

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13501 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

December 17, 2015

ARRIS Group, Inc. 3871 Lakefield Drive, Suite 300 Suwanee, Georgia 30024

Dear Tony Figueiredo,

Enclosed is the EMC Wireless test report for compliance testing of the ARRIS Group, Inc., TG1682G as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Title 47 of the CFR, Part 15.407, Subpart E (UNII 3).

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\ARRIS Group, Inc.\ EMC87008-FCC407 UNII 3 Rev. 2)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE ● BALTIMORE, MARYLAND 21230-3432 ● PHONE (410) 354-3300 ● FAX (410) 354-3313 33439 WESTERN AVENUE ● UNION CITY, CALIFORNIA 94587 ● PHONE (510) 489-6300 ● FAX (510) 489-6372 3162 BELICK STREET ● SANTA CLARA, CALIFORNIA 95054 ● PHONE (408) 748-3585 ● FAX (510) 489-6372 13501 MCCALLEN PASS ● AUSTIN, TX 78753 ● PHONE (512) 287-2500 ● FAX (512) 287-2513

Electromagnetic Compatibility Criteria Test Report

for the

ARRIS Group, Inc. Model TG1682G

Tested under

The FCC Certification Rules contained in Title 47 of the CFR 15.407 Subpart E

MET Report: EMC87008-FCC407 UNII 3 Rev. 2

December 17, 2015

Prepared For:

ARRIS Group, Inc. 3871 Lakefield Drive, Suite 300 Suwanee, Georgia 30024

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

ARRIS Group, Inc. Model TG1682G

Tested under

The FCC Certification Rules contained in Title 47 of the CFR 15.407 Subpart E

Surinder Singh, Project Engineer Electromagnetic Compatibility Lab

Juneben Snigh

Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Parts 15B, 15.407, of the FCC Rules under normal use and maintenance.

Asad Bajwa,

Director, Electromagnetic Compatibility Lab

a Bajora.

Report Status Sheet

Revision	Report Date	Reason for Revision	
Ø	November 9, 2015	Initial Issue.	
1	December 14, 2015	Engineer corrections.	
2	December 17, 2015	Revised per customer request.	

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	
	B. References	
	C. Test Site	5
	D. Description of Test Sample	5
	E. Equipment Configuration	
	F. Support Equipment	<i>6</i>
	G. Ports and Cabling Information	<i>6</i>
	H. Mode of Operation	
	I. Method of Monitoring EUT Operation	
	J. Modifications	
	a) Modifications to EUT	<i>6</i>
	b) Modifications to Test Standard	<i>€</i>
	K. Disposition of EUT	<i>6</i>
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	
	§ 15.203 Antenna Requirement	
	§ 15.403(i) 26 dB Bandwidth	
	§ 15.407(a)(3) Maximum Conducted Output Power	26
	§ 15.407(a)(3) Maximum Power Spectral Density	44
	§ 15.407(b)(4) & (6 - 7) Undesirable Emissions	
	§ 15.407(b)(6) Conducted Emissions	
	§ 15.407(f) RF Exposure	95
IV.	Test Equipment	
V.	Certification & User's Manual Information	
	A. Certification Information	
	B. Label and User's Manual Information	

List of Tables

Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting	2
Table 2. EUT Summary	4
Table 3. References	
Table 4. Equipment Configuration	
Table 5. Support Equipment	
Table 6. Ports and Cabling Information	
Table 7. Conducted Output Power, 802.11a/ac/n 20 MHz	
Table 8. Conducted Output Power, 802.11ac/n 40 MHz	
Table 9. Conducted Output Power, 802.11ac 80 MHz	
Table 10. Peak Spectrum Density, 802.11a/ac/n 20 MHz	
Table 11. Peak Spectrum Density, 802.11ac/n 40 MHz	
Table 12. Peak Spectrum Density, 802.11ac 80 MHz	
Table 13. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 14. Conducted Emissions, Test Results, Phase Line	
Table 15. Conducted Emissions, Test Results, Neutral Line	
Table 16. Test Equipment List	97
List of Figures	
G	£
Figure 1. Block Diagram of Test Configuration.	
List of Plots	
Plot 1. 26 dB Occupied Bandwidth, Low Channel, 802.11a 20 MHz, Chain 0	10
Plot 2. 26 dB Occupied Bandwidth, Mid Channel, 802.11a 20 MHz, Chain 0	
Plot 3. 26 dB Occupied Bandwidth, High Channel, 802.11a 20 MHz, Chain 0	10
Plot 4. 26 dB Occupied Bandwidth, Low Channel, 802.11a 20 MHz, Chain 1	11
Plot 5. 26 dB Occupied Bandwidth, Mid Channel, 802.11a 20 MHz, Chain 1	11
Plot 6. 26 dB Occupied Bandwidth, High Channel, 802.11a 20 MHz, Chain 1	
Plot 7. 26 dB Occupied Bandwidth, Low Channel, 802.11a 20 MHz, Chain 2	12
Plot 8. 26 dB Occupied Bandwidth, Mid Channel, 802.11a 20 MHz, Chain 2	12
Plot 9. 26 dB Occupied Bandwidth, High Channel, 802.11a 20 MHz, Chain 2	
Plot 10. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 20 MHz, Chain 0	
Plot 11. 26 dB Occupied Bandwidth, Mid Channel, 802.11ac 20 MHz, Chain 0	
Plot 12. 26 dB Occupied Bandwidth, High Channel, 802.11ac 20 MHz, Chain 0	
Plot 13. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 20 MHz, Chain 1	
Plot 14. 26 dB Occupied Bandwidth, Mid Channel, 802.11ac 20 MHz, Chain 1	
Plot 15. 26 dB Occupied Bandwidth, High Channel, 802.11ac 20 MHz, Chain 1	
Plot 16. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 20 MHz, Chain 2	
Plot 17. 26 dB Occupied Bandwidth, Mid Channel, 802.11ac 20 MHz, Chain 2	
Plot 18. 26 dB Occupied Bandwidth, High Channel, 802.11ac 20 MHz, Chain 2	
Plot 19. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 40 MHz, Chain 0	
Plot 20. 26 dB Occupied Bandwidth, High Channel, 802.11ac 40 MHz, Chain 0	
Plot 21. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 40 MHz, Chain 1	
Plot 22. 26 dB Occupied Bandwidth, High Channel, 802.11ac 40 MHz, Chain 1	
Plot 23. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 40 MHz, Chain 2	
Plot 24. 26 dB Occupied Bandwidth, High Channel, 802.11ac 40 MHz, Chain 2	
Plot 25. 26 dB Occupied Bandwidth, Channel 149, 802.11ac 80 MHz, Chain 0	
Plot 26. 26 dB Occupied Bandwidth, Channel 149, 802.11ac 80 MHz, Chain 1	
Plot 27. 26 dB Occupied Bandwidth, Channel 149, 802.11ac 80 MHz, Chain 2	
Plot 28. 26 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, Chain 0	
Plot 29. 26 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, Chain 0	20

