## > Problématique



FIGURE 1: LED allumée / LED éteinte

Pourquoi la LED ne s'allume qu'à partir d'une certaine valeur de la **tension** d'alimentation?

Quelle est la valeur du courant dans le circuit?

> Électrocinétique = mouvement des électrons

Lycée M. Montaigne – MP2I 2

- 1.1 Charge électrique
- > Électrisation de la matière



FIGURE 2 : Action mécanique exercée par le verre électrisé par frottement sur de la soie (triboélectricité) ; électrisation des morceaux de papier par influence.

1.1 Charge électrique

- > Porteurs de charges
  - Conducteurs : e-
  - Solution électrolytique : anions / cations
- Définition : Charge électrique qQuantification

$$q = \pm ne$$
 (*n* entier) avec  $e = 1,6.10^{-19}$  C

> Propriété

Conservation au cours du temps

> Propriété

Attraction / Répulsion

## 1.2 Le courant électrique

#### > Mouvement désordonné des charges électriques



FIGURE 3 : Mouvement désordonné des

électrons : agitation thermique des électrons

## Agitation thermique

1.2 Le courant électrique

# > Mouvement ordonné des charges électriques

#### **Définition**:

Courant électrique



FIGURE 4 : Mouvement ordonné des électrons : courant électrique

> Convention : sens positif du courant



FIGURE 5 : Déplacement de charges dans une solution électrolytique (à gauche) et dans un conducteur (à droite)

#### 1.3 Intensité du courant

> Analogie hydraulique

Débit d'un fleuve 
$$D = \frac{\Delta V}{\Delta t}$$

> <u>Définition</u>:

Intensité d'un courant électrique

$$i = \frac{dq}{dt}$$
 (A)

- > Mesure
- > Ordres de grandeur

| Électronique                     | Électrotechnique  |
|----------------------------------|-------------------|
| ordinateur, téléphones portables | four, TGV         |
| 1  pA < i < 100  mA              | 1  A < i < 10  kA |

FIGURE 6 : Ordres de grandeur de l'intensité du courant

# 2 Tension électrique

## 2.1. Analogie hydraulique

Courant électrique ds un fil  $\Leftrightarrow$  courant d'eau ds un tuyau

## > Exemple



FIGURE 7 : Analogie hydraulique : courant d'eau spontané (à gauche) mouvement entretenu (à droite)

## > Circuit électrique

#### 2 Tension électrique

## 2.2 Tension électrique ou différence de potentiels

> Différence de potentiels



FIGURE 8 : Analogie hydraulique et différence de potentiels

- **Potentiel électrique** d'un point  $A:V_A$
- Définition : Différence de potentiels
  - = tension électrique
- Représentation



- 2 Tension électrique
- 2.2 Tension électrique ou différence de potentiels

- > Unité
- > Mesure
- > Ordres de grandeur

| Cantoura                   | Circuits       | Réseau EDF | Lignes à très |
|----------------------------|----------------|------------|---------------|
| Capteurs                   | électroniques  |            | haute tension |
| $10 \ \mu V < U < 10 \ mV$ | 1 V < U < 10 V | U = 230 V  | U > 100  kV   |

FIGURE 9 : Ordres de grandeur de tensions

Conséquence de l'existence d'une tension Circulation d'un courant électrique 2 Tension électrique

## 2.3 Référence de potentiel

## > Définition :

point de référence ou point de masse : potentiel nul

- 3 Circuit électrique dans l'ARQS
- 3.1 Éléments constitutifs d'un circuit électrique
- > Définition :

Circuit électrique = Circuit fermé

#### 3 Circuit électrique dans l'ARQS

#### 3.1 Éléments constitutifs d'un circuit électrique

| Élément             | Définition                                                                                                    |  |
|---------------------|---------------------------------------------------------------------------------------------------------------|--|
| Circuit (ou réseau) | Constitué d'une association de dipôles, actifs et passifs,                                                    |  |
| électrique          | reliés entre eux par des fils de connexion.                                                                   |  |
|                     | Conducteur électrique dont le potentiel est le même en tout                                                   |  |
| Fil de connexion    | point.                                                                                                        |  |
|                     | <u>Propriété</u> :                                                                                            |  |
| Nœud                | Borne commune à plus de deux dipôles.                                                                         |  |
| Branche             | Portion de circuit, i.e. ensemble de dipôles, située entre                                                    |  |
| Dranche             | deux nœuds consécutifs.                                                                                       |  |
|                     | Ensemble de branches formant un circuit fermé qui ne<br>passe qu'une seule fois par les nœuds rencontrés: une |  |
| Maille              |                                                                                                               |  |
|                     | maille est orientée arbitrairement.                                                                           |  |
| Mana                | Référence des potentiels pour un circuit donné. Son                                                           |  |
| Masse               | symbole est:                                                                                                  |  |
|                     | Par mesure de sécurité, la carcasse métallique des                                                            |  |
| Masse carcasse ou   | appareils électriques est reliée à la Terre, qui est au                                                       |  |
| Terre               | potentiel électrique nul. Son symbole est : 🖶. La Terre peut                                                  |  |
|                     | servir de référence des potentiels.                                                                           |  |

