Static-priority scheduling

- As the name suggests...
 - □ All jobs of a task are assigned the same priority
 - Assume tasks are indexed in decreasing priority order
 - T_i has higher priority than T_k if i < k

Notation:

- π_i denotes the priority of T_i
- T_i denotes the subset of tasks with equal or higher priority than T_i
- **Note:** Typically, it is assumed no two tasks have the same priority
- So, what task characteristics can we work with?
 - Period and *Relative* deadline

Using period to determine priority...

Rule: Smaller **period** → higher priority

Example: $T_1 = (3,0.5), T_2 = (4,1), T_3 = (6,2)$

This is called **Rate Monotonic** scheduling

Using relative deadline...

Rule: Smaller **relative deadlines** → higher priority

Example: $T_1 = (3,0.5), T_2 = (4,1,2), T_3 = (6,2).$

Surprise surprise...this is called **Deadline Monotonic** scheduling

Example

- Derive RM and DM schedules for task set below
 - \blacksquare T1(8, 2, 6), T2(2, 5, 1, 5), T3(10, 2) and T4(7, 2)

Optimality of RM and DM (Section 6.4 of Liu)

Theorem: Neither RM nor DM is optimal.

Proof:

Consider $T_1 = (2,1)$ and $T_2 = (5, 2.5)$

Total utilization is 1

However, under RM or DM, a deadline will be missed, regardless of how priorities are assigned to T_1 and T_2

Schedulability test for RM...

- Build set of *n* tasks that tests the limits of schedulability
- Need to assign
 - Phases
 - Periods
 - \square Assume all task periods are distinct, i.e., $p_1 < p_2 < ... < p_n$
 - Assume relative deadlines equal to periods
 - Execution times

Step 1: Phases of tasks

Definition: Critical instant of a task T_i is a time instant such that:

- (1) job of T_i released at this instant has maximum response time of all jobs in T_i , if response time of every job of T_i is at most D_i
- (2) response time of the job released at this instant is greater than D_i if response time of even one job of T_i exceeds D_i

Theorem 6-5: [Liu and Layland] In a fixed-priority system where every job completes before the next job of the same task is released, a critical instant of any task T_i occurs when one of its jobs $J_{i,c}$ is released at the same time with a job of every higher priority task.

So... assign phase of o to all tasks

Step 2: Periods and Execution Times

- Limit attention to the first period of each task (Theo 6-5)
- Make sure that each task's first job completes by end of its first period
- Define periods & exec times so that processor is busy from time o until at least p_n
- Let's start with the simple case where $p_n \le 2p_1$

Periods and Execution times

Let us define
$$e_k = p_{k+1} - p_k$$
 for $k = 1, 2, ..., n-1$
 $e_n = p_n - 2 \sum_{k=1, ..., n-1} e_k$

- Characteristics of task set we have
 - □ Schedulable according to RM
 - □ Fully utilizes processor between **o** & **p**_n
 - Becomes unschedulable if any task's execution time increases
- Such a system is called a difficult-to-schedule system

Step 3: Changing the execution times

Increase execution of some task, say T_1 , by ε , i.e.,

$$e'_{1} = p_{2} - p_{1} + \varepsilon = e_{1} + \varepsilon$$

Can keep processor busy until p_n by decreasing some T_k 's $(k \ne 1)$, execution time by ϵ :

$$e'_k = e_k - \varepsilon$$

How does this affect utilization?

Difference in utilization is:
$$U' - U = \frac{e'_1}{p_1} + \frac{e'_k}{p_k} - \frac{e_1}{p_1} - \frac{e_k}{p_k}$$
$$= \frac{\varepsilon}{p_1} - \frac{\varepsilon}{p_k}$$
$$> 0 \quad \text{since } p_1 < p_k$$

Changing execution times...

Decrease execution of some task, say T_1 , by ε , i.e.,

$$e''_{1} = p_{2} - p_{1} - \varepsilon$$

Can keep processor busy until p_n by increasing some T_k 's $(k \ne 1)$, execution time by 2ϵ :

$$e''_k = e_k + 2\varepsilon$$

How does this affect utilization?

Difference in utilization is: $U'' - U = \frac{2\epsilon}{m} - \frac{\epsilon}{m}$

$$U'' - U = \frac{2\varepsilon}{p_k} - \frac{\varepsilon}{p_1}$$

$$\geq 0 \quad \text{since } p_k \leq 2p_1$$

What have we shown so far?

