# **PCT**

## 世界知的所有権機関 国際 事務 局 特許協力条約に基づいて公開された国際出願



WO99/52973 (51) 国際特許分類6 (11) 国際公開番号 A1 C08J 7/04, B32B 9/00 1999年10月21日(21.10.99) (43) 国際公開日 (21) 国際出願番号 PCT/JP99/01969 (74) 代理人 弁理士 三浦良和(MIURA, Yoshikazu) 〒101-0032 東京都千代田区岩本町2丁目5番12号 サカエビル (22) 国際出願日 1999年4月13日(13.04.99) Tokyo, (JP) (30) 優先権データ AU, CN, KR, NZ, US, 欧州特許 (AT, BE, CH, 1998年4月15日(15.04.98) 特願平10/121835 JP (81) 指定国 特願平11/104523 CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE) 1999年4月12日(12.04.99) (71) 出願人(米国を除くすべての指定国について) 添付公開書類 国際調査報告書 呉羽化学工業株式会社 (KUREHA CHEMICAL INDUSTRY CO., LTD.)[JP/JP] 〒103-0012 東京都中央区日本橋堀留町1丁目9番11号 Tokyo, (JP) (72) 発明者;および (75) 発明者/出願人(米国についてのみ) 大場弘行(OHBA, Hiroyuki)[JP/JP] 田中英明(TANAKA, Hideaki)[JP/JP] 佐藤智明(SATO, Tomoaki)[JP/JP] 長谷川智久(HASEGAWA, Tomohisa)[JP/JP] 雑賀 徹(SAIKA, Toru)[JP/JP] 〒311-3436 茨城県新治郡玉里村大字上玉里18-13 呉羽化学工業株式会社 樹脂加工技術センター内 Ibaraki, (JP)

(54)Title: GAS-BARRIER FILMS

(54)発明の名称 ガスバリヤ性フィルム

### (57) Abstract

A gas-barrier film obtained by applying a layer containing a metal compound to the surface of a molding layer obtained from a mixture of at least one (meth)acrylic polymer selected from the group consisting of poly(meth)acrylic acids and partially neutralized poly(meth)acrylic acids and a polyalcohol; and a laminated gas-barrier film comprising the gas-barrier film and a plastic film laminated thereto on either side. The gas-barrier films each is obtained by a simple method and has improved gas-barrier properties.

# (57)要約

ボリ (メタ) アクリル酸およびポリ (メタ) アクリル酸部分中和物からなる群から選ばれた少なくとも一種のポリ (メタ) アクリル酸系ポリマーとポリアルコール類との混合物からなる成形物層の表面に金属化合物を含む層を塗工してなるガスバリヤ性フィルム及び前記ガスバリヤ性フィルムのいずれかの表面にプラスチックフィルムを積層したガスバリヤ性積層フィルムであって、簡便な方法で得られるガスバリヤ性が向上したガスバリヤ性フィルムが提供される。

1

#### 明細書

#### ガスバリヤ性フィルム

### 技術分野

本発明は、特定ポリマーからなる成形物層表面に金属化合物を塗工してなるガスバリヤ性フィルムに関する。より詳しくは、ポリ(メタ)アクリル酸系ポリマーと糖類等のポリアルコール類の混合物からなる成形物層表面に金属化合物を塗工して得られるガスバリヤ性フィルムに関する。酸素等のガスバリヤ性、特に高湿度雰囲気での酸素ガスバリヤ性に優れたガスバリヤ性フィルムに関するもので、レトルト処理やボイル処理などの殺菌処理用途に好適なものである。

### 背景技術

従来から、プラスチックフィルムのガスバリヤ性を向上させる方法として、プラスチックフィルム内部に無機層状化合物をフィラーとして混入する方法(特開平9-157406号公報)、プラスチック表面に無機化合物を蒸着する方法(特開平4-366142号公報)が開示されている。前者においては、ガスバリヤ性を発現するために多量の無機層状化合物を添加しなければならず、マトリックス樹脂の透明性、機械的強度等の性質が悪化するのを否めなかった。また、後者においては、蒸着薄膜の製膜時、温度条件が高温に設定されるため樹脂層への熱的付加に起因し、樹脂層が軟化するおそれがあるのでポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートやポリイミド等の耐熱性樹脂に使用が制限された。また、ヤング率の低い樹脂は蒸着加工時の抗張力が低く蒸着膜にクラックが入り、ガスバリヤ性が劣化しがちであると云う問題もあった。

さらに、蒸着を行うためには系を真空にせねばならず操作が煩雑、装置が高価等の問題があった。また、特開平8-142256号公報においては、高分子フ

ィルム基材 (A) の少なくとも片面に、無機材料の蒸着膜 (B) 、さらに、該蒸着膜 (B) の上にポリカルボン酸またはその部分中和物と糖類とからなる耐水性フィルム (C) が積層されている積層構造を少なくとも1つ含有する複合フィルムであり、該積層構造の少なくとも一方の側に、乾燥剤を含有するポリマー組成物の層 (D) が配置された防湿複合蒸着フィルムが開示されている。しかし蒸着膜を用いるため、前記と同じ問題点が懸念される。ガスバリヤ性フィルムをより簡便に得る方法が求められていた。

本発明はこのような問題に着目してなされたもので、その目的は簡便な方法で 得られるガスバリヤ性が向上したガスバリヤ性フィルムを提供することである。

# 発明の開示

本発明者らは、ポリ(メタ)アクリル酸およびポリ(メタ)アクリル酸部分中和物からなる群から選ばれた少なくとも一種のポリ(メタ)アクリル酸系ポリマーとポリアルコール類との混合物からなる成形物層の表面に金属化合物を含む層を塗工してなるガスバリヤ性フィルムがかかる課題を解決し得ることを見い出し、本発明を完成するに至った。なお、特開平8-224825号公報にはプラスチックフィルムと金属化合物からなるガスバリヤ性を有する積層体が開示されている。また、特開昭58-128852号公報は、プラスチックフィルムとカルボキシル基含有ポリオレフィンからなるフィルムとを金属化合物を介することにより得られる優れた接着性を有する積層体を開示している。これらの構成はいずれも蒸着あるいはスパッタリングによって形成された連続した金属化合物の層を念頭においたものである。

すなわち本発明の第1は、ポリ(メタ)アクリル酸およびポリ(メタ)アクリル酸部分中和物からなる群から選ばれた少なくとも一種のポリ(メタ)アクリル酸系ポリマーとポリアルコール類との混合物からなる成形物層の表面に金属化合物を含む層を塗工してなるガスバリヤ性フィルム及び、前記のガスバリヤ性フィ

ルムの成形物層の金属化合物を含む層が塗工されていない面が基材表面に固定されているガスバリヤ性フィルムを提供する。また、第1の発明において少なくとも成形物層が熱処理されているガスバリヤ性フィルムを提供する。さらに、第1の発明において金属化合物が酸化マグネシウム、酸化カルシウム、酸化亜鉛、水酸化マグネシウム、水酸化カルシウムおよび水酸化亜鉛の群から選ばれた少なくとも一種の金属化合物であるガスバリヤ性フィルムを提供する。更に、前記第1の発明において金属化合物を含む層が金属化合物と樹脂との混合物の層であるガスバリヤ性フィルム及び殺菌処理用である該ガスバリヤ性フィルムを提供する。本発明の第2は、第1の発明のガスバリヤ性フィルムのいずれかの表面にプラスチックフィルムを積層したガスバリヤ性積層フィルムを提供する。

### 発明を実施するための最良の形態

WO 99/52973

以下、本発明について詳述する。

本発明において、成形物層の表面に塗工する金属化合物を含む層は、金属化合物単独でもよいし、金属化合物を樹脂に混合又は分散させた(以後、「金属化合物と樹脂との混合物の層」と云う)ものでもよい。金属化合物を含む層を塗工するとは、金属化合物単独或いは金属化合物と樹脂との混合物の懸濁液を成形物層の表面に塗布することや噴霧すること、ディッピングにより成形物層の表面に塗布すること、或いは、粉体そのままをパウダリング、噴霧して成形物層の表面に塗布することを意味し、蒸着、スパッタリングによる塗布は含まない。

本発明のガスバリヤ性フィルムに形成される金属化合物を含む層は蒸着および スパッタリングによって形成された連続した金属化合物の層とは表面の粗さの点 で異なり、不連続相であっても、連続相であってもよい。また、金属化合物を含 む層の導入は、以下に示すようにパウダリング、およびその懸濁液を塗布、噴霧 するといった、簡便な方法で実施される。先にも記したように、プラスチックフィルムが耐熱性および高いヤング率を有する樹脂に限定され、操作が煩雑、装置 が高価等の問題を有する蒸着およびスパッタリングによって形成される金属化合 物を含む層の表面平均粗さ(Ra)は、AFM(原子間力顕微鏡)の測定によれば  $0.0002\sim0.002\mu$ m、また、TEM(透過型電子顕微鏡)写真から後述する方法で算出すると、 $0.0001\sim0.002\mu$ mであるのに対し、本発明における金属化合物単独層または金属化合物と樹脂との混合物層のそれは、AFM測定によれば、 $0.003\sim0.03\mu$ m、更に好ましくは  $0.003\sim0.03\mu$ m、更に好まし

さらに金属化合物を含む層をポリ(メタ)アクリル酸系ポリマーとポリアルコール類との混合物からなる成形物層表面に塗工した本発明のフィルムでは、成形物層中に隣接する金属化合物を含む層を塗工することによって、成形物層中に金属が侵入する。これは、後述するがEDX(エネルギー分散型X線分光)法によって確認することが可能であり、その割合(金属原子のカウント数/酸素原子のカウント数)は、金属化合物単独層または金属化合物と樹脂との混合物層と成形物層との界面から成形物層側に  $0.1\mu m$ の深さで  $0.1\sim 20$ 、より好ましくは  $0.5\sim 10$  である。この数値が大きい程、成形物層に金属化合物の存在割合が大きいことを示している。

本発明は、ポリ(メタ)アクリル酸およびポリ(メタ)アクリル酸部分中和物からなる群から選ばれた少なくとも一種のポリ(メタ)アクリル酸系ポリマーとポリアルコール類との混合物を乾燥しフィルム状の成形物層とし、この表面に、金属化合物を含む層を塗工してなるガスバリヤ性フィルム或いは該成形物層の金属化合物を含む層が塗工されていない面が基材層に固定されたガスバリヤ性フィルムに関する。また、成形物層に耐水性及び、さらにある程度のガスバリヤ性を付加する目的で、少なくとも成形物層を熱処理することが好ましい。また、成形物層が金属化合物を含む層或いは金属化合物と樹脂との混合物の層と隣接していることが必要である。

[ポリ (メタ) アクリル酸系ポリマー]

本発明で用いるポリ(メタ)アクリル酸系ポリマーとは、アクリル酸およびメタクリル酸系の重合体であって、カルボキシル基を2個以上含有し、それらのカルボン酸系ポリマーおよびカルボン酸系ポリマーの部分中和物を含めた総称である。ポリ(メタ)アクリル酸は、具体的には、ポリアクリル酸、ポリメタクリル酸、アクリル酸とメタクリル酸との共重合体、あるいはこれらの2種以上の混合物である。また、水及びアルコールなどの溶剤、あるいは水とアルコールの混合溶剤に可溶な範囲でアクリル酸、メタクリル酸とそれらのメチルエステル、エチルエステルとの共重合体を用いることもできる。これらの中では、アクリル酸またはメタクリル酸のホモポリマーや両者の共重合体が好ましく、アクリル酸のホモポリマーやアクリル酸が優位量となるメタクリル酸との共重合体が、酸素ガスパリヤー性の点で、特に好適なものである。ポリ(メタ)アクリル酸系ポリマーの数平均分子量は、特に限定されないが、ハンドリングの問題から好ましくは1,000~4,000,000、さらに好ましくは、2,000~250,000