	26 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, Chain 0	
	26 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, Chain 1	
Plot 32.	26 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, Chain 1	21
Plot 33.	26 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, Chain 1	21
Plot 34.	26 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, Chain 2	22
Plot 35.	26 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, Chain 2	22
Plot 36.	26 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, Chain 2	22
Plot 37.	26 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, Chain 0	23
Plot 38.	26 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, Chain 0	23
Plot 39.	26 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, Chain 1	24
Plot 40.	26 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, Chain 1	24
Plot 41.	26 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, Chain 2	25
	26 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, Chain 2	
	Maximum Conducted Output Power, Low Channel, 802.11a 20 MHz, Chain 0	
	Maximum Conducted Output Power, Mid Channel, 802.11a 20 MHz, Chain 0	
	Maximum Conducted Output Power, High Channel, 802.11a 20 MHz, Chain 0	
	Maximum Conducted Output Power, Low Channel, 802.11a 20 MHz, Chain 1	
	Maximum Conducted Output Power, Mid Channel, 802.11a 20 MHz, Chain 1	
	Maximum Conducted Output Power, High Channel, 802.11a 20 MHz, Chain 1	
Plot 49.	Maximum Conducted Output Power, Low Channel, 802.11a 20 MHz, Chain 2	30
	Maximum Conducted Output Power, Mid Channel, 802.11a 20 MHz, Chain 2	
	Maximum Conducted Output Power, High Channel, 802.11a 20 MHz, Chain 2	
Plot 52.	Maximum Conducted Output Power, Low Channel, 802.11ac 20 MHz, Chain 0	31
Plot 53.	Maximum Conducted Output Power, Mid Channel, 802.11ac 20 MHz, Chain 0	31
	Maximum Conducted Output Power, High Channel, 802.11ac 20 MHz, Chain 0	
	Maximum Conducted Output Power, Low Channel, 802.11ac 20 MHz, Chain 1	
	Maximum Conducted Output Power, Mid Channel, 802.11ac 20 MHz, Chain 1	
	Maximum Conducted Output Power, High Channel, 802.11ac 20 MHz, Chain 1	
Plot 58.	Maximum Conducted Output Power, Low Channel, 802.11ac 20 MHz, Chain 2	33
Plot 59.	Maximum Conducted Output Power, Mid Channel, 802.11ac 20 MHz, Chain 2	33
	Maximum Conducted Output Power, High Channel, 802.11ac 20 MHz, Chain 2	
Plot 61.	Maximum Conducted Output Power, Low Channel, 802.11ac 40 MHz, Chain 0	34 24
Dlot 62	Maximum Conducted Output Power, High Channel, 802.11ac 40 MHz, Chain 1	34 25
	Maximum Conducted Output Power, Low Channel, 802.11ac 40 MHz, Chain 1	
	Maximum Conducted Output Power, High Channel, 802.11ac 40 MHz, Chain 1	
Plot 66	Maximum Conducted Output Power, Low Channel, 802.11ac 40 MHz, Chain 2	30 36
	Maximum Conducted Output Power, Ingli Channel, 802.11ac 40 MHz, Chain 2	
	Maximum Conducted Output Power, Low Channel, 802.11ac 80 MHz, Chain 1	
	Maximum Conducted Output Power, Low Channel, 802.11ac 80 MHz, Chain 2	
Plot 70	Maximum Conducted Output Power, Low Channel, 802.11n 20 MHz, Chain 0	38
	Maximum Conducted Output Power, Mid Channel, 802.11n 20 MHz, Chain 0	
	Maximum Conducted Output Power, High Channel, 802.11n 20 MHz, Chain 0	
	Maximum Conducted Output Power, Low Channel, 802.11n 20 MHz, Chain 1	
	Maximum Conducted Output Power, Mid Channel, 802.11n 20 MHz, Chain 1	
	Maximum Conducted Output Power, High Channel, 802.11n 20 MHz, Chain 1	
	Maximum Conducted Output Power, Low Channel, 802.11n 20 MHz, Chain 2	
	Maximum Conducted Output Power, Mid Channel, 802.11n 20 MHz, Chain 2	
	Maximum Conducted Output Power, High Channel, 802.11n 20 MHz, Chain 2	
	Maximum Conducted Output Power, Low Channel, 802.11n 40 MHz, Chain 0	
	Maximum Conducted Output Power, High Channel, 802.11n 40 MHz, Chain 0	
	Maximum Conducted Output Power, Low Channel, 802.11n 40 MHz, Chain 1	
	Maximum Conducted Output Power, High Channel, 802.11n 40 MHz, Chain 1	
	Maximum Conducted Output Power, Low Channel, 802.11n 40 MHz, Chain 2	
	Maximum Conducted Output Power, High Channel, 802.11n 40 MHz, Chain 2	
	Maximum Peak Spectrum Density, Low Channel, 802.11a 20 MHz, Chain 0	

Plot 86.	Maximum Peak Spectrum Density, Mid Channel, 802.11a 20 MHz, Chain 0	46
	Maximum Peak Spectrum Density, High Channel, 802.11a 20 MHz, Chain 0	
Plot 88.	Maximum Peak Spectrum Density, Low Channel, 802.11a 20 MHz, Chain 1	47
	Maximum Peak Spectrum Density, Mid Channel, 802.11a 20 MHz, Chain 1	
	Maximum Peak Spectrum Density, High Channel, 802.11a 20 MHz, Chain 1	
Plot 91.	Maximum Peak Spectrum Density, Low Channel, 802.11a 20 MHz, Chain 2	48
	Maximum Peak Spectrum Density, Mid Channel, 802.11a 20 MHz, Chain 2	
	Maximum Peak Spectrum Density, High Channel, 802.11a 20 MHz, Chain 2	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 20 MHz, Chain 0	
	Maximum Peak Spectrum Density, Mid Channel, 802.11ac 20 MHz, Chain 0	
	Maximum Peak Spectrum Density, High Channel, 802.11ac 20 MHz, Chain 0	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 20 MHz, Chain 1	
	Maximum Peak Spectrum Density, Mid Channel, 802.11ac 20 MHz, Chain 1	
	Maximum Peak Spectrum Density, High Channel, 802.11ac 20 MHz, Chain 1	
Plot 100	Maximum Peak Spectrum Density, Low Channel, 802.11ac 20 MHz, Chain 2	51
Plot 101	Maximum Peak Spectrum Density, Mid Channel, 802.11ac 20 MHz, Chain 2	51
Plot 102	Maximum Peak Spectrum Density, High Channel, 802.11ac 20 MHz, Chain 2	51
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 40 MHz, Chain 0	
	Maximum Peak Spectrum Density, High Channel, 802.11ac 40 MHz, Chain 0	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 40 MHz, Chain 1	
	Maximum Peak Spectrum Density, High Channel, 802.11ac 40 MHz, Chain 1	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 40 MHz, Chain 2	
	Maximum Peak Spectrum Density, High Channel, 802.11ac 40 MHz, Chain 2	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 80 MHz, Chain 0	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 80 MHz, Chain 1	
	Maximum Peak Spectrum Density, Low Channel, 802.11ac 80 MHz, Chain 2	
	Maximum Peak Spectrum Density, Low Channel, 802.11n 20 MHz, Chain 0	
Plot 112.	Maximum Peak Spectrum Density, Mid Channel, 802.11n 20 MHz, Chain 0	56
Plot 11/	Maximum Peak Spectrum Density, High Channel, 802.11n 20 MHz, Chain 0	56
Dlot 115	Maximum Peak Spectrum Density, Low Channel, 802.11n 20 MHz, Chain 1	50
Plot 116.	Maximum Peak Spectrum Density, Mid Channel, 802.11n 20 MHz, Chain 1	57
	Maximum Peak Spectrum Density, High Channel, 802.11n 20 MHz, Chain 1	
Plot 118	Maximum Peak Spectrum Density, Low Channel, 802.11n 20 MHz, Chain 2	58
	Maximum Peak Spectrum Density, Mid Channel, 802.11n 20 MHz, Chain 2	
	Maximum Peak Spectrum Density, High Channel, 802.11n 20 MHz, Chain 2	
	Maximum Peak Spectrum Density, Low Channel, 802.11n 40 MHz, Chain 0	
	Maximum Peak Spectrum Density, High Channel, 802.11n 40 MHz, Chain 0	
	Maximum Peak Spectrum Density, Low Channel, 802.11n 40 MHz, Chain 1	
	Maximum Peak Spectrum Density, High Channel, 802.11n 40 MHz, Chain 1	
	Maximum Peak Spectrum Density, Low Channel, 802.11n 40 MHz, Chain 2	
	Maximum Peak Spectrum Density, High Channel, 802.11n 40 MHz, Chain 2	
	Radiated Spurious Emissions, Worst Case Emission, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Ingil Chainler, 802.11a 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, How Channel, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Ingil Chainler, 802.11ac 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11ac 40 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Channel 149, 802.11ac 80 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11n 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Mid Channel, 802.11n 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11h 20 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11n 40 MHz, 1 GHz – 7 GHz	
110t 141.	Radiaced Spatious Emissions, Above 1 Unz, filgh Chaimer, 602.1111 40 Minz, 1 Unz – / Unz	09

