

设计指南

CMT453x 系列芯片硬件设计指南

简介

该文档适应于本公司 CMT453x 系列芯片的硬件设计参考。其内容是针对芯片硬件设计、部分重要元器件选型及 PCB Layout 注意事项的详细说明。

目录

百	17F		
1	原3	理图设计	3
	1.1	原理图电源设计说明	2
	1.2	两种供电模式差异对比	
	1.3	DCDC 供电模式参考原理图	
	1.4	LDO 供电模式参考原理图	
	1.5	最小系统参考 BOM 表	
	1.6	外部晶振参考原理图	
	1.7	复位电路参考原理图	
	1.8	麦克风电路参考原理图	
	1.9	红外发射电路参考原理图	
	1.10	传导/辐射认证(CE/FCC)测试参考设计	
	0	7 47 1111, 1000 1110 1 1000	
2	原理	理图芯片脚位说明	9
	2.1	电源管脚	9
	2.2	RF 管脚	9
	2.3	晶振管脚	9
	2.4	Debug 调试管脚	9
	2.5	AMIC 音频管脚	10
	2.6	ю 接口	10
3	PCI	B LAYOUT 设计说明	11
	3.1	RFIOP 走线设计要求	11
	3.2	32MHz 晶振走线要求	12
	3.3	芯片接地走线要求	14
	3.4	电源走线要求	15
	3.5	AMIC 音频走线要求	15
4	版	本历史	17
5	声	明	18
	,		

1 原理图设计

1.1 原理图电源设计说明

- 1) 当外部电源供电电压在 1.8V~3.6V 时,可以直接加到芯片 VCC 上。
- 2) VCCRF 最高供电电压为 3.6V,建议并联到 VCC 引脚。
- 3) 注意芯片 GND 引脚在芯片的底部,布线时必须把芯片底部的方形焊盘与 GND 网络相连。详情参考章节 3.3。

1.2 两种供电模式差异对比

芯片有两种供电方式可选,两种供电方式的主要特性差异如下表:

参数模式	DCDC 供电模式	LDO 供电模式
BOM 差异	Switch 引脚需要电感	Switch 引脚不需要电感
active 功耗	1.8 mA	3.8 mA
sleep 功耗	1.6 uA	1.6 uA
RFTX 功耗	4 mA	8 mA
RFTX 功耗	3.8 mA	7.8 mA
RFRX 灵敏度	-96 dBm	-96 dBm
RFTX 功率最大值	+6 dBm	+6 dBm

1.3 DCDC 供电模式参考原理图

图 1-1 DCDC 供电模式参考原理图

1.4 LDO 供电模式参考原理图

图 1-2 LDO 供电模式参考原理图

1.5 最小系统参考 BOM 表

Item	Part Name	Description	REV	QTY	Reference
0001	CAP0402,105	CAP,CER,16V,1UF,X7R,10%,0402		4	C4,C20,C23,C30
0002	CAP0402,104	CAP,CER,16V,0.1UF,X7R,10%,0402		1	C19
0003	CAP0603,2.2uF	CAP,CER,10V,2.2UF,X7R,10%,0603		1	С9
0004	CAP0603,10uF	CAP,CER,10V,10UF,X7R,10%,0603		1	C18
0005	CAP0402,1.2PF	CAP,CER,50V,1.2PF,COG,5%,0402		1	C32
0006	CAP0402,12PF	CAP,CER,50V,12PF,COG,5%,0402		2	C28,C29
0007	CAP0402,100PF	CAP,CER,50V,100PF,COG,5%,0402		1	C33
008	CMT4531_QFN32	IC,CMT4531,QFN32,32PIN		1	U1
009	XTAL_32MHz	XTAL,32MHz,8PF,10PPM,SMD_1612,4PIN,-40℃~85℃(NDK, NX1612A-32MHz-STD-CIS-3)		1	Y2

0010	INDUCTOR_2.2UH	INDUCTOR, 2.2UH,±20%,功率电感, RDC(直流电阻) 250mΩ, Heat Rating Current (额定热值电流) 800mA, 0805, (MPH201210S4R7MT,顺络)	1	L3
0011	INDUCTOR_1.3nH	INDUCTOR, 1.3nH,±0.3nH,高頻电感, RDC(直流电阻)100mΩ, Rated Current(额定电流) 300mA, 0402, (SDCL1005C1N3STDF, 顺络)	1	L6
0012	INDUCTOR_1nH	INDUCTOR, 1nH,±0.3nH,高频电感, RDC(直流电阻)100mΩ, Rated Current(额定电流) 300mA, 0402, (SDCL1005C1N0STDF, 顺络)	1	L8
0013	ESD Protection	IEC61000-4-2 (ESD) ±20kV (air), ±20kV (contact) Working voltage:3.3V 5V : Ultra Low Capacitance: 0.3pF GTT5S050CY DFN1006-2L	3	TVS1 TVS2 TVS3