- All systems we've built so far are difficult-to-schedule
- Other difficult-to-schedule systems can be obtained from the one we started with by increasing/decreasing execution times of some tasks
- Any small increase or decrease results in a utilization that's at least as big as that of the original task system
- Original one is known as most-difficult-to-schedule system
 - Difficult-to-schedule system that has smallest utilization among all difficult-to-schedule systems

Schedulability test for RM

Let $U(n) = \sum_{k=1}^{n} \frac{e_k}{p_k}$ denote the utilization of the system in Step 2.

Define $q_{k,i} = p_k/p_i$. Then,

$$U(n) = q_{2,1} + q_{3,2} + \dots + q_{n,(n-1)} + \frac{2}{q_{2,1}q_{3,2}\cdots q_{n,(n-1)}} - n.$$

To find the minimum, we take the partial derivative of U(n) with respect to each adjacent period ratio $q_{k+1,k}$ and set the derivative to zero. This gives us the following n-1 equations

$$1 - \frac{2}{q_{2,1}q_{3,2}\cdots q_{(k+1),k}^2\cdots q_{n,(n-1)}} = 0 \text{ for all } k = 1, 2, ..., n-1.$$

Solving these equations for $q_{(k+1),k}$, we find that U(n) is at its minimum when all the n-1 adjacent period ratios $q_{k+1,k}$ are equal to $2^{1/n}$. Thus,

$$U(n) = n(2^{1/n} - 1).$$

Schedulability test for RM...

Let's call U(n) $U_{RM}(n)$. We would like to show: $U(T) \le U_{RM}(n) \Rightarrow$ "T is schedulable", where n is the number of tasks in T As before, this is equivalent to "T is not schedulable" $\Rightarrow U(T) > U_{RM}(n)$

- Assume T is not schedulable
- Let T' be the same as T, except that all tasks in T' have a phase of o
- By "critical instant" theorem, one of the first jobs in **T**′ misses its deadline
- Suppose $J_{1,1}, J_{2,1}, ..., J_{i-1,1}$ make their deadlines but $J_{i,1}$ misses its deadline
- Recall that T_i denotes a subset of T with only tasks $T_1...T_i$
- Let T_i consist only of T_i , ..., T_i , but reduce T_i 's execution cost so that $J_{i,1}$ just barely makes its deadline
- Then $T_{i}^{"}$ is a difficult-to-schedule i-task system

Then:

$$U(\mathbf{T}) = U(\mathbf{T}') \ge U(\mathbf{T_i}') > U(\mathbf{T_i}'') \ge U_{RM}(i) \ge U_{RM}(n)$$

Utilization-based RM Schedulability Test

(Section 6.7 of Liu)

Theorem 6-11: [Liu and Layland] A system of n independent, preemptable periodic tasks with relative deadlines equal to their respective periods can be feasibly scheduled on a processor according to the RM algorithm if its total utilization U is at most

$$U_{RM}(n) = n(2^{1/n} - 1)$$

U_{RM}(n) as a Function of n

```
U_{RM}(n)
                 truncated to three digits
   0.828
   0.779
   0.756
5
   0.743
   0.734
   0.728
   0.724
   0.720
10 0.717
  \ln 2 \approx 0.693
```

Removing the $p_n \le 2p_1$ Restriction

Definition: Ratio $q_{n,1} = p_n/p_1$ is the **period ratio** of system

We have proven Theorem 6-11 only for systems with period ratios of at most 2

Proof sketch to deal with systems with period ratios larger than 2

Show that

- (1) Every difficult-to-schedule n-task system **T** whose period ratio is larger than 2 there can be transformed to difficult-to-schedule n-task system **T**' whose period ratio is at most 2
- (2)T 's utilization is at least T''s

Time-Demand Analysis (Section 6.5.2 of Liu)

- <u>Time-demand analysis</u> was proposed by Lehoczky, Sha, and Ding.
 - □ a.k.a. **Response-Time Analysis** (RTA) by Audsley et al.
- Can be applied to any fixed-priority algorithm as long as each job of every task completes before the next job of that task is released.
- For some important task models and scheduling algorithms, this schedulability test is necessary *and* sufficient.

Scheduling Condition

Definition: The time-demand function of the task T_i , denoted $w_i(t)$, is defined as follows.

$$w_i(t) = e_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] \times e_k \qquad \text{for } 0 < t \le p_i$$

Note: We are still assuming tasks are indexed by priority.

For any fixed-priority **algorithm A** with $D_i \le p_i$ for all i ...

Theorem: A system T of periodic, independent, preemptable tasks is schedulable on one processor by algorithm A if

$$(\forall i (\exists t: 0 \le t \le D_i :: w_i(t) \le t))$$

holds.

Example

 Calculate response times (i.e., perform Time Demand Analysis) for following tasks under RM priority assignment:

T1(20, 10), T2(30, 6), T3(40, 8)