Scilab Textbook Companion for Concepts of Thermodynamics by F. Obert¹

Created by
Tushar Ranjan
Chemical engineering
Chemical Engineering
IIT Bombay
College Teacher
None
Cross-Checked by
Chaitanya

June 21, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Concepts of Thermodynamics

Author: F. Obert

Publisher: Tata McGraw-Hill, Tokyo

Edition: 2

Year: 1994

ISBN: 0521850428

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	4
1	Survey of Units and Dimensions	7
2	Fundamental concepts	10
3	Temperature and the Ideal gas	12
5	The first law and the dynamic open system	14
7	The second law	16
9	Properties of the pure substance	19
10	The pvT relationships	31
12	The Ideal gas and derivations of real gases	34
13	Mixtures	37
14	Equilibrium and the third law	57
15	Basic flow equations	60
16	Combustion	65

List of Scilab Codes

Exa 1.1	Force calculation	7
Exa 1.2	Force calculation	7
Exa 1.3	Force required	8
Exa 1.4	velocity calculation	8
Exa 1.5	velocity calculation	9
Exa 1.6	density and specific weight	9
Exa 2.1		10
Exa 2.3		10
Exa 3.2	volume calculation	12
Exa 3.3		12
Exa 5.2		14
Exa 5.3	Area calculation	15
Exa 7.2	Entropy and efficiency calculation	16
Exa 7.3	Change in entropy calculation	17
Exa 7.4		17
Exa 7.5		18
Exa 9.1		19
Exa 9.2	Change in entropy calculation	19
Exa 9.3		20
Exa 9.4	Heat required	20
Exa 9.5		21
Exa 9.6	Heat transferred	21
Exa 9.7	Work done calculation	22
Exa 9.8	Heat transferred	23
Exa 9.10	Work done calculation	24
Exa 9.11	Quality calculation	24
Exa 9.12		25
Exa 9.13	Efficiency calculation	26

Exa 9.14	Efficiency calculation
Exa 9.15	Efficiency calculation
Exa 9.16	cop and work calculation
Exa 9.17	cop calculation
Exa 10.1	Pressure calculation
Exa 10.2	volume calculation
Exa 10.3	Pressure calculation
Exa 12.1	Work done
Exa 12.2	kinetic energy change
Exa 12.3	Final temperature calculation
Exa 12.4	temperature pressure and work done calculation 36
Exa 13.1	Pressure volume calculations
Exa 13.2	Volumetric and gravimetric analysis
Exa 13.3	Entropy calculation
Exa 13.4	Internal energy and entropy change calculations 41
Exa 13.5	Pressure and mixing temperature calculation 42
Exa 13.6	Change in Entropy calculation
Exa 13.7	Change in Entropy calculation
Exa 13.8	volume and mass calculation
Exa 13.9	Percentage calculation
Exa 13.10	Partial pressure calculation
Exa 13.11	Partial pressure and saturation calculations 46
Exa 13.12	Change in moisture content calculation 47
Exa 13.13	Humidity calculation
Exa 13.14	Enthalpy and sigma function calculation 49
Exa 13.15	Enthalpy calculation
Exa 13.16	Partial pressure and humidity calculations 50
Exa 13.17	Enthalpy change calculation 51
Exa 13.18	Humidity calculations 51
Exa 13.19	Humidity calculations
Exa 13.20	cooling range calculations
Exa 13.21	Pressure calculations
Exa 13.22	Pressure calculations
Exa 13.23	Pressure calculation
Exa 14.1	Equilibrium constant calculations
Exa 14.2	Degree of dissociation
Exa 14.3	Degree of dissociation calculation
Exa 14.4	Work done calculations

Exa 15.1	Temperature and pressure calculations
Exa 15.3	Work done calculation
Exa 15.4	Friction calculation
Exa 15.5	Friction calculation
Exa 15.6	Efficiency calculation
Exa 15.7	Efficiency calculation
Exa 16.1	Molecule formulation
Exa 16.2	Equation calculation
Exa 16.4	Air fuel ratio calculation
Exa 16.5	Air fuel ratio calculation
Exa 16.6	Air fuel ratio calculation
Exa 16.7	Air fuel ratio calculation
Exa 16.8	Air fuel ratio calculation
Exa 16.9	Higher heating value calculation
Exa 16.10	Lower heating value calculation
Exa 16.11	Heat of reaction calculation
Exa 16.12	Temperature calculation

Survey of Units and Dimensions

Scilab code Exa 1.1 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
4 gc=32.1739 //lbm ft/lbf s^2
5 m=10 //lbm
6 a=10 //ft/s^2
7 //calculations
8 F=m*a/gc
9 //results
10 printf("Force to accelerate = %.3f lbf",F)
```

Scilab code Exa 1.2 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
```

```
4 gc=32.1739 //lbm ft/lbf s^2
5 m=10 //lbm
6 a=gc //ft/s^2
7 //calculations
8 F=m*a/gc
9 //results
10 printf("Force to accelerate = %d lbf",F)
```

Scilab code Exa 1.3 Force required

```
1 clc
2 clear
3 // Initialization of variables
4 gc=32.1739 //lbm ft/lbf s^2
5 F=5.00e-9 //lbf hr/ft^2
6 // calculations
7 F2=F*3600*gc
8 // results
9 printf("Force required = %.2e lbm/ft sec",F2)
```

Scilab code Exa 1.4 velocity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 v=88 //ft/s
5 //calculations
6 v2=v*3600/5280
7 //results
8 printf("velocity = %d mph", v2)
```

Scilab code Exa 1.5 velocity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 v=88 //ft/s
5 //calculations
6 v2=v*1/5280*3600
7 //results
8 printf("velocity = %d mph", v2)
```

Scilab code Exa 1.6 density and specific weight

```
1 clc
2 clear
3 //Initialization of variables
4 rho=62.305 //lbf/ft^2
5 g=32.1739 //ft/s^2
6 //calculations
7 gam=rho/g
8 //results
9 printf("Density of water in this system = %.3 f lbf/ft^2",gam)
10 printf("\n Specific weight = %.3 f lbf/ft^2",rho)
```

Fundamental concepts

Scilab code Exa 2.1 Potential energy

```
1 clc
2 clear
3 // Initialization of variables
4 z=100 // ft
5 m=32.1739 // lbm
6 // calculations
7 PE=m*z
8 // results
9 printf("Potential energy = %.2 f ft-lbm", PE)
```

Scilab code Exa 2.3 Energy and mass calculation

```
1 clc
2 clear
3 //Initialization of variables
4 m0=18.016 //lbm
5 gc=32.1739 //lbm ft/lbf sec^2
6 c=186000*5280
```

```
7 dU=94.4*10^6 //ft-lbf
8 //calculations
9 U=m0/gc *c^2
10 dm= -dU*gc/c^2
11 //results
12 printf("Absolute energy of this mixture = %.2e ft-lbf",U)
13 printf("\n In case b, there is no change in mass")
14 printf("\n Change in mass = %.2e lbm",dm)
15 disp("The answers are a bit different due to rounding off error in textbook.")
```

