CARACTERISATION DE L'INVERSE A GAUCHE ET APPLICATIONS

A. MESSAOUDI

Université Mohammed V, E.N.S. RABAT, MAROC

En collaboration avec H. SADOK Travail entamé par Feu Alami LEMBARKI

ENS, 15 Décembre 2016

Plan de l'exposé

- Introduction
- 2 CARACTÉRISATION
- 3 Cas particulier : $W_k^g = (Y_k^T W_k)^{-1} Y_k^T$
 - Relation entre T_{k+1} et T_k
 - Relation entre S_{k+1} et S_k
 - Relation entre G_{k+1} et G_k
 - Relation entre W_{k+1}^L et W_k^L
 - Propriétés
 - ullet Un algorithme de calcul de W_k^L
- 4 Application
 - Cas : $Vect(Z_k) \neq Vect(Y_k)$
 - Cas : $Vect(Z_k) \subseteq Vect(Y_k)$

Introduction

Introduction

On considère une matrice W_k de taille $n \times k$, avec $k \le n$. On va commencer par caractériser les inverses à gauche W_{ν}^L de W_k . Cette caractérisation va dépendre de deux matrices Y_k et Z_k de même taille que W_k .

Soit W_{k}^{g} une inverse à gauche de W_{k} on démontre que toute inverse W_k^L à gauche de W_k peut s'écrire sous la forme

$$W_k^L = W_k^g + Z_k^T (I_n - W_k W_k^g).$$

Un cas particulier sera étudié :

 $W_{k}^{g} = (Y_{k}^{T} W_{k})^{-1} Y_{k}^{T},$ $W_{k}^{L} = (Y_{k}^{T} W_{k})^{-1} Y_{k}^{T} + Z_{k}^{T} (I_{n} - W_{k} (Y_{k}^{T} W_{k})^{-1} Y_{k}^{T}).$

Des relations de récurrence entre
$$W_{k+1}^L$$
 et W_k^L seront établies. Des propriétés seront aussi données en utilisant les projecteurs.

Des algorithmes seront aussi proposés. Les choix de W_k , Y_k et Z_k permettent de retrouver la plupart des méthodes itératives pour la résolution d'un système linéaire : Ax = b.

Introduction

Soit M la matrice définie par

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right].$$

Si la matrice A est inversible on définit le complément de Schur de A dans M par

$$(M/A) = D - CA^{-1}B.$$

On note par det(X) le détérminant de la matrice X.

Proposition 1.

Si la matrice A est inversible et si la matrice M est carrée alors

$$det((M/A)) = det(M)/det(A).$$

Introduction

CARACTÉRISATION

Proposition 2.

Si les matrices A et M sont inversibles alors

$$M^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(M/A)^{-1}CA^{-1} & -A^{-1}B(M/A)^{-1} \\ -(M/A)^{-1}CA^{-1} & (M/A)^{-1} \end{bmatrix}. (1)$$

CARACTÉRISATION

Définition 1.

Soit W_k une matrice de taille $n \times k$ et de rang k, W_k^L une matrice de taille $k \times n$, est une inverse à gauche de W_k si et seulement si

$$W_k^L W_k = I_k$$
.

Proposition 3.

Soit W_k^L une inverse à gauche de W_k et S une matrice de taille $k \times n$. Alors

$$SW_k = 0_k \Leftrightarrow (W_k^L + S)W_k = I_k$$
.

Remarque 1.

 W_k est une matrice de taille $n \times k$ et de rang k, alors il existe une matrice Y_k de taille $n \times k$ ($Y_k = W_k$) telle que

$$Y_k^T W_k$$
 soit inversible.

On remarque aussi que $(Y^T W_k)^{-1} Y^T$ est une inverse à gauche de W_k .

REMARQUE 2.

Soit W_k^g une inverse à gauche de W_k , et Z_k une matrice de taille $n \times k$ alors on peut choisir

$$S = Z_k^T (I_n - W_k W_k^g).$$

CARACTÉRISATION

En utilisant la définition d'une inverse à gauche, la proposition 3 et les remarques précédentes, on a

Théorème 1.

