Classification audio

Projet IA en audio et musique

Son, Musique

- Enormes quantités de données
 - Plusieurs dizaines de millions de titres disponibles (streaming)
 - Multiples versions (youtube) : interprétations, reprises, karaoké, etc.
 - Plusieurs représentations
 - Vidéo
 - Audio
 - Paroles
 - Partitions
 - Playlistes
 -

Multiples applications

- Reconnaissance d'instruments, interprètes, compositeurs, producteurs, ...
- Tonalité, Tempo, métrique, accords, ...
- Humeur, ambiance, ...
- Recommandation de titres de musique

- Besoins:
 - Labellisation automatique des sons et des musiques

Machine Learning

- Classification
 - Supervisée
 - Non supervisée

Deep Learning

- Etapes
 - Représentations du signal
 - temporelles, spectrales, compressées, ...
 - Une seule valeur, ensemble de valeurs, séquence temporelle, ...
 - Descripteurs (haut niveau, bas niveau)
 - Apprentissage
 - Analyses / Classifications / Evaluations
 - Applications

Représentations

- Bas niveau
 - Représentation temporelle
 - Fréquence échantillonnage (44100Hz?)
 - Représentation spectrale
 - Echelle linéaire
 - Echelles perception (mel, barks)
- Haut niveau
 - Descripteurs (features)
 - Perceptifs (enveloppe spectrale, énergie, bandes fréquences, ...)
 - Musicaux (hauteurs, volumes, timbre)
 - Autres (MFCC par ex)

Représentations temporelles/spectrales

- Trames courtes
- Transformée de Fourier
- Pas de perte d'infos
- Deep Learning :
 - A priori pas de différences
 - Adaptation architecture

Représentations 2D

- Echelles différentes
 - Mel, Barks
 - Evolution au cours du tps

- Type Images
 - CNN possibles
 - Formes?

Python: quelques libs utiles...

- Librosa : traitement du signal audio
- Scikit learn : machine learning
- LightGBM, XGBoost : machine learning (arbres de décision)
- Keras/TensorFlow/Theano : deep learning

Signal: librosa

https://librosa.github.io/librosa/

pip3 install --user scipy

pip3 install --user librosa

pip3 install --user colorama

Affichage représentation temporelle d'un son

Affichage d'un spectre d'amplitude

Découpage en trames

Calcul d'un descripteur

Choix des algorithmes ML

Challenge

Classification de morceaux audio selon le genre musical

Challenge

- https://www.kaggle.com/t/c4d1b6695fe0490b89ba28d2466e91f9
- 4000 titres répartis en 8 classes de genres
- Format audio (MP3)
- Objectif:
 - Format : challenge kaggle (il faut s'inscrire)
 - Tâche : sur un ensemble donné de 4000 titres (sans genre), donner leur genre
 - Evaluation automatique
 - Classement
- Rapport
 - Explications des choix (features, algos, évaluations, métriques)
 - Tests effectués
 - Étude de la précision par classe (ROC curve et AUC pour chaque genre)
 - Matrice de confusion
 - Importance des features
 - Algos Machine Learning, Ensemble?
 - Décision locale / globale
 - Discussion (commentaires, comment améliorer ?)
- Dataset disponible sur kaggle

Travail demandé

- Choix des descripteurs audio
 - Lib existantes :
 - Librosa https://librosa.github.io/librosa/feature.html
 - Essentia https://essentia.upf.edu/documentation/essentia_python_tutorial.html
- Choix des algorithmes de classification
 - · Parmi lesquels Deep Learning
 - Ensemble de moteurs
- Choix des paramètres
 - Importance de la démarche
 - AutoML?
- Augmentation des données ?
- Protocoles d'évaluation
 - Limites sur certains genres, adaptations sur la classif?

RENDU:

- Fichier CSV sur le format « titre,id_genre », soumis/évalué sur le site kaggle
- Rapport / Code (par email)

Dates

• Rendu le 31 Janvier 2020 (23h59)

• Langages au choix, mais plutôt Python (ou Matlab)

N'hésitez pas à poser des questions.

Ca démarre maintenant!