

Figure 1: ISA2cd Nucleotide Sequence

caagatgga	t aacctccgtg	g aatgcataaa	a ccgcaaaaga	a agactacttg	ccttaccaga	60
tgttcctga	a acttcggatg	, cctttctaag	g tgatttgaga	catctataca	tgtgtgttgc	120
tttctgtga	t caacacaaaa	ccactggaga	a cgaatcaaga	ttcaccaacc	tggaattact	180
tgaccaagai	t gaagcactag	gtgcccaaag	g agcttttgaa	gccaaacatg	gaataaaagg	240
aggttcttta	a ggagacgttc	ttgaccatga	actgaaaaag	gtcattgaat	ttacttttac	300
ttctggaagt	ttgtatattg	ccgaacaaag	g aaaaagaaag	actcaagcag	actcaataat	360
tgtgtgcgtt	: tcagaaggac	ttaacgactt	: cagcgtatca	cacggagtgc	tagacatggg	420
acttgtggaa	a acaggggtga	atgcagtaag	, agatttctgc	acacaaaacg	gaataccaat	480
gaagataaat	: caggtaggat	ccacgagaac	accaacaccg	atcagcacat	gcaaaatctc	540
tgaacaaata	acacgacaga	taaacagtac	aattactgaa	aggaaaatgg	aaacaqtact	600
ggcagcaatc	gcaattaaac	cagaactcaa	actaactcag	aaaggatgca	gaccttqtaa	660
agaactagaa	gatgaaaata	ttctgtggat	ggaccctcaa	ttctgtgaaa	ttgatgaaag	720
ttttccttac	agaggagggc	catacgggaa	cttcctgcaa	gaattgctgc	ttacaaccaa	780
cgacgtagag	accaacggga	aagacagaga	agaagtagta	aagaagatac	tggataacaa	840
ggcgttcacc	gttgaaagtg	gtgaatgcat	aataacactt	ccagacaaaa	tgacttgttt	900
cggagaacag	gagaagaaga	gaccagcaac	aatagacgaa	gtgagaaccg	caggagaaag	960
gtttgaacag	agtgttaaac	cgaaaaccca	aagatatgga	aggttatcag	acaaatggat	1020
ggagettgaa	aagtttatct	ttactgcaag	caaaacagaa	gtggatactt	tcctttctgt	1080
	agacttgagt	çggttggagt	gtgtgtcgga	gctttacaca	gagcgaccac	1140
aaccaggata	attagaccta	tgattcaagg	agggaaatgt	tgggggatga	tgttcaaaac	1200
-	atgggagaca	cgaggaagga	aggatactgt	cacgcaatca	ttttcggaaa	1260
	aaatcaggac	aaaacaagat	gacaatgatg	gggaaaacag	tacattggca	1320
	gttaagtcta	aaggagactg	gatggcgcaa	caactctgtg	caaacaaaag	1380
	gaacatgacc	ctgagctagt	aacagaagga	gtgacagttc.	taatgacgcc	1440
tttttctcag		ccattagtag	atggagggca	atgaggttag	acagcatgtt	1500
tcatgtttct		atcattcacc	tgcgtgtgaa	gctgcatcgg	caatgctgag	1560
aaagtttgtg		atgccatcaa	ccagaaaaga	gattggggtg	ttgtggggag	1620
tatggaggac		aagtggagga	aataggggag	cacttgcaga	cggcatgtga	1680
ttttagagtt		gcaaagcctt	gattcagaaa	attgcagtca	gtacccaatg	1740
agtggttatt		ttgttgtgtg	tttgacgata	tgtatttgtc	gacgcggccg	1800
cygrcgacge	ggccgcgaat	τ				1821

