Statistics for phylogenetic time trees

Lars Berling

11/02/2025

The goal

The goal

Bayesian Phylogenetic Inference via MCMC

- Key object of interest is often the rooted tree topology.
- MCMC Output: Sample of trees (typically thousands)
- Challenges in estimating mean and variance in treespace due to its high-dimensional, non-Euclidean nature.

Treespaces

Treespaces

Figure: Three-dimensional projection of a part of τ space with 4 taxa.

The downfall of stratified spaces

Figure: Geodesics and cone paths

The space of ranked trees

The space of ranked trees

The space of ranked trees

The RNNI graph

This graph is the **treespace** of ranked trees, **R**anked **N**earest **N**eighbour **I**nterchange space.

The shortest path problem

Induced distance

The minimal **number of rearrangement operations** to transform one tree into another

Equivalent: find a path of minimal length in the RNNI graph

The shortest path problem

Induced distance

The minimal **number of rearrangement operations** to transform one tree into another

Equivalent: find a path of minimal length in the RNNI graph

Theorem

The **FindPath** algorithm computes a shortest path in RNNI, with time complexity $O(n^2)$.

^aCollienne, Lena, and Alex Gavryushkin. "Computing nearest neighbour interchange distances between ranked phylogenetic trees." Journal of Mathematical Biology 82.1-2 (2021): 8.

Probability distributions are 'continuous'

Comparing **probability distributions** in BHV and RNNI tree space on **one data set**. **x**-Axis displays **tree metric distance** (relative), **y**-axis displays **difference in probability** (relative)

Probability distributions are 'continuous'

Comparing **probability distributions** in BHV and RNNI tree space on **one data set**. **x**-Axis displays **tree metric distance** (relative), **y**-axis displays **difference in probability** (relative)

Mean tree

Geometric means

Fréchet variance

$$Var(t)_{\mathcal{T}} = \sum_{t_i \in \mathcal{T}} d(t_i, t)^2$$

Comparing Likelihood to MCC

MCC

Maximum Clade Credibility Tree from treeannotator (BEAST).

Convergence Assessment

Convergence

- Sampling from the stationary distribution
- → Parameter trace no trend
 - Effective Sample Size at least 200 (rule of thumb)

Figure: Not converged

Figure: Converged

Convergence

- Sampling from the stationary distribution
- → Parameter trace no trend
 - Effective Sample Size at least 200 (rule of thumb)

Figure: Not converged

Figure: Converged

Do two sets have the same underlying distribution?

independently sampled sets of trees

Do two sets have the same underlying distribution?

independently sampled sets of trees

 $\star = \text{new sample in } T_1$

 $\cdots = RNNI distance$

Potential scale reduction factor

$$extit{PSRF}(t|\mathcal{T}_1,\mathcal{T}_2) = \sqrt{rac{ extit{Var}(t)_{\mathcal{T}_2}}{ extit{Var}(t)_{\mathcal{T}_1}}}, t \in \mathcal{T}_1$$
 a

^aInference from Iterative Simulation Using Multiple Sequences, A. Gelman and D. Rubin

Fréchet variance (normalized)

$$extit{Var}(t)_{\mathcal{T}} = rac{\Sigma_{t_i \in \mathcal{T}} d(t_i, t)^2}{|\mathcal{T}|}$$

Further assessment of overlap

- Effective Sample Size at least 200 (rule of thumb)
- Further downstream analysis: Summarizing/ computing a mean tree

Results on DS1-DS11

		mean - 0.05						mean - 0.02						mean - 0.01					
	ESS-threshold	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6
DS1	200	0	0	1	1	1	1	0	0	0	1	1	1	0	0	0	0	1	1
	500	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
DS2	200	- 1	1	1	1	- 1	1	- 1	1	1	1	1	1	1	0	1	1	1	1
	500	-1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	0	1
DS3	200	1	1	1	1	1	1	- 1	1	1	1	1	1	1	1	1	1	1	1
	500	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DS4	200	0	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0
	500	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0
DS5	200	- 1	1	1	1	- 1	1	- 1	1	1	1	1	1	0	1	1	1	1	1
	500	1	0	1	1	1	1	0	0	1	1	1	1	0	0	1	1	0	1
DS6	200	- 1	1	0	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1
	500	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0
DS7	200	- 1	1	1	1	- 1	1	- 1	1	1	1	1	1	1	1	1	1	1	1
	500	1	1	1	1	1	1	0	0	1	1	1	1	0	0	0	0	0	1
DS8	200	1	1	1	1	1	1	- 1	1	1	1	1	1	1	0	1	1	1	1
	500	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
DS9	200	0	- 1	1	1	- 1	1	- 1	1	1	1	1	1	1	1	1	1	1	1
	500	0	1	1	1	1	1	0	0	1	1	1	1	0	0	1	1	1	1
DS10	200	1	1	1	1	1	1	0	0	1	1	1	1	0	0	1	1	1	1
	500	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DS11	200	- 1	1	1	1	- 1	1	- 1	1	1	1	1	1	1	1	1	1	1	1
	500	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Orange cell = convergence, Blue cell = non-convergence

Conclusion

Summary and Outlook

- Developed a mean tree within the RNNI treespace
- → Theoretical foundation is still an open problem
 - Convergence assessment of samples of trees
- → Multimodal distributions?
- → Advanced characterization of tree distributions

Conclusion

Software

- BEAST2 package: ASM https://github.com/rbouckaert/asm
- Python package: tetres https://github.com/bioDS/tetres

References

- Lars Berling; Lena Collienne; Alex Gavryushkin, Estimating the mean in the space of ranked phylogenetic trees, Bioinformatics (2024)
- Lars Berling; Remco Bouckaert; Alex Gavryushkin, An Automated Convergence Diagnostic for Phylogenetic MCMC Analyses, IEEE/ACM TCBB (2024)