ポリ (メタ) アクリル酸の部分中和物は、ポリ (メタ) アクリル酸のカルボキシル基をアルカリで部分的に中和する (即ち、カルボン酸塩とする) ことにより得ることができる。アルカリとしては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化アンモニウムなどが挙げられる。部分中和物は、通常、ポリ (メタ) アクリル酸の水溶液にアルカリを添加し、反応させることにより得ることができる。この部分中和物は、アルカリ金属塩またはアンモニウム塩などである。このアルカリ金属塩は一価の金属またはアンモニウムイオンとして成形物層に含まれる。ポリ (メタ) アクリル酸の部分中和物を用いると、成形物層の熱による着色を抑えることがあり得るので、場合によりこれを用いることが望ましい。

ポリ (メタ) アクリル酸とアルカリの量比を調節することにより、所望の中和

度とすることができる。ポリ(メタ)アクリル酸の部分中和物の中和度は、得られるフィルムの酸素ガスパリヤー性の程度を基準として、選択することが好ましい。なお、中和度は、式:中和度(%)=  $(N/N_{\circ}) \times 100$ と定義し、求めることができる。ここで、Nは部分中和されたポリ(メタ)アクリル酸1g中の中和されたカルボキシル基のモル数、 $N_{\circ}$ は部分中和する前のポリメタアクリル酸1g中のカルボキシル基のモル数である。

特開平7-165942号公報の記載によれば、ポリ(メタ)アクリル酸及びポリ(メタ)アクリル酸部分中和物からなる群より選ばれた少なくとも1種のポリ(メタ)アクリル酸系ポリマー(A)とポリアルコール系ポリマー(B)からなる本発明の成形物層に用いられる類のフィルムの酸素ガスバリヤー性は、フィルム作成時の熱処理条件および用いた両ポリマーの混合割合を一定にした場合、用いた(A)の中和度の影響を受けることが分かっている。(A)としてポリ(メタ)アクリル酸を用いた場合と比較して、用いるポリ(メタ)アクリル酸を中和することで、得られるフィルムの酸素ガスバリヤー性は向上する傾向にある。更に中和度を増加すると、フィルムの酸素ガスバリヤー性は極大値(酸素透過度の極小値)を経て低下する傾向にある。中和度が20%を越える場合には、未中和のポリ(メタ)アクリル酸を用いた場合よりもフィルムの酸素ガスバリヤー性は低下するとされている。

従って、酸素ガスバリヤー性の観点から、本発明を構成する成形物層を形成するのに用いるポリ(メタ)アクリル酸系ポリマーは、通常未中和物か中和度20%以下の部分中和物を用いることが望ましい。更に好ましくは、未中和物か中和度15%以下、さらに好ましくは中和度1~13%の部分中和物を用いることが望ましい。

### [ポリアルコール類]

本発明で用いるポリアルコール類とは、分子内に2個以上の水酸基を有する低

分子化合物からアルコール系重合体までを含み、ポリビニルアルコール(PVA)や糖類および澱粉類を含むものである。前記分子内に2個以上の水酸基を有する低分子量化合物としては、グリセリン、エチレングリコール、プロピレングリコール、1,3ープロパンジオール、ペンタエリトリトール、ポリエチレングリコール、ポリプロピレングリコールなどを例示できる。また、PVAはケン化度が通常95%以上、好ましくは98%以上であり、平均重合度が通常300~1500である。また、ポリ(メタ)アクリル酸系ポリマーとの相溶性の観点からビニルアルコールを主成分とするビニルアルコールとポリ(メタ)アクリル酸との共重合体を用いることもできる。糖類としては、単糖類、オリゴ糖類および多糖類を使用する。これらの糖類には、特開平7-165942号公報に記載のソルビトール、マンニトール、ズルシトール、キシリトール、エリトリトール等の糖アルコールや各種置換体・誘導体なども含まれる。これらの糖類は、水およびアルコール、あるいは水とアルコールの混合溶剤に溶解性のものが好ましい。

澱粉類は、前記多糖類に含まれるが、本発明で使用される澱粉類としては、小麦澱粉、トウモロコシ澱粉、モチトウモロコシ澱粉、馬鈴薯澱粉、タピオカ澱粉、米澱粉、甘藷澱粉、サゴ澱粉などの生澱粉(未変性澱粉)のほか、各種の加工澱粉がある。加工澱粉としては、物理的変性澱粉、酵素変性澱粉、化学分解変性澱粉、化学変性澱粉、澱粉類にモノマーをグラフト重合したグラフト澱粉などが挙げられる。これらの澱粉類の中でも、例えば、馬鈴薯澱粉を酸で加水分解した水に可溶性の加工澱粉が好ましい。さらに好ましくは、澱粉の末端基(アルデヒド基)を水酸基に置換することにより得られる糖アルコールである。澱粉類は、含水物であってもよい。また、これらの澱粉類は、それぞれ単独で、或いは2種以上を組み合わせて使用することができる。

ポリ(メタ)アクリル酸系ポリマーとポリアルコール類との混合比(重量比)は、高湿度条件下でも優れた酸素ガスパリヤー性を有する成形物を得るという観点から、好ましくは99:1~20:80、さらに好ましくは95:5~40:60、最も好ましくは95:5~50:50である。

本発明を構成する成形物層の調製と製膜法について述べる。ポリ (メタ) アクリル酸系ポリマーとポリアルコール類との混合物は、各成分を水に溶解させる方法、各成分の水溶液を混合する方法、ポリアルコール類水溶液中でアクリル酸モノマーを重合させる方法、その場合、所望により重合後アルカリで中和する方法などが採用される。ポリ (メタ) アクリル酸と、例えば、糖類とは水溶液にした場合、均一な混合溶液が得られる。水以外に、アルコールなどの溶剤、あるいは水とアルコールなどとの混合溶剤を用いてもよい。

また、成形物に耐水性とさらなるガスバリヤ性を付与する目的で熱処理する場合はその条件を緩和するために両ポリマーの混合溶液調製の際に、水に可溶な無機酸または有機酸の金属塩を適宜添加することができる。金属としてはリチウム、ナトリウム、カリウム等のアルカリ金属を挙げることができる。無機酸または有機酸の金属塩の具体的な例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化ナトリウム、ホスフィン酸ナトリウム(次亜リン酸ナトリウム)、亜リン酸水素ニナトリウム、リン酸ニナトリウム、アスコルビン酸ナトリウム、酢酸ナトリウム、安息香酸ナトリウム、次亜硫酸ナトリウム等が挙げられる。好ましくは、ホスフィン酸ナトリウム(次亜リン酸ナトリウム)、ホスフィン酸カルシウム(次亜リン酸カルシウム)等のホスフィン酸金属塩(次亜リン酸金属塩)の少なくとも一種から選ばれるホスフィン酸金属塩(次亜リン酸金属塩)である。無機酸および有機酸の金属塩の添加量は、両ポリマーの混合溶液中の固形分量に対して、好ましくは0.1~40質量部、さらに好ましくは1~30質量部である。

これらの原料組成物から成形物層を形成する方法は、特に限定されないが、例 えば、混合物の水溶液を金属板、ガラス板およびプラスチックフィルム等の支持 体(基材)上に流延し、乾燥して皮膜を形成させる溶液流延法、あるいは混合物 の高濃度の水溶解液をエキストルーダーにより吐出圧力をかけながら細隙から膜状に流延し、含水フィルムを回転ドラムまたはベルト上で乾燥する押出法、プラスチックフィルムに該水溶液を塗工した後、塗工したフィルムを加熱下で延伸する方法などがある。或いは、複雑な形状をした基材の場合には、基材を原料組成物の溶液の中へ浸すことにより基材表面をコートする方法等がある。このようにして得られた乾燥皮膜を成形物層と称する。これらの製膜法の中でも、特に、溶液流延法(キャスト法、コーティング法)は、透明性に優れた成形物層(乾燥皮膜)を容易に得ることができるため好ましく用いられる。

溶液流延法を採用する場合には、固形分濃度は、好ましくは1~30質量%程度とする。水溶液を調製する場合、所望によりアルコールなど水以外の溶剤や柔軟剤等を適宜添加してもよい。また、予め、可塑剤(但し、分子内に2個以上の水酸基を有する低分子化合物は除く)や熱安定剤、スメクタイト系鉱物等無機層状化合物等を少なくとも一方の成分に配合しておくこともできる。成形物の厚みは、使用目的に応じて適宜定めることができ、特に限定されないが、好ましく0.0~100μm、さらに好ましくは0.1~50μm程度である。

コーティング法では、ポリ(メタ)アクリル酸と例えば糖類の混合物溶液を、エアーナイフコーター、キスロールコーター、メタリングバーコーター、グラビアロールコーター、リバースロールコーター、デイップコーター、ダイコーター等の装置、あるいは、それらを組み合わせた装置を用いて、基材となる金属板、ガラス板、プラスチック等の支持体(基材)上に所望の厚さにコーティングし、次いでアーチドライヤー、ストレートバスドライヤー、タワードライヤー、フローティングドライヤー、ドラムドライヤーなどの装置、あるいは、それらを組み合わせた装置を用いて、熱風の吹き付けや赤外線照射などにより水分を蒸発させて乾燥させ、皮膜(成形物)を形成させる。

次いで、基材上に固定された成形物層表面に、金属化合物を含む層として金属 化合物単独又は金属化合物と樹脂との混合物の層を塗工する。金属化合物を構成 する金属としては、リチウム、ナトリウム、カルシウム、ルビジウム、セシウム 等のアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、 バリウム等のアルカリ土類金属、亜鉛等の酸化数+2の遷移金属が有効である。 また、使用する金属化合物の種類は、金属単体を含み、酸化物、水酸化物、ハロ ゲン化物、炭酸塩等の無機塩、カルボン酸塩、スルホン酸塩等の有機塩、ポリ (メタ) アクリル酸塩等のポリ酸塩等が挙げられる。これらのうちアルカリ土類 金属、或いは酸化数+2の遷移金属の酸化物、水酸化物、炭酸塩が好ましく、さ らに好ましくは、成形物との接着性、ハンドリング性の観点から酸化マグネシウム、酸化カルシウム、水酸化マグネシウム、水酸化カルシウム、酸化亜鉛および 水酸化亜鉛、炭酸マグネシウム、炭酸カルシウムの群から選ばれた少なくとも一 種の金属化合物が用いられる。金属化合物の形状としては粒子状のものが好ましい。

これらの金属化合物を含む層の塗工方法については特に制限はない。金属化合物を含む層が成形物層に隣接していればよい。金属化合物単独の層を塗工する場合には、金属化合物をパウダリングする方法、金属化合物を溶媒に分散させ、その懸濁液をグラビアロールコーター、リバースロールコーター、ディップコーターまたはダイコーター等で成形物層の表面に塗工する方法、懸濁液をスプレー等で噴霧する方法等が、具体例として挙げられる。本発明においては、金属化合物粒子層は必ずしも連続して形成する必要はなく、不連続であっても差し支えない。