Figure 2: ISA2cd Amino Acid Sequence

	1	11	21	31	41	51	
	I	1	1	1	1	i	
1	MDNLRECINE	KRRLLALPDV	PETSDAFLSD	LRHLYMCVAF	CDQHKTTGDE	SRFTNLELLD	60
61	QDEALGAQRA	FEAKHGIKGG	SLGDVLDHEL	KKVIEFTFTS	GSLYIAEQRK	RKTQADSIIV	120
121	CVSEGLNDFS	VSHGVLDMGL	VETGVNAVRD	FCTQNGIPMK	INQVGSTRTP	TPISTCKISE	180
181	QITRQINSTI	TERKMETVLA	AIAIKPELKL	TQKGCRPCKE	LEDENILWMD	POFCEIDESF	240
241	PYRGGPYGNF	LQELLLTTND	VETNGKDREE	VVKKILDNKA	FTVESGECII	TLPDKMTCFG	300
301	EQEKKRPATI	DEVRTAGERF	EQSVKPKTQR	YGRLSDKWME	LEKFIFTASK	TEVDTFLSVG	360
361	TERLESVGVC	VGALHRATTT	RIIRPMIQGG	KCWGMMFKTK.	SKMGDTRKEG	YCHAIIFGKG	420
421	EDKSGQNKMT	MMGKTVHWHL	RVVKSKGDWM	AQQLCANKSR	IWEHDPELVT	EGVTVLMTPF	480
481	SQKIATISRW	RAMRLDSMFH	VSSAWHHSPA	CEAASAMLRK	FVEIVHAINQ	KRDWGVVGSM	540
541	EDMVKEVEEI	GEHLQTACDF	RVYNMCKALI	QKIAVSTQ			

Molecular weight: 65336.10 Theoretical pl: 6.94

Figure 3: ISA1mta Nucleotide Sequence

gcaaagaty	g ctcaaatcc	: aaaaataata	a cagaaaacgt	ataagagatg	gccgataaag	60
gtatgactt	a ttcttttgat	gtcagagaca	a acaccttggt	tgtaagaaga	tctaccgcta	120
ctaaaagtg	g cattaagato				ctccaaaagg	180
cattcgccg	g gacagaagat				tacgttgaca	240
aaaagatta	g aaaattcctg	gaagaagaga	aaatgaagga	catgagcaca	agagtgtctg	300
gagcagtgg	c agcagcaatt				aaagaagcag	360
cagctaaca	t tgaaatggct				ggtctggtag	420
	g gaagaacaaa	ggggtctcaa	acatggccta	caatctgtct	ctattcatag	480
ggatggtgtt	tcctgctctc		tcagtgctat			540
gcatctggca	a aaatggacaa	gcaatcatca	gaattctggc	actggcagat	gaagacggaa	600
agagacaaad	c aagaacagga	ggacagaggg	tggacatggc	tgatgtaacc	aagctgaacg	660
tagticacggo	: taacgggaaa	gtcaagcaag	ttgaagtaaa	cttgaacgat	ctcaaagcag	720
	gagtagacct	aaaagatcgg	actacagaaa	agggcaaggt	tccaaggcta	780
cagaatcaag	catctccaac	caatgtatgg	cactgattat	gaaatctgtg	ctgtcagcag	840
	: tgctccggga	gtgaagatga	tgaggacgaa	cggtttcaat	gcgtcgtaca	900
	: agaaggggca	aacattccga	gcaagtacct	aagacacatg	aggaactgcg	960
gaggagtagc	tctggacctg	atgggaatga	agaggatcaa	aaactcacct	gaaggagcca	1020
	cttttccatc	atccagaaga	aagtaagagg	aagatgtcgc	acagaggage	1080
	gactagcgca	ctgaaaatca	gcgacggtga	aaacaagttc	cagagaatca	1140
	atgtacaagc		accctccaag			1200
	cagtctcatg		aagaaggcaa			1260
tcatgaaaaa	cggagaggac		tctgcagaga			1320
	gttcacaatg	tcagtagcta	gaacatgcgt	tgcagtgtca	atggttgcaa	1380
	ttctgcagat		atgcagtgcc			1440
	ggctaaċaca	accaaaccaa	aaaaggactc	cacttacaca	attcaaggac	1500
	taacgtgagg	tatgaagcaa	gacctgaaac	atcacaaagc	aacacagaca	1560
	agtgaacgtg	actgacagct	tcggaggact	tgctgtgttc	aaccaagggg	1620
	aatgctagga	gacggaacat	cagagacaac	tagtgtgaac	gtcagagccc	1680
	aattctgaaa		agaggagtgc			1740
	acaagggaaa	tcagctattg	ttatctctgg	tgtgggactg	ttctctattg	1800
actttgaagg		gcggaaagga	taactgacat	gacacctgaa	attgagtttg	1860
acgaggacga		gaagacattg	acatttagag	tgacaattat	gtaactttct	1920
aattacccta			aaactattgt	gtgttaaagg	ttgtgggttt	1980
gattattaaa	tttaaattga	aacggtattg	acgatatt			2018

