Lecture 12

Integer Programming

max ctx	max c ^t x
st Ax5b	st Ax5b
x e Z m	x e IR m

When	do	these	problems	have	the	same	solution
			•				

Sufficient condition	n :	

Theorem: If the matrix A is totally unimodular
(Tum) then for all integer vectors
b the polyhedron P=[x 1Ax + b]
is an integral polyhedron.
A matrix is Tum if the determinant of
every square submatrix in A is in [0,1,-1].
In particular, all elements in A are in [0,4,-1]
Examples:
Proof of theorem.

Proposition	If A is Tum then for all
	integral rector a, b, c, d the
	polyhedron [x a < x < b, c < A x < d]
	is integral
Proof	

Example Consider the graph adjacency matrix, we will prove it is TUM.

Max flow problem

· It the copacities are all 1 (unit rate edges)

Claim: in a groph with unit	copacify edges
we can find h edge-disjoin	
connect s to t, where h = 1	
Dual IP	interpretation:
	Pi .
min ctd	Pi dij
$ \frac{m_{1m} c^{T}d}{s!} \frac{p-p>1}{s} $	dij Pi
s t	
dij > Pi -Pi	
dij >0, p; >0	
Integer LI	
min std	
s + p ₃ -p ₄ > 1	
dij >> P; -P;	
dij € [0,1]	
P; & { 0, 1 }	5 P _s =1
	1 - 2 6 - 5

max flow LP dual-relaxed mm-cuz LP

max fts	min I cijdij
st Ilx; - Ilij 50	st p-p >1
fij < <ij< td=""><td>dij >> p - p.</td></ij<>	dij >> p - p.
fij >, O	dij, p. >0

KKT conditions: dij (fij-cij)=0

5

Equivalent formulation of the min-cut max-flow problem with paths.

