

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

GRADE 12/GRAAD 12

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2016

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 20 pages. *Hierdie memorandum bestaan uit 20 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.

1.1.1	x(x-7) = 0	
1.1.1		$\checkmark x = 0$
	x = 0 or $x = 7$	
		$\checkmark x = 7$
		(2)
1.1.2	$x^2 - 6x + 2 = 0$	
	$x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(2)}}{2(1)}$ $x = \frac{6 \pm \sqrt{28}}{2}$ $x = 0.35 \text{ or } x = 5.65$ OR/OF $x^2 - 6x + 2 = 0$ $x^2 - 6x + 9 = -2 + 9$ $(x - 3)^2 = 7$	✓ correct substitution into correct formula ✓ $x = 0.35$ ✓ $x = 5.65$ (3)
	$x-3=\pm\sqrt{7}$	$\checkmark (x-3)^2 = 7$
	·	
	$x = 3 \pm \sqrt{7}$	$\checkmark (x-3)^2 = 7$ $\checkmark x = 0.35$
	x = 0.35 or x = 5.65	$\checkmark x = 5,65$
	x = 0.55 or x = 5.05	(3)
1 1 2		(3)
1.1.3	$\sqrt{x-1} = x$ $\sqrt{x-1} = x-1$ $x-1 = x^2 - 2x + 1$ $x^2 - 3x + 2 = 0$ $(x-2)(x-1) = 0$ $x = 2 \text{ or } x = 1$ Both answers are valid $\mathbf{OR/OF}$	✓ isolate $\sqrt{x-1}$ ✓ $x^2 - 2x + 1$ ✓ standard form ✓ factors ✓ both answers (5)

NSC – Memorandum			
	$\sqrt{x-1} + 1 = x$ $\sqrt{x-1} = x - 1$	✓ isolate $\sqrt{x-1}$	
	Let $x-1=k$ $\sqrt{k}=k \qquad k \ge 0$		
	$k = k^2$ $k^2 - k = 0$	$\checkmark k^2$	
	k(k-1) = 0 (x-1)(x-2) = 0 $x = 2$ or $x = 1$; $x \ge 1$	✓ standard form ✓ factors ✓ both answers	
	Both answers are valid	(5)	
	OR/OF		
	$\sqrt{x-1} + 1 = x$ $\sqrt{x-1} = x - 1$	✓ isolate $\sqrt{x-1}$ ✓ $x-1=0$	
	By inspection: x-1=0 or $x-1=1$	$\begin{array}{c} \checkmark & x - 1 = 1 \\ \checkmark & x = 2 \end{array}$	
	x = 2 or $x = 1$	$\checkmark x = 1 \tag{5}$	
1.1.4	$3^{x+3} - 3^{x+2} = 486$ $3^x 3^3 - 3^x 3^2 = 486$	✓ expansion	
	$3^x (3^3 - 3^2) = 486$	✓ common factor	
	$3^x = 27$ $3^x = 3^3$	$\checkmark 3^x = 27$	
	x = 3	$\checkmark x = 3 \tag{4}$	
	OR/OF		
	$3^{x+3} - 3^{x+2} = 486$ $3^{x+2} (3^{1} - 1) = 486$	\checkmark common factor \checkmark (3^1-1)	
	$3^{x+2} = 243$ $3^{x+2} = 3^5$	$\checkmark 3^{x+2} = 243$	
	x + 2 = 5	$\checkmark x = 3$	
101	x = 3	(4)	
1.2.1	$f(x) = x^{2} + 3x - 4$ 0 = (x + 4)(x - 1)		
	x = -4 or x = 1	✓ factors ✓ both answers (2)	

