

Image motion

finding a template

Suppose we wish to find a known template T(x,y) in a given image I(x,y).

This problem is known as template matching.

template

image

FC Barcelona

the template can be small or large

alignment (MRI images)

atlas test slice

template matching

The solution is based on two steps:

- define a matching criterion M
- find local maxima/minima

- (e.g., cross correlation)
- (e.g., exhaustive search)

object detection

matching criterion: M

nonlinear optimization

Non-minimum suppression:

 $M(t_0) < M(t)$ for all t in a vicinity of radius r of d

Thresholding:

 $M(t_0) < \lambda$

 λ threshold

matching criteria

cross-correlation

$$R(u,v) = \sum_{x,y=0}^{B-1} T(x,y)I(x+u,y+v)$$

sum of square differences (SSD) (l₂ norm, squared)

$$E(u,v) = \sum_{x,y=0}^{B-1} [T(x,y) - I(x+u,y+v)]^2$$

sum of absolute differences (SAD) (I₁ norm)

$$E(u,v) = \sum_{x,y=0}^{B-1} |T(x,y) - I(x+u,y+v)|$$

Non integer displacements can be considered. Image interpolation is required in this case.

cross-correlation

SSD

4

SAD

•

limitations

X

Template matching has weaknesses:

- not invariant to rotations and scaling
- not invariant to illumination changes
- time consuming
- template adaptation is tricky

- → more general transformations
- modify matching criteria to improve robustness

problem formulation

Matlab

Image alignment

Given 2 (or more) images I, T we wish to estimate a transformation which maps the first into the second

$$(x, y) \rightarrow (x', y')$$
 $(x', y') = W(x, y; \theta)$

according to some criterion.

This can be done using:

feature based methods:

based on the alignment of feature points (marks)

image based methods:

based on the alignment of image intensity or color

What geometric transformations can we use?

translation & rigid body

translation

$$W(x;\theta) = x + t$$

$$\theta = t$$

2 degrees of freedom

rigid body

$$W(x;\theta) = Rx + t$$

 $\theta = (R, t)$

3 degrees of freedom

rotation matrix

$$RR^{T} = R^{T}R = I$$

 $det(R) = 1$

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

afinne and projective transformations

affine transformation

$$W(x;\theta) = Ax + t$$
 $\theta = (A,t)$

6 degrees of freedom

projective transformation (homography)

$$W(x,\theta) = \begin{bmatrix} \frac{p_1x + p_2y + p_3}{p_7x + p_8y + p_9} \\ \frac{p_4x + p_5y + p_6}{p_7x + p_8y + p_9} \end{bmatrix} \qquad \theta = (p_1,...,p_9)$$

8 degrees of freedom

projective and polynomial transformations

projective (contd.)

$$x' = \frac{\widetilde{\mathbf{x}}^{\mathrm{T}} \mathbf{p}_{1}}{\widetilde{\mathbf{x}}^{\mathrm{T}} \mathbf{p}_{3}} \qquad y' = \frac{\widetilde{\mathbf{x}}^{\mathrm{T}} \mathbf{p}_{2}}{\widetilde{\mathbf{x}}^{\mathrm{T}} \mathbf{p}_{3}}$$

$$p_1 = [p_1 p_2 p_3]^T$$
 $p_2 = [p_4 p_5 p_6]^T$
 $p_3 = [p_7 p_8 p_9]^T$ $\tilde{x} = [x y 1]^T$

polynomial

$$\mathbf{W}(\mathbf{x}, \boldsymbol{\theta}) = \begin{bmatrix} \sum_{p,q: p+q \le n} a_{pq} x^p y^q \\ \sum_{p,q: p+q \le n} b_{pq} x^p y^q \end{bmatrix}$$

The estimation of coefficients is numerically ill conditioned

others e.g., free form deformations

properties

	DoF	Preserves lines?	Preserves Paralelism?	Preserves Angles?	Preserves length?
translation	2	Yes	Yes	Yes	Yes
Rigid body	3	Yes	Yes	Yes	Yes
Affine	6	Yes	Yes	X	X
Projective	8	Yes	X	X	X
Polynomial	(n+2)(n+1)/2	X	X	X	X

can we align images using intensity?

image based methods

Problem:

Given two images T, I we wish to find a geometric transformation W(x) which maps points of the first image into points of the second, such that $I(W(x)) \approx T(x)$.