表 1-1 参考 BOM 表

1.6 外部晶振参考原理图

图 1-3 外部晶振参考原理图

1.7 复位电路参考原理图

图 1-4 复位电路参考原理图

1.8 麦克风电路参考原理图

图 1-5 麦克风电路参考原理图

1.9 红外发射电路参考原理图

图 1-6 红外发射参考原理图

1.10 传导/辐射认证(CE/FCC)测试参考设计

以下的参考电路相比于 1.3 和 1.4 节中所介绍的电路具有更好的谐波抑制。

图 1-7 传导/辐射认证(CE/FCC)测试参考设计原理图

2 原理图芯片脚位说明

2.1 电源管脚

- PIN24(VDCDC), 内部DCDC产生电压输出供电管脚,典型电压值为1.15V,需要连接1uF退耦电容:另外需要在PIN24(VDCDC)管脚和PIN23(SWITCH)之间串联2.2uH的功率电感。
- PIN27(VDCDCRF),内部DCDC产生的电压为RF供电管脚,可以直接与PIN24(VDCDC)管脚相连, 典型电压值为1.15V,需要连接1uF退耦电容。
- PIN28(VCCRF),外部电源供电管脚,需要连接1uF退耦电容,外加电压范围为1.8V~3.6 V。
- PIN22(VCC),外部电源供电管脚,需要连接0.1uF和10uF退耦电容,外加电压范围为1.8V~3.6V。
- PIN8(VDD FLASH),内部的FLASH电源供电管脚,只需要连接2.2uF退耦电容,不需要外接电源。

2.2 RF 管脚

- PIN25(RFIOP), RF管脚。
- PIIN26(VDD_PA),内部RF_PA产生的偏置电压,电压范围为0.9V~1.7V,根据内部的寄存器配置不同的发射功率,其产生的偏置电压不同。

2.3 晶振管脚

- PIN29(XO32MM), PIN30(XO32MP), 蓝牙基准时钟管脚, 需要串接32MHz晶体, 由于蓝牙对频偏要求比较高, 建议晶振的频率偏差≤±10ppm。注意使用蓝牙功能时必须外加32MHz晶体。
- PIN9(XO32KP_IN), PIN10(XO32KM_OUT), 低频基准时钟管脚, 也可以用作普通IO; 作时钟管脚时串接32.768KHz晶体。

2.4 Debug 调试管脚

- PIN5(PA4/SWDCLK), PIN6(PA5/SWDIO), SWD管脚,也可以做普通IO;做SWD管脚时,可以下载程序。
- PIN16(PB6/TX), PIN17(PB7/RX), UART串口管脚,也可以做普通IO;做串口管脚时,可以用作打 **9** / **18** www.hoperf.cn

印输出。

2.5 AMIC 音频管脚

- PIN20(PB11/AMIC_N), PIN21(PB13/AMIC_P), MIC输入管脚, 支持单端和差分输入, 增益可调。
- PIN19(PB12/AMIC_BIAS), MIC偏置电压输出管脚;输出可调节的MICBIAS电压,电压范围为 1.6~2.3V,典型电压值为2V。

2.6 IO 接口

● IO接口的具体定义参见《CMT453x数据手册》

3 PCB Layout 设计说明

3.1 RFIOP 走线设计要求

- 为保证损耗最小,RF 走线尽量短,元件之间尽量排紧凑一些;RF 走线尽量走直线,不要使用直角走线,走线宽度以及走线和外围 GND 的间距推荐 0.5mm。因 PCB 板材和介质会影响 RF 走线阻抗,为保证 RF 走线的阻抗为 50Ω,可以适当调整走线宽度以及走线和外围 GND 的间距。
- RF 走线四周一定要包地处理,上下层要通过 GND 过孔连接。
- 天线正面和背面周边一定要隔空处理,保证天线与 GND 的间距在 3mm 以上,并且不能有金属元器件。
- 天线的长度一般是 30mm 左右, 为蓝牙信号波长的 1/4。
- 为了提高 ESD 防护能力,天线表面不能裸露在外面,需要有阻焊层覆盖,最好在天线上表面再加一层丝印。
- 考虑到 PCB 在生产期间产线 ESD 不好控制,要求客户在天线口加 TVS 管做防护,TVS 管结电容应当越小越好,最大不应超过 0.3pF。对于距离要求 10m 内的产品,可以用 0 欧电阻替换 TVS 管提高 ESD 防护能力。TVS 管或 0 欧电阻位置见下图。

