北京航空航天大学数学科学学院实验报告

课程名称:科学计算通识实验课 实验名称:优化问题的迭代求解

实验类型: 演示性实验□ 验证性实验□ 综合性实验☑ 设计性实验□

实验日期: 2020.07.14 指导教师: 冯成亮 实验成绩:

实验环境: (所用仪器设备及软件)

Windows + Visual Studio 2019, Ubuntu 18.04.1 + g++

实验目的与实验内容:

【目的要求】

通过本实验使学生进一步熟悉个人电脑上 C++代码的编写与调试, 服务器上的代码编译与运行; 熟悉求解一维优化问题的区间逼近法 (黄金分割搜索、逐次抛物插值搜索)和梯度类方法 (牛顿法); 熟悉多维优化问题中无约束优化问题的一般解法 (最速下降法、共轭梯度法、牛顿法); 了解以上方法的稳定性与收敛速度特点; 了解这些传统优化算法在多级值问题中的局限性。

【实验内容】

实验要求: 最大迭代步数: 100;

收敛要求: |f(x)|<10E-4 或 $||x_{k+1}-x_k|<10E-5$;

输出每步 x 值与 f(x)的值;

梯度类算法要求输出梯度的二范数;

实验 1.1: (优化问题 1)

用黄金分割搜索, 求函数 $f(x) = x^2 - \sin(x)$ 在区间[0,1]上的极小值。

实验 1.2: (优化问题 2)

用逐次抛物插值搜索求函数 $f(x) = 0.5 - xe^{-x^2}$ 在区间 [0,1.2]上的极小值。 $(x_0 =$

 $0; x_1 = 0.6; x_2 = 1.2;$

实验 1.3: (优化问题 2)

用牛顿法求函数 $f(x) = 0.5 - xe^{-x^2}$ 在区间 [0,2]上的极小值。 $x_0 = 1$;

实验 2.1: (优化问题 3)

用最速下降法求解函数 $f(x, y) = (x - y)/(x^2 + y^2 + 2)$ 的最小值。

 $P_0 = [-0.218, 0.215]; P_* = [-1, 1];$

实验 2.2: (优化问题 4)

用共轭梯度法求解函数 $f(x) = 0.5x_1^2 + 2.5x_2^2$ 的最小值。

$$\mathbf{x}_0 = [5,1]^T$$
; $\mathbf{x}^* = [0,0]^T$;

实验 2.3: (优化问题 3)

用牛顿法求解函数 $f(x, y) = (x - y)/(x^2 + y^2 + 2)$ 的最小值。

$$P_0 = [-0.3, 0.2]; P_* = [-1, 1];$$

实验过程与结果:

实验 1.1: (优化问题 1)

使用黄金分割法求解函数极小值

[work1@ws1:~/ChenBodan/class5\$./1-1

			f(x)=x^	2-sin(x)		
k	ak	ck	dk	bk	f(ck)	f(dk)
0	0.000000	0.381966	0.618034	1.000000	-0.226847	-0.1974
1	0.000000	0.236068	0.381966	0.618034	-0.178153	-0.2268
2	0.236068	0.381966	0.472136	0.618034	-0.226847	-0.2318
3	0.381966	0.472136	0.527864	0.618034	-0.231877	-0.2250
4	0.381966	0.437694	0.472136	0.527864	-0.232276	-0.2318
5	0.381966	0.416408	0.437694	0.472136	-0.231082	-0.2322
6	0.416408	0.437694	0.450850	0.472136	-0.232276	-0.2324
7	0.437694	0.450850	0.458980	0.472136	-0.232465	-0.2323
В	0.437694	0.445825	0.450850	0.458980	-0.232442	-0.2324
9	0.445825	0.450850	0.453955	0.458980	-0.232465	-0.2324
10	0.445825	0.448930	0.450850	0.453955	-0.232464	-0.2324
11	0.448930	0.450850	0.452036	0.453955	-0.232465	-0.2324
12	0.448930	0.450117	0.450850	0.452036	-0.232466	-0.2324
13	0.448930	0.449663	0.450117	0.450850	-0.232465	-0.2324
14	0.449663	0.450117	0.450397	0.450850	-0.232466	-0.2324
15	0.449663	0.449944	0.450117	0.450397	-0.232466	-0.2324
16	0.449944	0.450117	0.450224	0.450397	-0.232466	-0.2324
17	0.450117	0.450224	0.450290	0.450397	-0.232466	-0.2324
18	0.450117	0.450183	0.450224	0.450290	-0.232466	-0.2324
19	0.450117	0.450157	0.450183	0.450224	-0.232466	-0.2324
20	0.450157	0.450183	0.450198	0.450224	-0.232466	-0.2324
21	0.450157	0.450173	0.450183	0.450198	-0.232466	-0.2324
22	0.450173	0.450183	0.450189	0.450198	-0.232466	-0.2324
23	0.450173	0.450179	0.450183	0.450189	-0.232466	-0.2324

