Terceira Lista de Preparação para a LVIII IMO e XXVII Olimpíada Iberoamericana de Matemática Nível III

Prazo: 17/03/2017, 23:59 de Brasília

Álgebra

PROBLEMA 1

Defina a sequência a_1, a_2, \ldots a partir de suas somas parciais $S_n = a_1 + a_2 + \cdots + a_n$ da seguinte forma:

$$S_1 = 1$$
, $S_n = \frac{(2 + S_{n-1})^2}{4 + S_{n-1}}$, $n \ge 2$.

Prove que $a_n \geq \frac{4}{\sqrt{9n+7}}$ para todo n inteiro positivo.

PROBLEMA 2

O polinômio $x^3 - 21x + 35$ tem três raízes reais distintas r, s, t. Encontre um polinômio $P(x) = x^2 + ax + b$ tal que P(r) = s, P(s) = t e P(t) = r.

PROBLEMA 3

Encontre todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que

$$f(xf(y) - f(x)) = 2f(x) + xy$$

para todos x, y reais.

Combinatória

PROBLEMA 4

Seja $n \ge 2$ inteiro. Dizemos que duas permutações (a_1, a_2, \ldots, a_n) e (b_1, b_2, \ldots, b_n) de $\{1, 2, \ldots, n\}$ são amiguinhas se existe um inteiro $k \ge n$ tal que $b_i = a_{k+1-i}$ para $i = 1, \ldots, k$ e $b_i = a_i$ para $i = k+1, \ldots, n$.

Prove que é possível colocar todas as permutações de $\{1, 2, ..., n\}$ em um círculo de modo que quaisquer duas permutações vizinhas são amiguinhas.

PROBLEMA 5

Considere um tabuleiro $n \times n$. Qual é a maior quantidade de casas que podemos escolher do tabuleiro de modo que não haja um paralelogramo cujos vértices são os centros de quatro das casas escolhidas?

PROBLEMA 6

Colorado e Colorina participam de um jogo. Eles alternadamente pintam uma aresta de uma pirâmide cuja base é um 2017-ágono usando uma de k cores, de modo que arestas com um vértice comum tenha cores diferentes. Não é permitido pintar uma aresta que já foi pintada. Colorado começa o jogo e Colorina quer pintar todas as arestas. Qual é o menor valor de k para o qual Colorina sempre consegue pintar todas as arestas da pirâmide?

Geometria

PROBLEMA 7

Seja ABCD um quadrilátero circunscrito no círculo ω , que tem centro I. Suponha que $\angle BAD + \angle ADC < \pi$. Sejam M e N os pontos de tangência de ω em AB e CD, respectivamente. O ponto $K \neq M$ está sobre a reta MN e satisfaz AK = AM. Prove que a reta ID corta o segmento de reta KN em seu ponto médio.

PROBLEMA 8

Os círculos ω_1 e ω_2 se cortam em P e Q. Uma reta é tangente a ω_1 em A e a ω_2 em B. Um círculo passa por A e B e corta ω_1 em $C \neq A$ e ω_2 em $D \neq B$. Prove que $\frac{CP}{CQ} = \frac{DP}{DQ}$.

PROBLEMA 9

No triângulo ABC, ω é um círculo que passa por B e C e corta o lado AB em E e o lado AC em F. As retas BF e CE cortam o circuncírculo de ABC novamente em B' e C', respectivamente. Seja A' o ponto sobre BC tal que $\angle C'A'B = \angle B'A'C$.

Prove que, ao variar ω , os circuncírculos dos triângulos A'B'C' passam um ponto comum.

Teoria dos Números

PROBLEMA 10

Seja n um inteiro positivo. Suponha que seus divisores possam ser particionados em pares de modo que a soma de cada par de divisores é um primo. Prove que esses primos são todos distintos e que nenhum desses primos é divisor de n.

PROBLEMA 11

Sejam $c, d \ge 2$ inteiros. Defina $a_1 = c$ e $a_n = a_{n-1}^d + c$, $n \ge 2$. Prove que, para todo $n \ge 2$, existe um primo p que divide a_n e nenhum dos números $a_1, a_2, \ldots, a_{n-1}$.

PROBLEMA 12

Prove que existem infinitos pares de racionais (x, y) tais que $y^2 = x^3 - 5x + 8$.

Problemas gerais

PROBLEMA 13

Seja P um ponto no interior do triângulo ABC tal que

$$\frac{AP+BP}{AB} = \frac{BP+CP}{BC} = \frac{CP+AP}{CA}.$$

As retas AP, BP, CP cortam o circuncírculo de ABC novamente em A', B', C'. Prove que os incírculos dos triângulos ABC e A'B'C' coincidem.

PROBLEMA 14

Suponha que as casas de um tabuleiro $n \times n$ são pintadas de preto e branco de modo que cada casa preta tem uma quantidade par de casas vizinhas (lado comum) brancas. Prove que é possível pintar todas as casas brancas de vermelho ou azul de modo que cada casa preta tenha uma quantidade igual de casas vizinhas azuis e vermelhas.

PROBLEMA 15

Sejam A = A(x, y) e B = B(x, y) polinômios de duas variáveis com coeficientes reais. Suponha que A(x, y)/B(x, y) é um polinômio em x para infinitos valores de y e é um polinômio em y para infinitos valores de x. Prove que B divide A, ou seja, existe um polinômio C de coeficientes reais tal que $A = B \cdot C$.

PROBLEMA 16

Para m inteiro maior do que 1, dizemos que a é m-poderoso se mdc(a, m) = 1 e existe x inteiro positivo tal que $x^x - a$ é múltiplo de m. Prove que se a é n-poderoso, então também é $n^{(n^n)}$ -poderoso.