Physics 129: Particle Physics Lecture 22: Weak decays of hadrons (continued), Mixing in the K^0 and B Systems

Nov 10, 2020

- Suggested Reading:
 - ► Thomson Chapter 14.2-14.6
 - ► Griffiths 10.5
- Homework schedule for the rest of the semester:
 - ► HW # 11: Released later today, due Wed Nov 18
 - ► HW # 12: Released Nov 18, due Wed Dec 2
 - ► HW # 13: Released Nov 25, due Sat Dec 11
- Final project details to be posted next week, due by Dec 15

Our Weak Interaction Roadmap

- Unlike strong and EM, weak interactions don't conserve parity
 - Vertex selects left-handed state for of particles (and right handed state for anti-particles)
 - Subject of last Tuesday's lecture
- W^{\pm} coupling to leptons respect flavor familes (e, μ, τ) but coupling to quarks do not
 - Coupling not diagonal in quark flavor: Need to change basis
 - Subject of last Thursday's lecture
 - Introduction of this change in basis gives new phenomenology, including mixing and CP violation
 - This week's lectures
- W^{\pm} has charge, so it couples to photon
 - Cannot write down a weak theory independent of QED
 - lacktriangle Unified electroweak theory includes Z^0 as well as W^\pm and γ
 - Topic for the week of Nov 17
- \bullet Need mechanism to give W^{\pm} and Z^0 mass
 - ► This is the Higgs mechanism
 - Discuss this after Thanksgiving

Review: Choice of weak eigenstates

- Suppose strong and weak eigenstates of quarks not the same
- Weak coupling:

- Here d' is an admixture of down-type quarks
- But wf must remain properly normalized
 - \blacktriangleright That means transformation $d \leftrightarrow d'$ must be unitary

The Cabbibo Angle

- If we had only 2 quark generations, would need only 1 number to relate the bases
 - ightharpoonup Expressing it as an angle θ_C ensures proper normalization
- For two generations:

$$d' = d\cos\theta_C + s\sin\theta_c$$

$$s' = s\cos\theta_C - d\sin\theta_c$$

With this formulation:

$$p \& \pi \text{ decay} \propto G_F^2 \cos^2 \theta_C$$
 $K \text{ decay} \propto G_F^2 \sin^2 \theta_C$
 $\mu \text{ decay} \propto G_F^2$

· Using experimental measurements, find

$$\cos \theta_c = 0.97420 \pm 0.00021$$

 $\sin \theta_c = 0.2243 \pm 0.0005$

Review: The GIM Mechanism (I)

- Flavor changing neutral currents (FCNC) are highly suppressed
- Two examples of FCNC suppression:
 - 1. $BR(K_L^0 \to \mu^+\mu^-) = 6.84 \times 10^{-9}$
 - 2. $BR(K^+ \to \pi^+ \nu \nu)/BR(K^+ \to \pi^0 \mu \nu) < 10^{-7}$
- Why are these decay rates so small?
 - ightharpoonup Z that couples to $f\overline{f}$ pairs, but it does not change flavor (same as γ)
 - ► Two W^{\pm} exchange can produce FCNC
 - Need second order charged weak interactions, but even this would give a bigger rate than seen unless there is a cancellation

Review: The GIM Mechanism (II)

• Reminder:

$$d' = d\cos\theta_C + s\sin\theta_c$$

$$s' = s\cos\theta_C - d\sin\theta_c$$

• Consider the "box" diagram

- \mathcal{M} term with u quark $\propto \cos \theta_C \sin \theta_C$
- \mathcal{M} term c quark $\propto -\cos\theta_C\sin\theta_C$
- ightharpoonup Same final state, so we add \mathcal{M} 's
- ► Terms cancel in limit where we ignore quark masses

