CS1231 Chapter 4

Sets

4.1 Basics

Definition 4.1.1. (1) A set is an unordered collection of objects.

- (2) These objects are called the *members* or *elements* of the set.
- (3) Write $x \in A$ for x is an element of A; $x \not\in A$ for x is not an element of A; $x, y \in A$ for x, y are elements of A; $x, y \not\in A$ for x, y are not elements of A; etc.
- (4) We may read $x \in A$ also as "x is in A" or "A contains x (as an element)".

Warning 4.1.2. Some use "contains" for the subset relation, but in this module we do not.

Symbol	Meaning	Examples	Non-examples			
\mathbb{N}	the set of all natural numbers	$0,1,2,3,31\in\mathbb{N}$	$-1, \frac{1}{2} \not\in \mathbb{N}$			
\mathbb{Z}	the set of all integers	$0,1,-1,2,-10\in\mathbb{Z}$	$\frac{1}{2},\sqrt{2} \not\in \mathbb{Z}$			
\mathbb{Q}	the set of all rational numbers	$-1, 10, \frac{1}{2}, -\frac{7}{5} \in \mathbb{Q}$	$\sqrt{2},\pi,\sqrt{-1}\not\in\mathbb{Q}$			
\mathbb{R}	the set of all real numbers	$-1, 10, -\frac{3}{2}, \sqrt{2}, \pi \in \mathbb{R}$	$\sqrt{-1}, \sqrt{-10} \not\in \mathbb{R}$			
\mathbb{C}	the set of all complex numbers	$-1, 10, -\frac{3}{2}, \sqrt{2}, \pi, \sqrt{-1}$	$\sqrt{-10} \in \mathbb{C}$			
$\overline{\mathbb{Z}^+}$	the set of all positive integers	$1,2,3,31 \in \mathbb{Z}^+$	$0, -1, -12 \not\in \mathbb{Z}^+$			
\mathbb{Z}^-	the set of all negative integers	$-1, -2, -3, -31 \in \mathbb{Z}^-$	$0,1,12\not\in\mathbb{Z}^-$			
$\mathbb{Z}_{\geqslant 0}$	the set of all non-negative integers	$0,1,2,3,31\in\mathbb{Z}_{\geqslant 0}$	$-1, -12 \notin \mathbb{Z}_{\geqslant 0}$			
$\mathbb{Q}^+, \mathbb{Q}^-, \mathbb{Q}_{\geqslant m}, \mathbb{R}^+, \mathbb{R}^-, \mathbb{R}_{\geqslant m}$, etc. are defined similarly.						

Table 4.1: Common sets

Note 4.1.3. Some define $0 \notin \mathbb{N}$, but in this module we do *not*.

Definition 4.1.4 (roster notation). (1) The set whose only elements are x_1, x_2, \ldots, x_n is denoted $\{x_1, x_2, \ldots, x_n\}$.

(2) The set whose only elements are x_1, x_2, x_3, \ldots is denoted $\{x_1, x_2, x_3, \ldots\}$.

Example 4.1.5. (1) The only elements of $A = \{1, 5, 6, 3, 3, 3\}$ are 1, 5, 6 and 3. So $6 \in A$ but $7 \notin A$.

(2) The only elements of $B = \{0, 2, 4, 6, 8, \dots\}$ are the non-negative even integers. So $4 \in B$ but $5 \notin B$.

To check whether an object z is an element of a set $S = \{x_1, x_2, \dots, x_n\}$. If z is in the list x_1, x_2, \dots, x_n , then $z \in S$, else $z \notin S$.

Definition 4.1.6 (set-builder notation). Let U be a set and P(x) be a predicate over U. Then the set of all elements $x \in U$ such that P(x) is true is denoted

$$\{x \in U : P(x)\}$$
 or $\{x \in U \mid P(x)\}.$

This is read as "the set of all x in U such that P(x)".

Example 4.1.7. (1) The elements of $C = \{x \in \mathbb{Z}_{\geq 0} : x \text{ is even}\}$ are precisely the elements of $\mathbb{Z}_{\geq 0}$ that are even, i.e., the non-negative even integers. So $6 \in C$ but $7 \notin C$.

(2) The elements of $D = \{x \in \mathbb{Z} : x \text{ is a prime number}\}$ are precisely the elements of \mathbb{Z} that are prime numbers, i.e., the prime integers. So $7 \in D$ but $9 \notin D$.

To check whether an object z is an element of $S = \{x \in U : P(x)\}$. If $z \in U$ and P(z) is true, then $z \in S$, else $z \notin S$. Hence $z \notin U$ implies $z \notin S$, and P(z) is false implies $z \notin S$.

