Automata, Computability, and Complexity

Hamza Bouhelal, Mohamed Reda Arsalane, Mahdi Ouchrahou SHEET #9:

Exercise 1:

We assume that B would be countable. Then, there would exist

f(x)= representation of x in the numerical system of base 2

Each number of our decimal system has a unique representation in an arbitrary numerical system (of base distinct of 10). This fact ensure the function is injective.

Exercise 2:

Let $S = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^r \text{ whenever it accepts } w \}.$

Assume that T is decidable. Then some TM M decides T. We construct TM M' as follows:

M' = "On input x:

- 1. If $x \neq 01$ and $x \neq 10$, reject.
- 2. If x = 01, accept.
- 3. If x = 10 simulate M on w.
- 4. If M accepts w, accept. If M halts and rejects, reject."

If $\langle M, w \rangle \in ATM$ then M accepts w and L(M')={01,10}, so M' \in T.

On the other hand, if $\langle M, w \rangle \notin ATM$ then L(M')={01}, so M' \notin T. Therefore, $\langle M, w \rangle \in ATM$ iff M' \in T, so ATM \leq m T.

Therefore ATM is decidable. Since ATM is undecidable, it must be the case that our assumption that T is decidable is false, so T is undecidable.

Exercise 3:

Prove that A_{DEC} is undecidable:

Assume that TM R is a DECIDER for A_{DEC} .

Construct TM S to decide A_{TM} , as follows:

"On input <M, w>, an encoding of a TM M and a string w:

- 1- Run TM R on input <M, w> to see if M halts on w
- 2- If R accepts (ie M halts on w) simulate M on w until it halts

If the simulation halts in M's Accept state, then S enters its Accept state

If the simulation halts in M's Reject state, then S . enters its Reject state

3- If R rejects (ie M does not halt on w), then S enters its Reject state

Thus TM S decides A_{TM} , but this is a contradiction since A_{TM} is NOT DECIDABLE.

Thus, R can not exist and A_{DEC} is undecidable

Exercise 4:

Show that A is Turing-recognizable if and only if $A \le m$ ATM.

We only need to show recognizable and not decidable. Suppose A is Turing-recognizable. Take machine MA recognizing A.

The following computable function is trivial:

$$f(w) = \langle MA, w \rangle$$

- If $w \in A$, then $f(w) \in ATM$
- If $f(w) \in ATM$, then $w \in A$

Thus $A \leq m ATM$.

Suppose now that $A \le m$ ATM (want to show that A is recognizable). Take the function f computed by M_f where we know:

$$w \in A \Leftarrow f(w) \in ATM$$

We know that ATM is recognizable, so can compute f(w) recognize if $f(w) \in ATM$ and therefore $w \in A$.