以来的存储技术的价格和性能属性,那时第一台 PC 刚刚发明不久。这些数字是从以前的商业杂志中和 Web 上挑选出来的。虽然它们是从非正式的调查中得到的,但是这些数字还是能揭示出一些有趣的趋势。

自从 1985 年以来,SRAM 技术的成本和性能基本上是以相同的速度改善的。访问时间和每兆字节成本下降了大约 100 倍(图 6-15a)。不过,DRAM 和磁盘的变化趋势更大,而且更不一致。DRAM 每兆字节成本下降了 44 000 倍(超过了四个数量级!),而 DRAM的访问时间只下降了大约 10 倍(图 6-15b)。磁盘技术有和 DRAM 相同的趋势,甚至变化更大。从 1985 年以来,磁盘存储的每兆字节成本暴跌了 3 000 000 倍(超过了六个数量级!),但是访问时间提高得很慢,只有 25 倍左右(图 6-15c)。这些惊人的长期趋势突出了内存和磁盘技术的一个基本事实:增加密度(从而降低成本)比降低访问时间容易得多。

DRAM 和磁盘的性能滞后于 CPU 的性能。正如我们在图 6-15d 中看到的那样,从 1985 年到 2010 年, CPU 周期时间提高了 500 倍。如果我们看有效周期时间(effective cycle time)——我们定义为一个单独的 CPU(处理器)的周期时间除以它的处理器核数——那 么从 1985 年到 2010 年的提高还要大一些,为 2000 倍。CPU 性能曲线在 2003 年附近的突然变化反映的是多核处理器的出现(参见 6.2 节的旁注),在这个分割点之后,单个核的周期时间实际上增加了一点点,然后又开始下降,不过比以前的速度要慢一些。

度量标准	1985	1990	1995	2000	2005	2010	2015	2015:1985	
美元/MB	2900	320	256	100	75	60	25	116	
访问时间 (ns)	150	35	15	3	2	1.5	1.3	115	

a) SRAM趋势

度量标准	1985	1990	1995	2000	2005	2010	2015	2015:1985
美元/MB	880	100	30	1	0.1	0.06	0.02	44 000
访问时间(ns)	200	100	70	60	50	40	20	10
典型的大小(MB)	0.256	4	16	64	2000	8000	16 000	62 500

b) DRAM趋势

度量标准	1985	1990	1995	2000	2005	2010	2015	2015:1985
美元/GB	100 000	8000	300	10	5	0.3	0.03	3 333 333
最小寻道时间(ms)	75	28	10	8	5	3	3	25
典型的大小(GB)	0.01	0.16	1	20	160	1500	3000	300 000

c) 旋转磁盘趋势

度量标准	1985	1990	1995	2000	2003	2005	2010	2015	2015:1985
Intel CPU	80 286	80 386	Pent.	Р-Ш	Pent.4	Core 2	Core i7 (n)	Core i7 (h)	_
时钟频率 (MHz)	6	20	150	600	3300	2000	2500	3000	500
时钟周期 (ns)	166	50	6	1.6	0.3	0.5	0.4	0.33	500
核数	1	1	1	1	1	2	4	4	4
有效周期时间 (ns)	166	50	6	1.6	0.30	0.25	0.10	0.08	2075

d) CPU趋势

图 6-15 存储和处理器技术发展趋势。2010 年的 Core i7 使用的是 Nehalem 处理器, 2015 年的 Core i7 使用的是 Haswell 核