BLM2041 Signals and Systems

Week 5

The Instructors:

Prof. Dr. Nizamettin Aydın naydin@yildiz.edu.tr

Asist. Prof. Dr. Ferkan Yilmaz <u>ferkan@yildiz.edu.tr</u>

Responses to arbitrary signals

- Although we have focused on responses to simple signals (δ[n],δ(t)) we are generally interested in responses to more complicated signals.
- How do we compute responses to a more complicated input signals?

Block diagram depicting a general input/output relationship

Impulse Response

The impulse response of a linear system $h_{\tau}(t)$ is the output of the system at time t to an impulse at time τ . This can be written as

$$h_{\tau} = H(\delta_{\tau})$$

Care is required in interpreting this expression!

Note: Be aware of potential confusion here:

When you write

$$h_{\tau}(t) = H(\delta_{\tau}(t))$$

the variable t serves different roles on each side of the equation.

- t on the left is a specific value for time, the time at which the output is being sampled.
- t on the right is varying over all real numbers, it is not the same t as
- The output at time specific time *t* on the left in general depends on the input at all times *t* on the right (the entire input waveform).

• Assume the input impulse is at $\tau = 0$,

$$h = h_0 = H(\delta_0).$$

We want to know the impulse response at time t=2. It doesn't make any sense to set t=2, and write

$$h(2) = H(\delta(2))$$
 $\Leftarrow No!$

First, $\delta(2)$ is something like zero, so H(0) would be zero. Second, the value of h(2) depends on the entire input waveform, not just the value at t=2.

Time-invariance

If ${\cal H}$ is time invariant, delaying the input and output both by a time τ should produce the same response

$$h_{\tau}(t) = h(t - \tau).$$

In this case, we don't need to worry about h_{τ} because it is just h shifted in time.

Linearity and Extended Linearity

Linearity: A system S is linear if it satisfies both

• Homogeneity: If y = Sx, and a is a constant then

$$ay = S(ax)$$
.

• Superposition: If $v_1 = Sx_1$ and $v_2 = Sx_2$, then

$$v_1 + v_2 = S(x_1 + x_2).$$

Combined Homogeneity and Superposition:

If $y_1 = Sx_1$ and $y_2 = Sx_2$, and a and b are constants,

$$ay_1 + by_2 = S(ax_1 + bx_2)$$

Extended Linearity

• Summation: If $y_n = S(x_n)$ for all n, an integer from $(-\infty < n < \infty)$, and a_n are constants

$$\sum_{n} a_{n} y_{n} = S\left(\sum_{n} a_{n} x_{n}\right)$$

Summation and the system operator commute, and can be interchanged

• Integration (Simple Example): If y = S(x),

$$\int_{-\infty}^{\infty} a(\tau)y(t-\tau) d\tau = S\left(\int_{-\infty}^{\infty} a(\tau)x(t-\tau)d\tau\right)$$

Integration and the system operator commute, and can be interchanged.

Output of an LTI System

We would like to determine an expression for the output y(t) of an linear time invariant system, given an input x(t)

We can write a signal x(t) as a sample of itself

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta_{\tau}(t) d\tau$$

This means that x(t) can be written as a weighted integral of δ functions.

Applying the system H to the input x(t),

$$y(t) = H(x(t))$$

$$= H\left(\int_{-\infty}^{\infty} x(\tau)\delta_{\tau}(t)d\tau\right)$$

If the system obeys extended linearity we can interchange the order of the system operator and the integration

$$y(t) = \int_{-\infty}^{\infty} x(\tau) H(\delta_{\tau}(t)) d\tau.$$

The impulse response is

$$h_{\tau}(t) = H(\delta_{\tau}(t)).$$

Substituting for the impulse response gives

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h_{\tau}(t) d\tau.$$

This is a *superposition integral*. The values of $x(\tau)h(t,\tau)d\tau$ are superimposed (added up) for each input time τ .

If H is time invariant, this written more simply as

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h_{\tau}(t) d\tau.$$

This is in the form of a *convolution integral*, which will be the subject of the next class.

Graphically, this can be represented as:

The impulse response is determined by differentiating the step response.

To show this, commute the convolution system and the differentiator to produce a system with the same overall impulse response

Steps for Graphical Convolution x(t)*h(t)

 $v(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$

- Re-Write the signals as functions of τ : $x(\tau)$ and $h(\tau)$
- <u>Flip</u> just <u>one</u> of the signals around t = 0 to get <u>either</u> $x(-\tau)$ <u>or</u> $h(-\tau)$ a. It is usually best to flip the signal with shorter duration
 - For notational purposes here: we'll flip $h(\tau)$ to get $h(-\tau)$

- - Shift $h(-\tau)$ by an arbitrary value of t to get $h(t-\tau)$ and get its edges $\frac{S}{\text{call it } \tau_{L,t}}$
 - Find the left-hand-edge τ -value of $h(t \tau)$ as a function of t:

 Important: It will always be... $\tau_{t,t} = t + \tau_{t,0}$

 - Find the right-hand-edge τ -value of $h(t-\tau)$ as a function of t: call it $\tau_{R,t}$ Important: It will always be... $\tau_{R,t} = t + \tau_{R,0}$

Note: If the signal you flipped is NOT finite duration.

one or both of τ_{L_I} and τ_{R_I} will be infinite ($\tau_{L_I} = -\infty$ and/or $\tau_{R_I} = \infty$)

Steps Continued

- Find Regions of τ -Overlap

 a. What you are trying to do here is find intervals of t over which the product $x(\tau)$ $h(t-\tau)$ has a single mathematical form in terms of τ b. In each region find: Interval of t that makes the identified overlap happen
- Working examples is the best way to learn how this is done

Tips: Regions should be contiguous with no gaps!!! Don't worry about < vs. ≤ etc

For Each Region: Form the Product $x(\tau)$ $h(t - \tau)$ and Integrate

- Form product $x(\tau) h(t \tau)$ Find the Limits of Integration by finding the interval of τ over which the product is nonzero

 i. Found by seeing where the edges of $x(\tau)$ and $h(t - \tau)$ lie

 - Recall that the edges of $h(t \tau)$ are $\tau_{L,t}$ and $\tau_{R,t}$, which often depend on the value of t
 - So... the limits of integration may depend on t
 Integrate the product x(τ) h(t τ) over the limits found in 6b
- The result is generally a function of t, but is only valid for the interval of t found for the current region
- Think of the result as a "time-section" of the output y(t)

Steps Continued

- "Assemble" the output from the output time-sections for all the regions
- Note: you do NOT add the sections together
 - h
- You define the output "piecewise" Finally, if possible, look for a way to write the output in a simpler form

Example: Graphically Convolve Two Signals $y(t) = \int h(\tau)x(t-\tau)d\tau$ By "Properties of Convolution" these two forms are $= \int x(\tau)h(t-\tau)d\tau$ Equal This is why we can flip <u>either</u> signal Convolve these two signals:

