

How is machine learning useful for macroeconomic forecasting?

Philippe Goulet Coulombe, Maxime Leroux, Dalibor Stevanovic, Stéphane Surprenant

Presenter: Tibor Szendrei

Reading Group: December 1st, 2023

Table of contents

- 1. Introduction
- 2. Model Evaluation
- 3. Feature 1: Nonlinearity
- 4. Feature 2: Regularisation
- 5. Feature 3: Hyperparameter optimization
- 6. Feature 4: Loss function
- 7. Why JAE?
- 8. Summary
- 9. References

Introduction

Backdrop

- · Original paper is [Goulet Coulombe et al., 2022]
- Move beyond "Is Machine Learning useful for macroeconomic forecasting"
- Asks "How is Machine Learning useful for macroeconomic forecasting"
- Compare forecasts for 5 monthly macroeconomic variables:
 - · Industrial production
 - Unemployment rate
 - · Consumer Price Index
 - · Interest rate spread (10 year T-Bill Fedfunds rate)
 - · Housing starts

Model Evaluation

Forecasts i

- y_{t+h} is the variable to be predicted h periods ahead
- Z_t is the vector of predictors made out of H_t , which can be data poor $(H_t^- = \{y_{t-j}\})$ or data rich $(H_t^+ = \{y_{t-j}\}, \{X_{t-j}\})$. X_t is from [McCracken and Ng, 2016].
- $g^*(Z_t)$ is true model and $g(Z_t)$ is functional approximation
- $\hat{g}(Z_t) = \hat{y}_{t+h}$ is the forecast

$$y_{t+h} - \hat{y}_{t+h} = \underbrace{g^*(Z_t) - g(Z_t)}_{Approx. \ Error} + \underbrace{g(Z_t) - \hat{g}(Z_t)}_{Estim. \ Error} + e_{t+h} \tag{1}$$

- The intrinsic error e_{t+h} is not shrinkable
- Estimation error can be reduced by adding more data.
- Approximation error is controlled by the functional estimator choice (!!!)

3

Forecasts ii

- Note, that approximation error can be minimised by using flexible functions, but doing so increases the risk of overfitting!
 - · Can tackle overfitting via regularisation

$$\min_{g \in G} \{\hat{L}(y_{t+h}, g(Z_t)) + pen(g; \tau)\}, t = 1, \cdots, T$$
 (2)

- · G is the space of possible functions g
- $pen(\cdot)$ is the regularisation penality limiting the flexibility of the function g
- τ is the set of hyperparameters (for both g and pen()
- \cdot \hat{L} is the loss function tha defines teh optimal forecast

Most of (supervised) ML consists of a combination of these ingridients.

Value-added of model i

 Pseudo-out-of-sample forecasting horse race between models that differ with respect to one of four features: Nonlinearity, Regularisation, Hyperparameter optimisation, Loss function

$$e_{t,h,v,m}^2 = \alpha_m + \psi_{t,v,h} + \epsilon_{t,h,v,m} \tag{3}$$

$$\alpha_{m} = \alpha_{F}^{'} \mathbf{1} + \eta_{m} \tag{4}$$

- $e_{t,h,v,m}^2$ is squared prediction error for time t, horizon h, variable v, model m
- $\psi_{\mathsf{t},\mathsf{v},h}$ is a "fixed effect" term that demenads the dependent variables
- α_F is a vector of α_G , $\alpha_{pen()}$, α_t , and α_L terms associated with each feature.

Value-added of model ii

Rearranging the equations yields:

$$e_{t,h,v,m}^{2} = \alpha_{F}^{'} \mathbf{1} + \psi_{t,v,h} + u_{t,h,v,m}$$
 (5)

- H_0 is now $\alpha_f = 0 \ \forall f \in F$
 - i.e. there is no predictive accuracy gain with respect to a base model that does not have his feature
- To get interpretable coefficients define:

$$R_{t,h,v,m}^2 = 1 - \frac{e_{t,h,v,m}^2}{T^{-1} \sum_{t=1}^{T} (y_{v,t+h} - \bar{y}_{v,h})^2}$$

· With this definition we can run the following regression:

$$R_{t,h,v,m}^{2} = \alpha_{F}^{'} \mathbf{1} + \psi_{t,v,h} + u_{t,h,v,m}$$
 (6)

Value-added of model iii

- While equation (5) has the benefit of connecting dirrectly with the specification of [Diebold and Mariano, 2002] test, equation (6) as two key advantages:
 - It provides standardised coefficients $\alpha_{\rm F}$, that are interpretable as marginal improvements in $OOS-R^2$
 - \cdot R^2 approach has the advantage of standardizing ex-ante the regressand and removing an obious source of (v,h) driven heteroskedasticity

It is much more convenient to run specific regressions for the different features being investigated:

$$\forall m \in \mathcal{M}_f: \ R_{t,h,v,m}^2 = \alpha_f + \psi_{t,v,h} + u_{t,h,v,m} \tag{7}$$

Features of ML: Nonlinearity

Setup

- To evaluate the role of nonlinearities, the focus will be on using "kernel trick" and random forests
- · "Kernel trick"
 - Simple way to introduce nonlinearities is to include many expansions based out of original regressors
 - Creating all possible interactions and higher order terms quickly becomes unmanagables
 - kernel trick allows to obtain such nonlinearities without needing to do all the expansions:

$$K_{\sigma}(Z_t, Z_t') = exp\left(\frac{||Z_t - Z_t'||^2}{2\sigma^2}\right)$$
 (8)

 σ chosen by cross-validation

• Data-Rich version uses PCA on X_t and includes Factors in Z_t

Results I

Figure 1: NL by horizon

Results II

Figure 2: NL with Neural Net

Features of ML: Regularisation

Setup

- The traditional shrinkage method used in macroeconomic forecasting is the ARDI model that consists of extracting principal components of $X_{\rm t}$ and use them as data in an ARDL model
- Alternative shrinkage methods considered are special cases of the elastic net:

$$\min_{\beta} \sum_{t=1}^{T} (y_{t+h} - Z_t \beta)^2 + \lambda \sum_{k=1}^{K} (\zeta |\beta_k| + (1 - \zeta)\beta_k^2)$$
 (9)

- were $Z_t = B(H_t)$ is a transformation of the original predictive set X_t
 - 1. (Fat Regression) $B_1() = I()$
 - 2. (Big ARDI) B_2 () corresponds to rotating $X_t \in IR^N$ so we get N-dimensional uncorrelated F_t
 - 3. (Principal Component Regression) B_3 () corresponds to rotating H_t^+

Results

Figure 3: Regularisation by model

Features of ML: Hyperparameter

optimization

Setup

- The conventional wisdom in macroeconomic forecasting is to use information criteria
- It is not obvious that CV should work better only because it is "out of sample" while AIC and BIC are "in sample"
- All model selection methods are approximations to the OOS prediction error relying on different assumptions/approximations.
- Paper compares AIC, BIC, and two types of CV: POOS-CV (this is Leave-future-out) and CV-KF (K-Fold)

Results I

Figure 4: Number of variables included

Results II

Figure 5: CV performance

Features of ML: Loss function

Setup

- An important question remains: are the good results due to the kernel-based nonlinearities or to the use of an alternative loss function?
- The SVR approximates the function $g \in G$ with basis functions, but it chooses a weight vector that will ignore the contribution of points that are close to its fitted value. The loss function associated with ϵSVR is:

$$P_{\hat{e}}(\epsilon_{t+h|t}) = \begin{cases} 0, & \text{if } |e_{t+h}| \le \bar{\epsilon} \\ |e_{t+h}| - \bar{\epsilon}, & \text{otherwise} \end{cases}$$
 (10)

· we can recover the absolute loss as a special case $\bar{\epsilon}=0$

Results

Figure 6: Loss function

Why JAE?

