SEQUENCE LISTING

<110> Sebbel, Peter Dunant, Nicolas Bachmann, Martin Tissot, Alain Lechner, Franziska	
<120> Molecular Antigen Array	
<130> 1700.0180002	
<140> <141>	
<160> 186	
<170> PatentIn Ver. 2.1	
<210> 1 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 1 ggggacgcgt gcagcaggta accaccgtta aagaaggcac c	41
<210> 2 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 2 cggtggttac ctgctgcacg cgttgcttaa gcgacatgta gcgg	44
<210> 3 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 3 ccatgaggcc tacgataccc	20
<210> 4 <211> 25 <212> DNA <213> Artificial Sequence	
<220>	

```
<223> Primer
<400> 4
                                                                    25
ggcactcacg gcgcgcttta caggc
<210> 5
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 5
ccttctttaa cggtggttac ctgctggcaa ccaacgtggt tcatgac
                                                                    47
<210> 6
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 6
                                                                    40
aagcatgctg cacgcgtgtg cggtggtcgg atcgcccggc
<210> 7
<211> 90
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 7
gggtctagat tcccaaccat tcccttatcc aggctttttg acaacgctat gctccgcgcc 60
catcgtctgc accagctggc ctttgacacc
<210> 8
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 8
gggtctagaa ggaggtaaaa aacgatgaaa aagacagcta tcgcgattgc agtggcactg 60
gctggtttcg ctaccgtagc gcaggccttc ccaaccattc ccttatcc
<210> 9
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 9 cccgaattcc tagaagccac agctgccctc c	31
<210> 10 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 10 cctgcggtgg tctgaccgac accc	24
<210> 11 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 11 ccgcggaaga gccaccgcaa ccaccgtgtg ccgccaggat g	41
<210> 12 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 12 ctatcatcta gaatgaatag aggattcttt aac	33
<210> 13 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Modified ribosome binding site	
<400> 13 aggaggtaaa aaacg	15
<210> 14 <211> 21 <212> PRT <213> Artificial Sequence	
<220> <223> signal peptide	
<400> 14 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala	

```
15
  1
                                      10
Thr Val Ala Gln Ala
             20
<210> 15
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> modified Fos
     construct
<400> 15
Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu
Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu
Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys
                             40
<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide linker
<400> 16
Ala Ala Ser Gly Gly
<210> 17 .
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> peptide linker
<400> 17
Gly Gly Ser Ala Ala Ala
<210> 18
<211> 256
<212> DNA
<213> Artificial Sequence
<220>
<223> Fos fusion construct
<400> 18
gaattcagga ggtaaaaaac gatgaaaaag acagctatcg cgattgcagt ggcactggct 60
```

ggtttcgcta ccgtagcgca ggcctgggtg ggggcggccg cttctggtgg ttgcggtggt 120

ctgaccga accgaaat ggtggtt	tcg (cgaad	cctg	gc go ct ga	gaaaq	ccgad aaaaa	c caq a gaa	ggtgo	gaag ctgg	acga agti	aaaaa	atc o	ggcgg	ctgcaa gcacac	180 240 256
<210> 19 <211> 52 <212> PH <213> An	2 RT	icial	l Sed	quenc	ce										
<220> <223> Fo	os fi	ısion	n coi	nstrı	ıct	,	/								
<400> 19 Ala Ala		Ser	Gly 5	Gly	Cys	Gly	Gly	Leu 10		Asp	Thr	Leu	Gln 15		
Glu Thr	Asp	Gln 20	Val	Glu	Asp	Glu	Lys 25	Ser	Ala	Leu	Gln	Thr 30	Glu	Ile	
Ala Asn	Leu 35	Leu	Lys	Glu	Lys	Glu 40	Lys	Leu	Glu	Phe	Ile 45	Leu	Ala	Ala	
His Gly 50	Gly	Cys													
<210> 20 <211> 20 <212> DN <213> An	61 NA	icial	l Sed	quenc	ce										
<220> <223> Fo	os fi		า				ī								
<220> <221> CI <222> (2		. (240													
<400> 20 gaattcag		ggtaa	aaaa	ac g	Met	aaa Lys	Lys	Thr	Āla	Ile	Ala	Ile		Val	51
gca ctg Ala Leu															99
gac acc Asp Thr															147
ctg caa Leu Gln															195
ttc atc Phe Ile 60															240
agatata	י ממ	atato	caaq	ct t											261

```
<210> 21
 <211> 73
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Fos fusion
       construct
 <400> 21
 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala
                                       10
 Thr Val Ala Gln Ala Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu
 Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala
 Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His
                           55
 Gly Gly Cys Gly Gly Ser Ala Ala Ala
 <210> 22
 <211> 196
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Fos fusion
       construct
 <220>
 <221> CDS
(222> (34)..(189)
 <400> 22
 gaattcagga ggtaaaaaga tatcgggtgt ggg gcg gcc gct tct ggt ggt tgc
                                       Ala Ala Ser Gly Gly Cys
                                                                     102
 ggt ggt ctg acc gac acc ctg cag gcg gaa acc gac cag gtg gaa gac
 Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu Asp
 gaa aaa tcc gcg ctg caa acc gaa atc gcg aac ctg ctg aaa gaa aaa
 Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys
      25
                                                                    196
 gaa aag ctg gag ttc atc ctg gcg gca cac ggt ggt tgc taagctt
 Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys
                       45
 <210> 23
 <211> 52
 <212> PRT
 <213> Artificial Sequence
```

```
<220>
<223> Fos fusion
      construct
<400> 23
Ala Ala Ala Ser Gly Gly Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala
Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile
Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala
    . 35
                              40
His Gly Gly Cys
     50
<210> 24
<211> 204
<212> DNA
<213> Artificial Sequence
<220>
<223> Fos fusion
    construct
<400> 24
gaattcagga ggtaaaaaac gatggcttgc ggtggtctga ccgacaccct gcaggcggaa 60
accgaccagg tggaagacga aaaatccgcg ctgcaaaccg aaatcgcgaa cctgctgaaa 120
gaaaaagaaa agctggagtt catcctggcg gcacacggtg gttgcggtgg ttctgcggcc 180
gctgggtgtg gggatatcaa gctt
<210> 25
<211> 56
<212> PRT
<213> Artificial Sequence
<220>
<223> Fos fusion
      construct
<400> 25
Lys Thr Met Ala Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn
                                  25
Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly
                              40
Gly Cys Gly Gly Ser Ala Ala Ala
     50
<210> 26
<211> 26
<212> PRT
<213> Homo sapiens
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Ala Phe Gly Leu Leu
```

```
Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala
             20
<210> 27
<211> 262
<212> DNA
<213> Artificial Sequence
<220>
<223> Fos fusion
     construct
<400> 27
gaattcaggc ctatggctac aggctcccgg acgtccctgc tcctggcttt tggcctgctc 60
tgcctgccct ggcttcaaga gggcagcgct gggtgtgggg cggccgcttc tggtggttgc 120
ggtggtctga ccgacaccct gcaggcggaa accgaccagg tggaagacga aaaatccgcg 180
ctgcaaaccg aaatcgcgaa cctgctgaaa gaaaaagaaa agctggagtt catcctggcg 240
gcacacggtg gttgctaagc tt
<210> 28
<211> 52
<212> PRT
<213> Artificial Sequence
<220>
<223> Fos fusion
      construct
<400> 28
Ala Ala Ala Ser Gly Gly Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala
Glu Thr Asp Gln Val Glu Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile
Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala
His Gly Gly Cys
    50
<210> 29
<211> 261
<212> DNA
<213> Artificial Sequence
<220>
<223> Fos fusion
     construct
<220>
<221> CDS
<222> (7)..(240)
<400> 29
gaattc atg gct aca ggc tcc cgg acg tcc ctg ctc ctg gct ttt ggc
      Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly
         1
```

				ccc Pro												96
acc Thr	gac Asp	acc Thr	ctg Leu	cag Gln 35	gcg Ala	gaa Glu	acc Thr	gac Asp	cag Gln 40	gtg Val	gaa Glu	gac Asp	gaa Glu	aaa Lys 45	tcc Ser	144
				gạa Glu												192
gag Glu	ttc Phe	atc Ile 65	ctg Leu	gcg Ala	gca Ala	cac His	ggt Gly 70	ggt Gly	tgc Cys	ggt Gly	ggt Gly	tct Ser 75	gcg Ala	gcc Ala	gct Ala	240
gggt	gtg	gga (ggcct	taago	ct t											261
<211 <212)> 3(l> 78 2> Pi 3> Ai	3 RT	icia	l Sed	quenc	ce										
<220 <223	3> Fo	os fi onsti		n				·								
)> 3(Ala		Gly	Ser 5	Arg	Thr	Ser	Leu	Leu 10	Leu	Ala	Phe	Gly	Leu 15	Leu	
Cys	Leu	Pro	Trp 20	Leu	Gln	Glu	Gly	Ser 25	Ala	Cys	Gly	Gly	Leu 30	Thr	Asp	
Thr	Leu	Gln 35	Ala	Glu	Thr	Asp	Gln 40	Val	Glu	Asp	Glu	Lys 45	Ser	Ala	Leu	
Gln	Thr 50	Glu	Ile	Ala	Asn	Leu 55	Leu	Lys	Glu	Lys	Glu 60	Lys	Leu	Glu	Phe	
Ile 65	Leu	Ala	Ala	His	Gly 70	Gly	Cys	Gly	Gly	Ser 75	Ala	Ala	Ala			
<211 <212)> 3: l> 44 2> Di 3> A:	4 NA	icia.	l Sec	quenc	ce										
<220 <223		rime	r													
)> 3: gggt		ggcg	gccgo	ct to	ctggi	eggti	t gc	ggtg	gtct	gaco	2				44
<213 <212)> 32 L> 44 2> Di 3> A:	4 NA	icia	l Sed	quen	ce										

<220> <223> Primer	
<400> 32 ggtgggaatt caggaggtaa aaagatatcg ggtgtggggc ggcc	44
<210> 33 <211> 47 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	`
<400> 33 ggtgggaatt caggaggtaa aaaacgatgg cttgcggtgg tctgacc	47
<210> 34 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 34 gcttgcggtg gtctgacc	18
<210> 35 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 35 ccaccaaget tagcaaccac cgtgtgc	27
<210> 36 <211> 54 <212> DNA <213> Artificial Sequence	
<220>	
<400> 36 ccaccaagct tgatatcccc acacccagcg gccgcagaac caccgcaacc accg	54
<210> 37 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 37 ccaccaagct taggcctccc acacccagcg gc	32
<210> 38 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 38 ggtgggaatt caggaggtaa aaaacgatg	29
<210> 39 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 39 ggtgggaatt caggcctatg gctacaggct cc	32
<210> 40 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 40 ggtgggaatt catggctaca ggctccc	27
<210> 41 <211> 59 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 41 gggtctagaa tggctacagg ctcccggacg tccctgctcc tggcttttgg cctgctctg	59
<210> 42 <211> 58 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 42 cgcaggcctc ggcactgccc tcttgaagcc agggcaggca gagcaggcca aaagccag	58

```
<210> 43
<211> 402
<212> DNA
<213> Artificial Sequence
<220>
<223> Modified bee
     venom phospholipase A2
<220>
<221> CDS
<222> (1)..(402)
<400> 43
atc atc tac cca ggt act ctg tgg tgt ggt cac ggc aac aaa tct tct
                                                                   48
Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Lys Ser Ser
                                                                   96
ggt ccg aac gaa ctc ggc cgc ttt aaa cac acc gac gca tgc tgt cgc
Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg
                                                                   144
acc cag gac atg tgt ccg gac gtc atg tct gct ggt gaa tct aaa cac
Thr Gln Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His
                             40
ggg tta act aac acc gct tct cac acg cgt ctc agc tgc gac tgc gac
                                                                   192
Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp
                                                                   240
gac aaa ttc tac gac tgc ctt aag aac tcc gcc gat acc atc tct tct
Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala Asp Thr Ile Ser Ser
tac ttc gtt ggt aaa atg tat ttc aac ctg atc gat acc aaa tgt tac
                                                                   288
Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr
                                      90
                                                                   336
aaa ctg gaa cac ccg gta acc ggc tgc ggc gaa cgt acc gaa ggt cgc
Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg
                                                                   384
tgc ctg cac tac acc gtt gac aaa tct aaa ccg aaa gtt tac cag tgg
Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp
                                                                   402
ttc gac ctg cgc aaa tac
Phe Asp Leu Arg Lys Tyr
    130
<210> 44
<211> 134
<212> PRT
<213> Artificial Sequence
<220>
<223> Modified bee
      venom phospholipase A2
Ile Ile Tyr Pro Gly Thr Leu Trp Cys Gly His Gly Asn Lys Ser Ser
```

```
Gly Pro Asn Glu Leu Gly Arg Phe Lys His Thr Asp Ala Cys Cys Arg
Thr Gln Asp Met Cys Pro Asp Val Met Ser Ala Gly Glu Ser Lys His
Gly Leu Thr Asn Thr Ala Ser His Thr Arg Leu Ser Cys Asp Cys Asp
Asp Lys Phe Tyr Asp Cys Leu Lys Asn Ser Ala Asp Thr Ile Ser Ser
Tyr Phe Val Gly Lys Met Tyr Phe Asn Leu Ile Asp Thr Lys Cys Tyr
Lys Leu Glu His Pro Val Thr Gly Cys Gly Glu Arg Thr Glu Gly Arg
Cys Leu His Tyr Thr Val Asp Lys Ser Lys Pro Lys Val Tyr Gln Trp
                            120
Phe Asp Leu Arg Lys Tyr
    130
<210> 45
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 45
                                                                   19
ccatcatcta cccaggtac
<210> 46
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 46
                                                                   34
cccacaccca gcggccgcgt atttgcgcag gtcg
<210> 47
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 47
                                                                   36
cggtggttct gcggccgcta tcatctaccc aggtac
```

<210> 48

<211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 48 ttagtatttg cgcaggtcg	19
<210> 49 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 49 ccggctccat cggtgcag	18
<210> 50 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 50 accaccagaa gcggccgcag gggaaacaca tctgcc	36
<210> 51 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 51 cggtggttct gcggccgctg gctccatcgg tgcag	35
<210> 52 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 52 ttaaggggaa acacatctgc c	21
<210> 53 <211> 33 <212> DNA <213> Artificial Sequence	

```
<220>
<223> Primer
<400> 53
                                                                    33
actagtctag aatgagagtg aaggagaaat atc
<210> 54
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 54
tagcatgcta gcaccgaatt tatctaattc caataattct tg
                                                                    42
<210> 55
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 55
gtagcaccca ccaaggcaaa gctgaaagct acccagctcg agaaactggc a
                                                                    51
<210> 56
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 56
                                                                    48
caaagctcct attcccactg ccagttictc gagctgggta gctttcag
<210> 57
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 57
ttcggtgcta gcggtggctg cggtggtctg accgac
                                                                    36
<210> 58
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

```
<400> 58
                                                                   37
gatgctgggc ccttaaccgc aaccaccgtg tgccgcc
<210> 59
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> JUN amino acid
     sequence
<400> 59
Cys Gly Gly Arg Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys
Ala Gln Asn Ser Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln
Val Ala Gln Leu Lys Gln Lys Val Met Asn His Val Gly Cys
                             40
<210> 60
<211> 46
<212> PRT
<213> Artificial Sequence
<220>
<223> FOS amino
      acid sequence
<400> 60
Cys Gly Gly Leu Thr Asp Thr Leu Gln Ala Glu Thr Asp Gln Val Glu
Asp Glu Lys Ser Ala Leu Gln Thr Glu Ile Ala Asn Leu Leu Lys Glu
Lys Glu Lys Leu Glu Phe Ile Leu Ala Ala His Gly Gly Cys
<210> 61
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 61
                                                                   33
ccggaattca tgtgcggtgg tcggatcgcc cgg
<210> 62
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

<400> 62 gtcgctaccc gcggctccgc aaccaacgtg gttcatgac	39
<210> 63 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 63 gttggttgcg gagccgcggg tagcgacatt gacccttata aagaatttgg	50
<210> 64 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 64 cgcgtcccaa gcttctacgg aagcgttgat aggatagg	38
<210> 65 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 65 ctagccgcgg gttgcggtgg tcggatcgcc cgg	33
<210> 66 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 66 cgcgtcccaa gcttttagca accaacgtgg ttcatgac	38
<210> 67 <211> 31 <212> DNA <213> Artificial Sequence	
<220> . <223> Primer	
<400> 67 ccggaattca tggacattga cccttataaa g	31

	<210> 68 <211> 45 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 68 ccgaccaccg caacccgcgg ctagcggaag cgttgatagg atagg	45
	<210> 69 <211> 47 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 69 ctaatggatc cggtgggggc tgcggtggtc ggatcgcccg gctcgag	47
	<210> 70 <211> 39 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 70 gtcgctaccc gcggctccgc aaccaacgtg gttcatgac	. 39
	<210> 71 <211> 31 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 71 ccggaattca tggacattga cccttataaa g	31
·	<210> 72 <211> 48 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 72 ccgaccaccg cagccccac cggatccatt agtacccacc caggtage	48
	<210> 73 <211> 45 <212> DNA	

	<213> Artificial Sequence	
	<220> <223> Primer	
	<400> 73 gttggttgcg gagccgcggg tagcgaccta gtagtcagtt atgtc	45
	<210> 74 <211> 38 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 74 cgcgtcccaa gcttctacgg aagcgttgat aggatagg	38
	<210> 75 <211> 33 <212> DNA <213> Artificial Sequence	
i D	<220> <223> Primer	
	<400> 75 ctagccgcgg gttgcggtgg tcggatcgcc cgg	33
	<210> 76 <211> 38 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 76 cgcgtcccaa gcttttagca accaacgtgg ttcatgac	38
	<210> 77 <211> 30 <212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 77 ccggaattca tggccacact tttaaggagc	30
	<210> 78 <211> 38 <212> DNA <213> Artificial Sequence	
	<220>	

	<223> Primer	
	<400> 78 cgcgtcccaa gcttttagca accaacgtgg ttcatgac	38
	<210> 79	•
	<211> 31	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 79	
	ccggaattca tggacattga cccttataaa g	31
	<210> 80	
	<211> 51	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 80	
_	cctagagcca cctttgccac catcttctaa attagtaccc acccaggtag c	51
	(010) 01	
	<210> 81 <211> 48	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 81	
	gaagatggtg gcaaaggtgg ctctagggac ctagtagtca gttatgtc	48
	<210> 82	
	<210> 62 <211> 38	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 82 cgcgtcccaa gcttctaaac aacagtagtc tccggaag	38
	cycytocoaa yettetaaae aacaytayte teeyyaay	20
	<210> 83	
	<211> 36	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 83	

gccgaattcc tagcagctag caccgaattt atctaa	36
<210> 84 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 84 ggttaagtcg acatgagagt gaaggagaaa tat	33
<210> 85 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 85 taaccgaatt caggaggtaa aaagatatgg	30
<210> 86 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 86 gaagtaaagc ttttaaccac cgcaaccacc agaag	35
<210> 87 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 87 . tcgaatgggc cctcatcttc gtgtgctagt cag	33
<210> 88 <211> 4 <212> PRT <213> Artificial Sequence	
<220> <223> Fos fusion construct	
<400> 88 Glu Phe Arg Arg 1	

)

