Theoretische Informatik und Logik Übungsblatt 3 (2021W)

Aufgabe 3.1

Drücken Sie folgende Prädikate jeweils als Boolesche Ausdrücke aus oder argumentieren Sie, warum das nicht möglich ist. Verwenden Sie dabei die **offizielle Syntax** für $\mathcal{BA}(\mathcal{D})$, d.h. keine der zusätzlichen Notationsvereinbarungen, die auf den Vorlesungsfolien erwähnt werden.

Hinweis: Versuchen Sie möglichst kurze Ausdrücke zu finden.

- a) Über $\mathcal{D} = \mathbb{N}$: 3xy = z 2.
- b) Über $\mathcal{D} = \mathbb{N}$: x + y ist gerade.
- c) Über $\mathcal{D} = \mathbb{Z}$: Wenn |x| > y, dann ist z < y.
- d) Über $\mathcal{D} = \text{FamX}$: x ist eine (leibliche) Tante von y.
- e) Über $\mathcal{D} = \text{FamX}$: x hat eine (leibliche) Tante.
- f) Über $\mathcal{D} = \mathbb{S}$: Die Tiefe von x ist größer als 3. Hinweis: Die Tiefe eines Stacks ist die Anzahl der darin vorkommenden Stackelemente ($\underline{0}$ oder $\underline{1}$).
- g) Über $\mathcal{D} = \mathbb{S}$: x ist genau dann leer, wenn y nicht leer ist.

Aufgabe 3.2

Es sei B ein abstrakter Datentyp für sogenannte 2-3-Bäume (kurz "Bäume") mit folgenden Komponenten:

- Eine Konstante für den Baum, der nur aus einem Knoten (= Endknoten = Wurzel) besteht;
- eine zweistellige Funktion f, die angewendet auf zwei Bäume b_1 und b_2 den Baum liefert, der (mit einem neuen Wurzelknoten) b_1 als linken und b_2 als rechten Teilbaum hat;
- eine dreistellige Funktion g, die angewendet auf drei Bäume b_1 , b_2 , b_3 den Baum liefert, der unter dem (neuen) Wurzelkoten diese drei Teilbäume, in dieser Reihenfolge, hat.
 - a) Definieren Sie eine Signatur $\Sigma_{\mathbb{B}}$ zu \mathbb{B} (analog zu \mathbb{N} , \mathbb{Z} , \mathbb{S}) und geben Sie zu jedem 2-3-Baum, der höchstens 4 Endknoten enthält, jeweils einen entsprechenden Term aus $\mathcal{T}(\mathbb{B})$ an.
 - b) Geben Sie einen Booleschen Ausdruck in $\mathcal{BA}(\mathbb{B})$ an, der ausdrückt, dass x höchstens die Tiefe 1 hat. (*Hinweis:* Der Baum, der nur aus einem Knoten besteht, hat die Tiefe 0.)
 - c) Geben Sie eine PL-Formel über $\Sigma_{\mathbb{B}}$ an, die ausdrückt, dass x mindestens die Tiefe 2 hat.
 - d) Zeigen Sie durch Induktion, dass Folgendes in jeder Umgebung I gilt: Wenn ein Term $t \in \mathcal{T}(\mathbb{B})$ einen Baum mit n Endknoten als Wert hat, so besteht t aus mindestens 3n-2 Zeichen.

Aufgabe 3.3

Untersuchen Sie eine Variante $AL'(\mathbb{N})$ der Programmiersprache $AL(\mathbb{N})$, in der es keine <u>while-Schleifen</u>, dafür aber loop-Schleifen gibt. (Alles andere ist wie in AL.) Genauer:

a) In der Definition von $AL'(\mathbb{N})$ wird (AL4) durch folgende Klausel ersetzt:

(AL'4) Ist α aus $AL'(\mathbb{N})$ und $v \in IVS$ eine Variable, die in α nicht vorkommt, dann ist loop v times $\alpha \in AL'(\mathbb{N})$.

Formulieren Sie eine entsprechende Bedingung (MAL'4) zur formalen Festlegung der Semantik. Informell lautet die Semantik: α wird in der Umgebung I genau I(v) mal ausgeführt. Formulieren Sie (MAL'4) direkt (induktiv) und nicht durch Rückführung auf die while-Schleife.

b) Überprüfen Sie Ihre Definition durch schrittweise Auswertung des $AL'(\mathbb{N})$ -Programms

$$\underline{\text{loop}} \ \underline{\text{x}} \ \underline{\text{times}} \ \underline{\text{loop}} \ \underline{\text{y}} \ \underline{\text{times}} \ \underline{\text{z}} \leftarrow \underline{\text{z}} * (\underline{\textbf{1}} + \underline{\textbf{1}})$$

in einer Umgebung I mit $I(\underline{\mathbf{x}}) = 1$, $I(\mathbf{y}) = 2$, $I(\underline{\mathbf{z}}) = 3$.

c) Wir haben in der Vorlesung festgestellt, dass $AL(\mathbb{N})$ universell ist. Ist auch $AL'(\mathbb{N})$ universell? Anders formuliert: Lassen sich alle partiell-berechenbaren Funktionen mit einem $AL'(\mathbb{N})$ -Programm berechnen? (Begründen Sie Ihre Antwort.)

Aufgabe 3.4

Formalisieren Sie folgende Sätze als PL-Formeln. Wählen Sie dabei jeweils zunächst eine geeignete Signatur und geben Sie die Kategorie (inklusive Stelligkeit) und die intendierte Bedeutung aller Elemente der Signatur vollständig an.

- a) Manche Elefanten fürchten sich vor jeder Maus, die sie sehen.
- b) Aishas Vater besucht beide Eltern von Berta, aber nicht die Mutter von Chen.
- c) Zu jedem Haus, in dem ein Kind wohnt, gibt es ein anderes Haus, in dem genau ein Erwachsener wohnt.
- d) Mohan hat zwei Schwestern, die beide Ärztinnen sind.

Wenn Ihnen ein Satz mehrdeutig erscheint, so diskutieren Sie alternative Interpretationen.

Aufgabe 3.5

Spezifizieren Sie zu folgenden Formeln jeweils ein Modell \mathcal{I} und ein Gegenbeispiel \mathcal{J} über dem angegebenen Gegenstandsbereich D. Argumentieren Sie jeweils, warum \mathcal{I} ein Modell und \mathcal{J} ein Gegenbeispiel ist. Geben Sie außerdem für jede Formel an, welche Variablen dort frei bzw. gebunden vorkommen. (Beachten Sie die in der Vorlesung eingeführten Notationsvereinbarungen und Klammereinsparungsregeln.)

- a) Über D = Z (ganze Zahlen): $\exists y [P(x, f(y), c) \supset \forall x \neg P(x, c, f(x)) \lor \exists z P(y, x, z)]$
- b) Über $D = \omega$ (natürliche Zahlen): $\exists x \forall y [Q(f(x)) \supset P(g(a,x),y)] \land \exists z (f(z) = g(x,y) \lor f(z) = a)$
- c) Über $D = \{\underline{0}, \underline{1}\}^*$ (Binärstrings): $\forall x \exists y R(f(x, y), g(x)) \supset \exists x \forall y R(g(y), f(y, x))$