1.2.2	$x^2 + 3x - 4 < 0$		
	(x+4)(x-1) < 0		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$-4 < x < 1$ OR / OF $x \in (-4; 1)$		(2)
1.2.3	$2x+3\geq 0$	$\checkmark 2x+3$	
	$x \ge -\frac{3}{2}$	$\checkmark x \ge -\frac{3}{2}$	
	2	<u>~</u>	(2)
	$f'(x) \ge 0$ when f is increasing	4 . 1	
	The turning point occurs at $x = \frac{-4+1}{2}$	$\checkmark x = \frac{-4+1}{2}$	
	$x \ge -\frac{3}{2}$	$\checkmark x = \frac{-4+1}{2}$ $\checkmark x \ge -\frac{3}{2}$	
	2	_	(2)
1.2	$x = 2y$ and $x^2 - 5xy = -24$	((2)
1.3	$(2y)^2 - 5(2y)(y) = -24$	(1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	
	$4y^2 - 10y^2 = -24$	✓ substitution of $2y$	
	$-6y^2 = -24$	$\checkmark -6y^2 = -24$	
	$v^2 = 4$		
	y = -2 or y = 2	✓ both y – values	
	x = -4 or $x = 4$	✓ both <i>x</i> – values	(4)
	OR/OF		(4)
	$x = 2y$ and $x^2 - 5xy = -24$		
	$y = \frac{x}{2}$	\checkmark substitution of $\frac{x}{2}$	
	$x^2 - 5\left(x\right)\left(\frac{x}{2}\right) = -24$	2	
	$x^2 - \frac{5}{2}x^2 = -24$	3	
	$-\frac{3}{2}x^2 = -24$	$\checkmark -\frac{3}{2}x^2 = -24$	
	$x^2 = 16$		
	x = -4 or $x = 4$	✓ both x – values	
	y = -2 or $y = 2$		(4)
	OR/OF		
	UN/UF		

NSC – Memorandum		
$x = 2y \text{and} x^2 - 5xy = -24$	\checkmark equating $\frac{x}{2} = \frac{x^2 + 24}{5x}$	
$y = \frac{x}{2}$ $-x^2 - 24$		
$y = \frac{-x^2 - 24}{-5x}$ $\frac{x}{2} = \frac{x^2 + 24}{5x}$		
$5x^{2} = 2x^{2} + 48$ $3x^{2} = 48$	$\checkmark 3x^2 = 48$	
$x^2 = 16$ $x = -4 \text{or} x = 4$	✓ both x – values ✓ both y – values (4)	
y = -2 or y = 2	[24]	

2.1	$T_4 = -7$	√ –7	
	Ť		(1)
2.2	$T_n = a + (n-1)d$		
	-87 = 5 + (n-1)(-4)	$\checkmark a = 5 \text{ and } d = -4$	
	-87 = 5 - 4n + 4	$\checkmark -87 = 5 + (n-1)(-4)$	
	4n = 96		
	n = 24	✓ n = 24	(2)
			(3)
	OR/OF		
	-4n+9=-87	$\checkmark -4n + 9$	
	-4n = -96	$\checkmark -4n+9 = -87$	
	n = 24	$\checkmark n = 24$	
	,, 21	N - 24	(3)
2.3	-3;-7;;-87		(5)
	$S_n = \frac{n}{2} [a + T_n]$		
	_	$\checkmark n = 22$	
	$S_{22} = \frac{22}{2} \left[-3 - 87 \right]$	$\checkmark a = -3$	
	=-990	✓ answer	
			(3)
	OR/OF		
Consmiss	nt reserved/Konierea voorhehou	Please turn over/ <i>Rlagi om asse</i> i	hliof

-3;-7;;-87
$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$
$S_{22} = \frac{22}{2} [2(-3) + (22 - 1)(-4)]$
= -990

$$\checkmark$$
 n = 22
 \checkmark a = -3
 \checkmark answer (3)

OR/OF

All negative terms can be written down and added to get the answer of –990./Alle negatiewe terme kan neergeskryf word en dan bymekaar getel word om –990 te kry.

$$\checkmark a = -3$$

 $\checkmark \checkmark$ answer (3)

OR/OF

Sum =
$$S_{24}$$
 - (5+1)
= $\frac{24}{2}$ [5-87]-6
= -990

$$\checkmark \frac{24}{2} [5 - 87]$$

$$\checkmark -6$$

$$\checkmark \text{ answer}$$
(3)

2.4 5;-15;-35.....

