prod(x)	Произведение элементов объекта х								
max(x)	Максимальное значение из объекта х								
min(x)	Минимальное значение из объекта х								
which.max(x)	Индекс максимального значения объекта х								
which.min(x)	Индекс минимального значения объекта х								
range(x)	Минимальное и максимальное значения								
	объекта х								
length(x)	Число элементов в объекте х								
mean(x)	Среднее значение элементов объекта х								
median(x)	Медиана объекта х								
round(x,n)	округляет элементы х до n знаков после запятой								
rev(x)	перестановка элементов х в обратном порядке								
sort(x)	сортирует элементы х в возрастающем								
	порядке;								
rev(sort(x))	сортировать в убывающем порядке								
rank(x)	выдает классы элементов х								
log(x,base)	вычисляет логарифм x c основным base								
pmin(x,y,)	вектор, в котором i-й элемент минимальный из x [i], y [i]								
pmax (x, y)	вектор, в котором І-й элемент максимальный из х [i], у [i]								
cumsum(x)	вектор, і-й элемент которого является суммой								
	от х [1] до х [і]								
cumprod (x)	вектор, і-й элемент которого является								
	произведением от х [1] до х [і]								
cummin (x)	вектор, і-й элемент которого является								
	минимальным из элементов от х [1] до х [і]								
cummax (x)	вектор, і-й элемент которого является								
	максимальный из элементов от х [1] до х [і]								

Генерация случайных чисел

Для генерации целых чисел в диапазоне [min, max] используется функция sample(x, size, replace = FALSE, prob = NULL), которая в качестве аргументов принимает:

x — целое число (эквивалентно 1:x) или вектор ограничивающий диапазон (например: 5:15);

replace — разрешаются ли повторения; prob — вектор весов распределения, по умолчанию отсутствует (равномерное распределение.)

```
> x3 <- sample(1:10, 1)
> x3
[1] 4

> x4 <- sample(1:10, 5, replace=T)
> x4
[1] 6 9 7 6 5

> x5 <- sample(1:10, 5, replace=F)
> x5
[1] 8 4 3 7 1
```

Для генерации вещественных чисел в диапазоне [min, max] используется функция $\mathbf{runif}(\mathbf{n}, \mathbf{min} = \mathbf{0}, \mathbf{max} = \mathbf{1})$, которая в качестве аргументов принимает:

n — количество генерируемых значений;

size — количество генерируемых значений;

min — нижняя граница диапазона; вещественное конечное число;

max — верхняя граница диапазона; вещественное конечное число.

```
> x1 <- runif(1, 5.0, 7.5)
> x1
[1] 6.715697

> x2 <- runif(10, 5.0, 7.5)
> x2
[1] 6.339188 5.311788 7.099009 5.746380 6.720383 7.433535
7.159988
[8] 5.047628 7.011670 7.030854
```

<u>Пример</u>. Сгенерировать вектор целых случайных чисел размерности 5. Найти сумму чисел.

```
> x <- sample(1:10, 5)
> x
[1] 10 9 5 2 1
> sum(x)
[1] 27
```

<u>Пример</u>. Сгенерировать вектор вещественных случайных чисел размерности 10. Получить новый вектор, каждый элемент которого является суммой элементов исходного вектора от начала до текущего элемента.

```
> x <- runif(10, 5.0, 10.5)
> x
[1] 7.564217 9.482051 7.289200 6.514358 8.472056 5.363189 9.513500 5.852243 7.764644 8.043596
> y=cumsum(x)
> y
[1] 7.564217 17.046268 24.335468 30.849826 39.321882 44.685071 54.198571 60.050814 67.815458
[10] 75.859055
> |
```

Задания

- 1. Сгенерировать вектор целых случайных чисел размерности 10.
- найти произведение элементов вектора
- найти наибольшее значение
- найти номер наименьшего элемента
- найти медиану вектора
- получить новый вектор перестановку элементов в обратном порядке исходного вектора
- получить новый вектор, каждый элемент которого равен наибольшему элементу от начала вектора до текущего элемента.
 - 2. Сгенерировать вектор вещественных случайных чисел размерности 15.
 - Найти наименьший элемент
 - Найти индекс наибольшего элемента
 - Найти среднее арифметическое элементов
- Отсортировать вектор в порядке убывания и вывести значения с округлением до двух знаков после запятой.
- Построить новый вектор, каждый элемент которого является произведением элементов от начала до текущего элемента. Вывести новый вектор с округлением до одного знака после запятой.
- 3. Сгенерировать два вектора целых случайных чисел. Выполнить сложение этих векторов и умножение на константу. С помощью команды plot(x) вывести элементы вектора графически.

- 4. Используя операции целочисленного деления %/% и остатка %% для случайного четырехзначного числа вывести отдельно его цифры.
 - 5. Дано случайное трехзначное целое число. Найти произведение его цифр.

Задания для самостоятельного решения

- 1. Сгенерировать два вектора целых чисел размерности 15. Найти среднее арифметическое суммы этих векторов. Вывести новый вектор сумму исходных векторов в порядке убывания значений элементов.
 - 2. Дано случайное пятизначное число. Вывести сумму его цифр.

Лабораторная работа №2

Операторы языка R

Содержание.

Условный оператор имеет вид.

Краткая форма:

if (условие) выражение

Полная форма:

if (условие) выражение else выражение

Если выражение представлено более чем одной командой, необходимо заключить команды в {}.

Пример.

```
> x=6;y=123

> if (x==y%%10) x=x+1 else x=x-1

> x

[1] 5

> if (x!=y/10%%10) {x=x+y;x}

[1] 128
```

Условная функция

Функция ifelse (условие, yes, no) позволяет получить новое значение для переменной в зависимости от выполнения условия.

<u>Пример</u>. Сгенерировать вектор случайных целых чисел. Получить новый вектор, значения которого – корень квадратный из исходного вектора.

Извлечение корня из отрицательного значения дает NaN, чтобы этого избежать можно использовать условную функцию.

```
> x=sample(-100:100,10)
> z=sqrt(x)
Предупреждение:
B sqrt(x): COЗДАНЫ NAN
> z
    [1] NAN NAN NAN NAN NAN 7.141428 NAN NAN 4.000000 NAN 7.280110
> z=ifelse(x>0,sqrt(x),x)
Предупреждение:
B sqrt(x): COЗДАНЫ NAN
> z
    [1] -84.000000 -23.000000 -52.000000 -1.000000 7.141428 -36.000000 -2.000000 4.000000
[9] -7.000000 7.280110
```

Onepamop цикла for

for (переменная in последовательность) выражение

пока переменная находится в рамках заданной числовой последовательности, выполняется выражение.