Temperature and the Ideal gas

Scilab code Exa 3.2 volume calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=14.7 //psia
5 R0=1545
6 t=460 +60 //R
7 //calculations
8 v=R0*t/(p*144)
9 //results
10 printf("Volume = %.1 f ft^3/mol",v)
```

Scilab code Exa 3.3 density calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=20 //psia
5 R0=1545
```

```
6 t=460 +100 //R
7 M=28
8 //calculations
9 v=R0*t/(p*144*M)
10 rho=1/v
11 //results
12 printf("density of nitrogen = %.4 f lbm/ft^3",rho)
```

The first law and the dynamic open system

Scilab code Exa 5.2 Work done and power calculation

```
1 clc
2 clear
3 //Initialization of variables
4 rate= 5 / lbm / sec
5 Q=50 //Btu/s
6 h2=1020 //Btu/lbm
7 h1=1000 //Btu/lbm
8 V2=50 //ft/s
9 V1 = 100 //ft/s
10 J=778
11 g=32.2 //ft/s^2
12 gc=g
13 Z2=0
14 \ Z1 = 100 \ // ft
15 //calculations
16 \text{ dw=Q/rate } -(h2-h1) -(V2^2-V1^2)/(2*gc*J) -g/gc *(Z2)
      -Z1)/J
17 power=dw*rate
18 //results
```

```
19 printf("work done by the system = \%.1 \, f \, Btu/lbm",dw)
20 printf("\n Power = \%.1 \, f \, Btu/s",power)
```

Scilab code Exa 5.3 Area calculation

```
1 clc
2 clear
3 //Initialization of variables
4 V=100 //ft/s
5 v=15 //lbm/ft^3
6 m=5 //lbm/s
7 //calculations
8 A=m*v/V
9 //results
10 printf("Area of inlet pipe = %.2 f ft^2", A)
```

The second law

Scilab code Exa 7.2 Entropy and efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 cv=0.175 //Btu/lbm R
5 R0 = 1.986
6 M = 29
7 T2 = 1040 / R
8 \text{ T1} = 520 / \text{R}
9 //calculations
10 cp = cv + R0/M
11 sab=cv*log(T2/T1)
12 sac=cp*log(T2/T1)
13 dqab=cv*(T2-T1)
14 dqca=cp*(T1-T2)
15 \text{ dqrev=T2*(sac-sab)}
16 eta=(dqab+dqrev+dqca)/(dqab+dqrev)
17 //results
18 printf ("Entropy in ab part = \%.4 \,\mathrm{f} Btu/lbm R", sab)
19 printf("\n Entropy in ac part = \%.4 \, f Btu/lbm R", sac)
20 printf("\n Efficiency = \%.2 f percent", eta*100)
21 disp("The answers are a bit different due to
```

Scilab code Exa 7.3 Change in entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 tc=32 //F
5 \text{ th=80 } //F
6 \text{ mw=5} //\text{lbm}
7 \text{ mi=1} //\text{lbm}
8 P = 14.7 // psia
9 \text{ cp=1}
10 //calculations
11 t= (-144*mi+tc*mi+th*mw)/(mw+mi)
12 ds1=144/(tc+460)
13 ds2=cp*log((460+t)/(460+tc))
14 dsice=ds1+ds2
15 dswater=mw*cp*log((t+460)/(460+th))
16 ds=dsice+dswater
17 //results
18 printf ("Change in entropy of the process = \%.4 f Btu/
      R",ds)
19 disp ("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 7.4 Thermal efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 cp=0.25 //Btu/lbm R
5 T2=520 //R
```

```
6 T1=3460 //R
7 //calculations
8 dq=cp*(T2-T1)
9 ds=cp*log(T2/T1)
10 dG=dq-T2*ds
11 eff=dG/dq
12 //results
13 printf("Thermal efficiency = %.1f percent",eff*100)
```

Scilab code Exa 7.5 Energy change calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ cp=1}
5 T2 = 60 / F
6 T1 = 100 / F
7 ta=32 / F
8 //calculations
9 dq = cp * (T2 - T1)
10 ds=cp*log((460+T2)/(460+T1))
11 dE=dq-ds*(ta+460)
12 \, \text{dec} = \text{dq} - \text{dE}
13 //results
14 printf ("Change in available energy = %.1 f Btu/lbm",
      dE)
15 printf("\n The available energy of the isolated
      system decreased in the amount of \%.1f Btu/lbm",
      dec)
16 disp ("The answer is a bit different due to rounding
      off error in textbook")
```

Properties of the pure substance

Scilab code Exa 9.1 Internal energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T=32 //F
5 m=1 //lbm
6 J=778.16
7 //calculations
8 disp("From steam tables,")
9 hf=0
10 p=0.08854 //psia
11 vf=0.01602 //ft^3/lbm
12 u=hf-p*144*vf/J
13 //results
14 printf("Internal energy = %.7f Btu/lbm",u)
```

Scilab code Exa 9.2 Change in entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P=40 //psia
5 //calculations
6 disp("from steam tables,")
7 hf=200.8 //Btu/lbm
8 hg=27 //Btu/lbm
9 T=495 //R
10 ds=(hf-hg)/T
11 //results
12 printf("Change in entropy = %.3f Btu/lbm R",ds)
```

Scilab code Exa 9.3 Specific enthalpy calculation

```
clc
clear
//Initialization of variables
x=0.35
T=18 //F
//calculations
disp("From table B-14,")
hf=12.12 //Btu/lbm
hg=80.27 //Btu.lbm
hfg=-hf+hg
h=hf+x*hfg
//results
printf("specific enthalpy = %.1f Btu/lbm",h)
```

Scilab code Exa 9.4 Heat required

```
1 clc
2 clear
```

```
//Initialization of variables

x=0.35
T=18 //F
T2=55.5 //F
//calculations
disp("From table B-14,")
hf=12.12 //Btu/lbm
hg=80.27 //Btu.lbm
hfg=-hf+hg
h=hf+x*hfg
h=hf+x*hfg
h=hf+x*hfg
//results
fried
f
```

Scilab code Exa 9.5 Enthalpy and quality

```
1 clc
2 clear
3 //Initialization of variables
4 P=1460 //psia
5 T=135 //F
6 P2=700 //psia
7 //calculations
8 disp("From mollier chart,")
9 h=120 //Btu/lbm
10 x=0.83
11 //results
12 printf("enthalpy = %d Btu/lbm",h)
13 printf("\n Qulaity = %.2f",x)
```

Scilab code Exa 9.6 Heat transferred

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 P1 = 144 // psia
6 P2=150 // psia
7 T1 = 360 / F
8 J = 778.16
9 //calculations
10 disp("From table 3,")
11 v1=3.160 // ft^3/lbm
12 h1=1196.5 //Btu/lbm
13 u1=h1-P1*144*v1/J
14 h2=1211.4 //Btu/lbm
15 \quad u2=h2-P2*144*v1/J
16 dq=u2-u1
17 // results
18 printf("Heat transferred = %.1 f Btu/lbm",dq)
```

Scilab code Exa 9.7 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=100 //F
5 P2=1000 //psia
6 x=0.6
7 J=778.16
8 tir=2
9 P1=0.9 //psia
10 //calculations
11 disp("From table 3,")
12 hf=67.97
13 htc=2.7
14 hpc=0.32
```

```
15  h1=67.97
16  dv=0.000051
17  v=0.01613
18  h2=hf+htc+hpc
19  wrev=h1-h2
20  wact=wrev/x
21  dt=hpc+tir
22  t2act=T1+dt
23  wrev2=-v*144*(P2-P1)/J
24  dw=(P1+P2)/2 *dv *144/J
25  //results
26  printf("Work required = %.2 f Btu/lbm", wact)
27  printf("\n reversible work done = %.2 f Btu/lbm", wrev2)
28  printf("\n Work done in compression = %.4 f Btu/lbm", dw)
```

Scilab code Exa 9.8 Heat transferred