```
<210> 89
 <211> 183
 <212> PRT
 <213> Hepatitis B virus
 <400> 89
 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys
 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
 Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile
 Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys
 Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg
 Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr
                             120
 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro
                         135
 Glu Thr Thr Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr
 145
 Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser
                                     170
. Gln Ser Arg Gly Ser Gln Cys
             180
 <210> 90
 <211> 183
 <212> PRT
 <213> Hepatitis B virus
 <400> 90
 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys
 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu
```

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Thr

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr

165

170

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 92

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 92

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu , 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Asn Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val $130 \,$ $135 \,$ $140 \,$

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 . 185 . 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 93

<211> 183

<212> PRT

<213> Hepatitis B virus

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Thr 150 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 94 <211> 212 <212> PRT <213> Hepatitis B virus

<400> 94
Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr
1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Val Ser Arg Asp

Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 150 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 95

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 95

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Asp Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu . 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Val Ser Arg Asp 100 . 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 96

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 96

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile $20 \\ 25 \\ 30$

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro Gln 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 . 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 $$ 150 $$ 155 $$ 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr
165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 97

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 97 Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 120 Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala Tyr Lys Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 170 Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg Gly Ser Gln Cys 210 <210> 98 <211> 183 <212> PRT <213> Hepatitis B virus

<400> 98

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp

Thr Ala Ser Ala Leu Phe Arg Asp Ala Leu Glu Ser Pro Glu His Cys

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ala

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg

Asp Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

75

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Thr

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser

150

70

65

80

Gln Ser Arg Glu Ser Gln Cys 180

<210> 100

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 100

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg His Ala Ile Leu Cys Trp Gly Asp Leu Arg Thr 85 90 95

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln
115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185. 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 101

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 101

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 \cdot 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Asp Met Asp Ile

Asp		Tyr 35	_			_				Glu			Ser	Phe	Leu
D	C	7	Dha	Dha	Dwo	C 0 20	u-1	7. ~~	7 an	T 011	Ton	7 an	Th r	7.1 -	Sor

25

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Phe Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Ala Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Gln Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Cys 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 102

TI H

T:

<211> 183

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic

human Hepatitus B construct

.<400> 102

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

;

Gln Ser Arg Glu Ser Gln Cys 180

<210> 103

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 103

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Ser . 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ile Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 150

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 185 190 Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 104

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 104

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 \cdot 25 30

Thr Ala Ser Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu $50 \hspace{1cm} 60$

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys $85 \hspace{1cm} 90 \hspace{1cm} 95$

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg
100 105 : 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 105

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 105

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
1 5 10

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys

m

35

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 50 55 60

40

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 106

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 106

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu $50 \hspace{1cm} 55 \hspace{1cm} 60$

Leu Met Thr Leu Ala Thr Trp Val Gly Ala Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Gly Arg Thr Pro Arg Arg Arg Thr 145 150. 155

Pro Ser Pro Arg Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 107

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 107

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 :25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 108

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 108 Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 120 Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 135 Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 155 Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 170 Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 200 Glu Ser Gln Cys 210 <210> 109 <211> 212 <212> PRT <213> Hepatitis B virus <400> 109 Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Thr Cys Pro Thr Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His

Pro Ser Asp Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 155

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 200 205

Glu Ser Gln Cys 210

<210> 111

<211> 212

<21.2> PRT

<213> Hepatitis B virus

<220>

<221> UNSURE <222> (28)..(28)

<223> May be any amino acid.

<400> 111

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Xaa Asp Met Asp Ile

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Ile Thr

Leu Ser Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Thr Ser Arg Asp

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 170

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Thr Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 112

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 112

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Asn Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp
100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 113

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 113

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr

· 10

COMFACTOR OF CHORD

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala145150155160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro $180 \\ \hspace*{1.5cm} 185 \\ \hspace*{1.5cm} 190 \\ \hspace*{1.5cm}$

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg \cdot 195 200 205

Glu Pro Gln Cys 210

<210> 115

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 115

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 510

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Ser Thr Ala Ser 50 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160 Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 116

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 116

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp
100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Leu Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 , 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210 <211> 212 <212> PRT <213> Hepatitis B virus <400> 117

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr

1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Lys Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 118 <211> 212

<212> PRT

<213> Hepatitis B virus

<400> 118

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr 1 5 10 15

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ala 50 55 60

Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 150 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 119

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 119

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Ser Met Glu Leu Leu 1 10 15

Ser Phe Leu Pro Ser Asp Phe Tyr Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Gln Asp Pro Thr 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Phe Arg Gln Leu Leu Trp Phe His Val Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Val Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Gln Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 120

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 120

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 35 40 45

Ser Pro His His Thr Ala Leu Arg His Val Phe Leu Cys Trp Gly Asp 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Thr 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 130 135 140

Glu Thr Thr Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr 145 150 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 121

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 121

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr

Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys Ser Pro His

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 . 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Ile Phe Gly Arg Glu Thr Val 130 135 . 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala145150155160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 123

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 123

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp 50 55 60

Leu Met Thr Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Val 65 70 75 80

Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys 85 90 95

Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 115 120 125

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Thr 145 150 155 160

Pro Ser Pro Ala Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 165 170 175

Gln Ser Arg Glu Ser Gln Cys 180

<210> 124

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 124

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65. 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Asn 85 90 95

Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Val Ser Arg Asp 100 105 110

Leu Val Val Gly Tyr Val Asn Thr Thr Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 125

<211> 183

<212> PRT

<213> Hepatitis B virus ·

<400> 125

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu

TOPOLOGIO TOLOGI

	Ser	Phe	Leu	Pro 20	Ser	Asp	Phe	Phe	Pro 25	Ser	Val	Arg	Asp	Leu 30	Leu	Asp
-	ľhr	Ala	Ser 35	Ala	Leu	Tyr	Arg	Asp 40	Ala	Leu	Glu	Ser	Pro 45	Glu	His	Cys
Š	Ser	Pro 50	His	His	Thr	Ala	Leu 55	Arg	Gln	Ala	Ile	Leu 60	Cys	Trp	Gly	Asp
3	Leu 65	Met	Thr	Leu	Ala	Thr 70	Trp	Val	Gly	Val	Asn 75	Leu	Glu	Asp	Pro	Ala 80
S	Ser	Arg	Asp	Leu	Val 85	Val	Ser	Tyr	Val	Asn 90	Thr	Asn	Met	Gly	Leu 95	Lys
]	Phe	Arg	Gln	Leu 100	Leu	Trp	Phe	His	Ile 105	Ser	Cys	Leu	Thr	Phe 110	Gly	Arg
(Glu	Thr	Val 115	Ile	Glu	Tyr	Leu	Val 120	Ser	Phe	Gly	Val	Trp 125	Ile	Arg	Thr
I	Pro	Pro 130	Ala	Tyr	Arg	Pro	Pro 135	Asn	Ala	Pro	Ile	Leu 140	Ser	Thr	Leu	Pro
	Glu 145	Thr	Thr	Val	Val	Arg 150	Arg	Arg	Gly	Arg	Thr 155	Pro	Arg	Arg	Arg	Thr 160
]	Pro	Ser	Pro	Arg	Arg 165	Arg	Arg	Ser	Gln	Ser 170	Pro	Arg	Arg	Arg	Arg 175	Ser
(Gln	Ser	Arg	Glu 180	Ser	Gln	Cys									
•	<211 <212)> 12 l> 21 2> PF 3> He	L2 RT	itis	B v	irus			ì							
	<400)> 12	26							1						
ľ	Met 1	Gln	Leu	Phe	His 5	Leu	Cys	Leu	Ile	Ile 10	Ser	Cys	Ser	Cys	Pro 15	Thr
7	Val	Gln	Ala	Ser 20	Lys	Leu	Cys	Leu	Gly 25	Trp	Leu	Trp	Gly	Met 30	Asp	Ile
	Asp	Pro	Tyr 35	Lys	Glu	Phe	Gly	Ala 40	Thr	Val	Glu	Leu	Leu 45	Ser	Phe	Leu
j	Pro	Ser 50	Asp	Phe	Phe	Pro	Ser 55	Val	Arg	Ala	Leu	Leu 60	Asp	Thr	Ala	Ser
1	Ala 65	Leu	Tyr	Arg	Glu	Ala 70	Leu	Glu	Ser	Pro	Glu 75	His	Cys	Ser	Pro	His 80
I	lis	Thr	Ala	Leu		Gln	Ala	Ile	Leu		Trp	Gly	Glu	Leu		Thr
					85					90					95	

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Ile Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Arg Ser Gln Ser Arg 195

Glu Ser Gln Cys 210

<210> 127

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 127

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Thr Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 150 155 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190 Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 128

<211> 212

<212> PRT

<213> Hepatitis B virus

<4.00> 128

Met Gln Leu Phe His Leu Cys Leu Ile Ile Ser Cys Ser Cys Pro Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile 20 25 30

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu 35 40 45

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser 50 55 60

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His 65 70 75 80

His Thr Ala Leu Arg Gln Arg Ile Leu Cys Trp Gly Glu Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala 145 $\,$ 150 $\,$ 155 $\,$ 160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Thr Pro Ser Pro 180 . 185 . 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Thr Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 129

<211> 212

<212> PRT

<213> Hepatitis B virus

<400> 129

Met Gln Leu Phe His Leu Cys Leu Val Ile Ser Cys Ser Cys Pro Thr

. 10

Val Gln Ala Ser Lys Leu Cys Leu Gly Trp Leu Trp Gly Met Asp Ile

Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu Ser Phe Leu

Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ala

Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys Ser Pro His

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr

70

75

His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp Leu Met Thr 85 90 95

Leu Ala Thr Trp Val Gly Val Asn Leu Glu Asp Pro Ala Ser Arg Asp 100 105 110

Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys Phe Arg Gln 115 120 125

Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg Glu Thr Val 130 135 140

Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr Pro Pro Ala145150155160

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Thr 165 170 175

Val Val Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro 180 185 190

Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser Gln Ser Arg 195 200 205

Glu Ser Gln Cys 210

<210> 131

<211> 183

<212> PRT

<213> Hepatitis B virus

<400> 131

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 1 5 10 15

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 25 30

Thr Ala Ala Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50 60

Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Glu Asp Pro Ala 65 70 75 80

Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95 \cdot$

Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 100 105 110

Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr $$^{\circ}$$ 120 $$^{\circ}$$ 125

Glu Thr Thr Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Thr 145 150 155 160

Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 170 165 Gln Ser Arg Glu Ser Gln Cys 180 <210> 132 <211> 183 <212> PRT <213> Hepatitis B virus <400> 132 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 5 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 40 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu Leu Met Thr Leu Ala Thr Trp Val Gly Gly Asn Leu Glu Asp Pro Ile Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met Gly Leu Lys 85 Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 105 Glu Thr Val Ile Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 120 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu Thr Cys Val Val Arg Arg Arg Gly Arg Ser Pro Arg Arg Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg Ser 170 Gln Ser Arg Gly Ser Gln Cys 180 <210> 133 <211> 3221 <212> DNA <213> Hepatitis B virus <220> <221> CDS <222> (1901)..(2458) <400> 133 ttccactgcc ttccaccaag ctctgcagga ccccagagtc aggggtctgt attttcctgc 60

tggtggctcc agttcaggaa cagtaaaccc tgctccgaat attgcctctc acatctcgtc 120

aatctccgcg aggactgggg accctgtgac gaacatggag aacatcacat caggattcct 180 aggacccctg ctcgtgttac aggcggggtt tttattgttg acaagaatcc tcacaatacc 240 gcagagtcta gactcgtggt ggacttctct caattttata gggggatcac ccgtgtgtct 300 tggccaaaat tcgcagtccc caacctccaa tcactcacca acctcctgtc ctccaatttg 360 tcctggttat cgctggatgt gtctgcggcg ttttatcata ttcctcttca tcctgctgct 420 atgcctcatc ttcttattgg ttcttctgga ttatcaaggt atgttgcccg tttgtcctct 480 aattccagga tcaacaacaa ccagtacggg accatgcaaa acctgcacga ctcctgctca 540 aggcaactct atgtttccct catgttgctg tacaaaacct acggttggaa attgcacctg 600 tattcccatc ccatcgtcct gggctttcgc aaaataccta tgggagtggg cctcagtccg 660 tttctcttgg ctcagtttac tagtgccatt tgttcagtgg ttcgtagggc tttccccac 720 tgtttggctt tcagctatat ggatgatgtg gtattggggg ccaagtctgt acagcatcgt 780 gagtcccttt ataccgctgt taccaatttt cttttgtctc tgggtataca tttaaaccct 840 aacaaaacaa aaagatgggg ttattcccta aacttcatgg gttacataat tggaagttgg 900 ggaacattgc cacaggatca tattgtacaa aagatcaaac actgttttag aaaacttcct 960 qttaacaggc ctattgattg gaaagtatgt caaagaattg tgggtctttt gggctttgct 1020 gctccattta cacaatgtgg atatcctgcc ttaatgcctt tgtatgcatg tatacaggct 1080 aaacaggett teaetttete gecaaettae aaggeettte taagtaaaca gtacatgaac 1140 ctttaccccg ttgctcggca acggcctggt ctgtgccaag tgtttgctga cgcaaccccc 1200 actggttggg gcttggccat aggccatcag cgcatgagtg gaacctttgt ggctcctctg 1260 ccgatccata ctgcggaact cctagccgct tgtattgctc gcagccggtc tggagcaaag 1320 ctcatcggaa ctgacaattc tgtcgtcctc tcgcggaaat atacatcgtt tccatggctg 1380 ctaggctgta ctgccaactg gatcettege gggacgteet ttgtttacgt ceegteggeg 1440 ctgaatcccg cggacgaccc ctctcggggc cgcttgggac tctatcgtcc ccttctccgt 1500 ctgccgttcc agccgaccac ggggcgcacc tctctttacg cggtctcccc gtctgtgcct 1560 teteatetge eggteegtgt geaetteget teacetetge aegttgeatg gagaceaecg 1620 tgaacgccca tcagatcctg cccaaggtct tacataagag gactcttgga ctcccagcaa 1680 tgtcaacgac cgaccttgag gcctacttca aagactgtgt gtttaaggac tgggaggagc 1740 tgggggagga gattaggtta aaggtetttg tattaggagg etgtaggeat aaattggtet 1800 gcgcaccage accatgcaac tttttcacct ctgcctaatc atctcttgta catgtcccac 1860 1915 tgttcaagcc tccaagctgt gccttgggtg gctttggggc atg gac att gac cct Met Asp Ile Asp Pro

tat aaa gaa ttt gga gct act gtg gag tta ctc tcg ttt ttg cct tct

Tyr	Lys	Glu	Phe	Gly 10	Ala	Thr	Val	Glu	Leu 15	Leu	Ser	Phe	Leu	Pro 20	Ser	
gac Asp	ttc Phe	ttt Phe	cct Pro 25	tcc Ser	gtc Val	aga Arg	gat Asp	ctc Leu 30	cta Leu	gac Asp	acc Thr	gcc Ala	tca Ser 35	gct Ala	ctg Leu	2011
tat Tyr	cga Arg	gaa Glu 40	gcc Ala	tta Leu	gag Glu	tct Ser	cct Pro 45	gag Glu	cat His	tgc Cys	tca Ser	cct Pro 50	cac His	cat His	act Thr	2059
gca Ala	ctc Leu 55	agg Arg	caa Gln	gcc Ala	att Ile	ctc Leu 60	tgc Cys	tgg Trp	ggg Gly	gaa Glu	ttg Leu 65	atg Met	act Thr	cta Leu	gct Ala	2107
acc Thr 70	tgg Trp	gtg Val	ggt Gly	aat Asn	aat Asn 75	ttg Leu	gaa Glu	gat Asp	cca Pro	gca Ala 80	tcc Ser	agg Arg	gat Asp	cta Leu	gta Val 85	2155
gtc Val	aat Asn	tat Tyr	gtt Val	aat Asn 90	act Thr	aac Asn	atg Met	ggt Gly	tta Leu 95	aag Lys	atc Ile	agg Arg	caa Gln	cta Leu 100	ttg Leu	2203
tgg Trp	ttt Phe	cat His	ata Ile 105	tct Ser	tgc Cys	ctt Leu	act Thr	ttt Phe 110	gga Gly	aga Arg	gag Glu	act Thr	gta Val 115	ctt Leu	gaa Glu	2251
tat Tyr	ttg Leu	gtc Val 120	tct Ser	ttc Phe	gga Gly	gtg Val	tgg Trp 125	att Ile	cgc Arg	act Thr	cct Pro	cca Pro 130	gcc Ala	tat Tyr	aga Arg	2299
cca Pro	cca Pro 135	aat Asn	gcc Ala	cct Pro	atc Ile	tta Leu 140	tca Ser	aca Thr	ctt Leu	ccg Pro	gaa Glu 145	act Thr	act Thr	gtt Val	gtt Val	2347
aga Arg 150	cga Arg	cgg Arg	gac Asp	cga Arg	ggc Gly 155	agg Arg	tcc Ser	cct Pro	aga Arg	aga Arg 160	aga Arg	act Thr	ccc Pro	tcg Ser	cct Pro 165	2395
cgc Arg	aga Arg	cgc Arg	aga Arg	tct Ser 170	caa Gln	tcg Ser	ccg Pro	cgt Arg :	cgc Arg 175	aga Arg	aga Arg	tct Ser	caa Gln	tct Ser 180	cgg Arg	2443
		caa Gln		tag	tati	cct	tgg a	actca	ataa	gg to	gggaa	aact [.]	t ta	ctgg	gctt	2498
tatt	cct	cta d	cagt	accta	at ci	ttaa	atcci	t gaa	atggo	caaa	ctc	cttc	ctt †	tccta	aagatt	2558
catt	taca	aag a	agga	catta	at to	gata	ggtgi	t caa	acaat	tttg	tgg	gccc.	tct (cact	gtaaat	2618
gaaa	aaga	gaa (gatt	gaaa	tt aa	attai	tgcct	t gc	tagat	ttct	atc	ctac	cca (cacta	aaatat	2678
ttgo	ccct	tag a	acaa	agga	at ta	aaac	cttat	t ta	tcca	gatc	agg	tagt	taa ·	tcat	tacttc	2738
caaa	acca	gac a	atta	ttta	ca ta	actc	tttg	g aa	ggct	ggta	ttc	tata	taa (gagg	gaaacc	2798
acad	cgta	gcg (catc	attt	tg c	gggt	cacca	a ta	ttct	tggg	aaca	aaga	gct a	acag	catggg	2858
aggt	tgg	tca ·	ttaa	aacc	tc g	caaa	ggca	t gg	ggac	gaat	ctt	tctg	ttc	ccaa	ccctct	2918
ggga	attc	ttt (cccg	atca [.]	tc a	gttg	gacc	c tg	catt	cgga	gcc	aact	caa	acaa	tccaga	2978

ttgggacttc aaccccatca aggaccactg gccagcagcc aaccaggtag gagtgggagc 3038 attcgggcca gggctcaccc ctccacacgg cggtattttg gggtggagcc ctcaggctca 3098 gggcatattg accacagtgt caacaattcc tcctcctgcc tccaccaatc ggcagtcagg 3158 aaggcagcct actcccatct ctccacctct aagagacagt catcctcagg ccatgcagtg 3218 gaa 3221

<210> 134 <211> 185 <212> PRT <213> Hepatitis B virus

<400> 134 Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu 10 Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp 20 Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Cys 40 Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 55 Leu Met Thr Leu Ala Thr Trp Val Gly Asn Asn Leu Glu Asp Pro Ala 70 75 Ser Arg Asp Leu Val Val Asn Tyr Val Asn Thr Asn Met Gly Leu Lys 90 85 Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg 105 Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr 125 115 120 Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro 135 140 130 Glu Thr Thr Val Val Arg Arg Arg Asp Arg Gly Arg Ser Pro Arg Arg 150 155 Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg 165 170 Arg Ser Gln Ser Arg Glu Ser Gln Cys

<210> 135 <211> 188 <212> PRT <213> Woodchuck hepatitis B virus

<400> 135
Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ser Ser Tyr Gln Leu Leu
1 5 10 15

Asn Phe Leu Pro Leu Asp Phe Phe Pro Asp Leu Asn Ala Leu Val Asp 20 25 30

Thr Ala Thr Ala Leu Tyr Glu Glu Glu Leu Thr Gly Arg Glu His Cys 35 40 45

Ser Pro His His Thr Ala Ile Arg Gln Ala Leu Val Cys Trp Asp Glu 50 60

Leu Thr Lys Leu Ile Ala Trp Met Ser Ser Asn Ile Thr Ser Glu Gln

80

70

65

Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro Glu His Thr

170

Val Ile Arg Arg Arg Gly Gly Ser Arg Ala Ala Arg Ser Pro Arg Arg 180 185 190

Arg Thr Pro Ser Pro Arg Arg Arg Ser Gln Ser Pro Arg Arg Arg 195 200 205

Arg Ser Gln Ser Pro Ala Ser Asn Cys 210 215

<210> 137

<211> 262

<212> PRT

<213> Snow Goose Hepatitis B Virus

<400> 137

Met Asp Val Asn Ala Ser Arg Ala Leu Ala Asn Val Tyr Asp Leu Pro 1 5 10 15

Asp Asp Phe Phe Pro Lys Ile Glu Asp Leu Val Arg Asp Ala Lys Asp 20 25 30

Ala Leu Glu Pro Tyr Trp Lys Ser Asp Ser Ile Lys Lys His Val Leu 35 40 45

Ile Ala Thr His Phe Val Asp Leu Ile Glu Asp Phe Trp Gln Thr Thr 50 60

Gln Gly Met His Glu Ile Ala Glu Ala Ile Arg Ala Val Ile Pro Pro 65 70 75 80

Glu Glu Ile Pro Leu Gly Asp Leu Phe Lys Glu Glu Glu Glu Arg Ile $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Val Ser Phe Gln Pro Asp Tyr Pro Ile Thr Ala Arg Ile His Ala His 115 120 125

Leu Lys Ala Tyr Ala Lys Ile Asn Glu Glu Ser Leu Asp Arg Ala Arg 130 135 . 140

Arg Leu Leu Trp Trp His Tyr Asn Cys Leu Leu Trp Gly Glu Ala Thr 145 150 155 160

Val Thr Asn Tyr Ile Ser Arg Leu Arg Thr Trp Leu Ser Thr Pro Glu 165 170 175

Lys Tyr Arg Gly Arg Asp Ala Pro Thr Ile Glu Ala Ile Thr Arg Pro 180 185 190

Ile Gln Val Ala Gln Gly Gly Arg Lys Thr Ser Thr Ala Thr Arg Lys
195 200 205

Pro Arg Gly Leu Glu Pro Arg Arg Lys Val Lys Thr Thr Val Val 210 215 220

Tyr Gly Arg Arg Arg Ser Lys Ser Arg Glu Arg Arg Ala Ser Ser Pro 225 230 235 240

Gln Arg Ala Gly Ser Pro Leu Pro Arg Ser Ser Ser Ser His His Arg 245 250 255

Ser Pro Ser Pro Arg Lys 260

<210> 138 <211> 305 <212> PRT <213> Duck hepatitis B virus

Met Trp Asp Leu Arg Leu His Pro Ser Pro Phe Gly Ala Ala Cys Gln $1 \hspace{1cm} .5 \hspace{1cm} 10 \hspace{1cm} .15$

Gly Ile Phe Thr Ser Ser Leu Leu Leu Phe Leu Val Thr Val Pro Leu 20 25 30

Val Cys Thr Ile Val Tyr Asp Ser Cys Leu Cys Met Asp Ile Asn Ala 35 40 45

Ser Arg Ala Leu Ala Asn Val Tyr Asp Leu Pro Asp Asp Phe Phe Pro 50 55 60

Lys Ile Asp Asp Leu Val Arg Asp Ala Lys Asp Ala Leu Glu Pro Tyr 65 70 75 80

Trp Arg Asn Asp Ser Ile Lys Lys His Val Leu Ile Ala Thr His Phe \$85\$

Val Asp Leu Ile Glu Asp Phe Trp Gln Thr Thr Gln Gly Met His Glu 100 105 110

Ile Ala Glu Ala Leu Arg Ala Ile Ile Pro Ala Thr Thr Ala Pro Val 115 120 125

Pro Gln Gly Phe Leu Val Gln His Glu Glu Ala Glu Glu Ile Pro Leu 130 135 140

Gly Glu Leu Phe Arg Tyr Gln Glu Glu Arg Leu Thr Asn Phe Gln Pro 145 150 155 160

Asp Tyr Pro Val Thr Ala Arg Ile His Ala His Leu Lys Ala Tyr Ala 165 170 175

Lys Ile Asn Glu Glu Ser Leu Asp Arg Ala Arg Arg Leu Leu Trp Trp 180 185 190

His Tyr Asn Cys Leu Leu Trp Gly Glu Pro Asn Val Thr Asn Tyr Ile 195 200 205

Ser Arg Leu Arg Thr Trp Leu Ser Thr Pro Glu Lys Tyr Arg Gly Lys 210 220

Asp Ala Pro Thr Ile Glu Ala Ile Thr Arg Pro Ile Gln Val Ala Gln 225 230 235 240

Gly Gly Arg Asn Lys Thr Gln Gly Val Arg Lys Ser Arg Gly Leu Glu 245 250 255

Pro Arg Arg Arg Val Lys Thr Thr Ile Val Tyr Gly Arg Arg Arg 260 265 270

Ser Lys Ser Arg Glu Arg Arg Ala Pro Thr Pro Gln Arg Ala Gly Ser 275 280 285

Pro Leu Pro Arg Thr Ser Arg Asp His His Arg Ser Pro Ser Pro Arg 290 295 300

Glu 305

<210> 139

<211> 212

<212> PRT

<213> Haemophilus influenzae

<400> 139

Met Lys Lys Thr Leu Leu Gly Ser Leu Ile Leu Leu Ala Phe Ala Gly 1 5 10 15

Asn Val Gln Ala Ala Ala Asn Ala Asp Thr Ser Gly Thr Val Thr Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$

Phe Gly Lys Val Val Glu Asn Thr Cys Gln Val Asn Gln Asp Ser Glu 35 40 45

Tyr Glu Cys Asn Leu Asn Asp Val Gly Lys Asn His Leu Ser Gln Gln 50 55 60

Gly Tyr Thr Ala Met Gln Thr Pro Phe Thr Ile Thr Leu Glu Asn Cys 65 70 75 80

Asn Val Thr Thr Asn Asn Lys Pro Lys Ala Thr Lys Val Gly Val 85 90 95

Tyr Phe Tyr Ser Trp Glu Ile Ala Asp Lys Asp Asn Lys Tyr Thr Leu 100 105 110

Lys Asn Ile Lys Glu Asn Thr Gly Thr Asn Asp Ser Ala Asn Lys Values 115 120 125

Asn Ile Gln Leu Leu Glu Asp Asn Gly Thr Ala Glu Ile Lys Val Val 130 135 . 140

Gly Lys Thr Thr Thr Asp Phe Thr Ser Glu Asn His Asn Gly Ala Gly 145 150 155 160

Ala Asp Pro Val Ala Thr Asn Lys His Ile Ser Ser Leu Thr Pro Leu 165 170 175

Asn Asn Gln Asn Ser Ile Asn Leu His Tyr Ile Ala Gln Tyr Tyr Ala 180 \$180\$

Thr Gly Val Ala Glu Ala Gly Lys Val Pro Ser Ser Val Asn Ser Gln 195 200 205

Ile Ala Tyr Glu 210

<210> 140

<211> 139

<212> PRT

<213> Pseudomonas stutzeri

<400> 140

Met Lys Ala Gln Met Gln Lys Gly Phe Thr Leu Ile Glu Leu Met Ile

1				5					10					15	
Val	Val	Ala	Ile 20	Ile	Gly	Ile	Leu	Ala 25	Ala	Ile	Ala	Leu	Pro 30	Ala	Tyr
Gln	Asp	Tyr 35	Thr	Val	Arg	Ser	Asn 40	Ala	Ala	Ala	Ala	Leu 45	Ala	Glu	Ile
Thr	Pro 50	Gly	Lys	Ile	Gly	Phe 55	Glu	Gln	Ala	Ile	Asn 60	Glu	Gly	Lys	Thr
Pro 65	Ser	Leu	Thr	Ser	Thr 70	Asp	Glu	Gly	Tyr	Ile 75	Gly	Ile	Thr	Asp	Ser 80
Thr	Ser	Tyr	Суз	Asp 85	Val	Asp	Leu	Asp	Thr 90	Ala	Ala	Asp	Gly	His 95	Ile
Glu	Суѕ	Thr	Ala 100	Lys	Gly	Gly	Asn	Ala 105	Gly	Lys	Phe	Asp	Gly 110	Lys	Thr
Ile	Thr	Leu 115	Asn	Arg	Thr	Ala	Asp 120	Gly	Glu	Trp	Ser	Cys 125	Ala	Ser	Thr
Leu	Asp 130	Ala	Lys	Tyr	Lys	Pro 135	Gly	Lys	Cys	Ser					
<210> 141 <211> 59 <212> PRT <213> Caulobacter crescentus															
)> 14 Thr		Phe	Val 5	Thr	Arg	Phe	Leu	Lys 10	Asp	Glu	Ser	Gly	Ala 15	Thr
Ala.	Ile	Glu	Tyr 20	Gly	Leu	Ile	Val	Ala 25	Leu	Ile	Ala	Val	Val 30	Ile	Val
Thr	Ala	Val 35	Thr	Thr	Leu	Gly	Thr 40	Asn :.	Leu	Arg	Thr	Ala 45	Phe	Thr	Lys
Ala	Gly 50	Ala	Ala	Val	Ser	Thr 55	Ala	Ala	Gly	Thr					
<210> 142 <211> 173 <212> PRT <213> Escherichia coli															
)> 14 Ala		Val	Ser 5	Phe	Gly	Val	Asn	Ala 10	Ala	Pro	Thr	Ile	Pro 15	Gln
Gly	Gln	Gly	Lys 20	Val	Thr	Phe	Asn	Gly 25	Thr	Val	Val	Asp	Ala 30	Pro	Cys
Ser	Ile	Ser 35	Gln	Lys	Ser	Ala	Asp 40	Gln	Ser	Ile	Asp	Phe 45	Gly	Gln	Leu
Ser	Lys 50	Ser	Phe	Leu	Glu	Ala 55	Gly	Gly	Val	Ser	Lys 60	Pro	Met	Asp	Leu

Asp Ile Glu Leu Val Asn Cys Asp Ile Thr Ala Phe Lys Gly Gly Asn 65 70 75 80

Gly Ala Gln Lys Gly Thr Val Lys Leu Ala Phe Thr Gly Pro Ile Val 85 90 95

Asn Gly His Ser Asp Glu Leu Asp Thr Asn Gly Gly Thr Gly Thr Ala 100 105 110

Ile Val Val Gl
n Gly Ala Gly Lys As
n Val Val Phe Asp Gly Ser Glu115 120 125

Gly Asp Ala Asn Thr Leu Lys Asp Gly Glu Asn Val Leu His Tyr Thr 130 135 140

Ala Val Val Lys Lys Ser Ser Ala Val Gly Ala Ala Val Thr Glu Gly 145 150 155 160

Ala Phe Ser Ala Val Ala Asn Phe Asn Leu Thr Tyr Gln 165 170

<210> 143

<211> 173

<212> PRT

<213> Escherichia coli

<400> 143

Met Ala Val Val Ser Phe Gly Val Asn Ala Ala Pro Thr Ile Pro Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Gln Gly Lys Val Thr Phe Asn Gly Thr Val Val Asp Ala Pro Cys

Ser Ile Ser Gln Lys Ser Ala Asp Gln Ser Ile Asp Phe Gly Gln Leu 35 40 45 .

Ser Lys Ser Phe Leu Glu Ala Gly Gly Val Ser Lys Pro Met Asp Leu 50 60

Asp Ile Glu Leu Val Asn Cys Asp Ile Thr Ala Phe Lys Gly Gly Asn 65 70 75 80

Gly Ala Gln Lys Gly Thr Val Lys Leu Ala Phe Thr Gly Pro Ile Val 85 90 95

Asn Gly His Ser Asp Glu Leu Asp Thr Asn Gly Gly Thr Gly Thr Ala 100 105 110

Ile Val Val Gl
n Gly Ala Gly Lys As
n Val Val Phe Asp Gly Ser Glu \cdot 115 120 125

Gly Asp Ala Asn Thr Leu Lys Asp Gly Glu Asn Val Leu His Tyr Thr 130 135 140

Ala Val Val Lys Lys Ser Ser Ala Val Gly Ala Ala Val Thr Glu Gly 145 150 150 160

Ala Phe Ser Ala Val Ala Asn Phe Asn Leu Thr Tyr Gln 165 170

<210> 144

<211> 172

