骨格と筋電図の同期システムの検討

吉川真由溝渕絵里永井翠

背景

競技・トレーニング中の怪我防止 システムについて体育教員の指導を 受け検討を進めている

現場の要望

・怪我の原因となる動作と使用筋肉 についてフィードバックしたい ・屋外・屋内など様々な場面で簡単に 導入できる手法が良い

これらの要望を踏まえ競技中の 怪我において特に深刻である 前十字靭帯損傷の防止を目的とした システムを提案した

スポーツ外傷の中でも 発生割合が高い

前十字靭帯損傷

効果的な予防プログラム

危険動作の検知 筋肉使用割合の可視化

・膝から下が内側に倒れこむ現象 ・太腿の筋肉バランスの偏りにより生じる

動作解析のための骨格取得法

モーションキャプチャ

マーカの装着が必要・複数台のカメラ設置 高コストのため導入が難しい

機械学習による骨格検出ライブラリを採用し 1視点からの映像のみで動作取得を行った

筋肉使用割合の検出方法

内側広筋・外側広筋の筋電位を測定することで 太腿内の内側・外側の筋肉使用割合を確認

提案手法

・復帰までに約10か月を要す

・手術後も再発の危険性がある

→スポーツ活動の断念・種目の変更

骨格取得 筋電位測定

同期&可視化

フィードバック

システム

筋電・映像共に1秒間に5回取得

測定・送信デバイス

映像記録·処理用PC

筋電データ測定 送信

筋電データ取得 映像との時刻同期

グラフ作成・角度算出 映像に描画

膝外反の検出方法

膝角度

膝の屈曲・伸展の 判別に用いる 目安として閾値を 15°に設定

足の付け根と先の関節点を 結んだラインに対する 膝の関節点の位置で判別

結果をGIF形式で保存 出力画面

筋電波形 (内側広筋,外側広筋) 最大時を基準とした筋電位 $(0\sim30\%, 31\sim70\%, 71\%\sim)$

膝外反が生じやすい動作である 片足スクワット時の検証結果 (被験者5名 3セット×5回)

全体75回に対する膝外反検知数

回数 膝外反なし 53 22 膝外反あり

膝外反なし/ありに分類した際の筋電位

膝外反が生じる場合には 筋肉バランスが崩れる傾向が見られた

フィードバックの際に役立てることができる

- ・MediaPipeによる奥行検出の精度検証を行う ・前と横の二視点からの骨格の座標統合による三次元骨格 取得について検討する

- ・動作を妨げない背負う形での装着が可能な設計を行う・サンプリングレートの向上のためにデータ送信方法やデバイス 構成について検討する