UJIAN AKHIR SEMESTER MATA KULIAH PRAKTIKUM PENGOLAHAN GAMBAR

Topik Segmentasi

Gambar atau Foto

PENYUSUN LAPORAN

Nama Mahasiswa

NIM

Kelas

Vivie Alifiah Rahmah 062340833202 1 MIN

PROGRAM STUDI MANAJEMEN INFORMATIKA JURUSAN MANAJEMEN INFORMATIKA POLITEKNIK NEGERI SRIWIJAYA 2024 Semester : 1 Tanggal : 08 Januari 2024

Dosen Pengampu : Sulistiyanto, MTI Kelas : 1 MI.N

CP : Mahsiswa/i dapat mengerjakan UAS dengan prosedur yang telah

ditentukan.

Nama Mahasiswa : Vivie Alifiah Rahmah

NIM : 062340833202

TUJUAN

1. Memberikan pemahaman singkat dan padat tentang bagaimana program bekerja dalam membaca, menganalisis tepi, dan melakukan segmentasi warna merah pada gambar.

2. Memberikan gambaran yang jelas dan singkat tentang apa yang dicapai oleh kode yang digunakan dan bagaimana cara kerjanya.

MATERIAL

- 1. Laptop
- 2. Aplikasi Visual Studio Code, Bahasa Pemrograman Python, PIP Numpy,PIP Matplotlib, dan PIP Open Cv.

PROJECT

- 1. Setiap capture gambar, diberi penjelasan
 - a). Gambar 1.1 Mendefinisikan fungsi process_image yang menerima path gambar sebagai argumen.
 - b). Gambar 1.2 Membaca gambar asli dari path yang diberikan.
 - c). Gambar 1.3:
 - Menggunakan deteksi tepi Canny untuk menemukan tepi pada gambar.
 - Mengonversi gambar ke skala abu-abu sebelum deteksi tepi.
 - Mengonversi gambar tepi ke format RGB.
 - d). Gambar 1.4:
 - Mengonversi gambar ke ruang warna HSV.
 - Membuat mask dengan menentukan range warna dari gambar yang digunakan.
 - Mengaplikasikan mask pada gambar asli menggunakan operasi bitwise AND.
 - e). Gambar 1.5:
 - Membuat jendela dengan ukuran 10x5 inch.
 - Menampilkan gambar asli, gambar deteksi tepi, dan gambar hasil segmentasi dalam satu jendela dengan tiga subplot.
 - Menonaktifkan sumbu pada setiap subplot.
 - Menampilkan jendela.

- f). Gambar 1.6 Memanggil fungsi process_image dengan memberikan path gambar 'nama_gambar.jpg' sebagai argumen.
- 2. Tulislah dokumentasi kode python untuk segmentasi dan deteksi gambar
 - a. Process Image

```
def process_image(image_path):
```

Gambar 1.1

b. Membaca Gambar

```
original_image = cv2.imread(image_path)
```

Gambar 1.2

c. Deteksi Tepi

```
edges = cv2.Canny(cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY), 50, 150)
edge_image = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
```

Gambar 1.3

d. Segmentasi

```
hsv = cv2.cvtColor(original_image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, np.array([0, 0, 0]), np.array([10, 400, 255]))
segmented_image = cv2.bitwise_and(original_image, original_image, mask=mask)
```

Gambar 1.4

e. Jendela Output

```
plt.figure(figsize=(10, 5))

plt.subplot(1, 3, 1)
plt.imshow(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB))
plt.title('Gambar Asli')
plt.axis('off')

plt.subplot(1, 3, 2)
plt.imshow(edge_image)
plt.title('Deteksi Gambar')
plt.axis('off')

plt.subplot(1, 3, 3)
plt.imshow(cv2.cvtColor(segmented_image, cv2.COLOR_BGR2RGB))
plt.title('Segmentasi')
plt.axis('off')
```

Gambar 1.5

f. Pemanggilan Fungsi Path

```
process_image('apel.jpg')
```

Gambar 1.6

DOKUMENTASI KODE & HASIL PROGRAM

A. Citra Wajib "apel.jpg":

Gambar 2.1

B. Citra Wajib "apel2.jpg":

Gambar 2.2

C. Citra Wajib "lemon.jpg":

Gambar 2.3

D. Citra Bebas "globe.jpeg":

Gambar 2.4

E. Citra Bebas "tanaman.jpeg":

Gambar 2.5

ANALISIS

1. Membaca Gambar

Gambar asli dibaca menggunakan cv2.imread dari path yang diberikan.

2. Deteksi Tepi

- Menggunakan deteksi tepi Canny (cv2.Canny) untuk menemukan tepi pada gambar.
- Mengonversi gambar ke skala abu-abu (cv2.cvtColor(original_image, cv2.COLOR BGR2GRAY)).
- Mengonversi gambar tepi ke format RGB (cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)).

3. Segementasi

- Mengonversi gambar ke ruang warna HSV (cv2.cvtColor(original_image, cv2.COLOR_BGR2HSV)).
- Membuat mask untuk segmentasi warna sesuai dengan gambar yang digunakan menggunakan cv2.inRange.
- Mengaplikasikan mask pada gambar asli menggunakan operasi bitwise AND (cv2.bitwise and).

4. Jendela Output

- Membuat jendela matplotlib dengan tiga subplot.
- Subplot pertama menampilkan gambar asli.
- Subplot kedua menampilkan gambar deteksi tepi.
- Subplot ketiga menampilkan gambar hasil segmentasi.

5. Menampilkan Jendela Output

Menampilkan jendela matplotlib dengan tiga gambar dalam satu frame.

KESIMPULAN

- 1. Kode Program yang ada didalam laporan ini berfungsi melakukan deteksi tepi dan segmentasi warna sesuai dengan gambar yang digunakan.
- 2. Deteksi tepi membantu mengidentifikasi garis atau kontur pada gambar.
- 3. Segmentasi warna memisahkan objek berwarna dari latar belakang.
- 4. Menampilkan ketiga gambar secara bersamaan memberikan pemahaman visual tentang hasil dari dua proses tersebut.