```
<212> PRT
<213> Escherichia coli
<400> 144
Met Ala Val Val Ser Phe Gly Val Asn Ala Ala Pro Thr Thr Pro Gln
Gly Gln Gly Arg Val Thr Phe Asn Gly Thr Val Val Asp Ala Pro Cys
Ser Ile Ser Gln Lys Ser Ala Asp Gln Ser Ile Asp Phe Gly Gln Leu
Ser Lys Ser Phe Leu Ala Asn Asp Gly Gln Ser Lys Pro Met Asn Leu
Asp Ile Glu Leu Val Asn Cys Asp Ile Thr Ala Phe Lys Asn Gly Asn
Ala Lys Thr Gly Ser Val Lys Leu Ala Phe Thr Gly Pro Thr Val Ser
Gly His Pro Ser Glu Leu Ala Thr Asn Gly Gly Pro Gly Thr Ala Ile
Met Ile Gln Ala´Ala Gly Lys Asn Val Pro Phe Asp Gly Thr Glu Gly
Asp Pro Asn Leu Leu Lys Asp Gly Asp Asn Val Leu His Tyr Thr Thr
                        135
Val Gly Lys Lys Ser Ser Asp Gly Asn Ala Gln Ile Thr Glu Gly Ala
                    150
                                        155
Phe Ser Gly Val Ala Thr Phe Asn Leu Ser Tyr Gln
                165
<210> 145
<211> 853
<212> DNA
<213> Escherichia coli
<220>
<221> CDS
<222> (281)..(829)
<400> 145
acqtttctqt ggctcgacgc atcttcctca ttcttctctc caaaaaccac ctcatgcaat 60
ataaacatct ataaataaag ataacaaata gaatattaag ccaacaaata aactgaaaaa 120
qtttqtccqc qatqctttac ctctatgagt caaaatggcc ccaatgtttc atcttttggg 180
ggaaactgtg cagtgttggc agtcaaactc gttgacaaac aaagtgtaca gaacgactgc 240
ccatgtcgat ttagaaatag ttttttgaaa ggaaagcagc atg aaa att aaa act
                                            Met Lys Ile Lys Thr
ctg gca atc gtt gtt ctg tcg gct ctg tcc ctc agt tct acg acg gct
Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu Ser Ser Thr Thr Ala
```

	g gcc 1 Ala															391
	gtt Val															439
acc Thi	gtt Val 55	cag Gln	tta Leu	gga Gly	cag Gln	gtt Val 60	cgt Arg	acc Thr	gca Ala	tcg Ser	ctg Leu 65	gca Ala	cag Gln	gaa Glu	gga Gly	487
gca Ala 70	acc Thr	agt Ser	tct Ser	gct Ala	gtc Val 75	ggt Gly	ttt Phe	aac Asn	att Ile	cag Gln 80	ctg Leu	aat Asn	gat Asp	tgc Cys	gat Asp 85	535
	aat Asn															583
gat Asp	gcg Ala	ggt Gly	cat His 105	acc Thr	aac Asn	gtt Val	ctg Leu	gct Ala 110	ctg Leu	cag Gln	agt Ser	tca Ser	gct Ala 115	gcg Ala	ggt Gly	631
	gca Ala															679
cto	acg Thr 135	ctg Leu	gat Asp	ggt Gly	gcg Ala	aca Thr 140	ttt Phe	agt Ser	tca Ser	gaa Glu	aca Thr 145	acc Thr	ctg Leu	aat Asn	aac Asn	727
	acc Thr															775
gca Ala	acc Thr	ccg Pro	ggt Gly	gct Ala 170	gct Ala	aat Asn	gcg Ala	gat Asp	gcg Ala 175	acc Thr	ttc Phe	aag Lys	gtt Val	cag Gln 180	tat Tyr	823
caa Glr	taa 1	ccta	accta	agg t	tca	ggga	eg ti	tca								853
<21 <21	.0> 1: .1> 1: .2> PI	82 RT	rich	ia co	oli											
	00> 1 Lys		Lys	Thr	Leu	Ala	Ile	Val	Val	Leu	Ser	Ala	Leu	Ser 15	Leu	
	Ser	Thr		Ala	Leu	Ala	Ala			Thr	Val	Asn			Thr	
Va]	His	Phe 35	20 Lys	Gly	Glu	Val	Val 40	25 Asn	Ala	Ala	Cys	Ala 45	30 Val	Asp	Ala	
Gly	Ser 50		Asp	Gln	Thr	Val 55		Leu	Gly	Gln	Val 60		Thr	Ala	Ser	
Let 65	ı Ala	Gln	Glu	Gly	Ala 70		Ser	Ser	Ala	Val 75		Phe	Asn	Ile	Gln 80	
	ı Asn	Asp	Cys	Asp 85	Thr	Asn	Val	Ala	Ser 90	Lys	Ala	Ala	Val	Ala 95	Phe	
Let	ı Gly	Thr	Ala	Ile	Asp	Ala	Gly	·His	Thr	Asn	Val	Leu	Ala	Leu	Gln	