$$d = -20$$

$$T_n = -20n + 25$$

Last term in the sequence divisible by 5 is:/Laaste term in die ry deelbaar deur 5 is:

$$-4187 + 4(3)$$

$$=-4175$$

$$T_n = -20n + 25$$
$$-4175 = -20n + 25$$
$$20n = 4200$$
$$n = 210$$

There will be 210 terms in the sequence that is divisible by 5./Daar is 210 terme in die ry deelbaar deur 5.

$$\checkmark d = -20$$

$$\checkmark T_n = -20n + 25$$

$$\checkmark -4175 = -20n + 25$$

(4)

$$\sqrt{n} = 210$$

OR/OF

5;1;-3;...;-83;-87;....;-4187 $T_n = -4n + 9$
- 4187 = -4n + 9

4n = 4196

n = 1049

There are 1049 terms in the sequence./Daar is 1049 terme in die ry.

 T_1 ; T_6 ; T_{11} ; T_{16} ... are divisible by 5./is deelbaar deur 5.

The largest integer value of k such that

 $5k - 4 \le 1049$

 $5k \le 1053$

 $k \le 210,6$

k = 210

$\checkmark -4n+9 = -4187$

$$\checkmark n = 1049$$

 \checkmark 5*k* − 4 ≤ 1049

✓ k = 210

(4)

OR/OF

5; 1 – 3; – 7; ...; – **4175**; – 4179; – 4183; – 4187

$$T_n = a + (n-1)d$$

$$-4175 = 5 + (n-1)(-4)$$

$$-4180 = -4(n-1)$$

$$n = 1046$$

Number of terms divisible by 5

$$= \frac{1046 - 1}{5} + 1$$
$$= 210^{5}$$

 $\checkmark d = -4$

 $\checkmark -4175 = -4n + 9$

√ 1046

 $\checkmark n = 210$

(4) [11]

•		
3.1.1	-1 ; x ; 3 ; $x+8$;	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 ✓ x+1;3-x and x+5 ✓ calculating second differences
	-2x+2=2x+2	$\checkmark -2x + 2 = 2x + 2$
	4x = 0	$\checkmark x = 0 \tag{4}$
2.1.2	$x = 0$ First life was $x = \sqrt{E_{\text{cond}}}$	
3.1.2	First differences/ <i>Eerste verskille</i> : 1;3;5;	
	$S_n = \frac{n}{2} [2(1) + (n-1)(2)]$ = n^2	$\checkmark S_n = n^2$
	$ 250 < n^2 $ $ n > \sqrt{250} $	$\checkmark S_n > 250$
	$\therefore n > 15.8$	✓ <i>n</i> > 15,8
	The sum of the 16 first differences will be greater than 250. Therefore the 17 th term of the quadratic number pattern is the first satisfying this condition./Die som van 16 eerste verskille sal groter as 250 wees. Gevolglik sal die 17 ^{de} term van die kwadratiese getalpatroon die eerste wees wat aan die voorwaarde voldoen.	$\checkmark n = 17 \tag{4}$
3.2.1	$21 + 21(0.85) + 21(0.85)^2 + \dots$	
	$T_{n} = ar^{n-1}$	$\checkmark n = 10 \; ; r = 0.85 \text{ or } \frac{17}{20}$
	$T_{10} = (21)(0.85)^9$ = 4.86 cm	✓ substitution into correct formula ✓ answer (3)
2 2 2	(4 ")	
3.2.2	$S_{n} = \frac{a(1-r^{n})}{1-r}$	
	1-r	/ 15

3.2.2
$$S_{n} = \frac{a(1-r^{n})}{1-r}$$

$$S_{15} = \frac{21(1-(0.85)^{15})}{1-0.85}$$

$$= 127.77$$
Area of the page = 30 x 21 = 630
Percentage of paper covered in grey ink:
$$= \frac{127.77}{630} \times 100\%$$

$$= 20.28\%$$

$$(4)$$
[15]

