数字电子技术基础 1

一. 1. (15分)

试根据图示输入信号波形分别画出各电路相应的输出信号波形 L1、L2、L3、L4、和 L5。设各触发器初态为"0"。

二. (15分)

已知由八选一数据选择器组成的逻辑电路如下所示。试按步骤分析该电路在 M1、M2 取不同值时(M1、M2 取值情况如下表所示)输出 F 的逻辑表达式。

八选一数据选择器输出端逻辑表达式为: $Y=\Sigma m_iD_i$,其中 m_i 是 $S_2S_1S_0$ 最小项。

三. (8分)

试按步骤设计一个组合逻辑电路,实现语句 "A>B", A、B 均为两位二进制数,即 A (A_1 、 A_0), B (B_1 、 B_0)。要求用三个 3 输入端与门和一个或门实现。

四. (12分)

试按步骤用 74LS138 和门电路产生如下多输出逻辑函数。

$$\begin{cases} Y_1 = AC \\ Y_2 = \overline{ABC} + A\overline{BC} + BC \\ Y_3 = \overline{BC} + AB\overline{C} \end{cases}$$

74LS138 逻辑表达式和逻辑符号如下所示。

$$\begin{array}{cccc} Y_0 = & \overline{G1} & \overline{G2A + G2B} & \overline{A2}\overline{A1}\overline{A0} \\ Y_1 = & \overline{G1} & \overline{G2A + G2B} & \overline{A2}\overline{A1}A0 \\ & & & \\ & & & \\ Y_7 = & \overline{G1} & \overline{G2A + G2B} & A2A1A0 \\ \end{array}$$

五. (15分)

已知同步计数器的时序波形如下图所示。试用维持-阻塞型 \mathbf{D} 触发器实现该计数器。要求按步骤设计。

六. (18分)

按步骤完成下列两题

- 1. 分析图 5-1 所示电路的逻辑功能:写出驱动方程,列出状态转换表,画出完全状态转换图和时序波形,说明电路能否自启动。
- 2. 分析图 5-2 所示的计数器在 M=0 和 M=1 时各为几进制计数器,并画出状态转换图。

图 5-1

图 5-2

七.

八. (10分) 电路下如图所示,按要求完成下列问题。

- 1. 指出虚线框 T1 中所示电路名称.
- 2. 对应画出 V_C 、 V_{01} 、A、B、C 的波形。并计算出 V_{01} 波形的周期 T=? 。

数字电子技术基础 2

- 一. (20 分) 电路如图所示,晶体管的 $\beta=100$, Vbe=0.7v。
 - (1) 求电路的静态工作点;
- (2) 画出微变等效电路图, 求 Au、r_i和 r_o;
- (3) 若电容 Ce 开路,则将引起电路的哪些动态参数发生变化?并定性说明变化趋势.

二. (15 分) 求图示电路中 U_a 、 U_b' 、 U_b 、 U_c 及 I_L 。

三. (8 %) 逻辑单元电路符号和具有 "0"、"1" 逻辑电平输入信号 X_1 如下图所示,试分别 画出各单元电路相应的电压输出信号波形 Y_1 、 Y_2 、 Y_3 。设各触发器初始状态为 "0" 态。

四. (8分) 判断下面电路中的极间交流反馈的极性(要求在图上标出瞬时极性符号)。如为负反馈,则进一步指明反馈的组态。

五.(8分)根据相位平衡条件判断下列各电路能否产生自激振荡(要求在图上标出瞬时极性符号)。

(a) (b)

六. (12分) 某车间有 A、B、C、D 四台电动机, 今要求:

- (1) A 机必须开机:
- (2) 其他三台电动机中至少有两台开机。

如果不满足上述要求,则指示灯熄灭。设指示灯熄灭为 0 亮为 1,电动机的开机信号通过某种装置送到各自的输入端,使该输入端为 1,否则为 0。试用与非门组成指示灯亮的逻辑图。

七. (16分)设图示电路初始状态是"000",要求完成以下各问:

- (1) 写出各触发器的驱动方程;
- (2) 写出各触发器的状态方程;
- (3) 列出状态转换表;
- (4) 试分析图示电路是几进制计数器。

八. (12分)下图为由555定时器构成的多谐振荡器电路。

- (1) 对应画出图中 Vc 和 Vo 的波形 (要求标出对应电压值);
- (2) 设图中二极管为理想器件, 计算 Vo 波形的周期 T 及占空比 q (%)。

附:

555 功能表

复位端	触发端	阈值端	放电端	输出端
(4)	(2)	(6)	(7)	(3)
0	×	×	对地短路	0
1	>1/3Vcc	>2/3Vcc	对地短路	0
1	<1/3Vcc	<2/3Vcc	对地开路	1
1	>1/3Vcc	<2/3Vcc	保持原态	保持原态

数字电子技术基础 3

- 一. (20 分) 电路如图所示,晶体管的 β=100, Vbe=0.7v。
- (1) 求电路的静态工作点;
- (2) 画出微变等效电路图, 求 Au、r_i和 r_o;
- (3) 若电容 Ce 开路,则将引起电路的哪些动态参数发生变化?并定性说明变化趋势。

二. (15分) 计算图 a 和图 c 中的 Uo和图 b 中 Iu的值,设所有运放均为理想运算放大器。

三. (9 分)逻辑单元电路符号和具有"0"、"1"逻辑电平输入信号 X_1 如下图所示,试分别画出各单元电路相应的电压输出信号波形 Y_1 、 Y_2 、 Y_3 。设各触发器初始状态为"0"态。

四. (8分) 判断下面电路中的极间交流反馈的极性(要求在图上标出瞬时极性符号)。如为负反馈,则进一步指明反馈的组态。

五.(8分)根据相位平衡条件判断下列各电路能否产生自激振荡(要求在图上标出瞬时极性符号)。

六. (12 分) 某车间有 3 台电机,两台以上电机停机时为故障发生,此时报警灯亮,设计一个显示故障情况的电路,并用与非门加以实现,写出具体实现步骤。

七. (16分)设图示电路初始状态是"000",要求完成以下各问:

- (5) 写出各触发器的驱动方程;
- (6) 写出各触发器的状态方程;
- (7) 列出状态转换表;
- (8) 试分析图示电路是几进制计数器。

八. (12分)下图为由555定时器构成的多谐振荡器电路。

- (1) 对应画出图中 Vc 和 Vo 的波形 (要求标出对应电压值);
- (2) 设图中二极管为理想器件, 计算 Vo 波形的周期 T 及占空比 q (%)。

555 功能表

复位端	触发端	阈值端	放电端	输出端
(4)	(2)	(6)	(7)	(3)
0	×	×	对地短路	0
1	>1/3Vcc	>2/3Vcc	对地短路	0
1	<1/3Vcc	<2/3Vcc	对地开路	1
1	>1/3Vcc	<2/3Vcc	保持原态	保持原态

数字电子技术基础 4

1. (20分)

试根据图示输入信号波形分别画出下列各 TTL 电路的输出波形,设图中触发器初态为 "0"。

2. (15分)

- (1) 指出图中由 555 定时器所组成电路的名称;
- (2) 已知 R_1 = R_2 = $2k\Omega$, C=0.01 μ 计算的 V_0 频率以及占空比;
- (3) 画出 V_C和 V_O对应波形并标出相应坐标。

3. (20分)

(1) 试通过逻辑表达式、真值表分析图示电路的逻辑功能。

(2) 试用 74138 和与非门实现该电路的逻辑功能。

4. (10分)

试用 74161 和与非门实现下列脉冲产生电路:

(要求说明74161实现几进制计数器,并画出状态转换图、电路图)

5. (20分)

设计一裁判表决电路,一个主裁判两票,三个副裁判每人一票,多数票同意为通过。

- (1) 画出真值表。
- (2) 限用最少的与非门实现该电路并画出电路图。(化简时用卡诺图)。
- (3) 用一片数据选择器 74LS151 实现

6. (15分)

按步骤分析图示电路:写出驱动方程,状态方程,列出状态转换表,画出状态转换图和时序波形图。

数字电子技术基础 5

1. (20分)

试根据图示输入信号波形分别画出下列各 TTL 电路的输出波形,设图中触发器初态为"0"。

2. (15分)

