

Course > Non-M... > Non-M... > Provin...

Proving the Theorem Proof of the Vitali Theorem

to have the same measure.

So by uniformity they cannot have a measure at all.

So they are nonmeasurable.

There is no such thing as the Lebesgue measure of a Vitali

Set.

Amazing!

 End of transcript. Skip to the start.

Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Here is a sketch the proof of the non-measurability of Vitali Sets. (Some of the technical details are assigned as exercises below.)

We'll start by **partioning** [0, 1).

In other words, we'll divide [0,1) into a family of non-overlapping "cells", whose union is [0,1).

The cells are characterized as follows: for $a,b\in[0,1)$, a and b are in the same cell if and only if a-b is a rational number. For instance, $\frac{1}{2}$ and $\frac{1}{6}$ are in the same cell because $\frac{1}{2}-\frac{1}{6}=\frac{2}{3}$, which is a rational number. Similarly, $\pi-3$ and $\pi-\frac{25}{8}$ are in the same cell because $(\pi-3)-(\pi-\frac{25}{8})=\frac{1}{8}$, which is a rational number. But $\pi-3$ and $\frac{1}{2}$ are not in the same cell because $\pi-\frac{7}{2}$ is not a rational number.

We'll call this partition of [0,1) $\mathcal U$, because it has uncountably many cells. The next step of our proof will be to use $\mathcal U$ to characterize a partition of [0,1) with countably many cells, which we'll call $\mathcal C$. Each cell of $\mathcal C$ will be a set V_q for $q\in\mathbb Q^{[0,1)}$. ($\mathbb Q^{[0,1)}$ is the set a rational numbers in [0,1).)

I will now explain which elements of [0,1) to include in a given cell V_q of C.

The first part of the process is to pick a representative from each cell in \mathcal{U} . (In other words: we need a *choice set* for \mathcal{U} . It is a consequence of Solovey's result, mentioned above, that it is impossible to *define* a choice set for \mathcal{U} . In other words: it is impossible to specify a criterion that that could be used to single out exactly one element from each cell in \mathcal{U} . But it follows from the Axiom of Choice that a choice set for \mathcal{U} must nonetheless exist. And its existence is all we need here, because all we're aiming to show is that non-measurable sets exist.)

We will now use our representatives from each cell in \mathcal{U} to populate the cells of \mathcal{C} with elements of [0,1). The first step is to think of [0,1) as a line segment of length 1 (which is missing one of its endpoints), and bend it into a circle:

Recall that the difference between any two elements in a cell $\mathcal U$ is always a rational number.

From this it follows that each member of [0, 1) can be reached by starting at the representative of its cell in \mathcal{U} , and traveling some rational distance around the circle, going counter-clockwise.

Suppose, for example, that $\frac{3}{4}$ is in our choice set for \mathcal{U} , and has therefore been selected as the representative of its cell in \mathcal{U} . (Call this cell $C_{\frac{3}{4}}$.) Now consider a second point in $C_{\frac{3}{4}}$: as it might be, $\frac{1}{4}$. Since $\frac{3}{4}$ and $\frac{1}{4}$ are in the same cell of \mathcal{U} , one can reach $\frac{1}{4}$ by starting at $\frac{3}{4}$, and traveling a rational distance around the circle, going counter-clockwise — in this case a distance of $\frac{1}{2}$:

If a is point in [0,1), let us say that $\delta(a)$ is the distance one would have to travel on the circle, going counter-clockwise, to get to a from the representative for a's cell in \mathcal{U} . In our example, $\delta\left(\frac{1}{4}\right)=\frac{1}{2}$.

It is now straightforward to explain how to populate the cells of our countable partition $\mathcal C$ with elements of [0,1): each cell V_q $(q\in\mathbb Q^{[0,1)})$ of $\mathcal C$ is populated with those $a\in[0,1)$ such that $\delta\left(a\right)=q$. As you'll be asked to verify below, this definition guarantees that the V_q $(q\in\mathbb Q^{[0,1)})$ form a countable partition of [0,1).

Let a **Vitali Set** be a cell V_q $(q \in \mathbb{Q}^{[0,1)})$ of \mathcal{C} .

All that remains to complete our proof is to verify that the Vitali Sets must all have the same measure, if they have a measure at all.