Figure 4: ISA1mta Amino Acid Sequence

					•		
	1	11	21	31	41	51	
	1	1	1	1	1	1	
1	MADKGMTYSF	DVRDNTLVVR	RSTATKSGIK	ISYREDRGTS	LLQKAFAGTE	DEFWVELDQD	60
61	VYVDKKIRKF	LEEEKMKDMS	TRVSGAVAAA	IERSVEFDNF	SKEAAANIEM	AGVDDEEAGG	120
121	SGLVDNRRKN	KGVSNMAYNL	SLFIGMVFPA	LTTFFSAILS	EGEMSIWQNG	QAIIRILALA	180
181	DEDGKRQTRT	GGQRVDMADV	TKLNVVTANG	KVKQVEVNLN	DLKAAFROSR	PKRSDYRKGQ	240
241	GSKATESSIS	NQCMALIMKS	VLSADQLFAP	GVKMMRTNGF	NASYTTLAEG	ANIPSKYLRH	300
301	MRNCGGVALD	LMGMKRIKNS	PEGAKSKIFS	IIQKKVRGRC	RTEEQRLLTS	ALKISDGENK	360
361	FQRIMDTLCT	SFLIDPPRTT	KCFIPPISSL	MMYIQEGNSV	LAMDFMKNGE	DACKICREAK	420
421	LKVGVNSTFT	MSVARTCVAV	SMVATAFCSA	DIIENAVPGS	ERYRSNIKAN	TTKPKKDSTY	480
481	TIQGLRLSNV	RYEARPETSQ	SNTDRSWQVN	VTDSFGGLAV	FNOGAIREML	GDGTSETTSV	540
541	NVRALVKRIL	KSASERSARA	VKTFMVGEQG	KSAIVISGVG	LFSIDFEGVE	EAERITDMTP	600
601	EIEFDEDDEE	EEDIDI					

Molecular weight: 68050.47

Theoretical pl: 8.20

Figure 5: ISA3mx Nucleotide Sequence

atgtctggat	ttaacctcga	ggtaatggtg	ccggaacaag	gaggaaaagt	ggtcttcagc	60
cttactgaaa	cggggtcatg		tacggagatg			120
tgcgaacttg	cctctgaaaa	catggatttt	ccaagttgtc	ctctggggaa	tggagatgac	180
ttctgtctgt	cgctggcgct	aagcacaatg	agatggtctg	ggatgaccaa	gagaaacaac	240
ttcatggaca	gattcattgg		cactgtacac			300
ggaaatttgt	ccaagaaaag	ccatcacaaa	atggtttgcc	acacttgccc	agacgagtac	360
aagttcagtg	acaaggacga		tactatgagg			420
gacattttcc	ttgatgaact		gttacaggtg			480
aaaggttcct	ggggaggatg '	gtacctcaag	tacgtcaggt	atgctggacc	tettacaga	540
tcaagtggat	tcattgtcaa		tacgacagag			600
agggttgtat	ccatggttga		gacggcttat			660
agcgtctacc	atagtgatgg		tcagcagcga			720
aatgagagag	ctggagttga		ggacttcact			780
aacttgttat	gtaaacaaga	attttgtgtt	tttgtcagaa	aaagaaattq	ctgtaaacat	840
ggaagttgaa	aaattcattt		ctaaagatgt			900
taatgacaat	atatgaaata		ggtgttgatg			960
gagaatttt	actaaaataa	aaaaaaata	aaaaaaaaa	aaaaqaaaaa	aaaaaaaaa	1020
aaaaaagtc	gacatcgata	cgcgtggtca		-		1050