懸濁液の溶媒は特に制限されず、水と各種溶媒および各種混合溶媒を使用することができる。溶媒としては、アルコール、脂肪族炭化水素、芳香族化合物から金属化合物の粉体の分散性、塗工性、ハンドリング性等から任意に選ばれる。好ましくは、炭素数10以下のアルコールである。上記金属化合物単独の層の塗工は必ずしも蒸着フィルムの様に全面を覆う必要はないが、金属化合物としての塗工量は好ましくは0.01g~20g/m²、更に好ましくは0.03g~10g/m²、最も好ましくは0.06g~5g/m²である。この範囲を超えると、金

属化合物が飛散して工程上作成不能であり、満たない場合は充分なガスバリヤ性が発現しない。

金属化合物と樹脂との混合物の層の場合は、アルキド樹脂、メラミン樹脂、アクリル樹脂、ウレタン樹脂、ニトロセルロース、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、イソシアネートの群から選ばれた少なくとも一種の樹脂が用いられる。金属化合物と樹脂との重量割合(金属化合物/樹脂)は、0.01~1000、更には0.01~100であることが好ましい。金属化合物と樹脂との混合物は、樹脂の有機溶媒に溶かすか、或いは分散させて分散液、懸濁液として塗布、噴霧することができる。樹脂との混合物として扱うと金属化合物が単独の場合より、より均一に成形物層に塗工できる点で好ましい。分散液、懸濁液にするには、前記金属化合物単独の場合に挙げた溶媒を使用することができる。金属化合物と樹脂との混合物の層の場合の塗工量は金属化合物分として好ましくは0.03g~20g/m²、更に好ましくは0.06g~10g/m²、最もより好ましくは0.06g~5g/m²になるように樹脂との混合物の量を決めればよい。

金属化合物の塗工面の表面平均粗さ(Ra)がAFM測定で $0.003\mu$ mより、TEM写真から算出して $0.003\mu$ mより小さい値は、蒸着やスパッタリングにより達成されるが、使用する樹脂が耐熱性及び高ヤング率を有する等制限されるほか、系を真空にせねばならず操作が煩雑、装置が高価等の問題がある。また、(Ra)がAFM測定で $0.03\mu$ m、TEM写真から算出して $5\mu$ mを超える場合は、成形物層と金属化合物を含む層との接着性が低く、実用的ではない。更に、本発明の金属化合物を含む層を塗工したポリ(メタ)アクリル酸系ポリマーとポリアルコール類との混合物からなる成形物層を含有するガスパリヤ性フィルムや、該ガスパリヤ性フィルムにプラスチックフィルムを積層したガスパリヤ性積層フィルムは、成形物層中に金属原子が存在する。これは後述のように

EDXにより確認可能であり、その割合(金属原子のカウント数/酸素原子のカウント数)は、金属化合物単独層もしくはそれと樹脂を混合させた層と成形物層との界面から深さ0.  $1\mu m$ で0.  $1\sim 20$ 、より好ましくは0.  $5\sim 10$ である。0. 1より小さい場合は十分なガスバリヤ性が発現せず、20より大きい場合は、成形物層の破壊が生じ、やはり十分なガスバリヤ性が発現しない。

基材の面に固定された成形物層の耐水性およびガスバリヤ性の向上を目的として少なくとも成形物層を熱処理することができる。成形物表面に金属化合物を塗工した成形物を特定条件で熱処理してもよいし、成形物を熱処理した後、金属化合物を成形物表面に塗工してもよい。

ここで、基材の面に固定された成形物層とは、成形物層に金属化合物を含む層 が塗工されていないが成形物層が基材に固着されている状態および成形物を基材 の面から剥離できる状態の両方を意味する。基材となる材質は、特に制限がない が、金属板、ガラス板、プラスチックフィルム等が使用可能である。好ましくは、 プラスチックフィルムであり、さらに好ましくはポリエチレンテレフタレート (PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレー ト (PEN) 等のポリエステル樹脂、ナイロン6、ナイロン66、ナイロン12、 ナイロン6・66共重合体、ナイロン6・12共重合体、メタキシリレンアジパ ミド・ナイロン6共重合体、非晶性ナイロンなどのポリアミド、低密度ポリエチ レン、高密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・酢酸ピニル 共重合体、ポリプロピレン、エチレン・アクリル酸共重合体、エチレン・アクリ ル酸塩共重合体、エチレン・エチルアクリレート共重合体、ポリメチルペンテン などのポリオレフィン、ポリ塩化ビニリデン、ポリフェニレンサルファイド等の プラスチックフィルムの中から熱処理温度や使用目的(例えば、殺菌処理用など) に応じて選ばれる。また、成形物層との接着性を向上させるためにアンカー剤を 基材層に塗工してもよい。

熱処理は、特開平8-41218号公報記載の熱処理条件を用いて行う。即ち、ポリアルコール類として糖類が用いられた場合は、好ましくは該成形物を、下記関係式(a)及び(b)で規定する熱処理温度と熱処理時間の関係を満足する条件下で、熱処理する。

- (a)  $\log t \ge -0$ .  $0253 \times T + 11$ . 2
- (b)  $373 \le T \le 573$

[式中、tは、熱処理時間(分)で、Tは、熱処理温度(K)である。]

この熱処理条件を採用することにより、形成された成形物は耐水性を有し、且つ30  $\mathbb C$ 、80 % R H の条件下で測定した成形物の厚さが $2\mu$  m における酸素透過度が $2.0\times10^{-12}$  m o  $1/m^2$ ・s・Pa(400 c  $m^3/m^2$ ・24 h・atm)以下の優れた酸素ガスバリヤー性を有する成形物フィルムを得ることができる。

この熱処理は、例えば、成形物であるフィルムまたは基材とフィルムの積層体、あるいは、金属化合物を含む層が塗工されたこれらの成形物層の表面を所定温度に保持したオーブン中に所定時間入れることにより行うことができる。また、所定温度に保持したオーブン中を所定時間内で通過させることにより、また、熱ロールに接触させることにより連続的に熱処理を行ってもよい。この熱処理により、得られた成形物は、耐水性を有し、且つ高湿度条件下でもより優れた酸素ガスバリヤ性を有する成形物層となる。しかも、この成形物層は水や沸騰水に対して不溶性となり以下に定義したような耐水性を有している。ここで、耐水性であるとは、成形物層を含むフィルムを沸騰水中に30分間浸漬後、乾燥して成形物層の厚さが浸漬前の厚さの50%以上である場合、この成形物は耐水性であるという。

本発明のガスバリヤ性フィルムは強度やシール性を付与するために更に、プラスチックフィルムと積層してガスバリヤ性積層フィルムとすることもできる。積層フィルムとしては、特に制限されるものではないが、紙/ポリエチレンテレフ

タレート層/成形物層/金属化合物層/未延伸ポリプロピレン層、ポリエチレンテレフタレート層/成形物層/金属化合物層/未延伸ポリプロピレン層、ポリエチレンテレフタレート層/成形物層/金属化合物層/直鎖状低密度ポリエチレン層、ポリエチレンテレフタレート層/成形物層/金属化合物層/低密度ポリエチレン層、ポリエチレンテレフタレート層/成形物層/金属化合物層/メタロセン触媒を使用して得られたエチレン系共重合体、ポリエチレンテレフタレート層/成形物層/金属化合物層/メタロセン触媒を使用して得られたプロピレン系共重合体、延伸ナイロン層/成形物層/金属化合物層/全属化合物層/未延伸ポリプロピレン層、延伸ナイロン層/成形物層/金属化合物層/位密度ポリエチレン層、延伸ナイロン層/成形物層/金属化合物層/低密度ポリエチレン層、延伸ナイロン層/成形物層/金属化合物層/メタロセン触媒を使用して得られたエチレン系共重合体、延伸ナイロン層/成形物層/金属化合物層/メタロセン触媒を使用して得られたプロピレン系共重合体、延伸ナイロン層/成形物層/金属化合物層/メタロセン触媒を使用して得られたプロピレン系共重合体等の層構成を有する積層フィルムを挙げることができる。なお、上記金属化合物層は、前記のように金属化合物単独層であってもよいし、又金属化合物と樹脂との混合物層であってもよい。

前記のような積層フィルムを得るには、接着剤層を介し、または介することなく、コーティング法、ドライラミネート法、押出コーティング法などの公知の積層方法により熱可塑性樹脂から形成されたプラスチックフィルムの層を基材表面または金属化合物層を含む層表面のどちらか一方或いは両面に積層すればよい。ドライラミネート法では、基材に固定された成形物層およびそれに塗工された金属化合物を含む層からなるガスバリヤ性フィルムの金属化合物を含む層または基材の他の表面に熱可塑性樹脂から形成されたプラスチックフィルムまたはシートを貼り合わせる。押出コーティング法では、基材層または成形物層に塗工された金属化合物の上に、熱可塑性樹脂を溶融押出して、プラスチックフィルムを積層させ、積層フィルムを形成することができる。

積層フィルムの一方の外層には、積層体から袋等を製造する際、フィルム同士を熱接着する場合を考慮して熱シール、高周波シール、或いは超音波シール可能な材料(シーラント)を使用することが好ましい。熱シール可能な樹脂としては、例えば低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレン・酢酸ピニル共重合体、メタロセン触媒を使用して得られたエチレン系共重合体、メタロセン触媒を使用して得られたプロピレン系共重合体、未延伸ポリプロピレン、エチレン・アクリル酸共重合体、エチレン・アクリル酸塩共重合体、エチレン・エチルアクリレート共重合体等のポリオレフィン、ナイロン6・66共重合体、ナイロン6・12共重合体などのナイロン共重合体などが挙げられる。高周波シール可能な樹脂としては、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン6、ナイロン66などが挙げられる。シールの方法としては、四方シール、三方シール、合掌シール、封筒シール等が挙げられる。

本発明のガスバリヤ性フィルム及びそれから得られたガスバリヤ性積層フィルムは、高湿度雰囲気下における酸素ガスバリヤ性に優れており、ふりかけ、ワイン、鰹節、味噌、ケチャップ、菓子類等酸素等により劣化を受けやすい物品、食品等の包装材料に適している。特に、カレー、シチュー、つゆ、たれ、とうもろこし等のレトルト処理やボイル処理などの殺菌処理を行う食品等の包装材料に好適である。また、これらのフィルム及び積層フィルムを使用する際の形態としては、袋、ケーシング、パウチ、蓋材等が挙げられる。

### 実施例

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。

## [酸素透過度]

酸素透過試験器 (Modern Control 社製、™OX-TRAN 2/20) を用い、30℃、80%相対湿度下で測定した。測定結果から次式により、成形物層(金

16

属化合物を含む)の酸素透過度を算出した。

1/Protal=1/Psample+1/Pbase

P total:測定結果

Phase: 基材フィルムの酸素透過度

Psample:成形物層(金属化合物を含む層を含む)の酸素透過度

### [耐水性]

基材に固定された成形物層を含む10cm×10cm角の試料フィルムを沸騰水中に30分間浸漬し、浸漬前後の成形物層の厚さから、以下のように成形物の耐水性を評価した。

沸騰水中に浸漬前のフィルムの厚さを(Ta) $\mu m$ 、浸漬後乾燥した後のフィルムの厚さを(Tb) $\mu m$ 、基材層の厚みを(Tc)としたとき、次式;

