The Sobol sequence - an example

The first ten points of a 12-dimensional Sobol sequence are

Out[48]//TableForm=

TODIOT OTTI												
	1	2	3	4	5	6	7	8	9	10	11	12
1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1/2
2	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{4}$
3	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{4}$
4	3 8	<u>5</u> 8	$\frac{7}{8}$	3 8	1/8	3 8	$\frac{7}{8}$	7 8	<u>5</u> 8	$\frac{7}{8}$	3 8	3 8
5	$\frac{7}{8}$	1/8	3 8	$\frac{7}{8}$	<u>5</u> 8	$\frac{7}{8}$	3 8	3 8	$\frac{1}{8}$	3 8	$\frac{7}{8}$	7 8
6	1 8	7 8	<u>5</u> 8	<u>5</u> 8	7 8	1 8	1 8	1/8	3 8	1 8	<u>5</u> 8	1/8
7	<u>5</u> 8	3 8	1/8	1/8	3 8	<u>5</u> 8	<u>5</u> 8	<u>5</u> 8	$\frac{7}{8}$	<u>5</u> 8	1/8	<u>5</u> 8
8	<u>5</u> 16	15 16	$\frac{7}{16}$	9 16	<u>5</u> 16	$\frac{7}{16}$	15 16	15 16	<u>5</u> 16	11 16	1 16	15 16
9	13 16	$\frac{7}{16}$	15 16	$\frac{1}{16}$	13 16	15 16	$\frac{7}{16}$	$\frac{7}{16}$	13 16	$\frac{3}{16}$	9 16	$\frac{7}{16}$
10	$\frac{1}{16}$	$\frac{11}{16}$	$\frac{3}{16}$	5 16	9 16	$\frac{3}{16}$	$\frac{3}{16}$	$\frac{3}{16}$	9 16	$\frac{7}{16}$	13 16	$\frac{11}{16}$

Starting from 250th point, the next 10 points are

Out[56]//TableForm:

ableForm=												
	1	2	3	4	5	6	7	8	9	10	11	12
250	31	229	243	125	91	3	77	17	123	67	203	211
	256	256	256	256	256	256	256	256	256	256	256	256
251	159	101	115	253	219	131	205	145	251	195	75	83
	256	256	256	256	256	256	256	256	256	256	256	256
252	63	_5_	83	221	187	35	109	49	27	99	107	243
	256	256	256	256	256	256	256	256	256	256	256	256
253	191	133	211	93	59	163	237	177	155	227	235	115
	256	256	256	256	256	256	256	256	256	256	256	256
254	127	69	19	29	123	99	173	241	219	163	171	179
	256	256	256	256	256	256	256	256	256	256	256	256
255	255	197	147	157	251	227	45	113	91	35	43	51
	256	256	256	256	256	256	256	256	256	256	256	256
256	255	347	151	399	55	187	183	147	209	233	511	121
	512	512	512	512	512	512	512	512	512	512	512	512
257	511	91	407	143	311	443	439	403	465	489	255	377
	512	512	512	512	512	512	512	512	512	512	512	512
258	127	475	23	15	439	59_	311	275	337	361	127	249
	512	512	512	512	512	512	512	512	512	512	512	512
259	383	219	279	271	183	315	55	19	81	105	383	505
	512	512	512	512	512	512	512	512	512	512	512	512

This 12-dimensional sequence was generated using the following primitive polynomials and initial values (Joe and Kuo 2007)

$$\left\{ 1+x, \, \left\{1\right\} \right\} \\ \left\{ 1+x+x^2, \, \left\{1, \, 3\right\} \right\} \\ \left\{ 1+x+x^3, \, \left\{1, \, 3, \, 1\right\} \right\} \\ \left\{ 1+x^2+x^3, \, \left\{1, \, 1, \, 1\right\} \right\} \\ \left\{ 1+x^2+x^4, \, \left\{1, \, 1, \, 3, \, 3\right\} \right\} \\ \left\{ 1+x^3+x^4, \, \left\{1, \, 3, \, 5, \, 13\right\} \right\} \\ \left\{ 1+x^2+x^5, \, \left\{1, \, 1, \, 5, \, 5, \, 17\right\} \right\} \\ \left\{ 1+x^3+x^5, \, \left\{1, \, 1, \, 5, \, 5, \, 5\right\} \right\} \\ \left\{ 1+x^4+x^2+x^3+x^5, \, \left\{1, \, 1, \, 7, \, 11, \, 19\right\} \right\} \\ \left\{ 1+x+x^2+x^4+x^5, \, \left\{1, \, 1, \, 5, \, 1, \, 1\right\} \right\} \\ \left\{ 1+x^2+x^3+x^4+x^5, \, \left\{1, \, 1, \, 3, \, 11\right\} \right\} \\ \left\{ 1+x^2+x^3+x^4+x^5, \, \left\{1, \, 3, \, 5, \, 5, \, 31\right\} \right\}$$

