

Data Error and Computational Error

- ullet Typical problem: compute value of function $f\colon \mathbb{R} o \mathbb{R}$ for given argument
 - \bullet x =true value of input
 - f(x) =desired result
 - $\hat{x} = \text{approximate (inexact) input}$
 - $\hat{f} =$ approximate function actually computed
- Total error: $\hat{f}(\hat{x}) f(x) =$

 $\hat{f}(\hat{x}) - f(\hat{x}) + f(\hat{x}) - f(x)$

computational error + propagated data error

Algorithm has no effect on propagated data error

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Example: Finite Difference Approximation

• Error in finite difference approximation

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

exhibits tradeoff between rounding error and truncation

- Truncation error bounded by Mh/2, where M bounds |f''(t)| for t near x
- Rounding error bounded by $2\epsilon/h$, where error in function values bounded by ϵ
- Total error minimized when $h \approx 2\sqrt{\epsilon/M}$
- Error increases for smaller h because of rounding error and increases for larger h because of truncation error

Michael T. Heath Scientific Computing

Forward and Backward Error

- Suppose we want to compute y = f(x), where $f: \mathbb{R} \to \mathbb{R}$, but obtain approximate value \hat{y}
- Forward error: $\Delta y = \hat{y} y$
- Backward error: $\Delta x = \hat{x} x$, where $f(\hat{x}) = \hat{y}$

ael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

 $\overline{\mathbf{I}}$

Backward Error Analysis

- Idea: approximate solution is exact solution to modified problem
- How much must original problem change to give result actually obtained?
- How much data error in input would explain all error in computed result?
- Approximate solution is good if it is exact solution to nearby
- Backward error is often easier to estimate than forward error

Truncation Error and Rounding Error

- Truncation error: difference between true result (for actual input) and result produced by given algorithm using exact arithmetic
 - Due to approximations such as truncating infinite series or terminating iterative sequence before convergence
- Rounding error: difference between result produced by given algorithm using exact arithmetic and result produced by same algorithm using limited precision arithmetic
 - Due to inexact representation of real numbers and arithmetic operations upon them
- Computational error is sum of truncation error and rounding error, but one of these usually dominates

< interactive example >

Michael T. Heath Scientific Computing

Example: Finite Difference Approximation

Example: Forward and Backward Error

• As approximation to $y = \sqrt{2}$, $\hat{y} = 1.4$ has absolute forward error

$$|\Delta y| = |\hat{y} - y| = |1.4 - 1.41421...| \approx 0.0142$$

or relative forward error of about 1 percent

• Since $\sqrt{1.96} = 1.4$, absolute backward error is

$$|\Delta x| = |\hat{x} - x| = |1.96 - 2| = 0.04$$

or relative backward error of 2 percent

Michael T. Heath Scientific Computing

Example: Backward Error Analysis

• Approximating cosine function $f(x) = \cos(x)$ by truncating Taylor series after two terms gives

$$\hat{y} = \hat{f}(x) = 1 - x^2/2$$

Forward error is given by

$$\Delta y = \hat{y} - y = \hat{f}(x) - f(x) = 1 - x^2/2 - \cos(x)$$

- To determine backward error, need value \hat{x} such that $f(\hat{x}) = \hat{f}(x)$
- For cosine function, $\hat{x} = \arccos(\hat{f}(x)) = \arccos(\hat{y})$

Michael T. Heath Scientific Computing

Michael T. Heath Scientific Computing

Example, continued

• For x=1.

$$y = f(1) = \cos(1) \approx 0.5403$$

$$\hat{y} = \hat{f}(1) = 1 - 1^2/2 = 0.5$$

$$\hat{x} = \arccos(\hat{y}) = \arccos(0.5) \approx 1.0472$$

- Forward error: $\Delta y = \hat{y} y \approx 0.5 0.5403 = -0.0403$
- Backward error: $\Delta x = \hat{x} x \approx 1.0472 1 = 0.0472$

 $\overline{\mathbf{I}}$

Sensitivity and Conditioning

Condition Number

• Condition number is amplification factor relating relative forward error to relative backward error

$$\left| \begin{array}{c} \text{relative} \\ \text{forward error} \end{array} \right| \ = \ \operatorname{cond} \ \times \ \left| \begin{array}{c} \text{relative} \\ \text{backward error} \end{array} \right|$$