- (1) 分析图示逻辑电路: 写出输出 X、Y 的表达式, 列真值表, 简述逻辑功能;
- (2) 用 3 线-8 线译码器 74138 实现该电路(允许附加与非门)。

- 3. (15 分)设计一裁判表决电路,一个主裁判两票,三个副裁判每人一票,多数票同意为通过。
- (1) 画出真值表。
- (2) 限用最少的与非门实现该电路并画出电路图。(化简时用卡诺图)。
- **4.** (20分) 按步骤分析图示电路:写出驱动方程和状态方程,列出状态转换表,画出完全状态转换图和时序波形,说明电路能否自启动。

5. (15分) 试用 74161、74151 和与非门实现下列脉冲产生电路:

- (1) 说明 74161 实现几进制计数器,并画出状态转换图;
- (2) 根据题目中要实现的脉冲波形确定 74151 的输入;
- (3) 画出逻辑电路图。

- 6. (15分) 下图为由 555 定时器构成的应用电路。
 - (1) 说明该电路的名称,以及电容 C上的充电回路和放电回路;
 - (2) 对应画出图中 Vc 和 Vo 的波形 (要求标出对应电压值);
 - (3) 设图中二极管为理想器件, 计算 Vo 波形的周期 T 及占空比 q (%)。

数字电子技术基础 6

- (1) 目前,最常用的两种半导体材料是()和()。
- (2)场效应管属于()控制器件,反映其控制能力的参数为(); 双极型三极管属于()控制器件,反映其控制能力的参数为()。
- (3)集成运放只有()截止频率,当信号频率高于此频率时,增益会显著()。
- (4) 电压放大电路共有 () 种组态,分别为 () 组态、() 组态和 () 组态。
- (5) 理想运放只有在 () 应用条件下,两个输入端才同时符合虚短和虚断的原则。
- (6) 在调试共射放大电路时,输出波形同时出现了截止失真和饱和失真,为减小失真, 应首先调整()。
- (7) 差放两个输入端的信号分别为 2.1v 和 2v, 差模信号为() v, 共模信号为() v。
- (8) 功放电路效率是指() 功率与() 功率的比值。
- (9) 集成三端稳压器 W7805 的额定输出电压为 ()v; W7912 的额定输出电压为 ()v。

2. (18分)

多级放大电路如下图所示。已知 T 的 $\beta = 100$, $V_{BE} \approx 0.6v$, C_1 , C_2 , 的容量足够大。

- (1) 估算 T 的静态工作点并求出其 rbe;
- (2) 画出该放大电路的简化微变参数等效电路:
- (3) 计算电压放大倍数 Åv、输入电阻 Ri和输出电阻 Ro。

- 3.(12 分)电流扩大电路如图所示。已知图示电路中各三极管的 β 均为 60, V_{BE} 均为 0.7v,饱和压降 V_{CES} 均为 2V,二极管的导通压降为 0.7v, $V_{CE}=24v$.求: 第 1 页 (共 4 页
 - (1). 确定电路反馈极性及反馈类型。
 - (2). 估算电路的电压放大倍数 Avf。

- (3). 电路输出最大电压 Vomax 时,它的 Vi 为多大?
- (4). 求电路的最大输出功率 Pmax (设 T1、T2 的 Vces=1v)。

4. (15分)

图示各电路由无级间交流反馈,若有,则用瞬时极性法判断其反馈极性。对其中的负反馈需说明反馈类型,并按深度负反馈条件写出电路的电压放大倍数 Avf 的表达式(要求必要的步骤);对正反馈,则只须说明反馈极性。

根据相位平衡条件判断下列各电路能否产生自激振荡(要求在图上标出瞬时极性符号),各图中标明 C₁ 的电容为耦合电容或旁路电容。

- (1)图(a)、(b)电路若可振荡,试说明理由并写出其振荡频率的表达式;若不能振荡,请修改成能振荡的电路。
- (2) 图 (c) 电路中当 $Rs=1k\Omega$, R_f 取何值时才能使电路起振,写出振荡频率的表达式。

6. (10分)

图示电路,已知变压器副边电压 V_2 =12v,稳压管 Dz 的稳定电压 V_z =4.5v, R_1 = R_2 =3 $K\Omega$ 。解答:

- (1) 说明 D_1 、 D_2 、 D_3 、 D_4 构成什么电路, 其最高反向电压应不低于多少;
- (2) 简述电容 C 的作用。若 C 的容量较大, V_d 大约时多少伏?
- (3) 计算 Vo 的大小。

7. (15分)

解答下列各题,设图中运放为理想器件。

- 1) 求图 (a)、(b) 中的输入电压 V₀₁、V₀₂和 Vo;
- 2)已知图(c)中的输入电压 V_i 波形如图(d)所示, D_{z1} 和 D_{z2} 的稳定电压为 5.3v,正向压降为 0.7v。画出对应的 V_0 波形,设在 t=0 时 $V_0=6v$ 。

数字电子技术基础7

1填空(20分)

(1)双极型三极管属于 () 控制器件,反映这种控制能力的参数叫 ()。 场效应管属于 () 控制器件,反映这种控制能力的参数叫 ()。

(2)测得某 NPN 三极管各电极对地电位如下图,试将下列三种情况下管子的工作状态(即放大、截止、饱和)分别填入括号内。

- (3) 差动放大电路对差模信号有()作用,对共模信号有()作用;运算放大器第一级通常采用()放大电路,以克服直接耦合带来的()漂移。
 - (4) 乙类互补对称功率放大电路的输出电压波形存在()失真。
- (5) 放大电路中引入负反馈会使放大器放大倍数 (),放大倍数的稳定性 ()。
- (6) 正弦波振荡电路要产生持续振荡,必须同时满足()平衡和()平衡 条件。
 - (7)集成三端稳压器 W7805 的额定输出电压为 () V; W7912 的额定输出电压为 () V。
- (8)运算放大器只有() 截止频率,当信号频率高于此截止频率时,运算放大器的增益会显

著()。

2. (18分)

图示放大电路,已知三极管 T 的 β = 100, V_{BE} =0.6 V_{o} 。

- (1) 估算 T 的静态工作点(I_B 、 I_C 、 V_{CE})并求其 r_{be} ;
- (2) 画放大电路的微变等效电路;

(3) 计算放大电路的电压放大倍数 \dot{A}_{V} 、输入电阻 R_{i} 和输出电阻 R_{o} 。

3. (12分)

已知图示电路中各三极管的 β 均为 60, V_{BE} 均为 0.7v,饱和压降 V_{CES} 均为 2V,二极管的导通压降为 0.7v, $V_{CC}=24v$.求:

- (1) 静态电流 Ic1、Ic2;
- (2) 按深度反馈计算电压放大倍数;
- (3) 计算输入电压为 0.5v (有效值) 时电路的输出功率和效率。
- (4) 计算不失真最大输出功率和效率。

4. (10分)

- (1) 图(a) 所示 RC 串并联正弦振荡电路接好后,不能振荡
 - ① 请找出图中的错误并在图中加以改正。
 - ② 改正后的电路如振荡频率 f_0 =480 H_Z ,试确定 R 的值(其中 C=0.01 μ F)。
 - ③ 若将负反馈支路上的电阻 R_1 改为可稳幅的热敏电阻,问 R_1 应有怎样的温度

系数?

(2) 利用相位平衡条件判断图 (b) 电路能否产生振荡 (标出瞬时极性),如能,求振 荡频率 (其中 $C_1=C_2=47pF$, L=1.6mH)。

5. (12分)

- (1) 图示各电路有无级间交流反馈,若有,则用瞬时极性法判断其反馈极性(在图上标出瞬时极性)。对其中的负反馈说明反馈类型。
- (2) 对于其中的负反馈,试分别定性说明其反馈对放大电路输入、输出电阻的影响, 指出是稳定输出电压还是稳定输出电流。
- (3) 试计算其中两个负反馈放大器的电压放大倍数。

6. (20分)

图(a)、(b)、(c)(e)中的运放均为理想器件,试解答:

- (1) 写出图(a)中 Vo 的表达式
- (2) 图 (b) 电路中稳压管 Dz_1 、 Dz_2 稳压值为 6v (稳压管正向可忽略), 求: 当 Vi=3v 时 Vo=?
- (3) 设 V_o 的初始值为 0 伏,对应图(d)输入波形 V_I 画输出波形 V_o ,并标出 V_o 的 峰值大小。
- (4) 已知图(e)电路中 Vi 波形如图(f) 所示, 画出对应的 Vo 波形。

