Integrated Circuit Design

Pham Thanh Huyen

University of Transport and Communications, Vietnam

Chapter 3: ANALOG CMOS CIRCUITS

Outline

- Basic CMOS amplifier
- MOSFET Cascode Stage
- MOSFET Current Mirror
- MOSFET Differential Amplifiers

Pham Thanh Huyen January, 2024.

Basic CMOS amplifier

Pham Thanh Huyen January, 2024.

MOSFET Amplifier Design

A MOSFET amplifier circuit should be designed to ensure that the MOSFET operates in the saturation region, allow the desired level of DC current to flow, and couple to a small-signal input source and to an output "load".

Proper "DC biasing" is required! (DC analysis using large-signal MOSFET model)

Pham Thanh Huyen January, 2024.

MOSFET Amplifier Design

Key amplifier parameters: (AC analysis using small-signal MOSFET model)

- Voltage gain $A_v = v_{out}/v_{in}$.
- Input resistance R_{in} : resistance seen between the input node and ground (with output terminal floating).
- Output resistance R_{out} : resistance seen between the output node and ground (with input terminal grounded).

MOSFET biasing

Mạch khuếch đại chế độ B

Mạch khuếch đại chế độ A

6/50

MOSFETs as Current Sources

A MOSFET behaves as a current source when it is operating in the saturation region.

An NMOSFET draws current from a point to ground ("sinks current"), whereas a PMOSFET draws current from VDD to a point ("sources current").

Common-Source Stage

Pham Thanh Huyen January, 2024.

Common-Source Stage: $\lambda = 0$

Common-Source Stage: $\lambda \neq 0$

$$A_{v} = -g_{m}(R_{D} \parallel r_{O})$$

$$R_{in} = \infty$$

$$R_{out} = R_{D} \parallel r_{O}$$

10/50

CS Gain Variation with L

$$|A_v| = g_m r_o = \frac{\sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}}{\lambda I_D} \propto \sqrt{\frac{2\mu_n C_{ox} WL}{I_D}}$$

Pham Thanh Huyen January, 2024.

CS Stage with Current-Source PMOS Load

Recall that a PMOSFET can be used as a current source from V_{DD} . Use a PMOSFET as a load of an NMOSFET CS amplifier.

PMOS CS Stage with NMOS Load

$$A_{v} = -g_{m2}(r_{O1} \parallel r_{O2})$$

$$R_{out} = r_{O1} \parallel r_{O2}$$

13/50

CS Stage with Diode-Connected Load

$$A_v = ? R_{out} = ?$$

14/50

$$A_v = ?$$

$$A_{\nu}=?$$

Pham Thanh Huyen January, 2024.

$$A_{\nu}=?$$

Common-gate Stage

Pham Thanh Huyen January, 2024.

Common-Gate Amplifier Stage

An increase in V_{in} decreases V_{GS} and hence decreases I_D . The voltage drop across R_D decreases $\Rightarrow V_{out}$ increases. The small-signal voltage gain (A_v) is positive.

Pham Thanh Huyen January, 2024.

CG: Operation in Saturation Region

For M_1 to operate in saturation, V_{out} cannot fall below $V_b - V_{TH}$. \Rightarrow Trade-off between headroom and voltage gain.

Pham Thanh Huyen January, 2024.

$$A_{\nu}=?$$

Pham Thanh Huyen January, 2024.

$$A_{v} = ?$$

Pham Thanh Huyen January, 2024.

$$A_v = ?$$

Pham Thanh Huyen January, 2024.

$$A_v = ?$$

Pham Thanh Huyen January, 2024.

$$A_{v} = ?$$

Pham Thanh Huyen January, 2024.

Source Follower Stage

Pham Thanh Huyen January, 2024.

Source Follower Stage

Amplifier Circuit and Small-signal analysis circuit for determining voltage gain, A_{ν} .

27/50

Source Follower Stage

Amplifier Circuit and Small-signal analysis circuit for determining voltage gain, A_{ν} .

28/50

Example

M2 acts as a current source.

Pham Thanh Huyen January, 2024.

Source Follower with Biasing

 R_G sets the gate voltage to V_{DD} ; R_S sets the drain current.

Pham Thanh Huyen January, 2024.

