ACST 890- TAKE HOME QUIZ 2 SOLUTIONS: 45535531-ROHAN MARCUS DEANS

GITHUB Username: 45535531

Repository Name: Quiz1 (https://github.com/45535531/Quiz1.git)

File Name: 45535531DeansRohanMarcusTHQ2.pdf

Other Attached files on GITHUB: codings.txt

1.a.

```
In [25]: %%bash
    echo "using bash from inside Jupyter!" > test-file.txt
    ls
    echo ""
    cat test-file.txt
    rm test-file.txt
```

Couldn't find program: 'bash'

```
In [30]: # pip install version information
         # https://github.com/jrjohansson/version_information
         # alternate option: https://github.com/rasbt/watermark
         %load_ext version_information
         %version_information requests, numpy, pandas, matplotlib, seaborn, sklearn
         ______
         ModuleNotFoundError
                                                  Traceback (most recent call last)
        ModuleNotFoundError: No module named 'version information'
In [5]: # Setting plot appearance
        # See here for more options: https://matplotlib.org/users/customizing.html
       %config InlineBackend.figure_format='retina'
        sns.set() # Revert to matplotlib defaults
        plt.rcParams['figure.figsize'] = (9, 6)
       plt.rcParams['axes.labelpad'] = 10
        sns.set_style("darkgrid")
        # sns.set_context("poster", font_scale=1.0)
                                             Traceback (most recent call last)
        <ipython-input-5-b9c4f8741526> in <module>
             4 get_ipython().run_line_magic('config', "InlineBackend.figure_format='retina'")
        ----> 5 sns.set() # Revert to matplotlib defaults
             6 plt.rcParams['figure.figsize'] = (9, 6)
             7 plt.rcParams['axes.labelpad'] = 10
       NameError: name 'sns' is not defined
```

1.b.

```
In [11]: # Source: https://github.com/catherinedevlin/ipython-sql
    # do pip install ipython-sql in the terminal
%load_ext sql
```

The sql extension is already loaded. To reload it, use: %reload_ext sql 0.20.3

Out[15]: Software Version Python 3.7.3 64bit [MSC v.1915 64 bit (AMD64)] **IPython** 7.4.0 os Windows 10 10.0.17134 SP0 requests 2.21.0 1.16.2 numpy pandas 0.24.2 matplotlib 3.0.3 seaborn 0.9.0

skleam

```
In [1]: import pandas as pd
In [2]: from pandas import DataFrame
In [3]: Data = {'Country': ['Output, Q','Labour, L','Capital, K'],
                'B': [80,60,50],
           *'C': [150,100,100],
           *'D': [135,100,80],
           *'E': [165,120,100],
           *'F': [95,70,60],
           "'G': [130,90,80],
           *'H': [110,80,70],
In [4]: Table = DataFrame(Data,columns= ['Country','B','C','D','E','F','G','H'])
In [5]: print(Table)
              Country
                        В
                             C
                                  D
                                       Ε
                                           F
                                               G
                                                    Н
            Output, Q 80 150 135 165 95
                                              130
                                                  110
          Labour, L 60 100 100
                                         70
                                              90
                                                   80
        2 Capital, K 50 100
                                80 100 60
                                               80
                                                   70
```

a.

```
In [6]:
           Table.mean(axis=1)
  Out[6]: 0
                123.571429
           1
                 88.571429
           2
                 77.142857
           dtype: float64
  In [7]:
           Table.var(axis=1)
  Out[7]: 0
                914.285714
           1
                414.285714
                357.142857
           dtype: float64
  In [8]:
           Table.std(axis=1)
  Out[8]: 0
                30.237158
                20.354010
           1
                18.898224
           dtype: float64
  In [9]:
           Table.median(axis=1)
  Out[9]: 0
                130.0
           1
                 90.0
                 80.0
           2
           dtype: float64
b.
           import matplotlib.pyplot as plt
 In [10]:
 In [11]:
           Q=[80,150,135,165,95,130,110]
```



```
In [13]: L=[60,100,100,120,70,90,80]
```

```
In [14]: plt.hist(L,bins=15)
```

Out[14]: (array([1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 2., 0., 0., 0., 1.]), array([60., 64., 68., 72., 76., 80., 84., 88., 92., 96., 100., 104., 108., 112., 116., 120.]), <a list of 15 Patch objects>)

f.

```
In [17]: import numpy as np
  In [18]: K=[50,100,80,100,60,80,70]
  In [19]: logQ=np.log(Q)
  In [20]: logL=np.log(L)
  In [21]: logK=np.log(K)
  In [22]: import statsmodels.api as sm
  In [23]: print(logQ,logL,logK)
          [4.38202663 5.01063529 4.90527478 5.10594547 4.55387689 4.86753445
           4.70048037] [4.09434456 4.60517019 4.60517019 4.78749174 4.24849524 4.49980967
           4.38202663] [3.91202301 4.60517019 4.38202663 4.60517019 4.09434456 4.38202663
           4.24849524]
d.
             import statsmodels.api as sm
 #Q2d. fitting multiple regression model
 y=logdata['Output, Q']
 x1=logdata['Labour, L']
 x2=logdata['Capital, K']
 model=sm.ols(formula="y~x1+x2",data=logdata).fit()
 print(model.params)
 Intercept
                  0.146233
                  0.548427
 X1
 x2
                  0.508741
 dtype: float64
```

mQ2f. calculating adjusted R square of model print(model.summary())

OLS Regression Results

		and web.				
************					*********	
Dep. Variable:			y R-sq	R-squared:		0.998
Model:		OI	S Adj.	Adj. R-squared:		0.997
Method:		Least Square	s F-st	F-statistic:		958.4
Date:		hu, 16 May 201	9 Prob	Prob (F-statistic):		
Time:		01:11:	1 Log-	Log-Likelihood:		21.712
No. Observations:			100	AIC:		-37.42
Df Residuals:			4 BIC:			-37.59
Df Model:			2			0.7323000
Covariance Ty	/pe:	nonrobus	st			
	coef	std err	t	P> t	[0.025	0.975]
Totoncont	0.1463	0.114	1 202	0.260	0.170	0.467
Intercept	0.1462	0.114	1.282	0.269	-0.170	0.463
x1	0.5484	0.090	6.127	0.004	0.300	0.797
x2	0.5087	0.083	6.150	0.004	0.279	0.738
Omnibus:		nan		Durbin-Watson:		2.801
Prob(Omnibus):		na	an Jarq	Jarque-Bera (JB):		2.261
Skew:		1.35	2 Prob	(JB):		0.323
Kurtosis:		3.66	55 Cond	. No.		160.