

Применение антенн PT-7,5

Западная антенна — радиолокация низкоорбитальных космических объектов в диапазоне λ = 8 мм

Восточная антенна — радиоастрономические наблюдения в диапазонах λ = 2,2 мм и λ = 3,2 мм; мониторинг спутниковых сигналов в диапазонах λ = 2 см и λ = 20 см

Точность отражающей поверхности антенн

Результаты сканирования: среднее квадратичное отклонение поверхности главного зеркала Восточной антенны от идеального параболоида составило ε = 0,35 мм

Сканирование поверхности главного зеркала Восточной антенны лазерным сканером 23.06.2013 г.

Система управления антенной

Режимы наведения антенны

1. Основной (программный) — на вход ПЛК от сервера с периодом Т = 1 с поступает информация в виде координат очередных трёх точек траектории для каждой оси:

$$\psi(t_0) = \psi_0; \qquad \psi(t_0 + T/2) = \psi_1; \qquad \psi(t_0 + T) = \psi_2.$$

ПЛК интерполирует сплайн-функцией 2-го порядка n-1 промежуточных точек траектории с шагом $\Delta t = T/n$ (n = 200):

$$\psi(t_0+k^*\Delta t)$$
, где k = 1...(n-1).

2. Вспомогательные:

- а) перемещение в заданное угловое положение используется «S»-образная характеристика разгона и торможения. Привод работает в режиме управления позицией. Сигнал обратной связи сигнал с датчика угла опорно-поворотного устройства;
- б) движение с заданной угловой скоростью используется «S»-образная характеристика разгона и торможения. Привод работает в режиме управления скоростью. Сигнал обратной связи сигнал с датчика угла, установленного на валу двигателя

Архитектура системы управления в режиме программного наведения

r - коэффициент усиления дополнительного сигнала, пропорционального скорости задающего воздействия; $U^{\text{сум}}_{\ k}$ - результирующий сигнал, подаваемый на вход скоростной подсистемы привода;

 $\phi_{\mathtt{A}}, \ \Omega_{\mathtt{A}}, \ \text{- угол и скорость вала двигателя;}$

 $I_{\text{л}}$ - ток двигателя

^{*}Модуль скоростной компенсации введён для повышения качества управления на малых скоростях

Электропривод

СУ — аналоговый сигнал управления; **ПЧ** — преобразователь частоты; **ДСР** — фотоимпульсный датчик скорости ротора; **ДПР** — датчик положения рабочего органа; **РО** — рабочий орган; **Р** — редуктор; **М** — вал двигателя; **Т** — электромеханический тормоз

Азимутальная кинематическая схема

Угломестная кинематическая схема

Спектральная плотность излучения абсолютно чёрного тела

Спектр излучения Солнца

Затухание электромагнитного излучения в атмосфере Земли

11-летние циклы солнечной активности

Линия He(II) 304 A

Магнитограмма

Картографирование радиоисточников

Траектория движения луча диаграммы направленности антенны при растровом сканировании

Результат картографирования: распределение измеренной яркостной температуры

Картографирование Солнца в ММ-диапазоне (данные PT-7,5)

Регистрация временных профилей солнечных вспышек в ММ-диапазоне (данные РТ-7,5)

Вспышка М5.3 02.04.2017 г. (данные РТ-7,5)

140 ГГц

93 ГГц

Сопоставление данных РТ-7,5 и Solar Dynamics Observatory (SDO)

Сопоставление данных РТ-7,5 и Solar Dynamics Observatory (SDO)

