Assessing Model Assumptions

More on serial correlation

Comments on residuals in general

Normality assumptions for random effects

Note: Different groups sometimes propose different (but related) strategies.

Serial Correlation

Correlation within a cluster from successive measurements over time.

Further decompose $\epsilon_i \sim N(\mathbf{0}, \mathbf{R}_i)$:

$$\epsilon_i = \epsilon_{(1)i} + \epsilon_{(2)i}$$

$$\epsilon_{(1)i}$$
 = serial correlation

$$\epsilon_{(2)i}$$
 = measurement error

Marginal covariance:

$$var(\mathbf{Y}_i) = \mathbf{V}_i = \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i^T + \tau^2 \mathbf{H}_i + \sigma^2 \mathbf{I}_{n_i}$$

$$H_{ik} = g(|t_{ij} - t_{ik}|)$$
 for some function $g(\cdot)$ with $g(0) = 1$.

Informal Check for Serial Correlation

Do we need to model serial correlation? \to hard because residual variability dominated by $Z\widehat{b}$

Idea: Orthogonalize \mathbf{r}_i (OLS residuals – remove systematic effects) from \mathbf{Z}_i

· Lets us study variability not explained by random effects

Set
$$\mathbf{A}_i = n_i \times (n_i - q)$$
 matrix with $\mathbf{A}_i^T \mathbf{Z}_i = 0$ and $\mathbf{A}_i^T \mathbf{A}_i = \mathbf{I}$.

$$\Rightarrow \widetilde{\mathbf{r}}_i = \mathbf{A}_i^T \mathbf{r}_i \sim \mathcal{N}(0, \mathbf{A}_i^T \mathbf{V}_i \mathbf{A}_i)$$

$$\mathbf{A}_i^T \mathbf{V}_i \mathbf{A}_i = \tau^2 \mathbf{A}_i^T \mathbf{H}_i \mathbf{A}_i + \sigma^2 \mathbf{I}_{n-q}.$$

No serial correlation means that the $\tilde{\mathbf{r}}$'s are all $N(0, \sigma^2)$

Deviation from normality implies model is off: **possibly** need serial correlation component.

Informal Check for Serial Correlation

Random intercept + slope

Normal Q-Q Plot

Semi-Variograms

Empirical, nonparametric approach for studying serial correlation (Diggle, 1998)

Semi-Variogram for Random Intercept(Diggle, 1998)

$$\mathbf{V}_{i} = \nu^{2} \mathbf{J}_{n_{i}} + \tau^{2} \mathbf{H}_{i} + \sigma^{2} \mathbf{I}$$

where **J** is matrix of 1's and ν^2 is variance of random intercept.

$$var(r_{ij}) = \nu^2 + \tau^2 + \sigma^2.$$

$$cor(r_{ij}, r_{ik}) = \rho(|t_{ij} - t_{ik}|) = \frac{\nu^2 + \tau^2 g(|t_{ij} - t_{ik}|)}{\nu^2 + \tau^2 + \sigma^2}$$

Then the semivariogram is defined as

$$v(|t_{ij}-t_{ik}|) = \frac{1}{2}E(r_{ij}-r_{ik})^2 = \sigma^2 + \tau^2(1-g(|t_{ij}-t_{ik}|))$$

Semi-Variograms

Essentially: looking at similarity between pairs of observations

x-axis: Lag = $|t_k - t_j|$)

y-axis: Semivariance = $v(|t_{ij} - t_{ik}|)$

Variograms for CF Data

Sample variogram uses the empirical squared differences between pairs of residuals from the same subject.

Remarks

- Can compare the shape of variogram to theoretical correlation structures
- Can de-correlate the residuals from the fitted model: then should get a horizontal line if the correlation correctly specified.
- Can still be hard to tease apart a "best" structure: different strategies can give different answers
- As long as you're not strictly interested in the serial correlation, probably good enough just to include it (even if g(·) not optimal)

Residuals in Linear Mixed Models

Residual analysis is useful for checking model assumptions and looking for outliers. What is a "residual" for LMM?

- Marginal: $\mathbf{Y}_i \mathbf{X}_i \hat{\boldsymbol{\beta}}$ Deviation of individual curve from population mean
- Subject specific: $\mathbf{Y}_i \mathbf{X}_i \mathbf{Z}_i \hat{\mathbf{b}}_i$ Deviation of observations from subject specific predicted line
- Random effect: $\hat{\mathbf{b}}_i$ Deviation from population profile

Decorrelated Residuals

$$\widehat{\mathbf{V}}_i = \mathbf{L}_i \mathbf{L}_i^T$$

$$\mathbf{r}_i^* = \mathbf{L}_i^{-1} \mathbf{r}_i = \mathbf{L}_i^{-1} (\mathbf{Y}_i - \mathbf{X}_i \widehat{\boldsymbol{\beta}})$$

which are uncorrelated with variance 1.

