SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Melanin Concentrating Hormone Antagonist

<130> 2648WOOP

<150> JP 11-266298

<151> 1999-09-20

<150> JP 11-357889

<151> 1999-12-16

<150> JP 2000-126272

<151> 2000-04-20

<160> 16

<210> 1

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 1

GTCGACATGG ATCTGCAAAC CTCGTTGCTG TG 32

<210> 2

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 2

ACTAGTTCAG GTGCCTTTGC TTTCTGTCCT CT 32

<210> 3

<211> 353 <212> PRT <213> Rat <400> 3 Met Asp Leu Gln Thr Ser Leu Leu Ser Thr Gly Pro Asn Ala Ser Asn Ile Ser Asp Gly Gln Asp Asn Leu Thr Leu Pro Gly Ser Pro Pro Arg Thr Gly Ser Val Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly Thr lle Cys Leu Leu Gly Ile Val Gly Asn Ser Thr Val Ile Phe Ala Val Val Lys Lys Ser Lys Leu His Trp Cys Ser Asn Val Pro Asp Ile Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe Thr Ser Thr Tyr Ile Leu Thr Ala Met Thr Ile Asp Arg Tyr Leu Ala Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Met Ala

Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr

Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val

Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe

3/11

		195					200					205				
Thr	Leu	Tyr	Gln	Phe	Phe	Leu	Ala	Phe	Ala	Leu	Pro	Phe	Val	Val	Ile	•
	210					215					220					
Thr	Ala	Ala	Tyr	Val	Lys	Ile	Leu	Gln	Arg	Met	Thr	Ser	Ser	Val	Ala .	
225					230					235					240	
Pro	Ala	Ser	Gln	Arg	Ser	Ile	Arg	Leu	Arg	Thr	Lys	Arg	Val	Thr	Arg	
				245					250					255		
Thr	Ala	Ile	Ala	Ile	Cys	Leu	Val	Phe	Phe	Va l	Cys	Trp	Ala	Pro	Tyr	
			260					265					270			
Tyr	Val	Leu	Gln	Leu	Thr	Gln	Leu	Ser	Ile	Ser	Arg	Pro	Thr	Leu	Thr	
		275	. •				280					285				
Phe	Val	Tyr	Leu	Tyr	Asn	Ala	Ala	Ile	Ser	Leu	Gly	Tyr	Ala	Asn	Ser	
	290					295					.300					
Cys	Leu	Asn	Pro	Phe	Val	Tyr	Ile	Val	Leu	Cys	Glu	Thr	Phe	Arg		
305					310					315					320	
Arg	Leu	Val	Leu	Ser	Val	Lys	Pro	Ala	Ala	Gln	Gly	Gln	Leu	Arg	Thr	
				325					330	•			_	335		•
Val	Ser	Asn	Ala	Gln	Thr	Ala	Asp		Glu	Arg	Thr	Glu			Gly'	
			340					345					350			
Thr															•	
•	0> 4						•									
	1> 1															
<21	2> D	NA	•													
<21	3> R	a t									•					
	0> 4															ào
															ATCTCC	60
															TCCTAC	120
															GGAAAC	180
TOO	ACCC	ፐ ር ለ	ጥርጥጥ	ፐርርፕ	ርፕ ር	CTCA	ΔCΔΔ	ር ፐር	CAAC	CTAC	ACT	GGTG	CAG	CAAC	GTCCCC	240

