Restarted Krylov subspace model-reduction methods for RCL circuit simulation

Efrem Rensi

GGAM, Department of Mathematics University of California, Davis

June 3, 2009 / Qualifying Exam

Primary application

Reduced size, physically viable RLC circuit models

Model Represented as DAE

(Differential Algebraic Equation)

Input-Output system

where $A, E \in \mathbb{R}^{N \times N}$ are sparse, $B \in \mathbb{R}^{N \times p}$.

- $N \gg p$ typically large, e.g. $N = \mathcal{O}(10^9)$
- $x(t) \in \mathbb{R}^N$ (state-space variable) represents internal state.
- Behavior of model: y = F(u)

Transfer Function

Relates Output directly to Input

In the frequency domain, Y(s) = H(s)U(s) with *transfer function*

$$H(s) = B^{T}(sE - A)^{-1}B \in (\mathbb{C} \cup \infty)^{p \times p}$$

Figure: ||H(s)|| vs. frequency for N = 1841 test model

Transfer Function

Domain $S \in \mathbb{C}$

We consider H(s) over $s \in S$.

$$S = 2\pi i f$$
, $f \in [f_{min}, f_{max}]$

Transfer Function

Transfer function

$$H(s) = B^T (sE - A)^{-1}B$$

- $H(s) \in (\mathbb{C} \cup \infty)^{p \times p}$ is relatively small
- Explicitly computing H(s) is not feasible!
- But computing

$$H_n(s) = B_n^T (sE_n - A_n)^{-1}B_n \in (\mathbb{C} \cup \infty)^{p \times p}$$

is easy for small $A_n, E_n \in \mathbb{R}^{n \times n}$, $B_n \in \mathbb{R}^{n \times p}$, where $n \ll N$.

Reduced model via projection

• Project A, E, B onto a subspace of \mathbb{R}^N .

$$A_n := V_n^T A V_n, \quad E_n := V_n^T E V_n, \quad B_n := V_n^T B,$$

where $V_n \in \mathbb{R}^{N \times n}$ has full rank

Reduced model transfer function:

$$H_n(s) = B_n^T (sE_n - A_n)^{-1} B_n$$

Outline

Background
 Moment-matching
 Pole matching

Method Process Results

Transfer function

Single-matrix formulation

Let $s_0 \in \mathbb{C}$ be a point for which $s_0 E - A$ is invertible. H(s) can be re-expressed as

$$H(s) = B^{T}(sE - A)^{-1}$$

= $B^{T}[(s - s_{0})E + s_{0}E - A]^{-1}B$
= $B^{T}(I - (s - s_{0})\widehat{H})^{-1}R$

where

$$\widehat{H} := -(s_0 E - A)^{-1} E$$
 and $R := (s_0 E - A)^{-1} B$.

(Single matrix formulation)

Moments of the transfer function about s_0

Single-matrix formulation: $H(s) = B^T \left(I - (s - s_0)\widehat{H}\right)^{-1} R$ Via Neumann (geometric series) expansion,

$$H(s) = B^T \left(\sum_{j=0}^{\infty} (s - s_0)^j \widehat{H}^j \right) R$$

$$= \sum_{j=0}^{\infty} (s - s_0)^j M_j$$

where $M_j = B^T \widehat{H}^j R$.

- This is exactly the Taylor series expansion about s₀!
- M_j are moments (i.e. derivatives) of H(s) at s_0

Moment matching

Taylor series of H(s) about s_0 :

$$H(s) = \sum_{j=0}^{\infty} (s - s_0)^j M_j$$

with moments $M_j = B^T \widehat{H}^j R$.

• Reduced model $H_n(s)$ will match n moments about s_0 .

$$H_n(s) = H(s) + \mathcal{O}((s-s_0)^n)$$

Qual

11/37

Moment matching

Taylor series of H(s) about s_0 :

$$H(s) = \sum_{j=0}^{\infty} (s - s_0)^j M_j$$

with moments $M_j = B^T \widehat{H}^j R$.

Reduced model H_n(s) will match n moments about s₀.