```
Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp
                                            125
 115
                   120
Arg Thr Gly Ala Ala Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu
                      135
Thr Thr Leu Asn Asn Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr
                                      155
                  150
Phe Ala Thr Gly Ala Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr
                                   170
               165
Phe Lys Val Gln Tyr Gln
           180
<210> 147
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> FLAG peptide
<400> 147
Cys Gly Gly Asp Tyr Lys Asp Asp Asp Lys
<210> 148
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 148
                                                                 31
ccggaattca tggacattga cccttataaa g
<210> 149
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 149
                                                                 37
gtgcagtatg gtgaggtgag gaatgctcag gagactc
<210> 150
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 150
gsgtctcctg agcattcctc acctcaccat actgcac
                                                                 37
```

	<210> 151 <211> 33 <212> DNA <213> Artificial Sequence													
	<220> <223> primer													
	<400> 151 cttccaaaag tgagggaaga aatgtgaaac cac	3												
	<210> 152 <211> 47 <212> DNA <213> Artificial Sequence													
	<220> <223> primer													
##: 	<400> 152 cgcgtcccaa gcttctaaac aacagtagtc tccggaagcg ttgatag	4												
ing) He and Tagh H thirth Bull Hall Hall	<210> 153 <211> 33 <212> DNA <213> Artificial Sequence													
i T	<220> <223> primer													
	<400> 153 gtggtttcac atttcttccc tcacttttgg aag	3												
H. Gird, H. Gird, and Grade	<210> 154 <211> 281 <212> PRT <213> Saccharomyces cerevisiae													
	<pre><400> 154 Met Ser Glu Tyr Gln Pro Ser Leu Phe Ala Leu Asn Pro Met Gly Phe 1</pre>													
	Ser Pro Leu Asp Gly Ser Lys Ser Thr Asn Glu Asn Val Ser Ala Ser 20 25 30													
	Thr Ser Thr Ala Lys Pro Met Val Gly Gln Leu Ile Phe Asp Lys Phe 35 40 45													
	Ile Lys Thr Glu Glu Asp Pro Ile Ile Lys Gln Asp Thr Pro Ser Asn 50 55 60													
	Leu Asp Phe Asp Phe Ala Leu Pro Gln Thr Ala Thr Ala Pro Asp Ala 65 70 75 80													
	Lys Thr Val Leu Pro Ile Pro Glu Leu Asp Asp Ala Val Val Glu Ser 85 90 95													
	Phe Phe Ser Ser Ser Thr Asp Ser Thr Pro Met Phe Glu Tyr Glu Asn 100 105 110													

Leu Glu Asp Asn Ser Lys Glu Trp Thr Ser Leu Phe Asp Asn Asp Ile 115 120 125

Pro Val Thr Thr Asp Asp Val Ser Leu Ala Asp Lys Ala Ile Glu Ser . 130 . 140

Thr Glu Glu Val Ser Leu Val Pro Ser Asn Leu Glu Val Ser Thr Thr 145 150 155 160

Ser Phe Leu Pro Thr Pro Val Leu Glu Asp Ala Lys Leu Thr Gln Thr 165 170 175

Arg Lys Val Lys Lys Pro Asn Ser Val Val Lys Lys Ser His His Val 180 185 190

Gly Lys Asp Asp Glu Ser Arg Leu Asp His Leu Gly Val Val Ala Tyr 195 200 205

Asn Arg Lys Gln Arg Ser Ile Pro Leu Ser Pro Ile Val Pro Glu Ser 210 215 220

Ser Asp Pro Ala Ala Leu Lys Arg Ala Arg Asn Thr Glu Ala Ala Arg 225 230 235 240

Arg Ser Arg Ala Arg Lys Leu Gln Arg Met Lys Gln Leu Glu Asp Lys 245 250 255

Val Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Val Ala 260 . 265 . 270

Arg Leu Lys Lys Leu Val Gly Glu Arg 275 280

<210> 155

<211> 181

<212> PRT

<213> Escherichia coli

<400> 155

Met Lys Ile Lys Thr Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu
1 5 10 15

Ser Ser Thr Ala Ala Leu Ala Ala Ala Thr Thr Val Asn Gly Gly Thr 20 25 30

Val His Phe Lys Gly Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala 35 40 45

Gly Ser Val Asp Gln Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser 50 60

Leu Ala Gln Glu Gly Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln 65 70 75 80

Leu Asn Asp Cys Asp Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe
85 90 95

Leu Gly Thr Ala Ile Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln
100 105

Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp 115 120 125

Arg Thr Gly 2	Ala Ala	Leu Thr 135	Leu F	Asp Gl	y Ala	Thr 140	Phe	Ser	Ser	Glu				
Thr Thr Leu A		Gly Thr 150	Asn 1	Thr Il	e Pro 155	Phe	Gln	Ala	Arg	Tyr 160				
Phe Ala Gly A	Ala Ala 165	Thr Pro	Gly F	Ala Ala 17		Ala	Asp	Ala	Thr 175	Phe				
Lys Val Gln	Tyr Gln 180							,						
<210> 156 <211> 447 <212> DNA <213> Hepati	tis B	·												
<220> <221> CDS <222> (1)(447)														
<400> 156 atg gac att o Met Asp Ile A	gac cct Asp Pro 5	tat aaa Tyr Lys	gaa t Glu E	ttt gg Phe Gl	y Ala	act Thr	gtg Val	gag Glu	tta Leu 15	ctc Leu	48			
tcg ttt ttg o Ser Phe Leu l											96			
acc gcc gca o Thr Ala Ala A 35											144			
tca cct cac o Ser Pro His I 50											192			
tta atg act o Leu Met Thr 1 65											240			
tct agg gac o Ser Arg Asp 1				- 1 -	n Thr	-		~ 1	-	-	288			
ttc aga caa f Phe Arg Gln 1			His I								336			
gaa acg gtt o Glu Thr Val 1 115											384			
cct cca gcc f Pro Pro Ala 1											432			
gag act act of Glu Thr Thr 1 145	-										447			

