Survival Analysis Group 5 Project

Chloe Jian, Hening Cui, Jibei Zheng, Pengchen Wang, Xueqing Huang, Qihang Wu

December 05, 2022

Outline

- Introduction (EDA)
- Non-parametric Estimate
- 4 Hypothesis Testing
- Semi-parametric Model (PH model)
 - Variable Selection and Stratification
 - Model Checking
- Parametric Models
- Conclusion and Discussion
- Reference

Introduction

Motivation: Lung cancer is a disease with a very high prevalence. Prognostic factors provides important information for patients with cancer. A better understanding of patients' prognosis can help make appropriate therapeutic decisions.

Data Source: Lung cancer dataset in Survival package of R

Purpose: Survival estimation, stratified by sex

- time: Survival time in days
- status: Censoring status(1=censored, 2=dead)
- age: Age in years
- sex: Male=1, Female=2
- ph.ecog: ECOG performance score (0=good 5=dead)
- ph.karno: Karnofsky performance score rated by physician
- pat.karno: Karnofsky performance score as rated by patient
- meal.cal: Calories consumed at meals
- wt.loss: Weight loss in last six months

Exploratory Data Analysis

Table: Patient Characteristics

Variable	Overall , N = 228 ¹	Alive , N = 63 ¹	Death , N = 165^{1}	p-value ²
Survival Time (days)	305 (211)	363 (221)	283 (203)	0.003
Age	62 (9)	60 (10)	63 (9)	0.053
Sex				<0.001
Male	138 (61%)	26 (41%)	112 (68%)	
Female	90 (39%)	37 (59%)	53 (32%)	

¹ Mean (SD); n (%)

² Wilcoxon rank sum test; Pearson's Chi-squared test

Life Table

Lifetable for Male

	tstart	tstop	nsubs	nlost	nrisk	nevent	surv	pdf	hazard	se.surv	se.pdf	se.hazard
0-100	0	100	103	0	103.0	17	1.00000000	0.0016504854	0.001798942	0.00000000	0.0003657782	0.0004345389
100-200	100	200	86	5	83.5	19	0.83495146	0.0018998895	0.002567568	0.03657782	0.0003920163	0.0005841662
200-300	200	300	62	7	58.5	18	0.64496250	0.0019845000	0.003636364	0.04760067	0.0004158393	0.0008428131
300-400	300	400	37	3	35.5	9	0.44651250	0.0011320035	0.002903226	0.05099700	0.0003507137	0.0009574916
400-500	400	500	25	3	23.5	6	0.33331215	0.0008510097	0.002926829	0.05012019	0.0003259763	0.0011820092
500-600	500	600	16	0	16.0	6	0.24821117	0.0009307919	0.004615385	0.04787378	0.0003499672	0.0018333649
600-700	600	700	10	0	10.0	4	0.15513198	0.0006205279	0.005000000	0.04239983	0.0002941465	0.0024206146
700-800	700	800	6	0	6.0	2	0.09307919	0.0003102640	0.004000000	0.03499672	0.0002137673	0.0027712813
800-900	800	900	4	2	3.0	1	0.06205279	0.0002068426	0.004000000	0.02941465	0.0001952848	0.0039191836
900-1000	900	1000	1	0	1.0	0	0.04136853	0.0000000000	0.000000000	0.02587989	NaN	NaN
1000-1100	1000	1100	1	1	0.5	0	0.04136853	0.000000000	0.000000000	0.02587989	NaN	NaN
1100-1200	1100	1200	0	0	0.0	0	0.04136853	NaN	NaN	0.02587989	NaN	NaN
1200-Inf	1200	Inf	0	0	0.0	0	NaN	NA	NA	NaN	NA	NA