```
1 clc
2 clear
3 //Initialization of variables
4 pa=1000 //atm
5 ta=100 //F
6 //calculations
7 hf=67.97 //Btu/lbm
8 w=3 //Btu/lbm
9 ha=hf+w
10 disp("from steam table 2,")
11 hc=1191.8 //Btu/lbm
12 qrev=hc-ha
13 //results
14 printf("Heat transferred = %.1 f Btu/lbm", qrev)
```

Scilab code Exa 9.10 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P1 = 144 // psia
5 \text{ T1} = 400 / \text{F}
6 y = 0.7
7 //calculations
8 disp("From steam tables,")
9 h1=1220.4 //Btu/lbm
10 s1=1.6050 //Btu/lbm R
11 s2=1.6050 //Btu/lbm R
12 P2=3 //psia
13 sf=0.2008 //Btu/lbm R
14 sfg=1.6855 //Btu/lbm R
15 x=(s1-sf)/sfg
16 hf = 109.37 / Btu/lbm
17 hfg=1013.2 //Btu/;bm
18 h2=hf+x*hfg
19 \text{ work=h1-h2}
20 \, dw = y * work
21 h2d=h1-dw
22 / results
23 printf("Work done = %d Btu/lbm", work)
24 printf("\n work done in case 2 = \%.1 \, \text{f Btu/lbm}", dw)
25 printf("\n Final state pressure = %d psia",P2)
```

Scilab code Exa 9.11 Quality calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 pb=14.696 //psia
5 pa=150 //psia
6 tb=300 //F
7 //calculations
8 disp("From steam tables,")
9 hb=1192.8 //Btu/lbm
10 ha=hb
11 hf=330.51 //Btu/lbm
12 hfg=863.6 //Btu/lbm
13 x=(ha-hf)/hfg
14 //results
15 printf("Quality of wet steam = %.1f percent",x*100)
```

Scilab code Exa 9.12 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 600 // psia
5 p2=0.2563 //psia
6 t1 = 486.21 / F
7 t2=60 / F
8 \text{ fur} = 0.75
9 //calculations
10 disp("from steam tables,")
11 h1=1203.2
12 hf1=471.6
13 hfg1=731.6
14 h2=1088
15 hf2=28.06
16 \text{ hfg2}=1059.9
17 	 s1=1.4454
18 sf1=0.6720
19 \text{ sfg1} = 0.7734
```

```
20 \text{ s}2=2.0948
21 \text{ sf} 2 = 0.0555
22 \text{ sfg}2=2.0393
23 \text{ xd}=(s1-sf2)/sfg2
24 \text{ hd=hf2+xd*hfg2}
25 \text{ xa} = 0.3023
26 \text{ ha=hf2+xa*hfg2}
27 \text{ wbc=0}
28 \text{ wda=0}
29 \text{ wcd=h1-hd}
30 \text{ wab=ha-hf1}
31 W=wab+wcd+wbc+wda
32 \text{ Wrev=hfg1- (t2+459.7)*sfg1}
33 etat=(t1-t2)/(t1+459.7)
34 eta=fur*etat
35 / results
36 printf("Thermal efficiency = %d percent", etat*100)
37 printf("\n Furnace efficiency = \%.1f percent", eta
       *100)
```

Scilab code Exa 9.13 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 dhab=-123.1
5 etac=0.5
6 ha=348.5
7 etaf=0.75
8 eta=0.85
9 hf=471.6
10 hfg=731.6
11 hc=1203.2
12 dhcd=452.7
13 //calculations
```

```
14 dwabs=dhab/etac
15 hbd=ha-dwabs
16 dwcds=dhcd*eta
17 dqa=hc-hbd
18 etat=(dwcds+dwabs)/dqa
19 eta=etat*etaf
20 //results
21 printf("Thermal efficiency = %.1 f percent",etat*100)
22 printf("\n Overall efficiency = %.1 f percent",eta
*100)
```

Scilab code Exa 9.14 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t = 60 / F
5 J=778.16
6 p1 = 600 // psia
7 p2=0.2563 //psia
8 \text{ etaf} = 0.85
9 //calculations
10 disp("From steam tables,")
11 vf = 0.01604 // \text{ft }^3/ \text{lbm}
12 dw = -vf * (p1 - p2) * 144/J
13 ha=28.06 //Btu/lbm
14 hb=29.84 //Btu/lbm
15 hd=1203.2 //Btu/lbm
16 \text{ he} = 750.5 //\text{Btu/lbm}
17 dqa=hd-hb
18 dqr=ha-he
19 dw=dqa+dqr
20 dwturb=hd-he
21 dwpump=ha-hb
22 \text{ etat=dw/dqa}
```

Scilab code Exa 9.15 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 dhab=-1.78
5 \text{ etac=0.5}
6 \text{ ha} = 28.06
7 \text{ eta} = 0.85
8 \text{ hf} = 471.6
9 \text{ hfg} = 731.6
10 hd=1203.2
11 dhcd=452.7
12 //calculations
13 dwabs=dhab/etac
14 hbd=ha-dwabs
15 \text{ dwcds=dhcd*eta}
16 dqa=hd-hbd
17 etat=(dwcds+dwabs)/dqa
18 eta=etat*eta
19 //results
20 printf("Thermal efficiency = \%.1f percent", etat*100)
21 printf("\n Overall efficiency = \%.1f percent", eta
      *100)
```

Scilab code Exa 9.16 cop and work calculation

```
1 clc
2 clear
3 //Initialization of variables
4 Ta=500 //R
5 Tr=540 //R
6 //calculations
7 cop=Ta/(Tr-Ta)
8 \text{ hp} = 4.71/\text{cop}
9 disp("From steam tables,")
10 ha=48.02
11 \text{ hb} = 46.6
12 hc=824.1
13 hd=886.9
14 \text{ Wc} = -(\text{hd} - \text{hc})
15 We=-(hb-ha)
16 //results
17 printf ("Coefficient of performance = \%.1 f ", cop)
18 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp)
19 printf("\n Work of compression = \%.1 \, \text{f Btu/lbm}", Wc)
20 printf("\n Work of expansion = \%.2 \, \text{f Btu/lbm}", We)
```

Scilab code Exa 9.17 cop calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x=0.8
5 he=26.28 //Btu/lbm
6 hb=26.28 //Btu/lbm
7 pe=98.76 //psia
8 pc=51.68 //psia
9 hc=82.71 //Btu/lbm
10 hf=86.80+0.95
11 //calculations
```

```
12 dwisen=-(hf-hc)
13 dwact=dwisen/x
14 hd=hc-dwact
15 cop=(hc-hb)/(hd-hc)
16 //results
17 printf("Coefficient of performance = %.2f",cop)
```