Пример. Дано два вектора. Получить новый вектор по заданному правилу.

```
> x=sample(1:100,10)
> x
  [1] 19 94    9 81 45 72 50 98 82 46
> y=sample(1:100,10)
> y
  [1] 84 43 97 87 20 45 12 89 93 51
> for(i in 1:10)
+ { if (x[i]<y[i]) {w[i]=x[i]/y[i]} else {w[i]=x[i]*y[i]} }
> w
  [1] 2.261905e-01 4.042000e+03 9.278351e-02 9.310345e-01 9.000000e+02 3.240000e+03 6.000000e+02 [8] 8.722000e+03 8.817204e-01 9.019608e-01
> |
```

Если указывать только w, то будет формироваться не вектор, а переменная (для первых значений векторов).

```
> x=sample(1:100,10)
> y=sample(1:100,10)
> for(i in 1:10)
+ { if (x[i]<y[i]) {w=x[i]/y[i]} else {w=x[i]*y[i]} }
> w
[1] 0.814433
```

Пример. Найти сумму четных элементов вектора

```
> x=sample(1:100,10)
> x
  [1] 66 53 57 84 8 61 24 79 97 85
> s=0
> for(i in 1:10)
+   if (x[i]%%2==0) s=s+x[i]
> s
  [1] 182
```

Onepamop цикла while

while (условие) выражение

Выражение будет вычисляться пока значение условия False.

Пример. Найти сумму цифр числа.

```
> x=sample(100:9999,1)
> x
[1] 5225
> s=0
> while (x>0)
+ {s=s+x%10; x=x%/%10; s}
> s
[1] 14
> |
```

При работе с векторами удобно использовать функцию, определяющую индекс некоторого элемента. Функция which().

```
<u>Пример</u>. Пусть задан вектор х.

> х

[1] 10 4 7 9 7 8 6 14 10 10 5 8 11 11 20

> length(x)

[1] 15

Определим номера вектора X, большие 10.

> which(x>10)

[1] 8 13 14 15

Если в векторе необходимо найти второй элемент, превосходящий 10, то достаточно указать

> х[13]
```

> X[13] [1] 11 либо > y=which(x>10) > X[y[2]] [1] 11

Пример. Найти в векторе X второй элемент, кратный 5.

```
> x
[1] 10 4 7 9 7 8 6 14 10 10 5 8 11 11 20
> y=which(x\%\%5==0);y
[1] 1 9 10 11 15
> x[y[2]]
[1] 10
```

Дополнительно можно использовать функции which.max() и which.min(), которые находят соответственно номер максимального и минимального элементов вектора.

```
> which.max(x)
[1] 15
> which.min(x)
[1] 2
```

Пример. Найти все элементы вектора, наиболее близкие к 12.

```
> y=which(abs(x-12)==min(abs(x-12)));y
[1] 13 14
И вывести их на экран.
> x[y]
[1] 11 11
```

Задание

- 1. Дано четырехзначное число. Если оно четно, то вывести сумму его цифр. В противном случае определить какая цифра больше: первая или последняя.
 - 2. Дан случайный вектор из 10 целых значений.
 - а. Найти сумму положительных не кратных 5 элементов.
 - b. Найти произведение порядковых номеров элементов с последней цифрой 5.
 - с. Найти номер элемента, имеющего первое нечетное значение
- d. Найти номер элемента, имеющего последнее значение делящееся нацело на 7.
 - 3. Дан случайный вектор из 10 целых значений.
 - а) Найти произведение элементов вектора, оканчивающихся на четную цифру.
- б) Найти сумму элементов вектора, расположенных между первым и последним нулевыми элементами.
 - 4. Дан случайный вектор из 10 целых значений.
- а) Найти сумму элементов вектора, сумма двух последних цифр у которых больше 10.
- б) Найти сумму элементов вектора, расположенных между первым и последним отрицательными элементами.
 - 5. Дано случайное целое число.
 - а. Найти сумму четных цифр.
 - b. Найти наибольшую цифру
 - с. Найти наименьшую нечетную цифру
 - d. Верно ли, что в числе нет цифр 2 и 3?
 - е. Верно ли, что в числе все цифры четные?
 - f. Верно ли, что в числе цифр 5 больше, чем четных цифр?

Задания для самостоятельного решения

- **1.** а) Найти сумму элементов массива, у которых сумма двух последних цифр кратна семи.
- б) Найти произведение индексов элементов массива, расположенных между максимальным по модулю и минимальным по модулю элементами.
- **2.** а) Найти произведение элементов массива, оканчивающихся на нечетную цифру.
- б) Найти сумму элементов массива, расположенных между первым и последним четными элементами.
 - 3. а) Найти минимальный элемент массива, не оканчивающийся на цифру 2.
- б) Найти сумму элементов массива, расположенных после последнего отрицательного

элемента.

- 4. а) Найти максимальный элемент массива, оканчивающийся на цифру 5.
- б) Найти сумму элементов массива, расположенных между первым и последним

четными элементами.

- 5. Дано число. Найти произведение цифр «2» и «5», встречающихся в его записи.
 - 6. Дано число. Верно ли, что в числе есть цифры 3 или 7?
 - 7. Дано число. Верно ли, что в числе все цифры одинаковые?

Лабораторная работа №3

Использование математических функций.

Содержание

Запустить среду RStudio. Сформировать вектор x, a затем сформировать вектор y в соответствии с некоторой заданной функцией. Например:

$$y = \frac{x^2 + 25}{x}$$
 на отрезке [1;10].

```
> x<-seq(1,10,by=0.1)
> y<-(x*x+25)/x
> y
  [1] 26.00000 23.82727 22.03333 20.53077 19.25714 18.16667 17.22500 16.40588 15.68889 15.05789
[11] 14.50000 14.00476 13.56364 13.16957 12.81667 12.50000 12.21538 11.95926 11.72857 11.52069
[21] 11.33333 11.16452 11.01250 10.87576 10.75294 10.64286 10.54444 10.45676 10.37895 10.31026
[31] 10.25000 10.19756 10.15238 10.11395 10.08182 10.05556 10.03478 10.01915 10.00833 10.00204
[41] 10.00000 10.00196 10.00769 10.01698 10.02963 10.04545 10.06429 10.08596 10.11034 10.13729
[51] 10.16667 10.19836 10.23226 10.26825 10.30625 10.34615 10.38788 10.43134 10.47647 10.52319
[61] 10.57143 10.62113 10.67222 10.72466 10.77838 10.83333 10.88947 10.94675 11.00513 11.06456
[71] 11.12500 11.18642 11.24878 11.31205 11.37619 11.44118 11.50698 11.57356 11.64091 11.70899
[81] 11.77778 11.84725 11.91739 11.98817 12.05957 12.13158 12.20417 12.27732 12.35102 12.42525
[91] 12.50000
```

Затем для вектора значений функции вычислить наибольшее, наименьшее значения, среднее значение и сумму. Использовать функции: max(), min(), sum(), mean().

Выполнить различные округления полученных величин, используя функции ceiling(x), floor(x), trunc(x), round(x, dig), signif(x, digits = 6).

Используя команду цикла, найдем количество значений функции равных 10.

```
k=integer(1)
for (i in 1:100)
  if (round(y[i])==10)
  {k=k+1}
k
```

Построить график функции с помощью команды curve. Определить точку x, в которой достигается максимум или минимум функции с помощью цикла. Решить задачу аналитически и сравнить ответ.

Синтаксис функции: curve(функция, начальное значение x, конечное значение x)

```
Например:
```

curve
$$(cos(x*x),1,10)$$

Пример.