Definition 4.1.8 (replacement notation). Let A be a set and t(x) be a term in a variable x. Then the set of all objects of the form t(x) where x ranges over the elements of A is denoted

$$\{t(x): x \in A\}$$
 or $\{t(x) \mid x \in A\}$.

This is read as "the set of all t(x) where $x \in A$ ".

Example 4.1.9. (1) The elements of $E = \{x + 1 : x \in \mathbb{Z}_{\geq 0}\}$ are precisely those x + 1 where $x \in \mathbb{Z}_{\geq 0}$, i.e., the positive integers. So $1 = 0 + 1 \in E$ but $0 \notin E$.

(2) The elements of $F = \{x - y : x, y \in \mathbb{Z}_{\geqslant 0}\}$ are precisely those x - y where $x, y \in \mathbb{Z}_{\geqslant 0}$, i.e., the integers. So $-1 = 1 - 2 \in F$ but $\sqrt{2} \notin F$.

To check whether an object z is an element of $S = \{t(x) : x \in A\}$. If there is an element $x \in A$ such that t(x) = z, then $z \in S$, else $z \notin S$.

Definition 4.1.10. Two sets are *equal* if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$$

Convention 4.1.11. In mathematical definitions, people often use "if" between the term being defined and the phrase being used to define the term. This is the *only* situation in mathematics when "if" should be understood as a (special) "if and only if".

Example 4.1.12. $\{1, 5, 6, 3, 3, 3\} = \{1, 5, 6, 3\} = \{1, 3, 5, 6\}.$

Slogan 4.1.13. Order and repetition do not matter.

Example 4.1.14. $\{y^2 : y \text{ is an odd integer}\} = \{x \in \mathbb{Z} : x = y^2 \text{ for some odd integer } y\} = \{1^2, 3^2, 5^2, \dots\}.$

Example 4.1.15. $\{x \in \mathbb{Z} : x^2 = 1\} = \{1, -1\}.$

Proof. (\Rightarrow) Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$. Then $z \in \mathbb{Z}$ and $z^2 = 1$. So

$$z^{2} - 1 = (z - 1)(z + 1) = 0.$$

$$z - 1 = 0 \text{ or } z + 1 = 0.$$

$$z = 1 \text{ or } z = -1.$$

This means $z \in \{1, -1\}$.

(\Leftarrow) Take any $z \in \{1, -1\}$. Then z = 1 or z = -1. In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$. So $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.

Exercise 4.1.16. Write down proofs of the claims made in Example 4.1.9. In other words, \varnothing 4a prove that $E = \mathbb{Z}^+$ and $F = \mathbb{Z}$, where E and F are as defined in Example 4.1.9.

Theorem 4.1.17. There exists a unique set with no element, i.e.,

• there is a set with no element; and

(existence part)

• for all sets A, B, if both A and B have no element, then A = B. (uniqueness part)

Proof. • (existence part) The set {} has no element.

 \bullet (uniqueness part) Let A, B be sets with no element. Then vacuously,

$$\forall z \ (z \in A \Rightarrow z \in B) \text{ and } \forall z \ (z \in B \Rightarrow z \in A)$$

because the hypotheses in the implications are never true. So A = B.

Definition 4.1.18. The set with no element is called the *empty set*. It is denoted by \varnothing .

4.2 Subsets

Definition 4.2.1. Let A, B be sets. Call A a *subset* of B, and write $A \subseteq B$, if

$$\forall z \ (z \in A \Rightarrow z \in B).$$

Alternatively, we may say that B includes A, and write $B \supseteq A$ in this case.

Note 4.2.2. We avoid using the symbol \subset because it may have different meanings to different people.

Example 4.2.3. (1) $\{1,5,2\} \subseteq \{5,2,1,4\}$ but $\{1,5,2\} \not\subseteq \{2,1,4\}$.

(2) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Remark 4.2.4. Let A, B be sets.

- $(1) A \not\subseteq B \Leftrightarrow \exists z \ (z \in A \text{ and } z \not\in B).$
- (2) $A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A.$
- $(3) A \subset A.$

Definition 4.2.5. Let A, B be sets. Call A a proper subset of B, and write $A \subseteq B$, if $A \subseteq B$ and $A \neq B$. In this case, we may say that the inclusion of A in B is proper or strict.

Example 4.2.6. All the inclusions in Example 4.2.3 are strict.

Proposition 4.2.7. The empty set is a subset of any set, i.e., for any set A,

$$\emptyset \subseteq A$$
.

Proof. Vacuously,

$$\forall z \ (z \in \varnothing \Rightarrow z \in A)$$

because the hypothesis in the implication is never true. So $\varnothing \subseteq A$ by the definition of \subseteq . \square

Note 4.2.8. Sets can be elements of sets.

