Aluno: João Pedro Felicio Prudencio

1-) No conjunto de dados "Dados-Tarefa-02.csv" aplique os métodos (a) k-Means, (b) k-Medoids, (c) DBSCAN e (d) BIRCH.

Importando os Dados:

```
In [1]: import pandas as pd
         df = pd.read_csv('Dados-Tarefa-02.csv')
         df = df.set index("Index")
         df
Out[1]:
                     d1
                               d2
          Index
             0 1.225160 -0.951731
                1.016304 -1.725175
             2 0.335340 -1.724896
             3 1.786348 -1.782653
             4 1.016751 1.062569
           995
                0.929594 -0.743331
           996 -0.338431 -0.343315
                1.542708 -0.055665
           997
                0.816646 -1.250919
           998
           999 1.137823 -1.261520
```

1000 rows × 2 columns

Normalizando os dados:

1000 rows × 2 columns

```
In [4]: from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         data_normalized = scaler.fit_transform(df)
         data_normalized
 In [6]: df_normalized = pd.DataFrame(data_normalized, columns=df.columns)
         df_normalized
 Out[6]:
                    d1
                            d2
            0 0.787066 0.443775
            1 0.747541 0.356564
            2 0.618671 0.356595
            3 0.893269 0.350083
            4 0.747625 0.670901
           995 0.731131 0.467274
           996 0.491162 0.512378
           997 0.847161 0.544813
           998 0.709756 0.410040
           999 0.770538 0.408844
```

K-Means

```
from sklearn.cluster import KMeans
 In [9]:
In [10]:
          kmeans dados = KMeans(n clusters=6, random state=0)
          rotulos kmeans = kmeans dados.fit predict(df normalized)
          # rotulos kmeans
In [11]: kmeans_dados.cluster_centers_
Out[11]: array([[0.5249308 , 0.55861771],
                 [0.22503368, 0.32535566],
                 [0.65860503, 0.27659636],
                 [0.36822755, 0.43941231],
                 [0.75676336, 0.46032539],
                 [0.84466639, 0.64038163]])
In [12]:
         df_normalized['Cluster K-Means'] = kmeans_dados.labels_
          df normalized
Out[12]:
                    d1
                             d2 Cluster K-Means
            0 0.787066 0.443775
                                             4
            1 0.747541 0.356564
                                             4
            2 0.618671 0.356595
                                             2
            3 0.893269 0.350083
                                             4
            4 0.747625 0.670901
           995
              0.731131 0.467274
                                            4
              0.491162 0.512378
           996
                                            0
           997 0.847161 0.544813
                                             5
           998 0.709756 0.410040
                                             4
           999 0.770538 0.408844
```

1000 rows × 3 columns

K-Medoids

In [13]: from sklearn_extra.cluster import KMedoids
In [14]: kmedoids_dados = KMedoids(n_clusters=6, random_state=0)
 rotulos_kmedoids = kmedoids_dados.fit_predict(df_normalized)
 df_normalized['Cluster K-Medoids'] = kmedoids_dados.labels_
 df_normalized

Out[14]:

	d1	d2	Cluster K-Means	Cluster K-Medoids
0	0.787066	0.443775	4	1
1	0.747541	0.356564	4	1
2	0.618671	0.356595	2	4
3	0.893269	0.350083	4	1
4	0.747625	0.670901	5	1
995	0.731131	0.467274	4	1
996	0.491162	0.512378	0	3
997	0.847161	0.544813	5	1
998	0.709756	0.410040	4	1
999	0.770538	0.408844	4	1

1000 rows × 4 columns

DBSCAN

```
In [15]: from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=0.8, min_samples=3)

dbscan_dados = dbscan.fit(df_normalized)

rotulos_dbscan = dbscan_dados.labels_
rotulos_dbscan

df_normalized['Cluster DBSCAN'] = rotulos_dbscan
```

In [16]: df_normalized

Out[16]:

	d1	d2	Cluster K-Means	Cluster K-Medoids	Cluster DBSCAN
0	0.787066	0.443775	4	1	0
1	0.747541	0.356564	4	1	0
2	0.618671	0.356595	2	4	1
3	0.893269	0.350083	4	1	0
4	0.747625	0.670901	5	1	2
995	0.731131	0.467274	4	1	0
996	0.491162	0.512378	0	3	5
997	0.847161	0.544813	5	1	2
998	0.709756	0.410040	4	1	0
999	0.770538	0.408844	4	1	0

1000 rows × 5 columns

BIRCH

```
In [18]: from sklearn.cluster import Birch
birch = Birch(n_clusters=5, threshold=0.2)
birch.fit(df_normalized)
rotulos_birch = birch.labels_
df_normalized['Cluster BIRCH'] = rotulos_birch
In [19]: df_normalized
```