 Condition number usually is not known exactly and may vary with input, so rough estimate or upper bound is used for cond, yielding

relative	_			relative	
forward error	≈ cond	cond	×	backward error	

Sensitivity and Conditioning

Example: Sensitivity

- Tangent function is sensitive for arguments near $\pi/2$
 - $tan(1.57079) \approx 1.58058 \times 10^5$
 - $tan(1.57078) \approx 6.12490 \times 10^4$
- Relative change in output is quarter million times greater than relative change in input
 - For x = 1.57079, cond $\approx 2.48275 \times 10^5$

 $\overline{\mathbf{I}}$

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

itivity and Conditioning

Accuracy

- Accuracy: closeness of computed solution to true solution of problem
- Stability alone does not guarantee accurate results
- Accuracy depends on conditioning of problem as well as stability of algorithm
- Inaccuracy can result from applying stable algorithm to ill-conditioned problem or unstable algorithm to well-conditioned problem
- Applying stable algorithm to well-conditioned problem yields accurate solution

Sensitivity and Conditioning

- Problem is insensitive, or well-conditioned, if relative change in input causes similar relative change in solution
- Problem is sensitive, or ill-conditioned, if relative change in solution can be much larger than that in input data
- Condition number:

$$\mathrm{cond} = \frac{|\text{relative change in solution}|}{|\text{relative change in input data}|}$$

$$= \frac{|[f(\hat{x}) - f(x)]/f(x)|}{|(\hat{x} - x)/x|} = \frac{|\Delta y/y|}{|\Delta x/x|}$$

• Problem is sensitive, or ill-conditioned, if $cond \gg 1$

Michael T. Heath Scientific Computing

Approximations

Sensitivity and Conditioning

Example: Evaluating Function

• Evaluating function f for approximate input $\hat{x} = x + \Delta x$ instead of true input \boldsymbol{x} gives

Absolute forward error: $f(x + \Delta x) - f(x) \approx f'(x)\Delta x$

Relative forward error: $\frac{f(x+\Delta x)-f(x)}{f(x)}\approx \frac{f'(x)\Delta x}{f(x)}$

Condition number: $\operatorname{cond} pprox \left| \frac{f'(x) \Delta x / f(x)}{\Delta x / x} \right| = \left| \frac{x f'(x)}{f(x)} \right|$

 Relative error in function value can be much larger or smaller than that in input, depending on particular f and x

Sensitivity and Conditioning

Stability

- Algorithm is stable if result produced is relatively insensitive to perturbations during computation
- · Stability of algorithms is analogous to conditioning of problems
- From point of view of backward error analysis, algorithm is stable if result produced is exact solution to nearby problem
- For stable algorithm, effect of computational error is no worse than effect of small data error in input

Michael T. Heath Scientific Computing

Floating-Point Numbers

Floating-Point Numbers

 Floating-point number system is characterized by four integers

> base or radix precision [L, U] exponent range

ullet Number x is represented as

$$x = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_{p-1}}{\beta^{p-1}} \right) \beta^E$$

where $0 \le d_i \le \beta - 1, \ i = 0, \dots, p - 1, \ \text{and} \ L \le E \le U$

Michael T. Heath Scientific Computing

Michael T. Heath Scientific Computing

Floating-Point Numbers, continued

- Portions of floating-poing number designated as follows
 - exponent: E
 - mantissa: $d_0d_1\cdots d_{p-1}$
 - fraction: $d_1d_2\cdots d_{p-1}$
- Sign, exponent, and mantissa are stored in separate fixed-width fields of each floating-point word

 $\overline{\mathbf{I}}$

Computer Arithmetic

ating-Point Numbers

Normalization

- Floating-point system is *normalized* if leading digit d_0 is always nonzero unless number represented is zero
- ullet In normalized systems, mantissa m of nonzero floating-point number always satisfies $1 \le m < \beta$
- Reasons for normalization
 - representation of each number unique
 - o no digits wasted on leading zeros
 - leading bit need not be stored (in binary system)

ating-Point Numbers

Example: Floating-Point System

- Tick marks indicate all 25 numbers in floating-point system having $\beta=2,\,p=3,\,L=-1,$ and U=1
 - OFL = $(1.11)_2 \times 2^1 = (3.5)_{10}$
 - UFL = $(1.00)_2 \times 2^{-1} = (0.5)_{10}$
- At sufficiently high magnification, all normalized floating-point systems look grainy and unequally spaced

