Математический анализ 1. Направление 38.03.01 Экономика Тема 2. Функции нескольких переменных Семинар 2.9. Однородные функции. Выпуклые функции

1. Функция f задана на конусе $X = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$. Проверьте, однородна ли она на X, и если да, то найдите ее степень однородности:

$$(1) f(x,y) = \frac{x^3 + 2xy^2 - y^3}{\sqrt{x^2 + xy + y^2}}; (2) f(x,y) = \sqrt[3]{\frac{xy}{x^2 + 3y^2}}; (3) f(x,y) = \frac{4}{x} - \frac{5}{y} + \frac{2}{\sqrt{x^2 + y^2}};$$

(4)
$$f(x,y) = \sqrt[5]{x^3 - 3x^2y + y^3} \cdot \sqrt[7]{x^2 + 4y^2};$$
 (5) $f(x,y) = \ln \frac{x^2 + y^2}{x^3 + y^3};$

(6)
$$f(x,y) = \sqrt[3]{x^2 + y^2} + \sqrt{x^3 + y^3}$$
.

2. Скалярная функция f или вектор-функция \mathbf{f} задана на конусе X. Проверьте, однородна ли она на X, и если да, то найдите ее степень однородности:

(1)
$$f(x,y) = \frac{4}{\sqrt{y-x}}, X = \{(x,y) \in \mathbb{R}^2 : y > x\};$$

(2)
$$f(x, y, z) = \sqrt[3]{xy + 2yz + 3zx}, X = \mathbb{R}^3;$$

(3)
$$\mathbf{f}(x,y) = \begin{pmatrix} xy \\ \sqrt{x^4 + 5y^4} \end{pmatrix}, X = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\};$$

(4)
$$\mathbf{f}(x,y) = \begin{pmatrix} xy \\ x^3 + xy^2 + y^3 \end{pmatrix}, X = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}.$$

3. Проверьте, корректно ли определена и является ли однородной степени 0 на конусе X неявно заданная функция f:

(1)
$$f(a,b,c) = \max_{D_{a,b,c}} g(x,y)$$
 на $X = \{(a,b,c) \in \mathbb{R}^3 : a>0, b>0, c>0\}$, где

$$g(x,y) = 7x^3 - y^2 + x - 4y, \quad D_{a,b,c} = \{(x,y) \in \mathbb{R}^2 : ax^2 + by^2 \le c\};$$

(2)
$$f(a,b) = \max_{D_{a,b}} g(x,y)$$
 на $X = \{(a,b) \in \mathbb{R}^2 : a > 0, b > 0\}$, где

$$g(x,y) = x^2 + y$$
, $D_{a,b} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1\}$.

4. Пусть g(x,y) — непрерывная однородная степени α функция на \mathbb{R}^2 , а функция f неявно задана формулой

$$f(a,b) = \max_{D_{a,b}} g(x,y)$$
 на конусе $X = \{(a,b) \in \mathbb{R}^2 : a > 0, b > 0\},$

где $D_{a,b}=\left\{(x,y)\in\mathbb{R}^2:\frac{x^2}{a^2}+\frac{y^2}{b^2}\leqslant 1\right\}$. Докажите, что f корректно определена и однородна степени α на X.

5. Функция $f(x,y) = \sqrt{x+3y} \cdot \sqrt[4]{15x^3+y^3}$ задана на конусе $X = \{(x,y) \in \mathbb{R}^2 : x \geqslant 0, y \geqslant 0\}$. Проверьте, что она однородна, и найдите ее степень однородности.

С использованием теоремы Эйлера найдите также значение функции

$$h(x,y) = \mathbf{r}^T \nabla f(\mathbf{r}) = (\mathbf{r}, \nabla f(\mathbf{r})) = x f'_x(x,y) + y f'_y(x,y)$$

в точке (1,1), где $\mathbf{r}=(x,y)^T$ – радиус-вектор-столбец.

6. Функция $f(x,y) = \sqrt[3]{2x^5 + 6y^5} \cdot \sqrt{7x^2 + 2y^2}$ задана на конусе $X = \{(x,y) \in \mathbb{R}^2 : x \geqslant 0, y \geqslant 0\}$. Проверьте, что она однородна, и найдите ее степень однородности.

С использованием следствия теоремы Эйлера об однородных функциях найдите также значение функции

$$v(x,y) = \mathbf{r}^T H_f(\mathbf{r}) \mathbf{r} = (H_f(\mathbf{r}) \mathbf{r}, \mathbf{r}) = x^2 f''_{xx}(x,y) + 2xy f''_{xy}(x,y) + y^2 f''_{yy}(x,y)$$

в точке (1,1), где $\mathbf{r}=(x,y)^T$ – радиус-вектор-столбец.