FIGURE 10 : Éléments constitutifs d'un circuit électrique

#### 3 Circuit électrique dans l'ARQS

#### 3.1 Éléments constitutifs d'un circuit électrique

#### Exercice d'application 1

- 1. Déterminer le nombre de nœuds, de branches et de mailles dans le circuit.
- 2. Écrire toutes les lois des nœuds indépendantes.
- 3. Écrire toutes les lois des mailles indépendantes.
- 4. Écrire les relations courant tension pour chacun des onze dipôles.



# 3.2 Régimes d'étude d'un circuit

- Régime stationnaire ou permanent continu Grandeurs électriques indépendantes du temps lettres majuscules : I, U<sub>AB</sub>, Q<sub>0</sub>...
- > Régime variable

Grandeurs électriques dépendent du temps

lettres minuscules: i(t), u(t), q(t)...

- 3.3 Approximation des régimes quasistationnaires (ARQS)
- > Onde électromagnétique
- > Exemple
- > Définition : ARQS (ou ARQP)
- > Propriété

#### 3.4 Lois de Kirchhoff

- 3.4.1 Loi des nœuds
- > Conservation de la charge
- > Énoncé :

$$\sum_{k} \varepsilon_{k} i_{k} = 0$$



avec  $\varepsilon_k = +1$  si le courant arrive en N et  $\varepsilon_k = -1$  si le courant repart de N

- > Corollaire
- > Remarque

- 3 Circuit électrique dans l'ARQS
- 3.4 Lois de Kirchhoff
- 3.4.1 Loi des nœuds

## > Exercice d'application 1 (suite)



## > Conséquence

L'intensité du courant est la même en tout point d'une branche

#### 3 Circuit électrique dans l'ARQS

3.4 Lois de Kirchhoff

#### 3.4.2 Loi des mailles

$$\sum_k \varepsilon_k u_k = 0$$



avec  $\varepsilon_k = +1$  si la flèche de la tension  $u_k$  est orientée selon le sens de parcours de

la maille et  $\varepsilon_k = -1$  sinon.

Exercice d'application 1 (suite)



> Additivité des tensions

Relation de Chasles

$$U_{{\scriptscriptstyle AC}} = U_{{\scriptscriptstyle AB}} + U_{{\scriptscriptstyle BC}}$$



# 4 Dipôles électriques

4.1 Définition

<u>Définition</u>: Dipôle

# 4.2 Convention récepteur - Convention générateur



Lycée M. Montaigne – MP2I 20

#### 4 Dipôles électriques

## 4.3 Classification des dipôles

> Caractéristique statique

$$I = f(U)$$
 ou  $U = f(I)$ 

- > Dipôle symétrique / non symétrique
- Dipôle passif / actif
- > Dipôle linéaire / non linéaire



Exercice d'application 2

Préciser les caractéristiques des trois dipôles dont les caractéristiques statiques sont représentées sur la figure ci-contre.



#### 4 Dipôles électriques

## 4.4 Dipôles passifs linéaires

étudiés en convention récepteur

#### 4.4.1 Résistance

> Rôle



FIGURE 11 : Analogie entre résistance hydraulique et résistance électrique

#### Opposition à la circulation du courant

- 4 Dipôles électriques
- 4.4 Dipôles passifs linéaires
- 4.4.1 Résistance
- > Résistance d'un matériau conducteur

$$R = \rho \frac{l}{S} (\Omega)$$

 $\rho$ : résistivité du milieu conducteur (en  $\Omega$ .m)

- > Autres grandeurs physiques liées à la résistance
  - conductivité  $\sigma(S.m^{-1})$   $\sigma = \frac{1}{\rho}$
  - conductance  $G = \frac{1}{R} = \frac{\sigma S}{l}$  (S)

4 Dipôles électriques

4.4 Dipôles passifs linéaires

4.4.1 Résistance

## $\triangleright$ Ordres de grandeur de $\rho$

| isolant                         | semi-conducteur                    | conducteur                                |
|---------------------------------|------------------------------------|-------------------------------------------|
| $\rho > 10^5 \Omega \mathrm{m}$ | $1 < \rho < 10^4 \Omega \text{.m}$ | $\rho \simeq 10^{-7} \ \Omega.\mathrm{m}$ |