6/10

Figure 6a: Predicted Amino Acid Sequence of unspliced (M1) product of ISA3mx

MSGFNLEVMVPEQGGKVVFSLTETGSCVSFYGDDEPGEGSCELASENMDFPSCPLGNGDD 60
FCLSLALSTMRWSGMTKRNNFMDRFIGSFVHCTPVMIWSYGNLSKKSHHKMVCHTCPDEY 120
KFSDKDEMQGYYEGCLEASTDIFLDELATVVTGGFFPVGLKGSWGGWYLKYVRYAGLAG 180
SSGFIVNQRFYDRAQNKTGSRVVSMVEMDGDGLSFIYEKPSVYHSDGCTGSAARFWKRDH 240
NERAGVELRAGLHFRM 256

Molecular weight: 28,498

Theoetical pl: 5.38

Figure 6b: Predicted Amino Acid Sequence of spliced (M2) product of ISA3mx

MSGFNLEVMVPEQGGKVVFSLTETGSCVSFYGDDEPGGFFPVGLKGSWGGSYLKYVRYAG 60 PLAGSSGFIVNQRFYDRAQNKTGSRVVSMVEMDGDGLSFIYEKPSVYHSDGCTGSAARFW 120 KRDHNERAGVELRAGLHFRM 140

Molecular weight: 15,357

Theoetical pl: 6.82

Figure 6c: Predicted Amino Acid sequence of spliced (M3) product of ISA3mx

MNLLLLLQVASFLSDSKVPGEDGTSSTSGMLDLLRDQVDSLSINDSTTEPKTRLDPGLYP 60
WLKWTETAYRSSTRSLASTIVMGALGQQRGSGNGITMRELELSLGLDFTSECDWLKTCYV 120
NKNFVFLSEKEIAVNMEVEKFICNEN 147