4.1		/ 0
4.1	y = 0	$\checkmark y = 0$
		(1)
4.2	R(0; 1)	✓ answer
		(1)
		(1)
4.3	$y = a^x$	
	$9=a^2$	
		✓ substitution
	$\therefore a = 3$	$\checkmark a = 3$
		(2)
	DD 2 1	(2)
4.4	DP = 2 - b	
	$y=3^x$	
	1	
	$\frac{1}{81} = 3^b$	1 - h
	81	$\checkmark \frac{1}{81} = 3^b$
	$3^{-4} = 3^b$	81
	3 – 3	\checkmark 3 ⁻⁴ or use of logs
	b = -4	✓ 3^{-4} or use of logs ✓ $b = -4$
	DP = 2 - (-4)	
		\checkmark DP = 6 units
	= 6 units	
		(4)
4.5	h(x+2) + k = 0	
	h(x+2) = -k	
	$0 < -k < \frac{1}{-k}$	$\frac{1}{\sqrt{2}}$
	$0 < -k < \frac{1}{81}$	$\sqrt{-k} < \frac{1}{81} \text{ or } k > -\frac{1}{81}$ $\sqrt{-\frac{1}{81}} < k < 0$
	$-\frac{1}{81} < k < 0$	1
	$-\frac{1}{\cdot \cdot \cdot} < k < 0$	$\sqrt{-\frac{1}{k}} < k < 0$
	81	81
		(3)
		[11]
		[11]

5.1	C() 2 . A 2		
3.1	$f(x) = -x^2 + 4x - 3$		
	$f'(x) = 0$ or $x = -\frac{4}{2(-1)}$	$\sqrt{-2x+4} = 0 \text{ or}$ $x = -\frac{4}{2(-1)}$	
	$\begin{vmatrix} -2x + 4 = 0 \\ x = 2 \end{vmatrix}$	$x = -\frac{4}{2(-1)}$	
	x = 2		
	$y = -(2)^2 + 4(2) - 3$	$y = -(2)^2 + 4(2) - 3$	
	=1		(2)
	B(2;1)		
	on (or		
	OR/OF		
	$-x^2 + 4x - 3 = 0$		
	$x^2 - 4x + 3 = 0$		
	(x-3)(x-1)=0		
	x = 3 or $x = 1$		
	$x = \frac{3+1}{2}$	$\checkmark x = \frac{3+1}{2}$	
	x = 2	2	
	$y = -(2)^2 + 4(2) - 3$		
	$y = -(2)^{2} + 4(2) - 3$ $= 1$	$\checkmark y = -(2)^2 + 4(2) - 3$,_,
	B(2; 1)		(2)
5.2	Range/Waardeversameling: $y \le 1$	✓ <i>y</i> ≤ 1	
	OR/OF		(1)
		47	. ,
	Range/Waardeversameling: $y \in (-\infty; 1]$	✓ (-∞;1]	(1)
5.3	$x \le -1$ or $x > 2$	✓ critical values	(1)
		$\checkmark x \le -1 \text{or} x > 2$	(2)
	OR/OF		(2)
	$(-\infty;-1]\cup(2;\infty)$	✓ critical values	
		$\checkmark x \le -1 \text{or} x > 2$	(2)
5.4	(x-p)(y+t)=3		(2)
	Vertical asymptote of $h(x)$ /vertikale asimptoot at $x = 2$		
	Translation 4 units to the left / Translation 4 eenhede links $r = 2 4 = 2 \text{ is the equation of the vertical asymptote of}$	$\checkmark x = -2$	(1)
	x = 2 - 4 = -2 is the equation of the vertical asymptote of $h(x + 4)$		(-)
	x = 2 - 4 = -2 is die vergelyking van die vertikale asimptoot		
	OR/OF		