7. Проверьте, что функция $f(x,y) = \frac{\sqrt{x+y} - \sqrt{x-y}}{\sqrt[4]{x} + 3\sqrt[4]{y}}$, определенная на конусе $X = \{(x,y) \in \mathbb{R}^2 : x > y > 0\}$, однородна, и найдите ее степень однородности.

С использованием теоремы Эйлера об однородных функциях найдите сумму ее эластичностей по x и y:

$$E_x[f](x,y) + E_y[f](x,y) = \frac{xf_x'(x,y)}{f(x,y)} + \frac{yf_y'(x,y)}{f(x,y)}$$
 ha X .

- 8. Проверьте, обладает ли функция f(x,y) свойствами однородности и гомотетичности на открытом конусе $X=\{(x,y)\in\mathbb{R}^2: x>0, y>0\}$:
 - (1) $f(x,y) = 2^{\sqrt{2}x} 3^{\sqrt{3}y}$; (2) $f(x,y) = x + y + \sqrt{x+y}$;
 - (3) $f(x,y) = x^2y + xy$; (4) $f(x,y) = 3 \ln x 2 \ln y$.
- 9. Докажите, что:
 - (1) функция $f(\mathbf{x}) = |\mathbf{x}|$ выпукла, но не строго выпукла на \mathbb{R}^n ;
 - (2) если функция $f(\mathbf{x})$ выпукла и неотрицательна на выпуклом множестве $V \subset \mathbb{R}^n$, то функция $f^2(\mathbf{x})$ также выпукла на V;
 - (3) функция $f(x_1, ..., x_n) = (x_1 ... x_n)^{1/n}$ вогнута на множестве $x_1 > 0, ..., x_n > 0$.
- 10. Пусть $f(\mathbf{x}) = (A\mathbf{x}, \mathbf{x})_{\mathbb{R}^n}$ квадратичная форма с симметричной матрицей A порядка n.
 - (1) Докажите тождество

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \alpha(1 - \alpha)f(\mathbf{x} - \mathbf{y})$$

для любых $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ и числа α .

- (2) С помощью этого тождества докажите, что:
- а) функция $f(\mathbf{x})$ выпукла на \mathbb{R}^n тогда и только тогда, когда $A\geqslant 0;$
- б) функция $f(\mathbf{x})$ строго выпукла на \mathbb{R}^n тогда и только тогда, когда A>0.
- (3) С помощью результата п. 2 докажите, что квадратичная функция $g(\mathbf{x}) = (A\mathbf{x}, \mathbf{x})_{\mathbb{R}^n} + (\mathbf{b}, \mathbf{x})_{\mathbb{R}^n} + c$ с некоторыми $\mathbf{b} \in \mathbb{R}^n$ и c выпукла (строго выпукла) на \mathbb{R}^n тогда и только тогда, когда $A \geqslant 0$ (соответственно A > 0.

11. Исследуйте функцию f на выпуклость/вогнутость в области D. Использовав полученный результат, чи найдите значение и точки глобальных экстремумов (если они существуют) и область значений функции f на множестве D:

(1)
$$f(x,y) = \sqrt{x} + 4\sqrt{y} - x - 6y$$
, $D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$;

(2)
$$f(x,y) = 18\sqrt{x} \cdot \sqrt[3]{y} - x - 3y, D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\};$$

(3)
$$f(x,y) = \sqrt{xy}$$
, $D = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$.

12. (*) Функция прибыли предприятия выражается формулой

$$p(x,y) = 8\sqrt{x} + 8\sqrt{y} - 7x - 8y + 100,$$

где x и y – некоторые производственные параметры. Исследуйте ее на выпуклость / вогнутость на множестве $D = \{(x,y) \in \mathbb{R}^2: x > 0, y > 0\}.$

Использовав полученный результат, найдите $\max_S p(x,y)$ (если он существует) и точку, где он достигается на множестве $S=\{(x,y)\in\mathbb{R}^2:\ x>0,\ y>0,\ x+y\geqslant 20.$

13. Исследуйте функцию $f(x,y)=2-\frac{1}{x+1}-\frac{2}{y+2}$ на выпуклость/вогнутость в области $S=\{(x,y)\in\mathbb{R}^2:\ x\geqslant 0,\ y\geqslant 0,\ 2x+y\leqslant 6\}.$

Использовав полученный результат, найдите глобальные экстремумы f(x,y) (если они существуют) и точки, где они достигаются на S, и укажите область значений функции f на S.