	Radiated Spurious Emissions, 7 GHz – 18 GHz, Worst Case Emission	
	Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5715 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5715 Edge	
Plot 145.	Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5725 Edge, Integration	71
Plot 146.	Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5725 Edge	72
Plot 147.	Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5715 Edge, Integration	72
	Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5715 Edge	
	Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5725 Edge	
	Radiated Band Edge, High Channel, 802.11a 20 MHz, 5850 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11a 20 MHz, 5850 Edge	
	Radiated Band Edge, High Channel, 802.11a 20 MHz, 5860 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11a 20 MHz, 5860 Edge	
	Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5715 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5715 Edge	
	Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5725 Edge	
	Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5715 Edge, Integration	
Plot 160	Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5715 Edge	76
	Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5715 Edge, Integration	
	Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5725 Edge	
	Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5729 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5850 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5860 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5860 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5715 Edge, Integration	
Plot 168	Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5715 Edge	79
	Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5725 Edge	
	Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5850 Edge, Integration	
Plot 172.	Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5850 Edge	80
	Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5860 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5860 Edge	
	Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5715 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5715 Edge	
	Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5725 Edge	
	Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5715 Edge, Integration	
Plot 180.	Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5715 Edge	84
	Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5725 Edge	
	Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5715 Edge, Integration	
	Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5715 Edge	
	Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5725 Edge	
	Radiated Band Edge, High Channel, 802.11n 20 MHz, 5850 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11n 20 MHz, 5850 Edge	
	Radiated Band Edge, High Channel, 802.11n 20 MHz, 5860 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11n 20 MHz, 5860 Edge	
	Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5705 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5705 Edge	
	Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5715 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5715 Edge	
	Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5725 Edge, Integration	
	Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5725 Edge	
	Radiated Band Edge, High Channel, 802.11n 40 MHz, 5850 Edge, Integration	

Plot 198.	Radiated Band Edge, High Channel, 802.11n 40 MHz, 5850 Edge	. 90
	Radiated Band Edge, High Channel, 802.11n 40 MHz, 5860 Edge, Integration	
	Radiated Band Edge, High Channel, 802.11n 40 MHz, 5860 Edge	
	Conducted Emissions, Phase Line	
	Conducted Emissions, Phase Line	

List of Terms and Abbreviations

10	
AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
$dB\mu V$	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	H ert z
IEC	International Electrotechnical Commission
kHz	Kilohertz
kPa	Kilopascal
kV	Kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	Microhenry
μ	Microfarad
μs	Microseconds
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane
	r c c

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the ARRIS Group, Inc. TG1682G, with the requirements of Part 15, §15.407. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the TG1682G. ARRIS Group, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the TG1682G, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.407, in accordance with ARRIS Group, Inc., purchase order number AR1067910. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference	Description	Results
§15.203	Antenna Requirement	Compliant
§15.403(i)) 26 dB Bandwidth C	
§15.407 (a)(3)	Maximum Conducted Output Power	Compliant
§15.407 (a)(3)	Maximum Power Spectral Density	Compliant
§15.407 (b)(4)& (6 - 7)	Undesirable Emissions	Compliant
§15.407(b)(6)	Conducted Emission Limits	Compliant
§15.407(f)	RF Exposure	Compliant

Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by ARRIS Group, Inc. to perform testing on the TG1682G, under ARRIS Group, Inc.'s purchase order number AR1067910.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the ARRIS Group, Inc. TG1682G.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	TG1682G		
Model(s) Covered:	TG1682G		
	Primary Power: 120 VAC, 60 Hz		
	FCC ID: UIDTG1682-3		
EUT	Type of Modulations:	OFDM, MCS, MNSS	
Specifications:	Equipment Code:	NII	
	Max. RF Output Power:	28.11 dBm	
	EUT Frequency Ranges:	5745-MHz-5825MHz	
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Surinder Singh		
Report Date(s):	December 17, 2015		

Table 2. EUT Summary

B. References

CFR 47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices (UNII)	
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 914 W Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The ARRIS Group, Inc. TG1682G, Equipment Under Test (EUT), is a DOCSIS® 3.0 Dual Band Concurrent 802.11ac Wireless Telephony Gateway with MoCA®2.0.

Figure 1. Block Diagram of Test Configuration

Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Part Number	Serial Number	Revision
4	UUT	TG1682G			

Table 4. Equipment Configuration

E. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number
2s	Laptop	Assorted	N/A

Table 5. Support Equipment

F. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
2C	Ethernet	5e Modular 8 pin	1	1	No	
3C	AC Input	2 conductor, 18 AWG	1	2	No	(115v/60Hz)

Table 6. Ports and Cabling Information

G. Mode of Operation

The provided instructions and software will configure the unit for operation at each required test mode.

H. Method of Monitoring EUT Operation

All indicator lights are active and pinging constantly through system, both Wi-Fi 2.4G and 5 G passing traffic.

I. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

J. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to ARRIS Group, Inc. upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203. The EUT has an internal antenna.

Test Engineer(s): Surinder Singh

Test Date(s): 10/05/15

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 403(i) 26 dB Bandwidth

Test Requirements:

§ 15.403(i): For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

Test Procedure:

The transmitter was set to low, mid, and high operating frequencies at the highest output power and connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth, VBW > RBW. The 26 dB Bandwidth was measured and recorded.

Test Results The 26 dB Bandwidth was compliant with the requirements of this section.