Life Table

Lifetable for female

	tstart	tstop	nsubs	nlost	nrisk	nevent	surv	pdf	hazard	se.surv	se.pdf	se.hazard
0-100	0	100	64	0	64.0	7	1.0000000	0.0010937500	0.0011570248	0.00000000	0.0003901364	0.0004365819
100-200	100	200	57	3	55.5	5	0.8906250	0.0008023649	0.0009433962	0.03901364	0.0003440834	0.0004214300
200-300	200	300	49	12	43.0	7	0.8103885	0.0013192371	0.0017721519	0.04931280	0.0004632460	0.0006671758
300-400	300	400	30	4	28.0	7	0.6784648	0.0016961620	0.0028571429	0.06153038	0.0005761152	0.0010688223
400-500	400	500	19	0	19.0	5	0.5088486	0.0013390753	0.0030303030	0.07219475	0.0005480368	0.0013395469
500-600	500	600	14	4	12.0	2	0.3749411	0.0006249018	0.0018181818	0.07397516	0.0004217940	0.0012803251
600-700	600	700	8	0	8.0	2	0.3124509	0.0007811272	0.0028571429	0.07367033	0.0005125726	0.0019995835
700-800	700	800	6	1	5.5	3	0.2343382	0.0012782082	0.0075000000	0.07308191	0.0006375364	0.0040141352
800-900	800	900	2	1	1.5	0	0.1065174	0.0000000000	0.0000000000	0.05982461	NaN	NaN
900-1000	900	1000	1	1	0.5	0	0.1065174	0.0000000000	0.0000000000	0.05982461	NaN	NaN
1000-1100	1000	1100	0	0	0.0	0	0.1065174	NaN	NaN	0.05982461	NaN	NaN
1100-1200	1100	1200	0	0	0.0	0	NaN	NaN	NaN	NaN	NaN	NaN
1200-Inf	1200	Inf	0	0	0.0	0	NaN	NA	NA	NaN	NA	NA

50% for male: 285-286 days 50% for female: 433-434 days

Kaplan-Meier and Fleming-Harrington model

Figure: Kaplan-Meier model and Fleming -Harrington model (sex=1(male), sex=2(female))

Kaplan-Meier and Fleming-Harrington model

Comparison of S(t) between K-M and F-H methods

Figure: Kaplan-Meier model vs Fleming-Harrington model

Non-parametric test

Test of Equality over Strata									
Test	Chi-Square	DF	Pr > Chi-Square						
Log-Rank	6.2289	1	0.0126						
Wilcoxon	3.0413	1	0.0812						
-2Log(LR)	5.6211	1	0.0177						

Figure: Compare survival experience between males and females

Survival Curve

Figure: Compare survival experience between males and females

Variable Selection - Stepwise Selection

Variable Selection - Forward and Backward Selection

Forward Selection

Model Fit Statistics								
Criterion	Without Covariates	With Covariates						
-2 LOG L	1026.050	999.462						
AIC	1026.050	1009.462						
SBC	1026.050	1023.441						

Analysis of Maximum Likelihood Estimates										
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Label		
sex	2	1	-0.54760	0.19832	7.6246	0.0058	0.578	sex 2		
ph.ecog1		1	0.72880	0.22576	10.4214	0.0012	2.073			
ph.karno		1	0.02029	0.01110	3.3432	0.0675	1.021			
pat.karno		1	-0.01236	0.00793	2.4310	0.1190	0.988			
wt.loss1		1	-0.01323	0.00794	2.7815	0.0954	0.987			

Backward Selection

Model Fit Statistics								
Criterion	Without Covariates	With Covariates						
-2 LOG L	1026.050	999.462						
AIC	1026.050	1009.462						
SBC	1026.050	1023.441						

Analysis of Maximum Likelihood Estimates											
Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	Labe			
sex	2	1	-0.54760	0.19832	7.6246	0.0058	0.578	sex 2			
ph.ecog1		1	0.72880	0.22576	10.4214	0.0012	2.073				
ph.karno		1	0.02029	0.01110	3.3432	0.0675	1.021				
pat.karno		1	-0.01236	0.00793	2.4310	0.1190	0.988				
wt.loss1		1	-0.01323	0.00794	2.7815	0.0954	0.987				

Variable Stratification

- Our goal is to investigate the difference between two groups of sex, therefore we pre-specified to stratify by sex in the model.
- sex: Male=1, Female=2

 We do find that the risk of lung cancer in female is 0.588 times that in male.

Graphical Methods

Recall a PH model, $S(t|Z=z)=e^{-\int h_0(t)e^{\beta z}dt}=S_0(t)^{e^{\beta z}}$, by using a log-log transformation, i.e., $log\{-logS(t|Z=z)\}$, we have $log\{-log\hat{S}(t|Z=1)\}-log\{-log\hat{S}_0(t)\}=\beta$ for indicator variable Z.

¹Figure on the right represents the differences of KM estimate and the fitted PH model.

Graphical Methods

Recall a PH model, $S(t|Z=z)=e^{-\int h_0(t)e^{\beta z}dt}=S_0(t)^{e^{\beta z}}$, by using a log-log transformation, i.e., $log\{-logS(t|Z=z)\}$, we have

$$log\{-log\hat{S}(t|Z=1)\} - log\{-log\hat{S}_0(t)\} = \beta$$
 for indicator variable Z.