7. (8分)

串联型稳压电路如下图所示, V_2 =12V(有效值),稳压管 D_Z 的稳定电压 V_Z =4.5V, R_1 = R_2 =3 $k\Omega$ 。

- 求: (1) 说明 D_1 、 D_2 、 D_3 、 D_4 构成什么电路?
 - (2) 当 C 足够大时, 估算整流滤波电路的输出电压 V_d;
 - (3) 计算 Vo 的大小。

数字电子技术基础8

- 一、(20 分)放大电路如图 1-1 所示,已知三极管 β =100, V_{BE} =0.6V , V_{CES} =0V $V_{i=10\sin\omega t}$ (mV)。
- 试求: 1。确定当 Rb1"=30K 时电路的静态工作点
 - 2. 画出放大电路中频时微变等效电路
 - 3. 确定当 Rb1"=30K 时该电路的中频 Av 、Ri、Ro。
 - 4. 回答下列问题:
 - ①当 Rbi"调至零时,在图 1-2 中定性画出电路输出 Vo相应的波形。
 - ②当 Vim > V_{CC}/A_V 时,在图 1-3 中定性画出电路输出 V₀相应的波形。
 - ③当 f= fL 时放大倍数 Av =?
 - ④电路中 Ce 接至三极管 T 的发射极时,放大倍数增大还是减小?

- 二、(18分) 功率放大电路如图 2-1 所示,已知
- 三极管的 β=100, V_{CES} =0 V, T1、T2 完全对称。
- 试求: 1.电路的最大输出功率 Pom、效率 η。
 - 2.每只功放管的最大管耗。
 - 3.回答下列问题:
 - ① T5、T6和R3构成什么电路?说出它在电路中的作用。
 - ② T3、R1 和 R2 构成的电路在该功率放大电路所起的作用是什么?
 - ③ 若 V_{BE3} =0.7V,试确定静态时 V_{AB} 、 V_{BE1} 和 V_{BE2} 的值。
- 三、(18分)图示 3-1 是用运算放大器构成的音 频信号发生器的简化电路。
- 试求: 1。 ①判断电路是否满足振荡的相位条件?

②接通电源后, 若出现如图 3-2 所示的失真应如何调整 R1。

- 2-1
- ③Rp 为联动可调电阻,可从 0 调到 14.4ΚΩ,试求振荡频率的调节范围。
- ④若 R_T 为可稳幅的热敏电阻,应该具有什么样的温度系数。

图 3-1

2. 利用相位条件判断图 3-3、图 3-4 电路能否振荡。

- 四、(20分)图(a)、(b)、(d)、(f)中的运放均为理想器件,试解答:
 - (1) 写出图 (a)、图 (f) 电路 Vo 的表达式。
- (2)求出图(b)上门限触发电压 V_{T+} 和下门限触发电压 V_{T-} ; 对应图(c)输入波形 V_I 画输出波形 V_O ,并标出 V_{T+} 、 V_{T-} 和 V_O 的幅值 V_{OM} 等参数。

(3)写出图 $(d)V_0$ 的表达式;设 V_0 的初始值为 0 伏,对应图(e)输入波形 V_I 画输出波形 V_0 ,并标出 V_0 的峰值大小。

五、(12分)(1) 图示各电路有无级间交流反馈,若有,则用瞬时极性法判断其反馈极性(在图上标出瞬时极性)。对其中的负反馈说明反馈类型。

- (2) 对于其中的负反馈,试分别定性说明其反馈对放大电路输入、输出电阻的影响,指出是稳定输出电压还是稳定输出电流。
 - (3) 试写出两个负反馈放大器的电压放大倍数表达式。
- 六、(12) 如图所示桥式整流滤波及稳压电路,已知变压器副边电压有效值为6V。
 - (1) 二极管 D1—D4 构成什么电路, 其最高反向电压应不低于多少伏。
 - (2) 电容 C(2) 已知 C(2) 及够大)两端的电压为多少伏? 7805 的 3×2 端之间的电压为多少伏?
 - (3) 求该电路输出电压的最大值 Vomax 和最小值 Vomin 的表达式。