Review: More Than Two Generations

- Generalize to N families of quark (N=3 as far as we know)
- U is a unitary $N \times N$ matrix and d_i' is an N-column vector

$$d_i' = \sum_{j=1}^N U_{ij} d_j$$

U is called the CKM matrix

- How many independent parameters do we need to describe U?
 - ightharpoonup N imes N matrix: N^2 elements
 - ▶ But each quark has an unphysical phase: can remove 2N-1 phases (leaving one for the overall phase of U)
 - ▶ So, U has $N^2 (2N 1)$ independent elements
- \bullet However, an orthogonal $N\times N$ matrix has $\frac{1}{2}N(N-1)$ real parameters
 - ▶ So U has $\frac{1}{2}N(N-1)$ real parameters
 - $ightharpoonup N^2 (2N-1) \frac{1}{2}N(N-1)$ imaginary phases $\left(= \frac{1}{2}(N-1)(N-2) \right)$
- N=2 1 real parameter, 0 imaginary
- N=3 3 real parameters, 1 imaginary
- Three generations requires an imaginary phase: CP Violation inherent

The CKM Matrix

Write hadronic current

$$J^{\mu} = -\frac{g}{\sqrt{2}} \left(\overline{u} \ \overline{c} \ \overline{t} \right) \gamma_{\mu} \frac{(1 - \gamma_{5})}{2} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- ullet V_{CKM} gives mixing between strong (mass) and (charged) weak basis
- · Often write as

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Wolfenstein parameterization:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Here λ is the $\approx \sin \theta_C$.

Best Fit for CKM Matrix from PDG

• From previous page

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Impose Unitary and use all experimental measurements

$$\lambda = 0.22453 \pm 0.00044 \qquad \qquad A = 0.836 \pm 0.015$$

$$\rho = 0.122^{+0.018}_{-0.17} \qquad \qquad \eta = 0.355^{+0.12}_{-0.11}$$

• Result for the magnitudes of the elements is:

```
\left(\begin{array}{ccc} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359 \pm 0.00011 & 0.04214 \pm 0.00076 \\ 0.00896 \pm 00024 & 0.04133 \pm 0.00074 & 0.999105 \pm 000032 \end{array}\right)
```

Weak hadron decays and the CKM matrix

· Since hadronic current is

$$J^{\mu} = -\frac{g}{\sqrt{2}} \left(\overline{u} \ \overline{c} \ \overline{t} \right) \gamma_{\mu} \frac{(1 - \gamma_{5})}{2} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

We get a V_{CKM} factor for each $Wq\overline{q}$ vertex

- We need to keep track of these factors when we calculate decay rates
- Example: Semileptonic decay of B meson

- ightharpoonup B mesons: $q\bar{b}$
- $ightharpoonup \overline{B}$ mesons: $b\overline{q}$
- Pseudo-scalar mesons decay weakly through W^\pm emission

NB: overline on b-quark difficult to see!

Factor of V_{cb} in matrix element, $\vert V_{cb} \vert^2$ in decay rate

- ▶ From previous page: $V_{cb} = 0.04214 \pm 0.00076$
- ▶ This gives a factor $\approx 1.76 \times 10^{-3}$ in decay rate
- ightharpoonup Explains why weakly decaying B mesons have relatively long lifetimes

$$\tau(B^+) = 1.6 \times 10^{-12} \text{ s}$$

How does this work for hadronic decays?

NB: overline on b-quark difficult to see!

- Now have a CKM element at each vertex
- Also need a factor for probability that our $u\bar{d}$ turns into a π^+ (or a ρ^+)
- \bullet Note also that diagrams where W decays between the two quarks are possible
- And in some cases annihilation diagrams also possible
- But can estimate relative rates for decays
 - Eg, expect

$$\frac{BR(B \to DK^+)}{BR(B \to DK^+)} \approx \left| \frac{V_{us}}{V_{ud}} \right|^2$$

Implications of the CKM picture

- ullet We have already seen in GIM mechanism that 2^{nd} order weak interactions with two W's exchanged can be important
- Phenomenology of these interactions is rich
- First system where it was explored: Neutral kaons
- Kaons played essential role in understanding particle physics
- Have already seen two examples:
 - $ightharpoonup K^+ o 2\pi, 3\pi$: Parity violation
 - $K^0 \to \mu^+ \mu +:$ Very low BR due to GIM mechanism
- ullet Today and Thursday, explore special role of neutral K system
 - Mixing
 - CP Violation
- Will also include some discussion of neutral B mesons, which exhibit similar phenomena

