are Cavity, Toothache, and Weather, then there are $2 \times 2 \times 4 = 16$ possible worlds. Furthermore, the truth of any given proposition can be determined easily in such worlds by the same recursive truth calculation we used for propositional logic (see page 236).

Note that some random variables may be redundant, in that their values can be obtained in all cases from the values of other variables. For example, the *Doubles* variable in the two-dice world is true exactly when $Die_1 = Die_2$. Including *Doubles* as one of the random variables, in addition to Die_1 and Die_2 , seems to increase the number of possible worlds from 36 to 72, but of course exactly half of the 72 will be logically impossible and will have probability 0.

From the preceding definition of possible worlds, it follows that a probability model is completely determined by the joint distribution for all of the random variables—the so-called **full joint probability distribution**. For example, given Cavity, Toothache, and Weather, the full joint distribution is P(Cavity, Toothache, Weather). This joint distribution can be represented as a $2 \times 2 \times 4$ table with 16 entries. Because every proposition's probability is a sum over possible worlds, a full joint distribution suffices, in principle, for calculating the probability of any proposition. We will see examples of how to do this in Section 12.3.

Full joint probability

12.2.3 Probability axioms and their reasonableness

The basic axioms of probability (Equations (12.1) and (12.2)) imply certain relationships among the degrees of belief that can be accorded to logically related propositions. For example, we can derive the familiar relationship between the probability of a proposition and the probability of its negation:

$$\begin{array}{ll} P(\neg a) &=& \sum_{\omega \in \neg a} P(\omega) & \text{by Equation (12.2)} \\ &=& \sum_{\omega \in \neg a} P(\omega) + \sum_{\omega \in a} P(\omega) - \sum_{\omega \in a} P(\omega) \\ &=& \sum_{\omega \in \Omega} P(\omega) - \sum_{\omega \in a} P(\omega) & \text{grouping the first two terms} \\ &=& 1 - P(a) & \text{by (12.1) and (12.2)}. \end{array}$$

We can also derive the well-known formula for the probability of a disjunction, sometimes called the inclusion—exclusion principle:

Inclusion-exclusion

$$P(a \lor b) = P(a) + P(b) - P(a \land b). \tag{12.5}$$

This rule is easily remembered by noting that the cases where a holds, together with the cases where b holds, certainly cover all the cases where $a \lor b$ holds; but summing the two sets of cases counts their intersection twice, so we need to subtract $P(a \wedge b)$.

Equations (12.1) and (12.5) are often called **Kolmogorov's axioms** in honor of the mathematician Andrei Kolmogorov, who showed how to build up the rest of probability theory from this simple foundation and how to handle the difficulties caused by continuous variables.⁴ While Equation (12.2) has a definitional flavor, Equation (12.5) reveals that the axioms really do constrain the degrees of belief an agent can have concerning logically related propositions. This is analogous to the fact that a logical agent cannot simultaneously believe A, B, and $\neg (A \land B)$, because there is no possible world in which all three are true. With probabilities, however, statements refer not to the world directly, but to the agent's own state of knowledge. Why, then, can an agent not hold the following set of beliefs (even though they violate Kolmogorov's axioms)?

$$P(a) = 0.4$$
 $P(b) = 0.3$ $P(a \land b) = 0.0$ $P(a \lor b) = 0.8$. (12.6)

principle

Kolmogorov's

⁴ The difficulties include the **Vitali set**, a well-defined subset of the interval [0, 1] with no well-defined size.

Proposition	Agent 1's belief	Agent 2 bets	Agent 1 bets	_			each outcome $\neg a, \neg b$	ne
а b	0.4 0.3	\$4 on <i>a</i> \$3 on <i>b</i>	\$6 on $\neg a$ \$7 on $\neg b$	-\$6 -\$7	T -	\$4 - \$7	\$4 \$3	
$a \lor b$	0.8	$2 \text{ on } \neg(a \lor b)$	\$8 on $a \lor b$	\$2 - \$11	\$2 -\$1	\$2 - \$1	-\$8 -\$1	

Figure 12.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set of three bets that guarantees a loss for Agent 1, no matter what the outcome of *a* and *b*.

This kind of question has been the subject of decades of intense debate between those who advocate the use of probabilities as the only legitimate form for degrees of belief and those who advocate alternative approaches.

