REGRESSION ASSIGNMENT

Problem statement:

To predict the insurance charges based on the parameters in the dataset given by the client.

Dataset:

The dataset contains 1338 rows and 6 columns.

There are 5 input columns – Age, Sex, BMI, Children and Smoker.

The output column is 'Charges'.

Two nominal columns Sex and Smoker are converted to numerical columns using 'One Hot Encoding'.

The various r2 scores by different models are tabulated below.

Multiple linear regression:

R2 score: 0.7894

Support vector machine – Regression:

S.NO	KERNEL	GAMMA	R2 SCORE
1	rbf	Scale	-0.0833
2	Rbf	auto	-0.0833
3	<mark>Linear</mark>	<mark>Scale</mark>	-0.0101
4	<mark>Linear</mark>	<mark>auto</mark>	-0.0101
5	Poly	Scale	-0.0756
6	Poly	auto	-0.0756
7	Sigmoid	Scale	-0.0754
8	Sigmoid	auto	-0.0754

Decision Tree:

S.NO	CRITERION	SPLITTER	MAX_FEATURES	R2 SCORE
1	squared_error	Best	none	0.6797
2	squared_error	Best	sqrt	0.6951
3	squared_error	Best	Log2	0.7371
4	squared_error	Random	none	0.7419
5	squared_error	Random	sqrt	0.6797
6	squared_error	Random	Log2	0.6941
7	Friedman_mse	Best	none	0.6921

8	Friedman_mse	Best	sqrt	0.7360
9	Friedman_mse	Best	Log2	0.7256
10	Friedman_mse	Random	none	0.7499
11	Friedman_mse	Random	sqrt	0.6591
12	Friedman_mse	Random	Log2	0.6493
13	Absolute_error	Best	none	0.6786
14	Absolute_error	Best	sqrt	0.6777
15	Absolute_error	Best	Log2	0.6980
16	Absolute_error	Random	none	0.7195
17	Absolute_error	Random	sqrt	0.6804
18	Absolute_error	Random	Log2	0.7409
19	Poisson	Best	none	0.7293
20	Poisson	Best	sqrt	0.7196
21	<mark>Poisson</mark>	<mark>Best</mark>	Log2	<mark>0.7636</mark>
22	Poisson	Random	none	0.6905
23	Poisson	Random	sqrt	0.6543
24	Poisson	Random	Log2	0.6449

Random Forest Regression:

S.NO	CRITERION	MAX FEATURES	R2 SCORE
1	Squared error	None	0.8498
2	Squared error	Sqrt	0.8695
3	Squared error	Log 2	0.8695
4	Friedman mse	None	0.8500
5	Friedman mse	<mark>Sqrt</mark>	<mark>0.8702</mark>
6	Friedman mse	Log 2	<mark>0.8702</mark>
7	Absolute error	None	0.8526
8	Absolute error	Sqrt	0.8708
9	Absolute error	Log 2	0.8708
10	poisson	None	0.8491
11	poisson	Sqrt	0.8632
12	poisson	Log 2	0.8632

The models give poor performance, the best score being 0.87.

Under the given circumstance, Random Forest Regression is the best model.