Fundamentos Lógica Proposicional Booleana

Prof. Edson Alves

Faculdade UnB Gama

Sumário

1. Conceitos elementares

Lógica Proposicional Booleana

Termos Primitivos

Os termos primitivos da Lógica Proposicional Booleana são:

- 1. proposição
- 2. verdadeiro
- 3. falso

Axiomas

Princípio do Terceiro Excluído: uma proposição é verdadeira ou é falsa.

Princípio da Não-Contradição: uma proposição não pode ser, simultaneamente, verdadeira e falsa.

Exemplos

Exemplos de proposições:

- ► A duração de um dia é de 24 horas
- ► A metade de dois mais dois é igual a três
- $ightharpoonup F_n = 2^{2^n} + 1$ é primo para qualquer n natural

Não são proposições:

- ► Cuidado! Curva acentuada à esquerda!
- Onde fica a agência bancária mais próxima?
- $\rightarrow x > \pi$

Proposições Compostas

Operadores Lógicos

Sejam p e q duas proposições. São proposições:

- 1. a conjunção $p \land q$: verdadeira somente quando ambas p e q são verdadeiras
- **2.** a **disjunção** $p \lor q$: falsa somente quando ambas p e q são falsas
- 3. a disjunção exclusiva $p \vee q$: falsa somente quando ambas p e q tem mesmo valor lógico
- **4.** a **condicional** $p \rightarrow q$: falsa somente quando p é verdadeira e q é falsa
- **5.** a **bicondicional** $p \leftrightarrow q$: falsa somente quando p e q tem valores lógicos distintos
- **6.** a **negação** $\neg p$: verdadeira quando p é falsa, falsa quando p é verdadeira

Exemplos de proposições compostas

- "O meu pai era paulista / Meu avô, pernambucano / O meu bisavô, mineiro / Meu tataravô, baiano / Meu maestro soberano / foi Antonio Brasileiro" (Paratodos, Chico Buarque)
- "Ser ou não ser." (Hamlet, William Shakespeare)
- "Penso, logo existo." (René Descartes)
- Um conjunto de \mathbb{R}^n é sequencialmente compacto se, e somente se, é fechado e limitado." (Teorema de Bolzano-Weierstrass)
- "Não pode ser seu amigo quem exige seu silêncio." (Alice Walker)

Tabela-Verdade

Tabela-Verdade

Uma **tabela-verdade** é uma representação visual na qual figuram todos os possíveis valores lógicos de uma proposição composta correspondentes a todas as possíveis atribuições de valores lógicos às proposições simples componentes.

Proposição

Seja $P(q_1,q_2,\ldots,q_N)$ uma proposição composta. Então a tabela verdade de P contém 2^N linhas.

\overline{p}	q	r	$p \wedge q$	P
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V

<i>p</i> V	q	r	$p \wedge q$	P
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V

\overline{p}	\overline{q}	r	$p \wedge q$	P
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
V	V	V	V	V
F	V	V	V	V
F	V	V	V	V
F	V	V	V	V
F	V	V	V	V

p	q	r	$p \wedge q$	P
V	V	V	V	V
V	V	V	V	V
V	F	V	V	V
V	F	V	V	V
F	V	V	V	V
F	V	V	V	V
F	V	V	V	V
F	V	V	V	V

p	q	r	$p \wedge q$	P
٧	V	V	V	V
V	V	V	V	V
V	F	V	V	V
V	F	V	V	V
F	V	V	V	V
F	V	V	V	V
F	F	V	V	V
F	F	V	V	V

p	q	r	$p \wedge q$	P
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	V	V
F	V	V	V	V
F	V	F	V	V
F	F	V	V	V
F	F	F	V	V

p	q	r	$p \wedge q$	F
V	V	V	V	V
V	V	F	V	V
V	F	V	F	V
V	F	F	F	V
F	V	V	F	V
F	V	F	F	V
F	F	V	F	V
F	F	F	F	V

p	q	r	$p \wedge q$	P
V	V	V	V	V
V	V	F	V	F
V	F	V	F	V
V	F	F	F	V
F	V	V	F	V
F	V	F	F	V
F	F	V	F	V
F	F	F	F	V

Sentença aberta

Sentença aberta (informal)

Uma sentença aberta S(x) em x é uma expressão na qual o símbolo x ocorre uma ou mais vezes e que, caso todas as ocorrências de x sejam substituídas por um mesmo valor v, S(v) se torna uma proposição.

Quantificadores

Quantificador existencial

Seja S(x) uma sentença aberta. O quantificador existencial \exists é utilizado na construção $\exists x.S(x)$, a qual significa que existe pelo menos um x tal que S(x) é verdadeira.

Quantificador universal

Seja S(x) uma sentença aberta. O quantificador universal \forall é utilizado na construção $\forall x.S(x)$, a qual significa que, para todos os valores de x, S(x) é verdadeira.

Referências

- 1. FILHO, E. A. Iniciação à Lógica Matemática, São Paulo, Nobel, 2002.
- 2. HALE, M. Essentials of Mathematics: Introduction to Theory, Proof, and the Professional Culture, Mathematical Association of America, 2003. (eBrary)
- 3. letras.mus.br, acesso em 18/12/2019.
- 4. Wikipédia. Teorema de Bolzano-Weierstrass, acesso em 18/12/2019.