Each primitive polynomial defines a unique recursive function, which is used to generate a set of direction numbers for that dimension. For example, the 6th dimension is based upon the 4th degree polynomial $x^4 + x^3 + 1$ which defines the 4th order recursion

$$m_i = 2 a_1 m_{i-1} \oplus 2^2 a_2 m_{i-2} \oplus 2^3 a_3 m_{i-3} \oplus m_{i-4}$$

which collapses to

$$m_i = 2 m_{i-1} \oplus m_{i-4}$$

since $a_1 = 1$ while $a_2 = a_3 = 0$ (a_i is the coefficient of x^{k-i} , where k is the order of the polynomial).

Seeded with k non-negative odd integers m_1, m_2, m_3, \dots with $m_i < 2^i$, subsequent values generated by the recursion are also non-negative odd integers with $m_i < 2^j$ for all j. Direction numbers are obtained by dividing each term by 2^{j} , that is

$$(v_1, v_2, ..., v_M) = \left(\frac{m_1}{2}, \frac{m_2}{4}, \frac{m_3}{8}, ..., \frac{m_M}{2^M}\right)$$

To produce a Sobol sequence of length n requires one direction number for each bit in the binary expansion of n, a total of $k = \lfloor \log_2 n \rfloor$ direction numbers for each dimension.

Using the above initial values, the direction numbers of a 12-dimensional Sobol sequence starts with

Out[80]//TableForm=

able offi-												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1/2	$\frac{1}{4}$	<u>1</u> 8	1 16	1 32	1 64	1128	1 256	1 512	1024	1 2048	1 4096
2	$\frac{3}{2}$	$\frac{3}{4}$	3 8	1 16	1 32	$\frac{3}{64}$	1 128	1 256	1 512	$\frac{1}{1024}$	1 2048	3 4096
3	<u>5</u> 2	$\frac{3}{4}$	<u>1</u> 8	1 16	$\frac{3}{32}$	5 64	$\frac{5}{128}$	5 256	$\frac{7}{512}$	$\frac{5}{1024}$	1 2048	5 4096
4	15 2	$\frac{9}{4}$	<u>5</u> 8	$\frac{11}{16}$	$\frac{3}{32}$	$\frac{13}{64}$	$\frac{5}{128}$	5 256	11 512	$\frac{1}{1024}$	$\frac{3}{2048}$	5 4096
5	$\frac{17}{2}$	$\frac{29}{4}$	31 8	31 16	25 32	$\frac{11}{64}$	$\frac{17}{128}$	5 256	19 512	$\frac{1}{1024}$	11 2048	$\frac{31}{4096}$
6	<u>51</u> 2	$\frac{23}{4}$	29 8	55 16	$\frac{9}{32}$	$\frac{37}{64}$	9 128	53 256	37 512	$\frac{27}{1024}$	43 2048	35 4096
7	85 2	$\frac{71}{4}$	81	61 16	43 32	$\frac{31}{64}$	$\frac{9}{128}$	53 256	69 512	$\frac{79}{1024}$	75 2048	113 4096
8	255 2	$\frac{197}{4}$	147 8	$\frac{157}{16}$	251 32	$\frac{227}{64}$	$\frac{45}{128}$	113 256	91 512	$\frac{35}{1024}$	43 2048	51 4096
9	257 2	$\frac{209}{4}$	433 8	181 16	449 32	381 64	$\frac{237}{128}$	113 256	103 512	$\frac{175}{1024}$	425 2048	31 4096
10	$\frac{771}{2}$	$\frac{627}{4}$	149 8	191 16	$\frac{449}{32}$	$\frac{143}{64}$	$\frac{633}{128}$	$\frac{353}{256}$	$\frac{871}{512}$	$\frac{695}{1024}$	$\frac{37}{2048}$	$\frac{133}{4096}$

This set is sufficient to produce 1024 random points from the 12-dimensional hypercube. Successive vectors in the Sobol sequence are produced by XORing the preceding vector with one of the rows in the above table, where the rows are chosen in odometer order starting with the first row.