

Computer Architecture & Microprocessor System

SEQUENTIAL LOGIC DESIGN

Dennis A. N. Gookyi

Sequential Logic Design

BIG PICTURE: BUILDING A PROCESSOR

Single cycle processor

INTRODUCTION

- Combinational circuit output depends only on current input
- We want circuits that produce output depending on current and past input values – circuits with memory
- How can we design a circuit that stores information?

SEQUENTIAL LOGIC CIRCUITS

- We have examined designs of circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

SequentialOpens depending on past inp

- In order for this lock to work, it has to keep track (remember) of the past events!
- If passcode is R13-L22-R3, sequence of states to unlock:
 - A. The lock is not open (locked), and no relevant operations have been performed
 - B. Locked but user has completed R13
 - C. Locked but user has completed R13-L22
 - D. Unlocked: user has completed R13-L22-R3

- The state of a system is a snapshot of all relevant elements of the system at the moment of the snapshot
 - To open the lock, states A-D must be completed in order
 - If anything else happens (e.g., L5), lock returns to state A

Completely describes the operation of the sequential lock

❖ We will understand "state diagrams" fully later today

- Asynchronous vs. Synchronous State Changes
 - Sequential lock we saw is an asynchronous "machine"
 - State transitions occur when they occur
 - There is nothing that synchronizes when each state transition must occur
 - Most modern computers are synchronous "machines"
 - State transitions take place after fixed units of time
 - Controlled in part by a clock, as we will see soon
 - These are two different design paradigms, with tradeoffs

- A standard Swiss traffic light has 4 states
 - A. Green
 - B. Yellow
 - C. Red
 - D. Red and Yellow

The sequence of these states are always as follows

STATE DIAGRAM - CLOCK

- When should the light change from one state to another?
- We need a clock to dictate when to change state
 - Clock signal alternates between 0 & 1

Figure 3.28 A clock signal.

STATE DIAGRAM - CLOCK

- When should the light change from one state to another?
- We need a clock to dictate when to change state
 - Clock signal alternates between 0 & 1

CLK:
$$0$$

- ❖ At the start of a clock cycle (☐☐), system state changes
 - During a clock cycle, the state stays constant
 - In this traffic light example, we are assuming the traffic light stays in each state an equal amount of time

STATE DIAGRAM - CLOCK

- Clock is a general mechanism that triggers transition from one state to another in a (synchronous) sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational circuit delay

- Asynchronous vs. Synchronous State Changes
 - Sequential lock we saw is an asynchronous "machine"
 - State transitions occur when they occur
 - There is nothing that synchronizes when each state transition must occur
 - Most modern computers are synchronous "machines"
 - State transitions take place after fixed units of time
 - Controlled in part by a clock, as we will see soon
 - These are two different design paradigms, with tradeoffs
 - Synchronous control can be easier to get correct when the system consists of many components and many states
 - Asynchronous control can be more efficient (no clock overheads)

- What is a Finite State Machine (FSM)?
 - A discrete-time model of a stateful system
 - Each state represents a snapshot of the system at a given time
- An FSM pictorially shows
 - The set of all possible states that a system can be in
 - How the system transitions from one state to another
- An FSM can model
 - A traffic light, an elevator, fan speed, a microprocessor, etc.
- An FSM enables us to pictorially think of a stateful system using simple diagrams

- FSM consist of five elements:
 - A finite number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
 - A finite number of external inputs
 - A finite number of external outputs
 - An explicit specification of all state transitions
 - How to get from one state to another
 - An explicit specification of what determines each external output value

- Each FSM consists of three separate parts:
 - □ next state logic
 - □ state register
 - output logic

At the beginning of the clock cycle, next state is latched into the state register

- Sequential Circuits
 - State register(s)
 - Store the current state and
 - Load the next state at the clock edge

- Combinational Circuits
 - Next state logic
 - Determines what the next state will be
- Next State
 Logic

 Next
 State

- Output logic
 - Generates the outputs

- Next state is determined by the current state and the inputs
- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs

