

Aula – 2 Introdução a Algoritmos

Disciplina: CCO016 - Fundamentos de Programação

Prof: Phyllipe Lima phyllipe@unifei.edu.br

Universidade Federal de Itajubá – UNIFEI IMC – Instituto de Matemática e Computação

Agenda

- ☐ Algoritmos
- Narrativa
- ☐ Fluxograma
- ☐ Pseudocódigo

Algoritmos

O que são algoritmos?

 "Uma sequencia simples e objetiva de instruções para solucionar determinado problema. Cada instrução é uma informação que indica uma ação básica a ser executada."

• Os algoritmos são aplicados em todas as áreas da computação, independente de linguagem, sistema operacional, processador, etc.

• Em uma visão mais ampla, o algoritmo é uma forma de resolver um determinado problema, **independente de termos ou não um computador.**

- Aqueça o forno a 180º
- Unte uma forma redonda
- Bata:
 - 75g de manteiga
 - 250g de açúcar
- Até ficar cremoso
- Junte:
 - 4 ovos
 - ...
- ...
- Leve ao forno durante 40 minutos

- ☐ A sequencia deve ser finita.
- □ Diferente de banco imobiliário que pode durar para sempre!

☐ O algoritmo pode ser visto como uma função que *transforma* a entrada na saída

Exemplos de problemas

□Cálculo de fatorial
□ Entrada: um número inteiro n!□Saída: um número inteiro que representa o fatorial

□Cálculo de permutações n!□ Entrada: dois números inteiros n!□Saída: a quantidade de permutações possíveis

□Cálculo de combinações

□ Entrada: dois números inteiros n!□ Saída: a quantidade de combinações possíveis

Exemplos de problemas

□Cálculo de média □Entrada: diversos números (inteiros ou não) □Saída: um número (inteiro ou não) que representa a média	$\frac{1}{n} \sum_{i=0}^{n} n_i$
□ Determinação de ano bissexto □ Entrada: um números inteiro □ Saída: um booleano indicando se o ano é bissexto ou não	2018? Não 2020? Sim
□Ordenação de vetores	

☐ Entrada: vetor desordenado

☐ Saída: vetor ordenado

[3,1,2] ? Não

[1,2,3] ? Sim

□Internet

- ☐Gerenciar e manipular grandes volumes de dados
- ☐ Disponibilizar rapidamente conteúdo a milhões de usuários de todas as partes do mundo

- ☐ Comércio eletrônico
 - ☐ Criptografia para manutenção do sigilo de dados

- **□**Otimização
 - □Alocação de recursos escassos da maneira mais benéfica possível
 - ☐ Petrolífera: saber onde localizar seus poços para maximizar o lucro esperado
 - ☐ Política: determinar onde gastar dinheiro em publicidade de campanha para maximizar as chances de vencer uma eleição

☐Geração de Mapas

- ☐ Algoritmos procedurais utilizados para geração de mapas em jogos
- ☐ Aumenta a rejogabilidade
- ☐ Alguns jogos não existiram sem tais algoritmos

☐ Algoritmos de Busca

- ☐ Em jogos digitais existem algoritmos de busca onde uma *figura de inimigo* precisa entrar o caminho até o jogador.
- ☐ Algoritmos são usados nessas situações

Resumo

- → O computador não tem independência, nenhuma iniciativa, não é criativo e nem inteligente e precisa receber instruções nos mínimos detalhes.
- ☐ As instruções são combinadas em um programa que irá receber dados, processar e gerar a saída

Processamento de Dados

Entrada

- ☐ Receber os dados de um fonte externa
 - ☐ Teclado
 - ☐ Arquivo
 - ☐ Servidor Remoto
 - ☐ Controle de videogame
 - ☐ Outro programa

Processamento

☐ Realizar operações com esses dados

Saída

- ☐ Apresentar a saída
 - ☐ Monitor
 - ☐ Impressora
 - ☐ Arquivo

Construção do Algoritmo

Etapas de construção

☐ Análise: Estudar o enunciado do problema para definir os dados de entrada, o processamento e como deverá ser a saída

Etapas de construção

- ☐ Análise: Estudar o enunciado do problema para definir os dados de entrada, o processamento e como deverá ser a saída
- ☐ Algoritmo: Definir quais são os passos para transformar a entrada na saída. Pode-se utilizar a narrativa, fluxograma ou pseudocódigo

Etapas de construção

☐ Codificação: Implementação do algoritmo em alguma linguagem de programação. O programa é a codificação do algoritmo.

☐ Sanduíche de presunto e queijo

☐ Sanduíche de presunto e queijo

- **□** Entrada
 - 2 Fatias de pão
 - ☐ 1 fatia de queijo
 - ☐ 1 fatia de presunto

 □ Entrada
 □ Processamento

 □ 2 Fatias de pão
 □ Posicionar uma fatia do pão

 □ 1 fatia de queijo
 □ Colocar o queijo no pão

 □ 1 fatia de presunto
 □ Colocar o presunto no pão

 □ Cobrir com a outra fatia do pão

☐ Entrada	☐ Processamento	□Saída
2 Fatias de pão	☐ Posicionar uma fatia do pão	☐ Sanduíche pronto
1 fatia de queijo	☐ Colocar o queijo no pão	
1 fatia de presunto	☐ Colocar o presunto no pão	
	☐ Cobrir com a outra fatia do p	aão

☐ Somar três números.

☐ Somar três números.

