RATIONALMAPS, A PACKAGE FOR MACAULAY2

C.J. BOTT, S. HAMID HASSANZADEH, KARL SCHWEDE, AND DANIEL SMOLKIN

Abstract.

1. Introduction

[DHS12]

2. Base Loci

We begin with the problem of computing the base locus of a map to projective space. Let X be a projective variety over k and let $F: X \to \mathbb{P}^m_k$ be a rational map of X to projective space. Then we can choose some representative (f_0, \dots, f_m) of F, where each f_i is the i^{th} coordinate of F. A priori, each f_i is in K = frac R, where R is the coordinate ring of X. However, we can get another representative of F by clearing denominators. (Note this does not enlarge the base locus of F since F is undefined wherever the denominator of the of the f_i s vanishes.) Thus we can assume that $f_i \in R$ for all i, and that all the f_i are homogenous of the same degree.

In this setting, one might naively think that the map F is undefined exactly when all of the f_i vanish, and thus the base locus is the vanishing set of the ideal (f_0, \dots, f_m) . However, this can yield a base locus that's too big. For example, suppose X = Proj k[x, y, z] and F is the rational map represented by (x^2y, x^2z, xyz) . Then the vanishing locus of the ideal (x^2y, x^2z, xyz) is the union of the line $\{x = 0\}$ with the point (1 : 0 : 0). However, the same rational map is given by (xy, xz, yz) since these two representations agree where $\{x \neq 0\}$ (see [?, I.4]), and the vanishing locus of (xy, xz, yz) is just the three points $\{(1:0:0), (0:1:0), (0:0:1)\}$.

Thus, to find the base locus of a rational map, we must consider all possible representations of the map and find where none of them are defined. To do this, we use a lemma of Aron Simis [Sim04, Proposition 1.1]. We restate the lemma here for convenience's sake:

Lemma 2.1. Let $F: X \dashrightarrow \mathbb{P}^m$ be a rational map and let $\mathbf{f} = \{f_0, \dots, f_m\}$ be a representative of F with $f_i \in R$ homogenous of degree d for all i. Set $I = (f_0, \dots, f_m)$. Then the set of such representatives of F corresponds bijectively to the homogenous vectors in the rank 1 graded R-module $Hom_R(I, R)$.

Proof. Suppose that (f'_0, \dots, f'_m) is another such representative of F. Then there is some $h \in K$ such that $hf_i = f'_i$ for all i. In particular, we have that each $hf_i \in R$ for each i, and so $h \in (R:_K I)$. Further, it's clear that each homogenous element of $(R:_K I)$ gives another

The third named author was supported in part by the NSF FRG Grant DMS #1265261/1501115 and NSF CAREER Grant DMS #1252860/1501102.

The fourth named author was supported in part by the NSF FRG Grant DMS #1265261/1501115 and NSF CAREER Grant DMS #1252860/1501102.

representative of F. Thus the set of representatives of F is $\{(hf_0, \dots, hf_m) \mid h \in (R :_K I)\}$. It's a standard fact that $\operatorname{Hom}_R(I, R) = \{x \mapsto hx \mid h \in (R :_K I)\}$, giving us the desired result.

Now, in the setting of 2.1, let

$$\bigoplus_{s} R(d_s) \xrightarrow{\varphi} R(-d)^m \xrightarrow{[f_0, \dots, f_m]} I \to 0$$

be a free resolution of I. Then we get

$$0 \longrightarrow \operatorname{Hom}_{R}(I, R) \longrightarrow \left(R(-d)^{m+1}\right)^{\vee} \xrightarrow{\varphi^{t}} \left(\bigoplus_{s} R(d_{s})\right)^{\vee}$$

where φ^t is the transpose of φ and R^{\vee} is the dual module of R. Thus, we get that $\operatorname{Hom}_R(I,R) \cong \ker \varphi^t$, and so each representative of F corresponds to a vector in $\ker \varphi^t$. The correspondence takes a representative (hf_0, \dots, hf_m) to the map that multiplies vectors in R^{m+1} by $[hf_0, \dots, hf_m]$ on the left.

The base locus of F is the intersection of the sets $V(f_0^i, \dots, f_m^i)$ as $\mathbf{f}^i = (f_0^i, \dots, f_m^i)$ ranges over all the representatives of F. The above implies that this is the same as the intersection of the sets $V(w_0^i, \dots, w_m^i)$ as $\mathbf{w}^i = (w_0^i, \dots, w_m^i)$ ranges over the vectors in $\ker \varphi^t$. Now, given any $a, f, g \in R$, we have $V(af) \supseteq V(f)$ and $V(f+g) \supseteq V(f) \cap V(g)$. Thus, it's enough to take a generating set $\mathbf{w}^1, \dots, \mathbf{w}^n$ of $\ker \varphi^t$ and take the intersection over this generating set.

In summary, if we're given a representation (f_0, \dots, f_m) of a rational map to projective space, we compute its base locus by:

- (a) finding $M = \ker \varphi^t$, where φ is a presentation matrix for I,
- (b) fixing a generating set $\mathbf{w}^1, \dots, \mathbf{w}^n$ for M as an R-module, and
- (c) taking the ideal generated by all the entries of all of the \mathbf{w}^{i} .

The base locus of F is then the variety cut out by this ideal, though our function baseLocusOfMap just returns this ideal:

i1 : loadPackage "RationalMaps"

o1 = RationalMaps

o1 : Package

i2 : R = QQ[x,y,z]

o2 = R

o2 : PolynomialRing

i3 : $f = \{x^2*y, x^2*z, x*y*z\}$

$$2$$
 2 o3 = {x y, x z, x*y*z}

o3 : List

i4 : baseLocusOfMap(f)

o4 = ideal (y*z, x*z, x*y)

o4 : Ideal of R

If the SaturateOutput option is left on, our function will return the saturation of this ideal:

i5 : baseLocusOfMap({x,y,z})

o5 = ideal 1

o5 : Ideal of R

i6 : baseLocusOfMap({x,y,z}, SaturateOutput=>false)

o6 = ideal(x, y, z)

o6 : Ideal of R

This is desirable because, for any ideal I, the saturation of I is the largest ideal cutting out the same projective variety as I [?, II.5 exercise whatever]. Thus, by saturating the output, we get a canonical ideal that cuts out the base locus.

3. Birationality and Inverse Maps

4. Embeddings

REFERENCES

[DHS12] A. V. Doria, S. H. Hassanzadeh, and A. Simis: A characteristic-free criterion of birationality, Adv. Math. 230 (2012), no. 1, 390–413. 2900548

[Sim04] SIMIS, ARON: Cremona transformations and some related algebras, J. Algebra. **280** (2004), no. 1, 162–179. 2081926

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112 E-mail address: schwede@math.utah.edu

Department of Mathematics, University of Utah, Salt Lake City, UT 84112 *E-mail address*: smolkin@math.utah.edu