MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2012 SOLUTION KEY

Round 1

A) The circle has radius 6 and area 36π .

The ellipse
$$\left(\frac{x^2}{9} + \frac{y^2}{4} = 1\right)$$
 has $a = 3$ and $b = 2 \Rightarrow \text{area} = 6\pi$

Thus, the difference in areas is 30π .

B) C_1 has its center at (-1, 2) and a radius of 8. Since \overline{MN} is vertical, a horizontal line through P will be the perpendicular bisector of \overline{MN} and the bisector of $\angle P$. Thus, we have a 30-60-90 right triangles and MQ=4, $PQ=4\sqrt{3}$ and the coordinates of M must be $\left(4\sqrt{3}-1,6\right)$.

A(2,2)

C) The tangent through (2, 2) has the equation 2x - y = 2. If the coordinates of B are $\left(b, \frac{1}{2}b^2\right)$, then the equation of the tangent through B is $bx - y = \frac{b^2}{a}$. This line has slope b and is

through *B* is
$$bx - y = \frac{b^2}{2}$$
. This line has slope *b* and is perpendicular to $2x - y = 2$, so $b = -1/2$.

The coordinates of B are then
$$\left(-\frac{1}{2}, \frac{1}{8}\right)$$
.

Solving
$$\begin{cases} 2x - y = 2 \\ 4x + 8y = -1 \end{cases}$$
, $x = \frac{3}{4}$, $y = -\frac{1}{2}$ and $P\left(\frac{3}{4}, -\frac{1}{2}\right)$.