Reminder: Strange Particle Phenomenology

• Stange pseudoscalar mesons: 2 isodoublets

$$\left(\begin{array}{c}K^+\\K^0\end{array}\right)\ \left(\begin{array}{c}\overline{K}^0\\K^-\end{array}\right)$$

where
$$K^+ = \overline{s}u$$
, $K^- = \overline{u}s$, $K^0 = \overline{s}d$, $\overline{K}^0 = \overline{d}s$

- ullet Because strangeness conserved in SI, K^0 and \overline{K}^0 are distinct particles
- Strange particles are pair produced via SI

$$\pi^- p \rightarrow \Lambda K^0$$
 $\pi^+ p \rightarrow p K^+ \overline{K}^0$

- First reaction has much lower threshold than second
 - ightharpoonup Can produce a pure K^0 beam
- Today, neutal K beams produced using high intensity proton beams hitting targets
 - lacktriangle Background a big issue for K^0 experiments, most notably from neutrons

Neutral Kaon Decays

- $m(K^0) = 497$ MeV. Not many decay modes open
 - ► Fully leptonic decays highly suppressed (GIM)
 - $ightharpoonup K^0 o \pi^- \ell^+ \nu_\ell$ (and charge conjugate) occurs
 - \blacktriangleright Since parity not conserved in weak interactions, both 2π and 3π decays possible
- Since both K^0 and \overline{K}^0 can decay to same states, they can ${\it mix}$ through virtual decays

$$K^0 \longleftrightarrow \left\langle \begin{array}{c} \pi\pi \\ \pi\pi\pi \end{array} \right\rangle \longleftrightarrow \overline{K}^0$$

- These are 2^{nd} order weak onteractions with $\Delta S=2$
- If we start with a pure K^0 state at t=0, it will at some later time have a combination of K^0 and \overline{K}^0

$$|K(t)\rangle = \alpha(t) |K^{0}\rangle + \beta(t) |\overline{K}^{0}\rangle$$

with
$$\sqrt{\alpha^2 + \beta^2} = 1$$

Neutral Kaon Mixing (I)

• Can describe this 2^{nd} order weak interactions in quark terms:

- \bullet If there were no weak interactions, K^0 and \overline{K}^0 would be degenerate in mass
- Weak Interactions break the degeneracy
- Because physical observables (eg mass, lifetime) are eigenstates of complete Hamiltonian (SI+WI), must select correct linear combination of K^0 and \overline{K}^0 define the states that propagate and decay

The mass and lifetime eigenstates are not the flavor eigenstates!

Neutral Kaon Mixing (I)

- We can almost guess the correct basis to use
 - We know weak interactions don't conserve P since ν are LH and $\overline{\nu}$ are RH
 - ightharpoonup Parity would turn a LH ν into a RH ν
 - ▶ But Charge Conjugation turns a ν into a $\overline{\nu}$
 - lacktriangle Hence, CP turns a a LH u into a RH $\overline{
 u}$
- Weak Interaction Lagrangian appears to be CP invariant
- In fact, CP is violated in CKM matrix ($\sim 10^{-3}$ effect)
- But the CP basis is close to the correct one and that's what we'll use today
 - We'll add the small CP violating piece on Thurs

Neutral Kaon Mixing (II)

Neutral Kaons transform under CP (not unique definition)

$$CP | K^0 \rangle = \left| \overline{K}^0 \right\rangle$$
 $CP \left| \overline{K}^0 \right\rangle = \left| K^0 \right\rangle$

• Therefore, we can write

$$|K_{1}\rangle = \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle + \left| \overline{K}^{0} \right\rangle \right) \qquad CP \left| K_{1} \right\rangle = \left| K_{1} \right\rangle$$
$$|K_{2}\rangle = \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle - \left| \overline{K}^{0} \right\rangle \right) \qquad CP \left| K_{2} \right\rangle = -\left| K_{2} \right\rangle$$