Test Engineer(s): Surinder Singh

Test Date(s): 10/24/15

26 dB Occupied Bandwidth, 802.11a 20 MHz, Chain 0

Plot 1. 26 dB Occupied Bandwidth, Low Channel, 802.11a 20 MHz, Chain 0

Plot 2. 26 dB Occupied Bandwidth, Mid Channel, 802.11a 20 MHz, Chain 0

Plot 3. 26 dB Occupied Bandwidth, High Channel, 802.11a 20 MHz, Chain 0

26 dB Occupied Bandwidth, 802.11a 20 MHz, Chain 1

Plot 4. 26 dB Occupied Bandwidth, Low Channel, 802.11a 20 MHz, Chain 1

Plot 5. 26 dB Occupied Bandwidth, Mid Channel, 802.11a 20 MHz, Chain 1

Plot 6. 26 dB Occupied Bandwidth, High Channel, 802.11a 20 MHz, Chain 1

26 dB Occupied Bandwidth, 802.11a 20 MHz, Chain 2

Plot 7. 26 dB Occupied Bandwidth, Low Channel, 802.11a 20 MHz, Chain 2

Plot 8. 26 dB Occupied Bandwidth, Mid Channel, 802.11a 20 MHz, Chain 2

Plot 9. 26 dB Occupied Bandwidth, High Channel, 802.11a 20 MHz, Chain 2

26 dB Occupied Bandwidth, 802.11ac 20 MHz, Chain 0

Plot 10. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 20 MHz, Chain 0

Plot 11. 26 dB Occupied Bandwidth, Mid Channel, 802.11ac 20 MHz, Chain 0

Plot 12. 26 dB Occupied Bandwidth, High Channel, 802.11ac 20 MHz, Chain 0

26 dB Occupied Bandwidth, 802.11ac 20 MHz, Chain 1

Plot 13. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 20 MHz, Chain 1

Plot 14. 26 dB Occupied Bandwidth, Mid Channel, 802.11ac 20 MHz, Chain 1

Plot 15. 26 dB Occupied Bandwidth, High Channel, 802.11ac 20 MHz, Chain 1

26 dB Occupied Bandwidth, 802.11ac 20 MHz, Chain 2

Plot 16. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 20 MHz, Chain 2

Plot 17. 26 dB Occupied Bandwidth, Mid Channel, 802.11ac 20 MHz, Chain 2

Plot 18. 26 dB Occupied Bandwidth, High Channel, 802.11ac 20 MHz, Chain 2

26 dB Occupied Bandwidth, 802.11ac 40 MHz, Chain 0

Plot 19. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 40 MHz, Chain 0

Plot 20. 26 dB Occupied Bandwidth, High Channel, 802.11ac 40 MHz, Chain 0

26 dB Occupied Bandwidth, 802.11ac 40 MHz, Chain 1

Plot 21. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 40 MHz, Chain 1

Plot 22. 26 dB Occupied Bandwidth, High Channel, 802.11ac 40 MHz, Chain 1

26 dB Occupied Bandwidth, 802.11ac 40 MHz, Chain 2

Plot 23. 26 dB Occupied Bandwidth, Low Channel, 802.11ac 40 MHz, Chain 2

Plot 24. 26 dB Occupied Bandwidth, High Channel, 802.11ac 40 MHz, Chain 2

26 dB Occupied Bandwidth, 802.11ac 80 MHz

Plot 25. 26 dB Occupied Bandwidth, Channel 149, 802.11ac 80 MHz, Chain 0

Plot 26. 26 dB Occupied Bandwidth, Channel 149, 802.11ac 80 MHz, Chain 1

Plot 27. 26 dB Occupied Bandwidth, Channel 149, 802.11ac 80 MHz, Chain 2

26 dB Occupied Bandwidth, 802.11n 20 MHz, Chain 0

Plot 28. 26 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, Chain 0

Plot 29. 26 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, Chain 0

Plot 30. 26 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, Chain 0

26 dB Occupied Bandwidth, 802.11n 20 MHz, Chain 1

Plot 31. 26 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, Chain 1

Plot 32. 26 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, Chain 1

Plot 33. 26 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, Chain 1

26 dB Occupied Bandwidth, 802.11n 20 MHz, Chain 2

Plot 34. 26 dB Occupied Bandwidth, Low Channel, 802.11n 20 MHz, Chain 2

Plot 35. 26 dB Occupied Bandwidth, Mid Channel, 802.11n 20 MHz, Chain 2

Plot 36. 26 dB Occupied Bandwidth, High Channel, 802.11n 20 MHz, Chain 2

26 dB Occupied Bandwidth, 802.11n 40 MHz, Chain 0

Plot 37. 26 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, Chain 0

Plot 38. 26 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, Chain 0

26 dB Occupied Bandwidth, 802.11n 40 MHz, Chain 1

Plot 39. 26 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, Chain 1

Plot 40. 26 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, Chain 1

26 dB Occupied Bandwidth, 802.11n 40 MHz, Chain 2

Plot 41. 26 dB Occupied Bandwidth, Low Channel, 802.11n 40 MHz, Chain 2

Plot 42. 26 dB Occupied Bandwidth, High Channel, 802.11n 40 MHz, Chain 2

Electromagnetic Compatibility Criteria for Intentional Radiators

§15. 407(a)(3) Maximum Conducted Output Power

Test Requirements: §15.407(a)(3): For the band 5.725-5.85 GHz, the maximum conducted output power over the

frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Test Procedure: The EUT was connected to a spectrum analyzer through a cable and attenuator. Measurements

were taken with the EUT set to transmit continuously on its low, mid, and high channels. Its power was measured according to measurement method SA-1, as described in 789033 D02

General UNII Test Procedures v01.

Test Results: The EUT as tested is compliant with the requirements of this section.

Test Engineer(s): Surinder Singh

Test Date(s): 10/24/15

	Maximum Conducted Output Power 20MHz Band 802.11a/n/ac Mode MIMO (3*3) (dBm)										
Chanel Carrier	Frequency MHz	Measured Peak Output Power (dBm) / 20MHz Ant 0	Output Power (dBm) / 20MHz Ant 1	Output Power (dBm) / 20MHz Ant 2	Mode	Total Output Power (dBm)	Antenna Gain (dB)	Power Limit (dBm)	Margin (dB)		
149	5745	19.45	19.38	20.37	a	24.53	7.37	28.63	-4.1		
157	5785	19.28	20.77	21.33	a	25.31	7.37	28.63	-3.32		
165	5825	20.22	20.52	20.8	a	25.29	7.37	28.63	-3.34		
149	5745	21.17	19.55	19.5	n	24.92	2.4	30	-5.08		
157	5785	22.96	23.26	23.75	n	28.11	2.4	30	-1.89		
165	5825	22.12	22.48	23.56	n	27.54	2.4	30	-2.46		
149	5745	19.93	19.93	20.82	ac	25.02	2.4	30	-4.98		
157	5785	22.27	23.32	24.1	ac	28.07	2.4	30	-1.93		
165	5825	21.83	22.52	23.45	ac	27.42	2.4	30	-2.58		