					4. '	
GACATCTT	CA TCATCAACCT	CTCTGTGGTG	GATCTGCTCT	TCCTGCTGGG	CATGCCTTTC	300
ATGATCCA	CC AGCTCATGGG	GAACGGCGTC	TGGCACTTTG	GGGAAACCAT	GTGCACCCTC	360
ATCACAGC	CA TGGACGCCAA	CAGTCAGTTC	ACTAGCACCT	ACATCCTGAC	TGCCATGACC	420
ATTGACCG	CT ACTTGGCCAC	CGTCCACCCC	ATCTCCTCCA	CCAAGTTCCG	GAAGCCCTCC	480
ATGGCCAC	CC TGGTGATCTG	CCTCCTGTGG	GCGCTCTCCT	TCATCAGTAT	CACCCCTGTG	540
TGGCTCTA	CG CCAGGCTCAT	TCCCTTCCCÀ	GGGGGTGCTG	TGGGCTGTGG	CATCCGCCTG	600
CCAAACCC	GG ACACTGACCT	CTACTGGTTC	ACTCTGTACC	AGTTTTTCCT	GGCCTTTGCC	660
CTTCCGTT	TG TGGTCATTAC	CGCCGCATAC	GTGAAAATAC	TACAGCGCAT	GACGTCTTCG	720
GTGGCCCC	AG CCTCCCAACG	CAGCATCCGG	CTTCGGACAA	AGAGGGTGAC	CCGCACGGCC	780
ATTGCCAT	CT GTCTGGTCTT	CTTTGTGTGC	TGGGCACCCT	ACTATGTGCT	GCAGCTGACC	840
CAGCTGTC	CA TCAGCCGCCC	GACCCTCACG	TTTGTCTACT	TGTACAACGC	GGCCATCAGC	900
TTGGGCTA	TG CTAACAGCTG	CCTGAACCCC	TTTGTGTACA	TAGTGCTCTG	TGAGACCTTT	960
CGAAAACG	CT TGGTGTTGTC	AGTGAAGCCT	GCAGCCCAGG	GGCAGCTCCG	CACGGTCAGC	1020
AACGCTCA	GA CAGCTGATGA	GGAGAGGACA	GAAAGCAAAG	GCACCTGAAC	TAGT	1074
<210> 5						-
<211> 26	2					
<212> RN	A					
<213> Ra	.t					
<400> 5						
GCGAAUUG	GG UACCGGGCCC	CCCCUCGAGG	UCGACGGUAU	CGAUAAGCUU	GAUAUCGAAU	60
UCCUGCAG	CC CGGGGGAUCC	GCCCACUAGU	UCAGGUGCCU	UUGCUUUCUG	nccncnccnc	120
AUCAGCUG	UC UGAGCGUUGC	UGACCGUGCG	GAGCUGCCCC	UGGGCUGCAG	GCUUCACUGA	180
CAACACCA	AG CGUUUUCGAA	AGGUCUCACA	GAGCACUAUG	UACACAAAGG	GGUUCAGGCA	240
GCUGUUAG	CA UAGCCCAAGC	UG				262
<210> 6						
<211> 18	}	•				
<212> DN	!A					
<213> Ar	tificial Sequ	ence				
<220>						

<223> <400> 6

CAACAGCTGC CTCAACCC 18

 $\langle 210 \rangle 7$

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 7

CCTGGTGATC TGCCTCCT 18

<210> 8

<211> 1275

<212> DNA

<213> Human

<400> 8

TAGGTGATGT CAGTGGGAGC CATGAAGAAG GGAGTGGGGA GGGCAGTTGG GCTTGGAGGC 60 GGCAGCGGCT GCCAGGCTAC GGAGGAAGAC CCCCTTCCCA ACTGCGGGGC TTGCGCTCCG 120 GGACAAGGTG GCAGGCGCTG GAGGCTGCCG CAGCCTGCGT GGGTGGAGGG GAGCTCAGCT 180 CGGTTGTGGG AGCAGGCGAC CGGCACTGGC TGGATGGACC TGGAAGCCTC GCTGCTGCCC 240 ACTGGTCCCA ACGCCAGCAA CACCTCTGAT GGCCCCGATA ACCTCACTTC GGCAGGATCA 300 CCTCCTCGCA CGGGGAGCAT CTCCTACATC AACATCATCA TGCCTTCGGT GTTCGGCACC 360 ATCTGCCTCC TGGGCATCAT CGGGAACTCC ACGGTCATCT TCGCGGTCGT GAAGAAGTCC 420 AAGCTGCACT GGTGCAACAA CGTCCCCGAC ATCTTCATCA TCAACCTCTC GGTAGTAGAT 480 CTCCTCTTC TCCTGGGCAT GCCCTTCATG ATCCACCAGC TCATGGGCAA TGGGGTGTGG 540 CACTTTGGGG AGACCATGTG CACCCTCATC ACGGCCATGG ATGCCAATAG TCAGTTCACC 600 AGCACCTACA TCCTGACCGC CATGGCCATT GACCGCTACC TGGCCACTGT CCACCCCATC 660 TCTTCCACGA AGTTCCGGAA GCCCTCTGTG GCCACCCTGG TGATCTGCCT CCTGTGGGCC CTCTCCTTCA TCAGCATCAC CCCTGTGTGG CTGTATGCCA GACTCATCCC CTTCCCAGGA 780