Supply-Independent Biasing

If R_s is replaced by a current source, the drain current I_D becomes independent of the supply voltage V_{DD} .

Pham Thanh Huyen January, 2024.

Comparison of Amplifier Topologies

Common Source

- Large A_v < 0
 - degraded by $R_{\rm S}$
- Large $R_{\rm in}$
 - determined by biasing circuitry
- $R_{\text{out}} \cong R_{\text{D}}$
- r_o decreases A_v & R_{out} but impedance seen looking into the drain can be "boosted" by source degeneration

Common Gate

- Large A_v > 0
 - -degraded by $R_{\rm S}$
 - Small R_{in}
 - decreased by $R_{\rm S}$
- $R_{\text{out}} \cong R_{\text{D}}$
 - r_o decreases A_v & R_{out} but impedance seen looking into the drain can be "boosted" by source degeneration

Source Follower

- $0 < A_{v} \le 1$
- Large R_{in}
 - determined by biasing circuitry
- Small R_{out}
 - decreased by $R_{\rm S}$
- r_o decreases A_v & R_{out}

32/50

MOS Cascode Amplifier

Pham Thanh Huyen January, 2024.

NMOS Cascode Stage

$$R_{out} = (1 + g_{m1}r_{O1})r_{O2} + r_{O1}$$

$$R_{out} \approx g_{m1}r_{O1}r_{O2}$$

Pham Thanh Huyen January, 2024.

PMOS Cascode Stage

$$R_{out} = (1 + g_{m1}r_{O1})r_{O2} + r_{O1}$$

$$R_{out} \approx g_{m1}r_{O1}r_{O2}$$

35/50

Short-Circuit Transconductance

The short-circuit transconductance is a measure of the strength of a circuit in converting an input voltage signal into an output current signal:

Pham Thanh Huyen January, 2024.

MOS Cascode Amplifier

$$\begin{split} A_{v} &= -G_{m}R_{out} \\ A_{v} &\approx -g_{m1} \big[(1 + g_{m2}r_{O2})r_{O1} + r_{O2} \big] \\ A_{v} &\approx -g_{m1}r_{O1}g_{m2}r_{O2} \end{split}$$

37/50

Pham Thanh Huyen January, 2024.

PMOS Cascode Current Source as Load

A large load impedance can be achieved by using a PMOS cascode current source.

$$R_{oN} \approx g_{m2} r_{O2} r_{O1}$$

$$R_{oP} \approx g_{m3} r_{O3} r_{O4}$$

$$R_{out} = R_{oN} \parallel R_{oP}$$

38/50

Pham Thanh Huyen January, 2024.

MOS Current Mirror

Pham Thanh Huyen January, 2024.

MOS Current Mirror

The motivation behind a current mirror is to duplicate a (scaled version of the) "golden current" to other locations.

40/50

Pham Thanh Huven January, 2024

Example: Current Scaling

MOS current mirrors can be used to scale I_{REF} up or down.

Pham Thanh Huyen January, 2024.

CMOS Current Mirror

Pham Thanh Huyen January, 2024.

MOSFET Differential Amplifiers

Pham Thanh Huyen January, 2024.

Common-Mode (CM) Response

A MOSFET differential pair produces zero differential output as V_{CM} changes.

Pham Thanh Huyen January, 2024.

Equilibrium Overdrive Voltage

The equilibrium overdrive voltage is defined as $V_{GS} - V_{TH}$ when M_1 and M_2 each carry a current of $I_{SS}/2$.

Pham Thanh Huyen January, 2024. 45/50

Minimum CM Output Voltage

In order to maintain M_1 and M_2 in saturation, the common-mode output voltage cannot fall below $V_{CM} - V_{TH}$.

$$V_{DD} - R_D \frac{I_{SS}}{2} > V_{CM} - V_{TH}$$

46/50

Pham Thanh Huyen January, 2024.

Differential Response

Pham Thanh Huyen January, 2024.

Small-Signal Response

Pham Thanh Huyen January, 2024.

Maximum Differential Input Voltage

There exists a finite differential input voltage that completely steers the tail current from one transistor to the other. This value is known as the maximum differential input voltage.

Pham Thanh Huyen January, 2024.

next Chapter 4: DIGITAL CMOS CIRCUITS

Pham Thanh Huyen January, 2024.