### Fractales et dimension de Haussdorf

Mechineau Alexandre

22 avril 2016

| Résumé                                                                                                        |
|---------------------------------------------------------------------------------------------------------------|
| Je vais définir ce qu'est un ensemble auto-similaire puis chercher à caractériser sa dimension dans l'espace. |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |

# Table des matières

| 1 | Introduction                                    | 2 |
|---|-------------------------------------------------|---|
|   | Ensemble auto-similaire et fractales 2.1 Rappel |   |
| 3 | Dimension des ensembles auto-similaires         | 6 |
| 4 | Exemple de fractale                             | 7 |

# Introduction

### Ensemble auto-similaire et fractales

#### 2.1 Rappel

Dans un premier temps je vais définir ce qu'est un espace métrique. Puis, je rappelerrais ce qu'est les notions d'espaces complets et d'espace compact. Enfin, je rappellerai la notion d'application contractante et enoncerai le Théorème du points fixe de Banach(Picard).

**Définition 1.** On appelle (E, d) un **espace métrique** si E est un ensemble et d une distance sur E.

On appelle distance sur un ensemble E une application :

$$d: E^2 \longrightarrow \mathbb{R}$$

Tel que pour tout  $x,y,z \in E$ :

- 1. d(x, y) = d(y, x)
- 2.  $d(x,y) = 0 \Longrightarrow x = y$
- 3.  $d(x,z) \le d(x,y) + d(y,z)$

**Définition 2.** Un espace métrique (E, d) est dit **complet** si toute suite de Cauchy de E admette une limite dans E.

**Définition 3.** Un espace métrique (E,d) est dit **précompact** si pour tout  $\varepsilon > 0$ , on peut peut recouvrir E par un nombre fini de boule ouverte de rayon  $\varepsilon$ .

**Définition 4.** Un espace métrique (E, d) est dit **compact** 

Proposition 1. Un espace métrique est compact si et seulement si il est complet et précompact.

**Définition 5.** Soit (E, d) un espace métrique et K un sous-espace de E.

— Un ensemble fini A est appellé **r-recouvrement** de K si et seulement si :

$$\bigcup_{x \in A} \mathcal{B}_r(x) \supseteq K$$

— K est dit **précompact** si et seulement si il existe un r-recouvrement de K pour tout r > 0.

J'ai donc définit ce qu'est un espace métrique et je l'ai décrit. Je peux donc définir ce qu'es une application contractante.

**Définition 6.** Une application f d'un espace métrique (E, d) est dite **contractante** si:

$$\exists k \in \mathbb{R}^+, k < 1 \mid \forall x, y \in E, d(f(x), f(y)) \leqslant k \times d(x, y) \tag{2.1}$$

Remarque. Une application est contractante par rapport à une distance donnée!

Comme nous le verrons plus tard, cette propriété de contraction est la clé pour pouvoir définir ce que sont les fractales.

Proposition 2. — Les homothéties de rapport inférieur à 1 sont des applications contractantes. — Les similitudes de rapport inférieur à 1 sont des applications contractantes.

Ces deux propriétées sont essentielles par la suite. En effet, l'ensemble des fractales qui seront étudiées sont définies par de telle applications.

Théorème 1 (Théorème du points fixe de Banach(Picard)). Soit (E,d), un espace métrique complet et f une application k-contractante de E dans E. Alors, il existe un unique points fixe  $x^*$  de f:

$$x^* \in E \mid x^* = f(x^*)$$

De plus, pour toute suite d'éléments  $(x_n)_{n\in\mathbb{N}}$  de E vérifiant la récurrence :

$$x_{n+1} = f(x_n)$$

On a,

$$d(x_n, x^*) \le \frac{k^n}{1 - k} d(x_0, x_1) \tag{2.2}$$

Donc, la suite  $(x_n)$  converge vers  $x^*$ . On note aussi,  $\forall a \in E, (f^n(a))_{n \geq 0} \longrightarrow x^*$  si  $x^*$  est un points fixe.

Démonstration. Soit (X, d) un espace complet.

Soit f une application k-contractante de E dans E.

