```
In [1]: import pandas as pd
        #data = pd.read csv('../cirrhosis.csv')
        #data.sample(200).to_csv('sample.csv', index=False)
        sampled data = pd.read csv('sample.csv')
In [2]:
        sampled data.isnull().sum()
        sampled data
Out[2]:
              ID N_Days Status
                                        Drug
                                                Age Sex Ascites Hepatomegaly S
                    1119
          0 411
                               C
                                         NaN 18628
                                                       F
                                                             NaN
                                                                            NaN
          1 100
                     552
                               D
                                      Placebo 18799
                                                       Μ
                                                                              Υ
```

С **2** 367 2202 NaN 23376 NaN NaN D-58 4459 16279 Μ Ν penicillamine **4** 350 662 D NaN 17532 F NaN NaN ... D-**195** 119 19817 F Ν Ν 515 D penicillamine **196** 136 3098 20440 F Ν Ν penicillamine 197 39 20232 F Ν Υ 2297 penicillamine **198** 269 1363 С Placebo 16467 Ν Ν **199** 221 2050 С Placebo 20684 F Υ Ν

200 rows × 20 columns

In [3]: sampled_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 20 columns):

#	Column	Non-Null Coun	t Dtype
0	ID	200 non-null	int64
1	N_Days	200 non-null	int64
2	Status	200 non-null	object
3	Drug	152 non-null	object
4	Age	200 non-null	int64
5	Sex	200 non-null	object
6	Ascites	152 non-null	object
7	Hepatomegaly	152 non-null	object
8	Spiders	152 non-null	object
9	Edema	200 non-null	object
10	Bilirubin	200 non-null	float64
11	Cholesterol	139 non-null	float64
12	Albumin	200 non-null	float64
13	Copper	152 non-null	float64
14	Alk_Phos	152 non-null	float64
15	SG0T	152 non-null	float64
16	Tryglicerides	137 non-null	float64
17	Platelets	196 non-null	float64
18	Prothrombin	198 non-null	float64
19	Stage	199 non-null	float64
dtvp	es: float64(10)	. int64(3). ob	iect(7)

dtypes: float64(10), int64(3), object(7)

memory usage: 31.4+ KB

In [4]: sampled_data.describe()

Out[4]:

	ID	N_Days	Age	Bilirubin	Cholesterol	Albuı
count	200.000000	200.000000	200.000000	200.000000	139.000000	200.00
mean	211.320000	1914.175000	18678.670000	3.347500	389.071942	3.47
std	118.428944	1092.006274	3790.299455	4.426246	268.640044	0.43
min	1.000000	41.000000	9598.000000	0.300000	168.000000	1.96
25%	112.750000	1113.000000	16065.750000	0.800000	258.500000	3.19
50 %	213.000000	1690.000000	18628.000000	1.450000	318.000000	3.50
75 %	306.000000	2573.250000	21431.750000	3.500000	395.000000	3.76
max	418.000000	4509.000000	28650.000000	28.000000	1775.000000	4.52

```
In [5]: sampled_data["Age"].fillna(sampled_data["Age"].mean(), inplace=True)
    sampled_data["Bilirubin"].fillna(sampled_data["Bilirubin"].mean(), inplace=True)
    sampled_data["Copper"].fillna(sampled_data["Copper"].mean(), inplace=True)
    sampled_data["Alk_Phos"].fillna(sampled_data["Alk_Phos"].mean(), inplace=Tru
    sampled_data["Tryglicerides"].fillna(sampled_data["Tryglicerides"].mean(), i
    sampled_data["Platelets"].fillna(sampled_data["Platelets"].mean(), inplace=True)
    sampled_data["Stage"].fillna(sampled_data["Stage"].mean(), inplace=True)
    sampled_data["SGOT"].fillna(sampled_data["SGOT"].mean(), inplace=True)
    sampled_data["Cholesterol"].fillna(sampled_data["Cholesterol"].mean(), inplace=True)
```

sampled_data

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:1: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Age"].fillna(sampled_data["Age"].mean(), inplace=True)
C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:2: FutureWarnin
g: A value is trying to be set on a copy of a DataFrame or Series through ch
ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Bilirubin"].fillna(sampled_data["Bilirubin"].mean(), inplace
=True)

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:3: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Copper"].fillna(sampled_data["Copper"].mean(), inplace=True)
C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:4: FutureWarnin
g: A value is trying to be set on a copy of a DataFrame or Series through ch
ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method($\{col: value\}$, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Alk_Phos"].fillna(sampled_data["Alk_Phos"].mean(), inplace=T
rue)

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:5: FutureWarnin
g: A value is trying to be set on a copy of a DataFrame or Series through ch

ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Tryglicerides"].fillna(sampled_data["Tryglicerides"].mean(),
inplace=True)

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:6: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through ch ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Platelets"].fillna(sampled_data["Platelets"].mean(), inplace
=True)

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:7: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through ch ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Prothrombin"].fillna(sampled_data["Prothrombin"].mean(), inp lace=True)

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:8: FutureWarnin g: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Stage"].fillna(sampled_data["Stage"].mean(), inplace=True)
C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:9: FutureWarnin
g: A value is trying to be set on a copy of a DataFrame or Series through ch
ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["SGOT"].fillna(sampled_data["SGOT"].mean(), inplace=True)
C:\Users\HP\AppData\Local\Temp\ipykernel_7324\3091490043.py:10: FutureWarnin
g: A value is trying to be set on a copy of a DataFrame or Series through ch
ained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behave s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins tead, to perform the operation inplace on the original object.

sampled_data["Cholesterol"].fillna(sampled_data["Cholesterol"].mean(), inp lace=True)

t[5]:		ID	N_Days	Status	Drug	Age	Sex	Ascites	Hepatomegaly	;
	0	411	1119	С	NaN	18628	F	NaN	NaN	
	1	100	552	D	Placebo	18799	М	N	Υ	
	2	367	2202	С	NaN	23376	F	NaN	NaN	
	3	58	4459	С	D- penicillamine	16279	М	N	N	
	4	350	662	D	NaN	17532	F	NaN	NaN	
	195	119	515	D	D- penicillamine	19817	F	N	N	
	196	136	3098	С	D- penicillamine	20440	F	N	N	
	197	39	2297	D	D- penicillamine	20232	F	N	Υ	
	198	269	1363	С	Placebo	16467	F	N	N	
	199	221	2050	С	Placebo	20684	F	N	Υ	

200 rows \times 20 columns

```
Out[6]: ID
                          0
        N Days
                          0
        Status
                          0
        Drug
                         48
        Age
                          0
        Sex
                          0
        Ascites
                         48
        Hepatomegaly
                         48
        Spiders
                         48
        Edema
                          0
        Bilirubin
                          0
        Cholesterol
                          0
        Albumin
                          0
        Copper
                          0
        Alk Phos
                          0
        SG0T
                          0
        Tryglicerides
        Platelets
                          0
        Prothrombin
                          0
        Stage
                          0
        dtype: int64
```

```
In [7]: sampled_data.fillna(method='bfill', inplace=True)
    sampled_data
```

C:\Users\HP\AppData\Local\Temp\ipykernel_7324\2206756072.py:1: FutureWarnin
g: DataFrame.fillna with 'method' is deprecated and will raise in a future v
ersion. Use obj.ffill() or obj.bfill() instead.
 sampled data.fillna(method='bfill', inplace=True)

046[7]1			ii_bays	Julia	Diag	Age	JUX	ASCICOS	nepatomegary		
	0	411	1119	С	Placebo	18628	F	N	Υ		
	1	100	552	D	Placebo	18799	М	N	Υ		
	2	367	2202	С	D- penicillamine	23376	F	N	N		
	3	58	4459	С	D- penicillamine	16279	М	N	N		
	4	350	662	D	Placebo	17532	F	N	Υ		
	195	119	515	D	D- penicillamine	19817	F	N	N		
	196	136	3098	С	D- penicillamine	20440	F	N	N		
	197	39	2297	D	D- penicillamine	20232	F	N	Υ		
	198	269	1363	С	Placebo	16467	F	N	N		
	199	221	2050	С	Placebo	20684	F	N	Y		
			20 colun								
In [8]:		of_s of_s		led_dat	a[" <mark>Sex"].</mark> mode	()					
Out[8]:	0 Name	F : Sex	a, dtype:	object							
In [9]:		an_of an_of	_	ampled_d	ata[" <mark>Age</mark> "].me	dian()					
Out[9]:	np.f	loat6	4(18628.0	9)							
In [10]:	Q1 = sampled_data["N_Days"].quantile(0.25) Q3 = sampled_data["N_Days"].quantile(0.75) IQR = Q3 - Q1 Q3, Q1, IQR										
Out[10]:	(np.	float	:64(2573.2	25), np.	float64(1113.	0), np.	float	64(1460.	25))		
In [11]:	upper	r_lim	it = Q1 - it = Q3 + it, upper	- 1.5 *							
Out[11]:	(np.	float	:64(-1077	.375), n	p.float64(476	3.625)))				
In [12]:		<pre>data_no_outliers = sampled_data[sampled_data["N_Days"].between(lower_limit, data_no_outliers</pre>									