Soit W_k une matrice de taille $n \times k$ et de rang k, et W_k^g une inverse à gauche de W_k . Alors W_k^L est une inverse à gauche de W_k si et seulement si il existe une matrice Z_k de taille $n \times k$ telle que

$$W_k^L = W_k^g + Z_k^T (I_n - W_k W_k^g). (2)$$

Cas particulier:

$$W_k^g = (Y_k^T W_k)^{-1} Y_k^T,$$

$$W_k^L = (Y_k^T W_k)^{-1} Y_k^T + Z_k^T (I_n - W_k (Y_k^T W_k)^{-1} Y_k^T).$$
(3)

Cas particulier: $W_{\nu}^{g} = (Y_{\nu}^{T} W_{k})^{-1} Y_{\nu}^{T}$

On va poser

$$Q_k = (Y_k^T W_k)^{-1}, \quad T_k = (Y_k^T W_k)^{-1} Y_k^T,$$

$$S_k = I_n - W_k (Y_k^T W_k)^{-1} Y_k^T, \quad G_k = I_n - W_k W_k^L.$$

REMARQUE 3.

On remarque que

$$S_k^2 = S_k, \quad G_k^2 = G_k.$$

et

$$S_k = I_n - W_k (Y_k^T W_k)^{-1} Y_k^T = I_n - W_k T_k,$$
 (4)

Cas particulier: $W_{\nu}^{g} = (Y_{\nu}^{T} W_{k})^{-1} Y_{\nu}^{T}$

Remarque 4.

$$W_{k}^{L} = (Y_{k}^{T}W_{k})^{-1}Y_{k}^{T} - Z_{k}^{T}W_{k}(Y_{k}^{T}W_{k})^{-1}Y_{k}^{T} + Z_{k}^{T}$$

$$= T_{k} - Z_{k}^{T}W_{k}T_{k} + Z_{k}^{T}$$

$$= T_{k} + Z_{k}^{T}(I_{n} - W_{k}T_{k})$$

$$= T_{k} + Z_{k}^{T}S_{k}.$$
(5)

$$G_{k} = I_{n} - W_{k}W_{k}^{L}$$

$$= I_{n} - W_{k}(T_{k} + Z_{k}^{T}S_{k})$$

$$= I_{n} - W_{k}T_{k} - W_{k}Z_{k}^{T}S_{k}$$

$$= S_{k} - W_{k}Z_{k}^{T}S_{k}$$

$$= (I_{n} - W_{k}Z_{k}^{T})S_{k}.$$
(6)

Soient

$$W_{k+1} = [W_k, w_{k+1}], Y_{k+1} = [Y_k, y_{k+1}], Z_{k+1} = [Z_k, z_{k+1}],$$

des matrices obtenues en rajoutant une colonne à chacune des matrice W_k , Y_k et Z_k . On suppose que W_{k+1} est de rang k+1 et que

$$Y_{k+1}^T W_{k+1}$$
 est inversible.

RELATION ENTRE T_{k+1} ET T_k

En utilisant la Proposition 2 on obtient

$$Q_{k+1} = (Y_{k+1}^{T} W_{k+1})^{-1}$$

$$= \begin{pmatrix} Y_{k}^{T} W_{k} & Y_{k}^{T} w_{k+1} \\ y_{k+1}^{T} W_{k} & y_{k+1}^{T} w_{k+1} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} Q_{k} + T_{k} \frac{w_{k+1} y_{k+1}^{T}}{\alpha_{k}} W_{k} Q_{k} & -T_{k} \frac{w_{k+1}}{\alpha_{k}} \\ -\frac{y_{k+1}^{T}}{\alpha_{k}} W_{k} Q_{k} & \frac{1}{\alpha_{k}} \end{pmatrix},$$
(7)

Relation entre T_{k+1} et T_k

avec

$$\alpha_{k} = y_{k+1}^{T} w_{k+1} - y_{k+1}^{T} W_{k} T_{k} w_{k+1}$$

$$= y_{k+1}^{T} S_{k} w_{k+1}.$$
(8)