On pose  $m, n \in \mathbb{N} \mid m > n, a \in E$ 

$$d(f^{n}(a), f^{m}(a)) \leq d(f^{n}(a), f^{n+1}(a)) + \ldots + d(f^{m-1}(a), f^{m}(a))$$
 (Inégalité triangulaire) 
$$\leq (k^{n} + \ldots + k^{m-1})d(a, f(a))$$
 (2.1) 
$$\leq \frac{k^{n}}{1 - k}d(a, f(a))$$

La série  $(f^n(a))_{n\geq 0}$  est de Cauchy. En effet, elle converge vers  $x^*$  quand  $n \to \infty$ . Or (E,d) est un espace complet donc  $x^* \in E$  (Définition 2). On a alors  $x^* = f(x^*)$ 

Unicité du point fixe :

$$f(x) = x \text{ et } f(y) = y$$
 
$$d(x,y) = d(f(x),f(y)) \le k \times d(x,y)$$
 
$$d(x,y) \le k \times d(x,y) \qquad \Rightarrow d(x,y) = 0 \Rightarrow x = y \quad \text{(Unicit\'e)}$$

#### 2.2 Ensemble auto-similaire

**Théorème 2** (Unicité et existence des ensembles auto-similaires). Soit (E, d) un espace complet.  $\forall i \in [\![1,N]\!], f_i : E \longrightarrow E$  est une application contractante, par rapport à la distance d. Il existe, alors un compact  $K \subset E$ , tel que :

$$K = \bigcup_{i=1}^{N} f_i(K)$$

K est appellé un **ensemble auto-similaire** défini par :

$$\{f_1, \ldots f_N\}$$

4

**Remarque.** Le Théorème du point fixe de Banach est un cas particulier de ce théorème avec N=1.

Pour simplifier, on pose:

$$F(A) = \bigcup_{i=1}^{N} f_i(A)$$

De plus, on introduit l'ensemble suivant pour tout (E, d) espace complet :

$$C(E)$$
:  $\{A|A\subseteq E, A \text{ est un compacte non vide de } E\}$ 

On va maintenant définir une métrique  $\delta$  sur  $\mathcal{C}(E)$  nommée mesure de Haussdorf sur  $\mathcal{C}(E)$ .

**Proposition 3.** Pour  $A, B \in C(E)$ , et (E, d) un espace métrique

On définit  $\delta(A, B) = \inf\{r > 0 \mid U_r(A) \supseteq B, U_r(B) \supseteq A\}$ 

On pose, pour r > 0 fixé,  $U_r(A) = \{x \in E \mid d(x, y) \le r, y \in A\}$ 

 $\delta$  est alors une mesure sur C(E).

(E,d) De plus, si (E,d) est complet alors  $(\mathcal{C}(E),\delta)$  est complet.

Remarque. La mesure  $\delta$  dépends de la mesure d de l'ensemble E comme nous pouvons le voir dans la définition.

Nous pouvons alors montré que  $\delta$  est une mesure. Pour ce faire nous allons

Démonstration. Soit un compact  $A \subseteq X$ ,

On va montrer que F admet un point fixe.

Pour cela, on pose

Preuve que la mesure de HAUSSDORF est bien une mesure!!!!!!!!

**Théorème 3.** Soit (E,d) un espace métrique complet. Soit

$$F: \mathcal{C}(E) \longrightarrow \mathcal{C}(E)$$
$$A \longmapsto F(A) = \bigcup_{i=1}^{N} f_i(A)$$

 $et \ f_i: X \longrightarrow X, i \in [1, N]$ 

Alors F admet un unique points fixe K. De plus,  $\forall A \in \mathcal{C}(E), F^n(A) \longrightarrow K$  quand  $n \to \infty$  par rapport à la mesure de Haussdorf.

**Lemme 1.**  $\forall A_1, A_2, B_1, B_2 \in C(E)$ , on a:

$$\delta(A_1 \cup A_2, B_1 \cup B_2) \le \max(\delta(A_1, B_1), \delta(A_2, B_2))$$

Démonstration. Si r>max( $\delta(A_1, B_1), \delta(A_2, B_2)$ ), alors

Dimension des ensembles auto-similaires

Exemple de fractale