Table 7. Conducted Output Power, 802.11a/ac/n 20 MHz

	Maximum Conducted Output Power 40MHz Band 11n/ac mode MIMO (3*3) (dBm)										
Chanel Carrier	Frequency MHz	Measured Peak Output Power (dBm) / 20MHz Ant 0	Output Power (dBm) / 20MHz Ant 1	Output Power (dBm) / 20MHz Ant 2	Mode	Total Output Power (dBm)	Antenna Gain (dB)	Power Limit (dBm)	Margin (dB)		
149	5755	17.82	19.3	18.51	n	23.36	2.4	30	-6.64		
149	5755	18.58	17.3	18.74	ac	23.02	2.4	30	-6.98		
157	5795	22.88	22.29	23.38	n	27.64	2.4	30	-2.36		
157	5795	22.92	22.2	22.95	ac	27.47	2.4	30	-2.53		

Table 8. Conducted Output Power, 802.11ac/n 40 MHz

	Maximum Conducted Output Power 80MHz Band 802.11ac mode MIMO (3*3) (dBm)										
Chanel Carrier	Frequency MHz	Output Power (dBm) / 80MHz Ant 0	Output Power (dBm) / 80MHz Ant 1	Output Power (dBm) / 80MHz Ant 2	Total Output Power (dBm)	Antenna Gain (dB)	Power Limit (dBm)	Margin (dB)			
149	5775	16.86	17.07	17.72	22.00	2.4	30	-8.00			

Table 9. Conducted Output Power, 802.11ac 80 MHz

Maximum Conducted Output Power, 802.11a 20 MHz, Chain 0

Plot 43. Maximum Conducted Output Power, Low Channel, 802.11a 20 MHz, Chain 0

Plot 44. Maximum Conducted Output Power, Mid Channel, 802.11a 20 MHz, Chain 0

Plot 45. Maximum Conducted Output Power, High Channel, 802.11a 20 MHz, Chain 0

Maximum Conducted Output Power, 802.11a 20 MHz, Chain 1

Plot 46. Maximum Conducted Output Power, Low Channel, 802.11a 20 MHz, Chain 1

Plot 47. Maximum Conducted Output Power, Mid Channel, 802.11a 20 MHz, Chain 1

Plot 48. Maximum Conducted Output Power, High Channel, 802.11a 20 MHz, Chain 1

Maximum Conducted Output Power, 802.11a 20 MHz, Chain 2

Plot 49. Maximum Conducted Output Power, Low Channel, 802.11a 20 MHz, Chain 2

Plot 50. Maximum Conducted Output Power, Mid Channel, 802.11a 20 MHz, Chain 2

Plot 51. Maximum Conducted Output Power, High Channel, 802.11a 20 MHz, Chain 2

Maximum Conducted Output Power, 802.11ac 20 MHz, Chain 0

Plot 52. Maximum Conducted Output Power, Low Channel, 802.11ac 20 MHz, Chain 0

Plot 53. Maximum Conducted Output Power, Mid Channel, 802.11ac 20 MHz, Chain 0

Plot 54. Maximum Conducted Output Power, High Channel, 802.11ac 20 MHz, Chain 0

Maximum Conducted Output Power, 802.11ac 20 MHz, Chain 1

Plot 55. Maximum Conducted Output Power, Low Channel, 802.11ac 20 MHz, Chain 1

Plot 56. Maximum Conducted Output Power, Mid Channel, 802.11ac 20 MHz, Chain 1

Plot 57. Maximum Conducted Output Power, High Channel, 802.11ac 20 MHz, Chain 1

Maximum Conducted Output Power, 802.11ac 20 MHz, Chain 2

Plot 58. Maximum Conducted Output Power, Low Channel, 802.11ac 20 MHz, Chain 2

Plot 59. Maximum Conducted Output Power, Mid Channel, 802.11ac 20 MHz, Chain 2

Plot 60. Maximum Conducted Output Power, High Channel, 802.11ac 20 MHz, Chain 2

Maximum Conducted Output Power, 802.11ac 40 MHz, Chain 0

Plot 61. Maximum Conducted Output Power, Low Channel, 802.11ac 40 MHz, Chain 0

Plot 62. Maximum Conducted Output Power, High Channel, 802.11ac 40 MHz, Chain 0

Maximum Conducted Output Power, 802.11ac 40 MHz, Chain 1

Plot 63. Maximum Conducted Output Power, Low Channel, 802.11ac 40 MHz, Chain 1

Plot 64. Maximum Conducted Output Power, High Channel, 802.11ac 40 MHz, Chain 1

Maximum Conducted Output Power, 802.11ac 40 MHz, Chain 2

Plot 65. Maximum Conducted Output Power, Low Channel, 802.11ac 40 MHz, Chain 2

Plot 66. Maximum Conducted Output Power, High Channel, 802.11ac 40 MHz, Chain 2

Maximum Conducted Output Power, 802.11ac 80 MHz

Plot 67. Maximum Conducted Output Power, Low Channel, 802.11ac 80 MHz, Chain 0

Plot 68. Maximum Conducted Output Power, Low Channel, 802.11ac 80 MHz, Chain 1

Plot 69. Maximum Conducted Output Power, Low Channel, 802.11ac 80 MHz, Chain 2

Maximum Conducted Output Power, 802.11n 20 MHz, Chain 0

Plot 70. Maximum Conducted Output Power, Low Channel, 802.11n 20 MHz, Chain 0

Plot 71. Maximum Conducted Output Power, Mid Channel, 802.11n 20 MHz, Chain 0

Plot 72. Maximum Conducted Output Power, High Channel, 802.11n 20 MHz, Chain 0

Maximum Conducted Output Power, 802.11n 20 MHz, Chain 1

Plot 73. Maximum Conducted Output Power, Low Channel, 802.11n 20 MHz, Chain 1

Plot 74. Maximum Conducted Output Power, Mid Channel, 802.11n 20 MHz, Chain 1

Plot 75. Maximum Conducted Output Power, High Channel, 802.11n 20 MHz, Chain 1

Maximum Conducted Output Power, 802.11n 20 MHz, Chain 2

Plot 76. Maximum Conducted Output Power, Low Channel, 802.11n 20 MHz, Chain 2

Plot 77. Maximum Conducted Output Power, Mid Channel, 802.11n 20 MHz, Chain 2

Plot 78. Maximum Conducted Output Power, High Channel, 802.11n 20 MHz, Chain 2

Maximum Conducted Output Power, 802.11n 40 MHz, Chain 0

Plot 79. Maximum Conducted Output Power, Low Channel, 802.11n 40 MHz, Chain 0

Plot 80. Maximum Conducted Output Power, High Channel, 802.11n 40 MHz, Chain 0

Maximum Conducted Output Power, 802.11n 40 MHz, Chain 1

Plot 81. Maximum Conducted Output Power, Low Channel, 802.11n 40 MHz, Chain 1

Plot 82. Maximum Conducted Output Power, High Channel, 802.11n 40 MHz, Chain 1

Maximum Conducted Output Power, 802.11n 40 MHz, Chain 2

Plot 83. Maximum Conducted Output Power, Low Channel, 802.11n 40 MHz, Chain 2

Plot 84. Maximum Conducted Output Power, High Channel, 802.11n 40 MHz, Chain 2

Electromagnetic Compatibility Criteria for Intentional Radiators

§15.407(a)(3) Maximum Power Spectral Density

Test Requirements: §15.407(a)(3): In addition, the maximum power spectral density shall not exceed 30 dBm in any

500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Test Procedure: The EUT was connected to a spectrum analyzer through a cable and attenuator. Measurements

were taken with the EUT set to transmit continuously on its low, mid, and high channels. Its power was measured according KDB 789033 D02 General UNII Test Procedures v01. A 1 MHz

RBW was used during testing, as this provides a worst-case scenario.