(Ta-Tb)  $/ (Ta-Tc) \leq 0$ . 5を満たすとき、耐水性があるとし、表中〇とした。前式を満たさないとき、耐水性がないとし、表中×とした。

# [表面平均粗さ(Ra)]

次の2通りの方法があり、試料の形態により適した測定方法で測定した。金属化合物または金属化合物混合樹脂の表面が露出可能な場合(実施例1~18及び比較例1~10)は、AFM測定によるRa求め、積層体などのように断面観察が可能な場合は、TEMによって測定したRaを求めた。この場合、成形物に塗工された金属化合物を含む層の断面と基材層の断面の二つの面があるが表面平均粗さの大きい方を採用した。

実施例 $1\sim18$ 及び比較例 $1\sim10$ についてはAFM法測定結果を、実施例 $19\sim58$ については、AFM法、TEM法両方の測定結果を示した。

AFMで測定したRa:金属化合物層または金属化合物混合樹脂層の表面平均 粗さ 蒸着層、金属化合物を含む層または金属化合物混合樹脂層の表面を走査型プローブ顕微鏡(セイコー電子工業(株)製、SP13800Dシリーズ)のAFM(原子間力顕微鏡)で測定した。測定モードは、サイクリックコンタクトモードであり、測定範囲は $2\,\mu\,m\times2\,\mu\,m$ 、倍率は $4\,\pi$ 倍とした。この画像から任意に $1\,0\,$ 断面のRa( $\mu\,m$ )を抽出し平均した。

TEM (透過型電子顕微鏡) で測定したRa: 積層体の断面観察から求める表面平均粗さ

積層フィルムをエポキシ樹脂に包埋後、クライオミクロトームで極薄切片を作成後、TEMで観察した。測定倍率は、蒸着断面は140万倍、金属化合物層または金属化合物混合樹脂層断面は4万倍とした。なお、試料フィルムは、いずれもレトルト処理前のものを使用した。

得られた像からJIS B0601に従い、以下の式によりRa ( $\mu$ m)を算出した。但し、平均線の位置は、測定断面中の最も高い凸部と最も低い凹部の平均値とした。又、測定範囲は蒸着断面は0.06 $\mu$ m、金属化合物層または金属化合物混合樹脂層断面は2.5 $\mu$ mとした。

$$R a = 1 / \int_{0}^{\ell} |f(x)| dx$$

$$\ell$$
:基準長さ (mm)  $\int_{0}^{\ell}$  :インテグラル (積分区間 0  $\sim$   $\ell$ )

[成形物層内の金属化合物存在比]

TEM-EDXを使用し測定した。

試料極薄切片に電子線を照射し、そこから発生するX線の波長により、元素の種類とその量を特定することにより成形物層中の深さ方向の金属原子の存在量の定量を行った。試料は、レトルト処理前の物を使用した。

装置:TEM:透過型電子顕微鏡(日立製作所(株)製、HF-2000)

EDX:エネルギー分散型X線分光器 (NORAN社製、VOYAGER III M3100)

18

X線検出器:Si/Li半導体検出器

ビーム径 :約100mm o

取り込み時間:50秒

得られた成形物層中に含まれる金属原子のカウント数を酸素原子のカウント数で除し、金属化合物存在比とした。

#### (実施例1~3)

ポリアクリル酸 (PAA) (東亞合成 (株) 製、30℃における粘度8,000~12,000センチポイズ、数平均分子量150,000) の25重量%水溶液を用い、蒸留水で希釈して15重量%の水溶液を調製した。このPAA水溶液に、PAAのカルボキシル基のモル数に対し計算量の水酸化ナトリウム (和光純薬工業 (株) 製、一級)を添加し、溶解させて中和度5%の部分中和PAA水溶液を得た。この水溶液に、さらに、PAA固形分100重量部に対し2重量部のホスフィン酸ナトリウム一水和物 (和光純薬工業 (株) 製、特級)を添加し、部分中和ーホスフィン酸ナトリウム添加PAA水溶液を調製した。

別に、溶性澱粉(和光純薬工業(株)社製、一級:馬鈴薯澱粉を酸により加水 分解処理したもの)の15重量%水溶液を調製した。上記のように調製した部分 中和一ホスフィン酸ナトリウム添加PAA水溶液と澱粉水溶液を種々の重量比で 混合し、混合物の水溶液(濃度15重量%)を得た。

この水溶液を、卓上コーター(RK Print-Coat Instruments社製、K303 PROOFER)を用い、メイヤーバーで延伸ポリエチレンテレフタレートフィルム(PET)(東レ(株)製、ルミラーS10:厚さ12 $\mu$ m)基材上に塗工した。次いでドライヤーで水分を蒸発させ、厚さ2 $\mu$ mの乾燥皮膜を得た。

粒径 0.01μmの酸化マグネシウム (MgO) (和光純薬工業(株)製)をエチルアルコール (和光純薬工業(株)製、特級) に懸濁させ濃度 5 7 g/リットルのMgOのエチルアルコール懸濁液を調製した。この懸濁液を前記塗工方法と同様の方法で乾燥皮膜に塗工した。次いで、この乾燥皮膜にMgOを塗工した延

WO 99/52973 PCT/JP99/01969

伸PETフィルムをビニールテープで厚紙に固定し、オーブン中で180℃で15分間熱処理した。乾燥皮膜にMgOを塗工し、熱処理して得たフィルムは、本発明で定義した耐水性を示した。得られた各耐水性フィルム(厚さ $2.5\mu m$ 、MgO堆積層厚さ $0.5\mu m$ )について、金属化合物の塗工条件、熱処理条件、耐水性試験および酸素透過度の測定結果を以下の実施例および比較例の測定結果と共に表1に示した。

### (実施例4)

実施例1~3の溶性澱粉に代えてポリビニルアルコール (PVA) (クラレ (株) 製、ポパール105:重合度500,ケン化度98%以上)を使用した。部分中和-ホスフィン酸ナトリウム添加PAA水溶液とPVA水溶液を70:30(重量比)で混合し、濃度15重量%の混合物水溶液を調製した。その他は実施例1と同様に行い、耐水性フィルムを得た。

#### (実施例5)

実施例1~3の溶性澱粉に代えて糖アルコール(東和化成工業(株)製、PO20)を使用した。部分中和-ホスフィン酸ナトリウム添加PAA水溶液と糖アルコール水溶液を70:30(重量比)で混合し、濃度15重量%の混合物水溶液を調製した。その他は実施例1と同様に行い、耐水性フィルムを得た。

### (実施例6~9)

酸化マグネシウムの懸濁液を調製する際、アルコール類としてn-ブチルアルコール(和光純薬工業(株)製、特級)(実施例6)、カルボン酸類として酢酸(和光純薬工業(株)製、特級)(実施例7)、エステル類として酢酸エチル(和光純薬工業(株)製、1級)(実施例8)、芳香族化合物類としてトルエン(和光純薬(株)製、1級)をそれぞれ用いた。その他は実施例5と同様に行い、耐水性フィルムを得た。

#### (実施例10および11)

酸化マグネシウムに代えて、水酸化カルシウム(和光純薬工業(株)製、1級) (実施例10)、酸化亜鉛(和光純薬工業(株)製)(実施例11)を用いた。そ

の他は実施例2と同様に行い、耐水性フィルムを得た。

(実施例12および13)

基材フィルムを延伸ナイロン(O-Ny)(ユニチカ(株)製、エンブレム、厚さ $15\mu$ m)(実施例12)、および未延伸ポリプロピレンフィルム(CPP)(東レ合成フィルム(株)製、トレファン2K93K、厚さ $70\mu$ m)(実施例13)をそれぞれ用いた。熱処理時間を表1の様に変えた他は実施例2と同様に行い、耐水性フィルムを得た。

(実施例14~18)

表1に示した条件で実施例1と同様にして耐水性フィルムを得た。即ち、Mg Oの濃度27g/リットルのエタノール懸濁液を園芸用スプレーにより成形物層にスプレーした(実施例14)、乾燥皮膜を熱処理した後、Mg Oのエタノール 懸濁液をメイヤーバーで塗工した(実施例15)、Mg Oの水懸濁液をメイヤーバーで塗工した(実施例15)、Mg Oの水懸濁液をメイヤーバーで塗工した(実施例16)、Mg O粉体をニッカスプレーK-III(ニッカ (株)製)で直接噴霧した(実施例17)、実施例1で得た耐水性フィルムを流水で約20秒間洗浄した(実施例18)。

(比較例1~10)

表 1 に示した条件で実施例  $1 \sim 3$  と同様にしてフィルムを得た。 得られたものの耐水性、酸素透過度、表面平均粗さ R a を表 1 に示した。 (以下、この頁は余白である。)