This indicates two **parallel** lines under proportionality assumption. 1

 $^{^1\}mbox{Figure}$ on the right represents the differences of KM estimate and the fitted PH model.

Schoenfeld Residuals

- The above methods work only for categorical variable, the slope in plots of residuals such as **Schoenfeld vs. time** can be used instead for continuous cases.
- Figures below based on a PH model, i.e., ²

$$h(t|Z=z) = h_0(t)e^{\beta_1 sex + \beta_2 meal.cal + \beta_3 wt.loss}$$

²Scaled Schoenfeld residuals for wt.loss are omitted here as the p value is also greater than 0.05.

Interaction Test

Using the same covariates as above, plus the corresponding interaction terms s.t., **covariate** * **time**. Results are shown as follows.

```
## Call:
## coxph(formula = Surv(time, status == 2) ~ sex + meal.cal + wt.loss +
      sex * time + meal.cal * time + wt.loss * time, data = dat lung)
##
    n= 167, number of events= 120
##
##
##
                      coef exp(coef) se(coef)
                                                    z Pr(>|z|)
## sex2
             -4.053e-01 6.668e-01 4.787e-01 -0.847
                                                         0.397
## meal.cal 2.345e-04 1.000e+00 4.447e-04 0.527
                                                         0.598
## wt.loss
               1.041e-02 1.010e+00 1.619e-02 0.643
                                                         0.520
                -1.408e+00 2.446e-01 2.450e-01 -5.748 9.02e-09 ***
## time
               6.079e-04 1.001e+00 1.583e-03 0.384
                                                         0.701
## sex2:time
## meal.cal:time -7.809e-07 1.000e+00 1.778e-06 -0.439
                                                         0.661
## wt.loss:time -2.643e-05 1.000e+00 6.428e-05 -0.411
                                                         0 681
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
```

Figure: Interaction Test Summary (part)

Parametric Model Checking

Log of Negative Log of Estimated Survival Functions

Parametric Model Checking

Parametric PH Model

- Using Weibull distribution
- Significant variables ($\alpha = 0.15$): sex, ph.ecog, ph.karno, wt.loss

Covariate sex		Mean	Coef	Rel.Risk	S.E.	LR p 0.0032
	1	0.579	0	1 (refer	ence)	
	2	0.421	-0.571	0.565	0.199	
ph.ecog						0.0005
	0	0.309	0	1 (reference)		
	1	0.520	0.642	1.900	0.279	
	2	0.169	1.720	5.586	0.436	
	3	0.002	2.884	17.891	1.115	
ph.karno		82.850	0.020	1.020	0.011	0.0568
wt.loss		10.019	-0.012	0.988	0.008	0.1025

Events
Total time at risk
Max. log. likelihood
LR test statistic
Degrees of freedom
Overall p-value

120 51759 -827.68 26.78 6 0.000159438

Goodness of Fit

Comparison between parametric and semi-parametric PH regression models using the same variables.

Cumulative Hazard Function Comparison

Conclusion

Non-parametric Estimate(Lifetable/KM/FH):

Males have shorter survival time than females.

Hypothesis Testing(Log-rank/Likelihood Ratio Test):

Survival time is significantly different between males and females.

Semi-parametric Model (PH model):

- Stepwise selection: ph.ecog, sex and ph.karno.
- Model checking: Proportionality assumptions hold for both sex, wt.loss. The Schoenfeld residuals and interaction test render different conclusions for the covariate meal.cal.

Parametric Model:

Using Weibull distribution with significant variables sex and ph.ecog.

Discussion

- Processing for missing values: remove, multiple imputation, etc.
- Patients' performance scores are highly subjective.
- Detecting linearity between log hazard and the covariates, e.g., Martingale residuals r_{Mi} or deviance residuals r_{Di} to assess the potential outliers, etc.
- Source for competing risk analysis.
- Analysis for other covariates, e.g., ph.ecog.
- ...

Thank you for listening!

Reference

- Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. *Journal of Clinical Oncology*. 12(3):601-7, 1994.
- Preston SH, Heuveline P, Guillot M. Demography: measuring and modeling population processes. *Blackwell Publishers*, 2001.
- Goel, M. K., Khanna, P., Kishore, J. (2010). Understanding survival analysis: Kaplan-Meier estimate. *International journal of Ayurveda research*, 1(4), 274.