☐ Passos:

- 1. Obter o primeiro número
- 2. Obter o segundo número
- 3. Obter o terceiro número
- 4. Realizar a soma
- 5. Apresentar o resultado

☐ Passos:

- 1. Obter o primeiro número
- 2. Obter o segundo número
- 3. Obter o terceiro número
- 4. Realizar a soma
- 5. Apresentar o resultado

Entrada

Passos:

- 1. Obter o primeiro número
- 2. Obter o segundo número
- 3. Obter o terceiro número
- 4. Realizar a soma

5. Apresentar o resultado

Entrada

Processamento

☐ Passos:

- 1. Obter o primeiro número
- 2. Obter o segundo número
- 3. Obter o terceiro número
- 4. Realizar a soma Processamento
- 5. Apresentar o resultado ← Saída

Entrada

☐ Calcular a média de dois números.

Exemplo 3 – Calcular a média de dois números

Passos:

- 1. Obter o primeiro número
- 2. Obter o segundo número
- 3. Realizar a soma entre eles
- 4. Dividir por 2
- 5. Apresentar o resultado ←

Entrada

Processamento

Saída

Algoritmos

- ☐ Um algoritmo não é a solução de um problema.
- ☐ O algoritmo é um caminho, e em geral, temos muitos caminhos para a solução do problema.

Técnicas de Construção de um Algoritmo

- ☐ As três estruturas mais utilizadas são: descrição
 - narrativa, fluxograma e pseudocódigo
- ☐ Não são as únicas.

Descrição Narrativa

- Analisar o enunciado do problema e escrever os passos para a sua resolução utilizando linguagem natural.
- ☐ Nos exemplos 1,2 e 3 os algoritmos foram construídos em narrativa.

Descrição Narrativa

- □ Vantagem: Não é necessário aprender nenhum conceito novo, pois usamos a linguagem natural.
- Desvantagem: Podem a levar a cenários com mais de uma interpretação, dificultando a implementação.

Fluxograma

☐ Consiste em representar a solução de um problema através de símbolos gráficos predefinidos.

- □ Vantagem: A compreensão visual de símbolos tende a ser mais rápida que textos.
- Desvantagem: É necessário conhecer os símbolos e o algoritmo resultante pode ser pobre em detalhes.

Fluxograma – Símbolos Comuns

Processamento: descreve Indica o início ou o um passo do algoritmo: início / fim cálculos, atribuição de fim do algoritmo valores, etc. Conecta os Indica entrada símbolos, indicando de dados o sentido do fluxo (setas) de processamento. Representa uma tomada de Indica saída decisão. A decisão faz com que de dados o fluxo de processamento seja desviado.

Pseudocódigo

☐ Também chamado de português estruturado.

Escreve, por meio de regras, os passos a serem seguidos.

Pseudocódigo

- □ Vantagem: A passagem para uma linguagem de programação pode ser imediata. Dependendo do rigor utilizado para escrever o algoritmo.
- Desvantagem: É necessário conhecer as regras básicas e podem existir diferentes estruturas.

- ☐ Construir um algoritmo para multiplicar dois números.
- ☐ Utilize as três técnicas de construção

- Narrativa
- ☐ Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número
 - 3. Computar o produto
 - 4. Mostrar o resultado
- ☐ Saída: O produto dos números

Narrativa

- Entrada: Dois números
- Passos:
 - 1. Obter o primeiro número

- 2. Obter o segundo número
- 3. Computar o produto
- 4. Mostrar o resultado
- ☐ Saída: O produto dos números

Narrativa

- Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número

- 3. Computar o produto
- 4. Mostrar o resultado
- ☐ Saída: O produto dos números

Narrativa

- Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número
 - 3. Computar o produto

- 4. Mostrar o resultado
- ☐ Saída: O produto dos números

Narrativa

☐ Fluxograma

- ☐ Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número
 - 3. Computar o produto

- 4. Mostrar o resultado
- ☐ Saída: O produto dos números

fim

Narrativa

☐ Fluxograma

- Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número
 - 3. Computar o produto
 - 4. Mostrar o resultado

☐ Saída: O produto dos números

☐ Fluxograma

☐ Pseudocódigo

```
ALGORITMO exemplo4

VAR

a, b, prod : INTEIRO

INÍCIO

LER a

LER b

prod = a * b

MOSTRAR prod

FIM
```

- ☐ Construir um algoritmo para dividir dois números.
 - Não permitir divisão por zero.
- ☐ Utilize as três técnicas de construção

- □ Narrativa□ Entrada:
- Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número
 - 3. Caso o segundo número seja zero, encerrar o algoritmo.
 - 4. Caso contrário, computar a divisão.
 - 5. Mostrar o resultado
- ☐ Saída: O quociente / mensagem de erro

- Narrativa **Entrada: Dois números Passos:** Obter o primeiro número 1. 2. Obter o segundo número Caso o segundo número seja zero, 3. encerrar o algoritmo. Caso contrário, computar a divisão. 4. 5. Mostrar o resultado ☐ Saída: O quociente
- ☐ Fluxograma

- Narrativa
- Entrada: Dois números
- ☐ Passos:
 - 1. Obter o primeiro número
 - 2. Obter o segundo número
 - 3. Caso o segundo número seja zero, encerrar o algoritmo.
 - 4. Caso contrário, computar a divisão.
 - 5. Mostrar o resultado
- ☐ Saída: O quociente

☐ Saída: O quociente

☐ Fluxograma Narrativa início **Entrada: Dois números Passos:** b 1. Obter o primeiro número 2. Obter o segundo número não sim Caso o segundo número seja zero, 3. b = 0? encerrar o algoritmo. Caso contrário, computar a divisão. 4. 5. Mostrar o resultado

5.

Mostrar o resultado

☐ Saída: O quociente

Dúvidas?

Aula – 2 Introdução a Algoritmos

Disciplina: CCO016 - Fundamentos de Programação

Prof: Phyllipe Lima phyllipe@unifei.edu.br

Universidade Federal de Itajubá – UNIFEI IMC – Instituto de Matemática e Computação