| 太1                                                                                          |          |           |          |          |          |          |               |          | 97.57    | _                                     | お子され     | 1000      |              |
|---------------------------------------------------------------------------------------------|----------|-----------|----------|----------|----------|----------|---------------|----------|----------|---------------------------------------|----------|-----------|--------------|
|                                                                                             |          | 4. 大多面数   | 数加强      |          | を存る      | 的体の強工条件  |               |          | 数似桩      |                                       | 五分五      | <b>大学</b> |              |
|                                                                                             | #        | 紀今十       | 海带/屁     | 世間地      | 方法       | 種類       | 裕傑            | œ.       | 温度/時間    | 一級鸟斯                                  |          | 戏调及       |              |
|                                                                                             | <u> </u> | 「和略子)     |          |          |          | •        |               | 8/m      | C . min. |                                       |          |           | 000          |
| - W                                                                                         | 400      | 00/00     | ,<br>,   |          | ージーキアメ   | MgO      | EtOH          | 90.0     | 180 15   | ı'                                    | 0        | 0.3       | 0.00         |
| 米配列 1                                                                                       | <u> </u> | 07/00     |          |          | - '      | ,        | ,             | =        | 160 30   | 1                                     | 0        | 4.0       | 0.003        |
| 実施例2                                                                                        |          | 70/30     | ı        |          | =        |          | : 1           |          | 100 15   |                                       | C        | 9.0       | 0.00         |
| 研権を3                                                                                        | =        | 60/40     | 1        | ,        |          |          | -             | •        | CI 001   |                                       | )(       |           | 900          |
| 28 ± K                                                                                      |          | 70/30(*1) | ,        |          | =        | *        | *             | =        | =        | 1                                     | )<br>_   | 0.0       |              |
| 米配24                                                                                        |          | 70,00     |          |          |          | te       |               | Þ        | " "      | ı                                     | 0        | 4.0       | 0.00         |
| 実施例5                                                                                        | E        | .06/0/    |          | 1        | =        | . 1      | D+0#          |          | n n      | ,                                     | C        | 0.4       | 0.00         |
| 実施例6                                                                                        |          | 20/30     | 1        |          |          |          | uonali<br>X7X | : 1      | : 1      | <u> </u>                              | )(       | 0.4       | 0.00         |
| 田祐盛7                                                                                        |          |           | '        | ,        |          | •        | 肝酸            | =        | =        |                                       | )(       |           | 600 0        |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                       |          | *         | 1        | 1        | E        |          | 酢酸エチル         | 2        | *        |                                       | )<br>    |           |              |
| 米号での                                                                                        | :        |           | 1        |          |          | *        | トルエン          |          | =        | 1                                     | <b>O</b> | 4.0       | 0.00         |
| 米配約9                                                                                        | <b>E</b> | •         | 1        |          | : 1      | Ca(AH)   | P+OH          |          |          | ,                                     | 0        | 0.1       | 0.015        |
| 実施例10                                                                                       | 2        | 2         |          |          | =        | 20010    |               |          | 2        | 1                                     | C        | 1.5       | 0.015        |
| 部施例11                                                                                       | 12       |           |          |          |          | OU7      |               | - 1      | 100      |                                       | )(       | «<br>C    | 0.00         |
| 一种特色12                                                                                      | O-N      | *         | '        |          |          | Mg0      | =             | <b>.</b> | 100 170  | 1                                     | )(       | 9 0       | 600          |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 900      |           | ,        | 1        | u        | *        | *             | =        |          | ı                                     | )(       | 9.        | 2000         |
| 米島PJIS                                                                                      | - 6      | : 1       | ,        | ,        | メプレー     |          | *             | 0.20     | 180 15   | ı                                     | ) C      | 4.0       | 0.013        |
| 天他7014                                                                                      | 3        | •         | 100      | L        | 1,11477  | =        |               | 90.0     | " "      | 1                                     | Э<br>—   | 0.3       | 0.00         |
| 実施例15                                                                                       | =        | E.        | 201      |          |          |          | ¥             | . *      | 1        |                                       | 0        | 4.0       | 0.00         |
| 実施例16                                                                                       | Ŀ        | *         | 180      | <u>-</u> |          | <b>.</b> | <b>*</b>      | 6        | 180 15   | ,                                     | C        | 9.0       | 0.012        |
| 実施例17                                                                                       | 2        | E         | 1        |          | パウダリング   | •        | 1010          | 3 6      | 3        | · · · · · · · · · · · · · · · · · · · | C        | 0.4       | 0.005        |
| 宇施例18                                                                                       |          | n         | '        |          | イイヤーバー   |          | rrnu<br>Frnu  | 3        | 1001     | 1,4,4,7                               | C        | 11.0      | 0.0004       |
| 比較例 1                                                                                       | -        | 80/20     | 1        | 1        | ı        | ı        | 1             | 1        | CT 001   | 1                                     | ) C      | 0.9       | 0.0004       |
| 比較倒2                                                                                        | =        | 70/30     | ,        |          | 1        | 1        | ı             | 1        | : :      | ı                                     | ) C      | C C       | 0.0004       |
| 上数应3                                                                                        |          | 60/40     | 1        | 1        | ı        | ı        | 1             | 1        | 160 20   | 1                                     | C        | 0.00      | 0.0004       |
| 上校室 4                                                                                       |          | 70/30(*1) | ·<br>!   |          | ı        | 1        | 1             | i        | 001      |                                       | )C       | 9 6       | 0.0004       |
| 子校室の                                                                                        | =        | 70/30(*2) | ·<br>•   | 1        | ı        | ١,       | 1             | , ;      | 001      |                                       | )(       | 9 6       | 000          |
| 大校院の子校院の                                                                                    |          | 70/30     | '        | ,        | ージーキナメ   | Ti02     | EtOH          | 90.0     | =        | ı<br>                                 | )(       | 9 6       | 30           |
| 14420                                                                                       | : 2      | 20/30     |          |          |          | A1(0H)3  | 2             | E        | *        | 1                                     | )(       |           | 20.0         |
| LEX DI                                                                                      | . :      | 3         | 1        | -        | ı        | 1        | 1             | ì        | 180 15   | 1                                     | о<br>—   | 380       | ************ |
| 九数室8                                                                                        | O-Ny     | <b>L</b>  | 1        |          | 1        | 1        | 1             | 1        | 180 15   | 1                                     | 0        | 380       | 0.0004       |
| <b>北較包</b> 9                                                                                | CPP      | =         |          |          | 4        | ΚαΟ      | RtOH          | 90.0     | 180 15   | 1                                     | 0        | 0.9       | 0.00         |
| 比較例10                                                                                       | EVOH     | 80/20     | <u>.</u> |          | 71 7 1 7 | MEV.     |               |          |          |                                       |          |           |              |

70/30(\* 1):PAA/PVA=70/30 70/30(\* 2):PAA/糖アルコール=70/30 酸素透過度 \* 3:単位 (cm³/m²・24h・atm)、30℃、80%RH

実施例  $19\sim58$  は以下の点を除き、基本的には実施例  $1\sim18$  に準じて行った。 Mg O 塗工した試料フィルムを作成後、Mg O 塗工面に東洋モートン(株) 製接着剤 TM -590、硬化剤 CAT -56 を介し、東レ合成フィルム(株)製、無延伸ポリプロピレンフィルム(CPP) ZK 93 K(厚み 70  $\mu$  m)をドライラミネートした。接着剤の厚みは 3  $\mu$  m とした。得られたフィルムは、全てレトルト処理を行った。レトルト処理はトミー工業(株)製オートクレープBS -325 を使用して 120 ℃、20 分間行った。

### (実施例19)

実施例1の溶性澱粉の種類を東和化成工業(株)製、PO20に替えたこと、部分中和-ホスフィン酸ナトリウム添加PAAとPO20の組成比を80:20から90:10に替えたこと、及び熱処理をギヤーオープンで180℃、15分から熱風により230℃で30秒間に替えたこと以外は、実施例1と同様に行った。得られたフィルムは120℃、20分間のレトルト処理を行った。

#### (実施例20)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20の組成比を90:1 0から80:20に替えた以外は実施例19と同じに行った。

#### (実施例21)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20の組成比を90:1 0から70:30に替えた以外は実施例19と同じに行った。

#### (実施例22)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20の組成比を90:1 0から60:40に替えた以外は実施例19と同じに行った。

#### (実施例23)

実施例21のPO20の代りに実施例4と同様のポリピニルアルコール(PVA)を使用したこと以外は、実施例21と同様に行った。

## (実施例24)

PO20の代わりに、ポリアルコールとして和光純薬工業(株)製、一級溶性

澱粉を用いた以外は、実施例20と同様に行った。

(実施例25)

PO20の代わりに、ポリアルコールとして和光純薬工業(株)製、一級ソルビトールを用いた以外は、実施例20と同様に行った。

(実施例26)

PO20の代わりに、ポリアルコールとして和光純薬工業(株)製、一級グリセリンを用いた以外は、実施例22と同様に行った。

(実施例27)

熱処理の順序を変えた以外は、実施例20と同じに行った。実施例20では、 部分中和ーホスフィン酸ナトリウム添加PAAとPO20からなる乾燥皮膜を熱 処理した後にMgOのエチルアルコールの懸濁液を塗工したが、ここでは乾燥皮 膜にこの懸濁液を塗工した後に熱処理をした。

(実施例28)

熱処理をギヤーオープンで160  $\mathbb{C}$ 、15 分間に変えた以外は実施例21 と同様に行った。

(実施例29)

熱処理をギヤーオーブンで160  $\mathbb{C}$ 、15 分間に変えた以外は実施例26 と同様に行った。

(実施例30)

MgOを和光純薬工業(株)製、水酸化マグネシウム、Mg(OH)₂に替えたことを除いて実施例20と同じに行った。

(実施例31)

Mg○を和光純薬工業(株)製、水酸化カルシウム、Ca(OH)₂に替えたことを除いて実施例20と同じに行った。

(実施例32)

MgOを和光純薬工業(株) 製、酸化亜鉛、粒径0.02μmに替えたことを 除いて実施例20と同じに行った。

#### (実施例33)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20からなる水溶液をPETに塗工する代わりに、二軸延伸ナイロンフィルム(ユニチカ(株)製、エンプレム、ナイロン6、厚さ $15\mu$ m)に塗工したこと及び熱処理条件を熱風により180  $\mathbb{C}$ 、30 秒としたことを除き、実施例20 と同じに行った。

#### (実施例34)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20からなる成形物層の 厚みを $2\mu$ mから $1\mu$ mに変えたことを除き、実施例20と同じに行った。

#### (実施例35)

MgOのエチルアルコールの懸濁液の濃度を57g/リットルから5g/リットルに変えたことを除き、実施例20と同じに行った。

#### (実施例36)

MgOのエチルアルコールの懸濁液に代え、MgOと樹脂の混合溶液を部分中和ーホスフィン酸ナトリウム添加PAAとPO20からなる成形物層に塗工したことを除き、実施例20と同じに行った。

この混合溶液の詳細は以下の通りである。樹脂は、東洋モートン(株)製、ポリエステル系樹脂 AD335AE、硬化剤は同社製イソシアネートCAT-10を使用し、両者をそれぞれ10:1の割合で混合した。この樹脂混合物をトルエン/酢酸エチルの混合溶媒(重量比1/1)で希釈し、不揮発分濃度10重量%の樹脂溶液を調製した。次いで、この溶液に、実施例2で用いた酸化マグネシウムを混合した酸化マグネシウム/樹脂の重量割合が1/1の溶液を調製した。樹脂混合物の塗工厚みは0.2 $\mu$ mとした。こうして得られた積層フィルムを、40 $\infty$ 、80%RHで3日間、調湿した。

### (実施例37)

酸化マグネシウム/樹脂の混合割合を1/1から0.5/1に替えたことを除き、実施例36と同じに行った。

## (実施例38)

樹脂をAD-335AE、硬化剤を東洋モートン(株)製、CAT-10の混合樹脂の代わりに、東洋モートン(株)製ポリエステル系樹脂TM-225AE、硬化剤イソシアネートTM-225Bに代え、樹脂混合割合を重量比で16:1とし、酢酸エチルで希釈し、樹脂溶液の揮発分濃度を10重量%としたことを除き、実施例36と同じに行った。

### (実施例39)

MgOと樹脂の混合割合を1/1から0.5/1にしたことを除き、実施例38と同じに行った。

### (実施例40)

ポリアルコールをPO20から実施例4で使用したのと同じポリビニルアルコール (PVA) を使用し、部分中和-ホスフィン酸ナトリウム添加PAAとPVAとの混合比を70:30としたことを除き、実施例36と同じに行った。

### (実施例41)

ポリビニルアルコールをPO20から実施例1と同様の溶性澱粉を使用し、部分中和-ホスフィン酸ナトリウム添加PAAとPVAとの混合比を80:20としたことを除き、実施例36と同じに行った。

#### (実施例42)

ポリビニルアルコールをPO20から実施例25と同様のソルビトールを使用し、部分中和-ホスフィン酸ナトリウム添加PAAとPVAとの混合比を80:20としたことを除き、実施例36と同じに行った。

### (実施例43)

ポリアルコールをPO20から実施例26で使用したのと同じグリセリンに代え、部分中和ーホスフィン酸ナトリウム添加PAAとグリセリンとの混合比を60:40としたことを除き、実施例36と同じに行った。

## (実施例44)

Mg〇のエチルアルコールの懸濁液に代え、酸化亜鉛微粒子ポリエステル系樹脂の重量比(金属化合物/樹脂)を1.5/1とした酸化亜鉛微粒子を分散させ

た懸濁液(住友大阪セメント(株)製、透明性紫外線遮蔽分散液 ZR-133) 100重量部に対し、硬化剤(大日本インキ(株)製、DN-980)を4重量部の割合で混合し、トルエン/メチルエチルケトン=6/4(重量比)の混合溶媒で希釈し、酸化亜鉛含有樹脂の不揮発分濃度を調整し、樹脂塗工厚み0.2μmとしたことを除いて、実施例36と同じに行った。

### (実施例45)

樹脂塗工厚みを  $0.2 \mu \text{ m}$ から  $0.1 \mu \text{ m}$ に替えたことを除き実施例 4.4 と同じに行った。

### (実施例46)

樹脂塗工厚みを $0.2\mu$ mから $0.9\mu$ mに替えたことを除き実施例4.4と同じに行った。

#### (実施例47)

基材のPETフィルムを実施例12と同様の二軸延伸ナイロンフィルムに替え、 成形物層の熱処理を熱風からギヤーオーブンに替え、熱処理条件を180℃、1 5分間に替えたことを除き、実施例44と同じに行った。

### (実施例48~50)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20の組成比を80:20から90:10(実施例48)、70:30(実施例49)、60:40(実施例50)に替えたことを除き、実施例44と同じに行った。

#### (実施例51)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20からなる成形物層の厚みを $2\mu$ mから $1\mu$ mに替えたことを除き、実施例44と同じに行った。

#### (実施例52)

部分中和-ホスフィン酸ナトリウム添加PAAとPO20からなる成形物層の 熱処理を、ギヤーオーブンを使用し、160℃で15分間としたことを除き、実 施例44と同じに行った。

#### (実施例53)

部分中和-ホスフィン酸ナトリウム添加PAAとグリセリンとの組成比が60 : 40である成形物の熱処理を、熱風からギヤーオーブンに替え、熱処理条件を 160℃、15分間としたことを除き実施例44と同じに行った。

#### (実施例54)

酸化マグネシウムに替え和光純薬工業(株)製、水酸化マグネシウムを使用したことを除き、実施例36と同じに行った。

#### (実施例55)

酸化マグネシウムに替え和光純薬工業(株)製、水酸化カルシウムを使用したことを除き、実施例36と同じに行った。

### (実施例56)

金属化合物側に接着剤を介しCPPを積層したのに替え、基材のPET側にCPPを積層したことを除き、実施例44と同じに行った。

# (実施例57)

CPPの代わりに、東レ(株)製、二軸延伸ポリエチレンテレフタレートフィルムS10、厚み25 $\mu$ mを接着剤を介して積層したことを除き、実施例44と同じに行った。

### (実施例58)

酸化マグネシウムを塗工後、実施例36で用いたポリエステル系樹脂AD-335AEと硬化剤イソシアネートCAT-10の混合樹脂溶液を塗工したことを除き、実施例20と同様に行った。

### (比較例11)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例19と同じに行った。

### (比較例12)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例20と同じに行った。

### (比較例13)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例21と同じに行った。

(比較例14)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例22と同じに行った。

(比較例15)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例25と同じに行った。

(比較例16)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例26と同じに行った。

(比較例17)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例24と同じに行った。

(比較例18)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例23と同じに行った。

(比較例19)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例28と同じに行った。

(比較例20)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例29と同じに行った。

(比較例21)

MgOとエチルアルコールの懸濁液の塗工を行わなかったことを除き、実施例33と同じに行った。

(比較例22)

エチレンーピニルアルコール共重合体ケン化物フィルム (クラレ (株) 製、エバールEP・F、厚み15μm) に実施例36と同様のMgOとAD-335AE 樹脂の混合溶液を塗工した。また、他が部分中和-ホスフィン酸ナトリウム添加 PAAとポリピニルアルコールからなる成形物層内の亜鉛原子の存在量をTEM-EDXで調べたのに対し、エバール層内の亜鉛原子の存在量を調べた。

(比較例23)

MgOとAD-335AEの混合溶液に替え、実施例1のMgOのエチルアルコール懸濁液を塗工したことを除き、比較例22と同様に行った。また、他が部分中和-ホスフィン酸ナトリウム添加PAAとポリビニルアルコールからなる成形物層内の亜鉛元素の浸入量をTEM-EDXで調べたのに対し、エバール層内の亜鉛原子の存在量を調べた。

(比較例24)

実施例20では、MgOとエチルアルコールの懸濁液を部分中和ーホスフィン酸ナトリウム添加PAAとPO20からなる成形物層上に塗工したが、ここでは、MgOのエチルアルコールの懸濁液をPET側に塗工した。

(比較例25)

PETの代わりに尾池工業(株)製、蒸着フィルムMOS-TOを用い、中和 -ホスフィン酸ナトリウム添加PAAとPO20からなる成形物層の塗工は行わ なかったことを除き、実施例19と同じに行った。

実施例19~実施例40の積層体の製造条件、層構成を表2に、実施例41~ 実施例58の積層体の製造条件、層構成を表3に、比較例11~25の積層体の 製造条件を表4に示した。また、得られた積層体の性状を表5(実施例19~5 0)及び表6(実施例51~58及び比較例11~25)に示した。

(以下、この頁は余白である。)

表2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ①基材               |        | ②成形物  | B    |             | ③ 金属化    | 心<br>多         | 金属化合物         | 金属化合物·金属化合物混合樹脂     | <b>④積層</b>   | 層構成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-------|------|-------------|----------|----------------|---------------|---------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | Pal*1  | 混合比   | 厚される | 熱処理条件<br>*4 | 金属化合物    | 五語             | 金属化合物<br>/ 樹脂 | 数<br>上量<br>8        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) C               | 0600   | 01/00 | 6    | 前230℃30秒    | M g O    | ١.             |               | 0.7g/m <sup>2</sup> | d            | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1) (I             | 1020   | 07/00 |      | 型230℃30型    | O & M    | ŧ              | 1             | \                   | ď            | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 東語例20<br>  古                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | — τ<br>π τ<br>π τ | P020   | 20/30 | 10   | 新230°C 30秒  | O M      | ı              | ı             | 0.7g/m2             | CPP          | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 米島別21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d (d              | P020   | 60/40 | 0    | 前230℃30秒    | MgO      | ı              | ı             | 0.7g/m2             | o,           | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) (1              | PVA    | 70/30 | 8    | 前230℃30秒    | MgO      | i              | 1             | 0.7g/m°             | Д,           | 0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 米号写52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) (I              | 松件潮粉   | 80/20 | 7    | 前230°C 30秒  | MgO      | i              | ı             | 0.7g/m2             | Д 1          | (1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1000)<br>(1 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Œ                 | ンルゲトール | 80/20 | 2    | 前230°C 30秒  | MgO      | i              | 1             | 0.78/m°             | ٠,           | (1) (2) (4)<br>(1) (4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)<br>(4)                                                                                                                                                                     |
| お客を記る                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) (Z              | イニケニン  | 60/40 | ~    | 前230°C 30秒  | MgO      | 1              | 1             | 1                   | ۱ بم         | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 金布盛27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E)               | P020   | 80/20 | 2    | 後230°C30秒   | MgO      | 1              | ı             | E                   | D., 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Œ                 | P020   | 70/30 | 8    | 前160°C15分   | M 8 0    | I              | 1             | E                   | ا بم         | ⊕@@<br>@@<br>@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 大記(2)   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                 | グリセリン  | 60/40 | 7    | 前160°C 15分  | M 8 0    | ı              | ı             | <u> </u>            | <b>L</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 大紀230<br>  田祐全30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (F)               | P020   | 80/20 | 7    | 前230°C 30秒  | Mg(0H)2  | i              | ı             | 0.78/m2             | ي بد         | 9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 一年格益31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (T)               | P020   | 80/20 | 7    | 前230°C 30秒  | Ca(0H)2  | ı              | 1             | \                   | ٦, ۱         | ⊕<br>⊕<br>⊕<br>⊕<br>⊕<br>⊕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 大地   10 mm   10 mm | (H)               | P020   | 80/20 | 7    | 前230°C 30秒  | 2 n O    | 1              | 1             | •                   | ٦, ۱         | ⊕<br>(9)<br>(9)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 一<br>年<br>年<br>年<br>年<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī                 | P020   | 80/20 | 2    | 前180℃30秒    | 0 8<br>W | ı              | 1             | ` '                 | م , د        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>事権例34</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 闰                 | P020   | 80/20 | -    | 前230°C 30秒  | M g O    | ı              | )<br>         | 0.78/m2             | 4 6          | 96<br>96<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (T)               | P020   | 80/20 | 2    | 前230°C 30秒  | Mg 0     | ı i            | ض<br>ا ;      | 0.00g/m             | <b>1</b> , p | 96<br>96<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 一件招交36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (T)               | P020   | 80/20 | 2    | 前230°C 30秒  | Mg0      | <b>L</b> *2    |               | 0.2年四               | ۱,           | 96<br>96<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 年梅鱼37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Œ                 | P020   | 80/20 | 7    | 前230°C 30秒  | Mg0      | <b>b</b> *2    |               | 0.2 µ m             | ٦, (         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 大<br>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Œ                 | P020   | 80/20 | 2    | 前230°C30秒   | M g O    | P*3            | 1/1           | 0.2µm               | ۱ بد         | ⊕@@<br>@<br>@<br>@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 大部門の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) (1              | 0204   | 80/20 | 8    | 前230°C 30秒  | MgO      | <del>*</del> 3 |               | 0.2 mm              | Д,           | (1) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 米を見る                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) (c              | PVA    | 70/30 | 2    | 前230°C 30秒  | Mg 0     | <b>P</b> *2    | 1/1           | 0.2 mm              | Д            | (U2)(3)(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 光に記れ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 | :      |       |      |             |          |                |               |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Pal\*1):ポリアルコール、 P\*2):AD335-AE(ポリエステル系)、P\*3):TM-225AE(ポリエステル系 )、 \*4):熱処理条件で単位が秒のものは熱風吹付、単位が分のものはギヤーオーブン、前;成形物層を熱処理してから金属化合物を鑑工、後;金属化合物を塗工してから熱処理した。 ※:金属化合物を塗工してから熱処理した。 ※工量\*6):8/m は塗布盘、μmは塗工厚き

