ZEAL EDUCATION SOCIETY'S ZEAL COLLEGE OF ENGINEEIRNG AND RESEARCH, NARHE, PUNE

DEPARTMENT OF COMPUTER ENGINEERING SEMESTER-I

[A.Y.: 2022 - 2023]

CYBER SECURITY AND DIGITAL FORENSICS(410244(C))

MINI PROJECT

Design and develop a tool for digital forensics of audio

Institute and Department Vision and Mission

INSTITUTE VISION	To impart value added technological education through pursuit of academic excellence, research and entrepreneurial attitude.
INSTITUTE MISSION	 M1: To achieve academic excellence through innovative teaching and learning process. M2: To imbibe the research culture for addressing industry and societal needs. M3: To provide conducive environment for building the entrepreneurial skills. M4: To produce competent and socially responsible professionals with core human values.

DEPARTMENT VISION	To emerge as a department of repute in Computer Engineering which produces competent professionals and entrepreneurs to lead technical and betterment of mankind.
DEPARTMENT MISSION	 M1: To strengthen the theoretical and practical aspects of the learning process by teaching applications and hands on practices using modern tools and FOSS technologies. M2: To endeavour innovative interdisciplinary research and entrepreneurship skills to serve the needs of Industry and Society. M3: To enhance industry academia dialog enabling students to inculcate professional skills. M4: To incorporate social and ethical awareness among the students to make them
	conscientious professionals.

Department Program Educational Objectives(PEOs)

PEO1: To Impart fundamentals in science, mathematics and engineering to cater the needs of society and Industries.

PEO2: Encourage graduates to involve in research, higher studies, and/or to become entrepreneurs.

PEO3: To Work effectively as individuals and as team members in a multidisciplinary environment with high ethical values for the benefit of society.

Savitribai Phule Pune University Fourth Year of Computer Engineering (2019 Course)

410244(C): Cyber Security & Digital Forensics Laboratory

Teaching Scheme:	Credit	Examination Scheme:
PR: 04 Hours/Week	02	TW: 25 Marks
		PR: 50 Marks

Course Objectives:

- > To enhance awareness cyber forensics.
- ➤ To understand issues in Cyber Crime and different attacks
- > To understand underlying principles and many of the techniques associated with the digital forensic practices
- To know the process and methods of evidence collection
- To analyze and validate forensic data collected.
- To apply digital forensic knowledge to use computer forensic tools and investigation report writing.

Course Outcomes:

On completion of the course, student will be able to-

- CO1: Analyze threats in order to protect or defend it in cyberspace from cyber-attacks.
- CO2: Build appropriate security solutions against cyber-attacks.
- CO3: Underline the need of digital forensic and role of digital evidences.
- CO4: Explain rules and types of evidence collection
- CO5: Analyze, validate and process crime scenes CO6: Identify the methods to generate legal evidence and supporting investigation reports.

List of Assignments

	Group B
	Mini-Projects/ Case Study (Any two)
01	Mini Project- Design and develop a tool for digital forensics of images
02	Mini Project- Design and develop a tool for digital forensics of audio
03	Mini Project- Design and develop a tool for digital forensics of video
	Mini Project- Design a system for the analysis of cyber crime using various cyber forensics techniques
	and compare each technique with respect to integrity, confidentiality, availability

Title:

Design and develop a tool for digital forensics of Audio

Requirements:

opency-python Pillow exifread scipy PyWavelets numpy progressbar2 matplotlib

Code:

Audio visualization:

```
from future import print function
import shutil, struct, simple ison
from scipy.spatial import distance
from pylab import *
import ntpath
import os
sys.path.insert(0, os.path.join(
  os.path.dirname(os.path.realpath( file )), "../"))
from pyAudioAnalysis import MidTermFeatures as aF
from pyAudioAnalysis import audioTrainTest as aT
import sklearn
import sklearn.discriminant analysis
import sys
import math
import contextlib
from pylab import*
from scipy.io import wavfile
import pyaudio
def generateColorMap():
  This function generates a 256 jet colormap of HTML-like
  hex string colors (e.g. FF88AA)
  Map = cm.jet(np.arange(256))
  stringColors = []
  for i in range(Map.shape[0]):
    rgb = (int(255*Map[i][0]), int(255*Map[i][1]), int(255*Map[i][2]))
    if (sys.version info > (3, 0)):
       stringColors.append((struct.pack('BBB', *rgb).hex())) # python 3
```

