Nom ou numéro d'anonymat :

Durée: 1 heure 30 minutes

Notes manuscrites et documents de cours autorisés L'utilisation de tout matériel électronique (en dehors d'une montre non connectée) est interdite

Les exercices sont indépendants.

Une rédaction claire et concise sera appréciée. Toute affirmation devra être justifiée.

Une question non résolue n'empêche pas de faire les suivantes
(dans ce cas indiquez clairement que vous admettez le(s) résultat(s) de la question non faite).

Exercice 1 : Ensemble indépendant

Soit G = (V, E) un graphe non-orienté et sans boucle. Un ensemble indépendant dans G est un sousensemble $S \subseteq V$ tels que aucune paire de sommets de S ne sont reliés par une arête de E. Le problème de trouver un ensemble indépendant de taille maximale dans un graphe est un problème NP-complet.

Nous notons N(v) le voisinage de v dans G, c'est-à-dire l'ensemble des sommets u pour lesquels le couple $\{u,v\}$ est une arête de $E:N(v)=\{u\in V|\{u,v\}\in E\}$. Nous notons également $\deg(v)=\#N(v)$ le degré d'un sommet $v\in V$, c'est-à-dire le nombre d'arêtes contenant ce sommet et $\Delta=\max_{v\in V}\deg(v)$, le degré maximal d'un sommet de G.

- **1.a** Considérons l'algorithme déterministe suivant pour calculer un ensemble indépendant S.
 - 1. initialiser l'ensemble S à \emptyset et l'ensemble T à V
 - 2. tant que T est non vide
 - (a) retirer un sommet v de T (dans un ordre arbitraire)

Montrer que cet algorithme retourne bien un ensemble indépendant de G.

- (b) ajouter $v \ge S$
- (c) supprimer les éléments de N(v) de T
- 3. retourner S

b]]	Montrer que	e l'ensemble &	S retourné j	par cet algo	orithme vér	ifie $\#S \ge n$	$n/(\Delta+1)$.		
c] (Considérons	le graphe G sède un ense	= (V, E) de	éfini par V	$= \{1, \dots, n$	$\}$ et $E = \{$	$\{\{1,i\},i\in \{\}\}$	$\{2,\ldots,n\}\}$	I ost áms
– 1.	er que G pos	sede un ense	mble maep	engam a n	– i somme	is et que n	e degre ma	ximai de C	restega
	er que l'algo: seul somme	rithme précée t.	dent peut e	effectivemer	nt retourner	pour ce g	raphe un e	nsemble ir	ıdépende

~	ue de l'ensemble $V = \{1, \dots, n\}$ et notons
$S_{\sigma} = \{i \in$	$V \mid \forall j \in N(i), \sigma(i) < \sigma(j) \}$
Montrer que S_{σ} est un ensemble indépendant	$g \in G$.
tion σ de l'ensemble $V = \{1, \dots, n\}$ et à reto de V , la variable aléatoire	qui consiste à tirer uniformément aléatoirement une permuta- purner l'ensemble S_σ associé. Considérons pour tout sommet i : $= \left\{ \begin{array}{ll} 1 & \text{si } i \in S_\sigma \\ 0 & \text{sinon} \end{array} \right.$

	prob	abiliste. Déduire de la question précédente que $\mathbb{E}(X) = \sum_{i=1}^{n} 1/(\deg(i) + 1)$.
graphe de la question 1.c.		$i{=}1$
graphe de la question 1.c.		
graphe de la question 1.c.		
graphe de la question 1.c.		
graphe de la question 1.c.		
graphe de la question 1.c.		
graphe de la question 1.c.		
graphe de la question 1.c.		
graphe de la question 1.c.		
Exercice 2: $NP \subseteq BPP \Rightarrow NP = RP$	1.g]	En déduire la taille moyenne de l'ensemble indépendant retourné par l'algorithme probabiliste sur de la question 1 c
	31 ap.	ne de la question 1.c.
	L	
Montrer que RP ⊆ NP	Exe	rcice 2: $NP \subseteq BPP \Rightarrow NP = RP$
	2.a]	Montrer que $RP \subseteq NP$

Le but de l'exercice est de montrer que si $NP \subseteq BPP$ alors $NP \subseteq RP$ (et donc NP = RP).

2.b] Rappelons que, dans le cadre des langages formels pour les problèmes de décision sur un alphabet Σ , on dit qu'un langage $\mathcal{L}_1 \subset \Sigma^*$ est réductible en temps polynomial à un langage $\mathcal{L}_2 \subset \Sigma^*$ (ce qui est généralement noté $\mathcal{L}_1 \leq_P \mathcal{L}_2$) s'il existe une fonction calculable en temps polynomial $f: \Sigma^* \to \Sigma^*$ telle que pour tout $w \in \Sigma^*$, $x \in \mathcal{L}_1$ si et seulement si $f(x) \in \mathcal{L}_2$.

Soient \mathcal{L}_1 et \mathcal{L}_2 deux langages sur un alphabet Σ tels que $\mathcal{L}_1 \leq_P \mathcal{L}_2$. Montrer que si $\mathcal{L}_2 \in \mathsf{RP}$ alors $\mathcal{L}_1 \in \mathsf{RP}$.