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                         |        |            |                 |             |              | -               |              |                  |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|--------|------------|-----------------|-------------|--------------|-----------------|--------------|------------------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ①基材               |                                         | ②成形物   |            |                 | ③ 金属化       | 1合物          | 金属化合物·金属化合物混合樹脂 | 混合樹脂         | <b>●積層</b>       | 層構成                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | Pa1*1                                   | 混合比    | 世世と        | 熱処理条件<br>*4     | 金属化合物       | 题            | 金属化合物/樹脂        | 竣工量<br>煇さ    |                  |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                         |        |            |                 |             |              | -               |              | ١                |                                                    |
| 4.4.6.7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ĺ                 | 松中海な                                    | 80/20  | 2          | 第230°C 30秒      | MgO         | P*2          | 1/1             | 0.2 µ m      | <b>J</b> ,       | ⊕®®⊕<br>⊕®®⊕                                       |
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                         | 02/08  | 2          | 前230°C 30秒      | MgO         | P*2          |                 | 0.2 д ш      | Ω,               | 00000                                              |
| 米配例42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 60/40  | ۰,         | 4230.030を       | O & W       | P*2          |                 | 0.2 m        | О,               | (L) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4     |
| 来配例43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ī                 | 77577                                   | 06/ 00 | 3 0        | #1950°C 20EF    | , c         | P*5          |                 | 0.2 u m      | Д,               | 0000                                               |
| 実施例44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Œ                 | P020                                    | 80/20  | 7          | Mileson cooks   | ) (         | 2 2          | 7               |              | Ω                |                                                    |
| 新福益45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (X                | P020                                    | 80/20  | 7          | 1230 C 30秒      | Ou Z        | 7 <b>*</b> 2 | 1/0.1           | 0.1 ft iii   | . (              |                                                    |
| 25 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 6               | 0204                                    | 80/20  | 7          | 世230℃30秒        | 2 n O       | P#5          |                 | 0.9 m m      | ٦,               | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)            |
| 米局型40<br>计程言:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a Î               | 0201                                    | 80/20  | ~          | 前180°C 15分      | 2 n O       | P*5          |                 | 0.2 $\mu$ m  | ሲ                | 00000                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ī                 | 2000                                    | 3 6    | ۰ د        | 当230℃305秒       | 2 10        | P#5          |                 | 0.2 µ m      | Ω,               | 00000                                              |
| 実施例48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŧ                 | FUZU                                    | 01/06  | <b>1</b> c | (100 c c c c k) | 0           | P#4          | 1.5/1           | 0.2 um       | О,               | 0000                                               |
| 実施例49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Œ                 | P020                                    | 70/30  | 7          | #1000 0 000 H   | ) (         |              | 1,01            |              | Ω                | 0000                                               |
| 生物 医50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ή                 | P020                                    | 60/40  | 7          | FI 230 C 30FD   | Ou 2        | £ ,          | 1.3/1           | 11 # 4 · · · | ۹ ۲              | 96                                                 |
| X80000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( <b>T</b>        | P020                                    | 80/20  | -          | 前230°C 30秒      | 2 n O       | *2           | 1.5/1           | 0.2 µ m      | ۱ بد             | 9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9 (9           |
| 大馬   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00 | 1                 | P020                                    | 80/20  | 2          | 前160°C 15分      | 2 n O       | <b>*</b>     | 1.5/1           | 0.2 m m      | ン<br>よ<br>は<br>よ | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)            |
| 米馬克32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 6               | X = 4 = X                               | 60/40  | 2          | 前160°C 15分      | 2 n O       | P*5          | 1.5/1           | 0.2 m m      | Д,               | (1) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4     |
| 米配列33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 (               | 2000                                    | 06/00  | 6          | 前230℃30秒        | Mg ( 0H ) 2 | P*2          | 1/1             | 0.2 µ m      | Ω,               | 0000                                               |
| 実施例54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŧ                 | 1020<br>1020                            | 02/00  | 3 6        | 100 J. 000 1    | (HO) 67     | D¥0          | 171             | 0.2 mm       | ρ,               | 0000                                               |
| <b>一种框座25</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                 | P020                                    | 80/20  | .7         | Bij 230 C 3049  | 2 (111) 2   | 1 1          | 1/2             | 1 3 6        | ם                | ACCORD 3                                           |
| 中存倒に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Œ                 | P020                                    | 80/20  | 2          | 间230°C 30秒      | 0 u 2       | £.           | 1/0.1           | 0.5 pm       | ٠ (              | 96                                                 |
| N S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                 | 0000                                    | 80/20  | 2          | 前230°C 30秒      | 0 u Z       | *2           | 1.5/1           | 0.2 m m      |                  | 900                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 C<br>5 t<br>7 t | 1020<br>P020                            | 80/20  | 2          | 前230℃30秒        | Mg0:0.7g/m  | 2 塗工後        | 、P*2を0.2        | 14 m 整工      |                  | (1) (2) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |
| 米配例28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ij                | 1000                                    |        |            |                 |             |              |                 |              |                  |                                                    |

P\*5): 2R-133 (ポリエステル系)

表3

| 赵             |              | •           | • 🕣                                      | •          |               | 96                | <b>-</b>   | ⊕          | ⊕        | —<br>⊕        | •           | <br>)(         | <br>•) ( | <del>-</del> | <b>→</b>      | <b>⊕</b> | )€        | <b>9</b> (  | <b>4</b> )            |
|---------------|--------------|-------------|------------------------------------------|------------|---------------|-------------------|------------|------------|----------|---------------|-------------|----------------|----------|--------------|---------------|----------|-----------|-------------|-----------------------|
| 層構成           |              | 00          | (A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)( | 000        | ) (C          | 9 (<br>9 (<br>9 ( | <b>⋑</b> @ | <u> </u>   | <u></u>  | (B)           | ©<br>—      | ) (<br>) (     | 96<br>96 | 3<br>3<br>   | <b>®</b><br>⊖ | 8        | 96        | ∂<br>૭<br>• | ®<br>∋<br>            |
| ④積層           |              | ᅀ           | CPP                                      | Ω          | , ρ           | 4 6               | դ.         | Q,         | Д,       | Д             | ۵           |                | 4 (      | 1,           | Д             | Ω        | . 6       | ٠, ,د       | ۵,                    |
| 混合樹脂          | 数 *<br>B * 6 | 1           | ļ                                        | ı          |               | I                 | ı          | ı          | ı        | ı             | ı           |                | 1        | ı            | 0.2 um        | 0 74/32  | 2.78/1    | ı           | ı                     |
| 金属化合物・金属化合物混合 | 金属化合物/樹脂     |             | I                                        | ı          |               | I                 | ı          | 1          | ı        | i             | 1           | }              | 1        | ļ            | 1.5/1         |          | ļ         | i           | 1                     |
| S-合物·         | 最            | ı           | ı                                        | ļ          | i             | I                 | 1          | i          | ı        | ŀ             |             | ı              | ı        | ı            | P*5           | •        | ı         | 1           | 1                     |
| ③ 金属化         | 金属化合物        | 1           | ı                                        | 1          | l             | i                 | ı          | ı          | 1        | 1             |             | I              |          | 1            | 2.00          |          | <b>60</b> | M 8 0       |                       |
|               | 熟処理条件<br>*4  | 新り30°C 305位 | 11200000000000000000000000000000000000   | Fileso cod | #11230 C 3047 | 阿230 C 30秒        | 第230°C 30秒 | 前230°C 30秒 | 前230℃30秒 | 100000012012日 | Choco ocoid | MI I PO C I DA | C)       | 前180℃15分     |               |          | ı         | 前230°C 30秒  | ı                     |
|               | とはは          | ,           | a c                                      | 9 0        | .7            | 7                 | 2          | 2          |          | 3 C           | <b>3</b> (  | 2              |          | 2            | , 1           |          | t         | 2           | ı                     |
| ②成形物          | PAA含量<br>%   | 8           | 3 8                                      | ⊋ ¦        | 2             | 9                 | 8          | 6          | 3 8      | 8 6           | 2           | 2              | 9        | 80           | 3             | ı        | 1         | 8           | 1                     |
|               | Pal*1 P/     | 0000        | PU20                                     | P020       | P020          | P020              | ンルドトール     | \ = 4 = X  | が発生が     | 布圧吸む          | PVA         | P020           | グリセリン    | 0600         | 1020          | ı        | 1         | P020        | ı                     |
| ①基材           |              | 1           | T H                                      | Œ          | 臼             | 山                 | (T         | 1 (1       | 9 (      | ı) (ı         | Ä           | Ħ              | Œ        | 7            | H             | o.<br>>  | >         | Ĺ           | 7<br>1<br>1<br>1<br>1 |
|               |              | i           | 比較約11                                    | 比較例12      | <b>比較例13</b>  | 比較例14             | 子校庭元       | Let Miles  | KE WATE  | <b>元教室17</b>  | 比較例18       | 比較例19          | 干费图20    | 11.44.00101  | 元教221         | 比較例22    | 干較極23     | 7校区2        | 元载 25.5<br>干载 超 25.   |

表4

表5

|             | 酸素透過         | 過度          | 耐水性                                     | Ra(   | μm)          | 金属化合物存在比     |
|-------------|--------------|-------------|-----------------------------------------|-------|--------------|--------------|
|             | 前*6          | 後*7         |                                         | AFM   | TEM          | <b>计在比</b>   |
| 実施例19       | 0.2          | 0.2         | 0                                       | 0.015 | 0.06         | 1.56         |
| 実施例20       | < 0.1        | < 0.1       | 0                                       | 0.015 | 0.06         | 1.56         |
| 実施例21       | 0.2          | <0.1        | 0                                       | 0.015 | 0.06         | 1.56         |
| 実施例22       | <0.1         | 0.4         | 0 -                                     | 0.015 | 0.06         | 1.56         |
| 実施例23       | 0.2          | 0.2         | 0                                       | 0.015 | 0.06         | 1.56         |
| 実施例24       | 0.2          | < 0.1       | ) Q                                     | 0.015 | 0.06         | 1.56         |
| 実施例25       | 0.1          | 0.1         | l O                                     | 0.015 | 0.06         | 1.56         |
| 実施例26       | 0.2          | 0.5         | l Ö                                     | 0.015 | 0.06         | 1.56         |
| 実施例27       | <0.1         | < 0.1       | l O                                     | 0.015 | 0.06         | 1.56         |
| 実施例28       | 0.6          | 3.9         | Q                                       | 0.015 | 0.06         | 2.50         |
| 実施例29       | 0.1          | 0.2         | l Ö                                     | 0.015 | 0.06         | 2.50         |
| 実施例30       | 0.4          | 0.9         | l Ö                                     | 0.019 | 0.06         | 1.56         |
| 実施例31       | 1.0          | 0.9         | Q                                       | 0.019 | 0.06         | 1.56         |
| 実施例32       | 0.9          | 0.2         | ΙÖ                                      | 0.019 | 0.06         | 1.56         |
| 実施例33       | 4.3          | < 0.1       | l Ö                                     | 0.015 | 0.06         | 2.50         |
| 実施例34       | <0.1         | < 0.1       | l Ö                                     | 0.015 | 0.06         | 1.56         |
| 実施例35       | 1.4          | 3           | l S                                     | 0.015 | 0.06         | 1.56         |
| 実施例36       | <0.1         | < 0.1       | 0                                       | 0.003 | 0.02         | 1.56         |
| 実施例37       | <0.1         | 1.2         |                                         | 0.003 | 0.02         | 1.56         |
| 実施例38       | <0.1         | 0.2         |                                         | 0.003 | 0.02         | 1.56         |
| 実施例39       | <0.1         | < 0.1       | 1 2                                     | 0.003 | 0.02         | 1.56         |
| 実施例40       | 0.2          | 0.2<br><0.1 | 1 8                                     | 0.003 | 0.02<br>0.02 | 1.56<br>1.56 |
| 実施例41       | <0.1<br><0.1 | 3.5         | 1 8                                     | 0.003 | 0.02         | 1.56         |
| 実施例42 実施例43 | 0.2          | 3.5<br>0.5  | 1 %                                     | 0.003 | 0.02         | 1.56         |
| 実施例44       | 0.2          | 0.5         | $I \approx$                             | 0.003 | 0.02         | 1.56         |
| 実施例44       | 0.3          | 0.1         | 1 8                                     | 0.003 | 0.02         | 1.56         |
| 実施例46       | 0.3          | 0.1         | 1 8                                     | 0.003 | 0.02         | 1.56         |
| 実施例47       | 4.3          | <0.1        | 1 8                                     | 0.003 | 0.02         | 2.50         |
| 実施例48       | 0.5          | 0.1         | 1 8                                     | 0.003 | 0.02         | 1.56         |
| 実施例49       | 0.3          | 0.1         | 1 8                                     | 0.003 | 0.02         | 1.56         |
| 実施例50       | 0.3          | 0.2         | 000000000000000000000000000000000000000 | 0.003 | 0.02         | 1.56         |

