Context-Aware Systems and UI Design*

Jianjun.Chen (jianjun.chen@xjtlu.edu.cn)

*slides based on Dawei Liu's

Content

Mobile human computer interaction (HCI)

Mobile HCI

Mobile HCI

- What is HCl
 - It involves the study, planning, and design of the interaction between people (users) and computers
- From PC to mobile
 - **PC**: static location, fixed wire, powerful display, constant user attention and focus, desk-based input devices, dedicated peripheral support ...
 - Mobile computing devices: dynamic location, (almost) always available wireless connectivity, intermittent user attention, limited real-estate to support input devices, handheld and movable, constrained display service ...

Diversity of Device Interaction

- Devices can be characterised in terms of:
 - Size: hand-sized, decimetre-sized, vs body-sized, etc.
 - Haptic input: two-handed vs one-handed vs hands free
 - Single user vs shared interaction: personal space vs public space
 - **Posture** for user: lying, sitting, standing, walking, etc.
 - **Distance of output display** to input control: centimetre to metre.
 - Position during operation: fixed vs mobile

Diversity of Device Interaction

- Devices can be characterised in terms of:
 - Connectivity: stand-alone vs networked, wired vs wireless
 - **Tasking**: single task vs multi-task devices
 - Multimedia content access: voice and text communications, oriented alpha-numeric data or textoriented, audiovisual-content access
 - Integrated: embedded integrated devices vs dynamically interoperable devices

User Input on Mobile Devices

- Commonly used input techniques
 - Keyboards
 - Telephone keyboards
 - Mobile Mini keyboards
 - Touch Screens
 - Voice
 - Novel solutions

Virtual Keyboards (on Screen)

 What are the advantages and disadvantages of virtual keyboards?

Virtual Keyboards (on Screen)

- Graphical Approach: a keyboard is displayed on the screen
- Pros
 - Simple to use, good for multi-lingual alphabets
 - Save physical space
- Cons
 - Requires accurate input
 - Lack of physical feedback
 - Requires screen real-estate to display keyboard
- Improvement schemes
 - Predictive typing/correction
 - Magnifier cursor

Character Recognition

- Recognizing handwriting based on pen-tip movements and pen-up / pen-down signaling
 - Require high processing power
 - Require training samples of the user's handwriting
 - Error rate is often high

Voice Input

- Speech Recognition
 - Converts spoken words into text or commands
 - Since 20 years ago
 - trained to an individual voice
 - limited to a fixed vocabulary commands at the very beginning
 - Now commonly used in search engine, Call Centers, etc,
 -typically voice independent

- E.g. Google Voice in Android
- Pros? Cons?

Voice Input

- Advantages
 - Hands free access and control
 - Screen space saved
 - Does not interrupt current interaction activities, such as driving.
- Disadvantages
 - Often processor heavy
 - Susceptible to degradation in noisy environments
 - Difficulty in accent recognition

New Input Solutions

Virtual keyboard without screen

• Other ideas?

New Input Solutions

- Any other idea?
 - Stephen Hawking's Wheelchair
 - Brain Computer Interface

Securities in Mobility

- Private & sensitive information in mobility
 - Personal information
 - Social networking
 - E-Campus/E-Government
 - E-Banking/E-Purse
 - E-Commerce (e.g. Taobao, eBay, Amazon)
- Security threats
 - Virus
 - Hackers
 - Unauthorized access

Secure Solutions

- Securities in two aspects
 - Device
 - Networking
- Traditional desktop based security
- Security for mobile devices
 - Authentication –security for devices
 - Encryption –security for wireless networking

Authentication

- User authentication (identity verification)
 - Convince system of your identity before it can act on your behalf
- What to verify
 - What you know -password
 - What you have –IC card
- Problems?
 - Password –strength (brutal force), memory (easy forget), input (input in front of others)
 - IC card –portability (hardware incompressible), lack of self-protection

Biometric Authentication

- What to verify
 - What you know password
 - What you have IC card
 - Who are you identity your physical characteristics or behavioral patterns, known as biometrics
- Characteristics used include:
 - fingerprint
 - speech
 - face or body profile
 - signature (usually dynamic)
 - retina pattern

Biometric Information

- What types of biometric information can we use for authentication
 - Universality (Every person should possess this characteristic)
 - Uniqueness (No two persons possess the same characteristic)
 - Permanence (Does not change in time, i.e., it is time invariant)
 - Collectability (Can be quantitatively measured)
- Then it can potentially serve as a biometric for a given application.

Authentication Framework

- User's biometric data must be acquired, assessed, processed and stored in mobile devices in advance.
- Enrollment

Biometrics Authentication

Potential threats?

- What is context-aware?
 - Systems that are aware of their own situation in the physical, virtual, and user environment.
 - Weather app shows local weather
 - Music player auto stop when calling
 - Phone locking the screen when it gets close to the face.
- Why context-aware?
 - Apps can be more intelligent and less attention hungry (more comfortable to use, more efficient...).

