CITADEL: A Trusted Reference Monitor for Linux using Intel SGX Enclaves

A.H. Bell-Thomas

Computer Laboratory, University of Cambridge

26th June, 2020

1. Reference Monitor

1. Reference Monitor

→ Information Flow Control

- 1. Reference Monitor
 - → Information Flow Control

2. Intel SGX

Information Flow Control

- Access Control specifics who can access resources. IFC also mediates how they can be used once opened.
- Construct an abstract system of *entities*; → processes, files, sockets, etc.
- Each entity carries a security context, defining its granular ownership or restriction information.
- Aim: achieve non-interference between all security contexts.
- Decentralised IFC let entities specify their own, discretionary, protection policy for assets they own. More flexible, and supports operations such as declassification.

Information Flow Control

Enforcement is implemented using a *reference monitor*, which provides;

▶ Tagging

Entities must be uniquely and reliably identifiable to support decisions.

Tracking

Contexts are mutable to accommodate an evolving situation.

Policy Decisions

Is an operation acceptable given its consequences? c.f. Biba, Bell-LaPadula

Linux Security Modules

Figure: Core workflow of an LSM.

Intel SGX

A general-purpose *trusted execution environment* provided via x86 at the architectural level in modern processors.

Figure: Abstract overview of SGX's protections.

Intel SGX

Figure: Components of the SGX platform.

CITADEL

A prototype implementation of an SGX-protected reference monitor for Linux.

Reference monitors must be;

- Always invoked.
- Evaluable.
- ► Tamper proof.
- in theory, a perfect use case for SGX.

Architecture?

- (a) Naive enclave integration.
- (b) Traditional reference monitor decision flow.

Architecture

(a) High level CITADEL dataflow. Backflow from the LSM to the enclave is asynchoronus.

(b) CITADEL IFC decision flow. Decision provides a *promise* of access; permission propagates asynchronously to the LSM.

Architecture

Results

Figure: Effective operation bandwidths between two processes.

Results

- Median syscall overhead of $43\mu s$ (1 $2\mu s$ amoritsed).
- ▶ 20 25% effective throughput decrease for IPC.
- Real-world benchmarks using NGINX;
 - Low latency trials: 24% median overhead.
 - ► High bandwidth file transfers: $\sim 0\%$ median overhead.
- Security characteristics promising.

Conclusion

- CITADEL a modular, enclave-backed reference monitor to securely and verifiably implement IFC methods in the Linux kernel.
- Implemented using enclaves, an LSM, and an auxiliary library for unobstrusive application integration.
- ► Real-world performance overhead of 20 25% observed using NGINX and microbenchmarks.
- ▶ Demonstrates potential viability of a symbiotic enclave-kernel relationship for security implementations.

References