图 3-1 TVS 或 0 Ω 电阻防静电参考图

图 3-2 RF 天线走线 Layout

3.2 32MHz 晶振走线要求

- 两条晶振走线尽量短,且尽量等长,四周包地处理。
- 晶振下面层尽量不走线,特别是 VDCDCRF 走线不能从下面走,蓝牙广播时产生的 DC 电压影响晶振频率的稳定性。

图 3-3 32MHz 晶振走线 Layout

3.3 芯片接地走线要求

- 此芯片32个管脚没有引出GND,它的GND在芯片的底部。
- 要求芯片封装中心做方形铜皮,铜皮与芯片管脚间距建议≥0.3mm,≤0.5mm,且通过过孔与GND相连,要求9个过孔接地,过孔0.5mm/0.3mm,过孔不宜太大,避免漏锡,造成芯片底部虚贴。

图 3-4 芯片接地走线 Layout

14 / 18

3.4 电源走线要求

- 芯片电源走线尽量粗且尽量短,滤波电容尽量靠近芯片。
- 滤波电容中使用了大小不一样的两个电容时,小电容靠近芯片,大电容次之。

图3-5 电源走线Layout

3.5 AMIC 音频走线要求

- PB11/AMIC_N与PB13/AMIC_P支持单端和差分输入,这两条走线需要走差分线,差分线的布板走线应尽量短且等间距等长,做好地线的屏蔽,避免其它信号干扰。
- 其音频模块的内部接地后再与外围的大地相连,避免地线引进干扰。

图 3-6 音频走线 Layout

4 版本历史

日期	版本	修改	
2022.10.15	V1.0	初始版本	
2023.01.07	V1.1	 章节 3.1,增加"为了提高 ESD 防护能力,天线表面不能裸露在外面,需要有绝缘绿油覆盖。" 章节 3.3,增加"要求 9 个过孔接地" 	
2023.03.06	V1.2	 章节 3 内容转到章节 1.1 并增加 VCCRF 电压范围说明和 GND 引脚说明。 章节 1.2, 更新 DCDC 供电方式电路参考原理图。 章节 1.3, 新增 LDO 供电方式电路参考原理图。 章节 1.5 更新 BOM。 章节 1.8 新增麦克风参考原理图。 章节 1.9 增加红外发射参考原理图。 章节 2.1 更新 VCCRF 和 VCC 电压范围。 章节 2.3 新增提醒蓝牙功能必须使用 32MHz 晶体。 	
2023.05.27	V1.3	 章节 1.2 增加两种供电模式差异对比表。 章节 1.5 更新 BOM。 章节 3.1 增加静电防护的 TVS 管设计建议。 更新图片 1-1 到 1-7。 章节 1.10 新增传导/辐射认证测试参考设计原理图。 	
2023.07.28	V1.4	1. 章节 1.3, 1.4 更新参考原理图	
2025.01.20	V1.5	1. 章节 1.3, 1.4 更新参考原理图,芯片射频脚增加 TVS3 ESD 静电二极管	

声明

免责声明

深圳市华普微电子股份有限公司保留在不另行通知的情况下,更改产品以提升其可靠性、功能或设计的权利。本公司亦不承担因使用此处所述产品或电路而引致的任何责任。

关于涉及生命维持设备的应用

深圳市华普微电子股份有限公司的产品并不适用于生命维持设备、装置或系统,因为这些产品的故障可能会导致人身伤害。使用或销售本产品作上述用途的客户须自行承担风险,并同意就因使用或销售不当而引致的任何损害,向本公司作出全面赔偿。

联系方式

深圳市华普微电子股份有限公司

地址:深圳市南山区西丽街道万科云城三期8栋A座30层

电话: +86-0755-82973805 邮箱: <u>sales@hoperf.com</u> 网址: <u>http://www.hoperf.cn</u>