- **2.c**] Nous supposons que SAT \in BPP. Plus précisément, avec les techniques d'amplification vues en cours et en TD, nous supposons qu'il existe une machine de Turing probabiliste \mathcal{M} qui prenant en entrée une formule booléenne Φ en n variables (x_1, \ldots, x_n) sous forme normale conjonctive de m clauses retourne un bit de sorte que :
 - si Φ est satisfiable, $\Pr[\mathcal{M}(\Phi) = 1] \ge 1 4^{-n}$;
 - si Φ n'est pas satisfiable, $\Pr[\mathcal{M}(\Phi) = 0] \geq 1 4^{-n}$.

Considérons la machine de Turing probabiliste $\mathcal N$ qui exécute l'algorithme suivant :

- 1. initialiser une formule booléenne Ψ à Φ
- 2. pour i de 1 à n-1
 - (a) construire la formule booléenne $\Psi_{x_i=0}$ obtenue en remplaçant chaque clause par la clause obtenue en fixant la valeur x_i à 0 (c'est-à-dire les clauses où x_i apparaît sous la forme d'un littéral positif $x_i \vee \ell_1 \vee \cdots \vee \ell_t$ sont remplacées par $\ell_1 \vee \cdots \vee \ell_t$ et les clauses où x_i apparaît sous la forme d'un littéral négatif $\neg x_i \vee \ell_1 \vee \cdots \vee \ell_t$ sont supprimées).
 - (b) exécuter la machine de Turing \mathcal{M} sur $\Psi_{x_i=0}$ et obtenir le bit $b \in \{0,1\}$
 - (c) si $b=1, \mathcal{N}$ met à jour Ψ avec $\Psi_{x_i=0}$ si $b=0, \mathcal{N}$ met à jour Ψ avec $\Psi_{x_i=1}$ (la formule booléenne obtenue en remplaçant chaque clause de Ψ par la clause obtenue en fixant la valeur x_i à 1).
- 3. si $\Psi_{x_n=0}$ est vraie ou $\Psi_{x_n=1}$ est vraie, retourner 1 sinon retourner 0

oabilité inférieure ou é		<u>i</u> 1	1	1		
	$\sum_{j=1}^{n}$	$\sum_{j=1}^{n} \frac{1}{4^{n-j}} =$	$\frac{1}{4^{n-1}} + \cdots$	$\cdot + \frac{1}{4^{n-i}}$		
	<i>,</i>					
En déduire, en util	igant la machin	no do Turi	in m mada ab	iliata Afranc	CAT ~ DD	
En deduire, en den		.ie de Turi	ing probab	mste \mathcal{N} , que	SATERE.	

2.e Conclure.	
Exercice 3 : Test d'identités entières	
Il a été récemment démontré que l'entier 42 s'écrit sous la forme d'une somme de trois cubes de la faç suivante :	on
$42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$	(1)
Trouver cette décomposition a demandé une grande puissance de calcul et même si sa vérification est p simple, elle demande d'écrire des nombres entiers de plus de 50 chiffres décimaux. Dans cet exercice, no allons reprendre le principe de la « preuve par 9 » sous une forme probabiliste pour tester des identités des entiers (de façon similaire au test d'identités polynomiales vu en cours).	ous
3.a] Montrer que la relation (1) est vraie modulo 10.	

	$a_1 \equiv a_2 \bmod p_i, \forall i \in \{1, \dots, \ell\} \text{ et } p_1 \cdots p_\ell > 2B$
Supp Peren Indicons	Soient deux entiers a_1 et a_2 représentés sous une forme polynomiale comme dans l'équation (1). So 2 une borne supérieure stricte sur a_1 et a_2 en valeur absolue (c'est-à-dire telle que $ a_1 < B$ et $ a_2 < B$ cosons que $a_1 \neq a_2$. Montrer qu'il existe une constante $c > 0$ telle que, pour tout entier $n \geq 1$, la probabilité qu'un nombraier inférieur à 2^n tiré uniformément aléatoirement divise $(a_1 - a_2)$ est inférieure ou égale à $cn \log(B)/2^n$ cation. Rappelons une forme faible du théorème des nombres premiers qui affirme qu'il existe un tante $c' > 0$ telle que, pour tout entier $n \geq 1$, le nombre de nombres premiers inférieurs à 2^n , exrieur ou égal à $c' \cdot 2^n/n$.

 ${\bf 3.b}$] Étant donné deux entiers a_1 et a_2 strictement inférieurs en valeur absolue à une borne $B \geq 2$ (c'est-

L		
$lpha_1, ootnote{lpha}_1$] Soit $B \geq 2$. Un entier a avec $ a < B$ est dit représentable sous une forme polynomiale utilisant rations arithmétiques (comme dans l'équation (1)) si il existe un polynôme P en n variables et n entiement a avec $ \alpha_i < B$ tels que $a = P(\alpha_1, \ldots, \alpha_n)$ et l'évaluation du polynôme P nécessite au plus itions d'entiers et d multiplications d'entiers.	ers
poly	Donner un algorithme probabiliste pour tester si deux entiers a_1 et a_2 , représentés sous une formande utilisant d opérations arithmétiques et avec $ a_1 < B$ et $ a_2 < B$, sont égaux. Estimer sa probabilité d'erreur et sa complexité.	mє
ſ		