• Natural home for $H_n(s)$ is the *n*-th *block-Krylov* subspace

$$\mathcal{K}_n\left(\widehat{H},R
ight):= \text{span}\left\{R,\widehat{H}R,\widehat{H}^2R,\ldots,\widehat{H}^{n-1}R
ight\}$$

Krylov subspace projection:

Overview

- Pick $s_0 \in \mathbb{C}$, compute matrices $\widehat{H}(s_0)$, $R(s_0)$
- Generate a full rank matrix $V_n \in \mathbb{R}^{N \times n}$ such that

$$\mathcal{K}_n\left(\widehat{H},R\right)\subseteq\operatorname{colspan}V_n$$

Compute projections

$$A_n := V_n^T A V_n$$
, etc.

Reduced order model is

$$H_n(s) = B_n^T (sE_n - A_n)^{-1} B_n$$

Outline

Background
 Moment-matching
 Pole matching

Method Process Results

Pole decomposition of model

Poles of H(s) are $\mu \in \mathbb{C} \cup \infty$ such that $||H(\mu)|| = \infty$.

Figure: ||H(s)|| vs. frequency $(s = 2\pi if)$

14/37

Pole decomposition of model

Example: poles of a size N = 1841 test model

log₁₀ scale on Re axis. Dot size indicates dominance.

Pole-residue decomposition of model

Poles as eigenvalues of $sE - A \in \mathbb{R}^{N \times N}$

- Transfer function: $H(s) = B^{T}(sE A)^{-1}B$
- If sE A has full set of N eigenvectors, eigenvalues μ_i then

$$H(s) = X_{\infty} + \sum_{\substack{j=1 \ \mu_j \neq \infty}}^{N} \frac{X_j}{s - \mu_j}$$
 (*)

- $\mu_i \in \mathbb{C} \cup \infty$ are the poles of H(s). X_i are residues.
- Dominant poles associated with terms that dominate (⋆) on S.

Pole decomposition example

Model size N = 1841. Truncated at 12 terms

- Dominant poles determine features of the model on *S*.
- Ideally, reduced model consists of these dominant poles.

Background Summary

- Krylov subspace projection yields locally accurate approximate model around $s_0 \in \mathbb{C}$.
- We want to place s_0 for convergence near dominant poles.
- We do not know where dominant poles are.

Local convergence

Visual example: N = 308, Reduced model n = 15

Local convergence

Visual example: N = 308, Reduced model n = 15

Local convergence

Visual example: N = 308, Reduced model n = 15

Outline

Background Moment-matching Pole matching

2 Method Process

Krylov subspace

Recall that for matrices $\widehat{H}(s_0)$, $R(s_0)$, the reduced-order model transfer function $H_n(s)$:

• has Taylor series expansion

$$H_n(s) = \sum_{j=0}^{n-1} (s - s_0)^j M_j + \mathcal{O}((s - s_0)^n),$$

where $M_j = B^T \widehat{H}^j R$

lives in the n-th block-Krylov subspace

$$H_n(s) \in \mathcal{K}_n\left(\widehat{H},R\right) := \operatorname{span}\left\{R,\widehat{H}R,\widehat{H}^2R,\ldots,\widehat{H}^{n-1}R\right\}$$

Arnoldi Process

Generates basis for Krylov subspace

Arnoldi process computes orthogonal basis matrix $V_n = [v_1 \ v_2 ... \ v_n]$ for Krylov subspace $\mathcal{K}_n(\widehat{H},r)$:

- $v_1 = r/||r||$
- $v_2 = (\widehat{H}v_1 \text{ orthogonalized against } v_1)$

:

•
$$v_n = (\widehat{H}v_{n-1} \text{ orthogonalized against } \{v_1, v_2, \dots, v_{n-1}\})$$

Arnoldi Process

Computationally expensive

The *n*-th iteration of Arnoldi

$$v_n = \left(\widehat{H}v_{n-1} \text{ orthogonalized against } \{v_1, v_2, \dots, v_{n-1}\}\right)$$

requires

- 1 Matrix-vector product
- n-1 inner products, n-1 SAXPYs ($\alpha x + y$)

Computing $v_n \in \mathbb{C}^N$ grinds to a halt with increasing n!

Thick-Restart

After *m* iterations of Arnoldi process,

- Restart the process.
- Keep (nearly) invariant subspace $Y \subset V_m$.
- Move s₀ to possibly better location. Adaptive, automated.

