RL: Policy Search

Finite Difference

Marius Lindauer

Winter Term 2021

Policy Gradient

- Assume episodic MDPs
- Policy gradient algorithms search for a local maximum in $V(s_0,\theta)$ by ascending the gradient of the policy, w.r.t parameters θ

$$\Delta\theta = \alpha\nabla_\theta V(s_0,\theta)$$

where α is the learning rate (step-size) and $\nabla_{\theta}V(s_0,\theta)$ is the policy gradient

$$\nabla_{\theta}V(s_0,\theta) = \begin{pmatrix} \frac{\partial V(s_0,\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial V(s_0,\theta)}{\partial \theta_n} \end{pmatrix}$$

- \blacktriangleright To evaluate policy gradient of $\pi_{\theta}(s,a)$
- lacksquare For each dimension $k \in [1, n]$
 - **E**stimate k-th partial derivative of objective function wrt θ
 - lacktriangle By pertubating heta by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0,\theta)}{\partial \theta_k} \approx \frac{V(s_0,\theta+\epsilon u_k) - V(s_0,\theta)}{\epsilon}$$

where \boldsymbol{u}_k is a unit vector with $\boldsymbol{1}$ in k-th component and $\boldsymbol{0}$ elsewhere

- \blacktriangleright To evaluate policy gradient of $\pi_{\theta}(s,a)$
- For each dimension $k \in [1, n]$
 - **E**stimate k-th partial derivative of objective function wrt θ
 - ightharpoonup By pertubating θ by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0,\theta)}{\partial \theta_k} \approx \frac{V(s_0,\theta+\epsilon u_k) - V(s_0,\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in k-th component and 0 elsewhere

 $ightharpoonup \epsilon$ should be

Lindauer

- large enough to observe a change in the policy and value function
- small enough to have a good gradient approximation

- \blacktriangleright To evaluate policy gradient of $\pi_{\theta}(s,a)$
- For each dimension $k \in [1, n]$
 - **E**stimate k-th partial derivative of objective function wrt θ
 - **b** By pertubating θ by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0,\theta)}{\partial \theta_k} \approx \frac{V(s_0,\theta+\epsilon u_k) - V(s_0,\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in k-th component and 0 elsewhere

 $ightharpoonup \epsilon$ should be

Lindauer

- large enough to observe a change in the policy and value function
- small enough to have a good gradient approximation
- lackbox Uses $\geq n$ evaluations to compute policy gradient in n dimensions
 - → fairly inefficient for doing a single update!
 - → weight space should be small no computer vision

- \blacktriangleright To evaluate policy gradient of $\pi_{\theta}(s,a)$
- For each dimension $k \in [1, n]$
 - \blacktriangleright Estimate k-th partial derivative of objective function wrt θ
 - ightharpoonup By pertubating θ by small amount ϵ in k-th dimension

$$\frac{\partial V(s_0,\theta)}{\partial \theta_k} \approx \frac{V(s_0,\theta+\epsilon u_k) - V(s_0,\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in k-th component and 0 elsewhere

 $ightharpoonup \epsilon$ should be

Lindauer

- large enough to observe a change in the policy and value function
- small enough to have a good gradient approximation
- lackbox Uses $\geq n$ evaluations to compute policy gradient in n dimensions
 - → fairly inefficient for doing a single update!
 - → weight space should be small no computer vision
- Simple, noisy, inefficient but sometimes effective
- ▶ Works for arbitrary policies, even if policy is not differentiable