

تمرین کامپیوتری سوم

سیستمهای عامل ـ بهار ۱۳۹۹

دانشکده مهندسی برق و کامپیوتر گزارش کار

نام و نام خانوادگی:

تاريخ:

استاد . مهدی کارگهی

How to use this template:

This is a view-only file and cannot be edited. Create your own copy of this template to edit. In the menu, click File > Make a copy...

فهر ست مطالب

2	مقدمه
3	پیادهسازی سری
3	سوال اوّل
3	سوال دوم
4	سوال سوم
4	جدول اوّل
4	پیادهسازی چندریسهای
4	سوال چهارم
5	سوال پنجم
5	جدول دوم

مقدمه

در این مسئله به تحلیل داده هایی که از وبگاه Goodreads استخراج شده است پرداخته شده است. در ابتدا برنامه اقدام به خواندن و تجزیه مجموعه داده های داده شده میکند و آن ها را

در حافظه² خود ذخیره میکند. پس از استخراج داده ها، برنامه اقدام به بدست آوردن محبوب ترین کتاب در ژانری مشخص، بر اساس معیاری که توضیحات تمرین آمده است میکند. این تمرین به دو روش این مسئله پیاده سازی شده است که در ادامه گزارش، نتایج حاصل آمده است.

¹ Parse

²Memory

پیادهسازی سری

سوال اوّل

چرا برای پیاده سازی یک برنامه بصورت چندریسه ای، بهتر است ابتدا این برنامه بصورت سری پیاده سازی شود؟

جواب

تا hotspot های برنامه مشخص شوند و آن قسمت هایی از برنامه که امکان موازی سازی آنها وجود دارد شفاف شوند.

سوال دوم

در پیادهسازی سری، چه نکاتی را برای افز ایش کار آیی 3 برنامه در نظر گرفتید؛ رساختمانهای داده 4 مور د

استفاده، Option های کامپایلر و...)

جواب

خواندن خط به خط فایل ها بجای کاراکتر به کاراکتر برای کمینه کردن I/O overhead

Allocate کردن instance ها روی استک به جای هیپ

مرتب سازی review ها بر اساس book_id و جستجوی باینری review ها برای حساب کردن محبوبیت هر کتاب به جای هر بار جستجوی کامل review ها برای هر کتاب.

پاس دادن آرگومان های توابع با reference به منظور حدف overhead کپی کردن آرگومان ها. بهینه سازی حداکثری با O3 flag.

³Performance

Data Structures

سوال سوم

با بررسی زمان اجرای بخشهای مختلف برنامه، Hotspot⁵ های برنامه را مشخص کنید.

جو اب

خو اندن از فایل ها

جستجو ها

جدول اوّل

زمانهای اجرای ۶ اجرای متوالی از برنامه و میانگین آنها را بازای ورودی نمونهای که در شرح تمرین آمده است، در جدول زیر بیاورید.

اجرای اوّل	اجرای دوم	اجر ای سوم	اجر ای چهار م	اجرای پنجم	اجرای ششم	میانگین
0.485	0.518	0.491	0.528	0.501	0.498	0.503

پیادهسازی چندریسهای

سوال چهارم

اگر هنگام موازی سازی برنامه به زمان اجرای بیشتری نسبت به حالت سری برخورد کنید، چه رویکردهایی را برای کاهش زمان اجرا و استفاده حداکثری از موازی سازی پیش میگیرید؟

جواب

بجای استفاده از یک container مشترک و استفاده از mutex برای جلوگیری از concurrency، به تعداد رشته ها container ها، container هارا container هارا container میکنیم.

 $^{^{5}}$ توابعی که در برنامه تان بیشترین زمان اجراها را به خود اختصاص می دهند.

برای بهره وری هرچه بیشتر از چند رشته ای تعداد رشته ها را برابر با تعداد هسته های منطقی معمول سیستم ها(4 رشته) در نظر میگیریم.

سوال پنجم

در هنگام پیادهسازی این بخش، به چه چالشهایی برخورد کردید و بیان کنید که به چه صورت آنها را رفع کردید.

جواب

جلوگیری از rival race:

که در جواب سوال قبل چالش اصلی و رفع آن توضیح داده شده است.

جدول دوم

زمانهای اجرای ۶ اجرای متوالی از برنامه و میانگین آنها را بازای ورودی نمونهای که در شرح تمرین آمده است، در جدول زیر بیاورید.

اجرای اوّل	اجرای دوم	اجر ای سوم	اجرا <i>ی</i> چهارم	اجرای پنجم	اجرای ششم	میانگین
0.368	0.363	0.373	0.362	0.356	0.369	0.365

میزان تسریع برنامه نسبت به حالت سری را نیز در زیر بیاورید.

میانگین زمان اجرای سری	میانگین زمان اجرای موازی	ميزان تسريع
0.503	0.365	29%