Out[7]: ID N_Days Status Drug Age Sex Ascites Hepatomegaly S

Out[12]:		ID	N_Days	Status	Drug	Age	Sex	Ascites	Hepatomegaly	S
	0	411	1119	С	Placebo	18628	F	N	Υ	
	1	100	552	D	Placebo	18799	М	N	Υ	
	2	367	2202	С	D- penicillamine	23376	F	N	N	
	3	58	4459	С	D- penicillamine	16279	М	N	N	
	4	350	662	D	Placebo	17532	F	N	Υ	
	195	119	515	D	D- penicillamine	19817	F	N	N	
	196	136	3098	С	D- penicillamine	20440	F	N	N	
	197	39	2297	D	D- penicillamine	20232	F	N	Υ	
	198	269	1363	С	Placebo	16467	F	N	N	
	199	221	2050	С	Placebo	20684	F	N	Υ	

200 rows × 20 columns

In [13]: sampled_data["Stage"].hist(bins=10)


```
In [14]: import matplotlib.pyplot as plt

plt.hist(sampled_data["Stage"], bins=10)
plt.xlabel("Stage")
plt.ylabel("Frequency")
plt.title("Stage Frequency Histogram")
plt.show()
```



```
In [15]: plt.scatter(sampled_data["Stage"], sampled_data["N_Days"])
    plt.ylabel("Days")
    plt.xlabel("Stage")
    plt.title("Age vs Stage")
    plt.show()
```


Out[16]:		ID	N_Days	Age	Bilirubin	Cholesterol	Albumin	Copper	Alk_F
	0	411	1119	18628	0.6	389.071942	3.57	98.907895	1892.35
	1	100	552	18799	2.3	178.000000	3.00	145.000000	746.000
	2	367	2202	23376	1.1	389.071942	3.49	98.907895	1892.353
	3	58	4459	16279	0.7	242.000000	4.08	73.000000	5890.000
	4	350	662	17532	2.1	389.071942	4.10	98.907895	1892.35
	195	119	515	19817	0.6	636.000000	3.83	129.000000	944.000
	196	136	3098	20440	0.8	263.000000	3.35	27.000000	1636.000
	197	39	2297	20232	0.7	282.000000	3.00	52.000000	9066.800
	198	269	1363	16467	3.6	374.000000	3.50	143.000000	1428.000
	199	221	2050	20684	0.9	360.000000	3.65	72.000000	3186.000

200 rows × 13 columns

In [17]: cleaned_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	ID	200 non-null	int64
1	N_Days	200 non-null	int64
2	Age	200 non-null	int64
3	Bilirubin	200 non-null	float64
4	Cholesterol	200 non-null	float64
5	Albumin	200 non-null	float64
6	Copper	200 non-null	float64
7	Alk_Phos	200 non-null	float64
8	SG0T	200 non-null	float64
9	Tryglicerides	200 non-null	float64
10	Platelets	200 non-null	float64
11	Prothrombin	200 non-null	float64
12	Stage	200 non-null	float64

dtypes: float64(10), int64(3)

memory usage: 20.4 KB

In [18]: correlated_data = cleaned_data.corr()
 correlated_data

Out[18]:		ID	N_Days	Age	Bilirubin	Cholesterol	Albumin
	ID	1.000000	-0.316727	0.066185	-0.100034	-0.005703	-0.113123
	N_Days	-0.316727	1.000000	-0.144761	-0.403851	-0.108755	0.509910
	Age	0.066185	-0.144761	1.000000	-0.027868	-0.151459	-0.195860
	Bilirubin	-0.100034	-0.403851	-0.027868	1.000000	0.304989	-0.351782
	Cholesterol	-0.005703	-0.108755	-0.151459	0.304989	1.000000	-0.113405
	Albumin	-0.113123	0.509910	-0.195860	-0.351782	-0.113405	1.000000
	Copper	0.018039	-0.284678	0.023227	0.358370	0.103652	-0.239669
	Alk_Phos	-0.209919	0.158817	-0.018283	0.123078	0.187121	-0.071006
	SGOT	0.000901	-0.150503	-0.079320	0.372018	0.318303	-0.252584
	Tryglicerides	0.010888	-0.175815	-0.053196	0.294586	0.174378	-0.047794
	Platelets	-0.047873	0.148136	-0.191305	0.042362	0.139782	0.150114
	Prothrombin	-0.310112	-0.180020	0.164127	0.246415	-0.112854	-0.261991
	Stage	-0.031836	-0.414424	0.196981	0.182695	-0.016330	-0.268827

```
In [19]: import seaborn as sns
  plt.figure(figsize=(9, 7))
  sns.heatmap(correlated_data, annot=True, linewidths=1)
  plt.title('Correlation Heatmap')
  plt.show()
```


This notebook was converted with convert.ploomber.io