Most popular criterion (SSD)

$$E(\theta) = \sum_{\mathbf{x}} [T(\mathbf{x}) - I(W(\mathbf{x}; \theta))]^{2}$$

Note: the sum is for all the points x in which both images T(x), I(W(x)) overlap.

The minimization of E is a non linear problem!!

Lucas-Kanade (translation motion)

Criterion
$$E(u,v) = \sum_{\mathbf{x}} [T(\mathbf{x}) - I(\mathbf{x} + \mathbf{t})]^2$$

Parameter update $t = t_0 + \Delta t$

First order approximation of the image

$$I(\mathbf{x} + \mathbf{t}) = I(\mathbf{x} + \mathbf{t}_0) + \nabla I(\mathbf{x} + \mathbf{t}_0)^T \Delta \mathbf{t}$$

Lucas Kanade algorithm (recursion)

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & I_y^2 \end{bmatrix} \Delta t = \begin{bmatrix} \sum (T(x) - I(x + t_0))I_x \\ \sum (T(x) - I(x + t_0))I_y \end{bmatrix}$$
$$t \leftarrow t_0 + \Delta t$$

$$R\Delta t = r$$
$$t \leftarrow t_0 + \Delta t$$

 I_x , I_y are the partial derivatives of I at $x+t_0$.

convergence from several starting points

SSD criterion

The SSD criterion is not explicitly computed in the L-K algorithm.

proof

Let us minimize

$$E = \sum_{x} [T(x) - I(x + t_0) - \nabla I(x + t_0)^T \Delta t]^2$$

A necessary condition is

$$\frac{dE}{d\Delta t} = 0 \qquad \sum_{x} [T(x) - I(x + t_0) - \nabla I(x + t_0)^T \Delta t] \nabla I(x + t_0) = 0$$

$$\sum_{x} \nabla I(x+t_0) \nabla I(x+t_0)^T \Delta t = \sum_{x} [T(x) - I(x+t_0)] \nabla I(x+t_0)$$

Defining

$$\nabla I(\mathbf{x} + \mathbf{t}_0) = \begin{bmatrix} I_x(\mathbf{x} + \mathbf{t}_0) \\ I_y(\mathbf{x} + \mathbf{t}_0) \end{bmatrix}$$

We obtain

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_y I_x & \sum I_y^2 \end{bmatrix} \Delta t = \begin{bmatrix} \sum (T(x) - I(x + t_0))I_x \\ \sum (T(x) - I(x + t_0))I_y \end{bmatrix}$$

discussion

L-K strong points

- uses all the available information
- It is simple
- appropriate for tracking
- can be extended to deal with general motion models

L-K weak points

- no guarantee that the optimal solution is obtained
- the solution depends on the initialization —— use multiple scales
- convergence is difficult if the number of parameters is high
- solution depends on the illumination
 Illumination can be estimated

can we align images from sparse prototypes?

feature based matching

Problem:

Given two sets of points $\{x_i\}$, $\{x_i'\}$ detected in the images T, I, we wish to find a geometric transformation W that maps the points $\{x_i\}$ into the points $\{x_i'\}$.

$$\mathbf{x}_{i} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix}^{T} \qquad \mathbf{x'}_{i} = \begin{bmatrix} x_{i'} \\ y_{i'} \end{bmatrix}$$

we assume that the correspondence is known

approach

Define a matching criterion e.g.,

$$E(\theta) = \sum_{i} \|\mathbf{x'_i} - \mathbf{W}(\mathbf{x_i}; \theta)\|^2$$
 SSD criterion

Minimize the criterion with respect to θ using a closed form or a numeric algorithm.

Note: there are other matching e.g., I₁norm.

example

input

Jorge Marques, 2008

output

alignment using a projective transform

estimation of an homography

Homography

$$x' = f(x, p)$$

$$x' = \frac{p_1 x + p_2 y + p_3}{p_7 x + p_8 y + p_9}$$
$$y' = \frac{p_4 x + p_5 y + p_6}{p_7 x + p_8 y + p_9}$$

||p||=1

is a nonlinear function of the unknown parameters.

