Лабораторная работа

ПЕРВАЯ КРАЕВАЯ ЗАДАЧА ДЛЯ СТАЦИОНАРНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

Постановка основной и тестовых задач. Основная задача имеет вид:

$$\frac{d}{dx}(k(x)\frac{du}{dx}) - q(x) u(x) = -f(x) npu x \in (0, 1)$$

$$k(x) \ge c_1 > 0, \ q(x) \ge 0, \ u(0) = \mu_1, \ u(1) = \mu_2.$$

Коэффициенты k(x), q(x), f(x) имеют разрыв в точке ξ , $\xi \in (0, 1)$, и заданы формулами вида

$$k(x) = k_1(x) \text{ npu } x \in (0, \xi),$$
 $k(x) = k_2(x) \text{ npu } x \in (\xi, 1),$ $q(x) = q_1(x) \text{ npu } x \in (0, \xi),$ $q(x) = q_2(x) \text{ npu } x \in (\xi, 1),$ $q(x) = f_1(x) \text{ npu } x \in (0, \xi),$ $q(x) = f_2(x) \text{ npu } x \in (\xi, 1).$

Коэффициенты $k_i(x)$, $q_i(x)$, $f_i(x)$, i=1,2, точка ξ и числа μ_1 и μ_2 по вариантам заданий указаны в табл. III-13.

Тестовая задача №1 имеет вид:

$$\frac{d}{dx}(k^* \frac{du}{dx}) - q^* u(x) = -f^* npu \ x \in (0, 1)$$

$$k^* \ge c_1 > 0, \ q^* \ge 0, \ u(0) = \mu_1, \ u(1) = \mu_2,$$

В качестве решения задачи u(x) выберите полином второй степени $P_2(x)$. Коэффициенты тестовой задачи \mathbb{N}_2 1 k^* , q^* , f^* , а также граничные условия μ_1 и μ_2 являются постоянными и вычисляются на основе выбранного вами полинома. Для решения тестовой задачи \mathbb{N}_2 1 постройте свою разностную схему (используя или же не используя метод баланса).

Таким образом, для тестовой задачи №1 известно точное решение, а ее численное решение имеет нулевую погрешность аппроксимации.

Тестовая задача №2 строится по основной и имеет вид:

$$\frac{d}{dx}(k^* \frac{du}{dx}) - q^* u(x) = -f^* npu \ x \in (0, 1)$$

$$k^* \ge c_1 > 0, \ q^* \ge 0, \ u(0) = \mu_1, \ u(1) = \mu_2,$$

Коэффициенты тестовой задачи $k^*(x)$, $q^*(x)$, $f^*(x)$ имеют разрыв в точке ξ и определяются по формулам вида

$$k^*(x) = k_1^*(x)$$
 при $x \in (0, \xi)$, $k^*(x) = k_2^*(x)$ при $x \in (\xi, 1)$, $q^*(x) = q_1^*(x)$ при $x \in (0, \xi)$, $q^*(x) = q_2^*(x)$ при $x \in (\xi, 1)$, $f^*(x) = f_1^*(x)$ при $x \in (0, \xi)$, $f^*(x) = f_2^*(x)$ при $x \in (\xi, 1)$.

Функции $k_j^*(x)$, $q_j^*(x)$, $f_j^*(x)$, j=1,2, определяются по коэффициентам основной задачи следующим образом:

$$k_1^*(x) = \lim k(x) \text{ npu } x \to \xi - 0,$$
 $k_2^*(x) = \lim k(x) \text{ npu } x \to \xi + 0,$ $q_1^*(x) = \lim q(x) \text{ npu } x \to \xi - 0,$ $q_2^*(x) = \lim q(x) \text{ npu } x \to \xi + 0,$ $f_1^*(x) = \lim f(x) \text{ npu } x \to \xi - 0,$ $f_2^*(x) = \lim f(x) \text{ npu } x \to \xi + 0.$

Числа ξ , μ_1 и μ_2 в тестовой задаче такие же, как в основной.

Так как коэффициенты тестовой задачи №2 являются кусочнопостоянными, тестовая задача №2 может быть решена аналитически с использованием условий сопряжения: решение тестовой задачи u(x) и тепловой поток w(x) должны быть непрерывными по x.

Задание. Найдите численное решение тестовой задачи №1. Сравните его с точным решением тестовой задачи №1.

Найдите *точное решение тестовой задачи №*2. Постройте методом баланса однородную консервативную разностную схему и найдите *численное решение тестовой задачи №*2 с точностью $\varepsilon = 0.5 \cdot 10^{-6}$:

$$\max |u(x_i) - v(x_i)| \le \varepsilon$$

(здесь u(x) — точное решение уравнения, v(x) — приближенное). Для решения разностной схемы в обоих случаях воспользуйтесь методом прогонки.

С целью тестирования программы проверьте наличие *второго порядка сходимости* и заполните (от руки) табл. III-10, подтверждая второй порядок сходимости. Проведите серию расчетов и выясните, начиная с какого количества узлов накопление вычислительной погрешности приводит к замедлению сходимости. С этой целью

заполните (от руки) первые два столбца табл. III-12 и постройте график зависимости погрешности решения тестовых задач в зависимости от числа разбиений (шага сетки). Примечание. Табл. III-10 и III-12 отличаются способом выбора параметра n: в первом случае n нужно выбрать так, чтобы проверить порядок сходимости, во втором — так, чтобы получить представление о свойствах задачи в широком диапазоне изменения n.

Для решения основной задачи используйте аналогичную разностную схему. Найдите приближенное решение основной задачи на сетке с тем же шагом, что и для тестовой. Затем возьмите шаг в два раза меньше и еще раз найдите приближенное решение основной задачи. Сравните значения двух приближенных решений в общих узлах и найдите максимальный модуль разности двух приближенных решений по общим узлам.

Так же, как и для тестовой задачи, проверьте наличие *второго порядка сходимости* и заполните (от руки) табл. III-11, подтверждающий его наличие. Далее проведите серию расчетов и выясните поведение максимального различия двух приближенных решений по общим узлам при сгущении сетки в широком диапазоне изменения *п*. Заполните последний столбец табл. III-11 и постройте (от руки) график зависимости величины

$$max|v(x_i) - v2(x_i)|$$

от числа разбиений (шага сетки).

Вывод результатов. Для тестовой и основной задачи выводятся справки, таблицы и графики. Для тестовой задачи:

- 1) **справка** текст вида «для решения тестовой задачи использована сетка с числом разбиений по x $n = «____»$; требуемая точность решения тестовой задачи $\varepsilon = 0.5 \cdot 10^{-6}$; тестовая задача решена с точностью $\varepsilon_l = «____»$; максимальное отклонение точного и приближенного решений наблюдается в точке $x = «____»$;
- 2) **точное решение** u(x) и **численное решение** v(x) на одном графике;
- 3) разность точного и численного решения (график)
- 4) таблица вида

№ узла	x_i	$u(x_i)$	$v(x_i)$	$u(x_i) - v(x_i)$
0				
n				

Для основной задачи:

- 1) **справка** текст вида «для решения основной задачи использована сетка с числом разбиений по x $n = «____»$; при пересчете задачи с половинным шагом максимальная разность приближенных решений составила $\varepsilon_2 = «____»$; и соответствует узлу $x = «____»$;
- 2) численное решение v(x) и численное решение с половинным шагом v2(x) на одном графике;
 - 3) разность численных решений в общих узлах (график).
 - 4) таблица вида

Таблица III-9

№ узла	x_i	$v(x_i)$	$v2(x_i)$	$v(x_i) - v2(x_i)$
0				
n				

По результатам проверки порядка сходимости должны быть заполнены табл. III-10 и табл. III-11. По результатам исследования сходимости разностной схемы в широком диапазоне значений *п* должна быть построена табл. III-12 и графики.

Таблица III-10

n	Тестовая задача №2
	$max u(x_i)-v(x_i) $
n_1	
n_2	
Порядок сходимости	

Таблица III-11

n	Основная задача
	$max v(x_i)-v2(x_i) $
n_1	
n_2	
•••	
Порядок сходимости	

Таблица III-12

n	T естовая задача№ 1 $max u(x_i) - v(x_i) $	Тестовая задача№2 $max u(x_i) - v(x_i) $	Основная задача $\max v(x_i) - v2(x_i) $
2 4			
1000			
100 000			
Торможение сходимости			

Таблица III-13 Первая краевая задача для стационарного уравнения теплопроводности. Варианты заданий

$N\!$	ξ	μ_{l}	μ_2	$k_1(x)$	$k_2(x)$	$q_1(x)$	$q_2(x)$	$f_1(x)$	$f_2(x)$
1	0.525	0	1	x^2+1	1	exp(-x)	x +1	1	x^3
2	0.525	0	1	$exp(-x^2)$	x+1	x^2+1	\mathbf{x}^2	sinx	cosx
3	0.125	1	0	x +1	x^2+1	x^2+1	x^2+3	cosx	sinx
4	0.125	0	1	x +1	1	exp(-x)	$\exp(-x^2)$	cosx	1
5	$1/\sqrt{2}$	1	0	$x^2+0.5$	x +1	1	$\exp(-x^2)$	1	cosx
6	$1/\sqrt{2}$	0	1	exp(sinx)	1	2	x+3	exp(x)	exp(x)
7	$1/\sqrt{3}$	1	0	1	Exp(cosx)	x^2+1	x^2	sinx	sinx
8	1/√3	2	1	exp(-x)	x ² +1	x^3+1	X	$x^2 - 1$	1
9	$1/\sqrt{5}$	1	2	$\sin^2(x) + 1$	1	x+1	x^3	1	$x^2 - 1$
10	1/√10	1	0	$2 + \cos(x)$	2 + sinx	1	X	2x	2
11	0.5	0	1	$(x+1)^2$	x^2+1	$e^{-x}\sqrt{e}$	e^x/\sqrt{e}	$\cos(\pi x)$	1
12	$\pi/4$	1	0	$\sin(x)+1$	$\cos^2(x)$	1	2*x ²	sin(2x)	cos(x)
13	0.5	0	1	$e^{-x}\sqrt{e}$	1	2	Sin(πx)	$\cos(\pi x)$	e^x/\sqrt{e}
14	$\pi/4$	1	0	$\sqrt{2}\cos(x)$	2	X+1	$2 x^2$	sin(2x)	sin(x)
15	$1/\sqrt{3}$	2	1	1	$\exp(x^2)$	x^2+1	1+x ⁴	$x^2 - 1$	1
16	1/3	1	2	x+1	1	x ² +1	2*x	1	$x^2 - 1$