NAME: -G: Kahul DATE :--Assignment-3: Rogno: - 192311244 DATA STRUCTURE I Illustrate the queue operation using following Function calls of size = 5, Enqueue (25) Frauere (37) Enqueue (90), Dequeue (), Enqueue (15), Enqueue)49 Enqueue (12) Dequeue() Dequeue(). Let assume the queue has a Size of 5 Initalize state: -* Queue: [-,-,-] (empty) * fxont :- -1 * Rear : - - 1 D Enqueue (25): * Invest 'er' at the rear. * Quare after operation [25, -, -, -, -] * front: 0 (moved from -1 to b) * Rear : 0 (moved from -1 to 0). D Enqueue (37): * Irvent '37 at the rear. * Queue after operation [25,37,-,-,] * front : 0 * Rear: 1 3 Finqueue (90): * Insert 'go' at the rear. * Queue after operation [25,37,90, -, -] * Front: D, * Rear! 1 A Dequeue ():-* Remove the elements from the Queue. * Quare after operation [-,37,90,-,-] * front :1 * Roax : 2. (5) Enqueue (15):-* Insort 15 at the rear. * Quare after operation [-,37,90,15,-]

* front ! 1 * Rear! 3 This say on Dr. 6- Enqueue (49)! * Insert 40 at xoar. * Quaie after operation [-,37,90,15,40] * front :1, * Reas 14. Frqueue (12)! * Queue after operation [12,37,90,15,40] * front : 1 * Remove the element from the front (1437) (8) Dequeue(): * Queue after operation [12,-,90,15,40] *front; 2 * Reas ; O * Komove the element from the front * Queue after operation [12, -, -, 15, 40] * front; 3 * Rear : 0 (13) Dequeue (): * Remove the clement from the front (i.e. is) * Queue after operation [12, -, -, -, 40] * front 14 * Rear LO. (1) Dequeux ()! * Remove the element from the front (i.e.). * Queue after operation [12, -, -, -]. * front 1 D * Reas: 0

Trinal State: * Queue: [12, _, _, -, -] * front: 0 * TReas 10 Write a C program to Implement Queue operations such on Enqueue Dequeue and Display. # include ¿stdio.h> # define size 5 Struct Queue & int item [size] int front, Reax; Void initalisize (struct Quane #9) [
q > front = q -> mean = -1; int is full Cotouct Queue * 9) { xetusn (q -> seas + i) / Size = = q -> front; 3 int is Empty (struct Queue * 9) { seturn q > front ==-1; Void enqueue (struct Queue *9) { if (is empty (a) [printf ("Queue underflow)) int clement = q -> items [a-> front]; if (q > front = = q > sear) q > front = q > sear=else q -> front = (q -> front+1) /, Size; return element; void display (Stanet Queue * 9) { if (isempty (a) print f ("Queue is Empty"); else f intiz of of front; while (i! = 9-9 xeax) {

printf (a.y.d", q > items[q > rear];

Printf (, y,d \n", q > items[q > rear]); 3 int main () (Struct Queux 9; initialize (\$9): enqueux (\$9.25); enqueux (\$9.37) enqueux (\$9,20); display (8-9); xotrien D' display (8-9); seturn 0;