ARC - a novel RICH detector for a future e^+e^- collider 2022 international CEPC Workshop

Martin Tat¹ Roger Forty² Guy Wilkinson¹

 $^{1}\mbox{University of Oxford}$

²CERN

27th October 2022

Introduction RICH detectors

- Excellent hadron PID is crucial in flavour physics
 - Resolve combinatorics and separate decay modes
- RICH detectors are very powerful for particle ID at high momentum
- At LHCb, π -K separation is excellent up to 100 GeV
- A 4π collider RICH layout was previously used at DELPHI and SLD

Challenging because of the space required

(a) DELPHI RICH layout

(b) LHCb RICH performance (c) LHCb RICH layout

Motivation for RICH at future e^+e^- colliders

- Future e^+e^- colliders will collect $\sim 10^{12}~Z$ boson decays in 4 years
 - Allows for a world-leading flavour physics programme
 - Combined with excellent PID capabilities, one will reach an unprecedented precision
- Good PID performance is also required for Higgs, WW and $t\bar{t}$ physics
 - ullet In particular, kaon ID is crucial for H o sar s

Figure 2: $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$

B physics requires pion-kaon separation from low momentum up to 40 GeV

Motivation for RICH at future e^+e^- colliders

- ullet Future e^+e^- colliders will collect ${\sim}10^{12}~Z$ boson decays in 4 years
 - Allows for a world-leading flavour physics programme
 - Combined with excellent PID capabilities, one will reach an unprecedented precision
- Good PID performance is also required for Higgs, WW and $t\bar{t}$ physics
 - In particular, kaon ID is crucial for $H o s \bar{s}$

Figure 3: $B_s^0 \rightarrow D_s^{\pm} K^{\mp}$

The $B_s^0 \to D_s^\pm \pi^\mp$ background would be 10 times larger without PID capabilities!

4/21

Array of RICH Cells

- Array of RICH Cells (ARC): A novel RICH detector concept
 - First presented by R. Forty at FCC week 2021
 - ullet Compact, low-mass solution for particle ID for future e^+e^- colliders
 - Concept inspired by the compound eyes of an insect
- Adapted to fit into the CLD experiment concept, taking 10% from the tracker volume
 - Radial depth of 20 cm, radius of 2.1 m and a length of 4.4 m
 - Aim to keep material budget below $0.1X_0$
- Aerogel and gas radiators with a spherical mirror
 - Aerogel also acts as thermal insulation between gas and detector

5/21

Figure 4: ARC has a cellular structure, similar to an insect's compound eyes

Original pressurised ARC

- Original idea was for a vessel with pressurised gas
 - Higher photon yield in smaller radial space
- However, a non-pressurised gas was found to have better performance, and also simplify the vessel design

Figure 5: Layout of original carbon fiber vessel (left) and the performance at different pressures (right)

Array of RICH Cells

- Cell layout has evolved to profit from a simplified unpressurised vessel
- All cells are the same size, organised on a hexagonal grid
 - Barrel (endcap) has 945 (384) cells in total, where 18 (21) are unique
 - Hexagonal shape avoids the corners, where performance is worse

Figure 6: Barrel (left) and endcap (right) cells

Array of RICH Cells

Figure 7: Barrel and endcap cells

ARC radiators

- C_4F_{10} :
 - Baseline assumption, well known from LHCb RICH1
 - $n = 1.0014 \implies \theta_c = 53 \, \text{mrad}$, suitable for high momentum particles
 - \bullet C₄F₁₀ is a greenhouse gas, plan to replace with suitable Novec gas, such as C₅F₁₀O
- Aerogel:

Martin Tat

Roger Forty

- Well known as a RICH radiator, e.g. from ARICH at Belle II
- $n = 1.01-1.10 \implies \theta_c = 141-430 \, \text{mrad}$, suitable at low momentum
- Very low thermal conductivity

Guy Wilkinson

- Suitable to separate gas from detector, which must be cooled
- Cherenkov photons come for "free" and are focused by the same mirror
- Drawback: Some loss of photons from scattering

27th October 2022

9/21

Figure 8: Belle aerogel tiles (left) and aerogel transmission function (right). ARC

Figure 9: Photon hits on photodetector

Figure 10: $B_s \rightarrow D_s K$ (no magnetic field yet)

Optimisation of ARC layout

- The following procedure is used to evaluate the ARC performance:
 - Generate straight particle track from IP and trace it through ARC
 - @ Generate Cherenkov photons from gas radiator
 - Track photons through the optics and to detector
 - Reconstruct Cherenkov angles and calculate standard deviation
- Three sources of uncertainty are considered:
 - Emission point uncertainty: Emission point is assumed to be the mid-point of the track inside the gaseous radiator
 - ② Chromatic dispersion uncertainty: Spread in Cherenkov angle due to wavelength dependence on refractive index
 - Open Pixel size: Will be chosen so that it does not limit the performance

