Master MsCV 1 Image Compression

Basic Compression Methods

1 Exercise 1 - Huffman

1. The DNA alphabet is {A,C,T,G} with respective probabilities {0.5,0.3,0.15,0.05}. Calculate the entropy and gives Huffman coding.

2. Give the Huffman tree and encoding of "sir sid eastman easily teases sea sick seals".

2 Exercise 2 - MTF Coding

- 1. Give the Move-to-Front encoding of "the boy on my right is the right boy", proceeding word by word.
- 2. Decode 0the, 1right, 2of, 2, 3boy, 4is, 5on, 6my, 6.

3 Exercise 3 – LZ??

- 1. Apply the LZ77 compression algorithm to "sir sid eastman easily teases sea sick seals" with a search buffer of 10 characters, and a look ahead buffer of 5.
- 2. Apply the LZ78 compression algorithm to "sir sid eastman easily teases sea sick seals". Which structure could be used to make the dictionary search faster?
- 3. Apply the LZW compression algorithm to "sir sid eastman easily teases sea sick seals". Initialize the dictionary with the ASCII Table.
- 4. Give the result of the decompression using LZ77 of (0,0,a) (0,0,b) (0,0,r) (3,1,a) (5,1,c) (7,1,d) (1,1,a) (10,4,*).
- 5. Give the result of the decompression using LZ78 of (0,a) (1,a) (0,b) (3,a) (4,a) (5,a) (4,b).
- 6. Give the result of the decompression using LZW of 97, 108, 102, 32, 101, 97, 115, 105, 108, 121, 259, 97, 116, 115, 32, 256, 102, 271, 97.

4 Exercise 4: arithmetic coding

Consider again the DNA alphabet {A,C,T,G} with respective symbols probabilities {0.5,0.3,0.15,0.05}.

Evaluate the arithmetic code for the chain: ACTAGC and propose the decoding process

5 Exercise 5

Provide the arithmetic code for the sentence: BE_A_BEE

6 Exercise 6

In order to avoid the calculus of a to high number arithmetic codes are modified in a way to limit the size of the low and high bound (let say 4) to a certain number of digits and shift to the left the most significant bit and insert a 0 to the least significant bit of low bound and a 9 of the high bound.

Encode the sentence "SWISS_MISS" by using the shifting approach.

7 Exercise 7

Recall: the PPM encoder uses a statistical model of the text in a context way (order 0 is the character level, order 1 counts of groups of 2 characters and so on) and an arithmetic coder for all recognized symbol. We assume the arithmetic coder achieves the entropy. We assume that the 14-symbol string "assanissimassa" has been completely input and encoded, so the current order-2 context is "sa" (f is the counting and p the probability):

Order 2		Order 1	Order 0
Context		Context f p	Symbol f p
as→s	2 2/3	$a \rightarrow s 2 2/5$	a 4 4/19
esc	$1 \ 1/3$	$\mathtt{a}{ o}$ n 1 $1/5$	s 6 6/19
		$\operatorname{esc} o 2$ 2/5	n 1 1/19
$\mathtt{ss}{\to}\mathtt{a}$	$2 \ 2/5$		i 2 2/19
$\mathtt{ss}{\rightarrow}\mathtt{i}$	$1 \ 1/5$	$s \rightarrow s 3 3/9$	m 1 1/19
esc	$2 \ 2/5$	$\mathtt{s}{ ightarrow}$ a 2 2/9	esc 5 5/19
		$s \rightarrow i 1 1/9$	
$\mathtt{sa}{\rightarrow}\mathtt{n}$	$1 \ 1/2$	esc $3 3/9$	
esc	$1 \ 1/2$		
		$\mathtt{n}{ ightarrow}$ i 1 $1/2$	
$\mathtt{an}{\rightarrow}\mathtt{i}$	$1 \ 1/2$	esc $1 1/2$	
esc	$1 \ 1/2$		
		$\mathtt{i} \! o \! \mathtt{s} \ 1 \ 1/4$	
$\mathtt{ni} { ightarrow} \mathtt{s}$	$1 \ 1/2$	$\mathtt{i} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	
esc	$1 \ 1/2$	esc $2 2/4$	
is→s	$1 \ 1/2$	$\mathtt{m} \! ightarrow \mathtt{a} \ 1 \ 1/2$	
esc	$1 \ 1/2$	esc $1 1/2$	
$\mathtt{si} {\to} \mathtt{m}$	$1 \ 1/2$		
esc	$1 \ 1/2$		
$\mathtt{im}{\to}\mathtt{a}$	$1 \ 1/2$		
esc	$1 \ 1/2$		
$\mathtt{ma}{\rightarrow}\mathtt{s}$	$1 \ 1/2$		
esc	$1 \ 1/2$		

- 1. Suppose that the **15**th symbol to be input was a *n*. How many bit(s) would it take to encode it?
- 2. Suppose that the **15**th symbol to be input was a s. How many bits would it take to encode it?
- 3. Suppose that the **15**th symbol to be input was a *d*. How many bits would it take to encode it?
- 4. Suppose that the **16**th symbol is also a *d*. How many bits would it take to encode this second d?