When are ML nonlinearities important?

Amend the regression that is run:

$$\forall m \in \mathcal{M}_{NL}: R_{t,h,v,m}^2 = \alpha_{NL} + \gamma I(m \in NL) \xi_{t-h} + \psi_{t,v,h} + u_{t,h,v,m}$$
 (11)

- ξ will be macroeconomic variables used to explain sources of observed nonlinearities in macroeconomic modelling:
 - · NFCI following [Adrian et al., 2019]
 - · House Price growth following [Beaudry et al., 2020]
 - · Macroeconomic uncertainty of [Jurado et al., 2015]
 - · 2 measures of sentiments following [Angeletos and La'o, 2013]
- Standard monetary VAR variables are also included as controls (unemployment rate, inflation, 1 year treasury rate)

Table

	(4)	(2)	(2)	(1)
	(1) Base	(2) All horizons	(3) Data-rich	(4) Last 20 years
NL	8.998***	5.808***	13.48***	19.87***
	(0.748)	(0.528)	(1.012)	(1.565)
HOUSPRICE	-9.668***	-4.491***	-11.56***	-1.219
	(1.269)	(0.871)	(1.715)	(1.596)
ANFCI	7.244***	2.625	6.803**	20.29***
	(1.881)	(1.379)	(2.439)	(4.891)
MACROUNCERT	17.98***	10.28***	34.87***	9.660***
	(1.875)	(1.414)	(2.745)	(2.038)
UMCSENT	4.695**	3.853**	10.29***	-3.625
	(1.768)	(1.315)	(2.294)	(1.922)
PMI	0.0787	-1.443	-2.048	-1.919
	(1.179)	(0.879)	(1.643)	(1.288)
UNRATE	0.834	2.517**	5.732***	8.526***
	(1.353)	(0.938)	(1.734)	(2.199)
GS1	-14.24***	-9.500***	-17.30***	2.081
	(2.288)	(1.682)	(3.208)	(3.390)
PCEPI	5.953*	6.814**	-1.142	-6.242
	(2.828)	(2.180)	(4.093)	(3.888)
Observations	136,800	228,000	68,400	72,300

Note: HAC standard errors in parentheses.

Summary of Results

Summary

- 1. Nonlinearities are the true game changer for data-rich environment
 - The performance of nonlinear models is magnified during periods of high macroeconomic uncertainty, financial stress, and housing bubble bursts
 - ML is useful for macroeconomic forecasting by capturing important nonlinearities that arise in the context of uncertainty and financial frictions
- 2. Standard factor model remains the best regularisation
- 3. The best practice is K-fold cross validation to select model features
- 4. Standard L_2 loss function is preferred to the $\bar{\epsilon}$ -intensive loss function for macroeconomic predictions

References

References i

Adrian, T., Boyarchenko, N., and Giannone, D. (2019). Vulnerable growth.

American Economic Review, 109(4):1263–1289.

Angeletos, G.-M. and La'o, J. (2013). Sentiments.

Econometrica, 81(2):739-779.

Beaudry, P., Galizia, D., and Portier, F. (2020).

Putting the cycle back into business cycle analysis.

American Economic Review, 110(1):1–47.

Diebold, F. X. and Mariano, R. S. (2002).

Comparing predictive accuracy.

Journal of Business & economic statistics, 20(1):134–144.

References ii

Goulet Coulombe, P., Leroux, M., Stevanovic, D., and Surprenant, S. (2022).

How is machine learning useful for macroeconomic forecasting. *Journal of Applied Econometrics*, 37(5):920–964.

Jurado, K., Ludvigson, S. C., and Ng, S. (2015).

Measuring uncertainty.

American Economic Review, 105(3):1177–1216.

McCracken, M. W. and Ng, S. (2016).

Fred-md: A monthly database for macroeconomic research.

Journal of Business & Economic Statistics, 34(4):574–589.