LECTURE: CHAPTER 11 REVIEW (PART 2)

Section 11.8 - Power Series

Example 1: Find the radius of convergence and the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n (x+2)^n}{n4^n}$.

Example 2: Find the interval of convergence of the following series.

(a)
$$\sum_{n=0}^{\infty} n!(x-2)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n!}$$

Section 11.9 - Representations of Functions by Power Series

Example 3: Find the Maclaurin series for f and its radius of convergence. Then find f'(x) for Part (a) and $\int f(x)dx$ for Part (b) and their radii of convergence.

(a)
$$f(x) = \frac{x^2}{1+x^5}$$

(b)
$$f(x) = \frac{4}{x^3 + 8}$$

Example 4: Find the power series for $f(x) = \tan^{-1} x$ using an integral or a derivative.

Section 11.10 - Taylor and Maclaurin Series

Write the Maclaurin series and the interval of convergence for each of the following functions.

- 1/(1-x) =
- \bullet $e^x =$
- $\sin x =$
- $\bullet \cos x =$
- $\tan^{-1} x =$

Example 5: Find the Taylor series of $f(x) = e^{2x}$ at a = 6.

Example 6: Find the Maclaurin series for f and its radius of convergence.

(a)
$$f(x) = \tan^{-1}(x^3)$$

(b)
$$f(x) = xe^{3x}$$

Example 7: find the Maclaurin series for f and its radius of convergence.

(a)
$$f(x) = \sin\left(\frac{x^4}{2}\right)$$

(b)
$$f(x) = 10^x$$

Example 8: Evaluate $\int \frac{e^x}{x} dx$ as an infinite series.

Example 9: Find the sum of the following series.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^n}{3^{2n} (2n)!}$$

(b)
$$1 - e + \frac{e^2}{2!} - \frac{e^3}{3!} - \cdots$$