AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ENG. PHYSICS & MATH. DEPARTMENT Electronics and Communications Engineering Program Junior Students.

Mid Term Examination

Spring 2021 Exam Time: 60 minutes.					
PHM212s: Complex, Special Functions and Numerical Analysis					
The Exam Consists of <u>TWO Questions</u> in <u>THREE Pages</u> . Answer All Questions Total Marks: 20 Marks					
Student's Name:		ID:	Sec:		
General Instructions: Please read the examination paper carefully. Be sure to solve each question in its paper (you can use the back). Programmable & Graphical Calculators are NOT Allowed. Question no. 1 (12 marks)					
a) By two different methods obtain a closed form for $\Gamma(n+3/2)$ where n is any positive integer. [4 Marks]	b) Evaluate in terms integral $\int_{0}^{\infty} \frac{x^{k}}{k^{x}} dx$ such that the integra		ction the on on k		

C) Find the area enclosed by the curve		
$x^{2/5} + y^{2/5} = 1$		
	[4 Marks]	

Question no. 3 (8 marks)

Find two linearly independent solutions in powers	
of " x " for the following differential equations:	
$(1-x^2)y'' - 2xy' + 12y = 0$	

Best Wishes, Dr. Makram Roshdy Eskaros.