Student: Arfaz Hossain	Instructor: Muhammad Awais	Assignment: Practice Questions for
Date: 04/20/22	Course: Math 101 A04 Spring 2022	Sections 11.4 & 11.5 [Not f

Graph the curves
$$r = \frac{11}{2} + 5 \cos \theta$$
 and $r = \frac{11}{2} - 5 \sin \theta$.

First, establish what symmetries $r = \frac{11}{2} + 5 \cos \theta$ has. The curve is symmetric about the x-axis if, when the point (r, θ) lies on the graph, the point $(r, -\theta)$ or $(-r, \pi - \theta)$ lies on the graph.

Test to see if the curve is symmetric about the x-axis. In the equation $r = \frac{11}{2} + 5 \cos \theta$ substitute $(r, -\theta)$ or $(-r, \pi - \theta)$ for (r, θ) and see if the resulting equation is equivalent to the original one. It is helpful to make use of the identities $\cos (-\theta) = \cos (\theta)$ and $\cos (\pi - \theta) = -\cos (\theta)$. The equation does not change, so the curve is symmetric about the x-axis.

The curve is symmetric about the y-axis if, when the point (r,θ) lies on the graph, the point $(r,\pi-\theta)$ or $(-r,-\theta)$ lies on the graph.

Test to see if the curve is symmetric about the y-axis. In the equation $r = \frac{11}{2} + 5 \cos \theta$ substitute $(r, \pi - \theta)$ or $(-r, -\theta)$ for (r, θ) and see if the resulting equation is equivalent to the original one. It is helpful to make use of the identities $\cos (\pi - \theta) = -\cos (\theta)$ and $\cos (-\theta) = \cos (\theta)$. The equation changes, so the curve is not symmetric about the y-axis.

The curve is symmetric about the origin if, when the point (r,θ) lies on the graph, the point $(-r,\theta)$ or $(r,\theta+\pi)$ lies on the graph.

Test to see if the curve is symmetric about the origin. In the equation $r = \frac{11}{2} + 5 \cos \theta$ substitute $(-r,\theta)$ or $(r,\theta+\pi)$ for (r,θ) and see if the resulting equation is equivalent to the original one. It is helpful to make use of the identity $\cos (\theta + \pi) = -\cos (\theta)$. The equation changes, so the curve is not symmetric about the origin.

Now that the symmetry about the x-axis has been established, it is possible to graph the curve by finding r for θ values ranging from 0 to π , and then reflect the plot about the x-axis to get the whole graph.

For each value of θ , the corresponding value of $r = \frac{11}{2} + 5 \cos \theta$ has been calculated, rounded to two decimal places.

$\Theta = 0$	r = 10.5	$\theta = \frac{\pi}{3}$	r = 8	$\theta = \frac{3\pi}{4}$	r = 1.96
$\theta = \frac{\pi}{6}$	r = 9.83	$\theta = \frac{\pi}{2}$	r = 5.5	$\theta = \frac{5\pi}{6}$	r = 1.17
$\theta = \frac{\pi}{4}$	r = 9.04	$\theta = \frac{2\pi}{3}$	r=3	$\Theta = \pi$	r = 0.5

Use these values to sketch the curve $r = \frac{11}{2} + 5 \cos \theta$.

Next, establish what symmetries $r = \frac{11}{2} - 5 \sin \theta$ has. Test to see if the curve is symmetric about the x-axis. The curve is symmetric about the x-axis if, when the point (r, θ) lies on the graph, the point $(r, -\theta)$ or $(-r, \pi - \theta)$ lies on the graph.

Test to see if the curve is symmetric about the x-axis. In the equation $r = \frac{11}{2} - 5 \sin \theta$ substitute $(r, -\theta)$ or $(-r, \pi - \theta)$ for (r, θ) and see if the resulting equation is equivalent to the original one. It is helpful to make use of the identities $\sin (-\theta) = -\sin (\theta)$ and $\sin (\pi - \theta) = \sin (\theta)$. The equation changes, so the curve is not symmetric about the x-axis.

The curve is symmetric about the y-axis if, when the point (r,θ) lies on the graph, the point $(r,\pi-\theta)$ or $(-r,-\theta)$ lies on the graph.

Test to see if the curve is symmetric about the y-axis. In the equation $r = \frac{11}{2} - 5 \sin \theta$ substitute $(r, \pi - \theta)$ or $(-r, -\theta)$ for (r, θ) and see if the resulting equation is equivalent to the original one. It is helpful to make use of the identities $\sin (\pi - \theta) = \sin (\theta)$ and $\sin (-\theta) = -\sin (\theta)$. The equation does not change, so the curve is symmetric about the y-axis.

The curve is symmetric about the origin if, when the point (r,θ) lies on the graph, the point $(-r,\theta)$ or $(r,\theta+\pi)$ lies on the graph.

Test to see if the curve is symmetric about the origin. In the equation $r = \frac{11}{2} - 5 \sin \theta$ substitute $(-r, \theta)$ or $(r, \theta + \pi)$ for (r, θ) and see if the resulting equation is equivalent to the original one. It is helpful to make use of the identity $\sin (\theta + \pi) = -\sin (\theta)$. The equation changes, so the curve is not symmetric about the origin.

Now that the symmetry about the y-axis has been established it is possible graph the curve by finding r for θ values ranging from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, and then reflect the plot about the y-axis to get the whole graph.

For each value of θ , the corresponding value of $r = \frac{11}{2} - 5 \sin \theta$ has been calculated, rounded to two decimal places.

$\theta = -\frac{\pi}{2}$	r = 10.5	$\theta = -\frac{\pi}{6}$	r = 8	$\theta = \frac{\pi}{4}$	r = 1.96
$\theta = -\frac{\pi}{3}$	r = 9.83	$\theta = 0$	r = 5.5	$\theta = \frac{\pi}{3}$	r = 1.17
$\theta = -\frac{\pi}{4}$	r = 9.04	$\theta = \frac{\pi}{6}$	r=3	$\theta = \frac{\pi}{2}$	r = 0.5

Use these values to sketch the curve $r = \frac{11}{2} - 5 \sin \theta$.