Найдите точку максимума функции $y = \sqrt{-6 + 12x - x^2}$. Решение: x<-seq(1,10,by=0.1) y<-sqrt(-6+12*x-x*x) m<-max(y)

```
m
У
k=integer(1)
curve(sqrt(-6+12*x-x*x),1,10)
for (i in 1:100)
  if (y[i]==m) \{k=x[i]\}
k
```

Задание

Сформировать случайный целый вектор х. Построить вектор у по заданной функции.

Для вектора у найти:

- 1. наибольшее/наименьшее значение,
- 2. среднее значение,
- 3. количество элементов вектора у, меньших среднего значения,
- 4. сумму всех элементов вектора у, значение которых лежит в интервале [5,8],
- 5. получить новый вектор z, записав в него квадраты четных (проверяется целая часть) элементов вектора у и удвоенные значения нечетных значений.
- 6. Построить график функции с помощью команды curve. Определить точку х, в которой достигается максимум или минимум функции с помощью цикла. Решить задачу аналитически и сравнить ответ.

Задания для самостоятельной работы

$$y = -\frac{x^2 + 289}{x}.$$
 1. Найдите точку максимума функции

2. Найдите точку минимума функции $y = -\frac{x^2 + 1}{x}$.

3. Найдите точку максимума функции
$$y = \frac{16}{x} + x + 3$$
.

4. Найдите точку минимума функции $y = \frac{25}{x} + x + 25$.

5. Найдите наименьшее значение функции $y = x + \frac{36}{x}$ на отрезке [1; 9].

- **6.** Найдите наибольшее значение функции $y = x + \frac{9}{x}$ на отрезке [-4; -1] .
- **7.** Найдите точку максимума функции $y = -\frac{x}{x^2 + 289}$.
- **8.** Найдите точку минимума функции $y = -\frac{x}{x^2 + 1}$.

Лабораторная работа №4

Построение нескольких графиков

Содержание

Рассмотрим пример построения графиков функции на заданном отрезке.

<u>Пример</u> 1. Использование функции par().

Графики функции необходимо отобразить в шести окнах.

Сначала необходимо выделить окна для вывода графиков. Зададим шесть окон:

Затем укажем вектор х и функцию для у:

$$x = seq(-2*pi, 2*pi, by=0.01)$$

$$y=cos(x)$$

Далее с помощью функции plot выведем различные графики:

plot(x,y,type="l",lty="dotdash",xlab="ось X", ylab="ось У", main="Пример графика",col="blue",fg="red")

plot(x,sin(x),type="p",lty="solid",xlab="ось X", ylab="ось У", main="Пример графика",col="red",fg="red")

plot(x,y,type="b",lty="dashed",xlab="ось X", ylab="ось У", main="Пример графика",col="green",fg="red")

$$y=exp(x)+cos(x)$$

plot(x,y,type="h",lty="longdash",xlab="ось X", ylab="ось У", main="Пример графика",col="blue",fg="green")

plot(x,y,type="s",lty="twodash",xlab="ось X", ylab="ось У", main="Пример графика")

<u>Пример</u> 2. Использование функции screen().

```
par(bg = "white")
split.screen(c(2,1))
окно разбивается на два подокна
split.screen(c(1,3), screen = 2)
нижнее разбивается еще на три
screen(1)
в первом нижнем окне выводится график
plot(cos,-pi,pi)
screen(4)
plot(sin,-pi,pi)
выход из многооконного режима
close.screen(all = TRUE)
> par(bg = "white")
> split.screen(c(2,1))
 > split.screen(c(1,3), screen = 2)
 [1] 3 4 5
 > screen(1)
```

> plot(cos,-pi,pi)
> screen(4)

plot(sin,-pi,pi)

Пример 3. Перемещение между окнами

```
par(bg = "white")
split.screen(c(2,1))
split.screen(c(1,2),2)
```

окно разбили на два, а затем нижнее еще на три части. Активным является первое из трех нижних окон, последнее разбиение. Строим в нем график

```
plot(1:10)
```

хотим добавить название оси у, для этого стираем созданный график и снова его строим

```
erase.screen()
plot(1:10, ylab='')
переходим к первому окну, а затем к четвертому
screen(1)
plot(1:10)
screen(4)
plot(1:10, ylab="ylab 4")
возвращаемся к первому окну, но не стираем его
screen(1, FALSE)
```

plot(10:1, axes=FALSE, lty=2, ylab="")

выход из режима разбиения

close.screen(all = TRUE)

Пример. Функция Contour()

Зададим значения векторов х и у.

$$x \leftarrow y \leftarrow seq(-4*pi, 4*pi, len = 27)$$

и определим на них функцию

разобъем графическое окно на 4 части и зададим размеры отступов

opar <- par(mfrow =
$$c(2, 2)$$
, mar = $rep(0, 4)$)

для различных значений параметра f=i*pi, i от 0 до 3 построим график некоторой функции z

$$contour(cos(r^2)*exp(-r/f),$$

drawlabels = FALSE, axes = FALSE, frame = TRUE)

<u>Пример</u>. Построение различных графиков функций с помощью функции curve().

```
задаем окно и разбиение на 4
   par(mfrow=c(2,2))
   рисуем график 1 и в этом же окне график 2
   curve(x^3-3*x, -2, 2)
   curve(x^2-2, add = TRUE, col = "violet")
   в следующем окне выводим график соз обычный
   plot(cos, -pi, 3*pi)
   затем поверх та же функция соѕ, но с разбиением
               xlim = c(-pi, 3*pi),
    plot(cos,
                                         n =
                                                1001, col = "blue",
add=TRUE)
   отдельно задаем функцию в переменную f1
   f1 <- function(x) sin(cos(x)*exp(-x/2))
   выводим график для f1 в двух окнах разными функциями на разных интервалах
```


Задание

- 1. Используя функции par() и screen() (две отдельные программы) разработать структуру окон с графиками различных типов (должны отличаться, тип и цвет линии, подписи осей и заголовки и т.д.)
 - 2. Используя различные функции z получить шесть окон узора.

Лабораторная работа 5

Функции

Содержание

Полная форма функции содержит оператор возвращения значения – результата функции.

> имя = function(аргументы) {выражения

```
return(значение)
}
Пример. Полная форма
ff1=function(x){
y=sum(x); z=cumprod(x)
return(y)}
ff1(1:10)
Пример краткой формы
ff=function(x){
y=sum(x)
z=cumprod(x)
}
y=ff(1:10); y
Использование функций apply()
Пример. Создадим матрицу X и вычислим суммы по строкам и столбцам
> (X=matrix(1:25,nrow=5))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 6 11 16 21
[2,] 2 7 12 17 22
[3,] 3 8 13 18 23
[4,] 4 9 14 19 24
[5,] 5 10 15 20 25
Найдем сумму элементов по строкам
apply(X,1,sum)
[1] 55 60 65 70 75
И по столбцам
> apply(X,2,sum)
[1] 15 40 65 90 115
В обоих случаях получаем вектора.
```

Применим функцию ко всем элементам матрицы.

```
apply(X,1,sqrt)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.000000 1.414214 1.732051 2.000000 2.236068
[2,] 2.449490 2.645751 2.828427 3.000000 3.162278
[3,] 3.316625 3.464102 3.605551 3.741657 3.872983
[4,] 4.000000 4.123106 4.242641 4.358899 4.472136
```

Вычисляется корень значений, вывод осуществляется по строкам.