Cas particulier: $W_k^g = (Y_k^T W_k)^{-1} Y_k^T$

Relation entre T_{k+1} et T_k

En utilisant l'expression de T_{k+1} et la relation (7) on obtient

$$T_{k+1} = (Y_{k+1}^{T} W_{k+1})^{-1} Y_{k+1}^{T}$$

$$= \begin{pmatrix} Q_{k} + T_{k} \frac{w_{k+1} y_{k+1}^{T}}{\alpha_{k}} W_{k} Q_{k} & -T_{k} \frac{w_{k+1}}{\alpha_{k}} \\ -\frac{y_{k+1}^{T}}{\alpha_{k}} W_{k} Q_{k} & \frac{1}{\alpha_{k}} \end{pmatrix} \begin{pmatrix} Y_{k}^{T} \\ y_{k+1}^{T} \end{pmatrix}$$

$$= \begin{pmatrix} T_{k} (I_{n} - \frac{w_{k+1} y_{k+1}^{T}}{\alpha_{k}} S_{k}) \\ \frac{y_{k+1}^{T}}{\alpha_{k}} S_{k} \end{pmatrix}.$$
(9)

Relation entre S_{k+1} et S_k

En utilisant les relations (4) et (9) on obtient

$$S_{k+1} = I_n - W_{k+1} T_{k+1}$$

$$= I_n - W_k T_k (I_n - \frac{w_{k+1} y_{k+1}^T}{\alpha_k} S_k) - \frac{w_{k+1} y_{k+1}^T}{\alpha_k} S_k \qquad (10)$$

$$= S_k - S_k \frac{w_{k+1} y_{k+1}^T}{\alpha_k} S_k.$$

Relation entre G_{k+1} et G_k

En utilisant les relations (6) et (10) on obtient

$$G_{k+1} = (I_n - W_{k+1} Z_{k+1}^T) S_{k+1}$$

$$= (I_n - W_k Z_k^T - w_{k+1} Z_{k+1}^T) (S_k - S_k \frac{w_{k+1} y_{k+1}^T}{\alpha_k} S_k) \quad (11)$$

$$= (G_k - w_{k+1} Z_{k+1}^T S_k) (I_n - \frac{w_{k+1} y_{k+1}^T}{\alpha_k} S_k).$$

Relation entre W_{k+1}^L et W_k^L

En utilisant les relations (3) et (9) on obtient

$$W_{k+1}^{L} = T_{k+1} + Z_{k+1}^{T} S_{k+1}$$

$$= \begin{pmatrix} W_{k}^{L} (I_{n} - \frac{w_{k+1} y_{k+1}^{T}}{\alpha_{k}} S_{k}) \\ \frac{y_{k+1}^{T}}{\alpha_{k}} S_{k} + z_{k+1}^{T} S_{k+1} \end{pmatrix}.$$
(12)

Cas particulier: $W_{k}^{g} = (Y_{k}^{T} W_{k})^{-1} Y_{k}^{T}$

PROPRIÉTÉS

On a les propriétés suivantes

Proposition 4.

2
$$S_{k+1}S_k = S_{k+1}$$
, car $S_k^2 = S_k$.

5
$$S_k G_k = S_k$$
, car $S_k W_k = 0$.

6
$$G_k S_k = G_k$$
, car $S_k^2 = S_k$.

8
$$W_k^L G_k = 0$$
, car $G_k = I_n - W_k W_k^L$.

PROPRIÉTÉS

on a aussi

- $G_{k+1}W_k = 0$, car $S_kW_k = 0$.
- **3** $S_{k+1}G_k = S_{k+1}$, car $S_kG_k = S_k$.
- $G_{k+1}S_k = G_{k+1}$, car $S_{k+1}S_k = S_{k+1}$.
- **6** $G_k G_{k+1} = G_k$, car $G_k W_k = 0$.
- **6** $G_{k+1}G_k = G_{k+1}$, car $S_kG_k = S_k$.

Un algorithme de calcul de W_{ν}^{L}

Algorithme 1.