GGTGCAGTGG GCTGCGGCAT ACGCCTGCCC AACCCAGACA CTGACCTCTA CTGGTTCACC 840 CTGTACCAGT TTTTCCTGGC CTTTGCCCTG CCTTTTGTGG TCATCACAGC CGCATACGTG 900 AGGATCCTGC AGCGCATGAC GTCCTCAGTG GCCCCCGCCT CCCAGCGCAG CATCCGGCTG 960 CGGACAAAGA GGGTGACCCG CACAGCCATC GCCATCTGTC TGGTCTTCTT TGTGTGCTGG 1020 GCACCCTACT ATGTGCTACA GCTGACCCAG TTGTCCATCA GCCGCCCGAC CCTCACCTTT 1080 GTCTACTTAT ACAATGCGGC CATCAGCTTG GGCTATGCCA ACAGCTGCCT CAACCCCTTT 1140 GTGTACATCG TGCTCTGTGA GACGTTCCGC AAACGCTTGG TCCTGTCGGT GAAGCCTGCA 1200 GCCCAGGGGC AGCTTCGCGC TGTCAGCAAC GCTCAGACGG CTGACGAGGA GAGGACAGAA 1260 1275 AGCAAAGGCA CCTGA

<210> 9

<211> 422

<212> PRT

<213> Human

<400> 9

MeT Ser Val Gly Ala MeT Lys Lys Gly Val Gly Arg Ala Val Gly Leu 15 10 5 Gly Gly Gly Ser Gly Cys Gln Ala Thr Glu Glu Asp Pro Leu Pro Asn 25 30 20

Cys Gly Ala Cys Ala Pro Gly Gln Gly Gly Arg Arg Trp Arg Leu Pro 40 45

Gln Pro Ala Trp Val Glu Gly Ser Ser Ala Arg Leu Trp Glu Gln Ala 55 50

Thr Gly Thr Gly Trp MeT Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly

75 70 65

Pro Asn Ala Ser Asn Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala 90 95 85

Gly Ser Pro Pro Arg Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile MeT 110 105 100

Pro Ser Val Phe Gly Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser

		115					120					125			
Thr	Val	Ile	Phe	Ala	Val	Val	Lys	Lys	Ser	Lys	Leu	His	Trp	Cys	Asn
	130					135					140				
Asn	Val	Pro	Asp	He	Phe	Ile	Ile	Asn	Leu	Ser	Val	Val	Asp	Leu	Leu
145					150					155					160
Phe	Leu	Leu	Gly	MeT	Pro	Phe	MeT	Ile	His	Gln	Leu	MeT	Gly	Asn	Gly
				165					170					175	•
Val	Trp	His	Phe	Gly	Glu	Thr	MeT	Cys	Thr	Leu	Ile	Thr	Ala	MeT	Asp
			180		•			185					190		
Ala	Asn	Ser	Gln	Phe	Thr	Ser	Thr	Tyr	Ile	Leu	Thr	Ala	MeT	Ala	lle
		195					200					205			
Asp	Arg	Tyr	Leu	Ala	Thr	Val	His	Pro	Ile	Ser	Ser	Thr	Lys	Phe	Arg
	210				•	215					220				
Lys	Pro	Ser	Val	Ala	Thr	Leu	Val	lle	Cys	Leu	Leu	Trp	Ala	Leu	Ser
225					230					235					240
Phe	Ile	Ser	Ile		Pro	Val	Trp	Leu		Ala	Arg	Leu	Ile		Phe
				245	,	_			250	_	_		_	255	
Pro	Gly	Gly		Val	Gly	Cys	Gly		Arg	Leu	Pro	Asn	Pro	Asp	Thr
		_	260	. .				265	.	70.1		4.1	270		-
Asp	Leu		Trp	Phe	Thr	Leu		GIN	Pne	Pne	Leu		Phe	АІа	Leu
D	D1	275		71.	TO L	41-	280	Т		A	T 1 -	285	C1	A	W - T
Pro		vai	vai	He	ınr		Ala	ТУГ	vai	Arg		reu	Gln	Alg	мет
ጥኤ	290	C	V a l	A 1 -	D	295	C	Cln	۸ ~	C 0 =	300	۸ - ~	1 011	۸-~	Th =
	ser	ser	vai.	АТа		Ala	3e1	GIII	MIG		116	AIG	Leu	AIR	
305	A	W - 1	Th	A	310	A 1 =	Tla	Ala	Tla	315	ĭ au	Val	Dho	Dha	320 Val
Lys	Arg	vai	1111		1111	Ala	He	Ala		Cys	reu	vai	Phe		vai
0	Т	A 1 -	n	325	T	W - 1	T	C1	330	ጥኒ	C1	I a	C	335	C
LYS	ırp	AIA		ıyr	ΙУΓ	val	Leu		Leu	ınr	GIN	ren	Ser	116	ser
			340					345					350		