The basic idea is straightforward. Recall that V_q is the set of points at a distance of q from their cell's representative, going counter-clockwise. From this it follows that V_q can be obtained by rotating V_0 on the circle counter-clockwise, by a distance of q. So one can use Uniformity to show that V_0 and V_q have the same measure, if they have a measure at all (and therefore that all Vitali Sets have the same measure, if they have a measure at all).

We are now in a position to wrap up our proof. We have seen that [0,1) can be partitioned into countably many Vitali Sets, and that these sets must all have the same measure, if they have a measure at all. But, for reasons rehearsed in Lecture 7.2.2.1, we know that in the presence of Non-Negativity and Countable Additivity there can be no such thing as uniform measure over a countable family of (mutually exclusive and jointly exhaustive) subsets of a set of measure 1. So there can be no way of expanding the notion of Lebesgue measure to Vitali sets, without giving up on Non-Negativity, Countable Additivity or Uniformity.

Problem 1

1/1 point (ungraded)

The relation R, which holds between a and b if and only if a - b is a rational number, satisfies which of the following three properties?

- \checkmark Reflexivity: For every x in [0, 1), xRx
- \checkmark *Symmetry:* For every x and y in [0,1), if xRy then yRx.
- \checkmark *Transitivity:* For every x, y and z in [0,1), if xRy and yRz then xRz.

(If R satisfies all three, then \mathcal{U} is a partition of [0,1).)

Explanation

First, reflexivity. We want to show that every number in [0,1] differs from itself by a rational number. Easy: every real number differs from itself by 0, and 0 is a rational number.

Next, symmetry. For $x,y\in [0,1]$ we want to show that if $x-y\in \mathbb{Q}$, then $y-x\in \mathbb{Q}$. If x-y=r, then y-x=-r. But $r\in \mathbb{Q}$, then $-r\in \mathbb{Q}$.

Finally, transitivity. For $x,y,z\in[0,1]$ we want to show that if $x-y\in\mathbb{Q}$ and $y-z\in\mathbb{Q}$, then $x-z\in\mathbb{Q}$. Suppose x-y=r and y-z=s. Then y=x-r and y=s+z. So x-r=s+z, and therefore x-z=s+r. But if $r,s\in\mathbb{Q}$, then $s+r\in\mathbb{Q}$.

Submit

1 Answers are displayed within the problem

Problem 2

1/1 point (ungraded)

Each cell of \mathcal{U} has how many members?

Countably many
Uncountably many
None of the above
✓
Explanation Let C be a cell in \mathcal{U} , and let $a \in C$. Every number in C differs from a by some rational number. Since there are only countably many rational numbers, this means that there must be at most countably many numbers in C .
Submit
Answers are displayed within the problem
Problem 3 1 point possible (ungraded) Show that $\mathcal U$ has uncountably many cells.
done
Submit
Problem 4
2/2 points (ungraded)
Every real number in $[0,1)$ belongs to some V_q $(q\in\mathbb{Q}^{[0,1)}).$
True or false?
○ True

|--|

Explanation

We verify that every real number in [0,1) belongs to some V_q $(q \in \mathbb{Q}^{[0,1)})$. Let $a \in [0,1)$. Since \mathcal{U} is a partition, a must be in some cell C of \mathcal{U} . Let r be C's representative. By the definition of \mathcal{U} , a-r is a rational number. So $\delta(a)$, which is the distance one would have to travel on the circle to get from r to a going counter-clockwise, must be a rational number in [0,1). So by the definition of \mathcal{C} , a must be in $V_{\delta(a)}$.

No real number in [0,1) belongs to more than one V_q $(q\in\mathbb{Q}^{[0,1)}).$

True or false?

True			
False			

Explanation

We verify that no real number in [0,1) belongs to more than one V_q $(q\in\mathbb{Q}^{[0,1)})$. Suppose otherwise. Then some $a\in[0,1)$ belongs to both V_q and V_p $(p\neq q,q,p\in\mathbb{Q}^{[0,1)})$. By the definition of $\mathcal C$ this means that $\delta(a)$ must be equal to both p and q, which is impossible.

