CS 3313 Foundations of Computing:

Lab 6

Turing Machine Transition Function

- Takes two arguments
 - A state in Q
 - A tape input in Γ

Turing Machine Transition Function

- Takes two arguments
 - A state in Q
 - A tape input in Γ
- $\delta(q,x)$ is undefined or a triple $(q',y,D\in\{L,R\})$
 - q' a new state
 - y value to write on the tape
 - D direction to move the head Left or Right

Turing Machine Transition Function

- Takes two arguments
 - A state in Q
 - A tape input in Γ
- $\delta(q,x)$ is undefined or a triple $(q',y,D\in\{L,R\})$
 - q' a new state
 - y value to write on the tape
 - D direction to move the head Left or Right
- Convention
 - Just as with NFAs and PDAs, if transition is undefined TM goes to reject state
 - If TM enters reject state it halts and rejects
 - If TM enters accept state, it halts and accepts

Church-Turing Thesis

Anything that can be computed by an algorithm can be computed by a Turing Machine

Three Steps to Build a TM

- 1. Write an algorithm
 - Describe at a high-level the logic for recognizing L
 - By Church-Turing thesis, this describes a TM
- 2. Write a Turing-Machine algorithm
 - Specify what happens to the tape (i.e., scan the tape until the first 1 and write a 0)
 - Don't need to specify the control states
 - This is usually enough unless asked for the formal specification
- 3. Write the full specification
 - Includes full specification of transition function and states of control machine (remember that this is a DFA/NFA)

Step 1: Write an algorithm

- Step 1: Write an algorithm
 - Find the midpoint of the input
 - 2. Check that the string before and after the midpoint are the same

- Step 1: Write an algorithm
 - Find the midpoint of the input
 - 2. Check that the string before and after the midpoint are the same
- Question(s):
 - How do we find the midpoint?
 - How do we check the two strings are equal?

- Step 1: Write an algorithm
 - Find the midpoint of the input
 - 2. Check that the string before and after the midpoint are the same
- Question(s):
 - How do we find the midpoint?
 - How do we check the two strings are equal?
- Composing TMs
 - Just like we compose algorithms
 - Design TM for step 1, and then step 2 and call one after the other

- Step 2: Write a Turing-Machine Algorithm
 - Describe what how to manipulate the tape

- Step 3 (OPTIONAL): Write a full description
 - Give the transition diagram for the TM

Exercise 2: $L = \{a^i b^j c^i d^j \mid i, j > 0\}$

• Build TM to decide L - do Steps 1+2, 3 is optional