Arg Pro Thr Leu Thr Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu 365 360 355 Gly Tyr Ala Asn Ser Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys 380 375 370 Glu Thr Phe Arg Lys Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln 395 400 390 385 Gly Gln Leu Arg Ala Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg 415 405 410 Thr Glu Ser Lys Gly Thr 420 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> <400> 10 GTCGACATGG ACCTGGAAGC CTCGCTGCTG C 31 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> <400> 11 ACTAGTTCAG GTGCCTTTGC TTTCTGTCCT C 31 <210> 12 <2.11> 33

<212> DNA

540

600

660

<213> Artificial Sequence	
⟨220⟩	
⟨223⟩	
<400> 12	
AGTCGACATG TCAGTGGGAG CCATGAAGAA GGG 33	
<210> 13	
⟨211⟩ 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223>	
⟨400⟩ 13	
AACTAGTTCA GGTGCCTTTG CTTTCTGTCC TCT 33	
⟨210⟩ 14	
⟨211⟩ 1074	
<212> DNA	
<213> Human	
<400> 14	
GTCGACATGG ACCTGGAAGC CTCGCTGCTG CCCACTGGTC CCAACGCCAG CAACACCTCT	60
GATGGCCCCG ATAACCTCAC TTCGGCAGGA TCACCTCCTC GCACGGGGAG CATCTCCTAC	120
ATCAACATCA TCATGCCTTC GGTGTTCGGC ACCATCTGCC TCCTGGGCAT CATCGGGAAC	180
TCCACGGTCA TCTTCGCGGT CGTGAAGAAG TCCAAGCTGC ACTGGTGCAA CAACGTCCCC	240
GACATCTTCA TCATCAACCT CTCGGTAGTA GATCTCCTCT TTCTCCTGGG CATGCCCTTC	300
ATGATCCACC AGCTCATGGG CAATGGGGTG TGGCACTTTG GGGAGACCAT GTGCACCCTC	360
ATCACGGCCA TGGATGCCAA TAGTCAGTTC ACCAGCACCT ACATCCTGAC CGCCATGGCC	420
ATTGACCGCT ACCTGGCCAC TGTCCACCCC ATCTCTTCCA CGAAGTTCCG GAAGCCCTCT	480