```
-70-
<210> 157
<211> 149
<212> PRT
<213> Hepatitis B
<400> 157
Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
Thr Ala Ala Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys
Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp
Leu Met Thr Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Pro Ala
Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Val Gly Leu Lys
Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr Phe Gly Arg
Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp Ile Arg Thr
Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser Thr Leu Pro
    130
Glu Thr Thr Val Val
<210> 158
<211> 152
<212> PRT
<213> Hepatitis B
<400> 158
Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu
Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp
                                 25
Thr Ala Ala Ala Leu Tyr Arg Asp Ala Leu Glu Ser Pro Glu His Cys
```

Leu Met Thr Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Gly Gly 65 70 75 80

Lys Gly Gly Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Val 90 95

Gly Leu Lys Phe Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Asp

	115 120 125											
	Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser 130 135 140											
	Thr Leu Pro Glu Thr Thr Val Val 145 150											
	<210> 159 <211> 56 <212> DNA <213> Artificial Sequence											
	<220> <223> Oligonucleotide											
	<400> 159 tagatgatta cgccaagctt ataatagaaa tagttttttg aaaggaaagc agcatg	56										
	<210> 160 <211> 45 <212> DNA <213> Artificial Sequence											
	<220> <223> Oligonucleotide											
	<400> 160 gtcaaaggcc ttgtcgacgt tattccatta cgcccgtcat tttgg	45										
<u></u>	<210> 161											
⊨i ±	<211> 4623											
	<212> DNA											
	<213> Artificial Sequence											
	<220> <223> pFIMAIC											
	<400> 161 agacgaaagg gcctcgtgat acgcctattt ttataggtta atgtcatgat aataatggtt	60										
	tettagaegt caggtggeae ttttegggga aatgtgegeg gaaeeeetat ttgtttattt	120										
	ttctaaatac attcaaatat gtatccgctc atgagacaat aaccctgata aatgcttcaa	180										
	taatattgaa aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt	240										
	tttgcggcat tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat	300										
	gctgaagatc agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag	360										

atccttgaga	gttttcgccc	cgaagaacgt	tttccaatga	tgagcacttt	taaagttctg	420
ctatgtggcg	cggtattatc	ccgtattgac	gccgggcaag	agcaactcgg	tcgccgcata	480
cactattctc	agaatgactt	ggttgagtac	tcaccagtca	cagaaaagca	tcttacggat	540
ggcatgacag	taagagaatt	atgcagtgct	gccataacca	tgagtgataa	cactgcggcc	600
aacttacttc	tgacaacgat	cggaggaccg	aaggagctaa	ccgcttttt	gcacaacatg	660
ggggatcatg	taactcgcct	tgatcgttgg	gaaccggagc	tgaatgaagc	cataccaaac	720
gacgagcgtg	acaccacgat	gcctgtagca	atggcaacaa	cgttgcgcaa	actattaact	780
ggcgaactac	ttactctagc	ttcccggcaa	caattaatag	actggatgga	ggcggataaa	840
gttgcaggac	cacttctgcg	ctcggccctt	ccggctggct	ggtttattgc	tgataaatct	900
ggagccggtg	agcgtgggtc	tcgcggtatc	attgcagcac	tggggccaga	tggtaagccc	960
tcccgtatcg	tagttatcta	cacgacgggg	agtcaggcaa	ctatggatga	acgaaataga	1020
cagatcgctg	agataggtgc	ctcactgatt	aagcattggt	aactgtcaga	ccaagtttac	1080
tcatatatac	tttagattga	tttaaaactt	catttttaat	ttaaaaggat	ctaggtgaag	1140
atcctttttg	ataatctcat	gaccaaaatc	ccttaacgtg	agttttcgtt	ccactgagcg	1200
tcagaccccg	tagaaaagat	caaaggatct	tcttgagatc	cttttttct	gcgcgtaatc	1260
tgctgcttgc	aaacaaaaaa	accaccgcta	ccagcggtgg	tttgtttgcc	ggatcaagag	1320
ctaccaactc	tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	1380
cttctagtgt	agccgtagtt	aggccaccac	ttcaagaact	ctgtagcacc	gcctacatac	1440
ctcgctctgc	taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	1500
gggttggact	caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	1560
tcgtgcacac	agcccagctt	ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	1620
gagctatgag	aaagcgccac	gcttcccgaa	gggagaaagg	cggacaggta	tccggtaagc	1680
ggcagggtcg	gaacaggaga	gcgcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	1740
tatagtcctg	tcgggtttcg	ccacctctga	cttgagcgtc	gatttttgtg	atgctcgtca	1800
ggggggcgga	gcctatggaa	aaacgccagc	aacgcggcct	ttttacggtt	cctggccttt	1860
tgctggcctt	ttgctcacat	gttctttcct	gcgttatccc	ctgattctgt	ggataaccgt	1920
attaccgcct	ttgagtgagc	tgataccgċt	cgccgcagcc	gaacgaccga	gcgcagcgag	1980
tcagtgagcg	aggaagcgga	agagcgccca	atacgcaaac	cgcctctccc	cgcgcgttgg	2040
ccgattcatt	aatgcagctg	gcacgacagg	tttcccgact	ggaaagcggg	cagtgagcgc	2100
aacgcaatta	atgtgagtta	gctcactcat	taggcacccc	aggctttaca	ctttatgctt	2160
ccggctcgta	tgttgtgtgg	aattgtgagc	ggataacaat	ttcacacagg	aaacagctaț	2220
gaccatgatt	acgccaagct	tataatagaa	atagttttt	gaaaggaaag	cagcatgaaa [.]	2280

attaaaactc	tggcaatcgt	tgttctgtcg	gctctgtccc	tcagttctac	agcggctctg	2340
gccgctgcca	cgacggttaa	tggtgggacc	gttcacttta	aaggggaagt	tgttaacgcc	2400
gcttgcgcag	ttgatgcagg	ctctgttgat	caaaccgttc	agttaggaca	ggttcgtacc	2460
gcatcgctgg	cacaggaagg	agcaaccagt	tctgctgtcg	gttttaacat	tcagctgaat	2520
gattgcgata	ccaatgttgc	atctaaagcc	gctgttgcct	ttttaggtac	ggcgattgat	2580
gcgggtcata	ccaacgttct	ggctctgcag	agttcagctg	cgggtagcgc	aacaaacgtt	2640
ggtgtgcaga	tcctggacag	aacgggtgct	gcgctgacgc	tggatggtgc	gacatttagt	2700
tcagaaacaa	ccctgaataa	cggaaccaat	accattccgt	tccaggcgcg	ttattttgca	2760
accggggccg	caaccccggg	tgctgctaat	gcggatgcga	ccttcaaggt	tcagtatcaa	2820
taacctaccc	aggttcaggg	acgtcattac	gggcagggat	gcccaccctt	gtgcgataaa	2880
aataacgatg	aaaaggaaga	gattatttct	attagcgtcg	ttgctgccaa	tgtttgctct	2940
ggccggaaat	aaatggaata	ccacgttgcc	cggcggaaat	atgcaatttc	agggcgtcat	3000
tattgcggaa	acttgccgga	ttgaagccgg	tgataaacaa	atgacggtca	atatggggca	3060
aatcagcagt	aaccggtttc	atgcggttgg	ggaagatagc	gcaccggtgc	cttttgttat	3120
tcatttacgg	gaatgtagca	cggtggtgag	tgaacgtgta	ggtgtggcgt	ttcacggtgt	3180
cgcggatggt	aaaaatccgg	atgtgctttc	cgtgggagag	gggccaggga	tagccaccaa	3240
tattggcgta	gcgttgtttg	atgatgaagg	aaacctcgta	ccgattaatc	gtcctccagc	3300
aaactggaaa	cggctttatt	caggctctac	ttcgctacat	ttcatcgcca	aatatcgtgc	3360
taccgggcgt	cgggttactg	gcggcatcgc	caatgcccag	gcctggttct	ctttaaccta	3420
tcagtaattg	ttcagcagat	aatgtgataa	caggaacagg	acagtgagta	ataaaaacgt	3480
caatgtaagg	aaatcgcagg	aaataacatt	ctgcttgctg	gcaggtatcc	tgatgttcat	3540
ggcaatgatg	gttgccggac	gcgctgaagc	gggagtggcc	ttaggtgcga	ctcgcgtaat	3600
ttatccggca	gggcaaaaac	aagagcaact	tgccgtgaca	aataatgatg	aaaatagtac	3660
ctatttaatt	caatcatggg	tggaaaatgc	cgatggtgta	aaggatggtc	gttttatcgt	3720
gacgcctcct	ctgtttgcga	tgaagggaaa	aaaagagaat	accttacgta	ttcttgatgc	3780
aacaaataac	caattgccac	aggaccggga	aagtttattc	tggatgaacg	ttaaagcgat	3840
tccgtcaatg	gataaatcaa	aattgactga	gaatacgcta	cagctcgcaa	ttatcagccg	3900
cattaaactg	tactatcgcc	cggctaaatt	agcgttgcca	cccgatcagg	ccgcagaaaa	3960
attaagattt	cgtcgtagcg	cgaattctct	gacgctgatt	aacccgacac	cctattacct	4020
gacggtaaca	gagttgaatg	ccggaacccg	ggttcttgaa	aatgcattgg	tgcctccaat	4080
gggcgaaagc	acggttaaat	tgccttctga	tgcaggaagc	aatattactt	accgaacaat	4140
aaatgattat	ggcgcactta	ccccaaaat	gacgggcgta	atggaataac	gtcgactcta	4200

gaggatecee gggtacegag etegaattea etggeegteg tittacaaeg tegtgaetgg	4260
gaaaaccctg gcgttaccca acttaatcgc cttgcagcac atccccttt cgccagctgg	4320
cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc	4380
gaatggcgcc tgatgcggta ttttctcctt acgcatctgt gcggtatttc acaccgcata	4440
tggtgcactc tcagtacaat ctgctctgat gccgcatagt taagccagcc ccgacacccg	4500
ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa	4560
gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc	4620
gcg	4623
<210> 162 <211> 42 <212> DNA <213> Artificial Sequence	
<220>	
<223> Oligonucleotide	
<400> 162 aagatettaa getaagettg aattetetga egetgattaa ee	42
<210> 163 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 163 acgtaaagca tttctagacc gcggatagta atcgtgctat c	41
<210> 164	
<211> 5681	
<212> DNA	
<213> Artificial Sequence	
<220> <223> pFIMD	
<400> 164 tcaccgtcat caccgaaacg cgcgagacga aagggcctcg tgatacgcct attttatag	60
gttaatgtca tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg	120
cgcggaaccc ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga	· 180
caataaccct gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat	240

ttccgtgtcg	cccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	300
gaaacgctgg	tgaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	360
gaactggatc	tcaacagcgg	taagatcctt	gagagttttc	gccccgaaga	acgttttcca	420
atgatgagca	cttttaaagt	tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	480
caagagcaac	tcggtcgccg	catacactat	tctcagaatg	acttggttga	gtactcacca	540
gtcacagaaa	agcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	600
accatgagtg	ataacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	660
ctaaccgctt	ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	720
gagctgaatg	aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	780
acaacgttgc	gcaaactatt	aactggcgaa	ctacttactc	tagcttcccg	gcaacaatta	840
atagactgga	tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	ccttccggct	900
ggctggttta	ttgctgataa	atctggagcc	ggtgagcgtg	ggtctcgcgg	tatcattgca	960
gcactggggc	cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	1020
gcaactatgg	atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	1080
tggtaactgt	cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	1140
taatttaaaa	ggatctaggt	gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	1200
cgtgagtttt	cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	1260
gatccttttt	ttctgcgcgt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	1320
gtggtttgtt	tgccggatca	agagctacca	actcttttc	cgaaggtaac	tggcttcagc	1380
agagcgcaga	taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	1440
aactctgtag	caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	1500
agtggcgata	agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	1560
cagcggtcgg	gctgaacggg	gggttcgtgc	acacagccca	gcttggagcg	aacgacctac	1620
accgaactga	gatacctaca	gcgtgagcta	tgagaaagcg	ccacgcttcc	cgaagggaga	1680
aaggcggaca	ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	1740
ccagggggaa	acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	1800
cgtcgatttt	tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	1860
gcctttttac	ggttcctggc	cttttgctgg	ccttttgctc	acatgttctt	tcctgcgtta	1920
tcccctgatt	ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	cgctcgccgc	1980
agccgaacga	ccgagcgcag	cgagtcagtg	agcgäggaag	cggaagagcg	cccaatacgc	2040
aaaccgcctc	teceegegeg	ttggccgatt	cattaatgca	gctggcacga	caggtttccc	2100
gactggaaag	cgggcagtga	gcgcaacgca	attaatgtga	gttagctcac	tcattaggca	2160

ccccaggctt	tacactttat	gcttccggct	cgtatgttgt	gtggaattgt	gagcggataa	2220
caatttcaca	caggaaacag	ctatgaccat	gattacgcca	agcttgaatt	ctctgacgct	2280
gattaacccg	acaccctatt	acctgacggt	aacagagttg	aatgccggaa	cccgggttct	2340
tgaaaatgca	ttggtgcctc	caatgggcga	aagcacggtt	aaattgcctt	ctgatgcagg	2400
aagcaatatt	acttaccgaa	caataaatga	ttatggcgca	cttaccccca	aaatgacggg	2460
cgtaatggaa	taacgcaggg	ggaattttc	gcctgaataa	aaagaattga	ctgccggggt	2520
gattttaagc	cggaggaata	atgtcatatc	tgaatttaag	actttaccag	cgaaacacac	2580
aatgcttgca	tattcgtaag	catcgtttgg	ctggttttt	tgtccgactc	gttgtcgcct	2640
gtgcttttgc	cgcacaggca	cctttgtcat	ctgccgacct	ctattttaat	ccgcgctttt	2700
tagcggatga	tccccaggct	gtggccgatt	tatcgcgttt	tgaaaatggg	caagaattac	2760
cgccagggac	gtatcgcgtc	gatatctatt	tgaataatgg	ttatatggca	acgcgtgatg	2820
tcacatttaa	tacgggcgac	agtgaacaag	ggattgttcc	ctgcctgaca	cgcgcgcaac	2880
tcgccagtat	ggggctgaat	acggcttctg	tcgccggtat	gaatctgctg	gcggatgatg	2940
cctgtgtgcc	attaaccaca	atggtccagg	acgctactgc	gcatctggat	gttggtcagc	3000
agcgactgaa	cctgacgatc	cctcaggcat	ttatgagtaa	tcgcgcgcgt	ggttatattc	3060
ctcctgagtt	atgggatccc	ggtattaatg	ccggattgct	caattataat	ttcagcggaa	3120
atagtgtaca	gaatcggatt	gggggtaaca	gccattatgc	atatttaaac	ctacagagtg	3180
ggttaaatat	tggtgcgtgg	cgtttacgcg	acaataccac	ctggagttat	aacagtagcg	3240
acagatcatc	aggtagcaaa	aataaatggc	agcatatcaa	tacctggctt	gagcgagaca	3300
taataccgtt	acgttcccgg	ctgacgctgg	gtgatggtta	tactcagggc	gatattttcg	3360
atggtattaa	ctttcgcggc	gcacaattgg	cctcagatga	caatatgtta	cccgatagtc	3420
aaagaggatt	tgccccggtg	atccacggta	ttgctcgtgg	tactgcacag	gtcactatta	3480
aacaaaatgg	gtatgacatt	tataatagta	cggtgccacc	ggggcctttt	accatcaacg	3540
atatctatgc	cgcaggtaat	agtggtgact	tgcaggtaac	gatcaaagag	gctgacggca	3600
gcacgcagat	ttttaccgta	ccctattcgt	cagtcccgct	tttgcaacgt	gaagggcata	3660
ctcgttattc	cattacggca	ggagaatacc	gtagtggaaa	tgcgcagcag	gaaaaaaccc	3720
gctttttcca	gagtacatta	ctccacggcc	ttccggctgg	ctggacaata	tatggtggaa	3780
cgcaactggc	ggatcgttat	cgtgctttta	atttcggtat	cgggaaaaac	atgggggcac	3840
tgggcgctct	gtctgtggat	atgacgcagg	ctaattccac	acttcccgat	gacagtcagc	3900
atgacggaca	atcggtgcgt	tttctctata	acaaatcgct	caatgaatca	ggcacgaata	3960
ttcagttagt	gggttaccgt	tattcgacca	gcggatattt	taatttcgct	gatacaacat	4020
acagtcgaat	gaatggctac	aacattgaaa	cacaggacgg	agttattcag	gttaagccga	4080

aattcaccga	ctattacaac	ctcgcttata	acaaacgcgg	gaaattacaa	ctcaccgtta	4140
ctcagcaact	cgggcgcaca	tcaacactgt	atttgagtgg	tagccatcaa	acttattggg	4200
gaacgagtaa	tgtcgatgag	caattccagg	ctggattaaa	tactgcgttc	gaagatatca	4260
actggacgct	cagctatagc	ctgacgaaaa	acgcctggca	aaaaggacgg	gatcagatgt	4320
tagcgcttaa	cgtcaatatt	cctttcagcc	actggctgcg	ttctgacagt	aaatctcagt	4380
ggcgacatgc	cagtgccagc	tacagcatgt	cacacgatct	caacggtcgg	atgaccaatc	4440
tggctggtgt	atacggtacg	ttgctggaag	acaacaacct	cagctatagc	gtgcaaaccg	4500
gctatgccgg	gggaggcgat	ggaaatagcg	gaagtacagg	ctacgccacg	ctgaattatc	4560
gcggtggtta	cggcaatgcc	aatatcggtt	acagccatag	cgatgatatt	aagcagctct	4620
attacggagt	cagcggtggg	gtactggctc	atgccaatgg	cgtaacgctg	gggcagccgt	4680
taaacgatac	ggtggtgctt	gttaaagcgc	ctggcgcaaa	agatgcaaaa	gtcgaaaacc	4740
agacgggggt	gcgtaccgac	tggcgtggtt	atgccgtgct	gccttatgcc	actgaatatc	4800
gggaaaatag	agtggcgctg	gataccaata	ccctggctga	taacgtcgat	ttagataacg	4860
cggttgctaa	cgttgttccc	actcgtgggg	cgatcgtgcg	agcagagttt	aaagcgcgcg	4920
ttgggataaa	actgctcatg	acgctgaccc	acaataataa	gccgctgccg	tttggggcga	4980
tggtgacatc	agagagtagc	cagagtagcg	gcattgttgc	ggataatggt	caggtttacc	5040
tcagcggaat	gcctttagcg	ggaaaagttc	aggtgaaatg	gggagaagag	gaaaatgctc	5100
actgtgtcgc	caattatcaa	ctgccaccag	agagtcagca	gcagttatta	acccagctat	5160
cagctgaatg	tcgttaaggg	ggcgtgatga	gaaacaaacc	tttttatctt	ctgtgcgctt	5220
ttttgtggct	ggcggtgagt	cacgctttgg	ctgcggatag	cacgattact	atccgcggtc	5280
tagaggatcc	ccgggtaccg	agctcgaatt	cactggccgt	cgttttacaa	cgtcgtgact	5340
gggaaaaccc	tggcgttacc	caacttaatc	gccttgcagc	acatccccct	.ttcgccagct	5400
ggcgtaatag	cgaagaggcc	cgcaccgatc	gcccttccca	acagttgcgc	agcctgaatg	5460
gcgaatggcg	cctgatgcgg	tattttctcc	ttacgcatct	gtgcggtatt	tcacaccgca	5520
tatggtgcac	tctcagtaca	atctgctctg	atgccgcata	gttaagccag	ccccgacacc	5580
cgccaacacc	cgctgacgcg	ccctgacggg	cttgtctgct	cccggcatcc	gcttacagac	5640
aagctgtgac	cgtctccggg	agctgcatgt	gtcagaggtt	t		5681

<210> 165 <211> 40

<212> DNA <213> Artificial Sequence

<220> <223> Oligonucleotide

<400> 165 aattacgtga gcaagcttat gagaaacaaa cctttttatc	40
<210> 166 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 166 gactaaggcc tttctagatt attgataaac aaaagtcacg c	41
<210> 167	
<211> 4637	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> ·pFIMFGH	
<400> 167 aaagggcctc gtgatacgcc tatttttata ggttaatgtc atgataataa tggtttctta	60
gacgtcaggt ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tattttcta	120
aatacattca aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata	180
ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc	240
ggcattttgc cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga	300
agatcagttg ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct	360
tgagagtttt cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg	420
tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta	480
ttctcagaat gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat	540
gacagtaaga gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt	600
acttctgaca acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga	660
tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga	720
gcgtgacacc acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga	780
actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc	840
aggaccactt ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc	900
cggtgagcgt gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg	960
tatcgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat	1020

cgctgagata	ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	1080
tatactttag	attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	1140
ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	1200
ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	1260
cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	1320
aactctttt	ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	1380
agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	1440
tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	1500
ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	1560
cacacagccc	agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagct	1620
atgagaaagc	gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	1680
ggtcggaaca	ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag .	1740
tcctgtcggg	tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	1800
gcggagccta	tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	1860
gccttttgct	cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	1920
cgcctttgag	tgagctgata	ccgctcgccg	cagccgaacg	accgagcgca	gcgagtcagt	1980
gagcgaggaa	gcggaagagc	gcccaatacg	caaaccgcct	ctccccgcgc	gttggccgat	2040
tcattaatgc	agctggcacg	acaggtttcc	cgactggaaa	gcgggcagtg	agcgcaacgc	2100
aattaatgtg	agttagctca	ctcattaggc	accccaggct	ttacacttta	tgcttccggc	2160
tcgtatgttg	tgtggaattg	tgagcggata	acaatttcac	acaggaaaca	gctatgacca	2220
tgattacgcc	aagcttatga	gaaacaaacc	tttttatctt	ctgtgcgctt	ttttgtggct	2280
ggcggtgagt	cacgctttgg	ctgcggatag	cacgattact	atccgcggct	atgtcaggga	2340
taacggctgt	agtgtggccg	ctgaatcaac	caattttact	gttgatctga	tggaaaacgc	2400
ggcgaagcaa	tttaacaaca	ttggcgcgac	gactcctgtt	gttccatttc	gtattttgct	2460
gtcaccctgt	ggtaatgccg	tttctgccgt	aaaggttggg	tttactggcg	ttgcagatag	2520
ccacaatgcc	aacctgcttg	cacttgaaaa	tacggtgtca	gcggcttcgg	gactgggaat	2580
acagcttctg	aatgagcagc	aaaatcaaat	accccttaat	gctccatcgt	ccgcgctttc	2640
gtggacgacc	ctgacgccgg	gtaaaccaaa	tacgctgaat	ttttacgccc	ggctaatggc	2700
gacacaggtg	cctgtcactg	cggggcatat	caatgccacg	gctaccttca	ctcttgaata	2760
tcagtaactg	gagatgctca	tgaaatggtg	caaacgtggg	tatgtattgg	cggcaatatt	2820
ggcgctcgca	agtgcgacga	tacaggcagc	cgatgtcacc	atcacggtga	acggtaaggt	2880
cgtcgccaaa	ccgtgtacgg	tttccaccac	caatgccacg	gttgatctcg	gcgatcttta	2940

ttctttcagt	cttatgtctg	ccggggcggc	atcggcctgg	catgatgttg	cgcttgagtt	3000
gactaattgt	ccggtgggaa	cgtcgagggt	cactgccagc	ttcagcgggg	cagccgacag	3060
taccggatat	tataaaaacc	aggggaccgc	gcaaaacatc	cagttagagc	tacaggatga	3120
cagtggcaac	acattgaata	ctggcgcaac	caaaacagtt	caggtggatg	attcctcaca	3180
atcagcgcac	ttcccgttac	aggtcagagc	attgacagta	aatggcggag	ccactcaggg	3240
aaccattcag	gcagtgatta	gcatcaccta	tacctacagc	tgaacccgaa	gagatgattg	3300
taatgaaacg	agttattacc	ctgtttgctg	tactgctgat	gggctggtcg	gtaaatgcct	3360
ggtcattcgc	ctgtaaaacc	gccaatggta	ccgctatccc	tattggcggt	ggcagcgcca	3420
atgtttatgt	aaaccttgcg	cccgtcgtga	atgtggggca	aaacctggtc	gtggatcttt	3480
cgacgcaaat	cttttgccat	aacgattatc	cggaaaccat	tacagactat	gtcacactgc	3540
aacgaggctc	ggcttatggc	ggcgtgttat	ctaattttc	cgggaccgta	aaatatagtg	3600
gcagtagcta	tccatttcct	accaccagcg	aaacgccgcg	cgttgtttat	aattcgagaa	3660
cggataagcc	gtggccggtg	gcgctttatt	tgacgcctgt	gagcagtgcg	ggcggggtgg	3720
cgattaaagc	tggctcatta	attgccgtgc	ttattttgcg	acagaccaac	aactataaca	3780
gcgatgattt	ccagtttgtg	tggaatattt	acgccaataa	tgatgtggtg	gtgcctactg	3840
gcggctgcga	tgtttctgct	cgtgatgtca	ccgttactct	gccggactac	cctggttcag	3900
tgccaattcc	tcttaccgtt	tattgtgcga	aaagccaaaa	cctggggtat	tacctctccg	3960
gcacaaccgc	agatgcgggc	aactcgattt	tcaccaatac	cgcgtcgttt	tcacctgcac	4020
agggcgtcgg	cgtacagttg	acgcgcaacg	gtacgattat	tccagcgaat	aacacggtat	4080
cgttaggagc	agtagggact	tcggcggtga	gtctgggatt	aacggcaaat	tatgcacgta	4140
ccggagggca	ggtgactgca	gggaatgtgc	aatcgattat	tggcgtgact	tttgtttatc	4200
aataatctag	aggateceeg	ggtaccgagc	tcgaattcac	tggccgtcgt	tttacaacgt	4260
cgtgactggg	aaaaccctgg	cgttacccaa	cttaatcgcc	ttgcagcaca	tcccctttc	4320
gccagctggc	gtaatagcga	agaggcccgc	accgatcgcc	cttcccaaca	gttgcgcagc	4380
ctgaatggcg	aatggcgcct	gatgcggtat	tttctcctta	cgcatctgtg	cggtatttca	4440
caccgcatat	ggtgcactct	cagtacaatc	tgctctgatg	ccgcatagtt	aagccagccc	4500
cgacacccgc	caacacccgc	tgacgcgccc	tgacgggctt	gtctgctccc	ggcatccgct	4560
tacagacaag	ctgtgaccgt	ctccgggagc	tgcatgtgtc	agaggttttc	accgtcatca	4620
ccgaaacgcg	cgagacg					4637

<210> 168

<211> 9299

<212> DNA

<213> Artificial Sequence

<220> <223> pFIMAICDFGH

<400> 168 cgagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	ataataatgg	60
tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	cggaacccct	atttgtttat	120
ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	ataaccctga	taaatgcttc	180
aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	ccgtgtcgcc	cttattccct	240
tttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	aacgctggtg	aaagtaaaag	300
atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatctc	aacagcggta	360
agatccttga	gagttttcgc	cccgaagaac	gttttccaat	gatgagcact	tttaaagttc	420
tgctatgtgg	cgcggtatta	tcccgtattg	acgccgggca	agagcaactc	ggtcgccgca	480
tacactattc	tcagaatgac	ttggttgagt	actcaccagt	cacagaaaag	catcttacgg	540
atggcatgac	agtaagagaa	ttatgcagtg	ctgccataac	catgagtgat	aacactgcgg	600
ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	aaccgctttt	ttgcacaaca	660
tgggggatca	tgtaactcgc	.cttgatcgtt	gggaaccgga	gctgaatgaa	gccataccaa	720
acgacgagcg	tgacaccacg	atgcctgtag	caatggcaac	aacgttgcgc	aaactattaa	780
ctggcgaact	acttactcta	gcttcccggc	aacaattaat	agactggatg	gaggcggata	840
aagttgcagg	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	gctgataaat	900
ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	actggggcca	gatggtaagc	960
cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	aactatggat	gaacgaaata	1020
gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	gtaactgtca	gaccaagttt	1080
actcatatat	actttagatt	gatttaaaac	ttcattttta	atttaaaagg	atctaggtga	1140
agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	ttccactgag	1200
cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	ctgcgcgtaa	1260
tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	ccggatcaag	1320
agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	ccaaatactg	1380
tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	1440
acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	1500
ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	tgaacggggg	1560
gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	1620

gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	1680
gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	1740
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	1800
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	1860
tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	1920
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	1980
agtcagtgag	cgaggaagcg	gaagagcgcc	caatacgcaa	accgcctctc	cccgcgcgtt	2040
ggccgattca	ttaatgcagc	tggcacgaca	ggtttcccga	ctggaaagcg	ggcagtgagc	2100
gcaacgcaat	taatgtgagt	tagctcactc	attaggcacc	ccaggcttta	cactttatgc	2160
ttccggctcg	tatgttgtgt	ggaattgtga	gcggataaca	atttcacaca	ggaaacagct	2220
atgaccatga	ttacgccaag	cttataatag	aaatagtttt	ttgaaaggaa	agcagcatga	2280
aaattaaaac	tctggcaatc	gttgttctgt	cggctctgtc	cctcagttct	acagcggctc	2340
tggccgctgc	cacgacggtt	aatggtggga	ccgttcactt	taaaggggaa	gttgttaacg	2400
ccgcttgcgc	agttgatgca	ggctctgttg	atcaaaccgt	tcagttagga	caggttcgta	2460
ccgcatcgct	ggcacaggaa	ggagcaacca	gttctgctgt	cggttttaac	attcagctga	2520
atgattgcga	taccaatgtt	gcatctaaag	ccgctgttgc	ctttttaggt	acggcgattg	2580
atgcgggtca	taccaacgtt	ctggctctgc	agagttcagc	tgcgggtagc	gcaacaaacg	2640
ttggtgtgca	gatcctggac	agaacgggtg	ctgcgctgac	gctggatggt	gcgacattta	2700
gttcagaaac	aaccctgaat	aacggaacca	ataccattcc	gttccaggcg	cgttattttg	2760
caaccggggc	cgcaaccccg	ggtgctgcta	atgcggatgc	gaccttcaag	gttcagtatc	2820
aataacctac	ccaggttcag	ggacgtcatt	acgggcaggg	atgcccaccc	ttgtgcgata	2880
aaaataacga	tgaaaaggaa	gagattattt	ctattagcgt	cgttgctgcc	aatgtttgct	2940
ctggccggaa	ataaatggaa	taccacgttg	cccggcggaa	atatgcaatt	tcagggcgtc	3000
attattgcgg	aaacttgccg	gattgaagcc	ggtgataaac	aaatgacggt	caatatgggg	3060
caaatcagca	gtaaccggtt	tcatgcggtt	ggggaagata	gcgcaccggt	gccttttgtt	3120
attcatttac	gggaatgtag	cacggtggtg	agtgaacgtg	taggtgtggc	gtttcacggt	3180
gtcgcggatg	gtaaaaatcc	ggatgtgctt	tccgtgggag	aggggccagg	gatagccacc	3240
aatattggcg	tagcgttgtt	tgatgatgaa	ggaaacctcg	taccgattaa	tcgtcctcca	3300
gcaaactgga	aacggcttta	ttcaggctct	acttcgctac	atttcatcgc	caaatatcgt	3360
gctaccgggc	gtcgggttac	tggcggcatc	gccaatgccc	aggcctggtt	ctctttaacc	3420
tatcagtaat	tgttcagcag	ataatgtgat	aacaggaaca	ggacagtgag	taataaaaac	3480
gtcaatgtaa	ggaaatcgca	ggaaataaca	ttctgcttgc	tggcaggtat	cctgatgttc	3540

atggcaatga	tggttgccgg	acgcgctgaa	gcgggagtgg	ccttaggtgc	gactcgcgta	3600
atttatccgg	cagggcaaaa	acaagagcaa	cttgccgtga	caaataatga	tgaaaatagt	3660
acctatttaa	ttcaatcatg	ggtggaaaat	gccgatggtg	taaaggatgg	tcgttttatc	3720
gtgacgcctc	ctctgtttgc	gatgaaggga	aaaaaagaga	ataccttacg	tattcttgat	3780
gcaacaaata	accaattgcc	acaggaccgg	gaaagtttat	tctggatgaa	cgttaaagcg	3840
attccgtcaa	tggataaatc	aaaattgact	gagaatacgc	tacagctcgc	aattatcagc	3900
cgcattaaac	tgtactatcg	cccggctaaa	ttagcgttgc	cacccgatca	ggccgcagaa	3960
aaattaagat	ttcgtcgtag	cgcgaattct	ctgacgctga	ttaacccgac	accctattac	4020
ctgacggtaa	cagagttgaa	tgccggaacc	cgggttcttg	aaaatgcatt	ggtgcctcca	4080
atgggcgaaa	gcacggttaa	attgccttct	gatgcaggaa	gcaatattac	ttaccgaaca	4140
ataaatgatt	atggcgcact	tacccccaaa	atgacgggcg	taatggaata	acgcaggggg	4200
aatttttcgc	ctgaataaaa	agaattgact	gccggggtga	ttttaagccg.	gaggaataat	4260
gtcatatctg	aatttaagac	tttaccagcg	aaacacacaa	tgcttgcata	ttcgtaagca	4320
tcgtttggct	ggttttttg	tccgactcgt	tgtcgcctgt	gcttttgccg	cacaggcacc	4380
tttgtcatct	gccgacctct	attttaatcc	gcgcttttta	gcggatgatc	cccaggctgt	4440
ggccgattta	tcgcgttttg	aaaatgggca	agaattaccg	ccagggacgt	atcgcgtcga	4500
tatctatttg	aataatggtt	atatggcaac	gcgtgatgtc	acatttaata	cgggcgacag	4560
tgaacaaggg	attgttccct	gcctgacacg	cgcgcaactc	gccagtatgg	ggctgaatac	4620
ggcttctgtc	gccggtatga	atctgctggc	ggatgatgcc	tgtgtgccat	taaccacaat	4680
ggtccaggac	gctactgcgc	atctggatgt	tggtcagcag	cgactgaacc	tgacgatccc	4740
tcaggcattt	atgagtaatc	gcgcgcgtgg	ttatattcct	cctgagttat	gggatcccgg	4800
tattaatgcc	ggattgctca	attataattt	cagcggaaat	agtgtacaga	atcggattgg	4860
gggtaacagc	cattatgcat	atttaaacct	acagagtggg	ttaaatattg	gtgcgtggcg	4920
tttacgcgac	aataccacct	ggagttataa	cagtagcgac	agatcatcag	gtagcaaaaa	4980
taaatggcag	catatcaata	cctggcttga	gcgagacata	ataccgttac	gttcccggct	5040
gacgctgggt	gatggttata	ctcagggcga	tattttcgat	ggtattaact	ttcgcggcgc	5100
acaattggcc	tcagatgaca	atatgttacc	cgatagtcaa	agaggatttg	ccccggtgat	5160
ccacggtatt	gctcgtggta	ctgcacaggt	cactattaaa	caaaatgggt	atgacattta	5220
taatagtacg	gtgccaccgg	ggccttttac	catcaacgat	atctatgccg	caggtaatag	5280
tggtgacttg	caggtaacga	tcaaagaggc	tgacggcagc	acgcagattt	ttaccgtacc	5340
ctattcgtca	gtcccgcttt	tgcaacgtga	agggcatact	cgttattcca	ttacggcagg	5400
agaataccgt	agtggaaatg	cgcagcagga	aaaaacccgc	tttttccaga	gtacattact	5460

ccacggcctt	ccggctggct	ggacaatata	tggtggaacg	caactggcgg	atcgttatcg	5520
tgcttttaat	ttcggtatcg	ggaaaaacat	gggggcactg	ggcgctctgt	ctgtggatat	5580
gacgcaggct	aattccacac	ttcccgatga	cagtcagcat	gacggacaat	cggtgcgttt	5640
tctctataac	aaatcgctca	atgaatcagg	cacgaatatt	cagttagtgg	gttaccgtta	5700
ttcgaccagc	ggatatttta	atttcgctga	tacaacatac	agtcgaatga	atggctacaa	5760
cattgaaaca	caggacggag	ttattcaggt	taagccgaaa	ttcaccgact	attacaacct	5820
cgcttataac	aaacgcggga	aattacaact	caccgttact	cagcaactcg	ggcgcacatc	5880
aacactgtat	ttgagtggta	gccatcaaac	ttattgggga	acgagtaatg	tcgatgagca	5940
attccaggct	ggattaaata	ctgcgttcga	agatatcaac	tggacgctca	gctatagcct	6000
gacgaaaaac	gcctggcaaa	aaggacggga	tcagatgtta	gcgcttaacg	tcaatattcc	6060
tttcagccac	tggctgcgtt	ctgacagtaa	atctcagtgg	cgacatgcca	gtgccagcta	6120
cagcatgtca	cacgatctca	acggtcggat	gaccaatctg	gctggtgtat	acggtacgtt	6180
gctggaagac	aacaacctca	gctatagcgt	gcaaaccggc	tatgccgggg	gaggcgatgg	6240
aaatagcgga	agtacaggct	acgccacgct	gaattatcgc	ggtggttacg	gcaatgccaa	6300
tätcggttac	agccatagcg	atgatattaa	gcagctctat	tacggagtca	gcggtggggt	6360
actggctcat	gccaatggcg	taacgctggg	gcagccgtta	aacgatacgg	tggtgcttgt	6420
taaagcgcct	ggcgcaaaag	atgcaaaagt	cgaaaaccag	acgggggtgc	gtaccgactg	6480
gcgtggttat	gccgtgctgc	cttatgccac	tgaatatcgg	gaaaatagag	tggcgctgga	6540
taccaatacc	ctggctgata	acgtcgattt	agataacgcg	gttgctaacg	ttgttcccac	6600
tcgtggggcg	atcgtgcgag	cagagtttaa	agcgcgcgtt	gggataaaac	tgctcatgac	6660
gctgacccac	aataataagc	cgctgccgtt	tggggcgatg	gtgacatcag	agagtagcca	6720
gagtagcggc	attgttgcgg	ataatggtca	ggtttacctc	agcggaatgc	ctttagcggg	6780
aaaagttcag	gtgaaatggg	gagaagagga	aaatgctcac	tgtgtcgcca	attatcaact	6840
gccaccagag	agtcagcagc	agttattaac	ccagctatca	gctgaatgtc	gttaaggggg	69.00
cgtgatgaga	aacaaacctt	tttatcttct	gtgcgctttt	ttgtggctgg	cggtgagtca	6960
cgctttggct	gcggatagca	cgattactat	ccgcggctat	gtcagggata	acggctgtag	7020
tgtggccgct	gaatcaacca	attttactgt	tgatctgatg	gaaaacgcgg	cgaagcaatt	7080
taacaacatt	ggcgcgacga	ctcctgttgt	tccatttcgt	attttgctgt	caccctgt'gg	7140
taatgccgtt	tctgccgtaa	aggttgggtt	tactggcgtt	gcagatagcc	acaatgccaa	7200
cctgcttgca	cttgaaaata	cggtgtcagc	ggcttcggga	ctgggaatac	agcttctgaa	7260
tgagcagcaa	aatcaaatac	cccttaatgc	tccatcgtcc	gcgctttcgt	ggacgaccct	7320
gacgccgggt	aaaccaaata	cgctgaattt	ttacgcccgg	ctaatggcga	cacaggtgcc	7380

tgtcactgcg	gggcatatca	atgccacggc	taccttcact	cttgaatatc	agtaactgga	7440
gatgctcatg	aaatggtgca	aacgtgggta	tgtattggcg	gcaatattgg	cgctcgcaag	7500
tgcgacgata	caggcagccg	atgtcaccat	cacggtgaac	ggtaaggtcg	tcgccaaacc	7560
gtgtacggtt	tccaccacca	atgccacggt	tgatctcggc	gatctttatt	ctttcagtct	7620
tatgtctgcc	ggggcggcat	cggcctggca	tgatgttgcg	cttgagttga	ctaattgtcc	7680
ggtgggaacg	tcgagggtca	ctgccagctt	cagcggggca	gccgacagta	ccggatatta	7740
taaaaaccag	gggaccgcgc	aaaacatcca	gttagagcta	caggatgaca	gtggcaacac	7800
attgaatact	ggcgcaacca	aaacagttca	ggtggatgat	tcctcacaat	cagcgcactt	7860
cccgttacag	gtcagagcat	tgacagtaaa	tggcggagcc	actcagggaa	ccattcaggc	7920
agtgattagc	atcacctata	cctacagctg	aacccgaaga	gatgattgta	atgaaacgag	7980
ttattaccct	gtttgctgta	ctgctgatgg	gctggtcggt	aaatgcctgg	tcattcgcct	8040
gtaaaaccgc	caatggtacc	gctatcccta	ttggcggtgg	cagcgccaat	gtttatgtaa	8100
accttgcgcc	cgtcgtgaat	gtggggcaaa	acctggtcgt	ggatctttcg	acgcaaatct	8160
tttgccataa	cgattatccg	gaaaccatta	cagactatgt	cacactgcaa	cgaggctcgg	8220
cttatggcgg	cgtgttatct	aatttttccg	ggaccgtaaa	atatagtggc	agtagctatc	8280
catttcctac	caccagcgaa	acgccgcgcg	ttgtttaṭaa	ttcgagaacg	gataagccgt	8340
ggccggtggc	gctttatttg	acgcctgtga	gcagtgcggg	cggggtggcg	attaaagctg	8400
gctcattaat	tgccgtgctt	attttgcgac	agaccaacaa	ctataacagc	gatgatttcc	8460
agtttgtgtg	gaatatttac	gccaataatg	atgtggtggt	gcctactggc	ggctgcgatg	8520
tttctgctcg	tgatgtcacc	gttactctgc	cggactaccc	tggttcagtg	ccaattcctc	8580
ttaccgttta	ttgtgcgaaa	agccaaaacc	tggggtatta	cctctccggc	acaaccgcag	8640
atgcgggcaa	ctcgattttc	accaataccg	cgtcgttttc	acctgcacag	ggcgtcggcg	8700
tacagttgac	gcgcaacggt	acgattattc	cagcgaataa	cacggtatcg	ttaggagcag	8760
tagggacttc	ggcggtgagt	ctgggattaa	cggcaaatta	tgcacgtacc	ggagggcagg	8820
tgactgcagg	gaatgtgcaa	tcgattattg	gcgtgacttt	tgtṭtatcaa	taatctagaa	8880
ggatccccgg	gtaccgagct	cgaattcact	ggccgtcgtt	ttacaacgtc	gtgactggga	8940
aaaccctggc	gttacccaac	ttaatcgcct	tgcagcacat	ccccctttcg	ccagctggcg	9000
taatagcgaa	gaggcccgca	ccgatcgccc	ttcccaacag	ttgcgcagcc	tgaatggcga	9060
atggcgcctg	atgcggtatt	ttctccttac	gcatctgtgc	ggtatttcac	accgcatatg	9120
gtgcactctc	agtacaatct	gctctgatgc	cgcatagtta	agccagcccc	gacacccgcc	9180
aacacccgct	gacgcgccct	gacgggcttg	tctgctcccg	gcatccgctt	acagacaagc	9240
tgtgaccgtc	tccgggagct	gcatgtgtca	gaggttttca	ccgtcatcac	cgaaacgcg	9299

<210> 169
<211> 8464
<212> DNA
<213> Artificial Sequence
<220>
<223> pFIMAICDFG

<400> 169 60 cgagacgaaa gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg 120 tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 180 240 aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct 300 tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta 360 420 agateettga gagttttege eeegaagaae gtttteeaat gatgageaet tttaaagtte 480 tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg 540 600 atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg 660 ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa 720 780 acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa 840 ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg gaggcggata 900 aagttgcagg accacttetg egeteggeee tteeggetgg etggtttatt getgataaat 960 ctggagccgg tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata 1020 qacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt 1080 1140 actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga 1200 agateetttt tgataatete atgaceaaaa teeettaaeg tgagtttteg tteeaetgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tcctttttt ctgcgcgtaa 1260 1320 tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag 1380 agctaccaac tettetteeg aaggtaactg getteageag agegeagata eeaaataetg teettetagt gtageegtag ttaggeeace actteaagaa etetgtagea eegeetaeat 1440

acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	1500
ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	tgaacggggg	1560
gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	tacctacagc	1620
gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	tatccggtaa	1680
gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	1740
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	1800
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctggcct	1860
tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	gtggataacc	1920
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	1980
agtcagtgag	cgaggaagcg	gaagagcgcc	caatacgcaa	accgcctctc	cccgcgcgtt	2040
ggccgattca	ttaatgcagc	tggcacgaca	ggtttcccga	ctggaaagcg	ggcagtgagc	2100
gcaacgcaat	taatgtgagt	tagctcactc	attaggcacc	ccaggcttta	cactttatgc	2160
ttccggctcg	tatgttgtgt	ggaattgtga	gcggataaca	atttcacaca	ggaaacagct	2220
atgaccatga	ttacgccaag	cttataatag	aaatagtttt	ttgaaaggaa	agcagcatga	2280
aaattaaaac	tctggcaatc	gttgttctgt	cggctctgtc	cctcagttct	acagcggctc	2340
tggccgctgc	cacgacggtt	aatggtggga	ccgttcactt	taaaggggaa	gttgttaacg	2400
ccgcttgcgc	agttgatgca	ggctctgttg	atcaaaccgt	tcagttagga	caggttcgta	2460
ccgcatcgct	ggcacaggaa	ggagcaacca	gttctgctgt	cggttttaac	attcagctga	2520
atgattgcga	taccaatgtt	gcatctaaag	ccgctgttgc	ctttttaggt	acggcgattg	2580
atgcgggtca	taccaacgtt	ctggctctgc	agagttcagc	tgcgggtagc	gcaacaaacg	2640
ttggtgtgca	gatcctggac	agaacgggtg	ctgcgctgac	gctggatggt	gcgacattta	2700
gttcagaaac	aaccctgaat	aacggaacca	ataccattcc	gttccaggcg	cgttattttg	2760
caaccggggc	cgcaaccccg	ggtgctgcta	atgcggatgc	gaccttcaag	gttcagtatc	2820
aataacctac	ccaggttcag	ggacgtcatt	acgggcaggg	atgcccaccc	ttgtgcgata	2880
aaaataacga	tgaaaaggaa	gagattattt	ctattagcgt	cgttgctgcc	aatgtttgct	2940
ctggccggaa	ataaatggaa	taccacgttg	cccggcggaa	atatgcaatt	tcagggcgtc	3000
attattgcgg	aaacttgccg	gattgaagcc	ggtgataaac	aaatgacggt	caatatgggg	3060
caaatcagca	gtaaccggtt	tcatgcggtt	ggggaagata	gcgcaccggt	gccttttgtt	3120
attcatttac	gggaatgtag	cacggtggtg	agtgaacgtg	taggtgtggc	gtttcacggt	3180
gtcgcggatg	gtaaaaatcc	ggatgtgctt	tccgtgggag	aggggccagg	gatagccacc	3240
aatattggcg	tagcgttgtt	tgatgatgaa	ggaaacctcg	taccgattaa	tcgtcctcca	3300
gcaaactgga	aacggcttta	ttcaggctct	acttcgctac	atttcatcgc	caaatatcgt	3360

tatcagtaat tgttcagcag ataatggat aacaggaaca ggacagtgag taataaaaac 34 gtcaatgaa ggaaatcgca ggaaataaca ttctgcttgc tggcaggtat cctgatgttc 35 atggcaatga tggttgccgg acgcgctgaa gcgggagtgg ccttaggtgc gactcgcgta 36 atttatccgg cagggaaaa acaagagcaa cttgccgtga caataatga tgaaaaatagt 36 acctatttaa ttcaatcatg ggtggaaaat gccgatggt taaaaggatg tcgttttatc 37 gtgacgcctc ctctgtttgc gatgaaggga aaaaaagaga ataccttacg tattcttgat 37 gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaagcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattatcagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgtgc cacccgatca ggccgcagaa 39 aaattaagat tctgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 40 atgggcgaaa gcacggttaa atggccgct tacccccaaa atgacgggg taatggaata cgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatcg ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatcg ctgaataaaa agaattgact gccgggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttcaccacaa atgacggggg taatggaat acgcaggggg 43 atttttgcg cgaataaaa agaattgact gccgggtga ttttaagccg gaggaataat 42 gtcatatctg agtttttttg tccgactcgt tgtcgccttg gcttttgccg cacaggcacc 43 tttgtcatct gccgacctct attttaatcc gcgcttttta gccgatgat cccaaggcacc 43 tttgtcatct gccgacctct attttaatcc gcgcttttta gccgatgatc cccaaggcacc 44 ggccgattta tccgcgtttg aaaatggaca agaattaccg cagggacga atcgcgcac 45 tacctatttg aataatggtt atatggcaac gcgcgaactc gccagtatgg ggctgaatac 46 ggctccaggac gctactgcca atctgcgc gttggcact cacattaata cgggcgacac 46 ggctcaggac gctactgcac atctggatgt tggtcagaac gcacgatacc 47 tcaggcattt atgagtaatc gccggcggg gatgatgtc tagtcagaa atcggatcc 47 tcaggcactt atgagaaca gcgcggggggaataac 47 gggatacacac acatacacaca tgaggatacc 47 tcaggcactt atgagaacac gcacgacggggggaacacacc acatacacacacacacacacacacacacaca							
gtcaatgtaa ggaaatcgca ggaaataaca ttctgcttgc tggcaggtat cctgatgttc 35 atggcaatga tggttgccgg acgcgtgaa gcgggagtgg ccttaggtgc gactcgctta 36 atttatccgg cagggcaaaa acaagagcaa cttgccgtga caaataatga tgaaaatagt 36 acctatttaa ttcaatcatg ggtggaaaat gccgatggtg taaaggatgg tcgttttatc 37 gtgacgcctc ctctgtttgc gatgaaggga aaaaaagaga ataccttacg tattcttgat 37 gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaagcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacaggtcgc aattatcagc 39 cgcattaaag ttcgtcgtaa cggattaat ctggatgaa cggattacag cgcagtaaa ttcggctgaa ttaacccga aacctattac 40 ctgacggtaa cagagttgaa tgccggaattct ctgacgctga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaatct gatgcaggaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atggcgcact tacccccaaa atgacgggg taatggata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac ttaccccaaa atgacggggg taatggaata acgcaggggg 42 aatttttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagca aaacacaaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttt tccgaactcgt tgtcgcctgt gctttttgccg cacaggcacc 43 tttgtcatct gccgacctct attttaatcc gcgcttttta gcggatgatc cccaggctgt 43 taatctatttg aataatggtt atatggcaa gcagtgatga cccagggacga 45 taatctatttg aataatggt atatggcaa gcggtatgtc acattaaata cgggcgaacag 45 tgaacaaggg attgtccct gcctgacaac gcggaacac gccagtatgg ggctgaatac 46 ggctctgtc gccggtatga atctgctgg ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gccagtaga atctgctgg ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gccagtaga atctgctgg ggatgatgc ctgtgtgccat taaccacaat 46 ggtccaggac gcattgcca atctgagat ttggacaaca gcacggaaca gagatacccg 48 tattaatgcc ggattgcca atctagaat accaggagggg ttaatattct cctgagttat gggatcccgg 48 tattaacgca cattatgcat atttaaacc accagagtggg ttaaatattg gtgcgtggcg 48 gggatacacac cattatgcat atttaaacc accagagtggg ttaaatattg gtgcgtggcg 48 gggatacacac cattatgcat atctaaata cctggcttga gcgagacata ataccgttac gtacgacaaaa 49 gagctggac catatcaata cctggcttga gcgagacata accagtt	gctaccgggc	gtcgggttac	tggcggcatc	gccaatgccc	aggcctggtt	ctctttaacc	3420
attgacatga tggttgccgg acgcgctgaa gcgggagtgg ccttaggtgc gactcgcgta 36 atttatccgg cagggcaaaa acaagagcaa cttgccgtga caaataatga tgaaaatagt 36 acctatttaa ttcaatcatg ggtggaaaat gccgatggtg taaaggatg tcgttttatc 37 gtgacgcctc ctctgtttgc gatgaaggga aaaaaaagga ataccttacg tattcttgat 37 gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaagcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattatcagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa 39 aaattaagat ttcgtcgtag cgcgaattct ctgacgtga taaaccgaa accetattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 41 atgggcgaaa gcacggttaa attgccttct gatgacaggaa gcaatattac ttaccgaaca 41 ataaatgatt atggcgcact tacccccaaa atgacgggg taatggaata acgcaggggg 42 aatttttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aattaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgtcatct gccgacctt atttaatcc gcgctttta gcggatgatc cccaggcacc 43 ttgtcatct gccgacctt atttaatcc gcgctttta gcggatgatc cccaggcgcg 45 tatctatttg aataatggt atatggcaac gcgtgatgc acatttaata cgggcgacag 45 tgaacaagga attgtccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctcttgtc gccggtatga atctgctgc ggatgatgc cgactgaacc tgacgacag 45 tgaacaagga gttgtccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctcaggac gctactgcg atctgggt tggtcagca gcactgaacc tgacgacca 47 tcaggcattt atgagtaatc gcgcgcgtg ttatatcc cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataatt cagcggaaat agtgtacaga atcggatcc 47 tcaggcattt atgagtaatc gcgcgcgtg ttatatcc cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataatt cagcggaaat agtgtacaga atcggatcc 47 tcaggcatt atgagtaat accacct ggagttata cagagaggg ttaaatattg gtgcgtgcg 48 gggtaacagc cattatgcat atttaaacct acagagtgg ttaaatattg gtgcgtgca 49 tttacgcgac aataccacct ggagttata cagagagca agatcatcag gtagcaaaaa 49 gacgctgggt gatggttata ctcaggcga tattttcgat ggtattaact ttcgcggcc 51 acaattggcc tcagagaca atatgtac ccgacagg cacatattaa cagaagggttg cccgggaacattatctcg	tatcagtaat	tgttcagcag	ataatgtgat	aacaggaaca	ggacagtgag	taataaaaac	3480
atttatccgg caggcaaaa acaagagcaa cttgccgtga caaataatga tgaaaatagt 36 acctatttaa ttcaatcatg ggtggaaaat gccgatggtg taaaggagg tcgttttatc 37 gtgacgcctc ctctgtttgc gatgaaggga aaaaaaagga ataccttacg tattcttgat 37 gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaaggcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattatcagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa 39 aaattaagat ttcgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 40 atgggcgaaa gcacggttaa attgccttct gatgcagga gcaatattac ttaccgaaca 41 ataaatgatt atgggcact tacccccaaa atgacgggg taatggaata acgcaggggg 42 aatttttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tcgtttggct gcgattat atatggcaac gcggtattc acatttaata cggggcgacag 45 tgaacaaggg attgttcct gcctgacacg cgcgcaactc gccagtagg ggcgaataa 46 ggccgattta tcgcgttttg aaaatgggaa ggaattaccg ccagggacgt atcgcgtcga 45 tactatttg aataatggt atatggcaac gcgtgatgc ccagggacgt atcgcgtcga 45 tgaacaaggg attgtccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctccaggac gctactgcgc atctggatg tggtcagcag cgactgaacc tgacgaccc 47 tcaggcattt atgagtaatc gccgcgctgg ttatatcct cctgagttat gggatcccgg 48 tattaatgcc gcgattgctca attataatt cagcggaaat agtgtacaga atcggatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 gggtaacaagc catatagcat attaaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagaggggg taaatatcg gtgcgaaaaa 49 gggtaacaagc catatagcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagagagtgg ttaaatattg gtgcgtggcg 51 acaattggcc tcagtgaca atatgtacc cgatagcaa agaggatttg ccccggtgg acaattggcc tcagagaca atatgtacc cgatagcaa agaggatttg ccccggtgg acaattggcc tcagagaca atatgtacc cgatagcaa aagaggatttg ccccggtgat cccagggtaccc	gtcaatgtaa	ggaaatcgca	ggaaataaca	ttctgcttgc	tggcaggtat	cctgatgttc	3540
acctatttaa ttcaatcatg ggtggaaaat gccgatggtg taaaggatgg tcgtttatc 37 gtgacgcctc ctctgtttgc gatgaaggga aaaaaagaga ataccttacg tattcttgat 37 gcaacaaata accaattgcc acaggacgg gaaagtttat tctggatgaa cgttaaagcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattatcagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa 39 aaattacagat ttcgtcgtag cgcgaattct ctgacgtga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 40 atgggcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atgggcgcact tacccccaaa atgacggggg taatggaata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgcatct gccgactct attttaatcc gcgcttttta gcggatgatc cccaggctg 44 ggccgattta tcgcagctct attttaatcc gcgcttttta gcggatgatc cccaggctg 44 ggccgattta tcgcgtttg aaaatgggaa agaattaccg caaggacacc 45 tgaacaagg attgttcct gcctgacacg gggtgatga acatttaata cggggcgacag 45 tgaacaagg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctccaggac gctactgcgc atctggag ggatgatcc cgaggacga atcggaccc 47 tcaggcattt atggatata gcgcggtgg ttatattcct cctgagttat gggatcccg 48 tattaatgcc gcgattgata atctgctggc ggatgatccc tgtgtgccat taaccacaat 46 ggcccaggac gctactgcgc atctggatg ttggtcagca cgactgaacc tgacgatccc 47 tcaggcattt atggataatc gcgcgcggg ttatattcct cctgagttat gggatcccgg 48 gggtaacagc cattatgca attaaaacc acaagagggg ttaaatattg gtgcgtggc 49 ttaactgcg aataccac attaacac attaacacca acaagagggg ttaaaatattg gtgcgtggc 49 gggaacaaca caatacacac attaacacac attaacacca attaacacca acaagagggg ttaaaatatg gtgcgtgac aaaacaccac ggagttataa ccaggagac aaaacacac ggagttataa caagagggg ttaaaatatg gtgcggacaaaaa 49 gacgctggg gatggtataa ccagggcga aaaacacca agaggacaaaaa aaaaacgga catatcaaa accaggagga acaagagaaaaaa acaaaacgga caatacaaaa cctgggctga gaggataaa acaagaggac aaaacacac aaaaatggca aaaatggac caaaatggac caaaatggac atatcaaaa ataggaca aaaatgaca acaag	atggcaatga	tggttgccgg	acgcgctgaa	gcgggagtgg	ccttaggtgc	gactcgcgta	3600
gtgacgcctc ctctgtttgc gatgaaggga aaaaaagaga ataccttacg tattcttgat 37 gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaagcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattacagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa 39 aaattaagat ttcgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 41 attaatgcgt attggggaa gcaatattac ttaccgaaca 41 attaatgcgcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 attaatgcgc ctgaataaaa agaattgact gccgggggg taatggaata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccgggggg tattgaagaa acgcaggggg 42 aattttctgc ctgaataaaa agaattgact gccgggggg tattgaagaa ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgtcatct gccgacctct attttaatcc gcgcttttta gccgatgat cccaggctgt 44 ggccgattta tcgcgtttg aaaatggca agaattaccg ccaggagcg atcgcgtcg 45 tatctatttg acgacctct attttaatcc gcgcttttta gcggatgatc cccaggctgt 45 tgaccaagg attgttccct gcctgacacc gcgcgaactc gccaggacgt atcgcgtcga 45 tacacaaggg attgttccct gcctgacacc gcgcgaactc gccagtatgg ggctgaatac 46 ggctctctgc gccggtatga acctgcggg ggatgatca caatttaata cgggcgacag 46 tcaggcactt atgagtaa acctgcggg ggatgatgac cgcagtagg ggctgaatac 46 ggccaaggac gctactgcgc acctggatgt tggtcagcag cgactgaacc tgacgaccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttaattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attaatatt cagcggaaat agtgtacaga acggatcgg 48 tattaatgcc ggattgctca attaaattt cagcggaaat agtgtacaga atcggattgg 48 gggataacagc cattatgcat atttaaacct acagagtgg ttaaatattg gtgcgtggcg 49 ttaaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttccggcc 50 gacgctgggt gatggtata ccaaggcga tatttcca gcgagacata ataccgttac gttcccggcc 51 acaattggcc tcagatgac atatcaata cctggcttga gcgagacata ataccgttac gttcccggcc 51 acaattggcc tcagatgac atatggaca atatgcacag catattaac cctagggcga tatttcca agaagtggt atacccgg acaatttac ttcgcggcgc 51 acaattggcc tcagatgac atatgacaa ataggtcacaga acaattgac acaatttaa ccaggagga acaatttaa caaaatgggt	atttatccgg	cagggcaaaa	acaagagcaa	cttgccgtga	c'aaataatga	tgaaaatagt	3660
gcaacaaata accaattgcc acaggaccgg gaaagtttat tctggatgaa cgttaaagcg 38 attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattacagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa 39 aaattaagat ttcgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 40 atgggcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atggcgcact tacccccaaa atgacggggg taatggaata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccgggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactgt tgtcgcctgt gcttttgccg cacaggcacc 43 ttgtcatct gccgacctct atttaatcc gcgctttta gcggatgatc cccaggctgt 44 ggccgatta tcgcgtttg aaaatggca agaataccg ccagggacgt atcgcgcag 45 tactatttg aataatggtt atatggcaac gcgcgtttta gcggatgatc cccaggcagt 45 tgaacaaggg attgttccct gcctgacacc gcgcgaactc gccagtatgg ggctgaatac 46 ggctcttgtc gccggtatga actcgcgcg accggacgt accgggacga 46 ggctcaggac gctactgcgc atctggatg ttggtcagcac gcaggacgac 47 tcaggcattt atgagtaaa actgctggc ggatgatgc ctgtgtgcat taccacaat 46 ggccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatatccc cctgagttat gggatcacga atcacacaa 47 gggtaacaac cattatgcat attaaacct acagagtgg ttaaatattg gtgcgtggcg 48 gggtaacaac cattatgcat attaaacct acagagtgg ttaaatattg gtgcgtggc 49 gttacagcag cattatcaata cctggcttga gcgagacata ataccgttac gttccggc 50 gacgctgggt gatggttata cccaggctga tatttccat ggagacaaaa 49 ttaaaccgaac cattacaata cctggcttga gcgagacaa aataccgttac gttcccggc 51 acaattggcc tcagatgac atatcaata cctggcttga gcgagacaa aaaacggtat gcccggg 51 acaattggcc tcagatgaca atatcaata cctaggctga acaatttacaa aaaaatggta ccccggtat acaattacacct gacgctgggt gatggttata cccagggcga tattttccaa aaaaatggta ccccggtat acaattacacct gacgatgacaaaaaaaaaa	acctatttaa	ttcaatcatg	ggtggaaaat	gccgatggtg	taaaggatgg	tcgttttatc	3720
attccgtcaa tggataaatc aaaattgact gagaatacgc tacagctcgc aattatcagc 39 cgcattaaac tgtactatcg cccggctaaa ttagcgttgc cacccgatca ggccgcagaa 39 aaattaagat ttcgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac 40 ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 40 atgggcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atggcgcact tacccccaaa atgacgggg taatggaata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgtcatct gccgactct atttaatcc gcgctttta gcggatgatc cccaggctgt 44 ggccgattta tcgcgtttg aaaatgggca agaattaccg ccagggacgt atcgcgtcga 45 tactatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaagg attgttccct gcctgacacg cgcgcaactc gccaggacgt atcgcgctga 46 ggctctttte gccggtatga atctgctgcg ggatgatgc cgcagtatgg ggctgaatac 46 ggctccaggac gcacggacg atctgctga atctgctggc ggatgatgc cgcagtatgg ggctgaatac 46 ggctccaggac gcacggacg atctgctga atctgctggc ggatgatgc tgtgtgccat taaccacaat 46 ggccaggacg gcacggacg atctgacg atctgatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaac gcgcgctggt ttatatcct cctgagttat gggatcccgg 48 tataaatgc ggattgcca atataaatt caggcgaaat agtgtacaga atcggatcc 47 tcaggcattt atgagtaac gcgcgctggt ttatatcct cctgagttat gggatcccgg 48 gggaaacagc cattatgcat attaaattt cagcggaaat agtgtacaga atcggattgg 48 gggaaacagc cattatgcat attaaattt cagcggaaat agtgtacaga atcggattgg 48 gggaaacagc cattatgcat attaaaatt caggaggaat agtgtacaga atcggattgg 50 gacggtaacaac cctggcttga gaggtataa caggaggaa agatcacaa ataccacaa 49 taaatggca catatcaata cctggcttga gcgagacaa ataccacaa ggtagcaaaaa 49 taaaatggca catatcaata cctggcttga gcgagacaaa ataccacta ggtagcaaaaa 49 gacgctgggt gatggttaa ctcaggcga tatttccag ggtattaac ttccggcgc 51 acaattggcc tcagatgaca atatgtacc cgaatgaca aaaacggga tatttccggcg 51 acaattggcc tcagatgaca atatgtacc cgaatgaca aaaagaggattg ccccggtgat 52 cccaggtatt cccaggtgac atatgtaca ctcagggca cacaatataa	gtgacgcctc	ctctgtttgc	gatgaaggga	aaaaaagaga	ataccttacg	tattcttgat	3780
cgcattaaac tgtactateg eceggetaaa ttagegttge caceegatea ggcegeagaa 39 aaattaagat ttegtegtag egegaattet etgaegetga ttaaecegae aceetattae 40 ctgaeggtaa cagagttgaa tgeeggaace egggttettg aaaatgeatt ggtgeeteea 40 atgggegaaa geaeggttaa attgeettet gatgeaggaa geaatattae ttaecegaaca 41 ataaatgatt atggegeact taeceecaaa atgaeggeg taatggaata aegeaggggg 42 aatttttege etgaataaaa agaattgaet geeggggtga ttttaageeg gaggaataat 42 gteatatettg aatttaagae tttaecageg aaacacacaa tgettgeata ttegtaagea 43 tegtttgget ggttttttg teegaetegt tgtegeetgt gettttgeeg cacaggeace 43 tttgteatet geegaecete atttaatee gegetttta geeggatgate eceaggetgt 44 ggeegattta tegegtttg aaaatggea agaattaeeg ecaggaegt ategegtega 45 tatetatttg aataatggt atatggeaac gegtgatgte acatttaata egggegaeag 45 tgaacaaggg attgtteeet geetgaeaeg eggeaacte ggeegatgg ggetgaatae 46 ggettetgte geeggtatga atetgeegg ggatgatee tgtgtgeeat taaceacaat 46 ggteeaggae getaetgege atetggeg ggatgatgee tgtgtgeeat taaceacaat 46 ggteeaggae getaetgee atetgaetgt tggteageag egaetgaace tgaegateee 47 teaggeattt atgagtaate gegegegtgg ttatatteet eetgagttat gggateeegg 48 tattaatgee ggattgetea attaaattt eageggaaat aggtaeaga ateggategg	gcaacaaata	accaattgcc	acaggaccgg	gaaagtttat	tctggatgaa	cgttaaagcg	3840
aaattaagat ttcgtcgtag cgcgaattct ctgacgctga ttaacccgac accctattac ctgacggtaa cagagttgaa tgccggaacc cgggttcttg aaaatgcatt ggtgcctcca 40 atgggcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atggcgcact tacccccaaa atgacggggg taatggaata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgctgt gcttttgccg cacaggcacc 43 ttgtcatct gccgacctct atttaatcc gcgctttta gcggatgatc cccaggctgt 44 ggccgatta tcgcgtttg aaaatgggca agaattaccg cagggacgt atcgcgctga 45 tatctatttg aataatggtt ataaggcaac gcgtgatgc cacaggacgt atcgcgcaga 45 tgaacaaggg attgttccct gcctgacac gcgcgaactc gccaggacgt ataccacaat 46 ggctccagga gctactgcg atctgcgcg ggatgatgc cgacggacg ggctgaatac 46 ggctccaggac gctactgcg atctggatg tggtcagcag ggatgatgc ggatgatgc acttgaaga gggtaacaag gggtaacag ggatgatgc attaacacaat 46 ggtccaggac gctactgcg atctggatg tggtcagcag cgactgaacc tgacgaccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tataatacgc ggattgctca attaaaatt caggaggaat aggtacaaga atcggattgg 48 gggtaacagc cattatgcat attaaacct acagagtggg ttaaatattg gtgcgtggc 49 ttaaatggca cattatgcat attaaacct acagagtggg ttaaatattg gtgcgtggc 49 ttaaatggca catatcaata cctggcttga gcgagacata ataccgttac gttcccggc 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtggt 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtggt 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggt ctgacaaga atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 acaattggcc tcagatgac atatgttac ctgacaggt cactattaaa agagggattta ccacagttac agaacattaa acaaattggc acaaattggc atatgacatta ctcagggcga cactattaaa agaagggattta acaaattggc aaaaatggat atgacattta 52 cccacggtatt ccccggtgat ccccaggtat atcacattaa acaaattggat atgacattta 52 cccacggtatt cccaggtat acaaat	attccgtcaa	tggataaatc	aaaattgact	gagaatacgc	tacagctcgc	aattatcagc	3900
ctgacggtaa cagagttgaa tgccggaace cgggttettg aaaatgcatt ggtgcetcca 40 atgggcgaaa gcacggttaa attgcettet gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atggcgcact tacccccaaa atgacgggcg taatggaata acgcaggggg 42 aattttecg ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatetg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tetgttaget ggttttttg tecgactegt tgtegeetgt gettttgeeg cacaggcace 43 tttgtcatet gccgacetet atttaatcc gcgetttta gcggatgate eccaggetgt 44 ggccgatta teggetttg aaaatggca agaattaceg ccagggacgt atcgcgtcga 45 tacctatttg aataatggtt atatggcaac gcgtgatgte acatttaata egggegacag 45 tgaacaaggg attgtteect gcctgacacg eggcaacte gccagtatgg ggetgaatac 46 ggetecaggac getactgee atctggatgt tggtcagca gcactgaace tgacgacca 47 tecaggcattt atgagtaate gcgcggtgg ttatatteet ectgagtat gggateccag 48 tattaatagee ggattgetea attataatt eageggaaat agggatecc 47 tecaggcattt atgagtaate gcgcgetgg ttatatteet ectgagttat gggateccgg 48 tattaatagee ggattgetea attataatt eageggaaat agtgtacaga atcggategg 48 tattacagea eatacacac 49 gggtaacage cattatgcat attaaattt eageggaaat agtgtacaga atcggategg 48 tataatagee ggattgee attacaata ectggettga gcgagacata ataaceaca 49 taaaatggca eatacaata ectggettga gcgagacata ataaceaca gtacgaaaaa 49 taaaatggca eatacaata ectggettga gcgagacata ataacegttae gtteecgget 50 gacgctgggt gatggttata etcagggga tattteega ggtattaact ttegeggege 51 acaattggee teagatgaca atatgttaee eggatagteaa agaggatttg ecceggtggt 51 eccaggtatt getegtggt etggatgae atatttaaa ecgataggea aaaatgggat atgacattta 52 eccaggtatt getegtggt etggatggea atatttaaa ecgataggea aaaaatgggat atgacattta 52 eccaggtatt getegtggt etgacaagat ataacattgge 52 acaagtggat getegtgat etgacaagat ecceggtgat ecceggtgat eccegggtat ecceggtgat ecceggtat ecceggtgat ecceggtat ecceggtat ecceggtat	cgcattaaac	tgtactatcg	cccggctaaa	ttagcgttgc	cacccgatca	ggccgcagaa	3960
atgggcgaaa gcacggttaa attgccttct gatgcaggaa gcaatattac ttaccgaaca 41 ataaatgatt atgggcgact tacccccaaa atgacggcg taatggaata acgcaggggg 42 aattttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgtcatct gccgacctct atttaatcc gcgctttta gcggatgatc cccaggctgt 44 ggccgattta tcgcgtttg aaaatgggca agaattaccg ccagggacgt atcgcgtcga 45 tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctctgtc gccggtatga atctgctgg ggatgatgce tgtgtgccat taaccacaat 46 ggtccaggac gctactgcg atctggatg tggtcagcag cgactgaacc tgacgaccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgcca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacag cattatgcat atttaaacct acagagtgg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttata cagagagga ttaatattg gtgcgtggcg 49 ttaaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata cctcaggcga tattttcgat ggtattaact ttcgcggcg 51 acaattggcc tcagatgac atatgtacc cgatagtcaa agaggatttg ccccggtgat 52 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caataggga aagaggatttg ccccggtgat 52 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caatagtgca aatattaacct ccagggcaa agaggatttg ccccggtgat 52 ccacggtatt gctcgtggta ctgcacaagg cactattaaa caatagtgca aatattcaag aataggtaa aataggatta ccccggtgat 52 ccacggtatt gctcgtggta ctgcacaagg cactattaaa caatagtgac aatattcaag aataggtaa aatagggattaa cccacggtaat ccccggtgat cccccggtgat cccccggtgat cccccggtgat cccccggtgat cccccggtgat cccccggtgat cccccggtgat cccccggtgat cccccggtat ccccccggtat cccccggtat cccccggtat cccccggtat cccccggtat cccccggtat cccccggtat cccccggtat c	aaattaagat	ttcgtcgtag	cgcgaattct	ctgacgctga	ttaacccgac	accctattac	4020
ataaatgatt atggggcact tacccccaaa atgacgggcg taatggaata acgcaggggg 42 aatttttcgc ctgaataaaa agaattgact gccggggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct gqtttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgtcatct gccgacctct attttaatcc gcgcttttta gcggatgatc cccaggctgt 44 ggccgattta tcgcgttttg aaaatgggca agaattaccg ccagggacgt atcgcgtcga 45 tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attaaattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agaatcacag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 52 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	ctgacggtaa	cagagttgaa	tgccggaacc	cgggttcttg	aaaatgcatt	ggtgcctcca	4080
aatttttcgc ctgaataaaa agaattgact gccgggtga ttttaagccg gaggaataat 42 gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgcatct gccgacctct attttaatcc gcgctttta gcggatgatc cccaggctgt 44 ggccgattta tcgcgtttg aaaatgggca agaattaccg ccagggacgt atcgcgtcga 45 tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggtccaggac gctactgcg atctgcgc ggatgatgc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcg atctggatg tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attaaattt cagcggaaat agggatacaga atcggattgg 49 gggtaacagc cattatgcat attaaacct acagagtggg ttaaatattg gtgcgtggcg 49 ttaaatggca cataccacac ggagttataa cagtagcgac agatcacag gtaccaaaaa 49 taaaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcg 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gcccgtgta ctgcacaggt cactattaaa cagaagtggt atgacatta 52 ccacggtatt gcccggtat ctgcacaggt cactattaaa caaaatggt atgacatta 52	atgggcgaaa	gcacggttaa	attgccttct	gatgcaggaa :	gcaatattac	ttaccgaaca	4140
gtcatatctg aatttaagac tttaccagcg aaacacacaa tgcttgcata ttcgtaagca 43 tcgtttggct ggtttttttg tccgactcgt tgtcgcctgt gcttttgccg cacaggcacc 43 tttgtcatct gccgacctct attttaatcc gcgcttttta gcggatgatc cccaggctgt 44 ggccgattta tcgcgttttg aaaatggca agaattaccg ccagggacgt atcgcgtcga 45 tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggctctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atagttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacatta	ataaatgatt	atggcgcact	tacccccaaa	atgacgggcg	taatggaata	acgcaggggg	4200
tegttegget ggttttttg teegactegt tgtegeetgt gettttgeeg cacaggeace 43 tttgteatet geegacetet attttaatee gegetttta geggatgate eecaggetgt 44 ggeegattta tegegtttg aaaatggea agaattaceg eeaggaegt ategegtega 45 tatetatttg aataatggtt atatggeaae gegtgatgte acatttaata egggegaeag 45 tgaacaaggg attgteeet geetgaeaeg eggegaaete geeagtatgg ggetgaatae 46 ggettetgte geeggtatga atetgetgge ggatgatgee tgtgtgeeat taaceaeaat 46 ggteeaggae getactgege atetggatgt tggteageag egactgaaee tgaegateee 47 teaggeattt atgagtaate geegegtgg ttatatteet eetgagttat gggateeegg 48 tattaatgee ggattgetea attataattt eageggaaat agtgtaeaga ateggattgg 48 gggtaacage eattatgeat atttaaaeet acagagtgg ttaaatattg gtgegtgge 49 tttaeggeae aataceaeet ggagttataa eagtageae agateateag gtageaaaa 49 taaatggeag eatateaata eetggettga gegagaeata atacegttae gtteeegget 50 gaegetgggt gatggttata eteaggega tattttegat ggtattaaet teegeggege 51 acaattggee teagatgaea atatgttaee egatagteaa agaggatttg eeeeggtgat 51 ceaeggtatt getegtggta etgeaeaggt eactattaaa caaaatgggt atgaeattta 52	aatttttcgc	ctgaataaaa	agaattgact	gccggggtga	ttttaagccg	gaggaataat	4260
tttgtcatct gccgacctct attttaatcc gcgcttttta gcggatgatc cccaggctgt 44 ggccgattta tcgcgttttg aaaatggca agaattaccg ccagggacgt atcgcgcacag 45 tatctatttg aataatggt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggcttctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctgggtg tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attaaattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtgg ttaaatattg gtgcgtggcg 49 ttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gcccgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	gtcatatctg	aatttaagac	tttaccagcg	aaacacacaa	tgcttgcata	ttcgtaagca	4320
ggccgattta tcgcgttttg aaaatggca agaattaccg ccagggacgt atcgcgtcga 45 tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggcttctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatggt atgacattta 52	tcgtttggct	ggttttttg	tccgactcgt	tgtcgcctgt	gcttttgccg	cacaggcacc	4380
tatctatttg aataatggtt atatggcaac gcgtgatgtc acatttaata cgggcgacag 45 tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggcttctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tatttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattaa	tttgtcatct	gccgacctct	attttaatcc	gcgcttttta	gcggatgatc	cccaggctgt	4440
tgaacaaggg attgttccct gcctgacacg cgcgcaactc gccagtatgg ggctgaatac 46 ggcttctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 ttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctggt gatggttata ctcagggcga tatttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	ggccgattta	tcgcgttttg	aaaatgggca	agaattaccg	ccagggacgt	atcgcgtcga	4500
ggcttctgtc gccggtatga atctgctggc ggatgatgcc tgtgtgccat taaccacaat 46 ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtgg ttaaatattg gtgcgtggcg 49 ttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	tatctatttg	aataatggtt	atatggcaac	gcgtgatgtc	acatttaata	cgggcgacag	4560
ggtccaggac gctactgcgc atctggatgt tggtcagcag cgactgaacc tgacgatccc 47 tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	tgaacaaggg	attgttccct	gcctgacacg	cgcgcaactc	gccagtatgg	ggctgaatac	4620
tcaggcattt atgagtaatc gcgcgcgtgg ttatattcct cctgagttat gggatcccgg 48 tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	ggcttctgtc	gccggtatga	atctgctggc	ggatgatgcc	tgtgtgccat	taaccacaat	4680
tattaatgcc ggattgctca attataattt cagcggaaat agtgtacaga atcggattgg 48 gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	ggtccaggac	gctactgcgc	atctggatgt	tggtcagcag	cgactgaacc	tgacgatccc	4740
gggtaacagc cattatgcat atttaaacct acagagtggg ttaaatattg gtgcgtggcg 49 tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	tcaggcattt	atgagtaatc	gcgcgcgtgg	ttatattcct	cctgagttat	gggatcccgg	4800
tttacgcgac aataccacct ggagttataa cagtagcgac agatcatcag gtagcaaaaa 49 taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	tattaatgcc	ggattgctca	attataattt	cagcggaaat	agtgtacaga	atcggattgg	4860
taaatggcag catatcaata cctggcttga gcgagacata ataccgttac gttcccggct 50 gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	gggtaacagc	cattatgcat	atttaaacct	acagagtggg	ttaaatattg	gtgcgtggcg	4920
gacgctgggt gatggttata ctcagggcga tattttcgat ggtattaact ttcgcggcgc 51 acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	tttacgcgac	aataccacct	ggagttataa	cagtagcgac	agatcatcag	gtagcaaaaa	4980
acaattggcc tcagatgaca atatgttacc cgatagtcaa agaggatttg ccccggtgat 51 ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	taaatggcag	catatcaata	cctggcttga	gcgagacata	ataccgttac	gttcccggct	5040
ccacggtatt gctcgtggta ctgcacaggt cactattaaa caaaatgggt atgacattta 52	gacgctgggt	gatggttata	ctcagggcga	tattttcgat	ggtattaact	ttcgcggcgc	5100
	acaattggcc	tcagatgaca	atatgttacc	cgatagtcaa	agaggatttg	ccccggtgat	5160
taatagtacg gtgccaccgg ggccttttac catcaacgat atctatgccg caggtaatag 52	ccacggtatt	gctcgtggta	ctgcacaggt	cactattaaa	caaaatgggt	atgacattta	5220
	taatagtacg	gtgccaccgg	ggccttttac	catcaacgat	atctatgccg	caggtaatag	5280

tggtgacttg	caggtaacga	tcaaagaggc	tgacggcagc	acgcagattt	ttaccgtacc	5340
ctattcgtca	gtcccgcttt	tgcaacgtga	agggcatact	cgttattcca	ttacggcagg	5400
agaataccgt	agtggaaatg	cgcagcagga	aaaaacccgc	tttttccaga	gtacattact	5460
ccacggcctt	ccggctggct	ggacaatata	tggtggaacg	caactggcgg	atcgttatcg	5520
tgcttttaat	ttcggtatcg	ggaaaaacat	gggggcactg	ggcgctctgt	ctgtggatat	5580
gacgcaggct	aattccacac	ttcccgatga	cagtcagcat	gacggacaat	cggtgcgttt	5640
tctctataac	aaatcgctca	atgaatcagg	cacgaatatt	cagttagtgg	gttaccgtta	5700
ttcgaccagc	ggatatttta	atttcgctga	taçaacatac	agtcgaatga	atggctacaa	5760
cattgaaaca	caggacggag	ttattcaggt	taagccgaaa	ttcaccgact	attacaacct	5820
cgcttataac	aaacgcggga	aattacaact	caccgttact	cagcaactcg	ggcgcacatc	5880
aacactgtat	ttgagtggta	gccatcaaac	ttattgggga	acgagtaatg	tcgatgagca	5940
attccaggct	ggattaaata	ctgcgttcga	agatatcaac	tggacgctca	gctatagcct	6000
gacgaaaaac	gcctggcaaa	aaggacggga	tcagatgtta	gcgcttaacg	tcaatattcc	6060
tttcagccac	tggctgcgtt	ctgacagtaa	atctcagtgg	cgacatgcca	gtgccagcta	6120
cagcatgtca	cacgatctca	acggtcggat	gaccaatctg	gctggtgtat	acggtacgtt	6180
gctggaagac	aacaacctca	gctatagcgt	gcaaaccggc	tatgccgggg	gaggcgatgg	6240
aaatagcgga	agtacaggct	acgccacgct	gaattatcgc	ggtggttacg	gcaatgccaa	6300
tatcggttac	agccatagcg	atgatattaa	gcagctctat	tacggagtca	gcggtggggt	6360
actggctcat	gccaatggcg	taacgctggg	gcagccgtta	aacgatacgg	tggtgcttgt	6420
taaagcgcct	ggcgcaaaag	atgcaaaagt	cgaaaaccag	acgggggtgc	gtaccgactg	6480
gcgtggttat	gccgtgctgc	cttatgccac	țgaatatcgg	gaaaatagag	tggcgctgga	6540
taccaatacc	ctggctgata	acgtcgattt	agataacgcg	gttgctaacg	ttgttcccac	6600
tcgtggggcg	atcgtgcgag	cagagtttaa	agcgcgcgtt	gggataaaac	tgctcatgac	6660
gctgacccac	aataataagc	cgctgccgtt	tggggcgatg	gtgacatcag	agagtagcca	6720
gagtagcggc	attgttgcgg	ataatggtca	ggtttacctc	agcggaatgc	ctttagcggg	6780
aaaagttcag	gtgaaatggg	gagaagagga	aaatgctcac	tgtgtcgcca	attatcaact	6840
gccaccagag	agtcagcagc	agttattaac	ccagctatca	gctgaatgtc	gttaaggggg	6900
cgtgatgaga	aacaaacctt	tttatcttct	gtgcgctttt	ttgtggctgg	cggtgagtca	6960
cgctttggct	gcggatagca	cgattactat	ccgcggctat	gtcagggata	acggctgtag	7020
tgtggccgct	gaatcaacca	attttactgt	tgatctgatg	gaaaacgcgg	cgaagcaatt	7080
taacaacatt	ggcgcgacga	ctcctgttgt	tccatttcgt	attttgctgt	caccctgtgg	7140
taatgccgtt	tctgccgtaa	aggttgggtt	tactggcgtt	gcagatagcc	acaatgccaa	7200