- w_1 , y_1 et z_1 sont des vecteurs donnés de \mathbb{R}^n ,
- on pose $W_1 = w_1$, $Y_1 = v_1$ et $Z_1 = z_1$,
- on suppose que $Y_1^T W_1 \neq 0$, on calcule
- $\bullet S_1 = I_n W_1(Y_1^T W_1)^{-1} Y_1^T$ $W_1^L = (Y_1^T W_1)^{-1} Y_1^T + Z_1^T (I_p - W_1 (Y_1^T W_1)^{-1} Y_1^T)$
- pour k = 1, 2, ..., n 1, on pose
- $W_{k+1} = (W_k \ w_{k+1}), \ Y_{k+1} = (Y_k \ y_{k+1}) \ \text{et} \ Z_{k+1} = (Z_k \ Z_{k+1}),$
- on suppose que $Y_{k+1}^T W_{k+1}$ est inversible, on calcule
- $\bullet \ \alpha_k = y_{k+1}^T S_k w_{k+1}, \ S_{k+1} = S_k S_k \frac{w_{k+1} y_{k+1}'}{\alpha_k} S_k,$

$$\bullet \ \, W_{k+1}^L = \left(\begin{array}{c} W_k^L(I_n - \frac{w_{k+1}y_{k+1}^T}{\alpha_k}S_k) \\ \frac{y_{k+1}^T}{\alpha_k}S_k + z_{k+1}S_{k+1} \end{array} \right)$$

On considère le système linéaire suivant

$$Ax = b, (13)$$

où A est une matrice $n \times n$, inversible et b un vecteur de \mathbb{R}^n , $x^* = A^{-1}b$.

Soit x_0 un vecteur donné et $r_0 = b - Ax_0$ le résidu associé

$$x^* - x_0 = A^{-1}b - x_0 = A^{-1}(b - Ax_0) = A^{-1}r_0$$

On va poser $t_0 = x_0$ et pour k = 1, ..., CV

$$t_k - x^* = S_k(x_0 - x^*) = (I_n - W_k(Y_k^T W_k)^{-1} Y_k^T)(x_0 - x^*),$$
 (14)

$$\begin{array}{rcl}
x_k - x^* & = & G_k(x_0 - x^*) = (I_n - W_k Z_k^T) S_k(x_0 - x^*) \\
& = & (I_n - W_k Z_k^T) (t_k - x^*).
\end{array} \tag{15}$$

En utilisant la Proposition 4 on a les propriétés suivantes.

Proposition 5.

$$t_k - x^* = S_k(x_k - x^*)$$
, car $S_k = S_k G_k$.

$$x_k - x^* = G_k(t_k - x^*)$$
, car $G_k = G_k S_k$.

On va exprimer t_{k+1} et x_{k+1} en fonction de t_k et x_k . En utilisant les relations (10) et (11) on obtient

$$t_{k+1} = t_k + \frac{y_{k+1}^T(x^* - t_k)}{\alpha_k} S_k w_{k+1}, \tag{16}$$

$$x_{k+1} = x_k + \frac{y_{k+1}^T(x^* - t_k)}{Ct} G_k w_{k+1} + z_{k+1}^T(x^* - t_{k+1}) w_{k+1}.$$
 (17)

En utilisant les relations (14) et (15) et la Proposition 5 on a

Proposition 6.

Il existe $n_0 \le n$ telle que $x_{n_0} = t_{n_0} = x^*$.

On remarque que t_{k+1} et x_{k+1} existent si et seulement si $\alpha_k \neq 0$. Or

$$\alpha_k = y_{k+1}^T S_k w_{k+1} = (Y_{k+1}^T W_{k+1} / Y_k^T W_k).$$

Et en utilisant la Proposition 1, on obtient

$$\alpha_k = \det(Y_{k+1}^T W_{k+1}) / \det(Y_k^T W_k).$$

Donc

 $\alpha_k \neq 0$ si et seulement si $det(Y_{k+1}^T W_{k+1}) \neq 0$.

Définition 2.

