Objetivos

- Aprender a operar en congruencias.
- Usar congruencias para resolver problemas de divisibilidad.
- Resolver ecuaciones y sistemas de ecuaciones en congruencias.
- Aprender el Pequeño Teorema de Fermat y sus corolarios, el Teorema de Euler y el Teorema de Wilson, y su uso en la resolución de problemas en congruencias (Ejercicios 17)-22)).

Ejercicios

1) Demostrar las siguientes congruencias, aclarando las propiedades que usa en cada paso:

(a)
$$4! \equiv 4(5)$$

(b)
$$36^5 \equiv -1(37)$$

(c)
$$6^n + 8 \equiv 4(5) \ (n \in \mathbb{N}).$$

- 2) Calcular el resto de la división de x por n sin realizar la división en los siguientes casos
 - (a) $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \text{ y } n \in \{5, 7\}.$
 - (b) $x = 2^{210}$ y n = 6.
 - (c) $x = 1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6 + 7^6 + 8^6$ v n = 9.
 - (d) $x = \sum_{i=1}^{100} i!$ y n = 50.
- 3) Hallar la cifra de las unidades y la de las decenas del número 7¹⁵.
- 4) Probar el Ejercicio 3) del Práctico 4 usando congruencias y sin usar inducción.
- 5) Sean $m, n \in \mathbb{Z}$.
 - (a) Probar que $m^2 \equiv 0(3)$ ó $m^2 \equiv 1(3)$.
 - (b) Hallar los restos posibles en la división de m^{15} por 3.
 - (c) Probar 3 divide a $m^2 + n^2$ si y sólo si 3 divide a m y a n.
- **6)** (a) Probar las reglas de divisibilidad por 2, 3, 4, 5, 8, 9 y 11 que no hayan sido probadas en el teórico.
 - (b) Decir por cuáles de los números 2, 3, 4, 5, 8, 9 y 11 son divisibles los números 12342, 5176, 314573 y 899.
- 7) Calcular el resto de 3^n dividido 7 para n = 1, 2, 3, y así hasta que deduzcas unas fórmula general en función de n.
- 8) Resolver las siguientes ecuaciones:

(a)
$$2x \equiv -21$$
 (8)

(b)
$$2x \equiv -12$$
 (7)

(c)
$$3x \equiv 5$$
 (4).

- 9) Resolver la ecuación $221 x \equiv 85 \ (340)$. Hallar todas las soluciones x tales que $0 \le x < 340$.
- **10)** Decimos que $x \in \mathbb{Z}_m$ es *inversible* si existe $y \in \mathbb{Z}_m$ tal que $xy \equiv 1 (m)$. Probar que $a \in \mathbb{Z}_m$ es inversible si y sólo si (a, m) = 1.
- 11) Decimos que $x \in \mathbb{Z}_m$ es divisor de cero si existe $y \in \mathbb{Z}_m$ tal que $xy \equiv 0 (m)$. Probar que $a \in \mathbb{Z}_m$ es divisor de cero si y sólo si $(a, m) \neq 1$.

- **12)** Dar todos los pares $(x,y) \in \mathbb{Z}_6 \times \mathbb{Z}_6$ tales que $x + 2y \equiv 0$ (7).
- 13) Sea p un primo y a un entero no divisible por p. ¿Cuántos pares (x, b) con $0 \le x, b \le p 1$ hay tales que $ax \equiv b$ (p)?
- **14)** Sean $a, b, m \in \mathbb{Z}, d > 0$, tales que $d \mid a, d \mid b \ y \ d \mid m$. Probar que x_0 es solución de la ecuación $a \cdot x \equiv b(m)$ si y sólo si x_0 es solución la ecuación

$$\frac{a}{d} \cdot x \equiv \frac{b}{d} \, \left(\frac{m}{d} \right).$$

15) Dar el conjunto de soluciones de los siguientes sistemas de congruencias:

(a)
$$\begin{cases} x \equiv 11 \ (15) \\ x \equiv 8 \ (12) \end{cases}$$
 (b) $\begin{cases} x \equiv 11 \ (15) \\ x \equiv 7 \ (12) \end{cases}$ (c) $\begin{cases} x \equiv 1 \ (3) \\ x \equiv 2 \ (5) \\ x \equiv 3 \ (7) \end{cases}$ (d) $\begin{cases} 4x \equiv 14 \ (15) \\ 5x \equiv 40 \ (12) \end{cases}$

- 16) En un grupo de 20 amigos se reparten alfajores entre todos y sobran 7 alfajores. Tres amigos se van, devuelven su parte y se vuelve a repartir el total de alfajores entre los amigos que quedan. Sobran 5 alfajores. ¿Cuántos alfajores, como mínimo, había para repartir?
- 17) Hallar el resto de la división de a por p en los casos:

(a)
$$a = 3^{210}$$
, $p = 13$; (b) $a = 25^{63}$, $p = 127$;

- **18)** Hallar todos los primos positivos p tales que $p \mid 2^p + 5$.
- **19)** Probar que para todo primo p > 3 se cumple que $p \mid 2^{p-2} + 3^{p-2} + 6^{p-2} 1$.
- **20)** Sea a un entero tal que $(18a^{49} 14, 104) = 26$. Calcular el resto en la división de a por 13.
- **21)** Probar que si (a, 1001) = 1 entonces 1001 divide a $a^{720} 1$.

