Amdt. Dated September 14, 2004

Page 2 of 13

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

Claims 1-23 cancelled.

- 24. (Previously presented) A method of reducing or moderating a postprandial rise in plasma glucose in a mammal comprising administering to said mammal an amylin or an amylin agonist.
- 25. (Previously presented) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-J_{1}-^{30}Thr-K_{1}-Val-Gly-Scr-^{35}Asn-Thr-Tyr-Z$

wherein

A₁ is Lys, Ala Ser or Hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile:

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

 J_1 is Ser, Pro or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, E_1 is Ser, E_1 is Asn, E_1 is Leu, E_1 is Val, E_2 is Pro, and E_3 is Asn; then one or more E_3 to E_4 is a D-amino acid and Z is selected from

Amdt. Dated September 14, 2004

Page 3 of 13

the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

26. (Previously presented) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^1A_1\text{-}X\text{-}Asn\text{-}Thr\text{-}^5Ala\text{-}Thr\text{-}Y\text{-}Ala\text{-}Thr\text{-}^{10}Gln\text{-}Arg\text{-}Leu\text{-}B_1\text{-}Asn\text{-}^{15}Phe\text{-}Leu\text{-}C_1\text{-}D_1\text{-}E_1\text{-}^{20}\text{-}F_1\text{-}G_1\text{-}Asn\text{-}H_1\text{-}Gly\text{-}^{25}Pro\text{-}I_1\text{-}Leu\text{-}J_1\text{-}Pro\text{-}^{30}Thr\text{-}K_1\text{-}Val\text{-}Gly\text{-}Ser\text{-}^{35}Asn\text{-}Thr\text{-}Tyr\text{-}Z$

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu;

J₁ is Ser, Pro, Leu, Ile or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when

- (a) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Pro and K₁ is Asn; or
- (b) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is His, E₁ is Ser, F₁ is Asn, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Ser and K₁ is Asn;

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

27. (Previously presented) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-{}^{5}Ala-Thr-Y-Ala-Thr-{}^{10}Gln-Arg-Leu-B_{1}-Asn-{}^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-{}^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-{}^{25}I_{1}-J_{1}-Leu-Pro-Pro-{}^{30}Thr-K_{1}-Val-Gly-Ser-{}^{35}Asn-Thr-Tyr-Z$

Amdt. Dated September 14, 2004

Page 4 of 13

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn H_1 is Leu, I_1 is Pro, I_1 is Val and I_2 is Asn; then one or more of I_2 to I_3 is a D-amino acid and I_3 is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

28. (Previously presented) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-Pro-^{30}Thr-J_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

Amdt. Dated September 14, 2004

Page 5 of 13

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu;

J₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and

provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val and J_1 is Asn; then one or more of A_1 to J_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

- 29. (Previously presented) The method of claim 24 wherein said amylin agonist is any one of ¹⁸Arg^{25,28}Pro-h-amylin, des-¹Lys¹⁸Arg^{25,28}Pro-h-amylin, ^{25,28,29}Pro-h-amylin, des-¹Lys^{25,28,29}Pro-h-amylin, des-¹Lys¹⁸Arg^{25,28,29}Pro-h-amylin, or des-¹Lys²⁵Pro²⁶Val^{28,29}Pro-h-amylin.
- 30. (Previously presented) The method of claim 24 wherein the amylin agonist is 25,28,29 Pro-h-amylin.
- 31. (Previously presented) A method of treating ingestion of a toxin in a mammal comprising administering to said mammal an amylin or an amylin agonist and aspirating the toxin out of a stomach of the mammal.
- 32. (Previously presented) The method of claim 31 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^1A_1-X-Asn-Thr-^5Ala-Thr-Y-Ala-Thr^{10}Gln-Arg-Leu-B_1-Asn-^{15}Phe-Leu-C_1-D_1-E_1-^{20}F_1-G_1-Asn-H_1-Gly-^{25}Pro-I_1-Leu-Pro-J_1-^{30}Thr-K_1-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$

wherein

A₁ is Lys, Ala Ser or Hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

Amdt. Dated September 14, 2004

Page 6 of 13

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

J₁ is Ser, Pro or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, I_1 is Pro, and I_1 is Asn; then one or more I_1 to I_2 is a D-amino acid and I_2 is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

