Handout 1

Chapters 1-5

1 mile = 1609 m = 1.609 km $1 \text{ year} = 365 \text{ days} = 3.15 \times 10^7 \text{s}$ 1 slug = 14.95 kg

1 m = 39.37 in = 3.281 ft $1 day = 24 h = 1.44 \times 10^3 min = 8.64 \times 10^4 s$

 $1 u = 1.66 \times 10^{-27} kg$ 1000 kg = 1 t (metric ton)

 $g = 9.80 \ m/s^2 \qquad \Delta x = x_f - x_i \qquad \Delta v = v_f - v_i$

Vectors in 2-D: $x = r \cos \theta$ $\tan \theta = \frac{y}{x}$ $y = r \sin \theta$ $r = \sqrt{x^2 + y^2}$ $\vec{r} = x \hat{\imath} + y \hat{\jmath}$

Average velocity: $\bar{v} = \frac{\Delta x}{\Delta t}$ Instantaneous velocity: $v = \frac{dx}{dt}$

Average acceleration: $\bar{a} = \frac{\Delta v}{\Delta t}$ Instantaneous acceleration: $a = \frac{dv}{dt}$

Equations of motion 1-D: $v = v_0 + a t$ $x = x_0 + \frac{1}{2}(v_0 + v)t$ $x = x_0 + v_0 t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2 a (x - x_0)$ a must be constant

Centripetal acceleration: $a_r = \frac{v_t^2}{r}$

Projectile motion 2-D: (v_0, θ_0) $v_{x0} = v_0 \cos \theta_0$ $v_{y0} = v_0 \sin \theta_0$

 $a_x = 0$ $a_y = -g$ $\vec{a} = 0 \hat{\imath} - g \hat{\jmath}$ $\overrightarrow{v_0} = v_{xo} \hat{\imath} + v_{yo} \hat{\jmath}$

Newton's 1st law: $\vec{F}_{net} = \sum \vec{F}_{external} = 0$

Newton's 2nd law: $\vec{F}_{net} = \sum \vec{F}_{external} = m\vec{a}$ or $\vec{F}_{net} = \frac{d\vec{p}}{dt}$ $\vec{p} = m \vec{v}$

Newton's 3rd law: $\vec{F}_{A \ on \ B} = -\vec{F}_{B \ on \ A}$

Weight: $\vec{w} = m\vec{g}$ Normal is perpendicular to surface

Free body diagram: object represented by a point

Hooke's law: $F_{sp} = -kx$

Uniform circular motion: $F_{net} = m \frac{v_t^2}{r}$ towards center

Static friction: $f_s \le \mu_s n$ Kinetic friction: $f_k = \mu_k n$