	NSC – Memorandum			
	OR/OF			
	$h(x) = \frac{3}{x - 2 + 4} + 1$			
	$= \frac{3}{x+2} + 1$ $x = -2$			
	is the equation of the vertical asymptote / is die vergelyking van die vertikale asimptoot	$\checkmark x = -2$	(1)	
5.5	(x-p)(y+t)=3			
	$(y+t) = \frac{3}{(x-p)}$	√ 3		
	$y = \frac{3}{x - p} - t$	$\begin{array}{c} \checkmark \frac{3}{x-p} \\ \checkmark -t \end{array}$		
	B(2;1)			
	Point of intersection of the asymptotes Snypunt van die asimptote			
	p = 2	$\checkmark p=2$		
	-t=1	$\checkmark p = 2$ $\checkmark t = -1$		
	t = -1	$\checkmark t = -1$	(4)	
5.6	x-intercepts of f / x -afsnitte van f : $x^2 - 4x + 3 = 0$			
	(x-3)(x-1) = 0			
	$\begin{array}{ccc} (x - 3)(x - 1) = 0 \\ x = 1 & \text{or} & x = 3 \end{array}$	✓ both critical values		
	$g'(x) < 0$ for $x \in R$; $x \neq 2$			
	Hence $f(x) < 0$ $x \le 1$ or $x \ge 3$ OR/OF $(-\infty; 1] \cup [3; \infty)$	✓ x ≤ 1		
		\checkmark or \checkmark $x \ge 3$		
			(4) [14]	

6.1		g: ✓ shape: increasing curve ✓ (1; 0): only on log graph f: ✓ (3; 0) ✓ (0; 3) (4)
6.2	$y = \log_2 x$ $g^{-1}: x = \log_2 y$ $y = 2^x$	✓ interchange x and y ✓ $y = 2^x$ (2)
6.3	$\log_2(3-x) = x$ $2^x = 3-x$ $2^x = -x+3$ Reflect the graph of g about the line $y = x$ to obtain g^{-1} and determine the point of intersection of f and g^{-1} ./ Reflekteer die grafiek van g om die lyn $y = x$ en bepaal die snypunt van f and g^{-1}	✓✓ $2^x = -x + 3$ ✓ point of intersection of f and g^{-1} (3)
6.4	x = 1	✓ answer (1) [10]

7.1	$A = P(1+i)^n$	
	$=250000\left(1+\frac{0{,}15}{12}\right)^2$	✓ substituting i and n values in correct
	= R256 289,06	formula
		✓ answer
7.2	[. (.)-n]	(2)
1.2	$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$	
	$256 \ 289,06 = \frac{x \left[1 - \left(1 + \frac{0,15}{12}\right)^{-46}\right]}{\frac{0,15}{12}}$	$ √ i = \frac{0.15}{12} $ $ √ n = 46 $ ✓ substitution into correct formula
	$3203,6133 = x \left[1 - \left(1 + \frac{0,15}{12} \right)^{-46} \right]$ $x = R \ 7 \ 359,79 \text{per month}$	✓ answer (4)
	OR/OF	
	$250000 = \frac{x\left(1 + \frac{0,15}{12}\right)^{-2} \left[1 - \left(1 + \frac{0,15}{12}\right)^{-46}\right]}{\frac{0,15}{12}}$	$ √ i = \frac{0.15}{12} $ $ √ n = 46 $ $ √ substitution into correct formula $
	x = R 7 359,79	✓ answer (4)
7.3	$256 \ 289,06 = \frac{9 \ 000 \left[1 - \left(1 + \frac{0,15}{12}\right)^{-n}\right]}{\frac{0,15}{12}}$	$\checkmark x = 9\ 000$
	$\frac{256\ 289,06 = \frac{0,15}{12}}{\frac{0,15}{12}}$	✓ substitute into correct formula
	$\left(1 + \frac{0,15}{12}\right)^{-n} = 0,6440429722$	
	$-n\log\left(1+\frac{0.15}{12}\right) = \log 0.6440429722$	✓ use of logs
	n = 35,41872568 months/ maande	✓ n =35,42
	∴ 36 payments are required ∴ 36 paaiemente moet betaal word ∴ Thabiso will pay his loan off 10 months sooner./Thabiso los sy lening 10 maande vroeër af.	✓ 10 months (5)
	OR/OF	
1		