 $\bullet \ |K_1\rangle$ and $|K_2\rangle$ are CP eigenstates and almost the physical basis

CP of Possible Hadronic Decays

 $\pi^{0}\pi^{0}$:

▶ Spin 0 to 2 spin 0 particles: $\ell = 0$

$$P(\pi^0 \pi^0) \rightarrow \pi^0 \pi^0$$

$$C\pi^0 \rightarrow \pi^0$$

$$CP(\pi^0 \pi^0) \rightarrow +1(\pi^0 \pi^0)$$

 $\pi^{+}\pi^{-}$:

▶ Spin 0 to 2 spin 0 particles: $\ell = 0$

$$P\left(\pi^{+}(\vec{p}) \ \pi^{-}(-\vec{p})\right) \rightarrow \pi^{+}(-\vec{p})\pi^{-}(\vec{p})$$

$$C\pi^{\pm} \rightarrow \pi^{\mp}$$

$$CP\left(\pi^{+}\pi^{-}\right) \rightarrow +1(\pi^{+}\pi^{-})$$

 $\pi^0\pi^0\pi^0$:

- Any two π^0 combo must have even ℓ (Bose stats)
- J=0 so ℓ of 3^{rd} π^0 also even wrt other two
- ▶ But π has intrinsic parity P = -1

$$P(\pi^0 \pi^0 \pi^0) \rightarrow (-1)^3 \pi^0 \pi^0 \pi^0$$

$$C\pi^0 \rightarrow \pi^0$$

$$CP(\pi^0 \pi^0 \pi^0) \rightarrow -1(\pi^0 \pi^0 \pi^0)$$

 $\pi^{+}\pi^{-}\pi^{0}$:

- ► Small Q suggests $\ell = 0$. If so, same argument as above
- ▶ Both CP states allowed but $CP(\pi^+\pi^-\pi^0) = -(\pi^+\pi^-\pi^0)$ state highly dominant

 2π states have CP=+1 and 3π states have CP=-1

Hadronic Decays of the $|K_1\rangle$ and $|K_2\rangle$

Associating the CP states with the decays:

$$|K_1\rangle \to 2\pi$$

 $|K_2\rangle \to 3\pi$

- However, very little phase space for 3π decay: Lifetime of $|K_2\rangle$ much longer than of $|K_1\rangle$
- Physical states called "K-long" and "K-short":

$$\tau(K_S) = 0.9 \times 10^{-10} \text{ sec}$$

 $\tau(K_L) = 0.5 \times 10^{-7} \text{ sec}$

• We'll use distinction that $|K_1\rangle$, $|K_2\rangle$ are the CP eigenstates and $|K_S\rangle$, $|K_L\rangle$ are true mass eigenstates (including CP violation)

A More Formal Treatment of Mixing

• Write our state ψ as linear combination of K^0 and \overline{K}^0 :

$$\psi = \alpha \left| K^0 \right\rangle + \beta \left| \overline{K}^0 \right\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Schrodinger eq tells us

$$i\frac{d\psi}{dt} = H\psi$$

where H is Hermitian matrix: "generalized mass matrix"

• In matrix form:

$$H = \left(\begin{array}{cc} M - \frac{i}{2}\Gamma & M_{12} - \frac{i}{2}\Gamma_{12} \\ {M^*}_{12} - \frac{i}{2}\Gamma^*_{12} & M - \frac{i}{2}\Gamma \end{array} \right)$$

- Diagonal elements equal from CPT
- ullet If CP is a good symmetry, M_{12} and Γ_{12} are real
- Find eigenstates by diagonalizing the matrix

$$M = (m_1 + m_2)/2$$
 $\Delta m \equiv M_{12} = (m_1 - m_2)/2$
 $\Gamma \equiv \Gamma_{12} = (\Gamma_1 + \Gamma_2)/2$ $\Delta \Gamma = (\Gamma_1 - \Gamma_2)/2$