< interactive example >

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Machine Precision

- Accuracy of floating-point system characterized by unit roundoff (or machine precision or machine epsilon) denoted by $\epsilon_{\rm mach}$
 - \bullet With rounding by chopping, $\epsilon_{\rm mach}=\beta^{1-p}$
 - With rounding to nearest, $\epsilon_{\rm mach} = \frac{1}{2}\beta^{1-p}$
- ullet Alternative definition is smallest number ϵ such that $fl(1+\epsilon) > 1$
- Maximum relative error in representing real number x within range of floating-point system is given by

$$\left| \frac{\mathrm{fl}(x) - x}{x} \right| \le \epsilon_{\mathrm{mach}}$$

Floating-Point Number

Typical Floating-Point Systems

Parameters for typical floating-point systems system Β L IEEE SP 24 **IEEE DP** 2 53 -10221023 Cray 2 48 -1638316384 HP calculator 10 12 -499499 IBM mainframe 16 6 -6463

- Most modern computers use binary ($\beta = 2$) arithmetic
- IEEE floating-point systems are now almost universal in digital computers

Properties of Floating-Point Systems

- Floating-point number system is finite and discrete
- Total number of normalized floating-point numbers is

$$2(\beta - 1)\beta^{p-1}(U - L + 1) + 1$$

- Smallest positive normalized number: UFL = β^L
- Largest floating-point number: $OFL = \beta^{U+1}(1 \beta^{-p})$
- Floating-point numbers equally spaced only between successive powers of β
- Not all real numbers exactly representable; those that are are called machine numbers

loating-Point Numbers

Rounding Rules

- If real number x is not exactly representable, then it is approximated by "nearby" floating-point number f(x)
- This process is called *rounding*, and error introduced is called rounding error
- Two commonly used rounding rules
 - *chop*: truncate base- β expansion of x after (p-1)st digit; also called round toward zero
 - round to nearest: f(x) is nearest floating-point number to x, using floating-point number whose last stored digit is even in case of tie; also called round to even
- Round to nearest is most accurate, and is default rounding rule in IEEE systems

< interactive example >

Michael T. Heath Scientific Computing

Machine Precision, continued

- For toy system illustrated earlier
 - $\epsilon_{\rm mach} = (0.01)_2 = (0.25)_{10}$ with rounding by chopping
 - \bullet $\epsilon_{\text{mach}} = (0.001)_2 = (0.125)_{10}$ with rounding to nearest
- For IEEE floating-point systems
 - $\bullet \ \epsilon_{\rm mach} = 2^{-24} \approx 10^{-7}$ in single precision
 - $\bullet \ \epsilon_{\rm mach} = 2^{-53} \approx 10^{-16}$ in double precision
- So IEEE single and double precision systems have about 7 and 16 decimal digits of precision, respectively

Machine Precision, continued

- \bullet Though both are "small," unit roundoff $\epsilon_{\rm mach}$ should not be confused with underflow level UFL
- ullet Unit roundoff ϵ_{mach} is determined by number of digits in mantissa of floating-point system, whereas underflow level UFL is determined by number of digits in exponent field
- In all practical floating-point systems,

 $0 < \text{UFL} < \epsilon_{\text{mach}} < \text{OFL}$

 $\overline{\mathbf{I}}$

Exceptional Values

- IEEE floating-point standard provides special values to indicate two exceptional situations
 - Inf, which stands for "infinity," results from dividing a finite number by zero, such as 1/0
 - NaN, which stands for "not a number," results from undefined or indeterminate operations such as 0/0, 0 * Inf, or Inf/Inf
- Inf and NaN are implemented in IEEE arithmetic through special reserved values of exponent field

Example: Floating-Point Arithmetic

- Assume $\beta = 10$, p = 6
- Let $x = 1.92403 \times 10^2$, $y = 6.35782 \times 10^{-1}$
- Floating-point addition gives $x + y = 1.93039 \times 10^2$, assuming rounding to nearest
- Last two digits of y do not affect result, and with even smaller exponent, y could have had no effect on result
- Floating-point multiplication gives $x * y = 1.22326 \times 10^2$, which discards half of digits of true product

 $\overline{\mathbf{I}}$

Example: Summing Series

Infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

has finite sum in floating-point arithmetic even though real series is divergent

- Possible explanations
 - Partial sum eventually overflows
 - ullet 1/n eventually underflows
 - Partial sum ceases to change once 1/n becomes negligible relative to partial sum

$$\frac{1}{n} < \epsilon_{\text{mach}} \sum_{k=1}^{n-1} \frac{1}{k}$$

< interactive example >

Subnormals and Gradual Underflow

- Normalization causes gap around zero in floating-point
- If leading digits are allowed to be zero, but only when exponent is at its minimum value, then gap is "filled in" by additional subnormal or denormalized floating-point numbers

