Lecture 15: Hypothesis Testing Part II

Chapter 4.3

Previously... Statistical Hypothesis Testing

A hypothesis test is a method for using sample data to decide between two competing hypotheses about the population parameter:

- ► A null hypothesis H₀.
 i.e. the status quo that is initially assumed to be true, but will be tested.
- \blacktriangleright An alternative hypothesis H_A . i.e. the challenger.

There are two potential outcomes of a hypothesis test. Either we

- ► reject *H*₀
- ▶ fail to reject H₀

Previously... Decision Errors

Hypothesis tests will get things right sometimes and wrong sometimes:

		Test conclusion	
		do not reject H_0	reject H_0 in favor of H_A
Truth	H_0 true	OK	Type I Error
	H_A true	Type II Error	OK

Two kinds of errors:

- ► Type I Error: a false positive (test result)
- ► Type II Error: a false negative (test result)

Goals for Today

- ► Tie-in p-Values with sampling distributions
- ► Revisit sleep example and consider two-sided hypotheses
- Go over the General Hypothesis Testing Procedure

Recall our Coin Example

You have a coin that you want to test if it's fair via n=1000 flips. Set $p_0=0.5$ and define a "success" as getting heads. i.e.

$$H_0: p=p_0$$
 i.e. coin is fair
$$VS \qquad H_A: p \neq p_0$$

- ► The point estimate \hat{p} of p is $\frac{\# \text{ of successes}}{\# \text{ of trials}}$.
- ▶ Since it is based on a sample, \hat{p} has a sampling distribution
- ► The standard error is $\sqrt{\frac{p(1-p)}{n}}$ (Chapter 6).
- ► Furthermore, the sampling distribution is Normal in this case (Central Limit Theorem)

Sampling Distribution of \widehat{p}

Under the null hypothesis that the coin is fair i.e. $p=p_0=0.5$, the sampling distribution of \widehat{p} when n=1000 is:

- ▶ 501 heads
- ▶ 525 heads
- ▶ 900 heads

Recall Example about Reedie Sleep Habits

A poll found that college students sleep about 7 hours a night. Researchers suspect that Reedies sleep more.

Let μ be the true population mean # of hours Reedies sleep a night. Then:

- $H_0: \mu = \mu_0 = 7$
- ► H_A : $\mu > 7$

Researchers sample n=110 Reedies and found that $\overline{x}=7.42$ and s=1.75, hence $z=\frac{7.42-7}{\frac{1.75}{\sqrt{110}}}=2.47$.

Recall Example about Reedie Sleep Habits

In our case, since H_A : $\mu > 7$, more extreme means to the right of z = 2.47.

Hence, the p-value is 0.007:

Two-Sided Alternative Hypothesis

Say instead we had a two-sided alternative hypothesis:

- ► H_0 : $\mu = 7$
- \vdash $H_A: \mu \neq 7$

The the p-value would be double: $2 \times 0.007 = 0.014$

In General: Hypothesis Testing Procedure

- 1. Construct your hypothesis testing framework:
 - ▶ Define H_0 , H_A and if applicable a null value.
 - Set your significance level α
- 2. Verify that the conditions hold
- 3. Compute your test statistic
- 4. Compute the p-value
 - Identify the appropriate distribution to compare the test statistic to
 - ▶ Depending on H_A, determine what constitutes being more extreme and compute the p-value using the appropriate probability table.
- 5. If the p-value is $< \alpha$, reject H_0 . Otherwise do not.

In Reedie Sleep Example

- 1. Construct your hypothesis testing framework:
 - ▶ Define H_0 , H_A and if applicable a null value.
 - Set your significance level α
- 2. Verify that the conditions hold
- 3. Compute your test statistic: the z-score of $\bar{x} = 7.42$
- 4. Compute the p-value
 - Identify the appropriate distribution to compare the test statistic to: normal distribution
 - ▶ Depending on H_A, determine what constitutes being more extreme and compute the p-value using the appropriate probability table: z-table on page 409
- 5. If the p-value is $< \alpha$, reject H_0 . Otherwise do not.

Next Time

- ▶ How big a sample size to I need?
- ▶ Power Calculations