The pvT relationships

Scilab code Exa 10.1 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 T1 = 212 + 460 / R
6 \text{ sv=0.193 } // \text{ft}^3/\text{lbm}
7 M = 44
8 a=924.2 //atm ft^2 /mole^2
9 b=0.685 // ft^3/mol
10 R=0.73 //atm ft ^3/R mol
11 //calculations
12 \quad v = sv * M
13 p=R*T1/v
14 p2=R*T1/(v-b) -a/v^2
15 //results
16 printf("In ideal gas case, pressure = \%.1 f atm",p)
17 printf("\n In vanderwaals equation, pressure = \%.1 \, \mathrm{f}
      atm",p2)
```

Scilab code Exa 10.2 volume calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 p = 50.9 //atm
6 t=212+460 / R
7 R = 0.73
8 //calculations
9 pc=72.9 //atm
10 tc=87.9 +460 //R
11 \text{ pr=p/pc}
12 \text{ Tr=t/tc}
13 z = 0.88
14 \text{ v=z*R*t/p}
15 // results
16 printf("volume = \%.3 \, \text{f ft} \, ^3/\, \text{mole}",v)
```

Scilab code Exa 10.3 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t=212+460 //R
5 v=0.193 //ft^3/lbm
6 M=44
7 R=0.73
8 //calculations
9 tc=87.9+460 //F
10 zc=0.275
11 vc=1.51 //ft^3/mol
12 tr=t/tc
13 vr=v*M/vc
14 vrd=vr*zc
```

```
15 z=0.88
16 p=z*R*t/(M*v)
17 //results
18 printf("Pressure = %.1 f atm",p)
```

The Ideal gas and derivations of real gases

Scilab code Exa 12.1 Work done

```
1 clc
2 clear
3 //Initialization of variables
4 n=1.3
5 T1 = 460 + 60 / R
6 P1 = 14.7 // psia
7 P2 = 125 //psia
8 R = 1545
9 M = 29
10 //calculations
11 T2=T1*(P2/P1)^{(n-1)/n}
12 wrev=R/M *(T2-T1)/(1-n)
13 //results
14 printf("Work done = \%d ft-lbf/lbm", wrev)
15 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 12.2 kinetic energy change

```
1 clc
2 clear
3 //Initialization of variables
4 P2=10 //psia
5 P1=100 //psia
6 T1=900 //R
7 w=50 //Btu/lbm
8 k=1.39
9 cp=0.2418
10 //calculations
11 T2=T1*(P2/P1)^((k-1)/k)
12 T2=477
13 KE=-w-cp*(T2-T1)
14 //results
15 printf("Change in kinetic energy = %.1f Btu/lbm",KE)
```

Scilab code Exa 12.3 Final temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=900 //R
5 P1=100 //psia
6 P2=10 //psia
7 //calculations
8 disp("From table B-9")
9 pr1=8.411
10 pr2=pr1*P2/P1
11 T2=468 //R
12 //results
13 printf("Final temperature = %d R ",T2)
```

Scilab code Exa 12.4 temperature pressure and work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ cr=6}
5 p1 = 14.7 // psia
6 \text{ t1=}60.3 //F
7 M = 29
8 R=1.986
9 //calculations
10 disp("from table b-9")
11 vr1=158.58
12 u1=88.62 //Btu/lbm
13 pr1=1.2147
14 \text{ vr2=vr1/cr}
15 T2=1050 //R
16 u2=181.47 //Btu/lbm
17 pr2=14.686
18 p2=p1*(pr2/pr1)
19 \, dw = u1 - u2
20 h2=u2+T2*R/M
21 / results
22 printf("final temperature = \%d R", T2)
23 printf("\n final pressure = \%.1f psia",p2)
24 printf("\n work done = \%.2 \, f \, Btu/lbm", dw)
25 printf("\n final enthalpy = \%.1 f Btu/lbm", h2)
```

Chapter 13

Mixtures

Scilab code Exa 13.1 Pressure volume calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m1=10} / \text{lbm}
5 \text{ m}2=15 //\text{lnm}
6 p=50 //psia
7 t = 60 + 460 / R
8 M1 = 32
9 M2 = 28.02
10 R0 = 10.73
11 //calculations
12 n1=m1/M1
13 \quad n2=m2/M2
14 x1=n1/(n1+n2)
15 \quad x2=n2/(n1+n2)
16 M = x1 * M1 + x2 * M2
17 R = RO/M
18 V = (n1+n2)*R0*t/p
19 rho=p/(R0*t)
20 \text{ rho2=M*rho}
21 p1=x1*p
```

```
22 p2 = x2 * p
23 v1=x1*V
24 v2 = x2 * V
25 //results
26 disp("part a")
27 printf ("Mole fractions of oxygen and nitrogen are \%
       .3 f and %.3 f respectively", x1, x2)
28 disp("part b")
29 printf ("Average molecular weight = \%.1 \,\mathrm{f}", M)
30 disp("part c")
31 printf("specific gas constant = \%.4f psia ft^3/lbm R
       ",R)
32 disp("part d")
33 printf("volume of mixture = \%.1 \, \text{ft} \, ^3", V)
34 printf("density of mixture is %.5f mole/ft^3 and %.2
       f \, lbm/ft^3, rho, rho2)
35 disp("part e")
36 printf ("partial pressures of oxygen and nitrogen are
       \%.2 f psia and \%.2 f psia respectively", p1,p2)
37 clc
38 clear
39 // Initialization of variables
40 \text{ m1} = 10 //\text{lbm}
41 m2=15 / lnm
42 p = 50 // psia
43 t = 60 + 460 / R
44 M1 = 32
45 \quad M2 = 28.02
46 \quad R0 = 10.73
47 //calculations
48 \, \text{n1} = \text{m1} / \text{M1}
49 \quad n2 = m2 / M2
50 \times 1 = n1/(n1+n2)
51 	 x2=n2/(n1+n2)
52 M = x1 * M1 + x2 * M2
53 R = 1545/M
54 V = (n1+n2)*R0*t/p
55 \text{ rho=p/(R0*t)}
```

```
56 \text{ rho2=M*rho}
57 p1 = x1 * p
58 p2=x2*p
59 v1 = x1 * V
60 v2 = x2 * V
61 pt=p1+p2
62 \text{ vt} = \text{v1} + \text{v2}
63 //results
64 disp("part a")
65 printf ("Mole fractions of oxygen and nitrogen are %
       .3 f and \%.3 f respectively", x1, x2)
66 disp("part b")
67 printf("Average molecular weight = %.1 f ", M)
68 disp("part c")
69 printf("specific gas constant = %.4f lbf ft/lbm R", R
70 disp("part d")
71 printf("volume of mixture = \%.1 \, \text{ft} \, ^3", V)
72 printf("\n density of mixture is \%.5 f mole/ft<sup>3</sup> and
      \%.3\,\mathrm{f} \mathrm{lbm}/\,\mathrm{ft} ^3", rho, rho2)
73 disp("part e")
74 printf("partial pressures of oxygen and nitrogen are
       \%.2 \, \text{f} psia and \%.2 \, \text{f} psia respectively",p1,p2)
75 printf("\n partial volumes of oxygen and nitrogen
       are \%.2 f ft<sup>3</sup> and \%.2 f ft<sup>3</sup> respectively", v1, v2)
76 printf("\n Net partial pressure in case of oxygen =
      %.2 f psia",pt)
77 printf("\n Net partial volume =\%.2 f ft^3",vt)
```

Scilab code Exa 13.2 Volumetric and gravimetric analysis