[5,] 4.582576 4.690416 4.795832 4.898979 5.000000

```
> X=matrix(1:25,nrow=5)
> apply(X,1,sum)
[1] 55 60 65 70 75
> apply(x,2,sum)
[1]
    15 40 65
                90 115
> apply(X,1,sqrt)
         [,1]
                           [,3]
                  [,2]
                                     [,4]
[1,] 1.000000 1.414214 1.732051 2.000000 2.236068
[2,] 2.449490 2.645751 2.828427 3.000000 3.162278
[3,] 3.316625 3.464102 3.605551 3.741657 3.872983
[4,] 4.000000 4.123106 4.242641 4.358899 4.472136
[5,] 4.582576 4.690416 4.795832 4.898979 5.000000
```

Создадим собственную анонимную функцию:

> apply(X,1,function(x) x^2-x)

```
> apply(X,1,function(x) x^2-x)
     [,1] [,2] [,3] [,4] [,5]
[1,]
                     12
       0
            2
                 6
[2,]
       30
           42
                56
                     72
                          90
               156
[3,]
     110 132
                         210
                    182
[4,]
     240 272
               306 342 380
               506 552 600
[5,]
     420 462
```

<u>Пример</u>. Создадим список, элементами которого являются три вектора: два числовых и один логический.

```
x <- list(a = 1:10, beta = exp(-3:3), logic =
c(TRUE,FALSE,TRUE))</pre>
```

```
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> x
$a
   [1] 1 2 3 4 5 6 7 8 9 10
$beta
[1] 0.04978707 0.13533528 0.36787944 1.00000000 2.71828183 7.38905610 20.08553692
$logic
[1] TRUE FALSE FALSE TRUE
```

```
> sapply(x,sum)
a beta logic
55.00000 31.74588 2.00000
```

<u>Пример</u>. Для двух целочисленных векторов найти количество четных значений. Использовать собственную функцию.

```
sum1=function(x)
{
    k=0
    for (i in 1:10)
    if (x[i]%2==0)    k=k+1
    print (k)
}
sum1(2:11)
x <- list(a = 1:10, beta = 5:15)
sapply(x,sum1)</pre>
```

Задание

- 1. Для целочисленного числа написать функции:
- Количество четных цифр;
- Сумма нечетных цифр;
- Определение наличия в числе цифр 1;
- Проверка совпадения всех цифр в числе.
- 2. Для заданного вектора написать функции:
- Поиск наибольшего четного значения;
- Поиск наименьшего значения, делящегося на 3;
- Вычисление суммы квадратов отрицательных значений;
- Вычисление произведения порядковых номеров значений, не делящихся на 5 или 8;
 - Вычисление суммы значений, порядковые номера которых не делятся на 3.
- 3. Создать матрицу и с помощью функции apply() для строк и столбцов вычислить: наибольшее, наименьшее, среднее значение, медиану, произведение.

Описать и применить собственную функцию, использующую различные математические функции.

- 4. С использованием функции sapply() для трех числовых векторов (целочисленный, два вектора, заданные функцией) вычислить наибольшее/наименьшее значение, среднее значение, медиану, произведение. Используя собственные функции найти:
 - количество элементов вектора, делящихся на 3 и на 5;
 - произведение нечетных элементов векторов;
 - сумму последних цифр элементов векторов;
 - количество элементов векторов, у которых две последние цифры равны.

Задания для самоястоятельного решения (выше, выделены красным)

Лабораторная работа №6

Матрицы

Содержание

Рассмотрим на примерах создание и обработку матриц.

```
> A=matrix(1:12,nrow=3);A
```

[3,] 3 6 9 12 15 18 21 24

Последняя функция приписывает матрицу справа. Аналогично работает функция rbind() приписывая матрицу снизу.

Для задания диагональной матрицы используют функцию diag(x,nrow,ncol).

Также можно задать единичную матрицу:

> diag(nrow=4)

Для редактирования матрицы можно использовать функцию fix(A).

При выполнении арифметических операций над матрицами необходимо соблюдать размерность аргументов.

Пример.

A = matrix(1:9, nrow = 3);A

- [,1] [,2] [,3]
- [1,] 1 4 7
- [2,] 2 5 8
- [3,] 3 6 9

B = matrix(-(1:9), ncol = 3,byrow=T);B

- [,1] [,2] [,3]
- [1,] -1 -2 -3
- [2,] -4 -5 -6
- [3,] -7 -8 -9
- A + B
- [,1] [,2] [,3]
- [1,] 0 2 4
- [2,] -2 0 2
- [3,] -4 -2 0
- > A+3
- [,1] [,2] [,3]
- [1,] 4 7 10
- [2,] 5 8 11
- [3,] 6 9 12
- > B+3
- [,1] [,2] [,3]
- [1,] 2 1 0
- [2,] -1 -2 -3
- [3,] -4 -5 -6
- > (1:3)*A
- [,1] [,2] [,3]
- [1,] 1 4 7
- [2,] 4 10 16
- [3,] 9 18 27

```
> A*(1:3)
```

Применение математических функций применяется поэлементно

Функция outer(x, y, «операция») применяет заданную операцию к каждой паре элементов векторов x и y. Получим матрицу, число строк матрицы длина вектора x, число столбцов – длина вектора y.

>
$$x = 1:5; x$$

```
[1] 1 2 3 4 5
```

$$y = -2:3;y$$

$$[1,]$$
 -2 -1 0 1 2 3

Транспонирование матрицы выполняет функция t(A), а матричное произведение – операция %*%.

$$>$$
 A = matrix(1:9, nrow = 3);

$$>$$
 B = matrix(-(1:9), ncol = 3,byrow=T)

> B%*%A

Для решения системы линейных уравнений Ax=B с квадратной невырожденной матрицей A используется функция solve(A, B).

Функция det(A) находит определитель матрицы A, solve(A) — обратную матрицу.

> det(A)

[1] -4

> solve(A)

[,1] [,2]

[1,] -1 1.00

[2,] 1 -0.75

Дополнительно можно использовать функции:

colSums(X, na.rm) - сумма элементов по столбцам;

rowSums(X, na.rm) - сумма элементов по строкам;

colMeans(X na.rm) - среднее значение по столбцам;

rowMeans(X na.rm) - среднее значение по строкам.

Здесь X — матрица, na.rm — логический аргумент, определяющий нужно ли убирать из рассмотрения NA, по умолчанию FALSE.