FIGURE 12 : Ordres de grandeur de résistivités

## > Ordres de grandeur de R

| Élément électrique                    | Résistance                            |
|---------------------------------------|---------------------------------------|
| Fil électrique en cuivre              | $R \simeq 1 \Omega$                   |
| Résistance d'entrée d'un haut-parleur | $R \simeq 8 \Omega$                   |
| Résistance de sortie d'un GBF         | $R = 50 \Omega$                       |
| Résistances usuelles en électronique  | $100~\Omega < R < 100~\text{k}\Omega$ |
| Résistance d'entrée d'un voltmètre    | $R = 10 \text{ M}\Omega$              |

FIGURE 13 : Ordres de grandeur de résistances

- 4 Dipôles électriques
- 4.4 Dipôles passifs linéaires
- 4.4.1 Résistance
- Réalisation
- > Relation courant tension

#### Convention récepteur

#### Convention générateur



$$u = Ri$$
 ou  $i = Gu$ 

$$u = -Ri$$
 ou  $i = -Gu$ 

> Caractéristique statique

droite passant par l'origine, symétrique

- 4 Dipôles électriques
- 4.4 Dipôles passifs linéaires

#### 4.4.2 Condensateur

- > Constitution
- > Capacité C (en Farad : F)



- ightharpoonup Types de condensateurs 1 pF < C < 100 nF  $C > 1 \text{ } \mu\text{F}$
- > Condensateur réel
- > Relation courant tension

régime variable : 
$$i = \frac{dq}{dt}$$

- > Rôles
- > Particularité

# Propriété

u(t) ne peut pas subir de discontinuité





- 4 Dipôles électriques
- 4.4 Dipôles passifs linéaires

#### 4.4.3 Inductance

- > Constitution
- ightharpoonup Ordres de grandeur 1 mH < L < 10 H
- > Relation courant tension
- > Rôles
- > Particularité

## <u>Propriété</u>





#### i(t) ne peut pas subir de discontinuité

> Bobine idéale / bobine réelle



$$u = ri + L \frac{di}{dt}$$

- 4 Dipôles électriques
- 4.4 Dipôles passifs linéaires
- 4.4.3 Inductance

## > Exercice d'application 1 (suite et fin)



## 4.5 Dipôles actifs linéaires

étudiés en convention générateur

#### 4.5.1 Source de tension

> Source idéale de tension

**Définition**: 
$$\forall i$$
,  $u = E$ 

E: force électromotrice (f.e.m.)

> Source réelle de tension

#### **Définition**:

$$u = E - Ri$$



FIGURE 14 : Source réelle de tension (caractéristique et schéma)

- 4 Dipôles électriques
- 4.5 Dipôles actifs linéaires

#### 4.5.2 Source de courant

> Source idéale de courant

$$\forall u, i = I_0$$

*l*<sub>0</sub>: courant électromoteur (c.e.m.)

> Source réelle de courant

#### Définition :

$$i = I_0 - \frac{u}{R}$$







FIGURE 15 : Source réelle de courant (caractéristique et schéma)

- 4 Dipôles électriques
- 4.5 Dipôles actifs linéaires

#### 4.5.3 Modèle équivalent de Thévenin

- > Propriété
- > Caractéristique et schéma



FIGURE 16 : Générateur de Thévenin (caractéristique et schéma)

# 5 Associations de dipôles

- 5.1 Association série / parallèle
- > <u>Définition</u> : 2 dipôles associés en <u>série</u>
  - 1 borne commune et



> <u>Définition</u>: 2 dipôles associés en <u>parallèle</u>

leurs 2 bornes reliées aux mêmes nœuds et 🕥







#### 5 Associations de dipôles

#### 5.1 Association série / parallèle

#### Exercice d'application 3

- 1. Quelles sont les résistances en série?
- 2. Quelles sont les résistances en parallèle?
- 3. Déterminer la tension u aux bornes de  $R_1$  en utilisant un pont diviseur de tension. On prendra

$$R_1 = R_4 = R_5 = R$$
,  $R_2 = \frac{R}{2}$  et  $R_3 = 2R$ .



#### 5 Associations de dipôles

#### 5.2 Association de résistances

> Association en série



$$R_{\acute{e}q}=R_{_1}+R_{_2}$$



> Association en parallèle



$$\frac{1}{R_{\acute{e}q}} = \frac{1}{R_1} + \frac{1}{R_2} \Leftrightarrow R_{\acute{e}q} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$



#### 5.3 Diviseurs de tension et de courant

- 5.3.1 Diviseur de tension
- > Expression du diviseur de tension



FIGURE 17: Montage diviseur de tension (DDT)

- > Rôle d'un pont diviseur de tension
- > Outil DDT: quand l'utiliser?