Department of Computer Engineering, ZCOER, Narhe, Pune-41

```
CYBER SECURITY AND DIGITAL FORENSICS (410244(C))
    else:
       stringColors.append(
         struct.pack('BBB', *rgb).encode('hex')) # python2
  return stringColors
def levenshtein(str1, s2):
  Distance between two strings
  N1 = len(str1)
  N2 = len(s2)
  stringRange = [range(N1 + 1)] * (N2 + 1)
  for i in range(N2 + 1):
    stringRange[i] = range(i, i + N1 + 1)
  for i in range(0,N2):
    for j in range(0,N1):
       if str1[j] == s2[i]:
         stringRange[i+1][j+1] = min(stringRange[i+1][j] + 1,
                          stringRange[i][j+1] + 1,
                          stringRange[i][j])
       else:
         stringRange[i+1][j+1] = min(stringRange[i+1][j] + 1,
                          stringRange[i][j+1] + 1,
                          stringRange[i][j] + 1)
  return stringRange[N2][N1]
def text list to colors(names):
  Generates a list of colors based on a list of names (strings).
  Similar strings correspond to similar colors.
  # STEP A: compute strings distance between all combnations of strings
  Dnames = np.zeros( (len(names), len(names)) )
  for i in range(len(names)):
    for j in range(len(names)):
       Dnames[i,j] = 1 - 2.0 * levenshtein(names[i],
                             names[j]) / \
               float(len(names[i]+names[j]))
  # STEP B: pca dimanesionality reduction to a single-dimension
  # (from the distance space)
  pca = sklearn.decomposition.PCA(n components = 1)
  pca.fit(Dnames)
  # STEP C: mapping of 1-dimensional values to colors in a jet-colormap
  textToColor = pca.transform(Dnames)
  textToColor = 255 * (textToColor - textToColor.min()) / \
           (textToColor.max() - textToColor.min())
  textmaps = generateColorMap();
```

```
CYBER SECURITY AND DIGITAL FORENSICS (410244(C))
  colors = [textmaps[int(c)] for c in textToColor]
  return colors
def text list to colors simple(names):
  Generates a list of colors based on a list of names (strings).
  Similar strings correspond to similar colors.
  uNames = list(set(names))
  uNames.sort()
  textToColor = [uNames.index(n) for n in names]
  textToColor = np.array(textToColor)
  textToColor = 255 * (textToColor - textToColor.min()) / \
           (textToColor.max() - textToColor.min())
  textmaps = generateColorMap();
  colors = [textmaps[int(c)] for c in textToColor]
  return colors
def visualizeFeaturesFolder(folder, dimReductionMethod, priorKnowledge = "none"):
  This function generates a content visualization for the recordings
   of the provided path.
  ARGUMENTS:
    - folder:
                 path of the folder that contains the WAV files
               to be processed
    - dimReductionMethod: method used to reduce the dimension of the
                    initial feature space before computing
                    the similarity.
     - priorKnowledge: if this is set equal to "artist"
  if dimReductionMethod=="pca":
    all mt feat, wav files, = aF.directory_feature_extraction(folder,
                                         30.0, 30.0,
                                         0.050,
                                         0.050,
                                         compute beat
                                         =True)
    if all mt feat.shape[0]==0:
       print("Error: No data found! Check input folder")
       return
    names category toviz = [ntpath.basename(w).
                     replace('.wav',").split(" --- ")[0]
                   for w in wav files];
    names to viz = [ntpath.basename(w).replace('.wav', ")
              for w in wav files];
    scaler = StandardScaler()
    F = \text{scaler.fit transform(all mt feat)}
```