Más ejercicios...

Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

22) Recordemos que la función de Euler ϕ se define de la siguiente manera: si m es un número natural, $\phi(m)$ se define como la cantidad de números naturales menores o iguales que m y coprimos con m:

$$\phi(m) = |\{n \in \mathbb{N} \mid n \le m, (n, m) = 1\}|.$$

Por ejemplo, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(12) = 4$, $\phi(15) = 8$. Algunas propiedades son:

- Si p es un número primo y $k \in \mathbb{N}$ entonces $\phi(p^k) = p^{k-1}(p-1)$.
- Si (m, n) = 1 entonces $\phi(mn) = \phi(m)\phi(n)$.
- Teorema de Fermat-Euler: sean $m \in \mathbb{N}$ y $a \in \mathbb{Z}$ con (a, m) = 1. Entonces $a^{\phi(m)} \equiv 1$ (m).

Resolver los siguientes ejercicios:

(a) Calcular $\varphi(36)$, $\varphi(400)$, $\phi(10^n)$ para $n \in \mathbb{N}$.

(b) Sea $m \in \mathbb{N}, m > 1$. Probar que

$$\phi(m) = m \cdot \prod_{p|m} \left(1 - \frac{1}{p}\right),$$

donde p recorre todos los primos positivos que dividen a m.

- (c) Sea $m \in \mathbb{N}$, m > 2. Probar que $\phi(m)$ es par.
- (d) Hallar el resto que se obtiene al dividir 2^{2021} por 125.
- **23)** Hallar todos los x que satisfacen:

(a) $x^2 \equiv 1$ (4) (c) $x^2 \equiv 2$ (5) (e) $x^3 \equiv 1$ (7) (b) $x^2 \equiv x$ (12) (d) $x^2 \equiv 0$ (12) (f) $x^4 \equiv 1$ (5) (f) $x^4 \equiv 1$ (5).

- 24) Sean a, b, c números enteros, ninguno divisible por 3. Probar que $a^2 + b^2 + c^2$ es divisible por 3.
- **25)** (a) Probar que el resto de dividir n^2 por 4 es igual a 0 si n es par y 1 si n es impar.
 - (b) Probar que si las longitudes de los lados de un triángulo rectángulo son números enteros, entonces las longitudes de los catetos no pueden ser ambas impares.
- **26)** (a) ¿Para cuáles valores de $n \in \mathbb{N}$ es $2^n + 1$ divisible por 3?
 - (b) ¿Para cuáles valores de $n \in \mathbb{N}$ es $10^n 1$ divisible por 11?
- 27) Probar que, para todo $n \in \mathbb{Z}$, el número $n^2 + 4n + 6$ no es múltiplo de 5.
- **28)** Sean m, n números enteros.
 - (a) Probar que $m^2 + n^2$ es múltiplo de 7 si v sólo si m v n son múltiplos de 7.
 - (b) Probar que $m^2 + 5n^2$ es múltiplo de 11 si v sólo si m v n son múltiplos de 11.
- **29)** Dado $t \in \mathbb{Z}$, decimos que t es inversible módulo m si existe $h \in \mathbb{Z}$ tal que $th \equiv 1 \, (m)$.
 - (a) ¿Es 5 inversible módulo 17?
 - (b) Probar que t es inversible módulo m si y sólo si (t, m) = 1.
 - (c) Determinar los inversibles módulo m, para m = 11, 12, 16.
- **30)** Hallar el resto de la división de a por p en los casos:

(a) $a = 3^8$, p = 5;

(c) $a = 3^{256}$, p = 127;

- (a) a = 5, p = 5, (b) $a = 5 \cdot 7^{2451} + 3 \cdot 65^{2345} 23 \cdot 8^{138}$, p = 13.
- **31)** Hallar todos los enteros positivos a tales que $(4a^{62} a, 11a) \neq a$.
- 32) La producción diaria de huevos en una granja es inferior a 75. Cierto día el recolector informó que la cantidad de huevos recogida es tal que contando de a 3 sobran 2, contando de a 5 sobran 4 y contando de a 7 sobran 5. El capataz dijo que eso era imposible. ¿Quién tiene razón? Justificar.