Moore FSM

Mealy FSM

- Example: "Smart" traffic light controller
 - □ 2 inputs:
 - Traffic sensors: T_A, T_B (TRUE when there's traffic)
 - □ 2 outputs:
 - Lights: L_A , L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green

- Inputs: CLK, Reset, T_A, T_B
- Outputs: L_A , L_B

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arcs

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arcs

- Moore FSM: outputs labeled in each state
 - States: Circles
 - □ Transitions: Arcs

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arcs

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arcs

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	
S0	1	X	
S1	X	X	
S2	X	0	
S2	X	1	
S3	X	X	

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Current State	Inputs		Next State
S	T_{A}	T_{B}	S'
S0	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	t State	Inputs		Next State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	t State	Inputs		Next	State
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$S_1 = $	S'	1	=	?
----------	----	---	---	---

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inputs		Next Sta	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Current State Inpu		outs	Next	State	
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_{1} = (\overline{S}_{1} \cdot S_{0}) + (S_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{B}) + (S_{1} \cdot \overline{S}_{0} \cdot T_{B})$$

$$S'_{0} = ?$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inp	outs	Next	State
S_1	S_0	T_{A}	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = (\overline{S}_1 \cdot S_0) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B) + (S_1 \cdot \overline{S}_0 \cdot T_B)$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding	
S0	00	
S1	01	
S2	10	
S3	11	

Current State		Inputs		Next State	
S_1	S_0	T_A	T_{B}	S' ₁	S' ₀
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S'_1 = S_1 \times S_0$$
 (Simplified)

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

State	Encoding
S0	00
S1	01
S2	10
S3	11

FSM - OUTPUT TABLE

Output table

Current State		Out	puts
S_1	S_0	L_{A}	L_{B}
0	0	green	red
0	1	yellow	red
1	0	red	green
1	1	red	yellow

FSM – OUTPUT TABLE

Output table

Current State		Outputs		
S_1	S_0	L_{A}	L_{B}	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

FSM - OUTPUT TABLE

Output table

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

L_{A1}	=	S_1
----------	---	-------

Output	Encoding
green	00
yellow	01
red	10

FSM – OUTPUT TABLE

Output table

Current State		Outputs			
S_1	S_0	L_{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \overline{S_1} \cdot S_0$$

Output	Encoding
green	00
yellow	01
red	10

FSM – OUTPUT TABLE

Output table

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \underline{\overline{S_1}} \cdot S_0$$

$$L_{B1} = \overline{S_1}$$

Output	Encoding
green	00
yellow	01
red	10

FSM - OUTPUT TABLE

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

$L_{A1} =$	S_1
$L_{A0} =$	$\overline{S_1} \cdot S_0$
$L_{B1} =$	$\overline{S_1}$

 $L_{BO} = S_1 \cdot S_0$

Output	Encoding
green	00
yellow	01
red	10

Overview

State register

state register

$$S'_1 = S_1 \times S_0$$

$$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0 \cdot \overline{T}_B)$$

$$L_{A1} = \underline{S_1}$$

$$L_{A0} = \underline{S_1} \cdot S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1 \cdot S_0$$

Timing diagram

CLK_

Reset_

T_A _

S'1:0 _

S_{1:0} _

L_{A1:0} _

L_{A2:0} _

48

FSM - TIMING DIAGRAM

- How do we encode the state bits?
- Three common state binary encodings with different tradeoffs
 - Fully Encoded
 - 1-Hot Encoded
 - Output Encoded
- Let's see an example Swiss traffic light with 4 states
 - □ Green, Yellow, Red, Yellow+Red

- ❖ Binary Encoding (Full Encoding):
 - □ Use the minimum possible number of bits
 - Use log₂(num_states) bits to represent the states
 - Example state encodings: 00, 01, 10, 11
 - Minimizes # flip-flops, but not necessarily output logic or next state logic

- One-Hot Encoding:
 - Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
 - Example state encodings: 0001, 0010, 0100, 1000
 - □ Simplest design process very automatable
 - Maximizes # flip-flops, minimizes next state logic

Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit0 encodes green light output,
 - Bit1 encodes yellow light output
 - Bit2 encodes red light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

The designer must carefully choose an encoding scheme to optimize the design under given constraints