Test Results: The EUT as tested is compliant with the requirements of this section.

Test Engineer(s): Surinder Singh

Test Date(s): 10/24/15

	Maximum Conducted Output Power 20MHz Band 802.11a/n/ac Mode MIMO (3*3) (dBm)										
Chanel Carrier	Frequency MHz	Measured Peak Output Power (dBm) / 20MHz Ant 0	Output Power (dBm) / 20MHz Ant 1	Output Power (dBm) / 20MHz Ant 2	Mode	Total Output Power (dBm)	Antenna Gain (dB)	Power Limit (dBm)	Margin (dB)		
149	5745	8.802	8.426	8.84	a	13.46	7.37	28.63	-15.17		
157	5785	9.048	9.226	9.979	a	14.21	7.37	28.63	-14.42		
165	5825	9.321	9.223	10.67	a	14.56	7.37	28.63	-14.07		
149	5745	9.69	8.17	9.73	n	14.03	2.4	30	-15.97		
157	5785	11.6	11.56	12.3	n	16.6	2.4	30	-13.4		
165	5825	10.64	11.34	12.24	n	16.23	2.4	30	-13.77		
149	5745	8.21	7.593	8.606	ac	12.93	2.4	30	-17.07		
157	5785	11.65	11.24	12.31	ac	16.53	2.4	30	-13.47		
165	5825	10.42	11.07	11.82	ac	16.22	2.4	30	-13.78		

Table 10. Peak Spectrum Density, 802.11a/ac/n 20 MHz

	Maximum Conducted Output Power 40MHz Band 11n/ac mode MIMO (3*3) (dBm)										
Chanel Carrier	Frequency MHz	Measured Peak Output Power (dBm) / 20MHz Ant 0	Output Power (dBm) / 20MHz Ant 1	Output Power (dBm) / 20MHz Ant 2	Mode	Total Output Power (dBm)	Antenna Gain (dB)	Power Limit (dBm)	Margin (dB)		
149	5755	3.7	4.98	4.08	n	9.06	2.4	30	-20.94		
149	5755	3.89	2.65	4.1	ac	8.36	2.4	30	-21.64		
157	5795	8.25	7.77	8.92	n	13.11	2.4	30	-16.89		
157	5795	8.36	7.7	8.3	ac	12.90	2.4	30	-17.10		

Table 11. Peak Spectrum Density, 802.11ac/n 40 MHz

	Maximum Conducted Output Power 80MHz Band 802.11ac mode MIMO (3*3) (dBm)										
Chanel Carrier	Frequency MHz	- '		Total Output Power (dBm)	Antenna Gain (dB)	Power Limit (dBm)	Margin (dB)				
149	5775	0.306	0.147	0.07	4.95	2.4	30	-25.05			