Current successful projection methods use $static\ s_0$ placement located for good global convergence, and no restarts.

Deflation

Extract invariant subspace from V_m

After a run (m iterations) of Arnoldi with $\widehat{H}(s_0)$, $R(s_0)$, matrix V_m is basis for $\mathcal{K}_m(\widehat{H},R)$.

Deflation: Obtain $Y \subset \operatorname{span} V_m$ with property

$$\widehat{H}Y \approx YS$$

• $Y = [y_1 \ y_2 \dots y_\ell]$ is approximately \widehat{H} -invariant to some tolerance parameter τ .

Deflation

Extract invariant subspace from V_m

After a run (m iterations) of Arnoldi with $\widehat{H}(s_0)$, $R(s_0)$, matrix V_m is basis for $\mathcal{K}_m(\widehat{H},R)$.

Deflation: Obtain $Y \subset \operatorname{span} V_m$ with property

$$\widehat{H}Y \approx YS$$

• $Y = [y_1 \ y_2 \dots y_\ell]$ is approximately \widehat{H} -invariant to some tolerance parameter τ .

For exactly $\widehat{H}(s_0)$ -invariant Y:

- Y is \widehat{H} -invariant for any s_0
- Y is eigenspace of sE A associated with 'captured' poles.

Selecting new s₀

- Dominant poles $\tilde{\mu}_j$ of reduced model $H_m(s)$ approximate dominant poles of the full model.
- We can use this info to select new expansion point s_0^1 .

Thick-Restart Arnoldi with s_0^1

The next run of Arnoldi uses $\widehat{H}_1 := \widehat{H}(s_0^1)$, $R_1 := R(s_0^1)$, and Y to produce V^1 .

- Each iteration, orthogonalize new $\widehat{H}v_j^1$ against $\{v_1^1, v_2^1, ..., v_j^1\}$ and $\{y_1, y_2, ..., y_\ell\}$.
- Eliminates from the search poles μ_j of the full model already 'discovered' on previous runs.

Thick-Restart Arnoldi with s_0^1

The next run of Arnoldi uses $\widehat{H}_1 := \widehat{H}(s_0^1)$, $R_1 := R(s_0^1)$, and Y to produce V^1 .

Orthogonalization against known invariant subspace prevents redundancy (linear dependence) between V^1 and V^0 , so

$$\widehat{V} = \begin{bmatrix} V^0 & V^1 \end{bmatrix}$$

has full rank.

Result of method

K runs of restarted Arnoldi yields

$$\widehat{V} := \begin{bmatrix} V^0 & V^1 & \cdots & V^{K-1} \end{bmatrix}$$

and

$$Y^j := \text{deflate}\left(V^{j-1}\right) \quad \text{for } j=1,2,...,K-1.$$

- Each V^j is orthogonal to $\{Y^1, Y^2, ..., Y^j\}$.
- \hat{V} is possibly rank-deficient.
- colspan $V^j \neq \mathcal{K}_m\left(\widehat{H}_j, R_j\right)$ for j > 0.

Piecewise Krylov subspace

Compounded moment matching

Conjecture

0

$$\bigcup_{j=1}^{K-1}\mathcal{K}_{m}\left(\widehat{H}_{j},R_{j}\right)\subset\operatorname{colspan}\widehat{V}.$$

2 If \hat{V} has full-rank, the reduced model of size n = mK obtained by projection with \hat{V} matches at least m moments about each s_0^j .

Outline

Background Moment-matching Pole matching

2 Method

Results

Preliminary results

selecting good expansion points s_0

- Current working algorithm uses K pre-determined expansion points s_0^j placed along imaginary-axis.
- Covers entire segment *S* of interest.

Preliminary results

Comparison of two reduced (N = 308, n = 64) models

Figure: Standard reduced model requires size 125 to match accuracy of size 64 model using restarts.

Preliminary results

Weird effects of τ

Selecting invariance tolerance parameter τ is not trivial!

Same example model. m = 16, K = 4 reduced models

Relative (L^{∞}) error vs. τ

Take-home message

- Thick-restart Krylov methods are used in other applications, but have not been applied to model reduction.
- Existing multi expansion-point (s₀) methods are inefficient.
- Potential adaptivity of our method could result in robust algorithms.

Thank you

