Proiectarea algoritmilor

Lucrare de laborator nr. 11

Paradigma programării dinamice

Problema drumurilor minime între oricare două vârfuri

Cuprins

1	Descriere	1
2	Modelul matematic	1
3	Algoritmul Floyd-Warshall	3
4	Sarcini de lucru și barem de notare	4

1 Descriere

Se consideră un digraf ponderat $D = (\langle V, A \rangle, \ell)$.

Problema constă în a determina, pentru oricare două vârfuri i, j, un drum de lungime minimă de la vârful i la vârful j (dacă există).

Metoda utilizată este programarea dinamică.

2 Modelul matematic

Extindem funcția ℓ la $\ell: V \times V \to \mathcal{R}$, prin asignarea $\ell_{ij} = \infty$ pentru acele perechi de vârfuri distincte cu $\langle i, j \rangle \notin E$ și $\ell_{ii} = 0$ pentru orice $i = 0, \dots, n-1$.

Definim starea problemei ca fiind subproblema corespunzătoare determinării drumurilor de lungime minimă cu vârfuri intermediare din mulțimea $X \subseteq V$, DM2VD(X) (Drum Minim între oricare două Vârfuri ale unui Digraf). Evident, DM2VD(V) este chiar problema inițială.

Notăm cu ℓ_{ij}^X lungimea drumului minim de la i la j construit cu vârfuri intermediare din X. Dacă $X = \emptyset$, atunci $\ell_{ij}^0 = \ell_{ij}$.

Considerăm decizia optimă care transformă starea $DM2VD(X \cup \{k\})$ în DM2VD(X).

Presupunem că (G, ℓ) este un digraf ponderat fără circuite negative.

Fie ρ un drum optim de la i la j ce conține vârfuri intermediare din mulțimea $X \cup \{k\}$. Avem lung $(\rho) = \ell_{ij}^{X \cup \{k\}}$, unde lung (ρ) este lungimea drumului ρ .

Dacă vârful k nu aparține lui ρ , atunci politica obținerii lui ρ corespunde stării DM2VD(X) și, aplicând principiul de optim, obținem:

$$\ell^{X}_{ij} = \operatorname{lung}(\boldsymbol{\rho}) = \ell^{X \cup \{k\}}_{ij}$$

În cazul în care k aparține drumului ρ , notăm cu ρ_1 subdrumul lui ρ de la i la k și cu ρ_2 subdrumul de la k la j. Aceste două subdrumuri au vârfuri intermediare numai din X.

Conform principiului de optim, politica optimă corespunzătoare stării DM2VD(X) este subpolitică a politicii optime corespunzătoare stării $DM2VD(X \cup \{k\})$. Rezultă că ρ_1 și ρ_2 sunt optime în DM2VD(X). De aici rezultă:

$$\ell_{ij}^{X \cup \{k\}} = \operatorname{lung}(\boldsymbol{\rho}) = \operatorname{lung}(\boldsymbol{\rho}_1) + \operatorname{lung}(\boldsymbol{\rho}_2) = \ell_{ik}^X + \ell_{kj}^X$$

Acum, ecuația funcțională analitică pentru valorile optime ℓ^X_{ij} are următoarea formă:

$$\ell_{ij}^{X \cup \{k\}} = \min\{\ell_{ij}^X, \ell_{ik}^X + \ell_{kj}^X\}$$

Corolar 2.1 Dacă $\langle D,\ell \rangle$ nu are circuite de lungime negativă, atunci au loc următoarele relații:

$$\begin{array}{l} \ell_{kk}^{X\cup\{k\}} = 0 \\ \ell_{ik}^{X\cup\{k\}} = \ell_{ik}^X \\ \ell_{ik}^{X\cup\{k\}} = \ell_{ik}^X \\ \ell_{kj}^{X\cup\{k\}} = \ell_{kj}^X \ pentru \ orice \ i,j,k \in V. \end{array}$$

Calculul valorilor optime rezultă din rezolvarea subproblemelor

$$DM2VD(\emptyset), DM2VD(\{0\}), DM2VD(\{0,1\}), \dots, DM2VD(\{0,1,\dots,n-1\}) = \\ DM2VD(V)$$

Convenim să notăm ℓ_{ij}^k în loc de $\ell_{ij}^{\{0,\dots,k\}}$. Pe baza corolarului rezultă că valorile optime pot fi memorate într-un același tablou.

Maniera de determinare a acestora este asemănătoare cu cea utilizată la determinarea matricei drumurilor de către algoritmul Floyd–Warshall.

Pe baza ecuațiilor anterioare, proprietatea de substructură optimă se caracterizează prin proprietatea următoare:

Un drum optim de la i la j include drumurile optime de la i la k și de la k la j, pentru orice vârf intermediar k al său.

Astfel, drumurile minime din $DM2VD(X \cup \{k\})$ pot fi determinate utilizând drumurile minime din DM2VD(X).

În continuare considerăvem numai cazurile $X = \{0, 1, \dots, k-1\}$ şi $X \cup \{k\} = \{0, 1, \dots, k-1, k\}$.

Determinarea drumurilor optime poate fi efectuată cu ajutorul unor matrice $P^k = (P^k_{ij})$, care au semnificația următoare: P^k_{ij} este penultimul vârf din drumul optim de la i la j. Inițial, avem $P^{init}_{ij} = i$, dacă $\langle i,j \rangle \in E$ și $P^{init}_{ij} = -1$, în celelalte cazuri.