NSC – Memorandum

$$256289,06\left(1+\frac{0,15}{12}\right)^{n} = \frac{9000\left[\left(1+\frac{0,15}{12}\right)^{n}-1\right]}{\frac{0,15}{12}}$$

$$3203,61325\left(1+\frac{0,15}{12}\right)^n = 9000\left(1+\frac{0,15}{12}\right)^n - 9000$$

$$9000 = 5796,38675 \left(1 + \frac{0.15}{12}\right)^n$$

$$n = \log_{\left(1 + \frac{0.15}{12}\right)} 1,5523691425$$

n = 35,41872568

∴ 36 payments are required

:.36 paaiemente moet betaal word

: Thabiso will pay his loan off 10 months sooner./Thabiso los sv lening 10 maande vroeër af.

✓ 9 000

✓ substitute into correct formula

✓ use of logs

 $\checkmark n = 35.42$

✓ 10 months

(5)

The balance of his loan after the 35th payment was made: Die balans van sy lening nadat die 35^{ste} paaiement betaal is: 7.4

Balance =
$$256289,06\left(1+\frac{0,15}{12}\right)^{35} - \frac{9000\left(\left(1+\frac{0,15}{12}\right)^{35}-1\right)}{\frac{0,15}{12}}$$

= R 3 735,45

Final instalment =
$$3735,45\left(1 + \frac{0,15}{12}\right)$$

= R 3 782,14

$$\checkmark$$
 256289,06 $\left(1+\frac{0,15}{12}\right)^3$

$$\checkmark \frac{9000 \left(\left(1 + \frac{0.15}{12} \right)^{35} - 1 \right)}{\frac{0.15}{12}}$$

$$\checkmark 3735,45 \left(1 + \frac{0,15}{12}\right)$$

OR/OF

$$P = \frac{x \left[1 - \left(1 + i\right)^{-n}\right]}{i}$$

Final instalment

$$= \frac{9\ 000\left[1 - \left(1 + \frac{0,15}{12}\right)^{-0.41872568}\right]}{\frac{0,15}{12}} \left(1 + \frac{0,15}{12}\right)$$

$$= R\ 3\ 782,14$$

$$\checkmark \frac{9000 \left[1 - \left(1 + \frac{0.15}{12}\right)^{-0.41872568}\right]}{\frac{0.15}{12}}$$

$$\checkmark \times \left(1 + \frac{0.15}{12}\right)$$

✓ answer

(4)

(4)

OR/OF

NSC – Memorandum

Balance =
$$256289,06\left(1+\frac{0,15}{12}\right)^{36} - \frac{9000\left(\left(1+\frac{0,15}{12}\right)^{36}-1\right)}{\frac{0,15}{12}}$$

$$= R - 5217,86$$
Final payment = $9000 - 5217,86$

$$= R 3 782,14$$

$$\checkmark 256289,06\left(1+\frac{0,15}{12}\right)^{36} - 1$$

$$\checkmark 9000\left(\left(1+\frac{0,15}{12}\right)^{36}-1\right)$$

$$\checkmark 9000 - 5217,86$$

$$\checkmark 9000 - 5217,86$$

$$\checkmark answer$$

$$\checkmark answer$$

$$\checkmark 4)$$

8.1
$$f(x+h) = 3(x+h)^{2}$$

$$= 3(x^{2} + 2xh + h^{2})$$

$$= 3 x^{2} + 6xh + 3h^{2}$$

$$f(x+h) - f(x) = 3 x^{2} + 6xh + 3h^{2} - 3x^{2}$$

$$= 6xh + 3h^{2}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{6xh + 3h}{h}$$

$$= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$$

$$= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$$

$$= \lim_{h \to 0} \frac{3(x+h)^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3(x+h)^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2} + 6xh + 3h^{2} - 3x^{2}}{h}$$