> A=matrix(1:12,nrow=3);A

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

- > colSums(A)
- [1] 6 15 24 33
- > rowSums(A)
- [1] 22 26 30
- > colMeans(A)
- [1] 2 5 8 11
- > rowMeans(A)
- [1] 5.5 6.5 7.5

Задания

1. решить системы уравнений:

1.
$$\begin{cases} x + 3y = 7 \\ 2x + 4y = 10 \end{cases}$$
 2.
$$\begin{cases} x - 2y = 5 \\ 3x + y = 8 \end{cases}$$

$$2. \begin{cases} x - 2y = 5 \\ 3x + y = 8 \end{cases}$$

3.
$$\begin{cases} 2x - 3y = 13 \\ 3x + 5y = -9 \end{cases}$$

II подзадача. Представить системы уравнений в матричной форме:

4.
$$\begin{cases} x+3y+2z=5\\ 2x+4y-2z=8\\ 3x-2y-z=0 \end{cases}$$

4.
$$\begin{cases} x+3y+2z=5\\ 2x+4y-2z=8\\ 3x-2y-z=0 \end{cases}$$
5.
$$\begin{cases} x-2y+4z=11\\ 3x+2y+3z=8\\ 2x+5z=11 \end{cases}$$

6.
$$\begin{cases} 2x + 3y + 2z = 1\\ 3x + 2y + 3z = -1\\ 2x + 7y + 4z = -2 \end{cases}$$

Вычислить определители:

1.
$$\begin{vmatrix} 3 & -2 \\ 4 & 6 \end{vmatrix}$$

1.
$$\begin{vmatrix} 3 & -2 \\ 4 & 6 \end{vmatrix}$$
 2. $\begin{vmatrix} 2 & 3 \\ 6 & -10 \end{vmatrix}$ 3. $\begin{vmatrix} 3 & -2 \\ -4 & 5 \end{vmatrix}$ 4. $\begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix}$

$$\begin{bmatrix} 3 & -2 \\ -4 & 5 \end{bmatrix}$$

$$\begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix}$$

21. Даны матрицы $A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$ и $B = \begin{pmatrix} 5 & 0 \\ 1 & -2 \end{pmatrix}$. Найти: а) A + B, б) 2A, в) 2A + 3B, г) 2B - A, д) AB, е) A^2+3E , ж) AB-BA.

1.1. Дано две матрицы:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & -2 & -4 & 5 \end{bmatrix}, \ B = \begin{bmatrix} 1 & -1 & 1 & 2 \\ -2 & 3 & 5 & 6 \end{bmatrix}.$$

Найдите матрицу C = 3A - 4B. В ответ запишите наименьший элемент матрицы C.

1.2. Дано три матрицы:

$$A = \left[\begin{array}{cccc} 2 & -1 & 4 & 5 \\ 3 & 1 & 2 & 4 \end{array} \right], \ B = \left[\begin{array}{cccc} 1 & 4 & 5 \\ 2 & 3 & 4 \\ 5 & 6 & -1 \\ 2 & -1 & 3 \end{array} \right], \ C = \left[\begin{array}{cccc} 1 & 2 & 3 \\ 4 & 5 & 4 \end{array} \right].$$

Какое из произведений $A\cdot B$ или $A\cdot C$ существует? Найдите элемент d_3^2 , стоящий во второй строке и третьем столбце этого произведения.

1.3. Даны матрицы
$$A = \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix}, \ B = \begin{bmatrix} 1 & -3 & -2 \\ 2 & 4 & -1 \end{bmatrix}.$$
 Найдите матрицу $C = A \cdot B$.

1.4. Даны матрицы

$$A = \left[\begin{array}{cc} 2 & -3 \\ 4 & 5 \end{array} \right], \ B = \left[\begin{array}{cc} 1 & 2 \\ -3 & -4 \end{array} \right], \ C = \left[\begin{array}{cc} 4 & -1 \\ 2 & 1 \end{array} \right].$$

Найдите матрицы: а) D = AC + 3BC; б) G = AC + 3CB; в) Q = CA + 3CB. В ответ запишите наибольшие элементы матриц D, G и Q.

1.5. Даны матрицы

$$A = \begin{bmatrix} 2 & -4 \\ 3 & 5 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 7 \\ -3 & -4 & 0 \\ 5 & 2 & 1 \end{bmatrix}, C = \begin{bmatrix} 6 & -3 & 9 \\ 4 & -5 & 2 \\ 8 & 1 & 5 \end{bmatrix}.$$

Найдите матрицу $D = A^T C - 2A^T B^T$. В ответ запишите наименьший элемент матрицы D.

1.6. Найти куб матрицы
$$A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix}$$
.

1.7. Даны матрицы
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 4 & 3 & 1 \end{bmatrix}, \ B = \begin{bmatrix} -3 & 2 & 4 \\ 5 & -6 & 3 \end{bmatrix}.$$

Найдите матрицу C = 2A - 3B. В ответ также запишите сумму элементов матрицы C.

1.8. Даны матрицы
$$A = \begin{bmatrix} -2 & 1 & 3 \\ 5 & 3 & 0 \end{bmatrix}, \ B = \begin{bmatrix} -1 & 0 & 2 \\ -3 & 1 & 4 \end{bmatrix}.$$

Найдите матрицу C = 2B - A. В ответ также запишите сумму элементов матрицы C.

1.9. Даны матрицы
$$A = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 5 & 0 \\ 4 & -3 & 6 \end{bmatrix}, B = \begin{bmatrix} -3 & -1 & 0 \\ 2 & 2 & 4 \\ 5 & -6 & 3 \end{bmatrix}.$$

28

Найдите матрицу C=4A-5B. В ответ также запишите сумму элементов матрицы C.

1.16. Дано произведение матриц

$$\begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 5 \\ 3 & -1 & 6 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix}.$$

Найдите значения x_2, x_3, y_1 .

1.17. Дано произведение матриц

$$\begin{bmatrix} 5 & 2 & -3 & 3 \\ 6 & 4 & -3 & 5 \\ 9 & 2 & -3 & 4 \\ 7 & 6 & -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 & 2 \\ -1 & -5 & 3 \\ 16 & 24 & 8 \\ 8 & 16 & 0 \end{bmatrix}.$$

Найдите следующие элементы матрицы $C: c_2^4, c_3^1, c_1^3$ (верхний индекс – номер строки).

Omeem:
$$c_2^4 = 0$$
, $c_3^1 = -8$, $c_1^3 = 0$.

1.18. Дано произведение матриц

$$\begin{bmatrix} 5 & 2 & -3 & 3 \\ 6 & 4 & -3 & 5 \\ 9 & 2 & -3 & 4 \\ 7 & 6 & -4 & 7 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 & 2 \\ -1 & -5 & 3 \\ 2 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix}.$$

Найдите следующие элементы матрицы C: c_2^1 , c_3^2 , c_1^3 , c_2^4 , c_3^4 (верхний индекс – номер строки).

Лабораторная работа 7

Работа с датасетами. Получение стандартных характеристик

Содержание

Для выполнения работы понадобится подключить следующие пакеты:

library("psych")# описательные статистики

library("lmtest") # тестирование гипотез в линейных моделях

library("ggplot2")# графики

library("dplyr") # манипуляции с данными

Получим описание набора данных по автомобилям cars командой:

help(cars)

Поместим в переменную d встроенный в R набор данных по автомобилям:

d <- cars # этот набор данных находится в базовом пакете datasets

Теперь d имеет тип данных data.frame (набор данных),

Следующей командой можно посмотреть на этот набор данных, в результате чего будут перечислены все переменные и типы данных:

glimpse(d) # функция из пакета dplyr

Результат выполнения команды появится в консоли:

```
> d<-cars
> glimpse(d)
Rows: 50
Columns: 2
$ speed <db7> 4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14~
$ dist <db7> 2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46, 26, 36, 60~
> |
```

Переменные speed и dist имеют тип данных dbl (double) и содержат по 50 наблюдений.