```
1
2 clc
3 clear
4 //Initialization of variables
```

```
5 m1=5.28
6 m2=1.28
7 m3 = 23.52
8 //calculations
9 m = m1 + m2 + m3
10 \times 1 = m1/m
11 \quad x2=m2/m
12 \quad x3=m3/m
13 C = 12/44 * m1/m
14 \quad 0 = (32/44 * m1 + m2)/m
15 \, \text{N=m3/m}
16 \quad \text{sum1} = (x1+x2+x3)*100
17 sum2 = (C+N+0)*100
18 //results
19 printf ("From gravimetric analysis, co2 = \%.1 f
      percent, o2 = \%.1 f percent and n2 = \%.1 f percent
      ",x1*100,x2*100,x3*100)
20 printf ("\n From ultimate analysis, co2 = \%.2 f
      percent, o2 = \%.2 f percent and n2 = \%.2 f percent
      ",C*100,O*100,N*100)
21 printf("\n Sum in case 1 = \%.1f percent", sum1)
22 printf("\n Sum in case 2 = \%.1f percent", sum2)
```

Scilab code Exa 13.3 Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x1=1/3
5 n1=1
6 n2=2
7 x2=2/3
8 p=12.7 //psia
9 cp1=7.01 //Btu/mole R
10 cp2=6.94 //Btu/mole R
```

Scilab code Exa 13.4 Internal energy and entropy change calculations

```
1 clc
2 clear
3 // Initialization of variables
4 c1=4.97 // Btu/mol R
5 c2=5.02 // Btu/mol R
6 n1=2
7 n2=1
8 T1=86.6+460 //R
9 T2=50+460 //R
10 // calculations
11 du=(n1*c1+n2*c2)*(T2-T1)
12 ds=(n1*c1+n2*c2)*log(T2/T1)
13 // results
14 printf("Change in internal energy = %d Btu",du)
15 printf("\n Change in entropy = %.3 f Btu/R",ds)
```

Scilab code Exa 13.5 Pressure and mixing temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n1=1
5 n2=2
6 c1=5.02
7 c2=4.97
8 \text{ t1=60 } //\text{F}
9 t2=100 / F
10 R0 = 10.73
11 p1=30 // psia
12 p2=10 //psia
13 //calcualtions
14 t = (n1*c1*t1+n2*c2*t2)/(n1*c1+n2*c2)
15 V1= n1*R0*(t1+460)/p1
16 \quad V2=n2*R0*(t2+460)/p2
17 V = V1 + V2
18 pm = (n1+n2)*R0*(t+460)/V
19 // results
20 printf("Pressure of mixture = %.1f psia",pm)
21 printf("\n Mixing temperature = %.1 f F",t)
```

Scilab code Exa 13.6 Change in Entropy calculation

```
1 clc
2 clear
3 // Initialization of variables
4 T2=546.6 //R
5 T1=520 //R
6 T3=560 //R
7 v2=1389.2
8 v1=186.2
9 R0=1.986
```

```
10 c1=5.02
11 c2=4.97
12 n1=1
13 n2=2
14 \quad v3 = 1203
15 //calculations
16 \text{ ds1}=\text{n1}*\text{c1}*\text{log}(\text{T2}/\text{T1}) + \text{n1}*\text{R0}*\text{log}(\text{v2}/\text{v1})
17 ds2=n2*c2*log(T2/T3)+n2*R0*log(v2/v3)
18 ds=ds1+ds2
19 ds3=n1*c1*log(T2/T1)+n2*c2*log(T2/T3)
20 ds4=n2*R0*log(v2/v3)+ n1*R0*log(v2/v1)
21 dss=ds3+ds4
22 //results
23 printf ("Change in entropy for gas 1 = \%.3 \, \text{f Btu/R}",
24 printf ("\n Change in entropy for gas 1 = \%.3 f Btu/R
      ",ds2)
25 printf("\n Net change in entropy = \%.3 f Btu/R",ds)
26 printf ("\n In case 2, change in entropy = \%.3 f Btu/R
      ",dss)
27 disp ("The answer is a bit different due to rounding
       off error in the textbook")
```

Scilab code Exa 13.7 Change in Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 m1=1 //lbm
5 m2=0.94 //lbm
6 M1=29
7 M2=18
8 p1=50 //psia
9 p2=100 //psia
10 t1=250 +460 //R
```

```
11 R0=1.986
12 \text{ cpa=}6.96
13 \text{ cpb} = 8.01
14 //calculations
15 xa = (m1/M1)/((m1/M1) + m2/M2)
16 \text{ xb=1-xa}
17 t2=t1*(p2/p1)^(R0/(xa*cpa+xb*cpb))
18 d=R0/(xa*cpa+xb*cpb)
19 k=1/(1-d)
20 dsa=cpa*log(t2/t1) -R0*log(p2/p1)
21 dSa=(m1/M1)*dsa
22 dSw = -dSa
23 dsw=dSw*M2/m2
24 / results
25 printf ("Final remperature = %d R",t2)
26 printf("\n Change in entropy of air = \%.3 f btu/mole
      R and \%.5 f Btu/R", dsa, dSa)
27 printf("\n Change in entropy of water = \%.4 \,\mathrm{f} btu/
      mole R and \%.5 f Btu/R", dsw, dSw)
28 disp("The answers are a bit different due to
      rounding off error in textbook")
```

Scilab code Exa 13.8 volume and mass calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T=250 + 460 //R
5 p=29.825 //psia
6 pt=50 //psia
7 vg=13.821 //ft^3/lbm
8 M=29
9 R=10.73
10 //calculations
11 pa=pt-p
```

Scilab code Exa 13.9 Percentage calculation

```
1 clc
2 clear
3 //Initialization of variables
4 ps=0.64 //psia
5 p=14.7 //psia
6 M=29
7 M2=46
8 //calculations
9 xa=ps/p
10 mb=xa*9/M *M2/(1-xa)
11 //results
12 printf("percentage = %.1f percent",mb*100)
```

Scilab code Exa 13.10 Partial pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 ps=0.5069 //psia
5 p=20 //psia
```

Scilab code Exa 13.11 Partial pressure and saturation calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t1=80+460 / R
5 ps = 0.5069 //psia
6 disp("from steam tables,")
7 vs = 633.1 // ft^3/lbm
8 \text{ phi=0.3}
9 R = 85.6
10 Ra=53.3
11 p = 14.696
12 //calculations
13 tdew=46 //F
14 \text{ pw=phi*ps}
15 \text{ rhos}=1/\text{vs}
16 \text{ rhow=phi*rhos}
17 rhow2 = pw*144/(R*t1)
18 pa=p-pw
19 rhoa= pa*144/(Ra*t1)
20 \text{ w=rhow/rhoa}
21 \text{ mu=phi*}(p-ps)/(p-pw)
22 \text{ Ws} = 0.622*(ps/(p-ps))
```