$$= \lim_{h \to 0} \frac{6xh + 3h}{h}$$

$$= \lim_{h \to 0} \frac{6xh + 3h}{h}$$

$$= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$$

	NSC – Memorandum		
8.2	$\lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h}$ $g(x) = \sqrt{x}$ $a = 4$	✓ answer ✓ answer	(2)
			` '
8.3	$y = \sqrt{x^3} - \frac{5}{x^3}$ $y = x^{\frac{3}{2}} - 5x^{-3}$ $\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}} + 15x^{-4}$	$\checkmark x^{\frac{3}{2}}$ $\checkmark -5x^{-3}$ $\checkmark \frac{3}{2}x^{\frac{1}{2}}$ $\checkmark 15x^{-4}$	
			(4)
8.4	$f(x) = x^{3} + ax^{2} + bx + 18$ $f'(x) = 3x^{2} + 2ax + b$ At $x = 1$, $m_{tan} = -8$ $f'(1) = -8$ $3(1)^{2} + 2a(1) + b = -8$ $3 + 2a + b = -8$ $2a + b = -11 \dots (1)$	$✓ 3x^2 + 2ax + b$ $✓ f'(1) = -8 \text{ or}$ $3(1)^2 + 2a(1) + b = -8$	
	y = f(1) = g(1) = -8(1) + 20 = 12 1 + a + b + 18 = 12 a + b = -7(2) a = -4 $b = -3$	$\checkmark 1+a+b+18=12$ $\checkmark a=-4$ $\checkmark b=-3$	(5) [16]

9.1	() . ?	✓ equating derivative to
7.1	$f'(x) = 3x^2 + 8x - 3 = 0$	zero
	(3x-1)(x+3)=0	✓ factors
	1	$\checkmark x$ – values
	$x = \frac{1}{3}$ or $x = -3$	(3)
9.2	f''(x) = 6x + 8	$\checkmark 6x+8$
9.2	6x + 8 < 0	
		$\checkmark \checkmark x < -\frac{4}{3}$
	$x < -\frac{4}{3}$	$\sqrt{x} < -\frac{\pi}{3}$
	3	(3)
	OR	
	$\frac{1}{2} - 3$	$\frac{1}{2}$ - 3
	$x = \frac{\frac{1}{3} - 3}{2}$	$\sqrt{\frac{\frac{1}{3}-3}{2}}$
		2
	$=\frac{4}{3}$	
	$\therefore x < -\frac{4}{3}$	1
	3	$\sqrt{x} < -\frac{4}{3}$
		(3)
0.0	1	✓ x<-3
9.3	$x \le -3$ or $x \ge \frac{1}{3}$	1
	OR/OF	$\checkmark x \ge \frac{1}{2} \tag{2}$
		$ \begin{array}{c} x = 3 \\ \checkmark x \ge \frac{1}{3} \\ \checkmark \left[-\infty; -3 \right] \\ \checkmark \left[\frac{1}{3}; \infty \right] \end{array} (2) $
	[]	[· [- ∞, - 5]
	$\left[-\infty;-3\right] \cup \left[\frac{1}{3};\infty\right]$	$\left \checkmark \left \frac{1}{2}; \infty \right \right $ (2)
		[3]
9.4		
	d = -18	$\checkmark d = -18$
	$f(x) = ax^3 + bx^2 + cx - 18$	
	$f'(x) = 3ax^2 + 2bx + c$	$f'(x) = 3ax^2 + 2bx + c$
	$f'(x) = 3x^2 + 8x - 3$	$\checkmark a = 1$
	3a = 3 2b = 8	$\checkmark a = 1$ $\checkmark b = 4$
	$a = 1 \qquad \qquad b = 4 \qquad \qquad c = -3$	$\checkmark c = -3$
	$f(x) = x^3 + 4x^2 - 3x - 18$	(5)
	OR/OF	
	$f'(x) = 3x^2 + 8x - 3$	
	By integration/ <i>Deur integrasie</i>	$\checkmark f(x) = x^3 + 4x^2 - 3x + d$
	$f(x) = x^3 + 4x^2 - 3x + d$	
	f(0) = d = -18	$\checkmark d = -18$
		$\checkmark a = 1$
	a = 1	$\checkmark b = 4$
	b = 4	$\checkmark c = -3$
	c = -3	(5)
		[13]