Посмотрим на первые шесть наблюдений набора данных :

head(d)

```
> d<-cars
> glimpse(d)
Rows: 50
Columns: 2
$ speed <db7> 4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14~
$ dist <db7> 2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24, 28, 26, 34, 34, 46, 26, 36, 60~
> head(d)
  speed dist
2
         10
3
4
         22
5
      8
6
>
```

и последние шесть наблюдений: tail(d)

Получим таблицу с описательными статистиками: среднее, мода, медиана, стандартное отклонение, минимум/максимум, асимметрия, эксцесс и т. д.:

> describe(d)

```
> describe(d)
vars n mean sd median trimmed mad min max range skew kurtosis se
speed 1 50 15.40 5.29 15 15.47 5.93 4 25 21 -0.11 -0.67 0.75
dist 2 50 42.98 25.77 36 40.88 23.72 2 120 118 0.76 0.12 3.64
> |
```

Построим гистограмму абсолютных частот для переменной (длины тормозного пути). Воспользуемся функцией qplot, задав источник данных d (аргумент data), переменную для построения графика (dist), подпишем оси (параметры функции xlab и ylab) и название графика (параметр main):

```
library("ggplot2")
```

функция из пакета ggplot2

qplot(data = d, dist, xlab = "Длина тормозного пути (футы)", ylab = "Число авто х")

Построим гистограмму плотности распределения (функция из базового пакета graphics):

hist(d\$dist, probability = TRUE, col="grey")

Построение простого графика на датасет:

```
Becь φραΓΜΕΗΤ:
library("dplyr")
library("psych")
d<-cars
glimpse(d)
head(d)
describe(d)
x<-d$dist
y<-d$speed
plot(x,y,col="blue")
```


Задание

Выполнить приведенную выше последовательность действий: вычисление базовых характеристик и построение различных графиков) с датасетов в соответствии с номером индивидуального задания.

Необходимо оформить отчет о выполнении индивидуального задания, файл (.doc). Титульный лист отчета (ФИО, группа, тема и номер задания, условие индивидуального задания). Отчет должен содержать код программы с комментариями, скрины решения и графики.

Индивидуальное задание 1 «Обработка вектора»

- 1. а) Найти максимальный элемент вектора, не оканчивающийся на цифру 7.
- б) Найти сумму элементов вектора, расположенных до последнего положительного элемента.
- 2. а) Найти минимальный элемент вектора, оканчивающийся на цифру 4.
- б) Найти сумму элементов вектора, расположенных между первым и последним положительными элементами.
- 3. а) Найти номер максимального элемента вектора, не содержащего цифру 5.
- б) Найти произведение элементов вектора, расположенных между первым и вторым нулевыми элементами.
- 4. а) Найти номер минимального элемента вектора, делящегося на 11.
- б) Найти сумму элементов вектора, расположенных между первым и вторым отрицательными элементами.
- 5. а) Найти максимальный элемент вектора, не оканчивающийся на цифры 2 и 3.
- б) Найти сумму элементов вектора, расположенных между первым и вторым положительными элементами.
- 6. а) Найти сумму элементов вектора, произведение двух последних цифр которых больше 15.
- б) Найти сумму модулей элементов вектора, расположенных после первого элемента, равного нулю.
- 7. а) Найти произведение элементов вектора, которые делятся на 3 или на 5.
- б) Найти сумму модулей элементов вектора, расположенных после первого отрицательного элемента.
- 8. а) Найти номер первого подходящего элемента вектора, две последние цифры (двузначное число) которого больше значения первого элемента вектора.
- б) Найти сумму элементов вектора, расположенных после первого четного элемента.
- 9. а) Найти количество элементов вектора, три последние цифры (трехзначное число) которых находится в диапазоне от A до B.
- б) Найти сумму элементов вектора, расположенных после последнего вхождения максимального элемента.
- 10. а) Найти количество элементов вектора, не оканчивающиеся на ноль.
- б) Найти сумму элементов вектора, расположенных после первого вхождения минимального элемент.
- 11. а) Найти количество элементов вектора, произведение двух последних цифр у которых больше C.
- б) Найти произведение элементов вектора, расположенных после максимального по модулю элемента.
- 12. а) Найти количество элементов вектора, не оканчивающихся на цифру 7

- б) Найти сумму модулей элементов вектора, расположенных после минимального по модулю элемента.
- а) Найти количество элементов вектора, сумма трех последних цифр у которых нечетна.
- б) Найти сумму элементов вектора, расположенных после последнего четного элемента.
- 14. а) Найти сумму элементов вектора, сумма двух последних цифр у которых меньше C.
- б) Найти сумму целых частей элементов вектора, расположенных после последнего отрицательного элемента.
- а) Найти произведение элементов вектора, две последние цифр которого не равны 4.
- б) Найти сумму положительных элементов вектора, расположенных максимального элемента.
- 16. а) Найти среднее арифметическое элементов вектора, сумма двух последних цифр которых не делится на 4.
- б) Найти произведение, оканчивающихся на 11, элементов вектора, расположенных после последнего наименьшего элемента.
- 17. а) Найти произведение элементов вектора, две последние цифр которых не 7 и не
- б) Найти среднее арифметическое элементов вектора, не оканчивающихся на 15, расположенных до первого наибольшего элемента.

Индивидуальное задание 2 «Поиск максимума / минимума функции. Построение графика»

Вычислить наибольшее/наименьшее значение функции. Построить график функции

1. Найдите наибольшее значение функции $y = \log_5(4 - 2x - x^2) + 3$.

Ответ: 4

2. Найдите точку минимума функции $y = \sqrt{x^2 + 6x + 12}$.

Ответ: -3

3. Найдите точку минимума функции $y = 7^{x^2+2x+3}$.

Ответ: -1

4. Найдите наименьшее значение функции $y = \sqrt{x^2 - 6x + 13}$.

Ответ: 2

5. Найдите точку максимума функции $y = 11^{6x-x^2}$.

Ответ: 3

6. Найдите точку минимума функции $y = \sqrt{x^2 - 6x + 11}$. Ответ: 3

7. Найдите наименьшее значение функции $y = \log_3(x^2 - 6x + 10) + 2$.

Ответ: 2

8. Найдите наибольшее значение функции $y = \sqrt{5 - 4x - x^2}$.

Ответ: 3

9. Найдите наименьшее значение функции $y = 2^{x^2 + 2x + 5}$.

Ответ: 16

10. Найдите точку максимума функции $y = \log_2(2 + 2x - x^2) - 2$.

Ответ: 1

11. Найдите наибольшее значение функции $\log_{\frac{1}{3}}(x^2+6x+12)$ на отрезке [-19;-1] . Ответ: -1

12. Найдите точку минимума функции $y = \log_5(x^2 - 6x + 12) + 2$.

Ответ: 3

13. Найдите наибольшее значение функции $y = 3^{-7-6x-x^2}$.