Table 12. Peak Spectrum Density, 802.11ac 80 MHz

Maximum Peak Spectrum Density, 802.11a 20 MHz, Chain 0

Plot 85. Maximum Peak Spectrum Density, Low Channel, 802.11a 20 MHz, Chain 0

Plot 86. Maximum Peak Spectrum Density, Mid Channel, 802.11a 20 MHz, Chain 0

Plot 87. Maximum Peak Spectrum Density, High Channel, 802.11a 20 MHz, Chain 0

Maximum Peak Spectrum Density, 802.11a 20 MHz, Chain 1

Plot 88. Maximum Peak Spectrum Density, Low Channel, 802.11a 20 MHz, Chain 1

Plot 89. Maximum Peak Spectrum Density, Mid Channel, 802.11a 20 MHz, Chain 1

Plot 90. Maximum Peak Spectrum Density, High Channel, 802.11a 20 MHz, Chain 1

Maximum Peak Spectrum Density, 802.11a 20 MHz, Chain 2

Plot 91. Maximum Peak Spectrum Density, Low Channel, 802.11a 20 MHz, Chain 2

Plot 92. Maximum Peak Spectrum Density, Mid Channel, 802.11a 20 MHz, Chain 2

Plot 93. Maximum Peak Spectrum Density, High Channel, 802.11a 20 MHz, Chain 2

Maximum Peak Spectrum Density, 802.11ac 20 MHz, Chain 0

Plot 94. Maximum Peak Spectrum Density, Low Channel, 802.11ac 20 MHz, Chain 0

Plot 95. Maximum Peak Spectrum Density, Mid Channel, 802.11ac 20 MHz, Chain 0

Plot 96. Maximum Peak Spectrum Density, High Channel, 802.11ac 20 MHz, Chain 0

Maximum Peak Spectrum Density, 802.11ac 20 MHz, Chain 1

Plot 97. Maximum Peak Spectrum Density, Low Channel, 802.11ac 20 MHz, Chain 1

Plot 98. Maximum Peak Spectrum Density, Mid Channel, 802.11ac 20 MHz, Chain 1

Plot 99. Maximum Peak Spectrum Density, High Channel, 802.11ac 20 MHz, Chain 1

Maximum Peak Spectrum Density, 802.11ac 20 MHz, Chain 2

Plot 100. Maximum Peak Spectrum Density, Low Channel, 802.11ac 20 MHz, Chain 2

Plot 101. Maximum Peak Spectrum Density, Mid Channel, 802.11ac 20 MHz, Chain 2

Plot 102. Maximum Peak Spectrum Density, High Channel, 802.11ac 20 MHz, Chain 2

Maximum Peak Spectrum Density, 802.11ac 40 MHz, Chain 0

Plot 103. Maximum Peak Spectrum Density, Low Channel, 802.11ac 40 MHz, Chain 0

Plot 104. Maximum Peak Spectrum Density, High Channel, 802.11ac 40 MHz, Chain 0

Maximum Peak Spectrum Density, 802.11ac 40 MHz, Chain 1

Plot 105. Maximum Peak Spectrum Density, Low Channel, 802.11ac 40 MHz, Chain 1

Plot 106. Maximum Peak Spectrum Density, High Channel, 802.11ac 40 MHz, Chain 1

Maximum Peak Spectrum Density, 802.11ac 40 MHz, Chain 2

Plot 107. Maximum Peak Spectrum Density, Low Channel, 802.11ac 40 MHz, Chain 2

Plot 108. Maximum Peak Spectrum Density, High Channel, 802.11ac 40 MHz, Chain 2

Maximum Peak Spectrum Density, 802.11ac 80 MHz

Plot 109. Maximum Peak Spectrum Density, Low Channel, 802.11ac 80 MHz, Chain 0

Plot 110. Maximum Peak Spectrum Density, Low Channel, 802.11ac 80 MHz, Chain 1

Plot 111. Maximum Peak Spectrum Density, Low Channel, 802.11ac 80 MHz, Chain 2

Maximum Peak Spectrum Density, 802.11n 20 MHz, Chain 0

Plot 112. Maximum Peak Spectrum Density, Low Channel, 802.11n 20 MHz, Chain 0

Plot 113. Maximum Peak Spectrum Density, Mid Channel, 802.11n 20 MHz, Chain 0

Plot 114. Maximum Peak Spectrum Density, High Channel, 802.11n 20 MHz, Chain 0

Maximum Peak Spectrum Density, 802.11n 20 MHz, Chain 1

Plot 115. Maximum Peak Spectrum Density, Low Channel, 802.11n 20 MHz, Chain 1

Plot 116. Maximum Peak Spectrum Density, Mid Channel, 802.11n 20 MHz, Chain 1

Plot 117. Maximum Peak Spectrum Density, High Channel, 802.11n 20 MHz, Chain 1

Maximum Peak Spectrum Density, 802.11n 20 MHz, Chain 2

Plot 118. Maximum Peak Spectrum Density, Low Channel, 802.11n 20 MHz, Chain 2

Plot 119. Maximum Peak Spectrum Density, Mid Channel, 802.11n 20 MHz, Chain 2

Plot 120. Maximum Peak Spectrum Density, High Channel, 802.11n 20 MHz, Chain 2

Maximum Peak Spectrum Density, 802.11n 40 MHz, Chain 0

Plot 121. Maximum Peak Spectrum Density, Low Channel, 802.11n 40 MHz, Chain 0

Plot 122. Maximum Peak Spectrum Density, High Channel, 802.11n 40 MHz, Chain 0

Maximum Peak Spectrum Density, 802.11n 40 MHz, Chain 1

Plot 123. Maximum Peak Spectrum Density, Low Channel, 802.11n 40 MHz, Chain 1

Plot 124. Maximum Peak Spectrum Density, High Channel, 802.11n 40 MHz, Chain 1

Maximum Peak Spectrum Density, 802.11n 40 MHz, Chain 2

Plot 125. Maximum Peak Spectrum Density, Low Channel, 802.11n 40 MHz, Chain 2

Plot 126. Maximum Peak Spectrum Density, High Channel, 802.11n 40 MHz, Chain 2

Electromagnetic Compatibility Criteria for Intentional Radiators

$\S15.407(b)(4) \& (6-7)$ Undesirable Emissions

Test Requirements:

§ 15.407(b)(4): For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

§ 15.407(b)(6): Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.

§ 15.407(b)(7): The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Test Procedure:

The EUT was placed on a non-conducting stand on a turntable in a chamber. To find the maximum emission the EUT was set to transmit on low, mid, and high channels. Additionally, the turntable was rotated 360 degrees, the EUT was oriented through its three orthogonal axes, and the receive antenna height was varied in order to maximize emissions.

For frequencies from 30 MHz to 1 GHz, measurements were first made using a peak detector with a 100 kHz resolution bandwidth. Emissions which exceeded the limits were re-measured using a quasi-peak detector with a 120 kHz resolution bandwidth.

Above 1 GHz, measurements were made pursuant the method described in FCC KDB 789033 D02 General UNII Test Procedure New Rules v01. The equation, **EIRP=E+20 log D-104.8** was used to convert field strength to EIRP (**E** = field strength (dB μ V/m) and **D** = Reference measurement distance).

For emissions above 1 GHz and in restricted bands, measurements of the field strength were made with a peak detector and an average detector and compared with the limits of 15.209.

As an alternative, according to FCC KDB 789033 D02 General UNII Test Procedure New Rules v01, all emissions above 1 GHz that comply with the peak and average limits of 15.209 satisfy the requirements of unwanted emissions in 15.407.

Test Results: For

For below 1 GHz, the EUT was compliant with the requirements of this section.

For above 1 GHz, the EUT was compliant with the requirements of this section.

Test Engineer(s):

Surinder Singh

Test Date(s):

10/24/15

Radiated Spurious Emissions, Below 1 GHz

Plot 127. Radiated Spurious Emissions, Worst Case Emission, 30 MHz – 1 GHz

Radiated Spurious Emissions, Above 1 GHz, 802.11a 20 MHz

Plot 128. Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11a 20 MHz, 1 GHz - 7 GHz

Plot 129. Radiated Spurious Emissions, Above 1 GHz, Mid Channel, 802.11a 20 MHz, 1 GHz - 7 GHz

Plot 130. Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11a 20 MHz, 1 GHz - 7 GHz

Radiated Spurious Emissions, Above 1 GHz, 802.11ac 20 MHz

Plot 131. Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11ac 20 MHz, 1 GHz – 7 GHz

Plot 132. Radiated Spurious Emissions, Above 1 GHz, Mid Channel, 802.11ac 20 MHz, 1 GHz - 7 GHz

Plot 133. Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11ac 20 MHz, 1 GHz - 7 GHz

Radiated Spurious Emissions, Above 1 GHz, 802.11ac 40 MHz

Plot 134. Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11ac 40 MHz, 1 GHz - 7 GHz

Plot 135. Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11ac 40 MHz, 1 GHz - 7 GHz

Radiated Spurious Emissions, Above 1 GHz, 802.11ac 80 MHz

Plot 136. Radiated Spurious Emissions, Above 1 GHz, Channel 149, 802.11ac 80 MHz, 1 GHz - 7 GHz

Radiated Spurious Emissions, Above 1 GHz, 802.11n 20 MHz

Plot 137. Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11n 20 MHz, 1 GHz - 7 GHz

Plot 138. Radiated Spurious Emissions, Above 1 GHz, Mid Channel, 802.11n 20 MHz, 1 GHz - 7 GHz

Plot 139. Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11n 20 MHz, 1 GHz - 7 GHz

Radiated Spurious Emissions, Above 1 GHz, 802.11n 40 MHz

Plot 140. Radiated Spurious Emissions, Above 1 GHz, Low Channel, 802.11n 40 MHz, 1 GHz - 7 GHz

Plot 141. Radiated Spurious Emissions, Above 1 GHz, High Channel, 802.11n 40 MHz, 1 GHz - 7 GHz

Radiated Spurious Emissions, Above 1 GHz

Plot 142. Radiated Spurious Emissions, 7 GHz – 18 GHz, Worst Case Emission

Radiated Band Edge, 802.11a 20 MHz

Plot 143. Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5715 Edge, Integration

Plot 144. Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5715 Edge

Plot 145. Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5725 Edge, Integration

Plot 146. Radiated Band Edge, Low Channel, 802.11a 20 MHz, 5725 Edge

Plot 147. Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5715 Edge, Integration

Plot 148. Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5715 Edge

Plot 149. Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5725 Edge, Integration

Plot 150. Radiated Band Edge, Mid Channel, 802.11a 20 MHz, 5725 Edge

Plot 151. Radiated Band Edge, High Channel, 802.11a 20 MHz, 5850 Edge, Integration

Plot 152. Radiated Band Edge, High Channel, 802.11a 20 MHz, 5850 Edge

Plot 153. Radiated Band Edge, High Channel, 802.11a 20 MHz, 5860 Edge, Integration

Plot 154. Radiated Band Edge, High Channel, 802.11a 20 MHz, 5860 Edge

Radiated Band Edge, 802.11ac 20 MHz

Plot 155. Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5715 Edge, Integration

Plot 156. Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5715 Edge

Plot 157. Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5725 Edge, Integration

Plot 158. Radiated Band Edge, Low Channel, 802.11ac 20 MHz, 5725 Edge

Plot 159. Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5715 Edge, Integration