Example 4.2.9. (1) The set $A = \{\emptyset\}$ has exactly 1 element, namely the empty set. So A is not empty.

(2) The set $B = \{\{1\}, \{2,3\}\}$ has exactly 2 elements, namely $\{1\}, \{2,3\}$. So $\{1\} \in B$, but $1 \notin B$.

Note 4.2.10. Membership and inclusion can be different.

Question 4.2.11. Let $C = \{\{1\}, 2, \{3\}, 3, \{\{4\}\}\}\}$. Which of the following are true?

∅ 4b

• $\{1\} \in C$.

• $\{1\} \subseteq C$.

• $\{2\} \in C$.

• $\{2\} \subseteq C$.

• $\{3\} \in C$.

• $\{3\} \subseteq C$.

• $\{4\} \in C$.

• $\{4\} \subseteq C$.

Definition 4.2.12. Let A be a set. The set of all subsets of A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example 4.2.13. (1) $\mathcal{P}(\emptyset) = {\emptyset}$.

- (2) $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$
- $(3) \ \mathcal{P}(\{1,2\}) = \{\varnothing, \{1\}, \{2\}, \{1,2\}\}.$
- (4) The following are subsets of $\mathbb{Z}_{\geq 0}$ and thus are elements of $\mathcal{P}(\mathbb{Z}_{\geq 0})$.

$$\begin{split} \varnothing, \{0\}, \{1\}, \{2\}, \dots \{0,1\}, \{0,2\}, \{0,3\} \dots \{1,2\}, \{1,3\}, \{1,4\} \dots \\ \{2,3\}, \{2,4\}, \{2,5\} \dots \{0,1,2\}, \{0,1,3\}, \{0,1,4\}, \dots \\ \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \dots \{2,3,4\}, \{2,3,5\}, \{2,3,6\}, \dots \\ \mathbb{Z}_{\geqslant 0}, \mathbb{Z}_{\geqslant 1}, \mathbb{Z}_{\geqslant 2}, \dots \{0,2,4,\dots\}, \{1,3,5,\dots\}, \{2,4,6,\dots\}, \{3,5,7,\dots\}, \dots \\ \{x \in \mathbb{Z}_{\geqslant 0} : (x-1)(x-2) < 0\}, \{x \in \mathbb{Z}_{\geqslant 0} : (x-2)(x-3) < 0\}, \dots \end{split}$$

 ${3x + 2 : x \in \mathbb{Z}_{\geq 0}}, {4x + 3 : x \in \mathbb{Z}_{\geq 0}}, {5x + 4 : x \in \mathbb{Z}_{\geq 0}}, \dots$

4.3 Boolean operations

Definition 4.3.1. Let A, B be sets.

(1) The union of A and B, denoted $A \cup B$, is defined by

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

Read $A \cup B$ as "A union B".

(2) The intersection of A and B, denoted $A \cap B$, is defined by

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

Read $A \cap B$ as "A intersect B".

(3) The *complement* of B in A, denoted A - B or $A \setminus B$, is defined by

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

Read $A \setminus B$ as "A minus B".

Convention and terminology 4.3.2. When working in a particular context, one usually works within a fixed set U which includes all the sets one may talk about, so that one only needs to consider the elements of U when proving set equality and inclusion (because no other object can be the element of a set). This U is called a *universal set*.

Definition 4.3.3. Let B be a set. In a context where U is the universal set (so that implicitly $U \supseteq B$), the *complement* of B, denoted \overline{B} or B^c , is defined by

$$\overline{B} = U \setminus B$$
.

Figure 4.2: Boolean operations on sets

Example 4.3.4. Let $A = \{x \in \mathbb{Z} : x \le 10\}$ and $B = \{x \in \mathbb{Z} : 5 \le x \le 15\}$. Then

$$A \cup B = \{x \in \mathbb{Z} : (x \le 10) \lor (5 \le x \le 15)\} = \{x \in \mathbb{Z} : x \le 15\};$$

$$A \cap B = \{x \in \mathbb{Z} : (x \le 10) \land (5 \le x \le 15)\} = \{x \in \mathbb{Z} : 5 \le x \le 10\};$$

$$A \setminus B = \{x \in \mathbb{Z} : (x \le 10) \land \sim (5 \le x \le 15)\} = \{x \in \mathbb{Z} : x < 5\};$$

$$\overline{B} = \{x \in \mathbb{Z} : \sim (5 \le x \le 15)\} = \{x \in \mathbb{Z} : (x < 5) \lor (x > 15)\},$$

in a context where $\mathbb Z$ is the universal set. To show the first equation, one shows

$$\forall x \in \mathbb{Z} \ \big((x \leqslant 10) \lor (5 \leqslant x \leqslant 15) \Leftrightarrow (x \leqslant 15) \big),$$
 etc.