Ответ: 9

14. Найдите наименьшее значение функции $y = 7^{x^2-2x+3}$.

Ответ: 49

15. Найдите точку максимума функции $y = \frac{98}{x} + 2x + 15$.

16. Найдите наименьшее значение функции $y = 3x - \ln(x+3)^3$ на отрезке [-2,5; 0].

 ϕ ункции $y = \ln(11x) - 11x + 9$ на **17.** Найлите наибольшее значение

Индивидуальное задание 3 Функции

Для заданного вектора описать и применить функцию. Для результирующего вектора построить график (график должен иметь заголовок, легенду, подписи осей). Содержимое функции соответствует индивидуальному номеру.

- 1. Вычисление факториала для элементов вектора
- 2. Поиск количества четных цифр элементов вектора.
- 3. Поиск количества нечетных делителей элементов вектора.
- 4. Поиск суммы нечетных цифр элементов вектора.
- 5. Поиск суммы делителей, кратных 7 элементов вектора.
- 6. Замена каждого положительного двузначного элемента вектора его корнем.
- 7. Поиск произведения кратных 3 цифр элементов вектора.
- 8. Поиск произведения делителей кратных 11элементов вектора.
- 9. Замена каждого отрицательного трехзначного элемента вектора его квадратом
- 10.Поиск наибольшей четной цифры элементов вектора.

- 11.Определение наличия хотя бы двух делителей кратных 8 у элементов вектора.
- 12.Замена каждого отрицательного элемента вектора значением его синуса, если возможно.
- 13. Поиск наименьшей не кратной 3 цифры элементов вектора.
- 14. Определение более трех делителей, кратных 3 у элементов вектора.
- 15.Замена каждого положительного элемента вектора суммой двух его последних цифр.
- 16. Поиск количества цифр в элементе вектора, не считая цифры 5 и 7.
- 17. Поиск суммы всех цифр в элементе вектора, не считая все 3, 4 и 5.

Индивидуальное задание 4 Матрицы

Соответствие индивидуальных номеров и заданий указано в таблице:

№вар	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	37
	25	26	22	23	36	27	28	29	30	31	32	33	34	35	24
	1.23	2.10	2.11	3.5	3.7	3.8	3.9	3.10	3.14	3.15a	3.15б	3.16.a	3.16б	3.17аг	3.17бв

№вар	16	17		
	19	20		
	21	38		
	39	40		

1. Вычислить определитель

5.
$$\begin{vmatrix} -1 & -2 \\ 5 & -4 \end{vmatrix}$$
 6. $\begin{vmatrix} 3 & -7 \\ 1 & -4 \end{vmatrix}$ 7. $\begin{vmatrix} 1 & 4 \\ -2 & 8 \end{vmatrix}$ 8. $\begin{vmatrix} a & -1 \\ a^2 & a \end{vmatrix}$

6.
$$\begin{vmatrix} 3 & -7 \\ 1 & -4 \end{vmatrix}$$

7.
$$\begin{vmatrix} 1 & 4 \\ -2 & 8 \end{vmatrix}$$

8.
$$\begin{vmatrix} a & -1 \\ a^2 & a \end{vmatrix}$$

11.
$$\begin{vmatrix} 2 & 3 & 2 \\ 0 & 0 & 0 \\ 6 & 7 & 8 \end{vmatrix}$$

12.
$$\begin{vmatrix} -3 & 2 & 4 \\ 4 & 2 & 4 \\ 4 & 6 & 12 \end{vmatrix}$$

13.
$$\begin{vmatrix} 1 & 2 & 5 \\ 3 & -4 & 7 \\ -3 & 12 & -15 \end{vmatrix}$$
 14. $\begin{vmatrix} 12 & 6 & -4 \\ 6 & 4 & 4 \\ 3 & 2 & 8 \end{vmatrix}$ 15. $\begin{vmatrix} 2 & -3 & 1 \\ 6 & -6 & 2 \\ 2 & -1 & 2 \end{vmatrix}$

14.
$$\begin{vmatrix} 12 & 6 & -4 \\ 6 & 4 & 4 \\ 3 & 2 & 8 \end{vmatrix}$$

$$\begin{vmatrix}
2 & -3 & 1 \\
6 & -6 & 2 \\
2 & -1 & 2
\end{vmatrix}$$

16.
$$\begin{vmatrix} 4 & 6 & -2 & 4 \\ 1 & 2 & -3 & 1 \\ 4 & -2 & 1 & 0 \\ 6 & 4 & 4 & 6 \end{vmatrix}$$

16.
$$\begin{vmatrix} 4 & 6 & -2 & 4 \\ 1 & 2 & -3 & 1 \\ 4 & -2 & 1 & 0 \\ 6 & 4 & 4 & 6 \end{vmatrix}$$
17.
$$\begin{vmatrix} 4 & 8 & -4 & 3 \\ 8 & 4 & -2 & 1 \\ -3 & -4 & 2 & 3 \\ 3 & 7 & -3 & 3 \end{vmatrix}$$
18.
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$$

18.
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$$

$$\mathbf{19.}\ P := egin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}\ \mathcal{Q} := egin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 Найти сумму P+Q

$$\mathbf{20.}\ \mathcal{Q} \coloneqq \left[egin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{array}
ight]_{R} \coloneqq \left[egin{array}{ccc} 1. & 1. \\ 2. & 1. \\ 1. & 3. \end{array}
ight]_{H$$
айти $\mathbf{5}^*\mathbf{Q}\mathbf{-4}^*\mathbf{R}$

22. Даны матрицы:
$$A = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$$
 и $B = \begin{pmatrix} -2 & 0 \\ 2 & 3 \end{pmatrix}$. Найти: a) 5A-B; б) 3A'-2B; в) AB.

Найти произведение матриц:

$$23. \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \qquad \qquad 24. \begin{pmatrix} 2 & 0 \\ 0 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -1 \end{pmatrix} \qquad \qquad 24. \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} (3 \ 2 \ 1)$$

25. Вычислить матрицу $D = (AB)' - C^2$, где

$$A = \begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} -28 & 93 \\ 38 & -126 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}.$$

26. Даны матрицы
$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & 4 \\ 1 & 2 & 3 \end{pmatrix}$$
 и $B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$. Найти: а) $A^2 + 2B - 3E$; б) $AB - BA$; в) $(A - 2B)^2$: π ($A - B$) $(A - B)(A + B)$

27. Найти произведение матриц АВС-3Е, где

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 0 & 2 \\ 4 & 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, C = (2 \ 0 \ 5), E - единичная матрица.$$

28. Вычислить
$$A^2$$
, если $A = \begin{pmatrix} 1 & 1 & -1 \\ 3 & -1 & 2 \\ 2 & -1 & 0 \end{pmatrix}$.

29. Найти произведение матриц
$$A = \begin{pmatrix} 1 & -3 & 5 \\ 6 & -5 & 9 \\ 5 & 2 & 2 \end{pmatrix}$$
 и $B = \begin{pmatrix} 4 & -5 & 1 \\ 2 & 7 & -2 \\ 3 & -4 & -2 \end{pmatrix}$.