33. (Previously presented) The method of claim 31 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-{}^{5}Ala-Thr-Y-Ala-Thr-{}^{10}Gln-Arg-Leu-B_{1}-Asn-{}^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-{}^{20}-F_{1}-G_{1}-Asn-H_{1}-Gly-{}^{25}Pro-I_{1}-Leu-J_{1}-Pro-{}^{30}Thr-K_{1}-Val-Gly-Ser-{}^{35}Asn-Thr-Tyr-Z$

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C1 is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu;

J₁ is Ser, Pro, Leu, Ile or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when

Amdt. Dated September 14, 2004

Page 7 of 13

- (c) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Pro and K₁ is Asn; or
- (d) A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is His, E₁ is Ser, F₁ is Asn, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Ser and K₁ is Asn;

then one or more of A_1 to K_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

34. (Previously presented) The method of claim 31 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-{}^{5}Ala-Thr-Y-Ala-Thr-{}^{10}Gln-Arg-Leu-B_{1}-Asn-{}^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-{}^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-{}^{25}I_{1}-J_{1}-Leu-Pro-Pro-{}^{30}Thr-K_{1}-Val-Gly-Ser-{}^{35}Asn-Thr-Tyr-Z$

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

 K_1 is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn H_1 is Leu, I_1 is Pro, I_1 is Val and I_2 is Asn; then one or more of I_2 to I_3 is a D-amino acid and I_3 is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

35. (Previously presented) The method of claim 31 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

Arndt. Dated September 14, 2004

Page 8 of 13

 1A_1 -X-Asn-Thr- 5 Ala-Thr-Y-Ala-Thr- 10 Gln-Arg-Leu-B $_1$ -Asn- 15 Phe-Leu-C $_1$ -D $_1$ -E $_1^{20}$ F $_1$ -G $_1$ -Asn-H $_1$ -Gly- 25 Pro-I $_1$ -Leu-Pro-Pro- 30 Thr-J $_1$ -Val-Gly-Ser- 35 Asn-Thr-Tyr-Z

wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

It is Ile, Val, Ala or Leu;

J₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and

provided that when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val and I_1 is Asn; then one or more of A_1 to I_1 is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

- 36. (Previously presented) The method of claim 31 wherein said amylin agonist is any one of ¹⁸Arg^{25,28}Pro-h-amylin, des-¹Lys¹⁸Arg^{25,28}Pro-h-amylin, ^{25,28,29}Pro-h-amylin, des-¹Lys^{25,28,29}Pro-h-amylin, ¹⁸Arg^{25,28,29}Pro-h-amylin, des-¹Lys²⁵Pro²⁶Val^{28,29}Pro-h-amylin, or des-¹Lys²⁵Pro²⁶Val^{28,29}Pro-h-amylin.
- 37. (Previously presented) The method of claim 31 wherein the amylin agonist is 25,28,29 Pro-h-amylin.
 - 38. (New) The method of claim 24 wherein the mammal has diabetes.
 - 39. (New) The method of claim 38 wherein the diabetes is type 1.
 - 40. (New) The method of claim 38 wherein the diabetes is type 2.

Amdt. Dated September 14, 2004

Page 9 of 13

- 41. (New) The method of claim 25 wherein the mammal has diabetes.
- 42. (New) The method of claim 41 wherein the diabetes is type 1.
- 43. (New) The method of claim 41 wherein the diabetes is type 2.
- 44. (New) The method of claim 26 wherein the mammal has diabetes.
- 45. (New) The method of claim 44 wherein the diabetes is type 1.
- 46. (New) The method of claim 44 wherein the diabetes is type 2.
- 47. (New) The method of claim 27 wherein the mammal has diabetes.
- 48. (New) The method of claim 47 wherein the diabetes is type 1.
- 49. (New) The method of claim 47 wherein the diabetes is type 2.
- 50. (New) The method of claim 28 wherein the mammal has diabetes.
- 51. (New) The method of claim 50 wherein the diabetes is type 1.
- 52. (New) The method of claim 50 wherein the diabetes is type 2.
- 53. (New) The method of claim 30 wherein the mammal has diabetes.
- 54. (New) The method of claim 53 wherein the diabetes is type 1.
- 55. (New) The method of claim 53 wherein the diabetes is type 2.
- 56. (New) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}I_{1}-J_{1}-Leu-K_{1}-L_{1}-^{30}Thr-M_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z.$

wherein

A₁ is Lys, Ala, Ser, Hydrogen or acetylated Lys;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F1 is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