实验 1.2: (优化问题 2)

使用逐次抛物插值法求解函数极小值

[work1@ws1:~/ChenBodan/class5\$./1-2

逐次抛物插值

	$f(x)=0.5-xe^{(-x^2)}$						
k	x1	x2	x3	f(x2)			
0	0.000000	0.600000	1.200000	0.081394			
1	0.600000	0.754267	1.200000	0.072981			
2	0.600000	0.720797	0.754267	0.071278			
3	0.600000	0.708374	0.720797	0.071119			
4	0.600000	0.707428	0.708374	0.071118			
5	0.600000	0.707140	0.707428	0.071118			
6	0.600000	0.707114	0.707140	0.071118			
ans	s=0.707114						

实验 1.3: (优化问题 2)

使用牛顿法求解函数极小值

[work1@ws1:~/ChenBodan/class5\$./1-3

Newton

$f(x)=0.5-xe^{-x^2}$

	. (,,, , , , , ,	- , ., -,
k	xk	f(xk)
0	1.000000	0.132121
1	0.500000	0.110600
2	0.700000	0.071162
3	0.707072	0.071118
4	0.707107	0.071118
ans	=0.707107	

实验 2.1: (优化问题 3)

使用最速下降法求解二元函数极小值

[work1@ws1:~/ChenBodan/class5\$./2-1

最速下降法

	$f(x,y)=(x-y)/(x^2+y^2+2)$					
k	g[0]	g[1]	lambda	x[0]	x[1]	norm
0	0.000000	1.000000	1.000000	-3.000000	2.000000	1.000000
1	-0.066667	0.022222	31.094230	-0.927051	1.309017	0.070273
2	0.020421	0.061264	4.894848	-1.027011	1.009137	0.064578
3	-0.006581	0.002194	4.110325	-0.999960	1.000120	0.006937
4	0.000010	0.000030	3.999807	-1.000000	1.000000	0.000032
5	-0.000000	0.000000	0.007135	-1.000000	1.000000	0.000000
ans	s=[-1.00000000 :	1.00000001]				

实验 2.2: (优化问题 4)

使用共轭梯度法求解二元函数极小值

[work1@ws1:~/ChenBodan/class5\$./2-2

共轭梯度法

			f(x,y)=0	.5x^2+2.5y^2		
k	g[0]	g[1]	alpha	x[0]	x[1]	norm
0	5.000000	5.000000	1.000000	5.000000	1.000000	7.071068
1	3.333333	-3.333333	0.333333	3.333333	-0.666667	4.714045
2	0.000000	0.00000	0.600000	0.000000	0.00000	0.000000
an	s=[0.00000000 0	.00000000]				

实验 2.3: (优化问题 3)

使用牛顿法求解二元函数极小值

[work1@ws1:~/ChenBodan/class5\$./2-3

利用牛顿法, 迭代次数为4

得极小值点P^*=(-0.9999997, 0.9999998)

极小值f(P^*)=-0.50000000

实验分析与总结:

本次实验中我们学习了如何求解一维优化问题的区间逼近法(黄金分割搜索、逐次抛物插值搜索)和梯度类方法(牛顿法);以及多维优化问题中无约束优化问题的一般解法(最速下降法、共轭梯度法、牛顿法);

对比以上算法,牛顿法每次迭代都需要计算一、二阶导数 (多维:偏导数),算法计算量较大且复杂,不易操作,但是牛顿法收敛较快。

Г	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	

注: 若填写内容较多, 可在背面继续填写。