Number Theory

CS 5158/6058 Data Security and Privacy
Spring 2018

Instructor: Boyang Wang

Public-Key Cryptography

- Symmetric-Key Crypto:
 - Block Cipher and MAC
 - Need to share a private key in advance
 - Limit usage in practice: mainly military
- Public-Key Crypto (<u>Diffie and Hellman</u>, 1976)
 - "New Direction in Cryptography"
 - Idea: No need to share a private key
 - Expend crypto usage to almost everywhere

Public-Key Encryption

- Alice obtains Bob' public key from <u>public channels</u>
- Alice encrypts with public key
- Bob decrypts with private key

Prime and Composite

- A positive integer p>1 is a prime, if p has no factors, i.e., only two divisors, 1 and p; otherwise p is a composite
- Practice: Prime or Composite? 2, 3, 4, 5, 6,
 - 2: {1,2}, no factors, prime
 - 3: {1,3}, no factors, prime
 - 4: {1,2,4}, 1 factor, composite
 - 5: {1,5}, no factors, prime
 - 6: {1,2,3,6}, 2 factors, composite

Greatest Common Divisor

- For any integer n > 1, n is a product of primes
 - $4 = 2^2$, 5 = 5, 10 = 2*5, $100 = 2^2*5^2$
- Greatest Common Divisor
 - c = gcd(a, b), if $c \mid a, c \mid b$, and c is the greatest
 - E.g., a = 12, b = 24
 - common divisors: 1, 2, 3, 4, 6, 12
 - gcd(12, 24) = 12

Greatest Common Divisor

- Greatest Common Divisor
 - c = gcd(a, b), if $c \mid a, c \mid b$, and c is the greatest
 - if gcd(a, b) = 1, a and b are relatively prime
 - E.g., gcd(9, 10) = 1, 9 and 10 are relatively prime
 - E.g., gcd(8, 10) = 2, 8 and 10 are not
 - If p is a prime, gcd(a, p) is either 1 or p
 - E.g., 7 is a prime, gcd(4, 7) = 1
 - 11 is a prime, gcd(44, 11) = 11

Greatest Common Divisor

- Greatest Common Divisor
 - c = gcd(a, b), if $c \mid a, c \mid b$, and c is the greatest

Practice:

- gcd(23, 100) = ??
- gcd(24, 48) = ??
- gcd(7, 29) = ??
- gcd(100, 100000000) = ??

Modulo

- For positive integers a and b
 - Unique q and r, s.t. a = qb + r, 0 <= r < b
 - Modulo: a = r mod q
 - E.g., q = 10, a = 11, then $a = r = 1 \mod q$
 - E.g., q = 10, then a = 11, b = 21, c = 31
 - $a = b = c = r = 1 \mod q$
 - <u>Practice:</u> q = 7, a = 51
 - a = ?? mod q

- (Modular) addition, subtraction, multiplication
 - If $a = a' \mod q$, and $b = b' \mod q$
 - $a + b = a' + b' \mod q$
 - $a b = a' b' \mod q$
 - ab = a'b' mod q
- Example: q = 10, a = 12, b = 14,
 - $a' = a = 2 \mod q$, $b' = b = 4 \mod q$
 - $a + b = 12 + 14 = 26 = 6 \mod q$
 - $a' + b' = 2 + 4 = 6 \mod q$

- (Modular) addition, subtraction, multiplication
- Example: q = 10, a = 12, b = 14,
 - $a' = a = 2 \mod q$, $b' = b = 4 \mod q$
 - $b a = 14 12 = 2 \mod q$
 - b' a' = $4 2 = 2 \mod q$
 - $a*b = 12*14 = 168 = 8 \mod q$
 - $a'*b' = 2*4 = 8 \mod q$

- (Modular) addition, subtraction, multiplication
- <u>Practice</u>: q = 10, a = 1345, b = 7893,
 - what is a + b mod q?
 - what is ab mod q?
 - $a' = a = 5 \mod q$, $b' = b = 3 \mod q$
 - $a + b = a' + b' = 5 + 3 = 8 \mod q$
 - $ab = a'b' = 5*3 = 15 = 5 \mod q$

- (Modular) addition, subtraction, multiplication
- Practice: q = 7, a = 1987232, b = 234569,
 - what is a + b mod q?
 - what is ab mod q?
 - $a' = a = 2 \mod q$, $b' = b = 6 \mod q$
 - $a + b = a' + b' = 2 + 6 = 8 = 1 \mod q$
 - $ab = a'b' = 2*6 = 12 = 5 \mod q$

