Reward and Transition functions

Table of Contents

Description	1
nput Arguments:	
nternal Arguments	
Output Arguments:	
Notes:	
Function parameters	
Reward Function	
ransition Function	

• Filename: func.m

• Authors: Matt Reimer

• Created: 07/08/17

• Purpose: Function for determining expected reward and catch for a fishery choice.

Description

The function func returns the expected reward and catch for a single fishery choice.

Reward: The expected reward for vessel i selecting fishery j at time t is:

$$\pi_{i,j,t} = (p-w)' \left(q_i \circ EC_{j,t}\right) - c_j + \varepsilon_{i,j,t}$$

where p is a vector of exvessel prices, w is a vector of expected lease prices for quota, $EC_{j,t}$ is a vector of expected catch, q_i is vector of catchability coefficients, c_j is the cost of fishing in fishery j, $\varepsilon_{i,j,t}$ is an idiosyncratic shock that is observed by the fisher but not by the researcher, and o represents element-wise multiplication.

Catch: The catch received by fishery i after choosing to fish in fishery j in period t is equal to:

$$C_{j,s,t} = q_i \circ exp\{e_{j,s,t}\}.$$

function [out1] = func(flag,x,t,i,k,w,m)

Input Arguments:

- flag = signal for reward or transition function;
- x = the action variable (fishery);
- t = time period;
- i = vessel;

- k = iteration (for expectation);
- w = expected quota lease prices.
- m = a structure of parameter values;

Internal Arguments

- e = random variable determining catch;
- sig = random variable representing "signalling error";
- EC = an array of expected catch used in reward function and constraints;

Output Arguments:

For the reward (flag='f'), the function provides: out1 = the value of the current period's reward.

For the transition (flag='g'), the function provides: out1 = the value of the current period's catch.

Notes:

Eventually, the reward function will be revised to include $x'_{i,j,t}\theta$, where $x_{i,j,t}$ is a vector of state variables and θ is a vector of structural parameters to be estimated.

Function parameters

Reward Function

Transition Function

Published with MATLAB® R2016b