Theorem 4.3.5 (Set Identities). For all set A, B, C in a context where U is the universal set, the following hold.

One of De Morgan's Laws. Work in the universal set U. For all sets A, B,

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Venn Diagrams. In the left diagram below, hatch the regions representing A and B with \square and \square respectively. In the right diagram below, hatch the regions representing \overline{A} and \overline{B} with \square and \square respectively.

Then the \square region represents $\overline{A \cup B}$ in the left diagram, and the \boxtimes region represents $\overline{A} \cap \overline{B}$ in the right diagram. Since these regions occupy the same region in the respective diagrams, we infer that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Note 4.3.6. This argument depends on the fact that each possibility for membership in A and B is represented by a region in the diagram.

Proof using a truth table. The rows in the following table list all the possibilities for an element $x \in U$:

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in \overline{A \cup B}$	$x \in \overline{A}$	$x\in \overline{B}$	$x\in \overline{A}\cap \overline{B}$
Т	${ m T}$	T	F	F	F	F
${ m T}$	\mathbf{F}	${ m T}$	F	F	${ m T}$	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{T}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	${ m T}$	Т	${ m T}$	${ m T}$

Since the columns under " $x \in \overline{A \cup B}$ " and " $x \in \overline{A} \cap \overline{B}$ " are the same, for any $x \in U$,

$$x \in \overline{A \cup B} \quad \Leftrightarrow \quad x \in \overline{A} \cap \overline{B}$$

no matter in which case we are. So $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Direct proof. Let $z \in U$. Then

$$z \in \overline{A \cup B}$$

$$\Leftrightarrow z \notin A \cup B \qquad \text{by the definition of } \overline{\cdot};$$

$$\Leftrightarrow \sim ((z \in A) \lor (z \in B)) \qquad \text{by the definition of } \cup;$$

$$\Leftrightarrow (z \notin A) \land (z \notin B) \qquad \text{by De Morgan's Laws for propositions;}$$

$$\Leftrightarrow (z \in \overline{A}) \land (z \in \overline{B}) \qquad \text{by the definition of } \overline{\cdot};$$

$$\Leftrightarrow z \in \overline{A} \cap \overline{B} \qquad \text{by the definition of } \cap.$$

Example 4.3.7. Under the universal set U, show that $(A \cap B) \cup (A \setminus B) = A$ for all sets A, B.

Proof.
$$(A \cap B) \cup (A \setminus B) = (A \cap B) \cup (A \cap \overline{B})$$
 by the properties of set difference;
$$= A \cap (B \cup \overline{B})$$
 by distributivity;
$$= A \cap U$$
 by the properties of set complement;
$$= A$$
 as U is the identity for \cap .

Example 4.3.8. Show that $A \cap B \subseteq A$ for all sets A, B.

Proof. By the definition of \subseteq , we need to show that

$$\forall z \ (z \in A \cap B \Rightarrow z \in A).$$

Let $z \in A \cap B$. Then $z \in A$ and $z \in B$ by the definition of \cap . In particular, we know $z \in A$, as required.

Question 4.3.9. Is the following true?

Ø 4c

$$(A \setminus B) \cup (B \setminus C) = A \setminus C$$
 for all sets A, B, C .

4.4 Russell's Paradox

Example 4.4.1. (1) $\varnothing \notin \varnothing$.

- (2) $\mathbb{Z} \notin \mathbb{Z}$.
- $(3) \{\emptyset\} \notin \{\emptyset\}.$

Question 4.4.2. Is there a set x such that $x \in x$?

∅ 4d

Theorem 4.4.3 (Russell 1901). There is no set R such that

$$\forall x \ (x \in R \quad \Leftrightarrow \quad x \notin x). \tag{*}$$

In words, there is no set R whose elements are precisely the sets x that are not elements of themselves.

Proof. We prove this by contradiction. Suppose R is a set satisfying (*). Applying (*) to x = R gives

$$R \in R \quad \Leftrightarrow \quad R \notin R.$$
 (†)

Split into two cases.

- Case 1: assume $R \in R$. Then $R \notin R$ by the \Rightarrow part of (†). This contradicts our assumption that $R \in R$.
- Case 2: assume $R \notin R$. Then $R \in R$ by the \Leftarrow part of (\dagger) . This contradicts our assumption that $R \notin R$.

In either case, we get a contradiction. So the proof is finished.

Question 4.4.4 (tongue-in-cheek). Can you write a proof of Theorem 4.4.3 that does not mention contradiction?