La matrice $Y_{n_0}^T W_{n_0}$ est une matrice fortement inversible si et seulement si $det(Y_k^T W_k) \neq 0$, pour $k = 1, ..., n_0$.

Donc si $Y_{n_0}^T W_{n_0}$ est une matrice fortement inversible alors t_k et x_k existent pour $k = 1, \ldots, n_0$.

Dans S_k et G_k on va remplacer Y_k et Z_k par $A^T Y_k$ et $A^T Z_k$ et on pose $s_k = b - At_k = A(x^* - t_k)$. On obtient

$$S_{k+1} = S_k - S_k \frac{w_{k+1} y_{k+1}^T}{\alpha_k} A S_k,$$
 (18)

$$G_{k+1} = (I_n - W_{k+1} Z_{k+1}^T A) S_{k+1}.$$
 (19)

Et les relations (16) et (17) deviennent

$$t_{k+1} = t_k + \frac{y_{k+1}^T s_k}{\alpha_k} S_k w_{k+1}, \tag{20}$$

$$x_{k+1} = x_k + \frac{y_{k+1}^T s_k}{\alpha_k} G_k w_{k+1} + z_{k+1}^T s_{k+1} w_{k+1}.$$
 (21)

Avec

$$\alpha_k = y_{k+1}^T A S_k w_{k+1}. \tag{22}$$

Remarquons que t_{k+1} et α_k necéssitent le calcul de $S_k w_{k+1}$. Ceci peut être fait récursivement. Pour $i=1,\ldots,k$, posons $u_{i,k+1}=S_iw_{k+1}$, ainsi $S_k w_{k+1}=u_k$, Or

$$S_i = S_{i-1} - S_{i-1} \frac{w_i y_i^T}{\alpha_{i-1}} A S_{i-1},$$

d'où

$$u_{i,k+1} = u_{i-1,k+1} - \frac{y_i^T A u_{i-1,k+1}}{y_i^T A u_{i-1,i}} u_{i-1,i}.$$

On prend $u_0 = w_1$, l'algorithme 2 calcule u_k , pour $k \le n_0$.

Algorithme 2.

- $u = w_{k+1}$,
- pour i = 1, ..., k, on calcule $u = u \frac{y_i^T A u}{v_i^T A u_{i-1}} u_{i-1}$,
- fin *i*.
- $\bullet u_k = u.$

 x_{k+1} nécessite le calcul de $G_k w_{k+1}$. On pose $g_k = G_k w_{k+1}$

$$g_k = (I_n - W_k Z_k^T A) S_k w_{k+1}$$

$$= S_k w_{k+1} - \sum_{i=1}^k w_i z_i^T A S_k w_{k+1}$$

$$= u_k - \sum_{i=1}^k z_i^T A u_k w_i.$$

On donne l'algorithme qui calcule $g_k = G_k w_{k+1}$.

Algorithme 3.

- $g = u_k$
- pour i = 1, ..., k, on calcule $g = g z_i^T A u_k w_i$,
- fin *i*
- $g_k = g$.

Soit Y_k la matrice dont les colonnes sont notées par y_i ,

$$Vect(Y_k) = sev\{y_1, y_2, ..., y_k\}.$$

Cas: $Vect(Z_k) \neq Vect(Y_k)$

Lorsque $Vect(Z_k) \neq Vect(Y_k)$ on a l'algorithme suivant.

Algorithme 4.

- x_0 un vecteur donné de \mathbb{R}^n , $t_0 = x_0$, $r_0 = s_0 = b Ax_0$, $u_0 = w_1, g_0 = w_1,$
- pour $k = 0, ..., n_0$, on calcule $\alpha_k = y_{k+1}^T A u_k$, si $\alpha_k = 0$ arrêter

$$t_{k+1} = t_k + \frac{y_{k+1}^T s_k}{\alpha_k} u_k,$$

$$s_{k+1} = s_k - \frac{y_{k+1}^T s_k}{\alpha_k} A u_k,$$

$$x_{k+1} = x_k + \frac{y_{k+1}^T s_k}{\alpha_k} g_k + z_{k+1}^T s_{k+1} w_{k+1},$$

- u_{k+1} se calcule par l'algorithme 2,
- g_{k+1} se calcule par l'algorithme 3.