Molecular weight: 14,888

Theoretical pl: 4.65

Figure 7: ISA4ha Nucleotide Sequence

agacgeanac anteges and anteres and anteges as								
agccaagaac gggaatggtc tcatgaagca gatgagcgga aggttccaa gtgattggta ggatctata cattagtaca aacgactgca ctgagggccc cgtcaatgac actagacaat gtggcaaggg acctgtacct gggagcatgt cgaggagatg taagagtgac accaaccttc gtgggagcag ctgagcttgg actgattggg agaacagatg ccttaacagg attttctgta aaggtgctga cttcaacag cctactatt gtagtagttg gactaaatgg aatgtcagga atctacaagg tcgcctctct gggaaacgtag gcggagtcaa cttggtgaac ggatgcggat acttcagcg tcaagacaac tcaaaggaca gatcacgtg tcaagacacct tcaaaggaca gatctactgg tcagacacca accaacctt gtgtgaacca acttcagcg tcaagacacca tcaaaggaca gatctacgga atctacaagg tctgcagca tcaaaggaca gatctacgtg tcagacacct tcgaagtcag tcatacttag atctctagc atgccctt tggtgacaca ccaaacactt ggggcgtata ctctctcgat gggtttgat ctcttcacgg ctctgcttcg attagaacct ttttaacaga ggcactgaca tgtccagggg cagaattgat gcagcttcat gcggatatga aagaatttga ccaaacaggg ctcggaaaca cagatactca agacgtaaac aacagggtaga atgctattcc accaacactt gtgagggcgat acttcaacag gcggagcacaccacac	cagtcg	tcta	tgtcttagaa	accatcctga	caccacctgg	ataggtgact	cccgaagcga	60
ccaacctact acaaagtata ggattctata cattggtaca aacgactgca ctgagggccc cgtcaatgac actagacaat gtggcaaggg acctgtacct gggagcatgt cgaggagatg taagagtgac accaaccttc gtgggagcag ctgagcttgg actgattggg agaacagatg ccttaacagg attttctgta aaggtgctga cttcaacaa gactacattt gtggaaacgtag gactaaatgg aatgtcagga atctacaagg tctgcattgc tgcctcttct ggaaacgtag gcggagtcaa cttggtgaac ggatgcggat acttcagcgc tcatcataga accaaatgtg tcaaacgaa gactacagtg tcaaacacct tcaaaggaca gactacagtg tcaaacacac tcaaaggaca gatctacgg attctcaacag tcaaaggaca accaacctt tggtgaacca ttgaagtcag tcaaacacac tggagacaacac tcaaaggaca gatctacag atgctcctt tggtgacaca ccaaacactg gggggggtata ctctctcaga accaacactg gggggggtata ctctctcaga gggtttgat ctcttcacagg ctctgcttcg attagaactt ttttaacaga ggactgaca tgtccaggag aagaattga ccaaacaggg ctcggaaaca cagaatacta aagacgtaaac aacagagtag gatgattggt aaacttggca gaaacattac aagacgtaaac aacagagtag atgctattcc accaacactt agcaacatct tcatctat	tcaatc	aagg	gtgaaccaac	agtctcttga	tctggttaca	aacttcaagg	gaattctaca	120
taacgacgtg atcataccga cgtcaatgac actagacaat gtggcaaggg acctgtacct gggagcatgt cgaggagatg taagagtgac accaaccttc gtgggagcag ctgagcttgg actgattggg agaacagatg ccttaacagg attttctgta aaggtgctga ctttcaacaa gactacattt gtagtagttg gactaaatgg aatgtcagga atctacaagg tctgcattgc tgcctcttct ggaaacgtag gcggagtcaa cttggtgaac ggatgcggat acttcaggcg tcctctgaga ttcgacacat tcaaaggaca gatctacgtg tcagacacct ttgaaggtcag tatacaaaaga aacattgag tcatacttag atctctagc aatgctcctt tgtgtacaca tgctctctgat gggtttgatt ctcttcagg ctctgctcg attagaacatt ttttaacaga ggcactgaca tgtccaggtg tagattgga cagaattgat gcagcttcat gcgagtatga cagaattgat gcagcttcat gcgagtatga aagaatttga cacaaaaggg gatgattggt aaacttggca gaacatct tcatctat	agccaa	gaac	gggaatggtc	tcatgaagca	gatgagcgga	aggttcccaa	gtgattggta	180
