Adaptive Weighted Traffic Splitting in Programmable Data planes

Kuo-Feng Hsu*, Praveen Tammana+, Ryan Beckett*, Ang Chen*, Jennifer Rexford+, David Walker+

Rice University*, Princeton University*, Microsoft Research*

Microsoft[®]
Research

Multiple paths between source-destination pairs

Datacenter networks

Capacity: 20.4Tbps

16 rack switches*

Private WANs E.g: B4, SWAN

33 datacenter sites* and growing...

Efficient load balancing is crucial to achieve good performance

*src: B4andAfter [SIGCOMM'18].

Motivation: Load-aware traffic splitting

Fast adaptation to real-time traffic conditions at RTT timescales

Existing approaches

Operates *entirely* in data plane

E.g.: HULA [SOSR'16], CONGA [SIGCOMM'14]

Overloads the best path when RTTs are large

Control plane + Data plane

E.g.: HALO [ToN'15], TeXCP [SIGCOMM'05]

Unclear how these solutions can be realized using commodity data planes

In this work...

Question

How to balance load dynamically **across multiple paths** in the data plane?

Contributions

- 1. We design new data structures for load-aware traffic splitting
- 2. We characterize and study tradeoffs of these data structures
- 3. We propose a data structure called **DASH**

Key problems

(1) Spreading flows using a **Path-to-Weight** data structure

(2) Updating that data structure as probes arrive

PISA: Protocol Independent Switch Architecture

But, a constrained computational model

Existing technique: Weighted Cost Multipathing (WCMP)

Replicates table entries with same pathID in proportion to its weight

Updating WCMP table

Iterate over the table

X Requires many per-packet accesses to a stage registers

Updating WCMP table

Assign entries of non-deficit paths to deficit paths

Requires read and write to same register from different stages

DASH: Data-plane Adaptive Splitting with Hash threshold

Replicate pathID in WCMP table

Idea: Partition hash space into unique regions of size proportion to path weights

Check packet's hash value against boundaries

Updating DASH boundaries is simple

New path boundary = Previous path's boundary + Path region size

Desired vector = 3:2:1

- ✓ One per-packet access to stage registers
- ✓ Read-write in the same stage

Fast and efficient

Evaluation

- Prototype: Bmv2
- Environment: Ns3
- Workload:
 - Web search [Alizadeh-SIGCOMM'15]
- Schemes
 - CP (Control plane): slow adaptation
 - Hula: fast but single best path
 - ECMP: traffic splitting but no adaptation
 - DASH: traffic splitting and fast adaptation

Symmetric Fattree

Summary and future work

- Adaptive weighted traffic splitting in the data plane
- DASH is fast and efficient

- Future work:
 - Implementation in commodity switches (e.g., P4-Tofino)
 - Building a distributed online traffic engineering system

Thank you