Submit

1 Answers are displayed within the problem

Problem 5

1/1 point (ungraded)

In showing that the Vitali Sets all have the same measure if they have a measure at all, we proceeded somewhat informally, by thinking of [0,1) as a circle. When [0,1) is instead thought of as a line-segment, one can get from V_0 to V_q by translating V_0 by q, and then subtracting 1 from any points that end up outside [0,1). More precisely, V_0 can be transformed into V_q in three steps. One first divides the points in V_0 into two subsets, depending on whether they are smaller than 1-q:

$$ullet V_{\stackrel{\leftarrow}{0}} = V_0 \cap [0,1-q)$$

•
$$V_{\vec{0}} = V_0 \cap [1-q,1)$$

Next, one translates $V_{\stackrel{\leftarrow}{0}}$ by q and $V_{\stackrel{\leftarrow}{0}}$ by q-1, yielding $(V_{\stackrel{\leftarrow}{0}})^q$ and $(V_{\stackrel{\rightarrow}{0}})^{q-1}$, respectively. Finally, one takes the union of the translated sets: $(V_{\stackrel{\leftarrow}{0}})^q \cup (V_{\stackrel{\rightarrow}{0}})^{q-1}$.

Consider the following claim:

$$V_q = (V_{\stackrel{\leftarrow}{0}})^q \cup (V_{ec{0}})^{q-1} \ (q \in \mathbb{Q}^{[0,1)}).$$

True or false?

False

Explanation

We verify that $V_q=(V_{\stackrel{\leftarrow}{0}})^q\cup (V_{\vec{0}})^{q-1}\ (q\in\mathbb{Q}^{[0,1)}).$

Let $a \in V_q$, and let r be the representative of a's cell in \mathcal{U} . V_q , recall, is the set of $x \in [0,1)$ such that $\delta\left(x\right) = q$. There are two cases, r+q < 1 and $r+q \geq 1$. Let us consider each of them in turn, and show that $a \in V_q$ if and only if $a \in (V_{\stackrel{\leftarrow}{0}})^q \cup (V_{\stackrel{\rightarrow}{0}})^{q-1}$.

• Assume r+q<1. Since $\delta\left(a\right)=q$, one would have to travel a distance of q on the circle, going counter-clockwise, to get to a from r. Since we have r+q<1, this means that a=r+q.

Now suppose that $r \in V_0$. We have $r \in V_{\stackrel{\leftarrow}{0}}$, since $V_{\stackrel{\leftarrow}{0}} = V_0 \cap [0,1-q)$ and r+q < 1. So a=r+q entails $a \in (V_{\stackrel{\leftarrow}{0}})^q$. Suppose, conversely, that $a \in (V_{\stackrel{\leftarrow}{0}})^q$. Then a=r+q entails that $r \in V_{\stackrel{\leftarrow}{0}}$, and therefore that $r \in V_0$.

• Assume $r+q\geq 1$. Since $\delta\left(a\right)=q$, one would have to travel a distance of q on the circle, going counter-clockwise, to get to a from r. But $r+q\geq 1$, so one must cross the 0 point on the circle when traveling from r to a. Since since q<1 (and since the circle has circumference 1), this means that a=r+q-1.

Now suppose that $r \in V_0$. We have $r \in V_{\vec{0}}$, since $V_{\vec{0}} = V_0 \cap [1-q,1)$ and $r+q \geq 1$. So a=r+q-1 entails $a \in (V_{\vec{0}})^{q-1}$. Suppose, conversely, that $a \in (V_{\vec{0}})^{q-1}$. Then a=r+q-1 entails that $r \in V_{\leftarrow}$, and therefore that $r \in V_0$.

(Note that from this it follows that V_0 and V_q have the same measure, if they have a measure at all, and therefore that all Vitali Sets have the same measure, if they have a measure at all. For it follows from Uniformity that $V_{\stackrel{\leftarrow}{0}}$ and $V_{\stackrel{\rightarrow}{0}}$ must have the same measures as their translations, if they have measures at all. And it follows from Countable Additivity that the measure of V_0 must be the sum of the measures of $V_{\stackrel{\leftarrow}{0}}$ and $V_{\stackrel{\rightarrow}{0}}$ (if the latter have measures), and that the measure of V_q must be the sum of the measures of $(V_{\stackrel{\leftarrow}{0}})^q$ and $(V_{\stackrel{\rightarrow}{0}})^{1-q}$, if the latter have measures.)

Submit

1 Answers are displayed within the problem

Discussion

Topic: Week 7 / Proving the Theorem

Hide Discussion

Add a Post

© All Rights Reserved