gggagcatgt cgaggagatg taagagtgac accaaccttc gtgggagcag ctgagcttgg actgattgg agaacagatg ccttaacagg attttctgta aaggtgctga ctttcaacaa gactaaatgg aatgtcagga atctacaagg tctgcattgc tgcctcttct ggaaacgtag gcggagtcaa cttggtgaac ggatgcggat acttcagcgc tcctctgaga ttcgacaact tacaaaggaca gatctacgtg tcaaccacact tggagacaaag aacaatgg tcatacttag atcttctag aatgctcctt tgtgtaacac tactacaaaga aacattgagt tggatgagta cgttgacaca ccaaacactg ggggcgtata ctcttctgat gggttgatt ctcttcacgg ctctgctcg attagaactt ttttaacaga agactgaca tgtccaggtg tagattgga cagaattgat gcagcttcat gcgagtatga aagaatttga ccaaacaggg ctcggaaaca cagatactca agacgtaaac aacagggtag atgctatcc accaagctt agcacact tcatcttat	ccaacc	tact	acaaagtata	ggattctata	cattggtaca	aacgactgca	ctgagggccc	240
actgattggg agaacagatg ccttaacagg attttctgta aaggtgctga ctttcaacaa ccctactatt gtagtagttg gactaaatgg aatgtcagga atctacaagg tctgcattgc tgcctcttct ggaaacgtag gcggagtcaa cttggtgaac ggatgcggat acttcagcgc tcctctgaga ttcgacaact tcaaaggaca gatctacgtg tcagacacct ttgaagtcag aggaacaaag aacaatggg tcatacttag atcttctagc aatgctcctt tgtgtacaca tctctctgat gggtttgatt ctcttcacgg ctctgcttcg attagaacact tgttaacaga cggtagcaca tgtccagggg tagattgga cagaattgg cagaattga gagctagaag gagctagaag gatgattggt aacttggca gaaacatct aggagcgtaaac aacagggtaga attttctgta aaggtggtaga ctttcaacaa gcggaggcgat acttcagggc tcagaacacct ttgaagtcag tggtagagacacacact tggtgacaca ccaaacactg gggggggtata cttctcacgg ctctctcttcatg attagaacatt ttttaacaga aagaatttga caaacaggg ctcggaaaca cagaatctca agaacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	taacga	cgtg	atcataccga	cgtcaatgac	actagacaat	gtggcaaggg	acctgtacct	300
coctactatt gtagtagttg tgcctcttct ggaaacgtag tcctctgaga ttcgacaact tcaaaggaca gatctacgtg tcagacacct ttgaagtcag aggaacaaag aacaaatgtg tcatacttag atcttctagc aatgctcctt tggtgacaca tacaaaaga aacaatggt tggatgagt cgttgacaca ccaaacactg ggggggtata tccttctgat gggtttgatt ctcttcagg ctctgcttcg attagactt tttaacaga tggaactgaca tgtccaggtg tagattggt cagaattggt gagattggc aataatgaga gagctagaag aagaatttga ccaaacaggg ctcggaaaca cagatactca agacgtaaac aacagagtag atgtattcc accacagctt agcacatct tcatctcat	gggagc	atgt	cgaggagatg	taagagtgac	accaaccttc	gtgggagcag	ctgagcttgg	360
tgcctcttct ggaaacgtag gcggagtcaa cttggtgaac ggatgcggat acttcagcgc tcctctgaga ttcgacaact tcaaaggaca gatctacgtg tcagacacct ttgaagtcag aggaacaaag aacaatgtg tcatacttag atcttctagc aatgctcctt tgtgtacaca tgctctctgat gggtttgatt ctcttcagg ctctgcttcg attagaactt tttaacaga ggcactgaca tgtccaggtg cagaattgac cagaattgac gagcttcat gcgagtatga cagaattgac aacattgaga gagctagaag cacaaaagga gatgattggt aaacttggca gaaacattac agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctat	actgat	tggg	agaacagatg	ccttaacagg	attttctgta	aaggtgctga	ctttcaacaa	420
tcctctgaga ttcgacaact tcaaaggaca gatctacgtg tcagacacct ttgaagtcag aggaacaaag aacaatgtg tcatacttag atcttctagc aatgctcctt tgtgtacaca tgtcaaaaga aacattgagt tcatacttag atcttctagc aatgctcctt tgtgtacaca tgctctctgat gggtttgatt ctcttcacgg ctctgcttcg attagaactt ttttaacaga ggcactgaca tgtccaggtg cagaattgat gcagattgtcct aaacttgtga aagaatttga ccaaacaggg ctcggaaaca cagatactca agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctat	ccctact	tatt	gtagtagttg	gactaaatgg	aatgtcagga	atctacaagg	tctgcattgc	480