- Subnormals extend range of magnitudes representable, but have less precision than normalized numbers, and unit roundoff is no smaller
- Augmented system exhibits gradual underflow

Floating-Point Arithmetic

Floating-Point Arithmetic

- Addition or subtraction: Shifting of mantissa to make exponents match may cause loss of some digits of smaller number, possibly all of them
- Multiplication: Product of two p-digit mantissas contains up to 2p digits, so result may not be representable
- *Division*: Quotient of two *p*-digit mantissas may contain more than p digits, such as nonterminating binary expansion of 1/10
- Result of floating-point arithmetic operation may differ from result of corresponding real arithmetic operation on same

Floating-Point Arithmetic, continued

- Real result may also fail to be representable because its exponent is beyond available range
- Overflow is usually more serious than underflow because there is no good approximation to arbitrarily large magnitudes in floating-point system, whereas zero is often reasonable approximation for arbitrarily small magnitudes
- on many computer systems overflow is fatal, but an underflow may be silently set to zero

Floating-Point Arithmetic, continued

- Ideally, x flop y = fl(x op y), i.e., floating-point arithmetic operations produce correctly rounded results
- Computers satisfying IEEE floating-point standard achieve this ideal as long as $x \circ p y$ is within range of floating-point system
- But some familiar laws of real arithmetic are not necessarily valid in floating-point system
- Floating-point addition and multiplication are commutative but not associative
- Example: if ϵ is positive floating-point number slightly smaller than ϵ_{mach} , then $(1+\epsilon)+\epsilon=1$, but $1+(\epsilon+\epsilon)>1$

- Reason is that leading digits of two numbers cancel (i.e., their difference is zero)
- For example,

$$1.92403 \times 10^2 - 1.92275 \times 10^2 = 1.28000 \times 10^{-1}$$

which is correct, and exactly representable, but has only three significant digits

 $\overline{\mathbf{I}}$

Floating-Point Numbers Floating-Point Arithmetic

Cancellation, continued

- Digits lost to cancellation are most significant, leading digits, whereas digits lost in rounding are least significant, trailing digits
- Because of this effect, it is generally bad idea to compute any small quantity as difference of large quantities, since rounding error is likely to dominate result
- For example, summing alternating series, such as

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

for x < 0, may give disastrous results due to catastrophic cancellation

Example: Quadratic Formula

• Two solutions of quadratic equation $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2}$$

- $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Naive use of formula can suffer overflow, or underflow, or severe cancellation
- Rescaling coefficients avoids overflow or harmful underflow
- ullet Cancellation between -b and square root can be avoided by computing one root using alternative formula

$$x = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}$$

 Cancellation inside square root cannot be easily avoided without using higher precision

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Floating-Point Numbers Floating-Point Arithmetic

Cancellation, continued

- Despite exactness of result, cancellation often implies serious loss of information
- Operands are often uncertain due to rounding or other previous errors, so relative uncertainty in difference may be
- Example: if ϵ is positive floating-point number slightly smaller than $\epsilon_{\rm mach}$, then $(1+\epsilon)-(1-\epsilon)=1-1=0$ in floating-point arithmetic, which is correct for actual operands of final subtraction, but true result of overall computation, 2ϵ , has been completely lost
- Subtraction itself is not at fault: it merely signals loss of information that had already occurred

Computer Arithmetic

Floating-Point Numbers Floating-Point Arithmetic

Example: Cancellation

Total energy of helium atom is sum of kinetic and potential energies, which are computed separately and have opposite signs, so suffer cancellation

Year	Kinetic	Potential	Iotal
1971	13.0	-14.0	-1.0
1977	12.76	-14.02	-1.26
1980	12.22	-14.35	-2.13
1985	12.28	-14.65	-2.37
1988	12.40	-14.84	-2.44

Although computed values for kinetic and potential energies changed by only 6% or less, resulting estimate for total energy changed by 144%

Example: Standard Deviation

• Mean and standard deviation of sequence x_i , i = 1, ..., n, are given by

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \quad \text{and} \quad \sigma = \left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \right]^{\frac{1}{2}}$$

Mathematically equivalent formula

$$\sigma = \left[\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2 \right) \right]^{\frac{1}{2}}$$

avoids making two passes through data

• Single cancellation at end of one-pass formula is more damaging numerically than all cancellations in two-pass formula combined

Michael T. Heath Scientific Computing