```
23 \text{ mu}2=w/Ws
24 //results
25 disp("part a")
26 printf("partial pressure of water = \%.5 f psia",pw)
27 printf("\n dew temperature = \%d F", tdew)
28 disp("part b")
29 printf ("density of water = \%.6 \,\mathrm{f}\,\mathrm{lbm/ft^3}", rhow)
30 printf("\n in case 2, density of water = \%.6 \,\mathrm{f~lbm/ft}
       <sup>3</sup>", rhow2)
31 printf("\n density of air = \%.6 \, \text{f lbm/ft}^3", rhoa)
32 disp("part c")
33 printf("specific humidity = %.4f lbm steam/lbm air"
34 disp("part d")
35 printf ("In method 1, Degree of saturation = \%.3 \,\mathrm{f}", mu
36 printf("\n In method 2, Degree of saturation = \%.3 \,\mathrm{f}"
      , mu2)
```

Scilab code Exa 13.12 Change in moisture content calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=14.696 //psia
5 ps=0.0808 //psia
6 ps2=0.5069 //psia
7 phi2=0.5
8 phi=0.6
9 grain=7000
10 //calculations
11 pw=phi*ps
12 w1=0.622*pw/(p-pw)
13 pw2=phi2*ps2
14 w2=0.622*pw2/(p-pw2)
```

Scilab code Exa 13.13 Humidity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t1=80 //F
5 t2=60 //F
6 p=14.696 // psia
7 ps=0.507 // psia
8 \text{ pss} = 0.256 // \text{psia}
9 \text{ cp} = 0.24
10 //calculations
11 ws=0.622*pss/(p-pss)
12 \text{ w}=(\text{cp}*(\text{t2-t1}) + \text{ws}*1060)/(1060+ 0.45*(\text{t1-t2}))
13 pw=w*p/(0.622+w)
14 phi=pw/ps
15 td=46 //F
16 //results
17 printf("\n humidity ratio = \%.4 \text{ f lbm/lbm dry air}", w)
18 printf("\n relative humidity = \%.1 f percent", phi
19 printf("\n Dew point = \%d F",td)
```

Scilab code Exa 13.14 Enthalpy and sigma function calculation

```
1 clc
2 clear
3 //Initialization of variables
4 W = 0.0065
              //lbm/lbm of dry air
5 t = 80 / F
6 \text{ td} = 60 / F
7 //calculations
8 H=0.24*t+W*(1060+0.45*t)
9 \text{ sig=H-W*(td-32)}
10 \text{ Ws} = 0.0111
11 H2=0.24*td+Ws*(1060+0.45*td)
12 \text{ sig2=H2-Ws*(td-32)}
13 //results
14 printf("In case 1, enthalpy = \%.2 f Btu/lbm dry air",
      H)
15 printf("\n In case 1, sigma function = \%.2 f Btu/lbm
      dry air", sig)
16 printf("\n In case 2, enthalpy = \%.2 \, f Btu/lbm dry
      air",H2)
17 printf("\n In case 2, sigma function = \%.2 f Btu/lbm
      dry air", sig2)
```

Scilab code Exa 13.15 Enthalpy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t1=30 //F
5 t2=60 //F
6 t3=80 //F
7 W1=0.00206
8 W2=0.01090
9 //calculations
```

```
10  cm1=0.24+0.45*W1
11  H1=cm1*t1+W1*1060
12  cm2=0.24+0.45*W2
13  H2=cm2*t3+W2*1060
14  hf=t2-32
15  dq=H2-H1-(W2-W1)*hf
16  //results
17  printf("In case 1, Enthalpy = %.2 f Btu/lbm dry air", H1)
18  printf("\n In case 2, Enthalpy = %.2 f Btu/lbm dry air", H2)
19  printf("\n Heat added = %.2 f Btu/lbm dry air", dq)
```

Scilab code Exa 13.16 Partial pressure and humidity calculations

```
1 clc
2 clear
3 //Initialization of variables
4 pw=0.15//psia
5 disp("using psychrometric charts,")
6 \text{ tdew}=46 \text{ }/\text{F}
7 //calculations
8 va=13.74 //ft^3/lbm dry air
9 \text{ rhoa}=1/va
10 \ V = 13.74
11 \text{ mw} = 46/7000
12 rhow=mw/V
13 \quad w = 0.00657
14 //results
15 disp("part a")
16 printf ("partial pressure of water = \%.2 f psia", pw)
17 printf("\n dew temperature = \%d F", tdew)
18 disp("part b")
19 printf("density of water = \%.6 \, f \, lbm/ft^3", rhow)
20 printf("\n density of air = \%.4 \text{ f lbm/ft}^3", rhoa)
```

```
21 disp("part c")
22 printf("specific humidity = %.5 f lbm steam/lbm air"
    ,w)
```

Scilab code Exa 13.17 Enthalpy change calculation

```
1 clc
2 clear
3 //Initialization of variables
4 W1=0.00206 //lbm/lbm dry air
5 \text{ W2=0.01090 } //\text{lbm/lbm dry air}
6 t = 60 / F
7 //calculations
8 \, dw = W1 - W2
10 \text{ hs} = 144.4
11 hs2=66.8-32
12 w1 = 14.4 / Btu/lbm
13 ws1=20 //Btu/lbm
14 w2=76.3 //Btu/lbm
15 ws2=98.5 //Btu/lbm
16 \text{ dwh1} = -(w1 - ws1)/7000 *hs
17 \text{ H1} = 9.3 + \text{dwh1}
18 \text{ dwh2} = (w2 - ws2) / 7000 * hs2
19 \text{ H2} = 31.3 + \text{dwh2}
20 \, dwc = dw * (t-32)
21 dq = H2 - H1 + dwc
22 / results
23 printf("Enthalpy change = \%.2 f Btu/lbm dry air", dq)
```

Scilab code Exa 13.18 Humidity calculations

```
1 clc
```

```
2 clear
3 // Initialization of variables
4 disp("From psychrometric charts,")
5 va1=13 //ft^3/lbm dry air
6 va2=13.88 //ft^3/lbm dry air
7 flow=2000 //cfm
8 // calculations
9 ma1= flow/va1
10 ma2=flow/va2
11 t=62.5// F
12 phi=0.83 // percent
13 // results
14 printf("humidity = %.2 f ",phi)
15 printf("\n Temperature = %.1 f F",t)
```

Scilab code Exa 13.19 Humidity calculations

```
1 clc
2 clear
3 //Initialization of variables
4 t = 90 / F
5 ts = 67.2 / F
6 phi = 0.3
7 \text{ per=0.8}
8 //calculations
9 \text{ dep=t-ts}
10 dt=dep*per
11 \text{ tf=t-dt}
12 disp("from psychrometric charts,")
13 phi2=0.8
14 //results
15 printf("Dry bulb temperature = \%.2 \, \text{f} F", tf)
16 printf("\n percent humidity = \%.2 \, f", phi2)
```