```
7260
cctgcttgca cttgaaaata cggtgtcagc ggcttcggga ctgggaatac agcttctgaa
                                                                    7320
tgagcagcaa aatcaaatac cccttaatgc tccatcgtcc gcgctttcgt ggacgaccct
                                                                    7380
gacgccgggt aaaccaaata cgctgaattt ttacgcccgg ctaatggcga cacaggtgcc
                                                                    7440
tqtcactqcq qqqcatatca atqccacqqc taccttcact cttqaatatc agtaactqqa
gatgctcatg aaatggtgca aacgtgggta tgtattggcg gcaatattgg cgctcgcaag
                                                                    7500
                                                                    7560
tgcgacgata caggcagccg atgtcaccat cacggtgaac ggtaaggtcg tcgccaaacc
                                                                    7620
gtgtacggtt tccaccacca atgccacggt tgatctcggc gatctttatt ctttcagtct
tatgtctgcc ggggcggcat cggcctggca tgatgttgcg cttgagttga ctaattgtcc
                                                                    7680
                                                                    7740
ggtgggaacg tcgagggtca ctgccagctt cagcggggca gccgacagta ccggatatta
                                                                    7800
taaaaaccag gggaccgcgc aaaacatcca gttagagcta caggatgaca gtggcaacac
attgaatact ggcgcaacca aaacagttca ggtggatgat tcctcacaat cagcgcactt
                                                                    7860
                                                                    7920
cccgttacag gtcagagcat tgacagtaaa tggcggagcc actcagggaa ccattcaggc
                                                                    7980
agtgattagc atcacctata cctacagctg aacccgaaga gatgattgta atgaaacgag
                                                                    8040
ttattaccct gtttgctgta ctgctgatgg gctggtcggt aaatgcctgg tcattcgcct
                                                                    8100
gtaaaaccgc caatggtacc gagctcgaat tcactggccg tcgttttaca acgtcgtgac
                                                                    8160
tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc tttcgccagc
tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg cagcctgaat
                                                                    8220
                                                                    8280
ggcgaatggc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc
                                                                    8340
atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca gccccgacac
ccgccaacac ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc cgcttacaga
                                                                    8400
                                                                    8460
caagetgtga eegteteegg gagetgeatg tgteagaggt ttteacegte ateacegaaa
                                                                    8464
cgcg
```

