Math 453

Selected Solutions to Assignment 8

Problem 4: Suppose H is a subgroup of G with index 2. Show that H is a normal subgroup.

Solution: Let $a \in G$. If $a \in H$, then aH = H = Ha. If $a \in G \setminus H$, since the left cosets of H partition G, and since $a \in aH$, we have that H and aH are disjoint cosets. Since [G:H]=2, we have that $H \cup aH = G$. Hence, we have $aH = G \setminus H$. Since the right cosets of H also partition G, we similarly have $Ha = G \setminus H$. Hence, aH = Ha. Since for each $a \in G$, we have aH = Ha, H is a normal subgroup of G.

Problem 6: What is the order of the quotient group $\mathbb{Z}_{10} \times \mathbb{Z}_{10}^{\times}/\langle (2,9)\rangle$? **Solution:** Note that $|\mathbb{Z}_{10}| = 10$, and $|\mathbb{Z}_{10}^{\times}| = 4$, so $|\mathbb{Z}_{10} \times \mathbb{Z}_{10}^{\times}| = 40$. (Recall that \mathbb{Z}_{10}^{\times} is the subset of integers

$$\{n \in \mathbb{N} \mid 1 \le n \le 10, \exists k \in \mathbb{N} \text{ s.t. } kn \equiv 1 \mod 10\},\$$

with group operation given by multiplication modulo 10.) Then by direct computation, we have

$$(2,9)^{1} = (2,9) \qquad (2,9)^{6} = (2,1)$$

$$(2,9)^{2} = (4,1) \qquad (2,9)^{7} = (4,9)$$

$$(2,9)^{3} = (6,9) \qquad (2,9)^{8} = (6,1)$$

$$(2,9)^{4} = (8,1) \qquad (2,9)^{9} = (8,9)$$

$$(2,9)^{5} = (0,9) \qquad (2,9)^{10} = (0,1) = e_{\mathbb{Z}_{10} \times \mathbb{Z}_{10}^{\times}}.$$

Hence, $|\langle (2,9)\rangle|=10$, so by Lagrange's Theorem, we have

$$|\mathbb{Z}_{10} \times \mathbb{Z}_{10}^{\times} / \langle (2,9) \rangle| = \frac{|\mathbb{Z}_{10} \times \mathbb{Z}_{10}^{\times}|}{|\langle (2,9) \rangle|} = \frac{40}{10} = 4.$$