- How to be context-aware
 - Adapt users' operation or goal based on contextual cues from the environment or the user's actions
 - Specifically, sense environment and determine what is relevant to the system's task(s)
 - convert raw sensor data into relevant information
 - relevant knowledge model used to comprehend contextual cues and direct behavior

Classifying CA systems

- Passive context-aware systems new context is presented to the user, to inform them of change.
 - User can then explicitly determine if the use of an application should change
 - E.g Battery running out (trigger an alarm and ask if the users want to take some actions)
- Active context-aware system -behavior of the applications change automatically
 - Task filtering information filtering, based on current wireless network speed
 - Context-base task activation (changing time zone while travelling)

Classifying CA systems

- Various ways of classifying CA software:
 - Proactive Triggering:
 - performing some interaction based on environmental perceptions
 - Streamlining Interaction:
 - travel guide for current location (reducing irrelevant information)
 - Memories for past events:
 - based on spatial or feature-based cues (contextual retrieval)
 - Reminders for future contexts:
 - tagging details regarding current context for future access
 - Optimizing patterns of behaviours:
 - changing interface based on situation
 - Sharing Experiences:
 - Social networking based on shared contexts

Context Creation

- New contexts can be created based on sensor data (captured by the device or nearby sensors)
 - Lower-level raw contexts -> higher level contexts, raw data may need to be scaled or transformed
 - E.g. electrical signal on a temperature gauge should be converted into a Celsius value...
 - E.g. absolute geo-location position should be converted into an address or identification of a building
 - Abstraction is often more useful
 - e.g. "this photo was taken at my parents home last Christmas"

Examples

- Google Street View Navigation
 - User captures an image of the street view and upload it to the server
 - Google locates the user based on the image
 - Search for relevant geographic information based on the location
 - Display navigation information on the user's image

Challenges in Context Awareness

- Environmental cues may be inaccurate or erroneous
- The user contexts may be incorrectly determined or predicted, or just ambiguous
- Lack of alignment with cues and the internal representation of contexts
- The use of contexts may reduce user privacy
- Awareness of context shifts or changes in application may overload or distract the user

Spatial Awareness

- What is spatial awareness
 - It connects contextual information such as an individual's or sensor's location, activity, the time of day, and proximity to other people or objects
 - It is the key element of Location-based service (LBS)
 - It is often considered one of the main drivers for mobile services
 - Google Map, Yahoo Map, Apple Map, Baidu Map, TigerMap
 - Didi/Uber Foursquare, Yelp, Facebook Places.
 - PokemonGo

Spatially Aware: Examples

- Personal applications
 - Navigation Give me the direction to the nearest coffee shop
 - Context Change My route is congested, is there a better route?
 - Tourism Tell me about the building in front of me
 - Emergency I'm having a heart attack!
 - Social networking Any friends nearby?
 - Tagging Where were those photos taken?
 - Tracking My phone has been stolen can it be tracked?

Spatially Aware: Examples

- Public applications:
 - Enterprise Why does it always take so long to deliver to customer X?
 - Government What is the traffic condition now from Shanghai to Suzhou
 - Public How long before the next bus will arrive at this bus stop?
 - Security location-based access control
 - Network routing location-based routing

Location Acquisition

- Traditional ways
 - Satellite based GPS/Galileo/BDS/Glonass
 - Network based GMS/3G positioning systems
 - Mechanic methods dead reckoning/inertial navigation
- New solutions
 - WLAN based positioning
 - RFID based positioning
 - Ultrasonic/sonar positioning
 - Infrared Position
 - Image based positioning
 - Environmental noise based positioning

Satellite based Positioning

- GPS uses 24 to 32 satellites for positioning
 - Satellites broadcast positioning radio signals
 - The radio signal contains satellites' position and time
- Trilateration positioning method
 - Mobile device measures the signal propagation distance
 - Mobile device computes its position based on multiple measurements

Cellular Network based Positioning

- Cellular network makes use of base stations (BS) for cell phone positioning
 - BS are equipped with GPS for their positions
 - BS measure the radio signal of a cell phone
- Positioning method
 - Cell-ID
 - Trilateration
 - Triangulation

WLAN based Positioning

- Access points (AP) broadcast radio signals
 - Somehow like a satellite or a BS, but
 - Position of AP is unknown
 - AP cannot measure the radio signal of mobile devices
- A solution for Positioning
 - A geo-database of AP signal strength
 - Locate the mobile user by searching the database
 - Commonly known as the Fingerprint/Received signal strength method

Mechanic Positioning Methods

- user's current position can be estimated with
 - Its previous position
 - Its travelling distance during this period
 - Its travelling direction during this period

Augmented Reality

- Combining live direct view of a physical real-world environment with virtual CGI
 - Typically in real-time using the semantics of environmental elements
 - Identify digital "cues" (e.g. 2D barcode) and overlay with a digital image

Use of Augmented Reality

- Can be used to enhance the environment
- Provide details about the environment, by "projecting" labels
- or directions onto the street or building being viewed

Use of Augmented Reality

- Can be used for entertainment
 - Project games into the real-world, by identifying cues to determine location or features
 - Create virtual figures

Use of Augmented Reality

- Can be used to display information without disturbing
 - Head-up display

Technological Challenges

- Image analysis is required to identify cues to overlay graphics
 - Positioning information required, to determine relative location of other artifacts that may be annotated
 - Live video is required to project the graphics onto