Out[19]:

d1	d2	Cluster K-Means	Cluster K-Medoids	Cluster DBSCAN	Cluster BIRCH
0.787066	0.443775	4	1	0	1
0.747541	0.356564	4	1	0	1
0.618671	0.356595	2	4	1	4
0.893269	0.350083	4	1	0	1
0.747625	0.670901	5	1	2	1
0.731131	0.467274	4	1	0	1
0.491162	0.512378	0	3	5	2
0.847161	0.544813	5	1	2	1
0.709756	0.410040	4	1	0	1
0.770538	0.408844	4	1	0	1
	0.787066 0.747541 0.618671 0.893269 0.747625 0.731131 0.491162 0.847161 0.709756	0.787066 0.443775 0.747541 0.356564 0.618671 0.356595 0.893269 0.350083 0.747625 0.670901	0.787066 0.443775 4 0.747541 0.356564 4 0.618671 0.356595 2 0.893269 0.350083 4 0.747625 0.670901 5 0.731131 0.467274 4 0.491162 0.512378 0 0.847161 0.544813 5 0.709756 0.410040 4	0.787066 0.443775 4 1 0.747541 0.356564 4 1 0.618671 0.356595 2 4 0.893269 0.350083 4 1 0.747625 0.670901 5 1 0.731131 0.467274 4 1 0.491162 0.512378 0 3 0.847161 0.544813 5 1 0.709756 0.410040 4 1	0.787066 0.443775 4 1 0 0.747541 0.356564 4 1 0 0.618671 0.356595 2 4 1 0.893269 0.350083 4 1 0 0.747625 0.670901 5 1 2 0.731131 0.467274 4 1 0 0.491162 0.512378 0 3 5 0.847161 0.544813 5 1 2 0.709756 0.410040 4 1 0

1000 rows × 6 columns

Plots:

Dados Agrupados com K-Medoids

2-) Aplicar Elbow e Silhouette para encontrar o valor de k para os algoritmos k-Means (a) e k-Medoids (b). Qual o melhor valor de k (i.e., número de clusters) para estes casos?

Silhouette:

K ótimo para K-Means = 8

K ótimo para K-Medoids = 6

Elbow:

K ótimo para K-Means = 4

```
In [24]: #Elbow method
#Inertia: soma das distâncias quadradas das amostras até o centro do cluster mais próximo

wcss = []
for i in range(1,11):
    kmeans_dados_e = KMeans(n_clusters=i, random_state=42)
    kmeans_dados_e.fit(df_normalized)
    wcss.append(kmeans_dados_e.inertia_)

In [26]: plt.plot(range(1, 11), wcss)
    plt.xlabel('Número de clusters')
    plt.ylabel('WCSS')
    plt.show()
```


K ótimo para K-Medoids = 4

```
In [30]: #Elbow method
         #Inertia: soma das distâncias quadradas das amostras até o centro do cluster mais próximo
         WCSS = []
         for i in range(1,11):
          kmedoids_dados_e = KMedoids(n_clusters=i, random_state=42)
           kmedoids_dados_e.fit(df_normalized)
          wcss.append(kmedoids_dados_e.inertia_)
         plt.plot(range(1, 11), wcss)
         plt.xlabel('Número de clusters')
         plt.ylabel('WCSS')
         plt.show()
         from yellowbrick.cluster import KElbowVisualizer
         kmedoids_dados_elbow = KMedoids(random_state=42)
         #distorção: média das distâncias quadradas dos centros dos clusters dos respectivos clusters
         grafico = KElbowVisualizer(kmedoids_dados_elbow, k=(2,8))
         grafico.fit(df_normalized)
         grafico.show()
```


3-) Faça gráficos com os dados, mostrando em cores diferentes cada cluster e seu centroide (no k-Means)/Objeto central (K-Metoids)

K-Means com K = 8

```
In [8]: sns.set(style='white', rc={'figure.figsize': (9, 6)}, font_scale=1.1)
scatter = plt.scatter(x=df_normalized.d1, y=df_normalized.d2, c=rotulos_kmeans, cmap='tab10')
centroids = kmeans_dados.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1], s=100, c='black', edgecolors='black', linewidth=1, marker='X')
plt.title('Dados Agrupados com K-Means', fontweight='bold')
plt.xlabel('d1')
plt.ylabel('d2')
plt.show()
```

Dados Agrupados com K-Means

Dados Agrupados com K-Medoids

K-Means com K = 4

Dados Agrupados com K-Means

K-Medoids com K = 4

```
In [9]: sns.set(style='white', rc={'figure.figsize': (9, 6)}, font_scale=1.1)
scatter = plt.scatter(x=df_normalized.d1, y=df_normalized.d2, c=rotulos_kmedoids, cmap='tab10')
medoids = kmedoids_dados.cluster_centers_
plt.scatter(medoids[:, 0], medoids[:, 1], s=100, c='black', edgecolors='black', linewidth=1, marker='X')

plt.title('Dados Agrupados com K-Medoids', fontweight='bold')
plt.xlabel('d1')
plt.ylabel('d2')
plt.show()
```

Dados Agrupados com K-Medoids

