

Chapter 12: DNA

Biology

TABLE OF CONTENTS

12.1 — Identifying the Substance of Genes

Bacterial Transformation

The Hershey-Chase Experiment

The Role of DNA

Storing Information

Copying Information

Transmitting Information

12.2 — The Structure of DNA

The Components of DNA

Nucleic Acids & Nucleotides

Nitrogenous Bases & Covalent Bonds

Solving the Structure of DNA

Chargaff's Rule

Rosalind Franklin

Watson and Crick

The Double-Helix Model

Antiparallel Strands

Hydrogen Bonding

Base Pairing

12.3 — DNA Replication

Copying the Code

The Process of DNA Replication

The Role of Enzymes

Telomeres

Replication in Living Cells

Prokaryotic DNA Replication

Eukaryotic DNA Replication

12.1 — Identifying the Substance of Genes

Bacterial Transformation

Frederick Griffith → studied how bacteria made people sick

- **Transformation:** the process of a chemical compound containing information to change harmless bacteria into disease-causing bacteria
 - Griffith concluded that the compound was a gene since it was passed down

The Hershey-Chase Experiment

- Tested to see if the protein coat or DNA core entered the bacterium
 - Found the entering gene was the DNA core

The scientists concluded that **DNA is genetic material found in all living** cells.

The Role of DNA

• Storing, copying, and transmitting genetic information in a cell

Storing Information

The main function of DNA is to **STORE GENETIC MATERIAL**.

• Controls patterns of development

Copying Information

Cells must copy DNA before dividing.

• Requires specific structures

Transmitting Information

Genes are transmitted from one generation to the next.

Must be transmitted correctly to prevent errors

12.2 — The Structure of DNA

The Components of DNA

DNA (Deoxyribose Nucleic Acid): long, slightly acidic molecules originally identified in cell nuclei

Nucleic Acids & Nucleotides

Nucleic Acids: long, slightly acidic molecules originally identified in cell nuclei

• Made up of smaller subunits (nucleotides)

A nucleotide is made up of ...

- A 5-carbon sugar (deoxyribose)
- A Phosphate Group
- A Nitrogen Base

Nitrogenous Bases & Covalent Bonds

Nitrogenous Bases: bases that contain nitrogen

Four Types: adenine (A), thymine (T), cytosine (C), guanine (G)

Nucleotides in DNA strands are joined by covalent bonds.

Between the sugar of one nucleotide and the phosphate group of the next

Nucleotides can be **joined together** is any order, but only **connect with their opposite**.

Solving the Structure of DNA

Chargaff's Rule

Erwin Chargaff \rightarrow adenine & thymine had equal amounts, cytosine & guanine had equal amounts

• [A] = [T] and [G] = [C]

Rosalind Franklin

- Used X-ray diffraction to understand the structure of DNA
 - 1. Purification of DNA
 - 2. Stretching of DNA fibers
 - 3. X-ray beam aimed at DNA samples

Franklin's pictures showed a **helix** shape with two strands.

Watson and Crick

James Watson → American biologist

Francis Crick → British physicist

Watson and Crick understood what they were missing after seeing **Rosalind Franklin's DNA pictures**.

• Double helix structures with two strands of nucleotide sequences

The Double-Helix Model

- Looks like a twisted ladder
 - Two strands twist around one another

Chargaff's rule → explains how the two strands of DNA are held together

Antiparallel Strands

The two strands of DNA run in opposite directions.

The nitrogenous bases come into contact at the center of DNA

Hydrogen Bonding

Hydrogen bonding held the nucleotides together.

DNA needs to be held by weak bonds for it to be separated easily

Base Pairing

Base Pairing: matching of A-T and C-G

• Explained Chargaff's rule

12.3 — DNA Replication

Copying the Code

Each base on the nucleotide strand corresponds with only one other base.

• Explains DNA replication (one strand can serve as a template for the other)

The Process of DNA Replication

Replication: the copying of the DNA and duplication for two resulting cells to each have a complete DNA molecule

During the S phase of the cell cycle

One strand serves as the template for the complementary strand.

The Role of Enzymes

Enzymes "unzip" DNA into two strands.

• Done by breaking the hydorgen bonds

DNA Polymerase: an enzyme that joins nucleotides to synthesize a new, complementary strand of DNA from one strand

"Proofreads" each DNA strand

Telomeres

Telomeres: the tips of eukaryotic chromosomes

 Telomerase → replicates the ends of the DNA (prevents genetic information from being lost)

Replication in Living Cells

Occurs during S phase of the cell cycle

The DNA and histone molecules form nucleosomes.

Histones: proteins around which chromatin is tightly coiled

Prokaryotic DNA Replication

 Starts from a single point and proceeds in two directions until the chromosome is copied

Eukaryotic DNA Replication

 Begins at multiple places at the DNA molecule and proceed in both directions at each place

There can be errors in DNA replication.

• Even after checks by multiple proteins