GTGGCCACCC TGGTGATCTG CCTCCTGTGG GCCCTCTCCT TCATCAGCAT CACCCCTGTG

TGGCTGTATG CCAGACTCAT CCCCTTCCCA GGAGGTGCAG TGGGCTGCGG CATACGCCTG

CCCAACCCAG ACACTGACCT CTACTGGTTC ACCCTGTACC AGTTTTTCCT GGCCTTTGCC

CTGCCTTTTG TGGTCATCAC AGCCGCATAC GTGAGGATCC TGCAGCGCAT GACGTCCTCA 720 GTGGCCCCCG CCTCCCAGCG CAGCATCCGG CTGCGGACAA AGAGGGTGAC CCGCACAGCC 780 ATCGCCATCT GTCTGGTCTT CTTTGTGTGC TGGGCACCCT ACTATGTGCT ACAGCTGACC 840 CAGTTGTCCA TCAGCCGCCC GACCCTCACC TTTGTCTACT TATACAATGC GGCCATCAGC TTGGGCTATG CCAACAGCTG CCTCAACCCC TTTGTGTACA TCGTGCTCTG TGAGACGTTC 960 CGCAAACGCT TGGTCCTGTC GGTGAAGCCT GCAGCCCAGG GGCAGCTTCG CGCTGTCAGC 1020 AACGCTCAGA CGGCTGACGA GGAGAGGACA GAAAGCAAAG GCACCTGAAC TAGT <210> 15 <211> 1283 <212> DNA <213> Human <400> 15 AGTCGACATG TCAGTGGGAG. CCATGAAGAA GGGAGTGGGG AGGGCAGTTG GGCTTGGAGG 60 CGGCAGCGGC TGCCAGGCTA CGGAGGAAGA CCCCCTTCCC AACTGCGGGG CTTGCGCTCC 120 GGGACAAGGT GGCAGGCGCT GGAGGCTGCC GCAGCCTGCG TGGGTGGAGG GGAGCTCAGC 180 TCGGTTGTGG GAGCAGGCGA CCGGCACTGG CTGGATGGAC CTGGAAGCCT CGCTGCTGCC 240 CACTGGTCCC AACGCCAGCA ACACCTCTGA TGGCCCCGAT AACCTCACTT CGGCAGGATC 300 ACCTCCTCGC ACGGGGAGCA TCTCCTACAT CAACATCATC ATGCCTTCGG TGTTCGGCAC 360 CATCTGCCTC CTGGGCATCA TCGGGAACTC CACGGTCATC TTCGCGGTCG TGAAGAAGTC 420 CAAGCTGCAC TGGTGCAACA ACGTCCCCGA CATCTTCATC ATCAACCTCT CGGTAGTAGA 480 TCTCCTCTTT CTCCTGGGCA TGCCCTTCAT GATCCACCAG CTCATGGGCA ATGGGGTGTG 540 GCACTTTGGG GAGACCATGT GCACCCTCAT CACGGCCATG GATGCCAATA GTCAGTTCAC 600 CAGCACCTAC ATCCTGACCG CCATGGCCAT TGACCGCTAC CTGGCCACTG TCCACCCCAT 660 CTCTTCCACG AAGTTCCGGA AGCCCTCTGT GGCCACCCTG GTGATCTGCC TCCTGTGGGC 720 CCTCTCCTTC ATCAGCATCA CCCCTGTGTG GCTGTATGCC AGACTCATCC CCTTCCCAGG 780 AGGTGCAGTG GGCTGCGGCA TACGCCTGCC CAACCCAGAC ACTGACCTCT ACTGGTTCAC 840 CCTGTACCAG TTTTTCCTGG CCTTTGCCCT GCCTTTTGTG GTCATCACAG CCGCATACGT 900

GAGGATCCTG CAGCGCATGA CGTCCTCAGT GGCCCCCGCC TCCCAGCGCA GCATCCGGCT

GCGGACAAAG AGGGTGACCC GCACAGCCAT CGCCATCTGT CTGGTCTTCT TTGTGTGCTG 1020

		•				
GGCACCCTAC	TATGTGCTAC	AGCTGACCCA	GTTGTCCATC	AGCCGCCCGA	CCCTCACCTT	1080
TGTCTACTTA	TACAATGCGG	CCATCAGCTT	GGGCTATGCC	AACAGCTGCC	TCAACCCCTT	1140
TGTGTACATC	GTGCTCTGTG	AGACGTTCCG	CAAACGCTTG	GTCCTGTCGG	TGAAGCCTGC	1200
AGCCCAGGGG	CAGCTTCGCG	CTGTCAGCAA	CGCTCAGACG	GCTGACGAGG	AGAGGACAGA	1260
AAGCAAAGGC	ACCTGAACTA	GTT				1283
<210> 16						
<211> 420						

<213> Human <400> 16

<212> RNA

CAAAAGCUGG	AGCUCCACCG	CGGUGGCGGC	CGCUCUAGCC	CACUAGUUCA	GGUGCCUUUG	60
CUUUCUGUCC	UCUCCUCGUC	AGCCGUCUGA	GCGUUGCUGA	CAGCGCGAAG	CUGCCCCUGG	120
GCUGCAGGCU	UCACCGACAG	GACCAAGCGU	UUGCGGAACG	UCUCACAGAG	CACGAUGUAC	180
ACAAAGGGGU	UGAGGCAGCU	GUUGGCAUĀG	CCCAAGCUGA	UGGCCGCAUU	GUAUAAGUAG	240
ACAAAGGUGA	GGGUCGGGCG	GCUGAUGGAC	AACUGGGUCA	GCUGUAGCAC	AUAGUAGGGU	300
GCCCAGCACA	CAAAGAAGAC	CAGACAGAUG	GCGAUGGCUG	UGCGGGUCAC	CCUCUUUGUC	360
CGCAGCCGGA	UGCUGCGCUG	GGAGGCGGGG	GCCACUGAGG	ACGUCĂUGCG	CUGCAGGAUC	420