```
<210> 170
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic M2 Peptide
<400> 170
Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly Cys
1 5 10 15
Arg Cys Asn Gly Ser Ser Asp Gly Gly Gly Cys
```

<211> 97 <212> PRT

<213> Artificial Sequence

<220>

<223> Matrix protein M2

<400> 171

Met Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly 1 5 10 15

Cys Arg Cys Asn Gly Ser Ser Asp Pro Leu Ala Ile Ala Ala Asn Ile 20 25 30

Ile Gly Ile Leu His Leu Ile Leu Trp Ile Leu Asp Arg Leu Phe Phe 35 40 45

Lys Cys Ile Tyr Arg Arg Phe Lys Tyr Gly Leu Lys Gly Gly Pro Ser 50 55 60

Thr Glu Gly Val Pro Lys Ser Met Arg Glu Glu Tyr Arg Lys Glu Gln 65 70 75 80

Gln Ser Ala Val Asp Ala Asp Asp Gly His Phe Val Ser Ile Glu Leu 85 90 95

Glu

<210> 172

<211> 770

<212> PRT

<213> Homo Sapiens

<400> 172

Met Leu Pro Gly Leu Ala Leu Leu Leu Leu Ala Ala Trp Thr Ala Arg 1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro 20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln 35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp 50 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu 65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn 85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu 120 Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys 135 Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys 215 Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu 230 Glu Ala Asp Asp Asp Glu Asp Glu Asp Gly Asp Glu Val Glu Glu Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg 280 285 Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile 295 Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr 330 Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr 345 Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn 440 445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met 455 Leu Asn Asp Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe 500 505 Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser 535 Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp 555 Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val 570 565 Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro 600 Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe 610 615 620 Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser 650 Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp 665 Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val 725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met 740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met 755 760 .765

Gln Asn 770 <210> 173

<211> 82

<212> PRT

<213> Homo Sapiens

<400> 173

Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln 20 25 30

Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile 35 40 45

Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Ile 50 55 60

Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Asn His His Gly Val 65 70 75 80

Val Glu

<210> 174

<211> 42

<212> PRT

<213> Unknown

<220>

<223> Amyloid Beta Peptide

<400> 174

Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile 20 25 30

Gly Leu Met Val Gly Gly Val Val Ile Ala 35 40

<210> 175

<211> 12

<212> PRT

<213> Artificial Sequence