10.1	$M(t) = -t^3 + 3t^2 + 72t$	
	$M(3) = -(3)^3 + 3(3)^2 + 72(3)$	\checkmark M(3)=-(3) ³ + 3(3) ² + 72(3)
	= 216	✓ 216
		(2)
	216 molecules/molekules	
10.2	$M(t) = -t^3 + 3t^2 + 72t$	(/ () - 2
	$M'(t) = -3t^2 + 6t + 72$	$\checkmark M'(t) = -3t^2 + 6t + 72$
	$M'(2) = -3(2)^2 + 6(2) + 72$	✓ M′(2)
	= 72	✓ 72
	72 molecules per hour/molekules per uur	(3)
10.3	$M(t) = -t^3 + 3t^2 + 72t$	
	$M'(t) = -3t^2 + 6t + 72$	$\checkmark M''(t)$
	M''(t) = 0 $M''(t) = 0$	$\checkmark M''(t) = 0$
	-6t + 6 = 0	✓ answer
	t = 1	
	Maximum rate of change of the number of molecules of the	
	drug in the bloodstream is after 1 hour /Maksimum tempo	
	van verandering van die getal molekules in die bloedstroom	
	is na 1 uur	(3)
		[8]

11.1						
		Watches TV	Do not watch	Total		
		during exams	TV during			
			exams			
	Male	80	а	80+a		
	Female	48	12	60		
	Total	b	32	160		
	a + 12 = 32					
	a = 20		$\checkmark a = 20$ $\checkmark b = 128$			
	b = 80 + 48				$\sqrt{h} = 128$	
	=128				0 - 128	(2)
11.2	No		√No	\ \ /		
	P(M and not wa					
	1 (WI and not wa		✓reason	(2)		
			(120	(2)		
11.3.1	P(watching TV) = $\frac{128}{160} = \frac{4}{5} = 0.8 = 80\%$			✓128 ✓160		
11.5.1	160 5				V 160	(2)
						(2)
11.3.2	P(female and not	watching TV)=	$\frac{12}{112} = \frac{3}{112} = 0.075$	= 7,5%	✓ 12	
	P(female and not watching TV) = $\frac{12}{160} = \frac{3}{40} = 0.075 = 7.5\%$				√160	
						(2)
						[8]

We want to create codes that are even numbers greater than 5000. The digit 6 can be used in one of two places in these codes and therefore this presents two scenarios.

Ons wil kodes kry wat ewe getalle groter as 5000 is. Die syfer 6 kan in twee posisies in die kode gebruik word en twee opsies is moontlik:

CASE 1: The first digit is a 6./Die eerste syfer is 'n 6.

6 2 1 × 5 × 4 × 2

✓ 1 × 5 × 4 × 2 ✓ 40

Number of codes starting with 6./Getal kodes wat met 6 begin. = $1 \times 5 \times 4 \times 2 = 40$

CASE 2: The first digit is a 5 or 7./Die eerste syfer is 'n 5 of 7.

5 2 4 6 2 × 5 × 4 × 3

Number of codes not starting with 6./Getal kodes wat nie met 6 $begin = 2 \times 5 \times 4 \times 3 = 120$

Therefore total number of possible codes./Die totale getal moontlike kodes = 40 + 120 = 160.

✓ 2 × 5 × 4 ×3 ✓ 120

[5]

[5]

[5]

✓ 160

OR/OF

 $(3 \times 5 \times 4 \times 1) + (3 \times 5 \times 4 \times 1) + (2 \times 5 \times 4 \times 1)$ = 60 + 60 + 40 = 160 $\checkmark (3 \times 5 \times 4 \times 1)$ $\checkmark (3 \times 5 \times 4 \times 1)$

 $\checkmark (2 \times 5 \times 4 \times 1)$

✓ ✓ 160

OR/OF

 $(3 \times 5 \times 4 \times 3) - (1 \times 5 \times 4 \times 1)$ = 180 - 20 = 160

 $\checkmark \checkmark (3 \times 5 \times 4 \times 3)$ $\checkmark \checkmark (1 \times 5 \times 4 \times 1)$

√ 160

TOTAL/TOTAAL: 150