Найти обратные матрицы для следующих матриц:

$$30. \begin{pmatrix} 1 & -3 \\ 3 & -4 \end{pmatrix} \qquad 31. \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \qquad 32. \begin{pmatrix} 5 & 1 \\ 7 & -3 \end{pmatrix} \qquad 33. \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$34. \begin{pmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{pmatrix} \qquad 35. \begin{pmatrix} 3 & 2 & 2 \\ 1 & -2 & 3 \\ 0 & 1 & -1 \end{pmatrix} \qquad 36 \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{pmatrix} \qquad 37. \begin{pmatrix} 1 & 2 & 3 \\ -3 & -2 & -4 \\ 2 & -1 & 0 \end{pmatrix}$$

38. Вычислить обратную матрицу:

39. Вычислить определитель матрицы
$$\begin{vmatrix} 0 & 1 & -2 \\ -1 & 2 & 3 \\ 2 & 3 & 4 \end{vmatrix}$$

40.

Вычислить определитель матрицы
$$\begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & -1 & -1 & 1 \\ 1 & 2 & 3 & 4 \\ -1 & -1 & 1 & 0 \end{bmatrix}$$

1.23. Даны матрицы

$$A = \left[\begin{array}{ccc} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & 1 & 3 \end{array} \right], \ B = \left[\begin{array}{ccc} 1 & 2 & 4 \\ 5 & 1 & 2 \\ 3 & -1 & 2 \end{array} \right], \ C = \left[\begin{array}{c} 2 \\ 2 \\ -1 \end{array} \right].$$

Найдите матрицы: а) $D = -AC + 2B^TC$; б) $G = C^T 2A^T - 2C^TB$.

2.10. Вычислите определители:

$$D_1 = \left| \begin{array}{cccc} 2 & -1 & 3 & 0 \\ 4 & 1 & 2 & -1 \\ -3 & 0 & 4 & 1 \\ 1 & 1 & 0 & 3 \end{array} \right|, \quad D_2 = \left| \begin{array}{ccccc} -2 & 0 & -1 & -1 \\ 3 & 1 & -2 & 1 \\ 0 & 4 & -1 & 3 \\ 1 & 1 & -2 & 1 \end{array} \right|.$$

$$D_1 = \left| \begin{array}{cccc} 2/3 & 3/8 & -3 & 4 \\ 2/3 & 1/8 & -1 & 2 \\ 2 & 1/4 & 1 & 0 \\ 2/3 & 3/8 & 0 & -5 \end{array} \right|, \quad D_2 = \left| \begin{array}{ccccc} 8/3 & 7/5 & 2/5 & 0 \\ -8/3 & 2/5 & 7/5 & 10 \\ 4/3 & 4/5 & 4/5 & 5 \\ 0 & 4/5 & -3/5 & 2 \end{array} \right|.$$

- 3.5. Докажите, что данная матрица имеет обратную и найдите её. Выполните проверку. a) $\begin{bmatrix} 7 & -8 \\ 5 & -3 \end{bmatrix}$; б) $\begin{bmatrix} -9 & 6 \\ 0 & 2 \end{bmatrix}$.
 - **3.7.** Докажите, что матрица $A = \begin{bmatrix} 7 & -8 & 4 \\ 3 & 1 & -2 \\ c & 5 & 1 \end{bmatrix}$ имеет

обратную. Найдите элементы обратной матрицы: b_3^1 , b_1^2 , b_1^3 .

3.8. Докажите, что матрица

$$A = \begin{bmatrix} 1 & 3 & -5 & -1 \\ 0 & -2 & 3 & 6 \\ 5 & -4 & 2 & 0 \\ -7 & 1 & 5 & 1 \end{bmatrix}.$$

имеет обратную. Найдите элементы обратной матрицы b_2^1 , b_3^2 , b_4^3, b_3^4

3.9. Докажите, что матрица $A = \left[\begin{array}{ccc|c} 3 & -1 & 2 \\ -2 & 1 & 1 \\ 1 & -2 & -3 \end{array} \right]$ имеет обратную A^{-1} и найдите её. Выполните проверку

3.10. Докажите, что матрица
$$A = \left[\begin{array}{ccc} -1 & 8 & 4 \\ 3 & -1 & 2 \\ 0 & -5 & -7 \end{array} \right]$$
 имеет

обратную A^{-1} и найдите её. Выполните проверку.

3.14. Решите матричные уравнения $AX_1=B$ и $X_2A=B,$

если
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}, \ B = \begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}.$$

3.15. Решите матричные уравнения:

a)
$$\left[\begin{array}{ccc} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{array} \right] \cdot X = 3 \left[\begin{array}{ccc} 1 & 2 \\ 1 & 1 \\ 3 & 4 \end{array} \right];$$

6)
$$X \cdot \begin{bmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{bmatrix} = 3 \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 4 \end{bmatrix}$$
.

3.16. Решите матричные уравнения:

$$\mathbf{a}) \left[\begin{array}{ccc} -1 & 2 & 4 \\ -3 & 1 & 2 \\ -3 & 0 & 1 \end{array} \right] \cdot X \cdot \left[\begin{array}{ccc} 3 & -1 \\ 2 & 1 \end{array} \right] = - \left[\begin{array}{ccc} 7 & 21 \\ 11 & 8 \\ 8 & 4 \end{array} \right];$$

6)
$$\begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \cdot X^T \cdot \begin{bmatrix} -1 & 2 & -4 \\ -3 & 1 & 2 \\ 3 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 11 & -7 \\ 13 & 9 & -8 \end{bmatrix}$$
.

 Найдите решения следующих систем линейных уравнений, записанных в матричной форме.

$$\text{a)} \left[\begin{array}{cc} 2 & 3 \\ 4 & -5 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 7 \\ 3 \end{array} \right]; \qquad \text{6)} \left[\begin{array}{cc} 1 & -4 \\ 2 & -3 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} 7 \\ 4 \end{array} \right];$$

$$\mathbf{B}) \left[\begin{array}{ccc} 1 & 2 & 3 \\ 3 & -1 & 4 \\ 1 & 3 & 3 \end{array} \right] \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 3 \\ 13 \\ 1 \end{array} \right];$$

$$\mathbf{r}) \begin{bmatrix} 2 & -1 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

Индивидуальное задание 5 Работа с датасетом

- 1. Загрузить данные для своего варианта в переменную-вектор.
- 2. Получить справочную информацию по своим данным, просмотреть их содержимое, выполнить краткое описание в отчете.
- 3. Создать новую переменную-вектор, в которой будут 1, если значение в исходном векторе больше среднего, и -1, если значение переменной меньше среднего, и 0, если значение равно среднему.
- 4. Вывести описательные статистики
- 5. Построить графики абсолютных частот и плотности распределения.

№ варианта	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Набор данных	CO2		ChickWeight		Orange		airquality		faithful	
Имя переменной (вектора)	conc	uptak e	weight	Time	age	circu mfere nce	Wind	Tem p	eruptio ns	waiting

№ варианта	11	12.	13.	14.	15.	16.	17
Набор данных	ability.cov		ability.cov airmiles austres		Formaldehyde	Formal dehyde	HairEyeC olor
Имя переменной (вектора)	general picture	blocks maze	time series	Numbers	carb	optden	Hair