§ 9.4 Closures of Relations (关系的闭包)

- 1. Introduction
 - (1) Example 0 (page 597)

A computer network has data centers in Boston, Chicago, Denver, Detroit, New York and San Diego. There are direct, one-way telephone lines from Boston to Chicago, from Boston to Detroit, from Chicago to Detroit, from Detroit to Denver, and from New York to San Diego.

Let *R* be the relation containing (*a,b*) if there is a telephone line from the data center *a* to that in *b*. How can we determine if there is some (possibly indirect) link composed one or more telephone lines from one center to another?

Solution:

We can find all pairs of data centers that have a link by constructing the smallest transitive relation that contains R.

This relation is called the transitive closure (传递闭包) of R

(2) The Closure of Relation R with Respect to Property P

Let R be a relation on A. R may or may not have some property P, such as reflexive, symmetric, or transitivity.

If there is a relation S with property P containing R such that S is a subset of every relation with property P containing R, then S is called the closure of R with respect to P.

2. Closures

(1) Reflexive Closure

The relation R={(1,1), (1,2), (2,1), (3,2)}} on the set A={1,2,3} is not reflexive. How can we produce a reflexive relation containing R that is as small as possible?

Answer:

by adding (2,2), (3,3) to relation R.

The new relation is called the reflexive closure of R.

(2) Result 1

Let Δ ={ (a,a) | a∈A}. It is called the diagonal relation (对角线的关系).

The reflexive closure of relation *R* on set *A*------- R∪∆

Example 1 (page 598)

What is the reflexive closure of the relation R={ (a,b) | a<b } on the set of integers? Solution:

R∪∆=.....={ (a,b) | a≤b }

(3) Symmetric Closure

The relation $\{ (1,1), (1,2), (2,2), (2,3), (3,1), (3,2) \}$ on $\{1,2,3\}$ is not symmetric. How can we produce a symmetric relation that is as small as possible and contains R?

Answer:

by adding (2,1) and (1,3).

The new relation is called the symmetric closure of *R*.

(4) Result 2

Let $R^{-1} = \{ (b,a) \mid (a,b) \in R \}.$

The symmetric closure of relation R is R∪R-1

Example 2 (page 598)

What is the symmetric closure of the relation R={ (a,b) | a>b } on the set of positive integers?

Answer:

 $R \cup R^{-1} = \dots = \{ (a,b) \mid a \neq b \}$

S=RUR-1

- Prove S is symmetric for any (a,b) ∈S, (a,b) ∈R∪R⁻¹ there are two cases i) (a,b) ∈R, then (b,a) ∈ R⁻¹, (b,a) ∈S ii)
- 2) R ⊆ S obvious

S=RUR-1

- 3) For any T, T is symmetric, $R \subseteq T$, we prove $S \subseteq T$. $(a,b) \in S$,
 - (a,b) ∈R∪R-1 { S=R∪R-1 }
 - `i) (a,b) ∈R
 - $(a,b) \in T \{ R \subseteq T \}$
 - ii) (a,b) ∈R⁻¹
 - (b,a) ∈R {def of R⁻¹}
 - $(b,a) \in T \{R \subseteq T\}$
 - (a,b) ∈T { T is symmetric}
 - (a,b) ∈T
 - S⊆T

(5) Transitive Closure

Consider the relation $R=\{ (1,3), (1,4), (2,1), (3,2) \}$ on the set $\{1,2,3,4\}$.

The relation is not transitive.

The relation is not transitive.

Add (1,2), (2,3), (2,4), and (3,1).

Still not transitive.

Why? ----(3,1) in

----(1,4) in

----(3,4) not in

transitive closure-----complicated

3. Paths in directed graphs

(1) Definition 1 (path)

A path from a to b in the directed graph G is a sequence of edges (x_0,x_1) , (x_1,x_2) , (x_2,x_3) ,..., (x_{n-1},x_n) in G, where n is a nonnegative integer, and x_0 =a, x_n =b.

This path is denoted by $\mathbf{x}_0,\,\mathbf{x}_1,\,...,\,\mathbf{x}_n$ and has length n.

A path of length n≥1 that begins and ends at the same vertex is called a circuit or cycle.

(2) Example 3 (page 599)

Which of the following are paths in the directed graph shown in Figure 1:

a, b, e, d;

a, e, c, d, b;

b, a, c, b, a, a, b;

d, c;

c, b, a;

e, b, a, b, a, b, e?

What are the lengths of those that are paths?

FIGURE 1 A Directed Graph.

Which of the paths in this list are circuits?

(3) The term *path* also applies to relations

There is a path from a to b in R if there is a sequence of elements $a, x_1, x_2, ..., x_{n-1}$, b with $(a,x_1) \in R, (x_1,x_2) \in R, ...,$ and $(x_{n-1},b) \in R$.

(4) Theorem 1 (page 600)

Let R be a relation on a set A. There is a path of length n, where n is a positive integer, from a to b if and only if $(a,b) \in \mathbb{R}^n$.

Can prove formally by induction (see textbook).

- 4. Transitive closure (传递闭包)
- (1) Definition 2 (page 600)

Let R be a relation on a set A. The connectivity relation R* consists of the pairs (a,b) such that there is a path of length at least one from a to b in R. In other words, using theorem 1,

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

(2) Example 4 (page 600)

Let R be the relation on the set of all people in the world that contains (a,b) if a has met b. What is Rⁿ, where n is a positive integer greater than one? What is R*?

Answer:

(a) The relation R^2 contains (a,b) if there is a person c such that (a,c) \in R and (c,b) \in R, that is, if there is a person c such that a has met c and c has met b.

- (b) Similarly, R^n consists of those pairs (a,b) such that there are people x_1 , x_2 , ..., x_{n-1} such that a has met x_1 , x_1 has met x_2 , ..., and x_{n-1} has met b.
- (c) The relation R* contains (a,b) if there is a sequence of people, starting with a and ending with b, such that each person in the sequence has met the next person in the sequence.

(3) Theorem 2 (page 601)

The transitive closure of a relation R equals the connectivity relation R*.

Proof:

- 1) R* contains R by definition.
- 2) We show that R^* is transitive. If $(a,b) \in R^*$ and $(b,c) \in R^*$, then there are paths from a to b and from b to c in R. We obtain a path from a to c by starting with the path from a to b and following it with the path from b to c. Hence, $(a, c) \in R^*$, namely R^* is transitive.

3) Now suppose that S is a transitive relation containing R, R \subseteq S. Because S is transitive, Sⁿ \subseteq S (by Theorem 1 of Section 9.1). It follows that S* \subseteq S. From R \subseteq S, R* \subseteq S*, because any path in R is also a path in S. Consequently, R* \subseteq S* \subseteq S.

(4) Lemma 1 (page 601)

Let A be a set with n elements, and R be a relation on A. If there is a path of length at least one in R from a to b, then there is a path with length not exceeding n.

FIGURE 2 Producing a Path with Length Not Exceeding *n*.

Moreover, when a≠b, if there is a path of at least one in R from a to b, then there is such a path with length not exceeding n-1.

From Lemma 1, we see that the transitive closure of R is the union of R, R^2 , R^3 , ..., R^n .

R*=R UR2 UR3 U... URn