北京交通大学 2021-2022 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 出题教师:《智能计算数学基础》课程组

班级:_	姓名:	学号:	上课教师:	
注意: 1. 试	卷共 49 道题,最后一题 4 分,其余	每题 2 分,满分 100 分。2. 鬚	亟目排序与难度无关。3.判 略	f题请回答"是"或"否"。
	量 $(1,-1,2,3)$ 的 l_1 范数。			
2。计算函	カナンナム ニ $\lim_{x \to +\infty} (1 + \frac{1}{2x})^{6x}$ 。	= lim (H 1/2) 27.3	=/im e3/n(H)2)2	-e ³
3。判断题	$\sum_{n\geq 1} \frac{n^2+n+1}{n^3+n^2+n+1}$ 收敛			
4。判断题	• 集合 $\{(x,y) \in \mathbb{R}^2 : x^2 + 2\}$	$\{y^2 < 1, x + y < 1\}$ 是开	-集。	
1	数 $f(x,y) = \frac{x}{x^2+y^2}$ 在 $(0,1)$ 点			
6。计算函	数 $f(x,y) = x^2 + 2xy + 3y^2$ $\lambda x + \lambda y = 0$	+ 4y的极小值。 大 :o 我点(1,1) 大 :×:jtxx(x,y):= 2	ylx,y)=2 B ² -, g(x,y)=6 f(1,-1)	ac <o かの秘値<br="">=1-2+3-4=-2</o>
	$\in \mathbb{S}^n_{++}$ 以及约束条件 $\ x\ \leq$			
9。求出下	华沙拉风景大大 述优化问题的极小值 { min sub	nimize $f(x, y, z) = 3x$ ject to $x + y + z = 1$	$z^2 + 3y^2 - z^2 + xy + x$	z 。
	A) = X - AY ² ,其中A、 (X-AY) 「	X和Y分别是维度为n - Y⁷の^T)(X-AY) ニフ - / AYY^T	× m、 n × k和 m × k的 プイー	J矩阵,计算 <i>Df(A</i>)。 十丫切ひ
11。判断是	$ \mathfrak{G}: \operatorname{rank}(A^t A) = \operatorname{rank}(A). $			
			 们的雯空间滞早 . <i>N(</i>	

9。求出下述优化问题的极小值
$$\begin{cases} \text{minimize} \quad f(x,y,z) = 3x^2 + 3y^2 - z^2 + xy + xz \\ \text{subject to} \quad x + y + z = 1 \end{cases}$$
。

$$17$$
。计算矩阵 $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ 的奇异值。

16.
$$1 \times 10^{10} = 1 \times 10^{10$$

19+45=15+2 19-45=15-2

23。	己知	随机	变量υ	$v = \sum_{i=1}^{n}$	$_{i=1}^{500}$	z_i , \sharp		是相	互独	立的均	匀匀分	布随	机变	量,	$z_i \sim l$	$\mathcal{U}(-\sqrt{2})$	$\sqrt{3}/10$	$,\sqrt{3}/$	10)
已知	某一	个测:	量数技	居 y 和	要估	计的	参数。	4以及	随机	变量	w有线	性关	系:	y =	4A +	w. i	青写出	出随机	变
	的近位	以概≥	室密度	ぼ函数 しんりょう かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい	. •														

24。条件如23题,写出似然函数p(y|A)的表达式,根据最大似然准则(ML)来获取A的估计值。

25。条件如23题,利用最小二乘法(LS)来估计A,请给出表达式。

3.
$$E(z)=0$$
 $D(z)=\frac{3}{12}=\frac{1}{100}$ $E(w)=0$ $D(w)=5$ $W\sim N(0,5)$ $f(w)=\sqrt{100}$ $E(w)=0$ $E(w)=0$

25.
$$| f(a) = | y - 4a |^2 = | (y - 4a)^T | y - 4a |$$

 $= | y^T - 4a^T | | (y - 4a) = | y^T y - 4y^T a - 4a^T y + 16a^T a |$
 $| f(a) = -4y - 4y + 16a + 16a = 0$
 $| -8y + 52a = 0 |$

37。判断题:一个正则型博弈可以等价转化为一个不完美信息的扩展型博弈。

	A	В	С
A	7, 7	1, 10	-2, 3
В	10, 1	4, 4	1, 2
C	3, -2	2, 1	0, 0

Figure 1: 博弈矩阵(左)和博弈树(右)

46。顶点覆盖问题: $G=(V,E)$ 是无向图, V 和 E 分别是顶点和边的集合,求 V 的子集 V '使得对于任意边 $(u,v)\in E$ 都有 $u\in V$ '或 $v\in V$ ',且 V '的大小 $ V' $ 最小。请将顶点覆盖问题转化为语言描述。
47。已知顶点覆盖问题是NP-complete,请将该问题的实例转化为"集合覆盖问题"的实例。
48。接上题,说明转化过程是多项式时间复杂度的。
49。利用上题结果,试证明:图 $G = < V, E >$ 中存在大小为 k 的顶点覆盖当且仅当 $< X, F >$ 中存在大小为 k 的集合覆盖。