Plot 160. Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5715 Edge

Plot 161. Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5725 Edge, Integration

Plot 162. Radiated Band Edge, Mid Channel, 802.11ac 20 MHz, 5725 Edge

Plot 163. Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5850 Edge, Integration

Plot 164. Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5850 Edge

Plot 165. Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5860 Edge, Integration

Plot 166. Radiated Band Edge, High Channel, 802.11ac 20 MHz, 5860 Edge

Radiated Band Edge, 802.11ac 40 MHz

Plot 167. Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5715 Edge, Integration

Plot 168. Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5715 Edge

Plot 169. Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5725 Edge, Integration

Plot 170. Radiated Band Edge, Low Channel, 802.11ac 40 MHz, 5725 Edge

Plot 171. Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5850 Edge, Integration

Plot 172. Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5850 Edge

Plot 173. Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5860 Edge, Integration

Plot 174. Radiated Band Edge, High Channel, 802.11ac 40 MHz, 5860 Edge

Radiated Band Edge, 802.11ac 80 MHz

Plot 175. Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5715 Edge, Integration

Plot 176. Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5715 Edge

Plot 177. Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5725 Edge, Integration

Plot 178. Radiated Band Edge, Low Channel, 802.11ac 80 MHz, 5725 Edge

Radiated Band Edge, 802.11n 20 MHz

Plot 179. Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5715 Edge, Integration

Plot 180. Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5715 Edge

Plot 181. Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5725 Edge, Integration

Plot 182. Radiated Band Edge, Low Channel, 802.11n 20 MHz, 5725 Edge

Plot 183. Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5715 Edge, Integration

Plot 184. Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5715 Edge

Plot 185. Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5725 Edge, Integration

Plot 186. Radiated Band Edge, Mid Channel, 802.11n 20 MHz, 5725 Edge

Plot 187. Radiated Band Edge, High Channel, 802.11n 20 MHz, 5850 Edge, Integration

Plot 188. Radiated Band Edge, High Channel, 802.11n 20 MHz, 5850 Edge

Plot 189. Radiated Band Edge, High Channel, 802.11n 20 MHz, 5860 Edge, Integration

Plot 190. Radiated Band Edge, High Channel, 802.11n 20 MHz, 5860 Edge

Radiated Band Edge, 802.11n 40 MHz

Plot 191. Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5705 Edge, Integration

Plot 192. Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5705 Edge

Plot 193. Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5715 Edge, Integration

Plot 194. Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5715 Edge

Plot 195. Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5725 Edge, Integration

Plot 196. Radiated Band Edge, Low Channel, 802.11n 40 MHz, 5725 Edge

Plot 197. Radiated Band Edge, High Channel, 802.11n 40 MHz, 5850 Edge, Integration

Plot 198. Radiated Band Edge, High Channel, 802.11n 40 MHz, 5850 Edge

Plot 199. Radiated Band Edge, High Channel, 802.11n 40 MHz, 5860 Edge, Integration

Plot 200. Radiated Band Edge, High Channel, 802.11n 40 MHz, 5860 Edge

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(b)(6) Conducted Emissions

Test Requirement(s):

§ 15.407 (b)(6): Any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Σ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBμV)					
(MHz)	Quasi-Peak	Average				
* 0.15- 0.45	66 – 56	56 - 46				
0.45 - 0.5	56	46				
0.5 - 30	60	50				

Table 13. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure:

The EUT was placed on a non-metallic table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2014 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". Scans were performed with the transmitter on.

Test Results: The EUT was compliant with requirements of this section.

Test Engineer(s): Surinder Singh

Test Date(s): 06/12/15

Frequency (MHz)	Uncorrected Meter Reading (dBµV) QP	Cable Loss (dB)	Corrected Measurement (dBµV) QP	Limit (dBµV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBµV) Avg.	Cable Loss (dB)	Corrected Measurement (dBµV) AVG	Limit (dBµV) AVG	Margin (dB) AVG
0.155	57.21	0	57.21	65.73	-8.52	34.31	0	34.31	55.73	-21.42
0.518	34.28	0	34.28	56	-21.72	35.89	0	35.89	46	-10.11
3.34	28.66	0	28.66	56	-27.34	21.88	0	21.88	46	-24.12
5.65	26.87	0.17	27.04	60	-32.96	20.45	0.17	20.62	50	-29.38
19.95	53.17	0	53.17	60	-6.83	47.24	0	47.24	50	-2.76
20.02	53.61	0	53.61	60	-6.39	47.45	0	47.45	50	-2.55

Table 14. Conducted Emissions, Test Results, Phase Line

Plot 201. Conducted Emissions, Phase Line

Frequency (MHz)	Uncorrected Meter Reading (dBµV) QP	Cable Loss (dB)	Corrected Measurement (dBµV) QP	Limit (dBµV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBµV) Avg.	Cable Loss (dB)	Corrected Measurement (dBµV) AVG	Limit (dBµV) AVG	Margin (dB) AVG
0.15	48.57	0	48.57	66	-17.43	29.64	0	29.64	56	-26.36
0.714	32.64	0	32.64	56	-23.36	22.6	0	22.6	46	-23.4
2.25	30.52	0	30.52	56	-25.48	22.12	0	22.12	46	-23.88
5.125	28.53	0	28.53	60	-31.47	21.32	0	21.32	50	-28.68
19.53	53.74	0	53.74	60	-6.26	48.55	0	48.55	50	-1.45
20.3	54.49	0	54.49	60	-5.51	49.14	0	49.14	50	-0.86

Table 15. Conducted Emissions, Test Results, Neutral Line

Plot 202. Conducted Emissions, Phase Line

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(f) RF Exposure

Test Requirement(s): §15.407(f): U-NII devices are subject to the radio frequency radiation exposure

requirements specified in §1.1307(b), §2.1091 and §2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general

population/uncontrolled" environment.

RF Exposure Requirements: $\S 1.1307(b)(1)$ and $\S 1.1307(b)(2)$: Systems operating under the provisions of this

section shall be operated in a manner that ensures that the public is not exposed to

radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE)

Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of

this chapter.

MPE Limit Calculation: EUT's operating frequencies @ 5745-5825 MHz; Limit for Uncontrolled

exposure: 1 mW/cm² or 10 W/m²

Equation from page 18 of OET 65, Edition 97-01

Case 1:

Output Power = 28.11dBm

Antenna Gain = 5.9 dBi

Power density is equal to 0.224mW/cm².

At a distance of 20 cm.

Case 2:

Output Power = 25.31dBm

Antenna Gain = 10.67 dBi

Power density is equal to 0.369mW/cm^2.

At a distance of 20 cm.

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date	
1T4300A	SEMI-ANECHOIC CHAMBER # 1 (FCC)	EMC TEST SYSTEMS	NONE	1/31/2014	1/31/2017	
1T4751	Antenna - Bilog	Sunol Sciences	JB6	7/29/2014	1/29/2016	
1T4771	PSA Spectrum Analyzer	Agilent Technologies	E4446A	11/25/2014	5/25/2016	
1T4483	Antenna; Horn	ETS-Lindgren	3117	10/8/2015	4/8/2017	
1T4409	EMI Receiver	Rohde & Schwarz	ESIB7	10/29/2014	10/29/2016	

Table 16. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

K. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements provided that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

(a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.

(b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

End of Report