Statistica per la ricerca sperimentale e tecnologica

Corso di Laurea in Informatica, Università di Roma "Tor Vergata"

Anno accademico: 2004-2005 Titolare del corso: Claudio Macci Esame del 10 Febbraio 2006

Esercizio 1. Si lanci un dado equo 4 volte. Per ogni lancio si definisce "successo" l'uscita del numero 2. Sia X la v.a. che conta il numero di successi.

- D1) Calcolare P(X=1), cioè la probabilità di avere esattamente un successo.
- D2) Calcolare $P(X \ge 1)$, cioè la probabilità di avere almeno un successo.
- D3) Calcolare la probabilità di ottenere la sequenza (successo, successo, insuccesso, insuccesso).

Esercizio 2. Supponiamo di avere un'urna con 4 palline bianche e 3 nere. Vengono estratte 2 palline, una alla volta e senza reinserimento. Sia Y la v.a. che conta il numero di palline bianche estratte.

- D4) Calcolare P(Y=1), cioè la probabilità di estrarre esattamente una pallina bianca.
- D5) Calcolare la probabilità che la seconda pallina estratta sia bianca.
- D6) Calcolare la probabilità che la prima pallina estratta sia nera sapendo che la seconda pallina estratta è bianca.

Esercizio 3. Sia Z_1 una v.a. con distribuzione uniforme su [-2, 2].

- D7) Calcolare $\mathbb{E}[Z_1]$.
- D8) Calcolare $Var[Z_1]$.
- Sia Z_2 una v.a. con distribuzione esponenziale di parametro $\lambda = 1$.
- D9) Calcolare $P(Z_2 > 5)$.
- D10) Calcolare $\mathbb{E}[Z_1 + Z_2]$.

Esercizio 4. Sia W una v.a. normale con media μ e varianza $\sigma^2 = 4$.

D11) Calcolare P(W > 0) nel caso in cui $\mu = 2$.

Poi supponiamo che μ sia incognito. Consideriamo un campione di n=16 osservazioni indipendenti e tutte con la stessa distribuzione di W. La media dei valori osservati è 1.5.

D12) Trovare l'intervallo di confidenza per μ al livello $1 - \alpha = 0.95$.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1. La v.a. X ha distribuzione binomiale di parametri n=4 (numero di lanci del dado) e p = 1/6 (probabilità di "successo" in ogni lancio del dado).

D1) Si ha $P(X = 1) = \binom{4}{1}(\frac{1}{6})^1(1 - \frac{1}{6})^{4-1} = \frac{500}{1296}$. D2) Si ha $P(X \ge 1) = 1 - P(X = 0) = 1 - \binom{4}{0}(\frac{1}{6})^0(1 - \frac{1}{6})^{4-0} = 1 - \frac{625}{1296} = \frac{671}{1296}$.

D3) La probabilità richiesta è $\frac{1}{6}\frac{1}{6}\left(1-\frac{1}{6}\right)\left(1-\frac{1}{6}\right) = \frac{25}{1296}$.

Esercizio 2. La v.a. Y ha distribuzione ipergeometrica. Poi indichiamo l'evento "la i-sima pallina estratta è bianca" con B_i .

D4) Si ha $P(Y=1) = \frac{\binom{4}{1}\binom{3}{1}}{\binom{7}{2}} = \frac{4\cdot 3}{(\frac{7\cdot 6}{2})} = \frac{12}{21} = \frac{4}{7}.$

D5) Per la formula delle probabilità totali si ha $P(B_2) = P(B_2|B_1)P(B_1) + P(B_2|B_1^c)P(B_1^c) =$ $\frac{3}{6}\frac{4}{7} + \frac{4}{6}\frac{3}{7} = \frac{12+12}{42} = \frac{24}{42} = \frac{4}{7}$.

D6) Per la formula di Bayes e sfruttando il valore di $P(B_2)$ calcolato prima si ha $P(B_1^c|B_2) = \frac{1}{2}$

 $\frac{P(B_2|B_1^c)P(B_1^c)}{P(B_2)} = \frac{\frac{4}{6}\frac{3}{7}}{4/7} = \frac{3}{6} = \frac{1}{2}.$

Esercizio 3. Per Z_1 sfruttiamo le formule di media e varianza per le v.a. con distribuzione uniforme.

D7) Si ha $\mathbb{E}[Z_1] = \frac{-2+2}{2} = 0$.

D8) Si ha $Var[Z_1] = \frac{(2-(-2))^2}{12} = \frac{4^2}{12} = \frac{16}{12} = \frac{4}{3}$. Per Z_2 sfruttiamo le formule inerenti le v.a. con distribuzione esponenziale.

D9) Si ha $P(Z_2 > t) = e^{-\lambda t}$, e quindi $P(Z_2 > 5) = e^{-1.5} = e^{-5}$.

D10) Per la linearità del valore atteso si ha $\mathbb{E}[Z_1 + Z_2] = \mathbb{E}[Z_1] + \mathbb{E}[Z_2]$; inoltre $\mathbb{E}[Z_2] = \frac{1}{\lambda}$ e, per il valore di $\mathbb{E}[Z_1]$ calcolato prima, otteniamo $\mathbb{E}[Z_1 + Z_2] = 0 + \frac{1}{1} = 1$.

Esercizio 4.

D11) La v.a. $Z_W = \frac{W-2}{\sqrt{4}}$ è la standardizzata di W e si ha $P(W>0) = P(\frac{W-2}{\sqrt{4}} > \frac{0-2}{\sqrt{4}}) = P(Z_W > -1) = 1 - P(Z_W \le -1) = 1 - \Phi(-1) = 1 - (1 - \Phi(1)) = \Phi(1) = 0.84134.$

D12) L'intervallo di confidenza richiesto è $\left[\overline{x}_n - \phi_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{x}_n + \phi_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right]$. Si ha $\overline{x}_n = 1$, $\sigma = \sqrt{4}$, n = 16; inoltre $1 - \frac{\alpha}{2} = 0.975$ segue da $1 - \alpha = 0.95$ e quindi $\phi_{1-\frac{\alpha}{2}} = 1.96$. In conclusione l'intervallo di confidenza richiesto è [0.52, 2.48].

Commenti.

D2) Si poteva procedere anche in questo modo: $P(X \ge 1) = p_X(1) + p_X(2) + p_X(3) + p_X(4) = \frac{500 + 150 + 20 + 1}{1296} = \frac{671}{1296}$.

D5) Si ha $P(B_1) = P(B_2)$. Questo accade sempre nel senso che, qualunque sia la prova che si considera, la probabilità di successo è sempre la stessa. Questo accade nel caso prove indipendenti (caso della distribuzione binomiale), sia nel caso di prove dipendenti che fanno riferimento alla distribuzione ipergeometrica. A dire il vero la cosa non sorprende nel primo caso ...