5 Associations de dipôles

5.3 Diviseurs de tension et de courant

5.3.1 Diviseur de tension

# > Exercice d'application 3 (suite et fin)

- 1. Quelles sont les résistances en série?
- 2. Quelles sont les résistances en parallèle?
- 3. Déterminer la tension u aux bornes de  $R_1$  en utilisant un pont diviseur de tension. On prendra

$$R_1 = R_4 = R_5 = R$$
,  $R_2 = \frac{R}{2}$  et  $R_3 = 2R$ .



5 Associations de dipôles

5.3 Diviseurs de tension et de courant

#### 5.3.2 Diviseur de courant

> Expression du diviseur de courant







FIGURE 18 : Montage diviseur de courant (DDC)

- > Rôle d'un pont diviseur de courant
- > Outil DDC: quand l'utiliser?

#### 5.4 Associations de générateurs

- Association en série de deux sources idéales de tension
   Propriété
- Association en série de deux sources réelles de tension
  - <u>Propriété</u>
- > Association interdite



#### 6 Résistances d'entrée et de sortie



> <u>Définition</u>: Résistance d'entrée R<sub>e</sub>

$$R_e = \frac{U_e}{I_e}$$

Lycée M. Montaigne – MP2I 39

CHAPITRE OS4
Grandeurs et dipôles
électriques

6 Résistances d'entrée et de sortie

6.1 Résistance d'entrée

## $\triangleright$ Influence de $R_e$ sur un montage



FIGURE 19 : Influence de la résistance d'entrée

#### 6 Résistances d'entrée et de sortie

- 6.2 Résistance de sortie
- $\triangleright$  <u>Définition</u>: Résistance de sortie  $R_s$
- $\triangleright$  Influence de  $R_s$  sur un montage



FIGURE 20: Influence de la résistance de sortie

#### 7 Point de fonctionnement d'un circuit

- > Retour à la problématique
- > Définition : Point de fonctionnement P

$$ig(U,Iig)$$
 ou  $ig(I,Uig)$ 

Méthode graphique



- > Résolution algébrique
- > Résolution numérique
- > Exemple : retour à la problématique

Tour approfondir...

[1] S. Rivière, L'univers des LED, Les Défis du CEA, n°240, p 23-25, Mars / Avril 2020

### 8 Puissance et énergie électriques

- 8.1 Définitions
- > <u>Définition</u>: Puissance électrocinétique

$$\mathcal{P} = ui = u_{AB}i_{A \to B}$$
 (W: Watt)

- > Conséquence
- > Définition : Puissance
- > Unité
- > Mesure

$$\mathcal{P} = \frac{d\mathscr{E}(t)}{dt}$$

#### 8.2 Caractère récepteur ou générateur du dipôle

> Puissance : grandeur algébrique

> Propriété : Puissance électrocinétique

caractère **récepteur** :  $\mathcal{P} > 0$  caractère **générateur** :  $\mathcal{P} < 0$ 



- 8 Puissance et énergie électriques
- 8.2 Caractère récepteur ou générateur du dipôle

#### Représentation dans le plan (i,u)



FIGURE 21 : Caractère récepteur ou générateur selon la convention choisie

8 Puissance et énergie électriques

# 8.3 Bilan de puissance <u>Propriété</u>

#### 8.4 Puissance dissipée dans une résistance

Puissance électrique instantanée reçue par une résistance

$$\mathscr{P} = ui = Ri^2 = \frac{u^2}{R}$$



> Signe de la puissance

$$\mathcal{P} > 0$$

dissipée sous forme de chaleur : effet Joule

# 8.5 Énergie stockée dans un condensateur ou une inductance

- 8.5.1 Condensateur
- Puissance électrique instantanée reçue par un condensateur
- > Énergie électrostatique

$$\mathcal{E}_e = \frac{1}{2}Cu^2 > 0$$



C est chargé sous la tension u

> Signe de la puissance

- 8 Puissance et énergie électriques
- 8.5 Énergie stockée dans un condensateur ou une inductance

#### 8.5.2 Inductance

Puissance électrique instantanée reçue par une inductance

$$\mathscr{P} = ui = Li \frac{di}{dt} = \frac{d\left(\frac{1}{2}Li^2\right)}{dt} = \frac{d\mathscr{E}_m}{dt}$$

> Énergie magnétique

$$\mathscr{E}_m = \frac{1}{2}Li^2 > 0$$



L est magnétisée par le courant i

> Signe de la puissance