The minimization of the SSD criterion is difficult!!

$$E(p) = \sum_{i} \|x'_{i} - f(x_{i}, p)\|^{2}$$

Idea: use another (simpler) criterion instead

$$(p_7x + p_8y + p_9)x' = (p_1x + p_2y + p_3)$$
$$(p_7x + p_8y + p_9)y' = (p_4x + p_5y + p_6)$$

$$e = \begin{bmatrix} (p_1x + p_2y + p_3) - (p_7x + p_8y + p_9)x' \\ (p_4x + p_5y + p_6) - (p_7x + p_8y + p_9)y' \end{bmatrix}$$

algebraic error

$$E'(p) = \sum_{i} \|e_{i}\|^{2} \|p\| = 1$$

estimation of the projective transform (2)

minimize

$$E' = p^{T}M^{T}Mp$$

with restriction $p^T p = 1$

$$M = \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x_1 \\ \vdots & \vdots & \vdots & & & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x_n \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y_1 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y_n \end{bmatrix}$$

This problem can be easily solved using Lagrange multipliers:

p is the eigenvector of matrix M^TM associated to the smallest eigenvalue.

The whole algorithm can be written in 1 (long) line of Matlab!

proof

Lagrangian function

$$L = E' - \lambda(p^T p - 1) = p^T M^T M p - \lambda(p^T p - 1)$$

$$\frac{dL}{dp} = 0 \implies M^T M p - \lambda p = 0$$

$$M^T Mp = \lambda p$$

p is na eigen vector of matrix M^TM

which one?
$$E = p^T M^T M p = \lambda p^T p = \lambda$$

choose λ_{min}

other transformations?

The other transformations (translation, affine, polynomial) are easily estimated by the minimization of the SSD criterion E.

Only the rigid body transformation is a bit more difficult because matrix R is not free. It is a rotation matrix: R^TR=RR^T=I and the SSD criterion must be opyimized under this restriction.

This problem can be solved using the singular vector decomposition of the data.

unknown correspondence

This is a difficult problem!

We need to estimate a permutation matrix.

$$p = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

which minimizes the matching criterion E.

tough!

See the paper by Maciel & Costeira, PAMI03

suboptimal approaches are used instead!

ransac

RANSAC stands for Random Sample Consensus (Fischler, Bolles, 1981)

It is based on hypothesis generation and classification of data points as inliers and outliers.

estimate translation

only 2 points are matched! bad attempt!

ransac (2)

Objective: to estimate a transform W(x,q) with 2n degrees of freedom.

Algorithm

Hypotheses generation

randomly select n pairs of points (x_i, x'_k)

estimate the geometric transformation $W(x,\theta)$

Compute the number of points which were correctly aligned (support) i.e., such that

$$|\mathbf{x'}_k - \mathbf{W}(\mathbf{x}_i, \mathbf{\theta})| < \varepsilon$$

Model selection: choose the transformation with largest support

Refinement: improve the estimate of θ by applying the least squares method to the subset of points which are well aligned.

example - registration

Afine transform

(3 marks)

(Matlab demo)

Jorge Marques, 2008

example - mosaicing

homography

(4 marks)

exemplo (cont.)

mosaicing

mosaicing → alignment + fusion

3D ultrasound

without alignment

with alignment

non-rigid alignment

region tracking

Two steps

region detection region tracking

Region detection

problem

goal:

• detect all moving objects

assumptions

- static camera
- static background
- show illumination changes

Evolution of pixel color

Background subtraction

background image

Pixel classification

If $|I(x,y)-B(x,y)| < \epsilon$, the pixel is classified as background pixel. Otherwise it is classified as active.

Basic background subtraction

The basic background subtraction classifies a pixel I(x,y) as active if

$$A(x, y) = 1$$
 if $|I(x, y) - B(x, y)| > \lambda$
 $A(x, y) = 0$ otherwise

Image A(x,y) is very noisy. It has many small regions classified as active and some true objects appear fragmented in several regions.

Morphologinal post-processing is usually done. Typically we compute all conected components and eliminate all the small regions.

Example

Jorge Marques, 2008

How to deal with time-varying illumination?

Illumination changes can be compensated by the adaptation of the background image.