Minimise the Cherenkov angle uncertainty:

$$\Delta \theta = \frac{1}{\sqrt{N}} \times \frac{1}{1-N} \times \sum_{i=0}^{N-1} (\theta - \bar{\theta})^2$$

Figure 11: Tracking of photons from gas radiator (left) and aerogel radiator (right) through the ARC optics

- Parameters that are optimised:
 - Mirror curvature
 - Mirror vertical and horizontal position
 - Detector horizontal position and tilt

Cherenkov angle uncertainty for gas radiator

Figure 12: Gas radiator performance averaged over all barrel cells

14 / 21

Martin Tat Roger Forty Guy Wilkinson ARC 27th October 2022

Cherenkov angle uncertainty for aerogel radiator

Mean number of detected photons per track

Figure 13: Aerogel radiator performance averaged over all barrel cells

15 / 21

Martin Tat Roger Forty Guy Wilkinson ARC 27th October 2022

Performance of optimised ARC

Figure 14: Separation significance per track for π -K (left) and p-K (right)

- Gas (aerogel) provides over 3σ pion-kaon separation in the range 10-50 GeV (2-10 GeV)
 - Improved from earlier studies due to gaining some space for more radiator by no longer pressurising, as well as optimisation of the layout
 - Effect of magnetic field not yet included in these studies
- Combined, the aerogel and gas ensure excellent PID performance over the whole range of interest to flavour physics

Summary and next steps

- ARC is a low mass and compact cellular PID detector designed to occupy minimum space (20 cm in the radial dimension) in a 4π detector at an e^+e^- collider such as FCC-ee or CEPC
- \bullet We have developed an optimised layout that should achieve a 3σ kaon-pion separation in the range 2-50 GeV
 - Our studies focus mainly on flavour physics at the Z-pole
- ARC will allow us to fully exploit the full range of flavour physics potential at future e^+e^- colliders
 - Will enhance the capabilities in Higgs, WW and top physics
- Next steps will include completing the optimisation, including magnetic field effects, and R&D on photodetectors

Thanks for your attention!

Backup: Estimated material budget breakdown

Units of radiation length X/X_0

$\begin{tabular}{ c c c c c } \hline Detector component & Pressurised & Non-pressurised \\ \hline Vessel walls & 5\% & 1\% \\ \hline Photosensor array/electronics & 1\% & 1\% \\ \hline Cooling plate (3\mathrm{mm}\mathrm{CF}) & 1% & 1% \\ \hline Aerogel (n=1.03) & 1% & 0.5% \\ \hline C_4F_{10} gas & 1% & 0.5% \\ \hline Focusing mirror & 1% & 1% \\ \hline Total & 10% & 5\% \\ \hline \end{tabular}$		0 /	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Detector component	Pressurised	Non-pressurised
Cooling plate (3 mm CF) 1% 1% Aerogel ($n = 1.03$) 1% 0.5% C_4F_{10} gas 1% 0.5% Focusing mirror 1% 1%	Vessel walls	5%	1%
Aerogel $(n = 1.03)$ 1% 0.5% C_4F_{10} gas 1% 0.5% Focusing mirror 1% 1%	Photosensor array/electronics	1%	1%
C_4F_{10} gas 1% 0.5% Focusing mirror 1% 1%	Cooling plate (3 mm CF)	1%	1%
Focusing mirror 1% 1%	Aerogel $(n=1.03)$	1%	0.5%
	C_4F_{10} gas	1%	0.5%
Total 10% 5%	Focusing mirror	1%	1%
	Total	10%	5%

Backup: Technical details about minimisation

- $f(\vec{x})$ is not easily to calculate analytically
- Approximate by simulating a large number of charged tracks
- Finite number of photons $\implies f(\vec{x})$ is not differentiable
 - Cannot be minimised using conventional methods (Minuit, etc)
- I have experimented with a new type of minimisation algorithms: Stochastic optimisation
 - Differential evolution
 - Start with a population of possible solutions, form new solutions by combining (mutating) existing solutions
 - Advantage: Doesn't require initial guess, robust against functions that a not continuous, noisy, change over time, etc
 - Disadvantage: No way to tell if optimal solution has been found, so it requires many iterations

Backup: Optimised mirror curvature and mirror position

Figure 15: Optimised mirror parameters for barrel cells

Backup: Optimised detector position and detector tilt angle

Figure 16: Optimised detector parameters for barrel cells