Scilab code Exa 13.20 cooling range calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 t1=100 //F
6 t2=75 / F
7 db = 65 / F
8 disp("From psychrometric charts,")
9 t11=82 //F
10 \text{ phi1} = 0.4
11 H1=30 //Btu/lbm dry air
12 \text{ w1=65} //\text{grains/lbm dry air}
13 \text{ w2=250} //\text{grains/lbm dry air}
14 //calculations
15 cr=t1-t2
16 \text{ appr=t2-db}
17 dmf3 = (w2 - w1) *0.0001427
18 hf3=68
19 \text{ hf} 4 = 43
20 \text{ H}2 = 62.2
21 H1=30
22 \text{ mf4} = (H1-H2+ dmf3*hf3)/(hf4-hf3)
23 per=dmf3/(dmf3+mf4)
24 // results
25 printf("cooling range = %d F",cr)
26 printf("\n Approach = %d F", appr)
27 printf("\n amount of water cooled per pound of dry
      air = \%.3 f lbm dry air/lbm dry air",mf4)
28 printf("\n percentage of water lost by evaporation =
       \%.2 f percent", per*100)
```

Scilab code Exa 13.21 Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 R0=0.73 //atm ft ^3/mol R
5 a1 = 578.9
6 \quad a2 = 3675
7 b1 = 0.684
8 b2=1.944
9 n1=0.396 //mol
10 \text{ n2=0.604 } //\text{mol}
11 V=8.518 // ft^3
12 T = 460 + 460 / R
13 //calculations
14 p1=R0*n1*T/(V-n1*b1) - a1*n1^2 /V^2
15 p2 = R0*n2*T/(V-n2*b2) -a2*n2^2 /V^2
16 p=p1+p2
17 pa=(n1+n2)*R0*T/V
18 \text{ err} = (pa-p)/p
19 pb=58.7 //atm
20 \text{ err2} = (p-pb)/p
21 / results
22 printf("Pressure = %.1f atm",p)
23 printf("\n Pressure in case 2 = \%.1 \, \text{f atm}",pb)
24 printf("\n error in ideal case = \%.1f percent", err
      *100)
25 printf("\n error in case 2 = \%.1f percent", err2
      *100)
26 disp ('The answer is a bit different due to rounding
      off error in textbook')
```

Scilab code Exa 13.22 Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 p1=45.8 //atm
5 p2=36 //atm
6 t1=343.3 //R
7 t2 = 766.8 / R
8 \text{ n1=0.396 } //\text{mol}
9 \text{ n2=0.604 } //\text{mol}
10 V=8.518 //ft^3
11 R0 = 0.73
12 T = 920 / R
13 //calcualtions
14 \text{ vr1=p1*(V/n1)/(R0*t1)}
15 vr2=p2*(V/n2)/(R0*t2)
16 tr1=T/t1
17 \text{ tr}2=T/t2
18 disp("From compressibility charts,")
19 z1=1
20 z2=0.79
21 Z=n1*z1+n2*z2
22 p = Z * R0 * T / V
23 p2 = 62 / atm
24 \text{ err} = (p-p2)/p
25 //results
26 printf("In case 1, pressure = \%.1 f atm",p)
27 printf("\n In case 2, pressure using trail and error
       method = \%d atm",p2)
28 printf("\n Error = %d percent", err*100)
```

Scilab code Exa 13.23 Pressure calculation

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 t1=343.3 / R
5 t2=766.8 //R
6 \text{ n1=0.396} //\text{mol}
7 \text{ n2=0.604 } //\text{mol}
8 V = 8.518 // ft^3
9 p1=45.8 //atm
10 p2=36 //atm
11 R0 = 0.73
12 T = 920 / R
13 //calculations
14 tcd=n1*t1+n2*t2
15 pcd=n1*p1+n2*p2
16 \text{ Tr=T/tcd}
17 Vr=pcd*V/(R0*tcd)
18 \ Z=0.87
19 p = Z * R0 * T / V
20 // results
21 printf("Pressure = %.1f atm",p)
```

Chapter 14

Equilibrium and the third law

Scilab code Exa 14.1 Equilibrium constant calculations

```
1 clc
2 clear
3 //Initialization of variables
4 n1=0.95
5 n2=0.05
6 n3=0.025
7 P = 147 // psia
8 pa=14.7 // psia
9 //calculations
10 n=n1+n2+n3
11 p1=n1/n *P/pa
12 p2=n2/n *P/pa
13 p3=n3/n *P/pa
14 \text{ Kp1} = p1/(p2*p3^0.5)
15 \text{ Kp2= p1^2} / (p2^2 *p3)
16 //results
17 printf("In case 1, Equilibrium constant = \%.1 \, \mathrm{f} ", Kp1
18 printf("\n In case 2, Equilibrium constant = \%.1 \, \mathrm{f}",
      Kp2)
```

Scilab code Exa 14.2 Degree of dissociation

```
1 clc
2 clear
3 // Initialization of variables
4 kp=5
5 // calculations
6 x=poly(0,"x")
7 vec=roots(24*x^3 + 3*x-2)
8 x=vec(3)
9 y=poly(0,"y")
10 vec2=roots(249*y^3 +3*y-2)
11 y=vec2(3)
12 // results
13 printf("degree of dissociation = %.2 f",x)
14 printf("\n If pressure =10 . degree of dissociation = %.2 f",y)
```

Scilab code Exa 14.3 Degree of dissociation calculation

```
1 clc
2 clear
3 //Initialization of variables
4 k=5
5 //calculations
6 x=poly(0,"x")
7 p=x^2 *(k-x) -k^2 *(1-x)^2 *(3-x)
8 vec=roots(p)
9 x=vec(3)
10 //results
11 printf("degree of dissociation = %.2 f",x)
```

Scilab code Exa 14.4 Work done calculations

```
1 clc
2 clear
3 //Initialization of variables
4 T = 77 + 460 / R
5 x1=0.21
6 x2=1-x1
7 G = -169557 //Btu/mole
8 n1=1
9 n2=3.76
10 R0=1.986
11 \quad v = 0.0885
12 \text{ pi} = 14.7
13 J=778
14 //calculations
15 dg1 = -n1 * R0 * T * log(x1)
16 dg2 = -n2*R0*T*log(x2)
17 dg = dg1 + dg2
18 dG = dg + G
19 W = -dG
20 W2 = -G
21 p = 0.0004 / atm
22 G1=-n1*R0*T*log(1/p)
23 \text{ W3} = -(\text{dg1} + \text{G} + \text{G1})
24 \text{ dgf}=v*pi*144/J
25 //results
26 printf("In case 1, Work done = %d Btu/mole C", W)
27 printf("\n In case 2, Work done = %d Btu/mole C", W2)
28 printf("\n In case 3, Work done = %d Btu/mole C", W3)
29 printf("\n In case 4, Work done = \%.2 \, f Btu/mole C",
      dgf)
```

Chapter 15

Basic flow equations

Scilab code Exa 15.1 Temperature and pressure calculations

```
clc
clear
//Initialization of variables
disp("From Table B-4,")
h=1187.2 //Btu/lbm
t=328 //F
//calculations
p2=100 //psia
u2=1187.2 //Btu/lbm
t2=540 //F
dt=t2-t
//results
printf("Final temperature of steam = %d F",t2)
printf("\n Final pressure = %d psia",p2)
printf("\n Change in temperature = %d F",dt)
```

Scilab code Exa 15.3 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 100 // psia
5 p2=14.7 // psia
6 k = 1.4
7 T1 = 700 / R
8 R=10.73/29
9 V=50
10 \text{ cv} = 0.171
11 \text{ cp=0.24}
12 R2=1.986/29
13 //calculations
14 T2=T1/ (p1/p2)^((k-1)/k)
15 m1=p1*V/(R*T1)
16 \text{ m2=p2*V/(R*T2)}
17 Wrev= cv*(m1*T1 - m2*T2) - (m1-m2)*(T2)*cp
18 // results
19 printf("Work done in case 1 = %d Btu", Wrev)
```

Scilab code Exa 15.4 Friction calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=100 //psia
5 p2=10 //psia
6 n=1.3
7 T1=800 //R
8 cv=0.172
9 R=1.986/29
10 T0=537 //R
11 cp=0.24
12 //calculations
13 T2=T1*(p2/p1)^((n-1)/n)
```

```
14 dwir=cv*(T1-T2)
15 dwr=R*(T2-T1)/(1-n)
16 dq=dwr-dwir
17 //results
18 printf("The friction of the process per pound of air
= %.1 f Btu/lbm",dq)
```

