

Functional Analysis Applied to PDEs (2024-1)

Google Classroom: kmk6w62 Telegram: https://t.me/+bOM71NAzRMI2MDQx

> Professor: Dr. Alberto Saldaña Email: alberto.saldana@im.unam.mx Telegram: AlbertoSaldana

Homework 5

<u>Instructions:</u> Solve the following exercises, justifying your answers carefully. Upload your written answers in LaTeX using the Google Classroom platform no later than **Monday**, **October 23**.

Exercises:

1. (5 points) Let E, F be Banach spaces, let $A, K \in \mathcal{L}(E, F)$ such that K is compact, and let $C \geq 0$ such that $||Ax|| \leq C||Kx||$ for all $x \in E$. Lets prove that A is compact.

Let $(x_n)_{n\in\mathbb{N}_0}$ be a bounded sequece on E. It follows from compactnes of K that there is a subsequence $(x_{n_k})_{k\in\mathbb{N}_0}$ of $(x_n)_{n\in\mathbb{N}_0}$ such that $(K(x_{n_k}))_{k\in\mathbb{N}_0}$ is convergent, and is therefore a Cauchy sequence. To keep notation simple we suppose $(K(x_n))_{n\in\mathbb{N}_0}$ is convergent. Observe that

$$||A(x_n - x_m)|| \le C ||K(x_n - x_m)||.$$

Therfore $(A(x_n))_{\mathbb{N}_0}$ is a Cauchy sequence and therfore converges since F is a Banach space. Therfore A is compact.

2. (5 points) Let E be a Hilbert space and let $K \in \mathcal{L}(E)$ be compact. Denoting A := I - K, define $E_n := \mathcal{N}(A^n)$ for $n \in \mathbb{N}$. Lets proove that

$$E_1 \subseteq E_2 \subseteq E_3 \subseteq \dots$$

and that there exists n_0 such that for every $m \in \mathbb{N}$ it holds that $E_{n_0} = E_{n_0+m}$.

First suppose $x \in E_k$ for some $k \in \mathbb{N}$. Then $A^{n+1}x = A(A^nx) = A(0) = 0$. Therfore $E_n \subseteq E_{n+1}$ for all $n \in \mathbb{N}$.

Suppose by contradiction that for every $n \in \mathbb{N}$ there is a $m \in \mathbb{N}$ such that $E_n \subsetneq E_{n+m}$. Therfore we can construct a subsequence

$$E_{n_1} \subsetneq E_{n_2} \subsetneq E_{n_3} \subsetneq \dots$$

Observe that the sets $E_n = (A^n)^{-1} \{0\}$ are closed. We also have that $(I - K) E_n \subseteq E_{n-1}$. Infact if $y \in (I - K) E_n$ then there is $x \in E_n$ susch that (I - K)(x) = y. Therfore $(I - K)^{n-1}(y) = (I - K)^{n-1}(I - K)(x) = (I - K)^n(x) = 0$. Then $y \in E_{n-1}$. We have the hypotesis required in (lemma 7.1) on the notes that allows us to conclude that K is not compact, a contradiction.