Only the pixels belonging to the background regiion should be adapted.

$$B(x, y, t) = \alpha B(x, y, t - 1) + (1 - \alpha)I(x, y, t)$$

background pixels

$$B(x, y, t) = B(x, y, t - 1)$$

foreground pixels

Gaussian background model

(see Wren et al., 1997)

Cackground pixels are corrupted by noise. We can model each pixel as a random variable with Gaussian distribution

$$I(x, y) \sim N(\mu(x, y), R(x, y))$$

pixel classification

$$p(I(x, y)) \ge \lambda$$
 \Rightarrow background pixel

$$p(I(x, y)) < \lambda$$
 \Rightarrow foreground pixel

$$p(I(x,y)) = \frac{1}{(2\pi)^{3/2} \det(R)^{1/2}} e^{-\frac{1}{2}(I(x,y) - \mu(x,y))^T R^{-1}(I(x,y) - \mu(x,y))}$$

Estimation of the Gaussian model

batch

$$\mu(x,y) = \frac{1}{T} \sum_{t=1}^{T} I(x,y,t)$$

$$R(x,y) = \frac{1}{T} \sum_{t=1}^{T} (I(x,y,t) - \mu(x,y)) (I(x,y,t) - \mu(x,y))^{T}$$

adaptive

$$\mu(x, y, t) = \alpha \mu(x, y, t - 1) + (1 - \alpha)I(x, y, t)$$

$$R(x, y, t) = \alpha R(x, y, t - 1) + (1 - \alpha)(I(x, y, t) - \mu(x, y, t - 1))(I(x, y, t) - \mu(x, y, t - 1))^{T}$$

region tracking

region tracking

Goal: find the trajectory of each object along multiple frames

Dificulties: misdetections, false alarms, occlusions, object splits and merges, new tracks

point tracking

Data $D = \{(t, p_i^t)\}$

 p_i^t position of the i-th region at frame t

Track is a sequence of points detected at different (usually consecutive) frames

$$T = \{(t_1, x_1), (t_2, x_2), (t_n, x_n)\} \qquad (t_i, x_i) \in D, \quad t_i < t_{i+1}$$

$$(t_{i+1} = t_i + 1)$$

point association

available methods:

Statistical: propagate uncertainty and assume a dynamic model for the target trajectories (e.g., Kalman or PDA filter)

Deterministic: based on assignment costs and do not require dynamic models (e.g., graph based methods)

hypotheses

typical assumptions

- (a) only regions detected in consecutive frames can be associated
- (b) regions should correspond to a single target (and vice-versa)
- (c) new objects may appear (track birth)
- (d) objects can disapear or be occluded (track death)
- (b') objects can overlap and form groups

statistical methods

Statistical methods assume we know a set of tracks and wish to extend them in new frames.

Difficulties:

data association problem initialization of new tracks

Methods:

nearest–neighbor Kalman filter probabilistic data association filter joint probabilistic data association filter particle filter

methods based on graphs

Nodes coorespond to the detected objects in each frame and the links define a solution for the association problem

Each admissible link has a cost C_t(i,j) (unconnected nodes also have a cost).

Veenman et al

(PAMI 2001)

This method deals with pairs of frames and formulates the association of targets to existing tracks as an assignment problem if M=m.

assignment problem

Problem: there are M agents and m tasks (M=m); we wish to assign one agent to one task minimizing the total cost

$$C = \sum_{i,i=1}^{m} a_{ij} c_{ij}$$

Restrictions

$$\sum_{i=1}^{m} a_{ij} = \sum_{j=1}^{m} a_{ij} = 1 \qquad a_{ij} \in \{0,1\}$$

 c_{ij} is the cost of assigning agent i to task j and a_{ij} is a binary variable wich is equal to 1 if and only if agent i is assigned to task j.

The minimization of C under these restrictions is a linear programming problem for which there are very efficient algorithms e.g., Hungarian method.

Example

total cost: 0+2+2=4

cost matrix

In tracking, the association cost can be defined in different ways. Two popular choices are

$$a_{ij} = \mid\mid p_i^{t-1} - p_j^t \mid\mid$$

$$a_{ij} = || p_i^{t-1} + v_i^{t-1} - p_j^t ||$$

 v_i^{t-1} displacement vector computed from a previous assignment. (cannot be used in track initialization)

Birth and death of tracks

The previous method does not account for new tracks but it has been extended to allow birth and death of tracks

Consider a problem in which all the targets are new. In this case, all the M tracks should die are all the m targets correspond to new tracks.

How can we do this in the previous framework?

solution: add M virtual targets and m virtual tracks

 $\mathsf{M} \qquad \mathsf{C} \qquad \qquad c_{ij} = c$

$$c_{ij} = c_{high}$$
 if $i > M$ or $j > m$

Example 1d

costs were computed using the prediction error, except at the beginning of each track.