Modular Division

- Modular division is not always defined
 - mod q only contains integers
 - E.g., q = 7, mod q includes {0, 1, 2, 3, 4, 5, 6}
 - 3/2 = 1.5, not defined in mod q
 - a/b = ab⁻¹ mod q is defined only if b is invertible
 - b is invertible if there is an x, s.t. bx = 1 mod q
 - If gcd(b, q) = 1, then b is invertible mod q
 - b⁻¹ is the inverse of b mod q

Modular Division

- Modular division is not always defined
 - If gcd(b, q) = 1, then b is invertible mod q
- Example: b = 3, q = 7,
 - since gcd(3,7) = 1, b is invertible mod q
 - since $3*5 = 15 = 1 \mod q$, $b^{-1} = 5 \mod q$
- <u>Practice</u>: b = 5, q = 11,
 - Is b invertible mod q?
 - If it is invertible, what is b's inverse?

Modular Division

- Modular division is not always defined
 - a/b = ab⁻¹ mod q is defined only if b is invertible
 - b is invertible if there is an x, s.t. bx = 1 mod q
 - If gcd(b, q) = 1, then b is invertible mod q
 - b⁻¹ is the inverse of b mod q
- <u>Practice</u>: b = 5, q = 11,
 - since gcd(5,11) = 1, b is invertible mod q
 - since $5*9 = 45 = 1 \mod q$, $b^{-1} = 9 \mod q$

Group

- Let G be a set, define a binary operation o
 - A function with two inputs from G
 - Write o(g,h) = g o h
- Set G is a group, if
 - Closure: for all g,h in G, g o h in G
 - Identity: there is e in G, s.t., e o g = g = g o e
 - Inverse: for all g in G, there is h, s.t. g o h = e
 - Associativity: $(g \circ h) \circ k = g \circ (h \circ k)$
 - Abelian group if commutative, i.e., g o h = h o g

Group

- |G|: order of group G,
 - i.e., number of elements in G
- Focus on finite and abelian groups
 - Identity is <u>unique</u> in group G
 - Each element has a unique inverse in G
- Operation o is just a symbol
 - If <u>additive</u> (g+h), identity is 0, inverse -h
 - If multiplicative (g*h), identity is 1, inverse h-1

- The set of integers, {..., -3, -2, -1, 0, 1, 2, 3, ...}
 - An abelian group under addition (identity 0)
 - 0 + g = g + 0 = g
 - Each element has an inverse, -1 + 1 = 0
 - Not a group under multiplication
 - use 1 as identity
 - 3 has no inverse
 - 1/3 is not a member of this set

- The set of real numbers {..., -1/2, -1, 0, 1, 1/2, ...}
 - A group under addition
 - Identity is 0
 - Not a group under multiplication
 - Identity 1
 - 0 has no inverse, e.g., 0 * ?? = 1
 - Without 0, a group under multiplication
 - Identity 1
 - Each element has an inverse, e.g., 2 * 1/2 = 1

- Set Z_N: {0, 1, ..., N-1}, a subset of Z
 - Addition modulo N,
 - i.e., a + b = a + b mod N
 - Abelian group under addition modulo N
 - Identity is 0,
 - Each element has an inverse:
 - $2 + (N 2) = 0 \mod N$
 - Order of group is N:
 - N elements in total

- Example: Set Z₁₁: {0, 1, ..., 10}, an abelian group under addition mod 11
 - Identity is 0, order of group is 11
 - Closure: g + h is still an element of Z₁₁
 - g = 3, h = 6, $3 + 6 = 9 \mod 11$
 - g = 8, h = 10, $8 + 10 = 18 = 7 \mod 11$
 - Inverse: g + h = 0, h is inverse of g
 - g = 5, h = 6, $5 + 6 = 11 = 0 \mod 11$
 - 6 is inverse of 5

- Example: Set Z₁₁: {0, 1, ..., 10}, an Abelian group under addition mod 11
 - What is the identity of this group?
 - What is the order of this group?
 - What is the inverse of element 8?
 - Group identity is 0
 - Group order is 11
 - $3 + 8 \mod 11 = 0$, so 3 is inverse of 8

- Practice: Set Z₂₃: {0, 1, ..., 22}, an Abelian group under addition mod 23
 - What is the identity of this group?
 - What is the order of this group?
 - What is the inverse of element 8?
 - Group identity is 0
 - Group order is 23
 - 15 + 8 mod 23 = 0, so 15 is inverse of 8