```
<220>
<223> p33 peptide
<400> 175
Cys Gly Gly Lys Ala Val Tyr Asn Phe Ala Thr Met
                5
<210> 176
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> DP178c peptide
<400> 176
Cys Tyr Thr Ser Leu Ile His Ser Leu Ile Glu Glu Ser Gln Asn Gln
Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser
Leu Trp Asn Trp Phe
       35
<210> 177
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> c-terminal linker
<400> 177
Gly Ser Gly Gly Cys Gly
1 5
<210> 178
<211> 65
```

<212> PRT

<213> Artificial Sequence

<220>

<223> GRA2

<400> 178

Lys Glu Ala Ala Gly Arg Gly Met Val Thr Val Gly Lys Lys Leu Ala 1 5 10 15

Asn Val Glu Ser Asp Arg Ser Thr Thr Thr Thr Gln Ala Pro Asp Ser 20 25 30

Pro Asn Gly Leu Ala Glu Thr Glu Val Pro Val Glu Pro Gln Gln Arg 35 40 45

Ala Ala His Val Pro Val Pro Asp Phe Ser Gln Gly Ser Gly Gly Cys 50

Gly 65

<210> 179

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> D2 peptide

<400> 179

Cys Gly Gly Thr Ser Asn Gly Ser Asn Pro Ser Thr Ser Tyr Gly Phe 1 5 10 15

Ala Asn

<210> 180

<211> 18

<212> PRT

<213> Artificial Sequence

```
<220>
<223> B2 peptide
<400> 180
Cys Gly Gly Asp Ile Ser Asn Gly Tyr Gly Ala Ser Tyr Gly Asp Asn
                                   10
Asp Ile
<210> 181
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> muTNFa peptide
<400> 181
Cys Gly Gly Val Glu Glu Gln Leu Glu Trp Leu Ser Gln Arg
               5
<210> 182
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> TNFa II (3'-TNFa II)
<400> 182
Ser Ser Gln Asn Ser Ser Asp Lys Pro Val Ala His Val Val Ala Asn
               5
                                   10
His Gly Val Gly Gly Cys
<210> 183
<211> 20
```


<212> PRT

<213> Artificial Sequence

<220>

<223> TNFa II (5' TNFa II)

<400> 183

Asn His Gly Val 20

<210> 184

<211> 182

<212> PRT

<213> Escherichia coli

<400> 184

Met Lys Ile Lys Thr Leu Ala Ile Val Val Leu Ser Ala Leu Ser Leu 10

Ser Ser Thr Ala Ala Leu Ala Ala Ala Thr Thr Val Asn Gly Gly Thr 25

Val His Phe Lys Gly Glu Val Val Asn Ala Ala Cys Ala Val Asp Ala 35 40 45

Gly Ser Val Asp Gln Thr Val Gln Leu Gly Gln Val Arg Thr Ala Ser 50 60

Leu Ala Gln Glu Gly Ala Thr Ser Ser Ala Val Gly Phe Asn Ile Gln 65 70 75 80

Leu Asn Asp Cys Asp Thr Asn Val Ala Ser Lys Ala Ala Val Ala Phe 85 90 95

Leu Gly Thr Ala Ile Asp Ala Gly His Thr Asn Val Leu Ala Leu Gln 100

Ser Ser Ala Ala Gly Ser Ala Thr Asn Val Gly Val Gln Ile Leu Asp 115 120 125

Arg Thr Gly Ala Ala Leu Thr Leu Asp Gly Ala Thr Phe Ser Ser Glu 130 140

Thr Thr Leu Asn Asn Gly Thr Asn Thr Ile Pro Phe Gln Ala Arg Tyr 155 150 150

Phe Ala Thr Gly Ala Ala Thr Pro Gly Ala Ala Asn Ala Asp Ala Thr

-99-

Phe Lys Val Gln Tyr Gln 180

<210> 185

<211> 152

<212> PRT

<213> Hepatitis B virus

<400> 185

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu

Ser Phe Leu Pro Ser Asp Phe Phe Pro Ser Val Arg Asp Leu Leu Asp

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Ile Glu Ser Pro Glu His Cys

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu

Leu Met Thr Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Gly Gly

Lys Gly Gly Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met

Gly Leu Lys Ile Arg Gln Leu Leu Trp Phe His Ile Ser Cys Leu Thr 105

Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp

Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser

Thr Leu Pro Glu Thr Thr Val Val

<210> 186

<211> 152

<212> PRT

<213> Hepatitis B virus

<400> 186

Met Asp Ile Asp Pro Tyr Lys Glu Phe Gly Ala Thr Val Glu Leu Leu

-100-

Thr Ala Ser Ala Leu Tyr Arg Glu Ala Leu Glu Ser Pro Glu His Ser 35 40 45

Ser Pro His His Thr Ala Leu Arg Gln Ala Ile Leu Cys Trp Gly Glu 50

Leu Met Thr Leu Ala Thr Trp Val Gly Thr Asn Leu Glu Asp Gly Gly 65 75 80

Lys Gly Gly Ser Arg Asp Leu Val Val Ser Tyr Val Asn Thr Asn Met 85 90 95

Phe Gly Arg Glu Thr Val Leu Glu Tyr Leu Val Ser Phe Gly Val Trp \$125\$

Ile Arg Thr Pro Pro Ala Tyr Arg Pro Pro Asn Ala Pro Ile Leu Ser 130 135 140

Thr Leu Pro Glu Thr Thr Val Val 145