1.	A policy is a function which maps to	1 point
	O States to actions.	
	Actions to probability distributions over values.	
	States to probability distributions over actions.	
	O States to values.	
	Actions to probabilities.	
2.	The term "backup" most closely resembles the term in meaning.	1 point
	O Value	
	Update	
	O Diagram	
3.	At least one deterministic optimal policy exists in every Markov decision process.	1 point
	○ False	
	True	
4.	The optimal state-value function:	1 point
	Is not guaranteed to be unique, even in finite Markov decision processes.	
	Is unique in every finite Markov decision process.	

- 16:09 2/6/25
 - 5. Does adding a constant to all rewards change the set of optimal policies in episodic tasks?

1 point

- Yes, adding a constant to all rewards changes the set of optimal policies.
- No, as long as the relative differences between rewards remain the same, the set of optimal policies is the same.
- **6.** Does adding a constant to all rewards change the set of optimal policies in continuing tasks?

1 point

- No, as long as the relative differences between rewards remain the same, the set of optimal policies is the same.
- Yes, adding a constant to all rewards changes the set of optimal policies.
- 7. Select the equation that correctly relates v_* to q_* . Assume π is the uniform random policy.

1 point

$$v_*(s) = \sum_{a,r,s} \pi(a|s)p(s',r|s,a)[r+q_*(s')]$$

$$v_*(s) = \sum_{a,r,s} \pi(a|s) p(s',r|s,a) [r + \gamma q_*(s')]$$

$$\bigcirc v_*(s) = \sum_{a,r,s'} \pi(a|s) p(s',r|s,a) q_*(s')$$

8. Select the equation that correctly relates q_* to v_* using four-argument function p.

1 point

- $Q_*(s,a) = \sum_{s',r} p(s',r|a,s) \gamma[r+v_*(s')]$
- **9.** Write a policy π_* in terms of q_* .

1 point

- $\bigcap \pi_*(a|s) = q_*(s,a)$
- $\bigcap \pi_*(a|s) = \max_{a'} q_*(s,a')$
- $\pi_*(a|s) = 1 \text{ if } a = \operatorname{argmax}_{a'} q_*(s, a'), \text{ else } 0$
- **10.** Give an equation for some π_* in terms of ν_* and the four-argument p.

1 point

- \bullet $\pi_*(a|s) = 1$ if $v_*(s) = \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$, else 0
- $\bigcap \pi_*(a|s) = \max_{a'} \sum_{s',r} p(s',r|s,a') [r + \gamma v_*(s')]$
- $\bigcirc \pi_*(a|s) = \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$