One argument for the axioms of probability, first stated in 1931 by Bruno de Finetti (see de Finetti, 1993, for an English translation), is as follows: If an agent has some degree of belief in a proposition a, then the agent should be able to state odds at which it is indifferent to a bet for or against a.⁵ Think of it as a game between two agents: Agent 1 states, "my degree of belief in event a is 0.4." Agent 2 is then free to choose whether to wager for or against a at stakes that are consistent with the stated degree of belief. That is, Agent 2 could choose to accept Agent 1's bet that a will occur, offering \$6 against Agent 1's \$4. Or Agent 2 could accept Agent 1's bet that $\neg a$ will occur, offering \$4 against Agent 1's \$6. Then we observe the outcome of a, and whoever is right collects the money. If one's degrees of belief do not accurately reflect the world, then one would expect to lose money over the long run to an opposing agent whose beliefs more accurately reflect the state of the world.

De Finetti's theorem is not concerned with choosing the right values for individual probabilities, but with choosing values for the probabilities of logically related propositions: If Agent 1 expresses a set of degrees of belief that violate the axioms of probability theory then there is a combination of bets by Agent 2 that guarantees that Agent 1 will lose money every time. For example, suppose that Agent 1 has the set of degrees of belief from Equation (12.6). Figure 12.2 shows that if Agent 2 chooses to bet \$4 on a, \$3 on b, and \$2 on $\neg(a \lor b)$, then Agent 1 always loses money, regardless of the outcomes for a and b. De Finetti's theorem implies that no rational agent can have beliefs that violate the axioms of probability.

One common objection to de Finetti's theorem is that this betting game is rather contrived. For example, what if one refuses to bet? Does that end the argument? The answer is that the betting game is an abstract model for the decision-making situation in which every agent is *unavoidably* involved at every moment. Every action (including inaction) is a kind of bet, and every outcome can be seen as a payoff of the bet. Refusing to bet is like refusing to allow time to pass.

Other strong philosophical arguments have been put forward for the use of probabilities, most notably those of Cox (1946), Carnap (1950), and Jaynes (2003). They each construct a

⁵ One might argue that the agent's preferences for different bank balances are such that the possibility of losing \$1 is not counterbalanced by an equal possibility of winning \$1. One possible response is to make the bet amounts small enough to avoid this problem. Savage's analysis (1954) circumvents the issue altogether.

set of axioms for reasoning with degrees of beliefs: no contradictions, correspondence with ordinary logic (for example, if belief in A goes up, then belief in $\neg A$ must go down), and so on. The only controversial axiom is that degrees of belief must be numbers, or at least act like numbers in that they must be transitive (if belief in A is greater than belief in B, which is greater than belief in C, then belief in C must be greater than C) and comparable (the belief in C must be one of equal to, greater than, or less than belief in C). It can then be proved that probability is the only approach that satisfies these axioms.

The world being the way it is, however, practical demonstrations sometimes speak louder than proofs. The success of reasoning systems based on probability theory has been much more effective than philosophical arguments in making converts. We now look at how the axioms can be deployed to make inferences.

12.3 Inference Using Full Joint Distributions

In this section we describe a simple method for **probabilistic inference**—that is, the computation of posterior probabilities for **query** propositions given observed evidence. We use the full joint distribution as the "knowledge base" from which answers to all questions may be derived. Along the way we also introduce several useful techniques for manipulating equations involving probabilities.

Probabilistic inference

We begin with a simple example: a domain consisting of just the three Boolean variables *Toothache*, *Cavity*, and *Catch* (the dentist's nasty steel probe catches in my tooth). The full joint distribution is a $2 \times 2 \times 2$ table as shown in Figure 12.3.

	tooi	hache	¬toothache		
	catch	$\neg catch$	catch	$\neg catch$	
cavity ¬cavity	0.108 0.016	0.012 0.064	0.072 0.144	0.008 0.576	

Figure 12.3 A full joint distribution for the Toothache, Cavity, Catch world.

Notice that the probabilities in the joint distribution sum to 1, as required by the axioms of probability. Notice also that Equation (12.2) gives us a direct way to calculate the probability of any proposition, simple or complex: simply identify those possible worlds in which the proposition is true and add up their probabilities. For example, there are six possible worlds in which $cavity \lor toothache$ holds:

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$
.

One particularly common task is to extract the distribution over some subset of variables or a single variable. For example, adding the entries in the first row gives the unconditional or **marginal probability**⁶ of cavity:

$$P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2$$
.

⁶ So called because of a common practice among actuaries of writing the sums of observed frequencies in the margins of insurance tables.