TASK 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Il tempo oggi in Piacenza Mercoledì, 04 Dicembre 2019												
	05:00	07:00	10:00	14:00	18:00	19:00	21:00					
	*	*	*	*	*	*	*					
	LightCloud	PartlyCloud	Sun	Sun	LightCloud	PartlyCloud	PartlyCloud					
Temperatura effettiva	2°C	0°C	4°C	7°C	2°C	1°C	0°C					
Temperatura percepita	1°C	-3°C	3°C	5°C	0°C	-1°C	-2°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	83 %	93 %	79 %	66 %	88 %	89 %	93 %					
Pressione atmosferica	1027 hPa	1027 hPa	1027 hPa	1025 hPa	1025 hPa	1025 hPa	1025 hPa					
Intensità del vento	5 km/h	8 km/h	5 km/h	9 km/h	6 km/h	6 km/h	6 km/h					
Direzione del vento	←¬	\leftarrow	^	\leftarrow	Ĵ	✓	✓					
	E	E	NE	E	S	SW	SW					
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %					
Punto di rugiada	0°C	-1°C	1°C	1°C	0°C	0°C	-1°C					
Nuvole	13 %	59 %	12 %	9 %	17 %	70 %	91 %					
Nuvole basse	6 %	8 %	12 %	9 %	2 %	1 %	0 %					
Nuvole medie	0 %	0 %	0 %	0 %	0 %	0 %	0 %					
Nuvole alte	8 %	56 %	0 %	0 %	16 %	70 %	91 %					

According to the table

 $T=4^{\circ}\mathbb{C}$

 $\omega = 79\%$

P = 102.7kPa

Water saturation pressure at 4 degree C:

0.813 kPa

 $ClassroomA: 12m \times 6m \times 5m$

From the chart,

$$T_{wb} = 3^{\circ}\text{C}$$

$$\omega = 0.004$$

$$\omega = \frac{0.622P_{v}}{P_{a}} = \frac{0.622P_{v}}{P - P_{v}} = 0.004$$

introduce

$$P = 102.7kP_a$$

$$P_v = 0.656kP_a$$

For ideal gas

$$m = \frac{PV}{R_{sp} \cdot T}$$

$$R_{sp} = 0.4615$$

$$m_{v} = \frac{PV}{R_{sp} \cdot T} = \frac{0.656 \times (12 \times 6 \times 5)}{0.4615 \times (273 + 4)} = 1.847kg$$

$$m_{g} = \frac{m_{v}}{\phi} = \frac{1.847}{79\%} = 2.338kg$$

$$h_{a} = 1.005 \times 3 = 3.015kJ / kg_{dryair}$$

$$h_{v} = 2501.3 + 1.82 \times 3 = 2506.76kJ / kg_{water}$$

$$h = h_{a} + \omega h_{v} = 3.015 + 0.004 \times 2506.76 = 13.04kJ / kg_{dryAir}$$

TASK 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Good quality construction $A_{ul} = 1.4cm^2/m^2$

$$\begin{split} \dot{Q}_{ig_{sensible}} &= 136 + 2.2 A_{cf} + 22 N_{oc} = 136 + 2.2 \times 200 + 22 \times 2 = 620 W \\ \dot{Q}_{ig_{latent}} &= 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88 W \\ A_{es} &= 200 + 144 = 344 m^2 \\ A_{L} &= A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 m^2 \end{split}$$

	BRINDISI, Italy													WMO#:	163200			
	Lat:	40.65N	Long:	17.95E	Elev	r. 10	StdP	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999		
	Annual He	eating and h	lumidificat	ion Design C	onditions													
					Hur	midification D	PAMCDR and	HD		Т (MCWS	WS/PCWD						
	Coldest Heating DB			99.6%			r/MCDD and	99%			Coldest month WS/MCD 0.4% 1				6% DB			
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1		
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)			
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)	
	Annual Co	ooling, Dehu	umidification	on, and Enth	alpy Desig	n Condition	5											
	Hottest	Hottest Month						2% 0.			Evaporation WB/MCDB 0.4% 1%			MCWS/PCW to 0.4% DB			1	
Month			DB Range	DB		DB	MCWB	DB	MCWB	WB U.	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)		
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)	
				Dehumidific	ation DP/N	MCDB and HF	2			Enthalpy/MCDB						Hours	1	
		0.4%		D CITALITICAL.	1%	2%			0.4%					%	8 to 4 &	1		
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	i	
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)		
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)	
	Extreme A	Innual Desi	gn Conditi	ons														
	Extr	eme Annual	WS	Extreme Extreme Annual DB Max Mean Standard deviation			n-Year Return Period Values of Extre n=5 years n=10 years n=20 ye								1			
	1% 2.5% 5%		Max WB	Min	Max	Min	Max	Min	years	n=10 Min	years Max	Min	years	n=50 Min	years Max	i .		
	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(p)	1	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)	

$$\begin{split} IDF_{heating} &= 0.065 \frac{L}{s \cdot cm^2} \\ IDF_{heating} &= 0.032 \frac{L}{s \cdot cm^2} \\ \dot{V}_{\text{inf } iltration_{heating}} &= A_l \times IDF = 481.6 \times 0.065 = 31.304 \frac{L}{s} \\ \dot{V}_{\text{inf } iltration_{cooling}} &= A_l \times IDF = 481.6 \times 0.032 = 15.411 \frac{L}{s} \\ \dot{V}_{\text{inf } iltration_{cooling}} &= A_l \times IDF = 481.6 \times 0.032 = 15.411 \frac{L}{s} \\ \dot{V}_{\text{inf } -ventilation} &= 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5 \times 2 = 17 \frac{l}{s} \\ \dot{V}_{\text{inf } -ventilation_{heating}} &= 31.304 + 17 = 48.30 \frac{L}{s} \\ \dot{V}_{\text{inf } -ventilation_{cooling}} &= 15.411 + 17 = 32.41 \frac{L}{s} \\ \dot{Q}_{\text{inf } -ventilation_{heating sensible}} &= C_{sensible} \dot{V}\Delta T_{heating} = 1.23 \times 48.30 \times 15.9 = 944.60W \\ \dot{Q}_{\text{inf } -ventilation_{heating latent}} &= C_{latent} \dot{V}\Delta \omega_{heating} = 3010 \times 48.30 \times 0.0065 = 944.99W \\ \dot{Q}_{\text{inf } -ventilation_{cooling latent}} &= C_{latent} \dot{V}\Delta \omega_{cooling} = 1.23 \times 32.41 \times 7.1 = 283.04W \\ \dot{Q}_{\text{inf } -ventilation_{cooling latent}} &= C_{latent} \dot{V}\Delta \omega_{cooling} = 3010 \times 32.41 \times 0.0039 = 380.46W \end{split}$$