一、填空题: (每空3分,共15分)

1.	. 逻辑函数有四种表示方法,它们分别是(真值	直表、)、(逻辑图式)、(、逻辑
表达	長达)和(卡诺图)。		
2.	. 将 2004 个"1"异或起来得到的结果是()。	
3.	. 由 555 定时器构成的三种电路中,()和()是脉冲的整形电路。
4.	. TTL 器件输入脚悬空相当于输入()电平。	
5.	. 基本逻辑运算有: ()、()和()运算。
6.	. 采用四位比较器对两个四位数比较时,先比较	() 位。
7.	. 触发器按动作特点可分为基本型、()、	, ()和边沿型;
8.	. 如果要把一宽脉冲变换为窄脉冲应采用 ()触发	
9. [.目前我们所学的双极型集成电路和单极型集成电	1路的典型电	路分别是()电路和()
电路	 直路 。		
10.	0. 施密特触发器有())个稳定状态.,多谐抗	辰荡器有()个稳定状态。
11.	1. 数字系统按组成方式可分为 、	两	万种 ;
12.	2. 两二进制数相加时,不考虑低位的进位信号是	()	加器。
13.	3. 不仅考虑两个相加,而且还考虑	来自	相加的运算电路,称为全
加暑	口器。		
14.	4. 时序逻辑电路的输出不仅和	而且还与	有关。
15.	5. 计数器按 CP 脉冲的输入方式可分为	和	0
16.	6. 触发器根据逻辑功能的不同,可分为		
	、		

17.	根据不同需要,	在集成计数器芯片的基础上,	通过采用	 _`
	等方法司	可以实现任竟进制的技术器。		

- 18. 4. 一个 JK 触发器有 个稳态,它可存储 位二进制数。
- 19. 若将一个正弦波电压信号转换成同一频率的矩形波,应采用 电路。
- 20. 把 JK 触发器改成 T 触发器的方法是。
- 21. N个触发器组成的计数器最多可以组成_____进制的计数器。
- 22. 基本 RS 触发器的约束条件是。
- 二. 数制转换 (5分):

1,
$$(11.001)_2 = ()_{16} = ()_{10}$$

$$3, (25.7)_{10} = ()_2 = ()_{16}$$

三. 函数化简题: (5分)

1、 化简等式

$$Y = A\overline{B}C + AB\overline{C} + ABC$$

$$Y = \overline{AB} + AC + \overline{B}C$$

$$Y = C\overline{D}(A \oplus B) + \overline{ABC} + \overline{ACD}$$
, 给定约束条件为: AB+CD=0

2 用卡诺图化简函数为最简单的与或式(画图)。

$$Y = \sum m(0, 2, 8, 10)$$

四. 画图题: (5分)

1. 试画出下列触发器的输出波形 (设触发器的初态为 0)。 (12 分) 1.

2.

3.

2. 已知输入信号 X, Y, Z 的波形如图 3 所示, 试画出 $F = XYZ + \overline{X} \cdot \overline{Y}Z + \overline{X}YZ + X\overline{Y} \cdot \overline{Z}$ 的波形。

图 3 波形图

五. 分析题(30分)

1、分析如图所示组合逻辑电路的功能。

- 2. 试分析如图 3 所示的组合逻辑电路。 (15 分)
- 1). 写出输出逻辑表达式;
- 2). 化为最简与或式;
- 3). 列出真值表;
- 4). 说明逻辑功能。

3. 七、分析如下时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。(20)

- 4. 74161 组成的电路如题 37 图所示,分析电路,并回答以下问题
 - (1) 画出电路的状态转换图 (Q₃Q₂Q₁Q₀);
 - (2) 说出电路的功能。(74161 的功能见表)

74161切配表							
CP	Ro	LD	EP	ET	工作状态		
X	0	X	Χ	Χ	置零		
∕\	1	0	X	Χ	预置数		
X	1	1	0	1	保持		
X	1	1	X	0	保持(但C=0)		
Λ	1	1	1	1	计数		