aggaacaaag aacaaatgtg tcatacttag atcttctagc aatgctcctt tgtgtacaca tatcaaaaga aacattgagt tggatgagta cgttgacaca ccaaacactg ggggcgtata tccttctgat gggtttgatt ctcttcacgg ctctgcttcg attagaactt ttttaacaga ggcactgaca tgtccaggtg cagaattgac cagaattgac gagcttcat gcgagtatga cagaattgac caaacaggg ctcggaaaca cagatactca aacagggaaga gagctagaag gatgattgct agcaacatct tcatctctat	tgcctct	ttct	ggaaacgtag	gcggagtcaa	cttggtgaac	ggatgcggat	acttcagcgc	540
tatcaaaaga aacattgagt tggatgagta cgttgacaca ccaaacactg ggggcgtata tccttctgat gggtttgatt ctcttcacgg ctctgcttcg attagaactt ttttaacaga ggcactgaca tgtccaggtg tagattgga cagaattgat gcagcttcat gcgagtatga cagttgtcct aaacttgtga aagaatttga ccaaacaggg ctcggaaaca cagatactca aataatgaga gagctagaag cacaaaagga gatgattggt aaacttggca gaaacattac agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	tectete	gaga	ttcgacaact	tcaaaggaca	gatctacgtg	tcagacacct	ttgaagtcag	600
tccttctgat gggtttgatt ctcttcacgg ctctgcttcg attagaactt ttttaacaga ggcactgaca tgtccaggtg tagattgga cagaattgat gcagcttcat gcgagtatga cagttgtcct aaacttgtga aagaatttga ccaaacaggg ctcggaaaca cagatactca aataatgaga gagctagaag cacaaaagga gatgattggt aaacttggca gaaacattac agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	aggaaca	aaag	aacaaatgtg	tcatacttag	atcttctagc	aatgctcctt	tgtgtacaca	660
ggcactgaca tgtccaggtg tagattggga cagaattgat gcagcttcat gcgagtatga cagttgtcct aaacttgtga aagaatttga ccaaacaggg ctcggaaaca cagatactca aataatgaga gagctagaag cacaaaagga gatgattggt aaacttggca gaaacattac agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	tatcaaa	aaga	aacattgagt	tggatgagta	cgttgacaca	ccaaacactg	ggggcgtata	720
cagttgtcct aaacttgtga aagaatttga ccaaacaggg ctcggaaaca cagatactca aataatgaga gagctagaag cacaaaagga gatgattggt aaacttggca gaaacattac agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	tecttet	tgat	gggtttgatt	ctcttcacgg	ctctgcttcg	attagaactt	ttttaacaga	780
aataatgaga gagctagaag cacaaaagga gatgattggt aaacttggca gaaacattac agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	ggcacto	gaca	tgtccaggtg	tagattggga	cagaattgat	gcagcttcat	gcgagtatga	840
agacgtaaac aacagagtag atgctattcc accacagctt agcaacatct tcatctctat	cagttgt	cct	aaacttgtga	aagaatttga	ccaaacaggg	ctcggaaaca	cagatactca	900
uguegeude dategegetg magnitude datemagnete g	aataatg	gaga	gagctagaag	cacaaaagga	gatgattggt	aaacttggca	gaaacattac	960
gggagtggca ggt	agacgta	aaac	aacagagtag	atgctattcc	accacagctt	agcaacatct	tcatctctat	1020
222-2-22	gggagt	ggca	ggt					1033

Figure 8: ISA4ha Amino Acid Sequence

	1	11	21	31	41	51	
		i	1	1	1	4	
1	SRLCLRNHPD	TTWIGDSRSD	QSRVNQQSLD	LVTNFKGILQ	AKNGNGLMKQ	MSGRFPSDWY	60
61	QPTTKYRILY	IGTNDCTEGP	NDVIIPTSMT	LDNVARDLYL	GACRGDVRVT	PTFVGAAELG	120
121	LIGRTDALTG	FSVKVLTFNN	PTIVVVGLNG	MSGIYKVÇIA	ASSGNVGGVN	LVNGCGYFSA	180
181	PLRFDNFKGQ	IYVSDTFEVR	GTKNKCVILR	SSSNAPLCTH	IKRNIELDEY	VDTPNTGGVY	240
241	PSDGFDSLHG	SASIRTFLTE	ALTCPGVDWD	RIDAASCEYD	SCPKLVKEFD	QTGLGNTDTQ	300
301	IMRELEAQKE	MIGKLGRNIT	DVNNRVDAIP	POLSNIFISM	GVAG	_	

Molecular Weight: 37,437

Theoretical pI: 5.38