前\*6):レトルト処理前測定、 後\*7):レトルト後測定

表 6

|                                                         | 酸素透                                                                                                | 過度                                                                                   | 耐水性                                     | Ra(                                                         | μm)                                                          | 金属化合物<br>存在比                                         |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
|                                                         | 前*6                                                                                                | 後*7                                                                                  |                                         | AFM                                                         | TEM                                                          | <b>计在比</b>                                           |
| 実施例51<br>実施例52<br>実施施例55<br>実施施例例55<br>実施施例658<br>実施例58 | 0.3<br>0.6<br>0.2<br>0.4<br>0.5<br>0.3<br>0.3<br><0.1                                              | 0.1<br>4.0<br>0.2<br>0.9<br>1.0<br>1.0<br><0.1                                       | 00000000                                | 0.003<br>0.003<br>0.003<br>0.004<br>0.004<br>0.003<br>0.003 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 1.56<br>2.50<br>2.50<br>1.56<br>1.56<br>1.56<br>1.56 |
| 比比                                                      | 13.<br>1.0<br>0.5<br>0.9<br>3.5<br>40<br>1.0<br>0.4<br>122<br>77<br>30<br>6.2<br>5.9<br>1.0<br>1.0 | 50<br>14<br>20<br>40<br>14<br>100<br>14<br>15<br>140<br>130<br>110<br>47<br>47<br>14 | 000000000000000000000000000000000000000 | <br><br><br><br><br><br>0.003<br>0.015<br>0.015             |                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            |

# 産業上の利用可能性

金属化合物を塗工した場合、酸素ガスバリヤー性は大きく改善される。しかも 塗工方法は真空蒸着法に比べ簡便、安価な方法である。また、熱処理により耐水 性が付与され、水洗等によってガスバリヤー性が劣化しない耐水性・高酸素ガス バリヤー性フィルムが得られる。

# 請 求 の 範 囲

- 1. ポリ (メタ) アクリル酸およびポリ (メタ) アクリル酸部分中和物からなる群から選ばれた少なくとも一種のポリ (メタ) アクリル酸系ポリマーとポリアルコール類との混合物からなる成形物層の表面に金属化合物を含む層を塗工してなることを特徴とするガスバリヤ性フィルム。
- 2. 請求項1記載の成形物層の金属化合物を含む層が塗工されていない面が基材表面に固定されていることを特徴とするガスバリヤ性フィルム。
- 3. 少なくとも成形物層が熱処理されている請求項1記載のガスバリヤ性フィルム。
- 4. 金属化合物が酸化マグネシウム、酸化カルシウム、酸化亜鉛、水酸化マグネシウム、水酸化カルシウムおよび水酸化亜鉛の群から選ばれた少なくとも一種の金属化合物であることを特徴とする請求項1記載のガスバリヤ性フィルム。
- 5. 金属化合物を含む層が金属化合物と樹脂との混合物の層であることを特徴とする請求項1記載のガスバリヤ性フィルム。
  - 6. 殺菌処理用である請求項5のいずれかに記載のガスバリヤ性フィルム。
- 7. 請求項1~6のいずれかに記載のガスバリヤ性フィルムのいずれかの表面 にプラスチックフィルムを積層したことを特徴とするガスバリヤ性積層フィルム。

# INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/01969

| A. CLASS                                                                                               | IFICATION OF SUBJECT MATTER C1 C08J7/04, B32B9/00                                                                                |                                       |                                                       |                                                               |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|--|
|                                                                                                        |                                                                                                                                  |                                       |                                                       |                                                               |  |
|                                                                                                        | o International Patent Classification (IPC) or to both nat<br>S SEARCHED                                                         | ional classification a                | nd IPC                                                |                                                               |  |
| Minimum de                                                                                             | ocumentation searched (classification system followed b                                                                          | y classification symb                 | ools)                                                 |                                                               |  |
|                                                                                                        | C16 C08J5/18, 7/04, B32B9/00                                                                                                     | ,                                     | ,                                                     |                                                               |  |
|                                                                                                        |                                                                                                                                  |                                       |                                                       |                                                               |  |
|                                                                                                        | ion searched other than minimum documentation to the tryo Shinan Koho 1926–1996                                                  | extent that such docu                 |                                                       |                                                               |  |
|                                                                                                        | •                                                                                                                                | Jitsuyo Shinar                        |                                                       |                                                               |  |
| Electronic d                                                                                           | ata base consulted during the international search (name                                                                         | e of data base and, w                 | here practicable, se                                  | arch terms used)                                              |  |
|                                                                                                        |                                                                                                                                  |                                       |                                                       | ·                                                             |  |
|                                                                                                        |                                                                                                                                  |                                       |                                                       |                                                               |  |
| C. DOCU                                                                                                | MENTS CONSIDERED TO BE RELEVANT                                                                                                  | · · · · · · · · · · · · · · · · · · · |                                                       |                                                               |  |
| Category*                                                                                              | Citation of document, with indication, where app                                                                                 | ropriate, of the relev                | ant passages                                          | Relevant to claim No.                                         |  |
|                                                                                                        | JP, 7-101468, A (Toppan Prin                                                                                                     | ting Co., L                           | td.),                                                 | -                                                             |  |
| х                                                                                                      | 18 April, 1995 (18. 04. 95),<br>Claims ; Par. No. [0014]                                                                         |                                       |                                                       | 1, 2, 4, 7                                                    |  |
| Y                                                                                                      | & EP, 640472, A & US, 55187                                                                                                      | 92, A                                 |                                                       | 3, 5, 6                                                       |  |
|                                                                                                        | JP, 7-266508, A (Toyo Ink Man                                                                                                    | ufacturing C                          | o., Ltd.),                                            |                                                               |  |
| ,                                                                                                      | 17 October, 1995 (17. 10. 95) Claims (Family: none)                                                                              | ),                                    |                                                       | 2 5 6                                                         |  |
| Y                                                                                                      | crarms (ramtry: none)                                                                                                            |                                       |                                                       | 3, 5, 6                                                       |  |
| A                                                                                                      | JP, 9-201897, A (Mitsubishi                                                                                                      | Chemical Co                           | rp.),                                                 | 1-7                                                           |  |
|                                                                                                        | 5 August, 1997 (05. 08. 97),<br>Claims (Family: none)                                                                            |                                       |                                                       |                                                               |  |
| A JP, 51-134737, A (Sumitomo Chemical Co., Ltd.), 1-7                                                  |                                                                                                                                  |                                       |                                                       |                                                               |  |
| 22 November, 1976 (22. 11. 76),                                                                        |                                                                                                                                  |                                       |                                                       |                                                               |  |
| Claims (Family: none)                                                                                  |                                                                                                                                  |                                       |                                                       |                                                               |  |
| A JP, 5-295141, A (Toyo Alminium K.K.), 1-7                                                            |                                                                                                                                  |                                       |                                                       |                                                               |  |
| A JP, 5-295141, A (Toyo Alminium K.K.), 1-7<br>9 November, 1993 (09. 11. 93),<br>Claims (Family: none) |                                                                                                                                  |                                       |                                                       |                                                               |  |
|                                                                                                        | (                                                                                                                                |                                       |                                                       |                                                               |  |
| Furth                                                                                                  | er documents are listed in the continuation of Box C.                                                                            | See patent fan                        | nily annex.                                           | L                                                             |  |
|                                                                                                        | l categories of cited documents:                                                                                                 | - Land                                | •                                                     | mational filing date or priority                              |  |
| "A" docum                                                                                              | nent defining the general state of the art which is not<br>ered to be of particular relevance                                    | date and not in o                     |                                                       | ation but cited to understand                                 |  |
| "E" earlier                                                                                            | document but published on or after the international filing date<br>tent which may throw doubts on priority claim(s) or which is | "X" document of par                   | ticular relevance; the o                              | daimed invention cannot be<br>ed to involve an inventive step |  |
| cited to                                                                                               | o establish the publication date of another citation or other<br>l reason (as specified)                                         | when the docum                        | ent is taken alone                                    | daimed invention cannot be                                    |  |
|                                                                                                        | nent referring to an oral disclosure, use, exhibition or other                                                                   | considered to in                      | volve an inventive step                               | when the document is documents, such combination              |  |
| "P" docum                                                                                              | nent published prior to the international filing date but later than iority date claimed                                         | being obvious to                      | o a person skilled in the<br>ber of the same patent i | art                                                           |  |
|                                                                                                        | actual completion of the international search                                                                                    | Date of mailing of                    |                                                       |                                                               |  |
| 28 7                                                                                                   | April, 1999 (28. 04. 99)                                                                                                         | 18 May,                               | 1999 (18.                                             | 05. 99)                                                       |  |
|                                                                                                        | mailing address of the ISA/                                                                                                      | Authorized officer                    | <del></del>                                           |                                                               |  |
| Japa                                                                                                   | anese Patent Office                                                                                                              |                                       |                                                       |                                                               |  |
| Facsimile I                                                                                            | No.                                                                                                                              | Telephone No.                         |                                                       |                                                               |  |

Form PCT/ISA/210 (second sheet) (July 1992)

国際調査報告 国際出願番号 PCT/JP99/01969 Α. 発明の風する分野の分類(国際特許分類(IPC)) Int.Cl° C08J7/04, B32B9/00 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl<sup>6</sup> C08J5/18, 7/04, B32B9/00 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 1971-1999年 日本国公開実用新案公報 日本国登録実用新案公報 1994-1999年 日本国実用新案登録公報 1996-1999年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー\* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP, 7-101468, A (凸版印刷株式会社) 18.4月.1995 (18.04.95) 特許請求の範囲及び【0014】&EP, 640472, A&U 1, 2, 4, 7 Y S, 5518792, A 3, 5, 6 JP, 7-266508, A (東洋インキ製造株式会社) 17. 10月. 1995 (17. 10. 95) 特許請求の範囲 (ファミリーなし) Y 3, 5, 6 JP, 9-201897, A (三菱化学株式会社) 05.8月.1997 (05.08.97) Α 特許請求の範囲(ファミリーなし) 区欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 \* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 「E」国際出願日前の出願または特許であるが、国際出願日 論の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」ロ頭による開示、使用、展示等に貫及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査報告の発送日 国際調査を完了した日 18.05.99 28.04.99 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 I 9543 日本国特許庁(ISA/JP) 吉澤 英一 Ħ 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3493

国際出願番号 PCT/JP99/01969

| ン(続き).<br> 用文献の<br> テゴリー* |                                                                                   | 関連する<br>請求の範囲の番号 |
|---------------------------|-----------------------------------------------------------------------------------|------------------|
| A                         | JP, 51-134737, A (住友化学工業株式会社) 22. 1<br>1月. 1976 (22. 11. 76)<br>特許請求の範囲 (ファミリーなし) | 1-7              |
| A                         | JP, 5-295141, A (東洋アルミニウム株式会社) 09.<br>11月. 1993 (09. 11. 93)<br>特許請求の範囲 (ファミリーなし) | 1-7              |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
| ·                         |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |
|                           |                                                                                   |                  |