. . . . Th 44. #

题 37 图

六. 设计题: (30分)

- 1. 要求用与非门设计一个三人表决用的组合逻辑电路图,只要有 2 票或 3 票同意,表决就通过(要求有真值表等)。
- 2. 试用 JK 触发器和门电路设计一个十三进制的计数器, 并检查设计的电路能否自启动。(14

分)

七. (10分) 试说明如图 5 所示的用 555 定时器构成的电路功能,求出 U T+ 、U T- 和 ΔU T ,并画出其输出波形。 (10分)

图 5

答案:

一. 填空题

- 1. 真值表、逻辑图、逻辑表达式、卡诺图;
- 2. 0;
- 3. 施密特触发器、单稳态触发器
- 4. 高
- 5. 与 、或 、非
- 6. 最高
- 7. 同步型 、主从型 ;
- 8. 积分型单稳态
- 9. TTL 、 CMOS;
- 10. 两、0;
- 11. 功能扩展电路、功能综合电路;
- 12. 半
- 13. 本位(低位),低位进位
- 14. 该时刻输入变量的取值,该时刻电路所处的状态
- 15. 同步计数器, 异步计数器
- 16. RS 触发器 , T 触发器 , JK 触发器 , T´触发器, D 触发器
- 17. 反馈归零法,预置数法,进位输出置最小数法
- 18. 两 , 一
- 19. 多谐振荡器

- 20. J=K=T
- 21. 2ⁿ
- 22. RS=0
- 二. 数制转换(10):
- 1, $(11.001)_{2} = (3.2)_{16} = (3.125)_{10}$
- 2, (8 F. FF) $_{16}$ = (1 0 0 0 1 1 1 1 . 1 1 1 1 1 1 1 1) $_{2}$ = (1 4 3. 9 9 6 0 9 3 7) $_{10}$
- 3, (25.7) $_{10}$ = (11001.1011) $_{2}$ = (19.B) $_{16}$
- 4、(+1011B) $_{\text{\tiny BM}}$ = (01011) $_{\text{\tiny DM}}$ =(01011) $_{\text{\tiny AM}}$
- 5、(-1 0 1 0 1 0 B) $_{\text{\tiny RM}}=$ (1 0 1 0 1 0 1) $_{\text{\tiny DM}}=$ (1 0 1 0 1 1 0) $_{\text{\tiny AM}}$

三. 化简题:

1、利用摩根定律证明公式

反演律(摩根定律):
$$\begin{cases} \overline{A \cdot B} = \overline{A} + \overline{B} \\ \overline{A + B} = \overline{A} \cdot \overline{B} \end{cases}$$

2、画出卡诺图

AB				
CD	00	01	11	10
00	mo	m_{Δ}	m_{12}	<i>m</i> 8
01	m_1	m_5	m_{12}	m9
11	<i>m</i> 3	m_7	m ₁₅	m_{11}
10	m_2	m_6	<i>m</i> 14	m_{10}

化简得 $Y = \overline{AC} + \overline{AD}$

4变量卡诺图

四. 画图题:

1.

2.

3.

2.

五. 分析题 20 分)

1. 1、写出表达式

$$Y_1 = \overline{AB}$$
 $Y_2 = \overline{BC}$ $Y_3 = \overline{CA}$ $Y = AB + BC + CA$

2、画出真值表

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- 3、当输入A、B、C中有2个或3个为1时,输出Y为1,否则输出Y为0。所以这个电路实际上是一种3人表决用的组合电路:只要有2票或3票同意,表决就通过。2.
 - (1) 逻辑表达式

$$Y_1 = AB + (A \oplus B)C$$

 $Y_2 = A \oplus B \oplus C$

(2) 最简与或式:

$$Y_{1} = AB + AC + BC$$

$$Y_{2} = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

(3) 真值表

ABC	Y_1	Y_2
000	0	0
0 0 1	1	0
010	1	0
0 1 1	0	1
100	1	0
101	0	1
1 1 0	0	1

(4) 逻辑功能为:全加器。

3. 1)据逻辑图写出电路的驱动方程:

$$T_0 = 1$$
 $T_1 = Q_0$ $T_2 = Q_0 Q_1$ $T_3 = Q_0 Q_1 Q_2$

1 1 1

2) 求出状态方程:

$$\begin{aligned} Q_0^{n+1} &= \overline{Q_0} \\ Q_1^{n+1} &= Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \\ Q_2^{n+1} &= Q_0 Q_1 \overline{Q_2} + \overline{Q_0} \overline{Q_1} Q_2 \\ Q_3^{n+1} &= Q_0 Q_1 Q_2 \overline{Q_3} + \overline{Q_0} \overline{Q_1} \overline{Q_2} Q_3 \end{aligned}$$