Time Dependence (I)

Write wave functions (ignoring for now CP violation)

$$|K_1(t)\rangle = e^{-im_1t - \Gamma_1t/2} |K_1\rangle$$

 $|K_2(t)\rangle = e^{-im_2t - \Gamma_2t/2} |K_2\rangle$

Writing this in terms of strong eigenstates

$$\begin{split} \left|K^{0}\right\rangle_{\mathrm{at}\;t=0} & \Rightarrow & \frac{1}{\sqrt{2}}\left[e^{-im_{1}t-\Gamma_{1}t/2}\left|K_{1}\right\rangle+e^{-im_{2}t-\Gamma_{2}t/2}\left|K_{2}\right\rangle\right] \\ \left|\overline{K}^{0}\right\rangle_{\mathrm{at}\;t=0} & \Rightarrow & \frac{1}{\sqrt{2}}\left[e^{-im_{1}t-\Gamma_{1}t/2}\left|K_{1}\right\rangle-e^{-im_{2}t-\Gamma_{2}t/2}\left|K_{2}\right\rangle\right] \end{split}$$

• If a state ψ that is purely $\left|K^0\right>$ is produced at t=0, at a later time it will be a combination of $\left|K^0\right>$ and $\left|\overline{K}^0\right>$:

$$\langle K^{0} | | \psi(t) \rangle = \frac{1}{\sqrt{2}} \left(\langle K_{1} | + \langle K_{2} | \rangle | \psi(t) \rangle \right) = \frac{1}{2} \left[e^{-im_{1}t - \Gamma_{1}t/2} + e^{-im_{2}t - \Gamma_{2}t/2} \right]$$

$$\langle \overline{K}^{0} | | \psi(t) \rangle = \frac{1}{\sqrt{2}} \left(\langle K_{1} | - \langle K_{2} | \rangle | \psi(t) \rangle \right) = \frac{1}{2} \left[e^{-im_{1}t - \Gamma_{1}t/2} - e^{-im_{2}t - \Gamma_{2}t/2} \right]$$

Time Dependence (II)

• Square to get probability:

$$\begin{split} \left| \left\langle K^0 \right| \left| \psi(t) \right\rangle \right|^2 &= \frac{1}{4} \left[e^{-\Gamma_1 t} + e^{-\Gamma_2 t} + 2 e^{-(\Gamma_1 + \Gamma_2) t/2} \cos(\Delta m t) \right] \\ \left| \left\langle \overline{K}^0 \right| \left| \psi(t) \right\rangle \right|^2 &= \frac{1}{4} \left[e^{-\Gamma_1 t} + e^{-\Gamma_2 t} - 2 e^{-(\Gamma_1 + \Gamma_2) t/2} \cos(\Delta m t) \right] \end{split}$$

 \bullet The $\left|K^0\right>$ and $\left|\overline{K}^0\right>$ oscillate with frequency Δm and at the same time they decay

Observing the Oscillation

- ullet Oscillation provides a way to measure ΔM
- Also demonstrates that this QM phenomenon is happening
- How do we see it?
 - 1. Start with pure K^0 beam (low energy) Look at time dependence of hyperon yield in interactions $(\overline{K}^0 p \to \Lambda \pi)$

$$\Delta m \tau_1 = 0.477 \pm 0.2$$

2. Look for decays that tag the flavor: semileptonic Observe time dependence in ℓ^+ vs ℓ^- rate

- \bullet Note: Phenomenology of K mixing depends on two things
 - ► Large lifetime difference: time to mix before decaying
 - Small mass difference: short oscillation frequency
- In B system things look somewhat different (we'll discuss later)