CYBER SECURITY AND DIGITAL FORENSICS (410244(C)) # check that the new PCA dimension is at most equal # to the number of samples K1 = 2K2 = 10if K1 > F.shape[0]: K1 = F.shape[0]if K2 > F.shape[0]: K2 = F.shape[0]pca1 = sklearn.decomposition.PCA(n components = K1)pca2 = sklearn.decomposition.PCA(n components = K2)pca2.fit(F) finalDims = pca1.transform(F)finalDims2 = pca2.transform(F)else: # long-term statistics cannot be applied in this context # (LDA needs mid-term features) all mt feat, Ys, wav files = aF.\ directory feature extraction no avg(folder, 20.0, 5.0, 0.040, 0.040) if all mt feat.shape [0] == 0: print("Error: No data found! Check input folder") return names category toviz = [ntpath.basename(w). replace('.wav', ").split(" --- ")[0] for w in wav files] names to viz = [ntpath.basename(w).replace('.wav', ") for w in wav files]; ldaLabels = Ysif priorKnowledge=="artist": unames category toviz = list(set(names category toviz)) YsNew = np.zeros(Ys.shape)for i, uname in enumerate(unames category toviz): indicesUCategories = [j for j, x in]enumerate(names category toviz) if x == unamefor j in indicesUCategories: indices = np.nonzero(Ys==j)YsNew[indices] = ildaLabels = YsNew scaler = StandardScaler() F = scaler.fit transform(all mt feat) clf = sklearn.discriminant analysis.\ LinearDiscriminantAnalysis(n components=10) clf.fit(F, ldaLabels) reducedDims = clf.transform(F) pca = sklearn.decomposition.PCA(n components = 2)pca.fit(reducedDims)

CYBER SECURITY AND DIGITAL FORENSICS (410244(C)) Class: BE(Computer)

```
reducedDims = pca.transform(reducedDims)
     # TODO: CHECK THIS ... SHOULD LDA USED IN SEMI-SUPERVISED ONLY????
     # uLabels must have as many labels as the number of wav files elements
     uLabels = np.sort(np.unique((Ys)))
     reducedDimsAvg = np.zeros( (uLabels.shape[0], reducedDims.shape[1]))
     finalDims = np.zeros( (uLabels.shape[0], 2) )
     for i, u in enumerate(uLabels):
       indices = [i \text{ for } i, x \text{ in enumerate}(Ys) \text{ if } x == u]
       f = reducedDims[indices, :]
       finalDims[i, :] = f.mean(axis=0)
     finalDims2 = reducedDims
  for i in range(finalDims.shape[0]):
     plt.text(finalDims[i,0], finalDims[i,1],
          ntpath.basename(wav files[i].replace('.wav',")),
          horizontalalignment='center',
          verticalalignment='center', fontsize=10)
     plt.plot(finalDims[i,0], finalDims[i,1], '*r')
  plt.xlim([1.2*finalDims[:,0].min(), 1.2*finalDims[:,0].max()])
  plt.ylim([1.2*finalDims[:,1].min(), 1.2*finalDims[:,1].max()])
  plt.show()
  SM = 1.0 - distance.squareform(distance.pdist(F, 'cosine'))
  # plot super-categories (i.e. artistname)
  unames category toviz = sort(list(set(names category toviz)))
  finalDimsGroup = np.zeros((len(unames category toviz),
                    finalDims2.shape[1]))
  for i, uname in enumerate(unames category toviz):
     indices = [i \text{ for } i, x \text{ in enumerate(names category toviz) if } x == uname]
     f = finalDims2[indices, :]
     finalDimsGroup[i, :] = f.mean(axis=0)
  SMgroup = 1.0 - distance.squareform(distance.pdist(finalDimsGroup,
                                  'cosine'))
  data=SMgroup
  fig = px.imshow(data,
          labels=dict(x="", y="", color="Category similarity"),
          x=unames category toviz,
          y=unames category toviz)
  fig.update xaxes(side="top")
  fig.show()
  Compression of Audio:
  fname = 'C:\\Users\\Music\\01 The Ringer.wav'
outname = 'filtered.way'
cutOffFrequency = 1000.0
```