Amdt. Dated September 14, 2004

Page 10 of 13

H₁ is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu

K₁ is Ser, Pro, Leu, Ile or Thr;

 L_1 is Ser, Pro or Thr;

M₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that

- (a) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Phe, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Ser, and M_1 is Asn;
- (b) when A_1 is Lys, B_1 is Ala, C_1 is Ile, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn;
- (c) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Thr, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, I_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn;
- (d) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Pro, I_1 is Val, I_2 is Pro, I_3 is Pro, I_4 is Pro, and I_3 is Asn;
- (e) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Scr, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Pro, I_1 is Val, I_2 is Pro and I_3 is Asn; or
- (f) when A_1 is Lys, B_1 is Thr, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is His, H_1 is Leu, I_1 is Ala, I_1 is Ala, I_2 is Leu, I_3 is Arg, I_4 is Leu, I_5 is Arg,

then one or more of any of A_1 to M_1 is not an L-amino acid and Z is not amino.

- 57. (New) The method of claim 56 wherein the mammal has diabetes.
- 58. (New) The method of claim 57 wherein the diabetes is type 1.
- 59. (New) The method of claim 57 wherein the diabetes is type 2.
- 60. (New) A method of reducing gastric motility or delaying gastric emptying in a mammal comprising administering to said mammal a therapeutically effective amount of an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}$ -X-Asn-Thr- 5 Ala-Thr-Y-Ala-Thr 10 Gln-Arg-Leu-B $_{1}$ -Asn- 15 Phe-Leu-C $_{1}$ -D $_{1}$ -E $_{1}$ - 20 F $_{1}$ -Gly-Asn-H $_{1}$ -Gly- 25 I $_{1}$ -J $_{1}$ -Leu-K $_{1}$ - 10 Thr-M $_{1}$ -Val-Gly-Ser- 35 Asn-Thr-Tyr-Z

wherein

A₁ is Lys, Ala, Ser, Hydrogen or acetylated Lys;

Amdt. Dated September 14, 2004

Page 11 of 13

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

 E_1 is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu

K₁ is Ser, Pro, Leu, Ile or Thr;

 L_1 is Ser, Pro or Thr;

M₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, eycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that

- (a) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Phc, I_1 is Ala, I_1 is Ile, I_1 is Ser, I_2 is Ser, and I_3 is Asn;
- (b) when A_1 is Lys, B_1 is Ala, C_1 is Ile, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, I_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn;
- (c) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Thr, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn;
- (d) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Pro, I_1 is Val, K_1 is Pro, I_2 is Pro, and I_3 is Asn;
- (e) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Pro, I_1 is Val, I_2 is Ser, I_3 is Pro and I_4 is Asn; or
- (f) when A_1 is Lys, B_1 is Thr, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is His, H_1 is Leu, I_1 is Ala, I_1 is Ala, I_2 is Leu, I_3 is Arg, I_4 is Arg,

then one or more of any of A_1 to M_1 is not an L-amino acid and Z is not amino.

- 61. (New) The method of claim 60 wherein the mammal has diabetes.
- 62. (New) The method of claim 61 wherein the diabetes is type 1.
- 63. (New) The method of claim 61 wherein the diabetes is type 2.

Amdt. Dated September 14, 2004

Page 12 of 13

- 64. (New) The method of claim 60 wherein I_1 and K_1 are Pro and the mammal has diabetes.
- 65. (New) The method of claim 60 wherein I_1 and L_1 are Pro and the mammal has diabetes.
- 66. (New) The method of claim 60 wherein K_1 and L_1 are Pro and the mammal has diabetes.
- 67. (New) The method of claim 60 wherein I_1 , K_1 and L_1 are Pro and the mammal has diabetes.
- 68. (New) The method of claim 60 wherein said amylin agonist is any one of \$\$^{18}Arg^{25,28}Pro-h-amylin, des-^{1}Lys^{18}Arg^{25,28}Pro-h-amylin, \$^{25,28,29}Pro-h-amylin, des-^{1}Lys^{25,28,29}Pro-h-amylin, des-^{1}Lys^{18}Arg^{25,28,29}Pro-h-amylin, \$^{25}Pro^{26}Val^{28,29}Pro-h-amylin, or des-^{1}Lys^{25}Pro^{26}Val^{28,29}Pro-h-amylin and the mammal has diabetes.
- 69. (Previously presented) The method of claim 60 wherein the amylin agonist is ^{25,28,29}Pro-h-amylin and the mammal has diabetes.