What we expect to see

• Begin with K^0 state at t=0

$$\begin{split} \left| \left\langle K^0 \right| \left| \psi \right\rangle \right|^2 &= \frac{1}{4} \left[e^{-\Gamma_1 t} + e^{-\Gamma_2 t} + 2 e^{-(\Gamma_1 + \Gamma_2)t/2} \cos(\Delta m t) \right] \\ \left| \left\langle \overline{K}^0 \right| \left| \psi \right\rangle \right|^2 &= \frac{1}{4} \left[e^{-\Gamma_1 t} + e^{-\Gamma_2 t} - 2 e^{-(\Gamma_1 + \Gamma_2)t/2} \cos(\Delta m t) \right] \end{split}$$

For the measured ΔM

- ullet Start with a K_0 beam
- ullet After many K_S lifetimes, have a pure K_L beam
 - ▶ In absence of CP violation, equal parts K_0 and \overline{K}_0

Observation of $K_0 - \overline{K}_0$ Oscill using semileptonic decays

ullet Use lepton flavor to distinguish K_0 and \overline{K}_0

Fig. 3. Time dependence of the charge asymmetry of semileptonic decays.

- Plot shows asymmetry $\frac{N(\ell^+)-N(\ell^-)}{N(\ell^+)+N(\ell^-)}$
- Removes (trivial) lifetime dependence
- We'll come back to the non-zero value at large times Thursday (CP violation)

How About the B system?

- Again, second order in weak interactions
- ullet Different CKM matrix elements for B^0 and B_s
 - ▶ Larger ΔM for B_s than B_d
- Many possible final states for the decay
 - lacktriangle Difference in lifetime of the B_L and B_S states small
- NB: D^0 - $\overline{D^0}$ mixing also exists, but *very small* since mass differences in down sector smaller

Observing B^0 - $\overline{B^0}$ Mixing

- B hadrons produced in Strong or EN interactions: pair produced
 - ► Flavor conserved in SI and EM
- If one B-hadron identified as B or \overline{B} , know the that the other has opposite flavor
- ullet Can "tag" flavor of one B
 - $b \to W^- c \to \ell^- \nu c, \ \overline{b} \to W^+ \overline{c} \to \ell^+ \overline{\nu} \overline{c}$
 - $b \to W^- c \to W^- D^{+(*)}, \ \overline{b} \to W^+ \overline{c} \to W^+ D^{-(*)}$
 - ▶ Fully or partially reconstructed B^+ or B^-
- Study time evolution of other B using same processes to determine flavor $(b \text{ or } \overline{b})$
- For B^0 most incisive studies from $\Upsilon(4s)$
- ullet B_s not produced on $\Upsilon(4s)$: hadron colliders for B_s mixing

$\overline{e^+e^- ightarrow \Upsilon(4s)}$: How do the $B\overline{B}$ pairs behave?

- B and \overline{B} come from $\Upsilon(4s)$ in a coherent L=1 state
 - $ightharpoonup \Upsilon(4s)$ is $J^{PC}=1^{--}$
 - ▶ B mesons are scalars
 - ▶ Thus, L=1
- $\Upsilon(4s)$ decays strongly so B and \overline{B} produced as flavor eigenstates
 - After production, each meson oscillates in time, but in phase so that at any time there is only one B and one \overline{B} until one particle decays
 - Coherent oscillations
 - Once one B decays, the other contines to oscillate, but coherence is broken
 - lacktriangle Possible to have events with two B or two \overline{B} decays
- ullet This common evolution will become important for CP studies
 - Time integrate asymmetries vanish for cases where CP violation comes from mixing diagrams
 - More on this later

Asymmetric B-Factories

- ullet e^+ amd e^- beams with different energies
 - $ightharpoonup \Upsilon(4s)$ boosted along beamline
 - ▶ B mesons travel finite distance before decaying
 - \blacktriangleright Typical distance between decay of the two B mesons: $\sim 200~\mu\mathrm{m}$
- Two B-factories built:
 - ► SLAC
 - ► KEK

Example of B Mixing $(B^0 \text{ and } B_s)$

 $\bullet \ \Delta M \ {\rm for} \ B^0 = 0.510 \pm 0.003 \pm 0.002 \ {\rm ps}^{-1}$

• ΔM for $B_s = 17.761 \pm 0.021 \pm 0.007~{\rm ps}^{-1}$