Decizia k determină matricele $\ell^k = (\ell^k_{ij})$ și $P^k = (P^k_{ij})$.

- Dacă $\ell_{ik}^{k-1} + \ell_{kj}^{k-1} < \ell_{ij}^{k-1}$, atunci drumul optim de la i la j este format din concatenarea drumului optim de la i la k cu drumul optim de la k la k ipenultimul vârf din drumul de la k la
- În caz contrar, avem $P_{ij}^k = P_{ij}^{k-1}$.

Cu ajutorul matricei P_{ij}^{n-1} pot fi determinate drumurile optime: ultimul vârf pe drumul de la i la j este $j_t = j$, penultimul vârf este $j_{t-1} = P_{ij_t}^{n-1}$, antipenultimul este $j_{t-2} = P_{ij_{t-1}}^{n-1}$ ş.a.m.d.

În acest mod, toate drumurile pot fi memorate utilizând numai $O(n^2)$ spațiu.

3 Algoritmul Floyd-Warshall

$$\begin{aligned} \text{procedure Floyd-Warshall}(G, \ \ell, \ P) \\ \text{for } i \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ \text{for } j \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ \\ \ell_{ij}^{\text{init}} = \begin{cases} 0 & ,i=j \\ \ell_{ij} & ,\langle i,j\rangle \in A \\ \infty & ,\text{altfel} \end{cases} \\ P_{ij}^{\text{init}} = \begin{cases} i & ,i \neq j, \langle i,j\rangle \in A \\ -1 & ,\text{altfel} \end{cases} \\ \text{for } i \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ \text{for } j \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ \ell_{ij}^{0} = \min\{\ell_{ij}^{\text{init}}, \ell_{i0}^{\text{init}} + \ell_{0j}^{\text{init}}\} \\ P_{ij}^{0} = \begin{cases} P_{ij}^{\text{init}} & ,\ell_{ij}^{0} = \ell_{i0}^{\text{init}} \\ P_{0j}^{\text{init}} & ,\ell_{ij}^{0} = \ell_{i0}^{\text{init}} + \ell_{0j}^{\text{init}} \end{cases} \\ \text{for } k \leftarrow 1 \text{ to } n\text{-}1 \text{ do} \\ \text{for } i \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ \text{for } j \leftarrow 0 \text{ to } n\text{-}1 \text{ do} \\ \ell_{ij}^{k} = \min\{\ell_{ij}^{k-1}, \ell_{ik}^{k-1} + \ell_{kj}^{k-1}\} \\ P_{ij}^{k} = \begin{cases} P_{ij}^{k-1} & ,\ell_{ij}^{k} = \ell_{ik}^{k-1} + \ell_{kj}^{k-1} \\ P_{kj}^{k-1} & ,\ell_{ij}^{k} = \ell_{ik}^{k-1} + \ell_{kj}^{k-1} \end{cases} \end{aligned}$$

end

Presupunem că digraful G = (V, A) este reprezentat prin matricea de ponderilor (lungimilor) arcelor, pe care convenim să o notăm aici cu G. L (este uşor de văzut că matricea ponderilor include şi reprezentarea lui A).

Datorită corolarului (1), matricele ℓ^k și ℓ^{k-1} pot fi memorate de același tablou bidimensional G.L.

Simbolul ∞ este reprezentat de o constantă plusInf cu valoare foarte mare.

Dacă digraful are circuite negative, atunci acest lucru poate fi depistat:

Dacă la un moment dat se obține G.L[i,i] < 0, pentru un i oarecare, atunci există un circuit de lungime negativă care trece prin i.

Funcția Floyd-Warshall întoarce valoarea *true* dacă digraful ponderat reprezentat de matricea G.L nu are circuite negative:

G.L conține la ieșire ponderile (lungimile) drumurilor minime între oricare două vârfuri;

G.P conține la ieșire reprezentarea drumurilor minime.

```
procedure Floyd-Warshall(G, P)
for i \leftarrow 0 to n-1 do
     for j \leftarrow 0 to n-1 do
           if ((i \neq j) \text{ and } (L[i,j] \neq plusInf))
               then P[i,j] \leftarrow i
               else P[i,j] \leftarrow -1
for k \leftarrow 0 to n-1 do
     for i \leftarrow 0 to n-1 do
           for j \leftarrow 1 to n do
                if ((L[i,k] = PlusInf) \text{ or } (L[k,j] = PlusInf))
                    then temp \leftarrow \texttt{plusInf}
                    else temp \leftarrow L[i,k]+L[k,j]
                if (temp < L[i,j])
                    then L[i,j] \leftarrow temp
                           P[i,j] \leftarrow P[k,j]
                if ((i = j) \text{ and } (L[i,j] < 0))
                    then throw '(di)graful are circuite negative'
```

end

Se verifică ușor că execuția algoritmului Floyd-Warshall necesită $O(n^3)$ timp și utilizează $O(n^2)$ spațiu.

4 Sarcini de lucru și barem de notare

Sarcini de lucru:

- 1. Scrieți o funcție C/C++ care implementează un algoritmul Floyd-Warshall.
- 2. Dat fiind un graf G = (V, E), scrieți un program care să afișeze drumurile minime între oricare două vârfuri

Barem de notare:

- 1. Implementarea algoritmului Floyd-Warshall: 7p
- 2. Afișarea drumurilor minime între oricare două vârfuri: 2p
- 3. Baza: 1p

Bibliografie

[1] Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.