Scilab code Exa 15.5 Friction calculation

```
1 clc
2 clear
3 //Initialization of variables
4 ms=10 //lbm
5 \text{ den=62.3} //\text{lbm/ft}^3
6 A1=0.0218 // ft^2
7 A2=0.00545 // ft^2
8 p2=50 //psia
9 p1=100 // psia
10 gc=32.2 // ft/s^2
11 dz = 30 // ft
12 T0=537 //R
13 T1=620 //R
14 T2=420 //R
15 //calculations
16 \quad V1=ms/(A1*den)
17 V2=ms/(A2*den)
18 df = -144/den*(p2-p1) - (V2^2 -V1^2)/(2*gc) - dz
19 // results
20 printf("Friction = \%.1 f ft-lbf/lbm",df)
```

Scilab code Exa 15.6 Efficiency calculation

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 \text{ cp1}=0.25
5 T = 3460 / R
6 \text{ T0} = 946.2 / R
7 \text{ T00=520 } //\text{R}
8 dG=1228 //Btu/lbm
9 \text{ cp} = 0.45
10 //calculations
11 dqa=cp1*(T-T0)
12 \text{ w=cp*dqa}
13 dg = 489
14 \text{ eff=w/dg}
15 dI = -dg + w
16 //results
17 printf("\n Efficiency of cycle = \%.1f percent", eff
       *100)
18 printf("\n Loss of available energy = \%.1 f Btu/lbm",
       dI)
```

Scilab code Exa 15.7 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=400 //psia
5 t1=600 //F
6 h1=1306.9 //Btu/lbm
7 b1=480.9 //Btu/lbm
8 p2=50 //psia
9 h2=1122 //Btu/lbm
10 h3=1169.5 //Btu/lbm
11 b3=310.9 //Btu/lbm
12 //calculations
13 disp("All the values are obtained from Mollier chart
```

```
,")
14 dw13=h1-h3
15 dw12=h1-h2
16 dasf=b3-b1
17 etae=dw13/dw12
18 eta=abs(dw13/dasf)
19 dq=dw13+dasf
20 //results
21 printf("Engine efficiency = %.1 f percent", etae*100)
22 printf("\n Effectiveness = %.1 f percent", eta*100)
23 printf("\n Loss of available energy = %.1 f Btu/lbm", dq)
```

Chapter 16

Combustion

Scilab code Exa 16.1 Molecule formulation

```
1 clc
2 clear
3 //Initialization of variables
4 per=85
5 //calculations
6 a=per/12
7 b=100-per
8 ad=1.13*a
9 bd=1.13*b
10 //results
11 printf("Molecule is C %d H %d",ad,bd+1)
```

Scilab code Exa 16.2 Equation calculation

```
1 clc
2 clear
3 //Initialization of variables
4 per=0.071
```

```
5 // calculations
6 02=8.74
7 N2=per/2 + 3.76*02
8 Nin=32.85
9 C02=7.333
10 H2o=3
11 So2=0.0312
12 // results
13 printf("Oxygen = %.2 f and Nitrogen = %.2 f",02,N2)
14 printf("\n Equation is C %.3 f H %d + %.2 f O2 + %.2 f
N2 = %.3 f CO2 + %d H2O + %.5 f SO2 + %.2 f N2",CO2
,2*H2o,O2,Nin,CO2,H2o,So2,N2)
```

Scilab code Exa 16.4 Air fuel ratio calculation

```
1 clc
2 clear
3 //Initialization of variables
4 N2=78.1
5 M=29
6 co2=8.7
7 co=8.9
8 x4=0.3
9 x5=3.7
10 x6=14.7
11 //calculations
12 02=N2/3.76
13 Z=(co2+co+x4)/8
14 AF=(02+N2)*M/(Z*113)
15 //results
16 printf("Air fuel ratio = %.1f lbm air/lbm fuel",AF)
```

Scilab code Exa 16.5 Air fuel ratio calculation

```
1 clc
2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 \text{ ba} = 2.12
7 x4 = 0.3
8 x5=3.7
9 \times 6 = 14.7
10 //calculations
11 \quad 02 = N2/3.76
12 \quad 02 = N2/3.76
13 Z=(x4*4+x5*2+x6*2)/17
14 AF = (02 + N2) * M / (Z * 113)
15 //results
16 printf("Air fuel ratio = \%.1 \, f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.6 Air fuel ratio calculation

```
1 clc
2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 \text{ ba} = 2.12
7 x4 = 0.3
8 x5=3.7
9 \times 6 = 14.7
10 //calculations
11 \quad 02 = N2/3.76
12 c = 14.7
13 b= x4*4 + x5*2 + x6*2
14 a=b/ba
15 AF = (02+N2)*M/(a*12 + b)
16 // results
```

```
17 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.7 Air fuel ratio calculation

```
1 clc
 2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 \text{ ba} = 2.12
 7 co2=8.7
8 \text{ co} = 8.9
9 x4 = 0.3
10 \text{ x}5=3.7
11 \times 6 = 14.7
12 //calculations
13 \quad 02 = N2/3.76
14 c = 14.7
15 Z=2.238
16 X = (Z*17 - x4*4 - x5*2)/2
17 \quad a = co2 + co/2 + x4 + x6/2
18 b=3.764*a
19 AF = (02+N2)*M/(Z*113)
20 / results
21 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.8 Air fuel ratio calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x1=8.7
5 x2=8.9
```

```
6  x3=0.3
7  N=78.1
8  z=113
9  M=29
10  //calculations
11  co2=(x1+x2+x3)*100/(N+x1+x2+x3)
12  a=2.325
13  AF=103*M/(a*z)
14  //results
15  printf("Air fuel ratio = %.2f", AF)
```

Scilab code Exa 16.9 Higher heating value calculation

```
1 clc
2 clear
3 //Initialization of variables
4 dH=-2369859 //Btu
5 r=1.986
6 dn=5.5
7 T=536.7 //R
8 //calculations
9 dQ=dH+dn*r*T
10 //results
11 printf("Higher heating value = %d Btu",dQ)
```

Scilab code Exa 16.10 Lower heating value calculation

```
1 clc
2 clear
3 //Initialization of variables
4 y=13
5 x=12
6 M2=18
```

Scilab code Exa 16.11 Heat of reaction calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n1=8
5 n2=9
6 n3=1
7 \quad n4 = 12.5
8 U11=3852
9 U12=115
10 U21=3009
11 U22=101
12 U31=24773
13 U32=640
14 U41=2539
15 U42=83
16 \text{ H} = -2203389
17 //calculations
18 dU1=n1*(U11-U12)+n2*(U21-U22)
```

```
19  dU2=n3*(U31-U32)+n4*(U41-U42)
20  Q=H+dU1-dU2
21  //results
22  printf("Heat of reaction = %d Btu",Q)
```

Scilab code Exa 16.12 Temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n1=8
5 n2 = 9
6 n3 = 47
7 h1=118
8 h2 = 104
9 h3 = 82.5
10 Q=2203279 //Btu
11 //calculations
12 U11=n1*h1+n2*h2+n3*h3
13 U12=U11+Q
14 T2=5271 //R
15 // results
16 printf("Upon interpolating, T2 = \%d R", T2)
```