CYBER SECURITY AND DIGITAL FORENSICS (410244(C)) Class: BE(Computer) def fft dis(fname): sampFreq, snd = wavfile.read(fname) snd = snd / (2.**15)n = len(snd)p = fft(snd)nUniquePts = int(ceil((n+1)/2.0))p = p[0:nUniquePts]p = abs(p)p = p / float(n)p = p**2if n % 2 > 0: # we've got odd number of points fft p[1:len(p)] = p[1:len(p)] * 2else: p[1:len(p)-1] = p[1:len(p)-1] * 2 # we've got even number of points fftfreqArray = arange(0, nUniquePts, 1.0) * (sampFreq / n); plt.plot(freqArray/1000, 10*log10(p), color='k') plt.xlabel('Channel Frequency (kHz)') plt.ylabel('Channel Power (dB)') plt.show() def run mean(x, windowSize): cumsum = np.cumsum(np.insert(x, 0, 0))return (cumsum[windowSize:] - cumsum[:-windowSize]) / windowSize def interpret wav(raw bytes, n frames, n channels, sample width, interleaved = True): if sample width == 1: dtype = np.uint8 # unsigned char elif sample width == 2: dtype = np.int16 # signed 2-byte shortraise ValueError("Only supports 8 and 16 bit audio formats.") channels = np.fromstring(raw bytes, dtype=dtype) if interleaved: # channels are interleaved, i.e. sample N of channel M follows sample N of channel M-1 in raw data channels.shape = (n frames, n channels)channels = channels.T else: # channels are not interleaved. All samples from channel M occur before all samples from channel M-1 channels.shape = (n channels, n frames) return channels

CYBER SECURITY AND DIGITAL FORENSICS (410244(C)) Class: BE(Computer)

```
with contextlib.closing(wave.open(fname,'rb')) as spf:
  sampleRate = spf.getframerate()
  ampWidth = spf.getsampwidth()
  nChannels = spf.getnchannels()
  nFrames = spf.getnframes()
  # Extract Raw Audio from multi-channel Wav File
  signal = spf.readframes(nFrames*nChannels)
  spf.close()
  channels = interpret wav(signal, nFrames, nChannels, ampWidth, True)
  # get window size
  fqRatio = (cutOffFrequency/sampleRate)
  N = int(math.sqrt(0.196196 + fqRatio**2)/fqRatio)
  # Use moviung average (only on first channel)
  filt = run mean(channels[0], N).astype(channels.dtype)
  wav file = wave.open(outname, "w")
  wav file.setparams((1, ampWidth, sampleRate, nFrames, spf.getcomptype(), spf.getcompname()))
  wav file.writeframes(filt.tobytes('C'))
  wav file.close()
n = 0
for n in range (0,2):
  if n==0:
    fft dis(fname)
  elif n==1:
    fft dis(outname)
```

Output:

```
req: 250Hz
Recorded On: iPhone (Apple Inc.)
Format: .wav
Avg Wavelenght: 12nm
Pitch: 15db
Loudness: 2500db
Amplitude: 25m
Velocity: 1.2m/s
Audio Pressure: 12Pa
Intensity: 1.4watt/m2
Stereo: True
Spectrum: 4m
Intermodulation Distortion (MD): 50ms
C:\Users\D_COMP_SLI_17\Downloads>
                    👬 🛴 o 🖽 🩋 👼 🔓 😭 🧿 🔤 🥒
                                                                                     🃤 31℃ Cloudy 스틸에 450 PM 등
```


Date:
Marks obtained:
Sign of course coordinator:
Name of course Coordinator :