En utilisant $(Y_k^T A S_k = 0)$ de la Proposition 4, on obtient

$$G_k = S_k = I_n - W_k (Y_k^T A W_k)^{-1} Y^T A \text{ et } t_k = x_k.$$

La relation (15) devient

$$\begin{array}{rcl}
x_k - x_0 & = & S_k(x_0 - x^*) \\
 & = & (I_n - W_k(Y_k^T A W_k)^{-1} Y_k^T A)(x_0 - x^*) \\
 & = & x_0 - x^* - W_k(Y_k^T A W_k)^{-1} Y_k^T A(x_0 - x^*),
\end{array}$$

d'où

$$x_k = x_0 - W_k (Y_k^T A W_k)^{-1} Y_k^T A (x_0 - x^*)$$

= $x_0 + W_k (Y_k^T A W_k)^{-1} Y_k^T r_0$. (22)

Algorithme 5.

- x_0 un vecteur donné de \mathbb{R}^n , $r_0 = b Ax_0$, $u_0 = w_1$,
- pour $k=0,\ldots,n_0$, on calcule $\alpha_k=y_{k+1}^TAu_k$, si $\alpha_k=0$ arrêter $x_{k+1}=x_k+\frac{y_{k+1}^Tr_k}{\alpha_k}u_k$, $r_{k+1}=b-Ax_{k+1}=r_k-\frac{y_{k+1}^Tr_k}{\alpha_k}Au_k$, u_{k+1} est calculé par l'algorithme 2.
- fin *k*.

CAS : $Vect(Z_k) \subseteq Vect(Y_k)$

Les identifications se font soit en utilisant la relation (22) soit en utilisant l'Algorirhme 5.

Algorithme	Conditions	Choix de y _k	Choix de w_k
CG	A SPD	p_{k-1}	r_{k-1}
CR	A inver.	Ap_{k-1}	r_{k-1}
CGNE	A inver.	r_{k-1}	$A^T r_{k-1}$
CGNR	A inver.	Ap_{k-1}	r_{k-1}
GCR	A et H_0 inver.	Ar_{k-1}	r_{k-1}
Daniel	A inver.	HAp_{k-1}	KA^THr_{k-1}
	H et K SPD		
PGCR	A inver.	Ap_{k-1}	KA^THr_{k-1}
	H SPD et K PD		

$Cas : Vect(Z_k) \subseteq Vect(Y_k)$

Algorithme	Conditions	Choix de y _k	Choix de w _k
GCD	A inver.	Hd_k	d_k
	H SPD		
Axelsson	A inver.	BAp_{k-1}	p_{k-1}
Vassilevsky	B SPD		
Orthodir	A inver.	Z^Tq_{k-1}	$w_1 = q_0$
	ZA PD		$w_k = Aq_{k-2}$
Orthomin	A inver.	$Z^T p_{k-1}$	$w_k = r_{k-1}$
	Z et ZA PD		
ABS	A et H_0 inver.	V _k	$H_0^T q_0$
FOM	A inver.	V _k	$w_k = v_k$
GMRES	A inver.	Av_k	$w_k = v_k$

CONCLUSION

Questions ouvertes:

- Quel est le choix de W_k , Y_k et Z_k pour retrouver les algorithmes : CGS, bi-cgstab, IDR,...
- 2 Les versions globales et par blocs et leurs applications.

Recursive interpolation Algorithm : a formalism for linear equations, I. Direct methods,

J. Comp. Appl. Math 76 (1996) 13-30

A. Messaoudi,

Recursive interpolation Algorithm : a formalism for linear equations, II. Iterative methods,

J. Comp. Appl. Math 76 (1996) 31-53.

Y. Saad Iterative methods for sparse linear systems, PWS. Publishing Company, 1996.

H. Van der Vorst, Iterative Krylov methods for large linear systems, Cambridge University Press, 2003.