Distributions

Distribution	Moments	Bernoulli	Binomial	Geometric	Poisson	Exponential	Uniform	Normal
PDF		$p^x(1-p)^{1-x}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$(1-p)^{x-1}p$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\frac{1}{\lambda} e^{\frac{-x}{\lambda}}$	$\frac{1}{b-a}$	$\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
E[X]	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	p	np	$\frac{1}{p}$	λ	λ	$\frac{a+b}{2}$	μ
Var[X]	$E[X^2] = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$	p(1-p)	np(1-p)	$\frac{1-p}{p^2}$	λ	λ^2	$\frac{(b-a)^2}{12}$	σ^2

Hypothesis Testing

H_0	H_A	Conditions	Test Statistic	Rejection Region	Degrees of freedom
$\mu_1 = \mu_2$	$\mu_1 < \mu_2$ $\mu_1 > \mu_2$	Known σ	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z < -z_{\alpha}$ $Z > z_{\alpha}$	
	$\mu_1 \neq \mu_2$, , ,	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $	
	$\mu_1 < \mu_2$	Unknown but equal σ		$t < -t_{df,\alpha}$	
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$	$t > t_{df,lpha}$	$df = n_1 + n_2 - 2$
	$\mu_1 \neq \mu_2$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$		$ \ \mathbf{t} > \mathbf{t}_{d\!f,\alpha/2} $	
	$\pi_1 < \pi_2$		(2 2)	$Z < -z_{\alpha}$	
$\pi_1 = \pi_2$	$\pi_1 > \pi_2$	Z-test for proportions	$Z = \frac{(\hat{\pi}_1 - \hat{\pi}_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}}$	$Z>z_{\alpha}$	
	$\pi_1 \neq \pi_2$		$\bigvee n_1 n_2$	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $	
$\beta_1 = 0$	$\beta_1 \neq 0$	Test for linear relationship	$t = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{s^2}{S_{xx}}}}$	$t> \mathbf{t}_{df,\alpha/2} $	df = n - 2

Linear Regression Formulas

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{1}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \tag{2}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

$$(2)$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$(3)$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
(4)

$$SS_{RESID} = \sum_{i=1}^{n} (y_i - \hat{y}) \tag{5}$$

$$RegressionVariance: s^2 = \frac{SS_{RESID}}{n-2} \tag{6}$$

NormalEquations:
$$\begin{cases} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0\\ \sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i) = 0 \end{cases}$$
 (7)