Note that $\mathbf{r}_{i_1}^*$ is just standardized residual, but $\mathbf{r}_{i,k}^*$ is an estimate for

$$\frac{Y_{ik} - E[Y_{ik}|Y_{i1}, \dots, Y_{i(k-1)}]}{sd(Y_{ik}|Y_{i1}, \dots, Y_{i(k-1)})}$$

We can do all of the usual thinks with de-correlated residuals (e.g. normality, outlying observations, outlying individuals)

Outlying Individuals

Calculate Mahalanobis distance

$$d_i = \mathbf{r}_i^{*^T} \mathbf{r}_i^*$$

Then $d_i \sim \chi^2_{n_i}$ if model correctly specified \rightarrow p-value

More formal notions of local influence for observations and subjects are in Verbeke and Molenberghs.

1

Normality Assumption of Random Effects

Recall: assume $\mathbf{b} \sim N(0, \mathbf{D}(\boldsymbol{\theta}))$

What is the impact of violations of normality?

How do we assess normality?

Impact of Normality Assumption

In General:

- Normality assumption significantly affects $\widehat{\boldsymbol{b}}$
- ullet Normality assumption has little effect on eta and eta estimation
- Normality assumption affects the SEs and consequently $oldsymbol{eta}$ and $oldsymbol{ heta}$ inference

Assessing Normality

Can we just look at the empirical estimates of \hat{b}_i ? o Only sometimes.

- (1) The \hat{b}_i all have different individual distributions
- (2) Shrinkage effect makes them look pretty normal anyway

Estimated \hat{b}_{i_2} from CF data.

Assessing Normality - Use More Complex Model!

Need to compare results under normality to results from relaxed model.

Heterogeneity Model:

$$\mathbf{b}_i \sim \sum_{j=1}^g \pi_j \mathcal{N}(m{\mu}_j, \mathbf{D})$$
 $\sum_{i=1}^g \pi_j = 1$ and $\sum_{i=1}^g \pi_j m{\mu}_j = 0$

Essentially: unobserved heterogeneity in the model.

Would like to test $H_0: g = 1$ vs $H_A: g = 2$ (hard! \leftarrow boundary problem)

Could also test:
$$H_0: \mu_1 = \mu_2$$
 OR $H_0: \pi_1 = 0$ OR $H_0: \pi_2 = 0$ (also hard!)

15

Heterogeneity Model

Conditional Model:

$$\mathbf{Y}_i = \mathbf{X}_i oldsymbol{eta} + \mathbf{Z}_i \mathbf{b}_i + \epsilon_i, \quad \epsilon_i \sim N(\mathbf{0}, \mathbf{R}_i)$$
 $\mathbf{b}_i \sim \sum_{j=1}^g \pi_j N(\mu_j, \mathbf{D})$
 $\sum_{j=1}^g \pi_j = 1 \quad ext{and} \quad \sum_{j=1}^g \pi_j \mu_j = 0$

Marginal Model:

$$\mathbf{Y}_i \sim \sum_{i=1}^g \pi_j N(\mathbf{X}_i oldsymbol{eta} + \mathbf{Z}_i oldsymbol{\mu}, \mathbf{V}_i)$$

Heterogeneity Model (2)

Estimation Usual EM-algorithm

Goodness of Fit Assess Need for Mixture

If $F_i(\cdot)$ is CDF, then $F_i(\mathbf{Y}_i) \sim \textit{Unif} \rightarrow \mathsf{Hard}$ due to multidimensionality

Instead: consider $\mathbf{a}_i^T \mathbf{Y}_i$

17

Heterogeneity Model Goodness of Fit

 $\mathbf{a}_{i}^{T}\mathbf{Y}_{i}$ is univariate such that

$$\mathcal{U}_i = F_i(\boldsymbol{a}_i^T \boldsymbol{\mathsf{Y}}_i) = \sum_{j=1}^g \pi_j \Phi\left(\frac{\boldsymbol{a}_i^T (\boldsymbol{\mathsf{Y}}_i - \boldsymbol{\mathsf{X}}_i \boldsymbol{\beta} - \boldsymbol{\mathsf{Z}}_i \boldsymbol{\mu}_j)}{\sqrt{\boldsymbol{a}_i^T \boldsymbol{\mathsf{V}}_i \boldsymbol{a}}}\right) \sim \textit{Unif}$$

KS-test assesses uniformity with estimates plugged in.

Any choice of \mathbf{a}_i leads to valid test, but affects power: set equal to largest eigenvector of $\mathbf{R}_i^{-1}\mathbf{Z}_i\mathbf{D}^*\mathbf{Z}_i^T$ with $\mathbf{D}^* = \sum (\pi_j \boldsymbol{\mu}_j \boldsymbol{\mu}_j^T + \mathbf{D}_j)$, the overall covariance of \mathbf{b}_i .

Can test range of g to evaluate number of components.