- Exponentiation on element g with integer x means computing o operation (x-1) times on element g
 - x: an integer;
 - g: an element of group
 - If G is additive, then g+g+...+g = xg
 - If G is multiplicative, then gg...g = g^x
- Example of Exponentiation:
 - G is additive, x = 2, g = 6, then 6 + 6 = 12
 - G is multiplicative, x = 2, g = 6, then 6*6 = 36

- If the order of group G is m = |G|,
 - Exponentiation on element g with integer m is equal to the identity of G
 - If G is additive,
 - for any element g, mg = 0 (identity is 0)
 - If G is multiplicative
 - for any element g, $g^m = 1$ (identity is 1)

- If the order of group G is m = |G|,
 - Exponentiation on element g with integer x is equal to exponentiation on element g with integer (x mod m)
 - If G is additive, identity is 0, mg = 0
 - x = qm + r, for unique q and r
 - xg = (qm + r)g = qmg + rg = 0 + rg
 - since $x = r \mod m$
 - $xg = rg = (x \mod m)g$

- An additive group, order m, element g, integer x
 - for any element, mg = 0 (identity is 0)
 - $g+g+...g = xg = (x \mod m)g$
- Example: $Z_{15} = \{0, 1, 2, ..., 14\}$
 - m = 15, identity is 0
 - if g = 1, $m^*g = 15^*1 = 15 = 0 \mod Z_{15}$
 - if g = 2, $m*g = 15*2 = 30 = 0 \mod Z_{15}$
 - if g = 3, $m*g = 15*3 = 45 = 0 \mod Z_{15}$
 - if g = 14, $m^*g = 15^*14 = 210 = 0 \mod Z_{15}$

- An additive group, order m, element g, integer x
 - for any element, mg = 0 (identity is 0)
 - $g+g+...g = xg = (x \mod m)g$
- Example: $Z_{15} = \{0, 1, 2, ..., 14\}$
 - m = 15, identity is 0, g = 11
 - if x = 152, $x*g = 152*11 = (152 \mod m)*11 = 2*11 = 22 = 7 \pmod{Z_{15}}$
 - if x = 50, $x*g = 50*11 = (50 \text{ mod m})*11 = 5*11 = 55 = 10 (\text{mod Z}_{15})$

- Practice: $Z_{15} = \{0, 1, 2, ..., 14\}$, group order m = 15
 - Q1: element g = 7, integer x = 218, x*g = ?
 - Q2: element g = 11, integer x = 31, x*g = ?
 - x*g = 218*7 = (218 mod m)*7 = (218 mod 15)*7= $8*7 = 56 = 11 \text{ mod } Z_{15}$
 - x*g = 31*11 = (31 mod m)*11 = (31 mod 15)*11= $1*11 = 11 \text{ mod } Z_{15}$
- mod m is for integer, mod Z₁₅ is for group element

- If the order of group G is m = |G|,
 - Exponentiation on element g with integer x is equal to exponentiation on element g with integer (x mod m)
 - If G is multiplicative, identity is 1, $g^m = 1$
 - x = qm + r, for unique q and r
 - $g^x = g^{(qm + r)} = g^{qm}g^r = 1*g^r$
 - since $x = r \mod m$
 - $g^x = g^r = g^{(x \mod m)}$

- Group G, group order m,
 - A function f_e G—>G: exponentiation on element g with integer e
 - If G is additive, f_e(g) = e*g,
 - If G is multiplicative, f_e(g) = g^e
 - If gcd(e,m)=1, then fe is a permutation (bijection)

- A function f_e G—>G: f_e(g) = e*g (additive group)
 - If gcd(e,m)=1, then fe is a permutation (bijection)
- E.g., $Z_5 = \{0, 1, 2, 3, 4\}$ is an additive group,
 - if e = 2, gcd(e,m) = gcd(2,5) = 1
 - $f_e(0) = 2^*0 = 0$; $f_e(1) = 2^*1 = 2$; $f_e(2) = 2^*2 = 4$;
 - $f_e(3) = 2*3 = 6 = 1 \mod Z_5$;
 - $f_e(4) = 2*4 = 8 = 3 \mod Z_5$
 - f_e:{0, 2, 4, 1, 3} a permutation of Z₅

Additional Reading

Chapter 8, Introduction to Modern Cryptography, Drs. J. Katz and Y. Lindell, 2nd edition