- 3) 写出输出方程: C=Q₀Q₁Q₂Q₃
- 4) 列出状态转换表或状态转换图或时序图:
- 5) 从以上看出,每经过 16 个时钟信号以后电路的状态循环变化一次;同时,每经过 16 个时钟脉冲作用后输出端 C 输出一个脉冲,所以,这是一个十六进制记数器, C 端的输出就是进位。

CP	Q_3	Q_2	Q_1	Q_0	等效十进制数	C
0	0	0	0	0	0	0
1	0	0	0	1	1	0
2	0	0	1	0	2	0
			•••••			
15	1	1	1	1	15	0
16	0	0	0	0	0	0

解: (1) 状态转换表:

Qn ₃	Q ⁿ ₂	Qn ₁	Q ₀	Q ⁿ⁺¹ ₃	Q^{n+1}_2	Q^{n+1}	Q^{n+1}_0
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	0	0	0	0

状态转换图:

(2) 功能: 11 进制计数器。从 0000 开始计数, 当 Q₃Q₂Q₁Q₀ 为 1011 时,通过与非门异步清

零,完成一个计数周期。

六. 设计题:

1.

1、画出真值表

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2 写出表达式

$$Y = AB + BC + CA$$

3 画出逻辑图

2.解:根据题意,得状态转换图如下:

$$Q_3 Q_2 Q_1 Q_0$$
 $0000 \longrightarrow 0001 \longrightarrow 0010 \longrightarrow 0011 \longrightarrow 0100 \longrightarrow 0101$
 $1100 \longleftarrow 1011 \longleftarrow 1010 \longleftarrow 1001 \longleftarrow 1000 \longleftarrow 0111 \longleftarrow 0110$

$$\begin{split} &\mathbb{Q}_3^{n+l} = \mathbb{Q}_3 \overline{\mathbb{Q}}_2 + \overline{\mathbb{Q}}_3 \mathbb{Q}_2 \mathbb{Q}_1 \mathbb{Q}_0 \\ &\mathbb{Q}_2^{n+l} = \overline{\mathbb{Q}}_3 \mathbb{Q}_2 \overline{\mathbb{Q}_1 \mathbb{Q}_0} + \overline{\mathbb{Q}}_2 \mathbb{Q}_1 \mathbb{Q}_0 \\ &\mathbb{Q}_1^{n+l} = \overline{\mathbb{Q}}_1 \mathbb{Q}_0 + \mathbb{Q}_1 \overline{\mathbb{Q}}_0 \\ &\mathbb{Q}_0^{n+l} = \overline{\mathbb{Q}}_0 \overline{\mathbb{Q}_3 \mathbb{Q}_2} \end{split}$$

$$\begin{aligned} & \mathbf{J}_{3} = \mathbf{Q}_{2}\mathbf{Q}_{1}\mathbf{Q}_{0} \text{ , } \mathbf{K}_{3} = \mathbf{Q}_{2} \\ & \mathbf{J}_{2} = \mathbf{Q}_{1}\mathbf{Q}_{0} \text{ , } \mathbf{K}_{2} = \mathbf{Q}_{3} + \mathbf{Q}_{1}\mathbf{Q}_{0} \\ & \mathbf{J}_{1} = \mathbf{K}_{1} = \mathbf{Q}_{0} \end{aligned}$$

所以:
$$J_0 = \overline{Q_3Q_2}, K_0 = 1$$

能自启动。因为:

七.
$$U_{r+}=\frac{2}{3}V_{cc}$$
, $U_{r-}=\frac{1}{3}V_{cc}$, $\Delta U_r=\frac{1}{3}V_{cc}$, 波形如图 5 所示

图 5